Measurements of $\bar{\nu}_\mu$ and $\bar{\nu}_\mu + \nu_\mu$ charged-current cross-sections without detected pions nor protons on water and hydrocarbon at mean antineutrino energy of 0.86 GeV

K. Abe56, N. Akhlaq45, R. Akutsu57, A. Ali32, C. Alt11, C. Andreopoulos54, 34, L. Anthony21, M. Antonova19, S. Aoki31, A. Ariga2, T. Arihara59, Y. Asada69, Y. Ashida32, E.T. Atkin21, Y. Awataguchi59, S. Ban32, M. Barbi46, G.J. Barker66, G. Barr42, D. Barrow42, C. Barry34, M. Batkiewicz-Kwasniak15, A. Beloshapkin26, F. Bench34, V. Berardi22, S. Berkman4, 62, L. Berns58, S. Bhadra70, S. Bienstock53, A. Blondel53, 13, S. Bolognesi6, T. Bonus68, B. Bourguille18, S.B. Boyd66, D. Brailsford33, A. Bravar13, D. Bravo Berguino1, C. Bronner56, S. Bron13, A. Bubak51, M. Buizza Avanzini10, J. Calcutt36, T. Campbell7, S. Caio16, S.L. Cartwright50, M.G. Catanesi22, A. Cervera19, A. Chappell66, C. Checchia24, D. Cherdack17, N. Chikuma55, G. Christodoulou12, M. Cicerchia124, J. Coleman34, G. Collazuol24, L. Cook42, 28, D. Coplowe42, A. Cudd7, A. Dabrowska15, G. De Rosa23, T. Dealtry33, P.F. Dennes66, S.R. Dennis34, C. Densham54, F. Di Lodovico30, N. Dokania39, S. Dolan12, T.A. Doyle33, O. Drapier10, J. Dumarchez53, P. Dunne21, A. Eguchi55, L. Eklund14, S. Emery-Schrenk6, A. Ereditato2, P. Fernandez10, T. Feusels4, 62, A.J. Finch33, G.A. Fiorentini70, G. Fiorillo23, C. Francois2, M. Friend116, Y. Fujii116, R. Fujita55, D. Fukuda40, R. Fukuda60, Y. Fukuda37, K. Fusshoeffer11, K. Gamei4, 62, C. Giganti53, T. Golanski68, M. Gonin10, A. Gorin26, M. Guigue53, D.R. Hadley66, J.T. Haigh66, P. Hamacher-Baumann49, M. Hartz61, 28, T. Hasegawa16, S. Hassani6, N.C. Hastings16, T. Hayashino32, Y. Hayato56, 28, A. Hiramoto32, M. Hogan8, J. Holeczek51, N.T. Hong Van20, 27, T. Honjo41, F. Iacob24, A.K. Ichikawa32, M. Ikeda56, T. Ishida116, T. Ishii116, M. Ishitsuka60, K. Iwamoto59, A. Izmaylov19, 26, N. Izumi60, M. Jakupi16, B. Jamieson57, S.J. Jenkins50, C. Jesu-S-Valls18, M. Jiang32, S. Johnson7, P. Jonsson21, C.K. Jung39, X. Junjie57, M. Kabirinezhad42, A.C. Kaboth48, 54, 5, T. Kajita57, H. Kakuno59, J. Kameda56, D. Karlen63, 62, K. Kasetti35, Y. Kataoka56, Y. Katayama69, T. Katori30, Y. Kato56, E. Kearns13, 28, M. Khabibullin26, A. Khotjantsev26, T. Kikawat32, H. Kikutani55, H. Kim41, J. Kim4, 62, S. King39, J. Kisiel51, A. Knight66, A. Knox33, T. Kobata41, T. Kobayashi116, L. Koch42, T. Koga55, A. Konaka62, L.L. Kormos33, Y. Koshio40, A. Kostin26, K. Kowalik38, H. Kubo32, Y. Kudenko42, N. Kukita41, S. Kuribayashi32, R. Kurjata65, T. Kutter35, M. Kuze58, L. Labarga4, J. Lagoda38, M. Lamoureux24, D. Last43, M. Laveder24, M. Lawe33, M. Licciardi10, T. Lindner62, R.P. Litchfield14, S.L. Liu39, X. Li39, A. Longhin24, L. Ludovici25, X. Lu42, T. Lux18, L.N. Machado23, L. Magaletti22, K. Mahn36, M. Malek50, S. Manly47, L. Maret13, A.D. Marino7, L. Marti-Magro56, 28, J.F. Martin61, T. Maruyama116, T. Matsubara16, K. Matsushita35, V. Matveev26, C. Mauger43, K. Mavrokordis34, E. Mazzuccato6, M. McCarthy70, N. McCaulley34, J. McElwee50, K.S. McFarland47, C. McGrew39, A. Melodiev26, C. Metelko34, M. Mezzetto24, A. Minamino69, O. Mineev26, S. Mine5, M. Miura56, L. Molina Bueno11, S. Moriyama56, J. Morrison36, Th.A. Mueller10, L. Munteanu6, S. Murphy11, Y. Nagata7, T. Nakadaira116, M. Nakahata56, 28,
Y. Nakajima56, A. Nakamura40, K.G. Nakamura32, K. Nakamura$^{128, 16}$, S. Nakayama$^{56, 28}$, T. Nakaya$^{32, 28}$, K. Nakayoshi116, C. Nantais61, C.E.R. Naseby21, T.V. Ngoc20, K. Niewczas68, K. Nishikawa116, Y. Nishimura29, E. Noah13, T.S. Nonnenmacher21, F. Nova54, P. Novella19, J. Nowak33, J.C. Nugent14, H.M. O’Keeffe33, L. O’Sullivan50, T. Odagawa32, T. Ogawa16, R. Okada40, K. Okumura$^{57, 28}$, T. Okusawa41, S.M. Oser$^{4, 62}$, R.A. Owen45, Y. Oyama116, V. Palladino23, J.L. Palomino39, V. Paolone44, M. Pari24, W.C. Parker48, S. Parra13, J. Pasternak21, P. Pauza34, M. Pavin62, D. Payne34, G.C. Penn34, L. Pickering36, C. Pidcott50, G. Pintaudi69, E.S. Pinzon Guerra70, C. Pistillo2, B. Popov55, K. Porwit51, M. Posiadała-Zezula64, A. Pritchard34, B. Quilain10, T. Radermacher49, E. Radicioni22, B. Radics11, P.N. Ratoff33, E. Reinherz-Aronis8, C. Ricci23, E. Rondio38, S. Roth49, A. Rubbia11, A.C. Ruggeri23, C. Ruggles14, A. Rychter65, K. Sakashita116, F. Sánchez13, G. Santucci70, C.M. Schoessar11, K. Scholberg59, J. Schwem8, M. Scott21, Y. Seiya1141, T. Sekiguchi116, H. Sekiya$^{356, 28}$, D. Sgalaberna12, R. Shah$^{54, 42}$, A. Shaikhiev26, F. Shaker67, A. Shaykina26, M. Shiozawa$^{56, 28}$, W. Shorrock21, A. Shwartsman26, A. Smirnov26, M. Smy5, J.T. Sobczyk68, H. Sobe$^{15, 28}$, F.J.P. Soler14, Y. Sonoda56, J. Steinmann49, S. Suworov$^{26, 6}$, A. Suzuki31, S.Y. Suzuki116, Y. Suzuki28, A.A. Sztec21, M. Tada116, M. Tajima32, A. Takada56, Y. Takeuchi$^{31, 28}$, H.K. Tanaka556, H.A. Tanaka$^{52, 61}$, S. Tanaka41, Y. Tanihara49, N. Teshima41, L.F. Thompson50, W. Toki5, C. Touramanis34, T. Towstego61, K.M. Tsur34, T. Tsukamoto116, M. Tzanov35, Y. Uchida21, W. Uno32, M. Vagins$^{28, 5}$, S. Valder66, Z. Vallari39, D. Vargas18, G. Vasseur6, C. Vilela39, W.G.S. Vinning66, T. Vladisavljevic54, V.V. Volkov26, T. Wachala15, J. Walker67, J.G. Walsh66, Y. Wang39, D. Wark$^{34, 42}$, M.O. Wascko21, A. Weber$^{54, 42}$, R. Wendell32, M.J. Wilking39, C. Wilkinson2, J.R. Wilson30, R.J. Wilson8, K. Wood59, C. Wret47, Y. Yamada116, K. Yamamoto1141, C. Yanagisawa1143, G. Yang39, T. Yano56, K. Yasutome32, S. Yen62, N. Yershov26, M. Yokoyama55, T. Yoshida58, M. Yu70, A. Zalewska15, J. Zalipska38, K. Zaremba65, G. Zanetti38, M. Ziembick65, E.D. Zimmerman7, M. Zito53, S. Zsoldos30, and A. Zykova26

1 University Autonoma Madrid, Department of Theoretical Physics, 28049 Madrid, Spain
2 University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), Bern, Switzerland
3 Boston University, Department of Physics, Boston, Massachusetts, U.S.A.
4 University of British Columbia, Department of Physics and Astronomy, Vancouver, British Columbia, Canada
5 University of California, Irvine, Department of Physics and Astronomy, Irvine, California, U.S.A.
6 IRFU, CEA Saclay, Gif-sur-Yvette, France
7 University of Colorado at Boulder, Department of Physics, Boulder, Colorado, U.S.A.
8 Colorado State University, Department of Physics, Fort Collins, Colorado, U.S.A.
9 Duke University, Department of Physics, Durham, North Carolina, U.S.A.
10 École Polytechnique, IN2P3-CNRS, Laboratoire Leprince-Ringuet, Palaiseau, France
11 ETH Zurich, Institute for Particle Physics and Astrophysics, Zurich, Switzerland
12 CERN European Organization for Nuclear Research, CH-1211 Genve 23, Switzerland
13 University of Geneva, Section de Physique, DPNC, Geneva, Switzerland
14 University of Glasgow, School of Physics and Astronomy, Glasgow, United Kingdom
15 H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland
16 High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
17 University of Houston, Department of Physics, Houston, Texas, U.S.A.
18 Institut de Fisica d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra (Barcelona) Spain
19 IFIC (CSIC & University of Valencia), Valencia, Spain
20 Institute For Interdisciplinary Research in Science and Education (IFIRSE), ICISE, Quy Nhon, Vietnam
21 Imperial College London, Department of Physics, London, United Kingdom
22 INFN Sezione di Bari and Università e Politecnico di Bari, Dipartimento Interuniversitario di Fisica, Bari, Italy
23 INFN Sezione di Napoli and Università di Napoli, Dipartimento di Fisica, Napoli, Italy
24 INFN Sezione di Padova and Università di Padova, Dipartimento di Fisica, Padova, Italy
25 INFN Sezione di Roma and Università di Roma “La Sapienza”, Roma, Italy
26 Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
27 International Centre of Physics, Institute of Physics (IOP), Vietnam Academy of Science and Technology (VAST), 10 Dao Tan, Ba Dinh, Hanoi, Vietnam
28 Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes for Advanced Study, University of Tokyo, Kashiwa, Chiba, Japan
29 Keio University, Department of Physics, Kanagawa, Japan
30 King’s College London, Department of Physics, Strand, London WC2R 2LS, United Kingdom
31 Kobe University, Kobe, Japan
32 Kyoto University, Department of Physics, Kyoto, Japan
33 Lancaster University, Physics Department, Lancaster, United Kingdom
34 University of Liverpool, Department of Physics, Liverpool, United Kingdom
35 Louisiana State University, Department of Physics and Astronomy, Baton Rouge, Louisiana, U.S.A.
36 Michigan State University, Department of Physics and Astronomy, East Lansing, Michigan, U.S.A.
37 Miyagi University of Education, Department of Physics, Sendai, Japan
38 National Centre for Nuclear Research, Warsaw, Poland
39 State University of New York at Stony Brook, Department of Physics and Astronomy, Stony Brook, New York, U.S.A.
40 Okayama University, Department of Physics, Okayama, Japan
41 Osaka City University, Department of Physics, Osaka, Japan
42 Oxford University, Department of Physics, Oxford, United Kingdom
43 University of Pennsylvania, Department of Physics and Astronomy, Philadelphia, PA, 19104, USA.
We report measurements of the flux-integrated $\bar{\nu}_\mu$ and $\bar{\nu}_\mu + \nu_\mu$ charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam, with a mean neutrino energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced μ^\pm and no detected charged pion nor proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton module. The phase space of muons is restricted to the high-detection efficiency region,
\(p_\mu > 400 \text{ MeV}/c \) and \(\theta_\mu < 30^\circ \), in the laboratory frame. Absence of pions and protons in the detectable phase space of \(p_\pi > 200 \text{ MeV}/c \) and \(\theta_\pi < 70^\circ \), and \(p_p > 600 \text{ MeV}/c \) and \(\theta_p < 70^\circ \) is required. In this paper, both of the \(\bar{\nu}_\mu \) cross-sections and \(\bar{\nu}_\mu + \nu_\mu \) cross-sections on water and hydrocarbon targets, and their ratios are provided by using D’Agostini unfolding method. The results of the integrated \(\bar{\nu}_\mu \) cross-section measurements over this phase space are \(\sigma_{\nu\text{H}_2\text{O}} = (1.082 \pm 0.068(\text{stat.})^{+0.145}_{-0.128}(\text{syst.})) \times 10^{-39} \text{ cm}^2/\text{nucleon} \), \(\sigma_{\nu\text{CH}} = (1.096 \pm 0.054(\text{stat.})^{+0.132}_{-0.117}(\text{syst.})) \times 10^{-39} \text{ cm}^2/\text{nucleon} \), and \(\sigma_{\nu\text{H}_2\text{O}}/\sigma_{\nu\text{CH}} = 0.987 \pm 0.078(\text{stat.})^{+0.092}_{-0.096}(\text{syst.}) \). The \(\bar{\nu}_\mu + \nu_\mu \) cross-section is \(\sigma_{\nu\text{H}_2\text{O}} = (1.155 \pm 0.064(\text{stat.})^{+0.148}_{-0.129}(\text{syst.})) \times 10^{-39} \text{ cm}^2/\text{nucleon} \), \(\sigma_{\nu\text{CH}} = (1.159 \pm 0.049(\text{stat.})^{+0.129}_{-0.115}(\text{syst.})) \times 10^{-39} \text{ cm}^2/\text{nucleon} \), and \(\sigma_{\nu\text{H}_2\text{O}}/\sigma_{\nu\text{CH}} = 0.996 \pm 0.069(\text{stat.})^{+0.083}_{-0.078}(\text{syst.}) \).

1. Introduction

The Tokai-to-Kamioka (T2K) experiment [1] is a long baseline neutrino oscillation experiment in Japan. Using either the \(\nu_\mu \) or the \(\bar{\nu}_\mu \) beam produced at the J-PARC accelerator complex, both electron (anti-)neutrino appearance and muon (anti-)neutrino disappearance are measured at the far-detector, Super-Kamiokande (SK). T2K aims to make precision measurements of neutrino oscillation parameters, including a search for CP violation in the leptonic sector by precisely measuring the (anti-)neutrino oscillation. In these measurements, the neutrino event rate at SK is constrained by the cross-section and neutrino flux measured in the near-detector, ND280. The ND280 includes two Fine-Grained Detectors, FGD1 and FGD2 [2], used as a target for neutrino interactions and as a tracking device. The FGD1 interaction target is made up of plastic scintillators, and FGD2 consists of water and plastic scintillator targets, while SK is a water-target detector. Uncertainties in the modeling of neutrino-nucleus interactions due to the difference in the target at the near and the far-detector constitute an additional source of systematic uncertainties in the T2K oscillation analysis. In addition, unknown nuclear effects like the so called 2-particle-2-hole (2p2h) process with large uncertainties motivate testing the interaction model at multiple neutrino energies. The neutrino interaction model is used to extrapolate the neutrino beam energy distributions and interactions at the near-detector to the far-detector. Indeed, the T2K off-axis near-detector angular acceptance is more limited than the far-detector. Moreover, the near-detector event rate also includes significant interactions on materials other than the far-detector target. The interaction model is tuned from the near detector measurement and its parameterization can be incomplete. Therefore, testing the interaction model with different target materials and at various ranges of the neutrino energies are essential to improve the T2K oscillation analysis.

In the T2K experiment, the neutrino beam is directed 2.5 degrees off-axis with respect to the SK direction to ensure that the detector sees a narrow-band neutrino beam with a
peak energy at 0.6 GeV, which maximizes the oscillation probability. In this energy range, neutrino interactions with nucleons are dominated by charged-current quasi-elastic (CCQE) and charged-current resonant-pion production (CC-Resonant). The neutrino energies from incoming CCQE interactions are reconstructed from the outgoing charged lepton kinematics. However, if multi-nucleon interactions or pion absorption occur in the nucleus, 2p2h and CC-Resonant interactions may be misidentified as CCQE interactions because only a muon-like track may be observed in the final state. Furthermore, the reconstructed neutrino energy spectrum could be distorted. For this reason, in modern experiments, signals are classified by final-state particles, such as protons and pions. For example, CC0π (charged-current interactions with no pions in the final state) cross-sections are measured instead of measuring CCQE cross-sections making them less dependent on nuclear models.

So far, T2K has published two results of neutrino cross-sections on water at a mean neutrino energy of 0.6 GeV: CC-resonant π⁺ production cross-section using FGD2 [3] and CC0π cross-section using a dedicated water target in the ND280 detector, called the PØD [4]. CC-inclusive neutrino cross-sections using the INGRID Water Module, which consists of 80% water and 20% plastic scintillators, with a mean neutrino energy of 1.5 GeV [5] have also been measured. However, there has been only one publication of CC0π anti-neutrino cross-sections on water using PØD [6] with a neutrino energy peak at 0.6 GeV. In this article, we measure CC0π0p (CC0pi without detected protons) cross-sections on water and hydrocarbon in anti-neutrino beam mode by using a new neutrino detector called the WAGASCI module [7], and other T2K detectors, the Proton Module [8] and the INGRID module [9] with a mean neutrino energy of 0.86 GeV at an off-axis angle of 1.5 degrees. As described in Sec. 2.2, the WAGASCI module and the INGRID Water Module are basically the same except for the detector position and electronics. In the future, we will use both detectors to measure neutrino cross-sections at an off-axis angle 1.5 degrees.

Hereafter, we will describe the experimental apparatus, the Monte Carlo simulations, the datasets, the event selections, the analysis method, the systematic uncertainties, and the results.

2. Experimental Apparatus

2.1. Neutrino Beam

The accelerator complex J-PARC in Tokai (Japan) is composed of a linear accelerator (LINAC), a rapid cycling synchrotron (RCS), and the main ring (MR). The 30 GeV proton beam is extracted from the MR every 2.48 s. The beam spill consists of eight bunches with 581 ns interval. The protons impinge onto a graphite target fixed in the most upstream electromagnetic horn. Produced charged hadrons are focused by three electromagnetic horns into a 96 m-long decay volume where they decay preferentially producing νµ (π⁺) and μ⁺ (μ⁻). By changing the polarity of the horns, the beam mode can be switched between the neutrino mode and anti-neutrino mode. In this article, the data are collected in the anti-neutrino mode with a beam power of about 470 kW.

2.2. Detector Configuration

We use two detectors with different interaction targets, the WAGASCI module (water) and the Proton Module (hydrocarbon). The INGRID module is located at the most downstream
position as shown in Fig. 1, and is used as a muon detector. These detectors are located at an off-axis angle of 1.5 degrees in the T2K near-detector hall since August 2017. They are exposed to neutrinos with a higher energy distribution than the ND280 detector, since the off-axis angle is smaller than the ND280 angle of 2.5 degrees. A typical event display is shown in Fig. 2.

The WAGASCI module is a neutrino detector with 0.6 tons of water and 1280 plastic scintillator bars. The total fraction of water target in the fiducial volume is 80%, and is higher than the one in other T2K detectors (POD and FGD2) [2]. The type of scintillator bar \((3 \times 25 \times 1020 \text{ cm}^3)\) and wavelength-shifting (WLS) fiber (Kuraray, Y-11(200)) used in the WAGASCI module is the same as that used in the INGRID Water Module [5]. The readout electronics are newly developed with a Silicon PM Integrated Read-Out Chip (SPIROC) which is a 36-channel auto-triggered front-end ASIC. The WAGASCI module consists of 16 scintillator tracking planes in total, and each tracking plane consists of 40 scintillators positioned perpendicularly to the neutrino-beam axis (plane scintillator) and another 40 scintillators positioned in parallel to the beam with a grid structure (grid scintillator), as shown in Fig. 3. Figure 4 shows the schematic view of the scintillators from the \(x\)- and \(y\)-directions, where the definition of the coordinate system is shown in Fig. 2.

The Proton Module is a fully active tracking detector. It consists of 34 tracking planes, where each tracking plane is an array of two types of 32 scintillator bars, as shown in Fig. 5. Two types of scintillators, SciBar type \((13 \times 25 \times 1203 \text{ cm}^3)\) and INGRID type \((10 \times 50 \times 1203 \text{ cm}^3)\), are used, and their chemical composition is the same as that of the WAGASCI type scintillator bar. The six veto planes surrounding the tracking planes are used to track the charged particles coming from outside the Proton Module. The tracking planes also serve as the neutrino-interaction target. The target mass in the fiducial volume is 303 kg in total which corresponds to 98% of the total target mass. More detailed information about the Proton Module can be found in Ref. [8].

The INGRID module has a sandwich structure comprising nine iron plates and eleven tracking planes which are surrounded by veto planes, as shown in Fig. 6. The tracking planes are formed by two scintillator layers each of which is composed of 24 scintillator bars oriented perpendicularly to one another. The thicknesses of each iron plate and scintillator bar are 6.5 cm and 1.0 cm, respectively. More detailed information about the INGRID module can be found in Ref. [9].

In all three detectors, the scintillation light emitted from the scintillator bar is collected by a WLS fiber, and it is detected by a Multi-Pixel Photon Counter (MPPC) [10]. To digitize and record the integrated charge and hit timing of 1280 channels, the SPIROC2D electronics [11] are used for the WAGASCI module, and the Trip-t electronics [12] are used for the Proton Module and the INGRID module. For each beam bunch, the threshold is set to 2.5 p.e. (photon equivalent) to exclude accidental dark noise from MPPCs.

3. Monte Carlo Simulation

To estimate backgrounds, neutrino fluxes and signal detection efficiencies, a set of Monte Carlo (MC) simulations is used as follows:

- **JNUBEAM** [13] (13a) for neutrino fluxes,
- **NEUT** [14] (5.3.3) for neutrino interactions with nuclei,
Fig. 1: The WAGASCI module before the installation into the water tank is shown on the left side. Detectors installed at the J-PARC neutrino-monitor building (right).

Fig. 2: Typical neutrino event display for a simulated neutrino event in the Proton Module. The beam axis corresponds to the z-axis. The muon angle is defined as the scattering angle with respect to z-axis.

- GEANT4 [15](v9r2p01n00)-based software for the transport and detection of secondary particles.

Software settings for the simulation are the same as those used in [5]. The neutrino energy spectra at the WAGASCI and Proton Module positions predicted by JNUBEAM, with hadronic processes tuned from the NA61/SHINE measurements [16], are shown in Fig. 7. The mean neutrino energy is 0.86 GeV, and the peak is at 0.66 GeV with 1σ spread of ± 0.40 GeV. The flux-integrated CC cross-sections per nucleon predicted by NEUT are summarized in Table 1. To compare predicted neutrino cross-sections in Sec. 7, an alternative event generator, GENIE [17] (2.12.8), is also used. In both generators, a Relativistic Fermi-Gas (RFG) model [18] is used, but the Bodek-Ritchie modifications [19, 20] are implemented in GENIE. In NEUT, random-phase approximation (RPA) [21], and multi-nucleon (2p2h)
interactions [22] are considered. In addition, they use the Rein-Sehgal model [23, 24] for the single-meson production, the Berger-Sehgal model [25] for the coherent-pion production, and Glück-Reya-Vogt-1998 (GRV98) [26] parton distributions with Bodek-Yang modifications [27, 28] for the deep-inelastic scattering. NEUT is also used for the T2K neutrino oscillation analysis, and more details can be found in Ref. [29].
Fig. 5: Schematic view of the Proton Module (left) and its scintillator structure (right).

Fig. 6: Schematic view of the INGRID module.

Table 1: Flux-integrated ν_{μ} CC0π0p cross-sections per nucleon on H$_2$O and CH predicted by NEUT.

Cross section	NEUT expectation with RPA	NEUT expectation without RPA
$\sigma_{\text{H}_2\text{O}}$	1.013×10^{-39} cm2	1.189×10^{-39} cm2
σ_{CH}	1.051×10^{-39} cm2	1.278×10^{-39} cm2
$\sigma_{\text{H}_2\text{O}}/\sigma_{\text{CH}}$	0.964	0.930

4. Datasets and Event Selections

In this article, data collected from October 2017 to May 2018 are used. The datasets include statistics of 7.91×10^{20} POT in the anti-neutrino mode. The signal events in the WAGASCI module and the Proton Module are selected from these data. In this analysis, the signal is
Fig. 7: Predicted (anti-)neutrino fluxes at the WAGASCI module (left) and the Proton Module (right).

defined as the charged-current interaction with no detected pions nor protons. This signal is characterized by a muon-like track produced inside the detector. The cross-section is calculated for signal events both from $\bar{\nu}_\mu$ interactions ($\bar{\nu}_\mu$ cross-section) and $\nu_\mu + \nu_\mu$ interactions ($\nu_\mu + \nu_\mu$ cross-section), as described in Sec. 5.2.

The selections applied to the two detectors are similar to those in a previous analysis [5], where cross-sections on water and hydrocarbon targets were measured. The selection criteria in this analysis are briefly described below.

4.1. **Selections for the WAGASCI module**

A scintillator channel having an ADC charge greater than 2.5 p.e. is defined as a “hit”. Based on a cellular automaton algorithm [30], these hits are fitted by a line (track reconstruction). The two-dimensional tracks are reconstructed in each detector from more than two hits in a beam bunch, and then at least one track in the WAGASCI module and the Proton Module is required to be matched with a reconstructed track in the INGRID module to select a muon-like track. Three-dimensional tracks are searched for among pairs of two-dimensional XZ tracks and YZ tracks. After the reconstruction of the three-dimensional tracks, the upstream point of the longest track is defined as a neutrino interaction vertex.

Subsequently, in order to reduce non-beam backgrounds such as cosmic rays, the event timing for a vertex is required to be within 100 ns from the expected beam-bunch timing (beam-timing cut). In addition, to reduce the beam-induced backgrounds mainly from neutrino interactions in the walls of the detector hall, two cuts are applied. First, if the most upstream point of a reconstructed track is in the first or second plane of the parallel scintillators, then that event is excluded. Second, if a vertex is in the outer region of the fiducial volume (FV), then that event is excluded. The FV is defined as the central area of the WAGASCI module with dimensions of 70 cm (in x-coordinate) \times 70 cm (in y-coordinate) \times 21 cm (in z-coordinate).

Since the WAGASCI module lies closer to the INGRID module than the Proton Module, the angular acceptance by the INGRID module is larger. In order to obtain a similar angular acceptance to that of the Proton Module, an extrapolation of the reconstructed track from the WAGASCI module is required to reach an imaginary INGRID module. The imaginary
INGRID module is set as shown in Fig. 8 so that the distance between the downstream edge of the Proton Module and the upstream edge of the INGRID module (1034.5 cm) is almost the same as that between the downstream edge of the WAGASCI module and the upstream edge of the imaginary INGRID module (1035.5 cm).

Fig. 8: Schematic view of selected and excluded events by the angular acceptance cut for the WAGASCI module. If the extrapolated track from the WAGASCI module reaches the imaginary INGRID module, the event is selected.

For signal interactions, a single muon-like track is expected in the final state. To reduce the multi-track backgrounds from other neutrino interactions, events having more than one track are excluded.

The number of selected events and the background fraction in the WAGASCI module are summarized in Table 2. The last cut of the reconstructed track angle is due to the final selection acceptance, and it is described in Sec. 4.3. The neutrino energy, muon momentum, and angular distributions of the selected events predicted by the MC simulation are shown in Fig. 9. The left panel of Fig. 10 shows the angular distribution of the reconstructed single muon-like track for events passing the one-track extraction in the WAGASCI module.

4.2. Selections for the Proton Module

Selection criteria for the Proton Module basically use the same method as those for the WAGASCI module, except for the two-dimensional track matching. Since the WAGASCI module is located between the Proton Module and the INGRID module, two-dimensional tracks in the Proton Module are required to be matched to both the WAGASCI module and the INGRID module.

The number of selected events and the background fraction in the Proton Module are summarized in Table 3. The neutrino energy, muon momentum, and angular distributions of the selected events predicted by the MC simulation are shown in Fig. 11. The right panel of Fig. 10 shows the angular distribution of the reconstructed single muon-like track for events passing the one-track extraction in the Proton Module.

4.3. Selection Efficiencies

Figure 12 shows selection efficiencies of CC events for the WAGASCI module and the Proton Module as a function of true muon scattering angle and momentum. The phase spaces
Table 2: Summary of event selections for the WAGASCI module. The numbers written in brackets represent the fraction of the total number of events passing each selection. The number of events predicted by MC is normalized to the actual recorded POT (7.9×10^{20}).

Selection	ν_μ	$\bar{\nu}_\mu$	$\nu_e + \bar{\nu}_e$	External B.G.	Total	Data	Data/MC
Event reconstruction	5559.1	2597.9	149.9	10582.9	18889.7	20728	1.10
(29.4%)	(13.8%)	(0.8%)	(56.0%)	(100.0%)			
Beam timing	5485.5	2462.8	142.3	10439.1	18529.7	20095	1.08
(29.6%)	(13.3%)	(0.8%)	(56.3%)	(100.0%)			
Upstream veto	3925.3	1755.0	83.0	6081.8	11845.1	12236	1.03
(33.1%)	(14.8%)	(0.7%)	(51.3%)	(100.0%)			
Fiducial volume	1936.9	812.8	38.7	112.3	2900.7	2797	0.96
(66.8%)	(28.0%)	(1.3%)	(3.9%)	(100.0%)			
Additional acceptance	1279.9	497.4	28.3	81.5	1887.1	1783	0.94
(67.8%)	(26.4%)	(1.5%)	(4.3%)	(100.0%)			
One-track extraction	1075.7	224.5	17.3	76.5	1394.0	1406	1.01
(77.2%)	(16.1%)	(1.2%)	(5.5%)	(100.0%)			
Reconstructed track angle	969.5	203.5	16.5	72.3	1261.9	1279	1.01
(76.8%)	(16.1%)	(1.3%)	(5.7%)	(100.0%)			

Table 3: Summary of event selections for the Proton Module. The numbers written in brackets represent the fraction of the total number of events passing each selection. The number of events predicted by MC is normalized to the actual recorded POT (7.9×10^{20}).

Selection	ν_μ	ν_μ	$\nu_e + \bar{\nu}_e$	External B.G.	Total	Data	Data/MC
Event reconstruction	4813.4	2219.1	104.1	195761.9	202898.5	191554	0.94
(2.4%)	(1.1%)	(0.1%)	(96.5%)	(100.0%)			
Beam timing	4807.8	2201.8	103.3	195691.1	202804.0	191118	0.94
(29.6%)	(13.3%)	(0.8%)	(56.3%)	(100.0%)			
Upstream veto	4223.2	1883.3	88.6	31118.6	37313.7	40593	1.09
(11.3%)	(5.0%)	(0.2%)	(83.4%)	(100.0%)			
Fiducial volume	1865.8	792.0	39.0	71.3	2768.2	2623	0.95
(67.4%)	(28.6%)	(1.4%)	(2.6%)	(100.0%)			
Additional acceptance	1865.8	792.0	39.0	71.3	2768.2	2623	0.95
(67.4%)	(28.6%)	(1.4%)	(2.6%)	(100.0%)			
One-track extraction	1620.6	429.0	25.0	68.5	2143.1	2152	1.00
(75.6%)	(20.0%)	(1.2%)	(3.2%)	(100.0%)			
Reconstructed track angle	1514.5	390.1	23.7	54.8	1983.1	1967	0.99
(76.4%)	(19.7%)	(1.2%)	(2.8%)	(100.0%)			

of induced muons are restricted to the high-detection efficiency-region, $\theta_\mu < 30^\circ$ and $p_\mu > 400$ MeV/c, in the laboratory frame. According to this restriction, the charged-current events are classified into six bins based on the muon angles, as summarized in Table 4. Although the signal is CC0π0p with a muon angle smaller than 30 degrees, the selected events for cross-section calculations also include two bins for multi-track samples (labelled as CCother) and higher angle samples (labelled as single track 30°-180° CC0π0p). In addition, detectable
Fig. 9: True distribution of the selected events in the WAGASCI module as a function of neutrino energy (top left), muon momentum (top right), and muon angle (bottom).

Fig. 10: Angular distributions of the longest reconstructed track matched with the INGRID track after the one-track extraction for the WAGASCI module (left) and the Proton Module (right).

phase spaces of pions and protons are defined as “$\theta_\pi < 70^\circ$ and $p_\pi > 200$ MeV/c” and “$\theta_p < 70^\circ$ and $p_p > 600$ MeV/c”, respectively, in the laboratory frame, and the signal phase
Fig. 11: True distribution of the selected events in the Proton Module as a function of neutrino energy (top left), muon momentum (top right), and muon angle (bottom).

space is defined allowing no pions nor protons in these regions. Detection efficiencies for each bin are summarized in Table 5.

Fig. 12: Detection efficiencies of the WAGASCI module (left) and the Proton Module (right) for ν_μ CC events with respect to true muon angle and momentum. The z-axis of the plot indicates the detection efficiency. The restricted phase space corresponds to the region inside the dotted square.
Table 4: Bin definition based on true phase space and reconstructed tracks.

Bin number	Muon angle range True phase space	Reconstructed track
0	0°-180°	CCother
1	0°-5°	CC0π0p
2	5°-10°	CC0π0p
3	10°-15°	CC0π0p
4	15°-20°	CC0π0p
5	20°-25°	CC0π0p
6	25°-30°	CC0π0p
7	30°-180°	CC0π0p

Table 5: Calculated detection efficiencies of $\bar{\nu}_\mu$ and $\bar{\nu}_\mu + \nu_\mu$ CC events for each of the phase-space bins.

True phase space	$\bar{\nu}_\mu$ WAGASCI Proton Module	$\bar{\nu}_\mu + \nu_\mu$ WAGASCI Proton Module
CCOther	0.194 0.237	0.233 0.289
CC0π0p : 0°-5°	0.683 0.897	0.682 0.897
CC0π0p : 5°-10°	0.738 0.896	0.729 0.892
CC0π0p : 10°-15°	0.737 0.830	0.724 0.825
CC0π0p : 15°-20°	0.679 0.694	0.674 0.693
CC0π0p : 20°-25°	0.552 0.502	0.543 0.507
CC0π0p : 25°-30°	0.391 0.305	0.387 0.302
CC0π0p : 30°-180°	0.081 0.048	0.081 0.048
Total	0.372 0.397	0.355 0.395

5. Cross-Section Extraction

In this paper, the following notations are used:

- X^reco_j represents the j-th reconstructed single-track angle bin.
- C^true_i represents the i-th true angle of muons, pions, and protons.
- A smearing matrix, $P(X^\text{reco}_j|C^\text{true}_i)$, represents a probability that an event from C^true_i is reconstructed in X^reco_j.
- An unfolding matrix, $U_{ij} = P(C^\text{true}_i|X^\text{reco}_j)$, represents a probability that an event in X^reco_j derives from an event in C^true_i.

The analysis method is almost the same as that used in Ref. [5], and detailed information can be found in that reference.
5.1. Calculation formula

The CC0π0p flux-integrated differential cross-sections are calculated as follows:

\[\sigma_i \text{H}_2\text{O} = \sum_j U_{ij} \text{WM} (N_{j \text{WM}}^{\text{sel}} - N_{j \text{WM}}^{\text{BG}}) \frac{\Phi_{\text{H}_2\text{O}}}{T_{\text{H}_2\text{O}}} \varepsilon_{i \text{WM}} \] \hspace{1cm} (1)

\[\sigma_i \text{CH} = \sum_j U_{ij} \text{PM} (N_{j \text{PM}}^{\text{sel}} - N_{j \text{PM}}^{\text{BG}}) \frac{\Phi_{\text{CH}}}{T_{\text{CH}}} \varepsilon_{i \text{PM}} \] \hspace{1cm} (2)

where \(N_{\text{sel}} \) is the number of selected events, \(\Phi \) is the integrated \(\bar{\nu}_\mu (\bar{\nu}_\mu + \nu_\mu) \) flux, \(T \) is the number of target nucleons, and \(\varepsilon \) is the signal-selection efficiency. The \(N^{\text{BG}} \) is the number of expected backgrounds, and \(N^{\text{BG}}_{\text{WM}} \) is estimated not only by the MC simulation but also by the calculated cross-section on the hydrocarbon target to take into account the contribution from the plastic scintillators in the WAGASCI module. Quantities, \(\Phi \) and \(T \), are summarized in Table 6. The \(U_{ij} \) is an unfolding matrix which is iteratively calculated based on the D’Agostini method [31]. To avoid any dependence of \(U_{ij} \) on the input neutrino interaction simulation the number of iterations is not truncated but rather run through to convergence such that the result is effectively unregularized (more details are presented in Sec. 7). In the unfolding procedure, we choose a flat prior, and define the number of iterations as 1500. The subscripts of WM and PM represent the WAGASCI module and the Proton Module, respectively, and those of H\(_2\)O and CH represent target materials.

Table 6: Summary of integrated neutrino fluxes and the number of target nucleons used for cross-section calculation. The fluxes are normalized to the actual recorded POT (7.91 × 10\(^{20}\)).

Cross section	\(\Phi_{\bar{\nu}_\mu} \)	\(\Phi_{\nu_\mu} \)	\(T_{\text{H}_2\text{O}} \)	\(T_{\text{CH}} \)
\(\sigma_{\text{H}_2\text{O}} \)	\(1.69 \times 10^{13} \) cm\(^{-2} \)	\(1.48 \times 10^{12} \) cm\(^{-2} \)	\(4.957 \times 10^{28} \)	\(1.107 \times 10^{28} \)
\(\sigma_{\text{CH}} \)	\(1.70 \times 10^{13} \) cm\(^{-2} \)	\(1.49 \times 10^{12} \) cm\(^{-2} \)	-	\(9.210 \times 10^{28} \)

All of the backgrounds are estimated by the MC simulation, except for interactions on WAGASCI plastic scintillators. They constitute one of main background sources for \(\sigma_{\text{H}_2\text{O}} \), since about 20% of the fiducial volume of the WAGASCI module is occupied by plastic scintillators. They are calculated by normalizing from the number of selected events in the Proton Module.

5.2. \(\bar{\nu}_\mu \) cross-sections and \(\bar{\nu}_\mu + \nu_\mu \) cross-sections

As shown in Tables 2 and 3, the \(\nu_\mu \) CC interactions are the dominant background and are irreducible in our \(\bar{\nu}_\mu \) event selection since we cannot determine the charge of the outgoing muon. In order to be less model-dependent, we also measured a combined \(\bar{\nu}_\mu + \nu_\mu \) cross-section, since this measurement does not rely on model assumptions to subtract the \(\nu_\mu \) background.

The event selection, the number of selected events (\(N_{j \text{sel}} \)), and the number of target nucleons (\(T \)) are common to the \(\bar{\nu}_\mu \) and \(\bar{\nu}_\mu + \nu_\mu \) cross-section measurements. Differences between these measurements are summarized in Table 7.
Table 7: Summary of differences between the $\bar{\nu}_\mu$ and $\bar{\nu}_\mu + \nu_\mu$ cross-section measurements.

	$\bar{\nu}_\mu$ cross-section	$\bar{\nu}_\mu + \nu_\mu$ cross-section
Detection efficiency (ε)	Calculated with $\bar{\nu}_\mu$ samples	Calculated with $\bar{\nu}_\mu + \nu_\mu$ samples
Unfolding matrix (U_{ij})	$\Phi_{\bar{\nu}_\mu}$	$\Phi_{\bar{\nu}_\mu + \nu_\mu}$

6. Uncertainties

Evaluation methods for each uncertainty are almost the same as those considered in Ref. [5], and detailed information can be found in that reference.

6.1. Systematic uncertainties from neutrino flux uncertainties

The uncertainty on the neutrino flux is estimated according to knowledge of hadron interactions and the J-PARC beamline. For systematic uncertainties on the cross-section extraction, effects on the number of background events (N_{BG}), integrated flux (Φ), detection efficiency (ε), and the unfolding matrix (U_{ij}) are considered. Events generated in the MC simulation are varied based on the estimated flux uncertainties in bins of the true neutrino energies, and correlations among them. The variation of the cross-section is calculated by using 10,000 toy samples accordingly. The $\pm 1\sigma$ range of the distribution is taken as the systematic uncertainty.

The uncertainties from neutrino flux on the integrated cross-section for CC0π_0p with a muon angle smaller than 30 degrees are expected to be about 10% for σ_{H_2O} and σ_{CH}, and they give the dominant contributions to the total uncertainty. On the other hand, the uncertainties for the cross-section ratio ($\sigma_{H_2O}/\sigma_{CH}$) are about 0.5%, since most of the parameters are strongly correlated and the uncertainties cancel.

6.2. Systematic uncertainties from neutrino-interaction model

Uncertainties on the neutrino-interaction model are estimated based on the understanding of the model applied to the MC-event generator. Each parameter related to this analysis is varied to cover model uncertainties, and the propagation to the extracted cross-sections is calculated. The parameters with their default values and 1σ variations are summarized in Table 8. When the uncertainty is calculated, no correlation is assumed between different target nuclei for the Fermi momentum (P_f), binding energy (E_b), 2p2h, CC coherent parameters, and nucleon final state interactions (FSI). Full correlation between the different targets is assumed for the other parameters.

The uncertainties due to the neutrino-interaction model are dominated by effects from CCQE and 2p2h interactions, and nucleon FSI, followed by pion production (M^{Res}_A and C_{A5}) and Fermi momentum (P_f). The CCQE and 2p2h interactions have uncertainties that are 2% larger than other categories and have the largest effect on the detection-efficiency estimation, since they dominate the CC0π_0p signal and then largely distort the prior distribution. Nucleon FSI mainly affect the number of backgrounds via ν_μ interactions, since more nucleons often exist in the final state of ν_μ interactions than that of $\bar{\nu}_\mu$ interactions. Hence, this effect becomes smaller for the $\bar{\nu}_\mu + \nu_\mu$ cross-section measurement.
Table 8: Summary of the default values of the parameters used in the neutrino-interaction model and their uncertainties.

Parameter	Nominal value	Uncertainties (1σ)
CCQE: the Smith-Moniz model		
RFG with the RPA correction		
M_{A}^{QE}	1.15 GeV	0.18 GeV
P_{f}^{12}C	223 MeV	31 MeV
P_{f}^{16}O	225 MeV	31 MeV
E_{b}^{12}C	25 MeV	9 MeV
E_{b}^{16}O	27 MeV	9 MeV
2p2h: the Nieves model		
2p2h normalization 12C	100 %	100 %
2p2h normalization 16O	100 %	100 %
2p2h shape 12C	100 %	100 %
2p2h shape 16O	100 %	100 %
CC-resonant model: the Rein-Sehgal model		
M_{A}^{Res}	0.95 GeV	0.15 GeV
C_{A5}	1.01	0.12
Isospin $\frac{1}{2}$ background	1.30	0.20
CC coherent model: the Berger-Sehgal model		
CCcoh normalization 12C	100 %	100 %
CCcoh normalization 16O	100 %	100 %
DIS: GRV98 PDF with Bodek-Yang modifications		
DIS correction factor	$x = 0$	$x = 0.40$
NC interactions		
NCcoh norm	100 %	30 %
NCother norm	100 %	30 %
Final state interactions of pions		
Pion Absorption normalization	1.1	50 %
Pion Charge Exchange (low E) normalization	1.0	50 %
Pion Charge Exchange (high E) normalization	1.8	30 %
Pion Quasi Elastic (low E) normalization	1.0	50 %
Pion Quasi Elastic (high E) normalization	1.8	30 %
Pion Inelastic normalization	1.0	50 %
Final state interactions of nucleons		
Nucleon FSI	100 %	100 %

6.3. Systematic uncertainties from detector response

Uncertainties on the detector response are estimated based on measurements during the detector construction, commissioning data taking with cosmic muons, and operation with
the anti-neutrino beam. Effects on the number of selected events are estimated according to the uncertainty on the detector response, and the systematic uncertainty on the cross-section measurement is estimated by applying fluctuations to the measured number of selected events. In order to apply fluctuations to the number of selected events, no correlation between the WAGASCI module and the Proton Module is assumed, except for the beam-related backgrounds which should be common between the two detectors. Correlations between each bin of reconstructed tracks are considered. The target mass, MPPC noise, scintillator crosstalk, reconstruction efficiency, event pileup, beam-related backgrounds, and event selections are considered as sources of uncertainty. Uncertainties from the event selection are estimated from the difference between data and simulation in the variation of the number of selected events. In order to apply fluctuations to the number of selected events, no correlation to the uncertainty on the detector response, and the systematic uncertainty on the cross-section ratio, $\sigma_{\text{H}_2\text{O}}/\sigma_{\text{CH}}$, is dominated by statistical errors and errors on the detector response.

6.4. Total uncertainty

Total uncertainties are summarized in Appendix A. For the cross-section measurements of $\text{CC0}^{\mu}\nu_0\text{p}$ with a muon angle smaller than 30 degrees, the total uncertainty on the absolute cross-sections, $\sigma_{\text{H}_2\text{O}}$ and σ_{CH}, is dominated by the neutrino-flux uncertainty, while that on the cross-section ratio, $\sigma_{\text{H}_2\text{O}}/\sigma_{\text{CH}}$, is dominated by statistical errors and errors on the detector response.

7. Results

Figure 13 shows the convergence of extracted cross-sections with respect to the number of iterations. Each cross-section converges to a constant value after 1500 iterations.

The measured flux-integrated $\text{CC0}^{\mu}\nu_0\text{p}$ cross-sections on H_2O and CH are summarized as follows:

\[
\begin{align*}
\sigma_{\text{H}_2\text{O}}^{\bar{\nu}_\mu} &= [1.082 \pm 0.068\text{(stat.)}^{+0.145}_{-0.128}\text{(syst.)}] \times 10^{-39}\text{cm}^2/\text{nucleon}, \\
\sigma_{\text{CH}}^{\bar{\nu}_\mu} &= [1.096 \pm 0.054\text{(stat.)}^{+0.132}_{-0.117}\text{(syst.)}] \times 10^{-39}\text{cm}^2/\text{nucleon}, \\
\sigma_{\text{H}_2\text{O}}^{\nu_\mu}/\sigma_{\text{CH}}^{\nu_\mu} &= 0.987 \pm 0.078\text{(stat.)}^{+0.093}_{-0.090}\text{(syst.)}, \\
\sigma_{\text{H}_2\text{O}}^{\nu_\mu+\nu_\mu} &= [1.155 \pm 0.064\text{(stat.)}^{+0.148}_{-0.129}\text{(syst.)}] \times 10^{-39}\text{cm}^2/\text{nucleon}, \\
\sigma_{\text{CH}}^{\nu_\mu+\nu_\mu} &= [1.159 \pm 0.049\text{(stat.)}^{+0.129}_{-0.115}\text{(syst.)}] \times 10^{-39}\text{cm}^2/\text{nucleon}, \\
\sigma_{\text{H}_2\text{O}}^{\nu_\mu+\nu_\mu}/\sigma_{\text{CH}}^{\nu_\mu+\nu_\mu} &= 0.996 \pm 0.069\text{(stat.)}^{+0.083}_{-0.078}\text{(syst.),}
\end{align*}
\]

where the cross-sections are normalized by the number of all nucleons in molecules of H_2O and CH. All the integrated cross-sections are consistent with the models in the MC-event generator, NEUT, within a level of 1\sigma. Figure 14 shows correlation matrices including all uncertainties for $\bar{\nu}_\mu$ (top) and $\nu_\mu + \nu_\mu$ (bottom) cross sections. Figure 15 shows the distributions of the measured differential cross-sections for $\text{CC0}^{\mu}\nu_0\text{p}$ with a muon angle smaller than 30 degrees, with their uncertainties and expectations from NEUT (5.3.3). Basically, the measured cross-sections on each phase-space bin agree with the NEUT expectation within 1\sigma, except for $\sigma_{\text{H}_2\text{O}}^{\nu_\mu+\nu_\mu}$ and $\sigma_{\text{H}_2\text{O}}^{\nu_\mu+\nu_\mu}/\sigma_{\text{CH}}^{\nu_\mu+\nu_\mu}$ in the phase-space region of 20-25°.

In order to evaluate the agreement of measured differential cross-sections with predictions, χ^2 values are calculated based on the total uncertainty including both the statistical and systematic uncertainties. Tables 9 and 10 show the calculated χ^2 values for the predictions.
Fig. 13: Convergence of the extracted cross-sections, $\bar{\nu}_\mu$ cross-section (left) and $\bar{\nu}_\mu + \nu_\mu$ cross-section (right). Top line: σ_{H_2O}. Bottom line: σ_{CH}. The plots show the first 500 iterations for $\bar{\nu}_\mu \sigma_{H_2O}$, 150 iterations for $\bar{\nu}_\mu \sigma_{CH}$, 1500 iterations for $\bar{\nu}_\mu + \nu_\mu \sigma_{H_2O}$, 150 iterations for $\bar{\nu}_\mu + \nu_\mu \sigma_{CH}$.

from NEUT and GENIE. Considering the number of degrees of freedom is eight, the calculated χ^2 values suggest that the measured cross-sections agree well with neutrino-interaction models implemented in those generators.

Table 9: Absolute χ^2 values for the $\bar{\nu}_\mu$ and $\bar{\nu}_\mu + \nu_\mu$ cross-sections, with respect to the total uncertainty.

	$\bar{\nu}_\mu$ cross section	$\bar{\nu}_\mu + \nu_\mu$ cross section				
σ_{H_2O}	σ_{CH}	$\sigma_{H_2O}/\sigma_{CH}$				
NEUT	3.19	11.34	1.71	7.06	2.63	6.87
GENIE	4.25	14.26	1.83	7.09	3.38	7.55

8. Conclusion

In this paper, we report measurements of (anti-)neutrino cross-sections on water and hydrocarbon targets with the WAGASCI module and the Proton Module using the T2K
anti-neutrino beam. The mean neutrino energy is 0.86 GeV, and the peak is at 0.66 GeV with 1σ spread of $\pm 0.10 \pm 0.25$ GeV. The signal is taken to be charged-current interactions with one muon and no pions nor protons produced, based on the kinematic measurements of
Fig. 15: Measured values for the differential ν_μ cross-section (left) and $\bar{\nu}_\mu + \nu_\mu$ cross-section (right). Top line: $\sigma_{\text{H}_2\text{O}}$. Middle line: σ_{CH}. Bottom line: $\sigma_{\text{H}_2\text{O}}/\sigma_{\text{CH}}$ (bottom). Each plot shows the cumulative quadratic sum of the uncertainties from statistics, neutrino flux, neutrino-interaction model and detector response.

Table 10: Absolute χ^2 values for the ν_μ and $\bar{\nu}_\mu + \nu_\mu$ cross-sections only for a muon angle less than 30 degrees, concerning the total uncertainty.

	ν_μ cross section	$\bar{\nu}_\mu + \nu_\mu$ cross section				
	$\sigma_{\text{H}_2\text{O}}$	σ_{CH}	$\sigma_{\text{H}_2\text{O}}/\sigma_{\text{CH}}$	$\sigma_{\text{H}_2\text{O}}$	σ_{CH}	$\sigma_{\text{H}_2\text{O}}/\sigma_{\text{CH}}$
NEUT	0.74	0.16	0.81	5.93	0.33	5.76
GENIE	0.72	0.54	0.89	5.98	0.57	6.35

muons, pions, and protons. The differential cross-sections and integrated cross-sections for the ν_μ only and $\bar{\nu}_\mu + \nu_\mu$ fluxes are measured. The results agree with the current neutrino-interaction models used in the T2K oscillation analysis within their statistical and systematic uncertainties.
Acknowledgements

We thank the J-PARC staff for the superb accelerator performance. We thank the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC (Grant No. SAPPJ-2014-00031), NRC and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN) and Ministry of Science and Higher Education, Poland; RSF (Grant #19-12-00325) and Ministry of Science and Higher Education, Russia; MINECO and ERDF funds, Spain; SNSF and SERI, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, and GridPP in the United Kingdom. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), "la Caixa Foundation (ID 100010434, fellowship code LCF/BQ/IN17/11620050), the European Unions Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie grant agreement no. 713673 and H2020 Grant No. RISE-GA644294-JENNIFER 2020; JSPS, Japan; Royal Society, UK; and the DOE Early Career program, USA.

A. Appendix: Differential Cross-Sections

The $\bar{\nu}_\mu$ and $\nu_\mu + \bar{\nu}_\mu$ cross-section measurements are summarized in Tables A1 and A2. Total uncertainties are summarized in Tables A3 and A4. The total uncertainty on the right-hand column is calculated as a quadratic sum of the statistical uncertainty and the systematic uncertainties. By taking the water to hydrocarbon cross-section ratio, uncertainties on the T2K (anti-)neutrino beam prediction, which are the dominant errors for absolute cross-section measurements, largely cancel.
Table A1: Summary of the $\bar{\nu}_\mu$ cross-section measurement. Units for $\sigma_{\text{H}_2\text{O}}$ and σ_{CH} are \times 10^{-39} \text{ cm}^2/\text{nucleon}.

True phase space	Cross section	Stat. err.	Syst. err.
$\sigma_{\text{H}_2\text{O}}$			
CCother	0.244	±0.120	+0.206/−0.199
CC0π0p : 0-5°	0.060	±0.018	+0.029/−0.027
CC0π0p : 5-10°	0.172	±0.089	+0.045/−0.040
CC0π0p : 10-15°	0.234	±0.069	+0.086/−0.080
CC0π0p : 15-20°	0.259	±0.095	+0.077/−0.075
CC0π0p : 20-25°	0.159	±0.052	+0.031/−0.029
CC0π0p : 25-30°	0.198	±0.082	+0.040/−0.039
CC0π0p : 30-180°	0.635	±0.145	+0.243/−0.217
CCTotal	1.961	±0.196	+0.400/−0.368
CC0π0p : 0-30°	1.082	±0.068	+0.145/−0.128
σ_{CH}			
CCother	0.162	±0.057	+0.149/−0.141
CC0π0p : 0-5°	0.071	±0.019	+0.015/−0.014
CC0π0p : 5-10°	0.188	±0.065	+0.029/−0.025
CC0π0p : 10-15°	0.222	±0.048	+0.034/−0.028
CC0π0p : 15-20°	0.219	±0.060	+0.033/−0.030
CC0π0p : 20-25°	0.219	±0.052	+0.045/−0.042
CC0π0p : 25-30°	0.178	±0.046	+0.028/−0.025
CC0π0p : 30-180°	0.975	±0.285	+0.320/−0.344
CCTotal	2.233	±0.195	+0.498/−0.446
CC0π0p : 0-30°	1.096	±0.054	+0.132/−0.117
$\sigma_{\text{H}_2\text{O}}/\sigma_{\text{CH}}$			
CCother	1.508	±0.753	+1.803/−1.524
CC0π0p : 0-5°	0.846	±0.310	+0.431/−0.356
CC0π0p : 5-10°	0.913	±0.470	+0.213/−0.253
CC0π0p : 10-15°	1.056	±0.334	+0.389/−0.336
CC0π0p : 15-20°	1.183	±0.476	+0.306/−0.312
CC0π0p : 20-25°	0.728	±0.291	+0.176/−0.179
CC0π0p : 25-30°	1.115	±0.583	+0.227/−0.219
CC0π0p : 30-180°	0.651	±0.241	+0.291/−0.299
CCTotal	0.878	±0.111	+0.177/−0.191
CC0π0p : 0-30°	0.987	±0.078	+0.093/−0.090
Table A2: Summary of the $\bar{\nu}_\mu + \nu_\mu$ cross-section measurement. Units for $\sigma_{\text{H}_2\text{O}}$ and σ_{CH} are $[\times 10^{-39} \text{ cm}^2/\text{nucleon}]$.

Phase Space	Cross section	Stat. err.	Syst. err.
$\sigma_{\text{H}_2\text{O}}$			
CC0π0p : 0-5°	0.252	±0.074	+0.051/−0.046
CC0π0p : 10-15°	0.265	±0.085	+0.067/−0.065
CC0π0p : 15-20°	0.121	±0.023	+0.030/−0.027
CC0π0p : 20-25°	0.267	±0.045	+0.074/−0.072
CC0π0p : 25-30°	0.175	±0.069	+0.034/−0.032
CC0π0p : 30-180°	0.075	±0.022	+0.026/−0.023
CCTotal	2.668	±0.171	+0.353/−0.327
σ_{CH}			
CC0π0p : 0-30°	1.155	±0.064	+0.148/−0.129
CCTotal	3.005	±0.175	+0.499/−0.444
$\sigma_{\text{H}_2\text{O}}/\sigma_{\text{CH}}$			
CC0π0p : 0-30°	1.052	±0.169	+0.563/−0.519
CCTotal	0.888	±0.077	+0.148/−0.160

26/29
Table A3: Summary of systematic uncertainties on the $\bar{\nu}_\mu$ cross-section [%].

True phase space	Statistics	Neutrino flux	Neutrino interactions	Detector response	Total	
σ_{H_2O}	CCother	±49.4	±8.5	±53.2	±61.7	±98.4
	CC0π0p : 0-5°	±29.5	+10.7	+41.2	±22.2	±56.4
	CC0π0p : 5-10°	±51.6	+11.4	+19.4	±13.9	±58.0
	CC0π0p : 10-15°	±29.3	+11.0	+31.6	±41.0	±72.7
	CC0π0p : 15-20°	±36.7	+9.0	+24.3	±13.3	±47.3
	CC0π0p : 20-25°	±32.7	±9.0	±8.9	±14.9	±46.2
	CC0π0p : 25-30°	±41.5	±9.0	±8.9	±14.9	±46.2
	CC0π0p : 30-180°	±22.8	±9.0	±8.9	±14.9	±46.2
	CCurrent	±10.0	±9.9	±9.0	±22.7	±41.1
	CC0π0p : 0-30°	±6.3	±9.9	±9.0	±22.7	±41.1
σ_{CH}	CCother	±35.5	±8.5	±51.5	±41.2	±98.6
	CC0π0p : 0-5°	±27.1	+10.8	+17.3	±7.4	+34.8
	CC0π0p : 5-10°	±34.8	+10.8	+9.6	±5.8	±37.2
	CC0π0p : 10-15°	±21.7	+10.4	+9.3	±6.6	±26.6
	CC0π0p : 15-20°	±27.4	±9.0	±5.9	±25.1	±41.2
	CC0π0p : 20-25°	±23.8	±9.0	±5.9	±25.1	±41.2
	CC0π0p : 25-30°	±25.7	±9.0	±5.9	±25.1	±41.2
	CC0π0p : 30-180°	±29.3	±9.0	±5.9	±25.1	±41.2
	CCurrent	±8.8	±9.9	±5.3	±21.8	±43.6
	CC0π0p : 0-30°	±5.0	±9.9	±5.3	±21.8	±43.6
$\sigma_{H_2O}/\sigma_{CH}$	CCother	±49.9	±9.6	±19.4	±5.3	±21.8
	CC0π0p : 0-5°	±36.6	±9.6	±19.4	±5.3	±21.8
	CC0π0p : 5-10°	±51.5	±9.6	±19.4	±5.3	±21.8
	CC0π0p : 10-15°	±31.6	±9.6	±19.4	±5.3	±21.8
	CC0π0p : 15-20°	±40.3	±9.6	±19.4	±5.3	±21.8
	CC0π0p : 20-25°	±40.0	±9.6	±19.4	±5.3	±21.8
	CC0π0p : 25-30°	±52.3	±9.6	±19.4	±5.3	±21.8
	CC0π0p : 30-180°	±37.0	±9.6	±19.4	±5.3	±21.8
	CCurrent	±12.6	±9.6	±19.4	±5.3	±21.8
	CC0π0p : 0-30°	±7.9	±9.6	±19.4	±5.3	±21.8
Table A4: Summary of systematic uncertainties on the $\overline{\nu}_\mu + \nu_\mu$ cross-section [%].

True phase space	Statistics	Neutrino flux	Neutrino interactions	Detector response	Total	
$\sigma_{\text{H}_2\text{O}}$	COther	±13.6	±5.3	±14.4	±17.8	±27.5
	CC0π0p : 0-5°	±29.3	+10.4	+25.9	±19.2	+44.8
	CC0π0p : 5-10°	±39.4	+11.0	+8.2	±13.8	+44.0
	CC0π0p : 10-15°	±16.8	+10.0	+21.5	±32.3	+31.6
	CC0π0p : 15-20°	±32.0	+10.7	+18.0	±40.7	+31.6
	CC0π0p : 20-25°	±19.1	+10.6	+12.9	±18.2	+31.2
	CC0π0p : 25-30°	±29.4	+10.7	+12.2	±11.9	+35.6
	CC0π0p : 30-180°	±31.3	+10.3	+30.7	±23.3	+50.7
	CCTotal	±6.4	+9.3	+5.8	±7.4	+14.1
	CC0π0p : 0-3°	±5.5	+10.6	+5.0	±5.2	+13.9
σ_{CH}	COther	±7.1	+8.6	+39.5	±9.6	+42.1
	CC0π0p : 0-5°	±19.4	+10.4	+13.0	±6.4	+26.3
	CC0π0p : 5-10°	±25.7	+10.8	+6.5	±5.1	+29.0
	CC0π0p : 10-15°	±19.0	+10.0	+4.8	±6.1	+22.8
	CC0π0p : 15-20°	±22.8	+10.7	+4.2	±8.4	+26.9
	CC0π0p : 20-25°	±18.2	+10.3	+7.7	±6.9	+23.3
	CC0π0p : 25-30°	±21.2	+9.9	+8.5	±8.4	+26.3
	CC0π0p : 30-180°	±23.5	+10.3	+24.5	±11.3	+37.3
	CCTotal	±5.8	+9.3	+14.2	±3.6	+15.9
	CC0π0p : 0-3°	±4.2	+10.3	+2.7	±3.4	+11.9
$\sigma_{\text{H}_2\text{O}}/\sigma_{\text{CH}}$	COther	±16.0	+0.6	+39.1	±20.6	+56.9
	CC0π0p : 0-5°	±33.7	+1.6	+27.6	±20.9	+48.3
	CC0π0p : 5-10°	±41.5	+1.6	+9.5	±15.2	+45.2
	CC0π0p : 10-15°	±23.6	+1.7	+24.6	±15.2	+37.4
	CC0π0p : 15-20°	±37.8	+1.5	+13.9	±17.3	+43.8
	CC0π0p : 20-25°	±26.3	+0.9	+11.1	±20.3	+50.5
	CC0π0p : 25-30°	±34.6	+1.7	+15.3	±15.0	+40.8
	CC0π0p : 30-180°	±41.1	+1.9	+40.2	±27.4	+63.8
	CCTotal	±8.7	+0.3	+14.4	±8.6	+18.8
	CC0π0p : 0-3°	±6.9	+0.5	+5.2	±10.9	+10.5
References

[1] K. Abe et al., arXiv:1106.1238, Nucl. Instrum. Meth., A659, 106–135 (2011).
[2] P. A. Amaudruz et al., arXiv:1204.3666, Nucl. Instrum. Meth., A696, 1–31 (2012).
[3] K. Abe et al., Phys. Rev. D, 97, 012001 (2018).
[4] K. Abe et al., Phys. Rev. D, 95, 012010 (2017).
[5] K. Abe et al., http://oup.prod.sis.lan/ptep/article-pdf/2019/9/093C02/30055171/ptz070.pdf, Progress of Theoretical and Experimental Physics, 2019(9), 093C02 (2019).
[6] K. Abe et al., arXiv:1908.10249 (2019).
[7] K. Kin et al., Proceedings of Science, 295, Proceedings of the 19th International Workshop on Neutrinos from Accelerators (NuFact2017) (2017).
[8] K. Abe et al., Phys. Rev. D, 90, 052010 (2014).
[9] K. Abe et al, Nucl. Instrum. Meth., 694, 211 – 223 (2012).
[10] Hamamatsu Photonics K.K., https://www.hamamatsu.com.
[11] N. Chikuma et al, Proceedings of Science, 313, The European Physical Society Conference on High Energy Physics (EPS-HEP2017) (2017).
[12] A. Vacheret, S. Greenwood, M. Noy, M. Raymond, and A. Weber, In 2007 IEEE Nuclear Science Symposium Conference Record, volume 3, pages 1984–1991 (2007).
[13] K. Abe et al., Phys. Rev. D, 87, 012001 (Jan 2013).
[14] Y. Hayato, Acta Phys. Polon., B40, 2477–2489 (2009).
[15] S. Agostinelli et al., Nucl. Instrum. Meth., A506, 250–303 (2003).
[16] N. Abgrall et al., arXiv:1510.02703, Eur. Phys. J., C76(2), 84 (2016).
[17] C. Andreopoulos et al, Nucl. Instrum. Meth., 614(1), 87 – 104 (2010).
[18] R. A. Smith and E. J. Moniz, Nucl. Phys., B43, 605, [Erratum: Nucl. Phys.B101,547(1975)] (1972).
[19] A. Bodek and J. L. Ritchie, Phys. Rev. D, 23, 1070–1091 (1981).
[20] A. Bodek and J. L. Ritchie, Phys. Rev. D, 24, 1400–1402 (1981).
[21] J. Nieves, J. E. Amaro, and M. Valverde, Phys. Rev. C, 70, 055503 (Nov 2004).
[22] J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, Phys. Rev. C, 83, 045501 (Apr 2011).
[23] D. Rein and L. M. Sehgal, Annals of Physics, 133(1), 79 – 153 (1981).
[24] D. Rein and L. M. Sehgal, Nuclear Physics B, 223(1), 29 – 44 (1983).
[25] C. Berger and L. M. Sehgal, Phys. Rev. D, 79, 053003 (Mar 2009).
[26] M. Glück, E. Reya, and A. Vogt, The European Physical Journal C - Particles and Fields, 5(3), 461–470 (Sep 1998).
[27] A. Bodek, I. Park, and U.K. Yang, Nuclear Physics B - Proceedings Supplements, 139, 113 – 118, Proceedings of the Third International Workshop on Neutrino-Nucleus Interactions in the Few-GeV Region (2005).
[28] T. Yang et al., The European Physical Journal C, 63(1), 1–10 (Sep 2009).
[29] K. Abe et al, Phys. Rev. Lett., 121, 171802 (2018).
[30] H. Maesaka, PhD thesis, Kyoto University (2005).
[31] G. D’Agostini, arXiv:1010.0632 (2010).