Effect of dexmedetomidine on haemodynamic parameters in patients undergoing laparoscopic surgeries

Dr. Tejas N Kulkarni and Dr. Thejaswini HS

DOI: https://doi.org/10.33545/26643766.2019.v2.i2b.32

Abstract

Background: Pneumoperitoneum created during laparoscopic surgeries cause adverse haemodynamic changes. Many drugs are used to blunt these effects. Dexmedetomidine is a highly selective alpha2 agonist, causes sympatholysis, analgesia and also has cardiovascular stabilizing property. Hence the present study is an attempt to study the effects of dexmedetomidine in attenuating these adverse haemodynamic effects.

Methodology: A total of 60 patients were divided into two groups. Group D patients received dexmedetomidine at a rate of 0.2µg/kg/hour or 0.04ml/kg/hr and Group S patients received 0.9% Normal Saline at the same rate. Infusion was started 5 mins before induction. Heart rate, blood pressure, mean arterial pressure were monitored.

Result: In group D haemodynamic stress response was significantly attenuated when compared to group S. Results were statistically significant.

Conclusion: Dexmedetomidine, a highly selective alpha-2 agonist, when infused at a low dose of 0.2µg/kg/hour has stable hemodynamics during laparoscopic surgery.

Keywords: Haemodynamics, laparoscopic surgery, pneumoperitoneum, dexmedetomidine

1. Introduction

Phillpe Mouret, in 1987, introduced laparoscopic cholecystectomy as a minimally invasive alternative to open surgeries [1-3]. Since then laparoscopic surgeries are being performed widely, mainly because the less trauma to tissues is associated with shorter healing time compared to open surgery. Nevertheless, this type of surgery is not immune to complications like deep venous thrombosis [4,5] abdominal wall hematoma (2.0%), umbilical hernia [Jiang X]. Its advantages include reduced pain due to smaller incisions, less haemorrhage and shorter recovery time. Though it offers many advantages, it also causes considerable stress hormone responses (cortisol, epinephrine, norepinephrine), especially when pneumoperitoneum is concurrently used [6], but less than the open surgeries [7]. Pneumoperitoneum is produced by using carbon dioxide during laparoscopic surgery. Both pneumoperitoneum and carbon dioxide cause adverse cardiovascular effects in terms of elevated arterial pressure, increased systemic and pulmonary vascular resistance and reduced cardiac output by increasing plasma levels of norepinephrine, epinephrine [8] in addition to the reverse Trendelenburg position used for surgeries.

Many drugs have been used to counteract these effects during laparoscopic surgeries. In a randomized trial, investigators found clonidine to be better than magnesium sulphate [9] and Pregabalin [10], in blunting the hemodynamic responses to laparoscopic procedures. Other drugs like nicardipine [11] and nitroglycerin [12] were also tried to abate cardiovascular responses to pneumoperitoneum.

Alpha-2 agonists are currently used as sedatives and as adjuvants to anaesthesia. Dexmedetomidine has a unique property of reducing sympathetic outflow associated with laparoscopic procedures with added sedative property and an opioid sparing action. It is more selective and safer than its predecessor clonidine [13]. These properties of dexmedetomidine help the anaesthetist to reduce the use anti-hypertensive drugs to avoid possible drug interactions due to polypharmacy.

Therefore this study was designed to study the effects of Dexmedetomidine on hemodynamic parameters during laparoscopic surgeries.
2. Materials and Method
The Institutional ethics committee approval was taken before starting the study. Written informed consent was obtained from the patients before starting the study. A total of sixty patients were included in this study and they were allocated to two groups of thirty patients each for this prospective randomized controlled study. The randomization was done by computer generated randomization charts.

2.1 Inclusion Criteria
- Patients willing to consent
- Age of patients: 18-60 years; Either gender; Weight: 50 to 70 kg
- Patients under American Society of Anaesthesiologist (ASA) Physical status grade I & II
- Undergoing laparoscopic surgery i.e. Laparoscopic Cholecystectomy (LC), Laparoscopic Appendicectomy (LA)

2.2 Exclusion Criteria
- Patients who are not willing to consent
- Extremes of age
- Uncontrolled systemic diseases
- Allergy to drug
- History of alcohol or drug abuse

All patients underwent a detailed pre anaesthetic check-up before surgery and all the routine and specific investigations were noted. The patients were electively kept nil per oral for 6 hours before surgery and prior to operation patients were explained about the procedure. After the patient was shifted to the theatre, standard monitors like ECG, NIBP, and pulse oximeter were applied and patient’s baseline parameters like pulse, blood pressure, respiratory rate, oxygen saturation were recorded. Two intravenous lines were secured in all the patients and intravenous fluid was started.

2.3 Technique of Anaesthesia
The patients were divided into two groups.

Group D: Inj. Dexmedetomidine 0.2 µg/kg/hour

Group S: 0.9% Normal Saline at the same rate
Dexmedetomidine 200 µg (2ml) was added to 0.9% normal saline (38ml) to make a total volume of 40ml (resulting concentration 5 µg/ml) and was used at a rate of 0.04 ml/kg/hr. Infusion of study drug or saline was started 5 minutes before induction. All patients were pre-oxygenated with 100% oxygen for 5 min using Bain’s circuit.

2.3.1 Premedication: Inj. Ondansetron 0.15 mg/kg
Inj. Glycopyrrolate 0.004 mg/kg
Inj. Fentanyl 2 µg/kg

2.3.2 Induction and intubation: All patients were induced 5 minutes after starting the infusion of the study drug. Patients were induced using Inj. Propofol 2.5 mg/kg. Endotracheal intubation was facilitated using Inj. Succinylcholine 2 mg/kg and intubation done using an appropriate tube. Positive pressure ventilation was started. EtCO₂ monitoring was started.

2.3.3 Maintenance: Anaesthesia was maintained using oxygen, nitrous oxide, inhalational agent (Isoflurane) and intermittent doses of Inj. Vecuronium.

2.3.4 Monitoring: Pulse rate, blood pressure, oxygen saturation and EtCO₂; values were noted after starting infusion of drug, after induction and intubation, and at regular intervals throughout the surgery. Carbon dioxide insufflation was done to create pneumoperitoneum. The intra-abdominal pressure was maintained between 14 - 16 mmHg throughout the surgery. Intraoperative hypotension was managed using Inj. Nitroglycerine and hypotension was managed using intravenous fluids and Inj. Ephedrine. At the end of pneumoperitoneum, infusion of study drug was stopped and port site instillation was done with 40 ml of Inj. Bupivacaine (0.25%).

2.3.5 Reversal and Extubation: All patients were reversed using Inj. Glycopyrrolate 0.008 mg/kg and Inj. Neostigmine 0.05 mg/kg. After thorough oral and endotracheal suction patients were extubated after they satisfied the criteria for extubation. All patients were then shifted to the post-operative room and observed for 3 hours. Any post-operative complications were noted and treated accordingly.

3. Statistical Analysis
Data was entered and analyzed in Microsoft Excel 2010 sheet. Descriptive statistics such as mean, median, standard deviation were employed to summarize the quantitative data such as age, BMI, Mean Arterial Pressure (MAP) etc. Independent sample’t’ test was used for comparison of various parameters between the two groups. A statistical significance of 0.05 was considered.

4. Results
We studied 60 patients undergoing LC and LA surgery. After studying 60 cases, the observations and results were summarized in tabulated form. The patients were divided into two groups with 30 patients in each group (n=30).

Table 1: Demographic data

Variables	Group D	Group S
Age (in years)*	45.03±3.04	37.80±3.12
Gender Ratio (M:F)*	7:23	6:24
Weight (Kg)*	53.3±5.14	51.9±4.31

Table 1 shows the distribution of patients according age, gender and weight; *p>0.05

In Group D, 23 (76%) and 07 (24%) patients underwent LC and LA respectively. Similarly in Group S, 18 (60%) and 12 (40%) patients underwent LC and LA respectively. The following were the observations from the study.

Table 2: Comparison of mean pulse rate at different time points with baseline value (Mean±SD)

Variables	Group D	Group S
Baseline	93.47±15.32	89.13±11.75
After Infusion	92.30±12.42	91.2±12.43
After Induction	96.83±10.18	94.83±12.76
After Intubation	95.69±23	99.80±11.42
After Pneumoperitoneum		
15 min	88.53±10.45	96.13±12.05*
30 min	86.17±9.98*	96.47±9.55
45 min	85.72±11.37*	95.12±10.53*
60 min	83.36±8.48*	90.15±8.83*

*p<0.05
5.1 Pulse Rate
The findings in our study were similar to one study [18], where they found that Dexmedetomidine infusion attenuated the hemodynamic changes during laparoscopic surgeries. Another study [19] investigated the effects of two different doses of Dexmedetomidine (0.3 and 0.6µg/kg) premedication administered intravenously as a single bolus dose. They found that the tachycardia and blood pressure in the higher dose group was significantly less than that of lower dose group, suggesting a bi-phasic response. The bi-phasic response was evident in another study [20]. During our study the response to laryngoscopy and intubation presented no hemodynamic in-stability.

The haemodynamic parameters were comparable to our results, when short laparoscopic diagnostic procedures in gynaecology were carried out with premedication of intramuscular Dexmedetomidine at different doses (0.6, 1.2, 2.4µg/kg) [21]. Though the authors reported a frequent sinus bradycardia at higher doses of Dexmedetomidine premedication, we did not encounter any such adverse drug reaction in our study, since we used a less dose compared to above study. Thus future studies with evaluating different doses can help set a range of dose under which excessive deterioration of hemodynamic parameters can be curtailed.

5.2 Systolic Blood Pressure
We anticipated a rise in SBP during laryngoscopy, intubation and as a result of pneumoperitonium. The rise in SBP was promptly blunted by premedication with dexmedetomidine, which was statistically significant. Reduction in SBP was also seen during intra-operative period. Though decrease in SBP is similar to that seen during laryngoscopy and intubation but reduction was more with esmolol and fentanyl [22]. Nevertheless the SBP provided by dexmedetomedine is more desirable and avoids hypotension.

5.3 Mean Arterial Pressure
The results from our study showed a sympatholytic response of decrease in MAP at the dose mentioned above. A 13% reduction of MAP from the baseline was observed by Ebert et al. [20] at lower plasma concentrations of dexmedetomidine but a paradoxical rise of about 12% from the baseline was reported at higher concentrations (>1.9 nanograms/l). This indicates the need for cautious maintenance of dexmedetomidine within its therapeutic window to avoid counterproductive hypertension, especially due to pneumoperitonium, which produces a cardiovascular stress. The meta-analysis shows similar results in terms of decreased hemodynamic parameters with dexmedetomidine [23].

6. Conclusion
Dexmedetomidine, a relatively newer highly selective alpha-2 agonist, when infused at a dose of 0.2µg/kg/hour has stable hemodynamics during laparoscopic surgery.

7. Reference
1. Polychronidis A, Laftsidis P, Bounovas A, Simopoulos C. Twenty years of laparoscopic cholecystectomy:
Philippe Mouret- March 17, JSLS 1987; 12(1):109-11. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3016026&tool=pmcentrez&rendertype=abstract

2. Mouret P. How I developed laparoscopic cholecystectomy. Ann Acad Med Singapore. 1996; 25(5):744-7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8924020

3. Cunningham AJ, Brull SJ. Laparoscopic cholecystectomy: anesthetic implications. Anesth Analg. 1993; 76(5):1120-33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8053989

4. Garg PK, Teckchandani N, Hadke NS, Chander J, Nigam S, Puri SK. Alteration in coagulation profile and incidence of DVT in laparoscopic cholecystectomy. Int J Surg. 2009; 7(2):130-5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19144583

5. Ntourakis D, Sergentanis TN, Georgiopoulos I, Papadopoulos E, Liasis L, Kritikos E et al. Subclinical activation of coagulation and fibrinolysis in laparoscopic cholecystectomy: do risk factors exist? Int J Surg. 2011; 9(5):374-7. Available from: http://www.sciencedirect.com/science/article/pii/S1743919111000306

6. Perugini RA, Callery MP. Complications of laparoscopic surgery. Zuckschwerdt, 2001. Available from: http://www.ncbi.nlm.nih.gov/books/NBK69235

7. Le Blanc-Louvry I, Coquerel A, Koning E, Maillot C, Ducrotte P. Operative stress response is reduced after laparoscopic compared to open cholecystectomy: the relationship with postoperative pain and ileus. Dig Dis Sci. 2000; 45(9):1703-13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11052308

8. McLaughlin JG, Scheeres DE, Dean RJ, Bonnell BW. The adverse hemodynamic effects of laparoscopic cholecystectomy. Surg Endosc. 1995; 9(2):121-4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7597577

9. Kalra NK, Verma A, Agarwal A, Pandey H. Comparative study of intravenously administered clonidine and magnesium sulfate on hemodynamic responses during laparoscopic cholecystectomy. J Anaesthesiol Clin Pharmacol. 2011; 27(3):344-8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3161459&tool=pmcentrez&rendertype=abstract

10. Gupta K, Sharma D, Gupta PK. Oral premedication with pregabalin or clonidine for hemodynamic stability during laryngoscopy and laparoscopic cholecystectomy: A comparative evaluation. Saudi J Anaesth. 2011; 5(2):179-84. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3139312&tool=pmcentrez&rendertype=abstract

11. Yoon HJ, Lee YS. Hemodynamic Effects of Intravenous Bolus Dosing of Nicardipine on Pneumoperitoneum during Laparoscopically-Assisted Vaginal Hysterectomy (LAVH). Korean J Anesthesiol. 2006; 50(6):S43-S47. Available from: http://www.komci.org/GSResult.php?RID=1011KJAE/2006.50.6.S43&DT=6

12. Moon HS, Lee SK, Choi YS, In CB, Choi EJ. The effect of nitroglycerin on hemodynamic changes during laparoscopic low anterior resection. Korean J Anesthesiol. 2011; 61(5):388-93. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3229017&tool=pmcentrez&rendertype=abstract

13. Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg. 2000; 90(3):699-705. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10702460

14. Keus F, de Jong JAF, Goossen HG, van Laarhoven CJHM. Laparoscopic versus open cholecystectomy for patients with symptomatic cholecystolithiasis. Cochrane database Syst Rev. 2006; (4):CD006623. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17054285

15. Dexter SP, Vucevic M, Gibson J, McMahon MJ. Hemodynamic consequences of high- and low-pressure capnoperitoneum during laparoscopic cholecystectomy. Surg Endosc. 1999; 13(4):376-81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10994751

16. Galizia G, Prizio G, Lieto E, Castellano P, Pelosio L, Imperatore V et al. Hemodynamic and pulmonary changes during open, carbon dioxide pneumoperitoneum and abdominal wall-lifting cholecystectomy. A prospective, randomized study. Surg Endosc. 2001; 15(5):477-83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11335965

17. Meineker D, Byhahn C, Bueck M, Binder J, Kramer W, Kessler P et al. Effects of prolonged pneumoperitoneum on hemodynamics and acid-base balance during totally endoscopic robot-assisted radical prostatectomies. World J Surg. 2002; 26(12):1423-7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12297911

18. Bhattacharjee D, Nayek S, Dawn S, Bandopadhyay G, Gupta K. Effects of dexmedetomidine on haemodynamics in patients undergoing laparoscopic cholecystectomy- A comparative study. J Anaesthesiol Clin Pharmacol. 2010; 26(1):45-8. Available from: http://www.joacp.org/article.asp?issn=0970-9185

19. Aho M, Lehtinen AM, Erkola O, Kallio A, Korttila K. The effect of intravenously administered dexmedetomidine on perioperative hemodynamics and isoflurane requirements in patients undergoing abdominal hysterectomy. Anesthesiology. 1991; 74(6):997-1002. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1675042

20. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000; 93(2):382-94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10910487

21. Aho M, Scheinin M, Lehtinen AM, Erkola O, Vuorinen J, Korttila K. Intramuscularly administered dexmedetomidine attenuates hemodynamic and stress hormone responses to gynecologic laparoscopy. Anesth Analg. 1992; 75(6):932-9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1359808

22. Gogus N, Akan B, Serger N, Baydar M. The comparison of the effects of dexmedetomidine, fentanyl and esmolol on prevention of hemodynamic response to intubation. Brazilian J Anesthesiol. 2014; 64(5):314-9. Available from: http://www.sciencedirect.com/science/article/pii/S0104001413002303
23. Piao G, Wu J. Systematic assessment of dexmedetomidine as an anesthetic agent: a meta-analysis of randomized controlled trials. Arch Med Sci. 2014; 10(1):19-24. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3953974&tool=pmcentrez&rendertype=abstract