COHOMOLOGICAL CHARACTERIZATION OF T-LAU PRODUCT ALGEBRAS

N. RAZI AND A. POURABBAS

Abstract. Let A and B be Banach algebras and let T be an algebra homomorphism from B into A. The Cartesian product space $A \times B$ by T-Lau product and ℓ^1-norm becomes a Banach algebra $A \times_T B$. We investigate the notions such as injectivity, projectivity and flatness for the Banach algebra $A \times_T B$. We also characterize Hochschild cohomology for the Banach algebra $A \times_T B$.

1. Introduction and Preliminaries

Suppose that A and B are Banach algebras and $T : B \to A$ is an algebra homomorphism. Then we consider the Cartesian product space $A \times B$ with the following multiplication

$$(a, b) \times_T (c, d) = (ac + T(b)c + aT(d), bd) \quad ((a, b), (c, d) \in A \times B),$$

which is denoted by $A \times_T B$. Let $\|T\| \leq 1$. Then we consider $A \times_T B$ with the following norm

$$\|(a, b)\| = \|a\| + \|b\| \quad ((a, b) \in A \times_T B).$$

We note that $A \times_T B$ is a Banach algebra with this norm and it is called T-Lau product algebras.

Whenever the Banach algebra A is commutative, Bhatt and Dabshi [1] have investigated the properties of the Banach algebra $A \times_T B$, such as Gelfand space, Arens regularity and amenability.

Whenever A is unital with unit element e and $\varphi : B \to \mathbb{C}$ is a character on B, assume $T : B \to A$ is defined by $T(b) = \varphi(b)e$. In this case the multiplication \times_T corresponds with the product studied by Lau [10]. Lau product was extended by Sangani Monfared for the general case and many basic properties of this product are studied in [13].

In the definition of T-Lau product, we can replace condition $\|T\| \leq 1$ with a bounded algebra homomorphism T, because if we consider the following norms

$$\|a\|_T = \|T\| \|a\| \quad (a \in A)$$
$$\|b\|_T = \|T\| \|b\| \quad (b \in B)$$
$$\|(a, b)\|_T = \|a\|_T + \|b\|_T \quad (a, b) \in A \times_T B,$$

then all these norms are equivalent with the original norms. Clearly all results of this paper hold when we consider these equivalent norms.

The authors in [12] for every Banach algebras A and B and for an algebra homomorphism $T : B \to A$ with $\|T\| \leq 1$ have investigated some homological properties of T-Lau product algebra $A \times_T B$ such as

2010 Mathematics Subject Classification. Primary: 46M10. Secondary: 46H25, 46M18.

Key words and phrases. T-Lau product, injectivity, projectivity, flatness, Hochschild cohomology.
approximate amenability, pseudo amenability, ϕ-pseudo amenability, ϕ- biflatness and ϕ-biprojectivity and have presented the characterization of the double centralizer algebra of $A \times_T B$.

Following [12], in this paper we studied the homological notions such as injectivity, projectivity and flatness for the Banach algebra $A \times_T B$. We also characterize the Hochschild cohomology for the Banach algebra $A \times_T B$.

2. Injectivity, Flatness and Projectivity

Let A be a Banach algebra. In this paper, the category of Banach left A-modules and Banach right A-modules is denoted by $A\text{-mod}$ and $\text{mod}-A$, respectively. We denote by $B(E,F)$ the Banach space of all bounded operators from E into F. In the category of A-mod, we denote the space of bounded morphisms from E into F by $AB(E,F)$. A function $S \in B(E,F)$ is called admissible if there exists $S' \in B(F,E)$ such that $S \circ S' \circ S = S$.

A. Ya. Helemskii introduced the concepts of injectivity and flatness for Banach algebras [5] and these concepts have been investigated for different classes of Banach modules in [3, 4, 11, 14].

Definition 2.1. A Banach left A-module K is called projective if for every admissible epimorphism $S : E \to F$ in $A\text{-mod}$, the induced map $S_A : AB(K,E) \to AB(K,F)$ defined by $S_A(R_A) = R_A \circ S \quad (R_A \in AB(K,E))$

is surjective.

Definition 2.2. A Banach left A-module K is called injective if for every admissible monomorphism $S : E \to F$ in $A\text{-mod}$, the induced map $S_A : AB(F,K) \to AB(E,K)$ defined by $S_A(R_A) = R_A \circ S \quad (R_A \in AB(F,K))$

is surjective.

Definition 2.3. A Banach left A-module K is called flat if the dual module K^* in $\text{mod}-A$ is injective with the action defined by $(f \cdot a)(x) = f(a \cdot x)$, where $a \in A$, $x \in K$ and $f \in K^*$.

Let $A, B,$ and C be Banach algebras and let $T : B \to A$ be an algebra homomorphism with $\|T\| \leq 1$. We note that if A is a Banach left C-module, then $A \times_T B$ is a Banach left C-module via the following action $c \cdot (a,b) = (c \cdot a + c \cdot T(b),0) \quad ((a,b) \in A \times_T B, c \in C)$.

Similarly if B is a Banach left C-module, then $A \times_T B$ is a Banach left C-module via the following action $c \cdot (a,b) = (-T(c \cdot b),c \cdot b)$.

Theorem 2.4. Suppose that A and B are Banach algebras and $T : B \to A$ is an algebra homomorphism with $\|T\| \leq 1$. Suppose that C is Banach algebra and $A \times_T B$ is injective as C-module. Then A and B are injective as C-module.
Proof. Let A be a Banach left C-module and let $F, K \in \mathcal{C}$-mod. Suppose that $S \in \mathcal{C}B(F, K)$ is admissible and monomorphism. We will show that the induced map $S_A : \mathcal{C}B(K, A) \to \mathcal{C}B(F, A)$ is onto.

We conclude that $A \times_T B \in \mathcal{C}$-mod via the following action
\[
c \cdot (a, b) = (c \cdot a + c \cdot T(b), 0).
\]

Since $A \times_T B$ is injective, the induced map $S_{A \times T B} : \mathcal{C}B(K, A \times_T B) \to \mathcal{C}B(F, A \times_T B)$ is onto. Let $\lambda \in \mathcal{C}B(F, A)$ and $f \in F$. We define $\tilde{\lambda} : F \to A \times_T B$ by $\tilde{\lambda}(f) = (\lambda(f), 0)$. Hence we have $\tilde{\lambda} \in \mathcal{C}B(F, A \times_T B)$. Since $S_{A \times T B} : \mathcal{C}B(K, A \times_T B) \to \mathcal{C}B(F, A \times_T B)$ is onto, there exists $R_{A \times T B} : K \to A \times_T B$ such that $R_{A \times T B}(T(f)) = \tilde{\lambda}(f) = (\lambda(f), 0)$. We define $R_A : K \to A$ by $R_A = P_A \circ R_{A \times T B}$, where $P_A : A \times_T B \to A$ is defined by $p_A(a, b) = a$. Clearly $R_A \in \mathcal{C}B(K, A)$ and $R_A \circ T' = \lambda$. So A is injective.

For injectivity of B, suppose that B is a Banach left C-module, F and $K \in \mathcal{C}$-mod and $S \in \mathcal{C}B(F, K)$ is admissible and monomorphism. We must show that the induced map $S_B : \mathcal{C}B(K, B) \to \mathcal{C}B(F, B)$ is onto. We have $A \times_T B \in \mathcal{C}$-mod with the following actions
\[
c \cdot (a, b) = (-T(c), c \cdot b).
\]

Since $A \times_T B$ is injective, the induced map $S_{A \times T B} : \mathcal{C}B(K, A \times_T B) \to \mathcal{C}B(F, A \times_T B)$ is onto. Let $\mu \in \mathcal{C}B(F, B)$ and $f \in F$. We define $\tilde{\mu} : F \to A \times_T B$ by $\tilde{\mu}(f) = (0, \mu(f))$. Then we have $\tilde{\mu} \in \mathcal{C}B(F, A \times_T B)$. Since $S_{A \times T B} : \mathcal{C}B(K, A \times_T B) \to \mathcal{C}B(F, A \times_T B)$ is onto, there exists $R_{A \times T B} : K \to A \times_T B$ such that $R_{A \times T B}(T(f)) = \tilde{\mu}(f) = (0, \mu(f))$. We define $R_A : K \to A$ by $R_A = P_A \circ R_{A \times T B}$. Clearly $R_A \in \mathcal{C}B(K, B)$ and $R_A \circ S = \mu$. Hence B is injective. This completes the proof. \hfill \square

Let A, B and C be Banach algebras and let $T : B \to A$ be an algebra homomorphism with $\|T\| \leq 1$. We note that if $A \times_T B$ is the Banach left C-module, then A and B can be the Banach left C-modules with the following actions
\[
c \cdot a = c \cdot (a, 0) \quad \text{and} \quad c \cdot b = c \cdot (0, b),
\]
where $c \in C, a \in A$ and $b \in B$.

Theorem 2.5. Suppose that A and B are Banach algebras and $T : B \to A$ is an algebra homomorphism with $\|T\| \leq 1$. Suppose that C is a Banach algebra and A and B are injective as \mathcal{C}-mod. Then $A \times_T B$ is injective as \mathcal{C}-mod.

Proof. Let $A \times_T B$ be a Banach left C-module and $F, K \in \mathcal{C}$-mod. Let $S \in \mathcal{C}B(F, K)$ such that S is admissible and monomorphism. We must show that the induced map $S_{A \times T B} : \mathcal{C}B(K, A \times_T B) \to \mathcal{C}B(F, A \times_T B)$ is onto. We have $A, B \in \mathcal{C}$-mod with the following actions
\[
c \cdot a = c \cdot (a, 0) \quad \text{and} \quad c \cdot b = c \cdot (0, b),
\]
where $c \in C, a \in A$ and $b \in B$. Since A and B are injective, the induced maps $S_A : \mathcal{C}B(K, A) \to \mathcal{C}B(F, A)$ and $S_B : \mathcal{C}B(K, B) \to \mathcal{C}B(F, B)$ are onto. Suppose that $\lambda \in \mathcal{C}B(F, A \times T B)$ and $(a, b) \in A \times_T B$ such that $\lambda(f) = (a, b)$ for $f \in F$.

We define $\tilde{\lambda} : F \to A$ by $\tilde{\lambda}(f) = a + T(b)$ and $\tilde{\mu} : F \to B$ by $\tilde{\mu}(f) = b$. Hence we have $\tilde{\lambda} \in \mathcal{C}B(F, A)$ and $\tilde{\mu} \in \mathcal{C}B(F, B)$. Since $S_A : \mathcal{C}B(k, A) \to \mathcal{C}B(F, A)$ and $S_B : \mathcal{C}B(K, B) \to \mathcal{C}B(F, B)$ are onto, there exist $R_A : K \to A$ and $R_B : K \to B$ such that $R_A \circ S(f) = \tilde{\lambda}(f) = a + T(b)$ and $R_B \circ S(f) = \tilde{\mu}(f) = b$.

We define $R_{A \times T} : K \to A \times T$ by $R_{A \times T} = q_A \circ R_A + \eta_B \circ R_B$, where $\eta_B : B \to A \times T$ such that $\eta_B(b) = (-T(b), b)$. Clearly $R_{A \times T} \in \mathcal{C}(K, A \times T)$ and $R_{A \times T} \circ S = \lambda$. So $A \times T$ is injective. □

Let A, B and C be Banach algebras. We note that if $A^* \times B^*$ is a Banach left C-module, then A^* and B^* can be consider as Banach left C-modules via the following actions

$$c \cdot a^* = c \cdot (a^*, 0) \quad \text{and} \quad c \cdot b^* = c \cdot (0, b^*),$$

where $c \in C$, $a^* \in A^*$ and $b^* \in B^*$.

Theorem 2.6. Suppose that A and B are Banach algebras and $T : B \to A$ is an algebra homomorphism with $\|T\| \leq 1$. Suppose that C is a Banach algebra. Then $A \times T$ is flat as $\text{mod-} C$ if and only if A and B are flat as $\text{mod-} C$.

Proof. Let $A \times T$ be flat as $\text{mod-} C$. With a simple argument we can show that $(A \times T)^* \cong A^* \times B^*$. Hence by similar argument as in Theorem 2.4 one can show that A and B are flat Banach algebras as $\text{mod-} C$.

Conversely, let A and B be flat Banach algebras as $\text{mod-} C$, let $F, K \in \mathcal{C}\text{-mod}$ and let $S \in \mathcal{C}(B(F, K))$ such that S is admissible and monomorphism. Then we show that the induced map $S_{A^* \times B^*} : \mathcal{C}(B(K, A^* \times B^*)) \to \mathcal{C}(B(F, A^* \times B^*))$ is onto. We have $A^*, B^* \in \mathcal{C}\text{-mod}$ with the following actions

$$c \cdot a^* = c \cdot (a^*, 0) \quad \text{and} \quad c \cdot b^* = c \cdot (0, b^*),$$

where $c \in C$, $a^* \in A^*$ and $b^* \in B^*$.

Since A^* and B^* are injective as left C-module, the induced maps $S_{A^*} : \mathcal{C}(B(K, A^*)) \to \mathcal{C}(B(F, A^*))$ and $S_{B^*} : \mathcal{C}(B(K, B^*)) \to \mathcal{C}(B(F, B^*))$ are onto. Suppose that $\lambda^* \in \mathcal{C}(B(F, A^* \times B^*))$ and $(a^*, b^*) \in A^* \times B^*$ such that $\lambda^* (f) = (a^*, b^*)$ for $f \in F$.

We define $\tilde{\lambda}^* : F \to A^*$ by $\tilde{\lambda}^*(f) = a^*$ and $\tilde{\mu}^* : F \to B^*$ by $\tilde{\mu}^*(f) = b^*$. Hence we have $\tilde{\lambda}^* \in \mathcal{C}(B(F, A^*))$ and $\tilde{\mu}^* \in \mathcal{C}(B(F, B^*))$. Since $S_{A^*} : \mathcal{C}(B(K, A^*)) \to \mathcal{C}(B(F, A^*))$ and $S_{B^*} : \mathcal{C}(B(K, B^*)) \to \mathcal{C}(B(F, B^*))$ are onto, there exist $R_{A^*} : K \to A^*$ and $R_{B^*} : K \to B^*$ such that $R_{A^*} \circ S (f) = \tilde{\lambda}^*(f) = a^*$ and $R_{B^*} \circ S (f) = \tilde{\mu}^*(f) = b^*$.

We define $R_{A^* \times B^*} : K \to A^* \times B^*$ by $R_{A^* \times B^*} = q_{A^*} \circ R_{A^*} + q_{B^*} \circ R_{B^*}$, where $q_{A^*} : A^* \to A^* \times B^*$ and $q_{B^*} : B^* \to A^* \times B^*$ are defined by $q_{A^*}(a^*) = (a^*, 0)$ and $q_{B^*}(b^*) = (0, b^*)$, respectively. Clearly $R_{A^* \times B^*} \in \mathcal{C}(B(K, A^* \times B^*))$ and $R_{A^* \times B^*} \circ S = \lambda^*$. So $A^* \times B^*$ is injective as left C-module. This completes the proof. □

Let A, B and C be Banach algebras and let $T : B \to A$ be an algebra homomorphism with $\|T\| \leq 1$. If $A \times T$ is a Banach left C-module, as we have seen before, A and B are Banach left C-modules.

Theorem 2.7. Suppose that A and B are Banach algebras and $T : B \to A$ is an algebra homomorphism with $\|T\| \leq 1$. Suppose that C is a Banach algebra. Then $A \times T$ is projective as C-mod if and only if A and B are projective as C-mod.
Proof. Let $A \times T B$ be projective as Banach left C-module and $F, K \in C\text{mod}$. Let $S \in cB(K, F)$ be admissible and epimorphism. We show that the induced map $S_{A \times T B} : cB(A \times T B, K) \to cB(A \times T B, F)$ is onto.

Since $A, B \in C\text{mod}$ are projective, the induced map $S_A : cB(A, K) \to cB(A, F)$ and $S_B : cB(B, K) \to cB(B, F)$ are onto. Let $\lambda \in cB(A \times T B, K)$ and $f_1, f_2 \in F$ such that $\lambda(a, 0) = f_1, \lambda(0, b) = f_2$ for $(a, 0), (0, b) \in A \times T B$. We define $\tilde{\lambda} : A \to F$ by $\tilde{\lambda}(a) = \lambda(a, 0) = f_1$ and $\tilde{\mu} : B \to F$ by $\tilde{\mu}(b) = \lambda(0, b) = f_2$. Hence we have $\tilde{\lambda} \in cB(A, F)$ and $\tilde{\mu} \in cB(B, F)$. Since $S_A : cB(A, K) \to cB(A, F)$ and $S_B : cB(B, K) \to cB(B, F)$ are onto, there exist $R_A \in cB(A, K)$ and $R_B \in cB(B, K)$ such that $S \circ R_A(a) = \tilde{\lambda}(a) = f_1$ and $S \circ R_B(b) = \tilde{\mu}(b) = f_2$. We define $R_{A \times T B} : A \times T B \to K$ by $R_{A \times T B} = R_A \circ P_A + R_B \circ P_B$. Clearly $R_{A \times T B} \in cB(A \times T B, K)$ and $T' \circ R_{A \times T B} = \lambda$. Hence $A \times T B$ is projective as left C-module.

Conversely, let A be a Banach left C-module and $F, K \in C\text{mod}$ and let $S \in cB(K, F)$ such that S be admissible and epimorphism. We show that the induced map $S_A : cB(A, K) \to cB(A, F)$ is onto. We have $A \times T B \in C\text{mod}$ with the following action

$$c \cdot (a, b) = (c \cdot a + c \cdot T(b), 0).$$

Since $A \times T B$ is projective, the induced map $S_{A \times T B} : cB(A \times T B, K) \to cB(A \times T B, F)$ is onto. Let $\lambda \in cB(A, F)$ and $f \in F$ such that $\lambda(a) = f$ for $a \in A$. We define $\tilde{\lambda} : A \times T B \to F$ by $\tilde{\lambda}(a, b) = \lambda(a + T(b))$. Hence we have $\tilde{\lambda} \in cB(A \times T B, F)$. Since $S_{A \times T B} : cB(A \times T B, K) \to cB(A \times T B, F)$ is onto, there exists $R_{A \times T B} \in B(A \times T B, K)$ such that $S \circ R_{A \times T B} = \tilde{\lambda}$. We define $R_A : A \to K$ by $R_A = R_{A \times T B} \circ q_A$, where $q_A : A \to A \times T B$ is defined by $q_A(a) = (a, 0)$. Clearly $R_A \in cB(A, K)$ and $S \circ R_A = \lambda$. Hence A is projective as left C-module.

For the proof of projectivity of B, let B be a Banach left C-module and $F, K \in C\text{mod}$ and let $S \in cB(K, F)$ such that S is admissible and epimorphism. We show that the induced map $S_B : cB(B, K) \to cB(B, F)$ is onto. We have $A \times T B \in C\text{mod}$ with the following action

$$c \cdot (a, b) = (-T(c \cdot b), c \cdot b).$$

Since $A \times T B$ is projective as left C-module, the induced map $S_{A \times T B} : cB(A \times T B, K) \to cB(A \times T B, F)$ is onto. Let $\lambda \in cB(B, F)$. We define $\tilde{\lambda} : A \times T B \to F$ by $\tilde{\lambda}(a, b) = \lambda(b)$ for $(a, b) \in A \times T B$. Hence $\tilde{\lambda} \in cB(A \times T B, F)$. Since $S_{A \times T B} : cB(A \times T B, K) \to cB(A \times T B, F)$ is onto, there exists $R_{A \times T B} \in cB(A \times T B, K)$ such that $S \circ R_{A \times T B}(a, b) = \tilde{\lambda}(a, b) = \lambda(b)$. We define $R_B : B \to K$ by $R_B = R_{A \times T B} \circ q_B$, where $q_B : B \to A \times T B$ is defined by $q_B(b) = (0, b)$ for $b \in B$. Clearly $R_B \in cB(B, K)$ and $S \circ R_B = \lambda$. Hence B is projective as left C-module.

\hfill \Box

3. Hochschild cohomology for the Banach algebra $A \times T B$

The concept of Hochschild cohomology for Banach algebras has been studied by Kamowitz \cite{9}, Johnson \cite{7}, \cite{11} and others. Recall that let A be a Banach algebra and let X be a Banach A-bimodule. We denote the space of bounded n-linear maps from A into X by $C^n(A, X)$. For $T \in C^n(A, X)$ we define the map
\(\delta^n : C^n(A, X) \to C^{n+1}(A, X) \) by
\[
(\delta^n T)(a_1, \ldots, a_{n+1}) = a_1 \cdot T(a_2, \ldots, a_{n+1}) + \sum_{i=1}^{n} (-1)^i T(a_1, \ldots, a_i a_{i+1}, \ldots, a_{n+1}) = (-1)^{n+1} T(a_1, \ldots, a_n) \cdot a_{n+1}.
\]

\(T \) is called an \(n \)-cocycle if \(\delta^n T = 0 \) and it is called \(n \)-coboundary if there exists \(S \in C^{n-1}(A, X) \) such that \(T = \delta^{n-1} S \). We denote the linear space of all \(n \)-cocycles by \(Z^n(A, X) \) and the linear space of all \(n \)-coboundaries by \(B^n(A, X) \). Clearly \(Z^n(A, X) \) includes \(B^n(A, X) \). We also recall that the \(n \)-th Hochschild cohomology group \(\mathcal{H}^n(A, X) \) is defined by the following quotient,
\[
\mathcal{H}^n(A, X) = \frac{Z^n(A, X)}{B^n(A, X)},
\]
for more details, see [3]. We remark that a left (right) Banach \(A \)-module \(X \) is called left (right) essential if the linear span of \(A \cdot X = \{ a \cdot x : a \in A, x \in X \} \) \((X \cdot A = \{ x \cdot a : x \in X, a \in A \} \) is dense in \(X \). A Banach \(A \)-module \(X \) is called essential, if it is left and right essential.

Let \(A \) and \(B \) be Banach algebras and \(T : B \to A \) be an algebra homomorphism with \(\| T \| \leq 1 \). Let \(E \) be a Banach \(A \)-bimodule. Then \(E \) is also a Banach \(B \)-bimodule and a Banach \(A \times_T B \)-bimodule with the following actions, respectively
\[
b \cdot x = T(b) \cdot x \quad \text{and} \quad x \cdot b = x \cdot T(b),
\]
where \(b \in B, x \in E \) and
\[
(a, b) \cdot x = T(b) \cdot x \quad \text{and} \quad x \cdot (a, b) = x \cdot T(b),
\]
where \((a, b) \in A \times_T B, x \in E \).

Lemma 3.1. Let \(E \) be an essential Banach \(A \times_T B \)-bimodule. Then \(E \) is an essential Banach \(A \)-bimodule and a Banach \(B \)-bimodule.

Theorem 3.2. Let \(A \) and \(B \) be Banach algebras with bounded approximate identity and let \(T : B \to A \) be an algebra homomorphism with \(\| T \| \leq 1 \). Let \(E \) be an essential Banach \(A \times_T B \)-bimodule. Then
\[
\mathcal{H}^1(A \times_T B, E^*) \simeq \mathcal{H}^1(A, E^*) \times \mathcal{H}^1(B, E^*),
\]
where \(\simeq \) denotes the vector space isomorphism.

Proof. By [2] Theorem 2.9.53] we have \(\mathcal{H}^1(A \times_T B, E^*) \simeq \mathcal{H}^1(M(A \times_T B), E^*) \), where \(M(A \times_T B) \) denotes the double centralizer algebra of \(A \times_T B \). But from [12] Theorem 4.3] we have
\[
M(A \times_T B) \cong M(A) \times M(B),
\]
where \(\cong \) denotes the algebra isomorphism. this implies that
\[
\mathcal{H}^1(M(A \times_T B), E^*) \simeq \mathcal{H}^1(M(A) \times M(B), E^*),
\]
where \(M(A) \) and \(M(B) \) denote the double centralizer algebra of \(A \) and \(B \), respectively.

Hence we have
\[
\mathcal{H}^1(A \times_T B, E^*) \simeq \mathcal{H}^1(M(A) \times M(B), E^*),
\]
Using [6, Theorem 4] we obtain $\mathcal{H}^1(\mathcal{M}(A) \times \mathcal{M}(B), E^*) \simeq \mathcal{H}^1(\mathcal{M}(A), E^*) \times \mathcal{H}^1(\mathcal{M}(B), E^*)$, thus we have
\[
\mathcal{H}^1(A \times_T B, E^*) \simeq \mathcal{H}^1(\mathcal{M}(A), E^*) \times \mathcal{H}^1(\mathcal{M}(B), E^*).
\]
Since E is an essential Banach A-bimodule and an essential Banach B-bimodule, we have
\[
\mathcal{H}^1(\mathcal{M}(A), E^*) \simeq \mathcal{H}^1(A, E^*)
\]
and
\[
\mathcal{H}^1(\mathcal{M}(B), E^*) \simeq \mathcal{H}^1(B, E^*).
\]
This completes the proof. □

We can extend the previous theorem for the n-th Hochschild cohomology for the Banach algebra $A \times_T B$.

Corollary 3.3. Let A and B be Banach algebras with bounded approximate identity and let $T : B \to A$ be an algebra homomorphism with $\|T\| \leq 1$. Let E be an essential $A \times_T B$-bimodule. Then
\[
\mathcal{H}^n(A \times_T B, E^*) \simeq \mathcal{H}^n(A, E^*) \times \mathcal{H}^n(B, E^*)
\]
for every $n \geq 1$.

Proof. By [12, Lemma 3.1] A and B have bounded approximate identities if and only if $A \times_T B$ has a bounded approximate identity. Using [2, Theorem 2.9.54] one can show that if $A \times_T B$ has a bounded approximate identity, then for every essential $A \times_T B$-bimodule E, we have $\mathcal{H}^n(A \times_T B, E^*) \simeq \mathcal{H}^n(M(A \times_T B), E^*)$. In [12, Theorem 4.3] the authors showed that $M(A \times_T B) \cong M(A) \times M(B)$. On the other hand Hochschild [6, Theorem 4] showed that $\mathcal{H}^n(M(A) \times M(B), E^*) \simeq \mathcal{H}^n(M(A), E^*) \times \mathcal{H}^n(M(B), E^*)$. Hence we have $\mathcal{H}^n(A \times_T B, E^*) \simeq \mathcal{H}^n(A, E^*) \times \mathcal{H}^n(B, E^*)$ where $n \geq 1$. □

Note that Bhatt and Dabshi in [1] showed that $A \times_T B$ is amenable if and only if A and B are amenable. In the essential case this is an immediate corollary of Theorem 3.2.

References

[1] S. J. Bhatt and P. A. Dabshi, Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism, *Bull. Aust. Math. Soc.* 87 (2013), 195-206.
[2] H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs 24, Clarendon Press, Oxford, 2000.
[3] H. G. Dales, M. E. Polyakov, Homological properties of modules over group algebras, *Proc. London Math. Soc.* (3) 89 (2004), 390-426.
[4] A. Ya. Helemskii, A certain class of flat Banach modules and its applications, *Vestnik. Moskov. Univ. Ser. Mat. Mekh.* 27 (1972), 29-36.
[5] A. Ya. Helemskii, The homology of Banach and topological algebras, *Kluwer Academic Publishers Group*, Dordrecht, (1989).
[6] G. Hochschild, On the cohomology theory for associative algebras, *Ann. of Math.* (2) 47 (1946), 568-579.
[7] B. E. Johnson, The Wedderburn decomposition of Banach algebras with finite dimensional radical, *Amer. J. Math.* 90 (1968), 866-876.
[8] B. E. Johnson, Cohomology in Banach algebras, *Mem. Amer. Math. Soc.* 127 (1972).
[9] H. Kamowitz, Cohomology groups of commutative Banach algebras, *Trans. Amer. Math. Soc.* 102 (1962), 352-372.
[10] A. T. Lau, Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, *Fund. Math.* **118** (3) (1983), 161-175.

[11] P. Ramsden, Homological properties of modules over semigroup algebras, *J. Funct. Anal.* **258** (2010) 3988-4009.

[12] N. Razi, A. Pourabbas, Some homological properties of T-Lau product algebras, *Period. Math. Hungar.* to appear.

[13] M. Sangani Monfared, On certain products of Banach algebras with applications to harmonic analysis, *Studia Math.* **178** (3) (2007), 277-294.

[14] M. C. White, Injective modules for uniform algebras, *Proc. London Math. Soc.* (3) **73** (1996), 155-184

Faculty of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15914, Iran

E-mail address: Razina@aut.ac.ir

E-mail address: arpabbas@aut.ac.ir