Comparative Meta-analysis of Adipose Tissue Transcriptomics Data in PCOS Patients and Healthy Control Women

Saman Saedi1 · Reza Panahi2 · Najmeh Orak3 · Mohammad Reza Jafarzadeh Shirazi1

Received: 16 February 2022 / Accepted: 5 December 2022 / Published online: 13 December 2022
© The Author(s), under exclusive licence to Society for Reproductive Investigation 2022

Abstract
Polycystic ovary syndrome (PCOS) is a common condition in reproductive-aged women that induces reproductive and metabolic derangements. Women with PCOS seem to have disturbances in lipid metabolism in the adipose tissue. Nevertheless, gene expression in adipose tissue of PCOS women and its relation to other disturbances have been fragmentarily investigated. We utilized microarray data to identify the most important up- and down-regulated candidate genes in adipose tissue of PCOS women in contrast to healthy women using the meta-analysis technique. Microarray data produced from three independent experiments ($n = 3$) conducted on adipose tissue in women with PCOS were retrieved from ArrayExpress. Then, the datasets were merged using the metaSeq package in Rstudio and differentially expressed genes (DEGs) were selected in the studies. The integrative bioinformatics analyses of candidate genes were performed by gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and protein–protein interaction (PPI) network construction. Of these, 12 up-regulated genes and 12 down-regulated genes were identified and assessed as the most highly up-regulated and down-regulated genes in adipose tissue of women with PCOS. These DEGs that were annotated by KEGG analysis were mainly involved in PI3K-Akt, MAPK, Rap1, and Ras signaling pathways, and pathways in cancer such as hepatocellular carcinoma and gastric cancer, as well as metabolic pathways, and brain disorder pathways such as Alzheimer’s disease and Huntington disease pathways. In the PPI networks, PRDM10, FGFR2, IGF1R, and FLT1 were the key nodes in the up-regulated networks, while the NDUFAB1 and NME2 proteins were key in the down-regulated networks. Overall, these findings provide insight into the gene expression in adipose tissue of PCOS women and its relation to other disturbances.

Keywords Adipose tissue · DEGs · KEGG analysis · Meta-analysis · PCOS

Introduction
Polycystic ovary syndrome (PCOS) is the most common hyperandrogenic disorder affecting 5–8% of women of reproductive age [1]. PCOS is considered the foremost ovarian disease and is usually diagnosed during the early reproductive years. Most women with PCOS display some metabolic abnormalities including dyslipidemia, obesity, hyperinsulinemia, neuroendocrine abnormalities, insulin resistance, and ovulatory dysfunction [2, 3]. Moreover, PCOS is considered a multifactorial disorder with various metabolic, genetic, endocrine, and environmental abnormalities [4].

Obesity is a characteristic of 60–80% of PCOS patients and plays a critical role in the development of PCOS in many women. Obesity alters the levels of several hormones such as insulin, androgens, and adipocytokines [5]. This suggests that obesity modifies PCOS characteristics. It has been
shown that obesity has a malignant additive effect on features of PCOS such as hyperandrogenism, insulin resistance, menstrual irregularity, ovulatory disorders, and pregnancy complications [5, 6]. Hyperandrogenism or increase in secretion of androgens can induce low-grade chronic inflammation by increasing the transcription of androgen receptors in mononuclear cells [7]. Low-grade chronic inflammation itself leads to the release of adipocytokines by dysfunctional adipocytes [8].

Visceral adipose tissue is thought to be important for the pathogenesis of PCOS, because of its association with hyperandrogenemia and its often excessive accumulation in women with PCOS [9]. Increase in subcutaneous adipocytes and decrease in the secretion of adiponectin are major factors that are strongly associated with insulin resistance [10]. Furthermore, change in expression of some genes such as TWIST1, CCL2, LEPR, and PPARG in adipose tissue may be important in the pathophysiology of PCOS [11–16]. Therefore, these findings indicate that adipose tissue dysfunction may negatively affect the metabolic health of women with PCOS and thereby increase their risk for diabetes mellitus type 2 (DM2), hyperandrogenism, and cardiovascular disease [17].

A recent meta-analysis from five comparative studies has demonstrated that women with PCOS were three times more likely to develop endometrial cancer than healthy women [18]. Moreover, gene expression profiles in subcutaneous fat from no obese women with and without PCOS disclosed differences in the expression of genes encoding components of several biological pathways related to insulin and Wnt signaling, lipid metabolism, immune function, inflammation, and oxidative stress [12, 16]. By the fact that dysfunctional adipose tissue is increasingly considered to be important in the metabolic disorders in PCOS patients, in the present study, we utilized microarray data to identify the adipose tissue transcriptome changes in women with PCOS in contrast to healthy women using the meta-analysis. Additionally, this study set out to identify the role of differentially expressed genes (DEGs) in the adipose tissue of PCOS patients in different diseases, disorders, and signaling pathways.

Material and Methods

Microarray Data

To investigate the adipose tissue transcriptome changes and identify the most up- and down-regulated candidate genes in adipose tissue in women with PCOS in contrast to healthy women (control), microarray data produced from three independent experiments ($n = 3$) conducted on adipose tissue in women with PCOS were retrieved from ArrayExpress (https://www.ebi.ac.uk/arrayexpress/). In all used experiments, fat biopsy samples were obtained from morbidly obese women with or without PCOS. In the first experiment (E-GEOD-43322) which was a case–control study, we just exploited the data of 23 samples (sixteen PCOS patients and seven control). In the second experiment (E-GEOD-43264), we exploited the data of 15 samples (eight PCOS patients and seven control). In the third experiment (E-GEOD-5090), we exploited the data of 17 samples (nine PCOS patients who submitted to bariatric surgery because of morbid obesity and eight control) (Supplementary Table S1). The overall scheme of data analysis and computational tools used in this study is represented in Fig. 1. Moreover, basic characteristics of participants such as age and BMI between cases and controls in three studies are represented in Table 1.

Meta-analysis

Meta-analysis is an attempt to integrate multiple data in different studies. Indeed, by meta-analysis, all genes which

Fig. 1 Schematic representation of data analysis and computational tools used in this study.
differentially expressed in many studies are selected as DEGs by metaSeq package [19]. Microarray studies were processed separately as individual datasets with FlexArray software version 1.6.3. The raw data were normalized using Robust Multiarray Average (RMA) algorithm and then RMA signal values were transformed into log2. Then, the datasets were merged using the metaSeq package in Rstudio, and DEGs in studies were selected. To select DEGs, P-value was adjusted in false discovery rate (FDR) as less than < 0.05, and the list of genes was obtained for adipose tissue in women with PCOS in contrast to control. Venn diagrams of all genes in three studies were generated by http://bioinformatics.psb.ugent.be/webtools/Venn/.

Gene Ontology (GO) Analysis

To further elucidate the functional characteristics of the most highly DEGs and to study their distribution, we used GO enrichment analysis. For this target, the most highly DEGs (12 up-regulated genes and 12 down-regulated genes) in adipose tissue from women with PCOS in contrast to control were selected and conducted using Gene Ontology Consortium tools (http://www.geneontology.org/) with default significance levels (P < 0.05). Then, the results were described in the forms of the biological process (BP), molecular function (MF), and cellular component (CC) [20].

KEGG Pathway Enrichment Analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis [21] was performed to identify the important pathways of the most highly up-/down-regulated genes in the adipose tissue of women with PCOS. For this target, KEGG database (http://kobas.cbi.pku.edu.cn/) was used to test the enrichment of DEGs in KEGG pathways.

Protein–Protein Interaction (PPI) Network Analysis

Interaction protein networks for the mentioned up and down-regulated genes in the adipose tissue of women with PCOS were constructed using the STRING v.10 (Search Tool for the Retrieval of Interacting Genes/Proteins) to detect functional association between those genes [22, 23]; this database is based on specific relationships between proteins and constructs associations based on distinct lines of evidence. It scores each protein interaction. A higher score means higher confidence in protein interaction. The most highly up/down-regulated genes in adipose tissue of women with PCOS were imported into STRING for protein interaction analysis, and the PPI network was obtained with the species limited to “Homo sapiens” and a confidence score > 0.5. All the hub genes are visible in the PPI network. In addition, according to the maximal clique centrality (MCC) scores, the highest-scored genes were selected as the hub genes. The hub genes selected from the PPI network using the MCC algorithm of the CytoHubba plugin are shown in Figs. 6 and 7.

Results

This study was conducted to investigate adipose tissue transcriptome changes and identify the most up- and down-regulated candidate genes in adipose tissue in women with PCOS in contrast to healthy women.

This experiment was implemented based on microarray data retrieved from three independent studies. The results illustrated that study one has 3233 DEGs, whereas DEGs in studies two and three were 1304 and 571 genes, respectively (Fig. 2). As a result, some genes were common in adipose tissue from women in three studies (Fig. 2). Number of common genes that were significantly up- and down-regulated in adipose tissue of women with PCOS in contrast to healthy women is demonstrated in Fig. 2. Additionally, the most highly DEGs (top 12 up- and down-regulated genes) in adipose tissue of women with PCOS are represented in Table 2.

Visualization of DEG Position

The genomic position of identified DEGs on all chromosomes of human is represented in Fig. 3. Genomic position visualization was utilized for displaying the position of identified DEGs in three studies on all human chromosomes. This work allowed us to identify which chromosome might contain more genes involved in PCOS. The chromosomal position of a gene also will help to the identification of a novel treatment for some disorders and diseases. Accordingly, the highest number of DEGs in the three studies were on chromosomes 1 and 2. Nevertheless, some chromosomes especially chromosomes 17 and 19 had a higher percentage of genes despite their smaller size. Therefore, these genes should be more considered in future PCOS studies.
Functional Classification of DEGs

GO analysis was conducted to investigate other possible functions of the DEGs detected in the adipose tissue of women with PCOS in three studies. Accordingly, comparison of GO distribution of the DEGs indicated three distinct categories: BP, MF, and CC. The most highly up-regulated genes were enriched in 95 GO functions ($P < 0.05$, Fig. 4). Of the up-regulated genes, enrichment was mainly involved in the following BP: regulation of transcription, DNA-templated, regulation of RNA biosynthetic process, regulation of gene expression, cellular nitrogen compound metabolic process, cellular aromatic compound metabolic process, and regulation of biological process, following MF: RNA binding, organic cyclic compound binding, and cation binding, and following CC: nucleoplasm part, nucleoplasm, membrane-enclosed lumen, and membrane-bounded organelle. Moreover, downregulated genes were enriched in 276 GO functions ($P < 0.05$, Fig. 4). Of the most highly downregulated genes, enrichment was mainly involved in the following BP: nucleoside monophosphate metabolic process, peptide metabolic process, immune response, intracellular transport, and organic substance metabolic process, following MF: RNA polymerase II transcription factor binding, histone binding, RNA

Table 2 The most highly DEGs in adipose tissue of women with PCOS in contrast to control women

Ensemble ID	Gene symbol	Gene name	Log2 fold change	FDR
ENSG00000066468	FGFR2	Fibroblast growth factor receptor 2	4.67321	0.000421
ENSG00000077232	DNAJC10	DnaJ homolog subfamily C member 10	4.16549	0.000584
ENSG00000138668	HNRNPD	Heterogeneous nuclear ribonucleoprotein D0	3.76184	0.000761
ENSG00000170325	PRDM10	PR domain zinc finger protein 10	3.62374	0.000915
ENSG00000140443	IGFR1	Insulin-like growth factor 1 receptor	3.49823	0.002893
ENSG00000091879	ANGPT2	Angiopoietin-2	3.16138	0.007374
ENSG00000102755	FLTI	FMS-like tyrosine kinase	3.01057	0.013101
ENSG00000109458	GAB1	GRB2-associated-binding protein 1	2.97861	0.024932
ENSG00000069869	NEDD4	E3 ubiquitin-protein ligase NEDD4	2.83794	0.025716
ENSG00000204490	TNF-α	Tumor necrosis factor-alpha	2.68917	0.025927
ENSG00000101333	PLCB4	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4	2.66108	0.027457
ENSG00000120868	APAF1	Apoptotic protease-activating factor 1	2.37294	0.027933
ENSG00000088832	FKBPA1	Peptidyl-prolyl cis–trans isomerase FKBPA1	−5.30816	0.000035
ENSG00000243678	NME2	Nucleoside diphosphate kinase B	−4.84912	0.000074
ENSG00000168032	ENTPD3	Ectonucleoside triphosphate diphosphohydrolase 3	−4.75045	0.000238
ENSG00000078295	ADCY2	Adenylate cyclase type 2	−4.53719	0.000641
ENSG00000004779	NDUFA1	Acyl carrier protein, mitochondrial	−4.46018	0.000962
ENSG00000082515	MRPL22	39S ribosomal protein L22, mitochondrial	−4.06421	0.002856
ENSG00000180424	DEFB1	Beta-defensin 1	−3.75248	0.006187
ENSG00000189223	PAX8-AS1	Paired-box gene 8	−3.70671	0.007413
ENSG00000164308	ERAP2	Endoplasmic reticulum aminopeptidase 2	−3.59318	0.007682
ENSG00000145777	TSLP	Thymic stromal lymphopoietin	−3.16270	0.009814
ENSG00000163106	HPGDS	Hematopoietic prostaglandin D synthase	−2.86374	0.023781
ENSG00000177868	SVBP	Small vasohibin-binding protein	−2.79582	0.031863
polymerase II regulatory region sequence-specific DNA binding, DNA-binding transcription factor activity, and following CC: mitochondrial respiratory chain complex I, NADH dehydrogenase complex, respiratory chain complex I, ribosomal subunit (Supplementary Table S2).

KEGG Enrichment Analysis

KEGG enrichment analysis of the most highly DEGs revealed several pathways to gain greater perception into mechanisms of DEG biological functions in the adipose tissue of women with PCOS (P < 0.05, Fig. 5). KEGG enrichment analysis demonstrated that the most highly up-regulated expression genes were assigned into 4 pathways where the largest categories were involved in the metabolic pathways and pyrimidine metabolism (Fig. 5). The complete significant KEGG pathways for the most highly DEGs are provided in Supplementary Table S3.

PPI Networks

To explore the regulation mechanism of key DEGs in the adipose tissue of women with PCOS, the most highly DEGs were imputed into STRING to construct a PPI network, and the network was visualized for up- and down-regulated genes separately (Figs. 6 and 7). In PPI networks, the most highly up/down-regulated genes with the highest hub scores were identified as hub genes (Figs. 6 and 7). Hub genes play a determinant role in gene regulation because of their central position in the network. In the PPI networks of the most highly DEGs, PRDM10, FGFR2, IGF1R, and FLT1 were the key nodes in the up-regulated networks (Fig. 6), while the NDUFAB1 and NME2 proteins were key in the down-regulated networks (Fig. 7). These genes with the highest hub scores were identified as hub genes that highly correlated with these pathway-related genes, suggesting their regulatory function.

Discussion

Given the central role of adipose tissue in the development of PCOS in overweight and obese women, this comparative meta-analysis was performed to show changes in the expression patterns of genes between adipose tissue of PCOS women and control samples. Our result showed changes in the expression patterns of several genes in the adipose tissue of PCOS women and their relation to future possible disturbances. In our meta-analysis study, the majority of significantly enriched pathways were involved in immune diseases, cancer, metabolic pathways, and insulin secretion emphasizing a critical role in the pathogenesis of PCOS.

In the present study, we found that TNF-α and ANGPT2 genes were dramatically up-regulated in the adipose tissue of PCOS women in contrast to healthy women (Table 1). The role of these up-regulated genes has been demonstrated in PCOS pathogenesis and cancer. Tumor necrosis factor α (TNF-α) is a pro-inflammatory cytokine and thought to play a role in the pathogenesis of PCOS [24]. Although TNF-α is involved in adipocyte metabolism [25], it has been reported that mRNA expression of TNF-α is similar levels in adipose tissue of women with and without PCOS [17]. Meanwhile, TNF-α causes insulin
resistance in adipose tissue [25] and maybe affects the onset of type 2 diabetes mellitus (T2DM) [26]. T2DM and insulin resistance stimulate ovarian and adrenal androgen production and lead to PCOS [27]. Although the ovaries are the main source of increased androgen (hyperandrogenism) in PCOS [28], adrenal androgen excess can be present in approximately 20–25% of women with PCOS [29]. Thus, hyperandrogenism has a multifactorial origin and overexpression of TNF-α is also one of them. Of note, overexpression of TNF-α can trigger the delivery of Angiopoietin-2 (ANGPT2) into the blood [30]. ANGPT2 is a growth factor regulating vessel growth and maturation during angiogenesis [31]. ANGPT2 is expressed by
Fig. 5 KEGG enrichment analyses of the most highly DEGs in adipose tissue in women with PCOS in contrast to control women. The size of P-value is associated with each color in color scale bar and the size of dot reflects the number of DEGs in each pathway. Rich factor (%) is the ratio of the number of differentially expressed genes annotated in a pathway to the number of all genes annotated in this pathway.

Fig. 6 Gene network of the most highly up-regulated genes in adipose tissue in women with PCOS in contrast to control women. The connection difference colors represent the types of evidence for inferring association: recurring neighborhood in different genomes (green line), co-occurrence of those genes in the same organisms (dark blue), experimental protein–protein interaction data (pink), events of gene fusion (red), co-expression (black), pathway described by other databases (light blue), literature text-mining (yellow), and homology (purple lines).
activated endothelial cells under usual conditions. ANGPT2 also can be produced by mesenchymal stem cells and by tumor cells in hypoxia and cancer conditions. In addition to its proangiogenic role during cancer progression, ANGPT2 contributes to metastatic formation [32]. It has been reported that ANGPT2 is a prognostic factor in localized metastatic colorectal cancer (CRC) [33]. Therefore, up-regulation of ANGPT2 in adipose tissue of PCOS women might be considered as a biomarker in the early detection of cancer.

Our meta-analysis result showed that the expressions of HPGDS and TSLP genes were dramatically down-regulated in the adipose tissue of women with PCOS (Table 1). HPGDS is a sigma-class glutathione transferase expressed in peripheral tissues such as the placenta, intestine, and adipose tissue [34] and catalyzes the isomerization of prostaglandin H2 (PGH2) to prostaglandin D2 (PGD2) [35]. Inhibiting the production of PGD2 by inhibiting HPGDS may make it an interesting target to treat allergic inflammation [36]. HPGDS may play a role in the regulation of inflammation and epithelial cell health within the oviduct, an effect likely required to maintain homeostasis and function of this key reproductive organ [37]. In our study, HPGDS expression was down-regulated in the adipose tissue of women with PCOS; however, investigation of HPGDS-regulated inflammation in PCOS disorder should be examined.

Another interesting gene among the most highly down-regulated in adipose tissue of women with PCOS was thymic stromal lymphopoeitin (TSLP), which acts as a co-stimulator for thymocyte proliferation [38]. Recent studies have reported

![Gene network of the most highly down-regulated genes in adipose tissue in women with PCOS in contrast to control women. The connection difference colors represent the types of evidence for inferring association: recurring neighborhood in different genomes (green line), co-occurrence of those genes in the same organisms (dark blue), experimental protein–protein interaction data (pink), events of gene fusion (red), co-expression (black), pathway described by other databases (light blue), literature text-mining (yellow), and homology (purple lines).](image-url)
an expanding role of TSLP in inflammatory diseases and cancer [38]. Moreover, it has been found that overexpression of TSLP (in K14-TSLP transgenic mice) can inhibit the development of early breast cancer [39]. Expression of TSLP has been reported in visceral human adipose tissue [40, 41]. However, the level of mRNA expression of TSLP is lower in obese women with metabolic syndrome (state of insulin resistance associated with central obesity) compared to those without metabolic syndrome [40]. The association of abdominal central obesity with insulin resistance and T2DM characterizes many patients with PCOS [42]. Therefore, activation of TSLP signaling may be a therapeutic immunotarget for improving insulin sensitivity and preventing T2DM [43].

Of the most highly DEGs, two up-regulated genes (FGFR2 and IGF1R) in the adipose tissue of women with PCOS were the key nodes in the up-regulated PPI networks (Fig. 6). Fibroblast growth factor receptor 2 (FGFR2) has a critical role in mammary development [44] and in the maintenance of breast tumor-initiating cells [45], thus has been identified as a breast cancer risk [46]. Low expression of FGFR2 is associated with lower numbers of breast tumor-initiating cells [45]. Insulin-like growth factor receptor (IGF1R) regulates androgen biosynthesis and is involved in insulin secretion and action [47]. Dysregulation of the IGF-1/insulin/IGF-1R system may contribute to the pathophysiology of PCOS [48]. Therefore, overexpression of FGFR2 and IGF1R genes in the adipose tissue of women with PCOS may be associated with the risk for breast cancer.

In this meta-analysis study, GO enrichment analysis of DEG targets revealed several pathways to gain a more excellent perception of DEGs’ biological process. The results for GO enrichment analysis in terms of biological process showed that DEGs in adipose tissue from PCOS patients are related to several significantly enriched terms including glutathione derivative biosynthetic process, oxidative phosphorylation, peptide metabolic process, and immune response. The glutathione derivative biosynthetic process is chemical reactions and pathways resulting in the formation of glutathione derivative. Glutathione biosynthesis is essential for cellular redox homeostasis and antioxidant defense [49]. Dysregulation of glutathione biosynthesis has been described in several pathological conditions including liver injury [50], diabetes [51], neurological disorders [52], organ fibrosis [53], and cardiovascular disease [54]. Similarly, dysregulation of glutathione biosynthesis in hepatocytes leads to steatosis that may be accompanied by mitochondrial damage and hepatic failure [55]. Moreover, glutathione biosynthesis is critical for immune cell function and several reports have illustrated this fact, in particular in the context of the immune response and T-cell activation [56]. Interestingly, in our Go enrichment analysis, DEGs also were directly related to oxidative phosphorylation and immune response.

On the other hand, KEGG pathway analysis of DEG targets revealed several pathways to gain a more excellent perception of the mechanisms of DEG pathways. KEGG analysis results showed that DEGs in adipose tissue from PCOS patients are related to several signaling pathways including PI3K-Akt, MAPK, Rap1, and Ras signaling pathways, and pathways in cancer such as hepatocellular carcinoma and gastric cancer. Among these, MAPK signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling pathway, and Ras signaling pathways have been reported to be involved in the control of cell proliferation, apoptosis, and cancer [57–59]. The Ras signaling pathway activates several other effector pathways, especially the PI3K-Akt signaling pathway [59].

In confirmation of our results, whole-genome RNA sequencing analysis on single oocyte of women from Mongolia with PCOS has shown alteration in several DEGs in pathways in cancer, MAPK signaling pathway, and PI3K-Akt signaling pathway in contrast to females with normal ovulation [60]. It has been increasingly recognized that PI3K plays an important role in PCOS. Previous studies have shown that activation of the PI3K-protein kinase B (Akt) signaling pathway has important effects on insulin resistance and endometrial cancer [61]. The PI3K-Akt signaling pathway disorders can not only affect follicular development but also cause diseases, such as tumors [62, 63]. Chen et al. [64] investigated the mice treated with cyclophosphamide (CTX) and found that CTX could lead to follicular loss via the PI3K-Akt-mTOR signaling pathway in ovaries. It indicated to some extent that the PI3K-Akt signaling pathway was related to follicular apoptosis. Hyperandrogenism is another characteristic of PCOS, and it is related to the PI3K-Akt signaling pathway [61].

Conclusion

In conclusion, as adipose tissue is important for the pathogenesis of PCOS, this study provides more insight into the gene expression in adipose tissue of PCOS women and its relation to other disturbances. We showed that PCOS is associated with aberrant adipose tissue genes expression with dysregulated pathways including PI3K-Akt, MAPK, Rap1, and Ras signaling pathways, and pathways in cancer such as hepatocellular carcinoma and gastric cancer, as well as metabolic pathways. This is a meta-analysis study and the cause-and-effect relationship was not clear; therefore, it is not possible to infer that PCOS alters the adipose tissue gene expression or contrariwise. Nevertheless, our findings need to be confirmed in prospective studies. Therefore, further studies are recommended.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s43032-022-01145-0.

Acknowledgements The authors would like to thank Shiraz University for all their support.
Author Contribution SS, RP, NO, and MRJS equally contributed to the conception and design of the research; SS and RP contributed to database search and collection of the data; SS, RP, and MRJS contributed to the acquisition and analysis of the data; SS and NO contributed to the interpretation of the data; SS and NO contributed to draft the manuscript. All authors are in agreement with the manuscript and declare that there is no conflict of interest.

Data Availability Not applicable.

Code Availability All software applications or custom codes were presented in the “Material and Methods” section.

Declarations

Ethical Approval This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Conflict of Interest The authors declare no competing interests.

References

1. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004;89:2745–9.
2. Teede HJ, Hutchison S, Zoungas S, Meyer C. Insulin resistance, the metabolic syndrome, diabetes, and cardiovascular disease risk in women with PCOS. Endocr Rev. 2006;30:45–53.
3. Livadas S, Diamanti-Kandarakis E. Polycystic ovary syndrome: definitions, phenotypes and diagnostic approach. Polycystic Ovary Syndrome. 2013;40:1–21.
4. Emami N, Alizadeh A, Moini A, Yaghmaei P, Shahhosseini M. Differences in fatty acid profiles and desaturation indices of abdominal subcutaneous adipose tissue between pregnant women with and without PCOS. Adipocyte. 2020;9:16–23.
5. de Medeiros SF, Rodgers RJ, Norman RJ. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Human Reproduction Update. 2021;27:771–96.
6. Baltzer-Dereure F, Boeckner C, Bringer J. Obesity and pregnancy: complications and cost. Am J Clin Nutr. 2000;71:1242S–1248S.
7. Yang R, Yang S, Li R, Liu P, Qiao J, Zhang Y. Effects of hyperandrogenism on metabolic abnormalities in patients with polycystic ovary syndrome: a meta-analysis. Reprod Biol Endocrinol. 2016;14:1–10.
8. Baglioni S, Cantini G, Poli G, Franchalanci M, Squecco R, Di Franco A, Bourgoignie J, Frontera S, Nesi G, Liotta F. Functional differences in visceral and subcutaneous fat pads originate from differences in the adipose stem cell. PLoS ONE. 2012;7:e36569.
9. Barber T, Franks S. Adipocyte biology in polycystic ovary syndrome. Mol Cell Endocrinol. 2013;373:68–76.
10. Manneras-Holm L, Leonhardt H, Kullberg J, Jennische E, Odén A, Holm G, Hellström M, Lönn L, Olivecrona G, Stener-Victorin E. Adipose tissue has aberrant morphology and function in PCOS: enlarged adipocytes and low serum adiponectin, but not circulating sex steroids, are strongly associated with insulin resistance. J Clin Endocrinol Metab. 2011;96:E304–11.
11. Jones MR, Chazenbalk G, Xu N, Chua AK, Eigler T, Mengesha E, Chen Y-H, Lee J-M, Pall M, Li X. Steroidogenic regulatory factor FOS is underexpressed in polycystic ovary syndrome (PCOS) adipose tissue and genetically associated with PCOS susceptibility. J Clin Endocrinol Metab. 2012;97:E1750–7.
12. Cortón M, Botella-Carretero JI, Benguria A, Viluendas G, Zaballos A, San Millán JL, Escobar-Morreale HF, Peral B. Differential gene expression profile in omental adipose tissue in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2007;92:328–37.
13. Carmina E, Chu MC, Moran C, Tortoriello D, Vardhana P, Tena G, Preciado R, Lobo R. Subcutaneous and omental fat expression of adiponecin and leptin in women with polycystic ovary syndrome. Fertil Steril. 2008;89:642–8.
14. Tan BK, Adya R, Farhatullah S, Lewandowski KC, O’Hare P, Lehner H, Randeva HS. Omentin-1, a novel adipokine, is decreased in overweight insulin-resistant women with polycystic ovary syndrome: ex vivo and in vivo regulation of omentin-1 by insulin and glucose. Diabetes. 2008;57:801–8.
15. Tan B, Chen J, Digby J, Keay S, Kennedy C, Randeva H. Upregulation of adiponectin receptor 1 and 2 mRNA and protein in adipose tissue and adipocytes in insulin-resistant women with polycystic ovary syndrome. Diabetol. 2006;49:2723–8.
16. Chazenbalk G, Chen Y-H, Heneidi S, Lee J-M, Pall M. Chen Y-DI, Azziz R: Abnormal expression of genes involved in inflammation, lipid metabolism, and Wnt signaling in the adipose tissue of polycystic ovary syndrome. J Clin Endocrinol. 2012;97:E765–70.
17. Manneras-Holm L, Benrick A, Stener-Victorin E. Gene expression in subcutaneous adipose tissue differs in women with polycystic ovary syndrome and controls matched pair-wise for age, body weight, and body mass index. Adipocyte. 2014;3:190–6.
18. Haoula Z, Salmon M, Atiomo W. Evaluating the association between endometrial cancer and polycystic ovary syndrome. Hum Reprod. 2012;27:1327–31.
19. Tsuyuzaki K, Nikaido I. metaSeq: meta-analysis of RNA-seq count data. Tokyo: Tokyo University of Science; 2013.
20. Fruzzangohar M, Ebrahimie A, Adelson DL. Application of global transcriptome data in gene ontology classification and construction of a gene ontology interaction network. bioRxiv. 2014:004911.
21. Kanheisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007;36:D480–4.
22. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Mufford MA, Bork P, Sonnenschein N, Wuchty S, Roth A, Simonovic M, Babika J, Kuhn M, Helmer-Citterich M, Bujnicki JM. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2014:43:D447–52.
23. de Abreu Neto JB, Frei M. Microarray meta-analysis focused on the response of genes involved in redox homeostasis to diverse abiotic stresses in rice. Front Plant Sci. 2016;6:1260.
24. Ojeda-Ojeda M, Murri M, Insensier M, F Escobar-Morreale H: Mediators of low-grade chronic inflammation in polycystic ovary syndrome (PCOS). Curr Pharm Des. 2013;19:5775–91.
25. Cawthorn WP, Sethi JK. TNF-α and adipocyte biology. FEBS Lett. 2008;582:117–31.
26. Swaroop JJ, Rajarajeswari D, Naidu J. Association of TNF-α with lipid metabolism, and Wnt signaling in the adipose tissue of polycystic ovary syndrome. J Clin Endocrinol. 2012;97:765–70.
27. Swaroop JJ, Rajarajeswari D, Naidu J. Association of TNF-α with lipid metabolism, and Wnt signaling in the adipose tissue of polycystic ovary syndrome. J Clin Endocrinol. 2012;97:765–70.
28. Delitala AP, Capobianco G, Delitala G, Cherchi PL, Dessole S. TNF-α and adipocyte biology. FEBS Lett. 2008;582:117–31.
29. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 1995;16:322–53.
modulation of their expression by inflammatory cytokines in rheumatoid arthritis synovial fibroblasts. J Rheumatol. 2002;29:230–9.
31. Reiss Y, Kneida A, Tal AO, Schmidt MH, Jugold M, Kiessling F, Burger AM, Wolburg H, Deutsch U, Plate KH. Switching of vascular phenotypes within a murine breast cancer model induced by angiopoietin-2. J Pathol: J Pathol Soc G B Irel. 2009;217:571–80.
32. Scholz A, Lang V, Henschler R, Czabanaka M, Vajkoczky P, Chavakis E, Drynski J, Harter PN, Mellibronn M, Dumont DJ. Angiopoietin-2 promotes myeloid cell infiltration in a β2-integrin-dependent manner. Blood. J Am Soc Hematol. 2011;118:5050–9.
33. Jary M, Hasanova R, Asgarov K, Loyon R, Tirole C, Bouard M, Orillard E, Klager J, Kim S. Molecular description of ANGPT2 associated colorectal carcinoma. Int J Cancer. 2020;147:2007–18.
34. Jowsey IR, Thomson AM, Flanagan JU, Murdock PR, Moore GB, Jary M, Hasanova R, Vienot A, Asgarov K, Loyon R, Tirole C, Bouard M, Orillard E, Klager J, Kim S. Molecular description of ANGPT2 associated colorectal carcinoma. Int J Cancer. 2020;147:2007–18.
35. Bridges PJ, Jeoung M, Shim S, Park JY, Lee JE, Sapsford LA, Rittchen S, Heinemann A. Therapeutic potential of hematopoietic UV resonance Raman polycystic ovary syndrome. Clin Chim Acta. 2014;429:181–8.
36. Uchida Y, Urade Y, Mori S, Kohzuma T. UV resonance Raman thymic stromal lymphopoietin blocks early stages of breast carcinogenesis. J Clin Invest. 2016;126:1458–70.
37. Turcot V, Bouchard L, Faucher G, Garneau V, Tchernof A, Deshaies Y, Péres FM, Morisset S, Biron S, Lescelleur O. Thymic stromal lymphopoietin: an immune cytokine gene associated with Familial prostatic hyperplasia. J Urol. 2000;164:838–42.
38. Corren J, Ziegler SF. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int J Cancer. 2007;121:1424–32.
39. Fu X, Zhang Y-W, Tong X-H, Liu Y-S. Characterization of microRNA profile in human cumulus granulosa cells: identification of microRNAs that regulate Notch signaling and are associated with ECOS. Mol Cell Endocrinol. 2015;404:26–36.
40. Khan A, Kuttikrishnan S, Siveen KS, Prabhusha KS, Shammakar MA, Al-Naemi HA, Hars M, Dermime S, Uddin S. RAS-mediated oncogenic signaling pathways in human malignancies. Semin Cancer Biol. 2019;54:1–13. https://www.sciencedirect.com/science/article/pii/S1044579X18300026.
41. Du C, Chen X. Transcriptome profiling of oocytes at the germinal vesicle stage from women from Mongolia with polycystic ovary syndrome. Int J Gen Med. 2021;14:4409.
42. Li T, Mo H. Anti-apoptosis in cyclophosphamide-treated mice: what's the matter? J Mol Endocrinol. 2016;42:172–81.
43. Kim S-Y, Ebbert K, Cordeiro HM, Romero M, Zhu J, Serna VA, Whelan KA, Woodruff TK, Kurita T. Cell autonomous phosphoinositide 3-kinase activation in oocytes disrupts normal ovarian function through promoting survival and overgrowth of ovarian follicles. Endocrinol. 2015;156:1466–76.
44. Chen X-Y, Xia H-X, Guan H-Y, Li B, Zhang W. Follicle loss and apoptosis in cyclophosphamide-treated mice: what's the matter? Int J Mol Sci. 2016;17:836. Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.