n-gr-Coherent rings and Gorenstein graded modules

Mostafa Amini1,a, Driss Bennis2,b and Soumia Mamdouhi2,c

1. Department of Mathematics, Faculty of Sciences, Payame Noor University, Tehran, Iran.
2. Department of Mathematics, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.
 a. amini.pnu1356@gmail.com
 b. driss.bennis@um5.ac.ma; driss_bennis@hotmail.com
 c. soumiamamdouhi@yahoo.fr

Abstract. Let R be a graded ring and $n \geq 1$ an integer. In this paper, we introduce and study the notions of Gorenstein n-FP-gr-injective and Gorenstein n-gr-flat modules by using the notion of special finitely presented graded modules. On n-gr-coherent rings, we investigate the relationships between Gorenstein n-FP-gr-injective and Gorenstein n-gr-flat modules. Among other results, we prove that any graded module in R-gr (resp. gr-R) admits Gorenstein n-FP-gr-injective (resp. Gorenstein n-gr-flat) cover and preenvelope.

Keywords: n-gr-coherent ring; Gorenstein n-FP-gr-injective modules; Gorenstein n-gr-flat modules, covers, (pre)envelopes.

2010 Mathematics Subject Classification. 16E30, 16D40, 16D50, 16W50
1 Introduction

In 1990s, Enochs, Jenda and Torrecillas, introduced the concepts of Gorenstein injective and Gorenstein flat modules over arbitrary rings [14, 16]. In 2008, Mao and Ding introduced a special case of the Gorenstein injective modules and they called Gorenstein FP-injective modules, which renamed by Gillespie by Ding injective [21]. These Gorenstein FP-injective modules are stronger than the Gorenstein injective modules, and in general an FP-injective module is not necessarily Gorenstein FP-injective [25, Proposition 2.7]. For this reason, Gao and Wang introduced and studied in [19] another notion called Gorenstein FP-injective modules which is weaker than the usual Gorenstein injective modules. Furthermore, all FP-injective modules are in the class of Gorenstein FP-injective modules (see Section 2 for the definitions of these notions).

In this paper we deal with the graded aspect of some extensions of these notions. As it is known, graded rings and modules are a classical notions in algebra which build their values and strengths from their connection with algebraic geometry (see for instance [29, 30, 31]). Several authors have investigated the graded aspect of some notions in relative homological algebra. For example, Asensio, López Ramos and Torrecillas in [1, 2] introduced the notions of Gorenstein gr-projective, gr-injective and gr-flat modules. In the recent years, the Gorenstein homological theory for graded rings have become an important area of research (see for instance [4, 20]). The notions of FP-gr-injective modules was introduced in [3], and in [35] homological behavior of the FP-gr-injective modules on gr-coherent rings were investigated. Along the same lines, it is natural to generalize the notion of “FP-gr-injective modules and gr-flat modules” to “n-FP-gr-injective modules and n-gr-flat modules”. This done by Zhao, Gao and Huang in [36] basing on the notion of special finitely presented graded modules which they defined via projective resolutions of n-presented graded modules. Recently, in 2017, Mao via FP-gr-injective modules gave a definition of Ding gr-injective modules [26]. Under this definition these Ding gr-injective modules are stronger than the Gorenstein gr-injective modules, and an FP-gr-injective module is not necessarily Ding gr-injective in general [26, Corollary 3.7]. So, for any $n \geq 1$, we study the consequences of extending the notion of n-FP-gr-injective and n-gr-flat modules to that of Gorenstein n-FP-gr-injective and Gorenstein n-gr-flat modules, respectively. Then, in this paper, for any $n \geq 1$ by using n-FP-gr-injective modules and n-gr-flat modules, we introduce a concept of Gorenstein n-FP-gr-injective and Gorenstein n-gr-flat modules, and under this definition, Gorenstein n-FP-gr-injective and Gorenstein n-gr-flat modules are weaker than the usual Gorenstein gr-injective and Gorenstein gr-flat modules, respec-
tively. Also, for any $n \geq 1$, all gr-injective, n-FP-gr-injective modules and gr-flat, n-gr-flat modules are Gorenstein n-FP-gr-injective and Gorenstein n-gr-flat, respectively, and in general, Gorenstein n-FP-gr-injective and Gorenstein n-gr-flat R-modules need not be n-FP-gr-injective and n-gr-flat, unless in certain cases, see Proposition 3.18.

The paper is organized as follows:

In Sec. 2, some fundamental concepts and some preliminary results are stated.

In Sec. 3, we introduce Gorenstein n-FP-gr-injective and Gorenstein n-gr-flat modules for an integer $n \geq 1$ and then we give some characterizations of these modules. Among other results, we prove that, for an exact sequence $0 \to A \to B \to C \to 0$ of graded left R-modules, if A and B are Gorenstein n-FP-gr-injective, then C is Gorenstein n-FP-gr-injective if and only if every n-presented module in R-gr with $\text{gr-pd}_R(U) < \infty$ is $(n + 1)$-presented, and it follows that $(\perp G_{\text{gr-FI}_n}, G_{\text{gr-FI}_n})$ is a hereditary cotorsion pair if and only if every n-presented module in R-gr with $\text{gr-pd}_R(U) < \infty$ is $(n + 1)$-presented and every $M \in (\perp G_{\text{gr-FI}_n})^\perp$ has an exact left (gr-FI_n)-resolution, where $G_{\text{gr-FI}_n}$ and gr-FI_n denote the classes of Gorenstein n-FP-gr-injective and n-FP-gr-injective modules in R-gr, respectively. Also, for a graded left (resp. right) R-module M over a left n-gr-coherent ring R: M is Gorenstein n-FP-gr-injective (resp. Gorenstein n-gr-flat) if and only if M^* is Gorenstein n-gr-flat (resp. Gorenstein n-FP-gr-injective). Furthermore, the class of Gorenstein n-FP-gr-injective (resp. Gorenstein n-gr-flat) modules are closed under direct limits (resp. direct products). In this section, examples are given in order to show that Gorenstein m-FP-gr-injectivity (resp. Gorenstein m-gr-flatness) does not imply Gorenstein n-FP-gr-injectivity (resp. Gorenstein n-gr-flatness) for any $m > n$. Also, examples are given showing that Gorenstein n-FP-gr-injectivity does not imply gr-injectivity. In this paper, gr-I denote the classes of gr-injective modules in R-gr and gr-F, gr-F_n and $G_{\text{gr-F}_n}$ denote the classes of gr-flat, n-gr-flat and Gorenstein n-gr-flat modules in gr-R, respectively.

In Sec. 4, it is shown that the class of Gorenstein n-FP-gr-injective and Gorenstein n-gr-flat modules are covering and preenveloping on n-gr-coherent rings. We also establish some equivalent characterizations of n-gr-coherent rings in terms of Gorenstein n-FP-gr-injective and Gorenstein n-gr-flat modules.
2 Preliminaries

Throughout this paper, all rings considered are associative with identity element and the R-modules are unital. By R-Mod and Mod-R we will denote the category of all left R-modules and right R-modules, respectively.

In this section, some fundamental concepts and notations are stated.

Let n be a non-negative integer and M a left R-module. Then, M is said to be Gorenstein injective (resp. Gorenstein flat) \cite{14,16} if there is an exact sequence

$$
\cdots \rightarrow I_1 \rightarrow I_0 \rightarrow I^0 \rightarrow I^1 \rightarrow \cdots
$$

of injective (resp. flat) left R-modules with $M = \ker(I^0 \rightarrow I^1)$ such that $\text{Hom}_R(U, -)$ (resp. $U \otimes_R -$) leaves the sequence exact whenever U is an injective left (resp. right) R-module.

M is said to be n-presented \cite{10,13} if there is an exact sequence

$$
F_n \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow U \rightarrow 0
$$

of left R-modules, where each F_i is finitely generated free, and a ring R is called left n-coherent, if every n-presented left R-module is $(n + 1)$-presented. M is said to be n-FP-injective \cite{11} if $\text{Ext}_R^n(U, M) = 0$ for any n-presented left R-module U. In case $n = 1$, n-FP-injective modules are nothing but the well-known FP-injective modules. A right module N is called n-flat if $\text{Tor}_n^R(N, U) = 0$ for any n-presented left R-module U.

M is said to be Gorenstein FP-injective \cite{25} if there is an exact sequence

$$
E = \cdots \rightarrow E_1 \rightarrow E_0 \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots
$$

of injective left modules with $M = \ker(E^0 \rightarrow E^1)$ such that $\text{Hom}_R(U, E)$ is an exact sequence whenever U is an FP-injective left R-module. Then, in \cite{19}, Gao and Wang introduced other concept of Gorenstein FP-injective modules as follows: M is said to be Gorenstein FP-injective \cite{19} if there is an exact sequence

$$
E = \cdots \rightarrow E_1 \rightarrow E_0 \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots
$$

of FP-injective left modules with $M = \ker(E^0 \rightarrow E^1)$ such that $\text{Hom}_R(P, E)$ is an exact sequence whenever P is a finitely presented module with $\text{pd}_R(P) < \infty$.

Let G be a multiplicative group with neutral element e. A graded ring R is a ring with identity 1 together with a direct decomposition $R = \bigoplus_{\sigma \in G} R_{\sigma}$ (as additive subgroups) such that $R_{\sigma}R_{\tau} \subseteq R_{\sigma \tau}$ for all $\sigma, \tau \in G$. Thus, $R e$ is a subring of R, $1 \in Re$ and R_{σ} is an Re-bimodule for every $\sigma \in G$. A graded left (resp. right) R-module is a left (resp. right) R-module M endowed with an internal direct sum decomposition $M = \bigoplus_{\sigma \in G} M_{\sigma}$, where each M_{σ} is a subgroup of the additive group of M such that $R_{\sigma}M_{\tau} \subseteq M_{\sigma \tau}$ for all $\sigma, \tau \in G$. For any graded left R-modules M and N, set $\text{Hom}_{R^{-}\text{gr}}(M, N) := \{ f : M \to N \mid f \text{ is } R\text{-linear and } f(M_{\sigma}) \subseteq N_{\sigma} \text{ for any } \sigma \in G \}$, which is the group of all morphisms from M to N in the class $R\text{-gr}$ of all graded left R-modules ($gr-R$ will denote the class of all graded right R-modules). It is well known that $R\text{-gr}$ is a Grothendieck category. An R-linear map $f : M \to N$ is said to be a graded morphism of degree τ with $\tau \in G$ if $f(M_{\sigma}) \subseteq N_{\sigma \tau}$ for all $\sigma \in G$. Graded morphisms of degree σ build an additive subgroup $\text{HOM}_{R}(M, N)_{\sigma}$ of $\text{Hom}_{R}(M, N)$. Then $\text{HOM}_{R}(M, N) = \bigoplus_{\sigma \in G} \text{HOM}_{R}(M, N)_{\sigma}$ is a graded abelian group of type G. We will denote by $\text{Ext}_{R^{-}\text{gr}}^{i}$ and EXT_{R}^{i} the right derived functors of $\text{Hom}_{R^{-}\text{gr}}$ and HOM_{R}, respectively. Given a graded left R-module M, the graded character module of M is defined as $M^{*} := \text{HOM}_{Z}(M, Q/Z)$, where Q is the rational numbers field and Z is the integers ring. It is easy to see that $M^{*} = \bigoplus_{\sigma \in G} \text{HOM}_{Z}(M_{\sigma^{-1}}, Q/Z)$.

Let M be a graded right R-module and N a graded left R-module. The abelian group $M \otimes_{R} N$ may be graded by putting $(M \otimes_{R} N)_{\sigma}$ with $\sigma \in G$ to be the additive subgroup generated by elements $x \otimes y$ with $x \in M_{\alpha}$ and $y \in N_{\beta}$ such that $\alpha \beta = \sigma$. The object of $Z\text{-gr}$ thus defined will be called the graded tensor product of M and N.

If M is a graded left R-module and $\sigma \in G$, then $M(\sigma)$ is the graded left R-module obtained by putting $M(\sigma)_{\tau} = M_{\tau \sigma}$ for any $\tau \in G$. The graded module $M(\sigma)$ is called the σ-suspension of M. We may regard the σ-suspension as an isomorphism of categories $T_{\sigma} : R\text{-gr} \to R\text{-gr}$, given on objects as $T_{\sigma}(M) = M(\sigma)$ for any $M \in R\text{-gr}$. The forgetful functor $U : R\text{-gr} \to R\text{-Mod}$ associates to M the underlying ungraded R-module. This functor has a right adjoint F which associated to $M \in R\text{-Mod}$ the graded R-module $F(M) = \bigoplus_{\sigma \in G}(\sigma M)$, where each σM is a copy of M written $\{ \sigma x : x \in M \}$ with R-module structure defined by $r^{*} \sigma x = \sigma (r^{\ast} x)$ for each $r \in R_{\sigma}$. If $f : M \to N$ is R-linear, then $F(f) : F(M) \to F(N)$ is a graded morphism given by $F(f)(\sigma x) = \sigma f(x)$.

The injective (resp. flat) objects of $R\text{-gr}$ (resp. $gr-R$) will be called gr-injective (resp. gr-flat) modules, because M is gr-injective (resp. gr-flat) if and only if it is a injective (resp. flat) graded
module. By $\text{gr-pd}_R(M)$ and $\text{gr-fd}_R(M)$ we will denote the gr-projective and gr-flat dimension of a graded module M, respectively. A graded left (resp. right) module M is said to be Gorenstein gr-injective (resp. Gorenstein gr-flat) \cite{1,2,4} if there is an exact sequence
\[\cdots \to I_1 \to I_0 \to I^0 \to I^1 \to \cdots \]
of gr-injective (resp. gr-flat) left (resp. right) modules with $M = \ker(I^0 \to I^1)$ such that $\text{Hom}_{R-\text{gr}}(E, _)$ (resp. $_ \otimes_R E$) leaves the sequence exact whenever E is a gr-injective R-module. The gr-injective envelope of M is denoted by $E_{g}(M)$. A graded left module M is said to be Ding gr-injective \cite{26} if there is an exact sequence
\[\cdots \to I_1 \to I_0 \to I^0 \to I^1 \to \cdots \]
of gr-injective left modules, with $M = \ker(I^0 \to I^1)$ such that $\text{Hom}_{R-\text{gr}}(E, _)$ leaves the sequence exact whenever E is an FP-gr-injective left R-module.

Definition 2.1 (\cite{36}, Definition 3.1). Let $n \geq 0$ be an integer. Then, a graded left module U is called n-presented, if there exists an exact sequence $F_n \to F_{n-1} \to \cdots \to F_1 \to F_0 \to U \to 0$ in R-gr with each F_i is finitely generated free left R-module.

Set $K_{n-1} = \text{Im}(F_{n-1} \to F_{n-2})$ and $K_n = \text{Im}(F_n \to F_{n-1})$. Then we get a short exact sequence $0 \to K_n \to F_{n-1} \to K_{n-1} \to 0$ in R-gr with F_{n-1} is a finitely generated free module. The modules K_n and K_{n-1} will be called special finitely gr-generated and special finitely gr-presented, respectively. The sequence $(\Delta) : 0 \to K_n \to F_{n-1} \to K_{n-1} \to 0$ in R-gr will be called a special short exact sequence.

Moreover, a short exact sequence $0 \to A \to B \to C \to 0$ in R-gr is called special gr-pure if the induced sequence
\[0 \to \text{HOM}_{R}(K_{n-1}, A) \to \text{HOM}_{R}(K_{n-1}, B) \to \text{HOM}_{R}(K_{n-1}, C) \to 0 \]
is exact for every special finitely gr-presented module K_{n-1}. In this case A is said to be special gr-pure in B.

Analogously to the classical case, a graded ring R is called left n-gr-coherent if each n-presented module in R-gr is $(n + 1)$-presented.

Ungraded n-presented modules have been used by many authors in order to extend some homological notions. For example, in \cite{9}, let R be an associative ring and M a left R-module, then module M is called FP_{n}-injective if $\text{Ext}^1_R(L, M) = 0$ for all n-presented left R-modules L. In
2018, Zhao, Gao and Huang in [36] showed that if we similarly use the derived functor Ext^1 to define the FP_n-gr-injective and FP_∞-gr-injective modules, then they are just the FP_n-injective and FP_∞-injective objects in the class of graded modules, respectively. If L is an n-presented graded left R-module with $n \geq 2$, then $\text{Ext}^1_R(L, M) = \text{Ext}^1_R(L, M)$ for any graded R-module M. For this reason, they introduced the concept of n-FP-gr-injective modules as follows: A graded left R-module M is called n-FP-gr-injective [36] if $\text{Ext}^n_R(N, M) = 0$ for any finitely n-presented graded left R-module N. If $n = 1$, then M is FP-gr-injective. A graded right R-module M is called n-gr-flat [36] if $\text{Tor}_n^R(M, N) = 0$ for any finitely n-presented graded left R-module N.

If U is an n-presented graded left R-module and $0 \to K_n \to F_{n-1} \to K_{n-1} \to 0$ is a special short exact sequence in R-gr with respect to U, then $\text{Ext}^n_R(U, M) \cong \text{Ext}^n_R(K_{n-1}, M)$ for every graded left R-module M, and $\text{Tor}_n^R(M, U) \cong \text{Tor}_n^R(M, K_{n-1})$ for every graded right R-module M. The n-FP-gr-injective dimension of a graded left R-module M, denoted by $n.\text{FP-gr-id}_R(M)$, is defined to be the least integer k such that $\text{Ext}^{k+1}_R(K_{n-1}, M) = 0$ for any special gr-presented module K_{n-1} in R-gr. The n-gr-flat dimension of a graded right R-module M, denoted by $n.\text{gr-fd}_R(M)$, is defined to be the least integer k such that $\text{Tor}_{k+1}^R(M, K_{n-1}) = 0$ for any special gr-presented module K_{n-1} in R-gr. Also, $r.\text{n.FP-gr-dim}(R) = \sup \{n.\text{FP-gr-id}_R(M) \mid M \text{ is a graded left module} \}$ and $r.\text{n-gr-dim}(R) = \sup \{n.\text{gr-fd}_R(M) \mid M \text{ is a graded right module} \}$.

3 Gorenstein n-FP-gr-Injective and Gorenstein n-gr-Flat Modules

In this section, we introduce and study Gorenstein n-FP-gr-injective and Gorenstein n-gr-flat modules which are defined as follows:

Definition 3.1. Let R be a graded ring and $n \geq 1$ an integer. Then, a module M in R-gr is called Gorenstein n-FP-gr-injective if there exists an exact sequence of n-FP-gr-injective modules in R-gr of this form:

$$A = \cdots \longrightarrow A_1 \longrightarrow A_0 \longrightarrow A^0 \longrightarrow A^1 \longrightarrow \cdots$$

with $M = \ker(A^0 \to A^1)$ such that $\text{HOM}_R(K_{n-1}, A)$ is an exact sequence whenever K_{n-1} is a special gr-presented module in R-gr with $\text{gr-pd}_R(K_{n-1}) < \infty$.

The class of Gorenstein n-FP-gr-injective will be denoted \mathcal{G}_{gr-FI_n}.

A module N in $gr-R$ is called Gorenstein n-gr-flat if there exists the following exact sequence of n-gr-flat modules in $gr-R$ of this form:

$$F = \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow F^0 \rightarrow F^1 \rightarrow \cdots$$

with $N = \ker(F^0 \rightarrow F^1)$ such that $F \otimes_R K_{n-1}$ is an exact sequence whenever K_{n-1} is a special gr-presented module in R-gr with $gr\text{-}fd_R(K_{n-1}) < \infty$.

The class of Gorenstein n-FP-gr-flat will be denoted \mathcal{G}_{gr-F_n}.

In the ungraded case, the R-modules A_i and A^i (resp. F_i and F^i) as in the definition above, are called n-FP-injective (resp. n-flat). Also, R-modules M and N are called Gorenstein n-FP-injective and Gorenstein n-flat, respectively, and K_{n-1} is a special presented left module with respect to any n-presented left R-module U.

Remark 3.2. Let R be a graded ring. Then:

1. $gr-I \subseteq gr-FI_1 \subseteq gr-FI_2 \subseteq \cdots \subseteq gr-FI_n \subseteq G_{gr-FI_n}$. But, Gorenstein n-FP-gr-injective R-modules need not be gr-injective, see Example 3.3(1). Also, $gr-F \subseteq gr-F_1 \subseteq gr-F_2 \subseteq \cdots \subseteq gr-F_n \subseteq G_{gr-F_n}$.

 In general, every Gorenstein n-FP-gr-injective (resp. Gorenstein n-gr-flat) R-module is not n-FP-gr-injective (resp. n-gr-flat), except in a certain state, see Proposition 3.18.

2. $G_{gr-FI_1} \subseteq G_{gr-FI_2} \subseteq \cdots \subseteq G_{gr-FI_n}$ and $G_{gr-F_1} \subseteq G_{gr-F_2} \subseteq \cdots \subseteq G_{gr-F_n}$. But for any integers $m > n$, Gorenstein m-FP-gr-injective (resp. Gorenstein m-gr-flat) R-modules need not be Gorenstein n-FP-gr-injective (resp. Gorenstein n-gr-flat), see Example 3.3(2, 3).

3. In Definition 3.1 it is clear that $\ker(A_i \rightarrow A_{i-1})$ and $\ker(A^i \rightarrow A^{i+1})$ are Gorenstein n-FP-gr-injective, and $\ker(F_i \rightarrow F_{i-1})$, $\ker(F^i \rightarrow F^{i+1})$ are Gorenstein n-gr-flat for any $i \geq 1$.

It is known that the trivial extension of a commutative ring A by an A-module M, $R = A \ltimes M$, is a \mathbb{Z}_2-graded ring, see [7,8].
Example 3.3. (1) Let K be a field with characteristic $p \neq 0$ and let $G = \bigcup_{k \geq 1} G_k$, where G_k is the cyclic group with generator a_k, the order of a_k is p^k and $a_k = a_{k+1}^p$. Let $R = K[G]$. Then, by Remark 3.2, $R[H]$ is Gorenstein n-FP-gr-injective for every group H, since by [5] Example iii], $R[H]$ is n-FP-gr-injective but it is not gr-injective.

(2) Let A be a field, E a nonzero A-vector space and $R = A \times E$ be a trivial extension of A by E. If $\dim_A E = 1$, then by Remark 3.2 every R-module in R-gr is Gorenstein n-FP-gr-injective, see [6, Corollary 2.2]. If E is an A-vector space with infinite rank, then by [27, Theorem 3.4], every 2-presented module in R-gr is projective. So, every module in R-gr is 2-FP-gr-injective and hence, every module in R-gr is Gorenstein 2-2-FP-gr-injective. If every module in R-gr is Gorenstein 1-FP-gr-injective, then R is gr-regular, contradiction.

(3) Let $R = k[X]$, where k is a field. Then, by Theorem 3.16 every graded right R-module is Gorenstein 2-gr-flat, and there is a graded right R-module that is not Gorenstein 1-gr-flat, since $l.FP-\dim(R) \leq 1$, see Proposition 3.18 and [36, Example 3.6].

We start with the result which proves that the behaviour of Gorenstein n-FP-gr-injective (resp. Gorenstein n-gr-flat) modules in short exact sequences is the same as the one of the classical homological notions.

Proposition 3.4. Let R be a graded ring. Then:

(1) For every short exact sequence $0 \to A \to B \to C \to 0$ in R-gr, B is Gorenstein n-FP-gr-injective if A and C are Gorenstein n-FP-gr-injective.

(2) For every short exact sequence $0 \to A \to B \to C \to 0$ in gr-R, B is Gorenstein n-gr-flat if A and C are Gorenstein n-gr-flat.

Proof. (1) By Definition 3.1, there is an exact sequence $\cdots \to A_1 \to A_0 \to A^0 \to A^1 \to \cdots$ of n-FP-gr-injective modules in R-gr, where $A = \text{Ker}(A^0 \to A^1)$, $K'_i = \text{Ker}(A_i \to A_{i-1})$ and $(K')^i = \text{Ker}(A^i \to A^{i+1})$. Also, there is an exact sequence $\cdots \to C_1 \to C_0 \to C^0 \to C^1 \to \cdots$ of n-FP-gr-injective modules in R-gr, where $C = \text{Ker}(C^0 \to C^1)$, $K''_i = \text{Ker}(C_i \to C_{i-1})$ and $(K'')^i = \text{Ker}(C^i \to C^{i+1})$. For any n-presented graded left module P, $\text{EXT}^n_R(P, A_i \oplus C_i) = \text{EXT}^n_R(P, A_i) \oplus \text{EXT}^n_R(P, C_i) = 0$, then $A_i \oplus C_i$ is n-FP-gr-injective for any $i \geq 0$. Similarly, $A^i \oplus C^i$ is n-FP-gr-injective for any $i \geq 0$. Therefore, there is an exact sequence

$$\mathcal{Y} = \cdots \to A_1 \oplus C_1 \to A_0 \oplus C_0 \to A^0 \oplus C^0 \to A^1 \oplus C^1 \to \cdots$$
of \(n \)-FP-gr-injective modules in \(R \)-gr, where \(B = \text{Ker}(A^0 \oplus C^0 \to A^1 \oplus C^1), K_i = K_i' \oplus K_i'' = \text{Ker}(A_i \oplus C_i \to A_{i-1} \oplus C_{i-1}) \) and \(K_i = (K_i')' \oplus (K_i'')' = \text{Ker}(A_i \oplus C_i \to A^{i+1} \oplus C^{i+1}) \). Let \(K_{n-1} \) be a special gr-presented module in \(R \)-gr with gr-\(\text{pd}_R(K_{n-1}) < \infty \). Then, \(\text{EXT}_R^1(K_{n-1}, B) = 0 \), and also we have: \(\text{EXT}_R^1(K_{n-1}, K_i) = \text{EXT}_R^1(K_{n-1}, K_i' \oplus K_i'') = 0 \). Similarly, \(\text{EXT}_R^1(K_{n-1}, K^i) = 0 \). Consequently, \(\text{HOM}_R(K_{n-1}, \mathcal{Y}) \) is exact and so, \(B \) is Gorenstein \(n \)-FP-gr-injective.

(2) By Definition 3.1 there is an exact sequence \(\cdots \to A_1 \to A_0 \to A^0 \to A^1 \to \cdots \) of \(n \)-gr-flat modules in \(\text{gr}-R \), where \(A = \text{Ker}(A^0 \to A^1), K_i' = \text{Ker}(A_i \to A_{i-1}) \) and \((K_i)' = \text{Ker}(A^i \to A^{i+1}) \). Also, there is an exact sequence \(\cdots \to C_1 \to C_0 \to C^0 \to C^1 \to \cdots \) of \(n \)-gr-flat modules in \(\text{gr}-R \), where \(C = \text{Ker}(C^0 \to C^1), K_i'' = \text{Ker}(C_i \to C_{i-1}) \) and \((K_i'')' = \text{Ker}(C_i \to C^{i+1}) \). Similarly to (1), there is an exact sequence

\[
\mathcal{Y} = \cdots \to A_1 \oplus C_1 \to A_0 \oplus C_0 \to A^0 \oplus C^0 \to A^1 \oplus C^1 \to \cdots
\]

of \(n \)-gr-flat modules in \(\text{gr}-R \), where \(B = \text{Ker}(A^0 \oplus C^0 \to A^1 \oplus C^1) \), and if \(K_{n-1} \) is a special gr-presented module in \(R \)-gr with gr-\(\text{fd}_R(K_{n-1}) < \infty \), then \(\mathcal{Y} \otimes_R K_{n-1} \) is exact and so, \(B \) is Gorenstein \(n \)-gr-flat.

Transfer results of \(n \)-FP-injective and Gorenstein \(n \)-FP-injective modules with respect to the functor \(F \) is given in the following result.

Proposition 3.5. Let \(R \) be a ring graded by a group \(G \).

(1) If \(M \) is an \(n \)-FP-injective left \(R \)-module, then \(F(M) \) is \(n \)-FP-gr-injective.

(2) If \(M \) is a Gorenstein \(n \)-FP-injective left \(R \)-module, then \(F(M) \) is Gorenstein \(n \)-FP-gr-injective.

Proof. (1) If \(0 \to K_n \to F_{n-1} \to K_{n-1} \to 0 \) is special short exact sequence in \(R \)-gr with respect to an \(n \)-presented graded left \(R \)-module \(U \), then similar to the proof of [35, Lemma 2.3],

\[
0 = \text{Ext}_R^1(K_{n-1}, F(M)(\sigma)) = \text{Ext}_R^n(U, F(M)(\sigma)),
\]

and hence by [36, Proposition 3.10], \(F(M) \) is \(n \)-FP-gr-injective.

(2) Let \(M \) be a Gorenstein \(n \)-FP-injective left \(R \)-module. Then, there exists an exact sequence of \(n \)-FP-injective left modules:

\[
B = \cdots \to B_1 \to B_0 \to B^0 \to B^1 \to \cdots
\]
with \(M = \ker(B^0 \to B^1) \) such that \(\text{Hom}_R(K_{n-1}, B) = \ker(F(B^0) \to F(B^1)) \) is an exact sequence whenever \(K_{n-1} \) is a special finitely presented module in \(R\text{-gr} \) with \(\text{pd}_R(K_{n-1}) < \infty \). By (1), \(F(B_i) \) and \(F(B_i') \) are \(n\text{-FP-gr-injective} \) for any \(i \geq 0 \). Since the functor \(F \) is exact, we get the following exact sequence

\[
F(B) = \cdots \to F(B_1) \to F(B_0) \to F(B^0) \to F(B^1) \to \cdots
\]

of \(n\text{-FP-gr-injective} \) left \(R \)-modules with \(F(M) = \ker(F(B^0) \to F(B^1)) \). If \(K_{n-1} \) is special gr-presented left module with \(\text{gr-pd}_R(K_{n-1}) < \infty \), then \(U(K_{n-1}) \) is finitely presented with \(\text{pd}_R(U(K_{n-1})) < \infty \). By hypothesis, \(\text{Hom}_R(U(K_{n-1}), B) = \text{Hom}_{R\text{-gr}}(K_{n-1}, F(B)) \) is exact. Therefore, from \(\text{Hom}_R(U(K_{n-1}), B) = \text{Hom}_{R\text{-gr}}(K_{n-1}, F(B)) \), it follows that \(\text{Hom}_{R\text{-gr}}(K_{n-1}, F(B)) \) is exact and consequently, the isomorphism

\[
\text{HOM}_R(K_{n-1}, F(B)) = \bigoplus_{\sigma \in G} \text{HOM}_R(K_{n-1}, F(B))_\sigma \cong \bigoplus_{\sigma \in G} \text{Hom}_{R\text{-gr}}(K_{n-1}, F(B))(\sigma)
\]

implies that \(F(M) \) is Gorenstein \(n\text{-FP-gr-injective} \).

Now, we give a characterization of a graded ring \(R \) on which \(n \)-presented modules in \(R\text{-gr} \) with \(\text{gr-pd}_R(U) < \infty \) (resp. \(\text{gr-fd}_R(U) < \infty \)) are \((n+1) \)-presented. For this, we need the following lemma.

Lemma 3.6. Assume that every \(n \)-presented module in \(R\text{-gr} \) with \(\text{gr-fd}_R(U) < \infty \) is \((n+1) \)-presented. Then, for any \(t \geq 1 \):

1. \(\text{EXT}^t_R(K_{n-1}, M) = 0 \) for any Gorenstein \(n\text{-FP-gr-injective} \) left \(R \)-module \(M \) and any special gr-presented left \(R \)-module \(K_{n-1} \) with \(\text{gr-pd}_R(K_{n-1}) < \infty \).

2. \(\text{Tor}^t_R(M, K_{n-1}) = 0 \) for any Gorenstein \(n\text{-gr-flat} \) right \(R \)-module \(M \) and any special gr-presented left \(R \)-module \(K_{n-1} \) with \(\text{gr-fd}_R(K_{n-1}) < \infty \).

Proof. (1) Assume that \(K_{n-1} \) is a special gr-presented module in \(R\text{-gr} \) with \(\text{gr-pd}_R(K_{n-1}) \leq m \) respect to any \(n \)-presented module \(U \) in \(R\text{-gr} \). If \(M \) is a Gorenstein \(n\text{-FP-gr-injective} \) left \(R \)-module, then, there is a left \(n\text{-FP-gr-injective} \) resolution of \(M \) in \(R\text{-gr} \). So, we have:

\[
0 \to N \to E_{m-1} \to \cdots \to E_0 \to M \to 0,
\]

where every \(E_j \) is \(n\text{-FP-gr-injective} \) for every \(0 \leq j \leq m-1 \). Since \(\text{gr-fd}_R(U) < \infty \), \(U \) is \((n+1) \)-presented, and so \(\text{EXT}^{i+1}_R(K_{n-1}, E_j) = 0 \) for any \(i \geq 0 \). Hence, \(\text{EXT}^{i+1}_R(K_{n-1}, M) \cong \)
EXT\(^{m+i+1}(K_{n-1}, N)\), and since gr-pd\(_R(K_{n-1}) \leq m\), it follows that , EXT\(^{i+1}(K_{n-1}, M) = 0\) for any \(i \geq 0\).

(2) Assume that \(K_{n-1}\) is a special gr-presented module in \(R\)-gr with gr-fd\(_R(K_{n-1}) \leq m\) for any \(n\)-presented module \(U\) in \(R\)-gr. If \(M\) is a Gorenstein \(n\)-gr-flat right \(R\)-module, then there is a right \(n\)-gr-flat resolution of \(M\) in gr-\(R\) of the form:

\[
0 \rightarrow M \rightarrow F^0 \rightarrow \cdots \rightarrow F^{m-1} \rightarrow N \rightarrow 0,
\]

where every \(F^j\) is \(n\)-gr-flat for every \(0 \leq j \leq m-1\). Since \(U\) is \((n+1)\)-presented, we have \(\text{Tor}_{i+1}^R(F^j, K_{n-1}) = 0\) for any \(i \geq 0\). If gr-fd\(_R(K_{n-1}) \leq m\), then \(\text{Tor}_{i+1}^R(M, K_{n-1}) \cong \text{Tor}_{m+i+1}^R(N, K_{n-1}) = 0\), and so \(\text{Tor}_{i+1}^R(M, K_{n-1}) = 0\) for any \(i \geq 0\).

Theorem 3.7. Let \(R\) be a graded ring. Then, the following statements are equivalent:

1. Every \(n\)-presented module in \(R\)-gr with gr-pd\(_R(U) < \infty\) is \((n+1)\)-presented;

2. For every short exact sequence \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0\) in \(R\)-gr, \(C\) is Gorenstein \(n\)-FP-gr-injective if \(A\) and \(B\) are Gorenstein \(n\)-FP-gr-injective.

Proof. (1) \(\implies\) (2) If \(B\) is a Gorenstein \(n\)-FP-gr-injective module in \(R\)-gr, then by Definition 3.1 and Remark 3.2, there is an exact sequence \(0 \rightarrow K \rightarrow B_0 \rightarrow B \rightarrow 0\) in \(R\)-gr, where \(B_0\) is \(n\)-FP-gr-injective and \(K\) is Gorenstein \(n\)-FP-gr-injective. Consider the following commutative diagram with exact rows exists:

By Proposition 3.4(1), \(D\) is Gorenstein \(n\)-FP-gr-injective, and so we have a commutative diagram

\[
\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0
\end{array}
\]

\[
\begin{array}{c}
K \\
B_0 \\
B \\
C \\
N
\end{array}
\]

\[
\begin{array}{cc}
0 & 0 \\
0 & D \\
0 & A \\
0 & 0
\end{array}
\]

\[
\begin{array}{cc}
K & K \\
B & C \\
C & 0 \\
0 & 0
\end{array}
\]
in R-gr:

\[\cdots \rightarrow D_1 \rightarrow D_0 \rightarrow B_0 \rightarrow E^0 \rightarrow E^1 \rightarrow \cdots \]

where D_i and B_0 are n-FP-gr-injective, E^i is gr-injective, $C = \text{Ker}(E^0 \rightarrow E^1)$, $D = \text{Ker}(B_0 \rightarrow C)$, $L_i = \text{Ker}(D_i \rightarrow D_{i-1})$ and $L^i = \text{Ker}(E^i \rightarrow E^{i+1})$. By Remark 3.2, E^i and L_i are Gorenstein n-FP-gr-injective and hence by Lemma 3.6(1), $\text{EXT}^i_R(K_{n-1}, L_i) = \text{EXT}^i_R(K_{n-1}, D) = 0$ for any special gr-presented K_{n-1} module in R-gr with gr-$\text{pd}_R(K_{n-1}) < \infty$. Therefore, we have the following exact commutative diagram:

\[\text{Hom}(K_{n-1}, D_1) \quad \text{Hom}(K_{n-1}, D_0) \quad \cdots \]

\[\text{Hom}(K_{n-1}, L_0) \quad \text{Hom}(K_{n-1}, D) \quad 0 \]

Hence, C is Gorenstein n-FP-gr-injective.

(2) \implies (1) Let U be an n-presented graded left R-module with gr-$\text{pd}_R(U) < \infty$, and let $0 \rightarrow K_n \rightarrow F_{n-1} \rightarrow K_{n-1} \rightarrow 0$ be a special short exact sequence in R-gr with respect to U, where K_n is a special gr-generated module. We show that K_n is special gr-presented. Let M be a Gorenstein n-FP-injective module and $0 \rightarrow M \rightarrow E \rightarrow L \rightarrow 0$ an exact sequence in R-Mod, where E is injective. Then, $0 \rightarrow F(M) \rightarrow F(E) \rightarrow F(L) \rightarrow 0$ is exact, where $F(M)$ and $F(E)$ are Gorenstein n-FP-gr-injective in R-gr by Proposition 3.5. So by (2), we deduce that $F(L)$ is Gorenstein n-FP-gr-injective. We have:

\[0 = \text{Ext}^1_{R-\text{gr}}(F_{n-1}, F(M)) \rightarrow \text{Ext}^1_{R-\text{gr}}(K_n, F(M)) \rightarrow \text{Ext}^2_{R-\text{gr}}(K_{n-1}, F(M)) \rightarrow 0. \]

So, $\text{Ext}^1_{R-\text{gr}}(K_n, F(M)) \cong \text{Ext}^2_{R-\text{gr}}(K_{n-1}, F(M))$. On the other hand,

\[0 = \text{Ext}^1_{R-\text{gr}}(K_{n-1}, F(E)) \rightarrow \text{Ext}^1_{R-\text{gr}}(K_{n-1}, F(L)) \rightarrow \text{Ext}^2_{R-\text{gr}}(K_{n-1}, F(M)) \rightarrow 0. \]
Hence, \(\text{Ext}^{1}_{\text{R-gr}}(K_{n-1}, F(L)) \cong \text{Ext}^{2}_{\text{R-gr}}(K_{n-1}, F(M)) \). Since \(F(L) \) is Gorenstein \(n \)-FP-gr injective, we get \(0 = \text{EXT}^{1}_{\text{R}}(K_{n-1}, F(L))_{\sigma} \cong \text{Ext}^{1}_{\text{R-gr}}(K_{n-1}, F(L)(\sigma)) \) for any \(\sigma \in G \). This implies that \(\text{Ext}^{1}_{\text{R-gr}}(K_{n-1}, F(L)) = 0 \) and consequently \(\text{Ext}^{1}_{\text{R-gr}}(K_{n}, F(M)) = 0 \). So, the following commutative diagram exists:

\[
\begin{array}{cccccc}
0 & \longrightarrow & \text{Hom}_{\text{R-gr}}(K_{n}, F(M)) & \longrightarrow & \text{Hom}_{\text{R-gr}}(K_{n}, F(E)) & \longrightarrow & \text{Hom}_{\text{R-gr}}(K_{n}, F(L)) & \longrightarrow & 0 \\
& & \downarrow \cong & & \downarrow \cong & & \downarrow \cong & & \\
0 & \longrightarrow & \text{Hom}_{\text{R}}(K_{n}, M) & \longrightarrow & \text{Hom}_{\text{R}}(K_{n}, E) & \longrightarrow & \text{Hom}_{\text{R}}(K_{n}, L) & & \\
\end{array}
\]

So, \(\text{Ext}^{1}_{\text{R-gr}}(K_{n}, F(M)) \cong \text{Ext}^{1}_{\text{R}}(K_{n}, M) = 0 \) for any Gorenstein \(n \)-FP-injective left \(R \)-module \(M \). Since every FP-injective left module is Gorenstein \(n \)-FP-injective, \(\text{Ext}^{1}_{\text{R-gr}}(K_{n}, F(N)) \cong \text{Ext}^{1}_{\text{R}}(K_{n}, N) = 0 \) for any FP-injective left module \(N \) and so \(K_{n} \) is \(1 \)-presented. Therefore, \(U \) is \((n + 1) \)-presented in \(R \)-gr.

Corollary 3.8. Let every \(n \)-presented module in \(\text{R-gr} \) with \(\text{gr-pd}_R(U) < \infty \) be \((n + 1) \)-presented. Then, a module \(M \) in \(\text{R-gr} \) is Gorenstein \(n \)-FP-gr-injective if and only if every gr-pure submodule and any gr-pure epimorphic image of \(M \) are Gorenstein \(n \)-FP-gr-injective.

Proof. (\(\Rightarrow \)) Let \(M \) be a Gorenstein \(n \)-FP-gr-injective module in \(\text{R-gr} \). If the exact sequence \(0 \to K \to M \to M_K \to 0 \) is gr-pure, then by [3] Proposition 2.2, \(\text{EXT}^{1}_{\text{R}}(K_{n-1}, K) = 0 \) for every special gr-presented module \(K_{n-1} \) in \(\text{R-gr} \). So, we have \(0 = \text{EXT}^{1}_{\text{R}}(K_{n-1}, K) \cong \text{EXT}^{\text{n}}_{\text{R}}(U, K) \) for any \(n \)-presented module \(U \) in \(\text{R-gr} \). Thus, \(K \) is \(n \)-FP-gr-injective, and hence \(K \) is Gorenstein \(n \)-FP-gr-injective by Remark [3,2]. Therefore, by Theorem [3,7], \(M_K \) is Gorenstein \(n \)-FP-gr-injective.

(\(\Leftarrow \)) Assume that the exact sequence \(0 \to K \to M \to L \to 0 \) in \(\text{R-gr} \) is gr-pure, where \(L \) and \(K \) are Gorenstein \(n \)-FP-gr-injective. Then, by Proposition [3,4(1)], \(M \) is Gorenstein \(n \)-FP-gr-injective.

The following definition is the graded version of [15,23].

Definition 3.9. Let \(\bar{\emptyset} \) be a class of graded left \(R \)-module. Then:

1. \(\bar{\emptyset}^{\perp} = \ker \text{Ext}^{1}_{\text{R-gr}}(\bar{\emptyset}, -) = \{ C \mid \text{Ext}^{1}_{\text{R-gr}}(L, C) = 0 \text{ for any } L \in \bar{\emptyset} \} \).

2. \(\perp \bar{\emptyset} = \ker \text{Ext}^{1}_{\text{R-gr}}(-, \bar{\emptyset}) = \{ C \mid \text{Ext}^{1}_{\text{R-gr}}(C, L) = 0 \text{ for any } L \in \bar{\emptyset} \} \).
A pair \((\mathcal{F}, \mathcal{C})\) of classes of graded \(R\)-modules is called a cotorsion theory, if \(\mathcal{F}^\perp = \mathcal{C}\) and \(\mathcal{F} = \mathcal{C}^\perp\). A cotorsion theory \((\mathcal{F}, \mathcal{C})\) is called hereditary, if whenever \(0 \to F' \to F \to F'' \to 0\) is exact in \(R\)-gr with \(F, F'' \in \mathcal{F}\) then \(F'\) is also in \(\mathcal{F}\), or equivalently, if \(0 \to C' \to C \to C'' \to 0\) is an exact sequence in \(R\)-gr with \(C, C' \in \mathcal{C}\), then \(C''\) is also in \(\mathcal{C}\).

Corollary 3.10. Let \(R\) be a graded ring. Then, the following statements are equivalent:

1. \((^\perp \mathcal{G}_{gr-\mathcal{F}I_n}, \mathcal{G}_{gr-\mathcal{F}I_n})\) is a hereditary cotorsion pair;

2. Every \(n\)-presented module in \(R\)-gr with \(gr-pd(U) < \infty\) is \((n + 1)\)-presented and every \(M \in (^\perp \mathcal{G}_{gr-\mathcal{F}I_n})^\perp\) has an exact left \((gr-\mathcal{F}I_n)\)-resolution.

Proof. (1) \(\implies\) (2) Let \(M\) be a Gorenstein \(n\)-FP-injective left \(R\)-module and \(0 \to M \to E \to L \to 0\) an exact sequence in \(R\)-Mod, where \(E\) is injective. Then, \(0 \to F(M) \to F(E) \to F(L) \to 0\) is exact in \(R\)-gr, where \(F(M)\) and \(F(E)\) are Gorenstein \(n\)-FP-injective by Proposition 3.5. So by hypothesis, \(F(L)\) is Gorenstein \(n\)-FP-gr-injective. If \(U\) is an \(n\)-presented graded left \(R\)-module with \(gr-pd_R(U) < \infty\), then similar to the proof (2) \(\implies\) (1) of Theorem 3.7, it follows that \(U\) is \((n + 1)\)-presented. Since \((^\perp \mathcal{G}_{gr-\mathcal{F}I_n})^\perp = \mathcal{G}_{gr-\mathcal{F}I_n}\) and every \(N \in \mathcal{G}_{gr-\mathcal{F}I_n}\) has an left exact \((gr-\mathcal{F}I_n)\)-resolution, then \(M \in (^\perp \mathcal{G}_{gr-\mathcal{F}I_n})^\perp\) as well.

(2) \(\implies\) (1) Note that we have to show that \((^\perp \mathcal{G}_{gr-\mathcal{F}I_n})^\perp = \mathcal{G}_{gr-\mathcal{F}I_n}\). If \(M \in (^\perp \mathcal{G}_{gr-\mathcal{F}I_n})^\perp\), then \(n\)-FP-gr-injective resolution \(\cdots \to A_3 \to A_1 \to A_0 \to M \to 0\) of \(M\) in \(R\)-gr exists. Also, we have an exact sequence \(0 \to M \to E_0 \to E_1 \to \cdots\) in \(R\)-gr, where any \(E_i\) is gr-injective. So, there exists an exact sequence

\[V : \cdots \to A_3 \to A_1 \to A_0 \to E_0 \to E_1 \to \cdots\]

of \(n\)-FP-gr-injective modules in \(R\)-gr with \(M = \text{Ker}(E_0 \to E_1)\). Let \(0 \to K_n \to F_{n-1} \to K_{n-1} \to 0\) be a short exact sequence in \(R\)-gr with \(gr-pd_R(K_{n-1}) < \infty\). Then, by hypothesis, \(K_n\) is a gr-presented module with \(gr-pd_R(K_n) < \infty\). So, by [12] Theorem 6.10] and by using the inductive presumption on \(gr-pd_R(K_{n-1})\), we deduce that \(\text{HOM}_R(K_{n-1}, V)\) is exact. Thus, \(M\) is Gorenstein \(n\)-FP-gr-injective and hence \(M \in \mathcal{G}_{gr-\mathcal{F}I_n}\).

Now, if \(0 \to A \to B \to C \to 0\) is a short exact sequence in \(R\)-gr, where \(A, B \in \mathcal{G}_{gr-\mathcal{F}I_n}\), then by Theorem 3.7 \(C \in \mathcal{G}_{gr-\mathcal{F}I_n}\). Hence, the pair \((^\perp \mathcal{G}_{gr-\mathcal{F}I_n}, \mathcal{G}_{gr-\mathcal{F}I_n})\) is a hereditary cotorsion pair.

\[\blacksquare\]
Proposition 3.11. Assume that every n-presented module in R-gr with gr-$fd_{R}(U) < \infty$ is $(n+1)$-presented. Then, for every short exact sequence $0 \to A \to B \to C \to 0$ in gr-R, A is Gorenstein n-gr-flat if B and C are Gorenstein n-gr-flat.

Proof. If B is a Gorenstein n-gr-flat module in gr-R, then by Definition 3.1 and Remark 3.2, there is an exact sequence $0 \to B \to F^0 \to L \to 0$ in gr-R, where F^0 is n-gr-flat and L is Gorenstein n-gr-flat. We have the following pushout diagram with exact rows:

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & A & B & C & 0 \\
0 & A & F^0 & D & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
L & L & 0 & 0 \\
\end{array}
\]

By Proposition 3.4(2), D is Gorenstein n-gr-flat, and so we have the following commutative diagram in gr-R:

\[
\cdots \to P_1 \to P_0 \to F^0 \to D^0 \to D^1 \to \cdots,
\]

\[
\begin{array}{cccc}
\downarrow & \downarrow & & \downarrow & \downarrow \\
L_0 & A & D & L^1 \\
\end{array}
\]

where D^i and F^0 are n-gr-flat modules, P_i is gr-flat, $A = \text{Ker}(F^0 \to D)$, $D = \text{Ker}(D^0 \to D^1)$, $L_i = \text{Ker}(P_i \to P_{i-1})$ and $L^i = \text{Ker}(D^i \to D^{i+1})$. By Remark 3.2, P_i and L^i are Gorenstein n-gr-flat and hence by Lemma 3.6(2), $\text{Tor}_t^R(L^i, K_{n-1}) = \text{Tor}_t^R(D, K_{n-1}) = 0$ for any special gr-presented module K_{n-1} in R-gr with gr-$fd_{R}(K_{n-1}) < \infty$ and any $t \geq 0$. So, similar to the proof $(1) \implies (2)$ of Theorem 3.7, it follows that $- \otimes_R K_{n-1}$ on the above horizontal sequence in diagram is exact and so A is Gorenstein n-gr-flat.
Corollary 3.12. Let every \(n \)-presented module in \(R \)-gr with \(\text{gr-fd}_R(U) < \infty \) be \((n+1)\)-presented. Then, a module \(M \) in \(gr-R \) is Gorenstein \(n \)-gr-flat if and only if every gr-pure submodule and any gr-pure epimorphic image of \(M \) are Gorenstein \(n \)-gr-flat.

Proof. \((\Rightarrow) \) Let \(M \) be a Gorenstein \(n \)-gr-flat module in \(gr-R \) and \(K \) a gr-pure submodule in \(M \). Then, the exact sequence \(0 \to K \to M \to \frac{M}{K} \to 0 \) is gr-pure. So, if \(K_{n-1} \) is special gr-presented module in \(R \)-gr, then \(\text{Tor}^R_1(\frac{M}{K}, K_{n-1}) = 0 \) and consequently by \([18]\) Lemma 2.1, \(\text{Tor}^R_1(\frac{M}{K}, K_{n-1})^* \cong \text{Ext}^1_R(K_{n-1}, (\frac{M}{K})^*) = 0 \). Therefore, the exact sequence \(0 \to (\frac{M}{K})^* \to M^* \to K^* \to 0 \) is special gr-pure in \(R \)-gr, and using \([36]\) Proposition 3.10, we deduce that \((\frac{M}{K})^*\) is \(n \)-FP-gr-injective. By \([36]\) Proposition 3.8, \(\frac{M}{K} \) is \(n \)-gr-flat, and then Proposition 3.11 shows that \(K \) is Gorenstein \(n \)-gr-flat.

(\(\Leftarrow\)) Let \(K \) be a gr-pure submodule in \(M \). Then, the exact sequence \(0 \to K \to M \to \frac{M}{K} \to 0 \) is gr-pure. So, it follows, by Proposition 3.4(2), that \(M \) is Gorenstein \(n \)-gr-flat.

Proposition 3.13. Let \(R \) be a graded ring. Then:

1. The class \(G_{gr-FI} \) in \(R \)-gr is closed under direct products.

2. The class \(G_{gr-F} \) in \(gr-R \) is closed under direct sums.

Next definition contains some general remarks about resolving classes of graded modules which will be useful in Sections 3 and 4. We use \(gr-\mathcal{I}(R) \) to denote the class of finite injective graded left modules and the symbol \(gr-\mathcal{P}(R) \) denotes the class of finite projective graded right modules (the graded version of \([22]\) 1.1. Resolving classes).

Definition 3.14. Let \(R \) be a graded ring and \(\mathcal{X} \) a class of graded modules. Then:

1. We call \(\mathcal{X} \) \(gr \)-injectively resolving if \(gr-\mathcal{I}(R) \subseteq \mathcal{X} \), and for every short exact sequence \(0 \to A \to B \to C \to 0 \) with \(A \in \mathcal{X} \) the conditions \(B \in \mathcal{X} \) and \(C \in \mathcal{X} \) are equivalent.

2. We call \(\mathcal{X} \) \(gr \)-projectively resolving if \(gr-\mathcal{P}(R) \subseteq \mathcal{X} \), and for every short exact sequence \(0 \to A \to B \to C \to 0 \) with \(C \in \mathcal{X} \) the conditions \(A \in \mathcal{X} \) and \(B \in \mathcal{X} \) are equivalent.
By Definition 3.14 Propositions 3.4 3.11 3.13 Theorem 3.7 and the graded version of [22 Proposition 1.4], we have the following easy observations.

Proposition 3.15. Assume that every \(n \)-presented module in \(R\)-gr with \(\text{gr-fd}_R(U) < \infty \) is \((n+1)\)-presented. Then:

1. The class \(\mathcal{G}_{gr-FI_n} \) is gr-injectively resolving.
2. The class \(\mathcal{G}_{gr-FI_n} \) is closed under direct summands.
3. The class \(\mathcal{G}_{gr-F_n} \) is gr-projectively resolving.
4. The class \(\mathcal{G}_{gr-F_n} \) is closed under direct summands.

We know that, if \(R \) is a left \(n \)-gr-coherent ring, then every \(n \)-presented module in \(R\)-gr with \(\text{gr-fd}_R(U) < \infty \) is \((n+1)\)-presented. So in the following theorem according to previous results, we investigate the relationships between Gorenstein \(n \)-FP-gr-injective and Gorenstein \(n \)-gr-flat modules on \(n \)-gr-coherent rings.

Theorem 3.16. Let \(R \) be a left \(n \)-gr-coherent ring. Then,

1. Module \(M \) in \(R\)-gr is Gorenstein \(n \)-FP-gr-injective if and only if \(M^* \) is Gorenstein \(n \)-gr-flat in \(gr-R \).
2. Module \(M \) in \(gr-R \) is Gorenstein \(n \)-gr-flat if and only if \(M^* \) is Gorenstein \(n \)-FP-gr-injective in \(R\)-gr.

Proof. (1) \(\Rightarrow \) By Definition 3.1 there is an exact sequence \(\cdots \to A_1 \to A_0 \to M \to 0 \) in \(R\)-gr, where every \(A_i \) is \(n \)-FP-gr-injective, and by [36 Theorem 3.17], every \((A_i)^* \) is \(n \)-gr-flat in \(gr-R \). So by [32 Lemma 3.53], there is an exact sequence \(0 \to M^* \to (A_0)^* \to (A_1)^* \to \cdots \) in \(gr-R \). Hence, we have:

\[
\mathcal{E} : \cdots \to P_1 \to P_0 \to (A_0)^* \to (A_1)^* \to \cdots,
\]

where \(P_i \) is gr-projective and \(n \)-gr-flat in \(gr-R \) by Remark 3.2 and also \(M^* = \ker((A_0)^* \to (A_1)^*) \). Let \(0 \to K_n \to F_{n-1} \to K_{n-1} \to 0 \) be a special short exact sequence in \(R\)-gr with
n-gr-Coherent rings and Gorenstein graded modules

Then, K_n is a gr-presented module with $\text{gr-fd}_R(K_n) < \infty$, since R is n-gr-coherent. By [32, Theorem 6.10] and by using the inductive presumption on $\text{gr-fd}_R(K_{n-1})$, we deduce that $\mathcal{Y} \otimes_R K_{n-1}$ is exact and then M^* is Gorenstein n-gr-flat.

(\Leftarrow) Let M^* be a Gorenstein n-gr-flat module in $\text{gr}-R$. Then, by (2)(\Longrightarrow), M^{**} is Gorenstein n-FP-gr-injective in R-gr. By [34, Proposition 2.3.5], M is gr-pure in M^{**}, and so by Corollary 3.8 M is Gorenstein n-FP-gr-injective.

(\Rightarrow) By Definition 3.1 there is an exact sequence $0 \to M \to F^0 \to F^1 \to \cdots$ of n-gr-flat modules in $\text{gr}-R$. By [36 Proposition 3.8], $(F^i)^*$ is n-FP-gr-injective for any $i \geq 0$. So by [32 Lemma 3.53], there is an exact sequence $\cdots \to (F^1)^* \to (F^0)^* \to M^*$ in R-gr. For a module M^*, there is an exact sequence $0 \to M^* \to E_0 \to E_1 \to \cdots$ in R-gr, where E_i is gr-injective. Consider the following exact sequence:

\[\cdots \to (F^1)^* \to (F^0)^* \to E_0 \to E_1 \to \cdots \]

with $M^* = \ker(E_0 \to E_1)$. Hence, by analogy with the proof (2)(\Rightarrow) (1) of Corollary 3.10 we obtain that M^* is Gorenstein n-FP-gr-injective.

(\Leftarrow) Let M^* be a Gorenstein n-FP-gr-injective module in R-gr. Then, by (1)(\Rightarrow), M^{**} is Gorenstein n-gr-flat in R-gr. By [34 Proposition 2.3.5], M is gr-pure in M^{**}, and so by Corollary 3.12 M is Gorenstein n-gr-flat.

Next, we are given other results of Gorenstein n-FP-gr-injective and n-gr-flat modules on n-gr-coherent rings.

Proposition 3.17. Let R be a left n-gr-coherent ring. Then,

1. the class G_{gr-FI_n} in R-gr is closed under direct limits.

2. the class G_{gr-F_n} in $gr-R$ is closed under direct products.

Proof. (1) Let $U \in R$-gr be an n-presented module and let $\{A_i\}_{i \in I}$ be a family of n-FP-gr-injective modules in R-gr. Then by [36 Theorem 3.17], $\lim_{\longrightarrow} A_i$ is n-FP-gr-injective. So, if $\{M_i\}_{i \in I}$ is a family of Gorenstein n-FP-gr-injective modules in R-gr, then the following n-FP-gr-injective complex

\[\mathcal{Y}_i = \cdots \to (A_i)_1 \to (A_i)_0 \to (A_i)^0 \to (A_i)^1 \to \cdots, \]

where $M_i = \ker((A_i)^0 \to (A_i)^1)$, induces the following exact sequence of n-FP-gr-injective modules in R-gr:

$$\lim M_i = \cdots \to \lim (A_i)_1 \to \lim (A_i)_0 \to \lim (A_i)^0 \to \lim (A_i)^1 \to \cdots,$$

where $\lim M_i = \ker(\lim (A_i)^0 \to \lim (A_i)^1)$. Assume that K_{n-1} is special gr-presented module in R-gr with $\text{gr-pd}_R(K_{n-1}) < \infty$, then by [36 Proposition 3.13],

$$\text{HOM}_R(K_{n-1}, \lim \mathcal{M}) \cong \lim \text{HOM}_R(K_{n-1}, \mathcal{M}).$$

By hypothesis, $\text{HOM}_R(K_{n-1}, \mathcal{M})$ is exact, and consequently $\lim M_i$ is Gorenstein n-FP-gr-injective.

(2) Let $U \in R$-gr be an n-presented and let $\{F_i\}_{i \in I}$ be a family of n-gr-flat modules in gr-R. Then by [36 Theorem 3.17], $\text{gr-flat}(\text{gr-flat}(\text{gr-flat}(\text{gr-flat})))$ is n-gr-flat. So, if $\{M_i\}$ is a family of Gorenstein n-gr-flat modules in gr-R, then the following n-gr-flat complex

$$\mathcal{X}_i = \cdots \to (F_i)_1 \to (F_i)_0 \to (F_i)^0 \to (F_i)^1 \to \cdots,$$

where $M_i = \ker((F_i)^0 \to (F_i)^1)$, induces the following exact sequence of n-gr-flat modules in gr-R:

$$\prod_{i \in I} \mathcal{X}_i = \cdots \to \prod_{i \in I} (F_i)_1 \to \prod_{i \in I} (F_i)_0 \to \prod_{i \in I} (F_i)^0 \to \prod_{i \in I} (F_i)^1 \to \cdots,$$

where $\prod_{i \in I} M_i = \ker(\prod_{i \in I} (F_i)^0 \to \prod_{i \in I} (F_i)^1)$. If K_{n-1} is special gr-presented, then

$$(\prod_{i \in I} \mathcal{X}_i \otimes_R K_{n-1}) \cong \prod_{i \in I} (\mathcal{X}_i \otimes_R K_{n-1}).$$

By hypothesis, $\mathcal{X}_i \otimes_R K_{n-1}$ is exact, and consequently $\prod_{i \in I} M_i$ is Gorenstein n-gr-flat.

In the following proposition, we show that if R is n-gr-coherent, then every Gorenstein n-FP-gr-injective module in R-gr is n-FP-gr-injective if $\text{gr-FP-dim}(R) < \infty$, and every Gorenstein n-gr-flat module in gr-R is n-gr-flat if $\text{gr-FP-dim}(R) < \infty$.

Proposition 3.18. Let R be a left n-gr-coherent ring.

(1) If $\text{gr-FP-dim}(R) < \infty$, then every Gorenstein n-FP-gr-injective module in R-gr is n-FP-gr-injective.
(2) If $n\cdot \text{gr-dim}(R) < \infty$, then every Gorenstein n-gr-flat module in $gr-R$ is n-gr-flat.

Proof. (1) Let $l\cdot \text{FP-gr-dim}(R) \leq k$. If M is a Gorenstein n-FP-gr-injective module in R-gr, then there exists an exact sequence

$$0 \to N \to A_{k-1} \to A_{k-2} \to \cdots \to A_0 \to M \to 0$$

in R-gr, where every A_i is n-FP-gr-injective for any $0 \leq i \leq k - 1$. Since R is n-gr-coherent for any $t \geq 1$, $\text{EXT}^t_R(K_{n-1}, A_i) = 0$ for all special gr-presented left modules K_{n-1} with respect to every n-presented module U in R-g. Let $L_i = \ker(A_i \to A_{i-1})$. Then, we have

$$\text{EXT}^{k+1}_R(K_{n-1}, N) \cong \text{EXT}^k_R(K_{n-1}, L_{k-2}) \cong \cdots \cong \text{EXT}^2_R(K_{n-1}, L_0) \cong \text{EXT}^1_R(K_{n-1}, M).$$

Since n-FP-gr-id$_R(N) \leq k$, then $0 = \text{EXT}^{k+1}_R(K_{n-1}, N) \cong \text{EXT}^1_R(K_{n-1}, M) \cong \text{EXT}^1_R(U, M)$ and consequently M is n-FP-gr-injective.

(2) The proof is similar to that of (1).

4 Covers and Preenvelopes by Gorenstein graded Modules

For a graded ring R, let \mathcal{F} be a class of graded left R-modules and M a graded left R-module. Following [5, 35], we say that a graded morphism $f : F \to M$ is an \mathcal{F}-precover of M if $F \in \mathcal{F}$ and $\text{Hom}_{R-\text{gr}}(F', F) \to \text{Hom}_{R-\text{gr}}(F', M) \to 0$ is exact for all $F' \in \mathcal{F}$. Moreover, if whenever a graded morphism $g : F \to F$ such that $fg = f$ is an automorphism of F, then $f : F \to M$ is called an \mathcal{F}-cover of M. The class \mathcal{F} is called (pre)covering, if each object in R-gr has an \mathcal{F}-(pre)cover. Dually, the notions of \mathcal{F}-preenvelopes, \mathcal{F}-envelopes and (pre)enveloping are defined.

In this section, by using of duality pairs on n-gr-coherent rings, we show that the classes $\mathcal{G}_{gr-\mathcal{F}L_n}$ (resp. $\mathcal{G}_{gr-\mathcal{F}n}$) or other signs are covering and preenveloping.

Definition 4.1 (The graded version of Definition 2.1 of [23]). Let R be a graded ring. Then, a duality pair over R is a pair $(\mathcal{M}, \mathcal{C})$, where \mathcal{M} is a class of graded left (respectively, right) R-modules and \mathcal{C} is a class of graded right (respectively, left) R-modules, subject to the following conditions:
(1) For any graded module M, one has $M \in \mathcal{M}$ if and only if $M^* \in \mathcal{C}$.

(2) \mathcal{C} is closed under direct summands and finite direct sums.

A duality pair $(\mathcal{M}, \mathcal{C})$ is called (co)product-closed, if the class of \mathcal{M} is closed under graded direct (co)products, and a duality pair $(\mathcal{M}, \mathcal{C})$ is called perfect, if it is coproduct-closed, \mathcal{M} is closed under extensions and R belongs to \mathcal{M}.

Proposition 4.2. Let R be a left n-gr-coherent ring. Then, the pair $(\mathcal{G}_{gr-FI_n}, \mathcal{G}_{gr-F_n})$ is a duality pair.

Proof. Let M be an R-module in R-gr. Then by Theorem 3.16(1), $M \in \mathcal{G}_{gr-FI_n}$ if and only if $M^* \in \mathcal{G}_{gr-F_n}$. By Proposition 3.13(2), any finite direct sum of Gorenstein n-gr-flat modules is Gorenstein n-gr-flat. Also, by Proposition 3.15(4), \mathcal{G}_{gr-F_n} is closed under direct summands. So, by Definition 4.1 the pair $(\mathcal{G}_{gr-FI_n}, \mathcal{G}_{gr-F_n})$ is a duality pair.

Proposition 4.3. Let R be a left n-gr-coherent ring. Then, the pair $(\mathcal{G}_{gr-F_n}, \mathcal{G}_{gr-FI_n})$ is a duality pair.

Proof. Let M be an R-module in $gr-R$. Then by Theorem 3.16(2), $M \in \mathcal{G}_{gr-F_n}$ if and only if $M^* \in \mathcal{G}_{gr-FI_n}$. By Proposition 3.13(1), any finite direct sum of Gorenstein n-gr-FP-injective modules is Gorenstein n-FP-gr-injective and by Proposition 3.15(2), \mathcal{G}_{gr-FI_n} is closed under direct summands. So, by Definition 4.1 the pair $(\mathcal{G}_{gr-F_n}, \mathcal{G}_{gr-FI_n})$ is a duality pair.

Theorem 4.4. Let R be a left n-gr-coherent ring. Then:

(1) The class \mathcal{G}_{gr-FI_n} is covering and preenveloping.

(2) The class \mathcal{G}_{gr-F_n} is covering and preenveloping.

Proof. (1) Every direct limit of Gorenstein n-FP-gr-injective modules and every direct product of Gorenstein n-FP-gr-injective modules in R-gr are Gorenstein n-FP-gr-injective by Propositions 3.17(1) and 3.13(1), respectively. Also, by Corollary 3.8 the class of Gorenstein n-FP-gr-injective modules in R-gr is closed under gr-pure submodules, gr-pure quotients and gr-pure extensions. So, by Proposition 4.2 and [36, Theorem 4.2], we deduce that every R-module in R-gr has a Gorenstein n-FP-gr-injective cover and a Gorenstein n-FP-gr-injective preenvelope.
Every direct sum of Gorenstein n-gr-flat modules and every direct product of Gorenstein n-gr-flat modules in $\text{gr}-R$ are Gorenstein n-gr-flat by Propositions 3.13(2) and 3.17(2), respectively. Also, by Corollary 3.12, the class of Gorenstein n-gr-flat modules in $\text{gr}-R$ is closed under gr-pure submodules, gr-pure quotients and gr-pure extensions. So, by Proposition 4.3 and [36, Theorem 4.2], we deduce that every R-module in $\text{gr}-R$ has a Gorenstein n-gr-flat cover and a Gorenstein n-gr-flat preenvelope.

Now we give some equivalent characterizations for R being Gorenstein n-FP-gr-injective in terms of the properties of Gorenstein n-FP-gr-injective and Gorenstein n-gr-flat modules.

Theorem 4.5. Let R be a left n-gr-coherent ring. Then, the following statements are equivalent:

1. R is Gorenstein n-FP-gr-injective;
2. Every graded module in $\text{gr}-R$ has a monic Gorenstein n-gr-flat preenvelope;
3. Every gr-injective module in $\text{gr}-R$ is Gorenstein n-gr-flat;
4. Every n-FP-gr-injective module in $\text{gr}-R$ is Gorenstein n-gr-flat;
5. Every flat module in R-gr is Gorenstein n-FP-gr-injective;
6. Every graded module in R-gr has an epic Gorenstein n-FP-gr-injective cover.

Moreover, if $l.n$-FP-gr-$\text{dim}(R) < \infty$, then the above conditions are also equivalent to:

7. Every Gorenstein gr-flat module in $\text{gr}-R$ is Gorenstein n-FP-gr-injective;
8. Every graded module in R-gr is Gorenstein n-FP-gr-injective;
9. Every Gorenstein gr-injective module in $\text{gr}-R$ is Gorenstein n-gr-flat.

Proof. (8) \implies (7), (7) \implies (5) and (9) \implies (3) are obvious.

(1) \implies (2) By Theorem 4.4(2), every module M in $\text{gr}-R$ has a Gorenstein n-gr-flat preenvelope $f : M \rightarrow F$. By Theorem 3.16(1), $R^+\ast$ is Gorenstein n-gr-flat in $\text{gr}-R$, and so $\prod_{i \in I}^{\text{gr}-R} R^+\ast$ is Gorenstein n-gr-flat by Proposition 3.17. On the other hand, $(R^+)^\ast$ is a cogenerator in $\text{gr}-R$. Therefore, exact sequence of the form $0 \rightarrow M \xrightarrow{g} \prod_{i \in I}^{\text{gr}-R} R^+\ast$ exists, and hence homomorphism $0 \rightarrow F \xrightarrow{h} \prod_{i \in I}^{\text{gr}-R} R^+\ast$ such that $hf = g$ shows that f is monic.
Let E be a gr-injective module in gr-R. Then E has a monic Gorenstein n-gr-flat preenvelope $f : E \to F$ by assumption. So, the split exact sequence $0 \to E \to F \to \frac{F}{E} \to 0$ exists, and so E is direct summand of F. Hence, by Proposition 3.15, E is Gorenstein n-gr-flat.

(3) \implies (1) By (3), R^* is Gorenstein n-gr-flat in gr-R, since R^* is gr-injective. So, R is Gorenstein n-FP-gr-injective in gr-R by Theorem 3.16(1).

(3) \implies (4) Let M be an n-FP-gr-injective module in gr-R. Then by [36, Proposition 3.10], the exact sequence $0 \to M \to E^g(M) \to \frac{E^g(M)}{M} \to 0$ is special gr-pure. Since by (3), $E^g(M)$ is Gorenstein n-gr-flat, from Corollary 3.12, we deduce that M is Gorenstein n-gr-flat.

(4) \implies (5) Let F be a flat module in gr-R. Then, F^* is gr-injective in gr-R, so F^* is Gorenstein n-gr-flat by (4), and hence F is Gorenstein n-FP-gr-injective by Theorem 3.16(1).

(5) \implies (6) By Theorem 4.4(1), every module M in gr-R has a Gorenstein n-FP-gr-injective cover $f : A \to M$. On the other hand, there exists an exact sequence $\bigoplus_{\gamma \in S} R(\gamma) \to M \to 0$ for some $S \subseteq G$. Since $R(\gamma)$ is Gorenstein n-FP-gr-injective by assumption, we have that $\bigoplus_{\gamma \in S} R(\gamma)$ is Gorenstein n-FP-gr-injective by Proposition 3.17. Thus f is an epimorphism.

(6) \implies (1) By hypothesis, R has an epic Gorenstein n-FP-gr-injective cover $f : D \to R$, then we have a split exact sequence $0 \to \ker f \to D \to R \to 0$ with D is a Gorenstein n-FP-gr-injective module in gr-R. So, by Proposition 3.15, R is Gorenstein n-FP-gr-injective in gr-R.

(1) \implies (8) Let M be a graded left R-module. Then, there is an exact sequence $\cdots \to F_1 \to F_0 \to M \to 0$ in gr-R, where each F_i is gr-flat. If R is a Gorenstein n-FP-gr-injective module in gr-R, then by Proposition 3.18(1), R is n-FP-gr-injective. Hence, by [36, Theorem 4.8], we deduce that every F_i is n-FP-gr-injective. Also, for module M, there is an exact sequence $0 \to M \to E_0 \to E_1 \to \cdots 0$ in gr-R, where every E_i is gr-injective. So, we have:

$$\cdots \to F_1 \to F_0 \to E_0 \to E_1 \to \cdots,$$

where F_i and E_i are n-FP-gr-injective and $M = \ker(E_0 \to E_1)$. Thus, similar to the proof (2) \implies (1) of Corollary 3.10, we get that M is Gorenstein n-FP-gr-injective.

(8) \implies (9) If M is a Gorenstein gr-injective module in gr-R, then M^* is in gr-R. So by hypothesis, M^* is Gorenstein n-FP-gr-injective, and hence by Theorem 3.16, it follows that M is Gorenstein n-gr-flat.

Example 4.6. Let R be a commutative, Gorenstein Noetherian, complete, local ring, m its maximal ideal. Let $E = E(R/m)$ be the R-injective hull of the residue field R/m of R. By [33, Theorem A],
\[\lambda \dim(R \ltimes E) = \dim R, \text{ where } \dim R \text{ is the Krull dimension of } R. \] We suppose that \(\dim R = n \), then \((R \ltimes E)\) is \(n\)-gr-coherent. And if we take in [28 Theorem 4.2] \(n = 1 \) and \(B = \{0\} \), we get \(\text{Hom}_R(E, E) = R \). Then, by [17 Corollary 4.37], \((R \ltimes E)\) is self gr-injective which implies that \((R \ltimes E)\) is a left \(n\)-FP-gr-injective module over itself. Hence, \(R \ltimes E \) is \(n\)-FC graded ring \((n\text{-gr-coherent and } n\text{-FP-gr-injective})\), and then by Remark 3.2 \((R \ltimes E)\) is Gorenstein \(n\)-FP-gr-injective. For example, the ring \(R = K[[X_1, \ldots, X_n]] \) of formal power series in \(n \) variables over a field \(K \) which is commutative, Gorenstein Noetherian, complete, local ring, with \(\mathfrak{m} = (X_1, \ldots, X_n) \) its maximal ideal. We obtain \(\lambda \dim(R \ltimes E(R/\mathfrak{m})) = n \), that is, \(R \ltimes E(R/\mathfrak{m}) \) is \(n\)-gr-coherent ring. So according to the above \(R \ltimes E(R/\mathfrak{m}) \) is \(n\)-FC graded ring. So, every left \(R \ltimes E(R/\mathfrak{m})\)-module is Gorenstein \(n\)-FP-gr-injective.

Proposition 4.7. Let \(R \) be a left \(n\)-gr-coherent. Then, \((G_{gr-F_n}, (G_{gr-F_n})^\perp)\) is hereditary perfect cotorsion pair.

Proof. Let \(G_{gr-F_n} \) be a class of Gorenstein \(n\)-gr-flat modules in \(gr-R \). Then, by Corollary 3.12 \(G_{gr-F_n} \) is closed under gr-pure submodules, gr-pure quotients and gr-pure extensions. On the other hand, \(R \in G_{gr-F_n} \) by Remark 3.2 and \(G_{gr-F_n} \) is closed under graded direct sums by Proposition 3.13 So, it follows that duality pair \((G_{gr-F_n}, G_{gr-F_n})^\perp)\) is perfect. Consequently by [36 Theorem 4.2], \((G_{gr-F_n}, (G_{gr-F_n})^\perp)\) is perfect cotorsion pair. Consider the short exact sequence \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \) in \(gr-R \), where \(B \) and \(C \) are Gorenstein \(n\)-gr-flat. Then, by Proposition 3.11 \(A \) is Gorenstein \(n\)-gr-flat and hence perfect cotorsion pair \((G_{gr-F_n}, (G_{gr-F_n})^\perp)\) is hereditary. \(\blacksquare \)

Acknowledgment. The authors would like to thank the referee for the helpful suggestions and valuable comments.

References

[1] **M. J. Asensio, J. A. López-Ramos, B. Torrecillas**: Gorenstein gr-injective and gr-projective modules, Comm. Algebra 26 (1998), 225-240.

[2] **M. J. Asensio, J. A. López-Ramos, B. Torrecillas**: Gorenstein gr-flat modules, Comm. Algebra 26 (1998), 3195-3209.
[3] M. J. Asensio, J. A. López-Ramos, B. Torrecillas: FP-gr-injective modules and gr-FC-rings, Algebra and Number Theory. Proc. Conf., Fez, Morocco (M. Boulagouaz, ed.). Lecture Notes in Pure and Appl. Math., 208, Marcel Dekker, New York, 2000, pp. 1-11.

[4] M. J. Asensio, J. A. López-Ramos, B. Torrecillas: Gorenstein gr-injective modules over graded isolated singularities, Comm. Algebra 28 (2000), 3197-3207.

[5] M. J. Asensio, J. A. López-Ramos, B. Torrecillas: Covers and envelopes over gr-Gorenstein rings, J. Algebra 215 (1999), 437-457.

[6] K. Adarbeh, S. Kabbaj: Trivial extensions subject to semi-regularity and semi-coherence, Quaest. Math. 43 (2018), 1-10.

[7] D. D. Anderson, D. Bennis, B. Fahid, A. Shaiea: On n-trivial extensions of rings, Rocky Mountain J. Math. 47 (2017), 2439-2511.

[8] D. D. Anderson, M. Winders: Idealization of a module, Comm. Algebra 1 (2009), 3-56.

[9] D. Bravo, M. A. Pérez: Finitness conditions and cotorsion pairs, J. Pure Appl. Algebra 221 (2017), 1249-1267.

[10] D. L. Costa: Parameterizing families of non-Noetherian rings, Comm. Algebra 22 (1994), 3997-4011.

[11] J. L. Chen, N. Q. Ding: On n-coherent rings, Comm. Algebra 24 (1996), 3211-3216.

[12] S. Crivei, M. Prest, B. Torrecillas: Covers in finitely accessible categories, Proc. Amer. Math. Soc. 138 (2010), 1213-1221.

[13] D. E. Dobbs, S. Kabbaj, N. Mahdou: n-Coherent rings and modules, Lect. Notes Pure Appl. Math. 185 (1997), 269-281.

[14] E. E. Enochs, O. M. G. Jenda: Gorenstein injective and projective modules, Math. Z. 220 (1995), 611-633.

[15] E. E. Enochs, O. M. G. Jenda: Relative Homological Algebra, Berlin-New York: Walter de Gruyter, 2000.
[16] E. E. Enochs, O. M. G. Jenda, B. Torrecillas: Gorenstein flat modules, J. Nanjing Univ. Math. Biq. 10 (1993), 1-9.

[17] R. Fossum, P. Grith, I. Reiten: Trivial extensions of abelian categories, Lecture Notes in Math. 456, Springer, Berlin, Heidelberg, New York, 1975.

[18] J. R. García Rozas, J. A. López- Ramos, B. Torrecillas: On the existence of flat covers in R-gr, Comm. Algebra 29 (2001), 3341-3349.

[19] Z. Gao, F. Wang: Coherent rings and Gorenstein FP-injective modules, Comm. Algebra 40 (2012), 1669-1679.

[20] Z. Gao, J. Peng: n-Strongly Gorenstein graded modules, Czech. Math. J. 69 (2019), 55-73.

[21] J. Gillespie: Model structures on modules over Ding-Chen rings, Homology, Homotopy Appl. 12 (2010), 61-73.

[22] H. Holm: Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), 167-193.

[23] H. Holm, P. Jorgensen: Cotorsion pairs induced by duality pairs, Comm. Algebra 1 (2009), 621-633.

[24] L. A. Hugel, D. Herbera, J. Trlifaj: Tilting modules and Gorenstein rings, Forum Math. 35 (2006), 211-229.

[25] L. X. Mao, N. Q. Ding: Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 7 (2008), 491-506.

[26] L. X. Mao: Ding-graded modules and gorenstein gr-flat modules, Glasgow Math. J. 7 (2017), 1-22.

[27] N. Mahdou: On costa’s conjecture, Comm. Algebra 29 (2001), 2775-2785.

[28] E. Matlis: Injective modules over Noetherian rings, Pac. J. Math. 8 (1958), 511-528.

[29] C. Năstătescu: Some constructions over graded rings, J. Algebra Appl. 120 (1989), 119-138.
[30] C. Năstăsescu, F. Van Oystaeyen: Graded Ring Theory, North-Holland Mathematical Library 28, North-Holland Publishing Company, Amsterdam, 1982.

[31] C. Năstăsescu, F. Van Oystaeyen: Methods of Graded Rings, Lecture Notes in Math., 1836, Springer, Berlin, 2004.

[32] J. Rotman: An Introduction to Homological Algebra, Universitext. Springer, New York, second edition, 2009.

[33] J. E. Roos: Finiteness conditions in commutative algebra and solution of a problem of Vasconcelos, London Math. Soc. Lectures Notes in Mathematics 72 (1981), 179-204.

[34] J. Xu: Flat covers of modules, Lecture Notes in Math. 1634, Springer, Berlin, 1996.

[35] X. Y. Yang, Z. K. Liu: FP-gr-injective modules, Math. J. Okayama Univ 53 (2011), 83-100.

[36] T. Zhao, Z. Gao, Z. Huang: Relative FP-gr-injective and gr-flat modules, Int. J. Algebra and Computation 28 (2018), 959-977.