Ultralow concentrations of bupivacaine exert anti-inflammatory effects on inflammation-reactive astrocytes

Linda Block,1 Per Jörneberg,2 Ulrika Björklund,3 Anna Westerlund,3 Björn Biber1 and Elisabeth Hansson2

1Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
2Division of Pain Management, Department of Anesthesiology and Intensive Care Medicine, NU-Hospitals, Trollhättan, Sweden
3Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, SE 413 45, Gothenburg, Sweden

Keywords: 5-HT, astrocytes, bupivacaine, glutamate, opioids, rat

Abstract

Bupivacaine is a widely used, local anesthetic agent that blocks voltage-gated Na+ channels when used for neuro-axial blockades. Much lower concentrations of bupivacaine than in normal clinical use, < 10⁻⁸ M, evoked Ca²⁺ transients in astrocytes from rat cerebral cortex, that were inositol trisphosphate receptor-dependent. We investigated whether bupivacaine exerts an influence on the Ca²⁺ signaling and interleukin-1β (IL-1β) secretion in inflammation-reactive astrocytes when used at ultralow concentrations, < 10⁻⁸ M. Furthermore, we wanted to determine if bupivacaine interacts with the opioid-, 5-hydroxytryptamine- (5-HT) and glutamate-receptor systems. With respect to the µ-opioid- and 5-HT-receptor systems, bupivacaine restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. With respect to the glutamate-receptor system, bupivacaine, in combination with an ultralow concentration of the µ-opioid receptor antagonist naloxone and µ-opioid receptor agonists, restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. Ultralow concentrations of bupivacaine attenuated the inflammation-induced upregulation of IL-1β secretion. The results indicate that bupivacaine interacts with the opioid-, 5-HT- and glutamate-receptor systems by affecting Ca²⁺ signaling and IL-1β release in inflammation-reactive astrocytes. These results suggest that bupivacaine may be used at ultralow concentrations as an anti-inflammatory drug, either alone or in combination with opioid agonists and ultralow concentrations of an opioid antagonist.

Introduction

Local anesthetics may interfere with opioid receptor signaling through their effects on G proteins and Ca²⁺ channels by decreasing the opioid inhibition of these channels (Komai & McDowell, 2007). Clinically used doses of such agents produce effective analgesia, by blocking voltage-gated Na⁺ channels. Bupivacaine may have other effects at much lower concentrations where the blocking of Na⁺ channels does not exist (Toda et al., 2011). Doses far below those that block nerve impulse propagation, at nanomolar concentrations, may have pain-relieving actions via other targets such as neuronal G protein-coupled receptors and binding sites on immune cells (Amir et al., 2006). Bupivacaine has been proposed to attenuate inflammatory responses, although the mechanisms involved and sites of action for such effects of this anesthetic are not known (Bedirli et al., 2011).

Glial cells have been shown to play critical roles in neuropathic, nociceptive and inflammatory pain, which is pain that can be long-lasting and may eventually be considered as chronic (Gao & Ji, 2010; Lundborg et al., 2010; Chiang et al., 2012). The underlying mechanisms of persistent/long-lasting pain involves the presence of neuro-inflammation at the damaged or affected nerve(s) (Saadé & Jabbur, 2008; McMahon & Mulcahy, 2009; Vallejo et al., 2010), which includes the activation of glial cells.

We have recently shown that Ca²⁺ signaling in astrocytes is disturbed when the cells are influenced by inflammatory stimuli, and our previous data suggest that some receptor systems are more sensitive to inflammatory stimuli than others, especially opioid-, 5-hydroxytryptamine (5-HT)- and glutamate-receptor systems in the form of increased intracellular Ca²⁺ transients (Hansson et al., 2008; Lundborg et al., 2011; Block et al., 2012). Astrocyte-propagating Ca²⁺ waves (Blomstrand et al., 1999; Scemes & Giaume, 2006) can be evoked by transmitters released from neurons and glial cells, for example ATP and glutamate, which can activate G protein-coupled receptors on astrocytes. Inflammatory stimuli disturb the Ca²⁺ homeostasis of the astrocyte network, which results in Ca²⁺-evoked oscillations (Hansson & Rönnbäck, 2003; Hansson, 2006, 2010; Forshammer et al., 2011).

The upregulation of interleukin-1β (IL-1β) secretion observed in an inflammatory environment reduces intercellular communication by affecting the passage of inositol 1,4,5-trisphosphate (IP₃) through gap junctions in the astrocyte networks (Retamal et al., 2007). This results in inhibition of the intercellular neuroprotective Ca²⁺ signaling...
through gap junction channels, and increases another type of Ca2+ signaling providing a pathway for the release and uptake of small molecules, such as ATP, between the extra- and intracellular compartments (Froger et al., 2010).

The first aim of this study was to investigate whether bupivacaine, at ultralow concentrations, < 10-8 M, interacted with the intracellular Ca2+ signaling system in astrocytes. If so, the second aim was to investigate if bupivacaine, at ultralow concentrations, could interact with the opioid-, 5-HT- or glutamate-receptor systems in inflammation-reactive astrocytes through the Ca2+ signaling system. The final aim was to investigate whether bupivacaine could attenuate the IL-1β secretion that is upregulated in reactive astrocytes under inflammatory conditions.

Materials and methods

In this study, an in vitro model involving astrocytes co-cultured with brain endothelial cells was employed (Hansson et al., 2008). The biological rationale for co-culturing astrocytes with endothelial cells is that astrocytes are affected by substances released from the capillary endothelial cells of the blood–brain barrier (BBB) (Huber et al., 2001). These interactions are essential for a functional neurovascular system (Abbott et al., 2006; Willis & Davis, 2008). The endothelial cells are not in direct physical contact with the astrocytes in vitro; rather, the interaction between these two cell types is facilitated by a shared medium. Co-cultured astrocytes are morphologically differentiated from monocultured astrocytes by their long, slender processes; they also exhibit greater Ca2+ responses and cytokine release than monocultured astrocytes. Finally, the µ-opioid receptor is more highly expressed in co-cultured astrocytes (Hansson et al., 2008), as well as the Toll-like receptor 4 (TLR4) (Forshammar et al., 2011).

Chemicals

All chemicals were obtained from Sigma-Aldrich (St Louis, MO, USA) unless otherwise stated.

The experimental protocols were approved by the Ethical Committee in Gothenburg, Sweden, for Laboratory Animals (Nos. 205-2010; 211-2010), and were conducted in accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC). Materials and methods

Primary astrocytic cultures

Primary astrocytic cultures were prepared from newborn rat cerebral cortices (Charles River, Sulzfeld, Germany) and cultured on glass coverslips (Nr. 1, 20-mm diameter, BergmanLabora, Stockholm, Sweden) as described by Hansson et al. (2008).

Microvascular endothelial primary cultures

Brain capillary fragments were isolated from male Sprague–Dawley rats; cerebral cortices (Charles River, 225–250 g), and endothelial cells were cultured according to the protocol of Hansson et al. (2008).

Astrocytes co-cultured with adult rat brain microvascular primary cultures

Experimental astrocytes were obtained after the co-cultivation of primary brain microvascular endothelial cultures and primary astrocyte cultures. At 6 days in vitro, astrocyte cultures were co-cultured with newly prepared microvascular cultures. The endothelial cells were grown on inserts above the astrocyte cultures. The cells from the two different cultures were not brought into contact, and they were grown together for 9–11 days. As a result, the experimental astrocytes were cultured for 15–17 days, including 9–11 days of co-cultivation, for the experiments in this study. The endothelial cells were removed before all experimental procedures (Hansson et al., 2008).

Calcium imaging

Astrocytes co-cultured with brain microvascular endothelial cells were incubated at room temperature with the Ca2+-sensitive fluorophore probe Fura-2/AM (Invitrogen Molecular Probes, Eugene, OR, USA) for 20 min [8 µL in 990 µL Hank’s HEPES-buffered saline solution (HHBSS), containing 137 mM NaCl, 5.4 mM KCl, 0.4 mM MgSO\textsubscript{4}, 0.4 mM MgCl\textsubscript{2}, 1.26 mM CaCl\textsubscript{2}, 0.64 mM KH\textsubscript{2}PO\textsubscript{4}, 3.0 mM NaHCO\textsubscript{3}, 5.5 mM glucose and 20 mM HEPES dissolved in distilled water, pH 7.4]. The fluorophore probe was dissolved in 40 µL dimethyl sulfoxide (DMSO) and 10 µL pluronic acid (Molecular Probes, Leiden, the Netherlands) (Fig. 1). After incubation, the cells were rinsed three times with HHBSS before exposure to stimulators for 30 s. To determine the underlying Ca2+ source of the bupivacaine-evoked Ca2+ transients, internal Ca2+ stores were depleted either by pre-incubation with a sarcoplasmic reticulum Ca2+-ATPase inhibitor, thapsigargin (1 µM), and caffeine (20 mM)
or by incubation in a Ca2+-free buffer (CaCl\textsubscript{2} was replaced by MgCl\textsubscript{2} and 1 mM EGTA). The cells were incubated with lipopolysaccharide (LPS, *Escherichia coli* O111:B4) (10 ng/mL) for 4 or 24 h. Different combinations of bupivacaine (10-12 M), naloxone (10-12 M), and a combination of endomorphin-1 (10-6 M) and \(\beta\)-endorphin (10-6 M) were applied 3.5 min before treatment with endomorphin-1, 5-HT or glutamate (10-4 M). The experiments were performed at room temperature using a Ca2+ imaging system and Simple PCI software (Compix Inc., Imaging Systems, Hamamatsu Photonics Management Corporation, Cranberry Twp., PA, USA) connected to an inverted epifluorescence microscope (Nikon ECLIPSE TE2000-E) with a 20 × (NA 0.45) fluorescence dry lens and a Polychrome V, monochromator-based illumination system (TILL Photonics, CA, USA). Various substances were applied using a peristaltic pump (Instech Laboratories, Plymouth Meeting, PA, USA) at an approximate rate of 600 \(\mu\)L/min. One minute after the start of the experiment, the stimulating substance was pumped into the pump tubes for 30 s. The substance took approximately 60 s to reach the cells through the tubes. HHBSS continued to flow through the pump tubes and onto the cells throughout the experiment. The images were captured with an ORCA-12AG High Res Digital Cooled CCD Camera (C4742-80-12AG, Hamamatsu Photonics).

The total area under the curve (AUC), which reflects the amount of Ca2+ released (Berridge, 2007), was analysed to measure the strength of the Ca2+ responses. The amplitude was expressed as the maximum increase of the 340/380 ratio. The area under the Ca2+ peaks was calculated in Origin (Microcal Software Inc., Northampton, MA, USA). Forty cells were used for each experimental set-up; these cells were taken from four different coverslips and at two different seeding times.

Cytokine release assay

The co-cultured astrocytes were stimulated for 24 h with 10 ng/mL LPS diluted in non-supplemented minimum essential medium
MEM to measure IL-1β release. The culture inserts containing the endothelial cells were removed immediately before incubation. The cells were incubated with 10⁻¹² or 10⁻⁶ M bupivacaine for 30 min prior to LPS treatment, and the bupivacaine remained in the medium throughout the experiment. Control (i.e. untreated) cells were maintained in non-supplemented MEM. Culture supernatants were

Fig. 4. Endomorphin-1 (EM-1) elicited Ca²⁺ responses in the astrocytes and was used as control. (A) Cells incubated with LPS for 4 h showed no significant changes in Ca²⁺ level compared with the control. Cells incubated with LPS for 24 h showed increased Ca²⁺ signaling. Bupivacaine (10⁻¹² M) attenuated the EM-1-induced Ca²⁺ transients that were upregulated by LPS for 4 and 24 h. The areas under the Ca²⁺ peaks (AUC) were calculated. (B) The Ca²⁺ transients were visualized. The results shown are from a typical experiment. Statistical analysis: the level of significance was analysed using one-way ANOVA followed by Dunnett’s multiple-comparisons test. ***P < 0.001, n.s. = not significant. n = 40.
collected and analysed for protein concentrations. An enzyme-linked immunosorbent assay (ELISA) kit (Nordic Biosite, Täby, Sweden) was used according to the manufacturer’s instructions.

Protein determination

The protein content was determined using a detergent-compatible (DC) protein assay (Bio-Rad, Hercules, CA, USA) in accordance with the manufacturer’s instructions, based on the method by Lowry et al. (1951) with minor modifications. The standards (0–4 mg/mL BSA) and samples were mixed with the reagents, incubated for 15 min at room temperature, read at 750 nm with a Versa-max microplate reader and analysed using SoftMax Pro 4.8 software (Molecular Devices, Sunnyvale, CA, USA).

Statistics

Differences across different treatments were identified using one-way ANOVA followed by Dunnett’s multiple-comparisons test. Error bars represent the standard error of the mean (SEM).

Results

Bupivacaine elicits Ca²⁺ responses in astrocytes at < 10⁻⁸ M

The astrocytes were stimulated with bupivacaine (10⁻¹⁵–10⁻⁷ M), and Ca²⁺ imaging experiments were performed. All samples produced Ca²⁺ responses when treated with 10⁻¹⁵–10⁻⁸ M bupivacaine. No response was observed in cells treated with 10⁻⁷ M bupivacaine. The amount of Ca²⁺ released by each sample was determined by calculating the AUC for each sample (Fig. 2).

To investigate whether the increase in intracellular Ca²⁺ (Fig. 3A) was due to Ca²⁺ crossing the extracellular membrane or Ca²⁺ originating from intracellular stores, bupivacaine (10⁻¹² M) was first administered in a Ca²⁺-free medium, which still evoked Ca²⁺ transients in most cells (Fig. 3B). Cells were also incubated with thapsigargin, a depletor of intracellular Ca²⁺ stores (Sharma & Vijayaraghavan, 2001), followed by caffeine, which was used to complete the store depletion (Sharma & Vijayaraghavan, 2001); interestingly, this treatment inhibited the Ca²⁺ response (Fig. 3C). Finally, no cells responded when they were treated with thapsigargin and caffeine in a Ca²⁺-free buffer (Fig. 3D). To determine the involvement of the IP₃-sensitive Ca²⁺ release pathway, astrocytes were incubated with xestospongin C (100 nM), which is a blocker of IP₃ receptors (Sharma & Vijayaraghavan, 2001). In these astrocytes, no responsive cells were observed (Fig. 3E).

Bupivacaine interacts with endomorphin-1-induced Ca²⁺ responses in LPS-treated astrocytes

Astrocytes incubated with LPS for 4 h and stimulated with endomorphin-1 did not exhibit significantly different Ca²⁺ signaling levels compared with the control. Cells incubated with LPS for 24 h showed increased endomorphin-1-induced Ca²⁺ signaling, as indicated by significantly increased AUC values \((P < 0.001) \). Bupivacaine (10⁻¹² M) attenuated the endomorphin-1-induced Ca²⁺ transients in all cells, as shown by significantly decreased AUC values for the bupivacaine-treated samples \((P < 0.001) \) (Fig. 4).
Bupivacaine, at ultralow concentration, interacts with 5-HT-induced Ca\(^{2+}\) responses in LPS-treated astrocytes

Cells treated with bupivacaine did not exhibit significantly different 5-HT-induced Ca\(^{2+}\) signaling levels compared with the control. Cells incubated with LPS for 24 h showed increased 5-HT-induced Ca\(^{2+}\) signaling compared with the control. A combination of naloxone (Nal) (10\(^{-12}\) M) and endomorphin-1 (EM-1) (10\(^{-6}\)) did not change the level of 5-HT-induced Ca\(^{2+}\) transients upregulated by LPS, nor did a combination of bupivacaine (Bup), Nal and EM-1. The areas under the Ca\(^{2+}\) peaks (AUC) were calculated. (B) The number of peaks was counted for each cell. Statistical analysis: the level of significance was analysed using one-way ANOVA followed by Dunnett’s multiple-comparisons test. **\(p < 0.01\), *\(p < 0.05\), n.s. = not significant. n = 40.

Bupivacaine, at ultralow concentration, interacts with glutamate-induced Ca\(^{2+}\) responses in LPS-treated astrocytes

Bupivacaine (10\(^{-12}\) M) reduced glutamate-induced Ca\(^{2+}\) signaling when compared with the control (\(p < 0.05\)), which consisted of cells treated with glutamate alone. All cells exhibited a response. Cells incubated with LPS for 24 h showed increased glutamate-induced Ca\(^{2+}\) signaling, as indicated by a significantly increased AUC value (\(p < 0.01\)). Again, all cells responded. Bupivacaine did not attenuate the glutamate-induced Ca\(^{2+}\) transients that were upregulated by LPS, nor did a combination of bupivacaine (Bup), Nal and \(\beta\)-endorphin (Fig. 7).

Fig. 6. 5-HT elicited Ca\(^{2+}\) responses in the astrocytes and was used as control. (A) Cells incubated with LPS for 24 h showed increased 5-HT-induced Ca\(^{2+}\) signaling compared with the control. A combination of naloxone (Nal) (10\(^{-12}\) M) and endomorphin-1 (EM-1) (10\(^{-6}\)) did not change the level of 5-HT-induced Ca\(^{2+}\) transients upregulated by LPS, nor did a combination of bupivacaine (Bup), Nal and EM-1. The areas under the Ca\(^{2+}\) peaks (AUC) were calculated. (B) The number of peaks was counted for each cell. Statistical analysis: the level of significance was analysed using one-way ANOVA followed by Dunnett’s multiple-comparisons test. **\(p < 0.01\), *\(p < 0.05\), n.s. = not significant. n = 40.

Fig. 7. 5-HT elicited Ca\(^{2+}\) responses in the astrocytes and was used as control. (A) Cells incubated with LPS for 24 h showed increased 5-HT-induced Ca\(^{2+}\) signaling compared with the control. A combination of naloxone (Nal) (10\(^{-12}\) M) and \(\beta\)-endorphin (\(\beta\)-end) (10\(^{-6}\)) did not attenuate the 5-HT-induced Ca\(^{2+}\) transients that were upregulated by LPS, nor did a combination of bupivacaine (Bup), Nal and \(\beta\)-end. The areas under the Ca\(^{2+}\) peaks (AUC) were calculated. (B) The number of peaks was counted for each cell. Statistical analysis: the level of significance was analysed using one-way ANOVA followed by Dunnett’s multiple-comparisons test. *\(p < 0.05\), n.s. = not significant. n = 40.
not restore the glutamate-induced Ca2+ transients that were upregulated by LPS treatment to the control level (Fig. 8); all cells responded to these treatments.

Cells treated with naloxone (10-12 M) and endomorphin-1 (10-6) did not restore the glutamate-induced Ca2+ transients that were upregulated by LPS treatment, but a combination of bupivacaine, naloxone and endomorphin-1 did (P < 0.001); all cells responded to these treatments (Fig. 9). Furthermore, a combination of bupivacaine, naloxone and β-endorphin attenuated the glutamate-induced signaling that was upregulated by LPS (P < 0.05); again, all cells responded (Fig. 10).

Ultralow concentrations of bupivacaine reduce IL-1β release

Astrocytes incubated with LPS for 24 h secreted IL-1β. Other astrocyte samples were treated with bupivacaine (10-12 or 10-6 M) 30 min prior to incubation with LPS and bupivacaine for 24 h. In these cells, the ultralow concentration of bupivacaine (10-12 M) reduced the LPS-induced increase in IL-1β secretion (Fig. 11).

Discussion

Bupivacaine is clinically used at concentrations that inhibit neuronal voltage-gated Na+ channels, which results in the blockage of both nerve membrane excitation and action potential generation (Hildebrand et al., 2001). We found that bupivacaine at lower concentrations, < 10-8 M, evoked intracellular Ca2+ transients that were IP\textsubscript{3} receptor-dependent in astrocytes. The concentration-dependent curve for bupivacaine did not follow a Gaussian curve. For peptides a dose–response curve does not seem to exist in an ordinary way.

Endomorphin-1, nicotine and pituitary adenylate cyclase-activating peptide show similar patterns (Delbro et al., 2009; Hansson et al., 2009; Block et al., 2012). For monoamines and amino acids, ordinary dose–response curves are obtained. Therefore, we did not expand this curve to lower concentrations especially as 10-12 M bupivacaine interacted significantly with astroglial endomorphin-, 5-HT- and glutamate-receptor systems. At higher concentrations, > 10-8 M, bupivacaine blocked the Ca2+ release. The absence of a response at higher concentrations of bupivacaine may be due to the inhibition of Na+ channels.

The complexity of Ca2+ signaling has made it difficult to determine the underlying physiology of this phenomenon; however, it probably reflects an important function of astrocytes (Hansson & Rönnbäck, 2003; Hansson, 2010; Forshammar et al., 2011). In addition, we found that ultralow concentrations of bupivacaine decreased the LPS-induced increase in IL-1β release, which is also upregulated under inflammatory conditions. It seems important that bupivacaine has the ability to prevent an increase of IL-1β release under inflammatory conditions.

Given these results, we hypothesized that bupivacaine may have anti-inflammatory properties when used at ultralow concentrations. Under these conditions, bupivacaine could potentially restore the astrocyte network, which is influenced and reorganized by inflammatory stimuli (Hansson, 2006, 2010). The dysregulation of these inflammatory pathways can lead to pathogenic and chronic neuroinflammation and neurodegeneration, which can have deleterious effects on adjacent neurons (Farina et al., 2007).

Previous studies have indicated that opioids, alone or in combination with the μ-opioid antagonist naloxone and either 5-HT or glutamate,
affect the astrocytes and the astrocyte network when these cells are inflammation-reactive (Hansson et al., 2008; Forshammar et al., 2011; Block et al., 2012; Gérard & Hansson, 2012).

A neuroinflammatory state is often induced when LPS is used both in vitro and in vivo. LPS is an endotoxin and a potent inflammatory activator (Nakamura, 2002) that stimulates the TLR4 of astrocytes and microglia (Kielian, 2006). The changes associated with neuroinflammation include the downregulation of Na+ transporters, a change in Ca2+ signaling in the astrocyte network and a release of cytokines (Morita et al., 2003; Schmidt et al., 2007; Hansson et al., 2008; Delbro et al., 2009; Vallejo et al., 2010).

In this study, the astrocytes were incubated with LPS, and a resulting increase in intracellular Ca2+ release was observed when the μ-opioid receptor agonist endomorphin-1 was used as a stimulator. Bupivacaine attenuated these Ca2+ oscillations and intracellular Ca2+ release. The mechanisms behind this interaction are currently unknown as it is unclear which cellular systems are affected by bupivacaine. Endomorphin-1 interacts with the Gi/0 protein, which stimulates or activates the sodium transporter Na+K+-ATPase (Masocha et al., 2002). Bupivacaine may also interact with this system, and it is likely that bupivacaine acts at the receptor and/or ion level in the plasma membrane, given that these reactions occur within seconds. It has been reported that local anesthetics can modulate different subunits of G proteins. G protein-mediated release of IP3-sensitive Ca2+ stores was mediated by the Gαq subunit in Xenopus oocytes.
the astrocyte Ca2+ signaling system. Bupivacaine also interacts with
concentrations of naloxone, and either endomorphin-1 or
ated when the astrocytes were also treated with bupivacaine in the
systems as well. It is also possible that bupivacaine interacts with G
and glutamate, it is possible that bupivacaine interacts with these
activity in the glutamate system.

Astrocytes exhibit an increase in intracellular Ca2+ response to a
variety of stimuli, including glutamate, \(\gamma \)-aminobutyric acid (GABA) and 5-HT (Nilsson et al., 1991; Hansson et al., 1994; Hagberg
et al., 1998), which can result in the release of gliotransmitters,
such as glutamate, \(\alpha \)-serine and ATP (Papura et al., 1994; Araque et al.,
1998, 1999; Fiacco \& McCarthy, 2004; Mothet et al., 2005), that bind to pre- and/or postsynaptic neuronal receptors to modulate
synaptic transmission and activity (Dani et al., 1992; Nedergaard,
1994; Parri et al., 2001).

In the current study, we investigated whether bupivacaine influ-
enced 5-HT- and/or glutamate-induced intracellular Ca2+ responses. LPS treatment resulted in increased Ca2+ oscillations and intracellu-
lar Ca2+ release. This increased Ca2+ signaling activity was attenu-
ated when the astrocytes were also treated with bupivacaine in the
5-HT system. Furthermore, a combination of bupivacaine, ultralow
concentrations of naloxone, and either endomorphin-1 or \(\beta \)-endor-
phin attenuated the LPS-induced upregulation of Ca2+ signaling
activity in the glial system.

Both 5-HT and glutamate stimulate metabotropic receptors, which
stimulate the G\textsubscript{\(\gamma \)11} protein. As bupivacaine interacts with both 5-HT
and glutamate, it is possible that bupivacaine interacts with these
systems as well. It is also possible that bupivacaine interacts with G
proteins that then interfere with the cAMP system and other G pro-

Based on these results, we conclude that low concentrations,
<10-8 M, of bupivacaine evoked Ca2+ transients that are IP\textsubscript{3} recep-
tor-dependent. These results suggest that bupivacaine interacts with
the astrocyte Ca2+ signaling network. Bupivacaine also interacts with
the \(\mu \)-opioid, 5-HT- and glutamate-receptor systems in inflammation-
reactive astrocytes, and has the ability to restore cellular parameters
that are altered by inflammation to their normal, non-inflammatory
states. In addition, bupivacaine attenuates the IL-1\beta secretion that is
upregulated in response to LPS. This result indicates that ultralow con-
centrations of bupivacaine exert anti-inflammatory astrocyte effects.
Bupivacaine, when used at ultralow concentrations, might, through
such mechanisms, be clinically useful as an anti-inflammatory drug,
either alone or in combination with opioid agonists and an opioid
antagonist at ultralow concentrations.

Acknowledgements

This work was supported by the Edit Jacobson Foundation, the Lena and Per
Sjöberg Foundation, the Göteborg Medical Society, the Sahlgrenska Uni-
versity Hospital (LUA/ALF GBG-11587), Gothenburg, Sweden, and the Göte-
borg Region Association of Local Authorities (ALFGBG-220311). There are
no conflicts of interest to report.

Abbreviations

5-HT, 5-hydroxytryptamine; AUC, area under the curve; HBBSS, Hank’s
HEPES-buffered saline solution; IL-1, interleukin-1; IP\textsubscript{3}, inositol 1,4,5-tris-
phosphate; LPS, lipopolysaccharide; TL84, Toll-like receptor 4.

References

Abbott, N.J., Rönnbäck, L. \& Hansson, E. (2006) Astrocyte-endothelial
interactions at the blood–brain barrier. Nat. Rev. Neurosci., 7, 41–53.
Amir, R., Argoff, C.E., Bennett, G.J., Cummins, T.R., Durieux, M.E., Gern-
er, P., Gold, M.S., Porreca, F. \& Strichartz, G.R. (2006) The role of
sodium channels in chronic inflammatory and neuropathic pain. J. Pain,
7 (Suppl 3), S1–S29.
Araque, A., Parpura, V., Sanzgiri, R.P. \& Hayden, P.G. (1998) Glutamate-
dependent astrocyte modulation of synaptic transmission between cultured
hippocampal neurons. Eur. J. Neurosci., 10, 2120–2142.
Araque, A., Sanzgiri, R.P., Parpura, V. \& Hayden, P.G. (1999) Astrocyte-
induced modulation of synaptic transmission. Can. J. Physiol. Pharmac.,
77, 699–706.
Bedirli, N., Akyürek, N., Kurtipek, O., Kaytutu, M., Kartal, S. \& Bayraktar,
A.C. (2011) Thoracic epidural bupivacaine attenuates inflammatory
response, intestinal lipolysis, oxidative injury, and mucosal apop-
tosis induced by mesenteric ischemia/reperfusion. Anesth. Analg.,
113, 1226–1232.
Benkwitz, C., Garrison, J.C., Linden, J., Durieux, M.E. \& Hollmann, M.W.
(2003) Lidocaine enhances G\textsubscript{\(\alpha \)} protein function. Anesthesiology,
99, 1093–1101.
Berridge, M.J. (2007) Inositol trisphosphate and calcium oscillations. Bio-
chem. Soc. Symp., 74, 1–7.
Block, L., Forshammar, J., Lundborg, C., Biber, B. \& Hansson, E. (2012)
Naloxone in ultra-low concentration restores endomorphin-1-evoked Ca2+
signalling in inflammation pre-treated astrocytes. Neurosci. Lett., 495, 1–9.
Blomstrand, F., Khatib, H., Muyderman, H., Hansson, E., Olsson, T. \&
Rönßbäck, L. (1999) 5-Hydroxytryptamine and glutamate modulate velocity
and extent of intercellular calcium signalling in hippocampal astroglial
cells in primary cultures. Neuroscience, 88, 1241–1253.
Chiang, C.-Y., Sessle, B.J. \& Dostrovsky, J.O. (2012) Role of astrocytes in
pain. Neurochem. Res., 37, 2419–2431.
Dani, J.W., Chernjavsky, A. \& Smith, S.J. (1992) Neuronal activity triggers
calcium waves in hippocampal astrocyte networks. Neuron, 8, 429–440.
Delbro, D., Westerlund, A., Björklund, U. \& Hansson, E. (2009) In
inflammatory reactive astrocytes co-cultured with brain endothelial cells
nicotinic-evoked Ca2+ transients are attenuated due to IL-1\beta release
and rearrangement of actin filaments. Neuroscience, 159, 770–779.
Farina, C., Aloisi, F. \& Meinl, E. (2007) Astrocytes are active players in
brain cellular innate immunity. Trends Immunol., 28, 138–145.
Fiacco, T.A. \& McCarthy, K.D. (2004) Intracellular astrocyte calcium waves
in situ increase the frequency of spontaneous AMPA receptor currents in
CA1 pyramidal neurons. J. Neurosci., 24, 722–732.
Forshammar, J., Block, L., Lundborg, C., Biber, B. \& Hansson, E. (2011)
Naloxone and ouabain in ultra-low concentrations restore Na+/K+-ATPase
and cytoskeleton in lipopolysaccharide-treated astrocytes. J. Biol. Chem., 286, 31586–31597.

Frogner, N., Orellana, J.A., Calvo, C.-F., Amigou, E., Kozoriz, M.G., Naas, C.C., Sáez, J. & Giaume, C. (2010) Inhibition of cytokine-induced connexin43 hemichannel activity in astrocytes is neuroprotective. Mol. Cell. Neurosci., 45, 37–46.

Gao, Y.-J. & Ji, R.-R. (2006) Could chronic pain and spread of pain sensation be attenuated by 5-HT, histamine, and ATP-evoked Ca2+ responses in single cells of astrocytes? Brain Res., 119, 1–8.

Hageluken, A., Grunbaum, L., Nurnberg, B., Harhammer, R., Schunack, W. & Seifert, R. (1994) Lipophilic beta-adrenoceptor antagonists and local anesthetics are effective direct activators of G-proteins. Biochem. Pharmacol., 47, 1789–1795.

Hansson, E. (2006) Could chronic pain and spread of pain sensation be induced and maintained by glial activation? Acta Physiol. Scand., 187, 321–327.

Hansson, E. (2010) Long-term pain, neuroinflammation and glial activation. Scand. J. Pain, 1, 67–72.

Hansson, E. & Rönnbäck, L. (2003) Glial neuronal signalling in the central nervous system. FASEB J., 17, 341–348.

Hansson, E., Johansson, B.B., Westergren, I. & Rönnbäck, L. (1994) Glutamate-induced Swelling of single astroglial cells in primary culture. Neuroscience, 63, 1057–1066.

Hansson, E., Westerlund, A., Björklund, U. & Olsson, T. (2008) μ-Opioid agonists restore intracellular Ca2+ responses in inflammatory activated astrocytes co-cultured with brain endothelial cells. Neuroscience, 155, 1237–1249.

Hansson, E., Westerlund, A., Björklund, U. & Rönnbäck, L. (2009) PACAP attenuates 5-HT, histamine, and ATP-evoked Ca2+ transients in astrocytes. NeuroReport, 20, 957–962.

Hildebrand, K.R., Elsberry, D.D. & Deer, T.R. (2001) Stability, compatibility, and safety of intrathecal bupivacaine administered chronically via an implantable delivery system. Clin. J. Pain, 17, 239–244.

Hollmann, M.W., Wiecekorek, K.S., Berger, A. & Durieux, M.E. (2001) Local anesthetic inhibition of G-protein function. Mol. Pharmacol., 59, 294–301.

Huber, J.D., Witt, K.A., Hom, S., Egleton, R.D., Mark, S. & Davis, T.P. (2001) Inflammatory pain alters blood brain barrier permeability and tight junctional protein expression. Am. J. Physiol. Heart Circ. Physiol., 280, H1241–H1248.

Kielian, T. (2006) Toll-like receptors in central nervous system, glial inflammation and homeostasis. J. Neurosci. Res., 83, 711–730.

Komai, H. & McDowell, T.S. (2007) Effects of local anesthetics on opioid inhibition of calcium current in rat dorsal root ganglion neurons. Neurosci. Lett., 418, 298–303.

Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193, 265–275.

Lundborg, C., Hahn-Zoric, M., Biber, B. & Hansson, E. (2010) Glial cell line-derived neurotrophic factor is increased in cerebrospinal fluid but decreased in blood during long-term pain. J. Neuroimmunol., 220, 108–113.

Lundborg, C., Westerlund, A., Björklund, U., Biber, B. & Hansson, E. (2011) Fluphenidol restores GDNF-evoked Ca2+ signalling and Na+/K+-ATPase expression in inflammation-pretreated astrocytes. J. Neurochem., 119, 686–696.

Masocha, W., Gonzalez, L.G., Bayeens, J.M. & Agil, A. (2002) Mechanisms involved in morphine-induced activation of synapsosomal Na+, K+, ATP-ase. Brain Res., 2, 311–319.

McMahon, S.B. & Malcangio, M. (2009) Current challenges in glia-pain biology. Neuron, 64, 46–54.

Morita, M., Higuchi, C., Moto, T., Kozuka, N., Susuki, J., Iofusa, R., Yamashita, J. & Kudo, Y. (2003) Dual regulation of calcium oscillation in astrocytes by growth factors and pro inflammatory cytokines via the mitogen-activated protein kinase cascade. J. Neurosci., 23, 10944–10952.

Møther, J.P., Pollegioni, L., Ouanounoug, G., Martineau, M., Fossier, P. & Baux, G. (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter D-serine. Proc. Natl. Acad. Sci. USA, 102, 5606–5611.

Nakamura, Y. (2002) Regulating factors for microglial activation. Biol. Pharm. Bull., 25, 945–953.

Nedergaard, M. (1994) Direct signaling from astrocytes to neurons in cultures of mammalian Brain cells. Science, 263, 1768–1771.

Nilsson, M., Hansson, E. & Rönnbäck, L. (1991) Adrenergic and 5-HT3 receptors on the same astroglial cell. A microspectrophotometric study on cytosolic Ca2+ responses in single cells in primary culture. Brain Res. Dev. Brain Res., 63, 33–41.

Parpura, V., Basarsky, T.A., Liu, F., Jefinjka, J., Jefinjka, S. & Haydon, P.G. (1994) Glutamate mediated astrocyte-neuron signalling. Nature, 360, 744–747.

Parri, H.R., Gould, T.M. & Crunelli, V. (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR mediated neuronal excitation. Nat. Neurosci., 4, 803–812.

Retamal, M.A., Frogner, N., Palacios-Prado, N., Ezan, P., Sáez, J.C. & Giaume, C. (2007) Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflammatory cytokines released from activated microglia. J. Neurosci., 27, 13781–13792.

Saadé, N.E. & Jabbur, S.J. (2008) Noxious behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms. Prog. Neurobiol., 86, 22–47.

Scemes, E. & Giaume, C. (2006) Astrocyte calcium waves: what they are and what they do. GLIA, 54, 716–725.

Schmidt, C., Höcherl, K., Schweda, F., Kurtz, A. & Bucher, M. (2007) Regulation of renal sodium transporters during severe inflammation. J. Am. Soc. Nephrol., 18, 1072–1083.

Sharma, G. & Vijayaraghavan, S. (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc. Natl. Acad. Sci. USA, 98, 4148–4153.

Toda, S., Sakaim, A., Ikeda, Y., Sakamoto, A. & Suzuki, H. (2011) A local anesthetic, ropivacaine, suppresses activated microglia via a nerve growth factor-dependent mechanism and astrocytes via a nerve growth factor-indepen- dent mechanism in neuropathic pain. Mol. Pain, 7, 1–11.

Vallejo, R., Tilley, D.M., Vogel, L. & Benyamin, R. (2010) The role of glia and the immune system in the development and maintenance of neuropathic pain. Pain Pract., 10, 167–184.

Willis, C.L. & Davis, T.P. (2008) Chronic inflammatory pain and the neurovascular unit: a central role for glia in maintaining BBB integrity? Curr. Pharm. Design, 14, 1625–1643.

© 2013 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. European Journal of Neuroscience, 38, 3669–3678.