ON THE k-TORSION OF THE MODULE OF DIFFERENTIALS OF ORDER n OF HYPERSURFACES

HERNÁN DE ALBA AND DANIEL DUARTE

Abstract. We characterize the k-torsion freeness of the module of differentials of order n of a point of a hypersurface in terms of the singular locus of the corresponding local ring.

1. Introduction

The module of Kähler differentials of a ring is a classical object in commutative algebra. Recall that for a K-algebra R, the module of Kähler differentials is defined as the quotient $\Omega^1_{R/K} := I_R/I_R^2$, where I_R is the kernel of the multiplication map $R \otimes_K R \to R$. More generally, the module of Kähler differentials of order n can be defined as $\Omega^{(n)}_{R/K} := I_R/I_R^{n+1}$ (see, for instance, [6, 9, 10]).

It is well-known that the module of differentials can be used to detect properties of the ring. For instance, under some hypothesis, the regularity of the localization of a finitely generated algebra is equivalent to the freeness of its module of differentials. Very recently, an analogous statement was proved for the module of high order differentials (this was done for hypersurfaces in [3] and, in a more general context, in [4]).

We are interested in studying other properties of certain rings that can be detected through its module of differentials. Let V be an affine variety over a perfect field K. Suppose that V is locally, at some point $P \in V$, a complete intersection. Denote as R the corresponding local ring. It was proved by J. Lipman that V being non-singular at P in codimension 1 (resp. in codimension 2) is equivalent to the torsion freeness (resp. reflexiveness) of $\Omega^1_{R/K}$ (see [7]). Very recently, it was proved that the first statement of Lipman’s theorem also holds for the module of high order differentials in the case of hypersurfaces (see [3]).

There is a general notion of k-torsion freeness for any $k \in \mathbb{N}$, $k \geq 1$, that generalizes the notions of torsion freeness and reflexiveness (see [2] or section 3 below). The main goal of this paper is to prove that this notion of k-torsion can be characterized, for hypersurfaces and the module of high order differentials
differentials, as in Lipman’s theorem, that is, in terms of non-singularity in codimension $k + 1$ at some point.

Our approach to the problem is essentially the same as Lipman’s. After making a careful analysis of his proof, we realized that part of the arguments were valid in a much more general situation. In addition, a key ingredient in Lipman’s proof is the fact that the projective dimension of the module of differentials of a locally complete intersection is less or equal than one. An analogous statement was recently proved in [3] for the module of high order differentials of hypersurfaces, allowing us to carry on with Lipman’s strategy. Finally, the last ingredient we need for our proof is a criterion of regularity for hypersurfaces in terms of the module of high order differentials.

2. Modules of Kähler differentials

In this paper, all rings we consider are assumed to be commutative and with a unit element.

Let R be a K-algebra. Denote as I_R the kernel of the homomorphism $R \otimes_K R \to R$, $r \otimes s \mapsto rs$. Giving structure of R-module to $R \otimes_K R$ by multiplying on the left, define the R-module

$$\Omega^{(n)}_{R/K} := I_R/I^{n+1}_R.$$

Definition 2.1. [10, Definition 1.5] The R-module $\Omega^{(n)}_{R/K}$ is called the module of Kähler differentials of order n of R over K or the module of high order Kähler differentials. For $n = 1$, this is just the usual module of Kähler differentials of R.

It is known that the module of Kähler differentials can be used to detect properties of the ring. For instance, a classical result states that, under some hypothesis, the localization of a finitely generated algebra R is regular if and only if $\Omega^1_{R/K}$ is free. Another result in this direction is the following theorem due to J. Lipman.

Theorem 2.2. [7, Proposition 8.1] Let R be the local ring of a point P on an affine variety V over a perfect field \mathbb{K}. Assume that V is locally, at P, a complete intersection. Then

1. $\Omega^1_{R/\mathbb{K}}$ is torsion free if and only if V is non-singular in codimension 1 at P.
2. $\Omega^1_{R/\mathbb{K}}$ is reflexive if and only if V is non-singular in codimension 2 at P.

In the statement of the theorem, non-singular in codimension i at P means that $\text{codim}(R/p) \geq i + 1$, for all $p \in \text{Sing}(R)$, where $\text{codim}(R/p) = \dim R - \dim R/p$ and $\text{Sing}(R) = \{ p \in \text{Spec}(R) | R_p \text{ is not regular} \}$.

Remark 2.3. The statement (1) of the previous theorem was also proved by S. Suzuki in [12].
The first statement of Lipman’s theorem was recently generalized for the module of high order Kähler differentials for hypersurfaces, following the strategy appearing in [12].

Theorem 2.4. [3, Theorem 4.3] Let R be the local ring of a point P on an irreducible hypersurface W over a perfect field \mathbb{K}. Then $\Omega^{(n)}_{R/\mathbb{K}}$ is torsion free if and only if W is normal at P.

In the next section we recall the notion of k-torsion freeness of an R-module, for any $k \in \mathbb{N}$, $k \geq 1$. If R is Noetherian and reduced, then the notions of torsion freeness and reflexiveness correspond, respectively, to 1-torsion freeness and 2-torsion freeness. Our main goal in this paper is to generalize theorem 2.4 for k-torsion freeness, for any $k \geq 1$.

3. A general theorem on k-torsion freeness

In this section we recall the notion of k-torsion freeness of a module. Then we give a characterization of this notion for modules having projective dimension less or equal than 1.

Let R be a Noetherian ring and let M be an R-module. The dual of M, denoted by M^*, is the module $\text{Hom}_R(M, R)$. The bidual of M is denoted by M^{**}. The bilinear map $\phi : M \times M^* \to R$ defined by $\phi(m, \varphi) = \varphi(m)$ induces an R-homomorphism $f : M \to M^{**}$, given by $f(m) = \phi(m, \cdot)$. For a given R-homomorphism $\varphi : M \to N$, we denote as φ^* the induced map $N^* \to M^*$.

Let us suppose that M is a finite R-module, i.e., M is finitely generated. Since R is Noetherian, M is finitely presented, i.e., there exists an exact sequence $P_1 \xrightarrow{\varphi} P_0 \to M \to 0$,

where P_0, P_1 are finite free R-modules. Let $D(M) := \text{Coker}(\varphi^*)$. In [11] it is shown that the previous sequence induces the following exact sequence:

$$0 \to \text{Ext}^1_R(D(M), R) \to M \xrightarrow{f} M^{**} \to \text{Ext}^2_R(D(M), R) \to 0.$$

It is proved in [2] that for any $i \in \mathbb{N}$, $\text{Ext}^i_R(D(M), R)$ depends only on M and not on the particular presentation $P_1 \to P_0 \to M \to 0$, where P_0 and P_1 are projective R-modules.

Remark 3.1. Recall that an R-module M is torsionless if f is injective and that M is reflexive if f is an isomorphism. Let Q be the total ring of fractions of R. Then M is called torsion free if the natural map $\theta : M \to M_Q$ is injective, where $M_Q := M \otimes_R Q$. It is known that $\ker(\theta) \subset \ker(f)$. Thus, the concept of torsionless implies the concept of torsion free. If Q is semisimple then both concepts are actually equivalent (see [7, Appendix]).

In view of [11], torsionless and reflexiveness are respectively equivalent to $\text{Ext}^1_R(D(M), R) = 0$ and $\text{Ext}^2_R(D(M), R) = \text{Ext}^2_R(D(M), R) = 0$. This leads us to the following general notion of k-torsion freeness.
Definition 3.2. [2] Let \(k \in \mathbb{N}, \ k \geq 1 \). We say that the \(R \)-module \(M \) is \(k \)-torsion free if \(\text{Ext}^i_R(D(M), R) = 0 \), for \(i \in \{1, \ldots, k\} \).

We want to study the \(k \)-torsion freeness of modules having projective dimension less or equal than one. For that, we need to recall some results concerning the grade and depth of modules.

Let \(R \) be a Noetherian ring, \(M \) be a finite \(R \)-module and \(I \) be an ideal of \(R \). Recall that the grade of the ideal \(I \) over \(M \), denoted as \(\text{grade}(I, M) \), is the maximal size of a \(M \)-regular sequence in \(I \). It is known that \(\text{grade}(I, M) \) can be computed in the following way (see [5, Theorem 1.2.5]):

\[
\text{grade}(I, M) = \min\{i \in \mathbb{N} : \text{Ext}^i_R(R/I, M) \neq 0\}.
\]

We also define \(\text{grade}(M) := \min\{i \in \mathbb{N} : \text{Ext}^i(M, R) \neq 0\} \). In addition, for a local ring \((R, m)\) we denote \(\text{depth}(M) := \text{grade}(m, M) \). Then, by [5, Proposition 1.2.10] we have

\[
(2) \quad \text{grade}(M) = \text{grade}(\text{Ann}(M), R) = \min\{\text{depth}(R_p) : p \in \text{Supp}(M)\}.
\]

We also need some facts regarding Cohen-Macaulay rings. If \((R, m)\) is a finite-dimensional local Noetherian ring, then \(\text{ht}(p) \geq \text{depth}(R) - \dim(R/p) \). Moreover, if \(R \) is Cohen-Macaulay, from this inequality we deduce that

\[
(3) \quad \text{depth}(R_p) = \dim R - \dim(R/p) = \text{codim}(R/p).
\]

With these tools at hand, now we can give a characterization of \(k \)-torsion freeness for modules having projective dimension less or equal than one. This characterization is based on part of the proof of Lipman’s theorem [2,2]. After making a careful analysis of Lipman’s proof, we realized that his arguments were actually much more general, giving place to the following results.

Lemma 3.3. Let \(M \) be an \(R \)-module and \(Q \) be the total ring of fractions of \(R \). If \(M(Q) = 0 \), then \(\text{Ext}^0_R(M, R) = 0 \).

Proof. Using the natural identification \((M(Q))^{**} \cong (M^{**})(Q)\), we obtain the following commutative diagram:

\[
\begin{array}{ccc}
M & \xrightarrow{f} & M^{**} \\
\downarrow^\theta & & \downarrow^\phi' \\
M_Q & \xrightarrow{g} & M^{**}_Q
\end{array}
\]

By hypothesis, \(M_Q = 0 \), thus \(M = \ker(\theta) \). Since \(\ker(\theta) \subset \ker(f) \) it follows \(M = \ker(f) \). Let \(\varphi \in \text{Ext}^0_R(M, R) = M^* \) and \(m \in M \); then \(\varphi(m) = \phi(m, \varphi) = f(m)(\varphi) = 0(\varphi) = 0 \). Thus \(\text{Ext}^0_R(M, R) = 0 \). \(\square \)

Theorem 3.4. Let \(R \) be a Noetherian local ring such that its total quotient ring \(Q \) is semisimple. Let \(M \) be a finite \(R \)-module with a finite projective resolution

\[
0 \rightarrow P_1 \xrightarrow{\varphi} P_0 \rightarrow M \rightarrow 0.
\]
Let $k \in \mathbb{N}$, $k \geq 1$. Then M is k-torsion free if and only if depth$(R_p) \geq k+1$, for any $p \in \text{Supp}(\text{Coker}(\varphi^*))$. Moreover, if R is Cohen-Macaulay, M is k-torsion free if and only if codim$(R/p) \geq k+1$, for any $p \in \text{Supp}(\text{Coker}(\varphi^*))$.

Proof. Using the projective resolution of M and the definition of $\text{Ext}^1_R(M, R)$, it follows that $\text{Ext}^1_R(M, R) = \text{Coker}(\varphi^*) =: D(M)$. As the functor $\text{Ext}^1_R(\cdot, \cdot)$ commutes with localization, we obtain

$$D(M) \otimes_R Q = \text{Ext}^1_R(M, R) \otimes_R Q$$

$$\cong \text{Ext}^1_R(\mathcal{O}_R, Q) \otimes_R (M \otimes_R Q, R \otimes_R Q)$$

$$= \text{Ext}^1_0(M(Q), Q).$$

Since Q is semisimple, any Q-module is projective. In particular, $M(Q)$ is projective. Therefore, $0 = \text{Ext}^1_0(M(Q), R) \cong D(M) \otimes_R Q = D(M)_{(Q)}$. By lemma 3.3, $\text{Ext}^i_R(D(M), R) = 0$. It follows that M is k-torsion free if and only if $\text{Ext}^i_R(D(M), R) = 0$ for every $i \in \{0, \ldots, k\}$.

On the other hand, by definition of grade$(D(M))$, $\text{Ext}^k_R(D(M), R) = 0$ for every $i \in \{0, \ldots, k\}$ if and only if grade$(D(M)) \geq k+1$. By (2), grade$(D(M)) \geq k+1$ if and only if depth$(R_p) \geq k+1$ for every $p \in \text{Supp}(D(M))$. If, in addition, R is Cohen-Macaulay, by (3), depth$(R_p) \geq k+1$ if and only if codim$(R/p) \geq k+1$ for every $p \in \text{Supp}(D(M))$. \qed

4. A characterization of k-torsion freeness

Now we are ready to generalize theorem $[2,4]$ for k-torsion, for any $k \geq 1$.

Throughout this section we use the following notation:

- \mathbb{K} is a perfect field.
- $A = \mathbb{K}[x_1, \ldots, x_s]/\langle f \rangle$, where $f \in \mathbb{K}[x_1, \ldots, x_s]$ is irreducible.
- $W = \text{Spec}(A)$.
- R is the local ring of a closed point $P \in W$.

Our first goal is to describe the support of the module $\text{Ext}^1_R(\Omega_{R/\mathbb{K}}^{(n)}, R)$ in terms of the singular locus of R. First we need the following criterion of regularity for hypersurfaces in terms of the module of differentials of high order.

Proposition 4.1. Let $p \in W$. Then A_p is a regular ring if and only if $\Omega_{A_p/\mathbb{K}}^{(n)}$ is a free A_p-module of rank $L - 1$, where $L = \binom{s-1+n}{s-1}$.

Proof. If p is a maximal ideal, this was proved in [3, Theorem 3.1]. Assume that p is a prime ideal.

If A_p is a regular ring then $\Omega_{A_p/\mathbb{K}}^{(n)}$ is free of rank $s-1$. Recalling that $\Omega_{A_p/\mathbb{K}}^{(n)} = I_{A_p}/I_{A_p}^{n+1}$, using the exact sequences

$$0 \to I_{A_p}/I_{A_p}^{n+1} \to I_{A_p}/I_{A_p}^{n+1} \to I_{A_p}/I_{A_p}^n \to 0,$$

an inductive argument shows that $\Omega_{A_p/\mathbb{K}}^{(n)}$ is free of rank $L - 1$.

\[\text{proposition} \]
Now assume that $\Omega^{(n)}_{A_p/K}$ is a free A_p-module of rank $L - 1$. Let $\Omega^{(n)}_{W/K}$ be the sheaf of Kähler differentials of order n of W. Then $(\Omega^{(n)}_{W/K})_p \cong \Omega^{(n)}_{A_p/K}$. By the assumption, there exists an open subset $U \subset W$ such that $p \in U$ and $\Omega^{(n)}_{W/K}|_U$ is free of rank $L - 1$. We can assume that $U = D(g) \cong \text{Spec}(A_g)$ is a principal open set. Let $m \subset A_g$ be a maximal ideal such that $p \subset m$. Then $A_p \cong (A_g)_p \cong ((A_g)_m)_p \cong (A_m)_p$. Since $m \subset U$, it follows that $\Omega^{(n)}_{A_m/K}$ is free of rank $L - 1$. But m being a maximal ideal implies that A_m is a regular ring and so $A_p \cong (A_m)_p$ is also a regular ring.

Remark 4.2. It was proved in [4, Theorem 10.2] that proposition 4.1 also holds for an arbitrary irreducible variety but only for closed points. Notice that the proof of this proposition also applies to extend the theorem for non-closed points.

Lemma 4.3. Let S be a Noetherian local ring and M a finite S-module such that $\dimproj(M) \leq 1$. Then $\text{Ext}^1_S(M, S) = 0$ if and only if M is free.

Proof. Since $\dimproj(M) \leq 1$, there exists an exact sequence

\[0 \rightarrow F_1 \overset{\delta}{\rightarrow} F_0 \rightarrow M \rightarrow 0, \tag{4} \]

where F_0 and F_1 are finite free S-modules. Using this sequence and the definition of $\text{Ext}^1_S(M, S)$, it follows that $\text{Ext}^1_S(M, S) = \text{Coker}(\delta^*)$. Consider the following induced exact sequence:

\[0 \rightarrow M^* \rightarrow F_0^* \overset{\delta^*}{\rightarrow} F_1^* \rightarrow \text{Coker}(\delta^*) \rightarrow 0. \]

Now we proceed to prove the lemma. Suppose that $\text{Ext}^1_S(M, S) = 0$. Then $\text{Coker}(\delta^*) = 0$ and so we obtain the exact sequence

\[0 \rightarrow M^* \rightarrow F_0^* \rightarrow F_1^* \rightarrow 0. \tag{5} \]

Since F_0 and F_1 are free, we also have that F_0^* and F_1^* are free. Therefore, the exact sequence (5) splits and $F_0^* \cong M^* \oplus F_1^*$. This implies that M^* is projective. Since S is local, M^* is free and so M^{**} is free. Furthermore, letting $D(M) := \text{Coker}(\delta^*)$, the exact sequence (5) induces the following exact sequence:

\[0 \rightarrow \text{Ext}^1_S(D(M), S) \rightarrow M \overset{f}{\rightarrow} M^{**} \rightarrow \text{Ext}^2_S(D(M), S) \rightarrow 0. \]

Since $D(M) = 0$, we have $\text{Ext}^1_S(D(M), S) = \text{Ext}^2_S(D(M), S) = 0$. Thus $M \cong M^{**}$ and we conclude that M is free.

The converse of this lemma is immediate, because M is projective if and only if $\text{Ext}^1_S(M, N) = 0$ for every S-module N.

The next corollary follows the line of the proof of [7, Proposition 5.2]. The crucial additions are proposition 4.1 and the recent fact that $\Omega^{(n)}_{R/K}$ has projective dimension less or equal than 1.
Corollary 4.4. With the established notation,

$$\text{Supp}(\text{Ext}^1_R(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}}, R)) = \text{Sing}(R).$$

Proof. Let \(p \in \text{Spec}(R) \) be such that \(R_p \) is regular. Then \(\Omega^{(n)}_{R_p/\mathbb{K}} \) is a free \(R_p \)-module and so the same is true for \(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}} \). Since the Ext functor commutes with localization as well as the module of differentials of high order ([3, Theorem II-9]), lemma 4.3 implies

$$0 = \text{Ext}^1_R(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}}, R_p) = (\text{Ext}^1_R(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}}, R))_p.$$

This shows that \(\text{Supp}(\text{Ext}^1_R(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}}, R)) \subset \text{Sing}(R) \).

Now let \(p \in \text{Spec}(R) \) be such that \((\text{Ext}^1_R(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}}, R))_p = 0 \). This implies \(\text{Ext}^1_R(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}}, R_p) = 0 \). By [3, Theorem 4.3], \(\dimproj(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}}) \leq 1 \). Thus, by lemma 4.3, \(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}} \) is a free \(R_p \)-module. On the other hand, by the correspondence of prime ideals in \(R \) and \(A \), we have \(R_p \cong A_p \). In particular, \(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}} \) is a free \(A_p \)-module. Now we show that the rank of this module is \(L-1 \), where \(L = (s-1+n) \). Assuming this for the moment, proposition 4.1 implies that \(A_p \) is a regular ring. Thus \(R_p \) is regular and so \(\text{Sing}(R) \subset \text{Supp}(\text{Ext}^1_R(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}}, R)) \).

Let \(\Omega^{(n)}_{\mathcal{W}/\mathbb{K}} \) be the sheaf of Kähler differentials of order \(n \) of \(W \). Since \(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}} \) is free, there exists an open subset \(U \subset W, \ p \in U \), such that \(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}}|_U \) is free. In particular, \((\Omega^{(n)}_{\mathcal{R}/\mathbb{K}}|_U)_q \cong \Omega^{(n)}_{A_q/\mathbb{K}} \) is a free \(A_q \)-module for all \(q \in U \). On the other hand, since \(W \) is irreducible, \(U \) is irreducible as well, and so the rank of \(\Omega^{(n)}_{A_q/\mathbb{K}} \) is constant in \(U \). Let \(q' \in U \subset W \) be a non-singular point. Then \(\Omega^{(n)}_{A_{q'}/\mathbb{K}} \) is free of rank \(L-1 \). We conclude that \(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}} \) is a free \(A_p \)-module of rank \(L-1 \). \(\square \)

Theorem 4.5. Let \(k \geq 1 \). Then \(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}} \) is \(k \)-torsion free if and only if \(W \) is non-singular in codimension \(k+1 \) at \(P \).

Proof. As before, \(\dimproj(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}}) \leq 1 \). Consider the following projective resolution of \(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}} \):

$$0 \to F_1 \xrightarrow{\varphi} F_0 \to \Omega^{(n)}_{\mathcal{R}/\mathbb{K}} \to 0.$$

Since \(R \) is Cohen-Macaulay, we can apply theorem 3.4 to obtain that \(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}} \) is \(k \)-torsion free if and only if \(\text{codim}(R/p) \geq k+1 \) for any \(p \in \text{Supp}(\text{Coker}(\varphi^n)) \).

In addition, using the previous exact sequence we obtain \(\text{Ext}^1_R(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}}, R) = \text{Coker}(\varphi^n) \). By corollary 4.4 we conclude that \(\Omega^{(n)}_{\mathcal{R}/\mathbb{K}} \) is \(k \)-torsion free if and only if \(\text{codim}(R/p) \geq k+1 \) for any \(p \in \text{Sing}(R) \). \(\square \)
Remark 4.6. Notice that the entire strategy to prove theorem 4.5 can also be used to generalize Lipman’s theorem 2.2 for k-torsion, for any $k \geq 1$.

Remark 4.7. One of the key ingredients of the proof of theorem 4.5 was the fact that \text{dimproj}(\Omega_{R/K}^{(n)}) \leq 1$, where R is the local ring of a hypersurface. If this fact were also true for complete intersections, then exactly the same strategy would give the analogous statement of theorem 4.5 in this case. In this regard, an explicit presentation of $\Omega_{R/K}^{(n)}$ was recently given in [3, Theorem 2.8] for any finitely generated K-algebra R. Using this presentation one could try to compute the projective dimension of $\Omega_{R/K}^{(n)}$, at least in some examples of complete intersections. Unfortunately, due to the size of the matrix giving the presentation, we did not succeed in computing any example for $n > 1$, even with the help of a (modest) computer.

Remark 4.8. Even though the main goal of this paper was to generalize theorem 2.4, the results presented in section 3 apply to more general modules satisfying, among other hypothesis, that their projective dimension is less or equal than one. Families of modules satisfying this hypothesis can be constructed as in [13, Remark 2.1], [8, Lemma 1], or [11, Proposition 1.6].

References

[1] M. Auslander; Coherent Functors, Proceedings of the Conference Categorical Algebra, La Jolla 1965, Springer Verlag, 1966.
[2] M. Auslander, M. Bridger; Stable Module Theory, Memoir of the American Mathematical Society, 94. American Mathematical Society, Providence, Rhode Island, 1969.
[3] P. Barajas, D. Duarte; On the module of differentials of order n of hypersurfaces, J. Pure Appl. Algebra, https://doi.org/10.1016/j.jpaa.2019.05.020, (2019).
[4] H. Brenner, J. Jeffries, L. Núñez-Betancourt, Quantifying singularities with differential operators, arXiv:1810.04476v3 (2019).
[5] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge University Press, 1998.
[6] A. Grothendieck; Éléments de géométrie algébrique IV, Quatrième partie, Étude locale des schémas et des morphismes des schémas, Publ. Math. IHES 32 (1967).
[7] J. Lipman; Free derivation modules on algebraic varieties, Amer. J. Math., 87, pp. 874-898, (1965).
[8] J. Lipman; On the Jacobian ideal of the module of differentials, Proc. Amer. Math. Soc., Vol. 21, No. 2, pp. 422-426, (1969).
[9] Y. Nakai; High order derivations I, Osaka J. Math., 7, pp. 1-27, (1970).
[10] H. Osborn; Modules of differentials I, Math. Ann., 170, pp. 221-244, (1967).
[11] A. Oneto, E. Zatini; Remarks on Nash blowing-up, Rend. Sem. Mat. Univ. Politec. Torino 49 (1991), no. 1, 71-82, Commutative algebra and algebraic geometry, II (Italian) (Turin 1990).
[12] S. Suzuki; On torsion of the module of differentials of a locality which is a complete intersection, J. Math. Kyoto Univ., 4-3, pp. 471-475, (1965).
[13] O. Villamayor; On flattening of coherent sheaves and of projective morphisms, J. Algebra, 295, no. 1, 119-140, (2006).
E-mail address: hdealbaca@conacyt.mx, aduarte@uaz.edu.mx

CONACYT - Unidad Académica de Matemáticas de la Universidad Autónoma de Zacatecas, Calzada Solidaridad entronque Paseo de la Bufo, Zacatecas, Zac. 98000, Mexico