In-vitro Wound Healing Effect of 15-Hydroxyprostaglandin Dehydrogenase Inhibitor from Plant

Sandeep Karna

National Institute of Horticultural and Herbal Science, Nongsaengmyeong-ro, Iseo-myeon, Wangju-gun, Jeollabuk-do, Korea

Submitted: 30-07-2016 Revised: 08-09-2016 Published: 07-04-2017

ABSTRACT

Background: Prostaglandins (PGs) have short existence *in vivo* because they are rapidly metabolized by NAD⁺-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH) to 15-ketoprostaglandins. Inhibition of 15-PGDH causes elevated level of PGE₂ in cellular system. It will be valuable for the therapeutic management of diseases requiring elevated PGE₂ levels, like wound healing. **Objective:** Ninety-eight plant samples were screened for the discovery of potent 15-PGDH inhibitor. Among them, top five plant extracts as potent 15-PGDH inhibitor were chosen to determine PGE₂ release from HaCaT (Keratinocyte cell line) cell line. Finally, top 15-PGDH inhibitor was selected to evaluate in *vivo* wound healing effect on HaCaT scratch model.

Method: The inhibitory activity for 15-PGDH inhibitors was evaluated using fluorescence spectrophotometer by measuring the formation of NADH at 468 nm following excitation at 340 nm. Cell viability assay and PGE₂ release was evaluated in HaCaT cell line after treatment of 15-PGDH inhibitors. Scratches were made using sterile 200 µL on HaCaT cell and wound-healing effect was evaluated after treatment of 15-PGDH inhibitors. **Results:** 15-PGDH inhibitors elevated PGE₂ levels in concentration-dependent manner. Ethanolic extract of Artocarpus heterophyllus (EEAH), the most potent 15-PGDH inhibitor (IC₅₀ = 0.62 µg/mL) with least cytotoxicity (IC₅₀ = 670 µg/mL), elevated both intracellular and extracellular PGE₂ levels. EEAH facilitated in *vivo* wound healing in a HaCaT (Keratinocyte cell line) scratch model. **Conclusion:** EEAH might apply to treat dermal wounds by elevating PGE₂ levels via COX-1 and 15-PGDH inhibition.

Key words: Prostaglandins, cyclooxygenase, PGE₂, wound healing, 15-hydroxyprostaglandin dehydrogenase

SUMMARY

- Biological inactivation of 15-PGDH causes elevated level of PGE₂ which will be useful for the management of disease that requires elevated level of PGE₂.

Tissue injury

- Arachidonic acid release
- **COX-1**
- **COX-2**
- PGE₂ (i)
- 15-PGDH
- 15-Ketoprostaglandins
- **Plant extract**

Abbreviations used: 15-PGDH: 15-hydroxyprostaglandin dehydrogenase, COX: Cyclooxygenase, DTT: Dithiothreitol, DMEM: Dulbecco’s modified Eagle’s media, EEAH: Ethanol extract of Artocarpus heterophyllus, MRP4: Multidrug resistance 4, PGs: Prostaglandins, PGT: Prostaglandin transporter, SDS: Sodium dodecylsulfate

INTRODUCTION

Prostaglandins (PGs) are lipid compounds that participate in a variety of physiologic and pathologic processes, and among them, PGE₂ is a major mediator for inflammation.¹¹ PGE₂ is formed by PG synthetase from PGH₂ through the cyclooxygenase (COX) pathway. Two types of COX have been identified: (i) COX-1 has been expressed constitutively in various tissues, including stomach, and (ii) COX-2 has been induced by cytokines, growth factors, tumor promoters, and other agents.² New synthesized PGE₂ is simply diffused and actively extruded by the multidrug resistance 4 (MRP4) from the cells.³ Subsequently, EPR receptor is activated followed by pericellular PGE₂, is cleared via re-uptake of PGE₂ by PG transporter (PGT)⁴ and then rapidly metabolized by cytosolic enzyme named NAD⁺-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH).⁵ This enzyme is expressed ubiquitously in mammalian tissues and responsible for biologic inactivation of PGE₂ to 15-ketoprostaglandins.⁶

PGE₂ has been known as an important mediator for bone formation,⁷,⁸ gastric ulcer healing,⁹,¹⁰ and dermal wound healing.¹¹,¹² Additionally, PGE₂ has been used to treat gastric ulcer in spite of high price and low efficacy.¹³,¹⁴ Therefore, PGE₂ elevation using 15-PGDH inhibitor would be valuable for the management disease that required elevated PGE₂ like wound healing. Wound healing is a complicated process in human or animal in which skin or another organ-tissue repair itself after having wound.¹⁵ In normal skin, epidermis and dermis maintain steady-state equilibrium to maintain protective barrier against the external environment. Once the protective barrier is broken, the wound-healing process immediately set in motion and complex biochemical events takes place to repair the damage.¹⁶ The aim of this study was to screen most potent 15-PGDH inhibitor from plant source and evaluate its wound-healing efficacy using *in-vitro* scratch model in HaCaT cell.

MATERIALS AND METHODS

Materials, reagents, and instruments

Plant extracts were purchased from the Korean Plant Extract Bank (Daejeon, Korea). PGE₂, NAD⁺, NADH, glutathione-sepharose 4B, dithiothreitol (DTT), sodium dodecylsulfate (SDS), EDTA, reduced glutathione, mitomycin, and other chemicals and reagents were purchased from Sigma-Aldrich Co, USA.

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Cite this article as: Karna S. In-vitro wound healing effect of 15-hydroxyprostaglandin dehydrogenase inhibitor from plant. Phcog Mag 2017;13:122-6.
from Sigma (St. Louis, MO, USA), TGF-β1 was purchased from BioVision (California, USA) and pGEX-2T expression vector from Pharmacia Crop. (New Jersey, USA). cDNA of human 15-PGDH was cloned from human placenta as illustrate earlier.[27] PGE, enzyme immunoassay kits were obtained from Thermo Scientific (Rockford, IL, USA). UV-Vis spectrophotometer (Shimadzu, Japan) was used to obtain UV spectra. Real-time PCR was performed using a Light Cycler 2.0 (Roche, Mannheim, Germany). Scratches were visualized and pictures captured using a transmission electron microscope (Hitachi, Tokyo, Japan).

Sample preparation
Different parts of plants were dried in the dark for 7 days and then grounded to powder. The powder samples were extracted three times with ethanol and extracts were obtained through removal of solvents during evaporations. The concentrated samples were stored at -20°C. One hundred milligram of crude extracts were dissolved in 1 ml of commercial grade ethanol.

Expression and purification of 15-PGDH
pGEX-2T expression vector was used to transform 15-PGDH cDNA plasmid into E. coli BL-21 lysS. The cells were grown in LB Broth (1.0 L) containing 50 mg/L ampicillin at 37°C and 230 × g. Isopropyl-1-thio-β-d-galactopyranoside was added to 1 mM when OD600 reached 0.8 and cells were allowed to grow for additional 12 h at 25°C. Cells were harvested by centrifugation at 4000g for 20 min at 4°C and pellets were resuspended in 20 mL of cold cell lysis buffer (1× PBS buffer pH 7.4 containing 1 mM EDTA and 0.1 mM DTT) and sonicated (3 × 15 s at 4°C) to disrupt cells. Sonicated pellets were centrifuged at 4000g for 20 min at 4°C and supernatant obtained was applied to a glutathione-sepharose 4B column. The column was rinsed with lysis buffer until OD280 reach less than 0.002. 15-PGDH was eluted from column using elution buffer (50 mM Tris-HCl pH 8.0 containing 10 mM reduced glutathione, 1 mM EDTA, and 0.1 mM DTT). The purity of 15-PGDH was examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and concentration measured.

15-PGDH assay
The inhibitory activity was evaluated using fluorescence spectrophotometer, measuring formation of NADH at 468 nm following excitation at 340 nm. Reaction mixture was prepared in 2 mL of Tris-HCl buffer (50 mM, pH 7.5) containing 0.1 mM DTT, 0.25 mM NAD+, purified enzyme (10 µg), 21 µM PGE2 and various concentration inhibitors. 15-PGDH inhibitory activities were evaluated using standard curve of NADH. Each concentration of inhibitor was assayed in triplicate.

Cell culture, cell viability assay, and determination of PGE2 release
HaCaT cell line (Keratinocyte cells) was cultured in Dulbecco's modified Eagle's media (DMEM) supplemented with 10% heat inactivated fetal bovine serum (Sigma) and 100 µg/mL penicillin. Cells were cultured in a 5% CO2 atmosphere at 37°C. Cell viabilities were evaluated using MTT assay.[18] HaCaT cells (1 × 104/90 µL of DMEM medium) were seeded (5 × 105 cells/well) into six-well culture plates in DMEM, supplemented with fetal bovine serum and antibiotics for overnight under 5% CO2, 37°C. Various concentrations of plant extract were added into individual well and media collected after 6 h for extracellular determination and cells were harvested for intracellular determination of PGE2. Concentrations of PGE2 were determined using PGE2 enzyme immunoassay kit (Cayman, MI, USA).

Quantitative real-time PCR
Total cellular RNA was isolated from HaCaT cells according to TRI reagent-specific instruction (RNA iso Plus, Takara Bio. Inc., Shiga, Japan). cDNA was synthesized using reagent-specific instruction of Superscript First Strand synthesis system for reverse transcription-PCR (Invitrogen, Carlsbad, CA, USA) from isolated RNAs. Primers used for real-time PCR were as follows: COX-1 forward, 5'-CCTCATGGTGGCCTTCTTTGC-3' and reverse, 5'-GGCGGTTATTTTCTCCATC-3' COX-2 forward, 5'-GATCTCTCCCTCAAA-3' and reverse, 5'-GAACACCTGCTCATCAG-3' MRP4 forward, 5'-AACGCTCAACGCATTGCTG-3' and reverse, 5'-TCAAATATACTACCTACCCA-3' human PGT forward, 5'-GGATGCTGTCTGGAGGAATTCTCCA-3' and reverse, 5'-GCCAGATCCTGTCTTGTGCATTGAA-3' and β-actin forward, 5'-GACTAGTACTTATGGTGCGTTA-3' and reverse, 5'-GTGGAAACTCTCTGATACAC-3'. PCR reaction mixture contained 4 µL of diluted cDNA (1:5), 10 pmole of each forward and reverse primer, 4 mM MgCl2, and 4 µL of Fast Starter Mix buffer (dNTPs, SYBR Green dye and Tag polymerase).

In-vitro wound healing
In-vitro scratch assay was performed in HaCaT cell line to examine wound-healing effect as previously reported[18,26] using EEAH. HaCaT cells were seeded into six-well plates (5 × 104 cells/well) and grown until reached to 80% confluence. After that media was replaced with serum-free DMEM containing mitomycin (10µg/mL) and cells were incubated for 2 h to prevent wound proliferation. Plates were extensively washed with PBS and then scratches were made using sterile 200 µL pipette tip, and cells were re-washed. TGF-β1 (100 pg/mL) as a positive control or EEAH were added to the medium. Pictures were taken in the same position before and after incubation to document the wound-healing process. Scratch experiments were repeated thrice and representative pictures are included in this study. Scratches were photographed under microscope (×100) immediately after scratching and also after 48 h of incubation at 37°C in 5% CO2 incubator.

Statistical analysis
Each experiment was performed at least three times and data are expressed as mean ± SE. Statistical significance was determined using paired Student’s t-test and P value less than 0.05 were considered statistically significant.

RESULTS
15-PGDH inhibitory activity assay, cytotoxic assay, and In-vitro PGE2 determination
15-PGDH inhibitory activities (IC50 µg/mL) are illustrated in Supplementary [Table S1]. Glochidione hirsuta was the most potent inhibitor for 15-PGDH having 0.36 µg/mL IC50. Five most potent inhibitors were assayed for cytotoxicity. Relative cytotoxicity was determined in vitro by anchorage-dependent cells, HaCaT. Result showed that EEAH was more toxic (cytotoxic IC50 70 µg/mL) among tested inhibitor. Further, it is necessary to check whether 15-PGDH inhibitors could increase PGE2 in cellular or not. Most potent inhibitors were treated for 12 h with concentration of 10 and 100 times of IC50 of
Table S1: Plant extracts with potential 15-PGDH-inhibitory activity

Serial No. *	Plant Sample	IC₅₀ (µg/mL)	Serial No. *	Plant Sample	IC₅₀ (µg/mL)
1	Glochidion hirsulta	0.37	2	Glochidion velutinum	0.51
3	Cinnamomum tetragonum	0.52	4	Memecylon edule	0.37
5	Artocarpus heterophyllus	0.62	6	Allopondias lakanensis	0.64
7	Commersonia bartrami	0.66	8	Syzygium bullockii	0.72
9	Syzygium formosum	0.73	10	Choerospondias assilis	0.84
11	Lumnatzeria racemosa	1.31	12	Osbeckia stellata	1.52
13	Trema orientalis	1.79	14	Lithocarpus gymnocarpus	1.92
15	Planchonella obovata	2.68	16	Triumfetta grandiflora	2.87
17	Triumfetta bartrami	2.94	18	Mallotus apelta	3.19
19	Baccaraea ramiflora	3.44	20	Sonneratia alba	4.08
21	Daphniphyllum calycinum	4.10	22	Wandlandia paniculata	4.24
23	Mucuna pruriens	4.59	24	Polygonum hydropiper	4.94
25	Macrosolen ochinchinensis	4.94	26	Lindra myrrha	5.47
27	Melastoma sanguineum	5.62	28	Rhodomyrtus tomentosae	7.56
29	Melastoma normale	7.56	30	Catharanthus roseus	8.51
31	Hibiscus tiliaceus	10.07	32	Mallotus floribundus	10.95
33	Maesa tomentella	11.83	34	Machilus velutina	12.42
35	Archidendron pallanei	13.85	36	Breynia indosinensis	17.53
37	Caesalpinia crista	18.20	38	Hopea odorata	19.36
39	Ipomea congesta	42.86	40	Cleisanthus tonkinensis	50.70
41	Cratoxylum maingayi	330.30	42	Gouania leptostachya	512.54
43	Engelhardia roxburghiana	573.70	44	Machilus thunbergii	916.10
45	Euodia lepta aff.	1.170	46	Senna alata	2,000
47	Vitex triplinata	2.040	48	Philedrum lanagiosum	2,440
49	Mallotus philippinensis	2.980	50	Pandanus humilis	3,350
51	Aidia cochinchinensis	3.380	52	Actephila excelsa	4,040
53	Aleurites montata	4.080	54	Streblus asper	4,460
55	ilx triflora	5.310	56	Vernonia cinerea	6,290
57	Grewia paniculata	6.940	58	Eupatorium odoratum	7,490
59	Broussonetia papyrifera	8.660	60	Carica papaya	8,770
61	Rubus cochinensis	9.160	62	Heliocrates hirsuta	9,470
63	Ludwigia epilobioides	10.050	64	Desmos chinensis	10,120
65	Gomphandra tonkinensis	10.990	66	Ficus heteropleura	11,370
67	Cerbera mahaghas	12.500	68	Litsea glutinosa	14,350
69	Helxanthera parasitica	14.740	70	Villebrunea tonkinensis	15,220
71	Memecylon umbellatum	15.520	72	Ageratum conyzoides	15,900
73	Parthenium hystrophorus	15.950	74	Spinifex littoreus	16,480
75	Celosia argentea	20.330	76	Acalypha siamensis	20,980
77	Vetex rotundifolia	22.270	78	Bridelia monoica	22,810
79	Ligustrum sinense	23.680	80	Carallia lanceaefolia	24,430
81	Symplacos cochinchinensis	25.220	82	Leucaena leucocephala	29,960
83	Ficus hirta	32.130	84	Litsea cubeba	57,250
85	Ebreia acuminate	104.200	86	Aidia oxyoodontia	154,300
87	Eurya cerasifolia	992.500	88	Alclosia odorata	NA
89	Amaranthus tricolor	NA	90	Angelonia goyazensis	NA
91	Aporosa tetrapleura	NA	92	Archidendron clypearia	NA
93	Ardisia quinquegona	NA	94	Embelia laeta	NA
95	Gymnemem sylvestre	NA	96	Eurya cerasifolia	NA
97	Kibatulial macrophylla	NA	98	Hyptis brevipes	NA

* Potency order of 15-PGDH-inhibitory activity NA: No activity against 15-PGDH

Table 1: Cytotoxic activities of strong 15-PGDH inhibitors and increment of PGE₂ in HaCaT cells

S. No.*	Inhibitor	Cytotoxicity IC₅₀ (µg/mL)	% Increment of PGE₂ of the control
	10 × IC₅₀	100 × IC₅₀	
1	Glochidion hirsulta	710	50.90
2	Glochidion velutinum	270	27.75
3	Cinnamomum tetragonum	535	39.9
4	Memecylon edule	450	3.55
5	Artocarpus heterophyllus	70	42.03

* Potency order of 15-PGDH-inhibitory activity
15-PGDH inhibition and percentage increment in PGE$_2$ were measured using ELISA kit. They increased PGE$_2$ in a concentration-dependent manner and EEAH increased PGE$_2$ level significantly [Table 1]. Results confirmed that tested inhibitors increased PGE$_2$ level in vitro cellular system. Further investigation was concentrated on EEAH.

Regulation of COX-1/2, PGT, and MRP4 by EEAH

PGE$_2$ level in cellular system might depend on the expression level of COX-1/2, MRP4, and PGT. COX-1/2 is responsible for the production of PGE$_2$ from PGH$_2$, and MRP4 and PGT plays important role in the transportation of PGE$_2$. Relatively low concentration of extracellular PGE$_2$ compared with intracellular PGE$_2$ was observed after the treatment with EEAH, suggesting that above-mentioned factors would determine PGE$_2$ regulation in biologic systems [Table 2]. These results showed that high intracellular PGE$_2$ concentration in HaCaT cells may be due to the activation of COX-1 and 15-PGDH inhibition by EEAH.

Wound-healing effect of EEAH

In-vitro wound healing study was performed using HaCaT scratch model. Various experiment sets were designed to evaluate the results:

- no drug treatment as a negative control, TGF-β1 (100 pg/mL) as a positive control, EEAH (6.2 µg/mL) only and in combination with COX-1/2 inhibitor (SC 560 0.5µM and Celecoxib 0.5µM), respectively. The photographs were taken before treatment and after 2 days incubation at 37°C, 5% CO$_2$. EEAH facilitated wound healing recovery distance: 60% as compared with the negative control (recovery distance: 15%); however, COX-2 inhibitor (Celecoxib, recovery distance 40%) did not interfere with wound-healing effect of EEAH.

DISCUSSION

Plant as a source of medicine used for traditional healthcare system for several thousands of years. New drug development scientists have been focusing their studies on medicinal plants in different parts of the world. There are significant economic benefits in the development of new medicines from plants for the treatment of various diseases. Twenty-five percent of medicines belong to plants source and their derivatives. Plants as a source of traditional medicine are used to cure diseases involving skin problems, cold, fever, cough, headache, diarrhea, fertility problems, and toothache. Therefore, 15-PGDH inhibitor was investigated in this study because of diverse therapeutic values and ample of opportunity to develop new drug from plant source. 15-PGDH negatively regulates PGE$_2$ levels and activity in vivo. In this study, extracellular and intracellular PGE$_2$ levels were elevated in HaCaT cell line after treatment of 15-PGDH inhibitors Table 1 and

Table 2: Intracellular and extracellular PGE$_2$ levels after 12-h treatment of tested samples (10 × IC$_{50}$ of 15-PGDH) in HaCaT cells

Sample name	Intracellular (pg/µg) (Mean ± SD)	Extracellular (pg/mL) (Mean ± SD)
Control	1.96 ± 0.18	393.67±12.46
Artocarpus heterophyllus	3.85 ± 0.43*	450.96 ± 15.53*

*Statistically significant P < 0.05

Table 3: Extracellular PGE$_2$ levels (pg/mL) influenced by EEAH in HaCaT cells during *in vitro* wound healing

Time	Sample	Control	EEAH
0 h	Control	143.6	143.6
12 h	Control	420.36	854.62
24 h	Control	442.86	885.62
48 h	Control	323.28	773.05

Figure 1: Effects of EEAH on mRNA expression of COX-1, COX-2, MRP4, and PGT * Statistically significant P < 0.05

Figure 2: *In vitro* wound-healing effect of EEAH in HaCaT cells. After scratch being made, immediately photographs were taken and widths were measured. Scratched cells were incubated for 2 days in 5% CO$_2$ incubator, the picture was again captured at the same place and widths were measured. Average width of wound was calculated with longest, medium and shortest length between the both cell populations. Control, no drug treatment; TGF-β1 (100 pg/mL), positive control; EEAH, ethanol extracts of Artocarpus heterophyllus (6.2 µg/mL); SC 560 (0.5 µM); C, Celecoxib (0.5 µM)
Table 2. The levels of PGE₂ available to cells are dependent on function of COX-1/2, MRP4, and PGT in PGE₂ signaling. EEAH elevate COX-1 mRNA expression significantly, while MRP mRNA expression slightly, which helps to increase availability of PGE₂ levels in HaCaT cell line [Figure 1]. Recently, Kochel and Fulton reported that MRP4, PGT, and 15-PGDH play important role in regulating PGE₂ levels.[30-32] Previsously, several scientists have reported wound-healing efficacy of plant extracts.[18-20] This study investigated the role of PGE₂ during the wound-healing process that was induced by plant extract. Tissue regeneration plays important role during recovery from injury, including wound healing, and PGE₂ is candidate molecule that helps in regeneration of tissue.[33] After scratching, extracellular medium was collected on different time interval (0, 12, 24, and 48 h) and PGE₂ concentration was measured. When wound being, the activity of PGE₂ was increased because there was increase on extracellular PGE₂ concentration during 12 and 24 h in all the tested samples because of inflammatory and proliferative actions on wound bed. COX-2 expression and PGE₂ production in the wound bed increase as dermal wound healing transitions from scarless to a scarring phenotype.[12] At a cellular level, PGE₂ was shown to regulate the proliferation of fibroblasts from both wound-healing phenotypes. Hemostasis, inflammatory, proliferative, and remodeling are the major steps of wound healing, where PGE₂ plays an important role.[34] EEAH plays important role to elevate PGE₂ level in cellular system by inhibiting 15-PGDH that accelerates wound healing.

CONCLUSIONS

15-PGDH inhibitor alone will give better result of wound healing than COX inhibitors because of elevated level of PGE₂. Therefore, inhibition of 15-PGDH with plant extracts will be valuable for the therapeutic management of diseases requiring elevated PGE₂ levels like in wound healing. The clinical efficacy and safety of these plant extracts as well as the purification of active ingredients from these plants remains to be done.

Acknowledgement

Plant samples and 15-PGDH plasmid were kindly gifted by Cheol-Hee Choi, Chosun University, Gwangju, Republic of Korea.

Financial support and sponsorship

Nil

Conflicts of interest

There is no conflict of interests

REFERENCES

1. Griffiths R. Prostaglandins and inflammation. In: Inflammation: basic principles and clinical correlates. Philadelphia, PA: Lippincott Williams and Wilkins 1999;349-60.
2. Crofford LJ. COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol Suppl 1997;49:15-9.
3. Schuster VL. Prostaglandin transport Prostaglandins Other Lipid Mediat. 2002;68-69:483-93.
4. Schuster VL. Molecular mechanisms of prostaglandin transport. Annu Rev Physiol 1998;60:221-42.
5. Anggard E, Samuelsson B. Smooth muscle stimulating lipids in sheep iris. The identification of prostaglandin F₂a. Prostaglandins and related Factors 21. Biochem Pharmacol 1964;13:281-3.
6. Anggard E. The biological activities of three metabolites of prostaglandin E₁. Acta Physiol Scand 1966;68:509-10.
7. Li M, Thompson DD, Paralkar VM. Prostaglandin E₂ receptors in bone formation. Int Orthop 2007;31:707-22.
8. Keller J, Klamr A, Bal B, Suder P. Effect of local prostaglandin E₂ on fracture callus in rabbits. Acta Orthop Scand 1983;64:59-63.
9. Hatazawa R, Tanaka A, Tanigami M, Arnagase K, Kato S, Ashida Y, et al. Cyclooxygenase-2/5. prostanogland E₂ accelerates the healing of gastric ulcers via EP₄ receptors. Am J Physiol Gastrointest Liver Physiol 2007;293:G788-97.
10. Shigeta J, Takahashi S, Okabe S. Role of cyclooxygenase-2 in the healing of gastric ulcers in rats. J Pharmacol Exp Ther 1998;286:1383-90.
11. Parekh A, Sanduleche VC, Singh T, Cetin S, Sacks MS, Dohar JE, et al. Prostaglandin E₂ differentially regulates contraction and structural reorganization of anchored collagen gels by human adult and fetal dermal fibroblasts. Wound Repair Regen 2009;17:98-98.
12. Wilgus TA, Bergdahl VK, Tober KL, Hill KJ, Mitra S, Flawahan NA, et al. The impact of cyclooxygenase-2 mediated inflammation on scarless fetal wound healing. Am J Pathol 2004;165:753-61.
13. Fung WP, Karm SM. Effect of 15 (R) 15 methyl prostaglandin E₂ on the healing of gastric ulcers: a double-blind endoscopic study. Med J Aust 1976;2:127-8.
14. Gibinski K, Rybicka J, Mikos E, Nowak A. Double-blind clinical trial on gastroduodenal ulcer healing with prostaglandin E₂ analogues. Gut 1977;18:636-9.
15. Nguyen DT, Orgill DP, Murphy GF. The pathophysiologic basis for wound healing and cutaneous regeneration. 2009;In: Biomaterials for treating skin loss Chapter 4 Cambridge/ Boca Raton: Woodhead Publishing UK(Europe) and CRC Press (US).
16. Stadelmann WK, Digenis AG, Tobin GR. Physiology and pharmacologic dynamics of cutaneous chronic wounds. Am J Surg 1998;176:265-305.
17. Ensor CM, Yang JY, Okita RT, Tai HH. Cloning and sequence analysis of the cDNA for human placental Na⁺/H⁺-dependent 15-hydroxyprostaglandin dehydrogenase. J Biol Chem 1990;265:14888-91.
18. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63.
19. Hintzmann E, Bilban M, Sharabi A, Quaranta V. Inhibitory role of alpha 6 beta 4-associated erbB-2 and phosphonosistode 3-kinate in keratinocyte haptotactic migration dependent on alpha 3 beta 1 integrin. J Cell Biol 2001;153:465-78.
20. Kivisto L, Jiang G, Hakkinen L, Chan B, Larjava H. HaCaT keratinocyte migration is dependent on epidermal growth factor receptor signaling and glycoprotein synthase kinase-Salp. Exp Cell Res 2006;312:2791-805.
21. Abu-Rabia A. Urinary diseases and ethnobotany among pastoral nomads in the Middle East. J Ethnobiol Ethnomed 2005;1:4.
22. Gazzaneo LR, de Lucena RF, de Albuquerque UP. Knowledge and use of medicinal plants by local specialists in a region of Atlantic Forest in the state of Pernambuco (Northeastern Brazil). J Ethnobiol Ethnomed 2005;1:9.
23. Hanazaki N, Tamashiro JY, Leitao-Filho H, Gegossi A. Diversity of plant uses in two Caicaras communities in a region of Atlantic Forest. J Ethnobiol Ethnomed 2005;1:9.
24. Azaehe H, Fulder S, Khali K, Said O. Ethnobotanical knowledge of local Arab practitioners in the Middle Eastern region. Fitoterapia 2003;74:98-108.
25. Principe P, Riley PA, Slater TF. Cellular thios in rat liver cell lines possessing different growth characteristics. Cell Biochem Funct 1991;9:125-33.
26. Muthu C, Ayanmar M, Raja N, Ignacimuthu S. Medicinal plants used by traditional healers in Kancheepuram district of Tamil Nadu, India. J Ethnobiol Ethnomed 2006;2:43.
27. Tai-HH, Ensor CM, Tong M, Zhou H, Yan F. Prostaglandin catalyzing enzymes Prostaglandins Other Lipid Mediat. 2002;69:483-93.
28. Myung SJ, Rienko RM, Yan M, Plater R, Guik J, Dottor A, et al. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci USA 2006;103:12098-102.
29. Kochel TJ, Fulton AM. Multiple drug resistance-associated protein 4 (MRP4), prostaglandin transporter (PGT), and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) as determinants of PGE₂ levels in cancer. Prostaglandins Other Lipid Mediat 2015;116-117:99-103.
30. Shailaion S, Gurjar D. Wound healing activity of Chrysophyllum cainito leaves: evaluation in rats using excision wound model. J Young Pharm 2016;8:96-103.
31. Shailaion S, Gurjar D. Wound healing efficacy of Mimusops elengi L leaves in albino Wistar rats using excision wound model. Pharmacogn Commm 2016;6:72-9.
32. Hasannis AA, Mohanty BK, Murali krishna, Patil S. Evaluation of wound healing effect of topical phenytoin on excisional wound in albino rats. J Young Pharm 2012;2:59-6.
33. Guitierrez RMR, Solis RV. Anti-inflammatory and wound healing potential of Prosthechea michuacana in rats. Pharmacog Mag 2009;5:219-25.
34. Zhang Y, Desai A, Yang SY, Bae KB, Antczak MI, Fink SP, et al. Tissue regeneration. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science 2015;348:aa2340.
35. Quinn JV. Tissue adhesives in wound care. 1998;Hamilton, ON:CB Decker, Inc.