A Poisson Mixed Model with Nonnormal Random Effect Distribution

Lizandra C. Fabio and Gilberto A. Paula
Instituto de Matemática e Estatística - USP, Brazil
and
Mário de Castro
Instituto de Ciências Matemáticas e de Computação - USP, Brazil

Abstract
We propose in this paper a random intercept Poisson model in which the random effect distribution is assumed to follow a generalized log-gamma (GLG) distribution. We derive the first two moments for the marginal distribution as well as the intraclass correlation. Even though numerical integration methods are in general required for deriving the marginal models, we obtain the multivariate negative binomial model for a particular parameter setting of the hierarchical model. An iterative process is derived for obtaining the maximum likelihood estimates for the parameters in the multivariate negative binomial model. Residual analysis are proposed and two applications with real data are given for illustration.

Key words: Count data; Generalized log-gamma distribution; Multivariate negative binomial distribution; Overdispersion; Random-effect models.

1 Introduction
The effects of the misspecification of the random effect distribution in generalized linear mixed models (GLMMs) have been investigated by some authors recently. For instance, Litière et al. (2008) verified by Monte Carlo studies that the misspecification of the random effect distribution of the response variable in random intercept logistic models may lead to severe bias in the random effect component.
prediction, which in many problems may be the main parameter of interest. These same authors have proposed a family of tests to detect the misspecification of the random effect distribution in GLMMs (Alonso et al., 2008). In addition, Lee and Nelder (1996, 2001) have suggested a flexibilization of the random effect distribution in GLMMs, but under a hierarchical framework. Although any combination between the conditional response and the random effect distributions may be considered in the Lee and Nelder’s proposal, the majority of the applications have been done for conjugate distributions. In particular, under the marginal framework, Molenberghs et al. (2007) have presented a combination between gamma and normal random effects in Poisson mixed models and more recently Zhang et al. (2008) assumed a log-gamma distribution for the random effects in linear mixed models.

The aim of this paper is to present an alternative distribution for the random effect in random intercept Poisson models, which is characterized by assuming a generalized log-gamma distribution for the random effect component. This distribution introduced by Prentice (1974) (see also Lawless, 1980) has as particular cases the normal and extreme value distributions and it may assume skew forms to the right and to the left. In addition, generalized log-gamma models have been widely applied in the areas of survival analysis and reliability. For instance, DiCiccio (1987) derived approximate inferences for the quantiles and scale parameters whereas Young and Bakir (1987) obtained the bias of order n^{-1}, where n is the sample size, for the parameter estimates in generalized log-gamma regression models for uncensored samples. Young and Bakir (1987) also presented the expectation of various log-likelihood derivatives in closed-form expressions. Ahn (1996) proposed a regression tree method to classify the heterogeneous subsets of the data into different generalized log-gamma regression models with the shape parameter being estimated separately in each formed stratum under independent random censoring. Ortega et al. (2003) derived the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and Chien-Tai et al. (2004) presented a conditional method of inference to derive confidence intervals for the location as well as quantiles and reliability functions under progressively type-II censoring and by assuming the shape parameter known in generalized log-gamma regression models with censored data. More recently, Cox et al. (2007) presented a taxonomy of the hazard function of generalized gamma distribution with application to
study of survival after diagnosis of clinical AIDS during different phases of HIV therapy and Ortega et al. (2009) introduced the generalized log-gamma regression models with cure fraction giving emphasis to assessment of local influence.

The paper is organized as follows. In Section 2 we present a brief review of the generalized log-gamma distribution. The random intercept Poisson generalized log-gamma model is proposed in Section 3, as well as a discussion on the parameter and random effect estimation. The derivation of the first two moments for the marginal distribution and of the intraclass correlation are given in Section 4. For a particular parameter setting of the hierarchical model we derive, in Section 5, the multivariate negative binomial model (Johnson et al., 1997) as a marginal model. An iterative process for the parameter estimation as well as goodness-of-fit procedures and residual analysis are also presented in Section 5. In Section 6 the epilepsy data set (Diggle et al., 2002) is fitted with the random intercept Poisson-normal and random intercept Poisson-GLG models and compared under the AIC criterion. Another application that has been analyzed by Poisson models (Lange et al., 1994) is reanalyzed with the negative binomial and multivariate negative binomial models.

2 Generalized log-gamma distribution

Let y be a random variable following a generalized log-gamma distribution. The probability density function (pdf) of y (see, for instance, Lawless, 2002) is given by

$$f(y; \mu, \sigma, \lambda) = \begin{cases} \frac{c(\lambda)}{\sigma} \exp \left(\frac{(y-\mu)}{\sigma} - \frac{1}{\lambda^2} \exp \left(\frac{\lambda(y-\mu)}{\sigma} \right) \right), & \text{if } \lambda \neq 0 \\ \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{(y-\mu)^2}{2\sigma^2} \right\}, & \text{if } \lambda = 0 \end{cases}$$

where $y \in \mathbb{R}$; $\mu \in \mathbb{R}$, $\sigma > 0$ and $\lambda \in \mathbb{R}$ are, respectively, the position, scale and shape parameters and $c(\lambda) = \frac{1}{\Gamma(\lambda - 2)} \lambda^{-2} \Gamma(\lambda - 2)$ with $\Gamma(\cdot)$ being the gamma function. We will denote $y \sim \text{GLG}(\mu, \sigma, \lambda)$. The extreme value distribution is a particular case of (1), when $\lambda = 1$. For $\lambda < 0$ the pdf of y is skew to the right and for $\lambda > 0$ it is skew to the left. Figure 1 presents the behavior of the pdf of $y \sim \text{GLG}(0, 1, \lambda)$ for some values of λ.

3
One has for $\lambda \neq 0$ the following moments:

$$
E(y) = \mu + \sigma \left\{ \psi(\lambda^{-2}) + \log \frac{1}{\lambda} \right\} \quad \text{and} \quad \text{Var}(y) = \frac{\sigma^2 \psi'(\lambda^{-2})}{\lambda^2},
$$

where $\psi(\cdot)$ and $\psi'(\cdot)$ denote, respectively, the digamma and trigamma functions. For $\lambda = 0$ one has the normal case for which $E(y) = \mu$ and $\text{Var}(y) = \sigma^2$.

![Figure 1: Graphs of the generalized log-gamma distribution for some values of λ and by assuming $\mu = 0$ and $\sigma = 1$.](image)

3 The random intercept Poisson-GLG model

Let y_{ij} denote the jth outcome measured for the ith cluster (subject), $i = 1, \ldots, n$ and $j = 1, \ldots, m_i$. We will assume the following random intercept Poisson-GLG model:

(i) $y_{ij} \mid b_i \sim \text{Poisson}(u_{ij})$

(ii) $u_{ij} = \exp(x_{ij}^\top \beta + b_i)$ and

(iii) $b_i \sim \text{GLG}(0, \sigma, \lambda)$,
where \(x_{ij} = (x_{ij1}, \ldots, x_{ijp})^T \) contains values of explanatory variables and \(\beta = (\beta_1, \ldots, \beta_p)^T \) is the parameter vector of the systematic component. The model (i)-(iii) will be named random intercept Poisson-GLG model. When \(\lambda = 0 \) one has the random intercept Poisson-normal model (see, for instance, Breslow and Clayton, 1993). Let \(f_{Y|b}(y_{ij}|b_i, \beta) \) and \(f_b(b_i; \sigma, \lambda) \) be the probability function of \(y_{ij}|b_i \) and the pdf of \(b_i \), respectively. Then, the marginal probability function of \(y = (y_1, \ldots, y_n)^T \), where \(y_i = (y_{i1}, \ldots, y_{im_i})^T \), is given by

\[
f_Y(y; \beta, \sigma, \lambda) = \prod_{i=1}^{n} f_Y(y_i; \beta, \sigma, \lambda)
\]

with

\[
f_Y(y_i; \beta, \sigma, \lambda) = \int_{-\infty}^{+\infty} \left\{ \prod_{j=1}^{m_i} f_{Y|b}(y_{ij}|b_i, \beta) \right\} f_b(b_i; \sigma, \lambda) db_i,
\]

which in general does not have a closed-form. Then, the log-likelihood function for the marginal model, using (2), takes the form

\[
L(\theta) = \sum_{i=1}^{n} \log \int_{-\infty}^{+\infty} \left\{ \prod_{j=1}^{m_i} f_{Y|b}(y_{ij}|b_i, \beta) \right\} f_b(b_i; \sigma, \lambda) db_i,
\]

where \(\theta = (\beta^T, \lambda, \sigma)^T \). Expression (3) should be approximated by numerical integration methods, such as Laplace approximation or Gauss-Hermite quadrature. To predict the random effects we can use the empirical Bayes method (see, for instance, McCulloch and Searle, 2001) given by

\[
\tilde{b}_i = E[b_i|y_i] = \frac{\int_{-\infty}^{+\infty} b_i f_{Y|b}(y_i|b_i, \beta) f_b(b_i; \sigma, \lambda) db_i}{\int_{-\infty}^{+\infty} f_{Y|b}(y_i|b_i, \beta) f_b(b_i; \sigma, \lambda) db_i}
\]

The NLMIXED procedure available in SAS has been required to obtain the parameter estimate in the GLMM class. Through this procedure it is possible to compute the integral in (3) and to perform the maximization of the log likelihood in (3) as well as to obtain the random effect prediction.

4 Derivation of moments

We derive in this section the moments \(E(y_{ij}) \) and \(\text{Var}(y_{ij}) \) as well as \(\text{Cov}(y_{ij}, y_{ij'}) \), for \(j \neq j' \), and the following results will be used:
(a) \(E(y_{ij}) = E\{E(y_{ij}|b_i)\} = \mu_{ij}E(e^{b_i}) \),

(b) \(\text{Var}(y_{ij}) = \text{Var}\{E(y_{ij}|b_i)\} + E\{\text{Var}(y_{ij}|b_i)\} = \mu_{ij}^2 \text{Var}(e^{b_i}) + \mu_{ij}E(e^{b_i}) \) and

(c) \(\text{Cov}(y_{ij}, y_{ij'}) = \text{Cov}\{E(y_{ij}|b_i), E(y_{ij'}|b_i)\} = E(\mu_{ij}e^{b_i}, \mu_{ij'}e^{b_i}) = 0 \), for \(j \neq j' \),

where \(\mu_{ij} = \exp(\mathbf{x}_{ij}^T \beta) \). From (a)-(c) above one has that

\[
\frac{\text{Var}(y_{ij})}{E(y_{ij})} = 1 + \mu_{ij} \frac{\text{Var}(e^{b_i})}{E(e^{b_i})}.
\]

and since \(\mu_{ij} > 0 \), \(\text{Var}(e^{b_i}) > 0 \) and \(E(e^{b_i}) > 0 \) it follows that \(\text{Var}(y_{ij}) > E(y_{ij}) \), that is, the model (i)-(iii) is overdispersed. In Table 1 one has the expressions of \(E(e^{b_i}) \) and \(E(e^{2b_i}) \) for some ranges of \(\lambda \), where

\[
I_1(\lambda, \sigma) = \int_0^\infty t^{\lambda-2}(\lambda \sigma + 1)^{-1} e^{-t} dt \quad \text{and} \quad I_2(\lambda, \sigma) = \int_0^\infty t^{\lambda-2}(2\lambda \sigma + 1)^{-1} e^{-t} dt,
\]

which should be solved by numerical integration methods.

Table 1
First two moments for the random variable \(e^{b_i} \) according to the values of the shape parameter \(\lambda \).

Shape parameter	\(E(e^{b_i}) \)	\(E(e^{2b_i}) \)
\(\lambda = 0 \)	\(e^{\sigma^2/2} \)	\(e^{2\sigma^2} \)
\(\lambda > 0 \)	\(\frac{\lambda^2}{\Gamma(\lambda)} \Gamma\{\lambda^{-2}(\lambda \sigma + 1)\} \)	\(\frac{\lambda^2}{\Gamma(\lambda)} \Gamma\{\lambda^{-2}(2\lambda \sigma + 1)\} \)
\(\lambda < 0 \)	\(\frac{\lambda^2}{\Gamma(\lambda^{-2})} I_1(\lambda, \sigma) \)	\(\frac{\lambda^2}{\Gamma(\lambda^{-2})} I_2(\lambda, \sigma) \)

5 The multivariate negative binomial model

Consider now the following random intercept Poisson-GLG model:

(i) \(y_{ij} | b_i \sim \text{Poisson}(u_{ij}) \),

(ii) \(u_{ij} = \exp(\mathbf{x}_{ij}^T \beta + b_i) \) and

(iii) \(b_i \sim \text{GLG}(0, \lambda, \lambda) \),
that is, the same model given in Section 3 with $\sigma = \lambda (\lambda > 0)$.

Denoting $\phi = \lambda^{-2}$ the joint distribution of (y_i, b_i) is given by

$$
f_Y(y_i, b_i; \beta, \phi) = \left\{ \prod_{j=1}^{m_i} f_{Y|b}(y_{ij}|b_i, \beta) \right\} f_b(b_i; \phi)
= \frac{\phi^\phi (\prod_{j=1}^{m_i} \mu_{ij}^{y_{ij}})}{\Gamma(\phi) (\prod_{j=1}^{m_i} y_{ij}!)} \exp\{-\mu_i + \exp(b_i) - \phi \exp(b_i) + b_i y_i + b_i \phi\},
$$

where $y_i = \sum_{j=1}^{m_i} y_{ij}$ and $\mu_i = \sum_{j=1}^{m_i} \mu_{ij}$. Consider the variable transformation $t_i = \exp(b_i)(\mu_i + \phi)$. One has that $\frac{db_i}{dt_i} = \frac{1}{t_i}$ and the joint distribution of (y_i, t_i) assumes the form

$$
f(y_i, t_i; \beta, \phi) = \frac{\phi^\phi (\prod_{j=1}^{m_i} \mu_{ij}^{y_{ij}})}{\Gamma(\phi) (\prod_{j=1}^{m_i} y_{ij}!)} e^{-t_i \left(\frac{t_i}{\mu_i + \phi} \right) - 1}
= \frac{\phi^\phi (\prod_{j=1}^{m_i} \mu_{ij}^{y_{ij}})}{\Gamma(\phi) (\prod_{j=1}^{m_i} y_{ij}!)} (\phi + \mu_i + y_i + \phi)^{\phi + y_i - 1} e^{-t_i \left(\frac{t_i}{\mu_i + \phi} \right) - 1}.
$$

Thus, the marginal probability function of y_i yields

$$
f_Y(y_i; \beta, \phi) = \frac{\phi^\phi (\prod_{j=1}^{m_i} \mu_{ij}^{y_{ij}})}{\Gamma(\phi) (\prod_{j=1}^{m_i} y_{ij}!)} \int_0^\infty e^{-t_i t_i \left(\frac{t_i}{\mu_i + \phi} \right) - 1} dt_i
= \frac{\Gamma(\phi + y_i + \phi) \exp(\sum_{j=1}^{m_i} \log \mu_{ij})}{\Gamma(\phi + \mu_i + \phi)}
\frac{\Gamma(\phi) (\prod_{j=1}^{m_i} y_{ij}!)}{\Gamma(\phi + \mu_i + \phi + y_i + \phi)},
$$

that is the multivariate negative binomial distribution (see, for instance, Johnson et al., 1997) of means $E(y_{ij}) = \mu_{ij}$, variances $\text{Var}(y_{ij}) = \mu_{ij} + \frac{\mu_{ij}^2}{\phi}$, for $j = 1, \ldots, m_i$, and covariances $\text{Cov}(y_{ij}, y_{ij'}) = \frac{\mu_{ij} \mu_{ij'}}{\phi}$, for $j \neq j'$. The intraclass correlation between y_{ij} and $y_{ij'}$, for $j \neq j'$, can be expressed as

$$
\text{Corr}(y_{ij}, y_{ij'}) = \frac{\sqrt{\mu_{ij} \mu_{ij'}}}{\sqrt{\phi + \mu_{ij}} \sqrt{\phi + \mu_{ij'}}}.
$$

These correlations are always positive and for large values of ϕ the multivariate negative binomial counts $y_{ij}'s$ behave approximately as independent Poisson observations with respective means μ_{ij}. Therefore, we derive the multivariate negative binomial distribution from an alternative way, by assuming a particular log-gamma distribution for the random effect in a random intercept Poisson
model. By a similar calculation one may show that the marginal distribution of \(y_{ij} \) is a negative binomial distribution of mean \(\mu_{ij} \), variance \(\mu_{ij} + \frac{\mu_{ij}^2}{\phi} \) and dispersion parameter \(\phi > 0 \) (see, for instance, McCullagh and Nelder, 1989). We will denote \(y_i \sim \text{MNB}(\mu_i, \phi) \), where \(y_i = (y_{i1}, \ldots, y_{im_i})^\top \), \(\mu_i = (\mu_{i1}, \ldots, \mu_{im_i})^\top \) and \(\phi > 0 \). The multivariate negative binomial model is defined by assuming that \(\log\mu_{ij} = x_{ij}^\top \beta \). Then, the log-likelihood function for the multivariate negative binomial model yields

\[
L(\theta) = \sum_{i=1}^{n} \log \left\{ \frac{\Gamma(\phi + y_{i+})}{\Gamma(\phi)} \right\} - \sum_{i=1}^{n} \sum_{j=1}^{m_i} \log y_{ij}! + n\phi \log \phi - \phi \sum_{i=1}^{n} \log \left(\phi + \sum_{j=1}^{m_i} e^{x_{ij}^\top \beta} \right)
\]

where \(\theta = (\beta^\top, \phi)^\top \). The score function and the Fisher information matrix may be obtained for \(\theta \) and an iterative process can be performed to get the maximum likelihood estimates.

5.1 Score function

The score function is obtained from (5) by deriving the log-likelihood function \(L(\theta) \) with respect to \(\beta \) and \(\phi \), respectively. We obtain

\[
U_{\beta} = \sum_{i=1}^{n} \left\{ \sum_{j=1}^{m_i} y_{ij} x_{ij} - \frac{(\phi + y_{i+})}{(\phi + \mu_{i+})} \sum_{j=1}^{m_i} x_{ij} \mu_{ij} \right\}
\]

\[
= \sum_{i=1}^{n} X_i^\top (y_i - a_i \mu_i)
\]

by using the result \(\Gamma(\phi + y_{i+})/\Gamma(\phi) = \phi(\phi + 1)(\phi + 2) \ldots (\phi + y_{i+} - 1) \) (see, for instance, Lawless, 1987) we find

\[
U_{\phi} = \sum_{i=1}^{n} \left\{ \sum_{j=0}^{y_{i+} - 1} (j + \phi)^{-1} - \frac{y_{i+}}{(\phi + \mu_{i+})} - \log(1 + \phi^{-1}\mu_{i+}) + \frac{\mu_{i+}}{(\phi + \mu_{i+})} \right\},
\]

where \(a_i = \frac{(1+\phi^{-1}y_{i+})}{(1+\phi^{-1}\mu_{i+})} \), \(X_i \) is an \(m_i \times p \) matrix of rows \(x_{ij}^\top \), for \(j = 1, \ldots, m_i \), so that \(\sum_{j=0}^{(y_{i+} - 1)} \) is zero when \(y_{i+} - 1 < 0 \).
5.2 Fisher information matrix

The Fisher information matrix for β is obtained such that

$$
K_{\beta\beta} = E \left\{ -\frac{\partial U_\beta}{\partial \beta^T} \right\}
= E \left\{ \sum_{i=1}^{n} \left[(\phi + y_{i+}) \sum_{j=1}^{m_i} x_{ijk}x_{ijl}\mu_{ij} - \frac{(\phi + y_{i+})}{(\phi + \mu_{i+})^2} \sum_{j=1}^{m_i} x_{ijk}\mu_{ij} \sum_{j=1}^{m_i} x_{ijl}\mu_{ij} \right] \right\}
= \sum_{i=1}^{n} X_i^T \left\{ D(\mu_i) - (\phi + \mu_{i+})^{-1}\mu_i\mu_i^T \right\} X_i,
$$
in that, $D(\mu_i) = \text{diag}\{\mu_{i1}, \ldots, \mu_{im_i}\}$. The calculation of the Fisher information for ϕ follows the similar steps of the negative binomial model (see, for instance, Lawless, 1987). We find

$$
K_{\phi\phi} = E \left\{ -\frac{\partial U_\phi}{\partial \phi} \right\}
= E \left\{ \sum_{i=1}^{n} \left[\sum_{j=0}^{(y_{i+}-1)} (j + \phi)^{-2} - \frac{y_{i+}}{(\phi + \mu_{i+})^2} - \frac{\phi^{-1}\mu_i}{\phi + \mu_{i+}} \right] \right\}
= \sum_{i=0}^{n} \left\{ \sum_{j=0}^{\infty} (j + \phi)^{-2}P(Y_{i+} \geq j) - \frac{\phi^{-1}\mu_i}{\mu_{i+} + \phi} \right\}.
$$

In addition, it may be showed the orthogonality between β and ϕ, as in the univariate case. Thus, the Fisher information matrix for θ takes the block-diagonal form $K_{\theta\theta} = \text{diag}\{K_{\beta\beta}, K_{\phi\phi}\}$.

5.3 Iterative process

Similarly to the univariate case we can perform a scoring Fisher and a Newton-Raphson iterative processes for obtaining the maximum likelihood estimates $\hat{\beta}$ and $\hat{\phi}$, respectively, which are given by

$$
\beta^{(r+1)} = \beta^{(r)} + \left\{ \sum_{i=1}^{n} X_i^T W_i^{(r)} X_i \right\}^{-1} \sum_{i=1}^{n} X_i^T \left\{ y_i - \frac{(\phi^{(r)} + y_{i+})}{(\phi^{(r)} + \mu_{i+}^{(r)})}\mu_{i}^{(r)} \right\} \quad (6)
$$

and

$$
\phi^{(r+1)} = \phi^{(r)} - \frac{U_{\phi}^{(r)}}{L_{\phi\phi}^{(r)}}, \text{ for } r = 0, 1, 2, \ldots \quad (7)
$$
in that $W_i = D(\mu_i) - (\phi + \mu_i)^{-1} \mu_i \mu_i^T$ and $\hat{L}_{\phi \phi} = \partial U_{\phi} / \partial \phi$. We can start the iterative process defined in (6) and (7) by using, for instance, the maximum likelihood estimates from the univariate case in which the m_i observations for each group are assumed independent. For large sample (n large) we expected that the maximum likelihood estimators follow, under suitable regularity conditions, normal distributions. That is, for n large $\hat{\beta} \sim N_p(\beta, K^{-1}_{\beta \beta})$ and $\hat{\phi} \sim N(\phi, K^{-1}_{\phi \phi})$. In addition, due to the orthogonality between β and ϕ one has the asymptotic independence between $\hat{\beta}$ and $\hat{\phi}$.

5.4 Residual analysis

We found that the estimates of the multivariate negative binomial saturated model log-likelihood function is $\hat{\mu}_{ij} = y_{ij}$, and therefore, the MNB deviance function has the following expression,

$$D(y, \hat{\mu}_i, \phi) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} 2 \left[\phi \log \left(\frac{\phi + \hat{\mu}_{ij}}{\phi + y_{ij}} \right) + \sum_{j=1}^{m_i} y_{ij} \log \left(\frac{y_{ij}(\phi + \hat{\mu}_{ij})}{\hat{\mu}_{ij}(\phi + y_{ij})} \right) \right].$$

(8)

Similarly to the univariate case (see, for instance, Svetliza and Paula, 2003) we can define the deviance as a measure for multivariate negative binomial models from (8). So, after some algebraic manipulation and by assuming that ϕ is fixed and $y_{ij} > 0$, $\forall ij$, we may express the deviance as

$$D(y; \hat{\mu}, \phi) = \sum_{i=1}^{n} \sum_{j=1}^{m_i} d^2(y_{ij}, \hat{\mu}_{ij}, \phi),$$

where

$$d^2(y_{ij}, \hat{\mu}_{ij}, \phi) = \begin{cases} 2 \left[\frac{\phi}{m_i} \log \left(\frac{\phi + \hat{\mu}_{ij}}{\phi + y_{ij}} \right) + y_{ij} \log \left(\frac{y_{ij}(\phi + \hat{\mu}_{ij})}{\hat{\mu}_{ij}(\phi + y_{ij})} \right) \right] & \text{if } y_{ij} \neq 0 \\ \frac{2\phi}{m_i} \log \left(\frac{\phi + \hat{\mu}_{ij}}{\phi + y_{ij}} \right) & \text{if } y_{ij} = 0 \end{cases}.$$

(9)

The quantity ϕ that appears in the deviance expression may be replaced, for instance, by a consistent estimate of ϕ, such the maximum likelihood estimate $\hat{\phi}$.

As a residual proposal we can work, for instance, with the deviance component residual similarly to the univariate case. Svetliza and Paula (2003) performed various simulation studies with indication of a very good agreement between the empirical distribution of the deviance component residual and the normal distribution, even for ϕ small. In the multivariate case we will adopt the following expression for the deviance component residual:

$$d^*(y_{ij}; \hat{\mu}_{ij}, \hat{\phi}) = \frac{d(y_{ij}; \hat{\mu}_{ij}, \hat{\phi})}{\sqrt{1 - \hat{h}_{ij}}}.$$
where
\[d(y_{ij}, \hat{\mu}_{ij}, \hat{\phi}) = \pm \sqrt{2 \{d^2(y_{ij}, \hat{\mu}_{ij}, \phi)\}}^{1/2}, \]

in that \(d^2(y_{ij}, \hat{\mu}_{ij}, \phi) \) is defined in (9), \(h_{ij} \) is the \(j \)th principal diagonal element of the matrix \(H_i = W_i^{1/2}X_i(X_i^\top W_i X_i)^{-1}X_i^\top W_i^{1/2} \) and the sign is the same of \((y_{ij} - \hat{\mu}_{ij})\).

A suggestion in order to assess departures from the postulated distributions for the responses \(y'_{ij} \), as well as the presence of outlying observations, is to perform the normal probability plot for \(d(y_{ij}, \hat{\mu}_{ij}, \hat{\phi}) \) with generate envelope (see, for instance, Svetliza and Paula, 2003). Another possibility, suggested by Waller and Zelterman (1997), is the Pearson residual whose expression is given by

\[r_{ij} = \frac{(y_{ij} - \hat{\mu}_{ij})}{\sqrt{\hat{\mu}_{ij} + \hat{\phi}^{-1} \hat{\mu}_{ij}^2}}. \]

Again, here it is recommended to perform the normal probability plot with generated envelope to detect possible departures from the error assumptions as well as outlying observations.

6 Applications

6.1 Epilepsy data

Diggle et al. (2002) described an experiment in which 59 epileptic patients were randomly assigned to one of two treatment groups: treatment (progabide drug) and placebo groups. The number of seizures experimented by each patient during the baseline period (eight-week) and the four consecutive periods (two-week) was recorded. The main objective of this application is to analyze the drug effect and compare its effect with the placebo group effect. Overdispersion evidences were observed in the data set and a generalized estimating equation model was applied to fit the data. In order to illustrate the potentiality of the random intercept Poisson-GLG model we modify the data set, patient #49 was dropped and some values of the patient #18 were modified in order to make it an outlying observation. Then, similarly to Diggle et al. (2002), we assume the following random intercept Poisson-normal model:

\[(i) \ y_{ikj}|b_i \overset{\text{ind}}{\sim} P(u_{ikj}), \]
Figure 2: Profile of the seizures of the placebo and treatments groups.

(ii) \(u_{i10} = \exp(\alpha + b_i) + \log(t_{0}) \),
\[u_{i1j} = \exp(\alpha + \beta + b_i) + \log(t_{j}), \quad i = 1, \ldots, 28, \]
\[u_{i20} = \exp(\alpha + b_i) + \log(t_{0}), \]
\[u_{i2j} = \exp(\alpha + \beta + \delta + b_i) + \log(t_{j}) \quad i = 29, \ldots, 59, \text{ and} \]

(iii) \(b_i \sim N(0, \sigma^2) \),

in that, \(y_{ikj} \) denotes the number of seizures experienced by the \(i \)th patient in the \(k \)th group and \(j \)th period, where \(i = 1, \ldots, 59 \), \(k = 1, 2 \) (placebo(28) and treatment(31)) and \(j = 1, 2, 3, 4 \). In addition, \(t_j \) denotes the week number of the \(j \)th period (\(t_0 = 8 \) and \(t_1 = t_2 = t_3 = t_4 = 2 \)), \(\beta \) is the parameter which represents the treatment effect and \(\delta \) is the parameter referents to the treatment group effect in relation to the placebo group.

However, from Figure 2, that describes the log(counting) of seizures in the baseline period, we notice a skew form to right suggesting a skew distribution for the random intercept. Thus, a random
intercept Poisson-CLG model (with $\lambda < 0$) is also assumed to fit this data set. Indeed, we replace in the model (i)-(iii) the assumption $b_i \overset{iid}{\sim} N(0, \sigma^2)$ by $b_i \overset{iid}{\sim} \text{GLG}(0, \sigma, \lambda)$ with $\lambda < 0$. The parameter estimates, which were obtained by using the procedure NLMIXED in SAS, are described in Table 2. Even though the inferential conclusions are the same for both models, indicating a significant effect for the treatment group in the sense of decreasing the seizure mean, the random intercept Poisson-GLG model seems to fit better the data under the AIC criterion. Furthermore, the estimate $\hat{\lambda} = -1.1852$, that is significant at 5%, confirms the evidences of Figure 2 on a skew form to right for the random intercept distribution.

Figure 3: Density of the log(counting) of seizures in the baseline period for the modified data (right).
Table 2
Parameter estimates with the respective approximate standard errors for the Poisson-normal and Poisson-GLG random intercept models fitted to modified epilepsy data.

Parameter	Poisson-normal	Poisson-GLG				
	Estimate	Sd. error	z-value	Estimate	Sd. error	z-value
α	0.9379	0.1132	8.29	0.5062	0.2049	2.47
β	0.4841	0.0418	11.59	0.4812	0.0416	11.56
δ	-0.4741	0.0610	-7.78	-0.4685	0.0606	-7.72
σ	0.8426	0.0802	-	0.6130	0.1418	-
λ		-1.1852		0.6024		-1.97

AIC = 2214.62 AIC = 2155.04

6.2 C. dubia data

As a second illustration we will consider the data set described in Lange et al. (1994) (see also See and Bailer, 1988), which was obtained from a reproductive aquatic toxicology experiment and whose aim was to study the effect of the herbicide Nitrofen on the asexual reproduction of the freshwater invertebrate Ceriodaphnia dubia (C. dubia). The data represent the offspring born counting in three broods to each of 10 C. dubia in each of 5 concentration groups of Nitrofen: 0, 80, 160, 235 and 310 µg/l. The eggs of these species were developed and hatched within 48 hours and were released from the brood pouch according to the molting cycle of adult female (24 to 48 hours). The mean profiles of the offspring born counting under each concentration across the time are presented in Figure 3.

Various Poisson regression models with log link were applied by Lange et al. (1994) in order to compare the Nitrofen level potencies and the toxin effects on the individual organisms. A Poisson regression model with a quadratic effect for the concentration was considered as the best-fitting model, but the possibility of within-animal correlation (one has three broods for each animal) was not considered. The normal probability plot for the deviance residual with generated envelope in Figure 4, indicates that the Poisson model is not suitable to fit this data set, with indication of overdispersion. Thus, the multivariate negative binomial (MNB) model appears as an option to explain the offspring counting and based on the behavior of Figure 3 we suggest the following model to fit the C. dubia data:
(i) \(y_i \sim \text{MNB}(\mu_i, \phi) \) with

(ii) \(\mu_{ij} = \exp(\beta_0 + \beta_1 C_{ij} + \beta_2 \text{Day}_{ij} + \beta_3 C_{ij} \times \text{Day}_{ij}), \)

where \(y_{ij} \) is the offspring counting of the \(i \)th adult female in the \(j \)th brood, for \(i = 1, \ldots, 50 \) and \(j = 1, 2, 3 \), with \(C_{ij} \) denoting the concentration for which the \(j \)th brood of the \(i \)th animal was submitted.

One has the following settings: \(C_{ij} = 0 \) (\(i = 1, \ldots, 10 \)), \(C_{ij} = 80 \) (\(i = 11, \ldots, 20 \)), \(C_{ij} = 160 \) (\(i = 21, \ldots, 30 \)), \(C_{ij} = 235 \) (\(i = 31, \ldots, 40 \)) and \(C_{ij} = 310 \) (\(i = 41, \ldots, 50 \)), for \(j = 1, 2, 3 \), and \(\text{Day}_{ij} \) denotes the day in which the eggs were hatched for the \(j \)th brood of the \(i \)th animal and it assumes the following values: \(\text{Day}_{i1} = -2 \), \(\text{Day}_{i2} = 0 \) and \(\text{Day}_{i3} = 2 \), for \(i = 1, \ldots, 50 \).

Figure 4: Mean profiles of the offspring born counting of \(C. \ dubia \) under each concentration across the time.
Figure 5: Normal probability plot with generated envelope for the Poisson quadratic regression model fitted to *C. dubia* data.

Table 3
Parameter estimates with the respective approximate standard errors for the negative binomial (NB) and multivariate negative binomial (MNB) models fitted to *C. dubia* data.

Parameter	NB model	MNB model				
	Estimate	Sd. Error	z-value	Estimate	Sd. Error	z-value
β_0	2.5269	0.0704	35.8950	2.5333	0.0925	27.3619
β_1	-0.0040	0.0004	-9.8020	-0.0040	0.0005	-7.5045
β_2	0.3329	0.0432	7.7050	0.2916	0.0297	9.8088
β_3	-0.0015	0.0003	-6.2020	-0.0013	0.0002	-6.8379
ϕ	7.4116	2.1900	-	11.5603	4.2267	-
AIC	830.3	829				
Deviance	225.76 (146 d.f.)	222.91 (146 d.f.)				

The parameter estimates (standard errors) of the NB and MNB models, given in Table 3, are similar, confirming the tendencies observed in Figure 3. However, the AIC and deviance values suggest that the MNB model fits better the data. This can also be observed by comparing the normal probability
Figure 6: Normal probability plot with generated envelope for the univariate negative binomial model (left) and multivariate negative binomial model model (right) fitted to C. dubia data.

plots for the deviance component and Pearson residuals in Figure 5. Lange et al. affirms that the interclass correlations in the C. dubia data is small. For $\hat{\phi} = 11.5603$, we identify moderate to weak intraclass correlations with the increase of the concentration levels. We also obtain $\hat{\lambda} = 0.293(0.053)$, a since that $\hat{\phi} = \hat{\lambda}^{-2}$. When $\hat{\lambda}$ assumes a small value the MNB model has the feature of fits data sets positively correlated with a considerable number of zeros. The data set C.dubia contains many zeros in the highest concentration level, however, some of the intraclass correlations are nearly zero. This fact can explain the lack of fit observed in Figure 5. The deviance component residual has been suggested in this paper was not used because $d^2(y_{ij}, \hat{\mu}_{ij}, \hat{\phi})$ assumed any negative values. We are investigating this fact.
7 Concluding remarks

In this paper we propose the generalized log-gamma distribution to give flexibility for the random intercept distribution in Poisson mixed models. The advantage of this distribution is the skew forms to the right and to the left including the normal distribution as a particular case. From the random intercept Poisson-GLG model the multivariate negative binomial model was derived for a particular parameter setting and the score functions, Fisher information matrix as well as an iterative process were derived. Residual analysis were also proposed. In addition, we present two motivating examples emphasizing the specials features of each model. Particularly, for the epilepsy application, we conclude that the random intercept Poisson-GLG model seems to be more appropriate to fit the modified data with indication of skew form for the intercept distribution as well as presence of outlying observation. In the C. dubia application the multivariate negative binomial model seems to fit better the data than the univariate negative binomial model, since it incorporates the intraclass correlation that is in general positive. Thus, we believe that the models proposed in this work enlarge the options in the class of generalized linear mixed models particularly to fit count data with indication of overdispersion and nonnormal distribution for the random effects. Extensions for other responses, such binomial and gamma, as well as for two or more random effects are in progress.

Acknowledgment: This work was supported by CNPq and FAPESP, Brazil.

References

Ahn, H., 1996. Log-gamma regression modeling through regression trees. Communications in Statistics, Theory and Methods 25, 295-311.

Alonso, A., Litière, S., Molenbergs, G., 2008. A family of tests to detect misspecification in the random-effects structure of generalized linear mixed models. Computational Statistics and Data Analysis 52, 4487-4501.

Breslow, N. E. and Clayton, D. G., 1993. Approximate inference in generalized linear mixed models.
Chien-Tai, L., Wu, S. J. S., Balakrishnan, N., (2004). Interval estimation of parameters of log-gamma distribution based on progressively censored data. Communications in Statistics, Theory and Methods 33, 2595-2626.

Cox, C., Chu, H., Shneider, M. F., Munoz, A., 2007. Parametric survival analysis and taxonomy of hazard functions for the generalized gamma distributions. Statistics in Medicine 26, 4352-4374.

DiCiccio, T. J., 1987. Approximate inference for the generalized gamma distribution. Technometrics 29, 33-40.

Diggle, P., Heagerty P., Liang, K. Y., Zeger, S., 2002. Analysis of Longitudinal Data. Oxford Statistical Science Series, New York.

Johnson, N. L., Kotz, S., Balakrishnan, N., 1997. Discrete Multivariate Distributions. Wiley, New York.

Lange, N., Ryan, L., Billard, L., Brillinger, D., Conquest, L., Greenhouse, J., 1994. Case Studies in Biometry. Wiley, New York.

Lawless, J. F., 1980. Inference in the generalized gamma and log-gamma distributions. Technometrics 22, 409-419.

Lawless, J. F., 1987. Negative binomial and mixed Poisson regression. Canadian Journal of Statistics 15, 209-225.

Lawless, J. F., 2002. Statistical Models and Methods for Lifetime Data, 2nd Edition. Wiley, New York.

Lee, Y., Nelder, J. A., 1996. Hierarchical generalized linear models. Journal of the Royal Statistical Society B 58, 619-678.
Lee, Y., Nelder, J. A., 2001. Hierarchical generalized linear models: a synthesis of generalized linear models, random effect models and structured dispersions. Biometrika 88, 987-1006.

Litière, S., Alonso, A., Molenbergs, G., 2008. The impact of a misspecified random-effects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models. Statistics in Medicine 27, 3125-3144.

McCullagh, P., Nelder, J. A. (1989). Generalized Linear Models, 2nd. Edition. Chapman and Hall, London.

McCulloch, C. E., Searle, S. R., 2001. Generalized Linear, and Mixed Models. Wiley, New York.

Molenberghs, G., Verbeke, G., Demétrio, C. G. B., 2007. An extended random-effects approach to modeling repeated, overdispersed count data. Lifetime Data Analysis 13, 513-531.

Ortega, E. M. M., Bolfarine, H., Paula, G. A., 2003. Influence diagnostics in generalized log-gamma regression models. Computational Statistics and Data Analysis 42, 165-186.

Ortega, E. M. M., Cancho, V. G., Paula, G. A., 2009. Generalized log-gamma regression models with cure fraction. Lifetime Data Analysis 15, 79-106.

Prentice, R., 1974. A log gamma model and its maximum likelihood estimation. Biometrika 61, 539-544.

See, K., Bailer, A. J., 1988. Added risk and inverse estimation for count responses in reproductive aquatic toxicology studies. Biometrics 54, 67-73.

Svetliza, C. F., Paula, G. A. (2003). Diagnostics in nonlinear negative binomial models. Communications in Statistics, Theory and Methods 32, 1227-1250.

Young, D. H., Bakir, S. T., 1987. Bias correction for a generalized log-gamma regression model. Technometrics 29, 183-191.
Waller, A. L., Zelterman, D., 1997. Log-linear modeling with the negative multinomial distribution. Biometrics 53, 971-982.

Zhang, P., Song, P. X. K., Qu, A., Greene, T., 2008. Efficient estimation for patient-specific rates of disease progression using nonnormal linear mixed models. Biometrics 64, 29-38.