Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides [version 1; peer review: 3 approved]

Glenn F. W. Walpole 1,2, Sergio Grinstein 1-3

1 Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
2 Department of Biochemistry, University of Toronto, Toronto, ON, Canada
3 Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada

Abstract
Despite their comparatively low abundance in biological membranes, phosphoinositides are key to the regulation of a diverse array of signaling pathways and direct membrane traffic. The role of phosphoinositides in the initiation and progression of endocytic pathways has been studied in considerable depth. Recent advances have revealed that distinct phosphoinositide species feature prominently in clathrin-dependent and -independent endocytosis as well as in phagocytosis and macropinocytosis. Moreover, a variety of intracellular and cell-associated pathogens have developed strategies to commandeer host cell phosphoinositide metabolism to gain entry and/or metabolic advantage, thereby promoting their survival and proliferation. Here, we briefly survey the current knowledge on the involvement of phosphoinositides in endocytosis, phagocytosis, and macropinocytosis and highlight several examples of molecular mimicry employed by pathogens to either “hitch a ride” on endocytic pathways endogenous to the host or create an entry path of their own.

Keywords
endocytosis, phagocytosis, macropinocytosis, phosphoinositides, inositolides, signaling, traffic, pathogen
Corresponding author: Sergio Grinstein (sergio.grinstein@sickkids.ca)

Author roles: Walpole GFW: Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing; Grinstein S: Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: G.F.W.W. is supported by a Vanier Canada Graduate Scholarship from the Canadian Institutes of Health Research (CIHR) and an MD/PhD Studentship from the University of Toronto. S.G. is supported by grant FDN-143202 from the CIHR.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2020 Walpole GFW and Grinstein S. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Walpole GFW and Grinstein S. Endocytosis and the internalization of pathogenic organisms: focus on phosphoinositides [version 1; peer review: 3 approved] F1000Research 2020, 9(F1000 Faculty Rev):368 https://doi.org/10.12688/f1000research.22393.1

First published: 15 May 2020, 9(F1000 Faculty Rev):368 https://doi.org/10.12688/f1000research.22393.1
Introduction: phosphoinositides and the internalization of the extracellular milieu

The seven phosphoinositides, which form through combinatorial phosphorylation of the inositol ring at positions D3, D4, and D5 (Figure 1A), are present primarily on the cytosolic surface of biological membranes. By influencing the net charge of cellular endomembranes and directing the binding of ligands, phosphoinositides control the traffic and identity of organelles. Phosphoinositides are dynamic; their abundance and subcellular distribution are regulated in both time and space by active phosphorylation and dephosphorylation reactions as well as by transport between organelles via both vesicular and non-vesicular traffic. The resulting distinct—often inhomogeneous—accumulation of inositol species can recruit proteins to specific organelles and even to subdomains therein. Such recruitment, which is often accompanied by allosteric activation, is made possible by specific protein domains that stereospecifically recognize defined phosphoinositide headgroups

In resting cells, phosphatidylinositol 4,5-bisphosphate—hereafter PtdIns(4,5)P₂—predominates on the inner leaflet of the plasma membrane (PM), where it regulates ion transport and cytoskeleton anchorage and is a source of multiple second messengers. PtdIns(4)P is abundant in the Golgi complex and is also found on the inner leaflet of the PM, where together with PtdIns(4,5)P₂ it controls the non-vesicular counter-transport of phosphatidylserine to the PM¹¹. The 3-phosphorylated species PtdIns(3,4,5)P₃ and PtdIns(3,4)P₂ are much less abundant in the PM of resting cells¹². However, in response to a variety of cellular ligands including hormones, growth factors, and cytokines, the concentration of these rarer inositol species can be amplified drastically (by as much as 100-fold) to regulate key cellular processes. That dysregulated phosphoinositide metabolism underlies numerous human pathologies¹⁻³ is a testament to the paramount importance of these lipids in cellular homeostasis.

Endocytosis is one of many key functions influenced by phosphoinositides. In virtually all cells, endocytosis is required for nutrient acquisition, cell-surface receptor internalization, and signaling regulation. In addition, some specialized cell types employ endocytosis for the surveillance and removal of foreign threats⁸⁻¹². Strikingly, the endocytic machinery of the host cell can also be hijacked by some pathogens, which use molecular mimicry and deploy sophisticated toxins to gain entry to the intracellular environment¹³⁻¹⁵. Because they play critical roles in the formation and maturation of endosomes, phosphoinositides are often targeted by pathogens in their efforts to subvert host endocytic pathways.

Here, we review the initial events of a selection of endocytic pathways and their regulation by inositides, taking note of upstream regulators and downstream effectors. Finally, we highlight several examples of pathogenic organisms that have evolved ways to “hitch a ride” on endogenous endocytic pathways or have cleverly constructed uptake mechanisms by mimicking host pathways.

Receptor-mediated endocytosis

Clathrin-mediated endocytosis

In many cell types, clathrin-mediated endocytosis (CME) is the dominant endocytic pathway supporting housekeeping functions¹⁶. The hallmark of CME and its distinction from other endocytic pathways is the formation of the clathrin triskelion lattice (Figure 1B), which functions in concert with the large GTPase dynamin that mediates fission from the PM¹⁷. Clathrin relies on the organized recruitment of over 50 adaptor and scaffolding proteins to form the clathrin-coated pit (CCP)¹⁸. Initiation occurs at sites of low curvature enriched in PtdIns(4,5)P₂ synthesized mainly by type I phosphatidylinositol 4-phosphate 5-kinases¹⁹⁻²². Adaptors such as the heterotetrameric AP-2 complex, CALM, FCHO1, and epsin bind this lipid at the PM, recruit clathrin, and bridge and cluster to cargo molecules²³⁻³⁰. Specific cargoes destined for endocytosis therefore become enriched at the PM with clathrin and PtdIns(4,5)P₂.

Following cargo capture and clustering, its structural resistance must be overcome for the membrane to invaginate and form a spherical CCP (Figure 1B). Such remodeling is elicited by cooperation between the clathrin lattice coat and scaffold proteins of the Bin, Amphiphysin and Rvs (BAR) domain family³¹. BAR domains are dimeric membrane-binding modules that sense and induce membrane curvature/tubulation through their oligomerization^{11,12}. Interestingly, BAR domains differ in their curvature and are recruited to CCPs in a sequential manner to promote neck constriction: F-BAR proteins with shallow curvature—such as FCHO1/2—are recruited early, BAR domain proteins with intermediate curvature—like sorting nexin 9 (SNX9)—are recruited midway, and highly curved N-BAR proteins—such as endophilin and amphiphysin—are recruited at late stages^{23,30,32-35}.

The hierarchical recruitment of BAR domain proteins is controlled through not only increasing membrane curvature but also changes in phosphoinositides. Maturation of the CCP requires the activity of the class II phosphatidylinositol 3-kinase (PI3K) C2α, which is activated at CCPs^{36,37} to locally generate PtdIns(3,4)P₂ from PtdIns(4)P₂. PtdIns(3,4)P₂ recruits the BAR domain-containing proteins SNX9 and SNX18 via their PX domains, which, together with AP-2, trigger their oligomerization and the constriction of the CCP neck³⁸ (Figure 1B). Depletion of either PI3K-C2δ or SNX9/18 leads to stalling of CCP necks in a U-shaped conformation³⁹. Actin polymerization also contributes to the shaping of the maturing CCP. The Arp2/3 complex stimulates branched F-actin assembly downstream of the nucleation-promoting factor (NPF) neural Wiskott-Aldrich syndrome protein (N-WASP)^{40,41}. Both SNX9⁴¹ and FCH1S1/2, in the presence of PtdIns(4,5)P₂/PtdIns(3,4)P₂, can activate N-WASP. Following constriction of the neck to an Ω-configuration, multiple BAR domain proteins recruit the fission executioner, dynamin⁴¹.

Throughout maturation and fission, the levels of PtdIns(4,5)P₂ appear to be controlled by 5-phosphatases of the synaptojanin
Figure 1. Phosphoinositide transitions during endocytic processes. (A) The seven phosphoinositide species are derived from the same backbone through combinatory phosphorylation at positions D3, D4, and D5 of the inositol ring. Fatty acyl chains are abbreviated as (R) for simplicity. Phosphoinositides control and identify distinct stages of clathrin-mediated endocytosis (B), fast endophilin-mediated endocytosis (C), and Fcγ receptor-mediated phagocytosis (D). Transitions that are speculative, i.e. not currently supported by experimental data, are labeled in italics and shown with dotted lines; they are predicted based on other endocytic pathways or on the presence of their precursor and/or the product of their hydrolysis. Although lipids intermix, phosphoinositides are drawn as single non-overlapping domains for simplicity. PtdIns, phosphatidylinositol.

(Synj) family. The p170 isoform of Synj-1 is recruited early during maturation, while the p145 isoform is recruited shortly before dynamin via the N-BAR protein endophilin. Interestingly, the dephosphorylation of PtdIns(4,5)P₂ occurs preferentially in highly curved membranes; thus, Synj may aid in dynamin-mediated fission of the CCP neck. The clearance of PtdIns(4,5)P₂ following scission is also necessary for vesicle uncoating and is supported in non-neuronal cells by other 5-phosphatases, including OCRL. Its dephosphorylated product, PtdIns(4)P, may directly support clathrin coat disassembly by recruiting auxilin2 and the ATPase HSC70. Following fission, PtdIns(4)P is hydrolyzed by the Sac2 phosphatase, while remaining PtdIns(3,4)P₂ persists until its hydrolysis by the early endosome-localized INPP4A/B phosphatase. On early endosomes, PtdIns(3)P is synthesized mainly by Vps34, a class III PI3K, but contributions from class II PI3Ks have been noted. PtdIns(3)P is also posited to support clathrin coat disassembly by recruiting auxilin1 and HSC70.

Clathrin-independent endocytosis
Here we discuss fast endophilin-mediated endocytosis (FEME), a form of clathrin-independent endocytosis (CIE). We refer the reader to several recent reviews on other important CIE pathways which occur in various tissue types. These include clathrin-independent carriers/glycosylphosphatidylinositol-anchored...
protein-enriched endocytic compartments (or CLIC/GEEC), ultra-fast endocytosis, generalized interleukin-2 receptor endocytosis, and caveolae.

Fast endophilin-mediated endocytosis

Occurring predominantly at the leading edge of cells, FEME is an actin- and dynamin-dependent pathway that mediates the ligand-triggered uptake of several families of surface receptors\(^\text{61}\). This includes G-protein-coupled receptors (\(\alpha_2a, \beta_1\) but not \(\beta_2\)-adrenergic, dopaminergic D3 and D4, muscarinic acetylcholine receptor 4), receptor tyrosine kinases ([RTKs] EGFR, HGFR, VEGF, and PDGF among others), tyrosine receptor kinase B, and the interleukin-2 receptor (2\(\alpha\), 2\(\beta\), and \(\gamma_c\)) in lymphocytes\(^\text{62-64}\). The N-BAR protein endophilin acts as a critical node in FEME, utilizing both its BAR domain as a scaffold for oligomerization on membranes and its numerous SH3 domain interactions to coordinate the capture of activated cargo with membrane bending and fission\(^\text{6}\). To capture cargo, endophilin binds directly to proline-rich motifs present in cytosolic loops of many cargoes\(^\text{61}\) or relies on intermediate adaptors in the case of RTKs\(^\text{63,64}\) and the tyrosine receptor kinase B\(^\text{61}\).

Prior to receptor activation, endophilin forms prominent assemblies at lamellipodia through interaction with the protein lamellipodin and PtdIns(3,4)P\(_2\) (Figure 1C)\(^\text{66}\). The Pleckstrin Homology (PH) domain of lamellipodin associates with PtdIns(3,4)P\(_2\)-rich regions of the membrane, and endophilin, in turn, is scaffolded onto lamellipodin through at least 10 binding sites\(^\text{66,67}\). In contrast to CME, PtdIns(3,4)P\(_2\) is generated at lamellipodia and during FEME through the production of PtdIns(3,4,5)P\(_3\), by class I PI3Ks\(^\text{68}\) and its subsequent dephosphorylation by the phosphatases SHIP1/2\(^\text{69}\). Consistent with this phosphoinositide transition, RNA interference or pharmacological inhibition of SHIP1/2 decreases endophilin assembly and FEME, while PTEN reduction, which hydrolyzes position D3 of PtdIns(3,4,5)P\(_3\), and PtdIns(3,4)P\(_2\) levels, increases endophilin assembly\(^\text{61}\). PtdIns(4,5)P\(_2\) levels are controlled during FEME by the 5-phosphatase Synj, which is recruited to lamellipodia by endophilin\(^\text{62,63}\).

FEME promotes the fission of long tubular endosomes containing activated receptors. Indeed, endophilin can mediate extensive tubulation and vesicle formation when it attains high local concentrations\(^\text{64,73}\). However, a recent screen identified the F-BAR proteins FBP17 and CIP4 as being necessary for FEME initiation through the recruitment of SHIP2 and synthesis of PtdIns(3,4)P\(_2\)\(^\text{74,75}\). Interestingly, Cdc42 (a Rho-family GTPase) can recruit FB17 and CIP4 to the membrane when GDP bound, but GDP-bound Cdc42 (which is formed by the GAP activity of N-BAR proteins SH3BP1 and RICH1) terminates this cycle. After fission, PtdIns(3,4)P\(_2\) is cleared from tubular carriers by INPP4A/4B, releasing machinery for subsequent FEME cycles\(^\text{8}\). In such a way, Cdc42 cycling together with inositides control the sequential recruitment of BAR and SH3 domain proteins for constriction and ultimately fission\(^\text{8}\).

Phagocytosis and macrophagocytosis

Phagocytosis

Innate immunity relies on phagocytosis to recognize, internalize, and inactivate potential pathogens such as fungi and bacteria. Phagocytosis is a receptor-mediated, actin-dependent endocytic pathway that internalizes cargo larger than 0.5 \(\mu\)m into a membrane-bound compartment termed the phagosome. The nascent phagosomal membrane, initially derived from the PM, is transformed (matures) through a highly regulated cascade of fusion and fission events to create an acidic, lytic luminal environment that is hostile to pathogens. Professional phagocytes of the myeloid lineage not only kill invading microorganisms but also present antigens generated upon their digestion to lymphocytes, coupling the innate and adaptive immune responses. Phagocytes also maintain tissue homeostasis by clearing endogenous debris and apoptotic cells. Such functional diversity necessitates an arsenal of phagocytic receptors capable of recognizing pathogen- or danger-associated determinants; these can be intrinsic to the target or the result of deposition of serum factors termed opsonins (e.g. immunoglobulin G [IgG] and complement component iC3b)\(^\text{76-78}\). Here we discuss primarily phagocytosis mediated by Fc\(\gamma\) receptors (Fc\(\gamma\)R) that recognize IgG. Not only is this type of phagocytosis the best studied to date but it also has the additional advantage that it can be reconstituted in non-phagocytic cells (fibroblasts, epithelial cells) by heterologous expression of myeloid Fc\(\gamma\)R\(^\text{79-81}\).

The cytosolic domain of Fc\(\gamma\)Rs encodes immunoreceptor tyrosine-based activation motifs (ITAMs), which are substrates of tyrosine phosphorylation by Src-family kinases and Syk. The simultaneous engagement of multiple Fc\(\gamma\)Rs by IgG coating the target particles triggers lateral receptor clustering and exclusion of cytosolic tyrosine phosphatases, steps that are absolutely necessary for the sustained signaling required for engulfment\(^\text{82,83}\). In the initial stages, PtdIns(4,5)P\(_2\) is present and modestly enriched at the site of particle engagement and in the actin-rich membrane pseudopods that zipper around the phagocytic target (Figure 1D)\(^\text{84}\). Multiple PIP5K isofoms that synthesize PtdIns(4,5)P\(_2\) from PtdIns(4)P localize to the phagocytic cup; their genetic perturbation has severe effects on particle engagement and uptake, altering actin remodeling in the nascent cup\(^\text{85-87}\). The Arp2/3 complex, activated by the NPFs WASP, N-WASP, and presumably also WASP-family verprolin homologous protein (WAVE) complexes, mediate the initial burst of actin polymerization associated with the extension of phagocytic pseudopodia. Recruitment of the NPFs occurs in response to Cdc42 and Rac stimulation via multiple adaptors, including Nck\(^\text{88}\) and Grb2/Gab2\(^\text{89}\), downstream of activated ITAMs. PtdIns(4,5)P\(_2\) coordinates the activation of these NPFs in the extending pseudopods\(^\text{90-91}\).

While abundant in the pseudopods, PtdIns(4,5)P\(_2\) is rapidly cleared from the base of the phagocytic cup, becoming undetectable in the nascent phagosome (Figure 1D). The local loss of the inositide marks a critical transition for particle internalization, as it demarcates the regional disassembly of F-actin.
that is seemingly essential for phagosome closure. Indeed, artificially elevating PtdIns(4,5)P$_2$ at the cup by overexpression of PIP5Ks sustains F-actin at the base of the cup and precludes particle uptake. The clearance of PtdIns(4,5)P$_2$ from the nascent cup occurs via multiple pathways: phospholipase C (PLC)-mediated hydrolysis is thought to be the predominant mechanism, but PI3K-mediated phosphorylation to PtdIns(3,4,5)P$_3$ (see below), focal exocytic insertion of endomembranes devoid of the inositol at the base of the cup, and dephosphorylation by the phosphatases OCR and INPP5B also contribute. As a result of such phosphatase activity, the concentration of PtdIns(4)P spikes in the membrane of the nascent phagosome (Figure 1D). PtdIns(4)P then declines abruptly after phagosome sealing, an effect attributed mainly to Sac2, although PLC may be partly responsible.

The 3-phosphorylated inositides also feature prominently in phagocytosis. PtdIns(3,4)P$_2$ and PtdIns(3,4,5)P$_3$ accumulate robustly in pseudopods and in the forming phagocytic cup (Figure 1D). The p85 regulatory subunit of class I PI3K can be recruited directly by activated ITAMs or by other adaptor proteins to mediate the synthesis of PtdIns(3,4,5)P$_3$. The 5-phosphatases SHIP1 and SHIP2 are recruited and activated by both ITAMs and immunoreceptor tyrosine-based inhibitory motif domains (ITIMs) found in FcR and mediate the dephosphorylation of PtdIns(3,4,5)P$_3$ to PtdIns(3,4)P$_2$. Analysis of the dependence of phagocytosis on PI3K signaling has revealed a peculiar disparity in the literature: although actin polymerization persists at sites of phagocytosis despite pharmacological inhibition of PI3Ks, the uptake of large (≥5 μm) but not small particles is inhibited. Several explanations for the phenomenon have been offered, the most compelling being that PI3K products signal the termination of Rho-GTPase signaling that is required for progression of actin polymerization around large targets. Following pseudopod extension, GTP hydrolysis by Rac and Cdc42 GT Pases is necessary for termination of F-actin assembly at the base of the phagocytic cup, an event that is critical for the engulfment of large but not small particles. Accordingly, a recent study identified the RhoGAPs ARHGAP12, ARHGAP25, and SH3BP1 as being recruited to the phagocytic cup in a PI3K-dependent manner and established that they are required for large, but not small, particle internalization. Consistent with this interpretation, the overexpression of SHIP1—which is predicted to reduce PtdIns(3,4,5)P$_3$—inhibits FcγR-mediated phagocytosis of large particles while its 5-phosphatase-dead counterpart (that exerts a dominant-negative inhibitory effect) or knockout of SHIP1 enhances phagocytosis of large particles. Thus, products of class I PI3K activation signal the de-activation of Rho-family GT Pases and actin disassembly. Why is the conversion of phosphoinositides paramount to phagosome sealing? The continued de novo polymerization of actin along extending pseudopods is likely to exhaust one or more cytoskeletal factors. The clearance of PtdIns(4,5)P$_2$ and synthesis of PtdIns(3,4,5)P$_3$ likely orchestrate both the termination of actin polymerization and the disassembly of existing actin filaments at the base of the cup, which likely facilitate the recycling of limiting machinery components to pseudopods.

During phagocytosis, actin polymerization does not only occur at advancing pseudopods. Arp2/3 also induces the assembly of actin in discrete podosome-like structures that exert perpendicular pressure on the PM, promoting receptor engagement and zippering around the target. Podosome initiation in the nascent phagosome requires class I PI3K activity while their eventual disassembly depends on PtdIns(4,5)P$_2$ hydrolysis.

To accommodate the protruding actin network and to envelop the targets, the PM needs to expand; this occurs by concomitant delivery and fusion of endomembranes to the phagocytic cup. The disruption of such focal exocytosis hampers pseudopod extension and impairs engulfment, especially that of large particles. Interestingly, this exocytic pathway is also dependent on PI3K activity, possibly accounting in part for the preferential inhibition of large particle uptake by PI3K inhibitors. Although not yet demonstrated experimentally, by removing a physical barrier, the clearance of F-actin at the base of the cup may facilitate the fusion of exocytic vesicles; alternatively, PI3K products may directly stimulate the exocytic machinery.

PtdIns(3,4,5)P$_3$, and PtdIns(3,4)P$_2$ disappear from nascent phagosomes after a few minutes. PtdIns(3,4,5)P$_3$ is converted to PtdIns(3,4)P$_2$ by SHIP1/2 and the latter subsequently to PtdIns(3)P by INPP4A following closure of the phagosome. Throughout closure and fission, phosphoinositides are likely to recruit and maintain membrane curvature-stabilizing/tubulating proteins of the BAR family such as amphiphysin, OPHN1, SH3BP1, FBP17, and SNX9. In contrast to other endocytic pathways, the role of BAR proteins in promoting scission of the phagosome from the PM is not known. Finally, PtdIns(3)P is acquired by the phagosomal membrane soon after sealing and is obligatory for maturation to the phagolysosome stage (Figure 1D). PtdIns(3)P acquisition is due in part to fusion with early endosomes, but de novo synthesis of PtdIns(3)P occurs via the PI3K Vps34 on the early phagosomal membrane.

Macropinocytosis
Evolutionarily conserved from protozoans to metazoans, macropinocytosis is an actin-based process utilized by innate immune cells to internalize bulk extracellular milieu, as well as membrane-bound structures, to survey for antigens and microbial components. It is also activated in cancer cells to drive elevated nutrient acquisition and support growth. Macropinocytosis is intimately dependent on membrane ruffling, driven by expansion of cortical actin networks underlying the PM. Membrane sheets must extend, curve, fuse at their margins, and ultimately undergo fission from the PM to enclose a large (>0.2–5 μm) macropinocytic vacuole, as such, not all ruffling leads to macropinocytosis. While dendritic cells and macrophages perform constitutive macropinocytosis, here we focus on macropinocytosis induced in response to growth factors, chemokines, and Toll-like receptor agonists.

Much of the actin rearrangement in macropinocytosis revolves around PtdIns(4,5)P$_2$ and signaling patches of PtdIns(3,4,5)P$_3$/PtdIns(3,4)P$_2$, which we discuss sequentially.
PtdIns(4,5)P$_2$ at the macropinocytic cup undergoes biphasic changes: increasing during the extension of F-actin-rich membrane sheets but then decreasing during sealing and internalization of the vacuole. The mechanism of the initial rise in PtdIns(4,5)P$_2$ is unknown but is likely a consequence of activation of PIP5K isofoms, as described in other settings. Accordingly, PIP5K activators such as phosphatidic acid, Rac1, and Arf6 are present and activated at macropinocytic cups, and the activation of Rac1 can stimulate local PtdIns(4,5)P$_2$ synthesis in ruffles. The elevation in PtdIns(4,5)P$_2$ is consistent with the observed initial burst of F-actin at the base of the macropinocytic cup. The inositol could favor net actin polymerization by inhibiting barbed-end capping and/or by severing actin networks. PtdIns(4,5)P$_2$-binding proteins such as profilin, coflin, gelsolin, or capping protein could potentially mediate these effects. Additionally, PtdIns(4,5)P$_2$ can activate the NPFs WASP and N-WASP to promote Arp2/3 activity. At least four mechanisms are likely to contribute to the subsequent local decrease in PtdIns(4,5)P$_2$ that accompanies macropinosome closure and fission: 1) decreased synthesis by inactivation or membrane detachment of PIP5K; 2) PLC-mediated hydrolysis that generates diacylglycerol and Ins(1,4,5)P$_3$; 3) phosphorylation to PtdIns(3,4,5)P$_3$ via class I PI3Ks (see below); and 4) dilution of the inositol upon focal exocytosis of endomembranes devoid of PtdIns(4,5)P$_2$. Hydrolysis by 5-phosphatases is also conceivable.

Following ligand binding, G-protein-coupled receptors and RTKs together with Ras GTPTases recruit class I PI3Ks to the PM, generating patches of PtdIns(3,4,5)P$_3$ where macropinocytic cups form. The means whereby the localization of PtdIns(3,4,5)P$_3$ is spatially restricted is not clear; cytoskeletal structures could confine its diffusion, but differential distribution of kinases and phosphatases could generate a standing gradient of diffusible phosphoinositide. Although PI3K activity is not required for ruffling, both genetic and pharmacological approaches point to an essential role of class I PI3Ks in completing macropinosome closure. Modulation of small GTPTase activity is likely to mediate the effects of PtdIns(3,4,5)P$_3$; a variety of GAPs and GEFS specific to GTPTases of the Arf and Rho families are regulated by the inositide. By activating Rac1 and its effector Pak1, PtdIns(3,4,5)P$_3$ coordinates the formation of rings of the SCAR/WAVE complex that promote the extension of branched actin along the macropinocytic cup walls by stimulating Arp2/3. Indeed, the Arp2/3 complex delineates the border of forming macropinocytic cups, and interfering with SCAR/WAVE activity impairs macropinocytosis. Of note, members of the Ras- and Rho-family are recruited/retained at the PM by electrostatic means: the negative surface charge of the inner leaflet attracts the polycationic C-terminus of the GTPTases. Phosphoinositides contribute markedly to this effect by virtue of their polyvalency. It is conceivable that neutralization of this interaction by accumulation of submembranous H$^+$ accounts for the effects of amiloride, an inhibitor of Na$^+$/H$^+$ exchange that is commonly used to block macroinocytosis.

The mechanisms underlying closure of the macropinocytic cup and fission from the PM remain poorly understood but likely share some features with other endocytic pathways. Closure requires disassembly of submembranous actin, and this is effected, in part, by the hydrolysis of PtdIns(4,5)P$_3$ catalyzed by PLC. PtdIns(3,4,5)P$_3$ is required for the recruitment and activation of PLC, specifically PLCγ and PLCβ. In addition, PtdIns(3,4,5)P$_3$ can aid in scission directly through the recruitment of myosin proteins and indirectly through its hydrolysis products. In this regard, the disappearance of PtdIns(3,4,5)P$_3$ during macroinocytosis coincides with the appearance of PtdIns(3,4)P$_2$, and its depletion abrogates fluid-phase uptake of dextran, a reliable measure of macroinocytosis. The OCRL-like protein DdSP4 performs the equivalent dephosphorylation reaction in Dictyostelium and is similarly required to support cup closure. Why this phosphoinositide conversion is required is not completely clear. A recent screen identified SNX9-family members (SNX9, SNX18, SNX33) as positive regulators of macroinocytosis. It is noteworthy that these are PX-BAR domain-containing proteins whose recruitment is triggered by PtdIns(3,4)P$_2$ in other settings. It is unclear, however, whether BAR domains contribute to the shaping of membrane ruffles or promote fission in macroinocytosis, as they do in FEME and CME. It is also remarkable that not only is the production of PtdIns(3,4)P$_2$ important for macroinocytosis but so too is its hydrolysis to PtdIns(3)P by INPP5B. What role PtdIns(3)P plays in the process is not yet understood.

The internalization of pathogens

It is becoming increasingly evident that many pathogens harness or mimic intrinsic machinery of host cells for their benefit. By commandeering the hosts’ endocytic pathways, a variety of microorganisms have evolved means of gaining entry to cells and surviving within them. For example, numerous viruses and protozoa utilize macroinocytosis to mediate their cellular entry. Other pathogens such as Listeria monocytogenes enter host cells by engaging surface receptors that can undergo CME and CIE by FEME. Here we highlight three selected pathogens that enter cells by diverse means and nestle into distinct host cell niches: Salmonella enterica drives its own cellular entry to reside in an endocytic compartment, Legionella pneumophila “hitches a ride” into alveolar macrophages by phagocytosis and generates a unique intracellular compartment, and enteropathogenic Escherichia coli (EPEC) manipulates the submembranous cytoskeleton to prevent its internalization, attaching firmly to the outer surface of host epithelial cells. While differing vastly in their survival strategies, these pathogens share a key aspect of their survival strategy: the subversion of the host’s phosphoinositide metabolism.

Salmonella enterica

Salmonella enterica spp. are a major worldwide cause of food-borne gastroenteritis (serovar Typhimurium) and Typhoid fever (serovar Typhi and Paratyphi). Salmonella gains entry into host cells and survives therein by virtue of effector proteins that are translocated into the host cytosol by type III secretion systems (T3SS) that are encoded in defined genomic pathogenicity islands (SPI). Salmonella pathogenicity island-1 promotes the invasion of epithelial cells and the formation of...
Salmonella-containing vacuoles (SCV), while Salmonella pathogenicity island-2 promotes intracellular bacterial growth. Phosphoinositides play a key role in these processes.

One effector secreted during invasion, SopB (also known as SigD), acts at least in part by co-opting the inositide metabolism of host cells. It is an important determinant of Salmonella virulence, contributing to inflammation and fluid secretion from infected ileum. SopB shares homology with the mammalian phosphatases INPP4A/4B and Synj. This predicted activity is borne out experimentally: in vitro SopB functions as a phosphatase of broad substrate specificity. In vivo, however, only the 4-phosphatase activity of SopB has been demonstrated (Figure 2A). Inside mammalian cells, it hydrolyzes plasmalemmal PtdIns(4,5)P₂, generating PtdIns(4)P. SopB has also been suggested to possess 5-phosphatase activity but this requires further investigation. Regardless of the specific sites it can dephosphorylate, deletion of SopB results in the failure to clear PtdIns(4,5)P₂ from invaginating regions of the membrane where invasion normally occurs, severely delaying scission of the SCV from the PM. As a result, the invasion efficiency is markedly decreased. The phosphoinositide changes brought about by SopB likely facilitate scission by reducing the rigidity of the cytoskeleton underlying the PM, in the process stimulating endocytosis. Of note, Shigella flexneri—the causative agent of shigellosis—secretes an effector known as IpgD that is structurally homologous to SopB and seemingly shares its hydrolytic activity towards phosphoinositides.

The manner whereby SopB (and presumably also IpgD) manipulates the host cell cytoskeleton to enable invasion is beginning to be understood. Through its phosphoinositide phosphatase activity, SopB can activate RhoG and also acts as a guanine nucleotide-dissociation inhibitor towards Cdc42. These effects act in concert with those triggered by separate effectors, like SopE and SopE2, that operate as Rho-family GTPase effectors for Cdc42, Rac1, RhoA, and RhoG. The antagonizing GAP SptP, and SipA and SipC, which are actin-bundling proteins. Together, these Salmonella effectors induce the formation of formin-mediated actin bundles, followed by Arp2/3-driven branched actin waves that jointly promote ruffle formation and closure, resulting in encapsulation of the bacterium.

Figure 2. Bacterial effectors alter early endocytic traffic by subverting phosphoinositide metabolism. (A) The Salmonella enterica effector SopB promotes efficient invasion of host cells by reducing PtdIns(4,5)P₂ levels in invasion pockets while stimulating the production of PtdIns(3,4,5)P₃, PtdIns(3,4)P₂, and PtdIns(3)P. (B) Following phagocytosis, Legionella pneumophila secretes multiple host effectors that modify phosphoinositides and disrupt early phagosome maturation. LepB functions as a phosphatidylinositide 4-kinase to generate PtdIns(3)P from PtdIns(3)P, and SidF is a 3-phosphatase that hydrolyzes PtdIns(3,4)P₂ to produce PtdIns(4)P. (C) Following contact with the host membrane, enteropathogenic Escherichia coli stimulates a transient increase in local PtdIns(4,5)P₂ levels. The secreted bacterial effector Tir mediates the activation of host phosphatidylinositide 3-kinases to generate PtdIns(3,4,5)P₃ and PtdIns(3,4)P₂. PtdIns, phosphatidylinositol; Tir, translocated intimin receptor.
Intriguingly, despite acting as a phosphatase, SopB mediates the formation of the 3-phosphorylated species PtdIns(3,4,5)P$_3$ and PtdIns(3,4)P$_2$ at invasion ruffles206,207 (Figure 2A). These phosphoinositides recruit and activate AKT through its PI3K, thereby promoting host cell survival following infection202,203. In the same manner described for endogenous endocytosis, the 3-phosphorylated inositides produced by SopB support the recruitment of the PX-BAR domain-containing proteins SNX9180 and SNX18204, likely facilitating dynamin-mediated scission of the SCV from the PM.

The mechanism responsible for the formation of 3-phosphorylated species by SopB is not obvious; it is noteworthy, however, that it is insensitive to classical inhibitors of class I PI3Ks209,210. A possible target of the effector is PI3K-C2α, a class II PI3K resistant to conventional class I inhibitors214,215. In this regard, it is interesting that PI3K-C2α is co-opted by *Shigella flexneri* to promote its cell-to-cell spread206 and that IgPd may be involved in the spreading process207,208. These observations raise the possibility that the homologous SopB may activate this enzyme during invasion. Finally, SopB contributes to the generation of PtdIns(3)P on the nascent SCV206 by recruiting Rab5 and its effector, the class III PI3K Vps34.

Legionella pneumophila

Legionella pneumophila, the causative agent of Legionnaire’s disease, is another pathogen able to commande the phosphoinositide metabolism of its host cells. *Legionella* is internalized by alveolar macrophages following inhalation of aerosolized bacteria$^{199-211}$. Once ensconced within the macrophage, *Legionella* utilizes a defective in organelle trafficking/intracellular multiplication (Dot/Icm) type IV secretion system to inject effectors across the phagosomal membrane—which becomes the *Legionella*-containing vacuole or LCV—to manipulate host cell pathways121,217. One such effector, LepB, alters the levels of cellular PtdIns(3)P and PtdIns(3,4)P$_2$ in macrophages207,214 (Figure 2B). In vitro kinase assays using purified LepB found that LepB functions as a phosphatidylinositol 4-kinase, generating PtdIns(3,4)P$_2$ from PtdIns(3)P, using ATP as a phosphate source14.

PtdIns(3,4)P$_2$ formed during *Legionella* infection is eliminated by another bacterial effector, the lipid phosphatase SidF, which hydrolyzes the D3 phosphate of PtdIns(3,4)P$_2$ to produce PtdIns(4)P on the LCV215 (Figure 2B). The net result of these coordinated effector activities is to deplete PtdIns(3)P from the LCV by converting it first to PtdIns(3,4)P$_2$, which is in turn hydrolyzed to PtdIns(4)P. By depleting PtdIns(3)P, *Legionella* appears to benefit from arresting maturation at an early stage. Moreover, the sustained production of PtdIns(4)P contributes to the maintenance on the LCV of effectors that specifically bind this inositol15,217 and enable fusion with secretory vesicles derived from the ER218.

Through its ability to generate PtdIns(3,4)P$_2$, LepB would be predicted to additionally activate AKT-dependent pro-survival host pathways216. However, the dephosphorylation by SidF antagonizes this effect. Moreover, the supply of PtdIns(3)P to the LCV may be limited by VipD by blocking Rab5-dependent recruitment of Vps34 and/or through its phospholipase activity218,219. More detailed studies will be required to better establish the source and dynamics of these phosphoinositides on the LCV and their consequences on the effectors that determine bacterial virulence.

Enteropathogenic Escherichia coli

In developing countries, EPEC present in contaminated food and water is a major cause of infant diarrhea and mortality210,211. Unlike the bacterial species discussed above, EPEC is predominantly an extracellular pathogen that, in fact, actively inhibits its own endocytosis. Instead, it creates a niche on the surface of the gastrointestinal epithelium by adhering tightly and replicating on actin-rich cell surface structures termed “pedestals”. EPEC utilize a T3SS to deliver effectors across the bacterial cell wall and host cell membrane, which promote adherence to epithelial cells lining the gastrointestinal tract, the loss of their microvilli (lesioning), and altered ion homeostasis, ultimately compromising barrier function222. One such effector, translocated intimin receptor (Tir), integrates into the host PM and also couples to the bacterium by interacting with the intimin receptor on its outer membrane (Figure 2C)223. The Tir:intimin receptor complex is critical to dock EPEC onto the epithelial cell surface and in addition initiates signaling cascades. Like Fceγ phagocytic receptors, the cytosolic domain of Tir bears ITAM/ITIM-like motifs that can be phosphorylated on tyrosine residues by several host kinases$^{224-226}$. Following its lateral clustering upon binding to intimin, Tir is phosphorylated and mediates the formation of the actin pedestal on which the adherent bacteria rest224,227,228. During infection, PtdIns(4,5)P$_2$ transiently accumulates at the initial contact point between bacteria and the PM. The temporary increase occurs just after bacterial adherence and correlates with an accumulation of type I PIP5K and F-actin beneath the adhering bacteria229,230. The accumulation of PtdIns(4,5)P$_2$ at the forming pedestal is largely dependent on a functional T3SS230, although the effectors driving the recruitment of PIP5K remain unknown. Tir clustering, via the adaptor Nck, then recruits N-WASP, which activates the polymerization of branched actin by the Arp2/3 complex227,228,231. It is worth noting that several other EPEC effectors play a part in modulating and polarizing the actin cytoskeleton: EspF co-opts SNX9 to further activate N-WASP232, while EspH inactivates several RhoGEFs233 and EspG interferes with activation of the WAVE complex234. Regardless of the specific bacterial and cellular effectors engaged, the importance of PtdIns(4,5)P$_2$ in the process is undeniable: the artificial enzymatic depletion of the inositol from the PM reduces bacterial adherence and pedestal formation230. Interestingly, Tir stimulates the production of PtdIns(3,4,5)P$_3$ at least in part by binding and recruiting the p85 regulatory subunit to the membrane to activate class I PI3Ks235. In accordance with this observation, Tir activates AKT pro-survival signaling236; consequently, pharmacological inhibition of PI3Ks increases host cell death in response to EPEC237, likely by inhibiting the production of the inositides necessary for AKT activation. It is likely that both the conversion of PtdIns(4,5)P$_2$ to PtdIns(3,4,5)P$_3$ and its hydrolysis by PLC—which is activated
by Tir³⁵—contribute to the biphasic nature of PtdIns(4,5)P₂ accumulation during pedestal formation (Figure 2C).

More recently, the phosphoinositide phosphatase SHIP2 was identified as a host factor that is recruited to EPEC pedestals; the SH2 domain of SHIP2 associates with phosphorylated tyrosine residues on Tir. This interaction is functionally significant, since mutation of the tyrosine residues in the cytosolic domain of Tir or the depletion of SHIP2 led to the formation of disordered pedestals consisting of discrete actin-rich protrusions³⁷. How does SHIP2 regulate the organization of the pedestal? Rather than favoring sustained accumulation of PtdIns(3,4,5)P₃, the phosphatase activity of SHIP2 generates a local platform rich in PtdIns(3,4)P₂ in the pedestal (Figure 2C). The latter inositol is sensed by the PH domain of lamellipodin, which is recruited to modulate F-actin polymerization in the pedestal⁴²,²³.

Concluding remarks
The involvement of phosphoinositides in the generation of endocytic compartments and in directing their fate is now widely recognized, though not yet fully elucidated. The purpose of this review was to provide a bird’s-eye view of the current knowledge of the field. It is important to note that our survey of the literature was limited to the entry and early maturation stages. The role of inositides in late endosomes and lysosomes and in the equivalent stages of maturation of phagosomes and macropinosomes has only begun to be studied recently and should become the subject of a comprehensive and integrated view in the next few years as more information accumulates.

Lastly, it is important to note that the realization that inositides participate in membrane invagination, scission, and maturation was made possible primarily by the development and implementation of phosphoinositide-specific fluorescent probes that enabled real-time visualization of the individual lipid species with sufficient spatial and temporal resolution. In this regard, it is noteworthy that of the seven phosphoinositide species, suitable specific probes exist for only five of them³⁸–⁴¹. To our knowledge, no satisfactory reagents are currently available to detect PtdIns5P or PtdIns(3,5)P₃. Whether and how these lipids participate in membrane internalization and pathogen invasion remains to be studied as we await the development of suitable analytical tools.

References
1. Balla T: Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 2013; 93(3): 1019–1137. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
2. Hammond GRV, Burke JE: Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr Opin Cell Biol. 2020; 63: 57–67. PubMed Abstract | Publisher Full Text | F1000 Recommendation
3. Dickson EJ, Hillie B: Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochem J 2018; 476(1): 1–23. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
4. Soin H, Korzeniowski M, Zewe JP, et al.: P(4,5,6)P₃ controls plasma membrane PI4P and PS levels via ORP5β recruitment to ER-MN contact sites. J Cell Biol. 2018; 217(5): 1797–1813. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
5. Chung J, Torta F, Masai K, et al.: INTRACELLULAR TRANSPORT: PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science. 2015; 349(6246): 428–32. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
6. Moser von Flisek J, Copil A, Delfosse V, et al.: INTRACELLULAR TRANSPORT: Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science. 2015; 349(6246): 432–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation
7. Stephens LR, Jackson TR, Hawkins PT: Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signalling system? Biochim Biophys Acta. 1993; 1171(1): 27–75. PubMed Abstract | Publisher Full Text | F1000 Recommendation
8. Kaksonen M, Roux A: Mechanisms of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2018; 19(5): 313–326. PubMed Abstract | Publisher Full Text | F1000 Recommendation
9. Ferreira APA, Boucrot E: Mechanisms of Carrier Formation during Clathrin-Independent Endocytosis. Trends Cell Biol 2018; 28(3): 188–200. PubMed Abstract | Publisher Full Text | F1000 Recommendation
10. Flannagan RS, Jaumouillé V, Grinstein S: The cell biology of phagocytosis. Annu Rev Pathol. 2012; 7: 61–98. PubMed Abstract | Publisher Full Text | F1000 Recommendation
11. Marques PE, Grinstein S, Freeman SA: SnapShot: Macropinocytosis. Cell. 2017; 169(4): 766–766.e1. PubMed Abstract | Publisher Full Text
12. Freeman SA, Grinstein S: Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev. 2014; 262(1): 193–215. PubMed Abstract | Publisher Full Text
13. Wahlpole GF, Grinstein S, Westman J: The role of lipids in host-pathogen interactions. ILUMILife. 2018; 70(5): 384–392. PubMed Abstract | Publisher Full Text
14. Pizarro-Cerdá J, Kübhaber A, Cossart P: Phosphoinositides and host-pathogen interactions. Biochim Biophys Acta. 2015; 1851(6): 911–8. PubMed Abstract | Publisher Full Text
15. Kumar Y, Valdivia RH: Leading a sheltered life: intracellular pathogens and maintenance of vacuolar compartments. Cell Host Microbe. 2009; 5(6): 593–601. PubMed Abstract | Publisher Full Text | Free Full Text
16. Bitsika V, Correa IR Jr, Nichols BJ: Clathrin-independent pathways do not contribute significantly to endocytic flux. eLife. 2014; 3. e03970. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
17. Marks B, Stowell MH, Valls Y, et al.: GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature. 2001; 410(6825): 231–5. PubMed Abstract | Publisher Full Text
18. Di Paolo G, Moskowitz HS, Gipson K, et al.: Impaired PtdIns(4,5)P₂ synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature. 2004; 431(7007): 415–22. PubMed Abstract | Publisher Full Text | F1000 Recommendation
19. Antonescu CN, Auge F, Danuser G, et al.: Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol Biol Cell. 2011; 22(14): 2588–600. PubMed Abstract | Publisher Full Text | Free Full Text
20. Zonzu R, Perera RM, Sebastian R, et al.: Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc Natl Acad Sci U S A. 2007; 104(10): 3793–8. PubMed Abstract | Publisher Full Text | Free Full Text
21. Nunez D, Antonescu C, Meliten M, et al.: Hotspots organize clathrin-mediated endocytosis by efficient recruitment and retention of nucleating resources. Traffic. 2011; 12(12): 1868–78. PubMed Abstract | Publisher Full Text | Free Full Text
22. He K, Marsland R III, Upadhyayula S, et al.: Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic. Nature. 2017; 552(7685): 410–414. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
33. Gaidarov I, Keen JH: Curvature of clathrin-coated pits driven by epsin. Nature. 2002; 419(6905): 361–366. PubMed Abstract | Publisher Full Text | F1000 Recommendation

34. Ford MG, Mills IG, Peter BJ, et al.: Curve of clathrin-coated pits driven by epsin. Nature. 2002; 419(6905): 361–366. PubMed Abstract | Publisher Full Text | F1000 Recommendation

35. Kadecova Z, Spielman SJ, Loeke D, et al.: Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. J Cell Biol; 2017; 216(1): 167–179. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

36. Kelly BT, Graham SC, Liska N, et al.: Clathrin adaptors. AP2 controls clathrin polymerization with a membrane-activated switch. Science. 2014; 345(6195): 459–463. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

37. Messa M, Fernández-Busnadiego R, Sun EW, et al.: Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits. eLife. 2014; 3: e03311. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

38. Miller SE, Mathiasen S, Bright NA, et al.: CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev Cell. 2015; 33(2): 163–175. PubMed Abstract | Publisher Full Text | F1000 Recommendation

39. Perera RM, Zoncu R, Lucata L, et al.: Two synaptopophylin isoforms are recruited to clathrin-coated pits at different stages. Proc Natl Acad Sci U S A. 2006; 103(11): 19332–7. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

40. Gippol JL, Joo CC, Kent HM, et al.: Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 2000; 20(12): 2898–910. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

41. Verstreken P, Koh TW, Schulze KL, et al.: Synaptotagmin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron. 2003; 40(4): 733–48. PubMed Abstract | Publisher Full Text

42. Chang-Ileto B, Frere ST, Chan RB, et al.: Synaptotagmin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev Cell. 2011; 20(2): 206–18. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

43. Remoema G, Di Paolo G, Warm M, et al.: Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell. 1999; 99(2): 173–88. PubMed Abstract | Publisher Full Text | Free Full Text

44. Milosevic I, Giovedi S, Lou X, et al.: Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron. 2011; 72(4): 567–601. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

45. Nández R, Balkin DM, Messa M, et al.: A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells. eLife. 2014; 3: e1–27. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

46. He K, Song E, Upadhyayula S, et al.: Dynamics of Axin II and GAK in clathrin-mediated traffic. J Cell Biol. 2020; 219(3): e202008142. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

47. Massoli RH, Boll W, Griffin AM, et al.: A burst of axillin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc Natl Acad Sci U S A. 2006; 103(27): 10265–10270. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

48. Nakatsu F, Messa M, Nández R, et al.: Sac1/INPP5F is an inositol-4-phosphate that functions in the endocytic pathway. J Cell Biol. 2015; 209(1): 85–95. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

49. Heu F, Hu F, Mao Y: Spatialtemporal control of phosphatidylinositol 4-phosphate by Sac2 regulates endocytic recycling. J Cell Biol. 2015; 209(1): 97–110. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

50. Gewinner C, Wang ZC, Richardson A, et al.: Evidence that inositol polyphosphate 4-phosphate type II is a tumor suppressor that inhibits PI3K signalling. Cancer Cell. 2009; 16(2): 115–25. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

51. Wang H, Loeke D, Bruns C, et al.: Phosphatidylinositol 3,4-bisphosphate synthesis and turnover are spatially segregated in the endocytic pathway. J Biol Chem. 2019; 294(4): 1091–1044. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

52. Deversaux K, D’Arms C, Alcazar-Roman A, et al.: Regulation of mammalian autophagy by class II and III PI 3-kinases through PI3P synthesis. Proc Natl Acad Sci U S A. 2013; 110(1): 67405. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

53. Campa CC, Marganta JP, Derle A, et al.: Rab11 activity and Phdins3P3p turnover removes recycling cargo from endosomes. Nat Chem Biol. 2018; 14(8): 801–810. PubMed Abstract | Publisher Full Text | F1000 Recommendation

54. Johannes L, Parton RG, Bassereau P, et al.: Lipid-mediated PX-BAR domain recruitment controls PX-BAR Domain-Mediated Endocytic Membrane Remodeling via an Allosteric Structural Switch. Dev Cell. 2017; 43(4): 522–529.e4. PubMed Abstract | Publisher Full Text | F1000 Recommendation

55. Collins A, Warrington A, Taylor KA, et al.: Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr Biol. 2011; 21(14): 1167–75. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

56. Merrifield CJ, Qualmann B, Kessels MM, et al.: Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex recruit to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur J Cell Biol. 2004; 83(1): 13–8. PubMed Abstract | Publisher Full Text

57. Yarar D, Waterman-Storer CM, Schmid SL: SNX9 couples actin assembly to phosphoinositide signals and is required for membrane remodeling during endocytosis. Dev Cell. 2007; 13(1): 43–56. PubMed Abstract | Publisher Full Text | Free Full Text

58. Almeida-Souza L, Frank R, Garcia-Nafria J, et al.: A Flat BAR Protein Promotes Actin Polymerization at the Base of Clathrin-Coated Pits. Cell. 2018; 174(2): 325–337.e14. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

59. Perera RM, Zoncu R, Lucata L, et al.: Two synaptopophylin isoforms are recruited to clathrin-coated pits at different stages. Proc Natl Acad Sci U S A. 2006; 103(11): 19332–7. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

60. Soubeyran P, Kowanetz K, Szymkiewicz I, et al.: Cbl-CIN85-endophilin complex mediates ligand-dependent downregulation of c-Met. Nature. 2002; 416(6877): 187–90. PubMed Abstract | Publisher Full Text

61. Boucou R, Feurre AP, Almeida-Souza L, et al.: Endophilin marks and controls a clathrin-independent endocytic pathway. Nature. 2015; 517(7535): 460–465. PubMed Abstract | Publisher Full Text | F1000 Recommendation

62. Petrelli A, Gilestro GF, Lanzardo S, et al.: The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature. 2002; 416(6877): 187–90. PubMed Abstract | Publisher Full Text

63. Ou yan P, Kowal S, Kowalski M, et al.: Clathrin and Epsin regulate clathrin-mediated endocytosis: a novel binding partner for the beta1-adrenergic receptor. Proc Natl Acad Sci U S A. 1999; 96(22): 12559–64. PubMed Abstract | Publisher Full Text | Free Full Text
gamma R-mediated phagocytosis.

N-WASP to promote Fc receptor-mediated phagocytosis through the activation and phosphorylation of Wiskott-Aldrich syndrome protein (WASP) and neural-WASP. Mol Biol Cell. 2009; 20(21): 4500–8.

Yeung T, Terebiznik M, Yu L, et al.: Receptor activation alters inner surface potential during phagocytosis. Science. 2006; 313(5785): 347–51.

Scott CC, Dobson W, Botelho, RJ, et al.: Phosphatidylinositol-4,5-bisphosphate hydrolysis directly acts in receptor remodeling during phagocytosis. J Cell Biol. 2005; 169(1): 135–40.

Bajno L, Peng XR, Schreiber AD, et al.: Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J Cell Biol. 2009; 149(3): 697–705.

Lee WL, Mason D, Schreiber AD, et al.: Quantitative analysis of membrane remodelling at the phagocytic cup. Mol Biol Cell. 2007; 18(8): 2883–92.

Bodhanowicz M, Baklin DM, De Camilli P, et al.: Recruitment of OCRL and Inpp5B to phagosomes by Rab5 and APP1 depletes phosphoinositides and attenuates Akt signalling. Mol Biol Cell. 2012; 23(1): 171–87.

Levin R, Hammond GRV, Baill T, et al.: Multiphasic dynamics of phosphatidylinositol 4-phosphate during phagocytosis. Mol Biol Cell. 2017; 28(1): 128–40.

Araji N, Johnson MT, Swanson JA: A role for phosphoinositide 3-kinase in the completion of macrophagocytosis and phagocytosis by macrophages. J Cell Biol. 1996; 135(5): 1293–1301.

Kamen LA, Levinson J, Swanson JA: Differential association of phosphatidylinositol 3-kinase, SHIP-1, and PTEN with forming phagosomes. Mol Biol Cell. 2007; 18(7): 2463–72.

Chacko GW, Brand JT, Coggleshall KM: Phosphatidylinositol-3 and 3,4-phosphates noncovalently associate with the low affinity Fc γ receptor on human platelets through an immunoreceptor tyrosine-based activation motif. Reconstitution with synthetic phosphopeptides. J Biol Chem. 1996; 271(18): 10775–81.

Trindadapansi S, Lyden TW, Smith JL, et al.: The adapter protein LAT enhances fc gamma receptor-mediated signal transduction in myeloid cells. J Biol Chem. 2000; 275(27): 20480–7.

Moon KD, Post CB, Durden DL, et al.: Molecular basis for a direct interaction between the Syk protein-tyrosine kinase and phosphoinositide-3-kinase. J Biol Chem. 2005; 280(2): 1534–51.

Zhang Y, Wavreille AS, Kunys AR, et al.: The SH2 domains of inositol polyphosphate 5-kinase type B and SHP2 have similar ligand specificity but different binding kinetics. Biochemistry. 2009; 48(46): 11075–83.

Trindadapansi S, Sieker K, Tellauds JC, et al.: Regulated expression and inhibitory function of Fc gamma RIIb in human monocytic cells. J Biol Chem. 2002; 277(7): 5083–9.

Nakamura K, Malicky A, Coggleshall KM: The Src homology 2 domain-containing inositol 5-phosphatase negatively regulates Fcgamma receptor-mediated phagocytosis through immunoreceptor tyrosine-based activation motif-bearing phagocytic receptors. Blood. 2002; 100(9): 3374–82.

Matessol DL, Osborne JM, Corney D, et al.: The SH2-containing 5'-inositol phosphatase (SHIP) is tyrosine phosphorylated after Fc gamma receptor clustering in monocytes. J Immunol. 1999; 162(11): 6458–65.

67. Krause M, Leslie JD, Stewart M, et al.: Lamellipodin, an Ena/Vasp ligand, is implicated in the regulation of lamellipodial dynamics. Dev Cell. 2004; 7(4): 571–83.

68. Servant G, Boucrot E, Pick A, Çamdere G, Krause M, Leslie JD, Stewart M, et al.: Identification of two distinct mechanisms of phagocytosis. J Cell Biol. 2005; 169(1): 135–40.

69. Xie J, Erneux C, Pirson I: How does SHIP1/2 balance PtdIns(3,4)P2 phosphatase activity? Bioessays. 2013; 35(8): 733–43.

70. Goulden BD, Pacheco J, Dull A, et al.: A high-avidity biosensor reveals plasma membrane PtdIns4P, is predominantly a class I PI3K signaling product. J Cell Biol. 2019; 218(6): 1066–1079.

71. Lee VR, Chen M, Pandolfi PP: The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol. 2018; 19(9): 547–562.

72. Ringstad N, Nemoto Y, De Camilli P: The SH3p4/5sh3p4/5sh3p13 protein family: Binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci U S A. 1997; 94(16): 8569–74.

73. Boucher E, Pick A, Cambre M, et al.: Membrane fission is promoted by insertion of amphiphatic helices and is restricted by crescent BAR domains. Cell. 2012; 149(1): 94–104.

74. Xiong D, Xiao S, Guo S, et al.: Frequency and amplitude control of cortical oscillations by phosphoinositide waves. Nat Chem Biol. 2012; 16(3): 159–66.

75. Chan Wah Hak L, Khan S, Di Meglio I, et al.: FPB17 and CPI4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis. Nat Cell Biol. 2018; 20(9): 1023–1031.

76. Tajjouan WB, Capel P, van de Winkel JG: Human low-affinity IgG receptor Fc gamma RIIA (CD32D) introduced into mouse fibroblasts mediates phagocytosis of sensitized erythrocytes. Blood. 1992; 79(7): 1651–6.

77. Indik ZK, Pan XQ, Huang MM, et al.: Insertion of cytoplasmic tyrosine sequences into the nonphagocytic receptor FcγRIIb establishes phagocytic function. Blood. 1994; 83(8): 2072–80.

78. Downey GP, Botelho RJ, Butler JR, et al.: Phagosomal maturation, acidification, and inhibition of bacterial growth in nonphagocytic cells transfected with FcgammaRIIA receptors. J Biol Chem. 1999; 274(40): 28436–44.

79. Freeman SA, Goyette J, Furuya W, et al.: Integrins Form an Expanding Diffusional Barrier that Coordinates Phagocytosis. Cell. 2016; 164(1–2): 128–140.

80. Bakalar MJ, Joffe AM, Schmid EM, et al.: Size-Dependent Segregation Controls Macrophage Phagocytosis of Antibody-Oposened Targets. Cell. 2018; 174(1): 131–142.e13.

81. Botelho RJ, Tenuel M, Dierckman R, et al.: Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol. 2000; 151(7): 1333–1368.

82. Mao YS, Yamaga M, Zhu X, et al.: Essential and unique roles of PIPS5-kappa and -alpha in Fcgamma receptor-mediated phagocytosis. J Cell Biol. 2009; 184(2): 281–96.

83. Coppolino MG, Dierckman R, Lojens J, et al.: Inhibition of phosphatidylinositol-4-phosphate 5-kinase litaipiao impairs localized actin remodeling and suppresses phagocytosis. J Biol Chem. 2002; 277(48): 43849–57.

84. Dart AE, Donnelly SK, Holden DW, et al.: Nck and Cdc42 co-operate to recruit N-WASP to promote FcγR-mediated phagocytosis. J Cell Sci. 2012; 125(Pt 12): 2825–30.

85. Gu H, Botelho RJ, Yu M, et al.: Critical role for scaffold adaptor Gab2 in Fc gamma R-mediated phagocytosis. J Cell Biol. 2003; 161(6): 1151–61.

86. Caron E, Hall A: Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science. 1998; 282(5394): 1717–1721.
108. Ai J, Matura A, Johnson W, et al.: The inositol phosphatase SHIP-2 down-regulates FcgammaR-mediated phagocytosis. Mol Cell Biol. 2002; 22(7): 469–77. PubMed Abstract | Publisher Full Text | Free Full Text

109. Cox D, Berg JS, Cammer M, et al.: Myosin X is a downstream effector of PI3K during phagocytosis. Nat Cell Biol. 2002; 4(7): 683–93. PubMed Abstract | Publisher Full Text | Free Full Text

110. Schlaitz B, Bagshaw RD, Freeman SA, et al.: Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42-GTPase-activating proteins. Nat Commun. 2015; 6: 6823. PubMed Abstract | Publisher Full Text | Free Full Text

111. Cox D, Tseng CC, Bjekic G, et al.: A requirement for phosphatidylinositol 3-kinase in pseudopod extension. Biol Chem. 1999; 274(3): 1240–7. PubMed Abstract | Publisher Full Text | Free Full Text

112. Beemiller P, Zhang Y, Mohan S, et al.: A Cdc42 activation cycle coordinated by PI 3-kinase during Fc receptor-mediated phagocytosis. Mol Biol Cell. 2010; 21(3): 470–80. PubMed Abstract | Publisher Full Text | Free Full Text

113. Cox D, Dale BM, Kashiwada M, et al.: A regulatory role for Src homology 2 domain-containing inositol 5-phosphatase (SHIP) in phagocytosis mediated by Fc gamma receptors and complement receptor 3 (alpha(M)beta(2); CD11b/CD18). J Exp Med. 2001; 193(1): 61–71. PubMed Abstract | Publisher Full Text | Free Full Text

114. Ostrowski PP, Freeman SA, Fairn G, et al.: Dynamic Podosome-Like Structures in Nascent Phagosomes Are Coordinated by Phosphoinositides. Dev Cell. 2019; 50(4): 397–410.e3. PubMed Abstract | Publisher Full Text

115. Braun V, Frasier V, Raposo G, et al.: TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages. EMBO J. 2004; 23(1): 4166–76. PubMed Abstract | Publisher Full Text | Free Full Text

116. Niedergang F, Colucci-Guyon E, Dubois T, et al.: ADP ribosylation factor 6 is activated and controls membrane delivery during phagocytosis in macrophages. J Cell Biol. 2003; 161(6): 1143–50. PubMed Abstract | Publisher Full Text | Free Full Text

117. Czibener C, Scherer NM, Becker SM, et al.: Cdc42 interacts with the exocyst complex to promote phagocytosis. J Cell Biol. 2013; 200(1): 81–83. PubMed Abstract | Publisher Full Text | Free Full Text

118. Vieira OV, Botelho RJ, Rameh L, et al.: Distinct roles of class I and class III phosphatidylinositol 3-kinases in phagosome formation and maturation. J Cell Biol. 2001; 151(1): 19–25. PubMed Abstract | Publisher Full Text | Free Full Text

119. Nigroiwave K, Hazeki K, Sasaki J, et al.: Inositol Polyphosphate-4-Phosphatase Type I Negatively Regulates Phagocytosis via Dephosphorylation of PhosphatidylInositol(4,5)P_2. PLoS One. 2015; 10(11): e0142091. PubMed Abstract | Publisher Full Text | Free Full Text

120. Gold ES, Morissette NS, Underhill DM, et al.: Amphiphysin IIM, a novel amphiphysin II-like form, is required for macrophage phagocytosis. Immunity. 2000; 12(3): 885–92. PubMed Abstract | Publisher Full Text

121. Tsuob S, Takada H, Hara T, et al.: FBP17 Mediates a Common Molecular Step in the Formation of Podosomes and Phagocytic Cups in Macrophages. J Biol Chem. 2009; 284(13): 8548–8556. PubMed Abstract | Publisher Full Text | Free Full Text

122. Cheng S, Wang K, Zou W, et al.: Pidins-3/5 and Pidins3P coordinate to regulate phagosomal sealing for apoptotic cell clearance. J Cell Biol. 2015; 210(3): 485–502. PubMed Abstract | Publisher Full Text | Free Full Text

123. Fratti RA, Backer JM, Gruenberg J, et al.: Role of phosphatidylinositol 3-kinase and Rab7 effectors in phagosomal biogenesis and mycobacterial phagosome maturation. J Cell Biol. 2001; 154(3): 631–644. PubMed Abstract | Publisher Full Text | Free Full Text

124. Canton J, Schlam D, Breuer C, et al.: Calcium-sensing receptors signal constitutive macrophagocytosis and facilitate the uptake of NOD ligands in macrophages. Nat Commun. 2016; 7: 11284. PubMed Abstract | Publisher Full Text | Free Full Text

125. Commissio C, Davidson SM, Soydaner-Axelrod RG, et al.: Macropinocytosis of protein is an amino acid supply route in RAS-transformed cells. Nature. 2013; 497(7451): 633–7. PubMed Abstract | Publisher Full Text | Free Full Text

126. Meister DA, Ploegh HL: Phagocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. Mol Biol Cell. 2000; 11(10): 4543–67. PubMed Abstract | Publisher Full Text | Free Full Text

127. Ridley AJ, Paterson HF, Johnston CL, et al.: The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992; 70(3): 401–10. PubMed Abstract | Publisher Full Text | Free Full Text

128. Krugmann S, Anderson KE, Ridley SH, et al.: Identification of ARAP3, a novel PI3K effecter regulating both Aft and Rho GTPases, by selective capture on
phosphoinositide affinity matrices. Mol Cell. 2002; 9(1): 95–108.

152. Das B, Shu X, Day GJ, et al.: Control of intramolecular interactions between the pleckstrin homology and Dbl homology domains of Vav and Sos1 regulates Rac binding. J Biol Chem. 2000; 275(20): 15074–81.

153. Dharmawardhane S, Schürmann A, Sells MA, et al.: Regulation of macroinocytosis by p21-activated kinase-1. Mol Biol Cell. 2000; 11(10): 3341–52.

154. Insall R, Müller-Taubenberger A, Machsey L, et al.: Dynamics of the Dictyostelium Arp2/3 complex in endocytosis, cytokinesis, and chemotaxis. Cell Motil Cytoskeleton. 2001; 50(3): 118–32.

155. Seastone DJ, Harris E, Temesvari LA, et al.: The WASp-like protein scar regulates macroinocytosis, phagocytosis and endosomal membrane flow in Dictyostelium. J Cell Sci. 2001; 114(Pt 14): 2673–83.

156. Koivusalo M, Welch C, Hayashi H, et al.: Amlilorine inhibits macroinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol. 2010; 184(6): 547–563.

157. Barker SA, Caldwell KK, Pfeffer JR, et al.: Wortmannin-sensitive phosphorylation, translocation, and activation of PLCgamma1, but not PLCgamma2, in antigen-stimulated RBL-2H3 mast cells. Mol Biol Cell. 1998; 9(2): 483–96.

158. Braak YS, Canteley LG, Chen CS, et al.: Activation of phospholipase C-gamma by phosphorylidyinositol 3,4,5-triphosphate. J Biol Chem. 1998; 273(8): 4465–9.

159. Falasca M, Logan SK, Lettio VP, et al.: Activation of phospholipase C-gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J. 1998; 17(2): 414–22.

160. Falka M, Terasaka S, Mochizuki Y, et al.: Differential Breakdown of 3-Phosphorylated Phosphoinositides Is Essential for the Completion of Macropinocytosis. Mol Biol Cell. 2006; 17(24): 11111(1): E979–87.

161. Maekawa M, Terasaka S, Mochizuki Y, et al.: Sequential Breakdown of 3-Phosphorylated Phosphoinositides Is Essential for the Completion of Macropinocytosis. Mol Biol Cell. 2006; 17(24): 11111(1): E979–87.

162. Dormann D, Weijer G, Dowler S, et al.: In Vivo Analysis of 3-phosphoinositide Dynamics During Dictyostelium Phagocytosis and Chemotaxis. J Cell Sci. 2004; 117(Pt 26): 4697–500.

163. Hasegawa J, Tokuda E, Tenno T, et al.: SHY11 Regulates Dorsal Ruffle Formation by a Novel Phosphoinositide-Binding Domain. J Biol Chem. 2011; 193(5): 501–16.

164. Lovros HM, Kehrl H, de Groote H, et al.: Regulation of Phagocytosis in Dictyostelium by the Inositol 5-phosphatase OCRL Homolog Dd5P4. Traffic. 2007; 8(5): 618–28.

165. Wang JTH, Kerr MC, Karunarathne S, et al.: The SNX-PX-BAR Family in Macropinocytosis: The Regulation of Macropinosome Formation by SNX-PX-BAR Proteins. PLoS One. 2010; 5(10): e13763.

166. Yamauchi Y, Helenius A: Virus Entry at a Glance. J Cell Sci. 2013; 126(Pt 6): 1289–1295.

167. de Carvalho TMU, Barrias ES, de Souza W: Macropinocytosis: A Pathway to Protozoan Infection. Front Physiol. 2015; 6: 136.

168. Crump JA, Luby SP, Mintz ED: The Global Burden of Typhoid Fever. Bull World Health Organ. 2004; 82(5): 346–353.

169. Crump JA, Ram PK, Gupta SK, et al.: Part I. Analysis of Data Gaps Pertaining to Salmonella Enterica Serotype Typhi Infections in Low and Medium Human Development Index Countries, 1994-2005. Epidemiol Infect. 2008; 136(4): 436–448.

170. House D, Bishop A, Parry C, et al.: Typhoid Fever: Pathogenesis and Disease. Curr Opin Infect Dis. 2001; 14(5): 573–578.

171. Tools RM, Kingsley RA, Townsend SM, et al.: Of mice, calves, and men. Comparison of the mouse typhoid model with other Salmonella infections. Adv Exp Med Biol. 1999; 473: 261–274.

172. Galan JE, Lara-Tejero M, Marlovits TC, et al.: Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol. 2014; 68: 415–438.

173. Ham H, Sreevathsa A, Orth K: Manipulation of host membranes by bacterial effectors. Nat Rev Microbiol. 2011; 9(9): 635–646.

174. Schlimmbner MC, Hardt WD: Salmonella type III secretion effectors: pulling the host cell's strings. Curr Opin Microbiol. 2006; 9(1): 46–54.

175. Galov EE, Wood MW, Rocqvid PB, et al.: A secreted effector protein of Salmonella dublin is translocated into eukaryotic cells and mediates inflammation and fluid secretion in infected ileal mucosa. Mol Microbiol. 1997; 26(9): 903–12.

176. Anderson Norris F, Wilson MP, Wallis TS, et al.: SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci U S A. 1998; 96(24): 14007–14009.

177. Marcus SL, Wenk MR, Steele-Mortimer O, et al.: A synaptoplamin-homologous region of Salmonella effectors is essential for inositol phosphate activity and Akt activation. FEBS Lett. 2001; 494(3): 201–207.

178. Terebiznik MR, Vieira OV, Marcus SL, et al.: Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat Cell Biol. 2002; 4(10): 766–773.

179. Mason D, Mallo GV, Terebiznik MR, et al.: Alteration of epithelial structure and function associated with PtdIns(4,5)P2 degradation by a bacterial phosphatase. J Gen Physiol. 2007; 129(4): 587–283.

180. Rudolph MG, Braun V, Lam GV, et al.: The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe. 2010; 7(6): 453–462.

181. Zhou D, Chen LM, Hernandez L, et al.: Salmonella inositol polyphosphate acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol. 2001; 9(2): 248–255.

182. Barron D, Heuffer K, Wenk M, et al.: Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science. 2004; 304(5678): 1805–7.

183. Niebuhr K, Giurato S, Pedron T, et al.: Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S.flexneri effector LpgD reorganizes host cell morphology. Proc Natl Acad Sci U S A. 2014; 111(11): E979–87.

184. Killackey SA, Sorbara MT, Girardin SE: The WASp-like protein scar manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe. 2010; 7(6): 1206–21.

185. Konig K, de Bont J, Girardin SE: Phosphoinositide phosphatase SopB modulates vesicular trafﬁc by altering phosphoinositide metabolism. Science. 2004; 304(5678): 1805–7.

186. Fiske HC, SubbaRow Y: The colorimetric determination of phosphorus. J Biol Chem. 1925; 66(1): 375–400.

187. Rudolph MG, Weise C, Mirshirazi M, et al.: Biochemical analysis of SopE from Salmonella typhimurium, a highly efﬁcient guanosine nucleotide exchange factor for RhgGTPases. J Biol Chem. 1999; 274(43): 30501–9.

188. Friebe A, Ichmann H, Aspelbacher M, et al.: SopE2 from Salmonella typhimurium Activates Different Sets of Rho GTPases of the Host Cell. J Biol Chem. 2001; 276: 34035–34045.

189. Stender S, Friebe A, Linder S, et al.: Role of a bacterial guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol. 2000; 36(6): 1206–21.

190. Stebbins CE, Galan JE: Modulation of host signaling by a bacterial mimic: Structure of the Salmonella effector SopE bound to Rac1. Mol Microbiol. 2006; 6(6): 1449–60.

191. Friebe A, Ichmann H, Aspelbacher M, et al.: SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol. 2000; 36(6): 1206–21.

192. Mcghee EJ, Hayward RD, Kornekis V: Cooperation between actin-binding

Page 14 of 17
tyrosine phosphorylation of phospholipase C-gamma1. *Infect Immun.* 1997; 65(7): 2528–36. PubMed Abstract | Publisher Full Text | Free Full Text

Smith K, Humphreys D, Hume PJ, et al.: Enteropathogenic *Escherichia coli* recruits the cellular inositol phosphatase SHIP2 to regulate actin-pedestal formation. *Cell Host Microbe.* 2010; 7(1): 13–24. PubMed Abstract | Publisher Full Text | F1000 Recommendation

Pemberton JG, Kim YJ, Humpolickova J, et al.: Defining the subcellular distribution and metabolic channeling of phosphatidylinositol. *J Cell Biol.* 2020; 219(3): e201906130. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Zewe JP, Miller AM, Sangappa S, et al.: Probing the subcellular distribution of phosphatidylinositol reveals a surprising lack at the plasma membrane. *J Cell Biol.* 2020; 219(3): e201906127. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Várnai P, Balla T: Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[H]inositol-labeled phosphoinositide pools. *J Cell Biol.* 1998; 143(2): 501–10. PubMed Abstract | Publisher Full Text | Free Full Text

Hammond GRV, Machner MP, Balla T: A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. *J Cell Biol.* 2014; 205(1): 113–26. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

Gaullier JM, Ronning E, Gillooly DJ, et al.: Interaction of the EEA1 FYVE finger with phosphatidylinositol 3-phosphate and early endosomes. Role of conserved residues. *J Biol Chem.* 2000; 275(32): 24585–600. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️ ✔️

Editorial Note on the Review Process

F1000 Faculty Reviews are written by members of the prestigious F1000 Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. Joel Swanson
 Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109-0620, USA
 Competing Interests: No competing interests were disclosed.

2. Tamas Balla
 Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
 Competing Interests: No competing interests were disclosed.

3. Volker Haucke
 Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com