ON THE DEFORMED BOTT-CHERN COHOMOLOGY

WEI XIA

Abstract. Given a compact complex manifold X and an integrable Beltrami differential $\phi \in A^{0,1}(X, T^1_X)$, we introduce a double complex structure on $A^{p,q}(X)$ naturally determined by ϕ and study its Bott-Chern cohomology. In particular, we establish a deformation theory for Bott-Chern cohomology and use it to compute the deformed Bott-Chern cohomology for the Iwasawa manifold and the holomorphically parallelizable Nakamura manifold. The $\partial\bar{\partial}$-lemma is studied and we show a compact complex manifold satisfying $\partial\bar{\partial}$-lemma is formal.

Key words: deformation of complex structures, Bott-Chern cohomology, $\partial\bar{\partial}$-lemma.

MSC Classification (2010): 32G05, 32C35, 32G99

1. Introduction

The Bott-Chern cohomology are important invariants of complex manifolds [BC65]. It has been studied by many authors in recent years [Ang13, AT15b, AT15a, AT17, ADT16, AK17a]. For example, Schweitzer studied the Hodge theory for Bott-Chern cohomology and gave a hypercohomology interpretation to it [Sch07]. Angella-Tomassini proved Fröhlicher type inequalities for Bott-Chern cohomology and gave a beautiful characterization of the $\partial\bar{\partial}$-lemma [AT13]. Recently, S. Yang and X. Yang proved a blow-up formula for the Bott-Chern cohomology and they showed that satisfying the $\partial\bar{\partial}$-Lemma is a bimeromorphic invariant for threefolds [YY20], see [RYY19, ASTT20, Ste18a, Ste18b, Men19] for related works.

Let X be a complex manifold and X_t a small deformation (of X) whose complex structure is represented by a Beltrami differential $\phi \in A^{0,1}(X, T^1_X)$. In this paper, we will study the Bott-Chern cohomology of the double complex $(A^{p,q}(X), \partial, \bar{\partial})$:

\begin{equation}
H^{p,q}_{BC,\phi}(X) := \frac{\ker d_\phi \cap A^{p,q}(X)}{\text{Im } \partial\bar{\partial}_\phi \cap A^{p,q}(X)},
\end{equation}

which we called the deformed Bott-Chern cohomology, where $d_\phi = \partial + \bar{\partial}_\phi$ and $\bar{\partial}_\phi = \bar{\partial} - L^{1,0}_\phi$. In Section 3, we will show that there are similar hypercohomology interpretations to the deformed Bott-Chern cohomology as to the usual Bott-Chern cohomology.

Let $\pi : (X, X) \to (B, 0)$ be a deformation of a compact complex manifold X such that for each $t \in B$ the complex structure on X_t is represented by Beltrami differential
\(\phi(t) \). Given a Bott-Chern class \([y] \in H^{p,q}_{BC}(X)\), as motivated by our previous work on deformation of Dolbeault cohomology classes [Xia19a], we try to construct a family of \((p, q)\)-forms \(\sigma(t)\) (on an analytic subset \(T\) of \(B\)) such that

1. \(\sigma(t)\) is holomorphic in \(t\);
2. \(\partial\sigma(t) = \overline{\partial}\phi(t)\sigma(t) = 0, \ \forall t \in T;\)
3. \([\sigma(0)] = [y] \in H^{p,q}_{BC}(X)\).

We will develop a deformation theory for Bott-Chern cohomology in this respect, see Section 4. Among other things, we show the following

Theorem 1.1 (=Theorem 4.11). Let \(\pi: (\mathcal{X}, X) \to (B, 0)\) be a deformation of a compact complex manifold \(X\) such that for each \(t \in B\) the complex structure on \(X_t\) is represented by Beltrami differential \(\phi(t)\). Then the set \(\{t \in B \mid \dim H^{p,q}_{BC\phi(t)}(X) \geq k\}\)

is an analytic subset of \(B\) for any nonnegative integer \(k\).

In [AT15a, Thm. 1 and 2], Angella-Tomassini generalized their previous result [AT13] to arbitrary double complex [AT15b]. This result, when applied to our situation, will give rise to the following

Theorem 1.2 (=Theorem 5.3). Let \(X\) be a compact complex manifold and \(X_t\) a small deformation (of \(X\)) whose complex structure is represented by a Beltrami differential \(\phi \in A^{0,1}(X, T^1_X)\). Then for every \((p, q) \in \mathbb{N} \times \mathbb{N}\), we have

\[
\dim H^{p,q}_{BC\phi}(X) + \dim H^{p,q}_{A\phi}(X) \geq \dim H^{p,q}_{\partial\phi}(X_t) + \dim H^{p,q}_{\overline{\partial}\phi}(X).
\]

In particular, for every \(k \in \mathbb{N}\), we have

\[
\sum_{p+q=k} \dim H^{p,q}_{BC\phi}(X) + \sum_{p+q=k} \dim H^{p,q}_{A\phi}(X) \geq 2 \dim H^{k}_{dR}(X),
\]

and equality holds if and only if \(X\) satisfies the \(\partial\overline{\partial}\)-lemma.

Note that when \(X_t\) is a trivial deformation, i.e. \(\phi = 0\), Theorem 1.2 is reduced to the result in [AT13]. Combine Theorem 1.2 with Theorem 1.1, we get

Corollary 1.3. Let \(\pi: (\mathcal{X}, X) \to (B, 0)\) be a small deformation of the compact complex manifold \(X\) such that for each \(t \in B\) the complex structure on \(X_t\) is represented by Beltrami differential \(\phi(t)\). Then the set

\[T := \{t \in B \mid X \text{ satisfies the } \partial\overline{\partial}_{\phi(t)}\text{-lemma}\}\]

is an analytic open subset (i.e. complement of analytic subset) of \(B\). In particular, if \(B \subset \mathbb{C}\) is a small open disc with \(0 \in B\) and \(T\) is not empty, then \(T = B\) or \(T = B \setminus \{0\}\).

It is known that satisfying the \(\partial\overline{\partial}\)-lemma is a deformation open property and not a deformation closed property in the sense of Popovici [Pop14], see [Wu06, AT13, AK17b] and the references therein. But it is still not clear whether satisfying the \(\partial\overline{\partial}\)-lemma is an analytically open property, i.e. does the corresponding statement in Corollary 1.3 holds for the \(\partial\overline{\partial}\)-lemma? On the other hand, we see from Corollary 1.3 that if \(X\) satisfies the \(\partial\overline{\partial}\)-lemma then \(X\) also satisfies the \(\partial\overline{\partial}_{\phi(t)}\)-lemma for small \(t\). But conversely, if \(X\) satisfies the \(\partial\overline{\partial}_{\phi(t)}\)-lemma for all small \(t \neq 0\) it is possible
that X does not satisfy the $\partial\bar{\partial}$-lemma\(^1\). Hence the following Theorem generalize the corresponding well-known result of Deligne-Griffiths-Morgan-Sullivan [DGMS75]:

Theorem 1.4. Let X be a compact complex manifold and X_t a small deformation (of X) whose complex structure is represented by a Beltrami differential $\phi \in A^{0,1}(X, T_X^{1,0})$. If X satisfies the $\partial\bar{\partial}$-lemma, then X_t is formal.

The dimensions of the deformed Bott-Chern cohomology is computed for the Iwasawa manifold and the holomorphically parallelizable Nakamura manifold, see Section 6. Comparing this with the computations of Angella-Kasuya [AK17b], we see that there exists compact complex manifold X and its small deformation X_t such that X_t satisfy the $\partial\bar{\partial}$-lemma but X does not satisfy the $\partial\bar{\partial}(\phi(t))$-lemma.

There are many questions regarding the $\partial\bar{\partial}$-lemma may be asked:

Question 1.5. Let $\pi : (X, X) \to (B, 0)$ be a small deformation of the compact complex manifold X such that for each $t \in B$ the complex structure on X_t is represented by Beltrami differential $\phi(t)$.

1. Is it true that
 \[
 \dim H_{BC\phi(t)}^{p,q}(X) \geq \dim H_{BC}^{p,q}(X_t)
 \]
 for any $t \in B$ and $(p, q) \in \mathbb{N} \times \mathbb{N}$? If this holds, then X satisfies the $\partial\bar{\partial}(\phi(t))$-lemma will imply X_t satisfy the $\partial\bar{\partial}$-lemma. Note that (1.4) is true for the examples considered in Section 6;

2. If $B \subset \mathbb{C}$ is a small open disc with $0 \in B$, can we find an example such that $T = B \setminus \{0\}$ (in the notation of Corollary 1.3)? According to Corollary 1.3, there should be many such examples. In this case, the Fröhlicher spectral sequence on the central fiber X must degenerates at E_1, see Remark 5.4;

3. If X_t is Kähler, is it true that X must satisfy the $\partial\bar{\partial}(\phi(t))$-lemma?

2. **The deformed double complex $(A^{\bullet\bullet}(X), \partial, \bar{\partial})$ and its Bott-Chern cohomology**

Let X be a complex manifold and X_t a small deformation (of X) whose complex structure is represented by a Beltrami differential $\phi \in A^{0,1}(X, T_X^{1,0})$. Recall the following useful facts [LRY15, Xia19b]:

\[
e^{-i\phi} de^{i\phi} = d - \mathcal{L}^{1,0}_\phi - \mathcal{L}^{0,1}_\phi - i\frac{1}{2} [\phi, \phi] \text{ and } \mathcal{L}^{0,1}_\phi = -i\bar{\partial}_\phi .
\]

Since ϕ satisfy the Maurer-Cartan equation $\bar{\partial}_\phi - \frac{1}{2} [\phi, \phi] = 0$, we have

\[
d_\phi := e^{-i\phi} de^{i\phi} = \partial + \bar{\partial}_\phi, \text{ with } \bar{\partial}_\phi = \bar{\partial} - \mathcal{L}^{1,0}_\phi ,
\]
and

\[
d_\phi := e^{-i\phi} de^{i\phi} = \partial + \bar{\partial}, \text{ with } \bar{\partial} = \partial - \mathcal{L}^{0,1}_\phi .
\]

\(^1\)Though it is still not known whether such examples exist, we think they should be large in number.
Since $[\bar{\partial}, \tilde{\partial}_\phi] = [\partial_\phi, \bar{\partial}] = 0$, the deformed Bott-Chern cohomology can be defined as follows:

\[
(2.3) \quad H_{BC\phi}^{p,q}(X) := \frac{\ker d_\phi \cap A^{p,q}(X)}{\mathrm{Im} \partial_\phi \cap A^{p,q}(X)}, \quad H_{BC\bar{\phi}}^{p,q}(X) := \frac{\ker d_{\bar{\phi}} \cap A^{p,q}(X)}{\mathrm{Im} \partial_{\bar{\phi}} \cap A^{p,q}(X)}, \quad \forall p, q \geq 0,
\]

and $h_{BC\phi}^{p,q} := \dim H_{BC\phi}^{p,q}(X), h_{BC\bar{\phi}}^{p,q} := \dim H_{BC\bar{\phi}}^{p,q}(X)$. The conjugation gives a natural isomorphism between $H_{BC\phi}^{p,q}(X)$ and $H_{BC\bar{\phi}}^{p,q}(X)$, we thus have $h_{BC\phi}^{p,q} = h_{BC\bar{\phi}}^{p,q}$.

3. Hypercohomology interpretations to the deformed Bott-Chern cohomology

It is clear that the Poincaré lemma holds for d_ϕ and $\tilde{\partial}_\phi$ (for the latter, see [Xia19a, Thm.3.4]). The sheaf of germs of $\bar{\partial}_\phi$-closed p-forms will be denoted by Ω_ϕ^p. The following Lemma is essentially proved in [Sch07]:

Lemma 3.1. Let $U \subset \mathbb{C}^n$ be an open ball.

1. Let $\theta \in A^k(U)$ with $k \geq 1$ such that $\theta^{p,q} = 0$ except $p_1 \leq p \leq p_2 (p_1 < p_2)$.
 If θ is $d_{\bar{\phi}}$-closed, then $\theta = \alpha^p \alpha$ for some $\alpha \in A^{k-1}(U)$ with $\alpha^{p,q} = 0$ except $p_1 \leq p \leq p_2 - 1$.

2. Assume $\theta \in A^{p,q}(U)$ is $d_{\bar{\phi}}$-closed.
 i) If $p \geq 1$ and $q \geq 1$, then $\theta \in \bar{\partial}_{\phi} A^{p-1,q-1}(U)$.
 ii) If $p \geq 1$ and $q = 0$, then $\theta \in \bar{\partial}_{\phi} A^{p-1,0}(U)$.
 iii) If $p = 0$ and $q \geq 1$, then $\theta \in \bar{\partial}_{\phi} A^{0,q-1}(U)$.

3. Assume $\theta \in A^{p,q}(U)$ is $\bar{\partial}_{\phi}$-closed.
 i) If $p \geq 1$ and $q \geq 1$, then $\theta \in \bar{\partial}_{\phi} A^{p-1,q-1}(U) + \partial A^{p-1,q}(U)$.
 ii) If $p \geq 1$ and $q = 0$, then $\theta \in \Omega_{\phi}^{p,q}(U) + \bar{\partial} A^{p-1,0}(U)$.
 iii) If $p = 0$ and $q \geq 1$, then $\theta \in \bar{\partial}_{\phi} A^{0,q-1}(U) + \bar{\partial} A^{0,q}(U)$.

4. Let $\theta \in A^k(U)$ with $k \geq 1$ and p_1, q_1, p_2, q_2 be two positive integers with $p_1 + q_1 = p_2 + q_2 = k$. If $(d_\phi \theta)^{p,q} = 0$ for $p + q = k + 1$, $p_1 + 1 \leq p \leq p_2$ and $q_1 \geq q \geq q_2 + 1$, then there exists $\gamma^{p_1,q_1}, \alpha^{p_1,q_1-1}, \alpha^{p_1+1,q_1-2}, \ldots, \alpha^{p_2-1,q_2}, \gamma^{p_2,q_2}$ such that γ^{p_1,q_1} is ∂-closed, γ^{p_2,q_2} is $\bar{\partial}_{\phi}$-closed and

\[
\begin{align*}
\theta^{p_1,q_1} &= \gamma^{p_1,q_1} + \bar{\partial}_{\phi} \alpha^{p_1,q_1-1}, \\
\theta^{p_1+1,q_1-1} &= \partial \alpha^{p_1,q_1-1} + \bar{\partial}_{\phi} \alpha^{p_1+1,q_1-2}, \\
&\vdots \\
\theta^{p_2-1,q_2+1} &= \partial \alpha^{p_2-2,q_2+1} + \bar{\partial}_{\phi} \alpha^{p_2-1,q_2}, \\
\theta^{p_2,q_2} &= \partial \alpha^{p_2-1,q_2} + \gamma^{p_2,q_2},
\end{align*}
\]

in particular, we have

\[
\theta^{p_1,q_1} + \theta^{p_1+1,q_1-1} + \ldots + \theta^{p_2,q_2} = \gamma^{p_1,q_1} + \partial \alpha + \gamma^{p_2,q_2},
\]

where $\alpha = \alpha^{p_1,q_1-1} + \alpha^{p_1+1,q_1-2} + \ldots + \alpha^{p_2-1,q_2}$.

Proof. 1. First, by the d_ϕ-Poincaré lemma, we can write $\theta = d_\phi \beta$ for some $\beta \in A^{k-1}(U)$. If $p_1 = 0$ and $p_2 = k$ there is nothing to prove, so we assume $p_1 > 0$ or $p_2 < k$. We first consider the case $p_1 > 0$. We deduce from $\theta = d_\phi \beta$ that $\partial_\phi \beta^{0,k-1} = \theta^{0,k-1} = 0$, and by applying the ∂_ϕ-Poincaré lemma, one can write $\beta^{0,k-1} = \partial_\phi \gamma^{0,k-2}$. Set $\tilde{\beta} := \beta - d_\phi \gamma^{0,k-2}$, we have $d_\phi \tilde{\beta} = \theta$ but $\tilde{\beta}^{0,k-1} = 0$. We can therefore assume that β does not have components of type $(0,k-1)$. Now if $p_1 > 1$, then since $\beta^{0,k-1} = 0$ we have $0 = \theta^{1,k-1} = \partial_\phi \beta^{1,k-2} + \partial \beta^{0,k-1} = \partial_\phi \beta^{1,k-2}$. By the ∂_ϕ-Poincaré lemma, one can write $\beta^{1,k-2} = \partial_\phi \gamma^{0,k-3}$. Set $\tilde{\beta} := \beta - d_\phi \gamma^{0,k-3}$, we have $d_\phi \tilde{\beta} = \theta$ but $\tilde{\beta}^{1,k-2} = 0$. We can therefore assume that β does not have components of type $(1,k-2)$. By repeating this reasoning, we can assume that β does not have components of type (p,q) for $p < p_1$. The case $p_2 < k$ can be proved in the same way by applying the ∂_ϕ-Poincaré lemma.

2.iii) is obvious. We first assume $p \geq 1$. We apply 1. to the form θ for $p_1 = p - 1$, $p_2 = p$: there exists $\alpha \in A^{p-1,q}(U)$ s.t. $\theta = d_\phi \alpha$ and so $\theta = \partial_\phi \alpha$ with $\partial_\phi \alpha = 0$. This is ii). If furthermore $q \geq 1$, by the ∂_ϕ-Poincaré lemma, we can write $\alpha = \tilde{\alpha}$ $\bar{\beta}$ and so $\theta = \partial \tilde{\alpha}$. This is i). For $\tilde{\alpha}$), we apply 1. to θ for $p_1 = 0, p_2 = 1$: there exists $\alpha \in A^{0,q}(U)$ s.t. $\theta = d_\phi \alpha$ and so $\theta = \partial_\phi \alpha$ with $\partial_\phi \alpha = 0$.

3. Set $\theta^{p+1,q} := \partial_\phi \alpha^{p,q}$ then $\theta^{p+1,q}$ is d_ϕ-closed. By 2.i) and ii), there exists $\alpha \in A^{p,q}(U)$ s.t. $\theta^{p+1,q} = \partial_\phi \alpha$ with $\partial_\phi \alpha = 0$. Note that $\partial (\theta - \alpha) = 0$ and $\theta = (\theta - \alpha) + \alpha$.

Then 3. follows from the ∂_ϕ-Poincaré lemma and the ∂_ϕ-Poincaré lemma.

4. First from the assumption we see that $(d_\phi \theta)^{p_1+1,q_1} = \partial \theta^{p_1,q_1} + \partial_\phi \theta^{p_1+1,q_1-1} = 0$. In particular, θ^{p_1,q_1} is $\partial \partial_\phi$-closed. By 3.i) and ii) there exists γ^{p_1,q_1} s.t. $\gamma^{p_1,q_1} = \partial_\phi \theta^{p_1,q_1}$.

Then from the assumption we see that $(d_\phi \theta)^{p_1+2,q_1-1} = \partial \theta^{p_1,q_1-1} + \partial_\phi \theta^{p_1+2,q_1-2} = 0$, and note that $\partial_\phi (\theta^{p_1+1,q_1-1} + \partial_\phi \theta^{p_1+1,q_1-2}) = \partial (\theta^{p_1+1,q_1-1} + \partial_\phi \alpha^{p_1+1,q_1-2}) = -\partial^2 \alpha^{p_1+1,q_1-1} = 0$, we have $\theta^{p_1+2,q_1-2} = \partial \alpha^{p_1+1,q_1-2} + \partial_\phi \alpha^{p_1+2,q_1-3}$.

Continuing in this way, we get the desired results. In the last two steps, from $(d_\phi \theta)^{p_2-1,q_2+2} = 0$ we get $\theta^{p_2-1,q_2+1} = \partial_\phi \alpha^{p_2-2,q_2+1} + \partial \alpha^{p_2-1,q_2}$ and from $(d_\phi \theta)^{p_2,q_2+1} = 0$ we get $\theta^{p_2,q_2+1} = \partial_\phi \alpha^{p_2+1,q_2} + \gamma^{p_2,q_2}$.

Let X be a complex manifold. For fixed $p \geq 1$ and $q \geq 1$, we define a sheaf complex \mathcal{L}_ϕ^\bullet (which depend on (p,q)) as follows:

$$
\begin{align*}
\mathcal{L}_\phi^k &= \bigoplus_{r+s=k, r < p, s < q} A^{r,s}, & \text{for } k \leq p + q - 2, \\
\mathcal{L}_\phi^{k-1} &= \bigoplus_{r+s=k, r \geq p, s \geq q} A^{r,s}, & \text{for } k \geq p + q.
\end{align*}
$$

\footnote{We may further assume that $k \geq 2$ because the case $k = 1$ is trivial.}

\footnote{∂-p_1,q_1 is ∂-exact if $p_1 \geq 1$.}
The differential is given by

\[
0 \longrightarrow L_\phi^0 \xrightarrow{\Pi_\phi \cdot d_\phi} L_\phi^1 \xrightarrow{\Pi_\phi \cdot 2d_\phi} L_\phi^2 \longrightarrow \cdots
\]

\[
0 \longrightarrow L_\phi^0 \xrightarrow{\Pi_\phi \cdot p+q-2d_\phi} L_\phi^{p+q-2} \xrightarrow{\partial \bar{\phi}_\phi} L_\phi^{p+q-1} \xrightarrow{d_\phi} L_\phi^{p+q} \xrightarrow{d_\phi} L_\phi^{p+q} \longrightarrow \cdots
\]

where \(\Pi_{L^k} : \bigoplus_{r+s=k} A^r s \longrightarrow L^k_\phi\) is the projection. In particular, we find that

\[
L_\phi^{p+q-2} = A^{p-1} q-1 \xrightarrow{\partial \bar{\phi}_\phi} L_\phi^{p+q-1} = A^{p} q \xrightarrow{d_\phi} L_\phi^{p+q} = A^{p+1} q,
\]

and so \(\mathbb{H}^{p+q-1}(X, L_\phi^\bullet) \cong H^{p+q-1}(L_\phi^\bullet(X)) = H^p_{BC\phi}(X)\). The sheaf complex \(L_\phi^\bullet\) has the following subcomplexes

\[
(\mathcal{H}_\phi^\bullet, \partial) : \mathcal{O}_\phi \xrightarrow{\partial} \Omega^1_\phi \xrightarrow{\partial} \Omega^2_\phi \xrightarrow{\partial} \cdots \xrightarrow{\partial} \Omega^p_\phi \longrightarrow 0,
\]

\[
(\mathcal{H}_\phi^n, \bar{\partial}_\phi) : \bar{\mathcal{O}} \xrightarrow{\bar{\partial}_\phi} \bar{\Omega}^1 \xrightarrow{\bar{\partial}_\phi} \bar{\Omega}^2 \xrightarrow{\bar{\partial}_\phi} \cdots \xrightarrow{\bar{\partial}_\phi} \bar{\Omega}^q-1 \longrightarrow 0,
\]

and

\[
\mathcal{H}_\phi^k := (\mathcal{H}_\phi^\bullet, \partial) + (\mathcal{H}_\phi^n, \bar{\partial}_\phi)^4.
\]

Note that by Lemma 3.1, the complex \((\mathcal{H}_\phi^\bullet, \partial)\) is exact for \(0 < k < p - 1\) where \(\mathcal{H}_\phi^k = \Omega^k_\phi\).

Proposition 3.2. The inclusion \(\mathcal{H}_\phi^\bullet \hookrightarrow L_\phi^\bullet\) induces an isomorphism \(\mathcal{H}^k(\mathcal{H}_\phi^\bullet) \cong \mathcal{H}^k(L_\phi^\bullet), \forall k \geq 0\), and we have\(^5\)

\[
\mathcal{H}^k(\mathcal{H}_\phi^\bullet) \cong \mathcal{H}^k(L_\phi^\bullet) = \begin{cases} \mathbb{C}, \text{ for } k = 0, p > 1, q > 1, \\ \mathcal{O}_\phi, \text{ for } k = 0, p = 1, q > 1, \\ \mathcal{O}, \text{ for } k = 0, p > 1, q = 1, \\ \mathcal{O}_\phi \oplus \mathcal{O}, \text{ for } k = 0, p = 1, q = 1, \\ \Omega^{p-1}/\partial \Omega^{p-2}, \text{ for } 0 < k = p - 1 \text{ and } p \neq q, \\ \Omega^{p-1}/\bar{\partial}_\phi \bar{\Omega}^{p-2}, \text{ for } 0 < k = q - 1 \text{ and } p \neq q, \\ \Omega^{p-1}/\partial \Omega^{p-2} \oplus \bar{\Omega}^{p-1}/\bar{\partial}_\phi \bar{\Omega}^{p-2}, \text{ for } 0 < k = p - 1 = q - 1, \\ 0, \text{ otherwise.} \end{cases}
\]

Proof. First, we show that \(\mathcal{H}^k(\mathcal{H}_\phi^\bullet) = 0\) for \(k \geq \max\{p, q\}\). In fact, for \(k \geq p + q\), this follows from Lemma 3.1 1.; for \(k = p + q - 1\), this follows from Lemma 3.1 2.; for \(k = p + q - 2\), this follows from Lemma 3.1 3.; for \(k < p + q - 2\), this follows\(^6\) from Lemma 3.1 4. .

\(^4\)The sum is direct except \(k = 0\) and \(\mathcal{O}_\phi + \bar{\mathcal{O}} \longrightarrow \Omega^1_\phi \oplus \bar{\Omega}^1 : f + g \rightarrow (\partial f, \bar{\partial} g)\).

\(^5\)See also [Koo11, pp. 31].

\(^6\)We apply Lemma 3.1 4. for \(p_1 = k + q + 1\), \(q_1 = q - 1\), \(p_2 = p - 1\), \(q_2 = k + p + 1\). Note that we have \(\partial^{k-q-1} = \partial^{k-q-1} + \bar{\partial}_\phi \alpha^{k-q-1, q-2}\) and \(d_{\mathcal{R}^{k-1} \gamma^{k-q-1}} = \bar{\partial}_\phi \gamma^{k-q-1}\), where \(d_{\mathcal{R}^{k-1}} = \Pi_{\mathcal{R}^{k-1}} d_\phi\). Similarly, \(\partial^{p-1, k-p+1} = \partial^{p-1, k-p+1} + \bar{\partial}_\phi \gamma^{p-1, k-p}\) and \(d_{\mathcal{R}^{k-1} \gamma^{p-1, k-p}} = \bar{\partial}_\phi \gamma^{p-1, k-p}\).
Now we discuss the cases when \(k < p \) or \(k < q \).

For \(k = p - 1 \geq q \), if \(\theta = \theta^{p-q,1} + \cdots \theta^{p-1,0} \in L^{p-1}(U) \) is \(d_{\partial \phi} \)-closed where \(U \subset X \) is an open ball. By Lemma 3.1 4., we can write
\[
\theta^{p-q,1} = \gamma^{p,q,1} + \partial_{\theta} \alpha^{p-q,2}, \quad \ldots, \theta^{p-1,0} = \partial \alpha^{p-2,0} + \gamma^{p-1,0},
\]
where \(\gamma^{p,q,1} \) is \(\partial \)-closed and \(\gamma^{p-1,0} \) is \(\partial_{\theta} \)-closed. Since \(p-q \geq 1 \), we have \(\gamma^{p,q,1} = \partial \gamma^{p,q,1} = d_{\partial \phi} \gamma^{p,q,1} \) and so
\[
\theta = d_{\partial \phi} (\gamma^{p-1,q-1} + \alpha) + \gamma^{p-1,0}, \text{ with } \alpha = \alpha^{p,q-2} + \cdots + \alpha^{p-2,0}.
\]
On the other hand, if \(\theta \) is \(d_{\partial \phi} \)-exact, then there exists \(u = u^{p-1,q-1} + \cdots + u^{p-2,0} \in L^{p-2}(U) \) s.t.
\[
d_{\partial \phi} u = (d_{\partial \phi} u)^{p,q,q-1} + \cdots + (d_{\partial \phi} u)^{p-1,0} = \theta = \theta^{p,q,q-1} + \cdots + \theta^{p-1,0}.
\]
Therefore \(\partial d^{p-2,0} = \theta^{p-1,0} = \partial \alpha^{p-2,0} + \gamma^{p-1,0} \Rightarrow \gamma^{p-1,0} = \partial(u^{p-2,0} - \alpha^{p-2,0}) \) and \(u^{p-2,0} - \alpha^{p-2,0} \) is \(\partial \partial_{\theta} \)-closed. By Lemma 3.1 3.ii), we see that \(\gamma^{p-1,0} \in \partial \Omega^{p-2}(U) \).
We thus have
\[
\mathcal{H}^{p-1}(\mathcal{L}^{\bullet}_{\phi}) = \frac{\text{Im } d_{\partial \phi} - \Omega^{p-1}}{\text{Im } d_{\partial \phi} + \partial \Omega^{p-2}} = \frac{\Omega^{p-1}}{\partial \Omega^{p-2}} = \mathcal{H}^{p-1}(\mathcal{L}_{\phi}^{\bullet}).
\]
For \(k = p - 1 < q - 1 \), if \(\theta = \theta^{p-1,p-1} + \cdots \theta^{p-1,0} \in L^{p-1}(U) \) is \(d_{\partial \phi} \)-closed, by Lemma 3.1 4., we can write
\[
\theta^{p-1,p-1} = \gamma^{0,1-p} + \partial_{\phi} \alpha^{0,2-p}, \quad \ldots, \theta^{p-1,0} = \partial \alpha^{p-2,0} + \gamma^{p-1,0},
\]
where \(\gamma^{0,1-p} \) is \(\partial \)-closed and \(\gamma^{p-1,0} \) is \(\partial_{\theta} \)-closed. Note that since \(k = p - 1 < q - 1 \), we have \(d_{\partial \phi} \theta = 0 \Rightarrow \partial_{\theta} \theta^{p-1,p} = (d_{\partial \phi} \theta)^{p-1,0} = 0 \Rightarrow \gamma^{0,1-p} \in \partial_{\phi} \Omega^{p-2} \) by Lemma 3.1 2.iii). Hence \(\gamma^{0,1-p} \in \text{Im } d_{\partial \phi}^{p-2} \). On the other hand, if \(\theta \) is \(d_{\partial \phi} \)-exact, then one can show as above that \(\gamma^{p-1,0} \in \partial \Omega^{p-2}(U) \). We thus have
\[
\mathcal{H}^{p-1}(\mathcal{L}^{\bullet}_{\phi}) = \frac{\text{Im } d_{\partial \phi} - \Omega^{p-1}}{\text{Im } d_{\partial \phi} + \partial \Omega^{p-2}} = \frac{\Omega^{p-1}}{\partial \Omega^{p-2} + \partial_{\phi} \Omega^{p-2}} = \mathcal{H}^{p-1}(\mathcal{L}_{\phi}^{\bullet}).
\]
For \(k = p - 1 = q - 1 \), we have
\[
\mathcal{H}^{p-1}(\mathcal{L}^{\bullet}_{\phi}) = \frac{\text{Im } d_{\partial \phi} - \Omega^{p-1} + \Omega^{p-1}}{\text{Im } d_{\partial \phi} + \partial \Omega^{p-2} + \partial_{\phi} \Omega^{p-2}} = \frac{\Omega^{p-1} + \Omega^{p-1}}{\partial \Omega^{p-2} + \partial_{\phi} \Omega^{p-2}} = \mathcal{H}^{p-1}(\mathcal{L}^{\bullet}_{\phi}).
\]
Consider the complex R_ϕ^\bullet which is a modification of \mathcal{S}_ϕ^\bullet given by

$$
R_\phi^\bullet : \mathbb{C} \longrightarrow \mathcal{O}_\phi \oplus \tilde{\mathcal{O}} \xrightarrow{\partial \oplus \partial} \Omega^1_\phi \oplus \Omega^1_\phi \xrightarrow{\partial \oplus \partial} \Omega^2_\phi \oplus \Omega^2_\phi \longrightarrow \cdots
$$

$$
\longrightarrow \Omega^{q-1}_\phi \oplus \Omega^{q-1}_\phi \xrightarrow{\partial \oplus \partial} \Omega^q_\phi \xrightarrow{\partial} \cdots \xrightarrow{\partial} \Omega^{p-1}_\phi \longrightarrow 0,
$$

where the first morphism is defined by

$$
\mathbb{C} \longrightarrow \mathcal{O}_\phi \oplus \tilde{\mathcal{O}} : a \mapsto (a, -a).
$$

Proposition 3.3. The natural map from R_ϕ^\bullet to $\mathcal{S}_\phi^\bullet[1]$, where $R_\phi^0 = \mathcal{O}_\phi \oplus \tilde{\mathcal{O}} \longrightarrow \mathcal{S}_\phi^1[1] = \mathcal{O}_\phi + \tilde{\mathcal{O}} : (a, b) \mapsto a - b$,

induces an isomorphism $H^k(\mathcal{S}_\phi^\bullet[1]) \cong H^k(R_\phi^\bullet), \forall k \geq 0$.

Proof. Note that $H^1(R_\phi^\bullet) = \mathbb{C} \oplus \mathbb{C}/\mathbb{C}(1, -1) \longrightarrow \mathbb{C} = H^1(\mathcal{S}_\phi^\bullet[1]) : (a, b) \mapsto a - b$ is an isomorphism. □

It follows that

$$
H_{BC_\phi}^{p,q}(X) \cong \mathbb{H}_p^q(M, \mathcal{S}_\phi^\bullet[1]) \cong \mathbb{H}_p^q(M, \mathcal{S}_\phi^\bullet[1]) \cong \mathbb{H}^{p,q}(M, \mathcal{S}_\phi^\bullet).
$$

Note that (3.2) and Proposition 3.3 is just a slight generalization of the result obtained by Schweitzer. In fact, Proposition 3.3 reduce to [Sch07, Prop. 4.3] when $\phi = 0$.

Similarly, for fixed $p \geq 1$ and $q \geq 1$, we define a sheaf complex L_ϕ^\bullet as follows:

$$
\left\{ \begin{array}{ll}
L_\phi^k = \bigoplus_{r+s=k, r<p, s<q} A^{r,s}, & \text{for } k \leq p+q-2, \\
L_\phi^{k-1} = \bigoplus_{r+s=k, r\geq p, s\geq q} A^{r,s}, & \text{for } k \geq p+q.
\end{array} \right.
$$

The differential is given by

$$
\begin{array}{cccccccc}
0 & \longrightarrow & L_\phi^0 & \xrightarrow{\Pi} & L_\phi^1 & \xrightarrow{\Pi} & L_\phi^2 & \longrightarrow & \cdots \\
& & L_\phi^{p+q-3} & \xrightarrow{\Pi} & L_\phi^{p+q-2} & \xrightarrow{\partial} & L_\phi^{p+q-1} & \xrightarrow{d} & L_\phi^{p+q} & \longrightarrow & \cdots.
\end{array}
$$

We have $\mathbb{H}^{p,q-1}(X, L_\phi^\bullet) \cong H^{p+q-1}(L_\phi^\bullet(X)) = H^{p+q}_{BC_\phi}(X)$. The sheaf complex L_ϕ^\bullet has the following subcomplex

$$
\mathcal{S}_\phi : \mathcal{O} \oplus \tilde{\mathcal{O}} \xrightarrow{\partial_\phi \oplus \tilde{\partial}} \Omega^1_\phi \oplus \tilde{\Omega}^1_\phi \xrightarrow{\partial_\phi \oplus \tilde{\partial}} \Omega^2_\phi \oplus \tilde{\Omega}^2_\phi \longrightarrow \cdots
$$

$$
\longrightarrow \Omega^{p-1}_\phi \oplus \tilde{\Omega}^{p-1}_\phi \xrightarrow{0 \oplus \tilde{\partial}} \tilde{\Omega}^p_\phi \xrightarrow{\partial} \cdots \xrightarrow{\partial} \tilde{\Omega}^{q-1}_\phi \longrightarrow 0.
$$

This is the case when $p \geq q$, the case $p < q$ is similar. To make our notations clear and simple, we will only write explicitly one of the cases in what follows.
Proposition 3.4. The inclusion \(\mathcal{I}_\phi^* \hookrightarrow \mathcal{L}_\phi^* \) induces an isomorphism \(\mathcal{H}^k(\mathcal{I}_\phi^*) \cong \mathcal{H}^k(\mathcal{L}_\phi^*), \forall k \geq 0 \), and we have

\[
\mathcal{H}^k(\mathcal{I}_\phi^*) \cong \mathcal{H}^k(\mathcal{L}_\phi^*) = \begin{cases}
\mathbb{C}, & \text{for } k = 0, p > 1, q > 1, \\
\mathcal{O}, & \text{for } k = 0, p = 1, q > 1, \\
\mathcal{O}_\phi, & \text{for } k = 0, p > 1, q = 1, \\
\mathcal{O} \oplus \mathcal{O}_\phi, & \text{for } k = 0, p = 1, q = 1, \\
\Omega^p_\phi / \partial_\phi \Omega^{p-2}, & \text{for } 0 < k = p - 1 \neq q - 1, \\
\Omega^p_\phi / \partial_\phi \Omega^{p-2}, & \text{for } 0 < k = q - 1 \neq p - 1, \\
\Omega^p_\phi / \partial_\phi \Omega^{p-2} \oplus \Omega^p_\phi / \partial_\phi \Omega^{p-2}, & \text{for } 0 < k = p - 1 = q - 1, \\
0, & \text{otherwise}.
\end{cases}
\]

Consider the complex \(B_\phi^* \) which is a modification of \(\mathcal{I}_\phi^* \) given by

\[
B_\phi^*: \mathbb{C} \longrightarrow \mathcal{O} \oplus \mathcal{O}_\phi \rightarrow \Omega^1_\phi \oplus \Omega^2_\phi \longrightarrow \cdots
\]

It follows that

\[
\mathcal{H}^k(\mathcal{I}_\phi^*[1]) \cong \mathcal{H}^k(\mathcal{B}_\phi^*), \forall k \geq 0.
\]

Proposition 3.5. The natural map from \(B_\phi^* \) to \(\mathcal{O}_\phi^*[1] \), where

\[
B_\phi^1 = \mathcal{O}_\phi \oplus \mathcal{O} \longrightarrow \mathcal{O}_\phi^*[1] = \mathcal{O}_\phi + \mathcal{O} : (a, b) \mapsto a - b,
\]

induces an isomorphism \(\mathcal{H}^k(\mathcal{I}_\phi^*[1]) \cong \mathcal{H}^k(\mathcal{B}_\phi^*), \forall k \geq 0. \)

It follows that

\[
H^p_{BC\phi}(X) \cong H^p_{BC}(M, \mathcal{L}_\phi^*[1]) \cong H^p_{BC}(M, \mathcal{I}_\phi^*[1]) \cong H^p_{BC}(M, \mathcal{B}_\phi^*).
\]

Remark 3.6. There are natural isomorphisms

\[
H^0_{BC\phi}(X) \cong H^0_{BC}(X_t), \quad H^0_{BC\phi}(X) \cong H^0_{BC}(X_t) : \sigma \mapsto e^{i\phi} \sigma, \quad H^0_{BC\phi}(X) \cong H^0_{BC}(X_t) : \sigma \mapsto e^{i\phi} \sigma,
\]

and note also that

\[
H^0_{BC\phi}(X) = H^0_{BC}(X), \quad H^0_{BC\phi}(X) = H^0_{BC}(X).
\]

3.1. The Bott-Chern cohomology on \(X_t \). Let \(X \) be a complex manifold and \(X_t \) a small deformation (of \(X \)) whose complex structure is represented by a Beltrami differential \(\phi \in A^{0,1}(X, T^{1,0}_X) \), then by [Xia19a, Th. 4.3] or [RZ18, Prop. 2.13] we know that there are isomorphism of sheaves

\[
e^{i\phi} : \Omega^p_{X_t} \longrightarrow \Omega^p_{X_t}, \quad p = 0, 1, 2, \ldots, n,
\]

which give rise to the following commutative diagram

\[
\begin{array}{ccc}
C^* : \mathbb{C} \longrightarrow (\mathcal{O}_\phi \oplus \mathcal{O}_\phi) & \longrightarrow (\Omega^1_\phi \oplus \Omega^1_\phi) & \longrightarrow \cdots \\
\downarrow \text{id} & \downarrow e^{i\phi} \oplus e^{i\phi} & \\
B^*_X : \mathbb{C} \longrightarrow (\mathcal{O}_X \oplus \mathcal{O}_X) & \longrightarrow (\Omega^1_X \oplus \Omega^1_X) & \longrightarrow \cdots
\end{array}
\]

The differential is given by
\[
\begin{array}{ccccccccc}
\cdots & \Omega^2_{\phi} & \oplus & \Omega^1_{\phi} & \partial_{\phi=0} & \Omega^0_{\phi} & \cdots & \partial & \Omega^p_{\phi} & \cdots \rightarrow 0 \\
\downarrow & e^{\phi} & & e^{\phi} & & e^{\phi} & & e^{\phi} & & e^{\phi} \\
\cdots & \Omega^2_{X_t} & \oplus & \Omega^1_{X_t} & \partial_{t=0} & \Omega^0_{X_t} & \cdots & \partial & \Omega^p_{X_t} & \cdots \rightarrow 0.
\end{array}
\]

We see that
\[H^{p,q}_{BC}(X_t) = H^{p+q-1}(L_{X_t}^\bullet (M)) \cong \mathbb{H}^{p+q-1}(M, \mathcal{L}_{X_t}^\bullet) \cong \mathbb{H}^{p+q}(M, \mathcal{O}_{X_t}^\bullet) \cong \mathbb{H}^{p+q}(M, \mathcal{O}^\bullet),\]
where \(M\) is the underlying smooth manifold of \(X\) and \(X_t\).

3.2. The case of Aeppli cohomology. The deformed Aeppli cohomology can be defined as follows:

\[(3.5) \quad H^{p,q}_{A\phi}(X) := \frac{\ker \partial_{\phi} \cap A^{p,q}(X)}{\text{Im} \, d_{\phi} \cap A^{p,q}(X)}, \quad H^{p,q}_{A\phi}(X) := \frac{\ker \partial_{\phi} \cap A^{p,q}(X)}{\text{Im} \, d_{\phi} \cap A^{p,q}(X)}, \quad \forall p, q \geq 0,
\]

and \(h^{p,q}_{A\phi} := \dim H^{p,q}_{A\phi}(X)\). The conjugation gives a natural isomorphism between \(H^{p,q}_{A\phi}(X)\) and \(H^{q,p}_{A\phi}(X)\), we thus have \(h^{p,q}_{A\phi} = h^{q,p}_{A\phi}\).

For fixed \(p \geq 0\) and \(q \geq 0\), similar to the constructions for the Bott-Chern cohomology we define a sheaf complex which still denoted by \(\mathcal{L}^\bullet_{\phi}\) as follows:

\[(3.6) \quad \begin{cases} \mathcal{L}^k_{\phi} = \bigoplus_{r+s=k, r < p+1, s < q+1} A^r,s, & \text{for } k \leq p+q, \\ \mathcal{L}^{k-1}_{\phi} = \bigoplus_{r+s=k, r \geq p+1, s \geq q+1} A^r,s, & \text{for } k \geq p+q+2. \end{cases}
\]

The differential is given by
\[
0 \rightarrow \mathcal{L}^0_{\phi} \xrightarrow{\Pi_{\mathcal{L}^1_{\phi}} d_{\phi}} \mathcal{L}^1_{\phi} \xrightarrow{\Pi_{\mathcal{L}^2_{\phi}} d_{\phi}} \mathcal{L}^2_{\phi} \cdots
\]

\[
\xrightarrow{\Pi_{\mathcal{L}^{p+q-1}_{\phi}} d_{\phi}} \mathcal{L}^{p+q}_{\phi} \xrightarrow{\partial_{\phi}} \mathcal{L}^{p+q+1}_{\phi} \xrightarrow{d_{\phi}} \mathcal{L}^{p+q+2}_{\phi} \cdots,
\]

In particular, we find that
\[
\mathcal{L}^{p+q-1}_{\phi} = A^{p,q-1} \oplus A^{p-1,q} \xrightarrow{\Pi_{\mathcal{L}^{p+q}_{\phi}} d_{\phi}} A^{p,q} \xrightarrow{\partial_{\phi}} \mathcal{L}^{p+q+1}_{\phi} = A^{p+1,q+1},
\]

and so \(H^{p+q}(X, \mathcal{L}^\bullet_{\phi}) \cong H^{p+q}(\mathcal{L}^\bullet_{\phi}(X)) = H^{p,q}_{A\phi}(X)\). The other hypercohomology interpretations of the deformed Bott-Chern cohomology holds similarly for the deformed Aeppli cohomology. The Hodge star operator induces the following duality between the deformed Bott-Chern cohomology and the deformed Aeppli cohomology [Sch07, pp. 10]:

\[(3.7) \quad H^{p,q}_{BC}(X) \cong H^{n-q,n-p}_{A\phi}(X), \quad \text{and} \quad H^{p,q}_{BC}(X) \cong H^{n-q,n-p}_{A\phi}(X).
\]
4. Deformations of Bott-Chern classes

Let $\pi : (X, X) \to (B, 0)$ be a small deformation of a compact complex manifold X such that for each $t \in B$ the complex structure on X_t is represented by Beltrami differential $\phi(t)$. In this section, power series will always be written in homogenous form, e.g. we write $\phi(t) = \sum_k \phi_k$ where each ϕ_k is a homogeneous polynomial of degree k with coefficients in $A^{0,1}(X, T^{1,0})$. The Bott-Chern Laplacian operator is defined as

$$\Box_{BC} := (\partial \bar{\partial})(\partial \bar{\partial})^* + (\partial \bar{\partial})(\partial \bar{\partial}) + (\bar{\partial}^* \partial)(\bar{\partial}^* \partial)^* + (\bar{\partial}^* \partial)(\bar{\partial}^* \partial)^* + \bar{\partial}^* \bar{\partial} + \partial^* \partial,$$

and the deformed Bott-Chern Laplacian operator is defined as

$$\Box_{BC,\phi} := (\partial \bar{\partial}_{\phi})(\partial \bar{\partial}_{\phi})^* + (\partial \bar{\partial}_{\phi})(\partial \bar{\partial}_{\phi}) + (\bar{\partial}^* \partial_{\phi})(\bar{\partial}^* \partial_{\phi})^* + (\bar{\partial}^* \partial_{\phi})(\bar{\partial}^* \partial_{\phi})^* + \bar{\partial}^* \bar{\partial}_{\phi} + \partial^* \partial_{\phi},$$

where $\phi = \phi(t)$. Both \Box_{BC} and $\Box_{BC,\phi}$ are 4-th order self-adjoint elliptic differential operator [Sch07, MK06]. We have

$$\mathcal{H}_{BC} := \ker \Box_{BC} = \ker \partial \cap \ker \bar{\partial} \cap \ker (\partial \bar{\partial})^*$$

and the following orthogonal direct sum decomposition holds:

$$A^{\bullet, \bullet}(X) = \ker \Box_{BC} \oplus \operatorname{Im} \partial \bar{\partial} \oplus (\operatorname{Im} \partial^* + \operatorname{Im} \bar{\partial}^*),$$

which is equivalent to the existence of the Green operator G_{BC} such that

$$1 = \mathcal{H}_{BC} + \Box_{BC} G_{BC}.$$

The same is true for the deformed Bott-Chern Laplacian operator $\Box_{BC,\phi}$. It follows from (4.4) that

$$\ker (\partial \bar{\partial})^* = \mathcal{H}_{BC} \oplus (\operatorname{Im} \partial^* + \operatorname{Im} \bar{\partial}^*) \quad \text{and} \quad \ker d = \mathcal{H}_{BC} \oplus \operatorname{Im} \partial \bar{\partial}.$$

The Aeppli Laplacian operator is defined as

$$\Box_{A} := (\partial \bar{\partial})(\partial \bar{\partial}) + (\partial \bar{\partial})(\partial \bar{\partial})^* + (\bar{\partial} \partial^*)(\bar{\partial} \partial^*)^* + (\bar{\partial} \partial^*)(\bar{\partial} \partial^*) + \bar{\partial}^* \bar{\partial} + \partial^* \partial,$$

and we have correspondingly

$$A^{\bullet, \bullet}(X) = \ker \Box_{A} \oplus \operatorname{Im} (\partial \bar{\partial})^* \oplus (\operatorname{Im} \partial + \operatorname{Im} \bar{\partial}),$$

or $1 = \mathcal{H}_{A} + \Box_{A} G_{A}$ where G_{A} is the Green operator for \Box_{A}. Since for any $x \in A^{\bullet, \bullet}(X)$, we have $\Box_{BC} G_{BC} \partial \bar{\partial} x = \partial \bar{\partial} x$ and $\Box_{BC} \partial \bar{\partial} G_{A} x = \partial \bar{\partial} x$ which implies

$$G_{BC} \partial \bar{\partial} = \partial \bar{\partial} G_{A}.$$

Similarly, we have

$$(\partial \bar{\partial})^* G_{BC} = G_{A}(\partial \bar{\partial})^*.$$

Let $\varphi \in A^{p,q}(X)$ and $G_{BC} : A^{p,q}(X) \to A^{p,q}(X)$ be the Green operator, then for $k \geq 2$ we have

$$\|G_{BC} \varphi\|_{k+\alpha} \leq C \|\varphi\|_{k-4+\alpha},$$

where $C > 0$ is independent of φ and $\| \cdot \|_{k+\alpha}$ is the Hölder norm.

We have the following observation:
Proposition 4.1. 1. \(\forall \sigma \in A^{p,q}(X) \), if \(d_{\phi(t)}\sigma = d\sigma - L_{\phi(t)}^{1,0} \sigma = 0 \) and \((\partial\bar{\partial})^* \sigma = 0 \), then we must have

\[
\sigma = H_{BC}\sigma - G_{BC}A\bar{\partial}_{\phi(t)}\sigma,
\]

where \(H_{BC} : A^{p,q}(X) \to H_{BC}^{p,q}(X) \) is the projection operator to harmonic space and \(A := \bar{\partial}^*\partial^* + \bar{\partial}^* \).

2. For any fixed \(\sigma_0 \in H_{BC}^{p,q}(X) \), the equation

\[
(4.11) \quad \sigma = \sigma_0 - G_{BC}A\bar{\partial}_{\phi(t)}\sigma,
\]

has an unique solution given by \(\sigma = \sum_k \sigma_k \in A^{p,q}(X) \) and \(\sigma_k = -G_{BC}A\sum_{i+j=k} \partial_i\phi_j\sigma_i \) for \(|t| \) small where each \(\sigma_k \) is a homogeneous polynomial of degree \(k \) with coefficients in \(A^{p,q}(X) \).

Proof. The first assertion follows from the Hodge decomposition:

\[
\sigma = H_{BC}\sigma + G_{BC}\Box_{BC}\sigma = H_{BC}\sigma + G_{BC}A\sum_{i+j=0} \partial_i\phi_j\sigma_i = H_{BC}\sigma - G_{BC}A\bar{\partial}_{\phi(t)}\sigma,
\]

where we have used the fact that \(d_{\phi(t)}\sigma = 0 \) if and only if \(\partial\sigma = \partial\bar{\partial}\sigma \).

For the second assertion, substitute \(\sigma = \sigma(t) = \sum_k \) in (4.11), we have

\[
(4.12) \quad \left\{
\begin{array}{l}
\sigma_1 = -G_{BC}A\bar{\partial}_{\phi_1}\sigma_0, \\
\sigma_2 = -G_{BC}A(\partial_{\phi_2}\sigma_0 + \partial_{\phi_1}\sigma_1), \\
\vdots \\
\sigma_k = -G_{BC}A\sum_{i+j=k} \partial_i\phi_j\sigma_i, \quad \forall k > 0.
\end{array}
\right.
\]

For the convergence of \(\sigma(t) \), we note that

\[
(4.13) \quad \|\sigma_j\|_{k+\alpha} = \|G_{BC}A\sum_{a+b=j} \partial_{i\phi_k}\sigma_a\|_{k+\alpha} \leq C \sum_{a+b=j} \|\phi_a\|_{k+\alpha} \|\sigma_b\|_{k+\alpha},
\]

for some constant \(C \) depends only on \(k \) and \(\alpha \). Now it is left to show the uniqueness.

Let \(\sigma \) and \(\sigma' \) be two solutions to \(\sigma = \sigma_0 - G_{BC}A\bar{\partial}_{\phi}\sigma \) and set \(\tau = \sigma - \sigma' \). Then

\[
(4.14) \quad \|\tau\|_{k+\alpha} \leq C\|\phi(t)\|_{k+\alpha}\|\tau\|_{k+\alpha},
\]

for some constant \(c > 0 \). When \(|t| \) is sufficiently small, \(\|\phi(t)\|_{k+\alpha} \) is also small. Hence we must have \(\tau = 0 \). For smoothness of the solution, note that we have

\[
(4.15) \quad \Box_{BC}\sigma = -(\bar{\partial}^*\partial^* + \bar{\partial}^*)\bar{\partial}_{\phi(t)}\sigma = 0,
\]

which implies

\[
\Box_{BC}\sigma + (\bar{\partial}^*\partial^* + \bar{\partial}^*)\bar{\partial}_{\phi(t)}\sigma = 0,
\]

which is a standard elliptic equation for small \(t \).

Note that the solution \(\sigma \) of (4.11) automatically satisfies \((\partial\bar{\partial})^* \sigma = 0 \) in view of (4.9).

Lemma 4.2. The natural map

\[
(4.16) \quad \frac{\ker(\partial\bar{\partial})^* \cap \ker d_{\phi(t)} \cap A^{p,q}(X)}{\ker(\partial\bar{\partial})^* \cap \ker d_{\phi(t)} \cap A^{p,q}(X)} \to H_{BC}^{p,q}(X)
\]

is an isomorphism.
Moreover, we have the following orthogonal direct sum decomposition

\[A^{p,q}(X) = (\ker d_{\phi(t)} \cap \ker (\partial \bar{\partial})^*) \oplus (\text{Im } \partial^* + \text{Im } \bar{\partial}^* + \text{Im } \partial \bar{\partial}) \]

which implies

\[\ker d_{\phi(t)} \cap A^{p,q}(X) = (\ker d_{\phi(t)} \cap \ker (\partial \bar{\partial})^*) \oplus \left(\ker d_{\phi(t)} \cap (\text{Im } \partial^* + \text{Im } \bar{\partial}^* + \text{Im } \partial \bar{\partial}) \right), \]

and

\[\text{Im } \partial \bar{\partial}_{\phi(t)} \cap A^{p,q}(X) = (\text{Im } \partial \bar{\partial}_{\phi(t)} \cap \ker (\partial \bar{\partial})^*) \oplus (\text{Im } \partial \bar{\partial}_{\phi(t)} \cap (\ker (\partial \bar{\partial}_{\phi(t)})^* + \text{Im } \partial \bar{\partial})). \]

Moreover, for any \(x \in \text{Im } \partial \bar{\partial} \), there exists unique \(y \in \ker d_{\phi(t)} \) and unique \(z \in (\text{Im } \partial^* + \text{Im } \bar{\partial}^*) \) such that \(x = y + z \). This defines a surjective homomorphism

\[\text{Im } \partial \bar{\partial} \longrightarrow \ker d_{\phi(t)} \cap (\text{Im } \partial^* + \text{Im } \bar{\partial}^*), \]

with kernel equal to \(\text{Im } \partial \bar{\partial} \cap (\text{Im } \partial^* + \text{Im } \bar{\partial}^*) \). It follows that

\[\ker d_{\phi(t)} \cap (\text{Im } \partial^* + \text{Im } \bar{\partial}^* + \text{Im } \partial \bar{\partial}) \cong \frac{\text{Im } \partial \bar{\partial}}{\text{Im } \partial \bar{\partial} \cap (\text{Im } \partial^* + \text{Im } \bar{\partial}^*)}. \]

Similarly, we have

\[\text{Im } \partial \bar{\partial}_{\phi(t)} \cap (\ker (\partial \bar{\partial}_{\phi(t)})^* + \text{Im } \partial \bar{\partial}) \cong \frac{\text{Im } \partial \bar{\partial}}{\text{Im } \partial \bar{\partial} \cap \ker (\partial \bar{\partial}_{\phi(t)})^*}. \]

Hence,

\[H^{p,q}_{BC\phi(t)}(X) \cong \frac{\ker (\partial \bar{\partial})^* \cap \ker d_{\phi(t)}}{\ker (\partial \bar{\partial})^* \cap \text{Im } \partial \bar{\partial}_{\phi(t)}} \oplus \frac{\text{Im } \partial \bar{\partial} \cap (\text{Im } \partial^* + \text{Im } \bar{\partial}^*)}{\text{Im } \partial \bar{\partial} \cap (\text{Im } \partial^* + \text{Im } \bar{\partial}^*)}. \]

We claim \(\text{Im } \partial \bar{\partial} \cap \ker (\partial \bar{\partial}_{\phi(t)})^* = 0 \). Indeed, let \(\sigma \in \ker \partial \bar{\partial} \cap \ker (\partial \bar{\partial}_{\phi(t)})^* \), then it follows from the same proof of Proposition 4.1 that \(\sigma \) is the solution of the equation

\[\sigma = \sigma_0 + G_{BC} \partial \bar{\partial}(\partial L_{\phi(t)}^{1,0})^* \sigma, \quad \sigma_0 := \mathcal{H}_{BC} \sigma \]

which is uniquely determined by \(\sigma_0 \). If \(\sigma \in \text{Im } \partial \bar{\partial} \cap \ker (\partial \bar{\partial}_{\phi(t)})^* \), then \(\sigma_0 = \mathcal{H}_{BC} \sigma = 0 \Rightarrow \sigma = 0. \)

\[\square \]

Proposition 4.3. 1. For any fixed \(t \in B \), the following homomorphism

\[g_t : \ker \partial \bar{\partial} \cap A^{p,q}(X) \longrightarrow \ker (\partial \bar{\partial})^* \cap \text{Im } \partial \bar{\partial}_{\phi(t)} \cap A^{p+1,q+1}(X) : x_0 \longmapsto \partial \bar{\partial}_{\phi(t)} x(t), \]

is surjective with \(\ker g_t = \ker \partial \bar{\partial} \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*) \cap A^{p,q}(X) \), where \(x(t) \) is the unique solution of \(x(t) = x_0 + (\partial \bar{\partial})^* G_{BC} \partial i_{\phi(t)} \partial x(t) \).

2. Let \(\hat{g}_t : H^{p,q}_{BC}(X) \longrightarrow \ker (\partial \bar{\partial})^* \cap \text{Im } \partial \bar{\partial}_{\phi(t)} \cap A^{p+1,q+1}(X) \) be the restriction of \(g_t \) on \(H^{p,q}_{BC}(X) \), then \(\hat{g}_t \) is surjective with \(\ker \hat{g}_t = H^{p,q}_{BC}(X) \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*). \)

Moreover, we have

\[\dim H^{p,q}_{BC}(X) = \dim \ker \partial \bar{\partial}_{\phi(t)} \cap (H^{p,q}_{BC}(X) + \text{Im } (\partial \bar{\partial})^*) \cap A^{p,q}(X) \]

\[+ \dim \ker (\partial \bar{\partial})^* \cap \text{Im } \partial \bar{\partial}_{\phi(t)} \cap A^{p+1,q+1}(X). \]
Proof. 1. Let \(x \in A^{p,q}(X) \), then by Hodge decomposition we have
\[
\partial \bar{\partial}_{\phi(t)} x = \partial \bar{\partial} x - \partial i_{\phi(t)} \partial x = \partial \bar{\partial} x - \mathcal{H}_{BC} \partial i_{\phi(t)} \partial x - \Box_{BC} G_{BC} \partial i_{\phi(t)} \partial x,
\]
thus
\[
\partial \bar{\partial}_{\phi(t)} x \in \ker(\partial \bar{\partial})^* \iff \partial \bar{\partial} x - \partial \bar{\partial}(\partial \bar{\partial})^* G_{BC} \partial i_{\phi(t)} \partial x = 0.
\]
Set \(x_0 = x - (\partial \bar{\partial})^* G_{BC} \partial i_{\phi(t)} \partial x \), then \(x \) is a solution to the equation \(x = x_0 + (\partial \bar{\partial})^* G_{BC} \partial i_{\phi(t)} \partial x \) which is uniquely determined by \(x_0 \) in view of the proof of Proposition 4.1.

It is left to show \(\ker g_t = \ker \partial \bar{\partial} \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*) \cap A^{p,q}(X) \). In fact, obviously we have \(\ker g_t \subseteq \ker \partial \bar{\partial} \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*) \cap A^{p,q}(X) \). Conversely, let us consider the following surjective homomorphism
\[
\ker \partial \bar{\partial}_{\phi(t)} \longrightarrow \ker \partial \bar{\partial} \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*)
\]
\[
x \mapsto x - (\partial \bar{\partial})^* \partial \bar{\partial} G_{BC} x = x - (\partial \bar{\partial})^* G_{BC} \partial \bar{\partial} x = x - (\partial \bar{\partial})^* G_{BC} \partial i_{\phi(t)} \partial x,
\]
whose kernel is \(\ker \partial \bar{\partial}_{\phi(t)} \cap \ker (\partial \bar{\partial})^* = 0 \) by Proposition 4.1. Its inverse is given by
\[
\ker \partial \bar{\partial} \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*) \longrightarrow \ker \partial \bar{\partial}_{\phi(t)} : x_0 \mapsto x(t),
\]
where \(x(t) \) is the unique solution of \(x(t) = x_0 + (\partial \bar{\partial})^* G_{BC} \partial i_{\phi(t)} \partial x(t) \). So let \(x_0 \in \ker \partial \bar{\partial} \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*) \) and \(x(t) \) be the unique solution of \(x(t) = x_0 + (\partial \bar{\partial})^* G_{BC} \partial i_{\phi(t)} \partial x(t) \), we must have \(x(t) \in \ker \partial \bar{\partial}_{\phi(t)} \Rightarrow x_0 \in \ker g_t \).

2. It can be proved in the same way that \(\ker g_t = \mathcal{H}_{BC}^{p,q}(X) \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*) \). To show \(g_t \) is surjective it is enough to show
\[
\frac{\mathcal{H}_{BC}^{p,q}(X)}{\mathcal{H}_{BC}(X) \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*)} \cong \frac{\ker \partial \bar{\partial} \cap A^{p,q}(X)}{\ker \partial \bar{\partial} \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*) \cap A^{p,q}(X)}.
\]
Indeed, we have
\[
\ker \partial \bar{\partial} = \mathcal{H}_{BC}^{p,q}(X) \oplus \{ \ker \partial \bar{\partial} \cap \text{Im } (\partial \bar{\partial}) + \text{Im } \partial^* + \text{Im } \bar{\partial}^* \},
\]
and
\[
\ker \partial \bar{\partial} \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*) \cong \ker \partial \bar{\partial}_{\phi(t)}
\]
\[
= \{ \ker \partial \bar{\partial}_{\phi(t)} \cap (\mathcal{H}_{BC}^{p,q}(X) + \text{Im } (\partial \bar{\partial})^*) \} \oplus \{ \ker \partial \bar{\partial}_{\phi(t)} \cap \text{Im } (\partial \bar{\partial}_{\phi(t)})^* + \ker \partial \bar{\partial} \cap (\text{Im } \partial \bar{\partial} + \text{Im } \partial^* + \text{Im } \bar{\partial}^*) \}
\]
\[
\cong \{ \mathcal{H}_{BC}^{p,q}(X) \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*) \} \oplus \{ \ker \partial \bar{\partial} \cap (\text{Im } \partial \bar{\partial}) + \text{Im } \partial^* + \text{Im } \bar{\partial}^* \}.
\]

\[\square\]

Remark 4.4. It can be proved in a similar way that \(g_t \) when restricted on \(\mathcal{H}_{BC}^{p,q}(X) \) is also surjective with kernel equal to \(\mathcal{H}_{BC}^{p,q}(X) \cap (\ker \partial \bar{\partial}_{\phi(t)} + \text{Im } (\partial \bar{\partial})^*) \) and
\[
\dim \mathcal{H}_{BC}^{p,q}(X) = \dim \ker \partial \bar{\partial}_{\phi(t)} \cap (\mathcal{H}_{BC}^{p,q}(X) + \text{Im } (\partial \bar{\partial})^*) \cap A^{p,q}(X)
\]
\[+\dim \ker(\partial \bar{\partial})^* \cap \text{Im } \partial \bar{\partial}_{\phi(t)} \cap A^{p+1,q+1}(X).
\]
Definition 4.5. For any $t \in B$ and a vector subspace $V = \mathbb{C}\{\sigma_0^1, \cdots, \sigma_0^N\} \subseteq \mathcal{H}_{BC}^{p,q}(X)$, we set

$$V_t := \{ \sum_{l=1}^N a_l \sigma_l^0 \in V \mid (a_1, \cdots, a_N) \in \mathbb{C}^N \text{ s.t. } \sigma(t) \in \ker d_{\phi(t)} \},$$

where $\sigma(t) = \sum_k \sigma_k$ with $\sigma_0 = \sum_l a_l \sigma_l^0$ and $\sigma_k = -G_{BC} A \sum_{i+j=k} \partial i \phi_j \sigma_i$, $\forall k \neq 0$.

Note that V_t consists of those vectors of the form $\sum_l a_l \sigma_l^0$ such that the coefficients a_l satisfy the following linear equation:

$$\sum_{l=1}^N a_l d_{\phi(t)} \sigma_l^0(t) = 0,$$

where $\sigma_l(t) = \sum_k \sigma_k^l$ with $\sigma_k^l = -G_{BC} A \sum_{i+j=k} \partial i \phi_j \sigma_i$, $\forall k \neq 0$.

Definition 4.6. We set

$$f_t : V_t \longrightarrow \frac{\ker(\overline{\partial\partial})^* \cap \ker d_{\phi(t)} \cap A^{p,q}(X)}{\ker(\overline{\partial\partial})^* \cap \text{Im } \partial i \phi(t) \cap A^{p,q}(X)} \cong H_{BC}^{p,q}(X),$$

$$\sigma_0 \mapsto \sigma(t) = \sum_k \sigma_k, \text{ where } \sigma_k = -G_{BC} A \sum_{i+j=k} \partial i \phi_j \sigma_i, \forall k \neq 0.$$

Proposition 4.7. If $V = \mathcal{H}_{BC}^{p,q}(X)$, then f_t is surjective.

Proof. By Proposition 4.1, the map

$$\tilde{f}_t : V_t \longrightarrow \ker(\overline{\partial\partial})^* \cap \ker d_{\phi(t)} \cap A^{p,q}(X),$$

$$\sigma_0 \mapsto \sigma(t) = \sum_k \sigma_k, \text{ where } \sigma_k = -G_{BC} A \sum_{i+j=k} \partial i \phi_j \sigma_i, \forall k \neq 0,$$

is an isomorphism.

Theorem 4.8. Let X be a compact complex manifold and $\pi : (X, X) \rightarrow (B, 0)$ a small deformation of X such that for each $t \in B$ the complex structure on X_t is represented by Beltrami differential $\phi(t)$. For any $p, q \geq 0$, let $V = \mathbb{C}\{\sigma_0^1, \cdots, \sigma_0^N\}$ be a linear subspace of $\mathcal{H}_{BC}^{p,q}(X)$ and $\sigma_l(t) = \tilde{f}_t \sigma_0^l, l = 1, \cdots, N$. Define a subset $B(V)$ of B by

$$B(V) := \{ t \in B \mid d_{\phi(t)} \sigma_l(t) = 0, l = 1, \cdots, N \},$$

Then $B(V)$ are analytic subsets of B and we have

$$B(V) = \{ t \in B \mid \dim V = \dim \text{Im } f_t + \dim \ker f_t \}.$$

In particular, we have

$$B' = B(\mathcal{H}_{BC}^{p,q}(X)) = \{ t \in B \mid \dim H_{BC}^{p,q}(X) = \dim H_{BC}^{p,q}(X) + \dim \ker f_t \}.$$

Proof. First, let $\{ U_\alpha \}$ be a finite open cover of X and $u_1^\alpha, u_2^\alpha, \cdots$, a local unitary frames of $p + q + 1$-forms on the U_α, then $\forall \alpha = 1, \cdots, N$, we have

$$d_{\phi(t)} \sigma_l^\alpha(t) = 0 \iff d_{\phi(t)} \sigma_l^\alpha(t) |_{U_\alpha}, u_j^\alpha > = 0, \forall j, \alpha,$$
where \(<\cdot,\cdot>\) is the \(L^2\)-inner product on the space \(A^{p+q+1}(U_α)\). We see that each \(a_j^α(t)\) is holomorphic in \(t\) and so

\[B(V) = \{t \in B \mid a_j^α(t) = 0, \forall j, t, α\}\]

is an analytic subset of \(B\).

Furthermore, note that

\[t \in B(V) \iff V_t = V.\]

So (4.17) follows from the fact that \(\dim V_t = \dim \text{Im } f_t + \dim \ker f_t\). If \(V = H^{0,q}(X,E)\), then \(f_t : V_t \to H^{0,q}_{\partial φ(t)}(X,E)\) is surjective by Proposition 4.7 and (4.18) follows. □

Remark 4.9. From the above proof, we can see that \(V_t \subseteq V\) varies holomorphically with \(t\). In fact, in the notations of Definition 4.5, \(V_t\) consists of those vectors of the form \(\sum a_t^α \sigma_0^α\) such that the coefficients \(a_t^α\) satisfy

\[\sum_{l=1}^{N} a_l \cdot a_j^α(t) = 0, \quad j = 1, \ldots, m; \forall α ,\]

where \(a_j^α(t)\) are holomorphic functions in \(t\). In particular, \(\{t \in B \mid \dim V_t \geq k\}\) is an analytic subset of \(B\) for any nonnegative integer \(k\).

For the same reason, \(\{t \in B \mid \dim \ker (φ) \cap (H^{p,q}_{BC}(X) + \text{Im } (\partial \bar{∂})^*) \cap A^{p,q}(X) \geq k\}\) is also an analytic subset of \(B\) for any nonnegative integer \(k\). It follows from this and Proposition 4.3 that \(\{t \in B \mid \dim \ker (\partial \bar{∂})^* \cap \text{Im } (\partial \bar{∂}) \cap A^{p,q}(X) \leq k\}\) is an analytic subset of \(B\) for any nonnegative integer \(k\).

Definition 4.10. Let \(π : (X, X) \to (B, 0)\) be a deformation of a compact complex manifold \(X\) such that for each \(t \in B\) the complex structure on \(X_t\) is represented by Beltrami differential \(φ(t)\). Given \(y \in \ker d \cap A^{p,q}(X)\) and \(T \subseteq B\), which is a complex subspace of \(B\) containing 0, a (Bott-Chern) deformation of \(y\) (w.r.t. \(π : (X, X) \to (B, 0)\)) on \(T\) is a family of \((p,q)\)-forms \(σ(t)\) such that

1. \(σ(t)\) is holomorphic in \(t \in T\) and \(σ(0) = y\);
2. \(d_{φ(t)}σ(t) = 0, \forall t \in T.\)

A deformation of \([y] \in H^{p,q}_{BC}(X)\) (w.r.t. \(π\)) on \(T\) is a triple \((y, σ(t), T)\) which consisting of a representative \(y \in [y]\) and a deformation \(σ(t)\) of \(y\) (w.r.t. \(π\)) on \(T\). Two deformations \((y, σ(t), T)\) and \((y', σ'(t), T)\) of \([y]\) on \(T\) are equivalent if

\[|σ(t) - σ'(t)| = 0 \in H^{p,q}_{BC}(X), \forall t \in T.\]

A deformation \(σ(t)\) of \(y\) on \(T\) is called canonical if

\[σ(t) = σ_0 - G_{BC}(\bar{∂}^*∂^* + ∂^*)d_{φ(t)}σ(t), \quad ∀t \in T.\]

By Proposition 4.1, canonical deformation is unique on its existence domain.

For a given small deformation \(π : (X, X) \to (B, 0)\) with smooth \(B\), we say \(y \in \ker d \cap A^{p,q}(X)\) is (canonically) unobstructed w.r.t. \(π\) if a (canonical) deformation of \(y\) (w.r.t. \(π\)) exists on \(B\) and a class \(α \in H^{p,q}_{BC}(X)\) is (canonically) unobstructed w.r.t. \(π\) if there is a \(y \in α\) such that \(y\) is (canonically) unobstructed w.r.t. \(π\). If every Bott-Chern classes in \(H^{p,q}_{BC}(X)\) have canonically unobstructed deformation w.r.t. \(π\), then we say the deformations of classes in \(H^{p,q}_{BC}(X)\) is canonically unobstructed w.r.t. \(π\).
\(\pi\). If these holds for any small deformation of \(X\), we will drop the term “w.r.t. \(\pi\)”.

For example, we say \(y \in \ker d \cap A^{p,q}(X)\) is (canonically) unobstructed if for any small deformation \(\pi : (X, X) \to (B, 0)\) with smooth \(B\) there is a (canonical) deformation of \(y\) on \(B\).

Although a Bott-Chern deformation \(\sigma(t)\) of \(y \in \ker d \cap A^{p,q}(X)\) can also be viewed as a Dolbeault deformation with the additional requirement \(\partial\sigma(t) = 0\), the ways we identify deformations in these two cases is very different. We want to point out another difference between the deformation theory of Dolbeault cohomology \cite{Xia19} and that of Bott-Chern cohomology. Let \(\sigma^{BC}(t)\) and \(\sigma^D(t)\) be the canonical Bott-Chern/Dolbeault deformation of \(y \in \ker d \cap A^{p,q}(X)\) respectively, it is known that \(L^{1,0}_{\phi(t)} a^D(t) \in \ker \tilde{\partial}\) for any \(t \in B\), see \cite[Prop. 5.2]{Xia19}. This seems does not hold for the Bott-Chern deformation in general. More precisely, it is not guaranteed that \(L^{1,0}_{\phi(t)} a^{BC}(t) \in \ker d_{\phi(t)}\).

In the remainder of this section, We confine ourselves to sketching the essential points of the deformation theory of Bott-Chern cohomology. Since this part of the theory is very similar to the case of Dolbeault cohomology, the proofs will be omitted.

A notable consequence of the deformation theory for Bott-Chern classes is the following

Theorem 4.11. Let \(\pi : (X, X) \to (B, 0)\) be a deformation of a compact complex manifold \(X\) such that for each \(t \in B\) the complex structure on \(X_t\) is represented by Beltrami differential \(\phi(t)\). Then the set \(\{t \in B \mid \dim H^{p,q}_{BC,\phi(t)}(X) \geq k\}\) is an analytic subset of \(B\) for any nonnegative integer \(k\).

Proof. It follows from Proposition 4.7 that

\[
\{t \in B \mid \dim H^{p,q}_{BC,\phi(t)}(X) \geq k\} = \{t \in B \mid \dim V_t/\ker f_t \geq k\} = \{t \in B \mid \dim V_t - \dim (\ker \partial \tilde{\partial}^* \cap \Im \partial \tilde{\partial}_{\phi(t)}) \geq k\}.
\]

The conclusion then follows from Remark 4.9. \(\square\)

The canonical deformations has the following properties:

Theorem 4.12. Let \(\pi : (X, X) \to (B, 0)\) be a deformation of a compact complex manifold \(X\) such that for each \(t \in B\) the complex structure on \(X_t\) is represented by Beltrami differential \(\phi(t)\).

\((i)\) Assume \(S\) is an analytic subset of \(B\) with \(0 \in S\) and \(y \in \ker d \cap A^{p,q}(X)\). If the canonical deformation of \(y\) exists on \(S\) then we must have \(S \subseteq B(\mathcal{C}H_{BC}\bar{y})\);

\((ii)\) For any deformed Bott-Chern cohomology class \([u] \in H^{p,q}_{BC,\phi(t)}(X)\), there exists \(\sigma_0 \in \mathcal{H}^{p,q}_{BC}(X)\) such that \([u] = [\sigma(t)]\) where \(\sigma(t)\) is the canonical deformation of \(\sigma_0\).

Proof. \((i)\) follows from Theorem 4.8 and \((ii)\) follows from Lemma 4.2. \(\square\)

We end this section with the following result which is of particular interests.
Theorem 4.13. Let \(\pi : (X, X) \to (B, 0) \) be a small deformation of the compact complex manifold \(X \) such that for each \(t \in B \) the complex structure on \(X_t \) is represented by Beltrami differential \(\phi(t) \). For each \((p, q) \in \mathbb{N} \times \mathbb{N} \), set

\[
\nu_{t}^{p,q} := \dim H^{p,q}_{BC}(X) - \dim \ker d_{\phi(t)} \cap \ker (\bar{\partial} \partial) \cap A^{p,q}(X) \geq 0,
\]

and

\[
u_{t}^{p,q} := \dim H^{p,q}_{BC}(X) - \dim \ker \bar{\partial} \partial_{\phi(t)} \cap (H^{p,q}_{BC}(X) + \text{Im} (\partial \bar{\partial})) \cap A^{p,q}(X) \geq 0,
\]

then we have

\[
dim H^{p,q}_{BC}(X) = \dim H^{p,q}_{BC\phi}(X) + \nu_{t}^{p,q} + \nu_{t}^{p-1,q-1}.
\]

Proof. This follows immediately from Lemma 4.2 and Proposition 4.3. \(\square \)

5. The deformed Fröhlicher spectral sequences and the \(\partial \bar{\partial} \phi \)-lemma

Let \(X \) be a complex manifold and \(X_t \) a small deformation (of \(X \)) whose complex structure is represented by a Beltrami differential \(\phi \in A^{0,1}(X, T_{X}^{1,0}) \). Set the deformed de Rahm cohomology as

\[
H^{\bullet}_{d_{\phi}}(X) := \ker d_{\phi}/\text{Im} d_{\phi},
\]

then it is clear that \(e^{\phi} : H^{\bullet}_{d_{\phi}}(X) \to H^{\bullet}_{d_{\bar{\phi}}}(X) \) is an isomorphism and the identity map induces the following commutative diagram:

\[
\begin{array}{ccc}
H^{\bullet}_{d_{\bar{\phi}}}(X) & \xrightarrow{e^{\phi}} & H^{\bullet}_{d_{\phi}}(X) \\
\downarrow & & \downarrow \\
H^{\bullet}_{\partial}(X) & \xrightarrow{\bar{\partial}} & H^{\bullet}_{d_{\phi}}(X)
\end{array}
\]

Definition 5.1. The spectral sequence associated to the double complex \((A^{\bullet,\bullet}(X), \partial, \bar{\partial}_{\phi}) \) will be called the deformed Fröhlicher spectral sequence and we say \(X \) satisfies the \(\partial \bar{\partial} \phi \)-lemma if the homomorphism \(H^{\bullet,\bullet}_{BC\phi}(X) \to H^{\bullet,\bullet}_{d_{\phi}}(X) \) in (5.1) is injective, i.e.

\[
\ker \partial \cap \ker \bar{\partial}_{\phi} \cap \text{Im} d_{\phi} = \text{Im} \partial \bar{\partial}_{\phi}.
\]

Set \(d_{\phi}^{c} := J^{-1}d_{\phi}J = \sqrt{-1}(\bar{\partial}_{\phi} - \partial) \), where \(J \) is the almost complex structure on \(X \).

It is easy to see that \(\ker \partial \cap \ker \bar{\partial}_{\phi} = \ker d_{\phi} \cap \ker d_{\phi}^{c} \) and \(\text{Im} \partial \bar{\partial}_{\phi} = \text{Im} d_{\phi}d_{\phi}^{c} \). Hence, \(X \) satisfies the \(\partial \bar{\partial} \phi \)-lemma if and only if

\[
\ker d_{\phi} \cap \ker d_{\phi}^{c} \cap \text{Im} d_{\phi} = \text{Im} d_{\phi}d_{\phi}^{c} \text{ ,}
\]

or

\[
\ker d_{\phi} \cap \ker d_{\phi}^{c} \cap \text{Im} d_{\phi}^{c} = \text{Im} d_{\phi}d_{\phi}^{c} \text{ .}
\]
There are two natural filtrations on $A^{••}(X)$:

$$F^p A^k(X) = \bigoplus_{p \leq r \leq k} A^{r,k-r}(X), \quad \bar{F}^p A^k(X) = \bigoplus_{p \leq s \leq k} A^{k-s,s}(X),$$

which induces two filtrations on the deformed de Rahm cohomology $H^k_{d\phi}(X)$ for each $k \geq 0$:

$$F^p H^k_{d\phi}(X) = \{ \alpha \in H^k_{d\phi}(X) | \exists u \in F^p A^k(X) s.t. \alpha = [u] \},$$

and

$$\bar{F}^p H^k_{d\phi}(X) = \{ \alpha \in H^k_{d\phi}(X) | \exists u \in \bar{F}^p A^k(X) s.t. \alpha = [u] \}.$$

As usual, there are many ways to characterize the $\partial \bar{\partial}_{\phi}$-lemma:

Proposition 5.2. The following statements are equivalent:

1. X satisfies the $\partial \bar{\partial}_{\phi}$-lemma;
2. The maps in (5.1) induced by the identity map are all isomorphisms;
3. The deformed Frölicher spectral sequence degenerates at E_1 and there is a Hodge decomposition

$$H^k_{d\phi}(X; \mathbb{C}) = \bigoplus_{p+q=k} F^p H^k_{d\phi}(X) \cap \bar{F}^q H^k_{d\phi}(X), \forall k.$$

Proof. This follows directly from [DGMS75, pp. 268]. \hfill \Box

Theorem 5.3. Let X be a compact complex manifold and X_t a small deformation (of X) whose complex structure is represented by a Beltrami differential $\phi \in A^{0,1}(X, T^1_X)$. Then for every $(p, q) \in \mathbb{N} \times \mathbb{N}$, we have

$$\dim H^{p,q}_{BC\phi}(X) + \dim H^{p,q}_{A\phi}(X) \geq \dim H^{p,q}_{\partial\bar{\partial}\phi}(X_t) + \dim H^{p,q}_{\partial\phi}(X).$$

In particular, for every $k \in \mathbb{N}$, we have

$$\sum_{p+q=k} \dim H^{p,q}_{BC\phi}(X) + \sum_{p+q=k} \dim H^{p,q}_{A\phi}(X) \geq 2 \dim H^k_{dR}(X),$$

and equality holds if and only if X satisfies the $\partial \bar{\partial}_{\phi}$-lemma.

Proof. This follows from similar arguments as in [AT13]. In fact, this theorem is a direct consequence of [AT15a, Thm. 1 and 2] by noting that $\dim H^{p,q}_{\partial\phi}(X) = \dim H^{p,q}_{\partial\phi}(X_t)$ [Xia19a, Thm. 4.4]. \hfill \Box

Remark 5.4.

1. From the work of Angella-Tardini [AT17, Thm. 3.1] we know that X satisfies the $\partial \bar{\partial}_{\phi}$-lemma if and only if

$$\sum_{p+q=k} \dim H^{p,q}_{BC\phi}(X) = \sum_{p+q=k} \dim H^{p,q}_{A\phi}(X);$$

2. From Proposition 5.2 we see that if X satisfies the $\partial \bar{\partial}_{\phi}$-lemma, then for every $(p, q) \in \mathbb{N} \times \mathbb{N}$, we have

$$\dim H^{p,q}_{BC\phi}(X) = \dim H^{p,q}_{A\phi}(X) = \dim H^{p,q}_{\partial\phi}(X) = \dim H^{p,q}_{\partial\phi}(X_t) = \dim H^{p,q}_{\partial\phi}(X).$$
In particular, by Theorem 5.3 we have $h^k_{BC\phi} = h^k_{A\phi} = h^k_{\partial t}(X_t) = h^k_\partial = b_k$ \footnote{We follow the notations as given in [AT13], e.g. $h^k_{BC\phi} := \sum_{p+q=k} \dim H^{p,q}_{BC\phi}(X)$ and b_k is the k-th Betti number.}, namely, the Fröhlicher spectral sequence of $(A^{\bullet,\bullet}(X), \partial, \overline{\partial})$ degenerates at E_1.

Corollary 5.5. Let $\pi : (X, X) \to (B, 0)$ be a small deformation of the compact complex manifold X such that for each $t \in B$ the complex structure on X_t is represented by Beltrami differential $\phi(t)$. Then the set

$$T := \{ t \in B \mid X \text{ satisfies the } \partial\overline{\partial}_{\phi(t)} \text{-lemma} \}$$

is an analytic open subset (i.e. complement of analytic subset) of B. In particular, if $B \subset \mathbb{C}$ is a small open disc with $0 \in B$ and T is not empty, then $T = B$ or $T = B \setminus \{0\}$.

Proof. First, by Theorem 5.3, X satisfies the $\partial\overline{\partial}_{\phi(t)}$-lemma if and only if

$$h^k_{BC\phi(t)} + h^k_{A\phi(t)} = 2b_k. \tag{5.6}$$

We note that by Theorem 4.11 the set $\{ t \in B \mid (5.6) \text{ holds} \}$ is an analytic open subset of B since

$$\{ t \in B \mid h^k_{BC\phi(t)} + h^k_{A\phi(t)} = 2b_k, \ \forall \ k \} = B \setminus \{ t \in B \mid h^k_{BC\phi(t)} + h^k_{A\phi(t)} \geq 2b_k + 1, \ \forall \ k \}. \tag{5.7}$$

In particular, if X satisfies the $\partial\overline{\partial}$-lemma, then by the above corollary X also satisfies the $\partial\overline{\partial}_{\phi(t)}$-lemma for any small $t \in B$. Combining this with Remark 5.4, we get that the Hodge numbers $\dim H^{p,q}_{\partial t}(X_t)$ and $\dim H^{p,q}_{BC\phi(t)}(X)$ are independent of t.

Recall that a smooth manifold X is called formal if its de Rham complex $(A^\bullet(X), d)$ is formal as a differential graded algebra (DGA for short). The later means that there is a sequence of quasi-isomorphisms from $(A^\bullet(X), d)$ to its cohomology algebra $(H^\bullet_{dR}(X), 0)$ \footnote{Here, $(H^\bullet(X), 0)$ is considered as a differential graded algebra with trivial differential.}, see [DGMS75, FHT01].

Theorem 5.6. Let X be a compact complex manifold and X_t a small deformation (of X) whose complex structure is represented by a Beltrami differential $\phi \in A^{0,1}(X, T^1_X)$. If X satisfies the $\partial\overline{\partial}_{\phi}$-lemma, then X is formal.

Proof. Consider the following homomorphisms of DGA

$$\xymatrix{(A^\bullet(X), d_{\phi}) \ar[r]^-i & (A^\bullet(X) \cap \ker d_{\phi}, d_{\phi}) \ar[r]^-p & (H^\bullet_{d_{\phi}}(X), d_{\phi} = 0),}$$

where i is the inclusion and p is the projection. We claim that the induced map i^* is an isomorphism on cohomology. Indeed, $\forall x \in \ker d_{\phi} \cap \ker d_{\phi}^c$ if $x \in \Im d_{\phi}$ then by (5.2), $x \in \Im d_{\phi}d_{\phi}^c = \ker d_{\phi}$; on the other hand, by (5.3) $\forall x \in \ker d_{\phi}$ there exist $y \in A^\bullet(X)$ such that $x - d_{\phi}y \in \ker d_{\phi} \cap \ker d_{\phi}^c$, this shows that i^* is surjective. Similarly, one shows that p^* is an isomorphism on cohomology and $d_{\phi} = 0$ on $H^\bullet_{d_{\phi}}(X)$. The conclusion then follows since $(A^\bullet(X), d_{\phi})$ is isomorphic to $(A^\bullet(X), d)$ and $H^\bullet_{d_{\phi}}(X) \cong H^\bullet_{d_{\phi}}(X) \cong H^\bullet_{dR}(X)$. \hfill \square
6. The deformed Bott-Chern cohomology of the Iwasawa manifold and the holomorphically parallelizable Nakamura manifold

Example 6.1. Case III-(2). Let \(G \) be the matrix Lie group defined by

\[
G := \left\{ \begin{pmatrix} 1 & z^1 & z^3 \\ 0 & 1 & z^2 \\ 0 & 0 & 1 \end{pmatrix} \in \text{GL}(3; \mathbb{C}) \mid z^1, z^2, z^3 \in \mathbb{C} \right\} \cong \mathbb{C}^3.
\]

Consider the discrete subgroup \(\Gamma \) defined by

\[
\Gamma := \left\{ \begin{pmatrix} 1 & \omega^1 & \omega^3 \\ 0 & 1 & \omega^2 \\ 0 & 0 & 1 \end{pmatrix} \in G \mid \omega^1, \omega^2, \omega^3 \in \mathbb{Z}[[\sqrt{-1}]] \right\}.
\]

The quotient \(X = G/\Gamma \) is called the Iwasawa manifold. A basis of \(H^0(X, \Omega^1) \) is given by

\[
\phi_1 = dz^1, \quad \phi_2 = dz^2, \quad \phi_3 = dz^3 - z^1 dz^2,
\]

and a dual basis \(\theta^1, \theta^2, \theta^3 \in H^0(X, T^1_X) \) is given by

\[
\theta^1 = \frac{\partial}{\partial z^1}, \quad \theta^2 = \frac{\partial}{\partial z^2} + z^1 \frac{\partial}{\partial z^3}, \quad \theta^3 = \frac{\partial}{\partial z^3}.
\]

\(X \) is equipped with the Hermitian metric \(\sum_{i=1}^3 \phi_i \otimes \overline{\phi_i} \). The Beltrami differential of the Kuranishi family of \(X \) is

\[
\phi(t) = t_{i\lambda} \theta^i \overline{\varphi^\lambda} - D(t) \theta^3 \overline{\varphi^3}, \quad \text{with} \quad D(t) = t_{11} t_{22} - t_{21} t_{12},
\]

and the Kuranishi space of \(X \) is

\[
\mathcal{B} = \{ t = (t_{11}, t_{12}, t_{21}, t_{22}, t_{31}, t_{32}) \in \mathbb{C}^6 \mid |t_{i\lambda}| < \epsilon, i = 1, 2, 3, \lambda = 1, 2 \},
\]

where \(\epsilon > 0 \) is sufficiently small. Set

\[
\phi_1 = \sum_{i=1}^3 \sum_{\lambda=1}^2 t_{i\lambda} \theta^i \overline{\varphi^\lambda}, \quad \phi_2 = D(t) \theta^3 \overline{\varphi^3},
\]

and write the canonical deformation of \(\sigma_0 \in H^{p,q}_{BC}(X) \) by \(\sigma(t) = \sum_k \sigma_k \) with each

\[
\sigma_k = -G_{BC} A \sum_{i+j=k} \partial_i \phi_j \sigma_i,
\]

being the homogeneous term of degree \(k > 0 \) in \(t \in \mathcal{B} \). We will use the isomorphism \(H_{BC,\phi(t)}^{p,q}(X) \cong \text{dim} \, V_t / \ker f_t \) proved in Proposition 4.7 to compute \(\text{dim} \, H_{BC,\phi(t)}^{p,q}(X) \).

Since \(\mathcal{B} \) is a polydisc, it is sufficient to check the coefficients of \(d_{\phi(t)} \sigma(t) = 0 \), that is,

\[
(6.1) \quad \partial \sigma_k = \overline{\partial} \sigma_k + \sum_{j=1}^k \partial_i \phi_j \sigma_{k-j} = 0, \quad k > 0.
\]

Let us now consider Bott-Chern deformations of forms in the harmonic space:

\[
H_{BC}^{2,2}(X) = \mathbb{C}\{\varphi^2, \varphi^1, \varphi^3, \overline{\varphi^2}, \overline{\varphi^1}, \overline{\varphi^3}, \varphi^{12}, \varphi^{13}, \varphi^{23}, \varphi^{21}, \varphi^{32}, \varphi^{31}, \varphi^{23}, \varphi^{21}, \varphi^{32}, \varphi^{31} \}.
\]
Set $\sigma_0 = \sum a_{ijkl} \varphi^{ijkl} \in \mathcal{H}_{BC}^{2,2}(X)$, then

$$\partial i_{\phi_1} \sigma_0 = (-t_{12}a_{1313} + t_{11}a_{1323} - t_{22}a_{2313} + t_{21}a_{2323}) \varphi^{1213}$$

is $\bar{\partial}$-exact if and only if

$$(6.2) \quad t_{12}a_{1313} - t_{11}a_{1323} + t_{22}a_{2313} - t_{21}a_{2323} = 0,$$

and in this case

$$\sigma_1 = -G_{BC} A \partial i_{\phi_1} \sigma_0 = 0.$$

But

$$\partial i_{\phi_2} \sigma_0 = 0 \implies \sigma_2 = -G_{BC} A \partial (i_{\phi_2} \sigma_0 + i_{\phi_1} \sigma_1) = 0,$$

and $\phi_k = 0$, $k > 2$ we thus have $\sigma_k = 0$, $k > 2$.

Therefore, for $V = \mathcal{H}_{BC}^{2,2}(X)$ we have (see Definition 4.5)

$$V_t = \{ \sum a_{ijkl} \varphi^{ijkl} \in \mathcal{H}_{BC}^{2,2}(X) \mid (a_{1213}, a_{1223}, a_{1312}, a_{1323}, a_{2312}, a_{2313}, a_{2323}) \in \mathbb{C}^8$$

s.t. $\sigma(t) \in \ker d_{\phi(t)}$, where $\sigma(t) = \sum_k \sigma_k$ with $\sigma_0 = \sum a_{ijkl} \varphi^{ijkl}$

and $\sigma_k = -G_{BC} A \sum_{i+j=k} \partial i_{\phi_j} \sigma_i$, $\forall k \neq 0$}

$$= \{ \sum a_{ijkl} \varphi^{ijkl} \mid (a_{1213}, a_{1223}, a_{1312}, a_{1323}, a_{2312}, a_{2313}, a_{2323}) \in \mathbb{C}^8 \text{ satisfy } (6.2) \}. $$

On the other hand, $\text{Im} \bar{\partial} \phi(t) = \mathbb{C} \{ \partial \bar{\partial} \phi(t) \varphi^{33} \} = \mathbb{C} \{ \varphi^{1213} \}$ (Since X is parallelizable, we only need to consider left invariant forms. See the discussions in the last paragraph of this section) and

$$(\bar{\partial} \bar{\partial})^* \varphi^{1213} = (\ast \bar{\partial} \ast)(\ast \bar{\partial} \ast) \varphi^{1213} = -\ast \bar{\partial} \bar{\partial} \varphi^{33} = \varphi^{33} \neq 0,$$

implies

$$\ker f_t \cong \ker (\bar{\partial} \bar{\partial})^* \cap \text{Im} \bar{\partial} \phi(t) \cap A^{2,2}(X) = 0.$$

By Proposition 4.7 we have

$$(6.3) \quad \dim H_{BC\phi(t)}^{2,2}(X) = \dim V_t - \dim \ker f_t = \begin{cases} 8, & (t_{11}, t_{12}, t_{21}, t_{22}) = 0 \\ 7, & (t_{11}, t_{12}, t_{21}, t_{22}) \neq 0. \end{cases}$$

The other deformed Bott-Chern cohomology can be computed in the same way. Write $(i), (ii), (iii)$ for the three cases when $(t_{11}, t_{12}, t_{21}, t_{22}) = 0$, $(t_{11}, t_{12}, t_{21}, t_{22}) \neq 0$ and $D(t) = 0$, $D(t) \neq 0$, respectively. Then we have the following (where $h^{p,q} := \dim H_{BC\phi(t)}^{p,q}(X)$ and $t \in (i), (ii), (iii)$, respectively)

$h^{1,0}$	$h^{0,1}$	$h^{2,0}$	$h^{1,1}$	$h^{0,2}$	$h^{3,0}$	$h^{2,1}$	$h^{1,2}$	$h^{0,3}$	$h^{3,1}$	$h^{2,2}$	$h^{1,3}$	$h^{3,2}$	$h^{2,3}$
2	2	3	4	3	1	6	6	1	2	8	2	3	3
2	2	2	4	3	1	6	6	1	2	7	2	3	3
2	2	1	4	3	1	6	6	1	2	7	2	3	3
Comparing this with the computations made by Angella [Ang13] we see that $\dim H_{BC\phi(t)}^{p,q}(X) = \dim H_{BC}^{p,q}(X_t)$ is not true in general for $p = q$.

Example 6.2. Case III-(3b). Let $X = \mathbb{C}^3/\Gamma$ be the solvable manifold constructed by Nakamura in Example III-(3b) of [Nak75]. We have

$$H^0(X, \Omega^1_X) = \mathbb{C}\{\varphi^1 = dz^1, \varphi^2 = e^{z_1}dz^2, \varphi^3 = e^{-z_1}dz^3\},$$

$$H^0(X, T^{1,0}_X) = \mathbb{C}\{\theta^1 = \frac{\partial}{\partial z^1}, \theta^2 = e^{-z_1} \frac{\partial}{\partial z^2}, \theta^3 = e^{z_1} \frac{\partial}{\partial z^3}\},$$

$$\mathcal{H}^{0,1}(X) = \mathbb{C}\{\psi^1 = dz^1, \psi^2 = e^{z_1}dz^2, \psi^3 = e^{-z_1}dz^3\},$$

$$\mathcal{H}^{0,1}(X, T^{1,0}_X) = \mathbb{C}\{\theta^i \psi^\lambda, i = 1, 2, 3, \lambda = 1, 2, 3\},$$

where X is equipped with the Hermitian metric $\sum_{i=1}^3 \varphi^i \otimes \bar{\varphi}^i$. The Beltrami differential of the Kuranishi family of X is

$$\phi(t) = \phi_1 = t_{i\lambda} \theta^i \bar{\psi}^\lambda$$

and the Kuranishi space of X is

$$\mathcal{B} = \{t = (t_{11}, t_{12}, t_{13}, t_{21}, t_{22}, t_{23}, t_{31}, t_{32}, t_{33}) \in \mathbb{C}^9 \mid |t_{i\lambda}| < \epsilon, i = 1, 2, 3, \lambda = 1, 2, 3\},$$

where $\epsilon > 0$ is sufficiently small. We will restrict to the one parameter family defined by $t_{12} = t_{13} = t_{21} = t_{22} = t_{23} = t_{31} = t_{32} = t_{33} = 0$ and in this case the Beltrami differential is $\phi = \phi(t) = t \frac{\partial}{\partial z^1} dz^1$ where $t = t_{11}$.

Let us consider the Bott-Chern deformations of forms in

$$\mathcal{H}_{BC}^{2,1}(X) = \mathbb{C}\{e^{z_1}dz^{12T}, e^{2z_1}dz^{12\bar{T}}, e^{-z_1}dz^{13T}, e^{-z_1}dz^{13\bar{T}}, e^{-2z_1}dz^{13\bar{T}}, e^{z_1}dz^{13\bar{T}}, e^{z_1}dz^{12\bar{T}}\}.$$

Set

$$\sigma_0 = a_{121} e^{z_1} dz^{12\bar{T}} + a_{122} e^{2z_1} dz^{12\bar{T}} + a_{123} e^{-z_1} dz^{13T} + a_{131} e^{-z_1} dz^{13\bar{T}} + a_{132} e^{-2z_1} dz^{13\bar{T}}$$

$$+ a_{133} e^{z_1} dz^{13\bar{T}} + a_{231} e^{z_1} dz^{13T} + b_{131} e^{z_1} dz^{13\bar{T}} + b_{121} e^{-z_1} dz^{12\bar{T}},$$

then

$$\partial_i \sigma_0 = -2a_{122} i e^{2z_1} dz^{12\bar{T}} + 2a_{133} i e^{-z_1} dz^{13\bar{T}}$$

is $\bar{\partial}$-exact if and only if $t = 0$. Therefore, for $V = \mathcal{H}_{BC}^{2,1}(X)$ and $t \neq 0$ we have

$$V_t = \{\sigma_0 \in \mathcal{H}_{BC}^{2,1}(X) \mid (a_{121}, a_{122}, a_{123}, a_{131}, a_{132}, a_{133}, a_{231}, b_{131}, b_{121}) \in \mathbb{C}^9 \text{ s.t.}$$

$$\sigma(t) \in \ker d_{\phi(t)}, \text{where } \sigma(t) = \sum_k \sigma_k \text{ with } \sigma_k = -G_{BC}A \sum_{i+j+k} \partial_i \sigma_j \sigma_k, \forall k \neq 0\}$$

$$= \mathbb{C}\{e^{z_1}dz^{12T}, e^{-z_1}dz^{13T}, e^{-z_1}dz^{13\bar{T}}, e^{z_1}dz^{13\bar{T}}, e^{-z_1}dz^{12\bar{T}}\}.$$
and
$$\dim \ker f_t = \dim \ker (\partial \bar{\partial})^* \cap \text{Im } \partial \bar{\partial}_{\phi(t)} \cap A^{2,2}(X) = 2.$$

By Proposition 4.7 we have
$$\dim H^{2,1}_{BC\phi(t)}(X) = \dim V_t - \dim \ker f_t = \begin{cases} 9, & t = 0 \\ 5, & t \neq 0 \end{cases}.$$

We summarise the computations of the deformed Bott-Chern cohomology in this case as follows (where $h^{p,q} := \dim H^{p,q}_{BC\phi(t)}(X)$ and $t = 0, \neq 0$, respectively):

$h^{1,0}$	$h^{0,1}$	$h^{2,0}$	$h^{1,1}$	$h^{0,2}$	$h^{3,0}$	$h^{2,1}$	$h^{1,2}$	$h^{0,3}$	$h^{3,1}$	$h^{2,2}$	$h^{1,3}$	$h^{3,2}$	$h^{2,3}$
1	1	3	7	3	1	9	9	1	3	11	3	5	5
1	1	1	5	3	1	5	7	1	1	7	3	3	3

From this table and [AK17b], we notice that X_t satisfy the $\partial \bar{\partial}$-lemma but X does not satisfy the $\partial \bar{\partial}_{\phi(t)}$-lemma for any $t \neq 0$.

We need to point out that in the above computations (especially those concerning $\ker (\partial \bar{\partial})^* \cap \text{Im } \partial \bar{\partial}_{\phi(t)}$), only invariant forms is considered. This is valid because the Bott-Chern cohomology of complex parallelizable manifold may be computed by left invariant forms [Ang13] and given a family of deformations $\{X_t\}_{t \in B}$ of such manifolds the set of t for which the deformed Bott-Chern cohomology may be computed by left invariant forms is an open subset of B (this will be proved in [Xia20]).

Acknowledgements. I would like to thank Prof. Kefeng Liu for his constant encouragement and many useful discussions. Many thanks to Shengmao Zhu, Sheng Rao and Daniele Angella for useful communications. I would also like to thank Prof. Bing-Long Chen for his constant support.

References

[ADT16] D. Angella, G. Dloussky, and A. Tomassini. On Bott-Chern cohomology of compact complex surfaces. *Ann. Mat. Pura Appl. (4)*, 195(1):199–217, 2016.

[AK17a] D. Angella and H. Kasuya. Bott-Chern cohomology of solvmanifolds. *Ann. Global Anal. Geom.*, 52(4):363–411, 2017.

[AK17b] D. Angella and H. Kasuya. Cohomologies of deformations of solvmanifolds and closedness of some properties. *North-West. Eur. J. Math.*, 3:75–105, 2017.

[Ang13] D. Angella. The cohomologies of the Iwasawa manifold and of its small deformations. *J. Geom. Anal.*, 23(3):1355–1378, 2013.

[ASTT20] D. Angella, T. Suwa, N. Tardini, and A. Tomassini. Note on Dolbeault cohomology and Hodge structures up to bimeromorphisms. *Complex Manifolds*, 7(1):194–214, 2020.

[AT13] D. Angella and A. Tomassini. On the $\partial \bar{\partial}$-lemma and Bott-Chern cohomology. *Invent. Math.*, 192(1):71–81, 2013.

[AT15a] D. Angella and A. Tomassini. Inequalities à la Frölicher and cohomological decompositions. *J. Noncommut. Geom.*, 9(2):505–542, 2015.
D. Angella and A. Tomassini. On Bott-Chern cohomology and formality. *J. Geom. Phys.*, 93:52–61, 2015.

D. Angella and N. Tardini. Quantitative and qualitative cohomological properties for non-Kähler manifolds. *Proc. Amer. Math. Soc.*, 145:273–285, 2017.

R Bott and S.-S. Chern. Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. *Acta Math.*, 114:71–112, 1965.

P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan. Real homotopy theory of Kähler manifolds. *Invent. Math.*, 29(3):245–274, 1975.

Y. Félix, S. Halperin, and J.-C. Thomas. Rational homotopy theory. In *Rational Homotopy Theory*, volume 205 of Graduate Texts in Mathematics. Springer-Verlag New York, 2001.

R. Kooistra. *Regulator currents on compact complex manifolds*. PhD thesis, University of Alberta, 2011.

K. Liu, S. Rao, and X. Yang. Quasi-isometry and deformations of Calabi-Yau manifolds. *Invent. Math.*, 199(2):423–453, 2015.

L. Meng. The heredity and bimeromorphic invariance of the ∂∂-lemma property. arXiv:1904.08561v2 [math.CV], 2019.

J. Morrow and K. Kodaira. *Complex manifolds*. AMS Chelsea Publishing, Providence, RI, 2006. Reprint of the 1971 edition with errata.

I. Nakamura. Complex parallelisable manifolds and their small deformations. *J. Differential Geom.*, 10(1):85–112, 1975.

D. Popovici. Deformation openness and closedness of various classes of compact complex manifolds; examples. *Ann. Sc. Norm. Super. Pisa Cl. Sci.*, 13(2):255–305, 2014.

S. Rao, S. Yang, and X.-D. Yang. Dolbeault cohomologies of blowing up complex manifolds. *J. Math. Pures Appl.*, 2019. https://doi.org/10.1016/j.matpur.2019.01.016.

S. Rao and Q. Zhao. Several special complex structures and their deformation properties. *J. Geom. Anal.*, 28(4):2984–3047, 2018.

M. Schweitzer. Autour de la cohomologie de Bott-Chern. arXiv:0709.3528v1 [math.AG], 2007.

J. Stelzig. The double complex of a blow-up. arXiv:1808.02882v2 [math.AG], 2018.

J. Stelzig. On the structure of double complexes. arXiv:1812.00865v1, 2018.

C.-C. Wu. *On the geometry of superstrings with torsion*. ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–Harvard University.

W. Xia. Deformations of Dolbeault cohomology classes. arXiv:1909.03592, 2019.

W. Xia. Derivations on almost complex manifolds. *Proc. Amer. Math. Soc.*, 147:559–566, 2019. Errata in arXiv:1809.07443v3.

W. Xia. Deformations of Dolbeault cohomology classes for Lie algebra with complex structures, in preparations, 2020.

S. Yang and X. Yang. Bott-Chern blow-up formulae and the bimeromorphic invariance of the ∂∂-lemma for threefolds. *Trans. Amer. Math. Soc.*, 373(12):8885–8909, 2020.

Wei Xia, Mathematical Science Research Center, Chongqing University of Technology, Chongqing, P.R. China, 400054.

Email address: xiaweiwei3@126.com