Higher-dimensional thin-shell wormholes in Einstein–Yang–Mills–Gauss–Bonnet gravity

S Habib Mazharimousavi, M Halilsoy and Z Amirabi

Department of Physics, Eastern Mediterranean University, G. Magusa, North Cyprus, Mersin 10, Turkey

E-mail: habib.mazhari@emu.edu.tr, mustafa.halilsoy@emu.edu.tr and zahra.amirabi@emu.edu.tr

Received 11 August 2010, in final form 18 November 2010
Published 21 December 2010
Online at stacks.iop.org/CQG/28/025004

Abstract
We present thin-shell wormhole solutions in the Einstein–Yang–Mills–Gauss–Bonnet (EYMGB) theory in higher dimensions $d \geq 5$. Exact black hole solutions are employed for this purpose where the radius of the thin shell lies outside the event horizon. For some reasons the cases $d = 5$ and $d > 5$ are treated separately. The surface energy–momentum of the thin shell creates surface pressures to resist against collapse and rendering stable wormholes possible. We test the stability of the wormholes against spherical perturbations through a linear energy–pressure relation and plot stability regions. Apart from this restricted stability we investigate the possibility of normal (i.e. non-exotic) matter which satisfies the energy conditions. For negative values of the Gauss–Bonnet (GB) parameter we obtain such physical wormholes.

Dedicated to the memory of Rev. Ibrahim Eken (1927–2010) of Turkey.

PACS numbers: 04.20.Gz, 04.50.Gh, 04.70.Bw

1. Introduction

One of the challenging problems in general relativity is to construct viable, traversable wormholes [1, 2] from the curvature of spacetime and physically meaningful energy–momenta. Most of the sources to support wormholes to date unfortunately consist of exotic matter which violates the energy conditions [3]. More recently, however, there are examples of thin-shell wormholes that resist against collapse when sourced entirely by physical (normal) matter satisfying the energy conditions [4]. From this token, it has been observed that pure Einstein’s gravity consisting of the Einstein–Hilbert (EH) action with familiar sources alone does not suffice to satisfy the criteria required for normal matter. This leads automatically to taking into account the higher curvature corrections known as the Lovelock hierarchy [5]. The most prominent term among such higher order corrections is the Gauss–Bonnet (GB) term to modify the EH Lagrangian. There is already a growing literature on the Einstein–Gauss–Bonnet (EGB) gravity and wormhole constructions in such a theory.
In this paper we intend to fill a gap in this line of thought which concerns the Einstein–Yang–Mills (EYM) theory amended with the GB term. More specifically, we wish to construct thin-shell wormholes that are supported by normal (i.e. non-exotic) matter. To this end, we first construct higher dimensional \((d \geq 5)\) exact black hole solutions in EYMGB theory. This we do by employing the higher dimensional Wu–Yang ansatz which has been described elsewhere \([6, 7]\). The distinctive point with this particular ansatz is that the YM invariant emerges with the same power, irrespective of the spacetime dimensionality. In this regard the EYM solution becomes simpler in comparison with the Einstein–Maxwell (EM) solutions. This motivates us to seek for thin-shell wormholes by the cutting/pasting method in the EYM theory.

Another point of utmost importance is the GB parameter \((\alpha)\), whose sign plays a crucial role in the positivity of energy of the system. Although in string theory this parameter is chosen positive for some valid reasons, when it comes to the subject of wormholes our choice favors the negative values \((\alpha < 0)\) for the GB parameter. One more item that we consider in detail in this study is to investigate the stability of such wormholes against linear perturbations when the pressure and energy density are linearly related.

The exact solutions to EYMGB gravity that we shall employ in this paper were established before \([6, 7]\). Our line element is chosen in the form \([7]\)

\[
\text{ds}^2 = - f(r) \, dt^2 + \frac{dr^2}{f(r)} + r^2 \Omega_{d-2}^2 \left(\sum_{i=2}^{d-1} \sin^2 \theta_i \, d\theta_i^2 \right),
\]

where

\[
f(r) = \frac{d^2}{r^2} \sum_{i=1}^{d-1} x_i^2,
\]

\[
\Omega_{d-2}^2 = d \theta_1^2 + \sum_{i=2}^{d-1} \prod_{j=1}^{i-1} \sin^2 \theta_j \, d\theta_i^2,
\]

According to the higher-dimensional Wu–Yang ansatz, the YM potential is chosen as

\[
A^{(a)} = \frac{Q}{r^2} C^{(a)}_{(i)(j)k} x^j \, dx^i,
\]

\[
Q = \text{YM magnetic charge}, \quad r^2 = \sum_{i=1}^{d-1} x_i^2,
\]

\[
2 \leq j + 1 \leq i \leq d - 1 \quad \text{and} \quad 1 \leq a \leq (d - 2)(d - 1)/2,
\]

\[
x_1 = r \cos \theta_{d-3} \sin \theta_{d-4} \ldots \sin \theta_1, \quad x_2 = r \sin \theta_{d-3} \sin \theta_{d-4} \ldots \sin \theta_1,
\]

\[
x_3 = r \cos \theta_{d-4} \sin \theta_{d-5} \ldots \sin \theta_1, \quad x_4 = r \sin \theta_{d-4} \sin \theta_{d-5} \ldots \sin \theta_1,
\]

\[
x_{d-2} = r \cos \theta_1,
\]

where \(C^{(a)}_{(i)(j)k}\) is the non-zero structure constants \([8]\). By this choice the YM invariant \(F\) reduces to a simple form

\[
F = \text{Tr}(F^{(a)}_{\lambda\sigma} F^{(a)\lambda\sigma}) = \frac{(d - 3)}{r^4} Q^2,
\]

which yields the energy–momentum tensor

\[
T^\nu_\mu = - \frac{1}{2} F \text{diag}[1, 1, \kappa, \kappa, \ldots, \kappa] \quad \text{and} \quad \kappa = \frac{d - 6}{d - 2}.
\]

Accordingly, the field equations are (without a cosmological term)

\[
G^E_{\mu\nu} + \alpha G^{GB}_{\mu\nu} = T_{\mu\nu},
\]
where
\[G_{\mu\nu}^{GB} = 2 \left(-R_{\mu\alpha\nu} R^{\alpha} - 2 R_{\mu\nu\rho\sigma} R^{\rho\sigma} - 2 R_{\mu\rho} R^{\rho\nu} + R R_{\mu\nu} \right) - \frac{1}{2} L_{GB} g_{\mu\nu}. \] (7)

\(\alpha \) is the GB parameter and the GB Lagrangian \(L_{GB} \) is given by
\[L_{GB} = R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4 R_{\mu\nu} R^{\mu\nu} + R^2. \]

The exact solutions which we shall use throughout this paper are [6, 7]
\[f_{\pm}(r) = \begin{cases}
1 + \frac{r^2}{\tilde{r}^2} & (d = 5) \\
1 + \frac{r^2}{\tilde{r}^2} \left(1 + \frac{1}{d-5} \left(\frac{160 M_{\text{ADM}}}{d} + 2(d-3)Q^2 \right) \right) & (d \geq 6)
\end{cases} \] (8)
in which \(\tilde{\alpha} = (d-3)(d-4)\alpha \), with the GB parameter \(\alpha \). Here \(M_{\text{ADM}} \) stands for the usual ADM mass of the black hole and \(Q \) is the YM charge. When compared with [6] (for \(d = 5 \)) and [7] (for \(d > 5 \)) the meaning of \(M_{\text{ADM}} \) implies that \(M_{\text{ADM}} = \frac{1}{2} (m + 2\alpha) \) and \(M_{\text{ADM}} = \frac{1}{2} m(d-2) \), respectively. Let us also add that in [7] we set \(Q = 1 \) through scaling. The crucial point in our solution is that the YM term under the square root has a fixed power \(\frac{1}{d-3} \) for all \(d \geq 6 \). As can be checked, the negative branch gives the correct limit of the higher-dimensional black hole solution in the EYM theory of gravity if \(\alpha \to 0 \), and therefore in what follows we only consider this specific case. We also note that for negative \(\alpha \) there exists a minimum value \(r_h \) of \(r \) such that for \(r > r_h \), the square root term gives imaginary values. For \(\alpha > 0 \), although for \(d \geq 6 \) there is no curvature singularity, for \(d = 5 \) it depends on the value of the free parameters (i.e. \(\tilde{\alpha}, Q, M_{\text{ADM}} \)) to result in a curvature singularity.

Here, in order to explore the physical properties of the above solutions we investigate some essential thermodynamic quantities. Since the \(d = 5 \) case has been studied elsewhere [9] we shall concentrate on \(d \geq 6 \).

Radius of the event horizon (i.e. \(r_h \)) of the negative branch black hole \(f_{-}(r) \) with positive \(\alpha \) is the maximum root of \(f_{-}(r_h) = 0 \). It is not difficult to show that in terms of the event horizon radius one can write
\[M_{\text{ADM}} = \frac{(d-2)}{4} \left(\tilde{\alpha} + r_h^2 \right) - \frac{(d-3)}{(d-5)} Q^2 r_h^{d-2}. \] (9)

We also find the Hawking temperature \(T_H \) in terms of \(r_h \), i.e.
\[T_H = \frac{1}{4\pi} \frac{f'(r_h)}{f'(r_h)} = \frac{(d-3) \left(r_h^2 - Q^2 \right) + \tilde{\alpha}(d-5)}{4\pi r_h (2\tilde{\alpha} + r_h^2)}. \] (10)

To complete our thermodynamical quantities we use the standard definition of the specific heat capacity with the constant charge
\[C_Q = T_H \left(\frac{\delta S}{\delta T_H} \right)_Q, \] (11)
in which \(S \) is the standard entropy defined as
\[S = A = \frac{(d-1)\pi^{\frac{d-1}{2}}}{4^{\frac{d-1}{4}}} r_h^{d-2}, \] (12)

1 This reference contains unfortunate errors which invalidate its overall conclusions. Equations (15) and (19), for instance, should read
\[\sigma = -S'_r = -\frac{1}{8\pi} \left[\frac{6\sqrt{B(b)}}{b} - 2\alpha \sqrt{B(b)} \left(\frac{4B(b)}{b^3} - \frac{12}{b^5} \right) \right] \]
\[u = \pi^3 b^3 \sigma = -\frac{3\pi b^5 \sqrt{B(b)}}{4} + \pi a \sqrt{B(b)} (B(b) - 3), \]
respectively.
to show the possible thermodynamical phase transition. After some manipulation we find
\[C_Q = \frac{(d - 2)(d - 1)(2\tilde{\alpha} + r_h^2)\pi^{d/2}r_h^{d-2}[(d - 5)\tilde{\alpha} + (d - 3)(r_h^2 - Q^2)]}{4r_h^{(d-1)/2}} \left[2\tilde{\alpha}[Q^2(d - 3) - \tilde{\alpha}(d - 5)] + [3Q^2(d - 3) - \tilde{\alpha}(d - 9)]r_h^2 - (d - 3)r_h^4 \right]. \] (13)

The phase transition takes place at the real and positive root(s) of the denominator, i.e.
\[2\tilde{\alpha}[Q^2(d - 3) - \tilde{\alpha}(d - 5)] + [3Q^2(d - 3) - \tilde{\alpha}(d - 9)]r_h^2 - (d - 3)r_h^4 = 0. \] (14)

One can show that under the condition
\[\frac{Q^2}{\tilde{\alpha}} < \frac{7d - 39}{9(d - 3)} \] (15)
there is no phase transition, while if
\[\frac{7d - 39}{9(d - 3)} < \frac{Q^2}{\tilde{\alpha}} < \frac{d - 5}{d - 3} \] (16)
we will observe two phase transitions. Finally upon choosing
\[\frac{d - 5}{d - 3} \leq \frac{Q^2}{\tilde{\alpha}} \] (17)
there exists only one phase transition. Also if \(\frac{Q^2}{\tilde{\alpha}} = \frac{7d - 39}{9(d - 3)} \) one phase transition occurs at \(r_h = \sqrt{\frac{6(d - 3)}{7d - 39}Q^2} \). These results show that the dimensionality of spacetime plays a crucial role in the thermodynamical behavior of the EYMGB system.

For negative \(\alpha \) in the negative branch we write \(\tilde{\alpha} = -|\tilde{\alpha}| \) and therefore the horizon radius \(r_h \) is given by solving
\[1 - \frac{2|\tilde{\alpha}|}{r_h^2} = \sqrt{1 - \frac{16|\tilde{\alpha}|M_{ADM}}{r_h^{d-1}(d - 2)} - \frac{4(d - 3)|\tilde{\alpha}|Q^2}{(d - 5)r_h^4}}. \] (18)

The method of establishing the thin-shell wormhole, based on the black hole solutions given in (8), follows the standard procedure which has been employed in many recent works [4].

2. Dynamic thin-shell wormholes in \(d \) dimensions

The method of establishing a thin-shell wormhole in the foregoing geometry goes as follows. We cut two copies of the EYMGB spacetime
\[M^\pm = \{ r^\pm \geq a, a > r_h \} \] (19)
and paste them at the boundary hypersurface \(\Sigma^\pm = \{ r^\pm = a, a > r_h \} \). These surfaces are identified on \(r = a \) with a surface energy–momentum of a thin shell whose radius also coincides with the throat radius such that geodesic completeness holds for \(M = M^+ \cup M^- \). Following the Darmois–Israel formalism [10] in terms of the original coordinates \(x^\xi = (t, r, \theta_1, \theta_2, \ldots) \) (i.e. in \(M \)) the induced metric \(\xi^i = (\tau, \theta_1, \theta_2, \ldots) \), on \(\Sigma \) is given by (Latin indices run over the induced coordinates, i.e. \(\{1, 2, 3, \ldots, d - 1\} \) and Greek indices run over the original manifold’s coordinates, i.e. \(\{1, 2, 3, \ldots, d\} \)):
\[g_{ij} = \frac{\partial x^\alpha}{\partial \xi^i} \frac{\partial x^\beta}{\partial \xi^j} g_{\alpha\beta}. \] (20)

Here \(\tau \) is the proper time and
\[g_{ij} = \text{diag}(-1, a^2, a^2 \sin^2 \theta, a^2 \sin^2 \theta \sin^2 \phi, \ldots), \] (21)
while the extrinsic curvature is defined by
\[K_{ij}^\pm = -n_\gamma^\pm \left(\frac{\partial^2 x^\gamma}{\partial \xi^i \partial \xi^j} + \Gamma^\gamma_{\alpha\beta} \frac{\partial x^\alpha}{\partial \xi^i} \frac{\partial x^\beta}{\partial \xi^j} \right)_{r=a}. \] (22)

It is assumed that \(\Sigma \) is non-null, whose unit \(d \)-normal in \(M^\pm \) is given by
\[n_{\gamma} = \left(\left| \left| g_{\alpha\beta} \frac{\partial F}{\partial x^\alpha} \frac{\partial F}{\partial x^\beta} \right| \right| \right)^{-1/2} \frac{\partial F}{\partial x^\gamma} \] (23),
in which \(F \) is the equation of the hypersurface \(\Sigma \), i.e.
\[\Sigma : F(r) = r - a(\tau) = 0. \] (24)

The generalized Darmois–Israel conditions on \(\Sigma \) determines the surface energy–momentum tensor \(S_{ab} \) which is expressed by [11]
\[S_{ij} = -\frac{1}{8\pi} \left((K_{ij}^\pm - K\delta_{ij}^\pm) - \frac{\alpha}{16\pi} \{3J_{ij}^\pm - J\delta_{ij}^\pm + 2P_{imn}K^{mn}\} \right). \] (25)

Here a bracket implies a jump across \(\Sigma \). The divergence-free part of the Riemann tensor \(P_{abcd} \) and the tensor \(J_{ab} \) (with trace \(J = J_{ii} \)) are given by
\[P_{imn} = R_{imn} + (R_{mngij} - R_{mjgim} - R_{njgim} + \frac{1}{2} R(g_{in}g_{jm} - g_{ij}g_{mn})), \] (26)
\[J_{ij} = \frac{1}{3} \left[2K_{km}K_{ij}^m + K_{mn}K^{mn}K_{ij} - 2K_{im}K_{mn}K_{nj} - K^2 K_{ij} \right]. \] (27)

By employing these expressions through (25) we find the energy density and surface pressures for a generic metric function \(f(r) \), with \(r = a(\tau) \). The results are given by
\[\sigma = -S_{ij}^\pm = -\frac{\Delta(d-2)}{8\pi} \left[\frac{2}{a} - \frac{4\dot{a}}{3a^3}(\Delta^2 - 3(1 + \dot{a}^2)) \right], \] (28)
\[S_{ij}^\rho = p = \frac{1}{8\pi} \left[\frac{2(d-3)\Delta}{a} + \frac{2\ell}{\Delta} - \frac{4\ddot{a}}{3a^2} \left[3\Delta - \frac{3\ell}{\Delta}(1 + \dot{a}^2) + \frac{\Delta^3}{a}(d-5) \right. \r…
in which \(i \in \{2, 3, \ldots, d - 1\} \). Here in the spherical thin-shell wormholes, the radial pressure \(p_r \) is zero and \(\rho = \delta (r - a) \sigma \) which imply that WEC and NEC coincide as \(\sigma \geq 0 \). Note that \(\delta (r - a) \) stands for the Dirac delta-function. By looking at \(\sigma \) given in (28) one may conclude that these conditions reduce to

\[
\frac{1}{2} a^2 \leq \tilde{a} (f(a) - 2 \tilde{a}^2 - 3).
\]

(33)

For the static configuration with \(\dot{a} = 0, \ddot{a} = 0 \) and \(a = a_0 \) it is not difficult to see that for \(\tilde{a} \geq 0 \) the latter condition is not satisfied. In other words, both WEC and NEC are violated. This is simply from the fact that the metric function is asymptotically flat and \(f(a) < 1 \) for \(a \geq r_h \). Unlike \(\tilde{\alpha} \geq 0 \) for the case of \(\tilde{\alpha} < 0 \), this condition in arbitrary dimensions is satisfied.

Direct consequence of these results can be seen in the total matter in supporting the thin-shell wormhole. The standard integral definition of the total matter is given by

\[
\Omega = \int (\rho + p_r) \sqrt{-g} \, d^{d-1}x
\]

which gives

\[
\Omega = \frac{2\pi^{\frac{d-1}{2}} a^{-2} d^{-2}}{\Gamma\left(\frac{d}{2}\right)} \sigma_0
\]

(35)

in which

\[
\sigma_0 = -\frac{\sqrt{f(a_0)}(d - 2)}{8\pi} \left[\frac{2}{a_0} - \frac{4\tilde{a}}{3a_0^2} (f(a_0) - 3) \right].
\]

(36)

It is obvious from \(\Omega \) that similar to \(\sigma_0 \), in static configuration, the total matter which supports the thin-shell wormhole is exotic if \(\tilde{\alpha} \geq 0 \) and normal if \(\tilde{\alpha} < 0 \). This result is independent of dimensions and other parameters.

3. Stability of the thin-shell wormholes for \(d \geq 5 \)

To study the stability of the thin-shell wormhole, constructed above, we consider a radial perturbation of the radius of the throat \(a \). After the linear perturbation we may consider a linear relation between the energy density and radial pressure, namely [12]

\[
p = p_0 + \beta^2 (\sigma - \sigma_0).
\]

(37)

Here the constant \(\sigma_0 \) is given by (36) and \(p_0 \) reads

\[
p_0 = \frac{\sqrt{f(a_0)}}{8\pi} \left[\frac{2(d - 3)}{a_0} + \frac{f'(a_0)}{f(a_0)} - \frac{4\tilde{a}}{3a_0^2} \left(\frac{f'(a_0)}{2} - \frac{f'(a_0)}{2f(a_0)} + f(a_0) \frac{(d - 5)}{3a_0} \frac{1}{a_0} \right) \right].
\]

(38)

The constant parameter \(\beta \) for the wormhole supported by normal matter is related to the speed of sound. By considering (37) in (31), one finds

\[
\sigma(a) = \left(\frac{\sigma_0 - p_0}{\beta^2 + 1} \right) \left(\frac{a}{a_0} \right)^{(d-2)(\beta^2+1)} + \beta^2 \sigma_0 - p_0 \frac{\sigma_0}{\beta^2 + 1}
\]

(39)

in which \(a_0 \) is the radius of the throat in a static equilibrium wormhole and \(\sigma_0(p_0) \) is the static energy density (pressure) on the thin shell. By equating the latter expression and the one found by using the Einstein equation on the shell (28), we find the equation of motion of the wormhole which reads

\[
\dot{a}^2 + V(a) = 0,
\]

(40)
where
\[
V(a) = f(a) - \left(\sqrt{\tilde{A}^2 + \tilde{B}^3} - \tilde{A}^{1/3} - \frac{\tilde{B}}{\sqrt{\tilde{A}^2 + \tilde{B}^3} - \tilde{A}^{1/3}} \right)^2.
\] (41)

and
\[
\tilde{A} = \frac{3\pi a^3}{2(d-2)a} \left[\left(\frac{\sigma_0 + p_0}{\beta^2 + 1} \right) \left(\frac{a}{a_0} \right)^{(d-2)(\beta^2+1)} + \frac{\beta^2 \sigma_0 - p_0}{\beta^2 + 1} \right],
\] (42)
\[
\tilde{B} = \frac{a^2}{4a} + \frac{1 - f(a)}{2}.
\] (43)

Here \(V(a)\) is called the potential of the wormhole’s motion and it helps us to figure out the regions of stability for the wormhole under our linear perturbation. According to the standard method of stability of thin-shell wormholes, we expand \(V(a)\) as a series of \((a - a_0)\). One can show that both \(V(a_0)\) and \(V'(a_0)\) vanish and the first non-zero term in this expansion is \(\frac{1}{2}V''(a_0)(a - a_0)^2\). Now, in a small neighborhood of the equilibrium point \(a_0\) we have
\[
\dot{a}^2 + \frac{1}{2}V''(a_0)(a - a_0)^2 = 0,
\] (44)
which implies that with \(V''(a_0) > 0\), \(a(\tau)\) will oscillate about \(a_0\) and make the wormhole stable. At this point it will be in order also to clarify the status of parameter \(\beta\) since ultimately the three-dimensional (i.e. \(V''(a_0) > 0\), \(\beta, a_0\)) stability plots will make use of it. First of all although in principle \(\beta < 0\) is possible we shall restrict ourselves only to the case

Figure 1. Region of stability (i.e. \(V''(a_0) > 0\)) for the thin shell in \(d = 5\) and for \(\alpha > 0\). The \(f(r)\) and \(\sigma_0\) plots are also given. It can be easily seen that the energy density \(\sigma_0\) is negative which implies exotic matter.
Figure 2. For \(d = 5 \) and the \(\alpha < 0 \) case with the chosen parameters \(f(r) \) has no zero but \(\sigma_0 \) has a small band of positivity with the presence of normal matter. We note also that \(\beta < 1 \) in a small band.

\(\beta > 0 \). Unfortunately \(\beta \) can only be expressed implicitly as a function of \(a_0 \), through (37) and expressions for \(p, \sigma, p_0 \) and \(\sigma_0 \). It turns out that the usual expression for stability, namely \(V''(a_0) > 0 \), can be plotted as a projection onto the plane formed by \(\beta \) and \(a_0 \). This must not give the impression, however, that the relation \(\beta = \beta(a_0) \) is known explicitly.

3.1. \(d = 5 \)

Let us first eliminate \(\alpha \) from the equations, by using the solution given in (8). To do so we introduce new variables and parameters as

\[
\dot{a} = \frac{a}{\sqrt{|\alpha|}}, \quad \ddot{t} = \frac{\tau}{\sqrt{|\alpha|}}, \quad \ddot{Q}^2 = \frac{Q^2}{|\alpha|},
\]

\[
\dot{m} = \frac{2M_{\text{ADM}}}{3|\alpha|} + \frac{Q^2}{2|\alpha|} \ln |\alpha|.
\] (45)

Upon these changes of variables, the other quantities change according to

\[
f(a) = f(\tilde{a}), \quad \sigma(a) = \frac{\sigma(\tilde{a})}{\sqrt{|\alpha|}}, \quad p(a) = \frac{p(\tilde{a})}{\sqrt{|\alpha|}},
\]

\[
\mathcal{A}(a) = \mathcal{A}(\tilde{a}), \quad \mathcal{B}(a) = \mathcal{B}(\tilde{a}), \quad V(a) = V(\tilde{a}).
\] (46)
Finally the wormhole equation reads

\[
\left(\frac{d \tilde{a}}{d \tilde{\tau}} \right)^2 + \tilde{V}(\tilde{a}) = 0. \tag{47}
\]

Now, we consider two distinct cases, for \(\alpha > 0 \) and \(\alpha < 0 \), separately.

3.1.1. With \(\alpha > 0 \)

In this section we consider \(\alpha > 0 \), such that the negative branch of the EYM black hole solution reads

\[
f(\tilde{a}) = 1 + \frac{\tilde{a}^2}{4} \left(1 - \sqrt{1 + \frac{16 \tilde{m}}{\tilde{a}^4} + \frac{16 \tilde{Q}^2 \ln \tilde{a}}{\tilde{a}^4}} \right), \tag{48}
\]

in which the condition

\[
1 + \frac{16 \tilde{m}}{\tilde{a}^4} + \frac{16 \tilde{Q}^2 \ln \tilde{a}}{\tilde{a}^4} \bigg|_{\tilde{a} = \tilde{a}_0} \geq 0 \tag{49}
\]

and

\[
A^2 + B^3 \bigg|_{\tilde{a} = \tilde{a}_0} \geq 0 \tag{50}
\]

must hold. The latter equation automatically is valid and the final relation between the parameters reduces to (49). Based on this solution we find \(\tilde{V}''(\tilde{a}_0) \) in terms of the other parameters. Figure 1 shows the stability regions and also \(f(\tilde{a}) \) and \(\sigma(\tilde{a}_0) \).
3.1.2. With $\alpha < 0$. Next, we concentrate on the case $\alpha < 0$. With this choice the negative branch of the EYM black hole solution reads

$$f(\tilde{\alpha}) = 1 - \frac{\tilde{\alpha}^2}{4} \left(1 - \sqrt{1 - \frac{16\tilde{m}}{\tilde{\alpha}^4} - \frac{16\tilde{Q}^2 \ln \tilde{\alpha}}{\tilde{\alpha}^4}}\right).$$

(51)

Based on this solution we study $\tilde{V}''(\tilde{\alpha}_0)$ in terms of the other parameters. Figures 4 and 5 show the stability regions and also $f(\tilde{\alpha})$ and $\sigma(\tilde{\alpha}_0)$.

In this case also we have some constraints on the parameters in order to get $f(\tilde{\alpha}_0) \geq 0$, $\sigma(\tilde{\alpha}_0) \geq 0$ and $\tilde{a}^2 + B^3|_{\tilde{\alpha}=\tilde{\alpha}_0} \geq 0$. It is not difficult to see that all these conditions reduce to

$$0 \leq \frac{1}{4} \sqrt{1 - \frac{16\tilde{m}}{\tilde{a}_0^4} - \frac{16\tilde{Q}^2 \ln \tilde{a}_0}{\tilde{a}_0^4}} \leq \frac{4}{\tilde{a}_0^4} - 1$$

(52)

and

$$1 - \frac{16\tilde{m}}{\tilde{a}_0^4} - \frac{16\tilde{Q}^2 \ln \tilde{a}_0}{\tilde{a}_0^4} \geq 0.$$

(53)

After some manipulation, the parameters must satisfy the following constraint:

$$\tilde{a}_0^4 \geq 16(\tilde{m} + \tilde{Q}^2 \ln \tilde{a}_0^2)$$

(54)

where $0 \leq \tilde{a}_0^2 \leq 4$. The stability region for this case is given in figure 2.
3.2. $d \geq 6$

Here also we eliminate \tilde{a} from the equations. By introducing

$$\tilde{\alpha} = \frac{a}{\sqrt{\alpha}}, \quad \tilde{\tau} = \frac{\tau}{\sqrt{\alpha}}, \quad \tilde{\alpha} = \frac{Q}{\alpha}, \quad \tilde{\omega} = \frac{M_{\text{ADM}}}{\sqrt{\alpha}}$$

the other quantities become

$$f(a) = f(\tilde{a}), \quad \sigma(a) = \sigma(\tilde{a}), \quad p(a) = p(\tilde{a}), \quad A(a) = A(\tilde{a}), \quad B(a) = B(\tilde{a}), \quad V(a) = V(\tilde{a})$$

and the wormhole equation is given by

$$\left(\frac{d \tilde{\alpha}}{d \tilde{\tau}} \right)^2 + \tilde{V}(\tilde{a}) = 0.$$

3.2.1. With $\alpha > 0$. In this section we consider $\alpha > 0$, such that the negative branch of the EYMGB black hole solution reads

$$f_{-}(\tilde{a}) = 1 + \frac{\tilde{a}^2}{2} \left(1 - \sqrt{1 + \frac{16\tilde{m}}{\tilde{a}^{d-5}(d-2)} + \frac{4(d-3)\tilde{Q}^2}{(d-5)\tilde{a}^2}} \right).$$

Figure 5. For $d = 8$ with $\alpha > 0$ exotic matter is seen to be indispensable.
3.2.2. With $\alpha < 0$. Next we concentrate on the case $\alpha < 0$. With this choice the negative branch of the EYM GB black hole solution reads

$$f_{-}(\tilde{a}) = 1 - \frac{\tilde{a}^2}{2} \left(1 - \sqrt{1 - \frac{16\tilde{m}}{\tilde{a}^{d-1}(d-2)} - \frac{4(d-3)\tilde{Q}^2}{(d-5)\tilde{a}^4}} \right).$$

Based on this solution we study $\tilde{V}''(\tilde{a}_0)$ in terms of the other parameters. Figure 6 shows the stability regions and also $f(\tilde{a})$ and $\sigma(\tilde{a}_0)$. In order to set $f(\tilde{a}_0) \geq 0$, $\sigma(\tilde{a}_0) \geq 0$, and $\tilde{a}_0^2 + B^3|_{\tilde{a} = \tilde{a}_0} \geq 0$ it is enough to satisfy

$$0 < \sqrt{1 - \frac{16\tilde{m}}{\tilde{a}_0^{d-1}(d-2)} - \frac{4(d-3)\tilde{Q}^2}{(d-5)\tilde{a}_0^4}} < \frac{2}{\tilde{a}_0^2} - 1.$$
and
\[
1 - \frac{16\tilde{m}}{\tilde{a}^{d-1}(d-2)} - \frac{4(d-3)\tilde{Q}^2}{(d-5)\tilde{a}^2} > 0,
\]
where \(0 < \tilde{a}_0^2 < 2\).

4. Conclusion

We have investigated the possibility of thin-shell wormholes in the EYMGB theory in higher \((d \geq 5)\) dimensions with particular emphasis on stability against spherical, linear perturbations and normal (i.e. non-exotic) matter. For this purpose we made use of the previously obtained solutions that are valid in all dimensions. The case \(d = 5\) is considered separately from the cases \(d > 5\) because the solution involves a logarithmic term apart from the power-law dependence. For \(d = 5\) we observe (figure 2) the formation of a narrow band of positive energy region that attains a stable wormhole only for \(\alpha < 0\). In contrast, for \(\alpha > 0\) although a large region of stability (i.e. \(V''(a_0) > 0\)) forms, the energy turns out to be exotic. For \(d > 5\) also, we have more or less a similar picture. That is, whenever the GB parameter \(\alpha > 0\), negative energy shows itself versus the stability requirements. We have analyzed the cases \(d = 6, 7\) and 8 as examples. Our technique is powerful enough to apply in any higher dimensions; however, for technical reasons we had to be satisfied with these selected dimensions. We must also admit that for non-spherical perturbations a similar analysis remains to be seen. In our study we were also able to observe a stability region which employs \(0 < \beta < 1\), which can be interpreted as a case corresponding to less than the speed of light. In conclusion, we state that the formation of stable, positive energy thin-shell wormholes in EYMGB are possible only with a GB parameter \(\alpha < 0\). Without the GB term whatever source is available the situation is always worse. The indispensable character of the GB parameter toward useful wormhole constructions invites naturally the Lovelock hierarchy [5] for which the GB term constitutes the first member.

References

[1] Morris M S and Thorne K S 1988 Am. J. Phys. 56 395
[2] Visser M 1996 Lorentzian Wormholes (New York: AIP Press)
[3] Eiroa E F 2008 Phys. Rev. D 78 024018
[4] Eiroa E F and Simeone C 2005 Phys. Rev. D 71 127501
[5] Richarte M G and Simeone C 2007 Phys. Rev. D 76 087502
[6] Richarte M G and Simeone C 2008 Phys. Rev. D 77 089903
[7] Mazharimousavi S H and Halilsoy M 2010 Phys. Rev. D 81 104002
[8] Lovelock D 1971 J. Math. Phys. (NY) 12 498
[9] Mazharimousavi S H and Halilsoy M 2007 Phys. Rev. D 76 087501
[10] Mazharimousavi S H and Halilsoy M 2008 Phys. Lett. B 665 125
[11] Mazharimousavi S H, Halilsoy M and Amirabi Z 2010 Gen. Rel. Grav. 42 261
[12] Darmois G 1927 Mémorial des Sciences Mathématiques, Fascicule XXV (Paris: Gauthier-Villars) chapter 5
[13] Israel W 1966 Nuovo Cimento B 44 1
[14] Israel W 1967 Nuovo Cimento B 48 463
[15] Musgrave P and Lake K 1996 Class. Quantum Grav. 13 1885
[16] Davis S C 2003 Phys. Rev. D 67 024030
[17] Poisson E and Visser M 1995 Phys. Rev. D 52 7318