Population History and Altitude-Related Adaptation in the Sherpa

Sushil Bhandari* and Gianpiero L. Cavalleri*

Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland

The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.

Keywords: Sherpa, Tibetan, Sherpa physiology, hypoxia adaptation, genetic selection, high altitude adaptation, natural selection

INTRODUCTION

The term “sher-pa” is the Tibetan for “eastern-people”. The Sherpa reside primarily in the Solukhumbu district of Nepal but there are also smaller settlements in the Tibet Autonomous Region of China. The Sherpa speak a Tibetan dialect, and they share similar cultural and religious practices with Tibetans. They are traditionally engaged in farming; cultivating barley, potatoes and rearing yak and sheep. Starting with the first Everest expeditions in the 1920's, the Sherpa have become renowned for their ability as mountaineers and today they often aid and lead climbing expeditions in the Himalayas. Examples of their exceptional climbing feats include the first ascent of Mount Everest by Tenzing Norgay Sherpa, who accompanied Sir Edmund Hillary in the final stage of the 1953 expedition and Ang Rita Sherpa (known as “The Snow Leopard”) who, between 1983 and 1996, summited Everest ten times without the use of supplemental oxygen. The remarkable tolerance of the Sherpa to hypoxia has, over the last 60 years, been a focus of attention for the scientific community, in particular physiologists (Gilbert-Kawai et al., 2014).
The Sherpa are direct descendants of an ancestral population that has resided continuously on the Tibetan plateau for the past 25,000 to 40,000 years (Aldenderfer, 2011; Zhang et al., 2018). This long exposure to the evolutionary pressure presented by high altitude has driven physiological adaptation, which in turn has allowed the Sherpa to thrive. The adaptive physiological makeup of the Sherpa can inform on treatments for hypoxia-related illness including pulmonary, cardiac, neurological and renal disorders (Martin et al., 2013; Luks and Hackett, 2014; Gilbert-Kawai et al., 2015). Thus, studying the Sherpa at altitude offers a unique, “natural laboratory” that can provide insight to the molecular mechanisms of hypoxia.

An early paper on Sherpa physiology, published in 1965, suggested that the Sherpa have an efficient mechanism of oxygen utilization at the cellular level, allowing them to perform well under hypoxia (Lahiri and Milledge, 1965). Since then, our knowledge of Sherpa adaptation has grown, largely by comparing different physiological parameters between the Sherpa and people of lowland origin. With the development of high throughput DNA genotyping and sequencing platforms, genomics studies of indigenous high-altitude populations, including the Sherpa, have begun to emerge. These have provided insight into population history and genetic signatures of altitude-driven natural selection. In this review, we (1) summarize the population history of, (2) describe distinct adaptive phenotypes and (3) discuss signatures of selection, in the Sherpa. We highlight the need for further research connecting genetic factors to physiological adaptation in the Sherpa at extreme altitude.

THE SHERPA, A RECENTLY DERIVED TIBETAN POPULATION

Stone tools used by early humans have been found at Nwya Devu in central Tibet at an altitude of 4,600 m. Dating to 30,000 to 40,000 years before present (YBP), these findings represent the earliest archeological record of human colonization of the Tibetan plateau (Zhang et al., 2018). Genetic studies have suggested that the ancestors of both the Sherpa and Tibetans diverged from a Han Chinese population and arrived on the Tibetan plateau from lowland East Asia around 40,000 years ago (Qi et al., 2013; Jeong et al., 2014).

The prevailing hypothesis is that, during the 16th century, the ancestors of the Sherpa migrated from Tibet to the Khumbu Valley of Nepal, driven by political and religious turmoil resulting from a Mongol invasion (Oppitz, 1974). The presence of Sherpa-specific mitochondrial DNA (mtDNA) lineages (Kang et al., 2013) in a Nepalese context, with an estimated age of less than 1,500 years and derived from Tibetans, further supports this hypothesis of a recent migration of the Sherpa to the Khumbu valley (Bhandari et al., 2015).

There is a long history of migration from the Tibetan plateau to Nepal. To illustrate, genomic analysis of human dental samples (dating to between 1,700 and 3,000 YBP) from a northern region of Nepal show strong affinity for contemporary Tibetans (Jeong et al., 2016). Analysis of both autosomal data (Lu et al., 2016; Gncechi-Ruscone et al., 2017) and uniparental mtDNA and Y-chromosome markers (Bhandari et al., 2015) have shown the Sherpa and Tibetans to share relatively recent common ancestry. Tibetans also share recent common ancestry with other Nepalese populations including the Rai, Magar, Tamang, and Gurung (Cole et al., 2017). The Sherpa share more genetic affinity with these Tibeto-Burman speaking populations than with other Indo-Aryan populations of Nepal. However, the Sherpa are distinct from other Nepalese populations in that the Sherpa have elevated levels of runs of homozygosity (Cole et al., 2017), and illustrate very little or no admixture with Nepalese or South Asian populations (Cole et al., 2017). Thus, the Khumbu Valley Sherpa can be considered from the perspective of population genetics as a “bottlenecked” population recently derived from Tibetans.

COMPARATIVE PHYSIOLOGICAL STUDIES BETWEEN SHERPA AND LOWLANDERS

In 1952, Griffith Pugh conducted a series of pioneering physiological experiments on Mount Cho Oyo (at 8,188 m, 20 km west of Mount Everest) that suggested a superior work capacity of the Sherpa at high altitude (Pugh, 1962; Pugh et al., 1964). They also provided the scientific rationale for the hydration, nutrition and oxygen requirements for the first Everest summiting in 1953 (Milledge, 2002). Although the physiology of the Sherpa has been studied over the intervening 60 years, the scientific literature is limited in number, and most of the studies are based on small sample sizes. There are obvious challenges to studying the Sherpa; they reside in a remote region, at an altitude over 2,800 m, where altitude sickness is common for sojourners. Despite this, several remarkable findings have emerged and below we discuss specific phenotypes that may be linked to hypoxia-related genetic signals of selection reported to date. For a discussion of other hypoxia-related physiological parameters studied in Sherpa, such as ventilation, lung volume, exercise capacity and cerebral function (see Gilbert-Kawai et al., 2014; Table 1).

Hemoglobin Concentration

The hypoxic challenge presented by high altitude drives changes in hemoglobin concentration. Elevated hemoglobin levels (≥19 g/dl in females; and ≥21 g/dl in males) resulting from hypoxia can lead to chronic mountain sickness (Leon-Velarde et al., 2005). Relative to lowland controls, the literature suggests the Sherpa display lower hemoglobin concentrations at high altitude (Beall and Reichisman, 1984; Wu et al., 2013; Bhandari et al., 2016). Sherpa women with lower hemoglobin concentrations (13.8 g/dl ± 1.3 g/dl) are reported to have better reproductive outcomes (Beall et al., 1997, 2004; Cho et al., 2017). Increased exercise capacity has been reported in Tibetan males with a low erythropoietic response (Simonson et al., 2015). It is yet to be determined whether the lower hemoglobin concentration observed in Sherpa is due to a blunted erythropoietic response or to some other physiological parameters that impact hemoglobin concentration.
TABLE 1 | Physiological parameters studied in Sherpa and lowlanders at altitude.

Parameter(s)	Sherpa at high altitude	Lowlander at altitude (meter)	Reference(s)				
	Sample size	Parameter value	Altitude	Sample size	Duration (days)	Parameter value	
Heart rate while working at 900 kg-m/min-beats/min	1	162	5,800	2	240	122	Pugh, 1962; Pugh et al., 1964
Lung diffusion capacity for oxygen-ml/min	1	97	5,800	2	240	52.5	Pugh, 1962
Basal metabolic rate, kcal/m² h	3	46.1 ± 1.0	5,800	8	240	41.1 ± 3.6	Gill and Pugh, 1964
10 different physiological parameters; measured, to test oxygen utilization at the cellular level	4	efficiently used O₂	4,880	3	60	less efficient to use O₂	Lahiri and Milledge, 1965
Heart rate (while work rate at 1,265 kg-m/min)	4	198	4,880	2	63	146	Lahiri et al., 1967
Lung diffusion capacity for oxygen-ml/min	4	28.6	4,880	5	0	25.9	Lahiri and Milledge, 1967
Hemoglobin level in Tibetans living at 3658 m in Nepal; g/100 ml	5	Male: 16.8 ± 1.4; Female: 14.5 ± 0.7					Adams and Shresta, 1974
Hemoglobin level in Tibetans living at 4000 m in Nepal; g/100 ml	5	Male: 17.0 ± 1.25; Female: 15.3 ± 0.8					Adams and Strang, 1975
Ratio of 2, 3 diphosphoglycerate and hemoglobin	7	0.9	3,900	2	30	1.26	Morpurgo et al., 1976
Mean oxygen half saturation of hemoglobin	7	27.3 ± 1.8	3,500	7	120	28.2 ± 1.3	Samaja et al., 1979
Arterial oxygen saturation (SaO₂)	10	88 ± 0.74	4,243	25	12	85.6 ± 1.0	Hackett et al., 1980
Body weight changes- Mean weight loss (kg)	4	constant	5,400	13	25	1.9 to 4	Boyer and Blume, 1984
Partial pressure of oxygen in arterial blood (Torr)	6	34.5 ± 3.2	5,400	9	–	41.0 ± 3.3	Santolaya et al., 1989
Partial pressure of carboxyhemoglobin in arterial blood (Torr)	6	27.5 ± 2.2	5,400	9	–	20.0 ± 2.8	Sutton et al., 1988
Resting glucose appearance rate at sea level (1.79 ± 0.02) mg.kg⁻¹.l.min⁻¹	5	15 ± 1	22			28 ± 2	Groves et al., 1993
Glucose metabolic rates of myocardial regions	6	0.32 ± 0.05	226	6		0.20 ± 0.04	Holden et al., 1995
Brain glucose metabolic rates	6	0.71	6	19		0.73	Hochachka et al., 1996b
Signs of mild cortical atrophy	7	Seen in 1					Garrits et al., 1996
Partial pressure of carbon dioxide, mm Hg	5	28.8 ± 1.2	3,400	4	40	22.0 ± 0.4	Samaja et al., 1997
Hypoxic ventilatory response (HVR)-end-tidal PO₂, 40 Torr	6	34.5 ± 2.2	1,300	11	14	281	Droma et al., 2008
Partial pressure of oxygen in arterial blood (Torr)	6	34.5 ± 3.2	226	5		0.20 ± 0.04	Holden et al., 1995
Partial pressure of carboxyhemoglobin in arterial blood (Torr)	6	27.5 ± 2.2	5,400	9	–	20.0 ± 2.8	Sutton et al., 1988
Resting glucose appearance rate at sea level (1.79 ± 0.02) mg.kg⁻¹.l.min⁻¹	5	15 ± 1	22			28 ± 2	Groves et al., 1993
Glucose metabolic rates of myocardial regions	6	0.32 ± 0.05	226	6		0.20 ± 0.04	Holden et al., 1995
Brain glucose metabolic rates	6	0.71	6	19		0.73	Hochachka et al., 1996b
Signs of mild cortical atrophy	7	Seen in 1					Garrits et al., 1996
Partial pressure of carbon dioxide, mm Hg	5	28.8 ± 1.2	3,400	4	40	22.0 ± 0.4	Samaja et al., 1997
Mean arterial blood pressure, mm Hg	9	83 ± 6	4,243	10	7	94 ± 7	Jansen et al., 2000
Forced expiratory volume of adult male (%)	146	110(107–114)	3,840	103		103.8	Havryk et al., 2002
Heart Rate (beats min⁻¹) means ± S.D.	7	167 ± 10	5,050	10	28	149 ± 7	Marconi et al., 2004
Carried loads of their body weight (mean ± SD)	96	93 ± 36%	2,880	10		75%	Bastien et al., 2005a,b, 2016
Arterial oxygen saturation (SaO₂) or (SpO₂) lower than Tibetans	–	–	8,400	4		145.8 ml per L	Wu, 1990; Wu and Kayser, 2006
Arterial oxygen saturation, %	10	88 ± 3	40	10		97 ± 2	Jansen et al., 2007
Statistically significant gender specific differences in SpO₂			Adult Tibetan female show higher SpO₂ value than male				Weitz and Garruto, 2007
Serum angiotension-converting enzyme activity, IU/L/37°C	105	14.5 ± 0.4	1,300	111		14.7 ± 0.4	Droma et al., 2008
Mean arterial oxygen content at 8,400 m (26% lower than at 7100 m)							
Muscle phosphocreatine recovery halftime-PCr₁/₂ (s)	7	22.2 ± 1.6	50	7		16.1 ± 1.1	Edwards et al., 2010
TABLE 1 | Continued

Parameters	Sherpa at high altitude	Lowlander at altitude (meter)	Reference(s)			
	Number	Parameters values	Altitude	Number	Duration (days)	Parameters values
Radial arterial plasma NO\(_2\) (nmol l\(^{-1}\))	–	–	4,559	26	4	263.6 ± 61.2
Middle cerebral artery diameter [at 6,400 m = 6.66 mm]	–	–	7,950	5	71	9.34 mm
Flow-mediated dilatation (FMD)-shear rate	12	24490 ± 7230	5,050	12	14	14802 ± 5306
Arterial oxygen saturation (mean ± SE)	13	86 ± 1	5,050	13	9	83 ± 2
Hemoglobin level ml. min\(^{-1}\), mmHg\(^{-1}\)	13	61 ± 4	5,050	13	9	37 ± 2
Lung diffusing capacities	13	226 ± 18	5,050	13	9	153 ± 9
Systolic pulmonary artery pressure	95	29.4 ± 5.5	13	64	–	23.6 ± 4.8
Left ventricular untwisting velocity, °/s	11	–93 ± 31	5,050	9	13	–153 ± 38
Relative PPARα mRNA expression of muscles tissues	15	0.5158	5,300	10	19	1.0045
Post reproductive, Tibetan women (n=959)-Hemoglobin concentration, gm/dl	–	13.8	–	–	–	–
Increase in nocturnal time course of blood oxygen saturation level at rest	–	3,050	10	10	21	94.5% (91-97)
FMD unchanged (in rest and maximal exercise), at low and high altitude	–	–	3,800	9	7	6.3 ± 1.3%
Brachial artery blood flow [at Sea level-(142.7 ± 30.6)], ml/min	–	–	5,050	14	21	53.1 ± 11.1
Number of circulating microparticles in blood (CD 66b+)/µl (21 ± 4) Sea level	–	–	3,800	10	3	74 ± 17
Birth-weight (kg) in Tibetans & Han; at 3,000–4,000 m altitude	100	3.14 (3.06, 3.22)	<4,000	100	2.61 (2.34, 2.88)	
Case report of a 32 week gestation Sherpa at 5160 m and her data after 10 month postpartum	–	–	No apparent maternal, fetal or neonatal complications	–		
Arterial oxygen pressure (PaO\(_2\); mm Hg)	9	50.1 ± 11.3	5,050	9	–	54 ± 1.2
Prefatigue, maximal voluntary contraction torque, N. m	10	44.3 ± 14.1	5,050	12	10	58.2 ± 8.1
Brachial artery flow-mediated dilatation (FMD)	12	5.8 ± 2.8%	5,050	22	10	3.8 ± 2.8%
Resting posterior cerebral artery velocity	–	–	4,240	10	13	43 cm/s
Lowland origin; Female SpO\(_2\); Mean (SD), (%)95.2 (1.2); at 600 m	–	–	3,500	20	1	76.7 (5.6)
Partial pressure of arterial carbon dioxide, mmHg	11	32.1 ± 2.5	5,050	21	21	30.0 ± 1.9
Peripheral oxygen saturation in female [at 600 m; 96.9 (1.0) Mean (SD)]%	–	–	3,840	20	1	86.5 (6.5)
SpO\(_2\) (%) [at Sea Level (244 m) is 98 ± 1]	–	–	3,800	12	10	89.1 ± 3
Free cysteine and plasma total free thiol concentrations	–	–	4,559	4	Elevated at 4,559 m than at 50 m	
Sublingual capillary total vessel density [at Sea Level; 18.81 ± 3.92 mm mm\(^{-2}\)]	–	–	7,042	10	21	21.25 ± 2.27
Sympathetic nerve activity, burst frequency (bursts min\(^{-1}\))	8	22 ± 11	5,050	14	20	30 ± 9

Nitric Oxide Concentration

Nitric oxide acts as a vasodilator and is believed to protect against pulmonary hypertension at high altitude (Busch et al., 2001). It also plays a role in haematocrit regulation by controlling blood viscosity (Ashmore et al., 2014). Serum nitric oxide levels have been reported as reduced in the Sherpa relative to lowlanders.
content, but their muscle is somehow maximizing the oxygen (Kayser et al., 1991). Sherpa also display a reduced mitochondrial capillaries per cross-sectional area, in comparison to lowlanders. Sherpa muscle contains a significantly greater number of capillaries per cross-sectional area, in comparison to lowlanders (Hochachka et al., 1996a). This ratio remains steady in the Sherpa (Hochachka et al., 1996a). However, the mechanism by which this reduced myocardial relaxation impacts on the exercise capacity of the Sherpa is unclear (Stembridge et al., 2015). These are presumably the result of exposure over many generations to the hypoxia-related selective pressure presented by the Tibetan plateau. Indeed, some examples have already emerged of specific genetic signatures of selection associating with distinct adaptive traits (Simonson, 2015; Moore, 2017).

Skeletal Muscle
Sherpa muscle contains a significantly greater number of capillaries per cross-sectional area, in comparison to lowlanders (Kayser et al., 1991). Sherpa also display a reduced mitochondrial content, but their muscle is somehow maximizing the oxygen consumption to mitochondrial volume ratio (Kayser et al., 1991; Horscroft et al., 2017). Under hypoxia, Sherpa skeletal muscle prefers carbohydrate over fatty acids as a metabolic substrate (Murray, 2009). Sherpa muscle maintains fatty acid oxidation relative to lowlanders at high altitude. Incomplete fatty acid oxidation results in production of byproducts such as acylcarnitines and reactive oxygen species. Acylcarnitines and markers of oxidative stress (e.g., reduced/oxidized glutathione and methionine sulfoxide) are increased in lowlander muscle relative to the Sherpa (Gelfi et al., 2004; Horscroft et al., 2017). However, oxidative damage in lowlanders was reduced to levels comparable with the Sherpa, where acclimatization has taken place (Janocha et al., 2017). Lactate dehydrogenase activity is elevated in Sherpa muscle (Allen et al., 1997; Horscroft et al., 2017), indicating greater capacity for anaerobic lactate production. With increasing altitude, lowlanders experience a gradual reduction in phosphocreatine (PCr) and ATP levels (Levett et al., 2015). But the Sherpa maintain PCr and ATP levels at altitude (Horscroft et al., 2017). Thus, the superior muscle energetics displayed by the Sherpa is probably the result of adaptation at the metabolic level.

Birth Weight
Women of European and Han Chinese ancestry exhibit reduced birth weights following gestation at high altitude, quantified at 100 g reduction for every 1,000 m elevation (Moore, 2003; Julian et al., 2009; Moore et al., 2011). The Sherpa (and Tibetans), however, maintain normal birth weight at both low (1,330 m) and high (3,930 m) altitude (Smith, 1997; Moore et al., 2001). Genes including PPARα are expressed in the placenta (Barak et al., 2008) and have been shown to influence female reproductive function (Bogacka et al., 2015). HIFs play a critical role in mammalian embryo and placental development (Dunwoodie, 2009; Pringle et al., 2009). EPAS1 expression appears reduced in umbilical endothelial cells and placentas of Tibetan women (Peng et al., 2017). Intrinsic variants in CCDC14I have been shown in Tibetan and Sherpa women to associate with the number of live births, and the same locus also shows evidence of positive selection (Jeong et al., 2018). The increased reproductive success of the Sherpa is therefore likely to be, at least in part, due to cardiac-related traits (Jeong et al., 2018) and placental adaptation (Burton et al., 2016). Further studies are required to understand the molecular mechanisms by which the Sherpa maintain normal intrauterine growth at altitude.

In summary, the Sherpa display distinct physiological responses to hypoxia that contrast to lowlanders at high altitude (Table 1). These are presumably the result of exposure over many generations to the hypoxia-related selective pressure presented by the Tibetan plateau. Indeed, some examples have already emerged of specific genetic signatures of selection associating with distinct adaptive traits (Simonson, 2015; Moore, 2017).
population-specific signatures of selection for adaptation across the human genome. There are now several complementary genomic tests available for detecting genetic selection (Scheinfeldt and Tishkoff, 2013) and the application of these tests to data from indigenous high-altitude people including the Sherpa have identified numerous and remarkable genetic signals of selection. Here, we focus on the three most robust signals of selection detected to date in the Sherpa: EPAS1, EGLN1, and PPARA (Table 2).

Endothelial PAS Domain-Containing Protein 1 (EPAS1)

One of the earliest signals for altitude-related adaptation to emerge from genomic selection studies was EPAS1. Initially discovered in Tibetans (Beall et al., 2010), the EPAS1 signal has been replicated in multiple other Tibetan populations (Bigham et al., 2010; Simonson et al., 2010; Yi et al., 2010; Peng et al., 2011; Wang et al., 2011; Xu et al., 2011) as well as the Sherpa (Hanaoka et al., 2012; Jeong et al., 2014; Bhandari et al., 2016). The selected EPAS1 haplotype is associated with lowered hemoglobin concentrations (Beall et al., 2010). Remarkably, it seems the adaptive EPAS1 haplotype likely descends from an introgression event with the Denisovan people, an extinct species of archaic humans (Huerta-Sánchez et al., 2014; Hu et al., 2017). A 3.4 kb copy number deletion, downstream of EPAS1, is elevated in frequency, in Tibetans and Sherpas relative to lowland controls (Lou et al., 2015). This deletion is in strong linkage disequilibrium with the previously reported (Beall et al., 2010) EPAS1 haplotype and has also been associated with lower hemoglobin levels. The actual functional EPAS1 variant(s) that are conferring advantage in relation to hypoxic adaptation remain unknown. However, the intronic and intergenic location of the selected variants would be consistent with a role in HIF-related transcriptional regulation.

TABLE 2

A summary of genetic adaptations reported in the Sherpa, and replication in other population(s) or species.

Genes name(s)	Sample Size	Sherga Reference(s)	Other population(s) or species	Reference(s)
ACE	105	Droma et al., 2008	Elite European descent athletes	Montgomery et al., 1998; Jones et al., 2002
HIF-la	20	Suzuki et al., 2003	–	–
eNOS	105	Droma et al., 2006	Tibetan	Beall et al., 2010; Simonson et al., 2010; Yi et al., 2010; Bigham et al., 2010; Peng et al., 2011; Wang et al., 2011; Xu et al., 2011
EPAS1	105	Hanaoka et al., 2012	Deedu Mongolian	Xing et al., 2013
3.4 kb Copy Number Deletion-80 kb downstream of EPAS1	51	Jeong et al., 2014	Tibetan	Lou et al., 2015
3.4 kb Copy Number Deletion-80 kb downstream of EPAS1	582	Bhandari et al., 2016	Denisovan	Huerta-Sánchez et al., 2014
EGLN1	51	Jeong et al., 2014	Tibetan	Lorenzo, 2010; Simonson et al., 2010; Yi et al., 2010; Xiang et al., 2013; Lorenzo et al., 2014
3.4 kb Copy Number Deletion-80 kb downstream of EPAS1	582	Bhandari et al., 2016	Andean	Bigham et al., 2009; Bigham et al., 2010
PPARA	15	Horscroft et al., 2017	Tibetan	Pagani et al., 2012
HYOU/HMB3	51	Jeong et al., 2014	Tibetan	Lok et al., 2010; Simonson et al., 2010; Peng et al., 2011
3.4 kb Copy Number Deletion-80 kb downstream of EPAS1	111	Zhang et al., 2017	Andean	Scheinfeldt et al., 2012
NOS1	111	Zhang et al., 2017	Tibetan (GCH1), Andeans (NOS2)	Bigham et al., 2009; Bigham et al., 2010; He et al., 2018
ANGPT1	111	Zhang et al., 2017	Tibetan and grey wolves of TAR, China	Jeansson et al., 2011; Wang et al., 2011
EPAS1, EGLN1, RP11-384F7.2 AC066833.1, ZNF53 2, HLA-DOB1/HLA-DBP1	10	Arciero et al., 2018	Pigs of TAR, China	Ai et al., 2014
ANKH	10	Arciero et al., 2018	Pigs of TAR, China	Li et al., 2016
GRB2	31	Gnecci-Ruscone et al., 2017, 2018	Pigs of TAR, China	Gnecci-Ruscone et al., 2018
EPAS1 encodes the HIF2 alpha subunit of HIF2. The postnatal deletion of EPAS1 in adult mice causes anaemia (Gruber et al., 2007). Some cases of erythrocytosis are caused by missense mutations (e.g., G536W) in EPAS1 (Percy et al., 2008). Mice carrying the EPAS1 G536W mutation display excessive erythrocytosis and pulmonary hypertension (Tan et al., 2013). Another study in heterozygous EPAS1 knockout mice reported a blunted physiological response to chronic hypoxia (Peng et al., 2017). Further in-vivo and in-vitro studies are necessary to understand how the adaptive version of the EPAS1 gene is shaping human adaptation to altitude.

Egl-9 Family Hypoxia Inducible Factor 1 (EGLN1)

Another high altitude genetic selection signal to emerge from early studies on Tibetans was EGLN1 (Simonson et al., 2010; Yi et al., 2010). Similar to EPAS1, this signal was later demonstrated in the Sherpa (Jeong et al., 2014). Two functional EGLN1 mutations (rs12097901, D4E, and rs186996510, S127C) appear to be driving the selection signal and are present in both Sherpa (Bhandari et al., 2016) and Tibetans (Lorenzo, 2010; Xiang et al., 2013; Lorenzo et al., 2014). Whether the mode of action of these two mutations is via gain of function (Lorenzo et al., 2014) or loss of function (Song et al., 2014) remains unclear.

EGLN1 encodes proline hydroxylase 2 (PHD2), an isoform of HIF prolyl-hydroxylase. Homozygous knockout PHD2 mice are unviable and die at the embryonic stage due to severe placental defects (Takeda et al., 2006). Knockout mice with PHD2 disruption targeted to specific organs including the liver, heart, kidney and lung develop excessive vascular growth (Takeda et al., 2007). Adult mice deficient for PHD2 display excessive erythrocytosis (Takeda et al., 2008) and heterozygous PHD2 mice have an increased ventilatory sensitivity to hypoxia and carotid body hyperplasia (Bishop et al., 2013).

Peroxisome Proliferator-Activated Nuclear Receptor A (PPARA)

PPARA encodes PPARα, a transcriptional regulator of fatty acid oxidation in liver, heart and muscle (Gilde and Van Bilsen, 2003). PPARα has tissue-specific expression and, under hypoxic conditions, is downregulated by HIFs (Narravula and Colgan, 2001). Positive selection across the PPARA gene has been reported in Tibetans (Simonson et al., 2010) and Sherpa (Horscroft et al., 2017), and the selected PPARA SNPs correlate with reduced hemoglobin levels (Simonson et al., 2010). Sherpa carriers of the positively selected PPARA alleles switch to more efficient fuels such as glucose and display decreased muscular fatty acid oxidation (Horscroft et al., 2017). Most of the PPARA SNPs reported to be under selection appear to be non-coding variants (Kinota et al., 2018). It is unclear if these variants directly affect transcriptional regulation or are linked with functional variants in other genes or nearby inter-genic regions.

CONCLUSION

The Sherpa show remarkable performance in the hypoxic environment presented by high altitude. Comparative physiological studies have suggested numerous distinct, adaptive phenotypes in the Sherpa including advantageous levels of hemoglobin, oxygen saturation and birth weight, and the elevated reproductive success of Sherpa women. Genomic studies have identified robust signals of positive selection across genes including EPAS1, EGLN1 and PPARA. All three of these signals of genetic selection have been shown to correlate with advantageous levels of hemoglobin. However, Sherpa-specific signals of genetic selection have also been reported, suggesting that whilst some of the genetic basis for adaptation in the Sherpa is shared with Tibetans, there may be features unique to the Sherpa, which could in turn explain distinct Sherpa phenotypes. Collectively, this illustrates how the outstanding physiological performance of the Sherpa at altitude is, at least in part, a result of hypoxia driven genetic selection spanning the ∼35,000 years of seasonal migration on the Himalayan plateau. Further comparative physiological studies are required to refine existing, and identify additional adaptive phenotypes, in particular those that are specific to the Sherpa. By correlating these phenotypes with known and emerging signals of genetic selection, we can shed light on biological mechanisms of Sherpa hypoxic adaptation. Ultimately this work can inform on treatments of hypoxia-related illness including pulmonary, cardiac, neurological and renal disorders.

AUTHOR CONTRIBUTIONS

Both authors drafted, edited, and approved the final version of the manuscript.

FUNDING

SB was supported by a Government of Ireland Postdoctoral Fellowship from the Irish Research Council (GOIPD/2018/408). This work was also supported by an Investigators Programme grant from Science Foundation Ireland (12/IP/1727).

REFERENCES

Adams, W. H., and Shresta, S. M. (1974). Hemoglobin levels, vitamin B12, and folate status in a Himalayan village. Am. J. Clin. Nutr. 27, 217–219. doi: 10.1093/ajcn/27.2.217

Adams, W. H., and Strang, L. J. (1975). Hemoglobin levels in persons of Tibetan ancestry living at high altitude. Exp. Biol. Med. 149, 1036–1039. doi: 10.3181/00379727-149-38952

Ai, H., Yang, B., Li, J., Xie, X., Chen, H., and Ren, J. (2014). Population history and genomic signatures for high-altitude adaptation in
Tibetan pigs. *BMC Genomics* 15:834. doi: 10.1186/1471-2164-15-834

Aldenderfer, M. (2011). Peopleing the Tibetan plateau: insights from archaeology. *High Alt. Med. Biol.* 12, 141–147. doi: 10.1089/ham.2010.1094

Allen, P., Matheson, G., Zhu, G., Gheorgiu, D., Dunlop, R., Falconer, T., et al. (1997). Simultaneous 31P MRS of the soleus and gastrocnemius in Sherpas during graded calf muscle exercise. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 273, R999–R1007

Arciero, E., Kraaijenbrink, T., Haber, M., Mezzavilla, M., Ayub, Q., Wang, W., et al. (2018). Demographic history and genetic adaptation in the Himalayan region inferred from genome-wide SNP genotypes of 49 populations. *Mol. Biol. Evol.* 35, 1916–1933. doi: 10.1093/molbev/msy094

Ashmore, T., Fernandez, B. O., Evans, C. E., Huang, Y., Branco-Price, C., Griffin, J. L., et al. (2014). Suppression of erythrocytosis by dietary nitrate. *FASEB J.* 29, 1102–1112. doi: 10.1096/fj.14-263004

Bailey, D. M., Dehnert, C., Luks, A. M., Menold, E., Castell, C., Schendler, G., et al. (2017). Environmental load-bearing exercise in high altitude populations. *Frontiers in Physiology* | www.frontiersin.org 8 August 2019 | Volume 10 | Article 1116

Bhandari and Cavalleri Sherpa Adaptation at High-Altitude

Bogacka, I., Kurzynska, A., Bogacki, M., and Chojnowska, K. (2015). Peroxisome proliferator-activated receptors in the regulation of female reproductive functions. *Folia Histochem. Cytobiol.* 53, 189–200. doi: 10.5603/fhc.a2015.0023

Boyer, S. J., and Blume, F. D. (1984). Weight loss and changes in body composition at high altitude. *J. Appl. Physiol.* 57, 1580–1585. doi: 10.1152/japph.1984.57.5.1580

Brooks, G., Butterfield, G., Wolfe, R., Groves, B., Mazzeo, R., Sutton, J., et al. (1991). Increased dependence on blood glucose after acclimatization to 4,300 m. *J. Appl. Physiol.* 70, 919–927. doi: 10.1152/jappl.1991.70.2.919

Bruno, R. M., Cogo, A., Ghidoni, L., Dua, E., Pomidori, L., Sharma, R., et al. (2014). Cardiovascular function in healthy Himalayan high-altitude dwellers. *Atherosclerosis* 236, 47–53. doi: 10.1016/j.atherosclerosis.2014.06.017

Burton, G. J., Fowden, A. L., and Thornburg, K. L. (2016). Placental origins of chronic disease. *Physiol. Rev.* 96, 1509–1565. doi: 10.1152/physrev.00029.2015

Bursch, M., Gatterer, H., Philadelphy, M., Bartsch, I., and Likar, R. (2018). Submaximal exercise testing at low altitude for prediction of exercise tolerance at high altitude. *J. Travel Med.* 25:tay011. doi: 10.1093/jtm/tay011

Busch, M., Philadelphy, M., Gatterer, H., Bartsch, I., Faulhaber, M., Nachbaur, W., et al. (2019). Physiological responses in humans acutely exposed to high altitude (3480 m): minute ventilation and oxygenation are predictive for the development of acute mountain sickness. *High Alt. Med. Biol.* 20, 192–197. doi: 10.1089/ham.2018.0143

Busch, S. A., Davies, H., Van Diepen, S., Simpson, L. L., Sobierajski, F., Riske, L., et al. (2017). Chemoreflex mediated arrhythmia during apnea at 5,050 m in low but not high-altitude natives. *J. Appl. Physiol.* 124, 930–937. doi: 10.1152/japplphysiol.00774.2017

Busch, T., Bartsch, P., Pappert, D., Grunig, E., Hildebrandt, W., Elser, H., et al. (2001). Hypoxia decreases exhaled nitric oxide in mountaineers susceptible to high-altitude pulmonary edema. *Am. J. Respir. Crit. Care Med.* 163, 368–373. doi: 10.1164/ajrccm.163.2.2001134

Cho, J. I., Basnyat, B., Jeong, C., Di Rienzo, A., Cháls, G., Craig, S. R., et al. (2017). Ethnically Tibetan women in Nepal with low hemoglobin concentration have better reproductive outcomes. *Evol. Med. Public Health 2017, 82–96. doi: 10.1093/emph/exo008

Cole, A. M., Cox, S., Jeong, C., Petousi, N., Aryal, D. R., Droma, Y., et al. (2017). Genetic structure in the Sherpa and neighboring Nepalese populations. *BMC Genomics* 18:102. doi: 10.1186/s12864-016-3469-5

Cumpsty, A. F., Hennis, P. J., Gilbert-Kawai, E., Frey, D., Basnyat, B., Fowden, A. L., and Thornburg, K. L. (2013). Simultaneous 31P MRS of the soleus and gastrocnemius in Sherpas at high altitude - Results from the Xtreme Alps study. *Narco. Oxide 71, 57–68. doi: 10.1016/j.jniox.2017.10.005

Cumpsty, A. F., Minnion, M., Fowden, A. L., Mikus-Lelinska, M., Mitchell, K., Martin, D. S., et al. (2019). Pushing arterial-venous plasma biomarkers to new heights: a model for personalised redox metabolomics? *Redox Biol.* 21:101113. doi: 10.1016/j.redox.2019.101113

Davenport, M. H., Steinback, C. D., Borle, K. J., Matenchuk, B. A., Vanden Berg, E. R., De Freitas, E. M., et al. (2018). Extreme pregnancy: maternal physical activity at Everest Base Camp. *J. Appl. Physiol.* 125, 580–585. doi: 10.1152/japplphysiol.00146.2018

Davies, T., Gilbert-Kawai, E., Wythe, S., Meale, P., Mythen, M., Levet, D., et al. (2018). Sustained vasomotor control of skin microcirculation in Sherpas versus altitude-naïve lowlanders: experimental evidence from Xtreme Everest 2. *Exp. Physiol.* 103, 1494–1504. doi: 10.1113/epj1087236

Droma, Y., Hanaoka, M., Basnyat, B., Aryal, A., Neupane, P., Pandit, A., et al. (2006). Genetic contribution of the endothelial nitric oxide synthase gene to high altitude adaptation in sherpas. *High Alt. Med. Biol.* 7, 209–220. doi: 10.1089/ham.2006.7.209

Droma, Y., Hanaoka, M., Basnyat, B., Aryal, A., Neupane, P., Pandit, A., et al. (2008). Adaptation to high altitude in Sherpas: association with the insertion/deletion polymorphism in the Angiotensin-converting enzyme gene. *Wilderness Environ. Med.* 19, 22–29. doi: 10.1586/06-WEMER-073.1

Dunwoodie, S. L. (2009). The role of hypoxia in development of the Mammalian embryo. *Dev. Cell.* 17, 755–773. doi: 10.1016/j.devcel.2009.11.008

Edwards, L. M., Murray, A. J., Tyler, D. J., Kemp, G. J., Holloway, C. J., Robbins, P. A., et al. (2010). The effect of high-altitude on human skeletal muscle energetics: 31P-MRS results from the Caudwell Xtreme Everest expedition. *PLoS One* 5:e10681. doi: 10.1371/journal.pone.010681

Erzurum, S., Ghosh, S., Janocha, A., Xu, W., Bauer, S., Bryan, N., et al. (2007). Higher blood flow and circulating NO products offset high-altitude hypoxia
among Tibetans. *Proc. Natl. Acad. Sci. U.S.A.* 104, 17593–17598. doi: 10.1073/pnas.0707462104

Faoro, V., Huez, S., Vanderpool, R., Groepenhoff, H., De Bisschop, C., Martinot, J. B., et al. (2014). Pulmonary circulation and gas exchange at exercise in Sherpas at high altitude. *J. Appl. Physiol.* 116, 919–926. doi: 10.1152/japplphysiol.00236.2013

Garrido, E., Segura, R., Capdevila, A., Pujol, J., Javierre, C., and Ventura, J. L. (1996). Are Himalayan Sherpas better protected against brain damage associated with extreme altitude climbs? *Clin. Sci.* 90, 81–85. doi: 10.1042/0003-0882/90081001

Gelfi, C., De Palma, S., Ripamonti, M., Eberini, I., Wait, R., Bajracharya, A., et al. (2004). New aspects of altitude adaptation in Tibetans: a proteomic approach. *FASEB J.* 18, 612–614. doi: 10.1096/fj.03-1077f.e

Gilbert-Kawai, E. T., Milledge, J. S., Grocott, M. P., and Martin, D. S. (2014). King Gruber, M., Hu, C.-J., Johnson, R. S., Brown, E. J., Keith, B., and Simon, M. C. (2004). New aspects of altitude adaptation in Tibetans: a proteomic approach. *J. Appl. Physiol.* 122, 1011–1018. doi: 10.1152/japplphysiol.00970.2016

Gilbert-Kawai, E., Sheperdian, A., Adams, T., Mitchell, K., Feelisch, M., Murray, A., et al. (2017). Antioxidant defense and oxidative damage vary widely among high-altitude residents in Nepal. *PLoS Genetics* 13:e1006675. doi: 10.1371/journal.pgen.1006675

Hackett, P. H., Reeves, J. T., Reeves, C. D., Grover, R. F., and Montgomery, H. E. (2009). Arterial blood gases and oxygen content in climbers on Mount Everest. *New Engl. J. Med.* 360, 140–149. doi: 10.1056/NEJMoa0801581

Hochachka, P. W., Clark, C. M., Monge, C., Stanley, C., Brown, W., Stone, C., et al. (1996b). Sherpa brain glucose metabolism and defense adaptations against chronic hypoxia. *J. Appl. Physiol.* 81, 1355–1361. doi: 10.1152/japplphysiol.1996.81.3.1355

Holloway, C. J., Montgomery, H. E., Murray, J. A., Andaluz, L., Bajracharya, A., et al. (2014). Endothelial function in hypoxia: persistent changes in vascular function, and energy metabolism after a trek to Mt. Everest Base Camp. *FASEB J.* 29, 792–796. doi: 10.1096/fj.13-27999

Horscroft, J. A., Kotwica, A. O., Laner, V., West, J. A., Hennis, P. J., Levett, D. Z., et al. (2017). Metabolic basis to Sherpa altitude adaptation. *Proc. Natl. Acad. Sci. U.S.A.* 114, 6382–6387. doi: 10.1073/pnas.1700527114

Hsu, H., Petousi, N., Glusman, G., Yu, Y., Bohlebender, R., Tashi, T., et al. (2017). Evolutionary history of Tibetans inferred from whole-genome sequencing. *PLoS Genetics* 13:e1007675. doi: 10.1371/journal.pgen.1007675

Jansen, G. F., Krins, A., Basnayt, B., Bosch, A., and Odoom, J. A. (2000). Cerebral autoregulation in subjects adapted and not adapted to high altitude. *Stroke* 31, 2314–2318. doi: 10.1161/61.3.2314

Jansen, G. F., Krins, A., Basnayt, B., Odoom, J. A., and Ince, C. (2007). Role of the altitude level on cerebral autoregulation in residents at high altitude. *J. Appl. Physiol.* 103, 518–523. doi: 10.1152/japplphysiol.01429.2006

Jansson, A. J., Comhair, S. A. A., Basnayt, B., Neupane, M., Gehremedhim, A., Khan, A., et al. (2017). Antioxidant defense and oxidative damage vary widely among high-altitude residents. *Am. J. Hum. Genet.* 92, e23039. doi: 10.1016/j.ajhg.2017.03.039

Jeffery, C. S., Sit, C. K., Chapman, R. A., Taylor, S. F., Headley, L. M., et al. (1996). Are Himalayan Sherpas better protected against brain damage associated with extreme altitude climbs? *Clin. Sci.* 90, 81–85. doi: 10.1042/0003-0882/90081001

Jeffery, C. S., Sit, C. K., Chapman, R. A., Taylor, S. F., Headley, L. M., et al. (1996). Are Himalayan Sherpas better protected against brain damage associated with extreme altitude climbs? *Clin. Sci.* 90, 81–85. doi: 10.1042/0003-0882/90081001

Johnson, C. O., Droma, T., Sutton, J. R., McCullough, R. G., McCullough, R. E., et al. (2018). Genetic variants in EPAS1 contribute to adaptation to high-altitude hypoxia in Tibetans. *Proc. Natl. Acad. Sci. U.S.A.* 115, 5001–5006. doi: 10.1073/pnas.1715875114

Julian, C. G., Wilson, M. J., and Moore, L. G. (2009). Evolutionary adaptation to high altitude: a view from in utero. *Exerc. Sport Sci. Rev.* 37, 10–19. doi: 10.1093/exercisrev/37.1.10

Kayser, B., Hoppeler, H., Claassen, H., and Cerretelli, P. (1991). Muscle structure and function at extreme altitude. *Exerc. Sport Sci. Rev.* 19, 388–402. doi: 10.1056/RESSM2817756474

Kayser, B., Hoppeler, H., Claassen, H., and Cerretelli, P. (1991). Muscle structure and function at extreme altitude. *Exerc. Sport Sci. Rev.* 19, 388–402. doi: 10.1056/RESSM2817756474
Santolaya, R. B., Lahiri, S., Alfaro, R. T., and Schoene, R. B. (1989). Respiratory adaptation in the highest inhabitants and highest Sherpa mountaineers. *Respir. Physiol.* 77, 253–262. doi: 10.1016/0034-5687(89)90011-x

Scheinfeldt, L. B., Sol, S., Thompson, S., Ranciaro, A., Beggs, W., et al. (2012). Genetic adaptation to high altitude in the Ethiopian highlands. *Genome Biol.* 13:R1. doi: 10.1186/gb-2012-13-1-r1

Scheinfeldt, L. B., and Tishkoff, S. A. (2013). Recent human adaptation: genomic approaches, interpretation and insights. *Nat. Rev. Genet.* 14, 692–702. doi: 10.1038/nrg3604

Schneider, A., Greene, R. E., Keyl, C., Spadacini, G., Passino, C., et al. (2001). Peripheral arterial vascular function at altitude: sea-level natives versus Himalayan high-altitude natives. *J. Hypertens.* 19, 213–222. doi: 10.1097/00004872-200102000-00007

Schoene, R., Lahiri, S., Hackett, P., Peters, R., Milledge, J., Pizzo, C., et al. (1984). Relationship of hypoxic ventilatory response to exercise performance on Mount Everest. *J. Appl. Physiol.* 56, 1478–1483. doi: 10.1152/jappl.1984.56.4.1478

Simonson, T. S. (2015). Altitude adaptation: a glimpse through various lenses. *High Alt. Med. Biol.* 16, 125–137. doi: 10.1089/ham.2015.0033

Simonson, T. S., Wei, G., Wagner, H. E., Wuren, T., Qin, G., Yan, M., et al. (2015). Low haemoglobin concentration in Tibetan males is associated with greater high-altitude exercise capacity. *J. Physiol.* 593, 3207–3218. doi: 10.1113/JP275018

Simonson, T. S., Yang, Y., Huff, C. D., Yun, H., Qin, G., Witherspoon, D. J., et al. (2010). Genetic evidence for high-altitude adaptation in Tibet. *Science* 329, 72–75. doi: 10.1126/science.1189406

Simpson, L. L., Busch, S. A., Oliver, S. J., Stembridge, M., Ainslie, P. N., et al. (2019). Baroreflex control of sympathetic vasomotor activity and resting arterial pressure at high altitude: insight from Lowlanders and Sherpas. *J. Physiol.* 597, 2379–2390. doi: 10.1113/JP277663

Smith, C. (1997). The effect of maternal nutritional variables on birthweight outcomes of infants born to Sherpa women at low and high altitudes in Nepal. *Am. J. Hum. Biol.* 9, 751–763. doi: 10.1093/humabi/9.4.751

Song, D., Li, L.-S., Arsenault, P. R., Tan, Q., Bigham, A. W., Heaton-Johnson, K. J., et al. (2014). Defective Tibetan PHD2 binding to p23 links high altitude adaptation to altered oxygen sensing. *J. Biol. Chem.* 289, 14656–14665. doi: 10.1074/jbc.M113.541227

Stembridge, M., Ainslie, P. N., Boulet, L. M., Anholm, J., Subedi, P., Tynko, M. M., et al. (2019). The independent effects of hypovolaemia and pulmonary vasocostriction on ventricular function and exercise capacity during acclimatisation to 3800 m. *J. Physiol.* 597, 1059–1072. doi: 10.1113/JP275278

Stembridge, M., Ainslie, P. N., Hughes, M. G., Stöhr, E. J., Cotter, J. D., Cui, C., et al. (2014). Operation Everest II: oxygen transport during exercise at sea level and high altitude. *J. Appl. Physiol.* 117, 334–343. doi: 10.1152/japplphysiol.00233.2014

Stembridge, M., Ainslie, P. N., and Shave, R. (2015). Short-term adaptation and chronic cardiac remodelling to high altitude in lowlander natives and Sherpa. *J. Physiol.* 595, 1671–1686. doi: 10.1113/JP273183

Trentacoste, M., Tremlay, J. C., Steinback, C. D., Moore, J. P., Hansen, A. B., et al. (2015). UBC-Nepal expedition: acute alterations in sympathetic nervous activity do not influence brachial arterial endothelial function at sea level and high altitude. *J. Appl. Physiol.* 123, 1386–1396. doi: 10.1152/japplphysiol.00583.2017

Wilson, M. H., Edsell, M. E., Davagnanam, I., Hirani, S. P., Martin, D. S., Levett, D. Z., et al. (2011). Cerebral artery dilatation maintains cerebral oxygenation at extreme altitude and in acute hypoxia—an ultrasound and MRI study. *J. Cereb. Blood Flow Metab.* 31, 2019–2029. doi: 10.1038/jcbfm.2011.81

Winslow, R. M., Chapman, K. W., Gibson, C. C., Samaja, M., Monge, C. C., Goldwasser, E., et al. (1989). Different hematologic responses to hypoxia in Sherpas and Quechua Indians. *J. Appl. Physiol.* 66, 1561–1569. doi: 10.1152/japplphysiol.00383.2017

Wu, T. (1990). Changes in cardiac function at rest and during exercise in mountaineers at an extreme altitude. *Zhonghua Yi Xue Za Zhi* 70, 72–76.

Wu, T., and Kayser, B. (2006). High altitude adaptation in Tibetans. *High Alt. Med. Biol.* 7, 193–208. doi: 10.1089/ham.2006.7.193

Wu, T., Liu, F., Cui, C., Qi, X., and Su, B. (2013). A genetic adaptive pattern-low hemoglobin concentration in the Himalayan highlanders. *Chin. J. Appl. Physiol.* 29, 481–493.

Xing, J., Wuren, T., Simonson, T. S., Watkins, W. S., Witherspoon, D. J., Wu, W., et al. (2013). Identification of a Tibetan-specific mutation in the hypoxia gene EGLN1 and its contribution to high-altitude adaptation. *Mol. Biol. Evol.* 30, 1889–1898. doi: 10.1093/molbev/ms3090

Xing, J., Wuren, T., Simonson, T. S., Watkinson, S. S., Witherspoon, D. J., Wu, W., et al. (2013). Genomic analysis of natural selection and phenotypic variation in high-altitude Mongolians. *PLoS Genetics* 9:e1003634. doi: 10.1371/journal.pgen.1003634

Xu, S., Li, S., Yang, Z., Tan, J., Lou, H., Jin, W., et al. (2011). A genome-wide search for signals of high-altitude adaptation in Tibetans. *Mol. Biol. Evol.* 28, 1003–1011. doi: 10.1093/molbev/msq277

Yi, X., Liang, Y., Huerta-Sanchez, E., Jin, X., Cao, Z. X. P., Pool, J. E., et al. (2010). Sequencing of 50 human exomes reveals adaptation to high altitude. *Science* 329, 75–78. doi: 10.1126/science.1190371
Zhang, C., Lu, Y., Feng, Q., Wang, X., Lou, H., Liu, J., et al. (2017). Differentiated demographic histories and local adaptations between Sherpas and Tibetans. *Genome Biol.* 18, 115. doi: 10.1186/s13059-017-1242-y

Zhang, X., Ha, B., Wang, S., Chen, Z., Ge, J., Long, H., et al. (2018). The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago. *Science* 362, 1049–1051. doi: 10.1126/science.aat8824

Zhuang, J., Droma, T., Sun, S., Janes, C., McCullough, R. E., McCullough, R. G., et al. (1993). Hypoxic ventilatory responsiveness in Tibetan compared with Han residents of 3,658 m. *J. Appl. Physiol.* 74, 303–311. doi: 10.1152/jappl.1993.74.1.303

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Bhandari and Cavalleri. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.