Parsing Meaning Representations: is Easier Always Better?

Zi Lin, Nianwen Xue
Peking University & Brandeis University
DMR@ACL | 2019
Overview

• Introduction
• MRS v.s. AMR
• Experiment
• Analysis
 • Concept detection
 • Relation detection
Introduction
The boy wants to believe the girl.

Parsing natural language sentences into a formal representation that encodes the meaning of a sentence (usually a graph).
There is no universally accepted standard and existing MRs vary descriptively and theoretically…

- Groningen Meaningbank: Discourse Representation Theory
- Redwoods corpus: Minimal Recursion Semantics
- Prague Dependency Treebank: Functional generative description
- Universal Cognitive Conceptual Annotation: Basic Linguistic Theory
- Abstract Meaning Representation: (Loosely) neo-Davidsonian with some other stuff
Parsing results reported in the literature

MRs	DRT	MRS	UCCA	AMR
F1	77.5\(^1\)	90.9\(^2\)	69.9\(^3\)	74.4\(^4\)

1. Liu et al. 2018. Discourse representation structure parsing.
2. Chen et al. 2018. Accurate shrg-based semantic parsing.
3. Hershcovich et al. 2019. SemEval 2019 shared task: cross-lingual semantic parsing with UCCA call for participation.
4. Sheng Zhang et al, 2019. AMR parsing as sequence-to-sequence transduction.
Parsing results reported in the literature

MRs	DRT	MRS	UCCA	AMR
F1	77.5¹	90.9²	69.9³	76.3⁴

1. Liu et al. 2018. Discourse representation structure parsing.
2. Chen et al. 2018. Accurate shrg-based semantic parsing.
3. Hershcovich et al. 2019. SemEval 2019 shared task: cross-lingual semantic parsing with UCCA call for participation.
4. Sheng Zhang et al. 2019. AMR parsing as sequence-to-sequence transduction.
To develop the next generation MRs …

• Which aspects of the MR pose the most challenge to automatic parsing?

• Whether these challenges are “necessary evils”, or they can be simplified without hurting the utility of the MR?
MRS v.s. AMR
From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.
From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.
From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.
From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.
From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.
From 1953 to 1955, 9.8 billion Kent cigarettes with the filters were sold.
Experiment
Data preparation

• Dataset:
 • SDP2015 for MRS
 • LDC2016E25 for AMR

• Format unification: PENMAN format (using PyDelphin library)

• Parsing model: CAMR (Wang et al., 2015)

• Alignment:
 • Gold for MRS
 • JAMR (Flanigan et al., 2014) for AMR
Parsing Result

	MRS	AMR				
	Train	Dev	Test	Train	Dev	Test
number of graphs/sentences	35,315	1,410	1,410	36,521	1,368	1,371
number of tokens per sentence	22.33	22.92	23.14	17.83	21.59	22.10
number of nodes per token	0.96	0.97	0.93	0.68	0.70	0.70

	Node	Edge	S_{MATCH}	Node	Edge	S_{MATCH}
CAMR	89.4	81.1	85.3	78.7	57.1	68.0
Buys and Blunsom (2017)	89.1	85.0	87.0	-	-	-
Chen et al. (2018)	94.5	87.3	90.9	-	-	-
Lyu and Titov (2018)	-	-	-	85.9	69.8	74.4

$\triangle S_{MATCH}$

-17.3

-25.8
Analysis
Concept detection

• The first step in constructing a MR graph is determining the nodes.
• The first step in constructing a MR graph is determining the nodes.
 • Word sense disambiguation

sell-01: commerce: seller, giving in exchange for money
sell_out-02: give in to the man
sell_out-03: sell until none is/are left

......
Concept detection

• The first step in constructing a MR graph is determining the nodes.
 • Word sense disambiguation
 • Inferring abstract concepts
Concept detection

• The first step in constructing a MR graph is determining the nodes.
 • Word sense disambiguation
 • Inferring abstract concepts
 • Entity recognition
Concept detection

POS	%	#lemma	#sense	average	score	WSD
n	34.46	1,420	1,434	1.01	95.35	99.76
v	20.37	838	1,010	1.21	85.56	90.58
q	13.97	25	25	1.00	98.22	100.00
p	12.86	96	123	1.28	81.29	76.11
a	11.45	637	648	1.02	90.58	99.90
c	4.20	17	19	1.12	94.46	99.61
x	2.69	80	81	1.01	73.65	99.74
total	100.00	3,113	3,340	1.07	90.78	97.06

AMR	pred	%	#lemma	#sense	average	score	WSD
	-	1,292	1,440	1.11	77.93	94.54	
Concept detection

POS	%	#lemma	#sense	average	score	WSD
n	34.46	1,420	1,434	1.01	95.35	99.76
v	20.37	838	1,010	1.21	85.56	90.58
q	13.97	25	25	1.00	98.22	100.00
p	12.86	96	123	1.28	81.29	76.11
a	11.45	637	648	1.02	90.58	99.90
c	4.20	17	19	1.12	94.46	99.61
x	2.69	80	81	1.01	73.65	99.74
total	100.00	3,113	3,340	1.07	90.78	97.06

AMR

| pred | - | 1,292 | 1,440 | 1.11 | 77.93 | 94.54 |

25
Concept detection

- Word sense disambiguation is not a major contributor to the difficulty in concept detection for AMR

POS	%	#lemma	#sense	average	score	WSD
n	34.46	1,420	1,434	1.01	95.35	99.76
v	20.37	838	1,010	1.21	85.56	90.58
q	13.97	25	25	1.00	98.22	100.00
p	12.86	96	123	1.28	81.29	76.11
a	11.45	637	648	1.02	90.58	99.90
c	4.20	17	19	1.12	94.46	99.61
x	2.69	80	81	1.01	73.65	99.74
total	100.00	3,113	3,340	1.07	**90.78**	**97.06**

POS	%	#lemma	#sense	average	score	WSD
pred	-	1,292	1,440	1.11	**77.93**	**94.54**
We took a closer look at how concept detection fared for lexical categories that are known to have a complex mapping to the concepts they "evoke".

• Phrasal verbs (p.v.)
 e.g. take a bath & bathe -> bathe-01

• Nouns (n.)
 e.g. destruction & destroy -> destroy-01

• Adjectives (adj.)
 e.g. attractive -> attract-01

• Adverbs (adv.)
 e.g. quickly & quick -> quick-01

• Prepositions (prep.)
 e.g. out of mind -> out-06

• Conjunctions (conj.)
 e.g. but -> constrast-01

• Modal verbs (mod)
 e.g. can (modal verbs) & possible -> possible-01
Concept abstraction

- Extract word or word sequences that align with these concepts
- Use a set of heuristics based on morpho-syntactic patterns to determine the type of abstraction in the test set

type	n.	adj.	adv.	prep.	conj.	mod.	p.v.	other	v.
%	35.09	10.05	1.87	1.17	1.01	2.59	0.31	0.15	47.76
Performance	83.01	84.44	80.73	73.53	96.61	66.96	83.33	44.44	74.07

Table 3: Individual percentages and scores for different types of AMR predicates
Figure 2: Relative improvement of performance on the test set after correcting each type of POS or construction in AMR
Concept abstraction

Figure 2: Relative improvement of performance on the test set after correcting each type of POS or construction in AMR.
Figure 2: Relative improvement of performance on the test set after correcting each type of POS or construction in AMR
Figure 2: Relative improvement of performance on the test set after correcting each type of POS or construction in AMR

Concept abstraction

can & possible -> possible-01
We next examined how well entities are detected in AMR and MRS parsing.

Example	AMR	MRS
lunar calendar	(d / date-entity :calendar (m / moon))	−
December (8th)	(d / date-entity :month 12)	(x1 / mofy :carg "Dec")
Monday	(d / date-entity :weekday (m / monday))	(x1 / dofw :carg "Mon")
(December) 8th	(d / date-entity :day 8)	(x1 / dofm :carg "8")
night	(d / date-entity :dayperiod (n / night))	−
New York	(cl / city	(x1 / named :carg "York")
	:name (n1 / name	:ARG1-of (e1 / compound
	:op1 "New" :op2 "York"))	:ARG2 (x2 / named :carg "New"))
Entity recognition

We next examined how well entities are detected in AMR and MRS parsing.

dataset	MRS	AMR
	#	#
	score	score
date entity	266	273
	92.48	66.67
NE detection	2,555	2,065
	81.96	91.09
NE classification	-	-
	-	76.46

Table 5: Results on entity recognition on the test set
We next examined how well entities are detected in AMR and MRS parsing.

- Date entity detection: AMR << MRS
- e.g. lunar calendar -> (d / date-entity :calendar (m / moon))

dataset	MRS #	score	AMR #	score
date entity	266	92.48	273	66.67
NE detection	2,555	81.96	2,065	91.09
NE classification	-	-	-	76.46

Table 5: Results on entity recognition on the test set
Entity recognition

We next examined how well entities are detected in AMR and MRS parsing.

- Date entity detection: AMR << MRS
- e.g. lunar calendar -\(\rightarrow\) (d / date-entity :calendar (m / moon))
- Name entity: AMR << MRS
 - detection: AMR > MRS
 - Name entity classification: not needed for MRS

dataset	MRS #	score	AMR #	score
date entity	266	92.48	273	66.67
NE detection	2,555	81.96	2,065	91.09
NE classification	-	-	-	76.46

Table 5: Results on entity recognition on the test set
The subtask of relation detection involves identifying and labeling the edges in the MR graph.
The subtask of relation detection involves identifying and labeling the edges in the MR graph.

dataset	MRS #	MRS score	AMR #	AMR score
Overall	-	81.76	-	61.52
All matched	3,398	63.48	4,975	44.77
ARG0	3,087	62.00	3,680	49.43
ARG1	2,985	68.45	5,377	53.97
ARG2	339	35.09	1,614	37.86
ARG3	7	57.13	123	14.63
ARG4	-	-	39	20.51
Reentrancy	807	81.28	1,723	43.91

Table 6: Results on SRL. MRS’s argument number begins at 1 so we just move all the argument to begin at 0 to make them comparable.
• The subtask of relation detection involves identifying and labeling the edges in the MR graph.

dataset	MRS #	score	AMR #	score
Overall	-	81.76	-	61.52
All matched	3,398	63.48	4,975	44.77
ARG0	3,087	62.00	3,680	49.43
ARG1	2,985	68.45	5,377	53.97
ARG2	339	35.09	1,614	37.86
ARG3	7	57.13	123	14.63
ARG4	-	-	39	20.51
Reentrancy	807	81.28	1,723	43.91

Table 6: Results on SRL. MRS’s argument number begins at 1 so we just move all the argument to begin at 0 to make them comparable.

(w / want-01
 :ARG0 (b / boy)
 :ARG1 (b2 / believe-01
 :ARG0 (g / girl)
 :ARG1 b))
The subtask of relation detection involves identifying and labeling the edges in the MR graph.

dataset	MRS #	MRS score	AMR #	AMR score
Overall	-	81.76	-	61.52
All matched	3,398	63.48	4,975	44.77
ARG0	3,087	62.00	3,680	49.43
ARG1	2,985	68.45	5,377	53.97
ARG2	339	35.09	1,614	37.86
ARG3	7	57.13	123	14.63
ARG4	-	-	39	20.51

Table 6: Results on SRL. MRS’s argument number begins at 1 so we just move all the argument to begin at 0 to make them comparable.

• SRL accuracy: AMR << MRS
• Reentrancy: AMR << MRS
• Number of reentrancy: AMR >> MRS
• MRS treats prepositions as predicates, and labels their arguments.
• AMR just drops the preposition when it introduces an oblique argument for a verbal predicate.
Coreference

- AMR resolves sentence-level coreference.
- MRS does not resolve coreference and each instance of the same entity will be a separate concept in the MRS graph.
• AMR concepts show a higher level of abstraction from surface forms
• AMR does a much more fine-grained classification for the named entities than MRS
• Semantic relations are defined differently in AMR and MRS
Summary

• AMR concepts show a higher level of abstraction from surface forms

• AMR does a much more fine-grained classification for the named entities than MRS

• Semantic relations are defined differently in AMR and MRS

These have all contributed to the performance gap between MRS and AMR parsing.

The question is: should AMR be simplified to improve the accuracy of AMR parsing?
Thank you!