Better latent heat and specific heat of stearic acid with magnetite/graphene nanocomposite addition for thermal storage application

R Andiarto¹,², M K Nuryadin¹,², A Taufik¹,² and R Saleh¹,²

¹Department of Physics, Faculty of Mathematics and Natural Sciences Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
²Integrated Laboratory of Energy and Environment, Faculty of Mathematics and Natural Sciences Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia

Corresponding author’s e-mail: rosari.saleh@gmail.com

Abstract. In our previous study, the addition of Magnetite (Fe₃O₄) into Stearic acid (Sa) as an organic phase change material (PCM) shows an enhancement in the latent heat for thermal energy storage applications. The latent heat of the PCM can also be increased by adding graphene material. Therefore, in this research, the thermal properties of Sa have been studied by the sonication method for several different concentrations of Fe₃O₄/Graphene nanocomposite additions. The structural properties of all of the samples were observed by X-Ray diffraction (XRD). Melting-solidifying behavior and specific heat value were measured by differential scanning calorimetry (DSC). The thermal degradation process of all samples was investigated by thermogravimetric analysis (TGA). Based on the DSC results, the presence of Fe₃O₄/Graphene in the Sa enhances the latent heat up to 20%. The specific heat value of the mixture was also found to be increased as the concentration of Fe₃O₄/Graphene to Sa increased. The TGA results show a lowered thermal degradation process of the Sa by the addition of the Fe₃O₄/Graphene which indicates a higher thermal stability of the mixture. In conclusion, the results demonstrate that the addition of Fe₃O₄/Graphene to Sa improves both the sensible heat and the latent heat of the mixture which are very important for thermal energy storage applications.

Keywords: Phase change materials, Fe₃O₄, graphene, latent heat

1. Introduction
Thermal energy storage (TES) based on phase change material (PCM) utilization has resulted an advancement in thermal energy applications [1-2]. The use of PCM for TES applications also has a great potential in many fields such as solar cell efficiency, heating and cooling building conservation systems, and thermal regulating textile materials [3-5]. From the various types of PCM, Stearic acid (Sa) is considered to be the most recommended organic PCM for TES applications due to its advantageous features, such as: non-toxic, non-corrosive, and applicable phase change temperature [6-7]. However, the using of stearic acid as PCMs materials still has a limitation due to low thermal conductivity of stearic acid. many researchers are trying to find ways to enhance the ability of PCMs in order to store and release heat so it can be used in large scale applications [8]. One of the most promising methods for enhancing the ability of a PCM to store and release heat is by adding nanoparticles to the PCM [9].

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd
In our previous study, the addition of the magnetite metal oxide material (Fe₃O₄) into the Sa resulted an enhancement in the latent heat value of the Sa [10]. Those results are supported by another study in which Fe₃O₄ nanoparticles were added to improve the ability of the organic PCM [11]. Moreover, the addition of carbon-based nanomaterials into the PCM also show an increment in the latent heat value of the PCM [12]. Based on above explanations, combining Fe₃O₄ and graphene materials is become a promising method for enhance the PCM performance. Therefore, in this study, Fe₃O₄/Graphene nano composite was synthesized using the hydrothermal method and then mixed with Sa in the various concentrations of 0.3, 0.5, 0.8, 1, and 5% wt (weight transfer) to form a Sa/Fe₃O₄/Graphene mixture. Thermal investigation was then carried out in order to observe the thermal properties of the samples to determine their effectiveness for use in TES applications.

2. Experimental setup

In this study, Stearic acid (C₁₇H₃₅CO₂H) was used as a phase change material. Iron (II) sulfate heptahydrate (FeSO₄·7H₂O), sodium hydroxide (NaOH), and ethylene glycol were used to synthesize Fe₃O₄ nanoparticles. The synthesis process followed the same method as our previous study [13]. All of the reagents were purchased from Merck and used without further purification. The synthesized Fe₃O₄ was then combined with Graphene (Angstrom Materials) to form a Fe₃O₄/Graphene nano composite using the hydrothermal method with 5 wt.% Graphene added to the Fe₃O₄. In brief, the synthesis process of the Fe₃O₄/Graphene nano composite was started by sonicating Graphene with distilled water for 2 hours. The resulting solution was then mixed with Fe₃O₄ nanoparticles and then stirred with a magnetic stirrer. The mixture that formed was then heated at 70°C for 3 hours. The Fe₃O₄/Graphene nano composite which formed was then centrifuged and heated at 70°C for 12 hours in vacuum conditions. The combination of the Stearic acid (Sa) with the Fe₃O₄/Graphene nano composite was performed by dispersing the desired amount of the Fe₃O₄/Graphene (0.3, 0.5, 0.8, 1, and 5% wt) into the Sa in an ultrasonic bath for 2 hours.

The structural properties of the Fe₃O₄/Graphene nano composite and Sa/Fe₃O₄/Graphene mixtures were characterized by X-Ray diffraction (XRD). Thermogravimetric analysis (TGA) was also performed in order to prove the presence of Graphene in the Fe₃O₄/Graphene nano composite. The thermal degradation process of the samples was also observed through TGA while the differential thermogravimetric analysis (DTGA) was calculated based on the TGA data. For the thermal properties of the Sa/Fe₃O₄/Graphene samples, differential scanning calorimetry (DSC) was used in order to observe the phase transformation process, the latent heat value, and the specific heat value (Cₜ).

3. Results and discussion

The presence of Graphene in the Fe₃O₄/Graphene nano composite was proved by the TGA results as shown in figure 1a. The TGA measurements were investigated in order to determine the thermal degradation process of the nano composite. As can be seen in figure 1a, the degradation process was started at 400°C which indicates the combustion effect from the Graphene [14]. Moreover, the percentage loss residue at the end of measurement at 1000°C shows the composition of Graphene in the Fe₃O₄/Graphene nano composite which is about 5% wt. This result confirms the presence of Graphene in the Fe₃O₄/Graphene nano composite.

The XRD results of the Fe₃O₄/Graphene nano composite, along with the Sa and Sa/Fe₃O₄/Graphene 5% wt, are shown in figure 1b. Based on the XRD spectrum of Fe₃O₄/Graphene, there are peaks that can be seen at the 2θ ≈ 30.2°, 35.5°, 53.4°, and 57.0° which represent the (220), (311), (511), and (440) planes of the inverse cubic spinel structure of Fe₃O₄. There is no sign of the Graphene peak pattern in the Fe₃O₄/Graphene XRD measurement which is due to Graphene’s amorphous properties [15]. For the Sa spectrum shown in figure 1b, there are two readily indexed peaks at 2θ ≈ 21.3° and 24.7° which show the regular crystallization pattern of the Sa. The XRD measurement of the Sa/Fe₃O₄/Graphene shows the combination between the crystallinity peak patterns of Fe₃O₄/Graphene and Sa which confirms the presence of the desired Fe₃O₄/Graphene crystallinity in the Sa. The melting and solidifying
process of the Sa/Fe$_3$O$_4$/Graphene mixtures was measured and analyzed through DSC. The phase change process of the PCM indicates the main characteristic of the PCM as an application for latent heat thermal storage (LHTS) [16]. The resulting curve of DSC measurements is shown in figure 2a. Based on the results, it can be seen that all of the samples performed the one-step process of endothermic and exothermic under melting and solidifying process. Qualitatively, the total area under the curve shows how much heat is involved in the phase change process. As can be seen in figure 2a, the area under the DSC curve of the Sa/Fe$_3$O$_4$/Graphene shows a larger curve than the Sa alone. This signifies the enhancement of the heat involved during the store and release process in the phase change process [11]. The resulting DSC curves shown in figure 2a also provide information about the melting point temperatures and solidifying point temperatures alongside the latent heat values which are calculated through the integration of the area under the DSC curve. All of the data from the DSC curve are tabulated in table 1. Based on the data, it can be concluded that the addition of the Fe$_3$O$_4$/Graphene
The Sa did not have any favorable effect on the melting and solidifying temperature behavior of the Sa. However, the latent heat value calculation for the Sa was found to be enhanced by the presence of Fe₃O₄/Graphene. The latent heat value of the Sa was found to increase as the concentration of Fe₃O₄/Graphene increased. The maximum enhancement was found at the 1% wt concentration of the Fe₃O₄/Graphene to Sa ratio. This result shows that the addition of Fe₃O₄/Graphene to Sa enhances the capability of the Sa to store and release heat. The enhancement of the Sa’s latent heat value due to the presence of Fe₃O₄/Graphene can be explained by the intermolecular interaction between the Sa and the Fe₃O₄/Graphene [12].

The specific heat (Cₚ) calculations were also analyzed using the corresponding DSC curves in order to observe the sensible heat ability for the sensible heat storage application [17]. The specific heat calculations from 35°C to 65°C are shown in figure 2b. Based on the results, it can be determined that as the concentration of the Fe₃O₄/Graphene in the Sa increased, the specific heat value of the Sa/Fe₃O₄/Graphene mixture also increased. The enhancement of the specific heat can also be seen from the average heat value which is shown in table 2. Based on the average value, the maximum enhancement of specific heat was found at the concentration of 5% wt of Fe₃O₄/Graphene.

The thermal degradation process of the Sa/Fe₃O₄/Graphene in all variations was observed through TGA. The results are shown in figure 3a. The onset and percentage loss data based on the corresponding TGA curves are tabulated in table 2. Based on those results, it can be observed that the

Sample	Solid-liquid Tₚpeak	liquid-solid Tₚonset	Melting ΔHm (J/g)	Solidifying ΔHs (J/g)
Stearic acid (Sa)	70.5	67	177.6	174.1
Sa/Fe₃O₄/Graphene 0.3%	70.2	67.3	199.7	196.3
Sa/Fe₃O₄/Graphene 0.5%	70.4	67.4	210.3	206.8
Sa/Fe₃O₄/Graphene 0.8%	70.1	67.2	214.5	212
Sa/Fe₃O₄/Graphene 1%	70.2	67.3	216.6	213.2
Sa/Fe₃O₄/Graphene 5%	70.2	67.3	199	194.5

Table 1. Solid-liquid, liquid-solid temperature data and latent heat value for melting and solidifying process of Sa/Fe₃O₄/Graphene in all variation.

Figure 3. TGA curve (a) and DTGA curve (b) for the Sa/Fe₃O₄/Graphene in all variation.
Table 2. Average Specific heat (C_p) value calculation of Sa/Fe$_3$O$_4$/Graphene in all variation.

Samples	Average C_p (J/g°C)	Onset (°C)	Percentage weight lost (%)
Stearic acid (Sa)	2.48	251.6	100
Sa/Fe$_3$O$_4$/Graphene 0.3%	2.59	254	99.6
Sa/Fe$_3$O$_4$/Graphene 0.5%	2.84	253.3	99.59
Sa/Fe$_3$O$_4$/Graphene 0.8%	2.97	253.6	99.19
Sa/Fe$_3$O$_4$/Graphene 1%	3.03	255.5	99.08
Sa/Fe$_3$O$_4$/Graphene 5%	3.06	254.1	94.91

Sa/Fe$_3$O$_4$/Graphene mixture in all variations has a strong thermal stability up to 200°C. The degradation process was found to suffer from gradual weight loss at 250°C which was due to the evaporation process of the Sa. Furthermore, the percentage loss data shows that the Fe$_3$O$_4$/Graphene was in the appropriate composition of variation.

Using the TGA results, differential thermogravimetric analysis was performed to calculate how fast the degradation process occurred due to temperature for each sample. The DTGA results are shown in figure 3b. The lowest peak indicates the faster degradation process of the Sa. As can be seen in the DTGA curve, the addition of Fe$_3$O$_4$/Graphene into the Sa can slow the degradation process. Some research has previously stated that the slower degradation process may result in an incremental increase in the thermal stability of the PCM [18].

4. Conclusions

Fe$_3$O$_4$/Graphene has been successfully synthesized through the sol-gel method and used as an additive material into Sa. The DSC results show that the latent heat value of the Sa increases due to the addition of the Fe$_3$O$_4$/Graphene with the maximum enhancement at 1% wt of Fe$_3$O$_4$/Graphene. Furthermore, the increments can be found in the specific heat results with the maximum enhancement at 5% wt of Fe$_3$O$_4$/Graphene. The enhancement of both latent heat and specific heat also shows that the Sa/Fe$_3$O$_4$/Graphene mixture is suitable for latent heat and sensible heat storage. Moreover, the thermal stability of the Sa was found to be enhanced due to the presence of the Fe$_3$O$_4$/Graphene as seen by the slower degradation process.

References

[1] Regin A F, Solnaki S C and Saini J S 2008 Renew. Sustainable Energy Rev. 12 2438-58
[2] Sharma A, Tyagi V V, Chen C R and Buddhi D 2009 Renew. Sustainable Energy Rev. 13 318-45
[3] Tyagi V V and Buddhi D 2007 Renew. Sustainable Energy Rev. 11 1146-66
[4] Khodadadi J M, Fan L and Babaei H 2013 Renew. Sustainable Energy Rev. 24 418-44
[5] Mondal S 2008 Appl. Therm. Eng. 28 1536-50
[6] Zalba B, Marin J M, Cabeza L F and Mehling H 2003 Appl. Therm. Eng. 23 251-83
[7] Caio L, Tang Y and Fang G 2015 Energy 80 98-103
[8] Feldman D, Shapiro M M, Banu D and Fucks C J 1989 Sol. Energ. Mat. Sol. 18 201-16
[9] Kibria M A, Anisur M R, Mahfuz M H, Saidur R and Metselaar H S C 2015 Energy Convers. Manage. 95 69-89
[10] Andiarto R, Nuryadin M K and Saleh R 2016 J. Phys. Conf. Ser. 710 012020
[11] Sahan N and Paksoy H O 2014 Sol. Energ. Mat. Sol. 126 56-61
[12] Shaiikh S, Lafdi K and Halfinian K 2008 J. Appl. Phys. 103 094302
[13] Arifin S A, Jalaludin S and Saleh R 2015 Adv. Mat. Res. 1123 264-9
[14] Loryuenyong V, Totevpniam K, Eimburanaaprat P, Boonchompoo W and Buasri A 2013 Adv. Mater. Sci. Eng. 2013 923403
[15] Ferrari A C 2007 Solid State Commun. 143 47-57
[16] Sharma R K, Ganesan P, Tyagi V V, Metselaar H S C and Sandaran S C 2016 Appl. Therm. Eng. 99 1254-62
[17] Chieruzzi M, Cerritelli G F, Miliozzi A and Kenny J M 2013 Nanoscale Res. Lett. 8 448
[18] Tahan S, Mehrali M, Mehrali M, Meurah T, Mahlia I, Simon H and Metselaar C 2013 Energy 61 664-72