The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure

Julia Promisel Cooper,1 Sharon Y. Roth,2 and Robert T. Simpson3

Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 USA

Repression of a-cell specific gene expression in yeast \(\alpha\) cells requires MAT\(\alpha2\) and MCM1, as well as two global repressors, SSN6 and TUP1. Previous studies demonstrated that nucleosomes positioned adjacent to the \(\alpha2/MCM1\) operator in \(\alpha\) cells directly contribute to repression. To investigate the possibility that SSN6 and TUP1 provide a link between MAT\(\alpha2/MCM1\) and neighboring histones, nucleosome locations were examined in ssn6 and tup1 \(\alpha\) cells. In both cases, nucleosome positions downstream of the operator were disrupted, and the severity of the disruption correlated with the degree of derepression. Nevertheless, the observed changes in chromatin structure were not dependent on transcription. Our data strongly indicate that SSN6 and TUP1 directly organize repressive regions of chromatin.

[Key Words: MCM1; \(\alpha2\); chromatin; transcriptional repression; Saccharomyces cerevisiae]

Received March 21, 1994; revised version accepted May 10, 1994.

The nucleosomes that package eukaryotic DNA play integral roles not only as structural elements but also as regulators of gene expression. In many instances, histones have been shown to occupy specific positions with respect to the surrounding DNA sequence, creating what have been called positioned nucleosomes (Grunstein 1990a, b; Wolffe 1990; Simpson 1991). The incorporation of cis-acting regulatory elements into positioned nucleosomes has important implications for the functions of such elements (Simpson 1990); for instance, nucleosomes may prohibit access of transcriptional activating proteins to promoter sequences (Almer and Horz 1986; Almer et al. 1986; Richard-Foy and Hager 1987; Cordin-gley and Hager 1988; Perlmann and Wrangle 1988). Our studies in which nucleosome positioning has been particularly well characterized and associated with transcriptional repression have utilized cell type-specific genes under control of the mating-type system in the yeast Saccharomyces cerevisiae.

Yeast can exist as haploid \(\alpha\) or \(\alpha\) cells, or as \(\alpha/\alpha\) diploid cells. Mating type is determined by three or four proteins that regulate sets of cell type-specific genes (Herskowitz 1989; Dranginis 1986). The haploid \(\alpha\) cell type is specified by two proteins: MAT\(\alpha1\) activates expression of the \(\alpha\) cell-specific genes and MAT\(\alpha2\) represses transcription of the \(\alpha\) cell-specific genes; neither MAT\(\alpha1\) nor MAT\(\alpha2\) is synthesized in \(\alpha\) cells. The MAT\(\alpha2\) repressor contains a region of homology with the Drosophila homeo domain (Laughton and Scott 1984; Hall and Johnson 1987), and like other homeo domain proteins, MAT\(\alpha2\) requires additional proteins to function properly. For example, the binding specificity of MAT\(\alpha2\) is reinforced by its interaction with a non-cell type-specific DNA-binding protein, MCM1; MAT\(\alpha2\) and MCM1 bind cooperatively to a 32-bp operator located \(\sim200\) bp upstream of the translation initiation codon of each of five known \(\alpha\) cell-specific genes (Wilson and Herskowitz 1986; Kronstad et al. 1987; Keleher et al. 1988,1989). Once bound to the \(\alpha2/MCM1\) operator, MAT\(\alpha2\) requires at least two other proteins, SSN6 and TUP1, for efficient repression of transcription. Keleher et al. (1992) demonstrated that in ssn6 strains, the \(\alpha\) cell-specific genes are derepressed, despite the continued binding of MAT\(\alpha2/MCM1\) to the \(\alpha2/MCM1\) operator; furthermore, when brought to a heterologous promoter via fusion to a LexA bacterial DNA-binding domain, SSN6 acts to repress transcription in a TUP1-dependent manner. Neither SSN6 nor TUP1 has any detectable DNA-binding activity; instead the two proteins are thought to be recruited to the \(\alpha\) cell-specific promoter regions by MAT\(\alpha2\) (Keleher et al. 1992). Thus, any model for the mechanism of repression by MAT\(\alpha2\) must incorporate roles for SSN6 and TUP1.
Previous work from our laboratory has led to the notion that nucleosome positioning is involved in the mechanism of transcriptional repression by MATa2 [Roth et al. 1990, 1992; Simpson 1990; Shimizu et al. 1991]. Comparison of the chromatin structures upstream of an a cell-specific gene in a cells and α cells (in which the MATa2 repressor is absent and present, respectively) indicated that binding of MATa2 to its operator leads to the very precise placement of an array of nucleosomes adjacent to the α2/MCM1 operator; this nucleosomal array is absent in a cells [Roth et al. 1990; Shimizu et al. 1991]. The most proximal nucleosome in this array incorporates essential promoter elements for a cell-specific gene expression, the TATA box being located near the nucleosomal pseudodyad, thus suggesting that steric hindrance by the nucleosome might contribute to the MATa2-mediated repression [Shimizu et al. 1991]. Additional strong support for this latter idea stems from the fact that yeast α cells harboring mutations in the aminoterminal tail of histone H4 display partial derepression of a cell-specific transcription. This derepression is accompanied by destabilization of nucleosomes or altered nucleosome locations near the α2/MCM1 operator [Roth et al. 1992]. Finally, the ability of MATα2 to position nucleosomes adjacent to its operator in numerous heterologous contexts suggests that positioning occurs via an active mechanism, rather than as a by-product of the absence of transcription [Simpson 1990, 1993; Roth et al. 1990, Morse et al. 1992].

The current work aims to synthesize the observed requirements for SSN6 and TUP1 with the evidence that nucleosomes are involved in repression by MATα2. Both ssn6 and tup1 mutations have pleiotropic effects, including flocculence and derepression of the glucose-repressible genes in addition to the mating type defects [Carlson et al. 1984; Trumbly 1986; Schultz and Carlson 1987; Mukai et al. 1991]; effects on chromatin structure could provide a unifying mechanism for these diverse phenotypes. Both SSN6 and TUP1 are homologous to proteins associated with other systems. SSN6 contains 10 repeats of the tetratricopeptide [TPR] domain, a putative protein–protein interaction domain that has been found in proteins associated with a number of processes, including mitosis, transcriptional regulation, RNA splicing, protein import, and neurogenesis [Sikorski et al. 1990; Goebel and Yanagida 1991]. The TPR domains are essential for SSN6 function [Schultz et al. 1990]. TUP1 contains six repeats of a 43-amino-acid domain that was first found in the β-subunit of the G-protein, transducin [Fong et al. 1986]; removal of a single G-protein repeat abolishes TUP1 activity [Williams and Trumbly 1990]. SSN6 and TUP1 have been shown to exist in a complex; intriguingly, several of the TPR proteins have been associated functionally with members of the β-subunit G-protein family [Goebel and Yanagida 1991]. Here, we show that deletion of either SSN6 or TUP1 in α cells leads to the disruption of nucleosome positioning adjacent to the α2/MCM1 operator, thus lending support to the model in which local nucleosome positioning or an organized chromatin domain plays a key role in the mechanism of repression by MATα2. We show further that the tup1 mutation affects chromatin structure more severely than does the ssn6 mutation, correlating with the relative severities of the two mutations with regard to their effects on gene expression. Finally, we show that the effects on nucleosome positioning are unlikely to be secondary to the transcriptional state of the underlying DNA.

Results

Previous work has established that the MATα2 repressor precisely positions an array of nucleosomes adjacent to its operator and has suggested that this nucleosome positioning plays an important role in the mechanism of transcriptional repression by MATα2 [Shimizu et al. 1991, Roth et al. 1992]. Because SSN6 and TUP1 are required for full repression of a cell-specific gene expression [Kelcher et al. 1992], we reasoned that these proteins might be involved in MATα2-mediated nucleosome positioning. To explore this possibility, we deleted most of the SSN6- and TUP1-coding sequences individually in yeast α cells and examined the consequences of the gene disruptions for chromatin structure and expression of MATα2-regulated genes.

High-resolution micrococcal nuclease mapping of the promoter region for an a cell-specific gene in ssn6 and tup1 α cells

Figure 1 shows a genomic primer extension map of micrococcal nuclease cleavage sites in the promoter region and coding sequence for STE6, an a cell-specific gene. As observed in previous experiments, the wild-type a-cell chromatin exhibits a characteristic pattern of protection from micrococcal nuclease cleavage relative to the cleavage pattern for naked DNA [Shimizu et al. 1991]. Regions of protection from nuclease cleavage that encompass ~150 bp and indicate translationally positioned nucleosomes are separated by nucleosome hypersensitive sites that correspond to linker regions; an array of such positioned nucleosomes is observed extending into the coding sequence for STE6 [the top of the footprint]. This pattern has led to the assignment of nucleosome positions shown by ellipses at the right of Figure 1 [Shimizu et al. 1991]. In wild-type α cells, which do not express the MATα2 protein, sequences throughout the region are cleaved frequently by micrococcal nuclease, indicating the absence of stable nucleosome positions. In addition, unique nucleosome hypersensitive sites are observed in a-cell chromatin. Note in particular that increased accessibility to micrococcal nuclease is observed for sequences that map to the TATA box in a-cell chromatin; these same sequences are protected from nuclease cleavage in a cells.

In ssn6 and tup1 α cells, nucleosome positioning in the STE6 promoter region is markedly disrupted. Numerous cleavage sites are observed in the region downstream of the α2/MCM1 operator, including sites that incorporate the TATA box for STE6. Furthermore, the array of nu-
Figure 1. Chromatin structure of the \textit{STE6} gene in wild-type cells and \textit{ssn6} and \textit{tup1} mutants. Micrococcal nuclease cleavage sites downstream of the \textit{a2/MCM1} operator at the genomic \textit{STE6} locus were mapped by primer extension. (D; lanes 1,10) indicates the naked (protein stripped) DNA samples that control for the sequence specificity of micrococcal nuclease. The remaining lanes (2-9) represent micrococcal nuclease digestion of chromatin at two nuclease levels for each strain (see Materials and methods), with the cell types specified above. Locations of the \textit{a2/MCM1} operator, consensus TATA box (T), and \textit{STE6}-coding sequence are indicated to the left. Inferred locations of positioned nucleosomes in the wild-type \textit{a} cells are indicated by the ellipses to the right.

In nucleosomes extending into the \textit{STE6}-coding sequence in wild-type \textit{a} cells appears to be absent in the \textit{ssn6} and \textit{tup1} mutants. Interestingly, discrete differences exist between the cleavage patterns of the two mutants. The nuclease hypersensitive sites that are observed in wild-type \textit{a} cells at positions -15 and -24 are present in the \textit{ssn6} mutant but not in the \textit{tup1} mutant, and a hypersensitive site that maps to position -138 in \textit{a}-cell chromatin is observed in the \textit{tup1} \textit{a} cell but not its \textit{ssn6} counterpart. In both instances, the cleavage pattern obtained from \textit{tup1} cells resembles more closely that obtained from \textit{a} cells than does the \textit{ssn6} cleavage pattern, which retains more of the characteristics of the wild-type \textit{a} cell. Thus, the \textit{tup1} deletion appears to have more severe consequences with regard to genomic chromatin structure than the \textit{ssn6} deletion.

\textbf{Alteration of chromatin structure of a plasmid containing the \textit{a2/MCM1} operator in \textit{ssn6} and \textit{tup1} \textit{a} cells}

The MAT\textit{a2} repressor has been shown to position nucleosomes adjacent to its operator not only at its natural chromosomal locations but also in numerous heterologous contexts [Roth et al. 1990; Simpson 1990, 1993; Morse et al. 1992]. An example of this is provided by the TALS minichromosome (Fig. 2), a TRP1/ARS1 derivative containing the \textit{STE6}-derived \textit{a2/MCM1} operator [Roth et al. 1990]. The TATA box normally used in \textit{STE6} transcription is absent from this operator construct. Figure 2 shows an indirect end label map of micrococcal nuclease cleavage sites in TALS chromatin. Minichromosomes isolated from wild-type \textit{a} cells exhibit a ladder of discrete cut sites, most of which are not observed in the naked DNA control. The sites are separated by regions of \textasciitilde{150} bp of protection from nuclease cleavage; this pattern indicates an array of positioned nucleosomes extending around the plasmid [Roth et al. 1990; Fig. 2]. In wild-type \textit{a} cells, this pattern is disrupted in the region adjoining the \textit{a2/MCM1} operator, the hypersensitive

Figure 2. Indirect end-label map of micrococcal nuclease cleavage sites in plasmid chromatin. The TALS plasmid, which contains an \textit{a2/MCM1} operator, was mapped in a clockwise direction from the EcoRV site. (D; lane 1) indicates the naked DNA control for the sequence specificity of micrococcal nuclease. The remaining lanes (2-8) represent micrococcal nuclease digestion of plasmid chromatin at various nuclease levels (see Materials and methods); cell types are indicated above. Inferred locations of positioned nucleosomes in the wild-type \textit{a} cell are indicated by the ellipses to the right.
sites at the α2 operator and between nucleosomes III and IV in α cells are shifted to smaller sizes in the absence of the MATα2 protein, and the nucleosome IV region itself is rendered accessible to micrococcal nuclease cleavage. Thus, stable nucleosome positioning in this region requires the MATα2 protein. In both ssn6 and tup1 mutant α cells, the TALS footprints are less well defined than those obtained from wild-type α cells, possibly signaling some destabilization of plasmid nucleosome positioning in the mutant strains. Disruption of nucleosome positioning adjacent to the α2/MCM1 operator is clear; there is nuclease cutting in the region occupied in wild-type α cells by nucleosome IV, and the hypersensitive sites between nucleosomes III and IV and at the α2 operator are shifted and broadened. The digestion pattern near the operator is nearly identical for the two mutant strains and α cells. Therefore, the SSN6 and TUP1 proteins are required for nucleosome positioning by the MATα2 repressor in the minichromosome context as well as in the genomic context.

Analysis of plasmid topoisomer distributions in the ssn6 and tup1 backgrounds

Earlier studies have established that the TALS minichromosome isolated from α cells contains one less negative supercoil than the α cell-derived plasmid (Roth et al. 1990, 1992). Because each nucleosome imparts one negative supercoil to a plasmid, one possible interpretation of this result is the presence of one more nucleosome on the TALS plasmid in α cells relative to a cells. We therefore performed chloroquine gel analyses of plasmid topoisomer distributions for the ssn6 and tup1 mutant strains, as shown in Figure 3. The positions of the centers of each Gaussian distribution of topoisomer bands [Fig. 3, dots] indicate the linking numbers of the TALS plasmid in the four strains (Morse 1991). The superhelical density of TALS isolated from ssn6 α cells is only slightly reduced (by <1 negative supercoil) from that of the minichromosome obtained from wild-type α cells. In marked contrast, the tup1 background results in the loss of almost two negative supercoils from the TALS plasmid relative to TALS from wild-type α cells. The increased severity of the tup1 deletion relative to the ssn6 deletion with regard to plasmid supercoiling parallels the relative severities of the two mutations with regard to nucleosome positioning in the genomic context.

The extent of the tup1-linking number deficit was unexpected because it exceeds that of TALS derived from α cells. One explanation for such a phenomenon would invoke an effect of the TUP1 protein that is independent of the MATα2 repressor; perhaps TUP1 plays a role both in general nucleosome assembly and in the assembly of the specific chromatin structure that is directed by the MATα2 repressor. However, when topoisomer distributions are compared for the TRP1/ARS1 plasmid, which lacks an α2/MCM1 operator [Roth et al. 1990], no differences in linking number are observed between the various strains; all are within 0.2 linking number (Fig. 3). The effects of SSN6 and TUP1 on superhelical density are therefore specific to α2/MCM1 operator-containing plasmids.

Comparison of the relative effects of ssn6 and tup1 deletions on a cell-specific gene expression

The differences in chromatin structures observed in the ssn6 and tup1 mutants suggest that the two proteins play discrete roles in setting up the MATα2-directed chromatin domain. To determine whether the ssn6 and tup1 mutations also exhibit differential effects on MATα2-regulated gene expression, we performed experiments that examine the expression of MATα2-controlled genes. Yeast α cells produce a-factor, a pheromone that arrests α cells in the G1 phase of the cell cycle; a-factor production requires expression of Mfa1 and Mfa2, both of which are transcriptionally repressed in α cells by MATα2. To assess qualitatively whether Mfa1 and Mfa2 are derepressed in ssn6 and tup1 α cells, we monitored a-factor production by performing a halo assay (Chan and Otte 1982; Fig. 4). In this assay, strains to be tested for a-factor production are streaked onto a lawn of α cells; a zone of growth inhibition (halo) in the α lawn surrounding a tested colony indicates that the colony has secreted a-factor. As expected, wild-type α cells do not produce a-factor and therefore do not elicit a halo in the surrounding lawn of α sst2 cells, whereas wild-type α cells do produce a-factor and consequently do generate a zone of growth inhibition. The ssn6 α and tup1 α strains both generate a-factor halos; therefore, both mutations lead to derepression of...
Cooper et al.

Figure 4. Halo assay for a-factor production. Cells to be tested for a-factor secretion were streaked over lawns of a sst2 cells (see Materials and methods). Cell types are indicated; a zone of growth inhibition (halo) surrounding a colony indicates production of a-factor. The two plates represent identical experiments with two independent sets of isolates.

the a cell-specific genes. However, the extent of derepression differs between the two strains: The tup1 α cells reproducibly elicit larger halos than do the ssn6 α cells.

To quantify differences in the extent of derepression of a cell-specific gene expression between the ssn6 and tup1 strains, we disrupted the two genes in cells containing a lacZ reporter gene fused to the genomic STE6 promoter (kindly provided by R.H. Morse, NIH, Bethesda, MD) and measured β-galactosidase activities in cell extracts (Rose and Botstein 1983; Rose et al. 1990; activities were normalized to the amount of protein assayed because the flocculent phenotypes of the mutants preclude accurate optical density measurements). As shown in Figure 5, expression from STE6 is repressed ~30-fold in α cells relative to a cells. A modest reversal of this repression (~2.5-fold) is observed in ssn6 α cells; in contrast, the tup1 α cells exhibit a 25-fold derepression of STE6–lacZ, with β-galactosidase activity reaching 85% of that observed in a cells. Clearly, the tup1 phenotype is more severe than the ssn6 phenotype not only with regard to effects on chromatin organization but also with regard to derepression of a cell-specific transcription.

Comparison of STE6 chromatin structures in a, α, and tup1 α cells in which STE6 transcription has been nearly eliminated

The foregoing data support the possibility that nucleosome positioning constitutes part of the mechanism of transcriptional repression by MATα2, SSN6, and TUP1. However, the data do not distinguish whether the observed differences in chromatin structure of the STE6 gene are a direct consequence of MATα2/SSN6/TUP1 action or, instead, stem secondarily from differences in transcriptional activity. To address this latter issue, we sought to eliminate transcription in a cells, α cells, and tup1 α cells and determine whether the differences in nucleosome organization between the three strains would be retained. We therefore produced strains harboring a number of point mutations in the STE6 TATA box and other STE6 promoter elements (another potential TATA box and two of the pheromone response elements; Fig. 6). RNase protection assays performed in the a-cell derivatives showed conclusively that STE6 transcription was reduced to 5–7% of the wild-type levels.

Figure 6 shows a genomic primer extension map of micrococcal nuclease cleavage sites in the mutated STE6 promoter regions. The mutant α cell pattern (Fig. 6, lanes 1,2) is virtually identical to that obtained from wild-type α cells (Fig. 1, lanes 2,3), with clearly defined regions of protection from nuclease cleavage of ~150 bp separated by nuclease hypersensitive sites, indicating an array of positioned nucleosomes extending downstream from the α2/MCM1 operator. The pattern obtained from a cells harboring the STE6 promoter mutations (Fig. 6, lanes 5,6) again closely resembles that of the wild-type a cells (Fig. 1, lanes 8,9). Numerous nuclease cleavage sites are ob-
SSN6/TUP1 and repressive chromatin positioning in this region does not occur in cells lacking the MATα2 protein. It is interesting to note the only difference in the cleavage patterns obtained from wild-type α cells and promoter-mutant α cells: The nuclease hypersensitive site that occurs at the TATA box in wild-type α cells is missing in the TATA mutants. As was the case for the wild-type STE6 promoter, the pattern obtained from promoter-mutant tup1 α cells is similar to the α-cell pattern. The protected regions observed in the TUP1 α cells that correspond to positioned nucleosomes are not observed, and the hypersensitive site at the TATA box constitutes the only prominent difference between the wild-type and mutant STE6 promoters in the tup1 background. Thus the tup1 mutation leads to the disruption of nucleosome positioning in α cells in a manner that appears to be independent of STE6 transcription.

Discussion

The maintenance of mating type identity in yeast α cells requires the general transcriptional repressors SSN6 and TUP1 (Keleher et al. 1992). In the current work, we have delineated one of the means whereby SSN6 and TUP1 exert their effects; both proteins appear to play key roles in setting up a repressive chromatin structure. Our results have important implications with regard to the mechanism of repression of a cell-specific genes.

Model for repression of a cell-specific genes by the MATα2 protein

The pronounced effects of SSN6 and TUP1 disruptions on nucleosome positioning by the MATα2 repressor lend strong support to a model that invokes chromatin organization as part of the mechanism of MATα2 action (Roth et al. 1992), as summarized schematically in Figure 7. As described above, previous studies have established that binding of MATα2 leads to an array of positioned nucleosomes adjacent to the α2/MCM1 operator (Roth et al. 1990, 1992; Shimizu et al. 1991). Amino-terminal mutations in histone H4 result in disruption of this nucleosome positioning, to an extent that correlates tightly with the extent of derepression of a cell-specific transcription in the H4 mutants (Roth et al. 1992). Deletion of either SSN6 or TUP1 leads to the loss of nucle-
osome positioning adjacent to an α2/MCM1 operator in α cells, both in the context of the genomic MATα2-regulated STE6 gene and in the context of a plasmid-borne α2/MCM1 operator. Taken together, our data suggest that the SSN6 and TUP1 proteins constitute at least part of a link between the MATα2 repressor and the amino-terminal tail of histone H4. It should be noted that whereas the H4 mutants and the ssn6 strains exhibit similar degrees of chromatin disruption and transcriptional derepression of MATα2-regulated genes, the H4 mutants do not display the clumpy phenotype that appears to be diagnostic of reduced SSN6 expression. Therefore, we view as unlikely the possibility that the effects of histone H4 mutations in the α2 system stem indirectly from effects on transcription of SSN6 and TUP1.

Additional powerful evidence in support of the mediation of nucleosomes in MATα2 transcriptional repression is provided by our data showing that the STE6 chromatin structures found in a, α, and tup1 α cells persist when STE6 transcription is nearly eliminated via point mutations of the STE6 TATA boxes and pheromone response elements (PREs). It should be noted that a small amount of residual STE6 transcription is retained in the promoter–mutant a cells (<7% of the wild-type level). Therefore, we cannot unconditionally rule out the possibility that this low level of transcription is sufficient to confer the virtually complete disruption of chromatin structure that we observe in the STE6 promoter–mutant a cell, although we find this latter scenario to be highly implausible. Transcription levels are lower from the mutant promoter in a and tup1 α cells than from the wild-type promoter in ssn6 α cells, yet the disruption of nucleosome positioning is more severe in a and tup1 α cells than in ssn6 α cells. Furthermore, chromatin structure is disrupted around the α2/MCM1 operator when in a minichromosome, removed from its normal TATA box. Thus, the data strongly suggest that the absence of positioned nucleosomes in the STE6 promoter region in a cells and tup1 α cells is not a consequence of transcriptional activity but, instead, stems directly from the lack of the MATα2 [in a cells] or TUP1 [in tup1 α cells] proteins.

The phenomenon of chromatin effects on transcription must be viewed in terms of hierarchies of protein–protein and protein–DNA interactions, with some chromatin structures being more resistant to transcriptional activation than others and some proteins being more capable than others of overcoming the repressive effects of nucleosomes. Thus, the chromatin domain that is organized by the MATα2 repressor is not dominant over all transcriptional activators. Morse et al. (1992) demonstrated that the cis-acting elements essential for transcription of the RNA polymerase III-transcribed sup4-o tRNA^{Tyr} gene could function when placed downstream of an α2/MCM1 operator. Morse (1993) also showed that GAL4, a transcriptional activator of genes transcribed by RNA polymerase II, is able to disrupt nucleosomes that are positioned by MATα2. In addition, Herschbach and Johnson (1993) found that MATα2 could repress transcription of RNA polymerase I-transcribed genes but not of genes that are transcribed by RNA polymerase III. Although these latter results were interpreted to reflect interactions between MATα2 [and associated proteins] and specific transcriptional subunits shared by RNA polymerases I and II but not III, they are also consistent with numerous examples of changes in chromatin structure associated with activation of polymerase I- and II-transcribed genes (Prior et al. 1983; Conconi et al. 1989; Wolffe 1992). In contrast, highly active tRNA genes appear to be resistant to the formation of most repressive chromatin structures (Morse et al. 1992). The foregoing examples illustrate that some transcriptional activators can overcome the MATα2-generated chromatin domain, whereas others cannot. Likewise, for some systems, a round of DNA replication may be required to reorganize repressive chromatin into an active conformation, whereas other systems may employ proteins that can interact with nucleosomal DNA (Schmid et al. 1992). In the case of the MATα2-repressed genes, transcriptional activation would occur only following mating-type switching (Herskowitz 1989) and therefore would not be likely to occur without an intervening round of DNA replication.

In addition to SSN6 and TUP1, other proteins are likely to be involved in nucleosome positioning by the MATα2 repressor. Candidate proteins include SIN3, SIN4, and RPD3, which are all required for full repression of a cell-specific transcription in α cells (Vidal et al. 1991; Vidal and Gaber 1991; Jiang and Stillman 1992, Chen et al. 1993). The large size (1200 kD) of the SSN6/TUP1 complex determined from immunoblotting experiments (Williams et al. 1991) suggests that other proteins may associate with SSN6 and TUP1. The roles of the above factors in the organization of chromatin are currently under investigation.

Repression of other genes by SSN6 and TUP1

The involvement of nucleosomes in SSN6/TUP1 action may extend to other genes for which the two proteins have been identified as negative regulators, the most prominent examples being the glucose-repressible genes (Carlson et al. 1984; Schultz and Carlson 1987). Recent studies of the glucose-repressed gene SUC2 suggest a situation that is analogous in some ways to the regulation of a cell-specific genes. The DNA-binding protein MIG1 may act to recruit SSN6 and TUP1 to the SUC2 promoter (Nehlin et al. 1991), where both may participate in nucleosome positioning. In a study by Matallana et al. (1992), the investigators interpreted their data to indicate the presence of two positioned nucleosomes in the SUC2 promoter region when cells were grown in media containing glucose [the repressed state], although this interpretation was complicated by a paucity of cut sites for naked DNA in the region occupied by putative nucleosomes. In ssn6 mutants, which are nonrepressible, an open chromatin structure was observed even in the presence of glucose (Matallana et al. 1992). Hirschorn et al. (1992) further showed that specific factors, including...
SNF2/SWI2 and SNF5, are required both for SUC2 transcription and for the exclusion of nucleosomes from the SUC2 promoter. The effects of SNF2/SWI2 and SNF5 on chromatin in the SUC2 promoter region are unaffected by mutation of the SUC2 TATA box and therefore are not secondary to SUC2 transcription (Hirschorn et al. 1992). Thus, SNF2/SWI2 and SNF5 appear to function by overcoming the repression conferred by particular chromatin structures. This idea is supported by the finding that mutations in histone H3 [SIN2] suppress mutations in SNF2/SWI2 [Prelich and Winston 1993].

An interesting activity of the SSN6 protein has been reported recently by McDonnell et al. [1992]. By use of a reconstituted estrogen-responsive transcription system in yeast, those investigators found that SSN6 acts as a repressor of transcription by the TAF1 domain of the estrogen receptor. Although a model in which mutation of SSN6 leads to global alterations in chromatin structure was disfavored by McDonnell et al. [1992], the possibility remains that such mutations lead to changes in the chromatin structures of a subset of genes to which the SSN6 protein is specifically recruited. Thus, if a mammalian counterpart to the SSN6 protein exists, it will be worthwhile to investigate the possibility that such a protein acts in part via regulation of chromatin structure in mammalian cells.

The SSN6 and TUP1 proteins play distinct roles in the a2 system

The tup1 phenotype is more severe with regard to its effects on nucleosome positioning adjacent to the a2/MCM1 operator than the ssn6 phenotype (see Results). Furthermore, the tup1 mutation leads to a 10-fold greater derepression of a MATa2-controlled reporter gene than the ssn6 mutation. The correlation between the differential effects of the two mutations on levels of a-specific gene repression and their relative effects on chromatin structure provides further support for the contention that repression and chromatin structure are closely associated. Moreover, the foregoing results suggest that TUP1 plays a more dominant role than SSN6 in MATa2 repression.

The most dramatic difference between ssn6 and tup1 phenotypes occurs in their relative effects on plasmid topoisomer distribution. The ssn6 disruption leads to only a modest loss of supercoiling relative to the wild-type a cell, suggesting that whereas the ssn6 defect results in disruption of nucleosome positioning, it does not lead to the loss of a nucleosome from the TALS plasmid. In contrast, the tup1 disruption leads to the loss of approximately two negative supercoils from TALS relative to TALS isolated from wild-type a cells; it is possible that this result reflects the loss of approximately two nucleosomes from TALS chromatin in the tup1 strain. The lack of any impact of the tup1 mutation on TRP1/ARS1 supercoiling indicates that the tup1 effect is specific to plasmids that contain an a2/MCM1 operator, that is, the tup1 mutation does not lead to a general disruption of chromatin. We have observed that the TALS topoisomer distribution in tup1 a cells is also reduced [by ≤ 1 negative supercoil] relative to wild-type a cells (J.P. Cooper, unpubl.), suggesting that MATa2 is not required for all of the tup1 effects on plasmid supercoiling. It is therefore conceivable that TUP1 is associated with MCM1 in the plasmid context. The identification of both TUP1 and MCM1 in screens for autonomously replicating sequence (ARS)-specific plasmid maintenance [Thrash-Bingham and Fangman 1989; Passmore et al. 1989] may hint at such an association.

The functions of the TPR domain found in SSN6 and the G-protein domain found in TUP1 have yet to be defined rigorously. Although the SSN6 protein does not appear to cofractionate with putative nuclear scaffold components [Williams et al. 1991], the occurrence of other TPR proteins in this fraction [Goebel and Yanagida 1991] might suggest an association, which could provide a focal point for the regulation of several genes by a macromolecular complex. Further study of SSN6 and TUP1 may yield insights into the relationships between nuclear organization, chromatin assembly, and transcriptional regulation.

Materials and methods

Yeast strains, plasmids, and media

S. cerevisiae strains FY23 [MATa ura3-52 trp1 Δε8 leu2Δ1] and FY24 [MATa ura3-52 trp1Δε8 leu2Δ1] were grown according to standard procedures [Rose et al. 1990] in either rich media (YEPD) or selective media (SDM or SCM supplemented with the appropriate amino acids). 5-FOA plates were prepared as described [Rose et al. 1990]. Plasmids pRS406 [Sikorski and Hieter 1989], TALS [Roth et al. 1990], and TRP1/ARS1 [Thoma et al. 1984] have been described previously. Yeast transformations were performed according to the DMSO-enhanced transformation protocol of Hill et al. [1991].

Disruption of the SSN6 and TUP1 genes

Gene disruptions were effected by γ- or Ω-transformation utilizing the yeast integrating plasmid pRS406 [Sikorski and Hieter 1989]. With these protocols, sequences flanking a region of the genome that is to be deleted are cloned in tandem into a vector containing a selectable marker but no origin for replication in yeast. Following transformation of yeast with the aforementioned vector, recombination between the flanking sequences on the vector and in the genome leads to replacement of the region between the flanking sequences with vector sequences. To disrupt SSN6, DNA fragments corresponding to base pairs 243–432 and 1907–2135 of the SSN6 sequence [with base pair 1 denoting the A residue of the translational start site; Schultz and Carlson 1987] were produced by PCR of yeast genomic DNA and cloned in tandem into the pRS406 polynucleot region, the resultant construct was linearized between the two SSN6 segments and used to transform FY24 cells to uracil prototrophy. Thus, base pairs 432–1907 of SSN6 were replaced with pRS406 sequences. TUP1 was disrupted in a similar fashion, by use of fragments corresponding to base pairs 86–254 and 1753–1964 of the TUP1 sequence [with base pair 1 denoting the A residue of the translational start site, Williams and Trumbly 1991; Zhang et al. 1991], resulting in replacement of base pairs 254–1964 of the TUP1 gene with pRS406 sequences. Both ssn6 and tup1 mutants displayed clumpy phenotypes; in addition,
both disruptions were verified by genomic Southern blotting [Southern 1975].

Mutation of TATA boxes and PREs in the STE6 promoter region

Yeast strains harboring point mutations in the consensus TATA box and one other potential TATA box, as well as two PREs upstream of the genomic STE6 sequence, were produced using a pop-in/pop-out allele replacement strategy [Rothenstein 1991]. A fragment encompassing −679 to +157 of the STE6 sequence (with position 1 denoting the A residue of the translational start site), in which several point mutations were introduced, was produced by PCR techniques using as a template the pUCSTE6 plasmid (McGrath and Varshavsky 1989). The point mutations were the following: −157, T→C; −156, T→G; −140, T→C; −139, T→A; −115, A→G; −114, A→C; −103, T→G; −100, A→C; the point mutations created novel PstI and BclI sites for subsequent verification by Southern blot analysis. The fragment was cloned into the integrating vector pRS406 (Sikorski and Hieter 1989), which contains a URA3 marker. Following linearization of the resulting clone at the KpnI site at +97 of STE6, the clone was used to transform FY23 [MATα] and FY24 [MATα] cells to uracil prototrophy, thereby producing strains in which pRS406 sequences and the mutant promoter were integrated between the wild-type promoter and the coding sequence for STE6. To effect the removal of the wild-type promoter and pRS406 sequences, URA colonies were grown overnight in YPD and then streaked out on 5-FOA plates to select for the loss of the URA3 marker. Both the pop-in and pop-out sequence arrangements were confirmed by genomic Southern blotting.

Verification that the point mutations in the STE6 promoter region lead to reduced STE6 transcription was accomplished by performing RNase protection assays on the FY23 derivatives. RNA was extracted from wild-type and STE6 promoter-mutant FY23 cells using the method of Schmitt et al. (1990). The probe for the STE6 transcript was derived from the 385-bp EcoRI-BamHI fragment of STE6, cloned into the polylinker region of pRS406, cut with EcoRI, and transcribed from the T3 promoter. The control transcript utilized was that of SSN6, the probe for which was derived from the SSN6-disrupting plasmid described in the previous section, cut with AvrII, and transcribed from the T7 promoter. Both probes were produced by in vitro transcription using the Ambion MAXIscript in vitro transcription kit and gel purified. RNase protection assays utilized the Ambion RPAII ribonuclease protection assay kit.

Isolation of nuclei and primer extension analysis of micrococcal nuclease cleavage sites

Yeast nuclei were isolated using the procedure of Szent-Gyorgyi and Isenberg (1983), with the modifications described by Roth et al. (1992). Micrococcal nuclease digestion of nuclei and subsequent purification of the DNA, as well as nuclease digestion of naked DNA samples, were performed as described previously [Roth et al. 1992], with the micrococcal nuclease concentrations of 0.5 to 5.0 U/ml. The locations of micrococcal nuclease cleavage sites were ascertained by primer extension analysis using Taq polymerase and the primer MS-7 [Shimizu et al. 1991], which corresponds to −338 to −304 of the genomic STE6 sequence. Digested DNA (10–100 μg) was combined with 0.3 pmole of 32P-end-labeled primer in Taq buffer (10 mM Tris-Cl at pH 8.3, 50 mM KCl, 3 mM MgCl2, 0.05% NP-40, 0.05% Tween 20, Innis et al. 1988) containing 200 μM dNTPs. 1 unit of Taq polymerase was added, and the samples were subjected to 25 thermal cycles (94°C for 1 min, 55°C for 2 min, 72°C for 2 min). After extension, samples were ethanold precipitated and run on 6% polyacrylamide sequencing gels according to standard procedures [Sambrook et al. 1990].

Isolation of chromatin and analysis of micrococcal nuclease cleavage sites by indirect end labeling

For analysis of plasmid nucleosome positions, chromatin was partially purified by Sepharose chromatography and digested with micrococcal nuclease as described previously [Thoma 1986; Roth et al. 1990], using micrococcal nuclease concentrations of 2–10 U/ml. The DNA was then purified as described previously [Roth et al. 1990], digested with the restriction endonuclease EcoRV, electrophoresed on 1.2% agarose gels, transferred to nylon (Duralon) membranes, and hybridized to labeled probes by use of the method of Church and Gilbert (1984). The probe used in the current study was the EcoRV–HindIII fragment of TALS [Roth et al. 1990], labeled with [α-32P]dCTP with the Boehringer Mannheim random prime labeling kit.

Analysis of plasmid topoisomerase distributions

For analysis of supercoil density, yeast DNA was rapidly isolated from whole cells by use of the glass bead procedure of Hoffman and Winston (1987). DNA samples were then run on 1.5% agarose gels containing 40 μg/ml of chloroquine diphosphate for 17–20 hr at ~3 V/cm, transferred to nylon (Duralon) membranes, and hybridized to labeled probes using the Church and Gilbert (1984) method. The probes employed were linearized derivatives of the TALS or TRP1/ARS1 plasmids, labeled with [α-32P]dCTP with the Boehringer Mannheim random prime labeling kit.

Assay for production of α-factor

To assay for the generation of α-factor halos, 10-ml cultures of α*Δst2* cells [Chan and Otte 1982] were grown overnight. Aliquots (100 μl) were then diluted 50- to 100-fold, spread on YPD plates, and allowed to dry. Strains of interest were spotted over the α*Δst2* lawns, and the plates were incubated at 30°C for 36–48 hr.

Assay for β-galactosidase activity

β-Galactosidase assays were performed on crude extracts by use of the method of Rose and Botstein [1983; Rose et al. 1990]. Activities were normalized to the amount of protein in the extracts, as determined by the dye-binding assay of Bradford (1976).

Acknowledgments

We are indebted to Randy Morse for numerous productive discussions and for generous advice on the technical aspects of this work. We thank Mike Kladde, Mike Murphy, Hugh-George Patterson, and Chris Szent-Gyorgyi for helpful and stimulating discussions throughout the course of this study.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Almer, A. and W. Horz. 1986. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene bound-
areas of the PHO5/PHO3 locus in yeast. EMBO J. 5: 2681–2687.
Almet, A., H. Rudolph, A. Hinnen, and W. Horz. 1986. Removal of
positioned nucleosomes from the yeast PHO5 promoter upon
PHO5 induction releases additional upstream activating
DNA elements. EMBO J. 5: 2689–2696.
Bradford 1976. A dye binding assay for protein. Anal. Biochem.
72: 248–254.
Carlson, M., B.C. Osborn, L. Neigeborn, and D. Botstein. 1984.
A suppressor of SNF1 mutations causes constitutive high-
level invertase synthesis in yeast. Genetics 107: 19–32.
Chan, R.K. and C.A. Otte. 1982. Isolation and genetic analysis
of Saccharomyces cerevisiae mutants supersensitive to G1
arrest by a factor and α factor pheromones. Mol. Cell. Biol.
2: 11–20.
Chen, S., R.W. West, S.L. Johnson, H. Gans, B. Krueger, and J.
Ma. 1993. TSF3, a global regulatory protein that silences
transcription of yeast GAL genes also mediates repression by
α2 repressor and is identical to SIN4. Mol. Cell. Biol. 11:
6306–6316.
Church, G.M. and W. Gilbert. 1984. Genomic sequencing. Proc.
Natl. Acad. Sci. 81: 1991–1995.
Condoni, A., R.M. Widmer, T. Koller, and J. Sogo. 1989. Two
different chromatin structures coexist in ribosomal RNA
genes throughout the cell cycle. Cell 57: 752–761.
Cordingley, M.G. and G.L. Hager. 1988. Binding of multiple
factors to the MMTV promoter in crude and fractionated
nuclear extracts. Nucleic Acids Res. 16: 609–628.
Dranginis, A.M. 1986. Regulation of cell type in yeast by the
mating type locus. Trends Biochem. Sci. 11: 328–331.
Fong, H.K.W., J.B. Hurley, R.S. Hopokins, R. Mika-Lye, M.S.
Johnson, R.F. Doolittle, and MT Simon. 1986. Repetitive
segmental structure of the transducin beta subunit: Homol-
ogy with the CDC4 gene and identification of related mR-
NAs. Proc. Natl. Acad. Sci. 83: 2162–2166.
Goebl, M. and M. Yanagida. 1991. The TPR snap helix: A novel
protein repeat from mitosison to transcription. Trends Bio-
chem. Sci. 16: 173–177.
Grunstein, M. 1990a. Histone function in transcription. Annu.
Rev. Cell Biol. 6: 643–678.
———. 1990b. Nucleosomes: Regulators of transcription. Trends
Genet. 6: 395–400.
Hall, M.N. and A.D. Johnson. 1987. Homeodomain of yeast re-
pressor α2 is a DNA binding domain but is not sufficient for
repression. Science 237: 1007–1012.
Herschbach, B.M. and A.D. Johnson. 1993. The yeast α2 protein
can repress transcription by RNA polymerases I and II but
not III. Mol. Cell. Biol. 13: 4029–4038.
Herskovitz, I. 1989. A regulatory hierarchy for cell specializa-
tion in yeast. Nature 342: 749–757.
Hill, J., I.G. Donald, and D.E. Griffiths. 1991. DMSO-enhanced
whole cell yeast transcription. Nucleic Acids Res. 19:
5791.
Hirschhorn, J.N., S.A. Brown, C.D. Clark, and D. Botstein. 1984.
Evidence that SNF2/SWI2 and SNF5 activate transcription
in yeast. EMBO J. 3: 267–272.
Innis, M.A., K.B. Myambo, D.H. Gelland, and M.A. Brow. 1988.
DNA sequencing with Thermus aquaticus DNA polymerase
and direct sequencing of polymerase chain reaction-ampli-
fied DNA. Proc. Natl. Acad. Sci. 85: 9436–9440.
Jiang, Y.W. and D.J. Stillman. 1992. Involvement of the SIN4
global transcriptional regulator in the chromatin structure of
Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 4503–4514.
Keleher, C.A., C. Goutte, and A.D. Johnson. 1988. The yeast cell
type specific repressor α2 acts cooperatively with a non-cell
type specific protein. Cell 53: 927–936.
Keleher, C.A., S. Passmore, and A.D. Johnson. 1989. Yeast re-
pressor α2 binds to its operator cooperatively with yeast pro-
tein MCM1. Mol. Cell. Biol. 9: 5228–5230.
Keleher, C.A., M.J. Redd, J. Schulz, M. Carlson, and A.D.
Johnson. 1992. Ssn6-Tup1 is a general repressor of tran-
scription in yeast. Cell 68: 709–719.
Kronstad, J.W., J.A. Holly, and V.L. MacKay. 1987. A yeast op-
erator overlaps an upstream activation site. Cell 50: 369–377.
Laughton, A. and M.P. Scott. 1984. The sequence of a Drosophila
segmentation gene: Protein structure homology with DNA binding proteins. Nature 310: 25–30.
Matallana, E., L. Franco, and J.E. Perez-Ottin. 1992. Chromatin
structure of the yeast SU2 promoter in regulatory mutants.
Mol. Gen. Genet. 231: 395–400.
McDonnell, D.P., E. Vegeoto, and B.W. O’Malley. 1992. Identifi-
cation of a negative regulatory function for steroid receptors.
Proc. Natl. Acad. Sci. 89: 10563–10567.
McGrath, J.P. and A. Weinberg. 1989. The yeast STE6 gene
encodes a homologue of the mammalian multidrug resis-
tance P-glycoprotein. Nature 340: 400–404.
Morse, R.H. 1991. Topoisomter heterogeneity of plasmid chro-
matin in living cells. J. Mol. Biol. 222: 133–137.
———. 1993. Nucleosome disruption by transcription factor
binding in yeast. Science 262: 1563–1566.
Morse, R.H., S.Y. Roth, and R.T. Simpson. 1992. A transcription-
ally active tRNA gene interferes with nucleosome position-
ing in vivo. Mol. Cell. Biol. 12: 4015–4025.
Mukai, Y., S. Harashima, and Y. Oshima. 1991. AAR1/TUP1
protein, with a structure similar to that of the β subunit of G
proteins, is required for α1–α2 and α2 repression in cell type
control of Saccharomyces cerevisiae. Mol. Cell. Biol. 11:
3773–3779.
Nehlin, J.O., M. Carlberg, and H. Ronne. 1991. Control of yeast
GAL genes by MIG1 repressor: A transcriptional cascade in
the glucose response. EMBO J. 10: 3373–3377.
Passmore, S., R. Eibele, and B.K. Tye. 1989. A protein involved
in mchromosome maintenance in yeast binds a transcription-
ally enhancer conserved in eukaryotes. Genes & Dev. 3:
921–935.
Perlmann, T. and O. Wranga. 1988. Specific glucocorticoid re-
ceptor binding to DNA reconstituted in a nucleosome. EMBO J.
7: 3073–3079.
Prelitch, G. and F. Winston. 1993. Mutations that suppress the
deletion of an upstream activating sequence in yeast: In-
volved of a protein kinase and histone H3 in repressing
transcription in vivo. Genetics 135: 665–676.
Prior, C.P., C.R. Cantor, E.M. Johnson, V.C. Littau, and V.G.
Allfrey. 1983. H3 accessibility in transcriptionally active and
inactive states of rDNA chromatin. Cell 34: 1033–1042.
Richard-Foy, H. and G.L. Hager. 1987. Sequence-specific posi-
tioning of nucleosomes over the steroid-inducible MMTV
promoter. EMBO J. 6: 2321–2328.
Rose, M.D. and D. Botstein. 1983. Construction and use of gene
fusions lacZ [β-galactosidase] which are expressed in yeast.
Methods Enzymol. 101: 167–180.
Rose, M.D., F. Winston, and P. Hieter. 1990. Methods in yeast
genetics: A laboratory course manual. Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, New York.
Roth, S.Y., A. Dean, and R.T. Simpson. 1990. Yeast α2 repressor
positions nucleosomes in TRP1/ARS1 chromatin. Mol. Cell.
Biol. 10: 2247–2260.
Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: Integrative DNA transformation in yeast. Methods Enzymol. 194: 281–301.

Roth, S.Y., M. Shimizu, L. Johnson, M. Grunstein, and R.T. Simpson. 1991. Stable nucleosome positioning and complete repression by the yeast α2 repressor are disrupted by amino-terminal mutations in histone H4. Genes & Dev. 6: 411–425.

Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: Integrative DNA transformation in yeast. Methods Enzymol. 194: 281–301.

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

Schmid, A., K.-D. Fascher, and W. Horz. 1992. Nucleosome disruption at the yeast PHO5 promoter upon PHO5 induction occurs in the absence of DNA replication. Cell 71: 853–864.

Schmitt, M.E., T.A. Brown, and B.L. Trumpower. 1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18: 3091–3092.

Schultz, J. and M. Carlson. 1987. Molecular analysis of SSN6, a gene functionally related to the SNF1 protein kinase of Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 3637–3645.

Schultz, J., L. Marshall-Carlson, and M. Carlson. 1990. The N-terminal TPR region is the functional domain of SSN6, a nuclear phosphoprotein of Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 4744–4756.

Shimizu, M., S.Y. Roth, C. Szent-Gyorgyi, and R.T. Simpson. 1991. Nucleosomes are positioned with base pair precision adjacent to the α2 operator in Saccharomyces cerevisiae. EMBO J. 10: 3033–3041.

Sikorski, R.S. and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.

Sikorski, R.S., M.S. Boguski, M. Goebl, and P. Hieter. 1990. A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60: 307–317.

Simpson, R.T. 1990. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature 343: 387–389.

Simpson, R.T. 1991. Nucleosome positioning: Occurrence, mechanisms, and functional consequences. Prog. Nucleic Acids Res. Mol. Biol. 40: 143–184.

Simpson, R.T., S.Y. Roth, R.H. Morse, H.-G. Patterton, J.P. Cooper, M. Murphy, M.P. Kladde, and M. Shimizu. 1993. Nucleosome positioning and transcription. Cold Spring Harbor Symp. Quant. Biol. [in press].

Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503–517.

Szent-Gyorgyi, C. and I. Isenberg. 1983. The organization of oligonucleosomes in yeast. Nucleic Acids Res. 11: 3717–3736.

Thoma, F. 1986. Protein-DNA interactions and nuclease sensitive regions determine nucleosome positions on yeast plasmid chromatin. J. Mol. Biol. 190: 177–190.

Thoma, F., L.W. Bergman, and R.T. Simpson. 1984. Nuclease digestion of circular TRP1/ARS1 chromatin reveals positioned nucleosomes separated by nuclease sensitive regions. J. Mol. Biol. 177: 715–733.

Thrash-Bingham, C. and W.L. Fangman. 1989. A yeast mutation that stabilizes a plasmid bearing a mutated ARS1 element. Mol. Cell. Biol. 9: 809–816.

Trumbly, R.J. 1986. Isolation of Saccharomyces cerevisiae mutants constitutive for invertase synthesis. J. Bacteriol. 166: 1123–1127.

Vidal, M. and R.F. Gaber. 1991. RPD3 encodes a second factor required to achieve maximum positive and negative tran-
The global transcriptional regulators, SSN6 and TUP1, play distinct roles in the establishment of a repressive chromatin structure.

J P Cooper, S Y Roth and R T Simpson

Genes Dev. 1994, 8:
Access the most recent version at doi:10.1101/gad.8.12.1400

References

This article cites 66 articles, 27 of which can be accessed free at: http://genesdev.cshlp.org/content/8/12/1400.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.