Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes

Igor K Voukeng¹, Victor Kuete¹*, Jean P Dzoyem¹, Aimé G Fankam¹, Jaures A K Noumedem¹, Jules R Kuiate¹ and Jean-Marie Pages²

Abstract

Background: The present work was designed to evaluate the antibacterial properties of the methanol extracts of eleven selected Cameroonian spices on multi-drug resistant bacteria (MDR), and their ability to potentiate the effect of some common antibiotics used in therapy.

Results: The extract of Cinnamomum zeylanicum against Escherichia coli ATCC 8739 and AG100 strains showed the best activities, with the lowest minimal inhibitory concentration (MIC) of 64 μg/ml. The extract of Dorstenia psilurus was the most active when tested in the presence of an efflux pump inhibitor, phenylalanine Arginine-β-Naphthylamide (PAβN), a synergistic effect being observed in 56.25 % of the tested bacteria when it was combined with Erythromycin (ERY).

Conclusion: The present work evidently provides information on the role of some Cameroonian spices in the fight against multi-resistant bacteria.

Keywords: Multi-Drug Resistant bacteria, Spices, Methanol extract, Cameroon

Background

Infectious diseases are one of the leading causes of morbidity and mortality worldwide, especially in developing countries [1,3]. Following the massive use of antibiotics in human therapy, bacteria have developed several resistance mechanisms including the efflux of antibiotics [3]. Several Cameroonian spices are known to possess medicinal values [4]. In our previous report, we demonstrated that several medicinal spices inhibited the growth of MDR bacteria and were also able to improve the activity of commonly used antibiotics [5]. In our continuous search of antimicrobial drugs from medicinal plant, we designed the present work to investigate the antibacterial potential against Gram-negative MDR bacteria of some of the commonly used medicinal spices in Cameroon such as Aframomum citratum (Pereira) K. Schum. (Zingiberaceae), Aframomum melegueta (Roscoe) K. Schum. (Zingiberaceae), Scorodophloeus zenkeri Harms (Caesalpiniaeae), Tetrapleura tetraptera (Schum. & Thonn) Taub. (Mimosaceae), Fagara leprieurii (Guill and Perr) Engl. (Rutaceae), Monodora myristica (Annonaceae), Piper guineense (Schum and Thonn) (Piperaceae), Dorstenia psilurus Welwitch (Moraceae), Imperata cylin- dricium Beauv. var. koenigii Durand and Schinz (Gramineae), Pentadiplandra brazzeana Baill. (Capparaceae) and Cinnamomum zeylanicum (Linn) Cor. (Lauraceae).

Material and methods

Plant materials and extraction

The eleven edible spices used in this work were purchased from Dschang local market, West Region of Cameroon in January 2010. The collected spices material were the fruits of Aframomum citratum, Aframomum melegueta, Scorodophloeus zenkeri, Tetrapleura tetraptera,
Table 1: Spices used in the present study and evidence of their activities

Spice samples (Family)	Herbarium Voucher number	Traditional Treatment	Part used	Bioactive (or potentially active) compounds and screened activity for crude plant extract	
Afraamomum citratum (Pereira) K. Schum. (Zingiberaceae)	37 736/HNC	Malaria, aphrodisiac, cancer	Fruits, leaves, seeds	**Antimicrobial**: Ethylacetate extract of fruits on Ec. Pa. Sa [7]	
				Cytotoxicity of fruits crude methanol extract [weak activity on leukemia CCRF-CEM and CEM/ADR5000 cells, and pancreatic MiaPaCa-2 cell lines] [4]	
Afraamomum melegueta (Roscoe) K. Schum. (Zingiberaceae)	39 065/HNC	Malaria, dysentery, carminative, dysmenorrhea, fertility, rubella, leprosy, cancer [6,8]	Fruits, leaves	**Antimicrobial**: Aqueous and ethanol extract of leaves on Fo. An [9] Methanol extract of fruits (Q) on Sa. Ec. Pa. Ca. Ga [8]	
				Cytotoxicity of fruits crude methanol extract [weak activity on leukemia CCRF-CEM and pancreatic MiaPaCa-2 cell lines and significant activity on CEM/ADR5000 cells with IC50 value of 7.08 μg/ml] [4]	
Cinnamomum zeylanicum (Linn) Cor. (Lauraceae)	22 309/SRFC	Cancer [4]	Fruits, leaves, bark	**Antimicrobial**: Cd, Cm, Lt, Fp [10,11]	
				Cytotoxicity of leaves crude methanol extract [weak activity on leukemia CCRF-CEM and CEM/ADR5000 cells, and pancreatic MiaPaCa-2 cell lines] [4]	
Dorstenia psilurus Welwitch (Moraceae)	44 839/HNC	Snake bite, rheumatism, head and stomach ache, hypertension, cancer [4,12,13]	Leaves, roots	**Antimicrobial**: Leaves, roots	
Fagara leprieurii (Guill and Perr) Engl. (Rutaceae)	37 632/HNC	Gastritis, gingivitis, bilharzias, antidiabetic, ulcer, gonorrhea, kidney ache, sterility [4,14,15]	Bark, leaves, roots	**Antimicrobial**: Ethanol extract of the seeds on Ca. Cn. Mg. Tm. Tr. Bci. Af. Afl. Sb [15]	
				Cytotoxicity of seeds crude methanol extract [weak activity on leukemia CCRF-CEM and pancreatic MiaPaCa-2 cell lines and significant activity on CEM/ADR5000 cells with IC50 value of 8.13 μg/ml] [4]	
Imperata cylindrica Beauv. var. koenigii Durand et Schinz (ramineae)	30 139/SRFC	Diuretic, anti-inflammatory, dysentery, urinary tract infections, cancer [4,16,17]	Leaves, roots	**Antimicrobial**:	
				Cytotoxicity of roots crude methanol extract [significant activity with IC50 values of 8.34; 7.18 and 12.11 μg/ml respectively on leukemia CCRF-CEM cells, CEM/5000 cells and pancreatic MiaPaCa-2 cell lines] [4]	
Monodora myristica Dunal (Annonaceae)	2 949/SRFC	Insecticidal, diuretic, constipation, anti-inflammatory, wound, worm infections, cancer [4,15,18,19]	Fruits, leaves, seeds	**Antimicrobial**: Fm. All. Af [18]; Essential oil. Af. Bs. Cgl. Ec. Ap. Sa. Sf [15]. Cytotoxicity of fruits seeds methanol extract [weak activity on leukemia CCRF-CEM and CEM/ADR5000 cells, and pancreatic MiaPaCa-2 cell lines] [4]	
Pentadiplandra brazzeana Baill. (Capparaceae)	42 918/HNC	Gastric ulcer, cancer [4,20]	Fruits, leaves	**Antimicrobial**:	
				Cytotoxicity of roots crude methanol extract [weak activity on leukemia CCRF-CEM and pancreatic MiaPaCa-2 cell lines and significant activity on CEM/ADR5000 cells with IC50 value of 8.13 μg/ml] [4]	
Piper guineense (Schum and Thonn) (Piperaceae)	6 018/SRFC	Cough, bronchitis, rheumatism, insecticidal, anemia, carminative, stomach ache, cancer [4,8,21]	Fruits, leaves, bark	**Insecticidal**: C. [20] **Antimicrobial**: (Q); Ec. Sa. Bs. Pa. Ca. An [8,22]	
Scorodophloeus zenkerii Harms (Caesalpiniaceae)	44 803/HNC	Cancer [4]	Leaves, roots	**Antimicrobial**: Ethanol oil of stem bark on Ec, Sa, Bs, Cu [23]	
				Cytotoxicity of fruits crude methanol extract [weak activity on leukemia CCRF-CEM and CEM/ADR5000 cells, and pancreatic MiaPaCa-2 cell lines] [4]	
Table 1 Spices used in the present study and evidence of their activities (Continued)

Spice samples	Extraction Physical aspect Phytochemical composition	Cytotoxicity of fruits crude methanol extract	Bark, leaves, roots						
Tetrapleura tetraptera	12 117/SRFC (Schum. & Thonn) Taub. (Mimosaceae)	Pain, arthritis, epilepsy, convulsion, gastric ulcer, cancer (4,20)	weak activity on leukaemia CCRP-CEM and CEM/ADR5000 cells, and pancreatic MiaPaCa-2 cell lines (4)						
Scorodophloeus zenkeri	9.2 Creamy, brown	+	-	+	+	+	-	+	+
Imperata cylindricum	10.3 Oily, brown	+	+	+	+	+	+	-	+
Dorstenia psilurus	10.3 Oily, brown	+	+	+	+	+	+	-	+
Fagara leupriecui	26.2 Creamy, brown	+	-	+	+	+	-	-	+
Monodora myristica	23.5 Oily, brown	+	+	+	+	+	-	-	+
Pentadiplandra brazzeana	4.6 Creamy, brown	+	-	-	+	+	-	-	-
Piper guineense	17.5 Creamy, brown	+	+	+	+	+	-	-	-
Scorodophloeus zenkeri	9.8 Creamy, dark green	+	-	-	+	+	-	-	+
Tetrapleura tetraptera	29.4 brown	+	+	+	+	+	-	+	+

(+) Present; (−) Absent; *The yield was calculated as the ratio of the obtained methanol extract according to the initial mass of the spice powder.

the seeds of Fagara leupriecui, Monodora myristica and Piper guineense, the roots of Dorstenia psilurus, Imperata cylindricum and Pentadiplandra brazzeana and the leaves of Cinnamomum zeylanicum. The plants were identified by Mr. Victor Nana of the National herbarium (Yaoundé, Cameroon) where voucher specimens were deposited under a reference number (Table 1). The extracts were obtained by methanol (MeOH) maceration as previously described [5].

Preliminary phytochemical investigations
The major secondary metabolites classes were screened according to the common phytochemical methods described by Harborne [24].

Chemicals for antimicrobial assays
Tetracycline (TET), ceftazidime (FEP), streptomycin (STR), ciprofloxacin (CIP), norfloxacin (NOR), chloramphenicol (CHL), cloxacillin (CLX), ampicillin (AMP), erythromycin (ERY), kanamycin (KAN) (Sigma-Aldrich, St Quentin Fallavier, France) were used as reference antibiotic. p-Iodonitrotetrazolium chloride (INT) and phenylalanine arginine β-naphthylamide (PAßN) were used as microbial growth indicator and efflux pumps inhibitor (EPI) respectively.

Bacterial strains and culture media
The studied microorganisms included reference (from the American Type Culture Collection) and clinical (Laboratory collection) strains of Providencia stuartii, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Enterobacter aerogenes and Enterobacter cloacae. The bacterial strains and their features were previously reported [5]. The preliminary treatment of these organisms as well as the culture media were conducted as previously described [5].

Bacterial susceptibility determinations
The respective MICs of samples on the studied bacteria were determined using rapid INT colorimetric assay [25,26] with some modifications as previously reported [5]. The inoculum concentration used was 1.5 x10⁶ CFU/ml and the samples were incubated at 37 °C for
Bacterial strains	Tested samples and MIC in μg/ml in the absence and presence of PAßN (in parenthesis)													
	Aframomum citratum	Aframomum melegueta	Imperata cylindricum	Cinnamomum zeylanicum	Dorstenia psilurus	Fagara leprieuri	Monodora myristica	Pentadiplandra brazzeana	Piper guineense	Scorodophloeus zenkeri	Tetrapleura tetraptera	CHL		
E. coli ATCC8739	512	512	512	64	-	512	1024	1024	1024	1024	1024	1024	1024	1
ATCC10536	1024	512	1024	512	128	256	1024	512	1024	512	1024	1024	1024	32 (<2)
AG100	1024 (1024)	1024 (1024)	1024 (256)	- (64)	- (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	4 (<2)	
AG100A	512 (128)	1024 (1024)	1024 (128)	512 (128)	512 (512)	1024 (1024)	- (-)	1024 (1024)	1024 (1024)	1024 (1024)	512 (512)	2 (<2)		
AG100ATET	512 (512)	1024 (1024)	1024 (1024)	512 (512)	512 (128)	1024 (1024)	-	1024	512	1024	32 (<2)			
AG102	1024	-	1024	1024	512	1024	-	-	-	-	-	16 (<2)		
MC4100	512 (512)	512 (256)	1024 (1024)	1024 (1024)	512 (256)	512	- (-)	1024 (1024)	1024 (1024)	1024 (1024)	512 (512)	4 (<2)		
W3110	512 (256)	512 (512)	512 (512)	512 (256)	256	512	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1 (<2)	
E. aerogenes ATCC13048	1024	-	1024	1024	1024	1024	1024	-	-	-	-	-	8 (<2)	
CM64	1024 (1024)	1024 (1024)	512 (128)	1024 (512)	512 (256)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	512 (512)	32
EA27	512 (512)	1024 (1024)	512 (512)	512 (512)	- (-)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	512 (512)	64 (32)
EA289	-	1024	-	-	1024	-	-	1024	1024	-	-	1024	256	
EA298	1024	512	-	-	-	1024	-	256	256	512	256	1024	256	
EA3	-	-	-	-	-	1024	-	-	-	-	-	-	-	256
E. cloacae BM47	512 (512)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (128)	1024 (1024)	1024 (1024)	1024 (1024)	1024	1024	1024	1024	- (8)	
BM67	512 (512)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (128)	- (-)	- (-)	- (-)	- (-)	- (-)	- (-)	- (-)	- (-)	- (32)
ECC169	512 (512)	1024 (1024)	1024 (1024)	1024 (1024)	-(-)	-(-)	1024 (1024)	-(-)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	- (32)	
K. pneumoniae ATCC12296	1024	1024	1024	1024	1024	512	-	-	-	-	-	1024	4	
K2	1024	-	1024	1024	1024	-	1024	-	-	-	-	-	-	
K24	1024	1024	1024	1024	1024	512	-	-	-	1024	1024	32 (<2)		
Table 3 Minimal inhibitory concentration (MIC) of the studied plants extracts and chloramphenicol on the studied bacterial species

	KP55	512	1024	256	512	1024	1024	-	-	-	-	-	-	1024	32
	KP63	512 (512)	1024 (1024)	1024 (1024)	512 (512)	512 (128)	1024 (1024)	1024 (1024)	512	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	64
P. stuartii	ATCC29916	1024 (1024)	- (-)	- (-)	- (-)	- (-)	- (-)	- (-)	- (-)	1024 (1024)	1024 (1024)	1024 (1024)	1024 (1024)	8	
	NEA16	1024 (512)	- (-)	1024 (1024)	512 (512)	512 (256)	1024	1024	-	-	1024	-	64		
	PS2636	1024	-	-	-	-	-	-	-	-	-	-	-		
	PS299645	512	512	1024	1024	1024	1024	-	1024	1024	512	1024	1024	128	
P. aeruginosa	PA01	-	-	-	-	-	-	-	-	-	-	-	-		
	PA124	-	-	-	-	-	-	-	-	1024	-	-	32		

(-): MIC not detected at up to 1024 μg/ml for the les extracts and 256 μg/ml for chloramphenicol. (): values in parenthesis are MIC of substance in the presence of PAßN at 20 μg/ml. The MIC of PAßN was 64 μg/ml on E. coli: AG100A, 512 μg/ml on ATCC11296. BM67. EA27; EA289; 1024 μg/ml on AG100A37, ATCC13048. CM64; and > 1024 μg/ml on other bacteria. CHL: chloramphénicol; (in bold): significant MIC value.
Table 4 Minimal inhibitory concentration (MIC) in μg/ml of antibiotics in the absence and presence sub-inhibitory concentrations of *Aframomum citratum* extract against some MDR bacteria

Bacterial strains	Ampicillin	Cefepime	Chloramphenicol	Ciprofloxacin	Cloxacillin
	MIC/2.5	MIC/5	MIC/2.5	MIC/5	MIC/2.5
AG100Atet	-	-	-	-	-
AG102	-	-	128 (8)	-	-
CM64	-	256 (1)	-	-	-
XP63	-	32 (8)	-	-	-
PA124	128 (6) 4	64 (2)	-	-	-

MIC/2.5: concentration of plant extract added equal to 204.8 μg/ml for AG100Atet, KP63; and to 409.6 μg/ml for PA124. CM64. AG102.

MIC/5: concentration of plant extract added equal to 102.4 μg/ml for AG100Atet, KP63; and to 204.8 μg/ml for PA124. CM64. AG102.

18 h [5]. The final concentration of DMSO was lower than 2.5 % and this concentration also served as negative control [5]. Chloramphenicol was used as reference antibiotic. The MICs of samples were detected after 18 h incubation at 37 °C, following addition (40 μl) of 0.2 mg/ml INT and incubation at 37 °C for 30 minutes [5]. MIC was defined as the lowest sample concentration that prevented the color change of the medium and exhibited complete inhibition of microbial growth [27].

Samples were tested alone and then, in the presence of PAßN at 20 mg/L final concentration as previously reported [5]. Four of the best extracts, those from *A. citratum*, *C. zeylanicum*, *D. psilurus* and *T. tetrapeta* were also tested in association [5] at the concentrations selected following a preliminary assay on *P. aeruginosa* PA124 (See Additional file 1: Table S1). All assays were performed in triplicate and repeated thrice. Fractional inhibitory concentration (FIC) [5] were calculated and the interpretations were made as follows: synergistic (<0.5), indifferent (0.5 to 4), or antagonistic (>4) [28] (The FIC values available in Additional file 1: Table S2 and S3).

Table 5 Minimal inhibitory concentration (MIC) of antibiotics in absence and presence of *Cinnamomum zeylanicum* extract (μg/ml)

Bacterial strains	Amoxicillin	Cefepime	Chloramphenicol	Ciprofloxacin	Cloxacillin
	MIC/2.5	MIC/5	MIC/2.5	MIC/5	MIC/2.5
AG100Atet	-	-	-	-	-
AG102	-	-	128 (8)	-	-
CM64	-	256 (1)	-	-	-
KP63	-	32 (8)	-	-	-
PA124	128 (6) 4	64 (2)	-	-	-

MIC/2.5: concentration of plant extract added equal to 204.8 μg/ml for AG100Atet, KP63; and to 409.6 μg/ml for PA124. CM64. AG102.

MIC/5: concentration of plant extract added equal to 102.4 μg/ml for AG100Atet, KP63; and to 204.8 μg/ml for PA124. CM64. AG102.

*: Folds decreasing of MIC. S: synergy. I: indifference. nt: not tested; (−): MIC > 256 μg/ml.
Table 6 Minimal inhibitory concentration (MIC) of antibiotics in absence and presence extracts *Dorstenia psilurus* (μg/ml)

Bacterial strains	Antibiotics and MIC in absence	Antibiotics and MIC in presence of *Dorstenia psilurus* extract
	Alone MIC/2.5 MIC/5	Alone MIC/2.5 MIC/5
AG100A tet	-	-
AG102	-	-
CM64	-	-
KP63	-	-
PA124	-	-

MIC/2.5: concentration of plant extract added equal to 102.4 μg/ml for AG100A tet, CM64, KP63, AG102 and to 204.8 μg/ml for PA124.

MIC/5: concentration of plant extract added equal to 204.8 μg/ml for AG100A tet, CM64, KP63, AG102 and to 409.6 μg/ml for PA124.

Table 7 Minimal inhibitory concentration (MIC) of antibiotics in absence and presence extracts *Tetrapleura tetraptera* (μg/ml)

Bacterial strains	Antibiotics and MIC in absence	Antibiotics and MIC in presence of *Tetrapleura tetraptera* extract
	Alone MIC/2.5 MIC/5	Alone MIC/2.5 MIC/5
AG100A tet	-	-
AG102	-	-
CM64	-	-
KP63	-	-
PA124	-	-

Results

Phytochemical composition of the spice extracts

The results of qualitative analysis showed that each plant contains various phytochemical compounds such as alkaloids, anthocyanins, anthraquinones, flavonoids, phenols, saponins, steroids, tannins and triterpenes as shown in Table 2.

Antibacterial activity of the spice extracts

The results summarized in Table 3 summarize the MIC of the extract tested alone or in combination with PAβN on the tested microorganisms. Its shows that all the studied extracts were active on at least one microbial strain. *A. citratum* showed the best activity, it inhibitory effect being recorded on 85% (24/28) of the tested bacteria. Other
samples were less active, their inhibitory potencies being observed on 75% of tested bacteria (21/28) for *I. cymindricum* and *C. zeylanicum*, 67.9% (19/28) for *A. melegueta*, *D. psilurus*, *F. leprieurii* and *T. tetraperta*; 64.3% (18/28) for *M. myristica* and *S. zenkeri*; 50% (14/28) for *P. guineense* and 42.9% (12/28) for *P. brazzeana*.

Role of efflux pumps in susceptibility of gram negative bacteria to the tested spice extracts

Potentiating effect of EPI was not observed on tested bacteria when associated with *M. myristica*, *P. brazzeana*, *T. tetraperta* and *S. zenkeri*. PA$_\beta$N weakly increased the activity of *A. citratum*, *A. melegueta*, *F. leprieurii*, *I. cymindricum*, *C. zeylanicum* and *P. guineense*. The activity of *D. psilurus* in the presence of EPI significantly increased on most of the tested bacteria (except against *P. stuartii* ATCC29916, *E. coli* ECC169 and *E. aerogenes* EA27) (see Table 3).

Effects of the association of some spice extracts with antibiotics

A. citratum, *C. zeylanicum*, *D. psilurus* and *T. tetraperta* (Tables 4, 5, 6 and 7) were associated to antibiotics in view of evaluating the possible synergistic effect of these associations. A preliminary study using *P. aeruginosa* PA124 was carried out with ten antibiotics (CLX, AMP, ERY, KAN, CHL, TET, FEP, STR, CIP and NOR) to select the appropriate sub-inhibitory concentrations to be used. MIC/2.5 and MIC/5 were then selected as the sub-inhibitory concentrations (see Additional file 1: Table S1). All of these four extracts were then tested in association with antibiotics previously listed on strains of *E. coli* AG100A$_\text{TET}$ and AG102, *E. aerogenes* CM64, *K. pneumoniae* KP63 and *P. aeruginosa* PA124. No antagonistic effect (FIC >4) was observed between extracts and antibiotics meanwhile indifference was observe between *T. tetraperta* and antibiotics in most of the case (see Tables 5, 6, and 7, Additional file 1: S2, S3, S4 and S5). Significant increase of the activity was observed with the association of the extracts of *A. citratum* and *D. psilurus* on *E. aerogenes* CM64 and *K. pneumoniae* KP63, and with *C. zeylanicum* against *K. pneumoniae* KP63. A significant decrease (synergy effect) of MIC values was also observed when ERY was associated with various extracts, and when extracts of *A. citratum* and *C. zeylanicum* were each combined with aminoglycosides (KAN, STR), the best activity being noted against *E. aerogenes* CM64.

Discussion

Phytochemical composition of the spice extracts

The phytochemical studies revealed the presence of secondary metabolite such as alkaloids, anthocyanins, anthraquinones, flavonoids, phenols, saponins, sterols, tannins and triterpenes; several molecules belonging to these classes of secondary metabolites were found active on pathogenic microorganisms [29].

Antibacterial activity of the spice extract

Although this is the first time that plants used in this work are studied for their activities vis-à-vis multi-resistant bacteria, plants belonging to some of the genus studied herein, like the *Aframomum* genus are well documented for their antimicrobial activity [6]. Some antibacterial compounds, such as acridone and chelerythrine have previously been isolated from the fruits of *F. leprieurii* [14,30]. The antimicrobial activity of *P. brazzeana* and *S. zenkeri* is mainly due to some sulfur compounds. In fact, sulfur compounds with antimicrobial properties have been previously isolated from the two plants [7,31]. Several alkaloids of the genus *Piper* proved to be responsible for the activity of *P. guineense* [32]. The detection of this class of secondary metabolites in the extract studied herein can explain the observed activities. According to Krishnaiah et al. [16], the antimicrobial activity of *I. cymindricum* can be due to the presence of tannins in this plant. However, tannins were not detected in the extract of *I. cymindricum* as found in the present work (Table 2), suggesting that other classes of secondary metabolites might be responsible for the antibacterial activity of this plant.

Role of efflux pumps in susceptibility of gram negative bacteria to the tested spice extracts

The significant increase of the activity of the extract of *D. psilurus* in the presence of EPI, indicates that bioactive constituents of this plant extract are substrate of efflux pumps. Efflux through AcrAB-TolC pumps was reported as essential mode of resistance of several Gram-negative MDR bacteria to a number of flavonoids pumps. Efflux through AcrAB-TolC pumps was reported as essential mode of resistance of several Gram-negative MDR bacteria to a number of flavonoids isolated from the plants of the genus Dorstenia, such as isobavachalcone, kanzonol C, stipulin, etc. [4,15,33-35]. This suggests that possible combination of the extract of *D. psilurus* with EPI can be envisaged to overcome MDR bacteria.

Effects of the association of extracts with antibiotics

The results obtained by combining the antibiotic with the extracts of *A. citratum*, *C. zeylanicum*, *D. psilurus* and *T. tetraperta* indicate that these extracts contain chemical compounds that can modulate the activity of antibiotics against bacteria expressing MDR phenotypes. The methanol extracts of *A. citratum*, *C. zeylanicum* and *D. psilurus* showed a synergistic effect with antibiotics inhibiting bacterial cell wall synthesis (AMP and CEF) on *K. pneumoniae* KP63. The intrinsic mode of action of the active extracts is to be investigated.

Conclusion

The present work evidently provides information in the role of some Cameroonian spices in the fight against multi-resistant bacteria. The study also highlights the potential of *D. psilurus* as a strong antibacterial agent.
when the extract is combined with efflux pump inhibitor and several antibiotics.

Additional file

Additional file 1: Table S1. Activities of antibiotics in combination with the sub-inhibitory concentrations of some plants extracts on Pseudomonas aeruginosa PA124. S2. Fractional inhibitory Concentrations of the association between antibiotics and extracts of Actinomadura citratum at MIC/2.5 and MIC/5 (μg/ml) against MDR bacteria. S3. Fractional inhibitory Concentrations of the association between antibiotics and extracts of Cinnamomum zeylanicum at MIC/2.5 and MIC/5 (μg/ml) against MDR bacteria. S4. Fractional inhibitory Concentrations of the association between antibiotics and extracts of Dorstenia subinnotatus at MIC/2.5 and MIC/5 (μg/ml) against MDR bacteria. S5. Fractional inhibitory Concentrations of the association between antibiotics and extracts of Tetrapleura tetraptera at MIC/2.5 and MIC/5 (μg/ml) against MDR bacteria.

Competing interest

The authors declare that they have no competing interest.

Authors’ contributions

IKV carried out the study, VK designed the experiments and wrote the manuscript, VK, GAF, JAKN, JPD, JRK and JMP supervised the work; VK and JIMP provided the bacterial strains; all authors read and approved the final manuscript.

Acknowledgements

Authors are thankful to the Cameroon National Herbarium (Yaounde) for its technical support, and Mr. Paul K. Luna for language editing.

Author details

1 Department of Biochemistry, Faculty of science, University of Dschang, P.O. Box 67, Dschang, Cameroon, Africa. 2 Transporteurs Membranae, Chimiorésistance et Drug Design, UMR-MDI, IFR 88, UFRs de Médecine et de Pharmacie, Marseille, France.

Received: 27 January 2012 Accepted: 4 June 2012 Published: 15 June 2012

References

1. Ziegler J: L’Empire de la honte. Paris: France; Ed Fayard; 2005.
2. ODIE: Partenariat contre les maladies infectieuses. 2009 2009 http://www.observatoireco.de/news/fullstory.php?aid=743/Partenariat_contre_les_maladies_infectieuses.html, 2009. Accessed on 22 February 2010.
3. Yala D, Merad AS, Mohamedi D, Ouar Korich MN: Classification et mode d’action des antibiotiques. Médecine du Maghreb 2001, 91:5–12.
4. Kuate V, Krusche B, Youns M, Atembo NG, Mohan G, Lebrun V, Atembo NG, Moukoula M, Njinkou T: Cytotoxicity of some Cameroonian spiced and selected medicinal plant extracts. J Ethnopharmacol 2011, 134(3):803–812.
5. Kuate V, Krusche B, Youns M, Atembo NG, Moukoula M, Njinkou T, Atembo NG, Moukoula M, Njinkou T: Antibacterial activities of selected Cameroonian spices and their synergic effects with antibiotics against multidrug-resistant pathogens. BMC Complement Altern Med 2011, 11:104.
6. Titani VKP, Zolof D, Ngemenya MN: The antimalarial potential of medicinal plants used for the treatment of malaria in Cameroonian folk medicine. Afr J Trad CAM 2008, 8(3):302–327.
7. Ngemenya MN, Mbaab IA, Tane P, Titani VKP: Antibacterial effects of some Cameroonian medicinal plants against common pathogenic bacteria. Afr J Trad CAM 2006, 3(2):89–93.
8. Konning AG, Ukpe C, Ennin B: Antimicrobial activity of some medicinal plants from Ghana. Fitoterapia 2004, 75(1):65–67.
9. Ogbele RB, Ogbonnaya UD: Antifungal effects of two tropical plant leaf extracts (Ocimum gratissimum and Alchornea melegueta) on postharvest yam (Dioscorea spp.) rot. Afr J Biotech 2004, 5(9):727–731.
10. Runasinghe L, Jayawarden B, Abeywickrama K: Fungical activity of essential oils of Cinnamomum zeylanicum (L.) and Syzygium aromaticum (L.) Merr et L. Perry against crown rot and anthracnose pathogens isolated from banana. Lett Appl Microbiol 2002, 35(3):208–211.
11. Shahverdi AR, Monsef-Esfahani HR, Tavasoli F, Zaheri A, Mirjani R: Trans-Cinnamaldehyde from Cinnamomum zeylanicum bark essential oil reduces the Clindamycin resistance of Clostridium difficile in vitro. J Food Sci 2007, 72(1):55–58.
12. Abegaz BM, Ngadjui BT, Dongo E, Bezabih MT: Chemistry of the Genus Dorstenia. Curr Organ Chem 2000, 4(10):1079–1090.
13. Dima T, Rakotoniarina A, Tan PV, Dongo E, Dongmo AB, Kamtschingou P, Azay J, Abegaz BM, Cross G, Ngadjui TB: Antihypertensive effects of Dorstenia psilurus extract in fructose-fed hyperinsulinemic, hypertensive rats. Phytotherapy 2001, 8(2):101–106.
14. Nguyen AN, Biywi L, Amvam Zollo PH, Bouchet PI: Evaluation of antifungal activity of extracts of two Cameroonian Rutaceae: Zanthoxylum leprieurii Guili. et Perr, and Zanthoxylum xanthoxyloides Waterm. J Ethnopharmacol 2008, 70(3):335–342.
15. Kuate V: Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med 2010, 76(4):1479–1491.
16. Krishnaiah D, Devi T, Bono A, Sarathy R: Studies on phytochemical constituents of six Malaysian medicinal plants. J Med Plant Res 2009, 3(2):67–72.
17. Nishimoto K, Ito M, Natori S, Ohmoto T: The structures of arundoin, cylindrin and fennelmonoterpeneid of fennel and arambone of Imperata cylindrica var. keno, Temerifilhol 1968, 24:555–572.
18. Nguefack J, Letha V, Amvam Zollo PH, Mathur SB: Evaluation of five essential oils from aromatic plants of Cameroon for controlling food spoilage and mycotoxin producing fungi. Int J Food Microbiol 2004, 94(3):329–334.
19. Burubai W, Akor AJ, Igbeji HS, Uyuater YIT: Some physical properties of African nutmeg (Monodora myristica). Int Agrophysics 2007, 21(1):123–126.
20. Noumi E, Djibato TW: Medicinal plants used for peptic ulcer in the Bangangte region, western Cameroon. Fitoterapia 2000, 71(4):406–412.
21. Opatake AM, Bunmi JO: Bioactivity of two powdered spieces Piper guineense thomn & schum and Xylopia aethiopica (pic) on stored bambarra groundnut. Afr J Food Sci 2009, 3(7):77–81.
22. Kouxokam JC, Jahns T, Becker H: Antimicrobial Activity of the Essential Oil and Some Isolated Sulfur-Rich Compounds from Scrophulariaceae berbium柷 (pic.) on stored bambaara groundnut. Agic Trop Subtrop 2006, 39(2):132–134.
23. Nwinyi OC, Chinedu NS, Ajani OD, Iko CO, Ogumniran KO: Antibacterial effects of extracts of Ocimum gratissimum and Piper guineense on Escherichia coli and Staphylococcus aureus. Afr J Food Sci 2009, 3(7):77–81.
24. Kouxokam JC, Jahns T, Becker H: Antimicrobial Activity of the Essential Oil and Some Isolated Sulfur-Rich Compounds from Scrophulariaceae berbium柷 (pic.) on stored bambaara groundnut. Agic Trop Subtrop 2006, 39(2):132–134.
25. El Migirab S, Bergbr Y, Jadot J: Antibacterial Activity of the Essential Oil and Some Isolated Sulfur-Rich Compounds from Scrophulariaceae berbium柷 (pic.) on stored bambaara groundnut. Agic Trop Subtrop 2006, 39(2):132–134.
26. Mativandlela SPN, Lall N, Meyer JJM: Antimicrobial Activity of the Essential Oil and Some Isolated Sulfur-Rich Compounds from Scrophulariaceae berbium柷 (pic.) on stored bambaara groundnut. Agic Trop Subtrop 2006, 39(2):132–134.
33. Omisore NOA, Adeyemi CO, Iwalewa EO, Ngadjui BT, Adenowo TK, Abegaz BM, Ojewole JA, Watchueng J: Antitrichomonal and antioxidant activities of *Dorstenia barteri* and *Dorstenia convexa*. *Braz J Med Biol Res* 2005, 38(7):1087–1094.

34. Ngameni B, Watchueng J, Fekam BF, Keumedjio F, Ngadjui TB, Gut J, Abegaz BM, Rosenthal PJ: Antimalarial prenylated chalcones from the twigs of *Dorstenia barteri var. subtriangularis*. *ARKIVOC* 2007, 13:116–123.

35. Kuete V, Ngameni B, Tangmouo GJ, Bolla JM, Albart-Franco S, Ngadjui TB, Pagès JM: Efflux Pumps Are Involved in the Defense of Gram-Negative Bacteria against the Natural Products Isobavachalcone and Diospyrone. *Antimicrob Agents Chemother* 2010, 54(5):1749–1752.

doi:10.1186/1756-0500-5-299

Cite this article as: Voukeng et al.: Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes. *BMC Research Notes* 2012 5:299.