THEORETICAL RADII OF TRANSITING GIANT PLANETS: THE CASE OF OGLE-TR-56b

A. Burrows,1 I. Hubeny,1,2 W. B. Hubbard,3 D. Sudarsky,1, and J. J. Fortney4

Received 2004 May 12; accepted 2004 June 8; published 2004 June 23

ABSTRACT

We calculate radius versus age trajectories for the photometrically selected transiting extrasolar giant planet, OGLE-TR-56b, and find agreement between theory and observation, without introducing an ad hoc extra source of heat in its core. The fact that the radius of HD 209458b seems larger than the radii of the recently discovered OGLE family of extremely close-in transiting planets suggests that HD 209458b is anomalous. Nevertheless, our good fit to OGLE-TR-56b bolsters the notion that the generic dependence of transit radii on stellar irradiation, mass, and age is, to within error bars, now quantitatively understood.

Subject headings: planetary systems — planets and satellites: general — stars: individual (OGLE-TR-56b)

1. INTRODUCTION

The measurement of the Doppler wobble of more than 120 nearby stars induced by the presence of a planetary mass companion has revealed a population of extrasolar giant planets (EGPs) that is the focus of an increasing fraction of the world’s astronomers.3 However, because of the fact that for the vast majority of these EGPs the orbital inclination (i) is not known, only a lower limit, the projected mass (P sin i), constrains the actual planetary mass (Mp). Although the orbital distances (a), periods (P), and eccentricities are well determined, to study an EGP in physical detail requires physical information, such as the actual mass, the radius, and the spectrum.

The detection of planetary transits across the face of the parent star provides the first two of these considerates, and with both masses and radii the structural (and to some degree compositional) character of the EGP can be studied (Guillot et al. 1996). HD 209458b was the first EGP to be detected to transit its primary (Henry et al. 2000; Charbonneau et al. 2000), and at a distance of only 47 pc, it is bright enough to yield (using the Hubble Space Telescope/Space Telescope Imaging Spectrograph) a transit light curve with ~100 micro magnitude precision (Brown et al. 2001). Proximity also enables precise radial velocity measurements. As a consequence, the data for this radial velocity–selected transiting EGP are some of the best that we can expect (Brown et al. 2001; Mazeh et al. 2000; Cody & Sasselov 2002). Furthermore, the overall transit probability for an EGP in the Doppler surveys is very roughly 0.1, and the detection of near 90° inclinations is 0.01. Since the order of 100 EGPs have been detected, and the Doppler surveys of nearby stars are approaching completeness, we cannot expect many more like HD 209458b.

It is in this context that the photometrically selected transiting EGPs OGLE-TR-56b (Udalski et al. 2002b; Konacki et al. 2004), and OGLE-TR-132b (Udalski et al. 2003; Bouchy et al. 2004) should be viewed. The small subset of the stars in the OGLE (Optical Gravitational Lensing Experiment) galactic survey that show periodic photometric dips, but that also survive close scrutiny for false positives (stellar binarity, confusion, etc.), have the potential to add considerably to our knowledge of the radius–mass relation for EGPs. Table 1 gives relevant stellar and planetary data for the known transiting systems, along with associated references.

However, at distances of perhaps 1500 pc, even 8 m class telescopes cannot provide the level of Doppler precision necessary to compete on a regular basis with that achievable by the ongoing radial-velocity surveys in the solar neighborhood. Moreover, at a distance of ~1500 pc, an accurate measurement of the depth of the photometric transit is a major challenge. Nevertheless, the large volume surveyed by the OGLE team, and the large volumes that can be surveyed using similar photometric approaches, imply that such programs have the potential to yield a rich harvest of transiting EGPs. Ground-based photometric transit surveys will pave the way for the more precise space-based surveys to be conducted by Kepler (Koch et al. 1998) and COROT (Convection Rotation and planetary Transits).6 Therefore, we can expect in the years to come a large family of EGPs for which both radii and masses are known and, hence, for which a robust theory of EGP radii will be required.

Theories for the radius of HD 209458b in particular (Burrows et al. 2000, 2003; Hubbard et al. 2001; Fortney et al. 2003; Bodenheimer et al. 2001, 2003; Guillot & Showman 2002; Showman & Guillot 2002; Allard et al. 2003; Baraffe et al. 2003) and for irradiated EGPs (“roasters”) in general (Guillot et al. 1996; Burrows et al. 2003; Baraffe et al. 2003; Chabrier et al. 2004) are appearing that address many of the issues that surround theoretical calculations of the radii of irradiated EGPs and their evolution. We refer to the discussion in Burrows et al. (2003, hereafter B03) for a critique of the literature and a summary of the various methods.

The apparent anomaly of the OGLE transits is the small inferred transit radii in the optical (Table 1), given the larger measured radius for HD 209458b. Since the orbital distance of OGLE-TR-56b in particular is half (0.0225 AU) that of HD 209458b (0.045 AU), it might have been expected that the greater stellar insolation would have “expanded” its radius even

6 See http://sci.esa.int/science-e/www/area/index.cfm?fareaid=39.
more than that of HD 209458b. To explain the large radius of HD 209458b, a number of theorists have invoked an additional heat/power source in the core, due either to the conversion of a fraction of the intercepted stellar light into deeply penetrating mechanical waves (Baraffe et al. 2001; Guillot & Showman 2002; Showman & Guillot 2002) or to the presence of an as-yet-unseen companion that induces a slight eccentricity in HD 209458b (Bodenheimer et al. 2003). Such an eccentricity can result in tidal heating. Chabrier et al. (2004) have calculated models for OGLE-TR-56b that clip the lower end of the error bar range. They also posit that the injection of some added power to the core, such as has been suggested by Guillot & Showman (2002), can be accommodated. This might compensate for what would otherwise be an \(-0.1\)R\(_{\text{p}}\) discrepancy between their determination and the central value of the measured transit radius, if such compensation is ever required.7 In this Letter, our goal is to explain the measured radius of OGLE-TR-56b using the tools and approximations described in B03, without invoking any additional heat source. We find that the radius of OGLE-TR-56b can indeed be fitted comfortably using this theory.

In § 2, we summarize our approximations and approach. In § 3, we present our theoretical results for the evolution with age of the radius (R\(_{\text{p}}\)) of the transiting planet OGLE-TR-56b and compare theory with observation. In § 4, we review our conclusions and attempt to put them, as well as our physical theory, into the broader context of the family of irradiated EGPs, both those that are known and those to be discovered. We end with a synopsis of the improvements in the theory of irradiated EGPs, both those that are known and those to be discovered.

2. Techniques and Physically Motivated Assumptions

The evolution of an EGP in isolation requires an outer boundary condition that connects radiative losses, gravity (g), and core entropy (S). In this case, the radiative losses are given by

\[4\pi R^2 \sigma T^4 \]

where T\(_{\text{eff}}\) is the effective temperature, R\(_{\text{p}}\) is the planet’s radius, and \(\sigma \) is the Stefan-Boltzmann constant. When there is no irradiation, the effective temperature determines the flux both from the core and from the entire object. A grid of T\(_{\text{eff}}\), g, and S, derived from detailed atmosphere calculations, can then be used to evolve the EGP (Burrows et al. 1997).

Stellar irradiation can drastically alter an EGP’s atmosphere and the relationship among the core entropy, gravity, and core luminosity. The latter can be tied to an effective temperature (T\(_{\text{eff}}\)), but this is now very much lower than the equilibrium temperature (Sudarsky et al. 2003) achieved in the roaster’s upper atmosphere. It is this T\(_{\text{eff}}\) that determines the rate with which the irradiated planet’s core cools (B03), and it is the core entropy that dominates the determination of the radius of a planet of a given mass. Hence, when there is stellar irradiation, T\(_{\text{eff}}\) gives the flux from the core and determines the inner boundary condition for the atmosphere problem, but it does not determine the total emergent flux. This is given by the sum of the irradiation flux and core flux. As a result, a more careful atmosphere calculation, one that penetrates deeply into the convective zone to Rosseland optical depths of \(\sim 10^5 \) and pressures of \(\sim 10^5 \) bars, is required to establish the boundary conditions necessary for evolutionary calculations of severely irradiated EGPs. We use a specific variant of the stellar atmosphere code TLUSTY (Hubeny 1988; Hubeny & Lanz 1995), called COOLTLUSTY (briefly described in Sudarsky et al. 2003), to calculate T/P profiles and evolutionary boundary conditions for irradiated EGPs such as OGLE-TR-56b, the evolutionary code of Burrows et al. (1997), the H/He equation of state of Saumon et al. (1995), the opacity library described in Burrows et al. (2001), an updated version of the thermochemical database of Burrows & Sharp (1999), and a stellar spectrum for OGLE-TR-56 (with an assumed spectral type of G2 V) from Kurucz (1994).

As B03 have shown, the transit radius is not the standard “1 bar” pressure radius (Lindal et al. 1981) or the “\(\tau = 1 \)” photospheric radius. It is the radius at which the optical depth (at a given frequency) along the chord perpendicular to the radius vector is of the order of unity. As a result, the ratio of the photospheric pressure to the “transit pressure” is near \((2\pi R_{\text{tr}}/H)^{1/2} \), where \(H \) is the pressure scale height (Smith & Hunten 1990). This adds \(\sim 5 \) pressure scale heights to the \(\sim 10 \) pressure scale heights between the canonical photosphere and the radiative/convective boundary. As found in B03, the upshot for HD 209458b is an increase of \(\sim 10\% \) in its transit radius. For this Letter, we have calculated the transit pressure for OGLE-TR-56b using the methodology of Fortney et al. (2003) and find values in the optical of \(\sim 20–30 \) mbar for the two models that we present in § 3. This translates into an increase of \(\sim 3%–4.5\% \) in the transit radius of the more massive OGLE-TR-56b.

To carry out calculations of the evolution of R\(_{\text{p}}\) with age for a given M\(_{\text{p}}\) and irradiation regime, we must assume a helium fraction (Y\(_{\text{He}}\)), address the issue of the possible presence of a

Table 1: Data for Current List of Transiting EGPs

EGP	\(M_p \) (M\(_{\text{J}}\))	\(R_p \) (R\(_{\text{J}}\))	a (AU)	P (days)	\(M_p \) (M\(_{\text{J}}\))	\(R_p \) (R\(_{\text{J}}\))	Age (Gyr)
HD 209458b	1.1 ± 0.1	1.2 ± 0.1	0.045	3.525	0.69 ± 0.05	1.4 ± 0.17	5.5 ± 1.5
HD 209458b	1.06 ± 0.1	1.18 ± 0.1	0.045	3.525	0.69 ± 0.02	1.42 ± 0.13	5.2 ± 0.5
HD 209458b	1.1 ± 0.1	1.146 ± 0.05	0.045	3.525	~0.69	1.347 ± 0.06	...
OGLE-TR-56b	1.04 ± 0.05	1.1 ± 0.1	0.0225	1.212	1.45 ± 0.23	1.23 ± 0.16	2.5 ± 0.5
OGLE-TR-113b	0.77 ± 0.06	0.765 ± 0.025	0.0228	1.433	1.35 ± 0.22	1.086 ± 0.005	...
OGLE-TR-132b	0.79 ± 0.06	0.78 ± 0.06	0.023	1.432	1.08 ± 0.28	1.09 ± 0.10	...

* Mazeh et al. (2000).
* Cody & Sasselov (2002).
* Brown et al. (2001).
* Torres et al. (2003).
* Sasselov (2003).
* Bouchy et al. (2004).
* Kosacki et al. (2004).

\[\sim 10% \]
rocky core, account for variations in the angle of incidence of the stellar radiation across the planet’s surface, and address the issue of the difference between the day- and nightside cooling. For these calculations, we take $Y_{He} = 0.30$. This is larger than the Y_{He} expected but can account for the effect of a rocky core. As shown by B03 for HD 209458b, a $10\, M_\odot$ core shrinks the planet by only $\sim 3\%$--4%. This is similar to the effect of increasing Y_{He} by 0.02. For the more massive OGLE-TR-56b (Table 1), the effect of a rocky core is smaller still. As described in B03, we have introduced the flux parameter f that accounts in approximate fashion for the variation in incident flux with latitude when using a planar atmosphere code. To employ this in approximate fashion for the variation in incident flux with approximately account for the average insolation over latitude and the redistribution of heat to the night side. A value of $f = \frac{1}{2}$ assumes that there is little sharing of heat between the day and night sides. A value of $f = \frac{1}{4}$ assumes that in the calculation of the TIP profile the heat from irradiation is uniformly distributed over the entire sphere. In this Letter, we show the results for both assumptions but favor $f = \frac{1}{2}$ to approximately account for what may be significant redistribution to the night side.

The issue of the value of f is tightly coupled to the day-night cooling difference. The T_{eff} for the core in each hemisphere depends on the strong atmospheric circulation currents that advect heat from the day to the night sides (B03; Guillot & Showman 2002; Showman & Guillot 2002; Menou et al. 2003; Cho et al. 2003; Burkert et al. 2003). A three-dimensional radiation/hydrodynamic study or global climate model is beyond the scope of this Letter. In lieu of that, we assume as in B03 and Baraffe et al. (2003) that the flux from the core in both hemispheres is the same. This does not mean that the TIP profiles are the same at altitude, only that the flux at depth at the radiative/convective boundary is the same.

3. RESULTS FOR OGLE-TR-56B: R_p VERSUS AGE

Figure 1 depicts evolutionary trajectories of the transit radius R_p in the optical versus age for the $f = \frac{1}{2}$ and $\frac{1}{4}$ models of OGLE-TR-56b (gold). For both models, $Y_{He} = 0.30$ and $M_p = 1.45\, M_\odot$. Included is the corresponding trajectory for an isolated planet with OGLE-TR-56b’s characteristics. Irradiation is seen to increase R_p by $\sim (0.2\%--0.3\%) R_p$, depending on age and f. We have used the theory of Fortney et al. (2003) with our derived TIP and optical depth profiles to calculate a transit pressure level and, hence, the magnitude of the “impact parameter” that is the transit radius. Despite the larger insolation flux, OGLE-TR-56b’s larger gravity results in a slightly smaller “atmospheric thickness” effect (3%--4.5%) than for HD 209458b ($\sim 10\%$). Superposed on Figure 1 are the OGLE-TR-56b data from Table 1, where the age of OGLE-TR-56b is ascribed to Sasselov (2003). For comparison, Figure 1 includes two representative models (black) from B03 for the evolution of HD 209458b’s transit radius, with $Y_{He} = (0.25, 0.30)$ and $f = \frac{1}{2}$. The age and R_p estimates for HD 208458b listed in Table 1 are plotted. The lowest σ error bar for HD 209458b is from Cody & Sasselov (2002), under the assumption that the lower estimate of the corresponding stellar radius ($\sim 1.1\, R_p$) obtains (B03).

As Figure 1 indicates, our theoretical curves are quite consistent with the OGLE-TR-56b data. The higher f gives larger R_p, but by only $\leq 4\%$ after a gigayear. At a young age of $10^4\, yr$, R_p can be near $1.5\, R_p$, but it is $\sim (1.2--1.25) R_p$ after 2 Gyr. We have calculated trajectories (not shown) for the OGLE-TR-56b ir-

\[T_{eff} = \frac{Y_{He}}{1.03} \]

\[f = \frac{1}{2} \]
undershoot by ~10% the central value of the OGLE-TR-56b R_p measurement. Since they are using a similarly sophisticated approach, the source of this difference is unknown.

The larger radius of HD 209458b is still problematic, but even it can be fitted without an ad hoc extra power source, if its true transit radius is at the lower end of the measured range (B03). It is important to remember that systematic errors still dominate estimates of R_p. Furthermore, not only is OGLE-TR-56b smaller than HD 209458b, but so too seem OGLE-132b (however, note the large error bars in Table 1). Curiously, all the OGLE roasters have smaller orbital distances. This implies that HD 209458b is the anomaly, perhaps because of tidal heating caused by an as-yet-unseen second companion (Bodenheimer et al. 2003) or residual systematic errors. Hence, a compelling argument can be made that the transit radii of all the OGLE EGPs are consistent with a model that does not require any extra heating term beyond that supplied quite naturally through the standard effects of irradiation and radiative transfer into the convective core.

The remaining theoretical uncertainties are the actual day-night cooling differences, the three-dimensional effects of atmospheric circulation and zonal heat transport, and the early history of the planet. As shown by Burrows et al. (2000) for HD 209458b and verified in this study for OGLE-TR56b, if the EGP were born at large orbital distances, but took more than ~3 x 10^7 yr to migrate in to its present distance, then its radius would have shrunk below a value consistent with the measured R_p (for any of the objects listed in Table 1). One could then accommodate an extra heat source, since it would be needed to compensate for the early loss of core entropy. However, such a migration time is deemed rather long, and we prefer to shave with Occam's razor.

We thank Christopher Sharp, Dimitar Sasselov, Adam Showman, Jonathan Lunine, Dave Charbonneau, and Drew Milsom for useful discussions during the course of this investigation. This study was supported in part by NASA grants NAG5-10760 and NAG5-13775. This material is based on work supported by the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement CAN-02-OSS-02 issued through the Office of Space Science.

REFERENCES

Allard, F., Baraffe, I., Chabrier, G., Barman, T. S., & Hauschildt, P. H. 2003, in ASP Conf. Ser. 28. Scientific Frontiers in Research on Extrasolar Planets, ed. D. Deming & S. Seager (San Francisco: ASP), 483
Baraffe, I., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H. 2003, A&A, 402, 701
Bodenheimer, P., Laughlin, G., & Lin, D. N. C. 2003, ApJ, 592, 555
Bodenheimer, P., Lin, D. N. C., & Mandling, R. A. 2001, ApJ, 548, 466
Bouchy, F., Pont, F., Santos, N. C., Melo, C., Mayor, M., Queloz, D., & Udry, S. 2004, A&A, 421, L13
Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W., & Burrows, A. 2001, ApJ, 552, 699
Burkert, A., Lin, D. N. C., Bodenheimer, P., Jones, C., & Yorke, H. 2003, ApJ, submitted (astro-ph/0312476)
Burrows, A., Guillot, T., Hubbard, W. B., Marley, M. S., Saumon, D., Lunine, J. I., & Sudarsky, D. 2000, ApJ, 534, L97
Burrows, A., Hubbard, W. B., Lunine, J. I., & Liebert, J. 2001, Rev. Mod. Phys., 73, 719
Burrows, A., & Sharp, C. M. 1999, ApJ, 512, 843
Burrows, A., Sudarsky, D., & Hubbard, W. B. 2003, ApJ, 594, 545 (B03)
Burrows, A., et al. 1997, ApJ, 491, 856
Chabrier, G., Barman, T., Baraffe, I., Allard, F., & Hauschildt, P. H. 2004, ApJ, 603, L53
Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor, M. 2000, ApJ, 529, L45
Cho, J. Y.-K., Menou, K., Hansen, B. M. S., & Seager, S. 2003, ApJ, 587, L117
Cody, A. M., & Sasselov, D. D. 2002, ApJ, 569, 451
Fortney, J. J., Sudarsky, D., Hubeny, I., Cooper, C. S., Hubbard, W. B., Burrows, A., & Lunine, J. I. 2003, ApJ, 589, 615
Guillot, T., Burrows, A., Hubbard, W. B., Lunine, J. I., & Saumon, D. 1996, ApJ, 459, L35
Guillot, T., & Showman, A. P. 2002, A&A, 385, 156
Henry, G., Marcy, G. W., Butler, R. P., & Vogt, S. S. 2000, ApJ, 529, L41
Hubbard, W. B., Fortney, J. F., Lunine, J. I., Burrows, A., Sudarsky, D., & Pinto, P. A. 2001, ApJ, 560, 413
Hubeny, I. 1988, Comput. Phys. Commun., 52, 103
Hubeny, I., & Lanz, T. 1995, ApJ, 439, 875
Koch, D., Borucki, W., Webster, L., Dunham, E., Jenkins, J., Marion, J., & Reitsema, H. 1998, Proc. SPIE, 335, 599
Konacki, M., Torres, G., Jha, S., & Sasselov, D. 2003, Nature, 421, 507
Konacki, M., et al. 2004, ApJ, 609, L37
Kurucz, R. 1994, CD-ROM 19. Solar Abundance Model Atmospheres for 0, 1, 2, 4, 8 km/s (Cambridge: SAO)
Lindal, G. F., et al. 1981, J. Geophys. Res., 86, 8721
Mazeh, T., et al. 2000, ApJ, 532, L55
Menou, K, Cho, J. Y.-K., Hansen, B. M. S., & Seager, S. 2003, ApJ, 587, L113
Sasselov, D. 2003, ApJ, 596, 1327
Saumon, D., Chabrier, G., & Van Horn, H. 1995, ApJS, 99, 713
Showman, A. P., & Guillot, T. 2002, A&A, 385, 166
Smith, G. R., & Hunten, D. M. 1990, Rev. Geophys., 28, 117
Sudarsky, D., Burrows, A., & Hubeny, I. 2003, ApJ, 588, 1121
Torres, G., Konacki, M., Sasselov, D., & Jha, S. 2003, ApJ, submitted (astro-ph/0310114)
Udalski, A., et al. 2002a, Acta Astron., 52, 1
———. 2002b, Acta Astron., 52, 317
———. 2003, Acta Astron., 53, 133