Supporting information for:

Toward understanding amines and their degradation products from post-combustion CO$_2$ capture processes with aerosol mass spectrometry

Xinlei Ge,† Stephanie L. Shaw‡, Qi Zhang,*†

†Department of Environmental Toxicology, University of California at Davis, 1 Shields Avenue, Davis, California 95616, United States

‡Electric Power Research Institute, 3420 Hillview Avenue, Palo Alto, California 95052, United States

*Corresponding Author

Phone: 530-752-5779. Fax: 530-752-3394. Email: dkwzhang@ucdavis.edu
Contents

Information about chemicals ... 4
HR-ToF-AMS data analysis... 5
Lab-generated PCCC degradation samples .. 6
Tables .. 8

Table S1. Analytical performance of the IC cation system 8
Table S2. Analytical performance of the IC anion system 9
Table S3. List of compounds in Figure 2 analyzed for elemental ratios using EI mass spectra, including the chemical structure, name, molecular formula, molecular weight (M_w: g mol^{-1}), and the ratios calculated directly based on ion composition (O/C_{cal}, H/C_{cal} and N/C_{cal}). Compounds No.1-43 have been identified as degradation products of MEA, MDEA or PIP as summarized by Gouedard et al. Compounds marked with "**" indicates results from AMS measurements at the vaporizer temperature of 250 °C, others are results from NIST spectral analysis. ... 10

Table S4. Major degradation products identified in MEA degradation sample and proposed EI spectral signature ions .. 14
Table S5. Major degradation products identified in MDEA degradation sample and proposed EI spectral signature ions .. 15
Table S6. Major degradation products identified in PIP degradation sample and proposed EI spectral signature ions .. 16
Table S7. Cross correlation coefficients (Pearson's r^2) between the mass spectra of the eight identified MDEA degradation products and the correlation coefficients of each product spectrum with the sample spectrum. Mass spectra of unit mass resolution (UMR) are used in these calculations. ... 17

Figures .. 18

Figure S1. Chromatographic responses and elution times of cation standard mixture which contains Li^+ (5 µg·L^{-1}), Na^+ (20 µg·L^{-1}), NH_4^+ (40 µg·L^{-1}), ethanolamine (100 µg·L^{-1}), methylamine (100 µg·L^{-1}), K^+ (20 µg·L^{-1}), diethanolamine (100 µg·L^{-1}), ethylamine (100 µg·L^{-1}), dimethylethanolamine (100 µg·L^{-1}), magnesium (20 µg·L^{-1}) and calcium (20 µg·L^{-1}) (upper panel); and anion standard mixture which contains fluoride (5 µg·L^{-1}), acetate (100 µg·L^{-1}), formate (100 µg·L^{-1}), glyoxylate (100 µg·L^{-1}), chloride (100 µg·L^{-1}), methanesulfonic acid (100 µg·L^{-1}), nitrite (100 µg·L^{-1}), bromide (100 µg·L^{-1}), nitrate (100 µg·L^{-1}), malate (100 µg·L^{-1}), and malonate (100 µg·L^{-1}) (upper panel); and anion standard mixture which contains fluoride (5 µg·L^{-1}), acetate (100 µg·L^{-1}), formate (100 µg·L^{-1}), glyoxylate (100 µg·L^{-1}), chloride (100 µg·L^{-1}), methanesulfonic acid (100 µg·L^{-1}), nitrite (100 µg·L^{-1}), bromide (100 µg·L^{-1}), nitrate (100 µg·L^{-1}), malate (100 µg·L^{-1}), and malonate (100 µg·L^{-1}) (lower panel).
1), sulfate (100 µg·L⁻¹), oxalate (100 µg·L⁻¹), phosphate (100 µg·L⁻¹) and maleate (100 µg·L⁻¹) (lower panel). For anions, there are two co-elutes, which are formate with glyoxylate, and oxalate with phosphate; since glyoxylate and phosphate are unlikely important ions in amine-based PCCC samples, these coelutes should not be a concern.

Figure S2. High-resolution AMS spectra of MEA, MDEA, and PIP, measured at vaporizer temperatures of 250 °C (a-c) and 600 °C (d-f). The spectral peaks are colored by 9 different ion categories listed in (a); Marker "▲" indicates the molecular ion; NIST spectra (in UMR) are also plotted.

Figure S3. For the 12 N-containing compounds measured by the HR-ToF-AMS at vaporizer temperatures of both 250 °C and 600 °C in this study: (a) Correlation coefficients (r²) of NIST spectra with AMS spectra (both in UMR); (b) Mass fractions of the molecular ions in the AMS spectra; (c) N/C ratios calculated from the AMS spectra measured at vaporizer temperature of 250 °C versus the real ratios (CI: confidence interval); (d) N/C ratios calculated from the AMS spectra measured at vaporizer temperature of 600 °C versus the real ratios (CI: confidence interval); (e) Comparisons between the N/C ratios calculated from the AMS spectra measured at vaporizer temperatures of 250 °C and 600 °C.

Figure S4. AMS spectra (vaporizer temperature = 600°C) of pure MEA (a), MDEA (d), PIP (g) and sucrose (b,e,h), and 1:1 (mass ratio) mixtures of MEA/sucrose (c), MDEA/sucrose (f) and PIP/sucrose (i). The spectral peaks are colored by 9 different ion categories listed in (a); Note the amines were prepared in the chloride salts to ensure their mass ratios to sucrose in the particles analyzed by the AMS are consistent with the ratios designed in the solutions.

Figure S5. Comparisons between deconvoluted mass ratios from AMS spectra (vaporizer temperature = 600 °C) with the real values. (a) MEA/sucrose, (b) MDEA/sucrose, and (c) PIP/sucrose. AMS spectra of the binary mixtures with different mass ratios of amine to sucrose were first obtained, and then each mixture spectrum was decomposed according to equation (1) in the main text, where i refers to the corresponding amine and sucrose, respectively.

Figure S6. Raw AMS spectra of MEA-based, MDEA-based and PIP-based degradation samples measured at the AMS vaporizer temperatures of 250 °C (a-c) and 600 °C (d-f). Note that the H₂O⁺, HO⁺, O⁺ and CO⁺ signals are directly measured values. Elemental ratios for 250 °C spectra are calculated using the new factors obtained in Figure 2 of the main text, while ratios for 600 °C spectra are determined based on the factors reported in Aiken et al. The spectral peaks are colored by 9 different ion categories listed in (a).

Figure S7. AMS spectra of MEA-based, MDEA-based and PIP-based degradation samples measured at the AMS vaporizer temperatures of 250 °C (a-c) and 600 °C (d-f), after removal of H₂O⁺, HO⁺, O⁺, and CO₂-related ions (based on fragmentation pattern for CO₂ in NIST). Elemental ratios for 250 °C spectra are calculated using the new factors obtained in Figure 2 of the main text, while ratios for 600 °C spectra are determined based on the factors reported in Aiken et al.
Figure S8. Differences between the AMS spectra measured at vaporizer temperatures of 250 °C and 600 °C for the degradation samples of (a) MEA, (b) MDEA, and (c) PIP (calculated from the spectra shown in Figure S7). The spectral peaks are colored by 9 different ion categories listed in (a). ... 25

Figure S9. AMS spectra of MEA-based, MDEA-based and PIP-based degradation products measured at the AMS oven temperatures of 250 °C (a-c) and 600 °C (d-f), after removal of parent amine signals (calculated from spectra shown in Figure S7). Elemental ratios for 250 °C spectra are calculated using the new factors obtained in Figure 2 of the main text, while ratios for 600 °C spectra used the factors reported in Aiken et al.20 The spectral peaks are colored by 9 different ion categories listed in (a). .. 26

Figure S10. ESI-MS spectra for the degradation samples of (a) MEA, (b) MDEA, and (c) PIP. (only major peaks are shown). The species identified in Tables S4-S6 are marked in the spectra. .. 27

Figure S11. Comparisons of the MDEA degradation sample spectrum (Figure S7b) with the one reconstructed using the multivariate fitting algorithm (a), the scatter plot between the two (b), and (c-j) NIST spectra of the eight degradation products used in the fitting. 28

References.. 29

Information about chemicals

Amino compounds, including ethanolamine (MEA), diethanolamine (DEAOH), triethanolamine (TEAOH), methyl diethanolamine (MDEA), piperazine (PIP), bis-2-hydroxypropylamine (BOHA), methylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), and ethylamine (EA) (all >99% purity), were from Sigma-Aldrich. Ethanolamine hydrochloride (MEA·HCl, >98%) was from Sigma-Aldrich, the chloride salts of MDEA and PIP were prepared by neutralizing MDEA and PIP with HCl (37%, Sigma-Aldrich). Other chemicals include sucrose (>99%, Fisher Scientific), glycolic acid, glyoxylic acid, sodium acetate, methanesulfonic acid, malic acid, malonic acid, oxalic acid and maleic acid (all >99%, Sigma-Aldrich).
HR-ToF-AMS data analysis

The AMS data were processed using the standard toolkits SQUIRREL v1.51H and PIKA v1.10H, written in Igor Pro 6.22A (Wavemetrics, Portland, USA). The toolkits were downloaded from http://cires.colorado.edu/jimenezgroup/ToFAMSResources/ToFSoftware/index.html. The results reported in this manuscript were determined from analyzing the W mode spectra. All spectra were fitted up to $m/z = 190$.

Since argon was used for atomization, interference of air signal at m/z 28 was negligible. The CO$^+$ signal was thus quantified directly from fitting the W-mode data using the Peak Integration by Key Analysis (PIKA) software instead of scaling against the CO$_2^+$ signal. In addition, since particles were likely fully dried prior to AMS analysis, the contributions of particle-bound water and water vapor to measured H$_2$O$^+$ signal were negligible. We thus determined the organic H$_2$O$^+$ signal as the difference between measured H$_2$O$^+$ signal and the inorganic H$_2$O$^+$ signal estimated according to the known fragmentation pattern of sulfate.1

The PIKA software employs a peak-shape modified Gaussian fitting algorithm to deconvolve and quantify the signals of a user-defined array of ions.2 Each ion is represented with a custom peak shape function derived based on analyzing known isolated ions in the background spectrum.2 Choosing the right array of ions to fit is important for PIKA analysis of a raw mass spectrum to determine the ion composition of the sample. Given the fact that the degradation products are dependent on the precursor amines, the mass spectrum of each degradation sample was fitted using a custom ion list determined based on carefully examining the raw mass spectrum and the residual spectral signals to avoid over-fitting or under-fitting. But for a specific amine, the same ions were selected to fit the pure compound spectra regardless of the vaporizer temperature and were included in the ion list used for fitting the degradation products.

Generally speaking, the determination of the signal intensity of an ion that overlaps with ions of much larger signal intensities based on PIKA fitting tends to be uncertain. This is the reason that the quantification of N/C of organics in ambient aerosol could be associated with significant uncertainties since a large number of the N-containing ions have much lower signals compared to the overlapping hydrocarbon (i.e., C$_x$H$_y^+$) and oxygenated (C$_x$H$_y$O$_z^+$) ions. However, this is
not an issue for the current study because of the abundance of N-containing species in our samples. The N/C atomic ratios of the samples analyzed in this study varied between 0.15 – 0.3. As shown in Figure 3 in the manuscript, for almost all \(m/z\)'s larger than 20 amu, the dominant ions are the N-containing ones. We are therefore able to quantify the \(C_xH_yN_p^+\) and \(C_xH_yN_pO_z^+\) ions and determine the ion-speciated mass spectra and the N/C ratios of the degradation samples with little ambiguity.

Lab-generated PCCC degradation samples

The composition of flue gases from coal-fired power plants is dependent on the type of coal and design of the coal combustor\(^3\) and generally contains particulate matter (PM), gaseous component (such as \(N_2, O_2, CO, CO_2, SO_x\) and \(NO_x\)), organic compounds (likely including dioxin and furan), and trace metals or elements. A typical flue gas was found to contain 70–75% \(N_2\), 10–15% \(CO_2\), 8–10% \(H_2O\), and 3–4% \(O_2\).\(^4\) Due to the complexity of actual flue gas composition and flow rates, degradation processes under industrial conditions are relatively poorly understood and difficult to accurately simulate. In general, two types of degradations can occur in a PCCC plant:\(^5\) oxidative degradation in the absorber column (typically 40-50 °C at 1 atm), which is mainly caused by the presence of a large amount of \(O_2\) in the flue gas, and thermal degradation mainly occurring in the stripper column (typically 100-150 °C at slightly higher pressures, 1.5-2 atm). Presence of \(NO_x\) in the flue gas is of concern because reaction with amine solvents produces nitrosamines which are likely carcinogenic.

In this study, the degradation of amines started with 7M MEA, 7M MDEA, and 1.7M PIP. A mixture of air with ~200 ppm \(NO_2\) was used to mimic the major oxidation degradation conditions that likely occur in the actual PCCC absorber. The degradation lasted for 2-3 months to simulate the solvent conditions after many cycles in an actual PCCC plant. In addition, the temperature during degradation was kept at ~150 °C, this temperature also mimics the industrial condition in the PCCC stripper column, which could cause thermal degradation. Overall, different from many other studies that mainly focus on one type of degradation,\(^5\) our degradation samples are expected to contain both oxidative and thermal degradation products that are likely present in the actual PCCC facilities. This is verified in Tables S4-S6, which indeed show the
presence of both oxidative and thermal degradation products that were observed in previous lab studies or plant samples.
Table S1. Analytical performance of the IC cation system.

Cations	Retention time\(^1\) (min)	Response factor\(^2\) (µS·cm\(^-1\)/µg·L\(^{-1}\))	MDL (µg·L\(^{-1}\))\(^3\)	Calibration curves	Correlation coeff. (r\(^2\))\(^5\)	% Reproducibility (RPD)\(^6\)	
Lithium (Li)	6.63	0.01214	1.0	50	50.00	0.9993, 0.9993	4.70%
Sodium (Na)	7.93	0.005315	2.5	200	80.00	0.9677, 0.9629	1.55%
Ammonium (NH\(_4\))	8.71	0.00491	3.0	400	133.33	0.9940, 0.9937	19.59%
Ethanolamine (MEA)	9.64	0.001124	3.8	1000	266.67	0.9997, 0.9999	12.16%
Methylamine (MMA)	10.18	0.002275	4.7	1000	214.13	0.9994, 0.9993	7.85%
Potassium (K)	10.81	0.00207	7.2	200	27.78	0.9960, 0.9923	10.31%
Diethanolamine (DEAOH)	11.41	0.000616	15.1	3000	198.68	0.9999, 0.9999	5.07%
Ethylamine (EA)	11.79	0.001172	8.3	2000	240.67	0.9999, 0.9999	6.85%
Dimethylamine (DMA)	13.53	0.001323	10.7	2000	187.79	0.9997, 0.9998	9.22%
Triethanolamine (TEAOH)	14.62	0.000502	12.3	5000	406.50	0.9998, 0.9999	8.03%
Methyl diethanolamine (MDEA)	15.66	0.00121	6.2	1000	162.60	0.9999, 0.9999	8.21%
bis(2-hydroxypropyl)amine (BOHA)	17.11	0.000532	4.9	7000	1431.49	0.9999, 0.9998	4.53%
Trimethylamine (TMA)	23.27	0.001069	16.2	4000	246.76	1.0000, 0.9997	4.16%
Magnesium (Mg)	31.54	0.00189	17.5	2000	11.43	0.9895, 0.9795	10.85%
Calcium (Ca)	32.96	0.000237	155.0	1000	6.45	0.9733, 0.9695	11.07%

\(^1\)The retention times for these species can vary in different runs due to small fluctuations of eluent composition and instrument responses, especially for Mg\(^{2+}\) and Ca\(^{2+}\). The retention times listed in the table were recorded for an experiment, at the eluent composition of 1.75 mM HNO\(_3\) + 0.75 mM DPA (dipicolinic acid) with a flow rate of 0.3 ml·min\(^{-1}\), and a standard mixture containing the following ions: Li\(^{+}\) (5 µg·L\(^{-1}\)), Na\(^{+}\) (20 µg·L\(^{-1}\)), NH\(_4\)\(^{+}\) (40 µg·L\(^{-1}\)), K\(^{+}\) (20 µg·L\(^{-1}\)), Mg\(^{2+}\) (20 µg·L\(^{-1}\)), Ca\(^{2+}\) (100 µg·L\(^{-1}\)), MMA, DMA, TMA, MEA, DEAOH, TEAOH, EA, BOHA (all 100 µg·L\(^{-1}\)) and MDEA (200 µg·L\(^{-1}\)).

\(^2\)Response factor is calculated as: Peak height (in µs·cm\(^{-1}\))/solute concentration (in µg·L\(^{-1}\)).

\(^3\)The method detection limit (MDL), which is also the limit of quantification (LOD), is the smallest measure that can be detected with reasonable certainty for a given analytical procedure. First, we injected the purified water for 3 times and determined the average peak height at the retention time of the target ion to be the blank signal (x\(_b\)). Secondly, we injected 7 times at a concentration which is close to the detection limits (for example, 10 µg L\(^{-1}\) for TEAOH) and determined the standard deviation (S) of the peak height for the 7 duplicates. The student t-value for 7 duplicates and 6 degrees of freedom with 1% probability level is ~3.14, so the detection limit is determined as: MDL = x\(_b\) + 3.14S.

\(^4\)Linearity was determined as: maximum concentration (in µg·L\(^{-1}\))/MDL (in µg·L\(^{-1}\)).

\(^5\)Correlation coefficient (r\(^2\)): Each calibration was repeated to check the reproducibility, so there are two correlation coefficients for each cation.

\(^6\)The reproducibility of the measurement was determined as the average relative percentage difference (RPD) of each point, RPD\(_i\) = |x\(_{i1}\)-x\(_{i2}\)|/(x\(_{i1}\)+x\(_{i2}\)/2)*100%, in the calibration curves.
Table S2. Analytical performance of the IC anion system.

Anions	Retention time\(^1\) (minutes)	Response factor\(^2\) (µS·cm\(^{-1}\)/µg·L\(^{-1}\))	MDL (µg·L\(^{-1}\))\(^3\)	Calibration curves	Correlation coeff. (\(r^2\))\(^5\)	
				Max. conc. (µg·L\(^{-1}\))	Linearity\(^4\)	
Fluoride	4.94	0.00285	10.2	400	39.22	0.9995
Glycolate	5.44	0.00022	16.51	1000	60.57	0.9990
Glyoxylate	5.82	0.00019	27.61	1000	36.22	0.9993
Formate	5.82	0.00045	19.32	500	25.88	0.9998
Acetate	6.2	0.00019	9.19	1000	108.81	0.9996
Chloride	6.65	0.0005	13.06	600	45.94	0.9995
Methanesulfonic acid	7.52	0.00017	11.53	1000	86.73	0.9992
Nitrite	7.95	0.00026	21.18	2000	94.43	0.9992
Bromide	10.16	0.00014	5.22	2000	383.14	0.9999
Nitrate	11.96	0.00017	17.07	2000	117.16	0.9999
Malate	14.55	6.0e-05	27.81	1000	35.96	0.9991
Malonate	16.23	8.0e-05	35.21	2000	56.80	0.9991
Sulfate	17.79	0.000173	4.55	750	164.84	0.9990
Oxalate	18.76	0.00011	21.54	2000	92.85	0.9998
Phosphate	18.76	1.33e-05	99.02	3000	30.30	0.9905
Maleate	21.03	4.0e-05	66.68	4000	59.99	0.9996

\(^1\)The retention times for these species can vary in different runs due to small fluctuations of eluent composition and instrument responses. The retention times listed in the table were recorded for an experiment, at the eluent composition of 5 mM Na\(_2\)CO\(_3\) + 0.3 mM NaOH with a flow rate of 0.8 ml·min\(^{-1}\), and a standard mixture containing the following ions: fluoride (5 µg·L\(^{-1}\)), chloride (30 µg·L\(^{-1}\)), phosphate (150 µg·L\(^{-1}\)), and nitrite, bromide, nitrate, sulfate, glycolate, glyoxylate, formate, acetate, methanesulfonic acid, malate, malonate, oxalate, and maleate (all 100 µg·L\(^{-1}\)).

\(^2,3,4,5\)Same as the note for Table S1.
Table S3. List of compounds in Figure 2 analyzed for elemental ratios using EI mass spectra, including the chemical structure, name, molecular formula, molecular weight (M_w: g mol$^{-1}$), and the ratios calculated directly based on ion composition (O/C_{cal}, H/C_{cal} and N/C_{cal}). Compounds No.1-43 have been identified as degradation products of MEA, MDEA or PIP as summarized by Gouedard et al.5; Compounds marked with "*" indicates results from AMS measurements at the vaporizer temperature of 250 °C, others are results from NIST spectral analysis.

No.	Chemical structure	Name (abbreviation)	Formula	M_w	O/C_{cal}	H/C_{cal}	N/C_{cal}	Solvent
1*	![Dimethylamine](image)	Dimethylamine (DMA)	C$_2$H$_7$N	45	0	2.711	0.547	MDEA
2	![Formamide](image)	Formamide	CH$_3$NO	45	1.003	3.611	1.242	MEA
3	![Formic acid](image)	Formic acid	CH$_2$O$_2$	46	1.473	1.19	0	MEA
4	![Glyoxal](image)	Glyoxal	C$_2$H$_2$O$_2$	58	1.232	1.028	0	MEA
5*	![Trimethylamine](image)	Trimethylamine (TMA)	C$_3$H$_9$N	59	0	2.589	0.368	MDEA
6	![Acetic acid](image)	Acetic acid	C$_2$H$_4$O$_2$	60	0.83	1.637	0	MEA
7	![Ethylenediamine](image)	Ethylenediamine (EDA)	C$_2$H$_8$N$_2$	60	0	3.276	0.954	PIP
8*	![Ethanolamine](image)	Ethanolamine (MEA)	C$_2$H$_7$NO	61	0.189	3.476	0.768	MEA
9	![Ethylene glycol](image)	Ethylene glycol (EG)	C$_2$H$_6$O$_2$	62	0.827	2.801	0	MDEA
10	![N,N-dimethylethylamine](image)	N,N-dimethylethylamine (DMEA)	C$_4$H$_{11}$N	73	0	2.575	0.358	MDEA
11*	![Glycine](image)	Glycine	C$_2$H$_3$NO$_2$	75	0.446	3.363	0.859	MEA
12	![2-(Methylamino)ethanol](image)	2-(Methylamino)ethanol (MAE)	C$_3$H$_9$NO	75	0.093	2.648	0.435	MEA
13	![Glycolic acid](image)	Glycolic acid	C$_2$H$_4$O$_3$	76	1.072	2.642	0	MDEA
14	![Imidazolidin-2-one](image)	Imidazolidin-2-one (2-Imid)	C$_3$H$_8$N$_2$O	86	0.142	2.464	0.661	PIP
---	---	---	---	---	---			
15*	Piperazine (PIP)	C\textsubscript{4}H\textsubscript{10}N\textsubscript{2}	86	0	2.478	0.511	PIP	
16	Oxazolidin-2-one (OZD)	C\textsubscript{3}H\textsubscript{4}N\textsubscript{2}O \textsubscript{2}	87	0.344	2.061	0.449	MEA	
17	Oxalamide	C\textsubscript{3}H\textsubscript{4}N\textsubscript{2}O	88	1.096	2.818	1.211	MEA	
18	N,N-(dimethyl)ethanolamine (DMAE)	C\textsubscript{4}H\textsubscript{11}NO	89	0.115	2.42	0.31	MDEA	
19	Oxalic acid	C\textsubscript{2}H\textsubscript{2}O\textsubscript{4}	90	1.896	1.328	0	MEA MDEA PIP	
20	N-methylpiperazine (MPZ)	C\textsubscript{4}H\textsubscript{12}N\textsubscript{2}	100	0	2.342	0.455	PIP	
21	N-methylmorpholine (MM)	C\textsubscript{5}H\textsubscript{11}NO	101	0.203	1.962	0.223	MDEA	
22	N-(2-hydroxyethyl)acetamide (HEA)	C\textsubscript{4}H\textsubscript{12}N\textsubscript{2}O	103	0.376	2.228	0.319	MEA	
23	N-(2-hydroxyethyl)ethylenediamine (HEEDA)	C\textsubscript{5}H\textsubscript{12}N\textsubscript{2}O	104	0.136	2.766	0.586	MEA	
24	Diethanolamine (DEAOH)	C\textsubscript{4}H\textsubscript{11}NO \textsubscript{2}	105	0.291	2.445	0.352	MDEA	
25	N-(2-hydroxethyl)imidazole (HEI)	C\textsubscript{4}H\textsubscript{8}N\textsubscript{2}O	112	0.213	1.587	0.434	MEA	
26	N,N-dimethylpiperazine (DMP)	C\textsubscript{6}H\textsubscript{14}N\textsubscript{2}	114	0	2.289	0.395	MDEA PIP	
27	N-ethylpiperazine (EPZ)	C\textsubscript{6}H\textsubscript{14}N\textsubscript{2}	114	0	2.311	0.35	PIP	
28	N-formylpiperazine (FPZ)	C\textsubscript{5}H\textsubscript{10}N\textsubscript{2}O	114	0.168	1.938	0.445	PIP	

S11
	![Chemical Structure](image)	Name	Molecular Formula	Molecular Weight	pKa	Water Solubility	Solvent
29	![Chemical Structure](image)	Methyl diethanolamine (MDEA)	C₉H₁₃NO₂	119	0.253	2.745	0.326
30	![Chemical Structure](image)	N-(2-hydroxyethyl)-N₁'-methyl piperazine (HMP)	C₉H₁₅N₃	129	0	2.25	0.601
31	![Chemical Structure](image)	N-(2-hydroxyethyl)piperazine (HEP)	C₈H₁₄N₂O	130	0.118	2.014	0.394
32	![Chemical Structure](image)	N-(2-hydroxyethyl)imidazolidin-2-one (HEIA)	C₁₀H₁₀N₂O₂	130	0.264	1.79	0.441
33	![Chemical Structure](image)	N-(2-hydroxyethyl)oxazolidin-2-one (HEOD)	C₉H₁₄N₂O	131	0.49	1.497	0.289
34	![Chemical Structure](image)	N-glycylglycine	C₉H₁₆N₂O₃	132	0.351	2.188	0.62
35	![Chemical Structure](image)	N-(2-hydroxyethyl)succinimide	C₉H₁₆N₂O₃	143	0.374	1.416	0.253
36	![Chemical Structure](image)	N-(2-hydroxyethyl)-N₁'-methylpiperazine (HMP)	C₁₀H₁₆N₂O	144	0.061	2.079	0.322
37	![Chemical Structure](image)	N,N,N₁ ',N₁'-trimethyl-N,N₁ '-(2-hydroxyethyl)ethylenediamine	C₁₃H₁₈N₂	146	0.131	2.479	0.282
38	![Chemical Structure](image)	N,N₁ ',bis-(2-hydroxyethyl)urea	C₁₂H₁₂N₂O₃	148	0.702	2.878	0.457
39	![Chemical Structure](image)	Triethanolamine (TEAOH)	C₉H₁₅NO₃	149	0.286	2.261	0.265
40	![Chemical Structure](image)	N-(carboxymethyl)diethanolamine (bicine)	C₁₃H₁₃NO₄	163	0.371	1.978	0.246
41	![Chemical Structure](image)	N,N₁ ',bis-(2-hydroxyethyl)piperazine (BHEP)	C₁₃H₁₈N₂O₂	174	0.13	2.013	0.3
---	---	---	---	---	---	---	---
42	N,N'-bis(2-hydroxyethyl)oxalam ide (BHEOX)	C₆H₁₂N₂O₄	176	0.429	2.001	0.367	MEA
43	N,N,N',N'-Tetrakis(2-hydroxyethyl)ethylenediamine	C₁₀H₂₄N₂O₄	236	0.33	2.348	0.233	MDEA
44*	H₃C—NH₂	Methylamine (MA)	CH₅N	31	0	3.253	1.067
45*	H₃C—NH₂	Ethylamine (EA)	C₂H₇N	45	0	2.861	0.803
46*	H₃C—NH—CH₃	Diethylamine (DEA)	C₄H₁₁N	73	0	2.643	0.418
47*	H₃C—N—CH₃	Triethylamine (TEA)	C₆H₁₅N	101	0	2.488	0.351
48*	H₅N	Pyrazole (PRZ)	C₅H₄N₂	68	0	1.897	0.675
49*	H₅N=N=CH₃	1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (DMPED)	C₈H₁₇N₃	155	0	2.596	0.391
EI mass spectral signature ions	Parent compound	Exact mass of parent compound	Chemical structure of parent compound	References			
-------------------------------	----------------	------------------	-------------------------------------	------------			
C₃H₃NO₂	Glycine	75.0320	![Glycine structure](image)	6,7			
C₄H₈NO⁺	2-(Methylamino)ethanol (MAE)	75.0684	![MAE structure](image)	6,7			
C₃H₅NO₂	Oxazolidin-2-one (OZD)	87.0320	![OZD structure](image)	10,14			
C₃H₅NO⁺	(2-Hydroxyethyl)formamide	89.0477	![Fm structure](image)	11,14			
C₄H₁₁NO₂	Diethanolamine	105.0790	![DEA structure](image)	This work			
C₄H₉NO⁺	N-(2-hydroxethyl)imidazole (HEI)	112.0637	![HEI structure](image)	13,15			
C₄H₇NO₂	2-Hydroxy-N-(2-hydroxyethyl)acetamide (HHEA)	119.0582	![HHEA structure](image)	13,15			
C₅H₁₀N₂O₂	N-(2-hydroxyethyl)imidazolidin-2-one (HEIA)	130.0742	![HEIA structure](image)	9,10,12,13,15,16			
C₅H₁₁NO⁺, C₄H₈NO⁺, C₃H₅NO⁺	N-(2-Hydroxyethyl)lactamide	133.0739	![Lactamide structure](image)	This work			
C₆H₁₂N₂O₂	N-(2-hydroxyethyl)piperazin-3-one (HEPO)	144.0899	![HEPO structure](image)	13,14			
C₅H₁₂N₂	N,N'-bis-(2-hydroxyethyl)urea	148.0848	![Urea structure](image)	8,9,11			
C₆H₁₄N₂O₃	N-(2-hydroxyethyl)-2-(2-hydroxyethylamino)acetamide (HEHEAA)	162.1004	![HEHEAA structure](image)	13,15			
C₅H₁₁NO₃	N,N’-bis(2-hydroxyethyl)oxalamide (BHEOX)	176.0798	![BHEOX structure](image)	13,14			
Table S5. Major degradation products identified in MDEA degradation sample and proposed EI spectral signature ions

EI mass spectral signature ions	Parent compound	Exact mass of parent compound	Chemical structure of parent compound	References
C₃H₇N⁺	Azetidine (AZ)	57.0578		This work
C₃H₈NO⁺	2-(Methylamino)ethanol (MAE)	75.0684		
C₄H₁₁NO⁺	N,N-(dimethyl)ethanolamine (DMAE)	89.0841		
C₄H₁₁NO⁺, C₆H₁₂NO⁺	N-methylmorpholine (MM)	101.0841		
C₅H₁₁NO₂⁺	Diethanolamine (DEAOH)	105.0790		
C₅H₁₂NO₂⁺	Ethyldiethanolamine (EDEA)	133.1103		This work
C₅H₁₂NO₂⁺	Triethanolamine (TEAOH)	149.1052		
C₆H₁₀NO₃⁺, C₆H₁₂NO⁺	N-(carboxymethyl)diethanolamine (bicine)	163.0845		

References:
11, 12
Table S6. Major degradation products identified in PIP degradation sample and proposed EI spectral signature ions

EI mass spectral signature ions	Parent compound	Exact mass of parent compound	Chemical Structure of parent compound	References
$\text{C}_3\text{H}_6\text{N}_2\text{O}^+$	Imidazolidin-2-one	86.0480	![Chemical Structure](image1)	
$\text{C}_4\text{H}_8\text{N}_2\text{O}^+$, $\text{C}_3\text{H}_7\text{N}_2^+$	Piperazinone	100.0637	![Chemical Structure](image2)	This work
$\text{C}_3\text{H}_12\text{N}_2^+$	N-methylpiperazine (MPZ)	100.1000	![Chemical Structure](image3)	
$\text{C}_5\text{H}_{10}\text{N}_2\text{O}^+$, $\text{C}_3\text{H}_6\text{NO}^+$	N-formylpiperazine (FPZ)	114.0793	![Chemical Structure](image4)	
1-Methyl-2-Piperazinone				
3-Methyl-2-piperazinone				
$\text{C}_6\text{H}_{12}\text{N}_2\text{O}^+$	1,4-Dimethyl-2-Piperazinone	128.0950	![Chemical Structure](image5)	This work
1,3-Dimethylpiperazin-2-one				
Table S7. Cross correlation coefficients (Pearson's r²) between the mass spectra of the eight identified MDEA degradation products and the correlation coefficients of each product spectrum with the sample spectrum. Mass spectra of unit mass resolution (UMR) are used in these calculations.

Products	AZ	MM	DEAOH	EDEA	TEAOH	Bicine	MAE	DMAE	Sample
AZ	-								
MM	0.002	-							
DEAOH	0.05	0.003	-						
EDEA	0.01	0.003	0.029	-					
TEAOH	0.003	0.001	0.298	0.013	-				
Bicine	0.02	0.148	0.180	0.027	0.148	-			
MAE	0.00	0.015	0.004	0.001	0.006	0.052	-		
DMAE	0.06	0.001	0.056	0.135	0.014	0.011	0.002	-	
Sample	0.29	0.124	0.261	0.117	0.126	0.347	0.385	0.135	-
Figures

Figure S1. Chromatographic responses and elution times of cation standard mixture which contains Li$^+$ (5 µg·L$^{-1}$), Na$^+$ (20 µg·L$^{-1}$), NH$_4$$^+$ (40 µg·L$^{-1}$), ethanolamine (100 µg·L$^{-1}$), methylamine (100 µg·L$^{-1}$), K$^+$ (20 µg·L$^{-1}$), diethanolamine (100 µg·L$^{-1}$), ethylamine (100 µg·L$^{-1}$), dimethylamine (100 µg·L$^{-1}$), triethanolamine (100 µg·L$^{-1}$), methyldiethanolamine (200 µg·L$^{-1}$), bis(2-hydroxypropyl)amine (100 µg·L$^{-1}$), trimethylamine (100 µg·L$^{-1}$), Mg$^{2+}$ (20 µg·L$^{-1}$) and Ca$^{2+}$ (100 µg·L$^{-1}$) (upper panel); and anion standard mixture which contains fluoride (5 µg·L$^{-1}$), glycolate (100 µg·L$^{-1}$), formate (100 µg·L$^{-1}$), glyoxylate (100 µg·L$^{-1}$), acetate (100 µg·L$^{-1}$), chloride (30 µg·L$^{-1}$), methanesulfonic acid (100 µg·L$^{-1}$), nitrite (100 µg·L$^{-1}$), bromide (100 µg·L$^{-1}$), nitrate (100 µg·L$^{-1}$), malate (100 µg·L$^{-1}$), malonate (100 µg·L$^{-1}$), sulfate (100 µg·L$^{-1}$), oxalate (100 µg·L$^{-1}$), phosphate (100 µg·L$^{-1}$) and maleate (100 µg·L$^{-1}$) (lower panel). For anions, there are two co-elutes, which are formate with glyoxylate, and oxalate with phosphate; since glyoxylate and phosphate are unlikely important ions in amine-based PCCC samples, these coelutes should not be a concern.
Figure S2. High-resolution AMS spectra of MEA, MDEA, and PIP, measured at vaporizer temperatures of 250 °C (a-c) and 600 °C (d-f). The spectral peaks are colored by 9 different ion categories listed in (a); Marker "▲" indicates the molecular ion; NIST spectra (in UMR) are also plotted.
Figure S3. For the 12 N-containing compounds measured by the HR-ToF-AMS at vaporizer temperatures of both 250 °C and 600 °C in this study: (a) Correlation coefficients (r^2) of NIST spectra with AMS spectra (both in UMR); (b) Mass fractions of the molecular ions in the AMS spectra; (c) N/C ratios calculated from the AMS spectra measured at vaporizer temperature of 250 °C versus the real ratios (CI: confidence interval); (d) N/C ratios calculated from the AMS spectra measured at vaporizer temperature of 600 °C versus the real ratios (CI: confidence interval); (e) Comparisons between the N/C ratios calculated from the AMS spectra measured at vaporizer temperatures of 250 °C and 600 °C.
Figure S4. AMS spectra (vaporizer temperature = 600°C) of pure MEA (a), MDEA (d), PIP (g) and sucrose (b,e,h), and 1:1 (mass ratio) mixtures of MEA/sucrose (c), MDEA/sucrose (f) and PIP/sucrose (i). The spectral peaks are colored by 9 different ion categories listed in (a); Note the amines were prepared in the chloride salts to ensure their mass ratios to sucrose in the particles analyzed by the AMS are consistent with the ratios designed in the solutions.
Figure S5. Comparisons between deconvoluted mass ratios from AMS spectra (vaporizer temperature = 600 °C) with the real values. (a) MEA/sucrose, (b) MDEA/sucrose, and (c) PIP/sucrose. AMS spectra of the binary mixtures with different mass ratios of amine to sucrose were first obtained, and then each mixture spectrum was decomposed according to equation (1) in the main text, where i refers to the corresponding amine and sucrose, respectively.
Figure S6. Raw AMS spectra of MEA-based, MDEA-based and PIP-based degradation samples measured at the AMS vaporizer temperatures of 250 °C (a-c) and 600 °C (d-f). Note that the H2O⁺, HO⁺, O⁺ and CO⁺ signals are directly measured values. Elemental ratios for 250 °C spectra are calculated using the new factors obtained in Figure 2 of the main text, while ratios for 600 °C spectra are determined based on the factors reported in Aiken et al. The spectral peaks are colored by 9 different ion categories listed in (a).
Figure S7. AMS spectra of MEA-based, MDEA-based and PIP-based degradation samples measured at the AMS vaporizer temperatures of 250 °C (a-c) and 600 °C (d-f), after removal of H2O+, HO+, O+, and CO2-related ions (based on fragmentation pattern for CO2 in NIST). Elemental ratios for 250 °C spectra are calculated using the new factors obtained in Figure 2 of the main text, while ratios for 600 °C spectra are determined based on the factors reported in Aiken et al.20 The spectral peaks are colored by 9 different ion categories listed in (a).
Figure S8. Differences between the AMS spectra measured at vaporizer temperatures of 250 °C and 600 °C for the degradation samples of (a) MEA, (b) MDEA, and (c) PIP (calculated from the spectra shown in Figure S7). The spectral peaks are colored by 9 different ion categories listed in (a).

- (a) MEA degradation sample (250 °C vs. 600 °C: $r^2 = 0.554$)
- (b) MDEA degradation sample (250 °C vs. 600 °C: $r^2 = 0.560$)
- (c) PIP degradation sample (250 °C vs. 600 °C: $r^2 = 0.966$)

Chemical species: $C_xH_y^+$, $C_xH_yO_1^+$, $C_xH_yO_{z(>1)}^+$, $C_xH_yN_{p(>1)}^+$, $C_xH_yNO_{1}^+$, $C_xH_yN_{p(>1)}O_{z(>1)}^+$, H_3O^+, NO_2^+, NH_4^+
Figure S9. AMS spectra of MEA-based, MDEA-based and PIP-based degradation products measured at the AMS oven temperatures of 250 °C (a-c) and 600 °C (d-f), after removal of parent amine signals (calculated from spectra shown in Figure S7). Elemental ratios for 250 °C spectra are calculated using the new factors obtained in Figure 2 of the main text, while ratios for 600 °C spectra used the factors reported in Aiken et al. The spectral peaks are colored by 9 different ion categories listed in (a).
Figure S10. ESI-MS spectra for the degradation samples of (a) MEA, (b) MDEA, and (c) PIP. (only major peaks are shown). The species identified in Tables S4-S6 are marked in the spectra.
Figure S11. Comparisons of the MDEA degradation sample spectrum (Figure S7b) with the one reconstructed using the multivariate fitting algorithm (a), the scatter plot between the two (b), and (c-j) NIST spectra of the eight degradation products used in the fitting.
References

1. Allan, J. D.; Delia, A. E.; Coe, H.; Bower, K. N.; Alfarra, M. R.; Jimenez, J. L.; Middlebrook, A. M.; Drewnick, F.; Onasch, T. B.; Canagaratna, M. R.; Jayne, J. T.; Worsnop, D. R., A generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol mass spectrometer data. *Journal of Aerosol Science* 2004, 35, (7), 909-922.

2. DeCarlo, P. F.; Kimmel, J. R.; Trimborn, A.; Northway, M. J.; Jayne, J. T.; Aiken, A. C.; Gonin, M.; Fuhrer, K.; Horvath, T.; Docherty, K. S.; Worsnop, D. R.; Jimenez, J. L., Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer. *Analytical Chemistry* 2006, 78, (24), 8281-8289.

3. Thitakamol, B.; Veawab, A.; Aroonwilas, A., Environmental impacts of absorption-based CO₂ capture unit for post-combustion treatment of flue gas from coal-fired power plant. *International Journal of Greenhouse Gas Control* 2007, 1, (3), 318-342.

4. Bhown, A. S.; Freeman, B. C., Analysis and status of post-combustion carbon dioxide capture technologies. *Environmental Science & Technology* 2011, 45, (20), 8624-8632.

5. Gouedard, C.; Picq, D.; Launay, F.; Carrette, P. L., Amine degradation in CO₂ capture. I. A review. *International Journal of Greenhouse Gas Control* 2012, 10, (0), 244-270.

6. Lepaumier, H.; Picq, D.; Carrette, P. L., New amines for CO₂ capture. I. Mechanisms of amine degradation in the presence of CO₂. *Industrial & Engineering Chemistry Research* 2009, 48, (20), 9061-9067.

7. Bedell, S. A., Amine autoxidation in flue gas CO₂ capture-Mechanistic lessons learned from other gas treating processes. *International Journal of Greenhouse Gas Control* 2011, 5, (1), 1-6.

8. Goff, G. S.; Rochelle, G. T., Monoethanolamine degradation: O₂ mass transfer effects under CO₂ capture conditions. *Industrial & Engineering Chemistry Research* 2004, 43, (20), 6400-6408.

9. Davis, J.; Rochelle, G., Thermal degradation of monoethanolamine at stripper conditions. *Energy Procedia* 2009, 1, (1), 327-333.

10. Strazisar, B. R.; Anderson, R. R.; White, C. M., Degradation of monoethanolamine used in CO₂ capture from flue gas of a coal-fired electric power generating station. *Journal of Energy and Environmental Research* 2001, 1, 32-39.

11. Strazisar, B. R.; Anderson, R. R.; White, C. M., Degradation pathways for monoethanolamine in a CO₂ capture facility. *Energy & Fuels* 2003, 17, (4), 1034-1039.

12. Lepaumier, H.; Picq, D.; Carrette, P. L., New amines for CO₂ capture. II. Oxidative degradation mechanisms. *Industrial & Engineering Chemistry Research* 2009, 48, (20), 9068-9075.
13. Lepaumier, H.; da Silva, E. F.; Einbu, A.; Grimstvedt, A.; Knudsen, J. N.; Zahlsen, K.; Svendsen, H. F., Comparison of MEA degradation in pilot-scale with lab-scale experiments. *Energy Procedia* 2011, 4, (0), 1652-1659.

14. Supap, T.; Idem, R.; Tontiwachwuthikul, P., Mechanism of formation of heat stable salts (HSSs) and their roles in further degradation of monoethanolamine during CO₂ capture from flue gas streams. *Energy Procedia* 2011, 4, (0), 591-598.

15. Sexton, A. J.; Rochelle, G. T., Reaction products from the oxidative degradation of monoethanolamine. *Industrial & Engineering Chemistry Research* 2011, 50, (2), 667-673.

16. Supap, T.; Idem, R.; Tontiwachwuthikul, P.; Saiwan, C., Analysis of monoethanolamine and its oxidative degradation products during CO₂ absorption from flue gases: A comparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations. *Industrial & Engineering Chemistry Research* 2006, 45, (8), 2437-2451.

17. Chakma, A.; Meisen, A., Methyl-diethanolamine degradation — Mechanism and kinetics. *The Canadian Journal of Chemical Engineering* 1997, 75, (5), 861-871.

18. Closmann, F.; Rochelle, G. T., Degradation of aqueous methyl diethanolamine by temperature and oxygen cycling. *Energy Procedia* 2011, 4, (0), 23-28.

19. Freeman, S. A.; Rochelle, G. T., Thermal degradation of aqueous piperazine for CO₂ capture: 2. Product types and generation rates. *Industrial & Engineering Chemistry Research* 2012, 51, (22), 7726-7735.

20. Aiken, A. C.; DeCarlo, P. F.; Kroll, J. H.; Worsnop, D. R.; Huffman, J. A.; Docherty, K. S.; Ulbrich, I. M.; Mohr, C.; Kimmel, J. R.; Sueper, D.; Sun, Y.; Zhang, Q.; Trimborn, A.; Northway, M.; Ziemann, P. J.; Canagaratna, M. R.; Onasch, T. B.; Alfarra, M. R.; Prevot, A. S. H.; Dommen, J.; Duplissy, J.; Metzger, A.; Baltensperger, U.; Jimenez, J. L., O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. *Environmental Science & Technology* 2008, 42, (12), 4478-4485.