Data Article

Dataset on the electrical energy consumption and its conservation in the cement manufacturing industry

Yogendra Verma, Bidyut Mazumdar, Prabir Ghosh

Department of Chemical Engineering, National Institute of Technology, Raipur, CG, 492010, India

A R T I C L E I N F O

Article history:
Received 17 November 2019
Received in revised form 27 November 2019
Accepted 2 December 2019
Available online 9 December 2019

Keywords:
Cement manufacturing
Energy-saving potential
The saving of electricity and variable speed drives

A B S T R A C T

The cement industry consumes huge amount of electrical energy than the other sectors. The higher percentage of the energy cost was found in its total cost of production. The available resources and environmental constraints are becoming increasingly severe because of the continuous development in the economy of the country. Therefore, the energy-saving and the reduction in the emission of gases in the cement industries have become one of the choices for the process development. The concept of energy-saving determines the realization of the national goals of energy conservation. Taking the reference of one of the cement industry in India (Emami Cement Ltd, Baloda Bazaar, Chhattisgarh) as the main focus, this paper investigates on the energy-saving by implementing the variable speed drives (VSD) along with the cooling fan and motor across the system. This report also analyses the energy-saving potential of the cement manufacturing industry by assuming some different scenarios. The data analysis show that the electrical energy-saving potential of the cement industry is 53.5% with VSD and 51.89% with the use of light-emitting diode (LED) instead of using metal halide (MH) ultraviolet source. Thus, the improvement in energy efficiency can reduce the emission of the carbon dioxide from fuel, use of electrical energy and consequently it has the potential of reducing the cost of the cement production unit.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.
E-mail address: prabirg.che@nitrr.ac.in (P. Ghosh).

https://doi.org/10.1016/j.dib.2019.104967
2352-3409/© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Data

The technology of variable speed has been applied to different types of industries. Herein, the cement factory (Emami Cement Limited, Baloda Bazaar, Chhattisgarh) has been using variable speed drives from 2017 for energy saving. At present, variable speed drives are used on the compartments of the clinker cooler, the panel of conveyors and mills, the panel of kiln main drive and the panel of the preheater fan, etc. Table 1 shows the data obtained after and before the installation of variable speed drive (VSD) across the different types of equipment in the given cement production unit for the saving of electrical energy.

Moreover, the halide lamps in the plant have been replaced with the LED lights. The LED technology is also helpful for minimizing the consumption of electrical energy and its effective utilization. Table 2 shows the power saving in the cement production unit after the installation of the LED light instead of a metal halide (MH) ultraviolet source in the cement industry.

The electrical energy-saving potential of the cement manufacturing industry has been found to be 53.5% after the installation of variable speed drives and 51.89% after using the light-emitting diode (LED) technology instead of using metal halide irradiation source.

2. Experimental design, materials and methods

The variable speed drives are electrically located at the motor, which acts as a power factor correction capacitor to the distribution system. The control strategies will be better for the motor drives as they are crucial and consume a significant portion of power in the cement manufacturing industry [1]. VSDs are helpful in the reduction of the consumed KW. There is an exponential reduction of consumed KW into the system. The affinity law assists in getting the idea of energy consumption with the variable speed of the motor. The general equation for the affinity law is written in the form as (Eq. (1)):

\[\text{Consumption in KW}_{\text{reduction}} = (\text{speed}_{\text{reduction}})^3 \]

(1)

For the financial justification and the calculation of the reduction in KW, the standard RPM of the motor with their varying KW and the existing running RPM after the installation of variable speed
Table 1
Data shows the variable speed drive energy saving in a cement manufacturing unit.

S. No	Application	KW Rating of Motor	Standard RPM	Volt	Existing Running RPM	Running RPM	Power consumed KW (Considering Average rpm)	Power saved KW (Considering Average rpm)					
1.0 Panel Board 1 (Cooler Compartment)						Min.	Max.	Average	%				
01	Cooler Fan	300	1500	415	1327.3	1335.2	1331.4	0.89	209.8	90.2			
02	Cooler Fan	225	1500	415	1363.8	1366.7	1365.9	0.91	169.9	55.1			
03	Cooler Fan	400	1500	415	1305.1	1336.1	1321.5	0.88	273.5	126.5			
04	Cooler Fan	355	1500	415	990.1	1063.4	1002.5	0.67	106.0	249.0			
05	Cooler Fan	425	1500	415	1365.3	1367.6	1366.2	0.91	321.1	103.9			
2.0 Panel Board 2 (Cooler Compartment)						Min.	Max.	Average	%				
01	Cooler Fan	300	1500	415	1441.1	1442.7	1441.4	0.96	266.2	33.8			
02	Cooler Fan	225	1500	415	1336.8	1338.5	1337.1	0.89	159.4	65.6			
03	Cooler Fan	400	1500	415	1296.8	1327.3	1313.7	0.88	268.7	131.3			
04	Cooler Fan	330	1500	415	892.2	990.5	967.3	0.64	88.5	241.5			
05	Cooler Fan	250	1500	415	907.4	1108.7	1056.4	0.70	87.3	162.7			
06	Primary Air Fan	200	1500	415	846	848	847.0	0.56	36.0	164.0			
07	Primary Air Fan	200	1500	415	802	803	802.5	0.54	30.6	169.4			
3.0 Panel (415 VAC)						Min.	Max.	Average	%				
01	Apron Feeder	90	1500	415	1478.2	1482.4	1415.2	0.94	75.6	14.4			
02	Wobbl er Feeder	55	1500	415	1430.5	1490.5	1457.8	0.97	50.5	4.5			
03	Belt Conveyor	132	1500	415	1030.1	1476.5	1043.7	0.70	44.5	87.5			
04	Belt Conveyor	200	1500	415	986.8	1494.1	1003.6	0.67	59.9	140.1			
05	Belt Conveyor	160	1500	415	1388	1495.5	1418.5	0.95	135.3	24.7			
06	Belt Conveyor	15	1500	415	1485	1500	1490.0	0.99	14.7	0.3			
07	Raw Mill Separator	355	1500	415	630.8	855.5	733.8	0.49	41.6	313.4			
08	Coal Mill Classifier	75	1500	415	790	1165	840.6	0.56	13.2	61.8			
09	Rotary Air Lock Classifier	11	1500	415	1488	1500	1495.0	1.00	10.9	0.1			
10	Water Injection Pump for Raw Mill	11	1500	415	975	1500	979.8	0.65	3.1	7.9			
11	Rotary Air Lock Feeder for Cement Mill	11	1500	415	1490	1500	1494.0	1.00	10.9	0.1			
12	Water Injection Pump for Cement Mill	11	1500	415	810	1500	812.0	0.54	1.7	9.3			
13	Water Injection System for Coal Mill	11	1500	415	460	1450	464.6	0.31	0.3	10.7			
14	Belt Conveyor	315	1500	415	700	911.6	701.3	0.47	32.2	282.8			

(continued on next page)
S. No	Application	KW Rating of Motor	Standard RPM	Volt	Existing Running RPM	Running RPM %	Power consumed KW (Considering Average rpm)	Power saved KW (Considering Average rpm)	
15	Belt Conveyor	45	1500	415	610 - 830 - 622.1	0.41	3.2 - 41.8	41.8	
4.0 Panel (690 VAC)									
1	Cooler ESP Fan	670	750	690	335.7 - 545.1 - 517.8	0.69	220.5 - 449.5		
2	Kiln Main Drive	1800	5.5	690	1.4 - 3.7 - 3.5	0.64	463.9 - 1336.1		
5.0 Panel (11 KV)									
1	Pre-heater Fan	3400	1000	11	839.2 - 915.2 - 906.1	0.91	2529.3 - 870.7		
2	Bag House Fan	2250	750	11	138.5 - 524.2 - 427.9	0.57	418.0 - 1832.0		
TOTAL								6146.2 - 7080.8	53.5%

Total % of power saved through variable speed drives
drives should be considered. The affinity law can calculate the consumed KW reduction using the observed values of the existing running RPM. Thus, it can be quickly identified how much power has been saved after the installation of variable speed drives. Much efforts have been continuously put for the reduction in the consumption of electrical energy in the cement sector. The increased consciousness towards the use of electrical power and it's conservation in this sector has contributed significantly to the electrical energy savings [2]. Also, the other way for electrical energy saving is the replacement of metal halide lamps in a cement production unit with LEDs. LEDs also consume less electricity compared to the metal halide lamps and save power.

Acknowledgments

The present report of data analysis was supported by Emami Cement Limited, Baloda Bazar (Chhattisgarh), India. The first author is grateful for the technical support received from the General Manager, Department of Electrical and Instrumentation Engineering, Emami Cement Limited, Baloda Bazar, CG.

Conflict of Interest

The authors declare that they have no known competing for financial interests on personal relationships that could have appeared to influence the work reported in this paper.

References

[1] N.A. Madlool, R. Saidur, N.A. Rahim, M. Kamalisarvestani, An overview of energy savings measures for cement industries, Renew. Sustain. Energy Rev. 19 (2013) 18–29.

[2] M.H. Sahin, N. Cetinkaya, Energy saving opportunities in Turkish cement sector, Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 6 (2017) 653–660.