Inappropriate disposal of ‘flushable’ consumer products – reasons for concern
Darko Joksimovic, Anum Khan and Barry Orr

ABSTRACT
Inappropriate disposal of wipes and other products that are either explicitly labelled or assumed by the consumers to be flushable via toilets is increasingly being cited as the cause of a range of sewer systems issues. In the rapidly growing and diverse market for these consumer products, there are significant variations in consumer information provided by manufacturers, product composition, and behaviour in different components of wastewater system. This paper summarizes the results of assessing the labelling, drainline clearance and disintegration testing of a 101 consumer products, adopting the International Water Services Flushability Group (IWSFG) flushability specifications. None of the products tested satisfy the product labelling code of practice, and all products other than bathroom tissue failed the disintegration test, including the 23 products that were labelled ‘flushable’. The need for a global definition of a ‘flushable’ product exists and it is vital that it be brought into legislation in an effort to combat misconceptions around consumer products that may exist internationally.

Key words | consumer products, gross solids, sewer blockage

INTRODUCTION
One of the reasons that is increasingly being cited as a potential cause for increased operational difficulties related to wastewater systems is the inappropriate disposal of wipes and other products that are either explicitly labelled or assumed by the consumers to be flushable. The physical characteristics and incomplete disintegration of these products are causing a wide range of issues: clogging of private drain lines and septic tanks; accumulation and interaction with fats, oil and grease (FOG) leading to formation of fatbergs and sewer blockages; clogging and breakdown of equipment such as screens and pumps, increasing maintenance frequency and necessitating costly equipment upgrades; sewer overflows; and potential emission of plastic materials into the environment. The number of products labelled ‘flushable’ has been increasing, and now includes various baby wipes, household wipes and cosmetic wipes, cloths, diaper liners, facial tissues, etc. The ‘flushable’ wipes industry alone has nearly doubled in the 2013–2018 period (Smithers Pira 2018), with indications for this growth trend to continue into the future. With this in mind, the problems associated with the presence of ‘flushable’ products in sewer systems are likely to worsen if measures that span a broad variety of stakeholders, from manufacturers to consumers and sewer system managers, are not taken.

The journey of these manufactured products, however, starts at store shelves, where package labelling influences both consumers’ decision to buy them and their choice of disposal methods. Over the last two years, Association of the Nonwoven Fabrics Industry (INDA) and the European Disposables and Nonwovens Association (EDANA) have published a labelling Code of Practice (CoP) (INDA & EDANA 2017). The intent of the CoP is to direct manufacturers to make it evident on product packaging to not flush products that could be problematic for wastewater systems but have the potential to be flushed down the toilet by consumers. Additionally, it was designed to direct manufacturers to clearly indicate the appropriate disposal method of the product on its packaging, including a Do No Flush (DNF) symbol for products that don’t meet the flushability
criteria. The CoP provides on-pack labelling criteria for manufacturers, which includes the location, colour, size, and wording. More than a year after the issuance of the CoP, the importance of compliance with the voluntary CoP was again emphasized in a memo to manufacturers (EDANA 2018). However, as the CoP is entirely a voluntary measure, it is unclear to what degree it is being adopted by the manufacturers of products that are potentially disposed in toilets.

The definition and behaviour of ‘flushable’ consumer products is being addressed by the manufacturers and their associations, sewer managers and operators, and the research community. In-sewer testing was conducted in Vancouver, Washington, that observed minor changes in dyed wipes retrieved after travelling in a sewer for more than a kilometre (Thompson 2015). Several organizations have issued testing guidance aimed at defining the flushability of products. These include the guidance from the manufacturer’s associations (INDA & EDANA 2017), and more recently national (e.g. UK Water Industry 2019) and international (IWSFG 2018a) testing specifications. Although there are some similarities in certain parts of the testing (e.g. drain clearance), the tests specified in these documents vary significantly with regards to other criteria (e.g. product disintegration). Therefore, a product that is deemed ‘flushable’ on any one set of testing criteria may or may not achieve the same designation based on a different test. Investigations on the behaviour of the wipes, including the physical and numerical modelling of wipes in flowing water, have been carried out by Karadagli et al. (2009) and Karadagli et al. (2012). The transport of gross solids in sewers has received less attention compared to sewer sediment transport (Murali et al. 2019), although some modelling approaches do exist (e.g. Littlewood & Butler 2003; Spence et al. 2016). McDermott et al. (2019) present a comprehensive review of studies on the transport of solids in low flow sewers, identifying gross solids/misuse as the most commonly reported blockage factor and stressing the need for continued research in this area. Overall, there is a lack of an agreement on the testing protocol, combined with an incomplete scientific understanding on the behaviour of products that consumers dispose via toilets.

In addition to testing the flushability of individual products, several studies investigated their presence and contribution to blockages in various parts of the sewer system. A forensic study of materials collected from a wastewater treatment plant influent, serving a combined system in New York City (Fuss & O’Neill 2016), provided a snapshot composition. The results indicated that 62% of the wipes materials were baby wipes, and that wipes labelled as flushable constituted only 2% of wipes recovered, in addition to various other trash materials. In the Water UK study (Drinkwater & Moy 2017), the blockage materials from sewers, pumps and treatment plant inlet works were collected and analysed. The results indicated that 75% to 95% of materials were non-flushable wipes, concluding that wipes being flushed constitute a serious problem, and recommending a range of actions related to the composition of wipes, clarity of labelling and public education and awareness. A year-long study of wastewater sampling in Germany (Mitchell et al. 2017) found significant variations in captured material composition between the 12 samples, with paper (45%) and textiles (33%) being the largest fraction of captured solids, and concluded that wet wipes are definitely a relevant category. Spence et al. (2016) reported a large diurnal variation in the composition of gross sewer solids as well as the importance of population characteristics in contributing areas, with low income and ageing areas having the largest contribution of wet wipes. In addition to the overall number of studies being low, their repeatability is lacking and they vary significantly in terms of their objectives, classification of materials found in wastewater and sampling protocols that in some cases included very small quantities of materials. It is also noted that no accurate estimates of the portion of wipes sold as flushable appear to be available.

The objective of research presented in this paper is to investigate a large number of consumer products that could potentially be flushed down the toilets, assessing: (1) the packaging adherence to industry association’s packaging guidance (CoP), (2) drainline clearance characteristics and (3) disintegration behaviour. The aim of the project was to provide a broad overview of the lifecycle of a general consumer product, beginning with its life on a store shelf to its end in wastewater collection systems. A smaller subset of the products were also tested for product composition. Broader goals of the ongoing project are to raise public awareness on the products that may misleadingly labelled as ‘flushable’, and add to the developing international research on flushability to facilitate evidence-based dialogue between sewer system managers and consumer product manufacturers.

METHODS

The project started with a purchase of a variety of products to include toilet tissue, facial tissue, moist wipes labelled flushable and ‘Do Not Flush’, toddler wipes, baby wipes, and some other items that have been labelled flushable,
such as toilet cleaning brushes, dog poop bags, and diaper liners. The selection of products was intended to be representative of consumer products found across local stores in Ontario, Canada or available online, and may vary considerably in different geographic regions. The majority of the 101 products tested in this project were manufactured in the USA (61), followed by China (17), Canada (12) and other countries (Germany, Ireland, Israel, Italy, Korea, Thailand and UK). Using the industry CoP, each of the 101 products tested during this project were systematically examined for adherence to package labelling guidance.

The testing in this project followed the IWSFG PAS 3: 2018 Disintegration Test Methods – Slosh Box (IWSFG 2018b). In the testing, the two criteria – toilet and drainline clearance and disintegration, required two fundamental steps: preconditioning and agitation. These fundamental steps were performed for each of the products tested. A complete test for each product required 5 samples. A physical model consisting of a toilet (6/4.1 L) and a private drain connection was set up in the Water Resources laboratory in the Department of Civil Engineering at Ryerson University. The preconditioning step consisted of flushing a product sample down the toilet and allowing it to remain at the end of the drainline in a catch basket for a 30-minute period. However, if the product sample did not clear the drainline in the first flush, additional flushes were used subsequently at 5-minute intervals until the product reached the downstream end of the drain, for a maximum of six flushes. The purpose of this fundamental step was to enable the hydraulic forces and interaction between the water and product to rinse the sample of its paper composition. The preconditioning step was complete, the sample was transferred from the catch basket to the slosh box. With the sample inside, the slosh box was continuously tilted at $11^\circ \pm 0.5^\circ$ on either side for a 30-minute period for each product sample. The agitation step was performed using a slosh box with specified parameters (IWSFG 2018b). Parameters such as the tilt angle, and rotations per minute of the oscillating motor were calibrated accordingly. The variables considered in the design of the slosh box, such as Reynolds’s number of 20,000 and 4-litres of water at $15 \pm 1 ^\circ C$, were designed to be closely representative of conditions in existing municipal wastewater collection systems, as per IWSFG (2018b). Finally, a test report detailing the variables and constraints used for calculations as specified in IWSFG (2018b). Twenty of the 101 products were selected for further testing on fibre composition. The fibre composition analysis was carried out in accordance with the TAPPI/ANSI Test Method T 401, Fibre Analysis of Paper and Paperboard (TAPPI 2018). This TAPPI/ANSI Test was completed through the SGS Test Method carried out by a third-party laboratory (SGS-IPS Testing in Appleton, Wisconsin, USA).

RESULTS AND DISCUSSION

Product labelling

Figure 1 shows the number of products tested in each of the 10 categories displayed. Cleansing wipes represent the largest proportion of products tested, and almost half of the products tested within this category are labelled as ‘flushable’. Examination of the product labelling showed that they were either labeled ‘Flushable’, or (1) had text that indicates ‘Do not flush’, (2) provide the DNF symbol, (3) provide both the DNF symbol and test that indicates ‘Do not flush’, or (4) had no disposal instructions.

As evident from the results of evaluating the product packaging adherence to the CoP, presented in Table 1, specific categories like baby wipes, cleansing wipes, and diaper liners, required that all their products display a DNF symbol. However, none of the products tested adhered to the criteria for package labelling in the Code of Practice, including those which were required to display the symbol. The results indicate that there is a great deal of inconsistency with package labelling as there are varying percentage compositions that display a DNF symbol. Some product categories, such as cleansing cloths, dog waste bags, facial tissue, and paper towel displayed a DNF symbol even though the criteria do not specify that such is required. Other categories like diaper liners, where 100% of the products are required to display a DNF symbol, showed that none of the products displayed a DNF symbol.

A key visual observation made during the evaluation of product adherence to package labelling was that although 19 products displayed a DNF symbol, the symbol failed the stated criteria because of several reasons. These reasons may have included the following:

- DNF symbol appears on plastic wrapper that is designed for removal prior to product usage in which case, DNF symbol is not visible to user after wrapper has been discarded
- DNF symbol is either too small or hidden
• DNF symbol is displayed under the product fold
• Symbol displayed is not the universal DNF symbol

Drainline clearance

As per the procedure in the PAS 3 (IWSFG 2018b), product samples were required to clear the drainline within a 30-minute period. Some products were conveyed out of the drainline within the allotted time while others remained inside the drainline. Products that did not clear the drainline within one flush were flushed subsequently every 5-minutes until they cleared the drainline, for a maximum of 6 flushes within 30-minutes. Heavier products, such as those within the product categories of baby wipes, cleaning cloth, cleaning wipes, cleansing cloth, cleansing wipes, diaper liners, and paper towel, often required multiple flushes to clear the line. Figure 2 shown below depicts the average number of flushes per product category, based on 5 tests and noting that there were small variations with 80 products achieving the same results for each flush, and the remaining 20 products having a standard deviation of less than 0.5 flushes. Cleaning cloth flushing results indicate about 4 flushes on average as the maximum and bathroom tissue showing just below 2 flushes on average as the minimum between the ten product categories tested. Products with a slightly lower mass, such as those within the product categories of bathroom tissue, dog waste bags, and facial tissue, often cleared the drainline in 1–2 flushes. Products that required another flush or two would normally flow

Table 1 | Product adherence to package labelling

Product Category	% of products that require a DNF symbol	% of products that display a DNF symbol	% of products that meet DNF symbol criteria
Baby Wipes	100	56	0
Bathroom Tissue	0	0	0
Cleaning Cloths	25	75	0
Cleaning Wipes	86	15	0
Cleansing Cloths	20		0
Cleansing Wipes	100	26	0
Diaper Liners	100	0	0
Dog Waste Bags	0	0	0
Facial Tissue	17		0
Paper Towel	0		0

Note: Greyed out cell indicates that based on Code of Practice, product category does not require a DNF symbol or is out of scope (used for comparison only).
past the two elbow fittings and stop quarter-way through the
drainline at about 5 metres.

Product disintegration

Results of product disintegration testing, shown in Table 2,
indicate that only 17 out of the 101 products tested
showed some visible evidence of disintegration. From
these 17 products, 11 products fully disintegrated. However,
all 11 of these products were from the bathroom tissue cat-
egory. Other products, such as cleansing cloths, cleansing
wipes, facial tissues, and paper towels partially disinte-
grated, whereas products from the categories of baby
wipes, cleaning cloths, cleaning wipes, diaper liners, and
dog waste bags did not show any evidence of disintegration.

It is to be noted that between the 5 test repetitions for
each product, the products showed little to no variability
between sequential tests. If a product was deemed a FAIL
then neither of the 5 test repetitions showed successful
disintegration.

Table 2 | Summary of product disintegration testing results

Product Category	Partially Disintegrated	Fully Disintegrated
Baby Wipes	0 of 18	0 of 18
Bathroom Tissues	11 of 11	11 of 11
Cleaning Cloths	0 of 4	0 of 4
Cleaning Wipes	0 of 14	0 of 14
Cleansing Cloths	1 of 5	0 of 5
Cleansing Wipes	1 of 32	0 of 32
Diaper Liners	0 of 3	0 of 3
Dog Waste Bags	0 of 3	0 of 3
Facial Tissues	3 of 6	0 of 6
Paper Towels	1 of 5	0 of 5

While a total of 23 out of 101 products tested are
labelled ‘flushable’, only 2 products partially disintegrate,
and none of these 23 products fully disintegrate. Bathroom
tissue is not included in this count of 23 consumer products.
It should be noted that bathroom tissue here is assumed as
‘flushable’ by the public and therefore, is used as a compari-
son to show that it fully disintegrates. Moreover, from the
101 products assessed for flushability, 90 (out of 101) pro-
ducts were deemed as FAIL according to the PAS 3
(IWSFG 2018b), as the specification states that at least 95%
or more of the material must pass through a specified
sieve to be classified as a PASS.

Product composition

The composition of twenty products, selected to cover all
cATEGORIES and determined using TAPPI/ANSI Test
Method T 401, is shown in Table 3. The most prevalent
fibre type amongst the products evaluated was softwood.
The dominant regenerated cellulose material amongst the
consumer products evaluated was rayon, whereas the reces-
sive material used was lyocell. From additional research, an
estimation of 20–35% composition of polypropylene was
made for products #6 and #11. Overall, 75% of the consu-
mer products evaluated for fibre composition in this
project contain at least one type of man-made material – syn-
thetic or regenerated cellulosic material. Seven products out
of the 20 tested contained some form of plastic fibres in sig-
nificant quantities, and these products do not pas the
IWSFG (2018b) Criterion One (Safety in the Environment
and Composition of Materials), which specifies a product
to be acceptable if the percentage by weight of the synthetic
fibre is less than 1%.

CONCLUSIONS

A number of public education campaigns have been devel-
oped over the years to ensure that nothing other than
urine, faecal matter and paper ever enters the sewer systems.
However, the results of these activities are not entirely clear,
as many municipalities are continuing to report increases in
blockages citing wipes as one of contributors. At the same
time, the number of consumer products in the form of
wipes continues to increase.

The current guidance on flushability of consumer pro-
ducts requires major improvements to provide clarity and
ensure appropriate disposal, which may be compromised
even within household laterals. As evidenced by the results

![Figure 2 | Average Number of Flushes per Product Category.](https://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.087/651349/wst2020087.pdf)
of this study, the development of the voluntary Code of Practice hasn’t resulted in the coherent and consistent labelling being provided to the consumer regarding the disposal of products contained in the package. The consumer advice being advocated by municipalities and sewer system operators to only flush human waste and paper down the toilet is confirmed to be the only correct guidance by this study. In addition, there are current initiatives to regulate the labelling of ‘flushable’ products (e.g. California Bill AB-1672 Solid waste: flushable products) and conduct official investigations of the current flushability claims of manufacturers (e.g. #FlushMeNot Petition in Canada). The need for a global definition of a ‘flushable’ product exists and it is vital that it be brought into legislation in an effort to combat misconceptions around consumer products that may exist internationally.

A large number of products may remain intact in the sewer systems, failing to disintegrate and potentially causing blockages and other issues described earlier. The use of the word ‘flushable’ indicates that a product is safe for wastewater collection systems. However, based on the results presented in this report, it is evident that none of the products other than bathroom tissue are ‘flushable’. Therefore, eliminating the use of the word ‘flushable’ from consumer products can help to reduce, if not eliminate, the presence of these products in wastewater collection systems, treatment plants, and the natural environment.

Work orders completed by crews responding to sewer blockages often contain valuable information on the potential causes, and these should be collected and processed to gain further insight. In the longer term, a methodology needs to be developed to collect the information on

Product #	Natural	Man-Made			
	Softwood	Hardwood	Cotton	Regenerated	Synthetics
1 Baby wipe (Flush)	70.5	1.1	28.4		
2 Baby wipe (Flush)	75.8	0.3	23.9		
3 Baby wipe (DNF)	24		20.8		
4 Baby wipe (DNF)		34	35.5		
5 Baby wipe (DNF)		64.5	35.5		
6 Baby wipe (DNF)		20–35 estimate			
7 Baby wipe (DNF)		29	71		
8 Bathroom tissue	41.6	58.4	100		
9 Cleansing wipe (DNF)			20–35 estimate		
10 Cleansing cloth (Flush)	99	1			
11 Cleansing wipe (DNF)	61.8	0.4	37.8		
12 Cleansing wipe (Flush)	73.6	0.1	12.4		
13 Cleansing cloth (Flush)	59.1	0.2	40.8		
14 Cleansing cloth (Flush)	70.7	1.4	27.8		
15 Cleansing cloth (Flush)		87.2	12.8		
16 Denture wipe (DNF)		100			
17 Diaper liner (Flush)		100			
18 Diaper liner (Flush)		30.1	69.9		
19 Facial tissue (DNF)	62.7	37.3			
20 Paper towel					

| Total count of product tested containing fibre type | 11 | 10 | 1 | 5 | 9 | 4 | 1*

*Estimates are not included in the total count.
blockage causes in a more systematic and easy way in order to better understand this issue and aid in developing effective control measures.

The current study should be expanded to include the testing of products sold in other jurisdictions, as well as other consumer products such as feminine hygiene products, kitty litter, and dental floss. The consumer products that are of interest here undergo changes in terms of the manufacturing process and materials used, and these should be accounted for through closer communication with manufacturers and possible re-testing. Finally, emission of a significant portion of products to the environment (e.g. through sewer overflows) will result in discharge of synthetic materials and not only natural fibres common to toilet tissues.

ACKNOWLEDGEMENT

The research reported in this paper was carried out with financial support from Ontario Municipal Enforcement Sewer Use Group (MESUG). The authors would also like to thank the Canadian Water and Wastewater Association for facilitating the realization of this project.

REFERENCES

Drinkwater, A. & Moy, F. 2017 Wipes in Sewer Blockage Study – Final Report. Water UK, London.
European Disposables and Nonwovens Association (EDANA) 2018 MEMO, EDANA Emphasises The Importance of the Strict Implementation of the Voluntary Labelling Code of Practice for Wet Wipes. Available from: https://www.edana.org/industry-initiatives/flushability (accessed 31 January 2019).
Focusing on Nonwoven Wet Wipes Technical Transactions, 1/2017, 125–135.
Fuss & O’Neill 2016 Forensic Evaluation of Non-Disposables. Manchester, CT, USA.
INDA: Association of the Nonwoven Fabrics Industry and EDANA: The European Disposables and Nonwovens Association 2017 Code of Practice: Communicating Appropriate Disposal Pathways for Nonwoven Wipes to Protect Wastewater Systems, 2nd edn.

INDA: Association of the Nonwoven Fabrics Industry and EDANA: The European Disposables and Nonwovens Association 2018 Guidelines for Assessing the Flushability and Disposable Nonwoven Products.
International Water Services Flushability Group (IWSFG) 2018a IWSFG Flushability Specifications. Available from: http://iwsfg.org/iwsfg-flushability-specification (accessed 31 January 2019).
International Water Services Flushability Group (IWSFG) 2018b Publicly Available Specification (PAS) 3: 2018 Disintegration Test Methods – Slosh Box.
Karadagli, F., McAvoy, D. & Rittman, B. E. 2009 Development of a mathematical model for physical disintegration of flushable consumer products. Water Environment Journal 81 (5), 459–465.
Karadagli, F., Rittman, B. E., McAvoy, D. & Richardson, J. E. 2012 Effect of turbulence on the disintegration rate of flushable consumer products. Water Environment Journal 84 (5), 423–433.
Littlewood, K. & Butler, D. 2005 Movement mechanisms of gross solids in intermittent flow. Water Science and Technology 47 (4), 45–50.
McDermott, R., Strong, A. & Griffiths, P. 2019 Solid transfer in low flow sewers, the distance travelled so far is not enough. Journal of Environmental Protection 10, 164–207.
Mitchell, R.-L., Thamsen, P. U., Gunkel, M. & Waschnewski, J. 2017 Investigations Into Wastewater Composition.
Murali, M. K., Hipsey, M. R., Ghadouani, A. & Yuan, Z. 2019 The development and application of improved solids modelling to enable resilient urban sewer networks. Journal of Environmental Management 240, 219–230.
Smithers Pira 2018 The Future of Flushable Wipes to 2023. Available from: https://www.smitherspira.com/industry-market-reports/nonwovens/the-future-of-flushable-wipes-to-2023-(1) (accessed May 13, 2019).
Spence, K. J., Digman, C., Balmforth, D., Houldsworth, J., Saul, A. & Meadowcroft, J. 2016 Gross solids from combined sewers in dry weather and storms, elucidating production, storage and social factors. Urban Water Journal 13 (8), 773–789.
TAPPI 2018 Fiber analysis of paper and paperboard TAPPI/ANSI Test Method T401 om-15. TAPPI.
Thompson, C. 2013 Wipes in pipes: Increasingly popular bathroom wipes blamed for sewer clogs across the nation. Vancouver Sun, September 23 2019.
UK Water Industry 2019 Fine to flush: specification for a testing methodology to determine whether a product is suitable for disposal through a drain or sewer system. Fine to Flush 1 (1), 30.

First received 12 September 2019; accepted in revised form 14 February 2020. Available online 26 February 2020