Effects of binary stellar populations on direct collapse black hole formation

Bhaskar Agarwal¹*, Fergus Cullen², Sadegh Khochfar², Ralf Klessen¹, Simon Glover¹, Jarrett Johnson³

¹ Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Straße 2, 69120 Heidelberg, Germany
² Institute for Astronomy, University of Edinburgh, Royal Observatory, Edinburgh, EH9 3HJ
³ X Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

ABSTRACT

The critical Lyman–Werner flux required for direct collapse blackholes (DCBH) formation, or J_{crit}, depends on the shape of the irradiating spectral energy distribution (SED). The SEDs employed thus far have been representative of realistic single stellar populations. We study the effect of binary stellar populations on the formation of DCBH, as a result of their contribution to the Lyman–Werner radiation field. Although binary populations with ages > 10 Myr yield a larger LW photon output, we find that the corresponding values of J_{crit} can be up to 100 times higher than single stellar populations. We attribute this to the shape of the binary SEDs as they produce a sub–critical rate of H$^-$ photodetaching 0.76 eV photons as compared to single stellar populations, reaffirming the role that H$^-$ plays in DCBH formation. This further corroborates the idea that DCBH formation is better understood in terms of a critical region in the H$_2$–H$^-$ photo–destruction rate parameter space, rather than a single value of LW flux.

Key words: quasars: general, supermassive black holes – cosmology: darkages, reionization, firststars – galaxies: high-redshift

1 INTRODUCTION

Direct collapse black holes (DCBH) have gathered much attention recently (Dijkstra et al. 2012; Ferrara et al. 2014; Chon et al. 2016; Regan et al. 2013) as a plausible solution to the problem of forming billion solar mass black holes very early in cosmic history as is required to explain the existence of very luminous quasars at redshifts $z > 6$. Pristine gas in an atomic cooling halo exposed to a critical level of Lyman–Werner (LW) radiation can rid itself of molecular hydrogen (cooling threshold ~ 200 K), thereby collapsing isothermally in the presence of atomic hydrogen (cooling threshold ~ 8000 K). This leads to a Jeans mass threshold of $10^6 M_\odot$ at $n \sim 10^3$ cm$^{-3}$, thereby allowing the entire gas mass in the halo to undergo runaway collapse eventually forming a 10^{13}–$5 \times 10^{13} M_\odot$ black hole in one go (Omukai 2001). The collapse must withstand fragmentation into Population III (Pop III) stars, which requires the gas to get rid of its angular momentum via bars–within–bars instabilities (Regan et al. 2006), low–spin disks (e.g. Bromm & Loeb 2003; Koushiappas et al. 2004; Regan & Haehnelt 2009; Lodato & Natarajan 2006) or high inflow rates in turbulent medium (Volonteri & Rees 2005; Latif et al. 2013; Schleicher et al. 2013; Van Borm & Spaans 2013).

In order for this mechanism to work, initially there must be a LW radiation field strong enough to delay Pop III star formation in a minihalo, 2000 < T_{vir} < 10^4 K, till it reaches the atomic cooling limit of T_{vir} > 10^4 K (Machacek et al. 2001; O'Shea & Norman 2008; Agarwal et al. 2012, 2014). At this point, the flux of LW radiation illuminating the halo from nearby external stellar source(s) must be higher than a critical value J_{crit} (conventionally written in units of 10^{-21} erg/s/cm2/Hz) to facilitate isothermal collapse of the pristine gas at 8000 K into a DCBH. Many previous studies of DCBH formation have adopted highly simplified prescriptions for the spectrum of this external radiation field, approximating the spectrum of a source dominated by Pop III stars as a $T = 10^5$ K black body, and of a source dominated by Population II (Pop II) stars as a $T = 10^4$ K black body (Omukai 2001; Shang et al. 2010; Wolcott-Green & Haiman 2012). However, recent studies have emphasised the need for using more realistic spectral energy distributions (SED) for these sources as the value of J_{crit} depends on the shape of the irradiating source’s SED.

* E-mail: bhaskar.agarwal@uni-heidelberg.de
¹ An atomic cooling halo, i.e. $T_{\text{vir}} = 10^4$ K corresponds to a $M_{\text{DM}} \approx 10^7 M_\odot$ at $z \approx 10$. If we assume that the baryon fraction in this halo is the same as the cosmological mean value, i.e. $f_b \approx 0.16$, then the baryonic mass of such a halo will be at least $10^6 M_\odot$.

© 0000 RAS
We apply the framework described in A16 to SEDs generated with a method known as ‘Binary Population and Spectral Synthesis’ (BPASSv2) (Stanway et al. 2016, A16 hereafter). These studies employed single stellar populations to represent the SEDs of Pop II stars, generating them using publicly available single stellar synthesis codes such as STAR-BURST99 (Leitherer et al. 1999), YGGRASIL (Zackrisson et al. 2011), and Bruzual & Charlot (2003) model. However, in reality it is likely that a significant number of the stars will be part of binary systems. Stellar populations with significant binary fractions have higher hydrogen ionising photon yields than single stellar populations (e.g. Stanway et al. 2016, Ma et al. 2016), and so it is plausible that accounting for their existence will lead to significant differences in the value of I_{crit} that we derive.

2 METHODOLOGY

We apply the framework described in A16 to SEDs generated with the stellar population synthesis code ‘Binary Population and Spectral Synthesis’ (BPASSv2) (Stanway et al. 2016, Eldridge & Stanway 2016) in its second version, BPASSv2. This is done to assess the impact of binaries on the critical LW radiation field strength required to suppress H$_2$ formation and enable direct collapse black hole formation. The unique feature of the BPASSv2 models is the inclusion of massive binary star evolution which, in the context of this work, has the effect of boosting the LW photon flux at older stellar ages (see Section 3).

We have been motivated to consider the effects of binary star evolution by observations of local HII regions which have indicated that $\gtrsim 70\%$ of massive stars undergo a binary interaction in their lifetimes (e.g. Sana et al. 2012). Furthermore, it has been reported recently that the BPASSv2 models are better able to account for (i) the observed shape of the FUV continuum and (ii) UV + optical emission line ratios of star forming galaxies at $z \approx 2 - 3$ (Steidel et al. 2016; Strom et al. 2016) as well as the properties of massive star clusters in local galaxies (Wofford et al. 2016) and Pop III stars (Clark et al. 2011; Greif et al. 2012; Stacy & Bromm 2013). Given this context, it is useful to know how the presence of massive binary stars in stellar population will affect direct collapse black hole formation. Briefly, in the BPASSv2 models, the main consequence of close binary interactions is the removal of the hydrogen envelope in primary stars, part of which accretes onto the companion secondary star resulting in its rejuvenation (e.g. de Mink et al. 2013, Podsiadlowski et al. 1992). The resulting effect on a stellar population containing a significant binary fraction is more hot-helium and Wolf-Rayet stars in the primary population, and an effective increase in the main sequence lifetimes of secondary stars.

The mass transfer is also accompanied by angular momentum transfer, which causes stars to spin-up and results in a rotational mixing of layers allowing hydrogen to burn more efficiently; this effect, known as quasi-homogeneous evolution (QHE), is particularly strong at low metallicities (see Eldridge & Stanway 2016, Stanway et al. 2016). The most relevant consequence of these differences on the DCBH formation scenario is that compared to single star models, the BPASSv2 binary models extend the time period over which a stellar population can emit UV photons in the LW band.

The SED grid explored in this study is described in Tab. 1. It is compared to the SB99 case, which we have discussed in detail in the Appendix of A16. For the BPASSv2 models we have assumed the instantaneous burst models with ages ranging from 10^{6-9} yr and a metallicity of 0.05 Z$_\odot$. In order to understand the effect of these SEDs on DCBH formation, we make the following assumptions:

(i) The SEDs represent a galaxy of a certain age and stellar mass in a halo.

(ii) The DCBH formation region (in a pristine atomic cooling halo) is external to the galaxy, at an assumed separation of 5, 12, 20 physical kpc (Agarwal et al. 2014).

(iii) We parametrise the critical LW radiation requirement for DCBH formation in terms of the rate of photodissociation of molecular hydrogen k_{d1} (s$^{-1}$), and rate of photodetachment of H$^-$, k_{d2} (s$^{-1}$) where

$$k_{d1} = \kappa_{d1} \alpha I_{\text{LW}}$$

and

$$k_{d2} = \kappa_{d2} \beta I_{\text{LW}}$$

Here α and β are rate parameters that depend on the shape of the SED (Omukai 2001; Agarwal & Khochfar 2015, A16), $\kappa_{d1} = 10^{-10}$ s$^{-1}$ and $\kappa_{d2} = 10^{-12}$ s$^{-1}$ are normalisation constants (Agarwal & Khochfar 2015), and I_{LW} is the mean specific intensity of the Lyman-Werner radiation field at 13.6 eV. The latter depends on the choice of stellar population and the assumed separation between the galaxy and the atomic cooling halo.

(iv) In A16 we showed that in our simple one-zone model of the thermal evolution of gas in the atomic cooling halo, DCBH formation occurs when the H$_2$ photodissociation rate exceeds a value given approximately by

$$\kappa_{d1} I_{\text{LW}} = \kappa_{d1} \alpha I_{\text{LW}}$$

![Figure 1. The solid red curve is criterion for direct collapse derived described in A16, given by Eq. 3. The grey shaded region shows the range of k_{d1} and k_{d2} derived from SB99 stellar populations, while the blue region is the range derived from BPASS for a range of stellar populations described in Tab. 1.](image-url)
3 RESULTS

We first plot the LW output and rate parameters from BPASSv2 and SB99 models in the top panel of Fig. 2. As expected, the LW output of BPASSv2 is higher than that of SB99 at ages > 10 Myr. Considering this fact alone, one would expect the \(J_{\text{crit}} \) from binary populations to be lower than the one from single stellar populations. However, the rate parameters, \(\beta \) (middle panel) and \(\alpha \) (bottom panel), for BPASSv2 are consistently lower than the ones produced by SB99 at all ages. This hints towards a more complicated interplay of the rates and the LW output leading to the need for a more in depth analysis of \(J_{\text{crit}} \).

In Fig. 2 we compare the results of our analysis from the SB99 SEDs (top row) vs. BPASSv2 SEDs (bottom row). On the left we show the region in the \(M_\star \)-age parameter space in which DCBH formation is permitted (grey), where the labelled contours indicate various different values of \(J_{\text{LW}} \). The figure is split in top, middle and bottom panels corresponding to separations of 5, 12 and 20 kpc. In the right panels, we show the distribution of \(J_{\text{crit}} \) obtained by lowering the \(J_{\text{LW}} \) in the grey regions of the left panel, till a minimum value of \(k_{\text{tot}} \) that satisfies Eq. 3 is obtained. The histograms are split by a stellar age of 400 Myr which roughly corresponds to the age of the Universe at \(z = 12 \), and the solid, dotted and dashed lines correspond to a separation of 5, 12 and 20 kpc respectively.

We find that the BPASS models produce systematically higher values of \(J_{\text{LW}} \) for any given combination of \(M_\star \) and age, particularly when \(M_\star \) and the age are both large. For example, a galaxy with an age, \(t_\star = 10^{7.5} \) yr, a stellar, mass \(M_\star \sim 10^{9.5} \) M\(_\odot\) and a separation of 5 kpc from the atomic cooling halo of interest produces \(J_{\text{LW}} \sim 700 \) with the BPASSv2 model, but only \(J_{\text{LW}} \sim 100 \) with the SB99 model. This is because binary stellar populations yield more LW flux per stellar baryon especially at ages \(\gtrsim 10 \) Myr (Fig. 2). Therefore, particularly at late times, one would expect them to be more effective in producing a higher \(J_{\text{LW}} \) value at a given distance than single stellar populations. From this one would naturally infer that binary populations are more efficient in causing DCBH formation in their vicinity. Despite this, we find that the \(J_{\text{crit}} \) is required for DCBH formation is higher from binaries than when we assume that all stars are single.

This apparently counterintuitive result is actually just a reflection of the fact that the value of \(J_{\text{crit}} \) required for DCBH formation depends on the whole of the SED. Although BPASSv2 has a higher LW output, SB99 SEDs produce more lower energy photons and are thus much more effective at destroying H\(^-\), as can be seen in Fig. 2 where the values of \(\alpha \) and \(\beta \) for BPASSv2 but steadily rise for SB99 at stellar ages \(\gtrsim 10 \) Myr. Consequently, with the SB99 SEDs, we require fewer LW photons in order to successfully suppress H\(_2\) formation, and hence obtain a smaller \(J_{\text{crit}} \).

Further confirmation of this finding comes if we compare the distribution of \(J_{\text{crit}} \) in the right panels of Fig. 2. For the BPASSv2 SEDs, we find values in the range \(\sim 100 \lesssim J_{\text{crit}} \lesssim 3000 \), depending on the age of the stellar population, whereas for SB99, the same IMF yields a much wider distribution with \(0.1 \lesssim J_{\text{crit}} \lesssim 3000 \). For all three separations, we plot \(J_{\text{crit}} \) from the BPASS and SB99 models in Fig. 3. The curves are similar at ages < 10 Myr, but at later times, the \(J_{\text{crit}} \) from binary populations is higher than the one required form single stellar populations. For example, at an age of 50 Myr, \(J_{\text{crit}} \sim 100 \) for the BPASSv2 SEDs, while it is only \(\sim 10 \) when derived using the SB99 SEDs. In fact, we see from the left panels of Fig. 3 that a galaxy with \(M_\star \sim 10^6 \) and same age (50 Myrs) can easily have \(J_{\text{LW}} > J_{\text{crit}} \) when it is described by a SB99 SED, while for BPASSv2 SEDs \(J_{\text{LW}} < J_{\text{crit}} \) at this age for all masses.

These findings lead us to conclude

(i) \(J_{\text{crit}} \) does not solely depend on the LW photon yield, but on the 0.76 eV photon yield as well
(ii) The distribution of \(J_{\text{crit}} \) depends on whether binaries are included in a galaxy’s SED. We find that, for a stellar population of a given age and mass, the \(J_{\text{crit}} \) is higher when binaries are considered.
(iii) The distribution of \(J_{\text{crit}} \) is critically altered by the inclusion of older stellar populations. Our analysis shows that \(J_{\text{crit}} \) originating from older single stellar populations (> 10 Myr) is much lower than the one from similarly aged binary stellar populations
(iv) Formation of DCBHs must be understood in terms of a critical region in the \(k_{\text{de}}-k_{\text{tot}} \) parameter space (Eq. 3)

We note that point (i) is not a new result: it was already remarked upon by Sugimura et al. (2014) and in A16. However, our results here do help to emphasize the dependance of \(J_{\text{crit}} \) on the shape of the SED, which in turn depends on physical parameters such as the inclusion of binaries and older stellar populations.

\[
k_{\text{di}} \geq 10^{A \text{exp}(z)^{-b} + D} \text{Myr}^{-1},
\]

where \(z = \log_{10}(k_{\text{de}}) - B \) and \(A = -3.864, \quad B = -4.763, \quad C = 0.773, \quad D = -8.154, \) for \(k_{\text{de}} < 10^{-5} \text{ s}^{-1} \).
4 SUMMARY

We study the LW flux requirement for DCBH formation from galaxies that have a stellar population that includes a significant binary fraction. We show that despite their high LW output, binary populations are in fact inefficient at causing DCBH in their vicinity when compared to single stellar populations, contrary to what one would naively expect. This can be attributed to the SEDs of binary populations that are systematically bluer than those of populations composed only of single stars, meaning that the light from them is much less effective at causing H\(^-\) photodetachment. The lower H\(^-\) photodetachment rates mean that higher H\(_2\) photodissociation rates are needed in order to bring about DCBH formation, and so the required values of \(J_{\text{crit}}\) are larger.

We still find a distribution in the values of the \(J_{\text{crit}}\) produced by binary populations, albeit narrower (\(J_{\text{crit}} \sim 300 - 3000\)) than the one produced by single stellar populations (\(J_{\text{crit}} \sim 0.1 - 3000\)). Furthermore the need for older single stellar populations becomes clear as they produce the lowest values of \(J_{\text{crit}}\) in both cases, due to a higher \(k_{\text{de}}\). This pushes the idea further that the formation of DCBHs must be understood in terms of the \(k_{\text{de}} - k_{\text{di}}\) parameter space (Eq. 3), and not in terms of a single flux value (also see A16).

ACKNOWLEDGEMENTS

BA would like to thank Laura Morselli for her useful comments on the manuscript, and Eric Pellegrini and Claes-Erik Rydberg for useful discussions. BA would like to acknowledge the funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) via the ERC Advanced Grant STARLIGHT (project number 339177). Financial support for this work was provided by the Deutsche Forschungsgemeinschaft via SFB 881, “The Milky Way System” (sub-projects B1, B2 and B8) and SPP 1573, “Physics of the Interstellar Medium” (grant number GL 668/2-1).
Figure 4. Comparison of \(J_{\text{crit}} \) for BPASSv2 (solid) and SB99 (dotted), for all separations. This is an age distribution of the histograms, for the entire separation range, shown in the right panel of Fig 3.

REFERENCES

Agarwal B., Dalla Vecchia C., Johnson J. L., Khochfar S., Paardekooper J.-P., 2014, MNRAS, 443, 648
Agarwal B., Khochfar S., 2015, MNRAS, 446, 160
Agarwal B., Khochfar S., Johnson J. L., Neistein E., Dalla Vecchia C., Livio M., 2012, MNRAS, 425, 2854
Agarwal B., Smith B., Glover S. C. O., Natarajan P., Khochfar S., 2016, MNRAS, 459, 4209
Begelman M. C., Volonteri M., Rees M. J., 2005, MNRAS, 370, 289
Bromm V., Loeb A., 2003, ApJ, 596, 34
Bruzual G., Charlot S., 2003, MNRAS, 344, 1000
Chon S., Hirano S., Hosokawa T., Yoshida N., 2016, arXiv.org, arXiv:1603.08923
Clark P. C., Glover S. C. O., Smith R. I., Greif T. H., Klessen R. S., Bromm V., 2011, Science, 331, 1040
de Mink S. E., Langer N., Izzard R. G., Sana H., de Koter A., 2013, ApJ, 764, 166
Dijkstra M., Ferrara A., Mesinger A., 2014, MNRAS, 442, 2036
Eldridge J. J., Stanway E. R., 2016, arXiv.org, arXiv:1602.03790
Ferrara A., Salvadori S., Yue B., Schleicher D., 2014, MNRAS, 443, 2410
Greif T. H., Bromm V., Clark P. C., Glover S. C. O., Smith R. J., Klessen R. S., Yoshida N., Springel V., 2012, MNRAS, 424, 399
Habouzit M., Volonteri M., Latif M., Dubois Y., Peirani S., 2016, MNRAS
Koushiappas S. M., Bullock J. S., Dekel A., 2004, MNRAS, 354, 292
Latif M. A., Schleicher D. R. G., Schmidt W., Niemeyer J. C., 2013, MNRAS, 436, 2989
Leitherer C. et al., 1999, ApJ, 123, 3
Lodato G., Natarajan P., 2006, MNRAS, 371, 1813
Ma X., Hopkins P. F., Kasen D., Quataert E., Faucher-Giguere C.-A., Keres D., Murray N., Strom A., 2016, MNRAS, 459, 3614
Machacek M. E., Bryan G. L., Abel T., 2001, ApJ, 548, 509
Omukai K., 2001, ApJ, 546, 635
O’Shea B. W., Norman M. L., 2008, ApJ, 673, 14
Podsiadlowski P., Joss, P. C., Hsu J. J. L., 1992, ApJ, 391, 246
Regan J. A., Haehnelt M. G., 2009, MNRAS, 393, 858
Sana H. et al., 2012, Science, 337, 444
Schleicher D. R. G., Palla F., Ferrara A., Galli D., Latif M., 2013,