Loss of O-Linked Protein Glycosylation in *Burkholderia cenocepacia* Impairs Biofilm Formation and Siderophore Activity and Alters Transcriptional Regulators

Cameron C. Oppy,a,b Leila Jebeli,a Miku Kuba,a Clare V. Oates,a Richard Strunngell,a Laura E. Edgington-Mitchell,b,c,d Miguel A. Valvano,a,f Elizabeth L. Hartland,a,g,h Hayley J. Newton,a Nichollas E. Scotta

- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, New York, USA
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia

ABSTRACT O-linked protein glycosylation is a conserved feature of the *Burkholderia* genus. The addition of the trisaccharide β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc to membrane exported proteins in *Burkholderia cenocepacia* is required for bacterial fitness and resistance to environmental stress. However, the underlying causes of the defects observed in the absence of glycosylation are unclear. Using proteomics, luciferase reporter assays, and DNA cross-linking, we demonstrate the loss of glycosylation leads to changes in transcriptional regulation of multiple proteins, including the repression of the master quorum CepR/I. These proteomic and transcriptional alterations lead to the abolition of biofilm formation and defects in siderophore activity. Surprisingly, the abundance of most of the known glycosylated proteins did not significantly change in the glycosylation-defective mutants, except for BCAL1086 and BCAL2974, which were found in reduced amounts, suggesting they could be degraded. However, the loss of these two proteins was not responsible for driving the proteomic alterations, biofilm formation, or siderophore activity. Together, our results show that loss of glycosylation in *B. cenocepacia* results in a global cell reprogramming via alteration of the transcriptional regulatory systems, which cannot be explained by the abundance changes in known *B. cenocepacia* glycoproteins.

IMPORTANCE Protein glycosylation is increasingly recognized as a common post-translational protein modification in bacterial species. Despite this commonality, our understanding of the role of most glycosylation systems in bacterial physiology and pathogenesis is incomplete. In this work, we investigated the effect of the disruption of O-linked glycosylation in the opportunistic pathogen *Burkholderia cenocepacia* using a combination of proteomic, molecular, and phenotypic assays. We find that in contrast to recent findings on the N-linked glycosylation systems of *Campylobacter jejuni*, O-linked glycosylation does not appear to play a role in proteome stabilization of most glycoproteins. Our results reveal that loss of glycosylation in *B. cenocepacia* strains leads to global proteome and transcriptional changes, including the repression of the quorum-sensing regulator cepR (*BCAM1868*). These alterations lead to dramatic phenotypic changes in glycosylation-null strains, which are paralleled by both global proteomic and transcriptional alterations, which do not appear to directly result from the loss of glycosylation per se. This research unravels the pleiotropic effects of O-linked glycosylation in *B. cenocepacia*, demonstrating that its loss...
The *Burkholderia cepacia* complex (Bcc) includes diverse and ubiquitous, phylogenetically related Gram-negative species (1). To date, 20 Bcc species have been identified (1–3), but the commonality of Bcc in the environment (2, 3) and their recognition as opportunistic pathogens (4–6) continually drives the identification of new Bcc members. Within clinical settings, Bcc can lead to fatal infections (7, 8) that are challenging to control with antibiotic therapies (9) and can be spread by patient-to-patient transmission (10, 11). This is especially problematic for Bcc infections in people with cystic fibrosis (CF), where Bcc infections result in accelerated loss of lung function (12) as well as increased morbidity and mortality compared to other infectious agents (13, 14). *B. cepacia* is one of the most common Bcc species isolated from CF patients across the globe (15–18) and is generally associated with more fulminant disease leading to higher mortality than observed with other Bcc species (19). One of the most serious clinical outcomes from *B. cepacia* infections in people with CF is a condition known as “cepacia syndrome,” an unrelenting necrotizing pneumonia that rapidly leads to respiratory failure, bacteremia, and death (20). Although interventions with antimicrobial therapies can stop or even reverse cepacia syndrome (20), the intrinsic resistance of Bcc to multiple classes of antibiotic (21–23) and their propensity to form biofilms (24) make treatment success variable at best (9). To improve clinical outcomes, it is therefore essential to better understand the factors contributing to the ability of *B. cepacia* to infect immunocompromised hosts.

Biofilm formation is associated with bacterial persistence and the failure of antimicrobial treatments in a range of pathogens (25). Bcc members, including *B. cepacia*, produce biofilms on abiotic (26, 27) and biotic (28) surfaces. However, *B. cepacia* bacteria in the CF lung do not appear to form true biofilms, but instead are observed extracellularly as small clusters surrounded by mucus and mainly within phagocytic cells in the submucosal tissue (29, 30). Increased biofilm production is associated with bacterial persistence in CF patients (31), and mutations selected for during chronic infections in CF patients mirror those observed during biofilm *in vitro* evolution experiments (32). The ability to form biofilms in Bcc, as well as the expression of multiple virulence factors, is controlled by numerous quorum sensing (QS) systems (33).

A key class of QS systems associated with Bcc virulence are based on homoserine lactones (HSLs) (24). Across the Bcc, some HSL QS systems are variable or lineage specific, such as CcrI/I and CepR2 (34, 35), while others are highly conserved in all members. One such highly conserved HSL QS system is the CepR/I regulon (36, 37), which generates N-octanoylhomoserine lactone (C8-HSL) using the HSL synthase CepI (BCAM1870), which in turns activates the transcriptional regulator CepR (37, 38). CepR (BCAM1868) is a major regulator of biofilm formation (39), and disruption of CepR/I attenuates Bcc virulence in several models (40, 41) and reduces disease severity (40, 42). The importance of the CepR/I QS system in Bcc virulence stems from its broad regulatory profile affecting multiple virulence-associated genes (43–45), such as those encoding the secreted zinc metalloproteases ZmpA (46) and ZmpB (47), siderophore production (39, 48), and the key mediator of biofilm formation protein A (BapA) (45).

Glycosylation is increasingly recognized as a common posttranslational modification in bacterial systems (49–56). Many glycosylation systems are conserved across bacterial genera (57, 58) and phyla (59, 60), suggesting glycosylation is critical for optimal proteome functionality. Disruption of glycosylation pathways in several species results in reduced fitness compared to glycosylation-competent strains (52–56). However, the underlying cause of fitness reduction remains poorly defined (61, 62). Only recently have mechanistic insights emerged on how the loss of glycosylation affects bacterial physiology and pathogenesis. In *Campylobacter jejuni*, loss of glycosylation results in

KEYWORDS glycosylation, pathogenesis, *Burkholderia cepacia*, posttranslational modifications, proteomics, DNA binding, CepR, glycoproteins, protein modification
decreased stability of the majority of known glycoproteins, which in turn affects virulence (63, 64). These data support a model whereby bacterial N-linked glycosylation contributes to protein stability, but it is unclear whether other glycosylation systems, such as O-linked glycosylation, have evolved to stabilize glycosylated proteins.

Previously, we reported *B. cenocepacia* possesses an O-linked glycosylation system responsible for the modification of at least 23 proteins with a trisaccharide glycan using the enzyme PglL (BCAL0960) (56). Building on this work, we recently identified the biosynthetic locus, the O-glycosylation cluster (OGC [BCAL3114 to BCAL3118]), responsible for the generation of the O-linked glycan, established the O-linked glycan structure as β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc, and demonstrated that glycosylation was required for optimal bacterial fitness and resistance to clearance in the *Galleria mellonella* infection models (65). Although these studies have demonstrated a link between glycosylation and bacterial fitness, the mechanism remains unclear. Using quantitative proteomic approaches, we sought to understand the proteome changes resulting from the loss of O-linked glycosylation in *B. cenocepacia*. We demonstrated that loss of glycosylation in *B. cenocepacia* resulted in global proteome alterations beyond the known glycoproteome, which are associated with widespread alterations in transcriptional regulation. We discovered that the HSL QS system CepR/I is repressed in glycosylation-defective mutants, and this coincides with defective biofilm formation.

Towards understanding the proteomic impact of glycosylation, we assessed the effect of loss of glycosylation on the proteome. To achieve this, we generated markerless deletion mutations in the lipoprotein-synthesizing enzyme DsbANm-His6 (BCAL3114) (56), the recently identified O-linked glycan cluster (ΔOGC [BCAL3114 to BCAL3118]) responsible for the generation of the glycan used for O-linked glycosylation (65), and a double-glycosylation-null strain (ΔpglL ΔOGC). We also constructed a chromosomal pglL complemented strain (ΔpglL amrAB::S7::pglL-His10) (see Fig. S1A in the supplemental material). The rationale for creating multiple glycosylation-defective strains was to eliminate potential confounding effects arising from blocking glycosylation at a specific step and the corresponding accumulation of unprocessed lipid-linked glycans. Western blot analysis using the glycoprotein acceptor protein DsbA-His10 (56, 66) supported the loss of glycosylation in the ΔpglL, ΔOGC, and ΔpglL ΔOGC strains, as well as restoration of glycosylation in the ΔpglL amrAB::S7::pglL-His10 strain (Fig. 1A). In contrast to our previously reported plasmid-based PglL complementation approaches (56) chromosomal complementation lead to the restoration of glycosylation to near wild-type (WT) levels (Fig. S1B) as well as restoration of motility (Fig. S1C) compared to only partial restoration previously reported (56).

Using label-free quantification (LFQ)-based quantitative proteomics, 5 biological replicates of each strain were investigated, leading to the identification of 3,399 proteins with 2,759 proteins quantified in at least 3 biological replicates in a single biological group (see Fig. S2A and B and Data Set S1, tab 1, in the supplemental material). As expected, no glycopeptides were observed in the ΔpglL, ΔpglL ΔOGC, and ΔOGC strains, while multiple glycopeptides were observed in the wild-type and ΔpglL amrAB::S7::pglL-His10 strains (Fig. S1D). Hierarchical clustering of Pearson correlations of proteome samples demonstrated robust correlation between all samples (average ...
FIG 1 Disruption of O-linked glycosylation results in multiple changes in the proteome. (A) Western analysis of strains expressing the glycosylation substrate DsbANm-His6 confirms the loss of glycosylation in the ΔpglL, ΔOGC, and ΔpglL ΔOGC mutant strains and (Continued on next page)
Pearson correlation of 0.98 [Data Set S1, tab 2]); yet three discrete proteome clusters were readily identified separating the wild-type K56-2 and ΔpggL amrAB::S7-pgL-His10 strains and the glycosylation-null strains (Fig. 1B). Examination of the most profound alterations, proteins with a $-\log_{10} P$ value of >3 and a fold change greater than $\pm 2 \log_2$ units, revealed alterations in protein levels observed in the ΔpggL mutant that were mirrored in the ΔOGC and ΔpggL ΔOGC strains, which were restored by complementation (Fig. 1C). Consistent with the observed motility defects (Fig. S1C), the levels of proteins associated with flagellum-mediated motility and chemotaxis, including BCAL0114 (FliC), BCAL0129 (CheA), BCAL0524 (FliG), and BCAL0525 (FliF), were significantly reduced in glycosylation-null strains. Importantly, multiple known virulence-associated proteins were also decreased in the glycosylation-null strains, including the heme receptor protein HuvA (BCAM2626 [67]) and nematocidal protein AidA (BCAS0293 [68]). Numeration of the overlap of all altered protein between glycosylation-null strains by Fisher exact enrichment analysis demonstrated a substantial enrichment between these three groups (Fisher’s exact test, 6.7502 $\times 10^{-177}$ and 4.3784 $\times 10^{-245}$ for the ΔpggL compared with ΔOGC strain, and for the ΔpggL compared with ΔpggL ΔOGC strain, respectively) (Data Set S1, tab 3, and Fig. S2C). These results revealed that the loss of glycosylation due to disruption of pglL or OGC leads to similar changes, which are largely complemented to parental levels by reintroduction of pglL in the chromosome.

Loss of glycosylation results in reduction in CepR/I transcription and the levels of DNA-associated CepR. Enrichment analysis of the altered proteins in glycosylation-null strains demonstrate the over representation of a range of categorical groups based on GO (Gene Ontology) terms, protein localization, and virulence-associated factor assignments. These groups highlight that protein localization assignments and virulence-associated factors were similarly affected in ΔpggL and ΔOGC strains, recapitulating observations made at the individual protein level (Fig. 2; Data Set S1, tab 3). Interestingly, enrichment analysis highlighted the link between the loss of O-linked glycosylation and changes that were broader than only motility and virulence. For example, differences also observed in proteins associated with DNA-sequence specific

FIG 1 Legend (Continued)
restoration of glycosylation in the ΔpggL amrAB::S7-pgL-His10 chromosomal complemented strain. (B) Pearson correlation analysis demonstrates three discrete clusters observed across the proteomic analysis which separate glycosylation-competent and glycosylation-null strains. (C) Z-scored heat map of proteins observed to undergo alterations between glycosylation-competent and glycosylation-null strains reveals alterations in motility and chemotaxis (proteins in boldface), including BCAL0114 (FliC), BCAL0524 (FliG), and BCAL0525 (FliF), as well as known CepR-regulated protein BCAS0293 (AidA).
binding and transcriptional regulation (Fig. 2; Data Set S1, tab 3). This observation suggested that loss of glycosylation results in alterations in the transcriptional landscape of *B. cenocepacia*. As virulence is coordinated by global regulators such as CciR, CepR, ShvR, and AtsR in *B. cenocepacia* (35, 43, 69, 70), we assessed if known regulators could account for the observed proteome changes in glycosylation-null strains. As our data demonstrated minimal alteration of the regulator ShvR (BCAS0225; Data Set S1, tab 1) across the analyzed strains, and disruption of both atsR (BCAM0379) and cciR (BCAM0240) has previously been associated with increased motility (43, 69), we reasoned that the regulator CepR (BCAM1868) may be responsible for the glycosylation-dependent differences in our mutant strains. Although CepR is observed within our proteomic analysis, its low intensity prevented accurate quantitation across all strains (Data Set S1, tab 1). However, the stringently CepR-regulated AidA protein (BCAS0293 [45, 71]) exhibited decreases of −2.9 and −3.1 log2 within ΔpglL and ΔOGC strains compared to the WT (Fig. 1C), indicating reduced CepR levels. This observation prompted us to investigate regulation of other known CepR-regulated genes and proteins. Using available microarray data of CepR-regulated genes (43), we investigated the correlation of the proteome changes observed in the absence of glycosylation, with alterations observed in response to the disruption of CepR. We observed a statistically significant enrichment of CepR-regulated proteins altered in the absence of glycosylation (multiple hypothesis corrected P values of 1.79 × 10^6 and 6.69 × 10^6 for the ΔpglL and ΔOGC strains, respectively [Data Set S1, tab 3]), supporting a link between CepR and the alteration observed in glycosylation-null strains and suggesting that the loss of glycosylation may influence the *B. cenocepacia* CepR regulon.

To determine transcriptional changes in cepR/I genes, we introduced the cepR and cepI luciferase promoter reporter (pPromcepR [69] and pCP300 [72]) into the wild-type K56-2, mutant ΔpglL, and complemented ΔpglL amrAB::S7-pglL-His10 strains. As expected from the proteomic results, the ΔpglL strain showed decreased induction of both cepI and cepR over a 24-h period (Fig. 3A; see Fig. S3 in the supplemental material) compared with the wild-type and ΔpglL amrAB::S7-pglL-His10 strains. Detailed examination at 12 h (log phase), 16 h (the transition from log to stationary phase), and 20 h (stationary phase) revealed higher levels of transcription in the wild type of both cepI and cepR at 16 and 20 h compared with transcription levels in the ΔpglL mutant, despite comparable growth kinetics (see Fig. S4A and B in the supplemental material). As the C8-HSL levels affect the response of CepI and CepR in *B. cenocepacia* (39, 44, 73), we assayed cepR/I transcription in the absence and presence of additional C8-HSL (10 μM [Fig. 3B]). In response to exogenous C8-HSL, cepI transcription increased in all strains (Fig. 3B), consistent with the positive-feedback response expected to heighten C8-HSL levels (39, 44). In contrast, while the addition of C8-HSL led to no change in cepR transcription in the ΔpglL mutant, it resulted in reduced transcription of cepR to the level observed in the wild-type K56-2 strain. Complementation of pglL, using amrAB::S7-pglL-His10 restored CepI transcription to wild-type levels but only partially restored CepR transcription (Fig. 3B). As expected from the reduction in cepR/I transcription resulting from the loss of glycosylation, cepR and cepI transcription was also compromised in ΔOGC strains (Fig. S4C to F). Together, these results indicate that both cepR and cepI transcription are altered in the loss of glycosylation, with the resulting cepR levels resembling the levels observed during C8-HSL-induced repression in wild type.

As the CepR protein autoregulates cepR’s own transcription (48), we reasoned that the decreased transcription in the ΔpglL mutant would correspond to decreased levels of DNA-bound CepR. To directly assay DNA binding by CepR, we monitored the DNA-bound proteome using formaldehyde-based cross-linking coupled to DNA enrichment (74). Initial analysis of the DNA-bound proteome found glycosylation-null strains (ΔpglL and ΔOGC) and glycosylation-proficient strains (wild type and ΔpglL armAB::S7-pglL-His10) possessed distinct proteome profiles with multiple uncharacterized transcriptional regulators (e.g., BCAL0946, BCAL1916, BCAS0168, BCAL2309, and BCAL0472) which were altered by the loss of glycosylation (Fig. 3C; Data Set S1, tab 4). Although this analysis enabled the identification of CepR, its low abundance prevented its...
FIG 3 CepR/I transcription is altered in glycosylation-null strains. (A) Twenty-four-hour luciferase profile of strains grown with either the CepI reporter pCP300 or CepR reporter pPromCepR demonstrating alteration in luciferase activity in the ΔpglL mutant compared to the

(Continued on next page)
quantitation across biological replicates. To improve the monitoring of CepR, targeted proteomic analysis was undertaken using PRM assays, which confirmed the reduction in DNA-associated CepR in the \(\Delta pglL \) mutant compared with the wild-type and \(\Delta pglL \) \(\text{armAB}::\text{S7}-\text{pglL-}\text{His}_{10} \) strains (Fig. 3D \(P = 0.017 \) for wild type versus \(\Delta pglL \) strain; Data Set S1, tab 5). In agreement with the total proteome and \(\text{lux} \) reporter measurements, the DNA-bound proteome supports multiple transcription-associated proteins, including the global regulator CepR, that are altered in the absence of glycosylation.

The \(\Delta pglL \) mutant demonstrates a reduced ability to form biofilms and produce siderophores. The observed reductions in CepR/I transcription suggested that CepR/I-linked phenotypes may also be altered in glycosylation-null strains. To test this hypothesis, we assessed two phenotypes associated with CepR/I regulation: (i) the production of biofilm under static 24-h growth and (ii) siderophore activity (39, 43–45, 48). Consistent with an impact of glycosylation on known CepR/I-regulated phenotypes, we observed a marked reduction in biofilm formation in the \(\Delta pglL \) mutant, which was partially restored by complementation (Fig. 4A). Interestingly, we also observed that the method of complementation—i.e., expression of PglL-His\(_{10}\) driven from the native \(pglL \) promoter (\(\Delta pglL \) \(\text{armAB}::\text{native-}\text{pglL-}\text{His}_{10} \)) or from the constitutive S7 promoter (\(\Delta pglL \) \(\text{armAB}::\text{S7-}\text{pglL-}\text{His}_{10} \))—affected the restoration of biofilm formation.
(Fig. 4A). Examination of independently created ΔpgIL and ΔpgIL amrAB::native-pgil-His10 strains confirmed a link between biofilm formation through phenotype restoration by complementation (see Fig. S5A in the supplemental material). Chrome azurol S (CAS) assays, used to assess the global levels of siderophore activity, demonstrated a reproducible effect in the ΔpgIL mutant, which was completely restored by complementation when Pgil was expressed from either its native or the S7 promoter (Fig. 4B and C). The ΔOGC and ΔOGC ΔpgIL strains also demonstrate biofilm and siderophore alterations compared to the wild type, although these alterations were not completely identical to those observed in the ΔpgIL mutant (Fig. S5B to D). Together, we conclude that phenotypes associated with CepR/I regulation, including biofilm and siderophore activity, are affected by the loss of glycosylation.

Except for BCAL1086 and BCAL2974, proteins that are normally glycosylated remain stable in the absence of glycosylation. As the loss of glycosylation in other bacterial glycosylation systems leads to protein instability (63, 64, 75), we examined whether protein instability in B. cenocepacia may be responsible for the phenotypic changes in glycosylation-null strains. Our proteomic analysis identified 21 out of 23 known glycoproteins (56), yet only 2 were altered in abundance in glycosylation-negative strains: BCAL1086 (−5.7 log2) and BCAL2974 (−2.5 log2) (Fig. 5A; Data Set S1, tab 1). To confirm the observed decreases in abundance, endogenous BCAL1086 and BCAL2974 were His10 tagged at the C terminus. While His tagging did not allow the detection of BCAL2974 by Western analysis (data not shown), the introduction of the His10 epitope into BCAL1086 allowed quantification of endogenous BCAL1086 in the K56-2 wild-type, ΔpgIL mutant, and ΔpgIL amrAB::S7-pgil-His10 complemented strain backgrounds and confirmed the loss of BCAL1086 in the ΔpgIL mutant (Fig. 5B).

We sought to directly assess whether BCAL1086 was subjected to increased degradation in the ΔpgIL mutant, as a measure of instability. For this, we monitored the endogenous peptide pool (76), quantifying peptides derived from 783 proteins (Data Set S1, tabs 6 and 7) in the B. cenocepacia K56-2 wild-type, ΔpgIL mutant, and ΔpgIL amrAB::S7-pgil-His10 complemented strain. Consistent with the degradation of BCAL1086, we observed an increase in the abundance of BCAL1086-derived peptides in the ΔpgIL mutant, while peptides from other known glycoproteins showed only modest changes (Fig. 5C; Data Set S1, tab 7). Within this peptidomic analysis, we observed that multiple unique BCAL1086 peptides were present in the ΔpgIL mutant clustered around the central region of BCAL1086 (Fig. 5D), confirming that BCAL1086 was expressed in the ΔpgIL mutant, but subjected to proteolysis. Together, our data support that BCAL1086 becomes degraded in the absence of glycosylation, but the majority of known B. cenocepacia glycoproteins are unaffected.

Role of BCAL1086 and BCAL2974 in ΔpgIL phenotypes. As changes in the glycoproteins BCAL1086 and BCAL1086 coincided with an alteration in biofilm and siderophore activity, we investigated if the loss of BCAL2974 and BCAL1086 could be responsible for defects observed in the ΔpgIL mutant. To answer this question, ΔBCAL1086 and ΔBCAL2974 strains were created and assessed for their effect on biofilm production and siderophore activity, as well as virulence in G. mellonella, a phenotype previously associated with ΔpgIL mutation (56). Both BCAL1086 and BCAL2974 have no known functions and lack homology to known domains but are present in multiple Burkholderia species. Assessment of 24-h static biofilm growth showed the ΔBCAL1086 mutation had no effect on biofilm formation, while ΔBCAL2974 resulted in a small but reproducible decrease in biofilm development. However, this effect is minimal compared to the defect observed in ΔpgIL and ΔcepI mutants (Fig. 6A). The ability of ΔBCAL1086 and ΔBCAL2974 mutants to produce siderophores was unaffected (Fig. 6B and C). Similarly, while G. mellonella infections showed that ΔpgIL causes reduced mortality at 48 h postinfection compared to in the K56-2 WT (P = 0.0015), ΔBCAL2974, ΔBCAL1086, and ΔpgIL amrAB::native-pgil-His10 strains demonstrated wild-type levels of lethality in G. mellonella at 48 h (Fig. 6D). These results suggest that even though
BCAL2974 and BCAL1086 are influenced by the loss of glycosylation, neither protein is solely responsible for the known defect observed in the ΔpglL mutant.

We also investigated whether the loss of either BCAL2974 or BCAL1086 drives proteome changes. Using label-free-based quantitative proteomics, we compared the proteomes of the K56-2 WT, ΔBCAL2974, ΔBCAL1086, ΔpglL, ΔcepR, ΔcepI, and ΔpglL amrAB::S7-pgL-His10 to assess the similarity between the proteomes as well as the specific proteins affected by the loss of these proteins. Proteomic analysis led to the identification of 3,730 proteins, with 2,752 proteins quantified in at least 3 biological replicates in a single biological group (Data Set S1, tab 8). Clustering of the proteomic analysis revealed that ΔBCAL2974 and ΔBCAL1086 strains closely grouped with the WT strains, while the ΔpglL, ΔcepR, ΔcepI, and ΔpglL amrAB::S7-pgL-His10 strains formed discrete clusters. This macroanalysis indicated that mutations in BCAL2974 or BCAL1086 had a minimal effect on the proteome (Fig. 7A; Data Set S1, tabs 9 and 10). Supporting this conclusion, analysis of the specific proteins that varied between the different

![Proteome changes observed in known glycoproteins](image)

![Proteome changes within endogenous derived peptides](image)

BCAL1086 : Observed endogenous peptides

```
MNMTSRARRVPGLSILVAAAGAAGALLLAGEGKSGFIPVQAEPHDASADAAAANNAAAKLALCDOVASTNCQIANAAKAGASAAS

DAADAAANNAAKALQDOVA SAAADAAANNAAKALQDOVA
```

ΔpglL specific peptides

```
AVPPLSASGLASAADAQQDAASAVVHAASEAGAKIAEAAGKXQLAQWSDQDSAGAAPKPSGE
EAKKXLQDSQDSAGAAPKPSGE
```

Glycosylation competent specific peptides

```
HAASEAGAKIA
```

Glycopeptides

```
```

FIG 5 The stability of glycoproteins BCAL1086 and BCAL2974 is affected by loss of glycosylation. (A) Proteomic analysis demonstrates BCAL1086 and BCAL2974 decrease in abundance in the absence of glycosylation. (B) Endogenous tagging of BCAL1086 confirms the loss of BCAL1086 in the ΔpglL background. (C) Proteomic analysis of endogenous derived peptides demonstrates an increased abundance of BCAL1086-derived peptides in the absence of glycosylation. (D) Analysis of endogenous peptides confirms the presence of unique peptide fragments from BCAL1086 in the ΔpglL background.
strains demonstrated few proteome alterations in the ΔBCAL2974 and ΔBCAL1086 mutants compared to the WT/BCAL bgL, ΔcepR, and ΔcepI mutants (Fig. 7B), with the ΔcepR, ΔcepI, and ΔbgL strains also demonstrating the expected similarity in their proteome changes (Fisher exact test, ΔcepR versus ΔbgL strain, \(P = 3.25 \times 10^{-5} \), and ΔcepI versus ΔbgL strain, \(P = 6.95 \times 10^{-4} \) [Data Set S1, tab 11]). Taken together, the proteome analysis results support the contention that BCAL2974 and BCAL1086 have minimal effects on the proteome and are not responsible for the broad proteomic alterations observed in the ΔbgL mutant.

DISCUSSION

Although glycosylation is a common protein modification in bacterial species (49–51, 77) our understanding of how this modification influences bacterial physiology and pathogenesis is unclear. Recent insights into how glycosylation impacts bacterial proteomes have been obtained through study of the archetypical N-linked glycosylation system of C. jejuni (78, 79), yet it is unclear whether these observations are
generalizable to other glycosylation systems such as O-linked glycosylation systems. Studies on the role of N-linked glycosylation within C. jejuni have revealed that defects associated with the loss of glycosylation stem from the loss of glycoproteins (78, 79), suggesting that N-linked glycosylation extends protein longevity in C. jejuni. In contrast, we find here that loss of O-linked glycosylation in B. cenocepacia has a more limited effect on the proteins targeted for glycosylation with only a subset of the known glycoproteins being affected by the disruption of glycosylation (Fig. 5). Therefore, the defect associated with loss of O-linked glycosylation in B. cenocepacia cannot be merely explained by protein instability. Indeed, we demonstrate that loss of glycosylation leads to changes in the expression of nonglycosylated proteins whose expression is regulated by the CepR/I regulon (Fig. 3) (39, 42, 48). Therefore, our findings uncover a previously unknown link between loss of glycosylation and alterations in pathways controlled by global transcriptional regulators.

The observation that biofilm formation is reduced in the ΔpgIL mutant mirrors previous reports in Acinetobacter baumannii (55) and C. jejuni (63), but the link of this phenotype to alterations in regulations has not previously documented. Previous studies in B. cenocepacia have identified that not all CepR/I-regulated proteins are required for biofilm formation. However, BapA (BCAM2143) plays a major role in the formation of biofilms on abiotic surfaces, whereas the lectin complex BclACB (BCAM0184 to BCAM0186) contributes to biofilm structural development (45). Although BapA (BCAM2143) was not detected in any of our proteomic analyses, BcIA and BcIB (BCAM0186 and BCAM0184, respectively) were decreased in the ΔpgIL mutant (both with a $-1.0 \log_2$ decrease compared with the WT; $-\log_{10} P > 3.05$ [Data Set S1, tab 1]). Surprisingly, BcIA and BcIB increased in abundance in ΔpgIL, ΔOGC and ΔOGC strains (both 1.0 log₂ increases compared with WT; $-\log_{10} P > 1.4$ [Data Set S1, tab 1]).
and these mutants formed extensive biofilms (Fig. S5B). This result agrees with recent work showing that with disruption of BCAL3116, the third gene in the OGC, resulted in enhanced biofilm formation (80). It also should be noted that within this study, we observed that the method of complementation of pgIL also influenced the restoration of biofilm formation (Fig. 4A). As differences between the promoter used to drive pgIL expression can influence some glycosylation-null phenotypes, this supports the hypothesis that pgIL itself may be regulated under specific conditions. Concerning siderophore activity, our proteomic data reveal that siderophore-associated proteins were reduced in both ΔpgIL and ΔOGC strains (Fig. 2), with glycosylation-null strains producing reduced zones of clearing in the CAS assays (Fig. 4B and C; Fig. S5C and D). However, the magnitude of the reduction in the CAS assays differed in the mutant, since ΔOGC and ΔpgIL ΔOGC strains presented significantly smaller zones of clearing than the ΔpgIL strain (Fig. S5C and D). These results highlight that although the proteome changes observed in the ΔpgIL and ΔOGC glycosylation mutants are highly similar, they are not identical and show phenotypic differences. Therefore, a key question arising from our findings is how the loss of glycosylation alters gene regulation and whether the observed defects are simply the result of altered transcriptional control. The lack of any glycosylated signaling/receptor-associated proteins in B. cenocepacia (56) makes the identification of the link between a specific glycoprotein and transcriptional control unclear.

It is possible the observed alterations in biofilm formation and siderophore activity are not solely driven by altered CepR regulation, but also reflect additional transcriptional alterations in the glycosylation-null strains. This conclusion agrees with our observations of many differences in the abundance of transcriptional regulators in the DNA-associated proteome of glycosylation-null strains (Fig. 3C; Data Set S1, tab 4). Further, biofilm formation within B. cenocepacia is modulated by multiple transcriptional regulators (33), making CepR just one of a range of regulators that could be driving this phenotype. An additional driver of these pleiotropic effects may also be deleterious outcomes resulting from the manipulation of the O-linked glycosylation system. It has been suggested in C. jejuni that the disruption of glycosylation leads to undecaprenyl diphosphate decorated with N-linked glycan being sequestered from the general undecaprenyl diphosphate pool and that this depot effect may be a general phenomenon observed in all glycosylation mutants (64). Sequestration of undecaprenyl diphosphate was thought to drive an increase in the abundance of proteins in the nonmevalonate and undecaprenyl diphosphate biosynthesis pathways observed in glycosylation-null C. jejuni (64). However, in B. cenocepacia glycosylation mutants, we observe only minor alterations in the nonmevalonate (BCAL0802, BCAL1884, BCAL2015, BCAL2016, BCAL2085, BCAL2710, BCAM0911 and BCAM2738 [see Fig. S6A in the supplemental material]) and undecaprenyl diphosphate biosynthesis (BCAL2087 and BCAM2067 [Fig. S6B]) pathways, which argues against this phenomenon being common to all glycosylation mutants. Furthermore, the similarity of the proteome changes in the ΔpgIL, ΔOGC, and ΔpgIL ΔOGC strains (Fig. S2C) supports the conclusion that proteome changes are independent of the sequestration of the undecaprenyl diphosphate pool as ΔOGC and ΔpgIL ΔOGC strains are unable build the O-linked glycan on undecaprenyl diphosphate. Although our proteomic analysis shows similar protein levels across glycosylation-null and -competent strains, it is important to note that we have previously shown the loss of glycosylation reduces tolerance to oxidative and osmotic stresses (65). This suggests that additional off-target effects relating to lipid-linked glycan or membrane stress may occur that are driven by changes independent of protein abundance, such as changes in protein-protein interactions, protein localization, or protein folding.

Another explanation for the pleiotropic effects associated with loss of O-glycosylation could be the instability of the glycoproteins in the absence of the glycan. We identified two glycoproteins BCAL2974 and BCAL1086, both of unknown functions, which are reduced in abundance due to the loss of glycosylation. However, genetic experiments demonstrate that neither protein is responsible for the phenotypic and
proteomic changes associated with loss of glycosylation (Fig. 6 and 7). Furthermore, in the case of BCAL1086, endogenous tagging and degradomic analysis confirm the loss of this protein in the ΔpgLL background. Although these results support the breakdown of BCAL1086 as a consequence of the loss of glycosylation, an alternative explanation is that the changes in degradation arise from alterations in protease levels or activities in the ΔpgLL mutant. Previously, we reported that ΔpgLL results in enhanced casein proteolytic activity (65). However, our global proteome analysis shows only modest changes in protease levels. We also observed identical protease profiles from activity probe against multiple classes of protease in the wild-type, ΔpgLL, and ΔpgLL amrAB::S7-pgLL-His10 (Fig. S6C), suggesting all of these strains have similar protease activities. More importantly, aside from glycoproteins BCAL2974 and BCAL1086, the other proteins targeted for glycosylation remain consistently stable in the glycosylation-defective mutants. Although 23 glycoproteins are known in B. cenocepacia, additional glycoproteins may also exist that were missed in the initial characterization of B. cenocepacia glycoproteome. Regardless, although loss of glycosylation may affect the stability of some glycoproteins, the pleiotropic effect found in the glycosylation mutants cannot be explained by alterations in protein degradation.

In summary, this work provides a global analysis of the effect of O-linked glycosylation on B. cenocepacia traits. The application of quantitative proteomics enabled the assessment of nearly half the predicted proteome of B. cenocepacia K56-2 and revealed a previously unknown link between O-linked glycosylation and transcriptional alterations. The alteration in known transcriptional regulators, such as CepR, as well as its associated phenotypes, supports a model in which the defects observed for glycosylation-null strains arise from transcriptional changes and not from the direct result of glycosylation loss per se. This work challenges the idea that loss of glycosylation solely affects the stability and activity of the glycoproteome and instead shows that glycosylation can influence the bacterial transcriptional profile and broader proteome.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The strains and plasmids used in this study are listed in Tables 1 and 2, respectively. Strains of Escherichia coli and B. cenocepacia were grown at 37°C in Luria-Bertani (LB) medium. When required, antibiotics were added to the following final concentrations: 50 µg/ml trimethoprim for E. coli and 100 µg/ml for B. cenocepacia, 20 µg/ml tetracycline for E. coli and 150 µg/ml for B. cenocepacia, and 40 µg/ml kanamycin for E. coli. Ampicillin was used at 100 µg/ml and polymixin B at 25 µg/ml for triparental mating to select against donor and helper E. coli strains. Antibiotics were purchased from Thermo Fisher Scientific, while all other chemicals unless otherwise stated were provided by Sigma-Aldrich.

Recombinant DNA methods. The oligonucleotides used in this study are listed in Table 3. DNA ligations, restriction endonuclease digestions, and agarose gel electrophoresis were performed using standard molecular biology techniques (81), with Gibson assembly undertaken according to published protocols (82). All restriction enzymes, T4 DNA ligase, and Gibson master mix were used as recommended by the manufacturer (New England Biolabs). E. coli PIR2 and DH5α cells were transformed using heat shock-based transformation. PCR amplifications were carried out using either Phusion DNA (Thermo Fisher Scientific) or Pfu Ultra II (Agilent) polymerases were used according to the manufacturer's recommendations with the addition of 2.5% dimethyl sulfoxide (DMSO) for the amplification of B. cenocepacia DNA due to its high GC content. DNA isolation, PCR recoveries, and restriction digest purifications were performed using the genomic DNA cleanup kit (Zymo Research, CA) or Wizard SV gel and PCR cleanup system (Promega). Colony and screening PCRs were performed using GoTaq Taq polymerase (Qiagen) supplemented with 10% DMSO when screening B. cenocepacia. All constructs in Table 2 were confirmed by Sanger sequencing undertaken at the Australian Genome Research Facility (Melbourne, Australia).

Construction of unmarked deletion mutants, endogenous tagged BCAL1086, and complementation with pgll-His10. Deletions and endogenous tagging of BCAL1086 were undertaken using the approach of Flannagan et al. for the construction of unmarked, nonpolar deletions in B. cenocepacia K56-2 (83). Chromosomal complements of pgll were generated by introducing pgll-His10 under the control of the B. cenocepacia S7 promoter (P_S7) or the native pgll promoter (Ppgll; 660 bp upstream of Ppgll) inserted into amrAB using the pMH447 (23) derivative plasmids (Table 2) according to the protocol of Aubert et al. (84).

Protein manipulation and immunoblotting. Bacterial whole-cell lysates were prepared from overnight LB cultures of B. cenocepacia strains. One milliliter of bacteria at an optical density at 600 nm (OD600) of 1.0 were pelleted, then resuspended in a mixture of 4% sodium dodecyl sulfate (SDS), 100 mM Tris (pH 8.0), and 20 mM dithiothreitol (DTT) and boiled at 95°C with shaking at 2,000 rpm for 10 min.
B. cenocepacia

TABLE 1 Strains used in this study

Strain	Description	Source
DH5α	F−Δ80lacZΔM15 endA1 recA1 hsdR17 (rK− mK−) phoA supE44 thi−1 ΔgyrA96 (ΔlacZYA-argF)U169 relA1 F−	Invitrogen
PIR2	F−Δlac169 rpoS (Am) rbb1 creC510 hsdR154 endA1 u1Δ(ΔMluI)::pir-116	Thermo Scientific
K56-2	Clinical isolate of the ET12 lineage	Canadian B. cepacia Research and Referral Repository
K56-2 ΔpggL	ΔpggL (BCAL0960) derivative of K56-2 created using pYM8	This study
K56-2 ΔOGC	ΔOGC (BCAL3114–BCAL3118) derivative of K56-2 created using pGPl-Scel-OGC	This study
K56-2 ΔpggL amrAB::S7-pgL::His10	chromosomal complement derivative of ΔpggL (BCAL0960) mutant created using pMH447-S7-pgL::His10, gentamicin-sensitive strain	This study
K56-2 ΔpggL amrAB::native-pgL::His10	chromosomal complement derivative of ΔpggL (BCAL0960) mutant created using pMH447-native-pgL::His10, gentamicin-sensitive strain	This study
K56-2 BCAL1086-His10	Chromosomally tagged BCAL1086 with a C-terminal His10	This study
K56-2 BCAL1086-His10	ΔpggL (BCAL0960) mutant derivative of K56-2, chromosomally tagged BCAL1086 with a C-terminal His10	This study
K56-2 BCAL1086-His10	ΔpggL amrAB::S7-pgL::His10, BCAL1086-His10	This study
K56-2 BCAL1086	ΔBCAL1086 derivative of K56-2 created using pGPl-Scel-BCAL1086	This study
K56-2 BCAL2974	ΔBCAL2974 derivative of K56-2 created using pGPl-Scel-BCAL2974	This study
K56-2 ΔcepR	ΔcepR derivative of K56-2 created using pGPl-Scel-cepR	This study
K56-2 ΔcepI	ΔcepI derivative of K56-2 created using pGPl-Scel-cepI	This study

*See references 4 and 104 for details.

Samples were then mixed with Laemmli loading buffer (24.8 mM Tris, 10 mM glycerol, 0.5% [wt/vol] SDS, 3.6 mM β-mercaptoethanol, and 0.001% [wt/vol] bromophenol blue [pH 6.8], final concentration) and heated for a further 5 min at 95°C. Lysates were then subjected to SDS-PAGE using precast 4 to 12% gels (Invitrogen) and transferred to nitrocellulose membranes. Membranes were blocked for 1 h in 5% skim milk in TBS-T (20 mM Tris, 150 mM NaCl and 0.1% Tween 20) and then incubated for at least 16 h at 4°C (Invitrogen) and transferred to nitrocellulose membranes. Membranes were blocked for 1h in 5% skim milk in TBS-T (20 mM Tris, 150 mM NaCl and 0.1% Tween 20) and then incubated for at least 16 h at 4°C with either mouse monoclonal anti-His (AD1.1.10, 1:2,000 [AbD Serotech]) or mouse anti-RNA pol (4RA2, 1:5,000 [Neoclon]). Proteins were detected using anti-mouse IgG horseradish peroxidase (HRP)-conjugated secondary antibodies (1:3,000 [Perkin-Elmer catalog no. NEF822001EA]) and developed with Clarity Western ECL (enhanced chemiluminescence) substrate (Bio-Rad). All antibodies were diluted in TBS-T with 1% bovine serum albumin (BSA [Sigma-Aldrich]). Images were obtained using an MCChemilS imaging station (DNR Bio-Imaging Systems) or an Amersham imager 600 (GE Life Sciences).

Proteomic analysis. Whole-proteome sample preparation was undertaken as previously described (65), while peptidomic and DNA binding proteome analysis were undertaken according to the approaches of Parker et al. (76) and Qin et al. (85), respectively. For nonpeptidomic samples, isolated protein preparations were digested as previously described (86) and cleaned up using homemade stage tips according to the protocol of Ishihama and Rappsilber (87, 88). Peptidomic samples were cleaned up using commercial TCE columns (Waters). Purified peptides were resuspended in buffer A* (2% acetonitrile [ACN], 0.1% trifluoroacetic acid) and separated using a two-column chromatography setup comprising a PepMap 100 C18, 20-mm by 75-μm trap and a PepMap C18, 500-mm by 75-μm analytical column (Thermo Scientific). Data were acquired on either an Orbitrap Elite mass spectrometer (Thermo Scientific), an Orbitrap Fusion Lumos Tribrid mass spectrometer (Thermo Scientific), or a Q-exactive plus mass spectrometer (Thermo Scientific) and processed using MaxQuant (v.1.5.5.1 or 1.5.3.30 [89]). Database searching was carried out against the reference proteome (UP000001035) and the K56-2 Valvano (90) (http://www.uniprot.org/proteomes/UP000001035) and the K56-2 Valvano (90) (http://www.uniprot.org/taxonomy/985076) proteomes. Proteomic data sets have been deposited into the ProteomeXchange Consortium via the PRIDE (91) partner repository. A complete description of each PRIDE data set is provided in Table 4. A complete description of all proteomic-associated methods is provided in Text S1 in the supplemental material.

Motility assays. Motility assays were conducted using semisolid motility agar consisting of LB infusion medium supplemented with 0.3% agar as previously described (56). Plates were inoculated using 2 μl of standardized (OD600 of 0.5) overnight cultures of each strain. Motility zones were measured after 48 h of incubation at 37°C. Experiments were carried out in triplicate with 3 biological replicates of each strain.

Transcriptional analysis by luminescence assays. To assess transcriptional changes in CepR and CepI, luxCDABE reporter assays were performed using the B. cenocepacia K56-2 wild-type (WT), ΔpggL,
TABLE 2 Plasmids used in this study

Plasmid	Description	Reference(s)
pRK2013	ori_{R6K}, RK2 derivative, Kan^r mob^+ tra^+	105
pGPI-SceI	oriR6K mob^+ ΩTn1, including ISceI restriction site	83
pDAL-SceI-SacB	ori_{R6K}, Tet^r P_{Amp^r}, mob^+ , expressing ISceI and negative selection marker SacB	83, 106
pMH447	pGPI-SceI with fragments flanking ΔamrAB (BCAL1674–BCAL1675)	106
pYMA	pGPI-SceI with fragments flanking pglL (BCAL0960)	65
pGPI-SceI-OGC	pGPI-SceI with fragments flanking OGC (BCAL3114–BCAL3118)	This study
pMH447-S7-pgiL-His_{10}	pMH447 with S7 promoter driving expression of pglL-His_{10} from Met11 of open reading frame BCAL0960	This study
pMH447-native-pgiL-His_{10}	pMH447 with native pglL-His_{10} promoter driving expression of pglL	This study
pGPI-SceI-BCAL1086	pGPI-SceI with fragments flanking BCAL1086 to generate ΔBCAL1086 mutant	This study
pGPI-SceI-BCAL2974	pGPI-SceI with fragments flanking BCAL2974 to generate ΔBCAL2974 mutant	This study
pGPI-SceI-cepR	pGPI-SceI with fragments flanking cepR (BCAM1866) to generate ΔcepR mutant	This study
pGPI-SceI-cepl	pGPI-SceI with fragments flanking cepI (BCAM1870) to generate ΔcepI mutant	This study
pGPI-SceI-BCAL1086-His_{10}	pGPI-SceI with fragments flanking BCAL1086 to generate BCAL1086-His_{10} mutant	This study
pKM4	Tp^r pMLBad-based plasmid containing C-terminal His_{10} tagged DsbA1 from Neisseria meningitidis MC58	66
pMS402	Promoterless luxCDABE promoter reporter plasmid, Kan^r Tp^r	92
pPromcepR	cepR::luxCDABE transcriptional fusion in pMS402, Kan^r Tp^r	69
pCP300	cepL::luxCDABE transcriptional fusion in pMS402, Kan^r Tp^r	72

ΔOGC, and ΔpglL amrAB::S7-pgiL-His_{10} strains containing pCP300 (CepI promoter luxCDABE reporter [72]), pPromcepR (CepR promoter luxCDABE reporter [69]) or pMS402 (promoterless luxCDABE reporter [92]) as a negative control. Overnight cultures were diluted to an OD_{600} of 1.0, and 2 μl was inoculated into 200 μl LB supplemented with 100 μg/ml trimethoprim in black, clear-bottom 96-well microplates (minimum of eight technical replicates per independent biological replicate). The OD_{600} and relative luminescence were measured using a CLARIOstar plate reader at 10-min intervals for 24 h. Experiments assessing the effect of C_8-HSL additions on CepR and CepI transcription were performed according to Le Guillouzer et al. [93]. Briefly, cultures were supplemented with C_8-HSL (Sigma-Aldrich) resuspended in acetonitrile (10 μM final concentration) and added to cultures with acetonitrile added alone used as a negative control. Plates were incubated at 37°C with shaking at 200 rpm between measurements, with each assay undertaken 5 independent times on separate days. The resulting outputs were visualized using R (https://www.r-project.org/).

Biofilm assay. Biofilm assays were performed according to previous reports (26, 94, 95) using protocols based on the approach of O'Toole (96). B. cenocepacia strains were grown overnight at 37°C and adjusted to an OD_{600} of 1.0. Ten microliters of these suspensions was inoculated into 990 μl of LB supplemented with 0.5% (wt/vol) Casamino Acids, and 100 μl was added into 96-well microtiter plates (Corning Life Sciences [a minimum of eight technical replicates per independent biological replicate]). Microtiter plates were incubated at 37°C for 24 h in a closed humidified plastic container. The plates were then washed with phosphate-buffered saline (PBS) to remove planktonic cells then stained for 15 min with 125 μl of 1% (wt/vol) crystal violet. Excess crystal violet was removed with two washes of PBS and 200 μl of 33% (vol/vol) acetic acid was added for 15 min to release the stain. The resuspended stain was transferred to a new plate and measured on a CLARIOstar plate reader measuring the absorbance of the resulting solution at 595 nm. Three independent assays were undertaken on separate days.

Galleria mellonella infection assays. Infection of G. mellonella larvae was undertaken using the approach of Seed and Dennis (97) with minor modifications. B. cenocepacia strains were grown overnight at 37°C and adjusted to an OD_{600} of 1.0, equivalent to 2 × 10^{6} CFU/ml. Strains were diluted with PBS to 4 × 10^{4} CFU/ml, with serial dilution plates undertaken to confirm inoculum levels. For each strain, 2,000 CFU in 5 μl was injected in the right proleg of the G. mellonella larvae. Three independent challenges were performed with each strain injected into 8 to 10 G. mellonella larvae. For each independent challenge, 8 control larvae were injected with 5 μl PBS. Postinfection, G. mellonella larvae were placed in...
12-well tissue culture plates and incubated in the dark at 30°C. The number of dead larvae was scored at 24, 48, and 72 h after infection, with death of the larva determined by loss of responsiveness to touch. The results visualized using R (https://www.r-project.org/), and statistical analysis of survival curves was undertaken with the survminer package (version 0.4.5).

CAS siderophore assays. Alterations in activities of siderophores were assessed using the chrome azurul 5 (CAS) assay as previously described (98, 99). Ten microliters of adjusted bacterial culture at an OD600 of 1.0 was spotted on CAS agar plates and incubated at 37°C for 24 h. The diameter of the zone of discoloration from the removal of iron from the CAS dye complex was measured. Experiments were carried out with at least 3 biological replicates in technical triplicate.

Protease activity-based probes. K56-2 WT, ΔpglL, and ΔpglL amrAB::S7-pglL strains were grown overnight on confluent LB plates. Plates were flooded with 5 ml of prechilled sterile PBS, and colonies were removed with a cell scraper. Cells were washed 3 times in chilled PBS and resuspended in 40 mM Tris-150 mM NaCl (pH 7.8) and then lysed by sonication. Samples were clarified by centrifugation at 10,000 x g for 10 min at 4°C, and samples were diluted to a total concentration of 4 mg/ml. Reactivity to three classes of activity-based probes was assessed using PK-DPP (Cy5-tagged probe for trypsin-like proteases (100)), PK105b (Cy5-tagged probe for elastase-like proteases (101)), and FP-biotin (biotin-tagged probe for serine hydrolases (102)), and PK105b (Cy5-tagged probe for elastase-like proteases (101)), and FP-biotin (biotin-tagged probe for serine hydrolases (102)), and statistical analysis of survival curves was undertaken with the survminer package (version 0.4.5).
Cy5 channel. Experiments were carried out in biological triplicate. All probes were synthesized in-house by the Edgington-Mitchell Laboratory according to published methods, with the exception of FP-biotin, which was purchased from Santa Cruz Biotechnology.

Data availability. Proteomic data sets have been deposited into the ProteomeXchange Consortium via the PRIDE (91) partner repository with the data set identifiers PXD014429, PXD014516, PXD014581, PXD014614, and PXD014700.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mSphere.00660-19.

TEXT S1, DOCX file, 0.1 MB.
FIG S1, TIF file, 1.2 MB.
FIG S2, EPS file, 1.2 MB.
FIG S3, TIF file, 1.6 MB.
FIG S4, TIF file, 1.3 MB.
FIG S5, TIF file, 1.1 MB.
FIG S6, TIF file, 1.3 MB.
TABLE S1, XLSX file, 0.1 MB.
DATA SET S1, XLSX file, 6.4 MB.

ACKNOWLEDGMENTS
This work was supported by National Health and Medical Research Council of Australia (NHMRC) project grants awarded to N.E.S. (APP1100164) and Medical Research Council Confidence in Concept project CD1617-CIC04 (to M.A.V.). N.E.S. was supported by an Overseas (Biomedical) Fellowship (APP1037373) and a University of Melbourne

PRIDE accession no.	Title	Description
PXD014429	Peptidomic analysis of *B. cenocepacia* strains	Comparison of endogenous peptide pool in *B. cenocepacia* K56-2 strains to identify evidence for glycoprotein degradation in the absence of glycosylation; strains used are K56-2 WT, ΔpgII, amrAB::S7- ΔpgII-His10 complemented strain; LFQ-based quantification undertaken using Maxquant with 4 biologicals of each strain type
PXD014516	LFQ *B. cenocepacia* mutant comparison	Characterization of the effect of pgII mutants and complement in *B. cenocepacia* K56-2; 6-strain comparison of K56-2 WT, ΔpgII (independent mutant 1), ΔpgII (independent mutant 2), ΔpgII (independent mutant 1) amrAB::native-ΔpgII-His10, ΔpgII (independent mutant 1) amrAB::S7- ΔpgII-His10, and ΔpgII (independent mutant 2) amrAB::native-ΔpgII-His10 strains; LFQ-based quantification with 4 biologicals of each strain type
PXD014429	LFQ *B. cenocepacia* ΔpgII mutant comparison	Characterization of the effect of glycosylation disruption in *B. cenocepacia* K56-2; 5-strain comparison of K56-2 WT, ΔpgII, ΔOGC, ΔpgII ΔOGC, and ΔpgII amrAB::S7-ΔpgII-His10 strains; LFQ-based quantification undertaken using Maxquant with 5 biologicals of each strain type
PXD014700	LFQ *B. cenocepacia* comparison of DNA binding proteome	Comparison of alterations in the DNA-bound proteome of *B. cenocepacia* K56-2 mutants. DDA experiments undertaken using 4 strains; K56-2 WT, ΔpgII, ΔOGC, and ΔpgII amrAB::S7-ΔpgII-His10 strains used for DDA experiments, while K56-2 WT, ΔpgII, and ΔpgII amrAB::S7-ΔpgII-His10 strains used for DIA experiments; LFQ-based quantification undertaken using Maxquant with four biologicals of each strain type

All proteomic data in this study have been uploaded to the PRIDE proteomic repository and are accessible through the corresponding accession numbers. LFQ, label-free quantification; DDA, data-dependent acquisition; DIA, data-independent acquisition.
REFERENCES

1. Vanlaere E, Baldwin A, Gevers D, Henry D, De Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Brown PH, Maddison J, Doherty CJ, Nelson JW, Dodd M. 2019. Early Career Researcher Grant Scheme (proposal no. 603107). L.E.E.-M. was supported by a Grimwade Fellowship from the Russell and Mab Grimwade Miegunyah Fund at The University of Melbourne and a DECRA Fellowship from the Australian Research Council (ARC, DE18100418).

We thank the Melbourne Mass Spectrometry and Proteomics Facility of The Bio21 Molecular Science and Biotechnology Institute at The University of Melbourne for the support of mass spectrometry analysis. We also thank Silvia Cardona for kindly providing the plasmids pMS402, pCP300, and pPromCepR, Mario Feldman for pKM4, and the Canadian Burkholderia cepacia research and referral repository for providing K56-2. We also thank David Thomas for critical evaluation of the manuscript.

10. Govan JR, Brown PH, Maddison J, Doherty CJ, Nelson JW, Dodd M, Greening AP, Webb AK. 1993. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. J Infect Dis 167:1167–1171.

11. Fung SK, Dick H, Devlin H, Tullis E. 1998. Transmissibility and infection control implications of Burkholderia cepacia in cystic fibrosis. J Infect Dis 178:1167–1171.

12. Ledson MJ, Gallagher MJ, Jackson M, Hart CA, Walshaw MJ. 2002. Outcome of Burkholderia cepacia colonisation in an adult cystic fibrosis centre. Thorax 57:142–145. https://doi.org/10.1136/thorax.57.2.142.

13. Chaparro C, Maurer J, Gutierrez C, Krajden M, Chan C, Winton T, Keshavjee S, Scavuzzo M, Tullis E, Huchteon M, Kesten S. 2001. Infection with Burkholderia cepacia in cystic fibrosis: outcome following lung transplantation. Am J Respir Crit Care Med 163:43–44. https://doi.org/10.1164/rccm.163.1.81076.

14. Horsley A, Webb K, Bright-Thomas R, Gowan J, Jones A. 2011. Can early Burkholderia cepacia complex infection in cystic fibrosis be eradicated with antibiotic therapy? Front Cell Infect Microbiol 1:18. https://doi.org/10.3389/fcimb.2011.00018.

15. Kidd TJ, Douglas JM, Berg R, Cooter C, Bell SC. 2008. Burkholderia cepacia complex epidemiology in persons with cystic fibrosis from Australia and New Zealand. Res Microbiol 159:194–199. https://doi.org/10.1016/j.resmic.2008.01.001.

16. Reik R, Spilker T, Lipuma JJ. 2005. Distribution of Burkholderia cepacia complex species among isolates recovered from persons with or without cystic fibrosis. J Clin Microbiol 43:2926–2928. https://doi.org/10.1128/JCM.43.6.2926-2928.2005.

17. Kenna DTD, Lilley D, Coward A, Martin K, Perry C, Pike R, Hill R, Turton JF. 2017. Prevalence of Burkholderia species, including members of Burkholderia cepacia complex, among UK cystic and non-cystic fibrosis patients. J Med Microbiol 66:490–501. https://doi.org/10.1099/jmm.0.004548.

18. Lupo A, Isi E, Tinguely R, Endimiani A. 2015. Clonality and antimicrobial susceptibility of Burkholderia cepacia complex isolates collected from cystic fibrosis patients during 1998–2013 in Bern, Switzerland. New Microbiol 38:281–288.

19. De Soyaza A, McDowell A, Archer L, Dark JH, Elborn SJ, Mahenthiralingam E, Gould K, Corris PA. 2001. Burkholderia cepacia complex cepacia genomovars and pulmonary transplantation outcomes in patients with cystic fibrosis. Lancet 358:1780–1781. https://doi.org/10.1016/S0140-6736(01)05808-8.

20. Gilchrist FJ, Webb AK, Bright-Thomais RJ, Jones AM. 2012. Successful treatment of cepacia syndrome with a combination of intravenous cyclosporin, antibiotics and oral corticosteroids. J Cyst Fibros 11: 458–460. https://doi.org/10.1016/j.jcf.2012.04.002.

21. Jassem AN, Zlosnik JE, Henry DA, Hancock RE, Ernst RK, Speert DP. 2011. In vitro susceptibility of Burkholderia vietnamiensis to aminoglycosides. Antimicrob Agents Chemother 55:2256–2264. https://doi.org/10.1128/AAC.01434-10.

22. Malott RJ, Steen-Kinnaird BR, Lee TD, Speert DP. 2012. Identification of hohanoid biosynthesis genes involved in polymyxin resistance in Burkholderia multivorans. J Infection 65:454–460. https://doi.org/10.1016/j.infection.2012.04.001.

23. Hamad MA, Skeldon AM, Valvano MA. 2010. Construction of aminoglycoside-sensitive Burkholderia cepacia cepacia strains for use in studies of intracellular bacteria with the gentamicin protection assay. Appl Environ Microbiol 76:3170–3176. https://doi.org/10.1128/AEM.03242-09.

24. Coenye T. 2010. Social interactions in the Burkholderia cepacia complex: biofilms and quorum sensing. Future Microbiol 5:1087–1099. https://doi.org/10.2217/fmb.10.68.

25. Van Acker H, Van Dijck P, Coenye T. 2014. Molecular mechanisms of hopanoid biosynthesis genes involved in polymyxin resistance in Burkholderia multivorans. Trends Microbiol 22:326–333. https://doi.org/10.1016/j.tim.2014.02.001.

26. Conway BA, Venu V, Speert DP. 2002. Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex. J Bacteriol 184:5678–5685. https://doi.org/10.1128/JB.184.20.5678-5685.2002.

27. Savoia D, Zucca M. 2007. Clinical and environmental Burkholderia species from environmental and human sources. Int J Syst Evol Microbiol 57:2265–2271. https://doi.org/10.1099/ijs.0.000251.

28. Baugh S, Matouskova I, Kolar M. 2013. An outbreak of Burkholderia cenocepacia infection in well-differentiated human airway epithelia. Infect Immun 70:4547–4555. https://doi.org/10.1128/IAI.70.8.4547-4555.2002.
29. Schwab U, Abdullah LH, Permutt OS, Albert D, Davis CW, Arnold RR, Yarasheski JR, Gilligan P, Neubauer H, Randell SH, Boucher RC. 2014. Localization of Burkholderia cepacia complex bacteria in cystic fibrosis lungs and interactions with Pseudomonas aeruginosa in hypoxic mucus. Infect Immun 82:4729–4745. https://doi.org/10.1128/IAI.01876-14.

30. Sajjan U, Corey M, Humar A, Tullis E, Cutz E, Ackerley C, Forstrner J. 2001. Immunolocalization of Burkholderia cepacia in the lungs of cystic fibrosis patients. J Med Microbiol 50:535–546. https://doi.org/10.1099/0022-1317-50-6-535.

31. Cunha MV, Sousa SA, Leitao JH, Moreira LM, Videira PA, Sa-Correia l. 2004. Studies on the involvement of the exopolysaccharide produced by cystic fibrosis-associated isolates of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infections. J Clin Microbiol 42:3052–3056. https://doi.org/10.1128/JCM.42.7.3052-3058.2004.

32. Traverse CC, Mayo-Smith LM, Poltak SR, Cooper VS. 2013. Tangled bank of experimentally evolved Burkholderia biofilms reflects selection during chronic infections. Proc Natl Acad Sci U S A 110:E250–E259. https://doi.org/10.1073/pnas.1207051110.

33. Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L. 2013. Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex. Virulence 4:400–409. https://doi.org/10.4161/viru.25338.

34. Baldwin A, Sokol PA, Parkhill J, Mahenthiralingam E. 2004. The Burkholderia cenocepacia island encoding both virulence and metabolism-associated genes in Burkholderia cepacia. BMC Genomics 10:441.

35. Malott RJ, O'Grady EP, Toller J, Inhülsen S, Eberl L, Sokol PA. 2009. A Burkholderia cepacia orphan LuxR homolog is involved in quorum-sensing regulation. J Bacteriol 191:2447–2460. https://doi.org/10.1128/JB.01746-08.

36. Lutter E, Lewenza S, Dennis JJ, Visser MB, Sokol PA. 2001. Distribution of quorum-sensing genes in the Burkholderia cepacia complex. Infect Immun 69:4661–4666. https://doi.org/10.1128/IAI.69.7.4661-4666.2001.

37. Gotschlich A, Huber B, Geisenberger O, Tullis E, Ackerley C, Riedel K, Hill P, Tummel bre R, Aguirre B, Middleton B, Camara M, Williams P, Hardman A, Eberl L. 2001. Synthesis of multiple N-acylhomoserine lactones is wide-spread among the members of the Burkholderia cepacia complex. Syst Appl Microbiol 24:1–14. https://doi.org/10.1078/0723-2020-00013.

38. Lewenza S, Conway B, Greenberg EP, Sokol PA. 1999. Quorum sensing in Burkholderia cepacia: identification of the LuxR homologs CepR, CepL, and CepM. J Bacteriol 181:748–756. https://doi.org/10.1128/JB.181.7.748-756.2001.

39. Huber B, Riedel K, Hentzer M, Heydorn A, Gotschlich A, Grivskov M, Molin S, Eberl L. 2001. The cep quorum-sensing system of Burkholderia cenocepacia H111 controls biofilm formation and swarm motility. Microbiology 147:2517–2528. https://doi.org/10.1099/00221287-147-9-2517.

40. Uehlinger S, Schwager S, Bernier SP, Riedel K, Nguyen DT, Sokol PA, Miller WG, Li J, Cordwell SJ, Szymanski CM. 2012. Diversity in the protein N-glycosylation machinery conserved in Burkholderia species. Glycobiology 22:357–368. https://doi.org/10.1078/0022-1317-50-6-535.

41. O'Grady EP, Viteri DF, Malott RJ, Sokol PA. 2009. Reciprocal regulation of the cepIR quorum-sensing system in Burkholderia cenocepacia. BMC Genomics 10:441.

42. Kooi C, Corbett CR, Sokol PA. 2005. Functional analysis of the Burkholderia cepacia ZmpA metalloprotease. J Bacteriol 187:4421–4429. https://doi.org/10.1128/JB.187.13.4421-4429.2005.
Impact of Glycosylation on B. cenocepacia

Aubert DF, O’Grady EP, Hamad MA, Sokol PA, Valvano MA. 2013. The Burkholderia cenocepacia sensor kinase hybrid AtsR is a global regulator modulating quorum-sensing signalling. Environ Microb 15:372–385. https://doi.org/10.1111/j.1462-2920.2012.02828.x

O’Grady EP, Nguyen DT, Weisskopf L, Eberl L, Sokol PA. 2011. The Burkholderia cenocepacia LysR-type transcriptional regulator ShVR influences expression of quorum-sensing, protease, biofilm secretion, and σE functions. J Bacteriol 193:163–176. https://doi.org/10.1128/JB.00852-10

Schmid N, Pessi G, Deng Y, Aguilar C, Carlier AL, Grunau A, Oamasit U, Zhang LH, Ahrens C, Eberl L. 2012. The AHL- and BDSF-dependent quorum sensing systems control specific and overlapping sets of genes in Burkholderia cenocepacia H111. PLoS One 7:e49966. https://doi.org/10.1371/journal.pone.0049966

Malott RJ, Baldwin A, Mäthnerhaltingam E, Sokol PA. 2005. Characterization of the cclR quorum-sensing system in Burkholderia cenocepacia. Infect Immun 73:4982–4992. https://doi.org/10.1128/IAI.73.8.4982-4992.2005

O’Grady EP, Viteri DF, Sokol PA. 2012. A unique regulator contributes to quorum sensing and virulence in Burkholderia cenocepacia. PLoS One 7:e37611. https://doi.org/10.1371/journal.pone.0037611

Hoffmann EA, Frey BL, Smith LM, Auble DT. 2015. Formaldehyde crosslinking: a tool for the study of chrotamin complexes. J Biol Chem 290:26040–26041. https://doi.org/10.1074/jbc.R115.651679

Larsen JC, Szymanski C, Guerry P. 2004. N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81–176. J Bacteriol 186:6508–6514. https://doi.org/10.1128/JB.186.6508-6514.2004

Parker BL, Burchfield JG, Clayton D, Geddes TA, Payne RJ, Kiens B, Wolters W, Schumann P, Richter EA, James DE. 2017. Multiplexed temporal quantification of the exercise-regulated plasma peptidome. Mol Cell Proteomics 16:2055–2068. https://doi.org/10.1074/mcp.RA117.000020

Nothaft H, Szymanski CM. 2019. New discoveries in bacterial N-glycosylation to expand the synthetic biology toolbox.Curr Opin Chem Biol 53:16–24. https://doi.org/10.1016/j.cbpa.2019.05.032

Young NM, Brison JR, Kelly J, Watson DC, Tessler L, Lanthier PH, Jarrell HC, Cadotte N, St Michael F, Aberg E, Szymanski CM. 2002. Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J Biol Chem 277:42530–42539. https://doi.org/10.1074/jbc.M206142000

Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Scanlon AL, Mullis J, Kiefte-deJonge C, Cantalini A, Snyers P. 2010. Quantitative expression of quorum-sensing, protease, type II secretion, and σE genes. J Bacteriol 193:163–176. https://doi.org/10.1128/JB.00852-10

Cox J, Mann M. 2008. MaxQuant enables high peptide identification rates, individualized p.p.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372. https://doi.org/10.1038/nbt.1151

Varga JJ, Losada L, Zelazny AM, Kim M, McCrorison J, Brinkac L, Sam- paio EP, Greenberg DE, Singh I, Heiner C, Ashby M, Nieman WC, Holland SM, Goldberg JB. 2013. Draft genome sequences of Burkholderia cenocepacia ET12 lineage strains KS6-2 and BC7. Genome Announc 1:e00841-13. https://doi.org/10.1128/genomeA.00841-13

Vizcaino JA, Cordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternet T, Xu QW, Wang R, Hermjakob H. 2016. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44:D447–D456. https://doi.org/10.1093/nar/gkv1145

Quinlan K, Dammel C, Stenlund BR, Abin H, Suresh MG. 2003. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491. https://doi.org/10.1046/j.1365-2958.2003.03803.x

Le Guillouzer S, Groleau M-C, Déziel E. 2017. The complex quorum sensing circuitry of Burkholderia thailandensis is both hierarchically and homeostatically organized. mbio 8:e01861-17. https://doi.org/10.1128/mBio.01861-17

Peeters E, Nelis H, Coenye T. 2008. Resistance of planktonic and biofilm-grown Burkholderia cepacia complex isolates to the transition metal gallium. J Antimicrob Chemother 61:1062–1065. https://doi.org/10.1093/jac/dkn072

Tomlin KL, Malott RJ, Ramage G, Storey DG, Sokol PA, Ceri H. 2005. Quorum-sensing mutations affect attachment and stability of Burkholderia cepacia biofilms. Appl Environ Microbiol 71:5208–5218. https://doi.org/10.1128/AEM.71.8.5208-5218.2005

O’Toole GA. 2011. Microrooter dish biofilm formation assay. J Vis Exp https://doi.org/10.3791/2437

Seed KD, Dennis JJ. 2008. Development of Galleria mellonella as an alternative infection model for the Burkholderia cepacia complex. Insect Biochem Mol Biol 38:1267–1275. https://doi.org/10.1016/j.ibmb.2007.10.007

Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/S0003-2697(87)80062-9

Louden BC, Haarman D, Lyne AM. 2011. Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ 12:51–53. https://doi.org/10.1128/jmbev.v12i1.249

Edgington-Mitchell LE, Barlow NJ, Aurelio L, Samha A, Szabo M, Graham B, Burnett N. 2017. Fluorescent diphenylphosphonate-based probes for detection of serine protease activity during infumation. Bioorg Med Chem Lett 27:254–260. https://doi.org/10.1016/j.bmcl.2016.11.064

Kasperkiewicz P, Altman Y, D’Angelo M, Salvesen GS, Drag M. 2017. Toolbox of fluorescent probes for parallel imaging reveals uneven location of serine proteases in neutrophils. J Am Chem Soc 139:10115–10123. https://doi.org/10.1021/jacs.7b03494

Kasperkiewicz P, Poreba M, Snipas SJ, Parker H, Winterbourn CC, Salvesen GS, Drag M. 2014. Design of ultrasensitive probes for human neutrophil elastase through hybrid combinatorial substrate library pro-
filing. Proc Natl Acad Sci USA 111:2518–2523. https://doi.org/10.1073/pnas.1318548111.

103. Liu Y, Patricelli MP, Cravatt BF. 1999. Activity-based protein profiling: the serine hydrolases. Proc Natl Acad Sci USA 96:14694–14699. https://doi.org/10.1073/pnas.96.26.14694.

104. Darling P, Chan M, Cox AD, Sokol PA. 1998. Siderophore production by cystic fibrosis isolates of Burkholderia cepacia. Infect Immun 66:874–877.

105. Figurski DH, Helinski DR. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76:1648–1652. https://doi.org/10.1073/pnas.76.4.1648.

106. Hamad MA, Di Lorenzo F, Molinaro A, Valvano MA. 2012. Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cepacia. Mol Microbiol 85:962–974. https://doi.org/10.1111/j.1365-2958.2012.08154.x.
