Occurrence of Warm Freezing Rain: Observation and Modeling Study

Zhengqi Lu1, Yongxiang Han1,2, and Yangang Liu3

1Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China, 2Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science & Technology, Nanjing, China, 3Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA

Abstract Freezing rain has been normally considered to be composed of supercooled raindrops when the 2 m air temperature (hereafter T_w) is below freezing. However, according to a statistical survey of freezing rain observations in China from 2000 to 2019, we find that there were 656 events that occurred at T_w greater than 0°C (hereafter warm freezing rain and denoted by WFR), which account for 7% of the total freezing rain observations. Additionally, nearly 3% (266 observations) of freezing rain events occurred when the near-surface wet-bulb temperature was greater than 0°C. The modeling and sensitivity experiments on the nonequilibrium raindrop temperature (hereafter T_r) show that the temperature difference between raindrops and the atmosphere is the main cause of WFR. The magnitudes of the ΔT_w (difference between raindrop temperature T_r and air temperature T_w) and ΔT_{aw} (difference between T_r and wet-bulb temperature T_{aw}) are determined by the raindrop diameter D, temperature lapse rate Γ, and relative humidity RH. Increases of D and Γ, and a decrease of RH enhance ΔT_w and ΔT_{aw} and thus the occurrence of WFR. Further simulations of 4 idealized and 370 real sounding profiles reveal that either the T_w or the T_{aw} cannot properly distinguish the WFR events. When considering the temperature difference between raindrops and the atmosphere, the WFR can form by the “melting of solid hydrometeors” or “supercooled warm rain process.” This study can also deepen our understanding of the conditions of WFR and freezing rain formation at different altitudes.

Plain Language Summary It has been normally thought that freezing rain occurs when the air temperature or wet-bulb temperature is below 0°C. However, in our analysis of 9,312 freezing rain events in China over a 20-year period, nearly 7% of freezing rain events occurred when the air temperature >0°C (called warm freezing rain [WFR]). Even use of the wet-bulb temperature cannot explain all of the WFR events. Therefore, we developed a theoretical model to explain the formation mechanism of the WFR and analyze the key influencing factors. It is found that the temperature difference between the raindrop and the surrounding atmosphere is the main cause of WFR. An increase of raindrop diameter, an increase of atmospheric temperature lapse rate, and a decrease of relative humidity enhance the temperature difference between raindrops and the atmosphere, favoring the occurrence of WFR.

1. Introduction

Freezing rain is supercooled liquid precipitation near the surface, that is (raindrop temperatures are below 0°C), posing one of the major winter weather hazards in countries such as the United States, Canada, Sweden, Russia, and China (Adhikari & Liu, 2019; Andersson & Chapman, 2011; J. V. Cortinas et al., 2004; Deng et al., 2012; Sanders & Barjenbruch, 2016). Long-term persistence of freezing precipitation can not only damage the electricity system, transportation, and public infrastructure by causing tower collapses, line freezing, and poor communication but also result in economic losses and human casualties (Kiessling et al., 2014). For example, from January to February 2008, a long-term and wide-ranging freezing rain event occurred in southern China that caused direct economic losses of 18.7 billion (Zhao et al., 2008). Therefore, studies on the microphysical process of freezing rain can deepen our understanding of freezing rain formation and provide an important scientific basis for accurate forecasting, thus reducing economic losses caused by freezing rain.

Numerous studies have been conducted on the formation process of freezing rain and two microphysical mechanisms have been proposed: “melting mechanism” (Rauber et al., 1994, 2001; Tobin & Kumjian, 2017) and “supercooled warm rain mechanism” (Huffman & Norman, 1988; Roberts & Stewart, 2008). In the “melting
mechanism,” snow or ice crystals that formed in the upper air completely melt into raindrops as they fall through a warm layer (air temperature $T_r > 0^\circ\text{C}$). Subsequently, the raindrops fall into a subfreezing layer ($T_r < 0^\circ\text{C}$) and become supercooled raindrops. In the “supercooled warm rain mechanism,” freezing rain grows by collision and coalescence of supercooled cloud droplets and raindrops, and the air temperature is maintained below 0°C as the raindrops fall.

Based on these two mechanisms, several parameterization schemes have been developed to predict the freezing rain, including Huffman and Norman (1988), Ramer (1993), Czys et al. (1996), Zerr (1997), Bourgouin (2000), Thériault and Stewart (2010), Schuur et al. (2012), Benjamin et al. (2016), Reeves et al. (2016), and Kämäräinen et al. (2017). Some of the above schemes only consider the “melting mechanism” of freezing rain. For example, Czys et al. (1996) established a diagnostic model based on the “melting mechanism.” In this model, freezing rain is determined when snowflakes or ice crystals completely melt in the melting layer and fall into the subfreezing layer near the ground. Bourgouin (2000) developed a freezing rain diagnosis method by considering the energy area enclosed by the T_a profile and 0°C isotherm, which has been operationally used in the National Weather Service (NWS; Birk et al., 2021). Some other schemes considered both the “melting mechanism” and “supercooled warm rain mechanism” for predicting freezing rain, such as the methods developed by Ramer (1993) and Huffman and Norman (1988). In addition, the refreezing process of mixed-phase particles can also affect the formation of freezing rain (Barszcz et al., 2018; Thériault & Stewart, 2010). Cholette et al. (2020) reduced the overestimation of the freezing rain rate in the WRF (Weather Research and Forecasting) model by adding the prognostic equation for the liquid fraction of mixed-phase particles to the Predicted Particle Properties (P3) schemes (Morrison & Milbrandt, 2015). Hanesiak and Stewart (1995) suggested that supercooled raindrops in the refreezing layer would refreeze through collision with ice crystals, thus reducing the amount of freezing rain near the ground. By adjusting the temperature threshold for the collision of raindrops with ice crystals in the MY2 (Milbrandt & Yau, 2005) scheme, Barszcz et al. (2018) significantly improved the accuracy of freezing rain forecasting in Canada’s 2.5-km numerical weather prediction model.

The above studies provide theoretical support for the formation of freezing rain. However, these approaches all use the air temperature (T_a) or wet-bulb temperature (T_w) to determine the precipitation types instead of the raindrop temperature (T_r). For example, some methods assume that the surface air temperature below 0°C is the necessary condition for freezing rain formation (Benjamin et al., 2016; Bourgouin, 2000; Czys et al., 1996; Kämäräinen et al., 2017), while others use T_r to distinguish between freezing rain and rain (Birk et al., 2021; Ramer, 1993; Reeves et al., 2016; Schuur et al., 2012; Thériault & Stewart, 2010).

However, the evaporation of raindrops causes T_r to be lower than T_a in a subsaturated atmosphere. In addition, T_a is the lowest temperature that can be reached under current ambient conditions by the evaporation of water only (Dunlop, 2008). The value of T_r only approaches that of T_a when the raindrop and atmosphere reach the dynamic equilibrium (Caplan, 1966). Obviously, replacing T_a with T_a or T_w in the freezing rain diagnosis method is only an idealized assumption. Since the time scale of changes in the atmospheric conditions is often shorter than the relaxation time scale of raindrops, the raindrop cannot maintain an equilibrium state when they are falling in the real atmosphere (Tardif & Rasmussen, 2010). Therefore, the variation of T_r always lags behind that of T_a and T_w (Caplan, 1966; Gosnell et al., 1995; Wu, 1991). Some observational studies have verified this theory. For example, the observational study by Anderson et al. (1998) showed that the mean difference between T_r and T_a is 0.4°C when raindrops are falling. Further studies have shown that the temperature difference between raindrops and the atmosphere depends upon many factors, including season, time of day, and other meteorological conditions (Khain et al., 2011; Lee & Feingold, 2010; Salamalikis et al., 2016).

In this study, we first analyzed the freezing rain observed in China over the last two decades (from 2000 to 2019). A total of 9,312 freezing rain observations were identified, 93% of which occurred when the near-surface air temperature (air temperature at 2 m above ground level, hereafter T_{aw}) was ≤0°C. However, nearly 7% (656 observations) of the freezing rain could not be explained by air temperature and occurred at $T_{aw} > 0^\circ\text{C}$. We refer to this phenomenon as warm freezing rain (hereafter WFR). Additionally, nearly 3% (266 observations) of the freezing rain events occurred when the surface wet-bulb temperature (hereafter T_{aw}) was >0°C. Some researchers have noticed this phenomenon (Bernstein, 2000; J. Cortinas, 2000; J. V. Cortinas et al., 2004; Houston & Changnon, 2007; Roberts & Stewart, 2008), but the WFR formation has never been further studied. To explain the formation of WFR, we then present a theoretical model by relaxing the equilibrium assumption of T_r to consider the nonequilibrium heat exchange between raindrops and the ambient atmosphere. Several sensitivity studies have
been conducted using this model to examine the effects of key meteorological variables on T_r, including raindrop diameter (D), temperature lapse rate (Γ), and relative humidity (RH). Finally, the formation of WFR and the corresponding meteorological conditions are discussed.

2. Observational Analysis

The observation data were obtained from the China Meteorological Administration (CMA). They include radiosonde data from 89 sounding stations across China at 00:00 and 12:00 UTC, and surface temperature, dewpoint temperature, and weather phenomena data from 2,168 ground stations at 00:00, 06:00, 12:00, and 18:00 UTC from January 2000 to December 2019. The spatial distributions of the sounding and ground stations are shown in Figure 1.

The T_w was measured with standard mercury thermometers (X. Q. Wen et al., 2008) by trained meteorologists at the ground stations. The precision of this thermometer was 0.1°C and the measurement error of the instrument was ±0.2°C. The observers read the temperature data manually, and the reading was accurate to 0.1°C without the estimation rounding method. In addition, when rain was observed to form the ice glaze on the ground or objects, it was recorded as freezing rain (CMA, 2011).

These data were subjected to quality control and homogeneity tests by trained meteorologists following the CMA procedure (S. H. Zhou, 2000). We selected the ground observations that corresponded to the freezing rain (WMO weather code: 24, 56, 57, 66, 67) and excluded some of the missing values. The T_w was calculated using the method described by Sadeghi et al. (2013), and the error in the calculated T_w was only −0.1°C when the air temperature was near 0°C. In addition, to screen the sounding profiles when freezing rain occurred, the weather phenomena observed by ground stations at 00:00 and 12:00 UTC were selected to match with the observed profiles at sounding stations. We constrained the vertical profiles by requiring that the sounding stations and corresponding surface observational sites were at the same locations.

For convenient discussion, one freezing rain event was defined as one observational record of freezing rain. Figure 2a shows the frequency distribution of T_w when freezing rain occurred at the ground stations in China from 2000 to 2019. A total of 9,312 freezing rain observations were recorded over a 20-year period, 90% (8,394) of which occurred when T_w was between −6°C and 0°C. This statistic is consistent with the results of J. Cortinas (2004) and Y. Zhou et al. (2017). However, nearly 7% (656) of the freezing rain occurred when the T_w was greater than 0°C. We refer to this phenomenon as WFR. In addition, nearly 3% (266 observations) of freezing rain occurred when the T_w was greater than 0°C (Figure 2b), and half of them occurred outside the error range.
of the instrument (±0.2°C) or the calculated wet-bulb temperature itself (∼−0.1°C), meaning that the wet-bulb temperature cannot be used to explain all WFR events. The frequency of such WFR events gradually decreased as the A_A and the A_W increased (Figures 2c and 2d).

Some observational studies have shown that the meteorological characteristics and formation mechanisms of freezing rain change with the station altitude (Carrière et al., 2000). To examine whether the station altitude affects the formation of WFR, the frequency and proportion of WFR observations at stations with different altitudes were analyzed. The results show that the frequency of WFR decreases with increasing station altitudes (Figure 3). Over the entire study period, 360 WFR events were observed at ground stations with station altitudes between 0 and 500 m, accounting for 18% of the total number of freezing rain events in this station altitude range. The ground stations at altitudes >2,000 m only observed 41 WFR events, representing 3% of the total number of freezing rain events at this station altitude. It is obvious that the frequency and proportion of WFR events occurring at low station altitudes are significantly higher than those at high station altitudes, which implies that the station altitude has a significant impact on the spatial distribution of WFR events.

The formation of freezing rain is closely related to the vertical profile of air temperature. We screened the vertical profiles of WFR over a 20-year period by requiring that the sounding stations and corresponding surface observational sites were at the same locations. Since the number of sounding stations in China was significantly lower than that of ground stations, only 25 vertical profiles with WFR were screened. Although all of these profiles contain a melting layer or liquid cloud (cloud top temperature > −10°C), their A_A were greater than 0°C. Additionally, we found that both the A_A and the A_W were greater than 0°C in six WFR profiles. Thus, the WFR could not be perfectly explained by the wet-bulb temperature or air temperature, calling for new and different explanations.

Meanwhile, some researchers have attributed the WFR events to ground temperature <0°C, as the air temperature is reported at 2.0 m height above the ground level (Bernstein, 2000; Roberts & Stewart, 2008). Indeed, a raindrop ($T_r > 0°C$) may gradually freeze when the ground or object temperature is less than 0°C. However, if a raindrop is supercooled ($T_r < 0°C$), it will freeze much faster than an above freezing raindrop once it strikes a below freezing object, which is more consistent with the definition of freezing rain (Ofcm, 2005). Therefore, in order to explain the formation of WFR, the raindrop temperature and their influencing factors within the WFR events are necessary to be calculated.
3. Theoretical Model and Sensitivity Studies

3.1. Model Description

A theoretical model for describing T_s is presented here to quantitatively investigate the formation of WFR. In this model, the equilibrium assumption is relaxed and considerations for the nonequilibrium heat exchange between raindrops and the atmosphere are included. The model contains some simplifying assumptions used in previous studies (Caplan, 1966; Smorodin et al., 2014; Tardif & Rasmussen, 2010). First, raindrops are assumed to be spherical with a uniform temperature from the drop center to the surface. Second, it was assumed that the raindrop sizes do not increase by the collision–coalescence process and do not decrease by break up during their fall from the cloud base. This assumption avoids the calculation errors of raindrop temperature due to the large transient change in raindrop sizes.

The total heat of the raindrop (Q_T) is determined by the heat transfer between raindrops and atmosphere by evaporation (Q_e), conduction (Q_c), and radiation (Q_r), which can be described by the following equation (Abraham et al., 1972):

$$\frac{dQ_T}{dt} = \frac{dQ_e}{dt} + \frac{dQ_c}{dt} + \frac{dQ_r}{dt}$$ \hspace{1cm} (1)

where the components can be expressed as (Pruppacher & Klett, 2012)

$$\frac{dQ_e}{dt} = -L_e \frac{2\pi DF_b D_s}{K_v} \left[\frac{e_{sat}(T_r(t))}{T_r(t)} - \frac{RH e_{sat}(T_a(t))}{100} \right]$$ \hspace{1cm} (2)

$$\frac{dQ_c}{dt} = -2\pi \frac{\varepsilon}{\sigma} (T_r^4(t) - T_s^4(t))$$ \hspace{1cm} (3)

$$\frac{dQ_r}{dt} = -\pi D^2 \varepsilon \sigma (T_r^4(t) - T_s^4(t))$$ \hspace{1cm} (4)

$$\frac{dQ_r}{dt} = \frac{1}{6} c_a \pi D^3 \rho_a \frac{dT_r(t)}{dt}$$ \hspace{1cm} (5)

Based on Equations 1–5, the temporal change rate of T_s is described by
\[
\frac{dT}{dt} = \frac{12F_b}{D^2 \rho_w C_w} \left[\frac{L_v D_v F_v}{R_v^2 F_h} \left(\frac{R H \varepsilon_{sat}(T_a(t))}{100} - \frac{\varepsilon_{sat}(T_r(t))}{T_r(t)} \right) \right. \\
\left. - k_v (T_r(t) - T_v(t)) - \frac{D}{2T_h} \varepsilon \sigma (T_r^4(t) - T_v^4(t)) \right]
\] (6)

The variations of raindrop mass and size were expressed as

\[
\frac{dm_v}{dt} = \frac{2\pi DF_i D_v}{R_v^2} \left[\frac{R H \varepsilon_{sat}(T_a(t))}{100} - \frac{\varepsilon_{sat}(T_r(t))}{T_r(t)} \right]
\] (7)

\[
\frac{dD}{dt} = \frac{4F_i D_v}{D R_v^2 \rho_w} \left[\frac{R H \varepsilon_{sat}(T_a(t))}{100} - \frac{\varepsilon_{sat}(T_r(t))}{T_r(t)} \right]
\] (8)

In addition, the raindrop fall velocity \(V_r(D)\) was estimated as follows (Atlas et al., 1973; Best, 1950):

\[
V_r(D) = C_1 - C_2 \exp \left(-\frac{C_3 D}{2} \right)
\] (9)

The initial phases of the particles are assumed to be raindrops when the cloud top air temperature is \(\geq -10^\circ C\), and vice versa for snowflakes. If the particles are solid, the parameterization scheme proposed by Zerr (1997) is used to calculate the melting rate of the solid/mixed particles:

\[
\frac{dm_s}{dt} = -\frac{4\pi f_i C_i}{L_m} \left[k_v (T_a(t) - T_v(t)) + \frac{D_i M_w L_v}{R_v^2} \left(\frac{R H \varepsilon_{sat}(T_a(t))}{100} - \frac{\varepsilon_{sat}(T_a(t))}{T_a(t)} \right) - \frac{\varepsilon_{sat}(T_0)}{T_0} \right]
\] (10)

It is worth mentioning that the evaporation process of the melting snowflakes can significantly reduce the 3%-10% particle mass (Neumann, 2017), which cannot be neglected for some small snowflakes. Therefore, once the melting process has started, the evaporation mass of the melting portions \(m_{sw}\) was calculated based on Equation 7 (Neumann, 2017).

The initial mass of the snowflakes is set to the equivalent mass of raindrops, and the initial size of the snowflakes is expressed as follows:

\[
D_0 = D_r \sqrt{\frac{\rho_w}{\rho_s}}
\] (11)

The snowflake is assumed to be a spherical mixture of liquid water particles wrapped in snow crystals during the melting process. The size of the melting snowflakes is expressed as

\[
D(t) = \sqrt[3]{\frac{6}{\pi} \left(\frac{(m_{j0} - m_j(t) - m_{sw}(t))}{\rho_w} + \frac{m_j(t)}{\rho_s} \right)}
\] (12)

The fall velocity of the melting snowflake is estimated as follows (Frick et al., 2013):

\[
V_m = V_i + (V_r - V_i) \times X(LWF)
\] (13)

where LWF represents the liquid water fraction of the mixed particle:

\[
LWF = (m_{j0} - m_j(t)) / m_{j0}
\] (14)

\(X\) is the empirical function associated with LWF:

\[
X(LWF) = 0.246 LWF + (1 - 0.246) LWF^7
\] (15)

\(V_i\) represents the fall velocity of dry snowflakes (Langleben, 1954):

\[
V_i = 2.34(100D)^{0.3}
\] (16)

\(V_r\) represents the terminal velocity of a raindrop with the same mass as the snowflake.
The initial height of raindrop generation is defined as the height at which the solid particles completely melt. The particle temperature of the snowflakes during the melting process is assumed to be 0°C. When the snowflakes completely melt into raindrops, the model assumes the initial $T_r = 0°C$ and calculates the variation of T_r with the falling distance. The time step of the model is set to 0.1 s. The variables, symbols, and empirical parameters in the above equations are summarized in Appendix A Table A1.

3.2. Sensitivity Experiments

In fact, the atmospheric conditions surrounding falling raindrops are changing, which prevents raindrops from reaching and maintaining a steady equilibrium state instantaneously. In principle, T_r is not equal to T_s or T_o when the raindrops fall in the real atmosphere. It is possible for the T_r to be less than 0°C while the T_s or T_o is greater than 0°C when the raindrops fall to the ground, thus resulting in WFR. To better understand the formation mechanism of WFR and explain the frequency distribution of the WFR, the following sensitivity experiments were conducted.

3.2.1. Experiment Design

To simplify the sensitivity study, the model is constrained with the following conditions: (a) the top of the model is set at 1 km height because the cloud base height of winter precipitation is usually less than 1 km (Zhang et al., 2016). (b) The raindrops remain stable in geometric shape (spherical) and no collision–coalescence process occurs among raindrops during falling. (c) Hydrostatic atmosphere and surface pressure of 1,013.25 hPa are assumed for the atmospheric pressure profile and the T_m is set as 0.5°C. (d) Observations have shown that the spectral width of the raindrop size distribution is 4 mm (Huang et al., 2018) and the RH is usually greater than 80%. Thus, we set the default raindrop size as half of the spectral width (2 mm) of the raindrop size and set the default RH to 80%. In addition, the default value of Γ is set to 5°C/km, which is taken in the range of the wet adiabatic lapse rate (−4−9.8°C/km). Since the idealized sensitivity experiments do not involve the melting process of snowflakes, the default value of the initial T_r was equal to T_o.

According to the theoretical model of T_r presented in Section 3.1, the evaporation, conduction, and radiation heat transfer of the raindrops and thus T_r are affected by the initial raindrop diameter (D_r), temperature lapse rate (Γ), and relative humidity (RH). Therefore, four sensitivity experiments are further conducted (Table 1) to explore the sensitivities in addition to the control experiment. Briefly, the control experiment is to investigate the variability of T_r when the raindrops fall from 1 km height to the ground by fixing D_r, Γ, RH at the default values of 2 mm, 5°C/km, and 80%, respectively. Experiment 1 examined the sensitivity to D_r by fixing the Γ, RH, and initial T_r at their default values but varying D_r from 0.5 to 4 mm, with a diameter interval of 0.1 mm. Experiment 2 examined the sensitivity to Γ by fixing D_r, RH, and initial T_r at their default values but varying the Γ from −10°C/km to 10°C/km, with an interval of 0.5°C/km. Experiment 3 examined the sensitivity to RH by fixing D_r, Γ, and initial T_r at their default values but varying the RH from 50% to 100%, with an interval of 5%. Experiment 4 examined the sensitivity to initial T_r by fixing D_r, Γ, and RH at their default values but varying the initial T_r from −5.5°C to −3.5°C, with an interval of 1°C.

Table 1

Sensitivity parameter	Variation range	Default value
CTRL	−	$D = 2$ mm; $\Gamma = 5$°C/km; $RH = 80$%; initial $T_r = T_o$
Ex 1	D	$RH = 80$%; $\Gamma = 5$°C/km; initial $T_r = T_o$
Ex 2	Γ	$D = 2$ mm; $RH = 80$%; initial $T_r = T_o$
Ex 3	RH	$D = 2$ mm; $\Gamma = 5$°C/km; initial $T_r = T_o$
Ex 4	initial T_r	$D = 2$ mm; $\Gamma = 5$°C/km; $RH = 80$%

Note. CTRL and Ex refer to the controlled experiment and sensitivity experiment, respectively.
with height as a raindrop falls from 1 km height in the atmosphere (assuming that the initial $D = 2$ mm, $RH = 80\%$, and $\Gamma = 5^\circ C/km$). The T_w is less than T_a in a subsaturated atmosphere. When the raindrop starts to fall, the T_r gradually increases, and the T_a and T_w increase with the falling distance. Thus, the ΔT_w (difference between T_w and T_r) gradually decreases, while the ΔT_a (difference between T_a and T_r) increases with the falling distance. The raindrop reaches the equilibrium state transiently when it falls 67 m (defined as the equilibrium distance) from the model top, at which point the T_r is close to T_w (Caplan, 1966). Subsequently, the T_r gradually increases with the falling distance and its variation rate (dT_r/dt) is slightly less than that of T_a (dT_a/dt) and T_w (dT_w/dt), which causes the ΔT_w and ΔT_a to gradually increase with the falling distance.

![Figure 4](image42x722_to_82x748)

Figure 4. (a) Variation in the T_r, T_a, and T_w with falling distance of the raindrop; (b) variation in the Q_r, Q_a, Q_h, and Q_e with falling distance.

3.2.2. Results

3.2.2.1. Control Experiment

Figure 4a shows the variations in T_r, T_a, and T_w with height as a raindrop falls from 1 km height in the atmosphere. From the cloud base to the equilibrium distance, the Q_r is much greater than the Q_a and Q_w, and the total heat change of raindrops is negative due to the strong raindrop evaporation. Therefore, the dT_r/dt is negative, and the ΔT_{ar} rapidly increase and ΔT_{aw} decrease with the falling distance. With the increase of ΔT_{aw}, the Q_h rapidly increases and the Q_e decreases with the falling distance. When the Q_h is sufficient to compensate for the Q_e, the raindrops reach the equilibrium state transiently and the T_r is close to the T_a (Tardif & Rasmussen, 2010). After that, the heat exchange between the raindrop and atmosphere becomes nonequilibrium since the time scale of change for T_a and T_w is shorter than the relaxation time scale of raindrops. The dT_r/dt slightly lags behind the dT_a/dt and dT_w/dt, which means that the T_r gradually deviates from the T_a and both the ΔT_w and ΔT_{aw} gradually increase with the falling distance. Furthermore, the Q_r is much less than the Q_e and Q_h and can be neglected in the analysis.

3.2.2.2. Effects of Raindrop Diameter

Figure 5a shows the influence of different raindrop diameters on T_r. As can be seen from Figure 5a, D largely influences the equilibrium distance of raindrops. Until the raindrops reach the transient equilibrium state, a larger D leads to a decrease in the variation rate of T_r, and a gradual increase in the equilibrium distance of raindrops. For example, the equilibrium distance is only 33 m for small raindrops ($D = 1$ mm), while it increases to 91 m for large raindrops ($D = 4$ mm). Furthermore, both the ΔT_{aw} and ΔT_{ar} increase with increasing D when the raindrops fall beyond the equilibrium distance.

Figure 5b shows the variation in ΔT_{aw} and ΔT_{ar} according to different values of D when the raindrops reach the surface. The ΔT_{aw} and ΔT_{ar} are nearly linearly proportional to D, with an increase of 1 mm in D leading to a rise.
of 0.4°C in ΔT_{aw} and ΔT_{aw}. This phenomenon is due to smaller raindrops having a larger surface-to-volume ratio and faster heat transfer between their surface and the atmosphere.

In addition, due to the evaporation process of raindrops or melting snowflakes, D will gradually decrease with the falling distance. Thus, the temperature difference between raindrops and the atmosphere will gradually decrease with the falling distance. However, the decrease of ΔT_{aw} and ΔT_{aw} can be neglected due to the assumptions of a short falling distance (1 km), a high RH (80%), and a relative large raindrop size (2 mm).

3.2.2.3. Effects of Temperature Lapse Rate

Figure 6 shows the variation of T_i with falling distance for three different values of Γ. When the Γ is less than 0°C/km (Figure 6a), the cooling rate of T_i is lower than that of T_{aw} and T_{aw}, and thus the ΔT_{aw} and ΔT_{aw} gradually decrease with the falling distance. When the Γ is equal to 0°C/km (Figure 6b), the ΔT_{aw} and ΔT_{aw} vary little with height after the raindrops reach the transient equilibrium state. In addition, even in an isothermal atmosphere, the T_i is still slightly lower than T_{aw} due to a 0.1°C bias in the empirical function itself used to calculate the wet-bulb temperature (Sadeghi et al., 2013). When the Γ is greater than 0°C/km (Figure 6c), the heating rate of T_i is slower than that of T_{aw} and T_{aw}, which results in $T_i < T_{aw} < T_{aw}$ and ΔT_{aw} (or ΔT_{aw}) increases with the falling distance (Figure 6c). In general, the positive or negative values of Γ determine whether the ΔT_{aw} and ΔT_{aw} will increase or decrease with the falling distance after the raindrops reach the transient equilibrium.

Figure 6d shows the variation in the ΔT_{aw} and ΔT_{aw} with Γ when the raindrops fall to the surface. Both ΔT_{aw} and ΔT_{aw} are linearly proportional to Γ, and the magnitude of Γ determines the degree of deviation of T_i from T_{aw} and T_{aw}. Both the ΔT_{aw} and ΔT_{aw} increase by 0.055°C for each increase of 1°C/km in Γ. Due to the relaxation time scale of raindrops being longer than the time scale of changes in T_{aw}, the cooling/warming rate of T_i is slower than that of T_{aw} and T_{aw}. Thus, ΔT_{aw} and ΔT_{aw} gradually increase with an increasing Γ. It is also worth noting that ΔT_{aw} increases from −0.39°C to 0.6°C when Γ increases from −10°C/km to 10°C/km, which indicates that the Γ also determines whether the T_i is larger or smaller than the T_{aw} when raindrops reach the surface.

3.2.2.4. Effects of Relative Humidity

It is well known that RH influences T_i by affecting the evaporation process of the raindrops (Caplan, 1966). As expected, with the increase of RH, the evaporation effect of raindrops gradually decreases and leads to the decrease of ΔT_{aw} (Figure 7a). Figure 7b shows the variation of ΔT_{aw} at the surface is inversely proportional to RH. When the RH increases from 50% to 100%, the ΔT_{aw} decreases from 3.5°C to 0.29°C.

The effect of RH on ΔT_{aw} is relatively weak compared to that on ΔT_{aw}, because T_{aw} also considers the effect of evaporation, and thus the ΔT_{aw} only decreases from 0.41°C to 0.29°C when the RH increases from 50% to 100%. Since the time scale of changes in the atmospheric conditions is often shorter than the relaxation time scale of
raindrops, the difference between the T_r and T_w is still 0.29°C when the RH is 100%. Even if the evaporation of the raindrops stops, the T_r is not equal to T_w.

3.2.2.5. Effects of Initial Raindrop Temperature

Figure 8 shows the variation of T_r, T_w, and T_o with falling distance for different three typical values of Γ; (d) relationship between ΔT_{ar}, ΔT_{aw}, and Γ when the raindrops reach the surface.

Figure 6. (a–c) Variation of T_r, T_w, and T_o with falling distance for different three typical values of Γ; (d) relationship between ΔT_{ar}, ΔT_{aw}, and Γ when the raindrops reach the surface.

3.2.3. Combined Effect of D, Γ, and RH

The above sensitivity experiments demonstrate that the D, Γ, and RH all affect the T_r, ΔT_{ar}, and ΔT_{aw}. The combined effect of the three parameters on ΔT_{aw} is summarized in Figure 9a. On the one hand, the effect of D on ΔT_{aw} depends upon the magnitude of Γ. When Γ is less than 0°C/km (ambient temperature increases with height),
\(\Delta T_{aw} \) decreases with \(D \) and becomes more sensitive to \(D \) with the decreasing \(\Gamma \). Conversely, when \(\Gamma \) is greater than 0 (ambient temperature decreases with height), \(\Delta T_{aw} \) increases with \(D \). The larger the \(\Gamma \) is, the more sensitive \(\Delta T_{aw} \) is to the change in \(D \). For example, when \(\Gamma = -10 \, ^\circ\text{C}/\text{km} \), \(\Delta T_{aw} \) decreases by about 1°C as \(D \) increases from 0.5 to 3 mm. When \(\Gamma \) increases to 10°C/km, \(\Delta T_{aw} \) increases by about 1.5°C as \(D \) increases from 0.5 to 3 mm. This phenomenon implies that when the surface temperature is greater than 0°C, the possibility of WFR is higher for \(\Gamma > 0 \) than for \(\Gamma < 0 \). On the other hand, the sensitivity of \(\Delta T_{aw} \) to \(RH \) seems to be unaffected by \(\Gamma \). Regardless of the sign and value of \(\Gamma \), \(\Delta T_{aw} \) gradually decreases with increasing \(RH \). Since the weak effect of \(RH \) on \(\Delta T_{aw} \), we only calculate the combined effect of \(D \) and \(\Gamma \) on \(\Delta T_{aw} \) for \(RH = 80\% \) (Figure 9b). The maximum \(\Delta T_{aw} \) can reach over 1.5°C when the large raindrops (\(D = 4 \, \text{mm} \)) fall in the atmosphere with a large \(\Gamma \), which indicates that using the \(T_{aw} \) instead of \(T_{w} \) to determine the precipitation type will introduce some bias. Due to the deviation of the empirical function used to calculate the \(T_{aw} \), the calculated \(T_{w} \) is slightly lower than the \(T_{aw} \) when \(\Gamma = 0 \) and leads to a bias of the contour of \(\Delta T_{aw} = 0 \) to the side of \(\Gamma > 0 \). In addition, for smaller raindrops (\(D < 1.25 \, \text{mm} \)), the \(\Delta T_{aw} \) is maintained between \(-0.5^\circ\text{C}\) and \(0^\circ\text{C}\) regardless of the variation of \(\Gamma \). This phenomenon implies that the possibility of WFR is relatively low when small raindrops fall to the surface with \(T_{aw} > 0^\circ\text{C} \).

3.3. Effects of More Realistic Temperature Profiles

The sensitivity experiments have shown that \(\Gamma \) determines the \(\Delta T_{aw} \) and \(\Delta T_{aw} \), thus playing a significant role in the formation of WFR. In the real atmosphere, the temperature profile is composed of multiple values of \(\Gamma \). For example, winter precipitation is mainly caused by frontal systems that often contain at least one inverse structure in the atmosphere (Thériault & Stewart, 2010). Furthermore, WFR requires the surface temperature to be greater than 0°C. Therefore, according to the above feature of temperature layers and combinations of different \(\Gamma \) (positive or negative values), four types of idealized temperature profiles are analyzed for the possibility of WFR occurrence (Figure 10). The variations of \(\Gamma \), corresponding to each type of temperature profile are calculated to determine whether WFR would occur. All of the profiles assume that \(D = 2 \, \text{mm} \), \(RH = 80\% \), \(T_{aw} = 1.5^\circ\text{C} \), and \(T_{aw} = 0.34^\circ\text{C} \).

The first type of profile (Figure 10a) is similar to the “melting mechanisms” profile of freezing rain, including an upper warm layer, a lower subfreezing
layer, and a warm near-surface layer. The calculated result shows that $A_A r = -0.4°C$ when the raindrops fall to the ground. Although the $A_A r r$ and $A_A w w$ are greater than 0°C, the raindrops are still in a supercooled state. Therefore, WFR might occur for the first type of profile.

The second and third types of profiles have no subfreezing layer below 1.5 km height. Whether the Γ is less (Figure 10b) or greater than 0°C/km (Figure 10c) in the near-surface layer, the $A_A r$ is slightly greater than 0°C when the raindrops fall into the near-surface layer. Therefore, the possibility of WFR is lower for these two types of profiles.

The fourth profile type (Figure 10d) is similar to the freezing rain profile of the “supercooled warm rain process,” which includes an upper cold layer but a weak warm layer near the surface. The falling raindrops remain supercooled and fall into the weak warm layer with $\Gamma > 0$ near the surface. Although the surface temperature and wet-bulb temperature are greater than 0°C, the $A_A r$ near the surface is less than 0°C (−0.6°C) and results in WFR due to the temperature difference between raindrops and the atmosphere.

In summary, the temperature profiles of WFR have two common features: (a) there is a cold layer (or subfreezing layer) above the near-surface layer, which allows the raindrops (or completely melted ice crystals) to remain supercooled before falling into the near-surface layer. (b) Γ in the lowest atmosphere needs to be greater than 0°C/km for the raindrops falling into the near-surface layer to maintain a large $A_T w$. It is important to note that these results only apply to idealized conditions. In a real atmosphere, if the refreezing layer is cold or deep enough, the raindrops might be coalescing with crystals or renucleation to form ice pellets, thus reducing the WFR probability. In general, the first and fourth analyzed profiles have a high possibility for WFR formation.

Figure 9. Distribution of (a) $A_T a$ and (b) $A_T w$ for various initial D, Γ, and RH when the raindrops reach the surface (in Figure 8a, the dashed lines represent $A_T a$ when $RH = 75\%$ and the solid lines represent $A_T a$ when $RH = 80\%$; in Figure 8b, initial $RH = 80\%$).
3.4. Evaluation of the Model for Real Borderline Rain/Freezing Rain Events

The above sensitivity experiments should be considered idealized temperature profiles, whereas real temperature profiles are more complex. To test the applicability of the calculated ΔT for real freezing rain events, the theoretical model (Section 2.2) was applied to the borderline rain/freezing rain events (when the ΔT_{st} is near 0°C) observed at the sounding stations over the two decades.

Figures 11a and 11b represent the profiles of the “melting process” and “supercooled warm rain process” in freezing rain events, respectively. The calculated results of the “melting mechanism” (Figure 11a) show that the $\Delta T_{\text{st}} = 0.3°C$ and $\Delta T_{\text{su}} = -0.14°C$. The ice crystals completely melt into raindrops at the bottom of the melting layer (~2,500 m), during which time the T_r is 0°C and the ΔT_{su} is close to 0°C. The ΔT_{su} gradually increases as the raindrop falling distance increases. Since $\Gamma > 0$ in the near-surface layer, T_r of the raindrops falling to the ground is much lower than T_a and T_w. Although the $T_a > 0°C$ near the surface, the falling raindrops remain supercooled ($T_r = -0.3°C$) and form WFR when they are falling into the warm layer near the surface.

The corresponding profile for the “supercooled warm rain mechanism” (Figure 11b) shows that the initial precipitation particles in the cloud remained supercooled. The air temperature above the near-surface layer was below 0°C. The temperature difference between raindrops and the atmosphere is about ±0.9°C. When the raindrops fell into the warm layer near the surface, although T_a and T_w are greater than 0°C near the surface, the raindrops remained supercooled ($T_r = -0.6°C$) and formed WFR.

To test the applicability of the calculated T_r for real freezing rain events, the borderline rain/freezing rain events with T_{sw} between −1°C and 1°C are filtered based on the records from the sounding and ground stations in China. Over the last two decades, a total of 370 vertical profiles of borderline rain/freezing rain events were observed, including 126 freezing rain events and 244 rain events. The theoretical model (Section 2.2) is applied to these sounding profiles to calculate the T_r at surface (assume $D = 2 $ mm).

The distributions of the calculated T_r, observed T_{sw}, and T_{su} at the surface for the 370 borderline rain/freezing rain events (red or blue dots) are shown in Figure 12. Almost all freezing rain events (including WFR) occurred when $T_r < 0$, but there are 25 and 7 WFR events were missed when using the distinguishing criteria of $T_{sw} < 0$ or
When $T_w < 0$, respectively. Meanwhile, there are 40, 87, or 55 rain events were missed when T_r, T_w, or $T_r > 0$, respectively. The critical success index (CSI) was used to assess the accuracy of T_r, T_w, and T_r in distinguishing between rain and freezing rain events. The CSI of T_r is 0.75, which is better than that of T_w (0.68) and T_r (0.53). Overall, although T_w and T_r are more easily obtained, T_r tends to underestimate the real raindrop temperature, resulting in large false alarms of freezing rain events. Meanwhile, T_w cannot distinguish between WFR and rain. The results show that T_r is more accurate than T_w and T_r in distinguishing between rain and freezing rain.

Moreover, the model and sensitivity results can be applied to explain the difference in the frequency of WFR events occurring at different altitude stations as follows.

$T_w < 0$, respectively. Meanwhile, there are 40, 87, or 55 rain events were missed when T_r, T_w, or $T_r > 0$, respectively. The critical success index (CSI) was used to assess the accuracy of T_r, T_w, and T_r in distinguishing between rain and freezing rain events. The CSI of T_r is 0.75, which is better than that of T_w (0.68) and T_r (0.53). Overall, although T_w and T_r are more easily obtained, T_r tends to underestimate the real raindrop temperature, resulting in large false alarms of freezing rain events. Meanwhile, T_w cannot distinguish between WFR and rain. The results show that T_r is more accurate than T_w and T_r in distinguishing between rain and freezing rain.

Moreover, the model and sensitivity results can be applied to explain the difference in the frequency of WFR events occurring at different altitude stations as follows.

Figure 11. Calculated variation of T_r corresponding to two real WFR profiles ($D = 2$ mm).

Figure 12. Distribution of the (a) T_w and T_r, and (b) T_w and T_r for the borderline rain/freezing rain events.
1. Raindrop size effect. Observations at Nanjing (station elevation of 20 m; L. Wen et al., 2019), Lushan (station elevation of 1,164 m; Huang et al., 2018), and Weining (station elevation of 2,236 m; Zhang et al., 2016) show that the raindrop size distribution for freezing rain events is narrow at high-altitude stations, with the maximum raindrop size is only 1.25 mm and the mean diameter is 0.34 mm. In contrast, the raindrop size distributions are significantly wider at low- and middle-altitude stations (Figure 13a). The maximum sizes of raindrops are 4.1/4.25 mm and the mean diameters are 0.53/0.65 mm for low/middle-altitude stations, respectively. Therefore, the raindrop sizes at high-altitude stations tend to be smaller than those at low- and middle-altitude stations.

According to the sensitivity test, the ΔT_w and ΔT_{wo} increase with increasing D. Therefore, the temperature difference between raindrops and the atmosphere at high-altitude stations is weaker, which results in a lower probability of WFR occurring compared to that at low- and middle-altitude stations.

To visualize the effects of raindrop size distribution on T_i at different altitude stations, the real drop size distribution (DSD) is fitted using the Gamma function:

$$N(D) = N_0 D^\mu exp(-\lambda D)$$ \hspace{1cm} (17)

where the value of N_0, μ, and λ at different altitude stations are listed in Table 2.

The drop sizes are partitioned into several bins (set the increments as 0.1 mm) according to the spectral width of the DSD at different altitude stations. The theoretical model (Section 2.2) is applied to the real WFR profile (Figure 10a) and DSDs to calculate the ΔT_{wo} for each bin when the raindrops fall to the surface. The distribution of ΔT_{wo} at stations with different altitudes is shown in Figure 13b. Due to the narrow DSDs, the ΔT_{wo} distribution is relatively narrow and the maximum ΔT_{wo} is only 0.2°C at high-altitude stations. In contrast, the raindrop size distributions are significantly wider at low- and middle-altitude stations, which result in a wider distribution of ΔT_{wo}, with the maximum ΔT_{wo} can reach over 1°C. Therefore, the temperature difference between raindrops and the atmosphere at high-altitude stations is weaker, which results in a lower probability of WFR occurring than that at low- and middle-altitude stations.

In addition, the DSDs (Figure 13) indicate that the number of large raindrops is less than that of small raindrops at the same stations. Therefore, with increasing air temperature, the temperature difference between raindrops and the atmosphere is insufficient to keep the temperature of small raindrops below 0°C, resulting in a gradual decrease in the frequency of WFR.

Station	N_0	μ	λ
Weining	1,667	-2.125	9.309
Lushan	76	-2.18	1.11
Nanjing	160	-3.2	0.775

Table 2. N_0, μ, and λ Values at Different Altitude Stations

Figure 13. Characteristics of (a) raindrop size and (b) temperature distributions in freezing rain events at stations at different altitudes. The data in (a) combine the data from the observational studies by L. Wen et al. (2019), Huang et al. (2018), and Zhang et al. (2016).
2. *RH effect.* The temperature difference between the raindrop and atmosphere increases with decreasing RH. The statistical results show some differences in the distributions of average RH in the lower atmosphere (0–500 m) at different altitude stations when freezing rain occurred (Figure 14a). When the station altitude is lower than 500 m, only 20% of the freezing occurred with high RH (>90%). In contrast, when the station altitude is greater than 2,000 m, the frequency of freezing rain events in a high RH atmosphere increases to 50%. Therefore, all else being equal the ΔT_w at high-altitude stations is smaller than at lower-altitude stations, which leads to a lower probability of WFR at high-altitude stations.

3. *Lapse effect.* Figure 14b shows the distribution of Γ in the lower atmosphere (0–500 m) for stations at various altitudes when freezing rain occurred in China from 2000 to 2019. There are large differences in the distribution of Γ at different altitude stations. When the station altitude is lower than 1,000 m, almost all freezing rain occurs at $\Gamma > 0$. In contrast, when the station altitude is greater than 1,000 m, nearly 40%–50% of the freezing rain events occurred at $\Gamma < 0$. According to the sensitivity test, the temperature difference between raindrops and atmosphere increases with increasing Γ. The Γ values at low altitudes are significantly higher than that at high-altitude stations when the freezing rain occurred, implying that the ΔT_w and ΔT_a at high-altitude stations are weaker and the probability of WFR occurring is relatively lower than that at low-altitude stations.

The above studies also help to explain the difference of freezing rain formation conditions at different altitudes from another perspective. The ice nuclei in the raindrop tend to activate when the $T_r < -5^\circ$C (Meyers et al., 1992; Petters & Wright, 2015), which may lead to a change in precipitation type from freezing rain to ice pellet (Reeves et al., 2016). Since the ΔT_{aw} and ΔT_w at high-altitude stations are relatively weak, the air temperature range corresponding to the maintenance of T_r between -5°C and 0°C is wider at high-altitude stations than that at low-altitude stations (Lu et al., 2021), which also leads to a higher frequency and wider temperature range of freezing rain at high-altitude stations than at low-altitude stations.

4. Conclusions and Discussion

Analysis of 20 years of observations across China shows that 656 WFR events occurred, accounting for 7% of the total number of freezing rain events. Even using the wet-bulb temperature cannot explain all WFR events; nearly 3% (266 observations) of freezing rain occurred when the $T_{aw} > 0^\circ$C. The WFR occurrence frequency at low-altitude stations is found to be higher than that at high-altitude stations. Moreover, the frequency of freezing rain gradually decreases as the surface temperature increases, but WFR may still occur at surface temperatures greater than 1°C.

Figure 14. Distributions of the (a) RH and (b) Γ at different altitude stations during freezing rain over a 20-year period.
Based on the assumption that raindrops cannot maintain an equilibrium state in the real atmosphere, a theoretical model of raindrop temperature is presented by considering the nonequilibrium heat exchange between raindrops and the atmosphere. Sensitivity analysis of the model shows that the T_r is not equal to the T_o or T_w when raindrops fall.

The magnitudes of the ΔT_o and ΔT_w are determined by the raindrop diameter (D), temperature lapse rate (Γ), and relative humidity (RH). Meanwhile, the Γ also determines whether the ΔT_o is positive or negative when raindrops reach the surface. An increase in D, increase in Γ, and decrease in RH enhance the ΔT_o and ΔT_w and thus prompt the occurrence of the WFR. In addition, the initial T_r does not affect the T_r at the surface when the falling distance of the raindrop is long enough.

The temperature difference between raindrops and the atmosphere is the main cause of WFR. The diagnosis results for ideal temperature profiles showed that WFR can form by the “melting mechanism” or “supercooled warm rain mechanism” when considering the temperature difference between raindrops and the atmosphere. The temperature profiles of WFR have two common features: a cold layer (or subfreezing layer) above the near-surface layer and $\Gamma > 0^\circ C/km$ in the lower atmosphere. The evaluation results of the model show that the calculated T_r is more accurate than T_o and T_w in distinguishing between rain and freezing rain.

Smaller raindrop sizes, Γ, and a large RH at high-altitude stations result in weaker temperature differences between raindrops and the atmosphere, which leads to less frequent WFR events. Conversely, with decreasing station altitudes, the raindrop sizes gradually increase and RH decreases, which results in the high frequency of WFR events.

The above analyses theoretically explain the occurrence of WFR, which also deepens our understanding of freezing rain formation. Meanwhile, the temperature difference between raindrop and atmosphere also helps to explain the difference of freezing rain formation conditions at different altitudes from another perspective. Since the ΔT_o and ΔT_w at high-altitude stations are relatively weak, the air temperature range corresponding to the maintenance of T_r between $-5^\circ C$ and $0^\circ C$ is wider at high-altitude stations than that at low-altitude stations, which also leads to a higher frequency and wider temperature range of freezing rain at high-altitude stations than at low-altitude stations.

It should be noted that various microphysical parameterization schemes commonly neglect the difference between T_r and T_o in the weather forecasting model. Therefore, the existing parameterization schemes cannot properly represent the nonequilibrium heat exchange between raindrops and the atmosphere, which may ignore some WFR or ice pellet events (when the $T_r <$ ice-nucleation temperature but $T_o >$ ice-nucleation temperature). In future work, we will consider adding T_r to a suitable parameterization scheme to evaluate its impact on the numerical models to predict freezing rain and other precipitation type.

Additionally, this research can also help to refine the disaster assessment model when freezing rain occurs. For example, existing ice accumulation prediction models, such as Makkonen (1998), commonly use air temperature instead of raindrop temperature to calculate the freezing efficiency of the raindrop, which does not reflect the ice growth on conductors when the air temperature is above $0^\circ C$. In future, we will add T_r to the ice accretion forecast model to assess the impact of T_r on the freezing efficiency when freezing rain occurs.
Appendix A

Table A1 gives a list of symbols and their descriptions and units used in this paper.

Symbol	Definition	Value (or reference)	Units
T_r	Raindrop temperature	–	K
T_a	Air temperature	–	K
T_w	Wet-bulb temperature	–	°C
$T_{w,s}$	Wet-bulb temperature at surface	–	°C
$T_{a,s}$	Air temperature at surface	–	°C
Q_r	Total heat change of raindrops	–	J
Q_e	Heat change of evaporation	–	J
Q_r	Heat change of radiation	–	J
Q_a	Heat change of conduction	–	J
F_h	Ventilation coefficient for heat	Rasmussen and Heymsfield (1987)	–
F_v	Ventilation coefficient for vapor	Rasmussen and Heymsfield (1987)	–
D	Diameter of raindrop	–	m
ρ_w	Density of water	1,000	kg⋅m$^{-3}$
ρ_r	Density of snowflakes	100	kg⋅m$^{-3}$
C_i	Capacitance of the melting flake	Hall and Pruppacher (1976)	m
C_w	Specific heat capacity of water	4,200	J⋅kg$^{-1}$⋅K$^{-1}$
L_v	Latent heat of evaporation	2,264	kJ⋅kg$^{-1}$
D_v	Coefficient of diffusion	Hall and Pruppacher (1976)	cm2⋅s$^{-1}$
R_v	Gas constant of vapor	Hall and Pruppacher (1976)	J⋅K$^{-1}$⋅kg$^{-1}$
RH	Relative humidity	–	%
e_{sat}	Saturated vapor pressure	Murray (1966)	hPa
K_a	Thermal conductivity of air	Beard and Pruppacher (1971)	J⋅m$^{-1}$⋅s$^{-1}$⋅K$^{-1}$
ε	Coefficient of black-body radiation	0.9	–
σ	Stefan Boltzmann constant	5.67×10^{-8}	W⋅m$^{-2}$⋅K$^{-4}$
V_r	Raindrop fall velocity	Best (1950); Atlas et al. (1973)	cm⋅s$^{-1}$
V_s	Dry snowflakes fall velocity	Langleben (1954)	cm⋅s$^{-1}$
V_m	Melting snowflakes fall velocity	Frick et al. (2013)	cm⋅s$^{-1}$
C_1	Empirical coefficient	965	cm⋅s$^{-1}$
C_2	Empirical coefficient	1,030	cm⋅s$^{-1}$
C_3	Empirical coefficient	1,200	cm$^{-1}$
m_r	Raindrop mass	–	kg
m_s	Snowflake mass	–	kg
$m_{i,s}$	Initial snowflake mass	–	kg
$m_{e,s}$	Evaporation mass of melting snowflakes	Neumann (2017)	kg
D_h	Initial snowflake size	–	m
LWF	Liquid water fraction of particle	–	–
Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
The observational data and code in the study are available at Lu (2021).

Acknowledgments
This study is supported by the National Natural Science Foundation of China (41875176). Y. Liu is supported by the U.S. Department of Energy’s Atmospheric System Research (ASR) program.

References
Abraham, F. F., Jordan, S. K., Kortzgeorn, R. N., & Kolsky, H. G. (1972). Model for time-dependent raindrop size distributions; application to the washout of airborne contaminants. *IBM Journal of Research and Development*, 16(2), 91–100. https://doi.org/10.1147/rd.16.0091

Adhikari, A., & Liu, C. (2019). Remote sensing properties of freezing rain events from space. *Journal of Geophysical Research: Atmospheres*, 124, 10385–10400. https://doi.org/10.1029/2019JD030788

Anderson, S. P., Hinton, A., & Weller, R. A. (1998). Moored observations of precipitation temperature. *Journal of Atmospheric and Oceanic Technology*, 15(4), 979–986. https://doi.org/10.1175/1520-0426(1998)015<0979:MOOPT>2.0.CO;2

Anderson, A., & Chapman, L. (2011). The use of a temporal analogue to predict future traffic accidents and winter road conditions in Sweden. *Meteorological Applications*, 18(2), 125–136. https://doi.org/10.1002/met.186

Atlas, D., Srivastava, R. C., & Sekhon, R. S. (1973). Doppler radar characteristics of precipitation at vertical incidence. *Reviews of Geophysics*, 11(1), 1–35. https://doi.org/10.1029/RG011i001p00001

Barszcz, A., Milbrandt, J. A., & Thépaut, J. M. (2018). Improving the explicit prediction of freezing rain in a kilometer-scale numerical weather prediction model. *Weather and Forecasting*, 33(3), 767–782. https://doi.org/10.1175/WAF-D-17-0136.1

Beard, K. V., & Pruppacher, H. R. (1971). A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. *Journal of the Atmospheric Sciences*, 28(8), 1455–1464. https://doi.org/10.1175/1520-0469(1971)028<1455:AWTIDR>2.0.CO;2

Benjamin, S. G., Brown, J. M., & Smirnova, T. G. (2016). Explicit precipitation-type diagnosis from a model using a mixed-phase bulk cloud–precipitation microphysics parameterization. *Weather and Forecasting*, 31(2), 609–619. https://doi.org/10.1175/WAF-D-15-0136.1

Bernstein, B. C. (2000). Regional and local influences on freezing drizzle, freezing rain, and ice pellet events. *Weather and Forecasting*, 15(5), 485–508. https://doi.org/10.1175/1520-0434(2000)015<0485:RALIOF>2.0.CO;2

Best, A. C. (1950). Empirical formulae for the terminal velocity of water drops falling through the atmosphere. *Quarterly Journal of the Royal Meteorological Society*, 76(329), 302–311. https://doi.org/10.1002/qj.49707632906

Birk, K., Lenning, E., Donofrio, K., & Friedlein, M. T. (2021). A revised Bourgouin precipitation-type algorithm. *Weather and Forecasting*, 36(2), 425–438. https://doi.org/10.1175/WAF-D-20-0118.1

Bourgoin, P. (2000). A method to determine precipitation types. *Weather and Forecasting*, 15(5), 583–592. https://doi.org/10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2

Caplan, P. M. (1966). On the evaporation of raindrops in the presence of vertical gradients of temperature and relative humidity. *Journal of the Atmospheric Sciences*, 23(5), 614–617. https://doi.org/10.1175/1520-0469(1966)023<0614:OEOTDR>2.0.CO;2

Carrière, J. M., Laimard, C., Le Bot, C., & Robart, F. (2000). A climatological study of surface freezing precipitation in Europe. *Meteorological Applications*, 7(3), 229–238. https://doi.org/10.1002/met.979

China Meteorological Administration. (2011). Specifications for surface meteorological observations (in Chinese). China Meteorological Press.

Cholette, M., Thépaut, J. M., Milbrandt, J. A., & Morrison, H. (2020). Impacts of predicting the liquid fraction of mixed-phase particles on the simulation of an extreme freezing rain event: The 1998 North American ice storm. *Monthly Weather Review*, 148(9), 3799–3823. https://doi.org/10.1175/MWR-D-20-0026.1

Cortinas, J. V., Jr., Bernstein, B. C., Robbins, C. C., & Walter Strapp, J. (2004). An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–2006. *Weather and Forecasting*, 19(2), 377–390. https://doi.org/10.1175/1520-0434(2004)019<0377:AAOFRI>2.0.CO;2

Czys, R. R., Scott, R. W., Tang, K. C., Przybylinski, R. W., & Sabones, M. E. (1996). A physically based, nondimensional parameter for discriminating between locations of freezing rain and ice pellets. *Weather and Forecasting*, 11(4), 591–598. https://doi.org/10.1175/1520-0434(1996)011<0591:AFBPNP>2.0.CO;2

Deng, D., Gao, S., Du, X., & Wu, W. (2012). A diagnostic study of freezing rain over Guizhou China, in January 2011. *Quarterly Journal of the Royal Meteorological Society*, 138(666), 1233–1244. https://doi.org/10.1002/qj.981

Dunlop, S. (2008). A dictionary of weather. OUP.

Frick, C., Seifert, A., & Wernli, H. (2013). A bulk parametrization of melting snowflakes with explicit liquid water fraction for the COSMO model. *Geoscientific Model Development*, 6(6), 1925–1939. https://doi.org/10.5194/gmd-6-1925-2013

Gosnell, R., Fairall, C. W., & Webster, P. J. (1995). The sensible heat of rainfall in the tropical ocean. *Journal of Geophysical Research*, 100(C9), 18437–18442. https://doi.org/10.1029/95JC01833

Hall, W. D., & Pruppacher, H. R. (1976). The survival of ice particles falling from cirrus clouds in subsaturated air. *Journal of the Atmospheric Sciences*, 33(10), 1995–2006. https://doi.org/10.1175/1520-0469(1976)033<1995:TSIPFS>2.0.CO;2

Hanesiak, J. M., & Stewart, R. E. (1995). The mesoscale and microscale structure of a severe ice pellet storm. *Monthly Weather Review*, 123(11), 3144–3162. https://doi.org/10.1175/1520-0434(1995)123<3144:TMAMSO>2.0.CO;2

Houston, T. G., & Changnon, S. A. (2007). Freezing rain events: A major weather hazard in the conterminous US. *Natural Hazards*, 40(2), 485–494. https://doi.org/10.1007/s11069-006-9006-0

Huang, Q., Niu, S. J., & Lv, J. J. (2018). Physical characteristics of freezing raindrop size distribution and terminal velocity in two ice weather cases in Lushan area. *Chinese Journal of Atmospheric Sciences*, 42(5), 1023–1037. https://doi.org/10.3878/jissn.1006-9895.1711.17158

Huffman, G. J., & Norman, G. A., Jr. (1988). The supercooled warm rain process and the specification of freezing precipitation. *Monthly Weather Review*, 116(11), 2172–2182. https://doi.org/10.1175/1520-0493(1988)116<2172:TSWRA>2.0.CO;2

Kämäräinen, M., Hyvärinen, O., Jylhä, K., Vajda, A., Neiglick, S., Nuotokari, J., et al. (2017). A method to estimate freezing rain climatology from ERA-Interim reanalysis over Europe. *Natural Hazards and Earth System Sciences*, 17(2), 243–259. https://doi.org/10.5194/nhess-17-243-2017
