RESEARCH ARTICLE

Is Adjuvant Cellular Immunotherapy Essential after TACE-Predominant Minimally-Invasive Treatment for Hepatocellular Carcinoma? A Systematic Meta-Analysis of Studies Including 1774 Patients

Min Ding1☯, Ying Wang2☯, Jiachang Chi1, Tao Wang1, Xiaoyin Tang1, Dan Cui1, Qijun Qian2, Bo Zhai1*

1 Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, 2 Laboratory of Gene and Viral Therapy, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University of Chinese PLA, Shanghai, China

☯ These authors contributed equally to this work.
* zhaiboshi@sina.com

Abstract

Purpose
Cellular immunotherapy has appeared to be a promising modality for the treatment of malignant tumor. The objective of this study was to evaluate the efficacy of cellular immunotherapy combined with minimally invasive therapy.

Methods
We searched PubMed, Web of Science and The Cochrane Library through March 2016 for relevant studies. Short-term efficacy (the disease control rate, the control rate of quality life and the AFP descent rate) and long-term efficacy (overall survival (OS) and progression-free survival (PFS) rate) were compared as the major outcome measures. The meta-analysis was performed using Review Manager 5.3.

Results
A total of 1174 references in 3 databases were found of which 19 individual studies with 1774 HCC patients enrolled in this meta-analysis. Meta-analysis results showed that cellular immunotherapy combined with minimally-invasive treatment significantly improved the measures of short-term response (the disease control rate (OR = 5.91, P = 0.007), the control rate of quality lift (OR = 3.38, P = 0.003) and the AFP descent rate (OR = 4.48, P = 0.02)). Also higher 6-month PFS (OR = 2.78, P = 0.05), ≥12-month PFS (OR = 3.56, P<0.00001) rate and 6-month OS (OR = 2.81, P = 0.0009), 12-month OS (OR = 3.05, P<0.00001) and 24-month OS (OR = 3.52, P<0.0001) rate were observed in patients undergoing cellular immunotherapy.
Conclusions

This meta-analysis suggested that cellular immunotherapy is a feasible adjuvant treatment that could be beneficial for the improvement of the clinical outcomes for hepatocellular carcinoma (HCC) patients after minimally invasive treatment, including short-term response and long-term survival.

Introduction

Hepatocellular carcinoma (HCC) is the most common type of hepatobiliary cancer, the fifth common malignant cancer and the third most cause of cancer-related deaths worldwide [1]. The growth of annual incidence and mortality of HCC is higher in Asia countries accounting for almost 80%, especially in China [2]. Currently, the recurrence rate of HCC was still high after conventional radical resection therapies. Moreover, not all patients may benefit from hepatectomy because of the high incidence of complications due to chronic liver disease or with intermediate-stage HCC [3,4]. Minimally-invasive treatment has been widely used for patients with unresectable HCC. Transcatheter arterial chemoembolization (TACE) has been found to be an effective method to reduce HCC tumor size and improve overall survival (OS) [5,6]. Also, some studies showed that radiofrequency ablation (RFA) and microwave ablation (MWA) could increase tumor necrosis and prolong survival time for HCC [7,8]. However, there were still some limitations existed in long-term prognosis. The recurrence and metastasis after treatment with the TACE-predominant minimally-invasive treatment were still frequent [9]. The prognosis of HCC remained dismal with a low level of survival (5-year survival rate less than 5%) in patients with advanced HCC at diagnosis [10].

In recent decades, cellular immunotherapy has emerged as a promising strategy for cancer treatment [11,12]. It has been reported that cellular immunotherapy could strengthen the immune state and afford a potential value in enhancing the therapeutic outcome [13], although it has not been considered as a standard therapy for HCC. Several studies and meta-analysis had revealed that the combination of cellular immunotherapy of conventional therapies was more effective [14,15]. However, these analysis were about the combination of specific cellular immunotherapy and specific interventional therapy. There were no studies systematically analyzed whether cellular immunotherapy either CIK or DC-CIK was needed after different interventional therapy. The efficacy of cellular immunotherapy still remains controversial, especially in prolonging progression-free and overall survival [16,17].

Therefore, we summarized the trials of cellular immunotherapy, including CIK and DC-CIK, combined with TACE-predominant minimally-invasive treatment for HCC to systematically evaluate the efficacy of cellular immunotherapy.

Materials and Methods

Search strategy for identification of studies

A comprehensive literature search process was conducted in Pubmed, Web of Science and The Cochrane Library, based on combinations of the following keywords: [hepatocellular carcinoma OR liver neoplasms OR liver cancer] AND [(lymphokine-activated killer OR LAK) OR (cytokine induced killer cell OR CIK) OR (tumor infiltrating lymphocyte OR TIL) OR (cytotoxic T lymphocyte OR CTL) OR (dendritic cell OR DC) OR (natural killer cell OR NK)].
We searched these keywords in Title/Abstract of literatures about human between January 2006 and March 2016. Studies were not limited to language.

Inclusion and exclusion criteria for studies in this meta-analysis

In this systematic analysis, literatures were included that met the following criteria: (i) reported clinical outcomes of cellular immunotherapy for HCC; (ii) the case-control study design; (iii) provided enough information to calculate the odds ratio for short term efficacy, PFS or OS.

The exclusion criteria were as follows: (i) reviews, case reports, in vitro experiments, animal models, other diseases or other treatments; (ii) studies without appropriate control groups or enrolled patients less than 15.

Data extraction and quality assessment

All candidate literatures were reviewed and retrieved by two independent authors (Min Ding and Ying Wang) from these 3 databases, discussed and arrived at a consensus with a third author if disagreement occurred, and extracted data. Articles that could not be categorized according to title or abstract alone were retrieved for full-text review.

The following information was extracted from each included article: authors, year of publication, tumor characteristics, case numbers, regimens, immune cell regimens and culture of immune cells. Two independent authors (Min Ding and Ying Wang) evaluated each study for risk of bias and applicability by using The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool [18]. The QUADAS-2 contained four key domains covering patient selection, index test, reference standard, and flow and timing. The “low risk of bias”, “unclear risk of bias” or “high risk of bias” for each article was attributed in Cochrane reviews of interventions. Any disagreement between two authors regarding quality assessment was resolved through discussion with the third author.

Statistical methods

The analysis was carried out using pair-wise comparison between immunotherapy arms and control arms. Review Manager 5.3 [6] was used to conduct meta-analysis and calculated odds ratio (OR) for the disease control rate, the control rate of quality life and the AFP descent rate to reflect short-term efficacy, and 6-, 12-, 24-month PFS and OS to reflect long-term treatment effects across studies. The number of events evaluated in each arm was utilized to calculate the pooled OR with 95% confidence intervals (CI) combined the Mantel-Haenszel statistical method with random effects. The Cochran’s Q test (chi-square statistic; χ^2) was applied to evaluate the heterogeneity among studies. We considered inconsistency index (I^2) [19] with 25%, 50%, and 75% as representing the evidence of low, moderate, and high heterogeneity, respectively. Publication bias was assessed with Peters test using Meta R package. A p-value of no greater than 0.05 is considered to be statistically significant.

Results

Study characteristics

A search strategy in databases of PubMed, Web of science and The Cochrane Library was applied to find a total of 1174 citations, of which 230 were discarded as they were duplicates. After title and abstract screening, 883 articles were excluded for the following reasons: 68 were reviews, 219 were in vitro experiments, 250 used animal models, 21 were a case report, 200 studied other diseases and 125 used other treatments. Additional 18 literatures were supplemented from meta-analysis studies or reviews. In the third step of the eligibility and detailed
assessment, 79 full-texts were retrieved, and 60 articles without a control group, full-text, complete clinical data or not combined with TACE-predominant minimally-invasive treatment were excluded (Fig 1). Finally, we included 19 studies with 1774 HCC patients in quantitative synthesis for meta-analysis.

The characteristics of the populations presented in these reports were summarized in Table 1. Overall, 13 studies addressed passive immunotherapeutic approaches including cytokine-induced killer cells (CIKs) [20–32]. Other six studies administrated DC-CIK cells [33–38]. Tumor characteristics and regimens were reported in all studies.

Quality assessment

The 19 included papers comprised 11 randomized controlled studies [20–22,26,28,29,32,34,35,37,38], 1 studies without describing the randomization method [25] and 7 retrospective studies with a matched-pair control group [23,24,27,30,31,33,36]. It contained eleven (57.89%) with all low risk of bias, one (5.26%) with unclear risk and seven (36.84%) with high risk of bias in random sequence generation, allocation concealment, blinding of participants and personnel and blinding of outcome assessment items, as was shown in S1 Fig.
Short-term efficacy

The disease control rate, the control rate of quality life and the AFP descent rate were used to evaluate the short-term efficacy of the cellular immunotherapy. For the disease control rate, the meta-analysis for three CIK studies and one DC-CIK studies showed a significant advantage of the combination therapy (OR = 5.91, 95% CI: 1.62–21.51, P = 0.007). And the heterogeneity was not statistically significant with P value equal to 0.07 (Fig 2A). Four studies, including two CIK studies and two DC-CIK studies were used to evaluate the control rate of quality life in the meta-analysis. The control rate of quality life was significantly higher in patients with cellular immunotherapy compared to without (OR = 3.38, 95% CI: 1.51–7.58, P = 0.003). Also, there was no heterogeneity among the studies (I² = 0%, P = 0.97) (Fig 2B).

Table 1. Clinical information of the trials for the immunotherapy.

Reference	Tumor characteristics	Patients No (control)	Regimens (per arm)	Immune cell regimens	Culture of immune cell
Zhao 2006	HCC	33(31)	TACE+RFA+CIK, TACE+RFA	1.1–1.5×10¹⁰/course	CM, CD3McAb, IL-2, INF-r, IL-1a.
Hao 2006	HCC	21(46)	TACE+CIK, TACE	1–5×10¹⁰/course	CM, IFN-r, CD3McAb, IL-1a, IL-2.
Zhang 2006	HCC	52(92)	TACE+CIK/TACE +PEI +CIK, TACE/TACE+PEI	1.0–1.2×10¹⁰/course	CM, IFN-r, CD3McAb, IL-1a, IL-2.
Shi 2007	HCC	38(214)	TACE+CIK, TACE/TACE+PEI	1.0–1.2×10¹⁰/course	CM, IFN-r, CD3McAb, IL-1a, IL-2.
Huang 2007	Primary HCC	55(30)	TACE+RFA+CIK, TACE+RFA	1.0–2.0×10¹⁰/course	CM, IFN-r, CD3 McAb, IL-1a, IL-2.
Weng 2008	HCC	45(40)	TACE+RFA+CIK, TACE+RFA	1–5×10¹⁰/course	Serum-free culture medium, IFN-r, CD3 McAb, IL-1a, IL-2.
Hao 2010	HCC	74(72)	TACE+CIK, TACE	1–5×10¹⁰/course	IFN-r, CD3 McAb, IL-1a, IL-2.
Pan 2010	HCC	42(39)	TACE+RFA+CIK, TACE+RFA	Once every week, at least 4 infusions, more than 1×10¹⁰ cells per course.	
Wu 2012	Primary HCC	32(38)	TACE+DC-CIK, TACE		
Wang 2012	HCC	38(38)	TACE+RFA+CIK, TACE+RFA	Once every twice weeks, at least 3 infusions, 1–1.5×10¹⁰ cells per course.	IFN-r, CD3 McAb, IL-1a, IL-2.
He 2012	Primary liver cancer	60(58)	TACE+CIK, TACE	1 week after TACE	IFN-r, CD3-McAb, IL-2, IL-1a.
Huang 2013	HCC	85(89)	TACE+RFA+CIK, TACE+RFA	2 weeks after sequential TACE and RFA, the median successive number of CIK cell infusions was 9 (range, 4–25).	IFN-r, CD3-McAb, IL-2, IL-1a.
Deng 2013	HCC	20(21)	TACE+RFA+CIK, TACE+RFA		
Tong 2013	Primary liver cancer	20(18)	TACE+CIK, TACE	1–5×10¹⁰/course	IFN-r, CD3-McAb, IL-2
Xu 2013	Large HCC	40(40)	TACE+PMCT +DC-CIK, TACE +PMCT		
Guo 2014	Primary liver cancer	30(38)	TACE+DC-CIK, TACE	1.0×10¹⁰/course	AIM-V serum-free culture medium, IFN-r, rhlL-2, CD3 McAb, IL-1, GM-CSF, rhlL-4, TNF-a.
Zhang 2014	liver cancer	41(44)	TACE+RFA+DC-CIK, TACE+RFA	6 times 7 days after TACE and RFA, and the number of DC-CIK cells was above 1.0×10¹⁰	
Liu 2014	Advanced HCC	23(17)	TACE+DC-CIK, TACE		IFN-r, CD3-McAb, IL-2, IL-1a, GM-CSF, IL-4, HSP.
Cheng 2014	liver cancer	32(28)	TACE+DC-CIK, TACE	4 infusions of DC-CIK cells	

doi:10.1371/journal.pone.0168798.t001
For the AFP descent rate, the meta-analysis of three studies (two CIK studies and one DC-CIK studies) showed the combination therapy significantly descent the AFP level (OR = 4.48, 95% CI: 1.21–16.57, P = 0.02) (Fig 2B).

Long-term efficacy

To evaluate the long-term efficacy of the combination of cellular immunotherapy and TACE-predominant minimally-invasive treatment, we performed subgroup analysis to conduct meta-analysis according to 6-month, 12-month and 24-month progression free survival and overall survival.

Progression free survival. For total effect, progression free survival rate was significantly higher in HCC patients undergoing cellular immunotherapy, compared to patients in control groups (OR = 3.46; 95% CI: 2.37–5.06, P<0.00001). All the Cochran’s Q-test resulted in a P value of 0.20, and the corresponding I^2 was 24%, indicating that the degree of variability was basically consistent in each result of study.

In subgroup meta-analysis of studies on 6-, >12-month progression free survival, patients in cellular immunotherapy treatment group had significantly higher PFS than those in control group, accordingly (6-month: OR = 2.78; 95% CI: 1.02–7.58, P = 0.05; >12-month: OR = 3.56; 95% CI: 2.27–5.59, P<0.00001) (Fig 3).

Overall survival. Overall survival rate, including 6-, 12-, and 24-month overall survival rate, was significantly higher in HCC patients undergoing cellular immunotherapy, compared to patients in control groups respectively. For 6-month OS, the meta-analysis for five CIK studies and four DC-CIK studies yielded statistically significant differences (OR = 2.81; 95% CI: 1.53–5.17, P = 0.0009). However, there was no statistically significant differences found in the subgroup of DC-CIK studies (OR = 1.61; 95% CI: 0.64–4.09, P = 0.31). For 12-month OS, the meta analysis for ten CIK studies and five DC-CIK studies showed a higher 12-month rate in the patients with the combination therapy (OR = 3.05; 95% CI: 2.38–3.92, P<0.00001).

Fig 2. Comparison of short-term efficacy between the patients undergoing cellular immunotherapy or not by using the random effects model (Mantel-Haenszel method).
doi:10.1371/journal.pone.0168798.g002
24-month OS, the OR of five CIK studies and three DC-CIK studies was significant (OR = 3.52; 95% CI: 1.90–6.50, P < 0.0001), suggesting a higher 24-month OS in HCC patients undergoing cellular immunotherapy. Also, in CIK subgroup and DC-CIK subgroup, the 12-month and 24-month OS were both significantly higher in patients with the combination therapy (P < 0.05) (Fig 4).

Assessment of publication bias

In order to guarantee the validity of the conclusions from the meta-analysis, funnel plots and sensitivity analysis were used in subtypes of the short-term efficacy, PFS, and OS (including 6-month, 12-month and 24-month OS). The relative symmetry of all the funnel plots shape suggested the publication bias was not evident. Also, publication bias was also not suggested by Peters test (P > 0.05) (Fig 5).

Discussion

Our meta-analysis comprehensively analyzed the outcomes of 19 individual studies with 1744 HCC patients from 3 databases, confirming the efficacy of the combination of cellular immunotherapy and TACE-predominant minimally-invasive Treatment on the prognosis of HCC patients.
A. 6-month OS

Study or Subgroup	Immunotherapy	Control	Total	Weight
	Events	Events	Events	Total
				Weight
CK				
Zhang 2009	49	52	101	42.4%
Heo 2008	18	31	49	32.6%
Shi 2007	36	38	74	11.5%
Heo 2010	66	72	138	16.8%
Tong 2013	18	20	38	8.8%
Overall	283	344	627	100.0%

Heterogeneity: Tau² = 0.16, CH² = 5.12, df = 4 (P = 0.27), I² = 22%
Test for overall effect: Z = 2.37 (P = 0.0022)

B. 12-month OS

Study or Subgroup	Immunotherapy	Control	Total	Weight
	Events	Events	Events	Total
				Weight
CK				
Dong 2013	14	20	34	21.2%
Heo 2006	12	21	33	15.6%
Heo 2010	52	72	124	12.1%
Heo 2011	52	60	112	9.8%
Huang 2007	63	65	128	17.0%
Huang 2013	71	85	156	15.7%
Shi 2007	32	51	83	3.4%
Tong 2013	14	20	34	18.2%
Wang 2013	30	38	68	7.6%
Zhang 2008	36	52	88	12.9%
Overall	366	481	847	100.0%

Heterogeneity: CH² = 20.82, df = 9 (P < 0.001), I² = 57%
Test for overall effect: Z = 2.67 (P = 0.008)

C. 24-month OS

Study or Subgroup	Immunotherapy	Control	Total	Weight
	Events	Events	Events	Total
				Weight
CK				
Zhang 2009	7	52	59	12.2%
Heo 2008	13	31	44	12.8%
Shi 2007	9	38	47	15.9%
Heo 2010	46	72	118	16.2%
Tong 2013	12	40	52	9.6%
Overall	283	344	627	100.0%

Heterogeneity: Tau² = 0.89, CH² = 12.70, df = 4 (P = 0.05), I² = 69%
Test for overall effect: Z = 2.33 (P = 0.0009)

Fig 4. Comparison of 6, 12, 24-month OS between the patients undergoing cellular immunotherapy or not. The random effects model (Mantel-Haenszel method) was used.

doi:10.1371/journal.pone.0168798.g004
TACE-predominant minimally-invasive Treatment is one of the main treatments for patients with advanced HCC or patients who are not suitable to surgery [6,39,40]. However, TACE-predominant minimally-invasive Treatment might damage the liver function, reduce the resistance and immunity, and lead to tumor recurrence and residual. So, the combination of TACE-predominant minimally-invasive Treatment and immunotherapy might become an effective treatment [41]. From 18 meta-analysis or reviews in this field, 3 out of 18 performed a meta-analysis on HCC. These systematic reviews focused on the efficacy of the combination of CIK/DC-CIK therapeutic treatment and traditional therapy, respectively. Xie et al [42] studied the efficacy of adoptive immunotherapy in postoperative HCC. Li et al [15] demonstrated that CIK cells transfusion therapy could improve the synergistic effect of HCC patients after TACE or TACE+RFA therapy. Su et al [14] evaluated the efficacy and safety of DC-CIK cell therapy in combination with TACE-predominant minimally-invasive treatment for HCC. However, there was no studies systematically analyzed whether the adjuvant cellular immunotherapy after TACE-predominant minimally-invasive treatment is essential. Notably, it is still controversial that whether CIK or DC-CIK cells immunotherapy was efficacy after different interventional therapy, such as TACE, TACE+RFA, TACE+PEI, and TACE+PMCT for HCC. Our meta-analysis comprehensively analyzed the efficacy of the combination of different cell immunotherapy and different strategy of TACE-predominant minimally-invasive treatment. Through short-term and long-term efficacy analysis, we suggested that the group combined with CIK or DC-CIK cell immunotherapy was associated with better prognosis than minimally invasive treatment alone group.

Our analysis demonstrated that the combination therapy could improve the short-term efficacy, including the disease control rate (P = 0.007), the control rate of quality life (P = 0.003),
and the AFP descent rate ($P = 0.02$). However, the number of included studies for each sub-
group was relatively low. And the limitation might lead to bias, even though we found no evi-
dence of publication bias in the meta analysis of the short-term efficacy ($P = 0.07$) (Fig 5A).

The systematic analysis also showed a significant survival benefit with regard to the PFS
and OS when patients undergoing cellular immunotherapy ($P \leq 0.05$). There was no heteroge-
necy across the trails in the meta-analysis for PFS. However, the heterogeneity in 12-month
and 24-month OS was statically significant ($P < 0.05$). This demonstrated that the degree of
variability was more consistent in each PFS result of study. Notably, for 6-month, 12-month
and 24-month OS, the meta analysis was divided into two sub-studies (CIK studies and
DC-CIK studies) to reduce the bias caused by different immune cell regimens. For total effect,
OS was significantly higher in HCC patients who underwent cellular immunotherapy, com-
pared to patients in control group. However, the heterogeneity in 12-month and 24-month
OS in CIK subtypes was statically significant ($P < 0.05$). And the heterogeneity of 6-month,
12-month and 24-month OS between CIK group and DC-CIK group was statically significant
($P < 0.05$) (Fig 4). This result suggested that cellular immunotherapy either CIK or DC-CIK
might be needed after different interventional therapy. However, the degree of variability was
more consistent in the subtype of DC-CIK studies.

There were some limitations existed in this meta-analysis. First, the number of included
studies in each subgroup was relatively low. And the included studies mostly occurred in
China lacking multinational larger sample multi-center clinical trials with sufficient statistical
power. Second, heterogeneity is a potential issue that may affect the interpretation of the
results. The sources of heterogeneity may result from designs and methods, including age dis-
tribution, gender, regimens and so on. To address this issue, we employed subgroup analysis
and random effects method to perform a meta-analysis on the results of these 19 studies.
Third, Publication bias might occurred when the publication of research results depended not
just on the quality of the research but on the hypothesis tested, and the significance and direc-
tion of effects detected. For meta-analysis, the studies would not be representative when the
publication bias presented. In order to guarantee the validity of the conclusions from the
meta-analysis, funnel plots and sensitivity analysis (Peters test) were used in the study.

Overall, our systematic analysis demonstrated that the potential clinical value of the combi-
nation of cellular immunotherapy with minimally-invasive therapy for prolonging progression
free and overall survival. On the basis of the present results, we believe that more advanced
and optimized cellular immunotherapy strategies are on their way and may shed a better light
on the modality of treatment for HCC.

Supporting Information
S1 Checklist. PRISMA 2009 checklist.
(DOC)

S1 Fig. The quality assessment for included literatures by QUADAS-2.
(TIF)

S2 Fig. PRISMA 2009 flow diagram.
(DOC)

Author Contributions
Conceptualization: MD.
Data curation: MD YW.
Formal analysis: MD.

Funding acquisition: BZ.

Investigation: MD YW.

Methodology: MD YW.

Project administration: BZ.

Resources: MD YW.

Software: MD YW.

Supervision: BZ.

Validation: JC TW.

Visualization: MD.

Writing – original draft: MD.

Writing – review & editing: XT DC QQ.

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015; 65(1): 5–29. PMID: 25559415

2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011; 61(2): 69–90. PMID: 21296855

3. Tsurusaki M, Murakami T. Surgical and Locoregional Therapy of HCC: TACE. Liver Cancer. 2015; 4(3): 165–175. doi: 10.1159/000367739 PMID: 26675172

4. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003; 362(9399): 1907–1917. doi: 10.1016/S0140-6736(03)14964-1 PMID: 14667750

5. Lencioni R. Loco-regional treatment of hepatocellular carcinoma. Hepatology. 2010; 52(2): 762–773. PMID: 20564355

6. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. 2011; 53(3): 1020–1022. PMID: 21374666

7. Poulou LS, Botsa E, Thanou I, Ziakas PD, Thanos L. Percutaneous microwave ablation vs radiofrequency ablation in the treatment of hepatocellular carcinoma. World J Hepatol. 2015; 7(8): 1054–1063. doi: 10.4254/wjh.v7.i8.1054 PMID: 26052394

8. Poggi G, Tosoratti N, Montagna B, Picchi C. Microwave ablation of hepatocellular carcinoma. World J Hepatol. 2015; 7(25): 2578–2589. doi: 10.4254/wjh.v7.i25.2578 PMID: 26557950

9. Zhao M, Wang JP, Pan CC, Li W, Huang ZL, Zhang L, et al. CT-guided radiofrequency ablation after with transarterial chemoembolization in treating unresectable hepatocellular carcinoma with long overall survival improvement. Eur J Radiol. 2012; 81(10): 2717–2725. doi: 10.1016/j.ejrad.2011.10.023 PMID: 22245655

10. Waghrey A, Murali AR, Menon KN. Hepatocellular carcinoma: From diagnosis to treatment. World J Hepatol. 2015; 7(8): 1020–1029. doi: 10.4254/wjh.v7.i8.1020 PMID: 26052391

11. Greten TF, Manns MP, Korany F. Immunotherapy of HCC. Rev Recent Clin Trials. 2008; 3(1): 31–39. PMID: 18474013

12. Hong YP, Li ZD, Prasoon P, Zhang Q. Immunotherapy for hepatocellular carcinoma: From basic research to clinical use. World J Hepatol. 2015; 7(7): 980–992. doi: 10.4254/wjh.v7.i7.980 PMID: 25954480

13. Aerts M, Benteyn D, Van Vlierberghe H, Thielemans K, Reynaert H. Current status and perspectives of immune-based therapies for hepatocellular carcinoma. World J Gastroenterol. 2016; 22(1): 253–261. doi: 10.3748/wjg.v22.i1.253 PMID: 26755874

14. Su Y, Yang Y, Ma Y, Zhang Y, Rao W, Yang G, et al. The Efficacy and Safety of Dendritic Cells Co-Cultured with Cytokine-Induced Killer Cell Therapy in Combination with TACE-Predominant Minimally-Invasive Treatment for Hepatocellular Carcinoma: a Meta-Analysis. Clin Lab. 2016; 62(4): 599–608. PMID: 27215078
15. Li X, Dai D, Song X, Liu J, Zhu L, Xu W. A meta-analysis of cytokine-induced killer cells therapy in combination with minimally invasive treatment for hepatocellular carcinoma. Clin Res Hepatol gastroenterol. 2014; 38(5): 583–591. doi: 10.1016/j.clinre.2014.04.010 PMID: 24924902

16. Thomas MB, Jaffe D, Choti MM, Belghiti J, Curley S, Fong Y, et al. Hepatocellular carcinoma: consensus recommendations of the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol. 2010; 28(25): 3994–4005. doi: 10.1200/JCO.2010.28.7805 PMID: 20679622

17. Vaulaen E, Avril T, Collet B, Mosser J, Quillien V. Overview of cellular immunotherapy for patients with glioblastoma. Clin Dev Immunol. 2010; 2010.

18. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011; 155(8): 529–536. doi: 10.7326/0003-4819-155-8-20111018-00009 PMID: 22007046

19. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327(7414): 557–560. doi: 10.1136/bmj.327.7414.557 PMID: 12958120

20. Zhao M W P, Zeng YX, Xia JC, Zhang FJ, Xian J, Zhang YP, Zhou K, Fan WJ, Zhang L, Gao F, Zhou QM. Cytokine-induced killer cell fusion to lower recurrence of hepatocellular carcinoma after transcatheter arterial chemoembolization sequentially combined with radiofrequency ablation: a randomized trial. Zhonghua Yi Xue Za Zhi. 2006; 86: 1823–1828. PMID: 17054858

21. Zhang NZ X Y, Chen FX, Gao CJ, Zhang GL, Ma WQ, Xu WD. Clinical study on the treatment of advanced hepatocellular carcinoma by CIK cell. J Southeast Nat Deface Med. 2006; 8(2): 84–87.

22. Weng DS Z J, Zhou QM, Zhao M, Wang QJ, Huang X, Li QY, Chen SP, Wu PH, Xia JC. Minimally invasive treatment combined with cytokine-induced killer cells therapy lower the shortterm recurrence rates of hepatocellular carcinomas. J Immunother. 2008; 31: 63–71. doi: 10.1097/CJI.0b013e318151a121b PMID: 18157013

23. Wang JP L W, Huang ZL, Wu PH, Li XS, Wei YD, Zhou QM, Pan CC, Xia JC, Zhao M. Valueof CIK in the treatment of TACE combined for RFA for HCC inlong-term survival and prognostic analysis. Zhonghua Xi Xue ZaZhi. 2012; 42: 3062–3066.

24. Tong LQ Z H, You LG, Chen GF, Li XL, Zhang F, Zhou BG, Du G. ransarterial chemoembolization combined with autologouscytokine-induced killer cells therapy for primary liver cancer. Zhong Guo Pu Tong Wai Ke Za Zhi. 2013; 22: 876–879.

25. Shi Y G C, Dong SL, Chen FX, Xu YM. Cytokine-induced killer cell for interventionia chemotherapy of hepatocellular carcinoma. J Intervent Radiol. 2007; 16(4): 235–239.

26. Pan CC H Z, Li W, Zhao M, Zhou QM, Xia JC, Wu PH. Serum alpha-fetoprotein measurement in predicting clinical outcome related to autologous cytokine-induced killer cells in patients with hepatocellular carcinoma undergone minimally invasive therapy. Chin J Cancer. 2010; 29: 596–602. PMID: 20507732

27. Huang ZM L W, Li S, Gao F, Zhou QM, Wu FM, He N, Pan CC, Xia JC, Wu PH, Zhao M. Cytokine-induced killer cells in combination with transcatheter arterial chemoembolization and radiofrequency ablation for hepatocellular carcinoma patients. J Immunother. 2013; 36(5): 287–293. doi: 10.1097/CJI.0b013e3182948452 PMID: 23719239

28. Huang LX Z Q, Xia JC. Minimally invasive treatment combined with autologous CIK cell therapy for primary hep-atocellular carcinoma: safety and efficacy. Guang Dong Yi Xue. 2007; 28: 1466–1468.

29. He XB W J, Hu JH. CIK cells combined with TACE treatmentfor primary liver cancer randomized controlled study. Si ChuanXi Xue Za Zhi. 2012; 33: 1696–1697.

30. Hao MZ L H, Chen Q, Ye YB, Chen QZ, Chen MS. Efficacy of transcatheter arterial chemoembolization combined with cytokine-induced killer cell therapy on hepatocellular carcinoma: a comparative study. Chin J Cancer Biother. 2010; 29: 172–177.

31. Hao MZ C Q, Ye YB, Xiao JR, Lin HL, Wu H, Yu WC, Zhang KZ, Chen Q, Liu YX, Zheng WS. Transcatheter arterial chemoembolization combined with cytokine induced killers in treatment of hepatocellular carcinoma. Chin J Cancer Biother. 2006; 13(4): 303–305.

32. Deng WJ C J, Luo YJ, Xiang GY. Efficacy and safety of min-imaly invasive treatment combined with autologous CIK cells infusion. Ling Nan Xian Dai Ling Chuang Wai Ke. 2013; 29: 29–31.

33. Guo WW L W, Wu DH. Dendritic cell-cytokine induced killer cell immunotherapy combined with transcatheter arterial chemoembolization for hepatocellular carcinoma: safety and efficacy. J South Med Univ. 2014; 35(5): 674–678.

34. C W. Clinical research on comprehensive treatment of primary hepatocellular carcinoma. Chinese Journal of Primary Medicine and Pharmacy. 2012; 19(1): 97–98.

35. Xu YM X D, Zhang NZ, Shi Y, Luan ZY, Liu QJ. TACE combined PMCT sequential own cancer vaccine and immune effector cells to treat large hepatocellular carcinoma clinical observation. Chinese Journal of Cancer Prevention and Treatment 2013; 24: 1928–1932.
36. Zhang QC P G, Li GQ, Yuan QZ, Xu JB, Kong Y, Wang LM. DC-CIK cell therapy combined with transcatheter arterial chemoembolization and radiofrequency ablation for treatment of small hepatocellular carcinoma. World Chinese Journal of Digestology. 2014; 16: 2237–2242.

37. L L. A randomized controlled study of transcatheter arterial chemoembolization combined with autologous DC-CIK cells in the treatment of advanced hepatocellular carcinoma. Second Military Medical University. 2014.

38. Cheng XZ P D, Wang MQ, Xie ZZ. Clinical efficacy of autologous dendritic cells and cytokine-induced killer cells combined with transcatheter arterial chemoembolization in the treatment of moderate- and advanced hepatocellular carcinoma. The Journal of Practical Medicine. 2014; 9: 1401–1404.

39. Yang K, Zhang XM, Yang L, Xu H, Peng J. Advanced imaging techniques in the therapeutic response of transarterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol. 2016; 22(20): 4835–4847. doi: 10.3748/wjg.v22.i20.4835 PMID: 27239110

40. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012; 56(4): 908–943. doi: 10.1016/j.jhep.2011.12.001 PMID: 22424438

41. Hao MZ, Lin HL, Chen Q, Ye YB, Chen QZ, Chen MS. Efficacy of transcatheter arterial chemoembolization combined with cytokine-induced killer cell therapy on hepatocellular carcinoma: a comparative study. Chin J Cancer, 2010; 29(2): 172–177. PMID: 20109346

42. Xie F, Zhang X, Li H, Zheng T, Xu F, Shen R, et al. Adoptive immunotherapy in postoperative hepatocellular carcinoma: a systemic review. PLoS One. 2012; 7(8): e42879. doi: 10.1371/journal.pone.0042879 PMID: 22916174