Представлены результаты многолетнего мониторинга загрязнения мицелиосином дезоксиниваленолом (ДОН) продовольственного зерна пшеницы, ячменя, кукурузы, овса и ржи. С 1989 по 2018 г. проанализировано 6800 образцов зерна из Центрального, Южного, Приволжского, Уральского, Сибирского, Северо-Кавказского, Дальневосточного, Северо-Западного федеральных округов РФ. В зависимости от года урожая частота обнаружения ДОН в пробах продовольственного зерна пшеницы варьировалась от нуля до 42 %; максимальное содержание токсина достигало 6,65 мг/кг. За весь изученный период была выявлена контаминация 10 % проб, четверть из них — на уровне выше максимально допустимого. В годы массовых эпифитотий (1989, 1992 и 1993 гг.) и в урожаях 2014 и 2017 гг. частота обнаружения ДОН составляла 24–42 %; при этом превышение максимальных допустимых уровней ДОН было зафиксировано в 9–27 % исследованных проб. 78 % загрязненных проб были получены из Южного и Северо-Кавказского и 10 % — из Дальневосточного федеральных округов. На примере проб пшеницы, поступивших из Краснодарского края, установлена достоверная взаимосвязь между частотой обнаружения токсина и количеством дождливых и солнечных дней в мае. Анализ динамики контаминации показал, что в последние несколько лет наблюдается тенденция к росту частоты обнаружения ДОН в зерне пшеницы не только из регионов распространения фузариоза, но и в Северо-Западном, Сибирском и Приволжском федеральных округах. Оценка риска здоровью, связанного с поступлением ДОН с продуктами переработки зерна пшеницы, показала, что для населения Южного и Северо-Кавказского федеральных округов в 1992, 1993, 2014 и 2017 гг. была превышена величина условного норматива суточного поступления. Средняя частота обнаружения ДОН в пробах ячменя, кукурузы, ржи и овса составляла 4,2; 11,9; 3,0 и 0,6 %, а его максимальное содержание – 8,95; 9,5; 9,6 и 0,44 мг/кг соответственно. Так же как и для пшеницы, основная часть контаминированных проб поступила из Южного, Северо-Кавказского и Дальневосточного федеральных округов. Для всех исследованных зерновых отмечена тенденция к нарастанию загрязненности, что обусловливает необходимость принятия мер по контролю безопасности продовольственного зерна.

Ключевые слова: мониторинг, микотоксины, продовольственное зерно, пшеница, ячмень, овес, кукуруза, рожь, фузариоз колоса, распространенность, дезоксиниваленол, оценка риска здоровью, погода, корреляционный анализ.
Зерновые и продукты их переработки являются основой рациона большинства россий, поэтому качество и безопасность зерна – важнейший элемент продовольственной безопасности РФ. Фитопатогены, в том числе и токсигенные микромицеты, повсеместно являются неотъемлемой частью агробиоценозов. Несоблюдение севооборотов, нарушение технологии возделывания зерновых культур, некачественный посевной материал в совокупности с неблагоприятными по- годными условиями способствуют развитию “половых” грибов, среди которых один из наиболее распространенных – микромицеты родов Fusarium. Токсичные вторичные метаболиты микроскопических грибов – микотоксины – представляют опасность для здоровья человека. Начальный риск для здоровья человека связан с хроническим поступлением с пищевыми продуктами малых количеств микотоксинов [1–3].

Дезоксиниваленол (ДОН) является наиболее широко распространенным в мире фузариотоксином. Выделенный в 1972 г. в Японии и США, в последующие годы был подтвержден как постоянный контаминант зерновых злаковых культур в большинстве регионов мира. Чаще всего ДОН обнаруживают в пшенице, реже – в кукурузе, ячмене, ржи и овсе, чаще всего ДОН обнаруживают в южные годы он был подтвержден как постоянный контаминант зерновых злаковых культур в большинстве регионов мира. Чаще всего ДОН обнаруживают в пшенице, реже – в кукурузе, ячмене, ржи и овсе, а также продуктах переработки зерна [4–12]. Его основными продуцентами являются микроскопические грибы видов F. graminearum, F. culmorum, F. nivale, вызывающие фузариоз зерна и колоса [3, 6, 10, 11, 13]. Накопление токсина зависит от токсигенных свойств штамма гриба-продуцента, климатических и погодных условий, техники выращивания и защиты растений, условий хранения [14–16]. Высокая влажность воздуха во время и после периода цветения способствует фузариозу колоса. Содержание ДОН в пораженном зерне нарастает с момента цветения до молочно-восковой спелости и затем резко снижается в период восковой и полной спелости [15, 17]. Умеренный климат, характерный для Северной Америки, Китая и Европы, является оптимальным для распространения фузариоза колоса в пшенице [2, 6, 11, 16, 18]. В РФ наиболее подвержено этому заболеванию зерно, выращиваемое в Северо-Кавказском, Южном и Дальневосточном федеральных округах (ФО) [2, 13, 15, 19].

В экспериментальных моделях на животных осторожное отравление ДОН вызывает рвоту (отсюда другое название ДОН – вомитоксин). Установлено, что ДОН является причиной алиментарных токсикозов не только сельскохозяйственных животных [11, 16, 20], но и человека [2, 20]. Исследования показали, что на молекулярном уровне он связывается с рибосомой и ингибирует синтез белка и, таким образом, нарушает нормальную функцию клеток [2]. В низких дозах ДОН подавляет иммунитет. Однако воздействие летальной дозы токсина может привести к лейкоцитозу, кровотечению, диарее и эндотоксикозу [21]. На основании токсикологических исследований Комитет экспертов ФАО/ВОЗ письмом ДОМ производств (3-ациетилDON и 15-ациетилDON) величины условного переносимого суточного поступления и острого референтной дозу для человека на уровне 1 и 8 мкг/кг массы тела в сутки (м.т./сут) соответственно [20]. Широкая распространенность токсина и бесспорные доказательства реальной опасности для здоровья человека явились причиной введения гигиенических регламентов его содержания в продовольственном сырье в ряде стран. Комиссий Codex Alimentarius установлены международные регламенты содержания ДОН в необработанных пищевых продуктах, ячмене и кукурузе на уровне 2000 мкг/кг [22]. В странах Европейского союза максимальные допустимые уровни (МДУ) ДОН регламентируются согласно [23]: в необработанном зерне твердой пшеницы, овса и кукурузы на уровне 1750 мкг/кг, других необработанных видах зерна – 250 мкг/кг, для зерновых и пищевых продуктов, предназначенных для потребителей, – 750 мкг/кг. В РФ действуют регламенты Таможенного союза (ТР ТС) № 021/2011 «О безопасности пищевой продукции»1, 015/2011 «О безопасности зерна»2, в соответствии с которыми МДУ ДОН в продовольственном зерне пшеницы, ячменя, кукурузы, овса и овса урожаях 1989–2018 гг. соответственно: 0,7 и 1,0 мг/кг соответственно.

Для изучения загрязненности продовольственного зерна микотоксинами осуществляется много летний микотоксинологический мониторинг безопасности зерна из ареалов распространения фузариоза, а также из других зернопроизводящих регионов. Наиболее значимыми являются загрязнения ДОН, так как их воздействие приводит к заболеванию зерна пшеницы, ячменя, кукурузы, овса и овса 1989–2018 гг. с целью выявления основных видов риска и обоснования мероприятий по его снижению.

Материалы и методы. Пробы продовольственного зерна (всего 6800 проб) были предоставлены для исследования Управлениянами Роспотребнадзора из следующих ФО РФ: Центрального, Южного, Приволжского, Уральского, Сибирского, Северо-

1 TR ТС 021/2011. О безопасности пищевой продукции: технический регламент Таможенного союза [Электронный ресурс] // Евразийская экономическая комиссия. – URL: http://www.eurasiancommission.org/ru/act/textreg/deptextreg/tr/Pages/PischevayaProd.aspx (дата обращения: 12.03.2021).
2 TR ТС 015/2011. О безопасности зерна: технический регламент Таможенного союза [Электронный ресурс] // КОДЕКС: электронный фонд правовой и нормативно-технической документации. – URL: https://docs.cntd.ru/document/902320395 (дата обращения: 12.03.2021).
Дезоксиниваленол как фактор загрязнения продовольственного сырья: результаты мониторинга …

Кавказского, Дальневосточного, Северо-Западного. Всего за период с 1989 по 2018 г. было исследовано 4009 проб зерна пшеницы, 1293 – ячменя, 1020 – ржи, 278 – кукурузы и 200 – овса.

Пробы зерна были отобраны от однородных партий, хранящихся на хлебоприемных и перерабатывающих предприятиях по ГОСТ Р ИСО 24333-2011, содержание ДОН в пробах определяли методами иммуноферментного анализа (ИФА) (2009–2012 гг.), высокоскоростной жидкостной хроматографии со спектрофотометрической и хромато-масс-спектрометрической детекцией (ВЭЖХ-УФ) (1989–2018 гг.) и Microsoft Office Excel 2007 (Microsoft Corp., USA). С учетом пшеницы рассчитывали по формуле (1):

\[N_{расч} = \frac{M \cdot P \cdot 1000}{w} \]

где \(N_{расч} \) – расчетное суточное поступление ДОН (мкг/кг м.т.); \(M \) – среднее содержание ДОН в зерне пшеницы (мг/кг); \(P \) – потребление продуктов переработки пшеницы (кг/сут); \(w \) – масса тела (кг); средняя масса тела человека принята за 60 кг; 1000 – переводной коэффициент в мкг.

Результаты и их обсуждение. Загрязненность продовольственного зерна пшеницы урожая 1989–2018 гг. в целом по РФ. Частота обнаружения и средние уровни контаминации ДОН продовольственного зерна пшеницы варьировались от нуля до 42 % и от 0 до 0,43 мг/кг соответственно в зависимости от года урожая (табл. 1). В целом 10,0 % из 4009 партий зерна урожаев с 1989 по 2018 гг. были контамированы; их диапазон загрязнения варьировался от 0,05 до 6,65 мг/кг (см. табл. 1). В 101 (2,5 %) пробе пшеницы содержание ДОН превышало МДУ.

- 26 % проб урожая 1989 г. содержали ДОН, в том числе 9 % в количествах, превышающих МДУ. В 1992 г. частота обнаружения токсина была максимальной за весь период исследований и составила 42 %, в том числе 27 % содержали ДОН выше МДУ. Частота обнаружения ДОН в продовольственном зерне пшеницы урожая 1993 г. была также высокой и составила 24 % от общего числа исследованных проб; количество проб, превышающих МДУ, достигло 15 %. Содержание ДОН в контамированных образцах варьировалось в 1989 г. от 0,05 до 6,65 мг/кг, в 1992 г. – от 0,05 до 5,63 мг/кг и в 1993 г. – от 0,1 до 3,95 мг/кг.

Авторы выражают признательность работникам Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, ее региональных Центров гигиены и эпидемиологии за многолетнее сотрудничество, отбор и предоставление проб зерна для исследований ФГБУН «ФИЦ питания и биотехнологии» и медианы (М) и 90-го percentile (90 %) (уровни загрязнения ниже минимальной определяемой концентрации методов, 0,05 мг/кг) были приняты за «0»). Проведен двухфакторный дисперсионный и корреляционный анализ данных в рамках латинского квадрата 3 класс-интервала: низкий уровень и высокий уровень – 1 и 2 соответственно. После использования класс-интервального группирования признака на два класс-интервала: низкий уровень и высокий уровень – 1 и 2 соответственно. После использования методов дисперсионного анализа, в случае отклонения нуля-гипотезы и уровней на фиксируемом фактически более двух, применяли методы множественного сравнения средних с использованием метода Тьюки. Уровень значимости 0,05.

Оценку риска здоровью, обусловленного загрязненностью ДОН продовольственного зерна пшеницы, проводили на основании сравнения величин суммарного суточного поступления ДОН с продуктами на основе пшеницы с величиной его условного перевесного суточного поступления. Расчетное суточное поступление ДОН с продуктами на основе пшеницы рассчитывали по формуле (1):

\[\text{расч} = \frac{M \cdot P \cdot 1000}{w} \]

где \(N_{расч} \) – расчетное суточное поступление ДОН (мкг/кг м.т.); \(M \) – среднее содержание ДОН в зерне пшеницы (мг/кг); \(P \) – потребление продуктов переработки пшеницы (кг/сут); \(w \) – масса тела (кг); средняя масса тела человека принята за 60 кг; 1000 – переводной коэффициент в мкг.

Результаты и их обсуждение. Загрязненность продовольственного зерна пшеницы урожая 1989–2018 гг. в целом по РФ. Частота обнаружения и средние уровни контаминации ДОН продовольственного зерна пшеницы варьировались от нуля до 42 % и от 0 до 0,43 мг/кг соответственно в зависимости от года урожая (табл. 1). В целом 10,0 % из 4009 партий зерна урожаев с 1989 по 2018 гг. были контамированы; их диапазон загрязнения варьировался от 0,05 до 6,65 мг/кг (см. табл. 1). В 101 (2,5 %) пробе пшеницы содержание ДОН превышало МДУ.

- 26 % проб урожая 1989 г. содержали ДОН, в том числе 9 % в количествах, превышающих МДУ. В 1992 г. частота обнаружения токсина была максимальной за весь период исследований и составила 42 %, в том числе 27 % содержали ДОН выше МДУ. Частота обнаружения ДОН в продовольственном зерне пшеницы урожая 1993 г. была также высокой и составила 24 % от общего числа исследованных проб; количество проб, превышающих МДУ, достигло 15 %. Содержание ДОН в контамированных образцах варьировалось в 1989 г. от 0,05 до 6,65 мг/кг, в 1992 г. – от 0,05 до 5,63 мг/кг и в 1993 г. – от 0,1 до 3,95 мг/кг.

Авторы выражают признательность работникам Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, ее региональных Центров гигиены и эпидемиологии за многолетнее сотрудничество, отбор и предоставление проб зерна для исследований ФГБУН «ФИЦ питания и биотехнологии».

ГОСТ Р ИСО 24333-2011. Зерно и продукты его переработки. Отбор проб [Электронный ресурс] // КОДЕКС: электронный фонд правовой и нормативно-технической документации. – URL: https://docs.cntd.ru/document/1200092274 (дата обращения: 11.03.2021).

МУ 5177-90. Методические указания по обнаружению, идентификации и определению содержания дезоксиниваленола (вомитоксина) и зеараленона в зерне и зернопродуктах [Электронный ресурс]. – URL: http://www.gostrf.com/normadata/1/4293828/4293828870.pdf (дата обращения: 13.03.2021).

МВИ 410/4-2020. Метод мультидетекции микотоксинов в зерне и первичных продуктах его переработки. – М., 2020.
Таблица 1

Год	Количество проб всего, шт.	Количество проб содержащих ДОН, шт.	Содержание ДОН в контаминированных пробах, мг/кг	Содержание ДОН в пробах всего ряда, мг/кг	
	штук (%) от общего количества		M	Me	90 %
1989	57	15 (26)	0,05 – 6,65	0,23	0,44
1990/91	67	4 (6)	0,05 – 0,74	0,02	0
1992	139	59 (42)	0,05 – 5,63	0,43	1,06
1993	156	38 (24)	0,10 – 3,95	0,20	0,63
1994	254	16 (6)	0,17 – 0,96	0,03	0
1995	169	11 (6)	0,07 – 0,70	0,03	0
1996	120	15 (13)	0,06 – 0,70	0,02	0,07
1997	137	15 (11)	0,05 – 1,14	0,02	0,05
1998	126	12 (10)	0,05 – 1,09	0,03	0,03
1999	132	0 (0)	<0,05	0	0
2000	222	6 (3)	0,09 – 0,77	0,01	0
2001	252	12 (5)	0,05 – 0,62	0,01	0
2002	158	6 (4)	0,05 – 0,78	0,01	0
2003	375	5 (1)	0,05 – 0,07	0	0
2004	213	2 (1)	0,07 – 0,08	0	0
2005	147	12 (8)	0,07 – 0,69	0,02	0
2006	85	11 (13)	0,05 – 0,34	0,02	0,06
2007	98	9 (9)	0,06 – 0,91	0,05	0
2008	73	4 (5)	0,06 – 1,03	0,02	0
2009	109	8 (7)	0,06 – 0,12	0,01	0
2010	122	10 (8)	0,06 – 1,26	0,03	0
2011	158	13 (8)	0,05 – 0,44	0,01	0
2012	34	0 (0)	<0,05	0	0
2013	111	9 (8)	0,05 – 0,52	0,01	0
2014	57	21 (37)	0,07 – 5,85	0,29	0,66
2015	64	6 (9)	0,05 – 0,33	0,01	0
2016	154	29 (19)	0,05 – 1,43	0,05	0,54
2017	105	32 (31)	0,05 – 2,46	0,18	0,51
2018	115	18 (16)	0,10 – 1,27	0,06	0,20
ВСЕГО	4009	399 (10,0)	0,05 – 6,65	0,05	0,05

П р и м е ч а н и е: МДУ ДОН, мг/кг, не более: 0,7 – пшеница (ТР ТС 015/2011 «О безопасности зерна»).

На протяжении последующих 20 лет, с 1994 по 2013 г., частота обнаружения ДОН в образцах пшеницы урожаев была относительно низкой и варьировалась от 0 до 9 %. Превышение МДУ было зафиксировано в единичных случаях, максимальное содержание ДОН в контаминированных пробах составило 1,26 мг/кг. На диаграмме распределения урожаев по средним уровням содержания ДОН максимум приходится на величины 0,01–0,03 мг/кг. Начиная с 2014 г. частота загрязнения продовольственного зерна пшеницы возрастает до 9–37 %. Увеличивается число проб с содержанием ДОН выше МДУ. Исключением является урожай 2015 г., в пробах которого не обнаружено ДОН в количествах выше МДУ.

Таким образом, наименее загрязненными ДОН оказались урожаи 1999, 2003, 2004, 2012 гг.: контаминация не более 1 % образцов, уровень загрязнения низкий. В урожаях зерна 1990–1991, 1994–1998, 2000–2002, 2005–2011, 2013 и 2015 гг. частота загрязнения ДОН варьировалась от 3 до 13 %, среднее содержание ДОН – от 0 до 0,05 мг/кг, 90-й процентиль – от 0 до 0,07 мг/кг. В единичных пробах урожаев 1990–1991, 1997, 1998, 2000, 2002, 2007, 2008 и 2010 гг. были выявлены уровни загрязнения токсином, превышающие МДУ. Всплеск загрязненности ДОН был отмечен не только в годы массовых эпифитотий (1989, 1992 и 1993 гг.), но и в урожаях последних лет – 2014, 2016, 2017 и 2018 гг. В эти годы частота загрязнения ДОН варьировалась от 16 до 37 %, среднее содержание – от 0,06 до 0,29 мг/кг, 90-й процентиль – от 0,20 до 0,66 мг/кг. Пробы зерна, содержащие ДОН выше МДУ, встречались чаще всего в пшенице урожаев 1989, 1992, 1993, 2014 и 2017 гг. (9–27 % всех исследованных проб).

Загрязненность продовольственного зерна пшеницы урожаев 1999–2018 гг. по регионам. Содержание ДОН в продовольственном зерне пшеницы варьировалось в зависимости от района его производства (рис. 1). Анализ распределения контаминированного зерна пшеницы урожаев 1999–2018 гг. показал, что 78 % образцов (159 из 205 положительных проб) приходилось на пшеницу из Южного ФО (республики Адыгея, Калмыкия, Крым, Астраханская, Калмыкия).
Анализ динамики загрязненности зерна ДОН проведен на примере ряда зернопроизводящих регионов РФ (табл. 2).

В период с 1999 по 2018 г. образцы зерна пшеницы, выращенной в Южном ФО, поступали на исследования практически ежегодно. ДОН был обнаружен в зерне 9 из 17 урожаев разных лет в количестве от 0,05 до 0,77 мг/кг, при этом частота обнаружения токсина была ниже, чем в Краснодарском крае и Республике Адыгея. Только в одной из 271 исследованных проб в зерне урожая 2000 г. содержание ДОН превысило МДУ.

Пробы пшеницы (271) из Ростовской области поступали на исследование практически ежегодно. ДОН был обнаружен в зерне 9 из 17 урожаев разных лет в количестве от 0,05 до 0,77 мг/кг, при чем частота обнаружения токсина была ниже, чем в Краснодарском крае и Республике Адыгея. Только в одной из 271 исследованных проб в зерне урожая 2000 г. содержание ДОН превысило МДУ.

Пробы зерна урожаев 1999–2018 гг., выращенных в Северо-Кавказском ФО, поступали на исследование, главным образом, из Ставропольского края, реже из республик Кабардино-Балкария, Дагестан и Северная Осетия-Алания (урожаев девяти лет). Всего за исследованный период из этого региона поступило 333 пробы пшеницы, включая 215 – из Ставропольского края, 56 – из республик Кабардино-Балкарии и Северной Осетии-Алании (см. табл. 2). В зерне урожаев 1999–2018 гг. частота обнаружения ДОН в контаминированных пробах из Ставропольского края варьировалась от 6 % (2009 г.) до 60 % (2017 г.), а максимальные уровни загрязнения в отдельных пробах урожаев 2014, 2017 и 2018 гг. достигали соответственно 1,56; 0,97 и 0,73 мг/кг.

Продолжающийся в течение девяти лет мониторинг загрязнения зерна пшеницы из республик Кабардино-Балкария и Северной Осетии-Алании выявил загрязненность токсином в 7 из 9 исследованных урожаев зерна (см. табл. 2). Превышение МДУ ДОН обнаружено в зерне урожаев 2007, 2010 и 2014 гг., и уровни загрязнения достигали 0,91, 0,71 и 0,83 мг/кг соответственно.

Содержание ДОН было учтено в 56 пробах пшеницы урожаев 14 разных лет из Дальневосточного ФО. Токсин был обнаружен в пшенице 9 из 14 урожаев зерна из Приморского края, с превышением МДУ в отдельных пробах зерна урожаев 2008, 2010, 2016 и 2017 гг. (см. табл. 2). В 4 из 7 урожаев разных лет зерна
Динамика загрязненности ДОН проб зернового зерна пшеницы урожаев 1999–2018 гг.
из различных ФО РФ

| Регион | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
|--------|
| Краснодарский край, n = 203 | 1/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 1/0/0 | 1/0/0 | 1/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 |
| Орловская область, n = 150 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 |
| Белгородская область, n = 109 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 |
| Дальневосточный ФО, n = 330 проб | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 |
| Сибирский ФО, n = 200 проб | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 |
| Уральский ФО, n = 69 проб | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 |
| Северо-Западный ФО, n = 35 проб | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 | 0/0/0 |

Примечание: * – количество изученных проб, ** – количество ЗОН, *** – количество ДОК, **** – количество СПЦ, ***** – количество СП.
Дезоксиниваленол как фактор загрязнения продовольственного сырья: результаты мониторинга...

Рис. 2. Динамика загрязненности ДОН пшеницы урожаев 2006–2018 гг., выращенной в Краснодарском крае (n – число проб)

2006–2018 гг., полученных из Краснодарского края, была оценена связь загрязненности пшеницы ДОН (рис. 2) и следующих факторов: среднемесячной влажности и температуры воздуха, количества солнечных часов (продолжительность солнечного сияния – время в течение месяца, когда солнце в данной местности находится над горизонтом и не скрыто облаками) и количества дней с уровнем осадков более 1 мм в период с мая по август. Метеорологические данные предоставлены онлайн-архивом климатических исследований «Аисори – Удаленный доступ к ЯОД-архивам».

Методом корреляционного анализа была подтверждена достоверно значимая взаимосвязь между частотой обнаружения токсина и средним содержанием ДОН в загрязненных пробах пшеницы урожаев 2006–2018 гг.: коэффициент корреляции $r = 0,68$, достоверность $p = 0,02$ при уровне значимости $\alpha = 0,05$. Принимая во внимание, что коэффициент вариации для частоты обнаружения ДОН был значительно ниже, именно этот показатель использовали в дальнейшем статистическом анализе в качестве ведущего. Никакой взаимосвязи между частотой обнаружения ДОН и исследованными погодными факторами в период с июня по август установлено не было. В то же время погодные условия в мае, а именно продолжительность солнечного времени и количество дней с уровнем осадков свыше 1 мм при уровне значимости 0,05, достоверно оказывали наибольшее значимое влияние на загрязненность ДОН (табл. 3). Полученные данные хорошо согласуются с тем фактом, что зерно пшеницы наиболее восприимчиво к грибной инфекции в период молочной спелости, который приходится в Краснодарском крае на середину мая – середину июня. Солнечная ясная погода и снижение количества дождливых дней в мае способствуют снижению загрязненности пшеницы ДОН и наоборот.

Полученная взаимосвязь была подтверждена использованием непараметрического анализа Манна–Уитни. Для его применения показатель в рамках месяца разбивался на два класс-интервала: нижний и верхний, а величины частоты обнаружения ДОН записывались в соответствующий класс-интервал. Анализ показал, что для среднемесячных показателей влажности и температуры в мае достоверность выше уровня значимости ($p > 0,05$), и, следовательно, их влияние на уровень загрязненности незначительно. Для показателей продолжительности солнечного времени и количества дождливых дней с уровнем осадков более 1 мм в мае величина значимости $p < 0,05$, что свидетельствует о достоверной связи между этими показателями и загрязненностью зерна.

В период с 2006 по 2018 г. наблюдался рост загрязненности пшеницы. В ходе корреляционного анализа установлена прямо пропорциональная связь между годом урожая и показателем частоты загрязнения: коэффициент корреляции $r = 0,60$, достоверность $p = 0,049$ при уровне значимости $\alpha = 0,05$. Несмотря на то что эту связь невозможно использовать в прогностических целях вследствие того, что $\alpha \approx p$, игнорировать ее существование нельзя.

Был проведен двухфакторный дисперсионный анализ класса зерна, года урожая и содержания ДОН в пробе (табл. 4). В качестве фиксированного фактора A был использован год урожая, фиксированного фактора B – класс.

Анализ загрязненности продовольственного зерна ячменя, овса, ржи и кукурузы урожаев 1989–2018 гг. Совокупные данные о загрязненности ДОН продовольственного зерна ячменя, овса, ржи и кукурузы урожаев 1989–2018 гг. суммированы в табл. 5.

Таблица 3

Параметр	Коэффициент корреляции r (достоверность p)	
Май	Июнь	
Среднемесячная влажность воздуха	0,49 (0,120)	-0,05 (0,868)
Среднемесячная температура воздуха	-0,46 (0,150)	-0,03 (0,916)
Продолжительность солнечного времени в месяце	-0,65 (0,029)	-0,08 (0,805)
Количество дней с осадками свыше 1 мм	0,74 (0,008)	-0,21 (0,525)

8 Веселов В.М., Прибыльская И.Р., Мирзахабасов О.А. Специализированные массивы для климатических исследований. «Аисори – Удаленный доступ к ЯОД-архивам». ВНИИГМИ-МЦАисори Д [Электронный ресурс]. – URL: http://aisori-m.meteo.ru/waisori/index0.xhtml (дата обращения: 03.03.2021).
Двухфакторный дисперсионный анализ класса зерна, года урожая и уровня загрязненности

Источник	Сумма квадратов типа III	Степень свободы	Средний квадрат	F-критерий	Значимость
Скорректированная модель	3,422⁷	3	1,141	1,300	0,284
Год	0,503	1	0,503	0,573	0,452
Показатель качества зерна (класс пшеницы)	0,811	1	0,811	0,924	0,341
Год × Класс	2,034	1	2,034	2,319	0,134
Ошибка	47,380	54	0,877	–	–
Всего	68,325	58	–	–	–

П р и м е ч а н и е : ⁷ R-квадрат = 0,067 (скорректированный R-квадрат = 0,016)

Частота и уровни загрязнения ДОН продовольственного зерна ячменя, овса и кукурузы урожаев 1989–2018 гг.

Вид зерна	Количеств проб	Содержание ДОН в пробах всего ряда, мг/кг	Содержание ДОН в контаминированных пробах, мг/кг	М	Me	90 %	
Ячмень	1293	54 (4,2)	0,05 – 8,95	0,02	0	0	
Кукуруза	278	33 (11,9)	МДУ не установлен	0,05 – 0,95	0,04	0	0,07
Овес	200	6 (3,0)	МДУ не установлен	0,06 – 0,96	0,01	0	0
Рожь	1020	6 (0,6)	МДУ не установлен	0,06 – 0,44	0,00	0	0

П р и м е ч а н и е : МДУ ДОН, мг/кг, не более: 1,0 – ячмень (ТР ТС 015/2011 «О безопасности зерна»).

Загрязненность ДОН ячменя продовольственного назначения была изучена на примере 1293 проб урожаев 1989–2018 гг. Частота обнаружения ДОН в ячмене была ниже, чем в пшенице (10 %) и кукурузе. ДОН был выявлен в 4 % проб (54) в количестве от 0,05 до 8,95 мг/кг, причем в 5 пробах содержание ДОН превысило МДУ. Самая высокая частота обнаружения ДОН в зерне урожаев 2017 и 2014 гг. – 44 и 30 % соответственно, немного ниже — в зерне урожаев 2015 г. (22%), 2016 г. (19,9%), 1989 г. (16 %), 1992 и 2009 г. (по 14 %). В остальные годы частота загрязнения варьировалась от 0 до 7 %. Примечательно, что в последние несколько лет, с 2014 г., наблюдался рост частоты загрязнения ДОН ячменя.

Около 86 % от общего производства ячменя сосредоточены в Центральном, Приволжском, Южном и Сибирском ФО [25]. Наибольшее количество проб на исследование поступило из Центрального и Южного ФО. В 11 % проб ячменя из Южного ФО был обнаружен токсин в количестве от 0,05 до 1,7 мг/кг, содержание ДОН в одной пробе урожая 2017 г. превысило МДУ. Наиболее загрязненными оказались ячмень из Краснодарского края: в 23 % случаев из 64 изученных проб содержание ДОН превышали МДУ. Для сравнения: содержание ДОН в загрязненных пробах пшеницы составляло 0,05 – 6,65 мг/кг. Анализ динамики загрязненности отечественного зерна кукурузы показал, что токсин обнаруживали только в зерне урожаев 2000, 2002, 2012–2018 гг., а наибольшая частота загрязнения отмечалась в урожаях последних лет (2014, 2016–2018 гг.).
Основными производителями кукурузы являются Южный, Северо-Кавказский и Центральный ФО. Наибольшее количество проб на исследование поступило из Южного (217 проб) и Северо-Кавказского ФО (47 проб). Наиболее часто токсин обнаруживали в кукурузе из Северо-Кавказского ФО – в 32 % случаев из 47 изученных партий в количестве от 0,05 до 0,68 мг/кг, в среднем – 0,09 мг/кг. Реже, в 6 % случаев, токсин обнаруживали в пробах из Южного ФО в количестве от 0,05 до 0,95 мг/кг, в среднем – 0,02 мг/кг. В единичных партиях кукурузы из Центрального ФО был обнаружен ДОН в количестве 0,29 и 0,32 мг/кг. Стоит отметить, что 4 из 6 изученных проб кукурузы из Дальневосточного ФО были загрязнены ДОН в диапазоне от 0,13 до 0,55 мг/кг.

Загрязненность ДОН овса продовольственного назначения изучили для 200 проб урожаев 1999–2018 гг. Токсин был обнаружен в 3 % случаев в количестве от 0,05 до 0,96 мг/кг, в среднем – 0,008 мг/кг (см. табл. 5). ДОН был обнаружен в овсе урожаев 2009, 2016 и 2017 гг.

Следует отметить, что около 39 % от общероссийского производства овса сосредоточено в Алтайском и Красноярском краях, Новосибирской, Тюменской, Кемеровской и Омской областях и в Республике Башкортостан. В пробах, поступивших из этих регионов, токсин выявлен не был. Загрязненными оказались только пробы из Дальневосточного (4 случая) и Северо-Кавказского ФО (2). Наиболее загрязненными ДОН оказались пробы овса из Амурской области и Приморского края, содержание ДОН в этих пробах варьировалось от 0,09 до 0,96 мг/кг. Реже, и на низких уровнях загрязнения токсин обнаруживали в овсе из республики Ингушетия и Ставропольского края (0,06; 0,09 мг/кг соответственно).

Токсин в зерне ржи выявляли, главным образом, в годы эпифитотий (урожаи 1989, 1992 гг.) в пробах из Северо-Кавказского ФО. В единичных случаях на низких уровнях загрязнения токсин обнаруживали в зерне урожаев 1996 и 2007 гг. – 0,22 и 0,06 мг/кг в зерне из Северо-Кавказского ФО и Центрального ФО соответственно. Около 74,4 % от общего валового сбора по стране сосредоточено в регионах Приволжского ФО, в республиках Башкортостан, Татарстан, Оренбургской и Саратовской областях [26]. Пробы ржи, поступившие из этих областей, не были загрязнены токсином.

Согласно проведенным мониторинговым исследованиям можно заключить, что в РФ среди зерновых культур наиболее часто ДОН загрязнены пшеница и кукуруза, в меньшей степени – ячмень. Рост частоты обнаружения и уровней загрязнения токсином продовольственного зерна урожаев последних лет (2014, 2017 и 2018 гг.) может быть обусловлен не только благоприятными для токсикооб-
Расчетное суточное поступление ДОН с пищевыми продуктами, изготовленными из продовольственного зерна пшеницы урожаев 1989–2018 гг.

Таблица 6

Год урожая	Расчетное суточное поступление (Nрасч.), мкг/кг м.т./сут (% от УПСП)	
	в среднем по России	Южный и Северо-Кавказский ФО
1989	0,96 (96,0)	–
1990–1991	0,07 (7,0)	–
1992	1,40 (140,0)	4,10 (410,0)
1993	0,89 (89,0)	2,18 (218,0)
1994	0,12 (12,0)	0,29 (29,0)
1995	0,12 (12,0)	0,68 (68,0)
1996	0,07 (7,0)	0,18 (18,0)
1997	0,08 (8,0)	0,20 (20,0)
1998	0,12 (12,0)	0,48 (48,0)
1999	0,002 (0,2)	–
2000	0,04 (0,4)	0,30 (30,0)
2001	0,036 (3,6)	0,22 (22,0)
2002	0,028 (2,8)	0,28 (28,0)
2003	0 (0)	0 (0)
2004	0,004 (0,4)	0,03 (3,0)
2005	0,084 (8,4)	0,36 (36,0)
2006	0,096 (9,6)	0,18 (18,0)
2007	0,066 (6,6)	0,24 (24,0)
2008	0,07 (7,0)	0,17 (17,0)
2009	0,025 (2,5)	0,03 (3,0)
2010	0,18 (18,0)	0,14 (14,0)
2011	0,04 (4,0)	0,12 (12,0)
2012	0 (0)	0 (0)
2013	0,04 (4,0)	0,04 (4,0)
2014	1,02 (102,0)	1,12 (112,0)
2015	0,05 (5,0)	0,05 (5,0)
2016	0,16 (16,0)	0,26 (26,0)
2017	0,63 (63,0)	1,09 (109)
2018	0,21 (21,0)	0,56 (56,0)

Расчетное суммарное поступление ДОН на человека в среднем по России в значительной степени различалось по годам. Величины нагрузки ДОН варьировались от 0,2 % (в 1999 г.) до 140 % (в 1992 г.) от УПСП ДОН, но во всех случаях, за исключением 1992 (140 %) и 2014 гг. (102 %), оставались ниже принятого УПСП – 1 мкг/кг м.т. (табл. 6) [20]. Следует отметить, что высокое расчетное поступление ДОН с продуктами из пшеницы урожая 2014 г. для населения России в среднем незначительно отличалось от поступления токсина в зоне риска и было связано, в основном, с тем, что 88 % поступившего на исследование зерна происходило из Южного и Северо-Кавказского ФО. Более подробный анализ расчетных величин суточного поступления ДОН на человека показал, что в течение всего периода наблюдения нагрузка токсином в Южном и Северо-Кавказском ФО была выше, чем в среднем по России, и варьировалась от 3 % (в 2004 и 2009 гг.) до 410 % от УПСП (в 1992 г.). Расчетное поступление ДОН для населения Южного и Северо-Кавказского ФО превышало величину УПСП также в 1993, 2014, 2017 гг. и составляло 218, 112 и 109 % от УПСП соответственно. Отмечалась выше повышенная концентрация ДОНа в зерне, используемом в качестве посевного материала.

Среди исследованных зерновых культур наибольшая частота и уровни контаминации ДОН характерны для пшеницы и кукурузы. Показано, что за исследованный период расчетное суточное поступление ДОН в среднем по России в значительной степени различалось по годам. Величины нагрузки ДОН варьировались от 0,2 % (в 1999 г.) до 140 % (в 1992 г.) от УПСП ДОН, но во всех случаях, за исключением 1992 (140 %) и 2014 гг. (102 %), оставались ниже принятого УПСП – 1 мкг/кг м.т. (табл. 6) [20]. Следует отметить, что высокое расчетное поступление ДОН с продуктами из пшеницы урожая 2014 г. для населения России в среднем незначительно отличалось от поступления токсина в зоне риска и было связано, в основном, с тем, что 88 % поступившего на исследование зерна происходило из Южного и Северо-Кавказского ФО. Более подробный анализ расчетных величин суточного поступления ДОН на человека показал, что в течение всего периода наблюдения нагрузка токсином в Южном и Северо-Кавказском ФО была выше, чем в среднем по России, и варьировалась от 3 % (в 2004 и 2009 гг.) до 410 % от УПСП (в 1992 г.). Расчетное поступление ДОН для населения Южного и Северо-Кавказского ФО превышало величину УПСП также в 1993, 2014, 2017 гг. и составляло 218, 112 и 109 % от УПСП соответственно. Отмечался повышенный процент загрязненности пшеницы обусловленный необходимостью принятия мер по контролю безопасности продовольственного зерна.

Выводы. Анализ результатов многолетнего мониторинга загрязненности микотоксинами продовольственного зерна РФ, проводимого Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека при участии ФГБУН «ФИЦ питания и биотехнологии», подтвердил, что наиболее подвержено контаминации ДОН зерно, выращенное в Южном, Северо-Кавказском и Дальневосточном ФО. В то же время наблюдался рост частоты обнаружения ДОН в зерне из более северных областей, что свидетельствует о распространении зоны риска и увеличении вероятности заражения зерна продукцией микотоксинов. При этом зона распространения загрязнения может возрастать при передаче зерна из одного региона в другой, что свидетельствует о необходимости его контроля, в первую очередь, для зерна, используемого в качестве посевного материала.

Среди исследованных зерновых культур наибольшая частота и уровни контаминации ДОН характерны для пшеницы и кукурузы. Показано, что за исследованный период расчетное суточное поступление ДОН, как в среднем по России, так и в Южном и Северо-Кавказском ФО, варьировало от 0,2 % (в 1999 г.) до 140 % (в 1992 г.) от УПСП ДОН, но во всех случаях, за исключением 1992 (140 %) и 2014 гг. (102 %), оставались ниже принятого УПСП – 1 мкг/кг м.т. (табл. 6) [20]. Следует отметить, что высокое расчетное поступление ДОН с продуктами из пшеницы урожая 2014 г. для населения России в среднем незначительно отличалось от поступления токсина в зоне риска и было связано, в основном, с тем, что 88 % поступившего на исследование зерна происходило из Южного и Северо-Кавказского ФО. Более подробный анализ расчетных величин суточного поступления ДОН на человека показал, что в течение всего периода наблюдения нагрузка токсином в Южном и Северо-Кавказском ФО была выше, чем в среднем по России, и варьировалась от 3 % (в 2004 и 2009 гг.) до 410 % от УПСП (в 1992 г.). Расчетное поступление ДОН для населения Южного и Северо-Кавказского ФО превышало величину УПСП также в 1993, 2014, 2017 гг. и составляло 218, 112 и 109 % от УПСП соответственно. Отмеченная выше тенденция к нарастанию загрязненности пшеницы обусловлена необходимостью принятия мер по контролю безопасности продовольственного зерна.
Дезоксиниваленол как фактор загрязнения продовольственного сырья: результаты мониторинга ...

Список литературы

1. Bryden W.L. Mycotoxins in the food chain: human health implications // Asia Pac. J. Clin. Nutr. – 2007. – Vol. 16. – P. 95–101.

2. Tutelyan V.A., Krawchenko L.V., Sergeev A.Yu. Mикотоксины // Микология сегодня / под ред. Ю.Т. Дьякова, Ю.В. Сергеева. – М.: Национальная академия микологии, 2007. – Т. 1. – С. 283–304.

3. Composition and Predominance of Fusarium Species Causing Fusarium Head Blight in Winter Wheat Grain Depending on Cultivar Susceptibility and Meteorological Factors / T. BIRR, M. HASLER, J.-A. VERRHEE, H. KLINK // Microorganisms. – 2020. – Vol. 8, № 4. – P. 617. DOI: 10.3390/microorganisms8040617

4. Occurrence of 26 Mycotoxins in the Grain of Cereals Cultivated in Poland / M. BRYLA, A. WASKIEWICZ, G. PODOLSKA, K. SZYMCZYK, R. JEDRZEJEZAK, K. DAMAZIAK, A. SULEK // Toxins. – 2016. – Vol. 8, № 6. – P. 160. DOI: 10.3390/toxins8060160

5. Deoxynivalenol and other selected Fusarium toxins in Swedish oats – Occurrence and correlation to specific Fusarium species / E. FREDLUND, A. GISLUND, M. SUYOK, T. BØRJESSON, R. KRSA, M. OLSEN, M. LINDBLAD // Int. J. Food. Microbiol. – 2013. – Vol. 167. – P. 276–283.

6. Xu W., Han X., Li F. Co-occurrence of multi-mycotoxins in wheat grains harvested in Anhui province, China // Food Control. – 2018. – Vol. 96. – P. 180–185. DOI: 10.1016/j.foodcont.2018.09.006

7. Mycotoxins in Wheat and Mitigation Measures / F. Cheli, L. Pinotti, M. Novacco, M. Ottoboni, M. Tretola, V. Dell’Orto [Электронный ресурс] // IntechOpen. – 2017. – URL: https://www.intechopen.com/chapters/53908 (дата обращения: 17.01.2021)

8. Co-occurrence of type A and B trichothecenes and zearalenone in wheat grown in northern Italy over the years 2009–2011 / T. BERTUZZI, M.C. LEEGGERI, P. BATTIANI, A. PIETRI // Food Additives & Contaminants: Part B. – 2014. – Vol. 7, № 4 – P. 273–281. DOI: 10.1080/19393210.2014.926397

9. Occurrence of Deoxynivalenol (DON) in wheat flours in Guilan Province, Northern Iran / R.K. DARSAKANI, K. ISSAZADEH, M.A. ALIBADI, M.M.D. CHAKOOSARI // Ann. Agric. Environ. Med. – 2015. – Vol. 22. – P. 35–37.

10. Alishanaz A., Yu O.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food // Int. J. Environ. Res. Public Health. – 2017. – Vol. 14. – P. 632. DOI: 10.3390/ijerph14060632

11. Opinion of the Scientific Panel on Contaminants in the Food Chain (CONTAM Panel) on the risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. European Food Safety Authority // EFSA Journal. – 2017. – Vol. 15, № 9. – P. 4718. DOI: 10.2903/j.efsa.2017.4718

12. Deoxynivalenol and its masked forms: Characteristics, incidence, control and fate during wheat and wheat based products processing - A review / A.M. KHANEHGHAH, L.M. MARTINS, A.M. von HERTWIG, R. BERTOLDO, A.S. SANT’ANA // Trends in Food Science & Technology. – 2018. – Vol. 71. – P. 13–24. DOI: 10.1016/j.tifs.2017.10.012

13. Гагкаева Т.Ю., Гаврилова О.П., Левитин М.М. Биоразнообразие и ареалы основных токсинопродуцирующих видов рода Fusarium // Биосфера. – 2014. – Т. 6, № 1. – С. 36–45.

14. Codex Alimentarius. CXC 51-2003 Code of Practice for the Prevention and Reduction of Mycotoxin Contamination in Cereal // WHO Food Standards Programme, Food and Agriculture Organization of the United Nations [Электронный ресурс]. – URL: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%3A%2F%2Fworkspace.fao.org%2Fsite_s%2FCodex%2FStandards%2FCXC%2B51-2003%2FCXC_051e.pdf (дата обращения: 29.01.2021)

15. Биоразнообразие и ареалы основных токсинопродуцирующих видов рода Fusarium // Биосфера. – 2014. – Т. 6, № 1. – С. 36–45.

16. Tutelyan V.A. Deoxynivalenol in cereals in Russia // Toxicol. L ett. – 2004. – Vol. 153, № 1. – P. 173–179. DOI: 10.1016/j.toxlet.2004.04.042

17. Bottolico A., Perrone G. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe // European Journal of Plant Pathology. – 2002. – Vol. 108. – P. 611–624.

18. Tutelyan V.A. Deoxynivalenol in cereals in Russia // Toxicol. Lett. – 2004. – Vol. 153, № 1. – P. 173–179. DOI: 10.1016/j.toxlet.2004.04.042

19. Deoxynivalenol in wheat from the Northwestern region in China / Yu. ZHAO, X. GUAN, YI. ZONG, X. HUA, F. XING, Y. WANG, F. WANG, Y. LIU // Food Additives & Contaminants: Part B. – 2018. – Vol. 11, № 4. – P. 281–285. DOI: 10.1080/19393220.2018.1503340

20. JECFA. Summary of toxicological evaluations. Summary Report of the 72nd Meeting of the Joint FAO/WHO Expert Committee on Food Additives, Food and Agriculture Organization of the United Nations, Rome, 2010. – URL: www.who.int/foodsafety/chem/summary72_rev.pdf (дата обращения: 04.02.2021)
И.Б. Седова, Л.П. Захарова, М.Г. Киселева, З.А. Чалый, А.Н. Тимонин, Т.В. Аристархова, Л.В. Кравченко, В.А. Тутельян

Анализ риска здоровью. 2021. № 3

96

UDC 614.31: 633.1
DOI: 10.21668/health.risk/2021.3.08.eng

Research article

DEOXINIVALENOL AS A RISK FACTOR OF FOOD GRAIN CONTAMINATION: MONITORING RESULTS OF 1989–2018 YEARS HARVESTS IN RUSSIAN FEDERATION

I.B. Sedova1, L.P. Zakharova1, M.G. Kiseleva1, Z.A. Chalyy1, A.N. Timonin1, T.V. Aristarkhova1, L.V. Kravchenko1, V.A. Tutelyan1,2

1Federal Research Centre of Nutrition, Biotechnology and Food Safety, 2/14 Ustinskiy proezd, Moscow, 109240, Russian Federation
2I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 2 Bldg., 8 Trubetskaya Str., Moscow, 119991, Russian Federation

The paper dwells on the results obtained via long-term monitoring over food grain (wheat, barley, corn, oats, and rye) contamination with mycotoxin deoxynivalenol (DON). From 1989 to 2018 6,800 grain samples from Central, Southern, Volga, Ural, Siberian, North-Caucasian, Far Eastern, and North-western Federal Districts (FD) of the RF were analyzed. Depending on a year harvest, DON occurrence varied from 0 to 42 % and maximum toxin content reached 6.65 mg/kg. Over the whole examined period 10 % samples turned out to be contaminated and one forth of them contained the toxin in quantities exceeding maximum permissible levels (MPL). DON occurrence amounted to 24–42 % in years of mass epiphytoties (1989, 1992 and 1993) as well as in crops gathered in 2014 and 2017; DON was detected in quantities exceeding MPL in 9–27 % of examined samples in those years. 78 % contaminated samples came from Southern and North-Caucasian FD and another 10 % were from Far Eastern FD. A significant correlation between DON occurrence and a number of rainy and sunny days in May was established on the example of wheat samples from Krasnodar region. Analysis of contamination dynamics has revealed that over the last years there has been an ascending trend in frequency of DON detection in wheat that...
came not only from regions where Fusarium head blight was widely spread but also from regions in North-western, Siberian and Volga FD. Health risks related to DON intake with wheat grains processing products were assessed; the assessment revealed that DON intake higher than tolerable daily intake (TDI) for the residents of Southern and North-Caucasian FD in 1992, 1993, 2014 and 2017.

Average occurrence of DON was 4.2; 11.9; 3.0 and 0.6 % for barley, corn, rye, and oats samples and its maximum contents amounted to 8.95; 9.95; 0.96 and 0.44 mg/kg accordingly. Just as it was the case with wheat, the most of contaminated samples came from Southern, North-Caucasian and Far Eastern FD. Contamination tended to grow for all the examined grains and it calls for relevant measures aimed at controlling food grains safety.

Key words: monitoring, mycotoxins, food grain, wheat, barley, oats, corn, rye, Fusarium head blight, occurrence, deoxynivalenol, health risk assessment, tolerable daily intake, weather, correlation analysis.

References

1. Bryden W.L. Mycotoxins in the food chain: human health implications. *Asia Pac J. Clin. Nutr.*, 2007, vol. 16, pp. 95–101.
2. Tutelyan V.A., Kravchenko L.V., Sergeev A.Yu. Mycotoxins. *Mycology today*. In: Yu.T. Dyakova, Yu.V. Sergeeva eds., Moscow, Natsional'naya akademiyia mikologii Publ., 2007, vol. 1, pp. 283–304 (in Russian).
3. Birr T., Hasler M., Verrecht J.-A., Klink H. Composition and Predominance of Fusarium Species Causing Fusarium Head Blight in Winter Wheat Grain Depending on Cultivar Susceptibility and Meteorological Factors. *Journal of Plant Diseases and Protection*, 2020, vol. 8, no. 4, pp. 61. DOI: 10.3390/microorganisms8040617
4. Bryla M., Waskiewicz A., Podolska G., Szymczyk K., Jedrzejczak R., Damaziak K., Sulek A. Occurrence of 26 Mycotoxins in the Grain of Cereals Cultivated in Poland. *Toxins*, 2016, vol. 8, no. 6, pp. 160. DOI: 10.3390/toxins8060160
5. Fredlund E., Gidlund A., Sulyok M., Börjesson T., Krskas R., Olsen M., Lindblad M. Deoxynivalenol and other selected Fusarium toxins in Swedish oats – Occurrence and correlation to specific Fusarium species. *Int. J. Food. Microbiol.*, 2013, vol. 167, pp. 276–283.
6. Xu W., Han X., Li F. Co-occurrence of multi-mycotoxins in wheat grains harvested in Anhui province, China. *Food Control*, 2019, vol. 96, pp. 180–185. DOI: 10.1016/j.foodcont.2018.09.006
7. Cheli F., Pinotti L., Novacco M., Ottoboni M., Tretola M., Dell’Orto V. Mycotoxins in Wheat and Mitigation Measures. *IntechOpen*, 2017. Available at: https://www.intechopen.com/chapters/53908 (17.01.2021).
8. Bertuzzi T., Leggieri M.C., Battilani P., Pietri A. Co-occurrence of type A and B trichothecenes and zearalenone in wheat grown in northern Italy over the years 2009–2011. *Food Addit. Contam. Part B*, 2014, vol. 7, pp. 273–281.
9. Darsanaki R.K., Issazadeh K., Aliabadi M.A., Chakoosari M.M.D. Occurrence of Deoxynivalenol (DON) in wheat flours in Guilan Province, Northern Iran. *Ann. Agric. Environ. Med.*, 2015, vol. 22, pp. 35–37.
10. Alshannaq A., Yu O-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. *Int. J. Environ. Res. Public Health*, 2017, vol. 14, pp. 632. DOI: 10.3390/ijerph14060632
11. Opinion of the Scientific Panel on Contaminants in the Food Chain (CONTAM Panel) on the risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. European Food Safety Authority. *EFSA Journal*, 2017, vol. 15, no. 9. DOI: 10.2903/j.efsa.2017.4718
12. Khaneghah A.M., Martins L.M., von Hertwig A.M., Bertoldo R., Sant’Ana A.S. Deoxynivalenol and its masked forms: Characteristics, incidence, control and fate during wheat and wheat based products processing – A review. *Trends in Food Science & Technology*, 2018, vol. 71, pp. 13–24. DOI: 10.1016/j.tifs.2017.10.012
13. Gagkaeva T.Yu., Gavrilova O.P., Levitin M.M. Biodiversity and distribution of the main toxicogenic Fusarium fungi. *Biosfera*, 2014, vol. 6, no. 1, pp. 36-45 (in Russian).
14. Codex Alimentarius. CXC 51-2003 Code of Practice for the Prevention and Reduction of Mycotoxin Contamination in Cereal. WHO Food Standards Programme, Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodec%252F Standards%252FCXC%252B51-2003%252FCXC_051e.pdf (29.01.2021).

15. Machikhina L.I., Alekseeva L.V., L'vova L.S. Nauchnye osnovy prodovol'stvennykh bezopasnosti zerna (khranenie i pererabotka) [Scientific foundations of food grain safety storage and processing]. Moscow, Deli print Publ., 2007, 382 p. (in Russian).

16. Bianchini A., Horsley R., Jack M.M., Kobielush B., Ryu D., Tittlemier Sh., Wilson W.W., Abbas H.K. [et al.]. DON Occurrence in Grains: A North American Perspective. Cereal foods world, 2015, vol. 60, no. 1, pp. 32–56. DOI: 10.1094/CFW-60-1-0032

17. Bottalico A., Perrone G. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. European Journal of Plant Pathology, 2002, vol. 108, pp. 611–624.

18. Tutelyan V.A. Deoxynivalenol in cereals in Russia. Toxicol. Lett., 2004, vol. 153, no. 1, pp. 173–179. DOI: 10.1016/j.toxlet.2004.04.042

19. Zhao Yu., Guan X., Zong Yi., Huo X., Xing F., Wang Y., Fang F., Liu Y. Deoxynivalenol in wheat from the Northwestern region in China. Food Additives & Contaminants: Part B, 2018, vol. 11, no. 4, pp. 281–285. DOI: 10.1080/19393210.2018.1503340

20. JECFA. Summary of toxicological evaluations. Summary Report of the 72nd Meeting of the Joint FAO/WHO Expert Committee on Food Additives, Food and Agriculture Organization of the United Nations, Rome, 2010. Available at: www.who.int/foodsafety/chem/summary72_rev.pdf (04.02.2021).

21. Pestka J.J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol., 2010, vol. 84, pp. 663–679.

22. Codex Alimentarius. CXS 193-1995 General Standard for Contaminants and Toxins in Food and Feed (last amended in 2019). WHO Food Standards Programme, Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodec%252F Standards%252FCXS%252B193-1995%252FCXS_193e.pdf (03.03.2021).

23. COMMISSION REGULATION (EC) No 1881/2006 of 19.12.2006 setting maximum levels for certain contaminants in foodstuffs. Available at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (03.03.2021).

24. Bryla M., Ksieñewicz-Woźniak E., Waśkiewicz A., Szymbczyk K., Jdrzejczak R. Natural Occurrence of nivalenol, deoxynivalenol, and deoxynivalenol-3-glucoside in polish winter wheat. Toxins, 2018, vol. 10, no. 2, pp. 81. DOI:10.3390/toxins10020081

25. Gavrilova O.P., Gagkaeva T.Yu. Fuzarioz zerna na severe Necheernozem'ya i v Kaliningradskoi oblasti v 2007–2008 godakh. Zashchita i karantin rasteni, 2010, no. 2, pp. 23–25 (in Russian).

26. Prodol'stvennykh nezavisimost' Rossi: v 2 t. [Food independence of Russia: in 2 volumes]. In: A.V. Gordeev Eds. Moscow., OOO Tekhnologiya TsD Publ., 2016, vol. 1, 560 p. (in Russian).

27. Kushiro M. Effects of Milling and Cooking Processes on the Deoxynivalenol Content in Wheat. Int. J. Mol. Sci., 2008, vol. 9, pp. 2127–2145. DOI: 10.3390/ijms91112127

28. Karlovsky P., Suman M., Berthiller F., De Meester J., Eisenbrand G., Perrin I., Oswald I.P., Speijers G., Chiodini A., Recker T., Dussort P. Impact of food processing and detoxification treatments on mycotoxic contamination. Mycotoxin Res., 2016, vol. 32, pp. 179–205.

Sedova I.B., Zakharova L.P., Kiseleva M.G., Chalyy Z.A., Timonin A.N., Aristarkhova T.V., Kravchenko L.V., Tutelyan V.A. Deoxynivalenol as a risk factor of food grain contamination: monitoring results of 1989–2018 years harvests in Russian Federation. Health Risk Analysis, 2021, no. 3, pp. 85–98. DOI: 10.21668/health.risk/2021.3.08.engl

Получена: 31.03.2021
Принята: 27.07.2021
Опубликована: 30.09.2021