Diet, *H pylori* infection and gastric cancer: Evidence and controversies

Alba Rocco, Gerardo Nardone

Abstract

Despite decreasing incidence and mortality rates, gastric cancer (GC) still remains the fourth most common cancer and the second most common cause of cancer-related deaths worldwide. Due to the limited treatment options, at present, prevention is likely to be the only effective means of controlling this disease. The success of a prevention strategy depends upon the understanding of etiological and pathogenic mechanisms underlying gastric carcinogenesis. The etiology of GC is multi-factorial, however, in the recent years, mounting evidence suggests that environmental factors play a key role. The most important environmental factors implicated in the pathogenesis of GC are diet and *H pylori* infection. Thus, modifications in lifestyle and dietary habit associated with eradication of *H pylori* infection could hypothetically represent the most promising potential targets for GC prevention. In this review we will address the evidence and the controversies on the role of these agents in non-cardia GC by focusing on retrospective and prospective observational studies and interventional trials.

© 2007 The WJG Press. All rights reserved.

Key words: Gastric cancer; *H pylori*; Diet; Observational studies; Intervventional dietary trials

Rocco A, Nardone G. Diet, *H pylori* infection and gastric cancer: Evidence and controversies. *World J Gastroenterol* 2007; 13(21): 2901-2912

http://www.wjgnet.com/1007-9327/13/2901.asp

INTRODUCTION

Despite the decreasing incidence and mortality rates observed worldwide over the last 50 years, gastric cancer (GC) still ranks as one of the most frequent and lethal cancers worldwide[1]. Today, GC is the fourth leading cancer type in incidence accounting for almost a million new cases diagnosed annually (International Agency for the Research on Cancer-IARC 2002)[2]. At present, primary or secondary prevention are likely to be the most effective means of reducing the incidence of and mortality from this disease. However, to be successful, this strategy depends upon knowledge of the etiologic factors involved in gastric carcinogenesis.

Topographically, GC may arise in the cardia of the stomach or more distally (non-cardia cancer)[3]. Besides the individual genetic susceptibility, epidemiological data suggest that environmental factors are the predominant cause of this disease even if the etiology and possibly the pathogenesis of these two types of cancer may be completely different[2-3].

The most important factors thought to be responsible for non-cardia GC development are diet and *H pylori* infection. In this review we will address the evidence of and the controversies on the role of these agents in non-cardia GC by focusing on retrospective and prospective observational studies and interventional trials.

DIET AND GASTRIC CANCER

The relationship between diet and cancer has been clearly demonstrated since the 1930s, in a series of experimental classical studies in which severe caloric restriction markedly reduced the occurrence of cancer in rodents[4]. In 1982 the World Health Organization (Food & Agriculture Organization) stated that eating habits were the main factor involved in GC risk.

Numerous epidemiology studies aimed at evaluating the role of diet in gastric carcinogenesis have been carried out both in high- and low-risk geographic areas (Table 1, Table 2 and Table 3). Despite the lack of homogeneity of age, ethnicity, socio-economic status of the populations studied as well as the different methodological approaches, one of the most remarkable features emerging from these studies is the consistency with which certain foods are reported as being important in the modulation of risk of developing GC.

Observational epidemiology studies

The majority of the case-control epidemiological studies[5-20] have shown that high intake of salted, pickled or smoked foods, as well as dried fish and meat and refined carbohydrates significantly increases the risk of developing
Table 1 Epidemiological studies (population-based case-control) on dietary factors and gastric cancer

Author	Yr	Geographic area	Case/Control	Increased risk	Decreased risk
Risch HA	1985	Canada	246/146	Nitrite, chocolate, carbohydrates	Fiber, Vit. C
Buatti E	1990	Italy	1016/1159	Nitrites, protein	Vit. C, β-carotene, α-tocopherol, vegetable fat
Graham S	1990	USA	295/293	Sodium, fat, retinol	β-Carotene, raw vegetables, onions, cucumbers
Ramon JM	1993	Spain	117/234		Vit. A, Vit. C
Kaaks R	1998	Belgium	301/2851	Vit. A, Vit. B12, mono, disaccharides	Polysaturated fat, fat, fiber, fiber, fiber, fiber, fiber
Lopez-Carrillo LD	1999	Mexico	220/2752	Protein, saturated fat, cholesterol	Polysaturated fat, fat, fiber, fiber, fiber, fiber
Mathew A	2000	India	194/305	Rice, spicy foods, chili, high-temperature food	--
Palli D	2001	Italy	382/561	Protein, nitrite, sodium	Vit. C/B6, β-carotene, α-tocopherol, nitrates
Mayne ST	2001	USA	352/687	Animal protein, cholesterol, Vit. B12, nitrite	Fiber, β-carotene, folate, Vit. C
Jedyrczowski W	2001	Poland	80/--	Carbohydrates	Vit. E, β-carotene
Hamada GS	2002	Brazil	97/192	Beef	Fruits
Chen H	2002	Nebraska	124/449	Saturated fat	Fiber, Vit. C
Hara M	2003	Japan	149/287		Cruciferous vegetables, mushrooms
Nomura AM	2003	Hawaii	300/446	Processed meat, bacon	β-carotene, Vit. C, Vit. E, folate
Lagiou F	2004	Greece	110/100		Flavonone
De Stefani E	2004	Uruguay	240/960	Salted-stewed meat, rice, tuber	Vegetables, legumes, fruit, black tea

Table 2 Epidemiological prospective cohort studies on association between dietary factors and GC (1990-2004)

Author	Yr	Geographic area	Subjects	FU yr	Increased risk	Decreased risk	No effect	
Chyoun PH	1990	USA (Hawaii)	8006	18	Carbohydrates, salted-fish, bacon, cooked cereals, milk	--	Green/cruciferous vegetables, -- fruit	
Kneller RW	1991	USA	17633	20	Alcohol, broiling meat	Fruit	--	
Kato I	1992	Japan	9753	6	Alcohol, broiling meat	Fruit	--	
Nomura A	1995	USA (Hawaii)	8006	25	Fruit, vegetables	Alcohol	--	
Dorant E	1996	The Netherlands	120852	3.3	Onions	Leek, garlic	--	
Goldbohm RA	1998	The Netherlands	120852	4.3	Onions	Black tea	--	
Ocke MC	1998	The Netherlands	12763	25	Vegetables, fruit, fiber-rich cereals	--	--	
Terry P	1998	Sweden	11946	25	Fruit	--	--	
Galanis DJ	1998	USA (Hawaii)	11907	14.8	Coffee	Pickled vegetables, dried/salted fish	--	
Knekt P	1999	Finland	9985	24	Nitrites, vitamins, NMHA	Vegetables	Whole grain, Folate, Vit. E, carotene, lycopene, fibers, BHA, BHT, Green tea	
Jansen MC	1999	Netherlands	12000	25	Refined grains	Fruit	--	
Botterweck AA	2000	The Netherlands	120852	6.3	Retinol, carotene	Vit. C	--	
Tsubono Y	2001	Japan	26311	8	Vegetables	Vegetables, citrus, fruit, whole grain	--	
McCulloch ML	2001	USA	1200/000	14	Vegetables	Vegetables, citrus, fruit, whole grain	--	
Nagata CS	2002	Japan	33304	7	Soy products	Green/yellow vegetables, fruit, --	--	
Ngoan LT	2002	Japan	13000	10	Processed meat, cooking oil, pickled food, soup	--	--	--
Kobayashi M	2002	Japan	39993	10	Meat pattern	Vegetable and fruit pattern	--	
Masaki M	2003	Japan	5765	10	Rice/snack pattern	Western breakfast pattern	--	
Khan MM	2004	Japan	3158	18	Miso soup, Miso soup, Miso soup	--	--	--
Kim MK	2004	Japan	42112	10	Traditional dietary pattern	Healthy dietary pattern	--	
Sasaraeki S	2004	Japan	72743	11	Red and processed meat, ENOC	Green tea	--	
EPIC	2006	Europe	521457	6.6	Total vegetable intake, Onion, garlic	Dietary Vitamin C	--	

Effect limited to women; Effect limited to men; FU: follow-up; NDMA: N-nitroso dimethylamine. EPIC: European prospective investigation into cancer and nutrition study; BHA: butylated hydroxyanisole; BHT: butylated hydroxyltoluene (cooking fats, oils, mayonnaise, creamy salad dressing, dried soup); ENOC: endogenous nitroso compounds.

GC while fiber, fresh vegetables and fruits were found to be inversely associated with GC risk (Table 1).

High consumption of refined carbohydrates has been shown to be associated with a significant increased risk of developing GC with an estimated odds ratio (OR) ranging from 1.5 to 8.73/100 mg of daily intake. The increased trend in risk appeared particularly high in females (OR highest quartile of consumption frequency [Q4] vs lowest quartile [Q1] 14.8). High consumption of saturated fat and cholesterol enhanced the risk of cancer for intestinal

www.wjgnet.com
type GC (OR Q4 vs Q1 4.37; 95% CI 1.89-10.12 for saturated fat and OR Q4 vs Q1 2.39; 95% CI 1.23-4.64 for cholesterol)\[^8\].

The analysis of dietary micronutrients (vitamin C, vitamin E, carotenoids, fiber, flavonoids and selenium) commonly held to be protective against GC yielded conflicting results. While evidence on the protective effect of beta-carotene has been very consistent, the approximate halving risk associated with vitamin C intake, reported in some studies (OR ranging from 0.3; 95% CI 0.1-0.8 to 0.60; CI 0.41-0.88)\[^8,9,12,13\] has not been confirmed in others\[^3,8,18\].

Epidemiological approaches of case-control design could, in part, account for these contrasting results. Indeed, observational case-control studies are biased by the retrospective assessment of exposure to dietary risk factors: the onset of the symptoms affects the dietary habit and it is difficult to determine it following the diagnosis of cancer (“recall-bias”).

Observational cohort studies, in which the evaluation of diet is unaffected by symptoms, should ideally provide much more reliable evidence. Analysis of the data obtained in 21 studies involving a total of 1 651 231 individuals, followed for periods ranging between 3.3 and 25 years\[^21-44\], substantially confirmed the significant increased risk of developing GC due to high intake of total carbohydrates, salted fish, processed meat, refined grains and saturated fat\[^22,31,36\].

Two Japanese studies based on the analysis of dietary patterns failed to demonstrate an increased risk of GC in middle-aged males with a “meat” or “rice” prevalent diet (relative risk [RR] 1.00; 95% CI 0.55-1.10 and RR 1.00; 95% CI 0.52-1.19, respectively)\[^38\] while the “traditional pattern” was a risk factor for both genders (RR 2.88; 95% CI 1.76-4.72 for males and RR 2.40; 95% CI 1.32-4.35 for females)\[^40\]. A large prospective study on diet and cancer carried out on 521 457 individuals aged 35-70 years recruited in 10 European countries (EPIC-European Prospective Investigation into Cancer and Nutrition study), by analyzing 314 incident cases of GC that had occurred after 6.6 average years of follow-up, reported a significant increase of non-cardia cancer risk associated with intake of total meat (calibrated HR per 100 g/d increase 3.52; 95% CI 1.96-6.34), red meat (calibrated HR per 50 g/d increase 1.73; 95% CI 1.03-2.88), and processed meat (calibrated HR per 50-g/d increase 2.45; 95% CI 1.43-4.21). The risk of developing GC was particularly high in \textit{H pylori} antibody-positive subjects\[^42\]. Similar results were obtained for the endogenous formation of nitroso compounds (ENOC). ENOC was significantly associated with non-cardia cancer risk (HR 1.42; 95% CI 1.14-1.78 for an increase of 40 mg/d) especially in those cases with \textit{H pylori} infection (\textit{P} for interaction = 0.09)\[^43\].

Data on the protective role of fresh fruit and vegetables against stomach cancer were somewhat controversial. The analysis of 11 546 individuals included in the Swedish Twin Registry demonstrated that the lowest compared to the highest fruit and vegetable intake had a RR of developing GC of 5.5 (95% CI 1.7-18.3) with a statistically significant dose-risk trend \((\textit{P} < 0.05)\[^29\]. The Japan-Hawaii Cancer Study on 8006 Hawaiian men of Japanese ancestry reported that all types of vegetables were protective against GC. Subjects in the group of highest vegetable consumption (\(\geq\) 80 g/d) had a RR of developing GC of 0.6 (95% CI 0.3-0.9) compared to non-consumers\[^21,24\].

Green and yellow vegetables showed the highest protective effect against GC (RR 0.4; 95% CI 0.2-0.9 and 0.64; 95% CI 0.45-0.92, respectively)\[^16,17\].

On the other hand, the Seven Countries Study Research Group found no association between total vegetable intake and GC risk\[^11\]. Finally, the Cancer Prevention Study, on a cohort of 1.2 million United States individuals, demonstrated a reduced risk in males (RR 0.79; 95% CI, 0.67-0.93) and an unexpected increased risk in females (RR 1.25; 95% CI 0.99-1.58)\[^38\].

Data from EPIC study analysing the association of plasma and dietary vitamin C levels with the risk of GC, after adjustment by body mass index, total energy intake, smoking (status, duration and intensity) and \textit{H pylori} status demonstrated no association with GC risk for dietary vitamin C. In contrast an inverse GC risk was observed in the highest versus lowest quartile of plasma vitamin C (OR 0.55 95% CI 0.31-0.97). The inverse association was more pronounced in subjects consuming higher levels of red and processed meats, a factor that may increase endogenous N-nitroso compound production. The protective effect of plasma vitamin C was independent of GC anatomical sub-site (cardia \textit{vs} non-cardia) or histological sub-type (diffuse \textit{vs} intestinal) or presence of \textit{H pylori} infection\[^44\].

Several epidemiology studies specifically addressed the association of garlic consumption and risk of stomach cancer. Six case-control studies analyzing on the whole 3209 GC cases and 7600 controls, suggested a protective effect of high intake of raw and/or cooked garlic for

Table 3 Randomised controlled dietary intervention trials for prevention of stomach cancer

Author	Yr	Geographic area	Subjects	Dietary intervention	Intervention (yr)	FU (yr)	Results
Wang GQ\[^a\]	1994	China	29 584	retinol/zinc; riboflavin/niacin; Vit. C/molybdenum; carotene/Vit.E/selenium	5.25	5.25	↓ gastric cancer mortality
Varis K\[^a\]	1998	Finland	29 133	α-tocopherol 50 mg/d; β-carotene 20 mg/d; Folate 20 mg/d + Vit. B12 1 mg/mo	5	5	= gastric cancer incidence
Malila N\[^a\]	2002	Finland	29 133	Natural β-carotene 30 mg/d	5.8	8	= gastric cancer incidence
Zhu S\[^a\]	2003	China	216	Synthetic β-carotene 30 mg/d	2	8	No change cancer incidence
Li H\[^a\]	2004	China	2526	Synthetic allitridum 200 mg + selenium 100 mg	2	5	No change cancer incidence

FU: follow-up.
GC (OR ranging from 0.3 to 0.89; 95% CI 0.12-0.77 and 0.64-1.24, respectively)\(^{6,45-49}\). Only one cohort study (based on a case-cohort approach) compared the intake of garlic supplements of 152 subjects who developed GC during a 3.3 years follow-up with that of a random sample from the entire cohort who did not developed any type of cancer. Beside the expectative, garlic supplements slightly increased the risk of developing GC (RR 1.27; 95% CI 0.6-2.6)\(^{52}\).

Tea is one of the most popular beverages in the world and the consumption of tea has been hypothesized to be associated with a decreased risk of GC\(^{50}\). The catechins and their strong antioxidant and anti-angiogenic activity as well as their potential to inhibit cell proliferation and modulate carcinogen metabolism could be responsible for the biological benefits of tea\(^{51,52}\).

However, epidemiological studies analyzing the relationship between tea and GC risk yielded conflicting results\(^{57,58,53-62}\). Among the case-control studies, eight showed that high consumers of green tea (≥ 10 cups/d) had a statistically significant reduction of the risk of developing GC\(^{47,50,53,58}\), three studies failed to demonstrate any significant decrease of the GC risk\(^{59-61}\) and the remaining showed an opposite result\(^{62}\). The majority of the prospective studies did not find an inverse association between tea consumption and the risk of GC\(^{26,33,54,64}\). In contrast, three studies\(^{41,65,66}\) confirmed the protective role of tea against GC particularly for non-cardia GC (OR 0.51 95% CI 0.30-0.86) in the highest category of green tea consumption (≥ 5 cups/d \(x\) ≤ 1 cup/d)\(^{81}\). On the basis of this epidemiological evidence no convincing claims can be made with regard to the protective effect of garlic and tea on GC. However, low study power, variability in consumption categorization within studies and poor adjustment for potential confounders may limit the reliability of any conclusion regarding garlic and tea supplementation.

Interventional dietary trials for prevention of gastric cancer

Randomized clinical trials provide one of the most scientifically rigorous approaches for testing hypotheses emerging from epidemiological and experimental studies and represent the ideal strategic approach to evaluate inhibition of cancer development by preventive measures.

The most relevant finding reported by the observational studies analyzing the role of diet in GC development concerns the inverse association between fruit and vegetable intake and GC risk. These foods contain phytochemicals endowed with anticancer and anti-inflammatory properties and are rich in ascorbic acid, beta-carotene and other carotenoids offering many health benefits. Dietary interventional trials for stomach cancer prevention have, therefore, been based mainly on long-term supplementation with anti-oxidant micronutrients given alone or in combination (beta-carotene, vitamin A, vitamin C, vitamin E, selenium)\(^{67-71}\). However, all interventional studies but one\(^{72}\) failed to demonstrate any significant change in the risk of GC in subjects receiving anti-oxidant supplementation (Table 3). The most important study, the “General Population Trial” involving 29,584 subjects residing in Linxian, China, and followed for 5.25 years, demonstrated no statistically significant reduction in the prevalence of GC for any of the interventional arms, even though, a reduction in total mortality, total cancer mortality and stomach cancer mortality was found among those receiving beta-carotene, vitamin E and selenium\(^{67}\). Similar results were obtained in the Alpha-Tocopherol Beta-Carotene (ATBC) Cancer Prevention Study conducted in Southwest Finland and involving 29,133 middle-aged male smokers observed between 1985 and 1993\(^{68,69}\). Long-term supplementation with alpha-tocopherol (50 mg/d) and/or beta-carotene (20 mg/d), both at five- and six-year follow-up, had no significant effect on the overall incidence of GC (RR 1.21 95% CI 0.85-1.74 for alpha-tocopherol and RR 1.26 95% CI 0.88-1.80 for beta-carotene). Paradoxically, a subgroup analysis according to histological type suggested an increased risk for beta-carotene on intestinal type cancer (RR 1.59 95% CI 0.99-2.56)\(^{68,69}\). Finally, another study involving 216 atrophic gastritis patients treated with folic acid and/or beta-carotene supplementation and followed for a period of 8 years failed to demonstrate any significant reduction in the incidence of GC. However, folic acid significantly improved gastric mucosa lesions by reversing gastric atrophy, inflammation and intestinal metaplasia and dysplasia at the end of follow-up\(^{73}\).

On the other hand, a double-blinded interventional study involving 2,526 subjects at risk of developing GC and 2,907 controls from a Chinese province, demonstrated, in the first five years of follow-up, a significant reduction in the morbidity rates of malignant gastric tumours in the intervention group treated with large doses of synthetic allitridium associated with microdoses of selenium for a period of 3 years (RR 0.48; 95% CI 0.21-1.06 for the entire population and RR 0.36; 95% CI 0.14-0.92 for male group)\(^{74}\).

H pylori infection and GC risk

Since the incidental discovery in 1983, the association of H pylori with GC has become a hot topic of gastroenterological studies. Just a decade later, a large cross-sectional study (the EUROGAST study) involving 17 populations from 13 different countries (United States, Japan and 11 European countries), concluded that H pylori-infected patients had six-fold increased risk of GC compared with uninfected subjects\(^{75}\). In 1994, despite some controversial opinion, the International Agency for Research on Cancer declared H pylori to be a group I human carcinogen for gastric adenocarcinoma\(^{76}\). The statement was mainly based on epidemiological investigations since no experimental studies had been performed at that time to prove the causal link between H pylori and GC. Currently, although substantial evidence supports the role of H pylori infection in GC development, the magnitude of the risk of GC associated with infection remains unclear.

Many epidemiological studies have been conducted in an attempt to address this issue (Tables 4 and 5). Retrospective case-control studies analyzing on the whole 8,306 GC cases and 15,884 controls reported an increased risk of developing GC for patients with H pylori infection.
Table 4 Epidemiological studies (case/control) on association between H. pylori infection and GC risk (1990-2005)

Author	Yr	Geographic area	Case/Control n	OR (95% CI)	Detection of infection
Leffeld R11	1990	The Netherlands	91/401	2.04 (1.07-3.91)	Serology
Caruso ML12	1990	Italy	44/22	1.42 (0.79-2.63)	Serology
Talley NJ13	1991	USA	69/252	1.63 (1.00-2.67)	Serology
Sipponen P14	1992	Finland	54/84	2.21 (1.01-4.49)	Serology, histology
Kuipers EJ15	1993	The Netherlands	114/116	0.86 (0.44-1.69)	Serology
Estevens J16	1993	Portugal	80/80	0.54 (0.24-1.19)	Serology
Blaser MJ17	1993	Japan	29/58	2.14 (0.72-6.40)	Serology
Tatsuta M18	1994	Japan	41/19	2.62 (0.98-6.86)	Biopsy culture
Buruk F19	1995	Turkey	46/40	1.89 (0.69-5.21)	Serology
Hansson LE20	1995	Sweden	112/103	2.60 (1.35-5.02)	Serology
Archimandritis A21	1995	Greece	47/50	1.23 (0.51-2.95)	Serology
Lin JT22	1995	China, Taiwan	143/823	1.42 (0.97-2.18)	Serology
Hu HY23	1994	China	51/102	5.10 (1.70-15.5)	Serology, histology
Sipponen P24	1994	Finland	243/1408	3.11 (1.99-4.74)	Histology
Asaka M25	1994	Japan	213/213	2.55 (1.44-4.44)	Serology
Kikuchi S26	1995	Japan	105/102	13.3 (5.3-35.6)	Serology
Rud J27	1995	Germany	111/111	1.39 (0.82-2.36)	Serology
Fukuda H28	1995	Japan	282/767	1.13 (0.81-1.58)	Serology
Menegatti M29	1995	Italy	307/162	3.66 (2.33-5.74)	Serology, histology
Asaka M30	1995	Japan	109/109	2.40 (1.30-4.80)	Serology
Hata RA31	1996	Japan	95/95	1.03 (1.05-3.12)	Serology
Shibata T32	1996	Japan	50/50	1.10 (0.42-2.86)	Serology
Kato S33	1996	Japan	82/151	1.12 (0.60-2.07)	Serology
Kokkola A34	1996	Finland	50/22	3.27 (1.42-7.52)	Histology
Menegatti M35	1996	Italy	148/54	4.02 (1.99-8.17)	Serology, histology
Sivaparakash R36	1996	India	75/77	1.91 (1.00-3.67)	Serology, biopsy culture
Kim HY37	1997	Korea	160/160	1.39 (0.89-2.17)	Serology
Mielikle S38	1997	Germany	215/215	16.7 (9.6-28.1)	Serology, histology
Shi Y102	1997	China	110/125	3.30 (1.90-5.59)	Serology
Barreto-Zuniga R11	1997	Japan	58/75	3.00 (1.69-5.33)	Serology
Martin-de-Arjila C104	1997	Spain	48/50	3.91 (1.02-8.86)	Serology
Azuma T105	1998	Japan	82/167	2.97 (0.54-1.75)	Serology
Komoto K106	1998	Japan	105/105	4.50 (2.33-13.4)	Serology, histology
Wu MS107	1998	Taiwan	135/135	2.43 (1.29-4.65)	Serology
Whiting JL108	1998	UK	154/154	1.67 (1.01-2.75)	Serology
Lee BM109	1998	Korea	175/113	5.20 (3.10-8.70)	CLO test
Kikuchi S110	1999	Japan	103/101	15.0 (4.84-55.2)	Serology
Zhang Ze111	1999	USA	134/65	11.2 (2.5-50.3)	Histology
Cai L112	2000	China	101/101	3.45 (0.90-13.2)	Serology
Enroth H113	2000	Sweden	72/324	2.1 (1.1-3.9)	Serology, histology
Chang WK114	2001	Korea	136/136	1.82 (1.10-3.30)	Serology
Ekstrom AM115	2001	Sweden	298/244	5.0 (1.10-23.6)	Serology
Fujokatu N116	2001	Brazil	93/186	0.80 (0.47-1.36)	Serology
Konturek SJ117	2002	Poland	337/337	2.59 (1.64-4.22)	Serology
Sriamporn S118	2002	Thailand	111/232	0.60 (0.40-1.0)	Serology
Wu AH119	2003	USA	127/356	1.85 (1.03-3.32)	Serology
Brenner H120	2004	Germany	68/360	18.3 (2.4-136.7)	Serology
Machida-Montani A121	2004	Japan	122/235	8.20 (3.70-18.2)	Serology
Kato M122	2004	Japan	2503/6578	2.47 (2.19-2.97)	Serology
Nomura AM123	2005	Hawaii	299/336	4.86 (5.90-8.13)	Serology

1Japanese Brazilian; 2non-Japanese Brazilian.

(OR ranging from 1.10; 95% CI 0.43-2.86 to 18.3; 95% CI 2.4-136.7). However, five studies failed to demonstrate any significant risk associated to previous or concurrent H pylori infection.10,10-115,116,117 Retrospective case-control studies are limited “per se” by several biases. In GC patients (cases) H pylori infection is usually assessed after the development of cancer, but advanced gastric diseases can be characterized by the loss of infection resulting in a fall of the circulating anti-H pylori antibodies. In addition, the type of control population and the absence of adjustment for confounding factors (age, sex, smoking, and dietary habit) can hamper the statistical evaluation leading, to over- or underestimation of the real risk linked to H pylori infection.

Prospective studies, by contrast, should be more informative because they use internal control “nested” within a cohort. The infection is assessed by examining blood samples taken years before the onset of clinical disease, so that the enrollment of the studied population did not suffer of selection bias. All cohort studies111-113 reported an increased risk of developing GC associated to H pylori infection (OR ranging from 1.06; 95% CI 0.80-1.40 to 6.0; 95% CI 2.1-17.3) (Table 5). Only one study conducted in a high-risk population from Shanghai,
China, failed to demonstrate an association between *H. pylori* infection and the subsequent risk of GC[132]. However, an update of the results at longer follow-up and by using an enzyme-linked immunosorbent assay (ELISA) based on strains validated among the Shanghai residents showed a statistically significant association between *H. pylori* seropositivity and GC risk (OR 1.84; 95% CI, 1.08-3.11 raising to 3.74; 95% CI 1.51-9.30 among subjects followed for 5 or more years after enrolment)[134].

A meta-analysis of cohort and case-control studies evaluated that the summary OR for GC in *H. pylori* infected patients was 1.92 (95% CI 1.32-2.78), 2.24 (95% CI 1.15-4.4), and 1.81 (95% CI, 1.16-2.84) for all studies, cohort, and case-control studies, respectively. The risk of developing GC was greatest in younger patients (OR 9.29 at age < 29 years) and was equally associated with the intestinal or diffuse type GC[144]. A combined analysis of 12 case-control studies (6 from Europe, 4 from Asia, 2 from the United States) nested with prospective cohorts and involving 1228 GC cases and 3406 controls, revealed that the association of *H. pylori* infection with GC was restricted to non-cardia cancers (OR 2.97; 95% CI 2.3-3.7), and was stronger when blood samples for *H. pylori* serology were collected ten years or more before cancer diagnosis (OR 5.9; 95% CI 3.4-10.3)[145]. However, the most powerful evidence comes from a prospective study on 1526 Japanese patients followed for approximately 7.8 years. GC developed in 36 out of 1246 *H. pylori*-positive patients (2.9%) in contrast to none of the 280 non-infected subjects[146].

Infection with cagA-positive strains further increases the risk of developing GC. According to a recent meta-analysis of 2284 cases and 2770 controls, infection with cagA-positive strains increased the risk of developing GC up to 1.64-fold (95% CI 1.21-2.24) for all sites GC and 2.01-fold (95% CI 1.21-3.32) for non-cardia GC[147].

The close relationship between *H. pylori* infection and GC leads to the critical question of whether antimicrobial therapy can be considered for GC chemoprevention. A prospective, randomized, placebo-controlled, population study carried out in a high-risk area of China involving 1630 subjects observed from 1994 to 2002 reported a comparable incidence of GC in the subjects receiving *H. pylori* eradication treatment and those receiving placebo. However, eradication of *H. pylori* significantly decreased the development of GC in a subgroup of *H. pylori* carriers not presenting precancerous lesions[148]. On the other hand, a randomized, controlled chemoprevention trial conducted in subjects with confirmed histological diagnoses of multifocal, non-metaplastic atrophy and/or intestinal metaplasia, assigned to receive anti-*H. pylori* triple therapy and/or dietary supplementation (ascorbic acid, beta-carotene, or their corresponding placebos), demonstrated a significant regression rate of the lesions for all three basic interventions (RR 4.8 95% CI 1.6-14.2 for anti-*H. pylori* treatment; 5.1, 95% CI 1.7-15.0 for beta-carotene treatment, and 5.0, 95% CI 1.7-14.4 for ascorbic acid treatment in subjects with atrophy and 3.1, 95% CI 1.0-9.3; 3.4; 95% CI 1.1-9.8, and 3.3; 95% CI 1.1-9.5 in subjects with intestinal metaplasia)[149].

INTERPLAY BETWEEN *H. PYLORI* INFECTION AND DIET

A synergistic interaction between *H. pylori* infection and diet in GC has been suggested[150]. One possible mechanism by which *H. pylori* exerts its “carcinogenic” potential is the greater likelihood of malignant transformation due to inflammatory responses of the gastric epithelium. The generation of reactive oxygen species (ROS) and the increased level of nitric oxide (NO) synthase associated with the mucosal colonization by *H. pylori* cause DNA mutations which may be the initial step in the genetic alterations of gastric epithelial cells[151-153]. Another possible explanation is that the *H. pylori*-related inflammation

Table 5 Epidemiological studies (cohort nested case-control study) on association between *H. pylori* infection and GC risk

Author	Yr	Geographic area	Case/Control n	OR (95% CI)	Mean follow-up (yr)
Nomura AM[131]	1991	USA	109/109	6.0 (2.1-17.3)	12
Parsonnet J[132]	1991	USA	109/109	3.6 (1.8-7.3)	14.2
Forman D[133]	1991	England	116/484	2.7 (1.0-7.9)	15
Parsonnet J[134]	1993	USA	136/136	2.62 (1.47-4.69)	21
Blaser MJ[135]	1995	USA	102/102	1.45 (0.76-2.80)	3
Lin YT[136]	1995	China, Taiwan	29/220	1.13 (0.81-1.58)	13
Annema A[137]	1996	Finland	80/146	1.50 (0.70-3.22)	6
Webb PM[138]	1996	China	87/261	0.93 (0.57-1.54)	40
Siman J[139]	1997	Sweden	56/224	5.00 (2.20-11.5)	5.7
Watanabe Y[140]	1997	Japan	45/225	1.84 (1.54-5.72)	8
'Yuan JM[141]	1999	China	188/548	1.84 (1.08-3.11)	12
Hansen S[142]	1999	Norway	208/208	5.15 (2.83-9.37)	13
You WC[143]	2000	China	34/2594	1.18 (1.20-2.60)	4.5
Tullius H[144]	2001	Iceland	23/128	1.16 (1.05-1.28)	20
Siman J[145]	2001	Sweden	56/224	5.00 (2.2-11.2)	5.7
Limburg P[146]	2001	China	92/192	2.29 (1.26-4.14)	15
Nomura AM[147]	2002	Hawaii	261/261	2.70 (1.30-5.6)	25
Kosunen TU[148]	2005	Finland	363/4854	2.49 (1.86-3.34)	24
Shin A[149]	2005	Korea	86/344	1.06 (0.80-1.40)	2.6
Knell P[150]	2006	Finland	225/435	3.12 (1.97-4.95)	15

1 Re-evaluation of the Webb study with ELISA developed and validated among Shanghai residents.
induces predisposing morphological changes in the gastric mucosa such as atrophy and intestinal metaplasia[134]. These latter conditions decrease the acidity in the stomach increasing the endogenous formation of nitrosamides, the main subset of N-nitroso compounds[130]. Nitrosamides, spontaneously formed in the stomach from the nitrite and amides, do not require enzymes but depend on the presence of nitrates and are favored by a high pH. Thus, the ability of the host to reduce nitrate to nitrite and the dietary intake of nitrate and amine are critical for the onset of the gastric carcinogenic process. This hypothesis links the theory of “N-nitroso compounds-mediated GC risk” with that of the “H pylori-related GC risk” suggesting an “integrated model” of gastric carcinogenesis. However, even if the synergistic interaction between diet and H pylori infection is biologically plausible, only a few epidemiological studies have simultaneously evaluated the role of H pylori infection and dietary habits in relation to GC risk. Furthermore, the results of these studies were conflicting (Table 6)[118,121,156,157]. A case-control study conducted in Thailand analyzing both the effect of dietary pattern and H pylori infection found an increased risk of GC associated with a high intake of salt (OR 1.8; 95% CI 1.1-3.0) and fermented foods (OR 1.9; 95% CI 1.1-3.3)[118]. In contrast, a weak negative association was found between GC risk and vegetable and fruit intake and no association between H pylori infection and GC risk (OR 0.6; 95% CI 0.4-1.0)[118]. Likewise, a study evaluating the role of H pylori infection and capsaicin consumption on the risk of GC demonstrated an increased risk (OR 1.71; 95% CI: 0.76-3.88) in high-level consumers of capsaicin (90-200 mg/d) as compared to low-consumers (0-29.9 mg/d). However, this effect was independent of H pylori status and was higher for diffuse type GC (OR 3.64; 95% CI 1.09-12.2) compared to the intestinal type (OR 1.36; 95% CI 0.31-5.89)[123]. Lastly, Machida-Montani et al[32] found a close correlation between GC and H pylori infection (OR 8.2; 95% CI 3.7-18.2), frequent intake of fermented soybean soup (OR 2.1; 95% CI 0.9-5.1), and rice (OR 2.5; 95% CI 1.0-6.1) but no significant interaction between diet and H pylori infection. In contrast, in a Korean hospital-based case-control study, subjects with H pylori infection and high salt intake had a 10-fold higher risk of developing GC than subjects without H pylori infection and low salt intake (P = 0.047)[106].

DISCUSSION

GC develops through a multistage process which may span ≥ 20 years[154]. The long latency period hypothetically provides wide opportunities for intervention to prevent cancer development. However, several questions need to be answered before the results of epidemiological and interventional studies can be extended to the clinical setting.

Firstly, GC comprises at least two main entities, the intestinal and the diffuse type, which differ considerably from an epidemiological, clinical and molecular point of view[155]. Based on epidemiological evidence, the intestinal type, preceded by precancerous lesions, seems more closely influenced by environmental factors while the latter recognizes mainly a “genetic” substrate. However, only a few studies have focused on the nutritional pattern in relation to the histotype of GC[150-161]. Even hampered by the small number of cases studied, the results strongly suggest that the dietary risk factors are common to both types of GC while the protective factors play a more important role in preventing the intestinal type. Secondly, trials directly evaluating cancer development as target require very large numbers of subjects to be followed for decades. Trials with smaller groups of subjects followed for shorter periods and focusing on the intermediate steps of the gastric carcinogenic process may hypothetically obtain information on the possible inhibition of cancer development. However, only the “intestinal type” cancer recognizes a precancerous “cascade” of events and only a small subset of patients with precancerous lesions develop GC[155]. Thus, very large number of subjects for many years would need to be followed to obtain conclusive results. Finally, due to the “synergistic” interplay between diet and H pylori infection, H pylori should always be properly considered.

In conclusion, although GC is a disease of genes, mainly triggered by H pylori-related mucosal inflammation, overwhelming evidence suggest that diet and lifestyle factors are important causes leading to cancer. Indeed, the progressive decline in GC incidence observed between 1930s and 1980s, before the discovery of H pylori, can be, without doubt, related to improvement of diet and spread use of refrigerators. On the other hand, data suggesting that H pylori eradication may reduce the risk of developing GC need still to be confirmed by large-scale population studies[162]. One study that economically modelled the cost of screening per year of life saved estimated that in selected populations such as Japanese American, serological screening for H pylori at age 50 years was more beneficial than breast cancer screening[163]. However, there are insufficient data to recommend general screening for H pylori of asymptomatic patients to prevent GC. The decision to screen should be based on individual risk factors such as race, and family history of GC[164].

At present, even if foods and food components acting as risk or protective factors for GC still remain to be fully

Table 6 Epidemiological studies (hospital-based case-control) on association between dietary factors and H pylori infection and gastric cancer risk

Author	Yr	Geographic area	Case/Control n	Increased risk	Decreased risk	H pylori risk
Sritamporn S[155]	2002	Thailand	131/262	Salt, fermented foods	Vegetables, fruit	Independent
Lee SA[156]	2003	Korea	69/199	Salt, kimchi, salt-fermented fish	Vegetables, fruit, soybean curds, broth	Increased
Lopez-Carrillo L[157]	2003	Mexico	234/468	Capsaicin	--	Independent
Machida-Montani A[158]	2004	Japan	122/235	Fermented soy bean, rice	--	Independent
defined, a diet rich in fruit, vegetables and cereals and poor in meat, fat and salt has a good prophylactic potential for cancer and many other chronic diseases of lifestyle i.e. coronary heart disease, hypertension, obesity and diabetes. Thus, “diet for cancer prevention” can be proposed as a general role of well-being and can represent the basis for a rational health policy.

REFERENCES

1. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease Study. Lancet 1997; 349: 1498-1504
2. American Cancer Society. Estimated New Cancer Cases and Deaths by Sex for all Sites. American Cancer Society, United States, 2000 (Table). Available from: URL: http://www.cancer.org/statistics/cf2000/data/newCaseSex.html
3. Neugut AI, Hayek M, Howe G. Epidemiology of gastric cancer. Semin Oncol 1996; 23: 281-291
4. McCay CM, Crowell MF, Maynard LA. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 1989; 5: 155-171; discussion 172
5. Risch HA, Jain M, Choi NW, Fodor JG, Pfeiffer CJ, Howe GR, Harrison LW, Crabl KJ, Miller AB. Dietary factors and the incidence of cancer of the stomach. Am J Epidemiol 1985; 122: 947-959
6. Buatti E, Palli D, Bianchi S, Decarlì A, Amadori D, Avellini C, Caprioli F, Cocco P, Glacosa A, Lorenzini L. A case-control study of gastric cancer and diet in Italy. III. Risk patterns by histologic type. Int J Cancer 1991; 48: 369-374
7. Graham S, Haughey B, Marshall J, Brasure J, Zielenez M, Freudenheim J, West D, Nolan J, Wilkinson G. Diet in the epidemiology of gastric cancer. Nutr Cancer 1990; 13: 19-34
8. Ramón JM, Serra-Majem L, Cerdo C, Oromi J. Nutrient intake and gastric cancer risk: a case-control study in Spain. Int J Epidemiol 1993; 22: 983-988
9. Kaaks R, Tuynis AJ, Haeltler M, Riboli E. Nutrient intake patterns and gastric cancer risk: a case-control study in Belgium. Int J Cancer 1998; 78: 415-420
10. López-Carrillo L, López-Cervantes M, Ward MH, Bravo-Alvarado J, Ramirez-Espitia A. Nutrient intake and gastric cancer in Mexico. Int J Cancer 1998; 83: 601-605
11. Mathew A, Gangadharan P, Varghese C, Nair MK. Diet and stomach cancer: a case-control study in South India. Eur J Cancer Prev 2000; 9: 89-97
12. Palli D, Russo A, Decarli A. Dietary patterns, nutrient intake, and gastric cancer in a high-risk area of Italy. Cancer Causes Control 2001; 12: 163-172
13. Mayne ST, Risch HA, Dubrow R, Chow WH, Gammon MD, Vaughan TL, Farrow DC, Schoenberg JB, Stanford JL, Ahsan H, West AB, Rotterdam H, Blot WJ, Fraumeni JF. Nutrient intake and risk of subtypes of esophageal and gastric cancer. Cancer Epidemiol Biomarkers Prev 2000; 9: 1055-1062
14. Jedrychowski W, Popielia T, Steinord K, Tobisz-Adamczyk B, Kulig J, Penar A, Wahrenord J. Nutrient intake patterns in gastric and colorectal cancers. Int J Occup Med Environ Health 2001; 14: 391-395
15. Hamada GS, Kowalski LP, Nishimoto IN, Rodrigues JJ, Iriya K, Sasazuki S, Hanaoka T, Tsugane S. Risk factors for stomach cancer in Brazil (II): a case-control study among Japanese Brazilians in São Paulo. Int J Cancer 2002; 100: 1055-1062
16. Chen H, Tucker KL, Graubard BI, Heineman EF, Markin RS, Potischman NA, Russell RM, Weisenburger DD, Ward MH. Nutrient intakes and adenocarcinoma of the esophagus and distal stomach. Nutr Cancer 2002; 42: 33-40
17. Hara M, Hanaoka T, Kobayashi M, Otani T, Adachi HY, Montani A, Natsukawa S, Shaura K, Koizumi Y, Kasuga Y, Matsuzawa T, Ikekawa T, Sasaki S, Tsugane S. Cruciferous vegetables, mushrooms, and gastrointestinal cancer risks in a multicenter, hospital-based case-control study in Japan. Nutr Cancer 2003; 46: 138-147
18. Nomura AM, Hankin JH, Kolonel LN, Wilkens LR, Goodman MT, Steffermann GN. Case-control study of diet and other risk factors for gastric cancer in Hawaii (United States). Cancer Causes Control 2003; 14: 547-558
19. Lagiou P, Samoli E, Lagiou A, Peterson J, Tzonou A, Dwyer J, Trichopoulos D. Flavonoids, vitamin C and adenocarcinoma of the stomach. Cancer Causes Control 2004; 15: 67-72
20. De Stefani E, Correa P, Boffetta P, Deneo-Pellegrini H, Ronco AL, Mendilaharsu M. Dietary patterns and risk of gastric cancer: a case-control study in Uruguay. Gastric Cancer 2004; 7: 211-220
21. Chyou PH, Nomura AM, Hankin JH, Steffermann GN. A case-cohort study of diet and stomach cancer. Cancer Res 1990; 50: 7501-7504
22. Kneller RW, McLaughlin JK, Belfe E, Schuman LM, Blot WJ, Wacholder S, Gridley G, CoChen HT, Fraumeni JF. A cohort study of stomach cancer in a high-risk American population. Cancer 1991; 68: 672-678
23. Kato I, Tominaga S, Matsumoto K. A prospective study of stomach cancer among a rural Japanese population: a 6-year survey. Int J Cancer 1992; 50: 568-575
24. Nomura AM, Steffermann GN, Chyou PH. Gastric cancer among the Japanese in Hawaii. Int J Cancer Res 1995; 86: 916-923
25. Dorant E, van den Brandt PA, Goldbohm RA, Sturman F. Consumption of onions and a reduced risk of stomach carcinoma. Gastroenterology 1996; 110: 12-20
26. Goldbohm RA, Hertog MG, Brants HA, van Poppel G, van den Brandt PA. Consumption of black tea and cancer risk: a prospective cohort study. J Natl Cancer Inst 1996; 88: 93-100
27. Ocke MC, Bueno-de-Mesquita HB, Feskens EJ, Kromhout D, Menotti A, Blackburn H. Adherence to the European Code Against Cancer in relation to long-term cancer mortality: intercohort comparisons from the Seven Countries Study. Nutr Cancer 1998; 30: 14-20
28. Terry P, Nyren O, Yuen J. Protective effect of fruits and vegetables on stomach cancer in a cohort of Swedish twins. Int J Cancer 1998; 76: 35-41
29. Galanis DJ, Kolonel LN, Lee J, Nomura A. Intakes of selected foods and beverages and the incidence of gastric cancer among the Japanese residents of Hawaii: a prospective study. Int J Epidemiol 1998; 27: 173-180
30. Knekt P, Järvinen R, Dich J, Hakulinen T. Risk of colorectal and other gastro-intestinal cancers after exposure to nitrate, nitrite and N-nitroso compounds: a follow-up study. Int J Cancer 1999; 80: 852-856
31. Jensen MC, Bueno-de-Mesquita HB, Räsänen L, Fidanza F, Menotti A, Nissinen A, Feskens EJ, Kok FJ, Kromhout D. Consumption of plant foods and stomach cancer mortality in the seven countries study. Is grain consumption a risk factor? Seven Countries Study Research Group. Nutr Cancer 1999; 34: 49-55
32. Botterweck AA, Verhagen H, Goldbohm RA, Kleinjans J, van den Brandt PA. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands Cohort Study. Food Chem Toxicol 2000; 38: 599-605
33. Tsubono Y, Nishino Y, Komatsu S, Hsieh CC, Kanemura S, Tsuji I, Nakatsuka H, Fukao A, Satoh H, Hisamichi S. Green tea and the risk of gastric cancer in Japan. N Engl J Med 2001; 344: 632-636
34. McCullough ML, Robertson AS, Jacobs EJ, Chao A, Calle EE, Thun MJ. A prospective study of diet and stomach cancer mortality: results from analyses in the Netherlands Cohort Study. Cancer Epidemiol Biomarkers Prev 2000; 11: 1205-1209
35. Nagata C, Takatsuka N, Kakawaki N, Shimizu H. A prospective cohort study of soy product intake and stomach cancer death. Br J Cancer 2002; 87: 31-36
36. Ngoan LT, Mizoue T, Fujino Y, Tokui N, Yoshimura T. Dietary factors and stomach cancer mortality. Br J Cancer 2002; 87: 37-42
37. Kobayashi M, Tsunbo Y, Sasazuki S, Sasaki S, Tsugane S. Vegetables, fruit and risk of gastric cancer in Japan: a 10-year
follow-up of the JPCH Study Cohort I. Int J Cancer 2002; 102: 39-44.

38 Masaki M, Sugimori H, Nakamura K, Tadera M. Dietary patterns and stomach cancer among middle-aged male workers in Japan. Asian Pac J Cancer Prev 2003; 4: 61-66.

39 Khan MM, Goto R, Koyabashi K, Suzumura S, Nagata Y, Sonoda T, Sakauchi F, Washio M, Mori M. Dietary habits and cancer mortality among middle-aged and older Japanese living in hokkaido, Japan by cancer site and sex. Asian Pac J Cancer Prev 2004; 5: 58-65.

40 Kim MK, Sasaki S, Sasazuki S, Tsugane S. Prospective study of three major dietary patterns and risk of gastric cancer in Japan. Int J Cancer 2004; 110: 430-435.

41 Sasazuki S, Inoue M, Hanaoka T, Yamamoto S, Sobue T, Tsugane S. Green tea consumption and subsequent risk of gastric cancer by subsite: the JPCH Study. Cancer Causes Control 2004; 15: 483-491.

42 González CA, Jakszyn P, Pera G, Agudo A, Bingham S, Pallí D, Ferrari P, Boeing H, del Giudice G, Plebani M, Carneiro M, Nesi G, Berrino F, Sacerdoti C, Tumino R, Panico S, Berglund C, Simán H, Nyrén O, Hallmans G, Martinez C, Dorrisonso M, Barricarte A, Navarco C, Quiros JR, Allen N, Key TJ, Day NE, Lissowska J, Bergman MM, Overvad K, Jensen MK, Tjonneland A, Olsen A, Bueno-de-Mesquita HB, Ocke M, Peeters PH, Numsman ME, Clavel-Chapelon F, Bouton-Rouault MC, Trichopoulos A, Psaltopoulou T, Roukos D, Lund E, Hénon B, Kaaks R, Norat T, Riboli E. Meat intake and risk of stomach and esophageal adenocarcinoma within the European Prospective Investigation Into Cancer and Nutrition (EPIC). J Natl Cancer Inst 2006; 98: 345-354.

43 Jakszyn P, Bingham S, Pera G, Agudo A, Luben R, Welch A, Boeing H, Del Giudice G, Pallí D, Saieva C, Krogh V, Sacerdoti C, Tumino R, Panico S, Berglund G, Simán H, Hallmans G, Sanchez JM, Larrañaga N, Barricarte A, Chirlaque MD, Quiros JR, Key TJ, Allen N, Lund E, Carneiro F, Lissowska J, Nagel G, Overvad K, Tjonneland A, Olsen A, Bueno-de-Mesquita HB, Ocke M, Peeters PH, Numsman ME, Clavel-Chapelon F, Trichopoulos A, Fenger C, Stirling R, Ferrari P, Jenab M, Norat T, Riboli E, González CA. Endogenous versus exogenous exposure to N-nitroso compounds and gastric cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST) study. Carcinogenesis 2006; 27: 1497-1501.

44 González CA, Pera G, Agudo A, Bueno-de-Mesquita HB, Ceroti M, Boeing H, Schulz M, Del Giudice G, Plebani M, Carneiro M, Berrino F, Sacerdoti C, Tumino R, Panico S, Berglund G, Simán H, Hallmans G, Stirling R, Martinez C, Dorrisonso M, Barricarte A, Navarco C, Quiros JR, Allen N, Key TJ, Bingham S, Day NE, Lissowska J, Nagel G, Overvad K, Jensen MK, Olsen A, Tjonneland A, Büchner FL, Peeters PH, Numsman ME, Clavel-Chapelon F, Bouton-Rouault MC, Roukos D, Trichopoulos A, Psaltopoulou T, Lund E, Casagrande C, Slimani N, Jenab M, Riboli E. Fruit and vegetable intake and the risk of stomach and oesophagus adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Int J Cancer 2006; 118: 2559-2566.

45 You WC, Blot WJ, Chang YS, Ershow A, Yang ZT, An Q, Henderson BE, Fraumeni JF, Wang TG. Allium vegetables and reduced risk of stomach cancer. J Natl Cancer Inst 1989; 81: 162-164.

46 Hansson LE, Nyrén O, Bergström R, Wolk A, Lindgren AF, Parner J, Adami HO. Diet and risk of gastric cancer in a population-based case-control study in Sweden. Int J Cancer 1993; 55: 181-189.

47 Gao CM, Takezaki T, Ding JH, Li MS, Tajima K. Protective effect of allium vegetables against both esophageal and stomach cancer: a simultaneous case-referent study of a high-epidemic area in Jiangsu Province, China. Int J Cancer Res 1999; 90: 614-621.

48 Takezaki T, Gao CM, Wu JZ, Ding JH, Liu YT, Zhang Y, Li SP, Su P, Li YT, Tajima K. Dietary protective and risk factors for esophageal and stomach cancers in a low-epidemic area for stomach cancer in Jiangsu Province, China: comparison with those in a high-epidemic area. Int J Cancer Res 2001; 92: 1157-1165.

49 Setiawan VW, Yu GP, Lu QY, Lu ML, Yu SZ, Mu L, Zhang JG, Kurtz RC, Cai L, Hsieh CC, Zhang ZF. Allium vegetables and stomach cancer risk in China. Asian Pac J Cancer Prev 2005; 6: 387-395.

50 Setiawan VW, Zhang ZF, Yu GP, Lu QY, Li YY, Lu ML, Wang MR, Guo CH, Yu SZ, Kurtz RC, Hsieh CC. Protective effect of green tea on the risks of chronic gastritis and stomach cancer. Int J Cancer 2001; 92: 600-604.

51 Heber D. Vegetables, fruits and phytoestrogens in the prevention of diseases. J Postgrad Med 2004; 50: 145-149.

52 Kazi A, Smith DM, Daniel K, Zhong S, Gupta P, Bosley ME, Dou QP. Potential molecular targets of tea polyphenols in human cell models: significance in cancer prevention. In Vite 2002; 16: 397-403.

53 Kono S, Ikeda M, Tokudome S, Kuratsune M. A case-control study of gastric cancer and diet in northern Kyushu, Japan. Jpn J Cancer Res 1988; 79: 1067-1074.

54 Yu GP, Hsieh CC, Wang LY, Yu SZ, Li XL, Jin TH. Green-tea consumption and risk of stomach cancer: a population-based case-control study in Shanghai, China. Cancer Causes Control 1995; 6: 532-538.

55 Ji BT, Chow WH, Yang G, McLaughlin JK, Gao RN, Zheng W, Shu XO, Jin F, Fraumeni JF, Gao YT. The influence of cigarette smoking, alcohol, and green tea consumption on the risk of carcinoma of the cardia and distal stomach in Shanghai, China. Cancer 1996; 77: 2449-2457.

56 Gao CM, Takezaki T, Wu JZ, Li ZY, Liu YT, Li SP, Ding HJ, Su P, Hu X, Xu TL, Sugimura H, Tajima K. Glutathione-S-transferases M1 (GSTM1) and GSTT1 genotype, smoking, consumption of alcohol and tea and risk of esophageal and stomach cancers: a case-control study of a high-incidence area in Jiangsu Province, China. Cancer Lett 2002; 188: 95-102.

57 Ye WM, Yi YN, Luo RX, Zhou TS, Lin RT, Chen GD. Diet and gastric cancer: a casecontrol study in Fujian Province, China. World J Gastroenterol 1998; 4: 516-518.

58 Rao DN, Ganesh B, Dinshaw KA, Mohandas KM. A case-control study of stomach cancer in Mumbai, India. Int J Cancer 2002; 99: 727-731.

59 Trichopoulos D, Ouranos G, Day NE, Tzonou A, Manousos O, Papadimitriou C, Trichopoulos A. Diet and cancer of the stomach: a case-control study in Greece. Int J Cancer 1985; 36: 291-297.

60 Agudo A, González CA, Marcos G, Sanz M, Saigí E, Verge J, Boleda M, Ortega J. Consumption of alcohol, coffee, and tobacco, and gastric cancer in Spain. Cancer Causes Control 1992; 3: 137-143.

61 Chow WH, Swanson CA, Lissowska J, Groves FD, Sobin LH, Nasiarowska-Guttmejer A, Radziszewski J, Regula J, Hsing AW, Jagannatha S, Zatonski W, Blot WJ. Risk of stomach cancer in relation to consumption of cigarettes, alcohol, tea and coffee in Warsaw, Poland. Int J Cancer 1999; 81: 871-876.

62 Lee HH, Wu HY, Chuang YC, Chang AS, Chao HH, Chen KY, Chen HK, Lai GM, Huang HH, Chen CJ. Epidemiologic characteristics and multiple risk factors of stomach cancer in Taiwan. Anticancer Res 1990; 10: 875-881.

63 Hoshiyama Y, Kawaguchi T, Miura Y, Mizoue T, Tokui N, Yatsuha Y, Sakata K, Kondo T, Kikuchi S, Toyoshima H, Hayakawa N, Tamakoshi A, Ohno Y, Yoshimura T. A nested-case-control study of stomach cancer in relation to green tea consumption in Japan. Br J Cancer 2004; 90: 135-138.

64 Hoshiyama Y, Kawaguchi T, Miura Y, Mizoue T, Tokui N, Yatsuha Y, Sakata K, Kondo T, Kikuchi S, Toyoshima H, Hayakawa N, Tamakoshi A, Ohno Y, Yoshimura T. A prospective study of stomach cancer death in relation to green tea consumption in Japan. Br J Cancer 2002; 87: 309-313.

65 Yu GP, Hsieh CC. Risk factors for stomach cancer: a population-based case-control study in Shanghai. Cancer Causes Control 1991; 2: 169-174.

66 Sun CL, Yuan JM, Lee RJ, Yang C, Gao YT, Ross RK, Yu MC. Urinary tea polyphenols in relation to gastric and esophageal cancers: a prospective study of men in Shanghai, China.

www.wjgnet.com
Carcinogenesis 2002; 23: 1497-1503

67 Wang GQ, Dawsey SM, Li JY, Taylor PR, Li B, Blot WJ, Weinstein WM, Liu FS, Levin KJ, Wang H. Effects of vitamin/mineral supplementation on the prevalence of histological dysplasia and early cancer of the esophagus and stomach: results from the General Population Trial in Lixinian, China. Cancer Epidemiol Biomarkers Prev 1994; 3: 161-166

68 Varis K, Taylor PR, Sipponen P, Samloff IM, Heinonen OP, Albanes D, Härkönen M, Huttunen JK, Laxén F, Virtamo J. Gastric cancer and premalignant lesions in atrophic gastritis: a controlled trial on the effect of supplementation with alpha-tocopherol and beta-carotene. The Helsinki Gastritis Study Group. Scand J Gastroenterol 1998; 33: 2697-2694

69 Malila N, Taylor PR, Virtanen MJ, Korhonen P, Huttunen JK, Albanes D, Virtamo J. Effects of alpha-tocopherol and beta-carotene supplementation on gastric cancer incidence in male smokers (ATBC Study, Finland). Cancer Causes Control 2002; 13: 617-623

70 Zhu S, Mason J, Shi Y, Hu Y, Li R, Wahg M, Zhou Y, Jin G, Xie Y, Wu G, Xia D, Qian Z, Soh H, Zhang L, Russell R, Xiao S. The effect of folic acid on the development of stomach and other gastrointestinal cancers. Chin Med J (Engl) 2003; 116: 15-19

71 Li H, Li HQ, Wang Y, Xu HX, Fan WT, Wang ML, Sun PH, Xie XY. An intervention study to prevent gastric cancer by micoselenium and large dose of allitridium. Chin Med J (Engl) 2004; 117: 1155-1160

72 An international association between Helicobacter pylori infection and gastric cancer. The EUROGAST Study Group. Lancet 1992; 339: 1359-1362

73 Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum. 1994; 61: 1-241

74 Loffeld RJ, Willems I, Flendrig JA, Arends JW. Helicobacter pylori pylori and gastric carcinoma. Histopathology 1990; 17: 537-541

75 Caruso ML, Fucci L. Histological identification of Helicobacter pylori in early and advanced gastric cancer. J Clin Gastroenterol 1990; 12: 601-602

76 Talley NJ, Zinsmeister AR, Weaver A, DiMagno EP, Carpenter HA, Perez-Perez GI, Blaser MJ. Gastric adenocarcinoma and Helicobacter pylori infection. J Natl Cancer Inst 1991; 83: 1734-1739

77 Sipponen P, Kosunen TU, Valle J, Riihela M, Seppälä K. Helicobacter pylori infection and chronic gastritis in gastric cancer. J Clin Pathol 1992; 45: 319-323

78 Menegatti M, Caspi-Cassanova M, Peña AS, Pals G, Van Kamp G, Kok A, Kurz-Pohlmann E, Pels NF, Meuwissen SG. Helicobacter pylori serology in patients with gastric carcinoma. Scand J Gastroenterol 1993; 28: 433-437

79 Esteves J, Fidalgo P, Tendeiro T, Chagas C, Ferra A, Leitao CN, Mira FC. Anti-Helicobacter pylori antibodies prevalence and gastric adenocarcinoma in Portugal: report of a case-control study. Eur J Cancer Prev 1993; 2: 377-380

80 Blaser MJ, Kobayashi K, Cover TL, Cao P, Feinberg ID, Perez-Perez GI. Helicobacter pylori infection in Japanese patients with adenocarcinoma of the stomach. Int J Cancer 1993; 55: 799-802

81 Tatsuta M, Ishii H, Okuda S, Taniguchi H, Yokota Y. The association of Helicobacter pylori with differentiated-type early gastric cancer. Cancer 1993; 72: 1841-1845

82 Buruk F, Berberoglu U, Pak I, Aksaz E, Celen O. Gastric cancer and Helicobacter pylori infection. Br J Surg 1993; 80: 378-379

83 Hansson LE, Engstrand L, Nyrén O, Evans DJ, Lindgren A, Bergström R, Andersson B, Athlin L, Bendtsen O, Tracé P. Helicobacter pylori infection: independent risk indicator of gastric adenocarcinoma. Gastroenterology 1993; 105: 1098-1103

84 Archimandritis A, Bitsikas J, Tijvras M, Anastasakou E, Tsavaris N, Kalogeris D, Davaris P, Pertakis A. Non-cardia gastric adenocarcinoma and Helicobacter pylori infection. Ital J Gastroenterol 1993; 25: 368-371

85 Lin JT, Wang HH, Wang TH, Wu MS, Chen CJ, Helicobacter pylori infection in early and advanced gastric adenocarcinoma: a seroprevalence study in 143 Taiwanese patients. Hepatogastroenterology 1993; 40: 596-599

86 Hu PJ, Mitchell HM, Li YY, Zhou MH, Hazell SL. Association of Helicobacter pylori with gastric cancer and observations on the detection of this bacterium in gastric cancer cases. Am J Gastroenterol 1994; 89: 1356-1361

87 Sipponen P, Riihela M, Hyvärinen H, Seppälä K. Chronic nonatrophic (superficial) gastritis increases the risk of gastric carcinoma. A case-control study. Scand J Gastroenterol 1994; 29: 336-340

88 Asaka M, Kimura T, Kato M, Kudo M, Miki K, Ogoshi K, Kato T, Tatsuta M, Graham DY. Possible role of Helicobacter pylori infection in early gastric cancer development. Cancer 1994; 73: 1591-1594

89 Kikuchi S, Wada O, Nakajima T, Nishi T, Kobayashi O, Konishi T, Inaba Y. Serum anti-Helicobacter pylori antibody and gastric carcinoma among young adults. Research Group on Prevention of Gastric Carcinoma among Young Adults. Cancer 1995; 75: 2789-2793

90 Rudi J, Müller M, von Herbay A, Zuna I, Raedsch R, Stremmel W, Räth U. Lack of association of Helicobacter pylori seroprevalence and gastric cancer in a population with low gastric cancer incidence. Scand J Gastroenterol 1995; 30: 958-963

91 Fukuda H, Saito D, Hayashi S, Hisai H, Ono H, Yoshida S, Oguro Y, Noda T, Sato T, Kato M. Helicobacter pylori infection, serum pepsinogen and gastric cancer: a case-control study in Japan. Jpn J Cancer Res 1995; 86: 64-71

92 Menegatti M, Vaira D, Miglioli M, Holton J, Vergura MR, Biasco G, Petronelli A, Ricci C, Azzaroni P, Gusmaroli R. Helicobacter pylori pylori in patients with gastric and nongastric cancer. Am J Gastroenterol 1995; 90: 1278-1281

93 Asaka M, Kato M, Kudo M, Katagiri M, Nishikawa K, Yoshida J, Takeda H, Miki K. Relationship between Helicobacter pylori infection, atrophic gastritis and gastric carcinoma in a Japanese population. Eur J Gastroenterol Hepatol 1995; 7 Suppl 1: S7-S10

94 Hatz RA, Lehn N, Leyeh S, Kaps MF, Bayerdörfer E, Stolte M, Schildberg FW. Prevalence of Helicobacter pylori infection in stomach cancer. Chirurg 1996; 67: 403-408

95 Shibata T, Imoto I, Ohuchi Y, Taguchi Y, Takaji S, Ikeamura N, Nakao K, Shima T. Helicobacter pylori infection in patients with gastric carcinoma in biopsy and surgical resection specimens. Cancer 1996; 77: 1044-1049

96 Kato S, Onda M, Matsukura N, Tokunaga A, Matsuda N, Yamashita K, Shields PG. Genetic polymorphisms of the cancer related gene and Helicobacter pylori pylori infection in Japanese gastric cancer patients. An age and gender matched case-control study. Cancer 1996; 77: 1654-1661

97 Kokkola A, Valle J, Haapiainen R, Sipponen P, Kivilaakso E, Puolakkainen P. Helicobacter pylori pylori infection in young patients with gastric carcinoma. Scand J Gastroenterol 1996; 31: 643-647

98 Menegatti M, Vaira D, Holton J, Miranda F, Ricci C, Gusmaroli R, Ainliney M, Miglioli M, Barbara L. Serological response to Helicobacter pylori pylori in gastric and non-gastric cancer. Clin Sci (Lond) 1996; 91: 219-223

99 Sivaprakash R, Rao UA, Thyagarajan SP, Ramathilakam B, Jayanthi V. Investigation for the prevalence of Helicobacter pylori pylori infection in patients with gastric carcinoma in Madras, India. Jpn J Med Sci Biol 1996; 49: 45-56

100 Kim HY, Cho BD, Chang WK, Kim DJ, Kim YB, Park CK, Shin HS, Yoo JY. Helicobacter pylori pylori infection and the risk of gastric cancer among the Korean population. J Gastroenterol Hepatol 1996; 11: 148-153

101 Miehlike S, Hackelsberger A, Meinling A, von Arnim U, Pöchner R, Eschenkühn T, Luhm N, Malferttheiner P, Stolte M, Bayerdörfer E. Histological diagnosis of Helicobacter pylori pylori gastritis is predictive of a high risk of gastric carcinoma. Int J Cancer 1997; 73: 761-764

102 Correct DOI! T, Lehn N, Malferttheiner P, Stolte M, Bayerdörfer E. Helicobacter pylori pylori gastritis is predictive of a high risk of gastric carcinoma. Int J Cancer 1997; 73: 837-839

103 Shi Y, Li J, Li M, Wang L, Guo W, Qin D, Geng C, Forman D,
Newell DG, Peto R, Blot WJ. Association of Helicobacter pylori infection with precancerous lesions and stomach cancer: a case-control study in Yangzhou County. Chin Med Sci J 1997; 12: 175-180.

Barreto-Zuñiga R, Maruyama M, Kato Y, Aizu K, Ohta H, Takekoshi T, Bernal SF. Significance of Helicobacter pylori infection as a risk factor in gastric cancer: serological and histological studies. J Gastroenterol 1997; 32: 289-294.

Martin-de-Argea C, Boixeda D, Redondo C, Alvarez I, Gisbert JP, García Plaza A, Cantón R. Relation between histologic subtypes and location of gastric cancer and Helicobacter pylori. Scand J Gastroenterol 1997; 32: 303-307.

Azuma T, Ito S, Sato F, Yamazaki Y, Miyaji H, Ito Y, Suto H, Kuriyama M, Kato T, Kohl Y. The role of the HLA-DQA1 gene in resistance to atrrophic gastritis and gastric adenocarcinoma induced by Helicobacter pylori infection. Cancer 1998; 82: 1013-1018.

Komoto K, Haruma K, Kamada T, Tanaka S, Yoshihara M, Sumii K, Kajiyama G, Talley NJ. Helicobacter pylori infection and gastric neoplasia: correlations with histological gastritis and tumor histology. Am J Gastroenterol 1998; 93: 1271-1276.

Wu MS, Shun CT, Lee WC, Chen CJ, Wang HP, Lee WJ, Lin JT. Gastric cancer risk in relation to Helicobacter pylori infection and subtypes of intestinal metaplasia. Br J Cancer 1998; 78: 125-128.

Whitting JL, Hallissey MT, Fielding JW, Dunn J. Screening for gastric cancer by Helicobacter pylori serology: a retrospective study. Br J Surg 1998; 85: 408-411.

Lee BM, Jiang JN, You YC, Chun SA, Kim HS, Han HM, Ahn MY, Byun SH. Association of Helicobacter pylori infection with gastric adenocarcinoma. Int J Cancer Res 1998; 89: 597-603.

Kikuchi S, Crabtree JE, Forman D, Kurosawa M. Association between infections with CagA-positive or-negative strains of Helicobacter pylori and risk for gastric cancer in young adults. Research Group on Prevention of Gastric Carcinoma Among Young Adults. Am J Gastroenterol 1999; 94: 3455-3459.

Zhang ZF, Kurzt KC, Kilistra DS, Yu GP, Sun M, Harlap S, Marshall JR. Helicobacter pylori infection on the risk of stomach cancer and chronic atrophic gastritis. Cancer Detect Prev 1999; 23: 357-367.

Cai L, Yu SZ, Zhang ZF. Helicobacter pylori infection and risk of gastric cancer in Changle County, Fujian Province, China. World J Gastroenterol 2000; 6: 374-376.

Enroth H, Kraaz K, Engstrand L, Nyrén O, Rohan T. Helicobacter pylori strain types and risk of gastric cancer: a case-control study. Cancer Epidemiol Biomarkers Prev 2000; 9: 981-985.

Chang WK, Kim HY, Kim DJ, Lee J, Park CK, Yoo JY, Kim HJ, Kim MK, Choi BY, Choi HS, Park KN. Association between Helicobacter pylori infection and the risk of gastric cancer in the Korean population: prospective case-control studied. J Gastroenterol 2001; 36: 816-822.

Ekström AM, Held M, Hansson LE, Engstrand L, Nyrén O. Helicobacter pylori infection in gastric cancer established by CagA immunoblot as a marker of past infection. Gastroenterology 2001; 121: 784-791.

Fujikawa N, Taiyama T, Harada M, Hama A, Nishimoto S, Kodama H, Kikunen T, Iriki K, Rodrigues J, Tajiri H, Tsugane S. Serological Immunoglobulin G antibody titers to Helicobacter pylori in Japanese and Non-Japanese Brazilian gastric cancer patients and controls in Sao Paulo. Jpn J Cancer Res 2001; 92: 829-835.

Konturek SJ, Starzynska T, Konturek PC, Karczewska E, Marlicz K, Lawniczak M, Jaroszewicz-Heigelman H, Bielanski W, Hartwich A, Ziemniak A, Hahn EG. Helicobacter pylori and CagA status, serum gastrin, interleukin-8 and gastric acid secretion in gastric cancer. Scand J Gastroenterol 2002; 37: 891-898.

Sriamporn S, Setiawan V, Pisani P, Suwanunrunguang K, Siriachaihongkun S, Mairiang P, Parkin DM. Gastric Cancer: the Roles of Diet, Alcohol Drinking, Smoking and Helicobacter pylori in Northeastern Thailand. Asian Pac J Cancer Prev 2002; 3: 345-352.

Wu AH, Crabtree JE, Bernstein L, Hawtin P, Cockburn M, Tseng CC, Forman D. Role of Helicobacter pylori CagA+ strains and risk of adenocarcinoma of the stomach and esophagus. Int J Cancer 2003; 105: 815-821.

Brenner H, Arndt V, Stepner M, Ziegler H, Rothenbacher D. Is Helicobacter pylori infection a necessary condition for noncardia gastric cancer? Am J Epidemiol 2004; 159: 252-258.

Machida-Montani A, Sasazuki S, Inoue M, Natsukawa S, Shaura K, Koizumi Y, Kasuga Y, Hanaoka T, Tsugane S. Association of Helicobacter pylori infection and environmental factors in non-cardia gastric cancer in Japan. Gastric Cancer 2014; 7: 46-53.

Kato M, Asaka M, Shimizu Y, Nohata A, Takeda H, Sugiyama T. Relationship between Helicobacter pylori infection and the prevalence, site and histological type of gastric cancer. Aliment Pharmacol Ther 2004; 20 Suppl 1: 85-89.

Nomura AM, Kolonel LN, Miki K, Stemmermann GN, Wilkens LR, Goodman MT, Perez-Perez GI, Blaser MJ. Helicobacter pylori, pepsinogen, and gastric adenocarcinoma in Hawaii. J Infect Dis 2005; 191: 2075-2081.

Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez-Perez GI, Blaser MJ. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med 1991; 325: 1132-1136.

Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 1991; 325: 1127-1131.

Forman D, Newell DG, Fullerton F, Yarnell JW, Stacey AR, Wald N, Sitas F. Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. BMJ 1991; 302: 1302-1305.

Parsonnet J, Samloff IM, Nelson LM, Orentreich N, Vogelman JH, Friedman GD. Helicobacter pylori, pepsinogen, and risk for gastric adenocarcinoma. Cancer Epidemiol Biomarkers Prev 1993; 2: 461-467.

Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH, Stemmermann GN, Nomura A. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 1995; 55: 2111-2115.

Lin JT, Wang LY, Wang JT, Wang TH, Yang CS, Chen CJ. A nested case-control study on the association between Helicobacter pylori infection and gastric cancer risk in a cohort of 9775 men in Taiwan. Anticancer Res 1995; 15: 603-606.

Arumaa A, Kosunen TU, Knekta P, Maatela J, Teppo L, Heinonen OP, Härkönen M, Hakama MK. Circulating anti-Helicobacter pylori immunoglobulin A antibodies and low serum pepsinogen level are associated with increased risk of gastric cancer. Am J Epidemiol 1996; 144: 142-149.

Webb PM, Yu MC, Forman D, Henderson BE, Newell DG, Yuan JM, Gao YT, Ross RK. An apparent lack of association between Helicobacter pylori infection and risk of gastric cancer in China. Int J Cancer 1996; 67: 603-607.

Simán JH, Forsgren A, Berglund G, Florén CH. Association between Helicobacter pylori and gastric carcinoma in the city of Malmö, Sweden. A prospective study. Scand J Gastroenterol 1997; 32: 1215-1221.

Watanabe Y, Kurata JH, Mizuno S, Mukai M, Inokuchi H, Miki K, Ozasa K, Kawai K. Helicobacter pylori infection and gastric cancer. A nested case-control study in a rural area of Japan. Dig Dis Sci 1997; 42: 1383-1387.

Yuan JM, Yu MC, Xu WW, Cockburn M, Gao YT, Ross RK. Helicobacter pylori infection and risk of gastric cancer in Shanghai, China: updated results based upon a locally developed and validated assay and further follow-up of the cohort. Cancer Epidemiol Biomarkers Prev 1999; 8: 621-624.

Hansen S, Melby KK, Aasle J, Jellum E, Volset SE. Helicobacter pylori infection and risk of cardia cancer and non-cardia gastric cancer. A nested case-control study. Scand J Gastroenterol 1999; 34: 353-360.

You WC, Zhang L, Gail MH, Chang YS, Liu WD, Ma JI, Li www.wjgnet.com
Forsgren A, Berglund G, Florén CH. Tobacco. 137

Tulinius H, Ogmundsdottr HM, Kristinsson KG, Sigvaldason H, Sigvaldottr E, Kristiansdottir G, Sigfusson N. Helicobacter pylori antibodies and gastric cancer in Iceland - The decline in IgG antibody level is a risk factor. APMIS 2001; 109: 835-841

Simán JH, Forsgren A, Berglund G, Florén CH. Tobacco smoking increases the risk for gastric adenocarcinoma among Helicobacter pylori-infected individuals. Scand J Gastroenterol 2001; 36: 208-213

Limburg P, Qiao Y, Mark S, Wang G, Perez-Perez G, Blaser M, Wu Y, Zou X, Dong Z, Taylor P, Dawsey S. Helicobacter pylori seropositivity and subsite-specific gastric cancer risks in Lixian, China. J Natl Cancer Inst 2001; 93: 226-233

Nomura AM, Lee J, Stemerman GN, Nomura RY, Perez-Perez GI, Blaser MJ. Helicobacter pylori cagA seropositivity and gastric carcinoma risk in a Japanese American population. J Infect Dis 2002; 186: 1138-1144

Kosunen TU, Seppala K, Sarna S, Aromaa A, Knekt P, Virtamo J, Salomaa-Vaajakoski E, Raitakari O, Mellerud L. Association of Helicobacter pylori IgA antibodies with the risk of peptic ulcer disease and gastric cancer. World J Gastroenterol 2005; 11: 6871-6874

Shin A, Shin HR, Kang D, Park SK, Kim CS, Yoo KY. A nested case-control study of the association of Helicobacter pylori infection with gastric adenocarcinoma in Korea. Br J Cancer 2005; 92: 1273-1275

Knekt P, Teppo L, Aromaa A, Rissanen H, Kosunen TU. Helicobacter pylori IgA and IgG antibodies, serum pepsinogen I and the risk of gastric cancer: changes in the risk with extended follow-up period. Int J Cancer 2006; 119: 702-705

Huang QJ, Sridhar S, Chen Y, Hunt RH. Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 1998; 114: 1169-1179

Gastric cancer and Helicobacter pylori: a combined analysis of 12 case control studies nested within prospective cohorts. Gut 2001; 49: 347-353

Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001; 345: 784-789

Huang QJ, Zheng GF, Sumnan K, Irvine EJ, Hunt RH. Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology 2003; 125: 1636-1644

Wong BC, Lam SK, Wong WM, Chen JS, Zheng TT, Fong RE, Lai KC, Hu WH, Yuen ST, Leung SY, Fong DY, Ho J, Ching CK, Chen JS. Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA 2004; 291: 187-194

Correa P, Fontham ET, Bravo J, Bravo LE, Ruiz B, Zarama G, Realpe JL, Malcom GT, Li D, Johnson WD, Mera R. Chemoprevention of gastric dysplasia: randomized trial of antioxidant supplements and anti-helicobacter pylori therapy. J Natl Cancer Inst 2000; 92: 1607-1612

Yamaguchi N, Kakizoe T. Synergistic interaction between Helicobacter pylori gastritis and diet in gastric cancer. Lancet Oncol 2001; 2: 88-94

Nardone G, Rocco A, Malfertheiner P. Review article: helicobacter pylori and molecular events in precancerous gastric lesions. Aliment Pharmacol Ther 2004; 20: 261-270

Davies GR, Simmonds NJ, Stevens TR, Sheaff MT, Banatvala NJ, Launerson IF, Blake DR, Rampton DS. Helicobacter pylori stimulates antral mucosal reactive oxygen metabolite production in vivo. Gut 1994; 35: 179-185

Farinati F, Cardin R, Degani P, Rugge M, Mario FD, Bonvivini P, Naccarato R. Oxidative DNA damage accumulation in gastric carcinogenesis. Gut 1998; 42: 351-356

Correa P. Helicobacter pylori and gastric carcinogenesis. Am J Surg Pathol 1995; 19 Suppl 1: S57-S63

Sander J, Burke G, Schweinberg F. Induction of tumors by nitrite and secondary amines or amides. In: Nakahara, W, Takayama, S, Sugimura, T, Oshikawa, S. Topics in chemical carcinogenesis. Baltimore: University Park Press, 1972; 292-312

Lee SA, Kang D, Shin KN, Cho J, Hong WS, Choi H. Effect of diet and Helicobacter pylori infection to the risk of early gastric cancer. J Epidemiol 2003; 13: 162-168

López-Carrillo L, López-Cervantes M, Robles-Díaz G, Ramirez-Espitia A, Mohar-Betancourt A, Menezes-Garcia A, López-Vidal Y, Blair A. Capsaicin consumption, Helicobacter pylori positivity and gastric cancer in Mexico. Int J Cancer 2003; 106: 277-282

Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. Acta Pathol Microbiol Scand 1965; 64: 31-49

Kato I, Tominaga S, Ito Y, Kobayashi S, Yoshii Y, Matsuura A, Kameya A, Kano T. A comparative case-control analysis of stomach cancer and atrophic gastritis. Cancer Res 1990; 50: 6559-6564

Boehn H, Jedrychowski W, Wahrenbrogd J, Popiela T, Tobiasz-Adamczyk B, Kulig A. Dietary risk factors in intestinal and diffuse types of stomach cancer: a multicenter case-control study in Poland. Cancer Causes Control 1991; 2: 227-233

Harisson LE, Zhang ZF, Karpeh MS, Sun M, Kurtz RC. The role of dietary factors in the intestinal and diffuse histologic subtypes of gastric adenocarcinoma: a case-control study in the U.S. Cancer 1997; 80: 1021-1028

Take S, Mizuno M, Ishiki K, Nagahara Y, Yoshida T, Yokota K, Onguma K, Okada H, Shiratori T. The effect of eradicating Helicobacter pylori on the development of gastric cancer in patients with peptic ulcer disease. Am J Gastroenterol 2005; 100: 1037-1042

Parsonnet J, Harris RA, Hack HM, Ovens DK. Modelling cost-effectiveness of Helicobacter pylori screening to prevent gastric cancer: a mandate for clinical trials. Lancet 1996; 348: 150-154

Malfertheiner P, Megraud F, O’Morain C, Hungin AP, Jones R, Axon A, Graham DY, Tytgat G. Current concepts in the management of Helicobacter pylori infection—the Maastricht 2-2000 Consensus Report. Aliment Pharmacol Ther 2002; 16: 167-180

S-Editor Liu Y L-Editor Alpini GD E-Editor Wang HF