RightPath: a model of community-based musculoskeletal care for children

Nicola Smith1, Victoria Mercer1-2, Jill Firth3, Sharmila Jandial1-4, Katharine Kinsey3, Helen Light3, Alan Nye3, Tim Rapley5, Helen Foster1,4

1Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
2Physiotherapy, South Tyneside and Sunderland NHS Foundation Trust, South Shields, UK
3Pennine MSK Partnership, Oldham, UK
4Paediatric Rheumatology, Great North Children’s Hospital, Newcastle upon Tyne, UK
5Department of Social Work, Education and Community Wellbeing Northumbria University, Newcastle Upon Tyne, UK.

Corresponding author: Nicola Smith, nicola.smith@newcastle.ac.uk,
Musculoskeletal Research Group, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK

Short title: RightPath
ABSTRACT

Objectives. Musculoskeletal presentations are common (reported prevalence 1 in 8 children) and a frequent cause of consultations (6% of 7 year olds in a cohort study from the UK). Many causes are self-limiting or raised as concerns about normal development (so called ‘normal variants’). We aimed to describe a new model of care to identify children who may be managed in the community by paediatric physiotherapists and/or podiatrists rather than referral to hospital specialist services.

Methods. Using mixed methods, we tested feasibility, acceptability and transferability of the model in two UK sites. Evaluation included patient flow, referral times, diagnosis and feedback (using questionnaires, focus groups and interviews).

Results. All GP referrals for MSK presentations (in individuals under 16 years) were triaged by nurses or allied health professionals using a triage guide; approximately 25% of all MSK referrals were triaged to be managed by community-based paediatric physiotherapists / podiatrists and most (67%) had a diagnosis of ‘normal variants’. Families reported high satisfaction with no complaints or requests for onward specialist referral. No children re-presented to the triage service or with serious MSK pathology to hospital specialist services in the subsequent 6-months after triage. Triagers reported paediatric experience important in triage decision-making and case-based-learning as the preferred training format.

Conclusions. The triage model is acceptable, feasible and transferable to enable appropriate care in the community for a proportion of children with MSK complaints. This is a multi-professional model of ‘better working together’ between primary community and specialist providers.

Key words: Child health, Primary Health Care, Qualitative research, Patient perspectives, Triage, Service development
KEY MESSAGES

- RightPath is an innovative model of care with improved cross-boundary working.
- The RightPath model aims to reduce variation in care and provide clarity of care pathways.
- Effective triage in the community by allied health professionals facilitates better utilisation of resources.

INTRODUCTION

Musculoskeletal (MSK) presentations in children and young people are common (reported prevalence of 1 in 8 [1] and a frequent cause of consultations increasing with age (6% of 7 year olds to 16% of 22 year olds in a cohort study from the UK) [2]. General Practitioners (GP) are often the first health care professionals (HCPs) to assess children and play a crucial role in deciding on specialist hospital referral (or not) and initiating care pathways [3,4].

Many causes of MSK presentations in primary care are self-limiting (e.g., related to viral illness or mild trauma), or raised as concerns about normal development (e.g. flat feet or bow legs - so called ‘normal variants’) [1,2,5]. However, some causes include serious MSK ‘red flag’ conditions (e.g., bone and joint infection, bone malignancy or non-accidental injury), or potentially disabling pathology (e.g., orthopaedic hip conditions, rheumatic diseases or neuromuscular problems). The management of such conditions are priority for UK National Health Services (NHS) hospital-based specialist services (https://www.england.nhs.uk/commissioning/spec-services/) especially as delay, which is well-reported, impacts adversely on clinical outcomes [3, 6-112].

Our study was based on the premise that some children with MSK presentations could be assessed and managed in the community rather than being referred to a hospital specialist service. We developed a new model of care, based on an established adult MSK triage service (https://www.pmskp.org) and within existing frameworks of UK primary and community care NHS clinical pathways [13]. This new model, which we have called ‘RightPath’, aims to identify children appropriate for assessment and management by paediatric physiotherapy or podiatry within the community and also to identify those with suspected MSK pathology for referral to hospital specialist
RightPath

services. In this paper, we describe the development, implementation and initial evaluation of the RightPath model.

METHODS

An overview of RightPath is given (Figure 1). The study was based in two sites to test transferability with an approximate 3-month interval between starting the study at the second site to allow iterative modification based on feedback.

Site 1: Oldham, UK in North West England and site of the existing adult MSK service (https://www.pmskp.org) with an e-portal receiving all referrals from 43 GP practices and catchment total population of approximately 235,000 [14]. The RightPath triage process started at the point of triaging GP referral letters received via an e-portal.

Site 2: South Tyneside and Sunderland NHS Foundation Trust, North East England, UK with an existing paediatric ‘gait variant’ community-based service led by paediatric physiotherapists and with a general paediatrics department within the same NHS Trust - both receiving direct referrals from 21 GP practices and serving a total population of 150,300 [15]. The RightPath triage process started at the point of receiving GP referral letters at the NHS Trust – either in general paediatrics or paediatric physiotherapy.

Both sites had pre-existing onward referral access to a regional NHS Children’s hospital with established specialist paediatric rheumatology and paediatric orthopaedic services. Neither study site had pre-existing triage guidance for children with MSK presentations.

Stakeholder consultation events at each site before the start of the study engaged local communities and aired concerns about potential de-stabilisation of services; attendees included primary, community and hospital specialist care representatives and members of the British Society for Paediatric and Adolescent Rheumatology Parents Group. A report of the discussions was sent to all primary care providers in the respective areas and followed up with regular e-Newsletters to describe progress of the study.
The triage guide was developed by the project team who had varied paediatric MSK expertise. The triage guide focused on common MSK lower limb scenarios (e.g., flat feet, knee pain, foot pain) based on audits of anonymised referral data from each site before the start of the project. The triage guide aimed to identify normal variants and other non-serious MSK lower limb conditions (such as anterior knee pain and sports injuries), which could be managed by community-based providers (i.e. paediatric physiotherapists/podiatrists). We anticipated that subtle forms of MSK conditions’ problems such as inflammatory arthritis without a ‘sick child presentation’ could potentially come through RightPath; the triage guide therefore included ‘green flags’ (‘reassurance indicators’) and ‘red flags’ (‘indicators of concern’) with further referral guidance to rheumatology, orthopaedics, neurodisability or general paediatrics. The triage guidance is available (www.RightPath.solutions).

The triage teams comprised HCPs who triaged all GP referral letters for children (≤16 years) that included any MSK complaint(s). Triagers used the triage guide to identify those deemed appropriate for a community-based appointment with a paediatric physiotherapist and / or podiatrist. The remainder continued with their referral to secondary care. Triage decisions using the triage guide were based on the content of the GP referral letter; we had no direct interaction with the GP and there was no proforma or influence over the GP referral decision. Triagers were encouraged to have a low threshold for onward referral to hospital specialist services and to collate personal reflections in a weekly log noting challenges, concerns and actions taken. The role of paediatric experience in the application of the triage guide was considered likely to be important and was included as part of our study planning and explored further in the evaluation (confidence logs and qualitative work).

Triage staff at site 1 had access to advice from a GP with specialist interest in rheumatology and consultant adult rheumatologist with experience of adolescent rheumatology (both project team members at site 1) for informal adhoc advice and case-based practice group discussions based on ‘real life’ data, logbooks and feedback. All triagers had access to PMM (paediatric musculoskeletal matters - www.pmmonline.org) as a free online learning resource [16].
Evaluation

Evaluation included patient demographics, triage decisions, referral times and eventual diagnosis where available. To assess safety, ethical permission included notification by the respective NHS Trusts of any patients who had been triaged and then who presented with a diagnostic code reflecting a ‘red flag’ condition (namely septic arthritis, osteomyelitis or malignancy) up to 6-months after termination of the study at each site; the assumption being that serious illnesses would re-present within this timeframe. Furthermore, children managed in the community also had the option of self re-referral back to the paediatric physiotherapist or podiatrist.

For those children triaged to be assessed by community providers, evaluation included feedback from parents using the validated ‘Friends and Family’ questionnaire [17] to explore satisfaction and ‘Collaborate’ [18] as a measure of shared decision making; both were completed by consented parents immediately after consultations. Parents at both sites were also invited to take part in a telephone interview after the consultation.

Qualitative methods explored experiences from triagers and community providers, using focus groups at three time points during the study and 1-1 interviews to explore emerging themes.

Insights into training needs were informed by weekly logs (using a 5 point Likert scale about ‘ease of triage decisions’), focus groups and interviews.

Consent was obtained from all participants in the focus groups, interviews and weekly logs. All patient and participant information was anonymised. Focus groups and interviews were audio-recorded, transcripts anonymised and analysed following standard procedures for qualitative analysis, including open and focused coding, constant comparison and deviant case analysis [19].

Reflexivity was maintained throughout the analysis and writing, by recording, discussing and challenging established assumptions. The first author (NS) conducted all interviews and focus groups and collected all log entries. She was not known to the participants and was based in the external University setting. This ensured no preconceptions in relation to health service delivery.
Ethical approval was granted by the Research Ethics Committees Northern Ireland, Reference 16/NI/0044 IRAS project ID: 18435. The ethics committee was allocated as part of the Integrated Research Application System (IRAS) process.

RESULTS

Tables 1 and 2 include details about consented patients from each site. Most diagnoses were normal variants or non-serious lower limb pain conditions (Table 2). Most patients were assessed within a short waiting time (median time to first assessment 2.9 weeks; range 1-16 weeks) - the majority (site 1 = 95%, site 2 = 52%) had the first appointment within 4 weeks; the longest times reflected family requests to re-book appointments (e.g. around holidays or work schedules). The differences in the time to first assessment between sites 1 and 2 likely reflect the different service set up at the two sites (e.g. referral pathways, clinic set ups, frequency of clinics).

For a comparison, the routine waiting times to hospital first appointment at the time of the study was 14 weeks (source: local referral data site 1 at start of the study). The time to first hospital appointment for children triaged to hospital care was not part of our study and was not included in our ethical permission.

Many patients (46%) were discharged after the initial consultation with the community paediatric physiotherapist or podiatrist and four patients (details in Table 1) warranted specialist opinion and were referred promptly to specialist services. The most frequent interventions by the community providers were explanation, advice on footwear/exercise and the prescription of orthotics. The proportion of children requiring ‘on-going treatment’ differed between the sites and likely reflects a potential bias towards more complex cases being assessed at site 2.

None of the patients who had been triaged to the community, re-presented to the respective NHS Trusts with a ‘red flag’ condition within 6-months of the original referral and no patients re-referred themselves back to community services during the course of the study.
Specifically, at site 1, 398 letters of referral with MSK presentations were triaged over 6-months (approximately 50 referrals/month). From this total triaged, 101/398 (25%) were deemed appropriate to be assessed by community providers; 7/101 (7%) failed to attend appointments and of the 94 attendees, 75 families consented to give feedback and for their child’s outcome data to be collected.

Site 1 and site 2 had different pre-existing services in place. In site 1 it was possible to ascertain the total number of children referred with an MSK presentation as all GP referral letters were sent to a centralised GP e-system and received by the triage team. Prior to the study all MSK paediatric referrals continued to hospital services and none were seen first in the community by paediatric physiotherapists or podiatrists. In site 2, the GP in the pre-existing service could refer direct to the paediatric physiotherapy / podiatry service based in the paediatric department at the hospital or could refer to the paediatrician who then would assess the child first and decide whether to refer to physiotherapy or podiatry (or not). In site 2, during the course of the study, 61 referrals with MSK complaints were referred direct to paediatric physiotherapy or podiatry; 8/61 failed to attend appointments. Most attendees (48/53), consented to data collection and providing feedback. A further 65 referrals with an MSK presentation were referred to general paediatrics and of these 25/65 were deemed to have been eligible for direct referral to paediatric physiotherapy/podiatry (i.e. without need for general paediatric assessment first); this judgement was based solely on the GP referral letter prior to their appointment and following the assessment, none were deemed to require a general paediatrician medical opinion.

Perspectives from families

For those 123 consented parents of children triaged to community providers (n=75 site 1 and n= 48 site 2), questionnaires were completed by 122/123 and telephone interviews were conducted with 3 parents (Table 3 and Supplementary Table S1, available at Rheumatology Advances in Practice online). ‘Family and Friends’ and Collaborate data showed high satisfaction scores; parents cited prompt appointments and reassurances received from the paediatric physiotherapist or podiatrist as being highly valued with no complaints or requests for subsequent hospital specialist referral.

Perspectives from community providers (paediatric physiotherapists and podiatrists)
Feedback about the new model was generally very positive with no concerns expressed by the parents to the providers. Furthermore they reported that the children triaged to their care were of a similar case mix to their regular clinical practice and therefore appropriate for their existing professional skill-set.

Perspectives from triage teams

Paediatric experience was deemed really important for the triage process. At site 1, the triage team included 2 adult MSK nurses and an adult physiotherapist at the start of the project. It became apparent within the first focus group that they were ‘uncomfortable’ and lacked confidence to triage paediatric referrals even when using the triage guide (Supplementary Table S1, available at Rheumatology Advances in Practice online). In contrast the triage staff at site 1 with paediatric experience reported most triage decisions to be ‘easy/very easy’ (77%) compared to 18% being ‘easy/very easy’ when triage performed by ‘non-paediatric trained’ MSK triagers (Table 4). Consequently, the triage team at site 1 was changed to include HCPs with paediatric experience for the second phase at site 1 and subsequent feedback from the triagers was much more positive (Table 4). At site 2 triage was performed by a paediatric physiotherapist from the outset with feedback that triage decisions were ‘easy/very easy (92%).

Triagers preferred a blended format of training especially during initial phases of the study. At site 1, adhoc informal guidance about triage decisions from doctors with a specialist MSK interest was valued. Furthermore, the two monthly quality team meetings reflecting on real data, feedback and decision making were deemed positive and encouraged shared peer learning.

DISCUSSION

We have developed a novel model of care as a service improvement for children and we are not aware of similar models in child health. The RightPath model involves triage guidance to triage GP letters and identify children with MSK presentations who may be assessed and managed by community providers (paediatric physiotherapists and/or podiatrists) rather than being referred to hospital specialist services. Our study suggests that approximately 25% of all children presenting to
RightPath

their GP with MSK presentations are appropriate for community provider assessment. We focused on the ‘25%’ for our evaluation, as these are the children that were directed ‘away’ from secondary services using the triage guide; we assessed acceptability and feasibility amongst the parents and the providers. Our new model is timely, relevant and important with MSK presentations in children being common [1,2] and the need for NHS health care services to use existing resources optimally [20].

Strengths and Limitations

Our results suggest that RightPath is feasible and acceptable (to parents, triagers and community providers) and enables prompt access to care locally and reduces variation in care. RightPath was implemented within two separate sites with different pre-existing systems in place and whilst this prevented the sites from being directly comparable, we feel that these differences reflect ‘real life’ variation in primary care practice in the UK.

The model identified the ‘right’ children to be assigned to a community provider for assessment. These children would all have been assessed in hospital specialist services prior to our study; we anticipate that many are likely to have then also been referred to paediatric physiotherapy and podiatry, potentially in the community, given the high proportion of normal variants. RightPath therefore bypassed this step for a significant number of children. Given that approximately 25% of patients were ‘diverted away’ from secondary referral then the overall referrals to secondary care may well have reduced but we were unable to evaluate this specifically. Furthermore, the (few) cases triaged to a community provider where concerns were subsequently raised, were all ‘fast-tracked’ to hospital specialist care rather than an otherwise ‘routine’ elective outpatient referral had triage not taken place - hence suggesting no delay incurred for these children. Formal validation of the triage guide and process would need more information about the diagnoses and waiting times of the children triaged to hospital care. Such information was not available in this study due ethical constraints but is an area for further work. The study also demonstrated high levels of satisfaction and acceptability from the parents of the children triaged to community care.

https://mc.manuscriptcentral.com/rheumap
In ‘real life’, triage teams and community providers need to have more than one person on a working rota to be functional ‘day to day’. Our work was therefore to identify important components of the triage and community provider teams and how best to support them. Paediatric experience in the triage team was deemed essential and access to a blended format for learning with case based discussions and interprofessional learning was highly valued. No additional training for the community providers was deemed necessary, as the case mix was appropriate for their existing skill set. It is noteworthy the proportion of children referred to community services increased over time, likely reflecting increased confidence of the triagers; it is plausible that the 25% being ‘filtered’ to community care is a conservative estimate that could increase further with time.

Our methods did not influence the GP referral letter content. The content of the letters led to challenges to apply the triage guidance. Where possible triage staff were asked to contact the GP to obtain further key information (e.g. duration and severity of symptoms) but this was often impractical and so in the absence of information to make a decision, the triage outcome defaulted to onward referral as per the original GP referral. We suggest that the effectiveness of triage could be further improved with a prompting tool or referral proforma to ensure the right information is included within the GP letter to apply the triage guidance; this would also enable quantitative data description of missing data to inform feedback and ‘in house’ training.

Our study was not a formal clinical trial and not powered to address the ability to ‘not miss’ serious ‘red flag’ MSK pathology (such as malignancy or infection). The 6-month ‘follow-up window’ to identify any patients who re-presented into the health care system reassuringly identified no ‘red flag’ conditions and no patients self-referred back to the community services. We did not interview hospital-based specialist providers about the impact of our model but we did not receive adverse feedback once the new model was operational. Notably, there were no anecdotal reports of patients who had been delayed in their referral to specialist care or reports of de-stabilisation of services.

The study focused on implementation rather than ‘cost effectiveness’. The term ‘cost’ needs to consider the anxiety incurred without a diagnosis, time off from work or school and travel costs to attend hospitals and the distances involved. UK hospital-based specialist children’s services are
centrally funded from NHS England so any current and potential future cost savings are reliant on
the ability of local providers to release funding from central budgets. Undoubtedly there are potential
workforce implications (that require funding and resource) to accommodate a 25% increase in
referrals to community providers.

More work is needed to evaluate implementation for a longer period of time across more centres.
How this can be done given the different set up of primary care services around the UK is
challenging and would need consideration for trial design and to consider ‘control’ for the
intervention.

Comparison with existing literature

GPs are often the first to assess patients and many report low confidence in their ability to perform
MSK assessment in children [21]; likely due to many primary care training schemes not including
paediatrics [22], or MSK medicine [23] despite GP learning needs being known [24]. We did not
explore further the rationale for the referrals from the GP perspective, as we had no direct contact
with the referring GPs and our intervention started after the GP referral process had been initiated.
There may be several factors impacting the GP referral decision-making process and whilst the
literature suggests lack of training and/or confidence as major factors [21-24], clearly this is an area
for future study.

The need to increase exposure to paediatrics in GP training has been recognised in the UK [25].
The training for paediatric physiotherapists [26] and podiatrists [27] does however include
competencies to identify and manage ‘normal variants’ and also to identify serious MSK pathology
and when to refer. Such professionals are therefore highly suitable to work with GPs to implement
our model ‘nearer to home’ for families and with better interface working between hospital specialist
services and primary care.

Implications for research and practice

Our study reflects evidence-based approaches for change [28] and reflects the benefits of MSK
triage for adults in primary care [29]. Essentially key features include:
The project team included primary care, community and specialist providers to ensure the triage guide to be ‘fit for purpose’.

Development from an existing adult MSK triage model tailored to reflect common clinical scenarios and with full recognition that ‘children are not little adults’.

Mixed methods captured ‘real life’ in 2 sites and reflected current variation in care pathways and service delivery.

Stakeholder engagement events encouraged ‘buy in’.

The monthly e-Newsletter with project updates facilitated ongoing engagement (examples are available www.rightpath.solutions).

Paediatric MSK experience is integral to the triage decision-making process; our methodology allowed this key modification to the model to be made during the study.

Triage teams preferred a blended learning’ [30] format with shared peer learning and PMM (www.pmmonline.org) as an adjunct resource.

Key messages for implementation are given (Table 5). The triage guidance is available with Common License (www.RightPath.solutions) and has informed NICE guidance (https://cks.nice.org.uk/developmental-rheumatology-in-children#!topicSummary).

Our model aims to facilitate ‘right care first time’ and reduce variation in care. Our study has shown better clarity of care pathways and improved interface working to correctly identify those who can be managed by community providers. There is likely benefit to the NHS, clinicians, children and families with improved cross-boundary working and better utilisation of ‘resources’. More work can be done to cost effectiveness, safety and implementation on a wider scale. There is need to explore ways to support GPs with the referral process (e.g. with referral proformas and training), expand the role of allied health professionals in the community and explore the impact on waiting times and capacity of hospital specialist services. RightPath may also have transferable value to other areas of child health.

ACKNOWLEDGMENTS
We are grateful to all the participants in the study at both sites; patients and parents, health care professionals, NHS Trust administrative staff and managers. In addition, we thank the research and administrative staff involved in the North East and North Cumbria Clinical Research Network and North West Clinical Research Network. We also acknowledge the support from the Oldham Clinical Commissioning Group who funded the study along with the bursary from Pfizer to support printing of the triage guidance. We thank the following who supported the implementation of the study at both sites: Allan Smith and The British Society for Paediatric and Adolescent Rheumatology (BSPAR) Parent Group, Mrs. Janet Herdman (Translational and Clinical Research Institute, Newcastle University) Mrs. Judith McNaught, Dr Gabriel Okugbeni and Mrs. Beverley Stidolph (South Tyneside and Sunderland NHS Foundation Trust), Dr Neil Snowden (Pennine MSK Partnership) and North East and North Cumbria Clinical Research Network (NENCCRN; study adopted on the NIHR portfolio).

FUNDING

This work was supported by funding from Oldham Clinical Commissioning Group. An unrestricted Educational Bursary from Pfizer supported printing of the triage guide.

DISCLOSURE STATEMENT

The authors have declared no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data underlying this article are available in the article and in its online supplementary material.

REFERENCES

[1]. Tan A, Strauss VY, Protheroe J, Dunn KM. Epidemiology of paediatric presentations with musculoskeletal problems in primary care. *BMC Musculoskelet Disord.* 2018;19(1):40.
[2]. Prathivadi Bhayankaram N, Lacey RJ, Barnett LA, Jordan KP, Dunn KM. Musculoskeletal
consultations from childhood to adulthood: a longitudinal study. *J Public Health (Oxf)*. 2019; Nov
28:1-7.

[3]. Foster HE, Eltringham MS, Kay LJ, et al. Delay in access to appropriate care for children
presenting with musculoskeletal symptoms and ultimately diagnosed with juvenile idiopathic
arthritis. *Arthritis Rheum*. 2007;57(6):921-7.

[4]. Saxena S, Francis N, Sharland M. Primary care of children: the unique role of GPs. *Br J Gen
Pract*; 2012;62(600),340-1.

[5]. Yeo A, James K, Ramachandran M. Normal lower limb variants in children. *BMJ*.
2015;350:h3394.

[6]. Ciafaloni E, Fox DJ, Pandya S, et al. Delayed diagnosis in duchenne muscular dystrophy:
data from the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD
STARnet). *J Pediatr*. 2009;155(3):380-5.

[7]. Craft A. Are health services in England failing our children? *BMJ*. 2007;335(7614),268-69.

[8]. Dang-Tan T, Trotter H, Mery LS et al. Delays in diagnosis and treatment among children and
adolescents with cancer in Canada. *Pediatr Blood Cancer*. 2008: 51:468-474.

[9]. Foster HE, Cabral DA. Is musculoskeletal history and examination so different in paediatrics?
Best Pract Res Clin Rheumatol. 2006;20(2):241-62.

[10]. Kocher MS, Bishop JA, Weed B et al. Delay in diagnosis of slipped capital femoral epiphysis.
Pediatrics. 2004;113(4):e322-e5.

[11]. McErlane F, Foster HE, Carrasco R, et al. Trends in paediatric rheumatology referral times
and disease activity indices over a ten-year period among children and young people with
Juvenile Idiopathic Arthritis: results from the childhood arthritis prospective Study.
Rheumatology (Oxford). 2016;55(7):1225-34.

[12]. Smith EMD, Foster HE, Gray WK et al. Predictors of access to care in juvenile systemic
lupus erythematosus: evidence from the UK JSLE Cohort Study. *Rheumatology (Oxford)*.
2013;53(3):557-61.
[13]. Rotter T, Kinsman L, Machotta A, et al. Clinical pathways for primary care: effects on professional practice, patient outcomes, and costs. *Cochrane Database of Syst Rev*. 2013(8).

[14]. Oldham Council. *Oldham Public Health Annual Report*. 2017. Available from: https://www.oldham.gov.uk/downloads/file/5240/public_health_report_for_oldham [Accessed October 2019].

[15]. Office for National Statistics. *Local Authority Profile*. 2018. Available from: https://www.nomisweb.co.uk/reports/lmp/la/1946157067/report.aspx [Accessed October 2019].

[16]. Smith N, Rapley T, Jandial S, et al. Paediatric musculoskeletal matters (pmm)--collaborative development of an online evidence based interactive learning tool and information resource for education in paediatric musculoskeletal medicine. *Pediatr Rheumatol Online J*. 2016;14(1):1.

[17]. Coulter A. Patient feedback for quality improvement in general practice. *BMJ*. 2016;352:i913.

[18]. Elwyn G, Barr PJ, Grande SW, et al. Developing CollaboRATE: a fast and frugal patient-reported measure of shared decision making in clinical encounters. *Patient Educ Couns*. 2013;93(1):102-7.

[19]. Rapley T. Some pragmatics of qualitative data analysis. In Silverman D. ed. *Qualitative research: issues of theory, method and practice*. London: Sage; 2011;3:273-90.

[20]. NHS England. *Musculoskeletal conditions*. 2019. Available from: https://www.england.nhs.uk/ourwork/clinical-policy/ltc/our-work-on-long-term-conditions/musculoskeletal/ [Accessed October 2019].

[21]. Jandial S, Myers A, Wise E, Foster HE. Doctors likely to encounter children with musculoskeletal complaints have low confidence in their clinical skills. *J Pediatr*. 2009;154(2):267-71.

[22]. Modi N, Simon C. Child health care: adequate training for all UK GPs is long overdue. *Br J Gen Pract*. 2016;66(646):228-9.

[23]. Wise EM, Walker DJ, Coady DA. Musculoskeletal education in general practice: a questionnaire survey. *Clin Rheumatol*. 2014;33(7):989-94.
[24]. Goff I, Boyd DJ, Wise EM, Jandial S, Foster HE. Paediatric musculoskeletal learning needs for general practice trainees: achieving an expert consensus. *Educ Prim Care*. 2014;25(5):249-56.

[25]. Stitis T, del Torso S, Mercier JC, et al. Improving paediatric care in the community. *The Lancet* 2015;385:1505

[26]. Burslem J, McAtasney D, McGarrity K, et al. Working with children - guidance on good practice. *Chartered society of physiotherapy* 2016. Available from: https://apcp.csp.org.uk/system/files/working_with_children_2016_1.pdf [Accessed October 2019].

[27]. Williams CM, Nester C, Morrison SC. International approaches to paediatric podiatry curricula: It’s the same, but different. *J Foot Ankle Res*. 2019;12(1):28.

[28]. Murray E, Treweek S, Pope C, et al. Normalisation process theory: a framework for developing, evaluating and implementing complex interventions. *BMC Med*. 2010;8(1):63.

[29]. Joseph C, Morrissey D, Abdur-Rahman M, Hussenbux A, Barton C. Musculoskeletal triage: a mixed methods study, intergrating systematic review with expert and patient perspectives. *Physiotherapy*. 2014;100:277-289.

[30]. Graham CR. Blended learning systems. In Bonk CJ, Graham CR, Cross J, Moore MG. eds. *The handbook of blended learning: Global perspectives, local designs*. San Francisco, CA: Pfeiffer Publishing; 2006. p. 3-21.
Table 1 Details of children triaged to community paediatric physiotherapy and / or podiatry.

Site 1	Site 2	
N	N=75 consented from a total of 101 patients triaged to the community	N=48 consented from a total of 61 patients triaged to the community
Age	Median: 8 years	Median: 7 years
	Range: <1-15 years	Range: 1-15 years
Gender	Male: 33 (44%)	Male: 22 (46%)
	Female: 42 (56%)	Female: 26 (54%)
Time to first appointment	Median: 2.7 weeks	Median: 3.7 weeks
	<2 weeks: n=23/75 (31%)	<2 weeks: n=11/48 (23%)
	<4 weeks: n=71/75 (95%)	<4 weeks: n=25/48 (52%)
Whom seen by	Podiatry: n=38/75 (51%)	Podiatry: n=31/48 (65%)
	Physiotherapy: n=37/75 (49%)	Physiotherapy: n=17/48 (35%)
Outcome	Discharged after first visit: n= 3/75 (17%)	Discharged after first visit: n=11/48 (23%)
	Discharged with self re-referral option: n=28/75 (37%)	Discharged with option of self-re-referral: n=5/48 (10%)
	On-going treatment: n=26/75 (35%)	On-going treatment: n=31/48 (65%)
	Onward hospital service referral n=3/75 (4%)*	Onward hospital referral: n=1/48 (2%)**
	Other n=5/75 (7%, data not available)	
Documented Intervention(s)	Footwear / exercise advice +/- orthotics n=60 (80%)	Footwear / exercise advice +/- orthotics: n=31 (65%)
	Explanation / reassurance alone n=15 (20%)	Explanation / reassurance alone n=16 (33%)
	Other (walking aid): n=1 (2%)	

* Suspected hip dysplasia n=1, (excluded by orthopaedics), marked hypermobility n=1, and suspected osteoid osteoma n=1 (confirmed by orthopaedics)

** Toe walking n=1, referred to paediatrics with poor coordination (subsequently confirmed to be normal gait).
Table 2 Diagnoses for children triaged to community paediatric physiotherapy and/or podiatry

Diagnosis	Site 1 (N=75)	Site 2 (N=48)
Normal Variants		
Flat feet	27	17
In toeing	6	11
Toe walking	3	6
Curly toes	7	1
Hypermobility	8	8
Out toeing	2	0
Knock knees	4	0
Anterior knee pain	13	3
Heel pain (Sever’s Disease)	3	9
Other diagnoses	8*	5**

*Leg length discrepancy n=1, suspected dysplastic hip n=1 (refuted by orthopaedics), suspected osteoma n=1 (confirmed by orthopaedics), positional talipes n=2, soft tissue strain n=1, abnormal toe nails n=1, knee pain related to trauma n=1

** Blistering (from footwear) n=1, Kohler’s disease n=3 (osteochondroses), soft tissue strain n=1
Table 3 Feedback from families; ‘Family and Friends’ and ‘Collaborate’ tools

Family and Friends Test: Recommending the Service	N
Yes	119 (99%)
No	0
Maybe	1 (1%)

Total n=120 (2 respondents skipped this question)

Collaborate: Parent Satisfaction Scores (1 ‘no effort ’ - 9 ‘every effort made’)	Mean Rating	Range
‘Listened to things that matter most to you about your/your child’s health’	8.9	8-9
‘Included what matters most to you in choosing what to do next’	8.9	6-9
‘Helped understand your/your child’s health issues’	8.8	7-9

Total n=121 (1 respondent skipped this question)
Table 4 Feedback from the triage teams about the triage weekly log data from both sites

Weekly Log Response Scale to ease of triage decision	Triage performed by Adult MSK Triage Staff Site 1 - Months 1-3	Triage performed by Paediatric Experienced MSK Triage Staff Site 1 - Months 3-6	Triage performed by Paediatric Experienced MSK Triage Staff Site 2 - Months 3-9
'Very easy'	0 (0%)	51 (46%)	2 (15%)
'Easy'	7 (18%)	34 (31%)	10 (77%)
'Neutral'	26 (68%)	18 (16%)	1 (8%)
'Difficult'	4 (10%)	6 (5%)	0
'Very difficult'	1 (3%)	2 (2%)	0
N (number of log entries)	38	111	13

MSK: musculoskeletal
Table 5 Key points for successful implementation.

- Local agreement that self-limiting and ‘normal variant’ MSK conditions should be seen in the community by suitably trained physiotherapists and podiatrists.
- Agreement and support of service funders to develop and implement the model and to ensure that community-based staff have the capacity and capability to facilitate triage and prompt, accurate assessment.
- The project team should include representatives from all local stakeholders and a wider stakeholder engagement event is advised to engage, gain support (‘buy in’) and air concerns.
- Triage staff should have paediatric experience and be familiar with normal MSK development and normal variants with rapid access to experienced clinical support.
- Access to informal adhoc specialist support and advice for triage staff is key especially within the early stages of implementation.
- Triage teams are needed with more than one person on a working rota to be functional ‘day to day’.
- Training of triage staff should include ‘case-based’ discussions and anonymised ‘real life’ scenarios to practice use of the triage guide.
- Training in referral software and local pathways is needed so that all triage staff manage referrals in a consistent manner.
- Interprofessional learning within multidisciplinary teams and on-going training and support is vital to maintain the quality of triage.
- Audit systems are required to capture activity and inform service redesign, including patient/ parent outcomes in the service with regular feedback to clinical staff.

MSK: musculoskeletal

Figure 1. The RightPath Model.

GP: general practitioner.
Figure 1 The RightPath Model.
GP: general practitioner.

Red flag(s) route
Green flag(s) route

58x45mm (300 x 300 DPI)