Coloring count cones of planar graphs

Zdeněk Dvořák¹ | Bernard Lidický²

¹Computer Science Institute (CSI), Charles University, Prague, Czech Republic
²Department of Mathematics, Iowa State University, Ames, Iowa, USA

Abstract
For a plane near-triangulation G with the outer face bounded by a cycle C, let n_G^* denote the function that to each 4-coloring ψ of C assigns the number of ways ψ extends to a 4-coloring of G. The Block-count reducibility argument (which has been developed in connection with attempted proofs of the Four Color Theorem) is equivalent to the statement that the function n_G^* belongs to a certain cone in the space of all functions from 4-colorings of C to real numbers. We investigate the properties of this cone for $|C| = 5$, formulate a conjecture strengthening the Four Color Theorem, and present evidence supporting this conjecture.

KEYWORDS
coloring count cone, four color theorem, graph coloring, planar graphs

1 INTRODUCTION

By the Four Color Theorem [1,2,5], every planar graph is 4-colorable. Nevertheless, many natural follow-up questions regarding 4-colorability of planar graphs are wide open. Even very basic precoloring extension questions, such as the one given in the following problem, are unresolved (a near-triangulation is a connected plane graph in which all faces except for the outer one have length three).

Problem 1. Does there exist a polynomial-time algorithm which, given a near-triangulation G with the outer face bounded by a 4-cycle C and a 4-coloring ψ of C, correctly decides whether ψ extends to a 4-coloring of G?
Note that there exist infinitely many near-triangulations G with the outer face bounded by a 4-cycle such that not every precoloring of C extends to a 4-coloring of G; and we do not have any good guess at how the near-triangulations with this property could be described.

Nevertheless, we do have some information about the precoloring extension properties of plane near-triangulations. For a plane near-triangulation G with the outer face bounded by a cycle C, let n^*_G denote the function that to each 4-coloring ψ of C assigns the number of ways ψ extends to a 4-coloring of G if and only if $n^*_G(\psi) \neq 0$. Suppose $C = v_1v_2v_3v_4$ is a 4-cycle and $\psi_1, \psi_2,$ and ψ_3 are its 4-colorings such that $\psi_i(v_j) = j$ for $i \in \{1, 2, 3\}$ and $j \in \{1, 2\}, \psi_1(v_3) = \psi_3(v_3) = 1, \psi_2(v_3) = 3, \psi_1(v_4) = \psi_2(v_4) = 2$, and $\psi_3(v_4) = 4$; see Figure 1. A standard Kempe chain argument shows that if $n^*_G(\psi_1) \neq 0$, then $n^*_G(\psi_2) \neq 0$ or $n^*_G(\psi_3) \neq 0$.

Actually, much more information can be obtained along these lines, using the idea of Block-count reducibility [3,4] developed in connection with the attempts to prove the Four Color Theorem: Certain inequalities between linear combinations of $n^*_G(\psi_1), n^*_G(\psi_2),$ and $n^*_G(\psi_3)$ are satisfied for all near-triangulations G, or equivalently, the vector $(n^*_G(\psi_1), n^*_G(\psi_2), n^*_G(\psi_3))$ is contained in a certain cone in \mathbb{R}^3. The main goal of this note is to present and motivate a conjecture regarding this cone in the case of near-triangulations with the outer face bounded by a 5-cycle; this conjecture strengthens the Four Color Theorem. We also provide evidence supporting this conjecture.

2 DEFINITIONS

To describe the cone we alluded to in Section 1, we need a number of definitions, which we introduce in this section. It is easier to state the idea in the dual setting of 3-edge-colorings of cubic plane graphs, which is well known to be equivalent to 4-coloring of plane triangulations [6].

Some graphs in this paper may have parallel edges or loops. We call two parallel edges a double edge and three parallel edges a triple edge.

2.1 Near-cubic graphs and their edge-colorings

Let G be a connected graph and let v be a vertex of G. A half-edge is (e, u), where e is an edge and u is one of its endpoints. If $e = uv$, when we say u is incident with (e, u) but it is not incident with (e, v). We consider each edge $e = uv$ of G as consisting of two half-edges (e, u)

Figure 1 Precolorings $\psi_1, \psi_2,$ and ψ_3 of a 4-cycle
and \((e, v)\) even if \(e\) is a loop. Let \(v\) be a bijection between the half-edges incident with \(v\) and \([0, ..., \deg(v) - 1]\) (so, if \(v\) is incident with a loop, each half of the loop is assigned a different number by \(\nu\)). If all vertices of \(G\) other than \(v\) have degree three, we say that \(\tilde{G} = (G, v, \nu)\) is a near-cubic graph. We say that \(\tilde{G}\) is a plane near-cubic graph if \(G\) is a plane graph and the half-edges incident with \(v\) are drawn around it in the clockwise cyclic order \(\nu^{-1}(0), ..., \nu^{-1}(\deg(v) - 1)\). We define \(d(\tilde{G}) = \deg(v)\).

A 3-edge-coloring of \(\tilde{G}\) is an assignment of colors 1, 2, and 3 to edges of \(G\) such that any two edges incident with a common vertex other than \(v\) have different colors. For an integer \(d \geq 3\), a function \(\psi : [0, ..., d - 1] \rightarrow \{1, 2, 3\}\) is a \(d\)-precoloring if \(|\psi^{-1}(1)| \equiv |\psi^{-1}(2)| \equiv |\psi^{-1}(3)| \equiv d \pmod{2}\). This parity condition is necessary, see Observation 2. We say that a 3-edge-coloring \(\varphi\) of \(\tilde{G}\) extends a \(d(\tilde{G})\)-precoloring \(\psi\) if for any edge \(e\) incident with \(v\) and a half-edge \(h\) of \(e\) incident with \(v\), we have \(\varphi(e) = \psi(h)\).

Observation 2. For an integer \(d \geq 2\), if a function \(\psi : [0, ..., d - 1] \rightarrow \{1, 2, 3\}\) does not satisfy \(|\psi^{-1}(1)| \equiv |\psi^{-1}(2)| \equiv |\psi^{-1}(3)| \equiv d \pmod{2}\), then there is no \(\tilde{G}\) and 3-edge-coloring \(\varphi\) of \(\tilde{G}\) such that \(\varphi\) extends \(\psi\).

Proof: Let \(\varphi\) be a 3-edge-coloring of \(\tilde{G}\) extending \(\psi\). Let \(n = |V(\tilde{G})|\). Since \(\tilde{G}\) is cubic except for one vertex of degree \(d\), the handshaking lemma gives \(|E(\tilde{G})| = (3(n - 1) + d)/2\). For \(i \in \{1, 2, 3\}\), then number of edges colored by \(|\varphi^{-1}(i)| = ((n - 1) + |\psi^{-1}(i)|)/2\). Therefore the parities of \(d, |\psi^{-1}(1)|, |\psi^{-1}(2)|,\) and \(|\psi^{-1}(3)|\) are the same.

Let \(n_\varphi(\psi)\) denote the number of 3-edge-colorings of \(\tilde{G}\) which extend \(\psi\). Via the theory of nowhere-zero flows [7], it is easy to establish the following correspondence between 4-colorings of near-triangulations and 3-edge-colorings in their duals. Recall \(n^*_\varphi(\psi)\) denotes the number of 4-colorings of \(G\) which extend \(\psi\).

Observation 3. Let \(\tilde{G} = (G, v, \nu)\) be a plane near-cubic graph, and let \(G^*\) be the dual of \(G\) drawn so that the outer face of \(G^*\) corresponds to \(v\). Suppose the outer face of \(G^*\) is bounded by a cycle \(C\). Then there exists a mapping \(f\) from 4-colorings of \(C\) to \(d(\tilde{G})\)-precolorings such that

- \(f\) maps exactly four distinct 4-colorings of \(C\) to each \(d(\tilde{G})\)-precoloring, and
- every 4-coloring \(\psi\) of \(C\) satisfies \(n^*_\varphi(\psi) = n_\varphi(f(\psi))\).

Given two near-cubic graphs \(\tilde{G}_1 = (G_1, v_1, \nu_1)\) and \(\tilde{G}_2 = (G_2, v_2, \nu_2)\) with \(\deg(v_1) = \deg(v_2)\), let \(\tilde{G}_1 \oplus \tilde{G}_2\) denote the graph obtained from \(G_1\) and \(G_2\) by, for \(0 \leq i \leq \deg(v_1) - 1\), removing the half-edges \(\nu_1^{-1}(i)\) and \(\nu_2^{-1}(i)\) and connecting the other halves of the edges. Note that \(\tilde{G}_1 \oplus \tilde{G}_2\) is a cubic graph, and if \(\tilde{G}_1\) and \(\tilde{G}_2\) are plane near-cubic graphs, then \(\tilde{G}_1 \oplus \tilde{G}_2\) is a cubic planar graph. Observe that the number of 3-edge-colorings of \(\tilde{G}_1 \oplus \tilde{G}_2\) is

\[
\sum_{\psi} n_{\tilde{G}_1}(\psi)n_{\tilde{G}_2}(\psi),
\]

(1)
where the sum goes over all $\deg(v_i)$-precolorings ψ. For any integer $n \geq 3$, let \tilde{C}_n denote the plane near-cubic graph (W_n, v, v), where W_n is the wheel with the central vertex v adjacent to all vertices of an n-cycle; see Figure 2.

2.2 Signatures and Kempe chains

The following definition of d-signature is will be used to capture the possible parities of 2-edge-colored cycles containing v in a 3-edge-coloring of $\tilde{G} = (G, v, v)$ distinguished by the half-edges contained in the cycles. In particular, parity will be $s \in \{-1, 1\}$ and the pair of half-edges will be m. For an integer $d \geq 2$, a d-signature is a set S of pairs (m, s), where m is an unordered pair of integers in $\{0, \ldots, d-1\}$ and $s \in \{-1, 1\}$, satisfying the following conditions:

(i) for any distinct $(m_1, s_1), (m_2, s_2) \in S$ we have $m_1 \cap m_2 = \emptyset$, and

(ii) S does not contain elements $(\{a, b\}, s_1)$ and $(\{c, d\}, s_2)$ such that $a < c < b < d$.

A d-precoloring ψ is compatible in (distinct) colors $i, j \in \{1, 2, 3\}$ with a d-signature S if

- $\psi^{-1}(\{i, j\}) = \bigcup_{(m, s) \in S} m$, and
- for each $(\{a_1, a_2\}, s) \in S, \psi(a_1) = \psi(a_2)$ holds if and only if $s = -1$.

Now, consider a 3-edge-coloring φ of a near-cubic graph $\tilde{G} = (G, v, v)$. Each vertex other than v is incident with edges of all three colors. Hence, for any distinct $i, j \in \{1, 2, 3\}$, the subgraph G_{ij} of G consisting of edges of colors i or j is a union of pairwise edge-disjoint cycles, vertex-disjoint except for possible intersections in v. An ij-Kempe chain of φ is a cycle C in G_{ij} containing v; the sign $\sigma(C)$ of the ij-Kempe chain C is 1 if the length of C is even and -1 if the length of C is odd. If h_1 and h_2 are the half-edges in C incident with v, we let $\mu(C) = \{v(h_1), v(h_2)\}$. The ij-Kempe chain signature $\sigma_{ij}(\varphi)$ of φ is defined as

$$\{\langle \mu(C) , \sigma(C) \rangle : C \text{ is an } ij\text{-Kempe chain of } \varphi\}.$$

Note that if \tilde{G} is plane, then the ij-Kempe chains do not cross and the ij-Kempe chain signature of φ satisfies the condition (ii); and thus $\sigma_{ij}(\varphi)$ is a $d(\tilde{G})$-signature.
3 | COLORING COUNT CONES

Let $\hat{G} = (G, v, \nu)$ be a plane near-cubic graph and let ψ be a $d(\hat{G})$-precoloring. Suppose that ψ is compatible (in colors $i, j \in \{1, 2, 3\}$) with a $d(\hat{G})$-signature S. We define $n_{\hat{G},S}(\psi)$ as the number of 3-edge-colorings φ of \hat{G} extending ψ such that $\sigma_j(\varphi) = S$. Note that swapping the colors i and j on any set of ij-Kempe chains of φ results in another 3-edge-coloring with the same ij-Kempe chain signature. Furthermore, clearly for any permutation π of colors, we have $n_{\hat{G},S}(\psi \circ \pi) = n_{\hat{G},S}(\psi)$. This establishes bijections implying the following.

Observation 4. Let \hat{G} be a plane near-cubic graph and let S be a $d(\hat{G})$-signature. Any $d(\hat{G})$-precolorings ψ_1 and ψ_2 compatible with S satisfy

$$n_{\hat{G},S}(\psi_1) = n_{\hat{G},S}(\psi_2).$$

Hence, we can define an integer $n_{\hat{G},S}$ to be equal to $n_{\hat{G},S}(\psi)$ for an arbitrarily chosen $d(\hat{G})$-precoloring ψ compatible with S.

Let $d \geq 2$ be an integer and let $i, j \in \{1, 2, 3\}$ be distinct colors. For a d-precoloring ψ, let us define $S_{\psi,ij}$ as the set of d-signatures compatible with ψ in colors ij. Since every 3-edge-coloring of \hat{G} has an ij-Kempe chain signature, we have

$$n_{\hat{G}}(\psi) = \sum_{S \in S_{\psi,ij}} n_{\hat{G},S}(\psi) = \sum_{S \in S_{\psi,ij}} n_{\hat{G},S}. \quad (2)$$

Let P_d denote the set of all d-precolorings and S_d the set of all d-signatures. We will work in the vector spaces \mathbb{R}^{P_d} and \mathbb{R}^{S_d} with coordinates corresponding to the d-precolorings and to the d-signatures, respectively. For each integer $d \geq 2$, the **coloring count cone** B_d is the set of all $x \in \mathbb{R}^{P_d}$ such that

- $x(\psi) \geq 0$ for every d-precoloring ψ, and
- there exists $y \in \mathbb{R}^{S_d}$ such that
 - $y(S) \geq 0$ for every d-signature S, and
 - $x(\psi) = \sum_{S \in S_{\psi,ij}} y(S)$ for every d-precoloring ψ and distinct colors $i, j \in \{1, 2, 3\}$.

Note that B_d is indeed a cone, that is, an unbounded polytope closed under linear combinations with nonnegative coefficients. By (2), the vector of precoloring extension counts for any plane near-cubic graph belongs to the corresponding coloring count cone.

Theorem 5. For each plane near-cubic graph \hat{G}, we have

$$n_{\hat{G}} \in B_d(\hat{G}).$$

Each cone is uniquely determined as the set of nonnegative linear combinations of its rays. For $d \in \{2, 3, 4, 5\}$, the rays of B_d are easy to enumerate by hand or using polytope-manipulation software such as Sage Math or the Parma Polyhedra Library (a program doing so for $d = 5$ can be found at http://lidicky.name/pub/4cone/). For a near-cubic graph \hat{G} such that $n_{\hat{G}}$ is not the zero function, let $\text{ray}(\hat{G})$ denote the set of all nonnegative multiples of $n_{\hat{G}}$. Graphs $\tilde{R}_{2,1}, \ldots, \tilde{R}_{5,12}$ used in the following lemma are depicted in Figure 3.
FIGURE 3 Graphs $\tilde{R}_{2,1}, \ldots, \tilde{R}_{5,12}$. The dashed circle intersects the half-edges incident with the vertex v, which is not depicted for the sake of clarity; the values of v are written at the respective half-edges.
Lemma 6. Referring to graphs in Figure 3:

- the cone B_2 has exactly one ray equal to $\text{ray}(\bar{R}_{2,1})$;
- the cone B_3 has exactly one ray equal to $\text{ray}(\bar{R}_{3,1})$;
- the cone B_4 has exactly four rays equal to $\text{ray}(\bar{R}_{4,1}), \ldots, \text{ray}(\bar{R}_{4,4})$; and
- the cone B_5 has exactly 12 rays equal to $\text{ray}(\bar{R}_{5,1}), \ldots, \text{ray}(\bar{R}_{5,12})$.

Let us remark that B_6 has 208 rays; the direct method we employ is too slow to enumerate all rays for $d \geq 7$ on current workstations.

4 | THE CONE B_5 AND THE CONJECTURE

Note that while $\bar{R}_{5,1}, \ldots, \bar{R}_{5,11}$ are planes, $\bar{R}_{5,12}$ is not. Indeed, the following holds.

Lemma 7. The following claims are equivalent.

(a) Every planar cubic 2-edge-connected graph is 3-edge-colorable.
(b) For every plane near-cubic graph \tilde{G} with $d(\tilde{G}) = 5$, if $n_{\tilde{G}} \in \text{ray}(\bar{R}_{5,12})$, then $n_{\tilde{G}}$ is the zero function.

Proof. Let us first prove that (a) implies (b). Consider a plane near-cubic graph $\tilde{G} = (G, v, \nu)$ such that $n_{\tilde{G}} \in \text{ray}(\bar{R}_{5,12})$, and thus for some constant $c \geq 0$, we have $n_{\tilde{G}}(\psi) = c \cdot n_{\bar{R}_{5,12}}(\psi)$ for every 5-precoloring ψ. Observe that $n_{\bar{R}_{5,12}}(\psi) n_{\bar{C}_5}(\psi) = 0$ for every 5-precoloring ψ (since $\bar{R}_{5,12} \oplus \bar{C}_5$ is the Petersen graph, which is not 3-edge-colorable; see Figure 4), and thus the number of 3-edge-colorings of $\tilde{G} \oplus \bar{C}_5$ using (1) is

$$\sum_{\psi} n_{\tilde{G}} n_{\bar{C}_5}(\psi) = c \sum_{\psi} n_{\bar{R}_{5,12}} n_{\bar{C}_5}(\psi) = 0.$$

Hence, the planar cubic graph $\tilde{G} \oplus \bar{C}_5$ is not 3-edge-colorable. By (a), $\tilde{G} \oplus \bar{C}_5$ has a bridge, and thus G has a bridge. But then a standard parity argument implies that \tilde{G} has no 3-edge-coloring, and thus $n_{\tilde{G}}$ is the zero function.

Next, let us prove that (b) implies (a). Suppose for a contradiction that (b) holds, but there exists a plane cubic 2-edge-connected graph that is not 3-edge-colorable, and let H.
be one with the smallest number of vertices. By Euler’s formula and possible parallel edges, H has a face f of length $2 \leq d \leq 5$; hence, we can write $H = \tilde{G} \oplus \tilde{C}_d$ for a plane near-cubic graph \tilde{G}. By Theorem 5, we have $n_{\tilde{G}} \in B_d$, and by Lemma 6, there exist nonnegative real numbers c_i such that

$$n_{\tilde{G}} = \sum c_i n_{\tilde{R}_{d,i}}.$$

Observe there exists a plane near-cubic graph \tilde{P} with $d - 1$ vertices such that $\tilde{G} \oplus \tilde{P}$ is 2-edge-connected. By the minimality of H, $\tilde{G} \oplus \tilde{P}$ is 3-edge-colorable, and in particular $n_{\tilde{G}}$ is not the zero function. By (b), $n_{\tilde{G}}$ is not a positive multiple of $n_{\tilde{R}_{5,12}}$, and thus there exists an index $k \leq 11$ such that $c_k > 0$. Observe that $\tilde{R}_{d,k} \oplus \tilde{C}_d$ is 3-edge-colorable, and thus there exists a d-precoloring ψ_0 such that $n_{\tilde{R}_{d,k}}(\psi_0)n_{\tilde{C}_d}(\psi_0) > 0$. However, then the number of 3-edge-colorings of H is

$$\sum_{\psi} n_{\tilde{G}}(\psi)n_{\tilde{C}_d}(\psi) \geq c_k \sum_{\psi} n_{\tilde{R}_{d,k}}(\psi)n_{\tilde{C}_d}(\psi) = c_k n_{\tilde{R}_{d,k}}(\psi_0)n_{\tilde{C}_d}(\psi_0) > 0.$$

This contradicts the assumption that H is not 3-edge-colorable. □

Note that (a) from Lemma 7 is well known to be equivalent to the Four Color Theorem [6], and thus indeed there is no plane near-cubic graph \tilde{G} with $d(\tilde{G}) = 5$ such that $n_{\tilde{G}}$ is not the zero function and $n_{\tilde{G}} \in \text{ray}(\tilde{R}_{5,12})$; and furthermore, a direct proof of this fact would imply the Four Color Theorem. Motivated by this observation (and experimental evidence), we propose the following conjecture, a strengthening of the Four Color Theorem. Let B'_5 denote the cone in $\mathbb{R}_{\geq 0}^{\tilde{R}_5}$ with rays $\text{ray}(\tilde{R}_{5,1}), \ldots, \text{ray}(\tilde{R}_{5,11})$.

Conjecture 8. Every plane near-cubic graph \tilde{G} with $d(\tilde{G}) = 5$ satisfies $n_{\tilde{G}} \in B'_5$.

For $i \in \{0, \ldots, 4\}$, let $\psi_i^{5,a}$ and $\psi_i^{5,b}$ denote the 5-precolorings whose values at $j \in \{0, \ldots, 4\}$ are defined by the following table; see also Figure 5. Notice that i is a rotating the coloring.

![Figure 5](image-url)
FIGURE 5 Precolorings $\psi_0^{5,a}$ and $\psi_0^{5,b}$
Note that each 5-precoloring is obtained from one of these 10 by a permutation of colors. The cone B'_5 has exactly one facet which is not also a facet of B_5, giving an equivalent formulation of Conjecture 8.

Conjecture 9. Every plane near-cubic graph \tilde{G} with $d(\tilde{G}) = 5$ satisfies

$$3 \sum_{i=0}^{4} n_5^G(\psi_i^{5,a}) \geq \sum_{i=0}^{4} n_5^G(\psi_i^{5,b}).$$

In the rest of the note, we provide some evidence supporting Conjecture 8; in particular, we show there are no counterexamples to the conjecture for plane near-cubic graphs with less than 30 vertices.

5 | EVIDENCE

In this section we present experimental evidence for the validity of Conjecture 8. Our goal is to show Corollary 20 stating that Conjecture 8 holds for graphs on at most 30 vertices. The main idea of our approach is to generate larger graphs \tilde{G} from smaller graphs by planarity preserving operations. One such is depicted in Figure 7. We will generate “all” possibilities for $d(\tilde{G}) \leq 7$ and particular ones with $d(\tilde{G}) = 8$. We then argue that all graphs in at most 30 vertices can be generated this way.

We begin by stating a few more definitions. A vector $\mathbf{x} \in \mathcal{P}_d$ is **invariant with respect to permutation of colors** if all d-precolorings ψ and ψ' that only differ by a permutation of colors satisfy $\mathbf{x}(\psi) = \mathbf{x}(\psi')$.

See Figure 6 for an illustration of the following definitions. The **rotation by t** of a d-precoloring ψ is the d-precoloring $r_t(\psi)$ such that $r_t(\psi)((i + t) \mod d) = \psi(i)$ for $i \in \{0, ..., d - 1\}$. The **flip** of a d-precoloring ψ is the d-precoloring $f(\psi)$ such that $f(\psi)(i) = \psi(d - 1 - i)$ for $i \in \{0, ..., d - 1\}$. For $x \in \mathbb{R}_{\mathcal{P}_d}$, let $r_t(x)$ be defined as $y \in \mathbb{R}_{\mathcal{P}_d}$ such that $y(r_t(\psi)) = x(\psi)$ for every d-precoloring ψ, and let $f(x)$ be defined as $z \in \mathbb{R}_{\mathcal{P}_d}$ such that $z(f(\psi)) = x(\psi)$ for every d-precoloring ψ. A set $K \subseteq \mathbb{R}_{\mathcal{P}_d}$ is closed under rotations and flips if we have $x \in K$ if and only if $f(x) \in K$ and $r_t(x) \in K$ for all $t \in \{0, 1, ..., d - 1\}$. For a near-cubic graph $G = (G, v, v_1)$ with $\deg(v) = d$, let $r_t(G)$ denote the near-cubic graph (G, v, v_1), where $v_1^{-1}(i + t) \mod d) = v^{-1}(i)$ for $i \in \{0, ..., d - 1\}$, and let $f(G)$ denote the near-cubic graph (G, v, v_2), where $v_2^{-1}(i) = v_2^{-1}(d - 1 - i)$ for $i \in \{0, ..., d - 1\}$.

Observation 10. Let \tilde{G} be a near-cubic graph, $d = d(\tilde{G})$ and $t \in \{0, ..., d - 1\}$. Then $n_r(\tilde{G}) = r_t(n_5(\tilde{G}))$ and $n_f(\tilde{G}) = f(n_5(\tilde{G}))$.

Let \(\psi_1 \) be a \(d_1 \)-precoloring and \(\psi_2 \) a \(d_2 \)-precoloring. For an integer \(k \leq \min(d_1, d_2) \), we say that \(\psi_k \) matches \(\psi_2 \) if \(\psi_k(d_1 - k + i) = \psi_2(d_2 - 1 - i) \) for \(i \in \{0, 1, ..., k - 1\} \). By \(\gamma_{k}(\psi_1, \psi_2) \), we denote the \((d_1 + d_2 - 2k) \)-precoloring \(\gamma \) such that \(\gamma(i) = \psi_k(i) \) for \(i \in \{0, 1, ..., d_1 - k - 1\} \) and \(\gamma(i) = \psi_2(i - (d_1 - k)) \) for \(i \in \{d_1 - k, ..., d_1 + d_2 - 2k - 1\} \). For \(x_1 \in \mathbb{R}^{d_1} \) and \(x_2 \in \mathbb{R}^{d_2} \), we define \(\gamma_k(x_1, x_2) \) as the vector \(y \in \mathbb{R}^{d_1 + d_2 - 2k} \) such that

\[
y(\psi) = \sum_{\psi, \psi_2 : \gamma_{k}(\psi_1, \psi_2) = \psi} x_1(\psi_1) x_2(\psi_2),
\]

where the sum is over all \(k \)-matching \(d_1 \)-precolorings \(\psi_1 \) and \(d_2 \)-precolorings \(\psi_2 \). For near-cubic graphs \(\bar{G}_1 = (G_1, v_1, v_1) \) with \(\deg(v_1) = d_1 \) and \(\bar{G}_2 = (G_2, v_2, v_2) \) with \(\deg(v_2) = d_2 \), let \(\gamma_k(\bar{G}_1, \bar{G}_2) \) denote the near-cubic graph \((G, v, \nu) \), where \(G \) is obtained from \(G_1 \) and \(G_2 \) by identifying \(v_1 \) with \(v_2 \) to a single vertex \(v \) and for \(i \in \{0, 1, ..., k - 1\} \) removing the half-edges \(\nu_1^{-1}(d_1 - k + i) \) and \(\nu_2^{-1}(d_2 - 1 - i) \) and connecting the other halves of the edges; and \(\nu^{-1}(i) = \nu_i^{-1}(i) \) for \(i \in \{0, ..., d_1 - k - 1\} \) and \(\nu^{-1}(i) = \nu_2^{-1}(i - (d_1 - k)) \) for \(i \in \{d_1 - k, ..., d_1 + d_2 - 2k - 1\} \). See Figure 7 for an illustration.

Observation 11. Let \(\bar{G}_1 \) and \(\bar{G}_2 \) be near-cubic graphs. For every integer \(k \in \{0, ..., \min(d(\bar{G}_1), d(\bar{G}_2))\} \), we have \(n_{k}(\bar{G}_1, \bar{G}_2) = \gamma_k(n_{\bar{G}_1}, n_{\bar{G}_2}) \).

By a computer-assisted enumeration, we verified the following claim.
Lemma 12. There exist cones $K_d \subseteq \mathbb{R}^d$ for $d = 2, \ldots, 8$ such that the following claims hold.

(a) $K_d = B_d$ when $d \leq 4$ and $K_5 = B'_5$.
(b) For all $d \in \{2, \ldots, 8\}$, the elements of K_d are invariant with respect to permutation of colors.
(c) For $d \in \{2, \ldots, 7\}$, the cone K_d is closed under rotations and flips.
(d) If $2 \leq d_1 \leq d_2$ and $d_1 + d_2 \leq 7$, then for all $x_1 \in K_{d_1}$ and $x_2 \in K_{d_2}$ we have $\gamma_0(x_1, x_2) \in K_{d_1 + d_2}$.
(e) If $2 \leq d \leq 5$, then for all $x \in K_d$ we have $\gamma_1(n_{\tilde{r}_d}, x) \in K_{d+1}$.
(f) If $3 \leq d \leq 7$, then for all $x \in K_d$ we have $\gamma_2(n_{\tilde{r}_d}, x) \in K_{d-1}$.
(g) If $2 \leq d_1 \leq 6$ and $1 \leq c \leq d_1/2$, then for all $x_1 \in K_{d_1}$ and $x_2 \in K_{7+2c-d_1}$, we have $\gamma_c(x_1, x_2) \in K_7$.
(h) For every $x_1 \in K_8$ and $x_2 \in K_7$, we have $\gamma_4(x_1, x_2) \in K_7$.
(i) For every $x_1, x_2 \in K_6$, we have $r_2(\gamma_2(x_1, x_2)) \in K_8$.

Proof: The proof and the program to verify the proof can be found at http://lidicky.name/pub/4cone/. The cones are described by their rays, enumerated in the file. Cone K_6 has 102 rays, K_7 has 22605 rays, and K_8 has 4330 rays. It suffices to verify all the claims for x, x_1, x_2 being the rays of the cones specified in the claims; the inclusion of the resulting vectors in the appropriate cone is certified by expressing them as a linear nonnegative combination of the rays of the cone.

Parts (e) and (f) of Lemma 12 have the following corollary.

Lemma 13. Let $\tilde{G} = (G, v, v)$ be a plane near-cubic graph and let $d = d(\tilde{G})$. If $d \in \{2, \ldots, 7\}$ and $n_{\tilde{G}} \notin K_d$, then there exists a plane near-cubic graph $\tilde{G}_0 = (G_0, v_0, v_0)$ such that $d(\tilde{G}_0) = 7$, $n_{\tilde{G}_0} \notin K_7$, $G_0 - v_0$ is an induced subgraph of $G - v$, and $|V(G_0)| \leq |V(G)| - (7 - d)$.

![Figure 8](https://example.com/figure8.png)

Figure 8 Graph \tilde{G} from Lemma 19. Edges incident to v are crossing the dashed circle and v is not depicted. (A) Cycles C and C' are depicted by thick red and dotted blue, respectively. The gray faces belong to $Y(G)$. The white face in the center belongs to $X(G)$. (B) A construction of \tilde{G} from $\tilde{G}_1, \tilde{G}_2,$ and \tilde{G}_3 is indicated by the dotted lines.
Proof. We prove the claim by induction on the number of vertices of \(G \). When \(d \leq 4 \), the claim is vacuously true by Theorem 5, since \(K_d = B_d \). When \(d = 7 \), we can set \(\tilde{G}_0 = \tilde{G} \). Hence, suppose that \(d \in \{5, 6\} \). Since \(n_{\tilde{G}} \notin K_d \), the function \(n_{\tilde{G}} \) is not identically zero.

If \(G - v \) is disconnected, we can by symmetry assume that \(\tilde{G} = \gamma(\tilde{G}_1, \tilde{G}_2) \) for plane near-cubic graphs \(\tilde{G}_1 \) and \(\tilde{G}_2 \) such that \(d(\tilde{G}_1) = d(\tilde{G}_2) + 1 \). Since \(n_{\tilde{G}} \) is not the zero function, \(n_{\tilde{G}_1} \) is not the zero function either, and thus \(d(\tilde{G}_1) \neq 1 \). Hence \(d(\tilde{G}_1) \geq 2 \), and thus \(2 \leq d(\tilde{G}_2) \leq 4 \). By Lemma 14, we have \(n_{\tilde{G}_1} \notin K_d \) and \(n_{\tilde{G}_2} \notin K_d \), and \(n_{\tilde{G}} \notin K_d \) by Lemma 12(d), which is a contradiction.

Hence, \(G - v \) is connected (and the same argument as for disconnected \(G - v \) shows that no loop is incident with \(v \)). Consequently, \(v \) is not incident with a triple edge. If \(v \) is incident with a double edge, then we can by symmetry assume that \(\tilde{G} = \gamma(\tilde{G}_1, \tilde{G}_2) \) for a plane near-cubic graph \(\tilde{G}_1 = (G_1, v_1, v_1) \) with \(d(\tilde{G}_1) = d - 1 \leq 5 \). By Lemma 12(e), since \(n_{\tilde{G}} \notin K_d \), we have \(n_{\tilde{G}_1} \notin K_{d-1} \). By the induction hypothesis, there exists a plane near-cubic graph \(\tilde{G}_0 = (G_0, v_0, v_0) \) with \(d(\tilde{G}_0) = 7 \), such that \(n_{\tilde{G}_0} \notin K_7 \), and \(G_0 - v_0 \) is a proper minor of \(G_1 - v_1 \), and thus also of \(G - v \), and \(|V(G_0)| \leq |V(G)| - (7 - (d - 1)) < |V(G)| - (7 - d) \), as required.

Hence, we can assume \(v \) is not incident with a double edge. Consequently, we can by symmetry assume that \(\tilde{G} = \gamma(\tilde{G}_1, \tilde{G}_2) \) for a plane near-cubic graph \(\tilde{G}_1 = (G_1, v_1, v_1) \) with \(d(\tilde{G}_1) = d + 1 \). By Lemma 12(f), since \(n_{\tilde{G}} \notin K_d \), we have \(n_{\tilde{G}_1} \notin K_{d+1} \). By the induction hypothesis, there exists a plane near-cubic graph \(\tilde{G}_0 = (G_0, v_0, v_0) \) with \(d(\tilde{G}_0) = 7 \), such that \(n_{\tilde{G}_0} \notin K_7 \), and \(G_0 - v_0 \) is an induced subgraph of \(G_1 - v_1 \), and thus also of \(G - v \), and \(|V(G_0)| \leq |V(G)| - (7 - (d + 1)) = |V(G)| - (7 - d) \). Hence, the claim of the lemma follows. \(\square \)

We will say that a plane near-cubic graph \(\tilde{G} = (G, v, v) \) is extremal if \(d(\tilde{G}) = 7 \), \(n_{\tilde{G}} \notin K_7 \), and there does not exist any plane near-cubic graph \(\tilde{G}_0 = (G_0, v_0, v_0) \) with \(d(\tilde{G}_0) = 7 \) such that \(n_{\tilde{G}_0} \notin K_7 \) and \(G_0 - v_0 \) is a proper minor of \(G - v \).

Lemma 14. If \(\tilde{G} = (G, v, v) \) is an extremal plane near-cubic graph and \(\tilde{G}' = (G', v', v') \) is a plane near-cubic graph with \(d(\tilde{G}') \leq 7 \) such that \(G' - v' \) is a proper minor of \(G - v \), then \(n_{\tilde{G}'} \notin K_d(\tilde{G}') \).

Proof. If \(n_{\tilde{G}'} \notin K_d(\tilde{G}') \), then by Lemma 13 there would exist a plane near-cubic graph \(\tilde{G}_0 = (G_0, v_0, v_0) \) such that \(d(\tilde{G}_0) = 7 \), \(n_{\tilde{G}_0} \notin K_7 \), and \(G_0 - v_0 \) is an induced subgraph of \(G' - v' \). However, then \(G_0 - v_0 \) would be a proper minor of \(G - v \), contradicting the assumption that \(\tilde{G} \) is extremal. \(\square \)

Next, let us explore the consequences of part (g) of Lemma 12.

Lemma 15. If \(\tilde{G} = (G, v, v) \) is an extremal plane near-cubic graph, then \(v \) is not incident with loops or parallel edges and \(G - v \) is 2-edge-connected.

Proof. Analogously to the proof of Lemma 13, if \(v \) were incident with a loop or a parallel edge or if \(G - v \) were not 2-edge-connected, we would have \(\tilde{G} = \gamma(\tilde{G}_1, \tilde{G}_2) \) for plane near-cubic graphs \(\tilde{G}_1 \) and \(\tilde{G}_2 \) such that \(2 \leq d(\tilde{G}_1) \leq d(\tilde{G}_2), d(\tilde{G}_1) + d(\tilde{G}_2) = 7 + 2c \), and \(c \leq 1 \); in particular, \(d(\tilde{G}_2) \leq 7 \) and \(d(\tilde{G}_1) \leq (7 + 2c)/2 \) \leq 4. By Lemma 14, we have \(n_{\tilde{G}_i} \in K_d(\tilde{G}_i) \) for \(i \in \{1, 2\} \). By Lemma 12(g), we conclude \(n_{\tilde{G}} \in K_7 \), which is a contradiction. \(\square \)
Suppose \(A \) and \(B \) form a partition of the vertex set of a graph \(H \), and let \(S \) be the set of edges of \(H \) with one end in \(A \) and the other end in \(B \). In this situation, we say \(S \) is an edge cut of \(H \) with sides \(A \) and \(B \).

Lemma 16. If \(\tilde{G} = (G, v, \nu) \) is an extremal plane near-cubic graph, then \(G - v \) does not contain an edge cut \(S \) such that \(v \) has at least \(|S| \) neighbors in each side of the cut.

Proof. Suppose for a contradiction \(G - v \) contains such an edge cut \(S \) of size \(c \), and thus \(\tilde{G} = \nu_c(\tilde{G}_1, \tilde{G}_2) \) for plane near-cubic graphs \(\tilde{G}_1 \) and \(\tilde{G}_2 \) such that \(2c \leq d(\tilde{G}_1) \leq d(\tilde{G}_2) \) and \(d(\tilde{G}_1) + d(\tilde{G}_2) = 7 + 2c \). Since \(v \) has seven neighbors and at least \(c \) of them are contained in each of the sides of the cut, we have \(c \leq 3 \). Note that \(d(\tilde{G}_2) \leq 7 \) and \(d(\tilde{G}_1) \leq \lfloor (7 + 2c)/2 \rfloor \leq 6 \). By Lemma 14, we have \(n_{\tilde{G}_i} \in K_{d(\tilde{G}_i)} \) for \(i \in \{1, 2\} \). By Lemma 12(g), we conclude \(n_{\tilde{G}} \in K_7 \), which is a contradiction. \(\square \)

An edge cut \(S \) of size at most five in a near-cubic graph \(\tilde{G} = (G, v, \nu) \) is essential if the side of \(S \) containing \(v \) contains at least one other vertex and the other side \(B \) of \(S \) induces neither a tree nor a 5-cycle.

Lemma 17. If \(\tilde{G} = (G, v, \nu) \) is an extremal plane near-cubic graph, then \(\tilde{G} \) does not contain an essential edge cut \(S \) of size at most five.

Proof. Suppose for a contradiction \(\tilde{G} \) contains an essential edge-cut \(S \) of size \(k \leq 5 \), and choose one with minimum \(k \), and subject to that one for which the side \(B \) not containing \(v \) is minimal. We claim \(G[B] \) is 2-edge-connected. Otherwise, \(B \) is a disjoint union of nonempty sets \(B_1 \) and \(B_2 \), where \(G \) contains \(r \leq 1 \) edges with one end in \(B_1 \) and the other end in \(B_2 \). For \(i \in \{1, 2\} \), let \(S_i \) denote the set of edges of \(G \) with exactly one end in \(B_i \). Since \(\tilde{G} \) is extremal, \(n_{\tilde{G}} \notin K_7 \) is not identically zero, and thus \(G \) is 2-edge-connected, implying \(|S_i| \geq 2 \). Hence, \(|S| = k + 2r - |S_{3-r}| \leq k \). By the minimality of \(B \), we conclude that \(B_i \) induces a tree or a 5-cycle, and thus \(|S_i| \geq 3 \). Hence \(5 \geq k = |S_1| + |S_2| - 2r \geq 6 - 2r \), and thus \(r = 1 \) and \(|S_1|, |S_2| \leq 4 \). This implies that neither \(B_1 \) nor \(B_2 \) induces a 5-cycle, and thus both of them induce trees; and \(G \) contains an edge between them, implying that \(B \) induces a tree, contrary to the assumption that \(S \) is an essential edge cut.

Since \(G[B] \) is 2-edge-connected and subcubic, each face of \(G[B] \) is bounded by a cycle. Let \(C_j \) denote the boundary cycle bounding the face \(f \) of \(G[B] \) whose interior contains \(v \). Observe that all edges of \(S \) are drawn inside \(f \). Otherwise, the set \(S' \) of edges of \(S \) drawn inside \(C \) forms an edge cut of order smaller than \(k \) and by the minimality of \(k \), its side \(B' \supseteq B \) induces a tree or a 5-cycle; this is not possible, since \(G[B] \) is 2-edge connected and not a tree.

Let \(\tilde{G}_i \) be the plane near-cubic graph obtained from \(G \) by contracting the side of the cut containing \(v \) to a single vertex. By Lemma 14, we have \(n_{\tilde{G}_i} \in K_k \). Since \(K_d = B_d \) for \(d \leq 4 \) and \(K_5 = B'_5 \),

\[
n_{\tilde{G}_i} = \sum_i c_i n_{\tilde{G}_i},
\]

where \(i \leq 11 \) if \(k = 5 \) and the coefficients \(c_i \) are nonnegative. Let \(\tilde{G}_i = (G_i, v_i, \nu_i) \) denote the plane near-cubic graph obtained from \(\tilde{G} \) by replacing the side of the cut \(S \) not
containing \(v \) by \(\tilde{R}_k \). Note that \(n_{\tilde{G}} = \sum_i c_in_{\tilde{G}_i} \), and since \(K_7 \) is a cone and \(n_{\tilde{G}} \notin K_7 \), there exists \(i \) such that \(n_{\tilde{G}_i} \notin K_7 \). Because \(B \) contains the cycle \(C_S \) and all edges of \(S \) are incident with vertices of \(C_S \), we see \(G_i - v_i \) is a proper minor of \(G - v \), contradicting the extremality of \(\tilde{G} \). \[\square \]

In Lemma 15, we argued that if \(\tilde{G} = (G, v, v) \) is an extremal plane near-cubic graph, then \(G - v \) is 2-edge-connected, and thus its face containing \(v \) is bounded by a cycle \(C \). Let us now argue that the graph stays 2-edge-connected after removing \(V(C) \) as well.

Lemma 18. Let \(\tilde{G} = (G, v, v) \) be an extremal plane near-cubic graph and let \(C \) be the cycle bounding the face of \(G - v \) containing \(v \). The cycle \(C \) is induced, no two neighbors of \(v \) in \(C \) are adjacent, and the graph \(G - (V(C) \cup \{v\}) \) is 2-edge-connected and has more than one vertex.

Proof. Consider a simple closed curve \(c \) in the plane intersecting \(G \) in two edges of \(C \), \(b \leq 4 \) edges incident with \(v \), and \(r \leq 1 \) edges of \(E(G - v) \setminus E(C) \), where each edge is intersected at most once. The curve \(c \) separates the plane into two parts; let \(A \) and \(B \) be the corresponding partition of vertices of \(G \), where \(v \in A \), and let \(S \) be the edge cut in \(G \) consisting of the edges with one end in \(A \) and the other end in \(B \). By Lemma 16 applied to the edge cut in \(G - v \) obtained from \(S \) by removing the edges incident with \(v \), it follows that \(b \leq r + 1 \), and thus \(|S| \leq 3 + 2r \leq 5 \). By Lemma 17 we conclude that the edge cut satisfies one of the following conditions.

- \(r = 0 \), \(b = 1 \), \(|S| = 3 \), and \(B \) consists of a single vertex of \(C \), or
- \(r = 1 \) and \(G[B] \) is a subpath of \(C \), or
- \(r = 1 \), \(b = 2 \), and \(G[B] \) is a 5-cycle containing exactly one vertex not in \(V(C) \).

If \(C \) had a chord \(e \), this would give a contradiction by considering a curve \(c \) (with \(r = 0 \)) drawn next to the chord so that \(e \in E(G[B]) \) and \(b \leq 3 \); hence, \(C \) is an induced cycle. If two neighbors of \(v \) in \(C \) were adjacent, we would obtain a contradiction by considering a curve \(c \) (with \(r = 0 \) and \(b = 2 \)) drawn around them. If the graph \(G - (V(C) \cup \{v\}) \) were not connected, we would obtain a contradiction by considering a curve \(c \) (with \(r = 0 \) and \(b \leq 3 \)) chosen so that both \(A \) and \(B \) contain a vertex of \(G - (V(C) \cup \{v\}) \). Finally, if the graph \(G - (V(C) \cup \{v\}) \) were not 2-edge-connected, then we could choose \(c \) so that \(r = 1 \), \(b \leq 3 \), and \(B \) contains a vertex of \(G - (V(C) \cup \{v\}) \). But then \(G[B] \) would be a 5-cycle containing exactly one vertex not in \(V(C) \) and consequently two adjacent vertices of \(C \) would be neighbors of \(v \), which is a contradiction.

Therefore, the graph \(G - (V(C) \cup \{v\}) \) is 2-edge-connected. Since no two neighbors of \(v \) in \(C \) are adjacent, \(G \) contains at least 7 edges between \(V(C) \) and \(V(G) \setminus V(C) \cup \{v\} \), and thus \(G - (V(C) \cup \{v\}) \) has more than one vertex. \[\square \]

Finally, let us apply the parts (h) and (i) of Lemma 12.

Lemma 19. If \(\tilde{G} = (G, v, v) \) is an extremal plane near-cubic graph, then \(G \) has at least 28 vertices.
Proof. Recall that by the definition of extremal, \(d(\tilde{G}) = 7\). By Lemma 15, the face of \(G - v\) containing \(v\) is bounded by a cycle \(C\). Let \(v_1, ..., v_7\) be the neighbors of \(v\) in \(C\) in order. For \(i \in \{1, ..., 7\}\), let \(P_i\) denote the subpath of \(C\) from \(v_i\) to \(v_{i+1}\) (where \(v_8 = v_1\)).

By Lemma 18, the cycle \(C\) is induced, no two neighbors of \(v\) in \(C\) are adjacent, and the graph \(\bigcup G V C v - ((\))\) is 2-edge-connected and has more than one vertex. Hence, the face of \(\bigcup G V C v - ((\))\) containing \(v\) is bounded by a cycle \(C'\). For a subgraph \(\bigcap G G'\) containing \(C\), let \(X_G(P)\) denote the set of faces of \(G'\) separated from \(v\) by \(C\) and \(Y_G(P)\) denote the set of faces of \(G'\) separated from \(v\) by \(C\) but not by \(C'\). See Figure 8A for an example. For \(i \in \{1, ..., 7\}\), we say that a face \(f \in X_G(P)\) sees \(P_i\) if there exists a face \(f' \in Y_G(P)\) such that \(f\) is incident with an edge of \(P_i\) and the boundaries of \(f\) and \(f'\) share at least one edge.

If for some \(\in i \in \{1, ..., 7\}\), some face of \(X_G(P)\) sees \(P_i\), \(P_{i+2}\), and \(P_{i+4}\) (with indices taken cyclically) then \(\tilde{G} = \gamma(\gamma(\tilde{G}_1, \tilde{G}_2)), \tilde{G}_3)\) for plane near-cubic graphs \(\tilde{G}_1, \tilde{G}_2,\) and \(\tilde{G}_3\) with \(d(\tilde{G}_1) = d(\tilde{G}_2) = 6\) and \(d(\tilde{G}_3) = 7\) (see Figure 8B). Lemma 14 would imply \(n_{G_j} \in K_{d(\tilde{G})}\) for \(j \in \{1, 2, 3\}\), and by Lemma 12(h) and (i), we would have \(n_{G_j} \in K_j\), which is a contradiction. Hence,

\[
\text{no face of } X(G) \text{ sees } P_i, P_{i+2}, \text{ and } P_{i+4}. \tag{3}
\]

Let \(b_1\) be the number of edges of \(G\) with one end in \(C\) and the other end in \(C'\), let \(b_2\) be the number of chords of \(C'\), let \(b_3\) be the number of edges with one end in \(C'\) and the other end in \(\bigcap G V C - ((\))\), and let \(b_4\) be the number of edges of \(\bigcup G V C - ((\))\). Note that \(b_1 \geq 7, b_3\) is at least three times the number of components of \(G - v - V(C \cup C')\), \(|E(C)| = 7 + b_1, |E(C')| = b_1 + 2b_2 + b_3,\) and

\[
|E(G)| = 7 + (7 + b_1) + b_1 + (b_1 + 2b_2 + b_3) + b_2 + b_3 + b_4 = 14 + 3b_1 + 3b_2 + 2b_3 + b_4.
\]

A case analysis shows that since (3) holds, one of the following conditions holds:

- \(b_1 \geq 8\) and \(b_2 \geq 2\), or
- \(b_1 \geq 8\) and \(b_3 \geq 3\), or
- \(b_3 \geq 6\), or
- \(b_3 \geq 4\) and \(b_4 \geq 1\).

Hence \(3b_1 + 3b_2 + 2b_3 + b_4 \geq 30\), and thus \(G\) has at least 44 edges. Consequently, \(|V(G)| \geq (2|E(G)| - 4)/3 \geq 28\).

As a consequence, this verifies Conjecture 8 for small graphs.

Corollary 20. Conjecture 8 holds for all plane near-cubic graphs with less than 30 vertices.

Proof. Let \(\tilde{G} = (G, v, v)\) be a counterexample to Conjecture 8, and in particular \(n_{\tilde{G}} \notin B' = K_5\). By Lemma 13, there exists a plane near-cubic graph \(\tilde{G}_0 = (G_0, v_0, v_0)\) such that \(d(\tilde{G}_0) = 7, n_{\tilde{G}_0} \notin K_7,\) and \(|V(G_0)| \leq |V(G)| - 2\). Hence, there exists an extremal
plane near-cubic graph $\tilde{G}_1 = (G_1, v_1, \nu_1)$ such that $|V(G_1)| \leq |V(G_0)|$. By Lemma 19, we have $|V(G_1)| \geq 28$, and thus $|V(G)| \geq 30$.

Note that the analysis at the end of the proof of Lemma 19 can be improved. By a computer-assisted enumeration, one can show that to ensure that (3) holds, $G - \nu$ must contain one of 38 specific graphs as a minor; the smallest is depicted in Figure 9. Hence, every counterexample to Conjecture 8 must contain one of these 38 as a minor. The list of these 38 graphs is available at http://lidicky.name/pub/4cone/.

ACKNOWLEDGMENTS

Supported by the Neuron Foundation for Support of Science under Neuron Impuls program. Supported in part by NSF grants DMS-1600390 and DMS-1855653.

ORCID

Zdeněk Dvořák https://orcid.org/0000-0002-8308-9746
Bernard Lidický http://orcid.org/0000-0001-8612-3594

REFERENCES

1. K. Appel and W. Haken, *Every planar map is four colorable, Part I: Discharging*, Illinois J. Math. 21 (1977), 429–490.
2. K. Appel, W. Haken, and J. Koch, *Every planar map is four colorable, Part II: Reducibility*, Illinois J. Math. 21 (1977), 491–567.
3. D. I. A. Cohen, *Block count consistency and the four color problem*. Manuscript.
4. S. J. Gismondi and E. R. Swart, *A new type of 4-colour reducibility*, Congr. Numer. 82 (1991), 33–48.
5. N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas, *The four colour theorem*, J. Combin. Theory Ser. B. 70 (1997), 2–44.

6. P. G. Tait, *Note on a theorem in geometry of position*, Trans. Roy. Soc. Edinburgh. 29 (1880), 657–660.

7. W. Tutte, *A contribution on the theory of chromatic polynomials*, Canad. J. Math. 6 (1954), 80–91.

How to cite this article: Z. Dvořák and B. Lidicky, *Coloring count cones of planar graphs*, J. Graph Theory. 2022;100:84–100. https://doi.org/10.1002/jgt.22767