Traveling model of an ambulance for finding optimal routes to a hospital

Takahiko ONO*1
*1 Graduate School of Information Sciences, Hiroshima City University
3-4-1 Ozuka-higashi, Asa-minami-ku, Hiroshima-shi, Hiroshima 731-3194, Japan

Received: 30 July 2018; Revised: 8 November 2018; Accepted: 1 February 2019

Abstract

In preparation for optimal routing of patients to a hospital, this paper presents a traveling model of the ambulance that moves from the scene of an emergency to a hospital. The model is given in the form of a speed diagram along the route and constructed based on some rules: The ambulance moves with either a constant speed, a constant acceleration speed or a constant deceleration speed. The maximum speed changes depending on the legal speed limit for private vehicles. The ambulance decreases its speed to a specified level when it passes through an intersection with traffic lights or turns left or right. The model has eight adjustable parameters. They were optimized in the framework of the multi-objective optimization problem involving three objective functions, which are defined as modeling errors relevant to the traveling time, the fluctuation of blood pressure and the pressing force acting on the back of a patient. The genetic algorithm was used to obtain Pareto solutions to the problem. An optimal set of parameters was selected from among them. The validity of the model was confirmed by checking the objective functions for the validation data set. However, there was a limitation: The model does not match to the actual speed of the ambulance in such a case that it moves on the road where many traffic lights are placed close to each other and controlled synchronously.

Keywords : Drive model, Ambulance, Path search, Multiobjective optimization, Genetic algorithm, Pareto solution

1. 緒 言

救急車による緊急搬送では、傷病者を迅速かつ容態を悪化させることなく安全に病院に搬送することが求められる。一般に、迅速性を重視して速度を上げて走行すると、交差点等の減速箇所やカーブを通過する際に、傷病者に大きな慣性力がかかる。足頭方向にかかる慣性力は、強制的に血圧を変動させるため（佐川他，1993，小野，吉栖，2017）、脳血管障害の場合には脳内出血や脳動脈瘤破裂を引き起こす危険性がある（鈴木他，2002）。また、左右方向にかかる慣性力、いわゆる遠心力は傷病者をストレッチャーのマットやサイドバーに押しつけるため、骨折や脱臼の場合には激痛を与えかねない。このように、迅速性を優先すると、安全性の低下が懸念される。逆に、安全性を優先して速度を下げると、迅速性が損なわれかねない。救急車による搬送には、本質的に迅速性と安全性との間にトレードオフの問題が潜在化していると考えられる。

上記のトレードオフ問題の解決に有効と考えられる方法がいくつかある。ストレッチャーの姿勢角を変化させることで、傷病者にかかる慣性力を重力で打ち消すアクティブ制御ペッド（Ono and Inooka, 2009）。過度な加速度を検知した際に機関員に報知することで、慣性力を小さく抑える運転へと改善を促す報知システム（山岸，猪岡，2019）等々が考えられる。
2005). 車間通信または路間通信を活用して、救急車のスムーズな走行を支援する緊急車両走行支援システム（南他，2014）などである。このうち、車間通信により信号機指示を受信する現場急行支援システム FAST は、平成27年度末時点で16都道府県で導入されており、ブロードキャストを用いた調査では、搬送所要時間の短縮と混雑の軽減が同時に達成できたことが報告されている（高田他，2009）。そこで、迅速性と安全性のバランスは、現場から病院までの経路が複数存在すれば、その選び方によっても変わる。例えば、最短路到着に到達可能な経路でも、信号機交差点が多数存在していれば、加速減速の頻度が多くなり、結果として慣性力の発生頻度も上が る。逆に、最短距离では到達できない経路でも、信号機交差点が少なくなければ、慣性力の発生を抑えることができ る。前者の経路は、総経路が救命に大きく影響する心肺停止状態の場合に適していると考えられる。後者の経路は、過大な血圧変動が悪影響を招きかねない脳梗塞の場合に適していると考えられる（橋本他，2002，鯨川他，2006）。このように、経路の選択に自由度があれば、傷病者の病名を考慮することにより、トレードオフ問題を緩和できる可能性がある。病名に応じた経路選択は、すでに救急隊員の経験に基づいて行われていると考えられるが、コンピュータを利用して搬送時間、血圧変動、脳梗塞に関する目的関数を最適化する経路探索問題を解くことも可能と予想される。これが実現できれば、経路選択が効かない管理区域での搬送や、将来的に実現の可能性もあり得る救急車の自 程走行での活用が期待できる。ただし、この問題を解くためには、救急車の走行を模擬するモデルが必要となる。 そこで本論文では、搬送経路をコンピュータ探索する際になければならない救急車の走行モデルを提案する。想定する経路探索は、傷病者収容現場から病院までの搬送時間、血圧変動、脳梗塞に関する目的関数を最適にする経路の選出である。この場合、救急車の速度と加速度の情報が必要となることから、両者を同時に扱う時間・速度線図の形式でモデルを与える。経路探索での速度設定に関しては、カーナビゲーションメーカー等が設定値を公 22009年7月1日
7
131
132
571
571
3
4
5
6
7
Goal
Start
Fig. 1 Example of a road network. The white circle is a node which corresponds to an intersection. The solid line is a link which corresponds to a road. The black circle is an interpolated point to represent road alignment. The thick solid line shows a route from a start node to a goal node.

2. 準 備

2.1 記号の定義

道路網が、図1に示すような、総線、経路、標高に基づいて立体的に形成される3次元ネットワークで表されて いるとする。ノード（白丸）が交差点、リンク（直線）が道路に対応しており、一部のリンクには、道路線形を表 示するための経路線図を設定する。
すための補間点（黒点）が設けられているとする。始点から終点までの経路の表し方として、経路上にあるノードを通過順に並べたノードベクトル \(N \) として表す方法と、ノードと補間点を通過順に並べた通過点ベクトル \(\tilde{N} \) として表す方法を用いる。これらは、適宜使い分ける。

\[
N = [N(1), N(2), N(3), \ldots, N(N_{\text{end}})]^T
\]

\[
\tilde{N} = [\tilde{N}(1), \tilde{N}(2), \tilde{N}(3), \ldots, \tilde{N}(\tilde{N}_{\text{end}})]^T
\]

(1)

\(N \) と \(\tilde{N} \) のインデックス集合を、それぞれ \(I \) と \(\tilde{I} \) と表記する。すなわち,

\[
I = \{1, 2, 3, \ldots, N_{\text{end}}\}
\]

\[
\tilde{I} = \{1, 2, 3, \ldots, \tilde{N}_{\text{end}}\}
\]

(2)

例えば、図1の太線の経路では、\(N = [1, 3, 4, 7]^T, \tilde{N} = [1, 131, 132, 3, 4, 7]^T, I = \{1, 2, 3, 4\}, \tilde{I} = \{1, 2, 3, 4, 5, 6\} \)となる。また、\(N(i) \) と \(N(i+1) \) を結ぶリンクを \(E(i) \) で表し、\(\tilde{N}(j) \) と \(\tilde{N}(j+1) \) を結ぶリンクの一部を \(\tilde{E}(j) \) とする。

図2に示すように、車両の重心点の移動速度を \(V \) [m/s] とする。被搬送者にかかる加速度は、車内に固定された3軸直交座標系で定義する。被搬送者の右から左方向の加速度成分を \(a_x \) [m/s²]、足を頭方向の加速度成分を \(a_z \) [m/s²] とする。表1に、本論文で使用する記号をまとめて示す。表の第1列のインデックス付きの記号は、式(1)のようにベクトルの要素に当たり、記号がそのベクトル名を表すとする。方位角 \(\hat{\theta}(j) [\text{rad}] \) については、図3のように、\(E(j-1) \) の延長線と \(E(j) \) のなす角度として定義し、符号は上空から見て反時計回りを正とする。また、\(E(j) \) の道路勾配は一定であると仮定する。

2.2 経路探索

本論文で想定している経路探索の概要を述べる。図1に示すような道路ネットワークに対して、始点と終点を指定する。車両がネットワーク上を後述する走行モデルに従って移動するという仮定の下、以下の(i)～(iii)に示す指標 \(J_1(N) \), \(J_2(N) \), \(J_3(N) \) を同時に最小にする経路を導出する。\(J_1(N) \) は、経路 \(N \) 走行時にかかる搬送時間を表し、迅速性を測る指標である。\(J_2(N) \) と \(J_3(N) \) は、それぞれ血圧変動と心拍数の影響度を表し、安全性を測る指標である。各指標を同時に最小にする経路が得られることが理想であるが、始点と終点の位置関係によっては、同時に最小化できない場合がある。その場合は、パラメーター最適となる経路を数値導出し、傷病者の病状からどの指標を重視すべきか判断して、経路を決定する。

(i) 搬送時間

\(E(i) \) の通過に要する時間を \(T(i) \) [s] とする。始点から終点までの \(T(i) \) の総和を搬送時間 \(J_1(N) \) と定義する。

\[
J_1(N) = \sum_{i \in F_{\text{end}}} T(i)
\]

(3)

(ii) 血圧変動

血液は、心臓を起点として足頭方向に循環している。車両の加速減速運動に伴って慣性力が生じると、仰臥位の姿勢では、その作用方向と血液の体循環方向が一致するため、血流が乱れて、血圧が変動する。坂道を走行す
Ono, Transactions of the JSME (in Japanese), Vol.85, No.871 (2019)

Symbol	Unit	Definition
$N(i)$	-	Unique number of the i-th node (the i-th intersection) on the route N
$E(i)$	-	Link between $N(i)$ and $N(i+1)$
$L(i)$	m	Length of $E(i)$
$V_{E(i)}$	m/s	Maximum speed of an ambulance on $E(i)$
V_{legal}	km/h	Legal speed limits for private vehicles on $E(i)$
$T_N(i)$	-	Presence or absence of traffic lights at $N(i)$. If traffic lights exist, $T_N(i) = 1$. Otherwise, $T_N(i) = 0$.
$P_N(i)$	-	Passing mode of an ambulance at $N(i)$
$V_N(i)$	m/s	Passing speed of an ambulance at $N(i)$
$\hat{N}(j)$	-	Unique number of the j-th node or the j-th interpolated point on the route \hat{N}
$\hat{E}(j)$	-	A part of link between $\hat{N}(j)$ and $\hat{N}(j+1)$. A road gradient of $\hat{E}(j)$ is assumed constant.
$L(j)$	m	Length of $\hat{E}(j)$
$\bar{H}(j)$	m	Elevation at $\hat{N}(j)$
$\bar{\theta}(j)$	rad	Angle of direction at $\hat{N}(j)$
$\bar{v}(j)$	m/s	Speed of an ambulance at $\bar{N}(j)$
V	m/s	Speed of an ambulance
a_y	m/s²	Right-to-Left acceleration acting on a recumbent patient
a_z	m/s²	Foot-to-head acceleration acting on a recumbent patient
g	m/s²	Gravitational acceleration (9.80665 m/s²)
$\text{num}(X)$	-	Number of elements of a vector X

| Table 1 Definition of symbols. |

![Fig. 4](image1.png) The model in (5) estimates the variation of blood pressure (BP) at the finger tip, which is considered synchronized to the BP variation in artery inside the brain. The estimated BP variation changes depending on the foot-to-head acceleration a_z.

![Fig. 5](image2.png) The model estimates a variation of the vertical pressing force acting on the blade bone. This force is induced by the centrifugal force. It changes linearly to the right-to-left acceleration a_y if the BMI of a patient is in the normal range.

る場合も重力の一部が足頭方向に割り込むため、同様な現象が起きる。この血圧変動による影響を次式で測る。

$$J_2(N) = \int_0^{L(N)} |y(t)| dt$$ (4)

ここで，$y(t)$ [mmHg] は平均血圧の増減量を表し，以下のモデル（小野，牧野，2016）から推定する。

$$y(t) = \begin{cases} 5.15 a_z(t) & (a_z(t) \geq 0) \\ 4.03 a_z(t) & (a_z(t) < 0) \end{cases}$$ (5)

$a_z(t)$ は，被搬送者の足頭方向にかかる慣性加速度と重力加速度成分からなる加速度である。このモデルは，脳内動脈圧の変動を捉えることを目的に構築されており，図4のように，仰臥位で頭部の横に置いた手手指尖の平均血圧の安定時からの変動量を推定する。平地で赤信号の交差点を通過する時に，車両が減速して足から頭の方向に加速度が作用すると $y(t) > 0$ （血圧上昇）となる。加速しながら交差点を抜けて，頭から足方向に加速度が作用すると $y(t) < 0$ （血圧下降）となる。

[DOI: 10.1299/transjsme.18-00308] © 2019 The Japan Society of Mechanical Engineers
(iii) 背面圧迫

救急車が交差点を右左折またはカーブを通過すると、遠心力の影響で傷病者の後背面尾側がストレッチャー上に押し付けられる。本来、マットからの圧迫荷重は後背面全体にかかるが、図5のように、これを肩甲骨直下にかかる集中荷重に置き換えると、被搬送者が普通の体重（BMIが18.5以上かつ25.0未満）の場合、その垂直方向成分の水平安全時からの増減量 \(f \) [N] は、 \(a_i \) に比例する（小野、今田、2012）。そこで、始点から終点までの \([a_i] \) の時間積分と近似的に比例関係にある式（6）で背面圧迫の影響を測る（付録A1を参照）。 \(\bar{v}(j) \) [m/s] は、 \(\bar{N}(j) \) での通過速度である。

\[
J_q(N) = \sum_{j \in \{1, L_{end}\}} |\bar{v}(j)\bar{\theta}(j)|
\] (6)

本論文では、救急車の走行データを用いて、傷病者搬送時の \(J_q(N) (q = 1, 2, 3) \) を再現するような救急車の走行モデルを与え、同時に各 \(J_q(N) \) の計算法も示す。

3. 走行調査

緊急走行中の救急車は、一般道路では時速80 km/hまでの走行が認められているが、速度の出しやすさは、法定最高速度や車線数に応じて異なると考えられる。交差点での通過速度も、信号機の有無、直進通過または右左折ごとに異なると予想される。これらの違いを走行モデルに反映させるために、救急車の車速と加速度を調べる。

調査で使用したデータの、2011年に広島市で計測した傷病者搬送中の高規格救急車の線速、線度、車速、3軸加速度（前後、左右、上下）である。測定機器は、アイ・ティ・リサーチ社のCar-BCALsである。線速、線度、車速は、ダッシュボードに設置したGPSセンサでサンプリング周波数1 Hzで測定し、3軸加速度は、運転席の後ろでサンプリング周波数16 Hzで測定した。前後加速度と左右加速度に関しては、測定後に時定数0.4秒の1次遅れフィルタで平滑化したのち、1 Hzの時系列データとしてダウンサンプリングして線速、線度、車速と同期させた。車速が100 km/h以上の場合は計測不良として、2測定間の距離が1 cm以下の場合は停止状態であると見なし、これらのデータは除外した。この測定データの中から、始点（搬送開始地点）から終点（搬送先病院）までの経路が特定できた90搬送分のデータを選び出した。続いて、記録された線速度と地図データベース（住友電気工業、全国デジタル道路地図データベース）を照合し、データベースに登録されているノードと補間点を用いて、1搬送ごとに式（1）の \(N(i) \) と \(\bar{N}(j) \) を確定させ、ノード、補間点、リンクごとに速度と加速度を割り出しようにした。また、道路構造の解読と運用（日本道路協会、2015）によれば、交差点の設計では、平面交差点は75度以上すべきであるが、やむを得ない場合には60度以上にすることができると述べられている。実際に、この指針で交差点が設計されていると仮定し、 \(\bar{N}(j) \) における角度 \(\bar{\theta}(j) > \pi/3 \) ならば、右折または左折と見なし、これ以外は直進と見なすこととした。この右左折の判定ルールは、これ以降も適用する。

表2は、リンクを法定最高速度 \(v_{leg} \) [km/h]と車線数で分類し、そのリンク上で測定された車速 \(v \) [km/h]の平均、標準偏差、データ数を表したものである。 \(v_{leg} \) が大きく、車線数が多いほど、平均速度が上昇する傾向があることが確認された。 \(v_{leg} = 60 \) では、1車線と2車線の間で平均速度差が20 km/h弱と顕著な差が見られたが、この1車線道路はすべて、 \(v_{leg} = 60 \) の2車線自動車専用道路への接続路であった。

表3は、交差点通過時の \(v \) と \(a_c \) の最小値または最大値に関する統計値である。地図データベースに登録されている交差点の座標から、半径100 m以内で計測されたデータから求めた。交差点での通過状況を、Case A（信号機あり交差点を直進通過）、Case B（信号機なし交差点を直進通過）、Case C（右左折）に分けて、データを分類した。なお、Case AとCase Bには、交差点で減速等により速度が変化したデータと変化なしのデータが混在している点に注意する。表中の \(\min v \) の値は、交差点ごとに求めた \(v \) の最小値の平均と標準偏差である。速度変化ありなしのデータが混在していても、交差点での通過状況に応じて最小速度が異なると判断しても問題ない。一方、 \(\min a_c \) と \(\max a_c \) は、交差点ごとに求めた \(a_c \) の最小値の5パーセンタイルと最大値の95パーセンタイルを示す。 \(a_c \) は、車両の速度変動に伴う慣性加速度のほかに、車両の回転や振動による加速度、道路勾配による重力加速度成分が含まれるが、おおよそ、 \(\min a_c \) が加速時の加速度で、 \(\max a_c \) が減速時の加速度の統計値に当たる。これらからの値から、加速と減速で加速度の大きさが異なっていたことがうかがえる。
Table 2 Difference in speed of the ambulance per legal speed limit and number of lanes. The speed v [km/h] was measured for 90 medical emergency transportation in Hiroshima, Japan in 2011. The table shows the statistical data of v in the form of mean ± standard deviation.

V_{legal} [km/h]	Number of lanes	v [km/h] (Mean ± SD)	Number of data
30	All (Only 1 lane)	16.9 ± 9.8	9236
	All	31.4 ± 11.4	15589
	1	31.4 ± 11.0	13896
	2	31.2 ± 14.3	1553
	3	37.6 ± 11.6	140
40	All	36.4 ± 15.2	11156
	1	33.2 ± 15.5	663
	2	35.7 ± 15.2	6659
	3	38.6 ± 14.5	3059
	4	36.7 ± 15.8	775
50	All	62.5 ± 17.3	10920
	1	46.7 ± 18.5	992
	2	64.1 ± 16.3	9928
60	All		

Table 3 Statistical data on the minimum speed, the minimum acceleration and the maximum acceleration within 100 meters of an intersection. The 2nd column shows the mean and the standard deviation for all of minimum value of the speed v [km/h] at each intersection. The 3rd column shows the 5th percentile for all of minimum value of a_c at each intersection. The 4th column shows the 95th percentile for all of maximum value of a_c at each intersection.

Passing situation at intersections	min v [km/h] (Mean ± SD)	min a_c [m/s2] (5th percentile)	max a_c [m/s2] (95th percentile)
Case A (Go straight at intersections with traffic lights)	25.0 ± 15.2	−1.27	2.05
Case B (Go straight at intersections without traffic lights)	39.4 ± 26.1	−1.16	2.14
Case C (Turn left or right)	5.4 ± 4.8	−1.65	2.36

4. 走行モデル

$J_1(N)$～$J_3(N)$ は、車両の速度と加速度に大きく左右される。そこで、速度と加速度を同時に反映できる時間～速度線図の形で走行モデルを与える。消防自動車の運転・操作マニュアル（東京法令出版, 2008）では、救急車の運転上の基本として、塩口道の症状を考慮して、急加速、急ハンドル、急ブレーキをかけて振動等を与えないように留意すると述べられている。振動を与えない方法の一つは、加速および減速は一定加速度で行い、それ以外は等速で走行するといったジャックを抑える走行法である。例えば、ノード通過後に加速して、その後に等速走行に移り、次のノードで減速した場合、時間～速度線図は台形的な形をとる。本論文では、この走行法に基づいて時間～速度線図を構成する。これ以降は、経路 N は確定しており、リンクは全て一般道であるとする。

まず、等速走行時の速度設定について考える。表 2 の調査結果で、平均速度が V_{legal} に応じて上昇する傾向があったことから、速度は V_{legal} ごとに設定する。また、$V_{\text{legal}} = 40$ の 3 車線、$V_{\text{legal}} = 50$ の 1 車線、$V_{\text{legal}} = 60$ の 1 車線の 3 ケースの平均速度が全車線数平均（表中の All の値）と比べて差があった。これは、車線数に応じて速度を変える必要性を示唆している。ただし、他のケースと比べてデータ数が少ない。第 5 節では、走行調査で用いた 90 搬送データから計算される $J_1(N)$～$J_3(N)$ を再現するようにモデルを決定するが、データ数の少なさを考えれば、車線数ごとに速度を変更しなくても、$J_1(N)$～$J_3(N)$ の再現精度に大きく影響しないと考えられる。そこで、車線数に応じた速度の変更はモデルには反映しないことにする。また、表 3 の min v の平均値の違いを考慮し、減速する可能性の高い Case A と確実に減速する Case C で、それぞれ異なる速度を設定する。
次に，加速度の設定について考える。加速度は，表3の最小 a_{min} と最大 a_{max} の大きさの違いを考慮して，加速時と減速時で分ける。また，Case AとCase Bの最小 a_{min} と最大 a_{max} は，交差点での速度変化ありなしの混在したデータから求めたが，速度変化ありのデータのみから求めた場合，Case Cの値に近づくと予想される。そこで，通過状況に応じた加速度の変更モデルには反映しないことにする。

以上の点を踏まえ，走行モデルの基本ルールとして，次の(C1)～(C4)を設けた。ここで，a_{max}, a_{min} [m/s2]は加速度，$V_{E30}, V_{E40}, V_{E50}, V_{E60}, V_s, V_t$ [m/s]は速度を表すが，具体的な値は次節で与える。

(C1) 車両の走行状態は，一定加速度 $a_{\text{max}}(>0)$ での加速走行，等速走行，一定加速度 $a_{\text{min}}(<0)$ での減速走行のいずれかに限る。

(C2) 速度 $V_{\text{legal}}(i)$ が30, 40, 50, 60 km/hのいずれかで与えられるとする。これにより，$E(i)$での最高速度 $V_E(i)$ [m/s]が$V_{E30}, V_{E40}, V_{E50}, V_{E60}$のいずれかに設定される。可能な限り $V_E(i)$ で走行し，この速度を超えてはならない。

(C3) 信号機のある $N(i)$を直進通過する場合，信号機の信号を間わず，速度は V_s 以下に制限される。原則，速度 V_s で通過するが，それができない場合に限り，V_s 未満で通過する。

(C4) 信号機の有無にかかわらず，$N(i)$ で右折する場合には，速度は V_s 以下に制限される。原則，速度 V_s で右左折するが，それができない場合に限り，V_s 未満で右左折する。

上記のルールに基づいて作成した時間-速度線図の例を図6に示す。以下に，(C1)～(C4)を満たす速度線図の作成手順を示す。

Step 1: 通過モードの設定（図7）

$N(i)$ ごとに通過モード $P_N(i)$ を式(7)で与える。

\[
P_N(i) = \begin{cases}
0 & \text{(信号機のない ($T_N(i) = 0$) の $N(i)$ を直進通過する場合)} \\
1 & \text{(信号機のある ($T_N(i) = 1$) の $N(i)$ を直進通過の場合)} \\
2 & \text{($N(i)$ で右折または左折する場合)}
\end{cases} \quad (7)
\]

Step 2: 最高速度の設定（図8）

(C2)に従い，$E(i)$ ごとに最高速度 $V_E(i)$ を式(8)で設定する。

\[
V_E(i) = \begin{cases}
V_{E30} & (V_{\text{legal}}(i) = 30 \text{ km/h}) \\
V_{E40} & (V_{\text{legal}}(i) = 40 \text{ km/h}) \\
V_{E50} & (V_{\text{legal}}(i) = 50 \text{ km/h}) \\
V_{E60} & (V_{\text{legal}}(i) = 60 \text{ km/h})
\end{cases} \quad (8)
\]

Step 3: ノード通過速度の設定（図9）

$P_N(i)$ に応じて，$N(i)$における通過速度 $V_N(i)$ を式(9)で設定する。ただし，始点と終点での速度は，それぞれ
Ono, Transactions of the JSME (in Japanese), Vol.85, No.871 (2019)

Fig. 7 Step 1: Assign the passing mode $P_N(i)$ to $N(i)$. If the ambulance passes straight through $N(i)$ without traffic lights, set $P_N(i) = 0$. If it passes through $N(i)$ with traffic lights, set $P_N(i) = 1$. If it turns left or right at $N(i)$, set $P_N(i) = 2$.

Fig. 8 Step 2: Set the maximum speed $V_E(i)$ on $E(i)$ to V_{E10}, V_{E40}, V_{E90} or V_{E60}, depending on the legal speed limit on $E(i)$.

Fig. 9 Step 3: Set the passing speed $V_N(i)$ at $N(i)$. $V_N(i)$ is chosen as a minimum speed among $V_E(i-1)$, $V_E(i)$, V_1 and V_i, depending on $P_N(i)$. In the above figure, $V_N(i) = V_1$, $V_N(i+1) = V_1$ and $V_N(j) = V_i$. At the start and the end nodes, set $V_N(1)$ and $V_N(I_{end})$ to 0.

Fig. 10 Step 4: Remove the closely located adjacent node from $N = \{N(1), N(2), \ldots, N(I_{end})\}$. The node $N(i+1)$ is removed if (10) and (11) are satisfied. The node $N(i)$ is removed if (13) and (14) are satisfied. The removed node is treated as an interpolated point.

Fig. 11 Removal of a close adjacent node

\begin{align*}
V_N(1) &= 0, \quad V_N(I_{end}) = 0 \text{ とする。} \\
V_N(i) &= \begin{cases}
\min\{V_E(i-1), V_E(i)\} & (P_N(i) = 0) \\
\min\{V_E(i-1), V_E(i), V_i\} & (P_N(i) = 1) \\
\min\{V_E(i-1), V_E(i), V_j\} & (P_N(i) = 2)
\end{cases} \quad (9)
\end{align*}

Step 4 近接ノードの削除（図 10）
加速値が a_{\max} または a_{\min} に限界されているため、連続する 2 つのノードが近すぎると、加速または減速の時間が足りず、Step 3 で設定した $V_N(i)$ でノードを通過できないことがある。このような場合には、次に示す(i)(ii)の手順に従って、通過速度の大きい方のノードを削除する。削除のための条件の導出は、付録 A.2 に記載した。

(i) 加速時の場合（図 11(a)）
Step 3 で設定した $V_N(i)$ と $V_N(i+1)$ に式 (10) の関係があるとする。このとき、さらに式 (11) の関係があると、$N(i)$ を通過して直ちに加速しても、$N(i+1)$ における速度は $V_N(i+1)$ まで上がらない。

\[V_N(i) < V_N(i+1) \quad (10) \]

\[\sqrt{V_N^2(i) + 2a_{\text{max}}L(i)} < V_N(i+1) \quad (11) \]

この場合は、通過速度の大きい $N(i+1)$ をノードベクトル N から除外して、補間点と同じ扱いにする（図 11(a)）。これに伴い、$E(i+1)$、$T_N(i+1)$、$P_N(i+1)$、$V_E(i+1)$、$V_N(i+1)$、$L(i+1)$ とも削除する。ただし、削除の前に $L(i)$ と $V_E(i)$ を更新する。すなわち、

Update $L(i)$ と $L(i) + L(i+1)$

Update $V_E(i)$ と $V_E(i+1)$

Delete $N(i+1)$、$E(i+1)$、$T_N(i+1)$、$P_N(i+1)$、$V_E(i)$、$V_N(i+1)$ と $L(i+1)$

(ii) 減速時の場合（図 11(b))

Step 3 で設定した $V_N(i)$ と $V_N(i+1)$ に式 (13) の関係があるとする。このとき、さらに式 (14) の関係があると、$N(i)$ を通過して直ちに減速しても、$N(i+1)$ における速度は $V_N(i+1)$ まで下がらない。

\[V_N(i) > V_N(i+1) \quad (13) \]

\[\sqrt{V_N^2(i) + 2a_{\text{min}}L(i)} > V_N(i+1) \quad (14) \]

この場合は、通過速度の大きい $N(i)$ をノードベクトル N から除外して、補間点と同じ扱いにする（図 11(b)）。これに伴い、$E(i)$、$T_N(i)$、$P_N(i)$、$V_E(i)$、$V_N(i)$、$L(i)$ とも削除する。ただし、削除の前に $L(i-1)$ を更新する。すなわち、

Update $L(i-1)$ と $L(i-1) + L(i)$

Delete $N(i)$、$E(i)$、$T_N(i)$、$P_N(i)$、$V_E(i)$、$V_N(i)$ と $L(i)$

上記 (i)(ii) の実行後、$N(i)$、$E(i)$、$T_N(i)$、$P_N(i)$、$V_E(i)$、$V_N(i)$、$L(i)$ のインデックス i が、1 からの連番となるように、i の番号を振り直す。これらの処理を、式 (10)(11) および式 (13)(14) を満たす i がなくなるまで繰り返す。

Step 5: ノード間速度の設定（図 12）

$E(i)$ に対して、次の変数 $V_E(i)$ を設定する。

\[V_E(i) := \sqrt{\frac{\max_{N(i+1)} V_N^2(i+1) + \min_{N(i)} V_N^2(i) - 2a_{\text{max}}V_N(i) - 2a_{\text{min}}L(i)}{a_{\text{max}} - a_{\text{min}}}} \quad (16) \]

(C2) に基づき、$E(i)$ での速度が $V_E(i)$ を超えないようにするために、ノード間の速度を以下の (i)(ii) で決定する。

各系の導出方法は、付録 A.3 に記載した。

(i) 等速区間を含むパターン

式 (17) の場合、図 13(a)(b)(c)(d) のように、速度 $V_E(i)$ で等速走行する区間を含むパターンとして決定する。

\[V_E(i) = V_N(i) \quad (17) \]

このパターンでの加速時間 $t_1(i)$ [s]、等速時間 $t_2(i)$ [s]、減速時間 $t_3(i)$ [s] は、次式で与えられる。

\[t_1(i) = \frac{V_E(i) - V_N(i)}{a_{\text{max}}} \]

\[t_2(i) = \frac{1}{V_E(i)} \left\{ L(i) - \frac{V_E^2(i) - V_N^2(i)}{2a_{\text{max}}} - \frac{V_E^2(i+1) - V_N^2(i)}{2a_{\text{min}}} \right\} \quad (18) \]

\[t_3(i) = \frac{V_N(i+1) - V_E(i)}{a_{\text{min}}} \]
(ii) 等速区間を含まないパターン

式 (19) を満たす場合、ノード間の距離が短すぎるため、速度 $V_E(i)$ で等速走行させることができない。この場合、図 13(e) のように、加速と減速のみからなる三角速度パターンとして決定する。

$$V_E(i) \geq V_s(i)$$
(19)

このパターンでの加速時間 $t_1(i)$、等速時間 $t_2(i)$、減速時間 $t_3(i)$ は、次式で与えられる。

$$t_1(i) = \frac{V_s(i) - V_N(i)}{a_{max}}$$

$$t_2(i) = 0$$

$$t_3(i) = \frac{V_N(i+1) - V_s(i)}{a_{min}}$$

5. パラメータ推定

5.1 決定変数

速度線図を完成するためには、8 個のパラメータの値が必要である。それらをベクトル化したものを、以下のように定義する。

$$x := [a_{max}, a_{min}, V_s, V_E, V_{E30}, V_{E40}, V_{E50}, V_{E60}]$$

(21)

本節では、救急車の走行データを利用して、傷病者搬送時の式 (3)(4)(6) の各 $J_q(N)$ が走行モデルから再現されるように、x の値を数理計画法によって求める。

5.2 走行データ

使用するデータは、走行調査で使用した 90 搬送分のデータである。1 搬送ごとに $N(i)$ と $\tilde{N}(j)$ を与えて経路を確定した後、表 1 に示される $E(i)$、$L(i)$、$V_{legal}(i)$、$T_N(i)$、$	ilde{E}(j)$、$	ilde{L}(j)$、$	ilde{H}(j)$、$	ilde{\theta}(j)$ も算出した。なお、$	ilde{L}(j)$ は、$	ilde{N}(j)$ と $	ilde{N}(j+1)$ の綫度、経度、標高から、その 2 点の直線距離として算出した。$L(i)$ は、同リンク内の $	ilde{L}(j)$ の累積値として与えた。統計的に、90 搬送分の経路をランダムに 2 つのグループに分けた。1 つは全体数の 70%に当たる 63 搬送分のデータであり、もう 1 つは 30%に当たる 27 搬送分のデータである。前者のデータセットは、x の最適値の探索で使用し、後者のデータセットは、探索で得られた x の妥当性を検証するために使用する。データセットを明示する場合、以下のように搬送番号を格納したベクトルを用いて区別する。指定する必要がない場合は、K と表記する。

$$K_S = [K_S(1), K_S(2), \ldots, K_S(63)]$$

(最適値の探索用データセット)

$$K_F = [K_F(1), K_F(2), \ldots, K_F(27)]$$

(最適値の検証用データセット)

$$K_A = [K_A(1), K_A(2), \ldots, K_A(90)]$$

(全データセット)
5.3 評価関数

実際の救急車の走行状況に適合するように x を決定するため、その適合度を測る評価関数を説明する。データセット K の中の k 番目の経路を $N_k (k \in K)$ と表記する。また、x で規定される速度線図に従って、車両が N_k 上を走行すると仮定したときの式 (3)(4)(6) の評価量を $J_q (x, N_k) (q = 1, 2, 3)$ と表記する。この具体的な計算方法は、次節で述べる。一方、測定データから計算される評価量を $J_q (N_k) (q = 1, 2, 3)$ と表す。$J_q (x, N_k)$ が $J_q (N_k)$ に適合するように、以下の評価関数 $\phi_q (x, K) (q = 1, 2, 3)$ が小さくなるように x を決定する。

$$\phi_1 (x, K) := \frac{1}{\text{num}(K)} \sum_{k \in K} \left| \frac{J_1 (x, N_k)}{L_k} - \frac{J_1 (N_k)}{L_k} \right| \times 1000 \tag{23}$$

$$\phi_2 (x, K) := \frac{1}{\text{num}(K)} \sum_{k \in K} \left| \frac{J_2 (x, N_k)}{T_k (x)} - \frac{J_2 (N_k)}{T_k} \right| \times 60 \tag{24}$$

$$\phi_3 (x, K) := -R \left(S(x, K), \bar{S}(K)\right) \tag{25}$$

ここで、$J_1 (N_k)$ は、測定データから求めた始点から終点までの時間として与える。L_k [m] は、N_k の経路長、すなわちリンク長の総和である。$T_k (x)$ [s] は、N_k を走行するのにかかる時間を表し、$J_1 (x, N_k)$ と同値である。T_k [s] は、$J_1 (N_k)$ と同値である。$J_2 (N_k)$ は、$\Delta t (= 1.0)$ 秒間隔の時系列データ a_t を式 (5) に代入して y を推定した後、式 (4) の積分を矩形近似した次式で与える。m はデータ総数である。

$$J_2 (N_k) = \sum_{n=1}^{m} |y(n)| \Delta t \tag{26}$$

式 (25) の $R \left(S(x, K), \bar{S}(K)\right)$ は、次式で定義される距離データ $S(x, K)$ と $\bar{S}(K)$ の関相関係数を表す。

$$S(x, K) := [J_3 (x, N_{K(1)}), J_3 (x, N_{K(2)}), \ldots, J_3 (x, N_{\text{num}(K)})] \in \mathbb{R}^{\text{num}(K)} \tag{27}$$

$$\bar{S}(K) := [J_3 (N_{K(1)}), J_3 (N_{K(2)}), \ldots, J_3 (N_{\text{num}(K)})] \in \mathbb{R}^{\text{num}(K)} \tag{28}$$

$\bar{S}(K)$ の要素 $J_3 (N_k)$ は式 (6) に対応するものだが、これは、$\Delta t (= 1.0)$ 秒間隔の時系列データ a_t を用いて、次式で計算する。

$$J_3 (N_k) = \sum_{n=1}^{m} |a_t(n)| \Delta t \tag{29}$$

式 (23) の $\phi_1 (x, K)$ は、走行モデルと測定データから得た 1 km 当たりの移動時間の平均絶対誤差を表す。式 (24) の $\phi_2 (x, K)$ は、1 分間当たりの血圧変動量の絶対値積分の平均絶対誤差を表す。1 km 当たりや1分間当たりに換算したのは、N_k ごとに搬送距離や搬送時間が異なっても、それが x の適合度に平等に反映されるようにするためである。式 (25) の $\phi_3 (x, K)$ は、$S(x, K)$ と $\bar{S}(K)$ を系列データとして見たときの相関率を表す。$\phi_1 (x, K)$ や $\phi_2 (x, K)$ のように平均絶対誤差として定義しなかったのは、以下の理由による。a_t は 1 Hz の時系列データであることから、式 (29) は左右加速度の絶対値積分を時間幅 1 秒で矩形近似した値に等しい。付録 A.1 の式 (52) が示すように、$J_3 (N_k)$ と $J_3 (N_k)$ は近似的に比例関係と見なせるが、両者を対応付ける比例係数が未定であるため、両者の一致度を測ることができない。また、N_k ごとに搬送距離や搬送時間が異なるため、それに合わせて $J_1 (x, N_k)$ と $J_1 (N_k)$ が変動する。この点に着目して、搬送番号で系列化した $S(x, K)$ と $\bar{S}(K)$ の相関率を最大（符号反転した相関係数を最小）にすることで、x を最適化することとした。

5.4 $J_q (x, N_k)$ の計算方法

速度線図から計算される $J_q (x, N_k) (q = 1, 2, 3)$ の計算法を示す。これは、式 (3)(4)(6) の $J_q (N_k)$ の計算法に等しい。

$$J_1 (x, N_k) = \sum_{i \in \text{num}} \{t_1 (i) + t_2 (i) + t_3 (i)\} \tag{30}$$
$J_2(x,N_k)$ は式 (4) で求めるが, 次のように, 積分区間を $E(i)$ の通過時間ごとに分けて計算すると都合が良い。

$$J_2(x,N_k) = \sum_{i \in \Gamma_{\text{tot}}} \int_{\tau_1(i)+t_2(i)+t_3(i)}^{\tau_3(i)+t_2(i)+t_3(i)} |y(\tau)| d\tau$$ \hspace{5cm} (31)

ここで, $\tau [s]$ は, $E(i)$ の起点ノードである $N_k(i)$ を通過してからの経過時間を表し, $0 \leq \tau \leq t_1(i)+t_2(i)+t_3(i)$ を定義域とする時間変数である. 式 (5) で $y(\tau)$ を計算するには, $a_c(\tau)$ が必要である. $a_c(\tau)$ は, 被対象者の足頭方向に作用する加速度であるから, 車両の速度変化で生じる慣性加速度成分 $a_c(\tau) [\text{m/s}^2]$ と勾配道路走行時に生じる重力加速度成分 $a_g(\tau) [\text{m/s}^2]$ の和として与える. すなわち,

$$a_c(\tau) = a_c(\tau) + a_g(\tau)$$ \hspace{5cm} (32)

$a_c(\tau)$ は, 速度線図から, 次式で与える.

$$a_c(\tau) = -\frac{dV}{d\tau} = \begin{cases} -a_{\text{max}} & (0 \leq \tau < t_1) \\ 0 & (t_1 \leq \tau < t_1 + t_2) \\ -a_{\text{min}} & (t_1 + t_2 \leq \tau < t_1 + t_2 + t_3) \end{cases}$$ \hspace{5cm} (33)

ただし, $t_1 = t_1(i), t_2 = t_2(i), t_3 = t_3(i)$ である. この $a_c(\tau)$ は, 加速, 等速, 減速の切り替え時刻を境にして階段状に変化する. 一方, $a_g(\tau)$ は, 図 14 のように車両が $N_k(j)$ を通過して, $	ilde{E}(j)$ 上を走行している場合, 次式で与える.

$$a_g(\tau) = -g \frac{\tilde{H}(j+1)-\tilde{H}(j)}{L(j)}$$ \hspace{5cm} (34)

$a_g(\tau)$ は, $N_k(j)$ の通過時刻を境にして階段状に変化するので, 式 (34) を計算するためには, その通過時刻が必要となる. その求め方は次のとおりである. 図 15 は, $E(i)$ の起点ノードが $N_k(p)$ であり, この $E(i)$ 上に $N_k(j)$ がある状況を示す. それぞれの波形は, $N_k(p)$ 通過時を時間 $	au$ の点 (τ = 0) としたときの速度 $v(\tau)$, $a_c(\tau)$, $a_g(\tau)$, $\ell(\tau)$ を表す. $\ell(\tau)$ は, $N_k(p)$ 通過後から $	au$ 秒後の移動距離を表す. このとき, $N_k(j)$ の通過時刻を, $\ell(\tau)$ が $N_k(p)$ から $N_k(j)$ までの距離と一致する時間として求めれば良い. すなわち,

$$\ell(\tau) = L(p) + L(p+1) + \cdots + L(j-2) + L(j-1)$$ \hspace{5cm} (35)

を満たす τ として求めれば良い. $\ell(\tau)$ は, 速度線図を τ で積分した関数であり, 以下のように与えられる.

$$\ell(\tau) = \begin{cases} \frac{1}{2}a_{\text{max}} \tau^2 + v_N(i) \ell(v) & (0 \leq \tau \leq t_1) \\ \ell(t_1) + v_E(i)(\tau-t_1) & (t_1 \leq \tau \leq t_1 + t_2) \\ \ell(t_1 + t_2) + \frac{1}{2}a_{\text{min}}(t_1-t_2)^2 + v_E(i)(\tau-t_1-t_2) & (t_1 + t_2 \leq \tau \leq t_1 + t_2 + t_3) \end{cases}$$ \hspace{5cm} (36)

ここで, $t_1 = t_1(i), t_2 = t_2(i), t_3 = t_3(i)$ である. 以上のように, $a_c(\tau)$ と $a_g(\tau)$ が変化する時刻を求める上で $a_c(\tau)$ を決定し, 式 (5)(31) で $J_2(x,N_k)$ を計算する.

$J_3(x,N_k)$ の計算では, $N_k(j)$ の通過速度である $
u(j)$ が必要となる. この $
u(j)$ は, 図 15 のように, $N_k(j)$ が $E(i)$ 上にある場合, 式 (35) を満たす時間 $	au$ を用いて, 次式で与える.

$$\nu(j) = \begin{cases} a_{\text{max}}(\tau + V_N(i)) & (0 \leq \tau \leq t_1) \\ V_E(i) & (t_1 \leq \tau \leq t_1 + t_2) \\ a_{\text{min}}(\tau - t_1 - t_2) + V_E(i) & (t_1 + t_2 \leq \tau \leq t_1 + t_2 + t_3) \end{cases}$$ \hspace{5cm} (37)

ここで, $t_1 = t_1(i), t_2 = t_2(i), t_3 = t_3(i)$ である. この $
u(j)$ と $	ilde{\theta}(j)$ を用いて, 式 (6) で $J_3(x,N_k)$ を計算する.
Fig. 14 This figure shows a situation that the ambulance is going down a slope. \(L_j(N_k) \), which is a function for evaluating the blood pressure variation, is calculated from the foot-to-head acceleration \(a_c \) acting on a recumbent patient. \(a_c \) is a sum of the inertial acceleration \(a_c \) and a part of the gravitational acceleration \(a_g \) due to road gradient, that is, \(a_c = a_c + a_g \). \(L_j \) is a length between \(N_k(j) \) and \(N_k(j+1) \). \(H(j) \) is an elevation at \(N_k(j) \).

Fig. 15 Relationship among the speed, the acceleration and the traveling distance over the link \(E(i) \). The inertial acceleration \(a_c \) changes at \(\tau = t_1 + t_2 \). The acceleration \(a_c \), which is caused by the road gradient, changes at \(N_k(j) \).

5.5 パラメータ推定

探索用データセット \(K_3 \) を用いて、\(\phi_q(x,K_3) \) \((q = 1, 2, 3)\) のいずれも小さくなるように、多目的最適化の枠組みで、\(x \) の最適値 \(x_{\text{opt}} \) を決定した。各 \(\phi_q(x,K_3) \) を同時に最小にする \(x \) が得られれば、それが完全最適解となり、それを \(x_{\text{opt}} \) とすればよいが、完全最適解が得られる保証はない。そこで、2つの段階を経て \(x_{\text{opt}} \) を求めた。第1段階では、\(\phi_q(x,K_3) \) \((q = 1, 2, 3)\) に対するパラメータ \(x^* \in \mathbb{R}^8 \) を求めた。つまり、次の (I)(II) を同時に満たす \(x \) が存在しないような \(x^* \) を求めた。\(x^* \) が唯一に存在すれば、各 \(\phi_q(x^*,K_3) \) は同時に最小となるので、この方法では完全最適解を求めることもできる。

(I) \(\forall q \in \{1, 2, 3\} \quad \phi_q(x,K_3) \leq \phi_q(x^*,K_3) \)

(II) \(\exists q \in \{1, 2, 3\} \quad \phi_q(x,K_3) < \phi_q(x^*,K_3) \)

\(x^* \) は、実数型 GA を用いて探索した (Haupt and Haupt, 2004). GA の実行条件は、個体数 200, 世代数 50, 選択率 0.5, 突然変異率 0.3, エリート個体数 1 である。この探索を、各パラメータの許容範囲を変えながら 10 回行った。この結果、完全最適解を得ることはできず、161 個の \(x^* \) を得た。第2段階では、各回で得た \(x^* \) に対して複数の選別処理を施し、\(x_{\text{opt}} \) を決定した。最初の選別処理では、表 3 に示す Case C の \(\min a_c \) と \(\max a_c \) の値を参考に
Table 4 The objective function \(\phi_q(x_{opt}, K) \) (\(q = 1, 2, 3 \)) for the data sets \(K_s, K_V \) and \(K_A \). \(K_s \) is a set of 63 transport data for finding the optimal solution \(x_{opt} \), while \(K_V \) is a set of 27 transport data for validation of \(x_{opt} \). \(K_A \) is a set of all 90 transport data. There is no big difference between \(\phi_q(x_{opt}, K_s) \) and \(\phi_q(x_{opt}, K_V) \). This indicates that \(x_{opt} \) is acceptable.

Data set \(K \)	\(\phi_1(x_{opt}, K) \)	\(\phi_2(x_{opt}, K) \)	\(\phi_3(x_{opt}, K) \)
\(K_s \)	10.02	22.08	-0.82
\(K_V \)	8.78	16.04	-0.92
\(K_A \)	9.65	20.27	-0.85

Table 4 The objective function \(\phi_q(x_{opt}, K) \) (\(q = 1, 2, 3 \)) for the data sets \(K_s, K_V \) and \(K_A \). \(K_s \) is a set of 63 transport data for finding the optimal solution \(x_{opt} \), while \(K_V \) is a set of 27 transport data for validation of \(x_{opt} \). \(K_A \) is a set of all 90 transport data. There is no big difference between \(\phi_q(x_{opt}, K_s) \) and \(\phi_q(x_{opt}, K_V) \). This indicates that \(x_{opt} \) is acceptable.

The objective function \(\phi_q(x_{opt}, K) \) (\(q = 1, 2, 3 \)) for the data sets \(K_s, K_V \) and \(K_A \). \(K_s \) is a set of 63 transport data for finding the optimal solution \(x_{opt} \), while \(K_V \) is a set of 27 transport data for validation of \(x_{opt} \). \(K_A \) is a set of all 90 transport data. There is no big difference between \(\phi_q(x_{opt}, K_s) \) and \(\phi_q(x_{opt}, K_V) \). This indicates that \(x_{opt} \) is acceptable.

\[
\Phi(x^s) = \sum_{q=1}^{3} \alpha_q \frac{\delta_q(x^s, K_s) - \min \phi_q}{\max \phi_q - \min \phi_q}
\]

ここで、\(\alpha_q (q = 1, 2, 3) \) は重み係数。

\[
\min \phi_q = \min_{1 \leq i \leq 76} \phi_q(x^i, K_s)
\]

\[
\max \phi_q = \max_{1 \leq i \leq 76} \phi_q(x^i, K_s)
\]

である。\(\Phi(x^s) \) は、大きさの異なる各 \(\phi_q(x^s, K_s) \) を 0 から 1 の範囲に正規化した上で、重み \(\alpha_q \) で加重和をしたスカラーの指標である。バランス化のために、重み係数は均等に \(\alpha_q = 1 \) とした。\(\Phi(x^s) \) を最小とする \(x^s \) が最もバランスの良い解と言えるが、\(V_{E30}, V_{E40}, V_{E50}, V_{E60} \) の大小関係も考慮するために、\(\Phi(x^s) \) (\(i = 1, 2, \ldots, 76 \)) を昇順に並べたときの上位 70% にあたる 53 個の \(x^i \) を最終候補とした。最後の選別処理では、表 2 で、\(V_{legal} \) ごとに全車線数（表中の ALL）に分類された車速データの集合に対して、53 個の \(x^i \) の \(V_{E30}, V_{E40}, V_{E50}, V_{E60} \) が、それぞれ対応する車速集合のどこに位置するのかを調べた。最終的に、各集合のいずれも 68 パーセンタイルに位置する \(V_{E30} \sim V_{E60} \) を持つ \(x^i \) を最適解として、次のように決定した。

\[
x_{opt} = [1.10, -0.50, 0.42, 7.50, 5.70, 10.49, 12.61, 19.93]
\]

\(x_{opt} \) の 3 ～ 8 番要素は秒数表記の速度であるが、これを時速で表すと、\(V_t \) は 1.5 km/h、\(V_t \) は 27.0 km/h、\(V_{E30} \) は 20.5 km/h、\(V_{E40} \) は 37.8 km/h、\(V_{E50} \) は 45.4 km/h、\(V_{E60} \) は 71.7 km/h となる。

\(x_{opt} \) の妥当性を検証する。表 4 に、データセット \(K_s, K_V, K_A \) ごとに求めた各評価関数の値を示す。どのデータセットに対しても、大差は見られない。図 16 には、経路ごとに求めた \(J_q(x_{opt}, N_2), J_q(N_2) \) を示す。上段図の \(J_1 \) と \(J_2 \)、中段図の \(J_2 \) と \(J_2 \) は、比較的よく一致している。下段図の \(J_1 \) と \(J_2 \) のグラフは、それぞれ \(S(x_{opt}, K_A) \) と \(S(K_A) \) と同じであるが、両者は比較的よく同期している。以上より、総合的に見れば、\(x_{opt} \) は妥当であると判断できる。

6. シミュレーションと考察

図 17 に、距離−速度線図の例を示す。青線が測定値を表し、赤線がモデルで生成した時速を表す。図 17(a) は、経路 N50 が \(K_s \) の結果である。この経路に対する \(J_q, \delta_q (q = 1, 2, 3) \) は、図 16 では \(k = 68 \) の結果に当たることが \(J_1 \) と \(J_2 \) の推定精度はいずれも高いく、全体的な速度も、よく一致した例である。一方、図 17(b) では、経路 N51 が \(K_s \) の結果である。この経路に対する \(J_q, \delta_q \) は、図 16 では \(k = 51 \) の結果に当たることが \(J_1 \) の推定精度が低い \((J_1 - \delta_1 = 206.3 \) 秒)。この経路には、信号機が約 150 m 間隔で多数配置されている。信号機が連続的に設置されている場合、同期的制御されることがなく、その結果、連続的に青信号で通過できることも多い。実際、図 17(b) の赤線で示される速度で、時速 27.0 km/h まで落ち着いている場所が信号機設置交差点であるが、救急車（青線）はそこを連続的に通過している。しかし、モデルでは、信号機通過値は常に 27.0 km/h かそれ以下に減速する。このように、信号機通過時の速度設定が、実際の状況と適合しなかったため、\(J_1 \) の再現性が低くなったと考えられる。信号機が近距離で連続的に設置されている区間では、走行モデルによる \(J_1 \) の再現精度は低く考えられる。
Comparison of J_2 with \bar{J}_2 for $q = 1, 2, 3$. J_1 and \bar{J}_1 are the indices to evaluate a transport time. J_2 and \bar{J}_2 are the indices to measure an influence of the BP variation. J_3 and \bar{J}_3 are the indices to evaluate an influence of the pressing force acting on the back of a patient. The red line denotes J_q, which is calculated by the model. The blue line denotes \bar{J}_q, which is calculated from the drive data of the ambulance. From the top two figures, it is found that x_{opt} gives good coincidence between J_1 and \bar{J}_1 and between J_2 and \bar{J}_2. In the bottom figure, the correlation coefficient between the series of J_3 and \bar{J}_3 is 0.85, which is strong positive correlation.

Distance versus speed diagrams. The left figure shows a successful example, in which $J_q(x_{opt}, N_k)$ coincides well with $\bar{J}_q(N_k)$ for $q = 2$. The speed created by the model also matches well to the actual speed of the ambulance. The right figure shows a bad example, in which there is a large difference in the traveling time: $J_1(x_{opt}, N_51) - \bar{J}_1(N_51) = 206.3\text{s}$. The route N_51 has many traffic lights at a short distance. The ambulance could pass through the intersections consecutively on green lights due to the synchronization control of the traffic lights, while the model always decelerates an ambulance to 27.0 km/h or less at every intersection with traffic lights. This mismatch results in the large difference in the traveling time.

モデルの速度と実際の速度との乖離が発生するケースは、この他にも渋滞区間を通ること、および車体振動の要因となる路面状態の悪い区間を走行する場合が考えられる。90度処分の測定データには、これに該当する例はごくわずかしか含まれていなかったため、モデルには反映されていない。このような区間を走行する場合、実際の速度はモデルの速度よりも小さくなると予想され、J_1の再現精度が低くなると考えられる。
7. 結 言

病院への最適経路探索で使用するための救急車の走行モデルを与えた。走行時間を推定する関数 \(J_1(N) \)，血圧変動の影響を推定する関数 \(J_2(N) \)，脳部圧迫の影響を推定する関数 \(J_3(N) \) の計算法を示した。これらも、最適経路の探索で利用される。走行モデルは、救急車の走行調査の結果から、8 個のパラメータで規定される速度線図として与えた。パラメータの値は、傷病者搬送時の \(J_1(N) \sim J_3(N) \) の値が再現されるように最適化した。この最適化では、まず、90 搬送分の走行データを、パラメータの探索用と検証用の 2 つのデータセットに分けた。続いて、探索用セットに対して、パラメータの求解問題を、\(J_1(N) \sim J_3(N) \) の推定誤差に関する 3 つの評価関数を最小化する多目的最適化問題に定式化したのち、遺伝的アルゴリズムを用いて複数のパラメータの解を求めた。そのうち一つを、最適パラメータとして選定した。探索用と検証用のデータセットに対して、3 つの評価関数の値を比較したところ、同程度の値となり、最適化したパラメータに妥当性があることを確認した。しかし、信頼機が近距離で連続的に設定されている場合では、\(J_1(N) \) の推定精度が低い結果となった。渋滞区間や路面状態の悪い区間を走行する場合も、\(J_1(N) \) の推定精度が低くなることが予想されるため、改良の余地が残されている。これらの改良については、今後の課題としたい。

文 献

鈴木勝彦, 前原潤一, 上原隆一, 川村隆士, 藤本敏明, 高山俊人, 藤本昭, 救急車搬送患者の搬送時間と自宅退院率の関係, 日本救急医学会雑誌, Vol. 17, No. 3 (2006), pp. 92–98.

Haas, O.C., Ambulance response modeling using a modified speed-density exponential model, 2011 14th International IEEE Conference on Intelligent Transportation Systems (2011), pp. 943–948.

橋本孝来, 栗原正紀, 井上健一朗, 岩崎義博, 藤本昭, 救急患者収容要所時間と救命率の関係, 日本臨床救急医学会雑誌, Vol. 5, No. 3 (2002), pp. 285–292.

Haupt, R.L. and Haupt, S.E., Practical Genetic Algorithms, 2nd ed., Wiley-Interscience (2004).

稲川敬之, 古田常宏, 鈴木敦夫, 救急車の配置計画における確率的評価指標とその重要性について, 都市計画, 別冊, 都市計画論文集, Vol. 42, No. 3 (2007), pp. 469–474.

南浩明, 木下敦志, 高木由美, 太田聡, 植木久, 都市部における車両間通信を用いた緊急車両通行支援システムに関する評価, 電子情報通信学会技術研究報告, Vol. 114, No. 166 (2014), pp. 19–24.

南部繁樹, 吉田剛, 赤羽弘和, プローブデータの分析に基づく救急車への緊急走行支援策の検討, IATSS review, Vol. 34, No. 3 (2009), pp. 309–316.

小野貴彦, 今田健太, 仰臥位搬送時の遠心加速度による脳血管重変動のモデル化, 日本機械学会論文集 C 編, Vol. 78, No. 787 (2012), pp. 863-871.

小野貴彦, 猿岡光, アクティブ制御ベッドによる救急車の乗り心地改善予測, 人間工学, Vol. 41, No. 5 (2005), pp. 306–313.

Ono, T. and Inooka, H., Actively-controlled beds for ambulances, International Journal of Automation and Computing, Vol. 6, No. 1 (2009), pp. 1–6.

小野 貴彦, 牧野佑城雄, 減速時の血圧変動を抑制するための救急車用運転訓練支援システム, 日本機械学会論文集, Vol. 82, No. 839 (2016), DOI:10.1299/transjsme.16-00039.

小野貴彦, 吉村正正, 救急搬送時を想定した加速度による血圧変動の解析：身体部位間の相関の推定, 人間工学, Vol. 53, No. 6 (2017), pp. 195–204.

佐川貴一, 高橋隆行, 猿岡光, 猿岡英二, 救急車の減速時に現れる血圧変動のモデル化, 医用電子と生体工学, Vol. 31, No. 2 (1993), pp. 183–190.

鈴木範行, 横田要一, 杉山善一, 救急隊活動時における脳動脈瘤再破裂の検討, 日本臨床救急医学会雑誌, Vol. 5, No. 3 (2002), pp. 269–274.

高田邦雄, 横葉英夫, 南部繁樹, 金沢市のにおける現場急行支援システム（FAST）の導入効果, IATSS review, Vol. 34, No. 3 (2009), pp. 301–308.

山岸義応, 猿岡光, 乗り心地改善を目指した運転支援システム, 自動車技術会論文集, Vol. 36, No. 1 (2005), pp. 241–246.

[DOI: 10.1299/transjsme.18-00308] © 2019 The Japan Society of Mechanical Engineers
References

Ayuka, K., Maehara, J., Uetsuhara, K., Shima, H., Arimura, T., Takayama, H. and Fujimoto, A., The relationship between EMS transportation time and 30-day discharge rates for patients with severe disease, Journal of Japanese Association for Acute Medicine, Vol. 17, No. 3 (2006), pp. 92–98 (in Japanese).

Haas, O.C., Ambulance response modeling using a modified speed-density exponential model, 2011 14th International IEEE Conference on Intelligent Transportation Systems (2011), pp. 943–948.

Hashimoto, T., Kurihara, M., Inoue, K., Iwasaki, Y. and Fujimoto, A., Relationship between the carrying time and the survival rate in emergency medical service, Journal of Japanese Society for Emergency Medicine, Vol. 5, No. 3 (2002), pp. 285–292 (in Japanese).

Haupt, R.L. and Haupt, S.E., Practical Genetic Algorithms, 2ed ed., Wiley-Interscience (2004).

Inakawa, K., Furuta, T. and Suzuki, A., Probabilistic evaluation indices for ambulance location problems and their importance, City planning review. Special issue, Papers on city planning, Vol. 42, No. 3 (2007), pp. 469–474 (in Japanese).

Minami, H., Kinoshita, A., Takaki, Y., Ohta, C. and Tamaki, H., Performance evaluation of V2V emergency vehicle warning system in urban area, IEICE technical report, Vol. 114, No. 166 (2014), pp. 19–24 (in Japanese).

Nanbu, S., Yoshida, S. and Akahane, H., A study of ambulance run support measures based on an analysis of probe data, IATSS review, Vol. 34, No. 3 (2009), pp. 309–316 (in Japanese).

Ono, T. and Inooka, H., Estimation of improvement of ride quality of ambulances achieved by actively-controlled beds, The Japanese Journal of Ergonomics, Vol. 41, No. 5 (2005), pp. 306–313 (in Japanese).

Ono, T. and Inooka, H., Actively-controlled beds for ambulances, International Journal of Automation and Computing, Vol. 6, No. 1 (2009), pp. 1–6.

Ono, T. and Makino, Y., Drive training assistant system for ambulances to reduce blood pressure variation during deceleration, Transactions of the JSME (in Japanese), Vol. 82, No. 839 (2016), DOI:10.1299/transjsme.16-00039.

Ono, T. and Yoshizumi, M., Analysis of acceleration-induced blood pressure variation assumed in ambulance services, Estimation of difference between body portions, The Japanese Journal of Ergonomics, Vol. 53, No. 6 (2017), pp. 195–204 (in Japanese).

Sagawa, K., Takahashi, T., Inooka, H. and Inooka, E., Modeling of the blood pressure variation at the deceleration of an ambulance, Japanese Society for Medical and Biological Engineering, Vol. 31, No. 2 (1993), pp. 183–190 (in Japanese).

Suzuki, N., Kitsuta, Y. and Sugiyama, M., Rebleeding attack of the cerebral aneurysm at emergency scenes, Journal of Japanese Society for Emergency Medicine, Vol. 5, No. 3 (2002), pp. 269–274 (in Japanese).

Takada, K., Inaba, H. and Nanbu, S., Effect of introducing a fast emergency vehicle preemption system in kanazawa, IATSS review, Vol. 34, No. 3 (2009), pp. 301–308 (in Japanese).

Yamagishi, Y. and Inooka, H., Driver assistant system for improvement of ride quality, Transactions of Society of Automotive Engineers of Japan, Vol. 36, No. 1 (2005), pp. 241–246 (in Japanese).

付 録

A.1 道路ネットワーク上での背面圧迫の評価法

被巻送者が普通体重（BMI が 18.5 以上かつ 25.0 未満）の場合，図 5 に示す脇甲骨直下にかかる背面荷重の垂直方向成分の増減量 f は，a v に比例する．そこで，背面圧迫の影響を，始点から終点までの |a v | の時間積分で評価する場合を考え，その評価方法を示す．

図 18 に示すように，車両が N(j) に相当する交差点または補間点近傍を方位を変えながら走行し，車両の重心点が Δt [s] 間隔で G 0, G 1, G 2, . . . , G n の順で移動する状況を考える．G 0 における方位角を θ 0 [rad]，速度を v 0 [m/s]
とする。\(N(j) \) 近傍での走行であるから、\(G_0 \) から \(G_1 \) まではS字走行せず、\(\theta_i \) は同符号であり、\(a_x \) も同符号とする。図 19 が示すように、\(G_1 \) において、車両の重心点にかかる加速度の進行方向成分を \(A_z \) [m/s²]、遠心方向成分を \(A_\beta(t) \) [m/s²]、車両の前後方向成分を \(A_y \) [m/s²] とする。これらは、車内に原点を持つ座標系で観測されるとする。また、いずれの成分にも、車両のヨー運動に起因する成分が含まれるが、これは十分小さく無視できるとする。また、車体のロール角を \(\alpha \) [rad]、横滑り角を \(\beta \) [rad] とする。\(\alpha \) が十分小さく、\(A_z \) で比例近似できることを仮定すると、次の近似式を得る。

\[
\cos \alpha \simeq 1, \quad \sin \alpha \simeq \alpha \simeq kA_y \quad (k: \text{比例係数})
\]

さらに、\(A_\beta = A_y \cos \alpha - A_z \sin \beta \) の関係を用いると、\(A_y \) は以下のよう近似できる。

\[
a_y = \hat{A}_y \cos \alpha + g \sin \alpha \simeq \{(1 + gk) \cos \beta\}A_y - \{(1 + gk) \sin \beta\}A_z
\]

ここで、次の (a)〜(d) の仮定をおく、\(G_i \) における \(A_y \) と \(A_z \) を、それぞれ \(A_{yi} \) と \(A_{zi} \) とした。

(a) 連続する 3 点 \(G_{i-1}, G_i, G_{i+1} \) は同一の円軌道上にある。
(b) \(G_0 \) から \(G_n \) まで等速で走行し、常に \(A_z = 0 \)。
(c) また、\(G_0 \) 通過後に減速 \(A_z > 0 \) して、等速走行 \(A_z = 0 \) に移り、再び加速 \(A_z < 0 \) して \(G_n \) を抜ける。このとき、\(G_0 \) から \(G_n \) までの中央点に当たる \(G_i \) では \(A_{zi} = 0 \)、それ以外の \(G_i \) と \(G_{n-i} \) では \(A_{zi} = -A_{zi} \)。
(d) \(G_0 \) では、\(A_y = 0 \)、\(\beta = 0 \)、\(G_1 \) から \(G_{n-1} \) までは、\(k \) と \(\beta \) は一定。

この時 (b) はカープでの走行方を想定しており、(c) は交差点右薊時の走行方を想定している。ここで、背負圧迫の影響を、\(|a(t)| \) の時間積分で評価してみる。(a)～(d) の下では、その時間積分に関して以下の近似式を得る。\(t_0 \) は \(G_0 \) への進入時刻、\(t_n \) は \(G_n \) からの退出時刻、\(c = (1 + gk) \cos \beta \)、\(d = (1 + gk) \sin \beta \) である。

\[
\int_{t_0}^{t_n} |a_y(t)| dt = \int_{t_0}^{t_n} a_y(t) dt
\]

\[
= \int_{t_0}^{t_n} \{(1 + gk) \cos \beta\}A_y(t) dt - \int_{t_0}^{t_n} \{(1 + gk) \sin \beta\}A_z(t) dt
\]

\[
\approx c \sum_{i=1}^{n-1} A_{yi} \Delta t - d \sum_{i=1}^{n-1} A_{zi} \Delta t
\]

\[
\approx c \sum_{i=1}^{n-1} A_{yi} \Delta t
\]

式 (44) の絶対値記号の位置の変更は、\(G_0 \) から \(G_n \) の間では、\(a_y \) の符号が変わらないという前提に基づいている。
ここで、G_iにおける円軌道の半径をr_i [m]、車両重心点の角速度をω_i [rad/s] とすると、$A_{ij} = r_i \omega_i^2 \approx v_i \theta_i / \Delta t$ と近似できる。これを式 (47) に適用すると、

$$
\int_{t_0}^{t_e} |a_i(t)| dt \simeq c \sum_{i=1}^{n-1} v_i \theta_i
$$

(48)

さらに、

$$
\bar{v}(j) = \sum_{i=1}^{n-1} v_i \left(\frac{\theta_i}{\bar{\theta}(j)} \right)
$$

(49)

とおく。ただし、$\bar{\theta}(j) = \sum_{i=1}^{n-1} \theta_i$ である。$\bar{v}(j)$ は、仮定 (b) の下では、$\bar{N}(j)$ の通過速度に等しい。仮定 (c) の下では、$\theta_i / \bar{\theta}(j)$ で重み付した v_i の加重和と解釈できる。いずれの場合も、$\bar{N}(j)$ 近傍での代表通過速度と解釈できる。式 (48) を書き直すと、

$$
\int_{t_0}^{t_e} |a_i(t)| dt \simeq |c| \bar{v}(j) \bar{\theta}(j)
$$

(50)

経路上の全ての $\bar{N}(j)$ に対して、式 (50) の両辺で和を取ると,

$$
\int_{0}^{\bar{N}(N)} |a_i(t)| dt \simeq |c| J_3(N)
$$

(51)

また、式 (29) の $J_3(N)$ は、式 (51) の左辺の積分を時間幅 1 秒で矩形近似した値に相当するので、

$$
J_3(N) \simeq |c| J_3(N)
$$

(52)

以上から、背面圧迫の影響を $|a_i|$ の時間積分で評価する場合、(a)～(d) の仮定の下では、$J_3(N)$ または $J_3(N)$ で代替評価できる。$J_3(N)$ と $J_3(N)$ には $|c|$ 倍の関係があるため、両者の直接的な比較はできない点に注意する。

A.2 邻接ノードの削除

隣接する 2 つのノード $N(i)$ と $N(i+1)$ が接続していると、そこを指定した速度 $V_N(i)$ または $V_N(i+1)$ で通過できないことがある。その場合、通過速度の大きい方のノードをノードベクトル N から削除する。以下、削除する条件を加速通過する場合と、減速通過する場合に分けて示す。

加速通過のノードを削除する状況は、図 11(a) に当たる。いま、$N(i+1)$ の通過速度を V_e としよう。$N(i)$ から $N(i+1)$ までの走行時間を t_e とすると、$t_e = \{V_e - V_N(i)\} / a_{\max}$. この間に進む距離 $L(i)$ は、

$$
L(i) = \frac{V_e + V_N(i)}{2} \cdot t_e = \frac{V_e^2 - V_N^2(i)}{2a_{\max}}
$$

(53)

よって,

$$
V_e = \sqrt{V_N^2(i) + 2a_{\max}L(i)}
$$

(54)

この V_e に対して、$V_e < V_N(i+1)$ の関係があると、$N(i+1)$ を $V_N(i+1)$ の速度で通過することができない。したがって、式 (10)(11) の場合には、$N(i+1)$ を N から削除する。

減速通過のノードを削除する状況は、図 11(b) に当たる。上記と同様に V_e と t_e を定義すると、$t_e = \{V_e - V_N(i)\} / a_{\min}$ であり,

$$
L(i) = \frac{V_e + V_N(i)}{2} \cdot t_e = \frac{V_e^2 - V_N^2(i)}{2a_{\min}}
$$

(55)

よって,

$$
V_e = \sqrt{V_N^2(i) + 2a_{\min}L(i)}
$$

(56)

この V_e に対して、$V_e > V_N(i+1)$ の関係があると、$N(i+1)$ を $V_N(i+1)$ の速度で通過することができない。したがって、式 (13)(14) の場合には、$N(i)$ を N から削除する。

[DOI: 10.1299/transjsme.18-00308] © 2019 The Japan Society of Mechanical Engineers
A.3 ノード間の速度

ノード間の速度は、図13のいずれかで与えられる。等速区間を含むパターン (a) 〜 (d) と等速区間を含まないパターン (e) ごとに、その導出方法を示す。

まず、等速区間を含まない図13(e)のケースを考える。加速から減速に転じる瞬間の速度を $V_c (i)$ とすると、加速時間 t_1 と減速時間 t_3 は、次の式 (57) を満たすから、t_1 と t_3 は式 (20) で与えられる。

$$ V_c (i) - V_N (i) = a_{\text{max}} \frac{t_1}{t_3} $$

$$ V_N (i+1) - V_c (i) = a_{\text{min}} $$(57)

一方、$V_c (i)$ は、$N(i)$ から $N(i+1)$ に進む距離 $L(i)$ を考えると、次式を満たす必要がある。

$$ L(i) = \frac{V_c (i) + V_N (i)}{2} \cdot t_1 + \frac{V_N (i+1) + V_c (i)}{2} \cdot t_3 $$

$$ = \frac{V_c^2 (i) - V_N^2 (i)}{2a_{\text{max}}} + \frac{V_N^2 (i+1) - V_c^2 (i)}{2a_{\text{min}}} $$

$$ = \frac{a_{\text{max}} V_c^2 (i+1) - a_{\text{min}} V_N^2 (i) - (a_{\text{max}} - a_{\text{min}}) V_c^2 (i)}{2a_{\text{max}} a_{\text{min}}} $$

等速区間を含むパターンの場合で、上記と同様に $E(i)$ を加速と減速のみで通過すると仮定すると、最高速度は $V_E (i)$ を超える。これは、基本ルールの (C2) に反する。よって、$V_E (i) < V_c (i)$ の場合には、等速区間を設ける必要がある。等速走行時間 t_2 は、$N(i)$ から $N(i+1)$ に進む距離 $L(i)$ を考えると,

$$ L(i) = \frac{V_E (i) + V_N (i)}{2} \cdot t_1 + \frac{V_N (i+1) + V_E (i)}{2} \cdot t_3 $$

$$ = \frac{V_E^2 (i) + V_N^2 (i)}{2} \cdot t_1 + \frac{V_N (i+1) + V_E (i)}{2} \cdot t_3 $$

$$ = \frac{V_N (i+1) - V_E (i) - (a_{\text{max}} - a_{\text{min}}) V_c^2 (i)}{2a_{\text{max}} a_{\text{min}}} $$(59)

を満たす必要がある。ここで、t_1 と t_3 が、式 (18) で与えられることは明らかである。これらを式 (59) に代入して、t_2 について解くと、式 (18) の t_2 が得られる。このときの速度線図は、$V_N (i), V_E (i), V_N (i+1)$ の大小関係から、図13の (a) 〜 (d) のいずれかとなる。