Overview of Diagnostic and Treatment Colonoscopy Function in Gastrointestinal Diseases

Abstract
This review discusses on diagnostic and therapeutic function of colonoscopy. Colonoscopy is a diagnostic and therapeutic procedure that allows the physician to examine and treat the rectum, colon and portion of the terminal ileum. Also colonoscopy is considered the gold standard for colon cancer screening and surveillance. Colonoscopy is the best screening test for early detection and prevention of Colorectal Cancer (CRC). Colonoscopy with removal of detected polyps has been shown to reduce the incidence and mortality of subsequent CRC. The growing importance of colonoscopy function in diagnostic and treatment of colon disorders and also the prevention of CRC have stimulated an effort to identify and to optimize the potential of colonoscopy as well as its new role in public health. Therefore today is needed to expand and improve the quality of colonoscopy and strengthen systems to provide colonoscopy services continuously.

Keywords: Colonoscopy; Diagnostic; Therapeutic; Gastrointestinal Diseases; Polyps, Tumors; Ulcers

Abbreviations: CRC: Colorectal Cancer; GIB: Gastrointestinal Bleeding; IBD: Inflammatory Bowel Diseases; IBS: Irritable Bowel Syndrome; LGIB: Lower Gastrointestinal Bleeding; IDA: Iron Deficiency Anemia; GI: Gastrointestinal

Introduction
Colonoscopy is an exam used to detect changes or abnormalities in the large intestine (colon) and rectum. A colonoscopy helps find ulcers, colon polyps, tumors and areas of inflammation or bleeding. During a colonoscopy, tissue samples can be collected (biopsy) and abnormal growths can be taken out [1]. Colonoscopy is indicated for the diagnostic evaluation of signs and symptoms of a wide variety of gastrointestinal disorders, for therapeutic interventions and also can be used as a screening test to check for cancer or precancerous polyps in the colon or rectum [2]. In terms of diagnostically and therapeutically, patient has (past or in present) abdominal, intestinal or rectal symptoms such as; Gastrointestinal Bleeding (GIB), abdominal pain, iron deficiency anemia, unexplained changes in bowel habits (e.g., chronic constipation and diarrhea), polyps, Inflammatory Bowel Diseases (IBD), irritable Bowel Syndrome (IBS) and unexplained weight loss. Therefore, the assessment of these symptoms and signs is known as diagnostic colonoscopy [3]. Therapeutic indications include stricture dilation, stent placement, colonic decompression and foreign body removal. In addition, polyps and lesions found during diagnostic procedures may require therapeutic intervention for example polypectomy or treatment of a bleeding lesion. The use of colonoscopy has become accepted as the most effective method of screening the colon and rectum for cancer, precancerous polyps and tumors [4]. In this review, we discussed the function of colonoscopy in gastrointestinal diseases as diagnostic and therapeutic. Besides, we investigated the colonoscopy as the gold standard for colorectal cancer screening.

Diagnostic Colonoscopy
Diagnostic colonoscopy is indicated for evaluation and recognizes the signs and symptoms of gastrointestinal disorders. In this situation, patient has past or present history of gastrointestinal symptoms or disease, polyps, or cancer. Additionally, if the colonoscopy is performed due to physical symptoms such as rectal bleeding or pain, the procedure will be considered diagnostic. The common symptoms that need colonoscopy to evaluated and recognized are lower gastrointestinal bleeding, iron deficiency anemia, unexplained changes in bowel habits (e.g., chronic constipation and diarrhea), polyps and Inflammatory Bowel Diseases (IBD). Acute massive Lower Gastrointestinal Bleeding (LGIB) has an incidence of 20 to 27 episodes per 100,000 persons annually, with a mortality rate of 4 to 10 percent [5,6]. Colonoscopy and arteriography are diagnostic tools that used to evaluate acute LGIB [7-9]. As an initial diagnostic test, colonoscopy is highly effective and has a lower complication rate than arteriography [10,11]. Several
studies have demonstrated that colonoscopy identifies definitive bleeding sites in more than 70 percent of patients [12,13]. Iron Deficiency Anemia (IDA) is a common type of anemia and can be a sign of blood loss from the intestines or colon cancer [14]. IDA often arises from bleeding gastrointestinal lesions, many of which are malignant [15]. Establishment a definitive diagnosis of IDA usually requires an endoscopic and colonoscopy evaluation [16]. Colonoscopy is an essential component of the anemia evaluation [17]. IDA affects approximately 30% of the world's population [18]. Occult bleeding from the Gastrointestinal (GI) tract is the leading cause for IDA in men and postmenopausal women [16]. Patients with unexplained IDA have a greater prevalence of colon cancer and should be evaluated for a colonoscopy [19,20]. The prevalence of colon cancer in patients with IDA has been reported in previous studies, between 6% and 21% [21].

Colonoscopy is a diagnostic test for finding the cause of unexplained changes in bowel habits (e.g., chronic constipation and diarrhea) [22,23]. Changes in bowel habits can be caused by a range of conditions from a temporary infection to an underlying medical disorder [24]. The main reasons of changes in bowel habits that related to the gastrointestinal diseases includes; crohn’s disease, ulcerative colitis and irritable Bowel Syndrome (IBS) [25]. Colonoscopy should be performed in patients with chronic, clinically significant diarrhea without an explanation [26]. But colonoscopy is generally not indicated as part of the evaluation for chronic constipation unless warning signs are present such as anemia or weight loss [27]. One of the conventional investigations in patients with suspected or proven inflammatory bowel diseases (IBD) is colonoscopy [28]. This test allows gastroenterologists to view entire colon. During the procedure, he/she can also take small samples of tissue (biopsy) for laboratory analysis, which may help confirm a diagnosis. Clusters of inflammatory cells called granulomas, if present, help confirm a diagnosis of Crohn’s disease [29]. Therefore colonoscopy with biopsy remains the method of first choice to diagnose IBD [29,30]. In addition, patients with colitis require routine surveillance for colonic dysplasia [31,32]. Chromo endoscopy is a diagnostic method and endoscopic technique that uses for early detection of malignancies within the gastrointestinal tract. Chromo endoscopy which has become the first choice to diagnose IBD especially Crohn’s disease is technically successful in 73% to 97% of patients, although the majority of patients treated with dilation experience recurrence, requiring repeated balloon dilation or surgery [44,45]. Endoscopic endoclip is an effective and safe method of therapeutic and is primary application in hemostasis during endoscopy of the upper or colonoscopy of the lower gastrointestinal tract with satisfactory outcomes [46]. And also it’s useful for preventing bleeding after therapeutic procedures such as polypectomy and in closing gastrointestinal perforation [47,48].

In addition, polyps and lesions found during diagnostic procedures may require therapeutic intervention for example polypectomy and tissue sampling as biopsy. Visible lesions identified during colonoscopy should be sampled or removed for pathology. Tissue sampling includes biopsies, brushings and polypectomy [49,50]. Polypectomy is the most commonly performed therapeutic intervention and all colonoscopists should be able to perform the procedure safely and effectively. Some types of polyps can develop into cancer. Therefore, colonoscopy with detection and removal polyps strongly reduces the risk of colorectal cancer (CRC) [51,52]. However, some polyps, due to their size, location or configuration are considered more technically challenging or are associated with an increased risk of complications (such as bleeding or perforation) and hence are not routinely removed [53].

Screening Colonoscopy

Colonoscopy is the best screening test for early detection of colorectal cancer (CRC). CRC is the third most prevalent cancer in men and the second in women; accounting for 8.5% (n=693,933) of all cancer deaths worldwide [54]. The highest increase in the incidence of CRC is in the Eastern Europe and Asia [55-57]. Recent cancer statistics indicate a decreasing trend in CRC incidence in the United States because of the increase in timely detection and treatment of precancerous polyps and early stage CRC through colonoscopy [58,59]. CRC is often found after symptoms appear but most people with early colon or rectal cancer don’t have any symptoms of the disease. Symptoms usually only appear with more advanced disease. So, regular CRC screening or testing is one of the most powerful weapons for preventing colorectal cancer and colonoscopy is considered the gold standard for early detection of colon cancer and polyp surveillance [60].

Colorectal polyps may be histologically classified as neo plastic (adenomaous), hyperplastic, hamartomatous or inflammatory [61]. The neo plastic polyps are very important because colon carcinomas mostly arise from it and the time span for the transition pro—cess is estimated to nearly 10 years on average [62]. Given the slow progression of colorectal adenomas into
invasive adenocarcinoma [63], early detection and colonoscopy removal of these precancerous lesions, have been claimed to be effective in decreasing both the incidence and mortality rate of CRC [49,60,64]. In the era of mass population screening for colorectal cancer, it is being performed more frequently than ever before. Advances in patient preparation, technical components of the procedure and management of pathology will contribute to improvements in performance quality and safety.

Colonoscopy in terms of CRC screening can be divided in two groups [65,66]: Surveillance Screening Colonoscopy for high risk population: in this procedure patient is asymptomatic in present (no gastrointestinal symptoms) but they have any of the following colorectal cancer risk factors such as a personal history of colorectal cancer or adenomatous polyps, a strong family history of colorectal cancer or polyps (cancer or polyps in a first-degree relative younger than 60 or in two first-degree relatives of any age). A first-degree relative is defined as a parent, sibling, or child, a personal history of chronic IBD and family history of any hereditary nonpolyposis colon cancer. Patients in this category are required to undergo colonoscopy surveillance at shortened intervals (e.g., every 2-5 years) [67,68]. Preventive screening Colonoscopy: regular screening beginning at age 50, in this procedure patient is asymptomatic (no gastrointestinal symptoms), either in past and present and also they don’t have any personal or family history of colorectal cancer or adenomatous polyps. So, patients in this category are required to undergo colonoscopy surveillance at longer intervals (e.g., every 10 years) [69,70].

Discussion

Colonoscopy is widely used for diagnosis and treatment of colon disorders. Properly performed, colonoscopy is generally safe, accurate and well-tolerated. Visualization of the mucosa of the entire large intestine and distal terminal ileum usually is possible during colonoscopy. Colonoscopy with removal of detected polyps has been shown to reduce the incidence and mortality of subsequent CRC. Colonoscopy is the preferred diagnostic method to evaluate the colon in most adult patients with gastrointestinal symptoms, iron deficiency anemia, abnormal results on radiographic studies of the colon, unexplained changes in bowel habits, identified polyps and diagnosis and surveillance in IBD. Determine and treatment of colonic obstruction by endoscopic balloon dilation or endoscopic colonic stent, hemostasis by endoscopic endoclips and polypectomy are therapeutics procedure of colonoscopy. In addition colonoscopy is considered to be the gold standard for early detection of colon adenomas and CRC. The incidence of CRC is uncommon before age 40 but rises progressively by the age of 70. The lifetime occurrence for patients at average risk is 5%, with 90% of cases occurring after age 50. Patients with one first-degree relative experience 2-fold higher risk of CRC and patients with two or more relatives, a 4-fold increased risk independent of age at diagnosis. Therefore based on current guidelines, screening procedures should be start at age 50, every 10 years for patients without any personal or family history of CRC or neo-plastic polyps as preventive screening colonoscopy. And screening for patients with personal or family history of CRC or neo-plastic polyps should be doing every 2-5 years at any age as surveillance screening colonoscopy for high risk population.

Acknowledgment

This project was completely supported and funded by Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences.

References

1. Waye JD (2013) Difficult colonoscopy. Gastroenterol Hepatol (N Y) 9(10):676-678.
2. Rex DK, Schoenfeld PS, Cohen J, Pike IM, Adler DG, et al. (2015) Quality indicators for colonoscopy. Gastrointest Endosc 81(1): 31-53.
3. Pulkens HJ, Siersema PD (2014) Quality indicators for colonoscopy: Current insights and caveats. World J Gastrointest Endosc 6(12): 571-583.
4. Schoenfeld PS, Cohen J (2013) Quality indicators for colorectal cancer screening for colonoscopy. Tech Gastrointest Endosc 15(2): 59-68.
5. Hussain H, Lapin S, Cappell MS (2000) Clinical scoring systems for determining the prognosis of gastrointestinal bleeding. Gastroenterol Clin North Am 29(2): 445-464.
6. Zuccaro G (1998) Management of the adult patient with acute lower gastrointestinal bleeding. American College of Gastroenterology. Practice Parameters Committee. Am J Gastroenterol 93(8): 1202-1208.
7. Elsen GM, Dominitz JA, Fagel DO, Goldstein JL, Kalloo AN, et al (2001) An annotated algorithmic approach to acute lower gastrointestinal bleeding. Gastrointest Endosc 53(7): 859-863.
8. Green BT, Rockey DC, Portwood G, Tarnasky PR, Guarisco S, et al. (2005) Urgent colonoscopy for evaluation and management of acute lower gastrointestinal hemorrhage: a randomized controlled trial. Am J Gastroenterol 100(11): 2395-2402.
9. Kovacs TO, Jensen DM (2002) Recent advances in the endoscopic diagnosis and therapy of upper gastrointestinal, small intestinal, and colonic bleeding. Med Clin North Am 86(6): 1319-1356.
10. Jensen DM, Machicado GA (1997) Colonoscopy for diagnosis and treatment of severe lower gastrointestinal bleeding. Routine outcomes and cost analysis. Gastrointest Endosc Clin N Am 7(3): 477-498.
11. Dimmitt LL, Dimmitt SG, Wilson GR (2005) Diagnosis of gastrointestinal bleeding in adults. Am Fam Physician 71(7): 1339-1346.
12. Baumbach R, Fais S, Cordruwisch W, Schrader C (2016) Acute gastrointestinal bleeding. Dtsch Med Wochenschr 141(8): 561-568.
13. Angtuaco TL, Reddy SK, Dragpin S, Harrell LE, Howden CW (2001) The utility of urgent colonoscopy in the evaluation of acute lower gastrointestinal tract bleeding: a 2-year experience from a single center. Am J Gastroenterol 96(6): 1782-1785.
14. Stephens MR, Hopper AN, White SR, Jugool S, Stratford R, et al. (2006) Colonoscopy first for iron-deficiency anemia: a Numbers Needed to Investigated approach. QJM 99(6): 389-395.
15. Rockey DC, Cello JP (1993) Evaluation of the gastrointestinal tract in patients with iron-deficiency anemia. N Engl J Med 329(23): 1691-1695.
16. Zhu A, Kaneshiro M, Kaunitz JD (2010) Evaluation and treatment of
iron deficiency anemia: a gastroenterological perspective. Dig Dis Sci 55(3): 548-559.

17. Nakama H, Zhang B, Fatatkar AS, Zhang X (2008) Colorectal cancer in iron deficiency anemia with a positive result on immunohistochemical fecal occult blood. Int J Colorectal Dis 15(5-6): 271-274.

18. Gasche C, Lemer MC, Cavill I, Weiss G (2004) Iron, anaemia, and inflammatory bowel diseases. Gut 53(8): 1190-1197.

19. Sawhney MS, Lipato T, Nelson DB, Lederle FA, Rector TS, et al. (2007) Should patients with anemia and low normal or normal serum ferritin undergo colonoscopy? Am J Gastroenterol 102(1): 82-88.

20. Goddard AF, James MW, McIntyre AS, Scott BB (2011) Guidelines for the management of iron deficiency anaemia. Gut 60(10): 1309-1316.

21. Gordon SR, Smith RE, Power GC (1994) The role of endoscopy in the evaluation of iron deficiency anaemia in patients over the age of 50. Am J Gastroenterol 89(11): 1963-1967.

22. Cai J, Yuan Z, Zhang S (2015) Abdominal pain, diarrhea, constipation - which symptom is more indispensable to have a colonoscopy? Int J Clin Exp Pathol 8(1): 938-942.

23. Badani S, Desai A, Chapman MA (2012) Is whole colonic imaging necessary for symptoms of change in bowel habit and/or rectal bleeding? Colorectal Dis 14(10): 1197-1200.

24. Akhavein MA, Patel NR, Muniyappa PK, Glover SC (2012) Allergic mastocytic gastroenteritis and colitis: an unexplained etiology in chronic abdominal pain and gastrointestinal dysmotility. Gastroenterol Res Pract 2012: 950582.

25. Neugut AI, Garbowsk DC, Waye JD, Forde KA, Treat MR, et al. (1993) Diagnostic yield of colorectal neoplasia with colonoscopy for abdominal pain, change in bowel habits, and rectal bleeding. Am J Gastroenterol 88(6): 1179-1183.

26. Phillips SF (1972) Diarrhea: a current view of the pathophysiology. Gastroenterology 63(6): 495-518.

27. Devroede G (1978) Constipation: mechanisms and management. In: Sleisenger MH, et al. (Eds.), Gastrointestinal disease. (2 edn), W B Saunders, Philadelphia, USA, pp. 368-386.

28. Mackalski BA, Bernstein CN (2006) New diagnostic imaging tools for inflammatory bowel disease. Gut 55(5): 733-741.

29. Gasche C, Turetsek R (2005) Value of MR colonography for assessment of inflammatory bowel disease? Believe what you see-see what you believe. Gut 54(2): 181-182.

30. Schreyer AG, Rath HC, Kikinis R, Välik M, Schölmerich J, et al. (2005) Comparison of magnetic resonance imaging colonography with conventional colonoscopy for the assessment of intestinal inflammation in patients with inflammatory bowel disease: a feasibility study. Gut 54(2): 250-256.

31. Ullman T, Odze R, Farrar FA (2009) Diagnosis and management of dysplasia in patients with ulcerative colitis and Crohn’s disease of the colon. Inflamm Bowel Dis 15(4): 630-638.

32. Siegel CA, Schwartz LM, Wokeshin S, Cole EB, Rubin DT, et al. (2010) When should ulcerative colitis patients undergo colectomy for dysplasia? Mismatch between patient preferences and physician recommendations. Inflamm Bowel Dis 16(10): 1658-1662.

33. Tholoor S, Bhattacharya R, Tsagkournis O, Wheaton GL, Bhandari P (2014) Acetic acid chromoendoscopy in Barrett’s esophagus surveillance is superior to the standardized random biopsy protocol: results from a large cohort study (with video). Gastrointest Endosc 80(3): 417-424.

34. Fujiiwa S, Yao K, Nagahama T, Uchita K, Kanemitsu T, et al. (2015) Can we accurately diagnose minute gastric cancers (<5 mm)? Chromoendoscopy (CE) vs magnifying endoscopy with narrow band imaging (M-NBI). Gastric Cancer 18(3): 590-596.

35. Trivedi PJ, Braden B (2013) Indications, stains and techniques in chromoendoscopy. QJM 106(2): 117-131.

36. Billingsley KG, Morris AM, Dominitz JA, Matthews B, Dobie S, et al. (2007) Surgeon and hospital characteristics as predictors of major adverse outcomes following colon cancer surgery: understanding the volume-outcome relationship. Arch Surg 142(1): 23-31.

37. Ascanelli S, Navarra G, Tonini G, Reo C, Zerbinati A, et al. (2003) Early and late outcome after surgery for colorectal cancer: elective versus emergency surgery. Tumori 89(1): 36-41.

38. Kochhar R, Kochhar S (2010) Endoscopic balloon dilation for benign gastric outlet obstruction in adults. World J Gastroent Endosc 2(1): 29-35.

39. Endo K, Takahashi S, Shiga H, Kakuta Y, Kinosuchi Y, et al. (2013) Short- and long-term outcomes of endoscopic balloon dilation for Crohn’s disease strictures. World J Gastroentrol 19(1): 86-91.

40. Beck DE (2010) Endoscopic colonic stents and dilatation. Clin Colon Rectal Surg 23(1): 37-41.

41. Rodrigues C, Oliveira A, Santos L, Piñez E, Deus J (2013) Biodegradable stent for the treatment of a colonic stricture in Crohn’s disease. World J Gastroent Endosc 5(5): 265-269.

42. Ambrosetti P, Francis K, De Peyer R, Frossard JL (2008) Colorectal anastomotic stenosis after elective laparoscopic sigmoidectomy for diverticular disease: a prospective evaluation of 68 patients. Dis Colon Rectum 51(9): 1345-1349.

43. Di Giorgio R, De Luca L, Rivellini G, Sorrentino E, D’amore E, et al. (2004) Endoscopic dilation of benign colorectal anastomotic stricture after low anterior resection: A prospective comparative study of two balloon types. Gastrointest Endosc 60(3): 347-350.

44. Nomura E, Takagi S, Kikuchi T, Negoro K, Takahashi S, et al. (2006) Efficacy and safety of endoscopic balloon dilation for Crohn’s disease strictures. Dis Colon Rectum 49(10 Suppl): S55-S67.

45. Scimeca D, Moccio R, Cottone M, Montalbano LM, D’Amico G, et al. (2011) Efficacy and safety of endoscopic balloon dilation of symptomatic intestinal Crohn’s disease strictures. Dig Liver Dis 43(2): 121-125.

46. Kumar A, Artifon E, Chu A, Halwan B (2011) Effectiveness of endolipase for the treatment of stigmata of recent hemorrhage in the colon of patients with acute lower gastrointestinal tract bleeding. Dig Dis Sci 56(10): 2978-2986.

47. Mirzaei AZ, Abolhasani M, Moghadam RM, Kadivar M (2012) The Frequency of gastrointestinal polyps in Iranian population. Iranian Journal Of Pathology 7(3): 183-189.

48. Tang SJ, Rivas H, Tang L, Lara LF, Sreenarayinhaiah J, et al. (2007) Endoscopic hemostasis using endolip in early gastrointestinal hemorrhage after gastric bypass surgery. Obes Surg 17(9): 1261-1267.

49. Zauber AG, Winawer SJ, O’Brien MJ, Vogelaar IL, van Ballegooijen M, et al. (2012) Colonoscopic polypectomy and long-term prevention of
Overview of Diagnostic and Treatment Colonoscopy Function in Gastrointestinal Diseases

50. Ignjatovic A, East JE, Suzuki N, Vance M, Guenther T, et al. (2009) Optical diagnosis of small colorectal polyps at routine colonoscopy (Detect InSpect Characterise Resect and Discard; DISCARD trial): a prospective cohort study. Lancet Oncol 10(12): 1171-1178.

51. Saha M (2014) Recto-sigmoid polypectomy by a handmade snare: experience of 24 children with bleeding per rectum. Afr J Paediatr Surg 11(1): 91-92.

52. Brenner H, Claude JC, Jansen L, Seiler CM, Hoffmeister M (2013) Colorectal cancers occurring after colonoscopy with polyp detection: sites of polyps and sites of cancers. Int J Cancer 133(7): 1672-1679.

53. Orozco JR, Guru矱 SU (2010) Complex colon polypectomy. Gastroenterol Hepatol (NY) 6(6): 375-382.

54. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, et al. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5): E359-E386.

55. Jemal A, Center MM, DeSantis C, Ward EM (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 19(8): 1893-1907.

56. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global Cancer Statistics. CA Cancer J Clin 61(2): 69-90.

57. Pourhoseingholi MA (2012) Increased burden of colorectal cancer in Asia. World J Gastrointest Oncol 4(4): 68-70.

58. Decker KM, Singh H (2014) Reducing inequities in colorectal cancer screening in North America. J Carcinog 13: 12.

59. Meester RG, Doubeni CA, ZauberdAG, Goede SL, Levin TR, et al. (2015) Public health impact of achieving 80% colorectal cancer screening rates in the United States by 2018. Cancer 121(13): 2281-2285.

60. Fatehi SR, Shivarani S, Malek FN, Vahedi M, Maserat E, et al. (2010) Colonoscopy screening results in at risk Iranian population. Asian Pac J Cancer Prev 11(6): 1801-1804.

61. Shussman N, Wexner SD (2014) Colorectal polyps and polyposis syndromes. Gastroenterol Rep (Oxf) 2(1): 1-15.

62. Hartman ANB, Newcomb PA, Mandelson MT, Adams SV, Wernli KJ, et al. (2011) Colorectal polypl type and the association with charred meat consumption, smoking, and microsomal epoxide hydrolase polymorphisms. Nutr Cancer 63(4): 583-592.

63. Huang CS, Farsaye FA, Yang S, O’Brien MJ (2011) The clinical significance of serrated polyps. Am J Gastroenterol 106(2): 229-240.

64. Shergill AK, Conners EE, McQuaid KR, Epstein S, Ryan JC, et al. (2015) Protective association of colonoscopy against proximal and distal colon cancer and patterns in interval cancer. Gastrointest Endosc 82(3): 529-537.

65. Telford JJ (2011) Canadian guidelines for colorectal cancer screening. Can J Gastroenterol 25(9): 479-481.

66. Kruse GR, Khan SM, Zaslavsky AM, Ayanian JZ, Sequist TD (2015) Overuse of colonoscopy for colorectal cancer screening and surveillance. J Gen Intern Med 30(3): 273-283.

67. Geiger TM, Ricciardi R (2009) Screening options and recommendations for colorectal cancer. Clin Colon Rectal Surg 22(4): 209-217.

68. Levin B, Lieberman DA, McFarland B, Smith RA, Brooks D, et al. (2008) Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin 58(3): 130-160.

69. Wilson JA (2010) Colorectal cancer screening in the elderly: when do we stop? Trans Am Clin Climatol Assoc 121: 94-103.

70. Winawer SJ, Krabshuis J, Lambert R, O’Brien M, Fried M (2011) Cascade colorectal cancer screening guidelines: a global conceptual model J Clin Gastroenterol 45(4): 297-300.