Entanglement enhanced information transmission over a quantum channel with correlated noise

Chiara Macchiavello

Dipartimento di Fisica “A.Volta”, Via Bassi 6, I-27100 Pavia, Italy
and Istituto Nazionale per la Fisica della Materia (INFM)

G.Massimo Palma

Dipartimento di Scienze Fisiche ed Astronomiche, Via Archirafi 36, I-90123 Palermo, Italy
and NEST - Istituto Nazionale per la Fisica della Materia (INFM)

(October 22, 2018)

We show that entanglement is a useful resource to enhance the mutual information of the depolarizing channel when the noise on consecutive uses of the channel has some partial correlations. We obtain a threshold in the degree of memory, depending on the shrinking factor of the channel, above which a higher amount of classical information is transmitted with entangled signals.

The classical capacity of quantum channels, i.e., the amount of classical information which can be reliably transmitted by quantum states in the presence of a noisy environment has received renewed interest in recent years [1]. One of the main focuses of such interest is the study of entanglement as a useful resource to enhance the classical channel capacity. Although the theory does not rule out the possibility of using entangled states as channel inputs is motivated by the fact that it cannot otherwise allow also the possibility to entangle multiple uses of the channel. For this more general strategy it has been shown that the amount of reliable information which can be transmitted per use of the channel is given by

\[C_n = \frac{1}{n} \sup_{\mathcal{E}} I_n(\mathcal{E}) \]

(3)

where \(\mathcal{E} = \{ P_i, \pi_i \} \) with \(P_i \geq 0, \sum_i P_i = 1 \) is the input ensemble of states \(\pi_i \), transmitted with \emph{a priori} probabilities \(P_i \), of \(n \) – generally entangled – qubits and \(I_n(\mathcal{E}) \) is the mutual information

\[I_n(\mathcal{E}) = S(\rho) - \sum_i P_i S(\rho_i) \]

(4)

where the index \(n \) stands for the number of uses of the channel. Here

\[S(\chi) = -\text{tr}(\chi \log \chi) \]

(5)

is the von Neumann entropy, \(\rho_i = \Phi(\pi_i) \) are the density matrices describing the output states and \(\rho = \sum_i P_i \rho_i \). Logarithms are taken to base 2. The advantage of the expression (4) is that it includes an optimization over all possible POVMs at the output, including collective ones. Therefore no explicit maximization procedure for the decoding at the output of the channel is needed.

The interest for the possibility of using entangled states as channel inputs is motivated by the fact that it cannot generally be excluded that \(I_n(\mathcal{E}) \) is superadditive in the presence of entanglement, i.e., we might have \(I_{n+m} > I_n + I_m \) and therefore \(C_n > C_1 \).

In this scenario the classical capacity \(C \) of the channel is defined as

\[C = \lim_{n \to \infty} C_n \]

(6)
Sofar the main objects of investigation have been memoryless channels. By definition a channel is memoryless when its action on arbitrary signals π_s, consisting of n qubits (including entangled ones), is given by

$$\Phi(\pi_s) = \sum_{i_1 \cdots i_n} (A_{i_1} \otimes \cdots \otimes A_{i_n}) \pi_s (A_{i_1}^\dagger \otimes \cdots \otimes A_{i_n}^\dagger) \quad (7)$$

In the case of Pauli channels a more general situation is described by action operators of the following form

$$A_{k_1 \cdots k_n} = \sqrt{p_{k_1 \cdots k_n}} \sigma_{k_1} \cdots \sigma_{k_n}, \quad (8)$$

with $\sum_{k_1 \cdots k_n} p_{k_1 \cdots k_n} = 1$. The quantity $p_{k_1 \cdots k_n}$ can be interpreted as the probability that a random sequence of rotations of an angle π along axis k_n is applied to the sequence of n qubits sent through the channel. For a memoryless channel $p_{k_1 \cdots k_n} = p_{k_1} p_{k_2} \cdots p_{k_n}$. An interesting generalization is described by a Markov chain defined as

$$p_{k_1 \cdots k_n} = p_{k_1} p_{k_2} |k_1 \cdots p_{k_n} |k_{n-1} \quad (9)$$

where $p_{k_n} |k_{n-1}$ can be interpreted as the conditional probability that a π rotation around axis k_n is applied to the n-th qubit given that a π rotation around axis k_{n-1} was applied on the $n-1$-th qubit. Here we will consider the case of two consecutive uses of a channel with partial memory, i.e. we will assume $p_{k_n} |k_{n-1} = (1-\mu)p_{k_n} + \mu \delta_{k_n,k_{n-1}}$. This means that with probability μ the same rotation is applied to both qubits while with probability $1-\mu$ the two rotations are uncorrelated.

In our noise model the degree of memory μ could depend on the time lap between the two channel uses. If the two qubits are sent at a very short time interval the properties of the channel, which determine the direction of the random rotations, will be unchanged, and it is therefore reasonable to assume that the action on both qubits will take the form

$$A_{k_1}^\mu = \sqrt{p_k} \sigma_k \quad (10)$$

If on the other hand, the time interval between the channel uses is such that the channel properties have changed then the actions will be

$$A_{k_1,k_2}^\mu = \sqrt{p_{k_1} p_{k_2}} \sigma_{k_1} \sigma_{k_2} \quad (11)$$

An intermediate case, as mentioned above, is described by actions of the form

$$A_{k_1,k_2}^\mu = \sqrt{(1-\mu) p_k + \mu \delta_{k,k_{n-1}}} \sigma_k \sigma_2 \quad (12)$$

It is straightforward to verify that the Bell states, defined in the basis $|0\rangle, |1\rangle$ of the eigenstates of the σ_2 operators as

$$|\Phi_\pm\rangle = \frac{1}{\sqrt{2}} \{|00\rangle \pm |11\rangle\}$$

$$|\Psi_\pm\rangle = \frac{1}{\sqrt{2}} \{|01\rangle \pm |10\rangle\} \quad (13)$$

are eigenstates of the operators A_k^μ and therefore will pass undisturbed through the channel. If used as equiprobable signal states they maximise I_2, as we will have $I_2 = 2$. Furthermore it is immediate to verify that the value $I_2 = 2$ cannot be achieved by any ensemble of tensor product input states. This situation is reminiscent of the so called noiseless states, where collective states are used to encode and protect quantum information against collective noise \cite{4}.

In the following we will concentrate our attention to the depolarizing channel, for which $p_0 = 1 - p$ and $p_i = p/3$, $i = x, y, z$. We will consider an ensemble of orthogonal input states parametrised as follows

$$|\pi_1\rangle = \cos \theta |00\rangle + \sin \theta |11\rangle$$

$$|\pi_2\rangle = \sin \theta |00\rangle - \cos \theta |11\rangle$$

$$|\pi_3\rangle = \cos \theta |01\rangle + \sin \theta |10\rangle$$

$$|\pi_4\rangle = \sin \theta |01\rangle - \cos \theta |10\rangle \quad (14)$$

Although it is not a priori certain that this is the optimal choice for all values of μ we know that it maximizes C_2 with $\theta = 0$ for $\mu = 0$ (uncorrelated noise), and with $\theta = \frac{\pi}{2}$ for $\mu = 1$ (fully correlated noise). We will therefore optimize the ansatz \cite{4} by looking for the value $\theta(\mu)$ which maximizes I_2 as a function of μ.

We will now show that there is a threshold value μ_c for which $I_2(\theta = \frac{\pi}{2}, \mu = 1) = I_2(\theta = 0, \mu = 1)$. Below the threshold value $I_2(\theta = 0, \mu < \mu_c) > I_2(\theta = \frac{\pi}{2}, \mu < \mu_c)$ while above $I_2(\theta = \frac{\pi}{2}, \mu > \mu_c) > I_2(\theta = 0, \mu > \mu_c)$. To this goal it is useful to use the Bloch representation \cite{4} for the states

$$\pi = \frac{1}{4} \left\{ 1 \otimes 1 + 1 \otimes \sum_k \beta_k (2) \sigma_k + \sum_k \beta_k (1) \sigma_k \otimes 1 \right\}$$

where the Bloch vectors and tensor are defined respectively as $\beta_i = \text{tr}(\pi \sigma_i), \chi_{ij} = \text{tr}(\pi \sigma_i \sigma_j)$. We will express the action of the channel in terms of the so called shrinking factor $\eta = 1 - 4p/3$.

It is straightforward to verify that for $\mu = 0$

$$\sum_{k_1,k_2} A_{k_1,k_2}^\dagger \otimes \sigma_j A_{k_1,k_2}^\dagger = \eta 1 \otimes \sigma_j$$

$$\sum_{k_1,k_2} A_{k_1,k_2} \sigma_j \otimes 1 A_{k_1,k_2}^\dagger = \eta \sigma_j \otimes 1$$

$$\sum_{k_1,k_2} A_{k_1,k_2} \sigma_k \otimes \sigma_j A_{k_1,k_2}^\dagger = \eta^2 \sigma_k \otimes \sigma_j \quad (16)$$

while for $\mu = 1$
\[
\sum_{k_1,k_2} A_{k_1,k_2} \mathbf{1} \otimes \sigma_j A_{k_1,k_2}^\dagger = \eta \mathbf{1} \otimes \sigma_j
\]

\[
\sum_{k_1,k_2} A_{k_1,k_2} \sigma_j \otimes \mathbf{1} A_{k_1,k_2}^\dagger = \eta \sigma_j \otimes \mathbf{1}
\]

\[
\sum_{k_1,k_2} A_{k_1,k_2} \sigma_k \otimes \sigma_j A_{k_1,k_2}^\dagger = \delta_{kj} \sigma_k \otimes \sigma_j + (1 - \delta_{kj}) \eta \sigma_k \otimes \sigma_j .
\]

It is interesting to note that both for \(\mu = 0 \) and for \(\mu = 1 \) the components of the Bloch vectors \(\beta_k^{(i)} \) of the input states are shrunk isotropically by the shrinking factor \(\eta \).

The difference between the two cases is the action on the Bloch tensor \(\chi \). The input state \(|\pi_1\rangle \) is transformed by the action of the depolarizing channel with partial memory defined in equation (12) into the output state \(\rho_1 \)

\[
\rho_1 = \frac{1}{4} \left(\mathbf{1} \otimes \mathbf{1} + \eta \cos 2\vartheta (\mathbf{1} \otimes \sigma_z + \sigma_z \otimes \mathbf{1}) + \mu + (1 - \mu) \eta^2 |\sigma_z \otimes \sigma_z + \sin 2\vartheta (\sigma_x \otimes \sigma_x - \sigma_y \otimes \sigma_y)\rangle \right)
\]

The corresponding eigenvalues are:

\[
\lambda_{1,2} = \frac{1}{4} \left(1 - \mu^2 \right) + \eta^2 + \mu \eta^2 (1 - \mu) \pm 2 \eta \cos 2\vartheta + \mu \eta^2 (1 - \mu) + \mu^2 \sin^2 2\vartheta \right) \right)
\]

Notice that the first two eigenvalues are degenerate and do not depend on \(\vartheta \). The same eigenvalues are obtained for the output states \(\rho_2, \rho_3, \rho_4 \). The Von Neumann entropy \(S(\rho_1) \) is minimized as a function of \(\vartheta \) when the term under square root in the expression for \(\lambda_{3,4} \) is maximum. The mutual information is then maximized for equiprobable states \(\pi_i \) corresponding to the minimum Von Neumann entropy. Therefore for \(\eta^2 > |\eta^2 (1 - \mu) + \mu|^2 \) the mutual information is maximal for uncorrelated states \(\vartheta = 0 \), while for \(\eta^2 < |\eta^2 (1 - \mu) + \mu|^2 \) it is maximal for the Bell states.

The threshold value \(\mu_t \) is a function of the shrinking factor and takes the form

\[
\mu_t = \frac{\eta}{1 + \eta} .
\]

Therefore, for channels with \(\mu < \mu_t \) the most convenient choice within the ansatz (14) corresponds to uncorrelated states, while for \(\mu > \mu_t \) to maximally entangled states. At the threshold value any set of states of the form (14) leads to the same value for the mutual information. As an example, the behaviour of the mutual information is plotted in Fig. 1.

It is interesting to note that, within the ansatz (14), for any value of \(\mu \) the mutual information is optimized by either maximally entangled or completely unentangled states. We have used sofar the z axis as the axis of quantisation for the system; notice that, due to the symmetry of the channel, the same results hold also using \(x \) or \(y \) as the axis of quantisation.

Notice that so far we have restricted our attention to input states of the form (14). We will now show that the product states that are less deteriorated when transmitted through the channel are the eigenstates of \(\sigma_z \sigma_z \) or \(\sigma_y \sigma_y \) or \(\sigma_x \sigma_x \). This suggests that no different choice of product signal states can achieve a higher \(I_2 \) than our ansatz (14). From Eqs. (14) and (17) it follows that the output density operator corresponding to an arbitrary input product state takes the form

\[
\Phi(\pi) = \frac{1}{4} \left[\mathbf{1} \otimes \mathbf{1} + \eta (\mathbf{1} \otimes \sum_i \beta_{2i} \sigma_{2i} + \sum_i \beta_{1i} \sigma_{1i} \otimes \mathbf{1}) \right. + (\mu + (1 - \mu) \eta^2) \sum_i \beta_{2i} \beta_{1i} \sigma_{2i} \otimes \sigma_{2i} + \left. \mu \eta + (1 - \mu) \eta^2 \sum_i \beta_{1i} \beta_{2j} \sigma_{1i} \otimes \sigma_{2j} \right] ,
\]

A measure of the degree of purity of the state at the output of the channel is given by \(\text{Tr}[\rho^2] \). It is straightforward to show that for the above state we have

\[
\text{Tr}[\Phi(\pi^2)] = \frac{1}{4} [1 + 2 \eta^2 + (\mu + (1 - \mu) \eta^2)^2 \sum_i \beta_{2i}^2 \beta_{2i}^2 + (\mu \eta + (1 - \mu) \eta^2)^2 \sum_{i \neq j} \beta_{1i}^2 \beta_{2j}^2] .
\]

The above expression is maximised when both Bloch vectors point in the same \(x, y \) or \(z \) direction. It is straightforward to verify that these states maximise also the fidelity, defined as \(\text{Tr}[\pi \Phi(\pi)] \). Moreover, we have numerical evidence that for any value of \(\mu \) and \(\eta \) the input product states that maximise the mutual information are still of this form. Therefore, no better choice of product

\[\text{Max. entangled states} \]

\[\text{Product states} \]

\[\mu \]

\[\text{Fig. 1. Mutual information for product states and for maximally entangled states as a function of the degree of memory of the channel, for } \eta = 0.8.\]
states leads to a higher mutual information than the one achieved by the ansatz [4].

Finally we would like to point out that for input product states the mutual information $I_2(\mu = 1, \vartheta = 0) > I_2(\mu = 0, \vartheta = 0)$:

$$I_2(\mu = 1, \vartheta = 0) = 1 + \frac{1}{2} \left\{ (1 + \eta) \log(1 + \eta) + (1 - \eta) \log(1 - \eta) \right\}$$

$$I_2(\mu = 0, \vartheta = 0) = \left\{ (1 + \eta) \log(1 + \eta) + (1 - \eta) \log(1 - \eta) \right\}$$

This is due to the fact that the correlation tensor is multiplied by a larger shrinking factor when the noise is collective. In other words, in the presence of perfect memory with two uses of the channel it is possible to achieve a higher mutual information than in the case of memoryless channels even if we restrict to product states.

In conclusion, we have shown that the transmission of classical information over a quantum depolarising channel with collective noise can be enhanced by employing maximally entangled states as carriers of information rather than product states. We believe that this result opens new perspectives for the use of entanglement in communications and information processing.

I. ACKNOWLEDGEMENTS

We would like to thank R. Jozsa for his comments. This work was supported in part by the EU under contract IST - 1999 - 11053 - EQUIP,”Entanglement in Quantum Information Processing and Communication” and by Ministero dell’Università e della Ricerca Scientifica e Tecnologica under the project ”Quantum information transmission and processing: quantum teleportation and error correction”.

[1] B. Schumacher and M.D. Westmoreland, Phys. Rev. A 56, 131 (1997); A.S. Holevo, IEEE Trans. Inf. Theory 44, 269 (1998) (also quant-ph/9611023).
[2] D. Bruß, L. Faoro, C. Macchiavello and G.M. Palma, J.Mod.Opt. 47, 325, 2000; (also quant-ph/9903033).
[3] C. King and M.B. Ruskai, IEEE Trans. Inf. Theory 47, 192 (2001) (also quant-ph/9911073); C. King, quant-ph/0103156.
[4] K. Kraus, States, Effects, and Operations: Fundamental Notions of Quantum Theory (Springer, Berlin, 1983).
[5] J. Schlienz and G. Mahler Phys. Rev. A 52, 4396 (1995).
[6] A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic, Dordrecht, 1993).
[7] G.M. Palma, K.-A. Suominen and A.K. Ekert, Proc. Roy. Soc. London A 452, 567 (1996);