Holocene fluctuations in human population demonstrate repeated links to food production and climate

Andrew Bevan
Sue Colledge
Dorian Fuller

Ralph Fyfe School of Geography, Earth and Environmental Sciences
Stephen Shennan

et al. See next page for additional authors

Let us know how access to this document benefits you
Uncorrected author’s copy. Full online access is available including Supplementary Information.

Cite as:

Bevan A, Colledge S, Fuller D, Fyfe R, Shennan S and Stevens C (2017) Holocene fluctuations in population demonstrate repeated links to food production and climate PNAS E10524-E10531

DOI: 10.1073/pnas.1709190114
Holocene fluctuations in human population demonstrate repeated links to food production and climate

Andrew Bevan¹, Sue Colledge², Dorian Fuller³, Ralph Fyfe⁴, Stephen Shennan¹, Chris Stevens¹

¹University College London, ²UCL, London, UK, ³University College London, Institute of Archaeology, ⁴University of Plymouth

Submitted to Proceedings of the National Academy of Sciences of the United States of America

We consider the long-term relationship between human demography, food production and Holocene climate via an archaeological radiocarbon date series of unprecedented sampling density and detail. There is striking consistency in the inferred human population dynamics across different regions of Britain and Ireland during the middle and later Holocene. Major cross-regional population downturns in population coincide with episodes of more abrupt change in north Atlantic climate and witness societal responses in food procurement as visible in directly dated plants and animals, often with moves towards harder cereals, increased pastoralism and/or gathered resources. For the Neolithic, this evidence questions existing models of wholly endogenous demographic boom-bust. For the wider Holocene, it demonstrates that climate-related disruptions have been quasi-periodic drivers of societal and subsistence change.

Introduction

The relationship between human population dynamics, crises in food production and rapid climate change is a pressing modern concern in considerable need of higher resolution, chronologically-longitudinal perspectives. We have collected a large series of radiocarbon dates from archaeological sites in Britain and Ireland, which is a globally unique region for (a) its high density of archaeological radiocarbon sampling, (b) its unusually high proportion of well-identified botanical and faunal material and (c) its balance of dates from both research projects and rescue archaeology. For the first time, this high-resolution evidence can be considered over four different geographic regions and a broad Holocene timespan as a proxy for human demographic variability and subsistence response. We identify several episodes of regionally-consistent population decline – the later 4th millennium BCE, the early 1st millennium BCE and the 13th–15th century CE respectively – that also appear associated with episodes of rapid Holocene climate change towards more unstable, cooler-wetter conditions. We also demonstrate the existence of structured responses to these changes in the form of altered human food production strategies. The most obvious such episodes during the middle and later Holocene are likely consistent with altered north Atlantic storm regimes, reduced solar insolation and climate-related cultural and demographic impacts across north-western Europe.

Archaeological radiocarbon dates typically come from samples of bone, charred or waterlogged wood and seeds that are taken in order to date specific stratigraphic events in the surviving archaeological record. When considered in large-scale aggregate however, they also provide an anthropogenic signal of changing overall levels of past human activity and ultimately population. Some commentators highlight taphonomic and investigative biases in this record, but there is increasing agreement that, if these biases are controlled for and if the number of available dates is sufficiently high, an important demographic signal remains (see Materials and Methods). While in many areas of the world, the anthropogenic radiocarbon record is insufficient to support such aggregate treatment, in Britain and Ireland there is a long well-resourced tradition of sampling, both from active-mode academic research and responsive-mode, development-led archaeology. Furthermore, parts of Britain and Ireland lie towards the perceived margins of effective European-type agriculture and thereby can offer many of the same insights on middle and later Holocene population stability, climate change and food production as other north Atlantic Islands (Greenland, Iceland), but for a much longer and larger history of human settlement. We have therefore gathered over 30,000 existing archaeological dates from British and Irish databases, publications and grey literature reports, while also recording information about sample provenance, context and material/species (figure 1). The changing intensity of this anthropogenic radiocarbon record through time can be modelled via summation of the post-calibration probability distributions of individual dates (see Materials and Methods).

Results and Discussion

Looking at the overall summed distribution (figure 1C), there is a dramatic upsising in radiocarbon dates ca. 4000–3850 BCE that coincides closely with the first arrival of Early Neolithic cereal agriculture in Britain and Ireland. Although caution is required in inferring actual population growth rates directly from rates-of-change in summed radiocarbon, the latter values exceed 1% during this earliest phase, are unlikely to be explained by increased fertility amongst farming groups alone and must in part therefore be due to migrant farmers from the European mainland, a conclusion that is consistent with current archaeo-

Significance

The relationship between human population, food production and climate change is a pressing concern in need of high-resolution, long-term perspectives. Archaeological radiocarbon dates have increasingly been used to reconstruct past population dynamics, and Britain and Ireland provide both radiocarbon sampling densities and species-level sample identification that are globally unrivalled. We use this evidence to demonstrate multiple instances of human population downturn over the Holocene that coincide with periodic episodes of reduced solar activity and climate reorganisation as well as societal responses in terms of altered food procurement strategies.

Reserved for Publication Footnotes

www.pnas.org —— PNAS | Issue Date | Volume | Issue Number | 1—??
0.86), while Ireland exhibits more volatile dynamics than the
relation (with the range among all regional pairs being \(r = 0.69 -
\)
England/Wales versus Scotland exhibits the highest pairwise cor-
}
Mesolithic period where dynamics are more abrupt, north-west
}

typical match very well with that region

characterisation of timing and duration, substantial recovery is
only visible again by \(~400\) BCE. The Roman period exhibits a
trough in the aggregate radiocarbon time series that is unlikely
to represent a valid picture in England and Wales due to a far
weaker tradition of dating Roman sites via radiocarbon (where
pottery and coinage is typically used for dating instead, over
the period \(~50-400\) CE), but may well be valid in Scotland and
Ireland (see below and Supplementary Information 2). After the
Roman period, there is evidence for sustained early Medieval
growth, followed by an abrupt decline approximately consistent
with the demographic collapse surrounding the historically well-
documented episodes of the Great Famine and Black Death
\((~1270-1450\) CE).

This radiocarbon record can be further disaggregated into
sub-regions (following commonly proposed divisions, 5) to
consider local consistency with, or departure from, the pan-
regional pattern (Figure 2). Restricting comparison to the post-
Mesolithic period where dynamics are more abrupt, north-west
England/Wales versus Scotland exhibits the highest pairwise cor-
relation (with the range among all regional pairs being \(r = 0.69-
0.86\)), while Ireland exhibits more volatile dynamics than the
others (\(CV = 0.52, \) with the range of the other three being 0.39-
0.42). In addition, the specific local radiocarbon trends exhibited
by a given region in excess or deficit of the cross-regional pattern
typically match very well with that region's known archaeological
record, such as the very reduced archaeological evidence
from Ireland in the Roman period \(~1-400\) CE and then sharper
than average upward Irish growth \(~400-800\) CE in a period
of both peak, archaeologically-observed settlement activity and
historically-documented Irish monastic influence abroad (Sup-
plementary Information 2). However, it is striking that all four
chosen sub-regions show the same sharp Early Neolithic demo-
graphic peak \(~4000-3500\) BCE then decline, the same peak at
the beginning of the Bronze Age \(~2000\) BCE, Late Bronze Age
decline \(~1000-800\) BCE, a subsequent peak in the Late Iron Age
\(~250\) BCE and then decline in the later Medieval period \(~1250-
CE at the end of the sequence. The particular cross-regional
consistency at these points in the overall time series suggests an
exogenous factor of some kind.

Evidence for an Early Neolithic boom-and-bust in the British
Isles has already been noted by previous research, alongside

Fig. 1. (A) The kernel-smoothed intensity of archaeological radiocarbon
dates from Britain and Ireland showing uneven spatial sampling (the sub-
regions used in figure 2 are marked with white borders), (B) the proportion
of dated samples with genus or species level identifications, (C) a summed
probability distribution of all dates compared with a 95% Monte-Carlo
envelope of equivalent random samples drawn from a fitted logistic model
of population growth and plateau.

Fig. 2. Regional summed probability distributions – for (A) south-east Eng-
land, (B) northern/western England and Wales, (C) Scotland and (D) Ireland
– compared with a 95% Monte Carlo envelope produced by permutation of
each date's regional membership.
Fig. 3. Radiocarbon-inferred population and North Atlantic climate proxies: (A) aggregate anthropogenic radiocarbon dates from Britain and Ireland (as figure 1C, y-axis is linear), (B) total solar irradiance (12), (C) GISP2 potassium ion density (note descending axis, [17]), and (D) North Atlantic ice rafted debris (note descending axis, 19). Shaded blue zones indicate suggested onset and further duration of cold-wet episodes with the first one, the well-known “8.2kyr” event prior to the Neolithic and not addressed directly here.

explanations stressing a collapse due either to ecological over- reach by incoming farmers or the abandonment of cereal agricultur e in response to declining climate conditions (6-8). Figure 3 compares the radiocarbon record with well-known climate archives and suggests that an exogenous cause is likely for all three observed episodes of cross-regional population stagnation during (a) the end of the Early Neolithic, (b) the final Bronze Age and earliest Iron Age, and (c) the late Medieval, associated with relatively rapid changes towards more unstable conditions in Britain and Ireland, as well as colder winters and wetter summers. In particular, pan-regional demographic decline in these three episodes is consistent with reduced insolation at Hallstatt-type grand solar minima (every 2100-2500 years, 9-16). They are likewise consistent with periodic episodes of increased terrestrial salt input to the Greenland ice sheet, which in historical periods has been shown to be an excellent glaciochemical indicator of stormier, winter-like conditions and the increased dominance of Atlantic westerlies (17-19). Broadly coincident, later Holocene changes are also observable in North Atlantic oceanic regimes as separately exhibited by increased ice-rafted surface debris and reduced deep-water contributions (20-22). This evidence collectively suggests quasi-periodic solar-forcing of atmospheric and oceanic circulation with wider climatic consequences, associated with accentuated Siberian Highs and Icelandic Lows. We argue that these reorganisations have repeatedly exerted downward pressure on human population in certain parts of north-western Europe as evident for three decline phases in the high-resolution British and Irish archaeological radiocarbon record. It is very probable that similarly-timed impacts were felt by human populations in less well-documented parts of Eurasia (as already partially evident for earlier episodes, 23-24), albeit with different expression in local weather patterns, varying local human response and ultimately different positive or negative consequences for local human society. An important proximate downward forcing mechanism on human population in Britain and Ireland is likely to be exacerbated food production from reduced growing degree days for cereal agriculture and increased risk of crop

Footline Author
loss and food insecurity due to storms. However, accompanying social dislocation and intensified epidemic outbreaks are possible accompanying phenomena. By contrast, intervening episodes of change in the Neolithic and then may have provided good conditions for population expansion in certain areas, with the broadly simultaneous Early Neolithic colonisation of southern Scandinavia, Ireland and Britain being one probable example (25).

Radiocarbon-dated plant and animal food sources further provide an unusually well-resolved time series of potential changes in British and Irish food production (figure 4), as long as we are careful to consider the possible confounding effects of changing human depositional practices with regard to food remains (26). Overall, the summed probability distribution of dates from starchy food plants (cereals and hazelnuts) broadly matches the demographic signal observed in the entire radiocarbon dataset, but in contrast the relative proportion of each plant type varies significantly. Hazelnuts (Corylus avellana), a key comestible for Mesolithic communities prior to the arrival of agriculture, dominate the starchy plant data up to ~4000 BCE, decline in relative popularity with the earliest Neolithic, but then rebound for half a millennium or more during the Middle-Late Neolithic (~3500-2500 BCE), before declining again (for permutation tests, see Supplementary Information 3). In contrast, wheat (Triticum sp.) is a high value cereal that first appears and increases sharply at the very start of the British and Irish Neolithic, and then declines equally sharply by the end of the Early Neolithic. Much later during the Bronze Age, its relative presence in the radiocarbon record grows slowly again to a peak ~1000 BCE, before collapsing once more. Barley (Hordeum sp.) is a harder cereal species which also arrives as part of the earliest farming activity and is present throughout later periods. It is less popular than wheat early on, but far more visible during the Middle-Late Neolithic period of inferred population downturn (taking the British Isles as a whole). Oats (Avena sp.) only appear in consequential amounts in Britain and Ireland from the Roman period but become increasingly popular in the later Medieval period, partly replacing or complementing barley as a harder, lower-risk, lower status food for both humans and furred animals. The use of oats or oat/barley mixes as spring-sown, back-up crops, especially after initial harvest failures is also well-known from Great Famine/Black Death era, English manorial accounts (27). Radiocarbon samples for individual food animal species are fewer and encompass a wider range of meat, hide, wool and dairying strategies not to mention different kinds of deposition. However, comparison between the proportion of animal and plant food data suggests the greater importance of animals (as wild food) prior to the Neolithic and then also their high visibility (as domesticated herds) again in the Late Neolithic and Early Bronze Age (with a focus on Bos and Sus sp.) whilst more complicated and regionally differentiated stock-keeping strategies emerge from the Middle Bronze Age onwards (Supplementary Information 3).

Although subject to changing cultural depositional practice and representing only a fraction of the wider archaeobotanical and zooarchaeological record, the above-described highs and lows of directly-dated food species offer a temporally high-resolution proxy for shifting food production strategies under changing environmental conditions under climate downturn. For the Late Medieval period, crop and animal sample sizes from radiocarbon dates are much lower and the radiocarbon evidence therefore more equivocal, but contemporary documentary sources point clearly to heavily adjusted plant and animal husbandry in the period 1270-1450 CE (28). They also offer an important empirical basis for causal linkages between decreased weather stability and lower temperatures, declining food supply per capita, and further lagged human consequences such as multi-year famines, human and animal epidemics, widespread cereal market speculation, labour shortages and agricultural dis-intensification, increased violent conflict and overall population decline (29). Given these linkages, it is striking that the while a naive assumption might be that food production and resource switching strategies should have become more successful as they became more technologically sophisticated through time, the population consequences of climate downturns appear no less severe, suggesting no major enhanced resilience in later periods and indeed potentially additional demographic and subsistence risks for economically-integrated, socially-stratified and increasingly nucleated late prehistoric to Medieval societies.

Conclusions

Through a data-intensive approach to the British and Irish radiocarbon evidence we are therefore able to provide a detailed, long-term demographic proxy for the first time, which amongst other things, demonstrates at least three regionally-consistent episodes of population downturn. While other Holocene climate changes may also have had human impacts in this region, and other European regions need not have responded in the same way, these shared episodes of demographic change match quasi-period shifts to more unstable weather regimes in the north Atlantic and well-known solar grand minima. Furthermore, each downturn across Britain and Ireland was of varying longer-term consequence, with subsistence responses such as resource-switching and food diversification that varied through time. Exogenous climatic factors appear more likely to account for these consistencies than endogenous population over-reach on its own, although both these processes may well have operated in tandem. In any case, both archaeological and historical evidence suggest that human action has always played a role in either mitigating or exacerbating climate-driven effects.

Materials and Methods

A radiocarbon date is a measurement of residual radioactivity in a sample containing carbon, with the most widely cited measurement being a ‘conventional radiocarbon age’ that has been corrected for carbon isotopic fractionation (30). This age has a measurement error that is typically assumed to be a Gaussian distribution. Calibrating this radiocarbon age against ob-

Footline Author
We first fit such a model (e.g., exponential, logistical, uniform) to the observed summed probability distribution. However, when the envelopes for the observed distributional shape and an assumption that there might be post-Neolithic, pre-Roman upper bound to population growth. The model of expected population intensity is then back-calibrated, and a set of radiocarbon dates (equal to the number of observed dates) is simulated proportional to the modelled per-C14 year amplitude. These simulated dates are then calibrated and summed. Repeating this process many times (e.g., 1000) provides a global goodness-of-fit test and 95% critical envelope with which to assess local departures from the theoretical model (6,35). A second kind of test used here holds constant the date of a given sample but refuffs its label (e.g. the geographic region it comes from or the material type/species of the sample). This permutation test creates conditional random sets (e.g. 1000) and a 95% critical envelope with which to assess region-specific or species-specific departures from the global trend (33). Such detailed analyses also address the challenge of reduced sample sizes (e.g. for particular plants), as the resulting envelopes are correspondingly larger in such cases.

Acknowledgments

Our thanks to the very considerable number of people and projects who took the original radiocarbon samples or collected the resulting published literature (see digital archive for detailed credits). Enrico Crema, Mark Thomas and Adrian Timpson provided insightful discussion on methodology. AB designed the research, conducted the main analysis and drafted the text, with input from the other co-authors. AB, SC, SS and CS coordinated the collection of BF provided the palaeo analysis. All authors contributed to drafting the Supplementary Information and the final version of the manuscript. The dataset and script used in this paper are archived at http://bit.ly/2oEPUtN.

Footnote Author

1. Sheridan, A. (2010). The Neolithization of Britain and Ireland: The Big Picture. In Finlayson, B. and Warren, G. (eds.) Landscapes in Transition: 89-105. Oxford Books. Oxford.
2. Cassidy, L.M. et al. (2016). Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome, Proceedings of the National Academy of Sciences. USA 113.2: 367-373.
3. Parker Pearson, M., et al. (2016). Beaker people in Britain: migration, mobility and diet. Antiquity, 90:351: 620-637.
4. Olsade, I. et al. (2017). The Beaker phenomenon and the genomic transformation of northwest Europe, BioRxiv Preprint (doi: 10.1101/135962).
5. Roberts, B.K. and S. Wrathemoll (2000). An Atlas of Rural Settlement in England (2003 edn). University Press.
6. Shennan, S. et al. (2013). Regional population collapse followed initial agricultural booms in mid-Holocene Europe, Nature Communication 4 (doi: 10.1038/ncomms2486).
7. Whitehouse, N.J. et al. (2014). Neolithic agriculture on the European western frontier: the boom and bust of early farming. In Journal of Archaeological Science 46: 78-254.
8. Stevens, C.J. and D.Q. Fuller (2015). Alternative strategies to agriculture: the evidence for mid-Holocene Europe, An Atlas of Rural Settlement in England.
9. Magny, M. (1993). Solar influences on Holocene climatic changes illustrated by correlations during the Last Glacial-Interglacial transition in the eastern Mediterranean, Earth and Planetary Science Letters 115: 101-120.
10. Bronk Ramsey, C. (2009). Bayesian analysis of radiocarbon dates, PLoS ONE 4:115-140.
11. Bond, G. et al. (2001). Persistent solar influence on North Atlantic climate during the Holocene, Science 294: 2130-2136.
12. Oppo, D.W., McManus, J.F., Cullen, J.L. (2003). Palae-oceanography: deepwater variability in the Holocene epoch, Nature 422: 277-287.
13. Dobret, M.E. et al. (2007). The origin of 1500-year cycle in North Atlantic records, Climate of the Past 3: 569-575.
14. Bray, J.R. (1968). Glaciation and solar activity since the first century CE and the solar cycle, Nature 220: 672-674.
15. Magny, M. (1993). Solar influences on Holocene climatic changes illustrated by correlations between past lake level fluctuations and the atmospheric 14C record, Quaternary Research 40: 1-9.
16. Vasiliu, S.S. and V.A. Dergachev (2002). The ~2400 year cycle in atmospheric radiocarbon concentration, based on the last 8000 years, Antiquity Geophysics 20: 115-120.
17. Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M. and J. Beer (2004). Unusual activity of the Sun during the interval 1400-1650 AD (1140-1850 AD) of the Maunder Minimum. Solanki et al. (2004). Astronomische Nachrichten 325: 855-875.
18. Steinberger, B. et al. (2012). 9400 years of cosmic radiation and solar activity from ice cores and tree rings, Proceedings of the National Academy of Sciences, USA 109.16: 5967-5971.
19. McCracken, K.G., Beer, J., Steinberger, F. J. Abele (2013). Palaeoclimatological study of the cosmic ray variations over the past 9400 years, and their implications regarding solar activity and the solar dynamo, Solar Physics 268: 609-627.
20. Shennan, S. (2010). Glaciation and solar activity since the fifth century BCE and the solar cycle, Journal of Archaeological Science 37: 1083-1093.
13. Rippen, S., Pears, B. and C. Smart (2015). The Fields of Britannia. Continuity and Change in the Late Roman and Early Medieval Landscape. Oxford: Oxford University Press.

14. McCabe (2017). Market Flows – A discussion of crop husbandry, horticulture and trade in plant resources in southern England. In Bird, D. (ed.) Agriculture and Industry in Southern England: Roman and Medieval, Oxford: Oxford University Press.

15. Ladbrooke, A. and J. Stevens C. J. (2015). The Use of carbon dating. In Powell, A. B., Barclay, A. J., Mepham L. and Stevens, C. J. (eds) Innovations, Albarella, UmbertoSize, power, wool and veal: zooarchaeological evidence for standing aquatic resource use in human economies and animal management in the Late Iron Age and Norse Period revealed through organic residues in pottery, in: Mercer, R.J. (Ed.): Prehistory of the Agriculture. Nouvelles Approches Exemplaires. OCSB 41, Paris: CNRS, 109-130.

16. Austin, S. T. (2003). Crop yields of the prehistoric cereal types and emmer: the west! in Anderson, P.C. (ed.) Prehistoire de l'Agriculture. Nouvelles Approches Exemplaires. OCSB 41, Paris: CNRS, 109-130.

17. A discussion of crop husbandry, horticulture and trade in plant resources in southern England. In Bird, D. (ed.) Agriculture and Industry in Southern England: Roman and Medieval, Oxford: Oxford University Press.

18. Austin, S. T. (2003). Crop yields of the prehistoric cereal types and emmer: the west! in Anderson, P.C. (ed.) Prehistoire de l'Agriculture. Nouvelles Approches Exemplaires. OCSB 41, Paris: CNRS, 109-130.

19. A discussion of crop husbandry, horticulture and trade in plant resources in southern England. In Bird, D. (ed.) Agriculture and Industry in Southern England: Roman and Medieval, Oxford: Oxford University Press.

20. Austin, S. T. (2003). Crop yields of the prehistoric cereal types and emmer: the west! in Anderson, P.C. (ed.) Prehistoire de l'Agriculture. Nouvelles Approches Exemplaires. OCSB 41, Paris: CNRS, 109-130.
179. Slavin, P. (2012). The Great Bovine Pestilence and its economic and environmental consequences in England and Wales, 1318-501. *Economic History Review* 65:4: 1239-1266.

180. Dawson, A.G. Hickey, K., Mayewski, P.A. and N. Nesje (2007). Greenland (GISP2) ice core and historical indicators of complex North Atlantic climate changes during the fourteenth century. *The Holocene* 17:4: 427-434.

181. Bagshaw, J., W. S. M. O. F., Jette Ameborg, J., Streeter, R. and C. Keller (2012). Cultural adaptation, compounding vulnerabilities and conjectures in Norse Greenland, *Proceedings of the National Academy of Sciences, USA* 109:10: 3658-3663.

182. Streeter, R., Bagshaw, J. and O. Vebæksson (2012). Plague and landscape resilience in premodern Iceland, *Proceedings of the National Academy of Sciences, USA* 109:10: 3664-3669.

183. Grant MR, Weller M. (2017). Resolving complexities of pollen data to improve interpretation of past human activity and natural processes. In: Williams M, Hill T, Boomer I, Wilkinson IP (eds) *The Archaeological and Forensic Applications of Microfossils: A Deeper Understanding of Human History*, The Micropalaeontological Society, 103-119.

184. Bhrje K.E. (1986). *Ancestral Significations in Pollen Diagrams*, Rotterdam: AA Balkema.

185. Gaillard M-J, et al. (1994). Application of modern pollen/land-use relationships to the interpretation of pollen diagrams – reconstructions of land-use history in South Sweden 3000-0 BP. *Review of Palaeobotany and Palynology* 82: 47-73.

186. Fyfe RM, Roberts CN, Woodbridge J. (2010). A pollen-based pseudo-biomisation approach to anthropogenic land cover change *The Holocene* 20: 1165-1171.

187. Prentice IC, Parsons RW (1983). Maximum likelihood linear calibration of pollen spectra in terms of forest composition. *Biometrics* 39: 1051-1057.

188. Sugita S. (2007). Theory of quantitative reconstruction of vegetation. I. Pollen from large sites REVEALS regional vegetation. *The Holocene* 17: 229-241.

189. Hellman S, Guillard MJ, Bråström A, Sugita S (2008). The REVEALS model, a new tool to estimate past regional plant abundance from pollen data in large lakes: validation in southern Sweden. *Journal of Quaternary Science* 23, 21-42.

190. Sugita S, Parshall T, Calcote R, Weller K. (2010). Testing the landscape reconstruction algorithm for spatially explicit quantification of vegetation in northern Michigan, and Wisconsin. *Quaternary Research* 74: 289-300.

191. Fyfe R.M. et al. (2013). The Holocene vegetation cover of Britain and Ireland, overcoming problems of scale and discerning patterns of openness. *Quaternary Science Reviews* 73: 132-148.

192. Marquart, L., et al. (2014). Holocene changes in vegetation composition in northern Europe: why pollen-based quantitative reconstructions matter? *Quaternary Science Reviews* 90: 199-216.

193. Fyfe, R.M. et al. (2009). The European Pollen Database: past efforts and current activities, *Lignation History and Archaeobotany* 18: 417-424.

194. Giesek T, et al. (2014). Towards mapping the late Quaternary vegetation change of Europe *Lignation History and Archaeobotany* 23, 75-96.

195. Trondman A-K. (2015). Pollen-based land-cover reconstructions for the study of past vegetation-climate interactions in NW Europe at 0.2 k, 0.5 k, 3 k and 6 k years before present, *Global Change Biology* 21: 576-697.

196. Woodbridge, J., Fyfe, R.M., Roberts, N., Downey, S., Edinborough, K., Shennan (2014). The impact of the Neolithic agricultural transition in Britain: a comparison of pollen-based land-cover and archaeological 14C date-inferred population change, *Journal of Archaeological Science* 51: 216-224.

197. Lechtkeck J, Edinborough K, Kring T, Fyne R, Roberts N and Shennan S. (2014). Is Neolithic land use correlated with demography? An evaluation of pollen derived land cover and radiocarbon inferred demographic change from central Europe. *The Holocene* 24, 1297-1307.

198. Fyfe RM, Woodbridge J, Roberts CN (2015). From forest to farmland: pollen-inferred land cover change across Europe using the pseudo-biomisation approach *Global Change Biology* 21, 1197-1212.

199. Rosen, A.M. (2007). *Civilizing Climate: Social Responses to Climate Change in the Ancient Near East*, Rowman Altamira.

200. Weiss, H., Courty, M-A., Wetterstrom, W., Guichard, F., Senior, L., Meadow, R. and A. Cernow (1993). The Genesis and Collapse of Third Millennium North Mesopotamian Civilization, *Science* 261:S124: 995-1004.