Effects of Active Individual Muscle Stretching on Muscle Function

KOUICHI NAKAMURA1), TAKAYUKI KODAMA1), SHIGEYUKI SUZUKI2)

1) Department of Physical Therapy, Fukuoka Wajiro Rehabilitation College: 2–1–13 Wajirogaoka, Higashiku, Fukuoka-city, Fukuoka 811-0213, Japan. TEL+81 92-608-8600 E-mail: nakamura@fukuokawajiro-reha.jp
2) Program in Physical and Occupational Therapy, Graduate School of Health Sciences, Nagoya University

ABSTRACT: [Purpose] We investigated the effects on muscle function of active individual muscle stretching (AID). [Subjects] The subjects were the right legs of 30 healthy male students. [Method] The subjects were divided into an AID group, which performed stretching, and a control group which did not. Using a goniometer and Cybex equipment, we examined and compared between groups, and before and after stretching. [Results] For flexibility and muscle strength output, we found a significant increase in flexibility and a significant decrease in muscle strength output in the AID group after the intervention. [Conclusion] The results suggest that AID induces an increase in flexibility, and a temporary decrease in muscle output strength.

Key words: active individual muscle stretching, muscle function, flexibility
はじめに

1980年初頭にテレビのスポーツ教室番組でストレッチングが紹介されて以来、それぞれに応用するようにストレッチング関係の一般向け書籍が多く出版され、日本ではいわゆるストレッチングブームが引き起こされ、ストレッチングの目的は、これまでの研究から関節可動域（柔軟性）の改善と筋緊張の低下、血液循環の改善、筋痛の緩解、除去、除去予防・競技パフォーマンスの改善などが共通してあげられる。現在では、Proprioceptive Neuromuscular Facilitationなど神経系の反応を応用したストレッチングがスポーツ領域で注目を浴びている。また、姿勢や呼吸法を重視するヨガやピラティスとストレッチングを組み合わせて実施されるなど、ストレッチングの種類や目的は多種多様であるが、その一方でストレッチングの手法と効果の関連については、未だ諸説あり、議論の余地が残されている。

鈴木らによって考案されたIndividual Muscle Stretching（以下IDストレッチング）は、一つ一つの筋を個別的にストレッチングすることで筋の柔軟性、伸展性を高め、筋が関与する関節可動域と巧緻性の改善を目的として、1999年以降、病院、クリニックからスポーツ領域にまで及んで、主に理学療法士を中心に広く活用されている。IDストレッチングの特徴は、個々の筋に対するthb抑制を利用した他動的Static Stretchingであること、筋の走行、刺激に対する筋の反応などの解剖学、生理学の詳細な知識が必要であること、筋緊張の程度により等尺性収縮を組み合わせることが挙げられている。IDストレッチングは筆者らの研究18にて、従来の他動的Static Stretchingに比べ柔軟性の向上や筋出力の低下、精神的、神経学におけるボディポジティブ変化をもたらす可能性が示唆された。しかし、コンディショニングという領域を考慮した場合、理学療法士やトレーナーといわれる人だけが施行するものではなく、患者自身または選手自身が自ら管理し、取り組み、実施することが重要である。

筋を代表とする軟部組織は一時的に伸張性や柔軟性が向上し、姿勢、運動負荷、ストレスなどにより容易に機能低下が引き起こされる。したがって、筋緊張低下や痛みの軽減を目的としたIDストレッチングの治療対象となった筋は、その場でありながら、筋線維自分自身でストレッチングすることが軟部組織の機能を維持する上で重要と考えられる。そこで、セラピストから他動的に行われるIDストレッチングとは異なり、選手自身または患者自身で行うことができるアクティブIDストレッチング（Active Individual Muscle Stretching：以下AID）が2007年に考案された。それ以降、AIDは理学療法士を中心に患者や選手を対象として、ペットサイトやホームエクササイズとして活用されてきたが、AIDの効果を検証した研究は筆者らの知る限り見当らない。

そこで本研究は、AIDが筋機能に及ぼす影響を関節可動域器具（メディカル株式会社製ゴニオメーター）並びに等速筋力測定器（メディカル株式会社製Cybex770-NORM）を用いて検討し、コンディショニング領域における一端を明らかにすることを目的とした。

対象と方法

1. 対象

下肢に既往を持たない健常男子学生30名30組の組を、被験者の平均年齢21.4±1.9歳、平均身長173.7±5.3cm、平均体重67.2±7.7kgであった。

本研究は、被験者に対して事前に口頭と文章で研究内容および危害性の説明を行った。また、すべての被験者は研究内容を理解した上で承諾書に署名し、研究に参加した。

2. 方法

被験者を、AIDを施行する群（以下AID群）、AIDを施行しない群（以下control群）の2群に無作為に15名ずつ分けた。

対象筋は足関節底屈筋であるヒラ筋とし、ストレッチング施行前後に関節可動域測定（以下ROM-T）、等速性足関節底屈筋力測定を行った、柔軟性を評価するROM-Tの測定方法は、日本リハビリテーション医学会評価基準委員会が定めた方法19に準じ、関節可動域測定器具ゴニオメーターを用いて、基本軸を膝関節屈曲位から膝部への垂直とし、移動軸を第5中足骨としたときの足関節の屈曲可動域として測定した。測定する際は、筆者らとの研究用外反母趾2名（臨床経験10.5±2.4年）が測定者と測定者に分かれて、測定前後入れ替わり実施した。等速性筋出力の測定には、等速性筋力測定器Cybex770-NORMを使用した。角速度は、吉野らの研究報告を参考とし、研究において指標とされる低速度（60 deg/sec）、中速度（180 deg/sec）、高速度（300 deg/sec）の3領域からそれぞれ検討することを目的に各角度を設定した。測定時は、足関節底屈筋運動を最大努力でそれぞれ連続3回施行し、各角度で達成したpeak torqueの平均を算出した。

測定は一日、一手技、一角度とし、順序効果を考慮し、日を替え、ランダムに行った。AIDに要する時間は、20秒間1回を1回とし、以下の方法で実施した。

AID群におけるヒラ筋へのストレッチング方法20は、両手で右膝部を両側から把持し、重心を後方に移動させながら右足関節を屈端した（図1）。なお、ストレッチングを行う際の施行肢に加える力を、客観的で定量化可能な筋力評価に用いられるハンドヘルドダイナモーター（日本メディックス製品FET-102）を用い、5 kgfで制
御した14,18)。ストレッチングの指導を行う者は、筆者らとは別であり、かつROM測定を実施した者とは別の理学療法士2名（経験年数9.5±2.1年）が指導者と測定者に分かれた。Control群はストレッチングを施行せず、AID群と同様の静止時間14)をとった前後に測定を行った。

なお、評価前に被験者の運動状態を整えるため、全被験者に対しエルゴメーター（5min,60w）を課した19,20)。

統計処理は、次のようにした。①柔軟性に対して、群（AID×controlの2水準）および両群の足関節背屈可動域測定値（ストレッチング前×ストレッチング後の2水準）の2要因について二元配置反復測定分散分析にて行い、②筋出力に対しては、群（AID×controlの2水準）、両群のpeak torque値（ストレッチング前×ストレッチング後の2水準）および角度（60deg/sec×180deg/sec×300deg/secの3水準）の3要因について三元配置分散分析を行った。いずれも多重比較検定にはFisher’s PLSDを用いた。なお、すべて有意水準5%未満とし、統計ソフトはSPSS12.0J for Windowsを使用した。

Ⅲ. 結果

柔軟性において、群およびROM測定値にそれぞれ主効果を認めた。2群間を比較した結果、ストレッチを施行したAID群ではcontrol群に比べ、有意に柔軟性の向上が認められた（表1）。

両群の足関節背屈可動域前後を比較した結果、AID群では、AID後に有意な柔軟性の向上が認められた（p<0.05）、control前後で有意差は認められなかった（p>0.05）（表1）。

筋出力において2群間で比較した結果、ストレッチを施行したAID群ではcontrol群に比べ、有意に筋出力の低下を認めた。両群の介入前後比較においてはAID群のみ、ストレッチング後で有意に筋出力の低下が認められた（p<0.05）（表2）。

角速度別にpeak torque値を介入前後で比較した結果、AID群において角度60 deg/secの場合のみ有意差を認め（p<0.05）、control群では、いずれも介入前と後の間に有意差は認められなかった（p>0.05）（表2）。

Ⅳ. 考察

本研究は、AIDが筋機能に及ぼす影響について、柔軟性、等速性筋出力の2点から比較検討した。

柔軟性においてストレッチングを施行したAID群は、control群に比べ、柔軟性の向上を認めた。この背景として、これまでの研究からもストレッチングにより引き起こされる神経系の反応が考えられる。Heldら21)は、ストレッチングにより筋肉の固有受容器である筋圧錐が持続的に引き伸ばされるか、筋圧錐の求心性運動に抑制が起こり、筋緊張が低下することを報告している。またFowlesら22)は、持続的な静的ストレッチングによりゴルジ感受器や他有受容器の筋緊張抑制の反応が起こることを示唆している。
とを報告している。いずれもこの神経系の反応は、筋
電図の積分値の減少21,22)や伸張反射の遅延24)からも説
明され、筋緊張の低下が結果的に柔軟性を向上させたも
のと考えられる。AIDも静的ストレッチングの範疇にあ
るため、これら神経系の反応が生体内に起こり、先行研
究と同様の結果が得られたものと推測される。

等速性筋出力の結果について、AID群はcontrol群に
比べ、介入後、筋出力の低下を認めた。これは、こ
れまでの研究からも筋組織の力学的特性が関与している
ことが考えられる。Morseら27)によれば、ストレッチ直
後の急性の変化として、筋肉の結合組織の弾性が低下
する（伸びやすくなる）ことを報告している。具体的に
Cramerら25)は、ストレッチングにより筋組織の筋節が
伸張されること、またTeramotoら26)は、腱も伸張され
ることを報告している。これらの報告は、筋の力学的特
性として、ストレッチング後に比べ、ストレッチング後は
筋組織がより長くあることを意味している。筋の張
力-長さの関係からも、最大収縮張力を発揮させるため
には一定の筋長が必要27)であり、ストレッチング後は同
じ関節角度であっても、筋節や腱が伸ばされたことで筋
長はストレッチング前により長く、状態となることから、筋
力が減少するものと考えられる28)。そのため、今回の
研究結果では先行研究同様に、ストレッチング直後の急
性の変化として、筋出力の低下が認められたものと考え
られた。

角速度毎に発揮される等速性筋出力を調べた結果、角
速度60 deg/secの場合のみ、AID群の介入後において筋
出力の低下が認められた。このことについて、Nelson
ら29)は、低速である60 deg/secが等尺性の運動様式に類
似し、筋の収縮がより遅く、短縮速度で発揮されるため、
ストレッチングの影響が大きいと報告している。AIDは、
IDストレッチング同様に個別的に筋を伸ばす方法を
選択する特性から1h抑制の影響を受けやすく、その結果、
筋緊張の抑制効果をよりやや、このことがAID群で
低速度領域における筋出力の低下へとつながったものと
考えられた。

以上本研究の結果から、セルフストレッチングである
AIDは、他動的static stretching29)に比較的柔軟性の向上、
筋出力の低下をもたらすことが示唆された。これらの結
果は、セルフマッサージ領域における一つの可能
性を示唆したものと考えられる。今回は、筋出力の低
下という表現であるが、その背景に推測される筋緊張の
変化、抑制効果に対する検討が行われていない。そのた
め、今後は筋緊張の抑制効果を検討するためにも、誘発
筋電図を用いての神経生理学的検討30,31)が必要である。
また、実際に関節運動を行う際は、多数の筋が関与する
ため、基本動作やスポーツ動作によるパフォーマンス評
価等を加え検討24)すること、さらにAIDが活用され
るホームエクササイズの観点からも、その効果における
持続時間についても検討25)していく必要性があると考え
える。

引用文献
1) 井上, 通, 小柳順治, 中江義彦, 他: アスリートケアマニュ
アル. 文光堂, 東京, 2007, pp.14.
2) 鈴木重行, 平野幸伸, 鈴木敏和: IDストレッチング 第2版.
三輪書店, 東京, 2006, pp.2-46.
3) Avela J, Kyrolainen H, Komit PV: Altered reflex sensitivity
after repeated and prolonged passive muscle stretching. J Appl
Physiol, 1999, 86: 1283-1291.
4) Kokkonen J, Nelson AG, Cornwell A: Acute muscle stretching
inhibits maximal strength performance. Res Q Exerc Sport,
1998, 69: 411-415.
5) Guissard N, Duchateau J: Effect of static stretch training on
neuro and mechanical properties of the human planter-flexor
muscles. Muscle Nerve, 2004, 29(2): 248-255.
6) Cramer JT, Housh TJ, Weir JP, et al.: The acute effects
of static stretching on peak torque. mean power output,
electromyography, and mechanomyography. Eur J Appl
Physiol, 2005; 93(5-6): 530-539.
7) Morse CI, Degens H, Seynnes OR, et al.: The acute effect of
stretching on the passive stiffness of the human gastrocnemius
muscle tendon unit. J Appl Physiol, 2008, 586: 97-106.
8) Yamaguchi T, Ishii K, Yamanaka M, et al.: Effect of static
stretching for 30 seconds and dynamic stretching on leg
extension power. J Strength Cond Res, 2006, 19: 677-683.
9) Behm DG, Babuška B, Caihi F, et al.: Effect of acute static
stretching on force, balance, reaction time, and movement
time. Med Sci Sports Exerc, 2004, 36(8): 1397-1402.
10) 鈴木重行: 筋・筋膜性疼痛に対する理学療法の画像による
効果検証の試み. 理学療法学, 2005, 32: 32-33.
11) 影山正雄: Warming up (Cool down)におけるStretchおよび
Joggingの効果について（カラーサーモグラフィーを用いて）.
デサントスポーツ科学, 1996, 3: 306-308.
12) 森谷敏夫: ストレッチングによる筋痛の生理解学的効果に対
する電気生理学的解明. デサントスポーツ科学, 1987, 8:
212-219.
13) 小山敏彦, 関根将利, 竹林隆雄, 他: ストレッチングの生
理学-筋肉伸張の神経伝達機能に及ぼす影響- + 運動・物
理療法, 2001, 12: 20-26.
14) 中村浩一, 向井義人, 八王隆之: IDストレッチングが心身
に及ぼす影響. 理学療法学, 2011, 26: 13-17.
15) 鈴木重行, 平野幸伸, 鈴木敏和: アクティブIDストレッチング.
三輪書店, 東京, 2007, pp.2-8.
16) 奈良 剛, 内山 塚, 稲川克己, 他: 理学療法検査・測定
ガイド第2版. 文光堂, 東京, 2009, pp.179-180.
17) 吉野直美, 三和真, 鈴木正彦, 他: 筋等速筋力測定装置
Cybexの運動角度の検証. 山形保健医療研究, 2002, 5:
51-56.
18) 藤沼勇, 清水卓也, 宮川博文, 他: 二関節筋に対するス
トレッチングが等速性筋出力に及ぼす影響. 日本臨床スポ
ーツ医学会, 2008, 16: 395-401.
19) Marsh D, Sleivert G: Effect of precooling on high intensity
cycling performance. Br J Sports Med, 1999, 33: 393-397.
20) Hoffren M, Isikawa M, Komi PV: Age-related neuromuscular function during drop jumps. J Appl Physiol, 2007, 103: 1276-1283.

21) Helda TJ, Ryan ED, Smith AE, et al.: Acute effects of passive stretching vs vibration on the neuromuscular function of the planter flexors. Scand J Med Sci Sports, 2008, 17: Epub of print.

22) Fowles JR, Sale DG, MacDougall JD, et al.: Reduced strength after passive stretch of the human plantar flexors. J Appl Physiol, 2000, 89: 1179-1188.

23) Weir DE, Tingley J, Elder DC, et al.: Acute passive stretching alters the mechanical properties of human plantar flexors and the optical angle for maximal voluntary contraction. J Appl Physiol, 2005, 93: 614-623.

24) 濱田佳祐, 佐々木 真：静的ストレッチングがジャンプ能力に及ぼす効果—生理学的面ならびに機能面からの検討—. 理学療法科学, 2008, 23: 463-467.

25) Cramer JT, Beck TW, Housh TJ, et al.: Acute effects of static stretching on characteristics of the Isokinetic angle-torque relationship, surface electromyography. J sports Sci, 2007, 25: 687-698.

26) Teramoto A, Luo ZP: Temporary tendon stretching by preconditioning. Clin Biomech, 2008, 23: 619-681.

27) 本間利恵, 廣重 力, 豊田 順一: 樓 keras 理: 第 6 版. 医学書院, 東京, 2005, pp107-127.

28) 木元紘介, 逹藤伸一: ハムストリングガに対するスタティクスストレッチングが筋力を関節可動域に与える影響の時間的変化. 東京大学保健学専攻紀要, 2011, 19: 27-33.

29) Nelson AG, Allen JD, Cornwell A, et al.: Inhibition of maximal voluntary isokinetic torque production following stretching. J Strength Cond. Res, 2001, 26: 241-246.

30) Costa PB, Ryan ED, Herda TJ, et al.: Effects of static stretching on the hamstrings to quadriceps ratio and electromyographic amplitude in men. J Sports Med Phys Fitness, 2009, 49(12): 401-409.

31) Marques AP, Vasconcelos AP, Cabral CM, et al.: Effect of frequency of static stretching on flexibility, hamstring tightness and electromyographic activity. Braz J Med Bio Res, 2009, 42(8): 949-953.