ON THE LEMNISCATE COMPONENTS CONTAINING NO CRITICAL POINTS OF A POLYNOMIAL EXCEPT FOR ITS ZEROS

Let P be a complex polynomial of degree n and let E be a connected component of the set $\{z : |P(z)| \leq 1 \}$ containing no critical points of P different from its zeros. We prove the inequality $|(z-a)P'(z)/P(z)| \leq n$ for all $z \in E \setminus \{a\}$, where a is the zero of the polynomial P lying in E. Equality is attained for $P(z) = cz^n$ and any $z, c \neq 0$.

Bibliography: 4 titles.

Introduction

Let R be a rational function of degree n represented as $R = P/Q$, where P and Q are polynomials of degrees n and not exceeding n, respectively, which have no zeros in common. Assume that $R(0) = R'(0) \neq 0$. Sheil-Small [1, 10.3.2] posed a question on finding a neighborhood of the point $w = 0$ in which one could distinguish a one-valued branch, $f(w)$, of the inverse function $z = R^{-1}(w)$, $f(0)=0$, satisfying the inequality

$$\text{Re} \frac{wf'(w)}{f(w)} \geq \frac{1}{n}$$

The inequality obtained would be of interest in connection with the shape of the level curves $|R(z)| = \text{const}$ in the domain where the function R is univalent. In the present note, a closely related problem for polynomials $P(Q \equiv 1)$ is considered. More precisely, the following result is proved.

Theorem. Let P be a polynomial of degree not exceeding n and let E be a connected component of the lemniscate $|P(z)| \leq 1$ containing no critical points of the polynomial P different from its zeros. Then, for any point $z \in E \setminus \{a\}$,

$$\left| \frac{(z-a)P'(z)}{P(z)} \right| \leq n,$$

where a is the zero of the polynomial P belonging to the component E. Equality in (1) is attained for any point z in the case where $P(z) = cz^n, c \neq 0$.

If the component E contains no critical points, then from (1) it follows that for the corresponding branch f of the function inverse to the polynomial P, the inequality

$$\left| \frac{wf'(w)}{f(w) - a} \right| \geq \frac{1}{n}.$$
holds in the disk $|\omega| < 1$. This result is weaker than the Sheil-Small statement. However, contrary to [1], critical points in E are allowed. The result obtained has the following geometric interpretation. Assume, for simplicity, that $a = 0$ and let $\log (\cdot)$ denote the one-valued branch of the logarithm mapping the plane slit along the real positive semiaxis onto a strip of width 2π. For any level curve $c(\tau)(|P(z)| = \tau < 1)$, the "curve" $\gamma(\tau) = \log c(\tau)$ connects the opposite sides of the strip mentioned; consequently, its length is no less than 2π. On the other hand, the image $\gamma(\tau)$ under the map $\log P(\exp(\cdot))$ covers a vertical interval of length 2π no more than n times. Therefore, on the curve $\gamma(\tau)$, there is a point ζ at which the distortion coefficient satisfies the condition.

$$|\log P(\exp \zeta)|' \leq n.$$

This means that inequality (1) holds at a certain point $z = \exp \zeta$ of the level curve $c(\tau)$. The theorem of the present paper claims that this inequality holds at any point of the curve $c(\tau)$. The assumption that the set E contains no critical points different from the polynomial zero is essential. For instance, for the polynomial $P(z) = z^3/2 - 3z^2/4$, the lemniscate $|P(z)| \leq 1$ contains both critical points $z = 0$ and $z = 1$, whence it is connected. The point $z = 2$ belongs to this lemniscate, but

$$\frac{2P'(2)}{P(2)} = 6 > 3.$$

Corollary. If, under the assumption of the theorem, the inequality $P(z) > 0$ holds at point $z \in E$, then the polar derivative with respect to the point a, $D_a P$, satisfies the bound

$$\text{Re} D_a P(z) = \text{Re} [nP(z) - (z - a)P'(z)] \geq 0, \quad \text{Im}.$$

The theorem will be proved in Sec. 2. Ideologically, it comes back to the proof of Hayman’s conjecture on coverings of vertical under a conformal mapping of the disk [2].

§1. Auxiliary constructions and assertions

Let P be a polynomial of degree n and let E be a connected component of the lemniscate $|P(z)| \leq 1$ that contains no critical points of the polynomial P other than its
zeros (i.e., no points ζ such that $P'(\zeta) = 0$ and $P(\zeta) \neq 0$). Let a be the zero of P lying in E and let z_0 be a point of the component E such that $P(z_0) > 0$.

By \mathcal{R} denote the Riemann surface of the function \mathcal{P}^{-1} inverse to the polynomial P. In what follows, we consider the function \mathcal{P}^{-1} as a one-valued function given on the surface \mathcal{R}. Let $P : \overline{\mathbb{C}} \rightarrow \mathcal{R}$ be the function inverse to \mathcal{P}^{-1} in this sense. The projection of a point $W \in \mathcal{R}$ is defined as the point $P(\mathcal{P}^{-1}(W)) \in \overline{\mathbb{C}}$.

Assume that the ray \{w : \Im w = 0, 0 < \Re w < \infty\} contains no critical values of the polynomial P (i.e., no points $P(\zeta)$ such that $P'(\zeta) = 0$ for a certain ζ). By L denote the ray on the surface \mathcal{R} or, more exactly, the Jordan curve univalently lying over the above ray of the sphere $\overline{\mathbb{C}}$ and connecting the points $P(a)$ and $P(\infty)$. Let $T = \{t_k\}_{k=0}^m$, $0 = t_0 < P(z_0) = t_1 < \ldots < t_{m-1} < t_m = \infty$, be a partition of the interval $0 \leq t \leq \infty$ containing all those values of t in $1 < t < \infty$ at which the circle $\gamma(t) := \{w : |w| = t\}$ contains at least one critical value $P(\zeta)$ with $\zeta \in E$.

Finally, by $C(t)$ denote the closed Jordan curve on \mathcal{R} intersecting the ray L and lying over the circle $\gamma(t)$ whose orientation corresponds to the positive orientation on the projection $\gamma(t)$, $0 < t < \infty$, $t \notin T$; $c(t)$ is the image of the curve $C(t)$ under the mapping \mathcal{P}^{-1}.

Lemma 1. The argument increment

$$\Delta_{c(t)} \arg P(z)$$

is a nondecreasing function of t on the set $\{t : 0 < t < \infty, t \notin T\}$.

Proof. Let $0 < t' < t'' < \infty$, $t', t'' \notin T$. The points $P(a)$ and $P(\infty)$ are located on different sides of the curves $C(t')$ and $C(t'')$ on the surface \mathcal{R}. Therefore, the nonintersecting Jordan curves $c(t')$ and $c(t'')$ separate the point a from ∞ on the sphere $\overline{\mathbb{C}}$. Consequently, one of them lies in the interior of the other. Furthermore, as we move along the ray L from the point $P(a)$ to the point $P(\infty)$, we first meet the curve $C(t')$ and then the curve $C(t'')$. This means that the curve $c(t')$ lies in the interior of the curve $c(t'')$. Therefore, the number $N_{t'}$ of the zeros of the polynomial P lying inside $c(t')$ does not exceed the number $N_{t''}$ of the zeros lying inside $c(t'')$ (with account for their multiplicities). It remains to apply the argument principle:

$$2\pi N_t = \Delta_{c(t)} \arg P(z), \quad t = t', t''.$$

The lemma is proved.
The points \(\mathcal{P}(a) \) and \(\mathcal{P}(\infty) \) lie on different sides of the curve \(\mathcal{C}(t) \) for any \(t, 0 < t < \infty, t \notin T \). This implies that for every \(k = 0, \ldots, m - 1 \), the doubly-connected domain

\[
\mathcal{G}_k = \bigcup_{t_k < t < t_{k+1}} \mathcal{C}(t)
\]

also separates the points \(\mathcal{P}(a) \) and \(\mathcal{P}(\infty) \). At the same time, the curve \(\mathcal{P}(H), H = \{ z : z_0 + (a - z_0)\tau, 1 \leq \tau \leq \infty \} \), connects these points. Therefore, for every \(k = 0, \ldots, m - 1 \), there is at least one Jordane arc \(\mathcal{H}_k \), on the curve \(\mathcal{P}(H) \) that lies in the domain \(\mathcal{G}_k \) and connects its boundary components. Thus, in the above notation, the following assertion holds.

Lemma 2. For any \(k = 0, \ldots, m - 1 \) the domain \(\mathcal{G}_k \setminus \mathcal{H}_k \) is simply connected.

Below, we will need the notion of condenser capacity (e.g., see [3]). For sufficiently small positive \(r \) and \(\rho \) on the sphere \(\overline{\mathbb{C}}_z \), consider the condensers

\[
C(r) = (H, \{ z : |z - z_0| \leq r \})
\]

and

\[
C(r, \rho) = (H \cup \{ z : |z - a| \leq \rho \} \cup \{ z : |z| \geq 1/\rho \} \cup \bigcup_{P'(\zeta) = 0} \{ z : |z - \zeta| \leq \rho \}, \{ z : |z - 1| \leq r \}).
\]

Lemma 3. For a fixed \(r, 0 < r < |a - z_0| \), the condensers capacities satisfy the relation

\[
\lim_{\rho \to 0} \text{cap} \ C(r, \rho) = \text{cap} \ C(r).
\]

Proof. We make use of the continuity of the capacity and of the fact that the latter is invariant under addition of a finite number of points to points to the condenser’s plates:

\[
\lim_{\rho \to 0} \text{cap} \ C(r, \rho) = \text{cap} \left(H \cup \bigcup_{P'(\zeta) = 0} \{ \zeta \}, \{ z : |z - z_0| \leq r \} \right) = \text{cap} \ C(r)
\]

(see Propositions 1.4 and 1.6 in [3]). This proves the lemma.

Below, we introduce new notation and give some comments.

\(\zeta = f_k(W) \) is the one-valued branch of the function \(\zeta = \log(W/P(z_0)) \) that maps the domain \(\mathcal{G}_k \setminus \mathcal{H}_k \) conformally and univalently into the "strip" \(\Pi_k := \{ \zeta : \xi_k < \Re \zeta < \)
ξ_{k+1}, k = 0, \ldots, m - 1. Here, \(\xi_k = \log(t_k/P(z_0)) \), \(k = 0, 1, \ldots, m \). The choice of such a branch is feasible in view of Lemma 2. For \(k = 1 \) and \(k = m \), \(\Pi_k \) is a half-plane.

\(u(z) \) is the potential function of the condenser \(C(r, \rho) \), i.e., the resl-valued function continuous on \(\overline{C}_z \), vanishing on the first plate of the condenser \(C(r, \rho) \), equal to unity on its second plate, and harmonic in the complement to these plates:

\[
v_k(\zeta) = \begin{cases}
 u(D^{-1}(f_k^{-1}(\zeta))), & \zeta \in f_k(G_k \setminus \mathcal{H}_k), \\
 0, & \zeta \in \Pi_k \setminus f_k(G_k \setminus \mathcal{H}_k),
\end{cases} \quad k = 0, \ldots, m - 1
\]

On \(\partial \Pi_k \) the function \(v_k \) is defined by continuity. The function obtained in this way is also denoted by \(v_k \). As is not difficult to see, the function \(v_k \) satisfies the Lipschitz condition in the strip \(\Pi_k \), \(k = 0, \ldots, m - 1 \), whereas the function \(v_j \) is equal to unity on the set \(f_j(D(\{z : |z - z_0| \leq r\}) \cap \mathcal{G}_j) \), \(j = 0, 1 \).

\(v_k^*(\zeta) \) is the result of Steiner symmetrization of the function \(v_k(\zeta) \), \(\zeta \in \overline{\Pi}_k \), with respect to the real axis (see [4]). Every function \(v_k^*(\zeta) \) is a Lipschitz function in \(\overline{\Pi}_k \) and vanishes on the set \(\{\zeta \in \overline{\Pi}_k : |\text{Im} \ \zeta| \geq \pi n\} \), \(k = 0, \ldots, m - 1 \). Lemma 1 implies the following inequalities:

\[
v_{k-1}^*(\xi_k + i\eta) \leq v_k^*(\xi_k + i\eta), \quad -\infty < \eta < \infty, \quad k = 2, \ldots, m - 1.
\]

\(\zeta = F(z) \) is the function that maps the unit disk \(|z| < 1 \), conformally and univalently, onto the strip \(|\text{Im} \ \zeta| < \pi n \) in such a way that \(F(0) = 0, \ F'(0) > 0 \).

\(\tilde{r} \) is the upper bound for all \(r \) for which the set \(F(\{z : |z| < r\}) \cap \{\zeta : \text{Re} (-1)^j \zeta < 0\} \)
belongs to the result of Steiner symmetrization with respect to the real axis of the set \(f_j(D(\{z : |z - z_0| \leq r\}) \cap \mathcal{G}_j) \) for \(j = 0 \) and \(j = 1 \).

\(v(\zeta) \) is the potential function of the condenser \(\tilde{C}(\tilde{r}) = (\overline{C}_\zeta \setminus \{\zeta : |\text{Im} \ \zeta| < \pi n\}, F(\{z : |z| \leq \tilde{r}\})) \). It is readily seen that

\[
\frac{\partial v}{\partial \xi} = 0 \quad \text{on the line} \quad \text{Re} \ \zeta = 0,
\]

\[
\frac{\partial v}{\partial \xi} \leq 0 \quad \text{on every line} \quad \text{Re} \ \zeta = \xi > 0.
\]

The level curves of the potential function \(v \) coincide with the level curves of the function \(F \) (i.e., with the curves \(|F^{-1}(\zeta)| = \text{const} \)).
Given a sufficiently smooth function λ on an open set $\Omega \subset \mathbb{C}$, denote

$$I(\lambda, \Omega) = \int_\Omega |\nabla \lambda|^2 d\sigma.$$

Lemma 4. The following inequality holds:

$$\sum_{k=0}^{m-1} I(v_k^*, \Pi_k) \geq I(v, \mathbb{C}).$$

Proof. Set $G_k = \{ \zeta \in \Pi_k : |\text{Im} \zeta| < \pi n \}$, $k = 0, 1, \ldots, m - 1$, and $l_k = \{ \zeta : \text{Re} \zeta = \xi_k, |\text{Im} \zeta| < \pi n \}$, $k = 2, \ldots, m - 1$. For every k, $0 \leq k \leq m - 1$, we have

$$I(v_k^*, \Pi_k) = I(v_k^*, G_k) = I(v_k^* - v + v, G_k) = I(v_k^* - v, G_k) + I(v, G_k) +$$

$$+ 2 \iint_{G_k} \left[\frac{\partial(v_k^* - v)}{\partial \xi} \frac{\partial v}{\partial \xi} + \frac{\partial(v_k^* - v)}{\partial \eta} \frac{\partial v}{\partial \eta} \right] d\xi d\eta \geq I(v, G_k) - 2 \int_{\partial G_k} (v_k^* - v) \frac{\partial v}{\partial n} ds,$$

where $\partial/\partial n$ means differentiation along the inward normal to the boundary of the domain G_k (angle points are excluded). With account for relations (2) and (3), we derive

$$\sum_{k=0}^{m-1} I(v_k^*, \Pi_k) \geq \sum_{k=0}^{m-1} I(v, G_k) - 2 \sum_{k=1}^{m-1} \int_{\partial G_k} (v_k^* - v) \frac{\partial v}{\partial n} ds =$$

$$= \sum_{k=0}^{m-1} I(v, G_k) - 2 \sum_{k=2}^{m-1} \int_{l_k} \left[(v_{k-1}^* - v) \left(-\frac{\partial v}{\partial \xi} \right) + (v_k^* - v) \frac{\partial v}{\partial \xi} \right] ds =$$

$$= \sum_{k=0}^{m-1} I(v, G_k) + 2 \sum_{k=2}^{m-1} \int_{l_k} (v_{k-1}^* - v_k^*) \frac{\partial v}{\partial \xi} ds \geq I(v, \mathbb{C})$$

This completes the proof.

§2. Proof of the theorem

It is sufficient to prove inequality (1) at an arbitrary point $z_0 \in E \setminus \{a\}$ such that $P(z_0) > 0$ under the assumption that the ray $\{ w : \text{Im} w = 0, 0 < \text{Re} w < \infty \}$ contains no critical points of the polynomial P. We use the notation introduced in Sec. 1.
chain of relations below stems from the conformal invariance of the Dirichlet integral, from the Pólya and Szegő theorem on function symmetrization (see [4]), and from Lemma 4:

\[
\operatorname{cap} C(r, \rho) = I(u, C) \geq \sum_{k=0}^{m-1} I(v_k, \Pi_k) \geq \sum_{k=0}^{m-1} I(v_k^*, \Pi_k) \geq I(v, \mathbb{C}) = \operatorname{cap} \tilde{C}(\tilde{r}).
\]

In view of Lemma 3, we ultimately obtain

\[
\operatorname{cap} C(r) \geq \operatorname{cap} \tilde{C}(\tilde{r}). \quad (4)
\]

In order to compute the asymptotics of the condenser capacity as \(r \to 0 \), we use known formulas (e.g., see [3, (1.6) and (1.8)]), in which \(r(B, a) \) stands for the inner radius of the domain \(B \) with respect to a point \(a \in B \). As a result, we obtain

\[
\operatorname{cap} C(r) = -\frac{2\pi}{\log r} - \frac{1}{2\pi} (\log r(C_z \setminus H, z_0)) \left(\frac{2\pi}{\log r} \right)^2 + o \left(\left(\frac{1}{\log r} \right)^2 \right) =
\]

\[
= -\frac{2\pi}{\log r} - 2\pi (\log[4|a - z_0|]) \left(\frac{1}{\log r} \right)^2 + o \left(\left(\frac{1}{\log r} \right)^2 \right), \quad r \to 0.
\]

Further, the second plate of the condenser \(\tilde{C}(\tilde{r}) \) is an "almost disk" of radius \((r|P'(z_0)|/P(z_0))(1 + o(1)) \) as \(r \to 0 \). Consequently,

\[
\operatorname{cap} \tilde{C}(\tilde{r}) = -\frac{2\pi}{\log(r|P'(z_0)|/P(z_0))} - 2\pi (\log r(\{\zeta : \text{Im } \zeta < \pi n\}, 0)) \left(\frac{1}{\log(r|P'(z_0)|/P(z_0))} \right)^2 +
\]

\[
+ o \left(\left(\frac{1}{\log r} \right)^2 \right) = -\frac{2\pi}{\log(r|P'(z_0)|/P(z_0))} -
\]

\[
-2\pi (\log(4n)) \left(\frac{1}{\log(r|P'(z_0)|/P(z_0))} \right)^2 + o \left(\left(\frac{1}{\log r} \right)^2 \right) =
\]

\[
= -\frac{2\pi}{\log r} \left(1 - \frac{\log |P'(z_0)/P(z_0)|}{\log r} + o \left(\frac{1}{\log r} \right) \right) -
\]

\[
-2\pi (\log(4n)) \left(\frac{1}{\log r} \right)^2 + o \left(\left(\frac{1}{\log r} \right)^2 \right) = -\frac{2\pi}{\log r} -
\]

7
\[-2\pi (\log |4nP(z_0)/P'(z_0)|) \left(\frac{1}{\log r} \right)^2 + o \left(\left(\frac{1}{\log r} \right)^2 \right), \quad r \to 0.\]

Substituting the asymptotics obtained into inequality (4), we arrive at the inequality

\[|a - z_0| \leq |nP(z_0)/P'(z_0)|.\]

Under the assumptions considered, the latter relation coincides with (1) \((z = z_0)\). The case of equality is verified straightforwardly.

The theorem is proved.

Литература

1. T.Sheil-Small, *Complex polynomials*, Cambridge Univ. Press., Cambridge (2002).

2. V.N. Dubinin, "Coverings of vertical segments under a conformal mapping* Mat. Zametki* 28, No. 1, 25-32 (1980).

3. V.N. Dubinin, "Symmetrization in the geometric theory of function of a complex variable* Usp. Mat. Nauk*, 49, No. 1, 3-76 (1994).

4. W.K.Hayman, *Multivalent functions*, Cambridge Univ. Press., Cambridge (1994).