Nitrogen/protein and one-step moisture and ash examination in foodstuffs: Validation case analysis using automated combustion and thermogravimetry determination under ISO/IEC 17025 guidelines

Carolina Cortés-Herrera, Silvia Quirós-Fallas, Eduardo Calderón-Calvo, Randall Cordero-Madrigal, Laura Jiménez, Fabio Granados-Chinchilla, Graciela Artavia*

Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, 11501-2060, Ciudad Universitaria Rodrigo, Facio San José, Costa Rica

ARTICLE INFO

Keywords:
Food composition
Proximate analysis
Moisture
Ash
Protein
Thermogravimetry
Dumas/Combustion
Kjeldahl
Method validation
Fit-for-purpose method
Environmental impact

ABSTRACT

Method validation within food science is a not only paramount to assess method certainty and ensure the quality of the results, but a pennant in analytical chemistry. Proximate analysis is an indispensable requirement for food characterization. To improve proximate analysis, automated protein and thermogravimetric methods were validated according to international guidelines (including ISO 17025) and acceptance criteria of results based on certified reference materials and participation within international recognized proficiency schemes. Common food groups (e.g., meat, dairy, and grain products) were included and at the end of validation, we obtained three rugged and accurate methods with adequate z scores (∼ 2 > z > 2) and recoveries (92–105%). During optimization, variables such as gas flows, subsample masses, and temperatures were varied and specific conditions (those that rendered the best results) were selected for each food group. For each validated method, a comparison (technical and economic) among the data obtained and the data extracted for its traditional counterpart were included: assays validated demonstrate to be more cost-effective labor-wise (ca. 9 and 16-fold) than their traditional alternatives. Specifically for combustion assay regression analysis (y = 0.9361x, y = 1.1001x, and y = 0.9739x, for meat, dairy and grain products, respectively) were performed to assess the factor, if any, which must be applied to the results to effectively match those obtained for Kjeldahl method. Finally, in the case of protein, samples can be analyzed under 5 min with no residue and a subsample mass below 400 mg. Moisture and ash analysis can be performed simultaneously using the same subsample. Data herein will also help harmonize and advance food analysis toward more efficient greener methods for proximate analysis.

1. Introduction

The nutritional value of foods is extremely relevant as it is the first step toward characterization of novel or staple food sources; it can be of interest in the food industry for product development, quality control or regulatory purposes (Thangaraj, 2016). Proximate analysis, which refers to the macro quantitative analysis of molecules in food, is included in most of the research considering primary characterization of food (see for example, Suffo Kamela et al., 2016; Kassegn, 2018; Chisomo Chatepa et al., 2018; Aletan and Kwazo, 2019; Dan Ramdath et al., 2020). To this end, a combination of different techniques are used to determine protein, fat, moisture, ash and carbohydrate levels. In this regard, three common assays included in proximate analysis are protein, moisture and ash, which traditionally are determined using Kjeldahl and oven or furnace methods. These standard methodologies, are usually time-consuming, require large amounts of samples, are highly dependent on the accuracy of the operator, and comprise several steps (which may result in low reproducibility) (Torquato et al., 2017). However, green chemistry forward and highly automated specialized laboratory equipment has been developed to assess protein (combustion analyzers), moisture, and ash (thermogravimetric analyzers) and has been slowly replacing traditional methods (Simmon et al., 1997). For example, for 2015 LGC proficiency scheme 226 round 731 (meat products) n = 3 participants reported protein using combustion from a total of n = 42 participants. Meanwhile, for 2016, scheme 243 round 531 the number of laboratories reporting using combustion analyzer increased in 233%. A similar scenario happens in other proficiency schemes; for FAPAS rounds 2020-2021 (porridge oats) 4.9% and 12.3% of...
Table 1
Approved methodologies for combustion analysis in foods.

Method	Matrix
AACC (American Association of Cereal Chemists)	46-30 Cereal and Cereal Products
AOAC (Association of Official Analytical Chemists)	990.03 Animal Feed
	992.15 Meat/Meat Products and Pet foods
	992.23 Cereal Grain and Oil Seed Products
	997.09 Beer, Wort, and Brewing Grains
AOSCS (American Society of Brewing Chemists)	BA4E-93 Oil Seeds
	BA4F-00 Soybean Meal
ASCB (American Society of Brewing Chemists)	Combustion Adjunct materials, Barley, Beer, Brewers’ Grains, Malt, Wort
ISO (International Organization for Standardization)	14991 Milk and Milk Products
	16634 Food Products, Oilseed, and Animal Feed

the participants reported the use of combustion analyzers. This, in contrast with the behavior observed for animal feed where combustion analysis is the primary method (e.g., AAFCO check sample program 202126, where n = 122 laboratories against n = 11 using Kjeldahl).

A common application of combustion analyzers is the composition determination of organic compounds (see for example, Fadeeva et al., 2008). To date, few methods using combustion automated analyzers have been developed for food analysis per se (see for example, Table 1) and those implemented are limited in their scope. For example this technique was recently used to assess nitrogen distribution in a cereal (Bruning et al., 2019). In contrast, feed analysis using combustion, has a single method of its own (Etheridge et al., 1998, Table 1). In contrast, feed analysis using combustion, has a single method of its own (Etheridge et al., 1998, Table 1). In contrast, feed analysis using combustion, has a single method of its own (Etheridge et al., 1998, Table 1).

However, no standardized method have been reported to be validated for the routine analysis of nitrogen/protein, moisture, or ash in foodstuffs using the techniques aforementioned. Moreover, the necessity for laboratories to use fully validated methods is now universally accepted as a way to obtain reliable results (Raposo and Ibelli-Bianco, 2020).

Hence, we developed validated a method for protein using and automated combustion analyzer and a single-step method for the determination of moisture and ash based on thermogravimetry, according to guidelines established by ISO 17025 and compared these methods to traditional approaches such as Kjeldahl determination and loss on drying using convection or incineration using a furnace muffler. In the case of protein, the validated combustion method allows determining the percentage of nitrogen in dry matrices such as flour, baked goods, sausages, meat (according to 992.15 AOAC) and dairy products such as cheese, condensed milk, and powdered milk with a nitrogen concentration ranging from 0.22 to 100 g/100 g.

We consider the value of this work to be severalfold: i. It would give researchers the opportunity to reconcile standardized guidelines with research in food analysis ii. It will permit to compare traditional and emerging techniques iii. Food analysis lab managers would benefit from validation data that can be useful as a blueprint for their own validations. iv. It can be useful as a teaching example for method validation v. Our data reflects common values for protein, moisture and ash for foodstuffs, thus expanding food characterization data and, finally, vi. Hopefully, it would serve as a scaffold for the future inclusion of combustion and thermogravimetric methods in normalized/official assays for food analysis.
at 10.42, 20.99, 33.27 g N/100 g. Factor conversion from nitrogen to protein used was 6.25 unless otherwise stated; with the exception of the dairy samples, where the majority of proteins have 16 g N/100 g; the accredited AOAC OMA 6.38 conversion factor was used. Samples were quartered, milled and protein used was 6.25 unless otherwise stated; with the exception of the

Food matrix	Subsample mass, g	Temperature, °C
Dairy	0.5–1.00	104–110
Fruit fritters	0.20–0.50	80
Wheat meal	0.20–0.50	120–133
Freeze dried fruit	0.20–0.50	80
Baked goods	0.25–0.50	100–110
Bread	0.25–0.50	100
Condiments	0.25–0.50	104
Coffee	0.20–0.50	100–105
Grains and derivates	0.2–0.50	103
Grains and derivates (meals)	0.5–1.00	110
Corn meal	0.20–0.50	100–105
Fresh fruit	0.20–0.50	70–80
Baby foods	0.20–0.50	120
Soybean meal	0.5–0.6	185
Beer	0.20–0.50	71
Fruit Juice	0.5–1.0	110
Meat products	0.5–1.0	100–110

deviations from the mean a data point is. Mathematically, \(z = (x - μ)/σ \). Then, \(z \) values are calculated as follows: robust mean concentration (obtained from the method/analyte performance agreed among several laboratories) subtracted by the result obtained by the laboratory divided by the robust standard deviation. Laboratory scales and direct measurement equipment was calibrated by laboratories also accredited by ISO 17025. Expanded uncertainties are reported with a coverage factor of \(k = 2 \), which indicates approximate 95.4% confidence. For all statistical analyses, an \(α \) of 0.05 was considered a threshold to assess significance. All statistical analyses were performed using SAS JMP 16.1 (Cary, NC, USA). Methods were validated according to performance parameters dictated by AOAC, US FDA, and ICH (AOAC, 2012; US FDA, 2015; Borman and Elder, 2018; Raposo and Ibelli-Bianco, 2020).

2.5.1. For protein analysis

During protein analysis ruggedness a two tailed t-student assay was used to compare \(n = 7 \) replicates of each treatment. Determination coefficients were used to assess among the traditional and combustion method for protein, \(r^2 \approx 1 \) indicates that the regression predictions perfectly fit the data. Protein recovery was assess using \(n = 12 \) independent experiment all in duplicate using, previously dried, arginine and aspartic acid, the latter is also used as an internal control material of the equipment. Finally, six independent measurements for a nitrogen-free compound (i.e., sucrose) were used to assess limit of detection of the method.

2.5.2. For moisture analysis

Repeatability and reproducibility were performed as described in section 2.5.1. For ruggedness analysis, three different sample masses (0.2, 0.5, and 1) for butter and coffee samples of 2 g were also tested and temperatures were assayed using nine independent replicates per treatment/matrix. Temperature ranges, for each food, were based on two criteria (from data that emerge from traditional techniques) i. the temperature recommended by the reference AOAC method and ii. the temperature variability during the oven resistance cycling. Moisture

2.4. Simultaneous analysis of moisture content and dry ash in foodstuffs using thermogravimetric analysis

A thermogravimetric analyzer (LECO, TGA 801, Saint Joseph, MI, USA) was used for the determination of moisture and ash. Previously dried (at 100 °C for an hour) crucibles and caps were let to dry in a desiccator and cool down to room temperature and then loaded into the sample carousel into ceramic crucibles. An accurately measured form 100 mg sub-sample was accurately measured within tin foils that were immediately placed in the carrousel.

Kjeldahl protein method was conducted according to ISO 17025 accredited AOAC OMA® methods 920.09, 920.115G, 920.85, 928.08, 930.25, 930.29, 935.39, 940.25, 945.39, 945.48, 950.36, 979.09, and 991.20 using a digestion and distillation systems (20-place digestion block Digestor™, Tecator series 2520 and Kjeltec™ 8400 distillation unit, FOSS, Hillerød, Denmark).

2.5. Statistical analysis

HorRat was based on repeatability, the ratio among the experimental RSD, and its calculated counterpart. RSDg and RSDr are calculated based on mass fraction of the analyte tested using a modified Horwitz equation (e.g., PRSDg = \(C_{0.5} \), Boyer et al., 1985; Horwitz and Albert, 2006). \(z \) values were calculated based on standard normal distribution for a 95% confidence level. Then, acceptable \(z \) values (i.e., from \(-2 \) to \(2 \)) were considered as proof of the method acceptable bias, accuracy, and recovery. In this scenario, \(z \) values indicate the number of standard

Table 2

Defined test conditions for moisture analysis during the thermogravimetric method, optimized data after validation.

Food matrix	Subsample mass, g	Temperature, °C
Wheat meal	0.20–0.50	120–133
Freeze dried fruit	0.20–0.50	80
Baked goods	0.25–0.50	100–110
Condiments	0.25–0.50	100
Coffee	0.20–0.50	100–105
Grains and derivates	0.2–0.50	103
Grains and derivates (meals)	0.5–1.00	110
Corn meal	0.20–0.50	100–105
Fresh fruit	0.20–0.50	70–80
Baby foods	0.20–0.50	120
Soybean meal	0.5–0.6	185
Beer	0.20–0.50	71
Fruit Juice	0.5–1.0	110
Meat products	0.5–1.0	100–110

Table 3

Analysis of repeatability and reproducibility of various food materials for protein analysis.*

Food matrix	Mean ± standard deviation, g/100 g	% RSD	HorRat
Meat products			
Wheat meal	12.38 ± 0.212	1.73	1.40
Whole wheat pasta	14.65 ± 0.150	1.02	0.85
Oats	1.87 ± 0.023	1.24	1.12
Whole wheat pasta	1.87 ± 0.013	0.69	0.37
Wheat pasta	2.31 ± 0.025	1.07	0.61

* At least three independent samples for each food were tested under repeatability or reproducibility conditions.

Table 4
Analysis of ruggedness for protein determination (variation of the subsample target mass and oxygen flow) for three different categories of food materials using certified materials.

Grain products	Croutons	Cereal	Wheat meal	Oats	Snack					
Mass, mg	Flow		Concentrations, g/100 g							
150	Low	2.38a	2.57a	2.14a	2.19a	1.88a	1.86a	1.20a	1.13	
	Medium	2.59a	2.11a	2.15a	1.86a	1.14a				
	High	2.53b	2.10b	2.10a	1.86a	1.13a				
250	Low	2.36a	2.47b	2.18a	2.10a	2.09	1.88b	1.87a	1.20a	1.18a
	Medium	2.59b	2.08b	2.09b	1.87a	1.12a				
	High	2.46b	2.06b	2.06b	1.85b	1.08a				
400	Low	2.34a	2.38a	2.17a	2.15a	1.89a	1.87a	1.12a	1.11a	
	Medium	2.56a	2.12a	2.12a	1.86a	1.27a				
	High	2.45a	2.16a			1.87a	1.11a			
Accepted range		2.18–2.51	1.87–2.16	1.91–2.20	1.74–2.01	0.97–1.14				

Canned meat	Flow	Condensed milk	2.17 (c - 0.039)	Pasta and cheese	Evaporated milk	Powdered Milk
150	Low	2.39a	2.30a (± 3.33)	1.61a	1.47a	
	Medium	2.27a	1.41a	1.56a	1.41a	
	High	2.26b	1.41a	1.56a	1.41a	
250	Low	2.17a	2.13a (± 1.02)	1.41a	1.37a	
	Medium	2.14a	1.27a	1.24b	1.31b	
	High	2.11a	1.24b	1.31b	1.31b	
400	Low	2.13a	2.09a (± 2.05)	1.39b	1.37b	
	Medium	2.08a	1.37b	1.30a		
	High	2.08a	1.30a			
Accepted range		1.19–1.40	0.47–0.56	1.01–1.19	5.40–5.59	

* Dissimilar letters show significant differences (p < 0.05) among rows (i.e., among concentrations obtained from different mass treatments or flows).

2.5.3. For ash analysis
For the case of ruggedness, two different subsample masses (i.e., 0.2 and 1.0 g) were tested in three types of matrices (i.e., powdered milk, cereal, and canned meat). Several experiments were conducted in which ash was determined at four different temperatures (550, 600, 650, and 700 °C) and three levels of oxygen flow (low, medium and high) for milk, meat products and cereals. For the factorial design for coffee, two additional variable levels were tested i.e., subsample masses varying from 0.25 to 1.00 g and the comparison of pure and “torrefacto” roasted coffee (sugar-enriched coffee).

3. Results and discussion
3.1. Protein analysis and validation using combustion
3.1.1. Repeatability and reproducibility
Variations for repeatability and reproducibility ranged from 0.30 to 6.97 and 0.30 to 1.73, respectively (Table 3). HorRat values do not exceed threshold value of two, which is considered suitable as a performance benchmark (Table 3). According to 992.15 SD, should not exceed 0.15. As such, the laboratory can set is acceptance levels for variation coefficient below a 10%.

Table 5
Veracity and accuracy of the protein method based on certified reference materials and proficiency schemes.

Food matrix	Obtained result, g/100 g	z value
Oat flakes	1.69	-0.16
Corn meal	1.32	0.92
Meat and fish pate	2.03	0.88
Meat or meat products	2.23	1.61
Certified reference materials		
Food matrix	Obtained result, g/100 g	Accepted range
Meat or meat products	2.94	5.56–2.99
Wheat meal	1.97	1.90–2.19
Wheat meal	2.09	1.91–2.20
Oats	1.87	1.74–2.01
Snack	1.12	0.97–1.14
Pasta and Cheese	0.54	0.47–0.56
Condensed milk	1.39	1.01–1.19
Powdered milk	5.48	5.40–5.59
Condensed milk	1.36	1.19–1.40
Cereal	2.08	1.87–2.16
Meat or meat products	1.27	1.23–1.32
Croutons	2.47	2.18–2.51

* Values corrected for a factor obtained from comparing Kjeldahl method versus combustion, K/D = 0.96 (see section 3.1.4).

3.1.2. Ruggedness and bias
Meat and meat products and dairy products seem to be less prone to bias as small modifications or perturbations are introduced within the method (Table 4). In contrast, in grain products n = 5 different matrices were tested and some differences arise when conditions (mass and
oxygen flow) are modified. The method seems to be more sensitive toward mass changes (Table 4). Lower masses (i.e., 150 mg or less) will be more likely to suffer from sample heterogeneity, higher masses may overestimate if the detector is saturated (Table 4). However, overall, a medium O$_2$ flow and 250 mg subsample mass, seem to be enough to gain sample representability, while maintaining accurate values (Table 4).

3.1.3. Veracity and accuracy

Allotted proficiency schemes and certified materials tested within the concentration range reported by the manufacturer or by the supplier (Table 5). This speaks toward a very accurate method for the three most extensive group of foods (i.e., meat and meat, dairy, and grain products).

3.1.4. Direct comparison with Kjeldahl (traditional) method

As stated before, for some food products a correction may be needed to avoid protein overestimation when using combustion analysis. Both Kjeldahl and combustion assays are not equivalent as they use different chemical principles to ascertain nitrogen. The former acknowledges organic protein sources while combustion will definitely will account for other inorganic sources (e.g., nitrate and nitrite used for curing and preserving meats and fish (Majou and Christieans, 2018) or remainder of inorganic or slow release fertilizers in crops). Notwithstanding, our data shows that both methods perform very closely and that the ratio between protein concentrations obtained for the same samples nears one (Table 6). Then, from regression analyses performed r^2 range from 0.95 to 0.99, which indicate that only a small fraction of the cases used cannot be fitted within the model. The regression equation gives a direct association among the fitness between Kjeldahl and combustion methods (Fig. 1). The most significant correction we found was for meat products (slope 0.9361, Fig. 1A), and trivial for dairy and grain products (slopes 1.1001 and 0.9709, respectively) (Fig. 1B and C). In all cases intercepts were insignificant (Fig. 1A–C). Our data is in line with that of Lanza and coworkers (2016).

3.1.5. Recovery

In the case of aspartic acid, mean nitrogen values were 10.52 g/100 g. This is in line with the value reported by the manufacturer i.e., 10.1–10.8 g/100 g. Meanwhile, arginine recoveries, which are also used as quality control for the Kjeldahl method, were 98.94 ± 0.66%. Twice (97.62–100.26%) and thrice (96.96–100.92%) the standard deviation were calculated to define both action and alert thresholds (respectively). Recoveries from 92 to 105, 95–102, and 98–101 for ingredient ranges form 1–100 g/100 g are considered acceptable (Gonzalez et al., 2010).

3.1.6. Limit of detection and uncertainty

On average, a non-containing nitrogen compound generated a signal

Food Matrix	N_{Kjeldahl}	$N_{\text{Combustion}}$	$N_{\text{Kjeldahl}}/N_{\text{Combustion}}$ (K/D ratio)
Meat and meat products			
Ground meat	2.74	2.89	0.97
Pate	1.72	1.71	1.00
Mortadella	1.93	1.82	0.94
Sausage	1.53	1.63	0.88
Sausage	1.75	1.92	0.92
Pork sausage	2.14	2.35	0.92
Canned meat	2.17	2.14	1.01
Canned meat	1.32	1.37	1.04
Dairy products			
Sour cream	0.43	0.51	0.84
Low fat milk	0.52	0.56	0.93
Defatted milk	0.57	0.64	0.90
Whole milk	0.48	0.50	0.96
Milk powder	4.67	4.41	1.06
Fresh cheese	3.47	3.07	1.13
Yogurt	0.67	0.69	0.96
Grain products			
Wheat meal	2.05	2.08	0.99
Croutons	2.25	2.36	1.00
Oats	1.84	1.87	0.98
Wheat meal	1.89	1.97	0.96
Pasta	2.20	2.33	0.94

Fig. 1. Association of nitrogen obtained by combustion with the nitrogen obtained by Kjeldahl in A. meat products B. dairy products and C. grain products.
of 0.131 ± 0.009 (i.e., 7.22% RSD) translated to a concentration this represents 0.22 g N/100 g, making the method considerably sensitive. Absolute (\(\times 10^{-2}\)) represents 0.22 g N/100 g, making the method considerably sensitive.

3.2. Moisture analysis and validation using thermogravimetric analysis (TGA)

3.2.1. Repeatability

Repeatability and reproducibility coefficient of variation varied from 0.25 to 9.54 (where evaporated milk and chicken stock powder showed the least and most dispersion, respectively) and from 0.69 to 3.40 (with milk powder with the most dispersion among independent replicates), respectively (Table 7). Hence again, laboratory precision can be set below 10% (Table 7).

3.2.2. Ruggedness

Milk powder, pure coffee and corn meal were the most susceptible to increasing temperatures; 5°Δ were sufficient to affect the significantly moisture levels obtained (Table 8). On the contrary, no significant differences were found for sugar-enriched coffee and butter (\(p < 0.05\)). For coffee and butter, augmenting subsample size to 2 g resulted in diminished moisture levels (\(p < 0.05\)) (data not shown). In the case of temperature, working ranges (without sacrificing accuracy) were tested for a sample from each food group (Table 8). Additionally, using a certified material standardized subsample of 0.5 g, the modification of ±10 °C does have a significant impact on moisture for grain, milk products or coffee (\(p < 0.05\), Table 8). Again, butter moisture values seem to be less affected by variations in temperature.

3.2.3. Comparison between traditional (vacuum/convection oven drying) and thermogravimetric determinations

No significant differences were observed (\(p < 0.05\)) for canned meat (i.e., 64.95 ± 0.26 and 64.95 ± 0.35 g/100 g), croutons (i.e., 8.87 ± 0.10 and 8.85 ± 0.03 g/100 g), tomato ketchup or milk powder when comparing methods (traditional versus thermogravimetric), in both cases measurements performed at 110 °C (except for croutons where temperature was set 120 °C). Tables 8 and 9 demonstrate that despite the physical (e.g., brittleness and grinding) and chemical differences of roasted pure and sugar-enriched coffee (Andueza et al., 2003; Baggenstoss et al., 2008), moisture can be measured successfully for both matrices. "Torrefacto" coffee is produced by a roasting process in which sugar is added to coffee, normally Robusta (Ludwig et al., 2013). A similar situation arise with powdered and evaporated milk. In fact traditionally, two different AOAC methods, 927.05 and 925.23A, using vacuum oven (≤4 in Hg) or convection oven, respectively on both accounts, to assess moisture in these food products (Martins et al., 2018). Thermogravimetric analysis is able to work with both types of food samples. As a direct measurement of moisture, thermogravimetric analysis additional advantage consist on the fact that the method can be improved if data comparable to Karl Fisher is desired by distinguishing differences were found for sugar-enriched coffee and butter (\(p < 0.05\)).

Table 8

Analysis of the robustness of moisture at different temperatures for coffee, dry and dairy samples.

Food matrix	Temperature, °C	Accepted value, g/100 g		
Dairy products				
Milk powder	96.87\(^{a}\)	96.64\(^{b}\)	96.33\(^{c}\)	96.11-96.79
Butter	15.04\(^{a}\)	15.46\(^{a}\)	15.34\(^{a}\)	15.42
Grain products				
Corn meal	9.70\(^{a}\)	10.02\(^{b}\)	10.42\(^{c}\)	9.90
Coffee (pure)	0.99\(^{a}\)	1.22\(^{b}\)	1.47\(^{c}\)	1.00-1.41
Coffee (Sugar-enriched)	1.09\(^{a}\)	1.17\(^{b}\)	1.38\(^{c}\)	0.79-1.27

\(^{a}\)Green colored cells indicate acceptable values for the proficiency test or certified material, whereas orange, values outside specification. **Dissimilar cells show significant differences (\(p < 0.05\)) among rows (i.e., among concentrations obtained from temperatures).
10 to the method (0.2 g), corresponds to 0.2 g/100 g. On another hand, applied by 10 and divided by the minimum mass to be weighed according depended on the standard deviation of the repeatability of the analytical

3.2.5. Limit of detection and uncertainty

The minimum value of moisture that can be detected gravimetrically depended on the standard deviation of the repeatability of the analytical balance reported by the manufacturer (i.e., 0.02% RSD). When multiplied by 10 and divided by the minimum mass to be weighed according to the method (0.2 g), corresponds to 0.2 g/100 g. On another hand, absolute, relative, and expanded uncertainty were calculated at 2.07 × 10⁻³, 4.54 × 10⁻³, and 9.07 × 10⁻³, which relatively represents 4.14% of the measurand. Meanwhile, our convection oven method records a 1.15 × 10⁻³ expanded uncertainty (i.e., 5.23% relative to the measurand). Where the 99% of the uncertainty input was represented by reproducibility.

Table 9

Food matrix	Obtained value, g/100 g	z value
Evaporated milk	75.15	-0.03
Coffee (Pure)	1.26	-0.70
Coffee (Sugar-enriched)	0.85	-1.20
Wheat meal	10.81	-0.5
Oat	9.31	0.72
Canned meat	66.53	-0.24
Coffee (Pure)	1.22	-0.29
Coffee (Sugar-enriched)	1.17	1.16
Fruit/vegetable pure	83.25	0.00

3.3. Ash analysis and validation using thermogravimetric analysis (TGA)

3.3.1. Precision, repeatability, and reproducibility

For ash, and under repeatability conditions, corn meal throws the most dispersion among the food matrices tested (8.51 %RSD) (Table 10).

This is contrast with milk powder with just 1.17 %RSD (Table 10).

Table 11

Ruggedness analysis (effect of oxygen flow and temperature) for ash during thermogravimetry.

Food matrix	Obtained value, g/100 g	z value
Evaporated milk	75.15	-0.03
Coffee (Pure)	1.26	-0.70
Coffee (Sugar-enriched)	0.85	-1.20
Wheat meal	10.81	-0.5
Oat	9.31	0.72
Canned meat	66.53	-0.24
Coffee (Pure)	1.22	-0.29
Coffee (Sugar-enriched)	1.17	1.16

3.3.2. Ruggedness

In the case of cereal and meat, there is a significant difference between both masses tested (p < 0.05). Results obtained using 1.0 g sample meet more closely the certificate analysis. In the case of powdered milk, no significant differences were found when the tests are performed using 0.2 or 1.0 g (p < 0.05).

In the case of milk powder, when temperature is set to 650 °C and the oxygen flow modified, it is observed that there is a significant difference (p < 0.05) at low flows, where the ash value is higher, with respect to those determined for medium and high flows (Table 11). Additionally, the lowest ash values are obtained at 700 °C, there is no difference between 550 and 600 °C, and 600 and 650 °C at low flow, or 650 and 700 °C using medium gas flows (p < 0.05; Table 11).

Oxygen flow did not significantly affected (p < 0.05) ash content in meat products at temperatures of 650 and 700 °C. At 700 °C the values are lower than those reported at 550 or 600 °C, there are no differences between the latter temperatures and the values obtained are in the middle of the range reported by the supplier (Table 11).

For cereals, at 700 °C with medium flow ash values are below...
acceptable ranges. However, there are no significant differences \(p < 0.05 \) between the temperatures of 550 and 600 °C or low and high flows (Table 11).

In the case of pure coffee, it is observed that there are significant differences \(p < 0.05 \) between the masses at 650 °C and low flow, and among the other temperatures, the \(z \) scores closest to 0 are obtained with 0.5 g, 550 °C medium and low flow, as well as at 650 °C and medium flow. With roasted coffee, no significant differences were found between variables and conditions found for pure coffee replicate.

3.3.3. Veracity and comparison with the conventional method
Powdered milk replicates measured by traditional and thermogravimetric methods showed no significant differences \(p < 0.05 \), data not shown. In addition, \(z \) scores ranging from −1.40 to 1.90 were found for ash and a mean recovery of 100.98 for meat products (Table 12), which demonstrate an acceptable method accuracy.

3.3.4. Limit of detection and uncertainty
Dynamic working range was calculated to start at 0.20 g/100 g; similarly as it was analyzed for moisture (see above). On another hand, absolute, relative, and expanded uncertainty were calculated at 9.66 × 10^{-3}, 2.91 × 10^{-2}, and 5.80 × 10^{-2}, which relatively represents 1.93% of the measurand. Meanwhile, our furnace method records a 6.81 × 10^{-2} expanded uncertainty (i.e., 2.26% relative to the measurand). Where the 99% of the uncertainty input was represented by reproducibility.

Food matrix	Obtained result, g/100 g	\(z \) score
Evaporated milk	1.37	−0.83
Roasted coffee (pure)	4.19	−1.40
Roasted coffee (sugar-enriched)	3.65	−0.10
Meat product	3.70	1.90
Pineapple juice	0.48	0.54
Oat	1.73	0.37

Table 11
Accuracy for ash thermogravimetric method.

Proficiency scheme

Food matrix	Obtained Experimental values, g/100 g	Recovery, %
Meat product	4.13 (4.04–4.4)	100.98
Biscuit	1.14 (1.11–1.30)	94.21

Table 12

Food matrix	Obtained value, g/100 g	Experimental values, g/100 g	Recovery, %
Meat product	4.13	1.37	100.98
Biscuit	1.14	0.48	94.21

Fig. 2. Diagrammatic comparison of traditional, combustion, and thermogravimetric for the determination of three proximate analysis.
3.4. Costs, environmental impact, and technical requirements of validated methods

An economic analysis for a laboratory with a yearly total demand of 1662 moisture and ash analysis (63.9% of the total were requests for moisture) was performed for the year 2021. For example, thermogravimetry versus the conventional methods demonstrates that energy demands (i.e., 20 and 50% more for moisture and ash, respectively) and maintenance (i.e., parts, consumables, technical support) for thermogravimetric analyses are higher than that for traditional methods (Fig. 2, Table 13). However, the salary demands and operator dependence are extremely low and vastly compensate these costs (Table 13). In the case of protein analysis, the advantages of using combustion vastly surpass the traditional Kjeldahl method; this includes a migration toward green chemistry analytical methods (Fig. 1) (Evers and Hughes, 2002). For example, for a laboratory performing 2000 protein assays per year, this represents (assuming the digestion block is filled at full capacity) 125 times the Kjeldahl method is run. This spread over the year (i.e., over 52 weeks), implies 2.5 digestions and 50 distillations per week. Both systems necessary for Kjeldahl analysis have an energy demand of 2200 W, which will mean a total consumption of 103 kWh per month. On the other hand, a conservative estimate will appraise the time demand per sample at 12.5 min per sample (contemplating digestion, distillation and titration alone (i.e., 3-4 times less than what is required per sample in combustion). Time spent preparing solutions (e.g., boric acid, preparation of acid-base indicators and sodium hydroxide solutions) must be prepped. The same amount of samples can be performed in 150 h using just a third of a 220 cubic feet CO₂ cylinder and no replacement of the reduction column would still be necessary during combustion analysis. Hence, although combustion analysis has in the past been somewhat labeled as expensive and prone to overestimate protein for food analysis (Sáez-Plaza et al., 2013), our data states otherwise. We also contest that a laboratory that can initially afford a Kjeldahl systems like the one described herein, can also afford a combustion system.

4. Conclusions

Both combustion and thermogravimetric analyses can replace the often slow, labor-intensive, traditional manual digestion or gravimetric techniques that require multiple sample weighing and transfer steps and involves numerous equipment (e.g., digestors, distillation units, digestion tubes, desiccators, vacuum and convection ovens). Flexible method settings, automation, and hardware capabilities deliver an automated analysis process while requiring only the manual measurement of the initial sample mass, which translates in productivity. In the case of thermogravimetric analysis, the chemical principle involving the measurement are equivalent to those traditional methods. Hence, the migration of the latter to their automated versions (and in the specific case of protein to a more proficient one) is a less laborious task validation-wise, and more cost effective (especially for high throughput food analysis or research laboratories). Small samples used in either method may force to improve in sample pretreatments (milling and sieving using ≤ 1 mm particle size) to ensure representability. As combustion analysis is, in its core, a gas separation technique, which is able to detect NOx gases after an oxidation step using a TCD, this analysis is highly selective.

CRediT authorship contribution statement

Carolina Cortés-Herrera: Conceptualization, Methodology, Validation, Resources, Data curation, Writing – review & editing, Supervision. Silvia Quirós-Fallas: Formal analysis, Validation. Eduardo Calderón-Calvo: Formal analysis, Validation. Randall Cordero-Madrigal: Formal analysis, Validation. Laura Jiménez: Formal analysis, Validation. Fabio Granados-Chinchilla: Conceptualization, Data curation, Investigation, Visualization, Writing – original draft, Writing – review & editing. Graciela Artavia: Conceptualization, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing, Review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Technological Support Program for Industry (PATT project 917-02) partially financed this research.

References

Association of Official Agricultural Chemists (AOAC), 2012. AOAC INTERNATIONAL guidelines for validation of botanical identification methods. J. AOAC Int. 95, 268–272.
Aletan, U.I., Kwazo, H.A., 2019. Analysis of the proximate composition, anti-nutrients and mineral content of Maurea crassifolia leaves. Niger. J. Basic Appl. Sci. 27, 89–96.
Anduza, S., Par de Peña, M., Cid, C., 2003. Chemical and sensorial characteristics of espresso coffee as affected by grinding and torrefacto roast. J. Agric. Food Chem. 51, 7034–7039.
Baggenstos, J., Perren, R., Escher, F., 2008. Water content of roasted coffee: impact on grinding behaviour, extraction, and aroma retention. Eur. Food Res. Technol. 227, 1357–1365.
Borman, P., Elder, D., 2018. Q2(R1) Validation of Analytical Procedures A. Teasdale, D. Elder, R.W. Nims (Eds.). John Wiley & Sons, Inc. Hoboken, NJ, USA, (2018). In: Teasdale, A., Elder, D., Nims, R.W. (Eds.), ICH Quality Guidelines: An Implementation Guide. John Wiley & Sons, Hoboken, NJ, USA.
Boyer, K.W., Horwitz, W., Albert, R., 1985. Interlaboratory variability in trace element analysis. Anal. Chem. 57, 454–459.
Bruning, B., Liu, H., Brien, C., Berger, B., Lewis, M., Garnett, T., 2019. The development of hyperspectral distribution maps to predict the content and distribution of nitrogen and water in wheat (Triticum aestivum). Food. Plant Sci. 10, 1380.
Chisomo Chatepa, L.E., Masamba, K., Jose, M., 2018. Proximate composition, physical characteristics and mineral content of fruit, pulp and seeds of Punicar (Maula) from Central Malawi. Afr. J. Food Sci. 12, 238–245.
Czaja, T., Sobota, A., Szostak, R., 2020. Quantification of ash and moisture in wheat flour by Raman spectroscopy. Foods 9, 280.
Dan Ramdath, D., Lu, Z.-H., Maharaj, P.L., Winberg, J., Brummer, Y., Hawke, A., 2020. Proximate analysis and nutritional evaluation of twenty Canadian lentils by principal component and cluster analyses. Foods 9, 175.
Daug, J.K., DeClercy, D.R., 1994. Comparison of Combustion and Kjeldahl methods for determination of nitrogen in oilseeds. JAOCs (J. Am. Oil Chem. Soc.) 71, 1069–1072.
Etheridge, R., Peti, G., Foster, E., 1998. A comparison of nitrogen values obtained utilizing the Kjeldahl nitrogen and Dumas combustion methodologies (LECO CN2000) on samples typical of an animal nutrition analytical laboratory. Anim. Feed. Sci. Technol. 73, 21–28.
Evers, J.M., Hughes, C.G., 2002. Chemical analysis. In: Roginski, H. (Ed.), Encyclopedia of Dairy Sciences. Academic Press, Cambridge, Massachusetts, USA, pp. 34–39.
