First detection of *Babesia ovis* in *Dermacentor* spp in Ardabil area, northwest of Iran

Shahbazi Gholamreza¹, Matin Somaieh², Shahbazi Roya³, Babapour Alireza⁴, Adhami Ghazale⁵ & Bageri Yasin⁶

¹Department of Parasitology and Mycology, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran; ²Department of Internal Medicine, Ardabil University of Medical Sciences, Ardabil; ³Department of Pathobiology, Tabriz University of Veterinary Medicine, Tabriz; ⁴Department of Food Hygiene and Quality Control, Faculty of Specialized Veterinary Science, Islamic Azad University, Science and Research Branch, Tehran; ⁵Department of Parasitology and Mycology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj; ⁶Young Researchers and Elite Club, Tabriz Branch Islamic Azad University, Tabriz, Iran

ABSTRACT

Background & objectives: Babesia is an intraerythrocytic protozoan parasite which is transmitted by hard ticks of the Ixodidae family. One of the problems associated with protozoan infection is the determination and characterization of the vectors. The aim of the present study was to detect *Babesia ovis* in the salivary gland of *Dermacentor* spp.

Methods: A total of 200 adult *Dermacentor* ticks (139 *D. niveus* and 61 *D. marginatus*) were collected from sheep suspected to be infected with babesiosis in the Ardabil region of Iran from April to September 2015 (active season of ticks); and were identified using standard taxonomic keys. Deoxyribonucleic acid (DNA) was isolated from the salivary glands of ticks and analyzed with the primers derived from the hyper variable V4 region of 18S ribosomal ribonucleic acid (18S rRNA) of the *Babesia* species using polymerase chain reaction (PCR).

Results: *Babesia ovis* was detected in 5.8% of the *D. niveus* and 3.3% of the *D. marginatus* positive samples in the second round of semi-nested PCR.

Interpretation & conclusion: Based on the results obtained from this study, it is concluded that *D. niveus* and *D. marginatus*, which are distributed in Ardabil region of Iran, might play a major role in the transmission of infection as a natural vector of *B. ovis*.

Key words *Babesia ovis; Dermacentor* spp; Iran; semi-nested PCR

INTRODUCTION

Ovine babesiosis is one of the most important haemoparasitic tick-borne diseases of small ruminants in tropical and subtropical areas of the world¹. *Babesia ovis, B. motasi* and *B. crassa* have been reported in sheep and goats in Iran². Out of these *B. ovis* and *B. motasi* are generally recognized as pathogenic³, while *B. crassa* is considered non-pathogenic to small ruminants⁴.

According to the earlier reports, *B. ovis* is a highly pathogenic organism causing ovine babesiosis in most parts of Iran instigating severe infections characterized by fever, anaemia, icterus and haemoglobinuria⁵–⁶. Mortality rates in susceptible infected hosts range from 30 to 50%⁷.

One of the major problems associated with protozoan infections is the determination and characterization of the transmitting vector. Molecular biological methods are considered as gold standard for the determination and characterization of the protozoan parasite in ticks⁸. Application of PCR-based technologies in the epidemiological survey of babesiosis has been reported and its high sensitivity and specificity in the detection of *Babesia* spp infection in ticks have been verified by several researchers⁹–¹¹.

Rhipicephalus bursa is the major and dominant vector for *B. ovis* in Iran. Other species reported to serve as vectors include *R. bursa, R. turanicus* and *R. sanguineus*⁸–¹¹.

Ovine babesiosis is a long-established disease of sheep in Ardabil area of Iran occurring yearly during the seasonal activity (April to October) of the vector ticks. Nabian *et al*¹² observed that most of the sampled animals in Ardabil were infested with *D. niveus* ticks, whereas *R. bursa* species was responsible for small number of cases in the area. Therefore, it suggests that other ticks might serve as important vectors for *Babesia* spp in Iran especially outside the distribution area of *R. bursa*.

The present study was aimed to determine the presence of *B. ovis* in the salivary glands of *D. niveus* and *D. marginatus* ticks in Ardabil region of Iran using semi-nested PCR.
MATERIAL & METHODS

Study area

Ardabil province, located in the northwest of Iran, has approximately four million livestock out of which ~2.9 million are sheep. This province has different climatic regions. The mountainous areas of the central and southern regions have cold winters and mild summers while the northeastern regions have rainy, mild winters and moderate summers, with annual rainfall of about 250 mm. The rolling hills around the mountain range are the main summer pastures for animals.

Collection of ticks and host blood samples

A total of 200 adult Dermacentor ticks (139 D. niveus and 61 D. marginatus) were collected from April to September 2015 (active season of ticks), from the 200 sheep suspected to be infected with babesiosis, out of 30 sheep-farms located in different areas of Ardabil; and identified using the standard taxonomic keys as described by Walker et al.\(^1\); and Arthur\(^1\). The ticks were collected from different body parts, i.e. external ear, perineum, between thighs and udder/scrotum of the sheep. The collected ticks were individually preserved in 70% ethanol solution. The salivary glands of each tick were dissected out in 0.85% saline solution under stereomicroscope.

Blood samples were collected from ear veins of each sheep for the preparation of thin blood smears. The thin blood smears were examined under an oil-immersion objective at the magnification of 1000x for the presence of intracellular forms of the parasite with the morphology compatible with B. ovis\(^1\).

DNA extraction

DNA was extracted using a DNA isolation kit (MBST, Iran) according to the manufacturer’s instructions and as per the method described by Shayan and Rahbari\(^1\). Briefly, salivary gland was first lysed in 180 μl lysis buffer, and the proteins were degraded with 20 μl proteinase K for 10 min at 55°C. After addition of 360 μl binding buffer and incubation for 10 min at 70°C, 270 μl ethanol (100%) was added to the solution; and after vortexing, the complete volume was transferred to the MBST column. The MBST column was first centrifuged and then washed twice with 500 μl washing buffer. Finally, the DNA was eluted from the carrier with 50 μl elution buffer.

PCR and semi-nested PCR

Semi-nested PCR was performed with specific primers derived from hyper variable region of 18S rRNA of the Babesia species, according to the method described by Shayan & Rahbari\(^1\). Briefly, three oligonucleotide PCR primers were used to detect B. ovis in PCR and semi-nested PCR methods. Forward primer (P1): 5’-CACAGGGTAGTGACAAG-3’ and the reverse primer (P2):5’-AAGAATTCACCTATGACAG-3’ were used for PCR reaction. Internal primers used in the semi-nested PCR were forward primer (P2) 5’-AAGAATTTCACCTATGACAG-3’ and reverse primer (P3) 5’-GTCTGCGGCGCCGCTTTGCG-3’.

The PCR was performed on the 25 ml reaction mixture containing 2 μl of template DNA, 1 μl MgCl\(_2\), 0.2 μl (1 unit) of Tag DNA polymerase (Cinna Gene Inc, Iran), 0.5 μl of 200 mM of each dNTPs mix (Cinna Gene Inc, Iran), 2.5 μl of 10 × PCR buffer (Cinna Gene Inc, Iran), 1.25 μl (10 pmol) of each P1 and P2 primers (Cinna Gene Inc, Iran), and dd H\(_2\)O (16.3 μl) with the following program: 5 min incubation at 95°C to denature double-strand DNA, 36 cycles of 45 s at 54–58°C (annealing step), 45 s at 72°C (extension step), and 45 s at 94°C (denaturing step). Finally, PCR was completed with the additional extension step for 10 min. PCR products were then chilled at 4°C. The final PCR products were subjected to electrophoresis in a 1.5% agarose gel with TBE buffer.

Semi-nested PCR was performed with the PCR product isolated from the agarose gel using a DNA isolation kit (Cinna Gene Inc, Iran). Briefly, the DNA bands were cut from the gel under UV-light and dissolved according to the manufacturer’s instructions in the binding buffer at 60°C. About 1–5 μl of the eluted DNA was amplified with the primers P2 and P3 using the above mentioned method. Samples positive for B. ovis produced visible bands at 389–402 bp in the first PCR and 186 bp in the second PCR.

The positive control for B. ovis was obtained from sheep with clinical babesiosis (diagnosis was done based on clinical signs and light microscopic examination, Giemsa stained thin blood smear). Venous blood sample, taken from healthy lamb (having no contact with ticks), served as negative control.

RESULTS

In this study, salivary glands of 200 Dermacentor ticks consisting of 139 D. niveus and 61 D. marginatus were evaluated for the presence of B. ovis DNA. Babesia ovis were detected in 5.8% of the D. niveus and 3.3% of the D. marginatus in the second round of semi-nested PCR (Fig. 1). The thin blood smear examination showed that 49 sheep (24.5%) were positive for B. ovis.
Babesia ovis, the major causative agent of small babsiosis, is transmitted by R. bursa, R. turanicus, Hyalomma anatolicum excavatum, and probably by R. evertsi evertsi ticks. Babesia ovis is widely spread in Europe17, the Middle East4, Africa18 and Asia19. Moltmann et al20 have demonstrated the development of B. ovis in the salivary glands of the vector tick R. bursa using electron microscopy. Molecular methods such as PCR, with high degree of sensitivity and specificity, have been developed to identify Babesia species, DNA in affected animals as well as in vectors even with 0.0001% parasitaemia10,15,21. The 18S rRNA gene has been successfully applied in identifying and classifying known and several previously unknown Theileria and Babesia spp16,22-25.

Dermacentor marginatus is a Mediterranean species of ticks that has been reported from Asian, European, and North African countries. This tick is usually found at the elevations of 800–1000 m above sea level26. Several pathogens (e.g. Anaplasma phagocytophilum, A. marginale and Ehrlichia canis) have been detected in D. marginatus ticks suggesting a possible role of this species in the life cycle and transmission of pathogens; however only few studies have characterized the pathogen prevalence in these ticks17,27-30.

Dermacentor niveus ticks in the immature stages are found on rodents while the adult ones feed on domestic herbivores and sometime camels, wild sheep and wolves31. It is considered a vector of the virus causing Crimean-Congo haemorrhagic fever in humans32.

The first report about the distribution of Dermacentor ticks in Iran was reported by Mazlum33 in 1971. Studies in Iran have shown that among the 30 provinces from which samples were gathered, Dermacentor ticks were found only in six provinces (Semnan, Khorasan, Kurdistan, Ardabil, East Azerbaijan, and Zanjan) with the highest rate of distribution (53%) in Ardabil province44. Moreover, the diversity of Dermacentor ticks was found to be restricted to three species; D. niveus (50%), D. marginatus (27%) and D. raskemensis (23%)34.

The seroprevalence of B. ovis infection in infected sheep differs with geographic areas of Iran and varies from 12 to 589,35-37. This infection was also identified using PCR and reverse line blot (RLB) hybridization assay16,37-38.

In a study conducted by Esmaeilenejad et al39, out of the 484 R. bursa ticks collected from naturally infested small ruminants and farm dogs in West Azerbaijan province, B. ovis was detected in the salivary glands of 94 (11.1%) adult ticks using PCR method.

In another study, Shayan et al40 investigated 269 Rhicpehalus ticks consisting of 108 R. bursa, 87 R. turanicus, and 74 R. sanguineous. They detected B. ovis in the salivary glands in 18.5% of R. bursa, 9.1% of R. turanicus, and 8.1% of R. sanguineous ticks using semi-nested PCR and restriction fragment length polymorphism (RFLP). Recently, B. bovis has been detected in D. marginatus ticks in France17. In another study conducted by Pavlovic et al41 in Belgrade, B. canis was detected in microscopic analysis of the midgut contents of 18.7% D. marginatus ticks collected from dogs suspected to babsiosis. The epidemiological significance of these findings must be taken with caution, because the presence of a pathogen in ticks does not necessarily mean that they are capable of transmitting it to susceptible hosts.

In the present study, a specific fragment of B. ovis gene was observed in the salivary glands of 5.8% D. niveus and 3.3% D. marginatus ticks, using semi-nested PCR. The microscopic examination of thin blood smears showed parasitaemia in infected sheep. Finding B. ovis DNA in the salivary glands of ticks is important due to the biological transmission of B. ovis by Dermacentor spp which suggests that the ticks with Babesia DNA in their salivary glands can be considered as natural vectors of Babesia.

The results suggest a possible role of Dermacentor spp as vectors of tick-borne pathogens that affect human and animal health. Better and fast diagnostic procedure is necessary for the accurate determination of Babesia and Theileria spp in different animals that could be carried and possibly transmitted by Dermacentor or other related spp. More studies are needed to eliminate the knowledge...
gaps in the ecology, epizootiology and epidemiology of babesiosis in Ardabil area. The present study is the first report on the detection of \(B. \textit{ovis} \) in the salivary glands of \(D. \textit{niveus} \) and \(D. \textit{marginatus} \) ticks on the basis of molecular-genetic methods in Iran.

CONCLUSION

The presence of \(B. \textit{ovis} \) in \(D. \textit{niveus} \) and \(D. \textit{marginatus} \) ticks in Ardabil region of Iran, indicates that they might serve as important natural vectors for Babesia spp and play crucial role in the transmission of infection.

Conflict of interest

The authors have no any conflict of interest associated with this study.

REFERENCES

1. Uilenberg G. International collaborative research: Significance of tick-borne haemoparasitic diseases of world animal health. \textit{Vet Parasitol} 2001; 57: 19–41.

2. Hashemi-Fesharaki R. Tick-borne disease of sheep, goats and their related vectors in Iran. \textit{Parassitologia} 1997; 39: 115–7.

3. Wagner G, Cruz D, Holman P, Waghela S, Perrone J, Shompole S, et al. Non-immunologic methods of diagnosis of babesiosis. \textit{Mem Inst Oswaldo Cruz} 1992; 87: 193–9.

4. Uilenberg G. Babesia—A historical overview. \textit{Vet Parasitol} 2006; 138: 3–10.

5. Rahbari S, Nabian S, Khaki Z, Alidadi N, Ashrafihelan J. Clinical, hematologic aspects of experimental ovine babesiosis in Iran. \textit{Iranian J Vet Res} 2008; 22: 59–64.

6. Delpy, L. Agent's en Iran dans le sang des animaux domestiques. \textit{Bull Path Exot Trop} 1936; 29: 157–61.

7. Friedhoff KT. Tick-borne diseases of sheep and goats caused by Babesia, Theileria or Anaplasma spp. \textit{Parassitologia} 1997; 39: 99–109.

8. Shayan P, Hooshmand E, Nabian S, Rahbari S. Determination of Rhipicephalus spp as vectors for Babesia ovis in Iran. \textit{Parasitol Res} 2007; 101: 1029–33.

9. Guglielmone AA, Gaido AB, Aguirre DH, Cafrune MM. Some quantitative aspects of natural Babesia infection in the haemolymph of \(B. \textit{microplus} \) engorged female ticks. \textit{Parasite} 1997; 4: 337–41.

10. Oliveira-Sequeira TC, Oliveira MC, Araujo JP, Amarante AF. PCR-based detection of Babesia bovis and Babesia bigemina in their natural host \(B. \textit{microplus} \) and cattle. \textit{Int J Parasitol} 2005; 35(1): 105–11.

11. Nabian S, Rahbari S. Occurrence of soft and hard ticks on ruminants in Zagros Mountainous area. \textit{Iranian J Arthropod Borne Dis} 2008; 2: 16–20.

12. Nabian S, Rahbari S, Shayan P, Haddadzadeh HR. Status of Tick fauna in north of Iran. \textit{Iranian J Parasitol} 2007; 2: 12–7.

13. Walker AR, Bouattour A, Camicas JL, Estrada-Peña A, Horak IG, Latif AA, et al. Ticks of domestic animals in Africa: A guide to identification of species. Edinburgh, UK: Bioscience Reports 2003; p. 1–227.

14. Arthur DR. \textit{Ticks}. A monograph of the Ixodoidea. Pt V. On the genera Dermacentor, Anocentor, Cosmiomma, Boophilus and Margaropus. London: Cambridge University Press 1960; p. 1–251.

15. Aktay M, Altay K, Dumanli N. Development of a polymerase chain reaction method for diagnosis of \(B. \textit{ovis} \) infection in sheep and goats. \textit{Vet Parasitol} 2005; 133: 277–81.

16. Shayan P, Rahbari S. Simultaneous differentiation between Theileria and Babesia spp on stained blood smear using PCR. \textit{Parasitol Res} 2005; 97: 281–6.

17. Bonnet S, De la Fuente J, Nicollet P, Liu X, Madani N, Blanchar B, et al. Prevalence of tick-borne pathogens in adult Dermacentor spp ticks from nine collection sites in France. \textit{Vector Borne Zoonotic Dis} 2013; 13: 226–36.

18. Rida J, Gharbi M, Mhadhi M, Mabrouk W, Ayari B. Prevalence of piroplasms in small ruminants in northwest Tunisia and the first genetic characterization of \(B. \textit{ovis} \) in Africa. \textit{Parasite} 2014; 21: 23. doi: 10.1051/parasite/2014025.

19. Shahzad W, Haider NO, Mansur-UD-DIN AH, Mumir R, Saghar MS, Mushtaq MH, et al. Prevalence and molecular diagnosis of \(B. \textit{ovis} \) and \(T. \textit{ovis} \) in Lohi sheep at livestock experiment station (LES), Bahadurnagar, Okara, Pakistan. \textit{Iranian J Parasitol} 2013; 8: 570.

20. Moltmann UG, Mehlhorn H, Friedhoff KT. Electron microscopy study on the development of \(B. \textit{ovis} \) (Piroplasmosis) in the salivary gland of the vector tick \(R. \textit{hippichalus} \) bursa. \textit{Acta Trop} 1982; 39: 29–40.

21. Altay K, Aktas M, Dumanli N. Detection of \(B. \textit{ovis} \) by PCR in \(R. \textit{hippichalus} \) bursa collected from naturally infested sheep and goats. \textit{Res Vet Sci} 2008; 85: 116–9.

22. Quick RE, Herwaldt BL, Thomford JW, Barnett ME, Eberhard ML, Wilson M, et al. Babesiosis in Washington state: A new species of Babesia? \textit{Ann Intern Med} 1993; 119: 284–90.

23. Persing DH, Herwaldt BL, Glaser C, Lane RS, Thomford JW, Mathiesen D, et al. Infection with a Babesia-like organism in northern California. \textit{N Engl J Med} 1995; 332: 298–303.

24. Herwaldt BL, Kjemtrup AM, Conrad PA, Barnes RC, Wilson M, McCarthy MG, et al. Transfusion-transmitted babesiosis in Washington state: First reported case caused by a WA1-type parasite. \textit{J Infect Dis} 1997; 175: 1259–62.

25. Katzer F, Mckellar S, Kirvar E, Shiels S. Phylogenetic analysis of \(T. \textit{ovis} \) and Babesia equi in relation to the establishment of parasite populations within novel host species and the development of diagnostic tests. \textit{Mol Biochem Parasitol} 1998; 93: 33–44.

26. Eastrada-Pena, A, Eastrada-Pena, R. Notes on Dermacentor ticks: Redescription of \(D. \textit{marginatus} \) with the synonyms of \(D. \textit{niveus} \) and \(D. \textit{dachestanensis} \) (Acarina: Ixodidae). \textit{J Med Entomol} 1991; 28: 2–15.

27. Toledo A, Olmeda AS, Escudero R, Jado I, Valcárcel F, Casado-Schulz MA, Rodriguez-Vargas M, Gil H, Anda P. Tick-borne zoonotic bacteria in ticks collected from central Spain. \textit{Am J Trop Med Hyg} 2009; 81: 67–74.

28. Torina A, Alongi A, Scimeca S, Vicente J, Caracappa S, de la Fuente J. Prevalence of tick-borne pathogens in ticks in Sicily. \textit{Transbound Emerg Dis} 2010; 57: 46–8.

29. De Carvalho IL, Santos N, Soares T, Zé-Zé L, Núncio MS. Francisella-like endosymbiont in Dermacentor reticulatus collected in Portugal. \textit{Vector Borne Zoonotic Dis} 2011; 11: 185–8.
31. Filippova NA, Nrronov VM, Farhang-Azad A. Data on Ixodid fauna (Acarina: Ixodidae) of small mammals in Iran. *Ent Obozr* 1976; 55: 467–79.
32. Tokhov IUM, Sysoliatina GV, Chumakova IV, Popova EV. Specific features of the parasitic system of Crimean hemorrhagic fever in Stavropol’ region during epidemic season of 2000. *Zh Microbial Epidemiol Immunobiol* 2001; 6 (Suppl): 98–9.
33. Mazlum Z. Ticks of domestic animals in Iran: Geographic distribution, host relation, and seasonal activity. *J Vet Res* 1971; 27: 1–32.
34. Nabian S, Rahbari S, Shayan P, Haddadzadeh HR. Identification of tick species of *Dermacentor* in some localities of Iran. *J Vet Res* 2008; 63: 123–6 (in Persian).
35. Tavassoli M, Rahbari S. A seroepidemiological survey on *Babesia ovis* in different geographical region of Iran. *J Vet Res* 1998; 53: 55–9 (in Persian).
36. Hashemzadeh F, Nahavi L, Seyfabad Shapouri M F, Rahbari S, Azizi F. Parasite in Khuzestan province, southern Iran. *Iran J Vet Res* 2006; 7: 53–8.
37. Sadeghi-Dehkordi Z, Zakeri S, Nabian S, Bahonar A, Ghasemi F, Noorollahi F, et al. Molecular and biomorphometrical identification of ovine babesiosis in Iran. *Iran J Parasitol* 2010; 5: 21–30.
38. Ranjbar-Bahadori S, Eckert B, Omidian Z, Sadr Shirazi N, Shayan P. *Babesia ovis* as the main causative agent of sheep babesiosis in Iran. *Parasitol Res* 2012; 110: 1531–6.
39. Esmaeilnejad B, Tavassoli M, Asri-Rezaei S, Dalir-Naghadeh B, Mardani K, Jalilzadeh-Amin G, et al. PCR-based detection of *Babesia ovis* in *Rhipicephalus bursa* and small ruminants. *J Parasitol Res* 2014; 2014: 294704.
40. Pavlovic I, Marija M, Dragana P, Dragana T. Epizootiological research of canine babesiosis in the Belgrade district. *J Protozool Res* 2002; 12: 10–5.

Correspondence to: Dr Shahbazi Gholamreza, Islamic Azad University, Science and Research Branch, Tehran, Iran.
E-mail: rz_shhbz@yahoo.com

Received: 6 November 2016
Accepted in revised form: 25 July 2017