Neonatal care practice and associated factors among mothers of infants 0–6 months old in North Shewa zone, Oromia region, Ethiopia

Kumera Bekele1, Firomsa Bekele2, Mathewos Mekonnen3, Kemal Jemal1 & Ginenus Fekadu3,4,*

Worldwide, the magnitudes of neonatal mortality are estimated to be about 3 million due to insufficient care. The burden of neonatal mortality is high in Ethiopia as compared to high and middle-income countries. The study aimed to assess the neonatal care practice and associated factors among mothers of infants 0–6 months old in Northern Shewa, Ethiopia. A community-based cross-sectional study design was undertaken on a mother living in the North Shewa zone from September 2019 to June 2020. Neonatal care practice was assessed by World Health Organization (WHO) minimum neonatal care package indicators. Over the study period, a total of 245 (62.0%) mothers had a good neonatal care practice. Being urban areas [AOR 5.508, 95% CI 2.170, 13.984], having ANC follow-up [AOR 3.042, 95% CI 1.031, 12.642], lack of adequate information [AOR 0.123, 95% CI 0.054, 0.282] and post-natal care (PNC) [AOR 5.779, 95% CI 2.315, 14.425] were predictors of good neonatal care practice. In our study, there was moderate neonatal care practice among mothers. Therefore, all elements of neonatal care packages should be studied at large.

The time neonate is an essential time for the child to grow and most of them died during their birth1–4. Worldwide, the magnitudes of neonatal mortality are estimated to be about 3 million due to insufficient care. Therefore, the mortality rate of under-five children becomes common across different countries5–6. Although neonatal mortality rates are also decreasing globally, it was high in Sub-Saharan Africa7. Among Sub-Saharan Africa, the rates of mortality were high in Ethiopia8. Despite this, the proportion of neonatal death can be prevented by appropriate care of neonates9. The components of neonatal care practices should be given during ANC and PNC as per WHO recommendations10.

This component includes immunization against tetanus, preparation of mothers for managing complications, ANC follow-up, skilled care of mothers like thermal care, cord care, breastfeeding, and bathing of neonates10,11. In Ethiopia, despite hard work has been tried in the improvement of neonatal care, the status of neonatal care among mothers is still poor. In addition, neonatal care is highly affected by the healthy and knowledge of mothers10,11. Home delivery is common in Ethiopia, and ANC and PNC follow-ups are insufficient14. This practice of traditional delivery can impact the care of neonates10,11. Most inappropriate care occurred during their neonatal period despite the risk of mortality being high in these populations. The magnitudes and determinants of neonatal care had not been studied in the Fiche. As a result, the study aimed to identify the level of neonatal care practice and its determinants.

1Department of Nursing, College of Health Science, Selale University, Fiche, Ethiopia. 2Department of Pharmacy, College of Health Science, Mettu University, Mettu, Ethiopia. 3School of Pharmacy, Institute of Health Science, Wollega University, P.O Box 395, Nekemte, Ethiopia. 4School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong. *email: take828pharm@gmail.com
Methods

Study area, design, and period. A Community based cross-sectional study was employed at selected woredas of the North Shewa zone from September 2019 to June 2020. The North Shewa zone has a total population of 1,431,305 from this, about 717,552 are males and 713,753 are females. Fiche is the capital city of the zone, which is found 114 km distant from Addis Ababa.

Study participants and eligibility criteria. All mothers of infants aged 0–6 months residing at least for 6 months in the catchment area during the data collection period were included in this study while, mothers who were unable to communicate because of seriously ill or impaired cognition were excluded from the study.

Study variables and outcome measures. The dependent variable was neonatal care practice, which was assessed by WHO core elements. This neonatal care package has 12 that are scored as “Yes” or “No” questions. This element contains immunization from tetanus, preparation of mother to manage complications, antenatal care (ANC), Information on neonatal care, Skilled care at birth, Immediate thermal care, breast-feeding initiation, caring of cord, only breastfeeding of the neonate, washing of newborn, Vaccination during birth, and Infection prevention. The WHO core elements of neonatal danger signs were used to identify the level of knowledge of mothers about neonatal danger signs. Mothers who had mentioned ≥ 3 out of twelve newborn danger signs had good knowledge and those who scored < 3 was classified as poor knowledge.

Sample size determination and technique. The sample size was calculated by the single population proportion formula whereas, N is the sample size 95% is CI, d is the level of precision, and p is the magnitude of neonatal care practice which is 0.59 (p = 0.59).

\[N = \frac{(Z\alpha/2)^2 \times P \times (1-P)}{d^2} \]

\[N = (1.96)^2 \times (0.59) \times (0.41)/(0.05)^2, \]

where Z = critical value for normal distribution at 95% confidence level which equals to 1.96 (Z value at α = 0.05); P = Proportion of neonatal care practice (59.5%); d = 0.05 (5% margin of error); and by considering the design effect of 1.5 the sample size becomes 552. After adding the non-response rate of 10% the total sample size was (552 × 10%) + 552 = 607.

A multi-stage clustered sampling technique was used to identify the study participants. First, the zone was stratified to woredas and four woredas were selected by simple random sampling from the total number of woredas. In the second stage kebeles within the selected woreda were selected randomly. Finally, each household in the selected kebeles was selected by systematic random sampling.

Data collection process and management. A structured questionnaire was developed which was adapted from related literature for neonatal care practices. The tool was developed in English and converted to the local languages ‘Afan Oromo’ to ensure the clarity of questions for the respondents. A pretest was conducted in Bishoftu town out of the study area by taking 5% of our sample size that was not included in the actual study population before the actual data collection takes place. Data were collected by eight (8) B.Sc. nurses and the data collection process was supervised by the principal investigators. Before starting data collection, orientation was given to data collectors for 2 days about the data collection and how to handle the data, and the content of the instrument. The data collectors collected the information through face-to-face interviews of mothers at the house level.

Data processing and analysis. The data were entered into a computer using EPI-info 3.5.4 software to avoid any errors. Analysis was done using statistical software for social sciences (SPSS) 24.0. Descriptive data were explained as frequency and percentage. Multivariable logistic regression was used to analyze the variable and the variables with a p-value of less than 0.05 were considered a statistically significant association.

Operational definitions.

- **Good neonatal care practices** Those who scored above or equal to the mean score out of 12 items of minimum neonatal care package listed by WHO.
- **Poor neonatal care practices** Those who scored less than the mean scores out of 12 items of minimum neonatal care package listed by WHO.
- **Good knowledge of newborn danger signs** Mothers who had mentioned ≥ 3 out of twelve newborn danger signs.
- **Poor knowledge of newborn danger signs** Mothers who had scored < 3 was classified.

Ethical approval and informed consent. Ethical clearance was obtained from the ethics review board of Salale University with the reference number SU13/2018. A permission letter was provided to the North Shewa zonal administration office, and in turn to the selected woredas and kebeles in the district, for proceeding with data collection. Informed consent was obtained from all the participants. Additionally, informed consent was
obtained from a parent/or legal guardian for participants who are under 18 years of age and have no formal education. To ensure confidentiality, the name and other identifiers of participants and health care professionals were not recorded on the data collection tools. All methods were performed following the relevant guidelines and regulations. The study was performed per the Declaration of Helsinki. The study was registered researchregistry.com with a unique reference number of “researchregistry5882”.

Consent for publication. Not applicable. No individual person's personal details, images, or videos are being used in this study.

Results
Socio-demographic characteristics of respondents. Of the 607 mothers who were selected to participate, about 395 mothers have completed the interview making the response rate 65.07%. Of the total 395 respondents, 247 (62.5%) were from urban and 148 (37.5%) were from rural areas. About 217 (54.9%) of the mothers were in the age range of 20–29 years. By religion, 279 (70.6%) were Orthodox which was Regarding their educational status, most of the mothers had secondary 119 (30.1%) as their highest educational attainment. Concerning their occupation, 239 (60.5%) mothers were housewives (Table 1).

Coverage of maternal and newborn health services. Most of the respondents 363 (91.9%) had ANC follow-up and about 228 (62.8%) received ANC follow-up more than four times, while 19 (5.2%) mothers were received one time only. Most of the women 367 (92.9%) delivered their most recent child in the health facility, while only 28 (7.1%) of women delivered at home. Similarly, in this study 220 (55.7%) of the respondents reported that they get immediate post-natal care (PNC) in their last delivery and most of the mothers 332 (84.1%) did not encounter any difficulties in their last delivery. Out of the total respondents, 303 (76.7%) had birth preparedness for their last delivery (Table 2).

Most mothers 286 (72.4%) had received counseling messages about newborn care before or following their last delivery from a health worker/HEW. The most frequently received counseling messages about newborn care before or following their last delivery were on breastfeeding 282 (98.6%), immunization 267 (93.4%), and

Variables	Category	Frequency (n)	Percent (%)
Residence	Urban	247	62.5
	Rural	148	37.5
Age of mothers (years)	<20	35	8.9
	20–29	217	54.9
	30–39	122	30.9
	40–49	21	5.3
Marital status	Married	365	92.4
	Single	10	2.5
	Divorced	14	3.5
	Widowed	6	1.5
Religion	Orthodox	279	70.6
	Protestant	63	15.9
	Muslim	38	9.6
	Others*	15	3.8
Mother's educational status	No formal education	90	22.8
	Primary	107	27.1
	Secondary	119	30.1
	College and above	79	20.0
Mother's occupation	Housewife	239	60.5
	Merchants	42	10.6
	Government employee	58	14.7
	Private employee	47	11.9
	Others**	9	2.3
Family monthly income	<1000	40	10.1
	1000–2000	107	27.1
	2000–3000	40	10.1
	3000–4000	38	9.6
	4000–5000	44	11.1
	>5000	126	31.9

Table 1. Sociodemographic characteristics of respondents in North Shewa zone, Oromia Region, Ethiopia (N = 395). *Catholic, Waqefana. **Students, farmers.
keeping the baby warm 258 (90.2%). Fewer women care for the low-birth-weight baby (LBW) & pre-term 53
(18.5%) (Fig. 1). Concerning neonatal danger signs, 204 (51.6%) of mothers have a good knowledge of neonatal
danger signs and 191 (48.4%) of mothers had poor knowledge.

Neonatal care practices. Over the study period, a total of 245 (62.0%) mothers had a good neonatal care
practice. Regarding the Newborn thermal care, mothers reported that newborns were dried and/or wiped before
delivery of the placenta for 302 (76.5%) of births, while they were wrapped for 364 (92.2%) of births. Of moth-

Table 2. Utilization of maternal and newborn health services of respondents in North Shewa zone, Oromia
Region, Ethiopia (N = 395). ANC antenatal care, PNC post-natal care, TT tetanus toxoid.

Variables	Category	Frequency (n)	Percent (%)
ANC follow-up in last pregnancy	Yes	363	91.9
	No	32	8.1
The number of ANC follows up	Once	19	5.2
	2–3 times	116	32.0
	More than 3 times	228	62.8
Place of ANC follow up	Public Hospital	153	42.1
	Health Center	175	48.2
	Health post	35	9.7
TT vaccination in last pregnancy	Yes	332	84.1
	No	63	15.9
Place of last birth	Public Hospital	190	48.1
	Health Center	158	40.0
	Health post	15	3.8
	Private Clinic	4	1.0
	Home	28	7.1
Complication faced during last delivery	Yes	63	15.9
	No	332	84.1
PNC in last delivery	Yes	220	55.7
	No	175	44.3
Birth preparedness for last delivery	Yes	303	76.7
	No	92	23.3

Figure 1. Types of received counseling messages about newborn care before or following last delivery among
respondents from Health worker/HEW in North Shewa zone, Oromia Region, Ethiopia (N = 395).
ers who wrapped their baby before delivery of the placenta, most of them used dry and clean cloths accounted about 188 (47.59%). Concerning Cord care, a new string or thread was the most used material to tie the cord for 182 (46.1%) of births. On another hand in most of the respondents 16 (4.05%), the blade was commonly used to cut the cord after delivery of their recent baby while in 7 (1.77%) of mothers’ the scissor was used to cut the cord.

Regarding their breastfeeding, out of total respondents, only 204 (51.6%) mothers reported that their newborns were breastfed within the first hour after delivery, 73 (18.5%) between 1 and 6 h, 62 (15.7%) between 6 and 24 h, 56 (14.2%) were after 24 h. About 258 (65.3%) mothers reported that they bathed their newborn child for the first time after 24 h of birth. Of the total respondents’ most of the mothers 269 (68.1%) reported that their newborns were given vaccination (BCG and Polio-0) on their first day of birth (Table 3).

Factors associated with neonatal care practices among mothers. Residence of mother, educational status of the mother, mother’s occupation, husband’s educational status, family monthly income, ANC follow up, number of ANC follow-up, information on neonatal care, birth preparedness, and complication readiness, having PNC service and maternal knowledge on neonatal danger sign were factors associated with neonatal care practice among mothers on bivariate analysis.

In multiple logistic regressions, mothers who lived in urban areas were 5.5 times more likely to have good neonatal care practices when compared to mothers who lived in rural areas. [AOR 5.508, 95% CI (2.170, 13.984)]. Mothers who had ANC follow-up in their last pregnancy were 3 times more likely to have good neonatal care than mothers who did not attend ANC follow-up [AOR 3.042, 95% CI (1.031, 12.642)].

Table 3. Immediate neonatal care practices of mothers in North Shewa zone, Oromia Region, Ethiopia (N = 395). BCG Bacille Calmette-Guérin, OPV0 Oral polio vaccine at birth. *Cotton tie. **Chlorhexidine, Herbs.
Ethiopia (59.5%)\(^{17}\), but it was relatively higher than the study conducted in Addis Ababa, Ethiopia (29%)\(^{18}\).

Neonatal care practice in our study area was 62.0%, which was almost like the previous study done in southwest Ethiopia\(^{17,19,20}\). This is due to the ease of access to information for mothers compared to mothers who lived in rural areas [AOR 5.508, 95% CI (2.170–13.984)].

Mothers who lived in urban areas were 5.5 times more likely to have good neonatal care practices when compared to mothers who lived in rural areas. This was consistent with other prior studies done in Nepal\(^{21}\) and East Gojjam, Ethiopia\(^{22}\). This is due to the reason that getting adequate information on neonatal care and other newborn issues is very important for mothers to increase their awareness and practices toward their newborn care.

Table 4. Multivariate logistic regression analysis result of factors associated with neonatal care practice among mothers of infants 0–6 months in North shewa zone, Oromia region, Ethiopia (N = 395). CI confidence interval, COR crude odd ratio, AOR adjusted odd ratio. *p-value < 0.05.

Variables	Category	Neonatal care practice	COR (95% CI)	AOR (95% CI)	p-value
Residence	Rural	Poor 100 (66.67%)	1	1	<0.001*
		Good 148 (42.90%)	1.331 (0.394–4.492)	0.645	
	Urban	Poor 50 (33.33%)	1	1	0.531
		Good 197 (57.10%)	2.66 (1.164–3.047)	5.508 (2.170–13.984)	
Mothers' education status	No formal education	Poor 68 (45.33%)	1	1	0.257
		Good 22 (8.98%)	0.39 (0.284–6.854)	0.683	
	Primary	Poor 46 (30.67%)	1	1	0.242
		Good 61 (24.90%)	4.10 (1.008–7.061)	2.236 (0.021–2.649)	
	Secondary	Poor 31 (20.67%)	1	1	0.079
		Good 88 (35.92%)	2.140 (1.034–6.240)	1.139 (0.015–1.258)	
	College and above	Poor 5 (3.33%)	1	1	0.661
		Good 74 (36.20%)	5.214 (2.071–8.518)	3.639 (0.086–4.733)	

Mothers who did not get adequate information from a health worker or HEW on neonatal care before or following their delivery were 0.12 less likely to have good neonatal care practices as compared to mothers who had to get adequate information on the newborn issues [AOR 0.123, 95% CI (0.054, 0.282)].

A mother who had birth preparedness & complication readiness in their last pregnancy was 5.3 times more likely to have a good neonatal care practice as compared to others [AOR 5.311, 95% CI (2.055, 13.723)] (Table 4).

Discussions

Neonatal care and their health can be improved by a multidisciplinary approach in Ethiopia\(^{14}\). The magnitude of neonatal care practice in our study area was 62.0%, which was almost like the previous study done in southwest Ethiopia (59.5%)\(^ {17}\), but it was relatively higher than the study conducted in Addis Ababa, Ethiopia (29%)\(^ {18}\).

Most of the elements of the neonatal care practice along the continuum of care were somewhat good. This finding was almost higher than a previous study done in southwest Ethiopia\(^{17}\). This may be described relatively by a good knowledge of mothers regarding neonatal health and neonatal care that increases its utilization.

Neonatal care practice was higher among mothers from the urban area as compared to their counterparts. Mothers who lived in urban areas were 5.5 times more likely to have good neonatal care practices when compared to mothers who lived in rural areas [AOR 3.042, 95% CI (1.031, 12.642)]. This was also consistent with other prior studies done in Nepal\(^ {21}\) and East Gojjam, Ethiopia\(^ {22}\). This may be due to the reason that getting adequate information on neonatal care and other newborn issues is very important for mothers to increase their awareness and practices toward their newborn care.

This study revealed that mothers who had birth preparedness and complication readiness were 5.3 times more likely to have good neonatal care practices as compared to others [AOR 5.311, 95% CI (2.055, 13.723)]. Similarly,
mothers who got immediate PNC services were 5.8 times more likely to have good neonatal care practice as compared to others [AOR 5.779, 95% CI (2.315, 14.425)]. This finding was almost like other prior studies done in Nepal[21]. This is due to the PNC services of mothers, as they are expected to get essential information and be counseled about every aspect of newborn issues which helps them to have good practices toward their newborns.

Strength and limitations of the study. As the strength, the determinants of neonatal care practice at both the community and individual levels were studied. As a limitation since the study was cross-sectional it may not be strong enough to demonstrate a causal relationship between dependent and independent variables due to the nature of the study. Similar studies were done on neonatal care practice and associated factors among mothers are limited in our country to make comparative discussion. In addition, neonatal care practices were determined based on mothers’ reports, which might have been forgotten. Therefore, precaution should be given while interpreting the findings.

Conclusion
The study showed that almost there was moderate neonatal care practice among mothers in the study area. Besides this, the big difference was founded in the coverage of the components of the neonatal care package. Place of residence, attending ANC follow-up, receiving information/counseling before, or following delivery from a health worker or HEW, and birth preparedness and complication readiness (BPCR) were found to be determinants of neonatal care practice. Therefore, Policymakers and healthcare providers need to create awareness in the community to improve the coverage of the neonatal care package components before, during, and after birth. Community-based programs are expected to address the poor practices to improve neonatal outcomes. Besides this, improving antenatal care follow-up, and family planning service is recommended to assure good newborn care practices among mothers. Furthermore, it is recommended to conduct qualitative research to explore the reasons and beliefs associated with poor neonatal care practices.

Data availability
The dataset of this article is accessible on reasonable request from the corresponding author.

Acknowledgments
This study was funded by the College of Medicine and Health Sciences, Jimma University, Ethiopia

Received: 16 June 2021; Accepted: 14 June 2022
Published online: 23 June 2022

References
1. Liu, L. et al. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: An updated systematic analysis. The Lancet 385(9966), 430–440. https://doi.org/10.1016/S0140-6736(14)61698-6 (2015).
2. Bhutta, Z. A., Darmstadt, G. L., Hasan, B. S. & Haws, R. A. Community-based interventions for improving perinatal and neonatal health outcomes in developing countries: A review of the evidence. Pediatrics 115(Supplement 2), 519–617. https://doi.org/10.1542/peds.2004-1441 (2005).
3. Assefa, Y., Tesfaye, D., Van Damme, W. & Hill, P.S. Effectiveness and sustainability of a diagonal investment approach to strengthen the primary health-care system in Ethiopia. The Lancet 392(10156), 1473–1481. https://doi.org/10.1016/S0140-6736(18)32215-3 (2018).
4. Lawn, J. E., Kerber, K., Enweronu-Laryea, C. & Masee, B. O. Newborn survival in low resource settings—Are we delivering? BJOG Int. J. Obstetr. Gynaecol. 116, 49–59. https://doi.org/10.1111/1471-0528.2009.02328.x (2009).
5. Liu, L. et al. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. The Lancet 379(9832), 2151–2161. https://doi.org/10.1016/S0140-6736(12)60560-1 (2012).
6. Wardlaw, T., You, D., Hug, L., Amouzou, A. & Newby, H. UNICEF report: Enormous progress in child survival but greater focus on newborns urgently needed. Reprod. Health 11(1), 1–4. https://doi.org/10.1186/1742-4755-11-82 (2014).
7. You, D. et al. Global, regional, and national levels and trends in under-5 mortality between 1990 and 2015, with scenario-based projections to 2030: A systematic analysis by the UN Inter-agency Group for Child Mortality Estimation. The Lancet 386(10010), 2275–2286. https://doi.org/10.1016/S0140-6736(15)00120-8 (2015).
8. Setegn, T., Lakew, Y. & Deribe, K. Geographic variation and factors associated with female genital mutilation among reproductive age women in Ethiopia: A national population based survey. PLoS ONE 11(1), e0145329. https://doi.org/10.1371/journal.pone.0145329 (2016).
9. Darmstadt, G. L. et al. Evidence-based, cost-effective interventions: How many newborn babies can we save? The Lancet 365(9463), 977–988. https://doi.org/10.1016/S0140-6736(05)71088-6 (2005).
10. Young, M., Wolfheim, C., Marsh, D. R. & Hammamy, D. World Health Organization/United Nations Children’s Fund joint statement on integrated community case management: An equity-focused strategy to improve access to essential treatment services for children. Am. J. Trop. Med. Hygiene 87, 6–10. https://doi.org/10.4269/ajtmh.2012.12-0221 (2012).
11. Ademuyiwa, A. O., Sowande, O. A., Ijaduola, T. K. & Adejuyigbe, O. Determinants of mortality in neonatal intestinal obstruction in Ife Ife, Nigeria. Afr. J. Paediatr. Surg. 6(1), 11 (2009).
12. Aziz, N., Akhter, S. & Kaleem, R. Newborn care practices regarding thermal protection among slum dwellers in Rachna town Lahore Punjab. Ann. King Edward Med. Univ. 16(1), 51–54 https://annalskemu.org/journal/index.php/annals/article/view/157 (2010).
13. Agarwal, S., Sethi, V., Sreeravastava, K., Jha, P. K. & Baqui, A. H. Birth preparedness and complication readiness among slum women in Indore city, India. J. Health Popul. Nutr. 28(4), 383. https://doi.org/10.3329/jhp.v28i4.60415 (2010).
14. Central Statistical Agency [Ethiopia] and ICF International: 2011. Ethiopia Demographic and Health Survey Addis Ababa, Ethiopia and Calverton, Maryland, USA: Central Statistical Agency and ICF International (2012). https://dhsprogram.com/pubs/pdf/FR255/FR255.pdf. Accessed 20 July 2020.
15. Federal Ministry of Health, Family Health Department. National Strategy for Child Survival in Ethiopia. Addis Ababa (2005). http://www.africanchildforum.org/ch/policy%20per%20country/ethiopia/ethiopia_survival_2005_en.pdf. Accessed 20 July 2020.
16. Bhutta, Z. A. & Black, R. E. Global maternal, newborn, and child health—So near and yet so far. N. Engl. J. Med. 369(23), 2226–2235. https://doi.org/10.1056/NEJMc1111853 (2013).
17. Tura, G. & Fantahun, M. Neonatal care practice and factors affecting in Southwest Ethiopia: A mixed methods study. BMC Int. Health Hum. Rights 15(1), 18. https://doi.org/10.1186/s12914-015-0050-2 (2015).
18. Chichiabellu, T. Y., Mekonnen, B., Astawesegn, F. H., Demissie, B. W. & Anjulo, A. A. Essential newborn care practices and associated factors among home delivered mothers in Damot pulasa Woreda, southern Ethiopia. Reprod. Health 15(1), 162. https://doi.org/10.1186/s12978-018-0609-1 (2018).
19. Misgna, H. G., Gebru, H. B. & Birhanu, M. M. Knowledge, practice and associated factors of essential newborn care at home among mothers in Gulmekeda District, Eastern Tigray, Ethiopia, 2014. BMC Pregnancy Childbirth 16(1), 144. https://doi.org/10.1186/s12884-016-0931y (2016).
20. Adelaja, L. M. A survey of home delivery and newborn care practices among women in a suburban area of Western Nigeria. Int. Scholar. Res. Not. 2011(983542), 1–9. https://doi.org/10.5402/2011/983542 (2011).
21. Sharan, M. Determinants of Safe Motherhood and Newborn Care Behaviors in Rural India, 1789–1789 (2002).
22. Teshome, K., Mekonen, A. & Genet, D. Community based essential new born care practices and associated factors among women in the rural community of Awabel District, East Gojjam Zone, Amhara, Ethiopia, 2013. Int. J. Adv. Sci. Res. 1(01), 17–27. https://doi.org/10.7439/ijasr (2015).

Acknowledgements
The authors thank Selale University for logistic support and our heartfelt thanks go to the North Shewa zone health office, Woredas and Kebele administrators, study participants, supervisors, and data collectors for their cooperation.

Author contributions
K.B. and F.B. contributed to the proposal preparation, study design, analysis and writes up of the manuscript. M.M., K.J. and G.F. contributed to the design of the study and writes up the manuscript. All authors read and approved the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to G.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022