**Within-host competition modulates pneumococcal antibiotic resistance in the pre-vaccination era**

José Lourenço 1,*, Yair Daon2,3, Andrea Gori4, Uri Obolski2,3,5

1 Department of Zoology, University of Oxford, Oxford, UK
2 School of Public Health, Tel Aviv University, Tel Aviv, Israel
3 Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
4 NIHR Global Health research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, United Kingdom

* authors have contributed equally to this manuscript

$ correspondence to uriobols@tauex.tau.ac.il

**Running head:** pneumococcal competition modulates AMR

**Keywords:** antibiotic resistance, Streptococcus pneumoniae, ecological competition, immunological competition, pre-vaccination

**Abstract:**

**Background:** Antibiotic treatment is a key tool in the fight against pneumococcal infections. However, the ongoing emergence of antibiotic resistant strains and high frequencies of antibiotic resistance of pneumococci pose a major public health challenge. How and which ecological and evolutionary mechanisms help maintain the coexistence of strains susceptible and resistant to antibiotic treatment remains largely an open question.

**Methods/results:** Expanding on a *Streptococcus pneumoniae* modelling framework, we here explore how both between- and within-host mechanisms of transmission can sustain observed levels of pneumococcal resistance to antibiotics in the pre-vaccination era using a stochastic, individual-based model. Our framework considers that within-host competition for co-colonization between resistant and susceptible strains can arise via pre-existing immunity (immunological competition) or intrinsic fitness differences due to resistance costs (ecological competition). We find that beyond stochasticity, host-population structure or movement at the between-host level, competition at the within-host level can explain observed variation in resistance frequencies.

**Conclusion:** In a series of simulated scenarios informed by observed pneumococcal data in the European region, we demonstrate that ecological competition for co-colonization can explain much of the variation in co-existence observed at the country level in the pre-vaccination era. This work expands our understanding of how within-host pneumococcal competition facilitates the maintenance of antibiotic resistance in the pre-vaccination era. The demonstration of the effects of such underlying, often unmeasured competition-related components of pneumococcal dynamics improves our understanding of the mechanistic drivers for the emergence and maintenance of antibiotic resistance.
Introduction

The Gram-positive bacteria *Streptococcus pneumoniae* (or pneumococci) remains the most common cause of pneumonia in children and the elderly, and is likely responsible for over 500,000 yearly deaths in children aged 1 to 5 years [1]. Independently of age, most carriers are asymptomatic and only a small proportion may develop pneumonia, or other invasive disease such as meningitis or bacteraemia [2]. Vaccination remains the most successful public health strategy to date of reducing pneumococcal carriage and invasive disease [3,4].

Pneumococci are characterized by a polysaccharide capsule comprising over 90 distinct antigenic types, termed serotypes [5,6]. Since the introduction of the pneumococcal conjugate vaccines, targeting seven (PCV7), ten (PCV10) or thirteen (PCV13) serotypes, there has been a rapid decrease in pneumococcal carriage and disease of the targeted serotypes across ages [7–11]. Concomitantly, increases in the frequencies of non-targeted serotypes have been recorded both in carriage and disease in a number of countries worldwide [12–20]. Several studies have explored the phenomenon of vaccine-induced serotype replacement (VISR), whereby the removal of competition from targeted serotypes allows non-targeted serotypes to fill the immunological and ecological niches now vacant due to the removal of cross-immunity or direct resource competition [21–25]. Particular changes in the genetic composition of pneumococci have also been observed in the post-vaccination era [26,27], and have been proposed to reflect vaccine-induced metabolic shifts (VIMS) as a consequence of changes in competition on resource among pneumococci sharing metabolic niches [28–30].

A second major route of combating pneumococcal carriage and disease is antibiotic treatment [31]. Similarly to vaccination, however, the effectiveness of antibiotic drugs is often impaired by the emergence and spread of escaping, antibiotic-resistant strains. Generally, vaccination has had a beneficial impact on the frequencies of antibiotic resistance among pneumococci, since vaccine types (serotypes targeted by vaccination, VT) are often with increased antibiotic resistance [32–35]. However, there are also reports of post-vaccination increases in resistance among non-VTs (NVT) [36–44], likely due to changes in the herd-immunity and direct competition landscapes, although emergence dynamics and the serotypes involved have varied between regions.

Previously, we have put forward hypotheses regarding the possible drivers of post-vaccination increases in resistance among serotypes not targeted by vaccination. VIMS, for example, posits that the genetic profiles associated with resistance in vaccination-targeted serotypes can shift to non-targeted serotypes enjoying relaxed competition pressures in the post-vaccination era [45]. In a study by Obolski et al. [46], we have shown that vaccination can reduce within-host competition between co-colonizing serotypes. This benefits antibiotic resistant strains disproportionately as vaccine-driven reductions in competition may relax the fitness cost of resistance. As reported in different countries [36–44], vaccination can thus somewhat ameliorate the antibiotic resistance cost at the population-level and facilitate the increase in frequency of antibiotic-resistant non-vaccine serotypes.
In this study, we further explore the mathematical framework by Obolski et al., originally developed to study post-vaccination changes in the frequencies of antibiotic resistance. Here, it is expanded to study the co-existence of pneumococcal susceptible and resistant strains in the pre-vaccination era. We translate the original framework into an individual-based framework. This allows us to explore the effects of stochasticity, host population structure and mobility. We perform a series of sensitivity analyses based on the equilibrium states of stochastic simulations of the pre-vaccination era dynamics. We explore how the within-host competition parameters, defined by two different mechanisms, determine the levels of co-circulation of susceptible and resistant strains. We find that the model reproduces observed frequencies of resistance to penicillins and macrolides in Europe. In this region, direct (ecological) competition between susceptible and resistant strains explains more of the observed differences between countries than does immunological competition. Our results contribute to a better understanding of the processes driving the maintenance of antibiotic resistance in the absence of vaccination.

**Materials and Methods**

**Epidemiological framework**

We model the transmission dynamics of pneumococcal strains according to the epidemiological framework by Obolski et al. [46]. We define pneumococcal strains by the combination of their serotype and antibiotic resistance profile to two distinct antibiotics. Similarly to the nomenclature used in previous studies, each strain’s genotype is conceptualised by a tuple \((i,j)\), where \(i\) determines the serotype and \(j\) the antibiotic resistance profile. We model two serotypes only, such that \(i \in \{a, b\}\). For the entirety of our study, we define serotype \(a\) as a vaccine type (VT) and serotype \(b\) as a non-vaccine type (NVT). We also model two antibiotics \(x\) and \(y\) and consider only resistance to each independently, with \(j \in \{00, 01, 10\}\), where \(j = 00\) refers to sensitive strains, \(j = 01\) to strains resistant only to antibiotic \(y\), and \(j = 10\) to strains resistant only to antibiotic \(x\). For instance, a strain defined by \(i = a, j = 00\) is of VT serotype \(a\) and is sensitive to both antibiotics; while a strain \(i = b, j = 01\) is of NVT serotype \(b\), sensitive to antibiotic \(x\) and resistant to antibiotic \(y\). For simplicity, we do not consider double-resistance, i.e. \(j = 11\) in our model. This is consistent with relatively low estimates of double resistance to penicillin and macrolides identified in Europe in pneumococci before the pneumococcal vaccine introduction [47].

We keep the terminology of the original model formulation regarding the epidemiological parameters: \(\gamma\) is serotype-specific immunity; \(\psi\) is the probability that a carried susceptible strain \((j = 00)\) will suppress host co-colonization by a resistant strain \((j = 01\ or\ j = 10)\) due to the fitness cost of antibiotic resistance (details below); \(1/\mu\) is the host life-span; \(1/\sigma\) is the host carriage duration; \(R_0\) is the basic reproduction number and \(\beta\) is the transmission rate.

Individuals are born naive to all strains, with the size of the host population kept constant (deaths being replaced by newborns). Colonization results in carriage for an average
duration of $1/\sigma$ days, from which recovery (clearance) may lead to complete serotype immunity if $\gamma = 1$ or partial life-long immunity if $\gamma < 1$. Thus, if $\gamma < 1$, hosts can be re-colonized by the same serotype throughout their lifetime, with probability $1 - \gamma$. Co-colonization of up to two strains is allowed, unless $\gamma = 1$ and strains belong to the same serotype. Within-host strain competition interferes with co-colonization if $\psi > 0$, which captures the degree to which intrinsic fitness differences (e.g. growth rates) between resistant and sensitive strains may allow a currently carried sensitive strain ($j = 00$) to suppress co-colonization by a resistant strain ($j = 01$ or $j = 10$). We emphasize that $\psi$ models a form of competition between bacterial strains that is not mediated by immunity - from now onwards referred to ecological competition. The modelled processes related to an individual’s colonization and epidemiological states are summarised in Figure 1A. The full model description is provided in the Supplementary Information.

![Figure 1](https://example.com/fig1.png)

**Figure 1: Model transmission assumptions and host-population structure.** (a) Serotype-specific immunity as modelled by the parameter $\gamma$. Immunity can hinder the acquisition of a strain of a particular serotype (e.g. $i = a$) if (top) the receiving host is currently carrying a strain of that serotype ($i = a$), or (bottom) the receiving host is clear of infection (carriage) but has previously carried a strain of that serotype ($i = a$). (b) Resistance-related, within-host competition as modelled by the parameter $\psi$. Competition from an already established sensitive strain ($j = 00$) can hinder the acquisition of a strain carrying resistance to antimicrobials ($j = 01$ or $j = 10$). (a-b) The effects of immunity and competition are not mutually exclusive, and can take place at the same time if conditions shown in subplot a (top) and subplot b are met. (c) Schematic of the meta-population used, with $L \times L$ communities of size $N_c$ hosts, with frequent mixing between adjacent communities, and sporadic events between distant communities with probability modelled by the parameter $\omega$.

In this study we use a stochastic, individual-based model (IBM) implementation [48] of the original epidemiological framework [46]. We implement model events by sampling from a Poisson distribution with mean equal to the deterministic expectation of state transitions: e.g. at each time step, the number of deaths is obtained from a Poisson distribution with mean $\mu \times N$, where $N$ is the total population size, after which individuals are randomly selected for a death event. The time unit is a day.
The original framework is expanded by including host-population structure and host movement within a meta-population formulation as in our previously published IBMs [49–51]. Although we model a closed population, we allow for random introductions of any strain under a fixed frequency \(1/\eta\); i.e. with probability \(\eta\) per time step a random host and strain are selected and colonization is attempted (which depends on the host’s epidemiological state as in Figures 1A-B). In summary, population structure is included by subdividing individual hosts into a spatially organised set of \(L \times L\) communities of population size \(N_c\), forming a squared lattice of \(L\) columns and \(L\) rows. Individuals are assumed to mix homogeneously within each community. Local movement is considered, such that the force of infection of a strain in a particular community is dependent on its carriage levels within that community and in the neighbouring communities. Neighbouring communities are defined as the ones directly up, down, left, and right. Long distance host mobility is also considered and assumed to take place randomly across the meta-population with probability \(\omega\). That is, every time step a Poisson distributed number of individuals, with mean \(\omega \times y_{ij}\), will attempt to transmit strain \(i,j\) to a random individual in the meta-population. The modelled processes related to population structure are summarised in Figure 1C. The model parametrization is given in the Model parameterization section of the Supplementary Information.

Antibiotic resistance and consumption data

Data source used was the European Centre for Disease Prevention and Control (ECDC) from the surveillance atlas (antimicrobial resistance) for the year 2005, vastly representative of a pre-PCV era across European countries (available at [52]). The year 2005 is the earliest made available by the ECDC. The data variables used were (i) the percent of samples sensitive to penicillins and macrolides (independently), and (ii) consumption defined by daily doses per 1000 people per day. We considered solely countries which had a number of samples larger than 50, which included 19 countries. Resistance level was aggregated across countries (EU) using a logistic regression model with random-effect intercepts for each country. Raw data on resistance per country and aggregated EU is presented in Supplementary Figures S1-2; and for consumption in Supplementary Figure S3.

Approximate Bayesian computation

To compare the model output to real-world estimates on the prevalence of antibiotic resistance, we employed approximate Bayesian computation (ABC). This method allowed us to approximate the posterior density of simulation parameters related to competition \((\psi, \gamma)\), given priors on the parameters and data, when there is no explicit likelihood function [53], as is the case for our IBM framework. The priors used for the parameters \((\psi, \gamma)\) were both uniformly distributed in [0.1,0.9]. These priors were chosen for two reasons: First, we are not aware of any specific prior knowledge of these values - except that they are probably not close to zero or one. Second, the model run time is non-negligible, and is substantially increased when either of the competition parameters is close to zero or one. Hence, constrained by the relatively long computation time the model required, we sampled the prior a total of 6741 times (each with a unique combination of \(\psi\) and \(\gamma\)). We used three data points as ‘targets’ for the ABC: (i) the observed proportion of resistance to penicillins or
macrolides aggregated at the EU level; (ii) the observed relative proportion of NVT in some EU-related epidemiological contexts (Supplementary Figure S4); and (iii) the proportion of carriers with co-infection. The ABC distance function employed to our model was the Euclidean distance from the simulation results to targets (i-iii). The threshold $\epsilon$ for acceptance under the ABC framework was set to either 0.025 or 0.05 so that the closest 2.5 or 5% of simulations to the targets (i-iii) would not be rejected. Further details of the implementation of the ABC approach are given in the section Approximate Bayesian computation of the Supplementary Information.

Results

Pneumococcal strain dynamics

We first assessed average model behaviour with regards to the levels of ecological and immunological competition, for which the parameters $\psi$ and $\gamma$ were marginally varied across the ranges $[0.1,0.9]$. We focused on average model behaviour under the default parameter set (see Model parameterization in the Supplementary Information), but alternative sets including examples of temporal dynamics are presented in Supplementary Figures S5-8.

When immunological competition $\gamma$ was high and above $\gamma \approx 0.6$, independently of the level of ecological competition $\psi$, model dynamics were generally incompatible with observed pneumococcal strain dynamics. In particular, carriage levels of VT and NVT serotypes tended to be similar (Figure 2A), there was no host co-infection (Figure 2B), and strains resistant to antibiotics dominated the population (Figures 2C). Such epidemiological dynamics are incompatible with what is observed for the pneumococcus, which ubiquitously include high co-infection [54,55], reinfection [56–58], and co-circulation of NVT and VT serotypes with dominance of VT [10,55,56,59,60].

In contrast, when immunological competition $\gamma$ was low to intermediate, the model better replicated known properties of pneumococcal strain dynamics, resulting in dominance of VT serotypes and strains sensitive to antibiotics, as well as allowing for host coinfection (Figures 2A-C). Generally, for $\gamma$ (i.e. $[0.35 – 0.55]$), the carriage level of NVT serotypes was extremely low (Figure 2A); there was no co-infection (Figure 2B); and, while strains resistant to antibiotics did not dominate the population, their prevalence generally decreased for higher ecological competition $\psi$ (Figure 2C). In contrast, when $\gamma$ was lower (i.e. $< 0.35$), carriage levels of NVT serotypes increased with ecological competition (Figure 2A); host coinfection was possible with varying levels of ecological competition (Figure 2B); and, both coinfection and sensitivity to antibiotics decreased with increasing ecological competition (Figures 2B-C). These general behaviours across the competition parameter space ($\psi$, $\gamma$) did not change substantially in a sensitivity analysis of host-population structure and mobility values (Supplementary Figures S7-8). Hence, this, suggests that variation of demographic parameters, which often exists between different regions, does not play a significant role in changing the possible levels of co-existence between susceptible and resistant strains.
Resorting to data representative of the pre-vaccination era in Europe (from ECDC, see the Antibiotic resistance and consumption data section), we explored under what ecological and immunological competition levels the model better approximated observed levels of resistance to macrolides and penicillins (independently). According to ECDC data, aggregated resistance across EU countries was approximately 18.1% (95% CI 12.19 - 26.51%) for macrolides and 8.1% (95% CI 5.02 - 12.95%, N=10360) for penicillins (Supplementary Figures S1-2). While a wide range of $\gamma$ and $\psi$ values appeared compatible with these levels of resistance (Figure 2C), some of those combinations would nonetheless result in widely different levels of the NVT versus VT prevalence (Figure 2A) and levels of co-infection (Figure 2B). Using an ABC algorithm applied to a large number of numerical simulations exploring the model’s parameter space, we next set out to identify which combinations of $\gamma$ and $\psi$ would reproduce the observed levels of resistance while respecting prior knowledge on the relative proportions of NVT versus VT and host co-infection (see Materials and Methods section for details).

Strain competition as determinants of antibiotic resistance

As illustrated in Figures 3A-B, reproduction of pre-vaccination resistance levels while respecting priors related to observed NVT versus VT prevalence and strain co-infection identified particular competition parameter regions. The latter are characterized by a combination of low immunological ($\gamma < 0.25$) and low to intermediate ecological competition (\$\psi > 0.2, \psi < 0.7\$), which are compatible with observations of recurrent pneumococcal infection [56–58], co-circulation of NVT and VT serotypes [10,55,56,59,60] as well as frequent co-infection [54,55].

For penicillins, a restricted range for immunological competition $\gamma$ (0.12 - 0.18) and wide range of ecological competition $\psi$ (0.3 - 0.7) were compatible with observed resistance levels (Figure 3C). In contrast, resistance to macrolides was compatible with the model output under a wider range of $\gamma$ (0.1 - 0.25) and stricter and lower range of $\psi$ (0.22 - 0.38).
The intersection of the two compatible parameter regions for macrolides and penicillins was for $\gamma = 0.175$ and $\psi = 0.375$. Doubling the percentage of accepted simulations under the ABC framework ($\epsilon = 5\%$) or the target co-infection level (from 0.2 to 0.3) had no significant impact on the identified parameter regions (Supplementary Figures S9-10). In contrast, accepting higher margins of error (e.g. $\epsilon = 10\%$) resulted in the ABC identifying substantially wider regions of the parameter space as compatible, and thus making it difficult to infer relationships between the model parameterization and observed resistance levels.

Figure 3: Competition parameter space compatible with observed, pre-vaccination resistance levels. Approximate Bayesian Computation (ABC) output when varying immunological ($\gamma$) and ecological ($\psi$) competition, attempting to reproduce observed levels of resistance to penicillins (A) and macrolides (B) in the European region (see Data section for details). The colour scale is the density in ABC posterior estimate when applied to the aggregated European region resistance levels. Ellipses mark the 50 (dotted) and 95 (full) percentiles in ABC output. ABC priors and targets as detailed in the Methods section, the number of simulations was 6741, $\epsilon$ was set to 2.5%. (C) Ellipses marking the percentiles in panels A (green) and B (purple).

We further examined the associations between the competition parameters and resistance to penicillins and macrolides, performing an ABC which utilized each EU country’s antibiotic resistance frequencies to each of the two mentioned antibiotic classes (see Supplementary Information for method details). For either of the antibiotic classes, ecological competition $\psi$ explained a higher percent of the variance of resistance than immunological competition $\gamma$ in a simple linear model (penicillins, $R^2$ of 0.9 versus 0.001; macrolides, $R^2$ of 0.71 versus 0.52, respectively). Furthermore, for either of the antibiotic classes, a likelihood ratio test concluded that a bivariate model including both $\gamma$ and $\psi$ did not have a significantly better goodness of fit over a model containing $\psi$ alone. Hence, in our model, variations in ecological competition could better explain differences of antibiotic resistance frequencies in the pre-vaccination era.

Discussion

How do ecological and evolutionary forces drive the coexistence of pathogen strains susceptible and resistant to treatments or prophylaxis? This question remains a conundrum of high public health concern. Examples of such coexistence include some of the most relevant human pathogens: antiviral resistance of the immunodeficiency virus (HIV) [61,62], antimalarial resistance to malaria parasites [63], drug and vaccine escape by Mycobacterium
tuberculosis [64], and antimicrobial resistance in Streptococcus pneumoniae [34,37,41,65,66].

Specifically, the understanding of what allows resistant bacteria to persist in human populations with different epidemiological, demographic, antibiotic consumption and epidemiological control conditions remains elusive. Antibiotic consumption is considered a major driver of resistance at the population level for both commensal and pathogenic bacteria [65,67,68]. However, while antibiotic consumption undoubtedly selects for antibiotic resistance, a major fraction of the observed spatio-temporal variation in resistance prevalence remains to be explained. Indeed, assuming no substantial time lag between consumption and prevalence of resistance [69], the ECDC data here explored shows that country-specific resistance is only mildly correlated with antibiotic consumption across countries, with consumption explaining 0.14 (R²) of the variation for macrolide resistance (p = 0.06) and 0.38 of penicillin resistance (p = 0.002) (Supplementary Figure S3).

Mathematical models have the potential to explore possible mechanistic drivers of resistance by explicitly considering factors modulating selective pressures. In this context, most pneumococcal modelling frameworks commonly overlook within-host interactions between phenotypically divergent strains (although for exceptions see [22,70]). Neglecting these dynamics may result in missing or misinterpreting non-linear effects favouring the co-existence of antibiotic resistant and susceptible variants or the emergence of resistant strains. In this study, we expand a modelling framework previously used to explore within-host competition between pneumococcal strains as a driver of post-vaccination increases in antibiotic resistance [46]. Informed by available data for European countries, we expand the framework to a pre-vaccination era and explore how the combination of within-host ecological and immunological competition may drive observed population-level coexistence between resistant and susceptible pneumococcal strains. Other possible drivers of coexistence (e.g. age-dependent assortative mixing [68]) were not explored in this study, although we have shown that high-level heterogeneities such as population structure and host mobility do not significantly affect model output (Supplementary Figures S6-S7).

Our main results demonstrate the complex relationship between the frequency of NVT and VT pneumococci, co-infection, antibiotic resistance, and ecological and immunological competition factors. Based on data from European countries, our model indicates that pre-vaccination era antibiotic resistance levels are negatively associated with ecological competition. In our model, high ecological competition decreases antibiotic resistance levels, as this parameter governs the co-colonization competence of antibiotic resistant strains against susceptible strains, due to possible fitness costs incurred by acquisition of resistance [71]. The variation of ecological competition levels between susceptible and resistant strains across countries can be due to differences in both the bacterial and human populations. Different strains, with different genetic loads, and hence resistance fitness costs, can expand across countries due to chance and founder effects [42,72,73]. Additionally, differences in human population density and demography, environmental conditions, per capita hospital beds, and other factors can substantially affect ecological competition and its influence on co-existence of different strains [74–76].
In contrast to the identified role of ecological competition in our model, we do not find that immunological competition significantly contributes to explaining the variation in observed resistance levels across European countries. In reality, immunological competition between strains is determined by a complex, largely unknown network of antigenic relationships between pneumococcal strains; with capsular polysaccharides believed to be the major determinant of strain-specific and cross-strain immunological responses [77]. As such, immunological competition levels would have to substantially differ between countries if they were a factor affecting rates of co-existence between resistant and susceptible strains. However, there is a lack of support for such substantial local differences in the antigenic determinants and overall prevalence levels of circulating antigenic groups [78,79]. Hence, the results of our model are compatible with the notion that population-level antigenic relationships and diversity are not dissimilar enough across countries to justify immunological competition as a major determinant of the co-existence of resistant and susceptible strains in the pre-vaccination era.

To conclude, we present a general yet explicit framework to model pneumococci, considering mechanisms of both between-host transmission and within-host competition as determinants of the pathogen’s population dynamics. In a series of simulated scenarios, we demonstrate that ecological competition during co-colonization between resistant and susceptible pneumococcal strains can explain much of the variation of resistance frequencies observed at the country level in the pre-vaccination era. Our results demonstrate the framework’s general potential to explore the drives of pneumococcal resistance dynamics. Elucidating the role of underlying competition-related components of pneumococcal dynamics improves the understanding of the mechanistic drivers for the emergence and maintenance of antibiotic resistance. Consequently, frameworks such as this can be used to project the influence of changes in vaccination or antibiotic treatment strategies on antibiotic resistance.

**Conflict of interest**

Authors declare no conflict of interest.

**Disclaimer**

The views and opinions of the authors expressed herein do not necessarily state or reflect those of ECDC. The accuracy of the authors’ statistical analysis and the findings they report are not the responsibility of ECDC. ECDC is not responsible for conclusions or opinions drawn from the data provided. ECDC is not responsible for the correctness of the data and for data management, data merging and data collation after provision of the data. ECDC shall not be held liable for improper or incorrect use of the data.
Acknowledgements

This study was supported by a lectureship by the Department of Zoology, University of Oxford (JL); The Raymond and Beverly Sackler Post-Doctoral Scholarship (YD); NIHR Mucosal Pathogens Research Unit and the Bill and Melinda Gates Foundation (INC-004301 - AG)

References

1. O’Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009;374: 893–902.

2. Simell B, Auranen K, Käyhty H, Goldblatt D, Dagan R, O’Brien KL, et al. The fundamental link between pneumococcal carriage and disease. Expert Rev Vaccines. 2012;11: 841–855.

3. Tsaban G, Ben-Shimol S. Indirect (herd) protection, following pneumococcal conjugated vaccines introduction: A systematic review of the literature. Vaccine. 2017;35: 2882–2891.

4. de Oliveira LH, Camacho LAB, Coutinho ESF, Martinez-Silveira MS, Carvalho AF, Ruiz-Matus C, et al. Impact and Effectiveness of 10 and 13-Valent Pneumococcal Conjugate Vaccines on Hospitalization and Mortality in Children Aged Less than 5 Years in Latin American Countries: A Systematic Review. PLoS One. 2016;11: e0166736.

5. Hausdorff WP, Feikin DR, Klugman KP. Epidemiological differences among pneumococcal serotypes. Lancet Infect Dis. 2005;5: 83–93.

6. Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, et al. Genetic Analysis of the Capsular Biosynthetic Locus from All 90 Pneumococcal Serotypes. PLoS Genet. 2006;2. doi:10.1371/journal.pgen.0020031

7. Flasche S, Van Hoek AJ, Sheasby E, Waight P, Andrews N, Sheppard C, et al. Effect of pneumococcal conjugate vaccination on serotype-specific carriage and invasive disease in England: a cross-sectional study. PLoS Med. 2011;8: e1001017.

8. Moore MR, Link-Gelles R, Schaffer W, Lynfield R, Lexau C, Bennett NM, et al. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. Lancet Infect Dis. 2015;15: 301–309.

9. Gidding HF, Sheridan S, Fathima P, Moore HC, Liu B, McIntyre PB, et al. Impact of Childhood Pneumococcal Conjugate Vaccine on Nonnotified Clinically Suspected Invasive Pneumococcal Disease in Australia. Pediatr Infect Dis J. 2019;38: 860–865.

10. Lourenço J, Obolski U, Swarthout TD, Gori A, Bar-Zeev N, Everett D, et al.
Determinants of high residual post-PCV13 pneumococcal vaccine-type carriage in Blantyre, Malawi: a modelling study. BMC Med. 2019;17: 219.

11. Swarthout TD, Fronterre C, Lourenço J, Obolski U, Gori A, Bar-Zeev N, et al. High residual carriage of vaccine-serotype Streptococcus pneumoniae after introduction of pneumococcal conjugate vaccine in Malawi. Nat Commun. 2020;11: 2222.

12. Moore MR, Gertz RE Jr, Woodbury RL, Barkocy-Gallagher GA, Schaffner W, Lexau C, et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J Infect Dis. 2008;197: 1016–1027.

13. Hanage WP, Huang SS, Lipsitch M, Bishop CJ, Godoy D, Pelton SI, et al. Diversity and antibiotic resistance among nonvaccine serotypes of Streptococcus pneumoniae carriage isolates in the post-heptavalent conjugate vaccine era. J Infect Dis. 2007;195: 347–352.

14. Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J, Reingold A, et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med. 2006;354: 1455–1463.

15. Park SY, Moore MR, Bruden DL, Hyde TB, Reasonover AL, Harker-Jones M, et al. Impact of conjugate vaccine on transmission of antimicrobial-resistant Streptococcus pneumoniae among Alaskan children. Pediatr Infect Dis J. 2008;27: 335–340.

16. Huang SS, Platt R, Rifas-Shiman SL, Pelton SI, Goldmann D, Finkelstein JA. Post-PCV7 changes in colonizing pneumococcal serotypes in 16 Massachusetts communities, 2001 and 2004. Pediatrics. 2005;116: e408–13.

17. Pillai DR, Shahinas D, Buzina A, Pollock RA, Lau R, Khairnar K, et al. Genome-wide dissection of globally emergent multi-drug resistant serotype 19A Streptococcus pneumoniae. BMC Genomics. 2009;10: 642.

18. Gherardi G, D’Ambrosio F, Visaggio D, Dicuonzo G, Del Grosso M, Pantosti A. Serotype and clonal evolution of penicillin-nonsusceptible invasive Streptococcus pneumoniae in the 7-valent pneumococcal conjugate vaccine era in Italy. Antimicrob Agents Chemother. 2012;56: 4965–4968.

19. Dagan R, Klugman KP. Impact of conjugate pneumococcal vaccines on antibiotic resistance. Lancet Infect Dis. 2008;8: 785–795.

20. Farrell DJ, Klugman KP, Pichichero M. Increased antimicrobial resistance among nonvaccine serotypes of Streptococcus pneumoniae in the pediatric population after the introduction of 7-valent pneumococcal vaccine in the United States. Pediatr Infect Dis J. 2007;26: 123–128.

21. Lipsitch M. Vaccination against colonizing bacteria with multiple serotypes. Proc Natl Acad Sci U S A. 1997;94: 6571–6576.

22. Cobey S, Lipsitch M. Niche and neutral effects of acquired immunity permit coexistence of pneumococcal serotypes. Science. 2012;335: 1376–1380.

23. Bottomley C, Roca A, Hill PC, Greenwood B, Isham V. A mathematical model of serotype replacement in pneumococcal carriage following vaccination. J R Soc
24. Flasche S, Edmunds WJ, Miller E, Goldblatt D, Robertson C, Choi YH. The impact of specific and non-specific immunity on the ecology of Streptococcus pneumoniae and the implications for vaccination. Proc Biol Sci. 2013;280: 20131939.

25. Melegaro A, Choi YH, George R, Edmunds WJ, Miller E, Gay NJ. Dynamic models of pneumococcal carriage and the impact of the Heptavalent Pneumococcal Conjugate Vaccine on invasive pneumococcal disease. BMC Infect Dis. 2010;10: 90.

26. Beall BW, Gertz RE, Hulkower RL, Whitney CG, Moore MR, Brueggemann AB. Shifting genetic structure of invasive serotype 19A pneumococci in the United States. J Infect Dis. 2011;203: 1360–1368.

27. Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet. 2013;45: 656–663.

28. Gupta S, Ferguson NM, Anderson RM. Vaccination and the population structure of antigenically diverse pathogens that exchange genetic material. Proc Biol Sci. 1997;264: 1435–1443.

29. Watkins ER, Penman BS, Lourenço J, Buckee CO, Maiden MCJ, Gupta S. Vaccination Drives Changes in Metabolic and Virulence Profiles of Streptococcus pneumoniae. PLoS Pathog. 2015;11: e1005034.

30. Lourenço J, Watkins ER, Obolski U, Peacock SJ, Morris C, Maiden MCJ, et al. Lineage structure of Streptococcus pneumoniae may be driven by immune selection on the groEL heat-shock protein. Sci Rep. 2017;7: 9023.

31. Parks T, Barrett L, Jones N. Invasive streptococcal disease: a review for clinicians. Br Med Bull. 2015;115: 77–89.

32. Dagan R, Givon-Lavi N, Zamir O, Fraser D. Effect of a nonavalent conjugate vaccine on carriage of antibiotic-resistant Streptococcus pneumoniae in day-care centers. Pediatr Infect Dis J. 2003;22: 532–540.

33. Mbelle N, Huebner RE, Wasas AD, Kimura A, Chang I, Klugman KP. Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J Infect Dis. 1999;180: 1171–1176.

34. Mishra RPN, Oviedo-Orta E, Prachi P, Rappuoli R, Bagnoli F. Vaccines and antibiotic resistance. Curr Opin Microbiol. 2012;15: 596–602.

35. Chiba N, Morozumi M, Shouji M, Wajima T, Iwata S, Sunakawa K, et al. Rapid Decrease of 7-Valent Conjugate Vaccine Coverage for Invasive Pneumococcal Diseases in Pediatric Patients in Japan. Microbial Drug Resistance. 2013. pp. 308–315. doi:10.1089/mdr.2012.0180

36. Moore MR, Gertz RE Jr, Woodbury RL, Barkocy-Gallagher GA, Schaffner W, Lexau C, et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J Infect Dis. 2008;197: 1016–1027.

37. Hanage WP, Huang SS, Lipsitch M, Bishop CJ, Godoy D, Pelton SI, et al. Diversity and
antibiotic resistance among nonvaccine serotypes of Streptococcus pneumoniae carriage isolates in the post-heptavalent conjugate vaccine era. J Infect Dis. 2007;195:347–352.

38. Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J, Reingold A, et al. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcus pneumoniae. N Engl J Med. 2006;354:1455–1463.

39. Park SY, Moore MR, Bruden DL, Hyde TB, Reasonover AL, Harker-Jones M, et al. Impact of conjugate vaccine on transmission of antimicrobial-resistant Streptococcus pneumoniae among Alaskan children. Pediatr Infect Dis J. 2008;27:335–340.

40. Huang SS, Platt R, Rifas-Shiman SL, Pelton SI, Goldmann D, Finkelstein JA. Post-PCV7 changes in colonizing pneumococcal serotypes in 16 Massachusetts communities, 2001 and 2004. Pediatrics. 2005;116:e408–13.

41. Pillai DR, Shahinas D, Buzina A, Pollock RA, Lau R, Khairnar K, et al. Genome-wide dissection of globally emergent multi-drug resistant serotype 19A Streptococcus pneumoniae. BMC Genomics. 2009;10:642.

42. Gherardi G, D’Ambrosio F, Visaggio D, Dicuonzo G, Del Grosso M, Pantosti A. Serotype and clonal evolution of penicillin-nonsusceptible invasive Streptococcus pneumoniae in the 7-valent pneumococcal conjugate vaccine era in Italy. Antimicrob Agents Chemother. 2012;56:4965–4968.

43. Dagan R, Klugman KP. Impact of conjugate pneumococcal vaccines on antibiotic resistance. Lancet Infect Dis. 2008;8:785–795.

44. Danino D, Givon-Lavi N, Ben-Shimol S, Greenberg D, Dagan R. Understanding the Evolution of Antibiotic-nonsusceptible Pneumococcal Nasopharyngeal Colonization Following Pneumococcal Conjugate Vaccine Implementation in Young Children. Clinical Infectious Diseases. 2019. pp. 648–656. doi:10.1093/cid/ciy926

45. Watkins ER, Penman BS, Lourenço J, Buckee CO, Maiden MCJ, Gupta S. Vaccination Drives Changes in Metabolic and Virulence Profiles of Streptococcus pneumoniae. PLoS Pathog. 2015;11:e1005034.

46. Obolski U, Lourenço J, Thompson C, Thompson R, Gori A, Gupta S. Vaccination can drive an increase in frequencies of antibiotic resistance among nonvaccine serotypes of. Proc Natl Acad Sci U S A. 2018;115:3102–3107.

47. Annual Epidemiological Report 2009 [2007 data]. In: European Centre for Disease Control [Internet]. 12 Oct 2009 [cited 21 Sep 2020]. Available: https://www.ecdc.europa.eu/en/publications-data/annual-epidemiological-report-2009-2007-data

48. Willem L, Verelst F, Blilcke J, Hens N, Beutels P. Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006-2015). BMC Infect Dis. 2017;17:612.

49. Lourenço J, Recker M. Natural, persistent oscillations in a spatial multi-strain disease system with application to dengue. PLoS Comput Biol. 2013;9:e1003308.

50. Lourenço J, Recker M. Dengue serotype immune-interactions and their consequences
for vaccine impact predictions. Epidemics. 2016;16: 40–48.

51. Flasche S, Jit M, Rodríguez-Barraquer I, Coudeville L, Recker M, Koelle K, et al. The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study. PLoS Med. 2016;13: e1002181.

52. European Centre for Disease Control (ECDC) antibiotic resistance data. In: ECDC [Internet]. [cited 22 Jul 2020]. Available: https://www.ecdc.europa.eu/en/antimicrobial-resistance

53. Minter A, Retkute R. Approximate Bayesian Computation for infectious disease modelling. Epidemics. 2019;29: 100368.

54. Tabatabaei SR, Karimi A, Fallah F, Shiva F, Shamshiri M, Gooya MM, et al. Rate of co-colonization with serotypes of strep pneumonia isolated from nasopharyngeal swab. International Journal of Infectious Diseases. 2014. p. 418. doi:10.1016/j.ijid.2014.03.1284

55. Kamng’ona AW, Hinds J, Bar-Zeev N, Gould KA, Chaguza C, Msefula C, et al. High multiple carriage and emergence of Streptococcus pneumoniae vaccine serotype variants in Malawian children. BMC Infect Dis. 2015;15: 1–11.

56. Melegaro A, Choi Y, Pebody R, Gay N. Pneumococcal Carriage in United Kingdom Families: Estimating Serotype-specific Transmission Parameters from Longitudinal Data. Am J Epidemiol. 2007;166: 228–235.

57. Melegaro A, Gay NJ, Medley GF. Estimating the transmission parameters of pneumococcal carriage in households. Epidemiol Infect. 2004;132: 433–441.

58. Lipsitch M, Abdullahi O, D’Amour A, Xie W, Weinberger DM, Tchetgen Tchetgen E, et al. Estimating rates of carriage acquisition and clearance and competitive ability for pneumococcal serotypes in Kenya with a Markov transition model. Epidemiology. 2012;23: 510–519.

59. Adetifa IM, Antonio M, Okoromah CA, Ebruke C, Inem V, Nsekpong D, et al. Pre-vaccination nasopharyngeal pneumococcal carriage in a Nigerian population: epidemiology and population biology. PLoS One. 2012;7.

doi:10.1371/journal.pone.0030548

60. Heinsbroek E, Tafatatha T, Phiri A, Swarthout TD, Alaerts M, Crampin AC, et al. Pneumococcal carriage in households in Karonga District, Malawi, before and after introduction of 13-valent pneumococcal conjugate vaccination. Vaccine. 2018;36.

doi:10.1016/j.vaccine.2018.10.021

61. Gupta RK, Gregson J, Parkin N, Haile-Selassie H, Tanuri A, Forero LA, et al. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: a systematic review and meta-regression analysis. The Lancet Infectious Diseases. 2018. pp. 346–355. doi:10.1016/s1473-3099(17)30702-8

62. Puertas MC, Ploumidis G, Ploumidis M, Fumero E, Clotet B, Walworth CM, et al. Pan-resistant HIV-1 emergence in the era of integrase strand-transfer inhibitors: a case report. The Lancet Microbe. 2020. pp. e130–e135. doi:10.1016/s2666-5247(20)30006-9
63. Gao B, Saralamba S, Lubell Y, White LJ, Dondorp AM, Aguas R. Determinants of MDA impact and designing MDAs towards malaria elimination. Elife. 2020;9. doi: 10.7554/eLife.51773

64. Kremer K, van der Werf MJ, Au BKY, Anh DD, Kam KM, van Doorn HR, et al. Vaccine-induced Immunity Circumvented by Typical Mycobacterium tuberculosis Beijing Strains. Emerg Infect Dis. 2009;15: 335.

65. Austin DJ, Kristinsson KG, Anderson RM. The relationship between the volume of antimicrobial consumption in human communities and the frequency of resistance. Proc Natl Acad Sci U S A. 1999;96: 1152–1156.

66. Lehtinen S, Blanquart F, Croucher NJ, Turner P, Lipsitch M, Fraser C. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proc Natl Acad Sci U S A. 2017;114: 1075–1080.

67. Colijn C, Cohen T, Fraser C, Hanage W, Goldstein E, Givon-Lavi N, et al. What is the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus pneumoniae? J R Soc Interface. 2010;7: 905–919.

68. Cobey S, Baskerville EB, Colijn C, Hanage W, Fraser C, Lipsitch M. Host population structure and treatment frequency maintain balancing selection on drug resistance. J R Soc Interface. 2017;14. doi: 10.1098/rsif.2017.0295

69. Blanquart F, Lehtinen S, Fraser C. An evolutionary model to predict the frequency of antibiotic resistance under seasonal antibiotic use, and an application to Streptococcus pneumoniae. Proc Biol Sci. 2017;284. doi:10.1098/rspb.2017.0679

70. Davies NG, Flasche S, Jit M, Atkins KE. Within-host dynamics shape antibiotic resistance in commensal bacteria. Nat Ecol Evol. 2019;3: 440–449.

71. Melnyk AH, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations. Evolutionary Applications. 2015. pp. 273–283. doi:10.1111/eva.12196

72. Janoir C, Cohen R, Levy C, Bingen E, Lepoutre A, Gutmann L, et al. Clonal expansion of the macrolide resistant ST386 within pneumococcal serotype 6C in France. PLoS One. 2014;9: e90935.

73. Keenan JD, Klugman KP, McGee L, Vidal JE, Chochua S, Hawkins P, et al. Evidence for clonal expansion after antibiotic selection pressure: pneumococcal multilocus sequence types before and after mass azithromycin treatments. J Infect Dis. 2015;211: 988–994.

74. MacFadden DR, McGough SF, Fisman D, Santillana M, Brownstein JS. Antibiotic Resistance Increases with Local Temperature. Nat Clim Chang. 2018;8: 510–514.

75. Bruinsma N, Hutchinson JM, van den Bogaard AE, Giamarellou H, Degener J, Stobberingh EE. Influence of population density on antibiotic resistance. J Antimicrob Chemother. 2003;51: 385–390.

76. Blommaert A, Marais C, Hens N, Coenen S, Muller A, Goossens H, et al. Determinants of between-country differences in ambulatory antibiotic use and antibiotic resistance in Europe: a longitudinal observational study. J Antimicrob Chemother. 2014;69: 535–547.
77. Brown J, Hammerschmidt S, Orihuela C. Streptococcus Pneumoniae: Molecular Mechanisms of Host-Pathogen Interactions. Academic Press; 2015.

78. Jefferson T, Ferroni E, Curtale F, Giorgi Rossi P, Borgia P. Streptococcus pneumoniae in western Europe: serotype distribution and incidence in children less than 2 years old. Lancet Infect Dis. 2006;6: 405–410.

79. Feikin DR, Klugman KP. Historical Changes in Pneumococcal Serogroup Distribution: Implications for the Era of Pneumococcal Conjugate Vaccines. Clin Infect Dis. 2002;35: 547–555.