Circular Sequences and the Diameter of Multipermutohedra

Sarang Aravamuthan*

June 2, 2010

Abstract

We derive bounds on the number of switches at an arbitrary set of positions in a circular sequence of permutations and relate them to the diameter of Multipermutohedra.

Keywords: Circular sequences, Multipermutohedra

MSC (2010): 05A05, 52B12

1 Introduction

A sequence of \(\vec{N} + 1 \) (with \(\vec{N} = \binom{N}{2} \)) permutations, \(\mathcal{P} = \langle \pi_0, \ldots, \pi_N \rangle \), in the symmetric group \(S_N \) is called a circular sequence if \(\pi_0 = 1, \ldots, n \) is the identity permutation, \(\pi_N = n (n-1) \ldots 1 \) is the reverse permutation and \(\pi_{i+1} \) differs from \(\pi_i \) by an adjacent transposition, i.e., \(\pi_{i+1} = \pi_i (j, j+1) \) for some \(j \) such that \(\pi_i(j) < \pi_i(j+1) \). These sequences are used for bounding the number of \(k \)-sets of a point configuration \(X \) in the plane (a \(k \)-set of \(X \) is a subset of size \(k \) separated by a line from the other points in \(X \)). The connection between \(k \)-sets and circular sequences was first established by Goodman and Pollack [5]. For a subset \(K \subseteq \left[\frac{n-1}{2} \right] \), one can also bound the number of \(k \)-sets, \(k \in K \) over all point configurations \(X \). Such bounds were established for specific choices of \(K \) using this connection (see [1, 6]).

For the sequence \(\mathcal{P} \), defined above, the process of moving from \(\pi_i \) to \(\pi_{i+1} \) is referred to as a switch \((\pi_i(j), \pi_i(j+1)) \) at position \(j \) (note that the numbers being swapped are \(\pi_i(j) \) and \(\pi_i(j+1) \)). We define \(s_j(\mathcal{P}) \) to be the total number of switches at position \(j \). We count the total number of switches at a given set of positions \(y = \{y_1, \ldots, y_n\} \subseteq [N-1] \), with \(y_1 < y_2 < \cdots < y_n \) which is

\[
s(\mathcal{P}, y) = s_{y_1}(\mathcal{P}) + \cdots + s_{y_n}(\mathcal{P}).
\]

*Ignite R&D Labs, Tata Consultancy Services, Chennai, India.
sarang.aravamuthan@tcs.com
Our goal is to derive a bound on \(s(\mathcal{P}, y) \) and show how it relates to the diameter of multipermutohedra (which, as we will see later, are essentially “permutohedra on multisets”).

In the next section, we estimate \(s(\mathcal{P}, y) \). In Section 3, we introduce the multipermutohedron and derive bounds on its diameter. In Section 4, we show how the diameter of multipermutohedra relates to a variant of the \(k \)-set problem.

We fix some notations. \([n]\) represents the set \(\{1, 2, \ldots, n\} \). If \(x \) is not an integer, we write \([x]\) instead of \(\lfloor x \rfloor \). For \(S \subseteq [n] \) and \(x \in \mathbb{R}^n \) define \(x(S) := \sum_{i \in S} x_i \) and denote the size of \(S \) by \(|S| \).

A composition of \(n \) is a sequence of positive integers \(\lambda := \langle \lambda_1, \ldots, \lambda_k \rangle \) with \(\sum \lambda_i = n \).

Permutations in \(S_n \) will be represented as words. We call \(e := 1 \, 2 \, \ldots \, N \) the identity permutation and \(\bar{e} := N \, N - 1 \, \ldots \, 1 \) the reverse permutation.

2 A Bound on Circular Sequences

With \(\mathcal{P} \) and \(y \) as defined above, we evaluate \(s(\mathcal{P}, y) \) in the following way. Each \(i \in [N] \) starts at position \(i \) in the identity permutation \(e \) and reaches position \(N - i + 1 \) in \(\bar{e} \). Following the notation of [8], we refer to the positions \(y_1, \ldots, y_n \) as gates and define \(c_i \) to be the number of gates that \(i \) must cross in order to reach position \(N - i + 1 \). \(c_i \) is interpreted as the cost in moving \(i \) to position \(N - i + 1 \). As \(c_i = c_{N-i+1} \), the total cost \(c(N) \) is

\[
c(N) := \sum_{i=1}^{N} c_i = 2 \sum_{i=1}^{\lfloor \frac{N}{2} \rfloor} c_i.
\]

Next, we define the vector \(x = (x_1, \ldots, x_n) \) where \(x_j \) represents the distance of \(y_j \) from one of the ends, i.e.

\[
x_j := \min\{y_j, N - y_j\}.
\]

Let \((p_1, \ldots, p_n)\) be the permutation of \((x_1, \ldots, x_n)\) with \(N/2 \geq p_1 \geq \cdots \geq p_n > 0 \). Any number \(j \) such that \(p_{i+1} < j \leq p_i \) has cost \(c_j = i \) (we assume \(p_{n+1} = 0 \)). Hence

\[
c(N) = 2 \sum_{i=1}^{n} i(p_i - p_{i+1}) = 2\rho([n]) = 2x([n]).
\]

We now amortize the cost \(c(N) \) over \(\mathcal{P} \). Each switch \((i, j)\) across a gate is interpreted as contributing +1 or −1 to \(c_i \) according to whether \(i \) moves towards
or away from position $N - i + 1$. A switch (i, j) across a gate is called good if it contributes 1 to both c_i and c_j and bad if it contributes 1 to c_i (or c_j) and -1 to the other. We observe that every switch across a gate is either good or bad, i.e., must contribute +1 to the cost of at least one of the numbers being moved. This follows from the fact that $i < j$, so if i is in position $> N - i > N - j$, then j moves towards $N - j + 1$.

Hence, good switches contribute 2 to c_i while bad switches contribute 0. Since $c_i = 2x([n])$, the number of good switches is $x([n])$. Thus if $s_b(\mathcal{P}, y)$ is the number of bad switches, then

$$s(\mathcal{P}, y) = x([n]) + s_b(\mathcal{P}, y). \quad (2)$$

Thus, it suffices to estimate $s_b(\mathcal{P}, y)$, in order to bound $s(\mathcal{P}, y)$. Let l be the number of y_i smaller than $N/2$, i.e., $y_l < N/2$ while $y_{l+1} \geq N/2$, and let $r := n - l$. In other words, l and r represent the number of gates to the left and right of $N/2$ respectively. The following result bounds $s(\mathcal{P}, y)$.

Theorem 1 Let

$$s(y) = \min\{s(\mathcal{P}, y) \mid \mathcal{P} \text{ is a circular sequence}\}$$

be the minimum of the number of switches at a set of positions given by y over all circular sequences of permutations in \mathcal{S}_N. Then,

$$x([n]) \leq s(y) \leq x([n]) + lr.$$

Proof. From (2), we observe that $s(\mathcal{P}, y) \geq x([n])$ for any circular sequence \mathcal{P}. This proves the lower bound for $s(y)$.

To show the upper bound, we construct a circular sequence \mathcal{P} such that the number of bad switches $s_b(\mathcal{P}, y) \leq lr$. We construct the sequence in two phases.

In the first phase, we move the numbers $1, \ldots, r$ to positions $y_r, y_{r-1}, \ldots, y_1$ and the numbers $N, N-1, \ldots, N-l+1$ to positions y_{r+1}, \ldots, y_n in the following way. Starting from e, we move 1 to position y_r through a sequence of switches $(1, i), i \leq y_r$. Next, 2 is moved to position y_{r-1} with the switches $(2, i), i \leq y_{r-1}$. Continuing this way, the first r and the last l numbers (in the order $N, N-1, \ldots, N-l+1$) are moved to positions $y_r, y_{r-1}, \ldots, y_1$ and y_{r+1}, \ldots, y_n respectively.

The resulting permutation is

$$r + 1 \ldots r | \ldots r - 1 | \ldots 2 | \ldots 1 | \ldots N | \ldots N - 1 | \ldots N - l + 1 | \ldots N - l$$

where the $|$ indicates the gate positions y_1, \ldots, y_n and the numbers $r+1, \ldots, N-l$ are in the remaining positions in increasing order.
The second phase consists of moving $N - i + 1$ to position i for $i = 1, 2, \ldots, \lfloor N/2 \rfloor$. This is done by starting with N and moving it to the first position by switching it in succession with the numbers $1, \ldots, r$. This brings $1, \ldots, r$ to positions $y_{r+1}, y_r, \ldots, y_2$ and $r + 1$ to position y_1 if $y_1 > 1$. Next we move $N - 1$ to the second position. In general, suppose γ is a permutation in this sequence with the last i numbers in the first i positions and the first j numbers in the last j positions, and $\gamma(i + 1) = k$, i.e.

$$
\gamma = N N - 1 \ldots N - i + 1 k \ldots k - 1| \ldots k - 2| \ldots j + 1| \ldots N - i j j - 1 \ldots 1.
$$

Here the numbers $j + 1, \ldots, k - 1$ are at the gate positions and the numbers $k, k + 1, \ldots, N - i - 1$ are in the remaining positions in increasing order. Switching $N - i$ in succession with $j + 1, j + 2, \ldots, k$ moves $N - i$ to position $i + 1$, and $j + 1$ to position $N - j$ resulting in the permutation

$$
N N - 1 \ldots N - i k + 1 \ldots k| \ldots k - 1| \ldots j + 2| \ldots N - 1 j + 1 j \ldots 1.
$$

Repeating this operation, we finally obtain the permutation \hat{e}.

We observe that all switches in the second phase are good; for a switch (i, j) across a gate, the numbers $1, \ldots, (i - 1)$ are already to the right of i. So i is at position $< N - i + 1$. The same argument holds for j.

In the first phase, suppose $l \leq r$. Then the number of bad switches are at most $l(r - l)$ for moving the numbers $1, \ldots, r - l$ to positions $y_r, y_{r-1}, \ldots, y_{l+1}$; $(l - 1) + (l - 2) + \cdots + 0 = l(l - 1)/2$ for moving the numbers $r - l + 1, \ldots, r$ to positions $y_l, y_{l-1}, \ldots, y_1$ and $l + (l - 1) + \cdots + 1 = l(l + 1)/2$ for moving the numbers $N, N - 1, \ldots, N - l + 1$ to positions y_{r+1}, \ldots, y_n adding up to a total of at most lr bad switches. The case $l > r$ is handled similarly. This proves the result.

\begin{example}
Let $N = 8$ and $y = \{1, 4, 6, 7\}$. By \cite{1}, $x = (1, 4, 2, 1)$. Since $y_1 < N/2$ and $y_2 \geq N/2$, $l = 1$ and $r = n - l = 3$. By Theorem \cite{1}

$$
8 = \sum x_i \leq s(y) \leq 8 + lr = 11
$$

To construct a circular sequence \mathcal{P} with $s(\mathcal{P}, y) = 11$, we start with the identity permutation and move the numbers $1, 2, 8$ to positions y_3, y_2, y_4 leading to 34526187. Next we move 8 to position 1 by switching it in succession with the numbers $1, 2, 3$ giving 84536217. Next 7 is moved to the second place. We summarize by showing some of the permutations in this sequence.

$$
\begin{align*}
12345678 & \rightarrow 34526187 & \rightarrow 34526187 \\
8452617 & \rightarrow 87546321 & \rightarrow 87546321
\end{align*}
$$

where the numbers above the arrows indicate the number of switches required to move to the next permutation, the ‘|’ show the positions where the switches are counted and the numbers being switched are underlined.
\end{example}
We see that the lower bound for \(s(y) \) is attained when all the gates are to the left (or right) of the middle. In this case, \(r = 0 \) (resp. \(l = 0 \)) and the two bounds for \(s(y) \) coincide. The upper bound is attained when \(y = [N - 1] \). In this case, \(s(y) = \binom{N}{2} \), i.e. we count switches at all positions.

3 Circular Sequences and Multipermutohedra

The multipermutohedron is a generalization of the permutohedron \(P_N \) which is the convex hull of all permutations of the point \((1, 2, \ldots, N) \in \mathbb{R}^N\). A multipermutohedron is defined by taking the convex hull of all permutations of a multiset, that is, a “set” with repeated elements.

Let \(b_1 < b_2 < \cdots < b_n \) be \(n \) distinct numbers \((n > 1) \) and consider the multiset with \(k_i \) copies of \(b_i \) for \(i = 1, \ldots, n \), i.e.

\[
M := \{b_1^{k_1}, b_2^{k_2}, \ldots, b_n^{k_n}\} = \{a_1, \ldots, a_N\} \quad k_i > 0, \ i = 1, \ldots, n \quad (3)
\]

with \(a_1 \leq a_2 \leq \cdots \leq a_N \) and \(N = \sum_{i=1}^{n} k_i \). Let \(P(M) \subset \mathbb{R}^N \) be the polytope formed by taking the convex hull of all permutations of the point \((a_1, \ldots, a_N) \in \mathbb{R}^N\). We call \(P(M) \) the multipermutohedron on the multiset \(M \).

Multipermutohedra were first studied by Schoute [7], who constructed them all from the simplex by a sequence of simple operations of expansion and contraction. Independent treatments of multipermutohedra also appear in [2, 8]. The proofs for the assertions that follow can be found in [2].

The inequality description of \(P(M) \) is a direct generalization of the description for the permutohedron.

\[
P(M) = \{ x \in \mathbb{R}^N \mid x([N]) = \sum_{i=1}^{N} a_i, \ x(S) \geq \sum_{i=1}^{\vert S \vert} a_i, \text{ for all } S \subset [N] \}.
\]

Thus if \(M = \{1, 2, 2, 3\} \), then \(P(M) \subset \mathbb{R}^4 \) is given by

\[
\begin{align*}
x_1 + x_2 + x_3 + x_4 & = 8 \\
1 \leq x_i & \leq 3 \quad i = 1, \ldots, 4 \\
x_i + x_j & \geq 3 \quad 1 \leq i < j \leq 4.
\end{align*}
\]

Figure [1] shows \(P(\{1,2,2,3\}) \). It has 14 facets corresponding to these 14 inequalities, which correspond, in turn, to the 14 ordered partitions of the set \(\{1, 2, 3, 4\} \) into two parts.

Faces of \(P(M) \) are products of lower dimensional multipermutohedra and correspond to ordered partitions of \([N]\). As in the permutohedron, the face lattice of the multipermutohedron does not depend on the numbers being permuted but only on their multiplicities. Henceforth we assume that, in \([3]\), \(b_i = i \)
and rewrite M as

$$M = \{1^{k_1}, \ldots, n^{k_n}\}. \quad (4)$$

Given $\sigma \in S_N$, the vertex a_σ has 1’s in positions $\sigma(1), \ldots, \sigma(k_1)$, 2’s in positions $\sigma(k_1 + 1), \ldots, \sigma(k_1 + k_2)$ and so on, i.e.

$$a_\sigma := (a_{\sigma^{-1}(1)}, \ldots, a_{\sigma^{-1}(N)}). \quad (5)$$

Note that this correspondence is not one-to-one; several permutations will correspond to the same vertex of $P(M)$.

Adjacency of vertices on $P(M)$ is obtained by switching two components whose values are consecutive. The relation to permutations is as follows. For $j = 1, \ldots, n$, define

$$y_j := k_1 + \cdots + k_j \quad (6)$$

and let $y_0 = 0$. We define blocks of consecutive integers S_1, \ldots, S_n by

$$S_j := [y_j] \setminus [y_{j-1}].$$

Given $\sigma, \pi \in S_N$, the vertices a_σ and a_π are adjacent if $a_\pi = a_{\sigma(i,j)}$ for some transposition (i, j) with i and j in successive blocks. In other words, π is obtained from σ by switching $\sigma(i)$ and $\sigma(j)$ for some i and j in successive blocks and possibly permuting the values of $\sigma(i,j)$ within each block.

Example 3 Let $M = \{1, 2, 2, 3\}$ as earlier. Let $e = 1 2 3 4$ be the identity permutation. This corresponds to the vertex $a_e = (1, 2, 2, 3)$ of $P(M)$. Multiplying e by transpositions (i, j) with i, j in successive blocks leads to the permutations $2 1 3 4, 3 2 1 4, 1 4 3 2$ and $1 2 4 3$. These in turn correspond to the vertices $(2, 1, 2, 3), (2, 2, 1, 3), (1, 3, 2, 2)$ and $(1, 2, 3, 2)$ that are adjacent to $(1, 2, 2, 3)$ as shown in Figure 1. \[\square\]
For $\sigma, \pi \in S_N$, we denote by $d(\sigma, \pi)$, the shortest distance between the vertices a_{σ} and a_{π} in $P(M)$. For convenience, we also denote the vertex a_{σ} in $P(M)$ by σ.

The diameter of $P(M)$ (denoted $\text{diam}(P(M))$) is the largest of the distances between pairs of vertices of $P(M)$.

Proposition 4 The vertex farthest from $\sigma \in P(M)$ is $\bar{\sigma} = \sigma(N) \sigma(N-1) \ldots \sigma(1)$. The diameter of $P(M)$ is $d(e, \bar{e})$.

Proof. We first show that the vertex farthest from e in $P(M)$ is \bar{e}. This will follow if we can show that for any permutation π with $a_{\pi} \neq a_e$, switching a pair of numbers $\pi(i) < \pi(j)$ with $i < j$ in successive blocks yields a permutation $\pi' = \pi(i,j)$ with $d(e, \pi') \geq d(e, \pi)$.

Suppose $d(e, \pi) > d(e, \pi')$. Let $i' = \pi(i)$ and $j' = \pi(j)$. Since π and π' are adjacent vertices in $P(M)$, $d(e, \pi) = d(e, \pi') + 1$. Consider the shortest path from e to π through π'. Let γ, α_1 be successive vertices on this path with $\alpha_1^{-1}(j') < \alpha_1^{-1}(i')$ in successive blocks while $\gamma^{-1}(j')$ and $\gamma^{-1}(i')$ are either in the same block or in successive blocks. Hence, in going from γ to α_1, we have moved j' to the left of i'. Let the vertices on the path from γ be $\beta_1, \ldots, \beta_{p-1} = \pi', \alpha_p = \pi$.

We construct a shorter path from γ to π, namely $\gamma, \beta_1, \ldots, \beta_{p-1} = \pi$ where for each m, $\beta_m = (i', j')\alpha_m$. We see that for each $m > 0$, β_{m+1} differs from β_m by a transposition across adjacent blocks showing that they are adjacent. Since β_1 switches i' and j' in α_1, we see that either $\beta_1 = \gamma$ or β_1 and γ are adjacent (this case subsumes the possibility of $\beta_1 = \alpha_1$). In any case we see that this path is shorter than our chosen path by at least 1. This contradicts our hypothesis that $d(e, \pi) > d(e, \pi')$ proving our claim.

Given a path from e to π in $P(M)$, multiplying the permutations in this path by σ yields a path from σe to $\sigma \pi$ of the same length. Hence the vertex farthest from σ is $\sigma \bar{e} = \bar{\sigma}$ and $d(\sigma, \bar{\sigma}) = d(e, \bar{e})$ proving the result. \hfill \square

We now relate the diameter of $P(M)$ to circular sequences. Let the multi-set M and $y = (y_1, \ldots, y_{n-1})$ be given by $[7]$ and $[6]$ respectively. From the criterion for adjacency of vertices on $P(M)$, we observe that each circular sequence P corresponds to a path in $P(M)$ from e to \bar{e} of length $s(P,y)$. From Proposition 4 it follows that

$$\text{diam}(P(M)) = \min\{s(P,y) | P \text{ is a circular sequence}\}.$$

Theorem 1 automatically translates to bounds on diameter of $P(M)$.

Corollary 5 Let M be defined by $[4]$ with $k_i > 0$ and let $y = (y_1, \ldots, y_{n-1})$ and $x = (x_1, \ldots, x_{n-1})$ be specified by $[8]$ and $[7]$. Then the diameter of $P(M)$ is bounded by

$$x([n-1]) \leq \text{diam}(P(M)) \leq x([n-1]) + lr$$
Example 6 Consider the multiset $M = \{1, 2^3, 3^2, 4, 5\}$. The vectors y and x given by (6) and (1) are $y = (1, 4, 6, 7)$ and $x = (1, 4, 2, 1)$. Since $y_1 < N/2$ and $y_2 \geq N/2$, $l = 1$ and $r = n - 1 - l = 3$. By Corollary 5

$$8 = \sum x_i \leq \text{diam} (P(M)) \leq 8 + lr = 11.$$

A circular sequence P with $s(P, y) = 11$ was constructed in Example 2 and this translates to a path of length 11 between e and \bar{e} in $P(M)$. □

It’s easy to see that the upper bound in Corollary 5 is attained for the permutohedron P_N which has a diameter of $\binom{N}{2}$. Also, for small n, it’s possible to derive an explicit expression for $\text{diam}(P(M))$.

Proposition 7 Let the multiset M be given by the composition (k_1, \ldots, k_n) of N. If $n = 2$ then $\text{diam} (P(M)) = \min\{k_1, k_3\}$. When $n = 3$,

$$\text{diam} (P(M)) = \begin{cases} x_1 + x_2 & \text{if } k_1 \neq k_3; \\ x_1 + x_2 + 1 = 2k_1 + 1 & \text{if } k_1 = k_3. \end{cases}$$

Proof. For $n = 2$, the lower and upper bounds for the diameter in Corollary 5 are the same and the result follows. If $n = 3$ and $k_1 \neq k_3$ then it is easy to show by a careful choice of switches that the lower bound for the diameter is attainable. If $k_1 = k_3$, then by Corollary 5 the diameter is either $2k_1$ or $2k_1 + 1$. The lower bound is not attained because, for any circular sequence, the switches at positions k_1 and $N - k_1$ cannot all involve a number less than k_1 and a number greater than $N - k_1$, i.e., there must be at least one bad switch. This proves the result. □

We observe that since the diameter of $P(M)$ is obtained by counting the number of switches at certain positions in a circular sequence in \mathcal{S}_N, its value is at most the total number of switches i.e. $\binom{N}{2}$. It would be interesting to determine, in some form, all the integers in the set $[\binom{N}{2}]$ that are the diameters of multipermutohedra $P(M) \subset \mathbb{R}^N$ for some M given by (4).

4 Multipermutohedra and k-sets

We now relate the diameter of the multipermutohedron to arrangements of points on a plane. Let $\mathcal{X} \subset \mathbb{R}^2$ be a configuration of N points in general position on a plane, i.e., no three points of \mathcal{X} lie on a line. For $k \leq \lfloor N/2 \rfloor$, we define a left (resp. right) k-set to be a set of k points of \mathcal{X} that lie on the left (resp. right) of a line (with respect to a directed reference line, say the X-axis).
For a line parallel to the X-axis, we take the left of the line to be the open half-space above the line. A k-set of \mathcal{X} is either a left k-set or a right k-set. Let $f_l(k, \mathcal{X}), f_r(k, \mathcal{X})$ and $f(k, \mathcal{X})$ denote the number of left k-sets, right k-sets and k-sets of \mathcal{X} respectively.

For subsets $L, R \subseteq [(N - 1)/2]$, we count the number of sets that appear as a left k-set for $k \in L$ or a right k-set for $k \in R$. We define

$$f(L, R, \mathcal{X}) := \sum_{k \in L \cap R} f(k, \mathcal{X}) + \sum_{k \in L \setminus R} f_l(k, \mathcal{X}) + \sum_{k \in R \setminus L} f_r(k, \mathcal{X}). \quad (7)$$

When $L = R \subseteq [(N - 1)/2]$, we are counting the number of k-sets for $k \in L$ and we write $f(K, \mathcal{X})$ for $f(K, K, \mathcal{X})$. Our objective is to derive bounds for $f(L, R, \mathcal{X})$ in terms of the diameters of certain multipermutohedra.

Since the minimum (resp. maximum) of $f(L, R, \mathcal{X})$ is not affected by a slight perturbation of the points of \mathcal{X}, we assume that no two points of \mathcal{X} lie on a line parallel to the X-axis. Then, for each $k \leq (N - 1)/2$, there are two k-sets that are both left k- and right k-sets. Hence

$$f_l(k, \mathcal{X}) + f_r(k, \mathcal{X}) = f(k, \mathcal{X}) + 2. \quad (8)$$

Following the approach of Goodman and Pollack [5], we associate with \mathcal{X} a circular sequence of permutations in the following way. Project the points of \mathcal{X} and we write f_l.

This gives a lower bound for $f(k, \mathcal{X})$. The projection of the points becomes perpendicular to a line joining a pair of points of \mathcal{X}.

If s are both left k-sets while the number of right k-sets.

Hence by (8), the number of left k-sets is

$$f_l(k, \mathcal{X}) = s_k + s_{N-k}. \quad (9)$$

The subsets L and R define a composition $\langle L, R \rangle = (k_1, \ldots, k_n)$ of N where $n = |L| + |R| + 1$ and the elements of L are the partial sums $k_1 + k_2 + \cdots + k_j$ that are at most $(N - 1)/2$ while the elements of R are the partial sums $k_n + k_{n-1} + \cdots + k_j$ that are at most $(N - 1)/2$. Let $P(\langle L, R \rangle)$ be the multipermutohedron defined by this composition. Then the sequence $P(\mathcal{X})$ describes a path in $P(\langle L, R \rangle)$ from e to \bar{e} of length

$$\sum_{k \in L} s_k + \sum_{k \in R} s_{N-k} \text{ which must be at least its diameter.}$$

This gives a lower bound for $f(L, R, \mathcal{X})$. 9
To bound $f(L, R, X)$ from above, we consider the subsets $\bar{L} := \left\lceil \frac{N}{2} \right\rceil \setminus L$ and $\bar{R} := \left\lceil \frac{(N - 1)}{2} \right\rceil \setminus R$. As before, these define a composition $\langle \bar{L}, \bar{R} \rangle$ of N and a multipermutohedron $P(\langle \bar{L}, \bar{R} \rangle)$. Since $\sum_{k=1}^{N-1} s_k = \binom{N}{2}$, we can rewrite (9) as

$$f(L, R, X) = \binom{N}{2} - \left(\sum_{k \in L} s_k + \sum_{k \in R} s_{N-k} \right) + |L \cup R| - |L \cap R|.$$

This gives the upper bound for $f(L, R, X)$ and ties the diameter of $P(M)$ to k-sets in the following way.

Theorem 8 Let X be a configuration of N points in \mathbb{R}^2 in general position and let $L, R \subseteq \left\lceil \frac{(N - 1)}{2} \right\rceil$. Then the function $f(L, R, X) - |L \cup R| + |L \cap R|$ is bounded from above and below by the diameter of multipermutohedra $P(\langle L, R \rangle)$ and $P(\langle \bar{L}, \bar{R} \rangle)$, that is,

$$\text{diam} \left(P(\langle L, R \rangle) \right) \leq f(L, R, X) - |L \cup R| + |L \cap R| \leq \binom{N}{2} - \text{diam} \left(P(\langle \bar{L}, \bar{R} \rangle) \right).$$

In particular,

$$\text{diam} \left(P(\langle K, K \rangle) \right) \leq f(K, X) \leq \binom{N}{2} - \text{diam} \left(P(\langle \bar{K}, \bar{K} \rangle) \right)$$

thus bounding the number of k-sets for $k \in K \subseteq \left\lceil \frac{(N - 1)}{2} \right\rceil$ by diameters of multipermutohedra.

The problem of k-sets and its relation to circular sequences has been extensively studied (see [1, 4, 5, 6]). In [6], k-sets are used to derive a lower bound on the number of convex quadrilaterals in a set of n points in the plane.

A lower bound for the number of k-sets of a point configuration in general position follows from Proposition 7 and the above theorem. As observed in [6, Example 8], this lower bound of $2k + 1$ can actually be achieved by a configuration of N points ($N \geq 2k + 1$) which consist of a regular $(2k + 1)$-gon with the remaining points situated close to the center of the gon. Finding the upper bound for the number of k-sets seems to be a harder problem. Some estimates for this bound are given in [1, 3].

Acknowledgment. The author would like to thank L. J. Billera for helpful discussions.

References

[1] N. Alon and E. Győri, The number of small semispaces of a finite set of points in the plane, *J. Combinatorial Theory Ser. A* **41** (1986), 154-157.
[2] L. J. Billera and A. Sarangarajan, The combinatorics of permutation polytopes, in L. Billera, C. Greene, R. Simion and R. Stanley, eds., Algebraic Combinatorics, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, 1994.

[3] T. Dey, Improved bounds on planar k-sets and related problems, *Discrete Comput. Geom.*, 19 (1998), 373-382.

[4] P. Erdős, L. Lovász, A. Simmons and E.G. Straus, Dissection graphs of planar point sets, in *A Survey of Combinatorial Theory*, (J.N. Srivastava et al., Eds.) 139-149, North Holland, Amsterdam 1973.

[5] J. E. Goodman and R. Pollack, On the combinatorial classification of non-degenerate configurations in the plane, *J. Combinatorial Theory Ser. A* 29 (1980), 220-235.

[6] L. Lovász, K. Vesztergombi, U. Wagner, E. Welzl, Convex Quadrilaterals and k-sets, in: J. Pach (Ed.), Towards a Theory of Geometric Graphs, *AMS Contemporary Mathematics* 342 (2004) 139-148.

[7] P. H. Schoute, Analytic treatment of the polytopes regularly derived from the regular polytopes, *Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam* 11, No. 3, Johannes Müller, Amsterdam 1911.

[8] A. S. Schulz, *Polyedrische Charakterisierung von Scheduling Problemen*, Diploma Thesis, Technische Universität Berlin, Berlin, Germany, 1993.