LINEAR PULLBACK COMPONENTS OF THE SPACE OF CODIMENSION ONE FOLIATIONS

V. FERRER AND I. VAINSENCHER

Abstract. The space of holomorphic foliations of codimension one and degree \(d \geq 2 \) in \(\mathbb{P}^n \) (\(n \geq 3 \)) has an irreducible component whose general element can be written as a pullback \(F^*F \), where \(F \) is a general foliation of degree \(d \) in \(\mathbb{P}^2 \) and \(\mathbb{F} : \mathbb{P}^n \rightarrow \mathbb{P}^2 \) is a general rational linear map. We give a polynomial formula for the degrees of such components.

Introduction

Codimension one holomorphic foliations in \(\mathbb{P}^n \) are defined by nonzero integrable twisted 1−forms, i.e., \(\omega \in H^0(\mathbb{P}^n, \Omega_{\mathbb{P}^n}(d+2)) \) satisfying
\[
\omega \wedge d\omega = 0
\]
Since \(\omega, \lambda \omega \) yield the same foliation for any \(\lambda \in \mathbb{C}^* \), the space of such foliations is in fact a closed subscheme \(\mathbb{F}(d,n) \) of the projective space \(\mathbb{P}(H^0(\mathbb{P}^n, \Omega_{\mathbb{P}^n}(d+2))) \) defined by the equations derived from (1).

Explicitly, these equations are as follows. Any element \(\omega \) of \(H^0(\mathbb{P}^n, \Omega_{\mathbb{P}^n}(d+2)) \) can be written \(\omega = A_0dZ_0 + \cdots + A_n dZ_n \), where \(A_i \) are homogeneous polynomials of degree \(d+1 \) in the variables \(Z_0, \ldots, Z_n \), such that \(A_0Z_0 + \cdots + A_nZ_n = 0 \). The integrability condition (1) imposes relations arising from
\[
A_i\left(\frac{\partial A_k}{\partial Z_j} - \frac{\partial A_j}{\partial Z_k} \right) + A_j\left(\frac{\partial A_i}{\partial Z_k} - \frac{\partial A_k}{\partial Z_i} \right) + A_k\left(\frac{\partial A_j}{\partial Z_i} - \frac{\partial A_i}{\partial Z_j} \right) = 0.
\]
with \(0 \leq i < j < k \leq n \). These equations are quadratic in the coefficients of the polynomials \(A_i \). For \(n = 2 \) the space of foliations is a projective space: the integrability condition is automatically satisfied.

The geometry of the space of codimension one foliations in \(\mathbb{P}^n \) for \(n \geq 3 \) is a rich field of research. In particular the problem of describing the irreducible components of these spaces has received many contributions, cf. [2], [4], [5], [12] and references therein just to quote a few.

In [11] Jouanolou describes the irreducible components for the space of foliations of degrees \(d = 0, 1 \). We have that \(\mathbb{F}(0,n) \) is naturally isomorphic to the grassmanian of subspaces of codimension 2 in \(\mathbb{P}^n \). The space of foliations of degree \(d = 1 \) has two irreducible components.

For foliations of degree 2 in \(\mathbb{P}^n \), \(n \geq 3 \) Cerveau and Lins Neto [2] have shown that there are just 6 components. We recall some known components of \(\mathbb{F}(d,n) \) pinpointing those for which the degree has been found.

1991 Mathematics Subject Classification. 14N10,14H40, 14K05.
Key words and phrases. holomorphic foliation, irreducible components, enumerative geometry.

The authors were partially supported by CNPQ.
1. Pull-back of projective 1-forms.

1.1. Projective 1-forms. The main reference for this material is [11]. A projective 1-form of degree d in \mathbb{P}^n is a global section of $\Omega^1_{\mathbb{P}^n}(d+2)$, for some $d \geq 0$.

We denote by S_d the space $H^0(\mathbb{P}^n,\mathcal{O}_{\mathbb{P}^n}(d)) = \text{Sym}_d(\mathbb{C}^{n+1})^\vee$ of homogeneous polynomials of degree d in the variables Z_0, \ldots, Z_n. We write $\partial_i = \partial/\partial Z_i$, thought of as a vector field basis for \mathbb{C}^{n+1}. The dual basis will also be written as dZ_0, \ldots, dZ_n.
whenever we think of differential forms. Twisting the Euler exact sequence (cf. [10, Thm 8.13, p. 176]): we get
\[
0 \to \Omega_{\mathbb{P}^n}(d+2) \to \mathcal{O}_{\mathbb{P}^n}(d+1) \otimes S_1 \to \mathcal{O}_{\mathbb{P}^n}(d+2) \to 0.
\]

Taking global sections we find the exact sequence
\[
(2) \quad 0 \to V_d^p := H^0(\mathbb{P}^n, \Omega_{\mathbb{P}^n}^1(d+2)) \to S_{d+1} \otimes S_1 \xrightarrow{i_{R_n}} S_{d+2} \to 0
\]
where \(i_{R_n}(\sum A_i dZ_i) = \sum A_i Z_i\) is the contraction by the radial vector field. Thus a 1-form \(\omega \in V_d^p\) can be written in homogeneous coordinates as
\[
\omega = A_0 dZ_0 + \cdots + A_n dZ_n
\]
where the \(A_i\)'s are homogeneous polynomials of degree \(d+1\) satisfying
\[
A_0 Z_0 + \cdots + A_n Z_n = 0.
\]

1.2. Linear Pullback. Let \(F : \mathbb{P}^n \dashrightarrow \mathbb{P}^2\) be a linear projection, i.e., \(F = [F_0 : F_1 : F_2]\), with \(F_i\) linearly independent homogeneous polynomials of degree 1. Pick \(\omega \in H^0(\mathbb{P}^2, \Omega_{\mathbb{P}^2}^1(d+2))\). Write \(\omega = B_0 dX_0 + B_1 dX_1 + B_2 dX_2\) where \(B_i \in S_{d+1}(\mathbb{R}^2)\). The pullback \(F^*(\omega)\) is the 1-form
\[
(3) \quad F^*(\omega) = F^* B_0 dF_0 + F^* B_1 dF_1 + F^* B_2 dF_2.
\]
A simple application of Euler relation shows that \(i_{R_n}(F^*(\omega)) = F^*(i_{R_2}(\omega)) = 0\).

On the other hand, as any projective 1-form in \(\mathbb{P}^2\) is integrable we have \(0 = F^*(\omega \wedge d\omega) = F^*(\omega) \wedge dF^*(\omega)\) i.e., \(F^*(\omega)\) is a projective integrable 1-form of degree \(d\),
\[
F^*(\omega) \in H^0(\mathbb{P}^n, \Omega_{\mathbb{P}^n}^1((d+2)))\).
\]

1.3. Remark. For a fixed map \(F\) as above we obtain injective linear maps
\[
H^0(\mathbb{P}^2, \Omega_{\mathbb{P}^2}^1(d+2)) \longrightarrow H^0(\mathbb{P}^n, \Omega_{\mathbb{P}^n}^1(d+2)),
\]
\[
\mathbb{F}(d,2) \longrightarrow \mathbb{F}(d,n).
\]

1.4. Parameter space for rational maps. Let \(F = [F_0 : F_1 : F_2]\) be a rational map as above, with \(F_i \in S_1\). Note that if we change the basis of the linear system \((F_0, F_1, F_2)\) then we obtain projectively equivalent pullbacks. So the natural parameter space for rational linear maps is the Grassmannian of dimension 3 subspaces of the space \(S_1\) of forms of degree 1,
\[
(4) \quad G := G(3, S_1).
\]

2. Linear Pullback Component

We show next that the locus in \(\mathbb{P}(V_d^p)\) (cf. 2) corresponding to codimension one foliations obtained by linear pullbacks of foliations in \(\mathbb{P}^2\) is the birational image of a natural projective bundle over the Grassmannian \(G(3, S_1)\).

2.1. Proposition. Notation as in (2) and (4), let
\[
\mathcal{V}_d := \{(F, \mu) \in G \times V_d^p \mid \mu = F^* \omega \text{ for some } \omega \in V_d^p\}.
\]

Then
(i) \(\mathcal{V}_d\) is a vector subbundle of \(G \times V_d^p\) of rank \((d+1)(d+3)\).

Let \(q_2 : \mathbb{P}(V_d) \subset G \times \mathbb{P}(V_d^p) \to \mathbb{P}(V_d^p)\) be the projection and set
\[
\mathcal{Y} := q_2(\mathbb{P}(V_d)), \quad g := \dim G = 3(n - 2).
\]

Then
(ii) the dimension of Y is $g + (d + 1)(d + 3) - 1$ and
(iii) the degree of Y is given by the Segre class $s_g(Y_d)$.

Proof. Consider the tautological exact sequence of vector bundles over G, (cf. 4)

\[0 \to \mathcal{T} \to G \times S_1 \to Q \to 0 \]
where \mathcal{T} is of rank 3 with fiber $T_F = \langle F_0, F_1, F_2 \rangle, F_i \in S_1$. We obtain a natural rational map,

\[G \times \mathbb{P}^n \xrightarrow{T} \mathbb{P}(\mathcal{T}^\vee) \]

We interpret the map T as the family of F_i’s as in 1.2 and $\mathbb{P}(\mathcal{T}^\vee)$ as the family of \mathbb{P}^2’s obtained as the fibers of ψ. The relative cotangent bundle of ψ fits into the relative Euler exact sequence (cf. \[6, B.5.8, p. 435\]):

\[0 \to \Omega^1_{\psi}(1) \to \psi^* T \to \mathcal{O}_{T^\vee}(1) \to 0. \]

Twisting by $\mathcal{O}_{T^\vee}(d + 1)$ we find

\[0 \to \Omega^1_{\psi}(d + 2) \to \psi^* T \to \mathcal{O}_{T^\vee}(d + 2) \to 0. \]

Taking direct image yields the following exact sequence over G

\[0 \to \psi_* \Omega^1_{\psi}(d + 2) \to \text{Sym}_{d+1} \mathcal{T} \otimes \mathcal{T} \to \text{Sym}_{d+2}(\mathcal{T}) \to 0. \]

Define

\[V_d := \psi_* \Omega^1_{\psi}(d + 2). \]

The fiber of V_d over each $F \in G$, is

\[H^0(\mathbb{P}(T_F^\vee), \Omega^1_{\mathbb{P}(T_F^\vee)}(d + 2)) \]

i.e., the space of 1–forms defining foliations of degree d in the varying $\mathbb{P}^2 \cong \mathbb{P}(T_F^\vee)$.

On the other hand, we obtain from (5) injective maps of vector bundles over G,

\[\iota_1 : \text{Sym}_{d+1} \mathcal{T} \otimes \mathcal{T} \to S_{d+1} \otimes S_1 \]

and

\[\iota_2 : \text{Sym}_{d+2} \mathcal{T} \to S_{d+2}. \]

These two maps fit into the following diagram of exact sequences

\[\begin{array}{ccc}
\ker(a) = V_d & \xrightarrow{j} & \ker(b) = V_d^n \\
0 & \xrightarrow{a} & \text{Sym}_{d+1} \mathcal{T} \otimes \mathcal{T} \xrightarrow{\iota_1} S_{d+1} \otimes S_1 \\
0 & \xrightarrow{b} & \text{Sym}_{d+2} \mathcal{T} \xrightarrow{\iota_2} S_{d+2}. \\
\end{array} \]

In this way we obtain an injective map of vector bundles over G,

\[j : V_d \to G \times V_d^n. \]

The vector subbundle $\mathcal{V}_d \subset G \times V_d^n$ is as stated in (i).
Let \(q_1 : \mathbb{P}(V_d) \rightarrow \mathbb{G} \) and \(q_2 : \mathbb{P}(V_d) \rightarrow \mathbb{P}(V^*_d) \) be the maps induced by projection:

\[
\begin{array}{c}
\mathbb{P}(V_d) \\
\mathbb{G} \\
\mathbb{Y} \subset \mathbb{P}(V^*_d)
\end{array}
\]

\(q_1 \quad q_2 \)

We prove in Lemma 2.3 below that \(q_2 : \mathbb{P}(V_d) \rightarrow \mathbb{P}(V^*_d) \) is generically injective. Set \(u := \dim \mathbb{Y} = \dim \mathbb{P}(V_d) \). Write \(H \) for the hyperplane class of \(\mathbb{P}(V^*_d) \). We have \(q_2^*H = c_1O_{V_d}(1) =: h \). Using [6, §3.1, p. 47, Prop.4.4, p. 83 and Ex. 8.3.14, p. 143], we may compute

\[
\deg \mathbb{Y} = \int_{\mathbb{P}(V^*_d)} H^n \cap \mathbb{Y} = \int_{\mathbb{P}(V_d)} h^u = \int_{\mathbb{G}} q_1(h^u) = \int_{\mathbb{G}} s(h(V_d)).
\]

\(\square \)

2.2. Remark. From sequence (6) we obtain \(s(V_d) = s(\text{Sym}_{d+1}(T \otimes T)c_1(\text{Sym}_{d+2}(T))) \).

2.3. Lemma. For general \((F, \omega) \in \mathbb{G} \times H^0(\mathbb{P}^2, \Omega^1_{\mathbb{P}^2}(d + 2)) \), \(F^*(\omega) \) determines uniquely \(\omega \) and \(F \).

Proof. With notation as in 1.2, let \(I(F) = Z(F_0, F_1, F_2) \subset \mathbb{P}^n \) denote the indeterminacy locus of \(F \). For generic \((F, \omega) \), the singular set of \(F^*(\omega) \) consists of linear components of codimension two of the form \(F^{-1}(q) \) where \(q \in \text{Sing}(\omega) \). These linear components intersect in \(I(F) \). Indeed, we can suppose \(q_1 = [0 : 0 : 1] \) and \(q_2 = [0 : 1 : 0] \), so \(F^{-1}(q_1) = Z(F_0, F_1) \) and \(F^{-1}(q_2) = Z(F_0, F_2) \). From \(I(F) \) we retrieve the linear system \((F_0, F_1, F_2) \) i.e., the point \(F \in \mathbb{G} \).

On the other hand, consider the blow-up \(\pi : B \rightarrow \mathbb{P}^n \) of \(\mathbb{P}^n \) in \(I(F) \). We proceed to show that it is possible to recover the 1-form \(\omega \) from the strict transform \(\omega^* \) of \(\omega \). Indeed, recall \(B = \{(p, [x_0 : x_1 : x_2]) \in \mathbb{P}^n \times \mathbb{P}^2 \mid x_iF_j(p) - x_jF_i(p) = 0 \} \). Therefore over \(U := \{x_0 \neq 0 \} \) we have \(B_U = \{(p, [1 : t : s]) \mid F_1(p) = tF_0(p); F_2(p) = sF_0(p) \} \) and the equation of the exceptional divisor is \(F_0 = 0 \). In this chart we have \(dF_1 = F_0 dt + t dF_0, dF_2 = F_0 ds + sdF_0 \), therefore

\[
\pi^*F^*(\omega) = B_0(F_0, tF_0, sF_0) dF_0 + B_1(F_0, tF_0, sF_0) dF_1 + B_2(F_0, tF_0, sF_0) dF_2 =
\]

\[
F_0^{d+1}[B_0(1, t, s) dF_0 + B_1(1, t, s)(F_0 dt + t dF_0) + B_2(1, t, s)(F_0 ds + sdF_0)] =
\]

\[
F_0^{d+1}[(B_0(1, t, s) + tB_1(1, t, s) + sB_2(1, t, s))dF_0 + B_1(1, t, s)F_0 dt + B_2(1, t, s)F_0 ds]
\]

Recalling \(\omega \) is a projective 1-form, so \(B_0(1, t, s) + tB_1(1, t, s) + sB_2(1, t, s) = 0 \), we obtain

\[
\pi^*F^*(\omega) = F_0^{d+2}[B_1(1, t, s)dt + B_2(1, t, s)ds].
\]

Therefore the strict transform of \(F^*\omega \) is \(\bar{\omega} = B_1(1, t, s)dt + B_2(1, t, s)ds \). Ditto for the other local charts of the blowup. This shows that we may recover \(\omega \) from \(\bar{\omega} \).

\(\square \)

2.4. Corollary. The component \(\text{LPB}(d, n) \subset \mathcal{F}(d, n) \) is rational.
3. Computation of the degree of LPB(d,n)

3.1. Proposition. Notation as in 2.1, \(\deg(LPB(d,n)) \) is a polynomial in \(d \) of degree \(3g = 9(n-2) \).

We need some preliminary results.

3.2. Lemma. Let \(E \) be a vector bundle of rank \(r \) on a variety \(X \). The \(k \)-Segre class

\[s_k(\text{Sym}_d(E)) = \sum_{|\lambda|=k} p_\lambda(d) c_\lambda(E) \]

where \(p_\lambda(d) \) is a polynomial in \(d \) of degree \(\leq rk \), and there exists \(p_\lambda \) of degree \(rk \). Here the sum runs over the partitions of \(k \), and if \(\lambda = (\lambda_1, \ldots, \lambda_l) \) is a partition of \(k \), \(c_\lambda(E) := c_{\lambda_1}(E) \cdots c_{\lambda_l}(E) \).

Proof. First we prove the following assertion relating the Chern characters to the Segre classes of \(\text{Sym}_d(E) \).

3.3. Claim A(k): Assume the Chern character

\[ch_j(\text{Sym}_d(E^\vee)) = \sum_{|\mu|=j} q_\mu(d)c_\mu(E) \]

where \(q_\mu(d) \) are polynomials in \(d \) of degree \(\leq r+j-1 \) for all \(j \geq 0 \). Then

\[s_k(\text{Sym}_d(E)) = \sum_{|\lambda|=k} p_\lambda(d) c_\lambda(E) \]

where \(p_\lambda(d) \) are polynomials in \(d \) of degree \(\leq rk \). Moreover, if \(ch_1(\text{Sym}_d(E)) = q_1(d)c_1(E) \) and \(\deg(q_1) = r \), then \(s_k(\text{Sym}_d(E)) \) has a coefficient of degree \(rk \).

For a vector bundle \(F \) of rank \(r \), let \(x_1, \ldots, x_r \) be the Chern roots of \(F^\vee \). Then for all \(k \geq 0 \), the Segre class

\[s_k(F) = \sum_{1 \leq i_1 \leq \cdots \leq i_k \leq r} x_{i_1} \cdots x_{i_k} \]

is the \(k \)-complete symmetric function (cf. [7, p. 28]).

On the other hand the complete symmetric functions can be expressed in term of the power sum symmetric functions, \(p_k = \sum_i x_i^k \). We borrow from ([13, p. 25]) the explicit relations:

\[s_k(F) = \sum_{|\lambda|=k} w_\lambda ch_\lambda(F^\vee) \]

where \(\lambda = (\lambda_1, \ldots, \lambda_l) \) is a partition of \(k \). Following the notation in [13] we write \(\lambda = (1^{m_1}, 2^{m_2}, \ldots) \) where \(m_i := \# \{ j \mid \lambda_j = i \} \) and \(w_\lambda = \prod_{i \geq 1} \frac{\lambda_i!}{i^{m_i} m_i!} \).

Write for short \(ch_j = ch_j(\text{Sym}_d(F^\vee)) \). Whenever the coefficients of \(ch_j \) are polynomials in \(d \) of degree \(m \) we will write \(\deg(ch_j) = m \), by abuse of notation.

We observe that \(\deg(ch_\lambda) = \deg(ch_{\lambda_1} \cdots ch_{\lambda_l}) \leq l(r-1)+k \leq rk \) and the equality holds if and only if \(l = k \), i.e. if \(\lambda = (1, \ldots, 1) \) in which case the coefficient of \(ch_k^k \) is \(\frac{1}{k!} \). In other words

\[s_k(\text{Sym}_d(E)) = \frac{1}{k!} ch_k^k + \text{l.o.t} \]

Hence \(s_k(\text{Sym}_d(E)) \) is a linear combination of monomials in the Chern classes of \(E \) whose coefficients are polynomials in \(d \) of degree \(\leq rk \).

Next we prove the following claim by induction on \(r = \text{rank}(E) \) and on \(k \):
3.4. Claim $P(k)$: For $k \geq 0$, $ch_k(\text{Sym}_d(E)) = \sum_{|\mu|=k} q_\mu(d)c_\mu(E)$, where $q_\mu(d)$ are polynomials in d of degree $\leq r + k - 1$. Moreover, $ch_1(\text{Sym}_d(E)) = q_1(d)c_1(E)$ where $q_1(d)$ is a polynomial of degree r.

For $r = 1$ we have $ch_k(\text{Sym}_d(E)) = \frac{1}{k!}d^kc_1(E)^k$.

Suppose that $P(k)$ is true for vector bundles of rank $r - 1$. Let $\pi : E \to X$ be a vector bundle of rank $\text{rank}(E) = r$ and $p : \mathbb{P}(E) \to X$ the induced projective bundle. For $k = 0$ we have $ch_0(\text{Sym}_d(E)) = \text{rank}(\text{Sym}_d(E)) = (d+r-1)$, a polynomial in d of degree $r - 1$. Suppose that $k \geq 1$, and that $P(s)$ holds for $s < k$.

Over $\mathbb{P}(E)$ we have the tautological exact sequence:

$$(10) \quad 0 \to \mathcal{O}_E(-1) \to p^*E \to Q \to 0.$$

It induces the following exact sequence for $d \geq 1$

$0 \to \mathcal{O}_E(-1) \otimes \text{Sym}_{d-1}(p^*E) \to \text{Sym}_d(p^*E) \to \text{Sym}_d(Q) \to 0.$

Hence we may write the relation for the Chern characters

$$(11) \quad ch(\text{Sym}_d(p^*E)) = ch(\mathcal{O}_E(-1) \otimes \text{Sym}_{d-1}(p^*E)) + ch(\text{Sym}_d(Q)).$$

On the other hand, $ch(\mathcal{O}_E(-1) \otimes \text{Sym}_{d-1}(p^*E)) = ch(\mathcal{O}_E(-1))ch(\text{Sym}_{d-1}(p^*E))$. So each graded part satisfies

$$(12) \quad ch_k(\mathcal{O}_E(-1) \otimes \text{Sym}_{d-1}(p^*E)) = \sum_{i=0}^{k} \frac{\alpha_i}{i!}ch_{k-i}(\text{Sym}_{d-1}(p^*E))$$

where $\alpha := c_1(\mathcal{O}_E(-1))$. It follows from (11) and (12) that

$$ch_k(\text{Sym}_d(p^*E)) = \sum_{i=0}^{k} \frac{\alpha_i}{i!}ch_{k-i}(\text{Sym}_{d-1}(p^*E)) + ch_k(\text{Sym}_d(Q)).$$

Hence

$$(13) \quad ch_k(\text{Sym}_d(p^*E)) - ch_k(\text{Sym}_{d-1}(p^*E)) = \sum_{i=1}^{k} \frac{i}{i!}ch_{k-i}(\text{Sym}_{d-1}(p^*E)) + ch_k(\text{Sym}_d(Q)).$$

Observe that the right hand side of (13) involves:

- $ch_k(\text{Sym}_d(Q))$, which by induction, since $\text{rank}(Q) = r - 1$, is of the form $\sum_{|\mu|=k} q_\mu(d)c_\mu(Q)$ where $q_\mu(d)$ are polynomials in d of degree $\leq r - 1 + k - 1 = r + k - 2$. Moreover, by (10) $c_r(Q) = c_r(p^*E) - \alpha c_{r-1}(p^*E)$. Thus $ch_k(\text{Sym}_d(Q))$ is a linear combination of monomials in the Chern classes of p^*E and in α whose coefficients are polynomials in d of degree $\leq r + k - 2$.

- $ch_s(\text{Sym}_{d-1}(p^*E))$ with $s < k$ which, by induction on k is of the form $\sum_{|\mu|=k} q_\mu(d)c_\mu(p^*(E))$ where $q_\mu(d)$ are polynomials in d of degree $\leq r + s - 1$; the maximal degree appearing is $r + k - 2$ (coming from the coefficients in $ach_{k-1}(\text{Sym}_{d-1}(p^*E))$).

Recall that the pullback $p^* : A_*(X) \to A_*(\mathbb{P}(E))$ is a monomorphism with left inverse $\beta \mapsto p_*(c_1(\mathcal{O}_E(1))^{r-1} \cap (\beta))$ ([6, p. 49]). Applying this inverse to (13) we conclude that

$$ch_k(\text{Sym}_d(E)) - ch_k(\text{Sym}_{d-1}(E))$$

is a linear combination of monomials in the Chern classes of E whose coefficients are polynomials in d of degree $\leq r + k - 2$, and this implies that the coefficients in $ch_k(\text{Sym}_d(E))$ are polynomials in d of degree $\leq r + k - 1$.

Observe that for $k = 1$ we obtain that $\chi_1(\text{Sym}_d(E)) - \chi_1(\text{Sym}_{d-1}(E)) = (\frac{d+r-2}{r-1})c_1(E)$, a polynomial of degree $r - 1$. So $\chi_1(\text{Sym}_d(E)) = q_1(d)c_1(E)$ where $q_1(d)$ is polynomial of degree r.

Using A(k) 3.3, we deduce that $s_k(\text{Sym}_d(E))$ is a linear combination of monomials in the Chern classes of E whose coefficients are polynomials in d of degree $\leq \text{rank}(E)k$ and there exists a coefficient of degree $\text{rank}(E)k$.

□

Next we prove Proposition 3.1.

Proof. From the exact sequence

$$0 \to V_d \to \text{Sym}_{d+1} T \otimes T \to \text{Sym}_{d+2}(T) \to 0$$

we obtain the relation for Chern characters

$$\chi(V_d^\vee) = \chi(\text{Sym}_{d+1} T^\vee \otimes T^\vee) - \chi(\text{Sym}_{d+2}(T^\vee)).$$

Thus for each $k \geq 1$ we have

$$\chi_k(V_d^\vee) = \sum_{i=0}^{k} \chi_{k-i}(\text{Sym}_{d+1} T^\vee)\chi_i(T^\vee) - \chi_k(\text{Sym}_{d+2}(T^\vee)).$$

By assertion P(k) (3.4) $\chi_k(\text{Sym}_d(T^\vee))$ is a polynomial in d of degree $\leq k + 2$. Therefore $\chi_k(V_d^\vee)$ is a polynomial in d of degree $\leq k + 2$. Moreover,

$$\chi_1(\text{Sym}_d(T^\vee)) = q_1(d)c_1(T^\vee)$$

where $q_1(d)$ is a polynomial of degree 3. Therefore

$$\chi_1(V_d^\vee) = \chi_1(\text{Sym}_{d+1} T^\vee)\chi_0(T^\vee) + \chi_0(\text{Sym}_{d+1} T^\vee)\chi_1(T^\vee) - \chi_1(\text{Sym}_{d+2}(T^\vee)) =$$

$$= (3q_1(d + 1) + \binom{d+3}{2} - q_1(d + 2))c_1(T^\vee)$$

is a polynomial in d of degree 3.

As in the proof of assertion A(k) (3.3), we conclude that $s_k(V_d)$ is polynomial in d of degree $3k$.

□

3.5. Some formulas. To get explicit formulas for $s_d(V_d)$ for any fixed d, n we use sequence (6), and Macaulay2 [9]. We find (cf. script §5 below)

$$\deg(\text{LB}(d, 3)) = \frac{29}{25}(d + 4)(d^2 + 6d + 11)(d^2 + 2d + 3).$$

$$\deg(\text{LB}(d, 4)) = \frac{1}{8308880(d + 4)!}[8d^{12} + 192d^{11} + 2176d^{10} + 15360d^9 + 75090d^8 + 267552d^7 + 711859d^6 + 1423716d^5 + 2119892d^4 + 2279136d^3 + 1662291d^2 + 730188d + 125388)(2 + d)].$$

4. Higher degree pullback components

As stated in the Introduction, the set of foliations obtained by pullback of foliations in \mathbb{P}^2 by rational maps of degree m also form an irreducible component $PB(m, k, n)$ of $F(d, n)$, $d := (k + 2)m - 2$.

As in the linear case, a natural parameter space of rational maps $F : \mathbb{P}^n \to \mathbb{P}^2$ of degree m is the grassmannian $G(3, S_m)$. Mimicking 2.1, we can construct a fiber bundle

$$V_{m, k} := \{(F, \mu) \in G(3, S_m) \times V_k^m | \mu = F^*\omega \text{ for some } \omega \in V_k^2\}.$$
However, for $m \geq 2$, the map $j : \mathcal{V}_{m,k} \to V^n_d$ (analogous to the map in (8)) is injective only over the open subset consisting of dominant maps. So its image is not a subbundle of V^n_d. In fact, for a non-dominant map $F \in G(3,S_m)$, $j_F(\omega) = F^* (\omega) = 0$ for all $\omega \in H^0(\mathbb{P}^2, \Omega_{\mathbb{P}^2}^1 (k + 2))$ defining a foliation that leaves invariant the closure of $\text{Im}(F)$.

We could in principle find the locus $Z \subset G(3,S_m)$ where the rank of $\text{Im}(j)$ drops and then blow-up $G(3,S_m)$ along Z. Doing this we expect to build a subbundle $\tilde{\mathcal{V}}_k$ of V^n_d over the blow-up that coincides with $\text{Im}(j)$ over the open set of dominant maps. The projection of $\mathbb{P}(\tilde{\mathcal{V}}_k)$ to $\mathbb{P}(V^n_d)$ is the space of foliations obtained as pullback by dominant maps. To make it work, we’d need to know how to get our hands on the Segre classes of Z. We hope to report on this elsewhere.

5. Scripts

5.1. Scripts for Macaulay2. In order to compute $\deg(\text{LPB}(d, n))$ for any given value of $n \geq 3$, just set $N = n$ at the beginning of the script below. It can be fed into http://habanero.math.cornell.edu:3690/.

loadPackage "Schubert2"
N=3 --plug-in 3,4...
pt= base d
-- set d to be a free parameter in the ‘‘intersection ring’’
--of the base variety
G=flagBundle({3,N-2}, pt)
-- Grassmannian of 3-planes in N+1-space,
(S,Q)=G.Bundles
-- names the sub and quotient bundles on G
A=symmetricPower(d+2, S)
B=symmetricPower(d+1, S)*S
integral(chern(A-B))

Acknowledgments. We wish to thank Luca Scala for the suggestions that led to a significant improvement of the proof of Proposition 3.1.

References

[1] O. Calvo-Andrade. Irreducible components of the space of holomorphic foliations. Math. Ann. 299 (1994), no. 4, 751-767.
[2] D. Cerveau & A. Lins Neto. Irreducible components of the space of holomorphic foliations of degree two in \mathbb{P}^n, $n \geq 3$. Ann. of Math., 143, (1996), 577-612 .
[3] D. Cerveau, A. Lins Neto & S. J. Edixhoven. Pull-back components of the space of holomorphic foliations on $CP(n)$, $n \geq 3$. J. Algebraic Geom. 10 (2001), no. 4, 695-711.
[4] F. Cukierman & J.V. Pereira. Stability of holomorphic foliations with split tangent sheaf. Amer. J. Math. 130 (2008), no. 2, 413-439.
[5] F. Cukierman, J.V. Pereira & I. Vainsencher. Stability of foliations induced by rational maps. Ann. Fac. Sci. Toulouse Math. (6) 18 (2009), no. 4, 685-715.
[6] W. Fulton. Intersection Theory. Springer-Verlag. New York. 1985.
[7] W. Fulton, P. Pragacz. Schubert Varieties and Degeneracy Loci. Lecture Notes in Mathematics. Vol 1689. Springer-Verlag Berlin Heidelberg. (2006)
[8] X. Gómez-Mont & A. Lins Neto, Structural stability of singular holomorphic foliations having a meromorphic first integral. Topology 30 (1991), no. 3, 315-334.
[9] D. Grayson and M. E. Stillman. Macaulay2 version 1.9.2, a software system for research in algebraic geometry. available at https://faculty.math.illinois.edu/Macaulay2/.

[10] R. Hartshorne. Algebraic Geometry. Graduate Texts in Mathematics. 52. New York - Heidelberg - Berlin: Springer-Verlag. (1977).

[11] J. P. Jouanolou. Équations de Pfaff algébriques. Lecture Notes in Mathematics, 708. Springer, Berlin. 1979.

[12] F. Loray, J.V. Pereira & F. Touzet. Foliations with trivial canonical bundle on Fano 3-folds. Math. Nachr. 286 (2013), no. 8-9, 921-940.

[13] I. G. Macdonald, Symmetric functions and Hall polynomials. Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 2, 254–265.

[14] A. Rossini, & I. Vainsencher. Degree of the exceptional component of foliations in \mathbb{P}^3. RAC-SAM (2019). https://doi.org/10.1007/s13398-019-00627-2. arXiv:1806.04814, (2018).