Study of diffusion oxide hardening on intermetallic materials

Elena Chekalova* and Andrey Zhuravlev

1Moscow Polytechnic University, Moscow, 107023 Avtozavodskaya St. 16, Russia

*alenka.2019@inbox.ru

Abstract. In the last decade, there has been a tendency to increase the use of titanium ortho-
allloys on an intermetallic basis for the manufacture of critical parts. The technology of diffusion
oxide hardening on intermetallic materials to increase hardnes
s is proposed. The results of a
metallographic study of the structure and phase composition of diffusion oxide hardening are
presented. According to the results, the hardness of the VIT-1 intermetallic material in the initial
state is 1250 MPa, and with hardening it is 1563 MPa, which is 25% higher than the base
material.

1. Introduction

Recently, in industry, all attention has been focused on a new class of materials based on titanium
aluminides with high specific strength characteristics, heat resistance, and heat resistance.

In these materials, the main alloying element is niobium, which increases strength, ductility,
toughness and heat resistance. In addition to niobium, these materials also contain Mo, Ta, W, and Zr.
This material is recommended for the manufacture of aircraft engine parts with an operating temperature
of up to 700° C [1-6].

Despite a large number of studies on orthorhombic alloys, the mechanism of ortho-phase formation,
and the study of the occurrence of phase transformations of ortho-alloys over a wide temperature range,
the formation mechanism remains controversial. A set of service properties is formed not only by
obtaining a specific phase composition, but also due to structural characteristics - morphological features
of the structure of phase components, their distribution over the grain body, the presence of grain-
boundary precipitates, etc.

Intermetallic compounds formed by two or more metals having a special crystal lattice, structure and
properties are different from the properties of the starting components. Most intermetallic compounds
have an ordered super structural lattice, the formation of which is associated with the interatomic
interaction of components at temperatures below the melting point. In intermetallic compounds, there
can be metallic, covalent and mixed types of atomic bonds in the crystal lattice. Intermetallic compounds
with a metal bond of atoms are materials with properties similar to those of ductile metals that do not
have high heat-resistant characteristics, and materials with mixed and covalent types of bonds are most
interesting to increase heat-resistant characteristics [7-12].

Thus, these materials, which by their nature have a special crystal lattice, structure, and
physicomechanical properties, are promising heat-resistant materials intended for use in rocket and
space technology and in the field of aviation and engine building, but further research is also required
to study the formation of strong directional bonds, structures with new physicochemical properties [13-
16].
Based on this, in this work, the task was set to study the morphological changes of hardened intermetallic materials on physico-chemical properties.

The aim of the work is to study the diffusion oxide hardening of intermetallic materials on the structure, phase composition, and also on the study of hardness after oxide hardening.

2. Materials and methods
Discrete diffusion hardening was carried out on equipment, which consists of the UIV-1 device with a unipolar positive crown, from a work bed, fasteners, electromechanical units, electrical wiring, air duct, as well as a pressure regulator and flexible hoses (figure 1). Additionally, included is a monitor, computer, driver unit and system software. The UIV-1 device - is a nozzle - an ionizer combining the organization of a directed air flow and its activation by positive ions [17-20].

![Figure 1. Scheme and photo of equipment with a sample mounting mechanism for hardening with the UIV installation: 1 - linear displacement module; 2 - control unit of the stepper motor; 3 - air duct; 4 - case; 5 - fixing rack; 6 - guide.](image)

Samples are fixed in (2) the rotary axis with the control unit of the stepper motor (figure 1). Then set the predetermined frequency of its rotation or the specified feed linear displacement, according to a computer program. The processed sample can perform both rotational and reciprocating motion.

For research used samples from intermetallic materials, in particular VIT-1.

Metallographic studies of diffusion oxide hardening were carried out: the phase composition of the hardening was performed on a Dron 6 diffractometer in Fe-Kα radiation and the chemical composition of the hardening was determined using a JSM-5610 LV electron microscope. The presence of a low-vacuum operating mode of the microscope allows us to study non-conductive inorganic and organic objects without samples of preparation and application of conductive coatings, i.e. receive the image from a real surface. The presence of two types of detectors allows obtaining images in the modes of secondary and backward reflected electrons. The JSM-5610 LV scanning electron microscope is equipped with the EDX JED-2201 chemical microanalysis system, which allows simultaneous automatic qualitative and quantitative chemical analysis of up to 99 areas of interest in the image of the object under study.

Micro X-ray spectral analysis of the chemical composition allows one to determine the content of elements of diffusion oxide hardening with step-by-step scanning of the sample with an electron probe in the direction perpendicular to the side surface of the sample in the cross section of the microsection. The number of scan steps determines the thickness of the coating. X-ray diffraction analysis allows to determine the phase composition. Hardness was measured using a Solver Next microscope with a nanosclerometric head (nanoindenter) in sclerometry mode.
3. Results and discussion
As a result of hardening of the sample from the VIT-1 intermetallic material, the presence of oxides is present on the surface, as evidenced by spectral chemical analysis (table 1).

Table 1. The chemical composition of the hardened sample.

Spectrum	O	Al	Si	Ti	Zr	Nb	Ta	W	Total
spectrum 8	7.83	9.72	0.37	40.65	2.05	37.05	1.16	1.18	100.00
spectrum 9	11.02	9.32	0.44	39.49	1.97	35.85	0.93	0.99	100.00
spectrum 10	11.47	9.18	0.44	39.31	2.02	35.79	0.81	0.98	100.00
spectrum 11	12.49	9.03	0.32	38.91	1.85	35.22	1.05	1.13	100.00
spectrum 12	12.95	8.90	0.35	38.69	1.96	35.03	1.01	1.11	100.00
source base	0.05	11.12	0.19	43.95	2.28	39.9	1.16	0.91	100.00

The content of Si, W, Zr, Mo, Ta practically did not change, while it was found that oxygen is present only in the surface layer (12%) (table 1).

The increase in the oxygen content in the coating is explained by the ionization effect achieved by using a corona discharge.

Thus, it can be argued that the decrease in the content of Ti, Al and Nb in the surface layer is due to the oxidation and formation of oxides: titanium oxide (anatase) TiO₂(α), aluminum oxide (corundum) Al₂O₃(α) and the formation of intermetallic compounds Ti₃Al(α₂-phase) and Ti₂AlNb(β₂) having an ordered superstructural crystal lattice.

Intermetallic Ti₃Al (α₂-phase) has an ordered tetragonally curved face-centered structure. It should be noted that oxides have vacancies at the lattice sites, there is a cationic vacancy due to energy fluctuations, one of the atoms can receive enough energy from neighboring atoms to leave the lattice site, i.e. in place of one ion, two ions are formed at two other sites. Thus, any crystal located at a temperature other than zero will always contain a certain number of the indicated thermal defects.

The characteristic microstructure of diffusion oxide hardening on the samples is shown in figure 2.

Figure 2. Microstructure of the surface of the sample with diffusion oxide hardening (x 2000).
The macrostructure showed that this hardening obtained by the diffusion method has a polycrystalline structure. In the mode of back-reflected electrons, the oxygen-saturated surface of the sample has a uniform color (see figure 2), which indicates uniform coverage.

In this case, the structure of the main alloy does not undergo noticeable changes in the surface layer, since the process occurs during ionization of the corona discharge, oxygen ions interact with the atoms of the alloy and form a thin oxide film.

X-ray diffraction analysis obtained the phase composition of the sample from the VIT-1 intermetallic compound (figure 3).

![Figure 3](image-url)

Figure 3. Phase composition of the sample: a- before hardening; b- after hardening. X-ray analysis confirmed the presence of oxides: TiO$_2$ (anatase) and α-Al$_2$O$_3$ (corundum) and the formation of intermetalides Ti$_{3}$Al(α$_2$-фаза) and Ti$_2$AlNb(β$_2$).
Metallographic studies were carried out on the colors of maturity; as a result, it was found that the composition of the hardened sample from the VIT1 intermetallic material includes the following oxides: titanium oxide (anatase) TiO$_2$(α); aluminum oxide (corundum) Al$_2$O$_3$(α) and intermetallic compounds Ti$_3$Al(α$_2$-phase) and Ti$_2$AlNb(β$_2$), as evidenced by color discoloration (figure 4).

Thus, it can be argued that the decrease in content – Ti, Al, Nb in the surface layer due to the oxidation process and the formation of oxides: TiO$_2$(α) (anatase) and Al$_2$O$_3$(α) (corundum) and the formation of intermetalides Ti$_3$Al (α$_2$-phase) and Ti$_2$AlNb (ortho-alloy β$_2$).

The oxygen content in the material affects the mechanical characteristics of the coating, in particular hardness. 4 scratches were made on a sample of VIT-1 intermetallic material. Each section was measured in several cross sections (blue stripes) (figure 5).

The measurement results are presented in figure 6.

According to the results, the hardness of the VIT-1 intermetallic material in the initial state is 1250 MPa, and with hardening it is 1563 MPa, which is 25% higher than the base material.
4. Conclusion

The proposed technology of diffusion oxide hardening on an intermetallic material can be different, since for each material the formation of the structure of the hardened material is individual in nature, depending on the chemical composition of the material. Diffuse oxide hardening prevents the propagation of cracks, and, therefore, contributes to an increase in resistance during operation.

5. References

[1] Kazantseva N V, Demakov S L and Popov A A 2007 Microstructure and plastic deformation of orotoromic titanium aluminides Ti₂AlNb. III. Formation of transformation twins upon the B2→O phase transformation Phys. Met. Metallogr. No 4 103 378-87
[2] Bendersky L A, Roytburd A and Boettinger W J 1994 Phase transformations in the (Ti, Al)₃Nb section of the Ti-Al-Nb system - I. Microstructural predictions based on a subgroup relation between phases Acta Metal. Mater. No 7 42 2323-35
[3] Kazantseva N V, Grinberg B A Gulyaeva N.P. and et al. 2003 Microstructure and plastic deformation of orotoromic titanium aluminate Ti₂AlNb. II. Phase and structural transformation upon severe plastic deformation Phys. Met. Metallogr 96 368-77
[4] Kazantseva N V, Demakov S L and Popov A A 2007 Microstructure and plastic deformation of orotoromic titanium aluminides Ti₂AlNb. IV. Formation of transformation twins upon the α₂→O phase transformation // Phys. Met. Metallogr. No 4 103 388-94
[5] Cizeka J, Man O, Roupcovaa P, Lokek K and Dlouhya I 2015 Oxidation performance of cold spray Ti–Al barrier coated γ-TiAl intermetallic substrates Surf. Coat. Technol. 268 85-9
[6] Rai Amarendra K, Schmitt Michael P, Bhattacharya Rabi S, Zhu Dongming and Wolfeb Douglas E 2015 Thermal conductivity and stability of multilayered thermal barrier coatings under high temperature annealing conditions J. Eur. Ceram. Soc. No 5 35 1605–12.
[7] Habazaki H, Tsunekawa S, Tsuji E and Nakayama T 2012 Formation and characterization of wear resistant PEO coatings formed on &-titanium alloy at different electrolyte temperatures Appl. Surf. Sci. 259 711–18
[8] Cheng Y, Wu X, Xue Z, Matykina E, Skeldon P and Thompson G E 2013 Microstructure, corrosion and wear performance of plasma electrolytic oxidation coatings formed on Ti – 6Al – 4V alloy in silicate-hexametaphosphate electrolyte Surf. Coat. Technol. 217 129–39
[9] Dunleavy C S, Golosnoy I O, Curran J A and Clyne T W 2009 Characterisation of discharge events during plasma electrolytic oxidation Surf. Coat. Technol. 203 3410–19
[10] Yerokhin A, Leyland A and Matthews A 2002 Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation // Appl. Surf. Sci. 200 172–84
[11] Sun X T, Jiang Z H, Xin S G and Yao Z P 2005 Composition and mechanical properties of hard ceramic coating containing α-Al2O3 produced by microarc oxidation on Ti – 6Al – 4V alloy Thin Solid Films 471 194–99
[12] Rakoch A G, Gladkova A A, Zayar Linn, Strekalina D M 2015 The evidence of cathodic micro-discharges during plasma electrolytic oxidation of light metallic alloys and micro-discharge intensity depending on pH of the electrolyte Surf. Coat. Technol. 269 138–44
[13] Shelekhov E V, Sviridova T A Programs for X-ray Analysis of Polycrystals 2000 Met. Sci. Heat Treat. No 8 42 309–13
[14] Tillous K, Toll-Duchanoy T and Bauer-Grosse E 2009 Microstructure and phase composition of microarc oxidation surface layers formed on aluminium its alloys 2214 – T6 and 7050 – T74 Surf. Coat. Technol. No 19 203 2969–73
[15] Wenbin Xue, Zhiwei Deng, Ruyi Chen and et al. 2001 Microstructure and properties of ceramic coatings produced on 2024 aluminum alloy by microarc oxidation J. Mater. Sci. 36 2615–19
[16] Pherson R 1973 Formation of metastable phases in flame and plasma-prepared alumina J. Mater. Sci. 8 851–58
[17] Chekalova E A, Chekalov P D and Solomatina R D Published on April 20 2015 The method of forming a wear-resistant coating on the surface of a metal part (Patent 2548835 of the Russian Federation for the invention, IPC C23C8/36 Patent holder Chekalova E A)
[18] Chekalova E A 2014 Increasing the durability of the cutting tool and heavily loaded parts by applying a diffusion mesh coating (monograph, Moscow: Publishing House of the University of Mechanical Engineering) p 127
[19] Chekalova E A 2017 Study of wear-resistant coatings on VT3-1/E titanium alloy Mat. Sci. 9 3-6
[20] Chekalova E A 2017 The study of diffusion local coating of the oxide type on the tool material Mat. Sci. 8 24 - 9