Oestrogens and Progestagens: Synthesis and Action in the Brain

M. F. Rossetti*,†, M. J. Cambiasso§, M. A. Holschbach¶ and R. Cabrera**

*Departamento de Bioquímica Clínica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
†Instituto de Salud y Ambiente del Litoral, CONICET—Universidad Nacional del Litoral, Santa Fe, Argentina.
§Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC—Universidad Nacional de Córdoba, Córdoba, Argentina.
¶Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina.
**Instituto de Investigaciones Biomédicas, INIBIOMED—IMBECU—CONICET, Universidad de Mendoza, Mendoza, Argentina.

When steroids, such as pregnenolone, progesterone and oestrogen, are synthesised de novo in neural tissues, they are more specifically referred to as neurosteroids. These neurosteroids bind specific receptors to promote essential brain functions. Pregnenolone supports cognition and protects mouse hippocampal cells against glutamate and amyloid peptide–induced cell death. Progesterone promotes myelination, spinogenesis, synaptogenesis, neuronal survival and dendritic growth. Allopregnanolone increases hippocampal neurogenesis, neuronal survival and cognitive functions. Oestrogens, such as oestradiol, regulate synaptic plasticity, reproductive behaviour, aggressive behaviour and learning. In addition, neurosteroids are neuroprotective in animal models of Alzheimer’s disease, Parkinson’s disease, brain injury and ageing. Using in situ hybridisation and/or immunohistochemistry, steroidogenic enzymes, including cytochrome P450 side-chain cleavage, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase, cytochrome P450 arom, steroid 5α-reductase and 3α-hydroxysteroid dehydrogenase, have been detected in numerous brain regions, including the hippocampus, hypothalamus and cerebral cortex. In the present review, we summarise some of the studies related to the synthesis and function of oestrogens and progesterogens in the central nervous system.

Key words: oestrogen, progestagen, brain, neurosteroidogenic enzymes

doi: 10.1111/jne.12402
Cholesterol

\[\text{STAR} \rightarrow \text{P450scc} \]

\[\text{Pregnenolone} \rightarrow \text{Dehydroepiandrosterone} \]

\[3\beta\text{-HSD} \rightarrow \text{P450c17} \rightarrow \text{Progesterone} \rightarrow \text{Androstenedione} \rightarrow \text{Oestrone} \]

\[5\alpha\text{-dihydroprogesterone} \rightarrow 3\alpha\text{-HSD} \rightarrow \text{Testosterone} \rightarrow 17\beta\text{-Oestradiol} \rightarrow \text{P450arom} \]

\[\text{Allopregnanolone} \]

Fig. 1. Pathway of neurosteroid synthesis. Steroidogenic acute regulatory protein (STAR); cytochrome P450 side chain cleavage (P450scc); 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD); cytochrome P450 17α-hydroxylase/c17,20-lyase (P450c17); steroid 5α-reductase (5αR); 3α-hydroxysteroid dehydrogenase (3α-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD) and cytochrome P450arom (P450arom). Astrocytes express P450scc, P450c17, 3β-HSD, 3α-HSD, 17β-HSD, 5αR and P450arom, producing pregnenolone (Preg), progesterone, dehydroepiandrosterone (DHEA), androstenedione, testosterone, allopregnanolone (Allop) and oestriadiol (E2) (15–19). Oligodendrocytes express P450scc, 5α-reductase and 3β-HSD and produce Preg, progesterone and Allop (18,20). The neurons express P450scc, P450c17, 3β-HSD, 5α-reductase and P450arom and produce Preg, DHEA, androstenedione, Allop and E2 (19).

3β-hydroxysteroid dehydrogenase/Δ5–Δ4-isomerase (3β-HSD), 3α-hydroxysteroid dehydrogenase (3α-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), steroid 5α-reductase (5αR) and cytochrome P450 aromatase (P450arom), producing Preg, progesterone, DHEA, androstenedione, testosterone, allopregnanolone (Allop) and oestradiol (E2) (15–19). Oligodendrocytes express P450scc, 5α-reductase and 3β-HSD and produce Preg, progesterone and Allop (18,20). The neurons express P450scc, P450c17, 3β-HSD, 5αR and P450arom and produce Preg, DHEA, androstenedione, Allop and E2 (19,21). Distinct patterns of expression of steroidogenic enzymes in neurones, oligodendrocytes and astrocytes suggest that some kind of cooperation between neurones and glial cells coordinates the metabolism of various sex steroids, particularly Allop, testosterone and progesterone (19).

Cytochrome P450 side chain cleavage

The first enzymatic reaction of steroidogenesis is the transformation of cholesterol into Preg, catalysed by P450scc (Fig. 1). P450scc also known as CYP11A1 (cytochrome P450 family 11 subfamily A member 1), is located in the inner mitochondrial membrane, where it catalyses the conversion of cholesterol to Preg via three reactions (19). The first two steps involve hydroxylation of cholesterol side chain, first generating 22R-hydroxycholesterol and then 20α, 22R-dihydroxycholesterol. Finally, P450scc cleaves the bond between carbons 20 and 22, resulting in the production of Preg and iso-capric aldehyde. Each step of the monoxygenase reaction requires two electrons (reducing equivalents), which are transferred from NADPH to P450scc via transfer proteins (22).

P450scc is always active, although its activity is limited by the availability of cholesterol in the inner membrane. Cholesterol supply to this membrane is mainly mediated by steroidogenic acute regulatory protein (STAR) and the translocator protein (TSPO) of 18 kDa (23). Increasing TSPO-mediated translocation of cholesterol from the outer to the inner mitochondrial membrane by applying TSPO agonists, stimulates steroid production (24). TSPO likely functions as a channel, accommodating a cholesterol molecule in the space delineated by five transmembrane domains. The mechanisms by which the mitochondria-targeted protein STAR drives the transfer of cholesterol and increases steroidogenesis are less well understood (24).

The expression of P450scc and the production of Preg by astrocytes, oligodendrocytes and neurones was previously described by Zwaan and Yen (20). They noted that oligodendrocytes are the main source of Preg in the brain because these cells produce Preg from cholesterol at a higher level than astrocytes or neurones, confirming previous suggestions that oligodendrocytes are primarily responsible for P450scc activity in the brain (20). Interestingly, in rat embryos, P450scc expression was mainly found in sensory structures of the peripheral nervous system, suggesting a possible role of this enzyme in the development and maturation of the brain (16). In the adult brain, P450scc enzyme was found in the cortex, amygdala, hippocampus and midbrain (11,19). In the human brain, the presence of mRNA of P450scc has been described in the olfactory bulb, corpus callosum, amygdala, hippocampus and cerebral cortex (19).

3β-hydroxysteroid dehydrogenase/Δ5–Δ4-isomerase

Preg can be converted to progesterone by the enzyme 3β-HSD (Fig. 1). 3β-HSD is a membrane-bound protein that has two distinct enzymatic activities: 3β-dehydrogenation and isomerisation of the double bond from C5,6 in the B ring (Δ5-steroids) to C4,5 in the A ring (Δ4-steroids) (11). 3β-HSD is expressed in neurones, oligodendrocytes and astrocytes and each of these types of cells can convert Preg to progesterone (20). Two isoforms of 3β-HSD have been described in humans, four in rats and six in mice. These isoforms are expressed in a tissue- and developmentally specific manner and fall into two functionally distinct groups NAD⁺-dependent dehydrogenase/isoformases and NADPH-dependent 3-keto steroidreductases. In rats, 3β-HSD mRNA type I has been detected in several regions of central nervous system, including the cerebellum, hippocampus, cortex and hypothalamus (19). In the human brain, type II 3β-HSD mRNA has been detected by RT-PCR in the amygdala, hippocampus, cerebellum and spinal cord, amongst others. 3β-HSD protein has also been detected in the brain of both rats and humans (11). Developmental changes in 3β-HSD gene expression have been investigated in the brain of postnatal rodents. In the rat hippocampus, 3β-HSD mRNA is two- to three-fold higher on postnatal day (PND)7 and PND14 than PND70 (25); and is nine-fold higher on PND90 than on PND450 (26). In the cerebellum, 3β-HSD is expressed transiently during PND7 and PND14 and disappears in the...
Steroid 5α-reductase

Progesterone can be converted to 5α-dihydroprogesterone by the enzyme 5αR (Fig. 1) (1). Melcangi et al. (18) showed that the formation of 5α-dihydroprogesterone takes place preferentially in neurones; however, type 2 astrocytes and oligodendrocytes also possess considerable 5αR activity, whereas activity in type 1 astrocytes is much lower. Two isoforms of 5αR, 5αR type 1 (5αR-1) and type 2 (5αR-2), have been reported in rodents and humans. 5αR-1 is the most abundant molecular form in the brain; it is present in many regions, including the hypothalamus, hippocampus, cerebellum and cerebral cortex. By contrast, 5αR-2 is only expressed exclusively in the late foetal and early postnatal period in the rat brain, and it is almost undetectable in the hypothalamus, cerebellum,pons and medulla oblongata in humans. The fact that this pattern of expression correlates with testosterone synthesis in the foetal testis suggests that 5αR-2 could be involved in the control of brain sex differentiation (19).

The expression of 5αR-1 is relatively constant from PND1 to PND84 but then decreases at least two-fold from PND90 to PND450 in the rat hippocampus. The mRNA levels of 5αR-2 also decreased between PND1 to PND84 (25). In addition, alterations of mRNA levels of 5αR-1 in the brain are related to neurodegenerative diseases such as Niemann–Pick disease type C, Parkinson’s disease and multiple sclerosis (28,33). These changes may explain the decline in Allop levels during ageing and neurodegenerative disease (4,27) and therefore the deterioration of neuronal and cognitive functions (9,34). Moreover, some forms of enrichment, including sensory and social stimuli, change the expression of 5αR-1 in the brain. Specifically, rats housed in groups of eight animals in large cages and provided with an assortment of objects, including large plastic tubes, rodent dwellings and toys of various shapes, sizes and colors during 105 days, increased the transcription of 5αR-1 in the hippocampus (26). Because this brain structure is associated with learning and memory, these results suggest that 5αR may play an important role in cognition.

Transcriptional regulation of 5αR is not well understood. Some studies suggest that changes in the DNA methylation transcription factors (TFs) could be involved. The promoter regions of 5αR-1 and 5αR-2 genes were identified and several TFs such as selective promoter factor 1, selective promoter factor 3, activator protein 2 and nuclear factor 1 (NF-1) can interact with those promoters (35,36).

In addition, Blanchard et al. (35) described an important CpG Island of approximately 1000 pb in the 5αR-1 gene. CpG islands are DNA strands of more than 200 bp where a cytosine (C) nucleotide is followed by a guanine (G) nucleotide at more than 50% above the expected CG distribution. Cytosines in CG dinucleotides can be methylated to form 5-methylcytosine and thus the gene is silenced. Such methylation constitutes an important mechanism of transcriptional regulation. Accordingly, changes in the methylation patterns of specific sites located in 5αR-1 gene CpG island were correlated with alterations in the mRNA levels in the rat hippocampus (26,37).

3α-hydroxysteroid dehydrogenase

The enzyme 3α-HSD is involved in the synthesis of Allop (Fig. 1). Interestingly, the expression of 3α-HSD appears to be mainly, if not exclusively, present in type 1 astrocytes. The compartmentalisation of two strictly correlated enzymes (5αR and 3α-HSD) into separate central nervous system cell populations suggests the simultaneous participation of neurones and glia in the 5α-reductive metabolism of hormonal steroids such as 5α-dihydroprogesterone (18). In humans, four functional isozymes of 3α-HSD (1, 2, 3, 20a) were identified; types 2, 3 and 20a are widely expressed in the central nervous system (19). By contrast, rodents have a single 3α-HSD isozyme that is expressed in the cortex, hippocampus, olfactory bulb, basal ganglia, hypothalamus, thalamus and cerebellum (11).

3α-HSD expression is age-dependent. Higo et al. (25) showed that mRNA expression of this enzyme is 2.28-fold higher on PND10 than PND84 in the rat hippocampus. Recently, Rossetti et al. (26) showed that 3α-HSD expression also decreased 2.3-fold from PND90 to PND450. In addition, the 3α-HSD expression is reduced by the emergence of neurodegenerative diseases, such as Niemann–Pick disease type C (28), and increased by environmental stimuli (26,27), suggesting that 3α-HSD enzyme is neuroprotective. The similar expression patterns of 3α-HSD and 5αR suggests that the synthesis of Allop is paramount for learning and memory and other hippocampal-dependent mechanisms.

The involvement of certain TFs in the regulation of 3α-HSD gene expression has been examined in several studies. The 5’-flanking regions of the rat and human genes contain consensus sequences for AP-1, octamer-binding factor 1 and steroid hormone response elements, which may comprise a steroid response unit (38). These Oct factors increase gene transcription, whereas glucocorticoid response elements reduce the transcription of this gene Penning (39). Hung and Penning (40) also suggest that NF-1 would up-regulate the expression of 3α-HSD enzyme in rat liver. Recently, Rossetti et al. (26) proposed that the transcriptional regulation of the 3α-HSD gene in the rat brain would be mediated by differential methylation mechanisms (26,37). Particularly, they found that the promoter was mostly methylated at a potential binding site for the sterol regulatory element-binding protein (SREBP-1) and this change was correlated with alteration in the mRNA levels (26), suggesting that SREBP– also affects gene expression.

Cytochrome P450 aromatase

P450arom catalyses the last and obligatory step in the biosynthesis of oestrogens (Fig. 1) and is necessary for sexual differentiation of the brain (41). Zwain and Yen (20) demonstrated that astrocytes and neurones, but not oligodendrocytes, express P450arom and produce E2 from testosterone. Neurones appear to be more active than astrocytes.
in the aromatisation of androgen to oestrogen. Neurones cannot pro-
duce testosterone but astrocytes may provide testosterone as a sub-
strate for neurones to produce E2. Developmental expression of
P450arom has been classified into three different groups: (i) a foetal
group (includes the anterior medial preoptic nucleus, the periventricu-
lar preoptic neurones, neurones associated with the strial part of the
preoptic area, and the rostral portion of the medial preoptic nucleus); (ii) a foetal/neonatal group (from the medial preoptic nucleus to the
principal nucleus of the bed nucleus of the stria terminalis and the
posterodorsal part of the medial amygdaloid nucleus); and (iii) a
young/adult group (42). In the adult brain, the pattern of P450arom
distribution is restricted to interconnected nuclei, including the nucleus
of the posteromedial amygdala, encapsulated region of the bed
nucleus of the stria terminalis, ventrolateral portion of the ventromed-
dial hypothalamic nucleus, and central component of the medial pre-
optic nucleus (43). These spatial variations of P450arom mRNA and
protein provide evidence that oestrogens play fundamental roles dur-
ing brain development. Interestingly, P450arom is also expressed in the
hippocampus, cerebral cortex, midbrain, spinal cord and cerebellum
(43), suggesting that, in addition to reproductive functions, P450arom
may play a role in modulation of mood, affective behaviours (e.g.
depression) and/or learning and memory (44). It also plays an impor-
tant role in neuroprotection after excitatory injury, experimental stroke,
global ischaemia, reperfusion and elevated intracranial pressure (45).

The regulation of P450arom in the brain is complex and not
completely understood. Studies in several species have led to new
perspectives on the control of this enzyme by both transcriptional and
posttranscriptional mechanisms (37,46,47). In addition, there are
regionally specific sex differences in P450arom expression dur-
ing the critical period of sexual differentiation (48). However, some of the
sex differences in P450arom expression could not be explained by organisational actions of gonadal hormones. Instead, genetic sex determines the expression of P450arom in specific brain
areas during development, as demonstrated using the four core
zymes mouse model, in which the tests-determining gene Sry is
moved from the Y chromosome onto an autosome to separate effects of gonadal sex from genetic sex (49). Individuals carrying
the XY chromosome complement have higher expression levels of
P450arom (mRNA and protein) in the stria terminalis and anterior
amygdaloid area than individuals carrying XX chromosomes, irre-
spective of gonadal status (testes versus ovary), indicating that brain P450arom at E16 is determined by sex chromosomes rather
than gonadal hormones. The biological meaning of this effect is
unknown; however, such differences in vivo could reflect differ-
ences in the local production of E2 by aromatisation of testosterone in
these specific brain areas. According to these findings, amygdala
neurones of genetic males would be exposed to greater neurot-
genic effects of E2, leading to larger dendritic trees and greater
synaptic connectivity than neurones of genetic females.

Steroid hormones and neurotransmitter receptors in the
brain

Neurosteroids exert several biological actions in the brain as a
result of both genomic actions mediated by nuclear/membrane
steroid receptors and nongenomic actions mediated by neurotrans-
mitten receptors. Thus, we focus on two main classical receptors:
oestrogen and progesterone receptors (PRs). It is important to con-
sider the patterns of expression of these receptors within the brain,
as well as to understand how activating these receptors affects
brain cell physiology and how these patterns of expression are con-
trolled by hormones, age, sex and experience. In addition, we briefly
discuss the implication of the neurotransmitter receptors on neu-
rosteroid actions.

Oestrogen receptors

There are two isomorphs of the classical oestrogen receptors (ERs),
ERα and ERβ, which are transcribed from unique genes (50,51).
Activating ERα or ERβ causes translocation of receptor-ligand
dimers to the nucleus where they bind to oestrogen response ele-
ments on DNA (52) to control protein transcription (53) by recruit-
ing various co-activators and co-repressors (51,54).

In addition to this classical mode of ER expression and activa-
tion, ERs, including ERα and ERβ, are also expressed on the mem-
brane (55–59). The mechanism of this cell membrane association is
unclear but involves post-translational lipid modification (palmito-
lation) and interaction with membrane/cyttoplasmic scaffolding pro-
teins (e.g. caveolins) (55–57). In addition to membrane-associated
mERα and mERβ, G protein-coupled oestrogen receptor 1 (GPER1)
is another membrane-associated ER (58). Activating mERs alters
membrane permeability (60) and activates second messenger cas-
cades, including mitogen-activated protein kinases, extracellular-
regulated kinases and Src kinases, amongst others (59), and hyper-
polarises neurones in the preoptic area (61,62). Interestingly,
increasing data indicate that the potent androgen, dihydrotestos-
terone, can be metabolised to 3β-diol, a steroid that binds to ERβ
and may play a role in the oestrogenic effects on pathological and
physiological functions (63), such as anxiety (64,65), cognition (66)
and sexual differentiation of the brain (67).

ERs are found throughout the brain, although some areas with
dense expression are highlighted below. Nuclear receptors are
expressed in the pituitary, hypothalamus, hippocampus, amygdala
and prefrontal cortex (68,69). Many cells with ERα are found in the
bed nucleus of the stria terminalis (BST), medial amygdala, preoptic
area and various other hypothalamic nuclei (70–73). High levels are
also seen in olfactory regions, the periaqueductal grey, area post-
rema, cerebellum and parabrachial nucleus (72,74–77). Similar to
ERα, ERβ is also found in the BST, lateral septum, the medial and
basolateral amygdala, the trigeminal nuclei, the preoptic region, and
other hypothalamic nuclei (69,76,78,79). In addition, ERβ is found in
some regions with low or no ERα, such as the diagonal band of
Broca, supraoptic area and paraventricular nucleus (72,76,79,80).
Moderate levels are also seen in the hippocampus, substantia nigra
and dorsal raphe (76,81,82).

ERα is expressed in cell nuclei, as well as in dendrites and termi-
nals in the hypothalamus (83). mERα is expressed on both the
cyttoplasmic surface and exterior surface of the cell membrane and
is not only mostly found within presynaptic compartments of hip-
 pocampal neurones, but also is seen in postsynaptic compartments.
and glia (84–86). mERβ is also found on the cytoplasmic surface of the cell membrane, although it is primarily expressed in postsynaptic dendrites with lower expression in presynaptic axons and glia (81). GPER1, similar to mERα and mERβ, is found on the cytoplasmic surface of the cell membrane in pre- and postsynaptic sites of hippocampal neurones (87–89) and is also found in clusters of vesicles in axon terminals (88). All three receptor types were also found in striatal neurones (mostly presynaptic sites) and glia (90). Similarly, the prefrontal cortex also has a preponderance of mERs at presynaptic sites and glia (91). GPER1 is highly expressed in the olfactory bulbs, hypothalamus, motor cortex, somatosensory piriform cortex, hippocampus, habenular nucleus of the epithalamus, nucleus of the solitary tract and cerebellum (87,89,92–94).

Many factors influence the expression of ERs. GPER1 expression is equivalent between the sexes, although females in pro-oestrus have higher GPER1 expression than oestrus females, suggesting that GPER expression can be modulated by even acute changes in circulating hormones (89). Oestrogen replacement reduces ERα in preoptic and hypothalamic regions of female rodents (95). Extracellular ERα levels in hippocampal neurones of mice are highest when oestrogen is low, either during di-oestrus or after ovariectomy but, in rats, they peak during pro-oestrus when oestrogens are high (84,85,96). Although aged and youthful monkeys have similar levels of ERα, GPER1 and PR protein, aged female rats have reduced nuclear ER expression in preoptic nuclei (97). Aged female rats also have fewer ERα-containing synapses in the hippocampus (98). Male rats retain ERα across adulthood but do have decreased ERα in response to circulating testosterone (99).

Progesterone receptors

Similar to the ER, PRs are classically defined as ligand-activated transcription factors. There are two isoforms of the nuclear PR but, unlike ERα and ERβ, PRA and PRB are transcribed from the same gene. PRA is an N-terminal truncated form of the full-length isomer, PRB. Unbound PR exists as a complex with chaperone proteins that are necessary for its subsequent binding (100). Bound PR dissociates from the chaperone proteins, undergoes conformational changes, dimerises and interacts directly with specific progesterone response elements (PRES) in promoter regions of targeted genes by binding to steroid receptor coactivators (101). In addition to nuclear PRs, many membrane-bound (m)PRs have been identified. mPRs activate G-proteins but are not GPCRs; they are members of the progestin and adipokine receptor family (102,103), which have seven transmembrane domains. In addition, the b5-like heme/steroid-binding protein family includes progesterone membrane receptor component 1 (PGMRC1) (104).

PR has been seen in many brain regions, including the hippocampus, frontal cortex, hypothalamus and cerebellum (105). It is also densely expressed in the BST and the centromedial amygdala (106). mPRs are also widely distributed throughout the brain (103), although only at very low levels most of the forebrain, except for dense mPRβ in the nucleus of the oculomotor cranial nerve (107). PGMRC1, but not mPRs, are abundant in forebrain structures that regulate neuroendocrine function (102). PGRMC1 is also found in the hippocampus, cortex and cerebellum (105).

Unlike ER, oestrogens increase PR expression (108). Oestrogen treatment increases PRA expression in the male but not rat female cerebellum (105), although there is no sex difference in PR expression within the BST or centromedial amygdala (106). Oestrogen also increases PRA expression in the hippocampus and olfactory bulb, whereas progesterone has no effect (105). The effects of ageing on PR expression are less clear. Although one study found less cystolic PR binding in the preoptic area of middle-aged ovariectomised (OVX) rats after 2 days of oestrogen exposure compared to young OVX rats (109), other studies have reported no age differences for mRNA levels or PR binding (97,110). It does appear to be clear that neonatal rodents have nuclear PR, whereas the expression of PR is largely extra nuclear in adult mice and rats (85).

Neurotransmitter receptors

One of the best-documented examples of a nongenomic action of a steroid is the ability of several progesterone derivatives to activate GABA_A receptors, which are members of the ligand-gated ion channel family and contain many distinct binding sites for GABA, benzodiazepines, barbiturates and convulsants. The GABA_A receptor is the principal inhibitory neurotransmitter receptor in the brain and can be made up of different subunits of α, β, γ and δ subtypes, and their composition is region and developmental stage-specific (10). Although there is no absolute specificity for neurosteroid modulation of GABA_A receptors, the α- and γ-subunits also affect GABA_A neuromodulation by either positive modulators, such as Preg and Allop, or negative modulators, such as Preg sulphate (PregS), DHEA and DHEA sulphate (DHEAS) (111). GABA_A receptors containing the δ-subunit can be less sensitive to neurosteroid modulation (10). Fluctuations in the concentration of neurosteroids and changes in GABAergic signalling have been implicated in a variety of physiological and pathophysiological conditions, including stress, pregnancy, reproductive/sexual behaviours, depression, anxiety, seizure and epilepsy (7,112–114), suggesting that GABA_A receptors are important mediators of the action of these compounds.

NMDA receptors are tetrameric ion channels containing two of four possible GluN2 subunits. These receptors have been implicated for decades in neurological diseases such as stroke, traumatic brain injury, dementia and schizophrenia. The GluN2 subunits substantially contribute to functional diversity of NMDA receptors and are distinctly expressed during development and among brain regions (115). Some neurosteroids such as E₂ act as a negative modulator, whereas DHEA, Preg and their sulphate esters are considered to be positive allosteric modulators of NMDA receptors. Unlike GABA_A receptor interactions, the interaction of neurosteroids with the NMDA receptor is not well documented, and no specific interactions have been described (7,10).

Although GABA_A and NMDA receptors appear to be primarily responsible for the action of neurosteroids, other kinds of receptors have also been studied in the literature, such as sigma receptors, AMPA receptors and kainate receptors (10,116). These receptors are also regulated allosterically by several neurosteroids, such as PregS, DHEAS and progesterone, and have been implicated in different nervous system functions and pathologies.
Neurosteroids and their effects on nervous system functions

Pregnenolone and sulphated neurosteroids

Preg and DHEA are not only precursors of oestrogens, progestins and androgens, but also influence neuronal functions and are likely to play particularly important roles in the ageing nervous system (13). Preg is essential for maintaining cognitive functions and protects mouse hippocampal cells against glutamate and amyloid peptide-induced cell death (13). Preg also regulates neurotransmission, acting at both pre- and postsynaptic sites to control the synaptic release of neurotransmitters such as GABA, glutamate, noradrenaline, dopamine and serotonin (10).

In addition to these neurosteroids, their sulphated counterparts have distinct effects in the nervous system. DHEAS and PregS are the most abundant sulphated neurosteroids in the brain. Preg is a positive allosteric modulator of GABA receptors, whereas PregS is a negative modulator of the same receptor. Sulphated neurosteroids are involved in a large number of biological functions in humans and other mammals (117–120). For example, PregS increases luzindole secretion by modulating GABA and glutamate receptors. This LH surge is inhibited by COUMATE, an irreversible inhibitor of the steroid sulphatase (STS) enzyme, showing that imbalances in neurosulphation can indirectly affect reproductive function (121–124). Furthermore, we observed that this hypothalamic sulphation prevents variations in steroid hormones by reducing STS gene expression and reduces receptive behaviours such as lordosis. This indicates that neurosulphation can fine-tune reproductive physiology and behaviour by controlling expression and activity of enzymes involved (125). Thus, neurosteroid sulphation in the hypothalamus plays a key role in the reproductive function of the female rat.

Progestagens

Progesterone

In the central nervous system, progesterone increases the number of oligodendrocytes expressing the myelin basic protein (MBP). MBP has many splice variants, which are developmentally regulated. In adult myelin, the role of the predominant 18.5 kDa isoform is to maintain the structural integrity and compaction of the myelin sheaths (126). This suggested that progesterone promotes myelination by increasing the transcription of certain myelin genes (126). In the brain, progesterone regulates spinogenesis, synaptogenesis, neuronal survival and dendritic growth (29,30,127,128) and plays a neuroprotective role in numerous animal models of neurodegenerative diseases (24,34). For example, after traumatic brain injury, progesterone decreases cell death, gliosis and cognitive deficits (9). Gonzalez Deniselle et al. (129) indicated that progesterone restores motoneurone morphology and the expression of α3 subunit Na, K-ATPase mRNA, a neuronal enzyme controlling ion fluxes, neurotransmission, membrane potential and nutrient uptake, and also increased both muscle strength and survival time of Wobbler mice, a genetic model of spinal cord motor neurone disease. Progesterone prevents depression-like behaviour in a model of Parkinson’s disease induced by 6-hydroxydopamine in male rats (130). Progesterone also exerts marked neuroprotective effects after spinal cord injury, cerebral ischaemia and stroke (34). Moreover, Liu et al. (131) showed that β-amyloid peptide (Aβ25–35), a main aetiological factor of Alzheimer’s disease (AD), is exacerbated by low levels of progesterone in vivo in the rat prefrontal cortex and hippocampus, suggesting that progesterone is also essentially for learning and memory. In addition to its role in organisation and protection of neural structures, progesterone activity in the brain is a necessary component in female reproduction (132).

Allopregnanolone

Progesterone also acts on the nervous system through one of its most important metabolites, Allop. Allop increases neurogenesis and neuronal survival and reduces apoptosis in the hippocampus (7,26). Allop also increases the density of dendritic spines, as well as dendrin clusters in cultured hippocampal neurones, indicating that it increases excitatory synapse density (133). Allop also appears to be involved in learning and memory. For example, Frye (134) showed that young rats in pro-oestrus and late pregnancy (i.e. reproductive states associated with higher cortical Allop levels) exhibit better performance on the object recognition task than dio-oestrous rats or rats in early pregnancy. The infusion of E2 benzoate alone or with progesterone into the hippocampus of ovariecotomised rats has amnesic effects and Allop can reverse this effect, suggesting that these effects are not mediated through the PR and beneficial effects may include the promotion of the cognitive performance of the hippocampus (135).

Interestingly, Allop has a key role in neurodegenerative disease. Reduced Allop levels were observed in the prefrontal cortex and in temporal cortex of patients with AD (26). Similarly, Allop content in the white matter (33) and in cerebrospinal fluid (136) is reduced in patients with multiple sclerosis and Parkinson’s disease, respectively. In the triple transgenic mouse model of AD (3xTgAD), Allop prevents neurogenic and cognitive deficits (26). In addition, Allop restores hippocampal-dependent learning and memory and neural progenitor survival in ageing wild type mice (26). Allop also increases Purkinje and granule cell survival in a mouse model of the human neurodegenerative disease Niemann–Pick disease type C (26). Allop is also neuroprotective in other experimental models, such as traumatic brain injury, ischaemia and spinal cord injury (34).

Oestrogens

E2 has multiple important physiological effects on several tissues and cellular phenotypes. E2 acts permanently on the developing brain to establish sex differences by regulating the growth, differentiation and survival of neurones and glia (137,138). In the adult brain, E2 acts as an autocrine-paracrine factor that regulates synaptic plasticity, adult neurogenesis, reproductive behaviour, aggressive behaviour, pain processing and cognition (5,45,138–141). E2 also impacts cellular physiology by modulating calcium handling,
Conclusions and future perspectives

Neurosteroids are synthesised within the nervous system. Steroidogenic enzymes and receptors are widely distributed in specific populations of neurones, neuronal precursors and glia. Neurosteroids exert several neurotrophic and neuroprotective actions and therefore provide tremendous opportunities for developing therapeutic approaches. Although hormone replacement therapies have been studied in numerous laboratories, the results are somewhat contradictory. Hopefully, future studies will clarify the mechanisms that regulate steroid synthesis and action in the brain and explore more alternatives to oestrogen and progesteragens (progesterone and Allop) replacement.

Acknowledgements

We thank the International Workshop of Neuroendocrinology (IWNE) 2015. The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the reported research.

Received 21 January 2016, revised 14 June 2016, accepted 14 June 2016

References

1 Mellon SH, Griffin LD, Compagnone NA. Biosynthesis and action of neurosteroids. Brain Res Brain Res Rev 2001; 37: 3–12.

2 Haraguchi S, Sasahara K, Shikimi H, Honda S, Harada N, Tsutsui K. Estradiol promotes purkinje dendritic growth, spinogenesis, and synaptogenesis during neonatal life by inducing the expression of BDNF. Cerebellum 2012; 11: 416–417.

3 Hojo Y, Murakami G, Mukai H, Higo S, Hatanaka Y, Oguje-Iked M, Ishii H, Kimoto T, Kawato S. Estrogen synthesis in the brain–role in synaptic plasticity and memory. Mol Cell Endocrinol 2008; 290: 31–43.

4 Marx CE, Trost WT, Shampine LJ, Stevens RD, Hulette CM, Steffens DC, Ervin JF, Butcher MI, Blazer DG, Massing MM, Lieberman JA. The neurosteroid allopregnanolone is reduced in prefrontal cortex in Alzheimer’s disease. Biol Psychiatry 2006; 60: 1287–1294.

5 Rune GM, Frotscher M. Neurosteroid synthesis in the hippocampus: role in synaptic plasticity. Neuroscience 2005; 136: 833–842.

6 Charalampopoulos I, Alexaki VI, Tsatsanis C, Minas V, Demirtzaki E, Lasaridis I, Vardoulis L, Stournaras C, Margiories AN, Castanas E, Gravanis A. Neurosteroids as endogenous inhibitors of neuronal cell apoptosis in aging. Ann NY Acad Sci 2006; 1088: 139–152.

7 Charalampopoulos I, Remboutsika E, Margiories AN, Gravanis A. Neurosteroids as modulators of neurogenesis and neuronal survival. Trends Endocrinol Metab 2008; 19: 300–307.

8 Brinton RD. Neurosteroids as regenerative agents in the brain: therapeutic implications. Nat Rev Endocrinol 2013; 9: 241–250.

9 Djebaili M, Guo Q, Pettus EH, Hoffman SW, Stein DG. The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J Neurotrauma 2005; 22: 106–118.

10 Mellon SH, Griffin LD. Neurosteroids: biochemistry and clinical significance. Trends Endocrinol Metab 2002; 13: 35–43.

11 Compagnone NA, Mellon SH. Neurosteroids: biosynthesis and function of these novel neuromodulators. Front Neuroendocrinol 2000; 21: 1–56.

12 Asarian L, Geary N. Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Horm Behav 2002; 42: 461–471.

13 Schumacher M, Weill-Engerer S, Liere P, Robert F, Franklin RJ, Garcia-Segura LM, Lambert JJ, Mayo W, Melcangi CR, Parducz A, Suter U, Carelli C, Baulieu EE, Akwa Y. Steroid hormones and neurosteroids in normal and pathological aging of the nervous system. Prog Neurobiol 2003; 71: 3–29.

14 Sierra A, Laqueve E, Perez-Martin M, Azcoitia I, Hailes DB, Garcia-Segura LM. Steroidogenic acute regulatory protein in the rat brain: cellular distribution, developmental regulation and overexpression after injury. Eur J Neurosci 2003; 18: 1458–1467.

15 Akwa Y, Sananes N, Gouezou M, Robel P, Baulieu EE, Le Goascogne C. Astrocytes and neurosteroids: metabolism of pregnenolone and dehydroepiandrosterone. Regulation by cell density. J Cell Biol 1993; 121: 135–143.

16 Compagnone NA, Bulfone A, Rubenstein JL, Mellon SH. Expression of the steroidogenic enzyme P450scC in the central and peripheral nervous systems during rodent embryogenesis. Endocrinology 1995; 136: 2689–2696.

17 Zwaan IH, Yen SS, Cheng CY. Astrocytes cultured in vitro produce estradiol-1beta and express aromatase cytochrome P-450 (P-450 arom) mRNA. Biochim Biophys Acta 1997; 1334: 338–348.

18 Melcangi RC, Celotti F, Castano P, Martini L. Differential localization of the 5 alpha-reductase and the 3 alpha-hydroxysteroid dehydrogenase in neuronal and glial cultures. Endocrinology 1993; 132: 1252–1259.

19 De Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutski K, Tonon MC, Pelletier G, Vauduy H. Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 2009; 30: 250–301.

20 Zwaan IH, Yen SS. Neurosteroidogenesis in astrocytes, oligodenrocytes, and neurons of cerebral cortex of rat brain. Endocrinology 1999; 140: 3843–3852.

21 Hojo Y, Hattori TA, Enami T, Furukawa A, Suzuki K, Ishii HT, Mukai H, Morrison JH, Janssen WG, Kominami S, Harada N, Kimoto T, Kawato S.
Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. Proc Natl Acad Sci USA 2004; 101: 865–870.

Chung BC, Matteson KJ, Voutilainen R, Mohandas TK, Miller WL. Human cholesterol side-chain cleavage enzyme, P450scC: cDNA cloning, assignment of the gene to chromosome X15, and expression in the placenta. Proc Natl Acad Sci USA 1986; 83: 8962–8966.

Sierra A. Neurosteroids: the STAR protein in the brain. J Neuroendocrinol 2004; 16: 787–793.

Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F, Sitruk-Ware R, De Nicola AF, Guennoun R. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2014; 113: 6–39.

Higo S, Hjoj Y, Ishii H, Kominami T, Nakajima K, Poirier D, Kimoto T, Kawato S. Comparison of sex-steroid synthesis between neonatal and adult rat hippocampus. Biochem Biophys Res Commun 2009; 385: 62–66.

Rossetti MF, Varayoud J, Moreno-Piovano GS, Luque EH, Ramos JG. Environmental enrichment attenuates the age-related decline in the mRNA expression of steroidogenic enzymes and reduces the methylation state of the steroid Salpaha-reductase type 1 gene in the rat hippocampus. Mol Cell Endocrinol 2015; 412: 330–338.

Caruso D, Pesaresi M, Abbiati F, Calabrese D, Giatti S, Garcia-Segura LM, Melcangi RC. Comparison of plasma and cerebrospinal fluid levels of neuroactive steroids with their brain, spinal cord and peripheral nerve levels in male and female rats. Psychoneuroendocrinology 2013; 38: 2278–2290.

Mellon SH, Gong W, Schonemann MD. Endogenous and synthetic neurosteroids in treatment of Niemann–Pick type C disease. J Steroid Biochem Mol Biol 2015; 153: 6–21.

Lauber ME, Sarasin A, Lichtensteiger W. Transient sex differences of aromatase (CYP19) mRNA expression in the developing rat brain. Neuroendocrinology 2007; 85: 2278–2290.

Geissler CM, Prass P, Christian T, Beier D, Kriegstein G, Holsboer F. The estrogen receptor regulation of the GABA receptor subunits GABAA and GABAB in the rat hippocampus. Mol Cell Endocrinol 2004; 203: 203–218.

Lin HK, Penning TM. Cloning, sequencing, and functional analysis of the 5'-flanking region of the rat 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase gene. Cancer Res 1995; 55: 4105–4113.

Penning TM. 3 alpha-hydroxysteroid dehydrogenase: three dimensional structure and gene regulation. J Endocrinol 1996; 150(Suppl): S175–S187.

Huber CF, Penning TM. Members of the nuclear factor 1 transcription factor family regulate rat 3alpha-hydroxysteroid/dihydrodiol dehydrogenase [3alpha-HSD(DD AKR1C9)] gene expression: a member of the aldo-keto reductase superfamily. Mol Endocrinol 1999; 13: 1704–1717.

Hsu YS, Naftolin F. Sexual differentiation of the central nervous system. Science 1981; 211: 1294–1302.

Roselli CE, Liu M, Hurd PN. Brain aromatization: classic roles and new perspectives. Semin Reprod Med 2009; 27: 207–217.

Dalla C, Antoniou K, Papadopoulou-Daitoti Z, Balthazart J, Bakker J. Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology. Eur J Neurosci 2004; 20: 217–228.

Arevalo MA, Azoitla I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 2015; 16: 17–29.

Balthazart J, Ball GF. New insights into the regulation and function of brain estrogen synthase (aromatase). Trends Neurosci 1998; 21: 243–249.

Tabatabaze N, Sato SM, Woolley CS. Quantitative analysis of long-form aromatase mRNA in the male and female rat brain. PLoS ONE 2014; 9: e100628.

Lauber ME, Sarasin A, Lichtensteiger W. Transient sex differences of aromatase (CYP19) mRNA expression in the developing rat brain. Neuroendocrinology 1997; 66: 173–180.

Arnold AP, Chen X. What does the 'four core genotypes' mouse model tell us about sex differences in the brain and other tissues? Front Neuroendocrinol 2009; 30: 1–9.

Toft D, Gorski J. A receptor molecule for estrogens: isolation from the rat uterus and preliminary characterization. Proc Natl Acad Sci USA 1966; 55: 1574–1581.

Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 1996; 93: 5925–5930.

Kumar V, Chambon P. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 1988; 55: 145–156.

Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Petterson K, Warner M, Gustafsson JA. Mechanisms of estrogen action. Physiol Rev 2001; 81: 1535–1565.

Rollerova E, Urbanickova M. Intracellular estrogen receptors, their characteristic and function (Review). Endocr Regul 2000; 34: 203–218.

Boonyarataniakornkit V. Scaffolding proteins mediating membrane-initiated extra-nuclear actions of estrogen receptor. Steroids 2011; 76: 877–884.

Meizenz J, Luoma JI, Boulware MI, Hedges VL, Peterson BM, Tuomela K, Britton KA, Mermelstein PG. Palmitoylation of estrogen receptors is essential for neuronal membrane signaling. Endocrinology 2013; 154: 4293–4304.

Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER. A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem 2007; 282: 22278–22288.
59 Coleman KM, Smith CL. Intracellular signaling pathways: nongenomic actions of estrogens and ligand-independent activation of estrogen receptors. *Front Biosci* 2001; 6: D1379–D1391.

60 Xu JD, Simoncini T. Extra-nuclear signaling of estrogen receptors. *IUBMB Life* 2008; 60: 502–510.

61 Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiseliov AS, Parker MA, Tkachenko SE, Savuchkov NP, Sklar LA, Oprea TI, Prossnitz ER. Virtual and biomolecular screening converge on a selective agonist for GPR30. *Nat Chem Biol* 2006; 2: 207–212.

62 Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA, Hathaway HJ. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. *Annu Rev Physiol* 2008; 70: 165–190.

63 Handa RJ, Pak TR, Kudwa AE, Lund TD, Hinds L. An alternate pathway for androgen regulation of brain function: activation of estrogen receptor beta by the metabolite of dihydrotestosterone, Salpia-androstane-3beta,17beta-diol. *Horm Behav* 2008; 53: 741–752.

64 Osterlund MK, Witt MR, Gustafsson JA. Estrogen action in mood and neurodegenerative disorders: estrogenic compounds with selective properties-the next generation of therapeutics. *Endocrine* 2005; 28: 235–242.

65 Krezel W, Dupont S, Krust A, Chambon P, Chapman PF. Increased anxiety and synaptic plasticity in estrogen receptor beta -deficient mice. *Proc Natl Acad Sci USA* 2001; 98: 12278–12282.

66 Fugger HN, Foster TC, Gustafsson J, Rissman EF. Novel effects of estradiol and estrogen receptor alpha and beta on cognitive function. *Brain Res* 2000; 883: 258–264.

67 Kudwa AE, Michopoulos V, Gatewood JD, Rissman EF. Roles of estrogen receptors alpha and beta in differentiation of mouse sexual behavior. *Neuroscience* 2006; 138: 921–928.

68 Montague D, Weickert CS, Tomaskovic-Crook E, Rothmond DA, Kleinman JE, Rubinow DR. Oestrogen receptor alpha localization in the prefrontal cortex of three mammalian species. *J Neuroendocrinol* 2008; 20: 893–903.

69 Shughrue PJ, Merchenthaler I. Distribution of estrogen receptor beta immunoreactivity in the rat central nervous system. *J Comp Neurol* 2001; 436: 64–81.

70 Yokosuka M, Okamura H, Hayashi S. Postnatal development and sex difference in neurons containing estrogen receptor-alpha immunoreactivity in the preoptic brain, the dienecephalon, and the amygdala in the rat. *J Comp Neurol* 1997; 389: 81–93.

71 Simonian SX, Spratt DF, Herison AB. Identification and characterization of estrogen receptor alpha-containing neurons projecting to the vicinity of the gonadotropin-releasing hormone perikarya in the rostral preoptic area of the rat. *J Comp Neurol* 1999; 411: 346–358.

72 Lafamme N, Nappi RE, Drolet G, Labrie C, Rivest S. Expression and neuropeptidergic characterization of estrogen receptors (ERalpha and ERbeta) throughout the rat brain: anatomical evidence of distinct roles of each subtype. *J Neurobiol* 1998; 36: 357–378.

73 Chakraborty TR, Hof PR, Ng L, Gore AC. Stereologic analysis of estrogen receptor beta immunoreactivity in the rat central nervous system. *J Comp Neurol* 2003; 466: 409–421.

74 Simerly RB, Chang C, Muramatsu M, Swanson LW. Distribution of androgen and estrogen receptor mRNAs-containing cells in the rat brain: an in situ hybridization study. *J Comp Neurol* 1990; 294: 76–95.

75 Belcher SM. Regulated expression of estrogen receptor alpha and beta mRNA in granule cells during development of the rat cerebellum. *Brain Res Dev Brain Res* 1999; 115: 57–69.

76 Mitra SW, Hoskin E, Yuvalkovitz J, Pear L, Wilkinson HA, Hayashi S, Pfaff DW, Ogawa S, Rohrer SP, Schaeffer JM, McEwen BS, Alves SE. Immunolocalization of estrogen receptor beta in the mouse brain: comparison with estrogen receptor alpha. *Endocrinology* 2003; 144: 2055–2067.

77 Shughrue PJ, Scrimo PJ, Merchenthaler I. Evidence for the colocalization of estrogen receptor-beta mRNA and estrogen receptor-alpha immunoreactivity in neurons of the rat forebrain. *Endocrinology* 1998; 139: 5267–5270.

78 Crestuz LM, Krizter MF. Estrogen receptor-beta immunoreactivity in the midbrain of adult rats: regional, subregional, and cellular localization in the A10, A9, and A8 dopamine cell groups. *J Comp Neurol* 2002; 446: 288–300.

79 Shughrue PJ, Lane MV, Merchenthaler I. Biologically active estrogen receptor-beta: evidence from in vivo autoradiographic studies with estrogen receptor alpha-knockout mice. *Endocrinology* 1999; 140: 2613–2620.

80 Platania P, Laureanti F, Bellomo M, Guffrida R, Guffrida-Stella AM, Catania MV, Sortino MA. Differential expression of estrogen receptors alpha and beta in the spinal cord during postnatal development: localization in gial cells. *Neuroendocrinology* 2003; 77: 334–340.

81 Milner TA, Ayoola K, Drake CT, Herrick SP, Tabori NE, McEwen BS, Warner S, Alves SE. Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. *J Comp Neurol* 2005; 491: 81–95.

82 Donner N, Handa RJ. Estrogen receptor beta regulates the expression of tryptophan-hydroxylase 2 mRNA within serotoninergic neurons of the rat dorsal raphe nuclei. *Neuroscience* 2009; 163: 705–718.

83 Blaustein JD, Lehman MN, Turcotte JC, Greene G. Estrogen receptors in dendrites and axon terminals in the guinea pig hypothalamus. *Endocrinology* 1992; 131: 281–290.

84 Milner TA, McEwen BS, Hayashi S, Li CJ, Reagan LP, Alves SE. Ultrastructural evidence that hippocampal alpha estrogen receptors are located at extraneuronal sites. *J Comp Neurol* 2001; 429: 355–371.

85 Mitterling KL, Spencer JL, Dziedzic N, Shenoy S, McCarthy K, Waters EM, McEwen BS, Milner TA. Cellular and subcellular localization of estrogen and progesterin receptor immunoreactivities in the mouse hippocampus. *J Comp Neurol* 2010; 518: 2729–2743.

86 Sorosito SV, Lorenzo AG, Cambiasso MJ. Estrogen receptor alpha is expressed on the cell-surface of embryonic hypothalamic neurons. *Neuroscience* 2008; 154: 1173–1177.

87 Funakoshi T, Yanai A, Shinoda K, Kawano MM, Mizukami Y. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane. *Biochem Biophys Res Commun* 2006; 346: 904–910.

88 Akama KT, Thompson U, Milner TA, McEwen BS. Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines. *J Biol Chem* 2013; 288: 6438–6450.

89 Waters EM, Thompson U, Patel P, Gonzales AD, Ye HZ, Filardo EJ, Clegg DJ, Gorecka J, Akama KT, McEwen BS, Milner TA. G-protein-coupled estrogen receptor 1 is anatomically positioned to modulate synaptic plasticity in the mouse hippocampus. *J Neurosci* 2015; 35: 2384–2397.

90 Almey A, Filardo EJ, Milner TA, Brake WG. Estrogen receptors are found in glia and at extraneuronal neuronal sites in the dorsal striatum of female rats: evidence for cholinergic but not dopaminergic colocalization. *Endocrinology* 2012; 153: 5373–5383.

91 Almey A, Cannell E, Bertram K, Filardo E, Milner TA, Brake WG. Medial prefrontal cortical estradiol rapidly alters memory system bias in female rats: ultrastructural analysis reveals membrane-associated estrogen receptors as potential mediators. *Endocrinology* 2014; 155: 4422–4432.

92 Brailoiu E, Dun SL, Brailoiu GC, Mizuo K, Sklar LA, Oprea TI, Prossnitz ER, Dun NJ. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. *J Neurosci* 2007; 193: 311–321.

93 Hazell GG, Yao ST, Roper JA, Prossnitz ER, O’Carroll AM, Loliait SJ. Localisation of GPR30, a novel G protein-coupled oestrogen receptor,
suggests multiple functions in rodent brain and peripheral tissues. J Endocrinol 2009; 202: 223–236.

94 Spary EJ, Chapman SE, Sinfield JK, Maqbool A, Kaye J, Batten TF. Novel G protein-coupled oestrogen receptor GPR30 shows changes in mRNA expression in the rat oestrous cycle. Neurosignals 2013; 21: 14–27.

95 Greco B, Allegretto EA, Tetel MJ, Blaustein JD. Coexpression of ER beta with ER alpha and progesterin receptor proteins in the female rat forebrain: effects of estradiol treatment. Endocrinology 2001; 142: 5172–5181.

96 Romero RD, McCarthy JB, Wang A, Milner TA, McEwen BS. Sex differences in hippocampal estradiol-induced N-methyl-D-aspartic acid binding and ultrastructural localization of estrogen receptor-alpha. Neuroendocrinology 2005; 81: 391–399.

97 Brown TJ, MacLusky NJ, Shanabrough M, Naftolin F. Comparison of age- and sex-related changes in cell nuclear estrogen-binding capacity and progestin receptor induction in the rat brain. Endocrinology 1990; 126: 2965–2972.

98 Adams MM, Fink SE, Shah RA, Janssen WG, Hayashi S, Milner TA, McEwen BS, Morrison JH. Estrogen and aging affect the subcellular distribution of estrogen receptor-alpha in the hippocampus of female rats. J Neurosci 2002; 22: 3608–3614.

99 Wu D, Gore AC. Changes in androgen receptor, estrogen receptor alpha, and sexual behavior with aging and testosterone in male rats. Horm Behav 2010; 58: 306–316.

100 Pratt WB, Toft DD. Regulation of signaling protein function and trafficking by the hsps90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228: 111–133.

101 Leonhardt SA, Boonyarataneekorn K, Edwards DP. Progestocrine receptor transcription and non-transcription signaling mechanisms. Steroids 2003; 68: 761–770.

102 Thomas P, Pang Y, Dong J, Groenen P, Kelder J, de Vlieg J, Zhu Y, Tubbs C. Steroid and G protein binding characteristics of the seatrout non-classic progesterone receptors are both expressed in human spermatogonia. Biochem Mol Biol 2003; 28: 77–83.

103 Losel R, Breiter S, Seyfert M, Wehling M, Falkenstein E. Classic and non-classic progesterone receptors are both expressed in human spermatogonia. Horm Metab Res 2003; 35: 107–124.

104 Gonzalez Deniselle MC, Lopez-Costa JJ, Saavedra JP, Pietranera L, Gonzalez SL, Garay L, Guernnou R, Schumacher M, De Nicola AF. Progesterone neuroprotection in the Wobbler mouse, a genetic model of spinal cord motor neuron disease. Neurobiol Dis 2003; 18: 275–281.

105 Funabashi T, Kleopoulos SP, Brooks PJ, Kimura F, Pfaff DW, Shinhara K, Mobbs CV. Changes in estrogenic regulation of estrogen receptor alpha mRNA and progesterone receptor mRNA in the female rat hypothalamus during aging: an in situ hybridization study. Neurosci Res 2000; 38: 85–92.

106 Baulieu EE. Neurosteroids: a novel function of the brain. Psychoneuroendocrinology 1998; 23: 963–987.

107 Murphy DD, Cole NB, Greenberger V, Segal M. Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J Neurosci 1998; 18: 2550–2559.

108 Pluchino N, Drakopoulos P, Bianchi-Demicheli F, Wenger JM, Petignat P, Benazzi AR. Neurobiology of DHEA and effects on sexuality, mood and cognition. J Steroid Biochem Mol Biol 2015; 145: 273–280.

109 Murphy DD, Cole NB, Greenberger V, Segal M. Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J Neurosci 1998; 18: 2550–2559.

110 Pluchino N, Drakopoulos P, Bianchi-Demicheli F, Wenger JM, Petignat P, Benazzi AR. Neurobiology of DHEA and effects on sexuality, mood and cognition. J Steroid Biochem Mol Biol 2015; 145: 273–280.

111 Ogden KK, Traynelis SF. New advances in NMDA receptor pharmacol. Trends Pharmacol Sci 2011; 32: 726–733.

112 Nitsu T, Iyo M, Hashimoto K. Sigma-1 receptor agonists as therapeutic drugs for cognitive impairment in neuropsychiatric diseases. Curr Pharm Des 2012; 18: 875–883.

113 El-Etr M, Akwa Y, Baulieu EE, Schumacher M. The neuroactive steroid pregnenolone sulfate stimulates the release of gonadotropin-releasing hormone from GT1-7 hypothalamic neurons, through N-methyl-D-aspartate receptors. Endocrinology 2006; 147: 2737–2743.

114 Gibbs TT, Russek SJ, Farb DH. Sulfated steroids as endogenous neuro-modulators. Pharmacol Biochem Behav 2006; 84: 555–567.

115 Baulieu EE, Schumacher M. The neuroactive steroid pregnenolone sulfate induces localized and progestin receptor expression in lateral septum of male rats impairs novel object recognition memory. Pharmacol Rep 2010; 62: 265–272.

116 Niitsu T, Iyo M, Hashimoto K. Sigma-1 receptor agonists as therapeutic drugs for cognitive impairment in neuropsychiatric diseases. Curr Pharm Des 2012; 18: 875–883.

117 Schumacher M, Lierre P, Akwa Y, Rajkowski K, Griffiths W, Bodin K, Sjovall J, Baulieu EE. Pregnenolone sulfate in the brain: a controversial neurosteroid. Neurochem Int 2008; 52: 522–540.

118 Cabrera RJ, Navarro CE. Progesterone in vitro increases NMDA-evoked [3H] dopamine release from striatal slices in proestrus rats. Neuropharmacology 1996; 35: 175–178.

119 Cabrera RJ, Navarro CE. Progesterone in vitro increases NMDA-evoked [3H] dopamine release from striatal slices in proestrus rats. Neuropharmacology 1996; 35: 175–178.

120 Giuliani FA, Yunes R, Mohr CE, Laconi M, Rettori V, Cabrera R. Allo-pregnenolone induces LHRH and glutamate release through NMDA receptor modulation. Endocrine 2011; 40: 21–26.

121 Cabrera RJ, Navarro CE. Progesterone in vitro increases NMDA-evoked [3H] dopamine release from striatal slices in proestrus rats. Neuropharmacology 1996; 35: 175–178.

122 Giuliani FA, Yunes R, Mohr CE, Laconi M, Rettori V, Cabrera R. Allo-pregnenolone induces LHRH and glutamate release through NMDA receptor modulation. Endocrine 2011; 40: 21–26.

123 Cabrera RJ, Navarro CE. Progesterone in vitro increases NMDA-evoked [3H] dopamine release from striatal slices in proestrus rats. Neuropharmacology 1996; 35: 175–178.

124 Brann DW, Mahesh VB. Glutamate: a major neuroendocrine excitatory signal mediating steroid effects on gonadotropin secretion. J Steroid Biochem Mol Biol 1995; 53: 325–329.

125 Christensen A, Bentley GE, Cabrera R, Ortega HH, Perfito N, Wu TJ, Ricevych P. Hormonal regulation of female reproduction. Horm Metab Res 2012; 44: 587–591.

126 Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 2012; 6: 10.

127 Mellon SH. Neurosteroid regulation of central nervous system development. Pharmcol Ther 2007; 116: 107–124.

128 Tsutsui K. Progesterone biosynthesis and actions in the developing neuron. Endocrinology 2008; 149: 2757–2761.

129 Gonzalez Deniselle MC, Lopez-Costa JJ, Saavedra JP, Pietranera L, Gonzalez SL, Garay L, Guernnou R, Schumacher M, De Nicola AF. Progesterone neuroprotection in the Wobbler mouse, a genetic model of spinal cord motor neuron disease. Neurobiol Dis 2002; 11: 457–468.

130 Casas S, Garcia S, Cabrera R, Nanfaro F, Escudero C, Yunes R. Progesterone prevents depression-like behavior in a model of Parkinson’s disease induced by 6-hydroxydopamine in male rats. Pharmacol Biochem Behav 2011; 99: 614–618.
Liu S, Wu H, Xue G, Ma X, Wu J, Qin Y, Hou Y. Metabolic alteration of neuroactive steroids and protective effect of progesterone in Alzheimer's disease-like rats. *Neural Regen Res* 2013; 8: 2800–2810.

Kuo J, Micewych P. Neurosteroids, trigger of the LH surge. *J Steroid Biochem Mol Biol* 2012; 131: 57–65.

Shimizu H, Ishizuka Y, Yamazaki H, Shirao T. Allopregnanolone increases mature excitatory synapses along dendrites via protein kinase A signaling. *Neuroscience* 2015; 305: 139–145.

Frye CA. Neurosteroids' effects and mechanisms for social, cognitive, emotional, and physical functions. *Psychoneuroendocrinology* 2009; 34 (Suppl 1): S143–S161.

Escudero C, Casas S, Giuliani F, Bazzocchini V, Garcia S, Yunes R, Cabrera R. Allopregnanolone prevents memory impairment: effect on mRNA expression and enzymatic activity of hippocampal 3α-hydroxysteroid oxide-reductase. *Brain Res Bull* 2012; 87: 280–285.

di Michele F, Longone P, Romeo E, Lucchetti S, Brusa L, Pierantozzi M, Bassi A, Bernardi G, Stanzione P. Decreased plasma and cerebrospinal fluid content of neuroactive steroids in Parkinson's disease. *Neural Sci* 2003; 24: 172–173.

Lenz KM, McCarthy MM. Organized for sex—steroid hormones and the developing hypothalamus. *Eur J Neurosci* 2010; 32: 2096–2104.

Campbell RE, Herbison AE. Gonadal steroid neuromodulation of developing and mature hypothalamic neuronal networks. *Curr Opin Neurobiol* 2014; 29: 96–102.

Remage-Healey L, Dong SM, Chao A, Schlinger BA. Sex-specific, rapid neuroestrogen fluctuations and neurophysiological actions in the songbird auditory forebrain. *J Neurophysiol* 2013; 107: 1621–1631.

Zhang QG, Wang R, Tang H, Dong Y, Chan A, Sareddy GR, Vadlamudi RK, Brann DW. Brain-derived estrogen exerts anti-inflammatory and neuroprotective actions in the rat hippocampus. *Mol Cell Endocrinol* 2014; 389: 84–91.

Vierk R, Brandt N, Rune GM. Hippocampal estradiol synthesis and its significance for hippocampal synaptic stability in male and female animals. *Neuroscience* 2014; 274: 24–32.

Arevalo MA, Ruiz-Palmero I, Scerbo MJ, Acaz-Fonseca E, Cambiasso MJ, Garcia-Segura LM. Molecular mechanisms involved in the regulation of neurotogenesis by estradiol: recent advances. *J Steroid Biochem Mol Biol* 2012; 131: 52–56.

Cattaneo E, Maggi A. c-fos induction by estrogen in specific rat brain areas. *Eur J Pharmacol* 1990; 188: 153–159.

Auger AP, Blaustein JD. Progesterone enhances an estradiol-induced increase in Fos immunoreactivity in localized regions of female rat forebrain. *J Neurosci* 1995; 15: 2272–2279.

Arevalo MA, Ruiz-Palmero I, Simon-Areces J, Acaz-Fonseca E, Azaeotia I, Garcia-Segura LM. Estradiol meets notch signaling in developing neurons. *Front Endocrinol (Lausanne)* 2011; 2: 21.

Scerbo MJ, Freire-Regatillo A, Cisternas CD, Brunotto M, Arevalo MA, Garcia-Segura LM, Cambiasso MJ. Neurogenin 3 mediates sex chromosome effects on the generation of sex differences in hypothalamic neuronal development. *Front Cell Neurosci* 2014; 8: 188.

von Schassen C, Fester L, Prange-Kiel J, Lohse C, Huber C, Bottner M, Rune GM. Oestrogen synthesis in the hippocampus: role in axon outgrowth. *J Neuroendocrinol* 2006; 18: 847–856.

Ruiz-Palmero I, Hernandez M, Garcia-Segura LM, Arevalo MA. G protein-coupled estrogen receptor is required for the neuritogenic mechanism of 17beta-estradiol in developing hippocampal neurons. *Mol Cell Endocrinol* 2013; 372: 105–115.

Diaz H, Lorenzo A, Carrer HF, Caceres A. Time lapse study of neurite growth in hypothalamic dissociated neurons in culture: sex differences and estrogen effects. *J Neurosci Res* 1992; 33: 266–281.

Cambiasso MJ, Diaz H, Caceres A, Carrer HF. Neuritogenic effect of estradiol on rat ventromedial hypothalamic neurons co-cultured with homotopic or heterotopic glia. *J Neurosci Res* 1995; 42: 700–709.

Cambiasso MJ, Colombo JA, Carrer HF. Differential effect of oestradiol and astrogia-conditioned media on the growth of hypothalamic neurons from male and female rat brains. *Eur J Neurosci* 2000; 12: 2291–2298.

Hu R, Cai WQ, Wu XG, Yang Z. Astrocyte-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons. *Neuroscience* 2007; 144: 1229–1240.

Lenz KM, Nugent BM, Hallyur R, McCarthy MM. Microglia are essential for masculinization of brain and behavior. *J Neurosci* 2013; 33: 2761–2772.

Acaz-Fonseca E, Sanchez-Gonzalez R, Azaeotia I, Arevalo MA, Garcia-Segura LM. Role of astrocytes in the neuroprotective actions of 17beta-estradiol and selective estrogen receptor modulators. *Mol Cell Endocrinol* 2014; 389: 48–57.