Helicobacter pylori: Novel therapies

Eric Drouin MD FRCPC

A combination of different agents is generally used to eradicate Helicobacter pylori. Nevertheless, recently accepted treatment regimens still demonstrate failure rates as high as 20% (1). Furthermore, these regimens are relatively complex, with poor tolerability and reduced compliance in some patients, particularly children and adolescents. Antibiotic resistance is already a major problem in some countries and is likely to become increasingly prevalent (2).

Antibiotics and acid suppression are used together to eradicate H pylori. However, numerous difficulties exist with these regimens. Antibiotics are widely prescribed in the pediatric age group; therefore, antibiotic resistance is an ongoing problem, especially in young children. Current treatments are not affordable in many countries where H pylori infection is highly prevalent. The purpose of this review is to examine critically different agents (antibiotics, acid-suppressive drugs, mucosal protective agents and probiotics) that are potentially beneficial for H pylori eradication or prevention, in the light of cost, efficacy and tolerability.

ANTIBIOTICS

Because H pylori is a bacterium, antibiotics certainly will prove to be used as a therapeutic agent. Some progress has been made in the search for agents with enhanced efficacy (eg, furazolidone) (3). Two recent studies have used furazolidone in populations with high rates of metronidazole resistance.

In a Colombian population, Segura et al (4) used furazolidone, in combination with bismuth subcitrate and amoxicillin, for two weeks. The eradication rate was 86%, with good compliance and no significant adverse side effects. When this drug is used as dual therapy in combination with omeprazole, as expected, a lower eradication rate is observed (5). This antibiotic may offer an interesting alternative in developing countries for use in the management of resistant H pylori. However, no pediatric experience has been reported with this agent in the eradication of gastric H pylori infection.

Azithromycin is another macrolide with a theoretical advantage over clarithromycin in terms of a long elimination half-life and higher concentrations achieved in gastric tissues. However, contradictory results have been observed in the few clinical studies reported to date. This drug may play a therapeutic role in settings where poor compliance is expected and a short term course of treatment is needed (6,7).

New quinolone compounds with potent in vitro antibacterial activity have recently been found in Japan. These may prove to be more effective than ciprofloxacin, which in...
a French study, when used in combination with omeprazole and amoxicillin, achieved only a 25% eradication rate (8). However, quinolones are not recommended for young children because of the potential for cartilage injury, as shown experimentally in growing animals.

ANTISECRETORY DRUGS
Proton pump inhibitors and H2 blockers are widely used to potentiate the effect of antibiotics in the lumen of the stomach. Rabeprazole is a new proton pump inhibitor that inhibits the activity of urease, and has a lower in vitro minimal inhibitory concentration (MIC) than does omeprazole and lansoprazole. In one study, this new agent, combined with a variety of different antibiotics, eradicated *H pylori* up to 90% of the time (9).

Ebrotidine is a new H2 receptor antagonist that enhances the activity of many antibiotics and has a lower MIC than does ranitidine (10). This agent seems to be a cytoprotective agent that inhibits *H pylori* urease and proteases, and increases gastric mucus production. One small study compared ranitidine with ebrotidine, each combined with amoxicillin and metronidazole, and showed an *H pylori* eradication rate of more than 90% for both groups (11). Larger studies are needed to determine the role of this agent in *H pylori* eradication.

MUCOSAL PROTECTIVE AGENTS
Planotol is an oily ulcer-healing agent that increases the membrane permeability of *H pylori*. This agent was employed in a few small trials combined with antibiotics for three to four weeks, and showed eradication rates between 69% and 86% (2).

Other agents, such as sulcrafate and ecabet, which can bind to *H pylori* and its surface-associated urease enzyme, as well as specific urease inhibitors, have been assessed for their efficacy in terms of active therapy toward *H pylori* eradication. Sulcrafate can potentiate the effect of antibiotics in vitro, but has yet to be evaluated critically as part of a quadruple therapy for resistant organisms.

NUTRICEUTICALS
Nutriceutical agents are another potentially interesting alternative to eradicate or prevent this infection in children. Honey has been used to treat dyspepsia in different countries for many years. In 1994, al Somal et al (12) reported the antibacterial activity of manuka honey. A 5% strength was able to inhibit completely *H pylori* growth after 72 h. Very recently, osmotic effect was shown to be the most important parameter for killing *H pylori* by different types of honey (13).

Capsaicin, the active ingredient in chili peppers, is known to improve experimentally induced gastric lesions using both acetylsalicylic acid and ethanol in rats. Jones et al (14) examined the in vitro activity of capsaicin on *H pylori* growth and showed a dose-dependent inhibition of growth. Further animal and human studies using this agent are required to assess its potential gastroprotective effects in vivo.

Aqueous garlic extract was also shown to inhibit *H pylori* growth in vitro (15). Stern bark extract from Mali, used as a decoction to treat dyspepsia for many generations, was also shown to inhibit *H pylori* growth in vitro (16).

PROBIOTIC AGENTS
A group from Spain studied the effect of lactobacilli in a gnotobiotic mouse model (17). *Lactobacillus salivarius*-infected gnotobiotic BALB/C mice and control germ-free mice were inoculated orally with *H pylori* to examine whether the probiotic would inhibit helicobacter colonization. *H pylori* did not colonize the stomach of *L salivarius*-treated gnotobiotic BALB/C mice, whereas the organism colonized and caused gastritis in germ-free mice. Furthermore, *L salivarius* given to infected mice resulted in the eradication of *H pylori* colonization (17). This interesting work raises the possibility that *Lactobacillus* species may be useful as a probiotic agent in the gastric mucosa.

Very recently, Opekun et al (18) reported healthy *H pylori*-infected volunteers treated either with hyperimmune bovine colostrum immune globulins or an oligosaccharide containing an *H pylori* adhesion target or recombinant human lactoferrin. Unfortunately, none of these adults had their *H pylori* eradicated.

CONCLUSIONS
Several interesting modalities for treating *H pylori* may be on the horizon. However, all of these novel therapies still need to be validated in vivo in large groups of patients. These agents are unlikely to replace standard antibiotic therapy but may offer an option as adjuncts to therapy, particularly for resistant infection. Current treatment regimens are generally effective but are relatively expensive and not affordable worldwide. Thus, there is a need for more inexpensive methods to prevent or treat this infection, particularly in underprivileged settings. Probiotics and nutriceuticals are theoretically attractive options. Children comprise a population in whom the infection is rarely symptomatic and, therefore, may benefit from well controlled, randomized trials using these novel antibacterial agents to eradicate *H pylori* colonization of the gastric antrum.

REFERENCES
1. Vandenplas Y, Bleeker U. Helicobacter pylori infection in children. Acta Paediatr 1998;87:1105-12.
2. Montague S, O’Morain C. Novel Therapies for Helicobacter pylori Eradication. Helicobacter pylori: Basic Mechanisms to Clinical Cure 1998. Dordrecht: Kluwer Academic Publishers, 1998:441-55.
3. Howden A, Boswell P, Tovey F. In-vitro sensitivity of Campylobacter pylori to furazolidone. Lancet 1986;i:1035.
4. Segura AM, Gutierrez O, Otero W, Angel A, Genta RM, Graham DY. Furazolidone, amoxycillin, bismuth triple therapy for Helicobacter pylori infection. Aliment Pharmacol Ther 1997;11:529-32.
5. Van Zweit AA, This JC, van der Wouden EL, Kooy A. Low cure rate of Helicobacter pylori infection with omeprazole and furazolidone dual therapy for one week. Aliment Pharmacol Ther 1997;11:533-5.
6. Bertoni G, Sassatelli R, Nigrisoli E, et al. Triple therapy with amoxicillin, omeprazole, and amoxicillin is highly effective in the eradication of Helicobacter pylori: a controlled trial versus omeprazole plus amoxicillin. Am J Gastroenterol 1996;91:258-63.
7. Di Mario F, Del Bo N, Gnassi SA, et al. Azithromycin for the cure of Helicobacter pylori infection. Am J Gastroenterol 1996;91:264-7.
8. Lamargue D, Tankovic J, Benhouma A, Sevin E, Delchier AJC. Triple therapy using ciprofloxacin for eradication of clarithromycin and metronidazole resistant H. pylori. Gut 1997(Suppl 1):A09/383. (Abst)
9. Stack WA, Knifton A, Jenkins D, et al. Rabeprazole is effective and safe when used in combination with antibiotics for the eradication of Helicobacter pylori. Gut 1997;41(Suppl 3):74. (Abst)
10. Palacin C, Tarrago C, Sacristan A, Ortiz JA. In vitro anti-Helicobacter pylori activity of ebrotidine. Arzneimittelforschung 1997;47:471-4.
11. Popielka T, Kuliq J, Karcz D, et al. Efficacy of ebrotidine and ranitidine combined with amoxicillin and metronidazole in the eradication of Helicobacter pylori in patients with duodenal ulcer. Arzneimittelforschung 1997;47:573-7.
12. al Somal N, Coley KE, Molan PC, Hancock BM. Susceptibility of Helicobacter pylori to the antibacterial activity of manuka honey. J R Soc Med 1994;87:9-12.
13. Osato MS, Reddy SG, Graham DY. Osmotic effect of honey on growth and viability of Helicobacter pylori. Dig Dis Sci 1999;44:462-4.
14. Jones NL, Shabib S, Sherman PM. Capsaicin as an inhibitor of the growth of the gastric pathogen Helicobacter pylori. FEMS Microbiol Lett 1997;146:223-7.
15. Sivam GP, Lampe JW, Ulness B, Swancy SR, Potter JD. Helicobacter pylori – in vitro susceptibility to garlic (Allium sativum) extract. Nutr Cancer 1997;27:118-21.
16. Germano MP, Sanogo R, Guglielmo M, De Pasquale R, Crisafi G, Bignanino G. Effects of Pteleopsis suberosa extracts on experimental gastric ulcers and Helicobacter pylori growth. J Ethnopharmacol 1998;59:167-72.
17. Kabir AM, Aiba Y, Takagi A, Kamiya S, Miwa T, Koga Y. Prevention of Helicobacter pylori infection by lactobacilli in a gnotobiotic murine model. Gut 1997;41:49-55.
18. Opekun AR, El-Zaimaity HM, Osato MS, et al. Novel therapies for Helicobacter pylori infection. Aliment Pharmacol Ther 1999;13:35-42.
