SYMmetric Polynomials and $U_q(\widehat{sl}_2)$

NAIHUAN JING

Abstract. We study the explicit formula of Lusztig’s integral forms of the level one quantum affine algebra $U_q(\widehat{sl}_2)$ in the endomorphism ring of symmetric functions in infinitely many variables tensored with the group algebra of \mathbb{Z}. Schur functions are realized as certain orthonormal basis vectors in the vertex representation associated to the standard Heisenberg algebra. In this picture the Littlewood-Richardson rule is expressed by integral formulas, and is used to define the action of Lusztig’s $\mathbb{Z}[q,q]$-form of $U_q(\widehat{sl}_2)$ on Schur polynomials.

1. Introduction

The relation between vertex representations and the symmetric functions is one of the interesting aspects of affine Kac-Moody algebras, quantum affine algebras and the vertex operator algebra. In the early 1980’s the Kyoto school [DJKM] found that the polynomial solutions of KP hierarchies are obtained by Schur polynomials. This breakthrough was achieved in their work of describing the KP and KdV hierarchies in terms of affine Lie algebras. On the other hand I. Frenkel [F1] identified the two constructions of the affine Lie algebras via the vertex operators, which put the boson-fermion correspondence in a rigorous formulation. Later I. Frenkel further used this idea [F2] to find out that the boson-fermion correspondence can also be used to realize the Schur polynomials in the study of irreducible characters of the symmetric group S_n. Schur functions also appeared in Lepowsky and Primc construction [LP] of certain bases for higher level representations of the affine Lie algebra $\widehat{sl}(2)$.

In [J1, J2] the author advanced the vertex operator approach to the symmetric functions and realized Schur’s Q-functions, which assume the same role of Schur functions in the context of (non-trivial) irreducible characters of the double covering groups of S_n, and more generally Hall-Littlewood polynomials were treated in the same way. These families of symmetric polynomials appear naturally as orthogonal bases in the vertex representation. In [J3] I. Frenkel’s original work on S_n was reviewed together with Bernstein’s formula (see [2]). The exact formulation of Hall-Littlewood polynomials in terms of the boson-fermion correspondence appeared later in the author’s work [J4]. Since Macdonald’s seminal extension [M] of Hall-Littlewood polynomials it immediately brought up the question of the vertex operator approach to the more general Macdonald polynomials.
In [14] we also found that the vertex operator realization of certain Macdonald polynomials is governed by the basic hypergeometric functions of type \(\phi_{4,3} \). It was realized [3] that the complete vertex operator realization of Macdonald polynomials is related to several new questions, among them the most interesting question was how one could realize the Macdonald polynomials in the vertex representations [3FJ] of the quantum affine algebra \(U_q(\hat{sl}_2) \). In this case the underlying symmetry of the analogous family of symmetric functions are expressed by certain infinite dimensional quadratic algebras generalizing the Clifford-Weyl algebra.

Recently J. Beck, I. Frenkel and the author [BFJ] have used vertex operators to study the canonical bases for the level one irreducible modules for the quantum affine algebra \(U_q(\hat{sl}_2) \). Macdonald polynomials (zonal case) are seen as some "canonical" bases sitting between Kashiwara and Lusztig’s canonical and dual canonical bases [4, 3]. This essentially answered the question about the vertex realization of Macdonald polynomials. The Macdonald basis constructed in [3FJ] also satisfy the characteristic properties of bar invariance and orthogonality under the Kashiwara form. The transition matrix from the canonical basis to Macdonald basis is triangular, integral and bar-invariant. We also conjectured its positivity. Since the transition matrix from Macdonald polynomials to (modified) Schur polynomials is also triangular, it is natural to ask how does the quantum affine algebra act on Schur polynomials.

Our first goal in this paper is to answer the question of realizing the quantum affine algebra \(U_q(\hat{sl}_2) \) by Schur functions. We give explicit formulas to realize the level one representation with the help of Littlewood-Richardson rule. In order to do this we first redevelop the vertex approach to Schur functions. Mixed products of vertex operators and dual vertex operators are expressed in terms of Schur functions. We showed that the underlying symmetry of the Young tableaus of the various classical symmetric functions are governed by certain Clifford-Weyl type algebras, where the simplest case of \(S_n \)-symmetry or the linkage symmetry corresponds to the infinite dimensional Clifford algebra.

Using this the quantum affine algebra \(U_q(\hat{sl}_2) \) is represented as \(\mathbb{Z}[q, q^{-1}] \)-linear operators on the ring of symmetric functions. Moreover, the lattice of the irreducible module \(V(\Lambda_i) \) \((i = 0, 1) \):

\[
\mathcal{L}(\Lambda_i) = \Lambda(x_1, \cdots, x_n, \cdots) \otimes \mathbb{C}[\mathbb{Z} \alpha] e^{i \alpha/2}
\]

is shown to be an integral lattice for Lusztig’s \(\mathbb{Z}[q, q^{-1}] \)-form of \(U_q(\hat{sl}_2) \) (generated by divided powers). On the other hand Beck, Chari and Pressley [BCP] have shown that a related lattice \(\mathcal{L}(\Lambda_i)^\prime = \Lambda(x_1', \cdots, x_n', \cdots) \otimes \mathbb{C}[\mathbb{Z} \alpha] e^{i \alpha/2} \) is contained in \(V(\Lambda_i)_{\mathbb{Z}[q, q^{-1}]} \), where \(\sum_i x_i^{m} = (1 - q^{in}) \sum x_i^m \). The explicit realization of the Lusztig’s integral lattice \(V(\Lambda_i)_{\mathbb{Z}[q, q^{-1}]} \) will be treated elsewhere.

We further write down the action of divided powers of current operators in terms of Littlewood-Richardson rule. Our method stems from the trick [13] of expressing Schur functions in terms of a deformed Heisenberg algebra inside \(U_q(\hat{sl}_2) \). Thus we are able to write down everything explicitly using the vertex representation, which partly generalizes Garland’s work [3] (see also [CP]). The method in this paper can also be generalized to quantum affine algebras of ADE types, and this may provide more information about Schur functions as crystal bases [BCP]. Similarly our formulas might help to understand the positivity conjecture [BFJ].
Our second goal is to give a vertex operator approach to the Littlewood-Richardson rule. In particular an integral formula for the Littlewood-Richardson rule is found. In the fermionic picture of the crystal basis of quantum affine algebras Misra and Miwa [MM] used some insertion and deletion procedure on Young tableaux to describe the action of quantum affine algebra at \(q = 0 \). The explicit rule in the fermionic construction [H] suggests that there should be a corresponding rule in the homogeneous construction. This turns out to be an explicit formula in terms of the Littlewood-Richardson rule in our work (see Proposition 2.2 and Theorem 3.2).

Our explicit formulas of the divided powers of Chevalley generators suggest that there should be corresponding formulas in the fermionic picture. The answer to this question will be helpful to understand the real meaning of Littlewood-Richardson rule in the boson-fermion correspondence.

The paper is organized as follows. In section 2 we redevelop our vertex operator approach to Schur polynomials and express all mixed products of dual vertex operators in terms of Schur functions \((q = 1 \text{ case})\). In section 3 we first recall the Frenkel-Jing vertex representation of \(U_q(\hat{\mathfrak{sl}_2}) \) and obtain explicit formulas for the Drinfeld generators in terms of the Schur basis constructed in Section 2. We then enter the Littlewood-Richardson rule to give the formulas for the divided powers of the current operators \(X_n^\pm \). In the last section (Sec. 4) we recast the action in terms of the Chevalley generators, which provides a simple combinatorial model for the homogeneous picture of the basic module for \(U_q(\hat{\mathfrak{sl}_2}) \). We show that the lattice of Schur bases contains Lusztig’s integral lattice of divided powers.

Acknowledgments. The author wishes to thank I. Frenkel for helpful discussions. He also thanks M.L. Ge for the warm hospitality in the summers of 1994 and 1997 at Nankai Institute of Mathematics, where the author had the privilege to stay in the S.S. Chern Villa (Home of Geometer) to work out the main computations. The author is also grateful to the Mathematical Sciences Research Institute for providing a lovely environment in the final stage of this work.

2. Schur functions and vertex operators

Let \(\Lambda_F \) be the ring of symmetric functions in infinitely many variables \(x_1, x_2, \ldots \) over the field \(F \). In this section we take \(F = \mathbb{Q} \), and later we will take \(F = \mathbb{Q}(q^{1/2}, q^{-1/2}) \).

A partition \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_l) \) of \(n \), denoted \(\lambda \vdash n \), is a special decomposition of \(n \): \(n = \lambda_1 + \cdots + \lambda_l \) with \(\lambda_1 \geq \cdots \geq \lambda_l \geq 1 \). \(l \) is called the length of \(\lambda \). We will identity \((\lambda_1, \cdots, \lambda_l) \) with \((\lambda_1, \cdots, \lambda_l, 0, \cdots, 0) \) if we want to view \(\lambda \) in \(\mathbb{Z}^n \) when \(n \geq l(\lambda) \). Sometime we prefer to use another notation for \(\lambda \): \((1^{m_1}, 2^{m_2}, \cdots) \) where \(m_i \) is the number of times that \(i \) appears among the parts of \(\lambda \). The set of partitions will be denoted by \(\mathcal{P} \).

There are several well-known bases in \(\Lambda_F \) parameterized by partitions: the power sum symmetric functions \(p_\lambda = p_{\lambda_1} \cdots p_{\lambda_l} \) with \(p_n = \sum x_n^i \) \((\mathbb{Q}\text{-basis})\), the monomial symmetric functions \(m_\lambda(x_1, \cdots, x_n) = \sum_{\sigma} x_{\sigma(\lambda_1)} \cdots x_{\sigma(\lambda_n)} \), where \(\sigma \) runs through distinct permutations of \(\lambda \) as tuples; and the Schur functions \(s_\lambda \) which are over \(\mathbb{Z} \). In terms of finitely many variables Schur function is given by the Weyl character formula:

\[
(2.1) \quad s_\lambda(x_1, \cdots, x_n) = \frac{\sum_{\sigma \in \Sigma_n} \text{sgn}(\sigma)x^{\sigma(\lambda+\delta)}}{\prod_{i<j}(x_i - x_j)},
\]
where $\delta = (n-1, n-2, \cdots, 1, 0)$, $\lambda = (\lambda_1, \cdots, \lambda_n)$. Here some λ_i may be zero.

Note that this formula also works for any tuple μ. In general $s_\mu = 0$ or $(-1)^{|l(\sigma)|} s_\lambda$, where $\lambda = \sigma(\mu + \delta) - \delta$ for some permutation σ and $l(\sigma)$ is the length of the permutation σ. This important property is still true for the Schur function in infinitely many variables, though there is a less satisfactory formula in algebraic combinatorics in that case. We will see that this symmetry property is manifested in our vertex operator approach.

Let’s recall the vertex operator approach to Schur functions $[1]$. Let

$$
\{b_n | n \neq 0\} \bigcup \{c\} \text{ be the set of generators of the Heisenberg algebra with defining relations }
$$

$$(2.2) \quad [b_m, b_n] = m\delta_{m,-n} c, \quad [c, b_n] = 0.
$$

The Heisenberg algebra has a canonical natural representation in the \mathbb{Q}-space $V = S\text{ym}(b_{-n})$, the symmetric algebra generated by the b_{-n}, $n \in \mathbb{N}$. The action is given by

$$
(2.3) \quad b_{-n}.v = b_{-n}v, \quad b_n.v = n \frac{\partial v}{\partial b_{-n}},
$$

$$
(2.4) \quad c.v = v.
$$

It is clear that 1 is the highest weight vector in V.

Let us introduce two vertex operators (cf. $t = 0$ in $[2]$):

$$
(2.5) \quad S(z) = \exp\left(\sum_{n=1}^{\infty} \frac{b_{-n}}{n} z^n\right) \exp\left(-\sum_{n=1}^{\infty} \frac{b_n}{n} z^{-n}\right)
$$

$$
= \sum_{n \in \mathbb{Z}} S_n z^{-n},
$$

$$
(2.6) \quad S^*(z) = \exp\left(-\sum_{n=1}^{\infty} \frac{b_{-n}}{n} z^n\right) \exp\left(\sum_{n=1}^{\infty} \frac{b_n}{n} z^n\right)
$$

$$
= \sum_{n \in \mathbb{Z}} S^*_n z^n.
$$

It follows that for $n \geq 0$

$$
S_n.1 = \delta_{n,0}, \quad S^*_n.1 = \delta_{n,0}.
$$

There is a natural hermitian inner product on V given by

$$
(2.7) \quad b_n^* = b_{-n}.
$$

The elements $b_{-\lambda} = b_{-\lambda_1} \cdots b_{-\lambda_l}(\lambda \vdash n)$ span an orthogonal basis in V and

$$
(2.8) \quad (b_{-\lambda}, b_{-\mu}) = \delta_{m,n} z_\lambda.
$$

where $z_\lambda = \prod_{i \geq 1} m_i!$ for $\lambda = (1^{m_1}, 2^{m_2}, \cdots)$.

The vertex space V is isomorphic to the ring $\Lambda_\mathbb{Q}$ under the characteristic map:

$$
b_{-\lambda} = b_{-\lambda_1} \cdots b_{-\lambda_l} \rightarrow p_\lambda.
$$

The characteristic map turns out to be also isometric (see $[1]$).

Definition 2.1. The polynomial $s_n = S_{-n}.1$ is called the nth complete homogeneous symmetric polynomial in the b_{-n}.

Lemma 2.3. The components of \(S(z) \) and \(S^*(z) \) satisfy the following commutation relations.

\[
S_m S_n + S_{n-1} S_{m+1} = 0, \quad S_m S_n^* + S_{n+1} S_{m-1} = 0,
\]

\[
S_m S_n^* + S_{n-1} S_{m-1} = \delta_{m,n}.
\]

Two \(l \)-tuple \(\mu \) and \(\lambda \) are related if there is a permutation \(\sigma \) such that \(\mu + \delta = \sigma(\lambda + \delta) \). If \(\mu_i = \mu_{i+1} - 1 \), then \(\mu + \delta = \sigma(\mu + \delta) \) for \(\sigma = (i, i + 1) \). If there exists an old permutation \(\sigma \) such that \(\mu + \delta = \sigma(\mu + \delta) \) then we say that \(\mu \) is degenerate. For any non-degenerate \(l \)-tuple \(\mu = (\mu_1, \ldots, \mu_l) \) in the general position such that no two parts \(\mu_i, \mu_j (i < j) \) satisfying \(\mu_i = \mu_j - (j - i) \) then there exists uniquely a partition \(\lambda \) such that \(\mu + \delta = \sigma(\lambda + \delta) \). We remark that the degeneracy condition corresponds to whether a weight belongs to some wall of the Weyl chambers for \(\mathfrak{g}_l \). In the latter context the symmetry is called the linkage symmetry. For simplicity we let \(\text{sgn}(\mu) = 0 \) if the \(l \)-tuple \(\mu \) is degenerate.

Theorem 2.4. Under the mapping \(b_{-n} \to p_n \), the space \(V \) is isometrically isomorphic to \(\Lambda_Q \). The set \(\{ h_{-\lambda} = s_{\lambda_1}s_{\lambda_2}\cdots s_{\lambda_k} : \lambda \vdash n, n \in \mathbb{Z}_+ \} \) and \(\{ S_{-\lambda_1} S_{-\lambda_2} \cdots S_{-\lambda_k} : \lambda \vdash n, n \in \mathbb{Z}_+ \} \) both form \(\mathbb{C} \)-linear bases. Moreover the basis \(\{ S_{-\lambda_1} S_{-\lambda_2} \cdots S_{-\lambda_k} : \lambda \vdash n, n \in \mathbb{Z}_+ \} \) is orthonormal and expressed explicitly by:

\[
S_{-\lambda,1} := S_{-\lambda_1} S_{-\lambda_2} \cdots S_{-\lambda_k}, 1 = \text{det}(s_{\lambda_1-i+1}) = s_{\lambda},
\]

where \(s_{\lambda} \) is the Schur function in the \(b_{-n} \) under the isomorphism between \(\Lambda_Q \) and \(V \).

Proof. To show the \(\mathfrak{g}_n \)-symmetry we consider the modified vertex operators associated with the root lattice \(\mathbb{Z} \alpha \) with \((\alpha | \alpha) = 1 \). Let \(\tilde{V} = V \otimes \mathbb{C}[\mathbb{Z} \alpha] \), where \(\mathbb{C}[\mathbb{Z} \alpha] \) is the group algebra generated by \(e^{m \alpha}, m \in \mathbb{Z} \). Define

\[
\mathfrak{S}(z) = S(z) e^{\alpha} z^{\beta} = \sum_{n \in \mathbb{Z} + 1/2} \mathfrak{S}_n z^{n-1/2},
\]

\[
\mathfrak{S}^*(z) = S^*(z) e^{-\alpha} z^{-\beta} = \sum_{n \in \mathbb{Z} + 1/2} \mathfrak{S}_n^* z^{n-1/2},
\]

where the operators \(e^{\alpha} \) and \(z^{\beta} \) act on \(\mathbb{C}[\mathbb{Z} \alpha] \) as follows:

\[
e^{\alpha} e^{m \alpha} = e^{(m+1) \alpha}, \quad z^{\beta} e^{m \alpha} = z^{m} e^{m \alpha}.
\]

The components satisfy the Clifford algebra relations

\[
\{ \mathfrak{S}_m, \mathfrak{S}_n \} = \{ \mathfrak{S}_m^*, \mathfrak{S}_n^* \} = 0,
\]

\[
\{ \mathfrak{S}_m, \mathfrak{S}_n \} = \delta_{m,n},
\]

where \(m, n \in \mathbb{Z} + 1/2 \).
For any degenerate l-tuple $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_l)$ satisfying $\lambda_i = \lambda_j - j + i$ for some i and j we have
\[
S_{-\lambda_1} \cdots S_{-\lambda_l}.1 = \sum_{\alpha} S_{-\lambda_1+i/2} \cdots S_{-\lambda_l+i/2} e^{-i\alpha} = S_{-\lambda+i(m-1/2)} = 0
\]
due to $\lambda + \delta = (i, j)(\lambda + \delta)$ and (2.13 (2.14)). Here 1 denotes the integer vector $(1, 1, \cdots, 1)$, and similarly $m1 = (m, m, \cdots, m)$. In general for any non-degenerate l-tuple we have
\[
(2.15) \quad S_{-\mu_1} \cdots S_{-\mu_l}.1 = sgn(\mu)S_{-\lambda_1} \cdots S_{-\lambda_l}.1
\]
where λ is the partition related to μ: $\lambda = \sigma(\mu + \delta) - \delta$, and the sign $\text{sgn}(\mu) = (-1)^{t(\sigma)}$. See [1] for details.

The following result will be useful in our discussion.

Proposition 2.1. Let $\delta = (n-1, n-2, \cdots, 1, 0)$. The operator products $S(z_1)S(z_2)S(z_\mu)z^\delta$ and $S^*(z_1)S(z_2)S^*(z_\mu)z^\delta$ are skew-symmetric under the action of \mathfrak{S}_n. For any $w \in \mathfrak{S}_n$ we have
\[
S(z_{w(1)})S(z_{w(2)}) \cdots S(z_{w(n)})z^{w(\delta)} = (-1)^{t(w)} S(z_1)S(z_2) \cdots S(z_\mu)z^\delta
\]
and
\[
S^*(z_{w(1)})S^*(z_{w(2)}) \cdots S^*(z_{w(n)})z^{w(\delta)} = (-1)^{-t(w)} S^*(z_1)S^*(z_2) \cdots S^*(z_\mu)z^\delta
\]

Definition 2.5. For an l-tuple μ we define the Schur function s_μ to be the symmetric function corresponding to $S_{-\mu_1} \cdots S_{-\mu_l}.1$ under the characteristic map. We will simply write
\[
s_\mu = S_{-\mu}.1 = S_{-\mu_1} \cdots S_{-\mu_l}.1.
\]

The following fact follows easily from Theorem 2.4.
\[
(2.16) \quad s_\mu = \begin{cases}
0 & \mu \text{ is degenerate} \\
\text{sgn}(\sigma)s_\lambda & \lambda = \sigma(\mu + \delta) - \delta, \lambda \in \mathcal{P}
\end{cases}
\]

For convenience we denote the partition λ associated to the tuple μ by $\lambda = \pi(\mu)$.

We remark that the characteristic map can be defined over \mathbb{Z} if we do it on the basis of homogeneous polynomials or Schur polynomials. Correspondingly we have similar results for the dual vertex operators $S^*(z)$. Here the vector $S^*_n.1$ corresponds to the elementary symmetric function $(-1)^n e_n = (-1)^n s_n$.

For a partition $\lambda = (\lambda_1, \cdots, \lambda_l)$ we denote by $\lambda' = (\lambda'_1, \cdots, \lambda'_k)$ the dual partition, where $\lambda'_i = \text{Card}\{j : \lambda_j \geq i\}$. We also denote by (λ, μ) the juxtaposition of two partitions or tuples. Note that (λ, μ) is generally not a partition.

Theorem 2.6. The set $\{S_{\lambda_1}^* \cdots S_{\lambda_l}^*.1 \mid \lambda + n, n \in \mathbb{Z}_+\}$ also forms an orthonormal basis.
\[
(2.17) \quad S_{\lambda_1}^*S_{\lambda_2}^* \cdots S_{\lambda_l}^*.1 = (\lambda_1)!(\lambda_2)!(\lambda_l)! \text{det}(s_{\lambda'_i-i+j}),
\]
where $|\lambda| = \lambda_1 + \lambda_2 + \cdots + \lambda_l$. Moreover we have
\[
S_{-\mu_1} \cdots S_{-\mu_l}S_{\nu_1} \cdots S_{\nu_k}.1 = (-1)^{t(\mu)} sgn(\lambda, \mu)s_{\pi(\mu, \nu)},
\]
\[
S_{\mu_1}^* \cdots S_{\mu_k}^*S_{-\nu_1} \cdots S_{-\nu_l}.1 = (-1)^{t(\mu)} sgn(\mu, \nu)s_{\pi(\mu, \nu)},
\]
where (μ, ν) is the juxtaposition of μ and ν, and the associated partition $\pi(\mu, \nu)$ is obtained by $\pi(\mu, \nu) = \sigma((\mu, \nu) + \delta) - \delta$ for some $\sigma \in \mathfrak{S}_{1+k}$.
As a consequence of Theorem 2.6 it follows that \(S^{-\lambda,1} = (-1)^{|\lambda|} S^{-\lambda,1}\). In summary we have the following symmetry property on the parts.

\[
(2.18) \quad s_{\mu^*} = \begin{cases}
0 & \text{if } \mu \text{ is degenerate} \\
sgn(\sigma)s_{\pi(\mu)} & \pi(\mu) = \sigma(\mu + \delta) - \delta, \pi(\mu) \in P.
\end{cases}
\]

Remark 2.8. Note that we apply the action of \(\mathfrak{S}_n\) first on the \(n\)-tuples and then follow by the duality.

Example 2.7.

\[
S^{-1}S_2^2S_2^2.1 = S^{-1}S_2S_{-2}.1 = 0,
\]

\[
S^{-1}S_2^4S_4^1S_1^1 = -S^{-1}S_4S_{-1}.1 = S_3S_{-2}S_{-1}.1 = s_{(3,2,1)},
\]

where \((1, 4, 1) + \delta = (3, 5, 1) \sim (5, 3, 1) = (3, 2, 1) + \delta\).

To close this section we derive the Littlewood-Richardson rule in our picture, which will be used later to realize the action of \(U_q(\hat{\mathfrak{sl}_2})\) on \(\Lambda_{[q,q^{-1}]}\).

Proposition 2.2. Let \(\lambda\) and \(\mu\) be two partitions of lengths \(m\) and \(n\) respectively. Then \(s_\lambda s_\mu = \sum C_{MN} s_{(\lambda + M, \mu - N)}\) where \(C_{MN}\) is the number of integral matrices \((k_{ij})\) such that

\[
(k_{11} + k_{12} + \cdots + k_{1n}, \ldots, k_{m1} + \cdots + k_{mn}) = M,
\]

\[
(k_{11} + k_{21} + \cdots + k_{m1}, \ldots, k_{1n} + k_{2n} + \cdots + k_{mn}) = N.
\]

In particular the Schur functions form a \(\mathbb{Z}\)-basis in \(\Lambda\).

Proof. It follows from definition that

\[
s_{\lambda}s_{\mu} = \int S(z_1) \cdots S(z_m).1S(w_1) \cdots S(w_n).1z^{\lambda}w^{\mu}dz dw.
\]

Observe that

\[
S(z_1) \cdots S(z_m).1S(w_1) \cdots S(w_n).1 = \prod_{i,j}(1 - \frac{w_j}{z_i})^{-1}S(z_1) \cdots S(z_m)S(w_1) \cdots S(w_n).
\]

As an infinite series in \(|w_j| < |z_i|\) we have

\[
\prod_{i,j}(1 - \frac{w_j}{z_i})^{-1} = \prod_{i,j}(1 + \frac{w_j}{z_i} + \frac{(w_j)^2}{z_i^2} + \cdots) = \prod_{i,j}(\sum_{k_i} w_j^{k_i} z_i^{-k_i}) = \prod_{k \geq (k_{ij})} w_1^{k_1} \cdots w_n^{k_n} z_1^{-k_i} \cdots z_m^{-k_m},
\]

with \(k_{ij} = k_{i1} + \cdots + k_{im}, k_i = k_{i1} + \cdots + k_{in}, k_{ij} \geq 0\).

Plugging the expansion into the integral and invoking Theorem 2.4. We prove the proposition. \(\square\)

Remark 2.8. The number \(C_{MN}\) is equal to the index of \(\mathfrak{S}_3 \pi \mathfrak{S}_\mu\) in \(\mathfrak{S}_n\) [JK]. We can also write:

\[
s_{\lambda}s_{\mu} = \prod_{i,j}(1 - R_{ij})^{-1} s_{(\lambda, \mu)},
\]
where R_{ij} is the raising operator defined on the parts of the Schur functions: $R_{ij} s(\cdots, \lambda_1, \cdots, \lambda_j, \cdots) = \delta_{ij} s(\cdots, \lambda_1+1, \cdots, \lambda_j-1, \cdots)$.

3. Quantum affine algebra $U_q(\hat{sl}_2)$.

For $n \in \mathbb{Z}_+$ we define $[n] = \frac{q^n - q^{-n}}{q - q^{-1}}$. The q-factorial $[n]!$ denotes $[n][n-1] \cdots [2][1]$ and then the q-Gaussian numbers are defined naturally by $\left[\frac{n}{m}\right] = \frac{[n]!}{[m]! [n-m]!}$ for $n \geq m \geq 0$. By convention $[0] = [1] = 1$. For an element a in an algebra over $\mathbb{Z}[q, q^{-1}]$ we use $a^{(n)}$ to denote the divided power $\frac{a^n}{n!}$.

The quantum affine algebra $U_q(\hat{sl}_2)$ is the associative algebra generated by Chevalley generators e_i, f_i, K_i $(i = 0, 1)$ and q^d subject to the following defining relations.

$$
K_i K_i^{-1} = K_i^{-1} K_i = 1, \quad q^d q^{-d} = q^{-d} q^d = 1,
$$
$$
K_i K_j = K_j K_i, \quad q^d K_i^{\pm 1} = K_i^{\pm 1} q^d,
$$
$$
K_i e_j K_i^{-1} = q^{a_{ij}} e_j, \quad K_i f_j K_i^{-1} = q^{-a_{ij}} f_j,
$$
$$
q^d e_i q^{-d} = q^{d,0} e_i, \quad q^d f_i q^{-d} = q^{-d,0} f_i,
$$
$$
[e_i, f_j] = \delta_{ij} \frac{K_i - K_i^{-1}}{q - q^{-1}},
$$
$$
\sum_{r=0}^{1-a_{ij}} (-1)^r e_i^{(r)} e_j^{(1-a_{ij}-r)} = 0 \quad \text{if } i \neq j,
$$
$$
\sum_{r=0}^{1-a_{ij}} (-1)^r f_i^{(r)} f_j^{(1-a_{ij}-r)} = 0 \quad \text{if } i \neq j.
$$

where $(a_{ij}) = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$ is the extended Cartan matrix $[K_{ij}]$. The central element $K_0 K_1 = q^c$ acts as an integral power of q on an integrable module of $U_q(\hat{sl}_2)$.

We will be interested in level one ($c = 1$) irreducible representations, which had been realized by vertex operators in [FJ]. For our purpose we will recall the vertex representations in a rescaled form.

Let $\{a_n | n \neq 0\} \cup \{c\}$ be the generators the Heisenberg algebra $U_q(\hat{sl}_2)$ with the defining relation.

\begin{equation}
(a_m, a_n) = \delta_{m,-n} \frac{m}{1 + q^{2m} |c|}.
\end{equation}

Following Frenkel-Jing [FJ] the level one irreducible representation $V(\Lambda_i)$ is realized on the vertex representation space $\text{Sym}(a_{-n}'s) \otimes \mathbb{C}[\mathbb{Z} \alpha] e^{i \alpha/2}$ for $i = 0, 1$ at $c = 1$. Here $\text{Sym}(a_{-n}'s)$ denotes the symmetric algebra generated by the Heisenberg generators a_{-n}'s. The element $e^{i \alpha/2}$ (the highest weight vector) will be formally adjoined to $\mathbb{C}[\mathbb{Z} \alpha]$.

We define two kinds of operators on the vector space $\mathbb{C}[\mathbb{Z} \alpha] e^{i \alpha/2} = \{ e^{m \alpha} e^{i \alpha/2} | m \in \mathbb{Z} \}$:

\begin{equation}
e^{m \alpha} e^{m \alpha} e^{i \alpha/2} = e^{(m+n) \alpha} e^{i \alpha/2}, \quad n \in \mathbb{Z},
\end{equation}

\begin{equation}
\partial_e e^{m \alpha} e^{i \alpha/2} = (2m + i) e^{m \alpha} e^{i \alpha/2}.
\end{equation}
In particular $\mathbb{C}[\mathbb{Z}_o]e^{i\alpha/2}$ is a $\mathbb{C}[\mathbb{Z}_o]$-module.

We define the vertex operators associated to $U_q(\hat{\mathfrak{sl}_2})$ by:

$$X^+(z) = \exp\left(\sum_{n=1}^{\infty} \frac{(1 + q^{2n})q^{-n}}{n} a_n z^n \right) \exp(-\sum_{n=1}^{\infty} \frac{(1 + q^{2n})q^{-n}}{n} a_n z^{-n}) e^{-\alpha} z^\partial$$

$$X^- (z) = \exp(-\sum_{n=1}^{\infty} \frac{1 + q^{2n}}{n} a_n z^n) \exp(\sum_{n=1}^{\infty} \frac{1 + q^{2n}}{n} a_n z^{-n}) e^{-\alpha} z^{-\partial}$$

The normal order of vertex operator products is defined by rearranging the exponential factors. For example,

$$X^+(z) X^+(w) = \exp\left(\sum_{n=1}^{\infty} \frac{(1 + q^{2n})q^{-n}}{n} a_n (z^n + w^n) \right) \exp(-\sum_{n=1}^{\infty} \frac{(1 + q^{2n})q^{-n}}{n} a_n (z^{-n} + w^{-n})) e^{2\alpha} z^\partial w^\partial.$$

The components of the Drinfeld generators satisfy some quadratic relations (Serre relations).

Lemma 3.1. The components of $X^\pm(z)$ satisfy the following commutation relations.

$$X_m^+ X_n^+ - q^{\pm 1} X_n^+ X_m^+ = q^{\pm 2} X_{m+1}^+ X_{m-1}^+ - X_{m+1}^+ X_{m-1}^+, X_n^+ X_n^- = \frac{1}{q - q^{-1}} \left(\psi_{m+n} q^{(m-n)/2} - \phi_{m+n} q^{-(m-n)/2} \right),$$

where the polynomials ψ_n and ϕ_n are defined by

$$\Psi(z) = \sum_{n \geq 0} \psi_n z^{-n} = \exp\left(\sum_{n \in \mathbb{N}} \frac{(q^{2n} - q^{-2n})q^{n/2}}{n} a_n z^{-n}\right) q^{\partial},$$

$$\Phi(z) = \sum_{n \geq 0} \phi_n z^n = \exp\left(\sum_{n \in \mathbb{N}} \frac{(q^{-2n} - q^{2n})q^{n/2}}{n} a_n z^n\right) q^{-\partial}$$

With the action of X_m^\pm the Chevalley generators are expressed by

$$e_1 \rightarrow X_0^+, \quad f_1 \rightarrow X_0^-, \quad K_1 \rightarrow q^\partial,$$

$$e_0 \rightarrow X_1^{-\partial}, f_0 \rightarrow q^\partial X_{-1}, K_0 \rightarrow q^{1-\partial}$$

The vertex space is endowed with the standard inner product via

$$a_n^* = a_{-n}, \quad (e^\alpha)^* = e^{-\alpha}, \quad (z^\partial)^* = z^{-\partial}.$$

It follows from the commutation relations (3.1) that

$$\langle a_\lambda e^{\alpha} e^{i\lambda/2}, a_\mu e^{\alpha} e^{i\lambda/2} \rangle = \delta_{mn}\delta_{\lambda\mu} z^\lambda \prod_{j=1} \frac{1}{1 + q^{2\lambda_j}}$$
where z_{λ} as in section 3.

By Section 3 there are two special bases in $V(\Phi)$: the power sum basis
\(a_{-\lambda} e^{m\alpha} e^{i\alpha/2}\) and the Schur basis \(s_{\lambda} e^{m\alpha} e^{i\alpha/2}\). However the Schur basis is no longer orthogonal with respect to the inner product (3.8).

Let
\(b_{-n} = a_{-n}, b_n = (1 + q^{2n})a_n, \ n \in \mathbb{N}\), then \(\{b_{-n}\}\) generate a standard Heisenberg algebra as in Section 3. In terms of the new Heisenberg generators we have

\[
S(z) = \exp(\sum_{n=1}^{\infty} \frac{1}{n} a_{-n} z^n) \exp(-\sum_{n=1}^{\infty} \frac{1+q^{2n}}{n} a_n z^{-n}) = \sum_{n \in \mathbb{Z}} S_n z^{-n},
\]

\[
S^* (z) = \exp(-\sum_{n=1}^{\infty} \frac{1}{n} a_{-n} z^n) \exp(\sum_{n=1}^{\infty} \frac{1+q^{2n}}{n} a_n z^{-n}) = \sum_{n \in \mathbb{Z}} S^*_n z^n,
\]

which generate the Schur function basis. For a partition λ and $m \in \mathbb{Z}$ we define the Schur symmetric polynomial in $V_\mathbf{i}$ (cf. Theorem 3.4):

\[
s_{\lambda} e^{m\alpha} e^{i\alpha/2} := S_{-\lambda} e^{m\alpha} e^{i\alpha/2} = S_{-\lambda_1} \cdots S_{-\lambda_i} e^{m\alpha} e^{i\alpha/2}.
\]

The element s_{λ} is a polynomial over \mathbb{Q} in terms of the power sum a_{μ}, where $|\mu| = |\lambda|$. Note that $S(z)$ acts trivially on the lattice vector $e^{m\alpha} e^{i\alpha/2}$.

We need to recall some further terminology about partitions. Let λ and μ be two partitions we write $\lambda \supset \mu$ if the Young diagram of λ contains that of μ. The set difference $\lambda - \mu$ is called a skew diagram. The conjugate of a skew diagram $\theta = \lambda - \mu$ is $\theta' = \lambda' - \mu'$ and we define

\[
|\theta| = \sum \theta_j = |\lambda| - |\mu|.
\]

A skew diagram θ is a horizontal n-strip (resp. a vertical n-strip) if $|\theta| = n$ and $\theta'_j \leq 1$ (resp. $\theta_j \leq 1$) for each j. Thus a horizontal (resp. vertical) strip has at most one column (resp. rows) in its diagram. We will also denote by (λ, μ) the juxtaposition of λ and μ. As before $\pi(\lambda, \mu)$ is the partition associated to (λ, μ) by performing the linkage symmetry.

For a partition μ and an integer m we let $V_n = V_n(\mu) = \{v \in V_\mathbf{i} : \pi(v) = (m, \mu')\}$ be the set of the partitions of λ such that the skew diagram $\lambda - (m, \mu')$ is a vertical n-strip. We also let $\mathcal{H}_n = \mathcal{H}_n(m, \mu)$ be the set of partitions λ such that the skew diagram $\lambda - (m, \mu)$ is a horizontal n-strip. Note that V_n may be described as the set of partitions λ such that the skew diagram $\lambda - (1^m, \mu)$ is a vertical n-strip. The following is called the Pieri rule [4]:

\[
s_n S_{-m} S_{-\mu} = \sum_{\lambda \in \mathcal{H}_n(m, \mu)} \text{sgn}(m, \mu) s_{\lambda},
\]

\[
s_{1^n} S_{-m} S_{-\mu} = \sum_{\lambda \in V_n(m, \mu)} (-1)^n \text{sgn}(m, \mu')' s_{\lambda}.
\]

We will also frequently use $\lambda - \mu$ to denote the difference of two integral vectors in \mathbb{Z}^n.
Theorem 3.2. The quantum affine algebra $U_q(\widehat{sl}_2)$ is realized on the Fock space $\Lambda \otimes \mathbb{C}[Z\alpha]e^{i\alpha/2}$ of symmetric functions by the following action:

$$X_n^+ s_\mu e^{m \alpha} e^{i \alpha/2} = \sum_{j=0}^{l(\mu) - 2m - n - 1 - i} q^{-2m - n - 1 - i - 2j} \text{sgn}(-2m - n - 1 - i - j, \mu) \sum_{\lambda \in \mathcal{H}_j} s_\lambda e^{(m+1)\alpha} e^{i \alpha/2}.$$

where $\mathcal{H}_j = \mathcal{H}_j(-2m - n - 1 - i - j, \mu)$, the sign refers to $\text{sgn}(-2m - n - 1 - i - j, \mu) = (-1)^{(\ell(\sigma))}$ such that $(-2m - n - 1 - i - j, \mu) + \delta = \sigma(\lambda + \delta)$ and λ is the partition of length at most $l(\mu) + 1$. Also we have

$$X_n^- s_\mu e^{m \alpha} e^{i \alpha/2} = (-1)^{n+1} \sum_{j=0}^{\mu_1 + 2m - n - 1 + i} q^{2j} \text{sgn}(2m - n - 1 - j + i, \mu') \sum_{\lambda \in \mathcal{V}_j} s_\lambda e^{(m-1)\alpha} e^{i \alpha/2}$$

where $\mathcal{V}_j = \mathcal{V}_j(2m - n - 1 - j + i, \mu')$, the sign refers to $\text{sgn}(2m - n - 1 - i - j, \mu) = (-1)^{(\ell(\sigma))}$ such that $(2m - n - 1 - j + i, \mu) + \delta = \sigma(\lambda + \delta)$ and λ is the partition of length at most $l(\mu) + 2m - n - 1 - j + i$.

Proof. This follows from our vertex operator calculus of symmetric functions [11, 12].

$$X^+(z)S(w_1) \cdots S(w_l) e^{m \alpha} e^{i \alpha/2} =: X^+(z)S(w_1) \cdots S(w_l) : z^{2m+i} e^{(m+1)\alpha} e^{i \alpha/2} \prod_{j} (1 - q^{-1} w_j/z) \prod_{j<k} (1 - w_k w_j)$$

$$= \exp \left(\sum_{n=1}^{\infty} \frac{q^{-2n}}{n} a_n w_0^n \right) S(w_0) \cdots S(w_l) e^{(m+1)\alpha} e^{i \alpha/2} w_0^{2m+i} q^{-2m-i}$$

where $w_0 = qz$. Taking the coefficient of $z^{-n-1} w^{-\mu}$ and using Littlewood-Richardson rule [12] we obtain the result. The case of $X_n^- s_\mu e^{m \alpha}$ is proved similarly.

$$X^-(z)S(w_1) \cdots S(w_l) e^{m \alpha} e^{i \alpha/2} =: X^-(z)S(w_1) \cdots S(w_l) : z^{-2m-i} e^{(m-1)\alpha} e^{i \alpha/2} \prod_{j<k} (1 - w_k w_j) \prod_{j} (1 - w_j/z)^{-1}$$

$$= S^*(q^2 z) S^+(z) S(w_1) \cdots S(w_l) z^{-2m-i} e^{(m-1)\alpha} e^{i \alpha/2}.$$

Taking the coefficient of $z^{-n-1} w^{-\mu}$ we obtain the formula.

We can reformulate the result in terms of the standard inner product in Section 2. Let $u_j = (0, \cdots, 0, 1, 0, \cdots, 0)$ be the jth unit vector in \mathbb{Z}^n. Let $1_{(l_1, \cdots, l_j)}$ be the sum of the unit vectors u_{l_1}, \cdots, u_{l_j}.
Proposition 3.1. For $n \in \mathbb{Z}$ and a partition μ we have
\[
X_n s_\mu e^{m\alpha} e^{i\alpha/2}
= \sum_\lambda s_\lambda e^{(m-1)\alpha} e^{i\alpha/2} \sum_{j=0}^l (-q^2)^j \sum_{l_1 < \cdots < l_j} (S_{2m+i-n-1-j}^\mu, S_{-(\lambda-1(l_1, \cdots, l_j))}) ,
\]
where λ runs through partitions of weight $|\mu| + 2m - n - 1 + i$ such that $\lambda - 1(l_1, \cdots, l_j)$ is the juxtaposition of $(1^{2m-n-j-1+i})$ and μ.

Later in Theorem 3.5 we will give another proof in terms of the dual vertex operator $S^* (z)$.

Example 3.3. Using Theorem 3.2 it is easy to compute the following.
\[
\begin{align*}
X_n^+ e^{r\alpha} e^{i\alpha/2} &= 0, \quad \text{if } n > 2r - 1 \neq i, \\
X_{2r+1-i}^+ \cdots X_{3-i}^+ X_{1-i}^+ e^{i\alpha/2} &= e^{r\alpha} e^{i\alpha/2}, \quad r \geq 1, \\
X_{2r-3+i}^+ \cdots X_{1+i}^+ X_{1-i+1}^+ e^{i\alpha/2} &= e^{-r\alpha} e^{i\alpha/2}, \quad r \geq 1. \\
X_{-1}^+ s_{(2,1)} e^{-\alpha} &= q^2 s_{(2,2,1)} - q^{-2}(s_5 + s_{(4,1)} + s_{(3,2)}) + q^{-6}(s_5 + s_{(4,1)}), \\
X_0 s_1 e^{\alpha} &= -s_2 + q^4 s_{(12)}.
\end{align*}
\]

We can generalize the action to the divided powers of $X_n^{\pm(r)}$.

Lemma 3.4. [BFJ] For $r \in \mathbb{N}$ we have
\[
\prod_{1 \leq i < j \leq k} (z_i - q z_j) = \sum_{w \in \mathcal{S}_k} (-q)^{(w)} z^{w(\delta)} + \sum a_{\gamma_1, \ldots, \gamma_k} z_{\gamma_1} z_{\gamma_2} \cdots z_{\gamma_k},
\]
where $\delta = (k - 1, k - 2, \ldots, 0)$ and the second sum consists of certain monomials such that some $\gamma_i = \gamma_j$, $i \neq j$ and $a_\gamma \in \mathbb{Z}[q]$, $a_{\gamma}(1) = 0$.

Theorem 3.5. The lattices $\mathcal{L}_i = \sum_{\lambda \in \mathbb{N}} \mathbb{Z}[q, q^{-1}] s_\lambda e^{m\alpha} e^{i\alpha/2}$ are invariant under the action of the divided powers $X_n^{\pm(r)}$. More precisely we have
\[
\begin{align*}
X_n^{+(r)} s_\mu e^{m\alpha} e^{i\alpha/2} &= q^{-3(\lambda)} q^{-r(n+1+2m+i)} \sum_{l(\lambda) \leq r} (-q^2)^l s_\lambda \cdot s_{(-\lambda - 2\delta - (n+1+2m+i)1, \mu)} e^{(m+r)\alpha} e^{i\alpha/2} \\
X_n^{-(r)} s_\mu e^{m\alpha} e^{i\alpha/2} &= (-1)^r q^{(\lambda)} q^{(\lambda')} \sum_{l(\lambda) \leq r} (-q^2)^l s_{\lambda'} \cdot s_{(-\lambda - 2\delta - (n+1-2m-i)1, \mu)} e^{(m-r)\alpha} e^{i\alpha/2}
\end{align*}
\]
where the summations run through all partitions λ of length $\leq r$, $\delta = (r - 1, r - 2, \cdots, 0)$, and $\mathbf{1} = (1, \cdots, 1) \in \mathbb{Z}^r$.

\[12\text{ NAIHUAN JING}\]
Proof. Let $z = (z_1, \cdots, z_r)$, $w = (w_1, \cdots, w_l)$, and $1 = (1, \cdots, 1) \in \mathbb{Z}^r$ in the following computation.

$$
x_n^+ s_\mu e^{\mu} e^{i\alpha/2} = \oint X^+(z_1) \cdots X^+(z_r) S(w_1) \cdots S(w_l) z^{(n+1)1} w^{-\mu} \frac{dz dw}{z w} e^{\mu} e^{i\alpha/2}
$$

$$
= \oint \exp \left(\sum_{n=1}^{\infty} \frac{q^n + q^{-n}}{n} a_n (z_1^n + \cdots + z_r^n) \right) : S(w_1) \cdots S(w_l) :
\times \prod_{i<j} (z_i - z_j) (z_i - q^{-2} z_j) (1 - \frac{w_j}{w_i}) \prod_{i,j} (1 - q^{-1} \frac{w_j}{z_i})
\times z^{(2m+n+1)1} e^{(m+r)\alpha} e^{i\alpha/2} \frac{dz dw}{z w}.
$$

Note that the integrand divided by $\prod_{i<j} (z_j - q^{-2} z_k)$ is an anti-symmetric function in z_1, \ldots, z_r. It follows from Lemma 3.4 that the terms $z_1^{\gamma_1} z_2^{\gamma_2} \cdots z_r^{\gamma_r}$ (for which some $\gamma_k = \gamma_j$) make no contribution to the integral. Therefore

$$
x_n^{+(r)} s_\mu e^{\mu} e^{i\alpha/2} = \frac{1}{[r]!} \sum_{w \in \mathfrak{S}_r} \oint \exp \left(\sum_{n=1}^{\infty} \frac{q^n + q^{-n}}{n} a_n (z_1^n + \cdots + z_r^n) \right)
\times : S(w_1) \cdots S(w_l) : \prod_{i<j} (z_i - z_j) \prod_{i,j} (1 - \frac{w_j}{w_i}) \prod_{i,j} (1 - q^{-1} \frac{w_j}{z_i})
\times (-q)^{-\ell(w)} z^{w(\delta)+(2m+n+1)1} w^{-\mu} e^{(m+r)\alpha} e^{i\alpha/2} \frac{dz dw}{z w}
\times q^{-\ell(w)} \oint \exp \left(\sum_{n=1}^{\infty} \frac{q^{-2n}}{n} a_n (z_1^n + \cdots + z_r^n) \right) S(qz_1) \cdots S(qz_r)
S(w_1) \cdots S(w_l) z^{2\delta+(2m+n+1)1} w^{-\mu} e^{(m+r)\alpha} e^{i\alpha/2} \frac{dz dw}{z w},
$$

where $\delta = (r-1, r-2, \ldots, 0)$ and we have used

$$
\sum_{w \in \mathfrak{S}_r} q^{-2\ell(w)} = q^{-\ell(w)[r]!}.
$$

From the orthogonality of Schur functions \mathfrak{S} it follows that

$$
\exp \left(\sum_{n=1}^{\infty} \frac{a_{-n}}{n} (z_1^n + \cdots + z_r^n) \right) = \sum_{l(\lambda) \leq r} s_\lambda(a_{-k}) s_\lambda(z_i)
$$
where $s\lambda(a-k)$ is the Schur function in terms of the power sum $a-\mu$ and $s\lambda(z_i)$ is the Schur polynomial in the variables z_1, \ldots, z_r. Replacing z_j by $q^{-1}z_j$ we get

$$
\begin{align*}
&\mathcal{X}_n^{(r)} s_\mu e^{i\alpha/2} \\
&= q^{-3}\left(\sum_{l(\lambda) \leq r} q^{-2}|\lambda| s_\lambda \int s_\lambda(z)z^{2\delta+(n+1+2m+i)}1 \right) \\
&\times S(z_1) \cdots S(z_r)S(w_1) \cdots S(w_l) e^{(m+r)\alpha} e^{i\alpha/2} w^{-\mu} \frac{dz\, dw}{z\, w} \\
&= q^{-3}\left(\sum_{l(\lambda) \leq r} q^{-2}|\lambda| s_\lambda \int \prod_{1 \leq k \leq r} (z_j - z_k)^{-1} \right) \\
&\times z^\delta S(z_1) \cdots S(z_r)S(w_1) \cdots S(w_l) e^{(m+r)\alpha} e^{i\alpha/2} w^{-\mu} \frac{dz\, dw}{z\, w}.
\end{align*}
$$

Applying the symmetry of the Schur vertex operators in Proposition 2.1 we see that the above expression becomes

$$
\begin{align*}
&= q^{-3}\left(\sum_{l(\lambda) \leq r} q^{-2}|\lambda| s_\lambda \int \prod_{1 \leq k < \ell} (z_j - z_k)^{-1} \right) \\
&\times z^\delta S(z_1) \cdots S(z_r)S(w_1) \cdots S(w_l) e^{(m+r)\alpha} e^{i\alpha/2} w^{-\mu} \frac{dz\, dw}{z\, w},
\end{align*}
$$

where we have used the Weyl denominator formula (see $\lambda = 0$ in (2.1)) and the integral is taken along contours in z_i, w_i around the origin. The formula for $X_n^{(r)}(z)$ is then obtained by using Theorem 2.4.

The case of $X_n^{(-r)}(z)$ is proved similarly with the help of the dual vertex operator $S^*(z)$.

$$
\begin{align*}
&\mathcal{X}_n^{(-r)} s_\mu e^{i\alpha/2} \\
&= \frac{(-1)^{|\mu|}}{|r|!} \int X^-(z_1) \cdots X^-(z_r) S^*(w_1) \cdots S^*(w_l) z^{n+1} w^{-\mu} e^{(m-r)\alpha} e^{i\alpha/2} \frac{dz\, dw}{z\, w} \\
&= \frac{(-1)^{|\mu|}}{|r|!} \int :S^*(q^2z_1) \cdots S^*(q^2z_r) :S^*(z_1) \cdots S^*(z_r) S^*(w_1) \cdots S^*(w_l) \\
&\times \prod_{i<j} (z_i - q^2z_j)^2 \delta + (n+1-2m-i)1 w^{-\mu} e^{(m-r)\alpha} e^{i\alpha/2} \frac{dz\, dw}{z\, w} \\
&= q^{2}\left(\sum_{l(\lambda) \leq r} q^{-2}|\lambda| s_\lambda \int \prod_{1 \leq k \leq r} (z_j - q^2z_k)^{-1} \right) \\
&\times z^{2\delta+(n+1-2m-i)1} w^{-\mu} e^{(m-r)\alpha} e^{i\alpha/2} \frac{dz\, dw}{z\, w}.
\end{align*}
$$

where we have used the skew-symmetry of the integrand and Lemma 3.4. Then the formula for $X_n^{(-r)}(z)$ is obtained from the following identity and the Weyl denominator
Proof. The four formulas are proved similarly. Take $K = S \in (\Sigma^n)$ for $n = 1, \cdots, r$. Let $\mu = \{l(\lambda) \leq r \}$.

Theorem 4.1. From section 3 it follows that

$$\exp(-\sum_{n=1}^{\infty} \frac{a-n}{n} (z_1^n + \cdots + z_r^n)) = \sum_{l(\lambda) \leq r} s_{\lambda'}(a-k) s_{\lambda}(z_i)$$

\[\square \]

4. Combinatorial realization of $U_q(\widehat{sl}_2)$

Let $\mathcal{A} = \mathbb{Z}[q, q^{-1}]$. We denote by $U_q(\widehat{sl}_2)_{\mathcal{A}}$ the \mathcal{A}-algebra generated by $e_i^{(n)}$, $f_i^{(n)}$, $R_i^{\pm 1}$. From section 3 it follows that

\begin{align}
& e_1^{(r)} s_\mu e^{m_0} e^{i\alpha/2} = q^{-3(\zeta) - r(2m + i + 1)} \\
& \times \left(\sum_{l(\lambda) \leq r} q^{-2|\lambda|} s_{\lambda} s_{(-\lambda - 2\delta - (2m + i + 1), \mu)} \right) e^{(m+r)\alpha} e^{i\alpha/2} \\
& f_1^{(r)} s_\mu e^{m_0} e^{i\alpha/2} = (-1)^{r(1+i)} q^{(\zeta)} \\
& \times \left(\sum_{l(\lambda) \leq r} q^{-2|\lambda|} s_{\lambda'} s_{(-\lambda - 2\delta - (2m + i + 1), \mu')} \right) e^{(m-r)\alpha} e^{i\alpha/2} \\
& f_0^{(r)} s_\mu e^{m_0} e^{i\alpha/2} = q^{r(5-r)/2} \\
& \times \left(\sum_{l(\lambda) \leq r} q^{-2|\lambda|} s_{\lambda} s_{(-\lambda - 2\delta - (2m + i + 1), \mu)} \right) e^{(m+r)\alpha} e^{i\alpha/2} \\
& e_0^{(r)} s_\mu e^{m_0} e^{i\alpha/2} = (-1)^{i} q^{(-r - r(2m + i)} \\
& \times \left(\sum_{l(\lambda) \leq r} q^{-2|\lambda|} s_{\lambda'} s_{(-\lambda - 2\delta + (2m + i - 2), \mu')} \right) e^{(m-r)\alpha} e^{i\alpha/2} \\
& \end{align}

As a consequence of these formulas and the Littlewood-Richardson rule \[\ref{2.2}\] we get the following theorem.

Theorem 4.1. The \mathcal{A}-lattice generated by the Schur functions $\{s_\mu e^{m_0}\}$, $m \in \mathbb{Z}$, $\mu \in \mathcal{P}$, is invariant under the integral form $U_q(\widehat{sl}_2)_{\mathcal{A}}$.

Proposition 4.1. For $m \geq 0$ we have

$$f_1^{(2m)} e^{m_0} e^{\alpha} = (-1)^m q^{m(2m - 1)} e^{-m_0},$$

$$f_0^{(2m+1)} e^{-m_0} e^{\alpha} = (-1)^m q^{-(2m + 1)(m - 2)} e^{-(m + 1)\alpha},$$

$$f_0^{(2m)} e^{-m_0} e^{\alpha/2} = (-1)^m q^{-m(2m - 5)} e^{m_0},$$

$$f_1^{(2m+1)} e^{m_0} e^{\alpha/2} = (-1)^m q^{m(2m + 1)} e^{-(m + 1)\alpha}.$$

Proof. The four formulas are proved similarly. Take $f_1^{(2m)} e^{m_0}$. Observe that $-2\delta + (2m - 1) = (-2m + 1, -2m + 3, \cdots, 2m - 3, 2m - 1)$ is of weight zero, thus only $\lambda = 0$ contributes to the summation in $f_1^{(2m)} e^{m_0}$ (see \[\ref{4.2}\]). Since the longest element in \mathfrak{S}_{2m} has inversion number $m(m - 1)$, the sign of $s_{-2\delta + (2m - 1)}$ is $(-1)^{m(m - 1)} = (-1)^m$.

\[\square \]
Corollary 4.1. For \(m \geq 0 \) we have
\[
\begin{align*}
 f_0^{(2m)} f_0^{(2m-1)} \cdots f_1^{(2)} f_0.1 &= (-1)^m q^{3m^2} e^{-m\alpha}, \\
 f_0^{(2m+1)} f_0^{(2m)} \cdots f_1^{(2)} f_0.1 &= q^{(m+1)(m+1)} e^{(m+1)\alpha}, \\
 f_0^{(2m)} f_1^{(2m-1)} \cdots f_0^{(2)} f_{1}e^{\alpha/2} &= (-1)^m q^{m(m+2)} e^{m\alpha} e^{\alpha/2}, \\
 f_1^{(2m+1)} f_0^{(2m)} \cdots f_0^{(2)} f_{1}e^{\alpha/2} &= q^{3m(m+1)} e^{-(m+1)\alpha} e^{\alpha/2}.
\end{align*}
\]

Example 4.2. In the following we abbreviate \(f_{i_1}^{(n_1)} \cdots f_{i_r}^{(n_r)}.1 = f_{i_1}^{(n_1)} \cdots f_{i_r}^{(n_r)} \) in the basic representation \(V(\Lambda_0) \).
\[
\begin{align*}
 f_0 &= q^2 e^\alpha \\
 f_1 f_0 &= -q^2 (1 + q^2) s_1 \\
 f_1^{(2)} f_0 &= -q^3 e^{-\alpha} \\
 f_0 f_1 f_0 &= q^2 (q^2 + 1) s_1 e^\alpha \\
 f_1 f_0 f_1 f_0 &= -(q^4 + q^2) (s_2 - q^2 s_12) \\
 f_0 f_1^{(2)} f_0 &= -q^3 (s_12 + [3] s_2) \\
 f_0 f_1 f_0 f_1 f_0 &= q^2 (1 + q^2)^2 (s_2 + s_12) e^\alpha \\
 f_0^{(2)} f_1^{(2)} f_0 &= q^4 (s_2 + [3] s_12) e^\alpha \\
 f_0^{(3)} f_1^{(2)} f_0 &= q^6 e^{2\alpha} \\
 f_1^{(2)} f_0 f_1 f_0 &= q^5 (1 + q^2) s_1 e^{-\alpha} \\
 f_0^{(2)} f_1 f_0 f_1 &= q^6 (1 + q^2) s_1 e^{-\alpha}
\end{align*}
\]

Example 4.3. As in the last example we use \(f_{i_1}^{(n_1)} \cdots f_{i_r}^{(n_r)} \) to denote \(f_{i_1}^{(n_1)} \cdots f_{i_r}^{(n_r)} e^{\alpha/2} \) in the basic representation \(V(\Lambda_1) \).
\[
\begin{align*}
 f_1 &= e^{-\alpha} \\
 f_0 f_1 &= q^{-2} (1 + q^{-2}) s_1 \\
 f_0^{(2)} f_1 &= -q^3 e^\alpha \\
 f_1 f_0 f_1 &= -(q^{-2} + 1) s_1 e^{-\alpha} \\
 f_0 f_1 f_0 f_1 &= (1 + q^2) (s_2 - s_12) \\
 f_1 f_0^{(2)} f_1 &= -q^5 ([3] s_12 + s_2) \\
 f_1 f_0 f_1 f_0 f_1 &= (1 + q^2)^2 (s_2 + q^2 s_12) e^{-\alpha} \\
 f_1^{(2)} f_0^{(2)} f_1 &= q^5 ([3] s_2 + s_12) e^{-\alpha} \\
 f_1^{(3)} f_0^{(2)} f_1 &= q^6 e^{-2\alpha} \\
 f_0^{(2)} f_1 f_0 f_1 &= -[2] s_1 e^\alpha
\end{align*}
\]

It would be interesting to see the relation between our formulas and the fermionic picture [LLT].
SYMMETRIC POLYNOMIALS AND $U_q(\hat{sl}_2)$

REFERENCES

[BCP] J. Beck, V. Chari and A. Pressley, An algebraic characterization of the affine canonical basis, Duke Math. J., to appear, [math.QA/9808060].

[BFJ] J. Beck, I.B. Frenkel and N. Jing, Canonical basis and Macdonald polynomials, Adv. in Math. 140 (1998), 95-127.

[CP] V. Chari and A. Pressley, Finite dimensional representations of quantum affine algebras, Representation Theory 1 (1997), 280–328.

[DJKM] Date, Jimbo, Kashiwara and Miwa, Transformation groups for soliton equations. Nonlinear integrable systems—classical theory and quantum theory (Kyoto, 1981), pp. 39–119, World Sci. Publishing, Singapore, 1983.

[F1] I.B. Frenkel, Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Funct. Anal. 44 (1981), 259–327.

[F2] I.B. Frenkel, Lectures at Yale University, 1986.

[FJ] I.B. Frenkel and N. Jing, Vertex representations of quantum affine algebras, Proc. Natl. Acad. Sci. USA 85 (1988), 9373-9377.

[G] H. Garland, The arithmetic theory of loop groups, J. Algebra 53 (1978), 480-551.

[H] T. Hayashi, Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras, Commun. Math. Phys. 127 (1990), 129-144.

[JK] G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of Math. and its Appl. 16, Addison-Wesley, Reading, MA, 1981.

[J1] N. Jing, Vertex operators, symmetric functions and the spin groups Γ_n, J. Algebra 138 (1991), 340-398.

[J2] N. Jing, Vertex operators and Hall-Littlewood functions, Adv. in Math. 87 (1991), 226-248.

[J3] N. Jing, Vertex operators and generalized symmetric functions, in: Proc. of Conf. on Quantum Topology (KSU, March 1993), ed. D. Yetter, World Scientific, Singapore, 1994, pp. 111-126.

[J4] N. Jing, q-Hypergeometric series and Macdonald functions, J. Alg. Comb. 3 (1994) 291-305.

[J5] N. Jing, Boson-fermion correspondence for Hall-Littlewood polynomials, J. Math. Phys. 36 (1995), 7073-7080.

[J6] N. Jing, Vertex representations of the quantum Kac-Moody algebras, Lett. Math. Phys. 44 (1998), no. 4, 261–271.

[K] M. Kashiwara, Global crystal bases of quantum groups, Duke Math. J. 73 (1993), 383–413.

[Ka] V.G. Kac, Infinite dimensional Lie algebras, 3rd. ed., Cambridge Univ. Press, Cambridge, 1990.

[LLT] A. Lascoux, B. Leclerc, J.Y. Thibon, Ribbon tableaux, Hall-Littlewood functions, quantum affine algebras and unipotent varieties, Sém. Lothar. Combin. 34 (1995), 23 pp.

[LP] J. Lepowsky and P. Princ, Structure of the standard modules for affine Lie algebra $A_1^{(1)}$, Contemp. Math. 46, Amer. Math. Soc., Providence, RI, 1985.

[L] G. Lusztig, Introduction to quantum groups, Progress in Mathematics 110, Birkhäuser, Boston, 1993.

[M] I.G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford University Press, New York, 1995.

[MM] K.C. Misra and T. Miwa, Crystal bases for the basic representations of $U_q(\hat{sl}(n))$, Commun. Math. Phys. 134 (1990), 79-88.

[Z] A. Zelevinsky, Representations of finite classical groups, A Hopf algebra approach. Lecture Notes in Mathematics, 869, Springer-Verlag, Berlin-New York, 1981.

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, U.S.A.

E-mail address: jing@math.ncsu.edu