Scaling properties of background- and chiral-magnetically-driven charge separation: implications for the chiral magnetic effect in heavy ion collisions

Roy Lacey

1Depts. of Chemistry & Physics, Stony Brook University, Stony Brook, New York 11794, USA

Abstract. The scaling properties of the $R_{\Psi^2}(\Delta S)$ correlator and the $\Delta \gamma$ correlator are used to investigate a possible chiral-magnetically-driven (CME) charge separation in $p+Au$, $d+Au$, Ru+Ru, Zr+Zr, and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, and in $p+Pb$ ($\sqrt{s_{NN}} = 5.02$ TeV) and Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV. The results for $p+Au$, $d+Au$, $p+Pb$, and Pb+Pb collisions, show the $1/N_{ch}$ scaling for background-driven charge separation. However, the results for Au+Au, Ru+Ru, and Zr+Zr collisions show scaling violations which indicate a CME contribution in the presence of a large background. In mid-central collisions, the CME accounts for approximately 27% of the signal + background in Au+Au and roughly a factor of two smaller for Ru+Ru and Zr+Zr, which show similar magnitudes.

Metastable domains of gluon fields with non-trivial topological configurations can form in the magnetized chiral relativistic quark-gluon plasma (QGP) [1] produced in collisions at RHIC and the LHC. The colliding ions generate the magnetic field (\vec{B}) at early times [2]. The interaction of chiral quarks with the gluon fields can drive a chiral imbalance resulting in an electric current $\vec{J}_V = \frac{N_c e B}{2 \pi^2} \mu_A$, along the \vec{B}-field, i.e., perpendicular to the reaction plane; N_c is the color factor, and μ_A is the axial chemical potential that quantifies the imbalance between right- and left-handed quarks. The resulting final-state charge separation, termed the chiral magnetic effect (CME) [1], is of great experimental and theoretical interest. However, its experimental characterization has been hampered by significant background.

The charge separation can be quantified via the P-odd sine term a_1, in the Fourier decomposition of the charged-particle azimuthal distribution [3]:

$$\frac{dN_{ch}}{d\phi} \propto 1 + 2 \sum_n (v_n \cos(n\Delta \phi) + a_n \sin(n\Delta \phi) + ...)$$

(1)

where $\Delta \phi = \phi - \Psi_{RP}$ gives the particle azimuthal angle with respect to the reaction plane (RP) angle, and v_n and a_n denote the coefficients of the P-even and P-odd Fourier terms, respectively. A direct measurement of a_1, is not possible due to the strict global P and CP symmetry of QCD. However, their fluctuation and/or variance $\tilde{a}_1 = \langle a_1^2 \rangle^{1/2}$ can be measured with charge-sensitive correlators such as the γ-correlator [3] and the $R_{\Psi^2}(\Delta S)$ correlator [4].

The γ-correlator measures charge separation as: $\gamma_{\alpha \beta} = \langle \cos(\phi_\alpha + \phi_\beta - 2\Psi_2) \rangle$, $\Delta \gamma = \gamma_{OS} - \gamma_{SS}$, where Ψ_2 is the azimuthal angle of the 2nd-order event plane which fluctuates

*e-mail: Roy.Lacey@Stonybrook.edu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
about the RP, \(\phi \) denote the particle azimuthal emission angles, \(\alpha, \beta \) denote the electric charge (\(+\) or \(-\)) and SS and OS represent same-sign (\(++\), \(--\)) and opposite-sign (\(+-\)) charges. Measurements of the quotient \(\Delta \gamma/v_2 \) with the 2nd-order anisotropy coefficient \(v_2 \), are usually employed to aid quantification of the background-driven charge separation.

The \(R_{\Psi_2}(\Delta S) \) correlator measures charge separation relative to \(\Psi_2 \) via the ratio:

\[
R_{\Psi_2}(\Delta S) = \frac{C_{\Psi_2}(\Delta S)}{C_{\Psi_2}^g(\Delta S)},
\]

where \(C_{\Psi_2}(\Delta S) \) and \(C_{\Psi_2}^g(\Delta S) \) are correlation functions that quantify charge separation \(\Delta S \), approximately parallel and perpendicular (respectively) to the \(\vec{B} \)-field. The charge-shuffling procedure used to construct the correlation functions ensures identical properties for their numerator and denominator, except for the charge-dependent correlations, which are of interest [4]. \(C_{\Psi_2}(\Delta S) \) measures both CME- and background-driven charge separation while \(C_{\Psi_2}^g(\Delta S) \) measures only the background. After correcting the \(R_{\Psi_2}(\Delta S) \) distributions for the effects of particle-number fluctuations and the event-plane resolution, their inverse variance \(\sigma_{R_{\Psi_2}}^{-2} \) are used to quantify the charge separation [4].

In this work, we use model simulations to chart the scaling properties of \(\sigma_{R_{\Psi_2}}^{-2} \) and \(\Delta \gamma/v_2 \) for the background and signal + background, respectively, in A+A collisions. We then leverage these scaling properties to identify and characterize a possible CME-driven charge separation using previously published data for \(p+Au \), \(d+Au \), \(Ru+Ru \), \(Zr+Zr \) and \(Au+Au \) collisions at RHIC [5–10], and \(p+Pb \) and \(Pb+Pb \) collisions at the LHC [11–14].

Figure 1 shows the results for \(\sigma_{R_{\Psi_2}}^{-2} \) and \(\Delta \gamma/v_2 \) obtained with the AVFD and Hijing models for Au+Au collisions. Note that these models emphasize different sources for the charge-dependent non-flow background; the initial axial charge density \(n_5/s \) and the degree of local charge conservation (LCC) regulate the magnitude of the CME- and background-driven charge separation in the AVFD model. The solid triangles in Fig. 1 show that the background scales as \(1/N_{ch} \) – the expected trend for the charge-dependent non-flow correlations. By contrast, the signal (Sig.) + background values (solid diamonds) indicate positive deviations from the background scaling [16, 17]. This dependence can be represented as:

\[
\Delta \gamma/v_2 = a + b/(N_{ch})^{-c}, \quad \text{and} \quad \sigma_{R_{\Psi_2}}^{-2} = a' + b'/(N_{ch})^{-c'},
\]

for the small values of \(n_5/s \) indicated in Fig. 1. Here, \(a, b \) and \(c \) are parameters; \(c \) characterizes the degree of the scaling violation.
Note that for \(c \approx 0 \) the \(1/N_{\text{ch}} \) scaling for the background is retrieved, as demonstrated with the AVFD model in Fig. 1.

The scaling violation gives a direct signature of the CME-driven contributions to the charge separation (Figs. 1 (a) and (c)). It can be quantified via the fraction:
\[
\frac{\Delta \gamma/v_2}{\Delta \gamma/v_2} = \frac{[\Delta \gamma/v_2(S \text{ig.} + Bkg.) - \Delta \gamma/v_2(Bkg.)]/[\Delta \gamma/v_2(S \text{ig.} + Bkg.)]}{[\sigma^{-2}_{R_{v_2}}(S \text{ig.} + Bkg.) - \sigma^{-2}_{R_{v_2}}(Bkg.)]/[\sigma^{-2}_{R_{v_2}}(S \text{ig.} + Bkg.)]}.
\]

The scaling patterns in Fig. 1 suggest that the observation of \(1/N_{\text{ch}} \) scaling for the experimental \(\sigma^{-2}_{R_{v_2}} \) and \(\Delta \gamma/v_2 \) measurements would strongly indicate background-driven charge separation with little room for a CME contribution. However, observing a violation of this \(1/N_{\text{ch}} \) scaling would indicate the CME-driven contribution. Figs. 1 (a) and (c) also indicate comparable background and signal + background \(\sigma^{-2}_{R_{v_2}} \) and \(\Delta \gamma/v_2 \) values in central and peripheral collisions, suggesting that the background dominates over that of the CME-driven contributions in these collisions. Note the reduction of \(\bar{B} \) in central collisions and the enhanced de-correlation between the event plane and the \(\bar{B} \)-field in peripheral collisions. Since the background dominates in central and peripheral collisions, the \(\sigma^{-2}_{R_{v_2}} \) and \(\Delta \gamma/v_2 \) measurements for these collisions can be leveraged with \(1/N_{\text{ch}} \) scaling to obtain a quantitative estimate of the background over the entire centrality span (cf. Fig. 1). Here, an important proviso is to experimentally establish that the background in \(p(d)+A \) and \(A+A \) collisions scale over the full centrality span.

The \(v_2 \) and \(\Delta \gamma \) values reported for \(p+Au, d+Au, Ru+Ru, Zr+Zr \) and \(Au+Au \) collisions at RHIC [5–10], and \(p+Pb \) and \(Pb+Pb \) collisions at the LHC [12–15] were used to investigate the scaling properties of \(\Delta \gamma/v_2 \). Fig. 2 shows the results for \(p+Pb \) and \(Pb+Pb \) collisions at \(\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV} \). They indicate that \(\Delta \gamma/v_2 \) essentially scales as \(1/N_{\text{ch}} \) \((c \approx 0) \), suggesting negligible CME contributions in these collisions. They also confirm that the combined sources of background (LCC, resonances, back-to-back jets, ...), which should be substantial, especially for \(p+Pb \), scale as \(1/N_{\text{ch}} \). Note as well that the CME contribution is negligible in \(p(d)+A \) collisions because of significant reductions in \(\bar{B} \), and the sizable de-correlation between the event plane and the \(\bar{B} \)-field [12]. Thus, the scaling patterns of \(\Delta \gamma/v_2 \) for these systems’ sizable backgrounds give a direct experimental constraint on the validity of \(1/N_{\text{ch}} \) scaling of the background.
The scaling results for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV are shown in Fig. 3. The $1/N_{ch}$ scaling apparent for $d+Au$ collisions (Fig. 3 (a)) confirms the expectation that the CME is negligible in these collisions. It also confirms that the combined sources of background (LCC, resonances, back-to-back jets, ...), which could be substantial in $d+Au$ collisions, show $1/N_{ch}$ scaling. In contrast to $d+Au$, the results for Au+Au (Fig. 3(b)) show visible indications of a violation ($c > 0$) to the $1/N_{ch}$ scaling observed for background-driven charge separation in $p(d)+A$ collisions. Similar violations were observed for Ru+Ru and Zr+Zr [17]. The scaling violation is similar to that observed for signal + background in Figs. 1 (a) and (c), suggesting an unambiguous non-negligible CME contribution to the measured $\Delta \gamma/v_2$ in Au+Au, Ru+Ru, and Zr+Zr collisions. The estimates of the background for all three systems are obtained by leveraging the $\Delta \gamma/v_2$ measurements for peripheral and central collisions with $1/N_{ch}$ scaling [17]. Here, it is noteworthy that the simulated results from the AVFD and HIJING models, as well as the measurements presented in Figs. 2 and 3(a), provide strong constraints that the combined sources of background, scale as $1/N_{ch}$ over the full centrality span. The background estimates were used to extract f_{CME} values for Au+Au, (Fig. 3 (c)) Ru+Ru and Zr+Zr collisions respectively. They indicate non-negligible f_{CME} values that vary with centrality. In mid-central collisions, $f_{CME} \sim 27\%$ for Au+Au collisions, which is roughly a factor of two larger than the values for Ru+Ru and Zr+Zr. Within the uncertainties, no significant difference between the values for Ru+Ru and Zr+Zr was observed, suggesting that $\Delta \gamma/v_2$ is sensitive to CME-driven charge separation in Ru+Ru and Zr+Zr collisions but may be insensitive to the signal difference between them [17].

In summary, the scaling properties of the $R_{\Psi_2}(\Delta S)$ and the $\Delta \gamma$ correlators have been used to characterize the CME in several colliding systems at RHIC and the LHC. The results for $p+Au$ and $d+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV and $p+Pb$ ($\sqrt{s_{NN}} = 5.02$ TeV) and Pb+Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV, scales as $1/N_{ch}$ consistent with background-driven charge separation. However, the results for Au+Au, Ru+Ru and Zr+Zr collisions ($\sqrt{s_{NN}} = 200$ GeV) show scaling violations which indicate a CME-driven contribution in the presence of significant background. In mid-central collisions, $f_{CME} \sim 27\%$ for Au+Au collisions and approximately a factor of two smaller in Ru+Ru and Zr+Zr collisions but with similar magnitudes for the two isobars.
References

[1] D. Kharzeev, Phys. Lett. B 633, 260-264 (2006)
[2] M. Asakawa, A. Majumder and B. Muller, Phys. Rev. C 81 (2010), 064912
[3] S. A. Voloshin, Phys. Rev. C 70 (2004), 057901
[4] N. Magdy et al., Phys. Rev. C 97 (2018) no.6, 061901
[5] B. I. Abelev et al. [STAR], Phys. Rev. C 81 (2010), 054908
[6] B. I. Abelev et al. [STAR], Phys. Rev. Lett. 103 (2009), 251601
[7] L. Adamczyk et al. [STAR], Phys. Rev. C 88 (2013) no.6, 064911
[8] L. Adamczyk et al. [STAR], Phys. Rev. Lett. 113 (2014), 052302
[9] J. Adam et al. [STAR], Phys. Lett. B 798 (2019), 134975
[10] M. Abdallah et al. [STAR], Phys. Rev. C 105 (2022) no.1, 014901
[11] B. Abelev et al. [ALICE], Phys. Rev. Lett. 110 (2013) no.1, 012301
[12] V. Khachatryan et al. [CMS], Phys. Rev. Lett. 118 (2017) no.12, 122301
[13] A. M. Sirunyan et al. [CMS], Phys. Rev. C 97 (2018) no.4, 044912
[14] S. Acharya et al. [ALICE], Phys. Lett. B 777 (2018), 151-162
[15] S. Acharya et al. [ALICE], JHEP 09 (2020), 160
[16] R. A. Lacey, N. Magdy, P. Parfenov and A. Taranenko, [arXiv:2203.10029 [nucl-ex]].
[17] R. A. Lacey and N. Magdy, [arXiv:2206.05773 [nucl-ex]].