Lack of Support for the Genes by Early Environment Interaction Hypothesis in the Pathogenesis of Schizophrenia

Evangelos Vassos*,1,2,3, Jiaqi Kou1, Sarah Tosato4, Jessye Maxwell1,2, Charlotte A. Dennison5,6, Sophie E. Legge5, James T. R. Walters6, Michael J. Owen3, Michael C. O'Donovan4, Gerome Breen1,2, Cathryn M. Lewis1,2, Patrick F. Sullivan5,6, Christina Hultman3, Mirella Ruggeri1, Muriel Walshe5, Elvira Bramon5,6, Sarah E. Bergen5,6, and Robin M. Murray8

1Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; 2NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK; 3Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; 4Section of Psychiatry, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; 5Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK; 6Center for Psychiatric Genomics, Department of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC; 7Division of Psychiatry, University College London, London, UK; 8Department of Psychiatry Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK

*To whom correspondence should be addressed; IoPPN, SGDP Centre, King's College London, De Crespigny Park, London, SE5 8AF, UK; tel: +44-20-7848-5433, fax: +44-20-7848-0866, e-mail: Evangelos.Vassos@kcl.ac.uk.

Ursini et al reported recently that the liability of schizophrenia explained by a polygenic risk score (PRS) derived from the variants most associated with schizophrenia was increased 5-fold in individuals who experienced complications during pregnancy or birth. Follow-up gene expression analysis showed that the genes mapping to the most associated genetic variants are highly expressed in placental tissues. If confirmed, these findings will have major implications in our understanding of the joint effect of genes and environment in the pathogenesis of schizophrenia. We examined the interplay between PRS and obstetric complications (OCs) in 5 independent samples (effective N = 2110). OCs were assessed with the full or modified Lewis-Murray scale, or with birth weight < 2.5 kg as a proxy. In a large cohort we tested whether the pathways from placenta-relevant variants in the original report were associated with case-control status. Unlike in the original study, we did not find significant effect of PRS on the presence of OCs in cases, nor a substantial difference in the association of PRS with case-control status in samples stratified by the presence of OCs. Furthermore, none of the PRS by OCs interactions were significant, nor were any of the biological pathways, examined in the Swedish cohort. Our study could not support the hypothesis of a mediating effect of placenta biology in the pathway from genes to schizophrenia. Methodology differences, in particular the different scales measuring OCs, as well as power constraints for interaction analyses in both studies, may explain this discrepancy.

Key words: psychosis/polygenic risk score/obstetric complications/early life events/gene environment interaction/placenta biology

Introduction

Obstetric complications have been consistently associated with schizophrenia and are considered nongenetic risk factors for the disease.1 They include a variety of complications of pregnancy (eg, infections, diabetes, preeclampsia, bleeding), fetal growth (low birth weight, prematurity), and delivery (prolonged labor, fetal hypoxia, or asphyxia). Despite the relatively small effect sizes with odds ratios of less than 2, the association appears robust, with numerous replications summarised in a recent meta-analysis.2 These observations were important in supporting the theoretical framework of the “neurodevelopmental hypothesis” of schizophrenia, first presented in 1987,3,4 which suggests that the combination of genetic predisposition coupled with pre- or perinatal events affects brain development and increases vulnerability to schizophrenia later in life.

Genome-wide association studies (GWAS) have identified many risk variants robustly associated with schizophrenia.5,6 The total genetic effect of common variants is usually summarised in polygenic risk scores (PRSs), which have proved powerful predictors of disease.7 However, there is still distance to be covered in understanding the pathways linking genetic variation with...
disease development. Furthermore, because PRS is a
composite measure, it tells us nothing about the inter-
actions of individual genes with the environment. One
idea gaining traction these days is that traditional distinc-
tions between genetic and environmental risk are blurred.
It has been suggested that GWAS of disease outcomes
have identified genetic variants that capture the effect of
modifiable risk factors as well as direct genetic effects.8

In this context, Ursini and colleagues9 recently re-
ported that the intrauterine and perinatal environment
modulates the association of schizophrenia with genomic
risk, by examining the interaction between PRS for schiz-
ophrenia with the presence of obstetric complications,
which they termed early-life complications (ELCs). They
reported that the association of PRS with schizophrenia
is 5-fold stronger in patients with ELCs compared to pa-
tients without ELCs and that the finding replicated in
2 independent samples. Follow-up gene expression and
pathway analyses showed that the genes mapping to the
most associated genetic variants with schizophrenia are
highly expressed in placental tissues and have differential
expression in placentae from complicated pregnancies.

Ursini et al thus proposed a mechanism of action for the
genetic variants most associated with schizophrenia
leading to altered neurodevelopment through modulation
of placental physiology and function. This report sug-
gests that some of the top risk variants for schizophrenia
may influence the health of the placenta and render a
foetus less resilient to early hazards. If confirmed, these
findings would have major implications for our under-
standing of the joint effect of genes and environment in
the pathogenesis of schizophrenia.

Examining the data of Ursini et al,9 it is striking
that the interaction with ELCs was found only in PRS
based on a relatively small number of variants at or near
genome-wide significance (P < 5 × 10−8 and P < 10−6),
at thresholds which are usually less predictive than PRS
built on a larger set of variants.5 Accepting that schizo-
phrenia is a polygenic disorder and its aetiological
mechanisms are likely to be diverse,10 one explanation is
that the more strongly associated polymorphisms act via
altered placental transcriptional regulation, while vari-
ants associated at lesser thresholds of significance act
through different pathophysiological pathways. To con-
firm this hypothesis, we tested whether genetic risk from
the most associated loci with schizophrenia is modulated
through pre- or perinatal events in independent samples
with genetic and obstetric complications (OCs) data.

Methods

Sample Description

Our study included 3 clinical case-control samples: (1) a
subsample of the Swedish Schizophrenia Study (Sweden)11
comprising 310 schizophrenia cases and 237 controls
with data on obstetric complications; (2) a sample from
London (Maudsley Family Study; MFS)12 with 60 cases
with psychotic disorder, 47 unaffected first degree rela-
tives of cases and 17 controls; and (3) a sample of first-
episode psychosis from Italy (Verona)13 comprising 141
cases and 89 controls. In addition, we analyzed (4) a pop-
ulation sample from the UK Biobank (UKB).14 where
we identified 326 cases with schizophrenia based on self-
reporting or Hospital Episode Statistics and 220,582 un-
affected controls; and (5) a case-only sample (Cardiff)15
of 804 individuals with schizophrenia or schizoaffective
disorder, to test whether PRS predicts OCs in cases.

Detailed descriptions of the samples are reported in the
supplementary material. Effective sample sizes for the
case-control samples were estimated using the formula

\[N_{\text{eff}} = \frac{4}{N_{\text{cases}} + N_{\text{control}}} \]

Obstetric Complication Measures

OCs were assessed with the Lewis-Murray scale,16 a
15-item scale consisting of complications that happened
during the ante- and intrapartum period. This is a widely
used and validated scale.17 Individuals were scored as
“positive” if they had at least one definite complication,
and OCs were used as a binary outcome. In the UKB, in
the absence of detailed data of pre- or perinatal events,
we used birth weight < 2.5 kg as a proxy for OCs, taking
into account the effect size and the proportion of the
population exposed to the risk, and in line with pre-
vious evidence that low birth weight is among the most
significant and consistent OCs associated with risk for
schizophrenia.2,18

Genetic Data and PRS Analysis

Genotyping, quality-control, and imputation methods
for each of the included samples have been published
previously.11,19–21 In brief, genotyped SNPs were removed
if they had missingness > 0.02, minor allele frequency
(MAF) < 0.01, or Hardy-Weinberg equilibrium P-value
< 10−06 (10−08 in UKB). Participants who were related
based on identity-by-descent values, with mismatching
reported and genotyped sex, or with call rates < 98%,
were removed from the datasets. PCA using LD pruned
variants was performed in PLINK.22 Only genotypically
confirmed European ancestry individuals based on the
first 2 principal components were included in the ana-
lyses. PRS with the clumping and thresholding method23
for the 4 case-control samples were built using the pub-
lished Psychiatric Genomics Consortium (PGC) schiz-
ophrenia GWAS5 and for the case-only sample from
Cardiff the meta-analysis with the CLOZUK discovery
samples.24 For samples included in the discovery GWAS,
we used leave-one-out training datasets.

All analyses were repeated with PRS formed from
SNPs associated with schizophrenia at the 2 levels of
significance, P < 5 × 10−8 and P < 10−6, that showed
interaction with ELCs in the Ursini et al study. We also repeated the analyses at \(P_T < 0.1 \), which consistently showed high association with case-control status in our samples. All PRS included in the analyses were adjusted for population stratification by using the first 10 principal components (PC) as covariates, with the exception of MFS (our smallest sample) where the model did not converge and we restricted our covariates to 4 PCs. Analyses were performed with logistic regression models for: (1) association of PRS with OCs in total samples and stratified by case or control status, (2) association of PRS with case-control status in the total samples and stratified by the presence or absence of OCs, and (3) PRS by OCs interaction on case-control status including as covariates all possible PC by PRS and PC by OCs interactions. Effect sizes from our different samples were pooled together with fixed effects meta-analyses due to low heterogeneity as measured with the \(F \) statistic.

Pathway Analysis

Ursini et al reported that the SNPs driving the PRS-OC interaction lie in pathways enriched for “placental” genes (ie, genes highly expressed in placentae and differentially expressed in placentae from complicated pregnancies). This was conducted by using the subset of SNPs from PRS at \(P_T < 5 \times 10^{-8} \) and \(P_T < 10^{-6} \) deemed relevant to placenta biology and conducting a pathway analysis that yielded 7 and 67 significant pathways, respectively. To examine whether these gene-sets are associated with schizophrenia risk, we conducted pathway analyses using these placenta-relevant SNPs indexed in the summary statistics from a GWAS of the full Swedish Schizophrenia Study with a total sample of 11,244 subjects (5001 cases and 6243 controls) and 9871 789 imputed SNPs.

Pathway analysis using MAGMA v1.0926 consists of 3 steps: first, mapping SNPs onto genes by an annotation step; second, computing gene level \(P \)-values by a gene analysis step; and third, computing pathway level \(P \)-values by a gene-set analysis step. Gene locations for the annotation step used NCBI Build 37 / UCSC hg19 to ensure that the same human genome build as the SNP locations in the previous GWAS study were used. A competitive test was performed, which tests the hypothesis that the statistics of genes within a pathway are significantly different from genes outside the pathway. A Bonferroni correction was applied, resulting in adjusted significance thresholds of \(P < .007 \) for the first and \(P < .0007 \) for the second PRS threshold for the 7 and 67 pathways tested, respectively.

Results

The presence of OCs was not associated with case-control status, similar to the Ursini et al discovery sample, possibly reflecting power limitations in both studies (total effective sample size estimated 1644 in Ursini et al and 2110 in our study). Following similar methodology, we examined (1) whether PRS at \(P_T < 5 \times 10^{-8} \) and \(P_T < 10^{-6} \) is associated with the presence of OCs preferentially in cases, (2) whether the association between PRS and case-control status is stronger in the presence of OCs and (3) the interaction between PRS and OCs in predicting case-control status. Reported \(P \)-values are 2-sided.

In none of the 5 samples we examined, was PRS at \(P_T < 5 \times 10^{-8} \) associated with the presence of OCs either in total samples or specifically in cases. We only observed a positive association of PRS at \(P_T < 10^{-6} \) with history of OCs in the total Swedish sample (\(P = .03 \)) and in MFS cases (\(P = .04 \)), which would not survive any correction for multiple testing (table 1). Our meta-analysis results were not significant (\(P = .60 \) at \(P_T < 5 \times 10^{-8} \) and \(P = .31 \) at \(P_T < 10^{-6} \); supplementary figure 1).

Associations of PRS at \(P_T < 5 \times 10^{-8} \) and \(P_T < 10^{-6} \) with case-control status were significant only in the largest samples (Swedish and UKB). Stratification by the presence of OCs did not appear to have a substantial or consistent effect. For example, PRS at \(P_T < 10^{-6} \) in the Swedish sample appeared to have a stronger effect in the presence of OCs (odds ratio 1.62 vs 1.57 in the absence of OCs), but when examining PRS at \(P_T < 5 \times 10^{-8} \) at the same sample we notice the opposite effect (stronger effect of PRS in the absence, nonsignificant in the presence of OC) (table 2). Subgroup meta-analysis stratified by the presence of OCs did not show substantial heterogeneity or difference in effect sizes between the group means (supplementary figure 2). Furthermore, none of the PRS by OCs interactions we tested were significant (table 3).

Given that the main effect of PRS on affected status increases when relaxing the threshold as expected from previous work with current sized GWAS training dataset, we repeated the analyses at \(P_T < .1 \). At this threshold, PRS was associated with case-control status in all the samples with odds ratios varying depending on sample definition and sample size (range 1.62–2.87). With the exception of MFS, we did not observe any preferential association between PRS and OCs in cases or any consistent effect of OC stratification on the association between PRS and case-control status (supplementary table 1).

The pathways enriched for placental genes at both threshold levels (\(P_T < 5 \times 10^{-8} \) and \(P_T < 10^{-6} \)) as reported in the study by Ursini et al were tested for association with case-control status in the total Swedish cohort. No significant associations were found even at a nominal level of significance (supplementary tables 2 and 3).

Discussion

We failed to confirm the findings by Ursini et al both in terms of modulation of the effect of PRS by OCs and association of PRS for schizophrenia with history of OCs in cases. Despite the consistent findings across samples in
Lack of Support for the Genes by Early Environment Interaction Hypothesis

In the original report, disappointingly we did not find similar associations or even trends in any of the 5 samples we tested.

Methodology differences, in particular the different scales measuring OCs, for interaction analyses in both studies, may explain this discrepancy. The study by Ursini et al measured OCs using the McNeil–Sjöström scale, while we used the Lewis-Murray scale in 3 of the samples, an adaptation in the Cardiff sample and only birth weight in the UKB. The 2 scales have differences: The Lewis-Murray scale has been the more frequently used, and an individual patient meta-analysis of 12 studies showed that it distinguished significantly between patients with schizophrenia and controls. However, it is less detailed than the McNeil–Sjöström scale. A study by McNeil et al comparing the scales, showed that both scales discriminated OC histories between singletons with schizophrenia and controls, but the McNeil–Sjöström scale functioned best in discriminating OC histories between schizophrenic twins and control twins. However, it is unclear whether the differences between the 2 scales can explain the paucity of effect in our study.

From the latest meta-analysis, we notice that most of the strongly associated OCs (eg, maternal infections, Table 1. Associations Between OCs and PRS at \(P_T < 5 \times 10^{-8} \) and \(P_T < 10^{-6} \)

Sample	\(N \)	\(P_T < 5 \times 10^{-8} \)	\(P \)	\(P_T < 10^{-6} \)	\(P \)	
Sweden	All	547	1.15	.16	1.23	.03
	Controls	237	1.26	.12	1.17	.29
	Cases	310	1.04	.75	1.28	.05
Verona	All	230	0.99	.96	0.90	.49
	Controls	89	0.94	.78	0.86	.54
	Cases	141	1.07	.76	0.97	.89
MFS	All	123	0.98	.91	1.22	.36
	Controls	17	0.43	.19	0.48	.28
	Relatives	47	0.30	.05	0.27	.04
	Cases	59	1.43	.26	2.04	.04
UKB	All	220,908	1.003	.71	1.004	.55
	Controls	220,582	1.003	.71	1.004	.55
	Cases	326	0.97	.86	1.02	.91
Cardiff	Cases	804	1.01	.89	0.95	.57

Note: MFS, Maudsley Family Study; OC, obstetric complication; PRS, polygenic risk score; UKB, UK Biobank. Association between PRS and history of OCs in the total sample (All), the subsample without OCs history (OCs−), and the subsample with OCs history (OCs+). \(R^2 \), the Nagelkerke \(R^2 \). Significant results in bold.

Table 2. Associations Between PRS and Case-Control Status Stratified by the Presence of OCs

Sample	\(N \)	\(P_T < 5 \times 10^{-8} \)	\(P \)	\(P_T < 10^{-6} \)	\(P \)			
Sweden	All	547	1.48	0.030	2.2E-04	1.59	0.053	1.9E-06
	Controls	237	1.26	0.040	7.8E-04	1.57	0.050	1.1E-04
	Cases	310	1.18	0.006	.34	1.62	0.046	.01
Verona	All	298	1.03	0.000	.85	1.12	0.003	.45
	OCs−	154	0.97	0.000	.86	1.03	0.000	.87
	OCs+	67	1.17	0.004	.57	1.23	0.007	.45
MFS	All	170	1.13	0.002	.71	1.22	0.006	.6
	OCs−	48	0.82	0.005	.65	0.86	0.003	.73
	OCs+	22	1.95	0.061	.26	3.08	0.012	.15
UKB	All	220,908	1.26	0.003	2.8E-04	1.33	0.005	8.0E-06
	OCs−	198,739	1.27	0.003	3.6E-04	1.33	0.004	2.2E-05
	OCs+	22,169	1.16	0.001	.39	1.30	0.004	.154

Note: MFS, Maudsley Family Study; OC, obstetric complication; PRS, polygenic risk score; UKB, UK Biobank. Association between PRS and case-control status in the total sample (All), the subsample without OCs history (OCs−), and the subsample with OCs history (OCs+). \(R^2 \), the Nagelkerke \(R^2 \). Significant results in bold.

\(^a\)In Verona and MFS, the total sample (All) is higher than the sum of the OCs− and OCs+ as individuals with missing OC data were included.
E. Vassos et al

Premature rupture of membrane, premature birth, low birth weight, and congenital malformation) are captured by the Lewis-Murray scale, with few important exceptions (Herpes simplex type 2, famine, maternal hypertension, asphyxia). The pooled effect from 9 studies of definite obstetric complications as specified in the Lewis-Murray scale was a significant predictor of case-control status (OR = 1.83, \(P \)-value = .0042).

This suggests that the Lewis-Murray scale is efficient in capturing relevant OCs, and differences between the findings of our study and that of Ursini et al is possibly due to the additional items covered only in the McNeil–Sjöström scale. Further comparing the 2 studies, we notice that our samples had more consistent prevalence of OCs, between 25% and 36% for the full Lewis-Murray scale and 10% for low birth weight in the UKB. More variability in OCs was observed in the Ursini et al study, with the range of ELCs prevalence between 20% and 66%, reflecting either more variability in the sample selection or in the ratings of the McNeil–Sjöström scale.

Other considerations are the differences in the sample characteristics between the 2 studies and power constraints. Two of our samples (MFS, Verona) included a broader definition of psychosis, not restricted to schizophrenia and schizoaffective disorder. However, given the evidence that OCs is a risk factor across non-organic psychoses\(^2\) and the high genetic correlation of schizophrenia with bipolar disorder,\(^{30,31}\) it is unlikely that this has an important impact on the findings. In terms of the power to detect gene by environment interaction, both studies utilized a variety of samples with genetic and OC data. It is noteworthy that, although the initial findings were replicated in 2 additional case-control samples in the Ursini et al study, we failed to confirm the association, despite similar total effective sample size (1644 in Ursini et al and 2110 in our study). To further test the power of our samples for PRS analyses, we repeated the analyses with a more powerful PRS at \(P_t < .1 \) and we found significant main effects in all samples, as expected, but no interaction effects.

Our failure to confirm the interaction is not surprising, given the vanishingly rare evidence in the literature that average genetic risks for chronic diseases vary substantially according to environmental exposures.\(^32\) Studies of gene-environment interaction suffer from low power to detect these effects,\(^33\) while the violation of underlying model assumptions increases the likelihood of spurious findings.\(^34\) For studies of interaction between polygenic scores and environment, methodological and conceptual challenges, including the choice of the environment and outcome variables, measurement error, and sample selection processes, can result in misleading outcomes.\(^35\)

Given the above limitations in the PRS by OCs interaction analyses, to further examine the hypothesis that placenta biology is a significant mediator of the genetic risk and the development of schizophrenia, we tested whether the significant pathways identified by Ursini et al were enriched in schizophrenia cases. Our hypothesis was that if these pathways are important in the pathogenesis of schizophrenia, they should be associated with case-control status in a large sample of 5001 schizophrenia cases and 6243 controls. However, our null pathway analysis results call into question the relevance of these pathways.

In summary, although we cannot categorically refute the original findings due to differences in the study design, we would like to add a note of caution that early environment modulation of the effect of PRS may be population specific or related to specific early life events not captured by the scale we used. Our study, in line with empirical data to this point in psychiatric and behavioral genetics, not having identified many replicable examples for gene by environment interaction, highlights the complexity of the field. Further research with larger, well-phenotyped samples is advisable to examine the interaction of genetic liability with obstetric complications and similarly with other environmental risks with the aim of unravelling specific aetiopathogenic mechanisms of schizophrenia.

Supplementary Material

Supplementary data are available at *Schizophrenia Bulletin* online.
Funding
This study represents independent research funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care. Part of this research has been conducted using the UK Biobank Resource under Application Number 18177 (PI Cathryn Lewis). The work at Cardiff University was supported by Medical Research Council Centre Grant no. MR/L010305/1 and Program Grant no. G0800509. R.M. is partly supported by a grant from David Posnett.

Conflicts of Interest
The authors have declared that there are no conflicts of interest in relation to the subject of this study. M.C.O.D., J.T.R.W. and M.J.O. have received a collaborative research grant from Takeda Pharmaceuticals. Takeda played no part in the conception, design, implementation, or interpretation of this study.

Acknowledgment
We thank the participants of the included cohorts and the scientists involved in the construction of these resources.

References
1. Cannon M, Jones PB, Murray RM. Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry. 2002;159(7):1080–1092.
2. Davies C, Segre G, Estradé A, et al. Prenatal and perinatal risk and protective factors for psychosis: a systematic review and meta-analysis. Lancet Psychiatry. 2020;7(5):399–410.
3. Murray RM, Lewis SW. Is schizophrenia a neurodevelopmental disorder? Br Med J (Clin Res Ed). 1987;295(6600):681–682.
4. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44(7):660–669.
5. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia- associated genetic loci. Nature. 2014;511(7510):421–427.
6. Lam M, Chen CY, Li Z, et al.; Schizophrenia Working Group of the Psychiatric Genomics Consortium; Indonesia Schizophrenia Consortium; Genetic REsearch on schizophrenia netWork-China and the Netherlands (GREAT-CN). Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat Genet. 2019;51(12):1670–1678.
7. Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020;12(1):44.
8. Gage SH, Davey Smith G, Ware JJ, Flint J, Munafò MR. G = E: what GWAS can tell us about the environment. PLoS Genet. 2016;12(2):e1005765.
9. Ursini G, Punzi G, Chen Q, et al. Convergence of placenta biology and genetic risk for schizophrenia. Nat Med. 2018;24(6):792–801.
10. Nucifora LG, MacDonald ML, Lee BJ, et al. Increased protein insolubility in brains from a subset of patients with schizophrenia. Am J Psychiatry. 2019;176(9):730–743.
11. Ripke S, O'Dushlaine C, Chambert K, et al.; Multicenter Genetic Studies of Schizophrenia Consortium; Psychosis Endophenotypes International Consortium; Wellcome Trust Case Control Consortium 2. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet. 2013;45(10):1150–1159.
12. Walshe M, McDonald C, Taylor M, et al. Obstetric complications in patients with schizophrenia and their unaffected siblings. Eur Psychiatry. 2005;20(1):28–34.
13. Lasalvia A, Tosato S, Brambilla P, et al.; PICOS-Veneto Group. Psychosis Incident Cohort Outcome Study (PICOS). A multisite study of clinical, social and biological characteristics, patterns of care and predictors of outcome in first-episode psychosis. Background, methodology and overview of the patient sample. Epidemiol Psychiatr Sci. 2012;21(3):281–303.
14. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–209.
15. Lynham AJ, Hubbard L, Tansey KE, et al. Examining cognition across the bipolar/schizophrenia diagnostic spectrum. J Psychiatry Neurosci. 2018;43(4):245–253.
16. Lewis SW, Owen MJ, Murray RM. Obstetric complications and schizophrenia: methodology and mechanisms. In: Schulz SC, Tamminga CA, eds. Schizophrenia: A Scientific Focus. New York, NY: Oxford University Press; 1989:56–68.
17. Walshe M, McDonald C, Boydell J, et al. Long-term maternal recall of obstetric complications in schizophrenia research. Psychiatry Res. 2011;187(3):335–340.
18. Vassos E, Sham P, Kempston M, et al. The Maudsley environmental risk score for psychosis. Psychol Med Oct. 2020;50(13):2213–2220.
19. Calafato MS, Thysen JS, Ranlund S, et al.; Genetic Risk and Outcome of Psychosis (GROUP) consortium. Use of schizophrenia and bipolar disorder polygenic risk scores to identify psychotic disorders. Br J Psychiatry. 2018;213(3):535–541.
20. Coleman JRI, Peyrot WJ, Purves KL, et al. Genome-wide gene-environment analyses of major depressive disorder and reported lifetime traumatic experiences in UK Biobank. Mol Psychiatry. 2020;25(7):1430–1446.
21. Pardiñas AF, Holmans P, Pocklington AJ, et al.; GERAD1 Consortium; CRESTAR Consortium. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50(3):381–389.
22. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.
23. Choi SW, O'Reilly PF. PRSice-2: polygenic risk score software for biobank-scale data. PLoS One. 2019;8(7):e0208221.
24. Keller MC. Gene × environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solution. Biol Psychiatry. 2014;75(1):18–24.
25. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560.
26. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. *PloS Comput Biol.* 2015;11(4):e1004219.

27. McNeil TF, Cantor-Graae E, Torrey EF, et al. Obstetric complications in histories of monozygotic twins discordant and concordant for schizophrenia. *Acta Psychiatr Scand.* 1994;89(3):196–204.

28. Geddes JR, Verdoux H, Takei N, et al. Schizophrenia and complications of pregnancy and labor: an individual patient data meta-analysis. *Schizophr Bull.* 1999;25(3):413–423.

29. McNeil TF, Cantor-Graae E, Sjöström K. Obstetric complications as antecedents of schizophrenia: empirical effects of using different obstetric complication scales. *J Psychiatr Res.* 1994;28(6):519–530.

30. Cross-Disorder Group of the Psychiatric Genomics Consortium. Electronic address: plee0@mgh.harvard.edu; Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. *Cell.* 2019;179(7):1469–1482.e1411.

31. Bipolar D; Schizophrenia Working Group of the Psychiatric Genomics Consortium. Electronic address: douglas.ruderfer@vanderbilt.edu; Bipolar Disorder, Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 Subphenotypes. *Cell.* 2018;173(7):1705–1715. e1716.

32. Hunter DJ. Adventures in the environment and genes. *Eur J Epidemiol.* 2019;34(12):1111–1117.

33. Briley DA, Livengood J, Derringer J, Tucker-Drob EM, Fraley RC, Roberts BW. Interpreting behavior genetic models: seven developmental processes to understand. *Behav Genet.* 2019;49(2):196–210.

34. Dudbridge F, Fletcher O. Gene-environment dependence creates spurious gene-environment interaction. *Am J Hum Genet.* 2014;95(3):301–307.

35. Domingue BW, Trejo S, Armstrong-Carter E, Tucker-Drob EM. Interactions between polygenic scores and environments: methodological and conceptual challenges. *Soc Sci.* 2020;7(19):465–486.