Vibration control of self-excited system and forced self-excited system by dynamic vibration absorber

Yutaka YOSHITAKE*1, Yukihide NAGAYO*2, Shintaro KUWAZONO*3, Yudai YAMAGUCHI*4, Hiroti NAGAI*1 and Akira HARADA*1

*1 Graduate School of Engineering, Nagasaki University
1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan
*2 Mitsubishi Heavy Industry, Nagasaki Works 5-717-1 Hukahori-machi, Nagasaki-shi, Nagasaki 851-0392, Japan
*3 Department of Advanced Engineering, Graduate School of Engineering, Nagasaki University 1-14 Bunkyo-machi, Nagasaki-shi, Nagasaki 852-8521, Japan
*4 Department of Architecture and Building Engineering, Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8503, Japan

Received: 13 October 2020; Revised: 16 December 2020; Accepted: 15 January 2021

Abstract
It is desired that the forced self-excited vibrations of structures subjected to the vortex excitation and the long-period earthquake are quenched. Therefore, this paper deals with the vibration control of self-excited system and forced self-excited system using dynamic vibration absorber. Vibration quenching is researched using characteristic roots of the system and the entrained periodic solutions obtained by the shooting method. As a result of numerical calculation using the fact that the optimum vibration control of the self-excited vibration system can be performed by the theory that omits the nonlinear term of the damping term and considers only the linear term, following was made clear: At first increase the mass ratio of the dynamic vibration absorber with the increase of the negative damping coefficient. And adopt the several percent larger natural angular frequency ratio than the optimum vibration control value of forced vibration, and adopt the several tens of percent larger damping ratio than the optimum value of forced vibration, depending on the value of the negative damping coefficient. About the vibration quenching of forced self-excited vibration, following was made clear: (1) When the non-linear damping term, which is the cause of self-excited vibration, is small and the amplitude of force is also small, optimal control is approximately performed using the optimal values of the parameters for vibration quenching of forced vibration without damping. (2) When the amplitude of the forced force is large, the vibration quenching effect is reduced if the above mentioned approximate optimal values are used. The vibration quenching effect can be improved by using the smaller angular frequency ratio. (3) As the non-linear damping term increases, the optimal angular frequency ratio and optimal damping ratio of the dynamic absorber decrease.

Keywords: Nonlinear vibration, Self-excited vibration, Forced vibration, Dynamic vibration absorber, Entrainment

1. 緒 言

近年、大都市では建物の超高層化が進むとともに、超々高層のビルやタワーも建設されているが、このような構造物は風向直角方向の渦励振による風荷重の影響を大きく受ける（山崎, 1992）（三菱地所, 1994). また、近年、発生が危惧されている大地震では地震波が長周期化し、平野部では地盤の構造により長周期成分がさらに卓越する傾向がある（山崎, 1992）。このような状況を考慮し、自然振動数とダンパ比を適切に選ぶことにより、自励振動の抑制を実現することが求められる。
越するので（古村他，2007）（佐々木他，2018）超高層や塔状の構造物が地震波と共振する可能性がある。従って、超高層構造物や塔状構造物は、風による自励振動である渦励振の発生時に大地震が起こると、自励振動とかなり周期的な強制加振（赤木他，2017）を同時に受ける可能性があり、そのような場合、振動学的にお

著者らは構造物の耐風・耐震、洋上風車の安全性の観点から、強制変位による渦励振の引き込み現象について実験と数値計算から調べた（吉武他，2020）。その結果、引き込み振動時の最大振幅は渦励振のみの時の最大振幅と強制変位加振のみの時の最大振幅の和程度の値となることがあり、危険性が大きく増すことがわかった。

よって、強制自励系の制振が強く望まれる。しかしながら、強制自励系に関しては、Van der Pol の方程式に強制力が作用する系（Hayashi，1964）、時間遅れによる自励振動系に強制力が作用する系（吉武他，1983）、乾燥摩擦と強制力が作用する系（Shaw and Shaw, 1991）などについて多くの研究が行われてきたものの、その制振問題についてはほとんど研究されておらず、著者らが調べた範囲では池田・五百井（池田，五百井，1977a）の減衰を有する振動系の動吸振器による最適制振についての研究があるのみである。この研究は正あるいは負の線形の減衰を持つ系が制振の対象においており、減衰が負の場合は制振しないと発散振動を行うことになり、減衰の非線形性のために定常振動を行う実際の強制自励系とは大きく異なる。例えば、著者らの強制変位外力と渦励振が同時に作用する強制自励系の研究においても渦励振現象が非線形の減衰を持つことが明らかになっている（吉武他，2020）。従って、本研究では、減衰の非線形性がある場合の最適設計指針を確立することを目的とする。

動吸振器による強制振動の制振については、周知のように線形系について最適制振理論があり、広く用いられている。また、動吸振器による自励振動系の制振については、次のような主系が線形の負の減衰系である場合に対する最適制振の研究がある。池田・五百井は（池田，五百井，1977b）動吸振器の最適設計についての一つの考え方を示し、谷口・近藤（谷口，近藤，2016）は自励振動系に対する動吸振器の動作原理を解明し、それに基づいた最適設計法を示しているが、いずれも数値計算例が少なく、広範な検討が必要と思われる。この他、摩擦振動やびびり振動など特定の自励振動を対象とした制振の研究（末岡他，1993）（中野他，2014）（吉武他，1990）（吉武他，末岡，1993）（池田・五百井，1977b）など特殊な動吸振器による研究はなされているものの、動吸振器による自励振動の最適制振について広範に調べられた研究は見当たらない。

そこで、本研究では、まず、自励振動系の動吸振器による最適制振について、減衰項が線形と非線形の場合の違いを明らかにするとともに、最適制振が広範に調べられていない状況に鑑み、最適制振値を広範に調べる、その上でこの系に強制力が作用する強制自励系を動吸振器により制振する場合について、数値計算から最適制振の設計値を求める。減衰のない線形強制振動系の最適制振値や池田・五百井の線形負減衰強制振動系の最適制振値との関係を調べ、強制自励系の最適設計指針を確立する。

2. 解析モデルと運動方程式

図1に解析モデルを示す。速度の3次関数で表わされるレイリー型の非線形減衰力f(x)をもつ自励振動系に強制力Pcosωtが作用する強制自励系を動吸振器を用いて制振する2自由度振動系である。主系の質量とばね定数をそれぞれm1, k1とし、動吸振器の質量、粘性減衰係数、ばね定数をそれぞれm2, c2, k2とすると、運動方程式は次式となる。

\[m_1 \ddot{x} + f(x) + c_1 (\dot{x} - \dot{x}_1) + k_1 x_1 + k_2 (x_1 - x_2) = P \cos \omega t \] \((1) \)

\[m_2 \ddot{x}_2 + c_2 (\dot{x}_2 - \dot{x}_1) + k_2 (x_2 - x_1) = 0 \] \((2) \)

\[f(x) = -\epsilon_0 (x - \alpha x^3) \] \((3) \)

ここで、\(\epsilon_0 > 0 \)，\(\alpha > 0 \)である。式(3)のレイリー型減衰力は、自励振動の要因である摩擦振動（亘理，杉本，1963）
式(1), (2)を無次元化するに際し, 動吸振器の振幅 A_1 を用いる (Hayashi, 1964) (吉武, 末岡, 1994) と, 次の無次元の運動方程式を得る.

$$y_1'' - \varepsilon(y_1'' - 4y_1'^3/3) + 2\mu\kappa(y_1' - y_1') + y_1 + \mu\kappa^2(y_1 - y_2) = f \cos \omega t$$

$$y_2'' + 2\mu\kappa(y_1' - y_2') + y_2 + \kappa^2(y_2 - y_1) = 0$$

を得る. ここに,

$$\omega_1 = \sqrt{k_1/m_1}, \quad \omega_2 = \sqrt{k_2/m_2}, \quad \kappa = \omega_3/\omega_1, \quad \mu = m_2/m_1, \quad \tau = \omega t, \quad \nu = \omega/\omega_1$$

$$\varepsilon = \varepsilon_0/m_1\omega_1, \quad \gamma = c_2/(2\mu m_2), \quad f = (P/k_1)/A_1, \quad y_1 = x_1/A_1, \quad y_2 = x_2/A_1.$$

であり, μ は動吸振器と主系の質量比, κ は動吸振器と主系の固有角振動数比, γ は動吸振器の減衰比であり, これら μ, κ, γ が動吸振器の設計パラメータとなる. 無次元の強制力の振幅 f は自励振動の振幅 A_1 に対する静的変位 P/k_1 の比になっている. また, τ は動吸振器がない主系のみの場合の固有周期が 2π となるように時間を無次元化したものである. 主系のみの自励振動振幅 A_1 を変位の代表値として用いているので, 強制力が作用しない自励振動系を動吸振器を用いて制振する時, 無次元振幅が 1 より小さければ, 何かが制振がなされたことを意味する.

3. 自励振動の制振

自励振動系の制振については, 緒言で述べたように線形の負の減衰系に対する最適制振の設計法が開発されている (池田, 五百井, 1977b) (谷口, 近藤, 2016) ので, まず, 線形の負の減衰系の制振と本研究で扱う非線形減衰系の制振との関係について調べる.

![Fig.1 Analytical model of vibration system. This model is a two-degree-of-freedom vibration system that uses a dynamic vibration absorber to suppress a forced self-excited system in which a periodic force acts on a self-excited vibration system with a Rayleigh-type nonlinear damping force represented by a cubic function of velocity.](image-url)
図2に減衰が非線形系の場合で、強制力が作用しない時に発生する自励振動を動吸振器を用いて制振するときの動吸振器の主系に対する固有角振動数比κと主系の無次元変位振幅Aの関係を示す。シューティング法を用いて周期解を求めた。数値積分の基本の刻み幅は解の周期の1024等分とした。自励振動の求解では周期も未知となるので、解の周期は数値積分の刻みを変えて特定した。図の横軸は動吸振器の主系に対する固有角振動数比κ、縦軸は主系の振幅Aである。図2(a)は負の減衰係数の絶対値(以下では絶対値を省略して、単に負の減衰係数と呼ぶことにする)ε、動吸振器の主系に対する質量比μ、動吸振器の減衰比γがいずれも小さな値の場合(ε=0.005, μ=0.02, γ=0.01)、図2(b)はそれらの値が相対的に大きな場合(ε=0.1, μ=0.1, γ=0.1)である。負の減衰係数εが0.1というのは数学的には小さな値であるが、後述するように大きな非線形性を示すので、本研究では大きな値と呼ぶこととする。また、動吸振器の主系に対する質量比μについても0.1という値は構造物に設置する場合の大きな値と考えられる。図2の黒線は安定解、赤線は不安定解を示している。主系の振幅A=0は自励振動が完全に制振された状態を意味する。このとき動吸振器の振幅も0になる。図2から主系の自励振動が完全に制振され、振幅が0になる固有角振動数比の領域がκ=1付近にあることがわかる。小数点以下3桁の有効数字でその領域を求めると図2(a)ではκ=0.882~1.091、図2(b)ではκ=0.843~1.038であった。

次に、主系の無次元の運動方程式中の非線形減衰項の速度の3乗の項を削除した線形の負の減衰を持つ系の制振を考える。この系が動吸振器により制振されているか否かは、運動方程式が線形系であるので、運動方程式から得られる特性式方程式の根の実部を用いて判定できる。すなわち、特性根の全ての実部が負であれば制振状態にあり、主系も動吸振器も振幅が0となる。特性根の実部が1でも正であれば制振されておらず、線形系であるがゆえに、時間とともに振幅が無限大に成長していく。よって、以下の特性根λの実部Re[λ]のうち最大の値Re[λ]maxの正負により制振状態か否かを判定する。図3に線形の負の減衰を持つ系に動吸振器を設置した時

(a) Small negative damping and light dynamic absorber
(b) Large negative damping and heavy dynamic absorber

Fig.2 Relationship between the amplitude of main system with nonlinear negative damping and angular frequency ratio of dynamic absorber. In both figures, it can be seen that there is a vibration quenching region with amplitude of 0 near the natural angular frequency ratio of 1.

(a) Small negative damping and light dynamic absorber
(b) Large negative damping and heavy dynamic absorber

Fig.3 Vibration quenching diagram of the main system with linear negative damping based on the max real part in characteristic roots. It is recognized that the maximum real part in characteristic roots is negative and the self-excited system is quenched in the same regions in the figs 2(a) and (b).
の動吸振器と主系との固有角振動数比 \(\kappa \) と特性根の実部の最大値 \(\Re[\lambda]_{\text{max}} \) の関係を示す。用いたパラメータの値は、図 3(a)では負の減衰係数 \(\varepsilon \)、動吸振器の主系に対する質量比 \(\mu \)、動吸振器の減衰比 \(\gamma \) がいずれも小さな値の場合（\(\varepsilon = 0.005, \mu = 0.02, \gamma = 0.001 \)）、図 3(b)ではそれらの値が大きな場合（\(\varepsilon = 0.1, \mu = 0.1, \gamma = 0.1 \)）であり、それぞれ図 2(a)、図 2(b)と同じ値である。図の黒色の線は制振状態、すなわち、主系と動吸振器の振幅が 0 の状態が安定であることを示し、赤色の線は、非制振状態、すなわち、主系と動吸振器の振幅 0 の状態が不安定で、振幅が時間とともに無限大に成長することを示している。固有角振動数比 \(\kappa = 1 \) 付近で制振領域が存在する。有効数字 3 術で制振領域を求めると図 3(a)では \(\kappa = 0.882 \sim 1.091 \)、図 3(b)では \(\kappa = 0.843 \sim 1.038 \) であり、それぞれ図 2(a)、図 2(b)と同じ値である。図の黒色の線は制振状態、すなわち、主系と動吸振器の振幅が 0 の状態が安定であることを示し、赤色の線は、非制振状態、すなわち、主系と動吸振器の振幅 0 の状態が不安定で、振幅が時間とともに無限大に成長することを示している。固有角振動数比 \(\kappa = 1 \) 付近で制振領域が存在する。有効数字 3 術で制振領域を求めると図 3(a)では \(\kappa = 0.882 \sim 1.091 \)、図 3(b)では \(\kappa = 0.843 \sim 1.038 \) であり、それぞれ図 2(a)、図 2(b)と同じ値である。図の黒色の線は制振状態、すなわち、主系と動吸振器の振幅が 0 の状態が安定であることを示し、赤色の線は、非制振状態、すなわち、主系と動吸振器の振幅 0 の状態が不安定で、振幅が時間とともに無限大に成長することを示している。固有角振動数比 \(\kappa = 1 \) 付近で制振領域が存在する。有効数字 3 術で制振領域を求めると図 3(a)では \(\kappa = 0.882 \sim 1.091 \)、図 3(b)では \(\kappa = 0.843 \sim 1.038 \) であり、それぞれ図 2(a)、図 2(b)と同じ値である。図の黒色の線は制振状態、すなわち、主系と動吸振器の振幅が 0 の状態が安定であることを示し、赤色の線は、非制振状態、すなわち、主系と動吸振器の振幅 0 の状態が不安定で、振幅が時間とともに無限大に成長することを示している。固有角振動数比 \(\kappa = 1 \) 付近で制振領域が存在する。有効数字 3 術で制振領域を求めると図 3(a)では \(\kappa = 0.882 \sim 1.091 \)、図 3(b)では \(\kappa = 0.843 \sim 1.038 \) であり、それぞれ図 2(a)、図 2(b)と同じ値である。図の黒色の線は制振状態、すなわち、主系と動吸振器の振幅が 0 の状態が安定であることを示し、赤色の線は、非制振状態、すなわち、主系と動吸振器の振幅 0 の状態が不安定で、振幅が時間とともに無限大に成長することを示している。固有角振動数比 \(\kappa = 1 \) 付近で制振領域が存在する。有効数字 3 術で制振領域を求めると図 3(a)では \(\kappa = 0.882 \sim 1.091 \)、図 3(b)では \(\kappa = 0.843 \sim 1.038 \) であり、それぞれ図 2(a)、図 2(b)と同じ値である。図の黒色の線は制振状態、すなわち、主系と動吸振器の振幅が 0 の状態が安定であることを示し、赤色の線は、非制振状態、すなわち、主系と動吸振器の振幅 0 の状態が不安定で、振幅が時間とともに無限大に成長することを示している。固有角振動数比 \(\kappa = 1 \) 付近で制振領域が存在する。有効数字 3 術で制振領域を求めると図 3(a)では \(\kappa = 0.882 \sim 1.091 \)、図 3(b)では \(\kappa = 0.843 \sim 1.038 \) であり、それぞれ図 2(a)、図 2(b)と同じ値である。図の黒色の線は制振状態、すなわち、主系と動吸振器の振幅が 0 の状態が安定であることを示し、赤色の線は、非制振状態、すなわち、主系と動吸振器の振幅 0 の状態が不安定で、振幅が時間とともに無限大に成長することを示している。固有角振動数比 \(\kappa = 1 \) 付近で制振領域が存在する。有効数字 3 術で制振領域を求めると図 3(a)では \(\kappa = 0.882 \sim 1.091 \)、図 3(b)では \(\kappa = 0.843 \sim 1.038 \) であり、それぞれ図 2(a)、図 2(b)と同じ値である。図の黒色の線は制振状態、すなわち、主系と動吸振器の振幅が 0 の状態が安定であることを示し、赤色の線は、非制振状態、すなわち、主系と動吸振器の振幅 0 の状態が不安定で、振幅が時間とともに無限大に成長することを示している。固有角振動数比 \(\kappa = 1 \) 付近で制振領域が存在する。有効数字 3 術で制振領域を求めると図 3(a)では \(\kappa = 0.882 \sim 1.091 \)、図 3(b)では \(\kappa = 0.843 \sim 1.038 \) であり、それぞれ図 2(a)、図 2(b)と同じ値である。
最適な固有角振動数比と減衰比の値を表している。青丸印は池田・五百井（池田,五百井 1977b)が求めた最適値である。前述のように池田・五百井はこの最適角振動数比と減衰比を用いておけば、減衰系を制振できることを示しているが、それらは最適値ではない。動吸振器の製作誤差や経年変化等により最適値からずれたときのロバスト性を考慮すると、図5の黒丸印が示した最適値を用いて製作する方が安全である。図4(b)と図5(b)を比較すると質量比μが大きいほど最適な減衰比γの値は大きくなっていることがわかる。

その結果として、図4(a), 5(a)からわかるように減衰比の大きい図5(a)の方が特性根の実部の最大値Re[λ]maxの値は負の小さな値になっている。負の減衰係数εが0.1のときはκ=0.980 (γ=0.300) であり、減衰のない強制振動の最適制振の値1/(1+μ)と有効数3桁で一致している。一方、負の減衰係数εが大きくなると最適な角振動数比κはこれより少しだ大きな値となることがわかる。池田・五百井の推奨値は最適値ではなく、質量比μが大きい時、減衰のない強制振動の特性根の実部の最大値Re[λ]maxの値は負の小さな値になっている。負の減衰係数εが0.001と小さい時の最適値は、図4(b)のμ=0.02 のときはκ=0.980 (γ=0.001)、図5(b)のμ=0.1 のときはκ=0.909 (γ=0.300) であり、減衰のない強制振動の最適制振の値1/(1+μ)と有効数3桁で一致している。一方、負の減衰係数εが大きくなると最適な角振動数比κはこれより少しだ大きな値となることがわかる。池田・五百井の推奨値は最適値ではなく、質量比μが大きい時、負の減衰係数εの絶対値が小さい時は真の最適値との誤差が大きくなり、問題があると言える。図6, 7は図4, 5と同様の計算により動吸振車の質量比の大小と動吸振車のパラメータ値による制振の可能性の関係を示している。図6(a), (b)は負の減衰係数εが0.005 と大きい時、図7(a), (b)は負の減衰係数εが0.1と

Fig.4 Relationship between vibration quenching and the parameters of dynamic absorber in the case of small mass ratio (μ=0.02).
When the mass ratio is small, if the negative damping coefficient becomes as large as 0.2, self-excited vibration cannot be quenched by using any natural angular frequency ratio and damping ratio.

Fig.5 Relationship between vibration quenching and the parameters of dynamic absorber in the case of large mass ratio (μ=0.1).
The larger the mass ratio is, the larger the optimum damping ratio value is. Since the values of Ikeda and Ioi are the critical ones, the robustness of the dynamic absorber is increased by not using the values of Ikeda and Ioi, but using optimum values indicated by the black circle in the figure.

[DOI: 10.1299/transjsme.20-00367] © 2021 The Japan Society of Mechanical Engineers
大きい時の結果である。図6(a)，(b)から負の減衰係数εが小さい場合，動吸振器の固有角振動数比を1/(1+μ)に近い値にすることで，質量比が小さなμ=0.001でも制振可能なことがわかる。このことは大きな構造物において重い動吸振器を設置する必要がなく，かなり軽い動吸振器を設置すればよいことを意味する。一方，図7(a)，(b)から負の減衰係数εが大きい場合，前述のように動吸振器の減衰比を大きくするのではなく，質量を重くすることが第1に重要であり，次に負の減衰係数を最適にすることが必要ということがわかる。

図8に動吸振器の質量比を一定として減衰比を種々固定して固有角振動数比を変えた時の安定判別図を示している。図8(a)が負の減衰係数εが小さい0.005の場合，図8(b)が負の減衰係数εが大きい0.1の場合である。各図の横軸は動吸振器の固有角振動数比κ，縦軸は特性根の実部の最大値である。図から最適値付近で特性根の実部の最大値が急激に小さくなっていることから，最適値を選択することの安定性が極めて大きくなることがわかる。次に，主系に減衰がない時の強制振動の制振における動吸振器の最適値の条件式は次式であるが，これから求められる値と図中に記された実際の最適値と比較する。

\[\kappa_{opt} = 1/(1+\mu), \quad \gamma_{opt} = \sqrt{3\mu/(8(1+\mu))} \] \hspace{1cm} (9)
Fig.8 Stability diagram in vibration control of self-excited system with negative damping using dynamic absorber. The stability of the system becomes extremely large due to the optimum selection of the natural angular frequency ratio and the damping ratio of the dynamic vibration absorber.

上式から \(\mu = 0.02 \) のとき \(\kappa_{opt} \approx 0.980 \), \(\gamma_{opt} \approx 0.086 \) で, \(\mu = 0.1 \) のとき \(\kappa_{opt} \approx 0.909 \), \(\gamma_{opt} \approx 0.185 \) となるので, それぞれ図(a)の \(\kappa_{opt} \approx 0.981 \), \(\gamma_{opt} \approx 0.137 \) と(b)の \(\kappa_{opt} \approx 0.922 \), \(\gamma_{opt} \approx 0.252 \) と比較すると, 負の減衰係数 \(\varepsilon \) と質量比 \(\mu \) の値が小さい図(a)の最適値については, 固有角振動数比 0.981 は強制振動制振時の最適値 0.980 に極めて近いが, 減衰比 0.137 は強制振動制振時の最適値 0.086 よりも 60% も大きい. また, 負の減衰係数 \(\varepsilon \) と質量比 \(\mu \) の値が大きい図(b)の最適値は, 固有角振動数比 0.922 は強制振動制振時の最適値 0.909 より 1.4% 大きく, 減衰比 0.252 は強制振動制振時の最適値 0.185 よりも約 36% も大きい. これらの関係は既に図4(b)と図5(b)に負の減衰係数 \(\varepsilon \) が0.001 から0.2 のいくつかの場合で図示しているところであるが, 負の減衰係数 \(\varepsilon \) に依存した最適減衰比の範囲を各質量比について計算すると, 図4(b)の質量比 \(\mu = 0.02 \) の時は, 安定限界の負の減衰係数 \(\varepsilon = 0.1414 \) のとき 0.070 であり（強制振動制振時の最適値の約 19% 減の値）, 負の減衰係数が 0 の最大安定なとき 0.138（強制振動制振時の最適値の約 60% 増の値）であり, 図5(b)の質量比 \(\mu = 0.1 \) の時は, 安定限界の負の減衰係数 \(\varepsilon = 0.316 \) のとき 0.151 であり（強制振動制振時の最適値の約 18% 増の値）, 負の減衰係数が 0 の最大安定なとき 0.301（強制振動制振時の最適値の約 63% 増の値）である. 動吸振器は安定限界で設計することはなく, 図8に示した最適値のように余裕をもって安定な状態で設計しなければならないので以下のようにまとめられる. すなわち, 自励振動の最適制振は, 負の減衰係数の増加とともに動吸振器の質量比を増加させ, 固有角振動数比と減衰比は強制振動の最適制振の値を基準として, 負の減衰係数の値に応じて, 前者を数%程度大きな値, 後者を数10%程度大きな値にするとよい.

4. 強制自励振動の制振

強制自励振動の制振については, まず, 動吸振器で制振する場合としない場合の比較のために, 図9に動吸振器を設置しない時の共振曲線を示しておく. このような共振曲線は古くから求められている (Hayashi, 1964). 図9(a) と9(b)はそれぞれ負の減衰係数 \(\varepsilon \) が小さな値と大きな値の場合である. 強制力の周期と同周期をもつ周期解をシューティング法を用いて求めた. 数値積分では解の 1 周期を 1024 等分した. 黒線は安定な引き込み振動の解を示し, 赤線は不安定な解を示している. 不安定解のみしか存在しない強制力の振動数に固定すると多くの場合より引き込み振動, 動吸振器の振幅が大きくなると引き込み領域が広くなることがある. また, 負の減衰係数が大きくなるとより大きな強制力の振幅でないと引き込み振動が実現されないことがわかる. 応答変位振幅に関しては, 振幅は大きくなると非線形減衰項の速度の 3 乗の項が正の減衰として大きく影響してくるので, 強制力の振幅に比例しないのが強制自励系の特徴である. 例えば, 図9(a)において, 強制力の振幅が 0.02 から 0.2 と 10 倍になっても振幅は 2 倍程度にしかなかった. このように減衰項の非線形性は強制振動の振幅に大きな影響を及ぼすので, 無視できないことがわかる. 後に示す図においても減衰項の非線形性の影響が強く
Fig. 9 Resonance curve of forced self-excited system without dynamic absorber. The nonlinearity of the damping term has a great influence on the response amplitude of forced vibration, and the response amplitude is not proportional to the amplitude of the external force. This influence of nonlinearity is seen also in the following figures.

Fig. 10 Resonance curve of forced self-excited system with dynamic absorber ($\varepsilon = 0.005$, $\mu = 0.02$). The solid black line obtained using the optimum value for the forced self-excited system and the dotted line obtained using the optimum value for the forced vibration system are close each other. Therefore, when the negative damping coefficient is very small, the optimum vibration quenching of the forced self-excitation system is possible by using the optimum vibration quenching values for the forced vibration system.
衰項を無視しても問題はないものの、主系に強制力が作用する強制自励系の場合、振幅は0にならないので実際の自動振動系において存在する正の非線形減衰項を考慮することは重要である。

本研究では動吸振器による最適制振を議論するために数値計算から種々の共振曲線を求めたが、用いた非線形減衰係数、強制力の振幅、動吸振器の質量比、固有角振動数比、減衰比の全ての値の範囲で数値積分を行った結果、統一的な安定解をもたらした。特に、図10から図12は負の減衰係数、強制力の振幅、動吸振器の質量比を異なる値で計算した制振曲線である。各図には3つの異なる最適理論に基づいた動吸振器の固有角振動数比と減衰比の値を用いて数値計算した共振曲線を示している。 Stacy、黒の実線が全ての固有角振動数比と減衰比の組み合わせについて強制自励系の主系の共振曲線を計算し、その中で最大振幅の値が最小となる組み合わせのときの共振曲線である。この最適パラメータ値は、

周期解の求解においてシューティング法の数値積分の1周周期の刻み数を最大8192、共振曲線の無次元強制振動数の刻みを0.0001にすると求めた。この解は全ての初期値の下で数値積分を行った結果、全ての解は強制力と同じ振動数の基本調波振動である。図10から図12は負の減衰係数が小さく、强制力の振幅が小さい場合を除き、共共振曲線は制振効果を示している。実際の自励振動系において存在する正の非線形減衰項を考慮することは重要である。
Fig.11 Resonance curve of forced self-excited system with dynamic absorber ($\varepsilon=0.1$, $\mu=0.1$). When the negative damping is large, the solid black line obtained using the optimum value for the forced self-excited system and the dotted line obtained using the optimum value for the forced vibration system are close each other in the small force amplitude. Therefore, when the negative damping coefficient is large, the optimum vibration quenching values for the forced vibration system may be used as the optimum vibration quenching values for the forced self-excitation system only in the case of small force amplitude.

Fig.12 Resonance curve of forced self-excited system with dynamic absorber ($\varepsilon=0.1$, $f=0.02$, $\mu=0.1$). Even the solution that was a beat at all frequencies in Fig. 9 (b) becomes an entrainment solution at all frequencies using dynamic absorber.

ために強制自励系の振幅が抑制されるためである。また、図9(b)の制振していない時の共振振幅は$f=0.5$のとき約2.0で、図11の最適制振時の共振振幅は$f=0.5$のとき約1.5なので、非線形の負の減衰と強制力の振幅の両方が大きい時は最適制振しても振幅がそれほど小さくならないことがわかる。しかも、自励振動のみの時の無次元振幅が1なので、この例では元の自励振動のみの時の振幅より大きい値である。最適制振を行ったとしても大きな制振効果が期待できない場合もあることがわかった。
負の減衰係数が小さい場合、主系の振幅、固有角振動数比、減衰比のいずれもこれら3種類の最適制振条件間の差は強制力の振幅が大きくなるとともに少しだ大きくなるものの、総じて小さい。池田・五百井の最適制振の式によるパラメータ値は線形の負の減衰を考慮しているが減衰項に速度の3乗の非線形項を考慮していないため、强制力の振幅が0付近の応答変位振幅が小さい時に強制自励系の最適制振の値と一致する。そして、減衰のない強制振動の最適制振の条件式によるパラメータ値の方が強制自励系の最適制振の値に近く、最大振幅も池田・五百井の最適制振の式パラメータ値を用いた時の振幅よりも少しだけ強制自励系の最適制振時の値に近くなって
図14に負の減衰係数がε=0.1と大きな値の場合の図13と同様の3種類の最適式による動吸振器の最適パラメータの値、およびその値を用いて求めた共振曲線上の振幅の最大値を示している。図14の共振曲線を描いた時の最適パラメータの値もこの図に含まれている。負の減衰係数が大きい場合、制振力の振幅が大きくなるとともに、固有角振動数比の値については図14(a)からわかるように强制自励系の最適値と他の2つの方法の最適値で差が大きくなっているが、図14(c)からわかるように減衰比の最適値の差は3つの方法で比較的小さいままである。図14(b)から自励振動の制振において、非線形減衰係数が大きな場合の最適設計においては、制振力の振幅の値を大きくし、固有角振動数比を減衰のない強制振動の最適制振の条件式

\[\kappa = \frac{1}{1+\mu} \]

よりも小さな値にしなければならないことがわかった。図14から負の減衰係数が大きい場合、固有角振動数比を小さくすべきことがわかる。このことは、図13の自励振動の制振において、非線形減衰係数が大きくなると固有角振動数比をわずかに大きくすべきであることを逆である。理由は自励振動の制振では振幅0を対象としているのに対し、强制振動の制振では有限の振

\[f \]

を対象としているためである。
Fig.15 Maximum amplitude of resonance curve and optimum parameter values when optimally quenched (f=0.2, $\mu=0.1$). It can be seen that when the nonlinear damping coefficient ε becomes larger, the optimal natural angular frequency ratio κ and the optimal damping ratio γ becomes smaller.

幅での現象を議論しており, 非線形減衰係数 ε が大きくなり振幅が増加することにより固有振動数が減少したか らと考えられる。池田・五百井の最適制振の式を用いた時の固有角振動数比の値は非線形減衰係数 ε が大きくな ると増加している。この原因は強制力の振幅が 0.2 と比較的大きいことによる池田・五百井の最適制振の式の誤 差が、非線形減衰係数 ε が大きくなるとさらに増加していくためとと考えられる。また、強制自励系の制振のため の減衰比の最適値については、非線形減衰係数 ε が大きくなると、減衰比 γ も小さくすべきことがわかる。この ことは、図 5 の自励振動の最適制振において、非線形減衰係数 ε が大きくなると減衰比 γ を小さくすべきである ことと同様の傾向である。制振時の振幅は非線形減衰係数 ε が大きくなると大きくなるが、その増加率は非線形 減衰係数 ε の增加と共に小さくなることがわかる。このことは、振幅の増大とともに非線形減衰係数の速度の 3 乗 の項が正の減衰として大きく影響してくるからである。

5. 結 言

自励振動系を動吸振器を用いて制振する問題について、最適制振が減衰の非線形項を省略し線形項のみ考慮した理論で行えることを利用して、数値計算を行って調べた結果、以下のことがわかった。自励振動の最適制振は、負の減衰係数の増加とともに動吸振器の質量比を増加させ、固有角振動数比と減衰比は減衰のない制振の最適制振の値を基準として、負の減衰係数の大きさに応じて前者を数%程度大きな値、後者は数 10%大きな値にするとよい。

強制自励系を動吸振器を用いて制振する問題について数値計算を行って調べた結果、以下のことがわかった。
数値計算を行ったすべての動吸振器のパラメータ値で，解は強制力と同じ振動数の引き込み振動であった．

自励振動の原因である減衰に関する非線形係数が小さく，強制力の振幅も小さい場合，減衰のない強制振動の動吸振器による制振の最適パラメータの値を用いて近似的に最適制振ができる．

強制力の振幅が大きい場合，減衰のない強制振動の動吸振器による制振の最適パラメータを用いると制振効果が低下するので，動吸振器の主系に対する固有角振動数比をより小さな値にすることで制振効果を向上させることができる．

非線形の負の減衰係数が大きくなると，動吸振器の最適固有角振動数比と最適減衰比は小さくなる．

文献
赤木久真，中野時衛，土肥博，吉田献一，巨大地震に伴う長周期地震動の特性と超高層ビルに及ぼす影響，日本応用数理学会論文誌，Vol.22，No.4(2012)，pp.22-29．

Andersen, L., Birch, N.W., Hansen, A.H. and Skibelund, J.-O., Response analysis of tuned mass dampers to structures exposed to vortex loading of Simiu-Scanlan type, Journal of Sound and Vibration, Vol.239, No.2 (2001), pp.217-231.

古村孝志，武村俊介，早川俊彦，2007年新潟県中越沖地震(M6.8)による首都圏の長周期地震動，地学雑誌，Vol.116，No.3 (2007)，pp.576-587．

Hartlen, R. T. and Currie, I. G., Lift-oscillator model of vortex induced vibration, Journal of Engineering Mechanics, American Society of Civil Engineering, Vol. 96(1970), pp.577-591.

Hayashi, C., Nonlinear oscillations in physical systems, McGraw-Hill(1964), pp.283-338.

池田健，五百井俊宏，減衰を有する振動系の動吸振器について，日本機械学会論文集，Vol.43, No.369(1977a)，pp.1707-1715．

池田健，五百井俊宏，動吸振器による自励振動の防止法について，日本機械学会論文集，Vol.43, No.371(1977b)，pp.2551-2556．

Iwan, W. D. and Blevins, R. D., A model for vortex induced oscillation of structures, Transactions ASME, Journal of Applied Mechanics, Vol.41, No.3(1974), pp.581-5856.

嶺脇重雄，濱口弘樹，河合謙吾，多重動吸振器を用いたエンドミル加工時の強制びびりおよび再生びびり振動の抑制対策，日本機械学会論文集，Vol.80, No.812(2014)，DOI: 10.1299/transjsme.2014dr0098．

佐々木茅乃，永野正行，堀愛里香，野津厚，川辺秀憲，2011年東北地方太平洋沖地震の震源モデルを用いた関東平野における長期期地震動評価，日本機械学会論文集，Vol.24, No.56(2018)，pp.75-80．

Shaw, J. and Shaw, S. W., Non-linear resonance of an unbalanced rotating shaft with internal damping, Journal of Sound and Vibration, Vol.147, No.3(1991), pp.435-486．

末岡淳男，劉孝宏，藤山征人，吉武裕，回転円板の動吸振器による摩擦振動の制振，日本機械学会論文集C編，Vol. 59, No.561 (1993)，pp.1335-1342.

谷口智之，近藤孝広，負性抵抗系に対する動吸振器の動作原理の解明と最適設計法の開発，日本機械学会論文集，Vol.82, No.833(2016)，DOI: 10.1299/transjsme.15-00586．
吉武裕,末岡淳男,インパクトダンパによる自励振動の防振,日本機械学会論文集C編,Vol.60, No.569(1994), pp.50-56.

吉武裕,末岡淳男,田村英之,庄司長史,不連続な非線形性をもつ系の振動(乾燥摩擦を伴う強制自励系の場合),日本機械学会論文集C編,Vol.61, No.583(1995), pp.768-774.

吉武裕,原田晃,隠岐雅浩,山崎正則,杉村泰司,大石哲史,2スロット発電機と水平振り子からなる動吸振器型制振発電装置の研究(第1報,渦励振の制振),日本機械学会論文集C編,Vol.72, No.723(2006), pp.3467-3473.

吉武裕,永代行日出,桑園慎太郎,山口雄大,井上堅二朗,田中智大,強制変位加振による渦励振の引き込み現象,日本機械学会論文集,Vol.86, No.889(2020), DOI: 10.1299/transjsme.20-00145.

References

Akagi, H., Nakano, T., Dohi, H. and Yoshida, K., Characteristics of long-period ground motions associated with huge earthquakes and their effects on skyscrapers, The Japan society for industrial and applied mathematics, Vol.22, No.4(2012), pp.22-29(in Japanese).

Andersen, L., Birch, N.W., Hansen, A.H. and Skibelund, J.-O., Response analysis of tuned mass dampers to structures exposed to vortex loading of Simiu-Scanlan type, Journal of Sound and Vibration, Vol.239, No.2 (2001), pp.217-231.

Furumura, T., Takemura, S. and Hayakawa, T., Long-period ground motions recorded in the Tokyo metropolitan area during the 16 July, 2007 M6.8 Off Niigata-ken Chuetsu, Japan Earthquake, Journal of Geography, Vol.116, No.3 (2007), pp.576-587(in Japanese).

Hartlen, R. T. and Currie, I. G., Lift-oscillator model of vortex induced vibration, Journal of Engineering Mechanics, American Society of Civil Engineering, Vol. 96(1970), pp.577-591.

Hayashi, C., Nonlinear oscillations in physical systems, McGraw-Hill(1964), pp.283-338.

Ikeda, K. and Ioi, T., On the dynamic vibration damped absorber of the vibration system, Transactions of the Japan Society of Mechanical Engineers, Vol. 43, No.369(1977a), pp.1707-1715(in Japanese).

Ikeda, K. and Ioi, T., Prevention of self-excited vibration by damped dynamic absorber, Transactions of the Japan Society of Mechanical Engineers, Vol. 43, No.371(1977b), pp.2551-2556(in Japanese).

Iwan, W. D. and Blevins, R. D., A model for vortex induced oscillation of structures, Transactions of ASME, Journal of Applied Mechanics, Vol.41, No.3(1974), pp.581-5856.

Minewaki, S., Hamaguchi, H., Kinoshita, T., Nishimura, A., Futatsugi, S. and Takeuchi, S., A study on effect of cushions installed in a seismically isolated high-rise structure under long-period ground motions, Architectural Institute of Japan, Journal of Technology and Design, Vol.23, No.55(2017), pp.809-814(in Japanese).

Mitsubishi Estate, Yokohama landmark tower, Syoukokusya(1994)(in Japanese).

Nakano, Y., Takahara, H. and Kawai, K., The countermeasure against forced and regenerative chatter in end milling process with multiple dynamic absorbers, Transactions of the JSME (in Japanese), Vol.80, No.812(2014), DOI: 10.1299/transjsme.2014dr0098.

NEDO (New Energy and Industrial Technology Development Organization), Floating offshore wind power generation technology guidebook(2018), pp.34-38(in Japanese).

Ohotsuka, J., Tamura, Y., Tamaki, T. and Yagi, K., Vibration measurement of offshore wind power generation facilities, The Japan Society of Civil Engineers 59th Annual Conference, No. 6-243(2004), pp.485-486(in Japanese).

Sasaki, K., Nagana, M., Hori, A., Nozu, A. and Kawabe, H., Evaluation of long-period ground motions in Kanto plain using source models for the 2011 Tohoku earthquake, Architectural Institute of Japan, Journal of Technology and Design, Vol.24, No.56(2018), pp.75-80(in Japanese).

Shaw, J. and Shaw, S. W., Non-linear resonance of an unbalanced rotating shaft with internal damping, Journal of Sound and Vibration, Vol.147, No.3(1991), pp.435-451.

Sueoka, A., Ryu, T., Fujiiwama, M. and Yoshitake, Y., Quenching of frictional vibrations of a rotating circular plate by
dynamic absorbers, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.59, No.561(1993), pp.1335-1342(in Japanese).
Taniguchi, T. and Kondou, T., Operating mechanism and optimization of dynamic absorber for a system with negative damping, Transactions of the JSME (in Japanese), Vol.82, No.833(2016), DOI: 10.1299/ transjsme.15-00586.
Watari, A. and Sugimoto, T., Vibration caused by dry friction, Transactions of the Japan Society of Mechanical Engineers, Vol.29, No.200(1963), pp. 769-782(in Japanese).
Yamasaki, S., Structural design of landmark tower in Yokohama, Journal of the Japan Welding Society, Vol.61, No.2(1992), pp.107-112 (in Japanese).
Yoshitake, Y., Sueoka, A. and Inoue, J., Forced self-excited vibration with time lag, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.49, No.439(1983), pp.298-306(in Japanese).
Yoshitake, Y., Sueoka, A. and Tamura, H., Analysis of vibrational system with Coulomb’s friction(3rd Report, quenching of self-excited vibrations), Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 56, No. 523(1990), pp.568-573(in Japanese).
Yoshitake, Y. and Sueoka, A., Quenching of self-excited vibrations by an impact damper, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 60, No. 569(1994), pp.50-56(in Japanese).
Yoshitake, Y., Sueoka, A., Tamura, H. and Shoji, O., Vibrations of nonlinear systems with discontinuities(Case of forced self-excited vibration accompanied by dry friction), Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 61, No. 583(1995), pp. 768-774(in Japanese).
Yoshitake, Y., Harada, A., Kakurezaki, M., Yamasaki, M., Sugimura Y. and Ohishi, T., Vibration quenching and electricity generation by dynamic absorber composed of generator with two slots and horizontal pendulum (1st Report, Quenching of vortex-induced vibration), Transactions of the Japan Society of Mechanical Engineers, Series C, Vol.72, No.723 (2006), pp.3467-3473(in Japanese).
Yoshitake, Y., Nagayo, Y., Kuwazono, S., Yamaguchi, Y., Inoue, K. and Tanaka, T., Entrainment phenomenon by forced displacement excitation in vortex induced vibration, Transactions of the JSME (in Japanese), Vol.86, No.889(2020), DOI: 10.1299/transjsme.20-00145.