Inhibitory effects of ginseng seed on melanin biosynthesis

Yeonmi Lee, Kyoung-Tack Kim, Sung Soo Kim, Jinyoung Hur, Sang Keun Ha, Chang-Won Cho, Sang Yoon Choi
Korea Food Research Institute, Seongnam 463-746, Republic of Korea

Submitted: 20-08-2013 Revised: 14-09-2013 Published: 28-05-2014

ABSTRACT

Background: Ginseng root has been traditionally used for the treatment of many diseases in Korea. However, so far ginseng seed has been mostly unused and discarded. As part of our ongoing research on the ginseng seeds, the inhibitory effect of ginseng seeds on melanin production was verified to assess their potential as a skin depigmenting substance. Materials and Methods: The present study measured the inhibitory effect of ginseng seeds on melanin production through the tyrosinase inhibitory effect and analyzed their effects on melanin production in melan-a-cells. Results: Ethanol extract of ginseng seed was applied to melan-a-cells at a concentration of 100 ppm and melanin production was reduced by 35.1% without cytotoxicity. In addition, the ethanol extract of ginseng seed was shown to reduce tyrosinase activity. Conclusion: Because the results showed excellent melanin inhibitory activity compared with that obtained by arbutin, ethanol extracts of ginseng leaf and ginseng root at the same concentration, it can be concluded that ginseng seeds show great potential as a skin depigmenting substance.

Key words: Melanin, panax ginseng, pigmentation, seed

INTRODUCTION

Melanin is an important factor that determines skin pigmentation of many animals including humans. Melanocytes, which produce melanin, are mainly located in the basal layer, the bottom part of the skin's epidermis and are activated by ultra violet light or inflammation to promote the biosynthesis of melanin. Biosynthesis of melanin begins with the oxidation of tyrosine by the action of tyrosinase and then proceeds through dopa, dopaquinone and dopachrome. Melanin produced from this pathway plays a role in the protection of the skin, but overproduced melanin can cause various skin pigment problems such as melasma, freckles and black spots. Thus, many studies on the materials that inhibit melanin production have been actively conducted with a purpose of eliminating such problems.

Furthermore, hydroponically-grown ginseng leaves have been used as vegetables, but so far there have been very few studies on the use of ginseng seeds.

The present study measured the inhibitory effect of ginseng seeds on melanin production via the tyrosinase inhibitory effect and analyzed their effects on melanin production in melanocytes. The inhibitory activity of ginseng root extracts and leaf fractions in melanin production has been reported, but that of ginseng seeds has not been reported. In a previous study on the physiological activity of ginseng seeds by Kim et al., they reported the nuclear factor kappa B inhibitory effect of lupane-type triterpene which was separated from ginseng seeds, while Kim and Kim reported lower DPPH scavenging activity in wild cultivated ginseng seeds compared to that in ginseng root or leaves. However, other related studies have been rarely conducted.

MATERIALS AND METHODS

Samples

The seeds of Panax ginseng Meyer used in the study were purchased in Jeungpyeong-gun, Chungcheongbuk-do, Republic of Korea in March 2011, while ginseng leaves and roots were purchased in Seocheon-gun,
Table 1: Effects of ginseng ethanol extracts on cell viability and melanin production in melan-a-cells

Samples	Concentrations (ppm)	Melanin production (%)	Cell viability (%)
Seed	1	97.0±3.5	98.8±2.2
	10	90.0±5.1	100.0±3.7
	100	64.9±4.4	97.7±4.6
Leave	1	88.3±2.8	96.3±0.5
	10	85.4±5.5	100.8±3.8
	100	74.9±4.9	84.4±3.1
Root	1	83.7±4.4	94.8±4.0
	10	76.2±4.6	70.3±2.7
	100	17.2±6.1	30.5±5.5
Arbutin	1	94.5±0.8	98.8±3.3
	10	81.6±5.9	97.0±0.9
	100	72.8±4.0	96.4±2.2

Viability and melanin content of vehicle was set to 100%. Data represent the mean±standard deviation of triplicate experiments.
Effects on tyrosinase activity and intracellular tyrosinase expression

Tyrosinase is an important enzyme in promoting the oxidation of tyrosine and L-dopa in the initial steps of melanin biosynthesis. To determine the possible inhibitory effect of ginseng seed extract on tyrosinase activity, tyrosinase and its substrate L-dopa were incubated with the ethanol extract of ginseng seed and the amount of dopachrome thus produced was measured. The results show that ginseng seed 27.1% tyrosinase inhibitory effect at 100 ppm. The ginseng leaf and ginseng root all had a 23.0-24.8% tyrosinase inhibitory effect at 100 ppm [Figure 2]. The ginseng seed extract was added to melan-a-cells for 3 d and then proteins were extracted to measure the amount of expression of tyrosinase, which play an important role in melanin biosynthesis, by western immunoblotting. The ginseng seed extract did not reduce the expression of tyrosinase at 1, 10 and 100 ppm [Figure 3]. Therefore, it is considered that the inhibitory effect of ginseng seeds on melanin production may involve inhibition of tyrosinase activity except tyrosinase expression. Further studies will be needed to demonstrate the depigmenting activity by which ginseng seed inhibits melanogenesis in the animal skin.

CONCLUSION

The ethanol extract of ginseng seed showed an excellent inhibitory effect on melanin production and demonstrated low cytotoxicity when applied to melanocytes, compared to the ethanol extracts of ginseng root and ginseng leaf. This inhibitory effect on melanin production was observed to be lower at concentrations below 10 ppm compared to the currently most widely used whitening substance, arbutin, but higher at concentrations over 100 ppm. From the above results, it is considered that ginseng seeds show great potential for use as a skin depigmenting substance.

REFERENCES

1. Pawelek JM. After dopachrome? Pigment Cell Res 1991;4:53-62.
2. del Marmol V, Beermann F. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett 1996;381:165-8.
3. Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK, et al. Survey and mechanism of skin depigmenting and lightening agents. Phytother Res 2006;20:921-34.
4. Ha DC, Ryu GH. Chemical components of red, white and extruded root ginseng. J Korean Soc Food Sci Nutr 2005;34:247-54.
5. Kim DH. Chemical diversity of Panax ginseng, Panax quinquefolium, and Panax notoginseng. J Ginseng Res 2012;36:1-15.
6. Choi SY, Cho CW, Lee Y, Kim SS, Lee SH, Kim KT. Comparison of ginsenoside and phenolic ingredient contents in hydroponically-cultivated ginseng leaves, fruits, and roots. J Ginseng Res 2012;36:425-9.
7. Im SJ, Kim KN, Yun YG, Lee JC, Mun YJ, Kim JH, et al. Effect of radix ginseng and radix trichosanthis on the melanogenesis. Biol Pharm Bull 2003;26:849-53.
8. Hwang EY, Choi SY. Quantitative analysis of phenolic compounds in different parts of panax ginseng C.A. Meyer and its inhibitory effect on melanin biosynthesis. Korean J Med Crop Sci 2006;14:148-52.
9. Hwang EY, Kong YH, Lee YC, Kim YC, Yoo KM, Jo YO, et al. Comparison of phenolic compounds contents between white and red ginseng and their inhibitory effect on melanin biosynthesis. J Ginseng Res 2006;30:82-7.
10. Song M, Mun JH, Ko HC, Kim BS, Kim MB. Korean red ginseng powder in the treatment of melasma: An uncontrolled observational study. J Ginseng Res 2011;35:170-5.
11. Kim JA, Son JH, Yang SY, Song SB, Song GY, Kim YH. A new lupane-type triterpene from the seeds of Panax ginseng with its inhibition of NF-κB. Arch Pharm Res 2012;35:647-51.

12. Kim JH, Kim JK. Antioxidant activity and functional component analysis of Korean mountain ginseng’s different sections. J Korean Soc Food Sci Nutr 2006;35:1315-21.

13. Bennett DC, Cooper PJ, Hart IR. A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. Int J Cancer 1987;39:414-8.

14. Choi SY, Hwang JS, Kim S, Kim SY. Synthesis, discovery and mechanism of 2,6-dimethoxy-N-(4-methoxyphenyl) benzamide as potent depigmenting agent in the skin. Biochem Biophys Res Commun 2006;349:39-49.

15. Shin NH, Ryu SY, Choi EJ, Kang SH, Chang IM, Min KR, et al. Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem Biophys Res Commun 1998;243:801-3.

16. Choi SY. Inhibitory effects of geranic acid derivatives on melanin biosynthesis. J Cosmet Sci 2012;63:351-6.

17. Lim YJ, Lee EH, Kang TH, Ha SK, Oh MS, Kim SM, et al. Inhibitory effects of arbutin on melanin biosynthesis of alpha-melanocyte stimulating hormone-induced hyperpigmentation in cultured brownish guinea pig skin tissues. Arch Pharm Res 2009;32:367-73.

Cite this article as: Lee Y, Kim K, Kim SS, Hur J, Ha SK, Cho C, Choi SY. Inhibitory effects of ginseng seed on melanin biosynthesis. Phcog Mag 2014;10:272-6.

Source of Support: Nil, Conflict of Interest: None declared.