Early childhood physical activity behaviour and the development of overweight

Wiersma, Rikstje

DOI:
10.33612/diss.219379602

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Wiersma, R. (2022). Early childhood physical activity behaviour and the development of overweight. University of Groningen. https://doi.org/10.33612/diss.219379602

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Unravelling the association between accelerometer-derived physical activity and adiposity among preschool children: a systematic review and meta-analyses

Rikstje Wiersma¹, Barbara F. Haverkamp²,³, Jasper H. van Beek¹, André M.J. Riemersma¹, H. Marike Boezen¹, Nynke Smidt¹, Eva Corpeleijn¹, Esther Hartman².

¹ Department of Epidemiology (HPC FA40), University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
² University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Section F, PO Box 196, 9700 AD, Groningen, The Netherlands.
³ Vrije Universiteit Amsterdam, Faculty of Behavioural and Movement Sciences, Clinical Neuropsychology section, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.

Obesity Reviews. 2020;21:e12936
ABSTRACT

Background: Evidence on the association between physical activity (PA) and adiposity in young children is inconclusive.

Objectives: A systematic review and meta-analyses was conducted to examine associations between accelerometer-derived PA and varying adiposity outcomes in preschool children.

Methods: Searches were conducted in EMBASE, MEDLINE, and Web of Science to identify studies on the association between total PA, sedentary behaviour, or different PA intensities and adiposity in children aged 2–7 years. Separate random effects meta-analyses were performed for varying PA intensities and adiposity outcomes.

Results: Fifty-six articles were included in the review and 48 in the meta-analyses. There was substantial evidence of an inverse association between moderate-to-vigorous- or vigorous PA and body fat percentage (stdβ[SE] = -0.162[0.041]; 5 studies), weight status (r = -0.120, p<0.001; 11 studies), fat mass (stdβ[SE] = -0.103(0.051); 5 studies), fat mass index (stdβ[SE] = -0.121[0.036]; 2 studies), and skinfold thickness (stdβ[SE] = -0.145[0.036]; 4 studies). However, total PA, sedentary behaviour, and different PA intensities were not associated with body mass index (BMI) or waist circumference.

Conclusions: Adiposity levels were lower among preschool children engaged in more (moderate-to-) vigorous PA compared with their peers, but no associations between PA and BMI or waist circumference were found.

Keywords: accelerometry, body fat distribution, exercise, sedentary behaviour
INTRODUCTION

Overweight and obesity is an increasing problem in society, in adulthood as well as in childhood. In 2016, about 6.0% of the under-five age group, globally, were affected by overweight or obesity, with percentages ranging from 3.7% in Africa to 7.2% in the United States. During childhood, many children with obesity develop health problems that once emerged only in adults. Cardiometabolic, pulmonary, and psychosocial complications as well as orthopaedic disorders, liver and gall bladder dysfunction, cardiovascular and endocrine problems, and cancer are seen in children with obesity. Furthermore, a lot of children with obesity will be affected by obesity in adulthood as well. Research on young children is important because prevention of overweight at young age is more effective compared with treatment after its onset.

Body weight increases when energy intake (nutrition) chronically exceeds total body energy expenditure. In children, this energy expenditure is the sum of physical activity (PA), growth, the basal metabolic rate, and environment- and diet-induced thermogenesis. Therefore, PA is seen as a key component in the prevention and management of obesity. However, while overweight is increasingly prevalent among preschool children, evidence of the association between PA and the development of overweight in this age group is inconclusive.

The use of different methods within studies conducted to assess the association between PA and adiposity has led to inconsistent findings. A review conducted in 2012 covered 17 studies that examined the relation between PA, sedentary behaviour, and childhood obesity. The review revealed the use of six subjective and objective methods for assessing PA and reported mixed results. Whereas some of the studies found a negative association between PA and weight status, others found that there was no association between them. In another study, 48 studies on the association between PA and adiposity in children and adolescents were reviewed. Only studies in which PA was measured objectively were included, but the results remained dependent on the instrument used to measure PA. A negative association was found in all of the studies using pedometers (n =11) and in 72% of the studies in which accelerometers were used (n=32). One review focused solely on objectively measured PA and adiposity in preschool children. In this review, no clear association was found between objectively measured PA and weight status. The authors suggest that the association between objectively measured PA and weight status in preschool children depends on the outcome measures used.

Several methods have been used to assess young children’s PA. Measurements taken with accelerometers are reliable and valid, and enable differences in frequency, duration, and PA intensity to be objectively assessed. These measurements are extremely important in the case of preschool children. Pedometers also provide objective measurements. However, the possibilities to assess differences in intensities and movement directions with these instruments are scarce. Questionnaires provide subjective responses, and their reliability and
validity are limited, especially when used for young children. Thus, whereas accelerometers also have limitations, they are potentially the most effective instruments for assessing PA in preschool children.

In the last few years, more studies measuring PA using accelerometers have been conducted. Therefore, this review focused exclusively on these studies, thereby reducing differences caused by the use of various instruments for measuring PA. Furthermore, it is possible to distinguish between different PA intensities and to conduct meta-analyses to explore heterogeneous results. The aim of the current study was to conduct a review and meta-analyses to examine whether accelerometer-derived PA is related to adiposity at preschool ages. We anticipated varying associations for different PA intensities and different adiposity outcomes. Hence, we differentiated PA intensities (total PA, sedentary behaviour, light PA, moderate PA, vigorous PA, and moderate-to-vigorous PA [MVPA]) and different adiposity outcomes (percentage body fat, body mass index [BMI], weight status, waist circumference, fat mass, and skinfold thickness). The differentiation of PA intensities and adiposity outcomes can provide researchers and policymakers with directly applicable information enabling the targeting of PA intensities to prevent increases in childhood overweight/obesity and the determination of which adiposity outcomes are related to PA.

METHODS

We registered the protocol of this systematic review and meta-analyses in the International Prospective Register of Systematic Reviews (PROSPERO, http://www.crd.york.ac.uk/PROSPERO/ display_record.php?ID=CRD42018082660) and adhered to the methods of the Cochrane Collaboration. We followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for reporting the findings.

Search strategy

Relevant studies for the systematic review were identified through a literature search in EMBASE, MEDLINE, and Web of Science. A combination of MeSH terms and keywords were used: (children or preschool or paediatrics) and (‘body mass index’ or BMI or ‘body fat’ or ‘waist circumference’ or overweight or obese or ‘weight status’ or ‘body composition’) and (‘physical activity’ or exercise or ‘activity level’ or ‘sedentary behaviour’) and (accelerometry or ‘physiologic monitoring’ or actigraph) (Appendix A). The literature search was performed on 13 August 2018. Additional studies were identified by searching the reference lists of the included studies. All identified hits (for abstracts and titles) were screened for eligibility by two independent reviewers (RW and JvB). Subsequently, the same two reviewers independently read the full text of all potentially eligible papers. Disagreements were discussed during a consensus meeting, and in case of persistent disagreement, a third reviewer (BH) was consulted.
Inclusion and exclusion criteria
Studies that met the following criteria were included in the review: (1) The study population consisted of typical developing preschool children, aged 2-7 years at the baseline (or the mean or median ages of the study population ranging between 3.0 and 6.0 years). (2) The determinant was continuous PA (total PA, light PA, moderate PA, vigorous PA or MVPA) and/or sedentary behaviour, measured objectively with an accelerometer. (3) The outcome was adiposity (e.g., percentage of body fat, BMI, weight status, waist circumference, fat mass, and skinfold thickness). (4) The studies were observational studies (cross-sectional, case control, and prospective cohort studies) in which an association between PA or sedentary behaviour and adiposity was quantitatively assessed. (5) Papers were full text, peer reviewed, irrespective of language. To ensure maximal inclusion of studies, cross-sectional studies were also included if the determinant was adiposity and the outcome was PA.

The following criteria were used to exclude studies: (1) the type of publication (e.g., study protocols, reviews, or critiques were excluded); (2) studies focusing on children with a (chronic) disease or those confined to hospitals; and (3) studies in which PA was measured only during a part of the day (e.g., during hours of childcare).

Risk of bias assessment
The risk of bias of the included studies was assessed by two reviewers, independently, using the ‘Quality of Prognosis Studies in Systematic Reviews’ tool (QUIPS) 17. QUIPS comprises six domains covering the following topics: 1) study participation, 2) study attrition, 3) PA measurement (which is considered valid and reliable if PA is measured for at least 10 h/day over 3 valid days), 4) measurement of adiposity outcomes, 5) study confounding (the risk of bias was considered high if the analyses had not been adjusted for sex), and 6) analysis and reporting. The extensive operationalization of the items is described in Appendix B.

For all of the identified articles, each domain was rated as entailing a low, moderate-, or high risk of bias by two independent reviewers (RW and BH). Disagreements were discussed in a consensus meeting, and in case of persistent disagreement, a third reviewer (EH) was consulted. The overall percentage agreement and Cohen’s kappa were calculated to assess the level of inter-rater agreement. Overall, an item was considered to entail a high risk of bias if scores of more than 50% of the total number of participants revealed a moderate- or high risk of bias.

Data extraction
The following data were extracted by two independent reviewers (RW and BH) from each of the studies: the study population characteristics; participants’ characteristics; PA assessment method (the type of accelerometer used, accelerometer cut-off points, epoch length, and minimum wear time); adiposity outcome and, if applicable, definitions applied for overweight/obesity; and statistical analyses and results.
Statistical analysis

Separate meta-analyses were performed using the Comprehensive Meta Analysis (CMA) software for varying PA intensities and adiposity outcome measures. These analyses were performed if at least two studies were identified, except when differences between studies were considered too large. If multiple articles included the same participants (e.g., children of the same cohort) and reported on the same adiposity outcome, one article was selected according to the following criteria: (1) the usefulness of the reported estimate for the meta-analysis, (2) the longest follow-up duration, (3) the largest sample size, and (4) the estimate with the largest possible effect. Estimates extracted from the articles with continuous outcomes were converted to standardized bèta (stdβ) and standard errors (SE). If multiple estimates were reported, the adjusted estimates were used for the meta-analyses. For the dichotomous outcome weight status (non-overweight vs. overweight/obesity), standardized mean differences were calculated and converted into Pearson correlation coefficients. Since our aim was to examine the effects of PA on adiposity, estimates obtained for studies in which adiposity was the determinant and PA was the outcome were transformed using unadjusted estimates, univariate analyses, or Pearson correlation coefficients prior to their inclusion in the meta-analyses.

If information required for calculating the estimates was missing, the authors of the article were contacted and requested to provide this information. Appendix C presents an overview of the extracted data from the studies used for the meta-analyses.

Random effect meta-analyses were performed. Heterogeneity was assessed using the χ² test and the I² statistic. If study results were found to be heterogeneous (I² > 50% and/or χ² test p-value < 0.05) an overall estimate was not calculated. The following subgroup analyses were performed to explore heterogeneity: (1) sex (boys, girls, adjusted for sex, and not adjusted for sex); (2) epoch length (5s, 10s, 15s, and 60s epoch length), (3) type of accelerometer (triaxial vs. uniaxial), (4) prevalence of overweight (studies with a low prevalence of overweight/obesity, i.e., < 20%, compared with studies with a high prevalence of overweight/obesity, i.e., > 20% overweight), and (5) individual QUIPS items with a moderate- or high risk of bias (studies with a low risk of bias for these items compared with studies with a moderate- or high risk of bias).

Publication bias

We conducted funnel plots (a visual inspection) and Egger’s test to assess the likelihood of publication bias if at least ten studies were identified. We created separate funnel plots for different PA intensities and adiposity outcomes. We assumed that there was potential publication bias if the p-value of the Egger’s test was < 0.10.
RESULTS

We identified 3906 articles after excluding duplicate articles (2352). We first read titles and abstracts and subsequently screened the full-text of 190 articles, leading to the inclusion of 55 articles. One article was added after we screened the reference lists of these articles. Thus, a total of 56 articles were included in the study, of which 48 were used for the meta-analyses. Figure 1 shows a flow chart of the process of selecting articles. The individual characteristics of each of the reviewed studies for each adiposity outcome are shown in Appendix D. Most studies were performed in the United States and in Western Europe. With regard to the assessment of PA, a wide variety of methods was observed (Appendix E). Triaxial, biaxial and uniaxial accelerometers were used in 20, 1, and 32 studies, respectively. In two studies, triaxial as well as uniaxial accelerometers were used. Thirty-two studies used epoch recordings ≤ 15s and 21 studies used 60s epoch recordings. With regard to the measurement of adiposity, two different methods to measure percentage of body fat or (trunk) fat mass (index) were observed (dual energy X-ray absorptiometry and air-displacement plethysmography), and various locations or numbers of measurements were observed for waist circumference and skinfold thickness (Appendix F). In addition, eight different definitions for overweight and obesity were used (Appendix D).

Risk of bias
Items with a high risk of bias (i.e. moderate/high risk of bias in more than 50% of the total number of participants) were: (2a) ‘adequate response rate’ (89%), (2c) ‘no important differences among participants who completed the study with accelerometer data and those who did not’ (72%), and (3b) ‘method of determinant measurement is adequately valid and reliable’ (87%) (Appendix G). The overall inter-rater agreement was 96% (kappa statistic of 0.94), and ranged between 82% for item 2b (‘reason for loss of data’) and 100% for several other items.
Figure 1. Flow chart of study selection process.

Association between accelerometer-derived PA and adiposity
For the association between PA and adiposity, seven longitudinal studies were selected, of which three examined the percentage of body fat, five examined BMI, one examined waist circumference, four examined the fat mass (index), and one examined skinfold thickness.

Additionally, for the cross-sectional assessment of the association between PA and adiposity, six studies were selected on body fat percentage, twenty-three studies for BMI, eighteen studies for weight status, five studies for waist circumference, six studies for (trunk) fat mass (index), and three studies for skinfold thickness.

Outcome: Percentage body fat

Longitudinal studies
Three longitudinal studies examined the association between different PA intensities and percentages of body fat. Although the number of longitudinal studies was sufficient, no
meta-analysis was performed because of wide variations among the studies. One study found that children who spent more time engaged in moderate PA, vigorous PA, or MVPA had a lower percentage of body fat compared with their peers 12 months later 20. Another study did not find an association between total PA, moderate PA, or vigorous PA with changes in the percentage of body fat being evident after 9 months 21. The third study did not find any relation between total PA, sedentary behaviour, or MVPA and one-year changes in the percentage of body fat 22.

Cross-sectional studies
The association between different PA intensities and the percentage of body fat was examined in six cross-sectional studies 21–26. The total sample comprised 1555 children, with 100-434 children per study. The prevalence of overweight ranged between 8.5% and 20.1%.

Pooled estimates indicated that there was an association between total PA, moderate PA, vigorous PA, or MVPA and percentage body fat (Figure 2). No association was found between time spent in sedentary behaviour and the percentage of body fat (Figure 2b). Furthermore, one study showed that children who spent more time engaged in light PA had a lower percentage of body fat compared with their peers 25. In sum, children who spent more time engaged in total PA, light PA, moderate PA, vigorous PA, or MVPA had a lower percentage of body fat compared with their peers.

Outcome: BMI
Longitudinal studies
Five longitudinal studies examined the association between different PA intensities and BMI. Although the number of longitudinal studies was sufficient, no meta-analysis was performed because of wide variations among the studies. One study showed that children who spent more time engaged in MVPA exhibited greater changes in BMI after 1 year compared with their peers 22. Another study reported that a 5% increase in total PA or light PA resulted in decreased zBMI in heavier boys 1 year later 27. A 5% increase in MVPA resulted in decreased zBMI in normal weight and heavier boys and heavier girls 1 year later 27. A third study indicated that children who spent more time engaged in vigorous PA had a higher BMI 12 months later compared with their peers 20. The fourth study did not find any differences in BMI gain for low/medium and high MVPA 28. The final study did not find any correlations between minutes spent in MVPA and changes in BMI 29.

Cross-sectional studies
Twenty-three cross-sectional studies investigated the association between different PA intensities and BMI. Fifteen studies provided sufficient data to be included in the meta-analyses 22,23,26,30–41, and two studies provided additional data on request 42,43. Of the two studies that used the same sample 35,44, one was chosen according to our pre-defined criteria for the meta-analysis 35. The authors of three studies informed us that the data were no longer available 45–47 and we failed to contact the authors of two other studies. The total sample
comprised 3502 children, with 46-394 children per study. The prevalence of overweight ranged from 8.5% to 28.0%.

Pooled estimates showed no associations between total PA, light PA, moderate PA, or vigorous PA and BMI (Figure 3). By contrast, there was an association between time spent in sedentary behaviour and BMI (Figure 3b). Notably, children who spent less time being sedentary had a higher BMI compared with their peers.

The overall result for the association between MVPA and BMI was heterogeneous (p = 0.027). In subgroup analyses, heterogeneity could be explained by sex, type of accelerometer, epoch length, PA assessment, and missing data (Table 1). Pooled estimates in the subgroup analyses for sex showed that boys who spent more time in MVPA had a higher BMI compared with their peers. However, no association was observed for boys and girls together (Figure 3f).

Outcome: Weight status

Cross-sectional studies

Nineteen cross-sectional studies reported on the association between different PA intensities and weight status (non-overweight vs. overweight/obesity) 48–66. Sixteen studies provided sufficient data and were therefore included in the meta-analyses 48,49,61–66,67,50–52,55–58,60, and for one study, we requested and obtained additional data 65. We failed to contact the authors of one study. The same sample was used in two studies 59,67, one of which was chosen for the meta-analysis 67. The total sample comprised 4327 children, with 50-540 children per study. The overweight percentage ranged from 7.1% to 43.0%.

Pooled estimates showed that children with overweight spent less time engaged in vigorous PA compared with children who were not overweight (Figure 4e). Time spent in sedentary behaviour, light PA, and moderate PA were not associated with weight status (Figure 4).

The overall results for the association between total PA or MVPA and weight status were heterogeneous ($I^2 = 70\%$ and 60%, respectively). Sex, accelerometer types, missing data, response rates, and the prevalence of overweight all explained heterogeneity within subgroup analyses (Table 1). The pooled estimates in the subgroup analyses for sex showed a negative association between MVPA and the weight status of boys and girls considered together (Figure 4f). Moreover, pooled estimates showed no association between total PA and the weight status for girls (Figure 4a).

Outcome: Waist circumference

Longitudinal study

One longitudinal study examined the association between MVPA and waist circumference. No relation was found between minutes in MVPA and 1-3 year changes in waist circumference 29.
Figure 2. Forest plots of the association between physical activity and body fat percentage, differentiated by physical activity intensities.

Abbreviations: B, boys; G, girls; BG, boys and girls; adj, adjusted for sex; acc, accelerometer type; uni, uniaxial; bi, biaxial; tri, triaxial; epoch, epoch length (s); N, number of participants.
3a. Total physical activity - body mass index (kg/m²)

Author (year)	Sex	Act	Epoch	N	Statistics for each study	Point estimate	Standard error	p-Value
Cliff (2006)	B	Uni	60	25		0.320	0.200	0.141
Hendon (2006)	B	Uni	60	48		-0.150	0.159	0.529
Cliff (2009)	G	Uni	60	48		0.253	0.222	0.080
Hendon (2006)	G	Uni	60	52		-0.170	0.271	0.530
Boz (2016)	BG	Tri	60	111		-0.057	0.079	0.471
Lomax (2017)	BG	Tri	15	111		0.000	0.000	1.000
Dawson (2018)	B	Uni	15	61		0.138	0.100	0.283
Fies (2002)	B	Uni	60	218		0.052	0.072	0.470
Gao (2017)	B	Uni	15	227		0.110	0.175	0.630
Jackson (2008)	B	Uni	60	104		0.190	0.099	0.041
Oliver (2018)	B	Tri	15	78		-0.222	0.139	0.150
Simac (2016)	BG	Tri	15	364		0.060	0.045	0.045
Tochik (2007)	BG	Uni	60	192		-0.060	0.066	0.532

Overall: 0.059, 0.024, 0.189

Heterogeneity: F=35%, Q=14, df=2, p=0.293

3b. Sedentary behaviour - body mass index (kg/m²)

Author (year)	Sex	Act	Epoch	N	Statistics for each study	Point estimate	Standard error	p-Value
Bus (2011)	B	Uni	15	169		-0.149	0.065	0.100
Cliff (2009)	B	Uni	60	25		-0.369	0.193	0.071
España Romero (2013)	B	Uni	15	188	-0.129	0.071	0.079	
Black (2012)	G	Uni	15	188		-0.183	0.092	0.050
Cliff (2009)	B	Uni	60	21		0.034	0.231	0.883
España Romero (2013)	B	Uni	15	178	0.051	0.084	0.564	
Butte (2016)	B	Uni	15	111		0.101	0.101	0.137
Collings (2017)	BG	Tri	15	333		-0.013	0.241	0.957
Løvåsen (2016)	BG	Tri	10	307		-0.365	0.165	0.137
Schmidt (2017)	BG	Tri	15	294		-0.156	0.047	0.003
Overall						-0.080	0.039	0.030

Heterogeneity: F=27%, Q=12, df=4, p=0.195

3c. Light physical activity - body mass index (kg/m²)

Author (year)	Sex	Act	Epoch	N	Statistics for each study	Point estimate	Standard error	p-Value
Cliffs (2017)	BG	Tri	15	333		-0.003	0.037	0.994
Williams (2008)	BG	Uni	15	198		0.010	0.016	0.530

Overall: 0.028, 0.015, 0.166

Heterogeneity: F=0%, Q=0, df=1, p=0.800

Figure 3. Forest plots of the association between physical activity and body mass index, differentiated by physical activity intensities.

Abbreviations: B, boys; G, girls; BG, boys and girls; adj, adjusted for sex; acc, accelerometer type; uni, uniaxial; bi, biaxial; tri, triaxial; epoch, epoch length (s); N, number of participants; NR, not reported.
Figure 4. Forest plots of the association between physical activity and weight status, differentiated by physical activity intensities.

Abbreviations: B, boys; G, girls; BG, boys and girls; acc, accelerometer type; uni, uniaxial; bi, biaxial; tri, triaxial; epoch, epoch length (s); N, number of participants; NR, not reported.
Table 1. The results of the subgroup analyses for body mass index and weight status

Body mass index

	Q	df	p-value(Q)	I²	N	Stdβ ± SE	p-value
Sex							
Boys	2	3	0.596	0%	4	0.097 ± 0.045	0.032
Girls	11	3	0.012	72%	-	-	
Adjusted for sex	4	3	0.305	17%	4	-0.075 ± 0.069	0.273
Not adjusted for sex	0	1	0.832	0%	2	0.130 ± 0.052	0.012
Accelerometer							
Triaxial	3	3	0.349	9%	4	0.044 ± 0.056	0.432
Uniaxial	21	9	0.013	57%	-	-	
Epoch length							
10s	-	-	-	-	-	-	
15s	17	7	0.016	59%	-	-	
60s	4	4	0.385	4%	5	0.000 ± 0.051	0.998
Physical activity assessment							
Low risk	3	2	0.194	39%	3	0.049 ± 0.081	0.548
Moderate/high risk	21	10	0.021	53%	-	-	
Missing data							
Low risk	5	4	0.253	25%	5	0.032 ± 0.062	0.607
Moderate/high risk	19	8	0.017	57%	-	-	

Weight status

	Q	df	p-value(Q)	I²	N	r	p-value
Sex							
Boys	13	1	0.000	92%	-	-	-
Girls	0	1	0.927	0%	12	-0.000	0.996
Boys and girls	37	11	0.000	70%	-	-	-
Accelerometer							
Triaxial	4	4	0.361	8%	5	0.014	0.641
Uniaxial	36	9	0.000	75%	-	-	
Unknown	-	-	-	-	1	-0.276	0.002
Prevalence of overweight							
Low prevalence	9	4	0.074	53%	-	-	-
High prevalence	42	10	<0.001	76%	-	-	-
Physical activity assessment							
Low risk	6	1	0.011	84%	-	-	-
Moderate/high risk	43	13	<0.001	70%	-	-	-
Missing data							
Low risk	3	2	0.207	37%	3	0.025	0.503
Moderate/high risk	43	12	<0.001	72%	-	-	-
Table 1. Continued.

Weight status	Response rate\(^2\)	Q	df \(^1\)	p-value(Q)	I\(^2\)	N	Stdβ ± SE	p-value
Low risk	4	2	0.158	56%	-	-	-	-
Moderate/high risk	42	12	<0.001	71%	-	-	-	-

Moderate-to-vigorous physical activity

Sex	Boys	22	3	0.000	86%	-	-	-
	Girls	7	3	0.085	55%	-	-	-
	Boys and girls	8	7	0.364	9%	8	-0.066	0.004

Accelerometer	Triaxial	15	5	0.010	67%	-	-	-
	Uniaxial	18	9	0.035	50%	-	-	-

Prevalence of overweight\(^3\)	Low prevalence	5	4	0.344	11%	5	-0.056	0.041
	High prevalence	33	10	<0.001	70%	-	-	-

Physical activity assessment\(^2\)	Low risk of bias	-	-	-	-	1	-0.096	0.026
Moderate/high risk	36	14	0.001	61%	-	-	-	

Missing data\(^2\)	Low risk	-	-	-	-	1	-0.096	0.026
Moderate/high risk	36	14	0.001	61%	-	-	-	

Response rate\(^2\)	Low risk	3	2	0.274	23%	3	-0.087	0.066
Moderate/high risk	34	12	0.001	64%	-	-	-	

\(^1\)The results of the subgroup analyses are only shown if results were homogeneous.

\(^2\)Studies with low risk of bias on this QUIPS item compared to studies with a moderate/high risk of bias.

\(^3\)High prevalence of overweight was defined as >20% of the study sample affected by overweight or obesity.

Cross-sectional studies

Five cross-sectional studies that examined the association between different PA intensities and waist circumference were identified\(^{26,33,41,68,69}\). The total sample comprised 1198 children, with 78-357 children per study. The prevalence of overweight or a high waist circumference ranged from 8.5% to 58.0%.

Pooled estimates showed that total PA and time spent in sedentary behaviour were not associated with waist circumference (Appendix H). Single studies on the association of light PA\(^4\), moderate PA\(^26\), or vigorous PA\(^26\), respectively, with waist circumference did not indicate an association.
The results for the association between MVPA and waist circumference were heterogeneous ($I^2 = 51\%$). Epoch length, overweight prevalence, and PA assessment were factors explaining heterogeneity within subgroup analyses (Appendix I).

Outcome: Fat mass

Longitudinal studies

The association between different PA intensities and fat mass was examined in three longitudinal studies. Although the number of longitudinal studies was sufficient, no meta-analyses were performed because of wide variations among the studies. One study showed that girls with a high baseline MVPA gained less fat mass at the age of 8 years compared with their peers, but no relation was found for boys 28. In a second study, boys aged 5 years, with high MVPA levels, showed a lower fat mass at the age of 8 years compared with their peers 70. However, no such relation was found for girls. No relations between total PA, sedentary behaviour, or MVPA and 1-year changes in fat mass were found in the last study 22.

Cross-sectional studies

Four cross-sectional studies focused on the association between different PA intensities and fat mass 22–24,71. The total sample comprised 645 children, with 100-1080 children per study. Only one study reported on the prevalence (18%) of overweight 22.

Pooled estimates showed that children who spent more time in total PA or MVPA had a lower fat mass compared with their peers (Appendix H). One study each examined the association of sedentary behaviour 22, light PA 71, or vigorous PA 24 with fat mass. Children who spent more time engaged in vigorous PA had a lower fat mass compared with their peers 24. No associations were found for sedentary behaviour or light PA with fat mass 22,71. In addition, no study focused on moderate PA.

Outcome: Fat mass index

Longitudinal studies

One longitudinal study examined the association between different PA intensities and the fat mass index. The results showed no relations existing between sedentary behaviour, moderate PA, vigorous PA, or MVPA and fat mass index 20.

Cross-sectional studies

Two cross-sectional studies reported on the association between different PA intensities and the fat mass index (fat mass adjusted for height, kg/m2) 25,26. The total sample comprised 693 children (295 children in one study and 398 children in the other). The prevalence of overweight in these studies was 8.5% and 20.1%, respectively.

Pooled estimates showed that children who spent less time engaged in sedentary behaviour or more time in moderate PA, vigorous PA, or MVPA had a lower fat mass index compared with their peers (Appendix H). In addition, one study which examined the association between...
light PA and fat mass index did not find an association. Furthermore, no study focused on total PA.

Outcome: Trunk fat mass (index)

Cross-sectional studies

Only one cross-sectional study examined the association between different PA intensities and trunk fat mass. Children who spent more time engaged in vigorous PA had a lower trunk fat mass compared with their peers. A similar association for total PA was only found for girls. No association was found between MVPA and trunk fat mass.

Additionally, the association between different PA intensities and trunk fat mass index (trunk fat mass adjusted for height, kg/m²) was examined in one cross-sectional study. Children who spent less time engaged in sedentary behaviour or more time in moderate PA, vigorous PA, or MVPA had a lower trunk fat mass index compared with their peers. No association were observed between light PA and trunk fat mass index.

Outcome: Skinfold thickness

Longitudinal study

The findings of one longitudinal study in which the association between MVPA and skinfold thickness was examined did not reveal any relation between minutes spent in MVPA and changes in skinfold thickness.

Cross-sectional studies

Three cross-sectional studies examined the association between different PA intensities and skinfold thickness. The total sample comprised 811 children, with 309-346 children per study. Only one study reported on the prevalence (19.5%) of overweight.

Pooled estimates showed that children who spent more time engaged in total PA, light PA, or MVPA had a lower skinfold thickness compared with their peers (Appendix H). One study, in which the association between sedentary behaviour and skinfold thickness was examined, showed no association between time spent in sedentary behaviour and skinfold thickness. In addition, no studies focused on moderate PA or vigorous PA.

Other adiposity outcomes

Two cross-sectional studies focused on other adiposity outcomes for which no meta-analyses were conducted. One study focused on central obesity and showed that boys with central obesity spent more time engaged in sedentary behaviour compared with boys who were not affected by central obesity. No differences were found for girls. The second study focused on stunted-overweight, revealing differences in sedentary behaviour, light PA, and MVPA between stunted children without overweight, stunted children with overweight, non-stunted children with overweight, and non-stunted children without overweight. Children with overweight spent more time engaged in total PA and light PA compared with
stunted children without overweight and less time engaged in sedentary behaviour compared with stunted children with and without overweight. Furthermore, stunted children with and without overweight spent less time engaged in MVPA compared with non-stunted children without overweight.

Publication bias
No indications of publication bias relating to the associations between different PA intensities and adiposity outcomes were found (all p > 0.10).

DISCUSSION

We examined the association between accelerometer-derived PA and varying adiposity outcomes in preschool children using outcome data from 56 studies. Our meta-analyses showed that the associations between PA and adiposity in preschool children are highly dependent on the intensity of PA and the type of outcome used for assessing the degree of adiposity. There was substantial evidence of an association between (moderate-to-) vigorous PA and adiposity.

PA intensity
Children who spent more time engaged in vigorous PA or MVPA showed lower levels of adiposity, revealing that high PA intensities are indicative of positive associations between PA and adiposity at young ages. These findings are in accordance with the results of a systematic review in which the relation between PA and health indicators in children aged 5-17 years was explored. The most persistent associations between PA and health indicators were found for higher PA intensities. We found that associations between PA and adiposity were highly dependent on the PA intensity. This finding highlights the importance of distinguishing between different PA intensities. For interventions among preschool children, we recommend, in accordance with the 24-hour movement guidelines from Canada and Australia, focusing on increasing (moderate-to-) vigorous PA to address the growing prevalence of overweight and obesity in young children.

The literature on light PA is scarce compared with vigorous PA and MVPA. The Advisory Committee of the 2018 US PA Guidelines decided to include light PA in their recommendations until more evidence on light PA becomes available. In our study, meta-analyses for the association between light PA and percentage of body fat, fat mass, or waist circumference were not conducted because of insufficient numbers of studies. However, an association was found between light PA and skinfold thickness, and a trend was observed for weight status. Children spent time of the day entailing the most activity engaged in light PA, which is less intensive than MVPA. It may be easier within intervention studies to increase the time spent in light PA than that spent in high intensity PA. Therefore, future studies should comprehensively examine the influence of light PA on adiposity in preschool children.
Sedentary behaviour
The studies included in this review showed no clear association between sedentary behaviour and adiposity. Associations were found between sedentary behaviour and BMI or fat mass index, but these results should be treated with caution. First, the results showed that children who were less sedentary had a higher BMI compared with their peers. This can probably be explained by the fact that BMI may not only include fat mass but also fat free mass or muscle mass. In addition, as children mature, they gain height and their motor-ability develops as well, which may have influenced the observed association as well. Second, only two studies examining the fat mass index were found. Of these studies, one study reported a positive association between sedentary behaviour and fat mass index, whereas the other study found no association. In addition, a review of studies on children and adolescents conducted in 2012 did not find any associations between accelerometer-derived sedentary behaviour and adiposity. Significant negative associations of sedentary behaviour and weight status only occurred in studies in which the former was self-reported by children and parents. This self-reported sedentary behaviour was based on reports of children's screen-time. However, screen-time and sedentary behaviour are not identical. On the one hand, screen-time is defined as the time spent engaged in screen-based behaviours, which can be performed when individuals are sedentary as well as physically active. On the other hand, sedentary behaviour is defined as sitting, reclining, or lying down and entails low energy costs (< 1.5 METs). Screen-time in children is related to a lower vegetable and fruit intake and higher snack consumption. Therefore, an alternative explanation for associations between screen-time and adiposity may be an excess of energy intake rather than a lack of energy expenditure. Consequently, future studies need to clearly distinguish between screen-time and sedentary behaviour. Although screen-time behaviour could be (indirectly) related to adiposity, we found no association between accelerometer-derived sedentary behaviour and adiposity at young ages.

Adiposity outcome
The findings of this review show that the association between PA and adiposity is highly dependent on the outcome measure used for adiposity. Children who spend more time engaged in PA show a lower percentage of body fat, less fat mass, and a lower weight status compared with their peers. However, more time spent in PA is not associated with a lower BMI or waist circumference regardless of PA intensity. These findings are in accordance with a review from 2011 that focused on the association between objectively measured PA and adiposity in preschool children. The review included the percentage of body fat, BMI, weight status, and fat mass as outcome measures for adiposity and partly included the same studies that we reviewed. The results depended on the outcome measure used for adiposity, with more confirmative results for percentage of body fat than for BMI. Our review and meta-analyses were more comprehensive as we also incorporated waist circumference, fat mass index, trunk fat mass (index), and skinfold thickness as adiposity outcome measures. Moreover, we included more recent literature: 38 of the studies in our review and meta-analyses were published between 2011 and 2018. More confirmative results were found for the percentage of body fat, fat mass, and weight status.
This leads to the question of which adiposity outcome should be assessed in future studies. BMI and waist circumference calculations are based on children’s anthropometry. As previously mentioned, these are not exclusive measures for fat mass. In this case, the higher BMI could indicate a higher muscle mass instead of a higher fat mass. The body fat percentage, fat mass, and skinfold thickness are more precise and may be better measures of adiposity. In addition, although no association between vigorous PA and BMI was found, children who spent more time in vigorous PA are likely to have a lower weight status compared with their less active peers. This may seem contradictory, as weight status is calculated based on BMI. BMI is a continuous measure, whereas weight status is a categorical variable. By dividing children into overweight or obesity and non-overweight groups, the distinctiveness becomes larger. It may mean that vigorous PA affects adiposity in higher ranges, preventing children to reach a threshold, but it may not affect adiposity over the whole range of BMI and all degrees of adiposity. In other words, it does not make lean children leaner. Therefore, future studies should include the percentage of body fat as outcome for adiposity, and, if BMI data are collected, children should be divided into the following categories: underweight, normal weight, overweight, and obesity to increase the distinctiveness of the outcome measure.

Assessment of PA

The reviewed studies encompassed a wide variety of methods for processing accelerometer-derived PA, which made them less comparable. Because accelerometers are now used more frequently, the development of new accelerometers and the methodological literature on accelerometers have increased, resulting in the deployment of different kinds of accelerometer cut points, and new epoch lengths. A total of 37 accelerometer cut points were used within all of the studies included in this review. A review conducted in 2017 showed 14 different cut points for sedentary behaviour and 11 different cut points for PA intensities within studies that all used the same accelerometer (ActiGraph GT3X) among preschool children. A study conducted in 2016 showed that levels of PA intensities varied significantly for different epoch lengths and for different cut points. In this study, PA was measured using ActiGraph GT3X+ accelerometers in children aged 7-11 years, and the data were processed using various methods (six different epoch lengths and five different accelerometer cut points were used). When the epoch lengths increased, sedentary behaviour, moderate PA, and vigorous PA decreased, whereas light PA increased. The use of different accelerometer cut points was shown to cause a difference of 200 minutes estimated time engaged in sedentary behaviour or light PA and approximately 50 minutes on MVPA. Thus, different epoch lengths and cut points have considerable impacts on the estimated levels of PA intensities, which potentially also influence the associations of PA with adiposity. However, in the current study, we were unable to show whether the associations between PA and adiposity were stronger or weaker if a short epoch time was used, because of heterogeneous findings in the subgroup analyses or a lack of sufficient studies using different epoch lengths. The application of one universal method to assess accelerometer-derived PA is essential to tackle the growing inconsistency reported in the literature.
Strengths and limitations
This review is the first to apply meta-analyses for assessing the association between PA and adiposity in preschool children. We used a wide age range (2-7 years) for preschool children. In general, the preschool period is described as 2-5 years of age. Nevertheless, in many countries children attend preschool until they are 7 years old. It is about the period that children receive structured educational instructions, but in the context of play, when they still have ample opportunity to move around freely. Furthermore, most studies in school-aged children start around the age of 7, leaving a gap between 5 and 7 years. Additionally, this is the first study that seeks to distinguish between different PA intensities and adiposity outcomes. Consequently, a more detailed picture of the association between PA and adiposity in preschool children emerges. Furthermore, only accelerometer-derived PA was included, making all of the included studies more comparable, even though differences in the assessment of PA still prompted variety.

A limitation of the present study is that 53 out of the 56 included studies were from high-income countries. Although this made the results from the included studies more comparable, it would be interesting to examine the association between PA and adiposity in more low- and middle-income countries as well, as part of the double burden of poor lifestyle, where low birth weight and poor growth often exist alongside a transition to more sedentary lifestyles and westernized diets. In addition, several methodological limitations should be noted. Firstly, there was a high risk of bias for most studies. About 63% of the studies had a high risk of bias on approximately 70% of the QUIPS items. Especially the QUIPS-item regarding validity and reliability of the measurement of PA scored high risk of bias. In 75% of the studies, PA was not measured according to the advised weartime (≥ 10 hours per day) or the minimum advised number of wearing days (≥3 days). Secondly, although we did not detect publication bias in our study, it is likely that some pooled estimates may be overestimated. Among observational studies, it is expected that studies with positive and strong associations are more likely to be published. We were only able to assess this likelihood of publication bias in 7 out of the 29 performed meta-analyses. For the other meta-analyses, the Egger’s test would be underpowered to detect publication bias. Lastly, meta-analyses were only performed on cross-sectional studies. Unfortunately, we were not able to conduct meta-analyses for the longitudinal studies because of a lack of comparable studies. Therefore, the pooled estimates might be overestimated and should be handled with caution. More longitudinal studies with multiple measurements taken for both PA and adiposity in young children are needed. Nevertheless, the current study has yielded detailed insights on the association between daily life PA behaviours and adiposity in young children.
CONCLUSION

More time spent in (moderate-to-) vigorous PA was found to be associated with a lower percentage of body fat, lower weight status, less fat mass, a lower fat mass index, and lower skinfold thickness in young children. PA was not associated with BMI or waist circumference, irrespective of PA intensity. Furthermore, sedentary behaviour does not appear to be associated with adiposity, irrespective of adiposity outcomes. In addition, light PA should be examined more extensively, and more longitudinal studies are required using multiple measurements for both PA and adiposity. Moreover, universal guidelines are needed to tackle growing inconsistencies regarding the different methods reported in the literature for assessing PA. We recommend that researchers and policymakers focus on high-intensity PA behaviours to prevent increases in childhood overweight and obesity, paying particular attention to body fat percentage or weight status as adiposity outcome measures.

CONFLICT OF INTEREST

None declared.

ACKNOWLEDGEMENTS

The authors would like to thank Sjoukje van der Werf, a medical information specialist at the Central Medical Library of the UMCG, for her assistance in the development of the search strategy. We also would like to thank all authors who provided additional data of their studies on request.
REFERENCES

1. World Health Organization (WHO). Global Health Observatory visualizations; Global Overview Child Malnutrition.

2. Gurnani M, Birken C, Hamilton J. Childhood Obesity: Causes, Consequences, and Management. Pediatr Clin North Am. 2015;62(4):821-840. doi:10.1016/j.pcl.2015.04.001

3. Pandita A, Sharma D, Pandita D, Pawar S, Tariq M, Kaul A. Childhood obesity: prevention is better than cure. Diabetes, Metab Syndr Obes targets Ther. 2016;9:83.

4. Monteiro POA, Victora CG. Rapid growth in infancy and childhood and obesity in later life - a systematic review. Obes Rev. 2005;6(2):143-154. doi:10.1111/j.1467-789X.2005.00183.x

5. Rodearmel SJ, Wyatt HR, Barry MJ, et al. A family-based approach to preventing excessive weight gain. Obesity. 2006;14(8):1392-1401.

6. Spiegelman BM, Flier JS. Obesity and the regulation of energy balance. Cell. 2001;104(4):531-543.

7. Krebs N, Jacobson M, American Academy of Pediatrics Committee on Nutrition. Prevention of pediatric overweight and obesity. Pediatrics. 2003;112(2):424.

8. Yanovski JA. Intensive therapies for pediatric obesity. Pediatr Clin North Am. 2001;48(4):1041-1053.

9. Prentice-Dunn H, Prentice-Dunn S. Physical activity, sedentary behavior, and childhood obesity: A review of cross-sectional studies. Psychol Health Med. 2012;17(3):255-273. doi:10.1080/13548506.2011.608806

10. Jiménez-Pavón D, Kelly J, Reilly JJ. Associations between objectively measured habitual physical activity and adiposity in children and adolescents: Systematic review. Int J Pediatr Obes. 2010;5(1):3-18. doi:10.3109/17477160903067601

11. Sijtsma A, Sauer PJ, Stolk RP, Corpeleijn E. Is directly measured physical activity related to adiposity in preschool children? Int J Pediatr Obes. 2011;6(5-6):389-400. doi:10.3109/17477166.2011.606323 [doi]

12. Sirard JR, Trost SG, Pfeiffer KA, Dowda M, Pate RR. Calibration and evaluation of an objective measure of physical activity in preschool children. J Phys Act Heal. 2005;2(3):345.

13. Hänggi JM, Phillips LRS, Rowlands A V. Validation of the GT3X ActiGraph in children and comparison with the GT1M ActiGraph. J Sci Med Sport. 2013;16(1):40-44.

14. Obeid J, Nguyen T, Gabel L, Timmons BW. Physical activity in Ontario preschoolers: prevalence and measurement issues. Appl Physiol Nutr Metab. 2011;36(2):291-297. doi:10.1139/h11-002

15. Shephard RJ. Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med. 2003;37(3):197-206.

16. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann Intern Med. 2009;151(4):264. doi:10.7326/0003-4819-151-4-200908180-00135

17. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing Bias in Studies of Prognostic Factors. Ann Intern Med. 2013;158(4):280. doi:10.7326/0003-4819-158-4-201302190-00009
18. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ*. 2003;327(7414):557-560. doi:10.1136/bmj.327.7414.557

19. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ*. 1997;315(7109):629-634. doi:10.1136/BMJ.315.7109.629

20. Leppänen MH, Henriksson P, Delisle Nyström C, et al. Longitudinal physical activity, body composition, and physical fitness in preschoolers. *Med Sci Sports Exerc*. 2017;49(10):2078-2085. doi:10.1249/MSS.0000000000001313

21. Bürgi F, Meyer U, Granacher U, et al. Relationship of physical activity with motor skills, aerobic fitness and body fat in preschool children: a cross-sectional and longitudinal study (Ballabeina). *Int J Obes*. 2011;35(7):937-944. doi:10.1038/ijo.2011.54

22. Butte NF, Puyau MR, Wilson TA, et al. Role of physical activity and sleep duration in growth and body composition of preschool-aged children. *Obesity*. 2016;24(6):1328-1335. doi:10.1002/oby.21489

23. Heelan KA, Eisenmann JC. Physical Activity, Media Time, and Body Composition in Young Children. *J Phys Act Heal*. 2006;3(2):200-209. doi:10.1123/jpah.3.2.200

24. Janz KF, Levy SM, Burns TL, Torner JC, Willing MC, Warren JJ. Fatness, Physical Activity, and Television Viewing in Children during the Adiposity Rebound Period: The Iowa Bone Development Study. 2002;35(6):563-571. doi:10.1006/pmed.2002.1113

25. Collings PJ, Brage S, Ridgway CL, et al. Physical activity intensity, sedentary time, and body composition in preschoolers. *Am J Clin Nutr*. 2013;97(5):1020-1028. doi:10.3945/ajcn.112.045088

26. Leppänen MH, Nyström CD, Henriksson P, et al. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: results from the ministop trial. *Int J Obes*. 2016;40(7):1126-1133. doi:10.1038/ijo.2016.54

27. Remmers T, Sleddens EFC, Gubbels JS, et al. Relationship between Physical Activity and the Development of Body Mass Index in Children. *Med Sci Sport Exerc*. 2014;46(1):177-184. doi:10.1249/MSS.0b013e3182a36709

28. Jáuregui A, Villalpando S, Rangel-Baltazar E, Lara-Zamudio YA, Castillo-García MM. Physical activity and fat mass gain in Mexican school-age children: a cohort study. *BMC Pediatr*. 2012;12(1):620. doi:10.1186/1471-2431-12-109

29. Metcalf BS, Voss LD, Hosking J, Jeffery AN, Wilkin TJ. Physical activity at the government-recommended level and obesity-related health outcomes: a longitudinal study (Early Bird 37). *Arch Dis Child*. 2008;93(9):772-777. doi:10.1136/adc.2007.135012

30. Guo H, Schenkelberg MA, O’Neill JR, Dowda M, Pate RR. How Does the Relationship Between Motor Skill Performance and Body Mass Index Impact Physical Activity in Preschool Children? *Pediatr Exerc Sci*. September 2017:1-19. doi:10.1123/pes.2017-0074

31. Jackson DM, Reilly JJ, Kelly LA, Montgomery C, Grant S, Paton JY. Objectively Measured Physical Activity in a Representative Sample of 3- to 4-Year-Old Children. *Obes Res*. 2003;11(3):420-425. doi:10.1038/oby.2003.57

32. Mendoza JA, McLeod J, Chen T-A, Nicklas TA, Baranowski T. Correlates of Adiposity among Latino Preschool Children. *J Phys Act Heal*. 2014;11(1):195-198. doi:10.1123/jpah.2012-0018

33. Oliver M, Schofield GM, Schluter PJ. Parent influences on preschoolers’ objectively assessed physical activity. *J Sci Med Sport*. 2010;13(4):403-409. doi:10.1016/j.jsams.2009.05.008
34. Pfeiffer KA, Dowda M, McIver KL, Pate RR. Factors Related to Objectively Measured Physical Activity in Preschool Children. *Pediatr Exerc Sci*. 2009;21:196-208. doi:10.1123/pes.21.2.196

35. Schmutz EA, Leeger-Aschmann CS, Radtke T, et al. Correlates of preschool children's objectively measured physical activity and sedentary behavior: A cross-sectional analysis of the SPLASHY study. *Int J Behav Nutr Phys Act*. 2017;14(1):1-13. doi:10.1186/s12966-016-0456-9

36. Toschke JA, von Kries R, Rosenfeld E, Toschke AM. Reliability of physical activity measures from accelerometry among preschoolers in free-living conditions. *Clin Nutr*. 2007;26(4):416-420. doi:10.1016/j.clnu.2007.03.009

37. Williams HG, Pfeiffer KA, O’Neill JR, et al. Motor Skill Performance and Physical Activity in Preschool Children. *Obesity*. 2008;16(6):1421-1426. doi:10.1038/oby.2008.214

38. España-Romero V, Mitchell JA, Dowda M, Neill JRO’, Pate RR. Objectively Measured Sedentary Time, Physical Activity and Markers of Body Fat in Preschool Children. *Pediatr Exerc Sci*. 2013;25:154-163.

39. Byun W, Dowda M, Pate RR. Correlates of Objectively Measured Sedentary Behavior in US Preschool Children. *Pediatrics*. 2011;128(5):937-945. doi:10.1542/peds.2011-0748

40. Cliff DP, Okely AD, Smith LM, Mckeen K. Relationships Between Fundamental Movement Skills and Objectively Measured Physical Activity in Preschool Children. *Pediatr Exerc Sci*. 2009;21:436-449.

41. Collings PJ, Brage S, Bingham DD, et al. Physical Activity, Sedentary Time, and Fatness in a Biethnic Sample of Young Children. *Med Sci Sport Exerc*. 2017;49(5):930-938. doi:10.1249/ MSS.0000000000001180

42. Dawson-Hahn EE, Fesinmeyer MD, Mendoza JA. Correlates of Physical Activity in Latino Preschool Children Attending Head Start. *Pediatr Exerc Sci*. 2015;27(3):372-379. doi:10.1123/pes.2014-0144

43. Finn K, Johannsen N, Specker B. Factors associated with physical activity in preschool children. *J Pediatr*. 2002;140(1):81-85. doi:10.1067/mpd.2002.120693

44. Herzig D, Eser P, Radtke T, et al. Relation of Heart Rate and its Variability during Sleep with Age, Physical Activity, and Body Composition in Young Children. *Front Physiol*. 2017;8. doi:10.3389/fphys.2017.00109

45. Yamamoto S, Becker S, Fischer J, De Bock F. Sex differences in the variables associated with objectively measured moderate-to-vigorous physical activity in preschoolers. *Prev Med (Baltim)*. 2011;52(2):126-129. doi:10.1016/j.ypmed.2010.11.014

46. Buck C, Kneib T, Tkaczick T, Konstabel K, Pigeot I. Assessing opportunities for physical activity in the built environment of children: interrelation between kernel density and neighborhood scale. *Int J Health Geogr*. 2015;14(1):35. doi:10.1186/s12942-015-0027-3

47. Fisher A, Reilly JJ, Montgomery C, et al. Seasonality in physical activity and sedentary behaviour in young children. *Pediatr Exerc Sci*. 2005;17:31-40. doi:10.1111/trf.13454

48. Berglid D, Hansson L, Tynelius P, Rasmussen F. Levels and Patterns of Objectively Measured Physical Activity and Sedentary Time in 4-Year-Old Swedish Children. *J Phys Act Heal*. 2017;14(2):117-122. doi:10.1123/jpah.2016-0250
49. Colley RC, Garriguet D, Adamo KB, et al. Physical activity and sedentary behavior during the early years in Canada: a cross-sectional study. *Int J Behav Nutr Phys Act*. 2013;10:54-62. doi:10.1186/1479-5868-10-54

50. Trost SG, Sirard JR, Dowda M, Pfeiffer KA, Pate RR. Physical activity in overweight and nonoverweight preschool children. *Int J Obes*. 2003;27(7):834-839. doi:10.1038/sj.ijo.0802311

51. Tucker P, Maltby AM, Burke SM, Vanderloo LM, Irwin JD. Comparing physical activity and sedentary time among overweight and nonoverweight preschoolers enrolled in early learning programs: a cross-sectional study. *Appl Physiol Nutr Metab*. 2016;41(9):971-976. doi:10.1139/apnm-2016-0021

52. Vale S, Silva P, Santos R, Soares-Miranda L, Mota J. Compliance with physical activity guidelines in preschool children. *J Sports Sci*. 2010;28(6):603-608. doi:10.1080/02640411003702694

53. Vale S, Trost S, Ruiz JJ, Rêgo C, Moreira P, Mota J. Physical activity guidelines and preschooler’s obesity status. *Int J Obes*. 2013;37(10):1352-1355. doi:10.1038/ijo.2013.109

54. Van Cauwenberghe E, Jones RA, Hinkley T, Crawford D, Okely AD. Patterns of physical activity and sedentary behaviour in preschool children. *Int J Behav Nutr Phys Act*. 2012;9:1-11. doi:10.1186/1479-5868-9-138

55. Vorwerg Y, Petroff D, Kiess W, Blüher S. Physical Activity in 3–6 Year Old Children Measured by SenseWear Pro®: Direct Accelerometry in the Course of the Week and Relation to Weight Status, Media Consumption, and Socioeconomic Factors. *PLoS One*. 2013;8(4):e60619. doi:10.1371/journal.pone.0060619

56. Gutiérrez-Hervás A, Cortés-Castell E, Juste-Ruíz M, Palazón-Bru A, Gil-Guillén V, Rizo-Baeza M. Physical activity values in two-to-seven-year-old children measured by accelerometer over five consecutives 24-hour days. *Nutr Hosp*. 2018;35(3):252-257. doi:10.20960/nh.1403

57. Matarma T, Lagström H, Hurme S, et al. Motor skills in association with physical activity, sedentary time, body fat, and day care attendance in 5–6-year-old children - the STEPS Study. *Scand J Med Sci Sports*. 2018:0-1. doi:10.1111/smss.13264

58. Matarma T, Tammelin T, Kulmala J, Koski P, Hurme S, Lagström H. Factors associated with objectively measured physical activity and sedentary time of 5–6-year-old children in the STEPS Study. *Early Child Dev Care*. 2017;187(12):1863-1873. doi:10.1080/03004430.2016.1193016

59. Ebenegger V, Marques-Vidal P, Kriemler S, et al. Differences in Aerobic Fitness and Lifestyle Characteristics in Preschoolers according to their Weight Status and Sports Club Participation. *Obes Facts*. 2012;5(1):23-33. doi:10.1159/000336603

60. Jones RA, Okely AD, Gregory P, Cliff DP. Relationships between weight status and child, parent and community characteristics in preschool children. *Int J Pediatr Obes*. 2009;4(1):54-60. doi:10.1080/17477160802199984

61. Metallinos-Katsaras ES, Freedson PS, Fulton JE, Sherry B. The Association Between an Objective Measure of Physical Activity and Weight Status in Preschoolers. *Obesity*. 2007;15(3):686-694. doi:10.1038/oby.2007.571

62. O’Dwyer MV, Foweather L, Stratton G, Ridgers ND. Physical activity in non-overweight and overweight UK preschool children: Preliminary findings and methods of the Active Play Project. *Sci Sports*. 2011;26(6):345-349. doi:10.1016/j.scispo.2011.01.006
63. Pate RR, O’Neill JR, Brown WH, Pfeiffer KA, Dowda M, Addy CL. Prevalence of Compliance with a New Physical Activity Guideline for Preschool-Age Children. *Child Obes.* 2015;11(4):415-420. doi:10.1089/chi.2014.0143

64. Rottger K, Grimminger E, Kreuser F, Asslander L, Golllhofer A, Korsten-Reck U. Physical activity in different preschool settings. *J Obes.* 2014;2014(321701):1-8. doi:10.1155/2014/321701

65. Schaefer SE, Camacho-Gomez R, Sadeghi B, Kaiser L, German JB, de la Torre A. Assessing Child Obesity and Physical Activity in a Hard-to-Reach Population in California’s Central Valley, 2012–2013. *Prev Chronic Dis.* 2015;12:140577. doi:10.5888/pcd12.140577

66. Tanaka C, Tanaka S. Objectively-measured physical activity and body weight in Japanese preschoolers. *Ann Hum Biol.* 2013;40(6):541-546. doi:10.3109/03014460.2013.815802

67. Niederer I, Kriemler S, Zahner L, et al. BMI Group-Related Differences in Physical Fitness and Physical Activity in Preschool-Age Children. *Res Q Exerc Sport.* 2012;83(1):12-19. doi:10.1080/02701367.2012.10599820

68. España-Romero V, Mitchell JA, Dowda M, O’Neill JR, Pate RR. Objectively Measured Sedentary Time, Physical Activity and Markers of Body Fat in Preschool Children. *Pediatr Exerc Sci.* 2013;25(1):154-163. doi:10.1123/pes.25.1.154

69. Oliver M, Schluter PJ, Healy GN, Tautolo E-S, Schofield G, Rush E. Associations Between Breaks in Sedentary Time and Body Size in Pacific Mothers and Their Children: Findings From the Pacific Islands Families Study. *J Phys Act Heal.* 2013;10:1166-1174.

70. Janz KF, Kwon S, Letuchy EM, et al. Sustained effect of early physical activity on body fat mass in older children. *Am J Prev Med.* 2009;37(1):35-40. doi:10.1016/j.amepre.2009.03.012

71. Kwon S, Janz KF, Burns TL, Levy SM. Association between Light-Intensity Physical Activity and Adiposity in Childhood. *Pediatr Exerc Sci.* 2011;23(2):218-229. doi:10.1123/pes.23.2.218

72. Fang H, Quan M, Zhou T, et al. Relationship between Physical Activity and Physical Fitness in Preschool Children: A Cross-Sectional Study. *Biomed Res Int.* 2017;2017:9314026. doi:10.1155/2017/9314026

73. Mota J, Silva Dos Santos S, Santos A, Seabra A, Vale S. Association between sedentary behavior time and waist-to-height ratio in preschool children. *Am J Hum Biol.* 2016;28(5):746-748. doi:10.1002/ajhb.22851

74. Said-Mohamed R, Bernard JY, Ndzana A-C, Pasquet P. Is Overweight in Stunted Preschool Children in Cameroon Related to Reductions in Fat Oxidation, Resting Energy Expenditure and Physical Activity? *J Phys Act Heal.* 2017;2017:9314026. doi:10.1155/2017/9314026

75. Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. *Appl Physiol Nutr Metab.* 2016;41(6 (Suppl. 3)):S197-S239. doi:10.1139/apnm-2015-0663

76. Tremblay MS, Chaput J-P, Adamo KB, et al. Canadian 24-Hour Movement Guidelines for the Early Years (0–4 years): An Integration of Physical Activity, Sedentary Behaviour, and Sleep. *BMC Public Health.* 2017;17(Suppl 5):874. doi:10.1186/s12889-017-4859-6

77. Okely AD, Ghersi D, Hesketh KD, et al. A collaborative approach to adopting/adapting guidelines - The Australian 24-Hour Movement Guidelines for the early years (Birth to 5 years): an integration of physical activity, sedentary behavior, and sleep. *BMC Public Health.* 2017;17(Suppl 5):869. doi:10.1186/s12889-017-4867-6
78. 2018 Physical Activity Guidelines Advisory Committee. *2018 Physical Activity Guidelines Advisory Committee Scientific Report.* Washington, DC; 2018.

79. Tremblay MS, Aubert S, Barnes JD, et al. Sedentary Behavior Research Network (SBRN) – Terminology Consensus Project process and outcome. *Int J Behav Nutr Phys Act.* 2017;14(1):75. doi:10.1186/s12966-017-0525-8

80. Sedentary Behaviour Research Networ SBR. Letter to the Editor: Standardized use of the terms “sedentary” and “sedentary behaviours.” *Appl Physiol Nutr Metab.* 2012;37(3):540-542. doi:10.1139/h2012-024

81. Pearson N, Biddle SJH, Griffiths P, Johnston JP, Haycraft E. Clustering and correlates of screen-time and eating behaviours among young children. *BMC Public Health.* 2018;18(1):1-9. doi:10.1186/s12889-018-5698-9

82. Pearson N, Biddle SJH. Sedentary behavior and dietary intake in children, adolescents, and adults: A systematic review. *Am J Prev Med.* 2011;41(2):178-188. doi:10.1016/j.amepre.2011.05.002

83. Migueles JH, Cadenas-Sanchez C, Ekelund U, et al. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. *Sports Med.* 2017;47(9):1821-1845. doi:10.1007/s40279-017-0716-0

84. Banda JA, Haydel KF, Davila T, et al. Effects of varying epoch lengths, wear time algorithms, and activity cut-points on estimates of child sedentary behavior and physical activity from accelerometer data. *PLoS One.* 2016;11(3):e0150534. doi:10.1371/journal.pone.0150534

85. Williams RJ, Tse T, Harlan WR, Zarin DA. Registration of observational studies: Is it time? *Can Med Assoc J.* 2010;182(15):1638-1642. doi:10.1503/cmaj.092252
APPENDICES

Appendix A. Search strategies used in EMBASE, MEDLINE, and Web of Science.
Appendix B. QUIPS-based criteria applied in the assessment of the risk of bias.
Appendix C. Overview of the extracted data used for the meta-analyses.
Appendix D. Sample characteristics, statistical analyses, and the results of all of the reviewed studies, differentiated by adiposity outcomes.
Appendix E. Physical activity assessment.
Appendix F. Assessment of percentage of body fat, (trunk) fat mass (index), waist circumference, and skinfold thickness.
Appendix G. Overall and individual results of the risk of bias assessment using QUIPS.
Appendix H. Forest plots of the association between physical activity and waist circumference, fat mass (index), and skinfold thickness, differentiated by physical activity intensities.
Appendix I. The results of the subgroup analyses for waist circumference.
Appendix A. Search strategies used in EMBASE, MEDLINE, and Web of Science.

MEDLINE:

(“Child, Preschool”[Mesh] OR child*[tiab] OR pediatr*[tiab] OR paediatr*[tiab] OR preschool[tiab])

AND

(“Body Mass Index”[Mesh] OR “Body Fat Distribution”[Mesh] OR “Waist Circumference”[Mesh] OR “Overweight”[Mesh] OR BMI[tiab] OR body mass index[tiab] OR overweight[tiab] OR obes*[tiab] OR weight status[tiab] OR body composition[tiab] OR body fat[tiab])

AND

(“Exercise”[Mesh:NoExp] OR physical activ*[tiab] OR physically activ*[tiab] OR activity level*[tiab] OR exercis*[tiab] OR sedenta*[tiab])

AND

(“Accelerometry”[Mesh] OR “Monitoring, Physiologic”[Mesh:NoExp] OR “Actigraphy”[Mesh] OR accelerom*[tiab] OR monitor*[tiab] OR actigraph[tiab])

NOT

(adolescen*[Title] OR adult*[Title])

EMBASE:

(‘preschool child’/exp OR (child* OR pediatr* OR paediatr* OR preschool):ab,ti)

AND

(‘body mass’/exp OR ‘body fat distribution’/exp OR ‘waist circumference’/exp OR ‘childhood obesity’/exp OR ‘obesity’:de OR (BMI OR ‘body mass index’ OR overweight OR obes* OR ‘weight status’ OR ‘body composition’ OR ‘body fat’):ab,ti)

AND
(‘physical activity, capacity and performance’/de OR ‘exercise’/de OR (physical activ* OR physically activ* OR activity level* OR exercis* OR sedenta*): ab,ti)

AND

(‘accelerometry’/exp OR ‘physiologic monitoring’/de OR ‘actimetry’/exp OR (accelerom* OR monitor* OR actigraph):ab,ti)

AND

(‘article’/it OR ‘conference paper’/it OR ‘review’/it)

NOT

((adolescen* OR adult*):ti)

Web Of Science

TS = (child* OR pediatr* OR paediatr* OR preschool)

AND

TS = (BMI OR “body mass index” OR overweight OR obes* OR “weight status” OR “body composition” OR “body fat”)

AND

TS = (“physical activ*” OR “physically activ*” OR “activity level*” OR exercis*)

AND

TS = (accelerom* OR monitor* OR actigraph)
Appendix B. QUIPS-based criteria applied in the assessment of the risk of bias.

The ‘Quality of prognosis Studies in Systematic Reviews’ (QUIPS 2013). QUIPS consists of six domain including the following topics: 1) participation, 2) attrition, 3) determinant measurement, 4) outcome measurement, 5) confounding measurement and account and 6) analysis and reporting. The operationalization of this described in the table below. For all identified articles, each domain will be rated low-, moderate- or high risk of bias by two independent reviewers (RW, BH). Disagreement will be discussed in a consensus meeting or by consulting a third reviewer (EH). The overall percentage agreement and Cohen’s kappa will be calculated.

1. Participation
 a. Description of baseline study sample (at least: age, percentage boys, measure for adiposity)
 b. Adequate description participant recruitment (how were participants recruited; e.g. well baby clinics, childcare centre or flyers. For which purpose; i.e. if recruited for intervention purposes, then 0)
 c. Description of period and place of recruitment
 d. Adequate description of inclusion and exclusion criteria

2. Attrition
 a. Adequate response rate (Response rate > 80%)
 b. Reasons for loss to follow-up or loss of (accelerometer) data are provided
 c. No important differences between participants who completed the study/with accelerometer data and those who did not.

3. Determinant measurement
 a. Clear definition or description of the determinant provided
 b. Method of measurement is adequately valid and reliable (at least 3 valid days of 10h /day of PA measurement)

4. Outcome measurement
 a. Clear definition of the outcome is provided
 b. Method of outcome measurement used is adequately valid and reliable

5. Confounding measurement and account
 a. Important confounders are accounted for in the analysis (at least: sex | preferably: SES and nutrition)

6. Analysis and reporting
 a. Sufficient presentation of data
 b. Selected statistical models is adequate for the design of the study
 c. No selective reporting of the results
| Quips domain | Subdomains |
|-----------------------|--|
| 1 Participation | a. Description of baseline study sample (at least: age, percentage boys, |
| | measure for adiposity) |
| | b. Adequate description participant recruitment (how were participants |
| | recruited; e.g. well baby clinics, childcare centre or flyers. For which |
| | purpose; i.e. if recruited for intervention purposes, then 0) |
| | c. Description of period and place of recruitment |
| | d. Adequate description of inclusion and exclusion criteria |
| 2 Attrition | a. Adequate response rate (Response rate > 80%) |
| | b. Reasons for loss to follow-up or loss of (accelerometer) data are provided |
| | c. No important differences between participants who completed the study/with accelerometer data and those who did not. |
| 3 Determinant | a. Clear definition or description of the determinant provided |
| measurement | b. Method of measurement is adequately valid and reliable (at least 3 valid |
| | days of 10h /day of PA measurement) |
| 4 Outcome measurement | a. Clear definition of the outcome is provided |
| | b. Method of outcome measurement used is adequately valid and reliable |
| 5 Confounding | a. Important confounders are accounted for in the analysis (at least: sex |
| measurement and | preferably: SES and nutrition) |
| account | 6 Analysis and reporting |
| | a. Sufficient presentation of data |
| | b. Selected statistical models is adequate for the design of the study |
| | c. No selective reporting of the results |
Appendix C. Overview of the extracted data used for the meta-analyses.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
1) Percentage body fat						
Bürgi et al. (2011) [20]	β (95% CI): -0.003 (-0.007; -0.0001), SD PA : 164.0, SD out : 4.8; stdβ ± SE: -0.103 ± 0.050		β (95% CI): -0.006 (-0.014; 0.001), SD PA: 71.0, SD out: 4.8; stdβ ± SE: -0.089 ± 0.052	β (95% CI): -0.010 (-0.022; 0.001), SD PA: 46.0, SD out: 4.8; stdβ ± SE: -0.096 ± 0.053		
Butte et al. (2016) [22]	β ± SE: -0.001 ± 0.028, SD PA : 22.7, SD out : 6.7; stdβ ± SE: -0.003 ± 0.095	β ± SE: -0.011 ± 0.010, SD PA : 67, SD out : 6.7; stdβ ± SE: -0.110 ± 0.100		β ± SE: -0.066 ± 0.026, SD PA: 24.0, SD out: 6.7; stdβ ± SE: -0.236 ± 0.093		
Collings et al. (2013) [25]	r: 0.08, p<0.001; stdβ ± SE: 0.08 ± 0.127	r: -0.05, p<0.05; stdβ ± SE: -0.05 ± 0.023	r: -0.11, p<0.001; stdβ ± SE: -0.11 ± 0.175	r: -0.13, p<0.001; stdβ ± SE: -0.13 ± 0.207	r: -0.13, p<0.001; stdβ ± SE: -0.13 ± 0.207	
Heelan and Eisenmann (2006) [26]	Boys, r: -0.08, p>0.05; stdβ ± SE: -0.08 ± 0.127				Boys, r: -0.09, p>0.05; stdβ ± SE: -0.09 ± 0.143	
	Girls, r: -0.06, p>0.05; stdβ ± SE: -0.06 ± 0.096				Girls, r: -0.12, p>0.05; stdβ ± SE: -0.12 ± 0.191	
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Janz et al. (2002) [27]	Boys, r: -0.19, p: <0.01; stdβ ± SE: -0.19 ± 0.074				Boys, r: -0.26, p: <0.01; stdβ ± SE: -0.26 ± 0.101	Boys, r: -0.10, p: >0.05; stdβ ± SE: -0.10 ± 0.159
	Girls, r: -0.25, p: <0.01; stdβ ± SE: -0.25 ± 0.097				Girls, r: -0.30, p: <0.01; stdβ ± SE: -0.30 ± 0.116	
Leppänen et al. (2016) [28]		β (95% CI): 0.01 (-0.06; 0.07), SD PA: 49.6, SD out : 4.5; stdβ ± SE: 0.111 ± 0.334			β (95% CI): -0.08 (-0.20; 0.04), SD PA: 22.5, SD out : 4.5; stdβ ± SE: -0.404 ± 0.303	β (95% CI): -0.46 (-0.98; 0.06), SD PA: 4.9, SD out : 4.5; stdβ ± SE: -0.505 ± 0.286
						β (95% CI): -0.08 (-0.19; 0.02), SD PA: 25.2, SD out : 4.5; stdβ ± SE: -0.452 ± 0.283

2) Body mass index

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Buck et al. (2015) [33]						Data no longer available
Butte et al. (2016) [22]	β ± SE: -0.005 ± 0.007, SD PA: 0.003, SD PA: 67, SD out : 2.0; stdβ ± SE: -0.057 ± 0.079				β ± SE: -0.005 ± 0.007, SD PA: 24.0, SD out : 2.0; stdβ ± SE: -0.060 ± 0.084	

Data no longer available
Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Byun et al. (2011) [34] zBMI		Boys, r: -0.14, p < 0.1; stdβ ± SE: -0.14 ± 0.085				
		Girls, r: -0.18, p < 0.05; stdβ ± SE: -0.18 ± 0.092				
Cliff et al. (2009) [35] zBMI	Boys, r: 0.303, p: 0.141; stdβ ± SE: -0.303 ± 0.206	Boys, r: -0.366, p: 0.072; stdβ ± SE: -0.366 ± 0.203	Boys, r: 0.298, p: 0.147; stdβ ± SE: 0.298 ± 0.205	Boys, r: 0.088, p: 0.674; stdβ ± SE: 0.088 ± 0.209	Boys, r: 0.257, p: 0.215; stdβ ± SE: 0.257 ± 0.207	
	Girls, r: -0.051, p: 0.826; stdβ ± SE: -0.051 ± 0.232	Girls, r: 0.034, p: 0.883; stdβ ± SE: 0.034 ± 0.231	Girls, r: -0.215, p: 0.350; stdβ ± SE: -0.215 ± 0.230	Girls, r: -0.103, p: 0.658; stdβ ± SE: -0.103 ± 0.233	Girls, r: -0.263, p: 0.250; stdβ ± SE: -0.263 ± 0.229	
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Collings et al. (2017)[36]	β (95% CI): 0.042 (-0.037; 0.12), SD PA: 320.2, SD out: 1.7; stdβ ± SE: 0.026 ± 0.024	β (95% CI): -0.007 (-0.040; 0.027), SD PA: 64.6, SD out: 1.7; stdβ ± SE: -0.013 ± 0.242	β (95% CI): -0.000 (-0.043; 0.042), SD PA: 54.0, SD out: 1.7; stdβ ± SE: -0.0003 ± 0.037	β (95% CI): 0.045 (-0.040; 0.13), SD PA: 23.5, SD out: 1.7; stdβ ± SE: 0.031 ± 0.143		
Dawson-Hahn et al. (2015)[38]	zBMI Stdβ: 0.118, p=0.283*	stdβ ± SE: 0.118 ± 0.110		Failed to contact authors.		
España-Romero et al. (2013)[39]	Boys, β ± SE: -0.050 ± 0.028, SD PA: 3.1, SD out: 1.2; stdβ ± SE: -0.129 ± 0.072			Boys, β ± SE: 0.080 ± 0.039, SD PA: 2.2, SD out: 1.2; stdβ ± SE: 0.147 ± 0.072		
	Girls, β ± SE: 0.014 ± 0.023, SD PA: 3.3, SD out: 0.9; stdβ ± SE: 0.051 ± 0.084			Girls, β ± SE: -0.024 ± 0.036, SD PA: 2.0, SD out: 0.9; stdβ ± SE: -0.053 ± 0.080		
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Finn et al. (2002)[40]	p = 0.4; stdβ ± SE: 0.052 ± 0.072*				p = 0.3; stdβ ± SE: 0.063 ± 0.072*	
Fisher et al. (2005)[41] zBMI	Data no longer available					
Guo et al. (2017)[42] zBMI	r: 0.11, p >0.05; stdβ ± SE: 0.11 ± 0.175					
Heelan and Eisenmann (2006) [26]	Boys, r: -0.10, p>0.05; stdβ ± SE: -0.10 ± 0.159				Boys, r: 0.04, p>0.05; stdβ ± SE: 0.04 ± 0.064	
	Girls, r: -0.17, p>0.05; stdβ ± SE: -0.17 ± 0.271				Girls, r: -0.25, p>0.05; stdβ ± SE: -0.25 ± 0.398	
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Herzig et al. (2017)	Same participants as Schmutz et al. (2017). Excluded for meta-analysis based on criteria 3.					Same participants as Schmutz et al. (2017). Excluded for meta-analysis based on criteria 3.
Iivonen et al. (2013)	Failed to contact authors.					Failed to contact authors.
Jackson et al. (2003)	r: 0.19, p: 0.04; stdβ ± SE: 0.19 ± 0.093					
Leppänen et al. (2016)[28]	β (95% CI): -0.01 (-0.03; 0.01), SD PA: 49.6, SD out: 1.4; stdβ ± SE: -0.365 ± 0.365		β (95% CI): 0.01 (-0.02; 0.05), SD PA: 22.5, SD out: 1.4; stdβ ± SE: 0.165 ± 0.331	β (95% CI): 0.12 (-0.03; 0.28), SD PA: 4.9, SD out: 1.4; stdβ ± SE: 0.432 ± 0.288	β (95% CI): 0.02 (-0.02; 0.05), SD PA: 25.2, SD out: 1.4; stdβ ± SE: 0.371 ± 0.371	
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Mendoza et al. (2014)[47]						stdβ: -0.21, p: 0.049; stdβ ± SE: -0.21 ± 0.107
Oliver et al. (2010) [48]		Coefficient				stdβ ± SE: -0.222 ± 0.139
		(95%CI): -0.04	(-0.08; 0.01), SD			
		BMI: 1.75, SD				
		PA: 0.316*;				
		stdβ ± SE: -0.222				± 0.139
Pfeiffer et al. (2009)						Boys: r: 0.12, p: >0.05; stdβ ± SE: 0.12 ± 0.191
zBMI						
Schmutz et al. (2017)[50]						Girls: r: 0.26, p ≤ 0.001; stdβ ± SE: 0.26 ± 0.079
zBMI		r: 0.090, p=0.045*		r: -0.155; p=0.001*		r: 0.118; p=0.009*
		stdβ ± SE: 0.090 ±		stdβ ± SE: -0.155 ±		stdβ ± SE: 0.118 ± 0.075
		0.045		0.047		
Toschke et al. (2007)[52]		r: -0.06, p: >0.05;				
		stdβ ± SE: -0.06 ±				
		0.096				
Williams et al. (2008)[53]		r: -0.09, p: >0.05;	r: 0.01, p: >0.05;	r: 0.13, p: >0.05;	r: 0.14, p: <0.05;	
zBMI		stdβ ± SE: -0.09 ±	stdβ ± SE: 0.01	stdβ ± SE: 0.13 ± 0.207	stdβ ± SE: 0.14 ± 0.071	
		0.143	± 0.016			
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Yamamoto et al. (2011) [54]						Data no longer available
Berglind et al. (2017) [55]	NW: 1452.0 ± 263.9	NW: 341.1 ± 65.4	NW: 365.2 ± 46.8	NW: 51.5 ± 21.8	OW: 1437.0 ± 243.8; r: -0.018	OW: 331.1 ± 64.0; r: -0.029
	OW: 341.1 ± 65.4	OW: 338.8 ± 64.0; r: -0.018	OW: 367.5 ± 52.2; r: 0.024			
Colley et al. (2013) [56]	NW: 349 (5)	NW: 358 (7)	NW: 281 (4)	NW: 68 (2)	OW: 350 (15); r: 0.005	OW: 360 (9); r: 0.008
	OW: 350 (15); r: 0.005	OW: 360 (9); r: 0.008	OW: 287 (11); r: 0.037	OW: 63 (5); r: -0.063		
Ebenegger et al. (2012) [57]	Same participants as Niederer et al. (2012). Excluded for meta-analysis based on criteria 3.	Same participants as Niederer et al. (2012). Excluded for meta-analysis based on criteria 3.	Same participants as Niederer et al. (2012). Excluded for meta-analysis based on criteria 3.	Same participants as Niederer et al. (2012). Excluded for meta-analysis based on criteria 3.		
Jones et al. (2009) [61]	NW: 865.7 ± 226.2	NW: 33.0 ± 25.2	NW: 33.0 ± 25.2		OW: 961.1 ± 213.1; r: 0.207	OW: 29.0 ± 22.6; r: -0.079
Table

Author and Year	Total Physical Activity	Sedentary Behaviour	Light Physical Activity	Moderate Physical Activity	Vigorous Physical Activity	Moderate-to-Vigorous Physical Activity
Matarma et al. (2017)[62]	NW: 50.0 ± 5.1 %day	NW: 41.7 ± 4.2 %day	NW: 6.0 ± 1.8 %day	NW: 2.3 ± 1.1 %day	NW: 8.2 ± 2.6 %day	
	OW: 51.2 ± 5.5 %day	OW: 41.3 ± 5.0 %day	OW: 5.6 ± 0.9 %day	OW: 1.9 ± 0.8 %day	OW: 7.5 ± 1.6 %day	
	r: 0.115	r: -0.046	r: -0.118	r: -0.186	r: -0.133	
Matarma et al. (2018)[64]	Same participants as Matarma et al. 2017. Excluded for meta-analysis based on criteria 3.					
Metallinos-Katsaras et al. (2007)[65]	p: 0.31, NW: 768.7, OW: 720.6; r: -0.418	p: 0.84, NW: 412.2, OW: 415.6; r: 0.032	p: 0.72, NW: 241.2, OW: 246.4; r: 0.050	p: 0.06, NW: 26.8, OW: 19.9; r: -0.256		
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
O’Dwyer et al. (2011)[67]						
Boys, Weekday:						
NW: 751.3 ± 146.7	NW: 48.5 ± 15.1	NW: 32.0 ± 16.9	NW: 13.2 ± 4.7	NW: 45.2 ± 20.3		
OW: 652.6 ± 168.6	OW: 52.9 ± 11.9	OW: 25.3 ± 5.1	OW: 13.3 ± 3.3	OW: 38.6 ± 8.1		
Weekend:	Weekend:	Weekend:	Weekend:	Weekend:		
NW: 684.0 ± 198.1	NW: 64.4 ± 16.2	NW: 23.9 ± 7.6	NW: 14.1 ± 5.5	NW: 38.0 ± 10.4		
OW: 863.7 ± 164.4;	OW: 72.2 ± 22.1;	OW: 22.4 ± 6.8;	OW: 11.6 ± 6.0;	OW: 34.0 ± 11.9;		
r: 0.112	r: 0.167					
Girls, Weekday:						
NW: 672.4 ± 117.4	NW: 54.0 ± 16.7	NW: 28.3 ± 12.1	NW: 15.0 ± 7.3	NW: 43.3 ± 17.0		
OW: 668.0 ± 150.8	OW: 50.7 ± 10.0	OW: 25.4 ± 7.0	OW: 12.6 ± 4.4	OW: 38.0 ± 10.5		
Weekend:	Weekend:	Weekend:	Weekend:	Weekend:		
NW: 757.0 ± 203.0	NW: 67.5 ± 19.7	NW: 29.8 ± 21.0	NW: 12.6 ± 6.5	NW: 42.4 ± 26.4		
OW: 673.0 ± 200.4;	OW: 54.7 ± 16.6;	OW: 18.6 ± 7.4;	OW: 10.3 ± 2.3;	OW: 28.9 ± 9.5;		
r: -0.129	r: -0.249	r: -0.201	r: -0.254			
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Gutiérrez-Hervás et al. (2018)[59]	Underweight: 627 ± 118, normal weight: 627 ± 118, overweight: 563 ± 130, obese: 538 ± 114.					
Niederer et al. (2012)[66]	4 years: NW: 712 ± 139 OW: 725 ± 153 r: 0.046					
	5 years: NW: 740 ± 181 OW: 682 ± 130; r: -0.166					
	6 years: NW: 745 ± 165 OW: 704 ± 167; r: -0.123					
	4 years: NW: 8.9 ± 3.4 OW: 9.1 ± 3.1 r: 0.030					
	5 years: NW: 9.7 ± 4.1 OW: 8.4 ± 3.7 r: -0.159					
	6 years: NW: 10.2 ± 9.1 OW: 9.1 ± 3.6 r: -0.066					
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Pate et al. (2015)[68]	CHAMPS: NW: 14.2 (0.3)					
	Overweight: 14.9 (0.5) Obese: 15.2 (0.6); r: 0.100					
	SHAPES: NW: 15.3 (0.4)					
	Overweight: 15.5 (0.5) Obese: 15.8 (0.5); r: 0.030					
Röttger et al. (2014)[69]						r: -2.89, df: 97, p: 0.044; r: -0.243
Schaefer et al. (2015)[71]						
	p: <0.05, NW: 866.3, OW: 867.9; r: 0.015					
						Boys*, NW: 83.1 ± 27.3 OW: 95.6 ± 31.4; r: 0.210
						Girls*, NW: 72.1 ± 27.4 OW: 62.5 ± 22.8; r: -0.184

* Denotes interaction with gender.
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Tanaka and Tanaka (2013)[72]	Thin: 1206 ± 48	NW: 1179 ± 51	Thin: 142 ± 28	Thin: 18 ± 9	Thin: 92 ± 27	NW: 102 ± 30
	Thin: 1177 ± 44;	NW: 159 ± 29	Thin: 165 ± 24;	NW: 22 ± 12	NW: 102 ± 33;	OW: 102 ± 33;
	r: -0.110	OW: 20 ± 10;	r: 0.148			r: 0.059
		r: -0.110				
Trost et al. (2003)[74]	Boys,	NW: 60000 ± 14500		Boys,	NW: 6.7 ± 2.8	NW: 33.7 ± 8.5
	OW: 50500 ± 14400;		Boys,	NW: 4.9 ± 3.1;	OW: 27.2 ± 10.5;	OW: 28.3 ± 10.8;
	r: -0.312			r: -0.300		r: -0.341
	Girls,	NW: 52100 ± 15700		Girls,	NW: 5.6 ± 3.7	NW: 28.5 ± 11.1
	OW: 51900 ± 15800;		Girls,	NW: 4.7 ± 3.0;	OW: 28.3 ± 10.8;	OW: 28.3 ± 10.8;
	r: -0.006			r: -0.127		r: -0.009
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Tucker et al. (2016) [75]						
Boys, NW: 20.3 ± 3.6		Boys, NW: 39.5 ± 3.7				
OW: 21.7 ± 5.0; r: 0.172		OW: 38.4 ± 5.2;				
		r: 0.124				
Girls, NW: 18.6 ± 3.3		Girls: NW: 41.6 ± 3.5				
OW: 18.6 ± 3.8; r: 0.006		OW: 41.3 ± 3.7;				
		r: -0.033				
Vale et al. (2010) [76]	NW: 134 ± 36		NW: 58 ± 14		NW: 38 ± 14	
OW: 133 ± 29; r: -0.014		OW: 58 ± 13;			OW: 35 ± 12;	
		r: 0.00			r: -0.109	
van Cauwenberghe et al. (2012) [77]		Failed to contact authors.				
Vorweg et al. (2013) [78]	NW: 4.4 ± 1.8		NW: 4.4 ± 1.8			NW: 4.8 ± 2.1; r: 0.108
OW: 4.8 ± 2.1; r: 0.108						
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
4) Waist circumference						
Collings et al. (2017)[36]	β (95% CI): -0.072 (-0.39; 0.24), SD PA : 320.2, SD out : 4.7; stdβ ± SE: -0.145 ± 0.094	β (95% CI): 0.056 (-0.075; 0.19), SD PA : 64.6, SD out : 4.7; stdβ ± SE: 0.144 ± 0.017	β (95% CI): -0.056 (-0.22; 0.11), SD PA: 54.0, SD out : 4.7; stdβ ± SE: -0.034 ± 0.010	β (95% CI): -0.14 (-0.46; 0.19), SD PA: 23.5, SD out : 4.7; stdβ ± SE: -0.190 ± 0.033		
España-Romero et al. (2013)[39]	Boys, β ± SE: -0.152 ± 0.113, SD PA : 3.1, SD out : 4.7; stdβ ± SE: -0.100 ± 0.075	Girls, β ± SE: 0.154 ± 0.117, SD PA : 3.3, SD out : 4.8; stdβ ± SE: 0.106 ± 0.080	Boys, β ± SE: 0.233 ± 0.160, SD PA: 2.2, SD out : 4.7; stdβ ± SE: 0.109 ± 0.075	Girls, β ± SE: -0.190 ± 0.187, SD PA: 2.0, SD out : 4.8; stdβ ± SE: -0.079 ± 0.078		
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Leppänen et al. (2016)[28]	β (95% CI): -0.03 (-0.08; 0.02), SD PA: 49.6, SD out: 3.7; stdβ ± SE: -0.407 ± 0.339	β (95% CI): 0.07 (-0.03; 0.16), SD PA: 22.5, SD out: 3.7; stdβ ± SE: 0.430 ± 0.277	β (95% CI): 0.14 (-0.27; 0.55), SD PA: 4.9, SD out: 3.7; stdβ ± SE: 0.187 ± 0.274	β (95% CI): 0.06 (-0.03; 0.14), SD PA: 25.2, SD out: 3.7; stdβ ± SE: 0.413 ± 0.275		
Oliver et al. (2010)[48]	Coefficient (95%CI): -0.01 (-0.03; 0.01), SD waist circumference: 3.95, SD PA : 0.316*; stdβ ± SE: -0.125 ± 0.125	Failed to contact authors.	Failed to contact authors.	Failed to contact authors.		
Oliver et al. (2013)[79]	Failed to contact authors.					
Butte et al. (2016)[22]	β ± SE: -0.008 ± 0.008, SD PA: 0.003, SD out: 2.2; stdβ ± SE: -0.083 ± 0.083	β ± SE: 0.002 ± 0.002, SD PA: 67, SD out: 2.2; stdβ ± SE: 0.061 ± 0.091	β ± SE: -0.015 ± 0.008, SD PA: 24.0, SD out: 2.2; stdβ ± SE: -0.164 ± 0.087			
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Heelan and Eisenmann (2006)[26]	Boys, r: -0.08, p>0.05; stdβ ± SE: -0.08 ± 0.127	Girls, r: -0.13, p>0.05; stdβ ± SE: -0.13 ± 0.207				
Jackson et al. (2009)[81]	Failed to contact authors.					
Janz et al. (2002)[27]	Boys, r: -0.15, p<0.05; stdβ ± SE: -0.15 ± 0.077	Girls, r: -0.19, p<0.01; stdβ ± SE: -0.19 ± 0.074				
Collings et al. (2013)[25]	r: 0.058, p<0.01; stdβ ± SE: 0.058 ± 0.023	r: -0.02, p≥0.05; stdβ ± SE: -0.02 ± 0.010	r: -0.073, p<0.01; stdβ ± SE: -0.073 ± 0.028	r: -0.12, p<0.001; stdβ ± SE: -0.12 ± 0.191		

6) Fat mass index

Author (year)	Fat mass index	Boys, r: -0.08, p>0.05; stdβ ± SE: -0.08 ± 0.127	Girls, r: -0.22, p>0.05; stdβ ± SE: -0.22 ± 0.350
Heelan and Eisenmann (2006)[26]			
Jackson et al. (2009)[81]	Failed to contact authors.		
Janz et al. (2002)[27]	Boys, r: -0.07, p>0.05; stdβ ± SE: -0.07 ± 0.111	Girls, r: -0.06, p>0.05; stdβ ± SE: -0.06 ± 0.096	
Collings et al. (2013)[25]	r: -0.10, p<0.001; stdβ ± SE: -0.10 ± 0.159		
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Leppänen et al.						
(2016)[28]	β (95% CI): 0.00	β (95% CI): -0.01	β (95% CI): -0.04	β (95% CI): -0.01		
	(-0.02; 0.01), SD PA: 49.6, SD out: 0.9; stdβ ± SE: 0.000 ± 0.270	(-0.03; 0.02), SD PA: 22.5, SD out: 0.9; stdβ ± SE: -0.245 ± 0.367	(-0.15; 0.07), SD PA: 4.9, SD out: 0.9; stdβ ± SE: -0.213 ± 0.293	(-0.03; 0.01), SD PA: 25.2, SD out: 0.9; stdβ ± SE: -0.274 ± 0.274		

7) Trunk fat mass

Janz et al. (2002)	Boys, r: -0.13, p: >0.05; stdβ ± SE: -0.13 ± 0.207	Boys, r: -0.21, p: <0.01; stdβ ± SE: -0.21 ± 0.082	Boys, r: -0.05, p: >0.05; stdβ ± SE: -0.05 ± 0.080
[27]			
	Girls, r: -0.19, p: <0.01; stdβ ± SE: -0.19 ± 0.074	Girls, r: -0.26, p: <0.01; stdβ ± SE: -0.26 ± 0.101	Girls, r: -0.06, p: >0.05; stdβ ± SE: -0.06 ± 0.096

8) Trunk fat mass index

Collings et al.	r: 0.062, p<0.01; stdβ ± SE: 0.062 ± 0.024	r: -0.033, p≥0.05; stdβ ± SE: -0.059 ± 0.023	r: -0.10, p<0.001; stdβ ± SE: -0.10 ± 0.159
(2013)[25]			
	r: -0.059, p<0.01; stdβ ± SE: -0.059 ± 0.023	r: -0.10, p<0.001; stdβ ± SE: -0.10 ± 0.159	r: -0.084, p<0.001; stdβ ± SE: -0.084 ± 0.134

-0.033 ± 0.017
Appendix C. Continued.

Author (year)	Total physical activity	Sedentary behaviour	Light physical activity	Moderate physical activity	Vigorous physical activity	Moderate-to-vigorous physical activity
Collings et al. (2017)[36]	β (95% CI): -0.064 (-1.46; 0.19), SD PA : 320.2, SD out : 4.5; stdβ ± SE: -0.017 ± 0.037		β (95% CI): 0.21 (-0.12; 0.53), SD PA : 64.6, SD out : 4.5; stdβ ± SE: 0.040 ± 0.016	β (95% CI): -0.059 (-0.47; 0.35), SD PA: 54.0, SD out : 4.5; stdβ ± SE: -0.034 ± 0.006	β (95% CI): -0.76 (-1.43; -0.085), SD PA: 23.5, SD out : 4.5; stdβ ± SE: -0.037 ± 0.042	
Fang et al. (2017) [83]						
	Boys: Stdβ: 0.026, p>0.05 Stdβ ± SE: 0.026 ± 0.041					Boys: Stdβ: -0.195, p<0.05 Stdβ ± SE: -0.195 ± 0.099
	Girls : Stdβ: -0.077, p>0.05 Stdβ ± SE: -0.077 ± 0.123					Girls : Stdβ: -0.041, p>0.05 Stdβ ± SE: -0.041 ± 0.065
Herzig et al. (2017) [43]	r: -0.12, p: ≤0.05; stdβ ± SE: -0.12 ± 0.061					r: -0.13, p: ≤0.05; stdβ ± SE: -0.13 ± 0.066

Data presented as original from paper; standardizedβ ± SE or Pearson correlation for meta-analysis. SD out: standard deviation of the outcome (i.e. percentage of body fat, body mass index, waist circumference, fat mass or skinfold thickness).

* Data received on request.
Appendix D. Sample characteristics, statistical analyses, and the results of all of the reviewed studies, differentiated by adiposity outcomes.

Author (year)	Country and cohort	Participant characteristics (sample size; age)	Prevalence of overweight\(^b\)	Statistical analysis	Conclusion
1) PERCENTAGE BODY FAT					
Longitudinal studies					
Bürgi et al. (2011)\(^1\)	Switzerland	Ballabeina Study n = 217, 104 boys, 113 girls; 4 - 6 years, 5.2(0.6)	10.0% (IOTF)\(^2\)	Mixed linear regression adjusted for age, sex, preschool clusters and baseline outcome parameters.	Total PA, moderate PA or vigorous PA was not associated with change of percentage body fat 9 months later.
Butte et al. (2016)\(^3\)	United States	n = 111, 58 boys, 53 girls; 3 - 5 years, 4.6(0.9)	18.0% (CDC)\(^4\)	Mixed-effects linear models adjusted for age, sex, race/ethnicity, daycare hours, household size, household income, mother's age, BMI and education and awake time.	No relation between total PA, sedentary behaviour or MVPA and percentage body fat 1 year later.
Leppänen et al. (2017)\(^5\)	Sweden	MINISTOP trial n = 138, 73 boys, 65 girls; 4 years, 4.5(0.2) follow-up: 5.6(0.2)	7.2% baseline, 6.5% follow-up	Linear regression, adjusted for child’s sex, age at measurement, ActiGraph awake wearing time.	Children who spent more time engaged in moderate PA, vigorous PA or MVPA had a lower percentage of body fat 12 months later compared with their peers. No relations for sedentary behaviour.
Cross-sectional studies					
Bürgi et al. (2011)\(^1\)	Switzerland	Ballabeina Study n = 217, 104 boys, 113 girls; 4 - 6 years, 5.2(0.6)	10.0% (IOTF)\(^2\)	Mixed linear regression adjusted for age, sex and preschool clusters.	Children who spent more time engaged in total PA had a lower percentage body fat compared with their peers. No results for moderate PA and vigorous PA.
Appendix D. Continued.

Author (year)	Country and cohort	Participant characteristics (sample size; age)	Prevalence of overweight^b	Statistical analysis	Conclusion
Butte et al. (2016)¹	United States	n = 111, 58 boys, 53 girls; 3 - 5 years, 4.6(0.9)	18.0% (CDC)⁴	Mixed-effects linear models adjusted for age, sex, race/ethnicity, daycare hours, household size, household income, mother’s age, BMI and education and awake time.	Children who spent more time engaged in MVPA had a lower percentage body fat compared with their peers. No results for total PA and sedentary behaviour.
Collings et al. (2013)⁶	United Kingdom	n = 398, 202 boys, 196 girls; 4 years, 4.1(0.1)	20.1% (Cole et al. 2000)²	Bivariate correlations.	Children who spent less time engaged in sedentary behaviour or more time engaged in light PA, moderate PA, vigorous PA or MVPA had a lower percentage of body fat compared with their peers.
Heelan and Eisenmann (2006)⁷	United States	n = 100, 48 boys, 52 girls; 4 - 7 years, 5.8(1.3)	-	Partial correlations controlling for chronological age.	No association between total PA or MVPA and percentage body fat.
Janz et al. (2002)⁸	United States IOWA-Fluoride study, IOWA-Bone Development study	n = 434, 203 boys, 231 girls; 4 - 6 years, 5.3(0.4)	-	Partial correlation coefficients adjusted for age and height.	Children who spent more time engaged in total PA or vigorous PA had a lower percentage body fat compared with their peers. No results for MVPA.
Appendix D. Continued.

Author (year)	Country and cohort	Participant characteristics (sample size; age\(^a\))	Prevalence of overweight\(^b\)	Statistical analysis	Conclusion
Leppänen et al. (2016)\(^9\)	Sweden MINISTOP trial	n = 295, 166 boys, 129 girls; 4.5(0.2)	8.5% (Cole et al. 2012)\(^10\)	Multiple linear regression, adjusted for parental BMI, parental educational attainment, child's sex and age at measurement and awake wearing time.	No association between sedentary behaviour, moderate PA, vigorous PA or MVPA and percentage body fat.

| Butte et al. (2016)\(^3\) | United States | n = 111, 58 boys, 53 girls; 3 - 5 years, 4.6(0.9) | 18.0% (CDC)\(^4\) | Mixed-effects linear models adjusted for age, sex, race/ethnicity, daycare hours, household size, household income, mother's age, BMI and education and awake time. | Children who spent more time engaged in MVPA had a larger change in BMI 1 year later. No relations between total PA or sedentary behaviour and BMI 1 year later. |

| Jáuregui et al. (2012)\(^11\) | Mexico | n = 205, 87 boys, 118 girls; 5 – 6, baseline 6.0(0.4), follow-up 8.1(0.3) | - | Multiple linear regression models adjusted by initial fat mass, energy intake and height, age, sex, socioeconomic status and changes in energy intake and height. | Children with a high baseline MVPA or who increased 10 min/d in MVPA showed no differences in BMI gain compared with their peers. |

| Leppänen et al. (2017)\(^5\) | Sweden MINISTOP trial | n = 138, 73 boys, 65 girls; 4 years, 4.5(0.2) follow-up: 5.6(0.2) | 7.2% baseline, 6.5% follow-up | Linear regression, adjusted for child’s sex, age at measurement, ActiGraph awake wearing time. | Children who spent more time engaged in vigorous PA had a higher BMI 12 months later compared with their peers. No relation for sedentary behaviour, moderate PA or MVPA. |

2) **BODY MASS INDEX**

Longitudinal studies

| Butte et al. (2016)\(^3\) | United States | n = 111, 58 boys, 53 girls; 3 - 5 years, 4.6(0.9) | 18.0% (CDC)\(^4\) | Mixed-effects linear models adjusted for age, sex, race/ethnicity, daycare hours, household size, household income, mother’s age, BMI and education and awake time. | Children who spent more time engaged in MVPA had a larger change in BMI 1 year later. No relations between total PA or sedentary behaviour and BMI 1 year later. |

| Jáuregui et al. (2012)\(^11\) | Mexico | n = 205, 87 boys, 118 girls; 5 – 6, baseline 6.0(0.4), follow-up 8.1(0.3) | - | Multiple linear regression models adjusted by initial fat mass, energy intake and height, age, sex, socioeconomic status and changes in energy intake and height. | Children with a high baseline MVPA or who increased 10 min/d in MVPA showed no differences in BMI gain compared with their peers. |

| Leppänen et al. (2017)\(^5\) | Sweden MINISTOP trial | n = 138, 73 boys, 65 girls; 4 years, 4.5(0.2) follow-up: 5.6(0.2) | 7.2% baseline, 6.5% follow-up | Linear regression, adjusted for child’s sex, age at measurement, ActiGraph awake wearing time. | Children who spent more time engaged in vigorous PA had a higher BMI 12 months later compared with their peers. No relation for sedentary behaviour, moderate PA or MVPA. |
Appendix D. Continued.

Author (year)	Country and cohort	Participant characteristics (sample size; age)	Prevalence of overweight	Statistical analysis	Conclusion
Metcalf et al. (2008)¹²	United Kingdom EarlyBird	n = 212, 113 boys, 99 girls; 5 - 8 years, follow up at 6, 7 and 8 years	-	Multiple linear regression.	No correlation between minutes in MVPA and changes in BMI.
Remmers et al. (2014)¹³	The Netherlands KOALA Birth Cohort	n = 297, 150 boys, 147 girls; T0: 4-5 years, T1: 6-7, T2: 8-9 years	-	GEE linear regression, adjusted for origin of BMI z-score, bicycling, swimming, season, recruitment group and paternal and maternal BMI.	A 5% increase in total PA or light PA resulted in decreased zBMI in heavier boys 1 year later, but not in leaner or normal weight boys or in girls. A 5% increase in MVPA resulted in decreased zBMI in normal weight and heavier boys and heavier girls 1 year later.

Cross-sectional studies

Author (year)	Country and cohort	Participant characteristics (sample size; age)	Prevalence of overweight	Statistical analysis	Conclusion
Buck et al. (2015)¹⁴	Germany IDEFICS	n = 100, 57 boys, 43 girls; 2 - <6 years, 4.2(0.8)	-	Basic log-gamma regression model.	No association between BMI and MVPA.
Butte et al. (2016)³	United States	n = 111, 58 boys, 53 girls; 3 - 5 years, 4.6(0.9)	18.0% (CDC)⁴	Mixed-effects linear models adjusted for age, sex, race/ethnicity, daycare hours, household size, household income, mother’s age, BMI and education and awake time.	No association between total PA, sedentary behaviour or MVPA and BMI.
Byun et al. (2011)¹⁵	United States CHAMPS	n = 331, 168 boys, 163 girls; 2.8 - 5.7 years, 4.3(0.6)	-	Univariate analysis.	Girls who spent more time engaged in sedentary behaviour had a lower zBMI compared with their peers. No results for boys.
Author (year)	Country and cohort	Participant characteristics (sample size; age)	Prevalence of overweightb	Statistical analysis	Conclusion
-----------------------	--------------------	---	--------------------------	--	---
Cliff et al. (2009)16	Australia PANDA	n = 46, 25 boys, 21 girls; 3 – 5 years, 4.3(0.7)	-	Pearson product-moment correlations and Spearman rank-order correlations.	No association between total PA, sedentary behaviour, moderate PA, vigorous PA or MVPA and BMI.
Collings et al. (2017)27	United Kingdom BiB (HAPPY, BiB-1000, LEAP)	n = 333, 169 boys, 164 girls; 11 months – 5 years, 3.3(0.9)	19.5% (Cole et al. 1990)18	Multilevel models adjusted for age, sex, ethnicity, index of multiple deprivation, monitor worn time and season.	No association between total PA, sedentary behaviour, light PA or MVPA and BMI.
Dawson-Hahn et al. (2015)19	United States	n = 81, 47 boys, 34 girls; 3 - 5 years, 4.7(0.5)	-	Block linear regression analysis.	No association between BMI and total PA or MVPA.
España-Romero et al. (2013)20	United States SHAPES	n = 357, 183 boys, 174 girls; 3 – 5 years	Boys: 27.9%, girls: 28.7% (CDC)4	Linear mixed regression models adjusted for race/ethnicity, parental education and preschool.	Boys who spent more time engaged in MVPA had a higher zBMI compared with their peers. No results for girls and for sedentary behaviour.
Finn et al. (2002)21	United States	n = 214, 106 boys, 108 girls; 3 - 5 years, 3.9(0.1)	-	Forward-backward stepwise regression analysis.	No association between total PA or vigorous PA and BMI.
Fisher et al. (2005)22	United Kingdom	n = 209, 101 boys, 108 girls; 4.8(1.2)	20.0% (UK 1990)8	Multiple regression analysis, including age, sex, zBMI and average temperature.	No association between zBMI and total PA.
Guo et al. (2017)23	United States CHAMPS	n = 227, 111 boys, 116 girls; 3 – 5 years, 4.2(0.6)	24.3% (CDC)4	Pearson correlations.	No association between total PA and zBMI.
Heelan and Eisenmann (2006)7	United States	n = 100, 48 boys, 52 girls; 4 – 7 years, 5.8(1.3)	-	Partial correlations controlling for chronological age.	No association between total PA or MVPA and BMI.
Author (year)	Country and cohort	Participant characteristics (sample size; age)	Prevalence of overweightb	Statistical analysis	Conclusion
--------------	-------------------	---	--------------------------	---------------------	------------
Herzig et al. (2017)24	Switzerland SPLASHY	n = 309, 162 boys, 147 girls; 2 – 6 years, 3.9(0.7)	-	Pearson correlation coefficients.	No association between total PA or MVPA and BMI.
Iivonen et al. (2013)25	Finland	n = 37, 17 boys, 20 girls; 4 years, 4.1(0.3)	-	Multiple regression models for fundamental motor skills, adjusted for sex, age, BMI.	No associations between BMI and total PA or MVPA.
Jackson et al. (2003)26	United Kingdom SPARKLE	n = 104, 52 boys, 52 girls; 3 – 4 years, 3.7(0.4)	-	Correlation.	Children who spent more time engaged in total PA had a higher zBMI compared with their peers.
Kelly et al. (2006)27	United Kingdom MAGIC study	n = 339; 4.2(0.3)	-	Analysis of variance and covariance.	No association between zBMI and total PA.
Leppänen et al. (2016)9	Sweden MINISTOP trial	n = 307, 170 boys, 137 girls; 4.5(0.2)	8.5% (Cole et al. 2012)10	Multiple linear regression, adjusted for parental BMI, parental educational attainment, child’s sex and age at measurement and awake wearing time.	No associations between sedentary behaviour, moderate PA, vigorous PA or MVPA and BMI.
Mendoza et al. (2014)28	United States	n = 96, 53 boys, 41 girls; 3 – 5 years, 4.7(0.5)	-	Block linear regression with age, sex, parent BMI and education, neighbourhood disorder, child acculturation, parent acculturation, tv viewing and MVPA added.	Children who spent more time engaged in MVPA had a lower zBMI compared with their peers.
Oliver et al. (2010)29	New Zealand	n = 78, 37 boys, 41 girls; 2 – 5 years	28.0% (IOTF)2	Univariable GEE regression for child PA rate.3	No association between total PA and BMI.
Appendix D. Continued.

Author (year)	Country and cohort	Participant characteristics (sample size; age)	Prevalence of overweightb	Statistical analysis	Conclusion
Pfeiffer et al. (2009)30	United States CHAMPS	n = 331, 168 boys, 163 girls; 2.8 – 5.7 years, 4.3(0.6)	-	Pearson correlations.	Girls, and girls and boys together, who spent more time engaged in MVPA had a higher zBMI compared with their peers. No results for boys.
Schmutz et al. (2017)31	Switzerland SPLASHY	n = 394, 212 boys, 182 girls; 2 - 6 years, 3.9(0.7)	24.9% (WHO)32	Pearson correlation coefficient received on request.	Children who spent more time engaged in total PA or MVPA and less time sedentary had a higher zBMI compared with their peers.
Toschke et al. (2007)33	Germany INCA	n = 192, 98 boys, 94 girls; 5 – 6 years	-	Pearson correlation.	No association between total PA and BMI.
Williams et al. (2008)34	United States CHAMPS	n = 198, 100 boys, 98 girls; 3 - 4 years, 4.2(0.5)	-	Bivariate correlations.	Children who spent more time engaged in MVPA had a higher zBMI compared with their peers. No results for sedentary behaviour, light PA or, vigorous PA.
Yamamoto et al. (2011)35	Germany Gesunde-Kinder	n = 645, 324 boys, 321 girls; 3 – 6 years	-	Multivariate model adjusted for age, parental education level, immigration status and siblings, parents’ BMI, children’s health and internal PA drive, daily television time and time spent outside, participation in organized sports, environmental opportunities and parents’ PA.	No association between BMI and MVPA.
3) WEIGHT STATUS

Cross-sectional studies

Author (year)	Country and cohort	Participant characteristics (sample size; age)	Prevalence of overweight	Statistical analysis	Conclusion
Berglind et al. (2017)	Sweden	n = 540, 311 boys, 229 girls; 4 years, 4.2(0.2)	14.6% (Cole et al. 2000)	Generalized estimating equation, adjusted for sex and maternal education.	No differences in total PA, sedentary behaviour, light PA or MVPA between children with and without overweight.
Colley et al. (2013)	Canada	n = 459, 232 boys, 227 girls; 3 – 5 years, 4.0(0.04)	16.4% (IOTF)	-	No differences in total PA, sedentary behaviour, light PA or MVPA between children with and without overweight.
Ebenegger et al. (2012)	Switzerland	n = 600, 299 boys, 301 girls; 5.1(0.6)	20.0% (Swiss percentiles); 11.8% (IOTF)	Linear regression analysis adjusted for sex, age and parental migrant status and educational level.	No differences in total PA, vigorous PA or MVPA between children with and without overweight.
Gutiérrez-Hervás et al. (2018)	Spain	n = 136, 62 boys, 74 girls; 2 – 7 years, 5.5(1.5)	33.1%	ANOVA.	Children without overweight spent more time engaged in total PA compared with children with overweight.
Jones et al. (2009)	Australia	n = 58; 2 – 6 years, 4.3(0.7)	19.6% (IOTF)	Independent samples t-test.	No differences in total PA or MVPA between children with and without overweight.
Matarma et al. (2017)	Finland	n = 131, 58 boys, 73 girls; 5 years, 5.6(0.3)	16.8%	Independent variables t-tests.	No differences in sedentary behaviour, light PA, moderate PA or vigorous PA between children with and without overweight.
Appendix D. Continued.

Author (year)	Country and cohort	Participant characteristics (sample size; age)	Prevalence of overweight	Statistical analysis	Conclusion
Matarma et al. (2018)	Finland STEPS study	n = 111, 45 boys, 66 girls; 5 years, 5.6(0.4)	17.1%	Independent variables t-tests.	No differences in sedentary behaviour or MVPA between children with and without overweight.
Metallinos-Katsaras et al. (2007)	United States WIC	n = 56, 26 boys, 30 girls; 2 – 5 years	37.5% (CDC)	Multiple linear regression adjusted for age, sex, race and monitor time worn.	No differences in light PA, moderate PA or vigorous PA between children with and without overweight.
Niederer et al. (2012)	Switzerland	n = 613, 308 boys, 305 girls; 4 – 6 years	20.1% (Swiss national percentiles)	ANCOVA adjusted for age-group, sex, preschool class (cluster).	No differences in total PA, vigorous PA or MVPA between 4, 5 and 6 year old children with and without overweight.
O’Dwyer et al. (2011)	United Kingdom Active Play	n = 50, 27 boys, 23 girls; 4.5(0.6)	boys: 26%, girls: 43% (Cole et al. 2000)	Independent t-tests.	Boys without overweight spent more time engaged in moderate PA on weekdays compared with boys affected by overweight, but no differences for girls and on weekend days. No differences in sedentary behaviour, light PA, vigorous PA or MVPA between children with and without overweight.
Pate et al. (2015)	United States CHAMPS, SHAPES	CHAMPS: n = 286, 122 boys, 164 girls; 3 - 5 years, 4.2(0.7)	CHAMPS: 28.3%, SHAPES: 28.5% (CDC)	Analysis of variance with sex, race/ethnicity, parent education and weight status, adjusted for preschool.	No difference in total PA between children without overweight, children with overweight and children with obesity in CHAMPS as well as SHAPES.
Author (year)	Country and cohort	Participant characteristics (sample size; age)	Prevalence of overweight	Statistical analysis	Conclusion
-------------------------	--------------------------	---	--------------------------	----------------------	---
Röttger et al. (2014)	Germany, Switzerland, France	n = 114, 48 boys, 66 girls; 5.3(0.7)	17.9% (Percentiles German children)	Independent t-test.	Children without overweight spent more time engaged in total PA compared with children with overweight, in both weekdays and weekend days.
Schaefer et al. (2015)	United States NSFS	n = 134, 64 boys, 70 girls; 4 – 7 years, 5.6(1.0)	42.3% (CDC)	.d	Children without overweight spent less time engaged in sedentary behaviour compared with children with overweight. A trend was found in MVPA, where girls without overweight spent more time in MVPA compared with girls affected by overweight or obesity, no differences for boys.
Tanaka and Tanaka (2013)	Japan	n = 425, 223 boys, 202 girls; 5.8(0.6)	7.1% (Cole et al. 2000, 2007)	ANCOVA adjusted for age and sex.	Thin children spent more time engaged in sedentary behaviour and less time in light PA and MVPA compared with children with and without overweight. Thin children spent more time engaged in vigorous PA compared with children without overweight, but not compared with children with overweight.
Trost et al. (2003)	United States	n = 245, 118 boys, 127 girls; 3 – 5 years	Boys: 21.2%, girls 27.6% (CDC)	ANCOVA adjusted for parent education.	Boys without overweight spent more time engaged in total PA, vigorous PA or MVPA compared with boys with overweight. No differences for girls.
Appendix D. Continued.

Author (year)	Country and cohort	Participant characteristics (sample size; age\(^a\))	Prevalence of overweight\(^b\)	Statistical analysis	Conclusion
Tucker et al. (2016)\(^{56}\)	Canada LEAPP	n = 216, 102 boys, 114 girls; 2.5 – 5.9 years, 4.2(0.1)	24.5% (CDC)\(^4\)	Three-way ANOVA with childcare as random factor.	No differences in total PA, vigorous PA or MVPA between children with and without overweight.
Vale et al. (2010)\(^{57}\)	Portugal PRESTYLE	n = 281, 157 boys, 124 girls; 4 – 6, 5.0(0.8)	14.6% (≥ 1 SD)	Independent t-tests.	No differences in total PA, moderate PA or vigorous PA between children with and without overweight.
van Cauwenbergh et al. (2012)\(^{58}\)	Australia HAPPY	n = 703, 387 boys, 316 girls; 3 - 5 years, 4.6(0.7)	17.5% (Cole et al. 2000)\(^2\)	Multilevel logistic regression models.	No differences in hour by hour sedentary behaviour or MVPA patterns between children with and without overweight.
Vorwerg et al. (2013)\(^{59}\)	Germany	n = 92, 51 boys, 40 girls; 3 – 6 years	14.0% (National percentiles German children)\(^{21}\)	Wilcoxon test.	No difference in total PA between children with and without overweight.

4) WAIST CIRCUMFERENCE

Longitudinal studies

Author (year)	Country and cohort	Participant characteristics (sample size; age\(^a\))	Statistical analysis	Conclusion
Metcalf et al. (2008)\(^{12}\)	United Kingdom EarlyBird	n = 212, 113 boys, 99 girls; 5 – 8 years, follow up at 6, 7 and 8 years	Multiple linear regression.	No correlation between minutes in MVPA and changes in waist circumference.

Cross-sectional studies

Author (year)	Country and cohort	Participant characteristics (sample size; age\(^a\))	Statistical analysis	Conclusion	
Collings et al. (2017)\(^{17}\)	United Kingdom BiB (HAPPY, BiB-1000, LEAP)	n = 333, 169 boys, 164 girls; 11 months – 5 years, 3.3(0.9)	19.5% (Cole et al. 1990)\(^{38}\)	Multilevel models adjusted for age, sex, ethnicity, index of multiple deprivation, monitor worn time, season and height.	No association between total PA, sedentary behaviour, light PA or MVPA on waist circumference.
Appendix D. Continued.

Author (year)	Country and cohort	Participant characteristics (sample size; age\(^a\))	Prevalence of overweight\(^b\)	Statistical analysis	Conclusion
España-Romero et al. (2013)\(^{20}\)	United States SHAPES	n = 357, 183 boys, 174 girls; 3 – 5 years	Boys: 27.9%, girls: 28.7% (CDC)\(^4\)	Linear mixed regression models adjusted for race/ethnicity, parental education and preschool.	No association between sedentary behaviour or MVPA and waist circumference.
Leppänen et al. (2016)\(^9\)	Sweden MINISTOP trial	n = 304, 169 boys, 135 girls; 4.5(0.2)	8.5% (Cole et al. 2012)\(^{10}\)	Multiple linear regression, adjusted for parental BMI, parental educational attainment, child’s sex and age at measurement, awake wearing time and height.	No association between sedentary behaviour, moderate PA, vigorous PA or MVPA and waist circumference.
Oliver et al. (2010)\(^{29}\)	New Zealand	n = 78, 37 boys, 41 girls; 2 – 5 years	28.0% (IOTF)\(^2\)	Univariable GEE regression for child PA rate.	No association between total PA and waist circumference.
Oliver et al. (2013)\(^{60}\)	New Zealand PIF:PAC	n = 126, 52 boys, 74 girls; 5.8 – 6.7, 5.9	58% high waist circumference	Multiple linear regression.	No association between sedentary behaviour or MVPA and waist circumference.

5) (TRUNK) FAT MASS (INDEX)

Longitudinal studies

Author (year)	Country	Sample size; age\(^a\)	Prevalence of overweight\(^b\)	Statistical analysis	Conclusion
Butte et al. (2016)\(^3\)	United States	n = 111, 58 boys, 53 girls; 3 - 5 years, 4.6(0.9)	18.0% (CDC)\(^4\)	Mixed-effects linear models adjusted for age, sex, race/ethnicity, daycare hours, household size, household income, mother’s age, BMI and education and awake time.	No relation between total PA, sedentary behaviour or MVPA and fat mass 1 year later.
Appendix D. Continued.

Author (year)	Country and cohort	Participant characteristics (sample size; age)	Prevalence of overweight	Statistical analysis	Conclusion
Janz et al. (2009)	United States IOWA-Fluoride study, IOWA-Bone Development study	n = 333, 148 boys, 185 girls; baseline: 5 years, follow-up: 8 and 11 years.	-	Mixed regression analysis adjusted for concurrent age, height, weight, fat mass at age 5 and MVPA.	MVPA at age 5 years was a predictor of later fat mass in boys, but not in girls.
Jáuregui et al. (2012)	Mexico	n = 205, 87 boys, 118 girls; 5 – 6, baseline 6.0(0.4), follow-up 8.1(0.3)	-	Multiple linear regression models adjusted by initial fat mass, energy intake and height, age, sex, socioeconomic status and changes in energy intake and height.	Girls with a high baseline MVPA or girls who increased 10 min/d in MVPA had lower fat mass gain compared with their peers, but not for boys.
Leppänen et al. (2017)	Sweden MINISTOP trial	n = 138, 73 boys, 65 girls; 4 years, 4.5(0.2) follow-up: 5.6(0.2)	7.2% baseline, 6.5% follow-up	Linear regression, adjusted for child’s sex, age at measurement, ActiGraph awake wearing time.	No relation between sedentary behaviour, moderate PA, vigorous PA or MVPA and fat mass index 12 months later.

Cross-sectional studies

| Butte et al. (2016) | United States | n = 111, 58 boys, 53 girls; 3 – 5 years, 4.6(0.9) | 18.0% (CDC) | Mixed-effects linear models adjusted for age, sex, race/ethnicity, daycare hours, household size, household income, mother’s age, BMI and education and awaketime. | No association between total PA, sedentary behaviour or MVPA and fat mass. |
Author (year)	Country and cohort	Participant characteristics (sample size; age)	Prevalence of overweight^b	Statistical analysis	Conclusion
Collings et al. (2013)⁶	United Kingdom SWS	n = 398, 202 boys, 196 girls; 4 years, 4.1(0.1)	20.1% (IOTF)⁷	Bivariate correlations.	Children who spent less time engaged in sedentary behaviour or more time in moderate PA, vigorous PA or MVPA had a lower fat mass index and trunk fat mass index compared with their peers. No results for light PA.
Heelan and Eisenmann (2006)⁷	United States	n = 100, 48 boys, 52 girls; 4 – 7 years, 5.8(1.3)	-	Partial correlations controlling for chronological age.	No association between total PA or MVPA and fat mass.
Jackson et al. (2009)⁸	United Kingdom RASCAL	n = 89, 42 boys, 47 girls; 2 – 6 years, 4.1 (1.3)	30.6% (UK 1990)⁹	General linear model, adjusted for age, sex and TV viewing time.	No association between fat mass and total PA.
Janz et al. (2002)⁸	United States IOWA-Fluoride study, IOWA-Bone Development study	n = 434, 203 boys, 231 girls; 4 – 6 years, 5.3(0.4)	-	Partial correlation coefficients adjusted for age and height.	Children who spent more time engaged in vigorous PA had a lower fat mass and trunk fat mass compared with their peers. Children who spent more time engaged in total PA had a lower fat mass compared with their peers. Girls who spent more time engaged in total PA had a lower trunk fat mass compared with their peers as well. No results for MVPA.
Kwon et al. (2011)⁸	United States IOWA-Bone Development study	n = 436, 204 boys, 232 girls; 5 years, 5.3(0.4)	-	Pearson partial correlation coefficients adjusted for age, height and fat free mass.	No associations between both IW-LPA100⁶ and IW-LPA1100⁶ and fat mass.
Author (year)	Country and cohort	Participant characteristics (sample size; age\(^a\))	Prevalence of overweight\(^b\)	Statistical analysis	Conclusion
--------------	---------------------	--	-----------------------------	---------------------	------------
Leppänen et al. (2016)\(^9\)	Sweden MINISTOP trial	n = 295, 166 boys, 129 girls; 4.5(0.2)	8.5% (Cole et al. 2012)\(^10\)	Multiple linear regression, adjusted for parental BMI, parental educational attainment, child’s sex and age at measurement and awake wearing time.	No association between sedentary behaviour, moderate PA, vigorous PA or MVPA and fat mass index.
Metcalf et al. (2008)\(^12\)	United Kingdom EarlyBird	n = 212, 113 boys, 99 girls; 5 – 8 years, follow up at 6, 7 and 8 years	-	Multiple linear regression.	No correlation between minutes in MVPA and changes in skinfold thickness.
Collings et al. (2017)\(^17\)	United Kingdom BiB (HAPPY, BiB-1000, LEAP)	n = 333, 169 boys, 164 girls; 11 months – 5 years, 3.3(0.9)	19.5% (Cole et al. 1990)\(^18\)	Multilevel models adjusted for age, sex, ethnicity, index of multiple deprivation, monitor worn time, season and height.	Children who spent more time engaged in MVPA had a lower skinfold thickness compared with their peers. No associations between total PA, sedentary behaviour or light PA and skinfold thickness.
Fang et al. (2017)\(^64\)	China	n = 346, 201 boys, 145 girls; 3.5 – 5.5 years, 4.6(0.5)	-	multiple linear regression models controlling for age, BMI, sex and valid wearing time.	Boys who spent more time engaged in MVPA had a lower triceps skinfold thickness compared with their peers. No associations for girls or for light PA.
Herzig et al. (2017)\(^24\)	Switzerland SPLASHY	n = 309, 162 boys, 147 girls; 2 – 6 years, 3.9(0.7)	-	Pearson correlation coefficients.	Children who spent more time engaged in total PA or MVPA had a lower sum of skinfolds compared with their peers.

6) SKINFOLD THICKNESS

Longitudinal studies

Cross-sectional studies
7) OTHER ADIPOSIITY OUTCOMES

Author (year)	Country and cohort	Participant characteristics (sample size; age\(^a\))	Prevalence of overweight\(^b\)	Statistical analysis	Conclusion
Mota et al. (2016)\(^65\)	Portugal	PRESTYLE n = 646, 312 girls, 334 boys; 2 – 6 years, 5.2(0.7)	central obesity (WHtR > 0.5\(^f\)); boys: 39.2%, girls: 52.4%	Logistic regression adjusted by age.	Boys classified as having central obesity spent more time in sedentary behaviour compared with boys who were not classified as central obesity. No statistical differences for girls.
Said-Mohamed et al. (2012)\(^66\)	Kameroen, central Afrika	n = 133; 2 – 6 years	24.7% stunted, 25.3% overweight, 13.6% stunted overweight\(^e\)	ANCOVA, adjusted for sex, age and being at school.	Sedentary behaviour, light PA and MVPA were different between stunted children without overweight, stunted children with overweight, non-stunted children with overweight and non-stunted children without overweight.

Abbreviations: PA, physical activity; MVPA, moderate-to-vigorous physical activity; BMI, body mass index; IOTF, International Obesity Task Force age- and sex-specific BMI growth charts; CDC, Centers for Disease Control and Prevention; WHO, World Health Organization; SWS, Southampton Women’s Survey; BiB, Born in Bradford study; CHMS, Canadian Health Measures Survey; WHtR, waist to height ratio.

\(^a\) Age is presented as age range, mean(SD).

\(^b\) Prevalence of overweight is presented as % overweight/obesity.

\(^c\) Weight status was defined as non-overweight compared with overweight/obesity.

\(^d\) Data received on request.

\(^e\) IW-LPA100 is the daily sum of accelerometer counts during light-intensity physical activity defined as 100 - 2999 cpm, IW-LPA1100 is the daily sum of accelerometer counts during light-intensity physical activity defined as 1100 - 2999 cpm.

\(^f\) Waist-to-height ratio was calculated as the ratio of waist (cm) and height (cm). A WHtR cutoff of <0.5 was used to define abdominal obesity (McCarthy and Ashwell, 2006). Two categories: the non-risk group (WHtR <0.5) and at risk group based on central fat (WHtR > 0.5).

\(^g\) Stunted: height-for-age (HAC) ≤ 3rd percentile, BMI < 85th percentile, weight-for-height (WHZ) > -2 z-score; Overweight: HAC > 3rd percentile, BMI ≥ 85th percentile; Stunted Overweight: HAC ≤ 3rd percentile, BMI ≥ 85th percentile; Non-Stunted-and-Non-Overweight: HAC > 3rd percentile, BMI < 85th percentile, WHZ > -2 z-score.
References

1. Bürgi F, Meyer U, Granacher U, et al. Relationship of physical activity with motor skills, aerobic fitness and body fat in preschool children: a cross-sectional and longitudinal study (Ballabeina). *Int J Obes*. 2011;35(7):937-944. doi:10.1038/ijo.2011.54

2. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. *BMJ*. 2000;320(7244):1240-1243. http://www.ncbi.nlm.nih.gov/pubmed/10797032. Accessed February 8, 2018.

3. Butte NF, Puyau MR, Wilson TA, et al. Role of physical activity and sleep duration in growth and body composition of preschool-aged children. *Obesity*. 2016;24(6):1328-1335. doi:10.1002/oby.21489

4. Kuzcmarski RJ, Ogden CL, Grummer-Strawn LM, et al. CDC growth charts: United States. *Adv Data*. 2000;(314):1-27. http://www.ncbi.nlm.nih.gov/pubmed/11183293. Accessed February 8, 2018.

5. Leppänen MH, Henriksson P, Delisle Nyström C, et al. Longitudinal physical activity, body composition, and physical fitness in preschoolers. *Med Sci Sports Exerc*. 2017;49(10):2078-2085. doi:10.1249/MSS.0000000000001313

6. Collings PJ, Brage S, Ridgway CL, et al. Physical activity intensity, sedentary time, and body composition in preschoolers. *Am J Clin Nutr*. 2013;97(5):1020-1028. doi:10.3945/ajcn.112.045088

7. Heelan KA, Eisenmann JC. Physical Activity, Media Time, and Body Composition in Young Children. *J Phys Act Heal*. 2006;3(2):200-209. doi:10.1123/jpah.3.2.200

8. Janz KF, Levy SM, Burns TL, Torner JC, Willing MC, Warren JJ. Fatness, Physical Activity, and Television Viewing in Children during the Adiposity Rebound Period: The Iowa Bone Development Study. 2002;35(6):563-571. doi:10.1006/pmed.2002.1113

9. Leppänen MH, Nystöm CD, Henriksson P, et al. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: results from the ministop trial. *Int J Obes*. 2016;40(7):1126-1133. doi:10.1038/ijo.2016.54

10. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. *Pediatr Obes*. 2012;7(4):284-294. doi:10.1111/j.2047-6310.2012.00064.x

11. Jáuregui A, Villalpando S, Rangel-Baltaraz E, Lara-Zamudio YA, Castillo-García MM. Physical activity and fat mass gain in Mexican school-age children: a cohort study. *BMC Pediatr*. 2012;12(1):620. doi:10.1186/1471-2431-12-109

12. Metcalf BS, Voss LD, Hosking J, Jeffery AN, Wilkin TJ. Physical activity at the government-recommended level and obesity-related health outcomes: a longitudinal study (Early Bird 37). *Arch Dis Child*. 2008;93(9):772-777. doi:10.1136/adc.2007.135012

13. Remmers T, Sleddens EFC, Gubbels JS, et al. Relationship between Physical Activity and the Development of Body Mass Index in Children. *Med Sci Sport Exerc*. 2014;46(1):177-184. doi:10.1249/MSS.0b013e3182a36709

14. Buck C, Kneib T, Tkaczk T, Konstabel K, Pigeot I. Assessing opportunities for physical activity in the built environment of children: interrelation between kernel density and neighborhood scale. *Int J Health Geogr*. 2015;14(1):35. doi:10.1186/s12942-015-0027-7
15. Byun W, Dowda M, Pate RR. Correlates of Objectively Measured Sedentary Behavior in US Preschool Children. *Pediatrics*. 2011;128(5):937-945. doi:10.1542/peds.2011-0748

16. Cliff DP, Okely AD, Smith LM, McKeen K. Relationships Between Fundamental Movement Skills and Objectively Measured Physical Activity in Preschool Children. *Pediatr Exerc Sci*. 2009;21:436-449.

17. Collings PJ, Brage S, Bingham DD, et al. Physical Activity, Sedentary Time, and Fatness in a Biethnic Sample of Young Children. *Med Sci Sport Exerc*. 2017;49(5):930-938. doi:10.1249/MSS.0000000000001180

18. Cole TJ, Freeman JV, Preece MA. Body mass index reference curves for the UK, 1990. *Arch Dis Child*. 1995;73(1):25-29. http://www.ncbi.nlm.nih.gov/pubmed/7639544. Accessed February 8, 2018.

19. Dawson-Hahn EE, Fesinmeyer MD, Mendoza JA. Correlates of Physical Activity in Latino Preschool Children Attending Head Start. *Pediatr Exerc Sci*. 2015;27(3):372-379. doi:10.1123/pes.2014-0144

20. España-Romero V, Mitchell JA, Dowda M, Neill JRO’, Pate RR. Objectively Measured Sedentary Time, Physical Activity and Markers of Body Fat in Preschool Children. *Pediatr Exerc Sci*. 2013;25:154-163.

21. Finn K, Johannsen N, Specker B. Factors associated with physical activity in preschool children. *J Pediatr*. 2002;140(1):81-85. doi:10.1067/jmpd.2002.120693

22. Fisher A, Reilly JJ, Montgomery C, et al. Seasonality in physical activity and sedentary behaviour in young children. *Pediatr Exerc Sci*. 2005;17:31-40. doi:10.1111/trf.13454

23. Guo H, Schenkelberg MA, O’Neill JR, Dowda M, Pate RR. How Does the Relationship Between Motor Skill Performance and Body Mass Index Impact Physical Activity in Preschool Children? *Pediatr Exerc Sci*. September 2017:1-19. doi:10.1123/pes.2017-0074

24. Herzig D, Eser P, Radtke T, et al. Relation of Heart Rate and its Variability during Sleep with Age, Physical Activity, and Body Composition in Young Children. *Front Physiol*. 2017;8. doi:10.3389/fphys.2017.00109

25. Ivonen KS, Sääkslahti AK, Mehtälä A, et al. Relationship between Fundamental Motor Skills and Physical Activity in 4-Year-Old Preschool Children. *Percept Mot Skills*. 2013;117(2):627-646. doi:10.2466/10.06.PMS.117x222z7

26. Jackson DM, Reilly JJ, Kelly LA, Montgomery C, Grant S, Paton JY. Objectively Measured Physical Activity in a Representative Sample of 3- to 4-Year-Old Children. *Obes Res*. 2003;11(3):420-425. doi:10.1038/oby.2003.57

27. Kelly LA, Reilly JJ, Fisher A, et al. Effect of socioeconomic status on objectively measured physical activity. *Arch Dis Child*. 2006;91(1):35-38. doi:10.1136/adc.2005.080275

28. Mendoza JA, McLeod J, Chen T-A, Nicklas TA, Baranowski T. Correlates of Adiposity among Latino Preschool Children. *J Phys Act Heal*. 2014;11(1):195-198. doi:10.1123/jpah.2012-0018

29. Oliver M, Schofield GM, Schluter PJ. Parent influences on preschoolers’ objectively assessed physical activity. *J Sci Med Sport*. 2010;13(4):403-409. doi:10.1016/j.jsams.2009.05.008

30. Pfeiffer KA, Dowda M, McIver KL, Pate R.R. Factors Related to Objectively Measured Physical Activity in Preschool Children. *Pediatr Exerc Sci*. 2009;21:196-208. doi:10.1123/pes.21.2.196
31. Schmutz EA, Leeger-Aschmann CS, Radtke T, et al. Correlates of preschool children’s objectively measured physical activity and sedentary behavior: A cross-sectional analysis of the SPLASHY study. *Int J Behav Nutr Phys Act*. 2017;14(1):1-13. doi:10.1186/s12966-016-0456-9

32. WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards based on length/height, weight and age. *Acta Paediatr Suppl*. 2006;450:76-85. http://www.ncbi.nlm.nih.gov/pubmed/16817681. Accessed February 8, 2018.

33. Toschke JA, von Kries R, Rosenfeld E, Toschke AM. Reliability of physical activity measures from accelerometry among preschoolers in free-living conditions. *Clin Nutr*. 2007;26(4):416-420. doi:10.1016/j.clnu.2007.03.009

34. Williams HG, Pfeiffer KA, O’Neill JR, et al. Motor Skill Performance and Physical Activity in Preschool Children. *Obesity*. 2008;16(6):1421-1426. doi:10.1038/oby.2008.214

35. Yamamoto S, Becker S, Fischer J, De Bock F. Sex differences in the variables associated with objectively measured moderate-to-vigorous physical activity in preschoolers. *Prev Med (Baltim)*. 2011;52(2):126-129. doi:10.1016/j.ypmed.2010.11.014

36. Berglind D, Hansson L, Tynelius P, Rasmussen F. Levels and Patterns of Objectively Measured Physical Activity and Sedentary Time in 4-Year-Old Swedish Children. *J Phys Act Heal*. 2017;14(2):117-122. doi:10.1123/jpah.2016-0250

37. Colley RC, Garriguet D, Adamo KB, et al. Physical activity and sedentary behavior during the early years in Canada: a cross-sectional study. *Int J Behav Nutr Phys Act*. 2013;10:54-62. doi:10.1186/1479-5868-10-54

38. Ebenegger V, Marques-Vidal P, Kriemler S, et al. Differences in Aerobic Fitness and Lifestyle Characteristics in Preschoolers according to their Weight Status and Sports Club Participation. *Obes Facts*. 2012;5(1):23-33. doi:10.1159/000336603

39. Prader A, Largo RH, Molinari L, Issler C. Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. *Helv Paediatr Acta Suppl*. 1989;52:1-125. http://www.ncbi.nlm.nih.gov/pubmed/2737921. Accessed February 8, 2018.

40. Gutiérrez-Hervás A, Cortés-Castell E, Juste-Ruíz M, Palazón-Bru A, Gil-Guillén V, Rizo-Baeza M. Physical activity values in two-to-seven-year-old children measured by accelerometer over five consecutives 24-hour days. *Nutr Hosp*. 2018;35(3):252-257. doi:10.20960/nh.1403

41. World Health Organisation (WHO). Training course on child growth assessment. WHO Child Growth Standards. Module C - Interpreting Growth Indicators. http://www.who.int/childgrowth/training/c_interpretando.pdf. Published 2008.

42. Jones RA, Okely AD, Gregory P, Cliff DP. Relationships between weight status and child, parent and community characteristics in preschool children. *Int J Pediatr Obes*. 2009;4(1):54-60. doi:10.1080/17477160802199984

43. Matarma T, Tammelin T, Kulmala J, Koski P, Hurme S, Lagström H. Factors associated with objectively measured physical activity and sedentary time of 5–6-year-old children in the STEPS Study. *Early Child Dev Care*. 2017;187(12):1863-1873. doi:10.1080/03004430.2016.1193016

44. Saari A, Sankilampi U, Hannila M-L, Kiviniemi V, Kesseli K, Dunkel L. New Finnish growth references for children and adolescents aged 0 to 20 years: Length/height-for-age, weight-for-length/height, and body mass index-for-age. *Ann Med*. 2011;43(3):235-248. doi:10.3109/0785890.2010.515603
45. Matarma T, Lagström H, Hurme S, et al. Motor skills in association with physical activity, sedentary time, body fat, and day care attendance in 5–6-year-old children - the STEPS Study. *Scand J Med Sci Sports*. 2018;0:1. doi:10.1111/sms.13264

46. Metallinos-Katsaras ES, Freedson PS, Fulton JE, Sherry B. The Association Between an Objective Measure of Physical Activity and Weight Status in Preschoolers. *Obesity*. 2007;15(3):686-694. doi:10.1038/oby.2007.571

47. Niederer I, Kriemler S, Zahner L, et al. BMI Group-Related Differences in Physical Fitness and Physical Activity in Preschool-Age Children. *Res Q Exerc Sport*. 2012;83(1):12-19. doi:10.1080/02701367.2012.10599820

48. O’Dwyer MV, Foweather L, Stratton G, Ridgers ND. Physical activity in non-overweight and overweight UK preschool children: Preliminary findings and methods of the Active Play Project. *Sci Sports*. 2011;26(6):345-349. doi:10.1016/j.sciSpo.2011.01.006

49. Pate RR, O’Neill JR, Brown WH, Pfeiffer KA, Dowda M, Addy CL. Prevalence of Compliance with a New Physical Activity Guideline for Preschool-Age Children. *Child Obes*. 2015;11(4):415-420. doi:10.1089/chi.2014.0143

50. Rottger K, Grimminger E, Kreuser F, Asslander L, Gollhofer A, Korsten-Reck U. Physical activity in different preschool settings. *J Obes*. 2014;2014(321701):1-8. doi:10.1155/2014/321701

51. Kromeyer-Hauschild K, Wabitsch M, Kunze D, et al. Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. *Monatsschrift Kinderheilkd*. 2001;149(8):807-818. doi:10.1007/s001120170107

52. Schaefer SE, Camacho-Gomez R, Sadeghi B, Kaiser L, German JB, de la Torre A. Assessing Child Obesity and Physical Activity in a Hard-to-Reach Population in California’s Central Valley, 2012–2013. *Prev Chronic Dis*. 2015;12:140577. doi:10.5888/pcd12.140577

53. Tanaka C, Tanaka S. Objectively-measured physical activity and body weight in Japanese preschoolers. *Ann Hum Biol*. 2013;40(6):541-546. doi:10.3109/03014460.2013.815802

54. Cole TJ, Flegal KM, Nicholls D, Jackson AA. Body mass index cut offs to define thinness in children and adolescents: international survey. *BMJ*. 2007;335(7612):194. doi:10.1136/bmj.39238.399444.55

55. Trost SG, Sirard JR, Dowda M, Pfeiffer KA, Pate RR. Physical activity in overweight and nonoverweight preschool children. *Int J Obes*. 2003;27(7):834-839. doi:10.1038/sj.ijo.0802311

56. Tucker P, Maltby AM, Burke SM, Vanderloo LM, Irwin JD. Comparing physical activity and sedentary time among overweight and nonoverweight preschoolers enrolled in early learning programs: a cross-sectional study. *Appl Physiol Nutr Metab*. 2016;41(9):971-976. doi:10.1139/apnm-2016-0021

57. Vale S, Silva P, Santos R, Soares-Miranda L, Mota J. Compliance with physical activity guidelines in preschool children. *J Sports Sci*. 2010;28(6):603-608. doi:10.1080/026404103702694

58. Van Cauwenberghhe E, Jones RA, Hinkley T, Crawford D, Okely AD. Patterns of physical activity and sedentary behaviour in preschool children. *Int J Behav Nutr Phys Act*. 2012;9:1-11. doi:10.1186/1479-5868-9-138

59. Vorwerg Y, Petroff D, Kiess W, Blüher S. Physical Activity in 3–6 Year Old Children Measured by SenseWear Pro®: Direct Accelerometry in the Course of the Week and Relation to Weight Status, Media Consumption, and Socioeconomic Factors. *PLoS One*. 2013;8(4):e60619. doi:10.1371/journal.pone.0060619
60. Oliver M, Schluter PJ, Healy GN, Tautolo E-S, Schofield G, Rush E. Associations Between Breaks in Sedentary Time and Body Size in Pacific Mothers and Their Children: Findings From the Pacific Islands Families Study. *J Phys Act Heal*. 2013;10:1166-1174.

61. Janz KF, Kwon S, Letuchy EM, et al. Sustained effect of early physical activity on body fat mass in older children. *Am J Prev Med*. 2009;37(1):35-40. doi:10.1016/j.amepre.2009.03.012

62. Jackson DM, Djafarian K, Stewart J, Speakman JR. Increased television viewing is associated with elevated body fatness but not with lower total energy expenditure in children. *Am J Clin Nutr*. 2009;89(4):1031-1036. doi:10.3945/ajcn.2008.26746

63. Kwon S, Janz KF, Burns TL, Levy SM. Association between Light-Intensity Physical Activity and Adiposity in Childhood. *Pediatr Exerc Sci*. 2011;23(2):218-229. doi:10.1123/pes.23.2.218

64. Fang H, Quan M, Zhou T, et al. Relationship between Physical Activity and Physical Fitness in Preschool Children: A Cross-Sectional Study. *Biomed Res Int*. 2017;2017:9314026. doi:10.1155/2017/9314026

65. Mota J, Silva Dos Santos S, Santos A, Seabra A, Vale S. Association between sedentary behavior time and waist-to-height ratio in preschool children. *Am J Hum Biol*. 2016;28(5):746-748. doi:10.1002/ajhb.22851

66. Said-Mohamed R, Bernard JY, Ndzana A-C, Pasquet P. Is Overweight in Stunted Preschool Children in Cameroon Related to Reductions in Fat Oxidation, Resting Energy Expenditure and Physical Activity? Johannsen D, ed. *PLoS One*. 2012;7(6):e39007. doi:10.1371/journal.pone.0039007
Physical activity assessment.

A) Studies using triaxial accelerometers

Author (year)	Type of accelerometer	Epoch (s)	Accelerometer cutpoints	Minimum weartime
Berglind et al. (2017)	ActiGraph GT3X+	5	TPA: average cpm, SB: <820, LPA: 820 - 3907, MVPA: ≥ 3908 cpm	At least 3 days, 10h/day
Iivonen et al. (2013)	Actigraph GT3X	5	TPA: average cpm over monitoring period, MVPA: ≥ 196 counts/5s	At least 3 days, 8h/day
Leppänen et al. (2016)	ActiGraph wGT3x	10	SB <305, LPA 306-817, MPA 818-1968, VPA >1969, MVPA >818 VM (all per 5s)	At least 3 days, 10h/day
Leppänen et al. (2017)	ActiGraph wGT3x	10	SB <305, LPA 306-817, MPA 818-1968, VPA >1969, MVPA >818 VM (all per 5s)	At least 3 days, 10h/day
Buck et al. (2015)	ActiGraph GT3X+	15	MVPA = 2298 cpm	At least 3 consecutive days, 1 weekend day, 8h/day
Collings et al. (2017)	ActiGraph GT3X+	15	SB: <820, LPA: 820-3907, MVPA: ≥ 3904 cpm	At least 1 valid day, 6h/day
España-Romero et al. (2013)	ActiGraph GT1M and GT3X	15	SB: ≤ 200, MVPA: ≥ 420 counts/15s	At least 2 weekdays, 6h/day
Matarma et al. (2017)	ActiGraph GT3X	15	Cutpoints Evenson et al. (2008)	At least 4 days, 8h/day, 3 weekdays and 1 weekend day
Matarma et al. (2018)	ActiGraph GT3X	15	SB < 100cpm	At least 4 days, 8h/day, 3 weekdays and 1 weekend day
Oliver et al. (2010)	Actical accelerometer	15	TPA: daily PA rates	NR
Pate et al. (2015)	CHAMPS: ActiGraph 7164 SHAPES: GT1M and GT3X	15	TPA: ≥ 200 counts/15s	At least 2 days, 8h/day
Schmutz et al. (2017)	Actigraph wGT3X	15	TPA: mean cpm, SB: ≤ 25, MVPA: ≥ 420 counts/15s	At least 3 days, 10h/day
Appendix E. Continued.

Author (year)	Type of accelerometer	Epoch (s)	Accelerometer cutpoints	Minimum weartime
Tucker et al. (2016)	Actical accelerometer	15	TPA: ≥ 50, SB < 50, MVPA ≥ 715 counts/15s¹⁹	At least 3 days, 5h/day
Butte et al. (2016)	ActiGraph GT3X+	60	SB: < 820, MVPA: ≥ 3908 cpm²	At least 4 valid days, 1 weekend day, 1000 min/day
Colley et al. (2013)	Actical accelerometer	60	TPA: total cpm, SB: <100, LPA: 100 - 1149, MVPA: ≥ 1150 cpm^{22,23}	At least 4 days, 5h/day
Jáuregui et al. (2012)	RT3 accelerometers	60	MVPA: 970.2 cpm²⁵	at least 1 valid day, 10h/day
Oliver et al. (2013)	Actical accelerometer	60	SB: <100, MVPA: ≥1500 cpm²⁷	At least 3 days, 7 hours/day
Tanaka and Tanaka (2013)	ActivTracer GMS	60	Low-intensity activity (PAR < 2), LPA (2 < PAR < 3), MVPA (3 ≤ PAR) and VPA(PAR ≥ 4)²⁹	At least 2 weekdays, 1 weekend day
Fang et al. (2017)	Actigraph GT3X+	NR	LPA: 100-1679, MPA: 1680-3367, VPA ≥ 3368 cpm¹²	At least 3 days, 8h/day, 2 weekdays and 1 weekend day
Herzig et al. (2017)	Actigraph wGT3x	NR	Cutpoints Butte et al (2014)²	At least 4 days, 10h/day
Rötterger et al. (2014)	AiperMotion 440	NR	SB: 4s resolution³¹	NR
Vorwerg et al. (2013)	SensewarePro	NR	SB: MET ≤ 1.4, LPA: 1.5–2.9, MPA 3–5.9 , VPA ≥ 6 METs^{35,36}	At least 4 consecutive days and nights, one day of the weekend

B) Studies using biaxial accelerometers

Author (year)	Type of accelerometer	Cutpoints	Minimum weartime
Finn et al. (2002)	Actiwatch Model AW16 activity monitor	VPA: 1000 counts	NR

C) Studies using uniaxial accelerometers

Author (year)	Type of accelerometer	Epoch (s)	Cutpoints	Minimum weartime
Mota et al. (2016)	Actigraph GT1M	5	SB: ≤ 200 counts/15s^{11,16}	At least 10h/day
Author (year)	Type of accelerometer	Epoch (s)	Accelerometer cutpoints	Minimum weartime
---------------	------------------------	-----------	--------------------------	------------------
O’Dwyer et al. (2011)	Actigraph GT1M	5	Cupoints: Sirard et al. (2005)	At least 3 days, 2 weekdays and 1 weekend
Vale et al. (2010)	Actigraph GT1M	5	TPA: ≥ 1100, MPA: >1680, VPA: >3360 cpm	At least 10h/day
Bürgi et al. (2011)	Actigraph GT1M	15	MPA: 420 - 841, VPA: ≥ 842 counts/15s	At least 3 days of recording, 2 weekdays and 1 weekend day, 6h/day
Byun et al. (2011)	Actigraph 7164	15	SB: <37.5 counts/15s	NR
Dawson-Hahn et al. (2015)	Actigraph GT1M	15	TPA: > 37.5 cpm, MVPA: NR	at least 5 days, 3h/day
Ebenegger et al. (2012)	Actigraph GT1M	15	MVPA: ≥ 420, VPA: ≥ 842 counts/15s	At least 3 days, 2 weekdays and 1 weekend day, 6h/day
Guo et al. (2017)	ActiGraph 7164	15	TPA: ≥ 200 counts/15s	At least 3 days, 5 – 17 h/day
Mendoza et al. (2014)	Actigraph GT1M	15	MVPA: ≥ 420 counts/15s	At least 1 day, 8h/day
Niederer et al. (2012)	Actigraph GT1M	15	TPA = total cpm, MVPA ≥ 420, VPA ≥ 842 epoch/6h	At least 3 days, 2 weekdays and 1 weekend day, 6h/day
Pfeiffer et al. (2009)	ActiGraph 7164	15	MVPA: ≥ 420 counts/15s	At least 3 days
Remmers et al. (2014)	ActiGraph 7164	15	SB: 0-25, LPA : 26-573, MPA : 574-1002, VPA : ≥ 1003 counts/epoch	At least 3 days, 2 weekdays and 1 weekend day, 400min/day
Trost et al. (2003)	ActiGraph 7164	15	MVPA: ≥ 3 MET’s, VPA: ≥ 6 MET’s	At least 3 days
van Cauwenbergh et al. (2012)	Actigraph GT1M	15	SB: ≤ 25, MVPA: 3yr. >614	At least 4 days, 4 – 9h/day counts/15s
Appendix E. Continued.

Author (year)	Type of accelerometer	Epoch (s)	Accelerometer cutpoints	Minimum weartime						
Williams et al. (2008)	ActiGraph 7164	15	SB: <37.5, LPA: 38-419, MVPA: ≥ 420, VPA: ≥ 842 counts/15s	At least 3 days, 5h/day						
Yamamoto et al. (2011)	Actiheart	15	MVPA girls: > 105	boys: > 118 counts/15s	At least one weekend and one weekday					
Schaefer et al. (2015)	Polar Active	30	NR	At least 3 days						
Cliff et al. (2009)	Actigraph 7164	60	SB: <1100 cpm, MPA: 3yr. 2460-4920	4yr. 3248-4936	5yr. 3564-5016, VPA: 3yr. >4920	4yr. >4936	> 5016, MVPA: 3yr. > 2460	4yr. > 3248	5yr. > 3564 cpm	At least three days, 6h/day
Collings et al. (2013)	Actiheart combined heart rate and movement sensor	60	SB: < 37.5, LPA: 38 - 419, MPA: 420 - 841, VPA: ≥ 842 counts	At least one valid day, 600 min/day						
Fisher et al. (2005)	CSA	60	TPA: average cpm over monitoring period	At least 3 days, 6h/day						
Heelan and Eisenmann (2006)	Actigraph 7164	60	MPA: 615-2971, VPA: > 2972 cpm	At least 3 weekdays, 8h/day						
Jackson et al. (2003)	Actigraph 7164/CSA	60	TPA: average over 3 day period	At least 3 days, 2weekdays, 1 weekend day, 6h/day						
Jackson et al. (2009)	Actiwatch-L	60	NR	NR						
Janz et al. (2002)	CSA	60	TPA: total movement counts/total time, MVPA: ≥ 615, VPA: ≥ 2972 counts	At least 3 days, minimal 8h/day						
Janz et al. (2009)	Actigraph 7164	60	MVPA: > 3000 cpm	At least 3 days, 8h/day						
Jones et al. (2009)	Actigraph 7164	60	Total PA: mean cpm	At least 3 days, 6h/day						
Author (year)	Type of accelerometer	Epoch (s)	Accelerometer cutpoints	Minimum weartime						
-----------------------	-----------------------	-----------	--	---						
Kelly et al. (2006)	Accelerometer	60	TPA: average cpm, SB: <1100, MVPA: 3200 cpm^{64,73}	At least 6 days, 6h/day						
Kwon et al. (2011)	Actigraph 7164	60	Daily sum of accelerometer counts at LPA (100 cpm) and LPA (1100 cpm)^{42,75,76}	At least 3 days, 8h/day						
Metallinos-Katsaras et al. (2007)⁷⁷	ActiGraph 7164	60	LPA: <615, MPA: 615-2971, VPA: 2972-5331 cpm⁷⁸	At least 4,5 days						
Metcalf et al. (2008)⁷⁹	Actigraph MTI and CSA	60	≥ 3 MET’s^{61,80}	NR						
Said-Mohamed et al. (2012)⁸¹	Actigraph GT1M	60	SB: ≤ 800, LPA: ≤ 3200, MVPA: > 3201 cpm⁶¹	NR						
Toschke et al. (2007)⁸²	ActiGraph 7164	60	TPA: average active cpm	At least 6h/day						
D) Type of accelerometer not mentioned										
Gutiérrez-Hervás et al. (2018)⁸³	NR	15	TPA: total cpm	At least 4 days, 10 h/day, 3 weekdays and 1 weekend day						

Abbreviations: TPA, total physical activity; SB, sedentary behaviour; LPA, light physical activity; MPA, moderate physical activity; VPA, vigorous physical activity; MVPA, moderate-to-vigorous physical activity; cpm, counts per minute; VM, vector magnitude; PAR, physical activity ratio; MET, metabolic equivalent; NR, not reported.
References

1. Berglund D, Tynelius P. Objectively measured physical activity patterns, sedentary time and parent-reported screen-time across the day in four-year-old Swedish children. *BMC Public Health*. 2017;18(1):1-9. doi:10.1186/s12889-017-4600-5

2. Butte NF, Wong WW, Lee JS, Adolph AL, Puyau MR, Zakeri IF. Prediction of energy expenditure and physical activity in preschoolers. *Med Sci Sports Exerc*. 2014;46(6):1216-1226. doi:10.1249/MSS.0000000000000209

3. Iivonen KS, Sääkslahti AK, Mehtälä A, et al. Relationship between Fundamental Motor Skills and Physical Activity in 4-Year-Old Preschool Children. *Percept Mot Skills*. 2013;117(2):627-646. doi:10.2466/10.06.PMS.117x22z7

4. van Cauwenberghe E, Labarque V, Trost SG, de Bourdeaudhuij I, Cardon G. Calibration and comparison of accelerometer cut points in preschool children. *Int J Pediatr Obes*. 2011;6(2-2):e582-e589. doi:10.3109/17477166.2010.526223

5. Leppänen MH, Nyström CD, Henriksson P, et al. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: results from the ministop trial. *Int J Obes*. 2016;40(7):1126-1133. doi:10.1038/ijo.2016.54

6. Chandler JL, Brazendale K, Beets MW, Mealing BA. Classification of physical activity intensities using a wrist-worn accelerometer in 8-12-year-old children. *Pediatr Obes*. 2016;11(2):120-127. doi:10.1111/ijpo.12033

7. Leppänen MH, Henriksson P, Delisle Nyström C, et al. Longitudinal physical activity, body composition, and physical fitness in preschoolers. *Med Sci Sports Exerc*. 2017;49(10):2078-2085. doi:10.1249/MSS.0000000000001313

8. Buck C, Kneib T, Tkaczick T, Konstabel K, Pigeot I. Assessing opportunities for physical activity in the built environment of children: interrelation between kernel density and neighborhood scale. *Int J Health Geogr*. 2015;14(1):35. doi:10.1186/s12942-015-0027-3

9. Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. *J Sports Sci*. 2008;26(14):1557-1565. doi:10.1080/02640410802334196

10. Collings PJ, Brage S, Bingham DD, et al. Physical Activity, Sedentary Time, and Fatness in a Biethnic Sample of Young Children. *Med Sci Sport Exerc*. 2017;49(5):930-938. doi:10.1249/MSS.0000000000001180

11. España-Romero V, Mitchell JA, Dowda M, Neill JRO', Pate RR. Objectively Measured Sedentary Time, Physical Activity and Markers of Body Fat in Preschool Children. *Pediatr Exerc Sci*. 2013;25:154-163.

12. Pate RR, Almeida MJ, McIver KL, Pfeiffer KA, Dowda M. Validation and Calibration of an Accelerometer in Preschool Children*. *Obesity*. 2006;14(11):2000-2006. doi:10.1038/oby.2006.234

13. Matarma T, Tammelin T, Kulmala J, Koski P, Hurme S, Lagström H. Factors associated with objectively measured physical activity and sedentary time of 5–6-year-old children in the STEPS Study. *Early Child Dev Care*. 2017;187(12):1863-1873. doi:10.1080/03004430.2016.1193016
14. Matarma T, Lagström H, Hurme S, et al. Motor skills in association with physical activity, sedentary time, body fat, and day care attendance in 5–6-year-old children - the STEPS Study. *Scand J Med Sci Sports*. 2018:0-1. doi:10.1111/sms.13264

15. Oliver M, Schofield GM, Schluter PJ. Parent influences on preschoolers’ objectively assessed physical activity. *J Sci Med Sport*. 2010;13(4):403-409. doi:10.1016/j.jsams.2009.05.008

16. Pate RR, O’Neill JR, Brown WH, Pfeiffer KA, Dowda M, Addy CL. Prevalence of Compliance with a New Physical Activity Guideline for Preschool-Age Children. *Child Obes*. 2015;11(4):415-420. doi:10.1089/chi.2014.0143

17. Schmutz EA, Leeger-Aschmann CS, Radrke T, et al. Correlates of preschool children’s objectively measured physical activity and sedentary behavior: A cross-sectional analysis of the SPLASHY study. *Int J Behav Nutr Phys Act*. 2017;14(1):1-13. doi:10.1186/s12966-016-0456-9

18. Tucker P, Maltby AM, Burke SM, Vanderloo LM, Irwin JD. Comparing physical activity and sedentary time among overweight and nonoverweight preschoolers enrolled in early learning programs: a cross-sectional study. *Appl Physiol Nutr Metab*. 2016;41(9):971-976. doi:10.1139/apnm-2016-0021

19. Pfeiffer KA, McIver KL, Dowda M, Almeida MJCA, Pate RR. Validation and calibration of the Actical accelerometer in preschool children. *Med Sci Sports Exerc*. 2006;38(1):152-157.

20. Butte NF, Puyau MR, Wilson TA, et al. Role of physical activity and sleep duration in growth and body composition of preschool-aged children. *Obesity*. 2016;24(6):1328-1335. doi:10.1002/oby.21489

21. Collings PJ, Brage S, Ridgway CL, et al. Physical activity intensity, sedentary time, and body composition in preschoolers. *Am J Clin Nutr*. 2013;97(5):1020-1028. doi:10.3945/ajcn.112.045088

22. Wong SL, Colley R, Gorber SC, Tremblay M. Actical Accelerometer Sedentary Activity Thresholds for Adults. *J Phys Act Heal*. 2011;8(4):587-591. doi:10.1123/jpah.8.4.587

23. Adolph AL, Puyau MR, Vohra FA, Nicklas TA, Zakeri IF, Butte NF. Validation of Uniaxial and Triaxial Accelerometers for the Assessment of Physical Activity in Preschool Children. *J Phys Act Heal*. 2012;9(7):944-953. doi:10.1123/jpah.9.7.944

24. Jáuregui A, Villalpando S, Rangel-Baltazar E, Lara-Zamudio YA, Castillo-García MM. Physical activity and fat mass gain in Mexican school-age children: a cohort study. *BMC Pediatr*. 2012;12(1):620. doi:10.1186/1471-2431-12-109

25. Rowlands AV, Thomas PWM, Eston RG, Topping R. Validation of the RT3 triaxial accelerometer for the assessment of physical activity. *Med Sci Sports Exerc*. 2004;36(3):518-524.

26. Oliver M, Schluter PJ, Healy GN, Tautolo E-S, Schofield G, Rush E. Associations Between Breaks in Sedentary Time and Body Size in Pacific Mothers and Their Children: Findings From the Pacific Islands Families Study. *J Phys Act Heal*. 2013;10:1166-1174.

27. Puyau MR, Adolph AL, Vohra FA, Zakeri I, Butte NF. Prediction of activity energy expenditure using accelerometers in children. *Med Sci Sports Exerc*. 2004;36(9):1625-1631.

28. Tanaka C, Tanaka S. Objectively-measured physical activity and body weight in Japanese preschoolers. *Ann Hum Biol*. 2013;40(6):541-546. doi:10.3109/03014460.2013.815802

29. Tanaka C, Tanaka S, Kawahara J, Midorikawa T. Triaxial Accelerometry for Assessment of Physical Activity in Young Children*. *Obesity*. 2007;15(5):1233-1241. doi:10.1038/oby.2007.145
30. Fang H, Quan M, Zhou T, et al. Relationship between Physical Activity and Physical Fitness in Preschool Children: A Cross-Sectional Study. *Biomed Res Int*. 2017;2017:9314026. doi:10.1155/2017/9314026

31. Herzig D, Eser P, Radtke T, et al. Relation of Heart Rate and its Variability during Sleep with Age, Physical Activity, and Body Composition in Young Children. *Front Physiol*. 2017;8. doi:10.3389/fphys.2017.00109

32. Röttger K, Grimminger E, Kreuser F, Asslander L, Gollhofer A, Korsten-Reck U. Physical activity in different preschool settings. *J Obes*. 2014;2014(321701):1-8. doi:10.1155/2014/321701

33. Kreuser F, Kromeyer-Hauschild K, Gollhofer A, Korsten-Reck U, Röttger K. “Obese equals Lazy?” analysis of the association between weight status and physical activity in children. *J Obes*. 2013;2013:437017.

34. Vorwerg Y, Petroff D, Kiess W, Blüher S. Physical Activity in 3–6 Year Old Children Measured by SenseWear Pro®: Direct Accelerometry in the Course of the Week and Relation to Weight Status, Media Consumption, and Socioeconomic Factors. *PLoS One*. 2013;8(4):e60619. doi:10.1371/journal.pone.0060619

35. Pate RR. Physical Activity Among Children Attending Preschools. *Pediatrics*. 2004;114(5):1258-1263. doi:10.1542/peds.2003-1088-L

36. Tanaka C, Tanaka S. Daily physical activity in japanese preschool children evaluated by triaxial accelerometry: the relationship between period of engagement in moderate-to-vigorous physical activity and daily step counts. *J Physiol Anthropol*. 2009;28(6):283-288.

37. Finn K, Johannsen N, Specker B. Factors associated with physical activity in preschool children. *J Pediatr*. 2002;140(1):81-85. doi:10.1067/mpd.2002.120693

38. Mota J, Silva Dos Santos S, Santos A, Seabra A, Vale S. Association between sedentary behavior time and waist-to-height ratio in preschool children. *Am J Hum Biol*. 2016;28(5):746-748. doi:10.1002/ajhb.22851

39. O’Dwyer MV, Fowether L, Stratton G, Ridgers ND. Physical activity in non-overweight and overweight UK preschool children: Preliminary findings and methods of the Active Play Project. *Sci Sports*. 2011;26(6):345-349. doi:10.1016/j.scispo.2011.01.006

40. Sirard JR, Trost SG, Pfeiffer KA, Dowda M, Pate RR. Calibration and evaluation of an objective measure of physical activity in preschool children. *J Phys Act Heal*. 2005;2(3):345.

41. Vale SMCG, Santos RMR, Soares-Miranda LM da C, Moreira CMM, Ruiz JR, Mota JAS. Objectively Measured Physical Activity and Body Mass Index in Preschool Children. *Int J Pediatr*. 2010;2010:1-6. doi:10.1155/2010/479439

42. Reilly JJ, Coyle J, Kelly L, Burke G, Grant S, Paton JY. An Objective Method for Measurement of Sedentary Behavior in 3- to 4-Year Olds. *Obes Res*. 2003;11(10):1155-1158. doi:10.1038/oby.2003.158

43. Bürgi F, Meyer U, Granacher U, et al. Relationship of physical activity with motor skills, aerobic fitness and body fat in preschool children: a cross-sectional and longitudinal study (Ballabeina). *Int J Obes*. 2011;35(7):937-944. doi:10.1038/ijo.2011.54

44. Byun W, Dowda M, Pate RR. Correlates of Objectively Measured Sedentary Behavior in US Preschool Children. *Pediatrics*. 2011;128(5):937-945. doi:10.1542/peds.2011-0748
45. Dawson-Hahn EE, Fesinmeyer MD, Mendoza JA. Correlates of Physical Activity in Latino Preschool Children Attending Head Start. *Pediatr Exerc Sci*. 2015;27(3):372-379. doi:10.1123/pes.2014-0144

46. Ebenegger V, Marques-Vidal P, Kriemler S, et al. Differences in Aerobic Fitness and Lifestyle Characteristics in Preschoolers according to their Weight Status and Sports Club Participation. *Obes Facts*. 2012;5(1):23-33. doi:10.1159/000336603

47. Guo H, Schenkelberg MA, O’Neill JR, Dowda M, Pate RR. How Does the Relationship Between Motor Skill Performance and Body Mass Index Impact Physical Activity in Preschool Children? *Pediatr Exerc Sci*. September 2017:1-19. doi:10.1123/pes.2017-0074

48. Mendoza JA, McLeod J, Chen T-A, Nicklas TA, Baranowski T. Correlates of Adiposity among Latino Preschool Children. *J Phys Act Heal*. 2014;11(1):195-198. doi:10.1123/jpah.2012-0018

49. Niederer I, Kriemler S, Zahner L, et al. BMI Group-Related Differences in Physical Fitness and Physical Activity in Preschool-Age Children. *Res Q Exerc Sport*. 2012;83(1):12-19. doi:10.1080/02701367.2012.10599820

50. Pfeiffer KA, Dowda M, McIver KL, Pate RR. Factors Related to Objectively Measured Physical Activity in Preschool Children. *Pediatr Exerc Sci*. 2009;21:196-208. doi:10.1123/pes.21.2.196

51. Remmers T, Sleddens EFC, Gubbels JS, et al. Relationship between Physical Activity and the Development of Body Mass Index in Children. *Med Sci Sport Exerc*. 2014;46(1):177-184. doi:10.1249/MSS.0b013e3182a36709

52. Trost SG, Sirard JR, Dowda M, Pfeiffer KA, Pate RR. Physical activity in overweight and nonoverweight preschool children. *Int J Obes*. 2003;27(7):834-839. doi:10.1038/sj.ijo.0802311

53. Sirard JS, Trost SG, Dowda M, Pate R.R. Calibration of the computer science and applications, Inc. physical activity monitor in preschool children (Abstract). *Med Sci Sport Exerc*. 2001;5 (Suppl) (S144).

54. Van Cauwenberghhe E, Jones RA, Hinkley T, Crawford D, Okely AD. Patterns of physical activity and sedentary behaviour in preschool children. *Int J Behav Nutr Phys Act*. 2012;9:1-11. doi:10.1186/1479-5868-9-138

55. Williams HG, Pfeiffer KA, O’Neill JR, et al. Motor Skill Performance and Physical Activity in Preschool Children. *Obesity*. 2008;16(6):1421-1426. doi:10.1038/oby.2008.214

56. Yamamoto S, Becker S, Fischer J, De Bock F. Sex differences in the variables associated with objectively measured moderate-to-vigorous physical activity in preschoolers. *Prev Med (Baltim)*. 2011;52(2):126-129. doi:10.1016/j.ypmed.2010.11.014

57. De Bock F, Menze J, Becker S, Litaker D, Fischer J, Seidel I. Combining accelerometry and HR for assessing preschoolers’ physical activity. *Med Sci Sports Exerc*. 2010;42(12):2237-2243. doi:10.1249/MSS.0b013e3181e27b5d

58. Schaefer SE, Camacho-Gomez R, Sadeghi B, Kaiser L, German JB, de la Torre A. Assessing Child Obesity and Physical Activity in a Hard-to-Reach Population in California’s Central Valley, 2012–2013. *Prev Chronic Dis*. 2015;12:140577. doi:10.5888/pcd12.140577

59. Cliff DP, Okely AD, Smith LM, Mckeen K. Relationships Between Fundamental Movement Skills and Objectively Measured Physical Activity in Preschool Children. *Pediatr Exerc Sci*. 2009;21:436-449.
60. Fisher A, Reilly JJ, Montgomery C, et al. Seasonality in physical activity and sedentary behaviour in young children. *Pediatr Exerc Sci*. 2005;17:31-40. doi:10.1111/trf.13454

61. Puyau MR, Adolph AL, Vohra FA, Butte NF. Validation and Calibration of Physical Activity Monitors in Children. *Obes Res*. 2002;10(3):150-157. doi:10.1038/oby.2002.24

62. Heelan KA, Eisenmann JC. Physical Activity, Media Time, and Body Composition in Young Children. *J Phys Act Heal*. 2006;3(2):200-209. doi:10.1123/jpah.3.2.200

63. Freedson PS, Sirard J, Debold E, et al. Calibration of the Computer Science and Applications, Inc. (CSA) accelerometer. *Med Sci Sport Exerc*. 1997;29(5):45.

64. Jackson DM, Reilly JJ, Kelly LA, Montgomery C, Grant S, Paton JY. Objectively Measured Physical Activity in a Representative Sample of 3- to 4-Year-Old Children. *Obes Res*. 2003;11(3):420-425. doi:10.1038/oby.2003.57

65. Jackson DM, Djafarian K, Stewart J, Speakman JR. Increased television viewing is associated with elevated body fatness but not with lower total energy expenditure in children. *Am J Clin Nutr*. 2009;89(4):1031-1036. doi:10.3945/ajcn.2008.26746

66. Janz KF, Levy SM, Burns TL, Torner JC, Willing MC, Warren JJ. Fatness, Physical Activity, and Television Viewing in Children during the Adiposity Rebound Period: The Iowa Bone Development Study. 2002;35(6):563-571. doi:10.1006/pmed.2002.1113

67. Janz KF, Kwon S, Letuchy EM, et al. Sustained effect of early physical activity on body fat mass in older children. *Am J Prev Med*. 2009;37(1):35-40. doi:10.1016/j.amepre.2009.03.012

68. Trost SG, Ward DS, Moorehead SM, Watson PD, Riner W, Burke JR. Validity of the computer science and applications (CSA) activity monitor in children. *Med Sci Sports Exerc*. 1998;30(4):629-633.

69. Trost SG, Way R, Okely AD. Predictive validity of three ActiGraph energy expenditure equations for children. *Med Sci Sports Exerc*. 2006;38(2):380-387. doi:10.1249/01.mss.0000183848.25845.e0

70. Jago R, Wedderkopp N, Kristensen PL, et al. Six-year change in youth physical activity and effect on fasting insulin and HOMA-IR. *Am J Prev Med*. 2008;35(6):554-560. doi:10.1016/j.amepre.2008.07.007

71. Jones RA, Okely AD, Gregory P, Cliff DP. Relationships between weight status and child, parent and community characteristics in preschool children. *Int J Pediatr Obes*. 2009;4(1):54-60. doi:10.1080/17477160802199984

72. Kelly LA, Reilly JJ, Fisher A, et al. Effect of socioeconomic status on objectively measured physical activity. *Arch Dis Child*. 2006;91(1):35-38. doi:10.1136/adc.2005.080275

73. Reilly JJ, Jackson DM, Montgomery C, et al. Total energy expenditure and physical activity in young Scottish children: mixed longitudinal study. *Lancet (London, England)*. 2004;363(9404):211-212.

74. Kwon S, Janz KF, Burns TL, Levy SM. Association between Light-Intensity Physical Activity and Adiposity in Childhood. *Pediatr Exerc Sci*. 2011;23(2):218-229. doi:10.1123/pes.23.2.218

75. Matthews CE, Chen KY, Freedson PS, et al. Amount of Time Spent in Sedentary Behaviors in the United States, 2003-2004. *Am J Epidemiol*. 2008;167(7):875-881. doi:10.1093/aje/kwm390

76. Treuth MS, Schmitz K, Catellier DJ, et al. Defining accelerometer thresholds for activity intensities in adolescent girls. *Med Sci Sports Exerc*. 2004;36(7):1259-1266.
77. Metallinos-Katsaras ES, Freedson PS, Fulton JE, Sherry B. The Association Between an Objective Measure of Physical Activity and Weight Status in Preschoolers. *Obesity*. 2007;15(3):686-694. doi:10.1038/oby.2007.571

78. Dowda M, Pate RR, Sallis J, Freedson PS. Accelerometer (CSA) Count Cut Points For Physical Activity Intensity Ranges In Youth. *Med Sci Sport Exerc*. 1997;29(5):72.

79. Metcalf BS, Voss LD, Hosking J, Jeffery AN, Wilkin TJ. Physical activity at the government-recommended level and obesity-related health outcomes: a longitudinal study (Early Bird 37). *Arch Dis Child*. 2008;93(9):772-777. doi:10.1136/adc.2007.135012

80. Schmitz KH, Treuth M, Hannan P, et al. Predicting energy expenditure from accelerometry counts in adolescent girls. *Med Sci Sports Exerc*. 2005;37(1):155-161.

81. Said-Mohamed R, Bernard JY, Ndazana A-C, Pasquet P. Is Overweight in Stunted Preschool Children in Cameroon Related to Reductions in Fat Oxidation, Resting Energy Expenditure and Physical Activity? Johannsen D, ed. *PLoS One*. 2012;7(6):e39007. doi:10.1371/journal.pone.0039007

82. Toschke JA, von Kries R, Rosenfeld E, Toschke AM. Reliability of physical activity measures from accelerometry among preschoolers in free-living conditions. *Clin Nutr*. 2007;26(4):416-420. doi:10.1016/j.clnu.2007.03.009

83. Gutiérrez-Hervás A, Cortés-Castell E, Juste-Ruiz M, Palazón-Bru A, Gil-Guillén V, Rizo-Baeza M. Physical activity values in two-to-seven-year-old children measured by accelerometer over five consecutives 24-hour days. *Nutr Hosp*. 2018;35(3):252-257. doi:10.20960/nh.1403
Appendix F. Assessment of percentage of body fat, (trunk) fat mass (index), waist circumference, and skinfold thickness.

Author (year)	Adiposity outcome(s)	Measurement / cutpoints
Bürgi et al. (2011)	Percentage of body fat	Four-polar single frequency bioelectric impedance.
Butte et al. (2016)	Percentage of body fat	Dual energy X-ray absorptiometry.
Collings et al. (2013)	Percentage of body fat	Dual energy X-ray absorptiometry.
Collings et al. (2017)	(Trunk) fat mass index	Waist circumference: Seca anthropometrical tape at the level of the exposed naval. Skinfold thickness: single measurements of triceps and subscapular skinfolds on the left side of the body using standard procedures.
España-Romero et al. (2013)	Waist circumference	Tension-regulated tape, at midway between the inferior edge of the lowest rib and the superior border of iliac crest, at the end of a gentle expiration.
Fang et al. (2017)	Skinfold thickness	Triceps skinfolds on the right side of the body.
Heelan and Eisenmann (2006)	Percentage of body fat	Dual energy X-ray absorptiometry.
Herzig et al. (2017)	Skinfold thickness	TriPLICATE measurements at four sites (biceps, triceps, subscapular, suprailiac) on the right body side.
Jackson et al. (2009)	Fat mass	Dual energy X-ray absorptiometry.
Jänz et al. (2002)	Percentage of body fat	Dual energy X-ray absorptiometry.
Jänz et al. (2009)	Fat mass	Dual energy X-ray absorptiometry.
Jáuregui et al. (2012)	Fat mass	Air-displacement plethysmography.
Kwon et al. (2011)	Fat mass	Dual energy X-ray absorptiometry.
Leppänen et al. (2016)	Percentage of body fat	Percentage of body fat and fat mass index: Air-displacement plethysmography. Waist circumference: non-elastic tape (SECA model 200) at the umbilical location, at the end of a normal expiration.
Leppänen et al. (2017)	Fat mass index	Air-displacement plethysmography.
Metcalf et al. (2008)	Waist circumference	Waist circumference: NR. Skinfold thickness: sum of biceps, triceps, subscapular, paraumbilical and suprailiac measurements.
Oliver et al. (2010)	Waist circumference	Lufkin W606PM tape.
Oliver et al. (2013)	Waist circumference	Lufkin W606PM tape, around the waist approximately half-way between the costal border and the iliac crest, with the participant breathing quietly.

Only the assessment of percentage of body fat, (trunk) fat mass (index), waist circumference, and skinfold thickness are shown. Body mass index was calculated as kg/m² in all included studies. The cutpoints for weight status can be found in Table 1.
References

1. Bürgi F, Meyer U, Granacher U, et al. Relationship of physical activity with motor skills, aerobic fitness and body fat in preschool children: a cross-sectional and longitudinal study (Ballabeina). *Int J Obes*. 2011;35(7):937-944. doi:10.1038/ijo.2011.54

2. Butte NF, Puyau MR, Wilson TA, et al. Role of physical activity and sleep duration in growth and body composition of preschool-aged children. *Obesity*. 2016;24(6):1328-1335. doi:10.1002/oby.21489

3. Collings PJ, Brage S, Ridgway CL, et al. Physical activity intensity, sedentary time, and body composition in preschoolers. *Am J Clin Nutr*. 2013;97(5):1020-1028. doi:10.3945/ajcn.112.045088

4. Collings PJ, Brage S, Bingham DD, et al. Physical Activity, Sedentary Time, and Fatness in a Biethnic Sample of Young Children. *Med Sci Sport Exerc*. 2017;49(5):930-938. doi:10.1249/MSS.0000000000001180

5. España-Romero V, Mitchell JA, Dowda M, O’Neill JR, Pate RR. Objectively Measured Sedentary Time, Physical Activity and Markers of Body Fat in Preschool Children. *Pediatr Exerc Sci*. 2013;25(1):154-163. doi:10.1123/pes.25.1.154

6. Fang H, Quan M, Zhou T, et al. Relationship between Physical Activity and Physical Fitness in Preschool Children: A Cross-Sectional Study. *Biomed Res Int*. 2017;2017:9314026. doi:10.1155/2017/9314026

7. Heelan KA, Eisenmann JC. Physical Activity, Media Time, and Body Composition in Young Children. *J Phys Act Heal*. 2006;3(2):200-209. doi:10.1123/jpah.3.2.200

8. Herzig D, Eser P, Radtke T, et al. Relation of Heart Rate and its Variability during Sleep with Age, Physical Activity, and Body Composition in Young Children. *Front Physiol*. 2017;8. doi:10.3389/fphys.2017.00109

9. Jackson DM, Djafarian K, Stewart J, Speakman JR. Increased television viewing is associated with elevated body fatness but not with lower total energy expenditure in children. *Am J Clin Nutr*. 2009;89(4):1031-1036. doi:10.3945/ajcn.2008.26746

10. Janz KF, Levy SM, Burns TL, Torner JC, Willing MC, Warren JJ. Fatness, Physical Activity, and Television Viewing in Children during the Adiposity Rebound Period: The Iowa Bone Development Study. 2002;35(6):563-571. doi:10.1006/pmed.2002.1113

11. Janz KF, Kwon S, Letuchy EM, et al. Sustained effect of early physical activity on body fat mass in older children. *Am J Prev Med*. 2009;37(1):35-40. doi:10.1016/j.amepre.2009.03.012

12. Jáuregui A, Villalpando S, Rangel-Baltazar E, Lara-Zamudio YA, Castillo-García MM. Physical activity and fat mass gain in Mexican school-age children: a cohort study. *BMC Pediatr*. 2012;12(1):620. doi:10.1186/1471-2431-12-109

13. Kwon S, Janz KF, Burns TL, Levy SM. Association between Light-Intensity Physical Activity and Adiposity in Childhood. *Pediatr Exerc Sci*. 2011;23(2):218-229. doi:10.1123/pes.23.2.218

14. Leppänen MH, Nyström CD, Henriksson P, et al. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: results from the ministop trial. *Int J Obes*. 2016;40(7):1126-1133. doi:10.1038/ijo.2016.54
15. Leppänen MH, Henriksson P, Delisle Nyström C, et al. Longitudinal Physical Activity, Body Composition, and Physical Fitness in Preschoolers. *Med Sci Sports Exerc.* 2017;49(10):2078-2085. doi:10.1249/MSS.0000000000001313

16. Metcalf BS, Voss LD, Hosking J, Jeffery AN, Wilkin TJ. Physical activity at the government-recommended level and obesity-related health outcomes: a longitudinal study (Early Bird 37). *Arch Dis Child.* 2008;93(9):772-777. doi:10.1136/adc.2007.135012

17. Oliver M, Schofield GM, Schluter PJ. Parent influences on preschoolers’ objectively assessed physical activity. *J Sci Med Sport.* 2010;13(4):403-409. doi:10.1016/j.jsams.2009.05.008

18. Oliver M, Schluter PJ, Healy GN, Tautolo E-S, Schofield G, Rush E. Associations Between Breaks in Sedentary Time and Body Size in Pacific Mothers and Their Children: Findings From the Pacific Islands Families Study. *J Phys Act Heal.* 2013;10:1166-1174.
Appendix G. Overall and individual results of the risk of bias assessment using QUIPS.

I. Overall risk of bias scores for each QUIPS item, shown as a percentage of the total number of participants.
II. The results of the risk of bias assessment based on QUIPS for each study.

Author, year	1. Participation	2. Attrition	3. Determinant	4. Outcome	5. Confounding	6. Analysis
Berglind et al. 2017						
Buck et al. 2015						
Bürgi et al. 2011						
Butte et al. 2016						
Byun et al. 2011						
Cliff et al. 2009						
Colley et al. 2013						
Collings et al. 2013						
Collings et al. 2017						
Dawson-Hahn et al. 2015						
Ebenegger et al. 2012						
España-Romero et al. 2013						
Fang et al. 2017						
Finn et al. 2002						
Fisher et al. 2005						
Guo et al. 2017						
Gutiérrez-Hervás et al. 2018						
Heelan and Eisenmann 2006						
Herrig et al. 2017						
Ivonen et al. 2013						
Jackson et al. 2003						
Jackson et al. 2009						
Janz et al. 2002						
Janz et al. 2009						
Jäuregui et al. 2012						
Jones et al. 2009						
II. The results of the risk of bias assessment based on QUIPS for each study (continued).

Author, year	a. Description of baseline sample	b. Participant recruitment	c. Period and place of recruitment mentioned	d. In- and exclusion criteria reported	e. Adequate response rate (>80%)	f. Reason for loss of data	g. Differences participants without data	h. Clear description of physical activity	i. Measurement is valid and reliable	j. Clear definition of the adiposity outcome	k. Measurement is valid and reliable	l. Analyses adjusted for sex	m. Sufficient presentation of the data	n. Selected statistical models are adequate	o. No selective reporting of the results
Kelly et al. 2006	- - - - +/- + + +/ - - - - - -														
Kwon et al. 2011	- - - - +/- + + + - - - - - -														
Leppänen et al. 2016	- - - - +/- + + + - - - - - -														
Leppänen et al. 2017	- - - - + - + + - - - - - -														
Matarma et al. 2017	- - - - + - + + - - - - - -														
Matarma et al. 2018	- - - - + - + + - - - - - -														
Mendoza et al. 2014	- - - - +/- + + + - - - - - -														
Metallinos-Katsaras et al. 2007	- - - - +/- + + + - - - - - -														
Metcalf et al. 2008	- - - - +/- + + + - - - - - -														
Mota et al. 2016	- + - - +/- + + + - - - - - -														
Niederer et al. 2012	- + - - +/- + + + - - - - - -														
O’Dwyer et al. 2011	- + - - +/- + + + - - - - - -														
Oliver et al. 2010	- + - - +/- + + + - - - - - -														
Oliver et al. 2013	- + - - +/- + + + - - - - - -														
Pate et al. 2015	- + - - +/- + + + - - - - - -														
Pfeiffer et al. 2009	- + - - +/- + + + - - - - - -														
Remmers et al. 2014	- + - - +/- + + + - - - - - -														
Röttger et al. 2014	- + - - +/- + + + - - - - - -														
Said-Mohammed et al. 2012	- + - - +/- + + + - - - - - -														
Schaefer et al. 2015	- - - - +/- - + + - - - - - -														
Schmutz et al. 2017	- - - - +/- + + + - - - - - -														
Tanaka and Tanaka 2013	- - - - +/- - + + - - - - - -														
Toschke et al. 2007	+ - - - +/- - + + - - - - - -														
Trost et al. 2003	- + - - +/- - + + - - - - - -														
Tucker et al. 2016	- + - - +/- - + + - - - - - -														
Vale et al. 2010	- + - - +/- - + + - - - - - -														
Van Cauwenbergh et al. 2012	- + - - +/- - + + - - - - - -														
Vorwerk et al. 2013	- + - - +/- - + + - - - - - -														
Williams et al. 2008	- + - - +/- - + + - - - - - -														
Yamamoto et al. 2011	+ + - - +/- - + + - - - - - -														
Appendix H: Forest plots of the association between physical activity and waist circumference, fat mass (index), and skinfold thickness, differentiated by physical activity intensities.

Total physical activity - waist circumference(cm)

Author (year)	Sex	Acc	Epoch	N	Statistics for each study	Point estimate	Standard error	p-Value
Collings (2017)	BG, adj	Tri	15	310	-0.017, 0.037, 0.644			
Oliver (2012)	BG	Tri	15	78	-0.126, 0.135, 0.917			
Overall					-0.036, 0.025, 0.467	-0.50, -0.25, 0.00, 0.25, 0.50		

Heterogeneity: I²=0%, Q=1, df=1, p=0.048

Moderate-to-vigorous physical activity - waist circumference(cm)

Author (year)	Sex	Acc	Epoch	N	Statistics for each study	Point estimate	Standard error	p-Value
España Romero (2013)	G	Tri	15	174	0.106, 0.006, 0.006			
Collings (2017)	BG, adj	Tri	15	310	0.040, 0.016, 0.013			
Lønnerås (2016)	BG, adj	Tri	10	304	-0.407, 0.039, 0.203			
Overall					0.012, 0.046, 0.013	-0.50, -0.25, 0.00, 0.25, 0.50		

Heterogeneity: I²=49%, Q=6, df=3, p=0.118

Sedentary behaviour - waist circumference(cm)

Author (year)	Sex	Acc	Epoch	N	Statistics for each study	Point estimate	Standard error	p-Value
Español Romero (2013)	G	Tri	15	174	-0.079, 0.076, 0.310			
Collings (2017)	BG, adj	Tri	15	310	-0.037, 0.042, 0.379			
Lønnerås (2016)	BG, adj	Tri	10	304	0.413, 0.275, 0.133			

Heterogeneity: I²=51%, Q=6, df=3, p=0.107

* The overall estimates are not shown because of heterogeneity.

Total physical activity - fat mass(kg)

Author (year)	Sex	Acc	Epoch	N	Statistics for each study	Point estimate	Standard error	p-Value
Heelan (2006)	B	Uni	60	48	-0.080, 0.127, 0.530			
Janz (2002)	B	Uni	60	203	-0.150, 0.077, 0.050			
Heelan (2006)	G	Uni	60	52	-0.130, 0.207, 0.550			
Janz (2002)	G	Uni	60	231	-0.190, 0.074, 0.010			
Butte (2016)	BG, adj	Tri	60	111	-0.083, 0.083, 0.317			
Overall					-0.137, 0.041, 0.001	-0.50, -0.25, 0.00, 0.25, 0.50		

Heterogeneity: I²=0%, Q=1, df=1, p=0.881

Moderate-to-vigorous physical activity - fat mass index(kg/m2)

Author (year)	Sex	Acc	Epoch	N	Statistics for each study	Point estimate	Standard error	p-Value
Heelan (2006)	B	Uni	60	48	-0.060, 0.137, 0.530			
Janz (2002)	B	Uni	60	203	-0.150, 0.077, 0.050			
Heelan (2006)	G	Uni	60	52	-0.130, 0.207, 0.550			
Janz (2002)	G	Uni	60	231	-0.190, 0.074, 0.010			
Butte (2016)	BG, adj	Tri	60	111	-0.083, 0.083, 0.317			
Overall					-0.137, 0.041, 0.001	-0.50, -0.25, 0.00, 0.25, 0.50		

Heterogeneity: I²=0%, Q=0, df=1, p=0.640

Sedentary behaviour - fat mass index(kg/m2)

Author (year)	Sex	Acc	Epoch	N	Statistics for each study	Point estimate	Standard error	p-Value
Collings (2013)	BG, adj	Uni	60	398	-0.073, 0.028, 0.010			
Lønnerås (2016)	BG, adj	Tri	10	256	0.046, 0.367, 0.584			
Overall					-0.074, 0.028, 0.009	-0.50, -0.25, 0.00, 0.25, 0.50		

Heterogeneity: I²=60%, Q=0, df=1, p=0.000

Vigorous physical activity - fat mass index(kg/m2)

Author (year)	Sex	Acc	Epoch	N	Statistics for each study	Point estimate	Standard error	p-Value
Collings (2013)	BG, adj	Uni	60	398	-0.120, 0.036, 0.001			
Lønnerås (2016)	BG, adj	Tri	10	256	-0.123, 0.293, 0.467			
Overall					-0.121, 0.036, 0.001	-0.50, -0.25, 0.00, 0.25, 0.50		

Heterogeneity: I²=0%, Q=0, df=1, p=0.753
Appendix H: Forest plots of the association between physical activity and waist circumference, fat mass (index), and skinfold thickness, differentiated by physical activity intensities (continued).

Moderate-to-vigorous physical activity - fat mass index (kg/m²)

Author (year)	Sex	Acc	Epoch	N	Statistics for each study	Point estimate and 95% CI
Collings (2013)	BG	adj	Uni	60	-0.100	-0.40, 0.00, 0.40, 0.80
Lepännen (2016)	BG	adj	Tri	30	-0.274	-0.40, 0.00, 0.40, 0.80
Overall						

Heterogeneity: I²=95%, Q=0, df=1, p=0.528

Light physical activity - skinfold thickness (mm)

Author (year)	Sex	Acc	Epoch	N	Statistics for each study	Point estimate and 95% CI
Fang (2017)	B	Tri	NR	201	0.028	0.041, 0.530
Fang (2017)	G	Tri	NR	145	-0.077	0.123, 0.530
Collings (2017)	BG	adj	Tri	15	-0.034	0.010, 0.000
Overall						

Heterogeneity: I²=6%, Q=2, df=2, p=0.345

Total physical activity - skinfold thickness (mm)

Author (year)	Sex	Acc	Epoch	N	Statistics for each study	Point estimate and 95% CI
Collings (2017)	BG	adj	Tri	15	-0.145	-0.25, 0.00, 0.25, 0.50
Herzög (2017)	BG	Tri	NR	309	-0.120	-0.25, 0.00, 0.25, 0.50
Overall						

Heterogeneity: I²=9%, Q=6, df=1, p=0.822

Moderate-to-vigorous physical activity - skinfold thickness (mm)

Author (year)	Sex	Acc	Epoch	N	Statistics for each study	Point estimate and 95% CI
Fang (2017)	B	Tri	NR	201	-0.106	0.089, 0.050
Fang (2017)	G	Tri	NR	145	-0.041	0.065, 0.530
Collings (2017)	BG	adj	Tri	15	-0.190	0.033, 0.000
Herzög (2017)	BG	Tri	NR	309	-0.130	0.006, 0.050
Overall						

Heterogeneity: I²=32%, Q=4, df=3, p=0.217

Abbreviations: B, boys; G, girls; BG, boys and girls; adj, adjusted for sex; acc, accelerometer type; uni, uniaxial; bi, biaxial; tri, triaxial; epoch, epoch length (s); N, number of participants.
Appendix I. The results of the subgroup analyses for waist circumference.\(^1\)

	Q	df	p-value (Q)	I\(^2\)	N	stdβ	SE	p-value
Moderate-to-vigorous physical activity – waist circumference								
Sex								
Boys	-	-	-	-	1	0.109	0.075	0.145
Girls	-	-	-	-	1	-0.079	0.078	0.310
Adjusted for sex	3	1	0.106	62%	-	-	-	-
Epoch length								
10s	-	-	-	-	1	0.413	0.275	0.133
15s	4	2	0.158	46%	3	-0.008	0.049	0.868
Prevalence of overweight								
Low prevalence	1	1	0.286	12%	2	0.146	0.099	0.141
High prevalence	0	1	0.629	0%	2	-0.046	0.037	0.210
Physical activity assessment								
Low risk	-	-	-	-	1	0.413	0.275	0.133
Moderate/high risk	4	2	0.158	46%	3	-0.008	0.049	0.868
Missing data								
Low risk of bias	-	-	-	-	1	-0.037	0.042	0.379
Moderate/high risk	5	2	0.082	60%	-	-	-	-

\(^1\)The results of the subgroup analyses are only shown if results were homogeneous.

\(^2\)High prevalence of overweight was defined if >20% of the study sample was overweight/obese.

\(^3\)Studies with low risk of bias on this QUIPS item compared to studies with a moderate/high risk of bias.
