Comparison of Yield, Nutrient Content and Antibacterial Activities of Wild and Cultivated Isolates of *Pleurotus djamor*

Anjana Sharma¹, Savita Jandaik², Neetika Thakur¹

ABSTRACT

Background: *Pleurotus* species constitutes one of the choicest edible mushrooms, it is commonly known as “Oyster Mushroom” and in India it is commonly called as “Dhingri”. It has important medicinal, biotechnological properties and environmental applications. Its cultivation can be done on a number of agricultural wastes and organic waste materials. There are significant problems in classifying *Pleurotus* isolates using only morphological characters which are often unreliable and inconclusive mainly due to the large influence exerted by environmental factors.

Methods: A wild isolate of *Pleurotus* was collected from North western Himalayas and its identity was confirmed by molecular studies. Yield, nutritional components and its bioactive molecules were compared with the cultivated isolate of *Pleurotus djamore*.

Antibacterial activities of both the isolates of were performed against Escherichia coli and Staphylococcus aureus by disc diffusion.

Result: Molecular studies confirmed the identity of wild isolate of *Pleurotus as Pleurotus djamore*. The maximum yield of wild isolate was on paddy straw followed by wheat straw. The protein content was 32.3±0.50g¹ in wild isolate and 28.7±1.67g¹ in cultivated isolate. Presence of nutritional components and phytochemicals inferred in this study indicate the importance of *Pleurotus djamore* in the pharmaceutical.

Key words: Nutritional attributes, Phytochemicals, Pink oyster, *Pleurotus djamore*, Substrates, Yield.

INTRODUCTION

Mushrooms are macro fungi, with distinct fruiting body, can either be hypogenous or epigenous (Chang and Miles, 1992). Economic importance and nutritional importance of mushrooms were increased as edible food this may be due to its high protein and fiber content and rich in antioxidants which play a major role in human health and nutrition. *Pleurotus* spp. belongs to Oyster mushrooms are nowadays very popular (Adejoe et al, 2006). Oyster mushrooms can be cultivated with agricultural and agro-industrial wastes as the substrates which is efficient and socio-economically reliable technology for converting wastes materials into a valuable protein-rich food and a cash crop of commercial interest. One of the most attractive feature of oyster mushrooms is that they can utilize a large variety of agricultural waste products and transform the lignocelluloses biomass into high-quality food, flavor and nutritive value (Dehariya and Vyas, 2013). It is important to dispose agricultural waste in a green way, which is environmentally friendly in this era of climate change. Annually about 140.8 MT of residues are available as surplus in India, out of which about 92.8 MT residues are burnt annually in the field with the intent of making the field free from straw and stubble after the harvest of the crop. However, in case of rice and wheat fields, if combine harvesters are used for harvesting almost all the residues are left out in the field, resulting in in-situ burning (Gowda and Manvi, 2019). Mushroom cultivation is one of the most commercially important steps towards diversification of agriculture (Singh et al., 2017). Microbial technology can help in large-scale recycling of agro waste as an alternative way to use agrowaste and organic material in mushroom production (Khare et al., 2010). Thus, the present investigations were carried out to evaluate the nutrient contents, phytochemicals and yield of wild and cultivated isolate of *Pleurotus djamor*.

MATERIALS AND METHODS

Collection of materials

Pure Culture of *Pleurotus djamor* (oyster mushroom) was procured from University of Horticultrure and Forestry Nauni, Solan and wild isolate was collected from the natural habitat, dead tree stumps from the forest of Dharamshala, Himachal Pradesh, India.
Identification of Mushroom

The collected mushroom was identified with the help of morphological characters of the colour, size, shape, nature of pileus, stipe and gills and molecular studies.

Maintenance of Pure culture and spawn preparation

A small piece of inner tissue of the fresh pileus was aseptically removed using a sterile forceps. Then, it was immediately placed on the surface of potato dextrose agar (PDA) plates and the plates were incubated at ambient temperature, from 20-24°C for 5-6 days. The pure culture obtained was maintained on PDA slants at 4±1°C in a refrigerator and subcultured at regular intervals for further studies. The spawn was prepared on wheat grains following standard protocol.

Molecular approach to identify the wild Isolate: Isolation of Genomic DNA

Total genomic DNA was extracted by following the methodology described by Vankan et al. (1991) with certain modifications. 5.8S rRNA gene was amplified through polymerase chain reaction (PCR) using ITS 1 and ITS 4 primers. After amplification 5 µl aliquot of each resultant PCR product was mixed with 5 µl of bromophenol blue dye and electrophoresed on 1.5% agarose gel. PCR products were resolved by running at 50 volts. The gels were visualized under UV light and photographed using gel documentation system (AlphaImager® EP) with AlphaImager View software programme.

rRNA gene sequencing

PCR product was sent to Xcelris Genomics, Ahmedabad for sequencing ITS sequences obtained were compared with other reported Pleurotus ITS nucleotide sequences in GenBank database using nucleotide BLAST (Basic Local Alignment Search Tool) search (accessible through NCBI (National Centre for Biotechnology Information).

Evaluation of substrates for sporophore production

The experiment related to production of sporophores was conducted at college of Horticulture and Forestry Neri Hamirpur, Dr Y.S. Parmar University of Horticulture and Forestry Nauni during 2017-18. Dry paddy straw, wheat straw, maize stalks and Soybean straw substrates were evaluated for the cultivation of P. djamor. The selected substrates were chopped into 5 cm long pieces and transferred to gunny bags. The bags were soaked in clean tap water for 12 h. The excess water was drained out and the pre-s oaked substrates were sterilized for 30 min at 15 psi pressure. After cooling the substrates, the spawn of P. djamor was inoculated layer by layer until it covered the bags. The inoculated bags were incubated in dark for 12-14 days at a humidity range 80-90% and the temperature between 25 to 30°C for mycelial growth. When mycelial growth had covered the whole substrate in the bags, the bags were hanged and exposed to light of 2000-3000 lux units intensity for development of fruiting bodies.

Nurtional studies

Standard biochemical techniques were employed for determining the nutritional composition of two Pleurotus species (AOAC, 1984; Lowry et al, 1951).

Preliminary phytochemical screening

Phytochemical screening experiment was conducted at Shoolini University of Biotechnology and Management Sciences (Himachal Pradesh). The extraction method of Kamra and Bhatt (2012) with certain modifications was used. The dried fruiting bodies were ground to a fine powder using a blender. For preparing the extracts, methanol and aqueous (50:50, v/v) were used as solvents to obtain the bioactive compounds from the wild and cultivated edible mushroom. For every 1 gram of powder, 50 ml of solvent was used and was subjected to extraction. After the completion of extraction, the supernatant was filtered through Whatman filter paper 1. The freshlyprepared extracts were subjected to standard phytochemical analysis to ensure the presence of phytochemicals Harborne (1998); Adebayo and Ishola (2009).

Antibacterial assay

Antibacterial activities of both the isolates of were done by treated through disc diffusion assay given by Kirby-Bauer, 1966. The bacterial strains were used in this study were Escherichia coli and Staphylococcus aureus.

RESULTS AND DISCUSSION

Pileus colour of the wild isolate was pink. The surface of pileus was smooth and wavy, stipe length was 0.5-1.0 cm. Spore print was white with spore size of 6.1-7.2 x 4.4-5.2 to 6.5-7.8 x 4.6-5.3 µm. Based on these morphological characters the isolate was identified as Pleurotus djamore. Other researchers like Ravat and John (2016) and Bernardo et al. (2004) have also used morphological characters to identify Pleurotus species. To further confirm the identity of the isolate molecular studies were conducted.

Species differentiation can’t be solved merely on the basis of classical taxonomy. The internal transcribed spacer (ITS) region due to highly variability are important for molecular systematic in order to distinguish the species or strain of fungi (Moncalvo et al, 1995). These ribosomal DNA (rDNA) sequences have been widely used to discriminate fungal taxa at the family, generic and sub-generic levels. In present study, polymerase chain reaction (PCR) amplification of ITS-rDNA region of wild Pleurotus isolate using ITS1 and ITS4 primers resulted in amplicon size products of approximately 595 basepairs. Sequencing and sequence analysis using nBLAST revealed 99% sequence similarity with Pleurotus djamore Accession No. KX904522.1 Consensus sequence of (595 bp). Dung et al, (2012) studied the molecular identification methods for identification of two strains of white oyster mushroom.
Comparison of Yield, Nutrient Content and Antibacterial Activities of Wild and Cultivated Isolates of *Pleurotus djamor*

Table 1: Comparative performance of different substrates on spawn run and yields of two isolates of *Pleurotus djamor*.

Substrate	*P. djamore* (cultivated)	*P. djamore* (wild)
Spawn run (Days)	Yield (g/kg wet substrate)	Spawn run (Days)
Paddy straw	19±0	142.33±2.84
Wheat straw	19±0	116.66±3.71
Soybean straw	20±0	98.33±3.38
Sawdust	21±0	88.33±3.38
	17±0	160.33±2.09
	18	110.66±4.02
	19±0	100.33±2.06
	20±0	74.33±4.11

Table 2: Nutritional composition of *Pleurotus djamor* (wild and cultivated) isolate cultivated on paddy straw.

Nutrients (%)	*Pleurotus djamor* (cultivated)	*Pleurotus djamor* (wild)
Moisture*	89.6±0.05	90.9±0.99
Protein**	28.7±1.67	32.3±0.50
Carbohydrate**	50.3±0.52	40.9±0.31
Crude fat**	3.8±0.70	1.8±0.21
Crude fibre**	14.9±0.83	11.4±0.38
Ash**	9.8±0.09	8.0±0.41

Consensus sequence of (595 bp)

```
tttgaagttg ttttgctggt ctctagggac attgtgcacg cttcattagt ttccacttca
tac ccctgtg cacctttgat agatttcggt ttgggttatc ctttggtttt ttttyytwa
w tkraaaggcc tttggtttcc ttaaaacgac ttctatacta taccacacac caaatgtatg
tttataag aatgftttat aatgcaaqg ccatgacgt tataaacta atacaaccttt
caaacaagga tctcttggtc ctgcatcga tgaagaacgc aggcaaatgc
gtgaagttg ttttgctggt ctctagggac attgtgcacg cttcattagt ttccacttca
tac ccctgtg cacctttgat agatttcggt ttgggttatc ctttggtttt ttttyytwa
w tkraaaggcc tttggtttcc ttaaaacgac ttctatacta taccacacac caaatgtatg
```

The results presented in Table 1 indicates that response of both the *Pleurotus* isolates examined to different kind of substrates was similar. Both the isolates of *P. djamore* cultivated and wild differed amongst one another with respect to the level of yields. The highest yields, irrespective of the kind of isolate was recorded on paddy straw followed by wheat straw and lowest yield was recorded on saw dust. Yield of wild isolate was more (160.33±2.0 g/kg wet substrate) on paddy straw as compared to cultivated isolate. The result of present studies are in agreement with Sharma et al. (2019) and Tupatkar and Jadhao (2006) who reported good yield of *P. djamore, Posttreatus and Pleurotus florida* and *P. sajor caju* on Paddy straw and soybean straw. Hossain (2017) reported maximum yield and biological efficiency of *P. sajor-caju* with Paddy straw. Superiority of paddy straw over other substrates in cultivation of *P. sajor-caju* with respect to yield and biological efficiency has also penned earlier by Pala et al., 2012; Sharma et al., 2019.
Nutritive values of *Pleurotus djamore*:

Nutritional parameters such as moisture, protein, carbohydrate, fat, fibre and ash were measured and the results were tabulated (Table 2). Except moisture and protein content, other nutritional parameters such as carbohydrate, fat, fibre were found to be more in cultivated isolate of *P. djamore* than wild isolate. The moisture contents in mushroom fruiting bodies of wild and cultivated isolate were found to be 89.9±0.99% and 96.9±0.05%, respectively. The protein content was 32.3±0.50g⁻¹ in wild isolate and 28.7±1.67g⁻¹ in cultivated isolate. The carbohydrates and fibre contents of wild isolate were 40.9±0.31g⁻¹ and 11.4±0.38g⁻¹, respectively and in cultivated isolate 50.3±0.52g⁻¹ and 14.9±0.83g⁻¹, respectively. Syed et al. (2009) cultivated *Pleurotus floridai* on different agro-wastes and reported that soybean straw showed significantly highest yield with maximum crude protein of 23.50%. Yadav, 2015 reported maximum protein and carbohydrate content in *P. sajor-caju* and *P. florida* grown on wheat straw. Oyenuga, (1968) reported that mushrooms are the rich source of protein than most commonly consumed vegetables, whilst their protein content is lower than that found in eggs, meat and fish; however it is adequate to be used as a substitute in the diet of the general public. Lindequest et al. (2005) stated that the nutritional and chemical compositions of mushroom are responsible for their medicinal values.

Qualitative analysis of phytochemicals

The phytochemicals of both the isolates of *Pleurotus* were qualitatively analyzed and the results were presented in Table 3. The phytochemical analysis of *Pleurotus djamare* isolates showed the presence of major phytoconstituents like, alkaloids, saponins, steroids, phenols, glycosides, terpenoids and flavonoids. This result is in agreement to the previous findings reported by Okwulehie and Ogoke (2013).

Among the two solvents used for extraction, methanol extract showed more number of phytoconstituents as compared to aqueous. Thus results suggested that extraction by methanol gave highest phenolic content as compared to the other solvents thus proving methanol to be a suitable solvent for the extraction of phenolic compounds. The reason could be that methanol has the ability to inhibit the reaction of polyphenol oxidoase that cause the oxidation of phenolic and also evaporate with ease as compared to other solvents (Almey, 2010).

The antibacterial activity of wild and cultivated isolate of *P. djamore* against Gram positive (*S. aureus*) and Gram-negative (*E. coli*) bacteria were evaluated by using standard zone of inhibition (Table 4). Vancomycin in Gram-positive bacteria and amicacin in Gram-negative bacteria were used as a standard antibiotic. Our results showed that methanol extract of wild isolate of *P. djamore* showed maximum zone inhibition on (Gram-positive bacteria) *S. aureus* 8.6±0.2 when compared with aqueous extract that showed 6.6±0.2 mm zone of inhibitions. Whereas, methanol extract and aqueous extract of cultivated isolate of *P. djamore* showed maximum inhibitory zone as 8.2±0.2 mm and 3.2±0.2 mm for *S. aureus* respectively. Aqueous extract showed minimum zone of inhibition irrespective, of the isolate and micro-organism. These observations are in accordance with the findings of Nehra et al, (2012) who reported the antimicrobial potential of *P. ostreatus* and found that organic solvents consistently displayed better antimicrobial activity than that of the aqueous extract.

CONCLUSION

The present study reveals that Pleurotus isolate collected from natural habitat was identified as *P. djamor* on the basis of molecular studies. It could be a source of phytochemicals and antibacterial agent that may have beneficial health effects on humans. It possesses good amount of quality proteins. However, further research is required. The findings of the present paper warrant further research aiming to isolate and identify the specific compounds responsible for antibacterial activities.

REFERENCES

Adebayo, E.A. and Ishola, O.R. (2009). Phytochemical and anti-microbial screening of crude extracts of *Terminalia gaucescens*. African Journal of Pharmacy and Pharmacology. 3(5): 217-221.

Adejoye, O.D., Adebayo-Tayo, B.C, Ogunjobi, A.A., Ololope, O.A., Fadahunsi, F.I. (2006). African Journal of Biotechnology. 5: 1355-1359.

Almey, A.A., Khan, A.J.C., Zahir, S.I., Suleiman, M.K., Aisyah, M.R., Rahim, K.K. (2010). Total phenolic content and primary antioxidant activity of methanolic extracts of aromatic plants’ leaves. International Food Research Journal. 17: 1077-1084.

Anderson, D.L., Gibbs, A.J., Gibson, N.L. (1984). Identification and phylogeny of spore-cyst fungi (*Ascosphaera* species) using ribosomal DNA sequences. Mycological Research. 102: 541-547.

AOAC. (1984). Official Methods of Analysis 14th Eds Association of Official Agricultural Chemists In: [Williams, S (Ed)] AOAC Arlington, CA 1984.

Bauer, A.W., Kirby, W.M., Sherris, J.C., Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45: 493-6.

Bernardo, E.L., Jorge, E.W., Edgard, A. (2004). The genus *Pleurotus* in Argentina. Mycologia. 96: 845-858.

Chang, S.T. and Miles, P.G. (1992). Mushrooms biology a new discipline. Mycologist. 6: 64-65.
Dehariya, P. and Vyas, D. (2015). Evaluation of different spawns and substrates on growth and yield of *Pleurotus sajor-caju*. International Journal of Recent Scientific Research. 6(3): 2908-2911.

Dung, N.T.P., Tuyen, D.B., Quang, P.H. (2012). Morphological and genetic characteristics of Oyster mushrooms and conditions effecting on its spawn growing. Int Food Res. J. 19: 347-352.

Gowda, N.A.N. and Manvi, D. (2019). Agro-residues Disinfection Methods for Mushroom Cultivation. Agri Revs. 40(2): 93-103.

Harborne, J.B. (1998). Phytochemical methods A Guide to modern techniques of plant analysis 3rd ed, Chapman and Hall Int, New York.

Hossain Mijan, M.D. (2017). Effect of Different Substrates on Growth and Yield of Oyster Mushroom (*Pleurotus sajor-caju*). Int. J. Curr. Microbiol. App. Sci. 6(12): 2908-2911.

Kamra, A. and Bhatt, A.B. (2012). Evaluation of antimicrobial and antioxidant activity of *Ganoderma lucidum* extracts against human pathogenic bacteria. Inter J Pharm Sci. 4(2): 359-361.

Khare, K.B., Mutuku, J.M., Achwania, O.S., Otaye, D.O. (2010). Effect of mycelium carriers, amount of additives on spawn quality and yield of *Pleurotus sajor-caju* and *P. florida* on wheat straw substrate sterilized using various methods. Bots. J. Agric. Appl. Sci. 6 (2): 13 - 21.

Lindequeist, U., Niedermeyer, T.H.J., Julich, W. (2005). The pharma-cological potentials of mushrooms. International Journal Evidence-Based Complementary and Alternative Medicine. 2: 285-299.

Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. (1951). Protein measurement with the Folin-Phenol reagent. Journal of Biological Chemistry. 193: 265-277.

Moncalvo, J.M., Wang, H.H., Hseu, R.S. (1995). Phylogenetic relationships in *Ganoderma* inferred from the internal transcribed spacers and 25S ribosomal DNA sequences. Mycologia, 87: 223-238.

Nehra, K., Meenakshi, Kumar, M., Yadav, A. (2012). Evaluation of antimicrobial potential of fruiting body extracts of *Pleurotus ostreatus* (oyster mushroom). International J Microbial Resource Technol. 4: 391-400

Okwulehie, I.C. and Ogoke, J.A. (2013). Bioactive, nutritional and heavy metal constituents of some edible mushrooms found in Abia State of Nigeria. International Journal of Applied Microbiology and Biotechnology Research. 1: 7-15.

Oyenuga, V.A. (1968) Nigeria’s foods and feeding stuffs Ibadan University press. 1-90.

Pala, S.A., Wani, A.H., Mir, R.A. (2012). Yield performance of *Pleurotus sajor-caju* on different agro-based wastes. Ann Biol Res. 3(4): 1938-1941.

Park, Y.J., Kwon, O.C., Son, E.S., Yoon, D.E., Han, W., Yoo, Y.B. (2012). Taxonomy of *Ganoderma lucidum* from Korea based on rDNA and Partial β-Tubulin gene sequence analysis. Mycobiology. 40: 71-75.

Ravat, H. and John, P. (2016). Macrofungal diversity in Dangs district, Gujarat, India. I.J.S.N. 7: 477-482.

Sharma, A., Thakur, N., Jandaik, S., Singh, R (2019). Cultivation of wild *Pleurotus* species on agricultural substrates and evaluation of their nutritional properties. Int J Adv Res. 6(12): 1425-1429.

Singh, S., Singh, G., Rahul, S.N., Kuma, A., Bhanu, P., Bankoti, P., Pandey, R.K. (2017). Effect of different substrates on the growth and yield of oyster mushrooms (*Pleurotus djamor*). International Journal of Agriculture Sciences. 9(4): 3721-3723.

Syed, A.A., Kadam, J.A., Mane, V.P., Patil, S.S, Baig, M.M.V. (2009). Biological efficiency and nutritional contents of *Pleurotus florida* (Mont) Singer cultivated on different agro-wastes. Nature and Science. 7(1): 44-48.

Tupatkar, P.N. and Jadhao, S.M. (2008). Effects of different substrates on yield of oyster mushroom (*Pleurotus sajor-caju*). Agricultural Science Digest. (26): 224-226.

Van Kan, J.A.L., Van den Ackerveken, G.F.J.M., De Wit, P.J.G.M. (1991). Cloning and characterization of cDNA of avirulence gene Avr9 of the fungal tomato pathogen *Cladosporium fulvum*, causal agent of tomato leaf mold. MOI. Plant-Microbe Interact. 52-59.

Yadav, M.K. (2015). Studies on Biodiversity of Edible Mushrooms from Vindhya forest PhD thesis Banaras Hindu University Varanasi, pp110.