Paying Per-label Attention for Multi-label Extraction from Radiology Reports
(Supplementary Material)

Patrick Schrempf¹,², Hannah Watson¹, Shadia Mikhael¹, Maciej Pajak¹, Matúš Falis¹, Aneta Lisowska¹, Keith W. Muir³, David Harris-Birtill², and Alison Q. O’Neil¹,⁴

¹ Canon Medical Research Europe, Edinburgh, United Kingdom
² University of St Andrews, United Kingdom
³ Institute of Neuroscience & Psychology, University of Glasgow, United Kingdom
⁴ University of Edinburgh, United Kingdom
patrick.schrempf@eu.medical.canon

Model	#Parameters	Training time [s]	Inference time [s/sample]
BoW + RF	n/a	14.1	0.2933±0.0040
Word2Vec	166,524	46	0.0022±0.0001
CAML [2]	1,021,176	250.43	0.0090±0.0008
Bi-GRU	2,889,852	1113	0.0066±0.0003
Bi-GRU + single attention	3,371,132	12055	0.0062±0.0003
Bi-GRU + per-label attention	3,401,852	3761	0.0109±0.0004
BERT	109,577,596	1115	0.0565±0.0025
BioBERT	109,577,596	927171	0.0575±0.0008
ALARM + softmax	109,458,556	911243	0.0590±0.0013
ALARM + per-label attention	125,233,276	1448375	0.0740±0.0002

Table 1: Number of parameters, training time (over 838 samples) and inference time (per sample) for all models. All timings are given as mean±standard deviation of 5 runs with different random seeds. The fastest model to train is the random forest model. The Bi-GRU network is significantly faster to train than BERT [1] and ALARM [3] due to the smaller number of parameters. The only model that is faster than the Bi-GRU model is Word2Vec which has a far inferior F1 score. The random forest model is the slowest at inference time because it has \(n_L \) models (one model per label) - the inference could be parallelised to improve performance.
Model	Embedding	Data	All	Negative	Uncertain	Positive
Bi-GRU	MIMIC	S	0.5840.022	0.4960.089	0.2040.031	0.6420.012
Bi-GRU	MIMIC	N-S	0.9080.004	0.9560.004	0.4270.058	0.9270.004
Bi-GRU	Random	N+S	0.8930.002	0.9620.008	0.4320.033	0.9030.002
Bi-GRU	MIMIC	N+S	0.9210.003	**0.9700.006**	0.5730.011	0.9320.004
ALARM	MIMIC	S	0.5690.028	0.7250.062	0.1280.041	0.5310.028
ALARM	MIMIC	N-S	0.9060.011	0.9440.005	0.5320.087	0.9230.010
ALARM	MIMIC	N+S	**0.9280.008**	0.9650.004	**0.6890.039**	**0.9360.008**

Table 2: Results for our ablation studies showing *micro-averaged* F1 as mean standard deviation of 5 runs with different random seeds (all models are trained with per-label attention). N data is the NHS GGC dataset and S is the synthetic dataset. “All” combines the classes “negative”, “uncertain” and “positive”. Bold indicates the best model for each metric.

Model	Embedding	Data	All	Negative	Uncertain	Positive
Bi-GRU	MIMIC	S	0.4000.039	0.5040.050	0.1060.029	0.5900.065
Bi-GRU	MIMIC	N-S	0.5510.024	0.6230.024	0.2680.089	0.7610.026
Bi-GRU	Random	N+S	0.6170.015	0.7460.042	0.3600.054	0.7450.024
Bi-GRU	MIMIC	N+S	0.7080.014	0.7960.027	0.5240.023	0.8030.016
ALARM	MIMIC	S	0.3260.025	0.6070.039	0.0650.032	0.3070.021
ALARM	MIMIC	N-S	0.5340.041	0.5980.027	0.2450.088	0.7580.038
ALARM	MIMIC	N+S	**0.7660.028**	**0.8180.029**	**0.6610.061**	**0.8180.021**

Table 3: Results for our ablation studies showing *macro-averaged* F1 as mean standard deviation of 5 runs with different random seeds (all models are trained with per-label attention). N data is the NHS GGC dataset and S is the synthetic dataset. “All” combines the classes “negative”, “uncertain” and “positive”. Bold indicates the best model for each metric.
References

1. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (Jun 2019). https://doi.org/10.18653/v1/N19-1423

2. Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., Eisenstein, J.: Explainable prediction of medical codes from clinical text. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). pp. 1101–1111. Association for Computational Linguistics, New Orleans, Louisiana (Jun 2018). https://doi.org/10.18653/v1/N18-1100

3. Wood, D., Guilhem, E., Montvila, A., Varsavsky, T., Kük, M., Siddiqui, J., Kafibadi, S., Gadapa, N., Busaidi, A.A., Townend, M., Patel, K., Barker, G., Ourselin, S., Lynch, J., Cole, J., Booth, T.: Automated Labelling using an Attention model for Radiology reports of MRI scans (ALARM). In: Medical Imaging with Deep Learning (2020). https://openreview.net/forum?id=UFnWZTbM5t