Hypothalamic reactive oxygen species are required for insulin-induced food intake inhibition. A NADPH oxidase-dependent mechanism.

Tristan Jaillard1,2, Michael Roger1,2, Anne Galinier1,2,3, Pascale Guillou1,2, Alexandre Benani1,2, Corinne Leloup1,2, Louis Casteilla1,2, Luc Penicaud1,2 and Anne Lorsignol1,2.

1 Université de Toulouse ; UPS ; UMR 5241 Métabolisme, Plasticité et Mitochondrie ; BP 84 225 - F-31 432 Toulouse, France
2 CNRS ; UMR 5241 Métabolisme, Plasticité et Mitochondrie ; BP 84 225 - F-31 432 Toulouse, France
3 CHU Rangueil ; Laboratoire de Biochimie ; 1 avenue Jean Poulhès, 31 059 Toulouse Cedex 09, France

\textbf{Short title:} ROS-mediated anorexigenic insulin effect

\textbf{Corresponding Author:}
Anne LORSIGNOL
Email: lorsigno@cict.fr

Submitted 30 July 2008 and accepted 26 March 2009.

This is an uncopiedited electronic version of an article accepted for publication in \textit{Diabetes Care}. The American Diabetes Association, publisher of \textit{Diabetes Care}, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of \textit{Diabetes Care} in print and online at http://care.diabetesjournals.org.
Objective: Insulin plays an important role in the hypothalamic control of energy balance, especially by reducing food intake. Emerging data points out a pivotal role of reactive oxygen species (ROS) in the energy homeostasis regulation, but their involvement in the anorexigenic effect of insulin is unknown. Furthermore, ROS signal derived from NADPH oxidase activation is required for physiological insulin effects in peripheral cells. In this study, we investigated the involvement of hypothalamic ROS and NADPH oxidase in the feeding behavior regulation by insulin.

Research design and methods: We first measured hypothalamic ROS level and food intake after acute intracerebroventricular (icv) injection of insulin. Second, effect of a pretreatment with a ROS scavenger or a NADPH oxidase inhibitor was evaluated. Third, we examined the consequences of two nutritional conditions of central insulin unresponsiveness (fasting or short-term high-fat diet) on the insulin ability to modify ROS level and food intake.

Results: In normal chow-fed mice, insulin inhibited food intake. At the same dose, insulin rapidly and transiently increased hypothalamic ROS level by 36%. The pharmacological suppression of this insulin-stimulated ROS elevation, either by antioxidant or by a NADPH oxidase inhibitor abolished the anorexigenic effect of insulin. Finally, in fasted- and short-term high-fat diet-fed mice insulin did not promote any more elevation of ROS level and food intake inhibition, likely due to higher hypothalamic diet-induced antioxidant defence system.

Conclusions: A hypothalamic ROS increase through NADPH oxidase is required for the anorexigenic effect of insulin.
The hypothalamus is a cerebral area involved in the regulation of energy homeostasis. In this context, insulin plays a pivotal role. By acting in the hypothalamus, insulin reduces food intake and body weight (1-2), activates sympathetic nerve outflow to the brown adipose tissue (3) and suppresses hepatic endogenous glucose production (4-5). In situation of excess nutrient intake the hypothalamus rapidly becomes resistant to insulin before obesity and diabetes onset (6-7). Moreover, inactivation of the neuronal insulin receptor leads to the development of diet-induced obesity with an increase in body fat, a mild insulin resistance and elevated plasma insulin levels (8). Therefore, it is of prime importance to elucidate cellular mechanisms by which insulin acts on hypothalamic cells to understand central early-onset diet-induced obesity and diabetes.

In recent years, emerging data points out a pivotal role of reactive oxygen species (ROS) in the energy homeostasis regulation by the hypothalamus. In response to an acute overload of nutrients, a subtle rise of the ROS concentration within this area is sufficient to reduce food intake (9) or to stimulate parasympathetic nervous system and pancreatic insulin secretion (10). Furthermore, the gut-derived hormone ghrelin exerts its central effect on feeding behavior by controlling hypothalamic ROS levels (11). However, the role of ROS in the anorexigenic effect of insulin and more generally in the brain insulin signaling remains unknown. In peripheral insulin-sensitive cells, ROS have been shown to control the crucial early steps in insulin signaling (12-14). Moreover, they contribute to the propagation of the insulin cascade in these cells (15-17). Thus, transient bursts of small amounts of ROS triggered in response to insulin facilitate both early and distal insulin signaling pathway. Reinforcing this concept, it has been recently shown that this transient insulin-induced ROS production is also required in neuronal cells for the enhancement of insulin receptor autophosphorylation, the first step in insulin signaling pathway (18). These data lead us to hypothesize that insulin might trigger ROS elevation within the hypothalamus, which in turn, would inhibit food intake.

In peripheral cells, it is well established that both insulin-induced ROS rise and insulin cascade activation are dependent of NADPH oxidase activity (12-17, 19). Blocking the insulin-induced ROS production with an inhibitor of NADPH oxidase activity (diphenyleneiodonium) dramatically reduces insulin signaling pathway activation and thus its physiological effects (15).

Despite the demonstration of the crucial role of ROS signaling and NADPH oxidase in peripheral insulin effects, their involvement in the brain insulin signaling has not yet been investigated. Therefore, in this study we tested whether the anorexigenic insulin effect required a ROS-dependent signaling pathway within the hypothalamus. For this purpose, we measured hypothalamic ROS level and food intake after intracerebroventricular insulin injection. The involvement of ROS and NADPH oxidase in the insulin-induced food intake inhibition was evaluated by pretreatment with a ROS scavenger or a NADPH oxidase inhibitor. Since central insulin responsiveness is known to be altered by a short-term deficit (20) as well as an excess (7) of nutrients availability, we examined the consequence of 18 hours fasting or 3 days high-fat diet on the insulin ability to modify hypothalamic ROS level and food intake.

MATERIALS AND METHODS

Animals. All animal experiments were carried out in strict accordance with the
European Communities Council directive (86/609/EEC) and the practical guide for the care and use of laboratory animals edited by the National Research Council. For this study, we used 7- to 8-weeks-old male C57BL6/J mice (Harlan laboratories). The animals were kept in a temperature-controlled room (22 ± 1°C) on a 12-h light-dark cycle with free access to food and water. According to experiments, mice were fed ad libitum with a standard (22.4 % fat, 60.9 % carbohydrate and 16.7% protein; 2.9 Kcal/g; R04T25, Safe, France) or high-fat diet (42.5 % fat, 42.5 % carbohydrate and 15 % protein; 4.4 Kcal/g; Customized, Safe, France). For fasting group, food was removed just before dark onset (19h00). For tissue collection, mice were killed by cervical dislocation. Brains were quickly removed and immediately immersed in ice-cold PBS containing 5 mM HEPES.

Surgery. Under anesthesia (0.4% isoflurane – 100% O₂), mice underwent stereotaxic surgery to implant a chronic stainless steel cannula (Charles Rivers). The 3rd-cerebral ventricle was targeted using the following coordinates from Bregma: anterior-posterior, -0.825 mm; dorsal-ventral, -5 mm; and medial-lateral, 0 mm. The cannula was fixed to the skull using dental cement. Mice were finally housed individually and were allowed 1 week for recovery before experiment.

Drug administration. Injections into the 3rd-cerebral ventricle were performed in awake mice. The injections (1 µl) consisted of either 0.4 µU insulin (Recombinant Human Insulin, Actrapid 100 U/ml, Novo Nordisk), 0.1 mM trolox (Calbiochem), 0.1 mM diphenyleneiodonium (DPI, Sigma-Aldrich) or vehicles. Insulin, trolox and DPI were prepared as stock solutions in “diluting medium for soluble insulin injection” (Novo Nordisk), 1% ethanol, and 1% DMSO, respectively. For injections, all drugs and their vehicles were diluted in 0.9 % NaCl. Injections were performed over 1 min. Following the infusion, the guide cannula was kept in place for an additional 30 s to allow the drugs to diffuse away from the cannula tip.

Food intake measurement. Food was removed 1 h before intracerebroventricular (icv) injection. Insulin was injected 4 h before the dark onset (15h00). Icv injections of trolox or DPI were performed 30 min prior 0.4 µU insulin injection. Just prior the beginning of dark period (19h00), food (10 g) was presented to mice. 12 and 24 h later, food intake and body weight were measured.

Blood glucose measurement. Blood samples were collected from the tail 2 h after 4 µU insulin icv injection and used for measurements of blood glucose. It was directly measured on a glucose analyzer (ACCU-CHEK Active).

Reactive oxygen species (ROS) detection. The dye 2’,7’-dichlorofluorescein diacetate (H₂DCFDA, Molecular Probes) is used to monitor intracellular change in H₂O₂ level. After icv injections, hypothalami were dissected and immediately frozen in liquid nitrogen. After rapid thawing, tissues were homogenized (20 strokes) with a dounce homogenizer and a B-type pestle in 250 µl of a ROS-buffer (150 mM KCl, 20 mM tris, 0.5 mM EDTA, 1 mM MgCl₂, 5 mM glucose, 0.5 mM octanoic acid, pH 7.4). Homogenates were exposed to 16 µM H₂DCFDA and were incubated at 37°C for 30 min under agitation. Reaction was stopped with 125 µl of 70 % ethanol plus 125 µl of 0.1 N HCl. Homogenates were then centrifuged at 3,000 g for 15 min at 4°C. Supernatants were collected, neutralized with 175 µl of 1 M NaHCO₃ and centrifuged at 6,000 g for 15 min at 4°C. As already described (9-10), ROS level was evaluated by measuring fluorescence intensity with a microplate reader (Victor; Wallac). Intensity of fluorescence was expressed as arbitrary units.
Reduced glutathione assay. Dissected hypothalami were immediately frozen in liquid nitrogen. Tissues were homogenized (20 strokes) with a dounce homogenizer and a B-type pestle in a lysis saline solution (150 mM KCl, 3 mM EDTA, pH 7.4). Homogenates (50 µl) were mixed with 450 µl of 5 % metaphosphoric acid. Samples were then centrifuged at 1500 g for 10 min at 4°C. Supernatants were collected and used to detect reduced glutathione (GSH). Glutathione assay was performed by reverse-phase high-performance liquid chromatography (HPLC) as previously described (21). The results were expressed as fmol/µg tissular proteins.

Protein assay. Protein concentration of samples was determined using the DC Protein Assay Kit (Bio-Rad SA) according to the manufacturer’s instructions.

Statistical analysis. Data are given as means ± SEM. According to experiments, data were compared by unpaired Student’s t test, Mann-Whitney U test or one-way analysis of variance (ANOVA). Differences among groups were considered significant when p was < 0.05.

RESULTS

Third ventricle insulin injection decreases food intake. In order to study the role of hypothalamic insulin signaling in food intake regulation, we first aimed to select the best paradigm of acute insulin injection (Figure 1A). We chose a 3rd ventricle injection because acute insulin administration into the lateral ventricle was without effect on food intake in mice (22). In comparison to vehicle-injected animals, insulin significantly reduced food intake 12 and 24 hours after injection (Figure 1B). This represented a 40 % decrease in daily food intake. Concurrently to this food intake inhibition, insulin also significantly reduced body weight at 12 and 24 hours (Figure 1C). To ensure that icv injected insulin did not indirectly affect food intake through diffusion out of the brain, we injected a higher dose of insulin and measured glycemia. No change in plasma glucose was observed in this condition, showing that the insulin effect on food intake only depends on its effect on the brain (Figure 1D).

Insulin induces a transient hypothalamic ROS increase which is required for food intake inhibition. In order to determine whether insulin could induce ROS increase in the hypothalamus, insulin was injected into the 3rd ventricle at the dose that inhibits food intake. Mice were killed 5, 15 and 30 minutes later and ROS level was evaluated by using the fluorescent redox-sensitive dye H2DCFDA. Figure 2A shows that insulin induced a significant increase (+36 %) in ROS level 15 minutes post-injection. This insulin-induced ROS increase was transient, as no modification of fluorescence intensity was observed either at 5 or 30 minutes post-injection.

We then designed experiments to examine the physiological relevance of this insulin-induced hypothalamic ROS elevation. For this purpose, we assessed food intake in response to acute icv insulin injection in combination with an icv pretreatment of trolox, a ROS scavenger. We first verified that trolox alone did not induce significant change in basal ROS level and food intake, and then we investigated the ability of trolox to inhibit the insulin-induced ROS production. As illustrated in figure 2B, trolox delivery 30 minutes prior insulin completely prevented insulin-stimulated ROS increase. We then measured the effect of trolox pretreatment on food intake response. As for the ROS level, icv trolox injection completely suppressed insulin-induced food intake inhibition without significantly modifying basal food intake in trolox-injected mice (Figure 2C). Therefore, these results indicate that the transient insulin-
induced ROS elevation in the hypothalamus is required for food intake inhibition.

NADPH oxidase is required for the insulin-induced ROS elevation and food intake inhibition. In peripheral tissues, ROS produced by membrane-bound NADPH oxidase are involved in the insulin signaling cascade. We questioned whether, as in periphery, the NADPH oxidase was involved in the hypothalamic insulin ROS signaling to regulate food intake. For this purpose, we assessed food intake in response to acute icv insulin injection in combination with a prior icv administration of diphenyleneiodonium (DPI), a NADPH oxidase inhibitor. To test the ability of DPI to inhibit the ROS level increase, we first measured the hypothalamic ROS level 15 minutes after insulin injection with DPI pretreatment. DPI delivery was effective in fully preventing insulin-stimulated ROS elevation (Figure 3A). In this condition, DPI completely restored basal food intake in insulin-injected mice (Figure 3B). DPI treatment alone did not significantly modify basal ROS level as well as food intake. Therefore, these results indicate that the NADPH oxidase-dependent ROS increase within the hypothalamus is required for the central effect of insulin on the food intake inhibition.

Impairment of insulin-induced food intake inhibition is associated with a lack of hypothalamic ROS level increase. We then tested whether a modification of insulin effect on food intake was systematically associated with a change of ROS level within the hypothalamus. For this purpose, we chose two physiological situations that produce central insulin unresponsiveness: 18 hours fasting (energy deficiency, 20) and 3 days high-fat diet (energy excess, 7). Figure 4A shows that these two conditions effectively suppressed the insulin-induced food intake inhibition. According to our hypothesis, insulin did not promote any more elevation of ROS level within the hypothalamus 15 min after icv injection (Figure 4B).

As cellular ROS level results from the balance between their production and removal by various antioxidants, we quantified the hypothalamic glutathione that is considered as a major cellular ROS scavenging system (23). Figure 4C shows that hypothalamic reduced glutathione (GSH) level was increased by 18 hours fasting (+20%) and 3 days high fat diet (+36%, p < 0,05).

Therefore impairment of insulin-induced inhibition of food intake is associated with a lack of ROS increase in the hypothalamus likely due to higher GSH level. These results strengthen the crucial role of hypothalamic ROS signaling in the anorexigenic effect of insulin.

DISCUSSION

In the present study, we describe the involvement of a NADPH oxidase-dependent ROS signaling pathway in the anorexigenic insulin effect. We demonstrate for the first time the physiological relevance of this concept in conscious mice.

Insulin was administrated into the third ventricle at a dose (2.4 nM) that is consistent with the brain insulin receptor affinity (24-25) and that produces maximal food intake inhibition in mice (2 and unpublished results). At this physiological concentration, insulin induces a transient ROS level elevation within the hypothalamus (Figure 2). The present data demonstrates for the first time *in vivo* that insulin can effectively induce a change in ROS level in the central nervous system. Despite a relatively low magnitude (+36 %), this ROS level increase is similar to that observed in the hypothalamus after glucose, lipid, or ghrelin stimulation (9-11). These subtle ROS changes play a key role in the control of autonomous nervous system and food intake. We show that this insulin-induced ROS increase is required for food intake inhibition,
ROS-mediated anorexigenic insulin effect

thus demonstrating its physiological relevance. First, the suppression of insulin-stimulated ROS production by using pharmacological tools prevented insulin inhibition of food intake. Second, in two nutritional conditions of central insulin unresponsiveness (i.e. 18 hours fasting or 3 days high-fat diet), impairment of the insulin effect on food intake was associated with a lack of insulin-stimulated ROS elevation within the hypothalamus. These data strongly support the notion that cellular ROS constitute a pivotal second messenger in hypothalamic signaling pathways involved in energy homeostasis regulation, especially by controlling nutrients sensing (9-10) and hormonal signaling (11).

The involvement of an oxidant signal in the action of insulin has been suggested for decades, mainly with the observation that oxidants, including hydrogen peroxide, mimic insulin effects on glucose transport and lipogenesis in adipose cells (26). A few years later, insulin itself was shown to elicit generation of hydrogen peroxide in adipocytes (27). More recently, several elegant studies carried out by Mahadev et al. clearly demonstrate that a physiological transient insulin-induced ROS elevation mediates increase of glucose uptake though Glut4 translocation to the plasma membrane in adipocytes (13-16). Finally, creating mildly and transiently oxidative intracellular conditions has been reported to enhance the insulin receptor activation, suggesting that optimal insulin responsiveness involved a process of “redox priming” of the β subunit (17, 28). Our results reinforce these previous data. Altogether, they strongly support the idea that a ROS increase induced by insulin i) forms an integral part of insulin signaling pathway in the central nervous system as in periphery and ii) is relevant in the whole body energy homeostasis.

The observed insulin-induced ROS increase peaks and dissipates in few minutes. Nevertheless, and in agreement with the study by Brown et al., feeding behavior is significantly inhibited during several hours after acute icv insulin injection (2, figure 1). In adipocytes, the early insulin-stimulated production of ROS is required for insulin to elicit its late cellular responses, especially by activating the IRS/PI3K signaling pathway (13-16, 18, 29). Within the hypothalamus, both insulin-induced ROS and IRS/PI3K signaling pathways are essential for long-term inhibitory insulin effect on food intake (Figure 2, 30). Reciprocally diet-induced impairment of insulin effect on food intake is associated with an alteration of these two insulin-activated signaling pathways (Figure 4A-B, 7, 31). The time course of insulin-induced ROS level increase is similar to that observed for the insulin-induced PI3K activation in the hypothalamus, with activation in few minutes after stimulation, persisting for 10-15 minutes and gradually declining over 30-60 minutes (32). Altogether, these data strongly suggest that the early insulin-induced ROS increase that we measured within the hypothalamus is a pivotal component of the insulin-induced IRS/PI3K signaling pathway activation, leading to a long-term decrease in food intake, likely through the modulation of genes expression such as neuropeptide Y (33). Actually, hypothalamic neuropeptide Y and pro-opio melanocortin C are well-known to play a key role in food intake regulation and to be down or up-regulated by hormones such as leptin, ghrelin or insulin (2, 11, 33-34). As the insulin-induced PI3K activation occurs in these neuronal subpopulations (32), one can speculate that the insulin-induced ROS increase occurs at least in one of these, as it has been recently demonstrated for ghrelin (11).

The fact that insulin induces a rapid and transient increase in ROS level within the hypothalamus leads us to investigate the involvement of NADPH oxidase. Indeed, this
ROS-mediated anorexigenic insulin effect

enzyme can be rapidly activated by insulin, leading to a rapid and transient ROS increase in peripheral cells (14-15). In our experimental conditions and similarly to Mahadev et al. (15), the pretreatment with a NADPH oxidase inhibitor (DPI) completely abolishes i) the rapid and transient insulin-induced ROS increase within the hypothalamus and ii) the inhibitory insulin effect on food intake (Figure 3). We can thus conclude that NADPH oxidase plays a critical role in insulin signaling pathway in the brain as in periphery. There are now compelling evidences reporting the presence of NADPH oxidase homologues in rodents or human brain tissue (35-38). Within the hypothalamus, immunoreactivity for NADPH oxidase subunits, such as p47phox and gp91phox, was found in arcuate, ventromedian and paraventricular nuclei that are well known to be involved in energy homeostasis regulation (36). Moreover, increasing data demonstrate the importance of redox signaling derived from NADPH oxidase in normal central nervous system processes, such as the long-term potentiation and hippocampal-dependent memory or the regulation of the cardiovascular system (38-42). Further in vivo studies would permit to confirm that an acute insulin-induced NADPH oxidase activation mediates other hypothalamic insulin effects involved in energy homeostasis.

After fasting or short-term high-fat feeding, the brain became less responsive to insulin which results in a loss of its effects on food intake (Figure 4A, 7, 20). In this context, the insulin-induced hypothalamic ROS elevation was suppressed (Figure 4B). To explain this result, we explored the involvement of antioxidant defence systems. Indeed, the raised in free fatty acids availability during fasting (due to the lipolysis) and short-term high-fat feeding (due to the diet) likely induced an increase in hypothalamic lipid oxidation (9, 11, 43), a mechanism known to produce ROS (44). In physiological range, excess of ROS is scavenged at cellular level by stimulating the synthesis of antioxidant defence systems (44), as already demonstrated within the hypothalamus of food deprived animals (9, 45). We reported that hypothalamic GSH level is effectively higher after high-fat feeding and to a lesser measure after fasting (Figure 4C), with a concomitant hypothalamic normal ROS level. These data strongly suggest that i) diets have been induced a hypothalamic excessive ROS production which has been well regulated by cellular scavenging system, and ii) this increased antioxidant defence system could consequently over-quench ROS produced under insulin stimulation. Such cellular mechanism has been already proposed to explain the impaired peripheral insulin sensitivity observed during physiological conditions such as pregnancy (46). In animal models of long-term high-fat diet-induced obesity (47-48) associated with hypothalamic insulin resistance (47), oxidative stress appears in the brain (48). This cellular stress has been proposed to be critical mechanism underlying development of insulin resistance in obesity (49, 50). We thus hypothesized that i) the early diet-induced central insulin resistance is a consequence of an adaptive mechanism to avoid cytotoxic ROS production although ii) in the long-term, the resistance might be caused by overwhelming of antioxidant defence systems, and thus oxidative stress (44).

In conclusion, we report that insulin injected into the third ventricle promotes a subtle and transient increase in ROS level within the hypothalamus. This mechanism is required for insulin food intake inhibition and involves the NADPH oxidase (Figure 5). We thus suggest that i) a NADPH oxidase-dependent ROS-sensitive signaling pathway is implied in hypothalamic insulin action, and ii) diet-induced impairment of hypothalamic
ROS homeostasis may contribute to the cerebral insulin resistance.

ACKNOWLEDGMENTS

This work was funded in part by grants from Agence Nationale de la Recherche number ANR-05-PNRA-004, and from the Institut Benjamin Delessert. T. Jaillard has received a fellowship from the Ministère de l’Enseignement Supérieur et de la Recherche, and from the Fondation pour la Recherche Medicale (FRM).

We are indebted to M. Nibbelink to her technical help. We thank Dr. M. Rigoulet for helpful discussions and insightful comments.
REFERENCES

1. Woods SC, Lotter EC, McKay LD, Porte D: Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 29:503-505, 1979
2. Brown LM, Clegg DJ, Benoit SC, Woods SC: Intraventricular insulin and leptin reduce food intake and body weight in C57BL/6J mice. Physiol Behav 89:687-691, 2006
3. Rahmouni K, Morgan DA, Liu X, Sigmund CD, Mark AL, Haynes WG: Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin. J Clin Invest 114:652-658, 2004
4. Obici S, Zhang BB, Karkanias G, Rossetti L: Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med 8:1376-1382, 2002
5. Koch L, Wunderlich T, Seibler J, Könner C, Hampel B, Irlenbusch S, Brabant G, Kahn R, Sweenk F, Brüning JC: Hypothalamic Central insulin action regulates peripheral glucose and fat metabolism in mice. J Clin Invest 118:2132-2147, 2008
6. Clegg DJ, Benoit SC, Reed JA, Woods SC, Dunn-Meynell A, Levin BE: Reduced anorexic effects of insulin in obesity-prone rats fed a moderate-fat diet. Am J Physiol Regul Integr Comp Physiol 288:R981-R986, 2005
7. Ono H, Pocai A, Wang Y, Sakoda H, Asano T, Backer JM, Schwartz GJ, Rossetti L: Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats. J Clin Invest doi:10.1172/JCI34277
8. Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller-Wieland D, Kahn C: Role of brain receptor in control of body weight and reproduction. Science 289:2122-2125, 2000
9. Benani A, Troy S, Carmora CM, Fioramonti X, Lorsignal A, Leloup C, Casteilla L, Pénicaud L: Role for mitochondrial reactive oxygen species in brain lipid sensing. Diabetes 56:152-160, 2007
10. Leloup C, Magnan C, Benani A, Bonnet E, Alquier T, Offer G, Carriere A, Périquet A, Fernandez Y, Ktorza A, Casteilla L, Pénicaud L: Mitochondrial reactive oxygen species are required for hypothalamic glucose sensing. Diabetes 55:2084-2090, 2006
11. Andrews ZB, Liu ZW, Wallllingford N, Erion DM, Borok E, Friedman JM, Tschöp MH, Shanabrough M, Cline G, Shulman GI, Coppola A, Gao XB, Horvath TL, Diano S: UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature 454: 846-851, 2008
12. Goldstein BJ, Mahadev K, Wu X: Insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 54:311-321, 2005
13. Goldstein BJ, Mahadev K, Wu X, Motoshiba H: Role of insulin-induced reactive oxygen species in the insulin signaling pathway. Antioxid Redox Signal 7:1021-1031, 2005
14. Mahadev K, Zilbering A, Zhu Li, Goldstein BJ: Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1B in Vivo and enhances the early insulin action cascade. J Biol Chem 276:21938-21942, 2001
15. Mahadev K, Wu X, Zilbering A, Zhu Li, Lawrence TR, Goldstein BJ: Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem 276:48862-48869, 2001
16. Mahadev K, Wu X, Motoshiba H, Goldstein BJ: Integration of multiple downstream signals determines the net effect of insulin on MAP kinase vs. PI 3’-kinase activation: potential role of insulin-stimulated H$_2$O$_2$. Cell Signal 16:323-331, 2004
17. Mahadev K, Motoshima H, Wu X, Rudgy JM, Arnold RS, Cheng G, Lambeth JD, Goldstein BJ: The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H$_2$O$_2$ and plays an integral role in insulin signal transduction. *Mol Cell Biol* 24:1844-1854, 2004

18. Storozhevykh TP, Senilova YE, Persiyantseva NA, Vsevolod GP, Pomytkin IA: Mitochondrial respiratory chain is involved in insulin-stimulated hydrogen peroxide production and plays an integral role in insulin receptor autophosphorylation in neurons. *BMC Neurosci* 8:84-90, 2007

19. Seo JH, Ahn Y, Lee SR, Yeo CY, Hur KC: The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is phosphatase and tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. *Mol Biol Cell* 16:348-357, 2005

20. Plata-Salaman CR, Oomura Y, Shimizu N: Dependence of food intake on acute and chronic ventricular administration of insulin. *Physiol Behav* 37:717-734, 1986

21. Galinier A, Carriere A, Fernandez Y, Caspar-Bauguil S, Periquet B, Periquet A, Pénicaud L, Casteilla L: Site specific changes of redox metabolism in adipose tissue of obese Zucker rats. *FEBS Letter* 580:6391-6398, 2006

22. Woods SC, Chavez M., Park CR, Riedy C, Kiyala K, Richardson RD, Figlewicz DP, Schwartz W, Porte D, Seeley RJ: The evaluation of insulin as a metabolic signal influencing behavior via the brain. *Neurosci Biobehav Rev* 20:139-144, 1996

23. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND: Glutathione metabolism and its implications for health. *J Nutr* 134:489-492, 2004

24. Masters BA, Shemer J, Judkins JH, Clarke DW, Le Roith D, Raizada MK: Insulin receptors and insulin action in dissociated brain cells. *Brain Res* 417:247-256, 1987

25. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB: Insulin receptors and insulin action in the brain: review and clinical implications. *Neurosci Rev* 24:855-872, 2000

26. Czech MP, Lawrence JC Jr, Lynn WS: Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. *Proc Natl Acad Sci* 71:4173-4177, 1974

27. May JM and de Haën C: Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells. *J Biol Chem* 254:9017-9021, 1979

28. Schmid E, El Benna J, Galtier D, Klein G, Dröge W: Redox priming of the insulin receptor β-chain associated with altered tyrosine kinase activity and insulin responsiveness in the absence of tyrosine autophosphorylation. *FASEB* 12:863-870, 1998

29. Leslie NR: The redox regulation of PI 3-kinase-dependent signaling. *Antioxid Redox Signal* 8:1765-1775, 2006

30. Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG, Seeley RJ, Schwartz MW: Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus. *Diabetes* 52:227-231, 2003

31. Clodfelder-Miller B, De Sarno P, Zmijewska AA, Song L, Jope RS: Physiological and pathological changes in glucose regulate brain Akt and glycogen synthase kinase-3. *J Biol Chem* 280:39723-39731, 2005

32. Xu WA, Kaelin CB, Takeda K, Akira S, Schwartz MW, Barsh GS: PI3K integrates the action of insulin and leptin on hypothalamic neurons. *J Clin Invest* 115:951-958, 2005
33. Kim MS, Pak YK, Jang YK, Namkoong C, Choi YS, Won JC, Kim KS, Kim SW, Kim SH, Park JY, Kim YB, Lee KU: Role of hypothalamic foxo 1 in the regulation of food intake and energy homeostasis. *Nature Neursc* 9: 901-906, 2006

34. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG: Central nervous system control of food intake. *Nature* 404:661-671, 2000

35. Serrano F, Kolluri N, Wientjes FB, Card JP, Klann E: NAD(P)H oxidase immunoreactivity in the mouse brain. *Brain Res* 988:193-198, 2003

36. Kim MJ, Shin KS, Chung YB, Jung KW, Cha CI, Shin DH: Immunohistochemical study of p47^phox^ and gp91^phox^ distributions in rat brain. *Brain Res* 1040:178-186, 2005

37. Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, Michel JP, Szanto I: Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. *Neuroscience* 132:233-238, 2005

38. Cheng G, Cao Z, Xu X, Van Meir EG, Lambeth JD: Homologs of gp91^phox^: cloning and tissue expression of Nox3, Nox4, and Nox5. *Gene* 269:131-140, 2001

39. Tejada-Simon MV, Serrano F, Villasana LE, Kanterewicz BI, Wu GY, Quinn MT, Klann E: Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. *Mol Cell Neurosci* 29:97-106, 2005

40. Kishida KT, Klann E: Sources and targets of reactive oxygen species in synaptic plasticity and memory. *Antioxid Redox Signal* 9:233-244, 2007

41. Zimmermann MC, Davisson RL: Redox signaling in central neural regulation of cardiovascular function. *Biophys Mol Biol* 84:125-149, 2004

42. Zimmermann MC, Dunlay RP, Lazartigues E, Zhang Y, Sharma RV, Engelhardt JF, Davisson RL: Requirement for Rac1-dependent NADPH oxidase in the cardiovascular and dipsogenic actions of angiotensin II in the brain. *Circ Res* 84:532-539, 2004

43. Pocai A, Lam TKT, Obici S, Gutierrez-Juarez R, Muse ED, Arduini A, Rossetti L: Restauration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. *J Clin Invest* 116:1081-1091, 2006

44. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J: Free radicals and antioxidant in normal physiological functions and human disease. *Int J Biochem Cell Biol* 39:44-84, 2007

45. Kuhla B, Kuhla S, Rudolph PE, Albrecht D, Metges CC: Proteomics analysis of hypothalamic response to energy restriction in dairy cows. *Proteomics* 7:3602-3617, 2007

46. Chen X, Scholl TO, Leskiw MJ, Donaldson MR, Stein TP: Association of glutathione peroxidase activity with insulin resistance and dietary fat intake during normal pregnancy. *J Clin Endocrinol Metab.* 88:5963-5968, 2003

47. Posey K, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanand-Giri A, Pennathur S, Baskin DG, Heinecke JW, Woods SC, Schwartz MW, Niswender KD.: Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. *Am J Physiol Endocrinol Metab.* 2008 Dec 30 [Epub a head of print]

48. Zhang X, Dong F, Ren J, Driscoll MJ, Culver B. High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. *Exp Neurol* 191:318-325, 2005

49. Houstis N, Rosen ED, Lander ES: Reactive oxygen species have a causal role in multiple forms of insulin resistance. *Nature* 440:944-948, 2006
50. Urakawa H, Katsuki A, Sumida Y, Gabazza EC, Murashima S, Morioka K, Maruyama N, Kitagawa N, Tanaka T, Hori Y, Nakatani K, Yano Y, Adachi Y: Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 88:4673-4676, 2003

FIGURES LEGENDS

FIG. 1. Acute insulin injection into the 3rd ventricle reduces food intake at 12 and 24 h with no effect on plasma glucose. A. Schematic representation of experimental procedures of food intake measurement. B. Mice were injected into the 3rd ventricle with insulin (0.4μU) or vehicle. Food intake was assessed by weighing residual chow 12 and 24 h after food presentation (n= 9-10 mice per group). C. Body weight was also measured at these time points (n= 9-10 per group). D. Mice were injected into the 3rd ventricle with a higher dose of insulin (4μU) or vehicle. Plasma glucose was measured 2 h after injection (n= 4 per group). Data are means ± S.E.M. *P<0.05, **P < 0.01 vs vehicle-injected group.

FIG. 2. Insulin induces a transient hypothalamic ROS increase which is required for food intake inhibition. A. Insulin effect on ROS production. After icv injection of insulin (0.4μU) or vehicle, ROS levels were assessed by oxidation of H2DCFDA probe in the hypothalamus and at different times (n= 5 mice per group). DCF fluorescence is expressed in arbitrary units per µg of proteins. B,C. Effect of trolox on insulin-induced ROS production and food intake inhibition. Trolox (0.1mM) was icv injected 30 min before insulin (0.4μU). ROS levels were assessed in the hypothalamus 15 min after injections (n= 5 per group) (B). Food intake was assessed 12 h after food presentation (n= 5-10 per group) (C). Data are given as means ± S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001 vs vehicles- or insulin-injected group.

FIG. 3. NADPH-oxidase is required for the insulin-induced hypothalamic ROS increase and food intake inhibition. Effect of DPI on insulin-induced ROS level change and food intake inhibition. DPI (0.1mM) was icv injected 30 min before insulin (0.4μU). ROS levels were assessed in the hypothalamus 15 min after injections (n= 10 animals per group) (A). Food intake was assessed 12 h after food presentation (n= 5-10 per group) (B). Data are given as means ± S.E.M. *P < 0.05, **P < 0.01, ***P < 0.001 vs vehicles- or insulin-injected group.

FIG. 4. Impairment of insulin-induced food intake inhibition is associated with a lack of ROS level elevation within the hypothalamus. Effect of 18 hours fasting or 3 days high-fat diet on insulin-induced food intake regulation and ROS production, and on glutathione levels. A-B. Mice were injected with insulin (0.4μU) or vehicle. Food intake (A) (n= 8-12 animals per group) and ROS level (B) (n= 5-10 per group) were assessed 12 h and 15 min after insulin injection respectively. *P < 0.05, **P < 0.01 vs vehicle-injected mice fed with standard diet. C. Hypothalamic reduced glutathione (GSH) level was measured in standard, fasted and high-fat diet fed mice (n= 5-10 per group). *P < 0.05 vs mice fed with standard diet.

FIG. 5. Proposed mechanism of the involvement of a hypothalamic NADPH oxidase-dependent ROS signaling pathway in the anorexigenic effect of insulin. Insulin binds to its receptor leading to NADPH oxidase activation and generation of ROS. This ultimately leads to inhibition of food intake, likely though modulation of genes expression. IR indicates insulin receptor; DPI, diphenylenedioiodonium; ROS, reactive oxygen species.
ROS-mediated anorexigenic insulin effect

Figure 1.
Figure 2.

Figure 3.
Figure 4.

A

B

C

ROS-mediated anorexigenic insulin effect

Figure 4.
Figure 5.