LEFSCHETZ FOR LOCAL PICARD GROUPS

BHARGAV BHATT AND AISE JOHAN DE JONG

Abstract. We prove a strengthening of the Grothendieck-Lefschetz hyperplane theorem for local Picard groups conjectured by Kollár. Our approach, which relies on acyclicity results for absolute integral closures, also leads to a restriction theorem for higher rank bundles on projective varieties in positive characteristic.

A classical theorem of Lefschetz asserts that non-trivial line bundles on a smooth projective variety of dimension ≥ 3 remain non-trivial upon restriction to an ample divisor, and plays a fundamental role in understanding the topology of algebraic varieties. In [Gro68], Grothendieck recast this result in more general terms using the machinery of formal geometry and deformation theory, and also stated a local version. With a view towards moduli of higher dimensional varieties, especially the deformation theory of log canonical singularities, Kollár recently conjectured [Kol12] that Grothendieck’s local formulation remains true under weaker hypotheses than those imposed in [Gro68]. Our goal in this paper is to prove Kollár’s conjecture for rings containing a field.

Statement of results. Let (A, m) be an excellent normal local ring containing a field. Fix some $0 \neq f \in m$. Let $V = \text{Spec}(A) - \{m\}$, and $V_0 = \text{Spec}(A/f) - \{m\}$. The following result is the key theorem in this paper; it solves [Kol12 Problem 1.3] completely, and [Kol12 Problem 1.2] in characteristic 0:

Theorem 0.1. Assume $\dim(A) \geq 4$. The restriction map $\text{Pic}(V) \to \text{Pic}(V_0)$ is:

1. injective if $\text{depth}_m(A/f) \geq 2$ and A has characteristic 0.
2. injective up to p^{∞}-torsion if A has characteristic $p > 0$.

This result is sharp: surjectivity fails in general, while injectivity fails in general if $\dim(A) \leq 3$, in characteristic 0 if $\text{depth}_m(A/f) < 2$, and in characteristic p if one includes p-torsion. A stronger similar result, including the mixed characteristic case, is due to Grothendieck [Gro68 Expose XI] under the stronger condition $\text{depth}_m(A/f) \geq 3$; complex analytic variants of Grothendieck’s theorem are proven in [Ham09], while topological analogues are discussed in [HT88]. Without this depth constraint, a previously known case of Theorem 0.1 was when A is a log canonical singularities A in characteristic 0, and $\{m\} \subset \text{Spec}(A)$ is not an lc center (see [Kol12 Theorem 19]).

Our approach to Theorem 0.1 relies on formal geometry over absolute integral closures [Art71 HH92], and applies to higher rank bundles as well as projective varieties. This leads to a short proof of the following result:

Theorem 0.2. Let X be a normal projective variety of dimension ≥ 3 over an algebraically closed field of characteristic $p > 0$. If a vector bundle E on X is trivial over an ample divisor, then $(\text{Frob}_X^e)^* E \simeq 0$ for $e \gg 0$.

The numerical version of Theorem 0.2 for line bundles is due to Kleiman [Kle66 Corollary 2, page 305]. The non-numerical version of the rank 1 case, with stronger assumptions on the singularities, is studied in [HL07a].

An outline of the proof. Both theorems are similar in spirit, so we only discuss Theorem 0.1 here. We first prove the characteristic p result, and then deduce the characteristic 0 one by reduction modulo p and an approximation argument; the reduction necessitates the (unavoidable) depth assumption in characteristic 0. The characteristic p proof follows Grothendieck’s strategy of decoupling the problem into two pieces: one in formal f-adic geometry, and the other an algebraisation question. Our main new idea is to replace (thanks entirely to the Hochster-Huneke vanishing theorem [HH92]) our ring A with a very large extension \overline{A} with better depth properties; Grothendieck’s deformation-theoretic approach then immediately solves the formal geometry problem over \overline{A}. Next, we algebraise the solution over \overline{A} by algebraically approximating formal sections of line bundles; the key here is to identify the cohomology of the formal completion of a scheme as the derived completion of the cohomology of the original scheme, i.e., a weak analogue of the formal functions theorem devoid of the usual finiteness constraints. Finally, we descend from \overline{A} to A; this step is trivial in our context, but witnesses the torsion in the kernel.

Acknowledgements. We thank János Kollár for many helpful discussions and email exchanges.
1. LOCAL PICARD GROUPS

The goal of this section is to prove Theorem 0.1. In [1.1] we study formal geometry along a divisor on a (punctured) local scheme abstractly, and establish certain criteria for restriction map on Picard groups to be injective. These are applied in [1.2] to prove the characteristic p part of Theorem 0.1. Using the principle of “reduction modulo p” and a standard approximation argument (sketched in [1.3]), we prove the characteristic 0 part of Theorem 0.1 in [1.3]. Finally, in [1.4] we give examples illustrating the necessity of the assumptions in Theorem 0.1.

1.1. Formal geometry over a punctured local scheme. We establish some notation that will be used in this section.

Notation 1.1. Let (A, m) be a local ring, and fix a regular element $f \in m$. Let $X = \text{Spec}(A)$, $Y = \text{Spec}(A) - \{m\}$. For an X-scheme Y, write Y_n for the reduction of Y modulo f^{n+1}, and \tilde{Y} for the formal completion of Y along Y_0. Let $\text{Vect}(Y)$ be the category of vector bundles (i.e., finite rank locally free sheaves) on Y, and write $\text{Pic}(Y)$ and $\hat{\text{Pic}}(Y)$ for the set and groupoid of line bundles respectively. Set $\hat{\text{Pic}}(Y) := \lim \text{Pic}(Y_n)$ (where the limit is in the sense of groupoids), and $\text{Pic}(\tilde{Y}) := \pi_0(\hat{\text{Pic}}(\tilde{Y}))$. For $F \in D(\mathcal{O}_Y)$, set $\hat{F} := \text{R} \text{lim}(F \otimes^L_{\mathcal{O}_Y} \mathcal{O}_{Y_n})$; we view \hat{F} as an $\mathcal{O}_{\tilde{Y}}$-complex on $|\tilde{Y}| := Y_0$, so $\text{R} \Gamma(\tilde{Y}, \hat{F}) := \text{R} \Gamma(\tilde{Y}) \simeq \text{R} \text{lim} \text{R} \Gamma(Y_0, F \otimes^L_{\mathcal{O}_Y} \mathcal{O}_{Y_n})$. The f-adic Tate module of an A-module M is defined as $T_f(M) := \lim M[f^n]$; note that $T_f(M) = 0$ if $f^N \cdot M = 0$ for some $N > 0$. For any A-module M with associated quasi-coherent sheaf \tilde{M} on $\text{Spec}(A)$, we define $H^i_\mathfrak{m}(M)$ as the i-th cohomology of the complex $\text{R} \Gamma_\mathfrak{m}(M)$ defined as the homotopy-kernel of the map $\text{R} \Gamma(\text{Spec}(A), \tilde{M}) \to \text{R} \Gamma(V, \tilde{M})$.

The following two descriptions of the cohomology of a formal completion will be crucial in this paper.

Lemma 1.2. Let Y be an X-scheme such that \mathcal{O}_Y has bounded f^∞-torsion. For $F \in D(\mathcal{O}_Y)$, there are exact sequences

$$1 \to \text{R}^1 \text{lim} H^{i-1}(Y_n, F \otimes_{\mathcal{O}_Y}^L \mathcal{O}_{Y_n}) \to H^i(\tilde{Y}, \hat{F}) \to \lim H^i(Y, F \otimes_{\mathcal{O}_Y}^L \mathcal{O}_{Y_n}) \to 1,$$

and

$$1 \to \lim H^i(Y, F)/f^n \to H^i(\tilde{Y}, \hat{F}) \to T_f(H^{i+1}(Y, F)) \to 1.$$

Proof. We first give a proof when \mathcal{O}_Y has no f-torsion (which will be the only relevant case in the sequel). The first sequence is then obtained from the formula

$$\text{R} \Gamma(\tilde{Y}, \hat{F}) \simeq \text{R} \text{lim} \text{R} \Gamma(Y, F \otimes_{\mathcal{O}_Y}^L \mathcal{O}_{Y_n})$$

and Milnor’s exact sequence for $\text{R} \text{lim}$. Applying the projection formula (since A/f^n is A-perfect) to the above gives

$$\text{R} \Gamma(\tilde{Y}, \hat{F}) \simeq \text{R} \text{lim} \text{R} \Gamma(Y, F) \otimes^L_A f^n.$$

The second sequence is now obtained by applying the derived f-adic completion functor $\text{R} \lim(- \otimes^L_{f^n} A/f^n)$ to the canonical filtration on $\text{R} \Gamma(Y, F)$, which proves the claim. In general, the boundedness of f-torsion in \mathcal{O}_Y shows that the map $\{\mathcal{O}_Y \to \mathcal{O}_Y\} \to \{\mathcal{O}_{Y_n}\}$ of projective systems is a (strict) pro-isomorphism, and hence $\{f^n \to F\} \to \{F \otimes_{\mathcal{O}_Y}^L \mathcal{O}_{Y_n}\}$ is also a pro-isomorphism. Now the previous argument applies.

The following conditions on the data (A, f) will be assumed throughout this subsection; we do not assume A is noetherian as this will not be true in applications.

Assumption 1.3. Assume that the data from Notation 1.1 satisfies the following:

- X is integral, i.e., A is a domain.
- $j : V \to X$ is a quasi-compact open immersion, i.e., m is the radical of a finitely generated ideal.
- $H^0(V, \mathcal{O}_V)$ is a finite A-module.
- $f^N \cdot H^1(V, \mathcal{O}_V) = 0$ for $N \gg 0$.

Example 1.4. Any S_2 noetherian local domain (A, m) of dimension ≥ 3 admitting a dualising complex satisfies Assumption 1.3: the A-module $H^2_\mathfrak{m}(A) \simeq H^1(V, \mathcal{O}_V)$ has finite length (see [Gro68, Corollary VIII.2.3]), while $H^0(V, \mathcal{O}_V) \simeq A$ as A is S_2. The absolute integral closure of a complete noetherian local domain of dimension ≥ 3 in characteristic p also satisfies these conditions (see Theorem 1.17), and is a key example for the sequel.

We now study formal geometry over \tilde{V}. The following elementary bound on the f^∞-torsion of certain cohomology groups will help relate sheaf theory on \tilde{V} to that on V.
Lemma 1.5. For $E \in \text{Vect}(V)$, one has $f^k : H^1(V, E) = 0$ for $k \gg 0$.

Proof. Fix an N with $f^N : H^1(V, \mathcal{O}_V) = 0$, and set $m' := \text{Ann}_A(f^N : H^1(V, E)) \subset m$. For each $p \in V \subset \text{Spec}(A)$, there is a $g \in m - p$ and an isomorphism $E|_{D(g)} \cong (O_V^m)|_{D(g)}$. Clearing denominators gives an exact sequence

$$1 \to O_V^m \to E \to Q \to 1$$

with $g^n \cdot Q = 0$ for some $n > 0$ (by quasi-compactness). Then $g^n \in m'$, so $m' \not\subseteq p$. Varying over all $p \in V$ shows that A/m' is a local ring with a unique prime ideal m/m', so $f^m \in m'$ for $m \gg 0$, and hence $f^{N+m} : H^1(V, E) = 0$. □

We can now algebraically approximate formal sections of vector bundles on V:

Lemma 1.6. For $E \in \text{Vect}(V)$, one has $H^0(\Gamma(V), E) \cong H^0(\Gamma, \hat{E})$.

Proof. Lemma 1.5 shows that $\{H^1(V, E)[f^n]\}$ is essentially 0, so $T_f(H^1(V, E)) = 0$. It remains to observe that $H^0(\Gamma(V), E) \cong \pi_0(H^0(\Gamma(V), E))$ since f is a non-zero divisor on $H^0(V, E)$. □

One can also prove the following Lefschetz-type result for π_1:

Corollary 1.7. The natural map $\pi_1,\acute{\text{e}}t(V_0) \to \pi_1,\acute{\text{e}}t(V)$ is surjective if A is noetherian and f-adically complete.

Proof. We want $\pi_0(W) \cong \pi_0(W_0)$ for any finite étale cover $W \to V$. If A is a finite flat quasi-coherent O_V-algebra, then $H^0(W, \mathcal{A}) \cong H^0(V, \mathcal{A}) \cong H^0(\Gamma, \hat{\mathcal{A}}) \cong \lim H^0(V_n, A_n)$ by the noetherian assumption and Lemma 1.5. Hence, if $O_V \to A$ is also étale, then $H^0(W, \mathcal{A}) \to H^0(V_n, A_n) \to H^0(V_0, A_0)$ induce bijections on idempotents. □

Next, we show that pullback along $\Gamma \to V$ is faithful on line bundles.

Lemma 1.8. The natural map $\text{Pic}(V) \to \text{Pic}(\Gamma)$ is injective.

Proof. Fix an $L \in \ker(\text{Pic}(V) \to \text{Pic}(V_0))$. Lemma 1.6 gives an injective map $s : L \to \mathcal{O}_V$ with $s|_{V_0}$ an isomorphism. Hence, if $Q = \text{coker}(s)$, then multiplication by f is an isomorphism on Q, so $H^0(V, Q)$ is uniquely f-divisible. Lemma 1.5 shows $f^N : H^1(V, L) = 0$ for $N \gg 0$, so $H^0(V, \mathcal{O}_V) \to H^0(V, Q)$ is surjective, and hence $H^0(V, Q)$ is a finitely generated f-divisible A-module. By Nakayama, $H^0(V, Q) = 0$, so $Q = 0$ as \mathcal{O}_V is ample. □

Remark 1.9. The same argument shows $\text{Vect}(V) \to \text{Vect}(\Gamma)$ is injective on isomorphism classes. If $V_0 = S_2$, then one can show that each $\hat{E} \in \text{Vect}(\Gamma)$ algebraizes to some torsion free $E \in \text{Coh}(V)$ (see [Gro68 Theorem IX.2.2]); examples such as [Kol12, Example12] show that E need not be a vector bundle, even in the rank 1 case.

The next observation is a manifestation of the formula $\hat{V} = \text{colim}_n V_n$ and some bookkeeping of automorphisms:

Lemma 1.10. The natural map $\text{Pic}(\hat{V}) \to \text{lim} \text{Pic}(V_n)$ is bijective.

Proof. Since $\text{Pic}(\hat{V}) \cong \text{lim} \text{Pic}(V_n)$ as groupoids, it suffices to show $\{\pi_1(\text{Pic}(V_n))\} := \{H^0(V_n, \mathcal{O}_V^m)\}$ satisfies the Mittag-Leffler (ML) condition. The assumption on V shows that $\{H^1(V, \mathcal{O}_V)[f^n]\}$ is essentially 0, and hence $\{H^0(V_n, \mathcal{O}_V)\}$ satisfies ML. Since $|V_0| = |V_0|$, we have

$$\{H^0(V_n, \mathcal{O}_V)\} = \{H^0(V_n, \mathcal{O}_V) \times H^0(V_0, \mathcal{O}_{V_0})\} = H^0(V_0, \mathcal{O}_{V_0})$$

as projective systems. The claim now follows from Lemma 1.11.

Lemma 1.11. If $\{X_n\}$ is a projective system of sets that satisfies ML, and $Y_0 \to X_0$ is some map, then the base change system $\{Y_n\} := \{Y_0 \times_{X_0} X_n\}$ also satisfies ML.

Proof. Let $Z_{n,k} \subset X_k$ be the image of $X_n \to X_k$ for any $k \leq n$. The assumption says: for fixed k, one has $Z_{n,k} = Z_{n+1,k}$ for $n \gg 0$. Since $\text{im}(X_n \times_{X_0} Y_0 \to X_k \times_{X_0} Y_0) = Z_{n,k} \times_{X_0} Y_0$, the claim follows. □

We quickly recall the standard deformation-theoretic approach to studying line bundles on \hat{V}:

Lemma 1.12. The map $\text{Pic}(V_{n+1}) \to \text{Pic}(V_n)$ is injective if $H^1(V_0, \mathcal{O}_{V_0}) = 0$, and surjective if $H^2(V_0, \mathcal{O}_{V_0}) = 0$.

Proof. Standard using the exact sequence $1 \to \mathcal{O}_{V_0} \overset{a}{\to} \mathcal{O}_{V_{n+1}} \to \mathcal{O}_{V_n} \to 1$ where $a(g) = 1 + g \cdot f^n$. □

We end by summarising the relevant consequences of the preceding discussion:

Corollary 1.13. For A satisfying Assumption 1.3 we have:
Remark 1.20. In the setting of Theorem 1.14, the proof above also shows: if \(H^1(V_0, O_{V_0}) = 0 \), then \(E \mid_{V_0} \simeq O_{V_0}^{\oplus n} \), i.e., satisfies \(E \mid_{V_0} \simeq O_{V_0}^{\oplus n} \), then \(E \) is trivialised by a finite extension of \(V \).
1.3. **Characteristic 0.** We follow Notation [1.1]. Our goal is to prove the following:

Theorem 1.21. Fix an excellent normal local \mathbb{Q}-algebra (A, m) of dimension ≥ 4, and some $0 \neq f \in m$. Assume $\text{depth}_m(A/f) \geq 2$. Then $\text{Pic}(V) \to \text{Pic}(V_0)$ is injective.

Proof. By Lemma [1.24] below, we may assume that A is an essentially finitely presented \mathbb{Q}-algebra. The depth assumption implies that $\text{depth}_m(A) \geq 3$ as f acts nilpotently $H^2_d(A)$ with kernel $H^1_d(A/f) = 0$. Now fix a line bundle L in the kernel of $\text{Pic}(V) \to \text{Pic}(V_0)$. By spreading out (see [Hoc78 §2]), we can find:

1. A mixed characteristic dvr $(\emptyset, (\pi))$ with perfect residue field of characteristic $p > 0.$
2. A normal noetherian \emptyset-flat local ring \hat{A} satisfying:
 a. There is a map $\hat{A}[1/\pi] \to A$.
 b. $B := \hat{A}/\pi$ is normal of dimension $\dim(A)$ and has depth ≥ 3 at its closed point.
3. A section $\hat{A} \to \emptyset$ of the structure map $\emptyset \to \hat{A}$ defined by an ideal $\hat{m} \subset \hat{A}$ that, after inverting π, gives the image of the closed point under $\text{Spec}(A) \to \text{Spec}(\hat{A}[1/\pi])$.
4. An element $\bar{t} \in \hat{A}$ such that \bar{A}/\bar{t} is \emptyset-flat and maps to t along $\hat{A} \to \hat{A}[1/\pi] \to A$.
5. A line bundle \bar{L} on \bar{V} which induces L over V and lies in the kernel of $\text{Pic}(\bar{V}) \to \text{Pic}(\bar{V}_0)$; here $\bar{V} = \text{Spec}(\hat{A}) - \{\hat{m}\}$, and the subscript 0 denoting passage to the $\bar{t} = 0$ fibre. Write $U = \text{Spec}(B) - \{\hat{m} \cdot B\}$ for the punctured spectrum of B, and use the subscript 0 to indicate passage to the $\bar{t} = 0$ fibre.

Then we have a commutative diagram

$$
\begin{array}{ccc}
\text{Pic}(\bar{V}) & \xrightarrow{a} & \text{Pic}(\bar{V}_0) \\
\downarrow{b} & & \downarrow{c} \\
\text{Pic}(U) & \xrightarrow{d} & \text{Pic}(U_0)
\end{array}
$$

where the vertical maps are induced by reduction modulo π, while the horizontal maps are induced by reduction modulo \bar{t}. Theorem [1.14] tells us that the kernel of d is p^∞ torsion. Corollary [1.13] shows b is injective, so \bar{L} (and hence L) is killed by a power of p. Repeating the above construction by spreading out over a mixed characteristic dvr whose residue characteristic is $\ell \neq p$, it follows that L is also killed by a power of ℓ, and is hence trivial. \(\square\)

Remark 1.22. We do not know a proof of Theorem [1.21] that avoids reduction modulo p except when A is S_3, where one can argue directly as follows. By Lemma [1.8] it suffices to prove $\text{Pic}(\bar{V}) \to \text{Pic}(\bar{V}_0)$ is injective. The kernel of this map is $H^1(V, 1 + \hat{I})$, where $I = (f) \subset \emptyset_V$ is the ideal defining \bar{V}_0. In characteristic 0, the exponential gives an isomorphism $\hat{I} \simeq 1 + \hat{I}$ of sheaves on \bar{V}, so it suffices to prove $H^1(V, \hat{I}) = 0$. Using $\hat{f} : \emptyset_V \simeq I$ and $H^1(V, \emptyset_V) = 0$ (since $\text{depth}_m(A) \geq 3$), it suffices to show $T_f(H^2(V, \emptyset_V)) = 0$. The A-module $H^2(V, \emptyset_V)$ has finite length as A is S_3, so $T_f(H^2(V, \emptyset_V)) = 0$. If $\text{depth}_m(A) \geq 3$ but A is not S_3, then the last step fails; in fact, there are examples [Kol12] Example 12) of such A where $\text{Pic}(\bar{V}) \to \text{Pic}(\bar{V}_0)$ is not injective, rendering this approach toothless in general.

1.4. **An approximation argument.** We now explain the approximation argument used to reduce Theorem [1.21] to the case of essentially finitely presented algebras over \mathbb{Q}. First, we show how modules over the completion of an excellent ring can be approximated by modules over a smooth cover while preserving homological properties.

Lemma 1.23. Fix an excellent henselian local ring (P, n) with n-adic completion \hat{P}. Let I be the category of diagrams $P \to S \to \hat{P}$ with $P \to S$ essentially smooth and S local. Then one has

1. I is filtered, and $\hat{P} \simeq \text{colim}_I S$.
2. $\text{colim}_I \text{Mod}^f S \simeq \text{Mod}^f \hat{P}$ via the natural functor.
3. If $M \in \text{Mod}^f_{\hat{P}}$ has $\text{pd}_P(M) < \infty$, then there exists $S \in I$ and $N \in \text{Mod}^f_S$ such that $N \otimes^{\mathbb{L}}_S \hat{P} \simeq M$.

Proof. (1) is Popescu’s theorem [Swa98], while (2) is automatic from (1) as all rings in sight are noetherian. Now pick $M \in \text{Mod}^f_{\hat{P}}$ as in (3) with a finite free resolution $K \to M$ over \hat{P}. Then there exists an $S \in I$ and a finite free S-complex L such that $L \otimes_S \hat{P} = K$ as complexes. It suffices to thus check that $L \in D^{>0}(S)$. Write $j : P \to S$ and $a : S \to \hat{P}$ for the given maps. As P is henselian, for each integer c, there exists a section $S \to P$ of j such that the composite $b : S \to P \to \hat{P}$ agrees with a modulo n^c. Then [CD12] Lemma 3.1] shows that $L \otimes_{S, b} \hat{P}$ is acyclic outside degree 0 (for sufficiently c). The same is also true for $L \otimes_S P$ by faithful flatness. If $I = \ker(S \to P)$, then
We now give examples illustrating the necessity of the depth assumption in Theorem 1.21 as well as the occurrence of p-torsion in Theorem 1.14. We begin with an example of the non-injectivity of the restriction map for coherent cohomology; this leads to the desired examples via the exponential.

1.5. Examples. We now give examples illustrating the necessity of the depth assumption in Theorem 1.21 as well as the occurrence of genus $g > 1$ over a field k. Let $L = \Omega_{\mathbf{P}^n/1} \otimes K_C$ be the displayed line bundle on $\mathbf{P}^n \times C$ (for $n > 0$), and let $V(L^{-1}) \to \mathbf{P}^n \times C$ be its total space. Set (X, x) be the affine cone and $p = \mathbf{P}^n \times C$ with respect L, i.e., $X = \text{Spec}(A)$ where $A := \Gamma(V(L^{-1}), \Omega_{\mathbf{V}(L^{-1})}) = \bigoplus_{i > 0} H^0 (\mathbf{P}^n \times C, L^i)$, x is the origin, and let $V = X - \{x\} \subset X$ be the punctured cone; note that L is very ample and A is normal. The affinization map $V(L^{-1}) \to X$ is the contraction of the zero section in $V(L^{-1})$, so we can view V as the complement of the zero section in $V(L^{-1})$. In particular, the Kunneth formula shows

$$H^0 (V, \Omega_V) = H^0 (X, \Omega_X) \simeq \bigoplus_{i > 0} H^0 (\mathbf{P}^n, \Omega_{\mathbf{P}^n(i)}) \otimes H^0 (C, K_C^\otimes i)$$

and

$$H^1 (V, \Omega_V) = \bigoplus_{i \in \mathbb{Z}} H^1 (\mathbf{P}^n \times C, L^i) \simeq \left(H^0 (\mathbf{P}^n, \Omega_{\mathbf{P}^n}) \otimes H^1 (C, \mathbb{O}_C) \right) \oplus \left(H^0 (\mathbf{P}^n, \Omega_{\mathbf{P}^n(1)}) \otimes H^1 (C, K_C) \right).$$
with the evident $H^0(V, \mathcal{O}_V)$-module structure. Pick non-zero sections $s_1 \in H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1))$ and $s_2 \in H^0(C, \mathcal{K}_C)$, and set $f = s_1 \otimes s_2 \in A$. We will show that multiplication by f on $H^1(V, \mathcal{O}_V)$ has non-zero image. First, note that s_2 defines a map $C \to \mathcal{K}_C$ that induces a surjective non-zero map $H^1(C, \mathcal{O}_C) \to H^1(C, \mathcal{K}_C)$. Since s_1 induces an injective map $H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}) \to H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1))$, it follows $f = s_1 \otimes s_2$ induces a non-zero map

$$H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}) \otimes H^1(C, \mathcal{O}_C) \to H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)) \otimes H^1(C, \mathcal{K}_C),$$

and hence a non-zero endomorphism of $H^1(V, \mathcal{O}_V)$ by the description above. In particular, if we set $V_0 = V \cap \text{Spec}(A/f) \subset V$, then the map $H^1(V, \mathcal{O}_V) \to H^1(V_0, \mathcal{O}_{V_0})$ is not injective. The same calculation is valid after replacing X with its completion Y at x, and V and V_0 with their preimages U and U_0 respectively in Y (as $H^1(V, \mathcal{O}_V) \simeq H^1(U, \mathcal{O}_U)$, and similarly for V_0). Finally, since $H^1(V, \mathcal{O}_V)[f] \neq 0$, the inclusion $A/f \to H^0(V_0, \mathcal{O}_{V_0})$ is not surjective, so $\text{depth}_x(A/f) = 1$; this reasoning also shows $\text{depth}_x(A/g) = 1$ for any $0 \neq g \in A$ vanishing at x.

Remark 1.26. The construction and conclusion of Example [1.25] works over any normal ring k, and specialises to the desired conclusion over the fibres as long as the sections s_i are chosen to be non-zero in every fibre.

Via the exponential, we obtain an example illustrating the depth condition in Theorem 1.21.

Example 1.27. Consider Example [1.25] over $k = \mathbb{C}$. The exponential sequence shows $\text{Pic}(V^{an}) \to \text{Pic}(V^an)$ is not injective as $H^1(V^{an}, \mathbb{Z})$ is countable. One then also has non-injectivity of $\text{Pic}(W) \to \text{Pic}(W_0)$, where W is any line of $x \in X^{an}$ i.e., $W = \overline{W} - \{x\}$ for a small contractible Stein analytic neighbourhood \overline{W} of x in X^{an}; this is because $H^1(V^{an}, \mathbb{Z}) \simeq H^1(W, \mathbb{Z})$ (as both sides are homotopy equivalent to the circle bundle over $\mathbb{P}^n \times C$ defined by L^{-1}), and $H^1(V^{an}, \mathcal{O}_{V^{an}}) \simeq H^1(W, \mathcal{O}_W)$ (by excision and Cartan’s Theorem B). By [Siu69] Theorem 5, since any such \overline{W} is normal of dimension ≥ 3, we may identify $\text{Pic}(W)$ with isomorphism classes of analytic coherent S_2 sheaves on \overline{W} free of rank 1 over W. Nakayama then shows non-injectivity of $\text{Pic}(U) \to \text{Pic}(U_0)$.

Remark 1.28. The (punctured) local scheme of Example [1.27] is not essentially of finite type over k, but rather the (punctured) completion of such a scheme; an essentially finitely presented example can be obtained via Artin approximation. Note that some approximation is necessary to algebraically detect the analytic line bundles from Example [1.27] since $\text{Pic}(V) = \text{Pic}(C \times \mathbb{P}^2)/\mathbb{Z} \cdot L$ is smaller than $\text{Pic}(V^{an})$.

Reducing modulo p (suitably) shows that the map of Theorem 1.14 often has a non-trivial p-torsion kernel:

Example 1.29. Consider Example [1.25] over $k = \mathbb{Z}[1/N]$ for $n \geq 3$, and suitable choices of $N, C, s_1,$ and s_2. Let B be the blowup of Y at x; this may be viewed as the base change to Y of the contraction $V(L^{-1}) \to X$. Write \widehat{B} for the formal completion of B along $i: \mathbb{P}^n \times C \to B$ (coming from the 0 section), and let $I \subset \mathcal{O}_B$ denote the ideal defining i, so $i^*(I) \simeq L$. Using formal GAGA for $B \to Y$, one can check that there is an exact sequence

$$1 \to H^1(\widehat{B}, 1 + I) \to \text{Pic}(B) \to \text{Pic}(\mathbb{P}^n \times C) \to 1$$

with a canonical splitting provided by the composite projection $B \to V(L^{-1}) \to \mathbb{P}^n \times C$. As $n \geq 3$, using Kunneth, one computes

$$H^1(\widehat{B}, 1 + I) \cong H^1(\widehat{B}, (1 + I)/(1 + I^2)) \cong H^1(\widehat{B}, I/I^2) \cong H^1(\mathbb{P}^n \times C, L),$$

which, again thanks to Kunneth, gives an exact sequence

$$1 \to \left(H^0(\mathbb{P}^n, \mathcal{O}_{\mathbb{P}^n}(1)) \otimes H^1(C, \mathcal{K}_C) \right) \to \text{Pic}(B) \to \text{Pic}(\mathbb{P}^n \times C) \to 1.$$
2. A vector bundle analogue

Our goal is to prove the following vector bundle analogue of Theorem 1.14.

Theorem 2.1. Let \(X \) be a normal projective variety of dimension \(\geq 3 \) over an algebraically closed field \(k \) of characteristic \(p > 0 \). If \(E \in \text{Vect}(X) \) is trivial over an ample divisor, then \(E \) is trivialised by a torsor for a finite connected \(k \)-group scheme. In particular, \((\text{Frob}_X^e)^* E \simeq O_X^\oplus r \) for \(e > 0 \).

Our approach to Theorem 2.1 is the same as that to Theorem 1.14. However, it does not seem straightforward to deduce the former from the latter, so we redo the relevant arguments in a slightly different setting. For this reason, we adopt the following notation:

Notation 2.2. Fix a normal projective variety \(X \) of dimension \(d \) over an algebraically closed field \(k \supset F_p \), and an ample divisor \(H \subset X \). Let \(\overline{X} \) be a fixed absolute integral closure of \(X \). For any geometric object \(F \) over \(X \), write \(F \) for its pullback to \(\overline{X} \). For any \(X \)-scheme \(Y \), we write \(Y_n \) for the \(n \)-th infinitesimal neighbourhood of the inverse image of \(H \), and \(\overline{Y} \) for the formal completion of \(Y \) along \(Y_0 \). For \(K \in D(O_Y) \), write \(\overline{K} \simeq R \lim (K \otimes_{O_Y} O_{Y_n}) \), viewed as an object on \(\overline{Y} \). Finally, we use \(\text{Vect}(Y) \) to denote the groupoid of vector bundles on \(Y \).

The basic vanishing result that will be used is:

Proposition 2.3. For \(E \in \text{Vect}(\overline{X}) \), \(i < d \) and \(n > 0 \), we have \(H^i(\overline{X}, E(-nH)) = 0 \).

Proof. If \(E \) is a finite direct sum of twists of \(O_{\overline{X}} \) by \(H \), then the claim follows from [HH92]. For the general case, fix a sufficiently large integer \(N \). Then the standard construction of free resolutions (applied to the dual of \(E \) at some finite level) shows that one can find an exact triangle \(E \to P \to Q \) in \(D^{-}(O_{\overline{X}}) \) such that

1. \(P = \left(P^0 \to P^1 \to \cdots \to P^N \right) \) with \(P^i \) a finite direct sum of twists of \(O_{\overline{X}} \) (in cohomological degree \(i \)).
2. \(Q \) lies in \(D^+(O_{\overline{X}}) \).

Then (2) shows that \(H^i(\overline{X}, E(-nH)) \simeq H^i(\overline{X}, P(-nH)) \) for \(i < d \) and any \(n \). By (1), each \(H^i(\overline{X}, P(-nH)) \) admits a finite filtration with graded pieces being subquotients of \(H^{i-1}(\overline{X}, P^j(-nH)) \). Each of these subquotients vanishes for \(i < d \) and \(n > 0 \). The desired conclusion follows as the filtration is finite.

We can now algebraise some cohomology groups:

Lemma 2.4. Assume \(d \geq 2 \). For any \(E \in \text{Vect}(\overline{X}) \), we have \(H^i(\overline{X}, E) \simeq H^i(\overline{X}, \overline{E}) \) for \(i < d - 1 \). The analogous claim for \(i = 0 \) is also valid on \(X \).

Proof. We first show the claim for \(\overline{X} \). The projective system of exact sequences \(1 \to E(-nH) \to E \to E|_{\overline{X} - 1} \to 1 \) gives a triangle

\[R \lim \text{R} \Gamma(\overline{X}, E(-nH)) \to \text{R} \Gamma(\overline{X}, E) \xrightarrow{\delta} \text{R} \Gamma(\overline{X}, \overline{E}). \]

The left hand side lies in \(D^{[d,d+1]}(k) \) by Proposition 2.3, so \(H^i(a) \) is an isomorphism for \(i < d - 1 \). For \(X \), the same argument applies once we observe that \(H^0(X, E(-nH)) = 0 \) for \(n > 0 \) by ampleness as \(d \geq 1 \), and that \(H^1(X, E(-nH)) = 0 \) for \(n > 0 \) by the Lemma of Enriques-Severi-Zariski as \(d \geq 2 \).

Passage to formal completions of ample divisors faithfully reflects the geometry of bundles:

Lemma 2.5. Assume \(d \geq 2 \). The functor \(\text{Vect}(\overline{X}) \to \text{Vect}(\overline{X}) \) is fully faithful, and similarly on \(X \).

Proof. Lemma 2.4 shows that \(\text{Hom}(E, F) \simeq \text{Hom}(\overline{E}, \overline{F}) \) for \(E, F \in \text{Vect}(\overline{X}) \) (or \(\text{Vect}(X) \)). It now suffices to check that if \(f : E \to F \) induces an isomorphism \(\hat{f} : \overline{E} \to \overline{F} \), then \(f \) is itself an isomorphism. By taking determinants, we may assume \(E \) and \(F \) are line bundles. As the reduction \(f_0 : E_0 \to F_0 \) is an isomorphism, the support of \(\text{coker}(f) \) is a divisor that does not intersect \(H \), contradicting ampleness.

We obtain a Lefschetz-type result for \(\pi_1 \):

Corollary 2.6. Assume \(d \geq 2 \). The map \(\pi_1(X_0) \to \pi_1(X) \) is surjective.

Proof. We first observe that \(X_0 \) is connected by the Lemma of Enriques-Severi-Zariski, so the notation is unambiguous. As \(\pi_1(X_0) \simeq \pi_1(X_0) \simeq \pi_1(\hat{X}) \), it suffices to observe: for any finite étale \(\mathcal{O}_X \)-algebra \(\mathcal{A} \), the natural map \(H^0(X, \mathcal{A}) \to H^0(\hat{X}, \hat{\mathcal{A}}) \) is an isomorphism of algebras by Lemma 2.4, and hence identifies idempotents.

\[\square \]
Using the vanishing of cohomology on X, deformations of the trivial bundle on X_0 are easy to classify:

Lemma 2.7. Assume $d \geq 3$. The fibre over the trivial bundle of $\operatorname{Vect}(X) \to \operatorname{Vect}(X_0)$ is contractible.

Proof. Let $E = \mathcal{O}_X^{\oplus r}$. It suffices to show that the fibre F_n over E_{n-1} of $\operatorname{Vect}(X_n) \to \operatorname{Vect}(X_{n-1})$ is contractible for $n \geq 1$. One has $\pi_0(F_n) = H^1(X_0, \operatorname{End}(E_0)(-n\mathcal{H})) \simeq H^1(X_0, \mathcal{O}^{\oplus r}_0(-n\mathcal{H}))$. This group vanishes by Proposition 2.4 and the exact sequence

$$1 \to \mathcal{O}_X(-(n+1)\mathcal{H}) \to \mathcal{O}_X(-n\mathcal{H}) \to \mathcal{O}_X(-n\mathcal{H}) \to 1$$

as $d \geq 3$. A similar argument shows that $\pi_1(F_n) = \ker(H^0(X_0, \operatorname{End}(E_0)(-n\mathcal{H}))) = 0$, which proves the claim. □

We can now prove the promised result:

Proof of Theorem 2.7. Fix an $E \in \operatorname{Vect}(X)$ with $E|_X \simeq \mathcal{O}_X^{\oplus r}$. Then lemmas 2.5 and 2.7 show that E is the trivial bundle over X. Hence, there is a finite cover of X trivialising E. By [AM11], there is a finite k-group scheme G such that E is trivialized by a G-torsor over X. Using Corollary 2.6 and the connected-étale sequence for G, we may choose G to be connected, proving half the claim. The last part follows from the observation that any finite surjective purely inseparable map $Y \to X$ is dominated by a power of Frobenius on X. □

We end by noting that the proof of Corollary 2.6 Fujita vanishing [Fuj83, Theorem 10], and representability results for Picard functors (see [Kle05]) can be used to prove the following Lefschetz-type result for base-point free big divisors on normal varieties. We thank Brian Lehmann for bringing this question to our attention.

Theorem 2.8. Let X be a normal projective variety of dimension ≥ 2 over a field k, and fix a Cartier divisor $D \subset X$ such that $\mathcal{O}(D)$ is semiample and big. Then the restriction map $\operatorname{Pic}^\tau(X) \to \operatorname{Pic}^\tau(D)$ is:

1. injective if k has characteristic 0.
2. injective up to a finite and p^∞-torsion kernel if k has characteristic $p > 0$.

In [RS06], one finds a stronger result with stronger assumptions: they completely describe the kernel and cokernel of $\operatorname{Pic}(X) \to \operatorname{Pic}(D)$ when X is a smooth projective variety in characteristic 0, and D is general in its linear system.

References

[AM11] Marco Antei and Vikram B. Mehta. Vector bundles over normal varieties trivialized by finite morphisms. Arch. Math. (Basel), 97(6):523–527, 2011.

[Art71] M. Artin. On the joins of Hensel rings. Advances in Math., 7:282–296 (1971), 1971.

[CdJ02] Brian Conrad and A. J. de Jong. Approximation of versal deformations. J. Algebra, 255(2):489–515, 2002.

[Fuj83] Takao Fujita. Vanishing theorems for semipositive line bundles. In Algebraic geometry (Tokyo/Kyoto, 1982), volume 1016 of Lecture Notes in Math., pages 519–528. Springer, Berlin, 1983.

[Gro68] Alexander Grothendieck. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), North-Holland Publishing Co., Amsterdam, 1968. Augmenté d’un exposé par Michèle Raynaud, Sémleaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure Mathematics, Vol. 2.

[Han09] H. A. Hamm. On the local Picard group. Tr. Mat. Inst. Steklova, 267(Osobennosti i Prilozheniya):138–145, 2009.

[HH92] Melvin Hochster and Craig Huneke. Infinite integral extensions and big Cohen-Macaulay algebras. Ann. of Math. (2), 135(1):53–89, 1992.

[HL07a] Helmut A. Hamm and Dung Tráng Lê. A Lefschetz theorem on the Picard group of complex projective varieties. In Singularities in geometry and topology, pages 640–660. World Sci. Publ., Hackensack, NJ, 2007.

[HL07b] Craig Huneke and Gennady Lyubeznik. Absolute integral closure in positive characteristic. Adv. Math., 210(2):498–504, 2007.

[Hoc78] Melvin Hochster. Some applications of the Frobenius in characteristic 0. Bull. Amer. Math. Soc., 84(5):886–912, 1978.

[Ht88] Helmut A. Hamm and Lê Dũng Tráng. Local generalizations of Lefschetz-Zariski theorems. J. Reine Angew. Math., 389:157–189, 1988.

[Kle66] Steven L. Kleiman. Toward a numerical theory of ampleness. Ann. of Math. (2), 84:293–344, 1966.

[Kle05] Steven L. Kleiman. The Picard scheme. In Fundamental algebraic geometry, volume 123 of Math. Surveys Monogr., pages 235–321. Amer. Math. Soc., Providence, RI, 2005.

[Kol12] János Kollár. Grothendieck–Lefschetz type theorems for the local Picard group. Available at http://arxiv.org/abs/1211.0317, 2012.

[RS06] G. V. Ravindra and V. Srinivas. The Grothendieck-Lefschetz theorem for normal projective varieties. J. Algebraic Geom., 15(3):563–590, 2006.

[SGA73] Théorie des topos et cohomologie étale des schémas. Tome 3. Lecture Notes in Mathematics, Vol. 305. Springer-Verlag, Berlin, 1973. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat.

[Siu69] Yum-tong Siu. Extending coherent analytic sheaves. Ann. of Math. (2), 90:108–143, 1969.
[Swa98] Richard G. Swan. Néron-Popescu desingularization. In *Algebra and geometry (Taipei, 1995)*, volume 2 of *Lect. Algebra Geom.*, pages 135–192. Int. Press, Cambridge, MA, 1998.