Proper motions of young stellar outflows in the mid-infrared with Spitzer II HH 377/Cep E

A Noriega-Crespo¹,³, A C Raga², A Moro-Martín³, N Flagey⁴,⁶ and S J Carey⁵

¹ Infrared Processing and Analysis Center, California Institute of Technology, CA 91125, USA
² Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ap. 70–543, 04510 D.F., Mexico
³ Space Telescope Science Institute, 3700 San Martin Dr Baltimore, MD 21218, USA
⁴ Jet Propulsion Laboratory, California Institute of Technology, CA 91099, USA
⁵ Spitzer Science Center, California Institute of Technology, CA 91125, USA
⁶ Institute for Astronomy, 640 North Aóhoku Place, Hilo, HI 96720, USA

E-mail: anoriega@stsci.edu

Received 26 November 2013, revised 17 July 2014
Accepted for publication 21 July 2014
Published 14 October 2014

New Journal of Physics 16 (2014) 105008
doi:10.1088/1367-2630/16/10/105008

Abstract

We have used multiple mid-infrared observations at 4.5 μm obtained with the infrared array camera, of the compact (~1.4′) young stellar bipolar outflow Cep E to measure the proper motion of its brightest condensations. The images span a period of ~6 yr and have been reprocessed to achieve a higher angular resolution (~0.8″) than their normal beam (~2″). We found that for a distance of 730 pc, the tangential velocities of the north and south outflow lobes are 62 ± 29 and 94 ± 26 km s⁻¹ respectively, and moving away from the central source roughly along the major axis of the flow. A simple 3D hydrodynamical simulation of the H₂ gas in a precessing outflow supports this idea. Observations and models confirm that the molecular hydrogen gas, traced by the pure rotational transitions, moves at highly supersonic velocities without being dissociated. This suggests either a very efficient mechanism to reform H₂ molecules along these shocks or the presence of some other mechanism (e.g. strong magnetic field) that shields the H₂ gas.
Keywords: ISM: jets and outflows, infrared: ISM, Herbig–Haro objects, circumstellar matter, star formation

1. Introduction

The measurement of proper motions for Herbig–Haro (HH) outflows and stellar jets has a long tradition and has played a fundamental role in our understanding of early phases of evolution of low mass stars, including their accretion rates, mass loss and disk dissipation (see e.g. McKee and Ostriker 2007, Bally 2009) The original work by Herbig and Jones (1981) on the first and brightest HH objects 1, 2 and 3, using photographic plates over a 34 yr period, set up the framework of the mass loss process in proto-stars and their interaction with the surrounding medium. The ‘knots’ of HH 1 and 2 were found to have tangential velocities ranging from 100 to 350 km s$^{-1}$, in disagreement with the spectroscopic measurements that indicated that their emission was due to shocks of at most 100 km s$^{-1}$ (see e.g. Raymond 1979). Modern observations and models have shown that HH 1 and 2 are the leading working surfaces or ‘bowshocks’ of a highly collimated jet/counter-jet system that arises from a deeply embedded protostellar source of class 0. And that a time dependent ejection can account for both larger proper motion and relative smaller shock velocities between their knots (see e.g. Raga et al 2011a for a review). At optical wavelengths, using narrow band images at some of the brightest collisionally excited emission lines (e.g. Hα and/or [SII]), it has been possible to measure proper motions for \sim50 HH flows, within a distance of roughly one kiloparsec, both from the ground and space (see e.g. Bally et al 2007, Garatti & Eislöffel 2009) and over relatively short periods of time (\leq10–20 yr). In the case of objects like HH 1/2, 34 and 46/47, such measurements have led to some spectacular time sequences of the outflows (see e.g. Hartigan et al 2011). Proper motions are still a fundamental tool to find and correlate outflows across the sky and over distance scales of parsecs (see e.g. Reipurth et al 2013). This method is particularly important when the outflow driving source has not been clearly identified. Radio observations have also been very successful in measuring proper motions of outflows for low and high mass protostars, taking advantage of the gas flow thermal (free–free) emission and high angular resolution measurements obtained by interferometric observations (see e.g. Rodriguez 2011).

At infrared wavelengths, however, it has been more difficult to measure proper motions because of the lack of large format arrays. It has not been until recently that near/mid-IR arrays have had a wide enough FOV to include a reasonable number of reference stars and be able to cross-correlate multiple epoch observations to derive the proper motions. The large proper motions observed in the HH 1/2 system in the atomic ionic gas (Herbig and Jones 1981) have been measured in the NIR as well, using the molecular hydrogen shock excited emission vibrational transition ($v = 1 \rightarrow 0$ S(1)) at 2.121 μm (Noriega-Crespo et al 1997). It is now possible, using similar tracers, to measure the motions of multiple H$_2$ features in Cha II (Garatti et al 2009) or ρ Oph clouds (Zhang et al 2013), with a similar range of transversal velocities (from 30 to 120 km s$^{-1}$).

In the mid-IR, thanks to the stability and longevity of the infrared array camera (IRAC; Fazio et al 2004) on board the spitzer space telescope, it has been possible to measure the proper motions of several outflows in NGC1333 at an angular resolution of 2" (Raga et al 2013). IRAC channel 2 at 4.5 μm is an excellent tracer of the H$_2$ rotational emission, since three of the brightest
lines, 0–0 S(11) 4.18, 0–0 S(10) 4.40 and 0–0 S(9) 4.18 μm fall within its passband (Noriega-Crespo et al 2004a, Noriega-Crespo et al 2004b, Looney et al 2007, Tobin et al 2007, Ybarra and Lada 2009, Raga et al 2011a, Noriega-Crespo and Raga 2012, Raga et al 2012).

Using images obtained at 4.5 μm over a period of ~7 yr, Raga et al (2013) obtained tangential velocities ranging from ~10 to 100 km s\(^{-1}\) (for a 220 pc distance) for eight outflows in NGC 1333 cloud. For the bright HH 7–11 system, that lies at the center of the cloud, the H\(_2\) tangential velocities of ~10–15 km s\(^{-1}\) are very close to those obtained at optical wavelengths using atomic gas line tracers, such as [SII] 6717/31 Å or H\(_\alpha\) (Herbig and Jones 1983, Noriega-Crespo and Garnavich 2001).

In summary, proper motions, and the corresponding tangential velocities, are essential for determining the dynamics of the outflows, plus their momentum and energy transfer into the surrounding interstellar medium (see e.g. Padoan et al 2009, Plunkett et al 2013, Quillen et al 2005). The striking morphological similarity between the atomic/ionic gas emission (obtained from optical or near-IR observations) and that of the molecular hydrogen (obtained either from near/mid-IR observations), suggests that the kinematics of the protostellar outflows allow this relatively fragile molecule (H\(_2\)) either to survive the shocks or to regenerate itself rapidly in the dense postshock regions (see e.g. Le Bourlot et al 2002, Panoglou et al 2012). These issues can be partially addressed with studies of proper motions of the H\(_2\) emission from stellar outflows.

In this study we determine the proper motions of the deeply embedded and compact molecular outflow Cep E, driven by an intermediate mass class 0 protostar (Eislöffel et al 1996, Lefloch et al 1996, Ladd and Hodapp 1997, Noriega-Crespo et al 1998, Hatchell et al 1999, Moro-Martín et al 2001, Noriega-Crespo et al 2004b). Cep E is considered an excellent prototype of its kind, and therefore, has prompted many recent observations at millimeter and sub-millimeter wavelengths to study its H\(_2\)O and CO molecular content (Lefloch et al 2011, Gómez-Ruiz et al 2012, Tafalla et al 2013), in part because its shocked excited south lobe is detected at optical 3 wavelengths (HH 377; Ayala et al 2000).

At a distance of ~730 pc to Cep E, measuring proper motions with a time interval of ~6 yr (covered by the available IRAC images) is a considerable challenge, since velocities of ~100 km s\(^{-1}\) would correspond to shifts of only ~0.17″. In order to achieve as high a resolution as possible, we have employed a high angular resolution enhancement of the IRAC images, reaching a resolution of 0.6″–0.8″ (see Velusamy et al 2007, Velusamy et al 2008, Noriega-Crespo and Raga 2012, Velusamy et al 2014). Such an enhancement has recently been successfully applied to IRAC images of Cep E (Velusamy et al 2011). Finally, given that observationally there is a tremendous morphological similarity between the mid-IR and NIR emission (Noriega-Crespo et al 2004b), we expand the study to include some ground based H\(_2\) 2.12 μm NIR data that allows us to extend the time baseline of the observations to ~16 yr (table 1).

The paper is organized as follows. The observations and their high angular resolution reprocessing are described in section 2. The determination of the proper motions is described in section 3. Finally, section 4 presents a summary of the results.

2. Observations and high angular resolution reprocessing

The Cep E outflow was one of the first young stellar outflows observed with the Spitzer space telescope as part of their early release observations (PID 1063, P.I. Noriega-Crespo)
because of its strong brightness at mid-IR wavelengths. Its emission in the mid-IR (5–17 μm) is due mostly to bright H₂ rotational lines clearly detected already by the infrared space observatory with the infrared camera using its circular variable mode (see e.g. Boulanger et al 2005) that provided a low spectral (R ~ 45) and angular (FWHM ~6") resolution spectral map of the region (Moro-Martín et al 2001). The outflow was later observed by two ambitious programs, one to map the Cepheus OB3 molecular cloud to study its star formation (PID 20403, P.I. Pipher), and more recently by the GLIPMSE360 survey during the warm Spitzer phase as one of the large exploration programs (PID 60020, P.I. Whitney). The data, consisting of the basic calibrated frames or BCDs, have been recovered from the Spitzer legacy archive, version S18.18.0 (Cryo) and S19.0.0 (Warm). In all cases, the data was collected using the high-dynamic-range mode with a 12 s integration time for the ‘long’ frames (10.4 s on target) and 0.6 s for the ‘short’ ones. A summary of the observations is presented in table 1.

The BCDs were then reprocessed with the HiREs deconvolution software AWAIC⁷ (A WISE Astronomical Image Co-Adder), developed by the Wide Field Infrared Survey Explorer (WISE) for the creation of their Atlas images (see e.g. Masci and Fowler 2009, Jarrett et al 2012). The AWAIC software optimizes the coaddition of individual frames by making use of the point response function as an interpolation kernel, to avoid flux losses in undersampled arrays like those of IRAC, and also allows a resolution enhancement (HiRes) of the final image, by removing its effect from the data in the deconvolution process. We have used this method quite successfully in the HH 1/2 outflow (Noriega-Crespo and Raga 2012), and as mentioned above, a similar method has been used on Cep E (Velusamy et al 2011) and HH 46/47 (Velusamy et al 2007). On IRAC images, the HiRes enhances the angular resolution from the standard ~2” to ~0.6”–0.8” (Velusamy et al 2008, Noriega-Crespo and Raga 2012).

The combination of being deeply embedded and its youth, ~5000 yr (Ladd and Hodapp 1997), perhaps makes Cep E one of the outflows where the morphology of the vibrational H₂ is nearly identical to the H₂ rotational emission observed with IRAC at

Table 1. Cep E observations.

Program ID	Request key	Observation date	Mean coverage	t_exp (sec)	Observer
1063	6064384	26-11-2003	9	93.6	Noriega-Crespo⁻⁸
20403	15571968	25-12-2005	4	41.6	Pipher⁻⁸
20403	15570432	09-08-2006	4	41.6	Pipher⁻⁸
60020	38734592	01-02-2010	8	83.2	Whitney⁻⁸,c
⋯ ⋯	⋯ ⋯ ⋯ ⋯ ⋯	29-08-2012	⋯ ⋯ ⋯ ⋯ ⋯ ⋯	1500.	Flagey+

a Ground based 2.12 μm.
b IRAC 4.5 μm.
c Warm Spitzer observation.

⁷ http://wise2.ipac.caltech.edu/staff/fmasci/awaicpub.html
This similarity has encouraged us to introduce an earlier H$_2$ $v = 1 - 0$ 2.12 μm image from 1996 and one recently obtained in 2012, in the analysis of the proper motions, providing a \sim 16 yr time baseline. The NIR 1996 image was obtained with the 3.5 m telescope at the Apache Point Observatory with a 256 \times 256 array at f/5 and a 0.″482 pixel$^{-1}$ scale using a 2.12 μm filter (1% width) and 2.22 μm (4% width) to subtract the continuum. The complete analysis of these data was already presented by Ayala et al (2000). The 2012 image was obtained at Palomar Observatory with the wide field infrared camera (WIRC) mounted in the 200 in prime focus using a 2048 \times 2048 Hawaii-II HgCdTe detector. WIRC has a field-of-view of 8.7′ and a 0.2487 arcsec/pixel scale (Zhang et al 2013). The observations were carried out on 29 August 2012 in the 2.12 μm and K-continuum (2.27 μm, 2%) filters, with a 25 min total integration time. Figure 1 shows a comparison of the Palomar 2.12 μm continuum subtracted image with that at 4.5 μm from Noriega-Crespo et al (2004b). Among some of the small obvious differences are the lack of H$_2$ vibrational emission on the same region where there is a ‘wide angle’ cone at 4.5 μm (Velusamy et al 2011), which appears to be scattered light by small dust particles; and the emission at 2.12 μm on the south lobe that fits within these ‘cones’ and reaches further into the IRAS 23011 + 6126 central source. Other than these differences, the knots that we have...
used in our proper motion ‘boxes’ are indistinguishable from each other. In figure 2 we show the five epochs that are being analyzed; the IRAC images are the HiRES AWAIC reprocessed after 60 iterations.

3. Proper motion measurements

As can be seen in figure 2, the Cep E outflow shows bipolar ‘cavity’ structures which extend out to ∼10–15″ from the source (with an approximately NNE–SSW orientation). These cavities have two ridges that first open out from the outflow source, and then converge into compact emission structures. Further away (∼20″ from the source), we find two bow-like prolongations of the outflow lobes. As can be seen in figure 2, the emission along the two-ridged cavities shows a complex time-dependence, with the northern cavity becoming fainter and the southern cavity brightening from 2003 to 2010 (i.e., the period covered by the IRAC images).

We have defined four boxes, including the regions of convergence of the cavities and the bow-like structures, which we show in figure 4. For each of these four boxes, we have carried out cross correlations between the emission in the 2003.89 frame (the first of the IRAC frames, see table 1) and the other four available frames. From paraboloidal fits to the peak of cross correlation functions we then determine the offsets of the emission (within the four boxes, see figure 4) with respect to the 2003.89 frame. For the two 2.12 μm images, we performed the cross correlation initially with the 2003.89 frame as well, and then between themselves. In this way the offsets at 2.12 and 4.5 μm are measured on a common reference frame.

The resulting RA and DEC displacements for the four selected boxes are plotted as a function of time in figure 3, where the stars and plus signs correspond to the 2.12 and
From this figure, one notices that boxes 1 and 4 (corresponding to the bow-like structures, see figure 4) show substantial N–S motions, while the ‘cavity tips’ (boxes 2 and 3) have considerably lower proper motions. We have then carried out linear fits to the time dependencies of the RA and DEC offsets of our four boxes, from which we obtain the proper motions (and their associated errors) given in table 2 (2.12 μm) and 3 (4.5 μm).

4.5 μm frames respectively. From this figure, one notices that boxes 1 and 4 (corresponding to the bow-like structures, see figure 4) show substantial N–S motions, while the ‘cavity tips’ (boxes 2 and 3) have considerably lower proper motions. We have then carried out linear fits to the time dependencies of the RA and DEC offsets of our four boxes, from which we obtain the proper motions (and their associated errors) given in table 2 (2.12 μm) and 3 (4.5 μm).

The proper motions obtained from the 2.12 μm and IRAC 4.5 μm do show similar trends and are within a factor of two (table 2). One interesting thing to notice is that by placing all displacements on the same frame of reference, one can also measure a shift between the positions of the vibrational (2.12 μm) and rotational (4.5 μm) H2 emission in the outflow. These are of the order of 0.25”–0.30”, certainly larger than the 0.05”–0.10” positional uncertainty of the selected regions. The H2 proper motions show evidence, for first time, that both the
vibrational and rotational H$_2$ can share the same kinematics within an outflow; and furthermore, that the vibrational and rotational H$_2$ gas does trace slightly different regions within the outflow. Although this last statement may seem obvious within the now classical scenario of the acceleration of a molecular outflow, where the atomic/ionic supersonic flow drags and/or excites the surrounding molecular gas (see e.g. Raga et al 1995), this is (to our knowledge) one of the first pieces of observational evidence that this is the case for the different components of the H$_2$ gas. Recall that spectroscopically we do have some good examples where both near-IR

![Figure 4. The tangential velocities of the H$_2$ emission as detected in IRAC 4.5 μm (left) and 2.12 μm (right) in the four boxes used in this study (see tables 2 and 3).](image)

Table 2. Cep E proper motions and tangential velocities from 2.1 μm images.a

Box	Δ_x^b (mass yr$^{-1}$)	Δ_y^b (mass yr$^{-1}$)	V_x^b (km s$^{-1}$)	V_y^b (km s$^{-1}$)	V_T (km s$^{-1}$)
1	4.0	-8.7	13.9	-30.2	33.0 ± 14.6
2	0.9	-2.6	3.1	-9.0	9.5 ± 14.0
3	-0.6	6.7	-2.1	23.3	23.4 ± 11.9
4	0.2	12.2	0.7	42.4	42.4 ± 11.2

a For a distance of 730 pc.

b The proper motions have estimated errors of 3.2 mass yr$^{-1}$ (11 km s$^{-1}$).
and mid-IR \(H_2\) emission lines have been observed simultaneously in an outflow. Perhaps one of best examples is that of OMC-1 (Rosenthal et al 2000) where the short wavelength spectrometer detected 56 \(H_2\) transitions within its 2.5–45 \(\mu\)m spectral range, and where the rotational emission was tracing a \(H_2\) gas with an excitation temperature of 600 K, while the vibrational emission was tracing one at 3200 K. In OMC-1 it was possible to explain the bulk of the emission with collisional excitation produced by a combination of C-type and J-type shocks (Rosenthal et al 2000). In Cep E, the spectroscopic evidence (Moro-Martín et al 2001) also suggests a mixture of excitations to explain the optical and near/mid/far IR observations.

The resulting tangential velocities are shown (together with their error boxes) in figure 4. Because of the multiple epochs, the motions seem to be better defined at 4.5 \(\mu\)m than at 2.12 \(\mu\)m. At 4.5 \(\mu\)m, the bow-like structures show proper motions of 94 \(\pm\)36 \(\text{km s}^{-1}\) (southern bow, box 1) and 63 \(\pm\)25 \(\text{km s}^{-1}\) (northern bow, box 4) directed approximately away from the outflow source. The southern cavity tip (box 2) has essentially zero proper motion in the \(X\)-axis, and if this is the case it follows the flow of the bowshock but at steeper angle. The northern cavity tip (box 3) shows a proper motion of 44 \(\pm\)25 \(\text{km s}^{-1}\) at an angle of \(\sim\)60° from the outflow direction (figure 4). This proper motion measurement might be affected by significant intensity variations of the cavity emission during the observed time period (see figure 2).

4. Numerical simulations

In one of the first studies of the \(H_2\) NIR emission in Cep E (Eislöffel et al 1996) the authors suggested that the ‘wiggles and sideways positional offsets’ were due to precession, with a relatively small precession angle of 4°. In the same study they noticed the presence of a couple of \(H_2\) knots emanating westward from the central source and nearly perpendicular to the main Cep E outflow (Eislöffel et al 1996 figure 3), suggesting a very close-by second protostar, and therefore, a possible mechanism to drive the precession. To further test this hypothesis and compare with the kinematical behavior of the \(H_2\) gas derived from the proper motion measurements, we present in this section some relatively simple 3D hydrodynamical simulations. The YGUAZU-A code (Raga et al 2000, Raga et al 2003) was selected for this simulation. The code, in a nutshell, uses a binary adaptive grid and integrates the gas-dynamic equations with a second-order accurate scheme (in time and space) using a flux-vector splitting method (van Leer 1982). The code has been used over a decade to simulate the gas dynamical processes that take place in several astrophysical scenarios including YSO outflows (e.g. Raga et al 2004), proto-planetary nebulae (Velázquez et al 2011), supernova explosions (Velázquez et al 2004), photodissociation regions (Reyes-Iturbide et al 2009), photoevaporating clumps

Table 3. Cep E proper motions and tangential velocities from IRAC 4.5 \(\mu\)m images

Box	\(\Delta_x\) (mass yr\(^{-1}\))	\(\Delta_y\) (mass yr\(^{-1}\))	\(V_x\) \(\text{km s}^{-1}\)	\(V_y\) \(\text{km s}^{-1}\)	\(V_T\) \(\text{km s}^{-1}\)
1	14.7 ± 9.3	−10.4 ± 1.6	51.1 ± 32.3	−36.2 ± 5.6	62.6 ± 29.5
2	10.0 ± 1.4	−7.3 ± 6.8	34.8 ± 4.9	−25.4 ± 23.6	43.1 ± 17.9
3	2.7 ± 2.9	20.4 ± 8.1	9.4 ± 10.1	70.9 ± 28.2	71.5 ± 29.3
4	−12.8 ± 6.0	23.8 ± 5.4	−44.5 ± 20.9	82.8 ± 18.8	94.0 ± 26.5

\(\text{For a distance of 730 pc.}\)
(Raga et al 2005), and MIRA’s turbulent wake (Raga et al 2008) among others. In this version of the code we include a H$_2$ gas component, although we cannot distinguish between its vibrational/rotational excitation.

The goal of the simulation is not to model in detail Cep E, but to show that the observed proper motions can indeed be explained when taking into account precession. Because of the relatively small dynamical age of the Cep E outflow (∼3000 yr), we set the initial conditions of the model as that of a jet emerging from a compact dense cold core with the simplifying assumption that it is in thermal balance with the surrounding medium ($n_{\text{core}} = 1000$ cm$^{-3}$, $T_{\text{core}} = 1$ K, $n_{\text{ISM}} = 10$ cm$^{-3}$, $T_{\text{ISM}} = 10^3$ K). Based on our previous simulations (Raga et al 2004), we assume that the jet has an initial radius of 1.5×10^{16} cm, a temperature of 1000 K and a velocity of 200 km s$^{-1}$, with a time dependent velocity variation (‘pulses’) of a 50% over a 60 yr period. The jet is set to precess on a 10° angle with respect to its cylindrical symmetry axis over a 1200 yr period. Since we are interested on the bulk motion of the gas to compare with what is observed in the proper motions, we have chosen a medium resolution computational grid of $128 \times 128 \times 256$ cells set to a scale of $(X, Y, Z) = (5, 5, 10) \times 10^{17}$ cm, respectively. The time resolution is set to 200 yr per step, so once the jet plunges through the core, it takes 15 to 20 frames to reach a dynamical age close to that of Cep E.

The results of the simulation for the H$_2$ number density are shown for five time steps starting at the moment when the jet finally breaks free from the dense core (figure 5: step 45). In all cases we present the XZ projection, i.e. perpendicular and along the flow. In the H$_2$ number density one already can see that the initial effect of precession has been to widen the path of the flow and the creation of two different density maxima upstream. At about 2000–3000 yr later (steps 56 and 59), the maxima have nearly merged and the flow is compact and asymmetric.

In an effort to better compare the numerical model with the observations we have integrated in the 3D grid the H$_2$ emission along the line of sight and projected it on a 30° angle. We have taken the difference in the projected emission for models 56 and 59 (i.e. a 600 yr interval), to mimic as much as possible the proper motion measurements. The result (figure 6)
shows at least four ‘knots’ with tangential velocities ranging from 10 to 50 km s$^{-1}$ in slightly different directions, although the bulk of the motion is away from the center of the grid. A 50 km s$^{-1}$ tangential velocity is certainly consistent with the value of \sim62 km s$^{-1}$ of the north lobe, that plunges deeper into the cloud, and is a bit smaller than the 94 km s$^{-1}$ value of the south lobe, where one detects at optical wavelengths HH 377, i.e the observed proper motions seem to reflect the difference in physical environment between the two lobes.

Figure 6. Tangential velocities of the H$_2$ gas as projected on the sky and based on models 56 and 59 (top). The overall morphology resembles that of the north lobe of Cep E (bottom).
5. Summary

We have derived proper motions based on six IR images of the Cep E outflow: two ground based images obtained in 1996 and 2012 in H$_2$ v = 1 – 0 at 2.12 μm, plus another four obtained at 4.5 μm with the Spitzer’s IRAC camera over the 2003–2010 time period.

We have defined four cross-correlation boxes that included the more compact emission structures. Two boxes for the tips of the two-ridged cavities (boxes 2 and 3, respectively, in figures 3 and 4 and those for the northern and southern bowshocks (boxes 1 and 4, respectively). The proper motion of the tip of ridges is complex in both the rotational and vibrational emission and it may reflect time dependent variation in their illumination or excitation. On the other hand, the proper motions of the main bowshocks are well defined; they are moving away from the central source along the symmetry axis with tangential velocities of 62.6 ± 29.5 and 94.0 ± 26.5 km s$^{-1}$, respectively. The southern bowshock is detected also at optical wavelengths and is known as HH 377, and its proper motion has been measured (Noriega-Crespo and Garnavich 2001) rendering a tangential velocity of (107 ± 14) km s$^{-1}$, directed approximately along the outflow axis. This motion is roughly consistent with the proper motion that we have obtained for the IR emission of this object. The proper motions based on the 2.12 μm emission are about a factor of two smaller than those in the mid-IR. With a time baseline of ~ 16 yr and an angular resolution of $\sim''1$, a priori one does not have any reason to believe that this difference in magnitude is not real. If this is the case, then the offset between the vibrational and rotational H$_2$ emission, plus the difference in velocity, suggests a different physical ‘layer’ in the outflow where the vibrational H$_2$ gas is excited. That not all the molecular tracers originate in the same place in young stellar outflows, including Cep E, has been nicely illustrated by a recent study of water using Herschel space telescope observations (Tafalla et al 2013). For Cep E, for instance, the H$_2$O ($2_{12} - 1_{01} 1670$ GHz), CO ($J = 2–1$) and H$_2$ emission (from IRAC 3.6 μm channel) at the same angular resolution ($''13$), show a very different spatial distribution along the flow axis (Tafalla et al 2013, figure 4). In this case, the CO emission peaks closer to the source, while the H$_2$O and H$_2$ share the same distribution farther away from the source. This means that gas at a temperature of tens of Kelvins (from CO) resides at a different place than gas at hundreds of Kelvins (from H$_2$O and H$_2$). A similar process could be taking place in our case, where the H$_2$ rotational emission, as measured by IRAC at 4.5 μm (i.e. S(11), S(10) and S(9) lines) is tracing a higher kinetic temperature than the vibrational H$_2$ traced by the 2.12 μm emission (see e.g. Giannini et al 2011, Neufeld et al 2009) and it is moving at a higher velocity as well.

As mentioned in section 1, the observed emission at 4.5 μm from young stellar outflows is likely produced by three rotational transitions of H$_2$. In the case of Cep E, in particular, one expects only a small contribution from the dust continuum emission at these wavelengths based on what is observed spectroscopically at 5 μm in its north lobe (Noriega-Crespo et al 2004b). Thus the infrared proper motions imply that the molecular hydrogen gas in Cep E is moving supersonically, just like its atomic/ionic counterpart. That the H$_2$ gas can have large tangential velocities in young stellar outflows was first noticed in the HH 1–2 system (Noriega-Crespo et al 1997), where velocities as high as 400 km s$^{-1}$, comparable to those from the optical tracers, were measured. Large H$_2$ flow velocities derived from proper motion measurements are now certainly not uncommon in young stellar outflows (Chrysostomou et al 2000, Caratti o Garatti et al 2009, Zhang et al 2013).
The large tangential velocities of H$_2$ gas in Cep E or other young stellar outflows are somewhat of a puzzle. In these outflows, the bulk of the H$_2$ emission arises from collisional excitation due to shocks, although turbulence and entrainment may also play a role (Reipurth and Bally 2001, Noriega-Crespo 1997a, Raga et al 2003). The shocks exciting the H$_2$ gas cannot be that strong because otherwise the molecule dissociates, and this occurs at shock velocities of \sim45 km s$^{-1}$ even in the presence of strong magnetic (\sim50 μ G) fields (Lepp and Shull 1983, Draine et al 1983). There are, however, models of the H$_2$ emission where higher shock velocities are possible (Le Bourlot et al 2002). In these models, if one allows for an initial magnetic field \gtrsim 100 μ G, i.e. about a factor of 5 or 10 larger than what is measured at densities of 10^2–10^3 cm$^{-3}$ in interstellar clouds (Crutcher et al 2010), then it is possible to reach shock velocities as high as 70–80 km s$^{-1}$. That magnetic fields do play a major role in outflows is nicely captured by the work on the survival of CO and H$_2$ in magnetized protostellar disk winds by Panoglou et al (2012). Although this work concentrates on scales closer to the launching of the flows (i.e. with a few au), it emphasizes the role of chemistry for the formation and survival of the molecules. At larger scales, however, ‘internal shock waves’ (either J or C-shocks) that arise as a result of time variability or instabilities of the flow will control which molecules are destroyed or reformed (Panoglou et al 2012).

Since the bright condensations or knots that one observes in the collimated outflows are ejected from the driving source nearly ‘ballistically’ (see e.g. Raga 1993), then the survival of the H$_2$ gas needs to be fine tuned in terms of the relative velocities of the ejected gas. The relatively simple 3D hydrodynamical numerical simulations to model Cep E presented here (i.e. without including magnetic fields or a chemistry network), although limited, do show tangential velocities as high as \sim50 km s$^{-1}$, i.e. near the threshold of H$_2$ dissociation if the gas is being collisionally excited. Higher shock velocities, like what we have measured in Cep E, require strong magnetic fields for the H$_2$ molecules to survive (Panoglou et al 2012), or a very efficient reformation mechanism (Raga et al 2005).

Acknowledgments

The authors thank the referees and editors for their careful reading of the manuscript and their valuable suggestions; in particular the realization that rotational H$_2$ can trace higher kinetic temperatures than the vibrational ones. This research is based in part on observations made with the Spitzer Space Telescope (NASA contract 1407) and has made use of the NASA/IPAC Infrared Science Archive, both are operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA).

References

Ayala S et al 2000 Astron. J. 120 909
Bally J 2009 Protostellar Jets in Context (Astrophysics and Space Science Proceedings Series) ed K Tsinganos, T Ray and M Stute (Berlin: Springer) pp 11–20
J Bally, A Reipurth and F Davis 2007 Protostars and Planets V ed B Reipurth, D Jewitt and K Keil (Tucson, AZ: University of Arizona Press) pp 215–30
Boulanger F et al 2005 Astron. Astrophys. 436 1151
Chrysostomou A, Hobson J, Davis C J, Smith M D and Berndsen A 2000 Mon. Not. R. Astron. Soc. 314 229
Caratti o Garatti A et al 2009 *Astron. Astrophys.* 502 579

Caratti o Garatti A and Eisloffel J 2009 *Protostellar Jets in Context (Astrophysics and Space Science Proceedings Series)* ed K Tsinganos, T Ray and M Stute (Berlin: Springer) pp 329–39

Crutcher R M, Wandelt B, Heiles C, Falgarone E and Troland T H 2010 *Astrophys. J.* 725 466

Draine B T, Roberge W G and Dalgarno A 1983 *Astrophys. J.* 264 485

Eisloffel J, Smith M D, Davis C J and Ray T P 1996 *Astron. J.* 112 2086

Fazio G et al 2004 *Astrophys. J.* 154 10

Gianni T, Nisini B, Neufeld D, Yuan Y, Antoniucci S and Gusdorf A 2011 *Astrophys. J.* 738 80

Gómez-Ruiz A I et al 2012 *Astron. Astrophys.* 542 9

Hatchell J, Fuller G A and Ladd E F 1999 *Astron. J.* 86 123

Herbig G H and Jones B F 1981 *Astron. J.* 86 123

Herbig G H and Jones B F 1983 *Astron. J.* 88 1040

Jarrett T H et al 2012 *Astron. J.* 144 68

Ladd E F and Hodapp K-W 1997 *Astrophys. J.* 474 749

Le Bourlot J, Pineau des Forets G, Flower D R and Cabrit S 2002 *Mon. Not. R. Astron. Soc.* 332 985

Masci F J and Fowler J W 2009 *Astron. Soc. Pac. Conf. Ser.* 411 67

McKee C F and Ostriker E C 2007 *Annu. Rev. Astron. Astrophys.* 45 565

Moro-Martín A et al 2001 *Astrophys. J.* 555 146

Neufeld D A et al 2009 *Astrophys. J.* 706 170

Noriega-Crespo A 1997 *Herbig–Haro Flows and the Birth of Stars; IAU Symposium 182 (1997)* ed B Reipurth and C Bertout (Dordrecht: Kluwer) pp 103–10

Noriega-Crespo A, Garnavich P M, Curiel S, Raga A C and Ayala S 1997 *Astrophys. J.* 486 55

Noriega-Crespo A, Garnavich P M and Molinari S 1998 *Astron. J.* 116 1288

Noriega-Crespo A and Garnavich P 2001 *Astron. J.* 122 331

Noriega-Crespo A et al 2004 *Astrophys. J.* 154 352

Noriega-Crespo A et al 2004 *Astrophys. J.* 154 402

Panoglou D et al 2012 *Astron. Astrophys.* 538 2

Plunkett A et al 2013 *Astrophys. J.* 774 22

Quillen A et al 2005 *Astrophys. J.* 632 941

Raga A C 1993 *Astrophys. J. Suppl. Ser.* 208 163

Raga A C, Taylor S D, Cabrit S and Biro S 1995 *Astron. Astrophys.* 296 833

Raga A C, Böhm K-H and Raymond J 2000 *Astron. J.* 120 909

Raga A C, Velazquez P F, de Gouveia dal Pino E M, Noriega-Crespo A and Mininni P 2003 *RMxAA* 15 115

Raga A C, Noriega-Crespo A, González R F and Velázquez P F 2004 *Astrophys. J.* 154 346

Raga A C, Steffen W and González R F 2005 *RMxAA* 41 443

Raga A C, Williams D A and Lim A J 2005 *RMxAA* 41 137

Raga A C et al 2008 *Astrophys. J.* 680 45

Raga A C, Reipurth B, Canto J, Sierra-Flores M-M and Guzman M V 2011 *RMxAA* 47 425

Raga A C, Noriega-Crespo A, Lora V, Stapelfeldt K R and Carey S 2011 *Astrophys. J.* 730 17

Raga A C, Noriega-Crespo A, Rodri guez-Gonzalez A, Lora V, Stapelfeldt K R and Carey S J 2012 *Astrophys. J.* 748 103

Raga A C, Noriega-Crespo A, Carey S J and Arce H G 2013 *Astron. J.* 145 28

14
Raymond J C 1979 *Astrophys. J.* **39** 1
Reipurth B and Bally J 2001 *Annu. Rev. Astron. Astrophys.* **39** 403
Reipurth B *et al* 2013 *Astron. J.* **146** 118
Reyes-Iturbide I *et al* 2009 *Mon. Not. R. Astron. Soc.* **394** 1009
Rodriguez L F 2011 *IAUS* **27** 376
Rosenthal D, Bertoldi F and Drapatz S 2000 *Astron. Astrophys.* **356** 705
Tafalla M *et al* 2013 *Astron. Astrophys.* **551** 116
Tobin J J, Looney L W, Mundy L G, Kwon W and Hamidouche M 2007 *Astrophys. J.* **659** 1404
Ybarra J E and Lada E A 2009 *Astrophys. J.* **695** 120
van Leer B 1982 Numerical in Methods Fluid Dynamics *Lecture Notes in Physics* vol 170 ed E Krause (Berlin: Springer) p 507
Velázquez P E, Martinell J J, Raga A C and Giacani E B 2004 *Astrophys. J.* **601** 885
Velázquez P E *et al* 2011 *Astrophys. J.* **734** 57
Velusamy T, Langer W D and Marsh K A 2007 *Astrophys. J.* **159** 668
Velusamy T, Marsh K A, Beichman C A, Backus C R and Thompson T J 2008 *Astron. J.* **136** 197
Velusamy T, Langer W D, Kumar M S N and Grave J M C 2011 *Astrophys. J.* **741** 60
Velusamy T, Langer W D and Thompson T 2014 *Astrophys. J.* **783** 6
Wilson J C *et al* 2003 *Proc. SPIE* **4841** 50
Zhang M *et al* 2013 *Astron. Astrophys.* **553** 41