Rat liver transplantation without preservation of “phrenic ring” using double cuff method

Yong Jiang, Yu-Dong Qiu, Xiao-Ping Gu, Xin-Hua Zhu, Yi-Tao Ding

Yong Jiang, Yu-Dong Qiu, Xiao-Ping Gu, Xin-Hua Zhu, Yi-Tao Ding, Department of Hepatobiliary Surgery, Gulou Hospital, Medical Department of Nanjing University, Nanjing, 210008, Jiangsu Province, China

Yong Jiang, Department of Hepatobiliary Surgery, Changzhou 1st People’s Hospital, Changzhou, 213003, Jiangsu Province, China

Supported by the Medical Administration Bureau of Jiangsu Province, No. SZ9902

Correspondence to: Dr. Yong Jiang, Department of Hepatobiliary Surgery, Changzhou 1st People’s Hospital, Changzhou, 213003, Jiangsu Province, China. yyjiang8888@hotmail.com

Telephone: +86-519-6102280 Fax: +86-519-6621235

Received: 2003-09-06 Accepted: 2003-10-07

Abstract

AIM: To develop a double cuff method for rat liver transplantation without preservation of “phrenic ring” to shorten the portal vein clamping time.

METHODS: “Phrenic ring” was completely excluded from the donor liver, and end to end anastomosis of suprahepatic inferior vena cava was performed.

RESULTS: The portal vein clamping time was shortened to 10.6 min, the successful rate was 83.1%.

CONCLUSION: This method can simplify the operation and shorten the portal vein clamping time.

Jiang Y, Qiu XD, Gu XP, Zhu XH, Ding YT. Rat liver transplantation without preservation of “phrenic ring” using double cuff method. World J Gastroenterol 2004; 10(10): 1526-1527

http://www.wjgnet.com/1007-9327/10/1526.asp

INTRODUCTION

The orthotopic rat liver transplantation (ORLT) model was first described by Lee et al. in 1973[1], and subsequently modified by Kamada and Calne in 1979[2]. This model has been widely accepted and used in current scientific researches[3-13]. In order to study the ischemia/reperfusion injury after liver transplantation, we modified the ORLT model established by Jiang et al.[14]. We constructed a double cuff ORLT model without preservation of “phrenic ring”. This model can simplify the operation and shorten the portal vein clamping time.

MATERIALS AND METHODS

Animals

Male Spraque Dawley rats weighing 200-250 g were used as donors and recipients respectively. The body mass of donors was generally lower than that of corresponding recipients. The rats were housed in pathogen-free conditions with a 12 h light-dark cycle and had free access to water and were fasted for 14 h before operation. All experiments were performed in compliance with the standards for animal use and care set by Institutional Animal Care Committee.

Surgical procedures

All surgical procedures were performed under the naked eye. On the basis of the procedures described by Kamada et al.[2], we made the following modifications. (1) The harvested liver from the donor was placed in a 4 °C saline bath measuring 6 cm in diameter and 3 cm in depth. The whole “phrenic ring” was removed from the suprahepatic inferior vena cava (IVC), leaving the vesal wall of suprahepatic IVC. After the double-cuff preparation was finished, the liver was perfused with cold lactated Ringer’s solution through the portal vein and infrahepatic IVC. The liver was preserved in 4°C University of Wisconsin (UW) solution for 24 h (in order to study cold preservation/reperfusion injury). (2) Instead of anastomosis of the donor “phrenic ring” with the receptor’s suprahepatic IVC, the donor suprahepatic IVC was anastomosed end-to-end with the receptor suprahepatic IVC using a 7/0 continuous nylon suture.

RESULTS

Seventy-two ORLTs were performed without preservation of “phrenic ring” in rats. Of which, 59 were successful (success rate 83.1%). The rats survived over 24 h. One rat had survived more than 2 mo. One-week survival rate was not obtained because specimens were taken for study. Our criteria for operative success were as follows. After ORLT, the receptor rat could turn over, and run about actively. The rats were agile to the surrounding and could drink water. The portal vein clamping time (PVCT) was shortened (10.6±1.36 min), and the shortest PVCT reached 8 min. The cause of death included a number of contributing factors: anesthesia too deep and respiratory failure (4/13); thrombosis of the portal vein (1/13); wound bleeding of the right adrenal gland area (1/13); failure of the portal vein anastomosis (2/13); stenosis or obstruction of suprahepatic IVC (4/13); and failure of the infrahepatic IVC anastomosis (1/13). Failure to control ether anesthesia and narrowing or obstruction of the outflow tract was the main cause of operative failure. In the latter case, most of them occurred at the initial stage.

DISCUSSION

Original intention of establishing the model

The author has been engaged in the research of ischemia/reperfusion injury of liver transplantation. In this process, PVCT needs to be shortened in order to reduce the interference with a too long period of splanchnic congestion. PVCT should be shortened to less than 14 min, otherwise a lethal endotoxin like syndrome induced by splanchnic congestion might play the central role which might bring about a noted systemic error in research[16]. In the beginning by following Kamada’s method, we found that the repair of “phrenic ring” and eversion anastomosis were the “bottleneck” of PVCT. Thus we established the double cuff method for ORLT without preservation of “phrenic ring”. In the early stage, suprahepatic IVC was sometimes lacerated. But on the basis of improved microsurgery and vascular anastomosis technique, this method can not only avoid laceration of the suprahepatic IVC, but also shorten PVCT. A more scientific model is thus provided for
the research of ischemia-reperfusion and rejection-tolerance in liver transplantation.

Good exposure is the key point of a successful operation
As other surgical operations, good exposure is also the key point of liver transplantation. As “phrenic ring” is not preserved, anastomosis of suprahepatic IVC becomes more important. Good exposure was achieved in the following ways. Full-length median incision on the abdomen was dragged to both sides and fixed, xiphoid process was dragged cephalad with our designed apparatus, a small pillow underlied the rat chest to raise the suprahepatic IVC stoma. By this method, no suprahepatic IVC was lacerated, PVCT was shortened to nearly 10 min. Not only the disturbance of respiratory and circulation was reduced, but also splanchic congestion induced endotoxin like syndrome was reduced, which was hard to be attained by “triple-cuff” or conventional “double-cuff” liver transplantation.

Other relevant experiences concerning anaesthesia of donor and receptor rats
Donor livers were anaesthetized by ketamine. Kamada *et al.* recommended a dosage of 100 mg/5 Kg body mass[2], but actually 40 to 50 mg ketamine was administrated to rats weighing 180-230 g. Receptor rats were maintained by ether inhalation anaesthesia. Steadiness of this anaesthesia is also crucial to a successful ORLT. The shallow anaesthesia would result in difficulty of operation and even bleeding, but too deep anaesthesia would lead to depression of breath and difficulty in postoperative recovery or even death. Out of control of the depth of ether anaesthesia was the main reason of postoperative respiratory failure, and also one of the main causes of death of the receptor rats (30.8%, 4/13). Our experience is “deep induction, shallow maintenance”. In the induction period, a bigger dosage of ether was given, but a low density of ether in mask was maintained during operation.

Turning over of the donor liver during its harvest
We adopted the methods recommended by Wang *et al.*[16]. After a midline abdominal incision was made, the liver was freed from surrounding ligaments, the left infraparenchymal vein and paraoesophageal vein were ligated and divided. Then the right renal vein and right adrenal vein were ligated. The suprahepatic vein was freed. Hepatoportal structure was dissected and freed. The common duct was cannulated. The donor liver was thus harvested. It was turned over only once. So this method can not only protect the donor liver, but also shorten the heat ischemic time.

REFERENCES

1. Lee S, Charters AC, Chandler JG, Orloff MJ. A technique for orthotopic liver transplantation in the rat. Transplantation 1973; 16: 664-669
2. Kamada N, Calne RY. Orthotopic liver transplantation in the rat. Technique using cuff for portal vein anastomosis and biliary drainage. Transplantation 1979; 28: 47-50
3. Zhu XH, Qiu YD, Shen H, Shi MK, Ding YT. Effect of matrine on Kupffer cell activation in cold ischemia reperfusion injury of rat liver. World J Gastroenterol 2002; 8: 1112-1116
4. Xu MQ, Yao ZK. Functional changes of dendritic cells derived from allogeneic partial liver graft undergoing acute rejection in rats. World J Gastroenterol 2003; 9: 141-147
5. Svensson G, fjälling M, Grettarsdottir J, Jacobsson L, Holmberg SB. Kupffer cell and hepatocyte function in rat transplanted liver. Transpl Int 1992; 5(Suppl 1): S417-419
6. Tashiro H, Fudaba Y, Itoh H, Mizunuma K, Ohdan H, Itamoto T, Asahara T. Hepatocellular growth factor prevents chronic allograft dysfunction in liver-transplanted rats. Transplantation 2003; 76: 761-765
7. Kataoka M, Margenthaler JA, Ku G, Eliers M, Flye MW. “Infectious tolerance” develops after the spontaneous acceptance of Lewis-to-Dark Agouti rat liver transplants. Surgery 2003; 134: 227-234
8. Fujino M, Adachi K, Kawasaki M, Kitazawa Y, Funeshima N, Okuyama T, Kimura H, Li XK. Prolonged survival of rat liver allograft with adenoviral gene transfection of human immuno-deficiency virus type 1 nef. Liver Transpl 2003; 9: 805-813
9. Kato Y, Shimazu M, Kondo M, Uchida K, Kumamoto Y, Wakabayashi G, Kitajima M, Suematsu M, Bilirubin rinse: A simple protectant against the rat liver graft injury mimicking heine-enzyme-1 preconditioning. Hepatology 2003; 38: 364-373
10. Fernandez L, Heredia N, Peralta C, Xaus C, Rosello-Catafau J, Rimola A, Marco A, Serafin A, Deulofeu R, Gelpi E, Grande L. Role of ischemic preconditioning and the portosystemic shunt in the prevention of liver and lung damage after rat liver transplantation. Transplantation 2003; 76: 282-289
11. Li XL, Man K, Liu YF, Lee TK, Tsui SH, Lau CK, Lo CM, Fan ST. Insulin in University of Wisconsin solution exacerbates the ischemic injury and decreases the graft survival rate in rat liver transplantation. Transplantation 2003; 76: 44-49
12. Lehmann TG, Wheeler MD, Froh M, Schwabe RF, Bunzendahl H, Samuelski RJ, Lemasters JI, Bremner DA, Thurman RG. Effects of three superoxide dismutase genes delivered with an adenovirus on graft function after transplantation of fatty livers in the rat. Transplantation 2003; 76: 28-37
13. Sun Z, Klein AS, Radaeva S, Hong F, El-Assal O, Pan HN, Jaruga B, Batkai S, Hoshino S, Tian Z, Kunos G, Diehl AM, Gao B. In vitro interleukin-6 treatment prevents mortality associated with fatty liver transplants in rats. Gastroenterology 2003; 125: 202-215
14. Jiang Y, Gu XP, Qiu XD, Sun XM, Chen LL, Zang LH, Ding YT. Ischemic preconditioning decreases C-X-C chemokine expression and neutrophil accumulation early after liver transplantation in rats. World J Gastroenterol 2003; 9: 2025-2029
15. Urata K, Nguyen B, Braut A, Lavoie J, Rocheleau B, Huet PM. Decreased survival in rat liver transplantation with extended cold preservation: role of portal vein clamping time. Hepatology 1998; 28: 366-373
16. Wang X, Yang JM, Yan YQ, Yao XP, Wu MC. Studies on the ways of orthotopic liver transplantation in rats. Zhonghua Qiguan Yi Zhi 1998; 19: 76-78

Edited by Xu JY and Wang XL Proofread by Xu FM