A paternal t(6;22)(q25.3;p12) leading to a deleted and satellited der(6) in a short-lived infant

María Guadalupe Domínguez 1 | Horacio Rivera 1,2 | Rosa María Dávalos-Pulido 1 | Ingrid Patricia Dávalos-Rodríguez 1,2

Abstract

Background: Non-acrocentric satellited chromosomes mostly result from familial balanced insertions or translocations with p12 or p13 of any acrocentric. Although all non-acrocentrics have been involved, only 12 instances of chromosome 6 involvement are known.

Case presentation: A female infant exhibited clinical features typical of 6qter deletions and also generalized hypertrichosis and synophrys, traits seldom reported in patients with similar imbalances or haploinsufficiency of ARID1B located in 6q25.3. She had a paternal derivative satellited 6q of a t(6;22)(q25.3;p12)pat entailing a 6q terminal deletion, karyotype 46,XX,der(6)t(6;22)(q25.3;p12)pat [16].ish del 6q subtel–.

Conclusion: Male and female carriers of reciprocal translocations or insertions between chromosome 6 and the short arm of any acrocentric have few unbalanced offspring mostly by adjacent-1 segregation. In addition, spontaneous abortions or male infertility was present in 7/13 instances of satellited chromosome 6.

Keywords
6q deletion, chromosome 6, non-acrocentric satellited chromosomes, nucleolus organizer regions in 6q, satellited 6q

1 | BACKGROUND

Non-acrocentric satellited chromosomes result from the translocation between a non-acrocentric chromosome and the short arm of any acrocentric.1 Regardless of the breakpoint location in the non-acrocentric chromosome, carriers usually exhibit a normal phenotype.2

Most non-acrocentric chromosome arms, particularly 4p/4q and Yp/Yq, have sometimes acquired stalks and/or satellites usually located on pter or qter and mostly derived from chromosome 15; yet, it must be remarked that the sole presence of satellites in some derivatives may go unnoticed.2-4 Regarding chromosome 6, eleven familial and one sporadic instance are on record, including an exceptional case featuring interstitial NORs at 6p22 (Table 1).1-12

About 37 patients with a 6q pure 6q25/6q26→qter deletion encompassing up 11 Mb and usually diagnosed postnataally are known.13-21 These patients have mainly exhibited developmental delay, intellectual disability, dysmorphic features, microcephaly, hydrocephalus, abnormal corpus callosum, retinal abnormalities, high or cleft palate, complex partial seizures, and hypotonia.13,15,16,18 We present a patient with a satellited 6q who exhibited typical features of 6qter deletions but also generalized hypertrichosis and synophrys, traits seldom reported in patients with haploinsufficiency of ARID1B located in 6q25.3.20,21
MATERIALS AND METHODS

2.1 Case presentation

The 3-month-old proband was the 2nd child born to non-consanguineous parents aged 22 (she) and 23 years. Her older brother had generalized hypertrichosis, redundant skin in posterior neck and imperforate anus, and died at 5 days after birth from pneumonia. During the 2nd trimester, a cystic hygroma and intrauterine growth restriction were diagnosed by ultrasound. The patient was obtained by cesarean section at the 36th week because of oligohydramnios. At birth, she had a weight of 2120 g (below 3rd centile) and a length of 41 cm (below 3rd centile). At 2 months, she presented pneumonia and was hospitalized. One month later, her weight (3400 g), length (44 cm), and head circumference (31.5 cm) were still below the 3rd centile; because of poor sucking, she required a nasogastric tube for feeding. Physical examination (Figure S1) showed generalized hypertrichosis, microcephaly, redundant skin in posterior neck, thick eyebrows, synophrys, hypertelorism, broad and depressed nasal bridge, downturned angle of the mouth, micrognathia, clinodactyly of fifth fingers, and digitized thumbs. Cardiological evaluation reported a structurally normal heart. She died at 5 months from complicated pneumonia.

Proband’s karyotype	Carrier’s sub fertility	References
46,XY,t(6;14)(q13;p10)	1M^c	Li et al⁶
46,XX,der(15)t(6;15)(p21;p12)pat	None	Prieto et al¹
46,XY,ins(6)(q15stk)pat^a	None	Prieto et al¹
46,XY,der(15)t(6;15)(q23;p12)pat^b	1M^d	Pivnick et al⁸
46,XX,t(6;21)(q12;p11)mat	1F^d	Osztovics et al⁹
46,XY,der(21)t(6;21)(q22;p12)mat^c	1F^d	Taysi et al¹⁰
46,XY,t(6;21)(p21.1;p13)mat	4M^c2F^d	Paoloni-Giacobino et al³
46,XY,der(21)(p21.1;p13)mat^d	3M^c	Dahoun et al (cited by Sarri et al²)
46,XY,der(22)t(6;22)(q21;p13)mat	None	Stamberg et al¹¹
46,XY,der(22)t(6;22)(q26;p12)mat^e	None	Turleau and de Grouchy¹²
46,XY,t(6;22)(q16.2;p13)mat	None	Hooper et al⁴
46,XX,ins(6)(p22stk)pat^f	1F^d	Chen et al⁵
46,XX,der(6)t(6;22)(q25.3;p12)pat^a	None	Present case

^aSatellites visible on der(6).
^bSee text for details.
^cSterile/subfertile males.
^dPregnancy loss.

FIGURE 1 GTG-banding, Ag-staining, and FISH results in the family. A and C, Chromosomes 6 and 22 from the patient; note that the der(6) had terminal satellites at 6q25.3 and lacked the 6q subtelomeric signal. B and D, Chromosome pairs 6 and 22 from the father with the t(6;22)(q25.3;p12); note the loss of the 6q subtelomeric signal in the satellited 6q. E and F, Plain Giemsa and silver nitrate staining of a paternal metaphase. The der(6) exhibited an active nucleolar organizing region and satellites attached at 6q25.3.
2.2 | Cytogenetic studies

Metaphases from peripheral blood lymphocytes from the patient and her parents were stained for GGT-banding at a resolution of 500-550 bands (ISCN). In addition, father’s chromosomes were stained with plain Giemsa and silver nitrate for nucleolar organizing regions (NORs). FISH studies in the patient and her father were performed using the 6q subtelomeric probe; paternal chromosomes were also tested with the alpha satellite 14/22 probe (Cytocell).

3 | RESULTS

The patient had a chromosome 6 with terminal stalks and satellites attached to 6q25.3; that is, there was a 6q25.3→qter deletion (Figure 1A). The father was a carrier of a t(6;22)(q25.3;p12) (Figure 1B) in which the satellited der(6) was Ag-positive (Figure 1E,F); maternal chromosomes were normal. FISH studies revealed loss of the 6q subtelomere in the satellited 6q in both the patient (Figure 1C) and her father (Figure 1D). In addition, all four expected alphoid signals were present in the latter (images not shown). The patient’s final karyotype was 46,XX,der(6)t(6;22)(q25.3;p12)pat [16],ish del 6q subtel–.

4 | DISCUSSION

The present patient’s clinical manifestations were similar to those reported in other subjects with a 6q terminal deletion even if some features such as seizures and retinal abnormalities were either not present or not looked for. A comparable clinical picture was observed in five patients with intellectual disability and ARID1B haploinsufficiency secondary to intragenic deletions. Our patient’s deletion likely included 6q25→qter, In contrast with the usual long survival of patients with monosomy balanced translocation (6;22)(q16.2;p13) concurred with a 6q16.1 deletion of 400 kb located 1.2 Mb distal to the breakpoint and responsible for either Tourette syndrome or obsessive-compulsive disorder.

To summarize, male and female carriers of reciprocal translocations or insertions between chromosome 6 and the short arm of any acrocentric have had few unbalanced offspring mostly by adjacent-1 segregation. Indeed, empiric data showed that when a 6q25-6q26 duplication or deletion is fully viable, then there will be an equal number of offspring due to alternate or adjacent-1 segregation. In addition, spontaneous abortions or male infertility were present in 7/13 instances of satellited chromosome 6 (Table 1).

Molecular studies such as MLPA or aCGH are required to precisely determine pure deletions and duplications in patients with a non-acrocentric satellited chromosome.

ACKNOWLEDGEMENTS

We thank to the parents for their cooperation. This work was supported by Fondo de Investigación en Salud (núm.FIS/IMSS/PROT/G18/1817), Instituto Mexicano del Seguro Social.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHORS’ CONTRIBUTIONS

MGD, HR, RM, and IPDR made substantial contributions to the conception and design of the manuscript; acquisition and interpretation of data; revised it critically for important intellectual content, and revised and approved the final version of the manuscript.

ETHICAL APPROVAL

This case report has been approved by our ethical review committee (R-2017-785-088) on 28 august 2017. In addition, parental informed consent was obtained.

REFERENCES

1. Prieto F, Badía L, Beneyto M, Palau F. Nucleolus organizer regions (NORs) inserted in 6q15. Hum Genet. 1989;81:289-290.
2. Sarri C, Douzgou S, Gyftodimou Y, et al. Complex distal 10q rearrangement in a girl with mild intellectual disability: follow up of the patient and review of the literature of non-acrocentric satellite chromosomes. Am J Med Genet. 2011;155A:2841-2854.
3. Paoloni-Giacobino A, Kern I, Rumppler Y, Djelelati R, Morris MA, Dahoun SP. Familial t(6;21)(p21.1;p13) translocation associated with male-only infertility. Clin Genet. 2000;58:324-328.
4. Hooper SD, Johansson AC, Telgiren-Roth C, et al. Genome-wide sequencing for the identification of rearrangements associated with Tourette syndrome and obsessive-compulsive disorder. BMC Med Genet. 2012;19:123.
5. Chen CP, Chern SR, Lee CC, Chen WL, Chen LF, Wang W. Prenatal diagnosis of interstitially satellited 6p. Prenat Diagn. 2004;24:430-433.
6. Li D, Zhang H, Wang R, Zhu H, Li L, Liu R. Chromosomal abnormalities in men with pregestational and gestational infertility in northeast China. J Assist Reprod Genet. 2012;29:829-836.
7. Chito H, Kuroki Y, Matsui I, Yanagida K, Nakagome Y. A 6p trisomy detected in a family with a "giant satellite". Humangenetik. 1975;30:63-67.
8. Pivnick EK, Qumsiyeh MB, Tharapel AT, Summitt JB, Wilroy RS. Partial duplication of the long arm of chromosome 6: a clinically recognizable syndrome. *J Med Genet*. 1990;27:523-526.

9. Osztovics MK, Toth SP, Wessely JA. Cytogenetic investigations in 418 couples with recurrent fetal wastage. *Ann Genet*. 1982;25:232-236.

10. Taysi K, Chao WT, Monaghan N, Monaco MP. Trisomy 6q22 leads to 6qter due to maternal 6;21 translocation. Case report review of the literature. *Ann Genet*. 1983;26:243-246.

11. Stamberg J, Shapiro J, Valle D, et al. Partial trisomy 6q, due to balanced maternal translocation (6;22)(q21;p13) or (q21;pter). *Clin Genet*. 1981;19:122-125.

12. Turleau C, de Grouchy J. Trisomy 6qter. *Clin Genet*. 1981;19:202-206.

13. Lee JY, Cho YH, Hallford G. Delineation of subtelomeric deletion of the long arm of chromosome 6. *Ann Hum Genet*. 2011;75:3378-3394.

14. Peddibhotla S, Nagamani S, Erezi A, et al. Delineation of candidate genes responsible for structural brain abnormalities in patients with terminal deletions of chromosome 6q27. *Eur J Hum Genet*. 2015;23:54-60.

15. De Cinque M, Palumbo O, Mazzucco E, et al. Developmental coordination disorder in a patient with mental disability and a mild phenotype carrying terminal 6q26-qter deletion. *Front Genet*. 2017;8:206-210.

16. Su PH, Chen JY, Chen SJ, Yang KC. Terminal deletion of chromosome 6q. *Pediatr Neonatol*. 2008;49:88-93.

17. Elia M, Striano P, Fichera M, et al. 6q terminal deletion syndrome associated with a distinctive EEG and clinical pattern: a report of five cases. *Epilepsia*. 2006;47:830-838.

18. Hoyer J, Ekici AB, Endele S, et al. Haploinsufficiency of ARID1B, a member of the SWI/SNF chromatin remodeling complex, is a frequent cause of intellectual disability. *Am J Hum Genet*. 2012;90:565-572.

19. Pavone P, Praticò AD, Falsaperla R, et al. Congenital generalized hypertrichosis: the skin as a clue to complex malformation syndromes. *Ital J of Pediatr*. 2015;41:55-63.

20. Seabright M. A rapid banding technique for human chromosomes. *Lancet*. 1971;2:971-972.

21. McGowan-Jordan J, Simons A, Schmid M. *An International System for Human Cytogenomic Nomenclature (ISCN)*. Basel, Freiburg: Karger; 2012.

22. Bloom SE, Goodpasture C. An improved technique for selective silver staining of nucleolar organizer regions in human chromosomes. *Hum Genet*. 1976;34:199-206.

23. Gardner RJM, Sutherland GR, Shaffer LG. *Chromosome Abnormalities and Genetic Counseling*. New York, NY: Oxford University Press; 2012.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Domínguez MG, Rivera H, Dávalos-Pulido RM, Dávalos-Rodríguez IP. A paternal t(6;22)(q25.3;p12) leading to a deleted and satellited der(6) in a short-lived infant. *J Clin Lab Anal*. 2020;34:e23355. https://doi.org/10.1002/jcla.23355