Species Differences in the Immunoreactive Expression of Oxytocin, Vasopressin, Tyrosine Hydroxylase and Estrogen Receptor Alpha in the Brain of Mongolian Gerbils (*Meriones unguiculatus*) and Chinese Striped Hamsters (*Cricetulus barabensis*)

Yu Wang¹,² *, Linxi Xu¹,² *, Yongliang Pan¹, Zuoxin Wang³, Zhibin Zhang¹*

¹ State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, PR China, ² University of Chinese Academy of Sciences, Beijing, PR China, ³ Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, United States of America

Abstract

Species differences in neurochemical expression and activity in the brain may play an important role in species-specific patterns of social behavior. In the present study, we used immunoreactive (ir) labeling to compare the regional density of cells containing oxytocin (OT), vasopressin (AVP), tyrosine hydroxylase (TH), or estrogen receptor alpha (ERα) staining in the brains of social Mongolian gerbils (*Meriones unguiculatus*) and solitary Chinese striped hamsters (*Cricetulus barabensis*). Multiple region- and neurochemical-specific species differences were found. In the anterior hypothalamus (AH), Mongolian gerbils had higher densities of AVP-ir and ERα-ir cells than Chinese striped hamsters. In the lateral hypothalamus (LH), Mongolian gerbils also had higher densities of AVP-ir and TH-ir cells, but a lower density of OT-ir cells, than Chinese striped hamsters. Furthermore, in the anterior nucleus of the medial preoptic area (MPOAa), Mongolian gerbils had higher densities of OT-ir and AVP-ir cells than Chinese striped hamsters, and an opposite pattern was found in the posterior nucleus of the MPOA (MPOAp). Some sex differences were also observed. Females of both species had higher densities of TH-ir cells in the MPOAa and of OT-ir cells in the intermediate nucleus of the MPOA (MPOAi) than males. Given the role of these neurochemicals in social behaviors, our data provide additional evidence to support the notion that species-specific patterns of neurochemical expression in the brain may be involved in species differences in social behaviors associated with different life strategies.

Introduction

Animals show remarkable differences in their life strategies and social behaviors. Social species, for example, usually display high levels of prosocial behavior towards conspecifics, social affiliation with mates and biparental care of their offspring [1,2]. In contrast, solitary species generally display low levels of prosocial behavior and social affiliation, but high levels of aggression to defend their territory [1,3]. Such species differences in life strategy and social behavior may not only reflect their adaption to the environment, but also indicate their potential differences in the central mechanisms that are involved in the regulation of social behavior.

Indeed, several neurochemicals have been implicated in social behaviors associated with different life strategies. For example, the receptor distribution and activity of the neuropeptides oxytocin (OT) and vasopressin (AVP) differ in the brains of social and nonsocial rodent species, and such differences are thought to be involved in the regulation of species-specific social behaviors, such as affiliation, pair bonding, male parental care and territory marking [4–7]. Similarly, release patterns of the neurotransmitter dopamine, during mating and social interaction, differ between social and nonsocial rodent species [7], and dopamine has been implicated in pair bonding behavior in the socially monogamous rodent species [8–10]. The distribution patterns of estrogen receptor alpha (ERα) in the brain also differ between social and nonsocial rodent species [11,12], and ERα has been implicated in social behaviors such as social affiliation, aggression and maternal care [13–17]. Interestingly, ERα may regulate social behaviors by interacting with other neurotransmitter systems [18,19]. For instance, ERα may affect AVP expression in certain brain areas [20,21] and alters AVP-mediated behaviors, such as aggression and affiliation [22,23].
Many comparative studies have focused on species that share a close phylogenetic relationship and that are even in the same genus [1,6,24–28]. We have expanded our efforts to examine species from different genera, as these data will help us to better understand how evolution shapes the brain and behavior. In a most recent study, we compared social Brandt’s voles (Lasiopodomys brandti) with solitary Greater long-tailed hamsters (Tscherskia triunui), and found species differences in central OT and AVP immunoreactive (ir) staining in brain areas important for social behaviors [2]. These data support the notion that central OT and AVP may underlie species differences in social behaviors [1,2,25,26,29]. In the present study, we extended our efforts to additional rodent species, particularly Mongolian gerbils (Meriones unguiculatus) and Chinese striped hamsters (Cricetulus barabensis), to further test the hypothesis that differences in neurochemical systems in the brain are related to species differences in life strategies and behaviors. In addition to central OT and AVP systems, we included TH (a dopamine-related marker) and ERα in our investigation, as both have been implicated in social behaviors [7,14–16].

Mongolian gerbils inhabit typical steppes in Inner Mongolia and in the south-east of the Bakal area in Russia and Mongolia [30–32]. These animals are diurnal and highly social. They live in large family groups that range from 2 to 17 individuals and usually consist of a breeding male and female, as well as the siblings and offspring of the breeding pair [33,34]. Extensive social interactions have been observed among individuals [33,35]. Females and males form monogamous pairs in nature [33,34,36] and both parents play an active role in nest building and caring for offspring [37]. Furthermore, female Mongolian gerbils display higher levels of parental care and food hoarding behavior compared to male conspecifics whereas males show higher levels of territorial and aggressive behavior than females [34,36,38–40]. These gerbils become sexually mature around 5 months of age, and their life span is about 1 year in the wild and 2.5 years in the laboratory [33,35]. In contrast, Chinese striped hamsters are primarily found in the farmland or grassland of northern China [41]. They are nocturnal and solitary, and display high levels of aggressive behavior towards conspecifics [41,42]. In Chinese striped hamsters, females raise pups alone, and they also display higher levels of aggressive behavior compared to males [42]. Chinese striped hamsters reach sexual maturity around 3 months of age, and their life span is about 10 months [41].

In the present study, we compared OT, AVP, TH, and ERα immunoreactivity between these two species in selected brain areas known to be important in social behaviors. Such species differences in neurochemical expression in the brain may be ultimately involved in the regulation of species-specific social behaviors.

Methods

Ethics statement

The project was officially approved by the Institute of Zoology (IOZ), Chinese Academy of Sciences. People involved in caring and handling experimental animals were trained, and procedures related to animal care and ethics were approved by the examination of Animal Ethics Committee of IOZ (Permit Number: IOZ130902).

Subjects

Subjects were adult male and female Mongolian gerbils (Meriones unguiculatus) and Chinese striped hamsters (Cricetulus barabensis). Mongolian gerbils were the offspring of a laboratory breeding colony that was maintained in the IOZ at the Chinese Academy of Sciences in Beijing, China. Chinese striped hamsters were captured in croplands nearby Qufu, Shandong Province in the winter of 2009. These animals were captured in private farms. Because Chinese striped hamster is a pest species, our capture got owner’s permission and support. This capture does not harm other endangered species or rare species which are present in the farmland. We conducted trapping using steel-wire live traps (12 L x 12 W x 25 H cm). Fresh peanuts were used as bait, small pieces of cabbage were provided as a water supply and local dry leaves were provided as nest material. An iron sheet was attached on the upper side of the trap as shelter to protect from predation and sunshine. Pregnant and lactating females were released immediately on site. Captured animals were carefully transferred to the laboratory using the live trap. These animals were housed in the lab environment for about two weeks before they were used in the experiment. All subjects were housed in plastic cages (27 L x 16 W x 13 H cm for Mongolian gerbils and 25 L x 14 W x 14 H cm for Chinese striped hamsters) that contained wood shavings. Food and water were provided ad libitum. As Mongolian gerbils are social animals, they were housed in same-sex groups, consisting of two to four individuals, under a 16L:8D photoperiod (lights on 0500). Chinese striped hamsters are solitary animals and thus they were housed singly under a reversed 16L:8D photoperiod (lights on 1700). Room temperature was maintained at 20±2°C.

Tissue preparation

Eight male and eight female Mongolian gerbils, and seven male and seven female Chinese striped hamsters were deeply anesthetized with sodium pentobarbital (3 mg/100 g body weight, Sigma-

![Figure 1. Species differences in the density of OT-ir cells in brain areas.](image-url)
Alrich, St. Louis, MO, USA) and perfused through the ascending aorta with 0.1 M phosphate buffered solution (PBS, pH 7.2) followed by 4% paraformaldehyde in PBS. Brains were quickly removed, post-fixed in 4% paraformaldehyde for 12 h and then stored in 30% sucrose in PBS. Coronal brain sections (40 μm thickness) were cut on a cryostat. Four alternate sets of brain sections at 240 μm intervals were processed for OT, AVP, TH and ERα immunocytochemistry, respectively. An additional set of brain sections was processed for Nissl staining.

Immunocytochemistry for OT, AVP, TH and ERα

Floating brain sections were processed for OT, AVP, or TH immunocytochemistry using an established method [28]. Briefly, brain sections were pre-treated with 0.5% NaBH₄, followed by 0.05% H₂O₂ in 0.05 M Tris–NaCl (pH 7.6), and then blocked in 10% normal goat serum (NGS) in Tris–NaCl with 0.5% Triton X-100 (Tris–Triton). Sections were incubated in rabbit anti-OT serum (1:20,000), guinea pig anti-AVP serum (1:40,000), or rabbit anti-TH serum (1:15,000) (from Bachem California, Inc., Torrance, CA, USA), respectively, in Tris–Triton with 2% NGS for 36 h at 4°C, followed by an additional 2 h at room temperature. Thereafter, sections were incubated with a biotinylated goat-anti-rabbit, goat-anti-guinea pig or goat-anti-rabbit secondary antibody for OT, AVP and TH (1:300; all from Vector Laboratories Inc., Burlingtone, CA, USA), respectively, in Tris–Triton for 2 h; ABC complex (Vector Laboratories Inc., Burlingtone, CA, USA) in Tris–NaCl for 90 min; and stained by 0.05% 3,3′-diaminobenzidine (Sigma-Aldrich) in Tris–NaCl with 0.009% H₂O₂. Sections were then mounted, air-dried and cover slipped.

The ERα immunocytochemistry was also conducted using an established method [43,44]. Briefly, brain sections were pre-treated with 10 mM citrate buffer for 10 min at 90°C, followed by 0.5% NaBH₄ for 5 min and then 0.5% H₂O₂ in 0.1 M PBS for 30 min. Thereafter, sections were treated in PBS with 0.6% Triton X-100 (PBT) for 20 min, blocked in 10% NGS in PBT for 30 min and incubated in rabbit ERα polyclonal antibody (1:30,000, Upstate, Millipore, Billerica, MA, USA) in PBT with 2% NGS for 36 h at 4°C and an additional 1 h at room temperature. Sections were then incubated with biotinylated goat-anti-rabbit secondary antibody (1:300, Vector Laboratories Inc., Burlingtone, CA, USA) in PBT for 2 h, ABC complex in PBS for 90 min and stained by nickel-DAB. Sections were mounted, air-dried and cover slipped.

Brain sections for each neurochemical marker were processed concurrently to reduce variability in the staining. To control for antibody specificities, additional brain sections were incubated either in the absence of the primary antibody or with the primary antibody that was pretreated with 50 μM of OT, AVP, dopamine and estrogen, respectively. In these situations, specific staining was eliminated or substantially reduced.

Table 1. Density of oxytocin immunoreactive cells (mean±SEM/mm²) in the brain of male and female Mongolian gerbils and Chinese striped hamsters.

Brain area	Mongolian gerbil	Chinese hamster	Two-way ANOVA				
	Male	Female	Male	Female	species	sex	sp X sex
AH	2.4±0.7	4.5±1.3	2.1±0.6	2.8±1.3	ns	ns	ns
LH	5.7±0.6	4.6±1.0	7.8±1.0	7.8±1.0	**	ns	ns
MPOA	11.4±1.0	11.9±0.8	11.2±1.6	12.2±2.4	ns	ns	ns
MPOAa	15.4±2.6	14.8±2.7	2.1±0.9	3.6±1.1	**	ns	ns
MPOAp	5.1±0.5	7.2±0.6	2.2±0.2	2.6±0.2	**	*	ns
PVN	646.2±32.9	583.0±62.1	696.7±129.6	654.7±62.1	ns	ns	ns

SEM: standard error of the mean;
*p<0.05; **p<0.01; ns, not significantly different.
doi:10.1371/journal.pone.0065807.t001

Figure 2. Species differences in the density of AVP-ir cells in brain areas. (A) Species differences in the density of AVP-ir cells in the anterior hypothalamus (AH), lateral hypothalamus (LH) and medial preoptic area (MPOA). (B) The two species also differed in the density of AVP-ir cells in the subnuclei of the MPOA, including the anterior (MPOAa), intermediate (MPOAi) and posterior (MPOAp) part of the MPOA. (C) A species difference was also found in the paraventricular nucleus of the hypothalamus (PVN). *p<0.05, **p<0.01. doi:10.1371/journal.pone.0065807.g002
Data quantification and analysis

All slides were coded to conceal group identity. Slides were inspected under a Nikon microscope to identify forebrain regions quantified. OT-ir and AVP-ir cells were counted in the anterior hypothalamus (AH), lateral hypothalamic area (LH), median preoptic area (MPOA) and paraventricular nucleus of the hypothalamus (PVN). TH-ir cells were counted in the AH, LH, MPOA, PVN, ventral tegmental area (VTA) and substantianigra pars compacta (SNc). ERα-ir cells were counted in the AH, MPOA, PVN, lateral septum (LS), bed nucleus of the striatennal (BST), ventromedial hypothalamus (VMH), arcuate nucleus of the hypothalamus (ARC) and medial (MeA) and anterior cortical (CoA) nuclei of the amygdala. These brain areas were chosen based on previous studies from other rodent species indicating the existence of these neurochemicals and their potential roles in social behaviors.

Brain sections were matched between animals and 2–3 sections per brain area per animal were examined. Cells stained for each neurochemical marker within each brain area were quantified bilaterally. Further, a set of Nissl stained brain sections from each species was used to identify and measure the brain areas, which were then used to convert cell counts into cell density per area. Data were analyzed by a two-way analysis of variance (ANOVA) with species and sex as between-subject variables. Significant

Brain area	Mongolian gerbil	Chinese hamster	Two-way ANOVA
	Male	Female	
AH	6.4±1.2	12.3±2.3	*
LH	15.4±1.6	12.9±2.4	ns
MPOA	7.7±1.0	7.9±1.0	ns
MPOAa	4.8±1.0	6.1±1.5	**
MPOAi	4.0±0.6	4.4±0.6	ns
MPOAp	14.3±3.0	13.1±2.9	**
PVN	530.4±45.6	546.6±48.2	ns
	Male	Female	
AH	5.5±1.3	5.0±1.0	sp X sex
LH	7.0±1.8	8.2±1.3	ns
MPOA	11.4±2.0	13.7±2.76	ns
MPOAa	0.9±0.3	1.8±0.5	ns
MPOAi	1.0±0.2	1.9±0.2	ns
MPOAp	32.1±6.0	37.4±8.2	ns
PVN	809.6±143.2	828.9±71.1	ns

SEM: standard error of the mean;
* p<0.05; ** p<0.01; ns, not significantly different.

Figure 3. Species differences in the density of TH-ir cells in brain areas. (A) Species differences in the density of TH-ir cells in the anterior hypothalamus (AH), lateral hypothalamic area (LH), median preoptic area (MPOA), paraventricular nucleus of the hypothalamus (PVN), ventral tegmental area (VTA) and substantianigra pars compacta (SNc). (B) Species differences in the density of TH-ir cells in the anterior (MPOAa), intermediate (MPOAi) and posterior (MPOAp) subnuclei of the MPOA. (C) Student-Newman-Keuls (SNK) post hoc test indicated differences in the lateral hypothalamus (LH) between males and females of the two species (MG: Monglian gerbil; CH: Chinese striped hamster; M: male; F: female). Bars with different alphabetic letters differed significantly from each other. * p<0.05, ** p<0.01.

doi:10.1371/journal.pone.0065807.t002

doi:10.1371/journal.pone.0065807.g003
Species Differences in Central OT, AVP, TH and ERα

Table 3. Density of TH immunoreactive cells (mean±SEM/mm²) in the brain of male and female Mongolian gerbils and Chinese striped hamsters.

Brain area	Mongolian gerbil	Chinese hamster	Two-way ANOVA				
	Male	Female	Male	Female	species	sex	sp X sex
AH	7.75±1.38	6.90±0.86	7.81±1.44	8.80±2.54	ns	ns	ns
LH	10.73±1.15	8.17±1.06	2.62±0.83	5.67±1.29	ns	**	*
MPOA	38.38±3.14	56.47±6.03	37.71±4.71	49.52±4.96	ns	ns	ns
MPOAa	34.01±6.05	77.34±14.76	32.50±7.08	52.98±5.99	ns	ns	ns
MPOAI	15.72±2.58	21.93±2.34	9.63±1.53	10.18±1.17	ns	ns	ns
MPOAp	65.41±12.11	70.15±12.32	71.01±8.42	85.39±8.75	ns	ns	ns
PVN	129.02±18.12	133.15±24.60	223.12±44.55	180.04±37.44	*	ns	ns
VTA	323.99±16.82	341.02±15.94	342.10±30.30	332.94±22.67	ns	ns	ns
SNc	295.41±15.26	321.44±23.17	328.64±34.89	314.16±24.38	ns	ns	ns

SEM: standard error of the mean; *p<0.05; **p<0.01; ns, not significantly different.

doi:10.1371/journal.pone.0065807.t003

In both species, OT-ir stained cells were present either in dense clusters or scattered throughout many forebrain areas. Very intense staining of OT-ir cells was found in the PVN, while moderate clusters of OT-ir cells were present throughout the rostral-caudal extent of the MPOA. Scattered OT-ir cells were found in many brain regions including the AH and LH. Quantification of OT-ir cells in the above-mentioned brain areas (Table 1) indicates that Mongolian gerbils had a lower density of OT-ir cells in the LH than Chinese striped hamsters (F(1,26) = 11.98, *p<0.01), whereas no species differences were found in the AH, MPOA or PVN (Fig. 1). Although the two species showed similar densities of OT-ir cells in the MPOA, some differences were found in the subnuclei of the MPOA. Mongolian gerbils had a higher density of OT-ir cells in the anterior (MPOAa; F(1,26) = 33.49, *p<0.01) and intermediate (MPOAI; F (1,26) = 75.64, *p<0.01) nuclei of the MPOA than Chinese striped hamsters, whereas an opposite pattern was found in the posterior nucleus of the MPOA (MPOAp; F(1,26) = 17.74, *p<0.01) (Fig. 1B, Table 1). A sex difference was found in the OT-ir cell density in the MPOAI, in which females had a higher density of OT-ir cells than males

Table 4. Density of ERα immunoreactive cells (mean±SEM/mm²) in the brain of male and female Mongolian gerbils and Chinese striped hamsters.

Brain area	Mongolian gerbil	Chinese hamster	Two-way ANOVA				
	Male	Female	Male	Female	species	sex	sp X sex
AH	8.24±4.81	80.19±5.49	9.85±1.16	17.62±3.05	**	ns	ns
LS	25.35±3.16	20.22±2.97	4.79±1.18	4.07±1.05	**	ns	ns
BST	290.05±21.78	271.70±17.18	162.24±12.94	179.06±19.01	**	ns	ns
MPOA	932.49±58.36	880.42±50.32	1027.7±102.61	914.92±81.05	ns	ns	ns
MPOAa	716.09±152.85	1070.2±174.88	1098.1±233.5	759.6±144.57	ns	ns	ns
MPOAI	520.38±34.16	546.73±29.54	399.92±37.52	451.62±29.46	ns	**	ns
MPOAp	1561.0±178.67	1024.3±167.01	1585.2±158.34	1533.5±267.6	ns	ns	ns
VMH	449.13±19.40	493.65±32.49	275.42±23.46	330.78±39.44	ns	**	ns
ARC	2026.5±158.30	1990.4±170.37	1279.1±186.40	1217.7±117.67	ns	**	ns
MeA	492.34±81.14	475.19±65.65	376.94±32.64	419.24±21.65	ns	ns	ns
CoA	308.55±47.58	362.93±42.79	230.47±14.11	305.48±10.06	ns	ns	ns
PVN	341.05±72.76	309.78±54.44	543.47±53.28	445.26±32.43	ns	ns	ns

SEM: standard error of the mean; **p<0.01; ns, not significantly different.

doi:10.1371/journal.pone.0065807.t004
F(1,26) = 7.50, p < 0.05) (Table 1). No sex or species-sex interaction was found in any other brain areas examined.

AVP-ir staining
A dense cluster of AVP-ir cells was found in the PVN, moderate clusters of AVP-ir cells were found in the MPOA, mostly in the MPOAp, and scattered AVP-ir cells were observed in the AH and LH. Species differences were found in the density of AVP-ir cells in selected brain areas. Mongolian gerbils had a higher density of AVP-ir cells in the AH (F(1,26) = 6.43, p < 0.05) and LH (F(1,26) = 12.50, p < 0.01), but a lower density of AVP-ir cells in the MPOA (F(1,26) = 7.29, p < 0.05) and PVN (F(1,26) = 11.59, p < 0.01), than Chinese striped hamsters (Table 2, Fig. 2A & C). Within the MPOA, Mongolian gerbils had a higher density of AVP-ir cells in the MPOAa (F(1,26) = 16.87, p < 0.01) and MPOAi (F(1,26) = 31.45, p < 0.01) than Chinese striped hamsters, while an opposite pattern was found in the MPOAp (F(1,26) = 16.34, p < 0.01) (Fig. 2B, Table 2). No sex or species-sex interaction was found in the density of AVP-ir cells in any brain areas examined.

TH-ir staining
TH-ir cells were found in many brain areas in both species. For example, dense clusters of TH-ir cells were found in the PVN, VTA and SNc, a moderate cluster of TH-ir cells was found in the MPOA, and scattered TH-ir cells were observed in the AH and LH. Species differences were observed (Table 3). Mongolian gerbils had a higher density of TH-ir cells in LH (F(1,26) = 19.87, p < 0.01) and MPOAi (F(1,26) = 10.32, p < 0.01), but a lower density of TH-ir cells in the PVN (F(1,26) = 5.21, p < 0.05), than Chinese striped hamsters (Fig. 3A & B). Sex differences were found in the MPOA (F(1,26) = 9.52, p < 0.01), particularly in the MPOAa (F(1,26) = 11.06, p < 0.01) in which females had a higher density of TH-ir cells than males (Table 3). A species-sex interaction was also found in the LH (F(1,26) = 5.28, p < 0.05) — male Mongolian gerbils had a higher density of TH-ir cells in the LH than male and female Chinese hamsters (Fig. 3C).

ERα-ir staining
In both species, specific patterns of ERα-ir stained cells were found in many forebrain areas. Very intense staining of ERα-ir cells was found in the ARC and MPOA, while moderate clusters of ERα-ir cells were found in the VMH, BST, MeA, CoA and PVN.
Scattered ERα-ir cells were found in several brain regions including the AH and LS (Table 4).

Species differences were found in the density of ERα-ir cells in some of the brain areas examined. Mongolian gerbils had a higher density of ERα-ir cells in the AH (F(1,26) = 231.58, p < 0.01), BST (F(1,26) = 30.76, p < 0.01), LS (F(1,26) = 53.24, p < 0.01), VMH (F(1,26) = 32.64, p < 0.01) and ARC (F(1,26) = 20.18, p < 0.01) than Chinese striped hamsters (Fig. 4), and a similar species difference was found in the MPOA (F(1,26) = 10.75, p < 0.01) (Table 4). In the PVN, however, Chinese hamsters had a higher density of ERα-ir cells than Mongolian gerbils (F(1,26) = 8.85, p < 0.01). The two species did not differ in the density of ERα-ir cells in the total MPOA, MeA and CoA. Furthermore, no sex differences or species-sex interactions were found in any brain areas examined.

Figures 5, 6 and 7 show representative photomicrographs displaying OT-ir, AVP-ir, TH-ir and ERα-ir cells in the AH (Fig. 5), MPOAa (Fig. 6) and MPOAp (Fig. 7) in both species.

Discussion

Animals with different life strategies usually display different patterns of social behaviors. Previous studies have shown that social Mongolian gerbils display high levels of social behaviors including agonistic behavior, social affiliation and parental care [33,35,45–48]. These gerbils live in stable family groups consisting of a male and a female, suckling pups and weaning juveniles [33]. The juveniles usually display alloparental care toward their younger siblings [49]. To prepare for winter, all members in the family group participate in food hoarding [50]. In contrast, solitary Chinese striped hamsters are less social and only participate in prosocial contact with conspecifics during mating [41,42]. In the field, single adult hamsters live alone in burrow nests [41]. A clear distinction has also been reported for their aggressive behavior; Chinese striped hamsters are territorial and display high levels of flank marking behavior and aggression towards conspecifics [41,42], whereas Mongolian gerbils are less aggressive [33,35]. In the present study, we compared between these two species, OT, AVP, TH and ERα immunoreactive expression in selected brain regions.
areas known to be important in social behaviors. Our data demonstrate species-specific patterns of neurochemical expression in a brain region-specific manner. These data provide further evidence to support the notion that species-specific neurochemical pathways in the brain are associated with and possibly involved in the regulation of social behaviors related to different life strategies (Table 5) [1,5,6].

In the present study, species differences in neurochemical expression were found in a brain region- and neurochemical-specific manner. In the AH, for example, Mongolian gerbils had

Table 5. Neurochemical implications in social behaviors.
Oxytocin
Behavior
Maternal behavior
Naked mole-rat
Prairie vole
Brandt’s vole
Greater long-tailed hamster
Maternal aggression
Syrian hamster
Social recognition
Mouse
Brandt’s vole
Greater long-tailed hamster
Pair bonding
Sexual behavior

| **Vasopressin** |
Behavior	**Species**	**Brain area**	**Effect**	**References**
Maternal behavior	Rat	PVN, SON	↑	[103]
Aggression	Prairie vole	AH	↑	[53,104]
California mouse	BST, LS	↑	[1]	
White-footed mouse	BST, LS	↑	[1]	
Syrian hamster	AH, VMH	↑	[22,51,105–107]	
Social recognition	Rat	LS	↑	[108,109]
Pair bonding	Prairie vole	LS	↑	[110]
Flank marking	Syrian hamster	AH, MPOA	↑	[64]

| **Dopamine** |
Behavior	**Species**	**Brain area**	**Effect**	**References**
Maternal behavior	Rat	NAcc, VTA	↑	[111–114]
Maternal aggression	Rat	VTA, Amygdala	↑	[115]
Aggression	Prairie vole	AH	↑	[104,116]
Pair bonding	Prairie vole	BST, NAcc, MeA	↑	[9,116–118]
Sexual behavior	Rat	NAcc, MPOA	↑	[119–121]
Social play	Rat	NAcc	↑	[122]

| **Estrogen receptor α** |
Behavior	**Species**	**Brain area**	**Effect**	**References**
Maternal behavior	Rat	MPOA	↓	[123]
Aggression	Rat	VMH	↓	[124]
Social recognition	Rat	MeA	↑	[124]
Social affiliation	Prairie vole	BST, MPOA	↓	[11,16]
Prosocial behavior	Prairie vole	BST, MeA	↓	[11,14]
Djungarian hamster	BST	↓	[12]	
Siberian hamster	BST	↓	[12]	

↑: increase and ↓: decrease in behavior.
doi:10.1371/journal.pone.0065807.t005
higher densities of AVP-ir and ERα-ir, but not OT-ir and TH-ir, cells than Chinese striped hamsters. In the LH, Chinese striped hamsters had a higher density of OT-ir cells, but lower densities of AVP-ir and TH-ir cells, compared to Mongolian gerbils. The AH and LH, as well as neurochemical activity within these regions, have been implicated in a variety of behavioral and physiological functions. For example, AVP and ERα in the AH are involved in flanking and aggression [15,51–53]. OT and AVP within the LH are involved in feeding and water balance [34–57]. It is possible that species differences in the AVP and ERα systems in the AH represent the potential involvement of these neurochemical systems in behaviors related to territory defense. On the other hand, species differences in neurochemical expression within the LH may reflect differences in the central systems regulating behaviors such as feeding and drinking that are important for maintaining one’s homeostasis [54–56]. Although little is known about feeding and drinking behaviors in these two species, these animals live in distinct geographical regions with different ecological and environmental conditions [35,41]. Therefore, the species differences in central neurochemical systems noted above may reflect physiological, in addition to behavioral, adaptations to the environment.

The MPOA is a brain area important for a large variety of social behaviors including mating [58,59], maternal care [60,61], social recognition [62,63], territory marking [64] and aggression [65–67]. This is a complex brain structure consisting of several subnuclei [2,68–70]. Unfortunately, we know very little about the structural and functional significance of these subnuclei within the MPOA. An interesting finding in the present study is that Mongolian gerbils had higher densities of OT-ir and AVP-ir cells in the MPOAa compared to Chinese striped hamsters, whereas an opposite pattern was found in the MPOAp for both neuropeptides. These data are generally consistent with the data from a previous study comparing social Brandt’s voles with solitary Greater long-tailed hamsters [2]. One possibility is that the MPOAa and MPOAp, as well as neuropeptide activity within these regions, have opposing effects on behavioral and physiological functions associated with a social or solitary life strategy. In a previous study in rats, microinjections of an anti-androgen drug into the anteroventral MPOA decreased copulatory behavior but had no effects on sexual motivation, whereas microinjections of the same drug into the postero dorsal MPOA did not influence copulatory performance but decreased sexual motivation [71].

Our data also indicate sexually dimorphic patterns of neurochemical expression in the brain. The density of OT-ir cells in the MPOA was significantly higher in females than in males in both species. Furthermore, the density of TH-ir cells was higher in the MPOA, particularly in the MPOAa, in females than in males in both species. Discrepancies have been found in previous studies in other rodent species focusing on the MPOA. For example, in rats, the anteroventral periventricular nucleus of the preoptic area (AVPV), which is a subregion of MPOA, is larger in females than in males [72]. In mice, however, males have a larger MPOA than females [73]. In both rats and mice, females have more TH-expressing cells in the AVPV than males [72,74–77]. However, no sex differences are found in the number of OT-ir cells in the MPOA in voles [2,28,61]. Furthermore, although female rats and voles have more cells labeled for ERα in the MPOA and other brain areas (e.g., the VMH, BNST and McA) [11,78] compared to males, we did not observe such sex differences in the two species examined in the present study. Therefore, sexually dimorphic patterns of OT-ir and TH-ir expression in the MPOA could be species-specific. Region-specific neurochemical expression is involved in behavioral functions. For example, OT in the MPOA is involved in mating behavior [58,59], maternal care [60,61] and social recognition [62,63]. The functional roles of the sexually dimorphic neurochemical expression noted in the two species examined here are still unknown.

It is worth mentioning that the neurochemicals examined in the present study may interact to influence each other’s expression and functions. For example, it has been well documented that estrogen can directly influence the expression and activity of central AVP and OT systems [79,80]. Estrogen can up-regulate AVP expression in several brain areas including the LS, BST, AH and amygdala [20,21,79]. Estrogen can also regulate OT expression in the PVN [80,81] and OT receptor binding in the MPOA [82]. Further, TH-ir neurons in the PVN are found to co-express AVP [83], and thus dopamine may influence local AVP expression and release [94]. Therefore, it is not surprising to see similar species differences in multiple neurochemicals in a given brain area, and in fact, synergistic effects of multiple neurotransmitters on behavior have been amply demonstrated [85,86].

Some caveats in the present study need to be discussed. First, while Mongolian gerbils were the offspring of a laboratory breeding colony and were sexually naive and age matched, Chinese striped hamsters were field captured and thus their ages and reproductive history were unknown. It is worth mentioning that the expression patterns in the brain of the neurochemicals under investigation have been shown to change not only during development but also as a result of reproductive experience and aging [2,67]. Second, females of both species in the present study are spontaneous ovulators [80,89]. The fluctuation of circulating estrogen during ovarian cycles is known to influence brain neurochemical expression, including OT [90,91], AVP [20,21] and TH [87], as well as to alter its own receptor expression [43,92,93]. Therefore, potential variations in circulating levels of estrogen among the females might have affected the observed presence or absence of sexual dimorphisms in neurochemical expression in the present study, as has been reported for typical lab rodent species [43,94]. Finally, our subject’s housing conditions reflected their species-specific life strategies. It is possible, however, that different degrees of social experience during housing may have affected the observed neurochemical staining. Although beyond the scope of the present experiment, these issues need to be considered in follow-up studies.

Acknowledgments

The authors would like to thank all the members in the Animal Ecology Group in the Institute of Zoology at the Chinese Academy of Sciences for their assistance with the experiments.

Author Contributions

Conceived and designed the experiments: ZZ. Performed the experiments: YL. Analyzed the data: YW, YL, ZZ. Contributed reagents/materials/analysis tools: YW, YL, ZZ. Wrote the paper: ZZ.

References

1. Bester-Meredith JK, Young LJ, Marler CA (1999) Species differences in paternal behavior and aggression in peromyscus and their associations with vasopressin immunoreactivity and receptors. Horm Behav 36: 25–30.

2. Xu LX, Pan YL, Young KA, Wang ZX, Zhang ZB (2010) Oxytocin and vasopressin immunoreactive staining in the brains of Brandt’s voles

Species Differences in Central OT, AVP, TH and ERα
3. Madison DM, Hill JP, Gleason PE (1984) Seasonality in the nesting-behavior of Peromyscus maniculatus. Am Natl Nat 112: 201–204.

4. Wang ZX, Hulihan TJ, Insel TR (1997) Sexual and social experience is associated with different patterns of behavior and neural activation in male prairie voles. Brain Res 767: 321–332.

5. Insel TR, Shapiro LE (1992) Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc Natl Acad Sci USA 89: 5981–5985.

6. Insel TR, Wang ZX, Ferrin CF (1994) Patterns of brain vasopressin receptor distribution associated with social-organization in microtine rodents. J Neurosci 14: 5381–5392.

7. Young KA, Liu Y, Wang ZX (2008) The neurobiology of social attachment: A comparative approach to behavioral, neuroanatomical, and neurochemical studies. Comp Biochem Phys C140: 401–410.

8. Aragona BJ, Liu Y, Curtis JT, Stephan FK, Wang ZX (2002) A critical role for dopamine in pair bonding in male prairie voles. Horm Behav 41: 455–457.

9. King B, Liu Y, Cascio C, Wang ZX, Insel TR (2000) Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster). Behav Neurosci 114: 173–183.

10. Wang ZX, Yu GZ, Cascio C, Liu Y, Insel TR, et al. (1999) Dopaminergic D2 receptor-mediated regulation of partner preferences in female prairie voles (Microtus ochrogaster): A mechanism for pair bonding? Behav Neurosci 113: 602–611.

11. Cushing BS, Raziei M, Murphy AZ, Epperson PM, Le WW, et al. (2004) Intraspecific variation in estrogen receptors alpha and the expression of male sexual behavior in two populations of prairie voles. Brain Res 1016: 247–254.

12. Cushing BS, Wyme-Edwards KE (2006) Estrogen receptor-alpha distribution in male rodents is associated with social organization. J Comp Neurol 494: 695–693.

13. Oegawa S, Eng V, Taylor J, Luhahn DB, Kozach KS, et al. (1998) Roles of estrogen receptor alpha gene expression in reproduction-related behaviors in female mice. Endocrinology 139: 5070–5081.

14. Wang ZX, Perry A, Mnastov S, Oegawa S, Papademetriou E (2008) Estrogen receptors in the medial amygdala inhibit the expression of male prosocial behavior. J Neurosci 28: 10399–10403.

15. Trainor BC, Greiwe KM, Nelson RJ (2006) Individual differences in estrogen receptor α in select brain nuclei are associated with individual differences in aggression. Horm Behav 50: 330–345.

16. Lei K, Cushing BS, Mnastov S, Oegawa S, Kramer KM (2010) Estrogen receptor-alpha in the bed nucleus of the stria terminals regulates social affiliation in male prairie voles (Microtus ochrogaster). Plos One 5(1):e9391.

17. Lu X, Guo J, Gao W, Chen W, Li CY, et al. (2000) Fauna sinica: The social organization of Mongolian gerbils during the breeding season. J Zool 254: 283–288.

18. Agren G (1984) Pair formation in the Mongolian gerbil (Meriones unguiculatus). Process 70: 104–112.

19. Bridges NJ, Starkey NJ (2004) Sex differences in Mongolian gerbils in four tests of anxiety. Physiol Behav 83: 119–127.

20. Wang YZ, Lu HQ, Wang YX, Lu LY (1998) Ecology and management of Chinese striped hamsters (Cricetulus banhanus). In: Zhang ZB, Wang ZW, editors. Ecology and management of rodent pests in agriculture. Beijing: Ocean Press. PP.221–236.[in Chinese].

21. Agren G (1984) Parental and nest building in Mongolian gerbils. Anim Behav 23: 766–772.

22. Prates EJ, Guerra RF (2005) Parental care and sexual interactions in Mongolian gerbils (Meriones unguiculatus) during the postpartum estrus. Behav Process 70: 104–112.

23. Skirrow MH, Rysan M (1976) Observations on social behavior of Chinese-gerbils, Cricetulus griseus. Can J Zool 54: 361–368.

24. Par YL, Xu LX, Wang ZX, Zhang ZB (2011) Expression of oxytocin receptor alpha in the brain of Bandit's voles (Lasiogale brandti): Sex differences and variations during ovarian cycles. J Neuroendocrinol 23: 92602.

25. Luo ZX, Chen W, Gao W, Wang YX, Li CY, et al. (2000) Fauna sinica: The social organization of Mongolian gerbils (Meriones unguiculatus). In: Zhang ZB, Wang ZW, editors. Ecology and management of rodent pests in agriculture. Beijing: Ocean Press. PP.221–236.[in Chinese].

26. Oegawa S, Eng V, Taylor J, Luhahn DB, Kozach KS, et al. (1998) Roles of estrogen receptor alpha gene expression in reproduction-related behaviors in female mice. Endocrinology 139: 5070–5081.

27. Cushing BS, Perry A, Mnastov S, Oegawa S, Papademetriou E (2008) Estrogen receptors in the medial amygdala inhibit the expression of male prosocial behavior. J Neurosci 28: 10399–10403.

28. Trainor BC, Greiwe KM, Nelson RJ (2006) Individual differences in estrogen receptor α in select brain nuclei are associated with individual differences in aggression. Horm Behav 50: 330–345.

29. Lei K, Cushing BS, Mnastov S, Oegawa S, Kramer KM (2010) Estrogen receptor-alpha in the bed nucleus of the stria terminals regulates social affiliation in male prairie voles (Microtus ochrogaster). Plos One 5(1):e9391.

30. Lu X, Guo J, Gao W, Chen W, Li CY, et al. (2000) Fauna sinica: The social organization of Mongolian gerbils during the breeding season. J Zool 254: 283–288.

31. Agren G (1984) Pair formation in the Mongolian gerbil (Meriones unguiculatus). Process 70: 104–112.

32. Skirrow MH, Rysan M (1976) Observations on social behavior of Chinese-gerbils, Cricetulus griseus. Can J Zool 54: 361–368.

33. Reves EJ, Guerra RF (2005) Parental care and sexual interactions in Mongolian gerbils (Meriones unguiculatus) during the postpartum estrus. Behav Process 70: 104–112.

34. Bridges NJ, Starkey NJ (2004) Sex differences in Mongolian gerbils in four tests of anxiety. Physiol Behav 83: 119–127.

35. Wang YZ, Lu HQ, Wang YX, Lu LY (1998) Ecology and management of Chinese striped hamsters (Cricetulus banhanus). In: Zhang ZB, Wang ZW, editors. Ecology and management of rodent pests in agriculture. Beijing: Ocean Press. PP.221–236.[in Chinese].

36. Skirrow MH, Rysan M (1976) Observations on social behavior of Chinese-gerbils, Cricetulus griseus. Can J Zool 54: 361–368.

37. Pan YL, Xu LX, Wang ZX, Zhang ZB (2011) Expression of oxytocin receptor alpha in the brain of Bandit's voles (Lasiogale brandti): Sex differences and variations during ovarian cycles. J Neuroendocrinol 23: 92602.

38. Skirrow MH, Rysan M (1976) Observations on social behavior of Chinese-gerbils, Cricetulus griseus. Can J Zool 54: 361–368.

39. Prates EJ, Guerra RF (2005) Parental care and sexual interactions in Mongolian gerbils (Meriones unguiculatus) during the postpartum estrus. Behav Process 70: 104–112.

40. Bridges NJ, Starkey NJ (2004) Sex differences in Mongolian gerbils in four tests of anxiety. Physiol Behav 83: 119–127.

41. Wang YZ, Lu HQ, Wang YX, Lu LY (1998) Ecology and management of Chinese striped hamsters (Cricetulus banhanus). In: Zhang ZB, Wang ZW, editors. Ecology and management of rodent pests in agriculture. Beijing: Ocean Press. PP.221–236.[in Chinese].
Species Differences in Central OT, AVP, TH and ERα

60. Pedersen CA, Caldwell JD, Walker G, Ayers G, Mason GA (1994) Oxytocin activates the postpartum onset of rat maternal-behavior in the ventral tegmental and medial preoptic areas. Behav Neurosci 108: 1163–1171.

61. Rosen GJ, De Vries GJ, Goldman SL, Goldman BD, Forger NG (2008) Distribution of oxytocin in the brain of a eusocial rodent. Neuroscience 155: 809–817.

62. Popik P, van Ree JM (1991) Oxytocin but not vasopressin facilitates social recognition following injection into the medial preoptic area of the rat brain. Eur Neuropsychopharmacol 1: 533–560.

63. Popik P, Vos PE, van Ree JM (1992) Neurophysiological hormone receptors in the septum are implicated in social recognition in the rat. Behav Pharmacol 3: 351–358.

64. Hemesayer AC, Huhman KL, Albers HE (1994) Vasopressin and sex differences in hypothalamic flanking nuclei. Physiol Behav 55: 903–911.

65. Rosenblatt JS, Hazelwood S, Poole J (1996) Maternal behavior in male rats: Effects of medial preoptic area lesions and presence of maternal aggression. Horm Behav 30: 201–215.

66. Gamme SC, Nelson RJ (1999) Maternal aggression is reduced in neuronal nitric oxide synthase-deficient mice. J Neurosci 19(18): 8027–8035.

67. Harmon AC, Huhman KL, Moore TO, Albers HE (2002) Oxytocin inhibits aggression in female Syrian hamsters. J Neuroendocrinol 14(12): 963–969.

68. Gray P, Brooks PJ (1984) Effect of lesion location within the medial preoptic-anterior hypothalamic continuum on maternal and male sexual behaviors in female rats. Behav Neurosci 98: 703–711.

69. Giuliano F, Rampin O, Brown K, Courtois F, Benoit G, et al. (1996) Effects of medial preoptic area lesions and presence of maternal aggression in rats. Brain Res Bull 42: 265–271.

70. Reuss S, Hermes B, Fuchs E, Hiemke C (1999) Day- and night-time contents of dopamine decarboxylase activities in the medial preoptic area and arcuate nucleus of the rat. Neuroendocrinology 69: 544.

71. McGinnis MY, Montana RC, Lumia AR (2002) Effects of hydroxyflutamide in male rats. J Neurosci 23: 2357–2362.

72. Simerly RB, Swanson LW, Gorski RA (1985) The distribution of monoaminergic cells and fibers in a periventricular preoptic nucleus involved in the control of gonadotropin release - immunohistochemical evidence for a dopaminergic sexual dimorphism. Brain Res 330: 55–64.

73. Schwind C, Anzenberger G (1999) Prolactin, the hormone of pregnancy. News Physiol Sci 14: 223–231.

74. Simerly RB, Swanson LW, Handa RJ, Gorski RA (1985) Influence of perinatal androgen on the sexually dimorphic distribution of tyrosine hydroxylase-immunoreactive cells and fibers in the anteroventral periventricular nucleus of the rat. Neuroendocrinology 40: 501–510.

75. Simerly RB (1989) Hormonally-controlled development and regulation of tyrosine-hydroxylase expression within a sexually dimorphic population of dopaminergic neurons in the hypothalamus. Mol Brain Res 39: 287–291.

76. Simerly RB, Zee MC, Pendleton JW, Lubahn DB, Korach KS (1997) Estrogen receptor alpha is essential for induction of oxytocin receptor by estrogen. Neuroreport 9: 653–656.

77. Young LJ, Wang ZX, Donaldson R, Rissman EF (1998) Estrogen receptor messenger ribonucleic-acid in the female rat-brain during the estrous-cycle - a comparison with ovariectomized females and intact males. Endocrinology 139: 381–388.

78. Wu RY, Yuan AF, Yuan QW, Guo R, Tai FD, et al. (2011) Comparison of vasopressin and oxytocin receptor messenger ribonucleic acid in the anteroventral periventricular nucleus of the rat. J Neuroendocrinol 8: 45–56.

79. Tabak J, Gonzalez-Iglesias AE, Toporikova N, Bertram R, Freeman ME (2010) Variations in the response of pituitary lactotrophs to oxytocin during the estrous cycle. Endocrinology 151: 1809–1813.

80. Kawamata M, Tonomura Y, Kimura T, Yanagisawa T, Nishimori K (2004) The differential coupling of oxytocin receptors to uterine contractions in murine estrous cycle. Biochem Biophys Res Commun 312: 695–699.

81. Sloughbe PJ, Bushnell CD, Dorsa DM (1992) Estrogen-receptor messenger ribonucleic-acid in female rat-brain during the estrous-cycle - a comparison with ovariectomized females and intact males. J Neuroendocrinol 40: 544.

82. Tabak J, Gonzalez-Iglesias AE, Toporikova N, Bertram R, Freeman ME (2010) Variations in the response of pituitary lactotrophs to oxytocin during the estrous cycle. Endocrinology 151: 1809–1813.

83. Greco B, Allegretto EA, Tettel MJ, Blaustein JD (2001) Coexpression of ER beta with ER alpha and progesterin receptor proteins in the female rat forebrain: Effects of estradiol treatment. Endocrinology 142: 5172–5181.

84. Francis DD, Young LJ, Meaney MJ, Insel TR (2002) Naturally occurring differences in maternal care are associated with the expression of oxytocin and vasopressin (v1a) receptors: Gender differences. J Neuroendocrinol 14: 349–353.

85. Olazabal DE, Young LJ (2006) Oxytocin receptors in the nucleus accumbens facilitate “spontaneous” maternal behavior in adult female prairie voles. Neuroscience 141: 539–560.

86. Giovanardi M, Padiso M, Cadore LP, Lucion AB (1998) Hypothalamic paraventricular nucleus modulates maternal aggression in rats: Effects of ibotenic acid lesion and oxytocin antiserum. Physiol Behav 63: 351–359.

87. Comaggio AR, Borsari A, Pereira GAM, Lucion AB (2005) Effects of oxytocin microinjection into the central amygdaloid nucleus and bed nucleus of stria terminalis on maternal aggressive behavior in rats. Physiol Behav 83: 354–362.

88. Ferris CF, Foote KB, Melzer HM, Pfeny MG, Smith KL, et al. (1992) Oxytocin in the amygdala facilitates maternal aggression. Ann NY Acad Sci 652: 456–457.

89. Ferguson JN, Aldag JM, Insel TR, Young LJ (2001) Oxytocin in the medial amygdala is essential for social recognition in the mouse. J Neurosci 21: 8278–8285.

90. Young LJ, Lim MM, Gingrich B, Insel TR (2001) Cellular mechanisms of social attachment. Horm Behav 40: 133–138.

91. Liu Y, Wang ZX (2003) Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience 121: 537–544.

92. Young LJ, Tim MM, Dingler F, Insel TR, Young LJ (2000) Oxytocin and vasopressin immunoactivity in hypothalamic and extrahypothalamic sites in late pregnant and postpartum rats. Neuroendocrinology 69: 59–67.

93. Gobrogge KL, Liu J, Jia X, Wang Z (2007) Anterior hypothalamic neural activation and neurochemical associations with aggression in pair-bonded male prairie voles. J Comp Neurol 502: 1109–1122.

94. Delville W, Mansour KM, Forger NG, Ferris CF (1996) Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus. Physiol Behav 60: 25–29.

95. Delville Y, De Vries GJ, Ferris CF (2000) Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav Evolut 55: 53–76.

96. Caldwell JD, Greer ER, Johnson MF, Prange AJ, Pedersen CA (1997) Oxytocin and vasopressin immunoactivity in hypothalamic and extrahypothalamic sites in late pregnant and postpartum rats. Neuroendocrinology 69: 59–67.

97. Engelmann M, Landgraf R (1994) Microdialysis administration of vasopressin into the septum improves social recognition in brattleboro rats. Physiol Behav 55: 145–149.

98. Landgraf R, Frank E, Aldag JM, Neumann ID, Sharer CA, et al. (2003) Viral vector-mediated gene transfer of the v1a vasopressin receptor in the rat septum: Improved social discrimination and active social behaviour. Eur J Neurosci 18: 403–411.

99. Liu Y, Curtis JT, Wang ZX (2001) Vasopressin in the lateral septum regulates pair bond formation in male prairie voles (Microtus ochrogaster). J Neurosci 21: 8278–8285.

100. Tabak J, Gonzalez-Iglesias AE, Toporikova N, Bertram R, Freeman ME (2010) Variations in the response of pituitary lactotrophs to oxytocin during the estrous cycle. Endocrinology 151: 1809–1813.

101. Young LJ, Lim MM, Ginger B, Insel TR (2001) Cellular mechanisms of social attachment. Horm Behav 40: 133–138.

102. Liu Y, Wang ZX (2003) Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience 121: 537–544.

103. Caldwell JD, Greer ER, Johnson MF, Prange AJ, Pedersen CA (1997) Oxytocin and vasopressin immunoactivity in hypothalamic and extrahypothalamic sites in late pregnant and postpartum rats. Neuroendocrinology 69: 59–67.
Lubin DA, Cannon JB, Black MC, Brown LE, Johns JM (2003) Effects of chronic cocaine on monoamine levels in discrete brain structures of lactating rat dams. Pharmacol Biochem Be 74: 449–454.

Aragon BJ, Liu Y, Yu YY, Curtis JT, Detwiler JM, et al. (2006) Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nat Neurosci 9: 133–139.

Northcutt KV, Wang Z, Louinstein JS (2007) Sex and species differences in tyrosine hydroxylase-synthesizing cells of the rodent olfactory extended amygdala. J Comp Neurol 500: 103–115.

Aragon BJ, Liu Y, Curtis T, Stephan FK, Wang ZX (2003) A critical role for nucleus accumbens dopamine in partner-preference formation in male prairie voles. J Neurosci 23: 3483–3490.

Plaus JG, Phillips AG (1991) Role of dopamine in anticipatory and consummatory aspects of sexual behavior in the male rat. Behav Neurosci 105: 727–743.

Everitt BJ (1990) Sexual motivation - a neural and behavioral-analysis of the mechanisms underlying appetitive and consummatory responses of male rats. Neurosci Biobehav Rev 14: 217–232.

Warner RK, Thompson JT, Markowski VP, Loucks JA, Bazzett TJ, et al. (1991) Microinjection of the dopamine antagonist cis-flupentixol into the mpoa impairs copulation, penile reflexes and sexual motivation in male rats. Brain Res 540: 177–182.

Pellis SM, Castaneda E, McKenna MM, Tran Nguyen LTL, Whishaw IQ (1993) The role of the striatum in organizing sequences of play-fighting in neonatally dopamine-depleted rats. Neurosci Lett 158: 13–15.

Champagne FA, Weaver ICG, Diorio J, Dymov S, Szf M, et al. (2006) Maternal care associated with methylation of the estrogen receptor-alpha 1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology 147: 2909–2915.

Spiteri T, Musatov S, Ogawa S, Ribeiro A, Pfaff DW, et al. (2010) Estrogen-induced sexual incentive motivation, proceptivity and receptivity depend on a functional estrogen receptor alpha in the ventromedial nucleus of the hypothalamus but not in the amygdala. Neuroendocrinology 91: 142–154.