THE LOOP COHOMOLOGY OF A SPACE WITH THE POLYNOMIAL COHOMOLOGY ALGEBRA

SAMSON SANEBLIDZE

Abstract. We prove that for a simply connected space X with the polynomial cohomology algebra $H^*(X; k) = S(U)$, the loop space cohomology $H^*(\Omega X; k) = \Lambda(s^{-1}U)$ is the exterior algebra if k is a commutative unital ring without 2-torsion, or if and only if $k = \mathbb{Z}_2$ and the Steenrod operation Sq_1 is multiplicatively decomposable on $H^*(X; \mathbb{Z}_2)$. The last statement in fact contains a converse of a theorem of A. Borel.

1. Introduction

Let X denote a simply connected topological space. In [3] A. Borel gave a condition for the cohomology $H^*(X; \mathbb{Z}_2)$ to be polynomial in terms of a simple system of generators of the loop space cohomology $H^*(\Omega X; \mathbb{Z}_2)$ that are transgressive (see also [10], [9]). This was one of the first nice applications of spectral sequences that has been introduced in [15], and led in particular to calculations of the cohomology of the Eilenberg-MacLane spaces (see [9]). However, for the converse direction, that is to determine $H^*(\Omega X; \mathbb{Z}_2)$ as an algebra for a given X with $H^*(X; \mathbb{Z}_2)$ polynomial, a spectral sequence argument no longer works. On the other hand, the above calculation is closely related to the problem whether the shuffle product on the bar construction $BH^*(X; \mathbb{Z}_2)$ is geometric; in the case of the affirmative answer we would get $H^*(\Omega X; \mathbb{Z}_2)$ as an exterior algebra. Indeed, in many cases of spaces with the polynomial cohomology algebra, including classifying spaces of topological groups, the loop space cohomology is identified as an exterior algebra ([11], [1]). However, in [12] was given a counterexample to geometricity of the shuffle product for $X = K(\mathbb{Z}_2, n)$, $n \geq 2$, in which case $H^*(X; \mathbb{Z}_2)$ was known to be polynomial.

Note that our calculation of the multiplicative structure of $H^*(\Omega X; k)$ heavily depends on the coefficient (commutative, unital) ring k is 2-torsion free or not: In the first case there is no additional requirement on the polynomial algebra $H^*(X; k)$ the loop space cohomology $H^*(\Omega X; k)$ to be exterior, while the second case involves the Steenrod cohomology operation Sq_1. More precisely, we have the following

Theorem 1. Let X be a simply connected space with the cohomology algebra $H = H^*(X; k) = S(U)$ to be polynomial.

(i) If k has no 2-torsion, then the loop space cohomology $H^*(\Omega X; k) = \Lambda(s^{-1}U)$ is the exterior algebra.

2000 Mathematics Subject Classification. Primary 55P35; Secondary 55U99, 55S05.

Key words and phrases. Loop space, polynomial cohomology, Hirsch algebra, multiplicative resolution, Steenrod operation.

This research described in this publication was made possible in part by the grant GNF/ST06/3-007 of the Georgian National Science Foundation.
(ii) If $k = \mathbb{Z}_2$, then $H^*(\Omega X; \mathbb{Z}_2) = \Lambda(s^{-1}U)$ is the exterior algebra if and only if $S_{q_1}(H) \subset H^+ \cdot H^+$.

Our method of proving the theorem consists of using the so-called Hirsch algebra model $(RH, d + h) \rightarrow C^*(X; k)$ of X ([14], see also below). Note that the underlying differential (bi)graded algebra (RH, d) is a non-commutative version of Tate-Jozefiak resolution of the commutative algebra H ([16], [7]), while h is a perturbation of d similar to [6], and the tensor algebra $RH = T(V)$ is endowed with higher order operations $E_{p, q}$ that extend \cup-product measuring the non-commutativity of the product on RH; moreover, there also is a binary operation \(\cup_2 \) on RH measuring the non-commutativity of the \cup-product. In the case of polynomial H we describe the multiplicative generators V of RH in terms of the above operations that allows an explicit calculation of the cohomology algebra $H^*(BH) = \text{Tor}_H^*(k, k)$, and, consequently, of the loop space cohomology $H^*(\Omega X; k)$.

Note that if U is finite dimensional, then item (i) of Theorem 1 agrees with the main result of [1]; furthermore, for k a field, it can be in fact deduced from the Eilenberg-Moore spectral sequence (see, for example, [9], also for references of using \cup_1-product when dealing with polynomial cohomology rings).

2. Hirsch resolutions of polynomial algebras

Graded modules A^* over k are assumed to be connected and 1-reduced, i.e., $A^0 = k$ and $A^1 = 0$. For example, the cochain complex $C^*(X; k)$ of a space X is 1-reduced, since by definition $C^*(X; k) = C^*(\text{Sing}^1 X; k)/C^\geq 0(\text{Sing} x; k)$, in which $\text{Sing}^1 X \subset \text{Sing} X$ is the Eilenberg 1-subcomplex generated by the singular simplices that send the 1-skeleton of the standard n-simplex Δ^n to the base point x of X.

Here we construct an explicit multiplicative resolution for a polynomial algebra H. Without loss of generality for the application (see section 3) we assume below that when the signs are actually needed H is evenly graded.

First recall the definition of a Hirsch algebra.

Definition 1. A Hirsch algebra is a 1-reduced associative dga A equipped with multilinear maps

$$E_{p, q} : A^p \otimes A^q \rightarrow A,$$

satisfying the following conditions:

(i) $E_{p, q}$ is of degree $1 - p - q$;

(ii) $E_{1, 0} = Id = E_{0, 1}$ and $E_{p > 1, 0} = 0 = E_{0, q > 1}$;

(iii) The homomorphism $E : BA \otimes BA \rightarrow A$ defined by

$$E([\bar{a}_1] \cdots [\bar{a}_p] \otimes [\bar{b}_1] \cdots [\bar{b}_q]) = E_{p, q}(a_1, ..., a_p; b_1, ..., b_q)$$

and extended as a coderivation induces a chain map $\mu_E : BA \otimes BA \rightarrow BA$.

A morphism $f : A \rightarrow B$ between two Hirsch algebras is a dga map f commuting with all $E_{p, q}$. Condition (iii) implies that BA is a dg Hopf algebra with the product μ_E; though we do not require necessarily μ_E to be associative (compare [5]), in the sequel we assume the associativity relation given by (2.1) that minimizes the resolution of H involved. Note also that, the component $\mu_{E_{10} + E_{01}}$ of μ_E, denoted by μ_{sh}, coincides...
with the shuffle product on BA. In particular, the operation $E_{1,1}$ satisfies conditions similar to Steenrod’s cochain \cap-product:

$$dE_{1,1}(a; b) - E_{1,1}(da; b) + (-1)^{|a|}E_{1,1}(a; db) = (-1)^{|a|}ab - (-1)^{|a|(|b|+1)}ba,$$

so it measures the non-commutativity of the \cdot product on A. Thus, a Hirsch algebra with $E_{p,q} = 0$ for $p, q \geq 1$ is just a commutative differential graded algebra (cdga). Below we interchangeably denote $E_{1,1}$ by \cap.

For a general definition of a bigraded multiplicative resolution $\rho : (RH, d) \to H$ for a cga H see [13, 14]. Here for H polynomial we construct such a resolution as follows. Let $R^*H^* = T(V^{*,*})$ with

$$V^{*,*} = V^{0,*} \oplus E^{<0,*} \oplus T^{-2r,*} = U^*, \quad r \geq 1,$$

where $E^{<0,*} = \{ E^{<0,*}_{p,q} \}_{p, q \geq 1}$ with $E^{<0,*}_{p,q}$ spanned on the set of (formal) expressions $E_{p,q}(a_1, ..., a_p; b_1, ..., b_q)$, $a_i \in R^{*-i}H^*$, $b_m \in R^{-j}H^*$, $n = \sum_{r=1}^p i_r + \sum_{m=1}^q j_m + p + q - 1$, while $T^{-2r,*}$ is spanned on the set of expressions $a_1 \cup a_2 \cup \cdots \cup a_{r+1}$ with $a_i \in V^{0,*}$ and $a_1 \cup a_2 = a_1 \cup a_1$; given a triple $(a; b; c) = (a_1, ..., a_k; b_1, ..., b_l; c_1, ..., c_r)$, $a_i, b_j, c_l \in RH$, the elements of E are subjected to the relations

$$R_{k, \ell, r}(a; b; c) = R_{k, \ell, r}(a; b; c)$$

with

$$R_{k, \ell, r}(a; b; c) = \sum_{k_1 + \cdots + k_p = k \atop \ell_1 + \cdots + \ell_p = \ell \atop 1 \leq p \leq k+\ell} \sgn(a, b) E_{p, r}(E_{k_1, \ell_1}(a_1, ..., a_{k_1}; b_1, ..., b_{\ell_1}), \ldots, E_{k_p, \ell_p}(a_{k_{p-1}}, ..., \tilde{a}_k; b_{\ell_{p-1}}, ..., b_p); c_1, ..., c_r)$$

and

$$R_{k, \ell, r}(a; b; c) = \sum_{k_1 + \cdots + k_p = k \atop \ell_1 + \cdots + \ell_q = \ell \atop 1 \leq q \leq k+\ell} \sgn(a, c) E_{q, r}(a_1, ..., a_k; E_{\ell_1, r_1}(b_1, ..., b_{\ell_1}; c_1, ..., c_{r_1}), \ldots, E_{\ell_q, r_q}(b_{\ell_{q-1}}, ..., b_q; c_{r_q+1}, ..., c_q)).$$

The differential d is defined: On $V^{0,*}$ by $dV^{0,*} = 0$; on E by

$$dE_{p,q}(a_1, ..., a_p; b_1, ..., b_q) = \sum_{1 \leq i \leq p} (-1)^{i+1}E_{p,q}(a_1, ..., da_i, ..., a_p; b_1, ..., b_q)$$

$$+ \sum_{1 \leq j \leq q} (-1)^{p+j+1}E_{p,q}(a_1, ..., a_p; b_1, ..., db_j, ..., b_q)$$

$$+ \sum_{1 \leq i < p} (-1)^iE_{p-1,q}(a_1, ..., a_i, a_{i+1}, ..., a_p; b_1, ..., b_q)$$

$$+ \sum_{1 \leq j < q} (-1)^{p+j}E_{p,q-1}(a_1, ..., a_p; b_1, ..., b_j, b_{j+1}, ..., b_q)$$

$$- \sum_{0 \leq i \leq p \atop 0 \leq j \leq q} (-1)^{(p+i+1)+j}E_{i,j}(a_1, ..., a_i; b_1, ..., b_j) \cdot E_{p-i,q-j}(a_{i+1}, ..., a_p; b_{j+1}, ..., b_q),$$
and on T by
\begin{align}
\label{2.3}
d(a_1 \cup a_2 \cdots \cup a_n) &= \sum_{(i,j)} (a_i \cup a_j \cdots \cup a_n) \sim_1 (a_j \cup a_i \cdots \cup a_n)
\end{align}
where the summation is over unshuffles $(i:j) = (i_1 < \cdots < i_k; j_1 < \cdots < j_k)$ of n with $(a_{i_1}, \ldots, a_{i_k}) = (a_{j_1}, \ldots, a_{j_k})$ if and only if $i = j$.

In particular, $R^0 H^* = T(V^0,*)$, $V^{-1,*} = E_{11}(R^0 H \otimes R^0 H)$, $R^{-1} H^* = V^{-1,*} \oplus (R^{-1} H)^+$ with $(R^{-1} H)^+ = R^{0H+} \cdot V^{-1,*} \oplus V^{-1,*} \cdot R^{0H+}$,

\begin{align*}
V^{-2,*} &= (E_{11}(E_{11} \otimes 1 + 1 \otimes E_{11}) + E_{12} + E_{21})(R^0 H \otimes R^0 H \otimes R^0 H)/\sim \\
&\bigoplus E_{11}((R^{-1} H)^+ \otimes R^0 H \otimes (R^{-1} H)^+) \bigoplus (V^{0,*} \cup_2 V^{0,*}),
\end{align*}
where \sim implies the relation \eqref{2.1} for $(a; b; c) = (a; b; c), a, b, c \in R^0 H^*$.

\begin{align}
E_{1,2}(a; b, c) - E_{1,2}(a; c, b) + a \sim_1 (b \sim_1 c) \\
= (a \sim_1 b) \sim_1 c - E_{2,1}(a, b; c) + E_{2,1}(b, a; c);
\end{align}
and for $a, b \in V^{0,*}, d(a \sim_1 b) = ab - ba, d(a \cup_2 b) = a \sim_1 b + b \sim_1 a, d(a \cup_2 a) = a \sim_1 a, d(a \cup_2 a \cup_2 a) = a \sim_1 (a \cup_2 a) + (a \cup_2 a) \sim_1 a$.

Clearly, (RH, d) is endowed with the operations $E_{p,q}$ and together with the \cdot product on RH is converted into a Hirsch algebra $(RH, d, \cdot, E_{p,q})$. The following proposition proved in section 5 finishes the verification of the projection $\rho : RH \to H$ to be a Hirsch resolution map.

Proposition 1. The chain complex $(R^* H^*, d)$ is acyclic in the negative resolution degrees, i.e., $H^i(R^* H^*, d) = 0, i < 0$.

![Figure 1. Geometrical interpretation of some canonical syzygies in the Hirsch resolution RH.](image)

Note that in the above figure the symbol $"\sim"$ assumes equality \eqref{2.4}.

We also need the following multiplicative resolution of H derived from RH.

Represent T as
\[T = T_0 \oplus T', \quad T_0 = \langle a \cup_2 a \mid a \in V^{0,*} \rangle. \]
Let $R_\nu H = RH/\nu'$ where ν' is a Hirsch ideal in RH spanned on $T' \oplus dT'$. Thus, $R_\nu H = T(V_\nu)$ with $V_\nu = V^{0,*} \oplus E_\nu \oplus T_\nu$, where $E_\nu = E/\langle E \cap \nu' \rangle$, and the inclusion
of modules $V_\nu \subset V$ induces the inclusion of dg algebras
\begin{equation}
R_\nu H \subset RH.
\end{equation}
The argument of the proof that ρ is a resolution map also implies that I' is acyclic and $\rho_\nu = \rho_{R_\nu H} : (R_\nu H, d) \to H$ is a multiplicative resolution of H. Clearly, $R_\nu H$ inherits a (non-free) Hirsch algebra operations, $E_{p,q}'$, too.

3. Hirsch models of X with $H^*(X; k)$ polynomial

Recall (2, 8) that given a space X, there are operations $E_{p,q}$ on the cochain complex $C^*(X; k)$ making it into a Hirsch algebra. Note that in the simplicial case one can choose $E_{p,q} = 0$ for $q \geq 2$. In particular, the product μ_E on $BC^*(X; k)$ is geometric, i.e., there is an algebra isomorphism
\begin{equation}
H^*(\Omega X; k) \approx H(BC^*(X; k), d_{AC}, \mu_E).
\end{equation}
In [14] a Hirsch model
\begin{equation}
f : (RH, d + h) \to C^*(X; k)
\end{equation}
of X is constructed. Below such a model can be specialized for $H^*(X; k)$ polynomial as follows.

(i) Let $H^*(X; k)$ be polynomial with k having no 2-torsion. The equality $d(a \wedge_1 a) = -2a^2$ in $C^*(X; k)$, some odd dimensional cocycle a, implies that $H = H^*(X; k)$ is evenly graded. Then in (3.2) the perturbation h can be taken to be zero to obtain
\begin{equation}
f : (RH, d) \to C^*(X; k).
\end{equation}
Indeed, first define f on V and then extend multiplicatively. On V^0, \ast by choosing cocycles $f^0 : U^0 \to C^0(X; k)$; on E: by
\[fE_{p,q}(a_1, \ldots, a_p; b_1, \ldots, b_q) = E_{p,q}(fa_1, \ldots, fa_p; fb_1, \ldots, fb_q), \]
and on T the chain map f is defined inductively: the construction is non-obstructive, since both the cochain complex in the domain and the cohomology of the target are evenly graded.

(ii) Let $H^*(X; k)$ be polynomial with $k = \mathbb{Z}_2$. Then in (3.2) $h|_{V^0, \ast \oplus E} = 0$ and f is defined on $V^0, \ast \oplus E$ as in item (i), while on T_ν the pair (h, f) is defined by $h^2(a \cup_2 a) = \mathcal{P}_1(a)$ and $df(a \cup_2 a) = f^0\mathcal{P}_1(a) + f^0a \sim f^0a$ for cocycles $a, \mathcal{P}_1(a) \in R^0H$ with $\rho_{\mathcal{P}_1(a)} = Sq_1(\rho a)$.

Note that (2.5) extends to the inclusion of dga’s (not of Hirsch algebras!)
\begin{equation}
i_\nu : (R_\nu H, d + h^2) \subset (RH, d + h),
\end{equation}
where h^2 is obtained by restricting of h to T_ν, and $(R_\nu H, d + h^2, \cdot, E_{p,q}^\nu)$ is again a Hirsch algebra.

3.1. A canonical Hirsch algebra structure on $H^*(X; \mathbb{Z}_2)$. Observe that the resolution map $\rho : RH \to H$ no longer remains to be chain with respect to the perturbed differential $d + h$ on RH in item (ii) above. Instead we introduce a Hirsch algebra structure on H, this time denoted by
\[Sq_{p,q} : H^{op} \otimes H^{op} \to H, \]
in a canonical way, and then change ρ to construct a map of Hirsch algebras
\[f_\nu : (R_\nu H, d + h^2, \cdot, E_{p,q}^\nu) \to (H, 0, \cdot, Sq_{p,q}) \]
as follows. Let \(\mathcal{U} \) be a set of polynomial generators of \(H \). Define first a map \(\tilde{S}_q_{1,1} : \mathcal{U} \times \mathcal{U} \to H \) by

\[
\tilde{S}_q_{1,1}(a; b) = \begin{cases}
S_q(a), & a = b, \\
0, & \text{otherwise}
\end{cases}
\]

and extend it to the binary operation \(S_{q_{1,1}} : H \otimes H \to H \) as a (both side) derivation with respect to the \(\cdot \) product; in particular, \(S_{q_{1,1}}(u; u) = S_q(u) \) for all \(u \in H \), and \(S_{q_{1,1}}(ab; ab) \) is decomposable via the Cartan formula

\[
S_{q_{1,1}}(ab; ab) = S_q(ab) = S_q(a) \cdot S_q(b) + S_{q_0}(a) \cdot S_q(b).
\]

Furthermore, extend \(S_{q_{1,1}} \) to higher order operations \(S_{q_{p,q}} : H^{\otimes p} \otimes H^{\otimes q} \to H \) with \(S_{p,q}(a_1, ..., a_p; b_1, ..., b_q) = S_{q_{p,q}}(b_1, ..., b_q; a_1, ..., a_p) \) to obtain the Hirsch algebra \((H, 0, \cdot, S_{q_{p,q}})\) as follows. Represent the both sides of (2.1) as

\[
R_{k,l,r}(\langle a; b; c \rangle) = S_{q_{k+l,r}}(sh(\langle a; b; c \rangle)) + \tilde{R}_{k,l,r}(\langle a; b; c \rangle),
\]

where \(sh \) denotes the shuffle multiplication, and for pairs \(u_1 \otimes v_1 \in H^{\otimes p_1} \otimes H^{\otimes q_1} \), \((p_1, q_1) = (k + l, r) \), and \(u_2 \otimes v_2 \in H^{\otimes p_2} \otimes H^{\otimes q_2} \), \((p_2, q_2) = (k, l + r) \), of the form \(u_1 \otimes v_1 = sh(\langle a; b; c \rangle) \), \(u_2 \otimes v_2 = a \cdot sh(\langle a; b; c \rangle) \), define

\[
S_{q_{p_1,q_1}}(u_1; v_1) + S_{q_{p_2,q_2}}(u_2; v_2) = \tilde{R}_{k,l,r}(\langle a; b; c \rangle) + \tilde{R}_{k,l,r}(\langle a; b; c \rangle).
\]

Next, for pairs \(u'_1 \otimes v'_1 \in H^{\otimes p_1-1} \otimes H^{\otimes q} \) and \(u'_2 \otimes v'_2 \in H^{\otimes p} \otimes H^{\otimes q-1} \) of the form

\[
\left(\sum_{1 \leq i < j} u_1 \otimes \cdots \otimes u_i u_{i+1} \otimes \cdots \otimes u_p \right) \otimes v \quad \text{and} \quad u'_2 \otimes v'_2 = u \otimes \left(\sum_{1 \leq j < q} v_1 \otimes \cdots \otimes v_j v_{j+1} \otimes \cdots v_q \right)
\]

with some \(u \otimes v \in H^{\otimes p} \otimes H^{\otimes q} \), define

\[
S_{q_{p-1,q}}(u'_1; v'_1) + S_{q_{p,q-1}}(u'_2; v'_2) = \sum_{0 \leq i \leq p \atop 0 \leq j \leq q} S_q_{i,j}(u_1, ..., u_i; u_{i+1}, ..., u_{j-1}; v_1, ..., v_{j-1}) \cdot S_q_{p-i,q-j}(u_{i+1}, ..., u_p; v_{j+1}, ..., v_q).
\]

Note that the left hand sides of (3.5) and (3.6) coincide when \(\langle a; b; c \rangle \) in (3.5) and \(u \otimes v \) in (3.6) are respectively specialized as:

1. \(\langle a; b; c \rangle = (u_3, ..., u_p; u_1 v_2; u_1 u_2) \) and \(u_1 = u_3 = \cdots = u_{2i-1} = \cdots , u_2 = u_4 = \cdots = u_{2i} = \cdots , v_1 = u_1 u_2, q = 1; \)
2. \(\langle a; b; c \rangle = (u_{i+1}, ..., u_p; v_1 v_2; v_3, ..., v_q) \) and \(u_1 = v_1 v_2, p = 1, v_1 = v_3 = \cdots = v_{2j-1} = \cdots , v_2 = v_4 = \cdots = v_{2j} = \cdots ; \)
3. \(\langle a; b; c \rangle = (a; b; a) \) and \(u = (a, b, a), v = (a); \)
4. \(\langle a; b; c \rangle = (a; a; b) \) and \(u = (a, b, a), v = (a, b, a). \)

It is straightforward to check that the right hand sides of (3.5) and (3.6) also coincide for the above cases. Thus formulas (3.5) and (3.6) imply (2.1) and (2.2) for \(S_{q_{p,q}} \) respectively. By this we can obviously achieve that each \(S_{q_{p,q}}, p, q \geq 1 \), is expressed in terms of the \(\cdot \) product and the cohomology operation \(S_q \) on \(H \).

Now define \(f_\nu \) first on the generators and then extend multiplicatively on \(R_\nu H \).

For \(x \in V_\nu \), let

\[
f_\nu(x) = \begin{cases}
\rho(x), & x \in V^{0,*}, \\
S_{q_{p,q}}(\rho a_1, ..., \rho a_p; \rho b_1, ..., \rho b_q), & x = E_{p,q}(a_1, ..., a_p; b_1, ..., b_q), \\
0, & x \in T_\nu.
\end{cases}
\]
Remark 1. The weak equivalences ρ and f in item (i) above show that X is Hirsch \mathbb{k}-formal, while in item (ii), X can be thought of as weak Hirsch \mathbb{Z}_2-formal, since i_ν is not a map of Hirsch algebras.

4. Proof of Theorem 1

To prove the theorem we need the following propositions.

Proposition 2. A morphism $f : A \to A'$ of Hirsch algebras induces a Hopf dga map of the bar constructions

$$Bf : BA \to BA'$$

being a homology isomorphism, if f does and the modules A, A' are \mathbb{k}-free.

Proof. The proof is standard by using a spectral sequence comparison argument. □

Proposition 3. By hypotheses of Theorem 1:

(i) If \mathbb{k} has no 2-torsion, then the cohomology algebra $H^*(\Omega X; \mathbb{k})$ is naturally isomorphic to $H(BH, d_{BH}, \mu_{sh})$.

(ii) If $\mathbb{k} = \mathbb{Z}_2$, then the cohomology algebra $H^*(\Omega X; \mathbb{Z}_2)$ is naturally isomorphic to $H(BH, d_{BH}, \mu_{sq})$ with the product μ_{sq} on BH corresponding to the Hirsch algebra $(H, 0, \cdots, S_{q,p,q})$.

Proof. (i) View the resolution map $\rho : (RH, d) \to H$ as a map of Hirsch algebras with the trivial Hirsch algebra structure $E = \{E_{1,0}, E_{0,1}\}$ on H. In particular, $\mu_E = \mu_{sh}$ on BH. Then apply Hirsch model (3.3) and Proposition 2 to obtain the following sequence of algebra isomorphisms

$$H(BC^*(X; \mathbb{k}), d_{BC}, \mu_E) \xrightarrow{Bi_\nu^*} H(B(RH), d_{B(RH)}, \mu_E) \xrightarrow{Bi_\nu^*} H(BH, d_{BH}, \mu_{sh}),$$

and the proof is finished by using (3.3).

(ii) This time consider the following sequence of isomorphisms

$$H(BC^*(X; \mathbb{Z}_2), d_{BC}, \mu_E) \xrightarrow{Bf^*} H(B(RH), d_{B(RH)}, \mu_E) \xrightarrow{Bf^*} H(B(R_\nu H), d_{R_\nu H}, \mu_{E_\nu}) \xrightarrow{Bf^*} H(BH, d_{BH}, \mu_{sq}),$$

where f, f_ν and i_ν are constructed in section 3 and the first two maps are Hirsch algebra ones. Since i_ν is not a Hirsch algebra map it remains to show that Bi_ν^* is multiplicative. Indeed, as an element $y \in H^*(BH)$ has a canonical representative cocycle $b \in BH$ with $b = \sum_{\sigma \in S_n} [b_{\sigma(1)}| \cdots | b_{\sigma(n)}]$, $b_i \neq b_j$, $i \neq j$, and $n \geq 1$, an element $x \in H^*(B(R_\nu H))$ with $x = Bf_\nu^*(y)$ has a canonical representative cocycle $a \in B(R_\nu H)$, $Bf_\nu(a) = b$, $\rho(a_i) = b_i$, $a_i \in R^0 H$, of the form

$$a = \sum_{(i_1; \cdots; i_k)} [\bar{a}_{i_1}| \cdots | \bar{a}_{i_k}] + \sum_{\sigma \in S_n} [\bar{a}_{\sigma(1)}| \cdots | \bar{a}_{\sigma(n)}]$$

where the summation is over unshuffles

$$(i_1; \ldots; i_k) = (i_1 < \cdots < i_1; \ldots; i_{k-1} < \cdots < i_k)$$ of \underline{n}.
with $t_\ell > 1$ for some $1 \leq \ell \leq k$, and $a_{i_{t+1}} \in R^{1-t_\ell+1}_p H$,

$$a_{i_{t+1}} = \sum_{0 < r, q < i_{t+1}} a_{i_{t+r-1}} \cdots \vdash 1 \cdots \vdash 1 \vdash 1$$

\((j_1; \ldots; j_q)\) is unshuffle of \((i_{t+1}, \ldots, i_{t+r})\), and \(\vdash 1\)-products are taken in the right most association; in particular, \(a_2 = a_1 \vdash 1 \vdash 2\) for \(n = 2, k = 1, a_3 = a_1 \vdash 1 (a_2 \vdash 1 a_3) + E_{1,2}(a_1; a_2, a_3) + E_{1,2}(a_1; a_3, a_2)\) for \(n = 3, k = 1\). It is easy to see that \(B_i\) is multiplicative restricted to such cocycles. Again the proof is finished by using \((4.1)\).

Proof of Theorem

(i) The proof follows from Proposition \((3)\) and the isomorphism \(H(BH, d_{BH}, \mu_{s_q}) \approx \Lambda(s^{-1}U)\).

(ii) By Proposition \((3)\) it suffices to calculate \(H_\Omega := H(BH, d_{BH}, \mu_{s_q})\). If \(Sq_1(H) \subseteq H^+ \cdot H^+\) then by definition of \(Sq_{p,q}\) we also have \(Sq_{p,q}(H^p \otimes H^q) \subseteq H^+ \cdot H^+\) for \(p, q \geq 1\); this means that the induced multiplication \(\mu^*_{s_q}\) is the same as \(\mu^*_{s_{q_{30}}+s_{q_{31}}} = \mu^*_{s_1}\) on \(H_\Omega\), and we get the isomorphism \(H_\Omega \approx H(BH, d_{BH}, \mu_s) \approx \Lambda(s^{-1}U)\) as in item (i).

Conversely, let \(H_\Omega \approx \Lambda(s^{-1}U)\) be an exterior algebra. Suppose that for some \(a, b \in U\) we have \(Sq_1(a) = b\). Then for the elements \(\bar{a}, \bar{b} \in s^{-1}U \subset H_\Omega\), we would have \(\mu^*_{s_q}(\bar{a}; \bar{a}) = \bar{b}\) that contradicts \(H_\Omega\) to be exterior. Theorem \((4)\) is proved.

Corollary 1. Every loop space cohomology \(H^*(\Omega X; \mathbb{k})\) with \(H^*(X; \mathbb{k})\) evenly generated polynomial is exterior.

5. Proof of Proposition \((1)\)

It suffices to construct a linear map \(s : RH \rightarrow RH\) of total degree -1 with the following property: For each element \(a \in \text{Ker } \rho\) there is an integer \(n(a) \geq 1\) such that \(n(a)^{th}\)-iteration of the operator \(sd + ds - Id : RH \rightarrow RH\) evaluated on \(a\) is zero, i.e.,

\[(sd + ds - Id)^{(n(a))}(a) = 0.\]

The idea of constructing such a map is borrowed from \((4)\). Assume that the set of polynomial generators \(U^* \subset H^*\) is linearly ordered. Let \(V^* = (V^*; \ast)\) with \(V^0, \ast \approx U^*\) and \(\ast \ast = (\Upsilon^*; \ast)\). Given \((v, t) \in V^0, \ast \times \Upsilon (V^0, \ast \times \Upsilon)\), \(t = a_1 \cdots \cdots \vdash a_n (t = a_1 \cup \ldots \cup a_n), a_i \in V^0, \ast\), we write \(v \leq t\) or \(v \geq t\), if \(v \leq a_i\) or \(v \geq a_i\), for all \(i\) respectively. Below we need the subsets \(E_\ast, E_{op} \subset E_1\) and \(E_1, \hat{E} \subset \Upsilon\) defined as follows: Let \(E_1\) be the set of all iterations \(a_1 \cdots \vdash a_n, n \geq 2\), with \(a_i \in V^0, \ast \cup \Upsilon, 1 \leq i \leq n; E_\ast \subset E_1\) be the subset of the right most iterations with all \(a_i \in V^0, \ast\) and \(a_1 < \cdots < a_n; E_{op} \subset E_1\) be the subset of those iterations that contain \(a_k \vdash a_{k+1}\)-product such that \(a_1 < \cdots < a_k\) and \(a_k \geq a_{k+1}\) for \(a_j \in V^0, \ast, 1 \leq j \leq k;\) and, finally, \(E_1, \hat{E} \subset \Upsilon\) be the subset of any iterations of \(E_{p,q}\) evaluated on strings of variables \(a_1, \ldots, a_n, n \geq 2, a_i = x_{i_1} \cdots x_{i_{k_i}}, x_{i,j} \in W\) with \(W = V^0, \ast \cup E_1\) such that at least one \(k_i > 1\) and if \(\epsilon\) is
the smallest number with $k_r > 1$ and $E_{p,q}(u_1, ..., u_p; u_{p+1}, ..., v_{p+q})$ is the operation with $u_r = a_r$, then $r = 1$ for $p \geq 1$ or $r = 2$ for $p = 1$ and $u_1 \in W$.

Given an element $x \in E^{op}$, let $\tilde{x} \in \tilde{E} \cup \tilde{Y}$ denote the generator obtained from x by replacing $a_k \sim a_{k+1}$ by $a_k \cup a_{k+1}$.

Given an element $x \in \tilde{E}$, choose $E_{p,q}(u; v) = E_{p,q}(u_1, ..., u_p; v_1, ..., v_q)$ with u_1 or v_1 to be a, and let $x' \in E$ denote the generator obtained from x by replacing $E_{p,q}(u; v)$ by

$$E_{p', q'}(u'; v') = \begin{cases}
E_{p+1,q}(x, y, u_2, ..., u_p; v_1, ..., v_q), & p \geq 1, \quad u_1 = x \cdot y, \quad x \in W, \\
E_{1,q+1}(u_1; x, y, v_2, ..., v_q), & p = 1, \quad v_1 = x \cdot y, \quad u_1, x \in W.
\end{cases}$$

Then define s for a monomial $x_1 \cdot \cdot \cdot x_n \in RH$ and $1 \leq i < k < j \leq n$ by

$$s(x_1 \cdot \cdot \cdot x_n) = \begin{cases}
x_1 \cdot \cdot \cdot x_{k-1} \sim x_k \cdot \cdot \cdot x_n, & x_i \in \mathcal{Y}_i^0, x_k \in \mathcal{Y}_i^{0} \cup \mathcal{E}_o, x_j \in W \setminus E^{op}, \\
x_1 \cdot \cdot \cdot x_{k-1} \sim x_k \cdot \cdot \cdot x_n, & x_1 \geq \cdot \cdot \cdot \geq x_{k-1} < x_k, \\
x_1 \cdot \cdot \cdot x_{k-1} \sim x_k \cdot \cdot \cdot x_n, & x_i \in W \setminus E^{op}, x_k \in E^{op}, x_j \in W, \\
x_1 \cdot \cdot \cdot x_{k-1} \sim x_k \cdot \cdot \cdot x_n, & x_1 \in W; x_k \in \tilde{E}, x_j \in V, \\
0, & \text{otherwise.}
\end{cases}$$

The map s has a property that if for a generator $v \in V$, $s(v) = 0$, then there is a unique summand component x of dv such that $s(x) = v$ (see Fig. 1). This in fact makes the verification of equality \[5.1\] straightforward.

\section*{References}

[1] K.K.S. Andersen and J. Grodal, The Steenrod problem of realizing polynomial cohomology rings, J. Topology, 1 (2008), 747-460.
[2] H. J. Baues, The cobar construction as a Hopf algebra, Invent. Math. 132 (1998) 467-489.
[3] A. Borel, Sur la cohomologie de espaces fibrés et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953) 115-207.
[4] Y. Félix, S. Halperin and J.-C. Thomas, Adams’ cobar equivalence, Trans. AMS, 329 (1992) 531-549.
[5] E. Getzler and J.D.S. Jones, Operads, homotopy algebra, and iterated integrals for double loop spaces, preprint (1995).
[6] S. Halperin and J. D. Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979) 233-279.
[7] J.T. Jozefiak, Tate resolutions for commutative graded algebras over a local ring, Fund. Math. 74 (1972) 209-231.
[8] T. Kadeishvili and S. Saneblidze, A cubical model of a fibration, J. Pure and Applied Algebra, 196 (2005) 203-228.
[9] J. McCleary, "Users’ guide to spectral sequences " (Publish or Perish, Inc., Wilmington, 1985).
[10] R.E. Mosher and M.C. Tangora, “Cohomology operations and applications in homotopy theory " (Dover Publ. 2008).
[11] D. Notbohm, “Classifying spaces of compact Lie groups and finite loop spaces “, Handbook of algebraic topology (Ed. I.M. James), Chapter 21 (North-Holland, 1995).
[12] A. Prouté, Un contre-exemple à la géométricité du shuffle-coproduit de la cobar-construction, C.R. Acad. Sc. Paris, 298, série I (1984) 91-34.
[13] S. Saneblidze, Perturbation and obstruction theories in fibre spaces, Proc. A. Razmadze Math. Inst. 111 (1994) 1-106.
[14] S. Saneblidze, Filtered Hirsch algebras, preprint math.AT/0707.2165.
[15] J.-P. Serre, Homologie singulière des espaces fibrés. Applications, Ann. Math. 54 (1951) 425-505.
[16] J. Tate, Homology of noetherian rings and local rings, Illinois J. Math. 1 (1957) 14-27.

A. Razmadze Mathematical Institute, Department of Geometry and Topology, M. Aleksidze st., 1, 0193 Tbilisi, Georgia

E-mail address: sane@rmi.acnet.ge