The diagnostic accuracy of RT-PCR from self-collected saliva versus nasopharyngeal sampling

A systematic review and meta-analysis

Do Hyun Kim, MD, PhD, Mohammed A. Basurrah, MD, Jae Hong Han, MD, Sung Won Kim, MD, PhD, Se Hwan Hwang, MD, PhD.

ABSTRACT

Objectives: To evaluate the diagnostic utility of self-collected saliva in coronavirus disease-19 (COVID-19) screening procedures.

Methods: A total of 6 databases were reviewed from their inception until August 2021. Sensitivity and specificity were measured by extracting items (true-positive, true-negative, false-positive and false-negative) from each paper. We evaluated the diagnostic accuracy based on Quality Assessment of Diagnostic Accuracy Studies, version 2.

Results: A total of 41 studies were included in the final analysis. The diagnostic odds ratio (OR) of self-collected saliva was 196.2022 (95% confidence interval [CI]: 117.8833-326.5546). The area under the summary receiver operating characteristic curve was 0.955. For detecting COVID-19, self-collected saliva had a moderate sensitivity of 0.8476 [0.8045-0.8826] and positive predictive value of 0.9404 [0.9122-0.9599] but high specificity of 0.9817 [0.9707-0.9887] and negative predictive value of 0.9467 [0.9130-0.9678]. In a subgroup analysis, the diagnostic accuracy of self-collected saliva tended to be higher for symptomatic (vs. asymptomatic) examinees.

Conclusion: Although naso/oropharyngeal swab tests are the most accurate and important diagnostic tools, the saliva-based testing method can be used as a suitable alternative test, with the advantages of increased patient convenience, efficient testing, and the need for fewer medical staff and resources. In particular, simple collecting method such as drooling or spitting without coughing would be effective in evaluating the symptomatic patients.

PROSPERO no.: CRD42021279287

Keywords: coronavirus infections, nasopharynx, saliva, specimen handling

Saudi Med J 2022; Vol. 43 (1): 9-30
doi: 10.15537/smj.2022.43.1.20210743

From the Department of Otolaryngology-Head and Neck Surgery (DH. Kim, Han, SW. Kim), Seoul Saint Mary's Hospital; from the Department of Otolaryngology-Head and Neck Surgery (Hwang), Bucheon Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea, and from the Department of Surgery (Basurrah), College of Medicine, Taif University, Taif, Kingdom of Saudi Arabia.

Received 21st September 2021. Accepted 7th December 2021.

Address correspondence and reprint request to: Dr. Se Hwan Hwang, Department of Otolaryngology-Head and Neck Surgery, Bucheon Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea. E-mail: yellobird@catholic.ac.kr

ORCID ID: https://orcid.org/0000-0002-2838-7820

https://smj.org.sa Saudi Med J 2022; Vol. 43 (1) 9

OPEN ACCESS
Since first detected in 2019, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic is still ongoing. This newly discovered coronavirus has a high ability to be transmitted from person to person through respiratory aerosols, droplets, or vomitus. More than 80% of patients infected by coronavirus disease-19 (COVID-19) show symptoms similar to influenza infection or pneumonia. Therefore, most patients do not require hospitalization. Because of these features of COVID-19, significant viral transmission from mildly symptomatic and non-hospitalized patients is concerning. However, COVID-19 can cause severe morbidity or mortality in the elderly, immunocompromised patients, and those with comorbidities such as heart disease, obesity, and diabetes.

Although there are a few known treatments for COVID-19, strict isolation of confirmed patients based on accurate diagnosis of COVID-19 is the key to overcome the pandemic, given the circumstances that only few treatment methods are available. Generally, the definitive diagnostic test of COVID-19 relies mostly on detection via reverse transcription quantitative polymerase chain reaction (RT-qPCR) carried out in respiratory samples. However, the collection of naso/oropharyngeal swab samples can cause nasal pain to the examinees, and health care personnel performing the test should be equipped with individual protective equipment to protect them against the risk of virus exposure. Testing using self-collected saliva methods have been reported to have several advantages of convenience and safety compared with the naso/oropharyngeal swab method because it eliminates close contact when obtaining a sample and the necessity of personal protective equipment. In addition, saliva collection is painless and thus, minimizes inconvenience for the examinees. Recently, published studies have reported that saliva specimens could be an alternative to naso/oropharyngeal specimens, but the evidence is still limited. It is important to clarify the diagnostic power of saliva for COVID-19 to improve the convenience to examinees and inspectors when mass rapid examination is required. Therefore, the aim of this study was to define the diagnostic accuracy of RT-qPCR from saliva compared to naso/oropharyngeal swab results.

Methods. This meta-analyses and systematic reviews used terms such as COVID-19, coronavirus, severe acute respiratory syndrome coronavirus-2, saliva, nasopharyngeal swab, oropharyngeal swab, PCR, and diagnostic accuracy as keywords. Database from PubMed, the Cochrane Central Register of Controlled Trials, Embase, Web of Science, SCOPUS, and Google Scholar were searched. Only papers written in English were reviewed. All references of the included articles were assessed to confirm that no significant studies were neglected. Two reviewers independently reviewed candidate studies, conducted title, abstract, full-text reviews, and inclusion of the final agreed papers.

The present study includes: i) prospective or retrospective study protocol; from ii) cases of COVID-19 suspected symptoms or asymptomatic population screening, using iii) index test: RT-qPCR in self-collected saliva specimens to detect SARS-CoV-2, with iv) reference standard (comparator test) of RT-qPCR in naso/oropharyngeal specimens to detect SARS-CoV-2, and v) qualified articles for sensitivity and specificity analysis (Appendix 1). We excluded reviews, case reports, and studies with low diagnostic power in saliva specimens. The search flow diagram was presented in Figure 1.

We calculated the area under the curve (AUC) of summary receiver operating characteristic (SROC) curve designed from diagnostic accuracy (namely, diagnostic odds ratio [DOR]).

Diagnostic odds ratio was defined as true positive x true negative / false positive x false negative, within 95% confidence interval (CI) from a random effect model with intra- and inter-study variations. The higher the value of DOR, the better the performance of the diagnostic method. Diagnostic odds ratio of one means it is not assured whether the disease is present. We calculated the log of DOR to examine an approximate

Disclosure. Authors have no conflict of interests, and the work was not supported or funded by any drug company.

![Figure 1 - Summary of the search strategy.](https://smj.org.sa)
Saliva tests for COVID-19 ... Kim et al

normal distribution. The SROC method derives both sensitivity and specificity through meta-analysis. The SROC curve moves towards the left upper quadrant (namely, sensitivity and specificity to 1 [100%]) as the discriminative force increases. Area under the curve ranges from 0-1 with higher value indicating superior performance. We estimated and compared the accordance of RT-qPCR results between the saliva and naso/oropharyngeal swab samples using Cohen’s kappa coefficient (κ). Data of true-positive, true-negative, false-positive, and false-negative values used to calculate the AUC and DOR were collected. The qualitative agreement across sample types (naso/oropharyngeal swab and saliva sample) was assessed.

Quality examination was carried out by Quality Assessment of Diagnostic Accuracy Studies tool, version 2. Statistical analysis. We used the version 3.6.1 of R software for statistical analysis (R Foundation for Statistical Computing, Vienna, Austria) and Q statistics for homogeneity analysis. Citation management was conducted by EndNote version 20.1 (Clarivate Analytics, PA, USA). Summary receiver operating characteristic curves were drawn from forest plots of sensitivity, specificity, negative predictive value (NPV), and positive predictive value. Coefficients were converted to Fisher’s exact values for normal distribution and variance stabilization between different sample types. After completing the meta-analysis, Fisher’s exact values were converted back to the intra-class correlation coefficient to aid in the interpretation of the results.

Results. The present meta-analysis included 41 studies of 14,011 patients. Appendix 2 summarizes the participant characteristics and Appendix 3 shows the quality analysis of methods. A total of 41 observational studies that used self-collected saliva samples for COVID-19 diagnosis were included in this study. The DOR of self-collected saliva for COVID-19 was 196.2022 (95% CI: [117.8833-326.5546], I²=82%; Figure 2) and the AUC was 0.955 (Figure 3). The self-collected saliva samples had a moderate sensitivity of 0.8476 (95% CI: [0.8045-0.8826], I²=87.3%) and PPV of 0.9404 (95% CI: [0.9122-0.9599], I²=83.2%) but a high specificity of 0.9817 (95% CI: [0.9707-0.9887], I²=89%) and NPV of 0.9467 (95% CI: [0.9130-0.9678], I²=96.4%; Appendix 4-7).

In concern of the heterogeneity of diagnostic accuracy, we looked for significant bias among the included studies. Subgroups were analyzed to assess the influence of geographic differences, saliva collection method, and presence or absence of symptoms (Table 1). Through these analyses, it was confirmed that there was no significant difference between continents.

For the saliva collection method, there were 3 subgroups: enhanced saliva (including posterior pharyngeal saliva or induced cough), oral saliva only without cough, and oral saliva only not defined regarding cough. Diagnostic accuracy tended to be lower in the enhanced saliva than the other 2 subgroups (sensitivity: 0.8353 vs. 0.8365 and 0.8919, specificity: 0.9779 vs. 0.9827 and 0.9820, and NPV: 0.8823 vs. 0.9496 and 0.9731; Appendix 8-10, DOR: 127.2254 vs. 215.1566 and 237.4246 except PPV: 0.9654 vs. 0.9202 and 0.8510; Appendix 11-13). Regarding the presence/absence of symptoms in patients during testing, diagnostic accuracy tended to be higher in the symptomatic than non-symptomatic patients (sensitivity: 0.8851 vs. 0.8208 and 0.7049, specificity: 0.9791 vs. 0.9783 and 0.9933, NPV: 0.9522 vs. 0.9164 and 0.9772, PPV: 0.9495 vs. 0.9435 and 0.8483, DOR: 245.6222 vs. 159.4638 and 184.8991). All analyses performed on each subgroup showed high heterogeneity. Based on this, it is difficult to document that subgroup analysis explains heterogeneity.

A total of 16 studies reported the Cohen’s kappa coefficient; the summary intra-class correlation coefficient was 0.8506 (95% CI: [0.8024-0.8877]), and the heterogeneity was high (I²=97.05%). Therefore, the correlation coefficients represented a good qualitative agreement between the standard naso/oropharyngeal swab and saliva samples in this meta-analysis.

Discussion. Because of the rapid global spread of COVID-19 and its high morbidity and mortality rates at older ages, early and accurate diagnosis of COVID-19 is the key to disease management. In particular, the fall-winter season in the northern hemisphere which typically increases the co-circulation of other respiratory viruses, including influenza, which could render the difficulty of distinguishing COVID-19 from other respiratory diseases. Currently, naso/oropharyngeal swab sampling according to RNA extraction and RT-qPCR is the most common methods for SARS-CoV-2 detection. However, the naso/oropharyngeal swab procedure has several short-comings including nasal irritation, pain, and a requirement for technical skill (false-negative results may result from improper procedures). Furthermore, this procedure requires additional medical resources, such as personal protective equipment and sterile swabs.

Considering these factors, the naso/oropharyngeal swab method is quite limited for mass screening or its use in...
Saliva tests for COVID-19 ... Kim et al

Saliva tests for COVID-19 have been proposed as diagnostic tools for detecting various respiratory virus infections, such as influenza viruses, respiratory syncytial virus, and SARS-CoV. Recent studies have shown that SARS-CoV-2 could also be diagnosed with saliva. In addition, saliva sampling reduces time and costs by eliminating the need for personal protection or virus-carrying solutions.

Two previous meta-analyses evaluated the use of saliva to accurately diagnose COVID-19. The authors suggested that self-collected saliva can be used to diagnose COVID-19. However, there were some limitations to confirm the evidence. Due to the relatively small sample size, a comprehensive analysis and thorough investigation were difficult in previous analysis.

The other analysis evaluated 8 additional studies. The authors suggested that self-collected saliva can be used to diagnose COVID-19. However, there were some limitations to confirm the evidence. Due to the relatively small sample size, a comprehensive analysis and thorough investigation were difficult in previous analysis. The other analysis evaluated 8 additional studies. The authors suggested that self-collected saliva can be used to diagnose COVID-19. However, there were some limitations to confirm the evidence. Due to the relatively small sample size, a comprehensive analysis and thorough investigation were difficult in previous analysis.
Saliva tests for COVID-19 ... Kim et al

Figure 3 - Area under the summary receiver operating characteristic (SROC) curve of the included studies. CI: confidence interval

studies, but it had methodologic flaws. Previous studies, only one author conducted the search and extracted data from the included studies, and there was no mention of the heterogeneity among the enrolled studies or the strategy for addressing the heterogeneity (for instance, subgroup analysis). Therefore, we did a bivariate meta-analysis with newly included studies focusing on the location and timing of sample harvest. The self-collected saliva samples were compared to samples collected by medical workers using naso/oropharyngeal swabs, and qualitative agreement between the saliva-based test and reference test was assessed. This information could be helpful for citizens to gain easy and early access to the test and for healthcare professionals to minimize the risk of SARS-CoV-2 transmission via specimen contact.

In this study, self-collected saliva testing yielded AUC of 0.955. The AUC was in the range of 0.9-1, suggesting excellent diagnostic accuracy. The virus utilizes the angiotensin converting enzyme 2 receptor for host entry, and it is also expressed at detectable levels in the salivary glands and ducts. In addition, salivary gland epithelial cells are early targets and the virus can dwell inside the cells during the first stage of infection. High correlation coefficients, indicating strong diagnostic agreement between the standard naso/oropharyngeal swab and the saliva collection sample, also could support the diagnostic power of the saliva samples.

However, our results showed that self-collected saliva samples had lower sensitivity and similar specificity compared with naso/oropharyngeal swab specimens for diagnosing COVID-19. This finding was consistent with the previous findings of Kivelä et al. Previous studies reported lower viral loads of SARS-CoV-2 in saliva than in corresponding nasopharyngeal swab specimens. The lower viral load in saliva may explain the higher rate of false negatives (decreasing sensitivity) compared with naso/oropharyngeal specimens. However, relatively low sensitivity of the saliva-based test is acceptable under certain conditions, considering that the saliva sampling test requires fewer medical consumable resources and professional personnel, and minimizes patient’s discomfort.

In this regard, one report recommended standardizing the sampling and testing methods for optimal clinical application of the saliva-based COVID-19 test. Our meta-analysis included various methods (saliva only vs. enhanced saliva [including lower pharyngeal and respiratory secretion]) and clinical conditions (asymptomatic vs. symptomatic examinees). Therefore, we carried out a subgroup analyses according to different geography, saliva collection method, and existence or absence of symptoms. Interestingly, the saliva collection method did not show the significant influence in diagnostic accuracy. A previous study also reported similar results that there was no substantial difference between only oral saliva and enhanced saliva.

In pathophysiology and time course, the main entry points of coronavirus are the nasal epithelial cells as well as the stratified squamous epithelium of oropharynx and laryngopharynx. Through oral-lung aspiration, the virus can spread from oral or nasal passage to the lower respiratory organs. In 80% of infected cases, the virus remains within the upper airway expressing mild symptoms. The enhanced saliva may contain both bronchopulmonary and nasopharyngeal secretions by coughing. The current knowledge of viral progression from proximal to distal airways might explain why oral saliva plus lower respiratory secretion seemed to have the similar diagnostic accuracy with oral saliva only in the community or mass screening. In particular, some patients would feel uncomfortable or have difficulty in coughing to produce mucus. However, simple collecting method such as drooling or spitting could help spread the usage of saliva test for COVID-19.

In addition, the viral loads of samples were significantly high during the first week of symptom development, then gradually decreased over time, and became undetectable approximately 2 weeks after symptom development. These patterns could indicate that the timing of sampling regarding diagnosis was likely to influence accuracy in asymptomatic as well
as symptomatic patients. Caution is recommended when choosing diagnostic tests for screening in terms of the related timing to disease progression. \(^{58}\) Saliva self-collection for SARS-CoV-2 testing was reported not to be influenced by gender, age, race/ethnicity, or educational level in the United States. \(^{19}\) There was no significant heterogeneity of diagnostic accuracy among geographic locations. However, our classification according to geographic location included only one or 2 studies in South America and Oceania. Therefore, future prospective studies with larger numbers of patients evenly grouped by geographic location are needed to analyze the effect of geographic location on the results of test using self-collected saliva.

Study limitations. First, the collected data showed significant heterogeneity that required random effect

Table 1 - Subgroup analysis of ethnicity, saliva collection method, and participants’ symptoms.

Subgroup	Study (n)	DOR	Sensitivity	Specificity	AUC	NPV	PPV
		(95% CIs)			(95% CIs)		(95% CIs)
Self-collected saliva	41	196.2022	0.8476	0.9817	0.955	0.9467	0.9404
(total)		[82%]	[0.8045-0.8826]	[0.9707-0.9887]	96.4%	[0.9122-0.9599]	
Regions							
North America	20	250.4321	0.8798	0.9807	0.9635	0.9275	
		[81.1%]	[0.8182-0.9224]	[0.9646-0.9896]	94.1%	[0.8801-0.9571]	
Asia	12	92.3075	0.7930	0.9766	0.9283	0.9175	
		[85.6%]	[0.6970-0.8656]	[0.9297-0.9924]	91.7%	[0.8410-0.9589]	
Europe	6	212.1821	0.8080	0.9852	0.9143	0.9676	
		[85%]	[0.6984-0.8844]	[0.9751-0.9912]	95%	[0.9369-0.9836]	
South America	2	748.5000	0.8462	0.9800	0.9189	0.9839	
		[80.3%]	[0.7180-0.9559]	[0.9321-0.9992]	5.2%	[0.9378-0.9960]	
Oceania	1	176.1693	0.8095	0.9852	0.9143	0.9676	
		[85%]	[0.6948-0.8844]	[0.9751-0.9912]	95%	[0.9369-0.9836]	
P-value		0.1979	0.389	0.8652	0.2833	0.079	
Collection method							
Only oral cavity saliva	26	215.1566	0.8365	0.9827	0.9496	0.9367	
		[84%]	[0.7793-0.8812]	[0.9713-0.9896]	96.1%	[0.9007-0.9602]	
Only oral cavity saliva (not defined)	8	237.4246	0.8919	0.9820	0.9731	0.9173	
		[85.2%]	[0.8432-0.9268]	[0.9035-0.9969]	89.7%	[0.7993-0.9686]	
Enhanced saliva	7	127.2254	0.8353	0.9779	0.8823	0.9654	
		[67.0%]	[0.6844-0.9222]	[0.9338-0.9928]	70.9%	[0.9075-0.9875]	
P-value		0.7001	0.2282	0.928	0.2176	0.4355	
Patient symptom							
Symptomatic	22	245.6222	0.8851	0.9791	0.9522	0.9495	
		[80.6%]	[0.8497-0.9130]	[0.9580-0.9898]	92.2%	[0.9124-0.9744]	
Mixed	15	159.4638	0.8208	0.9783	0.9164	0.9435	
		[83.4%]	[0.7399-0.8806]	[0.9588-0.9886]	97.0%	[0.9003-0.9687]	
Asymptomatic	4	184.8991	0.7049	0.9933	0.9772	0.8483	
		[80.3%]	[0.4705-0.8653]	[0.9673-0.9987]	97.0%	[0.8689-0.9345]	
P-value		0.7469	0.03	0.3924	0.329	0.0879	

DOR: diagnostic odds ratio, CI: confidence interval, AUC: area under the curve, NPV: negative predictive value, PPV: positive predictive value
models and subgroup analysis. One possible explanation is that RT-qPCR in naso/oropharyngeal samples, which is used as the main diagnostic tool for COVID-19, shows a wide range in sensitivity (56-83%). This might have led to misclassification and diagnostic bias, causing heterogeneity. Secondly, the nature of cross-sectional designs can over- or under-estimate the real prevalence. Thirdly, there was a lack of methodological homogeneity and inadequate reporting of methods.

In conclusion, this study indicated that RT-qPCR detects SARS-CoV-2 with lower sensitivity using self-collected saliva compared to conventional naso/oropharyngeal samples. However, saliva samples are easily obtained by drooling or spitting in a sample container. The saliva-based test has the advantage of not requiring healthcare workers or personal protective equipment for sample collection. This advantage could be useful in situations in which mass screening is needed or medical resources are scarce.

Acknowledgment. The authors gratefully acknowledge Textcheck (www.textcheck.com) for English language editing.

References

1. Joffily L, Ungierowicz A, David AG, Melo B, Brito CLT, Mello L, et al. The close relationship between sudden loss of smell and COVID-19. *Braz J Otorhinolaryngol* 2020; 86: 632-638.
2. Zayet S, Klopfenstein T, Mercier J, Kadiane-Oussou NJ, Lan Cheong W, Loyer PY, et al. Contribution of anosmia and dysgeusia for diagnostic of COVID-19 in outpatients. *Infection* 2021; 49: 361-365.
3. Yan CH, Faraji F, Prajapati DP, Boone CE, DeConde AS. Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms. *Int Forum Allergy Rhinol* 2020; 10: 806-813.
4. Kang SJ, Jung SI. Age-related morbidity and mortality among patients with COVID-19. *Infect Chemother* 2020; 52: 154-164.
5. Liu M, Li Q, Zhou J, Ai W, Zheng X, Zeng J, et al. Value of swab types and collection time on SARS-CoV-2 detection using RT-PCR assay. *J Virol Methods* 2020; 286: 113974.
6. Mohammad A, Esmaeilzadeh E, Li Y, Bosch RJ, Li JZ. SARS-CoV-2 detection in different respiratory sites: a systematic review and meta-analysis. *EBioMedicine* 2020; 59: 102903.
7. Pasomsu B, Watcharananan SP, Boonyawat K, Janchompoo P, Wongtambut G, Sukswalan W, et al. Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: a cross-sectional study. *Clin Microbiol Infect* 2021; 27: 285.
8. Yokota I, Shane PY, Okada K, Unoki Y, Yang Y, Inao T, et al. Mass screening of asymptomatic persons for severe acute respiratory syndrome coronavirus 2 using saliva. *Clin Infect Dis* 2021; 73: e559-e565.
9. Czumbel LM, Kiss S, Farkas N, Mandel I, Hegyi A, Nagy Á, et al. Saliva as a candidate for COVID-19 diagnostic testing: a meta-analysis. *Front Med (Lausanne)* 2020; 7: 465.
10. Williams E, Bond K, Zhang B, Putland M, Williamson DA. Saliva as a noninvasive specimen for detection of SARS-CoV-2. *J Clin Microbiol* 2020; 58: e00776-e00720.
11. Skolimowska K, Raymond M, Jones R, Madona P, Moore LSP, Randell P. Non-invasive saliva specimens for the diagnosis of COVID-19: caution in mild outpatient cohorts with low prevalence. *Clin Microbiol Infect* 2020; 26: 1711-1713.
12. Moreno-Contreras J, Espinoza MA, Sandoval-Jaime C, Cantú-Cuevas MA, Barón-Olivares H, Ortiz-Orozco OD, et al. Saliva sampling and its direct lysis, an excellent option to increase the number of SARS-CoV-2 diagnostic tests in settings with supply shortages. *J Clin Microbiol* 2020; 58: e01659-e01620.
13. Landry ML, Criscuolo J, Peaper DR. Challenges in use of saliva for detection of SARS-CoV-2 RNA in symptomatic outpatients. *J Clin Virol* 2020; 130: 104567.
14. Hanson KE, Barker AP, Hillyard DR, Gilmore N, Barrett JW, Orlandi RR, et al. Self-collected anterior nasal and saliva specimens versus health care worker-collected nasopharyngeal swabs for the molecular detection of SARS-CoV-2. *J Clin Microbiol* 2020; 58: e01824-e01820.
15. Procop GW, Shrestha NK, Vogel S, Van Sickle K, Harrington S, Rhoads DD, et al. A direct comparison of enhanced saliva to nasopharyngeal swab for the detection of SARS-CoV-2 in symptomatic patients. *J Clin Microbiol* 2020; 58: e01946-e01920.
16. Vaz SN, Santana DS, Netto EM, Pedroso C, Wang WK, Santos FDA, et al. Saliva is a reliable, non-invasive specimen for SARS-CoV-2 detection. *Braz J Infect Dis* 2020; 24: 422-427.
17. Güclü E, Koroglu M, Yürümez Y, Topkan H, Kose E, Güneyso F, et al. Comparison of saliva and oro-nasopharyngeal swab sample in the molecular diagnosis of COVID-19. *Rev Assoc Med Bras (1992)* 2020; 66: 1116-1121.
18. Altawalah H, AlHuraisi FA, Alkandari WA, Ezzikouri S. Saliva specimens for detection of severe acute respiratory syndrome coronavirus 2 in Kuwait: a cross-sectional study. *J Clin Virol* 2020; 132: 104652.
19. Griesemer SB, Van Slyke G, Ehbar D, Strle K, Yildirim T, Centurioni DA, et al. Evaluation of specimen types and saliva stabilization solutions for SARS-CoV-2 testing. *J Mol Microbiol Biol* 2021; 59: e01418-e01420.
20. Caulley L, Corsten M, Eapen L, Whelan J, Angel JB, Antonation A, et al. Salivary testing in community settings and population-based screening. *Infect Drug Resist* 2020; 13: 3393-3399.
21. Babady NE, McMillen T, Jani K, Viale A, Robilotti EV, Aslam A, et al. Performance of severe acute respiratory syndrome coronavirus 2 real-time RT-PCR tests on oral rinses and saliva samples. *J Clin Virol* 2021; 132: 104652.
22. Senok A, Alsuwaidi H, Atrah Y, Al Ayedi O, Al Zahid J, Han A, et al. Saliva as an alternative specimen for molecular COVID-19 testing in community settings and population-based screening. *Infect Drug Resist* 2020; 13: 3393-3399.
23. Babady NE, McMillen T, Jani K, Viale A, Robilotti EV, Aslam A, et al. Performance of severe acute respiratory syndrome coronavirus 2 real-time RT-PCR tests on oral rinses and saliva samples. *J Mol Diagn* 2021; 23: 3-9.
24. Kandel G, Zheng J, McCready J, Serbanescu MA, Racher H, Desaulnier M, et al. Detection of SARS-CoV-2 from saliva as compared to nasopharyngeal swabs in outpatients. *Viruses* 2020; 12: 1314.
25. Braz-Silva PH, Mamana AC, Romano CM, Felix AC, de Paula AV, Fereira NE, et al. Performance of at-home self-collected saliva and nasal-oropharyngeal swabs in the surveillance of COVID-19. *J Oral Microbiol* 2020; 13: 1858002.
26. Bhattacharya D, Parai D, Rout UK, Nanda RR, Kanungo S, Dash GC, et al. Saliva as a potential clinical specimen for diagnosis of SARS-CoV-2. *MedRxiv* 2020; 9: 20192591.
Saliva tests for COVID-19 ... Kim et al

26. Byrne RL, Kay GA, Kontogianni K, Brown L, Collins AM, Cuevas LE, et al. Saliva offers a sensitive, specific and non-invasive alternative to upper respiratory swabs for SARS-CoV-2 diagnosis. medRxiv 2020; 9: 20149534.

27. Dogan OA, Kose B, Agaoglu NB, Yildiz J, Alkurt G, Demirkol YK, et al. Does sampling saliva increase detection of SARS-CoV-2 by RT-PCR? comparing saliva with oro-nasopharyngeal swabs. J Virol Methods 2021; 290: 114049.

28. Wong SCY, Tse H, Siu HK, Kwong TS, Chu MY, Yau FYS, et al. Posterior oropharyngeal saliva for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis 2020; 71: 2939-2946.

29. Iwasaki S, Fujisawa S, Nakakubo S, Kamada K, Yamashita Y, Fukumoto T, et al. Comparison of SARS-CoV-2 saliva detection in nasopharyngeal swab and saliva. J Infect 2020; 81: e145-e147.

30. Kojima N, Turner F, Stepevn V, Bacelar A, Deming L, Kodebyoina S, et al. Self-collected oral fluid and nasal swabs demonstrate comparable sensitivity to clinician collected nasopharyngeal swabs for coronavirus disease 2019 detection. Clin Infect Dis 2021; 73: e3106-e3109.

31. McCormick-Baw C, Morgan K, Gaffney D, Cazares Y, Jaworski K, Byrd A, et al. Saliva as an alternate specimen source for detection of SARS-CoV-2 in symptomatic patients using Cepheid Xpert Xpress SARS-CoV-2. J Clin Microbiol 2020; 58: e01109-e01120.

32. Miller M, Jansen M, Bisignano A, Mahoney S, Wechsberg C, Iwasaki S, et al. Validation of a self-administrable, saliva-based RT-qPCR test detecting SARS-CoV-2. MedRxiv 2020; 6: 20122721.

33. Vogels CBF, Watkins AE, Harden CA, Brackney DE, Shafer J, Wáng J, et al. SalivaDirect: a simplified and flexible platform to enhance SARS-CoV-2 testing capacity. Med (NY) 2021; 2: 263-280.

34. Boerger AC, Buckwalter S, Fernholz EC, Janetto PJ, Binnicker MJ, Reed K, et al. Evaluation of self-collected midturbinate nasal swabs and saliva for detection of SARS-CoV-2 RNA. J Clin Microbiol 2021; 59: e0084821.

35. Toppings NB, Mohon AN, Lee Y, Kumar H, Lee D, Kapoor R, et al. A rapid near-patient detection system for SARS-CoV-2 using saliva. Sci Rep 2021; 11: 13578.

36. Xun G, Lane ST, Petrov VA, Pepa BE, Zhao H. A rapid, accurate, scalable, and portable testing system for COVID-19 diagnosis. Nat Commun 2021; 12: 2905.

37. Mase S, Bonnet C, Vilcu AM, Benamar H, Swital M, van der Werf S, et al. Are posterior oropharyngeal saliva specimens an acceptable alternative to nasopharyngeal sampling for the monitoring of SARS-CoV-2 in primary-care settings? Viruses 2021; 13: 761.

38. Sasikala M, Sadhana Y, Vijayasarithy K, Gupta A, Daram SK, Podduturi NCR, et al. Comparison of saliva with healthcare workers- and patient-collected swabs in the diagnosis of COVID-19 in a large cohort. BMC Infect Dis 2021; 21: 648.

39. Mohd Thabit AA, Peariasamy KM, Kuan PX, Fern Ying DK, Nheu N, Cyncynatus C, et al. Diagnostic accuracy of fresh drooled saliva for SARS-CoV-2 in travelers. Travel Med Infect Dis 2021; 43: 102144.

40. Fernandes PADC, Ferreira FADC, Morais OM, Ramos CMT, Fernandes EMR, Rocha SAAD, et al. Performance of saliva as a specimen to detect SARS-CoV-2. J Clin Virol 2021; 142: 104913.

41. Marx GE, Biggerstaff BJ, Nawrocki CC, Totten SE, Travanty EA, Burakoff AW, et al. Detection of severe acute respiratory syndrome coronavirus 2 on self-collected saliva or anterior nasal specimens compared with healthcare personnel-collected nasopharyngeal specimens. Clin Infect Dis 2021; 73: S65-S73.

42. Abasvanik MF, Flood B, Lin J, Ozcan S, Rouhani SJ, Pryzer A, et al. Sensitive detection and quantification of SARS-CoV-2 in saliva. Sci Rep 2021; 11: 12425.

43. Alkhaeteeb KJ, Cahill MN, Ross AS, Arnold FW, Snyder JW. The reliability of saliva for the detection of SARS-CoV-2 in symptomatic and asymptomatic patients: insights on the diagnostic performance and utility for COVID-19 screening. Diag Microbiol Infect Dis 2021; 101: 115450.

44. Budkar V, Mishra M, Gade N, Selvaraj K. Conventional nasopharyngeal sampling versus self-collected saliva samples in COVID-19 testing. Indian J Otolaryngol Head Neck Surg 2021; 1-7.

45. Stokes W, Berenger BM, Portnoy D, Scott B, Szelewicki J, Singh T, et al. Clinical performance of the Abbott Panbio with nasopharyngeal, throat, and saliva swabs among symptomatic individuals with COVID-19. Eur J Clin Microbiol Infect Dis 2021; 40: 1721-1726.

46. Fernández-González M, Agulló V, de la Riva A, Infante A, Carvajal M, García JA, et al. Performance of saliva specimens for the molecular detection of SARS-CoV-2 in the community setting: does sample collection method matter? J Clin Microbiol 2021; 59: e03033-e03020.

47. Trobajo-Sanmartín C, Adelantado M, Navascués A, Guembe MJ, Rodrigo-Rincón I, Castilla J, et al. Self-collection of saliva specimens as a suitable alternative to nasopharyngeal swabs for the diagnosis of SARS-CoV-2 by RT-qPCR. J Clin Med 2021; 10: 299.

48. Herrera LA, Hidalgo-Miranda A, Reynoso-Novéron N, Meneses-García AA, Mendoza-Vargas A, Reyes-Grajeda JP, et al. Saliva is a reliable and accessible source for the detection of SARS-CoV-2. Int J Infect Dis 2021; 105: 83-90.

49. Kim DH, Kim Y, Kim SW, Hwang SH. Use of narrowband imaging for the diagnosis and screening of laryngeal cancer: a systematic review and meta-analysis. Head Neck 2020; 42: 2635-2643.

50. Meseguer-Henarejos AB, Sánchez-Meca J, López-Pina JA, Carles-Hernández R. Inter- and intra-rater reliability of the modified Ashworth scale: a systematic review and meta-analysis. Eur J Phys Rehabil Med 2018; 54: 576-590.

51. Sakanaishi D, Asai N, Nakamura A, Miyazaki N, Kawamoto Y, Ohno T, et al. Comparative evaluation of saliva specimens for the molecular detection of SARS-CoV-2 RNA in Japanese patients with COVID-19. J Infect Chemother 2021; 27: 126-129.

52. Rao M, Rashid FA, Sabri FSAH, Jamil NN, Zain R, Hashim M, et al. Saliva as an alternative specimen source for the detection of SARS-CoV-2 RNA and characterization of oral symptoms in COVID-19 patients. Cell Prolif 2020; 53: e12923.
55. Lee RA, Herigon JC, Benedetti A, Pollock NR, Denkinger CM. Performance of saliva, oropharyngeal swabs, and nasal swabs for SARS-CoV-2 molecular detection: a systematic review and meta-analysis. *J Clin Microbiol* 2021; 59: e02881-e02820.

56. Gentzsch M, Rossier BC. A pathophysiological model for COVID-19: critical importance of transepithelial sodium transport upon airway infection. *Function (Oxf)* 2020; 1: zqaa024.

57. Roque M, Proudfoot K, Mathys V, Yu S, Krieger N, Gernon T, et al. A review of nasopharyngeal swab and saliva tests for SARS-CoV-2 infection: disease timelines, relative sensitivities, and test optimization. *J Surg Oncol* 2021; 124: 465-475.

58. Kociolek LK, Muller WJ, Yee R, Dien Bard J, Brown CA, Revell PA, et al. Comparison of upper respiratory viral load distributions in asymptomatic and symptomatic children diagnosed with SARS-CoV-2 infection in pediatric hospital testing programs. *J Clin Microbiol* 2020; 59: e02593-e02520.

59. Zayet S, Klopfenstein T, Mercier J, Kadiane-Oussou NJ, Lan Cheong Wah L, Royer PY, et al. Contribution of anosmia and dysgeusia for diagnostic of COVID-19 in outpatients. *Infection* 2021; 49: 361-365.
Appendix 1 - Participants, interventions, comparisons, outcomes, timings, and study design (PICOTS).

PICOTS component	Details
Participants	Patients with COVID-19 suspected symptoms or asymptomatic population screening
Interventions	Saliva specimens RT-qPCR results of detect SARS-CoV-2
Comparisons	Naso/oropharyngeal specimens RT-qPCR results of detect SARS-CoV-2
Outcomes	Diagnostic accuracy, specificities, and negative predictive values analysis
Timings	From inception to August 2021
Study design	A systematic review and meta-analysis

COVID-19: coronavirus disease-19, RT-qPCR: reverse transcription quantitative polymerase chain reaction, SARS-CoV-2: severe acute respiratory syndrome coronavirus-2
Appendix 2 - Study characteristics.

Study	Study design	Number	Gender (male/female)	Age (years), median (range) or mean and SD	Nationality	Participants	Collecting method	Correlation	TP	FN	FP	TN
Williams et al,18	case-control	89	NR	NR	Australia	asymptomatic saliva	Only oral cavity	0.851	33	6	1	49
Landry et al,15	cohort	124	NR	NR	USA	symptomatic saliva	Oral cavity saliva (defined)	53	5	0	106	
Griesemer et al,16	cohort	463	246/117	14-77	USA	mixed saliva	Oral cavity saliva (not reported)	91	14	13	345	
Bhattacharya et al,17	case-control	74	NR	NR	India	asymptomatic saliva	Oral cavity saliva	0	0	0	0	
Byrne et al,18	cohort	110	61/49	NR	England	symptomatic saliva	Oral cavity saliva (not reported)	0.912	34	22	14	1869
Cauley et al,19	cohort	1939	NR	NR	Canada	mixed saliva	Oral cavity saliva	0	0	0	0	
Hanso et al,14	cohort	354	188/166	35 (18-75)	USA	symptomatic saliva	Oral cavity saliva	0.912	75	5	6	268
Moreno-Contreras et al,15	cohort	182	116/137	41±14.4	Mexico	symptomatic saliva	Oral cavity saliva (not reported)	0	0	0	0	
Pasomsub et al,17	cross-sectional	200	69/131	NR	Thailand	symptomatic saliva	Oral cavity saliva	0.851	16	3	2	179
Skolimowska et al,11	cohort	131	43/89	NR	England	symptomatic saliva	Oral cavity saliva	0	0	0	0	
Vaz et al,16	cohort	155	46/103	NR	Brazil	symptomatic saliva	Oral cavity saliva	0.922	67	4	2	82
Yokota et al,8	cohort	1763	927/832/4/9 (unknown)	33.5 (22.6-47.4)	Japan	asymptomatic saliva	Only oral cavity saliva	0	0	0	0	
Yokota et al,9	cohort	161	44/26/39 (unknown)	44.9 (29.8-66.6)	Japan	asymptomatic saliva	Oral cavity saliva (not reported)	4	1	0	1758	
Güçük et al,12	cohort	64	37/27	51.0±14.7	Turkey	symptomatic saliva	Oral cavity saliva	0.744	23	4	4	33
Senok et al,13	cross-sectional	401	329/72	35.5±9.5	UAE	asymptomatic saliva	Oral cavity saliva	0.68	19	7	9	366
Alrawallah et al,18	cohort	891	NR	NR	Kuwait	symptomatic saliva	Oral cavity saliva	0.814	287	57	18	529
Procop et al,13	cohort	224	NR	NR	USA	symptomatic saliva	Oral cavity saliva	0	0	0	0	
Kandel et al,13	cohort	429	295/134	42 (30-54)	Canada	mixed saliva	Oral cavity saliva	0.9	39	4	3	383
Brazy-Silva et al,20	cohort	201	75/126	40 (31-52)	Brazil	symptomatic saliva	Oral cavity saliva	55	15	0	131	
Babady et al,12	cohort	87	NR	NR	USA	symptomatic saliva	Oral cavity saliva	16	1	1	69	
Dogan et al,21	cohort	98	NR	NR	Turkey	symptomatic saliva	Oral cavity saliva	0	0	0	0	
Wong et al,22	retrospective	229	NR	NR	China	mixed saliva	Oral cavity saliva	104	18	37	70	
Iwasaki et al,23	cross-sectional	66	NR	NR	Japan	symptomatic saliva	Oral cavity saliva	0	0	0	0	
Kojima et al,24	cohort	45	NR	NR	USA	asymptomatic saliva	Only oral cavity saliva (not defined)	0.874	8	1	1	66
McCormick-Baw et al,25	cohort	155	NR	NR	USA	symptomatic saliva	Oral cavity saliva	20	3	6	16	
Müller et al,26	cross-sectional	91	NR	NR	USA	symptomatic saliva	Oral cavity saliva	47	2	1	105	
Vogels et al,27	cohort	67	NR	NR	USA	mixed saliva	Oral cavity saliva	33	1	1	56	
Boerger et al,24	cohort	281	NR	NR	USA	symptomatic saliva	Oral cavity saliva	30	3	2	246	
Toppings et al,28	cross-sectional	63	NR	NR	USA	symptomatic saliva	Oral cavity saliva	0	0	0	0	
Xun et al,29	cohort	104	NR	NR	USA	symptomatic saliva	Oral cavity saliva	0	0	0	0	
Massa et al,30	cohort	143	63/80	35 (22.5-40)	France	symptomatic saliva	Oral cavity saliva	0.89	51	5	2	85
Sasikala et al,30	prospective	200	140/60	37.9±12.8	India	symptomatic saliva	Oral cavity saliva	128	46	0	26	
Mohd Thabit et al,30	prospective	96	66/30	34±12.95 (12-95)	Malaysia	asymmetric saliva	Only oral cavity saliva	0.69	45	11	4	36
Fernandes et al,30	cohort	226	91/135	NR	Portugal	asymptomatic saliva	Only oral cavity saliva	0	0	0	0	
Marx et al,30	cross-sectional	730	420/310	NR	USA	asymptomatic saliva	Only oral cavity saliva	0.92	46	8	6	436
Abasiyanik et al,30	cohort	92	NR	NR	USA	mixed saliva	Only oral cavity saliva	0	0	0	0	
Alkhateeb et al,31	prospective	48	26/22	39.9±15.5	USA	mixed saliva	Oral cavity saliva	12	3	0	18	
Bidkar et al,32	cross-sectional	80	49/31	36.4	India	mixed saliva	Oral cavity saliva	0	0	0	0	
Stokes et al,33	prospective	145	75/70	39.4	Canada	symptomatic saliva	Oral cavity saliva	121	17	2	5	
Fernández-Gonzalez et al,34	prospective	229	91/128	39 (21-48)	Spain	asymptomatic saliva	Oral cavity saliva	0.85	39	7	4	171
Herrera et al,35	cross-sectional	2107	NR	NR	Mexico	asymptomatic saliva	Oral cavity saliva	0.852	139	34	10	1867
Trıbajo-Sanmartín et al,36	prospective	674	374/300	NR	Spain	mixed saliva	Oral cavity saliva	0.91	168	156	3	309

SD: standard deviation, **TP:** true positive, **FN:** false negative, **FP:** false positive, **TN:** true negative **NR:** not reported
Appendix 3 - Methodological quality of all included studies

Reference	Risk of bias	Concerns about application					
	Patient selection	Index test	Reference standard	Flow and timing	Patient selection	Index test	Reference standard
Williams et al,\(^{10}\)	Low	Low	Low	Low	Low	Low	Low
Landry et al,\(^{13}\)	Low	Low	Low	Low	Low	Low	Low
Griesemer et al,\(^{19}\)	Low	Low	Low	Low	Low	Low	Unclear
Bhattacharya et al,\(^{27}\)	Low	Low	Un unclear	Low	Un unclear	Low	Low
Byrne et al,\(^{26}\)	Low	Low	Low	Low	Low	Low	Low
Cauley et al,\(^{20}\)	Low	Low	Un unclear	Low	Low	Low	Low
Hanson et al,\(^{14}\)	Low	Low	Low	Low	Low	Unclear	Low
Moreno-Contreras et al,\(^{12}\)	Low	Low	Unclear	Low	Unclear	Low	Low
Pasomsb et al,\(^{7}\)	Low	Low	Low	Low	Low	Low	Low
Skolimowska et al,\(^{22}\)	Low	Low	Low	Low	Low	Low	Low
Vaz et al,\(^{16}\)	Low	Low	Low	Low	Low	Low	Low
Yokota et al,\(^{8}\)	Low	Low	Low	Un unclear	Low	Unclear	Low
Güçlü et al,\(^{17}\)	Low	Low	Low	Low	Low	Un unclear	Low
Senok et al,\(^{21}\)	Low	Low	High	Low	Low	Low	Low
Altawalah et al,\(^{18}\)	Low	Low	High	Low	Low	Low	Low
Procop et al,\(^{15}\)	Low	Low	Low	Unclear	Low	Low	Low
Kandel et al,\(^{23}\)	Low	Low	Low	Low	Low	Low	Low
Braz-Silva et al,\(^{24}\)	Low	Low	Unclear	Low	Low	Low	Low
Babady et al,\(^{22}\)	Unclear	Low	Low	Unclear	Low	Low	Low
Dogan et al,\(^{27}\)	Low	Low	Low	Unclear	Low	Unclear	Low
Wong et al,\(^{24}\)	Low	Low	Low	Low	Low	Low	Low
Iwasaki et al,\(^{29}\)	Low	Low	Low	Low	Low	Low	Low
Kojima et al,\(^{38}\)	Low	Low	Low	Low	Low	Low	Low
McCormick-Baw et al,\(^{31}\)	Low	Low	Low	Low	Low	Low	Low
Miller et al,\(^{32}\)	Low	Low	Low	Low	Low	Low	Unclear
Vogels et al,\(^{35}\)	Low	Low	Low	High	Low	Low	Low
Boerger et al,\(^{34}\)	Low	Low	Low	High	Low	Low	Low
Toppings et al,\(^{35}\)	Low	Low	Low	Unclear	Low	Low	Low
Xun et al,\(^{36}\)	Low	Low	Low	Low	Low	Low	Low
Mase et al,\(^{37}\)	Low	Low	Low	Unclear	Low	Low	Low
Sasikala et al,\(^{38}\)	Unclear	Low	Low	Unclear	Low	Low	Low
Mohd’ Thabit et al,\(^{35}\)	Low	Low	Low	Unclear	Low	Low	Low
Fernandes et al,\(^{40}\)	Low	Low	Low	Low	Low	Low	Low
Marx et al,\(^{42}\)	Low	Low	Low	Unclear	Low	Low	Low
Abastianik et al,\(^{42}\)	Low	Low	Low	Low	Low	Low	Low
Alkhateeb et al,\(^{43}\)	Low	Low	Low	Unclear	Low	Unclear	Low
Bidkar et al,\(^{44}\)	Low	Low	Low	Unclear	Low	Unclear	Low
Stokes et al,\(^{45}\)	Low	Low	Low	Low	Low	Low	Low
Fernández-González et al,\(^{46}\)	Low	Low	Low	High	Low	Low	Low
Herrera et al,\(^{48}\)	Low	Low	Low	Unclear	Low	Low	Low
Trobajo-Sanmartín et al,\(^{47}\)	Low	Low	Low	Low	Low	Low	Low
Appendix 4 - Forest plots of the sensitivity of the included studies.
Appendix 5 - Forest plots of the specificity of the included studies.

Study	Events	Total	Proportion	95%-CI
Akgun 2020	38	43	0.884	[0.749; 0.961]
Williams 2020	49	50	0.980	[0.894; 0.999]
Landry 2020	89	89	1.000	[0.959; 1.000]
Griesemer 2020	345	358	0.964	[0.939; 0.981]
Bhattacharya 2020	106	106	1.000	[0.966; 1.000]
Byrne 2020	96	96	1.000	[0.962; 1.000]
Cauliey 2020	1889	1883	0.993	[0.988; 0.999]
Hanson 2020	268	274	0.978	[0.953; 0.992]
Moreno-Conrreras 2020	102	130	0.785	[0.704; 0.852]
Pasomsunb 2020	179	181	0.989	[0.961; 0.999]
Skolimowska 2020	112	113	0.991	[0.952; 1.000]
Vaz 2020	82	84	0.976	[0.917; 0.997]
Yokota, airport 2020	1758	1756	1.000	[0.998; 1.000]
Yokota, contact 2020	114	120	0.950	[0.894; 0.981]
Guclu 2020	33	37	0.892	[0.746; 0.970]
Senk 2020	366	375	0.976	[0.955; 0.989]
Altawalah 2020	529	547	0.967	[0.948; 0.980]
Procop 2020	177	178	0.994	[0.969; 1.000]
Kandeil 2020	383	386	0.992	[0.977; 0.998]
Braz-Silva 2020	131	131	1.000	[0.972; 1.000]
Esther Babady 2020	69	70	0.986	[0.923; 1.000]
Cheuk 2020	70	107	0.654	[0.556; 0.744]
Iwasaki 2020	66	67	0.985	[0.920; 1.000]
Kojima 2020	16	22	0.727	[0.498; 0.893]
McCormick-Baw 2020	105	106	0.991	[0.949; 1.000]
Miller 2020	56	57	0.982	[0.906; 1.000]
Vogels 2020	30	33	0.909	[0.757; 0.981]
Boerger 2021	246	248	0.992	[0.971; 0.999]
Toppings 2021	33	33	1.000	[0.984; 1.000]
Xun 2021	73	74	0.986	[0.927; 1.000]
Masse 2021	85	87	0.977	[0.919; 0.997]
Sasikala 2021	26	26	1.000	[0.868; 1.000]
Mohd Thabit 2021	36	40	0.900	[0.763; 0.972]
da Costa Fernandes 2021	142	146	0.973	[0.931; 0.992]
da Costa Fernandes 2021	16	16	1.000	[0.794; 1.000]
Marx 2021	147	150	0.980	[0.943; 0.996]
Marx 2021	292	295	0.990	[0.971; 0.998]
Marx 2021	436	442	0.986	[0.971; 0.995]
Abashtianik 2021	69	76	0.908	[0.819; 0.962]
Alkhateeba 2021	18	18	1.000	[0.815; 1.000]
Alkhateeba 2021	3	3	1.000	[0.282; 1.000]
Alkhateeba 2021	20	21	0.952	[0.762; 0.999]
Bidka 2021	33	35	0.943	[0.808; 0.983]
Stokes 2021	5	7	0.714	[0.290; 0.963]
Fernández-González 2021	171	175	0.977	[0.943; 0.994]
Herrera 2021	189	1877	0.995	[0.990; 0.997]
Trobajo-Sanmartín 2021	309	312	0.990	[0.972; 0.998]

Random effects model

| 11482 |

Heterogeneity: $I^2 = 89\%$, $T^2 = 2.0146$, $p < 0.01$
Appendix 6 - Forest plots of the negative predictive value of the included studies.
Appendix 7 - Forest plots of the positive predictive value of the included studies.

Study	Events	Total	Proportion	95% CI
Akgun 2020	30	35	0.857	[0.697; 0.952]
Williams 2020	33	34	0.971	[0.847; 0.999]
Landry 2020	30	30	1.000	[0.884; 1.000]
Griesemer 2020	91	104	0.875	[0.796; 0.932]
Bhattarcharya 2020	53	53	1.000	[0.933; 1.000]
Byrne 2020	12	12	1.000	[0.735; 1.000]
Caulley 2020	34	48	0.708	[0.559; 0.830]
Hanson 2020	75	81	0.926	[0.846; 0.972]
Moreno-Contreras 2020	41	69	0.594	[0.469; 0.711]
Pasomsub 2020	16	18	0.889	[0.653; 0.986]
Skolimowska 2020	15	16	0.938	[0.898; 0.998]
Vaz 2020	67	69	0.971	[0.889; 0.999]
Yokota, airport 2020	4	4	1.000	[0.398; 1.000]
Yokota, contact 2020	38	44	0.864	[0.726; 0.948]
Gudu 2020	23	27	0.852	[0.663; 0.958]
Senok 2020	19	28	0.679	[0.476; 0.841]
Altawalah 2020	287	305	0.941	[0.908; 0.965]
Procop 2020	38	39	0.974	[0.865; 0.999]
Kandel 2020	39	42	0.929	[0.805; 0.985]
Braz-Silva 2020	55	55	1.000	[0.935; 1.000]
Esther Babady 2020	16	17	0.941	[0.713; 0.999]
Cheuk 2020	104	141	0.738	[0.657; 0.808]
Iwasaki 2020	8	9	0.889	[0.518; 0.997]
Kojima 2020	20	26	0.769	[0.564; 0.910]
McCormick-Baw 2020	47	48	0.979	[0.889; 0.999]
Miller 2020	33	34	0.971	[0.847; 0.999]
Vogels 2020	32	35	0.914	[0.769; 0.982]
Boerger 2021	30	32	0.938	[0.795; 1.000]
Toppings 2021	28	28	1.000	[0.877; 1.000]
Xun 2021	28	29	0.966	[0.822; 0.999]
Masse 2021	51	53	0.962	[0.870; 0.995]
Sasikala 2021	128	128	1.000	[0.972; 1.000]
Mohd Thabit 2021	45	49	0.918	[0.804; 0.977]
da Costa Fernandes 2020	67	71	0.944	[0.862; 0.984]
da Costa Fernandes 2021	60	60	1.000	[0.938; 1.000]
Marx 2021	44	47	0.936	[0.825; 0.987]
Marx 2021	2	5	0.400	[0.053; 0.853]
Marx 2021	46	52	0.885	[0.766; 0.956]
Abasianjik 2021	16	23	0.696	[0.471; 0.868]
Alkhateeba 2021	12	12	1.000	[0.735; 1.000]
Alkhateeba 2021	4	4	1.000	[0.398; 1.000]
Alkhateeba 2021	16	17	0.941	[0.713; 0.999]
Bidikia 2021	13	15	0.867	[0.595; 0.983]
Stokes 2021	121	123	0.984	[0.942; 0.998]
Fem?ndez-Gonz?lez 2021	39	43	0.907	[0.779; 0.974]
Herrera 2021	139	149	0.933	[0.880; 0.967]
Trobajo-Sanmart?n 2021	168	171	0.982	[0.950; 0.996]

Random effects model | 2534 | 0.940 | [0.912; 0.960] |
Appendix 8 - Forest plots of A) the sensitivity, B) the specificity, C) the negative predictive value, and D) the positive predictive value regarding the effect of geographic differences on self-collected saliva for COVID-19.
Appendix 9 - Forest plots of A) the sensitivity, B) the specificity, C) the negative predictive value, and D) the positive predictive value regarding the effect of saliva collection method on self-collected saliva for COVID-19.
Appendix 10 - Forest plots of A) the sensitivity, B) the specificity, C) the negative predictive value, and D) the positive predictive value regarding the effect of presence or absence of symptoms on the diagnostic odds ratios on self-collected saliva for COVID-19.
Appendix 11 - The effect of geographic differences on the diagnostic odds ratios of self-collected saliva for COVID-19.

Study	Experimental Events	Control Events	Odds Ratio	OR	95%-CI	Weight
Akgun 2020	30	35	1.03	1.05		
Bhattacharya 2020	53	53	1.00	1.00		
Pasomsub 2020	16	18	0.91	0.77		
Yokota, airport 2020	4	4	1.00	1.00		
Yokota, contact 2020	38	44	0.89	0.76		
Guclu 2020	23	27	0.89	0.76		
Senok 2020	19	28	0.69	0.53		
Akwawaa 2020	287	305	0.96	0.81		
Cheuk 2020	104	141	0.75	0.63		
Iwaseki 2020	8	9	1.00	1.00		
Sasaki 2021	128	128	1.00	1.00		
Mohd Thabit 2021	45	49	0.91	0.77		
BDKA 2021	13	15	0.91	0.77		

Random effects model

Heterogeneity: $I^2 = 0.00$, $Q^2 = 2.3028$, $p = 0.10$

Study	Experimental Events	Control Events	Odds Ratio	OR	95%-CI	Weight
Byrnes 2020	12	12	1.00	1.00		
Skolimowska 2020	15	16	0.96	0.81		
Massa 2021	51	53	0.97	0.83		
da Costa Fernandes 2021	67	71	0.91	0.77		
Ferreira 2021	16	17	0.91	0.77		
Trebajo-Samantar 2021	168	171	0.91	0.77		

Random effects model

Heterogeneity: $I^2 = 0.00$, $Q^2 = 2.3028$, $p = 0.10$

Study	Experimental Events	Control Events	Odds Ratio	OR	95%-CI	Weight
Landry 2020	30	30	1.00	1.00		
Greiser 2020	104	104	1.00	1.00		
Castle 2020	24	26	0.92	0.78		
Hanson 2020	76	81	0.95	0.81		
More 2020	11	11	1.00	1.00		
Procop 2020	38	39	0.91	0.77		
Kandeli 2020	39	42	0.89	0.76		
Esther Babady 2020	16	17	0.91	0.77		
Kojima 2020	20	26	0.95	0.81		
McCormick-Baw 2020	47	48	0.95	0.81		
Miller 2020	33	34	1.00	1.00		
Vogels 2020	32	32	1.00	1.00		
Boerger 2021	30	32	0.96	0.81		
Toppings 2021	28	28	1.00	1.00		
Xun 2021	21	22	0.95	0.81		
Marx 2021	44	47	0.95	0.81		
Marx 2021	5	5	1.00	1.00		
Marx 2021	46	52	0.88	0.75		
Akhateeb 2021	12	12	1.00	1.00		
Akhateeb 2021	4	4	1.00	1.00		
Akhateeb 2021	16	17	1.00	1.00		
Stokes 2021	121	123	1.00	1.00		
Hervera 2021	139	143	1.00	1.00		

Random effects model

Heterogeneity: $I^2 = 0.00$, $Q^2 = 2.3028$, $p = 0.10$

Study	Experimental Events	Control Events	Odds Ratio	OR	95%-CI	Weight
Williams 2020	33	34	1.00	1.00		

Random effects model

Heterogeneity: not applicable

Study	Experimental Events	Control Events	Odds Ratio	OR	95%-CI	Weight
Vaz 2020	62	69	0.88	0.75		
Braz-Silva 2020	55	55	1.00	1.00		

Random effects model

Heterogeneity: $I^2 = 0.00$, $Q^2 = 2.3028$, $p = 0.10$

Residual heterogeneity: $I^2 = 80.0$, $p = 0.00$
Appendix 12 - The effect of saliva collection method on the diagnostic odds ratios of self-collected saliva for COVID-19.
Appendix 13 - The effect of presence or absence of symptoms on the diagnostic odds ratios of self-collected saliva for COVID-19.