The biosynthetic pathway of potato solanidanes diverged from that of spirosolanes due to evolution of a dioxygenase

Ryota Akiyama¹, Bunta Watanabe², Masaru Nakayasu¹,⁶, Hyoung Jae Lee¹, Junpei Kato¹, Naoyuki Umemoto³, Toshiya Muranaka⁴, Kazuki Saito³,⁵, Yukihiro Sugimoto¹ & Masaharu Mizutani¹

Potato (Solanum tuberosum), a worldwide major food crop, produces the toxic, bitter tasting solanidine glycoalkaloids α-solanine and α-chaconine. Controlling levels of glycoalkaloids is an important focus on potato breeding. Tomato (Solanum lycopersicum) contains a bitter spirosolane glycoalkaloid, α-tomatine. These glycoalkaloids are biosynthesized from cholesterol via a partly common pathway, although the mechanisms giving rise to the structural differences between solanidine and spirosolane remained elusive. Here we identify a 2-oxoglutarate dependent dioxygenase, designated as DPS (Dioxygenase for Potato Solanidine synthesis), that is a key enzyme for solanidine glycoalkaloid biosynthesis in potato. DPS catalyzes the ring-rearrangement from spirosolane to solanidine via C-16 hydroxylation. Evolutionary divergence of spirosolane-metabolizing dioxygenases contributes to the emergence of toxic solanidine glycoalkaloids in potato and the chemical diversity in Solanaceae.
Plants produce a vast array of specialized metabolites, many of which play essential roles in plant adaptation to environment and contribute to human health. Steroidal glycoalkaloids (SGAs), a class of specialized metabolites, are typically found in the plant family Solanaceae. While they serve as chemical protectant against plant pathogens and herbivores, some are notorious as antinutritional substance exerting negative effect on quality and marketability of Solanum (Family: Solanaceae) staple food crops, such as potato (*Solanum tuberosum*), tomato (*S. lycopersicum*), and eggplant (*S. melongena*). Therefore, controlling the SGA level is one of important targets for breeding of Solanaceae species.

SGAs consist of two structural components; the aglycone unit composed of nitrogen containing C27 steroid derived from cholesterol and oligosaccharide attached to the hydroxy group at C-33. Based on the skeletal structure of the aglycone, SGAs can be divided into two general classes, solanidane or spirosolane (Fig. 1). Minor structural variations of these two ring types such as C-5 saturation/unsaturation or isomerization at C-22, in combination with various sugar moieties, generate the enormous structural diversity of SGAs. In addition, their chemical structures reflect their biological activities, for example, toxicity to animals, anti-cancer properties, and anti-microbial activities. Most representatives of solanidane glycoalkaloids are potato toxins, α-solanine and α-chaconine, that comprise upward of 90% of the total SGAs in cultivated potatoes. Additionally, more than 50 different SGAs, including spirosolane glycoalkaloids, have been identified in a variety of wild potato species and cultivars. In tomato, α-tomatine and dehydrotomatine are predominant in green tissues, while the non-bitter SGA esculeoside A is the major component in the red mature fruits. α-Solasonine and α-solamargine are the two major spirosolane glycoalkaloids produced in eggplant.

SGA biosynthesis can be divided into two main parts: aglycone formation and glycosylation. Recent research in potato and tomato identified several SGA biosynthetic genes involved in aglycone formation. Three cytochrome P450 monooxygenases (CYPs) named as PGA2 (GAME7), PGA1 (GAME8), and PGA3 (GAME4) have been found to be involved in hydroxylation of cholesterol at C-22 and C-26 and oxygenation at C-26, respectively. A 2-oxoglutarate-dependent dioxygenase (DOX) named as 16DOX (GAME11), and an aminotransferase were reported to be required for the C-16α-hydroxylation and C-26 amination during SGA biosynthesis. These enzymes and functions are common to potato and tomato, suggesting that...
they are involved in the biosynthetic steps common to solanidanes and spirosolanes (Fig. 1). In addition, several uridine diphosphate-dependent glycosyltransferases (UGTs) involved in the glycosylation steps of SGA biosynthesis have been identified in potato and tomato20–24. However, the steps and enzymes involved in the metabolic branch point between solanidane-skeleton and spirosolane-skeleton formation remains an unsolved mystery.

In our efforts to elucidate the missing steps in SGAs biosynthesis, we focused on SGA biosynthesis in potato. Here, we find that solanidine glycoalkaloids are biosynthesized from spirosolane glycoalkaloids via ring rearrangement (Fig. 1). We discover DPS, a member of the DOX superfamily, is a key enzyme required for solanidine biosynthesis. DPS in vitro exhibits a novel activity converting the spirosolane-skeleton to a solanidane-skeleton (Fig. 1). Furthermore, studies of the genome organization of DPS homologs in a number of species from the Solanum genus reveal the evolutionary origin of this transformation. These results offer insights into the evolution of chemical diversity of SGAs in Solanum species.

Results

Discovery of the biosynthetic pathway of solanidine glycoalkaloids. Most cultivated potatoes mostly contain only solanidine glycoalkaloids (α-solamine and α-chaconine), while some wild potato species and a few cultivars accumulate spirosolane glycoalkaloids, α-solamidine 7 and β-solamidine 8, which share the same sugar moiety with α-solamine 9 and α-chaconine 10, respectively.2,25. We speculated that modification of the spirosolane-skeleton would form the solanidine-skeleton in potato. To explore this hypothesis, we conducted feeding experiments using SGA-deficient potato hairy roots (16DOXko HR), in which the SGA biosynthetic gene, St16DOX, was disrupted26. Firstly, the administration of α-solamine 7 into 16DOXko HR resulted in restoration of the accumulation of α-solamine 9 in 16DOXko HR (Fig. 2 and Supplementary Fig. 1). Similar results were obtained from the feeding experiments with β-solamidine 8, in which the accumulation of α-chaconine 10 was detected (Supplementary Fig. 2). When feeding with (22S,25S)-spirosol-5-en-3β-ol 3, which is an aglycone of α-solamidine 7 and β-solamidine 8, the accumulation of α-solamine 9, α-chaconine 10, and uncharacterized minor SGAs was confirmed (Supplementary Fig. 3). Additionally, the conversion of α-tomatine 6 to its corresponding solanidine, demissine 11, was confirmed with retention of the lycopetase attached at the hydroxy group at C-3 (Supplementary Fig. 4). Furthermore, addition of the DOX inhibitor prohexadione during the α-solamidine 7 feeding assay caused the suppression of the conversion of α-solamidine to α-solamine 9 in a dose-dependent manner, whereas uniconazole-P, a CYP inhibitor, had little effects on the bioconversion (Fig. 2b). These data suggest that solanidine glycoalkaloids (i.e., α-solamine 9 and α-chaconine 10) are biosynthesized from spirosolane glycoalkaloids in potato and that a DOX family enzyme is involved in the conversion reactions.

Selection of candidate DOXs responsible for solanidine biosynthesis. The DOX superfamily is one of the largest enzyme superfamilies in plant kingdom and associated with the oxygenation reactions of various specialized metabolites27. Recently, involvement of DOXs in SGA biosynthesis and modification was reported14,15,18,19. In our previous study, St16DOX, which showed the highest fragments per kilobase of exon per million mapped fragments (FPKM) value in tuber sprout among the 256 DOX transcripts in RNA-Seq Gene Expression Data obtained from Spud DB (http://solanaceae.plantbiology.msu.edu/), was identified to encode the steroid 16α-hydroxylase19. In this study, we focused on the gene Stotub01g007130, which showed the second highest FPKM value in the tuber sprouts among the potato DOXs (Supplementary Table 1). Quantitative reverse transcription PCR revealed that Stotub01g007130 shared a similar expression pattern with previously identified SGA biosynthetic genes19 (Supplementary Fig. 5), and we henceforth named Stotub01g007130 as DPS (dioxygenase for potato solanidine synthesis). Many SGA biosynthetic genes were reported to be clustered on chromosomes 7 and 12 in potato and tomato18, while DPS is positioned on chromosome 1. We found that DPS exists in a gene cluster (spanning about 160 kbp) with seven DOXs designated as St7070, St7080, St7090, St7100, St7110, St7120, and St7150, respectively. St7090, St7100, St7120, and St7150 appeared to encode truncated proteins lacking canonical motifs conserved among the DOX superfamily27. Among these clustered DOXs, St7070, St7100, and St7110 also showed high FPKM values in potato tuber sprouts (Supplementary Table 1). We successfully amplified the full-length open-reading frame (ORF) sequences of DPS and St7070 using the cDNAs derived from tuber sprouts of potato. DPS shares 85.8% amino acid sequence identity to St7070 and a shorter C-terminus of 36-amino acid residues than St7070.

![Fig. 2 Bioconversion of the solanidine-skeleton to the spirosolane-skeleton in potato hairy roots.](https://example.com)
Characterization of DPS-silenced transgenic potato plants. To investigate the contribution of DPS to solanidine biosynthesis, we generated DPS-silenced transgenic potato plants (i.e., DPSi lines) by using RNA-interference (RNAi) vector containing a stem-loop partial fragment of DPS CDNA (Supplementary Fig. 6). DPSi plants showed ~80% reduction in DPS transcript levels relative to non-transformed (NT) plants (Fig. 3a), and no off-target silencing effect on SI7070 was observed (Fig. 3b). The levels of solanidine glycoalkaloids (α-solamnine 9 and α-chaconine 10) in the leaves of in vitro-grown DPSi plants were reduced by ~90% compared with those of the NT plants (Fig. 3c), suggesting that DPS is involved in solanidine biosynthesis in potato. Analysis of endogenous metabolites accumulated in DPSi plants detected two new peaks, of which the retention time (Rt) and mass spectrum matched with those of the authentic compounds, α-solamnine 9 and β-solamnine 8 (Fig. 3d and Supplementary Fig. 7). The amounts of α-solamnine 7 and β-solamnine 8 accumulated in DPSi plants were comparable to those of α-solamnine and α-chaconine in NT potato plants, respectively (Fig. 3e). These results implicate DPS as a key gene in the conversion from spirosolanes to solanidanes in potato.

Characterization of DPS function. Recombinant His-tagged protein of DPS was prepared with a bacterial expression system in Escherichia coli and purified by cobalt-affinity chromatography (Supplementary Fig. 8). The purified DPS was assayed with several spirosolanes as substrates, and the reaction products were analyzed using liquid chromatography–mass spectrometry (LC–MS). DPS metabolized α-solamnine 7 to form an unknown product, of which the retention time and the mass fragment pattern was not identical to α-solamnine 9 (Fig. 4a, b). The product gave a parental ion mass at m/z 882.5 [M + H]+ which is two mass smaller than that of the substrate α-solamnine: m/z 884.5 [M + H]+ (Fig. 4b and Supplementary Fig. 9). Negative control reactions using either denatured DPS, lacking co-factors, or containing ethylenediaminetetraacetic acid (EDTA) as an Fe chelator failed to yield any products (Supplementary Fig. 10). The other spirosolane glycoalkaloids (β-solamnine 8 and α-tomatine 6) and the spirosolane aglycones ((22S,25S)spirosol-5-en-3β-ol 3 and tomatidine 4) were also accepted as substrates, and the mass decrease of 2m/z was detected for each product (Supplementary Figs. 11–15). On the other hand, DPS is not active with solanidanes as substrates (Supplementary Fig. 16).

To identify the nature of the DPS reaction, we performed high-resolution mass spectrometry (HRMS) (Supplementary Fig. 17) and nuclear magnetic resonance (NMR) (Supplementary Data 1) analyses of the DPS enzymatic product obtained by reacting with α-tomatine 6, which is commercially available in enough quantities for structural analysis. The structure of the DPS reaction product was determined as shown in Supplementary Fig. 18 (Supplementary Fig. 19, Supplementary Tables 2, 3). The solanidine-skeleton scaffold is formed, and an iminium ion structure is constructed between C-16, the nitrogen atom, and C-22. Thus, DPS seems to catalyze hydroxylation at C-16α of the spirosolane-skeleton to form a hemiacetal that then undergoes condensation with the secondary amine of the piperidine F ring to form the tertiary amine of solanidine, and hence, this enzymatic transformation by DPS is quite unusual (Fig. 4c). To gain insight into the reaction mechanism of dehydration and E/F oxygenation/hydroxylation reactions, and DOX-dependent reactions in the presence of 18O2 result in the incorporation of 18O atom into the product. Accordingly, when the enzyme assay with SI23DOX, which catalyzes C-23 hydroxylation of α-solamnine, was conducted in the presence of 18O2, the reaction product gave 2 mass higher than the product assayed with 16O2, indicating 18O incorporation into the 23-hydroxylated product by SI23DOX (Supplementary Fig. 20a–c). In contrast, the enzyme assay in the presence of 18O2 did not yield any 18O-labeled product (Supplementary Fig. 20d–f). This result indicates that the oxy ion at C-16α in the DPS-reaction product is not derived from molecular oxygen and also suggests that the hydroxy moiety introduced by the DPS-dependent oxygenation leaves as water to afford a 16-oxo species. Third, the nitrogen...
We conducted a Basic Local Alignment Search Tool (BLAST) search of DPS against the Tomato ITAG protein database (https://solgenomics.net/). This analysis identified a single distinct homolog Solyc01g06585 in the tomato genome, which shows 85% amino acid sequence identity to DPS. Recombinant Solyc01g06585 catalyzed the same reaction as DPS on the spirostanols and was inactive with the solanidanes (Supplementary Figs. 23-29). Very low or no expression of Solyc01g06585 observed in RNA-seq data from the Tomato Functional Genomics Database (http://ted.bti.cornell.edu) (Supplementary Table 5) explains the lack of solanidane glycoalkaloids and accumulation of spirostanol glycoalkaloids (i.e., α-tomatine etc.) in tomato. Solyc01g06585 is embedded in the gene cluster containing three DOX genes in tomato chromosome 1 (Fig. 5a). Genes flanking this cluster showed considerable homology with genes flanking the DOX clusters harboring DPS, suggesting a common origin of these regions. Additionally, the eggplant DPS homolog, SMEL_001g151230 is present on the chromosome 1. SMEL_001g151230 protein, which shares 69% amino acid sequence identity to DPS, also had the same catalytic activity as DPS (Supplementary Fig. 30), while the expression of SMEL_001g151230 is quite low in aerial parts of eggplant (Supplementary Table 6). These results indicate that the evolution of these orthologous DPS genes from duplication and functional divergence of the DOX family may have occurred before the speciation of Solanum species. Consequently, it is most likely that functional expression of the DPS gene or its orthologs is a prerequisite for the endogenous accumulation of toxic solanidine glycoalkaloids in Solanum species.

Based on the classification of the plant DOXs, all the clustered DOXs in potato, tomato, and eggplant are classified into the clade DOXC20. DOXC20 includes Sl23DOX/GAME31 (Fig. 5b). Among the eight DOX branches, the DPS branch is clearly separated from the 23DOX branch that includes Sl23DOX/GAME31 (Fig. 5b).
genes clustered in potato chromosome 1, St7070, St7100, St7110, St7120, DPS, and St7150 are found in the DPS branch while St7080 and St7090 are in the 23DOX branch (Fig. 5b). Soly01g006585 and SMEL_001g151230 are placed in the DPS branch, while the other DOXs clustered in tomato genome are in the 23DOX branch (Fig. 5b). These results indicate that functional diversification between SI23DOX/GAME31 and DPS may have arisen from a common ancestral DOXC20 before the speciation of Solanum species.

Discussion

In this study, we revealed a key reaction step diverging the biosynthetic pathways of two general classes of SGAs, solanidanes and spirosolanes. By the feeding experiments, we found that solanidine glycoalkaloids are biosynthesized from spirosolanes in potato. Gene silencing experiment and biochemical characterization revealed that potato DPS, belonging to the DOX superfamily, is involved in the metabolic conversion of spirosolanes to solanidanes. Thus, DPS is a key enzyme in an evolutionary origin of the biosynthetic pathway of solanidine glycoalkaloids branched from spirosolanes in potato (Fig. 1).

The strong preference of DPS for glycosides observed in the in vitro assays (Supplementary Table 4) let us hypothesizes that glycosylation at the C-3 hydroxy group occurs before formation of the solanidine backbone. Previously, SGT1 and SGT2 were reported to catalyze the initial transgalactosylation and transglucosylation of solanidine at the C-3 hydroxy group, respectively. These two glycosyltransferases accept spirosolane aglycones as well, and the activities were comparable to the activity for solanidine. Additionally, 16DOX silencing which disrupts 16a-hydroxylation of 22,26-dihydroxycholesterol resulted in the accumulation of glycosides of 22,26-dihydroxycholesterol. These previous findings support our hypothesis that conversion of spirosolane to solanidine occurs after the glycosylation step at the C-3 hydroxy group (Fig. 1).

Analysis of the catalytic activity of DPS clearly demonstrated that DPS is not sufficient to complete the conversion from
spirodienoic acids to the solanidine end-products accumulated in plants. The structure of the DPS reaction product allowed us to propose a pathway for completing the solanidine-skeleton formation, which requires two imine-reduction reactions following to DPS reaction (Supplementary Fig. 31). Feeding of the DPS-reaction products to 16DOXko HR indicated their conversion to α-solamnine and α-cachonine, suggesting the presence of putative enzyme(s) involved in the reduction of the imine intermediates in vivo (Supplementary Fig. 22). Analysis of transgenic tomato hairy roots constitutively expressing the DPS gene detected a new peak, of which the retention time (Rt. 18.7) and mass spectrum matched with those of the reaction product by DPS using α-tomatin as a substrate, but the production of demissine, which is the solanidine end-product derived from α-tomatin, was not detected (Supplementary Fig. 32). These results suggest that, in tomato, putative reductase(s) catalyzing the reduction of the imine intermediate is absent or not expressed. Thus, it is likely that the reductase(s), together with DPS, will be an important enzyme for solanidine glycoalkaloid biosynthesis in potato.

We identified the presence of DPS isoform designated as St7070 in potato genome, and biochemical characterization revealed that St7070 catalyzed the conversion of the spirodienoic-skeleton to the solanidine-skeleton. Gene silencing of DPS resulted in a significant reduction (~90%) in solanidine glycoalkaloid levels, but no off-target silencing effect on St7070 was observed (Fig. 3a–c). These results indicate that DPS is the major isoform involved in solanidine glycoalkaloid biosynthesis in potato, although there may be a minor contribution from St7070.

We also identified functional DPS orthologs in the non-solanidine producing species, tomato and eggplant, and however, these orthologs were almost not expressed in these species. It has been reported that the transcription factor JRE4/GAME9 comprehensively regulate SGA biosynthetic genes in tomato10,29,30. Overexpression of the transcription factor JRE4/ GAME9 in potato led to significant increase of DPS transcription levels10, while the expression of Solyc01g006585 was not induced by JRE4/GAME9 overexpression in tomato10,29,30. These observations indicate that transcriptional regulation of DPS or its orthologs is a crucial factor diverging between spirodienoic and solanidine glycoalkaloid producers. There are two possible evolutionary scenarios; (i) gain of the DPS expression in solanidine-glycoalkaloids producing species such as domesticated potatoes and wild potatoes or (ii) loss of the DPS expression in non-solanidine glycoalkaloids producers such as tomato and eggplant. Further genetic studies are required to clarify the evolutionary events that underpin the differential expression of DPS and its orthologs in Solanum species.

Several studies reported that tandem gene duplication and subsequent changes in gene function drive the generation of new biosynthetic pathways or enhancement of existing metabolic flux31–34. Therefore, it is noteworthy that the genes belonging to the DPS branch are highly duplicated in tandem on potato chromosome 1 (Fig. 5a). The fact that there is only one DPS ortholog in each tomato and eggplant genome indicates that the clustered genes including DPS and St7070 in potato have arisen from a single-copy ancestral gene via gene duplication after the speciation of Solanum species. DPS encodes a characteristic shorter polypeptide missing about 40 amino acid residues at the C-terminus as compared to typical DOX family members14,19,27 (Supplementary Fig. 33). Nucleic acid sequence alignment suggests that DPS was modified to become shorter via a single nucleotide-insertion (Supplementary Fig. 34). In addition, DPS and St7070 exhibited markedly differences in substrate specificity and catalytic efficiency, with DPS having very strong substrate preference for glycosides compared to St7070 (Supplementary Table 4). Given the major contribution of DPS to solanidine glycoalkaloids biosynthesis, we presume that such improved catalytic property of DPS, in addition to its elevated gene expression, provide an evolutionary benefit by providing the metabolic pathways from spirodienoic to solanidine glycoalkaloids in cultivated potatoes. Several wild potato species contain both spirodienoic and solanidane12,23, whereas domesticated potato cultivars produce almost only solanidine glycoalkaloids. To clarify the underlying mechanism of the different glycoalkaloid profiles between wild and cultivated potatoes, further experiments are needed, such as analyzing differences in gene expression, coding sequences, and catalytic properties for DPS and its homologous genes between wild and cultivated potatoes.

The SGA biosynthetic pathway is widely conserved among Solanum species18–20, and evolutionary divergence of spirodienoic-metabolizing DOXs contributes to the chemical diversity of SGAs in the Solanum genus15. Recent studies identified that Sl23DOX/ GAME31 in tomato catalyzes C-23 hydroxylation of α- tomatine4,13 (Fig. 5c), and this reaction is responsible for the first step of detoxification metabolism from toxic spirodienoic glycoalkaloid α-tomatin to non-toxic esculetine A. Phylogenetic analysis indicates that functional differentiation between Sl23DOX/GAME31 and DPS in the DOXC20 subfamily likely has arisen from a common ancestral enzyme (Fig. 5). In tomato, spirodienoic-metabolizing Sl23DOX/GAME31 contributes to the domestication of cultivated tomatoes by the reduction of toxicity and bitterness in mature fruits. In contrast, metabolism of spirodienoic glycoalkaloids to solanidine glycoalkaloids in potato may represent evolutionary advantage to produce SGAs more toxic and effective in protection against their enemies.

In conclusion, we have revealed the genetic and enzymatic origin of solanidine glycoalkaloid biosynthesis in potato. This provides insights into the evolution of chemical diversity of SGAs in Solanum species and its evolution’s footprints on Solanum genomes. Thus, our findings further elucidate understanding of how plants have evolved and developed their specialized metabolic pathways, demonstrating that evolutionary divergence of the DOX family is one of the key driving forces for phytochemical diversity.

Methods

Chemicals. Authentic samples of α-solamnine 9, α-cachonine 10, and solanidine 12 were purchased from Sigma-Aldrich, and α-tomatin 6 was purchased from Tokyo Chemical Industry Co., Ltd. (225–255)–spirodienoic-5-en-3β-ol 3 were isolated in our laboratory from tomato4 (Chromadex), respectively, using HPLC35,36. α-Solamarine 7 and β-solamarine 8 were purified from the diploid potato clone GH12-6 and the chemical structures were confirmed using NMR in our laboratory37.

Feeding experiments. St16DOX-disrupted potato hairy roots were established in our laboratory38,39 and subcultured every month on an orbital shaker (100 rpm) in Gamborg B5 (B5) liquid medium containing 2% (w/v) sucrose and cefotaxime (250 μg ml−1) at 20 °C under 24-h dark conditions and used for the feeding experiments. α-Solamarine 7, β-solamarine 8, and (225–255)–spirodienoic-5-en-3β-ol 3 solution, final concentration 10 μM were added individually to the liquid medium of 3-week-old hairy roots. For the inhibition experiment, prohexadione (acetone solution) or uniconazole-P (acetone solution) was concomitantly added to the aqcuaculture with α-solamarine 7. After 3 days of cultivation, SGAs contained in the harvested hairy roots were extracted three times from 100 mg fresh samples with 300 μl methanol. The extracting solution was evaporated and the residue dissolved in 200 μl methanol. After centrifugation, 10 μl of supernatant was diluted with 290 μl methanol and an aliquot (2 μl) of the filtrate was analyzed using LC–MS. The analysis was performed using an ACQUITY UPLC H-Class System (Waters) with an SQ Detector 2 (Waters); data acquisition and analyses were performed using MassLynx 4.1 software (Waters). Each sample was injected into an ACQUITY UPLC HSS T3 chromatographic column (100 × 2.1 mm, 1.7 μm) Waters), with a column temperature of 40 °C and flow rate of 0.2 ml min−1. The mass spectra were obtained in positive electrospray ionization mode, with a capillary voltage of 3 kV and a sample cone voltage of 60 V. Mass spectrometry data were compared to a mass range of m/z 350–1250 was used. The mobile phases were water with 0.1% (v/v) formic acid (A) and acetonitrile (B), using gradient conditions as follows: solvent B ramped linearly from 10% to 42.5% over 15 min; solvent
B increased linearly to 100% over 4 min, held at solvent B 100% for 5 min; solvent B then returned immediately to 10%, followed by a 5 min re-equilibration period. In the in vitro feeding experiment, the mobile phases were water with 0.1% (v/v) formic acid (A), acetonitrile (B), and methanol (C), with a linear gradient elution as follows: from solvent A 90%/solvent B 5%/solvent C 5% to solvent A 45%/solvent B 27.5%/solvent C 27.5% over 30 min; from solvent A 45%/solvent B 27.5%/solvent C 27.5% to solvent A 25%/solvent B 50%/solvent C 25% over 5 min; from solvent A 25%/solvent B 50%/solvent C 25% to solvent A 0%/solvent B 50%/solvent C 50%; held at solvent A 0%/solvent B 50%/solvent C 50%; solvent B increased linearly to 100% over 1 min, held at 100% solvent B for 4 min; solvent B then returned immediately to 10% followed by a 5 min re-equilibration period. Conversion of B 50%/solvent C 50%, held at solvent A 0%/solvent B 50%/solvent C 50%; solvent B (v/v) formic acid (A), acetonitrile (B), and methanol (C), with a linear gradient:

Real-time quantitative RT-PCR analysis. Total RNA was extracted using the N-RNeasy Plant Mini Kit (Qiagen) and the N-RNeasy DNeasy Kit (Qiagen). Total RNAs of potato (S. tuberosum cv Sassy) were prepared from the leaves, stems, flowers, roots, stolons, tuber peels, and tuber sprouts. The extracted total RNAs of potato were used to synthesize first-strand cDNAs, using the ReverTra Ace qPCR RT Master Mix with gDNA remover. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was performed with a LightCyclerNano (Roche), using FastStart Essential DNA Green Master (Roche) with the following primer sets: 1 and 2 for DPS and 3 and 4 for St7070, and 5 and 6 for Eci1, which is a housekeeping gene used for real-time RT-PCR normalization(a) (Supplementary Table 7). The PCR reactions were run as follows: 45 cycles at 95 °C for 10 s, 60 °C for 10 s, 72 °C for 15 s, and 95 °C for 15 s. The cycling was carried out as follows: 95 °C for 10 min, 45 cycles at 95 °C for 10 s, 60 °C for 10 s, 72 °C for 15 s, and 95 °C 4 min. After the co-cultivation period, the stem pieces were transferred to shoot induction medium containing 100 μM Bis–Tris–HCl (pH 7.2), 25 μM FeSO4, 25 μM substrate, and 1 pmol purified recombinant proteins as the enzyme. The reaction was initiated by the addition of the enzyme and was carried out at 30 °C for 30 min. The reaction was then stopped by incubation for 2 min at 90 °C. After centrifugation, 20 μl of the supernatant was diluted with 80 μl of chloroform and filtered through 0.2-μm nylron membrane filters (Acrodisc, Waters). An aliquot (2 μl) was analyzed using LC–MS, as described in “Feeding experiments” above. We determined the kinetic parameters of the recombinant DPS and St7070 in triplicate assays. The assays were conducted as described above, with minor modifications. Briefly, 0.1 μg purified DPS protein or 0.02 μg purified St7070 were used. The activity was assayed using α-solamino-7 (or (225S,25S)-spermidol-5-α-amino-6, 3-β-oxyglicine-3, 4-dihydroxy-5-methyl-2H-pyrimidin-4-one) as a substrate. The kinetic parameters were determined by nonlinear regression, using the ANEOMNA program(b). 1O2-treated assay. A freshly prepared solution (1 ml) containing 100 μM Bis–Tris–HCl (pH 7.2), 5 mM 2-oxoglutarate, 10 mM sodium ascorbate, 0.2 mM FeSO4, 25 μM substrate, and 1 pmol purified recombinant proteins as the enzyme. The reaction was initiated by the addition of the enzyme and was carried out at 30 °C for 10 min. The reaction was then stopped by incubation for 2 min at 90 °C. After centrifugation, 20 μl of the supernatant was diluted with 80 μl of chloroform and filtered through 0.2-μm nylron membrane filters (Acrodisc, Waters). An aliquot (2 μl) was analyzed using LC–MS, as described in “Feeding experiments” above. 1O2 was then centrifuged at 7720 × g for 10 min at 4 °C, and the cell pellets were resuspended in 5 ml of cold sonication buffer containing 50 mM Bis–Tris–HCl (pH 7.2), 130 mM NaCl, 10% (v/v) glycerol, and 5 mM dithiothreitol. The solution was then sonicated three times for 10 s each on ice using a Bandelin Sonopuls HD 2070 ultrasonic homogenizer type MS73 (Gene-Alyzer, Waltham, MA), at a setting intensity of 200 W cm−2 and centrifuged at 20,630 × g for 10 min at 4 °C. The recombinant His-tagged protein contained in the soluble fraction was purified using a His SpinTrap TALON column (GE Healthcare), according to the manufacturer’s instructions. After two column washes, the adsorbed proteins were eluted twice in 200 μl of an elution buffer containing 50 mM sodium phosphate (pH 7.4), 30 mM NaCl, and 150 mM imidazole, and the elution was mixed. The purified recombinant proteins were used for further analyses.
Structural determination of the DPS enzymatic reaction product. The DPS enzymatic reaction with α-tomatine 6 was performed using 50 ml of reaction mixture described previously28, with a minor modification of the structure of the product of the enzymatic reaction catalyzed by recombinant DPS; the reaction was conducted using the crude enzyme overnight. The reaction mixture was extracted with water-saturated butanol after the pH was adjusted to 3.0 by the addition of hydrochloric acid. The butanol layer was collected and, before the dried residue was dissolved in methanol, DPS was protected in vacuo. The DPS reaction product dissolved in methanol was subjected to preparative scale high performance liquid chromatography (HPLC). The sample was injected into an ODS column (COSMOSIL SC-C8, 20 × 250 mm, Nacalai) at a column temperature of 40 °C, and the flow rate was set to 4 mL min−1. Separation was performed with isocratic mobile phases of 22% acetonitrile in H2O containing 0.1% trifluoroacetic acid (v/v), and the elute was detected at 203 nm. Then, the separated DPS reaction product was concentrated.

The molecular formula of the DPS enzymatic reaction product was determined to be C50H82NO21 (calcd. for C50H82NO21, m/z 1032.5376 [M + H]+ (calcld. for C50H82NO21, m/z 1032.5380 [M + H]+; Δm = 0.1) (Supplementary Fig. 17). Its structure was determined by two-dimensional NMR measurements, based on correlation spectroscopy (COSY), nuclear Overhauser effect spectroscopy (NOESY), heteronuclear single-quantum correlation spectroscopy (HSQC), and heteronuclear multiple-bond correlation spectroscopy (HMBC) techniques (Supplementary Table 1). The NMR measurements in this study were performed in CD3SOCD3 and CD3OD. The 13C and 1H assignments are summarized in Supplementary Tables 3 and 4, and COSY and HMBC correlations are shown in Supplementary Fig. 19. Samples were dissolved in NMR solvent immediately prior to measurement. In CD3OD, signals corresponding to H-23, observed at 2.84 ppm (br ddd, J = 10.6, 8.9, 6.8 Hz) and 3.12 ppm (1H, br dd, J = 21.3, 4.1, 4.1) at the beginning, disappeared within 21 h. This observation indicated H–D exchange in CD3OD. Accordingly, C-23 was observed as a severely broadened signal in CD3OD by C–D coupling. In both solutions, C-16 signals were observed at 110.95 ppm (in CD3SOCD3) and 117.85 ppm (in CD3OD), indicating their acetal nature. Since C-16 of α-tomatine (br d, J = 7 Hz)24 is observed at 4.9 ppm, the chemical shift of C-16 in the DPS product suggests that oxidation occurred on C-16. In contrast, the chemical shift of C-22, within the hemiaminal structure of α-tomatine, observed at 192.21 ppm (in CD3SOCD3) and 196.80 ppm (in CD3OD) in the DPS product at first suggested that C-22 exists as a carbonyl carbon of ketone or aldehyde. However, the HMBC correlation between H-26 and C-22 indicated that C-22 exists as an imine carbon instead of a carbonyl carbon. Since chemical shifts of typical imine carbons are observed around 140–170 ppm28, the chemical shift of C-22 of the DPS product appeared at a considerably lower field density. The observation indicated the presence of an imine ion structure in the DPS product, and the reported 13C chemical shift of tri- or tetra-substituted carbon atoms of imines (over 180 ppm, Supplementary Fig. 35) is comparable to the C-22 chemical shift of the DPS reaction product. In particular, the chemical shift of the tetra-substituted iminium ion in Supplementary Fig. 35 (195.1 ppm) is in good accordance with those ion in Supplementary Fig. 35 (195.1 ppm) is in good accordance with those
described previously29. Briefly, bottom end of a hypocotyl segments (1.5 cm in length) were touched to a bacterial colony and then the segments were stood on the on solidified B5 medium containing 2% (w/v) sucrose with the contacted end up. Hairy roots emerging from infected sites were excised and subcultured twice every week on solidified B5 medium containing 2% (w/v) sucrose, 300 mg l−1 cetoxime for disinfection, and 50 mg l−1 kanamycin for drug resistance selection. The selected lines were maintained by subculturing every week in 100 ml glass flasks filled with 20 ml of liquid B5 medium supplemented with 2% (w/v) sucrose with shaking at 100 rpm. in the dark. The accumulated SGAs in DPS overexpressed tomato hairy roots were extracted as described above in “Feeding experiment” and then analyzed using LC–MS by the same condition as α-tomatine 6 feeding experiment in “Feeding experiment”.

Data availability
Sequence data for DPS (LC547753), St7070 (LC547754), and Solyc01g006585 (LC547755) are deposited in DDBJ. All data is available in the main text or the supplementary materials. Data supporting the findings of this study are available within the article and the supplementary materials. Source data are provided with this paper.

Received: 7 August 2020; Accepted: 22 January 2021; Published online: 26 February 2021

References
1. Chae, L., Kim, T., Nilo-Poyanco, R. & Rhee, S. Y. Genomic signatures of specialized metabolism in phylum. Science 344, 510–513 (2014).
2. Friedman, M. Tomato glycoalkaloids: role in the plant and in the diet. J. Agric. Food Chem. 50, 5751–5780 (2002).
3. Milner, S. E. et al. Bioactivities of glycoalkaloids and their aglycones from solanum species. J. Agric. Food Chem. 59, 3454–3484 (2011).
4. Heftmann, E. Biogenesis of steroids in solanaceae. Phytochemistry 22, 1845–1860 (1983).
5. Sawai, S. et al. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholersterol, the common precursor of toxic steroid glycoalkaloids in potato. Plant Cell 26, 3763–3774 (2014).
6. Friedman, M. & McDonald, G. M. Potato glycoalkaloid chemistry, analysis, safety, and plant physiology. CRC Crit. Rev. Plant Sci. 16, 55–132 (1997).
7. Sonawane, P. D. et al. Short-chain dehydrogenase/reductase governs steroidal specialized metabolites structural diversity and toxicity in the genus Solanum. Proc. Natl Acad. Sci. USA 115, E5419–E5428 (2018).
8. Sonawane, P. D., Jozwiak, A., Panda, S. & Aharoni, A. ‘Hijacking’ core metabolism: a new panace for the evolution of steroidal glycoalkaloids structural diversity. Curr. Op. Plant Biol. 55, 118–128 (2020).
9. Friedman, M. et al. Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells. J. Agric. Food Chem. 57, 5727–5733 (2009).
10. Cárdenas, P. D. et al. GAM69 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nat. Commun. 7, 10654 (2016).
11. Sharya, R. & Navarre, D. A. LC–MS analysis of solanidine glycoalkaloid diversity among tubers of four wild potato species and three cultivars (Solanum tuberosum). J. Agric. Food Chem. 56, 6949–6958 (2008).
12. Sinden, S. L. & Sanford, L. L. Origin and inheritance of solanarine glycoalkaloids in commercial potato cultivars. Am. Potato J. 58, 305–325 (1981).
13. Friedman, M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J. Agric. Food Chem. 63, 3322–3337 (2015).
14. Nakayasu, M. et al. Identification of α-tomatine 23-hydroxylase involved in the biosynthesis of a bitter glycoalkaloid. Plant Cell Physiol. 61, 21–28 (2020).
15. Cárdenas, P. D. et al. Pathways to defense metabolites and evading fruit bitterness in genus Solanum evolved through 2-oxoglutarate-dependent dioxygenases. Nat. Commun. 10, 5169 (2019).
16. Sánchez-Mata, M. C., Yokoyama, W. E., Hong, Y. J. & Prohens, J. α-Solanasamine and α-solanamine contents of błona (Solanum macrocarpon L.) and scarlet (Solanum aethiopicum L.) eggplants. J. Agric. Food Chem. 58, 5502–5508 (2010).
17. Umemoto, N. et al. Two Cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroidal glycoalkaloid biosynthetic pathway. Plant Physiol. 171, 2458–2467 (2016).
18. Ikin, M. et al. Biosynthesis of antinutritional alkaloids in Solanaceous crops is mediated by clustered genes. Science 341, 175–179 (2013).
19. Nakayasu, M. et al. A dioxygenase catalyzes steroid 16α-hydroxylation in steroidal glycoalkaloid biosynthesis. Plant Physiol. 175, 120–133 (2017).
20. Moehs, C. P., Allen, P. V., Friedman, M. & Belknap, W. R. Cloning and expression of solanidine UDP-glucose glucosyltransferase from potato. Plant J. 11, 227–236 (1997).

21. McCue, K. F. et al. Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase. Plant Sci. 168, 267–273 (2005).

22. McCue, K. F. et al. The primary in vivo steroidal alkaloid glucosyltransferase from potato. Phytochemistry 67, 1590–1597 (2006).

23. McCue, K. F. et al. Potato glycerol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis. Phytochemistry 68, 327–334 (2007).

24. Itkin, M. et al. GLYCOALKALOID METABOLISM is required for steroidal alkaloid glycosylation and prevention of phytotoxicity in tomato. Plant Cell 22, 4555–4565 (2010).

25. Shih, M.-J. & Kuo, J. A. and β-solammarine in kennebec Solanum tuberosum leaves and aged tuber slices. Phytochemistry 13, 997–1000 (1974).

26. Nakayasu, M. et al. Generation of α-solamine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol. Biochem. 131, 70–77 (2018).

27. Kawai, Y., Ono, E. & Minatani, M. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J. 78, 328–343 (2014).

28. Barchi, L. et al. A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Sci. Rep. 9, 11769 (2019).

29. Thagun, C. et al. Jasmonate-responsive ERF transcription factors regulate steroid glycoalkaloid biosynthesis in tomato. Plant Cell Physiol. 57, 961–975 (2016).

30. Nakayasu, M. et al. JRE4 is a master transcriptional regulator of defense-related steroidal glycoalkaloids in tomato. Plant J. 94, 975–990 (2018).

31. Barco, B., Kim, Y. & Clay, N. K. Expansion of a core regulon by transposable elements promotes Arabidopsis chemical diversity and pathogen defense. Nat. Commun. 10, 3444 (2019).

32. Barco, B. & Clay, N. K. Evolution of glucosinolate diversity via whole-genome duplications, gene rearrangements, and substrate promiscuity. Annu. Rev. Plant Biol. 70, 385–604 (2019).

33. Fan, P., Leong, B. J. & Last, R. L. Tip of the trichome: evolution of acylsugar metabolic diversity in Solanaceae. Curr. Opin. Plant Biol. 49, 8–16 (2019).

34. Des Marais, D. L. & Rauscher, M. D. Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454, 762–765 (2008).

35. Lee, H. J. et al. Identification of a 3β-hydroxysteroid dehydrogenase/3-ketosteroid reductase involved in α-tomatine biosynthesis in tomato. Plant Cell Physiol. 60, 1304–1315 (2019).

36. Akiyama, R. et al. Characterization of steroid 5α-reductase involved in α-tomatine biosynthesis in tomatos. Plant Biotechnol. 36, 253–263 (2019).

37. Shimizu, K. et al. Hatching stimulation activity of steroidal glycoalkaloids from potato. Phytochemistry 90, 1–8 (2013).

38. Thagun, C. et al. Metabolic compensation of steroidal glycoalkaloid biosynthesis in transgenic potato tubers: using reverse genetics to confirm the in vivo enzyme function of a steroidal alkaloid galactosyltransferase. Plant Sci. 168, 267–273 (2005).

39. Nakayasu, M. et al. Generation of α-solamine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol. Biochem. 131, 70–77 (2018).

40. Masclaux, F., Charpenteau, M., Takahashi, T., Pont-Lezica, R. & Galaud, J. P. (2016).<ref>
41. Hernandez, A. & Ruiz, M. T. An EXCEL template for calculation of enzyme kinetic parameters by non-linear regression. Bioinformatics 14, 227–228 (1998).

42. Hesse, M., Meier, H., Zeeh, B. Spectroscopic Methods in Organic Chemistry 2nd edn 222 (R. Dunnmur, M. Murray, Trans.) (Thieme, 2007).

43. Voža, R. & Gartner, H. N-acetoxyaminomium ions - reactive intermediates in the polonovski reaction. Eur. J. Org. Chem. 2007, 2791–2801 (2007).

44. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

45. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1550 (2018).

46. van Engelen, F. A. et al. pBINPLUS: an improved plant transformation vector based on pBIN19. Transg. Res. 4, 288–290 (1995).

Acknowledgements The authors are greatly indebted to K. Ohmine and A. Fujihishi (Kyoto University) for performing instrumental analyses. Parts of the experimental measurements were carried out using a Bruker AVANCEIII 800 and 600 NMR spectrometers as well as a JOEL JMS-700 spectrometer in the Joint Usage/Research Center (JURC) at the Institute for Chemical Research, Kyoto University. This work was supported in part by JSPS Grant-in-Aid for Japan Society for the Promotion of Science Research Fellow (19J10750 to R.A.); Cross-ministerial Strategic Innovation Promotion (SIP) Program, Japan (H.J.L., N.U., K. S., T.M., M.M.); The administration of individual commissioned project study (Development of new varieties and breeding materials in crops by genome editing, the Ministry of Agriculture, Forestry and Fisheries, Japan (N.U., K.S., T.M., M.M.) and the Collaborative Research Program of Institute for Chemical Research, Kyoto University (2017–83 to M.M. and B.W.).

Author contributions R.A. and M.M. planned and designed the experiments. M.M., T.M., K.S., and Y.S. supervised the experiments. R.A. performed the feeding experiments and the DPS-silencing transgenic experiments. R.A., M.N., and J.K. performed protein expression and enzyme assay. R.A., B.W., J.K., and H.J.L. performed NMR analysis of the DPS reaction product. R.A., N.M., N.U., and M.M. performed the cloning and the sequence analyses of DOXs. R.A. and H.J.L. performed LC–MS/MS analysis of SGAs. R.A., B.W., N.U., and M. M. wrote the paper with input from all authors.

Competing interests The authors declare no competing interests.

Additional information Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-21546-0.

Correspondence and requests for materials should be addressed to M.M.

Peer review information Nature Communications thanks Yuseng Han, Ruuben Peters, and Robert Winkler for their contribution to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021