Difference of facial achromatic numbers between two triangular embeddings of a graph

Kengo Enami * Yumiko Ohno †

Abstract

A facial 3-complete k-coloring of a triangulation G on a surface is a vertex k-coloring such that every triple of k-colors appears on the boundary of some face of G. The facial 3-achromatic number $\psi_3(G)$ of G is the maximum integer k such that G has a facial 3-complete k-coloring. This notion is an expansion of the complete coloring, that is, a proper vertex coloring of a graph such that every pair of colors appears on the ends of some edge.

For two triangulations G and G' on a surface, $\psi_3(G)$ may not be equal to $\psi_3(G')$ even if G is isomorphic to G' as graphs. Hence, it would be interesting to see how large the difference between $\psi_3(G)$ and $\psi_3(G')$ can be. We shall show that the upper bound for such difference in terms of the genus of the surface.

1 Introduction

In this paper, we consider finite and undirected graph. A graph is called simple if it has no loops and multiple edges. We mainly focus on simple graphs unless we particularly mention it. An embedding of a graph G on a surface \mathbb{F} is a drawing of G on \mathbb{F} with no pair of crossing edges. Technically, we regard an embedding as injective continuous map $f : G \to \mathbb{F}$, where G is regarded as a one-dimensional topological space. We sometime consider that G is already mapped on a surface and denote its image by G itself to simplify the notation, while if we deal with two or more embeddings of G on a surface, we denote them by $f_1(G), f_2(G), \ldots$ to distinguish them.

*Department of Computer and Information Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, Musashino-shi, Tokyo, 180-8633, Japan. E-mail: enamikengo@gmail.com

†Research initiatives and promotion organization, Yokohama National University, 79-5, Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan. E-mail: ohno-yumiko-hp@ynu.ac.jp

Key Words: facial complete coloring, complete coloring, facially-constrained coloring, triangulation, re-embedding
The faces of a graph G embedded on a surface F are the connected components of the open set $F - G$. We denote by $V(F)$ the set of vertices in the boundary of a face F of G, and by $F(G)$ the set of faces of G. A triangulation on a surface F is an embedding of a graph on F so that each face is bounded by a 3-cycle. A graph G is said to have a triangulation on a surface, if G is embeddable on the surface as a triangulation.

A (vertex) k-coloring of a graph G is a map $c : V(G) \rightarrow \{1, 2, \ldots, k\}$. A k-coloring c of G is proper if $c(u) \neq c(v)$ whenever two vertices u and v are adjacent. For a subset $S \subseteq V(G)$, we denote by $c(S)$ the set of colors of the vertices in S.

Colorings of graphs embedded on surfaces with facial constraints have attracted a lot of attention. In particular, facially-constrained colorings of plane graphs were overviewed by Czap and Jendrol’ [2]. Many facially-constrained colorings can be translated into colorings of some kind of hypergraphs, called “face-hypergraphs”. The face-hypergraph $H(G)$ of a graph G embedded on a surface is the hypergraph with vertex-set $V(G)$ and edge-set $\{V(F) : F \in F(G)\}$, whose concept was introduced in [6].

A complete k-coloring of a graph G is a proper k-coloring such that each pair of k-colors appears on at least one edge of G. The achromatic number of G is the maximum integer k such that G has a complete k-coloring. This notion was introduced by Harary and Hedetniemi [4], and has been extensively studied (see [5] for its survey). Recently, Matsumoto and the second author [7] introduced a new facially-constrained coloring, called the “facial complete coloring”, which is an expansion of the complete coloring. A k-coloring, which is not necessarily proper, of a graph G embedded on a surface is facially t-complete if for any t-element subset X of the k colors, there is a face F of G such that $X \subseteq c(V(F))$. The maximum integer k such that G has a facial t-complete k-coloring is the facial t-achromatic number of G, denoted by $\psi_t(G)$. It seems to be natural to consider facial t-complete colorings for graphs embedded on a surface so that each face is bounded by a cycle of length t.

We should notice that the facial t-achromatic number of an embedded graph depends on the embedding of the graph in general. That is, if a graph G has two distinct embeddings $f_1(G)$ and $f_2(G)$ on F, then $\psi_t(f_1(G))$ may not be equal to $\psi_t(f_2(G))$. Hence, it would be interesting to see how large the difference between $\psi_t(f_1(G))$ and $\psi_t(f_2(G))$ can be. In this paper, we focus on facial 3-complete colorings of triangulations on a surface from this point of view, and show the upper bound for such difference as follows.

Theorem 1. Let G be a graph which has two triangulations $f_1(G)$ and $f_2(G)$ on a surface F, and let g be the Euler genus of F. If F is orientable, then

$$|\psi_3(f_1(G)) - \psi_3(f_2(G))| \leq \begin{cases} 9g/2 & (g \leq 1) \\ 27g/2 - 27 & \text{(otherwise)} \end{cases}.$$
If \(\mathbb{F} \) is non-orientable, then

\[
|\psi_3(f_1(G)) - \psi_3(f_2(G))| \leq \begin{cases}
3g & (g = 1) \\
21g - 27 & (\text{otherwise})
\end{cases}
\]

Note that we can easily construct a triangulation on each surface so that its facial 3-achromatic number is an arbitrarily large, while Theorem 1 implies that the difference of the facial 3-achromatic numbers between two triangulations \(f_1(G) \) and \(f_2(G) \) on a given surface, which is obtained from the same graph \(G \), can be bounded by a constant.

On the other hand, the upper bounds in Theorem 1 do not seem to be sharp. Unfortunately, we have no construction of a graph which has two triangulations on a surface whose facial 3-achromatic numbers differ. So one may suspect that \(\psi_1(f_1(G)) = \psi_1(f_2(G)) \) whenever a graph \(G \) has two triangulations \(f_1(G) \) and \(f_2(G) \) on a surface. However, we do not believe that. Actually, we shall show in Section 5, the non-simple graphs having two triangulations on a surface whose facial 3-achromatic numbers differ (the definition of the facial complete coloring can be extended to non-simple graphs naturally). Hence, we hope that there exist such graphs for simple graphs.

We introduce some useful lemmas in Section 3 to prove Theorem 1 in Section 4. Before these sections, we would like to introduce some related results dealing with other facially-constrained colorings. For not only the facial complete coloring but also other facially-constrained colorings, the possibility of such a coloring depends on the embedding in general. We survey some results from this point of view in the next section.

2 Related results

A rainbow coloring (or a cyclic coloring) is a coloring of a graph \(G \) embedded on a surface so that each face is rainbow, that is, any two distinct vertices on its boundary have disjoint colors. The minimum integer \(n \) such that \(G \) has a rainbow \(n \)-coloring is the rainbowness of \(G \), denoted by \(\text{rb}(G) \). An antirainbow coloring (or a valid coloring) is a coloring of a graph \(G \) embedded on a surface so that no face is rainbow. The maximum integer \(n \) such that \(G \) has a surjective antirainbow \(n \)-coloring is the antirainbowness of \(G \), denoted by \(\text{arb}(G) \).

Let \(G \) be the graph consisting of \(m \geq 3 \) cycles of length 3 with one common vertex, which has two embeddings \(f_1(G) \) and \(f_2(G) \) on the sphere as shown in Fig. 1. Then \(G \) has \(2m + 1 \) vertices.

As there is a face incident with all vertices in \(f_1(G) \), we have \(\text{rb}(f_1(G)) = |V(G)| = 2m + 1 \). It is also easy to see that \(\text{rb}(f_2(G)) = 5 \). Hence, the difference between \(\text{rb}(f_1(G)) \) and \(\text{rb}(f_2(G)) \) is \(2m - 4 \). It implies that the rainbowness of a graph embedded on a surface depends on the embedding. Moreover, such a difference can be arbitrarily large. On the other hand, it is easy to see that \(\text{rb}(G) = \chi(G) \)
for every triangulation on a surface, where $\chi(G)$ is the chromatic number of G. This implies that the rainbowness of a triangulation does not depend on the embedding.

Ramamurthi and West [11] observed that for the above two embeddings $f_1(G)$ and $f_2(G)$ of G on the sphere, $\text{arb}(f_1(G)) = m + 1$ and $\text{arb}(f_2(G)) = \lceil 3m/2 \rceil$. Then the difference of these antirainbownesses is $\lceil m/2 \rceil - 1$, and hence the antirainbowness of a graph embedded on a surface also depends on the embedding. Ramamurthi and West [11] conjectured this difference is the maximum difference for two embeddings of a graph on the sphere, that is, for every planar graph G of order n, there is no pair of embeddings of G on the sphere whose antirainbownesses differ from at least $\lfloor (n - 2)/4 \rfloor$.

Arocha, Bracho and Neumann-Lara [1] studied the antirainbow 3-colorability of triangulations obtained from complete graphs, which they called the tightness. They proved that the complete graph of order 30 has both of a tight triangulation and an untight one on the same surface. This implies that the antirainbowness of triangulations depends on the embedding. As the generalization of their work, Negami [10] introduced the looseness of a triangulation G on a surface, which corresponds to $\text{arb}(G) + 2$. He proved that for any graph having two triangulations $f_1(G)$ and $f_2(G)$ on a surface F of Euler genus g, $|\text{arb}(f_1(G)) - \text{arb}(f_2(G))| \leq 2\lfloor g/2 \rfloor$.

A weak coloring of a graph G embedded on a surface is a coloring of G such that no face is monochromatic, that is, all vertices on its boundary have the same color. Note that a weak coloring of an embedded graph corresponds to a proper coloring of its face-hypergraph. The weak chromatic number of G, denoted by $\chi_w(G)$, is the minimum integer k such that G has a weak k-coloring. Kündgen and Ramamurthi [6] studied weak colorings of graphs embedded on surfaces from various viewpoints and conjectured that for each positive integer k, there is a graph that has two different embeddings on the same surface whose weak chromatic numbers differ by at least k. Recently, the first author and Noguchi [3] answered this conjecture affirmatively in two ways. They first constructed two distinct embeddings of a simple graph on a surface such that one of them has a weak 2-coloring but the other has arbitrarily large weak chromatic number. They second showed that there are non-simple graphs G having two triangulations $f_1(G)$ and $f_2(G)$ on a surface with $\chi_w(f_1(G)) = |V(G)|/2$ and $\chi_w(f_2(G)) \leq |V(G)|/3$.

Fig. 1: Two embeddings of G on the sphere.
3 Cycles in a triangulation

To prove Theorem 1, we give some notations and introduce some lemmas.

Let G be a graph and H be a subgraph of G. An edge not in H but with both ends in H is called chord of H. A subgraph H of a graph G is induced if H has no chord. An H-bridge is a subgraph of G induced by a chord of H, or a component of $G - V(H)$ together with all edges joining it to H. In an H-bridge, a vertex belongs to $V(H)$ is called a vertex of attachment. Note that any two H-bridges are edge-disjoint and meet only the common vertices of attachment. (See [8] for more details of H-bridges.)

Lemma 2. Let G be a triangulation on a surface, and C_1, C_2, \ldots, C_k be vertex-disjoint facial cycles of G. If there is no chord in the union $H = C_1 \cup C_2 \cup \cdots \cup C_k$, then there is only one H-bridge in G.

Proof. Let $C = uvw$ be a facial cycle of G bounded by three vertices u, v and w. Suppose that C is not contained in H. Since H consists of vertex-disjoint cycles and has no chord, C meets at most one cycle of H. Suppose that C meets C_i at a vertex, say u, and $v, w \notin V(C_i)$ for any $1 \leq i \leq k$. If v and w belong to different H-bridges in G, then the edge vw joins these H-bridges, a contradiction. Hence, v and w belongs to the same H-bridge in G. It implies that all vertices and edges around C_i belongs to one H-bridge in G. Suppose that C meets none of C_1, C_2, \ldots, C_k. Then it is clear that u, v and w belong to the same H-bridge in G. Therefore, there is only one H-bridge in G. \hfill \square

Let G be a graph embedded on a surface F. A cycle C of G is contractible if it bounds a disk in F, and separating if it separates F into two parts. We say that C is 2-sided if it divides its annular neighbourhood into two parts, and is 1-sided otherwise. Note that a non-separating cycle of G must be non-contractible, and if a separating cycle C of G is not facial then there are at least two C-bridges in G.

Lemma 3. Let G be a graph which has two triangulations $f_1(G)$ and $f_2(G)$ on a surface, and C be a 3-cycle of G. If $f_1(C)$ is facial in $f_1(G)$ but $f_2(C)$ is not facial in $f_2(G)$, then $f_2(C)$ is non-contractible in $f_2(G)$.

Proof. Suppose to that $f_3(C)$ is contractible in $f_2(G)$. Since $f_2(C)$ is not facial in $f_2(G)$, it separates $f_2(G)$ into two components. On the other hand, since $f_1(C)$ is facial in $f_1(G)$, it follows from Lemma 2 that G has only one C-bridge in G, a contradiction. \hfill \square

For two disjoint cycles C_1 and C_2 of a graph embedded on a surface F, cut the surface F along them. When one of the component of the resulting surface is an annulus with boundary components C_1 and C_2, we say that C_1 and C_2 are homotopic.

We introduce two lemmas about sets of pairwise non-homotopic cycles. The second lemma closely follows from the proof of [8 Proposition 3.7], which corresponds to the first one. However, to keep the paper self-contained, we give its proof.
Lemma 4 (Malnič and Mohar [8]). Let G be a graph embedded on a surface \mathbb{F}, and let g be the Euler genus of \mathbb{F}. Let Γ be a set of pairwise disjoint, non-contractible and pairwise non-homotopic cycles of G. If \mathbb{F} is orientable, then

$$|\Gamma| \leq \begin{cases} g/2 & (g \leq 2) \\ 3g/2 - 3 & \text{(otherwise)} \end{cases}.$$

If \mathbb{F} is non-orientable, then

$$|\Gamma| \leq \begin{cases} g & (g \leq 1) \\ 3g - 3 & \text{(otherwise)} \end{cases}.$$

Lemma 5. Let G be a graph embedded on a non-orientable surface \mathbb{F} of Euler genus g. Let Γ_1 (resp. Γ_2) be a set of pairwise disjoint, non-contractible and pairwise non-homotopic 1-sided (resp. 2-sided) cycles of G. Then $|\Gamma_1| \leq g$ and

$$|\Gamma_2| \leq \begin{cases} 0 & (g = 1) \\ 2g - 3 & \text{(otherwise)} \end{cases}.$$

Proof. It is easy to see that this lemma holds for $g \leq 2$. Hence, we may assume that $g \geq 3$. Moreover, we may assume that Γ_1 is maximal, that is there is no 1-sided cycle in G disjoint from Γ_1. Cutting \mathbb{F} along the cycles in Γ_1, we obtain a connected surface, denoted by \mathbb{F}', which has $|\Gamma_1|$ boundary components. Thus, $\chi(\mathbb{F}') \leq 2 - |\Gamma_1|$. Since $\chi(\mathbb{F}') = \chi(\mathbb{F}) = 2 - g$, we have $|\Gamma_1| \leq g$.

We may also assume that Γ_2 is maximal, that is, all 2-sided cycles in G disjoint from Γ_2 is contractible or homotopic to some element of Γ_2. Cut \mathbb{F} along the cycles in Γ_2. Then \mathbb{F} is separated into some connected surfaces, denoted by $\mathbb{F}_1, \mathbb{F}_2, \ldots, \mathbb{F}_k$. Note that they are all compact and with non-empty boundary. We denote by $b(\partial \mathbb{F}_i)$ the number of boundary components of \mathbb{F}_i for $1 \leq i \leq k$. Since each cycle in Γ_2 gives rise to two boundary components, we have $\sum_{i=1}^k b(\partial \mathbb{F}_i) = 2|\Gamma_2|$.

Let $\mathbb{F}_1^*, \mathbb{F}_2^*, \ldots, \mathbb{F}_k^*$ be the surfaces obtained from $\mathbb{F}_1, \mathbb{F}_2, \ldots, \mathbb{F}_k$ by pasting a disk to each boundary component. By the maximality of Γ_2, \mathbb{F}_i^* is the sphere or the projective plane for $1 \leq i \leq k$. We denote by n_s and n_p the numbers of the spheres and the projective planes among \mathbb{F}_i^*’s, respectively. Then we have $n_p \leq g$ and $\sum_{i=1}^k \chi(\mathbb{F}_i^*) = 2n_s + n_p$.

Now we shall show that if \mathbb{F}_i^* is the sphere, then $b(\partial \mathbb{F}_i) \geq 3$. If $b(\partial \mathbb{F}_i) = 1$, then \mathbb{F}_i is a closed disk, that is, the cycle bounding \mathbb{F}_i is contractible in \mathbb{F}, a contradiction. Suppose that $b(\partial \mathbb{F}_i) = 2$. Then \mathbb{F}_i is an annulus. If two cycles of Γ_2 corresponding to the boundary components \mathbb{F}_i are the same, then \mathbb{F} must be the Klein bottle, a contradiction. Thus, these two cycles are different from each other. However, in this situation, they are homotopic in \mathbb{F}, a contradiction. Therefore, we may assume that $b(\partial \mathbb{F}_i) \geq 3$. It implies that $3n_s + n_p \leq 2|\Gamma_2|$.

6
Since \(\chi(\mathcal{F}) \) is equal to the sum of all \(\mathcal{F}_i \)'s, we have
\[
\chi(\mathcal{F}) = \sum_{i=1}^{k} \chi(\mathcal{F}_i) = \sum_{i=1}^{k} \chi(\mathcal{F}_i^*) - \sum_{i=1}^{k} b(\partial \mathcal{F}_i) = 2n_s + n_p - 2|\Gamma_2|.
\]
\[
= \frac{2}{3}(3n_s + n_p - 2|\Gamma_2|) + \frac{1}{3}n_p - \frac{2}{3}|\Gamma_2|
\]
\[
\leq \frac{1}{3}g - \frac{2}{3}|\Gamma_2|.
\]
Since \(\chi(\mathcal{F}) = 2 - g \), we have \(|\Gamma_2| \leq 2g - 3 \). \(\square \)

4. Proof of Theorem 1

Proof of Theorem 1. Suppose that \(\psi_3(f_1(G)) = k \) and \(\psi_3(f_2(G)) < k \). Let \(c : V(G) \to \{1, 2, \ldots, k\} \) be a facial 3-complete \(k \)-coloring of \(f_1(G) \). Then, every triple of \(k \)-colors appears in some face of \(f_1(G) \). On the other hand, some triples do not appear in the faces of \(f_2(G) \). Let \(\mathcal{T} \) be a set of triples in \(k \) colors such that any triple in \(\mathcal{T} \) does not appear in the faces of \(f_2(G) \), and for any pair of triples \(T \) and \(T' \) in \(\mathcal{T} \), \(T \cap T' = \emptyset \). Moreover, we choose \(\mathcal{T} \) so that \(|\mathcal{T}| \) is as large as possible. Let \(T_1, T_2, \ldots, T_m \) be the triples in \(\mathcal{T} \), and so \(|\mathcal{T}| = m \). By the maximality of \(\mathcal{T} \), we can choose \(k - 3m \) colors so that every triple in these colors appear in some face of \(f_2(G) \). It implies that \(f_2(G) \) has a facial 3-complete \((\max\{3, k - 3m\}) \)-coloring. Then, \(|\psi_3(f_1(G)) - \psi_3(f_2(G))| \leq 3m \).

Let \(\mathcal{C} = \{C_1, C_2, \ldots, C_m\} \) be a set of facial cycles in \(f_1(G) \) such that \(c(V(C_i)) = T_i \) for \(1 \leq i \leq m \). Since every \(C_i \) is not facial in \(f_2(G) \), it follows from Lemma 3 that every \(C_i \) is non-contractible in \(f_2(G) \).

Claim 6. There are at most three pairwise homotopic cycles of \(\mathcal{C} \) in \(f_2(G) \).

Proof. Suppose that \(C_1, C_2, C_3 \) and \(C_4 \) are pairwise homotopic in \(f_2(G) \), and appear on the annulus bounded by \(C_1 \) and \(C_4 \) in this order. Thus, the union \(C_2 \cup C_4 \) separates \(C_1 \) from \(C_3 \), and hence there are no chords of \(C_1 \cup C_3 \). Similarly, \(C_1 \cup C_3 \) also separates \(C_2 \) from \(C_4 \). It implies that there are at least two \(C_1 \cup C_3 \)-bridges in \(G \). On the other hand, since both of \(C_1 \) and \(C_3 \) are facial in \(f_1(G) \) and \(C_1 \cup C_3 \) has no chord, it follows from Lemma 2 that there is only one \(C_1 \cup C_3 \)-bridge in \(G \), a contradiction. Therefore, there are at most three pairwise homotopic cycles of \(\mathcal{C} \) in \(f_2(G) \). \(\square \)

Now we shall give the upper bound for \(|\mathcal{T}| = m \), which induces the upper bound for \(|\psi_3(f_1(G)) - \psi_3(f_2(G))| \). We first consider the case when the surface \(\overline{\mathcal{F}} \) is homeomorphic to one of the sphere, the projective plane, and the torus. Suppose that \(\overline{\mathcal{F}} \) is the sphere. All cycles in \(G \) is contractible, and hence \(\mathcal{C} = \emptyset \). Actually, it follows Lemma 3 that \(f_1(G) \) and \(f_2(G) \) are essentially equivalent embeddings. (In general, Whitney [13] showed that every 3-connected planar graph has essentially unique embedding in the sphere.) Suppose that \(\overline{\mathcal{F}} \) is the projective plane. There is
no pair of disjoint non-contractible cycles in $f_2(G)$, and hence $m \leq 1$. Suppose that F is the torus. All non-contractible and pairwise disjoint cycles in G are pairwise homotopic. Then, all cycles in C are pairwise homotopic by Lemma 4, and hence it follows from Claim 6 that $m \leq 3$.

Second, suppose that F is an orientable surface of genus at least two. If $m > 9g - 9$, then there are at least four pairwise homotopic cycles in C by Lemma 4, which contradicts Claim 6. Hence, we have $m \leq 9g - 9$. Finally, suppose that F is a non-orientable surface of genus at least two. If $m > 7g - 9$, then there are at least $6g - 8$ 2-sided cycles in C, and hence some four of them are pairwise homotopic by Lemma 5, which contradicts Claim 6. Therefore, in any case, the desired inequality holds.

5 Facial complete colorings of non-simple graphs

In this section, we consider graphs which may have multiple edges. We denote by K_n the complete graph of order n, and denote by K_m^n the non-simple graph obtained from K_n by replacing each edge with m multiple edges.

The first author [3] constructed two triangulations $f_1(G)$ and $f_2(G)$ obtained from the graph $G = K_{12m-1}^{6m-1}$ on a surface for any positive integer m. The weak chromatic numbers of these triangulations differ by at least $2m$, and hence his construction gives an affirmatively answer of K¨undgen and Ramamurthi’s conjecture [6, Conjecture 8.1] (see also Section 2 in this paper). We now show that the facial 3-achromatic numbers of these triangulations also differ.

For details of constructions of $f_1(G)$ and $f_2(G)$, see [3, Section 3]. The face-hypergraph $H(f_1(G))$ of $f_1(G)$ is isomorphic to a complete 3-uniform hypergraph. That is, the triangulation $f_1(G)$ has exactly $\left|V(G)\right|^3/3$ faces and there is a face bounded by each triple of vertices. (Such a triangulation is called complete, whose notion was defined in [6].) Then it is easy to see that $\psi_3(f_1(G)) = |V(G)| = 12m$.

Let T be a triangulation on a surface obtained from K_{12m} (by Ringel’s Map Color Theorem [12], K_{12m} has a triangulation on a surface). The edge-set of $H(f_2(G))$ coincides with that of $H(T)$ by ignoring the multiplicity of the edge-sets. It implies that $\psi_3(f_2(G)) = \psi_3(T)$. Suppose that T is facially 3-complete k-colorable. Then, T must have at least k^3 faces, and hence we obtain the following inequality:

$$|\mathcal{F}(T)| = 4m(12m - 1) \geq k(k - 1)(k - 2)/6$$
$$288m^2 - 24m \geq (k - 2)^3$$
$$\sqrt[3]{288} \frac{m^2}{3} \geq k - 2$$
$$7m + 2 \geq k.$$

Then, $\psi_3(f_2(G)) \leq 7m + 2$ (this bound might be loose), and hence we have

$$\psi_3(f_1(G)) - \psi_3(f_2(G)) \geq 5m - 2.$$

Since G is isomorphic to K_{12m}^{6m-1}, both of two triangulations $f_1(G)$ and $f_2(G)$ are embedded on a surface of Euler genus $(m - 1)(m - 2)(2m + 3)/3$. It implies that for
any non-negative integer \(g \), there is a graph having two triangulations on a surface of Euler genus at least \(g \), whose facial 3-achromatic numbers differ from \(\Omega(\sqrt[3]{g}) \).

References

[1] J. L. Arocha, J. Bracho and V. Neumann-Lara, Tight and untight triangulations of surfaces by complete graphs, *J. Combin. Theory Ser. B*, 63 (1995), 185–199.

[2] J. Czap and S. Jendrol’, Facially-constrained colorings of plane graphs: a survey, *Discrete Math.*, 340 (2017), 2691–2703.

[3] K. Enami and K. Noguchi, Embeddings of a graph into a surface with different weak chromatic numbers, to appear in *Graphs and Combinatorics*.

[4] F. Harary and S. Hedetniemi, The achromatic number of a graph, *J. Combin. Theory, B*, 8 (1970), 154–161.

[5] F. Hughes and G. MacGilivray, The achromatic number of a graphs: A survey and some new results, *Bull. Inst. Combin. Appl.*, 19 (1997), 27–56.

[6] A. Kündgen and R. Ramamurthi, Coloring face-hypergraphs of graphs on surfaces, *J. Combin. Theory Ser. B*, 85 (2002), 307–337.

[7] N. Matsumoto and Y. Ohno, Facial achromatic number of triangulations on the sphere, *Discrete Math.*, 343 (2020), #111651.

[8] A. Malnič and B. Mohar, Generating locally cyclic triangulations of surfaces, *J. Combin. Theory Ser. B*, 56 (1992), 147–164.

[9] B. Mohar, and C. Thomassen, *Graphs on Surfaces*, The Johns Hopkins University Press, 2001.

[10] S. Negami, Looseness ranges of triangulations on closed surface, *Discrete Math.*, 303 (2005), 167–174.

[11] R. Ramamurthi and D. B. West, Maximum face-constrained colorings of plane graphs, *Discrete Math.*, 274 (2004), 233–240.

[12] G. Ringel, Map Color Theorem, *Springer Science Business Media vol. 209*, (1974).

[13] H. Whitney, Congruent Graphs and the Connectivity of Graphs, *Amer. J. Math.*, 54 (1932), 150–168.