Kinetics of Sodium Succinate Cotransport across Renal Brush-Border Membranes

Stephen H. Wright**, Bruce Hirayama§$, Jonathan D. Kaunitz!, Ian Kippen§, and Ernest M. Wright**

From the §Department of Physiology, UCLA School of Medicine, Center for the Health Sciences, Los Angeles, California 90024 and the §Cedars-Sinai Medical Center, Los Angeles, California 90048

The kinetics of Na/succinate cotransport across renal brush-borders was studied using membrane vesicles. Initial rates of succinate uptake (V) were estimated from 1-s uptakes measured under voltage-clamped conditions. Lowering the external (cissodium concentration reduced the succinate Km without affecting the Jmax. Increasing the intravesicular (trans) sodium concentration reduced both Jmax and Km. This trans inhibition by Na was relieved by trans-succinate. Varying the membrane potential from -60 to +60 reduced succinate transport in an exponential manner, which was reflected by a Kf effect, i.e. an increase in the Kf with no change in Jmax. The membrane potential results suggest that the succinate/sodium-carrier complex bears a net positive charge. On the basis of these and earlier observations, we propose that Na/succinate cotransport across renal brush-borders is described by an Iso Ordered Quad Quad reaction kinetics in which three Na ions first bind to the carrier to increase its affinity for succinate.

Rabbit renal brush-border membranes have a specific Na+-dependent transport pathway for Krebs cycle intermediates (Kippen et al., 1979; Wright et al., 1980, 1981, 1982a, 1982b). This system transports both dicarboxylic acids, including succinate, and tricarboxylates such as citrate. However, both succinate and citrate are transported as divalent anions. We have shown that three Na ions are transported with each molecule of succinate and citrate, and that this causes a depolarization of the membrane potential. In the present study, we examine the kinetic basis for the effects of Na+ and membrane potential on succinate transport. Using techniques to measure initial rates of transport under well defined conditions, we provide evidence that succinate transport is an ordered process, in which the three Na ions bind first to increase the affinity of the transporter for succinate. We offer a quantitative kinetic model describing events associated with succinate transport.

EXPERIMENTAL PROCEDURES

Membrane Isolation—Brush-border membrane vesicles were prepared from rabbit renal cortex as described by Wright et al. (1980).

RESULTS

Preliminary Experiments

Initial Rates of Transport—Before attempts were made to measure the kinetics of transport, studies were carried out to verify that our technical procedures provided reasonable estimates of initial rates of succinate transport. Fig. 1 presents time courses for succinate uptake into brush-border vesicles.
Kinetics of Succinate Transport

at low and near maximal rates in the presence of an inwardly directed Na⁺ gradient (100 mM NaCl out, 0 mM in; the "zero-trans" condition). Transport of 22 μM succinate was a linear function of time from 0 to 3 s (Fig. 1, left), and so 1-s uptakes appear to produce adequate estimates of the initial rate of transport (initial rate equals \(J' \); expressed in nmol/(mg min)). Uptake of 5 mM succinate was not linear from 1 to 3 s (Fig. 1, right), but the time course is described by a quadratic equation:

\[
U = a_0 + a_1t + a_2t^2
\]

where \(U \) is the uptake at time \(t \), and \(a_0 \) is the estimate of initial rate (Jacquez, 1980). Using this equation, the estimated initial rate of transport was 14% greater than that estimated from the 1-s uptake in this experiment. In five experiments, the calculated initial rate was 111 ± 5% of the measured 1-s rate. We have elected to use 1-s uptakes as estimates of the initial rate of succinate transport rather than to utilize "corrected data." As a result, our estimates of the kinetic parameters \(J'_{\text{max}} \) (maximal rate of succinate transport) and \(K_s \) (Michaelis constant or half-saturation constant) are approximately 10% lower than the actual values of these constants (see below).

Control of Membrane PD—We reported previously that succinate transport is rheogenic (Wright et al., 1981). Hence, studies of the kinetics of succinate transport must be carried out under voltage-clamped conditions to avoid any PD effects on the process (Geck and Heinz, 1976; Hopfer, 1977; Carter-Su and Kimmich, 1980). In earlier studies we have used valinomycin to induce K⁺-diffusion potentials to control membrane potential (Wright et al., 1981, 1982b). An experiment designed to confirm the effectiveness of this procedure is illustrated in Fig. 2. Transmembrane electrical potentials were determined by monitoring changes in fluorescence of a PD-sensitive cyanine dye, diS-C3-(5). The addition of 2 mM succinate resulted in a 24% increase in fluorescence of the dye suspension (Fig. 2, upper trace), indicative of a transport-induced depolarization of the vesicle membrane (Wright et al., 1981; Schell et al., in press). The lower trace in Fig. 2 shows the same experiment in the presence of valinomycin. In this case, succinate had no effect on the fluorescence of the dye suspension, indicating that the membrane potential was short circuited by K⁺ in the presence of valinomycin. Neither valinomycin alone nor diS-C3-(5) have direct effects on succinate transport (Wright et al., 1981). Recently, Turner and Moran (1982) also demonstrated the effectiveness of K⁺ and valinomycin to clamp membrane potential during measurement of the kinetics of D-glucose transport in renal BBMV. In the present report, K⁺ and valinomycin were used in all subsequent experiments to control membrane PD. Unless otherwise noted, we also included the proton ionophore FCCP to short circuit the PD and to prevent the formation of H⁺ gradients. Control experiments verified that FCCP has no direct effect on succinate transport.

Kinetics of Succinate Transport

Using the procedures to measure initial rates of transport under voltage-clamped conditions, we examined the kinetics of succinate transport across BBMV. The rate of succinate transport was a saturable function of increasing substrate concentration with 100 mM cis-zero-trans-NaCl (PD = 0). Fig. 3 shows \(J' \) plotted as a function of \(J' \) divided by substrate concentration ([S] [Woolf-Augustinson-Hofsteen formulation of the Michaelis-Menten equation; Segel, 1975]). When such a plot describes transport via a single carrier-mediated process, the y intercept represents the \(J'_{\text{max}} \) for transport, while the slope is \(-K_s\). The solid line is a least squares regression fitted to data uncorrected for either Na⁺-independent transport or for systematic "deviations" between the true initial rate and 1-s uptakes. This line defines a carrier-mediated process with a \(J'_{\text{max}} \) of 93 nmol/(mg min) and an apparent \(K_s \) of 0.73 mM. Correction of the data for uptake occurring in the absence of Na⁺ (choline replacement) resulted in a 2% decrease of both \(J'_{\text{max}} \) and \(K_s \). Over the concentration range tested (0.02 to 20 mM), no deviation from linearity of the relationship between \(J' \) and \(J'/[S] \) was observed, even at high

![Fig. 1. The time course over 3 s of succinate transport into renal vesicles. Left, [14C]succinate concentration was 22 μM; right, total succinate concentration was 5 mM. Vesicles were pre-equilibrated in a solution containing 100 mM KCl, 255 mM mannitol, 5 mM HEPES, buffered to pH 7.5 with Tris, and 25 μM/ml of valinomycin. The transport buffer containing the radiolabeled succinate, when mixed with the vesicle suspension, resulted in final extravesicular concentrations of 100 mM KCl, 100 mM NaCl, 13 mM Tris buffered to pH 7.5 with HEPES, 25 μM valinomycin, 75 μM FCCP, and sufficient mannitol to maintain isoosmolarity with the vesicle suspension. Each point represents a single measured uptake. The line describing the time course of 22 μM succinate uptake was fit by eye; the line fit to the uptake of 5 mM succinate was calculated for a quadratic equation describing the first 3 s of transport (see text).](image1)

![Fig. 2. The effect of valinomycin-induced K⁺ conductance on changes in membrane PD caused by succinate transport. Vesicles were pre-equilibrated in a solution containing 50 mM K₂SO₄ and 150 mM mannitol, buffered to pH 7.5 with 5 mM HEPES-Tris. The upper trace is a fluorometric record of the fluorescence of the mixture. An aliquot of the vesicle suspension was introduced to a cuvette containing 3 ml of a solution containing 50 mM K₂SO₄, 50 mM Na₂SO₄, 5 mM HEPES-Tris (pH 7.5), and 2 μm diS-C₃-(5) (final protein concentration of the suspension was approximately 280 μg/ml). After 1 min, succinate was added to produce a final concentration of 2 mM. The depolarization of the membrane caused by the electrogenic cotransport of succinate with Na⁺ is noted as the increase in fluorescence of the dye mixture. The lower trace is a fluorometric record of a similar experiment in which valinomycin (VAL, 6 μg/ml) was present in the dye mixture. Addition of succinate produced no change in fluorescence of the vesicle-dye reaction mixture. Fluorescence is expressed in arbitrary units; each unit represents approximately a 10% change in fluorescence of the mixture.](image2)
The effect of increasing substrate on the rate of succinate transport into BBMV. Data presented as a linear transformation of the Michaelis-Menten equation: J represents the rate of transport determined via 1-s uptake, at substrate concentration $[S]$. The units of the ordinate are in nmol/(mg min); the units of the abscissa are in microliters/mg-min. The x-intercept of this plot represents the J_{max} for transport, the slope is $-K_s$. The concentration range studied was 0.022 to 5.0 mM; experimental conditions are as described in Fig. 1. Each point represents a single determination of uptake. The dashed line provides the slope and intercept of the plot when these corrections are taken into account (see text).

concentrations of substrate; i.e. we were unable to detect a diffusional component of uptake. The dashed line in Fig. 3 indicates a correction of the measured initial rates. The correction assumes that (i) 1-s uptakes of 22 μM succinate represent the true initial rate of transport (Fig. 1, left); (ii) 1-s uptakes of 5 mM succinate represent a 10% underestimate of the initial rate (Fig. 1, right); and (iii) a linear relationship exists between interventen substrate concentration and the error in the 1-s uptakes. Corrected in this fashion, the J_{max} for succinate transport was increased by 8%, and the K_t by 10%. Since the corrections are small, they are omitted in subsequent values for kinetic constants reported here. Inclusion of the correction in Fig. 3 serves to emphasize that 1-s uptakes represent reasonably accurate estimates of the initial rate of succinate transport. In eight experiments performed under conditions described in Fig. 3, the J_{max} was 77 ± 11 (S.D.) nmol/(mg min) with a mean K_t of 0.70 ± 0.06 mM.

Effect of cis-Na+ on the Kinetics of Succinate Transport

Reduction of the cis (i.e. extravesicular) concentration of Na+ results in a decrease in the rate of succinate transport (Kippen et al., 1979; Wright et al., 1980, 1982b). Consequently, we measured the kinetics of succinate transport at several concentrations of Na+ (Fig. 4). When the cis concentration of Na+ was reduced from 100 to 30 mM, there was a 3.7-fold increase in the apparent K_t for succinate transport, with no change in J_{max} (Table I). When Na+ was completely replaced with choline, transport remained a saturable function of succinate concentration, but the apparent K_t was increased to 69 mM compared to the control value of 0.8 mM. The J_{max} was 46 ± 12 compared to the control value of 87 ± 2 nmol/(mg min) (Table I).

Effect of trans-Na+ on Succinate Transport

Increasing trans (i.e. intravesicular) concentrations of Na+ caused a nonhyperbolic inhibition of succinate uptake (Fig. 5). When intravesicular Na+ was increased to 100 mM (cis-Na+ concentration constant at 100 mM), the initial rate of 0.02 mM succinate transport was inhibited by 90% (3.3 ± 0.19 versus 0.3 ± 0.02 nmol/(mg min)). Transport was inhibited by 50% at a trans-Na+ concentration of approximately 20 mM. Fig. 6 gives the results of an experiment examining the effect of trans-Na+ on the kinetics of succinate transport. Both J_{max} and K_t for transport were reduced in the presence of a 30 mM trans concentration of Na+, compared to the zero-trans control (J_{max} of 88 reduced to 17 nmol/(mg min); K_t of 1.06 reduced to 0.61 mM; see Table I). The effect of a trans concentration of succinate on succinate uptake was also examined. Under equilibrium Na+ conditions (cis = trans = 100 mM), uptake of 0.23 mM succinate was reduced by 95% compared to the zero-trans condition (9.9 down to 0.5 nmol/(mg min); Fig. 7). When 2 mM succinate was included in the intravesicular solution, there was a 6-fold increase in transport under the Na+ equilibrium condition, indicating that trans-succinate can relieve a portion of the inhibition caused by trans-Na+ (2 mM succinate alone produced no trans inhibitory effects and in fact, caused a slight stimulation (17%) of succinate influx (Fig. 7).

Effect of Membrane Potential on Succinate Transport

As indicated earlier, Na+-dependent succinate transport is electrogenic (Fig. 1). Fig. 8 presents the results of an experi-

![Figure 3](image-url)

![Figure 4](image-url)

![Figure 5](image-url)

![Figure 6](image-url)

![Figure 7](image-url)

Table I

Group	$[\text{Na}^+]_{\text{cis}}$	$[\text{Na}^+]_{\text{trans}}$	PD	J_{max}	K_t
I	100	0	mV	84.8 ± 3.8	0.68 ± 0.05
II	100	0	30	85.4 ± 3.9	1.37 ± 0.09
III	100	0	60	87.3 ± 2.0	0.58 ± 0.02
IV	100	0	30	87.2 ± 1.7	1.06 ± 0.03
V	100	0	+60	90.3 ± 5.4	1.26 ± 0.11
	100	0	-60	67.0 ± 4.3	0.81 ± 0.04

Effect of Na+ and PD on succinate kinetics

The experiments in Group I are graphically presented and the experimental conditions described in Fig. 4. The experiments in Group II were performed as described in Fig. 5, with cis-Na+ replaced as noted with choline. Study III was also performed as indicated in Fig. 3, except in one case the vesicles were pre-equilibrated in a solution containing 30 mM NaCl (the pre-equilibration solution for the control group contained 30 mM choline Cl). The experiments in Groups IV and V used the general conditions described in Fig. 8; the depolarization of the membrane was the result of a 10-fold dilution of vesicles containing 5 mM K2SO4 into a transport buffer containing 50 mM K2SO4; hyperpolarization was produced by a 10-fold dilution of vesicles containing 50 mM K2SO4. Control vesicles had either 5 or 50 mM concentrations of K2SO4 in intravesicular and extravesicular solutions. The kinetic constants J_{max} and K_t were calculated using two-parametric nonlinear regression analysis (Duggleby, 1980), and are presented ±1 S.D.
constant by isomolar substitution of choline chloride for NaCl). The concentration with the addition of between 0 and 100 mM NaCl (ionic strength kept constant by isomolar substitution of choline chloride for NaCl). The transport buffer contained 100 mM NaCl, 100 mM KCl, 5 mM HEPES-Tris (pH 7.5), 25 μg/ml of valinomycin, 22 μM FCCP, and 22 μM [14C]succinate. The line describing the data was determined by a nonlinear regression fit to a "Hill-type" equation; apparent Hill coefficient was estimated to be 0.27. In separate experiments, the [Na+]i of brush-border membrane vesicles was calculated as described under "Results." Uptake of [14C]succinate into BBMV vesicles contained KCl, valinomycin, and mannitol as described earlier. As indicated in the figure, in some cases vesicles also contained 100 mM NaCl (when absent, replaced with 100 mM choline chloride) and/or 2 mM succinate. The extravesicular solution contained 100 mM NaCl, KCl, valinomycin, and FCCP as described previously, and 0.2 mM [14C]succinate. Each bar represents the mean ± S.E. of a triplicate determination of uptake occurring in 1 s.

FIG. 5. Effect of increasing intravesicular (i.e., trans) concentration of Na" on the rate of succinate transport. BBMV were pre-equilibrated in solutions similar to that described in Fig. 1, with the addition of between 0 and 100 mM NaCl (ionic strength kept constant by isomolar substitution of choline chloride for NaCl). The transport buffer contained 100 mM NaCl, 100 mM KCl, 5 mM HEPES-Tris (pH 7.5), 25 μg/ml of valinomycin, 75 μM FCCP, and 22 μM [14C]succinate. The line describing the data was determined by a nonlinear regression fit to a "Hill-type" equation; apparent Hill coefficient = -1.75, K" = 22.8 mM, uptake at 0 intravesicular Na" was calculated to be 3.4 nmol/(mg min), and the regression coefficient = 0.99.

FIG. 6. Effect of trans-Na" on the kinetics of succinate transport. Vesicles were pre-equilibrated in solutions containing either 0 or 30 mM NaCl. Transport was measured and kinetic analysis performed as described in Figs. 1 and 3. Kinetic constants are listed in Table I.

In this study, we have demonstrated that the kinetics of succinate/Na" cotransport across the renal brush-border are dependent upon the Na" concentration on each side of the membrane and the membrane electrical potential difference. Both the cis-succinate/Na" concentration and the PD affect the transport. The trans-sodium concentration affects both K" and J" max. Based on these and earlier studies from this group (Kippen et al., 1979; Wright et al., 1980, 1981, 1982a, 1982b), we now propose a tentative kinetic model for Na"-coupled cotransport of Krebs cycle intermediates across renal brush-border membranes. The model (Fig. 9) shows the transport of succinate (S) from the outside (cis) to the inside (trans) of brush-border membrane vesicles. The transporter (X) is depicted as a carrier that combines with three Na" ions and the divalent anionic species of succinate in an obligate

DISCUSSION

In this study, we have demonstrated that the kinetics of succinate/Na" cotransport across the renal brush-border are dependent upon the Na" concentration on each side of the membrane and the membrane electrical potential difference. Both the cis-succinate/Na" concentration and the PD affect the transport. The trans-sodium concentration affects both K" and J" max. Based on these and earlier studies from this group (Kippen et al., 1979; Wright et al., 1980, 1981, 1982a, 1982b), we now propose a tentative kinetic model for Na"-coupled cotransport of Krebs cycle intermediates across renal brush-border membranes. The model (Fig. 9) shows the transport of succinate (S) from the outside (cis) to the inside (trans) of brush-border membrane vesicles. The transporter (X) is depicted as a carrier that combines with three Na" ions and the divalent anionic species of succinate in an obligate
order to form a carrier-substrate complex. The fully loaded complex is able to translocate (i.e., cross) the membrane to complete the cycle. Although the transporter is represented as a mobile carrier, alternative mechanisms such as a gated channel, which Na+ must bind to the transporter prior to succinate transport, should be independent of Na+ concentration; at infinitely large concentrations of succinate, the influence of Na+ on the reaction diminishes and uptake approaches Jmax as a limit (Fig. 4). In contrast, the Kt for succinate transport increases with decreasing Na+ concentration (Fig. 4). Values for Kt and Kmax were estimated by analyzing the empirically determined relationship between Kt and Na+ concentration (Fig. 4, Table 1). Two-parameter nonlinear regression analysis produced values for Kt of 32.5 ± 2.4 mm (S.D.) and Kmax of 0.30 ± 0.02 mm. Fig. 10 shows the relationship between Kt and Na+ concentration; the solid line was drawn according to Equation 3, using the calculated values for Kt and Kmax. The predicted relationship calls for an infinitely large Kt at 0 cis-Na+. However, we found that when Na+ was completely replaced with choline+, the Kt was ~69 mm (Table 1); i.e., the Kt was high but not infinite. This suggests that

\[J^* = \frac{J_{\text{max}}[S]}{\left[\frac{K_s^0 + 3K_s^0[S]}{[\text{Na}^+]^3 + \frac{3K_s^0}{[\text{Na}^+]^3} + 1}\right]K_c + [S]} \]

Fig. 10. Relationship between the apparent Kt for succinate transport and the cis concentration of Na+ (zero-trans condition). Each point represents a value for Kt as determined in an experiment such as those shown in Figs. 4 and 5. The open circles are the values for Kt determined in the experiment presented in Fig. 4. The line was calculated from Equation 3, using a value for Ks of 32.5 mm and for Kc of 0.30 mm.
choline may weakly substitute for Na⁺, thereby permitting the subsequent binding and translocation of succinate. Transport rates in the presence of choline⁺, K⁺, Rb⁺, Cs⁺, and NH₄⁺ are about an order of magnitude greater than with mannitol (Kippen et al., 1979; Wright et al., 1982b; Wright et al., 1982c). We have also observed that Li⁺ is able to support dicarboxylate transport (Kippen et al., 1979; Wright et al., 1982b). In 100 mM LiCl was about twice that obtained with other nonNa⁺ cations. Recently, we reported that uptake of 0.08 mM succinate increased with Li⁺ concentration in a sigmoid fashion, with a Kt of 200 mM (Wright et al., 1982c). At saturating Li⁺ concentrations (500 mM) the Kt for succinate transport was 22-29 mM, i.e. intermediate between that obtained with Na⁺ and choline⁺. This strongly suggests that Li⁺ can drive succinate transport at a finite rate by a mechanism analogous to Na⁺/succinate cotransport.

Effect of Na⁺ Concentration on the Rate of Succinate Transport—The relation shown in Equation 1 predicts a nonhyperbolic interaction between Na⁺ concentration and the rate of uptake at fixed concentrations of succinate. We showed previously that increasing the cis concentration of Na⁺ results in a sigmoid-stimulation of succinate transport (Fig. 4, Wright et al., 1982). Reanalysis of the data from three separate experiments using a two-parameter nonlinear regression fit to Equation 2 yielded a mean Kt of 31.7 ± 3.4 mM, and a Kc of 0.07 ± 0.06 mM. These values are in reasonable agreement with the constants determined independently from the relationship shown in Equation 3.

The model discussed above is based upon several assumptions that warrant discussion. First, we have assumed a priori that three Na⁺ ions are transported/molecule of succinate. Three lines of evidence support this: (i) the ratio of the succinate-stimulated Na⁺ flux to the Na⁺-dependent succinate flux is between two and three (Wright et al., 1982b); (ii) kinetic analysis of the effect of Na⁺ on the transport of a fixed concentration of succinate using the Garay and Garrahan (1973) equation is consistent with three Na⁺ ions being involved in the transport process (Wright et al., 1982b); (iii) succinate is transported as a divalent anion, yet transport causes the depolarization of brush-border membrane (Wright et al., 1981; Samarzija et al., 1981). The independence of succinate transport on H⁺ concentration (Wright et al., 1982a) argues against proton cotransport, and indicates that three Na⁺ ions are the probable source of positive charge in succinate transport. With only the first two lines of evidence, a model involving the cotransport of two Na⁺ can be constructed that satisfactorily accounts for the kinetic effects of Na⁺ reported here. However, the third observation, that transport is electrogenic, is difficult to rationalize if only two cations are transported/molecule of succinate. We consider that an n value of three is necessary to explain all the available information.

An important consequence of the observation that the coupling coefficient appears to be fixed at 3 and is independent of Na⁺ concentration (Wright et al., 1982b) is that only the unloaded carrier and fully loaded substrate-carrier complex can undergo a translocation step, i.e. Kp, Kp ≫ KNa, where KNa is the mobility of the Na⁺-carrier complexes (XNa, XZNa, X3Na).

The second assumption is that the three Na⁺ sites are equal and noninteracting. This assumption is explicit in the Garay and Garrahan (1973) analysis used by Wright et al. (1982b). Analysis of the relationship between succinate transport and Na⁺ concentration using the Hill equation (Segel, 1975), which assumes infinite cooperativity between sodium-binding sites, resulted in an apparent n value of 2 (i.e. 2 Na⁺ sites). Since independent evidence presented above is consistent with an n of 3, any interaction between sites must be weak.

There is one clue that the three Na⁺ sites may not be equivalent. We have observed that Li⁺ is a specific competitive inhibitor of Na⁺-dependent succinate transport (Wright et al., 1982c). The Li⁺ inhibitor constant of 1.2 mM suggests the presence of a site(s) with a high affinity for Li⁺. This is in contrast to the low apparent affinity of the transporter for Li⁺ in the absence of Na⁺ (Kc: of 200; see above). Thus it appears that the sites presumed to have equal affinity for Na⁺ must have differing affinities for Li⁺. It is possible that the binding sites could be dissimilar with respect to Li⁺. If the binding sites are of equivalent field strengths, but differ in their structure, Li⁺ may polarize one site more than another (see Diamond and Wright, 1969). However, the observed Li⁺ effects may also indicate a degree of ordering or cooperativity among the activator sites that the present analysis is incapable of discerning.

The third assumption is the use of rapid equilibrium kinetics rather than the more general steady state kinetic approach. This simplifying assumption is justified by the observation that Na⁺ acts as a pure competitive activator of succinate transport under zero-trans conditions (Fig. 4). This observation is inconsistent with either a rapid equilibrium random, or a steady state ordered reaction (Segel, 1975), and is considered evidence for an ordered rapid equilibrium system (Fromm, 1975; Segel, 1975).

The fourth assumption is that our experimental procedures result in a zero-trans condition. This is justified by our previous observation (Wright et al., 1982b) that during the course of a 1-s uptake ([Na⁺]₀ = 0 at time 0), the intravesicular concentration of Na⁺ does not rise above 5 mM. This level of Na⁺ does not significantly affect the initial rate of succinate uptake (Wright et al., 1982b; present report, Fig. 5).

The model indicated in Equation 1 cannot account for the kinetic effects of trans concentrations of substrate because of the possible influences of isomerization (translocation) steps on the number of terms included in the rate constants. Thus we have elected to consider trans effects in terms of steady state models for multireactant iso-ordered reactions (Segel, 1975). The pattern of product inhibition observed (Figs. 6 and 7) can be described as representative of mixed-type inhibition, and is expected in the presence of products with an iso ordered multireactant system (Segel, 1975) in which the cis concentrations of substrates are not saturating. This is likely the case as Segel (1975) points out that saturating concentrations of reagents in product inhibition studies may exceed 100 times the Kc value. The inhibition pattern is consistent with either Na⁺ or succinate being released first from the transporter on the trans side of the membrane. However, as indicated in the model (Fig. 9), we suggest that Na⁺ is released first (i.e. "glide symmetry"). If succinate were released first, trans-Na⁺ should be an uncompetitive inhibitor of transport at saturating cis-Na⁺ concentrations (Segel, 1975), with Kt and Jmax decreased to the same degree. This was not the case; Jmax was reduced 5-fold, while Kt was decreased only 1.7-fold. This suggestion of ordered release is a testable hypothesis, requiring studies of the kinetics of succinate transport under a variety of trans versus cis concentrations of Na⁺ and succinate. Turner (1981) also suggests that glide versus mirror symmetry in cotransport systems (coupling coefficient = 1) may be distinguished by comparing activator effects on uptake under zero-trans and equilibrium conditions.

According to our model (Fig. 9), trans-Na⁺ inhibits transport by shifting trans-SX to trans-SXNa₃ and, in doing so, reduces the dissociation of succinate from SX. As expected, increasing the trans concentration of succinate relieves trans-Na⁺ inhibition (Fig. 7) by allowing exchange of unlabeled
succinate with the radioactively labeled substrate on SX3Na.
In the absence of trans-Na\(^+\), trans-succinate slightly stimulates \(J^\text{p} \) (Fig. 7), and this also may be due to isotope exchange.

Finally, the trans-Na\(^+\) inhibition of \(J^\text{p} \) also lends support to our assumption (see above) that the Na\(^+\)-loaded forms of the carrier (XnXn) are virtually immobile. If the translocation rate constants for these intermediate complexes were significant, trans-Na\(^+\) should either have no effect or increase \(J^\text{p} \) (see Vidaver and Shephersd, 1968).

Although we have no direct information on the relative translocation rates of the fully loaded versus the unloaded carrier, \(k_\text{F} \) and \(k_\text{P} \), the arguments put forward by Schultz and Curran (1970) and Geck and Heinz (1976) suggest that \(k_\text{F} \) must be greater than \(k_\text{P} \). Clearly, much more information about the kinetics of Na\(^+\)/succinate cotransport may be gained by expanding studies of trans substrate interactions.

The effects of membrane potential on transport kinetics can be predicted on the basis of recent models of cotransport processes (e.g. Geck and Heinz, 1976). We found that the kinetic basis for the effect of PD on succinate transport is through changes in the \(k_\text{F} \), while \(J^\text{max} \) was largely unchanged. Geck and Heinz (1976), working on the premise that only translocation rates are voltage-sensitive, demonstrated that for cotransport processes in which Na\(^+\) acts as a pure competitive activator ("affinity-type" systems), PD can have a primary effect on \(k_\text{F} \) only if the fully loaded carrier is charged while the unloaded carrier is neutral. We stress that this type of analysis is limited by the number of assumptions made (Turner, 1981), but it does suggest that the fully loaded carrier (SX3Na) has a valency of +1.

There are several similarities, and an apparent difference in the qualitative characteristics of Na\(^+\)-dependent succinate transport and the Na\(^+\)-dependent transport of glucose. As shown here for succinate, Na\(^+\) appears to be a pure competitive activator for glucose transport.\(^1\) There is also increasing evidence that coupling coefficients for Na\(^+\)/glucose cotransport can exceed unity (Kimmich and Randles, 1980; Knaunitz et al., 1982; Turner and Moran, 1982). However, in contrast to the present finding with succinate, the only study examining the effect of PD on Na\(^+\)-dependent glucose transport (Carter-Su and Kimmich, 1980) showed that ATP-depleted avian enterocytes demonstrated that membrane potential exerts its principal effect on \(J^\text{max} \), rather than on the \(k_\text{F} \). Whether this reflects a real difference in the fundamental mechanisms of the Na\(^+\)-dependent transport of succinate and glucose, or merely species differences, remains to be seen.

There is a striking parallelism between succinate transport in renal brush-borders and glycine transport in pigeon erythrocytes (Vidaver, 1964; Vidaver and Sheperhead, 1968). Glycine transport is an I佐re Ordered Ter Ter reaction system in which two Na\(^+\) ions bind first to the carrier to decrease the \(k_\text{F} \) for glycine transport. trans-Na\(^+\) inhibits transport, and this is relieved by trans-glycine. As in the case of succinate, this was interpreted as indicating that the Na\(^+\)-carrier complexes are immobile. Quantitative analysis, in fact, suggested that the translocation rate constants were in the sequence \(\text{KNa} \gg k_\text{G} \gg k_\text{BG} \). Furthermore, Vidaver and Sheperhead (1968) obtained evidence that the system was asymmetrical under zero-trans conditions; i.e. the \(J^\text{max} \) for glycine efflux was greater than that for influx. So far, we have neither tackled the question of symmetry in renal BBMV, nor attempted to evaluate kinetic parameters under equilibrium conditions (see also Turner, 1981).

The results of the present study indicate that the reabsorption of succinate, and thus of other Krebs cycle intermediates, across the proximal tubule can be expected to be sensitive to the luminal and intracellular concentrations of Na\(^+\), and to the potential difference across the brush-border of the proximal tubular cell. The use of zero-trans conditions, in combination with clamped-membrane PD values, represents a nonphysiological situation. Physiological variations in intracellular Na\(^+\) concentration and in membrane PD are thus expected to have considerable influence on the rate of uptake of dicarboxylates, and, perhaps, of other solutes.

In summary, the transport of succinate across the renal brush-border is influenced by both the cis and trans concentrations of Na\(^+\), and by membrane potential. cis-Na\(^+\) and PD affect the \(k_\text{F} \) for transport, while trans-Na\(^+\) influences both \(J^\text{max} \) and \(k_\text{F} \). The transport process can be described as an iso Ordered Quad Quad reactant system, involving the ordered binding of three Na\(^+\) ions to a transporter to increase its affinity for the subsequent binding of succinate. The overall transport reaction may involve glide symmetry, in which Na\(^+\) is released from the trans aspect of the carrier prior to the release of succinate. Further experimental work is required to test and obtain a fuller quantitative description of this model.

Acknowledgments—We thank Drs. R. Gunther and V. Harms for their comments on the manuscript.

REFERENCES

Carter-Su, C., and Kimmich, G. A. (1980) Am. J. Physiol. 238, C73-C80
Cornish-Bowden, A. (1979) Fundamentals of Enzyme Kinetics, 1st Ed. Butterworths, London
Cupolettii, J., and Segel, I. H. (1975) J. Theor. Biol. 53, 125-144
Diamond, J. M., and Wright, E. W. (1969) Annu. Rev. Physiol. 31, 561-646
Duggleby, R. G. (1981) Anal. Biochem. 110, 9-18
Fromm, H. J. (1975) Initial Rate Enzyme Kinetics, 1st Ed, Springer-Verlag, New York
Garay, R. P., and Garrahan, P. J. (1973) J. Physiol. 231, 327-332
Geck, P., and Heinz, E. (1976) Biochim. Biophys. Acta 443, 49-53
Heinz, E., Geck, P., and Wilbrantit, W. (1972) Biochim. Biophys. Acta 255, 442-461
Hopfer, U. (1977) J. Supramol. Struct. 7, 1-13
Hopfer, U., and Grosseclose, R. (1980) J. Biol. Chem. 255, 4453-4462
Jacques, J. A. (1980) J. Membrane Physiology (Andreoli, T. E., Hoffman, J. F., and Fanestil, D. D., eds) pp. 147-164, Plenum, New York
Knaunitz, J. D., Gunther, R., and Wright, E. M. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 2315-2318
Kimmich, G. A., and Randles, J. (1980) J. Biochem. Biophys. Acta 596, 439-444
Kippen, I., Hirayama, B., Klinenberg, J. R., and Wright, E. M. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3937-3940
Kippen, I., Molnar, V., and Fromer, E. (1981) in Advances in Physiological Sciences (Takas, L., ed) Vol. II, pp. 419-423, Pergamon, Oxford
Schell, R. E., Stevens, B. R., and Wright, E. M. (1983) J. Physiol., in press
Schultz, S. G., and Curran, P. F. (1970) Physiol. Rev. 60, 837-718
Segel, I. H. (1975) Enzyme Kinetics, 1st Ed., Wiley and Sons, New York
Turner, R. J. (1981) Biochim. Biophys. Acta 649, 269-280
Turner, R. J., and Moran, A. (1982) J. Membrane Biol. 70, 37-51
Vidaver, G. A. (1964) Biochemistry 3, 803-808
Vidaver, G. A., and Shephersd, H. (1968) J. Biochem. 243, 6140-6150

\(^1\) E. Nord and J. D. Knaunitz, unpublished observations.