Thickness dependence of work function, ionization energy, and electron affinity of Mo and W dichalcogenides from DFT and GW calculations

Han-gyu Kim and Hyoung Joon Choi∗

Department of Physics, Yonsei University, Seoul 03722, Korea

Transition-metal dichalcogenides (TMDs) are promising for two-dimensional (2D) semiconducting devices and novel phenomena. For 2D applications, their work function, ionization energy, and electron affinity are required as a function of thickness, but research on this is yet to cover the full family of compounds. Here, we present the work function, ionization energy, and electron affinity of few-layer and bulk MX$_2$ (M = Mo, W and X = S, Se, Te) in 2H phase obtained accurately by the density functional theory and GW calculations. For each compound, we consider one-, two-, three-, four-layer, and bulk geometry. In GW calculations, accurate results are obtained by nonuniform q sampling for two-dimensional geometry. From band energies including the GW self-energy correction, we estimate the work function, band gap, ionization energy, and electron affinity as functions of the number of layers. We compare our results with available theoretical and experimental reports, and we discuss types of band alignments in in-plane and out-of-plane junctions of these few-layer and bulk TMDs.

I. INTRODUCTION

Two-dimensional (2D) van der Waals materials are of great interest because of their variety of electronic properties and fabrication capability by mechanical exfoliation and stacking. While graphene is metallic with zero band gap, transition-metal dichalcogenides (TMDs) such as MoS$_2$ and WSe$_2$ are semiconducting with band gaps. For their electronic properties that depend sensitively on structures and chemical compositions, TMDs have been widely studied for device applications and novel phenomena [1–20].

One of the key properties of semiconducting materials is their electronic band-edge energies with respect to vacuum. They are related to the ionization energy, electron affinity, and work function, and also closely linked to band-edge alignment between different semiconductors, i.e., the band offset, required in designing semiconductor devices [21–25]. Previous theoretical studies of electronic band structures in TMDs have been based on the density functional theory (DFT) [26–30] and GW calculations [31–38]. Using DFT, band energies with respect to the vacuum level were studied for monolayers of MX$_2$ (M = Mo, W and X = S, Se, Te) [26, 27] and their bilayers, tetralayers, and bulks [26]. The GW method, which introduces the self-energy due to electron-electron interaction [39, 40], can describe band gaps in semiconductors more accurately [41]. The GW method was used to study band gaps, ionization energies, and electron affinities of bulk TMDs [37] and layers of MoS$_2$ [34], and band energies with respect to vacuum in monolayers of MX$_2$ (M = Mo, W and X = S, Se, Te) [38]. For 2D applications of TMDs, their work function, ionization energy, and electron affinity are required as a function of thickness, but accurate study on this using the GW method is yet to cover the full family of compounds.

For a few layers of TMDs, GW calculation is computationally demanding. It is not only because a bigger unit cell is needed to host more atoms and wide-enough vacuum, but also because the poor electrical screening in 2D systems requires a much denser q-grid sampling for accurate convergence of the dielectric function [42]. Furthermore, band energies with respect to vacuum converge more slowly than the band gap, requiring more unoccupied bands in GW calculation [38]. To study the thickness dependence of band structures of 2D TMDs with respect to the vacuum level, we relieve the requirement of a much denser q-grid sampling by using the nonuniform sampling of q-points, so-called, the nonuniform neck subsampling (NNS) method [43], and we expedite the convergence of band energies with respect to the vacuum level by using the static remainder method [44].

In this paper, we study thickness dependence of band energies of TMDs in 2H phase with respect to vacuum, using DFT and GW calculations. We consider from monolayer (1L) to tetralayer (4L) and bulk of molybdenum and tungsten disulfide, diselenide, and ditelluride, i.e., MX$_2$ (M = Mo, W and X = S, Se, Te). In the case of GW calculations with 2D geometry, the NNS method and the static remainder method are used for accurate convergence of band energies. Including the GW self-energy correction to band energies, we obtain the ionization energy, electron affinity, work function, and band gap as functions of the layer thickness. From these properties, we also discuss possible band offsets in their in-plane and out-of-plane junctions.

II. METHODOLOGY

We performed DFT calculations using the QUANTUM ESPRESSO code [45] with Perdew-Burke-Ernzerhof-type (PBE) generalized gradient approximation [46] for the exchange-correlation energy. We use norm-conserving pseudopotentials for electron-ion interaction and plane
waves with a kinetic energy cutoff of 125 Ry to expand electronic wavefunctions. For self-consistent calculations, we use a 15 × 15 × 3 k-point sampling in the three-dimensional Brillouin zone (BZ) for bulk, and a 15 × 15 k-point sampling in the 2D BZ for few layers.

We performed GW calculations for quasiparticle band structures of bulk and few-layer TMDs using the BERKELEYGW code [50–52]. We used the one-shot GW method (\(G_0\)W) which uses DFT eigenvalues and wavefunctions as the starting point and calculates the self-energy once. Spin-orbit coupling is considered as a perturbation, after the self-energy correction is determined without spin-orbit coupling. We use the Godby-Needs generalized plasmon pole model [53, 54] for the frequency dependence of the inverse dielectric function. Our kinetic energy cutoff for the dielectric matrix is 35 Ry.

We calculate parameters show converged quasiparticle band energies within 0.1 eV.

We construct relaxed atomic structures of bulk and few-layer TMDs by minimizing their total energies within the PBE-D2 scheme [55] which considers van der Waals interaction. Table I shows relaxed and experimental atomic structures of bulk TMDs. We confirm that our DFT lattice parameters of bulk TMDs are consistent with experimental ones [47–49] within 1%-2%. As shown in Table I, lattice parameters of bulk TMDs are weakly dependent on metal elements but strongly dependent on chalcogen elements. MoS\(_2\) and WS\(_2\) show very small differences less than, or close to, 1% in \(a\), \(b\), and \(u\). For heavier chalcogen elements, differences in \(a\) and \(b\) become a little bit larger, but still less than 2%. This indicates that the atomic structure is almost determined by the chalcogen element only. We also relaxed atomic structures of TMD layers and obtained almost the same lattice constants, layer thicknesses, and inter-layer distances as those of corresponding bulk structures, as compared in Table II.

We calculated electronic band structures of one-, two-

Compound	Thickness	\(a\) (Å)	\(b/2\) (Å)	\(h_{M-X}\) (Å)
MoS\(_2\)	1L	3.191	1.558	
2L, 3L, 4L	3.191	6.210	1.558	
bulk	3.191	6.209	1.558	
MoSe\(_2\)	1L	3.316	1.666	
2L, 3L, 4L, bulk	3.316	6.516	1.666	
MoTe\(_2\)	1L	3.530	1.818	
2L, 3L, 4L	3.530	7.010	1.816	
bulk	3.531	7.009	1.816	
WS\(_2\)	1L	3.189	1.568	
2L	3.188	6.084	1.563	
3L	3.189	6.086	1.564	
4L	3.188	6.085	1.564	
bulk	3.188	6.080	1.564	
WSe\(_2\)	1L	3.334	1.670	
2L	3.334	6.401	1.665	
3L	3.334	6.403	1.665	
4L	3.333	6.401	1.665	
bulk	3.333	6.400	1.665	
WTe\(_2\)	1L	3.566	1.808	
2L	3.566	6.907	1.808	
3L	3.566	6.909	1.806	
4L	3.566	6.908	1.806	
bulk	3.563	6.901	1.806	
system-dependent so that the CBM is at the T point as shown in Table III. As is already well known, locations of the CBM and the VBM of few-layer TMDs depend on the thickness and chemical compounds of TMD, as shown in Table III.

Compound	Thickness	t
MoS$_2$	1L, 2L, 3L	0.52
	4L, bulk	0.53
MoSe$_2$	1L, 2L	0.54
	3L, 4L, bulk	0.55
MoTe$_2$	1L	0.55
	2L	0.58
	3L, 4L, bulk	0.59
WS$_2$	1L	0.51
	2L, 3L, 4L, bulk	0.52
WSe$_2$	1L, 2L, 3L, 4L	0.54
	bulk	0.55
WTe$_2$	1L, 2L, 3L, 4L	0.59

Table III. Location of the T point in the Γ-K line. The T point is $k = (t/3)b_1 + (t/3)b_2$ while the K point is $k = (1/3)b_1 + (1/3)b_2$. Here, b_1 and b_2 are in-plane reciprocal lattice vectors.

Figure 1. A prototypical band structure of TMD. Electronic band structure of bulk MoS$_2$, which is obtained by DFT calculation including spin-orbit interaction, is plotted along high-symmetry lines. VBM is set to zero energy. The $k_z = 0$ plane of the three-dimensional (3D) BZ is also shown. Location of the T point, which is a local minimum of the lowest conduction band, depends on the thickness and chemical compound of TMD, as shown in Figure 1 as a prototype of thick samples. In Fig. 1, the CBM of bulk MoS$_2$ is at a k-point in the Γ-K line, which we define as the T point, and the VBM is at the Γ point. The location of the T point in the Γ-K line depends on the thickness and chemical compounds of MoS$_2$ as shown in Table III. As is already well known, locations of conduction- and valence-band edges in the k-space are system-dependent so that the CBM is at the T or K point while the VBM is at the Γ or K point.

Band gaps of bulk TMDs from our PBE and GW calculations are shown in Tables IV and V, respectively, and compared with previous calculational and experimental results in Table VI. In these tables, we define the direct band gap as the minimal energy difference between valence bands and conduction bands at the same k point, while the band gap is defined conventionally as the energy difference between the CBM and the VBM. If the CBM and the VBM are located at different k points, the band gap will be termed as the indirect band gap in our present work. We confirm the accuracy of our study by comparing our results of bulk band gaps with previous reports [37, 57–63]. As shown in Table VI, our results of bulk band gaps from the GW method are in good agreement with previous theoretical results [37] within 0.12 eV. When compared with experiments, our GW results of indirect band gaps agree with experimental ones [57–59, 61, 62] within 0.13 eV, while values of direct band gaps show a little bit more deviation from experimental ones [57, 59, 60, 62, 63]. More detailed comparison shows that our GW results of direct band gaps are in better agreement with experimental results considering excitonic effects [60, 63].

The CBM and the VBM of few-layer and bulk TMDs from our DFT and GW calculations are shown in Tables IV and V, respectively, and plotted in Fig. 2. Comparing GW results with DFT results, we find that the CBM depends more strongly on the thickness in the GW results than in the DFT results. In the case of VBM, the self-energy correction from the GW method is almost constant near the VBM, making the difference between DFT and GW results almost independent of the thick-
Figure 2. Calculated band-edge energies of few-layer and bulk TMDs. Band-edge energies are with respect to the vacuum level which is set to zero. Cyan regions show valence and conduction bands from our GW calculations, with characters K, T, and Γ indicating locations of the CBM and VBM in the k-space. Red dashed lines show the CBM and VBM from our DFT calculations.

Figure 3. (a) Work functions of few-layer and bulk TMDs. Red (blue) dots are work functions obtained from our GW (DFT) calculations. (b) Band gaps of few-layer and bulk TMDs. Red (blue) circles and squares show direct and indirect band gaps, respectively, obtained from our GW (DFT) calculations.

In our GW results, the thickness dependence of the CBM is almost independent of the chemical composition of TMDs while the thickness dependence of the VBM becomes weaker in the order of sulfides, selenides, and tellurides.

Work functions of few-layer and bulk TMDs obtained from our DFT and GW calculations are shown in Tables IV and V, respectively, and plotted in Fig. 3(a). As shown in Fig. 3(a), work functions from GW calculations are larger than those from DFT calculations. This enhancement of the work function is more pronounced in compounds containing Te elements. The thickness dependence of the work function is very weak except for the monolayer. In our GW results, the work function is the largest for MoS$_2$, followed by WS$_2$, MoSe$_2$ and MoTe$_2$, and WSe$_2$ and WTe$_2$. Thus, sulfides have larger work functions than selenides and tellurides. With the same chalcogen element, Mo compounds have larger work functions than W compounds. We also obtain ionization energies and electron affinities from band-edge energies with respect to the vacuum level in DFT and GW results, as shown in Tables IV and V, respectively.
direct band gaps, our GW results show larger thickness depend on the thickness in our DFT results. As for in-phase are almost determined by the chalcogen element.

Now we discuss band alignments in junctions of different TMDs. In general, as shown in Fig. 4, there are three types of band alignments: straddling, staggered, and broken band gaps, which we denote by type 1, type 2, and type 3, respectively. The straddling type (type 1) is the case that the band gap of one material is placed entirely inside the band gap of the other material in energy. The
Table V. Quasiparticle energies, band gaps, work functions (WF), ionization potentials (IP), and electron affinities (EA) of TMDs from GW calculations. As for the thickness, 1L, 2L, 3L, and 4L represent mono-, bi-, tri-, and tetralayer, respectively. Quasiparticle energies of K_g, Γ_v, K_v, and Γ are for valence bands at K and Γ and conduction bands at K and Γ, respectively, and they are with respect to the vacuum level which is set to zero. All values are in eV.

Compound	Thickness	Quasiparticle energies	Band gaps							
	K_g	Γ_v	K_v	Γ						
	Direct	Indirect								
		Bulk								
MoS$_2$	1L	−6.42	−6.51	−6.03	−3.82	2.40	5.23	6.42	4.03	
	2L	−6.37	−6.03	−4.14	−4.21	2.17	1.67	5.04	5.88	4.21
	3L	−6.34	−5.88	−4.18	−4.21	2.11	1.56	5.05	5.83	4.28
	4L	−6.34	−5.83	−4.23	−4.28	2.11	1.56	5.05	5.83	4.28
	bulk	−6.26	−5.70	−4.21	−4.38	2.05	1.32	5.04	5.70	4.38
MoSe$_2$	1L	−5.69	−6.08	−3.61	−3.52	2.08	4.65	5.69	3.61	
	2L	−5.64	−5.57	−3.73	−3.84	1.91	1.73	4.70	5.57	3.84
	3L	−5.62	−5.44	−3.78	−3.96	1.84	1.48	4.70	5.44	3.96
	4L	−5.62	−5.41	−3.82	−4.03	1.80	1.38	4.72	5.41	4.03
	bulk	−5.51	−5.27	−3.77	−4.11	1.74	1.15	4.69	5.27	4.11
MoTe$_2$	1L	−5.31	−5.95	−3.67	−3.77	1.65	1.54	4.54	5.31	3.77
	2L	−5.26	−5.56	−3.74	−3.81	2.27	1.95	4.78	5.76	3.81
	3L	−5.24	−5.41	−3.79	−4.03	1.52	1.23	4.65	5.26	4.03
	4L	−5.21	−5.39	−3.81	−4.23	1.40	0.99	4.72	5.21	4.23
	bulk	−5.13	−5.25	−3.78	−4.28	1.34	0.84	4.71	5.13	4.28
WS$_2$	1L	−6.09	−6.32	−3.62	−3.58	2.46	4.85	6.09	3.62	
	2L	−6.01	−5.76	−3.74	−3.81	2.27	1.95	4.78	5.76	3.81
	3L	−5.99	−5.99	−3.80	−3.93	2.19	1.66	4.76	5.59	3.93
	4L	−5.98	−5.54	−3.83	−4.00	2.15	1.54	4.77	5.54	4.00
	bulk	−5.90	−5.38	−3.83	−4.11	2.07	1.26	4.75	5.38	4.11
WSe$_2$	1L	−5.38	−5.84	−3.37	−3.32	2.01	4.38	5.38	3.37	
	2L	−5.33	−5.29	−3.50	−3.57	1.83	1.71	4.43	5.29	3.57
	3L	−5.29	−5.14	−3.55	−3.69	1.75	1.45	4.41	5.14	3.69
	4L	−5.28	−5.10	−3.59	−3.76	1.69	1.35	4.43	5.10	3.76
	bulk	−5.23	−4.98	−3.60	−3.89	1.63	1.09	4.43	4.98	3.89
WTe$_2$	1L	−5.05	−5.66	−3.59	−3.62	1.45	1.43	4.33	5.05	3.62
	2L	−5.00	−5.24	−3.66	−3.81	1.33	1.19	4.40	5.00	3.81
	3L	−4.96	−5.07	−3.71	−3.92	1.25	1.04	4.44	4.96	3.92
	4L	−4.95	−5.06	−3.75	−3.99	1.20	0.96	4.47	4.95	3.99
	bulk	−4.89	−4.92	−3.74	−4.08	1.15	0.81	4.49	4.89	4.08

Table VI. Direct ($E_g^{(d)}$) and indirect ($E_g^{(i)}$) band gaps (in eV) of bulk TMDs obtained from our PBE and GW calculations.

Bulk TMDs	Our results	PBE	GW	GW[37]	Experiment
MoS$_2$	$E_g^{(d)}$	0.91	1.32	1.23	1.22 [57], 1.23 [59]
	$E_g^{(i)}$	1.56	2.05	2.07	1.77 [57], 1.74 [59]
MoSe$_2$	$E_g^{(d)}$	0.84	1.15	1.11	1.10 [57], 1.12 [58], 1.09 [59]
	$E_g^{(i)}$	1.33	1.74	1.83	1.38 [57, 59]
MoTe$_2$	$E_g^{(d)}$	0.67	0.84	0.88	0.88 [62]
	$E_g^{(i)}$	0.97	1.34	1.02	1.02 [62]
WS$_2$	$E_g^{(d)}$	0.85	1.26	1.30	1.34 [57], 1.35 [59]
	$E_g^{(i)}$	1.53	2.07	2.13	1.78 [57], 1.79 [59], 2.01 [63]
WSe$_2$	$E_g^{(d)}$	0.80	1.09	1.19	1.22 [58], 1.20 [59], 1.2 [61]
	$E_g^{(i)}$	1.18	1.63	1.75	1.39 [59], 1.75 [60]
WTe$_2$	$E_g^{(d)}$	0.58	0.81	0.81	0.81 [62]
	$E_g^{(i)}$	0.68	1.15	1.15	1.15 [62]
Types of band alignments in TMD junctions.

Straddling type	Staggered type	Broken type	Total
DFT	65	310	375
GW	150	225	375

Table VII. The number of TMD junctions is shown for each type of band alignment. The band alignment in each junction is determined by comparing VBMs and CBMs of constituent parts obtained with respect to the vacuum level by DFT and GW calculations.

None have the broken type. When the band-edge energies are corrected using the GW method, 92 junctions are changed from the staggered type to the straddling type and 7 junctions are changed from the straddling type to the staggered type. Thus, from our GW results of each compound given in Table V, 150 junctions have the straddling type, 225 junctions have the staggered type, and none has the broken type. In the case of out-of-plane junctions, each constituent compound can contribute to screening of holes and electrons in the other compound, and this raises GW valence bands and lowers GW conduction bands [64] in the other compound. Since this raising and lowering occurs in both compounds of a junction, the band alignment will be affected only by the difference in their screening effects, and the difference will be small when the two compounds have similar dielectric response.

To test an interlayer interaction effect in out-of-plane junctions, we consider out-of-plane junctions of MoS$_2$ and WS$_2$ by placing monolayer MoS$_2$ on top of monolayer WS$_2$ with two types of stacking, AA and AB. Fig. 5 shows band structures of monolayer MoS$_2$, monolayer WS$_2$, and their AA- and AB-stacked out-of-plane junctions, respectively, obtained by DFT calculations. By comparing band structures of the two junctions [Figs. 5(c) and 5(d)] with those of monolayers [Figs. 5(a) and 5(b)], we find that band structures of out-of-plane junctions are very similar to the simple superposition of band structures of monolayers except for valence bands near the Γ point. In the AB-stacked junction, valence bands at the Γ point are split greatly due to interlayer interaction, shifting the VBM from the K point to the Γ point [Fig. 5(d)]. Meanwhile, in the AA-stacked junction, splitting of valence bands at the Γ point is rather weak, remaining VBM at the K point [Fig. 5(c)]. Thus, interlayer interaction may affect band alignments in out-of-plane TMD junctions by changing valence-band dispersion near the Γ point.

In these out-of-plane MoS$_2$/WS$_2$ junctions we matched the in-plane lattice constants of MoS$_2$ and WS$_2$ by expanding the in-plane lattice constant of MoS$_2$ by 0.1%. In general, lattice-constant mismatch, any rotation or twisting [65], and/or intercalation of insulating layers such as h-BN [21] between constituent TMDs in out-of-plane junctions may change the strength of interlayer interaction, and thereby affect band alignments in TMD junctions. Our main results, which are band-edge energies of few-layer and bulk TMDs with respect to the vacuum level obtained from GW calculations, can be used to predict band alignments of out-of-plane TMD junctions when interlayer interaction is weak.

IV. CONCLUSION

We studied electronic band structures of few-layer and bulk TMDs in 2H phase (MoS$_2$, MoSe$_2$, MoTe$_2$, WS$_2$, WSe$_2$, and WTe$_2$) using DFT and GW calculations. We considered one-, two-, three-, four-layer, and bulk geometry of each compound. We calculated VBMs and CBMs with respect to the vacuum level by DFT and GW calculations, obtaining band gaps, work functions, ionization energies, and electron affinities from VBMs and CBMs for few-layer and bulk geometry. Obtained CBM with
respects to the vacuum level depends more strongly on the thickness in GW results than in DFT results. In the case of VBM with respect to the vacuum level, the difference between DFT and GW results is found almost independent of the thickness. Work functions from GW calculations are larger than those from DFT calculations, and their thickness dependence is very weak except for monolayer. Band gaps from GW calculations have stronger thickness dependence than those from DFT calculations. Our GW calculations show that band gaps are direct in monolayer MoS\(_2\), MoSe\(_2\), WS\(_2\), and WSe\(_2\) only, and they are indirect in all other cases. Based on the electronic structure of each TMD, we discussed types of band alignments in in-plane and out-of-plane junctions of different TMDs, finding some difference in band-alignment types when we compared DFT and GW results. We also examined out-of-plane MoS\(_2\)/WS\(_2\) junctions with different stacking, showing that interlayer interaction, unless weakened by some exotic geometry, may affect band alignments in out-of-plane TMD junctions by changing the valence-band dispersion near the Γ point.

ACKNOWLEDGMENTS

This work is supported by the National Research Foundation of Korea (Grant No. 2020R1A2C3013673). Computational resources have been provided by KISTI Supercomputing Center (Project No. KSC-2019-CRE-0195).

[1] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS\(_2\): A new direct-gap semiconductor, Phys. Rev. Lett. 105, 136805 (2010).
[2] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS\(_2\), Nano Lett. 10, 1271 (2010).
[3] L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science 340, 1311 (2013).
[4] Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil, and Z.-X. Shen, Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe\(_2\), Nat. Nanotechnol. 9, 111 (2014).
[5] D. Xiao, G.-B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS\(_2\) and other group-VI dichalcogenides, Phys. Rev. Lett. 108, 196802 (2012).
[6] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Spin and pseudospins in layered transition metal dichalcogenides, Nat. Phys. 10, 343 (2014).
[7] Y. J. Zhang, T. Oka, R. Suzuki, J. T. Ye, and Y. Iwasa, Electrically switchable chiral light-emitting transistor, Science 344, 725 (2014).
[8] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, The valley Hall effect in MoS\(_2\) transistors, Science 344, 1489 (2014).
[9] J. Kim, X. Hong, C. Jin, S.-F. Shi, C.-Y. S. Chang, M.-H. Chiu, L.-J. Li, and F. Wang, Ultrafast generation of pseudo-magnetic field for valley excitons in WSe\(_2\) monolayers, Science 346, 1205 (2014).
[10] E. J. Sie, J. W. McIver, Y.-H. Lee, L. Fu, J. Kong, and N. Gedik, Valley-selective optical Stark effect in monolayer WS\(_2\), Nat. Mater. 14, 290 (2015).
[11] N. Ubrig, S. Jo, M. Philipp, D. Costanzo, H. Berger, A. B. Kuzmenko, and A. F. Morpurgo, Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping, Nano Lett. 17, 5719 (2017).
[12] M. Onga, Y. Zhang, T. Ideue, and Y. Iwasa, Exciton hall effect in monolayer MoS\(_2\), Nat. Mater. 16, 1193 (2017).
[13] T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, Valley-selective circular dichroism of monolayer molybdenum disulphide, Nat. Commun. 3, 887 (2012).
[14] Y. Li, J. Ludwigs, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. van der Zande, A. Rigosi, H. M. Hill, S. H. Kim, J. Hone, Z. Li, D. Smirnov, and T. F. Heinz, Valley splitting and polarization by the Zeeman effect in monolayer mose\(_2\), Phys. Rev. Lett. 113, 266804 (2014).
[15] D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer wse\(_2\), Phys. Rev. Lett. 114, 037401 (2015).
[16] G. Aivazian, Z. Gong, A. M. Jones, R.-L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer wse\(_2\), Nat. Phys. 11, 145 (2015).
[17] A. Srivastava, M. Süder, A. V. Allain, D. S. Lembke, A. Kis, and A. Imамолу, Valley zeeman effect in elementary optical excitations of monolayer WSe\(_2\), Nat. Phys. 11, 141 (2015).
[18] W.-Y. Tong, S.-J. Gong, X. Wan, and C.-G. Duan, Concepts of ferrovalley material and anomalous valley Hall effect, Nat. Commun. 7, 13612 (2016).
[19] Y. Ye, J. Xiao, H. Wang, Z. Ye, H. Zhu, M. Zhao, Y. Wang, J. Zhao, X. Yin, and X. Zhang, Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide, Nat. Nanotechnol. 11, 598 (2016).
[20] J. Lee, K. F. Mak, and J. Shan, Electrical control of the valley Hall effect in bilayer MoS\(_2\) transistors, Nat. Nanotechnol. 11, 421 (2016).
[21] A. Pant, Z. Mutlu, D. Wickramaratne, H. Cai, R. K. Lake, C. Ozkan, and S. Tongay, Fundamentals of lateral and vertical heterojunctions of atomically thin materials, Nanoscale 8, 3870 (2016).
[22] F. Bernardini and V. Fiorentini, Macroscopic polarization and band offsets at nitride heterojunctions, Phys. Rev. B 57, R9427 (1998).
[23] C. G. Van de Walle and R. M. Martin, Theoretical study of band offsets at semiconductor interfaces, Phys. Rev. B
G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of d orbitals, Appl. Phys. Lett. 72, 2011 (1998).

A. Kahn, Fermi level, work function and vacuum level, Mater. Horiz. 3, 7 (2016).

J. Kang, S. Tongay, J. Zhou, J. Li, and J. Wu, Band offsets and heterostructures of two-dimensional semiconductors, Appl. Phys. Lett. 102, 012111 (2013).

C. Gong, H. Zhang, W. Wang, L. Colombo, R. M. Wallace, and K. Cho, Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors, Appl. Phys. Lett. 103, 053513 (2013).

J. Gusakova, X. Wang, L. L. Shiau, A. Krivosheeva, V. Shaposhnikov, V. Borisenko, V. Gusakov, and B. K. Tay, Electronic properties of bulk and monolayer TMDs: Theoretical study within DFT framework (Gv-J2e method), Phys. Status Solidi A 214, 1700218 (2017).

Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschl"ogl, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Phys. Rev. B 84, 153402 (2011).

G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, Three-band tight-binding model for monolayers of group-vii transition metal dichalcogenides, Phys. Rev. B 88, 085433 (2013).

A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen, and T. F. Heinz, Exciton binding energy and nonhydrogenic rydberg series in monolayer WS\textsubscript{2}, Phys. Rev. Lett. 113, 076802 (2014).

W. Song and L. Yang, Quasiparticle band gaps and optical spectra of strained monolayer transition-metal dichalcogenides, Phys. Rev. B 96, 235441 (2017).

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor, Nat. Mater. 13, 1091 (2014).

M. H. Naik and M. Jain, Origin of layer dependence in band structures of two-dimensional materials, Phys. Rev. B 95, 165125 (2017).

M. H. Naik and M. Jain, Substrate screening effects on the quasiparticle band gap and defect charge transition levels in mos\textsubscript{2}, Phys. Rev. Materials 2, 084002 (2018).

A. J. Bradley, M. M. Ugeda, F. H. da Jornada, D. Y. Qiu, W. Ruan, Y. Zhang, S. Wickenburg, A. Riss, J. Lu, S.-K. Mo, Z. Hussain, Z.-X. Shen, S. G. Louie, and M. F. Crommie, Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe\textsubscript{2} nanostructures, Nano Lett. 15, 2594 (2015).

H. Jiang, Electronic band structures of molybdenum and tungsten dichalcogenides by the GW approach, J. Phys. Chem. C 116, 7664 (2012).

Y. Liang, S. Huang, R. Soklaski, and L. Yang, Quasiparticle band-edge energy and band offsets of monolayer of molybdenum and tungsten chalcogenides, Appl. Phys. Lett. 103, 042106 (2013).

L. Hedin, New method for calculating the one-particle green’s function with application to the electron-gas problem, Phys. Rev. 139, A796 (1965).

M. S. Hybertsen and S. G. Louie, First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators, Phys. Rev. Lett. 55, 1418 (1985).

M. van Schilfgaarde, T. Kotani, and S. Faleev, Quasiparticle self-consistent GW theory, Phys. Rev. Lett. 96, 226402 (2006).

D. Y. Qiu, F. H. da Jornada, and S. G. Louie, Screening and many-body effects in two-dimensional crystals: Monolayer MoS\textsubscript{2}, Phys. Rev. B 93, 235435 (2016).

F. H. da Jornada, D. Y. Qiu, and S. G. Louie, Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality, Phys. Rev. B 95, 035109 (2017).

J. Deslippe, G. Samsonidze, M. Jain, M. L. Cohen, and S. G. Louie, Coulomb-hall summations and energies for GW calculations with limited number of empty orbitals: A modified static remainder approach, Phys. Rev. B 87, 165124 (2013).

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Scandolo, S. Scandolo, G. Sclauzero, R. M. Seiw dumpen, A. Smogunov, F. Umari, and R. M. Wentz-covitch, QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009).

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).

J. Zemann, Crystal structures, 2nd edition. Vol. 1 by R. W. G. Wyckoff, Acta Crystallogr. 18, 139 (1965).

P. B. James and M. T. Lavik, The crystal structure of Fe\textsubscript{2}O\textsubscript{3}, Acta Crystallogr. 16, 1183 (1963).

W. G. Dawson and D. W. Bullett, Electronic structure and crystallography of MoTe\textsubscript{2} and WTe\textsubscript{2}, J. Phys. C: Solid State Phys. 20, 6159 (1987).

J. Deslippe, G. Samsonidze, D. A. Strube, M. Jain, M. L. Cohen, and S. G. Louie, Berkeley: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures, Comput. Phys. Commun. 183, 1269 (2012).

M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B 34, 5390 (1986).

M. Rohlfing and S. G. Louie, Electron-hole excitations and optical spectra from first principles, Phys. Rev. B 62, 4927 (2000).

R. W. Godby and R. J. Needs, Metal-insulator transition in Kohn-Sham theory and quasiparticle theory, Phys. Rev. Lett. 62, 1169 (1989).

A. Oschlies, R. W. Godby, and R. J. Needs, GW self-energy calculations of carrier-induced band-gap narrowing in n-type silicon, Phys. Rev. B 51, 1527 (1995).

S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27, 1787 (2006).

S. Oh and H. J. Choi, Orbital angular momentum analysis for giant spin splitting in solids and nanostructures, Sci. Rep. 7, 2024 (2017).

J. A. Baglio, Characterization of n-type semiconducting tungsten disulfide photoanodes in aqueous and nonaque-
ous electrolyte solutions, J. Electrochem. Soc. **129**, 1461 (1982).

[58] K. K. Kam, C. L. Chang, and D. W. Lynch, Fundamental absorption edges and indirect band gaps in \(W_{1-x} Mo_x Se_2 (0 \leq x \leq 1) \), J. Phys. C: Solid State Phys. **17**, 4031 (1984).

[59] K. K. Kam and B. A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides, J. Phys. Chem. **86**, 463 (1982).

[60] A. R. Beal and W. Y. Liang, Excitons in 2H-WSe_2 and 3R-WS_2, J. Phys. C: Solid State Phys. **9**, 2459 (1976).

[61] M. Traving, M. Boehme, L. Kipp, M. Skibowski, F. Starrrost, E. E. Krasovskii, A. Perlov, and W. Schattke, Electronic structure of WSe_2: A combined photoemission and inverse photoemission study, Phys. Rev. B **55**, 10392 (1997).

[62] I. G. Lezama, A. Ubaldini, M. Longobardi, E. Giannini, C. Renner, A. B. Kuzmenko, and A. F. Morpurgo, Surface transport and band gap structure of exfoliated 2H-MoTe_2 crystals, 2D Mater. **1**, 021002 (2014).

[63] C. Ballif, M. Regula, P. E. Schmid, M. Remškar, R. Sanjinés, and F. Lévy, Preparation and characterization of highly oriented, photoconducting WS_2 thin films, Appl. Phys. A **62**, 543 (1996).

[64] J. B. Neaton, M. S. Hybertsen, and S. G. Louie, Renormalization of Molecular Electronic Levels at Metal-Molecule Interfaces, Phys. Rev. Lett. **97**, 216405 (2006).

[65] H. Heo, J. H. Sung, S. Cha, B.-G. Jang, J.-Y. Kim, G. Jin, D. Lee, J.-H. Ahn, M.-J. Lee, J. H. Shim, H. Choi, and M.-H. Jo, Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks, Nat. Commun. **6**, 7372 (2015).