Diagnostic challenges in the gray-zone lesions of fine-needle aspiration cytology

Shruti Gupta, MD1, Pranab Dey, MD, MIAC, FRCPath1

1Department of Cytology and Gynaecological Pathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.

*Corresponding author:
Pranab Dey,
Department of Cytology and
Gynaecological Pathology, Post
Graduate Institute of Medical
Education and Research, Chandigarh, India.
deypranab@hotmail.com

Received : 03 October 2020
Accepted : 31 May 2021
Published : 10 September 2021
DOI 10.25259/Cytojournal_66_2020

ABSTRACT

Fine-needle aspiration cytology (FNAC) is an excellent technique for rapid diagnosis due to its speed, accuracy, and cost-effectiveness. However, there are many gray-zone areas in cytology that needs attention. These lesions in the aspiration cytology can be overcome by applying the selective use of the series of tests. This review discusses the diagnostic challenges in the gray-zone areas in FNAC. It emphasizes the use of selective ancillary techniques to solve the problems in this area.

Keywords: Fine-needle aspiration cytology, Ancillary techniques, Gray-zone, cytology

INTRODUCTION

Cytopathology, with its relatively painless, safe, and straightforward procedures for sample acquisition, has emerged as the first-line investigation for rapid diagnosis as well as follow-up. For several decades, the cytopathology has been considered as a screening tool, and inferior to biopsy, regarding the specific diagnosis. At present, the cytopathologists are armed with several ancillary techniques to resolve the issue of the various gray-zone areas. It is now possible to diagnose the different tumors and their subsets with considerable certainty. The morphological evaluation is indeed the cornerstone and the guiding light for these ancillary techniques. In the present review, we have discussed the various ancillary methods that may help to solve the problems of the gray-zone areas of fine-needle aspiration cytology (FNAC).

Ancillary techniques: The weapons to conquer the gray-zone areas

The foremost goal of the cytopathologist is to provide an optimum diagnosis. With the help of ancillary techniques, the limitations of the cytopathologists are shrinking day by day. Table 1 enumerates the various ancillary techniques available. It ranges from basic techniques for the identification of specific microorganisms to cytogenerics and assessment for mutations to liquid biopsy (LB). Cytology provides the best alternative source of readily extractable, reasonably stable well-preserved DNA, using all the different cytopreparatory methods including freshly prepared, unstained direct smears. For instance, the usage of intact cell preparation methods as smears, cytospins, and LB cytology (LBC) for fluorescent in situ hybridization (FISH) is advantageous as compared with formalin-fixed paraffin-embedded tissue (FFPE) as no sectioning artifacts are present. Figure 1 depicts the approach to sample collection for ancillary techniques in cytdiagnosis.
THYROID CYTOLOGY

FNAC is a useful diagnostic technique for the diagnosis of thyroid lesions due to high sensitivity, specificity, and low cost. However, 15–30% of thyroid FNACs are categorized as indeterminate and put in the category 3/4 in “The Bethesda System for Reporting Thyroid Cytopathology (TBSRTC).” It is challenging to categorize “Atypia of undetermined significance/follicular lesions of undetermined significance (AUS/FLUS)” and “follicular neoplasm/suspicious of follicular neoplasm (FN/SFN)” from “suspicious for malignancy (SFM).” The non-neoplastic nodules may have overlapping cytological features with neoplastic lesions. Moreover, the inability to demonstrate the capsular and vascular invasion on cytology, the subcategorization of follicular neoplasm has been a big diagnostic challenge.

The diagnosis of non-invasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP) on cytological smears is not feasible and forms a large proportion of the “Indeterminate” TBSRTC categories. Major discordances are seen in the diagnosis of follicular patterned lesions – follicular variant of papillary thyroid carcinoma (FV-PTC), follicular carcinoma, and the new entity NIFTP. The Bethesda system discusses the risk of malignancy after inclusion of NIFTP, which is 6–18% in AUS category, 10–40% in FN/SFN category, and 45–60% in SOM category.

The diagnosis of gray-zone lesions of the thyroid is one of the biggest challenges in cytopathology practice. Various ancillary modalities have been introduced for categorization of thyroid cytology aspirates classified into one of the indeterminate categories. Immunohistochemistry (IHC) has been tried with limited success as no single marker is reliable. A variety of immunomarkers has been described in the literature including “Hector Battifora mesothelial-1” (HBME-1), galectin-3 (GAL3), cytokeratin 19 (CK19), CD56, trophoblast cell surface antigen 2 (TROP2), “Cbp/p300-interacting transactivator with Glu/Asp-rich carboxyterminal domain 1”, and TPO. The most commonly proposed panel is GAL-3, HBME-1, and CK19. HBME-1 is often strongly expressed in PTC.

To differentiate follicular patterned lesions, a panel of a combination of TROP-2 and HBME-1 has been used.

Table 1: Various available ancillary techniques in cytopathology.

Cytopreparatory methods: CB and LBC	Special stains and microbiological cultures
ICC	FCM
Fluorescence in situ hybridization	Reverse transcriptase PCR
NGS	Digital imaging and ANN
Electron microscopy (EM)	

CB: Cell block, LBC: Liquid biopsy cytology, ICC: Immunocytochemistry, FCM: Flow cytometry, NGS: Next-generation sequencing, PCR: Polymerase chain reaction, ANN: Artificial neural network

Figure 1: Approach to sample collection for ancillary techniques in fine-needle aspiration cytology diagnosis.
by Zargari and Mokhtari[5] to diagnose carcinoma with equivocal morphology. In his study, carcinomas show diffuse strong membranous TROP-2 immunoreactivity and weak focal reactivity in the benign lesion. However, the oncocytic variant of follicular neoplasms (“Hurthle cell neoplasm”) is strongly positive for TROP-2 and thus cannot be used for differentiating indeterminate oncocytic neoplasms. Zargari and Mokhtari used HBME-1 to differentiate malignant and benign lesions and showed a higher rate of membranous staining in malignancy and cytoplasmic staining in benign lesions.[5] Furthermore, BRAF mutation-specific antibody helps in the detection of the BRAF V600 mutation, with high accuracy.[4]

The American Thyroid Association (ATA) has recommended either a second FNAC or molecular testing in AUS/FLUS category.[6] The molecular testing in thyroid cytology can increase the predictive power of cytopathology of indeterminate lesions.

The currently available molecular testing for cytologic specimens is based on next-generation sequencing (NGS) and polymerase chain reaction (PCR) that give information on gene fusion, m-RNA expression profile, and other chromosomal changes.[7] A combination testing based on NGS-based mutational analysis and a microRNA expression-based classifier is also available. Nikiforov has discussed the various tests, namely, Afirma, ThyroSeq, RosettaGX Reveal, ThyroGenX, and ThyraMIR [Table 2].[8]

The artificial neural network (ANN) is a relatively new concept to distinguish between benign and malignant follicular neoplasm. Fractal dimension, chromatin textural analysis, and an ANN can be useful in indeterminate thyroid nodules.[9,10]

SALIVARY GLAND CYTOLOGY

FNAC is an essential diagnostic tool of the salivary gland neoplasms due to its high sensitivity (82–92%) and specificity (93–100%). The Milan system for reporting salivary gland cytopathology, published in 2018, comprises seven categories, of which AUS, salivary gland neoplasm of uncertain malignant potential (SUMP), and suspicious of malignancy do not provide a specific categorization of the lesion and have increased risk of malignancy.[11]

The management of neoplastic versus (vs.) non-neoplastic and low-grade versus high-grade malignancies are different, and thus, an accurate diagnosis is imperative for therapy. In the majority of cases, the cytomorphological diagnosis can be straightforward. The various factors may pose a diagnostic challenge to the cytopathologists. These include the heterogeneity of salivary gland tumors, evidence of cystic change, a variable degree of atypia, and overlapping cytomorphological features. For example, salivary glands aspirates with increased lymphoid population will have differential diagnosis ranging from a reactive process to lymphoproliferative disorder or cases of secretory carcinoma can be misinterpreted as acinic cell carcinoma. Ancillary studies are the mainstay of diagnosis in such cases.

Newly introduced chromosomal translocations and the fusion of oncogenes are instrumental in the diagnosis of a specific subset of tumors. The salivary gland neoplasms constitute a wide variety of benign and malignant tumors with cytomorphological overlap, and the usage of appropriate ancillary technique can help immensely in the formulation of a definitive diagnosis in AUS and SUMP categories. The characteristic immunophenotypic and cytogenetic features of various salivary gland tumors are described in the literature and now have significant diagnostic implications.[11] Figure 2 elaborates the basic difficulties and differential diagnoses in routine cytopathology practice.

In the salivary neoplasms, a large number of genetic changes can be assessed either by immunohistochemical surrogates or FISH.[12] The FNAC, along with FISH, provides high specificity in the diagnosis and even prognostic assessment such as in mucoepidermoid carcinoma.[13]

Flow cytometric immunophenotypic can be used to differentiate between reactive and lymphoproliferative disorder reliably. ANNs have been used to differentiate pleomorphic adenoma and adenoid cystic carcinoma on FNAC smears.[14] Further neural networks can be developed for other matrix rich tumors as well.

Table 2: Currently available molecular tests in thyroid specimens.

Molecular tests	Methodology	Specimen	Results
Afirma	mRNA gene expression	FNAC material in nucleic acid preservative	Benign/suspicious
ThyroGenX	Multiplex PCR by sequence-specific probes	FNAC material in nucleic acid preservative	Specific gene location/ translocation
ThyroMIR	microRNA expression	FNAC material in nucleic acid preservative	Negative/positive
ThyroSeq	NGS	FNAC material in nucleic acid preservative	Specific gene location/ translocation
Rosetta GX reveal	miRNA classifier test	Direct smear, ThinPrep LBC	Negative/positive

PCR: Polymerase chain reaction, ANN: Artificial neural network, CB: Cell block, FNAC: Fine-needle aspiration cytology, FFPE: Formalin-fixed paraffin-embedded tissue, LBC: Liquid biopsy cytology
LYMPH NODE CYTOLOGY

The broad range of differential diagnosis of lymphadenopathy and need for early management in lymphomas has made FNAC as the first-line diagnostic modality. The revised “World Health Organization classification of lymphoreticular neoplasms” (2016) has described many specific entities based on cytomorphology, immunophenotypic characteristics, genetic abnormalities, and clinical features. Due to subtle cytomorphologic differences in the cellular morphology in low-grade non-Hodgkin lymphoma (NHL), a “false-positive” diagnosis on cytology cannot be excluded. The question of florid reactive versus low-grade lymphoma is always difficult for even experienced cytopathologists. Furthermore, on FNAC, it is difficult to provide a definitive diagnosis for various lymphomas on morphology alone. Many of these lymphomas bear characteristic morphological, immunophenotypical, and molecular abnormalities that can aid in a definitive subtyping. FNAC, along with ancillary tests, helps in diagnosis of these subtypes.

Diffuse large B-cell lymphoma (DLBCL) is the most common type of NHL. An accurate FNAC diagnosis is essential, along with information on prognostic and predictive markers. Gene expression profiling has devised the classification of DLBCL into three different groups – germinal center B-cell-like DLBCL and non-germinal center B-cell-like DLBCL with approximately 80% concordance with gene expression profiling. Cytogenetics has an essential role in the prognostic assessment in lymphomas and for the selection of therapeutic strategies. Many lymphomas have typical chromosomal aberrations and translocations between the antigen receptor (Ig/TCR) genes and oncogenes. The translocations involving MYC in Burkitt lymphoma and BCL2 in the diagnosis of follicular lymphoma, cyclinD1 in Mantle cell lymphoma are crucial in difficult cases.

OVARIAN CYTOLOGY

FNAC is being increasingly used in primary diagnosis of patients with ovarian masses who can be potential candidates for neoadjuvant chemotherapy before surgical intervention and those patients which can be good candidates for fertility sparing surgeries. The subclassification of ovarian epithelial neoplasms as benign, borderline, and malignant,
on cytomorphology alone, considering factors as tumor heterogeneity, evidence of cystic, and mucinous change, poses a diagnostic challenge. The distinction between low-grade versus high-grade serous carcinoma is critical and has therapeutic significance. Another diagnostic challenge is evidence of mucinous neoplasm on cytology smears, where it becomes difficult to differentiate between primary versus metastatic mucinous carcinoma or a part of teratoma. The distinction between subtypes of germ cell tumors and sex cord tumors can be a diagnostic dilemma and often, an accurate cytological diagnosis cannot be rendered. However, a cell block (CB) and usage of further ancillary techniques can be instrumental in making a conclusive diagnosis.

The ovarian masses can be most commonly accessed through ultrasound-guided FNAC. An adequate CB preparation, along with cytological smears, can facilitate a morphological diagnosis. Immunocytochemistry (ICC) on the CB can determine the exact nature of the neoplasm and aid in the differentiation of epithelial versus non-epithelial tumors and metastatic deposits. The specific tissue diagnosis of high-grade serous carcinoma (HGSC) of the ovary may be achieved in FNAC by a combination of morphology and immunocytochemistry. A minimal panel comprising CK7, PAX8, WT1, and p53 can be used to diagnose HGSC. A basic panel to differentiate primary ovarian and metastatic adenocarcinoma should include PAX8 (Mullerian marker), CK7, CK20, WT1, and p16. CK7 negative (−)/CK20 positive (+), CDX2+ indicates a colorectal primary while a CK7+, CK20−, PAX8+, indicates an ovarian primary. WT1 expression is seen in serous carcinomas, GCDFP is expressed by breast carcinomas, loss of DPC4 indicative of pancreatic origin. A strong diffuse p16 immunoreactivity supports a cervical origin.

Figure 4 highlights the differential diagnosis of the gray-zone areas of ovarian neoplasms.

SOFT-TISSUE TUMORS IN CYTOLOGY

The cytomorphological diagnosis of soft-tissue tumors on cytology is often difficult and is based largely on identification of patterns. The cytology smears have limited diagnostic accuracy as in some sarcomas, cells may appear bland, while in many benign mesenchymal lesions, cellular atypia can be seen. The reactive fibroblasts, myofibroblasts, regenerating, and degenerating muscle fibers can be misinterpreted in the cytology smears. Thus, additional material for ancillary techniques is a mandate for cytodiagnosis of soft-tissue tumors.

The utility of FNAC in soft-tissue tumors is mostly for triaging patients and providing broad differential diagnoses. ICC and molecular testing permit a more accurate and definitive diagnosis.

Many of the soft-tissue tumors are characterized by highly specific translocations and amplifications. Molecular advances helped in the development of useful surrogate IHC markers of molecular changes. ICC, FISH, and sequencing-based methods can be excellent ancillary diagnostic modalities. Table 3 enumerates the IHC and molecular
markers of soft-tissue tumors frequently subjected to FNAC.

The future is more for less

NGS

The introduction of NGS to the field of molecular diagnostics has broken barriers by utilizing restricted cytology samples for molecular analysis of multiple genes. To overcome the issue of heterogeneity of cytology samples, the appropriate use of the molecular test is recommended.[24] NGS technology can help to assess multiple genetic abnormalities from the minimum amount of tissue.[24] FNAC smears or even residual material in the FNAC syringe may be used for NGS when the CB is not available.[26,27] The full potential of limited volume cytology samples can be harnessed by recognizing the prospects and pitfalls of performing NGS testing.[28]

LB

LB is another upcoming minimally invasive, readily repeatable technique for detection and molecular profiling of malignancies. LB is most useful in detection of the inaccessible tumors. Cell-free DNA, circulating tumor cells, exosomal microRNA, and small RNA assessment in LB can give the information on the molecular genetic abnormalities of the tumor at the time of chemotherapy.[29] LB is a non-invasive technique and bears lot of potential to diagnose minimal residual disease, dynamic supervision of newer genetic changes of the tumor, and even early detection of the cancer.[2]

Table 3: Immunohistochemical and molecular characterization of soft-tissue tumors.

Soft-tissue tumors	IHC	Molecular pathology
Atypical lipomatous tumor	MDM2, CDK4	Chromosome 12q13-15 amplification through supernumerary ring or giant markers
Myxoid liposarcoma	–	FUS-DDIT3
Neurofibroma	S100 (multifocal), SOX10, neurofilament (axons)	–
Desmoid fibromatosis	β-catenin, SMA	CTNNB1 or ACP mutations
GIST	KIT, DOG1	KIT mutations; subset with PDGFRA mutations
IMT	SMA±, ALK (50%)	ALK rearrangement
Solitary fibrous tumor	CD34, STAT6	NAB2-STAT6
DFSP	CD34	COL1A1-PDGFβ
Synovial sarcoma SMA	EMA, keratin, TLE1	SS18-SSX1, SS18-SSX2
Leiomyosarcoma	Desmin, caldesmon	–
MPNST	Focal S100, SOX10, GFAP, loss of H3K27me3	NF1, CDKN2A, SUZ12, EED1 mutations
Ewing sarcoma	CD99 (diffuse membranous), NKK2, FLI-1	EWSR1-FLI1, EWSR1 rearrangement
Alveolar RMS	Diffuse desmin and myogenin	PAX3-FOXO1
DSRCT	EMA, NSE, desmin, WT1 (C terminus)	EWSR1-WT1

IHC: Immunohistochemistry
Whole slide imaging (WSI)

WSI represents the first but momentous step that has enabled the entry of wide range of digital tools which are revolutionary for upcoming practice of pathology.

WSI generates digital illustrations of routine glass slides, ensuring preservation of digital representations with good image quality. This system will allow digital analysis anywhere and at any time. Not only can these images be used for remote consultations, telepathology, they are an ideal educational material. Whole slide images are storehouse of information regarding morphology and complex cell phenotypes. Digital images in cytology can be for developing educational modules, telecytology, external quality control, and assurance, along with applications as image analysis.

ANN

ANN is a new technology for formulating a diagnosis and predicting disease outcome. ANN is basically a software program with an algorithmic approach simulating the biological neuronal network of human brain. ANN is typically useful in the gray-zone lesions of cytology. In cytology, ANN has been used for classification of breast lesions, identification of malignancy in effusion, and in thyroid lesions, salivary gland tumors.

CONCLUSION

The usage of ancillary techniques has broadened the cytopathologist’s horizon, facilitating in the formulation of diagnosis, detection of prognostic and predictive markers, thereby ensuring rapid and effective treatment of patients. In the modern era of personalized and targeted therapy, cytology provides a suitable platform for biomarker testing. FNAC specimens are being increasingly used for immunocytochemistry, cytogenetics, molecular analysis, and image analysis, thereby breaking the limitations of morphology alone. Molecular cytopathology and ANNs based on image analysis are rapidly progressing fields in the age of whole slide scanners. The selection of the appropriate ancillary technique, along with the clinical and radiological features, is immensely valuable in the final diagnosis. The cytopathologists need to stay vigilant and also be aware of the usefulness of the various types of cytology samples for the diagnosis and management of the patient. The cytopathologists need to stay vigilant and also be aware of the usefulness of the various types of cytology samples for the diagnosis and management of the patient.

COMPETING INTEREST STATEMENT BY ALL AUTHORS

There is no competing interest in this papers as declared by both the authors.

AUTHORSHIP STATEMENT BY ALL AUTHORS

Shruti Gupta has collected data and drafted the manuscript. Pranab Dey has analyzed data and guided in writing the manuscript.

LIST OF ABBREVIATIONS (In alphabetic order)

ACC – Acinic cell carcinoma
AdCC – Adenoid cystic carcinoma
AFP – Alpha fetoprotein
ALCL – Anaplastic large cell lymphoma
AR – Androgen receptor
ANN – Artificial neural network
AUS – Atypia of undetermined significance
BCA – Basal cell adenoma
CDX2 – Caudal-type homeobox 2
CITED1 – Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain, 1
CB – Cell block
CLL – Chronic lymphocytic leukemia
DNA – Deoxyribonucleic acid
DLBCL – Diffuse large B-cell lymphoma
DOG1 – Discovered On GIST 1
ETV1 – ETS Variant Transcription Factor 1
FNAC – Fine needle aspiration cytology
FCM – Flow cytometry
FISH – Fluorescent in situ hybridization
FC – Follicular carcinoma
FLUS – Follicular lesions of undetermined significance
FL – Follicular lymphoma
FVPTC – Follicular variant of Papillary thyroid carcinoma
FFPE – Formalin-fixed paraffin-embedded tissue
GAL 3 – Galectin-3
HBME-1 – Hector Battifora mesothelial-1
HNF1 – hepatocyte nuclear factor 1
HMGA – High mobility group A
HGSC – High-grade serous carcinoma
HL – Hodgkin lymphoma
IHC – Immunohistochemistry
LB – Liquid biopsy
LBC – Liquid-based cytology
LBL – Lymphoblastic lymphoma
LPL – Lymphoplasmacytoid lymphoma
MCL – Mantle cell lymphoma
MSRS GC – Milan System for Reporting Salivary Gland Cytopathology
REFERENCES

1. Martini M, Capodimonti S, Cenci T, Bilotta M, Fadda G, Larocca LM, et al. To obtain more with less: Cytologic samples with ancillary molecular techniques—the useful role of liquid-based cytology. Arch Pathol Lab Med 2018;142:299-307.

2. Gan Q, Roy-Chowdhuri S. Small but powerful: The promising role of small specimens for biomarker testing. J Am Soc Cytopathol 2020;9:450-60.

3. Cibas ES, Ali SZ. The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid 2017;27:1341-6.

4. Liu H, Lin F. Application of immunohistochemistry in thyroid pathology. Arch Pathol Lab Med 2015;139:67-82.

5. Zargar N, Mokhtari M. Evaluation of diagnostic utility of immunohistochemistry markers of TROP-2 and HBME-1 in the diagnosis of thyroid carcinoma. Eur Thyroid J 2018;8:1-6.

6. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016;26:131-135.

7. Nishino M, Krane JF. Role of ancillary techniques in thyroid cytopathology. Acta Cytopathol 2019;64:40-51.

8. Nikiforov YE. Role of molecular markers in thyroid nodule management: Then and now. Endocr Pract 2017;23:979-88.

9. Savala R, Dey P, Gupta N. Artificial neural network model to distinguish follicular adenoma from follicular carcinoma on fine needle aspiration of thyroid. Diagn Cytopathol 2017;46:2449.

10. Gupta S, Savala R, Gupta N, Dey P. Fractal dimension and chromatin textural analysis to differentiate follicular carcinoma and adenoma on fine needle aspiration cytology. Cytopathology 2019;31:491-3.

11. Faquin WC, Rossi ED, editors. The Milan System for Reporting Salivary Gland Cytopathology. Cham, Switzerland: Springer Nature; 2018.

12. Jo VY, Krane JF. Ancillary testing in salivary gland cytology: A practical guide. Cancer Cytopathol 2018;126:627-42.

13. Evrard SM, Meilleroux J, Daniel G, Basset C, Lacoste-Collin L, Vergez S, et al. Use of fluorescent in situ hybridization in salivary gland cytology: A powerful diagnostic tool. Cytopathology 2017;28:312-20.

14. Kapatia G, Dey P, Saikia UN. Artificial neural network model to distinguish pleomorphic adenoma from adenoid cystic carcinoma on fine needle aspiration cytology. Cytopathology 2019;31:445-50.

15. Kim WY, Pugh M, Dojcino S, Quintanilla-Martinez L. Grey zones in the differential diagnosis of lymphoma pathology. Diagn Histopathol 2019;25:191-216.

16. Cozzolino I, Varone V, Picardi M, Baldi C, Memoli D, Ciancia G, et al. CD10, BCL6, and MUM1 expression in diffuse large B-cell lymphoma on FNA samples. Cancer Cytopathol 2015;124:135-43.

17. Jin M, Wakely PE Jr. Lymph node cytopathology: Essential ancillary studies as applied to lymphoproliferative neoplasms. Cancer Cytopathol 2018;126:615-26.

18. Cozzolino I, Rocco M, Villani G, Picardi M. Lymph node fine-needle cytology of non-hodgkin lymphoma: Diagnosis and classification by flow cytometry. Acta Cytol 2016;60:302-14.

19. Diss TC, Molina TJ, Cabeças J, Langerak AW. Molecular diagnostics in lymphoma: Why, when and how to apply. Diagn Histopathol 2012;18:53-63.

20. Bansal A, Srinivasan R, Rohilla M, Sundaram A, Rai B, Rajwanshi A, et al. Morphologic and immunocytochemical features of high-grade serous carcinoma of ovary in ascitic fluid effusion and fine-needle aspiration cytology. Am J Clin Pathol 2020;154:103-14.

21. Kaspar HG, Crum CP. The utility of immunohistochemistry in the differential diagnosis of gynecologic disorders. Arch Pathol Lab Med 2015;139:39-54.

22. Cerrone M, Cantile M, Collina F, Marra L, Liguori G, Franco R, et al. Molecular strategies for detecting chromosomal translocations.

EDITORIAL/PEER-REVIEW STATEMENT

To ensure the integrity and highest quality of CytoJournal publications, the review process of this manuscript was conducted under a double-blind model (authors are blinded for reviewers and vice versa) through automatic online system.
in soft tissue tumors. Int J Mol Med 2014;33:1379-91.
23. Chebib I, Jo VY. Application of ancillary studies in soft tissue cytology using a pattern-based approach. Cancer Cytopathol 2018;126:691-710.
24. de Biase D, Visani M, Acquaviva G, Fornelli A, Masetti M, Fabbri C, Pession A, Tallini G. The role of next-generation sequencing in the cytopathologic diagnosis of pancreatic lesions. Arch Pathol Lab Med 2018;142:458-64.
25. Roy-Chowdhuri S, Roy S, Pantanowitz L. Next-generation sequencing in cytopathology. In: Modern Techniques in Cytopathology. Berlin, Germany: S Karger Ag; 2020. p. 34-42.
26. Treece AL, Montgomery ND, Patel NM, Civalier CJ, Dodd LG, Gulley ML, et al. FNAC smears as a potential source of DNA for targeted next-generation sequencing of lung adenocarcinomas. Cancer Cytopathol 2016;124:406-14.
27. Wei S, Lieberman D, Morrissette JJ, Baloch ZW, Roth DB, McGrath C. Using “Residual” FNAC rinse and body fluid specimens for next-generation sequencing: An institutional experience. Cancer Cytopathol 2016;124:324-9.
28. Roy-Chowdhuri S, Stewart J. Preanalytic variables in cytology: Lessons learned from next-generation sequencing—the MD Anderson experience. Arch Pathol Lab Med 2016;140:1191-9.
29. Ghosh RK, Pandey T, Dey P. Liquid biopsy: A new avenue in pathology. Cytopathology 2019;30:138-1.
30. Zarella MD, Bowman D, Aeffner F, Farahani N, Xthona A, Absar SF, et al. A practical guide to whole slide imaging: A white paper from the digital pathology association. Arch Pathol Lab Med 2019;143:222-34.
31. Khalbuss WE, Pantanowitz L, Parwani AV. Digital imaging in cytopathology. Patholog Res Int 2011;2011:264683.
32. Dey P, Banerjee N, Kaur R. Digital image classification with the help of artificial neural network by simple histogram. J Cytol 2016;33:63-5.