Prostaglandin E2-induced IL-23p19 Subunit Is Regulated by cAMP-responsive Element-binding Protein and C/AATT Enhancer-binding Protein β in Bone Marrow-derived Dendritic Cells.*[5]

Received for publication, July 20, 2012, and in revised form, August 30, 2012. Published, JBC Papers in Press, September 12, 2012, DOI 10.1074/jbc.M112.402958

Virginia P. Kocieda¹, Sabina Adhikary¹, Frances Emig³, Jui-Hung Yen³, Miguel G. Toscano³, and Doina Ganea¹

From the ¹Department of Microbiology and Immunology and ³Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 and ⁴Human DNA Variability Department, Pfizer-Universidad de Granada-Junta de Andalucía Centre for Genomics and Oncological Research (GENYO), Granada 18018, Spain

 backgrounds: The molecular mechanisms involved in IL-23 up-regulation by PGE2 are not elucidated.
Results: PGE2 induces IL-23p19 through the EP4 cAMP-PKA/EPAC-CREB/C/EBPβ signaling pathway.
Conclusion: PGE2 synergizes with TLR ligands and with proinflammatory cytokines such as TNFα to up-regulate Il23a gene expression.
Significance: Understanding is gained of one of the major functions of PGE2 leading to activation of pathogenic Th17 cells.

We reported previously that prostaglandin E2 (PGE2) up-regulates IL-23 in vitro in bone marrow-derived dendritic cells and in vivo in models of collagen-induced arthritis and inflammatory bowel disease, leading to preferential Th17 development and activity. There is very little information on the molecular mechanisms involved in the PGE2-induced up-regulation of Il23a gene expression. In this study we investigated the signaling pathways and transcription factors involved in the stimulatory effect of PGE2. Although PGE2 does not induce IL-23p19 expression by itself, it synergizes with both extra- and intracellular Toll-like receptor ligands and with inflammatory cytokines such as TNFα. We established that the effect of PGE2 in conjunction with either LPS or TNFα is mediated through the EP4 receptor and the cAMP-dependent activation of both protein kinase A (PKA) and exchange protein activated by cAMP (EPAC). Using the EP4 agonist PGE2OH in conjunction with TNFα, we found that PKA-induced phosphorylation of cAMP-response element-binding protein (CREB) and EPAC-induced phosphorylation of C/AATT enhancer-binding protein β (C/EBPβ) mediate the stimulatory effect of PGE2 on IL-23p19 expression. This is the first report of CREB and C/EBPβ involvement in Il23a promoter activation. Mutation within the putative CREB and C/EBP sites combined with in vivo DNA binding (ChIP) assays identified the distal CREB site (−1125) and the two proximal C/EBP sites (−274 and −232) as essential for PKA-activated CREB and EPAC-activated C/EBPβ-induced IL-23p19 expression.

Prostaglandin E2 (PGE2), the most abundant prostanooid generated from the arachidonic acid released from the plasma membrane, is a pleiotropic lipid mediator involved in a variety of physiological functions. In immune cells, in response to inflammatory stimuli such as TLR ligands or proinflammatory cytokines, there is a rapid induction of cyclooxygenase 2 (COX2) and of microsomal PGE2 synthase 1 that results in production and release of PGE2 (for review, see Refs. 1 and 2). The role of PGE2 in inflammation remains paradoxical, with almost equal numbers of reports indicating pro- and anti-inflammatory functions. This presumably results from the expression of various PGE2 receptors (EP1–4) by different cells and from the existence of several independent signaling pathways for some of these receptors (for review, see Refs. 3–5).

In vitro experiments support an anti-inflammatory role, with PGE2 inhibiting the expression of most proinflammatory cytokines and chemokines in innate immune cells, reducing T cell proliferation and inhibiting differentiation into Th1 cells (for reviewed, see Refs. 5 and 6). However, in vivo experiments using mice deficient in the various components of the arachidonic acid → PGE2 axis, such as cytosolic cPLA2α, COX2, microsomal PGE2 synthase 1, and EP4, or wild type mice treated with specific EP receptor agonists or antagonists showed resistance or reduced disease symptoms in models of arthritis, experimental autoimmune encephalomyelitis (EAE), and cerebral ischemia (for review, see Refs. 1 and 7–9).

Th17 effector cells have been shown recently to play an important role in autoimmune diseases such as rheumatoid arthritis and multiple sclerosis (10–12). Although originally Th17 differentiation from naïve CD4+ T cells was thought to

The abbreviations used are: PGE2, prostaglandin E2; 8'-CPT, 8'-CPT-2Me-cAMP; ART, protein kinase B; C/EBP, C/AATT enhancer-binding protein; CREB, cAMP-responsive element binding protein; EP, E-prostanoid receptor; EPAC, exchange protein activated by cAMP; PGE, OH, prostaglandin E1 alcohol; PKI (6–22), PKA peptide inhibitor amide; TLR, Toll-like receptor; TF, transcription factor; EAE, experimental autoimmune encephalomyelitis; DC, dendritic cells.

* This work was supported, in whole or in part, by National Institutes of Health Grants 2R01AI052306, 2T32AI007101-30, and 3RO1AI084065-03S1 (to D. G.) and by Bridge To Doctorate funding (National Science Foundation; to V. P. K.).

† This article contains supplemental Figs. 1–4.

‡ To whom correspondence should be addressed: Temple University School of Medicine, Dept. of Microbiology and Immunology, 3500 N. Broad St., Philadelphia, PA 19140. Tel.: 215-707-9921; Fax: 215-707-7788; E-mail: dganea@temple.edu.
PGE2-induced IL-23 Is Regulated by CREB and C/EBPβ

depend on IL-6 and TGFβ1, with IL-23 being required only for the expansion and maintenance of the Th17 phenotype, recent developments changed this paradigm. In models of colitis and EAE, a new type of Th17 cells that co-express Rorγt and Tbet and therefore are IL-17^+ IFNγ^+, were generated in the presence of IL-23 and absence of TGFβ1 and shown to accumulate in the intestine and CNS, respectively (13, 14). Recently, most of the IFNγ-producing T cells that migrated to the spinal cord of EAE mice were shown to have originated from T cells that produced IL-17 before their conversion by IL-23 (15). In EAE, in addition to Th17 cells, IL-23 also targets a subset of pathogenic γδT cells that express IL-23R constitutively and suppress the generation and function of Foxp3^+ Treg (16). All this recent information points to IL-23 as a central proinflammatory cytokine involved in inflammatory and autoimmune diseases (for review, see Ref. 17).

IL-23 is a heterodimer consisting of the unique p19 subunit and p40, a subunit shared with IL-12 (18). IL-23 is produced primarily by stimulated antigen-presenting cells including macrophages, dendritic cells (DC), monocytes, and microglia through signaling involving PI3K, MAPK, and NFκB (19–21). A number of positive Il23a (p19) transcription factors including c-Rel, AP-1, ATF-2, and SMAD-3 as well as negative regulators such as IRF-1 control IL-23p19 expression in macrophages and/or DC (22–25).

We reported for the first time that PGE2 up-regulated IL-23 while inhibiting IL-12 production in vitro in bone marrow-derived DC and in vivo in models of collagen-induced arthritis and inflammatory bowel disease, resulting in preferential Th17 cell differentiation and activity (26–29). Up-regulation of IL-23 production by exogenous and endogenous PGE2 and the switch in the IFNγ/IL-17 balance in favor of IL-17 was confirmed in mouse and human DC as well as human T cells (30–33). Little is known about the mechanisms involved in the PGE2 effect on IL-23a gene expression. Here, we investigated the PGE2-induced signaling pathways in bone marrow-derived murine DC from EP receptors to transcription factor activation and binding to the p19 promoter.

EXPERIMENTAL PROCEDURES

Mice—6–8-Week-old male B10.A mice were purchased from The Jackson Laboratory (Bar Harbor, ME) and were maintained in the Temple University School of Medicine (Philadelphia, PA) animal facility under pathogen-free conditions. Mice were handled and housed in accordance with the guidelines of the Temple University Animal Care and Use Committee.

Reagents—Prostaglandin E2, LPS (Escherichia coli O26:56), and indomethacin were purchased from Sigma. granulocyte-macrophage colony-stimulating factor and TNFα were purchased from Peprotech Inc. (Rocky Hill, NJ). Butaprost, sulprostone, and PGE, OH were purchased from Cayman (Ann Arbor, MI). Dibutyryl cAMP, the exchange protein activated by cAMP (EPAC)-specific activator 8-CPT-2’OMe-cAMP (8’-CPT), forskolin, H89, LY294002, wortmannin, and KT5720 were purchased from Calbiochem. The PKA peptide inhibitor, PKI (6–22), amide and antibodies to total CEBPβ and phospho-CEBPβ were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies to rabbit-CREB (clone D76D11), mouse-phospho-CREB (Ser-133) (1B6), mouse-phospho-AKT, and total AKT were purchased from Cell Signaling Technology (Beverly, MA). Antibodies to rabbit GST were purchased from Abcam Inc. (Cambridge, MA).

Bone Marrow-derived DC (BMDC) and DC2.4 Cells—BMDC were generated in vitro from bone marrow cells as previously described (34). The DC2.4 cell was derived from C57BL/6 bone marrow cells and was generously provided by Dr. Kenneth L. Rock (University of Massachusetts Medical Center, Worcester, MA). The cells were maintained in RPMI 1640 medium supplemented with 10% heat-inactivated FBS, 2 mM l-glutamine, 50 μM β-mercaptoethanol, and 1% minimum Eagle’s medium nonessential amino acids.

IL-23 and IL-12p70 ELISA—Purified CD11c+ BMDC (2 × 10^6 cells/ml) were treated as described under “Results.” Supernatants collected 8 h later (for IL-23) and 24 h later (for IL-12p70) were assayed by sandwich ELISA. Antibodies for anti-mouse IL-23p19 and biotin-conjugated anti-mouse IL-12/IL-23p40 were purchased from Ebioscience (San Diego, CA). Antibodies for anti-mouse IL-12p70 and biotin-conjugated anti-mouse IL-12p40 were purchased from BD Biosciences.

Detection of IL-23p19 Initial Transcripts—DC were treated as described under “Results” for 1 h, and 1 μg of RNA was reverse-transcribed. The Moloney murine leukemia virus reverse transcriptase was not added to the “No RT” (see Fig. 2) duplicate sample to control for genomic DNA amplification. Sequences for the primers used for measuring p19 primary transcript were as follows: p19 intron #1 sense 5’-TCTTTGATGTCACG-3’ and p19 exon #2 antisense 5’-AACCTTTCCAGTCTTCAAGTG-3’.

Real-time PCR—The SYBR Green-based real time PCR technique was used to detect the expression of p19, p40, p35, and COX-2 as previously described (34). Primers used for the real-time PCR reaction were designed using Primer-BLAST. The sequences for each primer are as follows: IL-23p19 sense (5’-TGCTGGATTGACAGGCTTAA-3’) and antisense (5’-ATGCAGAGATTCCGAGAGA-3’); IL-12p35 sense (5’-CTGTTGCTGGTAGACATCTATG-3’) and antisense (5’-TGAGGTTCACTGTTTCT-3’); IL-12p40 sense (5’-TTGTGTTGACATCTGTTTCTG-3’) and antisense (5’-ACAGGTTAGGTTCTACTGGTTC-3’); COX-2 sense (5’-CTTACTTCGATGTGCAGATCA-3’) and antisense (5’-CAGGAAATCAAGAGTCATCA-3’); and β-actin sense (5’-GAGATGACACACACACAGG-3’) and antisense (5’-CAGATTCCTTCCTTACC-3’).

The cycling conditions were 95 °C for 15 s and 60 °C for 1 min for 40 cycles followed by a melting point determination or dissociation curves. The expression level of each gene is indicated by the number of cycles needed for the cDNA amplification to reach a threshold. The amount of DNA is calculated from the number of cycles calibrated to a standard curve to produce copy numbers that are normalized to the housekeeping gene β-actin. Some calculations include an additional normalization to media to show -fold change in expression.

FACS Analysis for Phospho-AKT—Cells were treated as indicated and then fixed, permeabilized, and incubated with anti-rabbit phospho-AKT and anti-rabbit AKT for 40 min at room temperature followed by Alexa-conjugated goat anti-rabbit IgG.
(Invitrogen) for 30 min in the dark at room temperature. Data were collected for 10,000 cells and analyzed by FACS.

Transcription Binding Assay—The protein/DNA array 1 (Panomics, Santa Clara, CA) was used to assay the levels of 56 different transcription factors (TF) by binding to oligonucleotides that contain the corresponding consensus sequences. Nuclear extracts were isolated by using the nuclear extract kit (Active Motif, Carlsbad, CA) from 8 × 10⁶ DC stimulated with TNFα (100 ng/ml), PGE₂ (1 μM), or a combination of TNFα and PGE₂, for 1 h. 10 μg of nuclear extract proteins were used for the array, as recommended by the manufacturer. Fernando probes hybridizing to the array membrane were detected by using IRDye 680 streptavidin antibody (Licor Biosciences, Lincoln, NE), and scanning was done by using the Odyssey Infrared Imaging System (Licor Biosciences).

Chromatin Immunoprecipitation Assay (ChIP)—10–20 million DC were treated and fixed with 1% formaldehyde for 15 min. Fixation was stopped by treatment with 125 mM glycine for 10 min. Cells were washed twice with ice-cold phosphate-buffered saline containing protease inhibitors, collected, and processed as previously described (35). 10% input DNA and whole cell lysates were analyzed by SDS-PAGE/Western Blot. 20–30 μg of whole protein lysate were mixed with 6× sample buffer and boiled for 5 min. The boiled samples were loaded into 10% SDS-PAGE gels. Separated protein samples were transferred onto polyvinylidene fluoride membranes (Bio-Rad) and probed with primary antibodies at 1:1,000 dilutions in Odyssey blocking buffer (LiCor Biosciences). Goat-α-mouse IRDye 800CW and goat-α-rabbit IRDye 680CW antibodies (LiCOR Biosciences) were used as secondary antibodies. Transferred proteins were visualized by using the Odyssey infrared image system (LiCOR Biosciences).

Statistics—Results are expressed as the mean ± S.D. Comparisons between multiple groups were performed by analysis of variance and followed by the Bonferroni t test. Statistical significance was determined as:* p < 0.05; **p < 0.01; ***p < 0.001. Data were analyzed using Graphpad Prism 5 software.

RESULTS

PGE₂-induced IL-23 is Regulated by CREB and C/EBPβ

We used PGE₂ at 1 μM, the concentration previously determined with our previous results, to show here that PGE₂ increases IL-12p70 release from bone marrow-derived DC. Consistent with our previous results, we showed here that PGE₂ increases IL-23p19 expression and protein production while suppressing IL-12p40 production (13). We used PGE₂ på 1 μM, the concentration previously determined with our previous results, to show here that PGE₂ increases IL-12p70 release from bone marrow-derived DC. Consistent with our previous results, we showed here that PGE₂ increases IL-12p40 production (13).
mined as optimal (results not shown). Although PGE2 alone did not induce significant p19 expression, it synergized with both extra- and intracellular TLR signaling (Fig. 1B).

To determine which of the four EP receptors was involved in the effect of PGE2 on p19 expression, we used selective agonists in combination with LPS. We reported previously that murine bone marrow-derived DC expressed primarily EP2 and EP4 (36). Similar to PGE2, treatment with agonists alone did not induce p19 expression. In the presence of LPS, both butaprost and especially PGE1OH led to an increase in p19 expression (Fig. 1C). Butaprost is an EP2-selective agonist, and PGE1OH binds to EP4 and with lower affinity to EP3. Because sulprostone, a selective EP3 agonist, did not increase p19 expression, we concluded that the effect of PGE1OH was mediated through

![FIGURE 1. PGE2 increases TLR-induced IL-23 in DC.](image-url)
PGE2-induced IL-23 Is Regulated by CREB and C/EBPβ

EP4 and that the EP4 receptor was significantly more effective than EP2. Therefore, we used PGE1OH in most of the subsequent experiments. Similar results were obtained in terms of IL-23-secreted protein, with PGE2OH as the major inducer (Fig. 1D). In addition, PGE2OH inhibited IL-12p70 release as the same level as PGE2 (Fig. 1E), supporting the involvement of EP4 in switching the IL-12/IL-23 balance in favor of IL-23. Based on these results, we concluded that the synergistic effect of PGE2 on IL-23 expression and production in LPS-activated DC was mediated primarily through EP4 and to a much lesser degree through EP2.

PGE2 Affects p19 Expression by Stimulating de Novo mRNA Synthesis—Steady-state mRNA levels depend both on de novo synthesis and mRNA stability. Time course experiments using mRNA isolated at 2 versus 4 h showed a rapid and similar decrease in p19 mRNA for LPS and LPS + PGE2OH treatments, arguing against a PGE2OH effect on p19 mRNA stability (Fig. 2A). To investigate if the PGE2OH-induced increase in p19 expression is due to de novo synthesis, DC stimulated with LPS + PGE2OH for 1 h were subjected to total RNA isolation, and the amounts of p19 mRNA initial transcripts were determined by RT-PCR using primers within intron one and exon two of the Il23a gene (Fig. 2B). We observed an increase in p19 initial transcripts after LPS stimulation that was significantly augmented in the presence of PGE2OH (Fig. 2C). To rule out the contribution of genomic DNA, duplicate samples with no reverse transcriptase were used as a control. These data indicate that signaling through the EP4 receptor in addition to TLR stimulation increases the de novo transcription of Il23a in bone marrow-derived DC.

PGE2OH Increases IL-23p19 through Induction of cAMP in TNFα-stimulated DC—LPS signaling through TLR4 involves a complex network of regulatory molecules that makes the identification of signaling pathways initiated by EP4 during the combined LPS + PGE2OH treatment quite difficult. Therefore, we decided on a simplified approach using TNFα stimulation instead of LPS. TNFα has been described as an essential component of the cytokine mixture inducing DC maturation (37). Similar to LPS, the combination of TNFα + PGE2, strongly synergized in terms of p19 induction, induced a slight increase in p40 and did not significantly affect p35 expression (Fig. 3, A and B). It is worth mentioning, however, that the levels of p40 and p35 induced by TNFα alone or in combination with PGE2OH are much lower compared with LPS.

Once again, PGE2OH and butaprost, but not sulprostone, induced p19 expression (Fig. 3B). Similar to LPS, PGE2OH + TNFα induced more initial p19 transcripts than TNFα alone, supporting IL-23p19 up-regulation at the transcriptional level (results not shown).

Next we explored the signaling pathway downstream of the EP4 receptor. The EP4 receptor has been reported to activate both adenylyl cyclase and PI3K (4). To analyze the role of adenylyl cyclase and cAMP, we used two chemical activators in combination with TNFα. Both forskolin, a chemical activator of adenylyl cyclase, and dibutylryl cAMP, a stable analog of cAMP, increased p19 expression (Fig. 3, C and D). Similar results were obtained for LPS-stimulated DC (supplemental Fig. 1). These data show that EP4 receptor activation utilizes a cAMP-dependent signaling pathway to induce IL-23p19 mRNA expression in DC. The second pathway activated by the EP4 receptor involves the recruitment of β-arrestin and activation of the PI3K pathway. To investigate whether the PI3K signaling pathway was involved in the induction of p19 expression, we used two chemical inhibitors of PI3K, wortmannin and LY2940032. Instead of reducing p19 expression, the PI3K inhibitors actually increased TNFα + PGE2OH induced p19 expression (Fig. 3E). We observed the same phenomenon in LPS + PGE2OH-treated DC, although the inhibitors were able...
to inhibit AKT phosphorylation (supplemental Fig. 2). These data indicate that the EP4-induced PI3K activity does not contribute positively to the induction IL-23p19 mRNA expression in DC. In addition, p38, ERK1/2, and JNK inhibitors did not reduce p19 induction by the TNFα/H9251/PGE1OH treatment (supplemental Fig. 3), suggesting that MAPKs do not play an essential role.

EP4 Signals through EPAC and PKA to Mediate PGE1OH Induction of IL-23p19—cAMP activates two independent downstream signaling pathways that involve PKA and a more recently described GTPase named EPAC. To evaluate the contribution of EPAC activation, we used 8-CPT-2′-O-Me-cAMP, a selective activator of EPAC. In combination with TNFα, the EPAC dose-dependently increased p19 expression (Fig. 4A).
The role of PKA was determined by using three PKA inhibitors, i.e. the chemical inhibitors H89 and KT5720 and the peptide inhibitor PKI-(6–22). All three inhibitors reduced p19 induction by TNFα + PGE1OH (Fig. 4, B and D). These data indicate that PGE1OH induces IL-23p19 expression through the activation of both EPAC and PKA.

PGE1OH Induces CREB and C/EBP in DC—Several TFs including c-Rel, AP-1, SMAD-3, and ATF-2, have been reported to bind to the murine p19 promoter and play essential roles in IL23a transcription. We used a protein/DNA array to evaluate changes in the levels of a number of TF after treatment of DC with TNFα + PGE1OH as compared with TNFα alone. Treatment with PGE1OH increased the levels of AP-1, NF-κB, SMAD3/4, STAT3, and IRF-1, previously described as participants in IL23a expression. In addition, several other potential positive TF were identified (Fig. 5A). Among those, the CREB and C/EBP, previously not identified as regulators of p19 expression, have predicted binding sites within the p19 promoter (Fig. 5B). CREB is a classical PKA target, and C/EBPβ phosphorylation has been recently linked to EPAC activation (38, 39). Because PGE1OH stimulation of p19 expression appears to be mediated through both PKA and EPAC, we investigated CREB and C/EBP as potential PGE1OH targets in the stimulation of p19 transcription.

PGE1OH-induced CREB Phosphorylation Is Required for Increased p19 Expression—CREB phosphorylation is required for its nuclear translocation and function as a TF. To assess whether PGE1OH induces CREB phosphorylation, we treated DC with PGE1OH, TNFα, or TNFα + PGE1OH and determined the amounts of phosphorylated CREB by Western blot using an antibody that recognizes phosphorylated CREB at Ser-133. Although both PGE1OH and TNFα induced CREB, PGE1OH acted at an earlier time point as compared with TNFα (Fig. 6A). Next, we treated DC with PGE1OH in the presence or absence of the PKA inhibitor H89, and as expected observed a significant decrease in CREB phosphorylation in the presence of H89. In contrast to PKA, EPAC activation did not lead to CREB phosphorylation (Fig. 6B). Based on these results we concluded that PGE1OH induces CREB Ser-133 phosphorylation through the activation of PKA.

To assess the role of CREB in the effect of PGE1OH on p19 expression, we transiently transfected the DC2.4 cell line with the p19 reporter construct p19-GL3 that consists of the firefly luciferase gene under the control of the p19 promoter (23). Cotransfections with CREB133, a dominant negative CREB construct that cannot be phosphorylated due to a point mutation changing serine to alanine at position 133, were also performed. TNFα or PGE1OH alone did not induce reporter activity, whereas the TNFα + PGE1OH treatment resulted in significant induction of luciferase (Fig. 6C). Cotransfection with the dominant negative CREB construct resulted in reduction of reporter activity to almost control levels (Fig. 6C). Altogether, these data indicate that phosphorylated CREB is an essential factor for PGE1OH induction of IL-23p19 expression in DC.

CREB Is Important for IL-23p19 Transcriptional Activity—Through sequence analysis two putative CREB binding sites were identified in the p19 promoter cloned into the GL3 plasmid, i.e. the proximal site at positions −563 to −572 and the distal site at −1125 to −1132. To examine their function, we mutated either site or both, and DC2.4 cells were transfected with the mutated constructs. Mutations of the proximal CREB binding site did not affect reporter activity after treatment with
TNFα + PGE1OH. However, mutations within the distal CREB site or in both distal and proximal sites significantly reduced reporter activity (Fig. 7A).

To examine CREB binding to the IL-23p19 promoter, we performed ChIP assays in primary DC. There was no significant CREB binding to either site upon treatment with TNFα alone, but we observed increased CREB binding to the distal site after treatment with PGE1OH alone. Treatment with TNFα + PGE1OH resulted in significant binding to both sites (Fig. 7B). Taken together, these results indicate that the CREB distal site is an important regulator of PGE1OH-induced IL-23p19 transcription.

FIGURE 5. PGE1OH induces CREB and C/EBP. A, purified CD11c+ DC were stimulated with TNFα in the presence or absence of PGE1OH for 1 h. Nuclear extracts were prepared and subjected to a protein/DNA array as described under "Experimental Procedures." B, the nucleotide sequence for the IL-23p19 promoter region (NCBI reference sequence) is shown. Putative transcription factor binding sites (boxed-in sequences) were identified by using predictive algorithm-based programs listed under "Experimental Procedures." Underlined sequences refer to binding sites for transcription factors previously described for IL-23p19 regulation.

EPAC Activates C/EBPβ and Induces in Vivo C/EBPβ Binding to the IL-23p19 Promoter—Results from the protein/DNA array demonstrated that higher levels of C/EBP were bound to DNA after stimulation with TNFα + PGE1OH as compared with TNFα alone. To investigate if activation of EPAC, a downstream effector of PGE1OH, alters C/EBPβ phosphorylation, we performed Western blots. Both TNFα and 8'-CPT (a selective EPAC activator) induced C/EBPβ phosphorylation,
although with different kinetics, i.e. maximum effect for TNFα at 5 min as opposed to 8’-CPT, which had a stronger effect at 60 min. The combined treatment resulted in sustained C/EBPβ phosphorylation over the entire 60 min (Fig. 8A). Stimulation with PGE1OH alone or in combination with LPS or TNFα also induced C/EBPβ phosphorylation (supplemental Fig. 4). These data suggest that EPAC stimulation can modify C/EBPβ phosphorylation status in DC.

Five potential C/EBP binding sites were identified in the p19 promoter (Fig. 5B). To investigate their contribution to IL-23p19 transcriptional activity, we mutated each site, and the mutated constructs were transfected into DC2.4. Mutations in the four more proximal C/EBP sites (site 1, -232 to -243; site 2, -274 to -286; site 3, -496 to -509; site 4, -998 to -1011) reduced the reporter activity after TNFα + 8’-CPT treatment to control levels. In contrast, mutations in the most distal site (site 5, -1195 to -1204) had much less of an effect (Fig. 8B). Altogether, these results show that C/EBPβ is an important regulator of IL-23p19 promoter transcriptional activity.

To analyze binding of C/EBP to the IL-23p19 promoter, we performed ChIP assays in primary DC stimulated with TNFα and 8’-CPT. The binding to the two most distal sites (4 and 5) was not consistent. Interestingly, TNFα and 8’-CPT induced C/EBP binding at different sites, i.e. site 3 (-496 to -509) in response to TNFα stimulation and sites 1 and 2 (-232 to -243 and -274 to -286) for 8’-CPT (Fig. 8, C and D).

Endogenous PGE2 Plays a Role in IL-23-p19 Up-regulation—Because LPS stimulation results in production of PGE2, we investigated whether endogenous PGE2 plays a role in IL23p19 up-regulation in DC. DC were stimulated with LPS or TNFα in the presence or absence of the Cox1/2 inhibitor indomethacin, and p19 expression was determined by RT-PCR. In parallel experiments the effect of indomethacin was also tested in DC treated with either LPS + PGE1OH or TNFα + PGE1OH. As expected, in the absence of exogenous PGE1OH, LPS, but not TNFα, induced Cox2 and p19 expression (Fig. 9, A and B). Indomethacin partially inhibited LPS-induced p19 expression, suggesting that LPS-induced endogenous PGE2 plays a role in
The addition of exogenous PGE$_2$OH increased the levels of both Cox2 and p19 expression in both LPS- and TNF-α-stimulated DC, and again, indomethacin had an inhibitory effect on p19 expression (Fig. 9, A and B). These results support a role for endogenous PGE$_2$ in the up-regulation of p19 expression.

DISCUSSION

Previously we reported that PGE$_2$ induced IL-23p19 expression in LPS-stimulated bone marrow-derived murine DC and promoted Th17 amplification in vivo and in vitro (26–29). Similar results were obtained in PGE$_2$-treated splenic DC stimulated through CD40 (33) and in human monocyte-derived DC exposed to *Neisseria gonorrhoeae* (32). Interestingly, IL-23 production by TLR-activated DC was up-regulated >40-fold in aged mice through increased release of endogenous PGE$_2$ (31). We and others reported that the stimulatory effect of PGE$_2$ on IL-23 induction in DC was mediated primarily through EP4 and cAMP (28, 33).

In this study we sought to identify the signaling pathways and the transcription factors involved in the stimulatory effect of PGE$_2$ on *Il23a* gene expression. We established that signaling primarily through EP4 results in a CAMP-dependent activation of PKA and EPAC, with both pathways contributing to IL-23p19 induction in DC through the activation of CREB and C/EBP, respectively. This is the first report of CREB and C/EBP involvement in *Il23a* promoter activation. Mutations within the CREB and C/EBP binding sites combined with ChIP assays identified the distal CREB site (−1125) and the two proximal C/EBP sites (−274 and −232) as essential for PKA-activated CREB- and EPAC-activated C/EBP-induced p19 expression.

Although other signaling pathways involving PI3K, ERK, JNK, and p38 MAPK, have been shown to contribute to IL-23p19 induction in various cell types after stimulation with TLR ligands, IL-17, angiotensin II, or serum amyloid A (19, 20, 40, 41), our results showed no involvement of MAPK or PI3K in IL-23p19 induction after activation of the EP4 receptor.

The effects of PGE$_2$ are mediated through four G-protein coupled receptors, i.e. EP1–4, which use different signaling pathways (4). Immune cells, including DC, express primarily EP4 and EP2 (36). Whereas EP2 receptors are $G_{q/11}$-protein-coupled and signal through activation of adenylate cyclase and increase in cAMP, EP4 uses both $G_{q/11}$ protein-mediated adenylate cyclase activation and PI3K activation. In addition, a third pathway is mediated through binding of EP4 receptor-associated protein (EPRAP) to the intracellular EP4 tail resulting in p19 up-regulation.
suppression of EP4 phosphorylation and reduction in NFκB activation (42, 43). Activation of adenylate cyclase and PI3K are primarily involved in the proinflammatory effects of PGE2, whereas binding of EP4 receptor-associated protein and inhibition of NFκB appear to be responsible for the anti-inflammatory effect resulting from the inhibition of cytokine and chemokine expression in macrophages, DC, and T cells (for review, see Refs. 5).

Our results indicate that EP4 and to a lesser degree EP2 receptors mediate the PGE2 effect on IL-23p19 expression in DC. The proinflammatory role of EP4 in vivo is supported by numerous reports. EP4-deficient mice showed decreased incidence and disease severity in a model of arthritis (44), and EP4 antagonists were shown to suppress disease in contact hypersensitivity, experimental autoimmune encephalomyelitis, and several models of arthritis by reducing accumulation of both Th1 and Th17 cells (33, 45). In contrast, administration of the PGE2 stable agonist misoprostol or of EP4 selective agonists in models of arthritis and 2,4,6-trinitrobenzenesulfonic acid-induced colitis exacerbated disease increased IL-23p19 expression and promoted Th17 expansion and accumulation in draining lymph nodes and in the affected tissues (27, 29, 45).

EP4 signals through both cAMP and PI3K, and our results indicate that cAMP signaling, but not PI3K activation, is

FIGURE 8. EPAC stimulates p19 transcriptional activity through activation of C/EBPβ. A, DC were treated with TNFα ± 8′-CPT for 5 and 60 min. Total cell lysates were subjected to SDS-PAGE/Western blotting analysis with antibodies specific for phosphorylated C/EBPβ and β-actin. Bands were quantified by scanning densitometry. B, DC2.4 cells were transfected with empty vector, pRL-TK construct, p19-GL3, and p19-GL3 with mutations within C/EBP binding sites. Six hours later the cells were stimulated with TNFα with or without 8′-CPT for 14 h. Luciferase units were calculated as in Figs. 6 and 7. Reporter activity is presented as -fold change. C and D, DC were treated with TNFα and 8′-CPT for 2 h. Cells were fixed, sonicated, and subjected to ChIP analysis using antibodies to C/EBPβ (black bar) or control GST (white bar). Precipitated DNA was isolated and evaluated by PCR using specific primers for C/EBPβ binding sites at −496 (C) and −274 and −232 (D) within the IL-23p19 promoter. **, p < 0.01 and ***, p < 0.001, compared with untreated (C and D) and to p19-GL3 (B) Data are representative of at least three independent experiments.
involved in the induction of IL-23p19 by PGE\(_1\)OH in bone marrow-derived DC. cAMP, but not PI3K, involvement has been also reported for splenic DC (33). Interestingly, both cAMP and PI3K were shown to be involved in the direct effects of PGE\(_2\) on T cells, with PI3K facilitating Th1 differentiation in Th1-polarizing conditions and cAMP/PKA facilitating Th17 expansion in the presence of IL-23, presumably through the up-regulation of IL-23R on T cells (33). cAMP activates two major downstream targets, i.e. PKA and EPAC. Our results show that both targets are involved in IL-23p19 expression through the activation of the TF CREB and C/EBP\(_\beta\), respectively. In contrast, Yao et al. (33) reported that only EPAC contributed to IL-23p19 expression in splenic DC. This could be a characteristic of splenic DC but could also reflect the relative insensitivity of PKA to H89 in DC. Yao et al. (33) did not observe an inhibitory effect for H89 at a concentration of 3 \(\mu\)M. We observed an inhibitory effect only at high H89 concentrations (20 \(\mu\)M), whereas the other two PKA inhibitors were effective over a broader range of concentrations.

Expression of IL-23p19 in activated macrophages or DC has been shown to be controlled by the positive TFs c-Rel, RelA, AP-1, SMAD-3, and ATF-2 and by the negative regulator IRF-1 (22–25, 46). In this study we identified CREB and C/EBP as additional PGE2-induced TFs that enhance IL-23p19 expression in DC activated through TLRs or by the proinflammatory cytokine TNF\(\alpha\). Although PGE2 alone does not induce IL-23p19 expression, it synergizes with LPS or TNF\(\alpha\), suggesting that CREB and C/EBP are part of an enhanceosome consisting of several TFs. Such an enhanceosome consisting of CREB, c-Rel, RelA, NFAT, and SMAD3 has been described for the Foxp3 promoter in T cells (47).

Upon phosphorylation at Ser-133 by kinases such as PKA and MAPK, CREB translocates to the nucleus where it functions as a positive TF for genes whose promoters possess CRE elements (for review, see Refs. 48). CREB can also function as a negative regulator by sequestering CBP or p300, which becomes unavailable for interactions with NF\(\kappa\)B, leading to a reduction in NF\(\kappa\)B transcriptional activity. The IL-23p19 promoter has two CREB sites, and our results suggest that PGE2 enhances p19 promoter activity through EP4 \(\rightarrow\) cAMP \(\rightarrow\) PKA \(\rightarrow\) CREB \(\rightarrow\) binding to the distal CREB site.

Although we observed CREB phosphorylation and a relatively low level of p19 promoter activity after treatment with TNF\(\alpha\) alone, we could not detect CREB binding to the p19 promoter. Because TNF\(\alpha\) induces delayed CREB phosphorylation as compared with the combined TNF\(\alpha\)/PGE\(_2\)OH treatment, p19 binding of pCREB induced by TNF\(\alpha\) alone might be detectable only at later time points.

The C/EBP family consists of six leucine zipper TF factors, i.e. C/EBP\(\alpha\), \(\beta\), \(\gamma\), \(\delta\), \(\epsilon\), and \(\zeta\), which bind to the CCAAT box motifs in various promoters (for review, see Refs. 49). C/EBP\(\beta\) and \(\delta\) are the major factors in inflammation, and TNF\(\alpha\) as well as LPS have been reported to modulate C/EBP\(\beta\) transcriptional activity (50). After phosphorylation by various kinases, C/EBP\(\alpha\), \(\beta\), and \(\delta\) form heterodimers required for DNA binding. Although the three C/EBP family members bind to a virtually identical DNA sequence, there are some differences in binding site specificity, especially for C/EBP\(\beta\). Therefore, cell exposure to various stimuli might lead to the activation of different C/EBP family members, which could result in binding to different C/EBP sites within the same promoter. The IL-23p19 promoter has five C/EBP binding sites, and four of those appear to be essential for promoter activity in response to TNF\(\alpha\) and PGE\(_2\)OH. Interestingly, in vivo C/EBP\(\beta\) shows binding to different sites for TNF\(\alpha\) and PGE\(_2\)OH, as determined by ChIP assays. This could be due to the formation of different dimers after stimulation with either TNF\(\alpha\) or PGE\(_2\)OH or to epigenetic modifications that could open up various parts of the promoter. Alternatively, TNF\(\alpha\)- and EPAC-induced C/EBP\(\beta\) binding might follow different kinetics.

Our results suggest that PGE2 enhances p19 transcriptional activity through a second pathway initiated by EP4, i.e. EP4 \(\rightarrow\)
cAMP → EPAC → P/C/EβB → binding to the two proximal C/EβB sites. Although C/EβB is not among the classical EPAC targets that include primarily the Ras-like GTPases Rap1 and -2 (51, 52), activation of EPAC has been recently reported to lead to C/EβB phosphorylation and subsequent SOCS3 induction in endothelial cells and fibroblasts (38, 53).

In conclusion, we identified CREB and C/EβB as positive TFs in the PGE2-induced up-regulation of Il23a gene in TLR- or TNFα-stimulated bone marrow-derived DC. The effect is mediated through EP4-induced activation of adenylate cyclase, resulting in cAMP increases, activation of both PKA and EPAC, and subsequent phosphorylation and DNA binding of CREB and C/EβB, respectively, to the p19 promoter. PGE2 is released from immune cells in the early inflammatory phase and can act either as a pro- or an anti-inflammatory agent depending on the target cell type, nature of EP receptors, concentration, and inflammatory environment. Although PGE2 has been reported to inhibit proinflammatory cytokine and chemokine production by macrophages and dendritic cells and to reduce Th1 differentiation primarily through the inhibition of IL-12 and IL-2 (for review, see Refs. 5 and 6), most in vivo data support a proinflammatory role (for review, see Refs. 1, 5, and 7–9). This is particularly relevant in models of autoimmune diseases with a strong Th17 component such as arthritis and EAE. In this respect, our previous and present findings that PGE2 contributes in a significant manner to the up-regulation of IL-23 expression and to the amplification of Th17 response are highly relevant, particularly in view of the recent finding that IL-23 plays the central role in the generation of pathogenic Th17 cells (for review, see Ref. 17).

Acknowledgment—We thank Dr. Youhui Chen (University of Pennsylvania) for the generous gift of the p19-GL3 construct.

REFERENCES

1. Hara, S., Kamei, D., Sasaki, Y., Tanemoto, A., Nakatani, Y., and Murakami, M. (2010) Prostaglandin E synthases. Understanding their pathophysiological roles through mouse genetic models. Biochimie 92, 651–659
2. Smith, W. L., DeWitt, D. L., and Garvito, R. M. (2000) Cyclooxygenases. Structural, cellular, and molecular biology. Annu. Rev. Biochem. 69, 145–182
3. Matsuoka, T., and Narumiya, S. (2007) Prostaglandin receptor signaling in disease. Scientific World Journal 7, 1329–1347
4. Sugimoto, Y., and Narumiya, S. (2007) Prostaglandin E receptors. J. Biol. Chem. 282, 11613–11617
5. Tang, E. H., Libby, P., Vanhoucke, P. M., and Xu, A. (2012) Anti-inflammatory therapy by activation of prostaglandin EP4 receptor in cardiovascular and other inflammatory diseases. J. Cardiovasc. Pharmacol. 59, 116–123
6. Kalinski, P. (2012) Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21–28
7. Liang, X., Lin, L., Woodling, N. S., Wang, Q., Anacker, C., Pan, T., Merchant, M., and Andresson, K. (2011) Signaling via the prostaglandin E2 receptor EP4 exerts neuronal and vascular protection in a mouse model of cerebral ischemia. J. Clin. Investig. 121, 4362–4371
8. Narumiya, S. (2009) Prostanoids and inflammation. A new concept arising from receptor knockout mice. J. Mol. Med. 87, 1015–1022
9. Sakata, D., Yao, C., and Narumiya, S. (2010) Emerging roles of prostanoids in T cell-mediated immunity. IUBMB life 62, 591–596
10. Becher, B., and Segal, B. M. (2011) TH17 cytokines in autoimmune neuropathology. Curr. Opinion. Immunol. 23, 707–712
11. Tang, C., Chen, S., Qian, H., and Huang, W. (2012) Interleukin-23. As a drug target for autoimmune inflammatory diseases. Immunology 135, 112–124
12. Zhu, S., and Qian, Y. (2012) IL-17/IL-17 receptor system in autoimmune disease. Mechanisms and therapeutic potential. Clin. Sci. 122, 487–511
13. Ahern, P. P., Schiering, C., Buonocore, S., McGeachy, M. J., Cua, D. J., Maloy, K. J., and Powrie, F. (2010) Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33, 279–288
14. Ghoreschi, K., Laurence, A., Yang, X. P., Tato, C. M., McGeachy, M. J., Konkel, J. E., Ramos, H. L., Wei, L., Davidson, T. S., Bouladoux, N., Grainger, J. R., Chen, Q., Kanno, Y., Watford, W. T., Sun, H. W., Ebeler, G., Shevach, E. M., Belkaid, Y., Cua, D. J., Chen, W., and O’Shea, J. J. (2010) Generation of pathogenic Th17 cells in the absence of TGF-β signaling. Nature 467, 967–971
15. Hirota, K., Duarte, J. H., Veldhoen, M., Hornsby, E., Li, Y., Cua, D. J., Ahlfors, H., Wilhelm, C., Tolaini, M., Menzel, U., Garefalakli, A., Potocnik, A. J., and Stockinger, B. (2011) Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263
16. Petermann, F., Rothhammer, V., Claussen, M. C., Haas, J. D., Blanco, L. R., Heink, S., Prinz, I., Hemmer, B., Kuchroo, V. K., Oukka, M., and Korn, T. (2010) γδT cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23-dependent mechanism. Immunity 33, 351–363
17. Duvallet, E., Semerano, L., Assier, E., Falgarone, G., and Boissier, M. C. (2011) Interleukin-23. A key cytokine in inflammatory diseases. Annu. Rev. Immunol. 29, 503–511
18. Oppmann, B., Lesley, R., Blom, B., Timans, J. C., Xu, Y., Hunte, B., Vega, F., Yu, N., Wang, J., Singh, K., Zolin, F., Vaisberg, E., Churakov, T., Liu, M., Gorman, D., Wagner, J., Zurawski, S., Liu, Y., Abrams, J. S., Moore, K. W., Rennick, D., de Waal-Malefyt, R., Hannum, C., Bazan, J. F., and Kastelein, R. A. (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725
19. Li, Y., Chu, N., Hu, A., Gran, B., Rostami, A., and Zhang, G. X. (2008) Inducible IL-23p19 signal expression in human microglia via p38 MAPK and NF-κB signal pathways. Exp. Mol. Pathol. 84, 1–8
20. Migita, K., Koga, T., Torigoshi, T., Matokawa, S., Maeda, Y., Iuchi, Y., Iizumi, Y., Miyahita, T., Nakamura, M., Komori, A., and Ishibashi, H. (2010) Induction of interleukin-23p19 by serum amyloid A (SAA) in rheumatoid synovioctyes. Clin. Exp. Immunol. 162, 244–250
21. Zhu, L., Wu, Y., Wei, H., Xing, Z., Zhan, N., Xiong, H., and Peng, B. (2011) IL-17B activation of human periodontal ligament fibroblasts induces IL-23 p19 production. Differential involvement of NF-κB versus JNK/AP-1 pathways. Mol. Immunol. 48, 647–656
22. Al-Salleeh, F., and Petro, T. M. (2008) Promoter analysis reveals critical roles for SMADs-3 and ATF-2 in expression of IL-23 p19 in macrophages. J. Immunol. 181, 4523–4533
23. Carmody, R. J., Ruan, Q., Liu, H. C., and Chen, Y. H. (2007) Essential roles of c-Rel in TLR-induced IL-23 p19 gene expression in dendritic cells. J. Immunol. 178, 186–191
24. Liu, W., Ouyang, X., Yang, J., Liu, J., Li, Q., Gu, Y., Fukata, M., Lin, T., He, J. C., Abreu, M., Unkeless, J. C., Mayer, L., and Xiong, H. (2009) AP-1 activated by toll-like receptors regulates expression of IL-23 p19. J. Biol. Chem. 284, 24006–24016
25. Sheikh, S. Z., Kobayashi, T., Matsuoka, K., Onyia, J. C., and Plevy, S. E. (2011) Characterization of an interferon-stimulated response element (ISRE) in the IL23a promoter. J. Biol. Chem. 286, 1174–1180
26. Khayrullina, T., Yen, J. H., Jing, H., and Ganea, D. (2008) In vitro differentiation of dendritic cell precursors in the presence of prostaglandin E2 alters the IL-12/IL-23 balance and promotes differentiation of Th17 cells. J. Immunol. 181, 721–735
27. Sheibanie, A. F., Khayrullina, T., Safadi, F. F., and Ganea, D. (2007) Prostaglandin E2 exacerbates collagen-induced arthritis in mice through the inflammatory interleukin-23/interleukin-17 axis. Arthritis Rheum. 56, 2608–2619
28. Sheibanie, A. F., Tedmori, I., Jing, H., Vassiliou, E., and Ganea, D. (2004) Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J. 18, 1318–1320
29. Sheibanie, A. F., Yen, J. H., Khayyullina, T., Emig, F., Zhang, M., Tuma, R., and Ganea, D. (2007) The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23 → IL-17 axis. *J. Immunol.* 178, 8138–8147

30. Chizzolini, C., Chicheportiche, R., Alvarez, M., de Rham, C., Roux-Lombard, P., Ferrari-Lacraz, S., and Dayer, J. M. (2008) Prostaglandin E2 synergistically with interleukin-23 favors human Th17 expansion. *Blood* 112, 3696–3703

31. Myer, R. G., El Mezayen, R., and High, K. P. (2010) Prostaglandin E2 production in aged murine dendritic cells. *Exp. Gerontol.* 45, 834–841

32. Stefaneli, P., Teloni, R., Carannante, A., Mariotti, S., Nisini, R., and Gagliardi, M. C. (2012) *Neisseria gonorrhoeae* triggers the PGE2/IL-23 pathway and promotes IL-17 production by human memory T cells. *Prostaglandins Other Lipid Mediat.* 99, 24–29

33. Yao, C., Sakata, D., Esaki, Y., Li, Y., Matsuoka, T., Kuroiwa, K., Sugimoto, Y., and Narumiya, S. (2009) Prostaglandin E2/EP4 signaling promotes immune inflammation through TH1 cell differentiation and Th17 cell expansion. *Nat. Med.* 15, 633–640

34. Yen, J. H., Khayyullina, T., and Ganea, D. (2008) PGE2-induced metalloproteinase-9 is essential for dendritic cell migration. *Blood* 111, 260–270

35. Yen, J. H., Kocieda, V. P., Jing, H., and Ganea, D. (2011) Prostaglandin E2 induces matrix metalloproteinase 9 expression in dendritic cells through two independent signaling pathways leading to activator protein 1 (AP-1) activation. *J. Biol. Chem.* 286, 38913–38923

36. Jing, H., Vassiliou, E., and Ganea, D. (2003) Prostaglandin E2 inhibits production of the inflammatory chemokines CCL3 and CCL4 in dendritic cells. *J. Leukoc. Biol.* 74, 868–879

37. Jonuleit, H., Kühn, U., Müller, G., Steinbrink, K., Paragnik, L., Schmitt, E., Knop, J., and Enk, A. H. (1997) Proinflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. *Eur. J. Immunol.* 27, 3135–3142

38. Sands, W. A., Woolson, H. D., Warwood, S. J., and Palmer, T. M. (2012) Exchange protein directly activated by cyclic AMP-1-regulated recruitment of CCAAT/enhancer-binding proteins to the suppressor of cytokine signaling-3 promoter. *Methods Mol. Biol.* 809, 201–214

39. Shaywitz, A. J., and Greenberg, M. E. (1999) CREB: A stimulus-induced transcription factor activated by a diverse array of extracellular signals. *Annu. Rev. Biochem.* 68, 821–861

40. Kim, H. R., Cho, M. L., Kim, K. W., Juhn, J. Y., Hwang, S. Y., Yoon, C. H., Park, S. H., Lee, S. H., and Kim, H. Y. (2007) Up-regulation of IL-23p19 expression in rheumatoid arthritis synovial fibroblasts by IL-17 through PI3-kinase-, NF-κB-, and p38 MAPK-dependent signaling pathways. *Rheumatology* 46, 57–64

41. Yang, L., Du, C., Chen, T., Li, S., Nie, W., Zhu, W., Fan, F., Zhu, J., and Yan, H. (2012) Distinct MAPK pathways are involved in IL-23 production in dendritic cells cocultured with NK cells in the absence or presence of angiotensin II. *Mol. Immunol.* 51, 51–56

42. Minami, M., Shimizu, K., Okamoto, Y., Folco, E., Iñasaca, M. L., Feinberg, M. W., Aikawa, M., and Libby, P. (2008) Prostaglandin E receptor type 3-associated protein interacts directly with NF-κB1 and attenuates macrophage activation. *J. Biol. Chem.* 283, 9692–9703

43. Takayama, K., García-Cardenas, G., Sukhova, G. K., Comander, J., Gimbrone, M. A., Jr., and Libby, P. (2002) Prostaglandin E2 suppresses chemokine production in human macrophages through the EP4 receptor. *J. Biol. Chem.* 277, 44147–44154

44. McCoy, J. M., Wicks, J. R., and Audoly, L. P. (2002) The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. *J. Clin. Invest.* 110, 651–658

45. Chen, Q., Muramoto, K., Masaaki, N., Ding, Y., Yang, H., Mackey, M., Li, W., Inoue, Y., Ackermann, K., Shirotia, H., Matsumoto, I., Spyvee, M., Schiller, S., Sumida, T., Gusovsky, F., and Lamphier, M. (2010) A novel antagonist of the prostaglandin E(2) EP(4) receptor inhibits Th1 differentiation and Th17 expansion and is orally active in arthritis models. *Br. J. Pharmacol.* 160, 292–310

46. Mise-Omata, S., Kuroda, E., Niikura, J., Yamashita, U., Obata, Y., and Doi, T. S. (2007) A proximal B site in the IL-23 p19 promoter is responsible for RelA- and c-Rel-dependent transcription. *J. Immunol.* 179, 6596–6603

47. Ruan, Q., Kameswaran, V., Tone, Y., Li, L., Liou, H. C., Greene, M. L., Tone, M., and Chen, Y. H. (2009) Development of Foxp3(+)/regulatory T cells is driven by the c-Rel enhosome. *Immunity* 31, 932–940

48. Wen, A. Y., Sakamoto, K. M., and Miller, L. S. (2010) The role of the transcription factor CREB in immune function. *J. Immunol.* 185, 6413–6419

49. Roos, A. B., and Nord, M. (2012) The emerging role of C/EBPs in gluco-corticoid signaling. Lessons from the lung. *J. Endocrinol.* 212, 291–305

50. Poli, V. (1998) The role of C/EBP isoforms in the control of inflammatory and native immunity functions. *J. Biol. Chem.* 273, 29279–29282

51. Billington, C. K., and Hall, I. P. (2012) Novel C/EBP signaling paradigms. Therapeutic implications for airway disease. *Br. J. Pharmacol.* 166, 401–410

52. Breckler, M., Berthouze, M., Laurent, A. C., Crozatier, B., Morel, E., and Lezoualc’h, F. (2011) Rap-linked cAMP signaling Epac proteins. Compartmentation, functioning, and disease implications. *Cell. Signal.* 23, 1257–1266

53. Warwood, S. J., Borland, G., Sands, W. A., and Palmer, T. M. (2008) Identification of CCAAT/enhancer-binding proteins as exchange protein activated by cAMP-activated transcription factors that mediate the induction of the SOCS-3 gene. *J. Biol. Chem.* 283, 6843–6853