Expression of Some Molybdoenzyme Genes under Salt Stress Conditions in Chickpea, Bean and Lentil Plants

Bouzid Salha¹*, Rahmoune Chaabane¹, Bittner Florian²

¹Department of plant biology and ecology, Faculty of life and nature sciences, University of Mentouri Brothers. Constantine 1, Algeria.
²Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany

Abstract— The objective of this work is to isolate mARC, XDH1, AAO3, NIA1, SO and ABA3/LOS5 genes in three legume species submitted to salt stress with molybdenum and nitrogen, the growth conditions (T1: control, T2: both molybdenum and nitrogen added, T3: sodium chloride were added, T4: molybdenum, nitrogen and sodium chloride were added), we found these gene sequences in Phaseolus vulgaris and Cicer arietinum in NCBI but not for Lens culinaris, so we tried to isolate them using bean and chickpea primers by reverse transcriptase PCR. In chickpea, aldehyde oxidase and xanthine dehydrogenase genes expression is enhanced by molybdenum and nitrogen. Nitrate reductase gene expression is affected by salinity. Sulfite oxidase and xanthine dehydrogenase are activated under salt stress in bean, which suggests that SO and XDH protein have a role in bean adaptation to salt stress. mARC gene expression is stimulated by presence of molybdenum and nitrogen, mARC2 bean protein and mARC chickpea protein may have a role in salt stress adaptation mechanism.

Keywords—molybdoenzymes, legumes, salt stress, reverse transcriptase PCR.

Abbreviation—M: marker, mARC: mitochondrial amidoxime reducing component, XDH1:xanthine dehydrogenase gene, AO: aldehyde oxidase gene, NIA1: nitrate reductase gene, SO: Sulfite oxidase gene, ABA3/LOS5: Molybdenum cofactor sulfurasegene.

I. INTRODUCTION

Mineral nutrient deficiencies and salinity constitute major limitations for crop plant growth on agricultural soils around the world (Maathuis et al., 2003; Tester and Davenport, 2003)

In the Maghreb more than 30 % of irrigation waters are loaded in salt, and lead over time to an accumulation of toxins both in rhizosphere and in different parts of plant. These toxins generate damage to cellular ultrastructures by contributing to a reduction of growth and yields of sensitive varieties (Rahmounet et al., 2008).

In Algeria, 4/5 of lands is desert and the 1/5 left is an arid and semi-arid region (Abdelaguerfi and Ramdane, 2003) and 3.2 million hectares of soil are affected by the process of salinization. (Benmahioul et al., 2009).

Salt tolerance is a multigenic trait, which involves a complex of responses at metabolic, cellular, molecular, physiological and whole-plant levels, (Das et al., 2015)

We concentrate our work on food legumes because of their nutritional value is gaining considerable interest in developed countries because of the demand for healthy foods. Grains are rich in proteins, carbohydrates, and dietary fibers and are a rich source of other nutritional components (Tharanathan and Mahadevamma, 2003 and Gupta et al., 2006). Their consumption and production extends worldwide. Common seeds, such as bean (Phaseolus vulgaris), lentil (Lens culinaris), pea (Pisum sativum), chickpea (Cicer arietinum), and faba bean (Vicia faba,) are the most widely consumed legumes throughout the Mediterranean area and are the most cultivated legumes in Algeria. (Bouchnak and Benlamri, 2013).

In eukaryotes, the mostprominent Mo-enzymes are sulfite oxidase, whichcatalyzes the final step in the degradation of sulfur-containingaminoacids and isinvolvedin detoxifyingexcess sulfite, xanthine dehydrogenase, whichisinvolved in purine catabolism and reactiveoxygen production, aldehydeoxidase, whichoxidizes a variety of aldehydes and is essential for the biosynthesis of the phytohormone abscisicacid, and in autotrophicanimals also nitrate reductase, whichcatalyzes the keystep in inorganicnitrogensimilation.(Mendel and Bittner 2006).The mitochondrial amidoxime reducing component (mARC) has beidentified in mitochondria of mammals and catalyzes the reduction of N-hydroxylated substances (Havemeyer et al.,2011).

In this work we focus on changes that occur on XDH, AO, NR, SO, ABA3 and mARC genes expression in bean, chickpea and lentil under salt stress and presence of both molybdenum and nitrogen, using a reverse
transcriptase PCR and actin as housekeeping gene to try to observe any difference between the species and the treatments.

II. EXPERIMENTS

2.1. Growth conditions: seeds of *Phaseolus vulgaris* L., *Cicer arietinum* L. and *Lens culinaris* M. were grown in pots with compost, the 2 weeks seedlings are submitted to 4 different treatments during 3 weeks of: 6g/l of sodium chloride, 0.2ppm of molybdenum as ammonium molybdate and 0.2g/l of nitrogen as nitrate potassium that were added to the irrigation water. The treatments correspond to: T1: control, T2: both molybdenum (Mo) and nitrogen (N) were added to the water irrigation, T3: only sodium chloride (NaCl) were added to the water irrigation, T4: both molybdenum, nitrogen and sodium chloride were added to the water irrigation, the photoperiod night/day is 14 h/10h, the mean temperature in 23°C.

2.2. RNA isolation: we used a nucleospin RNA plant kit of Macherey-Nagel; 100mg of shoot plant material of *Phaseolus vulgaris*, *Cicer arietinum* and *Lens culinaris* were used.

2.3. Reverse transcriptase reaction: using PromegaAMV Reverse Transcriptase kit; take the volume that correspond to 60ng/µl from each species and treatment, denaturation at 70°C for 5min then we add 10ul of: 4ul de 5x AMV buffer, dNTP (10mM), RNases inhibitors (4U/ml; Promega), poly anchor primer (100pmol/ml), AMV reverse transcriptase (10U/ml).

2.4. Reverse transcriptase PCR: using GoTaq® PCR Core Systems kit from promega; In a sterile 100µl tubes put: 14ul sterile H2O, 5ul kit 5x reaction buffer, dNTP (10mM), 0,25ul forward primer (100µM), 0,25ul reverse primer(100µM), 3ul RT-reactions from: DNAcof *Phaseolus vulgaris*, *Cicer arietinum* and *Lens culinaris* under 4 different treatments: T1, T2, T3 and T4 and 0.5ul taq polymerase (2,5U).

We used Actin as housekeeping gene, 60°C as annealing temperature and 33cycles.

We looked for mARC, actin, XDH1, AAO3, NIA1, SO and ABA3/ LOS5 genes sequences on NCBI (NCBI, http://www.ncbi.nlm.nih.gov), using the sequence of their polypeptides in *Arabidopsis thaliana*

We could find these sequences on NCBI only for *Phaseolus vulgaris*, *Cicer arietinum*, but not for *Lens culinaris*, so we could design the primers for each gene for bean and chickpea (table 1 and 2) and used them also for lentil. The PCR program is: 5min: 95°C, [1min: 94°C, 1min: 60°C annealing temperature, 1min: 72°C] 33cycles, 7min: 72°C and hold at 4°C. The PCRproduct were separated on a 1,5% agarose gel using a DNA size marker, the bands of interest (that correspond to 500pb as the size of the genes used) from *Lens culinaris* were excised, purified and cloned in *E.coli* DHu5 and sequenced . The gel photos were produced by intasscience imaging GDS.

2.5. Purification: using PCR clean up Gel extraction kit, we extract and purify our interesting DNA from the agarose gel. Ligation: using Thermo Scientific CloneJET PCR Cloning Kit; Reaction buffer : 10µl, DNA insert : 8,5µl, the PIETJ1.2 plasmid: 0,5µl, DNA ligase : 1µl, meanwhile check the DNA insert on 1,5% agarose gel. Incubation at 22°C for 30min.

Transformation: we used aliquots of 100µl of competent *E.coli* DH5α bacteria, Plasmid isolation and DNA insert purification from *E. coli*; isolation of High copy plasmid DNA from *E. coli* (kit nucleospin plasmid DNA purification), and check the insert DNA on 1,5% agarose gel

2.6. Digestion using Thermo Scientific FastDigestBglII kit; H2O dd : 3,5ul, FD digestion buffer: 1ul, BGLII enzyme: 0,5ul, eluted DNA: 5ul, incubation at 37°C for 30min and check the eluted DNA on 1,5% agarose gel, and send the DNA of interest to be sequenced using Eurofins Genomics DNA sequencing service.

2.7. Statistical analysis:
The data obtained were assessed by one way anova, tables (3) and (4) were obtained using xlstat at the confidence level of 95%, and using imageJ to estimate band intensity.

Protein	Gene	Nucleotides accession number	Primers
Actin	Actin	KF569629	Forward:5’-AGGTTATTCCTTCACTACCCACCGC-3’ Reverse:5’-AGCCTCATCATCTCAGACTTTGC-3’
mARC	mARC1	XM_007138795	Forward:5’-CATTGTTGGAACACTATCAACCTACCAAC-3’ Reverse:5’-CCTTGTTTCTATAAGACTGACTTTGCC-3’
mARC	mARC2	XM_007138794	Forward:5’-CTTGGAAAATCTGGGAACCACTCAAGAC-3’ Reverse:5’-CATGAGAATTTTCATTGTCTTGCC-3’
Protein	Gene	Accessions number	Primer
---------	----------	-------------------	--
Actin	Actin	XM_004497837	Forward:5’-AACCTGGTTATTGTTCTGGATTCCGG-3’ Reverse:5’-TTCATGCTACTTGGTGCCAATGC-3’
mARC	mARC	XM_004487841	Forward:5’-GTAGACCCCCTGATTATGTTGAGGAACAG-3’ Reverse:5’-TCAAGCAGCTGCTTCTGCTGCAGAAG-3’
AO	AAO3	XM_004491092	Forward:5’-TAC ATA CCT AGC AAC ATC CGG-3’ Reverse:5’-CAG GTC CTT CGG ATG TTC-3’
XDH	XDH1	XM_004486904	Forward:5’-TTGGATTGA GAG ATG TAC ATG-3’ Reverse:5’-AAC ACT CTT CCT TGC TGC G-3’
NR	NIA1	XM_004513774	Forward:5’-CTTTGCTAACCTGAGTAACTGAGTAC-3’ Reverse:5’-CAC GCA TGT TGG TGC TGC-3’
SO	SO	XM_004489554	Forward:5’-GGT CTG TTA AAT GGG AGG TGG-3’ Reverse:5’-CTT GAA CTT GGA CTC GAT GCC-3’
ABA3	ABA3	XM_004491092	Forward:5’-AGC ATG TAC AGC AAC GAG ACC ATC GC-3’ Reverse:5’-AGC CAA TCA CCT TGC TGC TGC-3’

Table 2: Primers sequences used for Cicer arietinum and Lens culinaris
III. RESULTS

Fig. 1: Gene expression on agarose gel electrophoresis of reverse transcriptase (RT) PCR of actin (a), NIA1 (b), XDH1 (c), SO (d), AAO3 (e), ABA3/LOS5 (f), mARC1 (g) and mARC2 (h) in bean plants (Phaseolus vulgaris) under different treatments (M: marker, T1: control, T2: both Mo and N added, T3: only NaCl added, T4: Mo, N and NaCl added)

Table 3: Intensity of gene expression of NIA1, XDH1, SO, AAO3, ABA3/LOS5, mARC1 and mARC2 in Phaseolus vulgaris plants under different treatments using image

	NIA1	XDH1	SO	ABA3/LOS5	mARC1	mARC2
T1	0.97 b ± 0.010	0.39 d ± 0.013	0.67 d ± 0.066	1.13 a ± 0.008	1.031a ± 0.008	0.678 c ± 0.023
T2	1.09 a ± 0.013	0.88 c ± 0.016	0.72 c ± 0.012	0.93b ± 0.008	0.739 b ± 0.006	0.820 b ± 0.012
T3	0.93 c ± 0.026	0.96 b ± 0.045	1.04 b ± 0.035	0.87 c ± 0.008	0.569 c ± 0.010	0.651 d ± 0.005
T4	0.80 d ± 0.018	1.06 a ± 0.033	1.09 a ± 0.015	0.86 c ± 0.008	0.350 d ± 0.013	1.021a ± 0.018
Fig. 2: Gene expression on agarose gel electrophoresis of reverse transcriptase (RT) PCR of actin (a), NIA1 (b), XDH1 (c), SO (d), AAO3 (e), ABA3/LOS5 (f) and mARC (g) in chickpea plants (Cicer arietinum) under different treatments (M: marker, T1: control, T2: both Mo and N added, T3: only NaCl added, T4: Mo, N and NaCl added).

Table 4: Intensity of gene expression of NIA1, XDH1, SO, AAO3, ABA3/LOS5 and mARC in Cicer arietinum plants under different treatments using ImageJ

	NIA1	XDH1	SO	AAO3	mARC
T1	0.95b ± 0.006	0.85 b± 0.028	**1,028a**± 0.022	0.351 d ± 0.023	0.561 c ± 0.018
T2	**0.98a**± 0.016	**0.93a**± 0.022	0.865 b ± 0.018	**0.900a**± 0.054	0.471 d ± 0.025
T3	0.918c ± 0.033	0.778 c± 0.034	0.858b ± 0.018	0.661 b ± 0.014	0.759 b ± 0.015
T4	0.838d ± 0.024	0.762 c± 0.009	0.898 b± 0.037	0.462c ± 0.052	**1,088 a** ± 0.023

We looked for all this studied genes sequences for *Lens culinaris* in ncbi and we didn’t find any, so we tried to isolate them using the same primers we used for bean and chickpea.

Figure 3 and 4 show an expression of SO, XDH1 and mARC. These cDNA were purified and cloned in DH5α, and sequenced.
IV. DISCUSSION

Molybdoenzymes in plants are key enzymes in nitrate assimilation, purinemetabolism, hormonebiosynthesis, and mostprobably in sulphitedetoxification. They are considered to be involved instress acclimation processes and, therefore, elucidation of the mechanisms of their response to environmental stress conditions is of agricultural importance for the improvement of plant stress tolerance. (Zdunek-Zastocka and Lips, 2003)

Two different molybdenum enzyme families are known in eukaryotes (Hille et al., 2011): (i) the sulfite oxidase family, to which alsonitrate reductase and the...
mitochondrial amidoxime-reducing component belong,and the (ii) xanthine oxidase family, to which also aldehyde oxidase belongs. In bacteria, a third class of molybdenum enzymes is known in which two MPT equivalents coordinate one molybdenum atom (Magalon et al., 1996). It is assumed that the rare eukaryotic molybdenum enzymes pyridoxal oxidase (Warner and Finnerty, 1981) and nicotinamide dehydrogenase (Lewis et al., 1978) represent specific isofunctional isoforms of aldehyde oxidase. In contrast to the sulfite oxidase family, the members of the xanthine oxidase family require a final step of maturation prior to or after insertion of molybdenum cofactor (Moco). In addition to the dithiolene sulfur of the pterin moiety and two oxo groups, the molybdenum atom of Moco needs the addition of a terminal inorganic sulfur to provide enzyme activity to these enzymes (Wahl et al., 1984). This final step is catalyzed by the molybdenum cofactor sulfurase protein (ABA3).

Osmotic stress resulting from either high salinity or water deficit induces the expression of numerous stress-responsive genes in plants (Xiong et al., 2002). Figure 1, 2 and 3 show the expression of molybdenum enzyme genes under salt stress and in presence of molybdenum and nitrogen in irrigation water, this expression differs between treatments and species.

Aldehyde oxidase (AO) has derived from XDH by gene duplication and neo-functionalization and therefore shares catalytic and structural similarities with XDH. In contrast to XDH, however, AO proteins preferentially oxidize aldehydes to the respective carboxylic acid. Moreover, molecular (Bittner, 2014).

Aldehyde oxidase (AO; EC 1.2.3.1) and xanthine dehydrogenase (XDH; EC 1.2.1.37) are known to take part in processes connected with the adaptation of living organisms to stress conditions. So, for example, AO catalyzes the last stages in biosynthesis of two phytohormones; oxidation of abscisic aldehyde to abscisic acid and oxidation of indole-3-acetaldehyde up to indole-3-acetic acid (Walker-Simmons et al., 1989, and Koshiba et al., 1996). XDH takes part in a purine metabolism and also in the biosynthesis of ureides in higher plants; ureides like urea, as "scavengers", could remove oxygen radicals, which are formed under stress conditions (Sagi et al., 1998).

Aldehyde oxidase gene (AAO3) doesn’t show any expression in bean plants but in chickpea we can observe an intense expression when molybdenum and nitrogen are added to plant irrigation water, (Tab. 4). The most important isofromis AAO3, which catalyzes the oxidation of abscisicaldehyde to abscisic acid (ABA) in the last cytosolic step of ABA synthesis. Due to the function of ABA in many aspects of plant growth and development, and in adaptation to a variety of abiotic stresses, AAO3-deficient plants with reduced ABA levels are characterized by a high transpiration rate, reduced stress tolerance, and impaired seed dormancy (Seo and Koshiba, 2011 in Bittner (2014)).

Xanthine dehydrogenase (XDH) is well expressed in bean plants under salt stress and with Mo and N added, (Table 3) and has the lowest expression in control plants, but in chickpea the highest expression of this gene is observed in plants receiving Mo and N in their water irrigation without any stress condition (Table 4). XDH activity was enhanced by salinity and ammonium in maize nodal roots (Barabas et al. 2000 in Zdunek-Zastoka and Lips, 2003). Increase of XDH undersimilar conditions was previously reported in ryegrass, where it correlated with a higher content of urea in plant tissues (Sagi et al., 1998).

Statistics in table 3 show adding Mo and N in irrigation water for bean plants leads to strong expression of nitrate reductase gene (NIA1) that decrease when plants are exposed to salt stress, nitrate reductase is an enzyme affected by salinity, the same is observed for chickpea plants (Table 4).

Sulfite oxidase gene (SO) is highly expressed under salt stress with Mo and N in bean plants, this expression decrease with reduction of salinity as the lowest value in table 3 is noted for control plants. In chickpea plants we observe the important expression of SO gene for control plants, and for the other treatments there is no difference between the band intensity values (Table 4).

Sulfite oxidase catalyzes the oxidation from sulfate to sulfite, the final step in the degradation of sulfur-containing amino acids. (Mendel and Bittner, 2006), SO is a peroxisomal enzyme (Nowak et al. 2004), which exclusively consists of a Moco-binding domain required for oxidizing sulfite to sulfate (Bittner, 2014).

As sulfite is a strong nucleophile that can react with a wide variety of cellular components, it was assumed that SO is required for removing excess sulfite from the cell. (Bittner and Mendel, 2010)

The Molybdenum cofactor sulfurase (ABA3) is a homodimeric two-domain protein (Bittner et al., 2001), that activate AO and XDH enzymes (Bittner, 2014).

In bean, ABA3/LOS5 gene expression is affected by salinity, as we note on Table 3, control plants have the most important value of band intensity, this expression in affected by salinity, but not enhanced by Mo or N added. In chickpea we couldn’t observe any expression of the gene.

Moco sulfurase catalyzes the generation of the sulfurylated form of Moco, a cofactor required by aldehyde oxidase that functions in the last step of ABA.
biosynthesis in plants. The LOS5/ABA3 gene is expressed ubiquitously in different plant parts, and the expression level increases in response to drought, salt, or ABA treatment. (Xiong et al., 2001)

Like mammals, plant genomes encode two mARC isoforms, which have not yet been investigated in detail. The physiological role of mARC proteins is therefore still enigmatic, even though previous studies in Chlamydomonas and on recombinant human proteins suggest a function in the detoxification of N-hydroxylated base analogs (Chamizo-Ampudia et al., 2011; Krompholz et al., 2012 in Bittner, 2014). The difference between the two mARC isoforms gene expression in bean plants with the expression of the housekeeping gene actin, obviously the two isoform express differently, we used ImageJ to better appreciate the intensity (table 3)

Research on NCBI leads us to two mARC isoforms; mARC1 and mARC2 in bean species, early work on mARC indicates that depending on species, usually one isoform is predominantly expressed (Plitzko et al., 2013), as we can see (figure 2) the two isoform express differently, the highest value of mARC1 intensity is 1,031 represented by the control, that means that adding molybdenum or nitrogen doesn’t enhance mARC1 gene expression, and salt stress may lead to a decrease in its protein expression, the contrary happens in mARC2; so we can observe that the most important value is 1,021 (table3) registered for bean plant that are submitted to a salt stress adding molybdenum and nitrogen, comparing to the lowest value which represent control plants.

For chickpea, research on NCBI lead us to one form, mARC, which was isolated using same methods, mARC gene expression is almost the same than mARC2 in bean which shows a higher band intensity in T4 (figure 3) with the most important value of 1,088 (table. 4), it seems that mARC protein in chickpea and mARC2 protein in bean may have a role in salt stress adaptation mechanism.

As we can see on figure 3 and 4 in lentil we could isolate just SO, XDH1 and mARC genes and we succeed in sequencing only 2 genes; XDH1 and mARC

Sequencing results:

mARC gene	ACTGGATGCACCTAACAAAGCTTCTAGACGAATCC
	ATATCATTGAAATCTCTGAGCCCCAATACCTTGG
	TTGAAGGTTGTGAACGATTCATTTCCAAGATCTTG
	GAGGATATCAGATGAGAGACGTTTTTCAATTTCAG
	GGTGTCAAGCTGTGACGGCCCTTGTTGAGTGCAC
	CAATCTCATTTGCGAGACTATTTGCTGGAAC
	TGGAAGGTCTCTTCTGTAAGGGAGATGAGAAC
	GTGCCTAAACTTGGAATCCTGTGTTATTTGATC
	AAACATATTCTTCTAGCAGAAAGAGACGTCAGT
	AAATCTTTTCTAGAAAGATCTTCTCAATATTCTCAG
	CTGCAATGAAAAATCTGATTTTCTTTTTTATTCTC
	TCAAGATTGTTCCAGGTATATTAACACATATAT
	TAAGAAACTATTGCTAACCTCATTCAAGGACG
	TGTAAGTGCCGTGGTTTTTCTTTGGCAATCAGCT
	TCTAGAAACTACGAGCTAAATATGATATTACAT
	CCTCTGTGACCACATTTATTCGACTTTTGGAA
	CGAGGGTTTAGAGCAGCAGTTCAAGGAAACTGAG
	AGGAATTTTATAAAAATTTTTTTGGAAGAAA
	GTTCAGGGTTTATAACGATCCATTTCGTTGCA
	AGTTCTACGAGCTTAAACAAAAAGACGTCG

This sequence were submitted to:

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&PROG_DEF=blastn&BLAST_PROG_DEF=megablast&BLAST_SPEC=blast2seqand were compared to the 489 pb sequence of chickpea XM_004487841 (Cicer arietinum mitochondrial amidoxime reducing component 2-like LOC101506896, mRNA):

Score	Expect	Identities	Gaps	Strand
599 bits(324)	1e-175	434/488(89%)	3/488(0%)	Plus/Plus

And the result of the alignment is:
Query 25
TAGACCCTGATTATGGAGGAGACTGAGATGAC
CTTGTTCAGTGTTGCTTTACTTCTCTTCT 84

Sbjct 2
TAGACCCTGATTATGGAGGAGACTGAGATGAC
CTTGTTCAGTGTTGCTTTACTTCTCTTCT 61

Query 85
TACTTGTATCTCAGATGACTGAGATGAC
CTTGTTCAGTGTTGCTTTACTTCTCTTCT 144

Sbjct 62
TACTTGTATCTCAGATGACTGAGATGAC
CTTGTTCAGTGTTGCTTTACTTCTCTTCT 122

Query 205
GGAGAGATATCAAGATAAGCAGGTTTTCATTTCA
GGGTGTCAAGCTGTGTGCCCGTTGTA 264

Sbjct 182
GGAGAGATATCAAGATAAGCAGGTTTTCATTTCA
GGGTGTCAAGCTGTGTGCCCGTTGTA 241

Query 322
TCACGAAAGTTGCTGCTGGGAAGTCTTCTTACGACC
AAATaaaaaaaaaaaaaaaaaaGATCT 381

Sbjct 302
TCATGAAATATTGCTGCCAAATGCTAAGACC
AAATGATAAAAAACAAAAACAGTTCTT 361

Query 422
TGCTTAAACTGGGAGATCTGTGTGTGCTGAC
AACATATTCTTCTGCAAGGAGACCGAC 501

Sbjct 422
TGCTTAAACTGGGAGATCTGTGTGTGCTGAC
AACATATTCTTCTGCAAGGAGACCGAC 481

Query 502 CTGCTTGA 509

Sbjct 482 CTGCTTGA 489

XDH1 gene

GTGGCCTCGAGTTTTTTCAGCAAGAATGGCATTGCTGAC
AGCGAATAGACCTTTCTGCCCATGGA

This sequence were submitted to:

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=MegaBlast&PROGRAM=blastn&BLAST_PROGRAMS=megablast&PAGE_TYPE=BlastSearch&BLAST_SPEC=blast2seq&DATABASE=n/a&QUERY=&SUBJECTS=
and compared to this 514pb sequence of chickpea XDH1 (Cicer arietinum xanthine dehydrogenase 1-like (LOC101495267), mRNA):

Score	Expect	Identities	Gaps	Strand
784 bits(424)	0.0	484/514(94%)	0/514(0%)	Plus/Plus

Alignment statistics for match #1

Query 25

Sbjct 1
TGCTATGCAGAGCGAATAGACCTTTTCTGCCCATG
GATTTTATTACACCTGATATTTGGT

Query 85

Sbjct 61
TTTGATGGATCACGGGTAAAGGAAACCCTTTTA
GGTATTTCACTACGGGGCTGCATT 144

Query 145

Sbjct 121
GCTGGAGGTTGAAATGTGACACCTTGAGATT
TTTACACTAGGGTGCAATATTTAT

Query 205

Sbjct 181
TTGGATCTCCGTTATTTCTCTCGAACCAGAATAG
ATGTTCGGGCGATCGAAGGAGCTTTT

Query 265

Sbjct 481
ATTCAGGTTGGGCTGGGTGTCTTACAGAAGAAG
TTAATGGGGAGATGCGCTCATAAA 324

And compared to this 514pb sequence of chickpea XDH1 (Cicer arietinum xanthine dehydrogenase 1-like (LOC101495267), mRNA):

Score	Expect	Identities	Gaps	Strand
784 bits(424)	0.0	484/514(94%)	0/514(0%)	Plus/Plus

Alignment statistics for match #1

Query 25

Sbjct 241
ATTCAAGGGTTGGGCTGTTTAGAGAAGAC
TTAATGGGGAGATGAGCACATAAAA 300

Query 325

Sbjct 301
TGGATCCCCCTCTGGGTTGCTTTAAACCTTGGGAC
CCGGAGCTTAAATATTCCTTCTATA 384

Query 385

Sbjct 361
AATGATGTTCCCTGGAATTTGATGTCTCACTTCT
GAAGGGCCATCAAAATGTAAAGGCA 444

Query 445

Sbjct 421
ATCCATTGCTCAAAGACGTTGGGCAAGGCCCTCCTG
TTTTCCTAGCATCAATCTGTATTCTTTT

Query 505

Sbjct 481
GCCATAAAGGATGCCATCAGTGCTGCAAGAAGTT
GCCATAAAGGATGCCATCAGTGCTGCAAGAAGTT 514

V. CONCLUSION
As concluding remarks, we can say that in chickpea, aldehyde oxidase and xanthine dehydrogenase gene expression is enhanced by molybdenum and nitrogen. Nitrate reductase gene expression is affected by salinity but increased by molybdenum and nitrogen in both bean and chickpea. Sulfite oxidase and xanthine dehydrogenase are activated under salt stress in bean, which suggest that SO and XDH protein have a role in bean adaptation to salt stress.

This work need to be investigated deeply, however mARC gene expression is stimulated by presence of molybdenum and nitrogen, mARC2 bean protein and mARC chickpea protein may have a role in salt stress adaptation mechanism and are stress responsive genes.

ACKNOWLEDGMENT

I would like to thank Pr. Mendel from Braunschweig University who received me in plant institute of the university, Pr.Dr Bittner for his help and advices to accomplish this work and to thank the persons in charge in SNV faculty of Constantine Mentouri Brothers University to help me to have the grant to realize this part of work.

REFERENCES

[1] Abdelaguerfi A, Ramdane S.A. (2003) Evaluation Des Besoins En Matière De Renforcement Des Capacités Nécessaires A La Conservation Et L’utilisation Durable De La Biodiversité Importante Pour L’agriculture. Bilans des Expertises sur «La Biodiversité Importante pour l’Agriculture en Algérie » MATE-GEF/PNUD : Projet ALG/97/G31. P11. Algérie

[2] Benmahouri B., Daguin F., Kaid-Harche M. (2009) Effet du stress salin sur la germination et la croissance in vitro du pistachier (Pistacia vera L.). Compte rendus en Biologies, 332,164-170.

[3] Bittner F. (2014). Molybdenum metabolism in plants and crosstalk to iron. Front Plant Sci. 5:28. doi: 10.3389/fpls.2014.00028.

[4] Bittner F., and Mendel, R. R. (2010). “Cell Biology of Molybdenum,” in Cell Biology of Metals and Nutrients, eds. R. Hell and R. R. Mendel (Springer-Verlag Berlin Heidelberg 2010), Plant Cell Monogr. 17, 119–143. doi: 10.1007/978-3-642-10613-2_6

[5] Bittner, F., Oreb, M., and Mendel, R. R. (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J. Biol. Chem. 276,40381–40384

[6] Bouchenak M and Lamri-Senhadji M. (2013) Nutritional Quality of Legumes, and Their Role in Cardiometabolic Risk Prevention: A Review. Journal of Medicinal Food , 16, 1–14

[7] Das P.,Nutan K. K.,Singla-Pareek S.L and Pareek A. (2015) Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice, Frontiers in Plant Science, 6, 712.

[8] Gupta DK, Tripathi RD, Rai UN, Dwivedi S, Mishra S, Inouhe M. (2006) Changes in amino acid profile and metal content in seeds of Cicer arietinum L. (chickpea) grown under various fly-ash amendments. Chemosphere, 65, 939–945.

[9] Havemeyer, A.,Lang,J.,andClement,B.(2011) The fourth mammalian molybdenum enzyme mARC: current state of research. Drug Metabolism Reviews. 43, 524–539

[10] Hille, R., Nishino, T., and Bittner, F. (2011) Molybdenum enzymes in higher organisms. Coord. Chem. Rev. 255, 1179–1205

[11] K. Nowak, N. Luniak, C. Witt, Y. Wustefeld, A. Wachter, R.R. Mendel, R. Hansch, Peroxisosomal localization of sulfite oxidase separates it from chloroplast-based sulfur assimilation, Plant CellPhysiol. 45 (2004)1889–1894.

[12] Koshiba, T., Saito, E., Ono, N., Yamamoto, N. and Sato, M. (1996) Purification and properties of flavin- and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiology, 110, 781-789.

[13] Lewis, N. J., Hurt, P., Sealy-Lewis, H. M., and Scanzocchio, C. (1978) The genetic control of the molybdoflavoproteins in Aspergillus nidulans. IV. A comparison between purine hydroxylase I and II. Eur. J. Biochem. 91,311–316

[14] Maathuis FJM, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen S, et al. (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. The Plant Journal 35, 1159–1178.

[15] Magalon, A., Fedor, J. G., Walburger, A., and Weiner, J. H. (2011) Molybdenum enzymes in bacteria and their maturation. Coord. Chem. Rev. 255,1159–1178

[16] Mendel R R, Bittner F. (2006) Cellbiology of molybdenum. BiochimBiophys Acta.;1763(7):621-35.

[17] Pfützko B, Ott G, Reichmann D, Henderson C, J, Wolf C, R,Mendel R, Bittner F, Clement B, and Havemeyer A. (2013) The Involvement of Mitochondrial Amidoxime Reducing Components 1 and 2 and Mitochondrial Cytochrome b5 in N-
Reductive Metabolism in Human Cells. *Journal of Biological Chemistry*. 288(28): 20228–20237.

[18] Rahmoune C, Ben Naceur M, Cheikh-M'Hamed H, Maalam S. 2008. Les indicateurs précoces de tolérance à la salinité chez les blés durs. Biotech2008. X1es Journées Scientifiques du réseau "Biotechnologies végétales / Amélioration des plantes et sécurité alimentaire" de l'Agence universitaire de la Francophonie. Rennes, France. p.151

[19] Sagi M., Omarov R.T., Lips S.H. 1998. The Mo-hydroxylases xanthine dehydrogenase and aldehydeoxidasein ryegrass as affected by nitrogen and salinity. *PlantSci.*, 135: 125-135.

[20] Sagi M., Savidov N.A., L'vov N.P., Lips S.H. 1997. Nitrate reductase and molybdenum cofactor in annualryegrass as affected by salinity and nitrogen source. *Physiol. Plant.*, 99: 546-553.

[21] Tester M and Davenport R. (2003) Na⁺ tolerance and Na⁺ transport in higher plants. *Annals of Botany* 91:503–527.

[22] Tharanathan R.N, Mahadevamma S. (2003) Legumes—a boon to human nutrition. *Trends in Food Science and Technology*, 14, 507–518.

[23] Wahl, R. C., Hageman, R. V., and Rajagopalan, K. V. (1984) The relationship of Mo, molybdopterin, and the cyanolyzablesulfur in the Mo cofactor. *Arch. Biochem. Biophys.* 230, 264–273

[24] Walker-Simmons, M., Kudra, D.A. and Warner, R.L. (1989) Reduced accumulation of ABA during water stress in a molybdenum cofactor mutant of barley. *Plant Physiology*, 90, 728-733. doi:10.1104/pp.90.2.728

[25] Warner, C. K., and Finnerty, V. (1981) Molybdenum hydroxylases in *Drosophila*. Molybdenum cofactor in xanthine dehydrogenase, aldehydeoxidase and pyridoxal oxidase. *Mol. Gen. Genet.* 184, 92–96

[26] Xiong L, Ishitani M, Lee H, Zhu JK. (2001) The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. *Plant Cell*. 13(9):2063-83.

[27] Xiong, L., Lee, H., Ishitani, M., Zhu, J. K. (2002) Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in arabidopsis. *JOURNAL OF BIOLOGICAL CHEMISTRY*. 277, 8588-8596. doi: 10.1074/jbc.M109275200

[28] Zdunek-ZastockaE and LipsH.S. (2003) . Plant molybdoenzymes and theirresponse to stress. *ACTAPHYSIOLOGIAEPLANTARUM*. Vol. 25. No. 4. :437-452