Search for the exotic $\Xi^{--}(1860)$ Resonance in 340 GeV/c Σ^--Nucleus Interactions

M.I. Adamovich,¹¹ ¹² Yu.A. Alexandrov,¹¹ ¹² S.P. Baranov,¹¹ D. Barberis,² M. Beck,³ C. Bérat,⁴ W. Beusch,⁵ M. Boss,⁶ S. Brons,⁷ ³³ W. Brückner,³ M. Buénerd,⁴ C. Busch,⁶ C. Büscher,³ F. Charignon,⁴ J. Chauvin,⁴ E.A. Chudakov,⁵ ³³ U. Dersch,³ F. Dropmann,³ J. Englrefield,⁶ ³³ F. Faller,⁶ ³³ A. Fournier,⁴ S.G. Gerassimov,³, ¹¹, ³³ M. Godbersen,³ P. Graefström,⁵ Th. Haller,³ M. Heidrich,³ E. Hubbard,⁵ R.B. Hurst,² K. Königsman,³, ³³ I. Konorov,³, ³³ N. Keller,³ K. Martens,⁶ ³³ Ph. Martin,³ S. Masciocchi,³ ³³ R. Michaels,³ ³³ U. Müller,⁷ H. Neeb,³ D. Newbold,⁸ C. Newsom,⁹ S. Paul,³ ³³ J. Pochodzalla,³ ³³ I. Potashnikova,³ ³³ B. Povh,³ R. Ransome,¹⁰ D. Ren,³ ³³ M. Rey-Campagnolle,³ ³³ G. Rosner,² ³³ L. Rossi,² H. Rudolph,⁷ C. Scheel,¹¹ ³³ L. Schmitt,³ ³³ H.-W. Siebert,⁶ ³³ A. Simon,³ ³³ V.J. Smith,⁸ ³³ O. Thilmann,⁶ A. Trombini,³ E. Vesin,⁴ B. Volkemer,⁷ K. Vorwalter,³ ³³ Th. Walcher,⁷ G. Wälder,⁶ R. Werding,³ E. Wittmann,³ and M.V. Zavertyaev¹¹ (WA89 collaboration)

¹¹Moscow Lebedev Physics Institute, RU-117924, Moscow, Russia
¹²Genova University/INFN, Dipartimento di Fisica, I-16146 Genova, Italy
³³Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg, Germany
⁴Grenoble ISN, F-38026 Grenoble, France
⁵CERN, CH-1211 Genève 23, Switzerland
⁶Universität Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany
⁷Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
⁸University of Bristol, Bristol, United Kingdom
⁹University of Iowa, Iowa City, IA 52242, USA
¹⁰Rutgers University, Piscataway, New Jersey 08854, USA
¹¹NIKHEF, 1009 D8 Amsterdam, The Netherlands
(Dated: March 25, 2022)

We report on a high statistics search for the $\Xi^{--}(1860)$ resonance in Σ^--nucleus collisions at 340 GeV/c. No evidence for this resonance is found in our data sample which contains 676000 Ξ^- candidates above background. For the decay channel $\Xi^{--}(1860) \rightarrow \Xi^- \pi^-$ and the kinematic range $0.15 < x_F < 0.9$ we find a 3σ upper limit for the production cross section of 3.1 and 3.5 µb per nucleon for reactions with carbon and copper, respectively.

PACS numbers: 13.85.-t, 13.85.Rm, 25.80.Pw

At present eleven experimental groups have reported evidence for a narrow baryonic resonance in the KN channel at a mass of about 1530 MeV/c². Based on previous predictions (for some earlier references see also [14]) this resonance was interpreted as a pentaquark state. However, doubts have been raised because of possible experimental artefacts and, furthermore, interpretations in terms of more conventional processes are under discussion (see however Ref. [21]). A common drawback of the individual observations is the limited statistics and hence limited confidence of the peaks.

The interpretation of the observed peaks in terms of a five-quark state was significantly strengthened by the subsequent observation of another member of the anti-
corresponding signals have been seen in other \(K^{-}\) interactions at 920 GeV/c (see Ref. [25]). A preliminary analysis of proton-nucleus reactions (for a compilation and a discussion of these data see Ref. [26]). Possible signals of a \(\Xi^{-}\) resonance at 1.860 GeV/c² decaying into \(\Xi^{-}\pi^{+}\) and \(\eta\Lambda\) were reported already 1977 for \(K^{-}\) interactions at 2.87 GeV/c [24]. However, no corresponding signals have been seen in other \(K^{-}\) induced reactions (for a compilation and a discussion of these data see Ref. [24]). A preliminary analysis of proton-nucleus interactions at 920 GeV/c by the HERA-B collaboration using a total of 19000 reconstructed \(\Xi^{-}\) events, shows no indication for the \(\Xi^{-}\) nor the \(\Theta^{+}\) resonances [24]. Searches for the \((1860)\) resonances are also being performed by the ZEUS and the CDF collaboration. The ZEUS data comprise 1361 \(\Xi^{-}\) and 1303 \(\Xi^{+}\) events, the CDF sample contains 19150 \(\Xi^{-}\) and 16736 \(\Xi^{+}\). Negative – though still preliminary – results have been reported at the DIS04 conference [27].

It is indisputable that further high-statistics experiments are needed to establish the observed resonances beyond any doubt and to determine the quantum numbers of these states if they exist. Moreover, the observation (or non-observation) of these resonances in different reactions may help to shed some light on the production mechanism and possibly also on the internal structure of these exotic states.

The hyperon beam experiment WA89 had the primary goal to study charmed particles and their decays. At the same time it collected a high statistics data sample of hyperons and hyperon resonances [24, 25, 30, 31, 32, 33]. Here we present a search for the \(S=2\) resonance in \(\Lambda^{-}\) induced reactions on C and Cu at 340 GeV/c. We also include interactions in the tracking detectors (silicon detectors and plastic scintillator) located close to these targets.

The hyperon beamline [37] selected \(\Sigma^{-}\) hyperons with a mean momentum of 340 GeV/c and a momentum spread of \(\sigma(p)/p = 9\%\). Although the actual \(\pi^{-}\) to \(\Sigma^{-}\) ratio of the beam was about 2.3, high-momentum pions were strongly suppressed at the trigger level by a set of transition radiation detectors [36] resulting in a remaining pion contamination of about 12\%. In addition the beam contained small admixtures of \(K^{-}\) (2.1\%) and \(\Xi^{-}\) (1.3\%) [28]. The trajectories of incoming and outgoing particles were measured in silicon microstrip detectors upstream and downstream of the target. The experimental target itself consisted of one copper slab with a thickness of 0.008 cm carbon (diamond powder) slabs of 0.008 \(\lambda_{t}\) each, where \(\lambda_{t}\) is the interaction length.

The momenta of the decay particles were measured in a magnetic spectrometer equipped with MWPCs and drift chambers. In order to allow hyperons and \(K^{0}_{S}\) emerging from the target to decay in front of the magnet the target was placed 13.6m upstream of the center of the spectrometer magnet. The apparatus also comprised a ring-imaging Cherenkov detector, a lead glass electromagnetic calorimeter and an lead/scintillator hadron calorimeter, which were not used in this analysis.

\(\Xi^{-}\) were reconstructed in the decay chain \(\Xi^{-} \rightarrow \Lambda \pi^{-} \rightarrow p \pi^{-} \pi^{-}\). The invariant mass distributions of the \(\Xi^{-}\) candidates are shown Fig. 1 for two regions of the total momentum of the \(\Lambda\pi\) pair. The cut at 80 GeV/c corresponds to an \(x_F\) value of about 0.25 (see below). In our data sample the central peak-to-background ratio varies between about 4 at small momenta and 8 at larger momenta. The rms-width of the \(\Xi^{-}\) peak can be approximated by the relation \(\sigma = \sqrt{3.5\text{MeV}/c^2 + 2.2 \cdot 10^{-10} p_{\Xi}^2/c^2}\) where \(p_{\Xi}\) denotes the total momentum of the \(\Lambda\pi\) pair. \(\Xi^{-}\) candidates within a \(\pm 2\sigma\) window around the nominal \(\Xi^{-}\) mass were used in the further analysis. The present analysis is based on a total of 676k \(\Xi^{-}\) candidates observed over a background.
of 170k \(p\pi^-\pi^- \) combinations [37]. Out of these candidates 240k, 281k and 155k can be attributed to the C, Cu and "Si+C+H" target, respectively.

Because of the strangeness content of the \(\Sigma^- \) beam the cross sections for \(\Xi \) resonances are shifted towards large \(x_F \) with respect to the \(\Sigma^-\)-nucleon cm-system [30]. Since in the WA89 setup the efficiency drops significantly at \(x_F < 0.1 \) the yield of \(\Xi^- \) peaks at \(x_F \approx 0.2 \) (upper histogram in Fig. 2). \(\Xi^-\pi^- \) pairs within the mass range of 1.82 to 1.90 GeV/c^2 are shifted to even larger \(x_F \) (lower histogram in Fig. 2). In both cases background was subtracted by means of two 2\(\sigma \) wide sidebands located at [-24 MeV/c^2, -24 MeV/c^2+2\(\sigma \)] and [24 MeV/c^2-2\(\sigma \),24 MeV/c^2] (cf. Fig. 1). For comparison, the \(\Xi^- \) events observed by NA49 are distributed over an \(x_F \) range between -0.25 and +0.25 [38].

Fig. 3 shows the invariant mass spectrum of all observed \(\Xi^-\pi^- \) pairs. Fig. 3b shows an extended view of the region around a mass of 1.862 GeV/c^2 marked by the arrows. All reactions, including also interactions in the tracking detectors close to the C and Cu targets, contribute to this figure. The structure observed at around 1.5 GeV/c^2 in the upper histogram of Fig. 3a is caused by events where the negative pion from the decay of the \(\Xi^- \) was wrongly reconstructed as a double track. As can be seen from the lower histogram in Fig. 3a, these fake pairs are reduced substantially by subtracting background from \(\Xi^- \) sideband events.

The NA49 collaboration has observed a ratio of \(\Xi^- \) to \(\Xi^- \) candidates of about 1/40. If we assume the same relative production cross sections over the full kinematic range for the reaction in question and similar relative detection efficiencies \([\varepsilon(\Xi^-)/\varepsilon(\Xi^-)]_{WA89} \approx [\varepsilon(\Xi^-)/\varepsilon(\Xi^-)]_{NA49} \) we would expect of the order of 17000 \(\Xi^- \rightarrow \Xi^- + \pi^- \) events in our full data sample. The FWHM of the peaks observed by NA49 is 17 MeV/c^2 and is limited by the experimental resolution. Since in our experiment the resolution is expected to be slightly smaller \(\approx 10 \) MeV/c^2 (FWHM), this excess should be concentrated in less than 6 channels in Fig. 3b. Obviously, no such enhancement can be seen in the spectra.

The \(\Xi(1860) \) events observed by NA49 are concentrated at small \(x_F \). For a better comparison with the NA49 experiment we therefore scanned our data for different ranges of \(x_F \). Fig. 4 shows the effective mass distributions of \(\Xi^-\pi^- \) combinations with \(x_F(\Xi^-\pi^-) \leq 0.15 \) (part a), \(x_F(\Xi^-\pi^-) \leq 0.3 \) (part b) and \(x_F(\Xi^-\pi^-) > 0.3 \) (part c). In each plot the lower and upper histogram correspond to the carbon and copper target, respectively.
each panel, the upper and lower histograms correspond to reactions with the carbon and copper target, respectively. No background subtraction was applied to these spectra. Assuming again a Ξ^{-} to Ξ^{-} ratio of 1/40 as observed by NA49 and considering now only the x_F range between 0 and 0.15, we estimate that approximately 700 and 900 $\Xi^{-} \rightarrow \Xi^{-} \pi^+$ events should be seen in Fig. 4 for the C and Cu target, respectively. None of these spectra shows evidence for a statistically significant signal around 1.862 GeV/c2, nor does such a signal appear in any other sub-sample.

Upper limits on the production cross sections were estimated separately for the copper and carbon targets, in five bins of x_F between $x_F = 0.15$ and $x_F = 0.9$. For this purpose, we calculated limits, n_{max}, on the number of $\Xi^{-}(1860) \rightarrow \Xi^{-} \cdot \pi^+$ decays as follows: Based on the claimed experimental width of the $\Xi^{-}(1860)$ of $< 17 \text{ MeV/c}^2$ FWHM [23], we calculated n_{max} from the observed number of $\Xi^{-} \cdot \pi^-$ combinations, n_i, inside three mass windows of 20 MeV/c2 width, centered at 1850, 1860 and 1870 MeV/c2, resp., for $i = 1, 2, 3$. From a fit to the observed $\Xi^{-} \cdot \pi^-$ mass spectrum between 1700 and 2000 MeV/c2 (excluding the presumed signal region), we calculated the non-resonant backgrounds b_i in each bin. The 3σ limits were then obtained by the formula $n_{\text{max}} = \max_{i=1,2,3}\{n_{\text{max}}(0, n_i - b_i) + 3\sqrt{b_i}\}$ and are listed in column 3 of Tab. II. From these numbers we derived the upper limits on the product of $BR \cdot \sigma_F$ per nucleus for the three x_F intervals.

Limits on the integrated production cross sections σ were calculated by summing quadratically the contributions $d\sigma/dx_F \cdot \Delta x_F$ in the five individual x_F bins listed in column 4 of Tab. II. The results are $BR \cdot \sigma_{\text{max}}(0.15 < x_F < 0.9) = 16$ and 55 μb per nucleus in case of the carbon and copper target, respectively. An extrapolation to the cross sections per nucleon yields the two values $BR \cdot \sigma_{0,\text{max}} = 3.1 \mu$b for the carbon and 3.5 μb for the copper target, in excellent agreement with each other. As can be seen from Tab. II these limits do not exceed the production cross sections of all other observed Ξ^- resonances.

At large x_F a significant fraction of the Ξ^- are produced by interactions induced by the Ξ^- beam contamination [28, 34]. Even if we were to assume that the $\Xi^{-}(1860)$ production can be attributed exclusively to the 1.3% Ξ^- admixture in the beam, we obtain e.g. for the carbon target and $x_F \geq 0.5$ a limit for the Ξ^{-} production by Ξ^{-} of 740μb. For comparison, even this large 3σ limit corresponds to only 4% of the Ξ^{-} production cross section in Ξ^{-} + Be interactions at 116 GeV/c in the same kinematic range [39].

Finally we note that the $\Xi^{-} \cdot \pi^+$ mass distribution observed by WA89 has already been published previously [29] (see also Tab. II). This combination is dominated by the peak from $\Xi_0(1530)$ decays. The observed central mass was in good agreement with the known value of $M = 1531.8 \pm 0.3 \text{ MeV/c}^2$ [40]. Unfolding the observed width with the width of the $\Xi_0(1530)$ of $\Gamma = 9.1 \text{ MeV/c}^2$ [40] gave an experimental resolution of $\sigma_{\Xi_0(1530)} = 3.7 \text{ MeV/c}^2$. Furthermore, a weak resonance signal with a width of $\Gamma = 10 \pm 6 \text{ MeV/c}^2$ is visible at $M = 1686 \pm 4 \text{ MeV/c}^2$ above a large background. In the mass region of the $\Sigma^0(1860)$ (last three channels in the left part of Fig. 1 in Ref. [24]) no enhancement over the uncorrelated background can be seen in the WA89 data.
Cu) an unlikely cause for the discrepancy. The internal structure of the Σ⁻ projectile or of the Ξ⁻⁻(1860) could be a more plausible reason for the rather low limit of the Ξ⁻⁻(1860)/Ξ⁻ ratio. It is well known, that a transfer of a strange quark from the beam projectile to the produced hadron enhances the production cross sections in particular at large x_F (see, for instance, Fig. 8 in [25]). The different leading effects for octet and decuplet Σ states [31] even hint at an [sd] diquark transfer from the Σ⁻ projectile [43]. The production of a pentaquark containing correlated quark-quark pairs (see e.g. Ref. [44]) would probably benefit from such a diquark transfer. However, for example in case of an extended $K - N - \bar{K}$ molecular structure of the Ξ(1860) [43] an [sd] diquark transfer may not necessarily enhance the Ξ⁻⁻ production leading also to a narrower x_F distribution. As a consequence the cross section in Σ⁻ induced reactions might not exceed the one for production in pp interactions. The latter cross section is predicted to be $\sim 4 \mu b$ [12] which is then close to our limit.

Thus, if future high statistics experiments will confirm the production of the Ξ⁻⁻(1860) resonance in proton-proton interaction, the non-observation with the Σ⁻ beam may point to a very exceptional production mechanism possibly related to an exotic structure of the Ξ⁻⁻(1860).

[1] T. Nakano et al., LEPS Collaboration, Phys. Rev. Lett 91, 012002 (2003).
[2] V.V. Barmin et al., DIANA Collaboration, Phys. Atom. Nucl. 66, 1715 (2003); Yad. Fiz. 66, 1763 (2003).
[3] S. Stepanyan et al., CLAS Collaboration, Phys. Rev. Lett. 91, 252001-1 (2003).
[4] J. Barth et al., SAPHIR Collaboration, Phys. Lett. B 572, 127 (2003).
[5] V. Kubarovsky et al., CLAS Collaboration, Phys. Rev. Lett. 92, 032001 (2004); erratum - ibid. 92, 049902 (2004).
[6] A.E. Asratyan, A.G. Dolgolenko, M.A. Kubantsev, hep-ex/0309042 (2003).
[7] A. Aramian et al., HERMES Collaboration, Phys. Lett. B 585, 213-222 (2004).
[8] A. Aleev et al., SVD Collaboration, hep-ex/0401024 (2004).
[9] M. Abdel-Bary et al., COSY-TOF Collaboration, hep-ex/0403011 (2004).
[10] P.Zh. Aslanyan, V.N. Emelyanenko, G.G. Rikhkvitzkaya, hep-ex/0403044 (2004).
[11] S. Chukanov et al., ZEUS Collaboration, hep-ex/0403051 (2004).
[12] http://www.rcnp.osaka-u.ac.jp/~hyodo/research/ThetaPub.html
[13] D. Diakonov, V. Petrov, and M. Polyakov, Z. Phys. A 359, 305 (1997).
[14] H. Walliser and V.B. Kopeliovich, JETP 97(3) 433 (2003); hep-ph/0304055 (2003).
[15] A.R. Dzierba et al., Phys. Rev. D 69, 051901 (2004).
[16] M. Zavertyaev, hep-ph/0311250 (2003).
[17] S. Nussinov, hep-ph/0307357 (2003).
[18] D.E. Kahana and S.H. Kahana, hep-ph/0310026 (2003).
[19] T. Kishimoto and T. Sato, hep-ex/0312003 (2003).
[20] P. Bicudo, G.M. Marques, Phys. Rev. D 69, 011503 (2004).
[21] Felipe J. Llanes-Estrada, O. Eset, V. Mateu, nucl-th/0311020
[22] S.T. Bityukov, N.V. Krasnikov, Nucl. Instr. Meth A 452, 518 (2000).
[23] C. Alt et al., NA49 Collaboration, Phys. Rev. Lett. 92, 024003 (2004).
[24] E. Briefel et al., Phys. Rev. D 16, 2706 (1977).
[25] H.G. Fischer and S. Wenig, hep-ex/0401014 (2004).
[26] K.T. Knöpfe, M. Zavertyaev, T. Zivko for the HERA-B collaboration, hep-ex/0403020
[27] Igor Gorelov for the CDF Collaboration, S.V. Chekanov for the ZEUS Collaboration, talks presented at the XXI-St International Workshop on Deep-Inelastic Scattering DIS 2004 Strbske Pleso, High Tatras, Slovakia 14 - 18 April, 2004; http://www.saske.sk/dis04/wgc.html
[28] M.I.Adamovich et al., WA89 Collaboration, Phys. Lett. B 76, 35 (1997).
[29] M.I. Adamovich et al., WA89 Collaboration, Eur. Phys. J. C 5, 621-624 (1998).
[30] M.I. Adamovich et al., WA89 Collaboration, Eur. Phys. J. C 11, 271 (1999).
[31] M.I. Adamovich et al., WA89 Collaboration, Eur. Phys. J. C 22, 255-267 (2001).
[32] M.I. Adamovich et al., WA89 Collaboration, Phys. Rev. C 65, 042202(R) (2002).
[33] M.I. Adamovich et al., WA89 Collaboration, Eur. Phys. J. C 26, 357-370 (2003).
[34] M.I. Adamovich et al., WA89 Collaboration, Eur. Phys. J. C (in print).
[35] Yu. A. Alexandrov et al., Nucl. Instrum. Methods A 408, 359 (1998).
[36] W. Brückner et al., Nucl. Instrum. Methods A 378, 451 (1996).
[37] Because of difficulties in reprocessing some of the old data files, the Ξ⁻ sample used in the present analysis is approximately 25% smaller than the one used in a Ξ⁻ polarization analysis of Ref. [32].
[38] D. Barna, Ph.D. Thesis, Eötvös Lornd University Budapest (2002), available as NA49-note 293 at http://na49info.cern.ch
[39] S.F. Biagi et al., Z. Phys. C 34, 187 (1987).
[40] Particle Data Group: K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
[41] J. Letessier, G. Torrieri, S. Steinke, J. Rafelski, Phys. Rev. C 68, 061901(R) (2003).
[42] F.M. Liu, H. Stöcker, K. Werner, hep-ph/0404156 (2004).
[43] J. Pochodzalla, Proceedings of the International Workshop on Finest Properties of Nuclei and Nuclear Excitations, Hirschegg (2001) p. 243-246; http://theory.gsi.de/hirschegg/2001/Proceedings/
[44] M. Karlner and H. Lipkin, Phys. Lett. B 575, 249 (2003); R. Jaffe and F. Wilczek, Phys. Rev. Lett. 91, 232003-1 (2003).
[45] P.Bicudo, hep-ph/0403146 (2004).