Regular Article

Quantitative Study of the Hydrogen Entry Behavior of Low Alloy Steels for Various Sour Environments

Takuya HARA

1) Kansai R & D Lab., Nippon Steel Corporation

Abstract: Hydrogen entry behavior was investigated with different H$_2$S partial pressures over pH 5.0 and was quantified for various sour environments using American Petroleum Institute grade X65 line pipes and line pipe plates. Hydrogen permeability dramatically decreased for H$_2$S partial pressures of 0.1 MPa exceeding pH 5.5 and for 0.01 MPa exceeding pH 6.2. This is caused by the formation of a stable iron sulfide film. On the other hand, hydrogen permeability proportionally decreased with increasing pH for H$_2$S partial pressure of 0.001 MPa up to pH 6.2. The critical pH at which iron sulfide becomes quite stable was predicted from the equation of the relationship among pH, H$_2$S partial pressure, and iron ion activity based on potential vs. pH in Fe-S-H$_2$O. Hydrogen concentration into steel invading from various sour environments was proposed and quantified.

Keywords: hydrogen; sour environment; carbon steel; low alloy steel; hydrogen permeation.
サワーヒ環境下における低合金鋼の水素侵入挙動

原 靖也1)*

Quantitative Study of the Hydrogen Entry Behavior of Low Alloy Steels for Various Sour Environments

Takuya Hara

1. 緒言

地下に埋設する石油や天然ガスを掘削、輸送する場合、硫化水素や炭酸ガスが水と混ざって存在するサワーヒ環境下における低合金鋼の水素侵入挙動が問題となる。このサワーヒ環境下での水素侵入挙動を定量的に解析することは重要と考えられる。

2. 実験方法

2・1 供試鋼

供試鋼の化学成分をTable 1に示す。米国石油協会（American Petroleum Institute, API）のグレードX65のラインパイプ用鋼板およびラインパイプ用鋼管を使用した。これら2の鋼を用いてサワーヒ環境下での水素侵入挙動を調査した。300トンの圧縮機で鋼管を溶接した後、制御圧延、制御冷却にて20 mm厚の鋼板を製造した。その後UOE鋼管を製造した。鋼板と鋼管の1/4箇所から水素透過試験片を採取した。試験片サイズは20 mm長さ、50 mm幅、1 mm厚さである。機械加工、機械研磨を施したのちに電解研磨を行った。

2・2 水素透過試験

鋼中の水素量を調査するために水素透過試験を行った。水素透過試験の概要図をFig.1に示す。硫化水素ガスを流した溶液をFig.1の左側のセルに挿入した。右側のセルには、1 mol/Lの水酸化ナトリウム溶液を挿入した。右側の溶液に面している試験片にはNiめっきを施した。水素透過係数は式（1）に示されるように、水素透過電流密度と板厚の積であるとされる。なお、水素透過係数は、水素の拡散係数のような材料因子に依存しない値である。

Table 1. Chemical composition and production size of tested steels (mass%).

Steel	Diameter × Thickness	C	Si	Mn	P	S	Nb	Ti	Al	Ca	
A	Plate	20.5 mm	0.042	0.26	1.14	0.005	0.0006	0.051	0.014	0.020	0.0021
B	Pipe	813.0 × 20.0 mm	0.049	0.24	1.29	0.008	0.0002	0.039	0.012	0.020	0.0021

※ Corresponding Author. E-mail: hara.qfnm.takuya@jp.nipponsteel.com, Address: Nippon Steel Corporation, 1-8 Fuso-Cho Amagasaki Hyogo 660-0891
1) 日本製鋼（株）関西技術研究部 (Kansai R & D Lab., Nippon Steel Corporation)

© 2020 The Iron and Steel Institute of Japan. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives license (https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja).
Per = J×L

ここでは、Jは水素透過電流密度、Lは試験片の板厚である。
次に溶液作製方法について説明する。5 mass%の塩化ナトリウムを含んだ1 mol/L酢酸溶液と、5 mass%の塩化ナトリウムを含んだ1 mol/Lの酢酸ナトリウム溶液をそれぞれ準備する。目的とするpHにするために、この2つの溶液を調合した。硫化水素ガスを溶液に導入する前に、十分な脱気を行い、溶存酸素量を最低限に抑えた。

水素透過係数が0.05×10⁻⁴ A/m以下まで低下した後、硫化水素をFig.1の左側セルの溶液に流した。硫化水素分圧は0.1 MPaから0.001 MPaまで変えた。pHは5.0から6.2まで変えた。試験温度は25±3℃に調整した。試験時間は96時間である。

3. 実験結果

pHが5を超えるサワー環境での水素侵入挙動に及ぼす硫化水素分圧の影響

Fig. 1. Apparatus of the hydrogen permeation test.

Fig. 2. Hydrogen permeation behavior with time at pH 5.0 and 6.0 for H₂S partial pressure of 0.1 MPa in steel B.

Fig. 3. Hydrogen permeation behavior with time at pH 5.0 and 6.0 for H₂S partial pressure of 0.01 MPa in steel B.
考察されなかった。一方、pH5.5では、水素透過係数は急激に低下した。従って、硫化水素分圧が0.1 MPaの臨界pHは5.4と推定された。次に、硫化水素分圧が0.01 MPaで、pHが5.0、6.0と6.2の水素透過係数の時間依存性をFig.6に示す。

pH5.0および6.0では、水素透過係数は、急激な低下は観察されなかった。一方、pH6.2では、水素透過係数は急激に低下した。従って、硫化水素分圧が0.01 MPaの臨界pHは6.1と推定された。ここで、pHが6.2の場合、水素透過係数は急激に低下したが、依然として0.2×10^{-4} A/mの値を維持していた。硫化水素分圧が0.01 MPaでpHが5.5での水素透過係数が0.05×10^{-4} A/m以下まで下がったのに対して、硫化水素分圧が0.001 MPaでpHが6.2での水素透過係数が0.05×10^{-4} A/m以下まで下がらなかった理由については、今後の課題である。一方、Fig.4に示されるように、硫化水素分圧が0.001 MPaの場合、pH6.0までは、水素透過係数の急激な低下は観察されなかった。

4. 考察

4・1 臨界pHに及ぼす硫化水素分圧の影響

上述のように、安定した硫化鉄被膜が形成された場合に、水素透過係数が急激に低下した。電位-pH図の観点から16,17)、この水素透過係数が急激に低下する臨界pHを硫化水素分圧の関数として計算した。Fig.7の電位-pH図の矢印に示される硫化鉄が安定して形成される臨界pH線は硫化鉄の溶解度によって決まる。

$$FeS - Fe^{2+} - H_2S + 2H^+ = 0$$

1気圧で、25℃の硫化鉄の平衡溶解度定数 (K) は \(\log K = \)
-3.7で表される。ここでは、式 (3) に示されるように、鉄イオンの活量によって臨界 pH が変化する。

\[
\log a_{Fe} = 3.7 - 2pH - \log P_{H_{2}S}
\]
(3)

ここで、\(a_{Fe}\) は鉄イオンの活量 (mol/L)、\(P_{H_{2}S}\) は硫化水素分圧 (atm) である。

硫化水素分圧を MPa に換算すると式 (4) で表される。

\[
\log a_{Fe} = 2.7 - 2pH - \log P_{H_{2}S}
\]
(4)

ここで、\(a_{Fe}\) は鉄イオンの活量 (mol/L)、\(P_{H_{2}S}\) は硫化水素分圧 (MPa) である。

硫化水素分圧が 1 気圧 (0.1 MPa) であれば、式 (4) に式 (5) になる。

\[
\log a_{Fe} = 3.7 - 2pH
\]
(5)

Fig. 7 の 0, -2, -4, -6 と記載される電位に平行な線は、鉄イオンの活量がそれぞれ \(10^{-2}, 10^{-4}, 10^{-6}\) mol/L の場合を示している。硫化水素分圧が 0.1 MPa の場合、Fig.5 から臨界 pH を 5.4 と決定された。この値を式 (4) に導入すると、鉄イオンの活量は \(1.0 \times 10^{-7}\) mol/L と計算された。ここでは、水素透過係数と腐食電流密度には式 (6) が成立する。

\[
\text{Per} = k_i \sqrt{i}
\]
(6)

ここで、\(\text{Per}\) は水素透過係数、\(k_i\) は比例定数、\(i\) は腐食電流密度である。

鉄イオンの活量は腐食電流に比例するので、水素透過係数は鉄イオン活量の平方根に比例する (式 (7))。

\[
\text{Per} = k_i \sqrt{a_{Fe}} \quad \quad \quad \quad \quad \text{Fig. 5}
\]
(7)

ここでの \(k_i\) は比例定数である。

Fig. 5 より硫化水素分圧が 0.1 MPa の場合、pH5.3 の水素透過係数は \(2.5 \times 10^{-4}\) A/m である。同様に、Fig.6 から硫 化水素分圧が 0.01 MPa の場合、pH6.0 の水素透過係数は \(1.0 \times 10^{-4}\) A/m であった。上記したように、硫化水素分圧が 0.1 MPa の場合、鉄イオンの活量は \(1.0 \times 10^{-7}\) mol/L と計算された。従って、式 (7) にこれらの値を代入することで、硫化水素分圧が 0.01 MPa の場合、pH6.0 の鉄イオンの活量は \(1.6 \times 10^{-4}\) mol/L と計算された。この鉄イオンの活量を式 (4) に入れると、硫化水素分圧が 0.01 MPa の場合の臨界 pH は 6.2 と計算された。この計算で求めた臨界 pH は Fig.6 での実験で求めた臨界 pH6.1 と一致した。以上の考察で、種々の硫化水素分圧での計算で求めた臨界 pH と実験での求めた臨界 pH を Fig.8 に示す。この図から臨界 pH は硫化水素分圧の関数として式 (6) で表された。

\[
\text{pH}_{\text{min}} = -0.8 \log (P_{H_{2}S}) + 4.6
\]
(8)

ここで、\(P_{H_{2}S}\) は硫化水素分圧 (MPa) である。

4.2 種々の水素環境に及ぼす水素侵入挙動の定量化

以前、供試鋼の鋼 A と鋼 B を使用して、サワー環境における水素侵入挙動に及ぼす硫化水素分圧および pN の影響について調査した。前回に調査した、硫化水素分圧が 0.00001 から 0.1 MPa まで、pH が 3.0 から 5.0 までの水素侵入挙動に、本研究で得られた pH が 5.0 を超えた場合の水素侵入挙動を加えて、整理した。96 時間までの定常状態における水素透過係数に及ぼす硫化水素分圧および pH の影響をそれぞれ Fig.9 と Fig.10 にそれぞれ示す。硫化水素分圧が 5.0 を超えると、水素透過係数は急激に減少した。また、pH が増加すると、水素透過係数は低下した。ただし、Fig.10 に示されるように、硫化水素分圧が 0.1 MPa の場合、pH が 5.0 を超えると、水素透過係数が著しく減少した。同様に、硫化水素分圧が 0.01 MPa の場合、pH が 6.0 を超えると、水素透過係数が著しく減少した。これは、安定な硫化鉄の形成により、水素透過係数が著しく減少したためである。硫化水素分圧が 0.001 MPa の場合には、本実験環境下では、水素透過係数の急激な低下は観察されなかった。なお、前回の試験および本試験では、種々のサワー環境下における鋼 A と鋼 B の水素侵入挙動に大きな差が認められなかった。以上の結果から、式 (9) から (11) に示すよう、種々のサワー環境下における水素透過係数を測定化を試みた。結果を用いて、種々のサワー環境における水素侵入挙動を予測することができた。
5. 結言

API（米国石油協会）グレードX65のラインパイプ用鋼板および鋼管を用いて、pHが5を超えるサワ－環境下における水素侵入挙動を調査した。さらに様々なサワ－環境における水素量を定量化した。主な結果を以下に示す。

(1) 硫化水素分圧が0.1 MPaでかつpHが5.5を超えると、水素透過係数は著しく減少した。さらに、硫化水素分圧が0.01 MPaでかつpHが6.2を超えると、水素透過係数が著しく減少した。これは安定した硫化被膜が形成されたためである。一方、硫化水素分圧が0.001 MPaの場合、pHが増加すると、本試験環境では、水素透過係数は単調に減少した。

(2) 電位-pH図に基づき、安定な硫化被膜の形成に起因して、水素透過係数が著しく低下する臨界pHを硫化水素分圧の関数で定量化した。さらに、種々のサワ－環境における水素侵入挙動を定量化し、水素侵入挙動を予測することができた。

文 献
1) A.Ikeda, S.Nagata, T.Tsumura, Y.Nara and M.Kowaka: Symp. on Linepipe and Tubular Goods of the API Production Department, 1977 Standardization Conf., API, Washington DC, (1977), Paper SS5:1.
2) H.Asahi, M.Ueno and T.Yonezawa: *Corrosion*, 50(1994), 537.
3) H.Asahi, M.Ueno, T.Terasawa and H.Higashiyama: *Bull. Jpn. Inst. Met.*, 30(1991), 427 (in Japanese).
4) T.Hirokawa, H.Okumura, Y.Kawata, H.Tamehiro, M.Murata and M.Abe: *Seietsu Kenkyu*, (1988), No.328, 9 (in Japanese).
5) Y.Terada, H.Ishikawa, R.Chijiwa, M.Sugiyama and H.Tamehiro: *Materia Jpn.*, 38(1996), 236 (in Japanese).
6) ANSI/NACE TM0177: 2016, Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments.
7) ANSI/NACE TM0284: 2016, Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking.
8) M.Ino: *Tetsu-to-Hagané*, 74(1988), 601 (in Japanese).
9) T.Murata: 78th and 79th Nishiyama Memorial Seminar, ISIJ, Tokyo, (1981), 231 (in Japanese).
10) T.Hara, H.Asahi and H.Ogawa: *Corrosion*, 60(2004), 1113.
11) K.Yamakawa and R.Nishimura: *Corrosion*, 55(1999), 24.
12) Y.Zheng, J.Ning, B.Brown, D.Young and S.Nesic: NACE Corrosion 2015, NACE, Houston TX, (2015), 5933.
13) T.Hara: Proc. Twenty-fifth Int. Ocean and Polar Engineering Conf., ISOPE, Cupertino California, (2017), 328.
14) S.Yoshizawa, T.Tsuruta and K.Yamakawa: *Corros. Eng.*, 24(1975), 511 (in Japanese).
15) S.Yoshizawa and K.Yamakawa: *Corros. Eng.*, 24(1975), 365 (in Japanese).
16) M.Pourbaix: *Werkst. Korros.*, 11(1960), 761.
17) J.Horvath and M.Novak: *Corros. Sci.*, 4(1964), 159.
18) M.Nagumo: *Zairyu-to-Kankyo*, 55(2006), 430 (in Japanese).
19) T.Hara and H.Asahi: *CAMP-ISIJ*, 16(2003), 600 (in Japanese).