BRCA1 and BRCA2 unclassified variants and missense polymorphisms in Algerian breast/ovarian cancer families

Farid Cherbala,∗, Nadjet Salhia, Rabah Bakoura, Saida Adaneb, Kada Boualgac and Philippe Mailletd

a Unit of Genetics, Laboratory of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Sciences and Technology “Houari Boumediene” Algiers, Algeria
b Central Hospital of Algiers, Algeria
c Anti Cancer Center, Blida, Algeria
d SwissCheckUp Laboratory, Yverdon-les-Bains, Switzerland

Abstract. Background: BRCA1 and BRCA2 germline mutations predispose heterozygous carriers to hereditary breast/ovarian cancer. However, unclassified variants (UVs) (variants with unknown clinical significance) and missense polymorphisms in BRCA1 and BRCA2 genes pose a problem in genetic counseling, as their impact on risk of breast and ovarian cancer is still unclear. The objective of our study was to identify UVs and missense polymorphisms in Algerian breast/ovarian cancer patients and relatives tested previously for BRCA1 and BRCA2 genes germline mutations analysis.

Methods: We analyzed 101 DNA samples from 79 breast/ovarian cancer families. The approach used is based on BRCA1 and BRCA2 sequence variants screening by SSCP or High-Resolution Melting (HRM) curve analysis followed by direct sequencing. In silico analyses have been performed using different bioinformatics programs to individualize genetics variations that can disrupt the BRCA1 and BRCA2 genes function.

Results: Among 80 UVs and polymorphisms detected in BRCA1/2 genes (33 BRCA1 and 47 BRCA2), 31 were new UVs (10 BRCA1 and 21 BRCA2), 7 were rare UVs (4 BRCA1 and 3 BRCA2), and 42 were polymorphic variants (19 BRCA1 and 23 BRCA2). Moreover, 8 new missense UVs identified in this study: two BRCA1 (c.4066C>A/p.Gln1356Lys, c.4901G>T/p.Arg1634Met) located respectively in exons 11 and 16, and six BRCA2 (c.1099G>A/p.Asp367Asn, c.2636C>A/p.Ser879Tyr, c.3868T>A/p.Cys1290Ser, c.5428G>T/p.Val1810Phe, c.6346C>G/p.Ser2116Asp and c.9256G>A/p.Gly3086Arg) located respectively in exons 10, 11 and 24, show a damaging PSIC score yielded by PolyPhen2 program and could be pathogenic. In addition, 5 new BRCA2 missense UVs out of six that were found to be damaging by PolyPhen2 program, also were deleterious according to SIFT program. The rare BRCA1 UV c.5332G>A/p.Asp1778Asn was found here for the first time in co-occurrence in trans with the deleterious BRCA1 mutation c.798−799delTT/p.Ser267LysfsX19 in young breast cancer patient. Moreover, 10 new identified intronic variants with unknown clinical significance (3 BRCA1 and 7 BRCA2) in the present study, could be considered as benign, because GeneSPLICer, SpliceSiteFinder and MaxEntScan prediction programs show no splice site alteration for these variants. Several missense polymorphisms of BRCA1 c.2612C>T/p.Pro871Leu, c.3548A>G/p.Lys1183Arg, c.4837A>G/p.Ser1613Gly and BRCA2 c.865A>C/p.Asn289His, c.1114A>C/p.Asn372His, c.2971A>G/p.Asn991Asp, c.7150C>A/p.Gly2384Lys have been identified with high frequency in patients who were tested negative for BRCA1 and BRCA2 mutations. These missense polymorphisms could have a role as susceptibility breast cancer markers in Algerian breast/ovarian cancer families where pathological BRCA1 and BRCA2 mutations were not present.

Conclusions: For the first time, UVs and missense polymorphisms in BRCA1 and BRCA2 genes have been identified in Algerian breast/ovarian cancer families. Evaluation of breast/ovarian cancer risk induced by the eight new missense UVs and common polymorphisms detected in our present work is on going in a larger study.

Keywords: Algeria, BRCA1, BRCA2, breast/ovarian cancer, HRM, polymorphisms, SNP, UVs

∗Corresponding author: Dr. Farid Cherbal, Unit of Genetics, LM-CB, FBS, USTHB, POB 32 El Alia, Bab Ezzouar, 16111 Algiers, Algeria. Tel.: +213 212 479 50/64 extension 911; Fax: +213 212 472 17; E-mail: farid.cherbal@gmail.com.
1. Introduction

Germline mutations in BRCA1 and BRCA2 genes predispose women to breast and ovarian cancer [1, 2]. The screenings of index cases with hereditary breast/ovarian cancer have detected other BRCA1 and BRCA2 sequence variants called variants with unknown clinical significance or unclassified variants (UVs) and missense polymorphisms. To date, up to 10–20% of patients screened are found to carry UVs [3]. UVs are mainly missense mutations, but also include a number of silent variants, intronic variants and in-frame deletions and insertions [3]. The classification of the BRCA1 and BRCA2 UVs as pathogenic or neutral pose a problem, because it is not known whether these subtle changes alter the function of the proteins sufficiently to predispose to breast and/or ovarian cancer [4]. Classification of these UVs as neutral or disease causing is important for genetic counseling. Different criteria have been used to help classify these UVs. These include evaluation of co-segregation of the variant with disease in families, observed co-occurrence of UVs in trans phase with known pathogenic mutations, evaluation of the frequency of UVs in healthy controls, analyses of the severity of the amino acid change and its conservation across species [5]. In addition, the contribution of BRCA1 and BRCA2 missense polymorphisms to breast and ovarian cancer risk remains largely unclear and pose a problem in genetic counseling [6]. Interestingly, several of the BRCA1 and BRCA2 genes missense polymorphisms are located in functional domains of BRCA1 and BRCA2 proteins known to be interaction sites for key partner proteins and many of the amino acids concerned are conserved across many species.

To date, few molecular genetics studies of BRCA1 and BRCA2 sequence variants screening have been reported in the Algerian population [7, 8]. The aim of our present study is to identify UVs and polymorphic variants in BRCA1 and BRCA2 genes in Algerian breast/ovarian cancer families tested previously for BRCA1 and BRCA2 germline mutations screening.

2. Materials and methods

This study was performed to identify UVs and polymorphic variants in the BRCA1 and BRCA2 genes in Algerian breast/ovarian cancer patients and their relatives. The approach used is based on BRCA1 and BRCA2 sequence variants screening by SSCP or High-Resolution Melting (HRM) curve analysis followed by direct sequencing. In silico analyses have been performed using different bioinformatics programs to individualize genetics variations that can disrupt the BRCA1 and BRCA2 genes function.

2.1. Patients

The patients and their families were referred through the Anti Cancer Center of Blida, the Central Hospital of Algiers, and five private medical clinics which provide oncology services throughout Algeria. The following selection criteria of patients and affected family members were used: (a) women with a history of two or more relatives on the same side of the family with breast and/or ovarian cancer and male relatives with prostate cancer along three generations at any age (b) two or more cases of breast and/or ovarian cancer in first degree relatives, (c) cases of bilateral breast cancer, (d) breast or ovarian cancer before the age of 40, (e) male relatives with breast cancer. Clinical characteristics of study population are presented in Tables 1 and 2. Prior collecting blood sample, all selected patients and relatives were informed about the objectives of our study and that their DNA samples would be analyzed for mutations in genes associated with hereditary breast/ovarian cancer. All patients and the relatives signed informed consent and ethical approval was obtained from appropriate institutions.

2.2. DNA isolation

Genomic DNA was extracted from peripheral blood lymphocytes using a PromegaWizard Genomic DNA Purification Kit, (Promega, Madison, MI, USA) (Cat. # A1120) and in accordance with the manufacturer’s protocols.

2.3. Sequence variants analysis

2.3.1. SSCP analysis

We analyzed BRCA1 exons 2 and 11 of 15 individuals from 9 breast/ovarian cancer families by PCR-SSCP technique and direct sequencing. The PCR and SSCP assays were performed as described elsewhere [9].
2.3.3. DNA sequencing on request. primers and PCR-HRM assay conditions are available (Roche Diagnostics, Manheim, Germany). The PCR reported [10] using the LightCycler 480 II Instrument PCR and HRM assays were performed as previouslymitted to prescreening with HRM curve analysis. The Manheim, Germany). All coding exons of Resolution Melting Master Kit (Roche Diagnostics, BRCA2 including flanking intronic regions were sub-

missional nomenclature follows the rule where the nu-
cleotide +1 is the A of the ATG translation initiation codon.

2.3.4. Sequence variation nomenclature

All nucleotide numbers refer to the wild-type cDNA human sequence of BRCA1 (accession no. U14680; version U14680.1 GI: 555931) and BRCA2 (accession no. U43746; version U43746.1 GI: 1161383), as reported in the GenBank database. The description of nucleotide sequence variants is in accordance with HGVS (Human Genome Variation Society) nomenclature (www.hgvs.org/mutnomen). The HGVS approved systematic nomenclature follows the rule where the nucleotide +1 is the A of the ATG translation initiation codon.

2.3.2. High-Resolution Melting (HRM) curve analysis

Complete screening of BRCA1 and BRCA2 sequence variants were performed in 86 individuals from 70 breast/ovarian cancer families by PCR-HRM followed by direct sequencing. PCR reactions were performed in a 20 µl final volume using Light Cycler-480 High Resolution Melting Master Kit (Roche Diagnostics, Manheim, Germany). All coding exons of BRCA1 and BRCA2 including flanking intronic regions were submitted to prescreening with HRM curve analysis. The PCR and HRM assays were performed as previously reported [10] using the LightCycler 480 II Instrument (Roche Diagnostics, Manheim, Germany). The PCR primers and PCR-HRM assay conditions are available on request.

2.3.5. In silico analyses

The software Alamut 1.4 (http://www.interactive-biosoftware.com/alamut.html) has been used for the interpretation of the new sequence variants and for the detection of splicing aberrations caused by the new unclassified variants detected in our present study. This software includes three bioinformatics programs: Genesplicer (http://www.tigr.org/tdb/GeneSplicer), Max EntScan (http://genes.mit.edu/burgelab/maxent/ Xmax entscan_scoreseq.html) and SpliceSiteFinder (http:// violin.genet.sickkids.on.ca/~ali/splicesitefinder.html) for prediction of donor and acceptor site. To identify no synonymous amino acid changes likely to disrupt BRCA1 and BRCA2 genes function, we used two bioinformatics programs, Polymorphism Phenotyping 2 (http://genetics.bwh.harvard.edu/pph2) and SIFT program (http://sift.jcvi.org).

PolyPhen2 is a tool which predicts possible impact of an amino acid substitution on the structure and function of a human protein using straightforward physical and comparative considerations. SIFT is a sequence homology-based tool that sorts intolerant from tolerant amino acid substitutions and predicts whether an amino acid substitution in a protein will have a phenotypic effect.

Evolutionary conservation of BRCA1 and BRCA2 sites of amino acid changes was evaluated across 13 species among the following: human, chimpanzee, gorilla, orangutan, macaque, mouse, dog, cow, opossum, chicken, frog, tetraodon, rat, rabbit, cat, and armadillo.

Evaluation of the prevalence of the newly identified BRCA1 and BRCA2 UVs in a control population was performed with HRM in 80 healthy blood donors’ in-
dividuals without breast or ovarian cancer familial history.

3. Results

In the present study, we screened 101 individuals from 79 families for UVs and common polymorphisms in BRCA1 and BRCA2 genes. To date, 86 individuals
Patient ID	Clinical status and age at onset of the proband or the tested relative	Affected family members
2051	BC, 38y	mother
2074	BC, 25y	aunt (M)
2075	BC, 41y	mother, aunt (M)
		half sister
		grandaunt (P)
20933	BC, 39y	sister
		aunt (P)
		cousin (P)
2052	BC, 50y	sister
		2 nieces
20671	BC, 51y	NA
2093	OC and BC, 52y	3 sisters
		sister
		uncle (P)
2073	BC, 54y	2 cousins (P)
		mother
		cousin (M)
		cousin (P)
		grandaunt (P)
2085	BC, 36y	NA
20816	OC, 61y	mother
2086	MBC, 74y	NA
20913	MBC, 76y	
20670	BC, 43y	sister
20825	BBC, 36y	6 sisters
		aunt (P)
		cousin (P)
20824	BBC, 33y	6 sisters
		aunt (P)
		cousin (P)
20925	BC, 78y	daughter
		granddaughter
		great-granddaughter
		son
20935	BC, 32y	cousin
		sister
		sister
		father
20939	BC, 38y	Aunt (M)
20924	BC, (?7y)	2 sisters
20810	BC, 39y	NA
2081	BC, 21y	2 aunts (M)
		grandmother (M)
2075	BC, 41y	mother
		half sister
		grandaunt (P)
2074	BC, 25y	aunt (M)
20816	OC, 61y	mother
2066	BBC, 32y	3 cousins (M),
		grand aunt (M)
		cousin (M)
20817	BC, 67y	NA
20937	BC, 42y	mother
		Sister
2092	BC, 47y	Cousin (M)
		2 sisters
		cousin (M)
		2 cousins (P)
		niece
2092	BC, 47y	2 sisters
		cousin (M)
		2 cousins (P)

Table 2

Phenotypic expression in families/patients within *BRCA1* and *BRCA2* UVs and common polymorphisms.
Patient ID	Clinical status and age at onset of the proband or the tested relative	Affected family members
2067	BC, 36y	mother, 2 sisters brother niece cousin (P)
2068	BC, 44y	mother, 3 sisters niece cousin (P)
20910	BC, 18y	mother sister aunt (M) cousin (M)
20916	BC, 32y	2 sisters Aunt (P) mother daughter granddaughter
20920	BC, 26y	niece
20926	BC, 37y	brother (P)
20929	BC, 27y	sister aunt (P)
20921	BC, 35y	3 sisters aunt (M)
20917	BC, 40y	Father Uncle (P)
20940	BC, 37y	NA
20914	BC, 36y	sister cousin (P)
20911	BBC, 50y	NA
20924	BC, 50y	niece
20934	BC (?), 29y	NA
20942	BC, 18y	sister mother aunt (M) cousin (M)
20944	BBC, 33y	2 sisters uncle (P)
2095	BC, 30y	2 aunts (M) mother sister grandmother (M) aunt (M)
2096	BC (?), 29y	mother sister grandmother (M) aunt (M)
2082	BOC, 40y	aunt (P)
20821	BBC, 35y	sister aunt (M) aunt (P)
2091	BBC, 47y	cousin (P)
2097	BC, 34y	grand mother (P)
20822	MBC, 65y	aunt (M)
20823	BC, 64y	mother
20820	BBC, 55y	mother
2083	BC, 55y	2 nieces
2071	BC, 30y	sister cousin (P)
20670	BC, 43y	sister

BC: breast cancer, BBC: bilateral breast cancer, BOC: breast/ovarian cancer, MBC: male breast cancer, OC: ovarian cancer, M: maternal, P: paternal, y: years, (?): age unknown. NA: data not available.
Table 3
New unclassified variants in *BRCA1* and *BRCA2* genes within Algerian breast/ovarian cancer families/patients

Gene	Exon	Sequence variant	Predicted effect at protein level	Number of families/patients harboring the variant	PolyPhen2*	Pathogenicity	SIFT**	Pathogenicity	Frequency in controls (%)*	N = 80	Different species with conserved sequences
BRCA1	2	c.16C>G	p.Leu6Val	1	0.000	Benign	0.00	Deleterious	ND		3a,b,c,
BRCA1	2	c.80+56A>C	p.?	1							
BRCA1	7	c.302-3C>T	p.=?	1							
BRCA1	11	c.2748T>C	p.=	1							
BRCA1	11	c.3114A>G	p.=	1							
BRCA1	11	c.4066C>A	p.Gln1356Lys	1	0.256	Possibly damaging	0.50	Tolerated	0/100		g,b,c,d,f,i,g,j,
BRCA1	12	c.4113G>A	p.=	1							
BRCA1	12	c.4185+47T>C	p.?	2							
BRCA1	16	c.4901G>T	p.Arg1634Met	1	0.588	Possibly damaging	0.20	Tolerated	ND		5a,b,c,d,e,
BRCA1	19	c.5175A>G	p.=	2							
BRCA2	2	c.67+14T>C	p.?	2							
BRCA2	2	c.67+1ST>C	p.?	2							
BRCA2	2	c.68-16T>A	p.?	1							
BRCA2	2	c.68-21T>G	p.?	1							
BRCA2	3	c.21T>G	p.=?	1							
BRCA2	5	c.475+25A>G	p.?	1							
BRCA2	9	c.794-5A>T	p.?	1							
BRCA2	10	c.1099G>A	p.Asp367Asn	1	0.985	Probably damaging	0.42	Tolerated	ND		7a,b,c,d,e,f,r,o,g,
BRCA2	11	c.2636C>A	p.Ser879Tyr	1	0.004	Benign	0.01	Deleterious	ND		4a,b,c,i,
BRCA2	11	c.2673A>G	p.Asn886Ser	1	0.995	Probably damaging	0.00	Deleterious	ND		8a,b,c,d,e,f,m,a,o,g,
BRCA2	11	c.3555A>T	p.=?	1							
BRCA2	11	c.3868T>A	p.Cys1290Ser	1	0.408	Possibly damaging	0.00	Deleterious	0/100		g,b,c,d,e,f,m,a,p,
BRCA2	11	c.5397A>T	p.=?	1							
BRCA2	11	c.5428G>T	p.Val810Phe	1	0.877	Probably damaging	0.00	Deleterious	ND		7a,b,c,d,e,f,r,o,g,
BRCA2	11	c.5553C>T	p.=?	2							
BRCA2	11	c.5976A>G	p.=?	1							
BRCA2	11	c.6309A>C	p.=?	1							
BRCA2	11	c.6346C>G	p.His2116Asp	1	0.996	Probably damaging	0.00	Deleterious	ND		6a,b,c,d,e,f,m,a,o,g,i,
BRCA2	19	c.8487+19A>C	p.?	1							
BRCA2	24	c.9256G>A	p.Gly3086Arg	1	0.999	Possibly damaging	0.00	Deleterious	ND		10a,b,c,d,e,f,r,o,g,i,j,s,

p.? : protein has not been analyzed, unknown effect at protein level, p. = : no amino acid change, *PSIC score difference: >0.15: possibly damaging substitution; >0.85: probably damaging substitution, **SIFT score: ranges from 0 to 1. The amino acid substitution is predicted damaging (not tolerated) if the score is <=0.05, and tolerated if the score is >0.05. a = human, b = chimpanzee, c = gorilla, d = orangutan, e = macaque, f = mouse, g = dog, h = cow, i = opossum, j = chicken, k = frog l = tetraodon, m = rat, n = rabbit, o = cat, p = armadillo, z = zebrafish. ND: not determined.
from 70 Algerian breast/ovarian cancer families have been tested previously for complete BRCA1 and BRCA2 germline mutations screening [8]. According to classification in BIC database and by using Alamut 1.4 software for the interpretation of the new sequence variants, we identified 80 UVs and polymorphisms in BRCA1 and BRCA2 genes (33 BRCA1 and 47 BRCA2). (Tables 3, 4 and 5).

3.1. BRCA1 and BRCA2 UVs

We detected 31 new UVs (10 BRCA1 and 21 BRCA2) and 7 rare UVs (4 BRCA1 and 3 BRCA2) in BRCA1 and BRCA2 genes of 47 families (Tables 3 and 4). We note that 10 new identified intronic variants with unknown clinical significance (3 BRCA1 and 7 BRCA2) could be considered as benign, because GeneSplicer, MaxEntScan and SpliceSiteFinder prediction programs show no splice alteration site for these variants. In addition, GeneSplicer, MaxEntScan and SpliceSiteFinder prediction programs show no splicing aberrations for new BRCA1 and BRCA2 missense variants identified in our present study. Interestingly, for the two new silent variants with unknown clinical significance BRCA1 (c.4113G>A) located in exon12 and BRCA2 (c.6309A>C) located in exon11, the 3 prediction programs for donor or acceptor site show the creation of new donor splice site in exonic region for both. Studies by using RNA analyses are necessary to determine or confirm use of these new donor splice sites and defining if aberrant transcripts are associated with these two new silent variants BRCA1 (c.4113G>A) and BRCA2 (c.6309A>C) with unknown clinical significance.

Three new BRCA1 missense variants were identified respectively in exon 2 (c.16C>G/p.Leu6Val), exon 11 (c.4066C>A/p.Gln1356Lys) and exon 16 (c.4901G>T/p.Arg1634Met) (Table 3). The c.4066C>A/p.Gln1356Lys and c.4901G>T/p.Arg1634Met BRCA1 missense substitutions, identified respectively in two unrelated patients with early onset breast cancer, are possibly damaging because PolyPhen2 yielded a damaging PSIC scores of 0.256 and 0.588 respectively (Table 3). However, these two new BRCA1 UVs were observed to be not deleterious by the SIFT program, having a tolerance index score > 0.05 (Table 3).

We identified 7 new missense variants in the BRCA2 exon 10, 11 and 12 respectively (Table 3), six out seven being located in the DNA repair recombination protein domain (c.1099G>A/p.Asp367Asn, c.2636C>A/p.Ser879Tyr, c.2657A>G/p.Asn886Ser, c.3868T>A/p.Cys1290Tyr, c.5428G>T/p.Val1810Phe, c.6346C>G/p.His2116Asp) and one (c.9256G>A/p.Gly3086Arg) located in the DNA binding domain and the DNA recombination repair protein domain. By using PolyPhen2 program and SIFT program, 6 new variants out seven were identified to disrupt BRCA2 function and to be deleterious respectively (Table 3). We note that these 7 new BRCA2 missense variants have been identified in patients with a family history of breast/ovarian cancer and each variant has been found in one family. Furthermore, associated with the damaging PSIC scores, two newly identified UVs were found at a frequency of $< 1\%$ in the control population (Table 3).

3.2. Polymorphisms in BRCA1 and BRCA2 genes

In this work, we detected 42 polymorphic variants (19 BRCA1 and 23 BRCA2) (Table 5). Missense polymorphisms in BRCA1 gene (BRCA1 c.1067A>G/p.Gln356Arg, c.2612C>T/p.Pro871Leu, c.3548A>G/p.Lys1183Arg, c.4837A>G/p.Ser1613Gly) and BRCA2 gene (BRCA2 c.865A>C/p.Asn289His, c.1114A>C/p.Asn372His, c.2971A>G/p.Asn911Asp, c.7150C>A/p.Gln2384Lys) have been identified with high frequency in patients who tested negative for BRCA1 and BRCA2 mutations.

Table 4

Gene	Exon	Sequence variant	Predicted effect at protein level	Interpretation	Number of families harboring the variant	BIC*
BRCA1	2	c.19C>T	p.Arg7Cys	UV	1	4
BRCA1	2	c.43A>C	p.Ile15Leu	UV	1	1
BRCA1	18	c.5117G>C	p.Gly1706Ala	UV	3	6
BRCA1	21	c.5332G>A	p.Asp1778Asn	UV	2	1
BRCA2	11	c.3869G>A	p.Cys1290Tyr	UV	1	2
BRCA2	11	c.5704G>A	p.Asp1902Asn	UV	1	9
BRCA2	12	c.6892G>A	p.Glu2299Lys	UV	1	2

UV: Unclassified variant, *= number of times reported in BIC database (http://research.nhgri.nih.gov/bic/index.shtml).
Gene	Exon	Sequence variant	Predicted effect at protein level	Frequency (%)	BIC*	dbSNP** rs number	dbSNP** MAF (population)
BRCA1	8	c.442-34C>T	p.?	13.95	1	rs799923	(HapMap-CEU) 0.257
BRCA1	11	c.1067A>G	p.Gln356Arg	9.3	82	rs1799950	(HapMap-CEU) 0.049
BRCA1	11	c.2077G>A	p.Asp693Asn	1.16	16	rs4986850	(HapMap-CEU) 0.079
BRCA1	11	c.2082C>T	p.=?	13.90	14	rs1799949	(HapMap-CEU) 0.280
BRCA1	11	c.2311T>C	p.=?	22.06	25	rs16940	(HapMap-CEU) 0.161
BRCA1	11	c.2521C>T	p.Arg841Trp	1.16	114	rs1800709	(HapMap-CEU) 0.011
BRCA1	11	c.2612C>T	p.Pro871Leu	30.22	26	rs799917	(HapMap-CEU) 0.336
BRCA1	11	c.2733A>G	p.=?	1.16	0	rs1800740	(CAU) 0
BRCA1	11	c.3113A>G	p.Glu1038Gly	29.06	37	rs16941	(HapMap-CEU) 0.329
BRCA1	11	c.3119G>A	p.Ser1040Asn	2.32	45	rs4986852	(HapMap-CEU) 0.058
BRCA1	11	c.3418A>G	p.Ser1140Gly	1.16	28	rs227945	(HapMap-CEU) 0.005
BRCA1	11	c.3548A>G	p.Lys1183Arg	31.39	33	rs16942	(HapMap-CEU) 0.022
BRCA1	13	c.4308T>C	p.=?	26.74	249	rs1060915	(HapMap-CEU) 0.332
BRCA1	16	c.4837T>C	p.Ser1613Gly	24.41	247	rs1799966	(HapMap-CEU) 0.314
BRCA2	2	c.-26G>A	p.?	15	12	rs1799943	(HapMap-CEU) 0.173
BRCA2	10	c.865A>C	p.Asn289His	3.48	13	rs766173	(HapMap-CEU) 0.053
BRCA2	10	c.1114A>C	p.Asn372His	5.8	9	rs144848	(HapMap-CEU) 0.009
BRCA2	10	c.1365A>G	p.=?	3.4	7	rs1801439	(HapMap-CEU) 0.031
BRCA2	10	c.1909+22delT	p.?	1.1	0	–	(HapMap-CEU) NFD
BRCA2	11	c.2971A>G	p.Asn991Asp	5.8	6	rs1799944	(HapMap-CEU) 0.031
BRCA2	11	c.3396A>G	p.=?	6.9	8	rs1801406	(HapMap-CEU) 0.027
BRCA2	11	c.3807T>C	p.=?	4.6	3	rs543304	(HapMap-CEU) 0.195
BRCA2	11	c.4068G>A	p.=?	3.4	1	rs28897724	(HapMap-CEU) 0.239
BRCA2	11	c.4563A>G	p.=?	3.4	2	rs206075	(HapMap-CEU) 0.995
BRCA2	11	c.5744C>T	p.Thr1915Met	1.1	7	rs4987117	(HapMap-CEU) 0.032
BRCA2	11	c.6513G>C	p.=?	10.40	1	rs206076E	(HapMap-CEU) 0.005
BRCA2	14	c.7150C>A	p.Gln2384Lys	13.90	31	rs55977008	(HapMap-CEU) 0.083
BRCA2	14	c.7242A>G	p.=?	3.4	10	rs1799955	(HapMap-CEU) 0.190
BRCA2	14	c.7397C>T	p.Ala2466Val	1.1	48	rs169547	(HapMap-CEU) 0.014
4. Discussion

To date, very few reports have been published about the spectrum of BRCA1 and BRCA2 sequence variants in the Algerian population [7,8]. A total of 101 individuals from 79 breast cancer families have been examined for UVs and polymorphisms in the BRCA1 and BRCA2 genes. We note that UVs were more frequent in BRCA2 (24 different UVs) than in BRCA1 (14 different UVs). In all families where UV was identified, there was a family history of breast cancer/ovarian cancer. 8 new missense UVs identified in our present study (2 BRCA1 and 6 BRCA2) show a damaging PSIC score yielded by PolyPhen2 (Table 3) and could have a functional role in breast/ovarian cancer development, which deserves to be explored further. Furthermore, 5 new missense BRCA2 UVs out six that were found to be damaging by PolyPhen2 program also were deleterious according to SIFT program (Table 3). Hence, we could infer that results obtained for new BRCA2 UVs by PolyPhen2 were in good correlation with the results found by SIFT program.

Interestingly, the rare BRCA1 UV c.5332G>A/p. Asp1778Asn was found here for the first time in co-occurrence in trans with the deleterious BRCA1 mutation c.798_799delTT/p.Ser267LysfsX19 in young breast cancer patient with a strong breast cancer history (patient 2095, see Table 2). The rare UV c.5332G>A/p. Asp1778Asn could be neutral because co-inheritance in trans phase of two pathogenic mutations in BRCA1 or BRCA2 induces embryonic lethality or are associated with severe syndromes like Fanconi anemia [11]. In addition, the new BRCA2 UV c.6346C>G/p.His2116Asp (with both probably damaging PSIC score 0.996 and deleterious SIFT score 0.00) has been detected in breast/ovarian cancer patient (tested negative for a BRCA1 and BRCA2 mutation) but not in her sister (index case 2092, diagnosed with breast cancer) who carries the BRCA1 mutation c.83_84delITG/p.Leu28ArgfsX12 (Tables 2, 3). As compound heterozygosity for BRCA1 and BRCA2 genes deleterious mutations is a very rare finding (1/190,000) and often involve Ashkenazi founder mutations [12], the new UV c.6346C>G/p.His2116Asp could be pathogenic and evaluation of co-segregation of this variant with disease in this family is ongoing. However, the influence of the majority of the UVs on BRCA1 and BRCA2 genes function is not known [13]. Because many of these variants are very rare, the available genetic information from families carrying these variants is very limited for assessment of breast or ovarian cancer risk [14].

In the present work, 42 polymorphic variants have been characterized in BRCA1 (19 different polymorphisms) and BRCA2 (23 different polymorphisms) of individuals with breast and ovarian cancer family history (Table 5).

We detected several missense polymorphisms in BRCA1 and BRCA2 genes with high frequency in patients where pathological mutations BRCA1 and BRCA2 mutations were not present (Table 5). In addition, BRCA1 c.1067A>G/p.Gln356Arg has been identified in index case 2067 and her brother 2068; both carry the BRCA1 mutation c.181T>G/p.Cys61Gly (Table 2). Interestingly, recently it has been reported that the BRCA1 pathogenic mutation c.181T>G/p.Cys61Gly is associated with BRCA1 SNP p.Gln356Arg in 13 Slovakian breast/ovarian cancer families [16]. BRCA1 c.3113A>G/p.Glu1035Gly has been detected in breast cancer patient 2092 who carries the BRCA1 mutation c.83_84delITG/p.Leu28ArgfsX12 (Table 2). Whether these are common SNPs in BRCA1 and BRCA2 genes
modify the risk of breast and/or ovarian cancer in BRCA1 or BRCA2 mutation carriers, or are associated with risk of breast and/or ovarian cancer in patients tested negative for BRCA1 or BRCA2 mutations, remains unclear. To date, several studies have evaluated risk associated of breast and/or ovarian cancer with selected SNPs in BRCA1 (c.1067A>G/p.Gln356Arg) [15,17,18,25] and BRCA2 (c.1114A>C/p.Asn372His) [20–26]. Results from these studies showed conflicting evidence. In addition, Dombernowsky et al. [6] in a large study, evaluated risk associated of breast and/or ovarian cancer by 9 missense polymorphisms in BRCA1 c.1067A>G/p.Gln356Arg, c.2612C>T/p.Pro871Leu, c.3113A>G/p.Glu1038Gly, c.4837A>G/p.Ser1613Gly, c.4956G>A/p.Met1652Ile and BRCA2 c.865A>C/p.Asn289His, c.1114A>C/p.Asn372His, c.4258G>T/p.Asp1420Tyr, and c.5744C>T/p.Tyr1915Met. They found no association between heterozygosity or homozygosity for any of the nine polymorphisms and risk of breast and/or ovarian cancer in either study [6]. Pila- to et al. [26] studied both transmission of BRCA1 and BRCA2 pathogenic mutations and polymorphic variants in breast cancer familial members. They found that SNPs BRCA1 c.3548A>G/p.Lys1183Arg and BRCA2 c.1114A>C/p.Asn372His were more frequently present in breast cancer relatives belonging to families tested negative for BRCA1 and BRCA2 mutations.

Several missense polymorphisms detected here in our breast/ovarian cancer patients who were tested negative for BRCA1 and BRCA2 genes mutations, could have a role as susceptibility breast cancer markers in BRCA1 and BRCA2 non mutated Algerian breast/ovarian cancer families. Evaluation of risk of breast/ovarian cancer by these BRCA1 and BRCA2 missense polymorphisms is going on in breast/ovarian cancer cases and healthy controls.

5. Conclusions

In this report, for the first time, we identified UVs and missense polymorphisms in BRCA1 and BRCA2 genes in Algerian breast/ovarian cancer families. Evaluation of risk of breast/ovarian cancer induced by the eight new missense UVs and missense polymorphisms detected in our present work is going on in a larger study.

Acknowledgements

This study was supported by the Algerian National Research Program (CNEPRU). We deeply thank the patients and their families for their participation. We wish to thank Drs Ahmed Cherifi, Salim Bahayou and Abdelaziz Melboucy, for their help with the patients and cancer data. FC and NS would like to thank Amar Salhi, Daoud Cherbal and Romaissa Cherbal, for their support to this research project.

References

[1] Y. Miki, J. Swensen, D. Shattuck-Eidens et al., A strong candiditate for the breast and ovarian cancer susceptibility gene BRCA1, Science 266 (1994), 66-71.

[2] R. Wooster, G. Bignell, J. Lancaster et al., Identification of the breast cancer susceptibility gene BRCA2, Nature 378 (1995), 789-792.

[3] V. Calo, B. Loredana, L. La Paglia et al., The clinical significance of unknown sequence variants in BRCA genes, Cancer Res Treat 2339-2341.

[4] D. F. Easton, A.M. Deffenbaugh, D. Pruss et al., A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer-predisposition genes, Am J Hum Genet 81 (2007), 873-883.

[5] A. Osorio, R.L. Milne, E. Onrado et al., Classification of missense variants of unknown significance in BRCA1 based on clinical and tumor information, Hum Mutat 28 (2007), 477-485.

[6] S.L. Dombernowsky, M. Weischer, J.J. Freiberg et al., Missense polymorphisms in BRCA1 and BRCA2 and risk of breast and ovarian cancer, Cancer Epidemiol Biomarkers Prev 18 (8) (2009), 2339-2341.

[7] F. Cherbal, D.A.E. Houamel, G. Benais-Pont et al., BRCA1 and BRCA2 sequence variants in Algerian breast/ovarian cancer families, in Abstracts of Proceedings of AACR special conference, The Future of Molecular Epidemiology: New Tools, Biomarkers, and Opportunities; 2010 June 6-9, 2010, Miami, Florida.

[8] F. Cherbal, R. Bakour, S. Adane et al., BRCA1 and BRCA2 germline mutations screening in Algerian breast/ovarian cancer families, Dis Markers 28 (6) (2010), 377-384.

[9] E. Gross, N. Arnold, J. Goette et al., A comparison of BRCA1 mutation analysis by direct sequencing, SSCP and DHPLC, Mutat Res 105 (1-2) (1999), 72-78.

[10] P. Mailliet, Mutations analysis of BRCA1 and BRCA2 genes by using High Resolution Melting (HRM) curve analysis, In Roche seminar, New perspectives in Real-time PCR and DNA sequencing, 2007, September 20th, Bern.

[11] T. Judkins, B.C. Hendrickson, A.M. Deffenbaugh et al., Application of embryonic lethal or other obvious phenotypes to characterize the clinical significance of genetic variants found in trans with known deleterious mutations, Cancer Res 65 (2005), 10096-10103.

[12] M. Zaradelli, B. Peissel, S. Manoukian et al., Four new cases of double heterozygosity for BRCA1 and BRCA2 gene mutations: clinical, pathological, and family characteristics, Breast Cancer Res Treat 124 (1) (2010), 251-258.

[13] D.E. Goldgar, D.F. Easton, A.M. Deffenbaugh et al., Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2, Am J Hum Genet 75 (4) (2004), 535-544.

[14] D.E. Goldgar, D.F. Easton, G.B. Byrnes et al., Genetic evidence and integration of various data sources for classify-
ing uncertain variants into a single model, *Hum Mutat* 29(11) (2008), 1265-1272.

[15] D.G. Cox, P. Kraft, S.E. Hankinson et al., Haplotype analysis of common variants in the *BRCA1* gene and risk of sporadic breast cancer, *Breast Cancer Res* 7(2) (2005), R171-R175.

[16] M. Konecny, M. Milly, K. Zavodna et al., Comprehensive genetic characterization of hereditary breast/ovarian cancer families from Slovakia, *Breast Cancer Res Treat* 126(1) (2011), 119-130.

[17] A.M. Dunning, M. Chiano, N.R. Smith et al., Common *BRCA1* variants and susceptibility to breast and ovarian cancer in the general population, *Hum Mol Genet* 6 (1997), 285-289.

[18] N. Johnson, O. Fletcher, C. Palles et al., Counting potential functional variants in *BRCA1*, *BRCA2* and *ATM* predicts breast cancer susceptibility, *Hum Mol Genet* 16 (9) (2007), 1051-1057.

[19] D.G. Cox, S.E. Hankinson and D.J. Hunter, No association between *BRCA2* N372H and breast cancer risk, *Cancer Epidemiol Biomarkers Prev* 14 (2005), 1353-1354.

[20] C.S. Healey, A.M. Dunning, M.D. Teare et al., A common variant in *BRCA2* is associated with both breast cancer risk and prenatal viability, *Nat Genet* 26 (2000), 362-364.

[21] A.B. Spurdle, J.L. Hopper, X. Chen et al., The *BRCA2* H372H genotype is associated with risk of breast cancer in Australian women under age 60 years, *Cancer Epidemiol Biomarkers Prev* 11 (2002), 413-416.

[22] D.J. Hughes, S.M. Ginolhac, I. Coupier et al., Common *BRCA2* variants and modification of breast and ovarian cancer risk in *BRCA1* mutation carriers, *Cancer Epidemiol Biomarkers Prev* 14 (2005), 265-267.

[23] M. Ishitobi, Y. Miyoshobi, A. Ando et al., Association of *BRCA2* polymorphism at codon 784 (Met/Val) with breast cancer risk and prognosis, *Clin Cancer Res* 9(4) (2003), 1376-1380.

[24] L. Turkovic, L.C. Gurrin, M. Bahlo et al., Comparing the frequency of common genetic variants and haplotypes between carriers and non-carriers of *BRCA1* and *BRCA2* deleterious mutations in Australian women diagnosed with breast cancer before 40 years of age, *BMC Cancer* 10 (2010), 466.

[25] J. Figueirado, J.D. Brooks, D.V. Conti et al., Risk of contralateral breast cancer associated with common variants in *BRCA1* and *BRCA2*: potential modifying effect of *BRCA1/BRCA2* mutation carrier status, *Breast Cancer Res Treat* (2010), DOI 10.1007/s10549-010-1285-1.

[26] B. Pilato, M. Martinucci, K. Danza et al., Mutations and polymorphic *BRCA* variants transmission in breast cancer familial members, *Breast Cancer Res Treat* (2010) DOI 10.1007/s10549-010-0861-8.