Species Authentication of Dog, Cat, and Tiger Using Cytochrome β Gene

Irine*a, H. Nurainib, & C. Sumantrib

aMajor Program of Animal Science Production and Technology, Graduate School, Bogor Agricultural University
bDepartment of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University

Jln. Agatis, Kampus IPB Darmaga, Bogor 16680, Indonesia
(Received 24-07-2013; Reviewed 23-09-2013; Accepted 19-12-2013)

ABSTRACT

Adulteration of animal food products for economic reason has happened during the last decades. Species identification method development was needed to prevent falsification information. The objective of this research was to study species authentication (dog, cat, and tiger) to ensure animal origin in products using cyt β gene specific marker. DNA extraction and fragment amplification were conducted using phenol-chloroform and multiplex PCR (Polymerase Chain Reaction) method, respectively. This research showed that fragment length of amplification for species tested (dog, cat, and tiger) were 523, 331, 319 bp, respectively. Species specificity was also indicated by high reverse primers homology percentage. Multiplex PCR technique succeed to amplify DNA fragment from species tested, but has a limitation to amplify total DNA composite of mix DNA.

Key words: cat, cytochrome β gene, dog, multiplex PCR, tiger

INTRODUCTION

Today, many consumers are concerned by issues variety, such as food authenticity and adulteration (Aida et al., 2005; Ahmed et al., 2007; Abdel-Rahman et al., 2009). The identity of species origin in processed or composite mixture is not always readily apparent and accurate (Aida et al., 2005; Sakalar & Abasiyanik, 2012). Consumers rarely can identify the species in product that they purchase: fresh or frozen cuts, and processed meat such as sausage, jerky, and canned foods (Hsieh et al., 2005; Ahmed et al., 2007). This opens fraudulent adulteration and substitution possibility of expected species with less costly value (Che Man et al., 2007; Rastogi et al., 2007; Abdel-Rahman et al., 2009). To protect consumer rights, the legislation of each country should impose an accurate labelling declared the species to prevent food fraud (Ahmed, 2007; Abdel-Rahman et al., 2009; Ballin, 2010). The government has tried to protect consumers with the law (Law of the Republic Indonesia no. 8, 1999) and government regulation (Government Regulation no. 28, 2004, on safety, quality, and nutrition).

Most assays for species identification test only for husbandry species (Matsunaga et al., 1999; Hsieh et al., 2005; Martin et al., 2007a; Ahmed et al., 2007; Rastogi et al., 2007), and only a few reports for detection pet species in commercial materials (Ilhak & Arslan, 2007; Martin et al., 2007b). Even though cat and dog are not commonly used, their presence in food products occasionally occurs (Martin et al., 2007b), such as the use of cat and dog meat in beef, lamb, and goat meat (Ilhak & Arslan, 2007).
Fraudulent substitution of alternative meat species in meat product needs a reliable and specific methods to determine the species.

Beside meat falsification, banned trade of endangered animals may still exist (Fajardo, 2010). Protected animal such as tiger is usually used as a component of medical product (Traditional Chinese Medicines) (Kitpipit et al., 2012; Wetton et al., 2004). This required supervision to prevent falsification information to consumer, along with increased market demand and high prices (Wetton et al., 2004).

Molecular technique development which can detect at DNA level are more accurate, although the samples had been processed. DNA sequence amplification from several species with a lot of primer (using same forward primer) in same reaction is one of the variation PCR (Polymerase Chain Reaction) called multiplex PCR (Matsunaga et al., 1999; Markoulatos et al., 2002; Jain et al., 2007). Matsunaga et al. (1999) using multiplex PCR to identify six meats (cattle, pig, chicken, sheep, goat, and horse) processed. Multiplex PCR could be used as a routine method with highly sensitive, rapid, simple, and not expensive to distinguish species (Jain et al., 2007). This research was to study species authentication (i.e. dog, cat, and tiger) to ensure animal origin in product using cyt β gene specific marker and multiplex PCR. Thus, if specific reverse primers of cyt β gene obtain, species identification will conduct at the same time for several species suspected.

Cyt β gene is one of gene in mitochondrial DNA (mtDNA). mtDNA have multiple presences in cell (Minarovic et al., 2010). Cyt β gene was used for species identification, but in 2003, cytochrome c oxidase subunit 1 (CO1) gene ‘barcoding’ was introduced for species identification and taxonomy. The size of cyt β gene ranging from 1130 to 1149 bp (Tobe et al., 2009) with average 1140 bp (Minarovic et al., 2010), and CO1 ranging from 1537 to 1557 bp (Tobe et al., 2009). CO1 had more conserve area (43.7% of 1557 bp) than cyt β (22.4% of 1149 bp). Hence, for smaller fragment in mammalian samples, cyt β gene will offer greater informative (Tobe et al., 2009).

MATERIALS AND METHODS

Specific Primers

Specific primers of cyt β gene were used to amplify DNA fragment of goat, chicken, cattle, pig, and horse followed Matsunaga et al. (1999) method. DNA fragment amplification of sheep used a modified primer from Matsunaga et al. (1999), and rat primer followed the method of Nuraini et al. (2012). Forward primer used to amplify ten animals was same, and sequence of the primer as follows: 5’-GAC CTC CCA GCT CCA TCA AAC ATC TCA TCT TGA TGA AA-3’ (Matsunaga et al., 1999). DNA sequences of dog (GenBank JF342903), cat (GenBank AB194817), and tiger (GenBank EU184702) were aligned using MEGA 5 software, furthermore specific reverse primers of cyt β gene were designed manually (Table 1).

DNA Extraction

Blood samples (goat, chicken, cattle, sheep, horse, cat, rat), cooked meat samples (pig and dog), feces sample (tiger) were used for DNA extraction. Meat samples were used about 25 mg and feces sample in 1 x STE solution about 500 µL. Tiger feces normally contains some mucous. This mucous expected to contain epithelial tissue was kept in 1 x STE solution for DNA extraction process. DNA extraction process used phenol-chloroform method (Sambrook & Russel, 2001), included sample preparation, protein degradation, organic degradation, and DNA precipitation. Extraction process for meat and feces was started at protein degradation level. DNA concentration used for copying process in PCR was 50 µg/mL. Using sample with same concentration conducted to equate amplification (Nuraini et al., 2012).

DNA Genome Pool

Genomics DNA from ten animals which each species containing 100 ng were mixed in one tube. Furthermore, DNA sample from genome pool was taken 50 ng and distributed on three tube, i.e tube 1 mixed with ten primers (goat, chicken, cattle, tiger, sheep, pig,

Table 1. Specific reverse primers of cyt β gene

Species	Reverse (5’-3’)	PCR product length
Goat*	CTC GAC AAA TGT GAG TTA CAG AGG GA	157 bp
Chicken†	AAG ATA CAG ATG AAG AAG AAT GAG GCG	227 bp
Cattle§	CTA GAA AAG TGT AAG ACC CGT AAT ATA AG	274 bp
Tiger	TAG CCA TGA CCG TAA ACA ATA GC	319 bp
Sheep∥	CTA TGA ATG CTG TGG CTA TTG TCG CAA AT	331 bp
Pig*	GCT GAT AGT AGA TTT GTG ATG ACC GTA	398 bp
Horse§	CTC AGA TTC ACT CGA CGA GGG TAG TA	439 bp
Dog	TTG CTA GAG CTG CGA TGA TGA AA	523 bp
Cat	AGG GGT TGT TAG ATC CTG TTT CA	568 bp
Rat‡	GAA TGG GAT TTT GTC TGC GTT GGA GTT T	603 bp

Note: *Matsunaga et al. (1999); †modified Matsunaga et al. (1999); §Nuraini et al. (2012).
horse, dog, cat, rat), tube 2 with five primers (goat, cattle, sheep, horse, cat), and tube 3 with five primers (chicken, tiger, pig, dog, rat).

Specific DNA Fragments Amplification Using Multiplex PCR

Specific DNA fragment amplification used PCR technique (polymerase chain reaction) with thermo cycler machine. PCR components used in total volume 15 µL contained DNA sample (including DNA pool genome) 50 ng genomic DNA and PCR reaction (i.e. distillate water 9 µL, forward primer 1.667 pmol, reverse primer 0.1667 pmol for each species, 1 x buffer reaction, dNTPs 0.267 mM, MgCl2 1.667 mM, and enzyme taq fermentas 1 unit). PCR reaction had different component volume with five primers (i.e. distillate water 9.5 µL, forward primer 0.833 pmol, reverse primer 0.1667 pmol for each species, 1 x buffer reaction, dNTPs 0.267 mM, MgCl2 1.667 mM, and enzyme taq fermentas 1 unit). The condition of thermo cycler machine (Mastercycler Personal 22331, Eppendorf, Germany) consisted of predenaturation at 95 °C for 5 min, followed by 30 cycles of denaturation 95 °C for 30 s, annealing 60 °C for 45 s, extension 72 °C for 1 min, and the final extension step was at 72 °C for 5 min.

Electrophoresis

PCR amplicons electrophoresis performed on 1.5% agarose gel and stained with EtBr (ethidium bromide) were visualized in UV transilluminator. Specific DNA fragment (goat, chicken, cattle, tiger, sheep, pig, horse, dog, cat, and rat) was analyzed by standard DNA size marker (100 bp).

RESULTS AND DISCUSSION

Similarity Degree of Cyt β Gene Sequences

Specific reverse primers homology percentage (Table 2) showed tracing reverse primers have a high homology percentage in one particular species and low in other species, so it could be used as a specific primer (Nuraini et al., 2012). Forward primer had high homology percentage about 84%-92% (38 nucleotides) among ten species, so it could be used as a general primer. Cyt β gene has some stable sequences which were used for suggestion of universal primers and some variable sequences used for animal identification (Minarovic et al., 2010). Matsunaga et al. (1999) stated sheep primer mismatched with goat DNA only two nucleotides, however, 3' end mismatching was fatal for PCR amplification and resulted in no sheep band from goat template. In this research, only found one nucleotide mismatched with goat DNA (5’-CTA TGA ATG TGG CTA TTG TCG CA-3’), so sheep reverse primer was modified by adding three nucleotides in 3' end (5’-CTA TGA ATG TGG CTA TTG TCG CAA AT-3’). Attachment reverse primers at specific sequence of certain animal were caused by: 1) mismatched 3’ end on each reverse primer (Matsunaga et al., 1999), 2) difference mismatched between reverse primers on every sequence DNA sample (about 9%-45%) resulted different melting temperature (Tm) (Viljoen et al., 2005).

Specific Fragments Amplification of Cyt β Gene on Dog, Cat, and Tiger

Primer specificity was tested in cooked dog meat, cat blood, and tiger feces. Processed product of cat meat was still rare, so cat meat sample was not used in this study, but DNA fragment of cat was amplified successfully from blood. Similarly with tiger sample was amplified successfully from feces. Electrophoresis DNA fragment of cyt β gene amplification from dog, cat, and tiger was presented in Figure 1. Ilhak & Arslan (2007) successfully to amplified cat and dog meat by adding 5%, 2.5%, 1%, 0.5%, and 0.1% in beef, lamb, and goat meat. The number of PCR cycles used for amplification played an essential role in identification of meat in mixes < 0.5%. PCR was conducted at 30 cycles for mixture at the 0.1% level (Ilhak & Arslan, 2012).

Table 2. Specific reverse primers homology in ten animals

Specific primer	Capra hircus	Gallus gallus	Bos taurus	Bos indicus	Panthera tigris	Ovis aries	Sus scrofa	Equus caballus	Canis lupus	Felis catus	Rattus norvegicus
Forward (38 nt)	92,105	89,474	92,105	89,474	88,889	92,105	92,105	86,842	86,842	84,211	89,474
Goat (26 nt)	96,154	65,385	73,077	73,077	69,231	84,615	73,077	73,077	73,077	69,231	88,889
Chicken (27 nt)	70,370	100,000	62,963	62,963	66,667	62,963	70,370	70,370	70,370	62,963	77,778
Cattle (29 nt)	72,414	62,069	100,000	100,000	68,966	75,862	72,414	79,310	68,966	66,667	75,862
Tiger (23 nt)	56,522	56,522	60,870	60,870	100,000	56,522	69,565	69,565	69,565	69,565	76,923
Sheep (29 nt)	86,207	55,172	72,414	72,414	72,414	100,000	75,862	68,966	86,207	72,414	75,862
Pig (27 nt)	81,481	77,777	77,777	77,777	-	70,370	100,000	81,481	74,074	74,074	81,481
Horse (26 nt)	80,769	69,231	73,077	73,077	-	80,769	76,923	100,000	69,231	69,231	88,462
Dog (23 nt)	78,261	56,522	65,217	65,217	-	82,609	69,565	73,913	100,000	73,913	78,261
Cat (23 nt)	86,957	78,261	78,261	78,261	-	86,957	78,261	91,304	82,609	100,000	82,609
Rat (28 nt)	71,429	67,857	78,571	78,571	-	64,286	64,286	67,857	71,429	78,571	96,429

December 2013 173
Owing to the potential for degradation of samples found in a forensic context, nuclear DNA is unlikely to yield results, therefore, mitochondrial DNA maybe used as an alternative means of species identification (Kitpipit et al., 2012). Species identification of tiger and cat had been distinguished at the genus level using specific reverse primers.

Specific Fragments Amplification of Cyt β Gene on Dog, Cat, and Tiger

Reverse primers of cyt β gene successfully to amplified DNA fragment of ten animals with different length fragment. The amplification fragment length of goat, chicken, cattle, sheep, pig, horse were 157, 227, 274, 331, 398, and 439 bp, respectively (Matsunaga et al., 1999), and fragment rat was 603 bp (Nuraini et al., 2012), while tiger, dog, and cat amplified were 319, 523, 568 bp, respectively (Figure 2). Amplification target sequences from several species simultaneously (using the same forward primer) including more than one pair of primers in the same reaction is a variant of PCR called Multiplex PCR (Matsunaga et al., 1999; Markoulatos et al., 2002; Jain et al., 2007). Electrophoresis specific DNA fragment of cyt β gene was presented in Figure 3. Minarovic et al. (2010) successfully to identify species using PCR-RFLP with same primer for all species (i.e. *Mustela vison* (American mink), *Mustela putorius furo* (Ferret), *Sus scrofa domesticus* (pig), *Oryctolagus cuniculus* (Rabbit)), which were designed by Kocher et al. (1989). PCR products length did not different for all species, 359 bp, furthermore were cleaved by restriction enzyme AluI. Every animal has a unique combination of restriction fragments (Minarovic et al., 2010). Species determination by PCR was affected by cooking temperature, time, and size of the DNA fragment to be amplified (Martinez & Yman, 1998; Matsunaga et al., 1999; Arslan et al., 2006).
Species	GenBank Accession Numbers	Base Pairing	Comments
Capra hircus	ATGAGAGAGAGA	1-9	Yucatan
Gallus gallus	ATTATTATTATTATTATTATTATTTAT	1-9	Tucana
Bos taurus	TTGGTTGGTTGGTTGGTTGGTTGG	1-9	Indicus
Bos indicus	TTTTTTTTTTTTTTTTTTTTTTTT	1-9	Taurus
Panthera tigris	ATGAGAGAGAGA	1-9	Bengal
Ovis aries	ATGAGAGAGAGA	1-9	Pecora
Sus scrofa	ATGAGAGAGAGA	1-9	Equidae
Equus caballus	ATGAGAGAGAGA	1-9	Camelid
Felis catus	ATGAGAGAGAGA	1-9	Feline
Rattus norvegicus	ATGAGAGAGAGA	1-9	Rodent

Continued
Specific Fragments Amplification of Cyt β Gene on DNA Genome Pool

This research showed only six bands in tube 1 (i.e. goat, chicken, cattle, tiger, pig, cat) were amplified successfully at DNA mix from ten species (Figure 4). It was probably caused band overlapped between tiger (319 bp) and sheep (331 bp); dog (523 bp), cat (568 bp), and rat (603 bp), because they have adjacent fragment length. Large molecules migrate more slowly than smaller molecules (Sambrook & Russel, 2001). To ensure this, the test was carried out by separating overlapped band and adjacent fragment length. Tube 2 had five bands (goat, cattle, sheep, horse, cat), but tube 3 only had four bands (chicken, tiger, pig, rat) and no dog band (Figure 4). In general, quantitative PCR is difficult because of unequal efficiency of amplification. Amplification efficiency is affected by the difference primer sequences (Matsunaga et al., 1999).
CONCLUSION

Dog, cat, and tiger DNA are amplified successfully with fragment length of 523, 568, 319 bp, respectively. Species specificity of dog, cat, and tiger are indicated by high reverse primers homology percentage. Multiplex PCR technique success to amplify DNA fragment from species tested, but has a limitation to amplify total DNA composite of mix DNA.

ACKNOWLEDGMENT

Authors would like to thank Prof. drh. Dondin Sajuthi, MST, PhD, and Dr. drh. Ligaya I.T.A. Tumbelaka, SpMp, MSc, for tiger sample. This research was supported by Indonesia Endowment Fund For Education (Lembaga Pengelola Dana Pendidikan); Research and Community Services Institution, Bogor Agricultural University (LPPM IPB) through a competitive grant project (Hibah Bersaing) with contract no. 56/IT3.4.1/2/L1/SPK/2013.

REFERENCES

Abdel-Rahman, S. M., M. A. El-Saadani, K. M. Ashry, & A. S. Haggag. 2009. Detection of adulteration and identification of cat’s, dog’s, donkey’s and horse’s meat using species-specific PCR and PCR-RFLP Techniques. Aust. J. Basic Appl. Sci. 3:1719-1719.

Ahmed, M. M. M., S. M. Abdel-Rahman, & A. A. El-Hanafy. 2007. Application of species-specific polymerase chain reaction and cytochrome b gene for different meat species authentication. Biotechnol. 6:426-430. http://dx.doi.org/10.3923/biotech.2007.426.430

Aida, A. A., Y. B. Che Man, C. M. V. L. Wong, A. R. Raha, & R. Son. 2005. Analysis of raw meats and fat of pigs using polymerase chain reaction for Halal authentication. Meat Sci. 69:47-52. http://dx.doi.org/10.1016/j.meatsci.2004.06.020

Arslan, A., O. I. Ilhak, & M. Calicioglu. 2006. Effect of method of cooking on identification of heat processed beef using polymerase chain reaction (PCR) technique. Meat Sci. 72:326-330. http://dx.doi.org/10.1016/j.meatsci.2005.08.001

Ballin, N. Z. 2010. Authentication of meat and meat products: Review. Meat Sci. 86: 577-587. http://dx.doi.org/10.1016/j.meatsci.2010.06.001

Che Man, Y. B., A. A. Aida, A.R. Raha, & R. Son. 2007. Identification of pork derivatives in food products by species-specific polymerase chain reaction (PCR) for halal verification. Food Control. 18:885-889. http://dx.doi.org/10.1016/j.foodcont.2006.05.004

Fajardo, V., I. Gonzalez, M. Rojas, T. Garcia, & R. Martin. 2010. A review of current PCR-based methodologies for the authentication of meats from game animal species. Trends Food Sci. Technol. 21:408-421. http://dx.doi.org/10.1016/j.tifs.2010.06.002

Government Regulation Republic of Indonesia Number 28. 2004. Safety, quality, dan nutrition. State Gazette of Republic of Indonesia in 2004 Number 107.

Hsieh, H. M., C. C. Tsai, L. C. Tsai, H. L. Chiang, N. E. Huang, R. T. P. Shih, A. Linacre, & J. C. I. Lee. 2005. Species identification of meat products using the cytochrome b gene. Forensic Sci. J. 4: 29-36.

Ilhak, O. I. & A. Arslan. 2007. Identification of meat species by polymerase chain reaction (PCR) technique. Turk. J. Vet. Anim. Sci. 31:159-163.

Jain, S., M. N. Bambahati, D. N. Rank, C. G. Joshi, & J. V. Solanki. 2007. Use of cytochrome b gene variability in detecting meat species by multiplex PCR assay. Indian J. Anim. Sci. 77: 880-881.

Kitipiti, T. S. S. Tobe, A. C. Kitchener, P. Gill, & A. Linacre. 2012. The development and validation of a single SNP-shot multiplex for tiger species and subspecies identification. Forensic Sci. Int. 6: 250-257. http://dx.doi.org/10.1016/j.fsin.2011.06.001

Kocher, T. D., W. K. Thomas, A. Meyer, S. V. Edwards, S. Paabo, F. X. Villablanca, & A. C. Wilson. 1989. Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc. Natl. Acad. Sci. USA. 86: 6196-6200. & N. Species-specific PCR for the identification of ovine, porcine, and chicken species in meat and bone meal (MBM). Mol Cell Probes. 15:27-35. http://dx.doi.org/10.1016/j.mcp.2000.0336

Law of the Republic Indonesia Number 8. 1999. Consumer Protection. State Gazette of Republic of Indonesia in 1999 Number 42.

Markoulatos P., N. Siafakas, & M. Moncany. 2002. Multiplex polymerase chain reaction: a practical approach. J. Clinical Laboratory Analysis. 16:47-51. http://dx.doi.org/10.1111/j.1754-4867.2002.tb01205.x

Martín, I., T. Garcia, V. Fajardo, I. Lopez-Calleja, M. Rojas, P. E. Hernandez, I. Gonzalez, & R. Martin. 2007a. Mitochondrial markers for the detection of four duck species and the specific identification of Muscovy duck in meat mixtures using the polymerase chain reaction. Meat Sci. 76:721-729. http://dx.doi.org/10.1016/j.meatsci.2007.02.013

Martín, I., T. Garcia, V. Fajardo, I. Lopez-Calleja, M. Rojas, P. E. Hernandez, I. Gonzalez, & R. Martin. 2007b. Technical Note: detection of cat, dog, and rat or mouse tissues in food and animal feed using species-specific polymerase chain reaction. J. Anim. Sci. 85:2734-2739. http://dx.doi.org/10.2527/jas.2007-0048

Martínez, I. & I. M. Yman. 1998. Species identification in meat products by RAPD analysis. Food Res. Int. 31:459-466. http://dx.doi.org/10.1016/S0969-9048(98)00013-7

Matsumaga, T., K. Chikuni, R. Tanabe, S. Muroya, K. Shibata, J. Yamada, & Y. Shinmura. 1999. A quick and simple method for the identification of meat species by PCR assay. Meat Sci. 51:134-148. http://dx.doi.org/10.1016/S0305-0268(98)00112-0

Minarovic, T., A. Trakovicha, A. Rafayova, & Z. Lieskovska. 2010. Animal species identification by PCR-RFLP of cytochrome b. Scientific Paper: Anim. Sci. Biotechnol. 43:296-299.
Nuraini, H., A. Primasari, E. Andreas, & C. Sumantri. 2012. The use of cytochrome b gene as a specific marker of the rat meat (*Rattus norvegicus*) on meat and meat products. Med. Pet. 35:15-20. http://dx.doi.org/10.5398/medpet.2012.35.1.15

Rastogi, G., M. S. Dharne, S. Walujkar, A. Kumar, M. S. Patole, & Y. S. Shouche. 2007. Species identification and authentication of tissues of animal origin using mitochondrial and nuclear markers. Meat Sci. 76:666-674. http://dx.doi.org/10.1016/j.meatsci.2007.02.006

Sakalar, E., & M. F. Abasiyanik. 2012. The development of duplex real-time PCR based on SYBR Green fluorescence for rapid identification of ruminant and poultry origins in foodstuff. Food Chem. 130: 1050-1054. http://dx.doi.org/10.1016/j.foodchem.2011.07.150.

Sambrook, J. & D. Russel. 2001. Molecular Cloning a Laboratory Manual. Ed ke-3. CSH Laboratory Press, United State of America (US).

Tobe, S. S., A. Kitchener, & A. Linacre. 2009. Cytochrome b or cytochrome c oxidase subunit 1 for mammalian species identification-An answer to the debate. Forensic Sci. Int.: Genetics Supplement Series 2:306-307. http://dx.doi.org/10.1016/j.fsigss.2009.08.053

Viljoen, G. J., L. H. Nel, & J. R. Crowther. 2005. Molecular Diagnostic PCR Handbook. Netherlands (NL): Springer.

Wetton, J. H., C. S. F. Tsang, C. A. Roney, & A. C. Spriggs. 2004. An extremely sensitive species-specific ARMs PCR test for the presence of tiger bone DNA. Forensic Sci. Int. 140:139-145. http://dx.doi.org/10.1016/j.forsciint.2003.11.018