The role of adherens junctions in the developing neocortex

Adam M Stocker1 and Anjen Chenn2,*

1Molecular Neurobiology Laboratory; The Salk Institute; La Jolla, CA USA; 2Department of Pathology; University of Illinois College of Medicine; Chicago, IL USA

Keywords: adherens junction, α-catenin, β-catenin, differentiation, N-cadherin, proliferation, wnt

Abbreviations: VZ, ventricular zone; SNP, short neural precursor; CBD, catenin binding domain; JMD, juxtamembrane domain; PI3K, phosphatidylinositol 3-kinase; PTEN, phosphatase and tensin homolog; GSK3β, glycogen synthase kinase 3β; PCP, planar cell polarity; SHH, sonic hedgehog; Hh, Hedgehog; CK1, Casein kinase 1; APC, Adenomatous polyposis coli.

The disproportional enlargement of the neocortex through evolution has been instrumental in the success of vertebrates, in particular mammals. The neocortex is a multilayered sheet of neurons generated from a simple proliferative neuroepithelium through a myriad of mechanisms with substantial evolutionary conservation. This developing neuroepithelium is populated by progenitors that can generate additional progenitors as well as post-mitotic neurons. Subtle alterations in the production of progenitors vs. differentiated cells during development can result in dramatic differences in neocortical size. This review article will examine how cadherin cell-cell adhesion proteins, in particular α-catenin and N-cadherin, function in regulating the neural progenitor microenvironment, cell proliferation, and differentiation in cortical development.

Cortical neural progenitors are polarized neuroepithelial cells

The generation of neocortical neurons, or neurogenesis, in rodents begins shortly after the neural tube is closed and continues until just before birth.9 Cortical projection neurons are generated from neural progenitors that develop from the pseudostratified neuroepithelium of the developing neocortex adjacent to the lateral ventricles termed the Ventricular Zone (VZ). Radial glial cells are highly polarized neural progenitors that possess a process attached to the apical (luminal) surface and a long process attached to the basal (cortical) surface that provides a physical structure to facilitate neuronal migration (Fig. 1).10 Radial glial cells translocate their cell bodies to divide at the apical surface and can self-renew,11-13 generate neurons,14,15 as well as produce transient amplifying cells (termed basal or intermediate progenitors) that serve to produce later-generated neurons (Fig. 1).16-18 There is another progenitor type that resides in the VZ of developing mouse brains, the short neural precursor (SNP). These apical progenitors also divide at the apical surface, can self-renew, and generate neurons (Fig. 1).19 Unlike radial glia, they do not possess a long basal process and typically do not generate transient-amplifying basal progenitors.

Through the course of neural development, a balance between self-sustaining proliferative divisions and neurogenic differentiation divisions must be appropriately maintained, and modest alterations in the fraction of daughter cells that exit or re-enter the cell cycle can result in dramatic changes in cortical size.1,2 Dividing precursor cells in the VZ can yield daughter cells with the same fate (symmetric) or with differing fates (asymmetric).20-22 The control of cell fate choices, cell proliferation and differentiation, is regulated by both cell-intrinsic and environmental influences on radial glial cells in the VZ.23-25 Environmental influences have received less attention than cell intrinsic mechanisms, however recent evidence has demonstrated that cerebrospinal fluid can promote proliferation of radial glia.26

Submitted: 08/06/2014; Revised: 02/23/2015; Accepted: 03/03/2015
http://dx.doi.org/10.1080/19336918.2015.1027478
Proliferative fate decisions are also regulated by a myriad of different intrinsic processes. The orientation of cell division and asymmetric inheritance of cellular components can predict the behavior of daughter cells. As in other tissues, in the neuroepithelium the daughter cell that inherits the older (mother) centrosome is preferentially retained in the VZ as a progenitor. Inheritance of another component of the primary cilium, the apical ciliary membrane, has also been shown to help retain the recipient daughter cell in the VZ.

Asymmetric inheritance of adhesion machinery and polarity protein complexes can also influence cell fate decisions. Daughter cells with higher levels of Par3, a key component of the Par protein complex that regulates polarity, are preferentially retained as progenitors. Cadherin adhesion also plays a critical role in establishing and maintaining apical-basal polarity in epithelia. Evidence that adherens junctions could regulate asymmetric division in Drosophila neuroblasts further supported the possibility that cadherin adhesion could impact cell behaviors in the developing cortical neuroepithelium. However, the critical role that cadherin adhesion served in maintaining epithelial architecture in cortical development complicated the interpretation of broad genetic loss-of-function methods with regard to the role of adhesion in neural cell fate determination.

Cadherins and catenins mediate adhesion and signaling

There are 4 different classes of cadherins: classical types 1 and 2, protocadherins, desmosomal, and atypical. Classical cadherins interact with cadherin molecules in other cells (trans-interactions) as well as those nearby in the same cell (cis-interactions). Once initial contact is made between adjacent cells expressing cadherin, the cadherins cluster into puncta along the point of contact, then strengthen to form concentrated plaques of cadherin complexes. The intracellular domain of classic cadherins consists of a juxtamembrane domain (JMD) and catenin binding domain (CBD). The JMD binds p120-catenin while the CBD binds β-catenin. Additionally, the cadherin intracellular domain also binds a number of other proteins that regulate normal housekeeping and trafficking functions such as endocytosis and degradation. β-catenin contains 12 characteristic imperfect sequence armadillo repeats that form a triple α-helix. This portion of β-catenin contains the cadherin binding site, while the N-terminal portion contains the α-catenin binding site. β-catenin also serves as the defining downstream mediator of the canonical Wnt signaling pathway. When Wnt signaling is activated, β-catenin degradation by an APC-containing “destruction complex” is inhibited, allowing for β-catenin to accumulate.

Figure 1. Organization of the developing mouse neocortex. The two classes of neural precursor, radial glia and short neural precursors, both reside in the Ventricular Zone (VZ) with a process attached to the apical (luminal) surface adjacent to the developing lateral ventricle. The overt structural distinction between the 2 neural precursors is that radial glia possess a process attached to the basal (cortical) surface while short neural precursors do not. During mitosis the cell body migrates to the apical surface where it will divide to generate 2 daughter cells. In the case of radial glia, the daughter cells can be new radial glia cells, basal progenitors, or post-mitotic neurons. Basal progenitors are a transient type of progenitor that resides basal to the VZ in the Subventricular Zone (SVZ), and can also self-renew as well as generate post-mitotic neurons. Post-mitotic neurons migrate away from the VZ and/or SVZ along radial glia processes through the Intermediate Zone (IZ) to populate the developing Cortical Plate (CP) in an inside-out fashion, where the deepest cortical layers are generated first. The other apical precursor type, short neural precursors, can also self-renew or generate post-mitotic neurons, however they do not produce basal progenitors.
α-catenin serves as the link between the cadherin/catenin complex and the actin cytoskeleton, as it can bind both β-catenin and filamentous actin. When sufficient physical tension is present within the cell, a strong bond is formed between F-actin and the ternary α-catenin/β-catenin/cadherin structure. This linkage is not static, but rather dynamic as F-actin rapidly dissociates from the ternary complex when the tension is substantially reduced. The ternary structure is incredibly stable, which provides further support for this 2-state bond model linking the cytoskeleton and the ternary complex. Thus α-catenin serves as the dynamic link between cadherin adhesion and the cytoskeleton.

δ-catenin/p120-catenin plays a role in maintaining synaptic contacts as well as dendritic spines. However, while present in neural precursors no specific function has been identified during neocortical development. No function of any kind has been described in neural tissue for γ-catenin/plakoglobin. As such, the other members of the catenin family, γ- and δ-catenin, will not be discussed in detail in this review.

β-Catenin signaling regulates cortical progenitor proliferation and differentiation

As the downstream mediator of canonical Wnt signaling and an essential component of the cadherin adherens complex, β-catenin is positioned at the intersection of cell-cell adhesion and signaling. In the developing cerebral cortex, transgenic overexpression of a degradation-resistant β-catenin caused massive enlargement of the cortical progenitor pool and expansion of cortical surface area. Complementary studies provided evidence that the signaling function of β-catenin was critical in regulating cell proliferation in cortical development. While these and many other studies pointed to the importance of β-catenin signaling in development, how adhesion and signaling might interact remained difficult to dissect experimentally.

Regulation of proliferation by cadherins in cortical development depends on context

As in other epithelia, cadherin adhesion in the developing nervous system regulates tissue integrity. Following closure of the neural tube N-cadherin is expressed in all portions of the tube except for the neural crest. Injection of an N-cadherin function blocking antibody into the developing diencephalon of chick embryos caused a profound disruption in epithelial structure and the formation of neuroepithelial rosettes. These findings were recapitulated in the developing cortex of mice where conditional deletion of N-cadherin resulted in disruption of the normal laminar organization of the cortex and a complete loss of apically concentrated adherens junction component expression. Similarly, conditional deletion of β-catenin, or αE-catenin from neural precursors caused profound disruption of cortical layering and loss of the apically-located adherens junctions.

The striking architectural disorganization of the developing cortex following adherens junction disruption was accompanied by the mis-regulation of cell proliferation. When N-cadherin transport and localization were altered by conditional deletion of a subunit of the KIF3 molecular motor, KAP3 (kinesin-associated protein 3), hyperproliferation of neural progenitors and enlargement of the cortex resulted. Similarly, conditional deletion of αE-catenin caused hyperproliferation of cortical progenitors and overgrowth of the cerebral cortex. While Lien et al. observed upregulation of the hedgehog signaling pathway in the cortices of the conditional αE-catenin knockout mice, the specific mechanisms underlying the control of proliferation by cell adhesion remain poorly understood. The regulation of cell polarity and cell growth are intimately linked, and the maintenance of distinct cellular domains by adherens junction adhesion likely plays a critical role in the proper balance of pro- and anti-proliferative signals.

In contrast to the hyperproliferation observed when adhesion and cell polarity was globally disrupted, focal inhibition of cadherin adhesion in an intact neuroepithelium appears to reduce, instead of increase, pro-proliferative signaling. In utero electroporation methods enabled the focal loss of adherens proteins while preserving the integrity of the VZ. Instead of the epithelial disorganization and hyperproliferation that resulted from widespread deletion of αE-catenin, focal deletion of αE-catenin resulted in premature cell-cycle exit, neuronal differentiation, and migration from the ventricular zone to the cortical plate. The cells in which αE-catenin was reduced also showed reduction in β-catenin mediated Wnt signaling, and rescuing β-catenin signaling largely restores proliferation. Similarly, cell-autonomous deletion of N-cadherin in neural precursors caused premature cell-cycle exit, neuronal differentiation, migration from the VZ, as well as reduced β-catenin mediated Wnt signaling.

Together these studies suggest that cadherin adhesion in cortic al progenitors in a normal, intact VZ promotes neural progenitor self-renewal via activation of β-catenin signaling. The hyperproliferation observed in tissue-wide knockout of cadherin adhesion might therefore result indirectly from the loss of cell polarity and tissue organization. Pro-proliferative signals or their receptors may be released from their normal subcellular locations and regulation with loss of apical-basal polarity. Taken together, these findings suggest that the regulation of cell proliferation by cadherin adhesion is highly context-dependent in developing tissues and organs.

Cadherin adhesion and the neural progenitor niche

The local microenvironment, or niche, plays an important function in regulating the development of stem and progenitor cells. The physical attachment of stem/progenitor cells to the niche is important for maintaining stem cell identity and function. The structural organization of the developing cortical VZ differs from the typical stem cell niche in that it lacks specific support cells, and is comprised exclusively of proliferating progenitor cells.

We proposed that cadherin adhesion in the cortical VZ functions to sustain a proliferative niche where neural precursors support and maintain themselves. Cell-cell adhesion in the VZ niche likely provides them with optimized exposure to pro-proliferative Wnts expressed by progenitors in the VZ.
migration from the VZ would ensure that pro-proliferative Wnt signaling was reduced, and indeed, Wnt signaling activity is markedly reduced outside of the VZ.69,77 However, the model that cadherin maintenance of β-catenin signaling occurs solely via physical retention of cells in the VZ is no doubt overly simplistic. We observed that electroporated progenitors still located in the VZ showed reduced β-catenin signaling after N-cadherin or αE-catenin reduction, indicating that reductions in β-catenin signaling preceded exit from the VZ.6-8 Therefore, cadherin cell-cell adhesion appears to serve at least 2 related functions to promote Wnt/β-catenin signaling in cortical development: 1) to directly maintain β-catenin signaling in the VZ, and 2) to physically retain cells in the VZ to ensure proximity to pro-proliferative Wnt ligands.

What is the evidence that cadherin adhesion directly positively regulates Wnt/β-catenin signaling? A simple model, where cadherins set a threshold for β-catenin signaling, was suggested by numerous observations that forced overexpression of cadherins antagonized β-catenin transcriptional activation.69-93 In this model, cadherin is able to titrate available β-catenin from its role in Wnt signaling.69-93 Our observations that cadherin adhesion can also positively regulate Wnt/β-catenin signaling support increasing recent evidence that the relationship between cadherin adhesion and β-catenin signaling is context-dependent.94 In the developing cortex, N-cadherin appears to function in Wnt signaling both through phosphorylation of LRP6 and activation of AKT signaling.9 The assembly of functional Wnt signaling receptor complex also requires cadherin.95-97 Moreover, a recent study suggests that only cadherin-associated β-catenin is Wnt-signaling competent, and functionally distinct from β-catenin that has never interacted with cadherin.94 Cadherin also appears to maintain a pool of β-catenin that can be available for signal transduction, supporting studies suggesting that cadherin-bound β-catenin can translocate to the nucleus and activate transcription.94,98,99

Distinct from its role in Wnt-activation of β-catenin, N-cadherin can also stimulate β-catenin transcriptional activation through AKT. N-cadherin adhesion triggers PI3K-mediated activation of AKT.100-102 In turn, activated AKT signaling can stimulate β-catenin signaling. In intestinal stem cells the loss of a negative regulator of PI3K/AKT, PTEN, leads to β-catenin stabilization and upregulated β-catenin signaling.103 AKT phosphorylates β-catenin at Serine residue 552, priming it for 14-3-3γ binding and stabilization, which in turn allows β-catenin to translocate and accumulate in the nucleus.104 AKT can also phosphorylate and inactivate GSK3β at Serine 9, which leads to stabilization

Figure 2. Hypothetical signaling hub, or extra-nuclear hub, containing both adherens junction and Wnt signaling components at the apical surface. The high density of adherens junction and Wnt signaling components located in the apical end feet of neural precursors located in the VZ, coupled with emerging data suggests that these pathways may physically and functionally interact. In the absence of a Wnt signal, a destruction complex comprised of Axin and APC bind to β-catenin (β) and recruit the kinases GSK3β and CK1, which phosphorylate β-catenin thereby targeting it for ubiquitination and ultimately destruction. In the presence of a Wnt ligand, a Frizzled (Fzd) and LRP5/6 complex is formed and bound by Dishevelled (Dvl), leading to the phosphorylation of the LRP5/6 receptor by several kinases, including GSK3β and CK1. The phosphorylated LRP5/6 receptor recruits axin to the plasma membrane, leading to the decay of the destruction complex, and allowing stabilized β-catenin to be translocated to the nucleus. A growing number of studies suggest that several key components of Wnt signaling may physically interact with members of the adherens junction, in particular N-cadherin (N-cad). N-cadherin binds both p120-catenin (p120) at the JMD domain (juxtamembrane intracellular domain) and β-catenin at the CBD domain (catenin binding domain). β-catenin in turn binds to α-catenin (α), which is dynamically tethered to the actin cytoskeleton. PI3K, which through activation of AKT stabilizes β-catenin allowing it to participate in signaling, has also been shown to interact with N-cadherin. The research detailing additional potential interactions are detailed in the main text.
and nuclear accumulation of β-catenin.105 In cortical progenitors, AKT activation also results in stabilization and activation of β-catenin signaling by direct phosphorylation at Serine 552.7–8

In addition to Wnt/β-catenin and PI3K/β-catenin signaling, appropriate regulation of other signaling pathways important in neural development depend on adherens junctions. A single cilium extends from the apical process of cortical progenitors.96 Recent studies have supported a role for cilia in coordinating critical signaling pathways in neural development such as SHH.107 Although the relationship of adherens junctions and the regulation of cilia-based signaling pathways remains poorly understood, recent evidence that the planar cell polarity (PCP) proteins implicated in ciliogenesis must be first positioned apically107 suggest that adherens junctions, apical-basal polarity, and planar polarity are intimately linked. Indeed, the findings of upregulated hedgehog (Hh) signaling following αE-catenin7 or N-cadherin deletion108 suggest that intact epithelial architecture functions to restrain Hh signaling. The observations that Hh signaling maintains adherens junctions in zebrafish neural tube suggests a potential reciprocal inhibitory relationship between adherens junctions and SHH signaling.108

The signaling machinery critical for polarity, adhesion, and proliferation cluster at the apical foot process of VZ precursors,3,7,30,109,110 where the high density of these pathway components indicates the potential for cross-talk. A growing amount of data indicates that there are physical interactions between various components of these different cellular processes. APC, a component of the destruction complex that phosphorylates β-catenin, is also known to localize to the cellular microdomain or niche, should be fruitful and elucidating. Moreover, understanding which pathways intersect and how/when they intersect will be useful not only to the field of developmental neurobiology but many others (e.g. cancer) where alterations in cell-cell adhesion impact cell behaviors.

References

1. Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 1995; 18:383-8; PMID:7548280; http://dx.doi.org/10.1016/0166-2236(95)93934-p
2. Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 2002; 297:365-9; PMID:12130716; http://dx.doi.org/10.1126/science.1074192
3. Kadolis M, Nakamura S, Machon O, Krauss S, Radice GL, Takeichi M. N-cadherin mediates cortical organization in the mouse brain. Dev Biol 2007; 304:22-33; PMID:17228187; http://dx.doi.org/10.1016/j.ydbio.2006.12.014
4. Junghans D, Hack I, Frotscher M, Taylor V, Kemler R. Beta-catenin-mediated cell-adhesion is vital for embryonic forebrain development. Dev Dyn 2005; 233:528-39; PMID:15844200; http://dx.doi.org/10.1002/dvdy.20365
5. Lien WH, Kleovitch O, Fernandez TE, Delrow J, Vassouklhin V. alphaE-catenin controls cerebral cortical size by regulating the hedgehog signaling pathway. Science 2006; 311:1609-12; PMID:1654360; http://dx.doi.org/10.1126/science.1121449
6. Stocker AM, Chenn A. Focal reduction of alphaE-catenin causes premature differentiation and reduction of beta-catenin signaling during cortical development. Dev Biol 2009; 328:66-77; PMID:19389371; ydbio.2009.01.010
7. Zhang J, Woodhead GJ, Swaminathan SK, Noles SR, McQuinn ER, Pisarek AJ, Stocker AM, Mutch CA, Funatsu N, Chenn A. Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling. Dev Cell 2010; 18:472-9; PMID:20230753; http://dx.doi.org/10.1016/j.devcel.2009.12.025
8. Zhang J, Shemezis JR, McQuinn ER, Wang J, Svedlow M, Chenn A. AKT activation by N-cadherin regulates beta-catenin signaling and neuronal differentiation during cortical development. Neural Dev 2013; 8:7; PMID:23618543; http://dx.doi.org/10.1186/1749-8104-8-7
9. Bayer SA, Altman J. Neocortical development. New York: Raven Press, 1991.

Summary

Recent experiments examining the roles of αE-catenin and N-cadherin have demonstrated that proper adhesive function is important in maintaining neural precursors within the proliferative ventricular zone of the developing neocortex, as well as maintaining β-catenin mediated Wnt signaling. Furthermore, adherens junctions help maintain a self supportive proliferative neural stem cell niche. The apical concentration of adhesive and signaling molecules may provide an extra-nuclear hub utilized to sustain the proliferative neuroepithelium during development. Future studies investigating the roles of these apically concentrated signaling molecules play in maintaining a proliferative microdomain or niche, should be fruitful and elucidating. Moreover, understanding which pathways intersect and how/when they intersect will be useful not only to the field of developmental neurobiology but many others (e.g. cancer) where alterations in cell-cell adhesion impact cell behaviors.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We would like to thank Jianing Zhang, Kyucheol Cho, and Daichi Kawaguchi for providing helpful commentary and critiques of this manuscript during its preparation.
10. Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 1972; 145:61-83; PMID:4624784

11. Halliday AL, Cepko CL. Generation and migration of cells in the developing striatum. Neuron 1992; 9:15-26; PMID:1652968; http://dx.doi.org/10.1016/0896-6273(92)90216-Z

12. Misson JP, Edwards MA, Yamamoto M, Caviness VS, Jr. Mitotic cycling of radial glial cells of the fetal murine brain with a combined autoradiographic and immunohistochemical study. Brain Res 1988; 466:183-90; PMID:3359310; http://dx.doi.org/10.1016/0006-8990(88)90403-0

13. Gray GE, Sanes JR. Lineage of radial glia in the chicken optic tectum. Development 1992; 114:271-83; PMID:1576096

14. Miyata T, Kawaguchi A, Okuno H, Ogasawara M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 2001; 31:727-41; PMID:11567613; http://dx.doi.org/10.1016/S0896-6273(01)00420-2

15. Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR. Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001; 409:670-74; PMID:11217860; http://dx.doi.org/10.1038/35055555

16. Haubensak W, Attardo A, Denk W, Huttner WB. The asymmetric inheritance of Cdk2 D cyclin maintains proliferative neural stem/progenitor cells: a critical event in brain development and evolution. Dev Growth Differ 2014; 56:349-57; PMID:24835888; http://dx.doi.org/10.1002/dvg.21235

17. Tsunekawa K, Kikkawa T, Osumi N. Asymmetric inheritance of Cdk2 D cyclin maintains proliferative neural stem/progenitor cells: a critical event in brain development and evolution. Dev Growth Differ 2014; 56:349-57; PMID:24835888; http://dx.doi.org/10.1002/dvg.21235

18. Wang X, Tsai JW, Imai JH, Lian WN, Valle CB, Shi SH. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 2009; 461:947-55; PMID:19829375; http://dx.doi.org/10.1038/nature08435

19. Parada JT, Wilch-Mauninger M, Hutter WB. Asymmetric inheritance of centrosome-associated primary cilium membrane directs cilogenesis after cell division. Curr Biol 2013; 15:634-44; PMID:21550014; http://dx.doi.org/10.1016/j.cub.2013.02.014

20. Bulbte RS, Castaneda-Castellanos DR, Jan LY, Jan RN, Kriegstein AR, Shi SH. Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 2009; 63:189-202; PMID:19640478; http://dx.doi.org/10.1016/j.neuron.2009.07.004

21. Nelson WJ. Adaptation of core mechanisms to generate cell fate. Nature 2003; 422:766-74; PMID:12700771

22. Hallmén BJ, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev 2006; 20:3199-214; PMID:17158740; http://dx.doi.org/10.1101/gad.1486806

23. Lu B, Roesger F, Jan LY, Jan YN. Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 2001; 409:522-5; PMID:11206549; http://dx.doi.org/10.1038/35940707

24. Gaudet-Odenthal SL, Reddy C. Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J Neurosci 1998; 18:1545-215; PMID:9651223

25. Harmon RM,Desai BV, Green KJ. Regulatory roles of the cadherin superfamily. F1000 Biol Rep 2009; 1:13; PMID:20496673

26. Bogen TJ, Murray J, Chappuis-Flament S, Wong E, Boggon TJ, Murray J, Chappuis-Flament S, Wong E, Nechiporuk A, Inoue Y, Imamura H, Kiyokawa H, Kida K. The cadherin armadillo complex in vitro with recombinant proteins. J Cell Sci 1996; 107(Pt 12):3655-63; PMID:8934306; http://dx.doi.org/10.1042/1073-pnas.87.11.4246

27. Brient D, How J. The ins and outs of E-cadherin trafficking. Trends Cell Biol 2004; 14:427-34; PMID:15308209; http://dx.doi.org/10.1016/j.tcb.2004.07.007

28. Riggins G, Bieszczad E, Schied P. Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. Genes Dev 1989; 3:961-113; PMID:2706702; http://dx.doi.org/10.1101/gad.3.1.96

29. Huber AH, Nelson WJ, Wessell TH. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 1997; 90:871-82; PMID:9298899; http://dx.doi.org/10.1016/S0092-8674(00)08352-9

30. Fuchs J, Birchmeier W, Behrens J. E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 1994; 127:2061-9; PMID:8760582; http://dx.doi.org/10.1083/jcb.127.6.2061

31. Orselic S, Peifer M. An in vivo structure-function study of the armadillo, the beta-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling. J Cell Biol 1996; 134:1283-300; PMID:8794688; http://dx.doi.org/10.1083/jcb.134.5.1283

32. Abeler H, Schwartz H, Hocheutzky H, Kemler R. Single amino acid substitutions in proteins of the armadillo gene family abolish their binding to alpha-catenin. J Biol Chem 1996; 271:15260-7; PMID:8576077; http://dx.doi.org/10.1074/jbc.271.15.2607

33. Pai LM, Kirkpatrick C, Blanton J, Oda H, Takeichi M. Regulation of intracellular beta-catenin levels by a PKC dependent pathway. J Cell Sci 1997; 10:32411-20; PMID:8934306; http://dx.doi.org/10.1042/1073-pnas.87.11.4246

34. McCrea PD, Brieger WM, Giaume BM. Induction of a secondary body axis in Xenopus by beta-catenin. J Cell Biol 1993; 123:477-84; PMID:8408227; http://dx.doi.org/10.1083/jcb.123.2.477

35. Muñoz-Sax A, Alvaro A, Dobrin B, Polsky P. Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A 1995; 92:3046-50; PMID:7770872; http://dx.doi.org/10.1073/pnas.92.7.3046

36. Kirin P, Vacic V, Morin PJ, Van Den Weger R, Kinzler KW, Vogelstein B, Clevers H. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC+/+ colon carcinoma. Science 1997; 275:1784-7; PMID:9065401; http://dx.doi.org/10.1126/science.275.5307.1784
Chenn A, Walsh CA. Increased neuronal production, cell adhesion & migration.

Buckley CD, Tan J, Anderson KL, Hanein D, Volk-Brigidi GS, Sun Y, Beccano-Kelly D, Pitman K, Reynolds AB, Roesel DJ, Kanner SB, Parsons JT. beta-Catenin signaling regulates intermediate progenitor population numbers in the developing cortex. PLoS One 2010; 5:e12576; PMID:20881503; http://dx.doi.org/10.1371/journal.pone.0012376

Mutch CA, Schulte JD, Olson E, Chenn A. beta-Catenin signaling negatively regulates progenitor population numbers in the developing cortex. J Neurocytol 2003; 32:1187-202; PMID:12670467; http://dx.doi.org/10.1023/A:1026392204777

Zucker D, Fujita Y, Hulsen J, Muller T, Walder I, Taketo MM, Cremawah EB, 3rd, Birchmeier W, Birchmeier C. beta-Catenin signals regulate cell growth, and JNEE beta-catenin expression between progenitor cell expansion and differentiation in the nervous system. Dev Biol 2003; 258:406-18; PMID:12798297; http://dx.doi.org/10.1016/S0012-1606(03)00123-4

Manning BD, Escobedo LA, Mak TW, Lee MK, Andrews DW, Kim TH, Kozak LA, Clurman BE, Sheng M, Hunter T. Protein kinase C iota regulates beta-catenin degradation via the Axin-dependent ubiquination pathway. Mol Cell 2002; 10:1523-33; PMID:12248901; http://dx.doi.org/10.1016/S1097-2765(02)00347-6

Garcia-Castello J, Gallardo A, Ares MJ, Pajer J, Cerdan P, Gomes AM, Brossard M, Durr F, Gown AM, Katzenellenbogen BS, Llave C, Herrlich P. Wnt-1 signaling and association with beta-catenin. EMBO J 1995; 14:629-38; PMID:8669685; http://dx.doi.org/10.1093/EMBOJ/D11E11

Rosenblum M, Hrycay EM, Musgrove EA, Hynes RO. beta-Catenin-dependent adhesion from wingless signalling in Drosophila. Cell 1996; 88:629-38; PMID:2469003

Hay E, Baccus TC, Mar y. Role of cadherin in Wnt/beta-catenin signalling during cranial neural crest and neural tube. Dev Biol 1992; 153:291-301; PMID:13978686; http://dx.doi.org/10.1006/dbol.1995.1002

Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, Gotoh Y. The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 2004; 131:2791-801; PMID:15142975; http://dx.doi.org/10.1242/dev.01165

Bronner-Fraser M, Wolf JJ, Murray BA. Effects of antibodies against N-cadherin and N-CAM on the cranial neural crest and neural tube. Dev Biol 1993; 153:291-301; PMID:13978686; http://dx.doi.org/10.1006/dbol.1995.1002

Nakagawa S, Takeichi M. Neural crest cell-adhesion controlled by sequential and subpopulation-specific expression of novel cadherins. Development 1995; 121:1321-32; PMID:7545031

Teng J, Rai T, Tanaka Y, Takei Y, Nakata T, Hira- mura M, Kulkarni AB, Hirokawa N. The KIF3 motor transports N-cadherin and organizes the developing neural neuromusculature. Nat Neurosci 2005; 7:747-82; PMID:15854408; http://dx.doi.org/10.1038/nn.1249

Bilder D, Li M, Perrimon N. Cooperative Regulation of Cell Polarity and Growth by Drosophila Tumor Suppressors. Science 2000; 288:113-9; PMID:10888244; http://dx.doi.org/10.1126/science.1036129

Maeda K, Takemura M, Umemori M, Adachi- Amamoto M, Morinaga M, Hamada H, Nakajima Y, Kato H, Kominami E, Hayashi K, Watanabe S, Kobayashi T, Taketo MM, Crenshaw EB, 3rd, Birchmeier W, Birchmeier C, Betzler J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the Wnt/beta-catenin signaling pathway in Drosophila. EMBO J 1997; 16:4729-39; PMID:9307757; http://dx.doi.org/10.1093/emboj/16.22.4729

Ohlstein B, Spradling A. Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 2007; 315:988-92; PMID:17363754; http://dx.doi.org/10.1126/science.1136606

Song X, Zhu CH, Doan C, Xie T. Germline stem cells anchored by adhesions junctions in the Drosophila ovary niches. Science 2002; 296:1855-7; PMID:12052977; http://dx.doi.org/10.1126/science.1069877

Jin Z, Kirlily D, Weng C, Kawase E, Song X, Smith S, Schwartz J, Xie T. Differentiation-defective stem cells outcompete normal stem cells for niche occupancy in the Drosophila ovary. Cell Stem Cell 2008; 2:39-49; PMID:18371420; http://dx.doi.org/10.1016/j.stem.2007.10.021

Takahashi T, Nowakowski RS, Caviness VS, Jr. Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse. J Neurosci 1993; 13:820-33; PMID:8436239

Vini J, Galuska A, Lilient W. Regeneration of prosen- tine maturation in the cortex depends on Shh or fibroblast growth factor. J Neurosci 2003; 23:5919-27; PMID:12843256

Eger A, Strogerger A, Schaffhauser B, Beug H, Fois- ner R. Epithelial mesenchymal transition by E-cadherin-regulated E-cadherin nuclear localization and beta-catenin/LEF-1-mediated transcription. J Cell Sci 1999; 112(Pt 8):1235-47; PMID:10085258

Sanson B, White P, Vincent JP. Uncoupling cadherin-based adhesion to wingless signalling in Drosophila. Nature 1996; 383:627-30; PMID:8857539; http://dx.doi.org/10.1038/383627a0

Fagotto F, Funayama N, Gluck U, Gumbiner BM. Binding to cadherins antagonizes the signaling activity of beta-catenin during neural tube formation. J Cell Biol 2000; 148:173-88; PMID:10629227; http://dx.doi.org/10.1083/jcb.148173a

Heuman J, Crawford A, Goldstone K, Garner-Ham- rick P, Gumbiner B, McCrea P, Kinnett C, Nono CV, Wyllie AH. Overexpression of cadherins and underex- pression of beta-catenin inhibit dorsal mesodermal induction in Xenopus embryos. Cell 1994; 79:791-803; PMID:7528210; http://dx.doi.org/10.1016/0092-8674(94)90069-8

Howard S, Deroo J, Yataki I, Arai K. A positive role of cadherin in Wnt/beta-catenin signalling during epidermal-mesenchymal transition. PLoS One 2011; 6:e23899; PMID:21909376

Hay E, Baccus TC, Mar y. Role of cadherin in Wnt/beta-catenin signalling during cranial neural crest and neural tube. Dev Biol 1992; 153:291-301; PMID:13978686; http://dx.doi.org/10.1006/dbol.1995.1002

Kam Y, Quaranta V. Cadherin-bound beta-catenin delays maturation of radial glial cells into astrocytes. Dev Biol 2007; 309:285-97; PMID:17363754; http://dx.doi.org/10.1126/science.1136606

Birchmeier C. beta-Catenin signals regulate cell polarity gene dTCF. Cell 1997; 88:789-99; PMID:9074675; http://dx.doi.org/10.1016/S0092-8674(08)81292-X

Krauss S. Role of beta-catenin in the developing cortex and hippocampal neuroepithelium. Neuroscience 2003; 122:69-80; PMID:12764034; http://dx.doi.org/10.1016/S0306-4522(03)00519-0

Kogut J, Hamburger V. The role of the dTCF beta-catenin signaling pathway in the developing nervous system. Curr Top Dev Biol 2003; 275:5307.1787

www.tandfonline.com Cell Adhesion & Migration 173
beta-catenin dissociation in hepatocytes. Cancer Res 2002; 62:2064-71; PMID:11929826

100. Tran NL, Adams DG, Vaillancourt RR, Heimark RL. Signal transduction from N-cadherin increases Bcl-2. Regulation of the phosphatidylinositol 3-kinase/Akt pathway by homophilic adhesion and actin cytoskeletal organization. J Biol Chem 2002; 277:32905-14; PMID:12095980; http://dx.doi.org/10.1074/jbc.M20306200

101. Li G, Saryamoorthy K, Herlyn M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res 2001; 61:3819-25; PMID:11325858

102. Gartner A, Fornasiero EF, Munck S, Vennekens K, Sentiens E, Huttner WB, Valtorta F, Dotti CG. N-cadherin specifies first asymmetry in developing neurons. EMBO J 2012; 31:1893-903; PMID:22354041; http://dx.doi.org/10.1038/emboj.2012.41

103. He XC, Yin T, Grindley JC, Tian Q, Sato T, Tao WA, Dirisina R, Porter-Westpfahl KS, Hembree M, Johnson T, et al. PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 2007; 39:189-98; PMID:17237784; http://dx.doi.org/10.1038/ng1928

104. Tian Q, Feetham MC, Tao WA, He XC, Li L, Aebersold R, Hood L. Proteomic analysis identifies that 14-3-3 agents interacts with beta-catenin and facilitates its activation by Akt. Proc Natl Acad Sci U S A 2004; 101:15370-5; PMID:15492215

105. Sharma M, Chuang WW, Sun Z. Phosphatidylinositol 3-kinase/Akt stimulates androgen pathway through GS3kbeta inhibition and nuclear beta-catenin accumulation. J Biol Chem 2002; 277:30935-41; PMID:12063252; http://dx.doi.org/10.1074/jbc.M2019200

106. Hinds JW, Ruffett TL. Cell proliferation in the neural tube: an electron microscopic and golgi analysis in the mouse cerebral vesicle. Z Zellforsch Mikrosk Anat 1971; 115:226-64; PMID:4102325; http://dx.doi.org/10.1007/BF00391127

107. Wallingford JB, Mitchell B. Strange as it may seem: the many links between Wnt signaling, planar cell polarity, and cilia. Genes Dev 2011; 25:201-13; PMID:21289065; http://dx.doi.org/10.1101/gad.2008011

108. Chalasani K, Brewster RM. N-cadherin-mediated cell adhesion restricts cell proliferation in the dorsal neural tube. Mol Biol Cell 2011; 22:1505-15; PMID:21589116; http://dx.doi.org/10.1091/mbc.E10-08-0675

109. Matthijs V, French-Constant C. Adherens junction domains are split by asymmetric division of embryonic neural stem cells. EMBO Rep 2009; 10:515-20; PMID:19373255; http://dx.doi.org/10.1038/embor.2009.36

110. Rasin MR, Gazula VR, Breunig JJ, Kwan KY, Johnson MB, Liu-Chen S, Li HS, Jan LY, Jan YN, Rakic P, et al. Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci 2007; 10:819-27; PMID:17589506; http://dx.doi.org/10.1038/nn1924

111. Ivanistiin V, Chen Y, Mason JO, Price DJ, Pratt T. Adenomatous polyposis coli is required for early events in the normal growth and differentiation of the developing cerebral cortex. Neural Dev 2009; 4; PMID:19149881; http://dx.doi.org/10.1186/1749-8104-4-3

112. Yokota Y, Kim WY, Chen Y, Wang X, Starco A, Komuro Y, Snider W, Annon ES. The adenomatous polyposis coli protein is an essential regulator of radial glial polarity and construction of the cerebral cortex. Neuron 2009; 61:42-56; PMID:19146812; http://dx.doi.org/10.1016/j.neuron.2008.10.053

113. Hay E, Laplanitie E, Geoffroy V, Frain M, Kohler T, Muller R, Marie PJ. N-cadherin interacts with axin and LRPS to negatively regulate Wnt/beta-catenin signaling, osteoblast function, and bone formation. Mol Cell Biol 2009; 29:953-64; PMID:19075000; http://dx.doi.org/10.1128/MCB.00349-08