M-ESTIMATION METHOD BASED ASYMMETRIC OBJECTIVE FUNCTION

Authors: Mehmet Niyazi Çankaya
– Faculty of Arts and Science, Department of Statistics, Uşak University, Uşak, Turkey (mehmet.cankaya@usak.edu.tr)

Olcay Arslan
– Faculty Science, Department of Statistics, Ankara University, Ankara, Turkey (oarslan@ankara.edu.tr)

Abstract:

• The asymmetric ρ function is proposed as an alternative to Huber ρ function to model skewness and obtain robust estimators for the location, scale and skewness parameters. The robustness and asymptotic properties of the asymmetric M-estimators are explored. A simulation study and real data examples are given to illustrate the performance of proposed asymmetric M-estimation method over the symmetric M-estimation method. It is observed from the simulation results that the asymmetric M-estimators perform better than Huber M-estimators when the data have skewness. The application on regression is also considered.

Key-Words:

• Asymmetric Huber; M-estimation; Robustness.
1. Introduction

The robust estimation method for the location parameter was proposed by [12]. In the robustness, there are different influence functions have been considered. [2, 11] gave the influence functions to estimate the location and scale parameters robustly. It can be observed that these functions are symmetric. Then, it is not possible to model the asymmetry in data set. In our proposal, we will consider the asymmetric form of influence functions. The asymmetric form of Huber M-estimation will be proposed. The benefit of our asymmetric Huber M-estimation is that the location, scale and skewness parameters can be estimated when the asymmetrically data set does not come from a distribution. In other words, it is well known that the distribution assumption on data set can be a restrictive. In such a case, the location, scale and skewness parameters can be estimated by means of the function we proposed. These approaches for estimating the parameters are in the robust methods.

To get the asymmetric objective function denoted by ρ_{ESN}, the distributions proposed by [16] will be used. A family of these distributions are proposed by [7]. The some special values of parameters in distribution proposed by [7] give the epsilon-skew normal (ESN) and epsilon skew Laplace distributions (ESL). The details of how one can get ESN and ESL are given by [7]. We will use these distributions to get the asymmetric objective function. In this context, we will give the following approach:

Let f be a probability density function. $\rho = -\log(f)$ is known to be objective function in the robustness. The normalizing constant in f can be removed. Let

- $\rho_{ESN}(u) = \frac{u^2}{2(1 - \text{sign}(u)\varepsilon)^2}$

and

- $\rho_{ESL}(u) = \frac{|u|}{2^{1/2}(1 - \text{sign}(u)\varepsilon)}$

be an objective functions of ESN and ESL distributions.

Huber’s ρ function is given by the following form:

(1.1) \[\rho(u) = \begin{cases} u^2, & |u| \leq k; \\ 2k|u| - k^2, & |u| > k, \end{cases} \]

and $\rho'(u) = 2\psi(u)$, that is, the function ψ is a derivative of ρ.

(1.2) \[\psi(u) = \begin{cases} u, & |u| \leq k; \\ \text{sign}(u)k, & |u| > k. \end{cases} \]
2. M-estimation based on Asymmetric Objective Function

We used the Huber’s ρ function to propose asymmetric Huber M-estimation. The parameter k in Huber is the tuning parameter to get the robust estimators. In our case, asymmetric Huber M-estimation has c_1 and c_2 that are the tuning parameters due to fact that we will propose the asymmetric form of Huber’s ρ function.

As it is given, the asymmetric Huber M-estimation can be considered as follow:

\[
\rho^*(u) = \begin{cases}
\frac{u}{2^{1/2}(1+\varepsilon)}, & (-\infty, c_1); \\
\frac{u^2}{2(1+\varepsilon)^2}, & [c_1, 0); \\
\frac{u^2}{2(1-\varepsilon)^2}, & [0, c_2]; \\
\frac{u}{2^{1/2}(1-\varepsilon)}, & (c_2, \infty).
\end{cases}
\]

The proposed asymmetric ρ^* function is not continuous at points c_1 and c_2. After the required regularization on function ρ^* is done, the following new ρ^{**} function can be proposed as follow:

\[
\rho^{**}(u) = \begin{cases}
\frac{c_1 u}{(1+\varepsilon)^2} - \frac{c_1^2}{2(1+\varepsilon)^2}, & (-\infty, c_1); \\
\frac{u^3}{2(1+\varepsilon)^2}, & [c_1, 0); \\
\frac{u^3}{2(1-\varepsilon)^2}, & [0, c_2]; \\
\frac{c_2 u}{(1-\varepsilon)^2} - \frac{c_2^2}{2(1-\varepsilon)^2}, & (c_2, \infty).
\end{cases}
\]

where c_1 and c_2 are the tuning parameters and the continuity of ρ^* is guaranteed via these parameters. Here, ε is a skewness parameter to model the asymmetry.

Definition 2.1. The function ρ^{**} in equation (2.2) is defined to be asymmetric ρ_{ESH} function.

ρ_{ESH} is used to show the asymmetric ρ^{**} function we proposed. When $c_1 = c_2$ and $\varepsilon = 0$, ρ_H in equation (1.1) can be obtained.

The function ψ is a derivative of function ρ_{ESH}. It can be given in the following form:

\[
\psi(u) = \begin{cases}
\frac{c_1}{(1+\varepsilon)^2}, & (-\infty, c_1); \\
\frac{u}{(1+\varepsilon)^2}, & [c_1, 0); \\
\frac{u}{(1-\varepsilon)^2}, & [0, c_2]; \\
\frac{c_2}{(1-\varepsilon)^2}, & (c_2, \infty).
\end{cases}
\]

The estimators of parameters θ, σ ve ε can be obtained by means of asymmetric objective function given in equation (2.2). The functions ψ_{ESH}, ψ_{ESN} ve
ψ_{ESL} can be obtained from the objective functions ρ_{ESH}, ρ_{ESN} and ρ_{ESL}. When ε = 0, the influence functions (ψ), the symmetric influence functions ψ_H, ψ_N and ψ_L are obtained.

2.1. M-estimators generated by asymmetric M-objective function

Suppose that the random variables $X_1, X_2, ..., X_n$ are distributed as a probability density function f. The parameters θ, σ and ε in function f exist and they are location, scale and skewness parameters, respectively. There are other parameters in the considered f, however we are not interested in other parameters.

In our proposal, our aim is to estimate the parameters θ, σ and ε for the random sample $X_n = \{x_1, x_2, ..., x_n\}$. The random sample is supposed to be asymmetrically distributed. Owing to the fact that the probability density function is not known, using the maximum likelihood estimation (MLE) method is not possible. In such a case, the function Q given in the following form is proposed to estimate the parameters interested.

$$Q(\theta, \sigma, \varepsilon; X_n) = \sum_{i=1}^{n} \rho_{ESH}\left(\frac{x_i - \theta}{\sigma(1 - \text{sign}(x_i - \theta)\varepsilon)}\right) + n\log(\sigma)$$

(2.4)

$$+ \sum_{i=1}^{n} \log(1 - \text{sign}(x_i - \theta)\varepsilon)$$

The function in equation (2.4) is minimized. To get the estimators of parameters θ, σ and ε, we will take the derivative of parameters interested.

Let $u_i = \frac{x_i - \theta}{\sigma(1 - \text{sign}(x_i - \theta)\varepsilon)}$. Then, the derivative of $Q(\theta, \sigma, \varepsilon; X_n)$ with respect to θ and setting it to zero will produce the following equation.

$$\frac{\partial}{\partial \theta} Q(\theta, \sigma, \varepsilon; X_n) = \sum_{i=1}^{n} \psi_\theta\left(\frac{x_i - \theta}{\sigma(1 - \text{sign}(x_i - \theta)\varepsilon)}\right) \frac{-1}{\sigma(1 - \text{sign}(x_i - \theta)\varepsilon)} = 0.$$

(2.5)

The weight function is defined to be $w(u_i) = \psi_\theta(u_i)/u_i$. Then, the M-estimator of location parameter θ will be

$$\hat{\theta} = \frac{\sum_{i=1}^{n} w_i \frac{x_i}{\hat{\sigma}(1 - \text{sign}(x_i - \hat{\theta})\hat{\varepsilon})^2}}{\sum_{i=1}^{n} w_i (\hat{\sigma}(1 - \text{sign}(x_i - \hat{\theta})\hat{\varepsilon}))^2}$$

(2.6)

where $w_i = w\left(\frac{x_i - \hat{\theta}}{\hat{\sigma}(1 - \text{sign}(x_i - \hat{\theta})\hat{\varepsilon})}\right)$. The derivative of $Q(\theta, \sigma, \varepsilon; X_n)$ with respect to σ
and setting it to zero will produce the following equation.

\begin{equation}
\frac{\partial}{\partial \sigma} Q(\theta, \sigma, \varepsilon; X_n) = -\sum_{i=1}^{n} \psi_{\sigma} \left(\frac{x_i - \theta}{\sigma(1 - \text{sign}(x_i - \theta)\varepsilon)} \right) \frac{x_i - \theta}{\sigma(1 - \text{sign}(x_i - \theta)\varepsilon)} + \frac{n}{\sigma} = 0.
\end{equation}

The weight function is defined to be \(w(u_i) = \psi_{\sigma}(u_i)/u_i \). Then, the M-estimator of scale parameter \(\sigma \) will be

\begin{equation}
\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} w_i \left(\frac{(x_i - \hat{\theta})^2}{(1 - \text{sign}(x_i - \hat{\theta})\hat{\varepsilon})^2} \right).
\end{equation}

where \(w_i = w\left(\frac{x_i - \hat{\theta}}{\sigma(1 - \text{sign}(x_i - \theta)\varepsilon)} \right) \). The derivative of \(Q(\theta, \sigma, \varepsilon; X_n) \) with respect to \(\varepsilon \) and setting it to zero will produce the following equation.

\begin{equation}
\frac{\partial}{\partial \varepsilon} Q(\theta, \sigma, \varepsilon; X_n) = \sum_{i=1}^{n} \psi_{\varepsilon} \left(\frac{x_i - \theta}{\sigma(1 - \text{sign}(x_i - \theta)\varepsilon)} \right) \frac{(x_i - \theta)\text{sign}(x_i - \theta)}{\sigma(1 - \text{sign}(x_i - \theta)\varepsilon)^2} - \sum_{i=1}^{n} \frac{\text{sign}(x_i - \theta)}{(1 - \text{sign}(x_i - \theta)\varepsilon)^2} = 0.
\end{equation}

The weight function is defined to be \(w(u_i) = \psi_{\varepsilon}(u_i)/u_i \). Then, the M-estimator of skewness parameter \(\varepsilon \) will be

\begin{equation}
\hat{\varepsilon} = \sum_{i=1}^{n} \left[\frac{\text{sign}(x_i - \hat{\theta})}{(1 - \text{sign}(x_i - \hat{\theta})\hat{\varepsilon})^2} - w_i \left(\frac{(x_i - \hat{\theta})^2\text{sign}(x_i - \hat{\theta})}{\hat{\sigma}^2(1 - \text{sign}(x_i - \hat{\theta})\hat{\varepsilon})^3} \right) \right] / \sum_{i=1}^{n} \frac{1}{(1 - \text{sign}(x_i - \hat{\theta})\hat{\varepsilon})^2}.
\end{equation}

The weight function is defined to be \(w_i = w\left(\frac{x_i - \hat{\theta}}{\sigma(1 - \text{sign}(x_i - \theta)\varepsilon)} \right) \).

The weight function of these parameters will be given as follow:

\begin{equation}
w(u) = \begin{cases}
\frac{c_1}{(1+\varepsilon)^2}u, & (-\infty, c_1]; \\
\frac{1+c_2}{1+\varepsilon}, & [c_1, 0]; \\
\frac{1+c_2}{1-\varepsilon}, & [0, c_2]; \\
\frac{1}{1-\varepsilon}u, & [c_2, \infty).
\end{cases}
\end{equation}

As a result, the estimators of parameters \(\theta, \sigma \) and \(\varepsilon \) are gotten. The weight function in equation (2.11) can give the different weights in data set that is negative and positive sides of axis. Thus, the estimators can model the asymmetry in the data set.

2.2. The Computation Steps of Estimators

The random sample is \(X_n = \{x_1, x_2, ..., x_n\} \) and \(k \in \mathbb{N}^+ \) is the iteration number. Then iterative reweighting algorithm (IRA) will be given in the following form:
1. Step $\theta^{(1)}, \sigma^{(1)}$ and $\varepsilon^{(1)}$ are the initial values to start the algorithm.

2. Step The weight function w in equation (2.11) is computed by using the following form:

$$u_i^{(k)} = \frac{x_i - \hat{\theta}^{(k)}}{\hat{\sigma}^{(k)}(1 - \text{sign}(x_i - \hat{\theta}^{(k)})\hat{\varepsilon}^{(k)})}$$

3. Step The estimated value of parameter θ is computed by

$$\hat{\theta}^{(k+1)} = \frac{\sum_{i=1}^{n} w_i^{(k)} \frac{x_i}{(\hat{\sigma}^{(k)})^2(1 - \text{sign}(x_i - \hat{\theta}^{(k)})\hat{\varepsilon}^{(k)})^2} \frac{1}{\sum_{i=1}^{n} w_i^{(k)} (\hat{\sigma}^{(k)})^2(1 - \text{sign}(x_i - \hat{\theta}^{(k)})\hat{\varepsilon}^{(k)})^2}}$$

4. Step The estimated value of parameter σ is computed by

$$(\hat{\sigma}^2)^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} w_i^{(k)} \frac{(\hat{x}_i - \hat{\theta}^{(k+1)})^2}{(1 - \text{sign}(x_i - \hat{\theta}^{(k+1)})\hat{\varepsilon}^{(k)})^2}$$

5. Step The estimated value of parameter ε is computed by

$$\hat{\varepsilon}^{(k+1)} = \sum_{i=1}^{n} \left[\frac{\text{sign}(x_i - \hat{\theta}^{(k+1)})}{(1 - \text{sign}(x_i - \hat{\theta})\hat{\varepsilon}^{(k)})^2} - w_i^{(k+1)} \frac{(\hat{x}_i - \hat{\theta}^{(k+1)})^2 \text{sign}(x_i - \hat{\theta}^{(k+1)})}{(\hat{\sigma}^{(k+1)})^2(1 - \text{sign}(x_i - \hat{\theta}^{(k+1)})\hat{\varepsilon}^{(k)})^2} \right] \frac{1}{\sum_{i=1}^{n} \frac{1}{(1 - \text{sign}(x_i - \hat{\theta}^{(k+1)})\hat{\varepsilon}^{(k)})^2}}$$

where $w_i^{(k+1)} = w(u_i^{(k+1)})$. Then, the weight function w in second step is computed by using the estimates $\hat{\theta}^{(k+1)}, \hat{\sigma}^{(k+1)}$ and $\hat{\varepsilon}^{(k)}$.

6. Step If the norm of vector $(\hat{\theta}^{(k+1)} - \hat{\theta}^{(k)}, \hat{\sigma}^{(k+1)} - \hat{\sigma}^{(k)}, \hat{\varepsilon}^{(k+1)} - \hat{\varepsilon}^{(k)})^T$ is bigger than the prescribed value $\epsilon > 0$, the steps are repeated until the prescribed value $\epsilon > 0$ is guaranteed. Finally, the values at last steps are assigned to be estimates of parameters.

3. Robustness Properties of Estimators

In this section, the robustness properties of estimators of parameters θ, σ and ε will be examined. In this context, the influence function that is an indicator for the local robustness and gross error sensitivity that is an indicator of global robustness are considered for the estimators of θ, σ and ε.
3.1. The Influence Function of Estimators

The function ρ in equation (2.2) is used to get the following functions

$\psi_\theta(x) = \frac{\partial}{\partial \theta} p_{\text{ESH}}\left(\frac{x-\theta}{\sigma(1-\text{sign}(x)c)}\right)$, $\psi_\sigma(x) = \frac{\partial}{\partial \sigma} p_{\text{ESH}}\left(\frac{x-\theta}{\sigma(1-\text{sign}(x)c)}\right)$ and $\psi_\varepsilon(x) = \frac{\partial}{\partial \varepsilon} p_{\text{ESH}}\left(\frac{x-\theta}{\sigma(1-\text{sign}(x)c)}\right)$.

For $\theta = 0$ and $\sigma = 1$, these functions are given by

$$\psi_\theta(x) = \begin{cases} \frac{-c_1}{1+\varepsilon}, & (-\infty, c_1(1+\varepsilon)]; \\ \frac{-x}{1+\varepsilon}, & [c_1(1+\varepsilon), 0]; \\ \frac{-c_2}{1-\varepsilon}, & [0, c_2(1-\varepsilon)]; \\ \frac{0}{1-\varepsilon}, & [c_2(1-\varepsilon), \infty). \end{cases}$$

(3.1)

$$\psi_\sigma(x) = \begin{cases} \frac{-c_1 x}{1+\varepsilon}, & (-\infty, c_1(1+\varepsilon)]; \\ \frac{-c_2 x}{1+\varepsilon}, & [c_1(1+\varepsilon), 0]; \\ \frac{-x}{1-\varepsilon}, & [0, c_2(1-\varepsilon)]; \\ \frac{-c_2}{1-\varepsilon}, & [c_2(1-\varepsilon), \infty). \end{cases}$$

(3.2)

$$\psi_\varepsilon(x) = \begin{cases} \frac{-c_1 x}{1+\varepsilon} + \frac{c_2^2}{1+\varepsilon}, & (-\infty, c_1(1+\varepsilon)]; \\ \frac{-2c_2 x}{1+\varepsilon}, & [c_1(1+\varepsilon), 0]; \\ \frac{-2c_1 x}{1-\varepsilon}, & [0, c_2(1-\varepsilon)]; \\ \frac{3c_1 x}{1-\varepsilon} - \frac{c_2^2}{1-\varepsilon}, & [c_2(1-\varepsilon), \infty). \end{cases}$$

(3.3)

$$\lim_{x \to -\infty} \psi_\theta(x) = \frac{-c_1}{(1+\varepsilon)^3} < \infty,$$

however $\lim_{x \to -\infty} \psi_\sigma(x) = -\infty$ and $\lim_{x \to -\infty} \psi_\varepsilon(x) = -\infty$. Then, they are not finite. When the parameters σ and ε are known, the influence function of estimator of parameter θ is finite. However, the influence function of estimators of three parameters are not finite at the same time as it is proved by the tools given by the following forms:

Thus, the influence function of estimators of three parameters exists.

$$IF(x; \hat{\theta}, \hat{\sigma}, \hat{\varepsilon}) = -B^{-1}\Psi(x)$$

where $\Psi(x) = (\psi_\theta(x), \psi_\sigma(x), \psi_\varepsilon(x))^T$ and

$$B = \begin{bmatrix} E_{\text{ESH}}[\frac{\partial}{\partial \theta}\psi_\theta(X)] & E_{\text{ESH}}[\frac{\partial}{\partial \sigma}\psi_\theta(X)] & E_{\text{ESH}}[\frac{\partial}{\partial \varepsilon}\psi_\theta(X)] \\ E_{\text{ESH}}[\frac{\partial}{\partial \theta}\psi_\sigma(X)] & E_{\text{ESH}}[\frac{\partial}{\partial \sigma}\psi_\sigma(X)] & E_{\text{ESH}}[\frac{\partial}{\partial \varepsilon}\psi_\sigma(X)] \\ E_{\text{ESH}}[\frac{\partial}{\partial \theta}\psi_\varepsilon(X)] & E_{\text{ESH}}[\frac{\partial}{\partial \sigma}\psi_\varepsilon(X)] & E_{\text{ESH}}[\frac{\partial}{\partial \varepsilon}\psi_\varepsilon(X)] \end{bmatrix}$$

ESN shows that the underlying distribution is taken as ESN to get the integral values. It should be noted that $\det(B) \neq 0$. Then, the matrix B^{-1} exists.
The equation (3.4) can be rewritten as the following form:

\[(3.6)\]

\[
IF(x; \hat{\theta}, \hat{\sigma}, \hat{\varepsilon}) =
\begin{bmatrix}
T_{11}\psi_{\theta}(x) + T_{12}\psi_{\sigma}(x) + T_{13}\psi_{\varepsilon}(x) \\
T_{21}\psi_{\theta}(x) + T_{22}\psi_{\sigma}(x) + T_{23}\psi_{\varepsilon}(x) \\
T_{31}\psi_{\theta}(x) + T_{32}\psi_{\sigma}(x) + T_{33}\psi_{\varepsilon}(x)
\end{bmatrix}
= \begin{bmatrix}
IF_1(x; \hat{\theta}, \hat{\sigma}, \hat{\varepsilon}) \\
IF_2(x; \hat{\theta}, \hat{\sigma}, \hat{\varepsilon}) \\
IF_3(x; \hat{\theta}, \hat{\sigma}, \hat{\varepsilon})
\end{bmatrix}
\]

where \(T_{ij}\) represents the row \(i\) and column \(j\) of matrix \(B^{-1}\) \((i, j = 1, 2, 3)\).

Here, the components \(IF_1, IF_2\) and \(IF_3\) of the influence function (\(IF\)) are not finite, because \(\psi_{\sigma}(x)\) and \(\psi_{\varepsilon}(x)\) are not finite. Thus, the influence function of the estimators is not finite. It is known that the norm of influence function is defined to be the gross error sensitivity. Then, the gross error sensitivity is given by the following form:

\[(3.7)\]

\[GES(\hat{\theta}, \hat{\sigma}, \hat{\varepsilon}, \rho_{ESH}) = \{(IF_1)^2 + (IF_2)^2 + (IF_3)^2\}^{1/2}.\]

The components \(IF_1, IF_2\) and \(IF_3\) are not finite. Then, \(GES(\hat{\theta}, \hat{\sigma}, \hat{\varepsilon}, \rho_{ESH})\) will not be finite.

3.2. Breakdown Point of Estimator for Location Parameter

[14] and [25] give the assumption for the breakdown properties of location M-estimator. The convexity in asymmetric case is satisfied. Then, these assumptions given below can be used to satisfy the M-estimator generated from the asymmetric objective function.

1. \(\rho(0) = 0\) [14] and [25].
2. \(\lim_{|u| \to \infty} \rho(u) = \infty\) [14] and [25].
3. \(\psi(u) = \frac{d}{du} \rho(u)\) is continuous for every point of \(u\). [14].
4. Let \(u_0\) exist when \(\psi(u)\) is nondecreasing for \(0 < u \leq u_0\) and nonincreasing for \(u_0 < u < \infty\) for monotone \(\psi\) functions [25].

Let us check these assumptions for asymmetric objective and influence functions.

1. \(\rho_{ESH}(0) = 0\),
2. \(\lim_{|u| \to \infty} \rho_{ESH}(u) = \infty\),
3. The function \(\psi\) is continuous for every point of \(u\).
4. The function $\psi(u)$ is increasing for the point c_2 given arbitrarily for $[0, c_2]$ and it is constant for (c_2, ∞)

These assumptions given above are satisfied. Then, the location estimator obtained from the asymmetric objective function ρ_{ESH} has a global robustness that is breakdown point. The value of breakdown point is $1/2$.

4. Asymptotic Properties

The asymptotic properties that are consistency and asymptotic normality of estimators for the parameters θ, σ and ε will be examined in this section. The function Q in equation (2.4) is used to show the asymptotic property. The following equations can be obtained after taking the derivatives with respect to parameters and setting them to zero. The explicit forms of the following equations were given by the equations (2.5), (2.7) and (2.9).

\[
\sum_{i=1}^{n} \psi_\theta(x_i; \theta, \sigma, \varepsilon) = 0 \tag{4.1}
\]

\[
\sum_{i=1}^{n} \psi_\sigma(x_i; \theta, \sigma, \varepsilon) = 0 \tag{4.2}
\]

\[
\sum_{i=1}^{n} \psi_\varepsilon(x_i; \theta, \sigma, \varepsilon) = 0 \tag{4.3}
\]

The simultaneous estimations of the parameters θ, σ and ε

\[
\sum_{i=1}^{n} \Psi(x_i; \hat{\theta}, \hat{\sigma}, \hat{\varepsilon}) = 0. \tag{4.4}
\]

where $\Psi = (\psi_\theta, \psi_\sigma, \psi_\varepsilon)$. The approach given by [21] is adapted into the asymmetric M-estimation. Then, there is an one solution of equation (4.4) at least.

Suppose that $\hat{\theta}$ exists for each of $\hat{\sigma}$. Then,

\[
\sum_{i=1}^{n} \psi_\theta(x_i; \hat{\theta}, \sigma, \varepsilon) = 0. \tag{4.5}
\]

the location estimation $\hat{\theta}$

\[
\min_{1 \leq i \leq n} (x_i) \leq \hat{\theta} \leq \max_{1 \leq i \leq n} (x_i)
\]
is satisfied. Thus, at least one solution can exist for the location estimation. When the \(\hat{\sigma} \) changes from 0 to \(\infty \). The term

\[
(4.6) \quad \sum_{i=1}^{n} \psi_{\sigma}(x_i; \theta, \sigma, \varepsilon) = 0.
\]

changes from \(\sup\{\psi_{\sigma}(x_i; \theta, \sigma, \varepsilon) : x \in \mathbb{R}\} \) to 0. The estimation of parameter \(\varepsilon \) will be solution of the following equation.

\[
(4.7) \quad \sum_{i=1}^{n} \psi_{\varepsilon}(x_i; \theta, \sigma, \varepsilon) = 0.
\]

The solution is in interval \((-1, 1)\), because \(\varepsilon \in (-1, 1) \). Thus, at least one solution of equation (4.4) can be given.

To guarantee the uniqueness of solution, the following two conditions are satisfied \[19\]:

1. The function \(\rho_{ESH} \) is differentiable.
2. The Jacobian of equation (4.4) exists and upper-left corner principal minors of matrix is non-zero.

We will examine whether the conditions are satisfied.

1. The proposed function \(\rho_{ESH} \) is differentiable at each points of the interval \([c_1, c_2]\). However, the derivative of \(\rho_{ESH} \) is zero at the intervals \((-\infty, c_1)\) and \((c_2, \infty)\).
2. To construct the equation (4.4)

\[
\lambda(\tau) = E_{ESN}\Psi(X, \tau), \quad \tau = (\theta, \sigma, \varepsilon)
\]

then

\[
B_{jk} = \frac{\partial \lambda_j}{\partial \tau_k}, \quad j, k = 1, 2, 3
\]

exists each term of matrix \(B \)

Constructing the matrix \(B \) in second condition was proposed by \[13, 21\].

This matrix will be given when the asymptotic normality of estimators. Left-upper three corners of the matrix are given as follows:

\[
K_1 = |B_{11}|, \quad K_2 = \begin{vmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{vmatrix}, \quad K_3 = \begin{vmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \\ B_{31} & B_{32} & B_{33} \end{vmatrix}
\]
Estimators \(\hat{\theta}, \hat{\sigma}, \hat{\epsilon} \) considered by [10]. A new form of objective function is proposed. Then, we can use the assumptions.

Uniqueness of solution was guaranteed. Then, we will examine whether the estimators \(\hat{\theta}, \hat{\sigma}, \hat{\epsilon} \) are consistent. The convexity can hold when the asymmetric form of objective function is proposed. Then, we can use the assumptions considered by [10].

1. \(E_{ESN}[\rho^{ESN}(X)] < \infty \)
2. \(E_{ESN}[\psi_{\theta}(X)] < \infty, E_{ESN}[\psi_{\sigma}(X)] < \infty, E_{ESN}[\psi_{\epsilon}(X)] < \infty \)

The result of \(E_{ESN}[\rho^{ESN}(X)] \) is given by

\[
(4.8) \quad E[\rho(X)] = \frac{-c_1}{\sqrt{2\pi}} \cdot \Gamma(1, \frac{c_1^2}{2(1+\varepsilon)^2}) - \frac{c_1^2}{4\sqrt{\pi}(1+\varepsilon)} \cdot \Gamma\left(\frac{1}{2}, \frac{c_1^2}{2(1+\varepsilon)^2}\right) + \frac{(1+\varepsilon)}{2\sqrt{\pi}} \cdot \gamma\left(\frac{3}{2}, \frac{c_1^2}{2(1+\varepsilon)^2}\right) + \frac{c_2}{\sqrt{2\pi}} \cdot \Gamma\left(\frac{1}{2}, \frac{c_2^2}{2(1-\varepsilon)^2}\right).
\]

The results of \(E_{ESN}[\psi_{\theta}(X)], E_{ESN}[\psi_{\sigma}(X)], E_{ESN}[\psi_{\epsilon}(X)] \) are given by

\[
(4.9) \quad E_{\psi_{\theta}}(X) = \frac{-c_1}{\sigma(1+\varepsilon)^2\sqrt{2\pi}} \cdot \Gamma\left(1, \frac{c_1^2}{2(1+\varepsilon)^2}\right) - \frac{1}{\sigma(1+\varepsilon)\sqrt{2\pi}} \cdot \left(\gamma\left(\frac{3}{2}, \frac{c_1^2}{2(1+\varepsilon)^2}\right) - \frac{c_2}{\sigma(1+\varepsilon)^2\sqrt{2\pi}} \cdot \Gamma\left(\frac{1}{2}, \frac{c_2^2}{2(1-\varepsilon)^2}\right)\right),
\]

\[
(4.10) \quad E_{\psi_{\sigma}}(X) = \frac{c_1}{\sigma\sqrt{2\pi}} \cdot \Gamma\left(1, \frac{c_1^2}{2(1+\varepsilon)^2}\right) - \frac{(1+\varepsilon)}{\sigma\sqrt{\pi}} \cdot \gamma\left(\frac{3}{2}, \frac{c_1^2}{2(1+\varepsilon)^2}\right) - \frac{c_2}{\sigma\sqrt{2\pi}} \cdot \Gamma\left(1, \frac{c_2^2}{2(1-\varepsilon)^2}\right),
\]

\[
(4.11) \quad E_{\psi_{\epsilon}}(X) = \frac{3c_1}{(1+\varepsilon)\sqrt{2\pi}} \cdot \Gamma\left(1, \frac{c_1^2}{2(1+\varepsilon)^2}\right) + \frac{c_1^2}{(1+\varepsilon)^2\sqrt{2\pi}} \cdot \gamma\left(\frac{3}{2}, \frac{c_1^2}{2(1+\varepsilon)^2}\right) - \frac{2}{\sqrt{\pi}} \cdot \gamma\left(\frac{3}{2}, \frac{c_1^2}{2(1+\varepsilon)^2}\right) + \frac{c_2}{(1-\varepsilon)\sqrt{2\pi}} \cdot \Gamma\left(1, \frac{c_2^2}{2(1-\varepsilon)^2}\right) - \frac{c_2^2}{(1-\varepsilon)^2\sqrt{2\pi}} \cdot \Gamma\left(1, \frac{c_2^2}{2(1-\varepsilon)^2}\right).
\]

These results will be finite when the constants \(c_1, c_2, \sigma \) and \(\varepsilon \) are finite. Then, the conditions 1. and 2. were satisfied. The consistency of estimators obtained simultaneously was examined. Then, it can examine the asymptotic normality.
of estimators. Since the estimators are not explicit form, the Taylor expansion of influence function will be consider as follow:

\begin{equation}
\Psi(x_i, \hat{\tau}) = \Psi(x_i, \tau) + (\hat{\tau} - \tau) \frac{\partial \Psi(x_i, \tau)}{\partial \tau} + R_n
\end{equation}

the summation of both sides are taken and multiplied by $1/n$. Then,

\[
0 = \frac{1}{n} \sum_{i=1}^{n} \Psi(x_i, \tau) + (\hat{\tau} - \tau) \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \Psi(x_i, \tau)}{\partial \tau} + R_n
\]

was gotten, where $\frac{\partial \Psi(x_i, \tau)}{\partial \tau} = \frac{\partial \Psi(x_i, \tau)}{\partial \tau}$. If $[\frac{1}{n} \sum_{i=1}^{n} \frac{\partial \Psi(x_i, \tau)}{\partial \tau}]^{-1}$ exists,

\begin{equation}
- (\hat{\tau} - \tau) \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \Psi(x_i, \tau)}{\partial \tau} = \frac{1}{n} \sum_{i=1}^{n} \Psi(x_i, \tau) + R_n
\end{equation}

\[
\sqrt{n}(\hat{\tau} - \tau) = B_n^{-1} \sqrt{n}A_n + \sqrt{n}R_n
\]

where $\sqrt{n}R_n \xrightarrow{P} 0$. Under the regularity of conditions, when $n \to \infty$, the weak of large numbers

\begin{equation}
B_n = \frac{1}{n} \sum_{i=1}^{n} (-\frac{\partial \Psi(x_i, \tau)}{\partial \tau}) \xrightarrow{P} E[-\frac{\partial \Psi(X, \tau)}{\partial \tau}] = B
\end{equation}

can be obtained. By means of central limit theorem,

\begin{equation}
\sqrt{n}A_n \xrightarrow{D} N_3(0, A), \quad A = E[\Psi(X, \tau)\Psi(X, \tau)^T]
\end{equation}

can be obtained. Here, Ψ is three-dimensional. Thus, by means of the Slutsky’s multivariate lemma,

\begin{equation}
\sqrt{n}(\hat{\tau} - \tau) \xrightarrow{D} N_3(0, B^{-1}A(B^T)^{-1})
\end{equation}

N_3 shows the 3–dimensional asymptotic normally distributed.

Then, the matrices A and B exist and the inverse of matrix B exists as well. These matrices are obtained when the underlying distribution is chosen as ESN.

\[
A = \begin{bmatrix}
E[\psi^2_\theta(X)] & E[\psi_\theta(X)\psi_\theta(X)] & E[\psi_\theta(X)\psi_\phi(X)] \\
E[\psi^2_\phi(X)] & E[\psi_\phi(X)\psi_\theta(X)] & E[\psi_\phi(X)\psi_\phi(X)] \\
E[\psi^2_\phi(X)] & E[\psi_\phi(X)\psi_\phi(X)] & E[\psi_\phi(X)\psi_\phi(X)]
\end{bmatrix}
\]

The elements of matrix A are
The elements of matrix B are

\[
B = \begin{bmatrix}
E[\frac{\partial}{\partial \theta} \psi(X)] & E[\frac{\partial}{\partial \sigma} \psi(X)] & E[\frac{\partial}{\partial \sigma} \psi(X)] \\
E[\frac{\partial}{\partial \psi} \psi(X)] & E[\frac{\partial}{\partial \psi} \psi(X)] & E[\frac{\partial}{\partial \sigma} \psi(X)] \\
E[\frac{\partial}{\partial \psi} \psi(X)] & E[\frac{\partial}{\partial \sigma} \psi(X)] & E[\frac{\partial}{\partial \psi} \psi(X)]
\end{bmatrix}
\]
Using the “revstat.sty” Package

\begin{table}[h]
\centering
\caption{Asymptotic variance of estimators}
\begin{tabular}{lccccc}
\hline
 & $\Var(\hat{\tau})/n$ & $n = 30$ & $n = 50$ & $n = 100$ & $n = 150$ \\
\hline
$\varepsilon = -0.2$ & $\Var(\hat{\theta})/n$ & 0.190253 & 0.114152 & 0.057076 & 0.038051 \\
& $\Var(\hat{\sigma})/n$ & 0.018747 & 0.011248 & 0.005624 & 0.003749 \\
$c_1 = -1.1, c_2 = 3.7$ & $\Var(\hat{\varepsilon})/n$ & 0.021061 & 0.012637 & 0.006318 & 0.004212 \\
\hline
$\varepsilon = -0.5$ & $\Var(\hat{\theta})/n$ & 0.059406 & 0.035644 & 0.017822 & 0.011881 \\
& $\Var(\hat{\sigma})/n$ & 0.022944 & 0.013767 & 0.006883 & 0.004589 \\
$c_1 = -0.7, c_2 = 5.0$ & $\Var(\hat{\varepsilon})/n$ & 0.016147 & 0.009688 & 0.004844 & 0.003229 \\
\hline
$\varepsilon = -0.8$ & $\Var(\hat{\theta})/n$ & 0.010032 & 0.006019 & 0.003010 & 0.002006 \\
& $\Var(\hat{\sigma})/n$ & 0.003519 & 0.002114 & 0.001057 & 0.0007038 \\
$c_1 = -0.1, c_2 = 6.4$ & $\Var(\hat{\varepsilon})/n$ & 0.023486 & 0.014091 & 0.007046 & 0.004697 \\
\hline
\end{tabular}
\label{tab:asymptotic_variance}
\end{table}

\begin{align*}
E\left[\frac{\partial}{\partial \theta} \psi_0(X) \right] &= \frac{1}{(1 + \varepsilon)\sigma^2 2\sqrt{\pi}} \cdot \frac{c_1^2}{2(1 + \varepsilon)^2} + \frac{1}{(1 - \varepsilon)\sigma^2 2\sqrt{\pi}} \cdot \frac{c_2^2}{2(1 - \varepsilon)^2}, \\
E\left[\frac{\partial}{\partial \sigma} \psi_0(X) \right] &= \frac{c_1}{\sigma^2 (1 + \varepsilon)\sigma^2 2\sqrt{\pi}} \cdot \frac{\Gamma(\frac{1}{2}, \frac{c_1^2}{2(1 + \varepsilon)^2})}{\frac{c_2^2}{2(1 - \varepsilon)^2}} + \frac{\sqrt{\pi}}{\sigma^2 (1 - \varepsilon)\sigma^2 2\sqrt{\pi}} \gamma(1, \frac{c_1^2}{2(1 + \varepsilon)^2}), \\
E\left[\frac{\partial}{\partial \varepsilon} \psi_0(X) \right] &= \frac{3c_1}{\sigma (1 + \varepsilon)^3 2\sqrt{\pi}} \cdot \frac{\Gamma(\frac{1}{2}, \frac{c_1^2}{2(1 + \varepsilon)^2})}{\frac{c_2^2}{2(1 - \varepsilon)^2}} - \frac{2\sqrt{\pi}}{\sigma (1 + \varepsilon)^2 \sigma^2 \sqrt{\pi}} \gamma(1, \frac{c_1^2}{2(1 + \varepsilon)^2}), \\
&+ \frac{3c_2}{\sigma (1 - \varepsilon)^2 \sigma^2 \sqrt{\pi}} \gamma(1, \frac{c_2^2}{2(1 - \varepsilon)^2}) - \frac{3c_2}{\sigma (1 - \varepsilon)^2 \sigma^2 \sqrt{\pi}} \Gamma(\frac{1}{2}, \frac{c_2^2}{2(1 - \varepsilon)^2}), \\
E\left[\frac{\partial}{\partial \sigma} \psi_0(X) \right] &= \frac{-3c_1}{\sigma (1 + \varepsilon)\sigma^2 \sqrt{\pi}} \cdot \frac{\Gamma(1, \frac{c_1^2}{2(1 + \varepsilon)^2})}{\frac{c_2^2}{2(1 - \varepsilon)^2}} + \frac{4}{\sigma \sqrt{\pi}} \cdot \gamma(\frac{3}{2}, \frac{c_1^2}{2(1 + \varepsilon)^2}) \\
&- \frac{3c_2}{\sigma (1 - \varepsilon)\sigma^2 \sqrt{\pi}} \cdot \gamma(\frac{3}{2}, \frac{c_2^2}{2(1 - \varepsilon)^2}) - \frac{3c_2}{\sigma (1 - \varepsilon)\sigma^2 \sqrt{\pi}} \Gamma(\frac{1}{2}, \frac{c_2^2}{2(1 - \varepsilon)^2}), \\
E\left[\frac{\partial}{\partial \varepsilon} \psi_0(X) \right] &= \frac{-6\sqrt{2}c_1}{(1 + \varepsilon)^2 \sigma^2 \sqrt{\pi}} \cdot \frac{\Gamma(1, \frac{c_1^2}{2(1 + \varepsilon)^2})}{\frac{c_2^2}{2(1 - \varepsilon)^2}} - \frac{3c_1^2}{(1 + \varepsilon)^3 2\sqrt{\pi}} \cdot \Gamma(\frac{1}{2}, \frac{c_1^2}{2(1 + \varepsilon)^2}) \\
&+ \frac{10}{(1 + \varepsilon)\sqrt{\pi}} \cdot \gamma(\frac{3}{2}, \frac{c_1^2}{2(1 + \varepsilon)^2}) + \frac{10}{(1 - \varepsilon)\sqrt{\pi}} \gamma(\frac{3}{2}, \frac{c_1^2}{2(1 - \varepsilon)^2}) \\
&+ \frac{6\sqrt{2}c_2}{(1 - \varepsilon)^2 \sigma^2 \sqrt{\pi}} \cdot \Gamma(1, \frac{c_2^2}{2(1 - \varepsilon)^2}) - \frac{3c_2^2}{(1 - \varepsilon)^3 2\sqrt{\pi}} \Gamma(\frac{1}{2}, \frac{c_2^2}{2(1 - \varepsilon)^2}).
\end{align*}
4.1. Simulation Study for Estimators of Location, Scale and Skewness Parameters

To test the performance of asymmetric M-estimators, the contaminated version of ESN distribution will be considered as follow:

\[0.90ESN(\theta = 0, \sigma = 1, \varepsilon = \varepsilon_0) + 0.10ESL(\theta = 0, \sigma = 1, \varepsilon = \varepsilon_0) \]

1000 runs are performed. The sample sizes of each run are 30, 50, 100 and 150. The relative efficiencies of estimators are also computed.

\[
RE_{ESH}(\hat{\tau}) = \left(\frac{MSE_{ESH}(\hat{\tau})}{MSE_{ESN}(\hat{\tau})} \right) 100
\]

\[
RE_{ESH}(\hat{\tau}) = \left(\frac{MSE_{ESH}(\hat{\tau})}{MSE_{ESL}(\hat{\tau})} \right) 100
\]

\[
RE_{ESH}(\hat{\tau}) = \left(\frac{MSE_{ESH}(\hat{\tau})}{MSE_{ESt}(\hat{\tau})} \right) 100
\]

\[
RE_{ESH}(\hat{\tau}) = \left(\frac{MSE_{ESH}(\hat{\tau})}{MSE_{H}(\hat{\tau})} \right) 100
\]

MSE is mean squared error obtained from simulation. ESH is epsilon-skew Huber M-estimator, ESN, ESL and ESt epsilon-skew normal, Laplace and t distributions, respectively. H is symmetric Huber M-estimator. Three degrees of asymmetry are considered to test the asymmetric M-estimators. We make a comparison between the symmetric Huber M-estimator and asymmetric Huber M-estimator. In tables, maximum likelihood estimators of location, scale and skewness parameters of ESN, ESL and epsilon-skew t (ESt) considered by distributions are given. The comparison of them with asymmetric M-estimator is also considered. Tables 2 shows that asymmetric M-estimator (ESH) outperforms generally than the maximum likelihood and M-estimators when the data set has outliers. The initial points of \(\theta, \sigma \) and \(\varepsilon \) to start the algorithm are median(\(x \)), \(MAD(x) = median(|x_i - median(x)|) \) and 0, respectively. Here, \(x = \{x_1, x_2, \ldots, x_n\} \). Three degrees of asymmetry are considered.

4.2. Real Data Application on Estimations of Location, Scale and Skewness Parameters

The real data sets are considered to show the performance of the asymmetric M-estimation (ESH). As an indicator of the goodness of fitness, \(AIC \) (Akaike information criterion) ve \(BIC \) (Bayesian information criterion) are considered. They are defined as the following forms:
Table 2: Asymmetric M (ESH), ML and M Estimators ($\varepsilon = -0.2$): $c_1 = -1.10, c_2 = 3.70, k = 1.4$

	τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE
	$n = 30$					$n = 50$			
θ	0.0	-0.0357	0.1645	0.1658	100	-0.0340	0.0944	0.0956	100
σ	1.0	1.1180	0.0633	0.0773	100	1.1566	0.0348	0.0594	100
ε	-0.2	-0.1603	0.0200	0.0216	100	-0.1804	0.0153	0.0160	100
θ	0.0	0.3057	0.0911	0.1846	90	0.3209	0.0181	0.1211	79
σ	1.0	1.2466	0.1105	0.1714	45	1.2999	0.0696	0.1595	37
ε	-0.2	-0.1462	0.0569	0.0598	36	-0.2200	0.0454	0.0455	35
θ	0.0	0.1736	0.1014	0.1315	126	0.1809	0.0565	0.0892	107
σ	1.0	0.6316	0.0137	0.1494	52	0.6499	0.0074	0.1300	46
ε	-0.2	-0.1306	0.0308	0.0356	61	-0.1263	0.0172	0.0226	71
θ	0.0	0.3342	0.0714	0.1831	91	0.3640	0.0388	0.1714	56
σ	1.0	1.1378	0.0425	0.0615	126	1.0848	0.0222	0.0294	202

(4.21) $\text{AIC} = 2k - 2\log(L(\hat{\tau}; x_1, x_2, ..., x_n))$

(4.22) $\text{BIC} = -2\log(L(\hat{\tau}; x_1, x_2, ..., x_n)) + k\log(n)$
Table 3: Asymmetric M (ESH), ML and M Estimators ($\varepsilon = -0.5$); $c_1 = -0.70, c_2 = 5.00, k = 1.4$

	$n = 30$	$n = 50$								
	τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
ESH										
θ	0.0	-0.0828	0.1534	0.1602	100	-0.0741	0.1083	0.1138	100	
σ	1.0	1.0458	0.0546	0.0567	100	1.0274	0.0369	0.0377	100	
ε	-0.5	-0.4123	0.0294	0.0371	100	-0.4415	0.0137	0.0171	100	
ESN										
θ	0.0	0.4399	0.1043	0.2979	54	0.3843	0.0774	0.2251	50	
σ	1.0	1.4055	0.2091	0.3735	15	1.4629	0.1720	0.3863	10	
ε	-0.5	-0.3794	0.0520	0.0665	56	-0.4288	0.0341	0.0392	44	
ESL										
θ	0.0	0.4512	0.1137	0.3172	51	0.3933	0.0694	0.2241	51	
σ	1.0	0.6787	0.0200	0.1233	46	0.6933	0.0118	0.1059	36	
ε	-0.5	-0.2724	0.0353	0.0871	43	-0.3064	0.0207	0.0582	29	
Est										
θ	0.0	1.0894	0.1644	1.3512	12	1.0201	0.0895	1.1299	10	
σ	1.0	1.2912	0.1274	0.2122	27	1.3318	0.0893	0.1994	19	
Huber M										
θ	0.0	0.0178	0.0184	0.0209	24	-0.0207	0.0109	0.0110	26	

Example 1: The data set in the website http://discover.nci.nih.gov/datasetsNature2000.jsp is analyzed by [3] and [22]. In this study, the asymmetric M-estimator (ESH), ESN, ESL, ESt, N (Normal) and Huber M-estimation (H) distributions are used.
Table 4: Asymmetric M (ESH), ML and M Estimators ($\varepsilon = -0.8$): $c_1 = -0.10, c_2 = 6.40, k = 1.4$

$n = 30$	$n = 50$								
τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
θ	0.0	0.0689	0.0886	0.0934	100	-0.0262	0.0377	0.0333	100
σ	1.0	1.0331	0.0899	0.0910	100	1.0235	0.0578	0.0584	100
ε	-0.8	-0.7178	0.0227	0.0294	100	-0.7189	0.0105	0.0171	100

$n = 100$	$n = 150$								
τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
θ	0.0	0.7885	0.1531	0.7748	12	0.7100	0.0721	0.5762	7
σ	1.0	0.8315	0.0406	0.0690	132	0.8088	0.0194	0.0591	99
ε	-0.8	-0.4075	0.0331	0.1872	16	-0.4351	0.0181	0.1513	11

| ε: Huber M |
$n = 100$	$n = 150$								
τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
θ	0.0	0.1809	0.1671	0.1999	47	0.1678	0.0788	0.1069	36
σ	1.0	0.7402	0.0156	0.0830	110	0.7365	0.0101	0.0795	73
ε	-0.8	-0.7586	0.0469	0.0486	61	-0.7262	0.0264	0.0319	53

| ε: ESN |
$n = 100$	$n = 150$								
τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
θ	0.0	1.8830	8.1574	11.7032	1	1.8797	6.1185	9.6521	0
σ	1.0	1.3302	0.8120	0.9209	10	1.9495	0.7885	1.6999	4

| ε: ESH |
$n = 100$	$n = 150$								
τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
θ	0.0	0.2700	0.0371	0.1100	21	0.2194	0.0244	0.0726	21
σ	1.0	1.7370	0.1247	0.6679	3	1.8112	0.1056	0.7637	2
ε	-0.8	-0.7397	0.0089	0.0125	52	-0.7679	0.0060	0.0070	58

| ε: ESL |
$n = 100$	$n = 150$								
τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
θ	0.0	0.6761	0.0425	0.4996	5	0.6810	0.0281	0.4918	3
σ	1.0	0.7981	0.0086	0.0494	43	0.8164	0.0062	0.0399	43
ε	-0.8	-0.4410	0.0097	0.1386	5	-0.4415	0.0066	0.1351	3

| ε: ESt |
$n = 100$	$n = 150$								
τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
θ	0.0	0.0500	0.0433	0.0458	51	0.0323	0.0223	0.0234	65
σ	1.0	0.7362	0.0041	0.0737	29	0.7427	0.0033	0.0695	25
ε	-0.8	-0.7899	0.0141	0.0142	45	-0.8009	0.0076	0.0076	54

| Huber M |
| θ | 0.0 | 2.0201 | 1.8066 | 5.8874 | 0 | 2.1522 | 1.1568 | 5.7889 | 0 |
| σ | 1.0 | 1.8971 | 0.9565 | 1.7602 | 1 | 2.1260 | 0.6387 | 1.9067 | 1 |

to analyze the data set. The tuning constants of asymmetric Huber M-estimators are $c_1 = -0.1, c_2 = 0.3$, the tuning constant of Huber M-estimators is $k = 0.2$
Table 5: Example 1: Estimates of parameters, logL, AIC ve BIC.

	ESH	ESN	ESL	Est	N	H
$\hat{\theta}$	0.0386(0.0815)	0.1240(0.1677)	0.2480	0.2157(0.1170)	0.2838(0.0047)	0.0332(0.1606)
$\hat{\sigma}$	0.1195(0.0491)	0.5139(0.0469)	0.3033	0.3778(0.0329)	0.5330(0.0023)	0.1355(0.0875)
$\hat{\varepsilon}$	-0.2049(0.2551)	-0.1839(0.1884)	-0.0452	-0.0373(0.1788)	-	-
logL	27.1501	-15.7852	8.2659	-45.3664	-17.8779	24.1149
AIC	-48.3002	37.5703	-10.5318	96.7328	39.7559	-44.2297
BIC	-42.0171	43.8534	-4.2487	103.0159	43.9446	-40.0410

Table 6: Example 2: Estimates of parameters, logL, AIC ve BIC.

	ESH	ESN	ESL	Est	N	H
$\hat{\theta}$	0.1130(0.1287)	0.2371(0.4414)	-0.4931	-0.1179(0.3899)	-0.8721(0.0505)	-2.5505(0.3717)
$\hat{\sigma}$	0.2260(0.0928)	1.5598(0.1423)	0.9042	1.3172(0.4006)	1.7419(0.0252)	0.3837(0.1983)
$\hat{\varepsilon}$	0.3144(0.2286)	0.5231(0.1633)	0.1345	0.2950(0.1709)	-	-
logL	-20.5648	-82.3323	-57.3653	-113.2674	-88.9332	-48.8577
AIC	47.1297	170.6645	120.7305	232.5347	181.8664	101.7154
BIC	53.4127	176.9476	127.0135	238.8178	186.0551	105.9041

and the parameter ν that is a tuning constant for the ESt distribution is $\nu = 5$. Table 5 gives the estimates of parameters, log(L), AIC and BIC values.

Example 2: The tuning constants of asymmetric Huber M-estimators are $c_1 = -0.25, c_2 = 0.1$, the tuning constant of Huber M-estimators is $k = 0.25$ and the parameter ν that is a tuning constant for the ESt distribution is $\nu = 5$. Table 6 gives the estimates of parameters, log(L), AIC and BIC values. The tuning constants were tired until the smallest values of AIC and BIC are gotten for these two examples.

5. Regression Application on Asymmetric M–Estimation

The regression model is considered as an application of asymmetric M–estimation.

\[y_i = x_i^T \mathbf{b} + u_i, \quad i = 1, 2, ..., n \]

where y is dependent variable. x is explanatory variable. $\mathbf{b} = (b_0, b_1, ..., b_{p-1})$ is a vector of parameters. u is error terms. We will get the asymmetric M–estimators.

5.1. Asymmetric M–estimation and its Estimators

The regression model in equation \ref{eq:regression_model} is considered. Suppose that the error terms u are asymmetrically distributed. Then, it can be possible to model the asymmetry in data set via the skewness parameter ε. To estimate the parameters
\(\mathbf{b}, \sigma \) and \(\varepsilon \), the following function \(Q \) will be considered.

\[
Q(\mathbf{b}, \sigma, \varepsilon) = \sum_{i=1}^{n} \rho_{ESH} \left(\frac{y_i - \mathbf{x}_i^T \mathbf{b}}{\sigma (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon) } \right) + n \log(\sigma) + \sum_{i=1}^{n} \log(1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)
\]

The minimization of function \(Q \) with respect to parameters will give the estimators of parameters.

\[
\frac{\partial Q}{\partial \mathbf{b}} = \sum_{i=1}^{n} \psi_{\mathbf{b}} \left(\frac{y_i - \mathbf{x}_i^T \mathbf{b}}{\sigma (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon) } \right) \frac{x_i}{\sigma (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon) \sigma (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon) } = 0
\]

let \(r_i = \frac{\sigma (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)}{\sigma (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)} \). Then, \(w(r_i) = \psi_{\mathbf{b}}(r_i)/r_i \) is defined in the robustness. Then, asymmetric \(M \)-estimator is

\[
b = \left[\sum_{i=1}^{n} x_i \left(\frac{w_i}{\hat{\sigma}(1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)^2} \right) x_i^T \right]^{-1} \sum_{i=1}^{n} x_i \left(\frac{w_i}{\hat{\sigma}(1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)^2} \right) y_i
\]

where \(w_i = w \left(\frac{y_i - \mathbf{x}_i^T \mathbf{b}}{\hat{\sigma}(1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)} \right) \) is weight function.

To get the estimator for the parameter \(\sigma \), we will get the derivative with respect to \(\sigma \)

\[
\frac{\partial Q}{\partial \sigma} = -\frac{n}{\sigma} + \sum_{i=1}^{n} \psi_{\sigma} \left(\frac{y_i - \mathbf{x}_i^T \mathbf{b}}{\sigma (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon) } \right) \frac{y_i - \mathbf{x}_i^T \mathbf{b}}{\sigma (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon) \sigma^2} = 0
\]

\(r_i = \frac{\sigma (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)}{\sigma (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)} \). Then, \(w(r_i) = \psi_{\sigma}(r_i)/r_i \) is weight function. The asymmetric \(M \)-estimator of scale parameter is as follow:

\[
\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} w_i \frac{(y_i - \mathbf{x}_i^T \mathbf{b})^2}{(1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)^2}
\]

where \(w_i = w \left(\frac{y_i - \mathbf{x}_i^T \mathbf{b}}{\hat{\sigma}(1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)} \right) \). The derivative of function \(Q(\mathbf{b}, \sigma, \varepsilon) \) with respect to parameter \(\varepsilon \) is taken

\[
\frac{\partial Q}{\partial \varepsilon} = \frac{\text{sign}(y_i - \mathbf{x}_i^T \mathbf{b})}{1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon} - \frac{1}{\sigma} \sum_{i=1}^{n} \psi_{\varepsilon}(r_i) \frac{(y_i - \mathbf{x}_i^T \mathbf{b}) \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b})}{(1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)^2} = 0
\]

\(r_i = \frac{\sigma (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)}{\sigma (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)} \). \(w(r_i) = \psi_{\varepsilon}(r_i)/r_i \). The asymmetric \(M \)-estimator of skewness parameter is as follow:

\[
\hat{\varepsilon} = \sum_{i=1}^{n} \left[\frac{\text{sign}(y_i - \mathbf{x}_i^T \mathbf{b})}{1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon) } - \frac{w_i (y_i - \mathbf{x}_i^T \mathbf{b}) \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b})}{\hat{\sigma}^2 (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)^3} \right] - \frac{1}{\sum_{i=1}^{n} (1 - \text{sign}(y_i - \mathbf{x}_i^T \mathbf{b}) \varepsilon)^2} \]
Using the “revstat.sty” Package

22

\[w_i = w\left(\frac{y_i - x_i^T \hat{b}}{\sigma (1 - \text{sign}(y_i - x_i^T \hat{b}) \varepsilon)}\right). \]

The weight function for the asymmetric M-estimators is as follows:

\[
(5.8) \quad w(r_i) = \begin{cases}
\frac{c_1}{(1 + r_i^2) r_i}, & (-\infty, c_1); \\
\frac{c_1}{(1 + r_i^2) r_i}, & [c_1, 0); \\
\frac{1}{(1 - r_i^2) r_i}, & [0, c_2]; \\
\frac{c_2}{(1 - r_i^2) r_i}, & (c_2, \infty).
\end{cases}
\]

where \(r_i = \frac{y_i - x_i^T \hat{b}}{\sigma (1 - \text{sign}(y_i - x_i^T \hat{b}) \varepsilon)} \). The computation steps are similar to the previous case, because the estimates of parameters location, scale and skewness are considered. Thus, we omitted the steps for the regression case.

5.2. Simulation Study for Estimators of Regression, Scale and Skewness Parameters

In the simulation setting, the simulation plan is same with the estimations of location, scale and skewness parameters. The true regression model is as follow:

\[
(5.9) \quad y_i = 3x_{0i} + 5x_{1i} + x_{2i} - 4x_{3i} + 2x_{4i} - 2x_{5i} + u_i, \quad i = 1, 2, \ldots, n
\]

The error terms \(u \) are distributed asymmetrically. The explanatory variables are \(x_0, x_1, x_2, \ldots, x_5 \). The initial points of \(\hat{b} = (b_0, b_1, b_2, b_3, b_4, b_5) \), \(\sigma \) and \(\varepsilon \) to start the algorithm are the vector of \((0, 0, 0, 0, 0, 0)\), MAD and 0, respectively. Three degrees of asymmetry are considered. In tables, the results shows that the asymmetric M-estimators outperforms than the maximum likelihood estimators of ESN, ESL and ESt distributions generally.

5.3. Real Data Application on Estimations of Regression, Scale and Skewness Parameters

Example 3: The MartinMarietta data set was analyzed by [6], [5, 8, 9, 3, 4] and [11]. The estimates of the regression parameters were obtained by these studies. They assume that the data set consists of 60 monthly observations from January 1982 to December 1986. [6] introduce a linear regression model \(y = b_0 + b_1 \text{CRSP} + u \) where \(y \) is the excess rate of the MartinMarietta company, \(x = \text{CRSP} \) is an index of the excess rate of return for the New York market, and \(u \) is an error term. The tuning constants of asymmetric Huber M-estimators are \(c_1 = -0.015, c_2 = 0.03 \), the tuning constant of Huber M-estimators is \(k = 0.03 \) and the parameter \(\nu \) that is a tuning constant for the ESt distribution is \(\nu = 1.5 \). Table [13] gives the estimates of parameters, log(L), AIC and BIC values.
Using the “revstat.sty” Package

23

as gamlss.nl. The studies also analyzed this data set. The tuning

raphy) machines. The detailed discussion can be found in the package named

ample 3 is again taken. This data set can get the PET package. It is called

\[\sigma_1 \varepsilon \]

\[\sigma_2 \varepsilon \]

\[\sigma_3 \varepsilon \]

\[\sigma_4 \varepsilon \]

\[\sigma_5 \varepsilon \]

\[\sigma \varepsilon \]

\[\varepsilon \]

Example 4: The same regression model considered in the previous ex-

Table 7: Asymmetric M (ESH) and ML Estimators ($\varepsilon = -0.2$): $c_1 = -1.10, c_2 = 5.20$

τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
b_0	3.0	2.9675	0.1484	0.1495	100	2.8862	0.0841	0.0929	100
b_1	5.0	4.9565	0.0344	0.0362	100	5.0044	0.0253	0.0253	100
b_2	1.0	1.0536	0.0618	0.0647	100	0.9990	0.0230	0.0230	100
b_3	-4.0	-3.9775	0.0351	0.0356	100	-3.9779	0.0260	0.0265	100
b_4	2.0	1.9788	0.0458	0.0463	100	2.0315	0.0329	0.0339	100
b_5	-2.0	-1.9260	0.0457	0.0511	100	-1.9911	0.0236	0.0237	100
σ	1.0	1.0267	0.0135	0.0142	100	1.0364	0.0098	0.0112	100
ε	-0.2	-0.1685	0.0141	0.0151	100	-0.2003	0.0124	0.0124	100

Example 4: The same regression model considered in the previous ex-

ample 3 is again taken. This data set can get the PET package. It is called

as "la". The dependent variable "y=la$PET510" and the explanatory variable

"x=la$bflow" are standardized. "bflow" is a variable representing the blood flow. The variable "PET510" is measured via the PET (Positron Emission Tomog-

raphy) machines. The detailed discussion can be found in the package named

as gamlss.nl. The studies also analyzed this data set. The tuning
Table 8: Asymmetric M (ESH) and ML Estimators ($\varepsilon = -0.2$): $c_1 = -1.10, c_2 = 5.20$

$n = 100$	$n = 150$								
τ	$\hat{\tau}$	Var($\hat{\tau}$)	MSE($\hat{\tau}$)	RE	$\hat{\tau}$	Var($\hat{\tau}$)	MSE($\hat{\tau}$)	RE	
b_0	3.0	2.7998	0.0428	0.0828	100	2.8049	0.0311	0.0692	100
b_1	5.0	5.0042	0.0099	0.0099	100	4.9814	0.0094	0.0098	100
b_2	1.0	0.9832	0.0666	0.0669	100	0.9984	0.0068	0.0068	100
b_3	-4.0	-4.0094	0.0144	0.0144	100	-3.9802	0.0065	0.0069	100
b_4	2.0	2.0029	0.0081	0.0081	100	2.0636	0.0064	0.0064	100
b_5	-2.0	-1.9821	0.0092	0.0095	100	-1.9935	0.0079	0.0079	100
σ	1.0	1.0473	0.0044	0.0066	100	1.0447	0.0025	0.0045	100
ε	-0.2	-0.2070	0.0044	0.0044	100	-0.2157	0.0039	0.0041	100

$n = 100$	$n = 150$								
τ	$\hat{\tau}$	Var($\hat{\tau}$)	MSE($\hat{\tau}$)	RE	$\hat{\tau}$	Var($\hat{\tau}$)	MSE($\hat{\tau}$)	RE	
b_0	3.0	3.3573	0.0224	0.1501	55	3.3669	0.0093	0.1439	48
b_1	5.0	5.0270	0.0187	0.0194	51	4.9870	0.0018	0.0183	53
b_2	1.0	0.9920	0.0137	0.0138	50	1.0008	0.0096	0.0096	71
b_3	-4.0	-4.0387	0.0267	0.0282	51	-3.9871	0.0094	0.0095	72
b_4	2.0	2.0043	0.0215	0.0215	38	2.0051	0.0114	0.0114	56
b_5	-2.0	-1.9846	0.0155	0.0157	60	-1.9977	0.0131	0.0131	60
σ	1.0	1.2661	0.0389	0.1097	6	1.2943	0.0254	0.1120	4
ε	-0.2	-0.0951	0.0051	0.0161	27	-0.0980	0.0046	0.0150	27

$n = 100$	$n = 150$								
τ	$\hat{\tau}$	Var($\hat{\tau}$)	MSE($\hat{\tau}$)	RE	$\hat{\tau}$	Var($\hat{\tau}$)	MSE($\hat{\tau}$)	RE	
b_0	3.0	3.0491	0.0971	0.0996	83	3.0047	0.0839	0.0840	82
b_1	5.0	4.6588	0.1551	0.2815	3	4.6099	0.1201	0.2746	4
b_2	1.0	0.8519	0.0355	0.0679	10	0.9336	0.0409	0.0453	15
b_3	-4.0	-3.6718	0.0844	0.1921	8	-3.6635	0.0846	0.1908	4
b_4	2.0	1.8236	0.0774	0.1065	8	1.8640	0.0835	0.1020	6
b_5	-2.0	-1.8170	0.0808	0.1143	8	-1.8302	0.0596	0.0884	9
σ	1.0	0.7443	0.0227	0.0881	8	0.7855	0.0212	0.0673	7
ε	-0.2	-0.1175	0.0079	0.0147	30	-0.1789	0.0130	0.0135	31

$n = 100$	$n = 150$								
τ	$\hat{\tau}$	Var($\hat{\tau}$)	MSE($\hat{\tau}$)	RE	$\hat{\tau}$	Var($\hat{\tau}$)	MSE($\hat{\tau}$)	RE	
b_0	3.0	2.9470	0.0871	0.0982	84	2.8777	0.0823	0.0973	71
b_1	5.0	4.9989	0.0134	0.0134	74	4.9699	0.0128	0.0130	75
b_2	1.0	0.9859	0.0109	0.0111	62	1.0080	0.0092	0.0093	73
b_3	-4.0	-4.0174	0.0184	0.0187	77	-3.9771	0.0076	0.0081	85
b_4	2.0	2.0119	0.0162	0.0163	50	2.0060	0.0068	0.0069	93
b_5	-2.0	-1.9831	0.0142	0.0145	66	-2.0023	0.0127	0.0127	63
σ	1.0	0.7386	0.0042	0.0726	9	0.7685	0.0030	0.0566	8
ε	-0.2	-0.2604	0.0497	0.0513	9	-0.2935	0.0332	0.0419	10

Constants of asymmetric Huber M-estimators are $c_1 = -1, c_2 = 0.7$, the tuning constant of Huber M-estimators is $k = 1$ and the parameter ν that is a tuning constant for the ESt distribution is $\nu = 2$. If a value is bigger than the $Q_3 + 1.5IQR = 1.6686$, the added value with y direction is considered to be an outlier. The maximum value of explanatory variable is 5.4276, the added value is 5. Here, Q_3 is the third quantile. IQR is an interquartile range. The sample size is $n = 251$. After adding one outlier, the sample size is $n = 252$. Table 14
Table 9: DAsymmetric M (ESH) and ML Estimators ($\varepsilon = -0.5$): $c_1 = -0.30, c_2 = 5.30$

	$n = 30$	$n = 50$							
τ	$\tilde{\tau}$	$\mathrm{Var}(\tilde{\tau})$	$\mathrm{MSE}(\tilde{\tau})$	RE	$\tilde{\tau}$	$\mathrm{Var}(\tilde{\tau})$	$\mathrm{MSE}(\tilde{\tau})$	RE	
b_0	3.0	3.0629	0.1043	0.1083	100	2.9531	0.0506	0.0528	100
b_1	5.0	5.0174	0.0496	0.0499	100	5.0219	0.0193	0.0197	100
b_2	1.0	1.0027	0.0419	0.0419	100	1.0106	0.0163	0.0164	100
b_3	-4.0	-4.0016	0.0511	0.0511	100	-4.0097	0.0266	0.0267	100
b_4	2.0	2.0080	0.0472	0.0473	100	2.0126	0.0122	0.0123	100
b_5	-2.0	-1.9778	0.0446	0.0451	100	-2.0076	0.0171	0.0172	100
σ	1.0	1.0301	0.1086	0.1095	100	0.9721	0.0100	0.0108	100
ε	-0.5	-0.5097	0.0278	0.0279	100	-0.5230	0.0089	0.0094	100

and [15] give the estimates of parameters, log(L), AIC and BIC values.
Table 10: Asymmetric M (ESH) and ML Estimators ($\varepsilon = -0.5$): $c_1 = -0.30, c_2 = 5.30$

	τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
ESH										
b_0	3.0	2.8901	0.0155	0.0285	100	2.8595	0.0083	0.0280	100	
b_1	5.0	5.0040	0.0039	0.0039	100	4.9915	0.0033	0.0034	100	
b_2	1.0	1.0027	0.0053	0.0053	100	0.9958	0.0041	0.0041	100	
b_3	-4.0	-3.9976	0.0037	0.0037	100	-3.9993	0.0029	0.0029	100	
b_4	2.0	1.9966	0.0025	0.0025	100	2.0003	0.0014	0.0014	100	
b_5	-2.0	-2.0032	0.0036	0.0036	100	-2.0024	0.0024	0.0024	100	
σ	1.0	0.9736	0.0038	0.0045	100	0.9815	0.0028	0.0032	100	
ε	-0.5	-0.5164	0.0027	0.0030	100	-0.5072	0.0016	0.0016	100	
ESN										
b_0	3.0	3.9450	0.0240	0.0171	3	3.9202	0.0151	0.0619	3	
b_1	5.0	5.0383	0.0316	0.0331	12	5.0192	0.0206	0.0210	16	
b_2	1.0	0.9864	0.0287	0.0289	18	1.0054	0.0171	0.0171	24	
b_3	-4.0	-4.0314	0.0328	0.0338	11	-4.0368	0.0171	0.0184	16	
b_4	2.0	1.9962	0.0234	0.0234	11	2.0151	0.0148	0.0150	9	
b_5	-2.0	-2.0215	0.0220	0.0225	16	-2.0180	0.0107	0.0111	22	
σ	1.0	1.5933	0.1231	0.4751	1	1.6149	0.0927	0.4807	1	
ε	-0.5	-0.2053	0.0074	0.0042	3	-0.2249	0.0066	0.0823	2	
ESL										
b_0	3.0	3.5221	0.1011	0.3737	8	3.4696	0.0808	0.3014	9	
b_1	5.0	4.5857	0.3390	0.5106	1	4.5264	0.1515	0.3757	1	
b_2	1.0	0.8813	0.0979	0.1120	5	0.9225	0.0603	0.0663	6	
b_3	-4.0	-3.6655	0.1793	0.2912	1	-3.6455	0.1292	0.2549	1	
b_4	2.0	1.8401	0.0709	0.0965	3	1.8302	0.0605	0.0893	2	
b_5	-2.0	-1.8937	0.1010	0.1119	3	-1.8087	0.0618	0.1009	2	
σ	1.0	0.8658	0.1095	0.1275	4	0.8737	0.0444	0.0603	5	
ε	-0.5	-0.2029	0.0118	0.1000	3	-0.2169	0.0107	0.0909	2	
ESl										
b_0	3.0	2.9438	0.0577	0.0608	47	2.9242	0.0342	0.0400	70	
b_1	5.0	4.9897	0.0192	0.0192	20	4.9879	0.0099	0.0100	34	
b_2	1.0	0.9879	0.0157	0.0158	33	0.9934	0.0075	0.0075	55	
b_3	-4.0	-3.9983	0.0127	0.0127	30	-4.0147	0.0091	0.0093	31	
b_4	2.0	1.9915	0.0091	0.0092	27	2.0051	0.0053	0.0053	26	
b_5	-2.0	-2.0110	0.0085	0.0086	41	-1.9994	0.0074	0.0074	32	
σ	1.0	0.7626	0.0052	0.0615	7	0.7793	0.0039	0.0526	6	
ε	-0.5	-0.5857	0.0205	0.0279	11	-0.5775	0.0113	0.0173	9	
Table 11:
Asymmetric M (ESH) and ML Estimators ($\varepsilon = -0.8$): $c_1 = -0.01, c_2 = 6.20$

τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
$n = 30$					$n = 50$				
σ	1.0	1.666	0.328	2.355	100	1.000	0.017	2.042	100
ε	-0.8	-0.7395	0.0463	0.050	100	-0.8319	0.0223	0.233	100

ESH

τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
b_0	3.0	3.4040	0.2139	0.3771	100	3.1880	0.1209	0.1562	100
b_1	5.0	4.9738	0.1024	0.1031	100	5.0228	0.0768	0.0773	100
b_2	-4.0	-4.0286	0.1756	0.1764	100	-3.9875	0.0475	0.0476	100
b_3	-2.0	-1.9979	0.1245	0.1245	100	-1.9866	0.0307	0.0308	100

ESN

τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
b_0	3.0	4.6000	0.2060	2.7660	14	4.5671	0.0794	2.5350	6
b_1	5.0	5.0640	0.2286	0.2327	44	5.0713	0.1417	0.1468	53
b_2	1.0	1.0032	0.1768	0.1769	85	1.0373	0.1224	0.1238	38
b_3	-4.0	-4.0691	0.2639	0.2687	66	-4.0339	0.0845	0.0857	56
b_4	2.0	1.9688	0.2828	0.2837	69	2.0409	0.1182	0.1199	36

ESL

τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
b_0	3.0	4.1359	0.2345	1.5248	25	4.0596	0.1143	1.2372	13
b_1	5.0	4.7404	0.3929	0.4602	22	4.7188	0.1857	0.2647	29
b_2	1.0	1.0128	0.1411	0.1412	106	0.9760	0.1342	0.1348	35
b_3	-4.0	-3.7965	0.3274	0.3688	48	-3.6758	0.1485	0.2536	19
b_4	2.0	1.8841	0.2825	0.2960	66	1.8651	0.1080	0.1262	35

EST

τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
b_0	3.0	3.2988	0.5966	0.6859	55	3.2092	0.1182	0.1619	90
b_1	5.0	4.8167	0.5956	0.6292	17	4.9793	0.0493	0.0497	155
b_2	1.0	0.9902	0.4074	0.4075	37	0.9896	0.0538	0.0539	87
b_3	-4.0	-3.7916	0.6577	0.7012	25	-3.9680	0.0785	0.0795	60
b_4	2.0	1.8722	0.2551	0.2714	72	2.0209	0.0895	0.0899	48
b_5	-2.0	-1.8194	0.4842	0.5168	24	-2.0189	0.0477	0.0480	64
σ	1.0	0.6930	0.0436	0.1379	258	0.7431	0.0278	0.0938	189
ε	-0.8	-0.6726	0.0726	0.0889	56	-0.7778	0.0458	0.0463	50
Table 12: Asymmetric M (ESH) and ML Estimators ($\varepsilon = -0.8$): $c_1 = -0.01, c_2 = 6.20$

τ	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	$\hat{\tau}$	$\text{Var}(\hat{\tau})$	$\text{MSE}(\hat{\tau})$	RE	
$n = 100$					$n = 150$				
b_0	3.0	3.0883	0.0105	0.0182	100	2.9272	0.0092	0.0145	100
b_1	5.0	5.0099	0.0081	0.0082	100	5.0020	0.0012	0.0012	100
b_2	1.0	0.9911	0.0115	0.0116	100	1.0028	0.0013	0.0014	100
b_3	-4.0	-4.0027	0.0060	0.0061	100	-4.0009	0.0022	0.0022	100
b_4	2.0	1.9883	0.0063	0.0064	100	1.9970	0.0023	0.0023	100
b_5	-2.0	-1.9932	0.0047	0.0047	100	-1.9987	0.0016	0.0016	100
σ	1.0	0.9967	0.0077	0.0086	100	0.9668	0.0034	0.0045	100
ε	-0.8	-0.7452	0.0042	0.0072	100	-0.7639	0.0045	0.0058	100
$n = 150$					$n = 150$				
b_0	3.0	3.5584	0.3346	0.5631	3	3.5236	0.2240	0.4760	3
b_1	5.0	5.0601	0.0545	0.0581	14	5.0768	0.0218	0.0277	4
b_2	1.0	1.0179	0.0397	0.0400	29	1.0039	0.0320	0.0321	4
b_3	-4.0	-4.0586	0.0418	0.0452	13	-4.0589	0.0317	0.0352	6
b_4	2.0	2.0107	0.0409	0.0410	16	2.0366	0.0191	0.0205	11
b_5	-2.0	-2.0415	0.0511	0.0529	9	-2.0498	0.0295	0.0320	5
σ	1.0	2.1763	0.3331	1.7168	1	2.1919	0.2047	1.6253	0
ε	-0.8	-0.2917	0.0068	0.2652	2	-0.3090	0.0052	0.2462	2
$n = 100$					$n = 100$				
b_0	3.0	3.9831	0.1062	1.0727	2	3.9723	0.1267	1.0721	1
b_1	5.0	4.6342	0.1360	0.2698	3	4.6800	0.1799	0.2563	1
b_2	1.0	0.9216	0.0817	0.0878	13	0.9271	0.0729	0.0782	2
b_3	-4.0	-3.6813	0.1384	0.2400	3	-3.6560	0.1091	0.2274	1
b_4	2.0	1.8291	0.0965	0.1257	5	1.8276	0.0551	0.0848	3
b_5	-2.0	-1.8124	0.0778	0.1130	4	-1.8239	0.0724	0.1035	2
σ	1.0	0.9879	0.0429	0.0430	20	0.9977	0.0327	0.0327	14
ε	-0.8	-0.2682	0.0125	0.2953	2	-0.2683	0.0116	0.2942	2
$n = 150$					$n = 150$				
b_0	3.0	3.0865	0.0394	0.0469	39	3.0720	0.0270	0.0322	45
b_1	5.0	5.0086	0.0081	0.0082	100	5.0022	0.0046	0.0046	27
b_2	1.0	0.9993	0.0108	0.0108	107	0.9977	0.0031	0.0031	43
b_3	-4.0	-4.0001	0.0063	0.0063	97	-3.9974	0.0054	0.0054	40
b_4	2.0	1.9980	0.0082	0.0082	78	1.9895	0.0058	0.0059	39
b_5	-2.0	-1.9989	0.0073	0.0073	64	-2.0069	0.0046	0.0046	35
σ	1.0	0.7816	0.0055	0.0532	16	0.7993	0.0037	0.0040	10
ε	-0.8	-0.8105	0.0146	0.0147	49	-0.7969	0.0082	0.0082	71
Table 13: Example 3: Estimates of parameters, logL, AIC ve BIC

	ESH	ESN	ESL	Est	N	H
b_0	-0.0047	-0.0177	-0.0099	-0.0092	0.0011	-0.0016
b_1	0.3607	1.5118	0.6846	1.0009	1.8025	0.4241
$\hat{\sigma}$	0.1240	0.1105	0.0546	0.0633	0.1210	0.1373
$\hat{\varepsilon}$	-0.1116	-0.2581	-0.1093	-0.0459	-	-
logL	**70.1209**	58.8884	63.7627	66.1233	53.9302	63.0189
AIC	**-134.2418**	-111.7768	-121.5255	-126.2466	-101.8604	-120.0377
BIC	**-127.9588**	-105.4938	-115.2466	-119.9636	-95.5774	-113.7547

Table 14: Example 3: Estimates of parameters, logL, AIC ve BIC

	ESH	ESN	ESL	Est	N	H
b_0	-0.0773	-0.0841	-0.0280	0.0118	-0.0000	-0.0229
b_1	0.7299	0.8094	0.4586	0.6881	0.8046	0.7688
$\hat{\sigma}$	0.6013	0.9618	0.4908	0.5486	0.9980	0.6629
$\hat{\varepsilon}$	-0.0320	-0.1599	0.0000	0.0813	-	-
logL	**-176.1575**	-265.8107	-258.1030	-223.6345	-274.4067	-191.9880
AIC	**360.3149**	539.6215	524.2060	455.2690	554.8134	389.9761
BIC	**374.4167**	553.7233	538.3078	469.3708	565.3897	400.5524

Table 15: Example 4(Added outlier): Estimates of parameters, logL, AIC ve BIC

	ESH	ESN	ESL	Est	N	H
b_0	-0.0876	-0.0850	-0.0316	0.0103	0.0288	-0.0175
b_1	0.7440	0.9262	0.4746	0.6930	0.9491	0.7959
$\hat{\sigma}$	0.6305	1.1451	0.5220	0.5538	1.2504	0.6943
$\hat{\varepsilon}$	-0.0528	-0.2532	-0.0323	0.0734	-	-
logL	**-189.6646**	-314.7171	-273.7550	-231.9491	-334.5094	-207.4125
AIC	**387.3292**	637.4342	555.5100	471.8983	675.0188	420.8250
BIC	**401.4469**	651.5519	569.6277	486.0160	685.6070	431.4133
6. Conclusions

Asymmetric Huber M-estimators are suggested by using the $-\log(f)$ as an objective function in robustness. Asymmetric M-estimators have a skewness parameter to model the potential skewness in data set. The asymptotic properties of asymmetric M-estimators are examined. Firstly, the existence and uniqueness of the proposed objective function with respect to parameters are examined. After that, the asymptotic normality of estimators can be shown via the well known Taylor expansion of the proposed asymmetric M-function and the multivariate Slutsky’s lemma is used. For the proposed estimators, the asymptotic variance-covariance matrix is provided. The influence function as a local robustness property of estimators was provided. The breakdown point as an indicator of global robustness of location estimator is shown to be 1/2 after providing the assumptions of the robustness criteria of breakdown. An application on regression was also considered. Real data examples for both cases were provided. The results show the competence of our proposed estimators when there is a potential asymmetry in data set. The asymptotic properties of regression case will be considered as a comprehensive study. The asymmetric M-estimates in R software will be added. The asymmetric forms of Welsch, Hampel functions will be suggested to model the asymmetry in data set.

REFERENCES

[1] Actaş, S. Kasap, P. Şenoğlu, B. and Arslan, O. 2013. One-step M-estimators: Jones and Faddys skewed t-distribution. Journal of Applied Statistics, Vol. 40(7), 1545-1560.

[2] Andrews, D., Bickel, P., Hampel, F., Huber, P.J., Rogers, W. and Tuckey, J., 1972, Robust Estimates of Location: Survey and Advances. New Jersey: Princeton University Press.

[3] Arslan, O. 2009. Maximum likelihood parameter estimation for the multivariate skew slash distribution. Statistics & Probability Letters, Vol.79(20), 2158-2165.

[4] Arslan, O. and Gen A.. 2009. The skew generalized t distribution as the scale mixture of a skew exponential power distribution and its applications in robust estimation. Statistics, Vol.43(5), 481-498.

[5] Azzalini, A. and Capitanio, A. 2003. Distributions generated by perturbation of asymmetry with emphasis on a multivariate skew t distribution. J. R. Stat. aSoc. Ser. B 65, 367389.

[6] R.J. Butler, J.B. McDonald, R.D. Nelson, and S.B. White, Robust and partially adaptive estimation of regression models, Rev. Econ. Stat. 72 (1990), pp. 321327.

[7] Çankaya M.N.; Bulut Y.M.; Doğru F.Z.; Arslan O. A Bimodal Extension of the Generalized Gamma Distribution, Revista Colombiana de Estadística, 2015, 38(2), 353-370.
[8] DiCiccio, T.J., and Monti, A.C., 2004. Inferential aspects of the skew exponential power distribution. Journal of the American Statistical Association Vol. 99(466), 439-450.

[9] Genc, A.. 2007. A generalization of the univariate slash by a scale mixed exponential power distribution. Communications in Statistics Simulation and Computation. Vol. 36(5), 937-947.

[10] Haberman, S.J. 1989. Concavity and Estimation. The Annals of Statistics. JSTOR, Vol.17(4), 1631-1661.

[11] Hampel, F.R.; Ronchetti, E.M.; Rousseeuw, P.J.; and Stahel, W.A. Robust Statistics: The Approach Based on Influence Functions. Wiley Series in Probability and Statistics, 1986, 36-39, New York.

[12] Huber, P.J. Robust Estimation of a Location Parameter, The Annals of Mathematical Statistics, 1964, Vol. 40, (1), 73-101.

[13] Huber, P.J. Robust statistics, 1981, Springer.

[14] Huber, P.J. 1984. Finite Sample Breakdown of M- and P-Estimators. Annals of Statistics, Vol.12(1), 119-126.

[15] Jones, M.C. and Faddy, M.J. 2003. A skew extension of the t distribution with applications. J. Roy. Statist. Soc B. 65(1), 159-174.

[16] Elsalloukh, H. 2005. Further Results on the Epsilon-Skew Exponential Power Distribution. University of Arkansas at Little Rock, Department of Mathematics and Statistics, 1-15.

[17] Elsalloukh, H. 2008. The Epsilon-Skew Laplace Distribution. University of Arkansas at Little Rock, Department of Mathematics and Statistics, 5-19.

[18] Elsalloukh, H., Guardiola, J.H. and Young, M. 2005. The Epsilon-Skew Exponential Power Distribution Family. Far East Journal of Theoretical Statistics. Pushpa Publishing. Vol. 17(1), 97-112.

[19] Fujimoto, T., and Herrero, C. 2000. A Univalence Theorem for Nonlinear Mappings: An Elementary Approach, 2015.

[20] Lange, K.L. Little, R.J.A. and Taylor, J.M.G. 1989. Robust statistical modelling using the t distribution. J. Am. Statist. Ass, Vol. 84(408), 881-896.

[21] Maronna, R. Martin, D. and Yohai, V. 2006. Robust Statistics: Theory and Methods. Wiley Series in Probability and Statistics, 403, UK.

[22] Purdom, E., and Holmes, S.P., 2005. Error distribution for gene expression data. Statistical Applications in Genetics and Molecular Biology, 4, Article 16,7-33.

[23] Rigby, R.A. and Stasinopoulos, D.M. 2006. Using the Box-Cox t distribution in GAMLSS to mode skewnees and and kurtosis. Statistical Modelling, Vol. 6(3), 209-229.

[24] Scholz, F.W. 1965. Comparison of Optimal Location Estimators. PhD Thesis, University of California, Berkeley, 1-33.

[25] Zhang, J.L. and Li, G. 1998. Breakdown properties of location M-estimators. Annals of Statistics, Vol. 26(3), 1170-1189.