A Variation on Mills-Like Prime-Representing Functions

László Tóth
Rue des Tanneurs 7
L-6790 Grevenmacher
Grand Duchy of Luxembourg
uk.laszlo.toth@gmail.com

Abstract
Mills showed that there exists a constant A such that $\lfloor A^{3^n} \rfloor$ is prime for every positive integer n. Kuipers and Ansari generalized this result to $\lfloor A^{c^n} \rfloor$ where $c \in \mathbb{R}$ and $c \geq 2.106$. The main contribution of this paper is a proof that the function $\lceil B^{c^n} \rceil$ is also a prime-representing function, where $\lceil X \rceil$ denotes the ceiling or least integer function. Moreover, the first 10 primes in the sequence generated in the case $c = 3$ are calculated. Lastly, the value of B is approximated to the first 5500 digits and is shown to begin with 1.2405547052\ldots.

1 Introduction
Mills [6] showed in 1947 that there exists a constant A such that $\lfloor A^{3^n} \rfloor$ is prime for all positive integers n. Kuipers [5] and Ansari [1] generalized this result to $\lfloor A^{c^n} \rfloor$ where $c \in \mathbb{R}, c \geq 2.106$, i.e., there exist infinitely many A's such that the above expression yields a prime for all positive integers n. Caldwell and Cheng [2] calculated the minimum constant A for the case $c = 3$ up to the first 6850 digits ($A051021$), and found it to be approximately equal to 1.3063778838\ldots. This process involved computing the first 10 primes b_i in the sequence generated by the function ($A051254$), with b_{10} having 6854 decimal digits.

The main contribution of this paper is a proof that the function $\lceil B^{c^n} \rceil$ satisfies the same criteria, where $\lceil X \rceil$ denotes the ceiling function (the least integer greater than or equal to X). In other words, there exists a constant B such that for all positive integers n, the expression $\lceil B^{c^n} \rceil$ yields a prime for $c \geq 3, c \in \mathbb{N}$. Moreover, the sequence of primes generated by such functions is monotonically increasing. Lastly, analogously to [2] the case $c = 3$ is studied in more detail and the value of B is approximated up to the first 5500 decimal digits by calculating the first 10 primes b_i of the sequence.

In contrast to Mills’ formula and given that here the floor function is replaced by a ceiling function, the process of generating the prime number sequence P_0, P_1, P_2, \ldots involves taking the greatest prime smaller than P_n^c at each step instead of smallest prime greater than P_n^c, in order to find P_{n+1}. As a consequence, the sequence of primes generated by $\lceil B^{c^n} \rceil$ is different.
from the one generated by $|A^c|$ for the same value of c and the same starting prime (apart from the first element of course).

2 The prime-representing function

This paper begins with a proof of the case $c = 3$ and will proceed to a generalization of the function to all $c \geq 3, c \in \mathbb{N}$.

By using Ingham’s result [4] on the difference of consecutive primes:

$$p_{n+1} - p_n < Kp_n^{5/8},$$

and analogously to Mills’ reasoning [6], we construct an infinite sequence of primes P_0, P_1, P_2, \ldots such that $\forall n \in \mathbb{N} : (P_n - 1)^3 + 1 < P_{n+1} < P_n^3$ using the following lemma.

Lemma 1. $\forall N > K^8 + 1 \in \mathbb{N} : \exists p \in \mathbb{P} : (N - 1)^3 + 1 < p < N^3$, where \mathbb{P} denotes the set of prime numbers.

Proof. Let p_n be the greatest prime smaller than $(N - 1)^3$.

$$(N - 1)^3 < p_{n+1}
< p_n + Kp_n^{5/8}
< (N - 1)^3 + K ((N - 1)^3)^{5/8}$$

(since $p_n < (N - 1)^3$)

$$< (N - 1)^3 + (N - 1)^2$$

(since $N > K^8 + 1$)

$$< N^3 - 2N^2 + N$$

$$< N^3.$$

Note that since $(N - 1)^3 + 1 < p_{n+1}$ since $(N - 1)^3 + 1 = N(N^2 - 3N + 3)$ is not prime.

\square

Given the above we can construct an infinite sequence of primes P_0, P_1, P_2, \ldots such that for every positive integer n, we have: $(P_n - 1)^3 + 1 < P_{n+1} < P_n^3$.

We now define the following two functions:

$$\forall n \in \mathbb{Z}^+ : u_n = (P_n - 1)^{3-n},$$

$$\forall n \in \mathbb{Z}^+ : v_n = P_n^{3-n}.$$

The following statements can immediately be deduced:

- $u_n < v_n$,
• \(u_{n+1} = (P_{n+1} - 1)^{3^n - 1} > ((P_n - 1)^3 + 1) - 1)^{3^n - 1} = (P_n - 1)^{3^n} = u_n, \)
• \(v_{n+1} = P_{n+1}^{3^n - 1} < (P_n^3)^{3^n - 1} = P_n^{3^n} = v_n. \)

It follows that \(u_n \) forms a bounded and monotone increasing sequence.

Theorem 2. There exists a positive real constant \(B \) such that \(\lceil B^{3^n} \rceil \) is a prime-representing function for all positive integers \(n \).

Proof. Since \(u_n \) is bounded and strictly monotone, there exists a number \(B \) such that
\[
B := \lim_{n \to \infty} u_n.
\]

From the above deduced properties of \(u_n \) and \(v_n \), we have
\[
 u_n < B < v_n,
(P_n - 1)^{3^n} < B < P_n^{3^n},
P_n - 1 < B^{3^n} < P_n.
\]

Theorem 3. There exists a positive real constant \(B \) such that \(\lceil B^{c^n} \rceil \) is a prime-representing function for \(c \geq 3, c \in \mathbb{N} \) and all positive integers \(n \).

Proof. We can use the generalizations to Mills’ function as shown by Kuipers [5] and Dudley [3] in order to show that \(\lceil B^{c^n} \rceil \) is also a prime-representing function for \(c \geq 3, c \in \mathbb{N} \). This proof is short as it is essentially identical to the one presented above, with the following modifications.

As shown by Kuipers [5] for Mills’ function, we first define \(a = 3c - 4, b = 3c - 1 \). Therefore \(a/b \geq 5/8 \). This means that in Ingham’s equation there exists a constant \(K' \) such that
\[
p_{n+1} - p_n < K' p_n^{a/b}.
\]

Lemma 1 can then be modified by taking \(N > K'^b + 1 \), defining \(p_n \) as the greatest prime smaller than \((N - 1)^c \) and noticing that \(ca + 1 = b(c - 1) \). Analogously to the proof in Lemma 1, we quickly obtain the bounds \((N - 1)^c + 1 < p < N^c \). This means that we can construct a sequence of primes \(P_0, P_1, P_2, \ldots \) such that for every positive integer \(n \), \((P_n - 1)^c + 1 < P_{n+1} < P_n^c \).

This is then concluded with a similar reasoning as in the proof of Theorem 2.

\[\square\]
3 Numerical calculation of B

In this section, a numerical approximation of B is presented for the case $c = 3$. Mills [6] suggested using the lower bound $K = 8$ for the first prime in the classical Mills function $\lfloor A^3n \rfloor$, where K is the constant defined in Ingham’s paper [4]. Other authors, including Caldwell and Cheng [2], decided to begin with the prime 2 and then choose the least possible prime at each step. In this case, since the ceiling function replaces the floor function, we choose the greatest possible prime smaller than P_n^3 as the next element P_{n+1}.

If p_i denotes the i^{th} prime in the sequence, we obtain

- $p_1 = 2$
- $p_2 = 7$
- $p_3 = 337$
- $p_4 = 38272739$
- $p_5 = 56062005704198360319209$
- $p_6 = 17619999581432728735667120910458586439705503907211069\times 6028654438846269$
- $p_7 = 54703823381492990628407924713718713957740513297193414\times 21259587335767096542227048457036456872683352033529421007878\times 29141860830768725102385452609882503551811073140339908096068\times 8125590506176016285837338387682469$

The primes p_8, p_9 and p_{10} are far too large to show in this paper — for instance p_{10} has 5528 decimal digits. The primes p_i for $i \leq 8$ were verified using a deterministic primality test in Wolfram Mathematica 11 with the `ProvablePrimeQ` function in the `PrimalityProving` package, while p_9 and p_{10} were certified prime by the Primo software [7]. The certification of p_{10} took 14 hours and 23 minutes on an Intel i7-4770 CPU and 4GB RAM. The prime certificates for p_9 and p_{10} as well as the primes themselves can be found alongside this paper as auxiliary files.

The value of B was calculated up to its first 5500 decimal digits. The first 600 are presented below:
1.2405547052 5201424067 4695153379 0034521235 3396725255
9232034386 1886622104 9111642316 9209174137 7064313608
3109555650 9480848158 9481662421 8378961303 7426392535
6658242301 8524802142 1960037621 1464734105 8229918628
4182439221 9437396337 9442594273 8936874985 9158491115
7886891108 4262398559 2731605607 5719554304 2915944781
6278755834 4774142491 8125993063 4590081972 8945860313
1303247244 0907981721 7119324606 1009855753 6063847008
6985820925 6038920740 0817313213 1691077511 332609476
3239264899 5703729933 8452155290 5152647430 8960522935
3735771869 0936560934 8000430515 4856069064 6309177739
2832001365 6550953673 1549789328 9032942357 7708168137

References

[1] A. Ansari, On prime representing function, *Ganita* 2 (1951), 81–82.

[2] C. K. Caldwell and Y. Cheng, Determining Mills’ constant and a note on Honaker’s problem, *J. Integer Sequences* 8 (2005), Article 05.4.1.

[3] U. Dudley, History of a formula for primes, *Amer. Math. Monthly* 76 (1969), 23–28.

[4] A. E. Ingham, On the difference between consecutive primes, *Q. J. Math.* 8 (1937), 255–266.

[5] L. Kuipers, Prime-representing functions, *Indag. Math.* 12 (1950), 57–58.

[6] W. H. Mills, A prime-representing function, *Bull. Amer. Math. Soc.* 53 (1947), 604.

[7] Primo software, available at http://www.ellipsa.eu/public/primo/primo.html.

2010 Mathematics Subject Classification: Primary 11A41; Secondary 11Y60, 11Y11.

Keywords: prime-representing function, Mills’ constant, prime number sequence.

(Concerned with sequences [A051021](https://oeis.org/A051021) and [A051254](https://oeis.org/A051254).)

Received June 8 2017; revised versions received September 20 2017; September 26 2017. Published in *Journal of Integer Sequences*, October 29 2017.

Return to *Journal of Integer Sequences* home page.