Structure and Function in Rhodopsin

STUDIES OF THE INTERACTION BETWEEN THE RHODOPSIN CYTOPLASMIC DOMAIN AND TRANSDUCIN*

Roland R. Frankel, Thomas P. Sakmarn, Robert M. Graham, and H. Gobind Khorana

From the Departments of Biology and Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received for publication, February 12, 1992)

The chromophore from 11-cis- to all-trans-retinal and drives rhodopsin through a series of structural changes leading to the photointermediate metarhodopsin II (MII). MII activates transducin and also mediates interactions with other proteins on the cytoplasmic surface. The interaction between MII and transducin is an important early step in signal transduction in the visual process. Because of its fundamental importance, we are interested in studying this interaction at the molecular level. Insights into rhodopsin-transducin interaction should be of general significance for the study of the superfAMILY of receptors that are coupled to G proteins.

Some information on the rhodopsin-transducin interaction has been obtained from previous studies. Proteolysis of rhodopsin suggested the involvement of loop EF in transducin binding (9). In another approach, antipeptide antibodies directed against specific sites on the cytoplasmic domain of rhodopsin were tested for their ability to block transducin binding (10). More recently, peptides corresponding to portions of the cytoplasmic loops in rhodopsin were used to test for inhibition of rhodopsin-transducin interaction (11). It was concluded that as many as three cytoplasmic loops of rhodopsin may be involved in interaction with transducin. However, specific questions regarding the binding and activation of transducin by rhodopsin remain unanswered. What is the nature of the structural interaction between transducin and rhodopsin? What are the conformational changes in the two molecules during this interaction? What are the mechanisms of transducin-mediated GTP-GDP exchange, the subsequent release of Tr-GTP, and the separation of the β-γ subunits as a complex that occur on the cytoplasmic face of rhodopsin?

Recently, we reported on rhodopsin mutants with deletions in the cytoplasmic loops (12). These mutants bound but failed to activate transducin. A conserved charge pair (Glu-134/Arg-135) in rhodopsin was suggested to be a part of the transducin-binding site. Furthermore, deletion and replacements of large peptides showed that substantial portions of loops CD and EF were necessary for functional interaction of rhodopsin with transducin. We have now continued to investigate rhodopsin-transducin interaction by extensive application of site-specific mutagenesis in the cytoplasmic loops CD and EF in rhodopsin (Fig. 1). The mutations carried out include deletions of peptide sequences of varying sizes (Table I) and single amino acid replacements as well as amino acid insertions (Tables II and III). Our results indicate the importance of specific peptide sequences in rhodopsin in the above interaction. Thus, whereas a mutant with a deletion of an 8-amino acid sequence from loop CD showed a normal UV-visible spectrum, it failed to activate transducin. Another loop CD

* This work was supported by National Institutes of Health Grants GM 28289 and HI 11479 and Department of Navy Grant N00014-82-K 0668 from the Office of Naval Research. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Present address: Howard Hughes Medical Inst., The Rockefeller University, New York, NY 10021.

§ Present address: Dept. of Heart and Hypertension Research, Cleveland Clinic Research Foundation, Cleveland, OH 44194.

† The abbreviations used are: MII, metarhodopsin II; G protein, guanine nucleotide-binding regulatory protein; dATPyS, deoxyadenosine 5'-O(thiotriphosphate).
Rhodopsin-Transducin Interaction

A mutant with 13 amino acids replaced by an unrelated amino acid sequence formed a normal chromophore, but also failed to activate transducin. A deletion of 14 amino acids in the same loop caused loss of retinal binding capability, presumably because of structural constraints introduced by the deletion. In loop EF, the carboxyl-terminal region (amino acids 244-249) and the region containing potential phosphorylation sites near the center of the loop (amino acids 236-243) are evidently important for transducin activation. Of the presumed 22 amino acids in loop EF, 19 could be deleted without affecting retinal binding, although transducin activation was lost. Finally, systematic analysis of single and multiple amino acid substitutions in loop EF showed that 3 amino acids (Ser-240, Thr-243, and Lys-248) were particularly important. We conclude that rhodopsin (meta-rhodopsin II)–transducin interaction involves both loops CD and EF in rhodopsin and that the interaction involves large portions of these loops.

EXPERIMENTAL PROCEDURES

Materials—The expression vector pMT2, a β-lactamase derivative of pTi373 (13), was generously provided by Dr. R. J. Kaufman (Genetics Institute, Inc., Cambridge, MA). 11-cis-Retinal was a generous gift of Drs. P. Sorter and V. Toome (Hoffmann-La Roche). Dodecyl maltoside was purchased from Sigma, and [-γ-32P]GTP and [γ-32P]GTPγS were from Du Pont-New England Nuclear. Sources of COS-1 cells, bovine retinas, and Sepharose 2B and the preparation of the buffers and media have been described (14, 15).

Monoclonal Antibody—The 1D4 hybridoma cell line was generously provided by Dr. R. S. Molday (16). The hybridomas were grown in large scale in the tissue culture facilities of the Massachusetts Institute of Technology Cancer Center. 1D4 antibodies were harvested from the hybridoma media by (NH₄)₂SO₄ precipitation. The coupling of the antibody to Sepharose 2B has been described (14). The octa-decapeptide (positions -1’ to -18’ from the carboxyl-terminal end of rhodopsin) used to elute rhodopsin from the immunoaffinity resin was the gift of Dr. P. Kim.

Preparation of Oligonucleotides—Oligonucleotides were synthesized on an Applied Biosystems Model 380A DNA synthesizer. The purification and characterization of the oligonucleotides were performed according to Ferretti et al. (17).

Construction of Rhodopsin Genes with Mutations in Loop CD—Mutants CD-1 to CD-5—The mutant opsin genes were constructed by restriction fragment replacement in the synthetic rhodopsin gene (17). For the construction of the mutants targeting the charged pair Glu-134/Arg-135 (mutants CD-1 to CD-5) (Table II), two new unique restriction sites (RsrII and SpeI) were introduced into the synthetic gene in the expression plasmid (18). After digestion with RsrII and SpeI, the large fragment was separated on an agarose gel. Dodecyl maltoside was added to the gel to activate transducin.

Deletion Mutations in Loop CD—The two deletion mutations CD-Δ1 and CD-Δ2 and the loop replacement mutation CD-7 were introduced between the restriction sites Poul and Ahal (Fig. 2). Because these sites were not unique within the plasmid, digestions with Apal and AcmII were used to generate a fragment in which Poul and Ahal sites were unique. The purified Apal-AcmII fragment was digested with Poul and AhalI to generate three fragments. The fragments were separated by agarose gel electrophoresis, and the two large fragments were purified. Because the ligations of Poul cleavage sites is sensitive to deoxyadenosine methylation, the plasmid used for Poul digests was isolated from a dam’ strain of Escherichia coli. The large fragment from the Apal-AcmII digestion was prepared separately from a plasmid isolated from E. coli strain DH1. Fragments I-III and the synthetic DNA duplex were ligated (Fig. 2). Ligation mixtures were used to transform CaCl₂-treated E. coli strain DH1. Plasmid DNA was prepared from ampicillin-resistant colonies.

Rhodopsin Genes with Mutations in Loop EF—Deletion mutants EF-Δ1 to EF-Δ4 (Table I) and substitution mutants EF-2 to EF-15 (Table III) were assembled in two-component ligations using the large MuI-PstI restriction fragment and synthetic duplexes containing the desired codon alteration(s).

Deletion Mutants (Table I)—Deletion mutants EF-Δ1 to EF-Δ4 (Table I) were assembled in two-component ligations using the large MuI-PstI restriction fragment and synthetic duplexes containing the desired codon alteration(s).

Preparation of Mutant EF-1 (Table III)—Mutant EF-1 was constructed in a three-component ligation using an additional AvaII-PstI restriction fragment from the synthetic gene. For the preparation of mutant EF-Δ5, the pMT4 vector was digested with MuI and PstI. The large restriction fragment was purified from an agarose gel, and the single-stranded overhangs were removed by digestion with mungbean nuclease. The blunt ends were ligated to circularize the plasmid and to yield an in-frame deletion. Ligation mixtures were used to transform CaCl₂-treated E. coli strain DH1. Plasmid DNA was prepared from ampicillin-resistant colonies. A small restriction fragment containing the mutation was subcloned into pMT4 to minimize the chance of spurious mutations caused by nuclease treatment. The ligation mixture consisted of an EcoRI-HincII fragment (613 base

Table I

Deletion mutants constructed in cytoplasmic loops CD and EF

Mutant	Amino acid sequence	Amino acids deleted (inclusive)
Loop CD		
wt*	134 ERYVVVCKFMSNFRFGENIA 153	143-150
CD-Δ1	ERYVVVCKF NHA	
CD-Δ2	ERY NHA	137-150
Loop EF		
wt	231 KEAAQQQSESATTQQAKEEVTR 252	244-249
EF-Δ1	KEAAQQQSESATTQQA	244-249
EF-Δ2	KEAAQQQSESATTQQA	236-239
EF-Δ3	KEAAQ QKAKEEVTR	236-243
EF-Δ4	KEAAQ QKAKEEVTR	237-249
EF-Δ5	KEA	234-252

* wt, wild-type bovine rhodopsin amino acid sequence (1-3).
TABLE II

Amino acid replacements in loop CD

Mutant	Amino acid sequence
wt*	134 ERYVVVCKPMSNFRPGENHA 153
CD-1	DRYVVVCKPMSNFRPGENHA
CD-2	QRYVVVCKPMSNFRPGENHA
CD-3	ERYVVVCKPMSNFRPGENHA
CD-4	AYVVVCKPMSNFRPGENHA
CD-5	RYYVVVCKPMSNFRPGENHA
CD-6	ERYVVVCKPMSNQFQGENHA
CD-7	ERYVVVTEGEPFNYPTSA

*wt, bovine rhodopsin amino acid sequence (1–3).

TABLE III

Amino acid replacements in loop EF

Mutant	Amino acid sequence
wt*	231 KEAAQQQES ATTQKAKEVTR 252
EF-1	TQAAQQQES ATTQKAKEVTR
EF-2	KEAAQQQESA ATTQKAKEVTR
EF-3	KEAAQQQESA ATTQKAKEVTR
EF-4	KEAAQQQESA ATTQKAKEVTR
EF-5	KEAAQQQESA ATTQKAKEVTR
EF-6	KEAAQQQESA ATTQKAKEVTR
EF-7	KEAAQQQESA ATTQKAKEVTR
EF-8	KEAAQQQESA ATTQKAKEVTR
EF-9	KEAAQQQESA ATTQKAKEVTR
EF-10	KEAAQQQESA ATTQKAKEVTR
EF-11	KEAAQQQESA ATTQKAKEVTR
EF-12	KEAAQQQESA ATTQKAKEVTR
EF-13	KEAAQQQESA ATTQKAKEVTR
EF-14*	KEAAQQQESA*TTQKAKEVTR
EF-15	KEAAQQQESA SYTGPGSNLNR
wt	KEAAQQQESA ATTQKAKEVTR

*wt, wild-type bovine rhodopsin amino acid sequence (1–3).

In mutant EF-14, the dipeptide Thr-Ser was inserted between Ala-241 and Thr-242.

FIG. 2. Outline of cloning strategy employed for construction of loop deletion mutants CD-Δ1 and CD-Δ2 and loop replacement mutant CD-7. The amino acid sequences of the mutants are shown in Tables I (CD-Δ1 and CD-Δ2) and II (CD-7). Synthetic DNA duplexes containing the desired codon alterations were used to replace a Psul-AhuI restriction fragment in the synthetic rhodopsin gene. These restriction sites were not unique within the plasmid. Therefore, multiple restriction digests and restriction fragment purifications were required as described under "Experimental Procedures." In summary, each mutant was constructed in a four-component ligation consisting of the following: 1) a 5412-base pair Apal-AhuI fragment, 2) a 415-base pair AkuI-PsuI fragment, 3) a 380-base pair AkuI-PsuI fragment, and 4) a 78-base pair synthetic duplex containing the desired codon alterations. bp, base pairs.

Rhodopsin in Digitonin—Transfected COS-1 cells (12 dishes, 10 mm plates) were harvested, regeneratored with 11-cis-retinal, solubilized, and incubated with the resin as described above. The resin was split into two fractions. One was treated as described above in dodecyl maltoside. The other fraction was washed and eluted in buffer containing 0.1% digitonin instead of dodecyl maltoside.

Characterization of Rhodopsin Mutants—Purified rhodopsin mutants were characterized in three ways: (a) UV-visible spectroscopy (rhodopsin concentrations were based on the absorbance difference at 500 nm before and after illumination assuming a molar absorption coefficient of ε = 42,700 m^2 cm^{-1}). (b) sodium dodecyl sulfate-polyacrylamide gel electrophoresis and visualization of the protein bands by silver staining, and (c) transducin activation assay as described below.

Transducin Activation Assay—The rhodopsin mutants were assayed for their ability to stimulate GTPase activity of transducin in a light-dependent manner. The assay mixture (100 μl) contained 2.5 nm rhodopsin, 2.5 μM purified transducin, 20 μM [γ-32P]GTP, 0.01% dodecyl maltoside, 10 mM Tris maleate, pH 7.2, 100 mM NaCl, 2 mM MgCl₂, and 1 mM dithiothreitol. All the components except GTP were mixed in the dark, and the solution was equilibrated at 25 °C. Illumination was performed with a 100-watt fiber optic light source and a 495-nm cutoff filter in tandem with an IR filter. After continuous illumination for 1 min, the reaction was started by the addition of GTP. Aliquots (20 μl) were removed at 2, 4, 6, and 8 min and added to 200 μl of molybdc acid solution (6.25 g of MoO₃ dissolved in 20 ml of concentrated H₂SO₄, followed by the distilled to 500 ml with H₂O). 0.1 ml of a reducing solution (0.7 g of Na₂S₂O₃, 0.2 g of Na₂SO₃, and 0.1 g of 1-amino-2-naphthol-4-sulfonic acid dissolved in 100 ml of water) was added, and the solution was mixed. The mixture was extracted by vortexing with 700 μl of isooamyl alcohol. After phase separation by...
Fig. 3. Comparison of UV-visible spectra of COS cell rhodopsin solubilized in digitonin or dodecyl maltoside. Left, UV-visible absorption spectrum in digitonin. The procedure for the purification of rhodopsin and solubilization in digitonin has been described under "Experimental Procedures." Spectral ratios of <2.4 were not obtained using this procedure. Right, UV-visible absorption spectroscopy of rhodopsin in dodecyl maltoside. The procedure used is as described under "Experimental Procedures." The A₂₈₀/A₅₀₀ spectral ratio is indicative of the purity of the preparation. Spectral ratios in the range of 1.6-1.8 were routinely obtained.

Fig. 4. UV-visible spectroscopy of illuminated bovine rhodopsin in digitonin at different temperatures. At each temperature, UV-visible spectra were taken before and immediately after a 3-s illumination with light >495 nm. At 4 °C, only MI (480 nm) was present. At 10 °C, MI and a small amount of MI1 (380 nm) was formed. At 15 °C, the amount of MI1 increased. In dodecyl maltoside detergent buffer, illumination of rhodopsin (Rho) at 4 °C or above resulted in complete conversion to MI1 (data not shown).

centrifugation, 0.6 ml of the organic layer was analyzed for Pi by scintillation counting.

RESULTS

Characterization of Rhodopsin Expressed in COS Cells: Influence of Detergents

UV-visible Spectral Characteristics—Rhodopsin prepared from COS cells using dodecyl maltoside showed an absorption ratio at 280 nm/500 nm of 1.6-1.7 (Fig. 3). Bovine rhodopsin, purified in parallel, gave the same spectral ratio. COS cell rhodopsin purified using digitonin gave A₂₈₀/A₅₀₀ ratios of 2.4-4 for different preparations (Fig. 3).

Photoactivation and Stability of Intermediates—Illumination of rhodopsin in dodecyl maltoside with light >495 nm for 10 s quantitatively converted all of the pigment to MI1 (380 nm). No temperature effect was seen for this conversion between 4 and 25 °C. Illumination of rhodopsin in digitonin with a 495-nm cutoff filter gave a mixture of MI1 (480 nm) and MI species (Fig. 4), whose composition was temperature-dependent.

GTPase Activity in Transducin—The linear range for rhodopsin activation of the GTPase activity in transducin was determined by assaying rhodopsin at concentrations ranging from 200 pm to 5 nm (Fig. 5). The precision of this assay was estimated to be ±10%. COS cell rhodopsin was assayed in parallel with each rhodopsin mutant as an internal standard. To determine the pH optimum for the rhodopsin-transducin GTPase assay, samples were prepared in Tris maleate at pH 5.45-8.2. The maximal activity was determined by plotting the Pi release against the pH of the reaction mixture (Fig. 6). Maximal activity was observed at pH 7.2.
pH of the assay mixture. Differences in activity could be due to pH experiments as indicated by the numbers in parentheses. Purified from COS cells was assayed at a concentration of 2.5 nM in Tris and the mutant pigments were assumed to be 42,700 M⁻¹ cm⁻¹ (29). The mutant activities were normalized to the COS cell rhodopsin are presented as mean activities.

Characteristic rhodopsin mutants and COS cell rhodopsin were assayed in parallel. But it failed to bind 11-cis-retinal. To remove possible amino acid deletion, was expressed at normal levels in COS cells, but it failed to bind 11-cis-retinal. To remove possible constraint in the packing of helices, a 13-amino acid segment in loop CD was replaced by an amino acid sequence derived from the first intradiscal loop (mutant CD-7) (Table II). This mutant bound 11-cis-retinal and displayed a normal UV-visible spectrum, but showed no transducin activation (Table V).

Loop EF—Mutant EF-Δ1, with 6 amino acids deleted close to the beginning of helix F (amino acids 244–249), failed to show transducin activation. Deletion EF-Δ2, closer to the end of helix E, activated transducin at 54% of the wild-type level, whereas EF-Δ3, with a deletion 4 amino acids larger than that in EF-Δ2, showed only slight (3%) transducin activity (Table IV). Mutants EF-Δ4 and EF-Δ5, which contained 13- and 19-amino acid deletions (Table I), respectively, both failed to stimulate the transducin GTPase activity, although they formed a normal chromophore with 11-cis-retinal.

Peptide Sequence Replacement in Loop EF—In mutant EF-15 (Table III), amino acid sequence 235–250 was replaced with an amino acid sequence from loop BC (positions 97–112, except for the change Cys-110 → Ser). This mutant was designed to remove sequence-specific interaction with transducin as in the other deletion mutants, but without affecting packing of the helices. The mutation retained a Thr at position 243. Mutant EF-15 activated transducin at a very low level (7%) (Table VI).

Loop CD—To investigate the role of the conserved charged pair Glu-134/Arg-135, three mutants with single amino acid substitutions and two mutants with double substitutions were constructed and characterized (Table II). Light and dark spectra of the purified retinal-regenerated mutants are shown in Fig. 7. Mutant E134Q (CD-2) showed 1.45 times higher activity than wild-type rhodopsin in the GTPase assay. Mutant E134D (CD-1) stimulated GTPase activity to 56% of the wild type. Mutant R135Q (CD-4) showed 8% of the wild-type GTPase activity. Both double mutants E134A/R135A (CD-5) and E134R/R135E (CD-6) failed to activate transducin.

Loop EF—Point mutants were introduced in the Ser and Thr residues in loop EF (Table III). Mutant S240A (EF-3) showed 60% GTPase activity compared to the wild type. Mutant T243V (EF-4) showed 40% activity in the GTPase assay. Mutant EF-6, with the 3 Ser and Thr residues in loop EF replaced (S240A, T242V, and T243V), showed higher GTPase activity than mutant EF-6. For Thr (S240A, T242G, and T243G), showed only 8% of the wild-type GTPase activity. Mutant EF-5, which also had the 3 Ser and Thr residues replaced but with Val substituting for Thr (S240A, T242V, and T243V), showed higher GTPase activity (46%) than mutant EF-6.

To investigate the role of the charged amino acid residues, two questions were addressed in considering the mutations that were to be introduced. First, does the interaction between specific amino acids in rhodopsin and transducin require participation of peptide sequences in one or both cytoplasmic loops of rhodopsin? Second, are there electrostatic or hydrogen bond interactions between specific amino acids in rhodopsin and transducin?

Deletions and Sequence Replacements in Loops CD and EF

Two questions were addressed in considering the mutations that were to be introduced. First, does the interaction between rhodopsin and transducin require participation of peptide sequences in one or both cytoplasmic loops of rhodopsin? Second, are there electrostatic or hydrogen bond interactions between specific amino acids in rhodopsin and transducin?

Loop CD—The deletions introduced in loop CD are shown in Table I. Mutant CD-Δ1, with a deletion of 8 amino acids (amino acids 143–150), bound 11-cis-retinal and formed the characteristic λₘₚ in 500 nm. However, it showed no activation of transducin (Table IV). Mutant CD-Δ2, with a 14-amino acid deletion, was expressed at normal levels in COS cells, but it failed to bind 11-cis-retinal. To remove possible constraint in the packing of helices, a 13-amino acid segment in loop CD was replaced by an amino acid sequence derived from the first intradiscal loop (mutant CD-7) (Table II). This mutant bound 11-cis-retinal and displayed a normal UV-visible spectrum, but showed no transducin activation (Table V).

Loop EF—Mutant EF-Δ1, with 6 amino acids deleted close to the beginning of helix F (amino acids 244–249), failed to show transducin activation. Deletion EF-Δ2, closer to the end of helix E, activated transducin at 54% of the wild-type level, whereas EF-Δ3, with a deletion 4 amino acids larger than that in EF-Δ2, showed only slight (3%) transducin activity (Table IV). Mutants EF-Δ4 and EF-Δ5, which contained 13- and 19-amino acid deletions (Table I), respectively, both failed to stimulate the transducin GTPase activity, although they formed a normal chromophore with 11-cis-retinal.

Peptide Sequence Replacement in Loop EF—In mutant EF-15 (Table III), amino acid sequence 235–250 was replaced with an amino acid sequence from loop BC (positions 97–112, except for the change Cys-110 → Ser). This mutant was designed to remove sequence-specific interaction with transducin as in the other deletion mutants, but without affecting packing of the helices. The mutation retained a Thr at position 243. Mutant EF-15 activated transducin at a very low level (7%) (Table VI).

Loop CD—To investigate the role of the conserved charged pair Glu-134/Arg-135, three mutants with single amino acid substitutions and two mutants with double substitutions were constructed and characterized (Table II). Light and dark spectra of the purified retinal-regenerated mutants are shown in Fig. 7. Mutant E134Q (CD-2) showed 1.45 times higher activity than wild-type rhodopsin in the GTPase assay. Mutant E134D (CD-1) stimulated GTPase activity to 56% of the wild type. Mutant R135Q (CD-4) showed 8% of the wild-type GTPase activity. Both double mutants E134A/R135A (CD-5) and E134R/R135E (CD-6) failed to activate transducin.

Loop EF—Point mutants were introduced in the Ser and Thr residues in loop EF (Table III). Mutant S240A (EF-3) showed 60% GTPase activity compared to the wild type. Mutant T243V (EF-4) showed 40% activity in the GTPase assay. Mutant EF-6, with the 3 Ser and Thr residues in loop EF replaced (S240A, T242V, and T243V), showed only 8% of the wild-type GTPase activity. Mutant EF-5, which also had the 3 Ser and Thr residues replaced but with Val substituting for Thr (S240A, T242V, and T243V), showed higher GTPase activity (46%) than mutant EF-6.

To investigate the role of the charged amino acid residues,
TABLE VI
GTPase activity of amino acid replacements in loop EF
The amino acid sequences of loop EF in wild-type rhodopsin and rhodopsin mutants are shown in Table III. Results are presented as mean ± S.D. averaged from two to three separate experiments as indicated by the numbers in parentheses. All the rhodopsin mutant activity values were normalized to COS cell rhodopsin controls assayed in parallel.

Mutant	GTPase activity (normalized)
wt*	1.00
EF-1	0.87 ± 0.18 (3)
EF-2	0.97 ± 0.24 (2)
EF-3	0.60 ± 0.18 (2)
EF-4	0.40 ± 0.21 (2)
EF-5	0.34 ± 0.30 (3)
EF-6	0.10 ± 0.08 (2)
EF-7	0.98 ± 0.04 (2)
EF-8	0.72 ± 0.09 (2)
EF-9	0.61 ± 0.20 (2)
EF-10	1.10 ± 0.10 (2)
EF-11	1.01 ± 0.16 (2)
EF-12	1.01 ± 0.05 (2)
EF-13	0.99 ± 0.26 (2)
EF-14	0.56 ± 0.04 (2)
EF-15	0.07 ± 0.08 (2)

*wt, wild-type bovine rhodopsin amino acid sequence (1–3).

FIG. 7. UV-visible absorption spectra of COS cell rhodopsin and five loop CD rhodopsin mutants prepared in dodecyl maltoside detergent buffer. COS cell rhodopsin (Rho) displayed a spectrum with an Amax/Amin ratio of 1.6. All five pigment mutants had alterations in the charged pair Glu-134/Arg-135. Each of the mutants showed a normal λmax value (500 nm), indicating that there was no influence of these amino acids on the spectral properties (18). Upon illumination, each pigment was completely converted to the MII form (500 nm). The capacity of these mutants to activate transducin is shown in Table V.

a set of nine mutants was prepared as shown in Table III. The mutations aimed at replacing the charged amino acids by neutral isosteric amino acids. Thus, mutant EF-1 contained two replacements, K231T and E232Q. This mutant showed nearly wild-type activity in the GTPase assay (87%) (Table VI). Mutant EF-2 (E239Q) (Table III) was previously reported to have a normal UV-visible spectrum and to display wild-type transducin activation in digitonin (15). This mutant was re-examined after purification in parallel in digitonin and dodecyl maltoside. In both detergents, mutant EF-2 showed a normal spectrum and transducin activation. The triple mutant EF-13 (E247Q/K248L/E249Q) also showed wild-type phenotype in both detergents. Mutant EF-8 (K248L) was previously reported to be inactive in the GTPase assay in digitonin. By using [γ-32P]GTP of higher specific activity than that used in earlier experiments (15) and filtered light rather than white light, a residual activity of ~15% was detected in digitonin (Fig. 8). When assayed in dodecyl maltoside, mutant EF-8 displayed 72% of the wild-type activity.

Double and triple mutants were constructed to further investigate the role of the charged amino acids Glu-247, Lys-248, and Glu-249 (Table 111) all activated transducin normally (Table VI). However, EF9 (K245L/K248L) showed reduced activity of 61% (Table VI).

Loop EF Insertion Mutant—The middle region of loop EF has the potential for an α-helical secondary structure. An insertion mutation, EF-14 (Table III), was made that introduced 2 additional amino acids (Ser-Thr) after Ala-241 so as to extend the putative α-helix and to change its potential amphipathic character. The resulting mutant, EF-14, displayed ~55% GTPase activity.

DISCUSSION
By using site-specific mutagenesis, we have investigated the structural requirements for the interaction between transducin and the cytoplasmic loops CD and EF of rhodopsin. Of the two classes of mutations studied, one comprised deletions of varying lengths in the loop segments. These mutations were designed to identify particular peptide sequences that were important for the rhodopsin-transducin interaction. The second group of mutations consisted of substitutions of polar or charged amino acids by neutral or hydrophobic residues. These replacements were designed to evaluate the contributions of electrostatic interactions or hydrogen bonding in the rhodopsin-transducin association. Transducin activation by the rhodopsin mutants was measured throughout by the GTPase assay.

Retinal Binding and Chromophore Formation by Mutant

FIG. 8. Determination of light-dependent GTPase activity versus rhodopsin concentration for mutant EF-8 and COS cell rhodopsin prepared in digitonin. Assays were carried out with pigment concentrations ranging from 10 to 120 nM. The rate of P_i release was determined from the time course for each pigment concentration shown. The rate of P_i release was plotted against the corresponding pigment concentration. Rhodopsin (●) was significantly more active than mutant EF-8 (○) at all pigment concentrations assayed.
Opsins—Bovine rod opsin as expressed in COS-1 cells binds 11-cis-retinal and forms the UV-visible spectrum characteristic of native bovine rhodopsin. Binding of the retinal and formation of the characteristic chromophore provide a sensitive assay for the formation of correctly folded rhodopsin. Retinal binding occurred in all but one of the mutants studied, including those with large deletions of 15 and 19 amino acids in loop EF, even though in the 19-amino acid deletion, the extent of regeneration of the chromophore was low (Fig. 9). In the secondary structure model (Fig. 1), loop EF contains 21 amino acids. The finding that deletion of 19 amino acids allows chromophore regeneration suggests that either helixes E and F are very close to each other in the tertiary structure or that the membrane boundaries shown in Fig. 1 for helixes E and F are incorrect.

A deletion of 8 amino acids in the cytoplasmic loop CD formed an opsin with normal retinal binding properties. However, a deletion of 14 amino acids in the same loop caused inability to bind retinal. Replacement of the deleted sequence by an unrelated amino acid sequence restored retinal binding and formation of the correct chromophore, indicating that there was no sequence specificity in the loop CD region for the formation of the retinal-binding pocket. Thus, in general, the deletion mutations in the cytoplasmic loops do not impair opsin folding and chromophore formation. This made possible the study of the cytoplasmic mutations now reported. In contrast, the mutations in the intradiscal domain generally affect retinal binding (21).

Solubilization in Digitonin and Dodecyl Maltoside—Integral membrane proteins differ greatly in their behavior toward different detergents. Diginiton has been commonly used in the past for solubilization of rhodopsin (22, 23). In this work, the use of digitonin for the purification and characterization of rhodopsin and the mutants caused misinterpretations. As an example, mutant K248L, when assayed in digitonin for light-dependent transducin activation, was inactive (15). Reassay of this mutant in dodecyl maltoside showed 72% of the wild-type activity. GTPase activity assays in dodecyl maltoside, in general, gave 10 times higher activity than those in digitonin. Several possibilities could account for the large differences in activity between the two detergents. Since rhodopsin seems to be stable in both detergents, one possibility could be the use of white light in the earlier experiments (14, 15) with digitonin-solubilized samples. It has been reported (24) that constant illumination of rhodopsin with white light can cause the formation of photoisomers, thereby reducing the amount of MII in the pool of photoproducts. In fact, mutant K248L, which is inactive in digitonin under constant white light illumination, was partially active under light passed through a long-pass filter (Fig. 8). It is also possible that digitonin inhibits the formation of MII. As seen in Fig. 4, rhodopsin in digitonin formed a mixture of MII and MII. The ratio of MII to MII intermediates of rhodopsin is influenced dramatically by temperature. Increasing temperature favors the formation of MII. Under the same conditions, in dodecyl maltoside, rhodopsin is converted instantaneously to MII upon illumination. Finally, there is the possibility that digitonin inhibits rhodopsin-transducin interaction through an effect on rhodopsin or transducin or both. In summary, in our work, dodecyl maltoside has uniformly been superior to digitonin for rhodopsin purification and functional studies as judged by A_{360}/A_{500} ratios in absorption spectra, and by GTPase assays.

Deletions in Loops CD and EF—Previously, König et al. (11) showed that synthetic peptides corresponding in sequence to the cytoplasmic rhodopsin loops competed for transducin binding to photolyzed rhodopsin. The results indicated that the cytoplasmic loops CD and EF were involved in interaction with transducin. The involvement of loop EF was also supported by an earlier study by Kühn and Hargrave (9), where limited proteolysis of loop EF caused the loss of light-induced transducin binding. Our earlier (12, 15) and present results support the involvement of loops CD and EF in transducin binding and activation. Thus, an 8-amino acid deletion mutant in loop CD ($Δ143-150$) failed to activate transducin, indicating that loop CD is essential for transducin activation. Furthermore, when 13 amino acids in loop CD were replaced by an unrelated sequence (CD-7) (Table II), the mutant bound 11-cis-retinal to form the normal chromophore, but it failed to activate transducin. This result further demonstrates the requirement of a specific sequence in loop CD for interaction with transducin.

The requirement of loop EF was also clearly shown by our results. All of the loop EF deletion mutations now described affected the ability of these mutants to activate transducin in vitro. A 4-amino acid deletion in the amino-terminal part of the loop ($Δ236-239$) caused a 50% reduction of transducin activation. Furthermore, a 6-amino acid deletion in the carboxyl-terminal portion of loop EF ($Δ244-249$) caused a complete inability to activate transducin. Similarly, all the other deletion mutations involving the carboxy terminus of loop EF abolished transducin activation (Table IV).

Single and Multiple Amino Acid Substitutions in Loops CD and EF—A relatively large number of mutants with amino acid substitutions in loop EF were prepared to probe the role of polar and charged amino acids. There is a cluster of 2 threonine residues and 1 serine residue in the center of this loop. These residues are involved in light-induced phosphorylation (25). The role of these residues was investigated by carrying out a series of single and multiple amino acid substitutions. The GTPase activity results obtained with these mutants showed that Ser-240, Thr-243, and Lys-248 were important for transducin activation (Tables III and VI). Mutations that neutralized negatively charged amino acids (Table III) had no influence on spectral properties and no significant effect on transducin activation (Tables III and VI). The above results show a direct involvement of loop EF in transducin activation and are in agreement with peptide competition studies (11) in which a peptide corresponding to loop EF could compete with rhodopsin for transducin binding and with a previous study of rhodopsin loop mutants (15).

Other members of the seven-helical receptor family have also been shown to have an active involvement of loop EF in

![Fig. 9. UV-visible absorption spectra of mutant EF-Δ5 (Δ234-252) (Table I). This deletion mutant had 19 amino acids removed from loop EF. According to the secondary structure model (Fig. 1), only a 3-amino acid long linker would remain to connect helices E and F. The mutant bound 11-cis-retinal to give a $λ_{max}$ of 500 nm and an A_{360}/A_{500} spectral ratio of 5.5. This low 11-cis-retinal regeneration could be due to structural constraints caused by the large deletion. Upon illumination, the pigment was converted to the characteristic MII form (380 nm) indistinguishable from that of wild-type rhodopsin.](image-url)
G protein coupling. Koblika et al. (26) suggested that with chimeric α2- and β2-adrenergic receptors, the specificity for coupling to the G protein is within loop EF. Kubo et al. (27) concluded that in the muscarinic acetylcholine receptor, the selective coupling of receptor subtypes I and II with different effector systems is due to the loop EF region in these receptors. Again, Wong et al. (28) indicated with chimeric muscarinic cholinergic/β-adrenergic receptors that the third cytoplasmic loop determines G protein specificity of the ligand-activated receptor.

The charged pair Glu-134/Arg-135 located at the cytoplasmic border of helix C is found in nearly every G protein-coupled receptor characterized to date. We investigated the role of this charged pair with a series of five mutants (Table II). All five mutants displayed normal UV-visible spectra. The amino acid substitutions had a drastic influence on rhodopsin-transducin interaction (Table V). Arg-135 is clearly very important for transducin interaction since substitution R135Q decreased transducin activation by more than an order of magnitude. Charge reversal and exchange of both residues with Ala caused complete inactivation of the resulting pigments in the transducin assay. In the case of the charge reversal mutant, we could not detect stimulation of the transducin GTPase activity even when the pigment concentration was increased 4- and 12-fold over the standard assay concentration (Fig. 10). We found previously that the charged pair plays an essential role in MII-transducin interactions that lead to binding of transducin (12).

Acknowledgments—We are grateful to Professor U. L. Raj-Bhandary, Dr. S. S. Karnik, and Dr. S. Subramaniam for helpful advice and discussions and to J. Carlin for assistance in the preparation of this manuscript.

REFERENCES
1. Ovchinnikov, Y. A., Abdulaev, N. G., Feigina, M. Y., Artomonov, I. D., Zolotarev, A. S., Moroshnikov, A. I., Martynov, V. I., Kostina, M. B., Kudelin, A. G., and Bognachuk, A. S. (1982) Bioorg. Khim. 8, 1424-1427
2. Hargrave, P. A., McDowell, J. H., Curtis, D. R., Wang, J. K., Jusczak, E., Wong, S.-L., Rao, J. K. M., and Argos, P. (1985) Biochim. Biophys. Struct. Mech. 9, 235-244
3. Nathans, J., and Hogan, D. S. (1983) Cell 34, 807-814
4. Ovchinnikov, Y. A., Abdulaev, N. G., and Feigina, M. Y. (1983) Bioorg. Khim. 9, 1331-1346
5. Ovchinnikov, Y. A. (1987) Trends Biochem. Sci. 12, 434-438
6. Argos, P., Rao, J. K. M., and Hargrave, P. A. (1982) Eur. J. Biochem. 128, 565-575
7. Adamus, G., Zam, Z. S., Arendt, A., Palczewski, K., McDowell, J. H., and Hargrave, P. A. (1991) Vision Res. 31, 17-31
8. Wang, J. K., McDowell, J. H., and Hargrave, P. A. (1980) Biochemistry 19, 5111-5117
9. Kuhn, H., and Hargrave, P. A. (1981) Biochemistry 20, 2410-2417
10. Weiss, E. R., Ketley, D. J., and Johnson, G. L. (1988) J. Biol. Chem. 263, 6150-6154
11. König, B., Arendt, A., McDowell, J. H., Kahler, M., Hargrave, P. A., and Hofmann, K. P. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 6878-6882
12. Frank, R. R., König, B., Sakmar, T. P., Khorana, H. G., and Hofmann, K. P. (1989) Science 250, 123-125
13. Kaufman, R. J. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 693-695
14. Oppen, D. D., Molday, R. S., Kaufman, R. J., and Khorana, H. G. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 8674-8678
15. Frank, R. R., Sakmar, T. P., Oppen, D. D., and Khorana, H. G. (1988) J. Biol. Chem. 263, 2119-2122
16. Molday, R. S., and MacKensie, D. (1980) Biochemistry 22, 652-660
17. Ferretti, J., Kurnik, S. S., Khorana, H. G., Nasser, M., and Oppen, D. D. (1980) Proc. Natl. Acad. Sci. U. S. A. 85, 809-803
18. Sakmar, T. P., Frank, R. R., and Khorana, H. G. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 8309-8313
19. Sanger, F., Nicklen, S., and Coulson, A. R. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 5463-5467
20. Riggin, M. D., Gibson, T. J., and Hong, G. F. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 3963-3965
21. Dey, T., Molday, R. S., and Khorana, H. G. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 4991-4995
22. Yoshizawa, T., and Wald, G. (1983) Nature 304, 1279-1286
23. DeGrip, W. J. (1982) Methods Enzymol. 81, 226-265
24. O辛 OR, M., Schmidt, E. D., Perez-Sala, D., Bando, R. R., and Siebert, F. (1986) Biochemistry 25, 5954-5962
25. Palczewski, K., Arendt, A. McDowell, J. H., and Hargrave, P. A. (1989) Biochemistry 28, 8764-8770
26. Koblia, K. K., Koblia, T. S., Daniel, K., Regan, J. W., Caron, M. G., and Lefkowitz, R. J. (1988) Science 240, 1310-1316
27. Kubo, T., Nada, I., Nakaj, I., Nisimura, M., and Numa, S. (1988) FEBS Lett. 241, 119-125
28. Wong, S. K. P., Parker, E. M., and Ross, E. M. (1990) J. Biol. Chem. 265, 6219-6224
29. Hong, K., and Hubbell, W. L. (1972) Proc. Natl. Acad. Sci. U. S. A. 69, 2617-2621

FIG. 10. Mutants CD-7 and EF-D4 failed to activate transducin even at 4-fold increased concentration. Under standard assay conditions, both mutants CD-7 and EF-D4 failed to activate transducin (Tables IV and V). This experiment tested whether activity could be recovered by increasing the concentration of the pigment in the assay mixture. When assayed at a pigment concentration of 10 nM, no detectable transducin activation was observed for either of the mutants. The P, release observed under these conditions is identical to the intrinsic GTPase activity of transducin observed in the absence of pigment. The activity of wild-type rhodopsin is 12.5 pmol of P, released per pmol of rhodopsin/min at this concentration (10 nM). This pigment concentration for wild-type rhodopsin is beyond the linear range of the assay (0.2-5 nM). This pigment concentration for wild-type rhodopsin is beyond the linear range of the assay (0.2-5 nM). A pigment concentration of 20 nM is saturating (Fig. 5). Even at a pigment concentration of 30 nM, no detectable transducin activation was observed for either of the mutants.