A note on Perelman’s no shrinking breather theorem

Yongjia Zhang

April 27, 2018

As an application of his entropy formula, Perelman [8] proved that every compact shrinking breather is a shrinking gradient Ricci soliton. We give a proof for the complete noncompact case by using Perelman’s \(L \)-geometry. Our proof follows the argument in Lu and Zheng [6] of constructing an ancient solution, and removes a technical assumption made by them. For other proofs with additional assumptions, please refer to Zhang [9].

1 Introduction

After showing that the Ricci flow is the gradient flow of the \(F \) functional

\[
F(g, f) := \int_M (|\nabla f|^2 + R) e^{-f} dg,
\]

Perelman [8] indicated that the Ricci flow on a manifold \(M \) can be regarded as an orbit in the space

\[
\text{Met}(M) / \text{Diff},
\]

where Met(\(M \)) stands for the space of all the Riemannian metrics on \(M \) and Diff represents all the self-diffeomorphisms on \(M \). The breathers are the periodic orbits in this space.

Definition 1. A metric \(g(t) \) evolving by the Ricci flow on a Riemannian manifold \(M \) is called a breather, if for some \(t_1 < t_2 \), there exists an \(\alpha > 0 \), a diffeomorphism \(\phi : M \to M \), such that \(\alpha g(t_1) = \phi^* g(t_2) \). If \(\alpha = 1 \), \(\alpha < 1 \), or \(\alpha > 1 \), then the breather is called steady, shrinking, or expanding, respectively.

As a special case of the periodic orbits, the Ricci solitons, moving by diffeomorphisms, are the static orbits in the space Met(\(M \))/Diff.

Definition 2. A gradient Ricci soliton is a tuple \((M, g, f)\), where \((M, g)\) is a Riemannian manifold and \(f \) is a smooth function on \(M \) called the potential function, satisfying

\[
\text{Ric} + \nabla^2 f = \frac{\lambda}{2} g,
\]
where \(\lambda = 0, \lambda = 1, \) or \(\lambda = -1 \), corresponding to the cases of steady, shrinking, or expanding solitons, respectively.

It is well understood that when moving by the 1-parameter family of diffeomorphisms generated by the potential function, along with a scaling factor, the pull-back metric on the soliton satisfies the Ricci flow equation, and this Ricci flow is called the canonical form of the Ricci soliton; one may refer to [3] for more details.

Perelman proved that on a closed manifold, any periodic orbit in \(\text{Met}(M)/\text{Diff} \) must be static.

Theorem 3 (Perelman’s no breather theorem). A steady, shrinking, or expanding breather on a closed manifold is (the canonical form of) a steady, shrinking, or expanding gradient Ricci soliton, respectively. In particular, in the steady or expanding case, the breather is also Einstein.

We extend the no shrinking breather theorem to the complete noncompact case.

Theorem 4. Every complete noncompact shrinking breather with bounded curvature is (the canonical form of) a shrinking gradient Ricci soliton.

Our main technique is the \(\mathcal{L} \)-geometry, one of the two monotonicity formulae on the Ricci flow found by Perelman. In section 2 we give a brief introduction to the \(\mathcal{L} \)-functional. In section 3 we prove Theorem 4.

2 Perelman’s \(\mathcal{L} \)-geometry

The definitions and results in this section can be found in Perelman [8] and Naber [7]. We consider a backward Ricci flow \((M, g(\tau)), \tau \in [0, T] \), satisfying

\[
\frac{\partial}{\partial \tau} g(\tau) = 2\text{Ric}(g(\tau)).
\]

(1)

Let \(\gamma(\tau) : [0, \tau_0] \to M \) be a smooth curve, then the \(\mathcal{L} \)-functional of \(\gamma \) is defined by

\[
\mathcal{L}(\gamma) := \int_0^{\tau_0} \sqrt{T} \left(R(\gamma(\tau), \tau) + |\dot{\gamma}(\tau)|^2_{g(\tau)} \right) d\tau.
\]

(2)

The reduced distance between two space-time points \((x_0, 0), (x_1, \tau_1)\), where \(\tau_1 > 0 \), is defined by

\[
l_{(x_0, 0)}(x_1, \tau_1) := \frac{1}{2\sqrt{\tau_1}} \inf_{\gamma} \mathcal{L}(\gamma),
\]

(3)
where the inf is taken among all the (piecewise) smooth curves \(\gamma : [0, \tau_1] \to M \), such that \(\gamma(0) = x_0 \) and \(\gamma(\tau_1) = x_1 \). When regarded as a function of \((x_1, \tau_1) \), we call \(l_{(x_0,0)}(\cdot, \cdot) \) the reduced distance based at \((x_0,0) \). When the base point is understood, we also write \(l_{(x_0)}(\cdot, \cdot) \) as \(l \). It is well known that the reduced volume based at \((x_0,0) \)

\[
V_{(x_0,0)}(\tau) := \int_M (4\pi \tau)^{-\frac{n}{2}} e^{-l_{(x_0,0)}(\cdot, \tau)} dg(\tau)
\]

is monotonically decreasing in \(\tau \). We often write \(V_{(x_0,0)}(\tau) \) as \(V(\tau) \) for simplicity. We also remark here that the integrand \((4\pi \tau)^{-\frac{n}{2}} e^{-l} \) of the reduced volume is a subsolution to the conjugate heat equation

\[
\frac{\partial}{\partial \tau} u - \Delta u + Ru = 0,
\]

in the barrier sense or in the sense of distribution.

Now we consider an ancient solution \((M, g(\tau)) \), where \(\tau \in [0, \infty) \) is the backward time. The Type I condition is the following curvature bound.

Definition 5. An ancient solution \((M, g(\tau)) \), where \(\tau \in [0, \infty) \) is the backward time, is called Type I if there exists \(C < \infty \), such that

\[
|Rm|(\tau) \leq \frac{C}{\tau},
\]

for every \(\tau \in (0, \infty) \).

To ensure the existence of a smooth limit, the \(\kappa \)-noncollapsing condition is often required.

Definition 6. A backward Ricci flow is called \(\kappa \)-noncollapsed, where \(\kappa > 0 \), if for any space-time point \((x, \tau) \), any scale \(r > 0 \), whenever \(|Rm| \leq r^{-2} \) on \(B_g(\tau)(x, r) \times [\tau, \tau + r^2] \), it holds that \(\text{Vol}_g(\tau)(B_g(\tau)(x, r)) \geq \kappa r^n \).

We will use the following theorem of Naber [7].

Theorem 7 (Asymptotic shrinker for Type I ancient solution). Let \((M, g(\tau)) \), where \(\tau \in [0, \infty) \) is the backward time, be a Type I \(\kappa \)-noncollapsed ancient solution to the Ricci flow. Fix \(x_0 \in M \). Let \(l \) be the reduced distance based at \((x_0,0) \). Let \(\{(x_i, \tau_i)\}_{i=1}^{\infty} \subset M \times (0, \infty) \) be such that \(\tau_i \nearrow \infty \) and

\[
\sup_{i=1}^{\infty} l(x_i, \tau_i) < \infty.
\]

Then \(\{(M, \tau_i^{-1} g(\tau_i), (x_i, 1))_{\tau \in [1,2]}\}_{i=1}^{\infty} \) converges, after possibly passing to a subsequence, to the canonical form of a shrinking gradient Ricci soliton.
Remark 1: In Naber’s original theorem, he fixes the base points \(x_i \equiv x_0 \). However, it is easy to observe from his proof that so long as (5) holds, all the estimates of \(l \) also hold in the same way as in his case. Hence one may apply the blow-down shrinker part of Theorem 2.1 in [7] to the sequence of space-time base points \((x_i, \tau_i)\) and the scaling factors \(\tau_i^{-1} \).

Remark 2: The estimates for \(l \) and the monotonicity formula for \(V \) in [7] do not depend on the noncollapsing condition. According to Hamilton [4], if the noncollapsing assumption is replaced by

\[
\inf_{i=1}^{\infty} \text{inj}_{\tau_i^{-1}g(\tau)}(x_i) > \delta,
\]

where \(\text{inj}_g(x) \) stands for the injectivity radius of the metric \(g \) at the point \(x \), and \(\delta > 0 \) is a constant, then the conclusion of Theorem 7 still holds.

3 Proof of the main theorem

Following the argument in Lu and Zheng [6], we construct a Type I ancient solution to the Ricci flow starting from a given shrinking breather. After scaling and translating in time, we consider the backward Ricci flow \((M, g_0(\tau))_{\tau \in [0, 1]}\), where \(g_0(\tau) \) satisfies (1), such that there exists \(\alpha \in (0, 1) \) and a diffeomorphism \(\phi : M \to M \), satisfying

\[
\alpha g_0(1) = \phi^* g_0(0). \tag{7}
\]

Furthermore, we let \(C < \infty \) be the curvature bound, that is,

\[
\sup_{M \times [0, 1]} |Rm|(g(\tau)) \leq C. \tag{8}
\]

For notational simplicity, we define

\[
\tau_i = \sum_{j=0}^{i} \alpha^{-j},
\]

where \(i = 0, 1, 2, \ldots \) Apparently, \(\tau_i \to \infty \) since \(\alpha \in (0, 1) \), and we can find a \(C_0 < \infty \) depending only on \(\alpha \) (for instance, one may let \(C_0 = (1 - \alpha)^{-1} \)), such that

\[
\alpha^{-i} \leq \tau_i \leq C_0 \alpha^{-i}, \text{ for every } i \geq 0. \tag{9}
\]

For each \(i \geq 1 \), we define a Ricci flow

\[
g_i(\tau) := \alpha^{-i}(\phi^i)^* g_0(\alpha^i(\tau - \tau_{i-1})), \text{ where } \tau \in [\tau_{i-1}, \tau_i]. \tag{10}
\]
To see all these Ricci flows are well-concatenated, we apply (7) to observe that
\[g_1(\tau_0) = \alpha^{-1} \phi^* g_0(0) = g_0(1), \]
\[g_i(\tau_{i-1}) = \alpha^{-i} (\phi^i)^* g_0(0) = \alpha^{-(i-1)} (\phi^i)^* g_0(1) \]
\[= \alpha^{-(i-1)} (\phi^i)^* g_0 (\alpha^{i-1} (\tau_{i-1} - \tau_{i-2})) = g_{i-1} (\tau_{i-1}). \]

Therefore we define an ancient solution
\[g(\tau) = \begin{cases}
 g_0(\tau) & \text{for } \tau \in [0, 1] \\
 g_i(\tau) & \text{for } \tau \in [\tau_{i-1}, \tau_i] \text{ and } i \geq 1.
\end{cases} \tag{11} \]

It then follows from the uniqueness theorem of Chen and Zhu [2] that the ancient solution \(g(\tau) \) is smooth.

Now we proceed to show that \((M, g(\tau))_{\tau \in [0, \infty)}\), where \(g(\tau) \) is defined in (11), is Type I. We need only to consider the case when \(\tau \geq 1 \). Let \(i \geq 1 \) be such that \(\tau \in [\tau_{i-1}, \tau_i] \). Then
\[|Rm(g(\tau))| = |Rm(g_i(\tau))| \leq \alpha^i \sup_{M \times [0, 1]} \left| Rm\left((\phi^i)^* g_0(\tau) \right) \right| \leq C \alpha^i, \]
where we have used (8), (10), and (11). Then we have
\[|Rm(g(\tau))| \leq C \alpha^i \leq \frac{C}{\tau} \tau_i \alpha^i \leq \frac{B}{\tau}, \tag{12} \]
where we have used (9), and \(B = CC_0 \) is independent of \(i \).

With all the preparations, we are ready to prove our main theorem.

Proof of Theorem 4. Fix an arbitrary point \(y \in M \) as the base point, and for each \(i \geq 0 \) define
\[x_i = \phi^{-(i+1)}(y). \tag{13} \]

In Lu and Zheng [3], they made an assumption that \(\{x_i\}_{i=1}^\infty \) are not drifted away to space infinity so as to apply Theorem 4.1 in [1] to show that \(\{(M, \tau_i^{-1} g(\tau_i), (x_i, 1))_{\tau_i=[1,2]}\}_{i=1}^\infty \) converges, after passing to a subsequence, to the canonical form of a shrinking gradient Ricci soliton. Instead we will show that \(l(x_i, \tau_i) \), where \(i \geq 0 \) and \(l \) is the reduced distance based at \((y, 0) \), is a bounded sequence. To see this, we let \(\sigma : [0, 1] \to M \) be a smooth curve such that \(\sigma(0) = y \) and \(\sigma(1) = x_0 \). Let \(A < \infty \) be such that
\[|\dot{\sigma}(\tau)|_{g_0(\tau)} \leq A, \text{ for all } \tau \in [0, 1]. \tag{14} \]

For each \(i \geq 0 \), we define
\[\sigma_i(\tau) := \phi^{-(i+1)} \circ \sigma(\alpha_i^{i+1}(\tau - \tau_i)), \text{ where } \tau \in [\tau_i, \tau_{i+1}]. \tag{15} \]
We observe that these \(\sigma_i \)'s and \(\sigma \) altogether define a piecewise smooth curve in \(M \):
\[
\sigma_0(\tau_0) = \phi^{-1} \circ \sigma(0) = \phi^{-1}(y) = x_0 = \sigma(1),
\sigma_i(\tau_i) = \phi^{-(i+1)} \circ \sigma(0) = \phi^{-i} \circ \sigma(1) = \phi^{-i} \circ \sigma(\alpha^i(\tau_i - \tau_{i-1})) = \sigma_{i-1}(\tau_i).
\]
We then define \(\gamma_i : [0, \tau_{i+1}] \to M \), where \(i \geq 0 \), as
\[
\gamma_i(\tau) := \begin{cases}
\sigma(\tau) & \text{when } \tau \in [0, 1], \\
\sigma_j(\tau) & \text{when } \tau \in [\tau_j, \tau_{j+1}] \text{ and } 0 \leq j \leq i.
\end{cases}
\]
Apparenty \(\gamma_i(\tau) \) is piecewise smooth, and \(\gamma_i(0) = y \), \(\gamma_i(\tau_{i+1}) = \phi^{-(i+2)}(y) = x_{i+1} \). We compute for \(i \geq 0 \)
\[
\mathcal{L}(\gamma_i) = \mathcal{L}(\sigma) + \sum_{j=0}^{i} \int_{\tau_j}^{\tau_{j+1}} \sqrt{\tau \left(R(\sigma_j(\tau), \tau) + |\dot{\sigma}_j(\tau)|^2_{g_{j+1}(\tau)} \right)} d\tau
\leq D + \sum_{j=0}^{i} \int_{\tau_j}^{\tau_{j+1}} \sqrt{\tau \left(\frac{B}{\tau} + A\alpha^{j+1} \right)} d\tau
\]
where in the last inequality we have used \(D \), a constant independent of \(i \), to represent \(\mathcal{L}(\sigma) \), and we have used the Type I condition (12), the definition (15) of \(\sigma_j \), and the assumption (14). Continuing the computation using (9), we have
\[
\mathcal{L}(\gamma_i) \leq D + C_1 \sum_{j=0}^{i} \alpha^{-\frac{j+1}{2}},
\]
where \(C_1 \) is a constant independent of \(i \). It follows from the definition (3) that
\[
l(x_{i+1}, \tau_{i+1}) \leq \frac{1}{2\sqrt{\tau_{i+1}}} \mathcal{L}(\gamma_i)
\leq \frac{1}{2} D\alpha^{-\frac{i+1}{2}} + \frac{1}{2} C_1 \sum_{j=0}^{i} \alpha^{j} \leq C_2 < \infty,
\]
where \(C_2 \) is a constant independent of \(i \), and we have used \(\alpha^{\frac{i}{2}} \in (0, 1) \).

Now we consider the sequence
\[
\{(M, \tau_i^{-1}g(\tau_i), (x_i, 1))_{\tau \in [1, \alpha^{-1}]} \}_{i=1}^{\infty}.
\]
We observe that
\[
\tau_i^{-1}g(\tau_i) = \tau_i^{-1}\alpha^{-(i+1)} \left(\phi^{i+1} \right)^{*} g_0(0),
\]
where $\tau_i^{-1} \alpha^{-(i+1)}$ is bounded from above and below by constants independent of i, because of (9). Taking into account the definition (13) of x_i, we can use

$$\text{inj}_{g_0(0)}(y) > 0$$

to verify the condition (6). It follows from Theorem 7 that (16) converges smoothly to the canonical form of a shrinking gradient Ricci soliton. Furthermore, since $(M, \tau_i^{-1} g(\tau_i), x_i)$ and $(M, g_0(0), y)$ differ only by a bounded scaling constant and a diffeomorphism that preserves the base points, by the definition of the Cheeger-Gromov convergence, such diffeomorphism does not affect the limit. In other words, there exists a constant $C_3 > 0$, such that

$$(M, \tau_i^{-1} g(\tau_i), x_i) \rightarrow (M, C_3 g_0(0), y)$$

in the pointed smooth Cheeger-Gromov sense. Therefore $(M, g_0(0), y)$ also has a shrinker structure up to scaling. It then follows from the backward uniqueness of Kotschwar [5] that the shrinking breather $(M, g_0(\tau))_{\tau \in [0, 1]}$ is the canonical form of a shrinking gradient Ricci soliton.

Acknowledgement: The author is grateful to Professor Peng Lu and Professor Qi Zhang for their interest in this problem.

References

[1] Xiaodong Cao and Qi S. Zhang. The conjugate heat equation and ancient solutions of the Ricci flow. *Advances in Mathematics*, 228(5):2891–2919, 2011.

[2] Bing-Long Chen and Xi-Ping Zhu. Uniqueness of the Ricci flow on complete noncompact manifolds. *Journal of Differential Geometry*, 74(1):119–154, 2006.

[3] Bennett Chow, Sun-Chin Chu, David Glickenstein, Christine Guenther, Jim Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni. *The Ricci Flow: Techniques and Applications: Part I: Geometric Aspects*. American Mathematical Society, 2007.

[4] Richard Hamilton. A compactness property for solutions of the Ricci flow. *American Journal of Mathematics*, 117(3):545–572, 1995.

[5] Brett Kotschwar. Backwards uniqueness for the ricci flow. *International Mathematics Research Notices*, 2010(21):4064–4097, 2010.

[6] Peng Lu and Yu Zheng. New proofs of Perelman’s theorem on shrinking breathers in Ricci flow. *The Journal of Geometric Analysis*, pages 1–7, 2017.
[7] Aaron Naber. Noncompact shrinking four solitons with nonnegative curvature. *Journal für die reine und angewandte Mathematik (Crelles Journal)*, 2010(645):125–153, 2010.

[8] Grisha Perelman. The entropy formula for the Ricci flow and its geometric applications. *arXiv preprint math/0211159*, 2002.

[9] Qi S Zhang. A no breathers theorem for some noncompact Ricci flows. *Asian Journal of Mathematics*, 18(4):727–756, 2014.

Department of Mathematics, University of California, San Diego, CA, 92093
E-mail address: yoz020@ucsd.edu