Targeting activated hepatic stellate cells (aHSCs) for liver fibrosis imaging

Dan Li1,2,1, Li He1, Huizhuang Guo3, Hanwei Chen3 and Hong Shan1,2,4*

Abstract

Following injurious stimuli, quiescent hepatic stellate cells (qHSCs) transdifferentiate into activated HSCs (aHSCs). aHSCs play pivotal roles in the onset and progression of liver fibrosis. Therefore, molecular imaging of aHSCs in liver fibrosis will facilitate early diagnosis, prognosis prediction, and instruction and evaluation of aHSC-targeted treatment. To date, several receptors, such as integrin αvβ3, mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF-IIR), collagen type VI receptor (CVIR), platelet-derived growth factor receptor-β (PDGFR-β), vimentin, and desmin, have been identified as biomarkers of aHSCs. Corresponding ligands to these receptors have also been developed. This review will discuss strategies for developing aHSC-targeted imaging in liver fibrosis.

Keywords: Molecular imaging, Activated hepatic stellate cells (aHSCs), Liver fibrosis, Biomarkers, Ligands

Review

Introduction

Liver fibrosis is a major public health problem and contributes to substantial morbidity and mortality. Iterative injury, abnormal wound healing processes, and redundant extracellular matrix (ECM) accumulation lead to liver fibrosis. Liver fibrosis can be divided into several stages according to the extent of fibrosis. Cirrhosis, an advanced stage of liver fibrosis, can cause many severe complications including portal hypertension, hepatic insufficiency, blood disorders, and hepatocellular carcinoma. Early diagnosis and precise staging of liver fibrosis are very important in managing the disease.

Although liver biopsy is regarded as the gold standard to evaluate liver fibrosis, it has several disadvantages including invasive nature, sampling error, inter/intra-observer variation in the pathological measurement, and the related complications [1, 2]. Multiple serum markers have been employed for liver fibrosis assessment but with limited sensitivity and specificity. Besides conventional imaging techniques, several new imaging techniques, including ultrasound-based transient elastography (TE) [3, 4], magnetic resonance (MR) elastography [5–7], acoustic radiation force impulse (ARFI) ultrasound imaging [8, 9], MR diffusion-weighted imaging (DWI) [10–12], T1p MR imaging [13–15], and MR perfusion-weighted imaging (PWI) [16, 17], have been applied to detect liver fibrosis. However, these techniques are usually based on morphological alterations of the liver and thus have difficulties to detect liver fibrosis at the early initiation stage or reflect the activity of liver fibrosis accurately. On the contrary, molecular imaging can provide the cellular or molecular information of a diseased liver, which will facilitate early diagnosis and accurate staging of liver fibrosis. In this review, we summarize recent studies on activated hepatic stellate cell (aHSC)-targeted imaging in liver fibrosis.

Biological and pathological function of hepatic stellate cells

Hepatic stellate cells (HSCs) are situated in the space of Disse, between hepatocytes and sinusoidal endothelial cells. They constitute ~15 % of the total liver resident cells [18] and account for ~1.5 % of the total liver volume. In normal liver, HSCs are in the quiescent state and play important roles in supporting liver development and regeneration, vitamin A storage, immunoregulation, liver hemodynamic homeostasis, etc. [19]. Following injurious stimuli, quiescent HSCs (qHSCs) transdifferentiate into aHSCs. HSCs...
activation consists of two main phases: initiation and perpetuation [19, 20]. During the initiation phase, HSCs have gene and phenotype alteration to facilitate cellular response to a range of cytokines. After entering the perpetuation phase, HSCs are characterized by various changes in cell behavior, such as increase in the absolute cell number, ECM production, migration towards chemokines, contraction, loss of retinoid droplets, altered matrix degradation, and inflammatory signaling. aHSC quantity is clearly associated with fibrosis severity [21, 22]. Moreover, resolution of fibrosis is attributed to aHSC apoptosis [23], senescence [24], or their reversion to the quiescent state. Based on their important pathological role, aHSCs are essential targets for the diagnostic imaging of liver fibrosis (Fig. 1). Molecular imaging of aHSCs in liver fibrosis is expected to achieve the following objectives: (1) early diagnosis (aHSC detection before the pathological changes in the liver), (2) prognosis prediction (progression or regression), and (3) instruction and evaluation of aHSC-targeted treatment.

Targets with imaging

Integrin αvβ3

Integrins are heterodimeric glycoprotein receptors formed by α and β subunits. To date, 18 types of α subunits and 8 types of β subunits have been recognized in mammals [25]. Different assemblies of the α and β subunits result in 24 distinct integrins [26], and each type of integrin has a defined binding specificity and signal transduction pathway. Integrins are the major receptors that mediate cellular adhesion and reaction to the ECM and thus play essential roles in regulating cell migration, growth, division, survival, differentiation, and apoptosis. Dysfunction of integrins is found in various pathological processes. Among the integrin family, integrin αvβ3 has been most thoroughly studied. It is highly expressed in both tumor cells [27] and activated endothelial cells [28–30] and regulates tumor progression, metastasis, and angiogenesis. Various ECM proteins like vitronectin, fibrinogen, and fibronectin interact with the integrin αvβ3 via the arginine-glycine-aspartate (RGD) motif [31]. Based on this discovery, diverse RGD derivatives have been developed using many synthetic strategies including RGD-flanking amino acid residues (RGD4C, RGD10) [32, 33], cyclization (cRGDyK, cRGDFK) [34, 35], and N-methylation (cRGDF-N(Me)V) [36]. Several nucleic acid aptamers were also reported to specifically recognize integrin αvβ3 [37–39]. Integrin αvβ3-targeted imaging [40, 41] and therapy [42, 43] in tumor have been extensively studied using these RGD ligands.

Studies in liver fibrosis show that integrin αvβ3 is upregulated on aHSCs [44–46] and promotes HSCs survival and proliferation [44]. In contrast, the expression level of integrin αvβ3 is low in qHSCs, hepatocytes, and other nonparenchymal cells [47]. Therefore, integrin αvβ3 can serve as a novel target for molecular imaging of HSCs. Cyclic pentapeptides cRGDyK [34] and cRGDFK [35] are the...
most exploited for integrin αvβ3 targeting. Cellular experiments demonstrated that cRGDFK was uptaken by aHSCs instead of qHSCs or hepatocytes [45]. 125I-cRGDFK-based historadioautography assay of rat hepatic sections showed that the hepatic relative densitometry was positively correlated with the severity of liver fibrosis [47]. Nuclear imaging, a highly sensitive technology, is widely used in both pre-clinical and clinical studies. 99mTc is one of the most popular radionuclides because of its desirable nuclear properties (t1/2 = 6.02 h, Eγ = 140.51 keV, Iγ = 89.06%), facile availability, and low cost. Li et al. [47] systemically investigated the potential of 99mTc-labeled cRGDFK for single-photon emission computed tomography (SPECT) imaging of HSC activity in fibrotic livers. 99mTc-cRGDFK was administrated through intravenous (i.v.) injection to assess the hepatic expression of integrin αvβ3 in fibrotic (thioacetamide, TAA treatment) and control rats. At 45 min post injection (p.i.), the mean radioactivity ratio of the liver to heart (MRAR) could distinguish among rats with normal, mild fibrotic (TAA treatment for 3 weeks), or advanced fibrotic (TAA treatment for 9 weeks) liver (Fig. 2). 99mTc-cRGDFK uptake in fibrotic liver was blocked successfully through co-administration of cold cRGDFK, which confirmed the specificity of liver uptake. Small peptides are predominantly cleared via the kidney. Besides, integrin αvβ3 is expressed on renal glomerular endothelial cells and, to a lesser extent, on tubular endothelial cells [48, 49]. Therefore, kidney uptake of 99mTc-

Fig. 2 Radionuclide images of the integrin αvβ3 expression in the livers of the normal control and liver fibrosis rats. Mild and advanced fibroses were respectively induced in rats by thioacetamide (TAA) treatment for 3 and 9 weeks. Each animal was administered 6 μCi of 99mTc-cRGDFK by way of the penile vein. a The representative radionuclide images were obtained at 15, 30, and 45 min after administration. b The region of interest (ROI) in the liver and heart was discriminated, and the radioactivity (counts/pixel) ratio of the liver to heart was calculated and compared. Data represent means ± SD (n = 3 per group). *P < 0.05 versus the control group, #P < 0.05 versus mild fibrosis. Reproduced with permission from ref. [47]
cRGDfK was high. In this condition, radiotoxicity to the kidneys needs to be considered.

To improve integrin $\alpha v\beta 3$-targeted imaging, the binding avidity for integrin $\alpha v\beta 3$ has been maximized through the use of dimeric cyclic RGD peptides [48, 50–52]. 99mTc-3PRGD2 (3PRGD2 = PEG4-E[PEG4-(cRGDfK)]2; PEG4 = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) is one promising radiotracer [53–55]. The addition of PEG4 linkers increases the distance between the two RGD motifs and thus facilitates simultaneous binding to the neighboring integrin $\alpha v\beta 3$ [53]. 99mTc-3PRGD2 shows fast excretion kinetics from the liver and kidneys [53, 54], which will lead to better lesion-to-background contrast. Moreover, 99mTc-3PRGD2 can be readily produced in high yield and purity from a kit formulation [54, 55]. Zhang et al. further used 99mTc-3PRGD2 for a liver fibrosis study [57]. At 30 min p.i., the MRAR in rats with advanced liver fibrosis (1.98 ± 0.08) was significantly higher than that in control rats (1.50 ± 0.12). Also, the liver $t_{1/2}$ in the fibrosis group (27.07 ± 10.69 min) was significantly longer than that in the control group (12.67 ± 4.10 min). However, the researchers did not study whether 99mTc-3PRGD2 could be used for fibrosis staging. In both of the above two studies [47, 57], clinical SPECT machines were used for imaging; thus, the MRAR was relatively low and should be improved to attain precise diagnosis. Since 99mTc-3PRGD2 has the potential for clinical translation, clinical trials in patients with liver fibrosis are also expected.

Magnetic resonance (MR) imaging produces images using magnetic fields and radio waves. It is absent of radiation and excellent at providing both anatomic and functional information. Both T1-positive (e.g., gadolinium chelates) and T2-negative (e.g., superparamagnetic iron oxide nanoparticles) contrast agents are used for MR imaging to boost up imaging sensitivity. Wang et al. conjugated cRGDyC with ultrasmall superparamagnetic iron oxide (USPIO) for aHSC-targeted MR imaging [46]. The preparation of the cRGDyC-USPIO probe includes three steps: synthesis of USPIO coated with oleic acid; surface coating with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000 (DSPE-PEG)] and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000 (DSPE-PEG-Mal)]; and cRGDyC conjugation to the nanoparticles. cRGDyC-USPIO was 13 ± 3 nm in diameter. After administration of cRGDyC-USPIO or USPIO, MR imaging was performed in control rats and rats with early-staged liver fibrosis (CCl4 treatment for 3 weeks) using a clinical 1.5 Tesla (T) scanner. At 4 h p.i., liver T2 relaxation times of fibrosis rats treated with cRGDyC-USPIO decreased significantly compared to those of normal rats with cRGDyC-USPIO, normal with USPIO, and fibrosis with USPIO (Fig. 3). Tissue assay confirmed that cRGDyC-USPIO could specifically target aHSCs. Iron oxide-based T2 imaging not only has the advantage of high sensitivity but also has two major disadvantages: negative contrast effects and artifacts caused by magnetic susceptibility [58]. On the contrary, paramagnetic material-based T1 imaging exerts a bright signal enhancement and has superior spatial resolution [59]. T1-T2 dual-modal MR imaging can combine the strength of each modality and thus offer more accurate information [60]. aHSC-targeted T1-T2 dual-modal MR imaging studies are expected in the future.

Vimentin and desmin
Both vimentin and desmin belong to the type III intermediate filament protein family and play important roles in maintaining the stability of cellular structure. Besides being distributed in the cytoplasm, these proteins are also recruited to the cell surface in pathological conditions [61–64]. During HSC activation, the expression of both vimentin and desmin is strongly upregulated [65]. N-acetylgalactosamine (GlcNAc) was identified as a specific glyco-side ligand to vimentin and desmin and bound to the rod II domain of these proteins on plasma membrane surfaces [64]. Further study showed that GlcNAc-bearing polymers could bind to freshly isolated HSCs and suppressed cellular activation during in vitro culture [66]. In another study, GlcNAc was conjugated to indocyanine green (ICG) and polyethyleneimine (PEI)/TGF$\beta 1$ siRNA (PEI-D-GlcNAc-ICG/siRNA) for liver fibrosis imaging and therapy [67]. Optical imaging was carried out to monitor the distribution of the complexes (Fig. 4). At 1 day p.i., the complexes were retained in fibrotic livers, whereas they had been cleared out in normal livers. Moreover, more PEI-D-GlcNAc-ICG/siRNA was distributed in fibrotic livers compared to the control complex that was absent of GlcNAc ligand. Tissue analysis showed that 79 % of the PEI-D-GlcNAc-ICG/siRNA complex targeted to HSCs. In comparison, only 32 % of the control complex targeted to HSCs. These results imply that GlcNAc could be a valid ligand for aHSC targeting. However, in the above study, imaging was performed at late time points (1 day). To facilitate clinical application, GlcNAc-based imaging is expected to be optimized for liver fibrosis detection at early time points after probe injection. In addition, the linear heptapeptide VNTANST was identified as a specific ligand that recognized vimentin on the cell surface [68].

Targets without imaging (future work)
Mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF-IIR)
Mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF-IIR) is a 300-kDa single-chain
transmembrane glycoprotein. Fifteen repeating domains constitute its large extracytoplasmic region. M6P/IGF-IIIR binds to three types of ligands: IGF-II, the M6P-bearing proteins, and retinoic acid. One molecule of M6P/IGF-IIIR binds one molecule of IGF-II and two molecules of M6P [69, 70]. IGF-II and M6P have their respective binding sites, but there is a mutual inhibition between these two ligands [71]. M6P/IGF-IIIR carries out various functions, including lysosomal protein sorting and growth regulation. In normal liver, qHSCs express few M6P/IGF-IIIR. But the receptor is upregulated on the plasma membrane of aHSCs during liver fibrosis [72, 73]. At the cell membrane, M6P/IGF-IIIR can bind to transforming growth factor-β (TGF-β) complex via M6P, convert latent TGF-β into active TGF-β [72, 74], and thus promote fibrogenesis.

In 1999, Beljaars et al. took the lead to demonstrate that human serum albumin (HSA) modified with M6P could be taken up by aHSCs in fibrotic livers [75]. When 28 molecules of M6P were coupled to 1 molecule of HSA (M6P28-HSA), the hepatic accumulation increased to 59.2 ± 9.2 % in fibrotic rats and M6P28-HSA was preferentially uptaken by aHSC. This drug carrier (M6P-HSA) has been used to cargo therapeutic compounds to aHSCs in liver fibrosis [76–79], leading to enhanced drug efficacy and minimized drug toxicity. To date, M6P/IGF-IIIR-targeted aHSC imaging has not been reported and thus is expected in the future. Besides, alteration of phosphate group in M6P with phosphonate, carboxylate, or malonate groups leads to improved binding affinity and stability [80–83]. These analogs could be used to facilitate aHSC targeting.

Collagen type VI receptor (CVIR)

Collagen type VI (CVI) is a heterotrimeric glycoprotein composed of three different α chains, α1(VI), α2(VI), and α3(VI) [75]. α3(VI) chains can be substituted by α4(VI), α5(VI), and α6(VI) chains [84]. In cytoplasm, CVI monomers are assembled into dimmers and subsequently into tetramers. End-to-end alignment of secreted tetramers forms microfibrils in ECM [85]. CVI stimulates cell growth, promotes cell survival, and modulates matrix

Fig. 3 MR images of the αvβ3 integrin expression in the livers of the normal control and liver fibrosis rats.

a MR imaging studies in normal rats (NR) and injured rat (IR, with early-staged liver fibrosis, CCl4 treatment for 3 weeks) after administration of USPIO or cRGDyC-USPIO. b The reduction of T2 relaxation times after the administration of USPIO or cRGDyC-USPIO in the normal and injured rat groups. Reproduced with permission from ref. [46].
homeostasis through interaction with cells and other matrix molecules [86]. HSCs are the major cells that produce CVI in the liver [87]. CVI is mainly distributed in the portal areas of normal livers. When liver fibrosis occurs, the accumulation of this type of collagen is enhanced, particularly in the fibrous septa [88, 89]. CVI can bind to many types of receptors including integrins $\alpha_1\beta_1$, $\alpha_2\beta_1$, and $\alpha_1\beta_1$ [90–92] and neuron/glia-type 2 (NG2) [93–95]. There are several RGD sequences in CVI, but the cyclic octapeptide C*GRGDSPC* selectively antagonizes the binding of CVI to cells [96]. The specific type of CVI receptor (CVIR) that mediates the attachment of this peptide to cells has not been defined.

HSA modified with 10 C*GRGDSPC* moieties (pCVI-HSA) was demonstrated as a carrier specifically targeting aHSCs [97]. Cellular experiments showed that aHSCs uptook much more pCVI-HSA compared to qHSCs. This implies that CVIR is upregulated on aHSCs. In fibrotic livers, aHSCs were the principal cells that bound the carrier. The cyclization of C*GRGDSPC* is accomplished via disulfide bond generation between two adjacent cysteine residues. A further modification was made to the peptide by substituting lysine for cysteine which resulted in C*GRGDSPK* [98, 99]. The modified peptide is cyclized through an amide linkage between the cysteine and lysine residues and thus is more stable. This peptide was conjugated to liposomes for aHSC-targeted drug delivery in liver fibrosis [98, 99]. aHSC-targeted imaging based on this kind of peptide is anticipated in the future studies.

Platelet-derived growth factor receptor-β (PDGFR-β)

The platelet-derived growth factor (PDGF) is one of the most extensively investigated growth factors. In liver fibrosis, PDGF contributes to several behavior changes of HSCs in the process of activation, including proliferation, migration towards chemokines, and loss of retinoid droplets [100]. The PDGF family contains five dimeric members (PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC, and PDGF-DD) derived from four distinct polypeptide chains (PDGF-A, PDGF-B, PDGF-C, PDGF-D) [100, 101]. PDGF-A and PDGF-B are secreted in an active form, whereas PDGF-C and PDGF-D demand extracellular proteolytic activation after being secreted. PDGF members exert their actions through binding to two different receptors, PDGFR-α and PDGFR-β. PDGFR-α binds to PDGF-AA, PDGF-AB, PDGF-BB, and PDGF-CC, while PDGFR-β binds to PDGF-BB and PDGF-DD [101]. In qHSCs, there is a constitutive expression of PDGFR-α, whereas PDGFR-β...
expression is not detected [102]. The expression level of PDGFR-β is significantly increased on aHSC [102, 103].

Arginine-27 and isoleucine-30 in the PDGF-B chain are crucial for receptor binding [104]. Based on this work, Beljaars et al. designed a cyclic peptide (C*SRNLIDC*) that recognized PDGF receptors [105]. A targeted drug carrier was further produced through covalently linking 15 C*SRNLIDC* moieties to 1 HSA moiety (pPB-HSA) [105]. In vitro studies demonstrated that the cellular uptake of pPB-HSA in aHSCs was significantly higher than that in qHSCs. After i.v. injection, the majority of pPB-HSA was localized in aHSCs of fibrotic livers. C*SRNLIDC* has been applied to aHSC-targeted liver fibrosis therapy using HSA or liposomes as drug delivery vehicles [106–108]. The linear tripeptide ANFLVWEIVRKKP [109] and cyclic PDGF-BB73–81 (R*KIEVRKKC*) [110, 111] have also been identified as a PDGF-BB analog that recognized PDGF receptors. Although the PDGF-B chain is a ligand to both types of PDGFR, its asparagine-117 and leucine-119 are principally critical for PDGFR-β binding [112]. Therefore, it is possible to design PDGF-BB analogs which exclusively bind to PDGFR-β. Besides, a PDGFR-β-specific RNA aptamer was reported recently [113]. Application of the above ligands to aHSC-targeted imaging remains to be investigated.

Future prospects

Several factors should be considered when designing imaging probes for aHSCs. First, the liver is regarded as the second most complex organ. Other cell types of the liver, such as Kupffer cells, sinusoidal endothelial cells, and hepatocytes, may nonspecifically uptake the probes. High molecular weight proteins, like serum albumin, are mainly metabolized by the liver. Although serum albumin-based carriers (M6P/IGF-IIR M6P [114], Phosphonate, carboxylate, or malonate deoxyuridine [117]) have been developed as ultrasound contrast agents [115], among them, nano-sized bubbles, which can extravasate from blood vessels, are more suitable for imaging of extravascular cells. Thus, aHSC-targeted ultrasound imaging could potentially be accomplished through conjugating specific ligands to nanobubbles. Four, recent studies imply the bidirectional crosstalk between aHSCs and tumor cells [116, 117]. Tumor-derived factors activate HSCs, and in turn, aHSCs promote phenotypic changes, proliferation, and invasion of tumor

Biomarker	Ligand	Reference
Integrin αvβ3	cRGDK	[35, 45, 47*, 57*]
	cRGDyC	[46*]
	RGD4C (ACDCRGDCFG)	[32]
	RGD10 (DGARYRCGRDCFyG)	[33]
	cRGDFNMeV	[36]
	Apt-αvβ3-1	[37]
	(5’-CGGAGACAAGAAUAAACCG UCAGUUAACCGCUUUGAAAGG CUUAGCACAGCGAAUACCCU UCAGACAGGAGGCUCAAAAGGC-3’)	
	Apt-αvβ3-2	[38]
	(5’-UUCACCGUGUAAGGCGUU AUAACAGGGGUAUACC-3’)	
	Apt-αvβ3-3	[39]
	(5’- AGTTCGZZZZZAGAAAZZAG CACACCGGGACZZGAGGZG GCGGACCA-3’)	
	Z: 5-N-(benzylcarbox-yamide)-2’-deoxyuridine	
Vimentin and desmin	N-acetylglucosamine (GlcNAc)	[64, 66, 67*]
	VNTANST	[68]
M6P/GF-1IR	M6P	[75]
	Phosphonate, carboxylyte, or malonate analogs of M6P	[80–83]
CVIR	C*GRGDSPC*	[96, 97]
	C*GRGDSPK*	[98, 99]
PDGF-β	C*SRNLIDC*	[105]
	ANFLVWEIVRKKP	[109]
	PDGF-BB73–81 (R*KIEVRKKC*)	[110, 111]
	Apt-PDGFR-β	[113]
	(5’-UGUCUGUGGGCCAUUCAGUA AAUGCAUUUCGACA-3’)	
cells. Therefore, aHSC-targeted imaging in liver cancers could help better understand the pathophysiology of the tumor microenvironment and further instruct therapy.

Conclusions

HSC activation plays pivotal roles in the onset and progression of liver fibrosis. Receptors, such as integrin αvβ3, M6P/IGF-IIR, CVIR, PDGFR-β, vimentin, and desmin, have been identified as biomarkers of aHSCs. Corresponding ligands to these receptors have also been developed (summarized in Table 1). Many studies focused on aHSC-targeted drug delivery for the treatment of liver fibrosis through taking advantage of these ligands. However, to our knowledge, only a few studies targeted aHSCs for in vivo imaging. To facilitate clinical translation, further studies are expected to optimize imaging probes for aHSCs.

Ethical approval

This article does not contain any studies with animals or human participants performed by any of the authors.

Competing interests

The authors declare that they have no conflict of interest.

Authors’ contributions

All authors read and approved the final manuscript.

Funding

This work was funded by the National Natural Science Foundation of China (81403041, 8130266). 2016 Science & Technology Nova Program of Pearl River of Guangzhou, 2014 Shang Hai Forum Cooperation Projects Foundation of Sun Yat-sen University, 2015 Distinguished Young Scholar Fund of The Third Affiliated Hospital of Sun Yat-sen University, and Medical key Subject Construction Project of Guangzhou (2013–2015).

Author details

1Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China. 2Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangzhou 510630, China. 3Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou 511400, China. 4Interventional Radiology Institute of Sun Yat-sen University, Guangzhou 510630, China.

Received: 8 October 2015 Accepted: 27 November 2015

Published online: 09 December 2015

References

1. Regev A, Behro M, Jeffers LJ, Millikowski C, Molina EG, Pyropoulos NT, et al. Sampling error and intraserver variation in liver biopsy in patients with chronic HCV infection. Am J Gastroenterol. 2002;97:2614–8.
2. Ratsuz V, Charlotte F, Heurtier A, Gambert S, Giral P, Bruckert E, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128:1898–906.
3. Vizzutti F, Arena U, Marra F, Pinzani M. Elastography for the non-invasive assessment of liver disease: limitations and future developments. Gut. 2009;58:157–60.
4. Pinzani M, Vizzutti F, Arena U, Marra F. Technology insight: noninvasive assessment of liver fibrosis by biochemical scores and elastography. Nat Clin Pract Gastroenterol Hepatol. 2008;5:95–106.
5. Huwart L, Sempoux C, Vicaut E, Salmier N, Annet L, Danse E, et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology. 2008;135:32–40.
6. Wang Y, Ganger DR, Levitsky J, Sternick LA, McCarthy RJ, Chen ZE, et al. Assessment of chronic hepatitis and fibrosis: comparison of MR elastography and diffusion-weighted imaging. AJR Am J Roentgenol. 2011;196:553–61.
7. Wang GB, Zhu H, Liu HL, Zhang B. Performance of magnetic resonance elastography and diffusion-weighted imaging for the staging of hepatic fibrosis: a meta-analysis. Hepatology. 2013;56:3349–57.
8. Fahey B, Nightingale KR, Nelson RC, Palmieri ML, Trahey GE. Acoustic radiation force impulse imaging of the abdomen: demonstration of feasibility and utility. Ultrasound Med Biol. 2005;31:1185–98.
9. Friedrich-Rust M, Wunder K, Kriener S, Koziel M, Niethard F, Richter S, Bojunga J, et al. Liver fibrosis in viral hepatitis: noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology. 2009;252:595–604.
10. Bakan AA, Inci E, Bakan S, Gokturk S, Cimilli T. Utility of diffusion-weighted imaging in the evaluation of liver fibrosis. Eur Radiol. 2012;22:682–7.
11. Luciani A, Vignaud A, Cavet M, Nhieu JT, Mallat A, Ruel L, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology. 2008;249:891–9.
12. Taouli B, Tolla AJ, Losada M, Babb JS, Chan ES, Bannan MA, et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. AJR Am J Roentgenol. 2007;189:799–806.
13. Allkemper T, Sagmeister F, Cicinatti V, Beckebaum S, Kooijman H, Kandhak C, et al. Evaluation of fibrotic liver disease with whole-liver T1rho MR imaging: a feasibility study at 1.5 T. Radiology. 2014;271:408–15.
14. Zhao F, Wang YX, Yuan J, Deng M, Wong HL, Chu ES, et al. MR T1rho as an imaging biomarker for monitoring liver injury progression and regression: an experimental study in rats with carbon tetrachloride intoxication. Eur Radiol. 2012;22:1709–16.
15. Wang YX, Yuan J, Chu ES, Go MY, Huang H, Ahuja AT, et al. T1rho MR imaging is sensitive to evaluate liver fibrosis: an experimental study in a rat biliary ligature model. Radiol. 2011;259:712–9.
16. Hagiwara M, Rusinek H, Lee VS, Losada M, Bannan MA, Klimsky GA, et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging—initial experience. Radiology. 2008;246:926–34.
17. Chen BB, Hsu CY, Yu OW, Wei SY, Kao JH, Lee HS, et al. Dynamic contrast-enhanced magnetic resonance imaging with Gd-EOB-DTPA for the evaluation of liver fibrosis in chronic hepatitis patients. Eur Radiol. 2012;22:171–80.
18. Giampieri MP, Jezequel AM, Orlandi F. The lipocytes in normal human liver. A quantitative study. Digestion. 1981;22:165–9.
19. Friedman S. Hepatic stellate cells: protein, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–72.
20. Puche JE, Saiman Y, Friedman SL. Hepatic stellate cells and liver fibrosis. Compr Physiol. 2013;3:1473–92.
21. Ballardini G, Degli Esposti S, Bianchi FB, de Gori LB, Faccani A, Biolchini L, et al. Correlation between biliary cells and fibrogenesis in an experimental model of hepatic fibrosis: A sequential stereological study. Liver. 1983;23:58–63.
22. Reeves HL, Burt AD, Wood S, Day CP. Hepatic stellate cell activation occurs in the absence of hepatitis in alcoholic liver disease and correlates with the severity of steatosis. J Hepatol. 1996;25:677–83.
23. Gonzalez SA, Fiel MI, Sauk J, Canchis PW, Liu RC, Chiriboga L, et al. Inverse association between hepatic stellate cell apoptosis and fibrosis in chronic hepatitis C virus infection. J Viral Hepat. 2009;16:161–8.
24. Kozhanovsky V, Yon M, Dickins RA, Hean S, Simon J, Mething C, et al. Senescence of activated stellate cells limits liver fibrosis. Cell. 2008;134:657–67.
25. Humphries MJ. Integrin structure. Biochem Soc Trans. 2000;28:311–9.
26. Takada Y, Yeh X, Simon S. The integrins. Genome Biol. 2007;8:215.
27. Desrosseiller JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:109–22.
28. Hodivala-Dilke K. alphavbeta3 integrin and angiogenesis: a moody integrin in a changing environment. Curr Opin Cell Biol. 2008;20:149–55.
29. Cai W, Chen X. Anti-angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Anticancer Agents Med Chem. 2006;6:407–8.
30. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994;264:569–71.
31. Ruslaih M, Pierschbacher MD. New perspectives in cell adhesion: RGD and beyond. Science. 1987;238:491–7.
32. Kovesi E, Wang B, Ruslaih M, Endo T, Hoshina S, Muller R, et al. Novel RGD lipopeptides for the targeting of liposomes to integrin-expressing endothelial and melanoma cells. Protein Eng Des Sel. 2004;17:433–41.
34. Aumailley M, Gunath M, Muller G, Calvete J, Tempel R, Kessler H. Arg-Gly-Asp constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1. FEBS Lett. 1991;290:50–4.

35. Haubner R, Gratius R, Diefenbach B, Goodman SL, Jonczyk A, Kessler H. Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αvβ3 antagonists. J Am Chem Soc. 1996;118:7461–72.

36. Dechantsreiter MA, Planker E, Matha B, Lohof E, Holzemann G, Jonczyk A, et al. N-Methylated cyclic RGD peptides as highly active and selective αvβ3 integrin antagonists. J Med Chem. 1999;42:3033–40.

37. Mi J, Zhang X, Giangrande PH, McNamara 2nd JD, Nimjee SM, Saraf-Yazdi S, et al. Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem Biophys Res Commun. 2005;328:556–62.

38. Ruckman J, Gold L, Stephens A, Janic J. Nucleic acid ligands to integrins. US7054335. 2006.

39. Lim EK, Kim B, Cha Y, Ro Y, Cho EJ, Lee JH, et al. Aptamer-conjugated magnetic nanoparticles enable efficient targeted detection of integrin αvβ3 via magnetic resonance imaging. J Biomed Mater Res A. 2014;102:49–59.

40. Zhang Y, Yang Y, Cai W. Multimodality imaging of integrin αvβ3 expression with SPECT in rat. Hepatology. 2011;54:1020–30.

41. Huang XW, Wang JY, Li F, Song ZJ, Xie C, Lu WY. Biochemical characterization of the binding of cyclic RGDYK to hepatic stellate cells. Biochim Pharmacol. 2010;80:33–43.

42. Marelli UK, Rechenmacher F, Sobahi TR, Mas-Moruno C, Kessler H. Tumor targeting via integrin ligands. Front Oncol. 2013;3:222.

43. Chen X, Chen X. Integrin-targeted delivery of chemotherapeutics. Theranostics. 2011;1:1389–200.

44. Zhou X, Murphy FR, Gehdu N, Zhang J, Iredale JP, Beryon RC. Engagement of αvβ3 integrin regulates proliferation and apoptotic of hepatic stellate cells. J Biol Chem. 2004;279:23996–4006.

45. Huang JW, Wang JT, Li F, Song ZJ, Xie C, Lu WY. Biochemical characterization of the binding of cyclic RGDYK to hepatic stellate cells. Biochim Pharmacol. 2010;80:33–43.

46. Wang QB, Han Y, Jiang TT, Chai WM, Chen KM, Liu BY, et al. MRI imaging of activated hepatic stellate cells in liver injured by CC14 of rats with integrin-targeted ultrasound superparamagnetic iron oxide. Eur Radiol. 2011;21:1016–25.

47. Li F, Song Z, Li Q, Wu J, Wang J, Xie C, et al. Molecular imaging of hepatic stellate cell activity by visualization of hepatic integrin αvβ3 expression with SPECT in rat. Hepatology. 2011;54:1020–30.

48. Li ZQ, Cai W, Cao Q, Chen K, Wu Z, He L, et al. (64)Cu-laabeled tetrameric and octameric RGD peptides for small-animal PET of tumor alpha(v)beta(3) integrin expression. J Nucl Med. 2007;48:1162–71.

49. Hammerski DA, Santoro SA. Integrins and the kidney: biology and pathology.Curr Opin Nephrol Hypertens. 1999;8:9–14.

50. Wu Y, Zhang X, Xiong Z, Cheng Z, Fisher DR, Liu S, et al. microPET imaging of gloma integrin (alpha)v(beta)3 expression using (64)Cu-laabeled tetrameric RGD peptide. J Nucl Med. 2005;46:1707–18.

51. Liu S. Radiolaabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bioconjugation. Bioconjug Chem. 2009;20:119–215.

52. Liu S, Li D, Huang CW, Yap LP, Park R, Shan H, et al. The efficient synthesis and biological evaluation of novel bi-functionalized sarcosamine for (64)Cu radiopharmaceuticals. Theranostics. 2012;2:589–96.

53. Wang L, Shi J, Kim YS, Shi J, Jin X, Zhao H, et al. Blood clearance kinetics, biodistribution, and radiosynthesis of a kit-formulated integrin αvβ3 mAb represents a unique tool for the detection of extracellular vimentin as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106:13820–5.

54. Creighton CJ, Li X, Lands M, Dixon JM, Neumeister VM, Spilund A, et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci U S A. 2009;106:13820–5.

55. Ise H, Kobayashi S, Goto M, Sato T, Kawakubo M, Takahashi M, et al. Vimentin and desmin possess GcNAC-binding lectin-like properties on cell surfaces. Glycobiology. 2010;20:843–64.

56. Niki T, Pekny M, Hellemans K, Bleier PD, Berg KV, Vaeyens F, et al. Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. Hepatology. 1999;29:520–7.

57. Kim SJ, Ise H, Goto M, Akaike T. Interactions of vimentin- or desmin-expressing liver cells with N-acetylgalactosamine-bearing polymers. Biomaterials. 2012;33:2154–64.

58. Kim SJ, Ise H, Kim E, Goto M, Akaike T, Chung BH. Imaging and therapy of liver fibrosis using bioreducible polylethyleneimine/siRNA complexes conjugated with N-acetylgalactosamine as a targeting moiety. Biomaterials. 2013;34:6504–14.

59. Carvan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev. 1999;99:2293–352.
et al. EJNMMI Research (2015) 5:71

102. Wong L, Yamasaki G, Johnson RJ, Friedman SL. Induction of beta-platelet-derived growth factor receptor-recognizing macromolecule to fibroblast-like cells in fibrotic tissue. Biochem Pharmacol. 2003;66:1307–17.

106. Hagens WI, Mattos A, Greupink R, de Jager-Krikken A, Reker-Smit C, van Loenen-Weemae A, et al. Targeting 15d-prostaglandin J2 to hepatic stellate cells: two options evaluated. Pharm Res. 2007;24:664–74.

107. Li F, Li QH, Wang JY, Zhan CY, Xie C, Lu WY. Effects of interferon-gamma liposomes targeted to platelet-derived growth factor receptor-beta on hepatic fibrosis in rats. J Control Release. 2012;159:261–70.

108. Li Q, Yan Z, Li F, Lu W, Wang J, Guo C. The improving effects on hepatic fibrosis of interferon-gamma liposomes targeted to hepatic stellate cells. Nanotechnology. 2012;23:265101.

109. Engstrom U, Engstrom A, Emlund A, Westmark B, Heldin CH. Identification of a peptide antagonist for platelet-derived growth factor. J Biol Chem. 1992;267:16681–7.

110. Bennand DM, Dennehay U, Ellis V, Scully MF, Tripathi P, Kakkar W, et al. Identification of a cyclic peptide analogue of loop III of PDGF-BB causes apoptosis in human fibroblasts. FEMS Lett. 1997;141:70–4.

111. Bennand DM, Scully MF, Kakkar W, Patel G. A cyclic peptide analogue of loop III of PDGF-BB causes apoptosis in human fibroblasts. FEMS Lett. 1997;141:166–70.

112. Keysing J, Ostman A, van de Poll M, Backstrom G, Heldin CH. Identification of three amino acid residues in the B-chain of platelet-derived growth factor with different importance for binding to PDGF alpha- and beta-receptors. FEMS Lett. 1996;138:181–4.

113. Camorani S, Esposito CI, Rienzo A, Catuogno S, Iaboni M, Condorelli G, et al. Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRbeta aptamer. Mol Ther. 2014;22:828–41.

114. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;6:253–83.

115. Paefgen V, Doleschel D, Kiessling F. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol. 2015;6:197.

116. Kang N, Gores GJ, Shah VH. Hepatic stellate cells: partners in crime for liver metastases? Hepatology. 2011;54:707–13.

117. Coulouarn C, Clement B. Stellate cells and the development of liver cancer: therapeutic potential of targeting the stroma. J Hepatol. 2014;60:1306–9.

Submit your manuscript to a SpringerOpen journal and benefit from:

► Convenient online submission
► Rigorous peer review
► Immediate publication on acceptance
► Open access: articles freely available online
► High visibility within the field
► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com