Hydrologic Evaluation of TRMM Multisatellite Precipitation Analysis for Nanliu River Basin in Humid Southwestern China

Yinjun Zhao1,2, Qiongying Xie2, Yuan Lu1,2 & Baoqing Hu1,2

The accuracy of Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA) daily accumulated precipitation products (3B42RTV7 and 3B42V7) was evaluated for a small basin (the Nanliu river basin). A direct comparison was performed against gauge observations from a period of 9 years (2000–2009) at temporal and spatial scales. The results show that the temporal-spatial precipitation characteristics of the Nanliu river basin are highly consistent with 3B42V7 relative to 3B42RTV7, with higher correlation coefficient (CC) approximately 0.9 at all temporal scales except for the daily scale and a lower relative bias percentage. 3B42V7 slightly overestimates precipitation at all temporal scales except the yearly scale; it slightly underestimates the precipitation at the daily spatial scale. The results also reveal that the precision of TMPA products increases with longer time-aggregated data, and the detection capability of daily TMPA precipitation products are enhanced by augmentation with daily precipitation rates. In addition, daily TMPA products were input into the Xin'anjiang hydrologic model; the results show that 3B42V7-based simulated outputs were well in line with actual stream flow observations, with a high CC (0.90) and Nash-Sutcliffe efficiency coefficient (NSE, 0.79), and the results adequately captured the pattern of the observed flow curve.

Precipitation is a complex natural event that exhibits significant variability at both temporal and spatial scales. Most complex hydrological phenomena occur due to its temporal and spatial variability, and therefore, highly accurate temporal-spatial and long-term precipitation data are essential for research on or predictions of climate change, for studies involving hydrologic simulation and prediction, and for natural hazards and water resource management. Point rainfall measurement at rain gauge stations, ground-based weather radar observation, and satellite-based precipitation data collection using remote sensing technology are the three main sources of rain data. Among these, ground-based rain gauges provide the most accurate measurements of precipitation, but ground-based rain gauge networks are often unevenly distributed in a given area due to climatic, economic, and other limiting conditions. Furthermore, rain gauge data (both temporal and spatial) are either sparse or non-existent for many parts of the world, particularly in developing countries1. It is not advantageous to rely on precipitation measured by only a certain number of rain gauges as being representative2. Regarding weather radar-based measurement of precipitation, coverage is often not dense enough over most parts of the world. In general, satellite-based precipitation products have several advantages over ground-based observation, such as easy data acquisition, large coverage, appropriate temporal and spatial resolutions, long-term and continuous recording, and fewer impacts from climate and terrain variability. Thus, satellite-based technologies have witnessed significant development in recent years. Various high-resolution satellite quantitative precipitation estimation (QPE) products have been developed, e.g., Tropical Rainfall Measuring Mission (TRMM), Global Satellite Mapping of Precipitation (GSMaP), Global Precipitation Climatology Project (GPCP), Climate Prediction Center (CFC) morphing method (CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN).

1Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Guangxi Teachers Education University, 175 Mingxiu East St., Nanning, 530001, China. 2School of Geography and Planning, Guangxi Teachers Education University, 175 Mingxiu East St., Nanning, 530001, China. Correspondence and requests for materials should be addressed to Y.Z. (email: crpp0104@163.com)
TRMM is one of the most important precipitation projects currently in operation, with widespread coverage (50°S–50°N). The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) developed TRMM Multi-satellite Precipitation Analysis (TMPA) products to provide near-real-time (TMPA 3B42RTV7, hereafter referred to as 3B42RTV7) and post-real-time (TMPA 3B42V7, hereafter referred to as 3B42V7) research versions of precipitation data. 3B42V7 is the latest version, replacing 3B42V6 as of 2011. The errors and uncertainties of these QPE products greatly impact their applications and hence the application results. TMPA data have been broadly evaluated and employed for numerous applications such as hydrological modeling, soil moisture prediction, fire detection, and agriculture. The accuracy of TRMM products has been accepted for most low-latitude areas and large-medium scales, but few studies have reported evaluations of the products against rain gauge observations for small basin areas or the Beibu Gulf region.

Therefore, the Nanliu river basin (8600 km²) was selected as a case study to evaluate the applicability of TMPA products in small basin areas. This work aims to answer the following two questions: First, can TMPA products be used for a small basin area with the desired level of precision at all temporal scales (daily, monthly, seasonal, flood seasonal or non-flood seasonal and yearly)? Second, do the TMPA products drive hydrologic models well? The Nanliu River (Fig. 1), which flows to the sea, is the largest river in China's Guangxi Zhuang Autonomous Region, with an approximate river length of 287 km and drainage area of 8600 km². The basin is located within the longitude span from 109°30’E to 110°53’E and latitude span from 20°38’N to 23°07’N. Small dams are scattered throughout the basin to regulate natural hydrologic processes and may affect the simulation of the rainfall-runoff model. The Nanliu River is located south of the Tropic of Cancer and is in the subtropical monsoon climate zone of South Asia. The mean annual precipitation is approximately 1400–1760 mm and is mostly concentrated within the flood season (April to September). The average annual temperature range is 21.5°C to 22.4°C.

Results and Discussion

Spatial distribution of daily precipitation. Figure 2 shows the spatial distribution of mean daily precipitation over the Nanliu river basin. The gauge-derived spatial distribution (Fig. 2(a),(b)) was derived from 9-year mean observation values from 8 gauge stations (7 reference stations selected for this study plus the Hengxian rainfall gauge located in the bounding rectangle of the Nanliu river basin) based on inverse distance weight (IDW) and ordinary kriging (OK) interpolation methods using ArcGIS 10.1, respectively. We averaged 9-year daily raster layers by using the Raster Calculator Module of ArcGIS and then generated the spatial distribution of TMPA products (Fig. 2(b),(c)). Similar spatial distributions of the gauge interpolation were found from IDW and OK interpolation methods. 3B42V7 has approximately the same spatial pattern as the gauge interpolation. 3B42RTV7 obviously overestimates the precipitation for the upper-middle basin and underestimates on the lower basin, whereas 3B43V7 shows better accordance with gauge observation, albeit with slight underestimation. The good performance of 3B42V7 is likely because 3B42V7 is a post-real-time product, adjusted from 3B42RTV7 by basin, whereas 3B43V7 shows better accordance with gauge interpolation, albeit with slight underestimation. The improved performance of 3B42V7 is mainly attributed to the improved mean daily precipitation data, which decreases the bias. In addition, we should realize that it would be difficult to quantify the uncertainties in interpolated gauge observations because daily precipitation occurs in a discrete pattern both in time and space and the interpolation of daily precipitation is very difficult.

Temporal scale effect of precipitation datasets. Precipitation data is typically used at different scales depending on the purpose. In this study, we built plots of 9-year daily, monthly, seasonal, flood-seasonal or non-flood-seasonal, and yearly comparisons of 3B42RTV7 and 3B42V7 data versus gauge observation data as shown in Fig. 3. Seven grid boxes were selected, each containing one gauge. With the relevant gauge observation values as references, correlation coefficient (CC), relative bias (RB), root-mean-square error (RMSE) and coefficient of determination (R²) were used to estimate the accuracy of TMPA products. 3B42RTV7 overestimates the precipitation by more than 10% (RB) at all temporal scales, which is in accordance with its performance with the spatial distribution of 9-year mean daily precipitation shown in Fig. 2(c). The data pairs between 3B42RTV7 and gauge observations were clustered more closely toward 3B42RTV7. In contrast, 3B42V7 only slightly overestimates the precipitation (RB: 0.53% at the daily scale, 0.22% at the monthly scale, 0.28% at the seasonal scale, 0.21% at the flood/non-flood seasonal scale, and 0.01% at the yearly scale). The same patterns were apparent for the RMSE values, i.e., that 3B42RTV7 exhibits greater RMSE than 3B42V7 in comparison with gauge observations (14.45 mm vs. 13.99 mm at the daily scale, 91.60 mm vs. 82.29 mm at the monthly scale, 182.79 mm vs. 110.99 mm at the seasonal scale, 281.52 mm vs. 163.97 mm at the flood/non-flood seasonal scale, and 402.06 mm vs. 220.51 mm at the yearly scale). Notably, the errors in 3B42RTV7 have larger increases over time than 3B42V7. This disparity is likely due to the effect of cumulated errors from the aggregation of daily precipitation errors.

Figure 3 clearly shows that longer averaging shifts the scatter diagram for both 3B42RTV7 and 3B42V7 toward the 1:1 line. At the same time, 3B42RTV7 has relatively poorer correlation than 3B42V7 with gauge observation data at all temporal scales except the daily scale. In general, 3B42V7 shows considerably better performance, with higher CC and R² values. 3B42V7 is more consistent with gauge observations at all scales, as expected. Hence, this study demonstrates that 3B42V7 can be useful as an additional option for data sources.

The temporal scale effect derived from the scatter plots shown in Fig. 3 is depicted in Fig. 4 using CC and RMSE accuracy information. Clearly, the CC of the comparisons between TMPA products and gauge observations continues to increase up to the flood/non-flood seasonal scale, at which point it shows a relative decrease at the yearly scale (Fig. 4(a)). The greatest increases of the CC for both the 3B42RTV7 and 3B42V7 comparisons were at the monthly scale. The tendency of the CC for both 3B42RTV7 and 3B42V7 comparisons shows the same pattern.
Similar change trends have been found in many places such as Hun-Tai basin in northeast China, which also highlighted the notion that monthly gauges tend to be correlated over relatively large distances. The RMSE growth trends for both 3B42RTV7 and 3B42V7 comparisons are clear and linear (Fig. 4(b)). Both are statistically significant at the 95% confidence level. These results suggest that both TMPA products (3B42RTV7 and 3B42V7) have linear improvement in clustering and tend toward gauge observations with the accumulation of time.

Detection capabilities of rain events and processes. Figure 5(a) and (b) show the probability distributions of daily precipitation for gauge observations, 3B42RTV7 and 3B42V7 at the grid scale and the basin scale, respectively. On one hand, at both spatial scales, TMPA products underestimate precipitation occurrence only when the precipitation rate is between 0.1 mm/day and 5 mm/day, which may imply that it is difficult for TRMM satellites to detect light rainfall. On the other hand, all TMPA products overestimate the occurrence of little or no rain at the grid and basin scales. Notably, all TMPA products show strong similarity with gauge observations for
Two TMPA products (3B42V7 and 3B42RTV7) were evaluated against data from seven gauge observations for a 9-year period at different scales over the Nanliu river basin. In addition, the TMPA products and gauge observations were input into the Xin'anijiang model to evaluate the capabilities of these products to accurately drive hydrologic models. In this study, we found that...
a) The bias-adjusted product 3B42V7 exhibits greater accuracy at temporal and spatial scales compared to the unadjusted product 3B42RTV7. 3B42RTV7 overestimates precipitation by more than 10% at all scales. In contrast, 3B42V7 overestimates precipitation only slightly (0.53% at the daily scale, 0.22% at the monthly scale, 0.37% at the seasonal scale, 0.21% at the flood/no-flood seasonal scale and −0.01% at the yearly scale). In addition, 3B42V7 agrees well with gauge observations, with CC values mostly exceeding 0.9 except for the value of 0.51 at the daily scale. Correspondingly, 3B42RTV7 comparisons have larger RMSEs than 3B42V7 comparisons against gauge observations (14.45 mm vs. 13.99 mm at the daily scale, 91.60 mm vs. 62.29 mm at the monthly scale, 182.79 mm vs. 110.99 mm at the seasonal scale, 281.52 mm vs. 163.97 mm at the flood/no-flood seasonal scale and 402.06 mm vs. 220.51 mm at the yearly scale).

Figure 3. Scatter plots of grid-based daily, monthly, seasonal, flood seasonal or non-flood seasonal, and yearly precipitation at seven selected grid-boxes over the Nanliu river basin at relevant scales.
b) The CC trends for 3B42RTV7 and 3B42V7 comparisons increase with increasing time scales. The maximum CC improvement points for 3B42RTV7 and 3B42V7 comparisons occurred from the daily scale to the monthly scale.

c) 3B42V7 is better than 3B42RTV7 for the detection of daily precipitation. In terms of PD values, 3B42V7 is generally better than 3B42RTV7 at all daily precipitation levels.

d) 3B42V7 is more accurate than 3B42RTV7 at hydrologic flow prediction, with higher CC (0.90 vs. 0.87) and NSE (0.79 vs. 0.70) and lower RB (−4.47% vs. 23.74%) values compared to actual flow data. 3B42V7 adequately captured the pattern of the observed flow curve.

Overall, 3B42V7 and 3B42RTV7 both showed good performance in terms of precision and in hydrological simulation. However, comparing the two products, 3B42V7 is an upgraded version of 3B42RTV7 that shows good precipitation detection accuracy and improved hydrologic prediction capability. 3B42V7 can therefore be treated as a suitable data source for application in a small basin case.

Methodology

Interpolation methods. A number of modern interpolation methods have been proposed for precipitation such as IDW, ordinary kriging (OK), radial basis function, local polynomials, nearest neighbor, linear regression, and geographically weighted regression and artificial neural network (ANN). Many papers have been dedicated to the comparison of these interpolation methods, but it is hard to set up a relative international notion of which method is better. In contrast, IDW and OK methods are most commonly used in interpolation of climate variables. We consulted other researchers in China, and found that IDW and OK were primarily used as spatial interpolation methods.

Statistical Metrics. The accuracy of precipitation products is the primary issue for their application in areas of research, including climate change, hydrological simulation, etc. Therefore, it is necessary and useful
to evaluate the performance of 3B42RTV7 and 3B42V7 against reference gauge observations. The assessments were performed by direct comparison of 3B42RTV7 and 3B42V7 with gauge observation data at several reference scales. The statistical tools of CC, RB, RMSE and R^2 were used to assess accuracy. These three indexes were defined as follows:

$$CC = \frac{\sum_{i=1}^{n} (QPE_i - \bar{QPE})(\text{gauge}_i - \bar{\text{gauge}})}{\sqrt{\sum_{i=1}^{n} (QPE_i - \bar{QPE})^2 \sum_{i=1}^{n} (\text{gauge}_i - \bar{\text{gauge}})^2}}$$

(1)

$$RB = \frac{\sum_{i=1}^{n} (QPE_i - \text{gauge}_i)}{\sum_{i=1}^{n} \text{gauge}_i} \times 100\%$$

(2)

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (QPE_i - \text{gauge}_i)^2}{n}}$$

(3)

$$R^2 = CC \times CC$$

(4)

where QPE is the precipitation value from a TRMM product; gauge is the value from gauge observation data; QPE and gauge are mean values. n is record number; CC is the linear correlation between a TRMM product and the reference and is dimensionless; RB is the relative difference between a TRMM product and the reference and is given as a percentage difference; RMSE is the error between TRMM products and reference and is in units of mm/time. The range of values allowed for the CC is 0 to 1. Perfect values of CC, RB and RMSE are 1, 0 and 0, respectively.

To evaluate the detection capabilities of TRMM precipitation products relative to gauge observation at the daily scale, Probability of Detection (PD) and Frequency of Hit (FH) were used. High PD values indicate that many precipitation events were detected by TRMM products, and high FH values indicate that many precipitation reports from TRMM products were accurate. PD and FH are calculated using the following equations:

$$PD = \frac{n_{11}}{(n_{11} + n_{01})} \times 100\%$$

(5)

$$FH = \frac{n_{11}}{n_{11} + n_{10}} \times 100\%$$

(6)
where the $n_{QPE, gauge}$ value is 0 or 1, and its first subscript “QPE” and second subscript “gauge” represent the state of precipitation events from TRMM products and gauge observations, respectively, at the daily scale. Here, 1 indicates that the precipitation rate is ≥ 0.1 mm, whereas 0 indicates that it is not. Accordingly, n_{11} indicates that the TRMM products and gauges both reported a rain event; n_{10} indicates only the TRMM products reported a rain event; n_{01} indicates that only the gauges reported a rain event; and n_{00} indicates that neither the TRMM products nor the gauges reported a rain event.

Hydrological model. A hydrological model is an important tool for hydrological simulation. The Xin'anjiang representative conceptual model has been widely used in humid and semi-humid areas of China and around the world since its development in the 1970s. The main feature of the Xin'anjiang model is the concept of runoff formation upon repletion of storage, i.e., that runoff is not produced until soil moisture content of the aeration zone, that is a zone between the water table and the surface, reaches field capacity, and thereafter runoff equals rainfall excess without further loss16,17. Three runoff components (surface runoff, subsurface runoff and groundwater) and three evapotranspiration layers are packaged into the Xin'anjiang model. The successful application of the Xin'anjiang model depends primarily on how well the model is calibrated. The auto-calibration method is widely applied in parameter optimization because it is more efficient and effective and can avoid interference from anthropogenic factors18. Hence, the Shuffled Complex Evolution-University of Arizona (SCE-UA) algorithm19

Figure 8. Daily simulation of Nanliu river discharge with inputs from either (a) gauge observations, (b) 3B42V7 or (c) 3B42RTV7. Rainfall inputs (gray bars) from gauge observations are plotted on the secondary ordinate. The red line represents the reference observations of river discharges from the Changle streamflow station.
Table 1. Calibrated parameters and calibrated values for the Nanliu river basin.

No.	Parameters/units	Definition	Calibrated value
1	K	Pan evaporation coefficient	0.880
2	C	Evapotranspiration coefficient from deep layer	0.175
3	WUM (mm)	Tension water capacity from upper layer	82.660
4	WLM (mm)	Tension water capacity from lower layer	149.310
5	WDM (mm)	Tension water capacity from deep layer	266.385
6	B	Exponential number of storage capacity distribution curve	0.594
7	SM (mm)	Areal mean free water storage capacity	54.070
8	EX	Parameter in the distribution of free water storage capacity	0.935
9	KG	Outflow coefficient of the ground water from free water	0.254
10	KSS	Outflow coefficient of the interflow from free water	0.499
11	KKG	Groundwater recession coefficient	0.997
12	KKSS	Interflow recession coefficient	0.841

was used in this study to calibrate 15 major parameters for the Xin'anjiang model for data from January 2007 to March 2009 at the daily scale before hydrologic simulation. The definitions and calibrated values of the 15 parameters are given in Table 1. We assumed that the impacts of dams and human regulation on the simulated Nanliu river flow were considered in the auto-calibration process.

The Nash-Sutcliffe efficiency coefficient (NSE) is typically used to assess the efficiency of hydrology models. NSE is calculated using the following equation:

\[
NSE = 1 - \frac{\sum_{t=1}^{T}(Q_{o} - Q_{m})^2}{\sum_{t=1}^{T}(Q_{o} - \bar{Q})^2}
\]

where \(t \) represents time point; \(Q_{o} \) represents observed values from the hydrologic station; \(Q_{m} \) is average \(Q_{o} \); and \(Q_{m} \) represents the simulated values from the hydrology models. The perfect value of NSE is 1, indicating that the model is credible. An NSE value close to 0 indicates that the simulation results are approximately the same as the average of observed values, which indicates that the model is generally credible, although with large errors in the process.

References

1. Kumar, D. et al. Evaluation of TRMM multi-satellite precipitation analysis (TMPA) against terrestrial measurement over a humid sub-tropical basin, India. Theor Appl Climatol. doi:10.1007/s00704-016-1807-9 (2016).
2. Prasetia, R., As-syakur, A. R. & Osawa, T. Validation of TRMM Precipitation Radar satellite data over Indonesian region. Theor Appl Climatol 112, 575–587 (2013).
3. Chen, S. et al. Hydrologic evaluation of the TRMM multisatellite precipitation analysis over Ganjiang Basin in humid southeastern China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3, 4568–4580 (2015).
4. Jamandre, C. A. & Narisma, G. T. Spatio-temporal validation of satellite-based rainfall estimates in the Philippines. Atmospheric Research 122, 599–608 (2013).
5. Xue, X. et al. Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 3B42V7 ready for use in ungauged basins? Journal of Hydrology 499, 91–99 (2013).
6. Yong, B. et al. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? Journal of Hydrology 508, 77–87 (2014).
7. Knies, D., Chatterjee, C. & Singh, R. Evaluation of TRMM rainfall estimates over a large Indian river basin (Mahanadi). Hydrology and Earth System Sciences 18, 2943–2952 (2014).
8. Cai, Y. C. et al. Comprehensive precipitation evaluation of TRMM 3B42 with dense rain gauge networks in a mid-latitude basin, northeast, China. Theor Appl Climatol 126, 659–671 (2016).
9. Zulkafli, Z. et al. A Comparative Performance Analysis of TRMM 3B42 (TMPA) Versions 6 and 7 for Hydrological Applications over Andean–Amazon River Basins. Journal of Hydrometeorology 15, 581–592 (2014).
10. Gupta, M., Srivastava, P. K., Islam, T. & Ishak, A. M. B. Evaluation of TRMM rainfall for soil moisture prediction in a subtropical climate. Environ Earth Sci 71, 4421–4431 (2014).
11. Giglio, L., Kendall, J. D. & Tucker, C. J. Remote sensing of fires with the TRMM VIRS. Int J Remote Sens 21, 203–207 (2000).
12. Ramaroththa, J., Sultan, B., Baron, C., Gaiser, T. & Gosset, M. How satellite rainfall estimate errors may impact rained cereal yield simulation in West Africa. Agric for Meteorol 180, 118–131 (2013).
13. Goddard Earth Sciences Data and Information Services Center, TRMM (TMPA-RT) Near Real-Time Precipitation L3 1 day 0.25 degree ×0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed [02-10-2017] https://disc.gsfc.nasa.gov/datacollection/TRMM_3B42RT_Daily_7.html (2016).
14. Goddard Earth Sciences Data and Information Services Center, TRMM (TMPA) Precipitation L3 1 day 0.25 degree ×0.25 degree V7, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed [10-11-2016] https://disc.gsfc.nasa.gov/datacollection/TRMM_3B42_Daily_7.html (2016).
15. Chen, D. et al. Spatial Interpolation of Daily Precipitation in China: 1951–2005. Advances in Atmospheric Sciences 6, 1221–1232 (2010).
16. Luo, Y., Zhao, W. & Zhai, J. Dichotomous weather forecasts score research and a new measure of score. Journal of Applied Meteorological Science 2, 129–136 (2009). (in Chinese).
17. Song, X., Kong, F., Zhan, C., Han, J. & Zhang, X. Parameter identification and global sensitivity analysis of Xin'anjiang model using meta-modeling approach. Water Science and Engineering 1, 1–17 (2013).
18. Wu, Q., Liu, S., Cai, Y., Li, X. & Jiang, Y. Improvement of hydrological model calibration by selecting multiple parameter ranges. *Hydrol. Earth Syst. Sci.*, doi:10.5194/hess-2016-275 (2016).

19. Duan, Q., Sorooshian, S. & Gupta, V. G. Effective and efficient global optimization for conceptual rainfall-runoff models. *Water resources research* 4, 1015–1031 (1992).

Acknowledgements

The authors would like to thank the TRMM mission scientists and associated NASA personnel responsible for the TMPA products. In addition, this study is supported by the Natural Science Foundation of China (41461021, 41661085), the Guangxi Natural Science Foundation (2016GXNSFAA380094) and the Opening fund of the Key Laboratory of Environment Change and Resource Use in Beibu Gulf, Ministry of Education (Guangxi Teachers Education University) (2014BGERLXT15).

Author Contributions

All authors contributed to the development of this manuscript, led by Yinjun Zhao who designed the concept and carried out the analysis of the results. The manuscript was primarily written by Yinjun Zhao. Yuan Lu and Baoqing Hu contributed analysis ideas. Qiongying Xie collected and processed the data.

Additional Information

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017