Effect of row spacing and herbicide programs for control of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in dicamba/glyphosate-resistant soybean

Shawn T. McDonald1, Adam Striegel1, Parminder S. Chahal2, Prashant Jha3, Jennifer M. Rees4, Christopher A. Proctor5 and Amit J. Jhala6

1Graduate Student, Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA; 2Field Development Representative, FMC, Lincoln, NE, USA; 3Associate Professor, Department of Agronomy, Iowa State University, Ames, IA, USA; 4Extension Educator, University of Nebraska–Lincoln, York, NE, USA; 5Associate Extension Educator, Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA and 6Associate Professor, Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA

Abstract

Glyphosate-resistant (GR) Palmer amaranth is one of the most difficult to control weeds in soybean production fields in Nebraska and the United States. An integrated approach is required for effective management of GR Palmer amaranth. Cultural practices such as narrow row spacing might augment herbicide efficacy for management of GR Palmer amaranth. The objectives of this study were to evaluate the effect of row spacing and herbicide programs for management of GR Palmer amaranth in dicamba/glyphosate-resistant (DGR) soybean. Field experiments were conducted in a grower’s field with a uniform population of GR Palmer amaranth near Carleton, Nebraska, in 2018 and 2019. Year-by-herbicide program-by-row spacing interactions were significant for all variables; therefore, data were analyzed by year. Herbicides applied PRE controlled GR Palmer amaranth ≥95% in both years 14 d after PRE (DAPRE). Across soybean row-spacing, most PRE followed by (fb) early-POST (EPRE) herbicide programs provided 84% to 97% control of Palmer amaranth compared with most EPOST fb late-post (LPRE) programs, excluding dicamba in single and sequential applications (82% to 95% control). Mixing microencapsulated acetochlor with a POST herbicide in PRE fb EPOST herbicide programs controlled Palmer amaranth ≥93% 14 d after EPOST and ≥96% 21 d after LPRE with no effect on Palmer amaranth density. Interaction of herbicide program-by-row spacing on Palmer amaranth control was not significant; however, biomass reduction was significant at soybean harvest in 2019. The herbicide programs evaluated in this study caused no soybean injury. Due to drought conditions during a majority of the 2018 growing season, soybean yield in 2018 was reduced compared with 2019.

Introduction

Native to the American Southwest, Palmer amaranth has spread across the continental United States since the beginning of the 20th century due to seed and equipment transportation and agricultural expansion (Sauer 1957; Ward et al. 2013). Historically, Palmer amaranth was not a management concern in Nebraska due to its limited geographical distribution; however, the prevalence of Palmer amaranth has increased since the previous decade, with confirmed populations in most Nebraska counties. A survey conducted in Nebraska reported Palmer amaranth as the fourth most troublesome weed to manage in agronomic crops in the Panhandle and West Central regions of Nebraska and the sixth most troublesome weed across the state (Sarangi and Jhala 2018). Reports from this survey are similar to trends in the southeastern United States, where herbicide-resistant (HR), particularly glyphosate-resistant (GR), Palmer amaranth has progressively become a troublesome weed to manage in cotton (Gossypium hirsutum L.), corn (Zea mays L.), and soybean production fields (Webster and Nichols 2012).

Palmer amaranth is a prolific seed producer despite competition with agronomic crops (Burke et al. 2007; Guo and Al-Khatib 2003; Massinga et al. 2001), with female plants producing ≥200,000 seeds per plant (Keeley et al. 1987; Scott and Smith 2011; Sellers et al. 2003). Palmer amaranth has the potential to produce high numbers of seed. Keeley et al. (1987) reported that Palmer amaranth could produce 200,000 to 600,000 seeds per plant, whereas Scott and Smith (2011) reported seed production from 150,000 to 200,000 seeds per plant when Palmer amaranth was grown under competition with cotton or soybean. However, Scott and Smith (2011) indicated that seed production of Palmer amaranth grown without competition can...
exceed 1.5 million seeds per plant. Like waterhemp (Amaranthus tuberculatus Sauer), Palmer amaranth has an extended emergence period (from May to September) in the southeastern United States (Jha et al. 2008), and from May to August in the midwestern United States (Spaunhorst et al. 2014). In addition, Palmer amaranth is a dioecious species primarily pollinated by wind (Franssen et al. 2001; Ward et al. 2013) that can transfer herbicide resistance alleles via pollen-mediated gene flow (Jhala et al. 2021).

Glyphosate, a broad-spectrum systemic herbicide, is the most widely used agricultural pesticide globally (Benbrook 2016). An estimated 8.6 billion kg of glyphosate was applied worldwide between 1974 and 2014, with the United States accounting for 19%, or 1.6 billion kg, of global usage (Benbrook 2016). Glyphosate use in the United States was estimated at 18 million kg per year in 1996, increasing to an estimated 125 million kg in 2013 (USGS 2020). The popularity of glyphosate can be attributed in large part to the widespread adoption of GR crops, low cost, broad spectrum of weed control, and flexibility with crop rotation without carryover injury (Woodburn 2000). Glyphosate was ranked as the most commonly used herbicide in GR corn-soybean cropping systems in Nebraska in a survey conducted in 2015 (Sarangi and Jhala 2018).

Increased reliance on herbicides resulting from the adoption of reduced/no-tillage cropping systems and continuous use of single site-of-action herbicides has led to the evolution of herbicide-resistant weeds (Chahal et al. 2017, 2018). As of 2020, a total of 262 weeds have evolved resistance to 23 of the 26 available herbicide sites of action (Heap 2020). In the United States, continued use of glyphosate in agronomic cropping systems has led to the evolution of resistance to the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) pathway in several weeds, including Palmer amaranth (Gaines et al. 2011). The first instance of GR Palmer amaranth was confirmed in Georgia in 2004 (Culpepper et al. 2006). Since then, GR Palmer amaranth has been confirmed in 39 states (Heap 2020), including Nebraska (Chahal et al. 2017; Vieira et al. 2018). Palmer amaranth biotypes resistant to synthetic auxin growth regulators, acetolactate synthase (ALS)-, photosystem II (PS II)-, hydroxypyruvylpyruvate dioxygenase (HPPD)-, microtubule-, long chain fatty acid-, and protoporphyrinogen oxidase (PPO)-inhibiting herbicides have been reported (Heap 2020). A population of dicamba-resistant Palmer amaranth was identified in Tennessee in 2020 (Steckel 2020). Multiple herbicide-resistant Palmer amaranth populations have been reported in multiple states; for example, Schwartz-Lazo et al. (2017) confirmed a Palmer amaranth population resistant to glyphosate, ALS-, PPO-, and microtubule-inhibiting herbicides in Arkansas, Jhala et al. (2014) reported atrazine and HPPD-inhibiting herbicide resistant Palmer amaranth in Nebraska. Kumar et al. (2019) confirmed Palmer amaranth resistant to atrazine, chlorsulfuron, 2,4-D, glyphosate, and mesotrione in Kansas.

While herbicides are currently the primary tool for weed control in agronomic crops in the United States, integration of non-chemical control methods (i.e., cultural, mechanical, and biological) could provide enhanced weed control. Previous studies have demonstrated the benefits of integrating cultural control methods such as tillage, crop rotation, crop density, row spacing, ground cover, and cover crops with herbicides for control of GR horseweed (Conyza canadensis L.), burclover (Medicago polymorpha L.), common lambsquarters (Chenopodium album L.), littleseed canarygrass (Phalaris minor Retz.), scarlet pimpernel (Anagallis arvensis L.), toothed dock (Rumex dentatus L.), and GR giant ragweed (Ambrosia trifida L. Bhullar et al. 2015; Chahal and Jhala 2019; Ganie et al. 2016). Narrow row spacing has been shown previously to enhance weed control and reduce weed seed production in GR soybean, glufosinate-resistant soybean, and sweet potato (Bell et al. 2015; Meyers et al. 2010; Whitaker et al. 2010).

The adoption of dicamba/glyphosate-resistant (DGR) soybean has been high since its commercialization, with Beckie et al. (2019) reporting >50% market share in the United States by 2019. This trend corresponds with survey results that reported that DGR soybean adoption increased from 20% in 2017 to almost 80% in 2019 in Nebraska (Chahal and Jhala 2019; Werle et al. 2018). Given the continued spread of HR weeds such as GR Palmer amaranth, this adoption trend is indicative of producers’ search for alternative weed management options in soybean. Due to the lack of scientific literature on integration of narrow row spacing with dicamba-based herbicide programs for control of GR Palmer amaranth in DGR soybean, the objectives of this study were to determine the effects of soybean row spacing (38 or 76 cm) and herbicide programs for GR Palmer amaranth control, density, and biomass as well as soybean injury and yield in DGR soybean in a rainfed grower’s field in Nebraska.

Materials and Methods

Study Site and Experimental Design

Field experiments were conducted during the summer of 2018 and 2019 in a grower’s rainfed field in Thayer County, Carleton, NE (40.30°N, 97.67°W). The field was naturally infested with Palmer amaranth with 37-fold to 40-fold resistance to glyphosate (Chahal et al. 2017). The soil texture at the research site was Crete silt loam (montmorillonitic, mesic, Pachic Argustolls) with a pH of 6.0, 19% sand, 63% silt, 18% clay, and 2.6% organic matter content. Palmer amaranth was the primary weed in the field with sporadic presence of horseweed, green foxtail (Setaria viridis P. Beauv.), and giant foxtail (S. faberi Herrm.).

The producer’s field had been in a GR corn-soybean rotation with reliance on glyphosate for weed control in a no-till production system for the previous 10 yr. Corn residue from the previous cropping season was retained and the study was conducted using no-till practices. Paraquat (Gramoxone® SL; Syngenta Crop Protection, Greensboro, NC) at 840 g ai ha⁻¹ plus 2,4-D ester (Weedone® LV6; Nufarm Inc., Burr Ridge, IL) at 386 g ae ha⁻¹ plus a nonionic surfactant (Induce®; Helena Chemical, Collierville, TN) at 0.25% vol/vol was applied 2 wk before soybean planting with a tractor-mounted sprayer calibrated to deliver 140 L ha⁻¹ at 276 kPa for control of winter annual weeds.Dicamba/glyphosate-resistant soybean (Northern King NK S29K3X) was planted on May 10, 2018, and May 15, 2019 at 346,000 seeds ha⁻¹ at a depth of 3.0 cm.

Treatments were arranged in a randomized split-block design with four replications (Fedeler and King 2006). Herbicide programs were assigned as the whole plot factor (Table 1) in a randomized complete block, whereas row spacing (38 or 76 cm) was assigned as the subplot factor, which resulted in nonstandard incomplete “column” blocks, each containing 15 herbicide programs across the four replications. An incomplete blocking factor was added to simplify the field operation of planting soybean in 38-cm and 76-cm row spacing and reduce field traffic to avoid soil compaction. Plots were 3 m wide by 9 m long with four soybean rows spaced 76 cm apart or six soybean rows spaced 38 cm apart. In total, 15 herbicide programs were evaluated: two early-POST (EPOST), four EPOST followed by (fb) late-POST (LPOST), four...
Table 1. Herbicides and application timings, rates, and products used for control of glyphosate-resistant Palmer amaranth in dicamba/glyphosate-resistant soybean in field experiments conducted near Carleton, NE, in 2018 and 2019.

Herbicide program	Timing*	Rate*	Trade name	Manufacturerb	Adjuvantsb,c
Nontreated control	–	–	–	–	–
Dicamba	EPOST	560 g ai (g ha)⁻¹	XtendiMax	Bayer	–
Glyphosate	EPOST	1,260 g ai (g ha)⁻¹	Roundup	Bayer	–
Glyphosate	EPOST fb LPOST	560 g ai (g ha)⁻¹	XtendiMax	Bayer	–
Glyphosate	EPOST fb LPOST	1,260 g ai (g ha)⁻¹	Roundup	Bayer	–
ImaZethapyr	EPOST fb LPOST	70 g ai (g ha)⁻¹	Pursuit	Bayer	–
Imazethapyr + fomesafen/S-metolachlor	EPOST fb LPOST	70 g ai (g ha)⁻¹	Pursuit + Prefix	BASF, Syngenta	–
Dicamba	EPOST fb LPOST	560 g ai (g ha)⁻¹	XtendiMax	Bayer	–
Dicamba + chlorimuron/flumioxazin	PRE fb EPOST	560 g ai (g ha)⁻¹	XtendiMax + Rowel FX	Bayer	–
Dicamba + chlorimuron/flumioxazin	PRE fb EPOST	560 g ai (g ha)⁻¹	XtendiMax	Bayer	–
Flumioxazin/metribuzin/pyroxasulfone	PRE fb EPOST	475 g ai (g ha)⁻¹	Fierce MTZ	Syngenta	–
Dicamba + acetylchlor	PRE fb EPOST	560 g ai (g ha)⁻¹	XtendiMax + Warrant	Bayer	–
Dicamba + acetylchlor	PRE fb EPOST	560 g ai (g ha)⁻¹	XtendiMax + Warrant	Bayer	–
Dicamba + acetylchlor	PRE fb EPOST	560 g ai (g ha)⁻¹	XtendiMax + Warrant	Bayer	–
Dicamba + acetylchlor	PRE fb EPOST	560 g ai (g ha)⁻¹	XtendiMax + Warrant	Bayer	–
Dicamba + acetylchlor	PRE fb EPOST	560 g ai (g ha)⁻¹	XtendiMax + Warrant	Bayer	–
Flumioxazin/metribuzin/pyroxasulfone	PRE fb EPOST + RH	475 g ai (g ha)⁻¹	Fierce MTZ	Syngenta	–
Dicamba + acetylchlor	PRE fb EPOST + RH	560 g ai (g ha)⁻¹	XtendiMax + Warrant	Bayer	–
Dicamba + acetylchlor	PRE fb EPOST + RH	560 g ai (g ha)⁻¹	XtendiMax + Warrant	Bayer	–
Dicamba + acetylchlor	PRE fb EPOST + RH	560 g ai (g ha)⁻¹	XtendiMax + Warrant	Bayer	–
Dicamba + acetylchlor	PRE fb EPOST + RH	560 g ai (g ha)⁻¹	XtendiMax + Warrant	Bayer	–

*Abbreviations: ai, active ingredient; ae, acid equivalent; AMS, ammonium sulfate (N-Pak AMS Liquid, Winfield United, LLC., St. Paul, MN 55164); DRA, drift reducing agent (Intact, Precision Laboratories, Waukegan, IL 60085); EPOST, early POST-emergence; fb, followed by; LPOST, late POST-emergence; NIS, nonionic surfactant (Induce, Helena Chemical, Collierville, TN 38017); RH, residual herbicide; WC, water conditioner (Class Act Ridion, Winfield United, Arden Hills, MN, 55126).

bBayer CropScience, Research Triangle Park, NC; BASF Corporation, Research Triangle Park, NC; Syngenta Crop Protection, LLC., Greensboro, NC; Valent USA Corporation, Walnut Creek, CA.

cAbbreviations: ai, active ingredient; ae, acid equivalent; AMS, ammonium sulfate (N-Pak AMS Liquid, Winfield United, LLC., St. Paul, MN 55164); DRA, drift reducing agent (Intact, Precision Laboratories, Waukegan, IL 60085); EPOST, early POST-emergence; fb, followed by; LPOST, late POST-emergence; NIS, nonionic surfactant (Induce, Helena Chemical, Collierville, TN 38017); RH, residual herbicide; WC, water conditioner (Class Act Ridion, Winfield United, Arden Hills, MN, 55126).

DAPRE, 14 DAEPOST, and 14 DALPOST on a scale of 0% to 100%, with 0% representing no injury and 100% representing complete plant death. Aboveground biomass of Palmer amaranth was collected 14 DAPRE and 21 DALPOST. Biomass samples were oven-dried at 65°C for 14 d, with Palmer amaranth aboveground biomass data converted into percent biomass reduction compared with the nontreated control using the following equation (Wortman 2014):

\[
\text{Aboveground biomass reduction (\%)} = \left(\frac{C - B}{C} \right) \times 100
\]

where \(C\) is equal to the aboveground biomass of the nontreated control plot and \(B\) is equal to the biomass of an individual treated plot. Soybean yield was taken from the center two or four rows in each plot (for 76- and 38-cm row spacing, respectively) using a plot combine (Gleaner K2; AGCO, Duluth, GA) and adjusted to 13% moisture content.

Data Collection

Palmer amaranth control from PRE-applied herbicides was visually assessed 14 and 28 d after PRE (DAPRE) herbicide applications using a scale of 0% to 100%, with 0% representing no control and 100% representing complete control. Likewise, Palmer amaranth control from POST herbicides was visually assessed at 14 and 21 d after early-POST (DAEPOST) applications, 21 d after late-POST (DALPOST) applications, and prior to soybean harvest using the same scale at which PRE-applied herbicides were evaluated. Palmer amaranth density was recorded 14 DAPRE, 14 DAEPOST, and 14 DALPOST by counting Palmer amaranth plants in two 0.5-m² quadrats placed randomly between the two or four center soybean rows (76- or 38-cm row spacing, respectively) in each plot and converting to plants per square meter. Soybean injury was visually assessed at 14 DAPRE, 14 DAEPOST, and 14 DALPOST on a scale of 0% to 100%, with 0% representing no injury and 100% representing complete plant death. Aboveground biomass of Palmer amaranth was collected 14 DAPRE and 21 DALPOST. Biomass samples were oven-dried at 65°C for 14 d, with Palmer amaranth aboveground biomass data converted into percent biomass reduction compared with the nontreated control using the following equation (Wortman 2014):
Normality assumptions were tested for each variable using Shapiro-Wilk tests and Normal Q-Q plots. Total aboveground Palmer amaranth biomass reduction and Palmer amaranth control ratings were $\log(x+1)$ or logit-transformed and fit to generalized linear mixed-effect models using \texttt{GLMMTMB} functions with gaussian (link = “identity”) and beta (link = “logit”) error distributions, respectively (Stroup 2015). Likewise, soybean yield and weed density data were $\log(x+1)$ or square root transformed and fit to linear mixed-effect models using the \texttt{lmer} function (Kniss and Streibig 2018). Selection for final \texttt{GLMMTMB} models was based on model dispersion parameter estimates and Akaike information criterion (AIC) values, with $\log(x+1)$ or logit transformation with beta and gaussian error distributions selected for all response variables, respectively. Likewise, final \texttt{lmer} models were selected based on restricted maximum likelihood (REML) criterion at convergence values and AIC values. Prior to conducting ANOVA, variance assumptions were tested for each variable at $\alpha = 0.05$ using Bartlett and Fligner-Killen tests (Kniss and Streibig 2018). Variables that failed variance assumptions were subsequently assessed for outliers and heterogeneity of variance by plotting residual values (Knezevic et al. 2003; Ritz et al. 2015).

The ANOVA was performed using the \texttt{car} package (Fox and Weisberg 2019). For \texttt{lmer} models, ANOVA was conducted with Type III Wald F-tests, whereas \texttt{GLMMTMB} models used Type III Wald chi-square tests. After conducting ANOVA, treatment estimated marginal means were separated using the \texttt{EMMEANS} package (Lenth 2019) and \texttt{multcomp} package (Hothorn et al. 2008). Estimated marginal means included post hoc Tukey P-value adjustments and Sidak method confidence-level adjustments, with compact letter display generated via the \texttt{multcomp_cld} function. A priori contrasts were performed using the \texttt{gmodels} package (Warnes et al. 2018) to compare EPOST, EPOST fb LPOST, and PRE fb EPOST herbicide programs. In the first set of a priori contrasts, PRE fb EPOST programs were pooled together regardless of the inclusion of a RH at EPOST. Following these sets of contrasts, PRE fb EPOST herbicide programs were further separated into PRE fb EPOST, and PRE fb EPOST plus RH to evaluate the addition of acetochlor as an overlapping residual herbicide. Following treatment means separation and contrast analysis, data were back-transformed for the presentation of results.

Results and Discussion

Year-by-herbicide program-by-row spacing interactions were significant for all experimental variables; therefore, data were separated and presented by year.

Temperature and Precipitation

Growing conditions differed between the 2018 and 2019 growing seasons (Figure 1). In both years, field experiments were conducted under rainfed conditions. During 2018, cumulative precipitation received was below the 30-yr average (517 mm) for most of the growing season. In contrast, during 2019, cumulative precipitation received during the growing season exceeded the 30-yr average by 221 mm. Average daily temperatures in 2018 exceeded the 30-yr average during the early growing season, whereas they closely resembled the 30-yr average in 2019 (Figure 1). Herbicide programs evaluated in this study displayed excellent safety in DGR soybean, with no observable injury across both years (data not shown).

Palmer Amaranth Control

Herbicides applied PRE controlled GR Palmer amaranth $\geq 95\%$ in both years 14 DAPRE (Table 2). The PRE herbicides controlled Palmer amaranth 91% to 96% in 2018, whereas in 2019, flumioxazin/metribuzin/pyroxasulfone and imazethapyr/pyroxasulfone/saflufenacil provided 95% and 93% control, respectively, at 21 DAPRE. In 2019, dicamba plus chlorimuron/flumioxazin applied PRE controlled Palmer amaranth 80% compared to 45% control with dicamba (Table 2). Reduced control of Palmer amaranth with dicamba applied alone in 2019 can be attributed primarily to the shorter residual control by dicamba compared to other PRE herbicide programs evaluated as observed by Hedges et al. (2019). Efficacy of premixed and tank-mixed PRE herbicides with multiple effective sites of action on Palmer amaranth control were previously evaluated in soybean fields in Nebraska, with Striegel et al. (2020) and Shayam et al. (2021) reporting 93% to 99% control 14 and 28 DAPRE. Results from the current study are similar to those reported by Meyer et al. (2015), when flumioxazin/pyroxasulfone, metribuzin, dicamba, S-metolachlor, S-metolachlor/fomesafen, acetochlor, isoxaflutole, and S-metolachlor/mesotrione applied PRE provided 95% to 99% control of Palmer amaranth 21 DAPRE in field experiments conducted in Arkansas, Illinois, Indiana, Missouri, Nebraska, and Tennessee.

At 14 DAEPOST, the interaction of herbicide program-by-row spacing and the main effect of row spacing for Palmer amaranth control were not significant for either year. For both years, EPOST and EPOST fb LPOST herbicide programs provided...
Table 2. Effect of row spacing and herbicide programs on control of glyphosate-resistant Palmer amaranth in dicamba glyphosate-resistant soybean 14 and 21 DAPRE in rainfed field experiments conducted near Carleton, NE, in 2018 and 2019.

PRE herbicide	Rate† (g ai/ae ha⁻¹)	14 DAPREabc,d	21 DAPREabc,d	14 DAPREabc,d	21 DAPREabc,d
		2018	2019	2018	2019
Dicamba	560	97	99	91	45 c
Dicamba + chlorimuron/flumioxazin	560 + 85	96	99	95	80 b
Flumioxazin/metribuzin/pyroxasulfone	475	97	99	96	95 a
Imazethapyr/pyroxasulfone/saflufenacil	215	95	99	95	93 ab
Row spacing					
38 cm		96	99	96	84
76 cm		96	99	92	86
Treatment P-value		0.655	0.859	0.324	< 0.001
Row spacing P-value		0.195	0.999	0.097	0.131
Treatment*row spacing P-value		0.527	0.999	0.522	0.821

*Abbreviations: ai, active ingredient; ae, acid equivalent; DAPRE, days after pre-emergence herbicide; PRE, pre-emergence herbicide; RH, residual herbicide.
†PRE fb EPOST (P < 0.05) 14 DAEPOST for both years, with PRE fb EPOST herbicide programs providing 90% and 99% Palmer amaranth control in 2018 and 2019, respectively. Likewise, EPOST fb EPOST applications of glyphosate provided 10% to 30% control across both years. Reduced Palmer amaranth control with imazethapyr and glyphosate observed in this study can be attributed primarily to the prevalence of ALS-inhibitor-resistant and GR Palmer amaranth biotypes present at the study location (Chahal et al. 2017). In EPOST and EPOST fb LPOST herbicide programs where dicamba was applied, Palmer amaranth control from EPOST programs varied from 36% to 68% in 2018 and 85% to 89% in 2019 (Table 3). A priori contrasts comparing the main effects of herbicides on Palmer amaranth control were significant (P < 0.05) 14 DAEPOST for both years, with PRE fb EPOST herbicide programs providing 90% and 99% Palmer amaranth control in 2018 and 2019, respectively. The addition of acetochlor with EPOST herbicides increased Palmer amaranth control 14 DAEPOST in 2018 and 2019 (88% vs. 93% and 83% vs. 94%, respectively).

At 21 DAEPOST, most PRE fb EPOST and PRE fb EPOST + RH programs continued to provide 91% to 99% Palmer amaranth control in 2018, with the exception of dicamba PRE fb dicamba EPOST (84%), results for which were similar to those of EPOST-only programs (82%). In contrast, dicamba applied EPOST fb LPOST controlled Palmer amaranth by 91%, similar to that controlled by PRE fb EPOST programs. These results were similar at 21 DAEPOST in 2019, with PRE fb EPOST, PRE fb EPOST + RH, and stand-alone applications of dicamba applied EPOST or EPOST fb LPOST providing 85% to 95% control of Palmer amaranth. Dicamba applied LPOST following imazethapyr or imazethapyr plus fomesafen/S-metolachlor applied EPOST controlled Palmer amaranth by 58% to 85%.

At 21 DAEPOST, most PRE fb EPOST and PRE fb EPOST + RH programs continued to provide 91% to 99% Palmer amaranth control in 2018, with the exception of dicamba PRE fb dicamba EPOST (84%), results for which were similar to those of EPOST-only programs (82%). In contrast, dicamba applied EPOST fb LPOST controlled Palmer amaranth by 91%, similar to that controlled by PRE fb EPOST programs. These results were similar at 21 DAEPOST in 2019, with PRE fb EPOST, PRE fb EPOST + RH, and stand-alone applications of dicamba applied EPOST or EPOST fb LPOST providing 85% to 95% control of Palmer amaranth. Dicamba applied LPOST following imazethapyr or imazethapyr plus fomesafen/S-metolachlor applied EPOST controlled Palmer amaranth by 58% to 85%.

At 21 DALPOST, most PRE fb EPOST and PRE fb EPOST + RH programs continued to provide 91% to 99% Palmer amaranth control in 2018, with the exception of dicamba PRE fb dicamba EPOST (84%), results for which were similar to those of EPOST-only programs (82%). In contrast, dicamba applied EPOST fb LPOST controlled Palmer amaranth by 91%, similar to that controlled by PRE fb EPOST programs. These results were similar at 21 DALPOST in 2019, with PRE fb EPOST, PRE fb EPOST + RH, and stand-alone applications of dicamba applied EPOST or EPOST fb LPOST providing 85% to 95% control of Palmer amaranth. Dicamba applied LPOST following imazethapyr or imazethapyr plus fomesafen/S-metolachlor applied EPOST controlled Palmer amaranth by 58% to 85%.

At 21 DALPOST, most PRE fb EPOST and PRE fb EPOST + RH programs continued to provide 91% to 99% Palmer amaranth control in 2018, with the exception of dicamba PRE fb dicamba EPOST (84%), results for which were similar to those of EPOST-only programs (82%). In contrast, dicamba applied EPOST fb LPOST controlled Palmer amaranth by 91%, similar to that controlled by PRE fb EPOST programs. These results were similar at 21 DALPOST in 2019, with PRE fb EPOST, PRE fb EPOST + RH, and stand-alone applications of dicamba applied EPOST or EPOST fb LPOST providing 85% to 95% control of Palmer amaranth. Dicamba applied LPOST following imazethapyr or imazethapyr plus fomesafen/S-metolachlor applied EPOST controlled Palmer amaranth by 58% to 85%.

A priori contrasts comparing the main effects of herbicide programs on Palmer amaranth control were significant 21 DALPOST with PRE fb EPOST herbicide programs providing ≥92% Palmer amaranth control. Tank-mixing acetochlor with POST herbicides increased Palmer amaranth control 21 DALPOST (Table 3). In 2018, the interaction of herbicide program by row spacing was significant (P < 0.001) for Palmer amaranth control 21 DALPOST, although comparisons of estimated marginal means across row spacing was only significant for EPOST applications of glyphosate, which provided 53% and 26% Palmer amaranth control in 38- and 76-cm row spacing, respectively (Table 4). In both years, contrasts comparing the main effects of herbicide programs on Palmer amaranth control were significant 21 DALPOST, with PRE fb EPOST herbicide programs providing 92% and 88% control in 2018 and 2019, respectively. Mixing acetochlor with POST herbicides increased Palmer amaranth control 21 DALPOST (Table 3). The increased Palmer amaranth control via the inclusion of acetochlor as an overlapping residual herbicide is similar to results reported by Sarangi and Jhala (2019) in which overlapping residual herbicides increased Palmer amaranth control and biomass reductions in conventional soybean 28 DA POST in a field study in Nebraska.

Prior to soybean harvest, most PRE fb EPOST and PRE fb EPOST + RH programs controlled GR Palmer amaranth by 91% to 99%, with the exception of dicamba fb dicamba in 2018, which provided 76% control (Table 5). These results are similar to those reported by Bell et al. (2015) in a 2-yr study in which
Table 3. Control of glyphosate-resistant Palmer amaranth at 14 and 21 DAEPOST and 21 DALPOST in dryland field experiments conducted near Carleton, NE to determine the effect of row spacing and herbicide programs in dicamba/glyphosate-resistant soybean in 2018 and 2019.

Herbicide Program	Timing	14 DAEPOST a,b,c	21 DAEPOST a,b,c	21 DALPOST a,b,c			
		2018	2019	2018	2019	2018	2019
		%	%	%	%	%	%
Nontreated control	-	0	0	0	0	0	0
Dicamba	EPOST	36 d	85 abc	90 ab	94 a	82 cd	95 a
Glyphosate	EPOST	30 d	13 d	43 ef	5 c	38 f	2 c
Dicamba fb dicamba	EPOST fb LPOST	68 bc	89 abc	91 ab	94 a	91 abc	95 a
Glyphosate fb glyphosate	EPOST fb LPOST	36 f	10 f	36 f	5 c	37 f	9 c
Imazethapyr fb dicamba	EPOST fb LPOST	15 d	4 d	58 de	3 c	58 e	48 b
Imazethapyr + fomesafen/S-metolachlor fb dicamba	EPOST LPOST	64 c	72 c	75 cd	59 b	74 d	85 ab
Dicamba dicamba	PRE fb EPOST	79 abc	81 bc	86 bc	90 ab	84 bcd	90 a
Dicamba + chlorimuron/flumioxazin fb dicamba	PRE fb EPOST	90 abc	86 abc	95 ab	96 a	96 abc	96 a
Flumioxazin/metribuzin/pyroxasulfone fb dicamba	PRE fb EPOST	92 ab	95 ab	96 a	96 a	96 ab	87 ab
Imazethapyr/pyroxasulfone/saflufenacil fb dicamba	PRE fb EPOST	89 abc	94 abc	92 ab	91 ab	91 abc	86 ab
Dicamba fb dicamba + acetochlor	PRE fb EPOST + RH	92 ab	89 abc	94 ab	89 a	94 abc	85 ab
Dicamba + chlorimuron/flumioxazin fb dicamba + acetochlor	PRE fb EPOST + RH	93 ab	89 abc	96 a	84 ab	97 ab	89 a
Flumioxazin/metribuzin/pyroxasulfone fb dicamba + acetochlor	PRE fb EPOST + RH	95 a	96 a	97 a	94 a	99 a	93 a
Imazethapyr/pyroxasulfone/saflufenacil fb dicamba + acetochlor	PRE fb EPOST + RH	92 ab	90 abc	96 a	88 ab	98 ab	93 a

Row spacing
38 cm
69 76 89 75 81 83
76 cm
68 77 67 75 78 78

Treatment P-value
< 0.001 0.020 < 0.001 < 0.001 < 0.001
Row spacing P-value
0.599 0.891 0.959 0.611 0.052 0.461
Treatment*row spacing P-value
0.980 0.263 0.182 0.995 < 0.001 0.163
Contrasts
EPOST vs EPOST fb LPOST
32 vs 42 NS NS NS NS NS NS
EPOST vs PRE fb EPOST
32 vs 90 81 vs 99 66 vs 94 47 vs 93 61 vs 94 48 vs 92
EPOST fb LPOST vs PRE fb EPOST
42 vs 90 81 vs 99 64 vs 94 37 vs 93 65 vs 94 59 vs 92
PRE fb EPOST vs. PRE fb EPOST + RH
88 vs 93 83 vs 94 * 92 vs 97 NS 92 vs 97 88 vs 96

aAbbreviations: DAEPOST, days after early-POST emergence; DALPOST, days after late-POST emergence; DAPRE, days after pre-emergence; EPOST, early-POST emergence; fb, followed by; LPOST, late-POST emergence; RH, residual herbicide.
bData for each year were logit transformed before analysis; however back-transformed values are presented based on interpretations of transformed data.
cMeans presented within the same column with no common letters are significantly different according to estimated marginal means with Sidak confidence-level adjustments and Tukey P-value adjustments.
dA priori contrasts; * = significant (P < 0.05); ** = significant (P < 0.01); *** = significant (P < 0.001); NS, nonsignificant (P ≥ 0.05).

Herbicide programs receiving PRE herbicides controlled Palmer amaranth by ≥95% regardless of row spacing when evaluated prior to harvest. The EPOST and EPOST fb LPOST applications of dicamba provided similar control to PRE fb EPOST herbicide programs, with the exception of dicamba applied EPOST in 2018 (72%). As observed at 21 DALPOST, imazethapyr fb dicamba and imazethapyr mixed with fomesafen/S-metolachlor fb dicamba provided 60% to 78% Palmer amaranth control. A priori contrasts comparing the main effects of herbicide programs on Palmer amaranth control are significant for preharvest Palmer amaranth control. Mixing acetochlor with EPOST herbicide increased Palmer amaranth control at preharvest to 99% Palmer amaranth control. Mixing acetochlor with dicamba in DGR soybean applied POST for Palmer amaranth control is limited. The inconsistency of preharvest Palmer amaranth control with acetochlor has been reported elsewhere. For example, Spaunhorst et al. (2014) reported that the inclusion of acetochlor applied EPOST or LPOST did not provide additional control of waterhemp compared to programs without acetochlor in DGR soybean in Missouri. Likewise, including acetochlor in an overlapping residual herbicide program did not increase Palmer amaranth control compared to programs lacking acetochlor in cotton (Manuchehri et al. 2017). In contrast, research conducted in Nebraska with multiple HR Palmer amaranth in corn has indicated that acetochlor applied POST in a PRE fb POST herbicide program was an effective management strategy (Chahal et al. 2018). An important distinction to note is that the inclusion of acetochlor with POST herbicides did not result in reduced Palmer amaranth control (via antagonistic effects) compared to corresponding programs that did not include acetochlor.

Palmer Amaranth Biomass Reduction

The main effect of row spacing and the interaction of herbicide-by-row spacing were not significant 14 DAEPOST in 2018 (Table 6). The PRE fb EPOST and PRE fb EPOST plus RH programs provided the highest reduction of Palmer amaranth biomass (91% to 100%) compared to EPOST (23% to 78%) and EPOST fb
Table 4. Interaction of herbicide programs and row spacing (38 cm or 76 cm) for control of glyphosate-resistant Palmer amaranth at 21 DAEP and 21 DALP and biomass reduction at pre-harvest in rainfed field experiments conducted near Carleton, NE, in dicamba/glyphosate-resistant soybean in 2018 and 2019.

Herbicide Program	Timing	2018 A B C	2019 A B C		
		38 cm control	76 cm control	38 cm control	76 cm control
Nontreated control					
Dicamba	EPOST	87 abcd	76 cde	34 abc	91 a
Dicamba fb dicamba	EPOST fb LPOST	95 abc	88 abc	100 a	100 a
Glyphosate fb glyphosate	EPOST fb LPOST	31 hi	42 gh	74 ab	20 bc
Imazethapyr + fomesafen/S-metolachlor fb dicamba	EPOST fb LPOST	54 fg	62 ef	100 a	100 a
Imazethapyr + fomesafen/S-metolachlor fb dicamba	EPOST fb LPOST	70 def	79 bcde	100 a	100 a
Imazethapyr fb dicamba	PRE fb EPOST	88 abc	80 abcde	100 a	100 a
Imazethapyr + fomesafen/S-metolachlor fb dicamba	PRE fb EPOST	96 ab	95 abc	96 a	94 a
Imazethapyr + fomesafen/S-metolachlor fb dicamba	PRE fb EPOST	99 ab	97 ab	100 a	100 a
Imazethapyr + fomesafen/S-metolachlor fb dicamba	PRE fb EPOST	95 abc	87 abcde	100 a	100 a
Imazethapyr + fomesafen/S-metolachlor fb dicamba	PRE fb EPOST + RH	93 abc	94 abc	100 a	100 a
Imazethapyr + fomesafen/S-metolachlor fb dicamba	PRE fb EPOST + RH	99 a	94 abc	100 a	100 a
Imazethapyr + fomesafen/S-metolachlor fb dicamba	PRE fb EPOST + RH	99 a	98 a	100 a	100 a
Imazethapyr + fomesafen/S-metolachlor fb dicamba	PRE fb EPOST + RH	98 ab	98 ab	100 a	100 a
Treatment*row spacing P-value		< 0.001	> 0.004		

Table 5. Pre-harvest control of glyphosate-resistant Palmer amaranth and soybean yield in rainfed field experiments conducted near Carleton, NE to determine the effect of row spacing and herbicide program in dicamba/glyphosate-resistant soybean in 2018 and 2019.

Herbicide Program	Timing	2018 A B C	2019 A B C		
		38 cm	76 cm	38 cm	76 cm
Nontreated control		0	0	373 ± 51 cd	2,284 ± 199 c
Dicamba	EPOST	72 b	95 a	655 ± 85 abc	4,220 ± 368 ab
Glyphosate fb dicamba	EPOST fb LPOST	28 c	4 c	459 ± 61 bc	3,176 ± 269 bc
Imazethapyr fb dicamba	EPOST fb LPOST	90 a	96 a	564 ± 75 abc	4,613 ± 390 a
Imazethapyr + fomesafen/S-metolachlor fb dicamba	EPOST fb LPOST	74 b	78 b	572 ± 77 abc	5,037 ± 439 a
Dicamba fb dicamba	PRE fb EPOST	76 b	99 a	695 ± 93 abc	4,350 ± 377 ab
Dicamba + chlorimuron/flumioxazin fb dicamba	PRE fb EPOST	92 a	99 a	835 ± 108 ab	4,479 ± 390 ab
Flumioxazin/metribuzin/pyroxasulfone fb dicamba	PRE fb EPOST	96 a	99 a	895 ± 116 a	4,997 ± 436 a
Imazethapyr + fomesafen/S-metolachlor fb dicamba	PRE fb EPOST	91 a	99 a	929 ± 125 a	4,765 ± 414 a
Dicamba + chlorimuron/flumioxazin fb dicamba + acetochlor	PRE fb EPOST + RH	93 a	99 a	825 ± 107 ab	4,358 ± 381 ab
Flumioxazin/metribuzin/pyroxasulfone fb dicamba + acetochlor	PRE fb EPOST + RH	95 a	99 a	896 ± 132 a	4,950 ± 432 ab
Imazethapyr + fomesafen/S-metolachlor fb dicamba + acetochlor	PRE fb EPOST + RH	97 a	99 a	925 ± 120 a	5,105 ± 443 a
Row spacing		84	91	466 ± 37	4,607 ± 238 a
		86	89	871 ± 70	3,930 ± 203 b
Treatment P-value		< 0.001	< 0.001	< 0.001	< 0.001
Row spacing P-value		0.595	0.399	0.521	0.003
Herbicide*row spacing P-value		0.053	0.672	0.179	0.793

Contrasts

- DAPRE, days after pre-emergence herbicide; EPOST, early-POST emergence herbicide; fb, followed by; LPOST, late-POST emergence herbicide; PRE, pre-emergence herbicide; RH, residual herbicide.
- aAbbreviations: EPOST, early-POST emergence; fb, followed by; LPOST, late-POST emergence; RH, residual herbicide; SEM, standard error of the mean.
- bData for each year were log or logit transformed before analysis; however back-transformed values are presented based on interpretations of transformed data.
- cMeans presented within the same column with no common letters are significantly different according to estimated marginal means with Sidak confidence-level adjustments and Tukey P-value adjustments.
- dA priori contrasts; * = significant (P < 0.05); ** = significant (P < 0.01); *** = significant (P < 0.001); NS, nonsignificant (P ≥ 0.05).
Table 6. Effect of row spacing and herbicide programs on glyphosate-resistant Palmer amaranth biomass reduction at 14 DAEPOST, 14 DALPOST, and pre-harvest in rainfed field experiments conducted near Carleton, NE in dicamba/glyphosate-resistant soybean in 2018 and 2019.

Herbicide program	Timing	14 DAEPOST ahc	14 DALPOST ahc	Preharvest ahc	
		2018	2019	2019	2019
Nontreated control	-	-	-	-	-
Dicamba	EPOST	78 ab	85 a	98 a	60 ab
Glyphosate	EPOST	23 d	23 b	7 b	3 c
Dicamba fb dicamba	EPOST fb LPOST	68 abc	78 a	99 a	104 a
Glyphosate fb glyphosate	EPOST fb LPOST	22 d	29 b	40 ab	44 b
Imazethapyr fb dicamba	EPOST fb LPOST	33 cd	0 b	61 ab	106 a
Imazethapyr + fomesafen/S-metolachlor fb dicamba	EPOST fb LPOST	59 bcd	73 a	44 ab	100 a
Dicamba fb dicamba	PRE fb EPOST	91 ab	96 a	84 a	100 a
Dicamba + chlorimuron/flumioxazin fb dicamba	PRE fb EPOST	98 ab	85 a	85 ab	95 a
Flumioxazin/metribuzin/pyroxasulfone fb dicamba	PRE fb EPOST	97 ab	99 a	101 a	100 a
Imazethapyr/pyroxasulfone/saflufenacil fb dicamba	PRE fb EPOST	88 ab	100 a	85 a	100 a
Dicamba fb dicamba + acetochlor	PRE EPOST + RH	97 ab	96 a	77 ab	100 a
Dicamba + chlorimuron/flumioxazin fb dicamba + acetochlor	PRE EPOST + RH	95 ab	97 a	96 a	100 a
Flumioxazin/metribuzin/pyroxasulfone fb dicamba + acetochlor	PRE EPOST + RH	100 a	99 a	100 a	100 a
Imazethapyr/pyroxasulfone/saflufenacil fb dicamba + acetochlor	PRE EPOST + RH	96 ab	98 a	100 a	100 a

Row spacing

Row spacing	2018	2019	2019	2019
38 cm	80	74	80	84 a
76 cm	70	76	74	83 a
Treatment P-value	< 0.001	< 0.001	0.047	< 0.001
Row Spacing P-value	0.554	0.299	0.960	0.010
Treatment*Row Spacing P-value	0.108	0.212	0.173	0.128
Contrasts a	NS	NS	NS	36 vs 91 ***
EPOST vs. EPOST fb LPOST	-	-	-	-
EPOST vs. PRE fb EPOST	45 vs 95 ***	54 vs 97 ***	53 vs 90 **	36 vs 100 ***
EPOST fb LPOST vs. PRE fb EPOST	50 vs 95 ***	43 vs 97 ***	62 vs 90 **	NS
PRE fb EPOST vs. PRE fb EPOST + RH	NS	94 vs 99 *	NS	NS

aAbbreviations: DAEPOST, days after early-POST emergence; DALPOST, days after late-POST emergence; EPOST, early-POST emergence; fb, followed by; LPOST, late-POST emergence; RH, residual herbicide.

bData for each year were logit transformed before analysis; however back-transformed values are presented based on interpretations of transformed data.

cMeans presented within the same column with no common letters are significantly different according to estimated marginal means with Sidak confidence-level adjustments and Tukey P-value adjustments.

dA priori contrasts; * = significant (P < 0.05); ** = significant (P < 0.01); *** = significant (P < 0.001); NS, nonsignificant (P ≥ 0.05).

LPOST (22% to 68%) 14 DAEPOST (Table 6). A priori contrasts in 2018 comparing the main effect of herbicide programs on Palmer amaranth biomass reduction were significant, with PRE fb EPOST programs providing the greatest reduction of Palmer amaranth biomass. The addition of acetochlor as an RH was not significant 14 DAEPOST in 2018 (Table 6).

A priori contrasts in 2019 comparing the main effect of herbicide program on Palmer amaranth biomass reduction were significant 14 DAEPOST and 14 DALPOST, with PRE fb EPOST programs providing 97% and 90% biomass reductions, respectively. The addition of acetochlor as an RH was significant 14 DAEPOST in 2019 (99% vs. 94% biomass reduction), but not 14 DALPOST (P < 0.05; Table 6). Acetochlor has been previously shown to provide >80% control of Palmer amaranth up to 50 d after application (Cahoon et al. 2015), while mixing acetochlor with glufosinate has been shown to provide ≥93% biomass reduction of GR common ragweed (Ambrosia artemisiifolia L.) in glufosinate-resistant soybean (Barnes et al. 2017) and ≥84% control applied alone or tank-mixed with flumeturon, diuron, fomesafen, or diuron/fomesafen (Cahoon et al. 2015).

Prior to harvest in 2019 (e.g., 88 DALPOST), PRE fb EPOST and PRE fb EPOST plus RH programs reduced Palmer amaranth biomass by 98% to 100%. The EPOST fb LPOST programs, excluding glyphosate fb glyphosate (62%), reduced Palmer amaranth biomass 100%, whereas glyphosate and dicamba applied EPOST reduced Palmer amaranth biomass only 2% and 68%, respectively (Table 6). A priori contrasts comparing the main effects of herbicide program for Palmer amaranth biomass reduction were significant, with PRE fb EPOST and EPOST fb LPOST programs providing similar reductions of Palmer amaranth biomass (Table 6). The interaction of herbicide program by row spacing on Palmer amaranth biomass reduction was significant (P = 0.026) at preharvest in 2019, with most herbicide programs providing similar biomass reductions with the exception of dicamba applied EPOST (97% and 40% biomass reductions for 38-cm and 76-cm row spacings, respectively) and glyphosate applied EPOST fb LPOST (76% and 48% biomass reductions for 38-cm and 76-cm row spacing, respectively; Table 4). The effect of row spacing on Palmer amaranth biomass reduction in herbicide programs consisting of dicamba applied EPOST and glyphosate applied EPOST fb LPOST can be partially attributed to the effects that narrower row spacing has on achieving canopy closure more quickly compared to wider row spacing. With rapid canopy closure, late-emerging Palmer amaranth growth is suppressed, limiting biomass and seed production (Buehring et al. 2002; Jha and Norsworthy 2009; Norsworthy et al. 2007).

Palmer Amaranth Density

Palmer amaranth density was higher in EPOST and EPOST fb LPOST herbicide programs compared to programs containing PRE herbicides 14 DAEPOST in both years (Table 7). However, the interaction of herbicide by row spacing was significant 14 DAEPOST (P = 0.028 and P = 0.04, respectively), although after...
adjusting for multiple comparisons, estimated marginal mean groupings were similar for herbicide programs and row spacing (Table 8). This is likely attributed to the large variance in Palmer amaranth densities across herbicide programs and row spacings, or the conservative nature of post hoc Tukey P-value adjustments and Sidak method confidence-level adjustments used during estimated marginal mean separation. For the analysis of main effects, a priori contrasts comparing Palmer amaranth density 14 DAEPOST for both years were significant with reduced Palmer amaranth density in PRE fb EPOST herbicide programs compared to EPOST and EPOST fb LPOST herbicide programs. The addition of acetochlor with a POST herbicide did not reduce Palmer amaranth density in PRE fb EPOST herbicide programs without acetochlor (Table 7).

Soybean Yield

Due to drought conditions during a majority of the growing season in 2018, soybean yield was reduced compared with 2019 (Figure 1; Table 5). In 2018, the main effect of herbicide program was significant for soybean yield, whereas row spacing and the interaction effect of herbicide-by-row spacing were not significant. Yield was consistently higher in PRE fb EPOST (695 kg ha\(^{-1}\)) and PRE fb EPOST plus RH programs (925 kg ha\(^{-1}\)) compared to most EPOST and EPOST fb LPOST herbicide programs with the exception of dicamba applied EPOST (655 kg ha\(^{-1}\)) and dicamba applied EPOST fb LPOST (564 ± 75 kg ha\(^{-1}\)). A priori contrasts comparing soybean yield in 2018 were significant, with the highest yield occurring in treatments that received PRE fb EPOST herbicides, which is consistent with literature indicating the economic importance of PRE fb POST herbicide programs (Barnes et al. 2017; Rosenbaum et al. 2013) as well as multiple applications to control Palmer amaranth (Cahoon et al. 2015).

The main effects of row spacing and herbicide programs were significant for soybean yield, with 4,607 ± 238 and 3,930 ± 203 kg ha\(^{-1}\) in 38-cm and 76-cm row spacing, respectively, in 2019 (Table 5). Across row spacings, soybean yield was similar for most herbicide programs, excluding glyphosate applied EPOST (3,176 ± 269 kg ha\(^{-1}\)). Wax and Pendleton (1968) reported soybean yield

Table 7. Effect of row spacing and herbicide programs on glyphosate-resistant Palmer amaranth density at 14 DAEPOST and 14 DALPOST in rainfed field experiments conducted near Carleton, NE in dicamba/glyphosate-resistant soybean in 2018 and 2019.

Herbicide Program	Timing	14 DAEPOST \(^{a,b,c}\)	14 DALPOST \(^{a,b,c}\)	
Nontreated control	–	145 e	212 cd	30
Dicamba	EPOST	118 de	85 cd	2
Glyphosate	EPOST	155 e	365 cd	56
Dicamba + acetochlor	EPOST fb LPOST	147 e	75 cd	0
Glyphosate + acetochlor	EPOST fb LPOST	161 e	575 d	36
Imazethapyr + acetochlor	EPOST fb LPOST	175 e	804 d	35
Dicamba + chlorimuron/flumioxazin + acetochlor	PRE fb EPOST	9 bc	2 ab	6
Flumioxazin/metribuzin/pyroxasulfone + acetochlor	PRE fb EPOST	0 a	0 a	0
Imazethapyr/pyroxasulfone/saflufenacil + acetochlor	PRE fb EPOST	9 bc	0 a	6
Dicamba + chlorimuron/flumioxazin + acetochlor	PRE fb EPOST + RH	21 cd	0 a	13
Dicamba + chlorimuron/flumioxazin + acetochlor	PRE fb EPOST + RH	3 abc	0 a	1
Flumioxazin/metribuzin/pyroxasulfone + acetochlor	PRE fb EPOST + RH	2 ab	0 a	0
Imazethapyr/pyroxasulfone/saflufenacil + acetochlor	PRE fb EPOST + RH	4 abc	0 a	0
Treatment P-value	< 0.001	< 0.001	0.178	

\(^a\) Abbreviations: DAEPOST, days after early-POST emergence; DALPOST, days after late-POST emergence; EPOST, early-POST emergence; fb, followed by; LPOST, late-POST emergence; RH, residual herbicide.

\(^b\) Data for each year were square root or log transformed before analysis; however back-transformed values are presented based on interpretations of transformed data.

\(^c\) Means presented within the same column with no common letters are significantly different according to estimated marginal means with Sidak confidence-level adjustments and Tukey P-value adjustments.

\(^d\) A priori contrasts; * = significant (P < 0.05); ** = significant (P < 0.01); *** = significant (P < 0.001); NS, nonsignificant (P ≥ 0.05).
increases of 10%, 18%, and 20% in 76-cm, 50-cm, and 25-cm row spacing compared with 101-cm row spacing in field experiments conducted in Illinois. A priori contrasts comparing soybean yield in 2019 were significant with the highest yield in PRE fb EPOST or EPOST fb LPOST herbicide programs, indicating the importance of using PRE herbicide programs in DGR soybean; however, mixing acetochlor with POST herbicides did not result in increased efficacy of acetochlor applied EPOST on Palmer amaranth control, which suggests additional research may be needed. Results from this research were substantial enough to avoid the yield reductions that occurred to the non-treated control (2,284 kg ± 199 kg ha⁻¹).

Practical Implications

Results of this study indicate that herbicide programs and their subsequent application timing had a greater impact on control of GR Palmer amaranth than row spacing in DGR soybean. Although significantly higher reductions to Palmer amaranth biomass occurred preharvest in 38-cm row spacings compared to 76-cm row spacings in EPOST applications of dicamba and EPOST fb LPOST programs of glyphosate, other inconsistent results in this research pertaining to Palmer amaranth density/main effects of row spacing along with other variable results reported in the literature suggest additional research may be needed. Results from this research indicate that the use of PRE fb POST herbicide programs in DGR soybean provide higher levels of Palmer amaranth control than PRE-only herbicide programs, and also that dicamba applied POST provides effective control of GR Palmer amaranth. The efficacy of acetochlor applied EPOST on Palmer amaranth control, density, and biomass reduction varied across site-years and evaluation periods.

The importance of herbicide programs that use multiple sites of action is reaffirmed through this research. For example, EPOST applications of dicamba provided 68% GR Palmer amaranth biomass reduction at preharvest when averaged across row spacings, which was a stark contrast compared to the 98% to 100% biomass reductions that occurred in PRE fb EPOST and PRE fb EPOST plus RH programs. These results are similar to the findings reported by Cahoon et al. (2015) in DGR cotton that sequential applications of dicamba were more effective than a single application; however, selection pressure on Palmer amaranth and other weeds should be considered when using sequential applications of the same herbicide, and such sequential applications should be avoided if other options are available, especially considering the recent confirmation of dicamba-resistant Palmer amaranth in Tennessee (Steckel 2020).

Acknowledgments. We thank Irvin Schleufer, José De Sanctis, Jasmine Mausbach, Will Neels, Adam Leise, and Jared Stander for their help. This project was partially supported by Nebraska Soybean Board, Bayer Crop Science, Nebraska Agricultural Experiment Station with funding from the Hatch Act through the U.S. Department of Agriculture–National Institute of Food and Agriculture (USDA-NIFA) Project No. NEB-22-396. This project was also supported by the USDA-NIFA Nebraska Extension Implementation Program. No conflicts of interest have been declared.

References

Barnes ER, Knezevic SZ, Sikkema PH, Lindquist JL, Jhala AJ (2017) Control of glyphosate-resistant common ragweed (Ambrosia artemisiifolia L.) in glufosinate-resistant soybean [Glycine max (L.) Merr.]. Front Plant Sci 8:1455 https://doi.org/10.3389/fpls.2017.01455

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using “Eigen” and S4. https://cran.r-project.org/package=lme4. Accessed: October 1, 2020

Decrease of 10%, 18%, and 20% in 76-cm, 50-cm, and 25-cm row spacing compared with 101-cm row spacing in field experiments conducted in Illinois. A priori contrasts comparing soybean yield in 2019 were significant with the highest yield in PRE fb EPOST or EPOST fb LPOST herbicide programs, indicating the importance of using PRE herbicide programs in DGR soybean; however, mixing acetochlor with POST herbicides did not result in increased efficacy of acetochlor applied EPOST on Palmer amaranth control, which suggests additional research may be needed. Results from this research were substantial enough to avoid the yield reductions that occurred to the non-treated control (2,284 kg ± 199 kg ha⁻¹).

Practical Implications

Results of this study indicate that herbicide programs and their subsequent application timing had a greater impact on control of GR Palmer amaranth than row spacing in DGR soybean. Although significantly higher reductions to Palmer amaranth biomass occurred preharvest in 38-cm row spacings compared to 76-cm row spacings in EPOST applications of dicamba and EPOST fb LPOST programs of glyphosate, other inconsistent results in this research pertaining to Palmer amaranth density/main effects of row spacing along with other variable results reported in the literature suggest additional research may be needed. Results from this research indicate that the use of PRE fb POST herbicide programs in DGR soybean provide higher levels of Palmer amaranth control than PRE-only herbicide programs, and also that dicamba applied POST provides effective control of GR Palmer amaranth. The efficacy of acetochlor applied EPOST on Palmer amaranth control, density, and biomass reduction varied across site-years and evaluation periods.

The importance of herbicide programs that use multiple sites of action is reaffirmed through this research. For example, EPOST applications of dicamba provided 68% GR Palmer amaranth biomass reduction at preharvest when averaged across row spacings, which was a stark contrast compared to the 98% to 100% biomass reductions that occurred in PRE fb EPOST and PRE fb EPOST plus RH programs. These results are similar to the findings reported by Cahoon et al. (2015) in DGR cotton that sequential applications of dicamba were more effective than a single application; however, selection pressure on Palmer amaranth and other weeds should be considered when using sequential applications of the same herbicide, and such sequential applications should be avoided if other options are available, especially considering the recent confirmation of dicamba-resistant Palmer amaranth in Tennessee (Steckel 2020).

Acknowledgments. We thank Irvin Schleufer, José De Sanctis, Jasmine Mausbach, Will Neels, Adam Leise, and Jared Stander for their help. This project was partially supported by Nebraska Soybean Board, Bayer Crop Science, Nebraska Agricultural Experiment Station with funding from the Hatch Act through the U.S. Department of Agriculture–National Institute of Food and Agriculture (USDA-NIFA) Project No. NEB-22-396. This project was also supported by the USDA-NIFA Nebraska Extension Implementation Program. No conflicts of interest have been declared.

References

Barnes ER, Knezevic SZ, Sikkema PH, Lindquist JL, Jhala AJ (2017) Control of glyphosate-resistant common ragweed (Ambrosia artemisiifolia L.) in glufosinate-resistant soybean [Glycine max (L.) Merr.]. Front Plant Sci 8:1455 https://doi.org/10.3389/fpls.2017.01455

Bates D, Mächler M, Bolker B, Walker S, Hui B, Waltho J, Singmann H, Dai B, Scheipl F, Grothendieck G, Green P, Fox J (2015) lme4: linear mixed-effects models using “Eigen” and S4. https://cran.r-project.org/package=lme4. Accessed: October 1, 2020

Table 8. Interaction of herbicide programs and row spacing for glyphosate-resistant Palmer amaranth density at 14 DAEP and rainfed field experiments conducted near Carleton, NE in dicamba/glyphosate-resistant soybean in 2018 and 2019.

Herbicide program	Timing	2018 14 DAEP 38 cm 76 cm	2019 14 DAEP 38 cm 76 cm
Nontreated control		290 h 72 e-h	294 def 153 c-f
dicamba	EPOST	144 gh 97 e-h	146 c-f 49 b-f
dicamba f b dicamba	EPOST fb LPOST	178 h 121 fgh	211 def 26 a-f
glyphosate f b glyphosate	EPOST fb LPOST	116 fgh 222 h	707 f 466 ef
imazethypr f b dicamba	EPOST fb LPOST	291 h 106 fgh	840 f 770 f
dicamba f b dicamba	PRE fb EPOST	78 e-h 96 e-h	10 a-d 14 a-d
dicamba f b dicamba	PRE fb EPOST	22 b-h 3 a-d	0 a 4 abc
dicamba f b dicamba	PRE fb EPOST	0 a 1 ab	0 a 0 a
dicamba f b dicamba	PRE fb EPOST	10 a-g 7 a-f	0 a 0 a
dicamba f b dicamba	PRE fb EPOST + RH	9 a-g 49 d-h	0 a 0 a
dicamba f b dicamba	PRE fb EPOST + RH	1 abc 6 a-e	0 a 1 ab
dicamba f b dicamba	PRE fb EPOST + RH	1 ab 3 a-d	1 ab 0 a
dicamba f b dicamba	PRE fb EPOST + RH	2 abc 9 a-g	0 a 0 a
herbicide f row spacing P-value		0.028 0.040	
Beckie HJ, Ashworth MB, Flower KC (2019) Herbicide resistance management: Recent developments and trends. Plants 8:161 https://doi.org/10.3390/plants8060161 Accessed: March 1, 2021

Bell HD, Norsworthy JK, Scott RC, Popp M (2015) Effect of row spacing, seeding rate, and herbicide program in glufosinate-resistant soybean on Palmer amaranth management. Weed Technol 29:390–404

Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28:1–15

Bensch CN, Horak MJ, Peterson D (2003) Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Sci 51:37–43

Bhullar MS, Kaur G, Kaur M, Jhala AJ (2015) Integrated weed management in potato using atrazine and straw mulch. HortTechnol 25:335–339

Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Chahal PS, Ganie ZA, Jhala AJ (2018) Overlapping residual herbicides for control of photosystem (PS) II- and 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide-resistant Palmer amaranth (Amaranthus palmeri) in Nebraska. Weed Technol 28:28–38

Keely PE, Carter CH, Thullen RJ (1987) Influence of planting date on growth of Palmer amaranth (Amaranthus palmeri). Weed Sci 35:199–204

Klingaman TE, Oliver LR (1994) Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Sci 42:523–527

Knezevic SZ, Evans SP, Mainz M (2003) Row spacing influences the critical timing for weed removal in soybean (Glycine max) Weed Technol 17:666–673

Knis AR, Streibig JC (2018) Statistical analysis of agricultural experiments using R. https://rstats4ag.org/. Accessed: September 23, 2020

Kumar V, Liu R, Boyer G, Stahlan PW (2019) Confirmation of 2,4-D resistance and identification of multiple resistance in a Kansas Palmer amaranth (Amaranthus palmeri) population. Pest Manag Sci 75:2925–2933

Lenth R (2019) emmeans: Estimated marginal means, aka least-squares means. https://cran.r-project.org/package=emmeans. Accessed: September 30, 2020

Manuchehr MR, Dotray PA, Keeling JW (2017) Enlist weed control systems for control of triazine and 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide-resistant Palmer amaranth (Amaranthus palmeri) using R. https://rstats4ag.org/. Accessed: September 23, 2020

Sarangi D, Jhala AJ (2018) A statewide survey of stakeholders to assess the problem weeds and weed management practices in Nebraska. Weed Technol 32:642–655

Sarangi D, Jhala AJ (2019) Palmer amaranth (Amaranthus palmeri) and velvetleaf (Abutilon theophrasti) control in no-tillage conventional (non-genetically engineered) soybean using overlapping residual herbicide programs. Weed Technol 33:95–105

Sauer J (1957) Recent migration and evolution of the dioecious amaranths. Evolution 11:11–31

Schwartz-Lazo LM, Norsworthy JK, Scott RC, Barber LT (2017) Resistance of two Arkansas Palmer amaranth populations to multiple herbicide sites of action. Crop Prot 61:158–163

Scott B, Smith K (2011) Prevention and control of glyphosate-resistant pigweed in soybean and cotton. Little Rock: University of Arkansas, Division of Agriculture. https://www.uaex.edu/publications/pdf/FSA-2152.pdf. Accessed: February 28, 2021

Jha P, Norsworthy JK, Bridges W, Riley MB (2008) Influence of glyphosate timing and row width on Palmer amaranth (Amaranthus palmeri) and puey (Richardia spp.) demographics in glyphosate-resistant soybean. Weed Sci 56:408–415

Jhala AJ, Norsworthy JK, Ganie ZA, Sosnoskie LM, Beckie HJ, Mallory-Smith CA, Liu J, Wei W, Wang I, Stoltenberg DE (2021) Pollen-mediated gene flow and transfer of resistance alleles from herbicide-resistant broadleaf weeds. Weed Technol 35:173–187

Jhala AJ, Sandell LD, Rana N, Kruger GR, Knezevic SZ (2014) Confirmation and control of triazine and 4-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide-resistant Palmer amaranth (Amaranthus palmeri) in Nebraska. Weed Technol 28:28–38

Jennings KM (2015) Weed control in cotton by combinations of microenemies. Weed Sci 63:176–187

Butts TR (2015) Herbicide program approaches for managing glyphosate-resistant amaranth species. Weed Sci 49:202–208

Meyer CJ, Norsworthy JK, Young BG, Steckel LE, Bradley KW, Johnson WG, Loux MM, Davis VM, Kruger GR, Barapour MT, Ikelley JT, Spahnorst DJ, Butts TR (2015) Herbicide program approaches for managing glyphosate-resistant Palmer amaranth (Amaranthus palmeri) and waterhemp (Amaranthus tuberculatus and Amaranthus rudis) in future soybean-trait technologies. Weed Technol 29:716–729

Meyers SL, Jennings KM, Schultheis JR, Monks DW (2010) Interference of Palmer amaranth (Amaranthus palmeri) in sweetpotato. Weed Sci 58:199–203

Monks DW, Oliver LR (1988) Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Sci 36:770–774

Norsworthy JK, Jha P, Bridges W (2007) Sicklepod (Senna obtusifolia) survival and fecundity in wide- and narrow-row glyphosate-resistant soybean. Weed Sci 55:252–259

R Core Team (2018) R: A language and environment for statistical computing. Vienna, Austria: R foundation for statistical computing. https://www.r-project.org/. Accessed: September 23, 2020

Ritz C, Kniss AR, Streibig JC (2015) Research methods in weed science: Statistics. Weed Sci 63:166–187

Rosenbaum KK, Massey RE, Bradley KW (2013) Comparison of weed control, yield, and net income in conventional, glyphosate-resistant, and glufosinate-resistant soybean. Crop Management 12:1–9 https://doi.org/10.1094/CM-2013-0028-RS

Sarangi D, Jhala AJ (2018) A statewide survey of stakeholders to assess the problem weeds and weed management practices in Nebraska. Weed Technol 32:642–655

Sarangi D, Jhala AJ (2019) Palmer amaranth (Amaranthus palmeri) and velvetleaf (Abutilon theophrasti) control in no-tillage conventional (non-genetically engineered) soybean using overlapping residual herbicide programs. Weed Technol 33:95–105

Sauer J (1957) Recent migration and evolution of the dioecious amaranths. Evolution 11:11–31

Schwartz-Lazo LM, Norsworthy JK, Scott RC, Barber LT (2017) Resistance of two Arkansas Palmer amaranth populations to multiple herbicide sites of action. Crop Prot 61:158–163

Scott B, Smith K (2011) Prevention and control of glyphosate-resistant pigweed in soybean and cotton. Little Rock: University of Arkansas, Division of Agriculture. https://www.uaex.edu/publications/pdf/FSA-2152.pdf. Accessed: February 28, 2021
Shyam C, Chahal PS, Jhala AJ, Jugulam M (2021) Management of glyphosate-resistant Palmer amaranth (Amaranthus palmeri) in 2,4-D choline, glufosinate, and glyphosate-resistant soybean. Weed Technol 35:136–143

Sellers BA, Smeda RJ, Johnson WG, Kendig JA, Ellersieck MR (2003) Comparative growth of six Amaranthus species in Missouri. Weed Sci 51:329–333

Spaunhorst DJ, Siefert-Higgins S, Bradley KW (2014) Glyphosate-resistant giant ragweed (Ambrosia trifida) and waterhemp (Amaranthus rudis) management in dicamba-resistant soybean (Glycine max). Weed Technol 28:131–141

Steckel L (2020) Dicamba-resistant Amaranth in Tennessee: Stewardship even more important. University of Tennessee Crops News. https://news.utcrops.com/2020/07/dicamba-resistant-palmer-amaranth-in-tennessee-stewardship-even-more-important/. Assessed: February 21, 2021

Striegel A, Eskridge KM, Lawrence NC, Knezevic SZ, Kruger GR, Proctor CA, Hein GL, Jhala AJ (2020) Economics of herbicide programs for weed control in conventional, glufosinate, and dicamba/glyphosate-resistant soybean across Nebraska. Agron J 112:5158–5179

Stroup WW (2015) Rethinking the analysis of non-normal data in plant and soil science. Agron J 107:811–827

[USGS] United States Geological Survey (2020) Estimated agricultural use for glyphosate. http://water.usgs.gov/nawqa/pnsp/usage/maps/show_map.php?year=1996&map=GLYPHOSA%0ATE&hilo=L. Accessed: May 2, 2020

Vieira BC, Samuelson SL, Alves GS, Gaines TA, Werle R (2018) Distribution of glyphosate-resistant Amaranthus spp. in Nebraska. Pest Manag Sci 74:2316–2324

Ward SM, Webster TM, Steckel LE (2013) Palmer amaranth (Amaranthus palmeri): A review. Weed Technol 27:12–27

Warnes G, Bolker B, Lumley T (2018) gmodels: Various R programming tools for model fitting. https://cran.r-project.org/package=gmodels. Accessed: September 30, 2020

Wax LM, Pendleton JW (1968) Effect of row spacing on weed control in soybeans. Weed Sci 16:462–465

Webster TM, Nichols RL (2012) Changes in the prevalence of weed species in the major agronomic crops of the southern United States: 1994/1995 to 2008/2009. Weed Sci 60:145–157

Werle R, Oliveira MC, Jhala AJ, Proctor CA, Rees J, Klein R (2018) Survey of Nebraska farmers’ adoption of dicamba-resistant soybean technology and dicamba off-target movement. Weed Technol 32:754–761

Whitaker JR, York AC, Jordan DL, Culpepper AS (2010) Palmer amaranth (Amaranthus palmeri) control in soybean with glyphosate and conventional herbicide systems. Weed Technol 24:403–410

Woodburn AT (2000) Glyphosate: production, pricing and use worldwide. Pest Manag Sci 56:309–312

Wortman SE (2014) Integrating weed and vegetable crop management with multifunctional air-propelled abrasive grits. Weed Technol 28:243–252