Expanding the landscape of diterpene structural diversity by stereochemically controlled combinatorial biosynthesis

Andersen-Ranberg, Johan; Kongstad, Kenneth Ther mann; Nielsen, Morten Thrane; Bjerg Jensen, Niels; Pateraki, Irini; Bach, Søren Spanner; Hamberger, Britta; Zerbe, Philipp; Stærk, Dan; Bohlmann, Jörg; Møller, Birger Lindberg; Hamberger, Björn Robert

Published in:
Angewandte Chemie International Edition

DOI:
10.1002/anie.201510650

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Andersen-Ranberg, J., Kongstad, K. T., Nielsen, M. T., Bjerg Jensen, N., Pateraki, I., Bach, S. S., ... Hamberger, B. R. (2016). Expanding the landscape of diterpene structural diversity by stereochemically controlled combinatorial biosynthesis. DOI: 10.1002/anie.201510650
Expanding the Landscape of Diterpene Structural Diversity through Stereochemically Controlled Combinatorial Biosynthesis

Johan Andersen-Ranberg, Kenneth Thermann Kongstad, Morten Thrane Nielsen, Niels Bjerg Jensen, Irini Pateraki, Søren Spanner Bach, Britta Hamberger, Philipp Zerbe, Dan Staerk, Jörg Bohlmann, Birger Lindberg Møller, and Björn Hamberger*

Abstract: Plant-derived diterpenoids serve as important pharmaceuticals, food additives, and fragrances, yet their low natural abundance and high structural complexity limits their broader industrial utilization. By mimicking the modularity of diterpene biosynthesis in plants, we constructed 51 functional combinations of class I and II diterpene synthases, 41 of which are “new-to-nature”. Stereoselective biosynthesis of over 50 diterpene skeletons was demonstrated, including natural variants and novel enantiomeric or diastereomeric counterparts. Scalable biotechnological production for four industrially relevant targets was accomplished in engineered strains of Saccharomyces cerevisiae.

Diterpenoids are a diverse class of structurally complex natural products with broad therapeutic applications. Plants provide the major source of these chemicals and present a rich reservoir of potentially new pharmaceuticals. Exploitation of this diversity is severely limited by difficulties in extracting pure compounds from natural sources on an industrial scale. Alternatives include semisynthesis from naturally occurring purified compounds. Three examples illustrate the potential for control of the stereochemical configuration of the diterpene skeleton through dephosphorylation of the class II product and specific rearrangements, additional cyclizations, or water addition, thereby resulting in the introduction of additional chiral centers (Scheme 1). We have recently identified a diverse suite of 40 class II and class I diTPSs from ten plant species, each harboring structurally exceptional diterpenoids. In plants, specific pairs of class I and class II diTPSs form distinct diterpene skeletons, which underpins the structural diversity of native diterpenoids. To explore the inherent metabolic potential and plasticity of modular combinations of diTPSs, we systematically paired diTPSs through co-expression in heterologous hosts. Specifically, we probed the substrate and product plasticity for every combination of eleven class II and nine class I diTPSs representative of diverse plant species and potential functionalities. Eight functionally uncharacterized diTPSs were included in this approach (Table S1 in the Supporting Information). We report herein the stereoselective formation of more than 50 labdane- and clerodane-type skeletons through the assembly of combinations of diTPS pairs. These skeletons are labelled throughout (1–47) according to their Kovats retention indices (Figure S1–4 and Table S2 in the Supporting Information). The a and b suffixes indicate (+) or (−) configurations, respectively, as shown by chiral GC–MS analysis, NMR, and optical rotation measurements of selected purified compounds. Three examples illustrate the potential of this approach for control of the stereochemical configuration of diterpenes through specific selection of class II diTPSs and for extension of the known structural repertoire of skeletons accessible by biosynthesis through combination.
with class I δTPSs. A list of all of the diterpenes produced is given in Table S2.

ΔTPS combinations were tested by Agrobacterium tumefaciens mediated transient expression in Nicotiana benthamiana and the results were supported by in vitro assays with recombinant ΔTPS expressed and purified from E. coli for each type of class II ΔTPS. To demonstrate fermentation-based diterpene production, selected ΔTPS combinations were introduced into engineered E. coli and S. cerevisiae to yield target molecules at a scale relevant for industrial consideration.

Comparison of substrate and product profiles showed that the class I δTPSs show distinct degrees of substrate and product plasticity with regards to the stereochemistry and hydroxylation pattern of the diphosphate substrate. Specifically, in a total of 12 combinations, a subset of six class I δTPSs converted the two stereoisomers of labda-13-en-8-ol diphosphate [(+)-8-LPP and ent-8-LPP, Figure 1].

The discrete formation of three stereoisomers of the diterpene manoyl oxide highlights how biosynthetic routes can be stereoselectively controlled (Figure 2). (13R)-(−)-manoyl oxide (16a), a precursor for the diterpenoid pharmaceutical forskolin,[20b] was formed from (+)-8-LPP by the combination of Salvia sclarea SsLPPS with Marrubium vulgarre MvTPS5 at 3.7 times higher levels than the native combination of CTPS2 and CTPS3 from Coleus forskohlii, which may be relevant for future production. Stereoselective access to manoyl oxide stereoisomers is a prerequisite for the biotechnological production of forskolin derivatives with novel stereochemical configurations. In combination with the class II δTPS TwTPS21 from Tripterygium wilfordii, CTPS3 catalyzed the stereoselective formation of (13R)-ent-manoyl oxide (16b). Combination of the class I δTPS TwTPS2 with CTPS14 or Euphorbia peplus EpTPS1, which are unable to convert (+)-8-LPP, enabled the stereoselective biosynthesis of the diastereomer (13S)-ent-manoyl oxide (20b; Figure 2 and Figure S16). The ent-configuration of compounds 16b and 20b is consistent with a function of the class II δTPS TwTPS21 in providing specifically (5R,8S,9S,10S)-labda-13-en-8-ol diphosphate (ent-8-LPP), a potential intermediate of bioactive diterpenoids with this stereochemistry found in nature yet unknown in biosynthetic routes.[28]

The formation of structurally distinct bicyclic diterpenes, such as scclareol, which is used in high-end fragrance manufacture, is catalyzed by S. sclarea by SsLPPS and SsSCS.[29] Antibiotic activities have been reported for a compound of this class, (+)-manool,[30] which is also recognized as a starting material for the semisynthesis of a wide range of diterpenoids with pharmaceutical properties.[31] SsSCS was used as a representative of class I δTPSs that, following rearrangement, facilitate neutralization of the carbocation through water quenching at C13 to give regiospecific introduction of a hydroxy group.[31] When offered the three known stereoisomers of copalyl diphosphate (CPP), SsSCS formed products with the stereochemistry preserved at the chiral centers C9 and C10, as defined by the class II δTPSs.

Specifically, the pairing of SsSCS with diTPSs forming the class II δTPS TwTPS21 from Tripterygium wilfordii, CTPS3 catalyzed the stereoselective formation of (13R)-ent-manoyl oxide (16b). Combination of the class I δTPS TwTPS2 with CTPS14 or Euphorbia peplus EpTPS1, which are unable to convert (+)-8-LPP, enabled the stereoselective biosynthesis of the diastereomer (13S)-ent-manoyl oxide (20b; Figure 2 and Figure S16). The ent-configuration of compounds 16b and 20b is consistent with a function of the class II δTPS TwTPS21 in providing specifically (5R,8S,9S,10S)-labda-13-en-8-ol diphosphate (ent-8-LPP), a potential intermediate of bioactive diterpenoids with this stereochemistry found in nature yet unknown in biosynthetic routes.[31]

The formation of structurally distinct bicyclic diterpenes, such as scclareol, which is used in high-end fragrance manufacture, is catalyzed by S. sclarea by SsLPPS and SsSCS.[29] Antibiotic activities have been reported for a compound of this class, (+)-manool,[30] which is also recognized as a starting material for the semisynthesis of a wide range of diterpenoids with pharmaceutical properties.[31] SsSCS was used as a representative of class I δTPSs that, following rearrangement, facilitate neutralization of the carbocation through water quenching at C13 to give regiospecific introduction of a hydroxy group.[31] When offered the three known stereoisomers of copalyl diphosphate (CPP), SsSCS formed products with the stereochemistry preserved at the chiral centers C9 and C10, as defined by the class II δTPSs.

Specifically, the pairing of SsSCS with diTPSs forming the class II δTPS TwTPS21 from Tripterygium wilfordii, CTPS3 catalyzed the stereoselective formation of (13R)-ent-manoyl oxide (16b). Combination of the class I δTPS TwTPS2 with CTPS14 or Euphorbia peplus EpTPS1, which are unable to convert (+)-8-LPP, enabled the stereoselective biosynthesis of the diastereomer (13S)-ent-manoyl oxide (20b; Figure 2 and Figure S16). The ent-configuration of compounds 16b and 20b is consistent with a function of the class II δTPS TwTPS21 in providing specifically (5R,8S,9S,10S)-labda-13-en-8-ol diphosphate (ent-8-LPP), a potential intermediate of bioactive diterpenoids with this stereochemistry found in nature yet unknown in biosynthetic routes.[31]
Purification and NMR analysis established the structure as kolavelool (26), from the distinct class of clerodane-type diterpenes (Table S6). These diterpenes have been reported from a range of plant species and form the skeleton of salvorin A, a lead drug candidate for the treatment of mental disorders and substance dependence,[14] yet the biosynthetic route remains unknown. Similarly, coupling of two functionally uncharacterized class II diTPSs with the nine class I diTPSs and comparison of the product profiles with those of established enzymes enabled the classification of EpTPS7 and TwTPS7 as ent-CPP synthases (Figure 2). Furthermore, combining ent-CPP synthases with EpTPS8 or EpTPS23 resulted in the formation of ent-neoabietadiene and ent-dehydroabietadiene, respectively (Figure S14), diterpene scaffolds not previously reported in nature. Likewise, the TwTPS21/SsSCS combination yielded ent-sclareol, which constitutes the first biosynthetic route to this specific stereoisomer.

Several of the combinations provided skeletons of high-value diterpenoids, for example, miltiradiene (25), the backbone of cardioprotectives (tanshinones)[15] and antioxidants (carnosoic acid) [16] 16a and 23a as precursors for the drug forskolin,[6a] and the synthetic ambergris substitute (–)-ambrox, which is used in high-end fragrances[17]. For stereoselective production of these targets, expression-optimized variants of CTPS1/CTPS3, CTPS2/CTPS3, and TwTPS21/EpTPS1 were introduced stably into the genome of a S. cerevisiae strain engineered for diterpene production. Production titers between 250–370 mgL⁻¹ (Table S9) underline the potential for scale-up production by fermentation.

In summary, we show that engineered diTPS combinations can be used to expand the biosynthetically accessible repertoire of diterpene skeletons with superior stereochemical control. Our approach meets a long-standing desire for control over the stereochemical configuration of synthesized diterpenes which remains a challenge in formal chemical synthesis. With chiral molecules representing more than half of approved drugs worldwide, collectively valued at over $200 billion in 2008,[18] our findings make an important contribution to accelerate drug development and demonstrate how synthetic biology can complement chemical synthesis for the production of stereochemically complex small molecules.

Experimental Section

Generation of expression constructs, expression in N. benthamiana, S. cerevisiae and E. coli, extraction analysis of products, and structural elucidation by NMR were done as previously described and are given in supplementary material and methods.[6a, 19]
Acknowledgements

We thank Dr. Reuben Peters (Iowa State University) for providing ZmAN2 and OsCPSyn and for discussions, Dr. C. E. Olsen for initial NMR analysis, Drs. J.-É. Bassard and A. M. Heskes for discussion and experimental assistance, Dr. N. J. Clausen (Technical University of Denmark) for aid in the visualization of the diterpene chemoscape. This work was supported by a VILLUM research center of excellence (B.L.M.), the Center for Synthetic Biology supported by the UCPH Excellence Program for Interdisciplinary Research (Bj.H. and B.L.M.), the Novo Nordisk Foundation (Bj.H.), The Danish Council for Strategic Research (Bj.H.), an ERC Advanced Grant to BLM (ERC-2012-ADG_20120314), an NSERC Discovery Grant to J.B., and UC Davis, College of Biological Sciences funds to P.Z.

Figure 2. Combinatorial wheel. Formation of diterpenes by natural and engineered diTPS combinations. Bonds in a specified stereochemical configuration formed through stereoselective controlled synthesis are highlighted in red. Bonds in a specified stereochemical configuration for which there is no biosynthetic access to the other configuration are shown in black. The a and b suffixes indicate (+) and (−) configurations, respectively, as dictated by the class II diTPS. Diterpenes with unknown structure are shaded in grey. * indicates clerodane diterpenes.
Keywords: biosynthesis · biocatalysis · combinatorial biosynthesis · cyclizations · terpenes

How to cite: Angew. Chem. Int. Ed. 2016, 55, 2142–2146

Angew. Chem. 2016, 128, 2182–2186

[1] a) C. J. Paddon, et al., Nature 2013, 496, 528; b) S. A. Wilson, S. C. Roberts, Plant Biotechnol. J. 2012, 10, 249; c) R. A. Holton, H. B. Kim, C. Somoza, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, J. Am. Chem. Soc. 1994, 116, 1599; d) L. Jørgensen, S. J. McKerrall, C. A. Kuttruff, F. Ungeheuer, J. Felding, P. S. Baran, Science 2013, 341, 878.

[2] G. Appendino, Angew. Chem. Int. Ed. 2014, 53, 927; Angew. Chem. 2014, 126, 943.

[3] a) F. Chen, D. Tholl, J. Bohlmann, E. Pichersky, Plant J. 2011, 66, 212; b) I. Pateraki, A. Heskes, B. Hamberger in Biotechnology of Isoprenoids, Vol. 148 (Eds.: J. Schrader, J. Bohlmann), Springer International Publishing, 2015, p. 107.

[4] a) P. Zerbe, J. Bohlmann, Trends Biotechnol. 2015, 33, 419; b) R. J. Peters, Nat. Prod. Rep. 2010, 27, 1521.

[5] P. Zerbe, et al., Plant Physiol. 2013, 162, 1073.

[6] a) I. Pateraki, et al., Plant Physiol. 2014, 164, 1222; b) A. Cyr, P. R. Wilderman, M. Determan, R. J. Peters, J. Am. Chem. Soc. 2007, 129, 6684.

[7] P. Zerbe, A. Chiang, H. Dullat, M. O’Neil-Johnson, C. Starks, B. Hamberger, J. Bohlmann, Plant J. 2014, 79, 914.

[8] C. A. Gray, D. E. Rivett, M. T. Davies-Coleman, Phytochemistry 2003, 63, 409.

[9] A. Caniard, P. Zerbe, S. Legrand, A. Cohade, N. Valot, J.-L. Magnard, J. Bohlmann, L. Legendre, BMC Plant Biol. 2012, 12, 119.

[10] M. R. Moreira, et al., Rev. Bras. Farmacogn. 2013, 23, 870.

[11] a) A. W. W. van Wyk, K. A. Lobb, M. R. Cairra, H. C. Hoppe, M. T. Davies-Coleman, J. Nat. Prod. 2007, 70, 1253; b) F. J. Salazar, J. E. Villamizar, J. Chem. Res. 2013, 37, 63; c) F. J. Salazar, J. E. Villamizar, J. Chem. Res. 2013, 37, 1.

[12] C. Ignea, E. Ioannou, P. Georgantea, S. Loupassaki, F. A. Trikka, A. K. Kanellis, A. M. Makris, V. Roussis, S. C. Kampranis, Metab. Eng. 2015, 17, 91.

[13] C. Nakano, M. Oshima, N. Kurashima, T. Hoshino, ChemBioChem 2015, 16, 772.

[14] L. Kutzzeba, F. E. Dayan, J. L. Howell, J. Feng, J.-L. Giner, J. K. Zjawiony, Phytochemistry 2007, 68, 1872.

[15] J. Guo, et al., Proc. Natl. Acad. Sci. USA 2013, 110, 12108.

[16] K. Brückner, et al., Phytochemistry 2014, 101, 52.

[17] H. R. Schenk, H. Gutmann, O. Jeger, L. Ruzicka, Helv. Chim. Acta 1954, 37, 543.

[18] J. Caldwell, Hum. Psychopharmacol. 2001, 16, S67.

[19] S. Spanner Bach, J.-E. Bassard, J. Andersen-Ranberg, M. Emil Meldrup, H. Toft Simonsen, B. Hamberger in Methods of Molecular Biology: Plant isoprenoids, Vol. 1153 (Ed.: J. M. Walker), Springer, Heidelberg, 2014, p. 330.

Received: November 17, 2015
Published online: January 8, 2016