Introduction

Black grain eumycetoma represents the most common fungal mycetoma worldwide. This chronic, erosive infection of subcutaneous tissues particularly affects the lower extremities and leads to severe disability [1]. The disease is considered a major health problem in tropical areas and is prevalent among people of low socio-economic status [2].

Mycetoma presents as a subcutaneous mass with multiple sinuses that discharge pus, serous fluid and grains, i.e. the characteristic compact grains of the causative agent formed inside the lesion [3].

A wide range of microorganisms has been reported to cause mycetoma. For treatment, not only differentiation between (fungal) eumycetoma and (bacterial) actinomycetoma is important, but also the identity of the causative agent, since species differ in their response to antimicrobial drugs [4]. In endemic countries, clinical diagnosis may be the only diagnostic method. A fully developed mycetoma lesion is easily identified clinically, whereas in early stages with the absence of grains, the infection may be confused with phaeomycosis or soft tissue tumors [1]. In such cases fine needle aspiration cytology or deep surgical biopsy for histological examination are useful [1,5]. Some fungal and bacterial grains have a characteristic histological appearance which helps in provisional identification, but recognition of the causative species remains impossible [6]. Isolation of the pathogen from discharged grains or from biopsies allows identification of agents that sporulate, but most of the species lack phenotypic characteristics [3]. Molecular techniques have been introduced to facilitate the identification of nondescript organisms [7,8,9], but are of high cost and time-consuming. Thus, there is a need for a fast, simple and reliable method for identification.

Rolling circle amplification (RCA) is a powerful diagnostic method based on detection of specific nucleic-acid sequences and enzymatic amplification of circularized oligonucleotide probes under isothermal conditions [10]. The probes are linear oligonucleotides that contain two target-complementary sequences at their ends joined by linkers [11]. The ends of the probe hybridize to the complimentary target in juxtaposition and then ligate which results in series of repeats of the original circular template [10]. In addition, with the isothermal RCA assay, 62 isolates were successfully identified with 100% specificity and no cross reactivity or false results. The main advantage of this technique is the low-cost, high specificity, and simplicity. In addition, it is highly reproducible and can be performed within a single day.
mycetoma species *Scedosporium boydii* [18]. The aim of the present study is to develop RCA-based diagnostics for the most common agents of black-grain eumycetoma.

Materials and Methods

Strains analyzed

The study included 62 isolates belonging to eight species causing black grain mycetoma: *Madurella mycetomatis* (n = 32), *M. fahalii* (n = 1), *M. pseudomyxomycetotis* (n = 3), *M. tropicana* (n = 2), *Trematosphaeria grisea* (n = 10), *Faciosporum senegalensis* (n = 6), *F. tomkinsii* (n = 2), and *Medicopsis romeroi* (n = 6). Strains were obtained from the reference collections of CBS-KNAW Fungal Biodiversity Centre (Utrecht, The Netherlands) and the Mycetoma Research Centre (MRC, Khartoum, Sudan) and are listed with metadata in Table 1. Type strains of all tested species (*M. mycetomatis* (n = 1), *M. tropicana* (CBS 129176) DNA, 0.1 mM each dNTP, 0.6 U Taq polymerase (GC Biotech, 25 mM MgCl₂, 0.1% gelatin, 1% Triton X-100). PCR reactions were detected by electrophoresis using 1% agarose gels. The specificity of the 8 RCA probes was tested using strains of different fungal orders [19,20].

DNA extraction and target amplification

DNA was extracted using cetyltrimethylammonium bromide (CTAB) method as described by Möller et al. [21]. Amplification of the ITS region was performed using primers V9G and LS266 [22] in a 25 μL reaction mixture containing: 10 ng of template DNA, 0.1 mM each dNTP, 0.6 U Taq polymerase (GG Biotech, Alphen aan den Rijn, The Netherlands), 1 μL of each primer (10 pmol) and 2.5 μL reaction buffer (0.1 mM Tris-HCl, 0.5 M KCl, 25 mM MgCl₂, 0.1% gelatin, 1% Triton X-100). PCR reactions consisted of a 5 min pre-denaturation step at 95°C, followed by 30 cycles of 95°C for 30 s, 52°C for 30 s and 72°C for 1 min, with final post elongation step at 72°C for 7 min. PCR products were detected by electrophoresis using 1% agarose gels.

Padlock probe design

Sequences of the ITS region were used to design 8 probes specific for each species used in this study. Two alignments were generated since the analyzed species were known to belong to two different fungal orders [19,20]. ITS derived from *Madurella (Sordariales)* were aligned with 200 isolates of *Chaetomiaceae* including *Chaetomium, Thielavia,* and *Achatomum*. For the remaining species (*Pleosporales*) an alignment was constructed to include representative isolates of the family *Trematosphaeriaceae* and of coelomycetes in the suborder *Pleosporineae*. Sequences were aligned using BioNumerics v4.61 (Applied Maths, Sint-Martens-Latem, Belgium). Probes were designed with minimum secondary structure and were checked using PrimerSelect (DNASTAR Lasergene, WI, U.S.A.). To insure specificity of the probes, target-specific sites of each padlock probe was submitted to BLAST in NCBI sequence database for homologous sequences.

Exonucleolysis

Prior to RCA amplification reaction and in order to reduce the ligation-independent amplification, ligation products were treated by addition of 10 U exonucleases I and 10 U exonucleases III (New England Biolabs, Hitchin, U.K.) with a total reaction volume of 10 μL. Ligation conditions were: 5 min denaturation at 94°C, followed by 7 cycles of 94°C for 30 sec, 63°C for 4 min, and final cooling at 10°C.

Rolling circle amplification (RCA)

RCA amplification reaction was performed in a 50 μL mixture containing: 2 μL ligation product, 0 U E. coli DNA polymerase (New England Biolabs), 10 pmol of each RCA primer (Table 2), and 400 μM dNTP mix. The mixture was incubated at 65°C for 60 min and cooled at 10°C. Electrophoresis on a 1% agarose gel was used to visualize RCA products. A positive reaction is indicated by the presence of ladder-like pattern. The result was also visualized by adding 1.0 μL of a 10-fold diluted SYBR Green I (Cambrex BioScience, Workingham, U.K.) to 10 μL of the amplification product. Accumulated double stranded DNA was detected with UV transilluminator (Vilber Lourmat, Marne-la-Vallée, France).

Determination of analytical specificity and sensitivity

The specificity of the 8 RCA probes was tested using strains of black-grain mycetoma causative species listed in table 1. Analytical sensitivity was determined using 10-fold serial dilution of *M. mycetomatis* (CBS 109801) and *M. fahalii* (CBS 129176) DNA and the test was performed as mentioned above. In addition, RCA was performed directly using DNA samples without amplification of the target gene. To evaluate the detection limit from direct DNA samples two-fold serial dilutions of target DNA were tested. The sensitivity of the RCA probes was also determined by 10-fold serial dilution of MYC and MFAH probes tested with amplified ITS of *M. mycetomatis* and *M. fahalii* respectively.

Results

RCA was used to identify 62 strains belonging to eight species causing human eumycetoma. Since black grain eumycetoma species are known to be phylogenetically distant, it is easy to find unique sites for their identification. The ribosomal ITS region was sufficient for identification of all species and showed no intraspecific variability within a set of 100 *M. mycetomatis* strains in our collection. For *M. mycetomatis, M. tropicana, M. pseudomyxomycetotis,* and *F. senegalensis* the ITS1 region was...
No.	Source	Origin
1.	Falciformispora senegalensis CBS 196.79	Mycetoma Senegal
2.	Falciformispora senegalensis CBS 197.79	Human Senegal
3.	Falciformispora senegalensis CBS 198.79	Mycetoma Senegal
4.	Falciformispora senegalensis CBS 199.79	Human Senegal
5.	Falciformispora senegalensis CBS 132257	Mycetoma Sudan
6.	Falciformispora senegalensis CBS 132272	Mycetoma Sudan
7.	Falciformispora tompkinsii CBS 200.79	Mycetoma Senegal
8.	Falciformispora tompkinsii CBS 201.79	Mycetoma Senegal
9.	Medicopsis romeroi CBS 252.60	Mycetoma Venezuela
10.	Medicopsis romeroi CBS 132878	Mycetoma India
11.	Medicopsis romeroi CBS 122784	Plant
12.	Medicopsis romeroi CBS 123975	Phaeohyphomycosis India
13.	Medicopsis romeroi CBS 128765	Subcutaneous cyst Kuwait
14.	Medicopsis romeroi CBS 135987	onychomycosis Netherlands
15.	Trematosphaeria grisea CWZ 29591	
16.	Trematosphaeria grisea CBS 332.50	Mycetoma Chili
17.	Trematosphaeria grisea CBS 246.66	Submandibular abscess India
18.	Trematosphaeria grisea CBS 120271	Tap water The Netherlands
19.	Trematosphaeria grisea CBS 135982	Pastry gel The Netherlands
20.	Trematosphaeria grisea CBS 135984	Water The Netherlands
21.	Trematosphaeria grisea CBS 136543	Water The Netherlands
22.	Trematosphaeria grisea CBS 135985	Water The Netherlands
23.	Trematosphaeria grisea CBS 135986	Water The Netherlands
24.	Madurella mycetomatis CBS 132258 (Mm10)	Mycetoma Sudan
25.	Madurella mycetomatis CBS 132259 (Mm13)	Mycetoma Sudan
26.	Madurella mycetomatis CBS 132260 (Mm14)	Mycetoma Sudan
27.	Madurella mycetomatis CBS 132261 (Mm16)	Mycetoma Sudan
28.	Madurella mycetomatis CBS 132262 (Mm18)	Mycetoma Sudan
29.	Madurella mycetomatis CBS 132263 (Mm22)	Mycetoma Sudan
30.	Madurella mycetomatis CBS 132265 (Mm28)	Mycetoma Sudan
31.	Madurella mycetomatis CBS 132266 (Mm29)	Mycetoma Sudan
32.	Madurella mycetomatis CBS 132267 (Mm30)	Mycetoma Sudan
33.	Madurella mycetomatis CBS 132269 (Mm33)	Mycetoma Sudan
34.	Madurella mycetomatis CBS 132270 (Mm36)	Mycetoma Sudan
35.	Madurella mycetomatis CBS 132273 (Mm44)	Mycetoma Sudan
36.	Madurella mycetomatis CBS 132274 (Mm45)	Mycetoma Sudan
37.	Madurella mycetomatis CBS 132285 (Mm46)	Mycetoma Sudan
38.	Madurella mycetomatis CBS 132276 (Mm49)	Mycetoma Sudan
39.	Madurella mycetomatis CBS 132277 (Mm51)	Mycetoma Sudan
40.	Madurella mycetomatis CBS 132284 (Mm54)	Mycetoma Sudan
41.	Madurella mycetomatis CBS 131320 (Mm55)	Mycetoma Sudan
42.	Madurella mycetomatis CBS 132280 (Mm58)	Mycetoma Sudan
43.	Madurella mycetomatis CBS 132281 (Mm63)	Mycetoma Sudan
44.	Madurella mycetomatis CBS 132282 (Mm64)	Mycetoma Sudan
45.	Madurella mycetomatis CBS 132283 (Mm68)	Mycetoma Sudan
46.	Madurella mycetomatis CBS 132284 (Mm71)	Mycetoma Sudan
47.	Madurella mycetomatis CBS 132285 (Mm72)	Mycetoma Sudan
48.	Madurella mycetomatis CBS 132286 (Mm73)	Mycetoma Sudan
49.	Madurella mycetomatis CBS 132287 (Mm78)	Mycetoma Sudan
50.	Madurella mycetomatis CBS 132288 (Mm83)	Mycetoma Sudan
selected for probe design, while for \textit{M. fahalii}, \textit{T. grisea}, \textit{F. tompkinsii} and \textit{M. romeroi} the ITS 2 region was found to be more suitable.

RCA results for the tested strains were easily visualized in 1% agarose gel. Positive reactions demonstrated ladder like patterns while negative reactions resulted in a clear background (Fig. 1). With SYBR green, positive results showed green fluorescence when exposed to UV light, while negatives did not. When exonucleolysis was performed some inhibition was observed with low RCA positive signals on gel or with fluorescence. Faint non-specific bands were observed when this step was omitted. RCA reactions were performed successfully without digestion with exonucleases, as the non-specific bands did not interfere with RCA results. All \textit{M. mycetomatis} strains were correctly identified with RCA, irrespective of their geographical origin (Sudan, India, Mali) (Fig. 2). For the other agents, each individual species-specific probes yielded positive results with their corresponding species and with 100% agreement with ITS sequencing (Fig. 2, Table 3). No cross reactivity or false positive and negative results were observed.

The sensitivity of RCA when using amplified product of the target gene was less than 32×10^{-3} ng of DNA. A higher concentration of 100 ng is needed when the test is carried out directly from the DNA samples without amplification of the ITS. The probes were very sensitive and a concentration of 6.6×10^{-5} ng was successfully ligated and then amplified with RCA.

The turnaround time required for conducting the entire experiment including PCR amplification of target DNA, RCA

| Table 1. Cont. |

Name	No.	Source	Origin
\textit{Madurella mycetomatis}	CBS 109801	Mycetoma	Sudan
\textit{Madurella mycetomatis}	CBS 110087	Mycetoma	Sudan
\textit{Madurella mycetomatis}	CBS 110359	Mycetoma	Mali
\textit{Madurella mycetomatis}	CBS 110356	Mycetoma	Mali
\textit{Madurella mycetomatis}	CBS 132419	Mycetoma	India
\textit{Madurella mycetomatis}	CBS 132589	Mycetoma	India
\textit{Madurella tropicana}	CBS 201.38	Mycetoma	Indonesia
\textit{Madurella tropicana}	CBS 331.50	Mycetoma	New Mexico
\textit{Madurella pseudomyctomatis}	CBS 129177	Mycetoma	China
\textit{Madurella pseudomyctomatis}	CBS 216.29	Mycetoma	New Mexico
\textit{Madurella pseudomyctomatis}	CBS 248.48	Mycetoma	New Mexico
\textit{Madurella fahalii}	CBS129176	Mycetoma	Sudan

(CBS Centraalbureau voor Schimmelcultures; Between brakets Erasmus collection number for strains from Sudan; Type strains marked with T)

doi:10.1371/journal.pntd.0003368.t001

| Table 2. Oligonucleotide padlock probes and probe-specific primers used for species identification with RCA. |

Species name	Probe and primer name	Sequences
\textit{M. tropicana}	MTROP	5’pGAGACAAACAGGGTGTTGATAgatcaTGCTTCTCGTGCCCAATAcgcgggtcgcgtgtagtacCGCGCAGACACGATAgcttaAGAAGGGCCTAC3’
\textit{M. pseudomyctomatis}	MPSREU	5’pGAGACAAACAGGGTGTTGATAgatcaTGCTTCTCGTGCCCAATAcgcgggtcgcgtgtagtacCGCGCAGACACGATAgcttaAGAAGGGCCTAC3’
\textit{M. fahalii}	MFAH	5’pTGATACACTACGCTCGAGTGAAGGatcaTGCTTCTCGTGCCCAATAcgcgggtcgcgtgtagtacCGCGCAGACACGATAgcttaAGAAGGGCCTAC3’
\textit{T. grisea}	TGRIS	5’pACCCCTAGAGTCTCCCAAAAAGGCGatcaTGCTTCTCGTGCCCAATAcgcgggtcgcgtgtagtacCGCGCAGACACGATAgcttaAGAAGGGCCTAC3’
\textit{F. senegalensis}	FSEN	5’pATACAAGACAGGTTTGCCCGGatcaTGCTTCTCGTGCCCAATAcgcgggtcgcgtgtagtacCGCGCAGACACGATAgcttaAGAAGGGCCTAC3’
\textit{F. tompkinsii}	FTOM	5’pCTCTCACAAGTGCCCAAAAGGCGatcaTGCTTCTCGTGCCCAATAcgcgggtcgcgtgtagtacCGCGCAGACACGATAgcttaAGAAGGGCCTAC3’
\textit{M. romeroi}	MRO	5’pAGGCGAGGCTCCAGACACTCGTAGGatcaTGCTTCTCGTGCCCAATAcgcgggtcgcgtgtagtacCGCGCAGACACGATAgcttaAGAAGGGCCTAC3’
\textit{M. mycetomatis}	MYC	5’pACTACACTACGGGGAGGGGCGatcaTGCTTCTCGTGCCCAATAcgcgggtcgcgtgtagtacCGCGCAGACACGATAgcttaAGAAGGGCCTAC3’
RCA1	5’-ATGGGCAACAGAGCA3’	
RCA2	5’-CCGGCAGACACGCTA3’	

5’p- indicate phosphorylation of 5’ end, probes binding arms are underlined, the arms joined with non specific region lower case and RCA1 and RCA2 primer binding regions are bolded.

doi:10.1371/journal.pntd.0003368.t002

RCA for Identification of Mycetoma Agents

PLOS Neglected Tropical Diseases | www.plosntds.org 4 December 2014 | Volume 8 | Issue 12 | e3368
processing and analysis was found to be 6 hours. DNA sequencing of the ITS region took more than 8 hours to be performed (Fig. 3).

Discussion

Mycetoma is a unique tropical disease, endemic in many tropical and subtropical regions that has been recently added to the WHO list of neglected tropical diseases [24]. It is mainly prevalent in what is known as “mycetoma belt” which includes Mexico, Senegal, Sudan, India and other countries between tropic of cancer [1]. In 2014, a mycetoma consortium of scientists and physicians published research gaps on mycetoma which need to be addressed in the coming years [2]. One of the research priorities identified was the need to develop a reliable and cost-effective method for species identification to improve diagnosis [2].

Mycetoma agents have been extensively studied in recent years [8,9,20]. The large phylogenetic distance between a number of these agents provides the possibility to use a moderately variable marker like rDNA ITS for species identity. Ahmed et al. [25] developed PCR-restriction fragment length polymorphism (RFLP) for identification of M. mycetomatis targeting the ITS region. However, with the description of the molecular siblings M. fahalii, M. pseudomycetomatis, and M. tropicana [26] the method might be insufficiently accurate. Moreover, there is a need for identification these siblings species; Madurella grisea appeared to be distantly related and was re-named as T. grisea [20].

In the present study we developed a simple, fast and highly specific molecular method for the identification of agents of black grain mycetoma. In this method, the ITS region is easily amplified using one set of primers, which simplifies the use. In a second, isothermal amplification reaction padlock probes are used to identify the species by RCA. The only equipment necessary is a thermocycler for the PCR reaction and a water bath or heating block for the RCA reaction. This relative simplicity enhances possible use in routine laboratories in endemic areas. Due to its

Figure 1. Specificity of rolling circle amplification probes. Agarose gel electrophoresis analysis of rolling circle amplification products. Positives probe signal seen as band pattern was only present with matched template–probe mixtures. Probe names are indicated on the top of the gel. Lanes; 1 M. mycetomatis CBS 109801, 2 M. tropicana CBS 201.38, 3 M. pseudomycetomatis CBS 129177, 4 M. fahalii CBS 129176, 5 T. grisea CBS 332.50, 6 F. senegalensis CBS 196.79, 7 F. tompkinsii CBS 200.70, 8 M. romeroi CBS 252.60, M DNA ladder.

doi:10.1371/journal.pntd.0003368.g001

Figure 2. Madurella mycetomatis identification by RCA. Gel representation of rolling circle amplification reaction using Madurella mycetomatis probe (MYC) for strains recovered from mycetoma patient of origin: lane 1–18 Sudan; lane 19, 20 Mali; lane 21, 22 India; lane 23 negative control water; lane M ladder.

doi:10.1371/journal.pntd.0003368.g002
robustness, high potential, and reproducibility, RCA is increasingly used as a diagnostic tool in pathogenic fungi, e.g., agents of chromoblastomycosis, dermatophytes, *Aspergillus*, *Candida*, and *Talaromyces marneffei* [16,23,27,28]. The method does not require DNA sequencing and is therefore considered as a rapid and cost-effective. Applications are being expanded to nano- and biotechnology [29].

In the present study eight species-specific probes were designed and used for identification of 62 isolates. For the RCA reaction species probe hybridization to the 3′ and 5′ ends of target DNA and joining of adjacent ends by DNA ligase when both show perfect complementarity. The ligation appears to be highly specific and thus the method can detect single nucleotide polymorphism [30]. The amplification reaction is driven by an isothermal DNA polymerase to amplify the circularized probes with high efficiency and an estimated capacity to synthesize more than 70,000 bp per hour [31]. RCA products can be detected with different methods including gel electrophoresis, radiolabeling, UV absorbance, fluorescence, and single molecule detection [32]. It was known that the positive signals can be detected within 15 min after starting the RCA reaction by real time PCR [23]. In the present study the RCA positive signal was easily visualized using both gel electrophoresis and fluorescent dye. The duration of our RCA protocol was 2 h, but additional time is required for DNA extraction and ITS amplification. Compared to the DNA sequencing the turnaround time for RCA is 2 hours less than sequencing and this even more if there is no in-house sequencer available.

Our results with eight padlock probes showed that RCA accurately identified all species with no cross reactivity (Fig. 1). It may be concluded that RCA is extremely useful for specific identification of agents of mycetoma. Performance and rapid turnaround time features make the RCA suitable for quick and reliable diagnosis, which is an enormous improvement compared to the current phenotypic identification of mostly non-sporulating cultures. Future application of RCA could be the detection of agents DNA directly from clinical samples without requirement of culturing.

Supporting Information

S1 Figure STARD flowchart for RCA. (PDF)

Table 3. Rolling circle amplification results of analysed strain.

Strains	M. mycetomatis (3)	M. tropicana (2)	M. pseudomycetomatis (3)	M. fahalii (1)	T. grisea (10)	F. senegalensis (6)	F. tompkinsii (2)	M. romeroi (6)
Positive results (+), negative results (−).	+	−	−	−	−	−	−	+

Positive results (+), negative results (−).

Figure 3. Identification time of species using rolling circle amplification (RCA) and sequencing of ITS.
doi:10.1371/journal.pntd.0003368.g003

Conceived and designed the experiments: SAA BHGGvdE GSdH. Performed the experiments: SAA. Analyzed the data: SAA BHGGvdE. Contributed reagents/materials/analysis tools: GSdH AHF WWJvdS. Wrote the paper: SAA BHGGvdE WWJvdS GSdH AHF.
References

1. Fahal AH (2006) Mycetoma, Clinicopathological Monograph. Khartoum: Khartoum University Press.
2. van de Sande WW, Maghoub el S, Fahal AH, Goodfellow M, Welsh O, et al. (2014) The mycetoma knowledge gap: identification of research priorities. PLoS Negl Trop Dis 8: e2667.
3. Kwon-Chung KJ, Bennet JE (1992) Medical Mycology. Philadelphia: Lea and Febiger.
4. Fahal AH (2010). Management of mycetoma. Expert Rev DermatoL 5: 87–93.
5. Yousif BM, Fahal AH, Shaker MY (2010) A new technique for the diagnosis of mycetoma using fixed blocks of aspirated material. Trans R Soc Trop Med Hyg 104: 6–9.
6. Alam K, Maheshwari V, Bhargava S, Jain A, Fatima U, et al. (2009). Histological diagnosis of madura foot (mycetoma): a must for definitive treatment. J Glob Infect Dis 1: 64–67.
7. de Hoog G S, Buiting A, Tan C S, Stroebel A B, Ketterings C, et al. (1993). Diagnostic problem with imported cases of mycetoma in The Netherland. Mycoses 36: 81–87.
8. Desnos-Ollivier M, Bretagne S, Dromer F, Lortholary O, Dannaoui E (2006) Detection and identification of opportunistic fungal pathogens by rolling-circle amplification using Fonsecaea as a model. J Clin Microbiol 44: 3317–3323.
9. Ahmed AO, Desplaces N, Leonard P, Goldstein F, De Hoog S, Verbrugh H, et al. (2003) Molecular detection and identification of agents of eumycetoma: detailed report of two cases. J Clin Microbiol. 41: 5813–5816.
10. Gilbert W, Dressler D (1968) DNA Replication: The Rolling Circle Model. Cold Spring Harb Symp Quant Biol 33: 177–186.
11. Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, et al. (1999) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 285: 2093–2098.
12. Inoue J, Shigemori Y, Mikawa T (2006) Improvements of rolling circle amplification (RCA) efficiency and accuracy using Thermus thermophilus SSB mutant protein. Nucleic Acids Res 34: e69.
13. Wang B, Potter SJ, Lin Y, Cunningham AL, Dwyer DE, et al. (2005) Rapid and sensitive detection of severe acute respiratory syndrome Coronavirus by rolling-circle amplification. J Clin Microbiol 43: 2339–2344.
14. Macera L, Costey M, Maggi F, Segales J, Kekarainen T (2011) A novel rolling circle amplification assay to detect members of the family Anelloviridae in pigs and humans. Virus Res 160: 424–427.
15. Chen X, Wang B, Yang W, Kong F, Li C, et al. (2014) Rolling circle amplification for direct detection of rpoB gene mutations in Mycobacterium tuberculosis isolates from clinical specimens. J Clin Microbiol 52: 1540–1548.
16. Najafzadeh MJ, Sun J, Vicente VA, de Hoog GS (2011) Rapid identification of fungal pathogens by rolling circle amplification using Fonsecaea as a model. Mycoses 54: e577–e582.
17. Najafzadeh MJ, Dolatabadi S, Saradeghi Keisari M, Naseri A, Feng P, et al. (2013) Detection and identification of opportunistic Exophiala species using the rolling circle amplification of ribosomal internal transcribed spacers. J Microbiol Methods 94: 330–332.
18. Lackner M, Najafzadeh MJ, Sun J, Lu Q, Hoog GS (2012) Rapid identification of Pseudallescheria and Scedosporium strains by using rolling circle amplification. Appl Environ Microbiol 78: 126–133.
19. de Hoog GS, Ahmed SA, Najafzadeh MJ, Sutton DA, Keisari MS, et al. (2013) Phylogenetic Findings Suggest Possible New Habitat and Routes of Infection of Human Eumyctoma. PLoS Negl Trop Dis 7: e2229.
20. Ahmed SA, van de Sande WWJ, Steven-B, Fahal A, van Diepeningen A, et al. (2014) Revision of agents of black-grain eumycetoma in the order Pleosporales. Persoonia 33: 141–154.
21. Möller EM, Bahnweg G, Sandermann H, Geiger HH (1992) A simple and efficient protocol for isolation of high molecular weight DNA from filamentous fungi, fruit bodies, and infected plant tissues. Nucleic Acids Res 20: 6115–6116.
22. Gerrits van den Ende AHG, De Hoog GS (1999) Variability and molecular diagnostics of the neurotropic species Cladophialophora bantiana. Stud Mycol 43: 152–162.
23. Zhou X, Kong F, Sorrell TC, Wang H, Duan Y, et al. (2008) Practical method for detection and identification of Candida, Aspergillus, and Scedosporium spp. by use of rolling-circle amplification. J Clin Microbiol 46: 2423–2437.
24. WHO (2013) The 17 neglected tropical diseases. Geneva: World Health Organization. Available: http://www.who.int/neglected_diseases/diseases/en/. Accessed 10 Nov 2014.
25. Ahmed AO, Mukhtar MM, Koobs-Sijmons M, Fahal AH, de Hoog S, et al. (1999) Development of a species-specific PCR-restriction fragment length polymorphism analysis procedure for identification of Madurella mycetoma. J Clin Microbiol 37: 3175–3180.
26. de Hoog GS, van Diepeningen AD, Mahgoub el S, van de Sande WW (2012) New species of Madurella, causative agents of black-grain mycetoma. J Clin Microbiol 50: 968–994.
27. Hamzehei H, Yazdanparast SA, Davoudi MM, Khodavaisy S, Golekhkhelyi M, et al. (2013) Use of rolling circle amplification to rapidly identify species of Cladophialophora potentially causing human infection. Mycopathologia 175: 431–438.
28. Kong F, Tong Z, Chen X, Sorrell T, Wang B, et al. (2008) Rapid identification and differentiation of Trichophyton species, based on sequence polymorphisms of the ribosomal internal transcribed spacer regions, by rolling-circle amplification. J Clin Microbiol 46: 1192–1199.
29. Ali MM, Li F, Zhang Z, Zhang K, Kang DK, et al. (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43: 3324–3341.
30. Nilsson M, Krejcì K, Koch J, Kwasikowski M, Guntavsson P, et al. (1997) Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nat Genet 16: 252–253.
31. Blanco I, Bernad A, Lázaro JM, Martín G, Garmendia C, et al. (1989) Highly efficient DNA synthesis by the phage phi phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264: 3933–3940.
32. Banér J, Nilsson M, Mardel-Hartvig M, Landegren U (1998) Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res 26: 5073–5078.