Molecular Pathways: Receptor Ectodomain Shedding in Treatment, Resistance, and Monitoring of Cancer

Miles A. Miller, Ryan J. Sullivan, and Douglas A. Lauffenburger

Abstract

Proteases known as sheddases cleave the extracellular domains of their substrates from the cell surface. The A Disintegrin and Metalloproteinasises ADAM10 and ADAM17 are among the most prominent sheddases, being widely expressed in many tissues, frequently overexpressed in cancer, and promiscuously cleaving diverse substrates. It is increasingly clear that the proteolytic shedding of transmembrane receptors impacts pathophysiology and drug response. Receptor substrates of sheddases include the cytokine receptors TNFR1 and IL6R; the Notch receptors; type-I and -III TGFβ receptors; receptor tyrosine kinases (RTK) such as HER2, HER4, and VEGFR2; and, in particular, MET and TAM-family RTKs AXL and Mer. Activation of receptor shedding by mechanical cues, hypoxia, radiation, and phosphosignaling offers insight into mechanisms of drug resistance. This particularly holds for kinase inhibitors targeting BRAF (such as vemurafenib and dabrafenib) and MEK (such as trametinib and cobimetinib), along with direct sheddase inhibitors. Receptor proteolysis can be detected in patient fluids and is especially relevant in melanoma, glioblastoma, lung cancer, and triple-negative breast cancer where RTK substrates, MAPK signaling, and ADAMs are frequently dysregulated. Translatable strategies to exploit receptor shedding include combination kinase inhibitor regimens, recombinant decoy receptors based on endogenous counterparts, and, potentially, immunotherapy.

Background

ADAM sheddases and proteolytic regulation

ADAM sheddases proteolytically cleave the extracellular domain (ectodomain) of hundreds of transmembrane proteins from the cell surface, allowing them to transport in soluble form to neighboring cells. The sheddases ADAM10 and ADAM17 (also known as TNFα-converting enzyme, TACE) are of central importance. They have traditionally been known for facilitating cell signaling through the pro-protein cleavage of inflammatory cytokines, such as TNFα, and growth factors, including TGFβ. ADAMs additionally cause the α-secretase cleavage of peptides such as amyloid precursor protein (APP). As a third class of substrates, ADAMs shed numerous receptors for cytokines, growth factors, adhesion molecules, and lipoproteins. Although ligand and peptide shedding are crucial to understanding sheddase biological functions, and many reviews extensively discuss the topic, here we instead focus on the increasingly appreciated proteolysis of receptors themselves.

ADAM10 and ADAM17 are structurally similar to other transmembrane ADAMs. They contain a catalytic metalloproteinase domain related to that of matrix metalloproteinasises (MMP), a disintegrin domain important in cell adhesion, and a C-terminal cytoplasmic tail involved in activity regulation. ADAM10 and ADAM17 share common substrates, yet nevertheless, display unique and context-dependent catalytic preferences. Other proteases can function as sheddases, including MMPs such as MT1-MMP; nonetheless, ADAMs are typically more prominent. Sheddases frequently become overexpressed, along with many of their substrates in various cancers and precancerous lesions. Furthermore, sheddase substrates such as TGFα and human epidermal growth factor receptor 2 (HER2/ERBB2) have oncogenic potential. Both ADAM10+/− and ADAM17+/− mice are not viable, underscoring their central role in development. Knockout mouse phenotypes suggest defects in signaling pathways that canonically depend upon ADAM-mediated proteolysis. In particular, ADAM10+/− and ADAM17+/− mice exhibit impaired developmental signaling in the Notch and EGFR pathways, respectively.

Proteolytic ectodomain shedding is regulated at the level of both the sheddases as well as their individual substrates. In general, regulation of the latter offers more selective control over otherwise promiscuous enzymes. Examples include substrate dimerization (2, 3) and intracellular domain phosphorylation of the sheddase substrates CD44 and pro-NRG1 (3, 4). Co-localization of ADAM17 and its substrates, particularly in lipid rafts, also regulates activity (5). Therapeutics may impact sheddase activity at the substrate level; for instance, the α-HER2 monoclonal antibody (mAb) trastuzumab (Herceptin; Genentech; FDA approved for HER2+/− breast cancer) blocks HER2 shedding (6).

Regulation of proteases themselves has been extensively studied. The four Tissue Inhibitor of Metalloproteinasises (TIMP1–TIMP4) are the key endogenous regulators of ADAMs...
and other metalloproteinasises, including MMPs. Tumor cells and associated stromal populations frequently overexpress TIMPs. TIMPs generally restrict protease activity by directly binding to the catalytic domain. ADAM17 undergoes regulated homodimerization, and these dimers complex with TIMP3 (7). Consequently, catalytic site access is dynamically regulated on the cell surface (8). C-terminal ADAM17 phosphorylation at Thr735 is associated with activation in some cases (9). A wide range of phosphosignaling cues influence ADAM17-mediated ectodomain shedding, including through the RAS/RAF/MEK, Jnk/JILIN, p38, and PLCγ/PKC/mTORC1 pathways (4, 9–12). Upstream of these pathways, myriad stimuli including osmotic stress, hypoxia, ER stress, and activity of RTKs, cytokine receptors, and G-protein coupled receptors (GPCR) may influence sheddase activity (13). Compared with ADAM17, the activity of ADAM10 is often considered more constitutive. Nonetheless, ADAM10 similarly undergoes dimerization and dynamic association with TIMP1, and has regulated activity from signaling cues (7, 11).

Seddase-mediated receptor activation

The downstream effects of receptor ectodomain shedding vary drastically and can either downregulate activity or perform a critical step in receptor activation. As an example of the latter, ADAM-mediated proteolysis is required for Notch receptor activation. After receptor engagement with Delta-like ligand, ADAM10 cleaves the Notch ectodomain. Following ectodomain loss, the remaining Notch receptor fragment is processed by regulated intramembrane proteolysis (RIP), which is distinct from sheddase processing. During RIP, the multi-subunit protease complex, γ-secretase, proteolytically releases the receptor C-terminus from the cell membrane. Free C-terminal fragment then translocates to the nucleus and influences transcriptional processes (Fig. 1, left ref. 1). Similar RIP has been described for ErbB4/HER4 (14), the Ephrin receptor EphB2 (15), and the p75 neurotrophin receptor (16), among others. However, not all nuclear translocation involves RIP, including for EGFR (17). Besides RIP, receptor shedding may activate signaling by allowing the soluble receptor ectodomain to form a signaling-competent complex with co-receptors and ligand on other cells, as has been found with IL6R (18). Nonetheless, RIP remains the most common and important mechanism for cleavage of receptors such as Notch to drive their activity.

Sheddase-mediated downregulation

In contrast, receptor shedding may attenuate activity (Fig. 1, center) through both downregulation on the cell surface and through competitive ligand binding of the released ectodomain. The Mer proto-oncogene tyrosine kinase (MerTK) exemplifies such behavior. Related to other TAM receptors AXL and Tyro3, MerTK is highly expressed on some cancers (for instance, in melanoma) and on most macrophage populations, including tumor-associated macrophages. In the latter, MerTK guides phagocytic cleavage of apoptotic bodies (effeocytosis). This occurs via a bridged connection between externalized phosphatidylserine on apoptotic bodies and the MerTK ligands, Gas6 and protein S (which are not metalloproteinasises substrates). Ligand engagement with MerTK activates effeocytosis and causes anti-inflammatory signaling by suppressing NF-kB. Following these functions, MerTK−/− mice accumulate residual apoptotic bodies in tissue and develop autoimmune phenotypes (19). Soluble, circulating levels of MerTK and AXL ectodomain are elevated in patients with the autoimmune disorder systemic lupus erythe-
trastuzumab (NCT01254136). Despite promising initial results and evidence that aderbasib blocks HER2 shedding (31, 32), the trial failed and development was discontinued (33). Subsequent work has revealed that HER2 shedding may actually reduce its signaling in some contexts (10, 34), and recent analysis of p95HER2 shows ambiguous prognostic value (35).

Erbb4/HER4 is another complex example, given that its C-terminal fragment translocates both to the nucleus, where it influences transcription (14), and to the mitochondria, where it elicits proapoptotic responses (36). Moreover, the activity of the HER4 ectodomain itself has not been fully investigated. Some evidence suggests that blocking HER4 shedding correlates with increased phosphorylation in some, but not most, cell types (10, 11). Other receptors such as VEGFR2 (37) and low-density lipoprotein receptor (LDLR; refs. 11, 38) have been demonstrated as sheddase substrates, or implicated as possible substrates in the case of Tyro3 (11) and IGF-1R (39), but the impacts of shedding on receptor activity remain relatively unexplored.

Alternative pathways
Mitogenic, prosurvival, and prometastasis EGFR activity depends greatly on the proteolytic shedding of its ligands, including TGFα, heparin-binding EGF (HB-EGF), amphiregulin (AREG), and EGF. Shedding allows soluble ligands to diffuse, bind, and activate receptors on the same or neighboring cells in an autocrine or paracrine manner, respectively. However, the degree of EGFR proteolysis itself is less certain and less significant. In some contexts, metalloproteinase inhibition has no impact on the minimal accumulation of soluble EGFR ectodomain in supernatant (10, 11). Consequently, sheddase inhibition effectively blocks EGFR signaling when that activity is ligand dependent, by blocking ligand release without directly influencing receptor levels (10, 32, 40). In other instances, when EGFR expression is high (e.g., 10^6 receptors per cell), soluble EGFR ectodomain (p116EGF) can be detected in patients and cell culture supernatants. Moreover, its release can be partially blocked by non-specific metalloproteinase inhibitors (41, 42). Interestingly, one group has reported a role for membrane-anchored serine proteases including hepsin (43) and the matrisome-prostasin proteolytic cascade (44) in shedding EGFR. Despite these reports, in the context of EGFR signaling, the vast majority of evidence focuses on shedding EGF ligands rather than the receptor itself.

Proteolytic shedding is not the only mechanism by which soluble receptor ectodomain can be released from cells. Many transmembrane proteins, including receptors, are packaged into extracellular vesicles such as exosomes, which serve as promising biomarkers for cancer detection and monitoring (45). For non-canonical sheddase substrates such as EGFR, a significant fraction of receptor released from the cell surface is actually associated with extracellular vesicles; in contrast, most extracellular levels of quintessential sheddase substrates AXL and MET are not bound to membranous vesicles in some instances (11). Alternative RNA splicing also accounts for ectodomain release, as noted for HER2 in particular (46).

Clinical–Translational Advances

Treatment strategies
Some of the most successful biologic therapeutics use the ligand-trap strategy comprising a receptor ectodomain Fc-fusion,
which has been applied exclusively to sheddase substrates among FDA-approved compounds. For instance, afiblercept (Eylea/Zaltrap; Regeneron Pharmaceuticals/Sanoﬁ-Aventis; FDA approved for metastatic colorectal cancer and wet macular degeneration) consists of IgG1 Fc region fused with the mixed ligand-binding domains of VEGFR1 and VEGFR2, both of which are ADAM17 substrates (30, 37, 47). As a decoy receptor, afiblercept exhibits two orders of magnitude higher afﬁnity to VEGF-A than the antibody-based anti-VEGF treatments bevacizumab and ranibizumab. Furthermore, afiblercept demonstrates therapeutic superiority in certain retinopathy populations (48). Other ligand-trap treatments are based on the ADAM17 substrates IL1R (ref. 49; rilonacept/Arcalyst; Regeneron Pharmaceuticals; FDA approved for Cryopyrin-Associated Periodic Syndromes (CAPS)) and TNFR1 (etanercept/Enbrel; Amgen; FDA approved for rheumatoid arthritis and others). Among preclinical compounds, a recombinant AXL decoy receptor was engineered to have 80-fold greater afﬁnity to its ligand Gas6, and the resulting Fe-coupling limited metastasis in a xenograft model (50). Other preclinical fusions have been developed for MerTK (22), IGF1R (51), FGFR (52), and EGFR/HER4 (53). In a similar vein, lentiviral approaches deliver soluble decoy receptors for MET (54) and AXL (55). Such approaches exhibit efﬁcacy in xenograft models through ligand sequestration and interference with receptor homodimerization on the cell surface (54).

Beyond mimicking ectodomain shedding directly, other therapeutics may activate proteolysis of the endogenously expressed protein. The preclinical α-MET mAb DN30 activates MET shedding (56, 57), and the clinical AXL kinase inhibitor R428/BGB324 (phase I/II melanoma, NCT02872259) stimulates AXL proteolysis (11). Perturbation of protease activity itself has proven a challenging strategy given the many pleiotropic effects. Nonetheless, a TIMP1-neutralizing antibody has shown some efﬁcacy through activating receptor ectodomain shedding in a xenograft model (11).

Inhibitors of metalloproteinases speciﬁc to ADAM10, ADAM17, and other sheddases, including ADAM12, have been developed as anticancer and anti-inﬂammatory agents based on the prominent role the enzymes play in releasing growth factors and cytokines from the cell surface. With the exception of the aforementioned ADAM10/ADAM17 inhibitor aderbasib (INCB7839), these agents have been limited to preclinical testing and include small molecules (G2545203, INCB3619, INCB7839), antibodies such as α-ADAM17 D1(A12) (ref. 40), and recombinant ADAM9-9, -10, and -12 pro-domains (58). Early metalloproteinase inhibitors exhibited poor selectivity and high toxicity. Yet, even second-generation drugs with speciﬁcity toward ADAM10 and ADAM17 have failed in clinical trials. Aderbasib speciﬁcity is reportedly similar to the related compound INCB3619, showing a 50- to 100-fold speciﬁcity for ADAM10 and ADAM17 over ADAM9, but still displays potent inhibition of MMP-2, -12, and -15. Preclinically, aderbasib exhibited synergistic efﬁcacy when combined with the EGFR/HER2 kinase inhibitor lapatinib (Tykerb; Novartis; FDA approved for HER2+ breast cancer) in metastatic breast xenograft model. However, in its clinical trial (NCT01254136), patients receiving 100 to 300 mg aderbasib combined with trastuzumab (n > 40) and, in some cases, trastuzumab with docetaxel (n > 10) showed a response rate that was not signiﬁcantly improved over historical data. Plasma HER2 extracellular domain substantially decreased during treatment, indicating aderbasib successfully reduced HER2 shedding in patients. However, patient response was unpredictably heterogeneous, despite a subgroup analysis of tumors pT3(HER2) and plasma HER2 levels. Such mixed clinical outcomes may be attributed to the pleiotropic sheddase roles and, possibly, to off-target drug effects. Encouragingly, an α-ADAM17 mAb shows efﬁcacy in tumor models that depend on ligand-mediated EGFR signaling (59). Most likely, it will be necessary to ﬁrst analyze expression of multiple protease substrates, including both EGFR ligands along with receptors such as MET and AXL, when selecting patient populations for future sheddase inhibitor trials.

Overcoming resistance

Sheddase activity responds to the activity of multiple phospho-signaling pathways, and small-molecule kinase inhibitors impact sheddase activity. Furthermore, changes in sheddase activity may serve as an early adaptive response to kinase inhibition and promote therapeutic resistance. Most prominently, MAPK pathway inhibition using BRAF and/or MEK inhibitors in patients with melanoma downregulates shedding of RTKs, including AXL and MET. Consequently, these receptors accumulate in the tumor (Fig. 1, right) and elicit drug resistance through signaling pathways, such as Jnk/cJun and PI3K/Akt, that can bypass the RAF/RAS/MEK/ERK pathway (11). Noninvasively measured AXL and MET shedding in plasma samples predicts kinase inhibitor resistance, and such resistance mechanisms can be overcome using combination regimens of MAPK and AXL/MET kinase inhibitors (11). Similar AXL- and/or MEK-driven resistance to kinase inhibition exists in Kras-mutant colorectal cancer, EGFR-dysregulated lung cancer, triple-negative breast cancer, and glioblastoma, among others (60). Thus, receptor ectodomain shedding is altered in the context of kinase inhibition, which may drive adaptive therapeutic resistance in some instances. Targeting this mechanism of resistance (e.g., increased MET or AXL signaling) by developing two- and three-drug regimens, given either simultaneously or in direct sequence, is, thus, a logical next step to be explored in clinical trials. Importantly, plasma monitoring of ectodomain shedding is feasible, may be an important predictive marker of patient outcome to kinase inhibitor treatment, and may help identify which patients do or do not need to be treated with multitargeted regimens.

Microenvironmental context and immunotherapy

Modulation of sheddase activity inﬂuences malignant and non-malignant elements of the tumor microenvironment. Innate immune cells, including natural killer (NK) cells, dendritic cells, and tumor-associated macrophages, are particularly important, as they frequently express high levels of sheddases and their substrates. In addition to cytokine and TAM receptors, other immunologically signiﬁcant substrates include the co-stimulatory molecule CD40-L (61), the IgE receptor CD23 (62), and the immune checkpoint TIM3 (63). MAPK inhibition may exert signiﬁcant effects on immune cells as well, particularly for BRAF inhibitors (e.g., vemurafenib, which is FDA approved for melanoma) that paradoxically activate MAPK signaling in BRAF-wild-type cells. For MEK inhibitors (e.g., trametinib, which is FDA approved for melanoma) or combined BRAF/MEK inhibitor regimens (which limit paradoxical activation), sheddase downregulation may lead to unwanted decreases in leukocyte-derived MerTK/AXL decoy receptor and increased tumor-supporting TAM-receptor signaling in associated macrophages and NK cells (64). In other contexts, decreased sheddase activity may be beneﬁcial. For instance, blocked cleavage of the Fc-receptor FcyRIIa (CD16) can improve
Receptor Shedding in Cancer

NK cell effector activity during antibody therapy (65). With the emergence of immune checkpoint inhibition and the development of mAbs targeting programmed death 1 (PD1; nivolumab and pembrolizumab, which are FDA approved for melanoma, non–small cell lung cancer, and others) and its ligand (PD-L1; e.g., atezolizumab, which is FDA approved for urothelial bladder cancer), it is critical to understand the effects of kinase inhibitors on the tumor microenvironment to better inform combinatorial regimens. Currently, there are a number of ongoing studies combining MAPK pathway inhibitors with PD1/PDL1 inhibitors. It will be crucial in these clinical trials to perform carefully planned correlative work to gain a deeper understanding about the influence of therapy on sheddase activity. Such work may help optimize combination treatments and predict their efficacy.

Monitoring ectodomain shedding for personalized treatment Noninvasive monitoring of receptor shedding has the potential to identify patients likely to respond to a given therapeutic strategy. Soluble receptors, proteases, and catalytic sheddase activities (66) are readily detectable in the blood or other fluids of patients with cancer or inflammatory pathologies. Such measurements correlate with disease state or outcome in several cases (10, 67–71). However, high interpatient heterogeneity, coupled with detectable ectodomain shedding even in healthy individuals, presents a challenge to using soluble receptors as a standalone diagnostic. Nonetheless, monitoring dynamic response in ectodomain shedding to a given therapy may prove more valuable than mere assessment of pretreatment levels in predicting outcome to therapy. In addition, incorporating a signature of multiple sheddase substrates, as well as combining sheddase data with other blood-based molecular analyses (e.g., circulating tumor cell, exosomes, and circulating free DNA), may prove useful. To date, there are only a few clinical efforts exploring the utility of measurements that correlate with disease state or outcome in several cases (10, 67–71). Nevertheless, monitoring dynamic response in ectodomain shedding to a given therapy may prove more valuable than mere assessment of pretreatment levels in predicting outcome to therapy. In addition, incorporating a signature of multiple sheddase substrates, as well as combining sheddase data with other blood-based molecular analyses (e.g., circulating tumor cell, exosomes, and circulating free DNA), may prove useful. To date, there are only a few clinical efforts exploring the utility of measurements that correlate with disease state or outcome in several cases (10, 67–71).

It will be crucial in these clinical trials to perform carefully planned correlative work to gain a deeper understanding about the influence of therapy on sheddase activity. Such work may help optimize combination treatments and predict their efficacy.

Disclosure of Potential Conflicts of Interest

R.J. Sullivan is a consultant/advisory board member for Novartis. D.A. Lauffenburger is a consultant/advisory board member for Merrimack Pharmaceuticals. No potential conflicts of interest were disclosed by the other author.

Authors’ Contributions

Concept and design: M.A. Miller, R.J. Sullivan

Development of methodology: M.A. Miller, R.J. Sullivan

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): M.A. Miller, R.J. Sullivan

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M.A. Miller, R.J. Sullivan

Writing, review, and/or revision of the manuscript: M.A. Miller, R.J. Sullivan

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M.A. Miller, R.J. Sullivan

Study supervision: M.A. Miller, R.J. Sullivan, D.A. Lauffenburger

Grant Support

The study was supported by NIHNCI#9-CA207744, NIHNCI#01-CA96504, NIHNCI#5-CA112967.

Received August 22, 2016; revised November 1, 2016; accepted November 1, 2016; published OnlineFirst November 28, 2016.

References

1. Safig P, Reiss K. The “A Disintegrin And Metalloproteases” ADAM10 and ADAM17: novel drug targets with therapeutic potential. Eur J Cell Biol 2011;90:527–35.

2. Hartmann M, Parra LM, Ruschel A, Lindner C, Morrison H, Herrlich A, et al. Inside-out regulation of ectodomain cleavage of cluster-of-differentiation-44 (CD44) and of neuregulin-1 requires substrate dimerization. J Biol Chem 2015;290:17041–54.

3. Parra LM, Hartmann M, Schubach S, Li Y, Herrlich P, Herrlich A. Distinct intracellular domain substrate modifications selectively regulate ectodomain cleavage of NRG1 or CD44. Mol Cell Biol 2013;33:848–55.

4. Dong M, Armbruster N, Miller MA, Gemenova E, Hartmann M, Bell GW, et al. Regulated ADAM17-dependent EGF family ligand release by substrate-selecting signaling pathways. Proc Natl Acad Sci U S A 2013;110:9776–81.

5. Tellier E, Canault M, Rebsamen L, Bonardo B, Juhan-Vague I, Nalbone G, et al. The shedding activity of ADAM17 is sequestered in lipid rafts. Exp Cell Res 2006;326:3969–80.

6. Molina MA, Codony-Servat J, Albanel J, Rojo F, Arribas J, Baselga J, Trastuzumab (hereceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 2001;61:4744–9.

7. Xu P, Liu J, Sakaki Yu moto M, Derynck R. TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci Signal 2012;5:ra34.

8. Le Gall SM, Maretzky T, Issuree PD, Niu XD, Reiss K, Saftig P, et al. ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J Cell Sci 2010;123:3913–22.

9. Xu P, Derynck R. Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. Mol Cell 2010;37:551–66.

10. Miller MA, Meyer AS, Beste MT, Lasisi Z, Reddy S, Jeng KW, et al. ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc Natl Acad Sci U S A 2013;110:E2074–83.

11. Miller MA, Oudin MJ, Sullivan RJ, Wang SJ, Meyer AS, Im H, et al. Reduced proteolytic shedding of receptor tyrosine kinases is a post-translational mechanism of kinase inhibitor resistance. Cancer Discov 2016;6:382–99.

12. Thopp E, Vains T, Subramanian M, Maunten L, Blobel C, Tabas I. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J Biol Chem 2011;286:33335–44.
13. Inoue A, Ishiguro J, Kitzmura H, Arima N, Okutani M, Shuto A, et al. TGF-
alpha shedding assay: an accurate and versatile method for detecting GPCR
activation. Nat Methods 2012;9:1021–9.

14. Ni CY, Murphy MP, Golde TE, Carpenter G. Gamma-secretase cleavage and
nuclear localization of E6B-4 receptor tyrosine kinase. Science 2001;294:
2179–81.

15. Lintz C, Georgakopoulos A, Shioi J, Gheusi E, Wisniewski T, Wang R, et al.
Ligand binding and calcium influx induce distinct ectodomain/gamma-
secretase-processing pathways of EphB2 receptor. J Biol Chem 2007;282:
16155–63.

16. Foyow FA, Krishna N, Lawn S, Valadez JG, Xu X, Fenstermacher DA, et al.
p75 neurotrophin receptor cleavage by α- and γ-secretases is required for
neurotrophin-mediated proliferation of brain tumor-initiating cells. J
Biol Chem 2014;289:8067–85.

17. Lo HW, Ali-Sayed M, Wu Y, Bartholomeusz G, Hsu SC, Hung MC. Nuclear-

cytosolic transport of EGFR involves receptor endocytosis, imparting
the tandem CRMs. J Cell Biochem 2006;98:1570–83.

18. Garbers C, Janner N, Chalavis A, Moss ML, Foss DM, Meyer D, et al. Species
specificity of ADAM10 and ADAM17 proteins in interleukin (IL)-6 trans-
signaling and novel role of ADAM10 in inducible IL-6 receptor shedding.
J Biol Chem 2011;286:14808–11.

19. Cohen PL, Caricchio R, Abraham V, Camenisch TD, Jennette JC, Roubey
R, et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in
mice lacking the c-membrane tyrosine kinase. J Exp Med 2005;201:
1915–20.

20. Ballantine L, Midgley A, Harris D, Richards E, Burgess S, Beresford MW.
Increased soluble phagocytic receptors sMr1, sTyro3 and sAxl and reduced
phagocytosis in juvenile-onset systemic lupus erythematosus. Pediatr
Rheumatol Online J 2015;13,10.

21. Cai B, Thorp EB, Doran AC, Subramanian M, Sansbury BE, Lin CS, et al.
MetK cleavage limits proresolving mediator biosynthesis and excites
tissue inflammation. Proc Natl Acad Sci U S A 2015;112:6526–31.

22. Sather S, Kenyon KD, Lefkowitz JB, Liang X, Varmus HC, Henson PM, et al.
A soluble form of the Mer receptor tyrosine kinase inhibits macrophage
clearance of apoptotic cells and platelet aggregation. Blood 2007;109:
3026–33.

23. Law AL, Parinot C, Chatagnon J, Gravez B, Sahel JA, Bhattacharya SS, et al.
Clinical benefit of trastuzumab in patients with metastatic HER2+
neu tyrosine kinase inhibitor and a discontinuation of metformin treatment.
Cancer Res 2008;68:7083–9.

24. Inoye Y, Global Life Sciences Conference; New York, NY. Sept 19th, 2011.
http://phx.corporate-ir.net/External.File?item=
14927505199178-Dw-NVZ9p0WvZk1jJgNg4JN49N9q0WvZk1jJgNg4J49N9q0WvZk1jJgNg4J9N9q0WvZk1jJgNg4J49N9q0WvZk1jJgNg4J9N9q0WvZk1jJgNg4J9N9q0WvZk1jJgNg4J

25. Chedini G, Cizavlo V, Tortoreto M, Guiffert S, Bianchi F, Campiglio M, et al.
Shed HER2 extracellular domain in HER2-mediated tumor growth and
intrastuzumab susceptibility. J Cell Physiol 2010;225:256–65.

26. Schelter F, Grandl M, Seubert B, Schaten S, Hauser S, Gerg M, et al. Tumor
shedding of the type I TGF-beta receptor downregulates TGF-beta signal-
ing. Mol Cell 2009;35:26–38.

27. Liu C, Xu P, Lamouille S, Xu J, Derynck R. TACE-mediated ectodomain
shedding of the EGFR receptors triggers tumor cell death. J Exp Med 2011;
214:15–26.

28. Liu C, Xu P, Lamouille S, Xu J, Derynck R. TACE-mediated ectodomain
shedding of the EGFR receptors triggers tumor cell death. J Exp Med 2011;
214:15–26.

29. Murthy A, Defamie V, Smookler DS, Di Grappa MA, Horiuchi K, Federici M, et al.
Ectodomain shedding of EGFR ligands and TGFRI interacts hepatocyte
apoptosis during fulminant hepatitis in mice. J Clin Invest 2010;120:
2731–44.

30. Raikumar NS, Liu KZ, Thomas CP. Protein kinase C regulates FTL1 abun-
dance and stimulates its clearance in vascular endothelial cells with the
release of a soluble PGF2α/VEGF antagonist. Exp Cell Res 2013;319:
2578–87.

31. Newton RC, Bradley EC, Levy RS, Doval D, Bondaros S, Sahoo TP, et al.
Clinical benefit of INCB7893, a potent and selective ADAM inhibitor, in
combination with trastuzumab in patients with metastatic HER2+
breast cancer. J Clin Oncol 28:215, 2010 (suppl. abstr 3025).

32. Witters I, Scherer P, Friedman S, Fridman J, Caudeter E, Newton R, et al.
Synergistic inhibition with a dual epidermal growth factor receptor/HER2-
Clinical Cancer Res; 23(3) February 1, 2017

Clinical Cancer Research
54. Michieli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L, et al. Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 2004;6:61–73.
55. Rankin EB, Fuh KC, Taylor TE, Krieg AJ, Musser M, Yuan J, et al. AXL is an essential factor and therapeutic target for metastatic ovarian cancer. Cancer Res 2010;70:7570–9.
56. Petrelli A, Circosta P, Granziero L, Mazzone M, Pisacane A, Fenoglio S, et al. Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proc Natl Acad Sci U S A 2006;103:5090–5.
57. Schelter F, Kobuch J, Moss ML, Becherer JD, Comoglio PM, Boccaccio C, et al. A disintegrin and metalloproteinase-10 (ADAM-10) mediates DN30 antibody-induced shedding of the met surface receptor. J Biol Chem 2010;285:26335–40.
58. Miller MA, Moss ML, Powell G, Petrovich R, Edwards L, Meyer AS, et al. Targeting autocrine HB-EGF signaling with specific ADAM12 inhibition using recombinant ADAM12 prodomain. Sci Rep 2015;5:15150.
59. Rios-Doria J, Sabol D, Chesebrough J, Stewart D, Xu L, Tammaili R, et al. A monoclonal antibody to ADAM17 inhibits tumor growth by inhibiting EGFR and non-EGFR-mediated pathways. Mol Cancer Ther 2015;14:1637–49.
60. Van Schaeybroeck S, Kalimutho M, Dunne PD, Canon R, Allen W, Lithesh PV, et al. ADAM17-dependent c-MET-STAT3 signaling mediates resistance to MEK inhibitors in KRAS mutant colorectal cancer. Cell Rep 2014;7:1940–55.
61. Yacoub D, Benlimame N, Al-Zoobi L, Hassan G, Nadiri A, Mourad W. CD154 is released from T-cells by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and ADAM17 in a CD40 protein-dependent manner. J Biol Chem 2013;288:36083–93.
62. Wexkamp G, Ford JW, Sturgill J, Martin S, Docherty AJ, Swendeman S, et al. ADAM10 is a principal ‘sheddase’ of the low-affinity immunoglobulin E receptor CD23. Nat Immunol 2006;7:1293–8.
63. Möller-Hackbarth K, Dewitz C, Schweigert O, Tzad A, Garbers C, Rose-John S, et al. A disintegrin and metalloproteinase (ADAM) 10 and ADAM17 are major sheddases of T cell immunoglobulin and mucin domain 3 (Tim-3). J Biol Chem 2013;288:34529–44.
64. Paulino M, Choidias A, Wallner S, Pranjic B, Uribealsgo I, Loeser S, et al. The E3 ligase Chl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature 2014;507:508–12.
65. Wiernik A, Foley B, Zhang B, Verenise MR, Warlick E, Gleason MK, et al. Targeting natural killer cells to acute myeloid leukemia in vitro with a CD16 x 33 bispecific cell engager and ADAM17 inhibition. Clin Cancer Res 2013;19:3844–55.
66. Chen CH, Miller MA, Sarkar A, Beser MT, Isaacson KB, Lauffenburger DA, et al. Multiplexed protease activity assay for low-volume clinical samples using droplet-based microfluidics and its application to endometriosis. J Am Chem Soc 2013;135:1645–8.
67. Athanasiu G, Giubellino A, Coleman JA, Horak C, Steeg PS, Lee ML, et al. c-Met ectodomain shedding rate correlates with malignant potential. Clin Cancer Res 2006;12:4154–62.
68. Juricic D, Erazvej I, Trikulja V, Dumic-Cule I, Hadzibegovic I, Kovacevic I, et al. Soluble type III TGF-β receptor in diagnosis and follow-up of patients with breast cancer. Growth Factors 2015;33:200–12.
69. Barisione G, Fabbi M, Gino A, Querinolo P, Orgiano L, Spano I, et al. Potential role of soluble c-Met as a new candidate biomarker of metastatic uveal melanoma. JAMA Ophthalmol 2015;133:1013–21.
70. Reichl P, Fang M, Starfing R, Staufer K, Nemutl R, Muller P, et al. Multicenter analysis of soluble Axl reveals diagnostic value for very early stage hepatocellular carcinoma. Int J Cancer 2015;137:385–94.
71. Wader KF, Fagerli UM, Holt RU, Barsel M, Sundan A, Waage A. Soluble c-Met in serum of patients with multiple myeloma: correlation with clinical parameters. Eur J Haematol 2011;87:394–9.