TITLE:
Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin 2 in DT40 cells (Abstract_要旨)

AUTHOR(S):
Wang, Dongmei

CITATION:
Wang, Dongmei. Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin 2 in DT40 cells. 京都大学, 2006, 博士(医学)

ISSUE DATE:
2006-03-23

URL:
http://hdl.handle.net/2433/143855

RIGHT:
氏 名 ワン ジン メイ
学位(専攻分野) 博士（医学）
学位記番号 医博 第2975号
学位授与の日付 平成 18年 3月 23日
学位授与の要件 学位規則 第4条 第1項 該当
研究料・専攻 医学 研究 科 病理系 専攻
学位論文題目 Control of mitochondrial outer membrane permeabilization and Bcl-xL levels by thioredoxin-2 in DT40 cells
（DT40細胞におけるチオレドキシン2によるミトコンドリア外膜透過性とBcl-xL発現の制御）
（主査）
論文調査委員 教授 武田 俊一 教授 永田 和宏 教授 宮地 良樹

【目的】
ミトコンドリアはATP産生、活性酸素の発生、酸化還元状態、膜透過性などの制御によりアポトーシスの実行に中心的な役割を果たしている。チオレドキシン2（TRX2）はミトコンドリアに特異的に局在するレドックス制御タンパク質である。以前、TRX2をトリンDT40細胞で欠損させると、細胞がアポトーシスに陥ることを報告した。今回このアポトーシスの機構を明らかにする目的で、TRX2の遺伝子を欠損させ、さらにドキシサイクリン（Dox）によりトリンTrx2の発現が抑制できる発現ベクターを導入した細胞（DT40-Trx2/-細胞）を用い、さらにその細胞で野生型ヒトTRX2を導入した細胞（DT40-hTRX2細胞）あるいは、活性部位のCysをSerに置換した、TRX2の還元活性を失わせた変異型のヒトTRX2CSを導入した細胞（DT40-hTRX2CS細胞）を用いて、これらの細胞を比較検討することにより、アポトーシス機構の解析を行った。

【結果】
Dox投与5日目にDT40-Trx2/-細胞では細胞死が増加し、また、Annexin Vの染色性が増加し、カスバーゼ3の活性化が見られ、アポトーシスが起こっていると考えられた。これらの活性化はDT40-hTRX2細胞およびDT40-hTRX2CS細胞では見られなかった。ATP産生はこれらの細胞株で低下を認めたかった。また、DT40-Trx2/-細胞ではなくDox投与により活性酸素の発生が見られたが、DT40-hTRX2細胞およびDT40-hTRX2CS細胞では見られなかった。Dox投与によりDT40-Trx2/-細胞ではミトコンドリア膜電位が低下していたが、DT40-hTRX2細胞およびDT40-hTRX2CS細胞では見られなかった。さらに、Dox投与3日目にDT40-Trx2/-細胞ではチトクロムc、AIF（apoptosis-inducing factor）の細胞質への漏出が観察されたが、DT40-hTRX2細胞およびDT40-hTRX2CS細胞では見られなかった。ミトコンドリアの膜透過性の制御にはBcl-2ファミリーが深く関与することからBcl-2ファミリーの発現の検討を行なった。DT40-Trx2/-細胞ではDox投与後3日目にBcl-xL蛋白の発現の減少が観察された。DT40-hTRX2細胞およびDT40-hTRX2CS細胞ではみられなかった。Bcl-xLのmRNAのレベルには変化を認めなかった。また、カスバーゼの阻害剤はBcl-xL発現の変化に影響を与えなかった。一方、Bcl-2蛋白の発現の減少は、Dox投与後4日まで観察出来なかった。さらに、このアポトーシスにおけるBcl-xLの役割をさらに検討するために、Bcl-xLのsiRNAを用いて検討を行った。Bcl-xLのsiRNAの投与はDT40-hTRX2細胞およびDT40-hTRX2CS細胞においてBcl-xL発現の減少と、Dox投与による細胞数の減少を起こした。

【考察】
これらの結果より、DT40細胞の生存において、ヒトTRX2はトリンTrx2の欠失を代償できることが明らかになった。また、Trx2の発現低下は、Bcl-xLの蛋白レベルでの発現減少を起こし、ミトコンドリア外膜の透過性を亢進させることにより、アポトーシスを引き起こす機構を明らかにした。さらに、TRX2は活性中心のシステイン残基非依存性にミトコンドリア...
リアにおいてアポトーシスを制御している機構が存在することが示唆される。

論文審査の結果の要旨

ミトコンドリアはアポトーシスの制御に重要な役割を果たすことが知られている。申請者らはこれまでに、ミトコンドリア特異的に発現するレドックス制御タンパクであるチオレドキシン2（Trx2）を欠失したトル DT40細胞を樹立し、Trx2欠失がミトコンドリア依存性アポトーシスを起こす報告を行い、更に TRX2 によるアポトーシス制御機構について研究を行ってきた。

本研究では、DT40 細胞での Trx2 の発現の低下が、ミトコンドリア外膜の透過性を亢進してアポトーシスを誘導することを確認した。逆にヒト TRX2 を過剰発現させると、その透過性亢進をアポトーシスの亢進が抑制された。しかし予想に反して、還元活性が欠失した変異型 TRX2（hTRX2CS）を高発現させても、野生型 TRX2 と同様に外膜の透過性の亢進、アポトーシスが抑制された。また、Trx2 の発現低下は、Bcl-xL の蛋白レベルでの発現の減少を誘導することが証明された。以上のことから、Trx2 は、ミトコンドリアにおいて外膜の透過性を制御することにより、ミトコンドリア依存的なアポトーシス機構を制御することが示唆された。また、この制御は、TRX2 の活性中心であるシステイン残基非依存的な新しい機構であることが明らかになった。

以上の研究は、TRX2 によるミトコンドリア外膜透過性と Bcl-xL 発現の調節を介したアポトーシス制御の分子機構を明らかにした。ミトコンドリア依存性のアポトーシスは発癌や神経変性疾患などの病態において重要であり、本研究で得られた知見はこれらの疾患の分子機構の解明に貢献すると考えられる。

本研究は博士（医学）の学位論文として価値あるものと認める。なお、本学位授与申請者は、平成18年２月21日実施の論文内容とそれに関連した諮問を受け、合格と認められる。