Database Survey of Anti-Inflammatory Plants in South America: A Review

Gedson Rodrigues de Morais Lima, Camila de Albuquerque Montenegro, Cynthia Layse Ferreira de Almeida, Petrônio Filgueiras de Athayde-Filho, José Maria Barbosa-Filho and Leônia Maria Batista *

Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970, João Pessoa, PB, Brazil; E-Mails: gedson@ltf.ufpb.br (G.R.M.L.); camila_montenegro@ltf.ufpb.br (C.A.M.); cynthialayse@gmail.com (C.L.F.A.); athayde-filho@quimica.ufpb.br (P.F.A.-F.); jbarbosa@ltf.ufpb.br (J.M.B.-F.)

* Author to whom correspondence should be addressed; E-Mail: leoniab@uol.com.br; Tel.: +55-83-32167003; Fax: +55-83-32167502.

Received: 1 April 2011; in revised form: 8 April 2011 / Accepted: 11 April 2011 / Published: 21 April 2011

Abstract: Inflammation is a complex event linked to tissue damage whether by bacteria, physical trauma, chemical, heat or any other phenomenon. This physiological response is coordinated largely by a variety of chemical mediators that are released from the epithelium, the immunocytes and nerves of the lamina propria. However, if the factor that triggers the inflammation persists, the inflammation can become relentless, leading to an intensification of the lesion. The present work is a literature survey of plant extracts from the South American continent that have been reported to show anti-inflammatory activity. This review refers to 63 bacterial families of which the following stood out: Asteraceae, Fabaceae, Euphorbiaceae, Apocynaceae and Celastraceae, with their countries, parts used, types of extract used, model bioassays, organisms tested and their activity.

Keywords: anti-inflammatory activity; leukocytes; medicinal plants; natural products; South American; review
1. Introduction

Inflammation is the response of body to injury and danger. It is the central communication network and regulatory process that senses and controls threat, damage, containment, and healing, which are all critical aspects in the maintenance of the integrity of an organism [1].

This process occurs as a defensive response, which induces profound physiological adaptions triggered in an attempt to limit tissue damage and remove the pathogenic insult. Such mechanisms involve a complex series of events including dilatation of arterioles, venules and capillaries with increased vascular permeability, exudation of fluids, including plasma proteins, and leukocyte migration into the inflammatory area [2].

In response to injury or infection, the specialized cells of the first line, leukocytes (neutrophils and eosinophils polymorphonuclear-PMNs) migrate to the damaged regions with the aim of neutralizing and eliminating these harmful stimuli [3]. The mechanism of inflammation is attributed, in part, to release of reactive oxygen species (ROS) from activated neutrophils and macrophages [4]. ROS propagate inflammation by stimulating release of cytokines, such as interleukin-1, tumor necrosis factor-α, and interferon-γ, which stimulate recruitment of additional neutrophils and macrophages. Thus free radicals are important mediators that provoke or sustain inflammatory processes and, consequently, their neutralization by antioxidants and radical scavengers can attenuate inflammation [5,6].

A complex network of mediators, including cytokines and lipids, produced by endothelial cells, epithelial cells and tissue infiltrating leukocytes, characterizes the early phases of inflammation [7].

The clinical features of inflammation were described some 2000 years ago listed as the cardinal signs of inflammation: rubor (redness), tumor (swelling), heat (hyperthermia) and pain [8].

The combined action of the molecules attracts and activates leukocytes to the reactive site, promotes angiogenesis and tissue remodeling [7]. If this sequence of steps is rigorously followed, the acute inflammation will resolve without causing excessive damage to tissue, returning to homeostasis [3].

However, there are several clinical conditions where inflammation becomes chronic with excessive production of macrophage-derived mediators may lead to collateral damage to normal cells, which results in diseases, including atherosclerosis, bowel disease, rheumatoid arthritis glomerulonephritis, and septic shock [9].

Therefore, the classical anti-inflammatory agents glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs) can only alleviate symptoms without, however, altering the course of the disease [3].

The current anti-inflammatory therapy aims to control the cardinal signs of inflammation, antagonizing or blocking key pro-inflammatory mediators that are released at the beginning of an acute inflammatory response [3]. NSAIDs typically relieve inflammation and associated pain by inhibiting cyclooxygenase enzymes involved in the production of prostaglandins. These enzymes exist in two isoforms (COX-1 and COX-2) coded by distinct genes on different chromosomes [10]. Compounds that inhibit COX enzymes could therefore be considered to be potential anti-inflammatory drugs. However, many of the commonly used anti-inflammatory agents are becoming less acceptable due to serious adverse reactions such as gastric intolerance, bone marrow depression and water and salt retention, resulting from prolonged use [11].

Within this context, it is of fundamental importance to search for substances that can promote the resolution of inflammation, thus, homeostatic and modulatory, efficient and tolerated by the body [3].
Plants are an important source of biologically active natural products and are considered a promising avenue for the discovery of new drugs due to easy access and relatively low cost, since they naturally grow in relative abundance [12,13]. The development of standardized herbal medicines with proven efficacy and safety of use is an important source for increasing the access of people to medicines and to offer new therapeutic options [14].

So, can cite examples of plants with scientifically proven anti-inflammatory activity: Annona muricata, Glycine max, Orthosiphon stamineus, Caulerpa racemosa and Oenothera speciosa used in folk medicine [15–19].

Therefore, extracts or isolated compounds from natural products seems to be a promising strategy for developing anti-inflammatory drugs in search of a better therapeutic and quality of life for the patient [20].

In the course of our continuing search for bioactive natural products from plants, we have published reviews of extracts and compounds derived from plants with the following potential activities: inhibitors of mammary, uterine cervical and ovarian neoplasia [21–23]; inhibitors of HMG CoA reductase, angiotensina-converting enzyme and the enzyme acetylcholinesterase [24–26]; with central analgesic activity [27]; employed in prevention of osteoporosis [28]; for the treatment of Parkinson’s disease [29]; anticonvulsant and anxiety disorders [30,31]; giardicidal [33]; antileptotrophic [34]; hypoglycemic [35] and anti-inflammatory activities [36,37]; for the treatment of malaria [38]; with antinociceptive effects on HIV-1 Protease [42]. Our group has also reviewed the medicinal and poisonous plants of the Northeastern region of Brazil [43,44], among other review articles [45–54]. So in this work, we reviewed the literature related to anti-inflammatory activity of the plants from South American countries.

2. Results and Discussion

It was possible in this review to list 175 species of medicinal plants with anti-inflammatory activity. Those species are distributed in 63 families of which the following stood out: Asteraceae, Fabaceae, Euphorbiaceae, Apocynaceae and Celastraceae with 37, 17, 11, 6 and 6 species, respectively, studied so far (Table 1).

The effectiveness of the plant extracts was dependent on the type of extract used, the model of inflammation induction and the organism tested. Thus, it was possible to classify the extracts as strongly active, active, weakly active, inactive and equivocal.

Different species of Proustia genus have been frequently used as antiinflammatory and analgesic to treat gout and rheumatic illnesses, however, there is little information about their efficacy and acute toxicity [55]. This genus accumulates sesquiterpene α-isocedrene derivatives that are typical for the subtribus Nassauviinae of the family Asteraceae [56], and a guaianolide β-D-glucopyranoside has been previously isolated from Proustia ilicifolia [57].

According to Delporte et al. (2005) [55] in the assays carried out per os crude methanol extract (GME), hexane extract (HE) and methanol extract (ME) exhibited the strongest analgesic activities similar to the reference drug (SN). In relation to the results obtained in per os anti-inflammatory studies, ME showed the strongest effect, and was similar to the reference drug (SN); HE did not present significant antiinflammatory activity. The antiinflammatory activity have been attributed the presence of compounds with a similar mechanism for both activities, as for example inhibition of the synthesis of prostaglandin E₂ (PGE₂). By the activation of the cyclo-oxygenase enzyme, the level of
PGE\(_2\) increases markedly, and its production provokes inflammation and pain [58]. Therefore, we assume that some active metabolites of these extracts could inhibit cyclooxygenase activity.

For arachidonic acid (AA) and phorbol 12-myristate 13-acetate (TPA) induced oedema, GME showed significant effect only against AA assay and on the contrary, HE and ME presented important activities only against TPA and dichloromethane extract (DCE) was active in both AA and TPA models. The action’s mechanism of the GME can be explained by inhibition of cyclooxygenase enzymes while the HE and ME may act by inhibiting the synthesis of leukotrienes. Since the DCE in addition to inhibiting the synthesis of leukotrienes may act by blocking production of PGE\(_2\) [59].

GME did not show acute toxicity per os up to the maxim dose of 2 g/kg and the weight of the mice had a normal variation after the seven days of observation. Common side effects such as, mild diarrhea, loss of weight and depression were not recorded. It is important to carry out toxicological studies in other animal species in order to demonstrate its lack of toxicity [59].

Ageratum conyzoides (Asteraceae), known commonly as “mentrasto”, has been used in Brazilian folk medicine to treat various ailments (metrorrhagia, fevers, dermatitis, inflammation, rheumatism, diarrhea and diuretics). A large number of pharmacological activities (anti-inflammatory, antipyretic, analgesic) have been attributed to the essential oil of *Ageratum conyzoides* [60]. The flowers and leaves are used in the form of an infusion for their analgesic and antiinflammatory properties. Literature data indicate its efficacy in alleviating pain caused by human arthritis [61] or induced experimentally [62].

The hydroalcoholic extract (HAE) of the leaves from *A. conyzoides* was active in both the on subacute (cotton pellet-induced granuloma) and chronic (formaldehyde-induced arthritis) models of inflammation in rats. The weights of cotton pellets were significantly reduced in (38%) after treatment with crude extract of *A. conyzoides* (250 mg/kg, p. o.) and possibly this effect is related to inhibition of neutrophil migration. Exame macroscopic gastric mucosa did not reveal any tissue damage associated with treatment, which is a collateral effect of many antiinflammatory drugs, including aspirin and related compounds [63,64], this result would be explained by an inhibition of the biosynthesis of prostanoids by cyclooxygenase [65].

Literature review reports indicate the presence of pyrrolizidine alkaloids in *A. conyzoides* plants [66,67]. These are known to be hepatotoxic, and to cause lung cancer and variety of other ailments [68]. There was investigated possible hematological and biochemical alteration in animal blood samples following after sub-acute and chronic treatment with the HAE of the plant. To evaluate liver function, serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) levels of plasma were measured. It was observed that during the sub-acute treatment, no significant alteration in serum levels of SGOT and SGPT, however during the chronic treatment with HAE (500 mg/kg body wt.) the value of SGPT (108.5726.6 U/l) showed a statistically significant difference (\(p < 0.05\)) to control group (155.6739.6 U/l), reduced significantly [65].

Artemisia copa Phil. (Compositae), commonly known as “copa-copa”, is a small and much branched bush with a height of 30–60 cm that grows in the northwest of Argentina and in the north of Chile. The plant is regularly sold in local markets and herb health stores and the infusion of the aerial parts are used in popular medicine as antitussive, digestive, for lowering fever, for pulmonary diseases, and hypertension [69]. The leaves, macerated in alcohol, are also used locally to rub on rheumatic pains [70].
Anti-inflammatory activity of ethanol and dichloromethane extracts were analyzed in models of carrageenan-induced paw edema in rats and the ear edema induced by 12-0-tetradecanoylphorbol-13 acetate (TPA) and arachidonic acid (AA) in mice. Antiinflammatory activity was observed in both extracts that showed antinflammatory activity in the TPA (88 and 54%), and the ethanolic extract showed a 37% inhibition in AA test. The results suggested that A. copa was able to prevent the production of proinflammatory mediators specially those related with cyclooxygenase (CO) and Lipoxygenase (LO) pathway. A. copa has no analgesic effect on the central nervous system that would contribute to its peripheral analgesic effect [71].

Bauhinia tarapotensis Benth. (Leguminosae) is a small tree growing in Ecuador (South America), where it is commonly known as “pata de vaca”. The plant leaves are traditionally used for their anti-inflammatory and decongestant properties [72], whereas the bark is employed as antidiarrhoal remedy [73]. Previous study on the methanol extract of *B. tarapotensis* leaves revealed antioxidant and radical scavenger properties, due to the presence of different antioxidant principles, such as cyclohexenone, lignans, and phenylethanoids derivatives [74].

The topical anti-inflammatory activity was evaluated as inhibition of the croton oil-induced ear edema in mice [75]. Five extracts of the leaves significantly inhibited the croton oil-induced ear edema in mice, among which the chloroform extract was the most active. The main anti-inflammatory principles of *B. tarapotensis* leaves are triterpenic acids of ursane and oleanane series. The antiphlogistic activity of mixtures constituted of two ursane and oleanane isomers with different hydroxylation pattern, in the ratio 2:1, is comparable to that of indomethacin [76].

Croton pullei (Euphorbiaceae) is a liana that grows above other trees, distributed in tropical areas with vast distribution in the Amazon forest [77]. In the folk medicine, several plants of the *Croton* genus have been used with therapeutic purposes in pathologies that involve painful and inflammatory diseases which justify this work [78].

Anti-inflammatory activity was tested in two models that assess inflammatory processes such as edema and leukocyte migration. The crude methanol extract significantly reduced by 72% the ear edema by croton-oil induced, as also was a dose-dependent reduction of leukocyte migration to the peritoneum after induction with carrageenan. The mechanism of action has not yet elucidated [78].

Maytenus ilicifolia Mart. ex. Reiss (Celastraceae), popularly called “espinheira-santa” due to the appearance of its leaves and its therapeutic properties, is utilized in popular medicine in cases of inflammation and gastric ulcer [79–81].

This study evaluated the anti-inflammatory activity, antinociceptive and antiulcer of ethyl acetate and hexane extracts of *Maytenus ilicifolia* [82].

In the model of paw edema induced by carrageenan was observed that there was no significant difference in inflammatory response between indomethacin and the extracts evaluated. The result of hexane extract showed the anti-inflammatory potential of terpenes whereas for ethylacetate extract the anti-inflammatory response has been attributed to flavonoids, which act by reducing the formation of pro-inflammatory mediators as prostaglandins, leukotrienes, reactive oxygen species and nitric oxide [82]. According to Oliveira *et al.* (1991) [83], both acute and chronic administration of this species did not induce any apparent toxicity.
Table 1. Extracts of plants with anti-inflammatory activity studied in South America.

Family and Botanical name	Country	Part used	Type of extract	Model assay/way of route	Organism tested	Activity	Ref.
Acanthaceae							
Justicia pectoralis var.	Brazil	Dried leaf	Hydro-alcoholic	Carrageenan-induced pedal	Rat	Active	[84]
n. stenophylla			ext	edema/Intragastric			
	Brazil	Dried leaf	Hexane-acetone	Dextran-induced pedal	Rat	Inactive	[84]
				edema/Intragastric			
Agavaceae							
Cordyline dracaenoides	Brazil	Dried rhizome	EtOH-H₂O (50%)	Carrageenan-induced pedal	Rat	Active	[85]
			ext	edema/IP			
Alismataceae							
Echinodorus grandiflorus	Brazil	Dried rhizome	MeOH ext	Carrageenan-induced pedal	Mouse	Active	[86]
				edema/Intragastric			
	Brazil	Dried rhizome	MeOH ext	Carrageenan-induced pedal	Rat	Active	[86]
				edema/Intragastric			
Amaranthaceae							
Alternanthera brasiliana	Brazil	Dried leaf	H₂O ext	Carrageenan-induced pedal	Rat	Inactive	[87]
				edema/Route not given			
Pfaffia glomerata	Brazil	Dried root	EtOH (60%) ext	Acetic acid-induced pedal	Mouse	Active	[88]
				edema/Intragastric			
	Brazil	Dried root	EtOH (60%) ext	Acetic acid-induced pedal	Mouse	Active	[88]
				edema/IP			
Pfaffia iresinoides	Brazil	Dried root	Saponin fraction	Carrageenan-induced pleurisy	Rat	Active	[89]
				pleurisy/Intragastric			
	Brazil	Dried root	H₂O ext	Carrageenan-induced pleurisy	Rat	Active	[89]
				pleurisy/Intragastric			
	Brazil	Dried root	H₂O ext	Cotton pellet granuloma	Rat	Inactive	[89]
				/Intragastric			
	Brazil	Dried root	Saponin fraction	Cotton pellet granuloma	Rat	Active	[89]
				/Intragastric			
Plant Species	Country	Part Used	Extraction Method	Model/Condition	Species/Condition	Activity	Ref.
------------------------	---------	-------------------	-------------------	---	---------------------	----------	------
Pfaffia paniculata	Brazil	Dried root	EtOH (20%) ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[90]
	Brazil	Dried root	EtOH (60%) ext	Carrageenan-induced pedal edema/IP	Rat	Active	[91]
Pfaffia stenophylla	Brazil	Dried root	EtOH (20%) ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[90]
Anacardiaceae							
Anacardium occidentale	Brazil	Dried bark	Shell	Carrageenan-induced pedal edema/Gastric intubation	Rat	Active	[92]
	Brazil	Dried bark	Shell	Dextran-induced pedal edema/Gastric intubation	Rat	Inactive	[92]
	Brazil	Dried bark	Shell	Cotton pellet granuloma/IP	Rat	Active	[92]
	Brazil	Dried bark	Shell	Dextran-induced pedal edema/IP	Rat	Active	[92]
	Brazil	Dried bark	Shell	Carrageenan-induced pedal edema/IP	Rat	Active	[92]
	Brazil	Dried bark	Isopropanol-H₂O (1:1) ext Shell	Carrageenan-induced pedal edema/IP	Rat	Active	[92]
Astronium urundeuva	Brazil	Stembark	EtoAc ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active	[93]
	Brazil	Dried bark	Tannin fraction	Dextran-induced pedal edema/IP	Rat	Active	[93]
	Brazil	Dried bark	Tannin fraction	Carrageenan-induced pedal edema/IP	Mouse	Active	[93]
	Brazil	Dried bark	Tannin fraction	Cyclophosphamide-induced hemorrhagic cystitis/IP	Rat	Active	[93]
Species	Country	Part	Extraction	Methodology	Animal	Effect	Ref.
-----------------------	--------------	-----------------------	--------------	---	----------	----------	------
Spondias mombin	Venezuela	Dried bark	EtOH (100%)	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[94]
Apocynaceae							
Bonafousia longituba	Ecuador	Dried part not specified	EtOH (100%)	Carrageenan-induced pedal edema/Intragastric	Mouse	Active	[95]
	Ecuador	Dried entire plant	EtOH (100%)	Carrageenan-induced pedal edema/Intragastric	Mouse	Weak	
	Ecuador	Dried part not specified	CH₂Cl₂	Carrageenan-induced pedal edema/Intragastric	Mouse	Active	[96]
	Ecuador	Dried part not specified	CH₂Cl₂	Carrageenan-induced pedal edema/Intragastric	Mouse	Active	[96]
Ervatamia coronaria	Brazil	Dried stem	EtOH (95%)	Carrageenan-induced pedal edema/IP	Rat	Active	[97]
	Brazil	Dried stem	EtOH (95%)	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[97]
	Brazil	Dried stem	H₂O	Carrageenan-induced pedal edema/IP	Rat	Active	[97]
Himatanthus sucuuba	Brazil	Latex (unspecified part)	Hexane	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[98]
Mandevilla velutina	Brazil	Dried rhizome	Aqueous-alcoholic ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active	[99]
	Brazil	Dried rhizome	Aqueous-alcoholic ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[99]
	Brazil	Dried rhizome	Aqueous-alcoholic ext	5-HT-induced pedal edema/Intragastric	Rat	Inactive	[99]
	Brazil	Dried rhizome	Aqueous-alcoholic ext	Carrageenan-induced pedal edema/IP	Rat	Active	[99]
Location	Treatment	Model	Species	Effect	Reference		
-----------------------	--	---	--------------	-----------------	-----------		
Brazil	Dried rhizome	Aqueous-alcoholic ext	Snake venom-induced pedal edema/Intragastric	Rat	Inactive	[99]	
Brazil	Dried rhizome	Aqueous-alcoholic ext	Platelet aggregating factor-acether induced pedal edema/Intragastric	Rat	Inactive	[99]	
Brazil	Dried entire plant	EtOH (95%) ext	Arachidonic-acid induced ear edema/Intragastric	Mouse	Active	[100]	
Brazil	Frozen rhizome	EtOH H₂O (50%) ext	Bradykinin-induced pedal edema/Intragastric	Rat	Active	[101]	
Brazil	Frozen rhizome	EtOH H₂O (50%) ext	Carrageenan-induced pedal edema/5-HT-induced pedal edema/Intragastric	Rat	Active	[101]	
Brazil	Frozen rhizome	EtOH H₂O (50%) ext	Dextran-induced pedal edema/Intragastric	Rat	Active	[101]	
Brazil	Frozen rhizome	EtOH H₂O (50%) ext	Carrageenan-induced pedal edema/IP	Rat	Active	[101]	
Brazil	Frozen rhizome	EtOH H₂O (50%) ext	Cellulose sulfate induced rat paw edema/Intragastric	Rat	Active	[101]	
Brazil	Frozen rhizome	EtOH H₂O (50%) ext	Platelet aggregating factor-acether induced rat paw edema/Intragastric	Rat	Active	[101]	
Brazil	Frozen rhizome	EtOH H₂O (50%) ext	Zymosan induced rat paw edema/Intragastric	Rat	Active	[101]	
Brazil	Frozen rhizome	EtOH H₂O (50%) ext	Bothrops jararaca induced rat paw edema/Intragastric	Rat	Inactive	[101]	
Brazil	Dried leaf	EtOH (100%) ext	Carrageenan-induced paw edema/IP	Rat	Active	[102]	

Peschiera australis var. *australis*
Plant Family	Country	Part	Extraction	Edema Model	Species	Route	Effect	Reference
Peschiera vanheurckii	Peru	Dried stem bark	EtOH (100%) ext	EPP-induced rat ear oedema/External			Active	[103]
Araliaceae	Uruguay	Dried leaf	EtOH (95%) ext	**/Oral			Active	[104]
Hedera helix	Brazil	Dried fruit	CHCl$_3$ ext	Cotton pellet granuloma/Intragastric			Active	[105]
Arecaaceae	Brazil	Dried fruit	CHCl$_3$ ext	Carrageenan-induced pedal edema/Intragastric			Active	[105]
Aristolochiaceae	Argentina	Dried root	MeOH ext	Croton oil-induced edema/External			Active	[106]
Aristolochia triangularis	Argentina	Dried root	CH$_2$Cl$_2$ ext	Croton oil-induced edema/External			Active	[106]
	Argentina	Dried root	H$_2$O ext	Croton oil-induced edema/External			Active	[106]
	Argentina	Dried root	H$_2$O ext	Carrageenan-induced pedal edema/IP			Active	[106]
	Argentina	Dried root	CH$_2$Cl$_2$ ext	Carrageenan-induced pedal edema/IP			Active	[106]
	Argentina	Dried root	MeOH ext	Carrageenan-induced pedal edema/IP			Active	[106]
Asclepiadaceae	Ecuador	Part not specified	CH$_2$Cl$_2$ ext	Carrageenan-induced pedal edema/Intragastric			Active	[96]
Plant Family	Country	Part of Plant	Extractsolvent	Test Method	Animal	Active (Reference)		
-------------------	------------	---------------	---------------------	---	----------	--------------------		
Asteraceae	Brazil	Dried inflorescence	H₂O ext	Carrageenan-induced pedal edema/IP	Rat	Active [107]		
	Brazil	Dried inflorescence	EtOH (95%) ext	Carrageenan-induced pedal edema/IP	Rat	Active [107]		
	Brazil	Dried inflorescence	Hot H₂O ext	Carrageenan-induced pedal edema/IP	Rat	Active [107]		
	Brazil	Dried inflorescence	EtOH (95%) ext	Croton oil ear edema test/External	Mouse	Active [107]		
	Brazil	Dried inflorescence	H₂O ext	Croton oil ear edema test/External	Mouse	Active [107]		
	Brazil	Dried inflorescence	Hot H₂O ext	Croton oil ear edema test/External	Mouse	Active [107]		
Ageratum conyzoides	Brazil	Dried leaf	EtOH (70%) ext	Formalin-induced pedal edema/Intragastric	Rat	Active [62]		
	Brazil	Dried leaf	EtOH (70%) ext	Cotton pellet granuloma/Intragastric	Rat	Active [62]		
	Brazil	Dried leaf	EtOH (70%) ext	Carrageenan-induced pedal edema/SC	Rat	Active [62]		
	Brazil	Dried leaf	Hydro-alcoholic ext	Formalin-induced pedal edema/Intragastric	Rat	Active [65]		
	Brazil	Dried leaf	Hydro-alcoholic ext	Cotton pellet granuloma/Intragastric	Rat	Active [65]		
	Brazil	Dried leaf	EtOH (70%) ext	Yeast-induced inflammation of the paw/IP	Rat	Active [108]		
Ambrosia tenuifolia	Argentina	Dried aerial parts	CH₂Cl₂ ext	Croton oil-induced edema/External	Mouse	Active [106]		
Country	Plant Part	Extractant	Effect	Species	Active/Inactive	Reference		
-------------	-------------------------	------------	---------------------	---------	-----------------	-----------		
Argentina	Dried aerial parts	MeOH ext	Croton oil-induced edema/External	Mouse	Active	[106]		
Argentina	Dried aerial parts	H2O ext	Croton oil-induced edema/External	Mouse	Active	[106]		
Argentina	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/IP	Mouse	Inactive	[106]		
Argentina	Dried aerial parts	H2O ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[106]		
Argentina	Dried aerial parts	CH2Cl2 ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[106]		
Artemisia copa	Argentina	Dried entire plant	Hot H2O ext	Carrageenan-induced pedal edema/IP	Rat	Inactive	[109]	
Argentina	Dried entire plant	CH2Cl2 ext	Carrageenan-induced pedal edema/IP	Rat	Inactive	[109]		
Argentina	Dried entire plant	MeOH ext	Carrageenan-induced pedal edema/IP	Rat	Inactive	[109]		
Argentina	Dried aerial parts	H2O ext	12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/External	Mouse	Active	[71]		
Argentina	Dried aerial parts	CH2Cl2 ext	12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/External	Mouse	Active	[71]		
Baccharis articulata	Argentina	Dried aerial parts	H2O ext	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive	[110]	
Argentina	Dried aerial parts	H2O ext	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive	[110]		
Baccharis crispa	Argentina	Dried aerial parts	H2O ext	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive	[110]	
Plant	Country	Part	Extraction	Method	Species	Route	Effect	Reference
---------------------	----------	---------------	------------	--------------------------	------------------	-------------	------------	-----------
Baccharis decussata	Colombia	Dried leaf	MeOH ext	**/Route not given	**	Active		[111]
Baccharis incarum	Argentina	Dried entire plant	CH₂Cl₂ ext	Carrageenan-induced pedal edema/IP	Rat	Active		[109]
Baccharis medullosa	Argentina	Dried aerial parts	CHCl₃ ext	Carrageenan-induced pedal edema/IP	Mouse	Inactive		[112]
Baccharis rufescens	Argentina	Dried aerial parts	Acetone ext	Carrageenan-induced pedal edema/IP	Mouse	Active		[112]
Baccharis trimera	Uruguay	Dried aerial parts	CHCl₃ ext	Carrageenan-induced pedal edema/IP	Mouse	Active		[112]
Location	Plant Part	Solvent	Test	Species	Activity	Ref.		
-------------------	-----------------------------	-------------	---------------	-----------	-------------------	------		
Uruguay	Dried aerial parts	Butanol ext	Arachidonic acid-induced edema in pat paw/IP	Rat	Equivocal	[113]		
Uruguay	Dried aerial parts	Butanol ext	C16-PAF-induced edema/IP	Rat	Weak activity	[113]		
Uruguay	Dried aerial parts	Butanol ext	Zymosan-induced edema in rat paw/IP	Rat	Equivocal	[113]		
Ecuador	Dried entire plant	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Weak activity	[95]		
Baccharis trinervis								
Argentina	Dried aerial parts	H₂O ext	Croton oil-induced edema/External	Mouse	Active	[106]		
Argentina	Dried aerial parts	CH₂Cl₂ ext	Croton oil-induced edema/External	Mouse	Active	[106]		
Argentina	Dried aerial parts	MeOH ext	Croton oil-induced edema/External	Mouse	Active	[106]		
Argentina	Dried aerial parts	CH₂Cl₂ ext	Carrageenan-induced pedal edema/IP	Mouse	Inactive	[106]		
Argentina	Dried aerial parts	H₂O ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[106]		
Argentina	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[106]		
Bidens pilosa	Brazil	Dried leaf	Zymosan-induced pedal edema/IP	Mouse	Active	[114]		
Bidens subalternans								
Argentina	Dried entire plant	MeOH ext	Carrageenan-induced pedal edema/IP	Mouse	Weak activity	[115]		
Argentina	Dried entire plant	CHCl₃ ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[115]		
Centaurea chilensis								
Chile	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/IP/Intragastric	Guinea pig	Active	[116]		
Chile	Dried aerial parts	CHCl₃ ext	Carrageenan-induced pedal edema/IP/Intragastric	Guinea pig	Active	[116]		
Species	Country	Sample	Extractant	Test Model	Route	Animal	Activity	Reference
--------------------------------	-------------	-------------------------	------------	---	-------	--------	----------	-----------
Chromolaena christieana	Argentina	Dried aerial parts	MeOH ext	Croton oil-induced edema/External	Mouse	Active	[106]	
	Argentina	Dried aerial parts	CH₂Cl₂ ext	Croton oil-induced edema/External	Mouse	Active	[106]	
	Argentina	Dried aerial parts	H₂O ext	Croton oil-induced edema/External	Mouse	Active	[106]	
	Argentina	Dried aerial parts	CH₂Cl₂ ext	Carrageenan-induced pedal edema/IP	Mouse	Inactive	[106]	
	Argentina	Dried aerial parts	H₂O ext	Carrageenan-induced pedal edema/IP	Mouse	Inactive	[106]	
	Argentina	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/IP	Mouse	Inactive	[106]	
Conyza bonariensis	Brazil	Aerial part essent oil	Essential oil	LPS-induced leukocyte recruitment/Intragastric	Mouse	Active	[117]	
Conyza floribunda	Ecuador	Dried entire plant	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Weak activity	[95]	
Conyza sophiifolia	Argentina	Dried aerial parts	Hexane ext	Paw edema test/Route not given	Rat	Active	[118]	
	Argentina	Dried aerial parts	Acetone ext	Paw edema test/Route not given	Rat	Active	[118]	
	Argentina	Dried aerial parts	CHCl₃ ext	Paw edema test/Route not given	Rat	Active	[118]	
Cynara scolymus	Brazil	Fresh leaf	Infusion	Dye diffusion assay/Intragastric	Mouse	Active	[119]	
Elephantopus scaber	Brazil	Fresh leaf	Infusion	Dye diffusion assay/Intragastric	Mouse	Active	[119]	
	Brazil	Dried entire plant	EtOH-H₂O (50%) ext	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive	[120]	
	Brazil	Dried entire plant	Decoction	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive	[120]	
Table 1. Cont.

Species	Origin	Part	Extractant	Activity	Effect		
Eremanthus erythropappus	Brazil	Dried aerial parts	EtOH (95%) ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active [121]	
Eupatorium buniifolium	Argentina	Dried aerial parts	CH₂Cl₂ ext	12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/External	Mouse	Active [122]	
	Equador	Dried entire plant	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active [95]	
Eupatorium inulaefolium var. suaveolens	Argentina	Oven dried aerial parts	CH₂Cl₂ ext	Phorbol myristate acetate-induced ear inflammation/External	Mouse	Active [123]	
Gochnatia polymorpha	Brazil	Dried leaf	H₂O ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active [124]	
	Brazil	Dried leaf	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active [124]	
	Brazil	Dried leaf	Butanol ext	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive [124]	
	Brazil	Dried leaf	EtoAc ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active [124]	
	Brazil	Dried leaf	Dichloromethane ext	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive [124]	
Laennecia sophiifolia	Argentina	Dried aerial parts	Hexane ext	Carrageenan-induced pedal edema/IP	Mouse	Active [112]	
	Argentina	Dried aerial parts	Acetone ext	Carrageenan-induced pedal edema/IP	Mouse	Active [112]	
Mikania glomerata	Brazil	Fresh leaf	Infusion	Dye diffusion assay/Intragastric	Mouse	Active [119]	
Country	Plant Part	Extractant	Effect	Animal	Activity	Reference	
---------	------------	------------	--------	--------	----------	-----------	
Brazil	Dried leaf	EtOH-H₂O (1:1) ext	PAF-induced edema/Histamine-induced edema/SC	Rat	Inactive	[125]	
Brazil	Dried leaf	Dichloromethanol	Carrageenan-induced pleurisy/IP	Mouse	Active	[126]	
Brazil	Dried leaf	EtOH-H₂O (1:1) ext	Serotonin-induced pleural edema/SC	Rat	Inactive	[125]	
Mutisia kurtzii	Argentina	Dried entire plant	CH₂Cl₂ ext	Carrageenan-induced pedal edema/IP	Rat	Inactive	[109]
Mutisia kurtzii	Argentina	Dried entire plant	MeOH ext **/IP	Carrageenan-induced pedal edema/IP	Rat	Active	[109]
Mutisia kurtzii	Argentina	Dried entire plant	Hot H₂O ext	Carrageenan-induced pedal edema/IP	Rat	Active	[109]
Neurolaena lobata	Ecuador	Dried entire plant	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active	[95]
Pluchea sagittalis	Argentina	Dried entire plant	Hot H₂O ext	Carrageenan-induced pedal edema/IP	Rat	Active	[123]
Pluchea sagittalis	Argentina	Dried entire plant	CH₂Cl₂ ext	Carrageenan-induced pedal edema/IP	Rat	Active	[123]
Pluchea sagittalis	Argentina	Oven dried aerial parts	CH₂Cl₂ ext	Phorbol myristate acetate-induced ear inflammation/External	Mouse	Active	[109]
Pluchea sagittalis	Argentina	Oven dried aerial parts	CH₂Cl₂ ext	Carrageenan-induced pedal edema/IP	Rat	Active	[109]
Pluchea sagittalis	Argentina	Dried entire plant	MeOH ext	Carrageenan-induced pedal edema/IP	Rat	Inactive	[109]
Porophyllum ruderale	Brazil	Aerial part	Essential oil	LPS-induced leukocyte recruitment/Intragastric	Mouse	Active	[117]
Table 1. Cont.

Plant	Country	Part(s)	Extraction	Assay	Species	Activity	Reference	
Proustia pyrifolia	Chile	Dried aerial	CH₂Cl₂ ext	Acetic acid-induced pedal edema/External	Mouse	Active	[59]	
	Chile	Dried aerial	CH₂Cl₂ ext	12-0-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/External	Mouse	Active	[59]	
	Chile	Dried aerial	MeOH ext	Acetic acid-induced pedal edema/External	Mouse	Active	[59]	
	Chile	Dried aerial	Hexane ext	Acetic acid-induced pedal edema/External	Mouse	Active	[59]	
	Chile	Dried aerial	Hexane ext	12-0-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/External	Mouse	Active	[59]	
Synedrella nodiflora	Venezuela	Dried leaf	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[94]	
	Venezuela	Dried leaf	Hexane ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[94]	
Tagetes pusilla	Ecuador	Dried entire	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active	[95]	
Tanacetum vulgare	Argentina	Dried aerial	Dichloromethane ext	12-0-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/External	Mouse	Active	[127]	
	Argentina	Dried aerial	EtOH (100%) ext	12-0-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/External	Mouse	Weak activity	[128]	
	Argentina	Dried aerial	CHCl₃ ext	12-0-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/External	Mouse	Active	[128]	
Vanillosmopsis arborea	Brazil	Dried trunkwood	Essential oil	***/Gastric intubation**	Mouse	Active	[129]	
---------------------------	--------	----------------	--------------	--------------------------	-------	--------	-------	
Bignoniaceae								
Adenocalymma alliacea	Peru	Dried root + stem	EtOH (100%) ext	EPP-induced rat ear oedema/External	Rat	Weak activity	[103]	
Tabebuia impetiginosa	Brazil	Dried bark	Type ext not stated	Formalin-induced pedal edema/Route not given	Rat	Active	[130]	
Tecoma sambucifolia	Peru	Dried flowers	H₂O ext	Carrageenan-induced pedal edema/IP	Rat	Active	[131]	
	Peru	Dried flowers	EtOH (95%) ext	Carrageenan-induced pedal edema/IP	Rat	Active	[131]	
	Peru	Dried perianth	H₂O ext	Carrageenan-induced pedal edema/IP	Rat	Active	[131]	
	Peru	Dried perianth	EtOH (95%) ext	Carrageenan-induced pedal edema/IP	Rat	Active	[131]	
Tynnanthus myrianthus	Peru	Dried part not specified	EtOH (95%) ext	Carrageenan-induced pedal edema/IP	Rat	Active	[132]	
Boraginaceae								
Auxemma oncocalyx	Brazil	Dried heartwood	Quinone fraction	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[133]	
	Brazil	Dried heartwood	Quinone fraction	Dextran-induced pedal edema/IP	Rat	Active	[133]	
	Brazil	Dried heartwood	Quinone fraction	Carrageenan-induced pedal edema/IP	Rat	Active	[133]	
Cordia verbenacea	Brazil	Freeze-dried leaf	Lyophilized extract	Miconazole-induced edema/Intragastric	Rat	Active	[134]	
	Brazil	Freeze-dried leaf	Lyophilized extract	Nystatin-induced edema/External	Rat	Active	[134]	
	Brazil	Fresh leaf	EtOH (70%) ext	Cotton pellet granuloma/External	Rat	Active	[135]	
Country	Leaf/Plant Type	Extraction Method	Treatment/Induction	Organ	Activity	Reference		
---------	----------------	------------------	---------------------	-------	----------	-----------		
Brazil	Fresh leaf	EtOH (70%) ext	Cotton pellet granuloma/Intragastric	Rat	Active	[135]		
Brazil	Dried leaf	EtOH (70%) ext	Croton oil-induced edema/External	Mouse	Active	[136]		
Brazil	Dried leaf	EtOH (70%) ext	Nystatin-induced pedal edema/Gastric intubation	Rat	Active	[136]		
Brazil	Dried leaf	EtOH (70%) ext	Cold stress and carrageenin-induced edema combined/Gastric intubation	Rat	Active	[136]		
Brazil	Fresh leaf	EtOH (70%) ext	Carrageenan-induced pedal edema/Oral	Rat	Active	[137]		
Brazil	Fresh leaf	EtOH (70%) ext	Cotton pellet granuloma/Oral	Rat	Active	[137]		
Brazil	Freeze-dried leaf	Lyophilized extract	Nystatin-induced edema/External	Rat	Active	[134]		
Brazil	Dried leaf	Aqueous high speed supernatant	Carrageenan-induced pedal edema/Gastric intubation	Rat	Inactive	[138]		
Symphytum officinale	Brazil	Dried leaf	LPS-induced inflammatory/IP	Mouse	Active	[139]		
Symphytum officinale	Brazil	Dried leaf	Croton oil-induced edema/External	Mouse	Active	[140]		
Nidularium procerum	Brazil	Dried leaf	Hexane ext	Rat	Active	[94]		
Tillandsia streptocarpa	Brazil	Dried entire plant	Hexane ext	Rat	Active	[94]		
Tillandsia streptocarpa	Venezuela	Dried leaf	EtOH (100%) ext	Rat	Active	[94]		
Tillandsia streptocarpa	Venezuela	Dried bark	EtOH (100%) ext	Rat	Active	[94]		
Burseraceae	Bursera simaruba	Venezuela	Dried leaf	Hexane ext	Rat	Active	[141]	
Species	Origin	Part Used	Ext Method	Activity	Route	Ref.		
-------------------------------	--------	-----------------	------------	----------------	-------	-------		
Protium kleinii	Brazil	Dried bark	Ether ext	Arachidonic acid-induced edema/External	Mouse	Inactive [142]		
	Brazil	Dried bark	Ether ext	12-0-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/External	Mouse	Active [142]		
Celastraceae								
Cheiloclinium cognatum	Brazil	Dried rootbark	MeCl₂ ext	Croton oil-induced edema/External	Mouse	Active [143]		
Maytenus aquifolium	Brazil	Dried leaf/plus piroxican	Hydro-alcoholic ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active [144]		
	Brazil	Dried leaf	Hydro-alcoholic ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active [144]		
Maytenus boaria	Chile	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Active [145]		
Maytenus ilicifolia	Brazil	Dried leaf	Hexane-acetone ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active [82]		
	Brazil	Dried leaf	EtoAc ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active [82]		
	Brazil	Dried leaf	Hexane-acetone	Carrageenan-induced pedal edema/Intragastric	Mouse	Active [82]		
	Brazil	Dried leaf	EtoAc ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active [82]		
Maytenus laevis	Colombia	Bark	EtOH (95%) ext	Carrageenan-induced pedal edema/SC	Rat	Active [146]		
Maytenus rigida	Brazil	Dried bark	EtOH (95%) ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active [147]		
Chloranthaceae								
Hedyosmum bonplandianum	Colombia	Dried leaf	Butanol ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active [148]		
Clusiaceae								
Species	Country	Part	Extractation Method/Preparation	Activity	References			
------------------------------	-----------	-----------------------	----------------------------------	----------	------------			
Hypericum brasiliense	Brazil	Dried leaf	Type ext not stated	Carrageenan-induced pedal edema/Oral	Rat	[149]		
Convolvulaceae								
Cuscuta chilensis	Chile	Dried entire plant	MeOH ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	[150]		
	Chile	Dried entire plant	Infusion	Carrageenan-induced pedal edema/Intragastric	Guinea pig	[150]		
Ipomoea fistulosa	Argentina	Oven dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/Intragastric	Rat	[123]		
	Argentina	Oven dried aerial parts	CH$_2$Cl$_2$ ext	Phorbol myristate acetate-induced ear inflammation/External	Mouse	[123]		
Crassulaceae								
Bryophyllum calcinum	Brazil	Dried leaf	Lyophilized extract	Carrageenan-induced pedal edema/Intragastric	Rat	[151]		
Kalanchoe brasiliensis	Brazil	Fresh leaf	Plant juice	Carrageenan-induced pedal edema/Intragastric	Rat	[152]		
	Brazil	Fresh leaf	Juice	Zymosan-induced inflammation/IP **/IP	Mouse	[153]		
	Brazil	Fresh fruit juice (unripe)	Juice		Mouse	[154]		
Cucurbitaceae								
Cayaponia tayuya	Brazil	Dried root	MeOH ext	Carrageenan-induced pedal edema/Gastric intubation	Mouse	Inactive	[155]	
	Brazil	Dried root	CHCl$_3$ ext	Carrageenan-induced pedal edema/Gastric intubation	Mouse	Weak activity	[155]	
	Brazil	Dried root	MeOH ext	Carrageenan-induced pedal edema/IP	Mouse	Weak activity	[155]	
	Brazil	Dried root	CHCl$_3$ ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[155]	
Species	Country	Part	Extraction	Method	Species	Route	Activity	References
--------------------------	-------------	---------------	---------------	---------------------------------	----------------	-------------	--------------	------------
Wilbrandia ebracteata	Brazil	Dried root	Infusion	Dye diffusion assay/Intragastric	Mouse	Equivocal	[119]	
Brazil	Brazil	Dried root	CH₂Cl₂ ext	Carrageenan-induced pedal edema/Intragastric	Rat	Weak activity	[156]	
Brazil	Brazil	Dried root	CHCl₃ soluble fraction	Carrageenan-induced pleurisy/Intragastric	Mouse	Active	[156]	
Brazil	Brazil	Dried root	CH₂Cl₂ ext	Carrageenan-induced pedal edema/IP	Rat	Active	[156]	
Brazil	Brazil	Dried root	Chromatographic fraction	Carrageenan-induced pleurisy/IP	Mouse	Active	[156]	
Brazil	Brazil	Dried root	CHCl₃ soluble fraction	Carrageenan-induced pleurisy/IP	Mouse	Active	[156]	
Wilbrandia species	Brazil	Dried rhizome	EtOH (70%) ext	Acetic acid-induced pedal edema/Intragastric	Mouse	Active	[157]	
Brazil	Brazil	Dried rhizome	EtOH (70%) ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[157]	
Brazil	Brazil	Dried rhizome	EtOH (70%) ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[157]	
Cytaceaeae	Peru	Inner bark	EtOH (95%) ext	**/**	Rabbit	Active	[158]	
Trichipteris procera	Peru	Inner bark	EtOH (95%) ext	**/**	Rabbit	Active	[158]	
Cyperaceae	Brazil	Venom	Essential oil	LPS-induced pleurisy model/Intragastric	Mouse	Active	[159]	
Mariscus pedunculatus	Brazil	Venom	Essential oil	LPS-induced pleurisy model/Intragastric	Mouse	Active	[159]	
Dilleniaceae	Brazil	Dried stembark	Hydro-alcoholic ext	Carrageenan-induced pedal edema/IP	Rat	Active	[160]	
Brazil	Brazil	Dried stembark	Hydro-alcoholic ext	12-O-tetradecanoylphorbol-13-acetate(TPA)-induced ear inflammation/IP	Mouse	Active	[160]	
Table 1. Cont.

Family	Country	Part	Extraction	Method	Animal	Active	Ref
Equisetaceae	Brazil	Dried stem bark	Hydro-alcoholic ext	Capsaicin induced mouse ear edema/IP	Mouse	Active	[160]
Equisetum arvense	Brazil	Stem	EtOH - H₂O (1:1) ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[161]
Erythroxylaceae	Brazil	Dried leaf	EtOH (70%) ext	Carrageenan-induced pedal edema/IP	Rat	Active	[162]
Erythroxylum argentinum	Brazil	Dried leaf	EtOH (70%) ext	Carrageenan-induced pedal edema/IP	Rat	Active	[162]
Euphorbiaceae	Peru	Dried part not specified	EtOH (95%) ext	Carrageenan-induced pedal edema/IP	Rat	**	[132]
Alchornea castaneaefolia	Peru	Dried stem bark	EtOH (100%) ext	Epp-induced rat ear edema/**	Rat	Active	[103]
Croton cajucara	Brazil	Bark essential oil	Essential oil	Carrageenan-induced pedal edema/IP	Mouse	Active	[163]
Croton celtidifolius	Brazil	Dried bark	H₂O ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[164]
	Brazil	Dried bark	EtoAc ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[164]
	Brazil	Dried bark	EtOH (80%) ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[164]
	Brazil	Dried bark	Butanol ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[164]
	Brazil	Dried bark	EtoAc ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[164]
Table 1. Cont.

Country	Plant Part	Extract/Ext.	Test Method	Species	Mouse	Activity	Reference
Brazil	Dried bark	H2O ext	Carrageenan-ind. pedal edema/IP	Mouse	Active	[164]	
Brazil	Dried bark	Butanol ext	Carrageenan-ind. pedal edema/IP	Mouse	Active	[164]	
Peru	Fresh sap	Latex	**/Injection	Rat	Active	[165]	
Ecuador	Freeze-drilld latex	**	Carrageenan-ind. pedal edema/IP	Rat	Active	[166]	
Venezuela	Dried bark	H2O ext	Albumin-ind. edema/IP	Mouse	Active	[167]	
Ecuador	Dried seed	CH2Cl2 ext	Carrageenan-ind. pedal edema/Intragastric	Mouse	Active	[96]	
Ecuador	Dried entire plant	EtOH (100%) ext	Carrageenan-ind. pedal edema/Intragastric	Mouse	Weak activity	[95]	
Brazil	Dried leaf	MeOH ext	Carrageenan-ind. pedal edema/Intragastric	Mouse	Active	[78]	
Brazil	Fresh tuber	EtOH-H2O(50%) ext	Carrageenan-ind. pedal edema/Intragastric	Rat	Active	[168]	
Brazil	Fresh tuber	EtOH-H2O (50%) ext	Dextran-ind. pedal edema/Intragastric	Rat	Inactive	[168]	
Brazil	Fresh tuber	EtOH-H2O(50%) ext	Serotonin-ind. pedal edema/Intragastric	Rat	Active	[168]	
Brazil	Dried aerial parts	Hexane ext	Cfa induced edema/Intragastric	Mouse	Active	[169]	
Brazil	Dried entire plant	Hydro-alcoholic ext	Formalin-ind. pedal edema/IP	Mouse	Active	[170]	
Brazil	Dried leaf + root + stem	EtOH-H2O(1:1) ext	Carrageenan-ind. pedal edema/vs. dextran-ind. pedal edema/IP	Mouse	Inactive	[171]	
Brazil	Fresh bark	Infusion	Dye diffusion assay/Intragastric	Mouse	Active	[119]	

Note: H2O ext denotes water extract, Butanol ext denotes butanol extract, Latex **/**/Injection denotes latex with or without injection, CH2Cl2 ext denotes chloroform extract, EtOH (100%) ext denotes ethanol (100%) extract, MeOH ext denotes methanol extract, Hexane ext denotes hexane extract, Hydro-alcoholic ext denotes hydro-alcoholic extract, Dye diffusion assay/Intragastric denotes dye diffusion assay with intragastric administration.
Table 1. Cont.

Plant Name	Country	Part	Extractant	Activity	Species	Reference	
Bauhinia guianensis	Brazil	Dried stem bark	CH$_2$Cl$_2$ ext	Dextran-induced pedal edema/IP	Rat	Active [172]	
Brazil	Dried stem bark	CH$_2$Cl$_2$ ext	Histamine-induced edema/IP	Rat	Inactive [172]		
Brazil	Dried stem bark	EtoAc ext	Histamine-induced edema/IP	Rat	Active [172]		
Brazil	Dried stem bark	MeOH ext	Carrageenan-induced pedal edema/IP	Rat	Active [172]		
Brazil	Dried stem bark	MeOH ext	Dextran-induced pedal edema/IP	Rat	Active [172]		
Brazil	Dried stem bark	MeOH ext	Histamine-induced edema/IP	Rat	Active [172]		
Bauhinia tarapotensis	Ecuador	Dried leaf	H$_2$O ext	Croton oil-induced edema/**	Mouse	Active [76]	
Ecuador	Dried leaf	Dichloromethane ext	Croton oil-induced edema/**	Mouse	Active [76]		
Ecuador	Dried leaf	MeOH ext	Croton oil-induced edema/**	Mouse	Active [76]		
Ecuador	Dried leaf	Hexane ext	Croton oil-induced edema/**	Mouse	Active [76]		
Ecuador	Dried leaf	CHCl$_3$ ext	Croton oil-induced edema/**	Mouse	Active [76]		
Caesalpinia ferrea	Brazil	Dried fruit	H$_2$O ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active [173]	
Calliandra angustifolia	Peru	Dried bark	EtOH (100%) ext	Epp-induced rat ear edema/**	Rat	Inactive [103]	
Copaifera cearensis	Brazil	Dried balsam	Oleoresin	Carrageenan-induced pedal edema/Intragastric	Mouse	Active [174]	
Copaifera langsdorffii	Brazil	Dried oleoresin	Resin	Acetic acid-induced colitis/Intragastric	Rat	Active [174]	
Copaifera species	Brazil	Oleoresin	Oleoresin	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[174]
-------------------	--------	-----------	-----------	---	-----	--------	-------
Brazil	Oleoresin	Oleoresin	Cotton pellet granuloma/Intragastric	Rat	Active	[174]	
Brazil	Oleoresin	Oleoresin	Histamine-induced vascular permeability/Intragastric	Rat	Active	[174]	
Erythrina velutina	Brazil	Dried leaf	Decoction	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive	[175]
Brazil	Dried leaf	Decoction	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive	[175]	
Brazil	Dried leaf	Decoction	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive	[175]	
Erythrina crista-galli	Argentina	Dried aerial parts	Dichloromethane ext	12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/***	Mouse	Active	[176]
Argentina	Dried aerial parts	MeOH ext	12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/***	Mouse	Active	[176]	
Argentina	Dried aerial parts	H2O ext	12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation/***	Mouse	Active	[176]	
Argentina	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[176]	
Argentina	Dried aerial parts	H2O ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[176]	
Argentina	Dried aerial parts	Dichloromethane ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[176]	
Marsypianthes chamaedrys	Brazil	Fresh leaf	Infusion	Dye diffusion assay/Intragastric	Mouse	Active	[119]
Table 1. Cont.

Species	Country	Part	Extractant	Assay	Species	Activity	Reference
Psoralea glandulosa	Chile	Dried aerial parts	Infusion	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Active	[150]
	Chile	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Active	[150]
	Chile	Dried aerial parts	Pet ether ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Active	[177]
	Chile	Dried aerial parts	Dichloromethane ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Active	[177]
	Chile	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Active	[177]
Pterocarpus ulei	Peru	Dried stembark	EtOH (100%) ext	EPP-induced rat ear oedema/**	Rat	Inactive	[103]
Pterodon emarginatus	Brazil	Dried fruit	Hexane ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[178]
	Brazil	Dried fruit	Hexane ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[178]
Stryphnodendron adstringens	Brazil	Dried stembark	Acetone ext	Acetic acid induced vascular permeability/Intragastric	Mouse	Active	[179]
	Brazil	Dried stembark	Acetone ext	Dextran-induced pedal edema/carrageenan-induced pedal edema/Intragastric	Rat	Active	[179]
	Brazil	Dried stembark	Acetone ext	**/Intragastric	Rat	Weak activity	[179]
Torresea cearensis	Brazil	Dried stembark		Carrageenan-induced pedal edema/Intragastric	Rat	Active	[180]
Flacouriaceae							
Casearia sylvestris	Brazil	Fresh bark + leaf	Infusion	Dye diffusion assay/Intragastric	Mouse	Weak activity	[119]
Gentianaceae							
Table 1. Cont.

Species	Country	Part of Plant	Extraction Method	Assay/Induction	Species	Active/Inactive	Reference
Gentianella achalensis	Argentina	Dried aerial parts	Chromatographic fraction	12-0-tetradecanoylphorbol-13-acetate(TPA)-induced ear inflammation/**	Mouse	Active	[181]
	Argentina	Dried aerial parts	Pet ether ext	12-0-tetradecanoylphorbol-13-acetate(TPA)-induced ear inflammation/**	Mouse	Inactive	[181]
	Argentina	Dried aerial parts	MeOH ext	12-0-tetradecanoylphorbol-13-acetate(TPA)-induced ear inflammation/**	Mouse	Inactive	[181]
	Argentina	Dried aerial parts	Dichloromethane ext	12-0-tetradecanoylphorbol-13-acetate(TPA)-induced ear inflammation/**	Mouse	Active	[181]
	Argentina	Dried aerial parts	Dichloromethane ext	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive	[181]
	Argentina	Dried aerial parts	Pet ether ext	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive	[181]
	Argentina	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive	[181]
Lamiaceae							
Hyptis pectinata	Brazil	Dried leaf	H₂O ext	Arachidonic acid-induced edema/Intragastric	Rat	Active	[182]
	Brazil	Dried leaf	H₂O ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[182]
Lavandula latifolia	Paraguay	Aerial parts	Chromatographic fraction	Carrageenan-induced pedal edema/**	Rat	Active	[183]
	Paraguay	Aerial parts	EtOH (70%) ext	Carrageenan-induced pedal edema/**	Rat	Active	[183]
Raphiodon echinus	Brazil	Dried aerial parts	H₂O ext	Acetic acid-induced dye diffusion/Intragastric	Mouse	Active	[129]
Liliaceae							
Table 1. Cont.

Plant	Origin	Part Used	Extractant	Activity (Model)	Species	Activity	Reference
Polygonatum punctatum	Argentina	Oven dried aerial parts	CH$_2$Cl$_2$ ext	Phorbol myristate acetate-induced ear inflammation/**	Mouse	Active	[123]
	Argentina	Oven dried aerial parts	H$_2$O ext	Carrageenan-induced pedal edema/Intragastric	Rat	Weak activity	[123]
Linaceae	Peru	Dried stem bark	EtOH (100%) ext	EPP-induced rat ear oedema/**	Rat	Strong activity	[103]
Vantanea peruviana	Peru	Dried stem	EtoAc ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[184]
Loasaceae	Peru	Dried stem	H$_2$O ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[184]
Mentzelia chilensis	Peru	Dried stem	EtOH (100%) ext	EPP-induced rat ear oedema/**	Rat	Strong activity	[103]
Lythraceae	Peru	Dried stem	EtOH (100%) ext	Carrageenan-induced pedal edema/IP	Rat	Inactive	[185]
Adenaria floribunda	Brazil	Dried leaf	EtOH (95%) ext	Carrageenan-induced pedal edema/IP	Rat	Active	[186]
Magnoliaceae	Brazil	Dried leaf	EtOH (100%) ext	Carrageenan-induced pedal edema/IP	Rat	Active	[185]
Talauma ovata	Brazil	Seed	EtOH (90%) ext	Carrageenan-induced edema/Gastric Intubation	Rat	Active	[187]
Urena lobata	Ecuador	Dried entire plant	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Weak activity	[95]
Guarea guidonia	Brazil	Seed	EtOH (90%) ext	Carrageenan-induced edema/Gastric Intubation	Rat	Active	[187]
	Brazil	Seed	EtOH (90%) ext	Cotton pellet granuloma/Gastric Intubation	Rat	Active	[187]
Trichilia glabra	Argentina	Dried leaf	EtOH (90%) ext	Zymosan-induced immediate inflammation moded/IP	Mouse	Active	[188]
Table 1. Cont.

Family	Country	Part Used	Extraction Method	Test System	Species	Route	Activity	Ref.
Menispermaceae	Peru	Dried part not specified	EtOH (95%) ext	Carrageenan-induced pedal edema/IP	Abuta grandifolia	Rat	**	[132]
Cissampelos sympodialis	Brazil	Dried leaf	EtOH (80%) ext	Capsaicin induced edema/IP	**	Mouse	Active	[189]
	Brazil	Dried leaf	EtOH (80%) ext	12-O-tetradecanoylphorbol-13-acetate(TPA)-induced ear inflammation/IP	**	Mouse	Active	[189]
Monimiaceae	Brazil	Dried leaf	EtOH (80%) ext	Carrageenan-induced pedal edema/IP	Cissampelos sympodialis	Rat	Active	[189]
Peumus boudius	Chile	Dried leaf	EtOH (70%) ext	Carrageenan-induced pedal edema/IP	Peumus boudius	Rat	Active	[190]
Moraceae	Brazil	Fresh root	Infusion	Dye diffusion assay/Intragastric	Dorstenia brasiliensis	Mouse	Weak activity	[119]
Myristicaceae	Peru	Dried vine	EtOH (95%) ext	Carrageenan-induced pedal edema/IP	Virola pavonis	Rat	Active	[132]
Virola peruviana	Peru	Dried part not specified	EtOH (95%) ext	Carrageenan-induced pedal edema/IP	Virola peruviana	Rat	Active	[132]
Eugenia uniflora	Brazil	Fresh leaf	Infusion	Carrageenan-induced pedal edema/Intragastric	**	Rat	Active	[191]
	Brazil	Fresh leaf	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	**	Rat	Active	[191]
	Brazil	Fresh leaf	Decoction	Carrageenan-induced pedal edema/Intragastric	**	Rat	Active	[191]
	Brazil	Dried leaf	Infusion	Carrageenan-induced pedal edema/Intragastric	**	Rat	Inactive	[191]
	Brazil	Dried leaf	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	**	Rat	Inactive	[191]
Table 1. Cont.

Species	Country	Extract/Part Used	Solvent (Extraction Method)	Test Results	Species	Extract/Part Used	Solvent (Extraction Method)	Test Results	
Psidium guineense	Brazil	Fresh leaf essential oil	Essential oil	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[192]		
Olacaceae Heisteria acuminata	Ecuador	Dried part not specified	CH₂Cl₂ ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Inactive	[96]		
Ecuador	Ecuador	Dried entire plant	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active	[95]		
Orchidaceae Catasetum barbatum	Paraguay	Dried aerial parts	EtOH (70%) ext	Carrageenan-induced pedal edema/**	Rat	Active	[193]		
Phytolaccaceae Petiveria alliacea	Brazil	Dried root	EtOH (70%) ext	Croton oil-induced irritation/**	Rat	Active	[194]		
Brazil	Brazil	Dried root	EtOH (70%) ext	Cotton pellet granuloma/**	Rat	Active	[194]		
Brazil	Brazil	Dried root	Hydro-alcoholic ext	Nystatin induced edema/Intragastric	Rat	Active	[195]		
Brazil	Brazil	Dried root	Hydro-alcoholic ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[195]		
Brazil	Brazil	Dried root	Lyophilized extract	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[195]		
Brazil	Brazil	Dried root	Hydro-alcoholic ext	Cotton pellet granuloma/Intragastric	Rat	Active	[195]		
Peru	Peru	Dried entire plant	EtOH (100%) ext	EPP-induced rat ear oedema/**	Rat	Inactive	[103]		
Phytolacca bogotensis	Ecuador	Dried entire plant	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Inactive	[95]		
Ecuador	Ecuador	Dried entire plant	CH₂Cl₂ ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Inactive	[96]		
Phytolacca rivinoides	Ecuador	Dried entire plant	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Weak activity	[95]		
Plant Family	Country	Plant Part	Solvent	Effect	Animal	Status	Reference		
---------------	---------	-----------------------------------	----------	--------	--------------	------------	-----------		
Piperaceae									
Peperomia pellucida	Ecuador	Dried entire plant	CH$_2$Cl$_2$ ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Inactive	[96]		
Piper lenticellosum	Ecuador	Dried entire plant	EtOH (100%) ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active	[95]		
Piper marginatum	Ecuador	Dried fruit	CH$_2$Cl$_2$ ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active	[96]		
Piper marginatum	Brazil	Dried leaf	H$_2$O ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[198]		
Plantaginaceae									
Plantago australis	Brazil	Dried root	Hydro-alcoholic ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[199]		
Plantago australis	Brazil	Dried leaf	Hydro-alcoholic ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[199]		
Plantago australis	Brazil	Dried fruit	Hydro-alcoholic ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[199]		
Plantago major	Brazil	Dried leaf	H$_2$O ext	Croton oil-induced edema/**	Mouse	Inactive	[200]		
Plantago major	Brazil	Dried leaf	H$_2$O ext	Croton oil granuloma/**	Rat	Active	[200]		
Plantago major	Brazil	Dried leaf	H$_2$O ext	Dextran-induced pedal edema/Intragastric	Rat	Inactive	[200]		
Plantago major	Brazil	Dried leaf	H$_2$O ext	Carrageenan-induced pleurisy/Intragastric	Rat	Active	[200]		
Plantago major	Brazil	Dried leaf	H$_2$O ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Weak activity	[200]		
Plant Family	Species	Country	Part	Extraction	Test	Test Condition	Animal	Activity	Reference
-------------	---------	---------	------	------------	------	----------------	--------	----------	------------
Polygonaceae	*Polygonum punctatum*	Brazil	Dried entire plant	Decoction	Carrageenan-induced pedal edema/Gastric intubation	Rat	Active	[201]	
Brazil	Dried entire plant	EtOH-H₂O (1:1) ext	Carrageenan-induced pedal edema/Gastric intubation	Rat	Active	[201]			
Brazil	Dried entire plant	EtOH-H₂O (1:1) ext	Carrageenan-induced pedal edema/**	Rat	Inactive	[201]			
Brazil	Dried entire plant	Decoction	Carrageenan-induced pedal edema/**	Rat	Inactive	[201]			
Polypodiaceae	*Campyloneurum phyllitidis*	Paraguay	Dried leaf	H₂O ext	Croton oil-induced edema/**	Mouse	Active	[106]	
Paraguay	Dried leaf	CH₂Cl₂ ext	Croton oil-induced edema/**	Mouse	Active	[106]			
Paraguay	Dried leaf	MeOH ext	Croton oil-induced edema/**	Mouse	Active	[106]			
Paraguay	Dried leaf	H₂O ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[106]			
Paraguay	Dried leaf	MeOH ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[106]			
Paraguay	Dried leaf	CH₂Cl₂ ext	Carrageenan-induced pedal edema/IP	Mouse	Active	[106]			
Proteaceae	*Lomatia hirsuta*	Chile	Dried leaf	Infusion	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Active	[202]	
Rhamnaceae	*Trevoa trinervis*	Chile	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Weak activity	[203]	
Table 1. Cont.

Country	Plant Material and Part	Extractants	Inflammation Model	Route	Species	Activity	Reference		
Chile	Dried aerial parts	Hexane ext	Carrageenan-induced pedal edema	Intragastric	Guinea pig	Weak activity	[203]		
Chile	Dried aerial parts	Dichloromethane ext	Carrageenan-induced pedal edema	Intragastric	Guinea pig	Weak activity	[203]		
Chile	Dried aerial parts	H2O ext	Carrageenan-induced pedal edema	Intragastric	Guinea pig	Weak activity	[203]		
Chile	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema	Intragastric	Guinea pig	Active	[203]		
Rosaceae	Acaena splendens	CH2Cl2 ext	Carrageenan-induced pedal edema	Intragastric	Guinea pig	Weak activity	[204]		
Chile	Dried bark + spines	Infusion	Carrageenan-induced pedal edema	Intragastric	Guinea pig	Weak activity	[204]		
Chile	Dried bark + spines	MeOH ext	Carrageenan-induced pedal edema	Intragastric	Guinea pig	Weak activity	[204]		
Chile	Dried aerial parts	Hexane ext	Acetic acid-induced pedal edema	**	Mouse	Active	[205]		
Chile	Dried aerial parts	CHCl3-MeOH extract (2:1)	Acetic acid-induced pedal edema	**	Mouse	Active	[205]		
Chile	Dried aerial parts	MeOH ext	Acetic acid-induced pedal edema	**	Mouse	Active	[205]		
Chile	Dried aerial parts	CHCl3-MeOH extract (2:1)	Carrageenan-induced pedal edema	Intragastric	Guinea pig	Active	[205]		
Country	Plant Origin	Part of Plant	Extrait/Preparation Method	Bioassay Method	Animal Model	Activity (Route)	Reference		
---------	--------------	---------------	-----------------------------	-----------------	-------------	-----------------	-----------		
Chile	Dried aerial parts	H₂O soluble fraction	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Active	[205]			
Chile	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Active	[205]			
Chile	Dried aerial parts	Hexane ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Active	[205]			
Rubiaceae									
Chiococca brachiata	Brazil	Fresh root	Infusion	Dye diffusion assay/Intragastric	Mouse	active	[119]		
Coutarea hexandra	Brazil	Dried stem bark	EtOH (95%) ext	Carrageenan-induced pedal edema/Intragastric	Rat	Active	[206]		
Uncaria guianensis	Peru	Dried bark	Lyophilized extract	**/**	Human adult	Active	[207]		
Uncaria tomentosa	Peru	Freeze-dried bark	H₂O ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active	[208]		
Peru	Freeze-dried bark	Hydro-alcoholic ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active	[208]			
Peru	Dried bark	Lyophilized extract	**/IP	Mouse	Active	[209]			
Peru	Dried bark	Lyophilized extract	**/Oral	Human adult	Active	[209]			
Peru	Dried bark	H₂O ext	Cell Culture 5-HT-induced pedal edema/Intragastric	In vitro	Active	[210]			
Peru	Dried bark	H₂O ext	zell Culture 5-HT-induced pedal edema/Intragastric	Rat	Active	[211]			
Peru	Dried bark	Lyophilized extract	**/Oral	Human adult	Active	[207]			
Peru	Dried vine	Type ext not stated	**/Route not given	Human adult	Active	[212]			
Location	Part	Ext	Method	Induction	Species	Route	活性	Ref.	
----------	------	-----	--------	-----------	---------	-------	------	------	
Peru	Dried bark	Pet ether ext	5-HT-Induced pedal edema/IP	Rat	Active	[213]			
Peru	Dried bark	H2O ext	Chronic intestinal inflammation induced by indomethacin/**	Rat	Active	[210]			
Peru	Dried root	Rootbark	Convulsions strychnine-induced/carrageenan-induced pedal edema/IP	Rat	Active	[214]			
Peru	Dried bark	EtoAc ext	5-HT-Induced pedal edema/IP	Rat	Active	[211]			
Peru	Part not specified	Type ext not stated	**/**	Human adult	Equivocal	[215]			
Brazil	Dried leaf	Pet ether ext	Carrageenan-induced pedal edema/IP	Rat	Active	[216]			
Brazil	Dried leaf	EtOH (70%) ext	Carrageenan-induced pedal edema/IP	Rat	Active	[217]			
Brazil	Dried rootbark	EtOH (95%) ext	Carrageenan-induced pedal edema/Gastric Intubation	Rat	Active	[218]			
Brazil	Dried entire plant	EtOH (95%) ext	Histamine-induced edema/carrageenan-induced pedal edema/IP	Rat	Active	[219]			
Brazil	Dried entire plant	H2O ext	Carrageenan-induced pedal edema/IP	Rat	Inactive	[219]			
Brazil	Dried entire plant	EtOH (95%) ext	Carrageenan-induced pedal edema/IP	Rat	Active	[219]			
Family	Species	Origin	Part	Extract	Assay/Route	Animal	Activity	Reference	
---------------	-----------------------	-------------	-----------------------	------------------	--------------------	--------	--------------	-----------	
Simaroubaceae	Simaba cedron	South America	Seed	Ether ext	**/SC	Rat	Inactive	[219]	
		South America	Seed	Pet ether ext	**/SC	Rat	Inactive	[220]	
Solanaceae	Brunfelsia bonodora	Peru	Dried part not specified	EtOH (95%) ext	Carrageenan-induced pedal edema/IP	Rat	Active	[132]	
		Brazil	Root	MeOH ext	Carrageenanin-induced pedal edema/Oral	Rat	Active	[221]	
		Brazil	Root	CHCl$_3$ ext	Data incomplete/Oral	Data incomplete Oral	Rat	Active	[222]
		Brazil	Fresh leaf	Infusion	Dye diffusion assay/Intragastric	Mouse	Active	[119]	
		Chile	Dried aerial parts	Infusion	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Weak activity	[223]	
		Chile	Dried aerial parts	Decoction	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Weak activity	[223]	
		Chile	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Weak activity	[223]	
		Chile	Dried aerial parts	Dichloromethane ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Weak activity	[223]	
Table 1. Cont.

Country	Organ	Extractant	Activity	Route	
Chile	Dried aerial parts	H$_2$O ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Weak activity [223]
Chile	Dried aerial parts	Pet ether ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Weak activity [223]
Chile	Dried aerial parts	MeOH ext	Carrageenan-induced pedal edema/Intragastric	Guinea pig	Weak activity [223]

Solanum lycocarpum

Country	Organ	Extractant	Activity	Route	
Brazil	Dried fruit	EtOH (95%) ext	Croton oil-induced edema/Intragastric	Mouse	Active [224]
Brazil	Dried fruit	Alkaloid fract	Carrageenan-induced pedal edema/SC	Mouse	Active [224]
Brazil	Dried fruit	Alkaloid fract	Croton oil-induced edema/SC	Mouse	Active [224]

Turneraceae

Turnera ulmifolia

Country	Organ	Extractant	Activity	Route	
Brazil	Dried entire plant	Hydro-alcoholic ext	Cotton pellet granuloma/Intragastric	Rat	Active [225]
Brazil	Dried entire plant	EtoAc ext	Carrageenan-induced pedal edema/Intragastric	Rat	Inactive [225]

Verbenaceae

Bouchea fluminensis

Country	Organ	Extractant	Activity	Route	
Brazil	Dried leaf	H$_2$O ext	Carrageenan-induced pedal edema/Route not given	Rat	Active [87]
Brazil	dried aerial parts	EtOH (95%) ext	5-ht-induced pedal edema/Intragastric	Mouse	Active [226]
Brazil	dried aerial parts	EtOH (95%) ext	Histamine-induced pedal edema/Intragastric	Mouse	Active [226]
Brazil	dried aerial parts	EtOH (95%) ext	Carrageenan-induced pedal edema/Intragastric	Mouse	Active [226]

Stachyartheta cayennensis

Country	Organ	Extractant	Activity	Route	
Brazil	Dried leaf	EtOH (70%) ext	Carrageenan-induced pedal edema/Intragastric	Rat	Weak activity [227]
Table 1. Cont.

Country	Plant Part	Extract	Assay Type	Species	Activity	Reference	
Brazil	Dried leaf	Infusion	Carrageenan-induced pedal edema	Rat	Active	[227]	
Brazil	Dried entire plant	H₂O ext	Dextran-induced pedal edema/carrageenan-induced pedal edema	Mouse	Inactive	[227]	
Brazil	Dried leaf	Butanol ext	Carrageenan-induced pedal edema/IP	Salvelinus alpinus	Weak activity	[227]	
Brazil	Dried leaf	Butanol ext	Carrageenan-induced pedal edema/IP	Rat	Active	[227]	
Winteraceae	Drimys winter	Dried bark	Hydro-alcoholic ext	PGE₂ induced paw oedema	Rat	Equivocal	[229]
Brazil	Dried bark	Hydro-alcoholic ext	Histamine-induced edema	Rat	Inactive	[229]	
Brazil	Dried bark	Hydro-alcoholic ext	Carrageenan-induced pedal edema/IP	Rat	Active	[229]	
Brazil	Dried bark	Hydro-alcoholic ext	Dextran-induced pedal edema/IP	Rat	Active	[229]	
Brazil	Dried bark	Hydro-alcoholic ext	Bradykinin-induced pedal edema/IP	Rat	Weak activity	[229]	
Brazil	Dried bark	Hydro-alcoholic ext	Paw oedema	Rat	Weak activity	[229]	
Brazil	Dried bark	Hydro-alcoholic ext	Paf-acether induced paw oedema/IP	Rat	Weak activity	[229]	
Brazil	Dried bark	Hydro-alcoholic ext	Ovalbumine induced paw oedema/IP	Rat	Weak activity	[229]	
Zingiberaceae						[229]	
Table 1. Cont.

Plant Family	Country	Part	Extract	Test Model	Species	Active Sources
Zingiber officinale	Brazil	Fresh rhizome	Hydro-alcoholic ext	Carrageenan-induced pedal edema/IP	Rat	Active [230]
	Brazil	Fresh rhizome	Hydro-alcoholic ext	5-ht-induced pedal edema/IP	Rat	Active [230]
	Brazil	Fresh rhizome	Hydro-alcoholic ext	48180 compound-induced edema/**	Rat	Active [230]
	Brazil	Fresh rhizome	Hydro-alcoholic ext	48180 and 5-ht induced skin edema/IP	Rat	Active [230]
Zygophyllaceae	Argentina	Dried leaf	MeOH ext	Cotton pellet granuloma/Intragastric	Rat	Active [231]
Larrea divaricata	Argentina	Dried leaf	H₂O ext	Peritoneal macrophages/IP	Mouse	Active [232]

** Incompleted dates; IP = intraperitoneal; SC = subcutaneous; EtOH = ethanolic extract; H₂O ext = aqueous extract; MeOH ext = methanol extract; EtoAc ext = ethyl acetate extract; CH₂Cl₂ ext = dichloromethane extract; CHCl₃ ext = chloroformic extract; CCl₄ = chloroform; MeCl₂ ext = dichloromethane extract; EtOH-H₂O = crude aqueous/alcoholic extract; CHCl₃-MeOH extract = dichloromethane and methanol extract.
3. Material and Methods

In the present work, the anti-inflammatory activity of the plants was searched through the data bank of the University of Illinois in Chicago, the NAPRALERT (Acronym for Natural Products ALERT). The data were updated in September 2009, using anti-inflammatory plants as legend. The plant extracts studied in South America were selected for this work and the references found in the search were later consulted for details of the models or mechanisms.

4. Conclusion

Given the above, this review is of fundamental importance to intensify studies with medicinal plants for the discovery of new bioactive molecules in healing of many diseases, including inflammation, thus benefiting populations affected by ensuring a better quality of life.

Acknowledgements

The authors thank the University of Illinois in Chicago, U.S.A., for the use of the NAPRALERT database for this study. Thanks are also expressed for the financial support provided by CNPq / CAPES and PRONEX / FAPESQ, Brazil.

References

1. Vodovotz, Y.; Constantine G.; Rubin, J.; Csete, M.; Voit, E.O.; An, G. Mechanistic simulations of inflammation: Current state and future prospects. *Math. Biosci.* **2009**, *217*, 1–10.
2. Cuzzocrea, S. Shock, inflammation and PARP. *Pharmacol. Res.* **2005**, *52*, 72–82.
3. Serhan, C.N.; Brain, S.D.; Buckley, C.D.; Giltroy, D.W.; Haslett, C.; O’neall, L.A.J.; Perretti, M.; Rossi, A.G.; Wallace, J.L. Resolution of inflammation: State of the art, definitions and terms. *FASEB J.* **2007**, *21*, 325–332.
4. Conforti, F.; Sosa, S.; Marrelli, M.; Menichini, F.; Statti, G.A.; Uzunov, D.; Tubaro, A.; Menichini, F.; Loggia, R.D. *In vivo* anti-inflammatory and *in vitro* antioxidant activities of Mediterranean dietary plants. *J. Ethnopharmacol.* **2008**, *116*, 144–151.
5. Delaporte, R.H.; Sanchez, G.M.; Cuellar, A.C.; Giuliani, A.; Palazzo de Mello, J.C. Anti-inflammatory activity and lipid peroxidation inhibition of iridoid lamiide isolated from *Bouchea fluminensis* (Vell.) Mold. (Verbenaceae). *J. Ethnopharmacol.* **2002**, *82*, 127–130.
6. Geronikaki, A.A.; Gavalias, A.M. Antioxidants and anti-inflammatory diseases: Synthetic and natural antioxidants with anti-inflammatory activity. *Comb. Chem. High Throughput Screening* **2006**, *9*, 425–442.
7. Tincani, A.; Andreoli, L.; Bazzani, C.; Bosiso, D.; Sozzani, S. Inflammatory molecules: A target for treatment of systemic autoimmune diseases. *Autoimmun. Rev.* **2007**, *7*, 1–7.
8. Kumar, V.; Abbas, A.K.; Fausto, N. Inflamação aguda e crônica. In *Robbins e Cotran—Patologia*, 7th ed.; Editora Saunders Elsevier: Rio de Janeiro, Brazil, 2005; pp. 49–89.
9. Chizzolini, C. Update on pathophysiology of scleroderma with special reference to immunoinflammatory events. *Ann. Med.* **2007**, *39*, 42–53.
10. Polya, G.M. Biochemical targets of plant bioactive compounds. In A Pharmacological Reference Guide to Sites of Action and Biological Effects 2003; CRC Press: New York, NY, USA.

11. Xiao, J.; Jiang, X.; Chen, X. Antibacterial, anti-inflammatory and diuretic effect of flavonoids from Marchantia convoluta. Afr. J. Traditional Complementary Altern. Med. 2005, 2, 244–252.

12. Simões, C.M.O.; Schenkel, E.P.; Gosmann, G.; Mello, J.C.P.; Mentz, L.A. Farmacognosia da Planta ao Medicamento, 5th ed.; Editora da UFRGS: Porto Alegre, Brasil, 2004; p. 424.

13. Rimbach, G.; Melchin, M.; Moehring, J.; Wagner, A.E. Polyphenols from cocoa and vascular health—a critical review. Int. J. Mol. Sci. 2009, 10, 4290–4309.

14. Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78, 431–441.

15. Sousa, O.V.; Vieira, G.D.V.; Pinho, J.D.R.G.; Yamamoto, C.H.; Alves, M.S. Antinociceptive and anti-inflammatory activities of the ethanol extract of Annona muricata L. leaves in animal models. Int. J. Mol. Sci. 2010, 11, 2067–2078.

16. Yim, J.H.; Lee, O.-H.; Choi, U.-K.; Kim, Y.-C. Antinociceptive and anti-inflammatory effects of ethanolic extracts of Glycine max (L.) Merr and Rhynchosia nulubilis seeds. Int. J. Mol. Sci. 2009, 10, 4742–4753.

17. Yam, M.F.; Lim, V.; Salman, I.M.; Ameer, O.Z.; Ang, L.F.; Rosidah, N.; Abdulkarim, M.F.; Abdullah, G.Z.; Basir, R.; Sadikun, A.; Asmawi, M.Z. HPLC and anti-inflammatory studies of the flavonoid rich chloroform extract fraction of Orthosiphon stamineus leaves. Molecules 2010, 15, 4452–4466.

18. Souza, E.T.; Queiroz, A.C.Q.; Miranda, G.E.C.; Lorenzo, V.P.; Silva, E.F.; Freire-Dias, T.L.M.; Cupertino-Silva, Y.K.; Melo, G.M.A.; Santos, B.V.O.; Chaves, M.C.O.; Alexandre-Moreira, M.S. Antinociceptive activities of crude methanolic extract and phases, n-butanololic, chloroformic and ethyl acetate from Caulerpa racemosa (Caulerpaceae). Rev. Bras. Farmacogn. 2009, 19, 115–120.

19. Marzouk, M.S.; Moharram, F.A.; El-Dib, R.A.; El-Shenawy, S.M.; Tawfike, A.F. Polyphenolic profile and bioactivity study of Oenothera speciosa Nutt. aerial parts. Molecules 2009, 14, 1456–1467.

20. Potterat, O.; Hamburger, M. Drug discovery and development with plant derived compounds. Prog. Drug Res. 2008, 65, 47–118.

21. Moura, M.D.; Torres, A.R.; Oliveira, R.A.G.; Diniz, M.F.F.M.; Barbosa-Filho, J.M. Natural products as inhibitors of models of mammary neoplasia. Br. J. Phytother. 2001, 5, 124–145.

22. Moura, M.D.; Silva, J.S.; Oliveira, R.A.G.; Diniz, M.F.F.M.; Barbosa-Filho, J.M. Natural products reported as potential inhibitors of uterine cervical neoplasia. Acta Farm. Bonaer. 2002, 21, 67–74.

23. Silva, J.S.; Moura, M.D.; Oliveira, R.A.G.; Diniz, M.F.F.M.; Barbosa-Filho, J.M. Natural product inhibitors of ovarian neoplasia. Phytomedicine 2003, 10, 221–232.

24. Gonçalves, M.C.; Moura, L.S.A.; Rabelo, L.A.; Barbosa-Filho, J.M.; Cruz, H.M.M.; Cruz, J. Natural products inhibitors of HMG CoA reductase. Rev. Bras. Farm. 2000, 81, 63–71.
25. Barbosa-Filho, J.M.; Martins, V.K.M.; Rabelo, L.A.; Moura, M.D.; Silva, M.S.; Cunha, E.V.L.; Souza, M.F.V.; Almeida, R.N.; Medeiros, I.A. Natural products inhibitors of the angiotensin converting enzyme (ACE). A review between 1980-2000. Rev. Bras. Farmacogn. 2006, 16, 421–446.

26. Barbosa-Filho, J.M.; Medeiros, K.C.P.; Diniz, M.F.M.; Batista, L.M.; Athayde-Filho, P.F.; Silva, M.S.; Cunha, E.V.L.; Almeida, J.R.G.S.; Quintans-Júnior, L.J. Natural products inhibitors of the enzyme acetylcholinesterase. Rev. Bras. Farmacogn. 2006, 16, 258–285.

27. Almeida, R.N.; Navarro, D.S.; Barbosa-Filho, J.M. Plants with central analgesic activity. Phytomedicine 2001, 8, 310–322.

28. Pereira, J.V.; Modesto-Filho, J.; Agra, M.F.; Barbosa-Filho, J.M. Plant and plant-derived compounds employed in prevention of the osteoporosis. Acta Farm. Bonaer. 2002, 21, 223–234.

29. Morais, L.C.S.L.; Barbosa-Filho, J.M.; Almeida, R.N.; Plants and bioactive compounds for the treatment of Parkinson’s disease. Arquivos Brasileiros de Fitomedicina Científica 2003, 1, 127–132.

30. Quintans-Júnior, L.J.; Almeida, J.R.G.S.; Lima, J.T.; Nunes, X.P.; Siqueira, J.S.; Oliveira, L.E.G.; Almeida, R.N.; Athayde-Filho, P.F.; Barbosa-Filho, J.M. Plants with anticonvulsant properties—A review. Rev. Bras. Farmacogn. 2008, 18, 798–819.

31. Sousa, F.C.F.; Melo, C.T.V.; Citó, M.C.O.; Félix, F.H.C.; Vasconcelos, S.M.M.; Fonteles, M.M.F.; Barbosa-Filho, J.M.; Viana, G.S.B. Plantas medicinais e seus constituintes bioativos: Uma revisão da bioatividade e potenciais benefícios nos distúrbios da ansiedade em modelos animais. Rev. Bras. Farmacogn. 2008, 18, 642–654.

32. Rocha, L.G.; Almeida, J.R.G.S.; Macedo, R.O.; Barbosa-Filho, J.M. A review of natural products with antileishmanial activity. Phytomedicine 2005, 12, 514–535.

33. Amaral, F.M.M.; Ribeiro, M.N.S.; Barbosa-Filho, J.M.; Reis, A.S.; Nascimento, F.R.F.; Macedo, R.O. Plants and chemical constituents with giardicidal activity. Rev. Bras. Farmacogn. 2006, 15, 696–720.

34. Barbosa-Filho, J.M.; Nascimento-Júnior, F.A.; Tomaz, A.C.A.; Athayde-Filho, P.F.; Silva, M.S.; Cunha, E.V.L. Natural products with antileproptic activity. Rev. Bras. Farmacogn. 2007, 17, 141–148.

35. Barbosa-Filho, J.M.; Vasconcelos, T.H.C.; Alencar, A.A.; Batista, L.M.; Oliveira, R.A.G.; Guedes, D.N.; Falcão, H.S.; Moura, M.D.; Diniz, M.F.F.M.; Modesto-Filho, J. Plants and their active constituents from South, Central, and North America with hypoglycemic activity. Rev. Bras. Farmacogn. 2005, 15, 392–413.

36. Falcão, H.S.; Lima, I.O.; Santos, V.L.; Dantas, H.F.; Diniz, M.F.F.M.; Barbosa-Filho, J.M.; Batista, L.M. Review of the plants with anti-inflammatory activity studied in Brazil. Rev. Bras. Farmacogn. 2005, 15, 381–391.

37. Barbosa-Filho, J.M.; Piuvezam, M.R.; Moura, M.D.; Silva, M.S.; Lima, K.V.B.; Cunha, E.V.L.; Fechine, I.M.; Takemura, O.S. Anti-inflammatory activity of alkaloids: A twenty century review. Rev. Bras. Farmacogn. 2006, 16, 109–139.
38. Mariath, I.R.; Falcão, H.S.; Barbosa-Filho, J.M.; Sousa, L.C.F.; Tomaz, A.C.A.; Batista, M.F.F.M.; Athayde-Filho, P.F.; Tavares, J.F.; Silva, M.S.; Cunha, E.V.L. Plants of the American continent with antimalarial activity. Rev. Bras. Farmacogn. 2009, 19, 158–192.

39. Falcão, H.S.; Leite, J.A.; Barbosa-Filho, J.M.; Athayde-Filho, P.F.; Chaves, M.C.O.; Moura, M.D.; Ferreira, A.L.; Almeida, A.B.A.; Souza-Brito, A.R.M.; Diniz, M.F.F.M.; Batista, L.M. Gastric and duodenal antiulcer activity of alkaloids: A review. Molecules 2008, 13, 3198–3223.

40. Falcão, H.S.; Mariath, I.R.; Diniz, M.F.F.M.; Batista, L.M.; Barbosa-Filho, J.M. Plants of the American continent with antiulcer activity. Phytomedicine 2008, 15, 132–146.

41. Mota, K.S.L.; Dias, G.E.N.; Pinto, M.E.F.; Luiz-Ferreira, A.; Souza-Brito, A.R.M.; Hiruma-Lima, C.A.; Barbosa-Filho, J.M. Flavonoids with gastroprotective activity. Molecules 2009, 14, 979–1012.

42. Ribeiro-Filho, J.; Falcão, H.S.; Batista, L.M.; Barbosa-Filho, J.M.; Piuvezam, M.R. Effects of plant extracts on HIV-1 protease. Curr. HIV Res. 2010, 8, 531–544.

43. Agra, M.F.; França, P.F.; Barbosa-Filho, J.M. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Rev. Bras Farmacogn. 2007, 17, 114–140.

44. Agra, M.F.; Silva, K.N.; Basílio, I.J.L.D.; França, P.F.; Barbosa-Filho, J.M. Survey of medicinal plants used in the region Northeast of Brazil. Rev. Bras Farmacogn. 2008, 18, 472–508.

45. Barbosa-Filho, J.M.; Alencar, A.A.; Nunes, X.P.; Tomaz, A.C.A.; Sena-Filho, J.G.; Athayde-Filho, P.F.; Silva, M.S.; Souza, M.F.V.; Cunha, E.V.L. Sources of alpha-, beta-, gamma-, delta- and epsilon-carotenes: A twentieth century review. Rev. Bras. Farmacogn. 2008, 18, 135–154.

46. Alves, J.S.; Castro, J.C.; Freire, M.O.; Cunha, E.V.L.; Barbosa-Filho, J.M.; Silva, M.S. Complete assignment of the 1H and 13C spectra of four triterpenes of the ursane, artane, lupane and friedelane groups. Magn. Reson. Chem. 2000, 38, 201–206.

47. Sena-Filho, J.G.; Duringer, J.M.; Maia, G.L.A.; Tavares, J.F.; Xavier, H.S.; Silva, M.S.; Cunha, E.V.L.; Barbosa-Filho, J.M. Ecdysteroids from Vitex species: Distribution and compilation of their 13C-NMR spectral data. Chem. Biodivers. 2008, 5, 707–713.

48. Oliveira, S.L.; Silva, M.S.; Tavares, J.F.; Sena-Filho, J.G.; Lucena, H.F.S.; Romero, M.A.V.; Barbosa-Filho, J.M. Tropane alkaloids from genus Erythronium: Distribution and compilation of C-NMR spectral data. Chem. Biodivers. 2010, 7, 302–326.

49. Andrade, N.C.; Cunha, E.V.L.; Silva, M.S.; Agra, M.F.; Barbosa-Filho, J.M. Terpenoids of the Annonaceae: Distribution and compilation of 13C NMR data. In Recent Research Developments in Phytochemistry; Gayathri., A., Ed.; Research Signpost: Kerala, India, 2003; Volume 7, pp. 1–85.

50. Vasconcelos, S.M.M.; Honório-Júnior, J.E.R.; Abreu, R.N.D.C.; Silva, M.C.C.; Barbosa-Filho, J.M.; Lobato, R.F.G. Pharmacologic study of some plant species from the Brazilian Northeast: Calotropis procera, Agava sisalana, Solanum paludosum, Dioscorea cayenensis and Crotalaria retusa. In Medicinal Plants: Classification, Biosynthesis and Pharmacology; Varela, A., Jasiah Ibañez, J., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; Volume 4, pp. 189–202.
Vasconcelos, S.M.M.; Pereira, E.C.; Chaves, E.M.C.; Lobato, R.F.G.; Barbosa-Filho, J.M.; Patrocínio, M.C.A. Pharmacologic study of Amburana cearensis and Aniba genus. In Recent Progress in Medicinal Plants. Drug Plant IV; Singh, V.K., Govil, J.N., Eds.; Studium Press LLC: Houston, TX, USA, 2010; Volume 30, pp. 51–64.

Barbosa-Filho, J.M.; Cunha, E.V.L.; Gray, A.I. Alkaloids of the Menispermaceae. In The Alkaloids; Cordell, G.A., Ed.; Academic Press, INC: California, CA, USA, 2000; Volume 54, pp. 1–199.

Barbosa-Filho, J.M.; Sette, I.M.F.; Cunha, E.V.L.; Guedes, D.N.; Silva, M.S. Protoberberine alkaloids. In: The Alkaloids, Cordell, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 62, pp. 1–75.

Conserva, L.M.; Pereira, C.A.B.; Barbosa-Filho, J.M. Alkaloids of the Hernandiaceae: Occurrence and a compilation of their biological activities. In The Alkaloids; Cordell, G.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 62, pp. 175–243.

Muñoz, M.; Barrera, E.; Meza, I. El uso medicinal y alimenticio de plantas nativas y naturalizadas en Chile. Museo Nacional de Historia Natural 1981, 33, 32.

Zdero, C.; Bohlmann, F.; King, R.M.; Robinson, H. Isocedrene derivatives, 5-methyl coumarins and other constituents from the subtribe Nassauviinae of the Compositae. Phytochemistry 1986, 25, 2873–2882.

Bittner, M.; Jakupovic, J.; Bohlmann, F.; Silva, M. Coumarins and guaianolides from further Chilean representatives of the subtribe Nassauviinae. Phytochemistry 1989, 28, 2867–2868.

Dannhardt, G.; Kiefer, W. Cyclooxygenase inhibitors—current status and future prospects. Eur. J. Med. Chem. 2001, 36, 109–126.

Delporte, C.; Backhouse, N.; Erazo, S.; Negrete, R.; Vidal, P.; Silva, X.; Lopez-Perez, J.L.; Feliciano, A.S.; Munoz, O. Analgesic-antiinflammatory properties of Proustia pyrifolia. J. Ethnopharmacol. 2005, 99, 119–124.

Abena, A.A.; Ouamba, J.M.; Keita, A. Antiinflammatory, analgesic and antipyretic activities of essential oil of Agereatum conyzoides. Phytother. Res. 1996, 10, 164–165.

Marques Neto, J.F.; Costallat, L.T.V.; Fernandes, S.R.M.; de Napoli, M.D.M.; Samara, A.M. Efeito do Agereatum conyzoides Lin. no tratamento da artrose. Rev. Bras. Reumatol. 1988, 28, 109–114.

Magalhães, J.F.G.; Viana, C.F.G.; Aragão, A.G.M., Jr.; Moraes, V.G.; Ribeiro, R.A.; Vale, M.R. Analgesic and antiinflammatory activities of Agereatum conyzoides in rats. Phytother. Res. 1997, 11, 183–188.

Quellet, M.; Percival, D. Effect of inhibitor timedependency on selectivity towards ciclooxigenase isoforms. Biochem. J. 1995, 306, 247–251.

Terlains, B.; Jouzeau, J.Y.; Gillet, P.; Lecompte, T.; Netter, P. Cyclooxygenase inductible. Du nouveau sur les relations entre anti-inflammatoires non steroïdiens et inhibition de la synthèse de prostaglandines. Press. Med. 1995, 24, 491–496.

Moura, A.C.A.; Silva, E.L.F.; Fraga, M.C.A.; Wanderley, A.G.; Afiatpour, P.; Maia, M.B.S. Antiinflammatory and chronic toxicity study of the leaves of Agereatum conyzoides L. in rats. Phytomedicine 2005, 12, 138–142.
66. Mendonça, C.J.; Trigo, J.R.; Barata, L.E.S.; Serra, G.E. Alcalóides Hepatotóxicos (Pirrolizidínicos) em Ageratum conyzoides (Resumo 16.45); X Reunião Anual da Federação de Sociedades de Biologia Experimental: Serra Negra, Brasil, 1995;
67. Widenfeld, H.; Roder, E. Pyrrolizidine alkaloids from Ageratum conyzoides. Planta Med. 1991, 57, 578–579.
68. Couet, C.E.; Crews, C.; Hanley, B.A. Analysis, separation and bioassay of pyrrolizidine alkaloids from comfrey. Nat. Toxins 1996, 4, 163–167.
69. Giberti, G. Herbal folk medicine in northwestern Argentina: Compositae. J. Ethnopharmacol. 1983, 7, 321–341.
70. Ratera, E.L.; Ratera, M.O. Plantas de la Flora Argentina empleadas en Medicina Popular. Hemisferio Sur. 1980, p.108.
71. Miño, J.; Moscatelli, V.; Hnatsyzyn, O.; Gorzalczy, S.; Acevedo, C.; Ferraro, G. Antinociceptive and antiinflammatory activities of Artemisia copa extracts. Pharmacol. Res. 2004, 50, 59–63.
72. Cordero, J. Enumeracion de Botanica de los Principales Plantas asi Utiles Come Nocivas, Indigenas o Aclimatadas, que se dan en la Provincias del Azuay y del Cañar de la Repubblica de Ecuador, 2nd ed.; Afrodisio Aguado: Madrid, Spain, 1950; p. 251.
73. Kohn, E.O. La cultura medica de los runas de la region Amazonomica Ecuadoriana. In Hombre y Ambiente; Ediciones Abya-Yala: Ecuador, Spain, 1992; p. 105.
74. Braca, A.; de Tommasi, N.; di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia tarapotensis. J. Nat. Prod. 2001, 64, 892–895.
75. Tubaro, A.; Dri, P.; Delbello, G.; Zilli, C.; Della Loggia, R. The Croton oil ear test revisited. Agents Actions 1985, 17, 347–349.
76. Sosa, S.; Braca, A.; Altinier, G.; Della Loggia, R.; Morelli, I.; Tubaro, A. Topical anti-inflammatory activity of Bauhinia tarapotensis leaves. Phytomedicine 2002, 9, 646–653.
77. Gallenmüller, F.; Müller, U.; Rowe, N.; Speck, T. The growth form of Croton pullei (Euphorbiaceae)-Functional morphology and biomechanics of a neotropical Liana. Plant Biol. 2001, 1, 50–61.
78. Rocha, F.F.; Neves, E.M.N.; Costa, E.A.; Matos, L.G.; Muller, A.H.; Guilhon, M.S.P.; Cortes, W.S.; Vanderlinde, F.A. Evaluation of antinociceptive and antiinflammatory effects of Croton pullei var. glabrior Lanj. Rev. Bras. Farmacogn. 2008, 18, 344–349.
79. Balbach, A.A. Flora Nacional na Medicina Doméstica, 11th.; Editora Edel: A Edificação do lar. São Paulo, Brasil, 1980; pp. 885.
80. Cruz, G.L. Dicionário das Plantas Úteis do Brasil. 2nd ed.; Editora Nacional: Civilização Brasileira. São Paulo, Brasil, 1982; pp. 335–336.
81. Born, G.C.C. Plantas medicinais da Mata Atlântica (Vale do Ribeira-SP), Tese de doutorado Universidade de São Paulo, São Paulo, 2000.
82. Jorge, R.M.; Leite, J.P.V.; Oliveira, A.B.; Tagliati, C.A. Evaluation of antinociceptive, anti-inflammatory and antiulcerogenic activities of Maytenus ilicifolia. J. Ethnopharmacol. 2004, 94, 93–100.
83. Oliveira, G.M.O.; Monteiro, M.G.; Macaúbas, C.; Barbosa, V.P.; Carlini, E.A. Pharmacological and toxicologic effects of two Maytenus species in laboratory animals. J. Ethnopharmacol. 1991, 34, 29–41.

84. Lino, C.S.; Taveira, M.L.; Viana, G.S.B.; Matos, F.J.A. Analgesic and antiinflammatory activities of Justicia pectoralis Jacq and its main constituents: Coumarin and umbelliferone. Phytother. Res. 1997, 11, 211–215.

85. Calixto, J.B.; de Lima, T.C.M.; Morato, G.S.; Nicolau, M.; Takahashi, R.N.; Valle, R.M.R.; Schmidt, C.C.; Yunes, R.A. Chemical and pharmacological analysis of the crude aqueous/alcoholic extract from Cordyline dracaenoides. Phytother. Res. 1990, 5, 167–171.

86. Dutra, R.C.; Tavares, C.Z.; Ferraz, S.O.; Sousa, O.V.; Pimenta, D.S. Investigation of analgesic and anti-inflammatory activities of Echinodorus grandiflorus rhizomes methanol extract. Rev. Bras. Farmacogn. 2006, 16, 469–474.

87. Delaporte, R.H.; Sanchez, G.M.; Cuellar, A.C.; Demello, J.C.P. Quality control and antiinflammatory activity of the plant drugs Alternanthera brasiliana (L.) Kuntze and Bouchea fluminensis (Vell.) Mold. Acta Farm. Bonaerense 2001, 20, 39–46.

88. Teixeira, C.G.L.; Piccoli, A.; Costa, P.; Soares, L.; da Silva-Santos, J.E. Involvement of the nitric oxide/soluble guanylate cyclase pathway in the anti-oedemagenic action of Pfaffia glomerata (Spreng) Pedersen in mice. J. Pharm. Pharmacol. 2006, 58, 667–675.

89. Taniguchi, S.F.; Bersani-Amado, C.; Sudo, L.S.; Assef, S.M.C.; Oga, S. Effect of Pfaffia iresinoides on the experimental inflammatory process in rats. Phytother. Res. 1997, 11, 568–571.

90. Mazzanti, G.; Braghiroli, L.; Tita, B.; Bolle, P.; Piccinelli, D. Anti-inflammatory activity of Pfaffia paniculata (Martius) Kuntze and Pfaffia stenophylla (Sprengel) Stuchl. Pharmacol. Res. 1993, 27, 91–92.

91. Mazzanti, G.; Braghiroli, L. Analgesic and antiinflammatory action of Pfaffia paniculata (Martius) Kuntze. Phytother. Res. 1994, 8, 413–416.

92. Mota, M.L.R.; Thomas, G.; Barbosa Filho, J.M. Anti-inflammatory actions of tannins isolated from the bark of Anacardium occidentale L. J. Ethnopharmacol. 1985, 13, 289–300.

93. Viana, G.S.B.; Bandeira, M.A.M.; Matos, F.J.A. Analgesic and antiinflammatory effects of chalcones isolated from Myrciaria dubia urundeuva Allem. Phytotherapy 2003, 10, 189–195.

94. Abad, M.J.; Bermejo, P.; Carretero, E.; Martinez Acitores, C.; Noguera, B.; Villar, A. Antiinflammatory activity of some medicinal plant extracts from Venezuela. J. Ethnopharmacol. 1996, 55, 63–68.

95. de Las Heras, B.; Slowing, K.; Benedi, J.; Carretero, E.; Ortega, T.; Toledo, C.; Bermejo, P.; Iglesias, I.; Abad, M.J.; Gomez-Serranillos, P.; Liso, P.A.; Villar, A.; Chiriboga, X. Antiinflammatory and antioxidant activity of plants used in traditional medicine in Ecuador. J. Ethnopharmacol. 1998, 61, 161–166.

96. Ortega, T.; Carretero, M.E.; Pascual, E.; Villar, A.M.; Chiriboga, X. Anti-inflammatory activity of ethanolic extracts of plants used in traditional medicine in Ecuador. Phytother. Res. 1996, 10, S121–S122.
97. Henriques, A.T.; Melo, A.A.; Moreno, P.R.H.; Ene, L.L.; Henriques, J.A.P.; Schapoval, E.E.S. *Ervatamia coronaria*: Chemical constituents and some pharmacological activities. *J. Ethnopharmacol.* 1996, 50, 19–25.

98. de Miranda, A.L.; Silva, J.R.; Rezende, C.M.; Neves, J.S.; Parrini, S.C.; Pinheiro, M.L.B.; Cordeiro, M.C.; Tamgborini, E.; Pinto, A.C. Anti-inflammatory and analgesic activities of the latex containing triterpenes from *Himatanthus sucuuba*. *Planta Med.* 2000, 66, 284–286.

99. Calixton, J.B.; Nicolau, M.; Trebien, H.; Henrique, M.G.O.; Weg, V.B.; Cordeiro, R.S.B.; Yunes, R.A. Antiedematogenic actions of a hydroalcoholic crude water-alcohol extract of *Mandevilla velutina*. *Braz. J. Med. Biol. Res.* 1986, 19, 4–5.

100. Calixto, J.B.; Zanini, J.C.; Cruz, A.B.; Yunes, R.A.; Medeiros, Y.S. Extract and compounds obtained from *Mandevilla velutina* inhibit arachidonic acid-induced ear oedema in mice, but not rat stomach contraction. *Prostaglandins* 1991, 41, 515–526.

101. Henriques, M.G.M.O.; Fernandes, P.D.; Weg, V.B.; Cordeiro, R.S.B.; Calixto, J.B. Inhibition of rat paw oedema and pleurisy by the extract from *Mandevilla velutina*. *Agents Actions* 1991, 33, 272–278.

102. Rates, S.M.K.; Schapoval, E.E.S; Souza, I.A.; Henriques, A.T. Chemical constituents and pharmacological activities of *Peschiera australis*. *Int. J. Pharmacog.* 1993, 31, 288–294.

103. Dunstan, C.A.; Noreen, Y.; Serrano, G.; Cox, P.A.; Perera, P.; Bohlin, L. Evaluation of some samoaean and peruvian medicinal plants by prostaglandin biosynthesis and rat ear oedema assays. *J. Ethnopharmacol.* 1997, 57, 35–56.

104. Fazio, S.; Pouso, J.; Dolinsky, D.; Fernandez, A.; Hernandez, M.; Clavier, G.; Heckner, M. Tolerance, safety and efficacy of *Hedera helix* extract in inflammatory bronchial diseases under clinical practice conditions: a prospective, open, multicentre postmarketing study in 9657 patients. *Phytomedicine* 2009, 16, 17–24.

105. Maia, M.B.S.; Rao, V.S. Anti-inflammatory activity of *Orbignia phalerata* in rats. *Phytother. Res.* 1989, 3, 170–174.

106. Muschietti, L.; Martino, V.; Ferraro, G.; Coussio, J.; Segura, L.; Cartana, C.; Canigueral, S.; Adzet, T. The antiinflammatory effect of some species from South America. *Phytother. Res.* 1996, 10, 84–86.

107. Simões, C.M.O.; Schenkel, E.P.; Bauer, L.; Langeloh, A. Pharmacological investigations on *Achyrocline satureioides* (Lam). DC., *Compositae*. *J. Ethnopharmacol.* 1988, 22, 281–293.

108. Viana, C.F.G.; Aragao, A.G.M., Jr.; Ribeiro, R.A.; Magalhaes, J.F.G.; Vale, M.R. Effects of *Ageratum conyzoides* in nociception and inflammatory response induced by Zymosan. *Fitoterapia* 1998, 69, 349–354.

109. Perez, F.; Marin, E.; Adzet, T. The antiinflammatory effect of several *Compositae* from South America extracts in rats. *Phytother. Res.* 1995, 9, 145–146.

110. Gene, R.M.; Marin, E.; Adzet, T. Anti-inflammatory effect of aqueous extracts of three species of the genus *Baccharis*. *Planta Med.* 1992, 58, 656–656.

111. Salama, A.M.; Polo, N.A.; Contreras, C.R.; Maldonado, L. Preliminary phytochemical and pharmacological analysis of *Baccharis decussata* leaves. *Rev. Colomb Cienc. Quím. Farm.* 1987, 16, 45–50.
112. Cifuente, D.A.; Simirgiotis, M.J.; Favier, L.S.; Rotelli, A.E.; Pelzer, E. Anti-inflammatory activity from aerial parts of Baccharis medulloso, Baccharis rufescens and Laennecia sophiifolia in mice. Phytother. Res. 2001, 15, 529–531.

113. Gene, R.M.; Cartana, C.; Adzet, T.; Marin, E.; Parella, T.; Canigueral, S. Anti-inflammatory and analgesic activity of Baccharis trimera: Identification of its active constituents. Planta Med. 1996, 62, 232–235.

114. Pereira, R.L.C.; Ibrahim, T.; Lucchetti, L.; da Silva, A.J.R.; de Moraes, V.L.G. Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L. Immunopharmacol. 1999, 43, 31–37.

115. Ortega, C.A.; Rotelli, A.E.; Gianello, J.C. Chemical components and anti-inflammatory activity from Bidens subalternans. Planta Med. 1998, 64, 778.

116. Negrete, R.E.; Backhouse, N.; Cajigal, I.; Delporte, C.; Cassels, B.R.; Breitmaier, E.; Eckhardt, G. Two new antiinflammatory elemanolides from Centaurea chilensis. J. Ethnopharmacol. 1993, 40, 149–153.

117. Souza, M.C.; Siani, A.C.; Ramos, M.F.S.; Menezes-De-Lima, O.; Henriques, M.G.M.O. Evaluation of anti-inflammatory activity of essential oils from two Asteraceae species. Pharmazie 2003, 58, 582–586.

118. Simirgiotis, M.J.; Favier, L.S.; Rossomando, P.C.; Tonn, C.E.; Juarez, A.; Giordano, O.S. Phytochemical study of Conyza sophiaefolia. antiinflammatory activity. Molecules 2000, 5, 605–606.

119. Ruppelt, B.M.; Pereira, E.F.R.; Goncalves, L.C.; Pereira, N.A. Pharmacological screening of plants recommended by folk medicine as anti-snake venom-1. Analgesic and antiinflammatory activities. Mem. Inst. Oswaldo Cruz 1991, 86, 203–205.

120. Poli, A.; Nicolau, M.; Simoes, C.M.O.; Nicolau, R.M.R.D.V.; Zanin, M. Preliminary pharmacologic evaluation of crude whole plant extracts of Elephantopus scaber. Part I: In vivo studies. J. Ethnopharmacol. 1992, 37, 71–76.

121. Silverio, M.S.; Sousa, O.V.; Del-Vecho-Viera, G.; Miranda, M.A.; Matheus, F.C.; Kaplan, M.A.C. Pharmacological properties of the ethanol extract from Eremanthus erythropappus (DC.) Mcleisch (Asteraceae). Rev. Bras. Farmacogn. 2008, 18, 430–435.

122. Muschietti, L.; Gorzalczyan, S.; Ferraro, G.; Acevedo, C.; Acevedo, C.; Martino, V. Phenolic compounds with antiinflammatory activity from Eupatorium buniifolium. Planta Med. 2001, 67, 743–744.

123. Gorzalczyan, S.; Acevedo, C.; Muschietti, L.; Martino, V.; Ferraro, G. Search for antiinflammatory activity in Argentine medicinal plants. Phytomedicine 1996, 3, 181–184.

124. Moreira, A.S.; Spitzer, V.; Schapoval, E.E.S.; Schnekel, E.P. Antiinflammatory activity of extracts and fractions from the leaves of Gochnatia polymorpha. Phytother. Res. 2000, 14, 638–640.

125. Fierro, I.M.; da Silva, A.C.B.; Lopes, C.S.; de Moura, R.S.; Barja-Fidalgo, C. Studies on the anti-allergic activity of Mikania glomerata. J. Ethnopharmacol. 1999, 66, 19–24.
126. de Moura, R.S.; Costa, S.S.; Jansen, J.; Silva, C.A.; Lopes, C.S.; Bernardo Filho, M.; da Silva, V.N.; Criddle, D.N.; Portela, N.; Rubenich, L.M.S.; Araujo, R.G.; Carvalho, L.C.R.M. Bronchodilator activity of Mikania glomerata sprengel on human bronchi and guinea-pig trachea. J. Pharm. Pharmacol. 2002, 54, 249–256.

127. Benoit, P.S.; Fong, H.H.S.; Svoboda, G.H.; Farnsworth, N.R. Biological and phytochemical evaluation of plants. XIV. Antiinflammatory evaluation of 163 species of plants. Lloydia 1976, 39, 160–171.

128. Schinella, G.R.; Giner, R.M.; Recio, M.D.C.; de Buschiazzo, F.M.; Rios, J.L.; Manez, S. Anti-inflammatory effects of South American Tanacetum vulgare. J. Pharm. Pharmacol. 1998, 50, 1069–1074.

129. Menezes, A.M.S.; Almeida, F.R.C.; Rao, V.S.N.; Matos, M.E.O. Anti-inflammatory activity of the essential oil of Vanillosmopsis arborea. Fitoterapia 1990, 61, 252–254.

130. Oga, S.; Sekino, T. Toxicity and antiinflammatory activity of Tabebuia avellanedae extracts. Rev.Fac. Farm. Bioquim. Univ. Sao Paulo 1969, 7, 47–53.

131. Alguacil, L.F.; Mera, A.G.; Gomez, J.; Llinares, F.; Morales, L.; Munoz-Mingarro, M.D.; Pozuelo, J.M.; Orellana, J.A.V. Tecoma sambucifolia: Anti-inflammatory and antiociceptive activities, and “in vitro” toxicity of extracts of the “huarumo” of peruvian incas. J. Ethnopharmacol. 2000, 70, 227–233.

132. Persinos-Perdue, G.; Mc Daniel, S. Evaluation of peruvian folk medicine by the natural products research laboratories (Abstract). Am. Soc. Pharmacogn. Soc. Econ. Bot. 1981, 1, 5.

133. Ferreira, M.A.D.; Nunes, D.R.H.; Fontenele, J.B.; Pessoa, D.L.; Lomos, T.L.G.; Viana, G.S.B. Analgesic and anti-inflammatory activities of a fraction rich in oncocalyxone a isolated from Auxemma oncocalyx. Phytomedicine 2004, 11, 315–322.

134. Sertie, J.A.A.; Woisky, R.G.; Wiezel, G.; Rodrigues, M. Pharmacological assay of Cordia verbenacea: Oral and topical anti-inflammatory activity, analgesic effect and fetus toxicity of a crude leaf extract. Phytomedicine 2005, 5, 338–344.

135. Basile, A.C.; Sertie, J.A.A.; Oshiro, T.; Caly, K.D.V.; Panizza, S. Topical anti-inflammatory activity and toxicity of Cordia verbenacea. Fitoterapia 1989, 60, 260–263.

136. Sertie, J.A.A.; Basile, A.C.; Panizza, S.; Oshiro, T.T.; Azzolini, C.P.; Penna, S.C. Pharmacological assay of Cordia verbenacea III. Oral and topical antiinflammatory activity and gastrotoxicity of crude leaf extract. J. Ethnopharmacol. 1991, 31, 239–247.

137. Sertie, J.A.A.; Basile, A.C.; Panizza, S.; Matida, A.K.; Zelnik, R. Pharmacological assay of Cordia verbenacea: Part 1. Anti-inflammatory activity and toxicity of the crude extract of the leaves. Planta Med. 1988, 54, 7–10.

138. Goldman, R.S.; Freitas, P.C.D.; Oga, S. Wound healing and analgesic effect of crude extracts of Symphytum officinale rats. Fitoterapia 1985, 56, 323–329.

139. Amendoeira, F.C.; Frutuoso, V.S.; Chedier, L.M.; Pearman, A.T.; Figueiredo, M.R.; Kaplan, M.A.C.; Prescott, S.M.; Bozza, P.T.; Castro-Farianeto, H.C. Antinociceptive effect of Nidularium procerum: A Bromeliaceae from the Brazilian coastal rain forest. Phytomedicine 2005, 12, 78–87.
140. Delaporte, R.H.; Sarragiotto, M.H.; Takemura, O.S.; Sanchez, G.M.; Filho, B.P.D.; Nakamura, C.V. Evaluation of the antioedematogenic, free radical scavenging and antimicrobial activities of aerial parts of Tillandsia streptocarpa Baker-Bromeliaceae. J. Ethnopharmacol. 2004, 95, 229–233.

141. Noguera, B.; Diaz, E.; Garcia, M.V.; Feliciano, A.S.; Lopez-perez, J.L.; Israel, A. Anti-inflammatory activity of leaf extract and fractions of Bursera simaruba (L.) Sarg (Burseraceae). J. Ethnopharmacol. 2004, 95, 229–233.

142. Otuki, M.F.; Vieira-Lima, F.; Malheiros, A.; Yunes, R.A.; Calixto, J.B. Topical antiinflammatory effects of the ether extract from Protium kleinii and alpha amyrin pentacyclic triterpene. Eur. J. Pharmacol. 2005, 507, 253–259.

143. Costa, E.A.; Santos, L.R.; Pontes, I.S.; Matos, L.G.; Silva, G.A.; Liao, L.M. Analgesic and anti-inflammatory effects of Cheiloclinium cognatum root barks. Rev. Bras. Farmacogn. 2007, 17, 508–513.

144. Kimura, E.; Albiero, A.L.M.; Cuman, R.K.N.; Caparroz-Assef, S.M.; Oga, S.; Bersani-Amado, C.A. Effect of Maytenus aquifolium extract on the pharmacokinetic and antiinflammatory effectiveness of piroxicam in rats. Phytomedicine 2000, 7, 117–121.

145. Backhouse, N.; Delporte, C.; Negrete, R.; Munoz, O.; Ruiz, R. Antiinflammatory and antipyretic activities of Maytenus boaria. Int. J. Pharmacogn. 1994, 32, 239–244.

146. Moya, S.M.; Olarte, C.J.E. Phytochemical and pharmacological studies on the antiarthritics of plant origin. Rev. Colomb. Cienc. Quim. Farm. 1977, 3, 5–6.

147. Santos, V.L.D.; Costa, V.B.M.; Agra, M.F.; Silva, B.A.; Batista, L.M. Pharmacological studies of ethanolic extracts of Maytenus Rigida mart (Celastraceae) in animal models. Rev. Bras. Farmacogn. 2007, 17, 336–342.

148. Cardenas, L.C.; Rodriguez, J.; Villaverde, M.C.; Riguera, R.; Cadena, R.; Otero, J.A. The analgesic activity of Hedyosmum bonplandianum: flavonoid glycosides. Planta Med. 1993, 59, 26–27.

149. Perazzo, F.F.; Lima, L.M.; Padilha, M.D.M.; Rocha, L.M.; Sousa, P.J.C.; Carvalho, J.C.T. Anti-inflammatory and analgesic activities of Hypericum brasiliense (Willd) standardized extract. Rer. Bras. Farmacogn. 2008, 18, 320–325.

150. Bakchouse, N.; Delporte, C.; Negrete, R.; Salinas, P.; Pinto, A.; Aravena, S.; Cassels, B.K.; Antiinflammatory and antipyretic activities of Cuscuta chilensis, Cestrum parqui and Psoralea glandulosa. Int. J. Pharmacogn. 1996, 34, 53–57.

151. Sousa, P.J.C.; Rocha, J.C.S.; Pessoa, A.M.; Alves, L.A.D.; Carvalho, J.C.T. Preliminary study of the anti-inflammatory activity of Bryophyllum calcinum Salisb. Rev. Bras. Farmacogn. 2005, 15, 60–64.

152. Mourao, R.H.V.; Santos, F.O.; Franzotti, E.M.; Moreno, M.P.N.; Antoniollli, A.R. Antiinflammatory activity and acute toxicity (LD50) of the juice of Kalanchoe brasiliensis (Comb.) leaves picked before and during blooming. Phytother. Res. 1999, 13, 352–354.

153. Ibrahim, T.; Cunha, J.M.T.; Madi, K.; Fonseca, L.M.B.; Costa, S.S.; Koatz, V.L.G. Immunomodulatory and anti-inflammatory effects of Kalanchoe brasiliensis. Int. Immunopharmacol. 2002, 2, 875–883.
154. Ibrahim, T.; Pereira, R.L.C.; Almeida, A.P.; Madi, K.; Fonseca, L.B.M.; Costa, S.S.; Goncalves-Moraes, V.L. Antiinflammatory effect of *Kalanchoe brasiliensis* on zymosan-induced arthritis in mice. *Phytomedicine* **2000**, 7, 110.

155. Rios, J.L.; Giner, R.M.; Jimenez, M.J.; Wickman, G.; Hancke, J.L. A study on the anti-inflammatory activity of *Cayaponia tayuya* root. *Fitoterapia* **1990**, 61, 275–278.

156. Peters, R.R.; Farias, M.R.; Ribeiro-Do Valle, R.M. Anti-inflammatory and analgesic effects of curcubitacins from *Wilbrandia ebracteata*. *Planta Med.* **1997**, 63, 525–528.

157. Almeida, F.R.C.; Rao, V.S.N.; Matos, M.E.O. Antiinflammatory, antitumour and antifertility effects in rodents of two nor-cucurbitacin glucosides from *Wilbrandia* species. *Phytother. Res.* **1992**, 6, 189–193.

158. Nalvarte, E.L.; Kehl, H. Pharmacological characteristics of *Trichipetis procera*. *Int. J. Crude Drug Res.* **1990**, 28, 97–102.

159. Siani, A.C.; Silva, A.M.P.; Nakamura, M.J.; de Carvalho, M.V.; Henriques, M.G.M.O.; Ramos, M.F.S.; Kaiser, C.R. Chemical composition and anti-inflammatory activity of the hydrodistillat from *Mariscus pedunculatus*. *J. Braz. Chem. Soc.* **2001**, 12, 354–359.

160. Alexandre-Moreira, M.S.; Piuvezam, M.R.; Araujo, C.C.; Thomas, G. Studies on the anti-inflammatory and analgesic activity of *Curatella americana* L. *J. Ethnopharmacol.* **1999**, 67, 171–177.

161. Monte, F.H.M.D.; Santos J.R.J.G.; Russi, M.; Lanziotti, V.M.N.B.; Leal, L.K.A.M.; Cunha, G.M.D.A. Antinociceptive and anti-inflammatory properties of the hydroalcoholic extract of stems from *Equisetum arvense*. In mice. *Pharmacol. Res.* **2004**, 49, 239–243.

162. Chaves, C.G.; Schapoval, E.E.S.; Zuanazzi, J.A.; Diehl, E.; Siqueira, N.C.S.; Henriques, A.T. *Erythroxylum argentinum*: Assays for antiinflammatory activity. *J. Ethnopharmacol.* **1988**, 22, 117–120.

163. Bighetti, E.J.B.; Hirum-Lima, C.A.; Gracioso, J.S.; Brito, A.R.M.S. Anti-inflamamtory and antinociceptive effects in rodents of the essential oil of *Croton cajucara* Bent. *J. Pharm. Pharmacol.* **1999**, 51, 1447–1453.

164. Nardi, G.M.; Felippi, R.; Dalbo, S.; Siqueira-Junior, J.M.; Arruda, D.C.; Monache, F.D.; Timbola, A.K.; Pizzolatti, M.G.; Ckless, K.; Ribeiro-Dovalle, R.M. Anti-inflammatory and antioxidant effects of *Croton celtidifolius* bark. *Phytomedicine* **2003**, 10, 176–184.

165. Miller, M.J.S.; Vergnolle, N.; Mc Knight, W.; Musah, R.A.; Davison, C.A.; Trentacostik, A.M.; Thompson, J.H.; Sandoval, M.; Wallace, J.L. Inhibition of neurogenic inflammation by the amazonian herbal medicine sangre de grado. *J. Invest. Dermatol.* **2001**, 117, 725–730.

166. Risco, E.; Ghia, F.; Vila, R.; Iglesias, J.; Alvarez, E.; Caniqueral, S. Immunomodulatory activity and chemical characterisation of sangre de drago (dragon’s blood) from *Croton lechleri*. *Planta Med.* **2003**, 69, 785–794.

167. Suarez, A.I.; Compagnone, R.S.; Salazar-Bookaman, M.M.; Tillett, S.; Monache, F.D.; di Giulio, C.; Bruges, G. Antinociceptive and anti-inflammatory effects of *Croton malambo* bark aqueous extract. *J. Ethnopharmacol.* **2003**, 88, 11–14.

168. Trebien, H.A.; Neves, P.C.A.; Yunes, R.A.; Calixto, J.B. Evaluation of pharmacological activity of a crude hydroalcoholic extract from *Jatropha elliptica*. *Phytother. Res.* **1988**, 2, 115–118.
169. Kassuya, C.A.L.; Silvestre, A.A.; Rehder, V.L.G.; Calixto, J.B. Anti-allodynic and anti-oedematogenic properties of the extract and lignans from Phyllanthus amarus in models of persistent inflammatory and neuropathic pain. Eur. J. Pharmacol. 2003, 478, 145–153.

170. Filho, V.C.; Santos, A.R.S.; de Campos, R.O.P.; Migueo, O.G.; Yunes, R.A.; Ferrari, F.; Messna, I.; Calixto, J.B. Chemical and pharmacological studies of Phyllanthus caroliniensis in mice. J. Pharm. Pharmacol. 1996, 48, 1231–1236.

171. Gorski, F.; Correa, C.R.; Filho, V.C.; Santos, A.R.S.; de Campos, R.O.P.; Migueo, O.G.; Yunes, R.A.; Ferrari, F.; Messna, I.; Calixto, J.B. Potent antinociceptive activity of a hydroalcoholic extract of Phyllanthus corcovadensis. J. Pharm. Pharmacol. 1993, 45, 1046–1049.

172. Carvalho, J.C.T.; Santos, L.S.; Viana, E.P.; de Almeide, S.S.M.S.; Marconato, E.; Rodrigues, M.; Ferreira, L.R.; van de Kamp, A. Anti-inflammatory and analgesic activities of the crude extracts from stem bark on Bauhinia guianensis. Pharm. Biol. 1999, 37, 281–284.

173. Carvalho, J.C.T.; Teixeira, J.R.M.; Souza, P.J.C.; Bastos, J.K.; Filho, D.D.S.; Sarti, S.J. Preliminary studies of analgesic and anti-inflammatory properties of Caesalpinia ferrea crude extract. J. Ethnopharmacol. 1996, 53, 175–178.

174. Fernandes, R.M.; Pereira, N.A.; Paulo, L.G. Anti-inflammatory activity of copaiba balsam (Copaifera cearensis Huber). Rev. Bras. Farm. 1992, 73, 53–56.

175. Marchioro, M.; Blank, M.D.F.A.; Mourao, R.H.V.; Antoniolli, A.R. Anti-nociceptive activity of the aqueous extract of Erythrina velutina leaves. Fitoterapia 2005, 76, 637–642.

176. Miño, J.; Gorzalczany, S.; Moscatelli, V.; Ferraro, G.; Acevedo, C.; Hnatyszyn, O. Actividad antinociceptiva y antiinflamatoria de Erythrina crista-galli L. (“ceibo”). Acta Farm. Bonaerense 2002, 21, 93–98.

177. Backhouse, C.N.; Delporte, C.L.; Negrete, R.E.; Erazo, S.; Zuniga, A.; Pinto, A.; Cassels, B.K. Active constituents isolated from Psoralea glandulosa L. with antiinflammatory and antipyretic activities. J. Ethnopharmacol. 2001, 78, 27–31.

178. Carvalho, J.C.T.; Sertie, J.A.A.; Barbosa, M.V.J.; Patricio, K.C.M.; Caputo, L.R.G.; Sarti, S.J.; Ferreira, L.P.; Bastos, J.K. Anti-inflammatory activity of the crude extract from the fruits of Pterodon emarginatus Vog. J. Ethnopharmacol. 1999, 64, 127–133.

179. Lima, J.C.S.; Martins, D.T.O.; dve Souza, P.T., Jr. Experimental evaluation of stem bark of Stryphnodendron adstringens (Mart.) Coville for antiinflammatory activity. Phytother. Res. 1998, 12, 218–220.

180. Leal, L.; Matos, M.E.; Matos, F.J.A.; Rieiro, R.A.; Ferreira, F.V.; Viana, G.S.B. Antinociceptive and antiedematogenic effects of the hydroalcoholic extract and coumarin from Torresea cearensis Fr. All. Phytomedicine 1997, 4, 221–227.

181. Nadinic, E.; Gorzalczany, S.; Rojo, A.; van Baren, C.; Debenedetti, S.; Acevedo, C. Topical anti-inflammatory activity of Gentianella achalensis. Fitoterapia 1999, 70, 166–171.

182. Bispo, M.D.; Mourao, R.H.V.; Franzotti, E.M.; Bomfim, K.B.R.; Arrigon Blank, M.D.F.; Moreno, M.P.N.; Marchioro, M.; Antoniolli, A.R. Antinociceptive and antiedematogenic effects of the aqueous extract of Hyptis pectinata leaves in experimental animals. J. Ethnopharmacol. 2001, 76, 81–86.
183. Shimizu, M.; Shogawa, H.; Matsuzawa, T.; Yonezawa, S.; Hayashi, T.; Arisawa, M.; Suzuki, S.; Yoshizaki, M.; Morita, N.; Ferro, E.; Basualdo, I.; Berganza, L.H. Anti-inflammatory constituents of topically applied crude drugs. IV. Constituents and anti-inflammatory effect of Paraguayan crude drug “alucema” (*Lavandula latifolia* Vill.). *Chem. Pharm. Bull.* **1990**, *38*, 2283–2284.

184. Bucar, F.; Knauder, E.; Schubert-Zsilavecz, M. Studies on the antiinflammatory principle of *Mentzelia chilensis*. *Phytother. Res.* **1998**, *12*, 275–278.

185. Morato, G.S.; Calixto, J.B.; Cordeiro, L.; de Lima, T.C.M.; Morato, E.F.; Nicolau, M.; Rae, G.A.; Takahashi, R.N.; Valle, R.M.R.; Yunes, R.A. Chemical and pharmacological studies on *Talauma ovata* St. Hil. (Magnoliaceae). *J. Ethnopharmacol.* **1989**, *26*, 277–286.

186. Franzotti, E.M.; Santos, C.V.F.; Rodrigues, H.M.S.L.; Mourao, R.H.V.; Andrade, M.R.; Antoniolli, A.R. Anti-inflammatory, analgesic activity and acute toxicity of *Sida cordifolia* L. (Malva-branca). *J. Ethnopharmacol.* **2000**, *72*, pp. 273–278.

187. Oga, S.; Sertie, J.A.; Brasile, A.C.; Hanada, S. Antiinflammatory effect of crude extract from *Guarea guidonia*. *Planta Med.* **1981**, *42*, 310–312.

188. Benencia, F.; Courreges, M.C.; Coulombie, F.C. Anti-inflammatory activities of *Trichilia glabra* aqueous leaf extract. *J. Ethnopharmacol.* **2000**, *71*, 293–300.

189. Batistat-Lima, K.V.; Ribeiro, R.; Balestieri, F.M.P.; Thomas, G.; Piuvezam, M.R. Anti-inflammatory activity of *Cissampleos sympodialis* Eichl. (Menispermaceae) leaf extract. *Acta Farm. Bonaerense* **2001**, *20*, 275–279.

190. Lanher, M.C.; Joyeux, M.; Soulimani, R.; Fleurentin, J.; Sayag, M.; Mortier, F.; Younos, C.; Pelt, J.M. Hepatoprotective and anti-inflammatory effects of a traditional medicinal plant of Chile, *Peumus boldus*. *Planta Med.* **1991**, *57*, 110–115.

191. Schapoval, E.E.S.; Silveira, S.M.; Miranda, M.L.; Alice, C.B.; Henriques, A.T. Evaluation of some pharmacological activities of *Eugenia uniflora* L. *J. Ethnopharmacol.* **1994**, *44*, 137–142.

192. Santos, F.A.; Rao, V.S.N.; Silveira, E.R. Anti-inflammatory and analgesic activities of the essential oil of *Psidium guianense*. *Fitoterapia* **1997**, *68*, 65–68.

193. Shimizu, M.; Shogawa, H.; Hayashi, T.; Arisawa, M.; Suzuki, S.; Yoshizaki, M.; Morita, N.; Ferro, E.; Basualdo, I.L.; Berganza, L.H. Anti-inflammatory constituents of topically applied crude drug. III. Constituents and anti-inflammatory effect of Paraguayan crude drug “tamanda cuna” (*Cataesetum barbatum* Lindl.). *Chem. Pharm. Bull.* **1988**, *36*, 4447–4452.

194. Germano, D.H.P.; Caldeira, T.T.O.; Mazella, A.A.G.; Sertie, J.A.A.; Bacchi, E.M. Topical anti-inflammatory activity and toxicity of *Petiveria alliacea*. *Fitoterapia* **1993**, *64*, 459–467.

195. Germano, D.H.P.; Sertie, J.A.A.; Bacchi, E.M. Pharmacological assay of *Petiveria alliacea*. II: Oral anti-inflammatory activity and gastrotoxicity of a hydroalcoholic root extract. *Fitoterapia* **1995**, *66*, 195–202.

196. Lopes-Martins, R.A.B.; Pegoraro, D.H.; Wolsky, R.; Penna, S.C.; Sertie, J.A.A. The anti-inflammatory and analgesic effects of a crude extract of *Petiveria alliacea* L. (Phytolaccaceae). *Phytomedicine* **2002**, *9*, 245–248.

197. Arrigoni-Blank, M.F.; Dmitrieva, E.G.; Franzotti, E.M.; Antoniolli, A.R.; Andrade, M.R.; Marchioro, M. Anti-inflammatory and analgesic activity of *Peperomia pellucida* (L.) HBK (Piperaceae). *J. Ethnopharmacol.* **2004**, *91*, 215–218.
198. D'angelo, L.C.A.; Zavier, H.S.; Torres, L.M.B.; Lapa, A.J.; Souccar, C. Pharmacology of Piper marginatum Jacq. a folk medicinal plant used as an analgesic, antiinflammatory and hemostatic. Phytomedicine 1997, 4, 33–40.

199. Palmeriro, N.S.; Almeida, C.E.; Ghedini, P.C.; Goulart, L.S.; Baldisserotto, B. Analgesic and anti-inflammatory properties of Plantago australis hydroalcoholic extract. Acta Farm. Bonaerense 2002, 21, 89–92.

200. Guillen, M.E.N.; Emim, J.A.S.; Souccar, C.; Lapa, A.J. Analgesic and antiinflammatory activities of the aqueous extract of Plantago major L. Int. J. Pharmacog. 1997, 35, 99–104.

201. Oliveira-Simoes, C.M.; Ribeiro-Do-Vale, R.M.; Poli, A.; Nicolau, M.; Zanin, M. Pharmacological investigation on Polygonum punctatum Elliot (P.Acre H.B.K) extracts. J. Pharm. Belg. 1989, 44, 275–284.

202. Erazo, S.; Garcia, R.; Bakchouse, N.; Lemus, I.; Delporte, I.C.; Andrade, C. Phytochemical and biological study of radal Lomatia hirsuta (Proteacea). J. Ethnopharmacol. 1997, 57, 81–83.

203. Delporte, C.L.; Bakchouse, C.N.; Erazo, S.; Negrete, R.E.; Silva, C.; Hess, A.; Munoz, O.; Garcia-Gravalos, M.D.; Feliciano, A.S. Biological activities and metabolites from Trevoa trinervis Miers. Phytother. Res. 1997, 11, 504–507.

204. Backhouse, N.; Delporte, C.; Negrete, R.; Suarez, S.; Cassels, B.K.; Breitmaier, E.; Schneider, C. Anti-inflammatory and antipyretic metabolites of Acaena splendens. Int. J. Pharmacog. 1997, 35, 49–54.

205. Delporte, C.; Munoz, O.; Rojas, J.; Ferrandiz, M.; Paya, M.; Erazo, S.; Negrete, R.; Maldonado, S.; Feliciano, A.S.; Backhouse, N. Pharmaco-toxicological study of Kageneckia oblonga, Rosaceae. Z. Naturforsch. 2002, 57c, 100–108.

206. de Almeida, E.R.; de Santana, C.F.; de Mello, J.F. Anti-inflammatory activity of Coutarea hexandra. Fitoterapia 1991, 62, 447–448.

207. Piscoya, J.; Rodriguez, Z.; Bustamante, S.A.; Okuhama, N.N.; Miller, M.J.S.; Sandoval, M. Efficacy and safety of freeze-dried cat’s claw in osteoarthritis of the knee: mechanisms of action of the species Uncaria guianensis. Inflamm. Res. 2001, 50, 442–448.

208. Aguilar, J.L.; Rojas, P.; Marcelo, A.; Plaza, A.; Bauer, R.; Reininger, E.; Klas, C.A.; Merfort, I. Anti-inflammatory activity of two different extracts of Uncaria tomentosa (Rubiaceae). J. Ethnopharmacol. 2002, 81, 271–276.

209. Herrera, H.; Jorge, E. Procesamiento de la Uncaria tomentosa (willd.) Dc. Una de gato en imet-ips. Biodivers. Salud 1998, 1, 32–37.

210. Sandoval-Chacon, M.; Thompson, J.H.; Zhang, X.J.; Liu, X.; Mannick, E.E.; Sadowska-Krowicka, H.; Charbonnet, R.M.; Clark, D.A.; Miller, M.S.J. Antiinflammatory actions of cat’s claw: the role of nf-kb. Aliment. Pharmacol. Ther. 1998, 12, 1279–1289.

211. Centi, R.; Esquivel, C.; Pino, A. Fractionation of the methanolic extract of Uncaria tomentosa Willdl D.C. And its relation with the anti-inflammamtry effect. Phytomedicine 2000, 7, 90.

212. Mur, E.; Hartig, F.; Eibl, G.; Schirmer, M. Randomized double blind trial of an extract from the pentacyclic alkaloid-chemotype of Uncaria tomentosa for the treatment of rheumatoid arthritis. J. Rheumatol. 2002, 29, 678–681.

213. Senatore, A.; Cataldo, A.; Iaccarino, F.P.; Elberti, M.G. Phytochemical and biological reserach on Uncaria tomentosa. Boll. Soc. Ital. Biol. Sper. 1989, 65, 517–520.
214. Keplinger, K.; Lauris, G.; Wurm, M.; Dierich, M.P.; Teppner, H. Uncaria tomentosa (Willd.) D.C.-ethnomedicinal use and new pharmacological, toxicological and botanical results. *J. Ethnopharmacol.* 1999, 64, 23–34.

215. Miller, M.; Mehta, K.; Kunte, S.; Raut, V.; Gala, J.; Dhumale, R.; Shukla, A.; Tupalli, H.; Parikh, H.; Bobrowski, P.; Chadhary, J. Early relief of osteoarthritis symptoms with a natural mineral supplement and a herbomineral combination: A randomized controlled trial. *J. Inflamm.* 2005, 2, 14.

216. Villalba, M.A.; Carmo, M.I.; Leite, M.N.; Sousa, O.V. Pharmacological activities of Zanthoxylum chiloperone (Rutaceae) extracts. *Rev. Bras. Farmacogn.* 2007, 17, 236–241.

217. Khalil, N.M.; Sperotto, J.S.; Manfron, M.P. Antiinflammatory activity and acute toxicity of Dodonaea viscosa. *Fitoterapia* 2006, 77, 478–480.

218. Almeida, R.N.; Barbosa Filho, J.M.; Naik, S.R. Chemistry and pharmacology of an ethanol extract of *Bumelia sartorum*. *J. Ethnopharmacol.* 1985, 14, 173–185.

219. Freire, S.M.D.F.; Emin, J.A.D.S.; Torres, L.M.B. Analgesic and antiinflammatory properties of Scoparia dulcis L. extracts and glutinol in rodents. *Phytother. Res.* 1993, 7, 408–414.

220. Hammarlund, E.R. Occurrence of a weak anti-inflammatory substance in *Simaba cedron* seed. *J. Pharm. Sci.* 1963, 52, 204.

221. Iyer, R.P.; Brown, J.K.; Chaubal, M.G.; Malone, M.H. *Brunfelsia hopeana* I: Hippocratic screening and antiinflammatory evaluation. *Lloydia* 1977, 40, 356–360.

222. Iyer, R.P.; Chaubal, M.G. *Brunfelsia hopeana*-pharmacologic screening: Isolation and characterization of hoppeanine. *Diss. Abstr. Int. B* 1978, 39, 761.

223. Delporte, C.; Backhouse, N.; Negrete, R.; Salinas, P.; Rivas, F.; Cassels, B.K.; San Feliciano, A. Antipyretic, hypothermic and antiinflammatory activities and metabolites from *Solanum ligustrinum* Lood. *Phytother. Res.* 1998, 12, 118–122.

224. Vieira, J.R.G.; Ferreira, P.M.; Matos, L.G.; Ferreira, E.C.; Rodovalho, W.; Ferri, P.H. Anti-inflammatory effect of *Solanum lycocarpum* fruits. *Phytother. Res.* 2003, 17, 892–896.

225. Antonio, M.A.; Souza Brito, A.R.M. Oral anti-inflammatory and anti-ulcerogenic activities of a hydroalcoholic extract and partitioned fractions of *Turnera ulmifolia* (Turneraceae). *J. Ethnopharmacol.* 1998, 61, 215–228.

226. Costa, V.B.; Coube, C.S.; Marinho, B.G.; Matheus, M.E.; Leitão, S.G.; Fernandes, P.D. Anti-inflammatory and analgesic activity of *Bouchea fluminensis*. *Fitoterapia* 2003, 74, 364–371.

227. Schapoval, E.E.S.; de Vargas, M.R.W.; Chaves, C.G.; Bridi, R.; Zuanazzi, J.A.; Henriques, A.T. Antiinflammatory and antinociceptive activities of extracts and isolated compounds from *Stachytarpheta cayennensis*. *J. Ethnopharmacol.* 1998, 60, 53–59.

228. Mesia-Vela, S.; Souccar, C.; Lima-Landman, M.T.R.; Lapa, A.J. Pharmacological study of *Stachytarpheta cayennensis* Vahl in rodents. *Phytomedicine* 2004, 11, 616–624.

229. Tratsk, K.S.; Campos, M.M.; Vaz, Z.R.; Filho, V.C.; Schlepmer, V.; Yunes, R.A.; Calixto, J.B. Anti-allergic effects and oedema inhibition caused by the extract of *Drymis Winteri*. *Inflamm. Res.* 1997, 46, 509–514.
230. Penna, S.C.; Medeiros, M.V.; Aimbire, F.S.C.; Faria-Neto, H.C.C.; Sertie, J.A.A.; Lopes-Martins, R.A.B. Anti-inflammatory effect of the hydralcoholic extract of *Zingiber officinale* rhizomes on rat paw and skin edema. *Phytomedicine* **2003**, *10*, 381–385.

231. Pedernera, A.M.; Guardia, T.; Calgeron, C.G.; Rotelli, A.E.; de la Rocha, N.E.; di Genaro, S.; Pelzer, L.E. Anti-ulcerogenic and anti-inflammatory activity of the methanolic extract of *Larrea divaricata* Cav. in rat. *J. Ethnopharmacol.* **2006**, *105*, 415–420.

232. Martino, R.F.; Davicino, R.C.; Mattar, M.A.; Casali, Y.A.; Correa, S.G.; Anesini, C. Micalizzi, B. *In vitro* immunomodulatory effects of fractions obtained from aqueous extracts of *Larrea divaricata* Cav (Jarilla) on mouse peritoneal macrophages. *Immunopharmacol. Immunotoxicol.* **2010**, *32*, 125–132.

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).