CODON BIAS AND MUTABILITY IN HIV SEQUENCES

H. Waelbroeck

Instituto de Ciencias Nucleares, UNAM,
Circuito Exterior, A.Postal 70-543,
México D.F. 04510.

Abstract: A survey of the patterns of synonymous codon preferences in the HIV env gene reveals a relation between the codon bias and the mutability requirements in different regions in the protein. At hypervariable regions in gp120, one finds a greater proportion of codons that tend to mutate non-synonymously, but to a target that is similar in hydrophobicity and volume. We argue that this strategy results from a compromise between the selective pressure placed on the virus by the induced immune response, which favours amino acid substitutions in the complementarity determining regions, and the negative selection against missense mutations that violate structural constraints of the env protein.

Key words: Adaptive evolution – Nucleotide substitution – Genotype-phenotype relation – Codon bias – HIV
Introduction

The redundancy of the genetic code, particularly the “codon bias” phenomenon, has drawn a great deal of attention in past years.

According to the Neutral Theory, in a finite breeding pool certain synonyms grow and others disappear due to random sampling alone (Kimura 1983). The substitution of a codon by a synonym in large portion of the population thus finds its most simple explanation as a consequence of neutral drift.

However, as Grantham first showed, the patterns of synonymous codon usage are manifestly non-random. In his own words, “mRNA sequences contain other information than that necessary for coding proteins” (Grantham 1980). An example is the almost complete rejection of CGN codons in the HIV virus, which results from the A-pressure typical of lentiviridae and CpG suppression in eukaryotic viruses (Oliver et al. 1996 and refs. therein; van Hemert and Berkhout 1995): Considering only neutral drift, the codon degeneracy should be resolved independently for each mRNA site since silent substitutions are uncoordinated events. In unicellular organisms such as yeast the effective populations are large and even relatively small selective differences (with selective coefficients of order O(1/Ne)) can overcome neutral drift. Among the proposals that have been put forward to justify small selective differences between synonymous codons, one typically finds the arguments referring to mRNA secondary structure and base-pairing (Fitch 1980; Miyata 1980a,b), the bias against pretermination codons (Fitch 1980; Modiano et al. 1981) and translational efficiency constraints due to relative abundances of isoaccepting aminoacyl tRNA molecules (Ikemura 1981; Sharp 1986). In multicellular organisms such as mammals where the effective population sizes are usually small, selection becomes a minor factor but the codon bias is still non-random. In such cases the phenomenon is best explained by noting that neutral evoution or other factors can lead to global fluctuations in the mononucleotide pool and relative abundances of transcription enzymes specific to
each nucleotide (Grantham 1980), or directional mutation pressure (Jermiin et al. 1996).

The chief purpose of this paper will be to present a new proposal on how selection can break the symmetry between synonyms, which appears to play an important role in adaptation. But before we turn our attention to this proposal it is well worth recalling ideas reported recently in this journal (Huynen, 1996).

As Huynen stressed, the Neutral Theory does not exclude the possibility that neutral evolution could “facilitate adaptive evolution by increasing the number of phenotypes that can be reached with a point mutation from an original phenotype”. Huynen showed that neutral drift can “set the stage” for adaptive evolution by carrying the genotype to a point in the landscape from which it can jump to a new phenotype with a single point mutation.

This mechanism is possible because the genotype-phenotype map is highly redundant and “non-trivial”: many sequences encode the same phenotype, yet such synonymous sequences can produce different mutant phenotypes following a point mutation. An evolving genetic population is constantly testing the neighboring phenotypes through mutation attempts, most of which are negatively selected, while at the same time random drift proceeds along the “neutral net”. When this random drift reaches a point in genotype space from which an acceptable mutant can be found in the target space, a missense mutation can occur without being negatively selected.

Once we recognise that different synonymous sequences mutate to different “targets”, one can turn this around by considering the fact that each codon in a sequence must itself have originated from some precursor through an earlier mutation. Of course different codons have different possible precursors. Statistically speaking, this implies that codons with a greater number of possible precursors are more likely to be found.

The prior mutation which gave rise to a given codon may have been a silent mutation or an amino acid substitution. In the case when the codon occurred as the result of an
amino acid substitution there is no guarantee that the mutation can be reversed: further mutations that have accumulated since then at other positions in the sequence may have altered the structural conditions that prevailed when the precursor amino acid was being used. This irreversibility has been observed particularly in highly conserved sequences: For example, in cytochrome c where only about 10% of all codons are variable in any one mammalian species, the set of variable codons or “covarions” is known to change as mutations are fixed (Fitch 1971). However, in highly variable sequences such as the $m-RNA$’s that code for HIV proteins, non-local structural constraints are not so important and it is reasonable to assume that most codons could potentially revert back to their precursors.

Thus, as a first approximation for variable sequences we can identify the set of possible precursors with the set of possible mutation “targets”. This gives a new dimension to our previous comment that “codons with a greater number of possible precursors are more likely to be found”: Indeed, these very same codons with a large number of possible precursors are also those which can most easily mutate to a new target. One implication of this fact is that genetic sequences are better able to resist the potentially destructive effect of mutation, by using codons which mutate more easily to a synonym or to an amino acid with similar properties of hydrophobicity and volume. A second and less trivial implication is that an evolving species can better take advantage of mutations to reach fruitful goals. In the case of a retrovirus for example, such a “fruitful goal” might be to alter a neutralization epitope which has come to be recognised by the immune system. The ability of a virus to generate a high variability in vivo may be an essential part of its survival strategy, for its long incubation period (Nowak 1992). That this strategy could be supported in part by the codon bias is an example of the idea which motivated this paper: The preference for synonyms with better mutability properties favours adaptation.

From an information-theoretic viewpoint, the claim is that the information encoded
in the distribution of synonyms prepares the genetic sequences for the task of eventually mutating when required to by the environment. Our arguments above suggest that such a “preparation” does not imply a violation of causality, if the adaptation strategies that will be needed in the future are similar to those that have functioned in the past.

The HIV-env proteins provide us with an excellent test-bed for these ideas. Neutralising antibodies are produced predominantly to an epitope that overlaps with one of the two hypervariable regions in gp120, especially the V3 loop. To escape the immune system the virus must generate missense mutations in these regions; this occurs in vivo on a time scale of about a day due to the poor accuracy of reverse transcription. On the other hand this same lack of accuracy puts tremendous selective pressure for the virus to resist transcription errors in regions that must be conserved, either for structural reasons or to mediate essential functions of the virus. For example missense mutations in the CD4 binding site or the fusogenic domain in gp41 are mostly rejected.

This suggests two important properties that should be noticeable in the HIV-env sequences.

First, codons in recognition regions (such as the V3 loop) are likely to originate from a precursor that coded for a different amino acid, due to the selective pressure to adapt to the immune system. Vice-versa, in conserved regions the precursor is more likely to be a synonym.

Second, as we explained above, the reversibility of mutations imples that the conserved parts of the sequence will use codons that have a higher probability to mutate to a synonym, and vice-versa, the V3 loop will use codons that can better mutate non-synonymously to another acceptable amino acid.

In the remainder of the paper we will analyse empirical evidence for both of these properties.
Data and Models

We will begin by illustrating the arguments above with the help of a simple “toy model”.

A toy model: The Met-Leu system

Let us first consider a position in the protein that is completely conserved and only accepts the amino acid Leucine. There are six codons that code for Leu (CTN and TTPu), but not all have the same number of silent point mutations: CTPy codons have three possible silent mutations (at the third base), CTPu have four (first base C → T transition and third base degeneracy) and TTPu codons have two possible silent mutations (first base and third base transitions).

If we assume that the nine possible point mutations of each codon are equiprobable, it follows that the success probability of a point mutation of CTPu is 3/9, for CTPy it is 4/9 and for TTPu it is only 2/9. Obviously it would be convenient for the virus to use the CTPy codons predominantly, to reduce the risk of a fatal transcription error. But a codon doesn’t reveal its mutation success rate until it has actually mutated, so how can the choice of the best predominant codon occur without violating causality? Since each of the six codons represent the same amino acid there is no selective pressure in favour of any particular codon. Rather, the point is that a codon with a higher probability of successful mutation is also the target of a greater number of possible precursors.

A simple experiment demonstrates this point. Let us assume that we begin with a gene pool where the six codons are represented equally. Each codon grows with a reproduction rate r and is subject to nine possible point mutations, which we will assume to be equiprobable for the sake of simplicity. Discounting the effect of mutation, each codon
would grow by a factor r. If we introduce a mutation rate μ this becomes $r(1-\mu)$, plus the gain term from other codons that mutate towards it. Since each $CTPu$ codon can mutate to three possible synonyms, likewise it can be reached from mutations of any one of these three other codons; therefore the proportion of $CTPu$ in the population grows initially by a factor $r(1-\mu + 3\mu/9)$. $CTPy$ grows by $r(1-\mu + 4\mu/9)$, and $TTPu$ by $r(1-\mu + 2\mu/9)$. Thus, after one step of evolution the codon $CTPy$ is slightly more abundant than the others. The evolution equations for this system are the following.

\[
x(t + 1) = r(1-\mu)x(t) + \frac{\mu}{9}rx(t) + \frac{2\mu}{9}ry(t)
\]
\[
y(t + 1) = r(1-\mu)y(t) + \frac{\mu}{9}ry(t) + \frac{2\mu}{9}rx(t) + \frac{\mu}{9}rz(t)
\]
\[
z(t + 1) = r(1-\mu)z(t) + \frac{\mu}{9}rz(t) + \frac{\mu}{9}ry(t),
\]

where $x(t)$ denotes the portion of the population with the codon $CTPu$ at generation t, $y(t)$ is the portion with $CTPy$ and $z(t)$ is the portion of the population with the codon $TTPu$. An integration of this system with $\mu = 0.01$ and $r = 1 + 2\mu/3$ is shown in [Figure 1]. The most “mutable” codon, $CTPy$, reaches the highest asymptotic proportion in the population with $2.2\times$ more examples than $TTPu$, which is least resistant to mutations.

The story becomes even more interesting if we consider the interaction with the immune system. Again, we construct a simple toy model to illustrate our point: We will assume that only two amino acids are possible at a given position: Leu and Met.

With the immune system in mind, one might assume that a codon has an extra selective advantage when it is the result of a missense mutation in the recent past. This effect can be modeled most simply by assuming that only missense mutations survive. This amounts to defining one time step as the time required for the induced immune response to eliminate (almost) entirely a detected pathogen, or about two weeks.
Of the six codons that code for Leu (CTN and $TTPu$), only CTG and TTG can mutate to ATG which codes for Methionine. Starting once again with all Leu codons equally represented, after one time step all codons which are not able to mutate are detected by the immune system and destroyed; the population is thus reduced to ATG, which is generated as a mutant from CTG or TTG. At future generations we will find this that Leu is always coded as CTG or TTG, which originates from mutations of the Met codon. Notice that these codons are winners because they are mutation targets, not because they have better adaptability properties. Yet, obviously, since mutations are reversible it also happens that these same codons are precisely those which have the ability to mutate non-synonymously, thereby escaping detection by the immune system.

This example shows how adaptation can benefit from the apparently trivial fact that the sequences that are most likely to be reached from a precursor are also those which are best able to mutate.

Of course these examples are extremely simplified and are only intended to illustrate our point; a more serious “genetic algorithm” model was constructed to take into account the finite size effects, including neutral drift, and a more realistic evaluation of the selective advantage of non-synonymous mutations at recognition sites. The description of this model and its results lies beyond the scope of this paper, but will be published elsewhere (Mora and Waelbroeck 1997). Suffice it to say in these lines that the selection of codons with better mutability properties was confirmed with the genetic algorithm model, in spite of the fact that the fitness function was strictly symmetric with respect to different codons that code for the same amino acid.

Nucleotide sequences

We have based our study on the aligned nucleotide sequences from 286 examples of
the HIV env gene, compiled by Myers in 1994. Some of the aligned sequences in this database are substantially shorter or include large gaps. This indicates that, besides the point mutations that we are considering here, the evolution of those sequences involved also substantial deletion events. Large deletions are likely to affect important structural aspects of the protein, and this in turn can be expected to affect the issue of which mutations are allowed, and vice-versa, which are negatively selected. In particular, it may “freeze in” some of the amino acid substitutions that have occurred in the past, blocking the possibility of a reverse mutation that would take a codon back to its precursor. Since our argument to the effect that evolution favours adaptation is based on the idea that point mutations of codons can in principle be reverted, the effect we are looking for will be clearest if we limit to analyzing those sequences that are most similar in length to the consensus. For this reason we have discarded the short sequences from the set. We also found 9 other sequences with one or two premature termination codons; these could be either errors in the dataset or real mutations with the same effect as the previously-discussed large deletions; in both cases the safer approach was once again to remove the sequences from the dataset.

Of the 286 sequences, 61 involved large gaps and were deleted and as mentioned 9 more contained premature termination codons, leaving 216 complete sequences. All remaining sequences still included some gaps relative to the alignment of 3189 nucleotide sites, but were retained since small gaps are less likely to alter substantially the structure of the protein or make most prior mutations irreversible. The existence of gaps implies that the number of codons observed at any given position varies, up to a maximum of 216.

The overall codon usage patterns in these sequences is represented in Table 1. The A-pressure is evident, as well as the usual bias against CpG codons in lentiviridae.

We have also represented the number of different amino acids observed per position, averaged by segments of 20 positions, as a measure of the variability different segments of the env protein. One can note clearly the conserved regions corresponding to the CD-
4 binding site and the fusogenic domain, which mediate essential functions of the virus: The variability in both cases is extremely low (positions 560-580 and 680-780, Figure 2). Conversely, the V3 loop region (positions 380-540) stands out as one of two hypervariable regions, together with the segment 140-280 in gp120.

Another measure of variability is that suggested by the work of Almagro, Lara Ochoa and Vargas-Madrazo (Almagro et al. 1995). They showed that key positions in the complementarity determining regions that are responsible for maintaining canonical structures are characterised by an inverse power law distribution of amino acids. At other positions an exponential distribution is observed, suggesting that negative selection is at work against acids with different properties of hydrophobicity and volume. The number of positions in each 20-position interval where we could identify a power law distribution of amino acids, was represented in Figure 3. In this case the structural regions identified previously are even more clearly distinguished, as the number of power law positions in those regions is precisely zero.

Probability of origin and “mutability”

We wish to analyse which codons are observed at each position, and for each codon, where it came from (probability of origin) and how can it mutate (probability of target).

- *probability of origin.* Let \(n_i \) denote the frequency of occurrence of each codon at a given position, \(i = 1, \cdots, 64 \). We will need the “mutability matrix” \(C_{ij} \) whose entries are equal to one if there is a point mutation which takes codon \(i \) to codon \(j \), and zero otherwise. With no other information at our disposal we will assume that the precursor to each codon \((i) \) was one of the codons that is still observed at that position in one of the sequences in the dataset. In other words, a codon \(j \neq i \) is a candidate to have been the precursor to \(i \) if \(n_j > 0 \) and \(C_{ij} = 1 \). If there is more than one candidate, the probability of each
possible precursor is taken to be proportional to n_j, for each j amongst the candidates. The probability that the codon i originated from a particular *amino acid* is the sum of the precursor probabilities over all j's which code for this amino acid. We will call this the *probability of origin*. For example, for the codon ATG (Met) we have

$$P(\text{origin}(ATG) = \text{Ile}) \equiv \frac{n_{\text{ATA}}}{n_{\text{tot}}} + \frac{n_{\text{ATC}}}{n_{\text{tot}}} + \frac{n_{\text{ATT}}}{n_{\text{tot}}},$$

where n_{tot} denotes the sum of the frequencies of occurrence of all 9 codons which can mutate to ATG with a single point mutation. In general,

$$P(\text{origin}(i) = X) \equiv \sum_{j \in X} c_{ij} \frac{n_j}{n_{\text{tot}}},$$

$$n_{\text{tot}} = \sum_j c_{ij} n_j,$$

where we used the notation $j \in X$ for the codons j that code for the amino acid X. The probability of synonymous origin is represented in [Figure 4] as a function of the position along the sequence.

To analyse the possible mutation targets of a given codon again we will assume that only single point mutations occur (which is reasonable in view of the absence of double changes in *in vitro* studies of point mutations (Fitch 1971); there are nine possible point mutations of any codon, some of which will obviously violate constraints on vital functions of the protein, as for example for any mutation to one of the termination codons. When the target is not a termination codon it codes for an amino acid, which may or may not be the same as before the mutation. The probability that a particular amino acid is the mutation target of a given codon is the number of codons for this amino acid that can be reached from the original codon, divided by 9.
\[P(\text{target}(i) = X) \equiv \sum_{j \in X} \frac{C_{ij}}{9}. \]

In the following sections we will also need a measure of distance to quantify the difference between two amino acids. To this end we will use the Euclidean distance in hydrophobicity and volume (Miyata 1979). This is one of the more rudimentary measures and surely not the top of the line from the point of view of secondary structure analysis; however, it has the virtue of being simple and producing a clear categorization of the 20 amino acids into six groups.

Combining the definitions of the probability of origin and probability of target with Miyata’s distance, we will consider histograms which represent the probability of origin (target) as a function of distance. The probability of target histogram for a random sequence of equiprobable nucleotides is given in [Figure 5a], as a meter stick to compare results later on. The first bin consists in the average probability that the mutation target is a synonym. The second bin is the probability that the target is a different amino acid with a distance between 0 and 1. The third bin corresponds to distances between 1 and 2, the fourth considers targets with distances between 2 and 3, and so on. The sum of all bins does not quite add up to one because we are not representing the cases when the target is a termination codon. When the synonymous codons are taken to be equiprobable but the amino acid distribution is the same as for the env protein, one obtains [Figure 5b]. It is worth noting that the amino acid usage favours non-silent mutations to similar target amino acids over silent mutations (first three bars).

Results

The probability of a synonymous origin was computed for each observed codon at every position. When the precursor is not known the probability of origin cannot be determined;
these cases are not considered in the statistics to be presented below. When the probability of origin could be determined, we considered in particular the probability that the precursor was a synonym; we will refer to this below as the *probability of synonymous origin*. This quantity was averaged over segments of 60 nucleotide sites. The results are represented in [Figure 6] (upper line). Several facts concerning the structure of the protein can be clearly noted.

- The first important hypervariable region, from positions number 140 to 280, is characterised by a low probability of synonymous origin, as is the V3 loop region (380-560).

- These two hypervariable regions are separated by a region in gp120 which is characterised by both a low variability and a high probability of synonymous origin. Likewise for the part of gp120 nearest to the NH_2 termination (positions 1-140).

- Sharp peaks at positions 560-580 and 680-780 imply a high probability of synonymous origin in the conserved regions corresponding to the CD4 binding site and the fusogenic domain and surrounding region.

- In the remainder of the sequence, one notes an alternance of variable regions with conserved regions, with a clear preference for a synonymous origin in conserved regions, and vice versa, a low probability of synonymous origin in the variable regions. One notes for example the short hypervariable region in gp41, pos. 800-820, and the transmembrane segment (860-890) where hydrophobic amino acids are dominant.

Next we consider the probability that the *target* following a point mutation is a synonym. In this analysis the nine possible point mutations of each codon are assumed to be equiprobable. The probability of a synonymous target is averaged over all codons observed in a segment of 60 nucleotide sites, whether or not its probability of origin is known. In spite of the different averaging sets the probability of a synonymous target (lower line in [Figure 6] is clearly correlated to the probability of a synonymous origin (upper line.
in [Figure 6]. In [Figure 7] we represented the two probabilities for each codon with a well-defined probability of origin, with no averaging whatsoever. Again the correlation is evident: on average, codons which originate from a synonym tend to have a higher probability to mutate to a synonym. Two horizontal lines can be clearly noted. One corresponds to the amino acids with complete third base degeneracy which have a probability of synonymous target equal to 1/3 regardless of the chosen codon. The other line, at the level 1/9, corresponds to amino acids which can be represented by two codons, i.e. where only third-base transitions are silent.

These results support our claim that the codons that are most likely to arise from a prior silent mutation are also those most likely to mutate to a synonym. Vice-versa, those that are more likely to arise from a missense mutation (e.g. due to the need to adapt to the immune system) are most likely to again mutate non-synonymously. This is true because point mutations are mostly reversible. Thus, regions that are required to be conserved develop a resistance to the high error rate of reverse transcription, while on the contrary segments which code for potential neutralizing epitopes develop an enhanced ability to generate non-synonymous mutations that allow the virus in vivo to escape detection by the immune system.

The probability of origin and probability of target are best represented in bar graphs, where one averages over regions of the env protein previously identified with respect to their function, but in exchange show more detailed information about which origins or targets are involved. Once again, the bars represent distance intervals of length one, where we are using Miyata’s Euclidean distance in hydrophobicity and volume. The first bar corresponds to silent mutations only.

For the first interval (positions 1-140), corresponding mostly to a conserved region near the NH$_2$ termination of gp120, the bar graphs [Figure 8a,b] are essentially undistinguishable from the average over the entire protein which we analyzed in the previous section.
[Figure 5b]. The probability of origin differs from the target distribution mostly by the
effect of negative selection against missense mutations at the conserved sites: since some of
the non-synonymous targets are rejected, the probability of a synonymous origin is greater
than the probability of a synonymous target. The negative selection is most pronounced
for distances greater than 2 (bars number 3 and up), indicating once again the importance
of structural constraints. Similar results are obtained for all other intervals except the two
hypervariable regions in gp120.

The two hypervariable regions which are known to be involved in the recognition of
the virus by T-cell receptors (particularly the V3 loop region), present a very different
situation. The bar graphs in both regions are very similar, so we will describe only the
first hypervariable region of gp120 as an example [Figure 9a,b]. The probability of a syn-
onymous origin is equal to 22%, precisely the same as the probability of a synonymous
target! This leaves only two possible hypotheses: either there is no negative selection
against missense mutations whatsoever, which seems hard to believe, or the negative selec-
tion at a relatively limited number of sites is compensated by a contrary positive
selection of non-synonymous mutations that help the virus escape the induced immune response,
at sites that are involved in one way or another with a neutralization epitope. Looking
at the complete histograms reveals that this second hypothesis is the correct one. The
mutation targets at distance greater than zero but less than two amount to 27% + 18 %
= 45% of the total; amino acids at distance 2 or greater are targeted 33% of the times.
The probability of origin is notably different: 52% of the precursor codons code for an
amino acid with similar hydrophobicity and volume properties, while only 26% originate
from amino acids with distances greater than 2. This shows that negative selection is at
work against targets which alter the amino acids’ properties substantially, since 33% of
the targets will have this property but only 26% are fixed. On the other hand, and even
more strikingly, the probability that a codon originates from a missense mutation with
distance less than two is greater than the corresponding target probability: this indicates that selection favours the most those mutations that alter the amino acid, but not so much as to violate structural constraints.

This shows that positive selection in favour of non-synonymous mutations can be observed through the patterns of codon usage. This claim is also supported by comparing the probability of synonymous origin for the different hypervariable regions which we indentified in the previous section [Figure 2]. The probability of synonymous origin in variable regions not related to neutralization epitopes, such as 800-820 in gp40, is not nearly as low as for the hypervariable regions in gp120. This indicates that in these variable regions one has weak structural constraints but not the positive selection in favour of missense mutations at potential neutralization epitopes.

Pretermination codons and the Modiano hypothesis

It is well worth recalling in this context Modiano’s proposal that codons capable of mutating to termination codons are disfavoured as an evolutionary strategy, to enhance the resistance to mutations (Modiano *et al.* 1981). This proposal is related to ours, although it is clearly less ambitious in its scope in that it refers only to one particular example of how the choice between synonymous codons can help to improve the mutability properties of a gene. Modiano’s proposal stems from the observation (Fitch 1971) that such “pretermination codons” are significantly less frequent than their synonymous partners. However the proposal has been sharply criticised for several reasons. Kimura, insisting that this effect is the result of neutral drift and aminoacyl t – RNA relative abundances, has pointed out that the selective advantage of a bias against pretermination codons in species with a very low mutation rate would be extremely small, making it unlikely to impose itself against the neutral drift phenomenon: Indeed, random sampling dominates over selection.
when the effective selective coefficient of a genetic property is smaller than \(1/N_e\), where \(N_e\) is the effective breeding population (Kimura 1983). Moreover, in the absence of a specific mechanism to explain how the selective disadvantage of a pretermination codon can manifest itself one falls into the trap of causality violation: How can a codon “know” that it is a pretermination codon without actually falling victim to this fatal mutation, and once it has fallen victim to the mutation how can the genetic system recover the information that this was a bad choice of codon which should be avoided in the future?

Our arguments in this paper suggest a possible answer to both criticisms. Assuming for the argument’s sake that we are considering a position where the only selective constraint is the negative selection against termination codons, the number of possible precursors of any codon at that position would be equal to 9, except for the pretermination codons (TAG, TAA, TGA). On the other hand, pretermination codons can be reached by point mutation from a smaller number of possible origins: for example, TAT (Tyr) has only 7 possible precursors. So there is a mechanism whereby pretermination codons can be disfavoured without violating causality, furthermore this mechanism is independent of the mutation rate since a codon necessarily must have originated from some allowed precursor regardless of how long ago the mutation is expected to have occurred.

Yet it is clear that this argument is insufficient to explain the observed effect since it predicts a negative bias against pretermination codons of only -2/9 for TAC, TAT, TCA, TTA, TGG and -1/9 for TGC, TGT, TCG, TTG, CAA, CGA, CAG, AAA, AAG, AGA, GAA, GAG, GGA. So the much stronger bias noted originally by Fitch remains mostly unexplained.

The case of the AIDS virus is different from that considered by Fitch, and due to its high mutation rate it can be assumed to be a completely independent neutral drift experiment, so it is well worth analyzing once again the evidence for a bias against pretermination codons with this particular dataset. In a random sequence of equiprobable nucleotides,
the expected number of point mutations from an expressed codon to a termination codon would be 0.4219. Choosing codons at random but respecting the observed frequency of amino acids in the *env* protein, this number drops to 0.4058; an effect which can only be attributed to the selection of amino acids. For the actual codons from the *env* sequences, the average number of point mutations to termination codons is 0.4571! This indicates that other factors besides the risk of mutating to a termination codon are more significant. This should come as no surprise, since we have just shown evidence in favour of two such competing factors: The need to avoid missense mutations at conserved sites, and the positive selection of amino acid substitutions with distances less than two in the regions involved in the recognition mechanism.

Taking once again the *env* protein data by segments of 60 nucleotide sites, we computed the average at each position of the number of possible point mutations to a termination codon [Figure 10]. For the sake of comparison, we also computed the expected number of mutations to a synonym; with the exception of the recognition regions one can assume that such silent mutations are always fully accepted, contrary to mutations to a termination codon [Figure 11] (this differs from the probability of synonymous origin in the averaging method: here, we are considering a partition of the identity at each position, whilst in [Figure 6] we averaged over all codons which had a well-defined probability of origin regardless of how many times it was observed in the dataset). There are strong fluctuations of the probability to mutate to a termination codon, which do not appear to be correlated to the structure of the *env* protein.

The conclusion is that in considering arguments that refer to the mutability properties of a codon one must look at all nine possible mutations before deciding whether a particular codon should be considered to be “better” than other synonyms. The codon that has the best chance of mutating to another allowed amino acid and fool the immune system may well be that which most risks mutating to a termination codon.
Discussion

It is well worth recalling at this point recall Huynen’s argument, that neutral evolution could “facilitate adaptive evolution by increasing the number of phenotypes that can be reached with a point mutation from an original phenotype” (Huynen, 1996). His claim was that random drift eventually takes the genetic sequences to a point where a jump to a new phenotype can occur with a high probability. Our result, in short, is that random drift is not alone to carry out this task: selection forces also drive the system towards regions of the sequence space that have better “targets” following point mutations, thereby setting the stage for both a better degree of resistance to mutation and improved adaptation capabilities.

In our analysis we always considered that the nine possible point mutations of each codon are equiprobable, i.e. that there is no directional mutation pressure or bias of any kind. The reason for this attitude is that we wanted to prove that information about phenotypic mutations could be introduced via the choice of symmetry breaking alone, without the need to postulate directionality in the mutations themselves: Such a directionality in fact can exist and may play a selective function for example in avoiding pretermination codons. However, more complex phenotypic mutations cannot be prepared in this way without violating the “central dogma”: such mutations would require that directional mutation pressure be applied differentially to different segments of chromosome and not globally to the entire transcription process; the only way that this could only happen is if proteins could carry information about the environment into the transcription machinery. This applies to all global selective factors or other sources of directional mutation. A great variety of mechanisms have been proposed, most notably the selective effect of differential aminoacyl t-RNA availabilities, m-RNA secondary structure constraints, fluctuations in mononucleotide transcription enzyme availabilities that induces directional mutational pressure in viral RNA transcription: all of these mechanisms are likely to be important
in understanding the codon bias, but none of them can help to explain how evolution at phenotypic level can be organised to better meet the varying demands of the environment.

The mechanism we have proposed in this paper, on the other hand, can in principle allow genetic systems to organise phenotypic mutations without violating the central dogma, since no information is introduced at the level of mutations at the genotype.

To understand how this mechanism can be promoted from the level of codon bias, where it is very weak and not all that relevant as we saw in the results above, to the level of organizing complex phenotypic traits, requires one to consider the non-trivial computation carried out by the biochemical processes involved in interpreting the genetic information stored in the genotype, to define the shape and function of macroscopic phenotypic traits.

The concept of synonym must be generalised beyond the codon-aminoacid redundancy, for this mechanism to be useful towards understanding the self-organization of phenotypic evolution in complex organisms. The chromosome does not encode directly the size and shape of various parts of an organism, but instead an interpreter, embodied by biochemical processes in living cells (and amongst them), translates the genotype into a phenotype. In this translation there are many possible sources of redundancy, the codon bias being only a relatively insignificant example. There are more subtle forms of synonyms, involving issues from protein secondary structure to the machinery of gene regulation, for which symmetry breaking can be related to the emergence of an algorithmic language.

Considering the chromosome (genotype) as an algorithm, the interpreter is the ”computer” which executes the algorithm and the phenotype is the solution. In this sense, the breaking of symmetry is related to the selection of a language, where ”words” or ”grammatical rules” are selected in order to facilitate the search of well-adapted offspring, (i.e. successful mutants). The identification of such subunits of genetic information (Schmitt, 1996) to facilitate the search for mutant phenotypes is related to the standard A.I. prob-
lem of finding an approximate decomposition of an optimization problem into smaller subproblems. The condition for such a strategy to succeed is that when the solutions to the subproblems are reached then a good approximation to the global solution is reached as well. This requires that the fitness landscape should have a certain amount of structure; by unravelling this structure the emergent language results in an effective smoothing the induced landscape on genotypes. By “effective smoothing” we mean the population-dependent property that mutations at the level of the genotype have better mutation targets on average than in a random population. This implies first of all a solution of the brittleness problem, since the first task is that mutant algorithms be meaningful, and secondly an enhanced ability to produce genetic improvements (better algorithms). For the proposed mechanism to work it is necessary that the landscape be sufficiently correlated, and that the interpreter be well adjusted to the structure of the problem. An example would be the Kauffman’s Nk landscapes for $k < N$, together with his model of cellular automata for gene regulation. Another example (Angeles 1997) is the cell division interpreter in Kitano’s neurogenetic model (Kitano 1990, 1994).

In order that the symmetry breaking which necessarily reflects only past adaptation pressures should favour the search of future solutions, the evolution of the landscape must respect certain rules. Namely, the decomposition of the optimization problem into subproblems must be independent of time, so that the algorithmic language which has been successful in past should continue to be useful in future. This is the requirement of structural decomposition stability: The landscape evolution must preserve the structural decomposition of the adaptation problem.

One might conjecture that extinctions are related to a violation of structural decomposition stability. For instance, the algorithmic language guiding the search of new dinosaur species would presumably have been incapable of producing viable solutions in the environment which is assumed to have provoke their demise.
The symmetry breaking which we observe in these experiments support these ideas by suggesting that with a less trivial interpreter one might witness the emergence of an “algorithmic language” tuned to the interpreter.

We are currently analyzing several Genetic Algorithm models to this effect, (Holland, 1975; Goldberg, 1989), using certain classes of controlled rugged landscapes that are more realistic from a biological point of view (Kauffman, 1989,1990,1993). A related challenge is to exploit the emergence of a language to assist in the design of a new generation of genetic algorithms as an improved general purpose optimisation method. A key for success in this direction is the codification method: The interpreter should have the sufficient flexibility to be able to solve the decomposition problem, but not so much flexibility that it could solve any possible problem, since in that case the search space for the desired algorithmic language would be far too large. Another application of the language emergence is the development of an GA to perform complex computational tasks (Crutchfield 1994), such as combinatorics. Interesting applications may also follow in adaptive systems modelling where adaptability is an important property, for example the forecasting problem in financial markets.

Acknowledgements Most of the numerical results presented in this work were derived with a code which originated from the work of Sara Vera Noguez. We thank Juan Carlos Almagro, Germinal Cocho, Gustavo Martínez-Mekler, Chris Stephens and Magali Waelbroeck for many enlightening discussions, as well as to the entire Complex Systems group under NNCP (http://luthien.nuclecu.unam.mx/~nncp), for maintaining a stimulating research atmosphere. This work is supported in part by the DGAPA-UNAM.
REFERENCES

Almagro J C, Vargas-Madrazo E and Lara-Ochoa F (1995) Distributions of the Use Frequencies of Amino Acids in the Hypervariable Regions of Immunoglobulins. J Mol Evol 41: 98-103

Angeles O Stephens C and Waelbroeck H (1997) Emergence of algorithmic languages in genetic systems. National University of Mexico Preprint ICN-UNAM-97-08 (adap-org/97-08-001)

Crutchfield J P (1994) The Calculi of Emergence: Computation, Dynamics and Induction. Physica D 75: 11-54

Fitch W M (1971) Rate of Change of Concomitantly Variable Codons. J Mol Evol 1: 84-96

Fitch W M (1980) Estimating the Total Number of Nucleotide Substitutions Since the Common Ancestor of a Pair of Homologous Genes: Comparison of Several Methods and Three Beta Hemoglobin Messenger RNA’s. J Mol Evol 16:153-209

Goldberg D E (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading, MA.

Grantham R (1980) Workings of the Genetic Code. Trends in Biochemical Sciences 5:327-331

Holland J H (1975) Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA.

Huynen M (1996) Exploring Phenotype Space Through Neutral Evolution. J Mol Evol 43: 165-169

Ikemura, T (1981) Correlation between the Abundance of Escherichia coli Transfer RNAs and the Occurrence of the Respective Codons in its Protein Genes: A Proposal for a Synonymous Codon Choice that is Optimal for the E. coli Translational System. J Mol
Evol 151: 389-409

Jermiin L S et al. (1996) Unbiased Estimation of Symmetrical Mutation Pressure from Protein-Coding DNA. J Mol Evol 42: 476-480

Kauffman S A (1989) Adaptation on rugged fitness landscapes, in: Lectures in the Sciences of Complexity. D. Stein (ed.) (Reading, MA, Addison-Wesley) pp. 527-618

Kauffman S A (1990) Dyanamics of Evolution. Lecture at the Workshop Complex Dynamics and Biological Evolution. Hindsgavl, Physica D42:135

Kauffman S A (1993) The Origins of Order. Self-Organization and selection in Evolution. Oxford University Press, New York, Oxford

Kimura M (1983) The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge

Kitano H (1990) Designing neural networks using genetic algorithms with graph generation system. Complex Syst. 4: 461-476

Kitano H (1994) Neurogenetic learning: an integrated method of designing and training neural networks using genetic algorithms. Physica D 75: 225-238

Miyata T, Miyazawa S and Yasunaga T (1979) Two Types of Amino Acid Substitutions in Protein Evolution. J Mol Evol 12:219-236

Miyata T and Yasanuga T (1980) Molecular Evolution of mRNA: A Metho for Estimat-ing Evolutionary Rates of Synonymous and Amino Acid Substitutions from Homologous Nucleotide Sequences and Its Applications. J Mol Evol 16: 23-36

Miyata T, Yasanuga T and Nishida T (1980) Nucleotide Sequence Divergence and Func-tional Constraint in mRNA Evolution. Proc. Natl. Acad. Sci. USA 77:7328-7332

Modiano, G, Batistuzzi, G and Motulsky, A G (1981) Nonrandom Patterns of Codon Usage and of Nucleotide Substitutions in α- and β-globin genes: an Evolutionary Strategy
Reducing the Rate of Mutations With Drastic Effects? Proc. Natl. Acad. Sci. USA 78:1110-1114

Mora Vargas J, Stephens C and Waelbroeck H (1997) Symmetry Breaking and Adaptation: Evidence From a “Toy Model” of a Virus. National University of Mexico Preprint ICN-UNAM-97-10 (adap-org/97-07)

Nowak M A (1992) Variability of HIV Infections. J. theor. Biol. 155: 1-20

Oliver, J L and Marín, A (1996) A Relationship Between GC Content and Coding-Sequence Length. J Mol Evol 43:216-223

Schmitt A.O. et al (1996) The modular structure of informational sequences. Biosystems 37, pp. 199-210

van Hemert F J and Berkhout B (1995) The Tendency of Lentiviral Open Reading Frames to Become A-Rich: Constraints Imposed by Viral Genome Organization and Cellular tRNA Availability. J Mol Evol 41:132-140
FIGURE CAPTIONS

Figure 1 The evolution of the codon abundance for the amino acid *leucine* is represented in a simple model where all six possible codons for this amino acid have the same fitness value and the codons are subject to single point mutation only. The codons $CTPy$ (upper line) are favored because they are most easily reached from mutations of other leucine codons. For the same reason they are also more resistant to point mutation, as four of the nine possible point mutations produce other leucine codons. The least mutable codons are $TTPu$, which allow only two possible silent mutations (lower line). Their relative abundance drops to about half that of $CTPy$ codons. This illustrates our main point, that synonyms are not equal in molecular evolution, because the more “mutable” ones have an effective selective advantage in the long run due to their ability to generate successful offspring.

Table 1 The codon usage patterns are shown for the AIDS *env* data considered in our analysis. The different groups of amino acids with similar properties of hydrophobicity and volume are grouped together. Counterclockwise from the upper left corner, we find the following groups: 1 (special), 4B (large hydrophobic), 4A (small hydrophobic), 2 (neutral), 3A (small hydrophilic) and 3B (large hydrophilic).

Figure 2 The number of amino acids observed per position, averaged by intervals of 20 positions, is represented. The two peaks are both in the *gp120* segment of the protein, the second one being the V3 loop region.

Figure 3 The average number of positions for which the distribution of amino acids
matches a power law distribution is represented. The two peaks again correspond to exposed parts of gp120, whilst structural regions of the env protein such as the fusogenic domain (680-780) are clearly identifiable by the absence of power-law distributions.

Figure 4 The probability that a codon for an amino acid A originated by point mutation from a precursor that coded for an amino acid B is given, as a function of the distance between these two amino acids. In the bar graph, the first bar corresponds to distance zero, i.e. it is the probability of origin by silent mutation. The next bars are for unitary distance intervals starting from the interval $(0, 1]$. Miyata’s Euclidean distance in hydrophobicity and volume was used.

Figure 5 The probability of a target by point mutation is represented as a function of the Miyata distance between the two amino acids, $d(A, B)$. Again, the first bar in these graph correspond to silent mutations while the following bars represent unitary distance intervals starting from the interval $d(A, B) \in (0, 1]$. In Fig. 5a the target probability is given for a random sequence of equiprobable nucleotides; in Fig. 5b the actual amino acid distribution of the env protein was used but codons were chosen at random among the synonyms that code for each amino acid. Comparing the first three bars of each graph, one notes that the amino acid usage favours non-silent mutations to targets with distances $d(A, B) \leq 2$ over neutral mutations.

Figure 6 The probability of a synonymous origin (solid line) and probability of synonymous target (dashed line) are represented, averaged over segments of 20 positions along the env protein. In the first case, one looks for possible point-mutation precursors of each codon in the dataset and estimates the probability that the precursor was a synonym. The
probability of a synonymous target is evaluated by assuming that the nine possible point mutations of a codon are equiprobable; for example for third-base degenerate codons the probability of a synonymous target is 3/9. The solid line is always above the dashed line because silent mutations are usually not rejected; the difference between the probability of a synonymous target and the probability of a synonymous origin indicates the degree of negative selection against missense mutations. One notes the correlation between the two lines, as well as the two windows with low probabilities of synonymous origin/target and weak negative selection in gp120 (positions 140-280 and 380-560).

Figure 7 The probability of synonymous target is plotted as a function of the probability of a synonymous origin. The correlation can be noted as an upward tilt of this cloud of points. The horizontal lines at synonymous target probability 1/9 and 3/9 are clearly related to amino acids with partial and full third base degeneracy.

Figure 8 The probabilities of origin (Fig. 8a) and target (Fig. 8b) are represented as a function of the Miyata distance between two amino acids, in the segment 1-140 from gp120 which does not interact directly with immunoglobulin complementarity determining regions. The negative selection against non-synonymous targets with distances greater than 2 is evident: 33% of all targets are amino acids with a distance greater than two but only 21% of the precursors of observed codons have that property (bars 4-7). Vice-versa, only 20% of all targets are synonymous but only 33% of codons originate from a silent mutation (first bars).

Figure 9 Similar graphs as for Figure 8 are given but for positions 140-280, an exposed hypervariable region of gp120. Here the probability that a codon originates from a non-
synonymous precursor with Miyata distance between 0 and 2 is greater than the corresponding target probability. This is evidence for positive selection in favour of non-silent mutations which help the virus escape detection by the immune system.

Figure 10 The average number of point mutations that would yield a termination codon is represented, as a function of the position along the sequence. There is no evidence for a bias against pretermination codons, nor any obvious relation between the shape of this curve and the structure of the protein. This indicates that Modiano’s proposed bias against pretermination codons is overruled by other factors, such as the bias in favour mutations to synonyms, or, in the recognition regions, to different amino acids with similar properties.

Figure 11 The average number of point mutations that would yield a synonymous codon is represented, as a function of the position along the sequence. The bias against “presynonymous codons” is particularly noteworthy in the ranges 240-260 and 500-520 in gp120, both of which are potential recognition sites.