EXACT SEQUENCES, HOCHSCHILD COHOMOLOGY, AND THE LIE MODULE STRUCTURE OVER THE M-RELATIVE CENTER

REINER HERMANN

Abstract. There are several descriptions of the Gerstenhaber bracket in Hochschild cohomology. Until now, S. Schwede’s exact sequence interpretation seems to be the amongst the more useful ones, as it does not rely on the bar resolution directly and, further, can be extended to (almost) arbitrary monoidal categories. However, Schwede’s description lags a significant piece of the picture, as it does not include the action of the center, i.e., the bracket in degrees $(n, 0)$. We will close this gap, and go even a little step further, in that we describe actions by central elements on Hochschild cohomology groups with arbitrary bimodule coefficients. Since our construction utilises the monoidal structure that the category of bimodules possesses, we will further recognize that these actions are compatible with monoidal functors.

Contents

1. Introduction 1
2. Prerequisites on exact and monoidal categories 4
3. Fundamental groups 7
4. The M-relative center 11
 4.1. Reminder on Hochschild cohomology 11
 4.2. The Gerstenhaber bracket in Hochschild cohomology 13
 4.3. The action of the M-relative center 14
5. The action of the X-relative center of a monoidal category 17
6. Proofs 21
 6.1. Compatibility results 21
 6.2. The loop $\Omega_{C}(S,f)$ for modules 24
7. References 30

1. INTRODUCTION

Let A be an associative and unital algebra over a commutative ring K. The theory of Hochschild cohomology has, since it was introduced by G. Hochschild in 1945 (see [10]), developed into various areas of mathematics, e.g., algebraic geometry, as well as representation and deformation theory of associative algebras. One of its most intriguing features is probably the fact, that the Hochschild cohomology modules $HH^*(A, A)$ with coefficients in A carry the structure of a graded K-algebra. In 1963, M. Gerstenhaber showed that $HH^*(A, A)$ actually is graded commutative in
that homogeneous elements of degrees \(m,n \geq 0 \) commute up to the sign \((-1)^{mn}\).

In the very same article, Gerstenhaber provided a graded Lie bracket

\[\{-,-\} : \text{HH}^m(A,A) \times \text{HH}^n(A,A) \to \text{HH}^{m+n-1}(A,A) \quad \text{for } m,n \geq 0 \]

of degree \(-1\), being compatible with the multiplicative structure of \(\text{HH}^*(A,A)\) as it acts through graded derivations. H. Cartan and S. Eilenberg interpreted \(\text{HH}^*(A,A)\) as the Ext-algebra of \(A\) in the category of bimodules if \(A\) is \(K\)-projective and thus pointed out that the Hochschild cohomology algebra of \(A\) may be comprehended in terms of arbitrary projective resolutions of the bimodule \(A\), or, equivalently, arbitrary self-extensions of \(A\), establishing understanding of its multiplicative structure through the Yoneda product (see [4], [28]). Gerstenhaber’s Lie bracket on the other hand proved itself resistant of such a description for several decades.

The shortcoming that Gerstenhaber’s construction could only be grasped in terms of the Hochschild cocomplex, and by no means if starting with an arbitrary projective bimodule resolution of \(A\), asked for significant improvement, as Gerstenhaber himself did explicitly, together with S. D. Schack (see [6, p. 256]):

What intrinsic reason is there for the existence of the graded Lie structure on \(\text{HH}^*(A,A)\)? The cap product (but not its graded commutativity) can be understood from the Yoneda theory; something is wanting to make the Lie structure equally transparent.

An answer to their prayers was given by S. Schwede in [23], where he described Gerstenhaber’s bracket in terms of bimodule self-extensions of \(A\), utilizing the monoidal structure that the category of \(A\)-\(A\)-bimodule possesses. Schwede’s construction has been generalised to exact monoidal categories in [8], in order to acquire a better understanding of functorial properties of the Lie bracket in Hochschild cohomology.

However, Schwede’s interpretation misses a description of the brackets

\[\{-,-\} : \text{HH}^m(A,A) \times \text{HH}^n(A,A) \to \text{HH}^{m+n-1}(A,A) \quad \text{for } n \geq 0. \]

The primary goal of the present article is to close this gap.

Let \(A\) be a unital and associative algebra over a commutative ring \(K\). We will write \(\otimes\) for \(\otimes_K\), and denote by \(A^\text{e} = A \otimes A^\text{op}\) the enveloping algebra of \(A\). Fix an \(A^\text{e}\)-module \(M\). We define the \(M\)-relative center of \(A\) to be \(Z_M(A) = \{ z \in Z(A) \mid zm = mzx \text{ for all } m \in M \}\). Clearly, \(Z_A(A) = Z(A) = \text{HH}^0(A,A)\). By imitating Gerstenhaber’s construction on the Hochschild cocomplex, we obtain a map

\[\{-,-\}_M : \text{HH}^m(A,M) \times Z_M(A) \to \text{HH}^{m+n-1}(A,M) \quad \text{for } n \geq 0, \]

which recovers the Lie bracket \(\{-,-\}\) in degrees \((n,0)\) for \(M = A\). We are going to provide an interpretation of this map by \(n\)-extensions of \(A\) by \(M\). Let us give some idea of the construction, whose details will be provided in Sections 3–5.

For a ring \(R\) and \(R\)-modules \(V\) and \(W\), we denote by \(\text{Ext}_R^n(V,W)\) the category of \(n\)-extensions of \(V\) by \(W\). Due to V. Retakh, see [22], there is an isomorphism

\[\pi_i \text{Ext}_R^n(U,V) \to \text{Ext}_R^{n-i}(U,V) \]

for every \(n \geq 0\), and \(0 \leq i \leq n\). Therefore, in particular, the fundamental group \(\pi_i(\text{Ext}_R^n(U,V),S)\) of \(\text{Ext}_R^n(U,V)\) based at some extension \(S\) is isomorphic to \(\text{Ext}_R^{n-i}(U,V)\). By an interpretation of D. Quillen, cf. [21], \(\pi_i(\text{Ext}_R^n(U,V),S)\) can be thought of as equivalence classes of loops at \(S\) in the category \(\text{Ext}_R^n(U,V)\).

Given a homomorphism \(f \in \text{Hom}_{A^\text{e}}(A,A)\), we obtain two homomorphisms \(f_M^\lambda, f_M^\nu : M \to M\) by taking the unit isomorphisms \(\lambda_M : A \otimes A M \to M\) and
\(\varrho_{M} : M \otimes_{A} A \to M \) into account:

\[
\tilde{f}_{\lambda}^{M} = \lambda_{M} \circ (f \otimes_{A} M) \circ \lambda_{M}^{-1}, \quad \tilde{f}_{\varrho}^{M} = \varrho_{M} \circ (M \otimes_{A} f) \circ \varrho_{M}^{-1}.
\]

Essentially, the maps \(\tilde{f}_{\lambda}^{M} \) and \(\tilde{f}_{\varrho}^{M} \) are given by left and right multiplication with \(f(1) \); they will, in general, not agree.

Since the homomorphisms \(\tilde{f}_{\lambda}^{M} \) and \(\tilde{f}_{\varrho}^{M} \) are natural in \(M \), they give rise to endomorphisms \(F_{A}, F_{B} : S \to S \) of complexes (but a priori not of extensions) for every extension \(S \in \text{Ext}_{A^{\text{ev}}}^{n}(A, M) \). Assuming \(\tilde{f}_{\lambda}^{M} = \tilde{f}_{\varrho}^{M} \), we will construct a loop

\[
(*) \quad S \# f \to f \# S \leftarrow S \# f
\]

in \(\text{Ext}_{A^{\text{ev}}}^{n}(A, M) \), were \(\# \) denotes the Yoneda product on extensions. Since the homomorphisms \(F_{A}, F_{B} \) are natural in \(n \), they give rise to endomorphisms \(F_{A^{n-1}}, F_{B^{n-1}} : S_{\leq n-1} \otimes M_{A^{n-1}}(A, A) \to S_{\leq n-1} \otimes M_{A^{n-1}}(A, A) \) for every extension \(S \in \text{Ext}_{A^{\text{ev}}}^{n}(A, M) \). Assuming \(\tilde{f}_{\lambda}^{M} = \tilde{f}_{\varrho}^{M} \), we arrive at a map

\[
(\cdot \cdot \cdot, -)_{M} : \text{Ext}_{A^{\text{ev}}}^{n}(A, A) \times M_{A^{n-1}}(\text{Mod}(A^{\text{ev}})) \to \text{Ext}_{A^{\text{ev}}}^{n-1}(A, A) \quad (n \geq 0).
\]

Observe that \(M_{A^{n-1}}(\text{Mod}(A^{\text{ev}})) \cong M_{A}(A) = \text{Ext}_{A^{\text{ev}}}^{n}(A, A) \) by sending \(f \) to \(f(1) \). We can now state our main result.

Theorem (= Thm. 5.11). If \(A \) is projective as a \(K \)-module, then the following diagram commutes for all integers \(n \geq 0 \).

\[
\begin{array}{ccc}
\text{HH}^{n}(A, M) \times Z_{M}(A) & \xrightarrow{[-,-]_{M}} & \text{HH}^{n-1}(A, M) \\
\downarrow \cong & & \downarrow \cong \\
\text{Ext}_{A^{\text{ev}}}^{n}(A, M) \times Z_{M}(\text{Mod}(A^{\text{ev}})) & \xrightarrow{(\cdot \cdot \cdot, -)_{M}} & \text{Ext}_{A^{\text{ev}}}^{n-1}(A, M)
\end{array}
\]

By taking our construction under deeper analysis in the more general context of exact monoidal categories, the main theorem leads to the following interplay of the maps \([-,-]_{M} \) with braiding on the monoidal category \((\text{Mod}(Z(A)^{\text{ev}}), \otimes_{Z(A)}, Z(A)) \).

Corollary (= Cor. 5.13). Let \(A \) be projective as a \(K \)-module. Consider the following statements.

1. \(\text{HH}^{0}(Z(A), M) = M \) for all \(M \in \text{Mod}(A^{\text{ev}}) \).
2. \(Z(A) = Z_{M}(A) \) for all \(M \in \text{Mod}(A^{\text{ev}}) \).
3. \(Z(A) = Z_{A \otimes A}(A) \).
4. \((\text{Mod}(Z(A)^{\text{ev}}), \otimes_{Z(A)}, Z(A)) \) is braided monoidal.
5. \([-,-]_{M} \) vanishes for all \(M \in \text{Mod}(A^{\text{ev}}) \).

Then we have the implications

\[
(1) \iff (2) \iff (3) \iff (4) \iff (5).
\]

This article is organized as follows. In Section \(2 \), we will build up the necessary foundations on exact and monoidal categories. Afterwards, in Section \(3 \), we turn ourselves to fundamental groups of categories. We will present an explicit description of the Retakh isomorphism for fundamental groups of extension categories over exact categories, and explain in detail an even more explicit version for module categories going back to Schwede. Section \(4 \) will give a recap on the theory of Hochschild cohomology, and the definition of the Lie bracket associated with it. It will further introduce the \(M \)-relative center, along with some of its properties and its action on \(\text{HH}^{\ast}(A, M) \). In Section \(5 \) we will describe how to interpret this action in terms of extensions. Finally, in Section \(6 \), we will provide the proofs for our main results.
2. Prerequisites on exact and monoidal categories

2.1. Let us recall the notions of exact and monoidal categories and structure preserving functors (exact and monoidal functors) between them. For further details on exact categories, we refer to [14] and [21], whereas the textbooks [2] and [18] provide background material on monoidal categories. In the following section, and in fact for the entire article, we fix a commutative ring K.

2.2. An exact K-category is a pair (C,i_C) consisting of an additive K-category C and a full and faithful embedding $i_C : C \to A_C$ into an abelian K-category A_C, such that the essential image

$$\text{Im}(i_C) = i_C^* = \{ A \in A_C \mid i_C(C) \cong A \text{ for some } C \in C \}$$

of i_C is an extension closed subcategory of A_C. Exact categories admit a sensible notion of exact sequences. Let $C = (C,i_C)$ be an exact K-category. A sequence $0 \to C'' \to C \to C' \to 0$ is an admissible short exact sequence in C, if its image $0 \to i_C(C'') \to i_C(C) \to i_C(C') \to 0$ under i_C is exact in A_C. Given such an admissible short exact sequence $0 \to C'' \to C \to C' \to 0$, the morphism $C'' \to C$ is called an admissible monomorphism, whereas $C \to C'$ is an admissible epimorphism. The class of admissible short exact sequences is closed under taking isomorphisms and finite direct sums (in the category of chain complexes over C).

2.3. Each exact K-category (C,i_C) is closed under taking pushouts along admissible monomorphisms and pullbacks along admissible epimorphisms. Assume that (D,i_D) is another exact K-category, and let $X : C \to D$ be an exact K-linear functor, that is, it takes admissible short exact sequences in C to admissible short exact sequences in D. Each such functor preserves pushouts along admissible monomorphisms and pullbacks along admissible epimorphisms.

2.4. For an integer $n \geq 1$, a sequence $S \equiv 0 \to C'' \to C_{n-1} \to \cdots \to C_0 \to C' \to 0$ of morphisms in an exact K-category (C,i_C) is called an admissible n-extension (of C' by C'') in case $i_C S$ is exact in A_C, and $\text{Ker}(i_C(C_0 \to C'))$ and $\text{Ker}(i_C(C_k \to C_{k-1}))$ belong to $i_C^* C$ for all $k = 1, \ldots, n - 1$.

Let us turn to monoidal categories.

Definition 2.5. Let C be a category, $\otimes : C \times C \to C$ be a functor, I be an object in C,

$$\alpha : - \otimes (- \otimes -) \to (- \otimes -) \otimes - ,$$

$$\lambda : I \otimes - \to \text{Id}_C ,$$

$$\varrho : - \otimes I \to \text{Id}_C$$

be isomorphisms of functors and let $\gamma_{X,Y} : X \otimes Y \to Y \otimes X$ (for $X,Y \in \text{Ob} C$) be natural morphisms.

(1) The 6-tuple $(C, \otimes, I, \alpha, \lambda, \varrho)$ is a monoidal category provided that the following diagrams commute:

$$X \otimes (I \otimes Y) \xrightarrow{\alpha_{X,Y}} (X \otimes I) \otimes Y$$

$$\xrightarrow{X \otimes \lambda_Y}$$

$$X \otimes Y \xrightarrow{\varrho_{X,Y}} X \otimes Y$$
and

\[W \otimes (X \otimes (Y \otimes Z)) \xrightarrow{\alpha_W \otimes X \otimes Y \otimes Z} (W \otimes X) \otimes (Y \otimes Z) \xrightarrow{\alpha_W \otimes X \otimes Y} ((W \otimes X) \otimes Y) \otimes Z \]

\[W \otimes ((X \otimes Y) \otimes Z) \xrightarrow{\alpha_W \otimes X \otimes Y} (W \otimes (X \otimes Y)) \otimes Z, \]

where \(W, X, Y, Z \in \text{Ob} \mathcal{C} \). In this situation, \(\otimes \) is a monoidal (or tensor) product functor for \(\mathcal{C} \) and \(\mathbb{1} \) is the (tensor) unit of \(\otimes \).

(2) The 7-tuple \((\mathcal{C}, \otimes, \mathbb{1}, \alpha, \lambda, \wp, \gamma)\) is a lax braided monoidal category provided that \((\mathcal{C}, \otimes, \mathbb{1}, \alpha, \lambda, \wp)\) is a monoidal category such that \(\varrho_1 \circ \gamma_1 = \lambda_1 \) and such that the diagrams

\[X \otimes (Y \otimes Z) \xrightarrow{\alpha_{X,Y,Z}} (X \otimes Y) \otimes Z \xrightarrow{\gamma_{X,Y,Z}} Z \otimes (X \otimes Y) \]

\[X \otimes (Z \otimes Y) \xrightarrow{\alpha_{X,Z,Y}} (X \otimes Z) \otimes Y \xrightarrow{\gamma_{X,Z,Y}} (Z \otimes X) \otimes Y, \]

and

\[(X \otimes Y) \otimes Z \xrightarrow{\alpha_{X,Y,Z}} X \otimes (Y \otimes Z) \xrightarrow{\gamma_{X,Y,Z}} (Y \otimes Z) \otimes X \]

\[(Y \otimes X) \otimes Z \xrightarrow{\alpha_{Y,X,Z}} Y \otimes (X \otimes Z) \xrightarrow{\gamma_{Y,X,Z}} Y \otimes (Z \otimes X) \]

commute for all \(X, Y, Z \in \text{Ob} \mathcal{C} \). These diagrams define the so called triangle equations. In this case, \(\gamma \) is a lax braiding on the monoidal category \(\mathcal{C} \).

(3) The 7-tuple \((\mathcal{C}, \otimes, \mathbb{1}, \alpha, \lambda, \wp, \gamma)\) is a braided monoidal category provided that \((\mathcal{C}, \otimes, \mathbb{1}, \alpha, \lambda, \wp)\) is a monoidal category and \(\gamma \) is an isomorphism satisfying the triangle equations. In this case, \(\gamma \) is a braiding on the monoidal category \(\mathcal{C} \).

(4) A braided monoidal category is called a symmetric monoidal category, if \((\gamma_{X,Y})^{-1} = \gamma_{Y,X}\) for all \(X, Y \in \text{Ob} \mathcal{C} \). In this case, \(\gamma \) is a symmetry on the monoidal category \(\mathcal{C} \).

Remark 2.6. Let \((\mathcal{C}, \otimes, \mathbb{1}, \alpha, \lambda, \wp)\) be a monoidal category.

(1) We will often suppress a huge part of the structure morphisms and simply write \((\mathcal{C}, \otimes, \mathbb{1})\) instead of \((\mathcal{C}, \otimes, \mathbb{1}, \alpha, \lambda, \wp)\); if they are needed without explicitly being mentioned, we will refer to them as \(\alpha_\mathcal{C}, \lambda_\mathcal{C} \) and \(\wp_\mathcal{C} \).

(2) Note that in the definition of a lax braided monoidal category we do not require that \(\gamma \) is an isomorphism.

(3) It follows from the axioms (cf. [13, Prop. 1.1]) that the following diagrams commute for all \(X, Y, Z \in \text{Ob} \mathcal{C} \).

\[\mathbb{1} \otimes \mathbb{1} \xrightarrow{\lambda_1} \mathbb{1} \quad X \otimes (Y \otimes \mathbb{1}) \xrightarrow{X \otimes \wp} X \otimes Y \quad \mathbb{1} \otimes (X \otimes Y) \xrightarrow{\lambda} X \otimes Y \]

\[\mathbb{1} \otimes \mathbb{1} \xrightarrow{\varrho_1} \mathbb{1} \quad (X \otimes Y) \otimes \mathbb{1} \xrightarrow{\gamma} X \otimes Y \quad (\mathbb{1} \otimes X) \otimes Y \xrightarrow{\lambda \otimes Y} X \otimes Y. \]
(4) Let γ be a braiding on $(C, \otimes, I, \alpha, \lambda, \rho)$. The following diagrams commute (cf. [13, Prop. 2.1]).

\[
\begin{align*}
&\text{In particular, } \gamma \text{ is a lax braiding on the monoidal category } C.
\end{align*}
\]

(5) Note that if $(C, \otimes, I, \alpha, \lambda, \rho)$ is a monoidal category (with braiding γ), then so is C^{op} together with the structure morphisms $\alpha^{-1}, \lambda^{-1}$ and ρ^{-1} (with braiding γ^{-1}).

Definition 2.7. A monoidal category (C, \otimes, I) is called tensor K-category, if C is K-linear and the tensor product functor $\otimes : C \times C \to C$ is K-bilinear on morphisms, that is, it factors through the tensor product category K which is defined as follows:

\[
\begin{align*}
\text{Ob}(C \otimes_K C) &:= \text{Ob}(C \times C), \\
\text{Hom}_{C \otimes_K C}(X, Y) &:= \text{Hom}_C(X_1, Y_1) \otimes_K \text{Hom}_C(X_2, Y_2)
\end{align*}
\]

for objects $X = (X_1, X_2)$ and $Y = (Y_1, Y_2)$ in $C \times C$. A tensor K-category is lax braided (braided, symmetric) if its underlying monoidal category is lax braided (braided, symmetric).

Definition 2.8. Let (C, \otimes_C, I_C) and (D, \otimes_D, I_D) be monoidal categories. Let $\mathcal{L} : C \to D$ be a functor,

\[
\begin{align*}
\phi_{X,Y} &: \mathcal{L} X \otimes_D \mathcal{L} Y \longrightarrow \mathcal{L} (X \otimes_C Y), \\
\psi_{X,Y} &: \mathcal{L} (X \otimes_C Y) \longrightarrow \mathcal{L} X \otimes_D \mathcal{L} Y,
\end{align*}
\]

be natural morphisms in D $(X, Y \in \text{Ob } C)$, and let

\[
\begin{align*}
\phi_0 : I_D &\longrightarrow I_D, & \psi_0 : I_C &\longrightarrow I_D
\end{align*}
\]

be morphisms in D.

(1) The triple $(\mathcal{L}, \phi, \phi_0)$ is called lax monoidal functor if the following diagrams commute for all $X, Y, Z \in \text{Ob } C$:

\[
\begin{align*}
&\text{\quad \quad } \mathcal{L} X \otimes_D (\mathcal{L} Y \otimes_D \mathcal{L} Z) \xrightarrow{\phi_{X,Y} \otimes \phi_{Y,Z}} \mathcal{L} (X \otimes_C Y) \otimes_D \mathcal{L} Z \xrightarrow{\phi_{X,Y} \otimes \phi_{Y,Z}} \mathcal{L} X \otimes_D \mathcal{L} (Y \otimes_C Z) \\
&\xrightarrow{\phi_{0,\mathcal{L} X}} \mathcal{L} X \otimes_D \mathcal{L} Z \xrightarrow{\phi_{X,Y} \otimes \phi_{Y,Z}} \mathcal{L} (X \otimes_C Y) \otimes_D \mathcal{L} Z \xrightarrow{\phi_{X,Y} \otimes \phi_{Y,Z}} \mathcal{L} (X \otimes_C Y \otimes_C Z)
\end{align*}
\]

(2) The triple $(\mathcal{L}, \psi, \psi_0)$ is called colax monoidal functor if the functor $\mathcal{L}^{\text{op}} : C^{\text{op}} \to D^{\text{op}}$ gives rise to a lax monoidal functor $(\mathcal{L}^{\text{op}}, \psi, \psi_0)$.
Example 2.10. Coming back to Example 2.9.(1) If (ξ, ϕ, ψ_0) is called an almost strong monoidal functor if it is a lax monoidal functor and ϕ_0 is invertible. The triple (ξ, ψ, ψ_0) is called an almost costrong monoidal functor if $(\xi^\text{op}, \psi, \psi_0)$ is an almost strong monoidal functor (that is, (ξ, ψ, ψ_0) is colax and ψ_0 is invertible).

The triple (ξ, ϕ, ψ_0) is called a strong monoidal functor if it is an almost strong monoidal functor and ϕ is invertible. The triple (ξ, ψ, ψ_0) is called a costrong monoidal functor if it is an almost costrong monoidal functor and ψ is invertible.

Examples 2.9. (1) If $(\mathbf{C}, \otimes, \mathbb{1})$ is a tensor K-category, the additive closure $\operatorname{add}(\mathbb{1})$ of the unit $\mathbb{1}$ (i.e., the full subcategory of objects in \mathbf{C} being isomorphic to some direct summand of a finite direct sum of copies of $\mathbb{1}$) is a braided monoidal subcategory of \mathbf{C}.

(2) In the following, we will be mainly interested in the monoidal category of K-symmetric A-A-bimodules. It can be realised as the category of left modules over the enveloping algebra $A^{ev} = A \otimes A^{op}$. The monoidal category $(\operatorname{Mod}(A^{ev}), \otimes_A, A)$ is braided if, and only if, there is an invertible element $r = r_1 \otimes r_2 \otimes r_3 \in A \otimes A \otimes A$ (where implicit summation is understood) such that, for all $a \in A$,

$$r_1 \otimes ar_2 \otimes r_3 = r_1 \otimes r_2 \otimes r_3a,$$

$$r_1r_2 \otimes r_3 = 1 \otimes 1,$$

$$r_2 \otimes r_3 = 1 \otimes 1.$$

We refer to [1] for a detailed analysis of braidings on the category of A^{ev}-modules, especially [1, Thm. 3.1] and [1, Thm. 3.2].

(3) Let Γ be a bialgebra, with comultiplication $\Delta : \Gamma \to \Gamma \otimes \Gamma$ and counit $\varepsilon : \Gamma \to K$. Then K is a Γ-module through ε and $(\operatorname{Mod}(\Gamma), \otimes, K)$ becomes a monoidal category. For two Γ-modules M and N the Γ-module structure on $M \otimes N$ is given by

$$\gamma(m \otimes n) = \Delta(\gamma)(m \otimes n) \quad \text{(for } m \in M, n \in N).$$

The monoidal category $(\operatorname{Mod}(\Gamma), \otimes, K)$ is symmetric, if Γ is cocommutative.

Example 2.10. Coming back to Example 2.9(2), recall that the algebra A is Morita equivalent to a K-algebra B, if there is a progenerator P for A (that is, a finitely generated projective A-module P such that $P \cong A \oplus Q$ for some A-module Q) with $B \cong \operatorname{End}_A(P)^{op}$. The functor $\operatorname{Hom}_A(P, -) : \operatorname{Mod}(A) \to \operatorname{Mod}(B)$ will be an equivalence then. The progenerator P gives rise to a progenerator P^{ev} for A^{ev}, namely, $P^{ev} = P \otimes \operatorname{Hom}_A(P, A)$. The opposite endomorphism ring of P^{ev} over A^{ev} is isomorphic to B^{ev}, hence A^{ev} and B^{ev} are Morita equivalent. The equivalence $\operatorname{Mod}(A^{ev}) \xrightarrow{\sim} \operatorname{Mod}(B^{ev})$ defined by $\operatorname{Hom}_{A^{ev}}(P^{ev}, -)$ is an almost strong monoidal functor; see [8, Sec. 5.4] for details.

3. Fundamental groups

3.1. Let \mathbf{C} be a category and let X be an object in \mathbf{C}. Recall that \mathbf{C} is a groupoid if every morphism in \mathbf{C} is invertible. The fundamental group $\pi_1(\mathbf{C}, X)$ of \mathbf{C} at the base point X is given by the fundamental group at X of the geometric realisation of the nerve of \mathbf{C}. Alternatively, $\pi_1(\mathbf{C}, X)$ may be expressed as $\operatorname{End}_{G(\mathbf{C})}(X)$, where $G(\mathbf{C})$ denotes the so called fundamental or Quillen groupoid of \mathbf{C} (see [21]). It comes with a functor $\gamma_C : \mathbf{C} \to G(\mathbf{C})$ which is universal in the following sense: for every groupoid and every functor $\mathbf{C} \to G$ there is a unique functor $G(\mathbf{C}) \to G$ such that
the diagram

\[\begin{array}{ccc}
G(C) & \xrightarrow{g_C} & G \\
\downarrow & & \downarrow \\
C & & C
\end{array} \]

commutes. In particular, for any functor \(\mathcal{X} : C \to D\), we get a unique functor \(G(\mathcal{X}) : G(C) \to G(D)\) such that \(G(\mathcal{X}) \circ g_C = g_D \circ \mathcal{X}\). If \(C\) is a groupoid, then \(G(C) \cong C\) as categories.

Let us construct \(G(C)\) explicitly. A path from \(X\) to \(Y\) in \(C\) is a sequence of objects \(X = X_0, X_1, \ldots, X_n = Y\) and morphisms \(f_0, \ldots, f_{n-1}\) such that

\[f_i \in \text{Hom}_C(X_i, X_{i+1}) \text{ or } f_i \in \text{Hom}_C(X_{i+1}, X_i) \quad (\text{for } i = 0, \ldots, n-1). \]

We denote such a path by \(w = (f_0, \ldots, f_{n-1})\). The number \(n\) is the length of the path \(w\) and a path from \(X\) to \(X\) is a loop based at \(X\). There is a unique loop of length 0 based at \(X\). Two paths \(w = (f_0, \ldots, f_{n-1})\) and \(w' = (f'_0, \ldots, f'_{n-1})\) from \(X\) to \(Y\) are elementary homotopic if \(w'\) arises from \(w\) by replacing a morphism in \(w\) which fits inside a commutative triangle

\[\Delta \equiv \begin{array}{ccc}
U & \xrightarrow{f} & V \\
\downarrow & & \downarrow \\
W & \xleftarrow{g} & U
\end{array} \]

by the other two morphisms in \(\Delta\). We further require that the loop of the length 0 at \(X\) is elementary homotopic to the loop of length 1, given by the identity of \(X\).

Denote by \(\text{Path}_C(X, Y)\) the set of all paths from \(X\) to \(Y\) in \(C\). Now, the objects of \(G(C)\) are given by the objects of \(C\); the set \(\text{Hom}_{G(C)}(X, Y)\) of morphisms \(X \to Y\) in \(G(C)\) is given by the quotient

\[\text{Hom}_{G(C)}(X, Y) = \text{Path}_C(X, Y)/\sim, \]

where \(\sim\) denotes equivalence relation on \(\text{Path}_C(X, Y)\) by elementary homotopy. The functor \(g_C\) is given by the identity on objects, whereas it sends a morphism \(f\) in \(C\) to the equivalence class of the path \(w = (f)\). If \(\mathcal{X} : C \to G\) is a functor into a groupoid \(G\), the unique functor \(\mathcal{X} : G(C) \to G\) with \(\mathcal{X} \circ g_C = \mathcal{X}\) is given by sending (the equivalence class of) a path \((f_0, \ldots, f_{n-1})\) in \(\text{Hom}_{G(C)}(X, Y)\) to

\[\mathcal{X}(f_{n-1})^{\sigma_n} \circ \cdots \circ \mathcal{X}(f_0)^{\sigma_0}. \]

The exponent \(\sigma_i\) for \(i = 0, \ldots, n-1\) is defined to be \(t_i - s_i \in \{-1, 1\}\) when \(f_i : X_{s_i} \to X_{t_i}, s_i, t_i \in \{i, i+1\}\). If \(G = C\) is itself a groupoid and \(\mathcal{X} = \text{Id}_C\), then \(\mathcal{X}\) is an equivalence of categories.

3.2. Let \(C\) be an exact \(K\)-category and \(n \geq 1\) be an integer. For objects \(X\) and \(Y\) in \(C\), a morphism \(f : S \to T\) of admissible \(n\)-extensions \(S\) and \(T\) of \(X\) by \(Y\) is a commutative diagram

\[\begin{array}{cccccc}
S & \equiv & 0 & \longrightarrow & Y & \longrightarrow & E_{n-1} & \longrightarrow & \cdots & \longrightarrow & E_0 & \longrightarrow & X & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \| & & \| & & \| & & \| & & \| & & \| & & \| \\
T & \equiv & 0 & \longrightarrow & Y & \longrightarrow & d_{n-1} & \longrightarrow & \cdots & \longrightarrow & d_0 & \longrightarrow & X & \longrightarrow & 0
\end{array} \]

in \(C\). It is thus apparent, what the composition of morphisms, and the identity morphisms should be. Thus we obtain the category \(\text{Ext}_C^n(X, Y)\) of \(n\)-extensions of \(X\) by \(Y\). We define \(\text{Ext}_C^0(X, Y)\) to be the discrete category \(\text{Hom}_C(X, Y)\). Truncation
of the object \(X\) on the right yields a functor \((-)^2\) from \(\text{Ext}_C^n(X,Y)\) into the category of complexes over \(C\) whose homology is concentrated in degree 0.

From now on, let us assume that \(C\) is

1. closed under kernels of epimorphisms (that is, \(f \in C\) is an admissible epimorphism if, and only if, \(f\) is an epimorphism in \(A_C\)), or
2. closed under cokernels of monomorphisms (that is, \(f \in C\) is an admissible monomorphism if, and only if, \(f\) is a monomorphism in \(A_C\)).

Let \(S\) be an admissible \(n\)-extension of \(X\) by \(Y\). The following construction from [8] gives rise to a homomorphism

\[
u_C : \text{Ext}_C^{n-1}(X,Y) \rightarrow \pi_1(\text{Ext}_C^n(X,Y), S)
\]

of groups. Let us denote by \(S_n\) the trivial \(n\)-extension of \(X\) by \(Y\). For \(n = 1\), this is the split extension \(0 \rightarrow Y \rightarrow Y \oplus X \rightarrow X \rightarrow 0\), whereas for \(n \neq 1\),

\[
S_n \equiv 0 \rightarrow Y \rightarrow Y \rightarrow 0 \rightarrow \cdots \rightarrow 0 \rightarrow X \rightarrow X \rightarrow 0.
\]

If \(f\) belongs to \(\text{Hom}_C(X,Y)\), and \(0 \rightarrow Y \rightarrow E \rightarrow X \rightarrow 0\) to \(\text{Ext}_C^{n-1}(X,Y)\) for \(n \neq 1\), the following diagrams define respective loops in \(\text{Ext}_C^1(X,Y)\) and \(\text{Ext}_C^n(X,Y)\).

Thus we obtain a (well-defined) map \(u_C^n : \text{Ext}_C^{n-1}(X,Y) \rightarrow \pi_1(\text{Ext}_C^n(X,Y), S_n)\) for each \(n \geq 1\). Now, if \(S\) is any \(n\)-extension, taking the Baer sum \(- \oplus S\) with \(S\) is an endofunctor on \(\text{Ext}_C^n(X,Y)\) and thus gives rise to an endofunctor of the corresponding fundamental groupoid. We therefore obtain a group isomorphism

\[
\pi_1(\text{Ext}_C^n(X,Y), S_n) \rightarrow \pi_1(\text{Ext}_C^n(X,Y), S_n \oplus S).
\]

The extensions \(S\) and \(S_n \oplus S\) are connected by a morhism in \(\text{Ext}_C^n(X,Y)\) and conjugation with this morphism finally leads to an isomorphism

\[
\pi_1(\text{Ext}_C^n(X,Y), S_n) \rightarrow \pi_1(\text{Ext}_C^n(X,Y), S).
\]

We let \(u_C^n\) be the composition of this isomorphism with \(u_C^n\). The map \(u_C^n\) is bijective since \(u_C^n\) is (cf. [8, Thm. 3.1.8 and Prop. 3.2.5]) and hence we obtain the following Theorem (attributed to V. Retakh).

Theorem 3.3 (see [8] and [22]). Let \(C\) be an exact \(K\)-category as above. Let \(n \geq 1\) be an integer, \(X, Y\) be objects in \(C\), and let \(S\) be an admissible \(n\)-extension of \(X\) by \(Y\). Then there is an isomorphism

\[
\text{Ext}_C^{n-1}(X,Y) \rightarrow \pi_1(\text{Ext}_C^n(X,Y), S)
\]

of groups. In particular, \(\pi_1(\text{Ext}_C^n(X,Y), S)\) is abelian.
3.4. If \(\mathcal{C} \) is the category of modules over a ring, the isomorphism \(u_C \) admits a very nice explicit formulation in terms of projective resolutions, as presented in [23]. We will recall it, along with some of its properties. Let \(\Gamma \) be any ring and let \(n \geq 0 \) be an integer. Fix two \(\Gamma \)-modules \(L \) and \(M \). We want to describe an isomorphism

\[
\mu : \text{Ext}^n_{\Gamma} (M, L) \cong H^n (\text{Hom}_\Gamma (\mathbb{P}M, L)) \rightarrow \pi_1 (\mathcal{E}xt^n_{\Gamma}^n (M, L), S)
\]

of groups for every base point \(S \) and any fixed projective resolution \(\mathbb{P}M \rightarrow M \rightarrow 0 \) of \(M \) over \(\Gamma \). Assume that the projective resolution \(\mathbb{P}M \rightarrow M \rightarrow 0 \) of \(M \) is given as follows.

\[
\cdots \rightarrow P_{n+2} \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow P_0 \rightarrow M \rightarrow 0
\]

Fix a \(\Gamma \)-linear map \(\varphi : P_{n+1} \rightarrow L \) satisfying \(\varphi \circ \pi_{n+2} = 0 \). The pushout diagram

\[
\begin{array}{c}
\cdots \rightarrow P_{n+2} \rightarrow P_n \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \rightarrow P_0 \rightarrow M \rightarrow 0 \\
0 \rightarrow L \rightarrow \mathbb{P}n+1 \rightarrow \mathbb{P}n \rightarrow \mathbb{P}n-1 \rightarrow \cdots \rightarrow P_0 \rightarrow P_0 \rightarrow M \rightarrow 0
\end{array}
\]

has exact rows. We may regard \(P \) as the quotient

\[
P = \frac{L \oplus P_n}{\{ (\varphi(e), -\pi_{n+1}(e)) \mid e \in P_{n+1} \}} = \text{Coker}(\varphi \oplus (-\pi_{n+1}))
\]

and hence express the maps \(p_{n+1} : Y \rightarrow P \), \(p_n : P \rightarrow P_{n-1} \) as \(p_{n+1}(y) = (y, 0) \) and \(p_n(l, p) = \pi_n(p) \) (for \(y \in Y \), \(l \in L \)).

If \(\psi : P_n \rightarrow L \) is a \(\Gamma \)-module homomorphism, then \(\varphi' = \varphi + \psi \circ \pi_{n+1} \) will also satisfy \(\varphi' \circ \pi_{n+2} = 0 \). Hence we may consider \(S(\varphi') \) as well. The assignment \((l, p) \mapsto (l - \psi(p), p) \) gives rise to a well-defined map

\[
\frac{L \oplus P_n}{\{ (\varphi(e), -\pi_{n+1}(e)) \mid e \in P_{n+1} \}} \rightarrow \frac{L \oplus P_n}{\{ (\varphi'(e), -\pi_{n+1}(e)) \mid e \in P_{n+1} \}}
\]

which itself defines a morphism \(\mu(\psi) : S(\varphi) \rightarrow S(\varphi + \psi \circ \pi_{n+1}) \) of \((n+1)\)-extensions. If we chose \(\psi \) such that \(\psi \circ \pi_{n+1} = 0 \), \(\mu(\psi) \) will be an endomorphism of \(S(\varphi) \) in the category \(\mathcal{E}xt^n_{\Gamma}^n (M, L) \), i.e., a loop of length 1 based at \(S(\varphi) \). In [23, Sec. 4] it is shown that hereby one obtains a well-defined map

\[
\mu : H^n (\text{Hom}_\Gamma (\mathbb{P}M, L)) \rightarrow \pi_1 (\mathcal{E}xt^n_{\Gamma}^n (M, L), S(\varphi))
\]

which is an isomorphism (cf. [23, Thm. 1.1]). Given any \((n+1)\)-extension \(S \) of \(M \) by \(L \), say

\[
S \equiv 0 \rightarrow L \rightarrow E_n \rightarrow \cdots \rightarrow E_0 \rightarrow M \rightarrow 0,
\]

there is a map \(\Phi : \mathbb{P}M \rightarrow S^2 \) of complexes lifting \(\text{id}_M \), where \(S^2 \) denotes the truncated complex

\[
0 \rightarrow L \rightarrow E_n \rightarrow \cdots \rightarrow E_0.
\]

The component map \(\varphi_{n+1} : P_{n+1} \rightarrow L \) is a cocycle in \(\text{Hom}_\Gamma (\mathbb{P}M, L) \). The universal property of the pushout

\[
L \oplus_{P_{n+1}} P_n = \frac{L \oplus P_n}{\{ (\varphi_{n+1}(e), -\pi_{n+1}(e)) \mid e \in P_{n+1} \}} = \text{Coker}(\varphi_{n+1} \oplus (-\pi_{n+1}))
\]
yields a map \(\tilde{\varphi}_n : L \oplus P_{n+1} P_n \to E_n \) such that

\[
\begin{array}{cccccccc}
0 & \to & L & \oplus & P_{n+1} P_n & \oplus & P_{n-1} P_{n-1} & \cdots & P_1 P_0 & \oplus & M & \to & 0 \\
& & \phi_n & & \varphi_n & & \varphi_{n-1} & & \cdots & \varphi_1 & & \varphi_0 & & E_n & \oplus & E_{n-1} & \cdots & E_1 & \oplus & E_0 & \oplus & M & \to & 0 \\
0 & \to & L & \oplus & P_{n+1} P_n & \oplus & P_{n-1} P_{n-1} & \cdots & P_1 P_0 & \oplus & M & \to & 0 \\
\end{array}
\]

commutes, and hence a map \(\tilde{\Phi} : S(\varphi_{n+1}) \to S \) of extensions. Observe that the map \(\tilde{\varphi}_n \) is induced by the map

\[
L \oplus P_n \longrightarrow E_n, \quad (l, e) \mapsto e_{n+1}(l) + \varphi_n(e).
\]

Conjugation with (the equivalence class of) \(\tilde{\Phi} \) delivers an isomorphism

\[
c_\varphi : \pi_1(\mathcal{E}xt^{n+1}_T(M, L), S(\varphi_{n+1})) \longrightarrow \pi_1(\mathcal{E}xt^{n+1}_T(M, L), S)
\]

which depends on the chosen lifting \(\Phi \). However, the composition \(c_\varphi \circ \mu_{\varphi=\varphi_{n+1}} \) does not (use the remarks before [23, Lem. 4.3]). Hence we may (and will) regard \(\mu \) as an isomorphism

\[
\mu : H^n(\text{Hom}_T(\mathbb{P}M, L)) \longrightarrow \pi_1(\mathcal{E}xt^{n+1}_T(M, L), S).
\]

Lemma 3.5 (see [8, Lem. 5.3.3]). Let \(C \) be the category \(\text{Mod}(\Gamma) \). The maps \(\mu \) and \(uc \) are equal (after identifying \(\text{Ext}_T^n(M, L) \) with \(H^n(\text{Hom}_T(\mathbb{P}M, L)) \)).

For a loop \(w \) of length 2 in \(\mathcal{E}xt^{n+1}_T(M, L) \) we explicitly describe a preimage of its equivalence class in \(\pi_1(\mathcal{E}xt^{n+1}_T(M, L), S) \) under the isomorphism \(\mu \). Fix an \((n + 1)\)-extension \(S \) of \(M \) by \(L \), and a map \(\Phi : \mathbb{P}M \to S^2 \) of complexes lifting \(\text{id}_M \). Assume that \(f : S \to T \) and \(g : S \to T \) are morphisms in \(\mathcal{E}xt^{n+1}_T(M, L) \). They define a loop \(S \to T \leftarrow S \) in \(\mathcal{E}xt^{n+1}_T(M, L) \) based at \(S \). The compositions \(f \circ \Phi \) and \(g \circ \Phi \) define morphisms \(\mathbb{P}M \to T^2 \) of complexes lifting \(\text{id}_M \). Hence the difference \(f \circ \Phi - g \circ \Phi \) is null-homotopic, say via the null-homotopy \(s_i : P_i \to F_{i+1} \) \((i \geq 0)\). Note that \(s_n : P_n \to L \) has to be a cocycle in \(\text{Hom}_T(\mathbb{P}M, L) \).

Lemma 3.6 (see [23, Lem. 4.3]). Keep the notations from above. The equivalence class of the cocycle \(s_n : P_n \to L \) is mapped, by \(\mu \), to the equivalence class of the loop

\[
\begin{array}{c}
S \xrightarrow{f} T \xleftarrow{g} S
\end{array}
\]

in \(\pi_1(\mathcal{E}xt^{n+1}_T(M, L), S) \).

4. **The \(M \)-relative center**

Fix a unital and associative \(K \)-algebra \(A \). The symbol \(\otimes \) will always stand for \(\otimes_K \), i.e., the tensor product over the base ring \(K \). Let \(A^{ev} = A \otimes A^{op} \) be the enveloping algebra of \(A \) over \(K \), with factorwise multiplication. It is a very well-known fact, that \(A \)-\(A \)-bimodules with symmetric \(K \)-action bijectively correspond to left modules over \(A^{ev} \). In this section, we will recall the definition of Hochschild cohomology, and its (higher) structures, as they were introduced in [4], [5] and [10].

4.1. **Reminder on Hochschild cohomology**. Let \(M \) be a \(A^{ev} \)-module. The Hochschild cocomplex \(C(A, M) = (C^n(A, M), \partial_M) \) with coefficients in \(M \) is the cocomplex conenctrated in non-negative degrees which is given by

\[
C^n(A, M) = \text{Hom}_K(A^{\otimes n}, M) \quad (\text{for } n \geq 0)
\]
and \(\partial^n_{M} : C^n(A, M) \to C^{n+1}(A, M) \),
\[
\partial^n_{M}(f) (a_1 \otimes \cdots \otimes a_{n+1}) = a_1 f(a_2 \otimes \cdots \otimes a_{n+1}) \\
+ \sum_{i=1}^{n} (-1)^i a_i a_{i-1} \otimes a_{i+1} \otimes \cdots \otimes a_{n+1} \\
+ (-1)^{n+1} f(a_1 \otimes \cdots \otimes a_{n}) a_{n+1}.
\]

The Hochschild cocomplex admits an exterior pairing, in that there is a map

\[
\sim : C^n(A, M) \otimes C^n(A, N) \to C^{n+2}(A, M \otimes A N)
\]

for any pair \(M, N \in \text{Mod}(A^{ev}) \). Namely,

\[
(f \sim g)(a_1 \otimes \cdots \otimes a_{m+n}) = f(a_1 \otimes \cdots \otimes a_{m}) \otimes g(a_{m+1} \otimes \cdots \otimes a_{m+n}).
\]

In fact, through \(\sim \), and after identifying \(A \otimes_A A \cong A \), \(M \otimes_A A \cong M \cong A \otimes_A M \),
the DG module \(\mathbb{C}(A, A) \) is a DG \(K \)-algebra, and \(\mathbb{C}(A, M) \) will be a left and a right
DG module over it. In particular, the cohomology of \(\mathbb{C}(A, A) \) will be a graded \(K \)-algebra.

Definition 4.1. For an integer \(n \geq 0 \), the \(n \)-th *Hochschild cohomology module* with
coefficients in \(M \) is given by

\[
\text{HH}^n(A, M) = H^n\mathbb{C}(A, M).
\]

The graded module

\[
\text{HH}^*(A, M) = \bigoplus_{n \geq 0} \text{HH}^n(A, M)
\]

is the *Hochschild cohomology module* of \(A \) with coefficients in \(M \). We abbreviate \(\text{HH}^n(A) = \text{HH}^n(A, A) \) for \(n \geq 0 \) and call \(\text{HH}^*(A) \) the *Hochschild cohomology algebra*
of \(A \).

4.2. There are two immediate observations.

1. The module \(\text{HH}^0(A, M) \) coincides with \(M^A \), where
\[
M^A = \{ m \in M \mid am = ma \text{ for all } a \in A \}.
\]

In particular, \(\text{HH}^0(A) = Z(A) \) is the center of \(A \).

2. The module \(\text{HH}^1(A, M) \) coincides with the module \(\text{Out}_K(A, M) \) of *outer derivations*
which is given by

\[
\text{Out}_K(A, M) = \frac{\text{Der}_K(A, M)}{\text{Inn}_K(A, M)}
\]

where \(\text{Der}_K(A, M) \) denotes the derivations of \(M \), and \(\text{Inn}_K(A, M) \) the submod-
ule of inner derivations.

4.3. The *bar resolution* \(\mathbb{B}A = (B_*, \beta_*) \) of \(A \), is the following exact resolution of \(A \)
by \(A^{ev} \)-modules. To begin with, \(B_n = A^{\otimes (n+2)} \) is the \((n + 2)\)-fold tensor product
of \(A \) with itself (over \(K \) and for \(n \geq 0 \)). The \(A^{ev} \)-linear map \(\beta_{n+1} : B_{n+1} \to B_n \),
\[
\beta_{n+1}(a_0 \otimes \cdots \otimes a_{n+2}) = \sum_{i=0}^{n+1} (-1)^i a_0 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_{n+2},
\]

turns \(\mathbb{B}A = (B_*, \beta_*) \) into a complex, which is acyclic in all degrees but in degree 0,
wherein its homology is isomorphic to \(A \). The multiplication map \(\mu : A \otimes A \to A \) provides
a suitable augmentation \(\mathbb{B}A \to A \to 0 \).

Now, the adjunction isomorphism

\[
\text{Hom}_{A^{ev}}(A^{\otimes (n+2)}, M) \to \text{Hom}_K(A^{\otimes n}, M), \varphi \mapsto \varphi(1 \otimes - \otimes \cdots \otimes - \otimes 1)
\]
is compatible with the differentials ∂_M and $\text{Hom}_{A^e}(\beta, M)$, that is, $C(A, M) \cong \text{Hom}_{A^e}(\mathbb{B}A, M)$ as cocomplexes. Thus $\text{HH}^*(A, M) \cong H^* \text{Hom}_{A^e}(\mathbb{B}A, M)$ and, since $\mathbb{B}A \to A \to 0$ is exact, there is a graded map

$$\text{HH}^*(A, M) \to \text{Ext}_{A^e}^*(A, M).$$

This map respects the graded ring structures if $M = A$, but will in general not be a bijection (as we will remark later, $\text{HH}^*(A)$ is always graded commutative, whereas a sufficient criterion for $\text{Ext}_{A^e}^*(A, A)$ being graded commutative is $\text{Tor}^K_i(A, A) = 0$ for all $i > 0$; see [25]). However, one easily checks, that $\mathbb{B}A$ will be a resolution by projective A^e-modules, if A is projective over K. Thus the above map is going to be an isomorphism,

$$\text{HH}^*(A, M) \cong \text{Ext}_{A^e}^*(A, M),$$

if A is K-projective.

4.2. The Gerstenhaber bracket in Hochschild cohomology. Let us first recall the definition of a Gerstenhaber algebra over K.

Definition 4.4. Let $G = \bigoplus_{n \in \mathbb{Z}} G^n$ be a graded K-algebra. Further, let $\{-, -\} : G \times G \to G$ be a K-bilinear map of degree -1 (that is, $\{a, b\} \in G^{[a]+[b]-1}$ for all homogeneous $a, b \in G$). The pair $(G, \{-, -\})$ is a Gerstenhaber algebra over K if

1. G is graded commutative, i.e., $ab = (-1)^{[a][b]}ba$ for all homogeneous $a, b \in G$;
2. $\{a, b\} = (-1)^{[a]-1} \{b, a\}$ for all homogeneous $a, b \in G$;
3. $\{a, a\} = 0$ for all homogeneous $a \in G$ of odd degree;
4. $\{a, a\} = 0$ for all homogeneous $a \in G$ of even degree;
5. the graded Jacobi identity holds:

$$\{a, \{b, c\}\} = \{\{a, b\}, c\} + (-1)^{[a] \cdot [c]} \{b, \{a, c\}\}$$

for all homogeneous $a, b, c \in G$;
6. the graded Poisson identity holds:

$$\{a, bc\} = \{a, b\} c + (-1)^{[a] \cdot [b]} b \{a, c\}$$

for all homogeneous $a, b, c \in G$.

4.5. The map $\{-, -\}$ is called a Gerstenhaber bracket for G. Note that any graded commutative K-algebra can be viewed as a Gerstenhaber algebra over K with trivial bracket.

Axioms (G5) and (G6) should be read as follows: The graded Jacobi identity measures the failure of $\{-, -\}$ from being associative, whereas the graded Poisson identity translates to $\{a, -\}$ being a graded derivation of G of degree $|a| - 1$ (for $a \in G$ homogeneous).

4.6. Let M be a fixed A^e-module and $f \in C^m(A, M), g \in C^n(A, A)$ for integers $m, n \geq 0$. For $i = 1, \ldots, m$, let $f \bullet g \in C^{m+n-1}(A, M)$

$$(f \bullet g)(a_1 \otimes \cdots \otimes a_{m+n-1}) = f(a_1 \otimes \cdots \otimes a_{i-1} \otimes g(a_i \otimes \cdots \otimes a_{i+n-1}) \otimes a_{i+n} \otimes \cdots \otimes a_{m+n-1}).$$

Denote by $f \bullet g \in C^{m+n-1}(A, M)$ the alternating sum of the $f \bullet g$:

$$f \bullet g = \sum_{i=1}^{m} (-1)^{(i-1)(m-1)} f \bullet g.$$

The product \bullet is, in general, non-unital and highly non-associative. However, the external pairing \sim and \bullet are related by the following fundamental formula:

$$(\dagger) \quad \partial_M(f \bullet g) + (-1)^m \partial_M(f) \bullet g = f \bullet \partial_A(g) + (-1)^m [g \sim f - (-1)^m f \sim g].$$
See [5, Thm. 3] for a proof.

4.7. The fundamental formula (1) yields two important insights.

(1) If $M = A$, and f and g are cocycles (i.e., $\partial_A(f) = 0 = \partial_A(g)$), then $f \circ g = (-1)^{mn}g \circ f$. It follows that $\text{HH}^*(A)$ is a graded commutative K-algebra.

(2) The map

$$ \{ -, - \} : C^{m}(A, A) \times C^n(A, A) \rightarrow C^{m+n-1}(A, A) $$

$$ \{ f, g \} = f \circ g - (-1)^{(m-1)(n-1)}g \circ f $$

induces a well-defined map

$$ \{ -, - \} : \text{HH}_n(A) \times \text{HH}^n(A) \rightarrow \text{HH}^{m+n-1}(A). $$

It is the main observation of [5] that the hereby obtained triple $(\text{HH}^*(A), \circ, \{ -, - \})$ is a Gerstenhaber algebra over K, in the sense of Definition 4.4.

4.3. The action of the M-relative center. For this entire subsection, we fix a K-algebra A and an A^{ev}-module M. We make the following crucial definition.

Definition 4.8. The M-relative center of A is given by

$$ Z_M(A) = \{ a \in Z(A) \mid am = ma \text{ for all } m \in M \}. $$

It is a sub-K-algebra of $Z(A)$, and equality holds, if $M = A$.

Example 4.9. If the K-algebra A is commutative, every A-module M may be regarded as an A^{ev}-module. As such, $Z_M(A) = A$. In fact, an A^{ev}-module N comes from an A-module in such a way if, and only if, $Z_N(A) = A$.

We get the following obvious criterion as to when the relative center agrees with the whole center of the underlying algebra.

Lemma 4.10. Let M be an A^{ev}-module. Then $Z(A) = Z_M(A)$ if, and only if, $	ext{HH}^0(Z(A), M) = M Z(A) = M$, which is if, and only if, $\text{Inn}_K(Z(A), M) = 0$. □

Lemma 4.11. The following statements are equivalent.

(1) $Z(A) = Z_{A^{\text{ev}}}(A)$.

(2) $Z(A) = Z_M(A)$ for all $M \in \text{Mod}(A^{\text{ev}})$.

(3) $(\text{Mod}(Z(A)^{\text{ev}}), \otimes_{Z(A)}, Z(A))$ is braided monoidal.

(4) The multiplication map $Z(A) \otimes Z(A) \rightarrow Z(A)$ is an isomorphism.

(5) The unit $K \rightarrow Z(A)$ is an epimorphism in the category of rings.

Proof. The implication $(2) \implies (1)$ is trivial. $Z(A) = Z_{A^{\text{ev}}}(A)$ means that $a \otimes 1 = 1 \otimes a$ for all $a \in Z(A)$. Therefore, if M is any A^{ev}-module, we have $am = (a \otimes 1)m = (1 \otimes a)m = ma$ for all $a \in Z(A)$ and all $m \in M$. Thus the first two items are equivalent.

If $a \otimes 1 = 1 \otimes a$ for all $a \in A$, then one easily checks that $r = 1 \otimes 1 \otimes 1 \in Z(A) \otimes Z(A) \otimes Z(A)$ satisfies the equations mentioned in Example 2.9(2), that is, $(\text{Mod}(Z(A)^{\text{ev}}), \otimes_{Z(A)}, Z(A))$ is braided monoidal. Conversely, if the monoidal category $(\text{Mod}(Z(A)^{\text{ev}}), \otimes_{Z(A)}, Z(A))$ is braided monoidal, the element $r = 1 \otimes 1 \otimes 1$ solves the equations in Example 2.9(2) for the algebra $Z(A)$ (see [1, Prop. 3.3]). From the first of these equations, it immediately follows that $a \otimes 1 = 1 \otimes a$, hence $(1) \iff (3)$.

Lastly, $a \otimes 1 = 1 \otimes a$ for all $a \in Z(A)$ is equivalent to the multiplication map $Z(A) \otimes Z(A) \rightarrow Z(A)$ being an isomorphism by Lemma 6.8, which holds true if, and only if, the unit map $K \rightarrow Z(A)$ is an epimorphism in the category of rings; see [24, Prop. 1.1]. Thus, $(1) \iff (4) \iff (5)$. □
4.12. In order to describe the desired action, we need a map

\[-[-]_M : \text{HH}^n(A, M) \times \text{Z}_M(A) \rightarrow \text{HH}^{n-1}(A, M) \quad (n \geq 0).

Let \(f \in \text{Hom}_K(A^\otimes n, M) \) be a \(K \)-linear homomorphism. For \(z \in \text{Z}_M(A) \) and \(1 \leq i \leq n \), we obtain a \(K \)-linear homomorphism \(A^\otimes(n-1) \rightarrow M \) by putting

\[
(f _i _i z)(a_1 \otimes \cdots \otimes a_{n}) = f(a_1 \otimes \cdots a_{i-1} \otimes z \otimes a_{i+1} \otimes \cdots \otimes a_{n})
\]

for \(a_1, \ldots, a_n \in A \), thus simply copying the formula in 4.6. By taking the alternating sum,

\[
f _i z = \sum_{i=1}^n (-1)^{(i-1)} f _i _i z,
\]

we arrive at a map \(A^\otimes(n-1) \rightarrow M \) only depending on \(f \) and \(z \). Although he never stated it in this way, we attribute the following result to Gerstenhaber, since it entirely bases on the ideas and techniques which can be found in [5]. An idea of the proof will be provided for the convenience of the reader.

Recall beforehand, that a right Gerstenhaber module over a Gerstenhaber \(K \)-algebra \((G, \{-, -\}) \) is a graded \(G \)-\(G \)-bimodule \(U \) along with a \(K \)-bilinear map

\[
\langle -, - \rangle : U^m \times G^n \rightarrow U^{m+n-1} \quad (m, n \in \mathbb{Z}),
\]

such that for \(u \in U \), \(a,b \in G \) homogeneous, \(au = (-1)^{|a||u|}ua \),

\[
\langle u, \{a, b\} \rangle = \langle \langle u, a \rangle, b \rangle + (-1)^{(|a|-1)(|b|-1)}\langle \langle u, b \rangle, a \rangle
\]

and

\[
\langle u, ab \rangle = \langle u, a \rangle b + (-1)^{(|u|-1)|a|}\langle u, b \rangle.
\]

The latter equality means, that \(\langle u, - \rangle : G \rightarrow U \) is a graded derivation of degree \(|u| - 1\).

Theorem 4.13. With notation as above, the assignment

\[
(f, z) \mapsto f _i z = \sum_{i=1}^n (-1)^{(i-1)} f _i _i z
\]

induces a well-defined \(K \)-bilinear map

\[
[-, -] = [-, -]_M : \text{HH}^n(A, M) \times \text{Z}_M(A) \rightarrow \text{HH}^{n-1}(A, M)
\]

turning \(\text{HH}^*(A, M) \) into a right Gerstenhaber module over the Gerstenhaber algebra \(\text{Z}_M(A) \) (concentrated in degree 0 with trivial bracket), that is,

\[
0 = [[\alpha, z], z'] + [[\alpha, z'], z]
\]

and

\[
[\alpha, zz'] = [\alpha, z]z' + z[\alpha, z']
\]

for \(\alpha \in \text{HH}^*(A, M) \) homogeneous and \(z, z' \in \text{Z}_M(A) \).

Proof. Let \(z \in \text{Z}_M(A) \). By the fundamental formula (1), we have

\[
\partial_M(f _i z) = f _i z - z _i f = 0
\]

for every cocycle \(f \in C^n(A, M) \), that is, we obtain a well-defined map as claimed.

It is evident that the external pairing \(_i \) turns \(\text{HH}^*(A, M) \) into a \(\text{Z}_M(A) \)-\(\text{Z}_M(A) \)-bimodule with \(za = \alpha z \) for all \(\alpha \in \text{HH}^*(A, M) \) homogeneous. The formulas \(0 = [[\alpha, z], z'] + [[\alpha, z'], z] \) and \([\alpha, zz'] = [\alpha, z]z' + (-1)^{|\alpha|}z[\alpha, z'] \) follow from [5, Thm. 2(ii)] and [5, Thm. 5]. □
Corollary 4.14. Let Γ be a bialgebra over K, M a Γ-module, and let $H^\ast(\Gamma, M) = \text{Ext}_F^\ast(K, M)$ be the corresponding graded cohomology module with coefficients in M. Assume that Γ is projective as a K-module. Then $H^\ast(\Gamma, M)$ a Gerstenhaber module over the Gerstenhaber algebra $Z_{M\otimes \Gamma}(\Gamma)$. In particular, the cohomology ring $H^\ast(\Gamma, K)$ of Γ is a Gerstenhaber module over $Z(\Gamma)$.

Proof. In the following, we will view $M \otimes N$ for $M, N \in \text{Mod}(\Gamma)$ as a left Γ-module through $\Delta : \Gamma \rightarrow \Gamma \otimes \Gamma$. The cohomology module $H^\ast(\Gamma, M)$ embeds into $HH^\ast(\Gamma, M \otimes \Gamma)$ thanks to the map $r : \text{Ext}_F^\ast(K, M) \rightarrow \text{Ext}_F^\ast(K, M \otimes \Gamma)$ taking an n-extension S of K by M to the bimodule n-extension $S \otimes \Gamma$ of Γ by $\Gamma \otimes M$. The map r splits, and a left inverse is given by the following map $s : \text{Ext}_F^\ast(\Gamma, \Gamma \otimes M) \rightarrow \text{Ext}_F^\ast(K, M)$. Assume that an element α' in $\text{Ext}_F^\ast(\Gamma, M \otimes \Gamma)$ is represented by a cocycle $\varphi : \Gamma^\otimes(n+2) \rightarrow M \otimes \Gamma$ of $\text{Hom}_{r}\text{Hom}(\Gamma, M \otimes \Gamma) = \text{Hom}(\Gamma, M \otimes \Gamma)$. By considering the obvious pushout diagram involving φ and the bar resolution’s n-th differential β_n, we obtain an n-extension

$S_\varphi \equiv 0 \rightarrow M \otimes \Gamma \rightarrow Q \rightarrow \Gamma^\otimes n \rightarrow \cdots \rightarrow \Gamma \otimes \Gamma \rightarrow \Gamma \rightarrow 0$.

As a sequence of right Γ-modules, this sequence splits, in that each degree is the direct sum of the kernel and the image of the bordering homomorphisms. This follows from the fact that, since Γ is K-projective, $\Gamma^\otimes m$ is Γ-projective for all $m \geq 1$. Thus $S_\varphi \otimes K$ is an n-extension of K by M, and we let $s(\alpha')$ be its equivalence class in $\text{Ext}_F^\ast(K, M)$.

After all, it now easily follows that $H^\ast(\Gamma, M)$ is a right Gerstenhaber module over $Z_{M\otimes \Gamma}(\Gamma)$ through $(\alpha, z) = s[r(\alpha), z]$, $\alpha \in H^\ast(\Gamma, M)$, $z \in Z_{M\otimes \Gamma}(\Gamma)$, since s satisfies $s(\alpha'\alpha'') = s(\alpha')s(\alpha'')$ for all $\alpha' \in HH^\ast(\Gamma, M \otimes \Gamma)$, $\alpha'' \in HH^\ast(\Gamma)$. \square

4.15. Observe that $[-,-]$ will be

$\{-,-\} : HH^n(A) \times HH^0(A) \rightarrow HH^{n-1}(A)$ (for $n \geq 0$)

if $M = A$, that is, the Gerstenhaber bracket on $HH^\ast(A)$ in degrees $(n, 0)$ described in the previous subsection. The bracket $[-,-]$ is of fundamental importance, especially in the mentioned case $M = A$.

Theorem 4.16. Let Γ be a Hopf algebra over K. If Γ is commutative, quasi-triangular (that is, the triple $(\text{Mod}(\Gamma), \otimes, K)$ is braided monoidal) and finitely generated projective as a K-module, then

$(\circ)

HH^\ast(\Gamma) \cong H^\ast(\Gamma, K) \otimes \Gamma$

as graded algebras. Under this isomorphism, the Gerstenhaber bracket $\{-,-\}$ on $HH^\ast(\Gamma)$ takes the form

$\{\alpha \otimes y, \beta \otimes z\} = \{\alpha \otimes 1, 1 \otimes z\} \cdot (\beta \otimes y) + (-1)^{|\beta|}\{\alpha \otimes z\} \cdot (\beta \otimes 1, 1 \otimes y)$.

In particular, the bracket $\{-,-\}$ on $HH^\ast(\Gamma)$ is completely determined by the map

$[-,-] : HH^\ast(\Gamma) \times \Gamma \rightarrow HH^{\ast-1}(\Gamma)$.

Proof. The isomorphism (\circ) of graded K-algebras has been obtained in [17]. That the bracket $\{-,-\}$ on $HH^\ast(\Gamma)$ takes desired form under it, has been verified in [8, Cor. 6.4.7]. \square

Remark 4.17. If G is a finite abelian group, and if K is a field, the Gerstenhaber bracket on $HH^\ast(KG)$ has been computed in the recent article [16]. The computations yield a very nice illustration of the above theorem.
4.18. The map $[-, -]$ for $M = A$ also plays a role in Poisson geometry. Following [27], a Poisson structure for an algebra A over a field K of characteristic different from 2 is an element $\Pi \in \text{HH}^2(A)$ with $\{\Pi, \Pi\} = 0$. As a simple application of Poisson structures, we provide the following result, without proof, and refer to [27] for further reading.

Theorem 4.19. Let K be a field with $\text{char}(K) \neq 2$. Let A be a K-algebra and $\Pi \in \text{HH}^2(A)$ be a Poisson structure for A. Then the map

$$\{ - , - \}_\Pi : Z(A) \times Z(A) \to Z(A),$$

defined by $\{z, z'\}_\Pi = [\Pi, z] \cdot z' = \{\{\Pi, z\}, z'\}$, is a Poisson bracket for $Z(A)$.

4.20. By the theorem of Hochschild-Kostant-Rosenberg, see [11], we have

$$(\dagger) \quad \text{HH}^*(A) \cong \Lambda^*_A \text{Der}_K(A),$$

whenever A is smooth over a field K of characteristic zero. The right hand side carries the structure of a Gerstenhaber algebra via the Schouten-Nijenhuis bracket, see [7], and the isomorphism above respects this additional structure. It is classical, that for a smooth manifold M over $K = \mathbb{R}$, the algebra $A = \mathcal{C}^\infty(M, \mathbb{R})$ of smooth functions is a smooth algebra over \mathbb{R}. As a very well-known fact, Poisson brackets for A are in bijective correspondence with those elements of $\Lambda^*_A \text{Der}_K(A)$ whose Schouten-Nijenhuis bracket against themselves vanishes; that is, Poisson brackets for A bijectively correspond to Poisson structures $\Pi \in \text{HH}^2(A)$ by (\dagger). See [7] for a clear discussion of the topic.

5. **The action of the X-relative center of a monoidal category**

5.1. In degrees $m, n \geq 1$, S. Schwede offered a categorical interpretation of the Gerstenhaber bracket in Hochschild cohomology; see [23]. We generalized this description to exact monoidal categories in [8]. In this section we will include the missing interpretation of the bracket in degrees $(n, 0)$ for $n \geq 0$. Let \mathcal{C} be a K-linear exact tensor category with tensor functor $\otimes = \otimes_\mathcal{C}$ and tensor unit $\mathbb{1} = \mathbb{1}_\mathcal{C}$. We further assume that \mathcal{C}, as an exact category, is closed under kernels of epimorphisms. The basic idea is to construct loops $\Omega_\mathcal{C}(S, f)$ based at $S \mathbb{1}$ for each choice of an extension $S \in \mathcal{E}xt^n_\mathcal{C}(\mathbb{1}, \mathbb{1})$ and a morphism $f \in \text{Hom}_\mathcal{C}(\mathbb{1}, \mathbb{1})$ which behave well with respect to morphisms of extensions (i.e., if $S \to S'$ is a morphism in $\mathcal{E}xt^n_\mathcal{C}(\mathbb{1}, \mathbb{1})$, then $\Omega_\mathcal{C}(S', f) = c_f(\Omega_\mathcal{C}(S, f))$, where c_f denotes the conjugation with the morphism $S \to S'$).

5.2. Let $f \in \text{Hom}_\mathcal{C}(\mathbb{1}, \mathbb{1})$ be a morphism and C be an object in \mathcal{C}. The unit and counit isomorphisms give rise to morphisms $f_C^\mathcal{C}$ and $f_\mathcal{C}^C$ in the following way:

$$f_C^\mathcal{C} = \lambda_C \circ (f \otimes C) \circ \lambda_C^{-1} : C \to C$$

and

$$f_\mathcal{C}^C = \phi_C \circ (C \otimes f) \circ \phi_C^{-1} : C \to C.$$

In general, $f_C^\mathcal{C} \neq f_\mathcal{C}^C$, however equality holds if $C = \mathbb{1}$. Note that f_λ as well as f_ϕ define natural transformations $\text{Id}_\mathcal{C} \to \text{Id}_\mathcal{C}$.

Definition 5.3. Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal K-category, and let X be an object in \mathcal{C}.

1. The center of \mathcal{C} is given by $Z(\mathcal{C}) = \text{Hom}_\mathcal{C}(\mathbb{1}, \mathbb{1})$.

(2) The \(X \)-relative center of \(C \) is given by
\[
Z_X(C) = \{ f \in \text{Hom}_C(1, 1) \mid f_1^X = f_0^X \} = \{ f \in Z(C) \mid f_1^X = f_0^X \}.
\]

5.4. By [26], the center \(Z(C) \) of \(C \) is a commutative \(K \)-algebra. Clearly, \(Z_X(C) \) is a sub-\(K \)-algebra of \(Z(C) \) for all \(X \in C \).

Examples 5.5. If \((C, \otimes, \mathbb{1})\) is \((\text{Mod}(A^{ev}), \otimes_A, A)\) for some \(K \)-algebra \(A \), and \(M \) is an \(A^{ev} \)-module, then the algebra homomorphism
\[
\gamma : Z_M(A) \longrightarrow Z_M(\text{Mod}(A^{ev})), \ z \mapsto (a \mapsto za),
\]
is bijective. Thus the terminologies for relative centres agree. Similarly, if \((C, \otimes, \mathbb{1})\) is \((\text{Mod}(\Gamma), \otimes, K)\) for some \(K \)-bialgebra \(\Gamma \), and \(N \) is a \(\Gamma \)-module, then \(Z_N(\text{Mod}(\Gamma)) \) is isomorphic to \(K \).

We have the following obvious properties of the \(X \)-relative center.

Lemma 5.6. Let \(X \) and \(Y \) be objects in \(C \), and let \(X' \) be a direct summand of \(X \). The following statements hold true.

1. \(Z_X(C) \subseteq Z_Y(C) \).
2. \(Z_{X \otimes Y}(C) = Z_X(C) \cap Z_Y(C) \).
3. \(Z_X(C) \cap Z_Y(C) \subseteq Z_{X \otimes Y}(C) \).

5.7. Let \(n \geq 0 \) be an integer and let \(X \) be an object in \(C \). Let \(f \in Z_X(C) \) be a morphism inside the \(X \)-relative center of \(C \). Further, let \(S \) be an object in \(\mathcal{E}xt^2_X(1, X) \). We write \(f_1^X \) for the morphism \(f_0^X \).

For \(n = 0 \), the “extension” \(S \) is simply a morphism \(\mathbb{1} \rightarrow X \) and we let \(\Omega_C(S, f) \) be the trivial loop at \(S \# f = S \circ f \). Assume that \(n = 1 \) and that \(S \) is given by
\[
0 \longrightarrow X \overset{c_1}{\longrightarrow} C \overset{c_0}{\longrightarrow} \mathbb{1} \longrightarrow 0.
\]

Due to naturality, we obtain a morphism \(S \rightarrow S \) of complexes:
\[
0 \longrightarrow X \overset{c_1}{\longrightarrow} C \overset{c_0}{\longrightarrow} \mathbb{1} \longrightarrow 0 \quad \xrightarrow{f} \quad 0 \longrightarrow X \overset{c_1}{\longrightarrow} C \overset{c_0}{\longrightarrow} \mathbb{1} \longrightarrow 0.
\]

The universal property of the pushout \(X \oplus_X C \) of \(f \) and \(c_1 \) yields the commutative diagram
\[
\begin{array}{ccc}
0 & \longrightarrow & X \overset{c_1}{\longrightarrow} C \overset{c_0}{\longrightarrow} \mathbb{1} \overset{f}{\longrightarrow} 0 \\
& \searrow & \downarrow & \nearrow & \\
& & f_1^X & f_0^X & \\
0 & \longrightarrow & X \overset{c_1}{\longrightarrow} C \overset{c_0}{\longrightarrow} \mathbb{1} \longrightarrow 0 \\
& \searrow & \downarrow & \nearrow & \\
& & f_1^C & f_0^C & \\
0 & \longrightarrow & X \overset{c_1}{\longrightarrow} C \overset{c_0}{\longrightarrow} \mathbb{1} \overset{f}{\longrightarrow} 0,
\end{array}
\]
wherein the sandwiched admissible short exact sequence represents the Yoneda product \(S \# f \) of \(S \) with \(f \). By pulling back \(c_0 \) and \(f \), we obtain the commutative
and hence a pair $F_\lambda, F_\varphi : S \# f \to f \# S$ of parallel morphisms in $\mathcal{E}xt^n_C(\mathbb{1}, X)$. They define a loop

$$S \# f \xrightarrow{F_\lambda} f \# S \xrightarrow{F_\varphi} S \# f$$

based at $S \# f$, that is, the desired loop $\Omega_C(S, f)$.

Theorem 5.8. Now suppose that $n > 1$. Suppose further that S is given as

$$0 \longrightarrow X \xrightarrow{c_n} C_{n-1} \xrightarrow{c_{n-1}} \cdots \xrightarrow{c_1} C_0 \xrightarrow{c_0} \mathbb{1} \longrightarrow 0 .$$

Consider the morphisms $f_\lambda = f^C_{n-1} = \lambda_{C_{n-1}} \circ (f \otimes C_{n-1}) \circ \lambda^{-1}_{C_{n-1}}$, $f_\varphi = f^C_{n-1} = \varphi_{C_{n-1}} \circ (C_{n-1} \otimes f) \circ \varphi^{-1}_{C_{n-1}}$, $f_\lambda = f^C_{n} = \lambda_{C_0} \circ (f \otimes C_0) \circ \lambda^{-1}_{C_0}$ and $f_\varphi = f^C_{C_0} = \varphi_{C_0} \circ (C_0 \otimes f) \circ \varphi^{-1}_{C_0}$. They give rise to the following commutative diagram.

Yet again, we obtain two parallel morphisms $F_\lambda, F_\varphi : S \# f \to f \# S$ in $\mathcal{E}xt^n_C(\mathbb{1}, X)$ and hence acquire the loop $\Omega_C(S, f)$ based at $S \# f$.

Theorem 5.9. The above construction yields a map

$$\langle -, - \rangle = \langle -, - \rangle_X : \mathcal{E}xt^n_C(\mathbb{1}, X) \times Z_X(C) \longrightarrow \mathcal{E}xt^{-1}_C(\mathbb{1}, X)$$

by $\langle \alpha, z \rangle = u_C^{-1} \Omega_C(S, z)$, where u_C is the isomorphism described in 3.2 (see also Theorem 3.3) and S is an extension representing α. The following is a question we will not be able to answer in general.

Question 5.10. Does the map

$$\langle -, - \rangle_X : \mathcal{E}xt^n_C(\mathbb{1}, X) \times Z_X(C) \longrightarrow \mathcal{E}xt^{-1}_C(\mathbb{1}, X)$$

turn $\mathcal{E}xt^n_C(\mathbb{1}, X)$ into a right Gerstenhaber module over $Z_X(C)$?

However, for $C = \text{Mod}(A^{ev})$ we are going to prove the following main result.
Theorem 5.11. Let A be a K-algebra and M be an A^{ev}-module. If A is projective as a K-module, then the following diagram commutes for all integers $n \geq 0$.

\[
\begin{align*}
\text{HH}^n(A, M) \times Z_M(A) \xrightarrow{[-,-]} \text{HH}^{n-1}(A, M) \\
\cong \downarrow \qquad \qquad \qquad \qquad \downarrow \\
\text{Ext}^n_{A^{ev}}(A, M) \times Z_M(\text{Mod}(A^{ev})) \xrightarrow{[-,-]} \text{Ext}^{n-1}_{A^{ev}}(A, M)
\end{align*}
\]

As we will elaborate on how the behaviour of an exact monoidal category $(\mathcal{C}, \otimes, 1)$ influences the associated maps $\langle -, - \rangle_X$ for $X \in \mathcal{C}$, the following consequences will be imminent.

Corollary 5.12. Let A and B be K-algebras, and assume that A and B are projective over K. Let $\chi : (\text{Mod}(A^{ev}), \otimes, A) \to (\text{Mod}(B^{ev}), \otimes, B)$ be an exact and almost (co)strong monoidal functor. Then there are induced homomorphisms $\delta_B : Z_M(A) \to Z_M(B)$ and $\chi^* : \text{HH}^*(A, M) \to \text{HH}^*(B, \chi M)$ which render the following diagram commutative.

\[
\begin{align*}
\text{HH}^n(B, \chi M) \times Z_M(B) \xrightarrow{[-,-]_{\chi M}} \text{HH}^{n-1}(B, \chi M) \\
\chi^n \times \delta_M \downarrow \quad \quad \quad \quad \quad \quad \downarrow \chi^{n-1}
\end{align*}
\]

In particular, if $B \cong \text{End}_A(P)^{op}$ for some A-progenerator P (that is, A and B are Morita equivalent), and if N is the B^{ev}-module $\text{Hom}_{A^{ev}}(P \otimes \text{Hom}_A(P, A), M)$, then $\text{HH}^*(A, M)$ and $\text{HH}^*(B, N)$ will be isomorphic as graded right Lie modules over $Z_M(A) \cong Z_N(B)$.

Corollary 5.13. Let A be a K-algebra which is projective over K. Consider the following statements.

1. $\text{HH}^0(Z(A), M) = M$ for all $M \in \text{Mod}(A^{ev})$.
2. $Z(A) = Z_M(A)$ for all $M \in \text{Mod}(A^{ev})$.
3. $Z(A) = Z_{A \otimes A}(A)$.
4. $(\text{Mod}(Z(A)^{ev}), \otimes, Z(A))$ is braided monoidal.
5. $\langle -, - \rangle_M$ vanishes for all $M \in \text{Mod}(A^{ev})$.

Then we have the implications

\[(1) \iff (2) \iff (3) \iff (4) \implies (5)\]

amongst them.

Before turning ourselves to the proofs of the above results, let us mention that if K is a field, $K \to Z(A)$ being an epimorphism is equivalent to it being an isomorphism, by [24, Cor.1.2], and hence (4) \implies (5) is automatic. Moreover, the implication (5) \implies (4) will not hold true in general. Indeed, if, for instance, $A = L \supseteq K$ is a separable field extension, (5) will surely be satisfied (see [10]), whereas $\mu : L \otimes_K L \to L$ cannot be an isomorphism unless $[L : K] = 1$.

Example 5.14. Let Q be a quiver without oriented cycles, and let R be a commutative K-algebra which is projective as K-module. The path algebra RQ is a free R-algebra with center $Z(RQ) = R$. So if $K \to R$ is an epimorphism of rings, the bracket $\langle -, - \rangle_X$ will vanish for all modules M over $RQ \otimes_K RQ^{op}$. Examples of such ring homomorphisms $K \to R$ are given by $K = kG$ for a field k, a finite abelian group G, and $f : kG \to R$ a universal localisation, as studied in [15], [19], [20].
6. Proofs

6.1. Compatibility results. In what follows, we will assume that our exact and monoidal categories are tensor K-categories and closed under kernels of epimorphisms. Let $(C, \otimes, \mathbb{I}) = (C \otimes_C \mathbb{I}_C)$ be such a category. For two objects W, X in C and an integer $n \geq 1$, we let $E^k_n(W, X)$ be the full subcategory of C obtained as follows: An object $E \in C$ belongs to $E^k_n(W, X)$ if, and only if, there is an admissible n-extension $0 \to X \to E_{n-1} \to \cdots \to E_0 \to W \to 0$ such that $E \cong E_i$ for some $0 \leq i \leq n - 1$. Observe that $E^k_n(W, X) = C$ for $n \geq 3$, since

$$0 \longrightarrow X \overset{\text{can}}{\longrightarrow} X \oplus E \overset{\text{can}}{\longrightarrow} E \overset{0}{\longrightarrow} \cdots \overset{0}{\longrightarrow} W \overset{0}{\longrightarrow} W \overset{0}{\longrightarrow} 0$$

is an admissible n-extension for every object $E \in C$.

Lemma 6.1. For an object $X \in C$ and an integer $n \geq 1$ consider the following statements.

1. $Z_X(C) \subseteq Z_{E^k_n(C)}$ for all objects $E \in C$.
2. $Z_X(C) \subseteq Z_{E^k_n(C)}$ for all objects $E \in E^k_n(\mathbb{I}, X)$.
3. The n-th component map of $(\cdot, \cdot)_X$,

$$\text{Ext}_{E^k_n(\mathbb{I}, X)}^n(\mathbb{I}, X) \to Z_X(C) \to \text{Ext}_{E^k_n(\mathbb{I}, X)}^{n-1}(\mathbb{I}, X),$$

is constantly zero.

Then the implications $(1) \implies (2) \implies (3)$ hold. Further, $(3) \implies (2)$ if $n = 1$, and $(2) \implies (1)$ if $n > 1$.

Proof. The implication $(1) \implies (2)$ is trivial. If $f^E_{\mathbb{I}} = f^E_{\mathbb{I}}$ for all $f \in \text{Hom}_C(\mathbb{I}, \mathbb{I})$ and $E \in E^k_n(\mathbb{I}, X)$, then the morphisms $F_\mathbb{I}, F_E : S \# f \to S \# f$ defining the loop $\Omega(C)(S, f)$ for $S \in \text{Ext}_{E^k_n(\mathbb{I}, X)}$ agree, and hence $\Omega(C)(S, f)$ will be (homotopically equivalent to) the trivial loop. Thus (2) implies (3).

Let $f \in Z_X(C)$ and S be an admissible 1-extension $0 \to X \to E \to \mathbb{I} \to 0$. The category $\text{Ext}_{E^k_n(\mathbb{I}, X)}^1(\mathbb{I}, X)$ is a groupoid, so $\mathcal{G}(\text{Ext}_{E^k_n(\mathbb{I}, X)}^1(\mathbb{I}, X)) \cong \text{Ext}_{E^k_n(\mathbb{I}, X)}^1(\mathbb{I}, X)$. Hence a loop $S' \hookrightarrow T \to S$ in $\text{Ext}_{E^k_n(\mathbb{I}, X)}^1(\mathbb{I}, X)$ will be homotopically equivalent to the trivial loop if, and only if, the two arrows $S' \hookrightarrow T \to S'$ are the same. Thus, $\Omega(C)(S, f)$ is homotopically equivalent to the trivial loop if, and only if, $F_\mathbb{I} = F_E$. By construction, this is if, and only if, $f^E_{\mathbb{I}} = f^E_{\mathbb{I}}$. Therefore (3) implies (2) if $n = 1$.

Finally, the canonical sequence $0 \to X \to X \oplus E \to \mathbb{I} \oplus E \to \mathbb{I} \to 0$ is admissible exact for all objects $E \in C$. Thus if (2) is valid for $n = 2$, then $Z_X(C) \subseteq Z_{E^k_2(C)} = Z(C) \cap Z_{E^k_n}(C) = Z_{E^k_n}(C)$. Therefore the second item implies the first if $n > 1$.

The center of the tensor category C, as introduced in [12], is related to our definition, as we will notice shortly. Let us recall this object, with slightly changed terminology.

Definition 6.2. Let $U \subseteq C$ be a monoidal subcategory. The U-restricted monoidal center of C is the following category, denoted by $Z(U, C)$. Its objects are pairs (X, a), where $X \in \text{Ob} C$ and $a : (\cdot \otimes X) \to (X \otimes \cdot)$ is a natural isomorphism of functors $U \to C$, such that $a_1 = \phi^{-1}_X \circ \lambda_X$ and $a_{U \otimes V} = (V \otimes a_U) \circ (a_V \otimes U)$ for all $U, V \in \text{Ob} U$. A morphism $(X, a) \to (X', a')$ in $Z(U, C)$ is a morphism $f : X \to X'$ with $(f \otimes U) \circ a_U = a_U \circ (U \otimes X)$ for all $U \in \text{Ob} U$.

$Z(C, C)$ is a braided tensor K-category, with tensor functor $(X, a) \otimes (X', a') = (X \otimes X', (X \otimes b) \circ (a \otimes X'))$ and braiding $\gamma_{(X, a), (X', a')} = a_X$.

Lemma 6.3. For an object $X \in C$ the following statements are equivalent.

1. $Z(C) = Z_X(C)$.

(2) The isomorphism $\gamma_X = g^{-1}_X \circ \lambda_X$ gives rise to an isomorphism between the functors

\[(- \otimes -), (- \otimes -) \circ T : \text{add}(\mathbb{1}) \times \text{add}(X) \to \mathcal{C}, \]

where T denotes the twist functor $T : \mathcal{C} \times \mathcal{C} \to \mathcal{C} \times \mathcal{C}$, $T(C, D) = (D, C)$.

(3) There is a natural transformation $a : (- \otimes X) \to (X \otimes -)$ between functors $\text{add}(\mathbb{1}) \to \mathcal{C}$ such that (X, a) belongs to $Z(\text{add}(\mathbb{1}), \mathcal{C})$.

\[\text{Proof.} \] If (1) holds, then for every $f \in \text{Hom}_\mathcal{C}(\mathbb{1}, \mathbb{1})$ the diagram

\[\begin{array}{ccc}
\mathbb{1} \otimes X & \xrightarrow{\lambda_X} & X \\
\gamma_X \downarrow & & \downarrow \gamma_X \\
X \otimes \mathbb{1} & \xrightarrow{\epsilon_X} & X \\
\end{array} \]

commutes. Thus, $\gamma_X \circ (X \otimes f) = (f \otimes X) \circ \gamma_X$. If now $U = \bigoplus_i \mathbb{1}$, $Y = \bigoplus_j X$ are (isomorphic to) finite direct sums of copies of $\mathbb{1}$ and X, and $U' \subseteq U$, $Y' \subseteq Y$ are direct summands, then put

\[\gamma_{U,Y} = \bigoplus_f \gamma_X, \quad \gamma_{U',Y'} = (Y \xrightarrow{\text{can}} Y') \circ \gamma_Y \circ (Y' \xrightarrow{\text{can}} Y), \]

\[\gamma_{U,Y'} = \bigoplus_i \gamma_{1,Y'} \quad \gamma_{U,Y'} = (U \xrightarrow{\text{can}} U') \circ (\gamma_{U,Y'}) \circ (U' \xrightarrow{\text{can}} U) \]

in order to obtain the desired functorial isomorphisms. Conversely, (2) implies (1) by similar arguments. The implication (2) \implies (3) is obvious, and its converse follows by extending a to direct summands of direct sums of X as done in (6.1). □

Proposition 6.4. Consider the following statements.

(1) $Z(\mathcal{C}) = Z_X(\mathcal{C})$ for all $X \in \mathcal{C}$.

(2) The isomorphisms $\gamma_X = g^{-1}_X \circ \lambda_X$, for $X \in \mathcal{C}$, define an isomorphism between the functors

\[(- \otimes -), (- \otimes -) \circ T : \text{add}(\mathbb{1}) \times \mathcal{C} \to \mathcal{C}, \]

where T denotes the twist functor $T : \mathcal{C} \times \mathcal{C} \to \mathcal{C} \times \mathcal{C}$, $T(C, D) = (D, C)$.

(3) For all $X \in \mathcal{C}$, there is a natural transformation $a : (- \otimes X) \to (X \otimes -)$ between functors $\text{add}(\mathbb{1}) \to \mathcal{C}$ such that (X, a) belongs to $Z(\text{add}(\mathbb{1}), \mathcal{C})$.

(4) $(-, -)_X \equiv 0$ for all $X \in \mathcal{C}$.

Then the implications (1) \iff (2) \iff (3) \implies (4) hold true. Thus $(-, -)_X \equiv 0$ for all $X \in \mathcal{C}$ if $Z(\mathcal{C}) = K \text{id}_X$.

\[\text{Proof.} \] The equivalence of (1), (2) and (3) follows from Lemma 6.3, whereas (1) implies (4) by Lemma 6.1. □

Proposition 6.5. Assume that $(\mathcal{C}, \otimes_\mathcal{C}, \mathbb{1}_\mathcal{C})$ and $(\mathcal{D}, \otimes_\mathcal{D}, \mathbb{1}_\mathcal{D})$ are exact and monoidal K-categories. Let $\mathcal{X} : (\mathcal{C}, \otimes_\mathcal{C}, \mathbb{1}_\mathcal{C}) \to (\mathcal{D}, \otimes_\mathcal{D}, \mathbb{1}_\mathcal{D})$ be an exact and almost strong monoidal functor. Let X be an object in \mathcal{C} and $Y = \mathcal{X}(X)$.

(1) The functor \mathcal{X} induces a K-algebra homomorphism $\delta_X : Z_X(\mathcal{C}) \to Z_Y(\mathcal{D})$. It is an injection (surjection) if, and only if, the functor \mathcal{X} defines an injection (surjection) $\text{Hom}_\mathcal{C}(\mathbb{1}_\mathcal{C}, \mathbb{1}_\mathcal{C}) \to \text{Hom}_\mathcal{D}(\mathcal{X}\mathbb{1}_\mathcal{C}, \mathcal{X}\mathbb{1}_\mathcal{C})$.

\[\]
(2) The functor \(\mathfrak{X} \) gives rise to a graded map \(\mathfrak{X}^* : \text{Ext}^*_C(\mathbb{I}_C, X) \to \text{Ext}^*_D(\mathbb{I}_D, Y) \) such that

\[
\begin{array}{ccc}
\text{Ext}^0_C(\mathbb{I}_C, X) \times Z_X(C) & \xrightarrow{(-,-)_X} & \text{Ext}^{n-1}_C(\mathbb{I}_C, X) \\
\xrightarrow{\times \delta_X} & & \xrightarrow{\chi^{n-1}} \\
\text{Ext}^0_D(\mathbb{I}_D, Y) \times Z_Y(D) & \xrightarrow{(-,-)_Y} & \text{Ext}^{n-1}_D(\mathbb{I}_D, Y)
\end{array}
\]

is commutative for all integers \(n \geq 1 \). The graded map \(\mathfrak{X}^* \) is bijective, if \(\mathfrak{X} \) is an equivalence of \(K \)-categories.

Proof. The map \(\delta_X \) is induced by restricting \(\delta : Z(C) \to Z(D) \), \(\delta(f) = \phi^{-1}_0 \circ \mathfrak{X}(f) \circ \phi_0 \). Indeed, for \(f \in \text{Hom}_C(\mathbb{I}_C, \mathbb{I}_C) \), \(C \in \text{Ob}\ C \), and \(D = \mathfrak{X}(C) \), the diagram

\[
\begin{array}{ccc}
\lambda_D^{-1} \otimes_D D & \xrightarrow{\phi_0 \otimes_D D} & \mathfrak{X}(\mathbb{I}_C) \otimes_D D \\
\xrightarrow{\text{id}_D} & & \xrightarrow{\phi_0 \otimes_D D} \\
\lambda_D \otimes_D D & & \mathfrak{X}(\mathbb{I}_C) \otimes_D D
\end{array}
\]

commutes, that is, \(\delta(f)_D^\mathbf{C} = \delta(f^\mathbf{C}) \). Similarly, we have \(\delta(f)_D^\mathbf{C} = \delta(f^\mathbf{C}) \), so that \(f \in Z_X(C) \) will imply \(\delta(f) \in Z_Y(D) \). Moreover, \(\delta_X \) is an algebra homomorphism since \(\phi_0 \circ \phi^{-1}_0 = \text{id}_{\mathbb{I}_D} \). By definition, \(\delta_X \) will be injective/surjective, if \(\mathfrak{X} \) fulfils the requirements listed.

As for item (2), the point is that since \(\mathfrak{X} \) is exact, it commutes with pushouts along admissible monomorphisms and pullbacks along admissible epimorphisms. Thus the induced functor \(\mathfrak{X} : \text{Ext}^*_C(\mathbb{I}_C, X) \to \text{Ext}^*_D(\mathbb{I}_D, \mathfrak{X}(X)) \) sending an extension \(0 \to X \to E_{n-1} \to \cdots \to E_0 \to \mathbb{I}_C \to 0 \) to \(0 \to \mathfrak{X}(X) \to \mathfrak{X}(E_{n-1}) \to \cdots \to \mathfrak{X}(\mathbb{I}_C) \cong \mathbb{I}_D \to 0 \) satisfies \(\mathfrak{X}(S \# f) = \mathfrak{X}(S) \# \delta(f) \) and \(\mathfrak{X}((f \# S) = \delta(f) \# \mathfrak{X}(S) \) for all \(S \in \mathfrak{Ext}^*_C(\mathbb{I}_C, X) \), \(f \in \text{Hom}_C(\mathbb{I}_C, \mathbb{I}_C) \). Now, as we already noticed,

\[
\delta(f^\mathbf{C}) = \delta(f^\mathbf{X}(C)) \quad \text{and} \quad \delta(f^\mathbf{C}) = \delta(f^\mathbf{X}(C)),
\]

so that \(\mathfrak{X} \) will take the morphisms of complexes that define \(\Omega_C(S, f) \) to those that define \(\Omega_D(\mathfrak{X}(S, \delta_X(f)) \) (for \(S \in \mathfrak{Ext}^*_C(\mathbb{I}_C, X) \), \(f \in Z_X(C) \)). To summarise,

\[
(6.2) \quad \mathfrak{X}\Omega_C(S, f) = \Omega_D(\mathfrak{X}(S, \delta_X(f)) \).
\]

Observe that we actually have strict *equality* not only homotopical equivalence. We conclude by

\[
x^{-1}(\alpha, f)_X = x^{-1}(u^{-1}_C \Omega_C(S, f)) \quad \text{(by definition of \(\langle -, - \rangle_X \))} \\
= u^{-1}_D \mathfrak{X}\Omega_C(S, f) \quad \text{(by \cite[Lem. 3.2.6]{Lem})} \\
= u^{-1}_D \Omega_D(\mathfrak{X}(S, \delta_X(f)) \quad \text{(by (6.2))} \\
= (x^n(\alpha), \delta_X(f))_Y \quad \text{(by definition of \(\langle -, - \rangle_Y \))}
\]

for all \(\alpha = [S] \in \text{Ext}^*_C(\mathbb{I}_C, X) \) and \(f \in Z_X(C) \). \(\square \)

Remark 6.6. Proposition 6.5 remains valid if one replaces the term *almost strong monoidal* by *almost costrong monoidal*. However, the maps \(\delta_X \) and \(\mathfrak{X}^* \) will appear in a slightly different shape.
6.2. The loop $\Omega_C(S, f)$ for modules. For the remainder of this section, we fix a K-algebra A (not necessarily projective over K) and an A^{ev}-module M. Further, \otimes will always stand for \otimes_K. Let us explicitly describe the (morphisms occurring in the) loops $\Omega_A(S, f) = \Omega_C(S, f)$ where $C = \text{Mod}(A^{\text{ev}})$, S is an n-extension of A by M in $\text{Mod}(A^{\text{ev}})$ and $f \in Z_M(A) \subseteq \text{Hom}_{A^{\text{ev}}}(A, A)$. In what follows, we will abuse notation, and also write f for the map $f^M = f^M_\varnothing : M \to M$.

To begin with, assume that S is a short exact sequence

$$0 \longrightarrow M \longrightarrow E \longrightarrow A \longrightarrow 0.$$

Recall that the pushout $M \oplus_M E$ of (f, i) and the pullback $A \times_A E$ of (f, p) can be expressed as

$$M \oplus_M E = \frac{M \oplus E}{\{(f(m), -i(m)) \mid m \in M\}} = \text{Coker}(f \oplus (-i)),$$

$$A \times_A E = \{(a, e) \in A \oplus E \mid f(a) = p(e)\} = \text{Ker}(f + (-p)).$$

The homomorphisms $f^M_\varnothing, f^M_\varnothing : M \oplus_M E \to A \times_A E$ which define $\Omega_A(S, f)$ are induced by the maps

$$\zeta^M_\varnothing : M \oplus E \longrightarrow A \oplus E, \ (m, e) \mapsto (g(e), f(1)e + i(m))$$

and

$$\zeta^M_\varnothing : M \oplus E \longrightarrow A \oplus E, \ (m, e) \mapsto (g(e), ef(1) + i(m)).$$

Now let S be in $\text{Ext}^n_{A^{\text{ev}}}(A, M)$ for some integer $n > 1$. Suppose that S looks as follows:

$$0 \longrightarrow M \stackrel{d_n}{\longrightarrow} E_{n-1} \stackrel{d_{n-1}}{\longrightarrow} \cdots \stackrel{d_1}{\longrightarrow} E_0 \stackrel{d_0}{\longrightarrow} A \longrightarrow 0.$$

The defining homomorphisms $f^M_\varnothing, f^M_\varnothing : M \oplus_M E_{n-1} \to E_{n-1}, f^M_\varnothing, f^M_\varnothing : E_0 \to A \times_A E_0$ of the loop $\Omega_C(S, z)$ are induced by the following maps:

$$\zeta^M_\varnothing : M \oplus E_{n-1} \longrightarrow E_{n-1}, \ (m, e) \mapsto f(1)e + d_n(m),$$

$$\zeta^M_\varnothing : A \oplus E_{n-1} \longrightarrow E_{n-1}, \ (m, e) \mapsto ef(1) + d_n(m)$$

and

$$\tilde{\zeta}^M_\varnothing : E_0 \longrightarrow A \oplus E_0, \ x \mapsto (d_0(e), f(1)e),$$

$$\tilde{\zeta}^M_\varnothing : E_0 \longrightarrow A \oplus E_0, \ x \mapsto (d_0(e), ef(1)).$$

In all other degrees, the maps $E_i \to E_i$ are given by f^E_i and f^E_i respectively (for $i = 1, \ldots, n - 2$). Recall that, for any n, the maps $M \to M \oplus_M E_{n-1} \to E_{n-2}$ in $S \# f$ are induced by $m \mapsto (m, 0)$ and $(m, e) \mapsto d_{n-1}(e)$, whereas the maps $E_1 \to A \times_A E_0 \to A$ in $f \# S$ are induced by $x \mapsto (0, d_1(e))$ and $(a, e) \mapsto x$.

6.7. Let us fix a projective resolution $\mathcal{P}A \to A \to 0$ of A over A^{ev}. Assume that it is given as

$$\cdots \longrightarrow P_{n+1} \stackrel{\pi_{n+1}}{\longrightarrow} P_n \stackrel{\pi_n}{\longrightarrow} P_{n-1} \stackrel{\pi_{n-1}}{\longrightarrow} \cdots \stackrel{\pi_2}{\longrightarrow} P_0 \stackrel{\pi_0}{\longrightarrow} A \longrightarrow 0.$$

Since $A \otimes A$ is projective as an A^{ev}-module, and the multiplication map $\mu : A \otimes A \to A$ defines a surjective A^{ev}-homomorphism, we may, and will, assume that $P_0 = A \otimes A$ and $\pi_0 = \mu$.

The multiplication map gives rise to the fundamental short exact sequence

$$(c) \quad 0 \longrightarrow \Omega^A_A \longrightarrow A \otimes A \stackrel{\mu}{\longrightarrow} A \longrightarrow 0$$

which will play a key role in the considerations below. The following lemmas are classical, see [3, Chap. III, §10], but will be stated for completeness.
Lemma 6.8. The module Ω^1_A is, as a left and a right A-module, generated by the elements $da = a \otimes 1 - 1 \otimes a$ for $a \in A$.

Proof. Clearly, $\mu(da) = 0$ for all $a \in A$. If
$$\mu \sum_{i=1}^{n} a_i \otimes b_i = 0 \quad (\text{for some } a_1, \ldots, a_n, b_1, \ldots, b_n \in A),$$
then
$$\sum_{i=1}^{n} a_i \otimes b_i = \sum_{i=1}^{n} (da_i)b_i = \sum_{i=1}^{n} \mu a_i b_i.$$

Lemma 6.9. The map $d : A \to \Omega^1_A$, $da = a \otimes 1 - 1 \otimes a$ is a K-linear derivation into the A^{ev}-module Ω^1_A and has the following universal property: For every A^{ev}-module M and ever K-linear derivation $D : A \to M$ there exists a unique A^{ev}-linear map $\overline{D} : \Omega^1_A \to M$ such that $\overline{D} \circ d = D$. Moreover, the assignments $D \mapsto \overline{D}$ and $f \mapsto f \circ d$ define mutually inverse isomorphisms between $\text{Der}_K(A, M)$ and $\text{Hom}_{A^{ev}}(\Omega^1_A, M)$. They identify $\text{Inn}_K(A, M)$ with $\text{Im Hom}_{A^{ev}}(i, M)$.

Proof. It is straightforward to check that d is a derivation as claimed. Let M be an A^{ev}-module with right module structure map $\mu_M : M \otimes A \to M$. If $D : A \to M$ is any K-linear derivation then, $\overline{D} = \mu_M \circ (D \otimes A) \circ i$ is A^{ev}-linear. In fact, if $a, a', a'' \in A$, then
$$\overline{D}(a'(da)a'') = (D(a'a) - D(a'a'))a'' = a'D(a)a''.$$

Apparently, $\overline{D} \circ d = D$, and \overline{D} is the unique A^{ev}-linear map with this property.

Lemma 6.10. Let M be an A^{ev}-module. Then $\text{HH}^0(A, M) \cong \text{Hom}_{A^{ev}}(A, M)$ and $\text{HH}^1(A, M) = \text{Out}_K(A, M) \cong \text{Ext}_{A^{ev}}^1(A, M)$.

Proof. The left exactness of $\text{Hom}_{A^{ev}}(-, M)$ forces
$$0 \longrightarrow \text{Hom}_{A^{ev}}(A, M) \xrightarrow{a^*} \text{Hom}_{A^{ev}}(A \otimes A, M) \xrightarrow{b^*} \text{Hom}_{A^{ev}}(A \otimes A \otimes A, M)$$
to be exact ($b_1 : A^{ev} \otimes A \otimes A \to A$ denotes the first differential in B/A). Thus,
$$\text{HH}^0(A, M) = H^0 \text{Hom}_{A^{ev}}(B/A, M) \cong \text{Ker Hom}_{A^{ev}}(b_1, M) \cong \text{Hom}_{A^{ev}}(A, M).$$
The fundamental exact sequence (6.5) yields the exact sequence
$$0 \longrightarrow \text{Hom}_{A^{ev}}(A, M) \xrightarrow{a^*} \text{Hom}_{A^{ev}}(A \otimes A, M) \xrightarrow{\gamma^*} \text{Hom}_{A^{ev}}(\Omega^1_A, M) \longrightarrow \text{Ext}_{A^{ev}}^1(A, M) \longrightarrow 0$$

which, when combined with the preceding lemma, gives
$$\text{Out}_K(A, M) = \frac{\text{Der}_K(A, M)}{\text{Inn}_K(A, M)} \cong \frac{\text{Hom}_{A^{ev}}(\Omega^1_A, M)}{\text{Im}(\gamma^*)} \cong \text{Ext}_{A^{ev}}^1(A, M).$$

Hence the lemma is established.

6.11. Let us elaborate further on the surjection

(6.3) \[\text{Der}_K(A, M) \xrightarrow{\text{can}} \frac{\text{Der}_K(A, M)}{\text{Inn}_K(A, M)} \xrightarrow{\sim} \text{Ext}_{A^{ev}}^1(A, M). \]
It sends a K-linear derivation D to the equivalence class of the lower sequence in the pushout diagram below:

\[
\begin{array}{c}
0 \\ \uparrow \\
0 \\
\end{array} \quad \begin{array}{cccccc}
\Omega^1_A & \longrightarrow & A \otimes A & \mu & A & \longrightarrow & 0 \\
\Phi & & & \downarrow & & \\
M & \longrightarrow & M \oplus_{\Omega^1_A} (A \otimes A) & \longrightarrow & A & \longrightarrow & 0
\end{array}
\]

Observe that this sequence splits if, and only if, D is inner. Conversely, let

\[
0 \longrightarrow M \overset{i}{\longrightarrow} E \overset{p}{\longrightarrow} A \longrightarrow 0
\]

be a short exact sequence of A^{ev}-modules. Since p is surjective, $1 \in A$ has a preimage under p. Let $e \in E$ be such that $p(e) = 1$. Now the multiplication map $\mu_e : A \otimes A \rightarrow X$, $\mu_e(a \otimes b) = abc$ is A^{ev}-linear and such that the right square in

\[
\begin{array}{cccccc}
0 & \longrightarrow & \Omega^1_A & \longrightarrow & A \otimes A & \mu & A & \longrightarrow & 0 \\
\Phi & & & \downarrow & & & \downarrow & & \\
0 & \longrightarrow & E & \overset{p}{\longrightarrow} A & \longrightarrow & 0
\end{array}
\]

commutes. Hence the dashed arrow $\tilde{\mu}_e$ is induced as indicated, given by $\tilde{\mu}_e(da) = i^{-1}(ac - ca)$. The map $D_e = \tilde{\mu}_e \circ d$ is a K-linear derivation; if e' is another preimage of 1 in A under g, the difference $D_e - D_{e'}$ is inner. The hereby obtained well-defined map $\text{Ext}^n_{A^{ev}}(A, M) \rightarrow \text{Out}_K(A, M)$ is the inverse map of the isomorphism in (6.3). If $e \in E$ is as above, we will call D_e the derivation defined by e.

Theorem 6.12. Let M be an A^{ev}-module. The following diagram commutes for $n = 0, 1$.

\[
\begin{array}{cc}
\text{HH}^n(A, M) \times Z_M(A) & \overset{[-,-]}{\longrightarrow} \text{HH}^{n-1}(A, M) \\
\cong & \cong \\
\text{Ext}^n_{A^{ev}}(A, M) \times Z_M(\text{Mod}(A^{ev})) & \overset{(-,-)}{\longrightarrow} \text{Ext}^{n-1}_{A^{ev}}(A, M)
\end{array}
\]

Proof. The statement is a triviality for $n = 0$, so we may assume that $n = 1$. Let

\[
S \equiv 0 \longrightarrow M \overset{i}{\longrightarrow} E \overset{p}{\longrightarrow} A \longrightarrow 0
\]

be an exact sequence, $f \in Z_M(\text{Mod}(A^{ev})) \subseteq \text{Hom}_{A^{ev}}(A, A)$ be a homomorphism, and let $z = f(1)$ be the element in $Z_M(A)$ that corresponds to f. Further, let $\Delta(f) = F_s - F_b$ be the difference of the morphisms defining the loop $\Omega_A(S, f)$. In light of Lemma 3.6, we have to show the following: For a given lifting $\Phi : \mathbb{P}A \rightarrow (S\#f)^3$ of id_A, there is a null-homotopy s_i (for $i \geq 0$) for the map $\Delta(f) \circ \Phi$ with $s_0(1 \otimes 1) = [D_s, z]_M = D_S(z)$, where D_S denotes the (equivalence class of a) derivation in

\[
\text{Der}_K(A, M) \longrightarrow \text{Der}_K(A, M) / \text{Inn}_K(A, M) = \text{HH}^1(A, M)
\]

that corresponds to S. Chose a lifting $\Phi : \mathbb{P}A \rightarrow (S\#f)^3$,
of the identity map of A. Evidently, $\varepsilon = \varphi_0(1 \otimes 1)$ is being mapped to 1 by p, and $\varphi_0 = \mu_\varepsilon$. Now, the homomorphism $\Delta(f)$ of complexes is non-trivial in a single degree, namely in degree 0, and the assignment $(m, \varepsilon) \mapsto (0, f(1)\varepsilon - \varepsilon f(1))$ defines a map $M \oplus E \to A \oplus E$ which makes the diagram

$$
\begin{array}{ccc}
M \oplus_M E & \xrightarrow{\Delta(f)_0} & M \times_A A \\
\text{can} & & \\
M \oplus E & \longrightarrow & A \oplus E
\end{array}
$$

commutative. We arrive at the following commutative diagram.

$$
\begin{array}{ccc}
\mathbb{P}A & \longrightarrow & P_1 & \longrightarrow & A \otimes A & \xrightarrow{\mu} & A & \longrightarrow & 0 \\
\varphi & \downarrow & \varphi_1 & \longrightarrow & \varphi_0 & & & & \\
S \# f & \longrightarrow & M & \longrightarrow & M \oplus_M E & \longrightarrow & A & \longrightarrow & 0 \\
\Delta(f) & & & & & & & & \\
f \# S & \longrightarrow & M & \xrightarrow{j = \begin{bmatrix} 0 \\ 1 \end{bmatrix}} & A \times_A E & \longrightarrow & A & \longrightarrow & 0
\end{array}
$$

Since the map $A \times_A E \to A$ sends $(0, f(1)\varepsilon - \varepsilon f(1))$ to zero, there is a unique preimage m_ε of $(0, f(1)\varepsilon - \varepsilon f(1))$ under j. Indeed, m_ε is given by $i^{-1}(f(1)\varepsilon - \varepsilon f(1))$. Now let $s_0 = \mu_{m_\varepsilon} : A \otimes A \longrightarrow M$, $s_0(a \otimes b) = am_\varepsilon b$.

Obviously, $s_0(\Omega_A^1) = 0$ so that $s_0 \circ \pi_1 = 0$. On the other hand, $(\Delta(f)_0 \circ \varphi_0)(a \otimes b) = a(0, f(1)\varepsilon - \varepsilon f(1))b = aj(m_\varepsilon)b = (j \circ s_0)(a \otimes b)$ for all $a, b \in A$. Therefore s_0 defines a null-homotopy. Finally, under the isomorphism

$$
\Hom_{A^n}(A \otimes A, M) \longrightarrow \Hom_K(K, M), \ \varphi \mapsto \varphi(1 \otimes 1),
$$

s_0 is being mapped to $s_0(1 \otimes 1) = m_\varepsilon = j^{-1}(0, \varepsilon f(1) - f(1)\varepsilon) = i^{-1}(\varepsilon f(1) - f(1)\varepsilon)$ which precisely is the evaluation at $z = f(1)$ of the derivation $D_z : A \to M$ defined by ε. To finish, recall that D_z is a representative of the equivalence class D_S in $\Out_K(A, M)$. \hfill \square

When combined with Lemma 6.1, the theorem immediately yields the following.

Corollary 6.13. The map

$$
[-, -] : \frac{\text{Der}_K(A, M)}{\text{Im}_K(A, M)} \times Z_M(A) \longrightarrow Z_M(A), \ (D, z) \mapsto D(z),
$$

is trivial if, and only if, for each extension $0 \to M \to E \to A \to 0$ of bimodules, one has $Z_M(A) \subseteq Z_E(A)$. In particular, $\{-, -\} : \Out_K(A, A) \times Z(A) \to Z(A)$ is trivial if, and only if, $Z_E(A) = Z(A)$ for every extension $0 \to A \to E \to A \to 0$. \hfill \square

Theorem 6.14. Let M be an A^n-module. If A is projective as a K-module, then the following diagram commutes for $n > 1$.

$$
\begin{array}{ccc}
\text{HH}^n(A, M) \times Z_M(A) & \xrightarrow{[-,-]} & \text{HH}^{n-1}(A, M) \\
\cong & & \\
\text{Ext}_{A^n}^n(A, M) \times Z_M(\text{Mod}(A^n)) & \xrightarrow{\langle-,-\rangle} & \text{Ext}_{A^n}^{n-1}(A, M)
\end{array}
$$
Proof. Since A is K-projective by assumption, the bar resolution $\mathbb{B}A$ is a projective resolution of A over A^{op}. We will therefore assume that $\mathbb{P}A = \mathbb{B}A$. Fix an extension $S \in \text{Ext}_{A^{op}}^n(A, M)$ with corresponding equivalence class $\alpha = [S]$ in $\text{Ext}_{A^{op}}^n(A, M)$, and a map $f \in Z_A(M(M(A^{op}))) \subseteq \text{Hom}_{A^{op}}(A, A)$. Let S be given as

$$S \equiv 0 \longrightarrow M \xrightarrow{d_n} E_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} E_1 \xrightarrow{d_1} E_0 \xrightarrow{d_0} A \longrightarrow 0$$

and let $z = f(1)$ be the element in $Z(A)$ determined by f. Chose a lifting $\tilde{\Phi} : \mathbb{B}A \rightarrow S^0$ of the identity map of A, and put

$$\psi_i = \varphi_i(1 \otimes - \otimes \cdots \otimes - \otimes 1) \in \text{Hom}_K(A^{\otimes i}, M)$$

for $i \geq 0$. Recall the classical result (cf. [9, Sec. IV.9]), that the equivalence class of the n-cocycle $\psi_n = \varphi_n(1 \otimes - \otimes \cdots \otimes - \otimes 1)$ in $\text{HH}^n(A, M)$ will be mapped to α under the isomorphism $\text{HH}^n(A, M) \cong \text{Ext}_{A^{op}}^n(A, M)$. The homomorphism Φ of complexes yields a lifting $\tilde{\Phi} : \mathbb{B}A \rightarrow (S\# f)^2$ of the identity map of A:

$$\cdots \xrightarrow{\beta_{n+1}} A^{\otimes (n+2)} \xrightarrow{\beta_n} A^{\otimes (n+1)} \xrightarrow{\beta_{n-1}} \cdots \xrightarrow{\beta_2} A \otimes A \otimes A \xrightarrow{\beta_1} A \otimes A \xrightarrow{\beta_0} A \longrightarrow 0$$

Let F_λ and F_δ be the morphisms of extensions defining the loop $\Omega_A(S, f)$, and $\Delta(f) = F_\lambda - F_\delta$ be their difference. The task will be, as in the proof of the preceding theorem, to find a null-homotopy $s_i : A^{\otimes (i+2)} \rightarrow E_{i+1}$ (for $i \geq 0$) for $\Delta(f) \circ \tilde{\Phi}$ such that the image of s_{n-1} under the isomorphism

$$\text{Hom}_{A^{op}}(A^{\otimes (n+1)}, M) \longrightarrow \text{Hom}_K(A^{\otimes (n-1)}, M), \varphi \mapsto \varphi(1 \otimes - \otimes \cdots \otimes - \otimes 1).$$

represents the element $[a, z] \in \text{HH}^{n-1}(A, M)$. We claim that the maps

$$s_i(a_0 \otimes \cdots \otimes a_{i+1}) = a_0((\psi_{i+1} \bullet z)(a_1 \otimes \cdots \otimes a_i))$$

$$= \sum_{k=1}^{i+1} (-1)^{k-1} \varphi_{i+1}(a_0 \otimes \cdots \otimes a_{k-1} \otimes z \otimes a_k \otimes \cdots \otimes a_{i+1})$$

define the null-homotopy we are seeking for. In fact, it is already apparent from the definition, that

$$a_1 \otimes \cdots \otimes a_{n-1} \mapsto s_{n-1}(1 \otimes a_1 \otimes \cdots \otimes a_{n-1} \otimes 1) = (\psi_n \bullet z)(a_1 \otimes \cdots \otimes a_{n-1})$$

is a map that represents $[a, z] \in \text{HH}^{n-1}(A, M)$.

As a first observation, the composition $\Delta(f) \circ \tilde{\Phi}$ is zero in degrees $n - 1$ and n. Its non-trivial component maps are

$$\Delta(f) \circ \tilde{\Phi}_0(a \otimes b) = (0, z \varphi_0(a \otimes b) - \varphi_0(a \otimes b)z) \quad (\text{for } a, b \in A),$$

$$\Delta(f) \circ \tilde{\Phi}_i = (f_i^{E_i} - f_i^{E_i}) \circ \varphi_i \quad (\text{for } i \neq 0, n, n-1).$$
The map \((\Delta(f) \circ \Phi)_0\) coincides with \((E_1 \to A \times_A E_0) \circ s_0\), for the latter sends \(a \otimes b \in A \otimes A\) to \((0, d_1(s_0(a \otimes b)))\) and
\[
(d_1 \circ s_0)(a \otimes b) = (d_1 \circ \varphi_1)(a \otimes z \otimes b)
\]
\[
= (\varphi_0 \circ \beta_1)(a \otimes z \otimes b)
\]
\[
= \varphi_0(ax \otimes b) - \varphi(a \otimes zb)
\]
\[
= z\varphi_0(a \otimes b) - \varphi(a \otimes bz).
\]

Finally, if \(C(A, M) = (C^*(A, M), \partial_M)\) denotes the Hochschild cochain complex with coefficients in \(M\), we get
\[
\partial_M(\psi_{i+1} \bullet z) + \partial_M(\psi_{i+1}) \bullet z = \psi_{i+1} \bullet \partial_A(z) + z\psi_{i+1} - \psi_{i+1}z,
\]
by the fundamental formula (\dag), which yields
\[
s_i \circ \beta_{i+1} + d_{i+2} \circ s_{i+1} = z\varphi_{i+1} - \varphi_{i+1}z
\]
\[
= \Delta(f)_{i+1} \circ \varphi_{i+1}.
\]

In fact, one easily verifies that
\[
(s_i \circ \beta_{i+1})(a_0 \otimes \cdots \otimes a_{i+2}) = a_0(\partial_M(\psi_{i+1} \bullet z)(a_1 \otimes \cdots \otimes a_{i+1}))a_{i+2}
\]
and
\[
(d_{i+2} \circ s_{i+1})(a_0 \otimes \cdots \otimes a_{i+2}) = a_0((\partial_M(\psi_{i+1}) \bullet z)(a_1 \otimes \cdots \otimes a_{i+1}))a_{i+2}
\]
for all \(i = 0, \ldots, n\) and all \(a_0, \ldots, a_{i+2} \in A\). \(\square\)

From Example 2.10 and Proposition 6.5 we immediately deduce the following.

Corollary 6.15. Let \(A\) be projective as a \(K\)-module. Then, if \(B\) is a \(K\)-algebra being Morita equivalent to \(A\), with corresponding progenerator \(P\) for \(A\), there is an isomorphism \(\text{HH}^*(A, M) \cong \text{HH}^*(B, N)\) of Gerstenhaber modules over \(Z_M(A) \cong Z_N(B)\). Here \(N\) denotes the \(B^\text{ev}\)-module \(\text{Hom}_{A^\text{ev}}(P \otimes \text{Hom}_A(P, A), M)\). \(\square\)

Corollary 6.16. Let \(A\) be projective over \(K\). Consider the following statements.

1. The Gerstenhaber bracket \(\{-, -\}\) on \(\text{HH}^*(A)\) introduced in Section 4 is trivial.
2. The category \((\text{Mod}(A^\text{ev})), \otimes_A, A)\) is braided monoidal.
3. The category \((\text{Mod}(Z(A)^{ev}), \otimes_{Z(A)}, Z(A))\) is braided monoidal.
4. \(Z(A) = Z_M(A)\) for all \(M \in \text{Mod}(A^\text{ev})\).
5. The bracket \([-, -]_M : \text{HH}^*(A, M) \times Z_M(A) \to \text{HH}^{*-1}(A, M)\) vanishes for all \(M \in \text{Mod}(A^\text{ev})\).

Then we have the implications
\[
(1) \iff (2) \iff (3) \iff (4) \implies (5)
\]
amongst them.

Proof. Due to Lemma 4.11 and Proposition 6.4 the only implications that remain to be shown are \((1) \iff (2) \implies (3)\). If \((\text{Mod}(A^\text{ev}), \otimes_A, A)\) is braided monoidal, with braiding \(\gamma_{M,N} : M \otimes_A N \to N \otimes_A M\), then the axioms yield that \(\gamma_{A,N} = g_N^{-1} \circ \lambda_N = \gamma_N\). In particular, \(\gamma_N\) will give rise to an isomorphism
\[
(- \otimes_A -) \to (- \otimes_A -) \circ T
\]
of functors \(\text{add}_{A^\text{ev}}(A) \times \text{Mod}(A^\text{ev}) \to \text{Mod}(A^\text{ev})\). Therefore, by Proposition 6.4, the second item implies the forth, hence the third.

Moreover, item (2) implies, that the Gerstenhaber bracket \(\{-, -\}\) vanishes in degrees different from \((n, 0)\); see [8, Cor. 5.5.8]. But since it also implies (3), and hence (5), the bracket will vanish in degrees \((n, 0)\) as well. \(\square\)
The implications \((1) \implies (2)\) and \((1) \implies (3)\) in the above corollary will, in general, not hold true. Thus the question is:

Question 6.17. What does it mean that the restricted Gerstenhaber bracket,

\[\{-,-\} : \text{HH}^m(A) \times \text{HH}^n(A) \rightarrow \text{HH}^{m+n-1}(A), \]

vanishes for all, or some, integers \(m, n \geq 0\)?

Acknowledgements. I thank R.-O. Buchweitz and J. Steen for helpful discussions on the topic, and S. Oppermann for comments on an earlier version of this article.

References

[1] A. L. Agore, S. Caenepeel, and G. Militaru. Braidings on the category of bimodules, Azumaya algebras and epimorphisms of rings. *Appl. Categ. Structures*, 22(1):29–42, 2014.

[2] M. Aguiar and S. Mahajan. *Monoidal functors, species and Hopf algebras*, volume 29 of CRM Monograph Series. American Mathematical Society, Providence, RI, 2010. With forewords by Kenneth Brown and Stephen Chase and André Joyal.

[3] N. Bourbaki. *Algebra. I. Chapters 1–3*. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1989. Translated from the French, Reprint of the 1974 edition.

[4] H. Cartan and S. Eilenberg. *Homological algebra*. Princeton University Press, Princeton, N. J., 1956.

[5] M. Gerstenhaber. The cohomology structure of an associative ring. *Ann. of Math. (2)*, 78:267–288, 1963.

[6] M. Gerstenhaber and S. D. Schack. Algebraic cohomology and deformation theory. In *Deformation theory of algebras and structures and applications (II Ciocco, 1986)*, volume 247 of *NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.*, pages 11–264. Kluwer Acad. Publ., Dordrecht, 1988.

[7] V. Ginzburg. Lectures on Noncommutative Geometry. http://arxiv.org/abs/math.AG/0506603.

[8] R. Hermann. Monoidal categories and the Gerstenhaber bracket in Hochschild cohomology. http://arxiv.org/abs/1403.3597.

[9] P. J. Hilton and U. Stammbach. *A course in homological algebra*, volume 4 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition, 1997.

[10] G. Hochschild. On the cohomology groups of an associative algebra. *Ann. of Math. (2)*, 46:58–67, 1945.

[11] G. Hochschild, B. Kostant, and A. Rosenberg. Differential forms on regular affine algebras. *Trans. Amer. Math. Soc.*, 102:383–408, 1962.

[12] A. Joyal and R. Street. Tortile Yang-Baxter operators in tensor categories. *J. Pure Appl. Algebra*, 71(1):43–51, 1991.

[13] A. Joyal and R. Street. Braided tensor categories. *Adv. Math.*, 102(1):20–78, 1993.

[14] B. Keller. Chain complexes and stable categories. *Manuscripta Math.*, 67(4):379–417, 1990.

[15] H. Krause and J. Šťovíček. The telescope conjecture for hereditary rings via Ext-orthogonal pairs. *Adv. Math.*, 225(5):2341–2364, 2010.

[16] J. Le and G. Zhou. On the Hochschild cohomology ring of tensor products of algebras. *J. Pure Appl. Algebra*, 218(8):1463–1477, 2014.

[17] M. Linckelmann. On the Hochschild cohomology of commutative Hopf algebras. *Arch. Math. (Basel)*, 75(6):410–412, 2000.

[18] S. Mac Lane. *Categories for the working mathematician*, volume 5 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition, 1998.

[19] F. Marks. Universal localisations and tilting modules for finite dimensional algebras. http://arxiv.org/abs/1307.6496.

[20] F. Marks and J. Vitória. From ring epimorphisms to universal localisations. http://arxiv.org/abs/1207.4669v1.

[21] D. Quillen. Higher algebraic K-theory. I. In *Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972)*, pages 85–147. Lecture Notes in Math., Vol. 341. Springer, Berlin, 1973.

[22] V. S. Retakh. Homotopy properties of categories of extensions. *Uspekhi Mat. Nauk*, 41(6(252)):179–180, 1986.
[23] S. Schwede. An exact sequence interpretation of the Lie bracket in Hochschild cohomology.
J. Reine Angew. Math., 498:153–172, 1998.

[24] L. Silver. Noncommutative localizations and applications. *J. Algebra*, 7:44–76, 1967.

[25] N. Snashall and Ø. Solberg. Support varieties and Hochschild cohomology rings. *Proc. London
Math. Soc. (3)*, 88(3):705–732, 2004.

[26] M. Suarez-Alvarez. The Hilton-Heckmann argument for the anti-commutativity of cup products.
Proc. Amer. Math. Soc., 132(8):2241–2246 (electronic), 2004.

[27] P. Xu. Noncommutative Poisson algebras. *Amer. J. Math.*, 116(1):101–125, 1994.

[28] N. Yoneda. On the homology theory of modules. *J. Fac. Sci. Univ. Tokyo. Sect. I.*, 7:193–227,
1954.

Reiner Hermann, Institutt for matematiske fag, NTNU, 7491 Trondheim, Norway
E-mail address: reiner.hermann@math.ntnu.no