Effects of Dietary Protein and Lipid Levels on Growth, Body Composition, Blood Biochemistry, Antioxidant Capacity and Ammonia Excretion of European Grayling (Thymallus Thymallus)

Samad Rahimnejad (samad.rahimnejad@gmail.com)
University of South Bohemia: Jihoceska Univerzita v Ceskych Budejovicich
https://orcid.org/0000-0001-8115-3292

Konrad Dabrowski
Ohio Department of Natural Resources

Marisol Izquierdo
Universidad de Las Palmas de Gran Canaria

Oleksandr Malinovskyi
University of South Bohemia: Jihoceska Univerzita v Ceskych Budejovicich

Jitka Kolářová
University of South Bohemia: Jihoceska Univerzita v Ceskych Budejovicich

Tomas Policar
University of South Bohemia: Jihoceska Univerzita v Ceskych Budejovicich

Research

Keywords: Thymallus thymallus, Protein/energy ratio, Growth, Fatty acid composition, Ammonia excretion

DOI: https://doi.org/10.21203/rs.3.rs-458116/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: This study evaluated growth, body composition, blood biochemistry, antioxidant capacity, innate immunity and ammonia excretion of European grayling (*Thymallus thymallus*) fed diets containing different protein and lipid contents. Six diets were produced to contain 30, 40 or 50% protein with 10 or 20% lipid and fed to triplicate groups (100 fish per replicate) of fish (25.2 ± 0.28 g) to visual satiety twice daily for 12 weeks.

Results: Fish growth was enhanced (*P* < 0.05) as protein increased from 30 to 40% and plateaued thereafter. Enhancing protein and lipid content of diet led to reduced feed intake and improved feed efficiency. Moreover, protein efficiency ratio increased at higher lipid level while lower values were recorded at higher protein levels. Increasing dietary lipid content led to the enhancement of viscoseromatic index and intraperitoneal fat ratio. An interaction of protein and lipid was found on whole-body lipid, and muscle lipid was responsive to dietary lipid level. Muscle ARA, EPA and n-6 LC-PUFA contents increased by enhancing dietary protein level. Moreover, increasing fat content of diet led to enhanced muscle linoleic acid, linolenic acid, MUFA, n-6, DHA/EPA and n-6/n-3. However, EPA, DHA, n-6 LC-PUFA, n-3, n-3 LC-PUFA and EPA/ARA decreased at higher dietary lipid level. Serum triglyceride (TG) and lactate dehydrogenase (LDH) activity decreased as dietary protein level increased while an opposite effect was observed for cholesterol (CHO) concentration. Increasing fat content of diet led to enhanced serum TG, CHO and glucose concentrations and reduced alanine aminotransferase, aspartate aminotransferase and LDH activities. Serum malondialdehyde concentration was enhanced by increasing both dietary protein and lipid contents. Furthermore, serum myeloperoxidase activity was enhanced at higher dietary lipid level. Water total ammonium nitrogen (TAN) concentration was measured after 5 and 24 h of last feeding, and the results indicated the reduction of ammonia excretion as dietary lipid content increased.

Conclusions: These findings suggest that 40% dietary protein can support optimal growth of juvenile European grayling and increasing lipid content from 10 to 20% can improve feed utilization and reduce ammonia excretion to the rearing water.

Background

Maximizing fish growth performance while reducing the production costs is the key to profitable aquaculture. Feed cost accounts for over 50% of the total expenses [1], and protein is the most costly feed ingredient particularly in carnivorous fish feed which should contain 40-60% protein [2]. Accordingly, determination of nutritional requirements of any new species is necessary for formulation of cost-effective aquafeed.

Protein is not only essential for somatic growth but also required for tissues maintenance, and production of many key components such as hormones, enzymes and antibodies [3]. Fish utilizes protein as a source of energy preferentially to lipid and carbohydrate [4], but its catabolism for energy production rather than being used for tissue synthesis increases the feed cost and leads to higher excretion of ammonia to the rearing water [5] which adversely impacts fish feed consumption and growth [6]. The efficient utilization of dietary protein not only relies on quantity and quality of dietary protein but also on sufficient supply of lipid and carbohydrate as energy sources [7]. Considering the lower ability of carnivorous fish in metabolizing carbohydrates, lipids as energy-dense nutrient are better utilized as energy source by carnivorous fish [8]. On the other hand, lipids play crucial roles in fish growth and health by providing essential fatty acids [9], and participating in uptake, transport and metabolism of fat-soluble vitamins and carotenoids [10]. It has been shown that adequate lipid supplementation in the feed can prohibit using protein for energy production [9]. However, dietary lipid level could be increased up to a certain level beyond which undesirable effects could be attained such as lipid accumulation in the body and reduced growth performance resulting from the lack of essential nutrients due to reduced feed intake [11]. It is believed that evaluation of the optimal ratio of dietary protein to energy is a more logic way of determining fish protein demand than quantifying merely the crude protein requirement [2] for production of efficient and environmentally-friendly aquafeed.

European grayling (*Thymallus thymallus*) belongs to Salmonidae family which inhabits the waters of central, northern and north-eastern Europe. Its population has dwindled mainly due to the deterioration of its habitat, water contamination, bird depredation and overfishing [12–15]. Accordingly, conservation programmes have been started to rehabilitate its stocks through releasing cultured fingerlings. However, the lack of information about its nutritional requirements remains as a major constraint to formulation of nutritionally adequate feed for this species. This study aimed to assess growth, body composition, blood biochemistry, antioxidant activity, innate response and ammonia excretion of European grayling.

Materials And Methods

Test diets

Six diets were prepared with varying protein (30, 40 and 50%) and lipid (10 and 20%) contents with protein to energy ratios ranging from 13.6 to 24 g MJ⁻¹ (Table 1). Fish meal and soy protein concentrate were used as the protein sources and a mixture of fish oil and soybean oil were used as the lipid sources. The experimental diets were prepared following the procedures described in our previous study [16].

Fish rearing

Grayling larvae were obtained from local hatchery of Šumava Natural Park (Borová Lada, Czech Republic), and they were cultured for three months in an experimental Recirculating Aquaculture System (RAS) under controlled conditions at Faculty of Fisheries and Protection of Waters, University of South Bohemia (FFWP, USB) (Vodnany, Czech Republic). Prior to starting the trial, the fish were moved and kept in 450-l tanks in another RAS (FFWP, USB) for 4 weeks and fed a commercial diet (protein: 55%, lipid: 16%) to acclimatize them to the rearing conditions. Then, 1800 fish of similar size (25.2 ± 0.28 g) were distributed into eighteen 450-l tanks (100 fish/tank) containing 350 liters of freshwater and fed the test diets to satiation for 12 weeks. Water temperature, pH and dissolved oxygen (DO) concentration were recorded daily during the experiment and their values were 16.5 ± 0.03 °C, 7.05 ± 0.02 and 11.7 ± 0.05 mg l⁻¹, respectively. Water nitrite (NO₂⁻) and total ammonia (TAN) concentrations were measured three times a week and estimated at 0.44 ± 0.03 mg l⁻¹ and 0.27 ± 0.01 mg l⁻¹, respectively. The photoperiod was kept at a 12:12 light/dark cycle.
Sampling protocol

At the end of the feeding test, fish number and bulk weight were determined for estimation of survival rate and growth performance. Five intact fish from each tank were randomly captured and stored at -20 °C for proximate composition analysis. Also, dorsal muscle samples were collected from five fish per tank for proximate and fatty acid composition analyses. Blood was collected from six fish per tank with 3-ml syringes after anesthetizing (200 mg 1⁻¹ of 2-phenoxyethanol) and left to clot at 4 °C for 24 h. Then, the samples were centrifuged at 5000 × g for 10 min at 4 °C and the serum was separated and stored at -80 °C for analyses of blood biochemical, antioxidant and innate immune parameters. Total length, individual weight, and viscera, liver and intraperitoneal fat weights of 10 fish from each tank were recorded to estimate condition factor (CF), viscerosomatic index (VSI), hepatosomatic index (HSI) and intraperitoneal fat ratio (IPF). All the fish were starved for 24 h before handling to reduce stress on fish.

Analytical methods

Whole-body and muscle composition

Crude protein was measured based on the Kjeldahl technique [17], crude lipid according to Folch et al. [18], ash by combustion at 600 °C [17], and moisture content by drying at 110 °C [17]. Fatty acid methyl esters of the lipids were obtained by transmethylation [19], which were subsequently separated by gas liquid chromatography as explained earlier [20].

Blood biochemistry, immunity, and antioxidant activity

Serum biochemical indices including total protein (TP), triglyceride (TG), total cholesterol (CHO), glucose (GLU), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were measured using kits with a VET-TEST 8008 analyzer (IDEXX Laboratories Inc., Maine, USA). Superoxide dismutase (SOD) activity was determined using a SOD Assay Kit (Sigma, 19160). Commercial assay kits were used for measurement of catalase (CAT) activity (ThermoFisher Scientific, CA, USA) and malondialdehyde (MDA) concentration (Sigma-Aldrich, Missouri, USA). A turbidimetric method was used for determination of lysozyme activity according to Swain et al. [21]. MPO activity was determined as described by Quade and Roth [22]. Serum antiprotease activity was quantified based on Ellis [23] with some modifications [24].

Plasma ammonia concentration and total ammonia nitrogen (TAN) excretion to water

To evaluate the effects of dietary treatments on plasma ammonia concentration, blood was collected from caudal vein of three fish per tank using heparinized syringes after 5h of last feeding. Then plasma was separated by centrifugation at 5000 × g for 10 min at 4 °C and kept at -80 °C until analysis. Plasma ammonia concentration was determined by the VET-TEST 8008 analyzer using a commercial kit.

To assess the effects of dietary treatments on fish ammonia excretion, 5 fish were randomly captured from each tank and moved to eighteen 40-l glass aquaria containing 25 liters of freshwater. The fish were adapted to the new system for two days and fed with the same test diets. On the 3rd day, the uneaten feed and fecal materials were syphoned out after feeding, water flow was stopped, and TAN concentration was measured after 5 and 24 h. The TAN concentration was measured with a water analyzer (HANNA Instruments Inc., RI, USA) using kits. The following equation was used for the calculation of ammonia excretion [25]:

\[\Delta N-NH_3 = \Delta N-NH_3 \times v / (m \times t) \]

where \(\Delta N-NH_3 \) is the change in total ammonia concentration during each test period; \(v \) is the water volume (l); \(m \) is the fish biomass (kg); and \(t \) is the test period (h).

Water temperature, pH and DO were measured at both sampling points and were evaluated at 16.4 ± 0.05 °C, 7.03 ± 0.01 and 8.02 ± 0.12 mg 1⁻¹ at 5 h, and 16.5 ± 0.08 °C, 7.41 ± 0.03 and 8.82 ± 0.04 mg 1⁻¹ at 24 h after last feeding.

Statistical analysis

All the data are shown as mean ± SE. Mean values of parameters were analyzed by one- and two-way ANOVAs to determine the significant differences due to the dietary levels of protein, lipid and their interaction. When ANOVA identified differences among groups, the difference in means was made with Tukey's test. Statistical significance was determined at \(P \leq 0.05 \). All statistical analyses were carried out using Statistica version 13.5.0.17 (TIBCO Inc., CA, USA).

Results

Growth of grayling juveniles was only responsive to dietary protein content (\(P \leq 0.05 \)) but not to the fat content or their interaction (Table 2). As dietary protein level elevated from 30 to 40%, growth performance enhanced significantly but no further improvement could be found at higher protein level. Feed intake (FI) decreased markedly as dietary protein and lipid contents increased. Feed efficiency (FE) was improved with enhancement of feed protein and lipid. The highest protein efficiency ratio (PER) was found at the 30% protein level and increasing dietary lipid content led to the remarkable enhancement of PER. No significant effect of dietary treatments could be found on fish survival rate which ranged from 98 to 100% (Table 2). CF and HSI remained unaffected whereas VSI and IPF increased drastically by enhancing dietary fat content (Table 3).

A significant interaction of protein and lipid was found on whole-body lipid content. Moreover, enhancing lipid content of feed led to reduced whole-body moisture content (Table 4). Dorsal muscle lipid content increased by the increment of feed fat content, and muscle ash increased as dietary protein increased (Table 5). Fatty acid (FA) composition analysis revealed that oleic acid (OA) (18:1n-9), palmitic acid (16:0), linoleic acid (LA) (18:2n-6) and docosahexaenoic
acid (DHA) (22:6n-3) were the dominant FAs in the dorsal muscle regardless of dietary treatments (Table 6). Increasing protein content of feed was accompanied with enhancement of 14:0, 14:1n-7, 15:0, 16:0, 16:1n-7, 16:2n-4, 17:0, 16:4n-3, 18:0, 18:1n-7, 18:2n-9, 18:2n-6, 18:4n-1, 20:1n-5, 20:2n-9, arachidonic acid (ARA) (20:4n-6), eicosapentaenoic acid (EPA) (20:5n-3), docosapentaenoic acid (22:5n-6), sum of saturated fatty acids (SFA) and n-6 long chain polyunsaturated FA (n-6 LC-PUFA). However, sum of monounsaturated FAs (MUFA), n-6, DHA/EPA and n-6/n-3 were decreased at higher protein levels. Muscle OA, LA, linolenic acid (LNA) (18:3n-3), 18:3n-1, 20.0, 20:1n-7, 20:2n-6, 20:3n-3, MUFA and n-6/n-3 contents, and ratios of DHA/EPA and n-6/n-3 increased at higher dietary lipid level. Whilst decreased EPA, DHA, n-6 LC-PUFA, n-3, n-3 LC-PUFA and EPA/ARA were found at higher dietary lipid level.

Increasing dietary protein level led to the reduction of serum TG concentration and enhancement of CHO level, and their values increased significantly at higher dietary lipid level. The lowest glucose level was found at 40% protein level which differed significantly from the other groups, and its value increased at higher lipid level. Serum ALT and AST activities were only affected by lipid level where lower activities were recorded at higher lipid level. Serum LDH activity decreased as feed protein and lipid contents increased. However, serum total protein level and ALP activity did not vary among different experimental groups (Table 7).

Numerically higher serum SOD, MPO and antiprotease activities were found at 40% protein level although the differences were not statistically different. Serum MDA concentration was significantly enhanced by increment of lipid level and increasing protein content from 30 to 50%. Moreover, increasing dietary lipid content led to the enhancement of serum MPO activity. No specific trends were observed for serum CAT and lysozyme activities (Table 8).

Water TAN concentration after 5 and 24 h of last feeding was increased at higher protein levels while increasing dietary lipid level reduced its concentration at both sampling points. Plasma ammonia concentration showed a similar trend to that of water TAN concentration without significant difference among treatments (Table 9).

Discussion

The results revealed that growth rate of grayling was influenced by protein content of feed and that 40% protein produces a comparable growth rate to the group fed the diet with 50% protein. Similarly, Lee and Kim [26] found no significant improvement in growth performance of masu salmon (Oncorhynchus masou Brevoort) when protein content was increased from 40 to 50%. Also, enhancing protein content of feed from 44 to 54% at 15 and 20% fat levels did not result in better growth performance of Arctic Char (Salvelinus alpinus L.) [27]. It has been shown that 17 to 26 g MJ⁻¹ is the desirable range of P/E ratio for the most fish species [8]. In the current study, the highest growth rate (266% WG) was obtained at 50% protein and 20% lipid levels with P/E ratio of 22.1 g MJ⁻¹ which was comparable to the growth rate of the group received the diet containing 40% protein and 20% lipid (257% WG) with P/E ratio of 18 g MJ⁻¹. Similarly, Azevedo et al. [28] found no significant improvement in growth performance of Atlantic salmon (Salmo salar) when P/E ratio increased from 18 to 20 g MJ⁻¹. Also, Green and Hardy [29] found similar growth performance for rainbow trout (Oncorhynchus mykiss) fed diets with P/E ratios of 18, 22 and 24 g MJ⁻¹. Moreover, a Manchurian trout (Brachymystax lenok) study showed that although the best growth rate occurs at 50% protein and 8% lipid with P/E ratio of 29.36 g MJ⁻¹, similar WG and SGR could be achieved at 45% protein and 16% lipid levels with P/E ratio of 23.68 g MJ⁻¹ [30].

Fish FI decreased at higher protein and lipid levels which agrees with studies on bagrid catfish (Pseudobagrus fulvidraco) [31], brown-marbled grouper (Epinephelus fuscoguttatus) [32] and hybrid grouper (Epinephelus x lanceolatus) [1]. This could be due to increased feed energy content as lesser feed would be consumed by fish to meet its energy requirement [6]. Moreover, when fish are offered diets with a protein content below the requirement level, they would consume more feed to gain sufficient protein needed for supporting growth and metabolism while at optimum or higher dietary protein levels lesser diet would be needed. Our results revealed the enhancement of FE as protein and lipid levels increased which is consistent with studies on masu salmon [33], Manchurian trout [30], brown trout (Salmo trutta fario) [34], Japanese seabass (Lateolabrax japonicus) [7] and black seabass (Centropomus striata) [35]. Xu et al. [30] showed that enhancing fat content of feed from 8 to 16% enhances PER in Manchurian trout at dietary protein levels of 40-45%. Moreover, Lee and Kim [33] showed the significant improvement of PER in masu salmon by increasing energy content of diet from 19 to 21 MJ kg⁻¹ at protein levels of 30, 40 and 50%. Similarly, in this study PER was improved by increasing dietary lipid level from 10 to 20% corresponding to 2 MJ kg⁻¹ increase in dietary energy content. Improvement of PER at higher dietary fat level has also been shown in pikeperch (Sander lucioperca) [36], Japanese seabass [7] and yellow drum (Nibea albiflora) [37]. On the other hand, in this study PER showed a decreasing tendency by increasing dietary protein level which is parallel to earlier findings in pikeperch [36], red-spotted grouper (Epinephelus akaara) [38] and hybrid grouper [1,10]. The underlying reason for the higher PER at lower dietary protein level could be the efficient utilization of protein at low protein levels [39]. However, no protein sparing effect of lipid could be found in this study as dietary lipid level did not influence fish growth performance. This is consistent with studies on sunshine bass (Morone chrysops × M. saxatilis) [40], red-spotted grouper [38], hybrid grouper [10] and hybrid snakehead (Channa maculata × C. argus) [41]. These findings may signify the lower ability of grayling juveniles in oxidizing lipids and using them as an energy source. This was confirmed by increased VSI and IPF at increased lipid level indicating the lipid accumulation in fish abdominal cavity rather than being oxidized for energy production.

Whole-body lipid content was impacted by interaction of protein and lipid and moisture content decreased by increasing fat content of diet. Moreover, muscle lipid concentration reflected the dietary fat content. Likewise, Lee and Kim [33] showed the reduction of whole-body moisture and increment of lipid content in masu salmon at increased dietary fat. Also, a rainbow trout study showed the enhancement of whole-body lipid and reduction of moisture content at increased lipid level [42]. Similar observations have been reported in Manchurian trout [30], giant croaker (Nibea japonica) [43] and Channa striata [44]. Ash content of muscle increased by increasing protein level and reflected the dietary ash content.

Dietary lipid level is one of the primary factors that influences the muscle fatty acid composition [45]. Increasing fat content of feed in this study resulted in reduced muscle ARA, EPA, DHA, n-6 LC-PUFA, n-3, n-3 LC-PUFA, and EPA/ARA ratio whereas an increasing trend was observed for LA, LNA, MUFA, n-6, and ratios of DHA/EPA and n-6/n-3. Similarly, Kim et al. [46] reported that higher fat content in the diet resulted in reduced EPA, DHA, n-3 PUFA and n-3 HUFA in far eastern catfish whole-body. A hybrid grouper study revealed only increased muscle LNA content at increased dietary fat level [1] which is consistent with the
Conclusions

These results suggest that 40% protein can support growth of European grayling with average body weight of 25 – 60 g, and increasing dietary fat content to 20% can enhance FE and PER. Moreover, increasing dietary fat content resulted in reduced stress indices such as ALT, AST and LDH activities, and decreased ammonia excretion to the rearing water.
Declarations

Ethics approval

All the experimental procedures were performed in compliance with valid legislative regulations in Czech Republic (law no. 166/1996 and no. 246/1992); the permit was issued to No. 2293/2015-MZE-17214 and No. 55187/2016-MZE-17214. All samplings were carried out with the relevant permission from the Departmental Expert Committee for Authorization of Experimental Projects of the Ministry of Education, Youth and Sports of the Czech Republic (permit no. MSMT 4394/2017-2).

Consent for publication

Not applicable.

Availability of data and materials

The datasets produced and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

There are no conflicts to declare.

Funding

This study was financially supported by the Ministry of Agriculture of the Czech Republic, project NAZV QK1920326, and by the Ministry of Education, Youth and Sports of the Czech Republic, project Biodiversity (CZ.02.1.01./0.0/0.0/16_025/0007370).

Authors contribution

Conceptualization, Validation, Visualization, Methodology: SR, KD, TP. Investigation: SR. Formal analysis, collection and interpretation of data: SR, MI. Software: OM. Manuscript drafting: SR. Review & editing: SR, KD, JK, TP. Funding acquisition, Project administration, Resources: TP.

Acknowledgments

The authors would like to express thanks to the technicians of Faculty of Fisheries and Protection of Waters for their contributions in running the feeding trial.

References

1. Rahimnejad S, Bang IC, Park JY, Sade A, Choi J, Lee SM. Effects of dietary protein and lipid levels on growth performance, feed utilization and body composition of juvenile hybrid grouper, Epinephelus fuscoguttatus × E. lanceolatus. Aquaculture. 2015;446:283–9.
2. NRC. Nutrient Requirements of Fish and Shrimp. Washington, DC, USA: National Academies Press; 2011.
3. Mir IN, Srivastava PP, Bhat IA, Jaffar YD, Sushila N, Sardar P, et al. Optimal dietary lipid and protein level for growth and survival of catfish Clarias magur larvae. Aquaculture. 2020;520:734678.
4. Walton MJ, Cowey CB. Aspects of intermediary metabolism in salmonid fish. Comp Biochem Physiol. 1982;73:59–79.
5. Wu X, Gatlin III DM. Effects of altering dietary protein content in morning and evening feedings on growth and ammonia excretion of red drum (Sciaenops ocellatus). Aquaculture. 2014;434:33–7.
6. Kaushik SJ, Medale F. Energy-requirements, utilization and dietary supply to salmonids. Aquaculture. 1994;124:81–97.
7. Ai QH, Mai KS, Li HT, Zhang CX, Zhang L, Duan QY, et al. Effects of dietary protein to energy ratios on growth and body composition of juvenile Japanese seabass, Lateolabrax japonicus. Aquaculture. 2004;230:507–16.
8. NRC. Nutrient Requirements of Fish. Washington, DC, USA: Natl Academy Press; 1993.
9. Lee SM, Jeon IG, Lee JY. Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli). Aquaculture. 2002;211:227–39.
10. Jiang S, Wu X, Li W, Wu M, Luo Y, Lu S, et al. Effects of dietary protein and lipid levels on growth, feed utilization, body and plasma biochemical compositions of hybrid grouper (Epinephelus lanceolatus × Epinephelus fuscoguttatus) juveniles. Aquaculture. 2015;446:148–55.
11. Ali MZ, Jauncey K. Approaches to optimizing dietary protein to energy ratio for African catfish Clarias gariepinus (Burchell, 1822). Aquac Nutr. 2005;11:95–101.
12. Carlstein M. Growth and survival of European grayling reared at different stocking densities. Aquac Int. 2004;3:260–264.
13. Koskinen MT, Primmer CR. High throughput analysis of 17 microsatellite loci in grayling (Thymallus spp. Salmonidae). Conserv Genet. 2001;2:173–7.
14. Susnik S, Berrebi P, Dovc P, Hansen MM, Snoj A. Genetic introgression between wild and stocked salmonids and the prospects for using molecular markers in population rehabilitation: the case of the Adriatic grayling (Thymallus thymallus L. 1785). Heredity (Edinb). 2004;93:273–82.
15. Üblein F, Jagsch A, Honsig-Erlenburg W, Weiss S. Status, habitat use, and vulnerability of the European grayling in Austrian waters. J Fish Biol. 2001;59:223–47.
16. Rahimnejad S, Lu K, Wang L, Song K, Mai K, Davis DA, et al. Replacement of fish meal with Bacillus pumilus SE5 and Pseudomonas aphidis ZR1 fermented soybean meal in diets for Japanese seabass (Lateolabrax japonicus). Fish Shellfish Immunol. 2019;84:987–97.

17. Association of Official Analytical Chemists: Official Methods of Analysis, 17th ed. Arlington: AOAC; 2002.

18. Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.

19. Christie WW. Gas Chromatography and Lipids. Glasgow: The Oily Press; 1989.

20. Izquierdo M, Watanabe T, Takeuchi T, Arakawa T, Kitajima C. Optimum EFA levels in Artemia to meet the EFA requirements of red seabream (Pagrus major). In: Takeda M, Watanabe T, editors. Status Fish Nutr Aquac. Tokyo: Tokyo Univ. Fisheries; 1990.

21. Swain P, Dash S, Sahoo PK, Routray P, Sahoo SK, Gupta SD, et al. Non-specific immune parameters of brood Indian major carp Labeo rohita and their seasonal variations. Fish Shellfish Immunol. 2007;22:38–43.

22. Quade MJ, Roth J. A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Vet Immunol Immunopathol. 1997;58:239–48.

23. Ellis A. Serum antiproteases in fish. In: JS, Stolen TC, Fletcher DP, Anderson BSR, van M WB, editors. Techniques in Fish Immunology. Fair Haven: SOS Publications; 1990.

24. Magnadottir B, Jonsdottir H, Helgason S, Bjornsson B, Jorgensen T, Pilstro L. Humoral immune parameters in Atlantic cod Gadus morhua L. I: the effects of environmental temperature. Comp Biochem Physiol. 1999;122:173–80.

25. Rahimnejad S, Lee KJ. Dietary valine requirement of juvenile red sea bream Pagrus major. Aquaculture. 2013;416-417:212-218.

26. Lee SM, Kim K. Effects of dietary protein and energy levels on growth, protein utilization and body composition of juvenile masu salmon (Oncorhynchus masou) Brevoort. Aquac Res. 2001;32:39–45.

27. Tabacheck JL. Influence of dietary protein and lipid levels on growth, body composition and utilization efficiencies of Arctic charr, Salvelinus alpinus L. J Fish Biol. 1986;29:139–51.

28. Azevedo PA, Bureau DP, Leeson S, Cho Y. Growth and efficiency of feed usage by Atlantic salmon (Salmo salar) fed diets with different dietary protein: Energy ratios at two feeding levels. Fish Sci. 2002;68:878–88.

29. Green JA, Hardy RW. The effects of dietary protein:energy ratio and amino acid pattern on nitrogen utilization and excretion of rainbow trout Oncorhynchus mykiss (Walbaum). J Fish Biol. 2008;73:663–82.

30. Xu GF, Wang YY, Han Y, Liu Y, Yang H, Yu SL, et al. Growth, feed utilization and body composition of juvenile Manchurian trout, Brachymystax lenok (Pallas) fed different dietary protein and lipid levels. Aquac Nutr. 2015;21:332–40.

31. Kim LG, Lee SM. Effects of the dietary protein and lipid levels on growth and body composition of bagrid catfish, Pseudobagrus fulvidraco. Aquaculture. 2005;243:323–9.

32. Shapawi R, Ebi I, Yong ASK, Ng WK. Optimizing the growth performance of brown-marbled grouper, Epinephelus fuscoguttatus (Forskål), by varying the proportion of dietary protein and lipid levels. Anim Feed Sci Technol. 2014;191:98–105.

33. Lee SM, Kim KD. Effects of dietary protein and energy levels on growth, protein utilization and body composition of juvenile masu salmon (Oncorhynchus masou) Brevoort. Aquac Res. 2001;32:39–45.

34. Wang C, Hu G, Sun P, Gu W, Wang B, Xu Q, et al. Effects of dietary protein at two lipid levels on growth, gonadal development, body composition and liver metabolic enzymes of brown trout (Salmo trutta fario) broodstock. Aquac Nutr. 2018;24:1587–98.

35. Alam MS, Watanabe WO, Carroll PM, Rezek T. Effects of dietary protein and lipid levels on growth performance and body composition of black sea bass Centropomus striatus (Linnaeus 1758) during grow-out in a pilot-scale marine recirculating system. Aquac Res. 2009;40:442–9.

36. Schulz C, Huber M, Ogunji J, Rennert B. Effects of varying dietary protein to lipid ratios on growth performance and body composition of juvenile pike perch (Sander lucioperca). Aquac Nutr. 2008;14:166–73.

37. Wang L, Hu S, Lou B, Chen D, Zhan W, Chen R, et al. Effect of Different Dietary Protein and Lipid Levels on the Growth, Body Composition, and Intestinal Digestive Enzyme Activities of Juvenile Yellow Drum Nibea albilora (Richardson). J Ocean Univ China. 2018;17:1261–7.

38. Wang JT, Han T, Li XY, Yang YX, Yang M, Hu SX, et al. Effects of dietary protein and lipid levels with different protein-to-energy ratios on growth performance, feed utilization and body composition of juvenile red-spotted grouper, Epinephelus aakaara. Aquac Nutr. 2017;23:994–1002.

39. Catacutan MR, Pagador GE, Teshima S. Effect of dietary protein and lipid levels and protein to energy ratios on growth, survival and body composition of the mangrove red snapper, Lutjanus argentimaculatus (Forskal 1775) fed at different dietary protein and lipid levels. Aquac Nutr. 2001;32:811–8.

40. Gallagher ML. Growth Responses, Tissue Composition, and Liver Enzyme Changes in Juvenile Sunshine Bass, Morone chrysops × M. saxatilis, Associated with Dietary Protein and Lipid Level. J Appl Aquac. 1999;9:41–51.

41. Zhang Y, Sun Z, Wang A, Ye C, Zhu X. Effects of dietary protein and lipid levels on growth, body and plasma biochemical composition and selective gene expression in liver of hybrid snakehead (Channa maculata × Channa argus) fingerlings. Aquaculture. 2017;468:1–9.

42. Yamamoto T, Unuma T, Akiyama T. The influence of dietary protein and fat levels on tissue free amino acid levels of fingerling rainbow trout (Oncorhynchus mykiss). Aquaculture. 2000;182:353–72.

43. Chai XJ, Ji WX, Han H, Dai YX, Wang Y. Growth, feed utilization, body composition and swimming performance of giant croaker, Nibea japonica Temminck and Schlegel, fed at different dietary protein and lipid levels. Aquac Nutr. 2013;19:928–35.

44. Hua K, Koppwe R, Fontanillas R. Effects of dietary protein and lipid levels on performance, body composition and nutrient utilization of Channa striata. Aquaculture. 2019;501:368–373.

45. Lopez LM, Durazo E, Teresa Viana M, Drawbridge M, Bureau DP Effect of dietary lipid levels on performance, body composition and fatty acid profile of juvenile white seabass, Atractoscincus nobilis. Aquaculture. 2009;289:101–5.
46. Kim KD, Lim SG, Kang YJ, Kim KW, Son MH. Effects of dietary protein and lipid levels on growth and body composition of juvenile far eastern catfish *Silurus asotus*. Asian-Australasian J Anim Sci. 2012;25:369–74.

47. Arslan M, Dabrowski K, Ferrer S, Dietrich M, Rodriguez G. Growth, body chemical composition and trypsin activity of South American catfish, surubim (*Pseudoplatystoma* sp.) juveniles fed different dietary protein and lipid levels. Aquac Res. 2013;44:760–71.

48. Thomassen MS, Bou M, Resje C, Ruyter B. Organ and phospholipid class fatty acid specificity in response to dietary depletion of essential n-3 fatty acids in Atlantic salmon (*Salmo salar* L.). Aquac Nutr. 2017;23:433–43.

49. Van Anholt RD, Spanings FAT, Koven WM, Nixon O, Wendelaar Bonga SE. Arachidonic acid reduces the stress response of gilthead seabream *Sparus aurata* L. J Exp Biol. 2004;207:3419–30.

50. Li P-Y, Wang J-Y, Song Z-D, Zhang L-M, Zhang H, Li X-X, et al. Evaluation of soy protein concentrate as a substitute for fishmeal in diets for juvenile starry flounder (*Platichthys stellatus*). Aquaculture. 2015;448:578–85.

51. Chen Y-J, Tian L-X, Yang H-J, Chen P-F, Yuan Y, Liu Y-J, et al. Effect of Protein and Starch Level in Practical Extruded Diets on Growth, Feed Utilization, Body Composition, and Hepatic Transaminases of Juvenile Grass Carp, *Ctenopharyngodon idella*. J WORLD Aquac Soc. 2012;43:187–97.

52. Du ZY, Liu YJ, Tian LX, Wang JT, Wang Y, Liang GY. Effect of dietary lipid level on growth, feed utilization and body composition by juvenile grass carp (*Ctenopharyngodon idella*). Aquac Nutr. 2005;11:139–46.

53. Jin Y, Tian L, Xie S, Guo D, Yang H, Liang G, et al. Interactions between dietary protein levels, growth performance, feed utilization, gene expression and metabolic products in juvenile grass carp (*Ctenopharyngodon idella*). Aquaculture. 2015;437:75–83.

54. Zhang J, Zhou F, Wang L, Shao Q, Xu Z, Xu J. Dietary Protein Requirement of Juvenile Black Sea Bream, *Sparus macrocephalus*. J WORLD Aquac Soc. 2010;41:151–64.

55. Li W, Wen X, Huang Y, Zhao J, Li S, Zhu D. Effects of varying protein and lipid levels and protein-to-energy ratios on growth, feed utilization and body composition in juvenile *Nibea diacanthus*. Aquac Nutr. 2017;23:1035–47.

56. Cao X-F, Liu W-B, Zheng X-C, Yuan X-Y, Wang C-C, Jiang G-Z. Effects of high-fat diets on growth performance, endoplasmic reticulum stress and mitochondrial damage in blunt snout bream *Megalobrama amblycephala*. Aquac Nutr. 2019;25:97–109.

57. Kikuchi K, Furuta T, Iwata N, Onuki K, Noguchi T. Effect of dietary lipid levels on the growth, feed utilization, body composition and blood characteristics of tiger puffer *Takifugu rubripes*. Aquaculture. 2009;298:111–7.

58. Wang L, Zhang W, Gladstone S, Ng WK, Zhang J, Shao Q. Effects of isonenergetic diets with varying protein and lipid levels on the growth, feed utilization, metabolic enzymes activities, antioxidative status and serum biochemical parameters of black sea bream (*Acanthopagrus schlegelii*). Aquaculture. 2019;513:734397.

59. Kasheff MA EI, Saad AS, Ibrahim SA. Effects of varying levels of fish oil on growth performance, body composition and haematological characteristics of Nile tilapia. 2011;15:125–40.

60. Aminikhoei Z, Choi J, Lee SM. Optimal dietary protein and lipid levels for growth of juvenile Israeli carp *Cyprinus carpio*. Fish Aquat Sci. 2015;18:265–71.

61. Kumar S, Sahu NP, Deo AD, Ranjan A. Feeding de-oiled rice bran based diet with varying level of protein and lipid: Effect on physiological responses of *Labeo rohita*. Aquaculture. 2019;498:454–463.

62. Li X, Zheng S, Ma X, Cheng K, Wu G. Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (*Micropterus salmoides*). Amino Acids. 2020;52:1043–61.

63. Bain P. Liver. In: Latimer KS, Mahafey EA, Prasse K, editors. Duncan and Prasse's Veterinary Laboratory Medicine: Clinical Pathology. Ames, IA.: Iowa State Press; 2003.

64. Choi CY, Min BH, Jo PG, Chang YJ. Molecular cloning of PEPCK and stress response of black porgy (*Acanthopagrus schlegelii*) to increased temperature in freshwater and seawater. Gen Comp Endocrinol. 2007;152:47–53.

65. Zhang J, Zhang X, Wang H, Chen L, Lin B, Li G, et al. Effects of Dietary Protein and Lipid Levels on Growth Performance, Feed Utilization and Biochemical Parameters of Barbless Carp (*Cyprinus pellegrini*). Isr J Aquac. 2018;70.

66. Walton M. Aspects of amino acid metabolism in teleost fish. In: Cowey CV, Mackie AM, Bell JG, editors. Nutrition and Feeding in Fish. London: Acad. Press; 1985.

67. Chatterjee N, Pal AK, Das T, Mohammed MS, Sarma K, Venkateshwarlu G, et al. Secondary stress responses in Indian major carps *Labeo rohita* (Hamilton), *Catla catla* (Hamilton) and *Cinclus nigrofasciatus* (Hamiltion) fry to increasing packing densities. Aquac Res. 2006;37:472–6.

68. Kumar S, Sahu NP, Shamna N, Ranjan A. Feeding higher level of de-oiled rice bran causes stress to *Labeo rohita* fingerlings. Aquaculture. 2018;484:184–90.

69. Li X, Zheng S, Ma X, Cheng K, Wu G. Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (*Micropterus salmoides*). Amino Acids. 2020;52:1043–61.

70. Hemre GI, Sandnes K. Effect of dietary lipid level on muscle composition in Atlantic salmon *Salmo salar*. Aquac Nutr. 1999;5:9–16.

71. Zhang J, Zhao N, Sharawy Z, Li Y, Ma J, Lou Y. Effects of dietary lipid and protein levels on growth and physiological metabolism of *Pelteobagrus fulvidraco* larvae under recirculating aquaculture system (RAS). Aquaculture. 2018;495:458–64.

72. Meng Y, Qian K, Ma R, Liu X, Han B, Wu J, et al. Effects of dietary lipid levels on sub-adult triploid rainbow trout (*Oncorhynchus mykiss*): 1. Growth performance, digestive ability, health status and expression of growth-related genes. Aquaculture. 2019;513:734394.

73. Yin P, Xie S, Zhuang Z, He X, Tang X, Tian L, et al. Dietary supplementation of bile acid attenuate adverse effects of high-fat diet on growth performance, antioxidant ability, lipid accumulation and intestinal health in juvenile largemouth bass (*Micropterus salmoides*). Aquaculture. 2021;531:735864.
74. Żebrowska E, Maciejczyk M, Żendzian-Piotrowska M, Zalewska A, Chabowski A. High protein diet induces oxidative stress in rat cerebral cortex and hypothalamus. Int J Mol Sci. 2019;20.

75. Lygren B, Waagbo R. Nutritional impacts on the chemiluminescent response of Atlantic salmon (Salmo salar L.) head kidney phagocytes, in vitro. Fish Shellfish Immunol. 1999;9:445–56.

76. Korver DR, Wakenell P, Klassing KC. Dietary Fish Oil or lofrin, A 5-Lipoxygenase Inhibitor, Decrease the Growth- Suppressing Effects of Coccidiosis in Broiler Chicks. Poult Sci. 1995;76:1355–63.

77. Kim K, Kayesb TB, Amundsonb CH. Purify diet development and re-evaluation of the dietary protein requirement of ngerling rainbow trout (Oncorhynchus mykiss). 1991;96:57–67.

78. Lin YH, Shiau SY. Dietary lipid requirement of grouper, Epinephelus malabaricus, and effects on immune responses. Aquaculture. 2003;225:243–50.

79. Webb KA, Gatlin DM. Effects of dietary protein level and form on production characteristics and ammonia excretion of red drum Sciaenops ocellatus. Aquaculture. 2003;225:17–26.

80. Hung LT, Binh VTT, Thanh Truc NT, Tham LH, Ngoc Tran T. Effects of dietary protein and lipid levels on growth, feed utilization and body composition in red-tailed catsh juveniles (Hemibagrus wyckioides, Chaux & Fang 1949). Aquac Nutr. 2017;23:367–74.

81. Yang SD, Liou CH, Liu FG. Effects of dietary protein level on growth performance, carcass composition and ammonia excretion in juvenile silver perch (Bidyanus bidyanus). Aquaculture. 2002;213:363–72.

Tables

Table 1. Formulation and proximate composition of the experimental diets (% dry matter).

	P30L10	P30L20	P40L10	P40L20	P50L10	P50L20
Fish meal^a	32.0	32.0	46.0	46.0	60.0	60.0
SPC^b	4.00	6.00	8.00	10.0	12.0	14.0
Wheat flour	46.85	34.85	29.85	17.85	12.85	0.85
Brewer’s yeast	2.00	2.00	2.00	2.00	2.00	2.00
Dextrin	4.00	4.00	4.00	4.00	4.00	4.00
Fish oil	3.60	10.0	3.00	9.40	2.40	8.80
Soybean oil	2.00	5.60	1.60	5.20	1.20	4.80
Lecithin	1.00	1.00	1.00	1.00	1.00	1.00
Stay-C	0.05	0.05	0.05	0.05	0.05	0.05
Mineral premix^c	0.50	0.50	0.50	0.50	0.50	0.50
Vitamin premix^d	0.50	0.50	0.50	0.50	0.50	0.50
Choline chloride	0.50	0.50	0.50	0.50	0.50	0.50
Carboxymethylcellulose	3.00	3.00	3.00	3.00	3.00	3.00

Proximate composition

Dry matter	91.0	90.9	89.9	91.7	89.1	90.0
Protein	29.8	30.3	40.0	40.3	49.2	49.7
Lipid	9.90	19.0	9.70	19.3	10.1	19.5
Ash	3.65	3.60	5.00	4.99	6.42	6.38
GE^e	20.2	22.3	20.4	22.4	20.5	22.5
P/E ratio^f	14.8	13.6	19.6	18.0	24.0	22.1

^aFish meal Super Prime (Crude protein: 67.9%, crude fat: 9%).

^bSoy protein concentrate (Crude protein: 62%, crude fat: 0.5%).

^cMineral premix (mg or g kg⁻¹ diet): NaF, 2 mg; KI, 0.8 mg; CoCl₂·6H₂O (1%), 50 mg; CuSO₄·5H₂O, 10 mg; FeSO₄·H₂O, 80 mg; ZnSO₄·H₂O, 50 mg; MnSO₄·H₂O, 25 mg; MgSO₄·7H₂O, 200 mg; zoelite, 4.582 g.

^dVitamin premix (mg or g kg⁻¹ diet): thiamin, 10 mg; riboflavin, 8 mg; pyridoxine HCl, 10 mg; vitamin B12, 0.2 mg; vitamin K3, 10 mg; inositol, 100 mg; pantothenic acid, 20 mg; niacin acid, 50 mg; folic acid, 2 mg; biotin, 2 mg; retinol acetate, 400 mg; cholecalciferol, 5 mg; alpha-tocopherol, 100 mg; ethoxyquin,
150 mg; wheat middling, 1.1328 g.

Calculated gross energy (GE) (MJ kg\(^{-1}\)) = based on combustion values of 23.6 MJ kg\(^{-1}\) for protein, 39.5 MJ kg\(^{-1}\) for lipid and 17.2 MJ kg\(^{-1}\) for carbohydrate.

P/E ratio (g MJ\(^{-1}\)) = Protein to energy ratio.

Table 2. Growth, feed utilization and survival of European grayling (Thymallus thymallus) (25.2 ± 0.28 g) fed the experimental diets for 12 weeks.

Diets	Protein (%)	Lipid (%)	FBW	WG	SGR	FI	FE	PER	SUR
Individual treatment means									
P30L10	30	10	82.9	225	1.40	80.1	0.70	2.36	99.3
P40L10	40	10	85.6	243	1.47	69.9	0.85	2.13	98.0
P50L10	50	10	89.2	257	1.52	63.8	0.99	2.02	99.3
P30L20	30	20	82.5	232	1.43	69.1	0.82	2.72	99.3
P40L20	40	20	89.4	257	1.51	64.0	1.02	2.52	100
P50L20	50	20	92.5	266	1.54	59.7	1.15	2.31	100
SEM			1.08	4.17	0.01	1.71	0.04	0.06	0.40
Means of main effects									
30			82.7\(^b\)	229\(^b\)	1.42\(^b\)	74.6\(^a\)	0.76\(^c\)	2.54\(^a\)	99.0
40			87.5\(^a\)	250\(^a\)	1.49\(^a\)	66.9\(^b\)	0.93\(^b\)	2.32\(^b\)	99.0
50			90.8\(^a\)	262\(^a\)	1.53\(^a\)	61.7\(^c\)	1.07\(^a\)	2.17\(^b\)	99.7
10			85.9	242	1.46	71.3\(^A\)	0.85\(^B\)	2.17\(^B\)	98.9
20			88.1	252	1.50	64.2\(^B\)	0.99\(^A\)	2.52\(^A\)	99.6

Two-way ANOVA (P-value)

Protein	Lipid	Interaction
0.00	0.15	0.46
0.00	0.08	0.87
0.01	0.08	0.87
0.00	0.00	0.21
0.00	0.00	0.69
0.00	0.00	0.77
0.00	0.00	0.61

Values are mean of triplicate groups. Different superscript letters indicate significant difference among treatments (P < 0.05).

FBW: Final body weight (g).

WG: Weight gain (%) = [(final body weight – initial body weight) / initial body weight × 100].

SGR: Specific growth rate (%) = [ln final body weight – ln initial body weight) / days] × 100.

FI: Feed intake (g fish\(^{-1}\)) = dry feed consumed (g) / fish.

FE: Feed efficiency = weight gain / dry feed fed.

PER: Protein efficiency ratio = wet weight gain / total protein given.

SUR: Survival (%).

Table 3. Organosomatic indices of European grayling (Thymallus thymallus) fed the experimental diets for 12 weeks.

Protein	Lipid	Interaction
0.00	0.15	0.46
0.00	0.08	0.87
0.01	0.08	0.87
0.00	0.00	0.21
0.00	0.00	0.69
0.00	0.00	0.77
0.00	0.00	0.61
Diets	Protein (%)	Lipid (%)
-------	------------	----------
Individual treatment means		
P30L10	30	10
P40L10	40	10
P50L10	50	10
P30L20	30	20
P40L20	40	20
P50L20	50	20
SEM	0.01	0.02
Means of main effects		
30	1.05	0.85
40	1.03	0.81
50	1.06	0.80
10	1.04	0.81
20	1.05	0.83

Two-way ANOVA (P-value)

	Protein	Lipid	Interaction
Protein	0.58	0.83	0.00
Lipid	0.51	0.53	0.95
Interaction	0.23	0.00	0.30

Values are mean of triplicate groups. Different superscript letters indicate significant difference among treatments (P ≤ 0.05).

CF: Condition factor = Body weight × 100 / (Body length)³

HSI: Hepatosomatic index = Liver weight × 100 / fish weight.

VSI: Viscerosomatic index = Viscera weight × 100 / fish weight.

IPF: Intraperitoneal fat ratio = Intraperitoneal fat weight × 100 / fish weight.

Table 4. Whole-body proximate composition (% dry weight) of European grayling (*Thymallus thymallus*) fed the experimental diets for 12 weeks.
Diets	Protein (%)	Lipid (%)	Moisture	Protein	Lipid	Ash
P30L10	30	10	72.0	59.1	29.0	11.1
P40L10	40	10	71.8	58.7	29.1	12.2
P50L10	50	10	72.2	58.2	31.9	9.90
P30L20	30	20	71.1	56.7	31.8	10.9
P40L20	40	20	70.2	57.5	30.9	11.5
P50L20	50	20	70.6	58.9	30.0	11.3
SEM			0.23	0.34	0.41	0.26

Means of main effects

	Protein	Lipid	Moisture	Protein	Lipid	Ash
30	71.5	57.9	30.4	11.0		
40	71.0	58.1	30.0	11.9		
50	71.4	58.5	30.8	10.6		
10	72.0^A	58.7	30.0	11.1		
20	70.6^B	57.7	30.8	11.3		

Two-way ANOVA (P-value)

	Protein	Lipid	Interaction
Protein	0.45	0.74	0.62
Lipid	0.00	0.16	0.29
Interaction	0.65	0.17	0.03

Values are mean of triplicate groups. Different superscript letters indicate significant difference among treatments (P<0.05).

Table 5. Dorsal muscle proximate composition (% dry weight basis) of European grayling (*Thymallus thymallus*) fed the experimental diets for 12 weeks.
Values are mean of triplicate groups. Different superscript letters indicate significant difference among treatments ($P \leq 0.05$).

Table 6. Dorsal muscle fatty acid composition of European grayling (Thymallus thymallus) fed the experimental diets for 12 weeks (% total identified FA).
Fatty acids	Diets	SEM	Protein (%)	Lipid (%)	Two-way ANOVA (Pval)	Protein	Lipid	Inte													
	P30L10	19.9	0.08	1.91b	2.00b	2.35a	2.22A	1.96	0.01												
	P30L20	1.82	0.00	0.01b	0.02b	0.03a	0.02	0.01													
	P40L10	1.99	0.00	0.00	0.00	0.00	0.00	0.00													
	P40L20	2.02	0.00	0.00	0.00	0.00	0.00	0.00													
	P50L10	2.67	0.00	0.00	0.00	0.00	0.00	0.00													
	P50L20	2.03	0.00	0.00	0.00	0.00	0.00	0.00													
	14:0-1n-7	0.02	0.00	0.00	0.00	0.00	0.00	0.00													
	14:0-1n-5	0.06	0.00	0.00	0.00	0.00	0.00	0.00													
	15:0-1n-5	0.23	0.00	0.00	0.00	0.00	0.00	0.00													
	16:0-1n-5	0.03	0.00	0.00	0.00	0.00	0.00	0.00													
	16:0-1n-7	15.1	0.00	0.00	0.00	0.00	0.00	0.00													
	16:1-1n-7	3.39	0.00	0.00	0.00	0.00	0.00	0.00													
	16:1-1n-5	0.10	0.00	0.00	0.00	0.00	0.00	0.00													
	16:2-1n-4	0.21	0.00	0.00	0.00	0.00	0.00	0.00													
	17:0-1n-4	0.18	0.00	0.00	0.00	0.00	0.00	0.00													
	16:3-1n-4	0.18	0.00	0.00	0.00	0.00	0.00	0.00													
	16:3-1n-3	0.10	0.00	0.00	0.00	0.00	0.00	0.00													
	16:3-1n-1	0.02	0.00	0.00	0.00	0.00	0.00	0.00													
	16:4-1n-3	0.15	0.00	0.00	0.00	0.00	0.00	0.00													
	16:4-1n-1	0.02	0.00	0.00	0.00	0.00	0.00	0.00													
	18:0-1n-9	3.31	0.00	0.00	0.00	0.00	0.00	0.00													
	18:1-1n-7	2.83	0.00	0.00	0.00	0.00	0.00	0.00													
	18:1-1n-5	0.13	0.00	0.00	0.00	0.00	0.00	0.00													
	18:2-1n-9	0.06	0.00	0.00	0.00	0.00	0.00	0.00													
	18:2-1n-6	10.8	0.00	0.00	0.00	0.00	0.00	0.00													
	18:2-1n-4	0.14	0.00	0.00	0.00	0.00	0.00	0.00													
	18:3-1n-6	0.24	0.00	0.00	0.00	0.00	0.00	0.00													
	18:3-1n-4	0.13	0.00	0.00	0.00	0.00	0.00	0.00													
	18:3-1n-3	2.33	0.00	0.00	0.00	0.00	0.00	0.00													
	18:3-1n-1	0.02	0.00	0.00	0.00	0.00	0.00	0.00													
	18:4-1n-3	0.80	0.00	0.00	0.00	0.00	0.00	0.00													
	18:4-1n-1	0.11	0.00	0.00	0.00	0.00	0.00	0.00													
	20:0-1n-9	0.18	0.00	0.00	0.00	0.00	0.00	0.00													
	20:1-1n-7	2.81	0.00	0.00	0.00	0.00	0.00	0.00													
	20:1-1n-5	0.17	0.00	0.00	0.00	0.00	0.00	0.00													
	20:2-1n-9	0.07	0.00	0.00	0.00	0.00	0.00	0.00													
	20:2-1n-6	0.62	0.00	0.00	0.00	0.00	0.00	0.00													
	20:3-1n-9	0.04	0.00	0.00	0.00	0.00	0.00	0.00													
	20:3n-6	20:4n-6	20:3n-3	20:4n-3	20:5n-3	22:1n-11	22:1n-9	22:4n-6	22:5n-6	22:5n-3	22:6n-3	SFA	MUFA	n-6	n-6 LC-PUFA	n-3	n-3 LC-PUFA	EPA + DHA	EPA/ARA	DHA/EPA	n-6/n-3
-------	---------	---------	---------	---------	---------	-----------	---------	---------	---------	---------	---------	-----	------	----	--------------	-----	-------------	---------	--------	--------	---------
	0.24	0.49	0.21	0.44	4.24	1.58	0.36	0.08	0.29	1.41	16.0	21.0	39.4	12.9	1.91	22.3	20.2	6.31	3.77	0.51	
	0.17	0.81	0.24	0.40	2.69	1.61	0.37	0.06	0.22	0.94	12.1	19.7	45.8	10.9	1.56	16.3	14.8	5.50	4.44	0.69	
	0.23	0.55	0.19	0.45	5.01	1.31	0.33	0.09	0.36	1.58	18.7	22.5	26.5	10.9	2.04	26.0	23.7	6.21	3.73	0.38	
	0.18	0.86	0.24	0.42	3.21	1.42	0.35	0.06	0.36	1.03	12.4	20.5	44.9	9.1	1.62	26.0	15.6	5.82	3.87	0.38	
	0.19	0.65	0.17	0.43	5.24	1.25	0.30	0.08	0.35	1.50	16.9	26.6	36.1	11.5	1.95	26.9	22.2	6.07	3.23	0.60	
	0.17	0.03	0.23	0.46	3.85	1.41	0.33	0.08	0.31	1.28	15.6	20.7	41.8	11.5	1.79	25.0	19.5	5.90	4.05	0.46	
	0.01	0.58	0.01	0.01	0.23	1.59	0.01	0.00	0.01	0.06	0.68	20.3	42.6	13.2	0.04	0.90	0.90	5.91	4.11	0.60	
	0.20	0.68	0.23	0.42	3.46	1.36	0.37	0.07	0.26	1.18	15.6	21.5	40.7	11.7	1.73	0.96	0.96	6.02	4.11	0.49	
	0.20	0.76	0.22ab	0.44	4.11	1.33	0.34ab	0.08	0.30	1.31	15.6	23.6	39.0	10.3	1.83	19.3	22.2	5.99	3.64	0.40	
	0.18	0.78	0.20b	0.44	4.55	1.38	0.32b	0.08	0.33	1.39	15.6	26.4	37.3	11.0	1.86	21.7	22.8	9.99	3.58	0.40	
	0.22	0.56	0.19b	0.42	4.83	1.38	0.33	0.08	0.33	1.50	15.6	20.3	44.2	12.5	1.96	21.7	24.2	6.20	4.12	0.41	
	0.17b	0.00	0.24A	0.42	3.25	1.48	0.00	0.00	0.25	1.08	14.8	13.4	44.2	12.5	1.66	22.8	27.2	0.90	0.59A	0.00	
		0.00				0.01	0.00				0.00	0.00	0.01	0.00	0.00	0.01	0.14	0.00		0.00	
											0.00	0.00	0.01	0.00	0.00	0.01	0.05	0.00		0.01	

Values are mean of triplicate groups. Different superscript letters indicate significant difference among treatments ($P \leq 0.05$).

Table 7. Serum biochemical parameters of European grayling (*Thymallus thymallus*) fed the experimental diets for 12 weeks.
Diets	Protein (%)	Lipid (%)	TP	TG	CHO	GLU	ALT	AST	ALP	LDH
P30L10	30	10	4.08	264	218	76.4	48.3	835	380	7704
P40L10	40	10	4.38	256	242	75.6	32.2	719	344	5192
P50L10	50	10	4.51	220	277	83.1	33.0	611	363	5767
P30L20	30	20	4.48	473	279	103	28.3	592	386	4437
P40L20	40	20	4.16	426	258	84.4	28.7	519	332	4389
P50L20	50	20	4.49	379	277	96.2	34.3	605	350	3416
SEM			0.07	23.2	6.11	2.73	2.16	33.4	8.02	330

Individual treatment means

Means of main effects

Protein	4.28	368^a	248^b	89.9^a	38.3	713	383	6070^a
Lipid	4.27	341^a	250^b	80.0^b	30.4	619	338	4790^b
Interaction	4.50	300^b	277^a	89.7^a	33.7	608	357	4591^b

Two-way ANOVA (P-value)

Protein	0.27	0.00	0.01	0.03	0.20	0.25	0.09	0.00
Lipid	0.70	0.00	0.00	0.00	0.04	0.02	0.68	0.00
Interaction	0.17	0.11	0.01	0.07	0.06	0.20	0.85	0.00

Values are mean of triplicate groups. Different superscript letters indicate significant difference among treatments ($P \leq 0.05$).

TP: Total protein (g dl⁻¹).
TG: Triglyceride (mg dl⁻¹).
CHO: Total cholesterol (mg dl⁻¹).
GLU: Glucose (mg dl⁻¹).
ALT: Alanine aminotransferase (U l⁻¹).
AST: Aspartate aminotransferase (U l⁻¹).
ALP: Alkaline phosphatase (U l⁻¹).
LDH: Lactate dehydrogenase (U l⁻¹).

Table 8. Serum antioxidant and innate immune parameters of European grayling (Thymallus thymallus) fed the experimental diets for 12 weeks.
Diets	Protein (%)	Lipid (%)	SOD	CAT	MDA	LYZ	MPO	AP
P30L10	30	10	49.1	36.4	170	12.7	1.33	30.2
P40L10	40	10	57.7	34.2	213	12.2	1.45	35.8
P50L10	50	10	62.4	36.8	243	12.9	1.47	33.6
P30L20	30	20	55.6	38.5	254	12.7	1.75	30.2
P40L20	40	20	58.3	37.2	227	12.4	1.70	34.4
P50L20	50	20	49.2	36.4	274	12.4	1.53	33.2
SEM	1.58	0.61	9.96	0.45	0.04	0.62		

Means of main effects

	Protein	Lipid	SOD	CAT	MDA	LYZ	MPO	AP
30	52.3	37.4	212b	12.7	1.54	32.0		
40	58.0	35.7	220ab	12.3	1.57	35.1		
50	55.8	36.6	258a	12.6	1.50	33.4		
10	56.4	35.8	208a	12.6	1.42a	33.2		
20	54.4	37.3	252a	12.5	1.66a	33.8		

Two-way ANOVA (P-value)

	Protein	Lipid	Interaction
	0.22	0.43	0.02
	0.53	0.23	0.53
	0.04	0.01	0.14
	0.95	0.94	0.95
	0.63	0.90	0.95
	0.11	0.59	0.16

Values are mean of triplicate groups. Different superscript letters indicate significant difference among treatments (P≤0.05).

SOD: Superoxide dismutase activity (% inhibition).
CAT: Catalase activity (U ml⁻¹).
MDA: Malondialdehyde concentration (nmol ml⁻¹).
LYZ: lysozyme activity (U ml⁻¹).
MPO: Myeloperoxidase activity (U ml⁻¹).
AP: Antiprotease activity (% trypsin inhibition).

Table 9. Blood plasma ammonia (NH₃ – μmol l⁻¹) and rearing water total ammonium nitrogen (TAN - mg kg⁻¹ h⁻¹) concentrations in European grayling (*Thymallus thymallus*) after 5 and 24 h of last feeding.
Diets	Protein (%)	Lipid (%)	Plasma 5h	Plasma 5h	Plasma 24h	Rearing water 5h	Rearing water 5h	Rearing water 24h
P30L10	30	10	630	11.1	14.0			
P40L10	40	10	595	13.5	14.9			
P50L10	50	10	648	17.0	20.8			
P30L20	30	20	503	9.80	10.9			
P40L20	40	20	556	8.90	11.6			
P50L20	50	20	625	11.5	15.3			
SEM			20.2	0.72	0.91			

Means of main effects

	Protein (%)	Lipid (%)	Plasma	Rearing water	
30			566	10.5^b	12.4^b
40			576	11.2^b	13.3^b
50			637	14.3^a	18.1^a
10			624	13.9^A	16.6^A
20			562	10.1^B	12.6^B

Two-way ANOVA (P value)

	Protein	Lipid	Interaction
	0.31	0.13	0.52
	0.01	0.00	0.12
	0.00	0.00	0.65

Values are mean of triplicate groups. Different superscript letters indicate significant difference among treatments (P < 0.05).