Food protein-induced enterocolitis syndrome: a large French multicentric experience

Anaïs Lemoine¹, Anne-Sophie Colas¹, Sebastien LE², guillaume lezmi², Christophe Delacourt², and Patrick Tounian¹

¹AP-HP, Trouseau Hospital
²AP-HP, Hôpital Necker-Enfants Malades

March 07, 2024

Abstract

Background Food protein-induced enterocolitis syndrome (FPIES) is a non IgE-mediated food allergy, with potential dehydration secondary to vomiting. Differences exist regarding culprit foods, onset symptoms, and age of tolerance depending on the country of origin. We aimed to describe the characteristics of a French population of children with FPIES. Methods Data from 179 children who were referred for acute or chronic FPIES in two pediatric tertiary centers between 2014 and 2020 were retrospectively collected. The diagnosis of FPIES was based on international consensus guidelines. Clinical characteristics, culprit food and age at resolution were assessed. Results In the 192 described FPIES, the age at first symptoms was 5.8 months old. The main offending foods were cow’s milk (60.3%), hen’s egg (16.2%), and fish (11.7%). Single FPIES was observed in 94.4% and multiple FPIES in 5.6% of cases. The age at resolution of FPIES was 2.2 years old, and resolution occurred later for fish than for milk (2.9 years versus 2.0, p=0.01). Severe acute FPIES was a risk factor for delayed resolution (relative risk: 3.3 [1.2-9.2]), but not IgE sensitization. Performing an oral food challenge within 12 months after the first reaction increased the risk of failure (RR: 2.0 [1.2-3.5]). Conclusion In this French cohort of children with FPIES, the main culprit foods were ubiquitous. Rice, oat and soy were rarely or not involved. Multiple FPIES was infrequent. Our data confirmed the overall good prognosis of FPIES, the later resolution of FPIES to fish and in the case of severe acute FPIES.

Short title: Characteristics of FPIES in French children

Dr Lemoine Anaïs (MD) a, Dr Colas Anne-Sophie (MD)b, Dr Le Sébastien (MD) b*, Pr Delacourt Christophe (MD, PhD) b, Pr Tounian Patrick (MD, PhD) a, Dr Lezmi Guillaume (MD, PhD)b

Institutional affiliations:

Department of Pediatric Nutrition and Gastroenterology, Trouseau Hospital, AP-HP, Sorbonne Université, Paris, France

Department of Pediatric Pneumology and Allergology, Necker-Enfants Malades Hospital, AP-HP, Université Paris Descartes, Paris, France

* Department of Pediatric and Emergency Unit, Louis Mourier Hospital, AP-HP, Université de Paris, Paris, France

Authorship:

AL, ASC, SL, CD, PT, GL:
Introduction

Food protein-induced enterocolitis syndrome (FPIES) is a non-IgE-mediated food allergy. Its incidence is estimated between 0.015-0.7%, corresponding to 19-31% of food allergies diagnosed in infants and children. In the absence of biomarkers, the diagnosis of FPIES is based on clinical presentation. International diagnosis criteria have recently been proposed to improve its diagnosis. Acute FPIES is defined by typical repetitive vomiting starting 1 to 4 hours after ingestion of the culprit food, in association with at least 3 minor criteria. These include some other episode of repetitive vomiting after eating the same or different foods, lethargy, pallor, the need for an emergency department visit or intravenous fluid support; diarrhea,
hypotension or hypothermia.7 Chronic FPIES occurs when the food is regularly consumed, and is mainly reported with cow’s milk (CM) and soy formula ingestion. The diagnosis of chronic FPIES is based on the presence of intermittent emesis, chronic diarrhea, poor weight gain or failure to thrive, which improve after several days to weeks of exclusion of the offending food. After a period of avoidance, acute typical symptoms occur upon reexposure.8 Severe forms of acute FPIES may lead to dehydragtion, and hypovolemic shock is reported in 15\% to 33\% of acute FPIES cases.9–11 IgE sensitization to the culprit food is unusual but may be observed in atypical FPIES.7 Although oral food challenges (OFC) are not necessary for diagnosis when the typical symptoms are present, they are useful in doubtful cases to confirm the diagnosis.7 The offending foods depend on geographic origins.8 The most frequent culprit foods are CM in Europe and North America,6,12–18 soya, rice and grains in North America and Australia,2,4,10,17,19 and fish in Mediterranean countries.13,20 Resolution of FPIES is expected by school age in the majority of cases.8 OFCs are performed to assess tolerance to the food in question, generally 12-18 months after the last reaction.7

In this study we aimed to describe FPIES in a large population of French children, using international diagnosis criteria, and to describe its natural history.7

\textbf{Methods}

\textit{Subjects}

Data from children (0-18 years) with FPIES, referred consecutively to two French pediatric centers (Trousseau and Necker-Enfants Malades, Assistance Publique – Hôpitaux de Paris) between January 2014 and April 2020 were retrospectively collected. The diagnosis of acute FPIES was confirmed if recurrent vomiting was associated with at least 3 minor criteria7, or in the presence of typical vomiting after performance of an OFC.7,21 The diagnosis of acute FPIES was presumptive when the recurrent vomiting was associated with only 2 minor criteria, in the absence of skin or respiratory symptoms, and without any argument for a differential diagnosis.7,8 The diagnosis of chronic FPIES was confirmed in the presence of acute-on-chronic typical symptoms.7 The diagnosis of chronic FPIES was considered to be presumptive in the absence of any acute phase, in children with compatible symptoms, including chronic diarrhea, vomiting, with significant improvement within a few days after avoidance of the offending food, and after exclusion of differential diagnosis (food protein-induced enteropathy, gastrointestinal reflux, cyclic vomiting, anatomical gastrointestinal obstruction, infectious gastroenteritis and inborn errors of metabolism).7,8 When the diagnosis criteria of FPIES were lacking, children were excluded from the study.

\textit{Description of FPIES}

Clinical data related to FPIES were collected: age at onset of first symptoms, age at diagnosis, culprit food(s), description of symptoms, age at OFC, age at acquisition of tolerance (defined as age at negative OFC or claimed regular consumption of the food in question without any reaction), and personal and familial first-degree relative history of atopic disease. Atopic disorder was defined as a history of IgE-mediated food allergy, allergic rhinoconjunctivitis, asthma or atopic dermatitis and/or a positive skin prick test (SPT) or specific IgE. SPTs were performed with the offending food using either a commercial allergen extract, or as a prick-by-prick using fresh food or milk. The SPT was considered to be positive if the diameter of the wheal was at least 3mm larger than the negative control (saline).22 Specific IgE values were considered to be positive if higher than 0.35 kU/L.22 Multiple FPIES was defined as FPIES to several groups of foods, as opposed to single FPIES. Several species of fish were considered as a unique food group, as were vegetables from the cucurbit family for example. Solid foods referred to food other than mammal’s milk.

Acute FPIES was defined as severe if the patient had needed a rapid vascular filling and/or hospitalisation due to dehydration or hypovolemic shock, persistent hypotonia or malaise.

Persistent FPIES was defined as FPIES without the acquisition of tolerance at the end of the follow-up and after at least one year after the first symptoms.
Oral Food Challenges

OFCs were performed to assess FPIES resolution, in medical day units. Children were considered to be tolerant if no symptoms occurred within 4 hours after ingestion of the food in question, and they were able to tolerate one age-appropriate serving regularly at home. We took into account the successful reintroduction performed at home (accidental or voluntary exposure). An OFC failure was diagnosed in the case of recurrence of vomiting, even if isolated, as suggested by Leonard et al. 21

Statistical analyses

Continuous values were expressed as median and interquartile range (IQR) values, or in raw values with a percentage. All statistical analyses and figures were performed using GraphPad Prism version 5.3 for Windows. Mann-Whitney U tests were performed to compare non-parametric variables. Spearman’s coefficients were calculated to assess non-parametric correlations. Fisher’s exact test was used to test independence between data in a 2×2 contingency table and risk factors (relative risk: RR was expressed with the confidence interval). A p-value <0.05 was considered to be significant. Kaplan-Meier survival analyses were performed to estimate the likelihood of outgrowing FPIES by age. The non-tolerant patients were censored at the age of the last follow-up (OFC, consultation or last attempt at a phone call if contact lost, as a follow-up).

Ethics

The study was approved by the French Pediatric Hepato-Gastroenterology and Nutrition’s Ethics Committee (no. 2020-023 of May 2020).

Results

General characteristics of the population

One hundred and seventy-nine (n=179) children with FPIES were included. The female to male ratio was 0.88 (53.1% of boys) (Table I). The median age at the onset of the first symptoms of FPIES was 5.8 months (3.0-8.0) and was younger for CM than for solid foods (Table II). Personal history of atopic disease was found in 67/165 children (40.6%), including 47 children (70.1%) with atopic dermatitis, and 22 children with asthma (32.8%). A total of 113/168 children (67.3%) reported at least one first-degree related family member with a history of atopic diseases (Table I).

FPIES characteristics

A total of 192 FPIES cases were reported. The diagnosis of FPIES was confirmed in 151 cases and was presumptive in 41 cases (Table III). Children with confirmed or presumptive FPIES did not differ in terms of sex ratio, atopic status, age at tolerance or tolerance rate (Table III). Acute or recurrent chronic vomiting were present in all of the children.

Children with acute FPIES had a mean of 3.3 minor criteria (maximum: 7). The most frequent minor criteria were recurrent episodes of repetitive vomiting after eating the same culprit food (84.8%), followed by lethargy (74.5%), pallor (53.1%), the need for an emergency department visit (37.9%), diarrhea (33.1%), the need for intravenous fluid support (27.6%), vomiting after eating a different food (19.3%), and hypotension (4.1%). Hypothermia was not recorded. Lethargy, pallor, an emergency department visit, and intravenous fluid support were more often found in confirmed FPIES cases (p<0.01) (Table III).

Thirteen children (7.3%) experienced severe confirmed acute FPIES (Table III). Two patients required hospitalization in an intensive care unit owing to severe dehydration following ingestion of CM. Eleven patients needed rapid vascular filling during an OFC.

A total of 47 children (26.1%) had chronic FPIES, and CM was the only elicitor of chronic FPIES.

One hundred and sixty-nine (94.4%) children had single FPIES, and 10 (5.6%) had multiple FPIES. Twenty-three culprit foods were identified. CM was involved in 108 children (60.3%), hen’s egg in 29 (16.2%), and fish in 21 (11.7%) (Figure 1). Among the 10 multiple FPIES cases reported, CM was involved in 6 cases.
One child had FPIES to 4 foods (CM, chicken, hen’s egg, and green beans), another one to 3 foods (CM, hen’s egg, maize), and 8 to 2 foods: CM and beef/veal (n=2), CM and soy, CM and raspberry, rice and hen’s egg, rice and banana, coconut and tomato, avocado and cashew nuts.

IgE sensitization

IgE sensitization to the culprit food was found in 28/180 FPIES (14.7%). Skin prick tests with the offending food were performed in 121/192 cases (63.0%) and were positive in 5 cases (4.1%). One child developed an IgE-mediated allergy with the culprit food over time: she had a confirmed typical FPIES to CM until the age of 3 without any sensitization, and had thereafter developed an immediate urticaria and rhinoconjunctivitis after ingestion of CM at 5 years old, with a positive SPT and increased CM’s IgE: 10.9 kU/L. By contrast, a child with a history of IgE-mediated allergy to CM during the first year of life (urticaria after cow’s milk ingestion and specific CM’s IgE: 4.9 kU/L at the age of 1 month), switched to FPIES to CM after 9 months of age. Her specific IgE was negative at this time, and she had repetitive vomiting, without skin or respiratory symptoms, during an OFC to CM at the age of 10 months.

OFC

Two hundred and twelve (n=212) OFCs were performed to assess tolerance. A first OFC was performed in 173 children at 2.0 years of age (1.5-2.9), with a success rate of 74.0%. A second OFC was performed in 33 children at 2.3 years of age (2.0-3.5), with a success rate of 57.6%. A third OFC was performed in 6 children at 3.1 years of age (2.6-3.8), with a success rate of 100%. The interval between two OFCs was 11.7 months (7.0-15.8). In 19 cases of FPIES (12 with confirmed acute FPIES, 2 with confirmed chronic FPIES, 4 with presumptive acute FPIES, and 1 with chronic FPIES), patients reintroduced the food on their own, without any reaction, at a median age of 2.7 years (2.2-3.3).

For milk, the first OFC was performed at the median age of 1.8 years, which was earlier than for other foods (p<0.001), fish (p<0.001), meat and vegetables/legumes/fruits (p<0.01), but not different from hen’s egg and rice (Table II).

Eighteen OFCs were still not performed, because patients were too young and/or their last reaction was too recent and/or because of family refusal. Nine children were lost in the follow-up, including 6 without the performance of any OFCs, and 3 after one attempt at an OFC.

Evolution and Risk factor of failure of OFCs or prolonged FPIES

At the time of the last review of medical records, 151 out of 192 culprit foods were successfully reintroduced (78.6%). Eighty-eight percent of children with FPIES to CM were tolerant, as were 82.8% of those reactive to hen’s eggs, and 52.4% to fish (Table II). Among the tolerant patients, the overall age of tolerance was 2.2 years of age (1.7-3.0, n=150). Kaplan Meier curves showed an overall median survival of FPIES at 2.5 years of age, with a global resolution rate of 80.1% at 5 years of age (Figure 2). The resolution rate at 5 years of age was higher for FPIES to CM than to fish, and was similar for FPIES to CM and hen’s egg (Figure 3).

Performing a reintroduction within the 12 months after the onset of FPIES was associated with an increased risk of failure of an OFC (RR: 2.0 [1.2-3.5]), particularly in children with a severe form of FPIES (p<0.001). Severe acute reactions increased the risk of persistent FPIES (RR: 3.3 [1.2-9.2]). Six patients with a history of severe reactions out of 13 (46.2%) were not tolerant after a median duration of up to 4.3 years of age. The 7 other patients were tolerant at 2.3 years of age.

IgE sensitization against the culprit food was not associated with a longer duration of FPIES among tolerant patients (p=0.3) and was not a risk factor of failure to an OFC (RR: 0.8 [0.3-2.0]).

Neither personal nor familial atopic history were risk factors of persistent FPIES (p=0.15 and 0.9 respectively).

Discussion
In this study, we described the characteristics of a large population of 179 French children with FPIES according to international guidelines. We found that i) culprit foods were ubiquitous as in other international cohorts, but some specific characteristics existed, ii) persistent FPIES was more frequent for fish than for other foods, and in case of severe acute FPIES, but IgE sensitization was not associated with longer duration of FPIES, iii) performing OFC within 12 months after the first reaction increased the risk of failure.

In our study, the main culprit food was CM, followed by hen’s egg, and fish, which differs from the findings in other countries. The most frequent culprit food was fish (54%) in Greece and Spain (70.6%), rice in Australia and the USA, and oats (34.5%) in Taiwan. Soy is frequently reported as a trigger food by North American, British, Australian and Israeli cohorts and was infrequent in our population. Food habits, geographic origins, genetic factors, microbiota, and other environmental pre- or postnatal factors may explain these differences.

Among the 108 patients with FPIES to CM, only 2 had a documented FPIES to beef or veal. One patient had single FPIES to beef. Cross-reactivity between CM and beef is estimated at up to 20% in IgE-mediated allergies. This meat is frequently avoided by caregivers of FPIES-children. However, the prevalence of FPIES to beef is estimated between 0.8% to 3.0% of children with FPIES. Although beef is considered as a “moderate-risk” food, our data suggest that having FPIES to CM does not increase the risk of associated FPIES to beef.

The overall age of resolution of FPIES was 2.2 years of age for all foods. The age at resolution was based on the day of performance of an OFC and thus may be overestimated. Some data suggests that tolerance occurred later for solid foods than for CM, but results diverge. Miceli Sopo et al. reported an age of tolerance of 2.0 years for FPIES to CM and 4.4 years for other foods (p<0.0006), whereas other authors did not find any difference. We found that the acquisition of tolerance was delayed by 6 months for solid foods compared to CM. Previous studies suggested that the later age of tolerance relates to the ingestion of seafood products and may occur more frequently in cases of multiple FPIES. Resolution of FPIES to fish is around 18.8% to 57.0% of cases between 3 to 4.5 years of age. We found a similar rate of 38% tolerance at 4.0 years of age, with an older age of resolution for fish than CM. Due to the low prevalence of multiple FPIES in our cohort, we were unable to compare the age of resolution of single and multiple FPIES.

The recurrence of repetitive vomiting, lethargy and pallor were the 3 most frequently observed minor criteria. Lethargy and pallor are criteria with large variability in studies (from 3.8% to 100% for lethargy; from 14% to 98.7% for pallor). We did not find any hypothermia in FPIES histories, as is the case for Dieme et al. Hypothermia is indeed an uncommon symptom, from 6% in Spain-Italy to 10% in Australia, but up to 31.2% of patients according to caregivers from the International FPIES Association. Some minor criteria (such as hypothermia, hypotension, pallor and lethargy) are difficult to identify during the in-depth family interviews, and even worse in retrospective reviews of medical records.

We included patients suffering from acute and chronic presumptive FPIES if the history was compatible with the diagnosis of FPIES without an argument for a differential diagnosis, as previously described. The hypothesis that this may affect our results is unlikely because general characteristics and the prognosis in children with confirmed and presumptive FPIES did not differ. Recent data demonstrated how the different FPIES diagnostic criteria proposed over time provide conflicting results in patients with a high clinical suspected likelihood of acute FPIES. Despite multiple reactions to the same offending food, one quarter of the cohort of Vazquez-Ortiz et al. did not meet the criteria from the “2017 consensus”, especially when severity was mild, as was the case for us. Accordingly, we cross-referenced our 145 acute FPIES patients to other definitions. We found 61.4% of patients who fulfilled the Powell criteria modified by Sicherer in 1998, 61.4% (up to 84.8% without the age criteria) according to Leonard, 24.1% with Miceli Sopo’s 2013 definition (up to 27.6% without the age criteria), 91.1% according to Lee. Different phenotypes of FPIES may exist depending on geographic origins or culprit foods which could explain the variability of the symptoms previously described.
Performing an OFC in the first year after the diagnosis resulted in an increased risk of failure, confirming that an OFC should generally be considered at least 12 months after the last reaction. For fish, one must be even more patient, because experts recommend postponing the performance of an OFC until 5 years of age or older, and testing tolerance to alternative fish to avoid an unnecessarily fish-free diet. Like Infante et al., we found that severe reactions at any moment were associated with a risk of longer duration of FPIES. Limited data suggest that atypical FPIES with positive specific IgE is associated with delayed tolerance. This was not confirmed in our cohort, although sensitization (IgE and/or skin prick test) (14.7%) were similar compared to other studies (11.1%-34%). Atopic disorder was found in 41% of patients and eczema in 29%. This is concordant with American and Australian cohorts where eczema is reported in 11% to 57% of patients with FPIES. Children with FPIES often have associated atopic conditions (atopic dermatitis, IgE-food allergy, asthma, allergic rhinitis). Even if FPIES is not an atopic disease per se, this suggests that FPIES and other atopic comorbidities share common pathophysiology. We reported a lower frequency of multiple FPIES (5.6%) than in the literature which is commonly reported at around 30%. This may result from the use of stringent criteria for the diagnosis of FPIES and the retrospective design of the study. Despite medical charts studied, for multiple FPIES in 13.4% of cases as per other series, we only retained FPIES with a specific clinical description. The prevalence of multiple FPIES ranges from 5.1% to 69.0%. These variations of prevalence could be explained by the fact that patients had been referred to tertiary centers in the case of multiple and more complex cases of FPIES. Secondly, it may be easier to diagnose multiple FPIES in children with a previous diagnosis of FPIES. It is interesting to note that, even if the incidence of single FPIES is generally more prevalent than multiple FPIES, families report in 69.7% of cases an avoidance of at least 2 food groups. Consequently, the risk of developing food aversion is significantly increased in FPIES triggered by 3 or more foods, by a factor of 3. Therefore, avoidance should be limited only to the confirmed offending foods. Supervised introduction allows for the prevention of unnecessary exclusion and overdiagnosis of multiple FPIES.

Our study had certain limitations. The decision to include patients with acute vomiting and only 2 minor criteria could be one such limit, as previously explained. The retrospective aspect of our study is another limitation, owing to missing data, and in particular in terms of the description of minor criteria and multiple FPIES. Familial history of atopic disease was self-reported, which leads to a typical bias of over-reporting allergic symptoms. In terms of further studies, researching a link between maternal feeding, mode of delivery, previous anti-acid treatment and frequency of antibiotic use and the occurrence of FPIES could be interesting, by exploring the field of gut dysbiosis.

Conclusion

In summary, we reviewed a large French cohort of children with FPIES. The main culprit foods were CM, hen’s egg, and fish. The overall prognosis remained good, as half of the cohort had outgrown FPIES by 2 years of age. FPIES to seafood products and severe forms of FPIES were associated with delayed tolerance. IgE sensitization was not a risk factor for persistent FPIES.

References

1. Katz Y, Goldberg MR, Rajuan N, Cohen A, Leshno M. The prevalence and natural course of food protein–induced enterocolitis syndrome to cow’s milk: A large-scale, prospective population-based study. J Allergy Clin Immunol. 2011;127(3):647-53.e1-3.
2. Mehr S, Frith K, Barnes EH, Campbell DE. Food protein-induced enterocolitis syndrome in Australia: A population-based study, 2012-2014. J Allergy Clin Immunol. 2017;140(5):1323-1330.
3. Alonso SB, Ezquiaga JG, Berzal PT, et al. Food protein–induced enterocolitis syndrome: Increased prevalence of this great unknown—results of the PREVALE study. J Allergy Clin Immunol. 2019;143(1):430-433.
4. Ruffner MA, Wang KY, Dudley JW, et al. Elevated Atopic Comorbidity in Patients with Food Protein-Induced Enterocolitis. *J Allergy Clin Immunol Pract*. 2020;8(3):1039-1046.

5. Katz Y, Goldberg MR, Rajuan N, Cohen A, Leshno M. The prevalence and natural course of food protein-induced enterocolitis syndrome to cow’s milk: A large-scale, prospective population-based study. *J Allergy Clin Immunol*. 2011;127(3):647-653.

6. Miceli Sopo S, Giorgio V, Iacono I Dello, Novembre E, Mori F, Onesimo R. A multicentre retrospective study of 66 Italian children with food protein-induced enterocolitis syndrome: Different management for different phenotypes. *Clin Exp Allergy*. 2012;42(8):1257-1265.

7. Nowak-Wegrzyn AH, Chehade M, Groetch ME, Spergel JM, Wood RA, Allen K. International consensus guidelines for the diagnosis and management of food protein–induced enterocolitis syndrome: Executive summary—Workgroup Report of the Adverse Reactions to Foods Committee, American Academy of Allergy, Asthma & Immunology. *J Allergy Clin Immunol*. 2017;139(4):1111-1126.e4.

8. Nowak-Wegrzyn A, Berin C, Mehr S. Food protein-induced enterocolitis syndrome. *J Allergy Clin Immunol Pr*. 2020;8(1):24-35.

9. Sicherer SH, Eigenmann PA, Sampson HA. Clinical features of food protein-induced enterocolitis syndrome. *J Pediatr*. 1998;133(2):214-219.

10. Caubet JC, Ford LS, Sickles L, et al. Clinical features and resolution of food protein-induced enterocolitis syndrome: 10-year experience. *J Allergy Clin Immunol*. 2014;134(2):382-389.

11. Maciag MC, Bartnikas LM, Sicherer SH, et al. A Slice of FPIES (food protein-induced enterocolitis syndrome): Insights from 441 children with FPIES as provided by caregivers in the International FPIES Association. *J Allergy Clin Immunol Pract*. 2020;8(5):1702-1709.

12. Ruffner MA, Ruymann K, Barni S, Gianferoni A, Brown-Whitehorn T, Spergel JM. Food Protein-induced Enterocolitis Syndrome: Insights from Review of a Large Referral Population. *J Allergy Clin Immunol Pr*. 2013;1(4):343-349.

13. Xepapadaki P, Kitsioulis NA, Manousakis E, Manolaraki I, Douladiris N, Papadopoulos NG. Remission Patterns of Food Protein-Induced Enterocolitis Syndrome in a Greek Pediatric Population. *Int Arch Allergy Immunol*. 2019;180(2):113-119.

14. Bidat E. [Food protein-induced enterocolitis syndrome (FPIES): Various presentations]. *Rev Fr Allergol*. 2018;58:106-110.

15. Miceli Sopo S, Bersani G, Cerchiara G, Monaco S. Oral food challenge with a mixture of ‘at risk’ foods in children with FPIES. *Pediatr Allergy Immunol*. 2016;27(8):874-876.

16. Ludman S, Harmon M, Whiting D, du Toit G. Clinical presentation and referral characteristics of food protein-induced enterocolitis syndrome in the United Kingdom. *Ann Allergy Asthma Immunol*. 2014;113(3):290-294.

17. Nowak-Wegrzyn A, Sampson HA, Wood RA, Sicherer SH. Food protein-induced enterocolitis syndrome caused by solid food proteins. *Pediatrics*. 2003;111(4):829-835.

18. Delahaye C, Chauveau A, Kiefer S, Dumond P. [Food protein-induced enterocolitis syndrome (FPIES) in 14 children]. *Arch Pediatr*. 2017;24(4):310-316.

19. Blackman AC, Anvari S, Davis CM, Anagnostou A. Emerging Triggers of FPIES: Lessons from a Pediatric Cohort of 74 Children in the US. *Ann Allergy Asthma Immunol*. 2019;122(4):407-411.

20. Douros K, Tsabouri S, Feketea G, et al. Retrospective study identified fish and milk as the main culprits in cases of food protein-induced enterocolitis syndrome. *Acta Paediatr*. 2019;108(10):1901-1904.
21. Leonard SA, Pecora V, Giovanni Fiocchi A, Nowak-Wgrzyn A. Food Protein-Induced Enterocolitis Syndrome (FPIES): Review of Recent Guidelines. World Allergy Organ J. 2018;11(4):1-9.

22. Kowalski ML, Ansotegui I, Aberer W, et al. Risk and safety requirements for diagnostic and therapeutic procedures in allergology: World Allergy Organization Statement. World Allergy Organ J. 2016;9(1):33.

23. Blanc S, De Boissieu D, Bourrier T, et al. [Food protein-induced enterocolitis syndrome: a French cohort of 81 children]. Rev Fr Allergol. 2015;55(3):212.

24. Bidat E, Benoist G. [Food protein-induced enterocolitis syndrome]. Presse Med. 2016. doi:10.1016/j.lpm.2016.09.007

25. Miceli Sopo S, Bersani G, Monaco S, et al. Ondansetron in acute food protein-induced enterocolitis syndrome, a retrospective case-control study. Allergy. 2017;72(4):545-551.

26. Diaz J, Espin B, Segarra O, et al. Food protein-induced enterocolitis syndrome: data from a multicenter retrospective study in Spain. J Pediatr Gastroenterol Nutr. 2019;68(2):232-236.

27. Dieme A, Benoist G, Feuillet-Dassonval C, Tressol C, Valean A, Bidat E. [Oral food challenge in Food Protein-Induced Enterocolitis Syndrome (FPIES): A retrospective study]. Rev Fr Allergol. 2020;60(3):131-137.

28. Pérez Ajami RI, Carrión Sari SK, Aliaga Mazas Y, Calvo JB, Guallar Abadía MI. Experience in food protein-induced enterocolitis syndrome in a paediatric allergy clinic. An Pediatr. 2020;92(6):e459-64.

29. Su K-W, Patil SU, Stockbridge JL, et al. Food aversion and poor weight gain in food protein-induced enterocolitis syndrome: a retrospective study. J Allergy Clin Immunol. 2020;145(5):1430-1437.

30. Levy Y, Danon YL. Food protein-induced enterocolitis syndrome – not only due to cow’s milk and soy. Pediatr Allergy Immunol. 2003;14(4):325-329.

31. Nowak-Węgrzyn A, Jarocka-Cyrla E, Moschione Castro A. Food Protein-Induced Enterocolitis Syndrome. J Investig Allergol Clin Immunol. 2017;27(1):1-18.
40. Gonzalez-Delgado P, Caparros E, Moreno MV, et al. Clinical and immunological characteristics of a pediatric population with food protein-induced enterocolitis syndrome (FPIES) to fish. *Pediatr Allergy Immunol*. 2016;27(3):269-275.

41. Vila L, Garcia V, Rial MJ, Novoa E, Cacharron T. Fish is a major trigger of solid food protein-induced enterocolitis syndrome in Spanish children. *J Allergy Clin Immunol Pract*. 2015;3(4):621-623.

42. Leonard SA, Nowak-Wegrzyn A. Clinical diagnosis and management of food protein-induced enterocolitis syndrome. *Curr Opin Pediatr*. 2012;24(6):739-745.

43. Miceli Sopo S, Greco M, Monaco S, Tripodi S, Calvani M. Food protein-induced enterocolitis syndrome, from practice to theory. *Expert Rev Clin Immunol*. 2013;9(8):707-715.

44. Caubet JC, Benchiritiwong R, Ross A, et al. Humoral and cellular responses to casein in patients with food protein-induced enterocolitis to cow’s milk. *J Allergy Clin Immunol*. 2017;139(2):572-583.

45. Adel-Patient K, Lezmi G, Castelli FA, et al. Deep analysis of immune response and metabolic signature in children with food protein-induced enterocolitis to cow’s milk. *Clin Transl Allergy*. 2018;8(38):1-19.

46. Steinegger L, Regenass S, Bachmann LM, Probst E, Steiner UC. Atopy and related clinical symptoms among Swiss medical students from 2007 to 2015. *Allergy Asthma Clin Immunol*. 2018;14(4):10-15.

Table I: General characteristics of the population

Total population (n=179)
Sex ratio (female/male) (% boys)
Age at first symptoms (months)
Positive specific IgE
Positive skin prick test

Personal atopic history
- IgE-mediated food allergy: 67/165 (40.6%)
- Asthma: 10/179 (5.6%)
- Atopic dermatitis: 22/164 (13.4%)
- Rhinoconjunctivitis: 47/165 (28.5%)

First relative atopic history
- Father: IgE-mediated food allergy: 113/168 (67.3%)
- Asthma: 7/169 (4.1%)
- Atopic dermatitis: 18/169 (10.7%)
- Rhinoconjunctivitis: 18/169 (10.7%)

Table II

Cow’s milk (n=108)	Solid foods (n=83)	Hen’s egg (n=29)	Fish (n=21)	Vegetables, Legumes and Fruits (n=21)	Rice (n=6)	Meat (n=5)	
Age at first symptoms (months)	3.0 (1-5.3)	8.0 (6.0-12.0)	8.0 (6.0-9.0)	8.0 (6.0-12.5)	10.5 (7.8-12.3)	5.0 (4.3-5.8)	11.1 (9.5-14.8)
(n=107)	**(n=76)**	**(n=27)**	**(n=19)**	**(n=20)**	**(n=6)**	**(n=4)**	
Age at first OFC (years)	1.8 (1.3-2.5)	2.6 (1.9-3.3)	1.9 (1.7-2.8)	3.0 (2.6-5.2)	2.6 (2.1-3.1)	1.9 (1.4-2.7)	5.3 (4.3-6.2)
(n=105)	**(n=67)**	**(n=26)**	**(n=16)**	**(n=17)**	**(n=5)**	**(n=3)**	
Tolerant patients	95 (88.0%)	56 (67.5%)	24 (82.8%)	11 (52.4%)	14 (66.7%)	5 (83.3%)	2 (40.0%)
	Cow’s milk (n=108)	Solid foods (n=83)	Hen’s egg (n=29)	Fish (n=21)	Vegetables, Legumes and Fruits (n=21)	Rice (n=6)	Meat (n=5)
-----------------------------	---------------------	-------------------	----------------	-------------	--------------------------------------	-----------	-----------
Age of tolerance (years)	2.0 (1.5-2.9) **	2.6 (1.9-3.0) ***	2.2 (1.8-2.8) **	2.9 (2.3-4.5) ***	2.6 (2.0-3.1) **	1.9 (1.4-2.7) **	5.2 (4.2-6.1) **

Table II: Comparisons between cow’s milk and the other culprit foods, in terms of age at the onset of the first symptoms, first OFC, and resolution.

Age expressed in median months or years (interquartile range). OFC: Oral Food Challenge. Comparison between cow’s milk and the other foods, except for difference between tolerance for milk and meat (“Meat” group too low): * p < 0.001; ** p < 0.01; *** p < 0.05

Table III: FPIES characteristics

Confirmed N=151	Presumptive N=41	p		
Acute FPIES	112 (74.2%)	33 (80.5%)	0.5	
Chronic FPIES	39 (25.8%)	8 (19.5%)	0.5	
Sex ratio (male/female) (% boys)	76/75 (50.3%)	20/21 (48.8%)	1.0	
Atopic history Personal	52/140 (37.1%) 44/145	20/37 (54.1%) 16/36	0.09 0.1 0.6 0.5	
Paternal Maternal	(30.3%) 68/145	(44.4%) 19/36 (52.8%)		
Siblings	46.9% 17/33 (51.5%)	4/11 (36.4%)		
Age at first symptoms (months)	5.0 (3.0-8.0)	6.0 (3.7-10.5)	0.049	
Main culprit food	93 (61.6%) 20 (13.2%)	15 (36.6%) 9 (22.0%) 8	0.005 0.2 0.9 0.5	
Cow’s milk Hen’s egg	13 (8.6%) 25 (16.6%)	(19.5%) 9 (22.0%)		
Fish Other foods	Minor Criteria (acute FPIES) (mean)	3.7 per FPIES 98/112	2 per FPIES 25/33	<0.001 0.1 0.006
Reurrent vomiting	(80.4%) 71/112	(6/32 (18.2%) 6/33	<0.001 0.1 0.3 -	
after same food	(63.4%) 49/112	(18.2%) 7/33 (21.2%)		
Lethargy Pallor	(43.8%) 41/112	1/31 (3.2%) 3/33		
Emergency department visit Diarrhea	(36.6%) 39/112	(9.1%) 0/23		
Intravenous fluid support	(22.3%) 6/87 (6.9%)	0		
Hypotension Hypothermia	Positive IgE	20/142 (14.1%)	8/38 (21.1%)	0.3
Severe form	13 (8.6%)	0	0.07	
Age at first OFC	2.0 (1.4-2.9)	2.3 (0.8-2.9)	0.3	
Age at tolerance	2.1 (1.7-3.0)	2.5 (1.6-2.9)	0.7	
Number of tolerant patients	114 (75.5%)	37 (90.2%)	0.05	
Figure 1: Number of patients according to the offending foods

Milk: $n=108$; Hen’s egg: $n=29$; Fish: $n=21$; Vegetables, legumes and fruits: $n=21$ (apple, apricot, avocado, banana, broccoli, cashew nuts, coconut ($n=2$), cucurbits ($n=2$), green beans, green peas, mushroom ($n=2$), peanut, pineapple, raspberry, soy, sweet potato ($n=2$), tomato); Cereals: $n=8$ (maize, rice and rice hydrolysate ($n=6$), wheat); Meat: $n=5$ (beef ($n=3$), chicken ($n=2$)).

Figure 2: Overall Kaplan-Meier survival curve

Figure 3: Kaplan-Meier survival curves for milk, solid food, hen’s egg, fish and likelihood of FPIES resolution by age and food

Milk: likelihood of FPIES resolution by 1 year of age: 5.6%; by 2 years of age: 42.8%; by 3 years of age: 70.9%; by 5 years of age: 90.7%

Solid foods: likelihood of FPIES resolution by 1 year of age: 2.5%; by 2 years of age: 24.4%; by 3 years of age: 52.7%; by 5 years of age: 66.2%

Hen’s egg: likelihood of FPIES resolution by 1 year of age: 3.5%; by 2 years of age: 40.0%; by 3 years of age: 74.3%; by 5 years of age: 87.1%

Fish: likelihood of FPIES resolution by 1 year of age: 4.7%; by 2 years of age: 14.3%; by 5 years of age: 38.1%; by 10 years of age: 56.7%