An inequality for longitudinal and transverse wave attenuation coefficients

Andrew N. Norris
Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854
(Dated: January 10, 2017)

Total absorption, defined as the net flux of energy out of a bounded region averaged over one cycle for time harmonic motion, must be non-negative when there are no sources of energy within the region. This passivity condition places constraints on the non-dimensional absorption coefficients of longitudinal and transverse waves, γ_L and γ_T, in isotropic linearly viscoelastic materials. Typically, γ_L, γ_T are small, in which case the constraints imply that coefficients of attenuation per unit length, α_L, α_T, must satisfy the inequality $\alpha_L/\alpha_T \geq 4c_L^2/3c_T^2$ where c_L, c_T are the wave speeds. This inequality, which as far as the author is aware, has not been presented before, provides a relative bound on wave speed in terms of attenuation, or vice versa. It also serves as a check on the consistency of ultrasonic measurements from the literature, with most but not all of the data considered passing the positive absorption test.

PACS numbers: 43.20.Gp, 43.40.Dx, 43.35.Gk, 43.20.Tb

I. INTRODUCTION

When an acoustic wave is incident on a passive obstacle, i.e. one with no active sources of energy present, the scattering process should not result in more energy than that of the incident wave itself. If the object is viscoelastic then the total energy should decrease by virtue of the passive absorbing properties of viscoelastic solids. The absorption of wave energy in solids has been considered from many points of view, ranging from its thermodynamic and molecular origins [1, Chs. 11-13], to subwavelength scattering effects at the crystalline and granular scale [2, Ch. 9], to physically consistent mathematical models [3, Chs. 3.E, 5.C-E] [4, Ch. 2]. The interest here is in linearly viscoelastic materials, and the implications of positive absorption, also known as passivity [E]. In particular, we derive a new and useful relation between the attenuation coefficients for longitudinal and transverse waves isotropic solids.

We begin in Section II with a background review of absorption and viscoelasticity theory. The main results are presented in Section III, where they are discussed in the context of published data on ultrasonic attenuation coefficients.

II. BACKGROUND REVIEW

A. Absorption

The energy lost in a passive target subject to an incident time harmonic acoustic wave is defined by the time-averaged outward net flux over the bounding surface of the object,

$$P_{\text{abs}} = -\int_S \langle pv \rangle \cdot ds \geq 0.$$ (1)

Here, p denotes acoustic pressure, v the particle velocity, S is the enclosing surface, $ds = n\,ds$ is the surface element with the unit normal n outwards, and $\langle \cdot \rangle$ indicates the average over a period. To be specific consider a single solid object of volume V. Traction continuity across S implies $-pn = \sigma n$ where σ is the symmetric stress in the solid. Normal velocity is also continuous, and the divergence theorem therefore implies the equivalent definition

$$P_{\text{abs}} = \int_V \text{div}(\sigma v) \, dV.$$ (2)

B. Viscoelasticity

In order to accommodate a viscoelastic constitutive relation it is necessary to work with complex-valued quantities. The real and imaginary parts of material properties, such as density ρ and elastic stiffness C, are denoted in standard fashion using single and double primes:

$$\rho = \rho' + i\rho'', \quad C = C' + iC''.$$ (3)

The density is also considered complex-valued as this represents a better alternative to using viscoelastic moduli in certain materials encountered especially in geophysical acoustics, such as poroelastic continua where the complex ρ includes Darcy-like flow effects on the overall inertia [A].

Notwithstanding the danger of confusion, we now let the field variables σ and v (until now assumed to be real quantities) denote complex-valued amplitudes with the time dependence $e^{-i\omega t}$, $\omega > 0$, understood. The real physical quantities are $\text{Re} \, \sigma(x) e^{-i\omega t}$ and $\text{Re} \, v(x) e^{-i\omega t}$.
With \ast denoting the complex-conjugate, \[P_{\text{abs}} = \frac{1}{2} \text{Re} \int_V \text{div} \sigma \nu^\ast \, dV. \] (4)

Using the equation of motion,
\[\text{div} \sigma + i \omega \rho \nu = 0. \] (5)
the absorption can be expressed
\[P_{\text{abs}} = \frac{\omega}{2} \int_V \rho'' |\nu|^2 \, dV + \frac{1}{2} \text{Re} \int_V \text{tr}(\sigma \text{grad} \nu^\ast) \, dV. \] (6)

Strain is the symmetric part of the displacement gradient $\varepsilon = \text{Sym} \, U$, $U = \text{grad} \, u$, where $u = (-i \omega)^{-1} \nu$ is the displacement.

The viscoelastic linear constitutive relation between stress and strain in its most general form [3, Ch. 4] posits stress as a convolution of strain with a time dependent stiffness. The relation is then linear in the frequency domain,
\[\sigma = C \varepsilon \quad \Leftrightarrow \quad \sigma_{ij} = C_{ijkl} \varepsilon_{kl}, \] (7)
with complex-valued stiffness C defined by the Fourier transform of the time-dependent moduli. The latter are assumed to have the symmetries associated with a symmetric strain and a symmetric stress, implying $C_{ijkl} = C_{ijlk}$, $C_{ijkl} = C_{jikl}$. Hence, $\sigma = C \varepsilon$, and $\text{Re} \text{tr}(\sigma \text{grad} \nu^\ast) = -\omega \text{Im} \text{tr} U^\ast C U$.

In purely elastic solids the stiffness C is real-valued and satisfies the usual symmetry in terms of the interchange of the "major indices" associated with a reversible strain energy function. This property does not extend to viscoelasticity. However, it is expected in the quasistatic limit, and it is therefore reasonable to assume that it holds for the real part of C, at least in some range of frequencies, but is not valid for the imaginary part of C. We therefore make the imaginary part into symmetric and anti-symmetric parts,
\[C''_{ijkl} = C'_{klij}, \quad C'' = C''_{S} + C''_{A}. \] (8)

The absorption can then be written
\[P_{\text{abs}} = \frac{\omega}{2} \int_V (\rho'' |\varepsilon|^2 - \text{tr} U^\ast C''_{S} U) \, dV. \] (9)

This is always non-negative if and only if ρ'' is non-negative and C''_{S} is negative semi-definite, in the sense that $\text{tr} A^\ast C''_{S} A \leq 0$ for all $A = A^T \neq 0$. In summary,
\[P_{\text{abs}} \geq 0 \Leftrightarrow \rho'' \geq 0 \text{ and } C''_{S} \text{ is negative semi-definite}. \] (10)

The absorption is identically zero if the density is purely real and C''_{S} vanishes. The latter condition is equivalent to the requirement that C is Hermitian, i.e. $C_{ijkl} = C'_{klij}$. Hence,
\[P_{\text{abs}} = 0 \Leftrightarrow \rho \text{ is real and } C \text{ is Hermitian}. \] (11)

Note that the present results do not rely upon the necessary consequences of causality on the analytic properties of the complex-valued moduli, a topic that has been addressed well elsewhere, e.g. [8].

1. **Isotropic viscoelasticity**

The moduli have standard form with two complex-valued Lamé moduli, λ and μ,
\[C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{j} + \delta_{il} \delta_{jk}). \] (12)

This stiffness satisfies [8] with $C''_{S} = 0$, i.e. C is not Hermitian, and it is therefore expected that P_{abs} will be non-zero. The absorption becomes
\[P_{\text{abs}} = \frac{\omega}{2} \int_V (\rho'' |\varepsilon|^2 - \kappa'' \text{tr} \varepsilon^2 - \mu'' \text{tr}(\varepsilon_d \varepsilon_d^\ast)) \, dV, \] (13)
where $\kappa = \lambda + 2\mu$ is the bulk modulus and $\varepsilon_d = \varepsilon - \frac{1}{2} \text{tr} \varepsilon$ is the deviatoric strain. Hence,
\[P_{\text{abs}} \geq 0 \Leftrightarrow \rho'' \geq 0, \quad \kappa'' \leq 0 \text{ and } \mu'' \leq 0. \] (14)

This places constraints on the imaginary parts of the elastic moduli.

For instance, the Kelvin-Voigt model assumes that the stress is of the form
\[\sigma = (\lambda_c + \mu_c \partial_t)(\text{tr} \varepsilon) I + 2(\mu_c + \mu \partial_t) \varepsilon \] (15)
where λ_c, μ_c are the elastic moduli, λ, μ are generalized viscosities, all real quantities. Hence, $\lambda'' = -i \omega \mu_c$, $\mu'' = -i \omega \mu$, and the constraints (14) are satisfied if $\lambda_c \geq \frac{3}{2} \mu_c > 0$ and $\mu_c > 0$.

Positive absorption has implications for other elastic moduli. For any complex-valued elastic modulus $M = M' + i M''$, the loss factor [8, p. 7] is defined as $d_M = -M''/M'$, so that $M = (1 - i d_M)M'$. The constraints (14) imply that $d_A \geq 0$, $d_c \geq 0$. The longitudinal modulus, Poisson’s ratio, Young’s modulus and area modulus [10] are $L = \lambda + 2\mu$, $\nu = \lambda / [2(\lambda + \mu)]$, $E = 2(1 + \nu)\mu$ and $A = (1 - \nu)^{-1}(1 + \nu)\mu$, respectively. Their loss factors are, to leading order in d_M and d_c, \begin{align*} d_A &= c_1 d_M + (1 - c_1) d_c, \quad (16a) \\
d_L &= (1 - c_1) d_M + c_1 d_c, \quad (16b) \\
d_E &= c_2 d_M + (1 - c_2) d_c, \quad (16c) \\
d_c &= (3\nu')^{-1}(1 + \nu')(1 - 2\nu')(d_M - d_c), \quad (16d) \end{align*}
where $c_1 = \frac{1}{2}(1 + \nu)/(1 - \nu)$, $c_2 = \frac{2}{3}(1 + \nu')$. Positive definiteness of the elastic strain energy requires that $-1 < \nu' < \frac{1}{2}$ and hence $0 < c_1 < c_2 < 1$ and the loss factors d_L, d_E and d_A are always non-negative with values between d_M and d_c. The Poisson’s ratio loss factor may in principle be of either sign, although reported values, e.g. for rubber [8], are positive indicating $d_M > d_c$.
III. ELASTIC WAVE DAMPING

A. Constraints on absorption coefficients

The complex-valued longitudinal and transverse wavenumbers, \(k_L \) and \(k_T \), are

\[
\tilde{k}_L = \frac{\omega}{c_L}, \quad \tilde{k}_T = \frac{\omega}{c_T}, \quad \tilde{c}_L = \sqrt{\frac{\lambda + 2\mu}{\rho}}, \quad \tilde{c}_T = \sqrt{\frac{\mu}{\rho}}. \quad (17)
\]

A common method for characterizing viscoelasticity is via ultrasonic measurement of the complex-valued wavenumbers. Specifically, we assume that the viscoelastic moduli are defined in terms of two real-valued wave speeds \(c_L \), \(c_T \) and two non-dimensional absorption coefficients \(\gamma_L \), \(\gamma_T \):

\[
\tilde{k}_M = k_M(1 + i\gamma_M) \quad \text{with} \quad k_M = \frac{\omega}{c_M}, \quad M = L, \ T. \quad (18)
\]

According to this definition, \(c_M = (\text{Re} \tilde{c}_M)^{-1} \), \(M = L, \ T \). It follows from the imaginary parts of the identities \(c_M^2 = \tilde{c}_M^2/(1 + i\gamma_M)^2 \), \(M = L, \ T \) that

\[
\begin{align*}
\text{Im} \frac{\mu}{\rho} &= - \frac{2c_L^2\gamma_T}{(1 + \frac{\gamma_T^2}{\gamma_L^2})^2}, \\
\text{Im} \frac{\kappa}{\rho} &= - \frac{2c_T^2\gamma_L}{(1 + \gamma_L^2)^2} + \frac{8c_T^2\gamma_T}{3(1 + \gamma_T^2)^2} \quad (19a)
\end{align*}
\]

The three constraints of \(\frac{\mu}{\rho} \) imply that the left members in (17) are non-positive, and hence we obtain the main result of the paper:

\[
\gamma_T \geq 0, \quad \gamma \geq 0; \quad \gamma = \frac{\gamma_L}{(1 + \gamma_L^2)^2} - \frac{4c_T^2}{3c_L^2}\frac{\gamma_T}{(1 + \gamma_T^2)^2}. \quad (20)
\]

The first is usually satisfied because both \(\gamma_T \) and \(\gamma_L \) are specifically taken as non-negative. The condition for \(\gamma \) places a constraint on \(\gamma_T \) and \(\gamma_L \) that depends upon the ratio of the undamped wave speeds. The value of \(\gamma \) for measurements on Polymethylmethacrylate (PMMA) and other polymers are given in Table I all satisfying the condition \(\gamma > 0 \).

In practice the values of \(\gamma_L \) and \(\gamma_T \) are small, so that (20) \((\gamma \geq 0)\) can be safely replaced by

\[
\frac{\gamma_L}{\gamma_T} \geq \frac{4c_T^2}{3c_L^2} \quad \text{for} \quad \gamma_L, \gamma_T \ll 1. \quad (21)
\]

Thus, the ratio of the wave absorption factors must satisfy a strict but simple inequality when the attenuation is small. Note that the parameter depends upon the real part of the Poisson’s ratio,

\[
\frac{4c_T^2}{3c_L^2} = \frac{2(1 - 2\nu')}{3(1 - \nu')} \quad (22)
\]

We consider the passivity constraint (23) in light of some reported ultrasonic data [14, 12] in Table I. The values of absorption indicates loss moduli of 1% or less than the real parts, i.e. small attenuation for which the criterion (23) applies, and is met for the data in Table I. Velocity and attenuation data for styrene-butadiene-Polymethylmethacrylate (PMMA) at 22.2°C and atmospheric pressure [14]. The data for the other polymers are from [13], where polymer #1 is poly(4-methyl pentene-1) and polymer #2 is poly(acrylonitrile-butadiene-styrene).

\[
\begin{array}{cccccc}
\text{Material} & \text{Source} & c_L & c_T & \gamma_L & \gamma_T & \gamma \\
\hline
\text{PMMA} & \text{[11]} & 2690 & 1340 & 0.0035 & 0.0053 & 0.0017 \\
\text{Polyethylene} & \text{[11]} & 2430 & 950 & 0.0073 & 0.0220 & 0.0028 \\
\text{Phenolic polymer} & \text{[12]} & 2840 & 1320 & 0.0119 & 0.0255 & 0.0045 \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{Material} & \text{Source} & c_L & c_T & \alpha_L & \alpha_T & \text{Eq. (23)} \\
\hline
\text{PMMA} & \text{[11]} & 2756.4 & 1401.5 & 4.97 & 13.64 & \checkmark \\
\text{PMMA} & \text{[11]} & 2760.5 & 1404.8 & 7.69 & 23.99 & \checkmark \\
\text{PMMA} & \text{[11]} & 2764.2 & 1405.1 & 12.68 & 44.28 & \checkmark \\
\text{PMMA} & \text{[11]} & 2765.1 & 1405.7 & 12.64 & 44.28 & \checkmark \\
\text{polymer #1} & & 2180 & 1080 & 1.4 & 6.7 & \checkmark \\
\text{polymer #2} & & 2040 & 830 & 1.8 & 15 & \checkmark \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{Material} & f & c_L & c_T & \alpha_L & \alpha_T & \text{Eq. (23)} \\
\hline
\text{PMMA} & \text{[11]} & 1401.5 & 4.97 & 13.64 & \checkmark \\
\text{PMMA} & \text{[11]} & 1404.8 & 7.69 & 23.99 & \checkmark \\
\text{PMMA} & \text{[11]} & 1405.1 & 12.68 & 44.28 & \checkmark \\
\text{PMMA} & \text{[11]} & 1405.7 & 12.64 & 44.28 & \checkmark \\
\text{polymer #1} & & 1080 & 1.4 & 6.7 & \checkmark \\
\text{polymer #2} & & 830 & 1.8 & 15 & \checkmark \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{Material} & f & c_L & c_T & \alpha_L & \alpha_T & \text{Eq. (23)} \\
\hline
\text{PMMA} & \text{[11]} & 1401.5 & 4.97 & 13.64 & \checkmark \\
\text{PMMA} & \text{[11]} & 1404.8 & 7.69 & 23.99 & \checkmark \\
\text{PMMA} & \text{[11]} & 1405.1 & 12.68 & 44.28 & \checkmark \\
\text{PMMA} & \text{[11]} & 1405.7 & 12.64 & 44.28 & \checkmark \\
\text{polymer #1} & & 1080 & 1.4 & 6.7 & \checkmark \\
\text{polymer #2} & & 830 & 1.8 & 15 & \checkmark \\
\end{array}
\]
rubber \[16\] at 1 MHz over a temperature range from 0° to 20° is consistent with \[23\].

Laymen et al. \[17\] provide curve-fitted equations, eqs. (15-18) in \[17\], for all four of the parameters in \[23\] based on ultrasonic measurements on a particulate composite sample over a broad frequency range (2 to 10 MHz). It may be easily verified that these wave speeds and attenuations satisfy the condition \[23\] over the entire range of frequencies considered. Measurements of high frequency (25 to 65 MHz) velocities and attenuation in passive ma-

2 3 4 5 6 7 8

2376 2378 2380 2382 2384 2386 2388

\text{Frequency (MHz)}

\begin{align*}
\text{Phase velocity (m/s)} & \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14 \quad 16 \\
\text{Attenuation (dB/cm)} & \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14
\end{align*}

2 3 4 5 6 7 8

970 980 990 1000

\text{Frequency (MHz)}

\begin{align*}
\text{Phase velocity (m/s)} & \quad 60 \quad 80 \quad 100 \quad 120 \quad 140 \quad 160 \quad 180 \\
\text{Attenuation (dB/cm)} & \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14
\end{align*}

FIG. 1: Phase velocity and attenuation as functions of frequency for a high-density polyethylene sample: longitudinal (left) and transverse (right). Data from \[20\], Figure 4.

As a final example we consider the velocity and attenuation data shown in Figure 1 which reproduces as accurately as possible the measurements reported in \[20\] for a high-density polyethylene sample. The calculated values of the two terms in eq. \[23\] are plotted in Figure 2. The smooth curve for \(\alpha_L/\alpha_T\) uses a fitted power law model for attenuation proposed by Szabo and Wu \[21\] and applied to the data of Wu \[20\]. The model assumes the attenuation has frequency dependence of the form

\[\alpha_M = \alpha_{0M} + \alpha_{1M}|f|^y, \quad M = L, T,\] \hspace{1cm} (24)

where the coefficients for the high-density polyethylene sample are in Table III. Note that the formula corresponding to eq. \[24\] in Szabo and Wu \[21\] has \(|\omega|\) instead of \(|f|\), but we find that the numbers reported there are for eq. \[24\].

It is evident from the relative positions of the curves in Figure 2 that the passivity inequality \[23\] is not satisfied at any of the frequencies considered. We note that eq. \[23\] is an approximation valid for small values of attenuation. The precise condition \(\gamma \geq 0\) may be written in
similar form as

\[\frac{\alpha_L}{\alpha_T} \geq \frac{4c_L^3}{3c_T^2} I \quad \text{where} \quad I = \left(\frac{1 + \frac{\gamma_T^2}{\gamma_L^2}}{1 + \frac{\gamma_L^2}{\gamma_T^2}} \right)^2. \]

(25)

Generally, the factor I is close to but slightly less than unity, with 0.9964 \leq I \leq 0.9970 for the data of Figure 1. The effect of including this term in Figure 2 is almost imperceptible, i.e., the data is in violation of the passivity condition for the bulk modulus. We can only conclude that the attenuation data for high-density polyethylene is not consistent with a passive linear viscoelastic model with frequency dependent complex-valued density and elastic moduli.

We note, however, that for the other data sets reported in [20], for samples of low-density polyethylene and Lexan Plexiglas, we find the passivity condition [23] is satisfied.

IV. CONCLUSION

The main finding is the constraint on the non-dimensional absorption parameter \(\gamma \) in Eq. (20). For given values of wave speeds and shear absorption \(\gamma_T \) this sets a lower bound on the longitudinal absorption \(\gamma_L \). The inequality \(\gamma \geq 0 \) has direct interpretation when absorption is small (\(\gamma_L, \gamma_T \ll 1 \)), implying that the ratio of the attenuations per unit length, \(\alpha_L/\alpha_T \), has a lower bound that depends on the ratio of the wave speeds, Eq. (23). The lower bound tends to zero as the Poisson’s ratio of the material tends to \(\frac{1}{2} \) (\(\Rightarrow c_T/c_L \to 0 \)). For instance, measurements of ultrasonic properties of soft tissues and tissue-like materials [22] shows shear wave attenuation coefficients on the order of 10^4 times the longitudinal wave attenuation coefficients. Equation (23) then implies, under the small absorption assumption, that the transverse wave speed must be less than 4.2% the value of the longitudinal speed.

[1] A.B. Bhatia. *Ultrasonic Absorption: An Introduction to the Theory of Sound Absorption and Dispersion in Gases, Liquids and Solids*. Oxford University Press, 1967.

[2] Lester W. Schmerr, Jr. *Fundamentals of Ultrasonic Non-destructive Evaluation*. Springer, second edition, 2016.

[3] B. A. Auld. *Acoustic Fields and Waves in Solids*, Vol. I. Wiley Interscience, New York, 1973.

[4] José M. Carcione. *Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, and Porous Media*. Pergamon, 2001.

[5] Richard L. Weaver and Yih-Hsing Pao. Dispersion relations for linear wave propagation in homogeneous and inhomogeneous media. *J. Math. Phys.*, 22(9):1909–1918, 1981.

[6] David Linton Johnson, Joel Koplik, and Roger Dashen. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. *Journal of Fluid Mechanics*, 176(1):379, mar 1987.

[7] Bastien Dupuy and Alexey Stovas. Influence of frequency and saturation on AVO attributes for patchy saturated rocks. *Geophysics*, 79(1):B19-B36, jan 2014.

[8] T. Pritz. Frequency dependences of complex moduli and complex Poissons ratio of real solid materials. *J. Sound. Vib.*, 214(1):83–104, Jul 1998.

[9] B. E. Read and G. D. Dean. *Determination of Dynamic Properties of Polymers and Composites*. Wiley, 1978.

[10] N. H. Scott. An area modulus of elasticity: Definition and properties. *J. Elasticity*, 58:269-275, 2000.

[11] Bruce Hartmann and Jacek Jarzynski. Ultrasonic hysteresis absorption in polymers. *J. Appl. Phys.*, 43(11):4304–4312, 1972.

[12] Bruce Hartmann. Ultrasonic properties of phenolic and poly(phenylquinoxaline) polymers. *J. Appl. Polym. Sci.*, 19(12):3241–3255, Dec 1975.

[13] Luise S. Schuetz and Werner G. Neubauer. Acoustic reflection from cylinders – nonabsorbing and absorbing. *J. Acoust. Soc. Am.*, 62(3):513–517, 1977.

[14] James R. Asay, Donald L. Lamberson, and Arthur H. Guenther. Pressure and temperature dependence of the acoustic velocities in polymethylmethacrylate. *J. Appl. Phys.*, 40(4):1768–1783, 1969.

[15] Bruce Hartmann. Ultrasonic properties of poly(4-methyl pentene-1). *J. Appl. Phys.*, 51(1):310–314, 1980.

[16] Yasaku Wada, Ryoichi Ito, and Hazime Ochiiai. Comparison between mechanical relaxations associated with volume and shear deformations in styrene-butadiene rubber. *J. Phys. Soc. Jpn.*, 17(1):213–218, Jan 1962.

[17] Christopher Layman, N. Sanjeeva Murthy, Ruey-Bin Yang, and Junru Wu. The interaction of ultrasound with particulate composites. *J. Acoust. Soc. Am.*, 119(3):1449–1456, 2006.

[18] Haifeng Wang, T. Ritter, Wenwu Cao, and K.K. Shung. High frequency properties of passive materials for ultrasonic transducers. *IEEE Trans. Ultrason. Ferroel. Freq. Cont.*, 48(1):78–84, 2001.

[19] Gianmarco Pinton, Jean-Francois Aubry, Emmanuel Bossy, Marie Muller, Mathieu Pernet, and Michael Tanter. Attenuation, scattering, and absorption of ultrasound in the skull bone. *Medical Physics*, 39(1):299–307, 2012.

[20] Junru Wu. Determination of velocity and attenuation of shear waves using ultrasonic spectroscopy. *J. Acoust.
[21] Thomas L. Szabo and Junru Wu. A model for longitudinal and shear wave propagation in viscoelastic media. *J. Acoust. Soc. Am.*, 107(5):2437–2446, 2000.

[22] Ernest L. Madsen, H. John Sathoff, and James A. Zagzebski. Ultrasonic shear wave properties of soft tissues and tissuelike materials. *J. Acoust. Soc. Am.*, 74(5):1346–1355, 1983.