Transcriptomic Analysis Reveals LncRNAs Associated with Flowering of Angelica sinensis during Vernalization

Xiaoxia Liu 1, Mimi Luo 1, Mengfei Li 1,* and Jianhe Wei 2,*

1 State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 1889581962@163.com (X.L.); luomimi9521@163.com (M.L.)
2 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
* Correspondence: lmf@gsau.edu.cn (M.L.); jhwei@implad.ac.cn (J.W.)

Abstract: Angelica sinensis is a “low-temperature and long-day” perennial plant that produces bioactive compounds such as phthalides, organic acids, and polysaccharides for various types of clinical agents, including those with cardio-cerebrovascular, hepatoprotective, and immunomodulatory effects. To date, the regulatory mechanism of flowering under the photoperiod has been revealed, while the regulatory network of flowering genes during vernalization, especially in the role of lncRNAs, has yet to be identified. Here, lncRNAs associated with flowering were identified based on the full-length transcriptomic analysis of A. sinensis at vernalization and freezing temperatures, and the coexpressed mRNAs of lncRNAs were validated by qRT-PCR. We obtained a total of 2327 lncRNAs after assessing the protein-coding potential of coexpressed mRNAs, with 607 lncRNAs aligned against the TAIR database of model plant Arabidopsis, 345 lncRNAs identified, and 272 lncRNAs characterized on the SwissProt database. Based on the biological functions of coexpressed mRNAs, the 272 lncRNAs were divided into six categories: (1) chromatin, DNA/RNA and protein modification; (2) flowering; (3) stress response; (4) metabolism; (5) bio-signaling; and (6) energy and transport. The differential expression levels of representatively coexpressed mRNAs were almost consistent with the flowering of A. sinensis. It can be concluded that the flowering of A. sinensis is positively or negatively regulated by lncRNAs, which provides new insights into the regulation mechanism of the flowering of A. sinensis.

Keywords: Angelica sinensis; flowering; lncRNA; vernalization; transcriptomic analysis

1. Introduction

Angelica sinensis (Oliv.) Diels is a “low-temperature and long-day” perennial plant that is native to Gansu Province, Northwest China [1,2]. The roots have been used as a traditional Chinese medicine for over 2000 years [3,4]. Currently, the roots are also applied in cardio-cerebrovascular, hepatoprotective, and immunomodulatory clinical agents, largely relying on bioactive compounds such as phthalides, organic acids, and polysaccharides [5–7].

Recently, the planting area of A. sinensis has exceeded 40,000 ha to satisfy the increasing demand; however, a higher rate (>40%) of early bolting and flowering (EBF) in commercial cultivation increases the lignified rate of roots and decreases the yield accordingly [8,9]. In order to inhibit the EBF, effective measures that have been taken include selecting excellent germplasm resources with a lower rate of EBF [8], controlling the seedling size (0.4 to 0.6 cm) to delay the transition from vegetative to reproductive growth [10], storing seedlings below freezing temperatures (−3 to −10 °C) to avoid vernalization (0 to 10 °C) [2,11,12], and shading the plants with sunshade nets (40% to 60%) to avoid the long-day conditions during the adult stages [13].

Regarding the regulatory mechanism of flowering in A. sinensis, key genes and the regulatory network during the photoperiod have been identified and mapped based on transcriptomic analysis. Specifically, 13 genes associated with the photoperiod, vernalization,
sucrose, and GA pathways were identified from plants at the vegetative stage compared with the EBF stage [14]; 38 genes associated with the photoperiod, carbohydrates, hormone signaling, and floral development were identified from different development stages [15]; and 40 genes associated with the photoperiod, sucrose, GA, and floral development were identified from the EBF compared with Un-EBF [16]. In summary, key genes such as FLC, SOC1, FT, PHYA, API, and GA2OX1 were identified during the transition from the vegetative to the reproductive stage [14–16]. To date, physiological changes in the levels of carbohydrates, proteins, and hormones during vernalization have been investigated [17,18], while the regulatory network of flowering has yet to be identified.

Generally, ncRNAs include two categories, housekeeping and regulatory ncRNAs, and the latter can be further divided into sRNAs (i.e., miRNA, siRNA, and piRNA) and lncRNAs (>200 nucleotides) [19]. Both miRNAs and lncRNAs can influence plant developmental processes and stress responses [20], with the former being negative regulators functioning as specificity determinants, or guides, within complexes that promote the degradation of mRNA targets, and the latter acting either as precursors of miRNAs or endogenous target mimics (TMs), which mimic the real targets of miRNAs, thus rendering the corresponding miRNAs ineffective [21]. For example, previous studies on resistance against leaf rust in wheat found that 50 miRNAs and 1178 lncRNAs were identified and 49 lncRNAs were found to be the targets for miRNAs, with 1 lncRNA acting as a precursor of 2 miRNAs, and 3 lncRNAs acting as TMs [22].

Extensive investigations have demonstrated that lncRNAs regulate their downstream targets’ expression through the changing of epigenetic modification at the level of transcription and post-transcription by interacting with DNA, RNA, and proteins; thus, they are involved in various biological processes [23–25]. In this study, lncRNAs associated with flowering were identified based on the transcriptomic analysis of A. sinensis seedlings treated at vernalization and freezing temperatures (avoiding vernalization). We found that 272 lncRNAs directly or indirectly participate in regulating the flowering of A. sinensis and stress responses.

2. Materials and Methods

2.1. Plant Material

The seedlings (root–shoulder diameter 0.4–0.5 cm; Figure S1) of Angelica sinensis (cultivar Mingui 1) were stored at 0 (vernalization temperature) and −3 °C (freezing temperature), respectively. After storage at 0 °C for 14 (T1) and 60 days (T2), as well as at −3 °C for 125 days (T3), the shoot apical meristem (SAM) was cut from the root shoulder of the seedlings for transcriptomic analysis and qRT-PCR validation. Three biological replicates were performed for each treatment of T1, T2, and T3. Herein, the treatment of T1, T2, and T3 represents uncompleted, completed, and avoided vernalization, respectively, based on the EBF rate (Figure S2) when the stored seedlings were cultivated and grown in a long-day condition.

2.2. Full-Length Isoform Sequencing and Analysis

Total RNA of the SAM samples was extracted using Trizol reagent (Omega Bio-Tek, Norcross, GA, USA). The integrity of the RNA was determined using an Agilent 2100 Bioanalyzer (Agilent Technol., California, CA, USA) and agarose gel electrophoresis, and the purity and concentration of the RNA were determined using a microspectrophotometer (NanoDrop Technol., Wilmington, DE, USA). The high-quality RNAs were sequenced on a Pacific Biosciences Sequel platform (Gene Denovo Biotechnology Co., Ltd., Guangzhou, China). Raw reads of cDNA library were analyzed using a SMRT Link (V8.0.0) [26]. Briefly, high-quality CCS were extracted from the subreads BAM file; the integrity of transcripts (full-length sequences) was judged based on whether CCS reads contained primers (5′ and 3′) and polyAs; then, FLNC reads were generated by removing primers, barcodes, and polyAs; finally, FLNC reads were assembled to obtain the entire isoform [27].
2.3. Analysis of Long Noncoding RNAs (lncRNAs)

Isoforms that were not annotated against the four databases—NR, Swiss-Prot, Kyoto KEGG, and KOG—were used for the analysis of lncRNAs. The isoform that was assessed as a noncoding transcript by both CNCI and CPC software was finally confirmed as a lncRNA [28,29].

2.4. Characterization of lncRNAs

To date, the genome of *A. sinensis* has not been sequenced. Thus, the lncRNA analysis of *A. sinensis* was performed via a BLAST search with an E-value cut-off of ≤1 × 10^{-5} against the known lncRNAs from the TAIR database (https://www.arabidopsis.org accessed on 30 March 2022) [30]. The function of lncRNAs was annotated based on their coexpression mRNAs [31–33]. Herein, the biological functions of the coexpressed mRNAs were searched on the UniProt database (https://www.uniprot.org accessed on 30 March 2022).

2.5. qRT-PCR Validation

Based on the coding sequences (CDS) of coexpressed mRNA of lncRNA, 49 primer sequences of representatively coexpressed mRNAs (Table 1) were designed using the NCBI primer-blast tool. First-strand cDNA synthesis and qRT-PCR reaction were carried out using SuperRealPreMix Plus (FP205; Tiangen Biotech., Beijing, China) according to the manufacturer’s instructions; specifically, the cDNA was synthesized successively with one cycle (95 °C, 15 min) and 40 cycles (95 °C, 10 s; 60 °C, 20 s; and 72 °C, 30 s), and the qRT-PCR reaction was incubated successively at 95 °C for 15 s, 60 °C for 1 min and 95 °C for 1 s. The *Actin* (*ACT*) gene was used as a reference control gene with forward: TGGTATGTGCTGGATTCTGGT and reverse: TGAGATCACCACCAGCAAGG (amplicon size 109 bp) [34]. Herein, the cycle threshold (Ct) values and standard curves of the ACT gene at different volumes (0.25, 0.5, 1.0, 1.5, 2.0, and 3.0 µL) was built to correct the gene expression level (Figure S3 and Figure S4), and the expression levels of the 49 candidate genes and their standard deviations for every variant were added to the Supplementary Materials (Table S1). The REL of coexpressed mRNAs was calculated using the $2^{-\Delta\Delta Ct}$ method [35] according to the following formula.

\[
\begin{align*}
\Delta Ct_{\text{Test gene}} &= Ct_{\text{Test gene}} - Ct_{\text{Reference gene}} \\
\Delta Ct_{\text{Target gene}} &= Ct_{\text{Target gene}} - Ct_{\text{Reference gene}} \\
-\Delta\Delta Ct(T2 vs. T1) &= -(\Delta Ct_{T2} - \Delta Ct_{T1}) \\
-\Delta\Delta Ct(T3 vs. T1) &= -(\Delta Ct_{T3} - \Delta Ct_{T1}) \\
\text{Relative expression level (REL)} &= 2^{-\Delta\Delta Ct}.
\end{align*}
\]

Table 1. Primer sequences used in qRT-PCR validation.

lncRNA ID	Coexpressed mRNAs	mRNA ID	Primer Sequences (5' to 3')	Amplicon Size (bp)
Isoform0062250	HMGB2	NM_001035997.1	Forward: CAAAGCTGCTGCTAAGGAC	
Reverse: GGACTTCCACTTGTCTCTACG	155			
Isoform0061796	HMGB3	NM_001035998.1	Forward: CTTCCGTTGCTGGCTTCCG	
Reverse: CTCAACCGTGGCTTCTCAG	174			
Isoform0001498	At1g05910	NM_100472.2	Forward: AGACCTCTCACCTGCCTTCC	109
Isoform0062769	RID2	NM_125110.6	Forward: GCAGGGTCTAGCTGCTGTCTTCC	100
lncRNA ID	Coexpressed mRNAs	mRNA ID	Primer Sequences (5’ to 3’) Amplicon Size (bp)	
---	---	---	---	---
Isoform0061049	At4g26600	NM_001341820.1	Forward: TTCCGATTGGTGCAACTCCT 118	
		Reverse: GCCATGTCACAAACTGTC		
Isoform0034756	H2AV	NM_001339683.1	Forward: CAGTTGGACGAATTCAGGC 176	
		Reverse: CAGATGCCTGGGTGATC		
Isoform0050517	At2g28720	NM_128433.4	Forward: GCAAGAAGCTCAAAATTCGC 107	
		Reverse: TGCTTAGCAAGTTCACCAGG		
Isoform0062503	HTR2	NM_113651.2	Forward: CACCCAGAGGAGKGAAGAC 189	
		Reverse: TCTTGAAGAGCTGACTGC		
Isoform0027210	HOS15	NM_126132.4	Forward: TACAGGCGCAAGACCTATGG 164	
		Reverse: CTGTTGACCATCACCAGC		
Isoform0062048	REF6	NM_148863.4	Forward: AGGGAACACAGCTTGCTGTG 124	
		Reverse: TTCCCCAAATGGAGGCTG		
Isoform0062818	SKP1A	NM_106245.5	Forward: GTGCTGTACCTGCAAGTAC 181	
		Reverse: GTGCGGAAGCTTCTCGTGT		
Isoform0061474	ASK21	NM_001125404.1	Forward: CCTGATGACCTTACTGAGAG 178	
		Reverse: CAGGGTCACATCCCTGAACG		
Isoform0061497	SRK2G	NM_120946.5	Forward: ACATCGAGAGAGGTCGCAAG 110	
		Reverse: AGGTTGACATCACCAGC		
Isoform0062575	SRK2H	NM_125760.2	Forward: TGGTCCTGTTGTTGACTCT 164	
		Reverse: GAGAGAAAGTGTCTCGAC		
Isoform0062220	SRR1	NM_125348.4	Forward: ATGCATTTTGTTGGGAACAGC 117	
		Reverse: AGCAAACTCGCTGTGACTCT		
Isoform0061284	PHL	NM_001334526.1	Forward: CAAAGTCTCCTTGTTGCG 104	
		Reverse: GCAACTGCTCCATAGTGGG		
Isoform0057927	PHYA	NM_001123784.1	Forward: GTGCGATATGCTGATCGCTG 149	
		Reverse: CCTGAGGTGGAACCTACCT		
Isoform0041956	AGL62	NM_125437.5	Forward: CTCTCAACCAACACAACAC 197	
		Reverse: AAGCAGATTTACCAACCAAC		
Isoform0045502	AGL79	NM_113925.3	Forward: AATCACCCATGAGCTTGC 107	
		Reverse: TAGGGTCCGGCACTCATT		
Isoform0063170	ATJ3	NM_114279.4	Forward: GAATACGCTACGAGGTTGC 135	
		Reverse: GCATCCCACTTGGCTCTTCT		
Isoform0062470	ACBP6	NM_102916.4	Forward: AAATCCACCATGAGCTTGC 107	
		Reverse: TACGGGTTCGGGACGCTTACTT		
Isoform0061783	ENO2	NM_129209.4	Forward: CACTTGAGTGTGGAACCGAGG 190	
		Reverse: GGTCACTACCTCCCCAACCCTG		
Isoform0063049	ADH1	NM_106362.3	Forward: TGATGACCAGTGTTGCAACC 123	
		Reverse: TGAATCAGTGGCTACCAGC		
Isoform0062198	CSP2	NM_120029.3	Forward: GATGTGGAGGAGTGAATCAGG 115	
		Reverse: CAGTCTCTCGGCCATGTC		
lncRNA ID	Coexpressed mRNAs	mRNA ID	Primer Sequences (5’ to 3’)	Amplicon Size (bp)
---------------	-------------------	--------------	--	-------------------
Isoform0062617	HSP17.8	NM_100614.3	Forward: AACATCGCGGATAACGAACG	154
			Reverse: CTCCACGTGCTCTCCAC	
Isoform0009507	HSP70-3	NM_001202918.1	Forward: CGACTGAGGAGACACTCAT	144
			Reverse: TCTCACAGGCGGTTCTCAAC	
Isoform0034676	HSP70-10	NM_120996.4	Forward: CGTGTCAGAAGGTGTCG	167
			Reverse: CCGACGATAGAGGTGAC	
Isoform0042993	HSP90-3	NM_124983.4	Forward: AAACAGGGAAGTACGCTG	193
			Reverse: AGACACGACGACATAGG	
Isoform0061974	CSY4	NM_001337082.1	Forward: GATGCAGAGCTCTACCGC	197
			Reverse: CTCCTCCGGGCTCAGAAT	
Isoform0062375	GAPCP2	NM_101496.3	Forward: CATTTCTCAGCCTGTGGCG	198
			Reverse: TCTCAGTGGTGGTGTCG	
Isoform0062268	At3g52990	NM_115159.5	Forward: GACAAACTTGCGACCATCG	101
			Reverse: AATCCAGGGGCGCTCAG	
Isoform0062585	PGM2	NM_001160993.2	Forward: TGAACTGGATCAGAGAGAG	158
			Reverse: TCGGTCAGTACATGGAGAC	
Isoform0062370	BAM1	NM_113297.3	Forward: AACTCTGCGTCTGTTCG	165
			Reverse: GGAAAGAAGGTGTCAGAAT	
Isoform0062586	ARF1	NM_001337250.1	Forward: GTGACCGGTGTGTGAGCC	148
			Reverse: TGAAGCGAAAGGTGACG	
Isoform0061377	CUL1	NM_001036498.3	Forward: GTGGCGTGGATGCTGAGAG	153
			Reverse: TCTCCGGGTGTGGAGAAG	
Isoform0057235	SOFL4	NM_123240.2	Forward: AGGTCGATGAAAGACTAC	144
			Reverse: GAACCGCTGATAATGGGCC	
Isoform0043114	SOFL5	NM_001342234.1	Forward: TGGGAGTCAGGAGCAGCTCT	193
			Reverse: TCCTGGACGAAGAGCAT	
Isoform0062152	GRF2	NM_106479.3	Forward: AACTCCGGGAAAACTCGG	192
			Reverse: GAGCAAGATTGATTACGGCC	
Isoform0062828	GRF11	NM_001084180.2	Forward: GTGGCTAGGAGCAGCACTGTG	198
			Reverse: GACGGTGAGATCTCCGGAA	
Isoform0061395	ERF3	NM_103946.3	Forward: ATCTTTAGGCGGACAGAC	101
			Reverse: CGCAAATGCTGTGACCAAATCC	
Isoform0022533	SF1	NM_001036978.2	Forward: GGCTTAGGCTCAACTCCGAC	164
			Reverse: CCAGTCACAGGTCCCTGAT	
Isoform0044730	PURU1	NM_124115.4	Forward: ACGTCTCTTACTCCCGAAG	125
			Reverse: AGGCACACGAAACTGAA	
Isoform0047216	MES16	NM_117770.5	Forward: CCATCCCTTCTCCGCACTTT	195
			Reverse: TCATAGGAGAGCCAC	
Isoform0063248	GPT1	NM_124861.5	Forward: CGCTGTTTCTGTGATGAC	193
			Reverse: AAACGGCGGTTCACCAGCCT	
Table 1. Cont.

IncRNA ID	Coexpressed mRNAs	mRNA ID	Primer Sequences (5’ to 3’)	Amplicon Size (bp)
Isoform0062571	ABCF5	NM_125882.3	Forward: TGCTGATAGGCTTGTTGGT	103
			Reverse: CGGCTCATCAAGTAGCGAGCA	
Isoform0008194	SECA2	NM_001198130.1	Forward: ACTGAGGCCCATTGTCTG	117
			Reverse: CTCACGACAGCATGGTATA	
Isoform0062373	VPS26A	NM_124733.4	Forward: TGTTCCGCTTCCTCCAATCAA	196
			Reverse: TGCTCCAGTTGATCTCGCC	
Isoform0062449	CML19	NM_119864.5	Forward: CGAGCTCAACGTTGCTAGAG	160
			Reverse: GTCTATGGGATCTCGTCGCC	
Isoform0061307	NHX6	NM_106609.4	Forward: GGCATTTGCTCTTGCTGC	112
			Reverse: TCCTCCAATCACGTACCG	

2.6. Statistical Analysis

In order to obtain the precise estimation of PCR efficiency, each experiment for qRT-PCR validation was performed with three biological replicates, along with three technical replicates [36]. A t-test in SPSS 22.0 was performed for independent experiments, with \(p < 0.05 \) as the basis for statistical differences.

3. Results

3.1. LncRNAs Analysis

In total, 2327 lncRNAs were obtained after assessing the protein-coding potential of coexpressed mRNAs based on the two software programs, CNCI and CPC (Figure 1A), with 607 genes aligned against the known lncRNAs from the TAIR database of model plant *Arabidopsis* (Figure 1B), and 345 lncRNAs with coexpressed mRNAs of *A. sinensis* identified (Figure 1C) based on the SwissProt database. Based on the biological functions, the 272 characterized lncRNAs (Figure 1D) were divided into six categories: chromatin, DNA/RNA and protein modification (29); flowering (36); stress response (24); metabolism (117); biosignaling (23), and energy and transport (43) (Figure 1E). The base sequences of the 272 lncRNAs are shown in Table S2.

3.2. LncRNAs Linked with Chromatin, DNA/RNA and Protein Modification, as well as Expression Levels of Their Coexpressed mRNAs

Based on the biological functions of coexpressed mRNAs, 29 lncRNAs were linked with chromatin (HMGB2 and HMGB3), DNA/RNA (At1g05910, RID2 and At4g26600) and protein modification (H2AV, At2g28720, HTR2, HOS15, REF6, SKP1A, ASK21, SRK2G, SRK2H, DET1, BOPAt4g295601, At1g45180, At1g50840, At2g36630, At1g47890, UBP7, DER2.1, GRP3, MDH9.13, At3g24715, At3g16560, At3g62260, ESMD1, and At1g27930) (Table 2). The expression levels of 14 representative coexpressed mRNAs were confirmed by qRT-PCR, with 3 mRNAs (HMGB2, HMGB3 and At1g05910) showing down-regulation at T2 versus (vs.) T1, and 11 mRNAs showing lower levels at T2 vs. T1 than T3 vs. T1, with the exception of 2 mRNAs (H2AV and ASK21) (Figure 2).
Table 2. Twenty-nine lncRNAs linked with chromatin, DNA/RNA, and protein modification.

lncRNA ID	Coexpressed mRNAs	mRNA ID	Proteins Encoded by Coexpressed mRNAs
Chromatin modification (2)	HMG B2	AT1G20693.1	High mobility group B protein 2
Isoform0062250	HMGB3	AT1G20696.1	High mobility group B protein 3
DNA/RNA modification (3)	At1g05910	AT1G05910.1	ATPase family AAA domain-containing protein At1g05910
Isoform001498	RID2	AT5G57280.1	18S rRNA (guanine-N(7))-methyltransferase RID2 e S-adenosyl-L-methionine-dependent methyltransferases superfamily protein
Isoform0062769		AT5G57280.1	18S rRNA (guanine-N(7))-methyltransferase RID2 e S-adenosyl-L-methionine-dependent methyltransferases superfamily protein
Isoform0061497		AT4g26600.8	ATPase family AAA domain-containing protein At1g05910
Protein modification (24)	H2AV	AT3G54560.1	Histone H2A variant 1
Isoform0034756	HTR2	AT1G09200.1	Histone H2B.3
Isoform005017	HOS15	AT5G67320.1	WD40 repeat-containing protein HOS15
Isoform0062818	REF6	AT3G48401.0	Lysine-specific demethylase REF6
Isoform0062048	SKP1A	AT1G75950.1	SKP1-like protein 1A
Isoform0061474	ASK21	AT3G61415.1	SKP1-like protein 21
Isoform0061497	SRK2G	AT5G08590.1	Serine/threonine-protein kinase SRK2G
Isoform0062575	SRK2H	AT5G63650.1	Serine/threonine-protein kinase SRK2H
Isoform0053138	DET1	AT4G10180.1	Light-mediated development protein DET1
Isoform0030135	BOPAt4g295601	AT3G57130.2	Ankyrin repeat family protein/ BTB/POZ domain-containing protein
Isoform0063715	At1g45180	AT1G45180.1	Phototropic-responsive NPH3 family protein
Isoform0044146	At3g50840	AT3G50840.3	Sulfite exporter TauE/SafE family protein 4
Isoform0034163	At2g36630	AT2G36630.1	Ubiquitin carboxyl-terminal hydrolase-related protein
Isoform0058941	At3g47890	AT3G47890.2	Ubiquitin carboxyl-terminal hydrolase-related protein
Isoform0007659	UBP7	A0A199LL79	Ubiquitin carboxyl-terminal hydrolase-related protein

Figure 1. Distribution and classification of lncRNAs in *Angelica sinensis* during vernalization, based on the biological functions of coexpressed mRNAs. Abbreviations: CNCI, coding–noncoding index; CPC, coding potential calculator. Images (A), (B), (C), (D) and (E) represent total, aligned, identified, characterized and classified lncRNAs, respectively.

References

CPC, coding potential calculator. Images (A), (B), (C), (D) and (E) represent total, aligned, identified, characterized and classified lncRNAs, respectively.
Table 2. Cont.

IncRNA ID	Coexpressed mRNAs	mRNA ID	Proteins Encoded by Coexpressed mRNAs
Isoform0045576	DER2.1	AT3G21280.2	Derlin-2.1
Isoform0062510	GRP3	AT2G05520.1	Glycine-rich protein 3
Isoform0062575	MDH9.13	AT5G42440.1	Kinase superfamily with octicosapeptide/Phox/Bem1p domain-containing protein
Isoform0051826	AT3g24715	AT3G24715.1	
Isoform0061548	AT3g16560	AT3G16560.4	Probable protein phosphatase 2C 40
Isoform0049189	AT3g2260	AT3G2260.1	Probable protein phosphatase 2C 49
Isoform0060667	ESMD1	AT2G01480.1	Protein ESMERALDA 1
Isoform0027210	At1g27930	AT1G27930.1	Probable methyltransferase At1g27930

Figure 2. The expression levels of coexpressed mRNAs of IncRNAs linked with chromatin, DNA/RNA and protein modification in A. sinensis at T2 vs. T1 and T3 vs. T1, as determined by qRT-PCR. T1, T2, and T3 represent uncompleted, completed, and avoided vernalization, respectively. The "*" represents a significant difference at $p < 0.05$ level between T2 vs. T1 and T3 vs. T2 for the same gene.

3.3. LncRNAs Linked with Flowering and Expression Levels of Their Coexpressed mRNAs

In total, 36 IncRNAs were linked with flowering based on the biological functions of their coexpressed mRNAs, with 12 IncRNAs directly associated with flowering, namely SRR1, PHL, PHYA, AGL62, AGL79, ATJ3, BBX29, CLE13, CLE44, MXC17.10, At1g06515, and BHLH30 (Table 3), and 24 IncRNAs indirectly associated with flowering, such as cell division, embryo development, and cell wall organization (Table S3). The expression levels of six representative coexpressed mRNAs (SRR1, PHL, PHYA, AGL62, AGL79, and ATJ3) were confirmed by qRT-PCR, with all six mRNAs showing down-regulation at T2 vs. T1 and T3 vs. T1, and five mRNAs showing lower levels at T2 vs. T1 than T3 vs. T1, with the exception of the gene AGL62 (Figure 3).

3.4. LncRNAs Linked with Stress Response and Expression Levels of Their Coexpressed mRNAs

In total, 24 IncRNAs were linked with the stress response based on the biological functions of their coexpressed mRNAs, with 14 IncRNAs associated with the temperature response, namely ACBP6, ENO2, ADH1, CSP2, RH20, RH52, RH53, RAB18, XERO1, MED14, HSP17.8, HSP70-3, HSP70-10, and HSP90-3 (Table 4), and 10 IncRNAs associated with other stresses responses, such as water, salt, and oxidative stress (Table S4). The expression levels of eight representative coexpressed mRNAs involved in the temperature response were confirmed by qRT-PCR, with four mRNAs (ACBP6, ENO2, CSP2, and HSP90-3) showing up-regulation at T3 vs. T1, and three mRNAs (ACBP6, ENO2, and CSP2) showing lower levels at T2 vs. T1 than T3 vs. T1 (Figure 4).
Table 3. Twelve lncRNAs directly linked with flowering.

lncRNA ID	Coexpressed mRNAs	mRNA ID	Proteins Encoded by Coexpressed mRNAs
Isoform0062220	SRR1	AT5G59560.2	Protein SENSITIVITY TO RED LIGHT REDUCED 1
Isoform0061284	PHL	AT1G72390.1	Protein PHYTOCHROME-DEPENDENT LATE-FLOWERING
Isoform0057927	PHYA	AT1G09570.6	Phytochrome A
Isoform0041956	AGL62	AT5G60440.1	Agamous-like MADS-box protein AGL62
Isoform0045502	AGL79	AT3G30260.1	AGAMOUS-like 79
Isoform0063170	ATJ3	AT3G44110.1	Chaperone protein dnaJ 3
Isoform0028325	BBX29	AT5G54470.1	At5g54470
Isoform0054894	CLE13	AT1G73965.1	CLAVATA3/ESR (CLE)-related protein 13
Isoform0061298	CLE44	AT4G13195.1	CLAVATA3/ESR (CLE)-related protein 44
Isoform0056751	MXC17.10	AT5G24710.1	Transducin/WD40 repeatlike superfamily protein
Isoform0062524	At1g06515	AT1G06515.2	Membrane protein, putative (DUF3317)
Isoform0061573	BHLH30	AT1G68810.1	Transcription factor bHLH30

Figure 3. The expression levels of coexpressed mRNAs of lncRNAs directly linked with flowering in A. sinensis at T2 vs. T1 and T3 vs. T1, as determined by qRT-PCR. The “*” represents a significant difference at p < 0.05 level between T2 vs. T1 and T3 vs. T2 for the same gene.

Table 4. Fourteen lncRNAs directly linked with temperature response.

lncRNA ID	Coexpressed mRNAs	mRNA ID	Proteins Encoded by Coexpressed mRNAs
Isoform0062470	ACBP6	AT1G31812.1	Acyl-CoA-binding domain-containing protein 6
Isoform0061783	ENO2	AT2G36530.1	Bifunctional enolase 2/transcriptional activator
Isoform0063049	ADH1	AT1G77120.1	Alcohol dehydrogenase class-P
Isoform0062198	CSP2	AT4G38680.1	Cold shock protein 2
Isoform0035932	RH20	AT1G35150.2	DEA(D/H)-box RNA helicase family protein
Isoform0019851	RH52	AT3G386570.1	DEAD-box ATP-dependent RNA helicase 52
Isoform0062484	RH53	AT3G22330.1	DEAD-box ATP-dependent RNA helicase 53, mitochondrial
Isoform0058095	RAB18	AT5G6400.1	Dehydrin Rab18
Isoform0061968	XERO1	AT3G30980.1	Dehydrin Xero 1
Isoform0020919	MED14	AT3G04740.1	Mediator of RNA polymerase II transcription subunit 14
Isoform0062617	HSP17.8	AT1G07400.1	17.8 kDa class I heat shock protein
Isoform009507	HSP70-3	AT3G09440.2	Heat shock 70 kDa protein
Isoform0034676	HSP70-10	AT3G0590.1	Heat shock 70 kDa protein 10, mitochondrial
Isoform0042993	HSP90-3	AT3G6010.1	Heat shock protein 90-3
3.5. LncRNAs Linked with Metabolism and Expression Levels of Their Coexpressed mRNAs

In total, 117 lncRNAs were linked with metabolism based on the biological functions of their coexpressed mRNAs, with 19 lncRNAs associated with carbohydrate metabolism, namely CSY4, FBA3, GAPC1, GAPCP2, At3g52990, PGM2, USP, GLCNAC1PUT2, UXS2, Xyla, GALS1, OFUT31, At1g59950, At1g26850, and BAM1 (Table 5), and 98 lncRNAs associated with other types of metabolism, such as nucleotide, protein, and lipid metabolism (Table S5). The expression levels of five representative coexpressed mRNAs (CSY4, GAPCP2, At1g52990, PGM2, and BAM1) involved in carbohydrate metabolism were confirmed by qRT-PCR, with all five mRNAs showing down-regulation at T3 vs. T1, and three mRNAs showing higher levels at T2 vs. T1 than T3 vs. T1, with the exception of the two genes GAPCP2 and BAM1 (Figure 5).

Table 5. Nineteen lncRNAs directly linked with carbohydrate metabolism.

lncRNA ID	Coexpressed mRNAs	mRNA ID	Proteins Encoded by Coexpressed mRNAs
Isoform0061974	CSY4	AT2G44350.2	Citrate synthase 4, mitochondrial
Isoform0062251	FBA3	AT2G01140.1	Fructose-bisphosphate aldolase 3, chloroplastic
Isoform0062131	GAPC1	AT3G04120.1	Glyceraldehyde-3-phosphate dehydrogenase GAPC1, cytosolic
Isoform0062375	GAPCP2	AT1G16300.1	Glyceraldehyde-3-phosphate dehydrogenase GAPCP2, chloroplastic
Isoform0062268	AT3g52990	AT3G52990.1	Pyruvate kinase
Isoform0062585	PGM2	AT1G70730.3	Phosphoglucomutase
Isoform0063034	USP	AT5G52560.1	(alpha-D-glucose-1,6-bisphosphate-dependent)
Isoform0042435	GLCNAC1PUT2	AT2G35020.1	UDP-sugar pyrophosphorylase
Isoform0062018	UXS2	AT3G62830.1	UDP-glucuron acid decarboxylase 2
Isoform0062750	Xyla	AT5G57655.2	Xylose isomerase
Isoform0060700	GALS1	AT2G33570.1	Galactan beta-1,4-galactosyltransferase GALS1
Isoform0062032	OFUT31	AT4G24530.1	O-fucosyltransferase 31
Isoform0039872	A1g567460	AT5G67460.1	Glucan endo-1,3-beta-D-glucosidase
Isoform0045893	RSW3	AT5G63840.1	Glycosyl hydrolases family 31 protein
Isoform0036200	A1g59950	AT1G9950.1	Aldo/keto reductase
Isoform0042053	A1g525970	AT5G25970.2	beta-1,6-N-acetylglucosaminyl-transferase family protein
Isoform0059181	UGT76E7	AT5G38040.1	UDP-glucosyltransferase 76E7
Isoform0037698	A1g26850	AT1G26850.2	Probable methyltransferase PMT2
Isoform0062370	BAM1	AT3G23920.1	Beta-amylase 1, chloroplastic

Figure 4. The expression levels of coexpressed mRNAs of lncRNAs linked with temperature response in A. sinensis at T2 vs. T1 and T3 vs. T1, as determined by qRT-PCR. The “*” represents a significant difference at p < 0.05 level between T2 vs. T1 and T3 vs. T2 for the same gene.
3.6. LncRNAs Linked with Biosignaling and Expression Levels of Their Coexpressed mRNAs

In total, 23 lncRNAs were linked with metabolism based on the biological functions of their coexpressed mRNAs, with 13 lncRNAs associated with hormone signaling, namely ARF1, CUL1, T4L20.330, SOFL4, SOFL5, GRF2, GRF11, ERF3, CIPK20, SF1, AGD9, TIFY4B, and At2g34810 (Table 6), and 10 lncRNAs associated with other types of signaling, such as protein kinase, phosphatidylinositol-mediated, and cell surface receptor signaling (Table S6). The expression levels of eight representative coexpressed mRNAs associated with hormone signaling were confirmed by qRT-PCR, with three mRNAs (ARF1, CUL1, and GRF11) showing up-regulation at T2 vs. T1 and T3 vs. T1, and four mRNAs (ARF1, SOFL4, GRF2, and ERF3) showing lower levels at T2 vs. T1 than T3 vs. T1 (Figure 6).

Table 6. Thirteen lncRNAs directly linked with hormone signaling.

lncRNA ID	Coexpressed mRNAs	mRNA ID	Proteins Encoded by Coexpressed mRNAs
lsoform0062586	ARF1	AT2G47170.1	ADP-ribosylation factor 1
lsoform0061377	CUL1	AT4G02570.1	Cullin-1
lsoform0015752	T4L20.330	AT4G34750.1	SAUR-like auxin-responsive protein family
lsoform0057235	SOFL4	AT5G38790.1	Protein SOB FIVE-LIKE 4
lsoform0043114	SOFL5	AT4G33800.2	Protein SOB FIVE-LIKE 5
lsoform0062152	GRF2	AT1G78300.1	14-3-3-like protein GF14 omega
lsoform0062828	GRF11	AT1G34760.1	14-3-3-like protein GF14 omicron
lsoform0061395	ERF3	AT1G50640.1	Ethylene-responsive transcription factor 3
lsoform0007735	CIPK20	AT5G45820.1	CBL-interacting serine/threonine-protein kinase 20
lsoform0022533	SF1	AT5G51300.2	Splicing factor-like protein 1
lsoform0046311	AGD9	AT5G46750.1	Probable ADP-ribosylation factor GTPase-activating protein AGD9
lsoform0057859	TIFY4B	AT4G14720.1	Protein TIFY 4B
lsoform0062437	At2g34810	AT2G34810.1	Berberine bridge enzyme-like 16
Forty-three lncRNAs linked with energy and transport.

Table 6. Thirteen lncRNAs directly linked with hormone signaling.

lncRNA ID	Coexpressed mRNAs	mRNA ID	Proteins Encoded by Coexpressed mRNAs
Energy (5)			
Isoform0044730	PURU1	AT5G47435.2	Formyltetrahydrofolate deformylase 1, mitochondrial
Isoform0031698	ndbhB	ATCG01250.1	NAD(P)H-quinone oxidoreductase subunit 2 A, chloroplastic
Isoform0029144	NDB1	AT4G28220.2	NADH:ubiquinone reductase (nonelectrogenic)
Isoform0046995	WNK9	AT5G28080.3	Nonspecific serine/threonine protein kinase
Isoform0047216	SECA2	AT4G16690.1	pFDCC methylesterase MES16
Transport (38)			
Isoform0047603	At5g11230	AT5G11230.1	Probable sugar phosphate/phosphate translocator At5g11230
Isoform0063248	GPT1	AT5G54800.1	Glucose-6-phosphate/phosphate translocator 1, chloroplastic
Isoform0053163	SMXL5	AT5G57130.1	Protein SMXL1-LIKE 5
Isoform0062571	ABCF5	AT5G64840.1	ABC transporter F family member 5
Isoform0062182	SFH8	AT2G21520.2	Phosphatidylinositol/phosphatidylycholine transfer protein SFH8
Isoform0022607	BASS6	AT4G22840.1	Probable sodium/metalobite cotransporter BASS6, chloroplastic
Isoform0008194	SECA2	AT1G21650.3	Protein translocase subunit SECA2, chloroplastic
Isoform0014041	At4g14160	AT4G14160.1	Protein transport protein SEC23
Isoform0062660	Ycf2-A	ATCG01280.1	Protein Ycf2
Isoform0036773	At4g22990	AT4G22990.1	SPX domain-containing membrane protein At4g22990
Isoform0032676	At3g49350	AT3G49350.1	At3g49350
Isoform0062443	TMT2	AT4G35300.5	Tonoplast monosaccharide transporter2
Isoform0003274	VPS24-1	AT5G22950.1	Vacuolar protein sorting-associated protein 24 homolog 1
Isoform0062373	VPS26A	AT5G53530.1	Vacuolar protein sorting-associated protein 26A
Isoform0028575	VPS52	AT1G71207.1	Vacuolar protein sorting-associated protein 52 A
Isoform0038654	VP560-2	AT5G04850.1	Vacuolar protein sorting-associated protein 60.2

3.7. LncRNAs Linked with Energy and Transport

In all, 43 lncRNAs were found to be linked with energy and transport based on the biological functions of their coexpressed mRNAs, with 5 lncRNAs associated with energy, such as PURU1, ndbhB1, and NDB1, and 38 lncRNAs associated with transport, such as At5g11230, GPT1 and SMXL5 (Table 7). The expression levels of eight representative coexpressed mRNAs (PURU1, MES16, GPT1, ABCF5, SECA2, VPS26A, CML19, and NHX6) were confirmed by qRT-PCR, with three mRNAs (PURU, GPT1, and VPS26A) showing up-regulation at T2 vs. T1 and T3 vs. T1, and six mRNAs (PURU1, GPT1, ABCF5, SECA2, VPS26A, and CML19) showing higher levels at T2 vs. T1 than T3 vs. T1, with the exception of the two genes MES16 and NHX6 (Figure 7).

Table 7. Forty-three lncRNAs linked with energy and transport.
Table 7. Cont.

IncRNA ID	Coexpressed mRNAs	mRNA ID	Proteins Encoded by Coexpressed mRNAs
Isoform0062996	At5g19500	AT5G19500.1	At5g19500
Isoform0062800	PIP1-5	AT4G23400.1	Probable aquaporin PIP1-5
Isoform0061992	SULTR2;2	AT1G77990.1	Sulfate transporter 2.2
Isoform0062606	MT2A	AT3G09390.2	Metallothionein-like protein 2A
Isoform0057136	At3g52300	AT3G52300.1	ATP synthase subunit d, mitochondrial
Isoform0061450	ABCB23	AT4G28630.1	ABC transporter B family member 23, mitochondrial
Isoform0062449	CML19	AT4G37010.1	Calcium-binding protein CML19
Isoform0061763	JJJ1	AT1G74250.1	DNAJ protein JJJ1 homolog
Isoform0061955	PAP1	AT1G13750.1	Probable inactive purple acid phosphatase 1
Isoform0062074	HIPP04	AT1G29000.2	Heavy metal-associated isoprenylated plant protein 4
Isoform0062972	HIPP26	AT4G38580.1	Heavy metal-associated isoprenylated plant protein 26
Isoform0014712	KINLA	AT1G12430.1	Kinesin-like protein KIN-UA
Isoform0063051	IQD30	AT1G18840.2	Protein IQ-DOMAIN 30
Isoform0016777	At3g18430	AT3G18430.1	Calcineurin b subunit (Protein phosphatase 2b regulatory subunit)-like protein
Isoform0063921	CBL10	AT4G33000.6	Calcineurin B-like protein 10
Isoform0061307	NHX6	AT1G79610.1	Sodium/hydrogen exchanger 6
Isoform0024682	CNGC15	AT2G28260.2	Cyclic nucleotide-gated channel 15
Isoform0034638	2-Oct	AT1G79360.1	Organic cation/carotidine transporter 2
Isoform0033810	CNGC13	AT4G01010.2	Putative cyclic nucleotide-gated ion channel 13
Isoform0051075	MTG13.4	AT5G16680.1	RING/FYVE/PHD zinc finger superfAMILY protein
Isoform0051563	SUP4	AT1G30970.3	Zinc finger (C2H2 type) family protein
Isoform0037483	AHA4	AT3G47950.2	ATPase 4, plasma membranetype

Figure 7. The expression levels of coexpressed mRNAs of IncRNAs linked with energy and transport in *A. sinensis* at T2 vs. T1 and T3 vs. T1, as determined by qRT-PCR. The “*” represents a significant difference at p < 0.05 level between T2 vs. T1 and T3 vs. T2 for the same gene.

4. Discussion

Vernalization is a process considered to be an epigenetic switch whereby flowering is promoted by prolonged exposure to cold (0 to 10 °C); meanwhile, it can be lost at high temperatures or avoided below freezing temperatures [37,38]. Epigenetic regulation involves diverse molecular mechanisms including chromatin remodeling, DNA methylation, histone modification, histone variants, and ncRNAs [39]. Studies on *Brassica rapa* found that 127 differentially expressed IncRNAs were coexpressed with 128 differentially expressed genes, indicating that IncRNAs played an important role during vernalization [40]. In this study, 272 characterized IncRNAs were identified from *A. sinensis* and divided into six categories, namely (1) chromatin, DNA/RNA, and protein modification; (2) flowering;
(3) stress response; (4) metabolism; (5) biosignaling; and (6) energy and transport, based on their coexpressed mRNAs.

FLC is a MADS-box transcriptional regulator that acts as a potent repressor of flowering [38]. In Arabidopsis, the epigenetic silencing of the floral repressor gene FLC is a well-characterized key event of vernalization [41]. In this study, 29 lncRNAs linked with chromatin, DNA/RNA, and protein modification were identified in A. sinensis during vernalization. For the chromatin modification, two coexpressed mRNAs, HMGB2 and HMGB3, are involved in binding preferentially double-stranded DNA and up-regulated in response to cold stress [42]. For the DNA/RNA modification, At1g05910 is involved in DNA demethylation and the negative regulation of chromatin silencing [43]; R2D2 is involved in rRNA methyltransferase activity [44]; and At4g26600 is involved in RNA methylation [45]. For protein modification, 24 lncRNAs were involved and the roles of nine coexpressed mRNAs were represented as follows. H2AV plays a central role in regulating transcription, repairing DNA, replicating DNA, and stabilizing the nucleus chromosome [46]; At2g28720 and HTR2 are involved in compacting DNA into chromatin [47,48]; HOS15 promotes the deacetylation of histone H4 [49]; REF6 is involved in demethylating ‘Lys-27’ of histone H3, regulating flowering time by repressing FLC expression and interacting with the NF-Y complex to regulate SOC1 [50,51]; SKP1A and ASK21 are involved in ubiquitination and form an SCF E3 ubiquitin ligase complex together with CUL1, RBX1, and an F-box protein [52,53]; and SRK2G and SRK2H are involved in protein phosphorylation [54,55]. In previous studies, HMGB2 and HMGB3 were up-regulated in response to cold stress but down-regulated in response to drought and salt stresses [42]; H2AV, At2g28720 and HTR2 exhibited a high level in response to osmotic and drought stresses [56]; HOS15 was found to act as a repressor of cold stress-regulated gene expression and played a role in gene regulation for plant acclimation and tolerance to cold stress [49]; SKP1A and ASK21 were overexpressed in the host stress response [57]; and SRK2G and SRK2H were found to be positive regulators in stress responses such as drought, salt, and cold [54,55,58]. Currently, although most of the lncRNAs have been reported to be involved in the stress response in many plants, their roles in the regulation of flowering time have been studied in model plants [23]. Previous studies have found that FLC in Arabidopsis is epigenetically regulated by lncRNAs COOLAIR and COLDAIR [59–61]. In this study, a lower expression level was noted for almost all coexpressed mRNAs of lncRNAs involved in chromatin, DNA/RNA, and protein modification at vernalization (T2, 0 °C) compared with freezing temperature (T3, −3 °C), as well as down-regulation at T2, indicating that these lncRNAs participate in epigenetic silencing by transferring euchromatin to heterochromatin and confer early bolting and flowering of A. sinensis. Representatively, the down-regulation of mRNAs HMGB2 and HMGB3 during vernalization transfers the heterochromatin to the euchromatin [42], which generates the ability of flowering; in contrast, their up-regulation at freezing temperatures inhibits flowering by keeping the heterochromatin, which indicates that their coexpressed lncRNAs play positive roles in regulating the flowering of A. sinensis. The down-regulation of mRNA REF6 below 0 °C weakens the demethylation of histone H3 and delays flowering time by inducing FLC expression [50,51]; meanwhile, there is an increased expression level with decreased temperatures, which indicates that this coexpressed lncRNA plays a negative role in regulating the flowering of A. sinensis.

Flower formation occurs at the SAM and is a complex morphological event that is required not only for the circadian clock to measure the passage of time but also the regulation of meristem identity genes [42]. For the 6 representative coexpressed mRNAs of the 12 lncRNAs directly linked with flowering, SRR1 is involved in a circadian clock input pathway and regulation of the expression of clock-regulated genes such as CCA1 and TOCI [62]; PHL is involved in the circadian rhythm and the regulation of the timing of transition [63]; PHYA is involved in the regulation of flowering time and expression of its own gene as negative feedback [64]; AGL62 is required for promoting the nuclear proliferation of early endosperm [65]; AGL79 is involved in positively regulating the transition of the meristem from the vegetative to reproductive phase [66]; and ATJ3 plays a...
continuous role in plant development, such as in photoperiodism, flowering, and positive regulation of flower development [67]. Previous studies found that mRNAs (e.g., miR156, miR169 and miR172) play a crucial role in developmental processes in rice, wheat, and maize, especially in the formation of the floral meristem, with miR172 controlling AP2-like genes [23,68,69]. Studies on the flowering of Chenopodium quinoa found that pivotal flowering homologs, including photoreceptor genes PHYA and CRY1, as well as genes associated with florigen-encoding genes (FT and TWIN SISTER of FT) and circadian clock-related genes (ELF3, LHY, and HY5), were specifically affected by night-break and competed with the positive- and negative-flowering lncRNAs [70]. In this study, down-regulation of all the coexpressed mRNAs involved in circadian clock and meristem identity genes was observed, which can be considered acceptable and reasonable, because these mRNAs are often highly expressed at the plant development stage (at photoperiod), while their expression levels were examined during vernalization. In addition, increased expression with decreased temperatures indicates that their coexpressed lncRNAs play negative roles in regulating the flowering of *A. sinensis*.

The expression of numerous lncRNAs has been demonstrated to be significantly affected by various stresses [23,30]. During vernalization, plants have to face and adapt to low temperature [38]. To date, extensive studies have reported that lncRNAs participate in defense responses associated with plant immunity and adaptation to the environment [22]. Heat-responsive lncRNAs have been found to be differentially expressed in *Brassica juncea*, and cold-responsive lncRNAs have been identified in grape and *Arabidopsis* [71–73]. lncRNAs could regulate HSP family genes (HSP82 and HSP83) in response to heat stress in *Populus x canadensis* Moench, and HSP18.1 in response to Cd stress *Betula platyphylla* [74,75]. For the eight representative coexpressed mRNAs of the 14 lncRNAs linked with the temperature response, ACBP6 confers resistance to cold and freezing [76]; ENO2 acts as a positive regulator in response to cold stress [77]; ADH1 is required for survival and acclimation in response to abiotic stresses (e.g., cold, salt, and drought) [78,79]; CSP2 contributes to the enhancement of cold and freezing tolerance [80]; and HSP17.8, HSP70-3, HSP70-10, and HSP90-3 play vital roles in adapting to biotic and abiotic stresses [81,82]. In this study, increased expression for cold-tolerated mRNAs (ACBP6, ENO2, ADH1, and CSP2), and decreased expression for heat-tolerated mRNAs (HSP17.8, HSP70-3, HSP70-10, and HSP90-3), were observed with decreased temperatures, which indicates that their coexpressed lncRNAs play positive roles in adapting to low temperatures.

For vernalization to occur, sources of energy (sugars) and carbohydrate metabolism are required [37]. In recent years, the roles of lncRNAs in regulating metabolism in cancer, insulin, and chicken have been reported [83–85], while, in plants, studies are still limited. For the five representative coexpressed mRNAs of the 19 lncRNAs linked with carbohydrate metabolism, CSY4 is involved in the synthesis of scisic acid can either inhibit or promote flowering [37]. In previous studies, a pre-miRNA of miR93 was identified in *Brassica rapa* during vernalization, and the overexpression of an miR93-resistant form of TIR1 (mTIR1) could enhance auxin sensitivity, thus leading to pleiotropic effects on plant development [92]. For the 8 representative coexpressed mRNAs of the 13 lncRNAs linked with hormone signaling, ARF1 is involved in the recruitment
of COPI and GDAP1 to membranes and various auxin-dependent developmental processes [93]; CUL1 participates in forming a SCF complex together with SKP1, RBX1, and a F-box protein and is involved in floral organ development, the auxin signaling pathway and ethylene signaling [94]; SOFL4 and SOFL5 are involved in cytokinin-mediated development [95]; GRF2 and GRF11 participate in the brassinosteroid (BR)-mediated signaling pathway [96,97]; ERF3 is found to be differentially expressed in response to stresses and also regulates other ERFs [98]; and SF1 is required for development and is involved in the alternative splicing of FLM pre-mRNA [99]. In this study, the differential expression of these mRNAs involved in hormone signaling also played certain roles in regulating the flower-bud differentiation of seedlings and cold tolerance during vernalization. In previous studies, GRF2 and ERF3 were found to be down-regulated, while GRF11 was up-regulated in response to cold stress [100,101]; here, contrary findings for mRNAs GRF2 and GRF11 were observed with temperatures decreased, which indicate that their coexpressed IncRNAs may play negative roles in hormone signaling. The interaction between SF1 and FLM pre-mRNA controls flowering time in response to temperature [102]; here, decreased expression of mRNA SF1 was observed with decreased temperatures, which indicates that this coexpressed IncRNA may play a positive role in hormone signaling.

Energy generation and the transport of energy, nutrients and metabolites play essential roles in growth and development and stress tolerance [103]. For the 8 representative coexpressed mRNAs of the 43 IncRNAs linked with energy and transport, PURU1 is involved in photorespiration and participates in preventing the excessive accumulation of 5-formyl tetrahydrofolate [104]; MES16 is involved in chlorophyll breakdown by its demethylation [105]; GPT1 is involved in NADPH generation through a series of processes including Glc6P transport, starch biosynthesis, fatty acid biosynthesis, and oxidative pentose phosphate [106]; ABCF5 belongs to the ABC transporter superfamily and is involved in protein transport [107]; SECA2 is involved in protein export coupling ATP hydrolysis [108]; VPS26A plays a role in vesicular protein sorting and is essential in endosome-to-Golgi retrograde transport [109]; CML19 is a potential calcium sensor that binds calcium and is involved in the early response to stress [110]; and NHX6 is involved in trafficking to the vacuole and exchanging the low-affinity electroneutral Na(+) or K(+)/H(+) [111]. In this study, the differential expression of these coexpressed mRNAs associated with energy and transport provided energy, nutrients, and metabolites for A. sinensis seedlings to obtain the capacity for vernalization and, meanwhile, to adapt to low temperatures.

Based on the above functional analysis of IncRNAs identified in this study, flowering pathways proposed in the previous literature [14–16] and a general model of stress-responsive regulation by regulatory IncRNAs [23], a model of vernalization-induced bolting and flowering by regulatory IncRNAs in A. sinensis is proposed (Figure 8). Briefly, the vernalization of seedlings firstly triggers the differential expression of IncRNAs; then, the IncRNAs either act as a precursor of miRNAs or as a miRNA target mimic, which further binds their related targets; then, the binding of targets regulates the expression of their downstream mRNAs that are involved in various biological processes, including the temperature response, flowering pathways (i.e., epigenetic modification, flowering induction, carbohydrate metabolism, and hormone signaling), as well as energy and transport; finally, these biological processes promote the transition of the meristem from the vegetative phase to the bolting and flowering of A. sinensis.
Figure 8. A proposed model of vernalization-induced bolting and flowering by regulatory lncRNAs in *A. sinensis*.

5. Conclusions

From the above observations, we found that the lncRNAs positively or negatively regulated the expression of their downstream mRNAs through epigenetic changes at the level of transcription and post-transcription for the flowering of *A. sinensis* during vernalization. This coexpressed mRNA analysis of lncRNAs focused on five pathways, namely (1) chromatin, DNA/RNA, and protein modification; (2) floral development; (3) temperature response; (4) carbohydrate metabolism; and (5) hormone signaling. While several candidate lncRNAs were identified, their causative roles require further investigations.

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/cimb44050128/s1.

Author Contributions: X.L.: data curation, formal analysis, validation, and writing—original draft preparation; M.L. (Mimi Luo): formal analysis and validation; M.L. (Mengfei Li): conceptualization, project administration, supervision, and writing—review and editing; J.W.: funding acquisition and resources. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the State Key Laboratory of Aridland Crop Science/Gansu Agricultural University (GSCS-2021-Z03), National Natural Science Foundation of China (32160083), China Agriculture Research System of MOF and MARA (CARS-21), and Assurance Project of Ecological Planting and Quality of Daodi Herbs (202103003).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets are available at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA789039 (release date on 13 January 2022).

Conflicts of Interest: All the authors declare no conflicts of interest.

Abbreviations

Abbreviation	Description
AP1	APETALA 1
CCS	Circular consensus sequence
CNCI	Coding-Noncoding Index
COLDAIR	COLD-ASSISTED INTRONIC NON-CODING RNA
COOLAIR	COLD-INDUCED LONG ANTISENSE INTRAGENIC RNAs
CPC	Coding-Potential Calculator
FLC	FLOWERING LOCUS C
FLML	FLOWERING LOCUS M
FLNC	Full-length nonchimeric
References

1. Zhang, H.Y.; Bi, W.G.; Yu, Y.; Liao, W.B. Angelica sinensis (Oliv.) Diels in China: Distribution, cultivation, utilization and variation. Genet. Resour. Crop Evol. 2012, 59, 607–613. [CrossRef]

2. Wang, W.J. Analysis and control of early bolting characteristic of Angelica sinensis. J. Northwest Univ. 1977, 7, 32–39.

3. Committee for the Pharmacopoeia of PR China. Pharmacopoeia of the People’s Republic of China; Chinese Medical Science and Technology Press: Beijing, China, 2013; p. 133.

4. Hook, I.L. Danggui to Angelica sinensis root: Are potential benefits to European women lost in translation? A review. J. Ethnopharmacol. 2014, 152, 1–13. [CrossRef]

5. Upton, R. American Herbal Pharmacopoeia and Therapeutic Compendium: Dang Gui Root-Angelica sinensis (Oliv.) Diels in China: Distribution, cultivation, utilization and variation. Suitable Technology for Production and Processing of Angelica sinensis; China Pharmaceutical Science and Technology Press: Beijing, China, 2015; p. 133.

6. Li, M.L.; Cui, X.W.; Jin, L.; Li, M.F.; Wei, J.H. Bolting reduces ferulic acid and flavonoid biosynthesis and induces root lignification in Angelica sinensis. J. Ethnopharmacol. 2016, 190, 116–141. [CrossRef]

7. Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Effects of vernalization treatment on physiological character of Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J. Ethnopharmacol. 2022, 18, 57–62. [CrossRef]

8. Huang, L.Q.; Jin, L. Suitable Technology for Production and Processing of Angelica sinensis; China Pharmaceutical Science and Technology Press: Beijing, China, 2018; pp. 1–14.

9. Wang, W.J. Technology and principle of seedling frozen storage of Angelica sinensis. J. Chin. Med. Mater. 1979, 3, 1–4.

10. Yao, L. Effect of shading during the nursery of Angelica sinensis on bolting rate and economic characters. Gansu Agr. Sci. Tech. 2005, 10, 54–55.

11. Yu, G.; Zhou, Y.; Yu, J.J.; Hu, X.Q.; Tang, Y.; Yan, H.; Duan, J.A. Transcriptome and digital gene expression analysis unravels the novel mechanism of early flowering in Angelica sinensis. Sci. Rep. 2019, 9, 10035. [CrossRef] [PubMed]

12. Li, J.; Li, M.L.; Zhu, T.T.; Zhang, X.N.; Li, M.F.; Wei, J.H. Integrated transcriptomics and metabolites at different growth stages reveals the regulation mechanism of bolting and flowering of Angelica sinensis. Plant Biol. 2021, 23, 574–582. [CrossRef] [PubMed]

13. Li, M.F.; Li, J.; Wei, J.H.; Paré, P.W. Transcriptional controls for early bolting and flowering in Angelica sinensis. Plants 2021, 10, 536–550. [CrossRef] [PubMed]

14. Chet, E.H.; Huang, P. Effects of vernalization treatment on physiological character of Angelica sinensis seedlings. J. Gansu Agric. Univ. 1998, 33, 240–243.

15. Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell 2009, 136, 629–641. [CrossRef]

16. Axtell, M.J.; Westholm, J.O.; Lai, E.C. Vive la différence: Biogenesis and evolution of microRNAs in plants and animals. Genome Biol. 2011, 12, 221. [CrossRef]

17. Carrington, J.C.; Ambros, V. Role of microRNAs in plant and animal development. Science 2003, 301, 336–338. [CrossRef]
22. Jain, N.; Sinha, N.; Krishna, H.; Singh, P.K.; Gautam, T.; Prasad, P.; Balyan, H.S.; Gupta, P.K. A study of miRNAs and IncRNAs during Lr28-mediated resistance against leaf rust in wheat (*Triticum aestivum* L.). *Physiol. Mol. Plant Pathol.* **2020**, *112*, 101552. [CrossRef]

23. Sharma, Y.; Sharma, A.; Madhu; Shumayla; Singh, K.; Upadhyay, S.K. Long non-coding RNAs as emerging regulators of pathogen response in plants. *Non Coding RNA* **2022**, 8, 4. [CrossRef]

24. Qi, L.; Li, X.; Zhang, S.; An, D. Genetic regulation by non-coding RNAs. *Sci. China Ser. C Life Sci.* **2006**, *49*, 201–217. [CrossRef]

25. Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. *Nat. Rev. Genet.* **2009**, *10*, 155–159. [CrossRef] [PubMed]

26. Gordon, S.P.; Tseng, E.; Salamov, A.; Zhang, J.; Meng, X.; Zhao, Z.; Kang, D.; Underwood, J.; Grigoriev, I.V.; Figueroa, M.; et al. Widespread polycistronic transcripts in fungi revealed by single-molecule mRNA sequencing. *PLoS ONE* **2015**, *10*, e0132628. [CrossRef]

27. Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nat. Biotechnol.* **2011**, *29*, 644–652. [CrossRef] [PubMed]

28. Sun, L.; Luo, H.; Bu, D.; Zhao, G.; Yu, K.; Zhang, C.; Liu, Y.; Chen, R.; Zhao, Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. *Nucleic Acids Res.* **2013**, *41*, e166. [CrossRef] [PubMed]

29. Kong, L.; Zhang, Y.; Ye, Z.Q.; Liu, X.Q.; Zhao, S.Q.; Wei, L.; Gao, G. CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine. *Nucleic Acids Res.* **2013**, *35*, W345–W349. [CrossRef] [PubMed]

30. Poole, R.L. The TAIR database. *Methods Mol. Biol.* **2007**, *406*, 179–212. [CrossRef] [PubMed]

31. Liao, Q.; Xiao, H.; Bu, D.C.; Xie, C.Y.; Miao, R.Y.; Luo, H.T.; Zhao, G.G.; Yu, K.T.; Zhao, H.T.; Skogerbø, G.; et al. ncFANs: A web server for functional annotation of long non-coding RNAs. *Nucleic Acids Res.* **2011**, *39*, w118–w124. [CrossRef] [PubMed]

32. Mattick, J.S.; Rinn, J.L. Discovery and annotation of long noncoding RNAs. *Nat. Struct. Mol. Biol.* **2015**, *22*, 5–7. [CrossRef]

33. Shumayla; Sharma, S.; Taneja, M.; Tyagi, S.; Singh, K.; Upadhyay, S.K. Survey of high throughput RNA-Seq data reveals potential roles for IncRNAs during development and stress response in bread wheat. *Front. Plant Sci.* **2017**, *8*, 1019. [CrossRef]

34. Xu, R.; Xu, J.; Li, Y.C.; Zhang, S.P.; Wang, G.; Liu, Z.G.; Dong, L.L.; Chen, S.L. Integrated chemical and transcriptomic analyses unveils synthetic characteristics of different medicinal root parts of *Angelica sinensis*. *Chin. Herb. Med.* **2020**, *12*, 19–28. [CrossRef]

35. Willems, E.; Leyns, L.; Vandesompele, J. Standardization of real-time PCR gene expression data from independent biological replicates. *Anal. Biochem.* **2008**, *379*, 127–129. [CrossRef] [PubMed]

36. Svec, D.; Tichopad, A.; Novosadova, V.; Paffl, M.W.; Kubista, M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. *Biomol. Detect. Quantif.* **2015**, *3*, 9–16. [CrossRef]

37. Taiz, L.; Zeiger, E. Plant physiology. In *The Control of Flowering*, 5th ed.; Fosket, D.E., Amasino, R., Eds.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2010; pp. 559–590.

38. Amasino, R.M. Vernalization and flowering time. *Curr. Opin. Biotechnol.* **2005**, *16*, 154–158. [CrossRef] [PubMed]

39. He, K.; Cao, X.F.; Deng, X. Histone methylation in epigenetic regulation and temperature responses. *Curr. Opin. Plant Biol.* **2021**, *61*, 102001. [CrossRef] [PubMed]

40. Liu, T.K.; Wu, P.; Wang, Q.; Wang, W.L.; Zhang, C.W.; Sun, F.F.; Liu, Z.K.; Li, Y.; Hou, X.L. Comparative transcriptome discovery and elucidation of the mechanism of long noncoding RNAs during vernalization in *Brassica rapa*. *Plant Cell Physiol.* **2018**, *59*, 27–39. [CrossRef]

41. Velanis, C.N.; Goodrich, J. Vernalization and epigenetic inheritance: A game of histones. *Curr. Biol.* **2017**, *27*, R1324–R1326. [CrossRef]

42. Kvak, K.J.; Kim, J.Y.; Kim, Y.O.; Kang, H. Characterization of transgenic *Arabidopsis* plants overexpressing high mobility group b proteins under high salinity, drought or cold stress. *Plant Cell Physiol.* **2007**, *48*, 221–231. [CrossRef]

43. Theologis, A.; Ecker, J.R.; Palm, C.J.; Federspiel, N.A.; Kaul, S.; White, O.; Alonso, J.; Altafi, H.; Araujo, R.; Bowman, C.L.; et al. Sequence and analysis of chromosome 1 of the plant *Arabidopsis thaliana*. *Nature* **2000**, *408*, 816–820. [CrossRef]

44. Ohbayashi, I.; Konishi, M.; Ebine, K.; Sugiyama, M. Genetic identification of *Arabidopsis* RID2 as an essential factor involved in pre-rRNA processing. *Plant J.* **2011**, *67*, 49–60. [CrossRef]

45. Cheng, C.Y.; Krishnakumar, V.; Chan, A.P.; Thibaud-Nissen, F.; Schobel, S.; Town, C.D. Araport11: A complete reannotation of the *Arabidopsis thaliana* reference genome. *Plant J.* **2017**, *89*, 789–804. [CrossRef] [PubMed]

46. Dai, X.Z.; Bai, Y.H.; Zhao, L.H.; Dou, X.Y.; Liu, Y.H.; Wang, L.L.; Li, Y.; Li, W.M.; Hui, Y.N.; Huang, X.Y.; et al. H2A.Z represses gene expression by modulating promoter nucleosome structure and enhancer histone modifications in *Arabidopsis* plants overexpressing high mobility group b proteins under high salinity, drought or cold stress. *Plant Cell Physiol.* **2007**, *48*, 221–231. [CrossRef]

47. Dai, X.Z.; Bai, Y.H.; Zhao, L.H.; Dou, X.Y.; Liu, Y.H.; Wang, L.L.; Li, Y.; Li, W.M.; Hui, Y.N.; Huang, X.Y.; et al. H2A.Z represses gene expression by modulating promoter nucleosome structure and enhancer histone modifications in *Arabidopsis*. *Mol. Plant* **2017**, *10*, 1274–1292. [CrossRef] [PubMed]

48. Jiang, D.; Borg, M.; Lorković, Z.J.; Montgomery, S.A.; Osakabe, A.; Yelagandula, R.; Axelsson, E.; Berger, F. The evolution and functional divergence of the histone H2B family in plants. *PLoS Genet.* **2020**, *16*, e1008964. [CrossRef] [PubMed]

49. Sridhar, V.V.; Kapoor, A.; Zhang, K.L.; Zhu, J.J.; Zhou, T.; Hasegawa, P.M.; Bresnan, R.A.; Zhu, J.K. Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. *Nature* **2007**, *447*, 733–738. [CrossRef] [PubMed]

50. Zhu, J.; Jeong, J.C.; Zhu, Y.; Sokolchik, I.; Miyazaki, S.; Zhu, J.K.; Hasegawa, P.M.; Bohnert, H.J.; Shi, H.; Yun, D.J.; et al. Involvement of *Arabidopsis* HOS15 in histone deacetylation and cold tolerance. *Proc. Natl. Acad. Sci. USA* **2008**, *105*, 4945–4950. [CrossRef] [PubMed]
50. Lu, F.L.; Cui, X.; Zhang, S.B.; Jenuwein, T.; Cao, X.F. Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nat. Genet. 2011, 43, 715–719. [CrossRef]

51. Hou, X.L.; Zhou, J.N.; Liu, C.; Liu, L.; Shen, L.S.; Yu, H. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat. Commun. 2014, 5, 4601. [CrossRef]

52. Zhao, D.Z.; Yu, Q.L.; Chen, M.; Ma, H. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis. Developmental Biology 2001, 238, 2735–2746. [CrossRef]

53. Liu, F.; Ni, W.; Griffith, M.E.; Huang, Z.; Chang, C.; Peng, W.; Ma, H.; Xie, D. The ASK1 and ASK2 genes are essential for Arabidopsis early seed development. Plant Cell 2004, 16, 5–20. [CrossRef]

54. Yoshida, R.; Umezawa, T.; Mizoguchi, T.; Takahashi, S.; Takahashi, F.; Shinozaki, K. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem. 2006, 281, 5310–5318. [CrossRef]

55. Yan, J.; Wang, P.C.; Wang, B.S.; Hsu, C.C.; Tang, K.; Zhang, H.R.; Hou, Y.J.; Zhao, Y.; Wang, Q.M.; Zhao, C.Z.; et al. The SnRK2 kinases modulate miRNA accumulation in Arabidopsis. PLoS Genet. 2017, 13, e1006793. [CrossRef] [PubMed]

56. Sura, W.; Kabza, M.; Karlowski, W.M.; Bielszewski, T.; Kus-Slowinska, M.; Pawełoszek, Ł.; Sadowski, J.; Ziolkowski, P.A. Dual role of the histone variant H2A.Z in transcriptional regulation of stress-response genes. Plant Cell 2017, 29, 791–807. [CrossRef] [PubMed]

57. Hamorsky, K.T.; Kouokam, J.C.; Jurkiewicz, J.M.; Nelson, B.; Moore, L.J.; Husk, A.S.; Kajiura, H.; Fujiyama, K.; Matoba, N. N-Glycosylation of cholera toxin B subunit in Nicotiana benthamiana: Impacts on host stress response, production yield and vaccine potential. Sci. Rep. 2015, 5, 8003. [CrossRef] [PubMed]

58. Fujii, H.; Verslues, P.E.; Zhu, J.K. Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 1717–1722. [CrossRef] [PubMed]

59. Heo, J.B.; Sung, S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 2011, 331, 76–79. [CrossRef] [PubMed]

60. Liu, F.; Marquardt, S.; Lister, C.; Swiezewski, S.; Dean, C. Targeted 3′ processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 2010, 327, 94–97. [CrossRef]

61. Sun, Q.; Csotha, T.; Skourtii-Stathaki, K.; Proudfoot, N.J.; Dean, C. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus. Science 2013, 340, 619–621. [CrossRef] [PubMed]

62. Johansson, M.; Staiger, D. SRR1 is essential to repress flowering in non-inductive conditions in Arabidopsis italiana. J. Exp. Bot. 2014, 65, 5811–5822. [CrossRef] [PubMed]

63. Endo, M.; Tanigawa, Y.; Murakami, T.; Araki, T.; Nagatani, A. Phytochrome-dependent late-flowering accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proc. Natl. Acad. Sci. USA 2013, 110, 18017–18022. [CrossRef] [PubMed]

64. Yang, S.W.; Jang, I.C.; Henriquez, R.; Chua, N.H. FAR-RED ELONGATED HYOCOTYL1 and FHY1-LIKE associate with the Arabidopsis transcription factors LAF1 and HFR1 to transmit phytochrome a signals for inhibition of hypocotyl elongation. Plant Cell 2009, 21, 1341–1359. [CrossRef] [PubMed]

65. Kang, I.H.; Steffen, J.G.; Portereiko, M.F.; Lloyd, A.; Drews, G.N. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant Cell 2008, 20, 635–647. [CrossRef] [PubMed]

66. Gao, R.M.; Wang, Y.; Gruber, M.Y.; Hannoufa, A. miR156/SPL10 modulates lateral root development, branching and leaf morphology in Arabidopsis by silencing AGAMOUS-LIKE 79. Front. Plant Sci. 2017, 8, 2226. [CrossRef] [PubMed]

67. Zhou, R.G.; Kroczyńska, B.; Miernyk, J.A. The genomic sequence encoding the Arabidopsis thaliana molecular chaperone AtJ3. Plant Physiol. 2000, 122, 129. [CrossRef] [PubMed]

68. Zhu, Q.H.; Helliwell, C.A. Regulation of flowering time and floral patterning by miR172. J. Exp. Bot. 2011, 62, 487–495. [CrossRef] [PubMed]

69. Meng, F.; Liu, H.; Wang, K.; Liu, L.; Wang, S.; Zhao, Y.; Yin, J.; Li, Y. Development-associated microRNAs in grains of wheat (Triticum aestivum L.). BMC Plant Biol. 2013, 13, 140. [CrossRef] [PubMed]

70. Wu, Q.; Luo, Y.; Wu, X.; Bai, X.; Ye, X.L.; Liu, C.; Yan, Y.; Xiang, D.B.; Li, Q.; Zou, L.; et al. Identification of the specific long-noncoding RNAs involved in night-break mediated flowering retardation in Chenopodium quinoa. BMC Genom. 2021, 22, 284. [CrossRef] [PubMed]

71. Calixto, C.P.G.; Tzioutziou, N.A.; James, A.B.; Hornyk, C.; Guo, W.B.; Zhang, R.X.; Nimmo, H.G.; Brown, J.W.S. Cold-dependent expression and alternative splicing of Arabidopsis long non-coding RNAs. Front. Plant Sci. 2019, 10, 235. [CrossRef]

72. Wang, P.; Dai, L.; Ai, J.; Wang, Y.; Ren, F. Identification and functional prediction of cold-related long non-coding RNA (IncRNA) in grapevine. Sci. Rep. 2019, 9, 1–15. [CrossRef]

73. Bhatia, G.; Singh, A.; Verma, D.; Sharma, S.; Singh, K. Genome-wide investigation of regulatory roles of IncRNAs in response to heat and drought stress in Brassica juncea (Indian mustard). Environ. Exp. Bot. 2020, 171, 103922. [CrossRef]

74. Wen, X.J.; Ding, Y.; Tan, Z.L.; Wang, J.X.; Zhang, D.Y.; Wang, Y.C. Identification and characterization of cadmium stress-related LncRNAs from Betula platyphylla. Plant Sci. 2020, 299, 110601. [CrossRef]

75. Xu, J.H.; Fang, M.; Li, Z.H.; Zhang, M.N.; Liu, X.Y.; Peng, Y.Y.; Wan, Y.L.; Chen, J.H. Third-generation sequencing reveals IncRNA-regulated HSP genes in the Populus × Canadensis moench heat stress response. Front. Genet. 2020, 11, 249. [CrossRef] [PubMed]
76. Chen, Q.F.; Xiao, S.; Chye, M.L. Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. *Plant Physiol.* 2008, 148, 304–315. [CrossRef] [PubMed]

77. Lee, H.; Guo, Y.; Ohta, M.; Xiong, L.; Stevenson, B.; Zhu, J.K. LOS2, a genetic locus required for cold-responsive gene transcription encodes a bifunctional enolase. *EMBO J.* 2002, 21, 2692–2702. [CrossRef] [PubMed]

78. Slabas, A.R.; Ndimba, B.; Simon, W.J.; Chivasa, S. Proteomic analysis of the chloroplasts. *Plant Physiol.* 2004, 135, 1659–1671. [CrossRef] [PubMed]

79. Zhang, F.; Maeder, M.L.; Unger-Wallace, E.; Hoshaw, J.P.; Reyon, D.; Christian, M.; Li, X.; Pierick, C.J.; Dobbs, D.; Peterson, T.; et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. *Proc. Natl. Acad. Sci. USA* 2010, 107, 12028–12033. [CrossRef] [PubMed]

80. Sasaki, K.; Kim, M.; Imai, R. Arabidopsis cold shock domain protein 2 is a RNA chaperone that is regulated by cold and developmental signals. *Biochim. Biophys. Res. Commun.* 2007, 364, 633–638. [CrossRef]

81. Anaraki, Z.E.; Tafreshi, S.A.H.; Shariati, M. Transient silencing of heat shock proteins showed remarkable roles for HSP70 during adaptation to stress in plants. *Environ. Exp. Bot.* 2018, 155, 142–157. [CrossRef]

82. Huang, S.; Monaghan, J.; Zhong, X.H.; Lin, L.; Sun, T.J.; Dong, O.X.; Li, X. HSP90s are required for NLR immune receptor accumulation in Arabidopsis. *Plant J.* 2014, 79, 427–439. [CrossRef]

83. Lin, W.; Zhou, Q.; Wang, C.Q.; Zhu, L.; Bi, C.; Zhang, S.; Wang, X.; Jin, H. LncRNAs regulate metabolism in cancer. *Int. J. Biol. Sci.* 2020, 16, 1194–1206. [CrossRef]

84. Karimi, P.; Bakhtiarizadeh, M.R.; Salehi, A.; Izzadinia, H.R. Transcriptome analysis reveals the potential roles of long non-coding RNAs in feed efficiency of chicken. *Sci. Rep.* 2012, 12, 558. [CrossRef]

85. Tello-Flores, V.A.; Beltrán-Anaya, F.O.; Ramírez-Vargas, M.A.; Esteban-Casales, B.E.; Navarro-Tito, N.; Alarcón-Romero, L.d.C.; Luciano-Villa, C.A.; Ramirez, M.; del Moral-Hernández, O.; Flores-Alfaro, E. Role of long non-coding RNAs and the molecular mechanisms involved in insulin resistance. *Int. J. Mol. Sci.* 2021, 22, 7256. [CrossRef] [PubMed]

86. Slabas, A.R.; Ndima, B.; Simon, W.J.; Chivas, S. Proteomic analysis of the Arabidopsis cell wall reveals unexpected proteins with new cellular locations. *Biochem. Soc. Trans.* 2008, 36, 524–528. [CrossRef] [PubMed]

87. Muñoz-Bermúdez, J.; Cascales-Miñana, B.; Mulet, J.M.; Baroja-Fernández, E.; Pozueta-Romero, J.; Kuhn, J.M.; Segura, J.; Ros, R. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. *Plant Physiol.* 2009, 151, 541–558. [CrossRef]

88. Zhang, L.; Song, Z.; Li, F.; Li, X.; Ji, H.; Yang, S. The specific MYB binding sites bound by Arabidopsis MYB may regulate its expression profiles of GAPCp2/3 promoters. *Plant Cell* 2004, 16, 2040–2050. [PubMed]

89. Fulton, D.C.; Stettler, M.; Mettler, T.; Vaughan, C.K.; Li, J.; Francisco, P.; Gil, M.; Reinhold, H.; Eicke, S.; Messerli, G.; et al. Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts. *Plant Cell* 2008, 20, 1040–1058. [CrossRef] [PubMed]

90. Oono, Y.; Seki, M.; Satou, M.; Iida, K.; Akiyama, K.; Sakurai, T.; Fujita, M.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. *Func. Integr. Genom.* 2006, 6, 212–234. [CrossRef]

91. Tanaka, H.; Nodzylski, T.; Kitakura, S.; Feraru, M.I.; Kitakura, S.; Sasaie, M.; Ishikawa, T.; Kleine-Vehn, J.; Kakimoto, T.; Friml, J. BEX1/ARF1A1C is required for BFA-sensitive recycling of PIN auxin transporters and auxin-mediated development in Arabidopsis. *Plant Cell Physiol.* 2014, 55, 737–749. [CrossRef] [PubMed]

92. Feng, S.H.; Shen, Y.P.; Sullivan, J.A.; Rubio, V.; Xiong, Y.; Sun, T.; Deng, X.W. Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasome-mediated protein degradation. *Plant Cell* 2004, 16, 1870–1882. [CrossRef]

93. Tayengwa, R.; Zhao, J.; Pierce, C.F.; Werner, B.E.; Neff, M.M. Synopsis of the SOFL plant-specific gene family. G3 Genes Genomes Genet. 2018, 8, 1281–1290. [PubMed]

94. Gampala, S.S.; Kim, T.W.; He, J.X.; Tang, W.; Deng, Z.; Bai, M.Y.; Guan, S.; Lalone, S.; Sun, Y.; Gendron, J.M.; et al. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. *Dev. Cell* 2007, 13, 177–189. [CrossRef] [PubMed]

95. Yang, J.L.; Chen, W.W.; Chen, L.Q.; Qin, C.; Jin, C.W.; Shi, Y.Z.; Zheng, S.J. The 14-3-3 protein general regulatory factor11 (GRF 11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana. *New Phytol.* 2013, 197, 815–824. [CrossRef] [PubMed]

96. Ohta, M.; Matsui, K.; Hiratsu, K.; Shinshi, H.; Ohme-Takagi, M. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. *Plant Cell* 2001, 13, 1959–1968. [CrossRef]

97. Jang, Y.H.; Park, H.Y.; Lee, K.C.; Thu, M.P.; Kim, S.K.; Suh, M.C.; Kang, H.; Kim, J.K. A homolog of splicing factor SF1 is essential for development and is involved in the alternative splicing of pre-mRNA in Arabidopsis thaliana. *Plant J.* 2014, 78, 591–603. [CrossRef]

98. Shang, S.; Wu, C.; Huang, C.; Tie, W.; Yan, Y.; Ding, Z.; Xia, Z.; Wang, W.; Peng, M.; Tian, L.; et al. Genome-wide analysis of the GRF family reveals their involvement in abiotic stress response in cassava. *Genes* 2018, 9, 110. [CrossRef]
101. Fujimoto, S.Y.; Ohta, M.; Usui, A.; Shinshi, H.; Ohme-Takagi, M. *Arabidopsis* ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. *Plant Cell* 2000, 12, 393–404. [CrossRef]

102. Lee, K.C.; Chung, K.S.; Lee, H.T.; Park, J.H.; Lee, J.H.; Kim, J.K. Role of *Arabidopsis* splicing factor SF1 in temperature-responsive alternative splicing of FLM pre-mRNA. *Front. Plant Sci.* 2020, 11, 596354. [CrossRef]

103. Johnson, X.; Alric, J. Central carbon metabolism and electron transport in *Chlamydomonas reinhardtii*: Metabolic constraints for carbon partitioning between oil and starch. *Eukaryot Cell* 2013, 12, 776–793. [CrossRef]

104. Collakova, E.; Goyer, A.; Naponelli, V.; Krassovskaya, I.; Gregory, J.F.; Hanson, A.D.; Shachar-Hill, Y. *Arabidopsis* 10-formyl tetrahydrofolate deformylases are essential for photorespiration. *Plant Cell* 2008, 20, 1818–1832. [CrossRef]

105. Christ, B.; Schelbert, S.; Aubry, S.; Suessenbacher, I.; Mueller, T.; Kraeutler, B.; Hoertensteiner, S. MES16, a member of the methylesterase protein family, specifically demethylates fluorescent chlorophyll catabolites during chlorophyll breakdown in *Arabidopsis*. *Plant Physiol.* 2012, 158, 628–641. [CrossRef]

106. Baune, M.C.; Lansing, H.; Fischer, K.; Meyer, T.; Charton, L.; Linka, N.; von Schaewen, A. The *Arabidopsis* plastidial glucose-6-phosphate transporter GPT1 is dually targeted to peroxisomes via the endoplasmic reticulum. *Plant Cell* 2020, 32, 1703–1726. [CrossRef] [PubMed]

107. Sánchez-Fernández, R.; Davies, T.G.E.; Coleman, J.O.; Rea, P.A. The *Arabidopsis thaliana* ABC protein superfamily, a complete inventory. *J. Biol. Chem.* 2001, 276, 30231–30244. [CrossRef] [PubMed]

108. Skalitzky, C.A.; Martin, J.R.; Harwood, J.H.; Beirne, J.J.; Adamczyk, B.J.; Heck, G.R.; Cline, K.; Fernandez, D.E. Plastids contain a second sec translocase system with essential functions. *Plant Physiol.* 2011, 155, 354–369. [CrossRef] [PubMed]

109. Kikuchi, S.; Asakura, Y.; Imai, M.; Nakahira, Y.; Kotani, Y.; Hashiguchi, Y.; Nakai, Y.; Takafuji, K.; Bédard, J.; Hirabayashi-Ishioka, Y.; et al. A Ycf2-ftshi heteromeric AAA-ATPase complex is required for chloroplast protein import. *Plant Cell* 2018, 30, 2677–2703. [CrossRef] [PubMed]

110. Reddy, V.S.; Day, I.S.; Thomas, T.; Reddy, A.S.N. KIC, a novel Ca$^{2+}$ binding protein with one EF-hand motif, interacts with a microtubule motor protein and regulates trichome morphogenesis. *Plant Cell* 2004, 16, 185–200. [CrossRef]

111. Bassil, E.; Ohto, M.A.; Esumi, T.; Tajima, H.; Zhu, Z.; Cagnac, O.; Belmonte, M.; Peleg, Z.; Yamaguchi, T.; Blumwald, E. The *Arabidopsis* intracellular Na$^+$ / H$^+$ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. *Plant Cell* 2011, 23, 224–239. [CrossRef]