Rotational effects on the oscillation frequencies of newly born proto-neutron stars

V. Ferrari,1,* L. Gualtieri, 1 J. A. Pons2 and A. Stavridis1

1Dipartimento di Fisica 'G. Marconi', Università di Roma 'La Sapienza' and Sezione INFN ROMA1, Piazzale Aldo Moro 2, I-00185 Roma, Italy
2Departament d’Astronomia i Astrofísica, Universitat de València, 46100 Burjassot, València, Spain

Accepted 2004 February 2. Received 2004 February 2; in original form 2003 July 29

ABSTRACT

In this paper we study the effects of rotation on the frequencies of the quasi-normal modes of a proto-neutron star (PNS) born in a gravitational collapse during the first minute of life. Our analysis starts a few tenths of a second after the PNS formation, when the stellar evolution can be described by a sequence of equilibrium configurations. We use the evolutionary models which describe how a non-rotating star cools down and contracts while neutrino diffusion and thermalization processes dominate the stellar dynamics. For assigned values of the evolution time, we set the star into slow rotation and integrate the equations of stellar perturbations in the Cowling approximation, both in the time domain and in the frequency domain, to find the quasi-normal mode frequencies. We study the secular instability of the g modes, which are present in the oscillation spectrum due to the intense entropy and composition gradients that develop in the stellar interior, and we provide an estimate of the growth time of the unstable modes based on a post-Newtonian formula.

Key words: gravitational waves – relativity – methods: numerical – stars: neutron – stars: oscillations – stars: rotation.

1 INTRODUCTION

It is well known that the frequencies of quasi-normal modes (QNMs) of a star depend on its internal structure, and therefore on the particular evolutionary phase the star is going through. In a recent paper (Ferrari, Miniutti & Pons 2003, hereafter FMP), it has been shown that these frequencies change during the first minute of life of a proto-neutron star (PNS) born in a gravitational collapse, and that the changes are mainly due to neutrino diffusion and thermalization processes which smooth out the high entropy gradients that develop in the stellar interior. The models used in FMP were developed in Pons et al. (1999, 2001) and describe the stellar evolution in terms of a sequence of equilibrium configurations; this ‘quasi-stationary’ approach has been shown to become appropriate a few tenths of a second after the bounce following stellar core collapse which gives birth to the PNS. The study carried out in FMP shows that the frequency of all QNMs of a newly born PNS are much smaller than those of the cold NS which forms at the end of the evolution. Indeed, they initially cluster in a narrow region ($\nu \in [600, 1500]$ Hz) and begin to differentiate after less than a second. Unlike in zero-temperature, chemically homogeneous stars, the frequency of the fundamental mode (f mode) of a PNS does not scale as the square root of the average density, although the star is cooling and contracting; in addition, due to the strong thermal gradients that characterize the initial life of the PNS, gravity modes (g modes) are also present in the oscillation spectrum, and their frequencies are much higher than those of the core g modes of cold NSs (Reisenegger & Goldreich 1992; Lai 1999).

In FMP all stellar models were assumed to be non-rotating; this choice was motivated by the need to isolate the effects of thermal and chemical evolution on the QNM spectrum. However, NSs are expected to be born with a significant amount of angular momentum, and the aim of this paper is to investigate how rotation modifies the picture described above. In particular, we shall explore the possibility that the g modes become unstable due to Chandrasekhar–Friedman–Schutz (CFS) instability. This instability was first discovered by Chandrasekhar (1970) for the $m = 2$ bar mode of an incompressible Maclaurin spheroid, and was later shown to act in every rotating star by Friedman & Schutz (1978a,b).

The CFS instability of the fundamental mode (f mode) has been studied extensively in the literature in the framework of the Newtonian theory of stellar perturbations (Bardeen et al. 1977; Clement 1979), later generalized to the post-Newtonian approximation (Cutler & Lindblom 1992), and more recently for fully relativistic, fast rotating stars (Yoshida & Eriguchi 1997; Yoshida & Rezzolla 2002). These studies show that the f-mode instability acts at very high stellar rotation rates, comparable to the breakup velocity limit of the star. It was also found that, unless the temperature is very low, viscous dissipation mechanisms tend to stabilize the f-mode instability. It should be stressed that, except that in Morsink,
The function \(\nu(r) \) is of the order of \(J \), and the metric can be written as (Hartle 1976).

In principle, all quasi-normal modes of a rotating star are unstable for relatively small values of the angular velocity. The g-modes have frequencies lower than that associated with the f-mode.

Stergioulas & Blattning (1999) where a more realistic equation of state (EoS) has been considered, all these studies use a one-parameter, polytropic EoS. The r-mode instability has also extensively been studied in recent years after Andersson (1998) pointed out that this instability plays an important role in nascent neutron stars. In principle, all quasi-normal modes of a rotating star are unstable for small values of \(\nu \). In this respect, it should be noted that because in the no-rotation limit the g modes are unstable for relatively small values of the angular momentum of the star. The star is assumed to take into account the physical processes occurring in the early life of the star. We use the relativistic theory of stellar perturbations for a slowly rotating star in the Cowling approximation, which is known to reproduce with a good accuracy the g-mode frequencies because the gravitational perturbation induced by g modes is much smaller than that associated with the f mode.

The paper is structured as follows. In Section 2 we write the equations that describe a perturbed, slowly rotating, relativistic star both in the time domain and in the frequency domain in the Cowling approximation. In Section 3 we present and discuss the numerical results both for the fundamental mode and for the lowest g modes; we estimate the growth time of the unstable g modes using post-Newtonian formulae and draw the conclusions of our study.

2 Formulation of the Problem

2.1 Background Model

We consider a relativistic star in uniform rotation with an angular velocity \(\Omega \) so slow that the distortion of its figure from spherical symmetry is of the order of \(\Delta \), and can be ignored. We expand all quantities with respect the parameter \(\epsilon = \Omega / \Omega_k \), where \(\Omega_k = \sqrt{M/R^3} \), and we retain only first-order terms \(\mathcal{O}(\epsilon) \). On these assumptions, the metric can be written as (Hartle 1976)

\[
\mathcal{ds}^2 = -e^{2\omega(r)}dt^2 + e^{2\nu(r)}(dr^2 + r^2 d\theta^2 + \sin^2 \theta d\phi^2) - 2\epsilon \omega(r) \sin^2 \theta \, dr \, d\phi.
\]

The function \(\omega(r) \) satisfies a second-order linear equation

\[
\sigma_{rr} + \frac{4}{r} \sigma_r - (\lambda + \nu) \sigma = 0,
\]

where we have defined

\[
\sigma = \Omega - \omega(r).
\]

In the vacuum outside the star, \(\lambda \) and \(\nu \) reduce to the Schwarzschild functions, and the solution of equation (2) can be written as

\[
\sigma = \Omega - 2J/r^3,
\]

where \(J \) is the angular momentum of the star. The star is assumed to be composed by a perfect fluid, whose energy momentum tensor is

\[
T_{\mu \nu} = (p + \rho) u_\mu u_\nu + pg_{\mu \nu},
\]

with pressure \(p \), energy density \(\rho \) and four-velocity components \(u^\mu = (c^{-1}, 0, 0, \Omega c^{-1}) \). The metric functions \(\nu(r) \) and \(\lambda(r) \) are found by solving the Einstein equations for a spherically symmetric, non-rotating star, which couple the metric components to the fluid variables.

2.2 Perturbed Equations in the Cowling Approximation

In this section we briefly outline the equations that describe the perturbations of a slowly rotating star up to first order in the rotation parameter \(\epsilon \). We write these equations both in the time domain and in the frequency domain, because we have used both approaches to find the mode frequencies. In both cases, we assume the oscillations to be adiabatic, so that the relation between the Eulerian perturbation of the pressure, \(\delta p \), and of the energy density, \(\delta \rho \), is given by

\[
\delta p = \frac{\Gamma_1 \rho}{p + \rho} (\delta \rho + \rho \xi') \left(\frac{\Gamma_1}{\Gamma} - 1 \right),
\]

where \(\xi' \) is the radial component of the Lagrangian displacement \(\xi'^{\nu} \), and \(\Gamma_1 \) and \(\Gamma \) are

\[
\Gamma_1 = \frac{\rho + \rho}{p} \left(\frac{\delta p}{\delta \rho} \right)_{\epsilon = 0}. \quad \Gamma = \frac{\rho + \rho}{p} \frac{p}{\rho},
\]

a prime indicates differentiation with respect to \(r \), and \(Y_1 \) is the lepton fraction. In the following equations we shall also use the speed of sound \(C_s \) given by

\[
C_s^2 = \left(\frac{\delta p}{\delta \rho} \right)_{\epsilon = 0} = \frac{\Gamma_1 \rho'}{\Gamma \rho}.
\]

The complete set of the perturbed Einstein equations has been derived using the BCL gauge (Battiston, Cazzola & Lucaroni 1971) in Ruoff, Stavridis & Kokkotas (2002). The Cowling limit of these equations was studied in Ruoff, Stavridis & Kokkotas (2003, hereafter RSK), for polytropic relativistic equations of state. In this paper we use the Cowling approximation, i.e. we neglect the contribution of the gravitational perturbations. In this approach, we need to consider only the fluid perturbations, i.e. the three components of the velocity perturbations \(\delta u_\nu \), the perturbation of the energy density \(\delta \rho \), and the radial component of the displacement vector \(\xi'^{\nu} \). The perturbation of the pressure is related to \(\delta p \) through the adiabatic condition (6). We expand the fluid perturbations as

\[
\delta u_\nu = -\epsilon \sum_{l,m} \tilde{u}_l^m Y_{lm}, \quad \delta p = \sum_{l,m} (p + \rho)^2 \tilde{H}_{lm} \xi'^{\nu} Y_{lm}, \quad \delta \rho = \sum_{l,m} (p + \rho)^2 \tilde{H}_{lm} \xi'^{\nu} Y_{lm}, \quad \xi' = \left[\nu' \left(1 + \frac{\Gamma_1}{\Gamma} \right)^{-1} \right] \sum_{l,m} \xi'^{\nu} Y_{lm},
\]

where \(H = \delta p/(p + \rho) \) is the enthalpy.
2.2.1 Perturbed equations in the time domain

The final set of perturbed equations in the time domain is

\[
(\partial_t + im\Omega) H = e^{2iL_{mB}} \left\{ C_1^2 \left[u_1' + \left(2\nu' - \lambda' + \frac{2}{r} \right) u_1 \right] - e^{2iL_{mB}} H \right\},
\]

\[
(\partial_t + im\Omega) u_1 = H' + \frac{\nu'}{1\Gamma_p} \left[\left(\frac{\Gamma_1}{\Gamma} - 1 \right) H + \xi \right] - B \left(i mu_2 + L_{mB}^+ u_1 \right),
\]

\[
(\partial_t + im\Omega) u_2 = H + e^{2iL_{mB}} \left(imu_3 + L_{mB}^+ u_1 \right) - \frac{im}{\Lambda} r^2,
\]

\[
(\partial_t + im\Omega) \xi = v' \left(\frac{\Gamma_1}{\Gamma} - 1 \right) e^{2iL_{mB}} u_1,
\]

where

\[\Lambda = l(l+1), \quad Q_{\infty} := \sqrt{\frac{(l-m)(l+m)}{(2l-1)(2l+1)}},\]

\[B = \omega' + 2\sigma \left(\nu' - \frac{1}{r} \right).\]

In equations (10) we have omitted the indices lm in the perturbed variables and we have introduced the new quantities

\[u_2 := u_1 + \frac{im}{\Lambda} r^2 e^{-2i\xi} H,\]

\[u_3 := u_1 - \frac{im}{\Lambda} r^2 e^{-2iL_{mB}^+ H}.\]

The operators L_{mB}^+ and L_{mB}^+ are the same as in RSK and are defined by their action on a perturbation variable $p_{lm}^{\pm m}$:

\[L_{mB}^+ p_{lm}^{\pm m} = (l-1) Q_{\infty} p_{lm-1}^{\pm m} - (l+2) Q_{\infty} p_{lm+1}^{\pm m},\]

\[L_{mB}^+ p_{lm}^{\pm m} = (l+1) Q_{\infty} p_{lm+1}^{\pm m} + (l+1) Q_{\infty} p_{lm-1}^{\pm m}.\]

Equations (10) have been numerically integrated giving an initial Gaussian pulse at the enthalpy variable H. The frequencies of the modes are identified by looking at the peaks of the fast Fourier transform (FFT) of the resulting signal.

2.2.2 Perturbed equations in the frequency domain

By replacing in equations (10) all time derivatives by $i\sigma$ and letting $H \rightarrow \sigma H_{(r)}$, $u_1 \rightarrow u_1$, and $\xi \rightarrow i\nu'$, we easily obtain the real valued set of equations describing the eigenvalue problem in the frequency domain. We have two ordinary differential equations (ODEs) for H and u_1 and three algebraic relations for u_2, u_1, and ν'. The relation for ξ', which follows from the last of equations (10) is particularly simple and can be used to eliminate that variable from the system. The result is

\[\begin{align*}
H'' &= (\sigma + m\Omega) u_1 - \frac{\nu'}{1\Gamma_p} \left(\frac{\Gamma_1}{\Gamma} - 1 \right) H' \\
&\quad \times \left[H - (\sigma + m\Omega)^{-1} \nu' e^{2\nu' \xi} u_1 \right] + B \left(i mu_2 + L_{mB}^+ u_1 \right),
\end{align*}\]

\[\begin{align*}
u_1' &= - \left(2\nu' - \lambda' + \frac{2}{r} \right) u_1 + 2 m \sigma e^{-2i\xi} H \\
&\quad + e^{2iL_{mB}^+ u_1} C_2^{-2} \left((\sigma + m\Omega) e^{2i\xi} - \nu' u_1 \right) \xi_1.
\end{align*}\]

where we have defined

\[\Sigma := \sigma + m\Omega - 2m\sigma / \Lambda.\]

An inspection of equations (13) shows that they become singular when $\Sigma = 0$. For any assigned value of l, m, Ω, and σ, this may occur inside the star in a certain domain of the radial coordinate r which would depend on the values of the function σ. This occurrence would generate the so-called continuum spectrum. As explained in RSK, for fixed values of the compactness of the star M/R, the frequency region where the continuous spectrum extends practically depends on the values of σ at the centre and at the surface of the star and on the maximum value of maximum couplings l_{max} that is considered. By following the procedure explained in RSK (Section 2.3), it is easy to show that in the non-axisymmetric case ($m \neq 0$) and for $l_{max} = 2$ the continuous spectrum extends to the following region:

\[\begin{align*}
2 \left(\frac{m\Omega}{\Sigma} - \Omega \right) \leq \sigma \leq 2 \left(\frac{m\Omega}{\Sigma} + \Omega \right).
\end{align*}\]

Assuming $l = m = 2$, equations (13) can be written in the following simplified form

\[
H' = \frac{mB}{\Sigma} - \frac{\nu'}{1\Gamma_p} \left(\frac{\Gamma_1}{\Gamma} - 1 \right) H + \left[(\sigma + m\Omega) - 2m\sigma / \Sigma \right] u_1
\]

\[
+ e^{2iL_{mB}^+ u_1} C_2^{-2} \left((\sigma + m\Omega) e^{2i\xi} - \nu' u_1 \right) \xi_1.
\]

Equations (10) have been numerically integrated giving an initial Gaussian pulse at the enthalpy variable H. The frequencies of the
where we have used the third of equations (13) to eliminate u_2. To find the mode frequencies, we integrate these two ODEs by imposing that the variables have a regular behaviour near the centre, i.e.

$$H \sim r^2, \quad u_1 \sim r^{\nu-1},$$

and we select those frequencies for which the Lagrangian perturbation of the pressure vanishes at the surface, i.e.

$$\Delta p = (\sigma + m\Omega)H(R) - v'(R)e^{\nu i(R)}u_1(R) = 0.$$ \hfill (18)

3 RESULTS

In order to find the frequency of the QNMs, we have numerically integrated the perturbed equations both in the time domain and in the frequency domain for different values of the evolution time t_{ev}, and for selected values of the rotation parameter ε. We choose the rotation rate to vary within $0 \leq \varepsilon \leq 0.4$ because from preliminary calculations we find that for the models under consideration the mass shedding limit does not exceed $\varepsilon = 0.4-0.5$.

We consider the evolutionary model labelled as model A in FMP, in which the EOS of baryonic matter is a finite-temperature, field-theoretical model solved at the mean field level. Electrons and muons are included in the models as non-interacting particles, the contribution due to their interactions being much smaller than that of the free Fermi gas, and neutrino transport is treated using the diffusion approximation. The evolution time interval we consider covers the first minute of life of the PNS, from $t_{ev} = 0.5$ s to $t_{ev} = 40$ s, when processes related to neutrino diffusion and thermalization become negligible. The gravitational mass of the star at $t_{ev} = 0.2$ s is $M = 1.56 M_\odot$, and at $t_{ev} = 40$ s becomes $M = 1.46 M_\odot$. The difference in gravitational mass between the initial and final configuration is radiated away by neutrinos during the PNS evolution. The radius of the initial configuration is $R = 23.7$ km and reduces to $R = 12.8$ km at $t_{ev} = 40$ s.

For $t_{ev} \lesssim 20$ s, the stellar models are convectively unstable, and the code which integrates the perturbed equations in the time domain explodes after some time, which is too short to accurately calculate the low frequencies of the g modes. Conversely, the code which integrates the equations in the frequency domain is well behaved even when convective instability is present, and therefore for $t_{ev} < 20$ s we use the frequency domain approach. After that time, both methods can be applied and the results agree better than 5 per cent.

It is worth stressing here once more that the perturbed equations in the frequency domain present a singular structure which makes impossible their numerical integration in the continuous spectrum region. However, for the stellar models we use and for the mode frequencies we are interested in, we find that the continuous spectrum lies in the negative frequency range.

The main results of this work are summarized in Figs 1 and 2, where we plot the frequencies of the f, g1, and g2 modes as a function of the rotation parameter $\varepsilon = \Omega/\Omega_K$, for different values of the evolution time in the more interesting phases of the cooling process.

It should be remembered that the onset of the CFS instability is signalled by the vanishing of the mode frequency for some value of the angular velocity (neutral point). From Figs 1 and 2 we see that, while the f mode does not become unstable during the first minute of the PNS life, both the g_1 and g_2 modes do become unstable. The g_1 frequency remains positive during the first second, but at later times vanishes for very low values of ε. For instance, at $t_{ev} = 3$ s it crosses the zero axis for $\Omega = 0.17\Omega_K$, even though its value for the corresponding non-rotating star is still quite high, $v_{g_1} = 486$ Hz. The behaviour of the g_2 mode is similar, but with the frequency becoming zero at lower rotation rates. At later times, the g-mode frequencies decrease, reach a minimum for $t_{ev} = 12$ s and then slightly increase. This behaviour can be attributed to the fact that during the first 10–12 s the dynamical evolution of the star is dominated by strong entropy gradients that progressively smooth out. After about 12 s the entropy has become nearly constant throughout the star and g modes due to composition gradients take over.

It should be mentioned that in FMP we studied also a second model of evolving PNS, labelled model B. The main difference between the two models is that model A has an EOS softer than model B, and that at some point of the evolution a quark core forms in the interior of model B. We have integrated the perturbed equations (10) and (16) also for model B, finding results entirely similar to those described above for model A; this indicates that that the quark core that develops at some point of the evolution in model B does not affect the overall properties of the modes in a relevant way.

3.1 Growth time of the unstable modes

A mode instability is relevant if its growth time is sufficiently small with respect to the time-scales typical of the stellar dynamics, i.e. if the instability has sufficient time to grow before other processes damp it out or the structure of the evolving star changes. In this section we give an ‘order of magnitude’ estimate of the growth time of the g modes for the hot PNSs under investigation. Following Lai (1999), we evaluate the mode energy in the rotating frame using the

![Figure 1. The frequency of the fundamental mode of the evolving PNS is plotted as a function of the rotational parameter $\varepsilon = \Omega/\Omega_K$, for assigned values of the time elapsed from the gravitational collapse. We see that, as the time increases, the frequency increases and tends to that of the cold NS which forms at the end of the evolutionary process. Remembering that the onset of the CFS instability occurs when the mode frequency becomes zero, we see that the g mode would become unstable only for extremely high values of the rotational parameter, as it is for cold stars.](image-url)
expression given in Friedman & Schutz (1978a)

\[E = \frac{1}{2} \int \left[\rho (\sigma + m \Omega^2) \mathbf{\xi}^* \cdot \mathbf{\xi} + \left(\frac{\delta \rho}{\rho} - \delta \Phi \right) \delta \rho^* \right] + \left(\nabla \cdot \mathbf{\xi} \right) \mathbf{\xi}^* \cdot \left(\nabla \rho - C_l^2 \nabla \rho \right) \, d^3x. \] (19)

Also, we compute the growth time associated to the dissipative process we are considering, i.e. the gravitational radiation reaction, using the expression

\[\frac{1}{\tau_{gr}} = -\frac{1}{2E} \frac{dE}{d\xi}. \] (20)

It is useful to remember that the relation between the Lagrangian displacement and the four-velocity of a perturbed fluid element is

\[\delta u^k = i(\sigma + m \Omega) e^{-i\xi^k}, \quad k = 1, 3. \] (21)

Because we are working in the Cowling approximation, the term \(\delta \Phi \) in equation (19) will be neglected. The energy loss due to gravitational waves can be calculated from the multipole radiation formula of Lindblom, Owen & Morsink (1998) given by

\[\left(\frac{dE}{d\xi} \right)_\nu = -\sigma (\sigma + m \Omega) \sum_{l \geq 2} N_l \sigma^{2l} \left(|\delta D_{lm}|^2 + |\delta J_{lm}|^2 \right), \] (22)

where the coupling constant \(N_l \) is given by

\[N_l = \frac{4 \pi G}{c^{2l+1}} \frac{(l+1)(l+2)}{(l-1)(2l+1)!} \] (23)

and \(\delta D_{lm} \) and \(\delta J_{lm} \) are the mass and current multipoles of the perturbed fluid. The current multipoles \(\delta J_{lm} \) are associated with the axial spherical harmonics; because we are interested in the \(g \) modes, for which the effect of the coupling between polar and axial perturbations is negligible (indeed we did not include it in the perturbed equations), we neglect the \(\delta J_{lm} \) contribution to the gravitational luminosity. The mass multipoles can be evaluated from the following integral expression

\[\delta D_{lm} = \int r^l \delta \rho Y_{lm}^* d^3x. \] (24)

The growth times of the unstable \(g_1 \) modes shown in Fig. 2 are summarized in Table 1. From these results we see that the growth time appears to be orders of magnitude larger than the time-scale on which the star evolves, which is of the order of tens of seconds. Although we are aware that the estimate based on the Newtonian expressions (19) and (24) is a quite crude one, the growth time is so much larger than the evolutionary time-scale that it is reasonable to conclude that the CFS instability of the lowest \(g_1 \) mode is unlikely to play any relevant role in the early evolution of PNSs. Similar

Table 1. Growth times for the unstable \(g_1 \) mode of model A for \(t_{\nu} = 3, 10, 12 \) and 40 s.

\(\nu \) (Hz)	\(\tau_{gr} \) (s)	\(\nu \) (Hz)	\(\tau_{gr} \) (s)	\(\nu \) (Hz)	\(\tau_{gr} \) (s)	\(\nu \) (Hz)	\(\tau_{gr} \) (s)
\(200 \)	\(- \)	\(150 \)	\(-8.3 \times 10^9 \)	\(160 \)	\(-4.6 \times 10^7 \)	\(70 \)	\(-3.7 \times 10^{10} \)
\(-90 \)	\(-1.5 \times 10^6 \)	\(435 \)	\(-6.5 \times 10^6 \)	\(475 \)	\(-1.7 \times 10^6 \)	\(-430 \)	\(-1.3 \times 10^9 \)
\(-683 \)	\(-2.0 \times 10^6 \)	\(683 \)	\(-4.0 \times 10^5 \)	\(760 \)	\(-3.4 \times 10^5 \)	\(-900 \)	\(-3.6 \times 10^6 \)
\(-789 \)	\(-2.2 \times 10^4 \)	\(910 \)	\(-2.4 \times 10^3 \)	\(1020 \)	\(-2.7 \times 10^3 \)	\(-1250 \)	\(-1.3 \times 10^5 \)

Figure 2. The frequency of the \(g_1 \) and \(g_2 \) modes of the PNSs are plotted, as in Fig. 1, as functions of the rotational parameter for assigned values of the time elapsed from the gravitational collapse. Unlike the \(f \) mode, as the time increases the frequency of the \(g \) modes decreases, reaches a minimum at about \(t_{\nu} = 12 \) s and then slightly increases (see text). We see that for both modes the CFS instability sets in at values of the rotational parameter much lower that that needed for the \(f \) mode.
conclusions can be drawn for the fundamental mode and for higher-order g modes.

ACKNOWLEDGMENTS

We would like to thank G. Miniutti for suggesting that the g modes of newly born PNSs may be subjected to the CFS instability, and N. Andersson for useful discussions on the subjects related to this paper.

This work has been supported by the EU programme ‘Improving the Human Research Potential and the Socio-Economic Knowledge Base’ (Research Training Network Contract HPRN-CT-2000-00137).

REFERENCES

Andersson N., 1998, ApJ, 502, 708
Chandrasekhar S., 1970, Phys. Rev. Lett., 24, 611
Bardeen J. M., Friedman J. L., Schutz B. F., Sorkin R., 1977, ApJ, 217, L49
Battiston L., Cazzola P., Lucaroni L., 1971, Nuovo Cimento B, 3, 275
Clement M. J., 1979, ApJ, 230, 230
Culler C., Lindblom L., 1992, ApJ, 385, 630
Ferrari V., Miniutti G., Pons J. A., 2003, MNRAS, 342, 629 (FMP)
Friedman J. L., Schutz B. F., 1978a, ApJ, 221, 937
Friedman J. L., Schutz B. F., 1978b, ApJ, 222, 281
Hartle J. B., 1976, ApJ, 150, 1005
Kojima Y., 1997, Prog. Theor. Phys. Suppl., 128, 251
Lai D., 1999, MNRAS, 307, 1001
Lindblom L., Owen B. J., Morsink S. M., 1998, Phys. Rev. Lett., 80, 4843
Morsink S. M., Stergioulas N., Blattning S., 1999, ApJ, 510, 854
Pons J. A., Reddy S., Prakash M., Lattimer J. M., Miralles J. A., 1999, ApJ, 513, 780
Pons J. A., Steiner A. W., Prakash M., Lattimer J. M., 2001, Phys. Rev. Lett., 86, 5223
Reisenegger A., Goldreich P., 1992, ApJ, 395, 240
Ruoff J., Stavridis A., Kokkotas K. D., 2002, MNRAS, 332, 676
Ruoff J., Stavridis A., Kokkotas K. D., 2003, MNRAS, 339, 1170 (RSK)
Yoshida S., Eriguchi Y., 1997, ApJ, 490, 779
Yoshida S., Rezolla L., 2002, ApJ, 578, L41

This paper has been typeset from a [\\LaTeX] file prepared by the author.