Chemical Compositions of Commercial Essential Oils From Coriandrum sativum Fruits and Aerial Parts

Prabodh Satyal¹ and William N. Setzer¹,²

Abstract
Coriander and cilantro, the fruit and herb of Coriandrum sativum, are popular additives in various cuisines worldwide. The essential oils derived from coriander and cilantro are also popular and have shown some remarkable biological properties and health benefits. In this report, we have analyzed the essential oil compositions of 19 commercial coriander and 28 commercial cilantro essential oil samples by gas chromatography–mass spectrometry (GC–MS) techniques. In addition, 5 coriander and 4 cilantro commercial essential oil samples were analyzed by chiral GC–MS. Commercial coriander essential oil is dominated by linalool (62.2%-76.7%) with lesser quantities of α-pinene (0.3%-11.4%), γ-terpinene (0.6%-11.6%), and camphor (0.0%-5.5%). Commercial cilantro essential oil is composed largely of (2E)-decanal (16.0%-46.6%), linalool (11.8%-29.8%), (2E)-decen-1-ol (0.0%-24.7%), decanal (5.2%-18.7%), (2E)-dodecenal (4.1%-8.7%), and 1-decanol (0.0%-9.5%). The enantiomeric distribution of linalool was 87% (+)-linalool:13% (−)-linalool in both coriander and cilantro essential oils, while α-pinene was 93% (+):7% (−) in coriander, 90% (+):10% (−) in cilantro; and (+)-camphor:(−)-camphor was 13%-87% in both essential oils. Chiral GC–MS analysis was able to detect an adulterated coriander essential oil sample. The data provided in this study serves to establish a baseline for future evaluations of these essential oils as well as a screen for authenticity or adulteration.

Keywords
essential oil, coriander, cilantro, linalool, (2E)-decanal, enantiomeric distribution

Received: April 28th, 2020; Accepted: May 8th, 2020.

Introduction
Coriander Essential Oil
The original geographical range of wild Coriandrum sativum is not clear but has been suggested to occur from southeastern Europe to southern Russia, including North Africa, Central Asia, the Near East, India, and Abyssinia.¹ The phytochemistry and medicinal properties of C. sativum have been extensively reviewed, see, for example,¹-⁶ but are summarized here.

The dry fruits of C. sativum are known as coriander seeds, and the word “coriander” often refers to the fruits (as a spice), rather than to the plant. The top producers of C. sativum fruits in the world today are India, Russia, Morocco, Canada, Romania, and Ukraine, with smaller producers including Iran, Turkey, Israel, Egypt, China, the United States, Argentina, and Mexico.⁶,⁷ In 2008, global trade in coriander was around 100 million kg (around US$ 134 million).⁸ The odor of the fruits of C. sativum has been described as sweet, candy-like, and aromatically spicy.⁹ The dried fruits are used in curries, curry powder, pickles, sausages, soups, stews, and ratatouille.⁸ The fruit essential oils of C. sativum are typically dominated by linalool (60%-80%), with lesser concentrations of α-pinene (up to 9.5%), γ-terpinene (1%-10%), camphor (up to 4.9%), and geranyl acetate (up to 4.7%).¹⁰-¹² The International Organization of Standards (ISO) standard for coriander essential oil is α-pinene (3.0%-7.0%), myrcene (0.5%-1.5%), limonene (2.0%-5.0%), γ-terpinene (2.0%-7.0%), linalool (65.0%-78.0%), camphor (4.0%-6.0%), α-terpineol (0.5%-1.5%), geraniol (0.5%-3.0%), and geranyl acetate (1.0%-3.5%).¹³ A perusal of the literature (Google Scholar, PubMed) for biological activities of coriander fruit essential oil has been carried out and are summarized in Table 1. Much of the observed biological activities can be attributed to the major component, linalool (60%-80%), with lesser concentrations of α-pinene (up to 9.5%), γ-terpinene (1%-10%), camphor (up to 4.9%), and geranyl acetate (up to 4.7%).¹⁰-¹²

¹Aromatic Plant Research Center, Lehi, UT, USA
²Department of Chemistry, University of Alabama, Huntsville, AL, USA

Corresponding Author:
William N. Setzer, Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
Email: wsetzer@chemistry.uah.edu

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Table 1. Biological Activities of Coriandrum sativum Fruit (Coriander) Essential Oils.

Essential oil source	Major components	Bioactivity
Commercial sample (Sigma-Aldrich, St. Louis, MI, USA)	Not reported	Antibacterial: *Bacillus cereus* (MIC 1000 µg/mL), *Enterococcus faecalis* (MIC 8000 µg/mL), *Staphylococcus aureus* (2000 µg/mL), methicillin-resistant *S. aureus* (MIC 2000 µg/mL), *Pseudomonas aeruginosa* (MIC 16000 µg/mL), *Klebsiella pneumoniae* (MIC 2000 µg/mL), *Escherichia coli* (MIC 2000 µg/mL), *Salmonella typhimurium* (MIC 4000 µg/mL), *Aspergillus baumanni* (MIC 1000 µg/mL).
Hydrodistillation of fruits (source not reported)	Linalool (64.5%), camphor (6.4%), p-cymene (6.3%), α-pinene (5.1%)	Antibacterial: *E. coli*, *Pseudomonas syringae*, *Erwinia carotovora*, *Agrobacterium tumefaciens*, *Burkholderia gladioli*, *Xanthomonas campestris*, *Bacillus megaterium*, *Clavibacter michiganensis*, *Corticobacterium flaccumfaciens*, *Rhodococcus fascians*; zone of inhibition method, MICs not determined.
Commercial sample (source not reported)	Linalool (72.4%)	Antibacterial: *Propionibacterium acnes* (MIC 1000 µg/mL), *Brevibacterium agri* (MIC 1000 µg/mL), *Brevibacterium epidermidis* (MIC 500 µg/mL).
Hydrodistillation of fruits (source not reported)	Linalool (66.3%), γ-terpinene (5.3%)	Antibacterial: *S. aureus* (MIC 3125 µg/mL), *E. coli* (MIC 781 µg/mL), *P. aeruginosa* (6250 µg/mL).
Commercial sample (Frey & Lau, Hilden, Germany)	Linalool (75.9%), camphor (5.2%), α-pinene (4.2%)	Antibacterial: *Streptococcus pyogenes* (MIC 300 µg/mL), *Streptococcus viridans* (MIC 700 µg/mL), *S. aureus* (MIC 2200 µg/mL), *E. faecalis* (MIC 4400 µg/mL), *Enterococcus faecium* (MIC 2500 µg/mL), *E. coli* (MIC 2300 µg/mL), *K. pneumoniae* (MIC 2400 µg/mL).
Commercial sample (dōTERRA International, Pleasant Grove, UT, USA)	Linalool (73.5%), α-pinene (5.3%), camphor (4.9%), γ-terpinene (4.5%)	Antifungal: *Aspergillus niger* (MIC 625 µg/mL), *Candida albicans* (MIC 1250 µg/mL), *Cryptococcus neoformans* (MIC 625 µg/mL).
Hydrodistillation of fruits (obtained from local market, Gorakhpur, India)	Linalool (75.3%), geranyl acetate (8.1%), α-pinene (4.1%)	Antifungal: *A. niger*, *Aspergillus terreus*, *Aspergillus flavus*, *Trichothecium roseum*, *Fusarium graminearum*, *Fusarium oxysporum*, *Fusarium miniliforme*, *Curvularia pallescens*; zone of inhibition method, MICs not determined.
Commercial sample (source not reported)	Linalool (72.4%)	Antifungal: *C. albicans* (MIC 750 µg/mL), *Trichophyton mentagrophytes* (MIC 250 µg/mL).
Hydrodistillation of fruits (source not reported)	Linalool (66.3%), γ-terpinene (5.3%)	Antifungal: *C. albicans* (MIC 97 µg/mL).
Commercial sample (source not reported)	Linalool (72.4%)	Antifungal: *T. mentagrophytes* (MIC 380 µg/mL).
Commercial sample (dōTERRA International, Pleasant Grove, UT, USA)	Linalool (73.5%), α-pinene (5.3%), camphor (4.9%), γ-terpinene (4.5%)	Antikishinomial: *Leishmania amazonensis* (promastigotes IC50 <12.5 µg/mL; amastigotes IC50 19.1 µg/mL).
Hydrodistillation of fruits (obtained from Cairo University, Egypt)	Linalool (73.8%)	Antiviral: *Herpes simplex virus-1* (IC50 341 µg/mL).
Hydrodistillation of fruits (cultivated, Agricultural Research and Development Center, Secuieni, Neamt, Romania)	Linalool (69.4%), γ-terpinene (7.7%), α-pinene (6.5%)	Antioxidant: rt model, elevated plus-maze test; inhalation of vapor significantly increased anxiolytic and antidepressant-like behavior.
Commercial sample (dōTERRA International, Pleasant Grove, Utah, USA)	Linalool (73.5%), α-pinene (5.3%), camphor (4.9%), γ-terpinene (4.5%)	Cytotoxic: BALB/c mouse macrophage (IC50 141.7 µg/mL).
Commercial sample (dōTERRA International, Pleasant Grove, UT, USA)	Linalool (73.5%), α-pinene (5.3%), camphor (4.9%), γ-terpinene (4.5%)	Cytotoxic: Michigan Cancer Foundation-7 (IC50 98.6 µg/mL), MDA-MB-231 (IC50 >100 µg/mL).

(Continued)
linalool. Linalool has exhibited a wide variety of biological activities and health benefits.14-16

Based on the criteria of Sartoratto and co-workers,33 coriander essential oil shows relatively modest antibacterial or antifungal activities (Table 1), which is consistent with the reported antimicrobial activities of linalool. Linalool has shown only weak antimicrobial activities (minimum inhibitory concentration [MIC] ≥625 µg/mL) against *Bacillus cereus*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Candida albicans*, or *Aspergillus niger*.34

Coriandrum sativum fruit essential oil is not especially cytotoxic to either breast tumor cells or mouse macrophages. Consistent with this, linalool has been shown to be non-cytotoxic (median inhibitory concentration [IC50] >650 µg/mL) to several tumor cell lines (MDA-MB-231, Michigan Cancer Foundation-7 [MCF-7], Hs 578T, PC-3, Hep-G2)34 and weakly cytotoxic to human endothelial (HMEC-1) and fibroblast (HNDF, 153BR) cells with IC50 ≥600 µg/mL.35 Linalool, however, has been shown to potentiate the activity of the anti-tumor agent doxorubicin in MCF-7 breast tumor cells36 and in P388 leukemia cells.37 Likewise, linalool enhanced the cytotoxic effect of citral on MCF-7 cells.38

Coriander essential oil showed notable antiparasitic activity against *Leishmania amazonensis* promastigotes (IC50 <12.5 µg/mL) and amastigotes (IC50 19.1 µg/mL).25 Linalool has shown excellent antileishmanial activity against *L. amazonensis* with IC50 of 4.3 ng/mL and 15.5 ng/mL on promastigotes and amastigotes, respectively.39 Linalool showed lower antiparasitic activity against *Trypanosoma cruzi* epimastigotes, however, with IC50 >100 µg/mL.40

The free-radical scavenging activity of coriander seed essential oil is modest, with IC50 values for inhibition of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical ranging from 54 to 74 µL/mL (Table 2). Linalool is only a weak scavenger of DPPH radicals, however (IC50 227 µL/mL).29

The anxiolytic and sedative effects of coriander essential oil are corroborated by the similar effects of linalool. Based on mouse models, linalool has shown antidepressant (forced swimming test) and sedative (exploratory cylinder test) effects.46 Similarly, inhaled linalool increased pentobarbital-induced sleeping time in mice indicating sedative activity.47 Linalool exhibited anxiolytic effects in mice using the light/dark box test and the elevated plus maze test.48,49 In humans, inhalation of (−)-linalool increases relaxation and sedation and reduces aggressiveness and hostility.50,51 The sedative properties of (−)-linalool were similar for racemic (±)-linalool, but the reverse was observed for (+)-linalool.52 In contrast, Cheng and co-workers have found that both (+)-linalool and (−)-linalool demonstrate anxiolytic effects in a rat model (elevated plus maze test).53

Cilantro Essential Oil

The fresh herb of *C. sativum* is commonly referred to as Chinese parsley, coriander leaves, fresh coriander, or cilantro.1 Fresh cilantro is an important spice in many Asian cultures (eg, | Essential oil source | Major components | Bioactivity | Ref. |
|-------------------------------|------------------|-------------|---|
| Hydrodistillation of fruits (obtained from Institute for Studies on Medicinal Plants, Belgrade, Serbia) | Linalool (74.6%), camphor (5.9%) | Free radical inhibition: DPPH (IC50 53.5 µL/mL) | 28 |
| Hydrodistillation of fruits (obtained from Cairo University, Egypt) | Linalool (73.8%) | Free radical inhibition: DPPH (IC50 74.1 µL/mL) | 26 |
| Commercial sample (Sigma- Aldrich, St. Louis, MI, USA) | Not reported | Free radical inhibition: DPPH (IC50 58.4 µL/mL) | 29 |
| Hydrodistillation of fruits (collected from Webb James, Livorno, Italy) | Linalool (83.6%), camphor (5.0%) | Insect repellent: *Aedes albopictus* (RD50 0.0001565 µL/cm² skin) | 30 |
| Hydrodistillation of fruits (collected from Zabol region, Iran) | Linalool (57.6%), geranyl acetate (15.1%) | Insecticidal: *Callosobruchus maculatus* (LC50 1.34 µL/L air), Tribolium confusum (LC50 318 µL/L air) | 31 |
| Hydrodistillation of fruits (commercial source, Córdoba, Argentina) | Linalool (81.7%), γ-terpinene (5.7%), α-pinene (5.5%) | Sedative: neonatal chicks (*Gallus gallus domesticus*), intracerebroventricular injection of EO induced a sedative effect at 8.6 and 86 μg doses. | 32 |

DPPH, 1,1-diphenyl-2-picrylhydrazyl; IC50, half-maximal inhibitory concentration; LC50, lethal concentration 50; RD50, respiratory dose 50; MIC, minimum inhibitory concentration.
Essential oil source	Major components	Bioactivity	Ref.
Hydrodistillation of leaves from cultivated plants (Egerton University, Kenya)	(2E)-decanal (15.9%), decanal (14.3%), (2E)-decan-1-ol (14.2%), (2E)-tridecanal (6.8%), (2E)-dodecanal (6.2%), no linalool	Antibacterial: *Escherichia coli* (MIC 163 mg/mL), *Salmonella typhi* (MIC 130 mg/mL), *Klebsiella pneumoniae* (MIC 163 mg/mL), * Proteus mirabilis* (MIC 217 mg/mL), *Pseudomonas aeruginosa* (inactive), *Staphylococcus aureus* (MIC 108 mg/mL).	41
Commercial sample (dōTERRA International, Pleasant Grove, UT, USA)	Linalool (29.8%), (2E)-decanal (25.9%), (2E)-decan-1-ol (10.6%), decanal (7.9%)	Antifungal: *Aspergillus niger* (MIC 313 µg/mL), *Candida albicans* (MIC 313 µg/mL), *Cryptococcus neoformans* (MIC 20 µg/mL).	22
Hydrodistillation of aerial parts from cultivated plants (University of Campinas, Brazil)	1-Decanol (15.3%), (2E)-tetradecan-1-ol (13.6%), (2E)-dodecan-1-ol (11.3%), decanal (11.0%), (2E)-dodecanal (8.2%), dodecanal (7.5%), no linalool	Antifungal: *C. albicans* (MIC 15 µg/mL), *C. krusei* (MIC 15 µg/mL), *C. parapsilosis* (MIC 125 µg/mL), *C. dubliniensis* (MIC 312 µg/mL), *C. tropicalis* (MIC 125 µg/mL).	42
Hydrodistillation of leaves from cultivated plants (University of Campinas, Brazil)	Decanal (19.1%), (2E)-decanal (17.5%), 1-decanol (12.2%), (2E)-tetradecan (11.5%), (2E)-dodecanal (10.7%), no linalool	Antifungal: *C. albicans* (MIC 15.6 µg/mL), *C. tropicalis* (MIC 31.2 µg/mL), *C. krusei* (MIC 15.6 µg/mL), *C. dubliniensis* (MIC 31.2 µg/mL), *Candida rugosa* (MIC 15.6 µg/mL).	43
Hydrodistillation of leaves from cultivated plants (Egerton University, Kenya)	(2E)-decanal (15.9%), decanal (14.3%), (2E)-decan-1-ol (14.2%), (2E)-tridecanal (6.8%), (2E)-dodecanal (6.2%), no linalool	Antifungal: *C. albicans* (MIC 163 mg/mL).	41
Hydrodistillation of leaves obtained from a grocery in Campinas, Brazil	1-Decanol (24.1%), (2E)-hexen-1-ol (18.0%), (2Z)-dodecen-1-ol (17.6%), 1-hexen-3-ol (10.3%), decanal (4.8%), no linalool	Antifungal: *C. albicans* (MIC 500 µg/mL), *C. krusei* (MIC 250 µg/mL), *C. parapsilosis* (MIC 125 µg/mL), *C. dubliniensis* (MIC 250 µg/mL), *C. tropicalis* (MIC >1000 µg/mL).	44
Commercial sample (dōTERRA International, Pleasant Grove, UT, USA)	Linalool (29.8%), (2E)-decanal (25.9%), (2E)-decan-1-ol (10.6%), decanal (7.9%)	Antileishmanial: *Leishmania amazonensis* (promastigotes IC50 34.4 µg/mL).	25
Hydrodistillation of aerial parts from cultivated plants (Yovon region, Tajikistan)	(2E)-dodecenal (16.5%), 1-decanol (14.9%), decanal (11.3%), (2E)-tetradecan (9.2%), (2E)-dodecen-1-ol (7.4%), (8Z)-undecenal (6.2%), nonyl formate (5.6%), no linalool	Cytotoxic: *Caco-2* (IC50 86.8 µg/mL), *CCRF-CEM* (IC50 16.5 µg/mL), *CEM/ADR 5000* (IC50 38.5 µg/mL).	45
Commercial sample (dōTERRA International, Pleasant Grove, UT, USA)	Linalool (29.8%), (2E)-decanal (25.9%), (2E)-decan-1-ol (10.6%), decanal (7.9%)	Cytotoxic: *BALB/c mouse macrophage* (IC50 45.9 µg/mL).	25
Commercial sample (dōTERRA International, Pleasant Grove, UT, USA)	Linalool (29.8%), (2E)-decanal (25.9%), (2E)-decan-1-ol (10.6%), decanal (7.9%)	Cytotoxic: *Michigan Cancer Foundation-7* (IC50 42.8 µg/mL), *MDA-MB-231* (IC50 43.1 µg/mL).	22

IC50, half-maximal inhibitory concentration; MIC, minimum inhibitory concentration. *Linalool was apparently not detected in this sample.
China, India, Thailand, Vietnam, and Bangladesh) as well as Latin American cuisine. The essential oil from \textit{C. sativum} herb (cilantro) typically has as its major components linalool (0%-26%), decanal (3%-20%), (2E)-decenal (1%-30%), (2E)-decen-1-ol (0%-19%), 1-decanol (2%-36%), (2E)-undecenal (0%-5%), (2E)-dodecen-1-ol (0%-18%), (2E)-tetradecenal (0%-13%), and (2E)-pentadecenal (4.8%). The high concentrations of unsaturated aldehydes in cilantro are the source of the aroma of the herb as well as the source of the well-documented preference or disdain for cilantro. (2E)-Decenal has been described as having a fatty, pungent odor; (2E)-dodecenal has a floral, pungent odor; (2E)-tetradecenal has a pungent, spicy, floral odor; while the unsaturated alcohol, (2E)-decen-1-ol, has been described as having a wet dog odor. There is apparently a genetic variation in olfactory receptors responsible for the preference for or the aversion to the odor of cilantro.

The chemical compositions (major components) and biological activities of cilantro essential oils gleaned from the literature are summarized in Table 2.

Table 3. Percent Compositions of the Major Components in Coriandrum sativum Fruit (Coriander) Essential Oils.

Compound	Group #1	Group #2	Group #3	#4	#5	Overall
α-Pinene	5.0 (3.3-5.6)	5.8 (4.8-6.4)	0.4 (0.3-0.5)	11.4	9.7	5.4 (0.3-11.4)
Limonene	2.1 (1.7-2.4)	2.6 (2.3-2.9)	0.9 (0.6-1.3)	0.2	2.8	2.1 (0.2-2.9)
γ-Terpinene	4.1 (3.0-5.9)	4.9 (4.4-6.0)	1.7 (0.6-2.8)	0.8	11.6	4.4 (0.6-11.6)
Linalool	73.8 (73.2-74.7)	70.2 (69.1-71.4)	75.7 (74.8-76.7)	71.9	62.2	71.9 (62.2-76.7)
Camphor	4.3 (3.6-4.9)	4.6 (4.1-5.5)	3.3 (2.1-4.5)	0.0	3.3	4.0 (0.0-5.5)
Geraniol	1.3 (0.8-2.5)	1.5 (1.2-2.0)	2.9 (1.7-4.1)	0.1	0.8	1.4 (0.1-4.1)
Geranyl acetate	3.7 (2.9-4.5)	4.2 (3.3-5.2)	1.9 (1.2-2.7)	9.6	2.1	3.9 (1.2-9.6)
Several researchers have found cilantro essential oil to demonstrate antifungal activity, particularly against Cryptococcus neoformans (MIC 20 µg/mL)22 and Candida spp. (MIC 15.6-31.2 µg/mL).43 Likewise, cilantro essential oil has shown cytotoxic activity against a number of tumor cell lines (Table 2) as well as antileishmanial activity against L. amazonensis.25

The bioactivities of cilantro essential oil are likely due to the aliphatic aldehydes present, especially the α,β-un saturated aldehydes. α,β-Unsaturated aldehydes are electrophilic agents and can react with biological nucleophiles such as glutathione, amino groups of deoxyribonucleic acid and proteins.66-68 Citral (a mixture of neral and geranial), for example, has shown cytotoxic activity against several tumor cell lines38,69,70 and antifungal activity against several strains of fungi.71-73 Note, also, that the essential oil of Galangania fragrantissima, rich in (2E)-dodecenal (83.6%), showed cytotoxic activity against MCF-7, Caco-2, and HeLa cells.74

The purpose of this work is to analyze several commercial essential oils of coriander and cilantro in order to evaluate the consistency of chemical composition of commercial sources and to establish a baseline for future evaluations of these essential oils as well as a screen for authenticity or adulteration.

Results and Discussion

Coriander Essential Oil

An agglomerative hierarchical cluster (AHC) analysis of 19 commercial coriander essential oil samples from the Aromatic Plant Research Center (APRC) collection was carried out using percentages of the chemical components (123 compounds). The cluster analysis revealed very little dissimilarity between the essential oils. Nevertheless, there were 3 well-defined clusters and 2 outliers (Figure 1).

Groups #1 and #2 are very similar, differing only in the concentrations of linalool; group #1 has a slightly higher concentration of linalool than group #2 (Table 3). Group #3 has an even higher concentration of linalool, at the expense of concentrations of α-pinene, limonene, γ-terpinene, and geranyl acetate. Outlier #4 has relatively high concentrations of α-pinene and geranyl acetate, while outlier #5 has relatively high concentrations of α-pinene and γ-terpinene. Groups #1 and #2 correspond more closely to the ISO standard11 than the atypical samples #3, #4, or #5.

A chiral gas chromatography–mass spectrometry (GC–MS) analysis has been carried out on several commercial coriander essential oil samples; the enantiomeric distributions are summarized in Table 4. The major enantiomer of linalool in coriander essential oil is (S)-(−)-linalool (around 87%). This distribution has been previously observed in coriander essential oil (87% in coriander from Germany,75 84% in coriander from Pakistan,76 and 88% in coriander from France).77 The particular enantiomer of linalool can have an effect on biological activity.51,78 Cilantro essential oils are often adulterated with either synthetic linalool or with natural linalool from other sources. Synthetic linalool can be determined by chiral GC–MS and/or by the presence of some synthetic markers such as α-linalool, dehydrolinalool, dihydrolinalool, and plinols.79 The enantiomeric distribution of linalool in commercial sample 180907F suggests that this sample is inauthentic and/or adulterated. In addition, the enantiomeric distributions of α-pinene, β-pinene, limonene, camphor, terpinen-4-ol, and α-terpineol corroborate this conclusion. In this work, (+)-limonene ranged from 51% to 63%, which is comparable to that reported for coriander essential oil from Germany.75 Likewise, (−)-camphor in coriander essential oil in this work was 87%, in agreement with that observed in coriander essential oil from Italy.80

The major enantiomer of α-pinene in coriander essential oil was the (−)-enantiomer, which was also the dominant enantiomer in other members of the Apiaceae, Trachyspermum ammi and Anethum graveolens, both 100% (+)-α-pinene.81 In contrast, (−)-α-pinene (95%) was the dominant enantiomer in Ferula akitschkensis essential oil.82 Similarly (+)-β-pinene was the major enantiomer in C. sativum fruit essential oil (76%-90%), also

| Table 4. Enantiomeric Distribution of Monoterpenoids in Coriandrum sativum Fruit (Coriander) Essential Oils. |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | 191 118B | 200221C | 180111B | 180410A | 180907Fp |
| Compound | (+):(−) | (+):(−) | (+):(−) | (+):(−) | (+):(−) |
| α-Pinene | (+)92:(−)8 | (+)91:(−)9 | (+)93:(−)7 | (+)95:(−)5 | (+)25:(−)75 |
| Camphene | (+)100:(−)0 | (+)100:(−)0 | (+)100:(−)0 | (+)100:(−)0 | (+)100:(−)0 |
| Sabineene | (+)100:(−)0 | (+)100:(−)0 | (+)100:(−)0 | (+)100:(−)0 | (+)100:(−)0 |
| β-Pinene | (+)90:(−)10 | (+)89:(−)11 | (+)86:(−)14 | (+)76:(−)24 | (+)10:(−)90 |
| Limonene | (+)54:(−)46 | (+)51:(−)49 | (+)63:(−)37 | (+)55:(−)45 | (+)0:(−)100 |
| Linalool | (+)87:(−)13 | (+)86:(−)14 | (+)87:(−)13 | (+)87:(−)13 | (+)13:(−)87 |
| Camphor | (+)13:(−)87 | (+)13:(−)87 | (+)13:(−)87 | (+)13:(−)87 | (+)82:(−)18 |
| Terpinen-4-ol | (+)80:(−)20 | (+)86:(−)14 | (+)89:(−)11 | (+)84:(−)16 | (+)30:(−)70 |
| α-Terpineol | (+)65:(−)35 | (+)65:(−)35 | (+)59:(−)41 | (+)65:(−)35 | (+)16:(−)84 |
| Bornol | (+)0:(−)100 | (+)0:(−)100 | (+)0:(−)100 | (+)0:(−)100 | (+)0:(−)100 |

pCoriander essential oil sample 180907F is apparently not authentic.
found in \textit{T. ammi}, 100\% (+)-β-pinene,81 and \textit{Niphogeton dissecta}, 87\% (+)-β-pinene,83 again in contrast to that observed for \textit{F. akitschkensis} with only 6\% (+)-β-pinene.82 (+)-Sabinene was the exclusive enantiomer found in coriander essential oil in this study and was the major enantiomer in both \textit{F. akitschkensis} (97\%)82 and \textit{N. dissecta} (81\%).83

\textbf{Cilantro Essential Oil}

The cilantro herb essential oil compositions of 28 commercial essential oil samples from the Aromatic Plant Research Center (APRC) collection were subjected to an AHC using the chemical compositions (56 components). There are 3 well-defined clusters from the AHC analysis: #1 ((2E)-decenal > linalool > (2E)-decen-1-ol), #2 ((2E)-decenal > (2E)-decen-1-ol > linalool), and #3 ((2E)-decenal >> decanal > linalool) (Figure 2). The compositions of the major components for each of the clusters are summarized in Table 5.

The cluster analysis reveals that the essential oil compositions are not very different. Groups #1 and #2 are very similar and group #3 differs mainly in the concentration of linalool (lower in #3) and decanal and (2E)-decenal (both higher in #3). Linalool is reported to have a refreshing, floral, woody odor,84 while (2E)-decenal has a pungent, fatty odor.85 Interestingly, several of the herb essential oils reported in the literature (Table 2) were devoid of linalool, in contrast to commercially available essential oils in this work. It is apparent that there are other chemotypes of cilantro that are not reflected in the commercial samples from the present study.

The enantiomeric distributions of monoterpenoids in cilantro essential oils were determined by chiral GC–MS and are
summarized in Table 6. Not surprisingly, the enantiomeric distributions are similar to those seen in the coriander essential oils (Table 4).

Conclusions

The commercially available *C. sativum* essential oils from this study, either the fruit (coriander) essential oil or the herb (cilantro) essential oil, have similar chemical compositions. Thus, unless adulteration is a problem, the chemical qualities of the essential oils are very consistent. Commercial coriander essential oil is dominated by linalool (62.2%-76.7%) with lesser quantities of α-pinene (0.3%-11.4%), γ-terpinene (0.5%-11.6%), and camphor (0.0%-5.5%). Commercial cilantro essential oil is composed largely of (2E)-decalen (16.0%-46.6%), linalool (11.8%-29.8%), (2E)-decen-1-ol (0.0%-24.7%), decanal (5.2%-18.7%), (2E)-dodecenal (4.1%-8.7%), and 1-decanol (0.0%-9.5%). Nevertheless, there are likely other chemotypes of *C. sativum* essential oils that may be considered for cultivation and commercialization. The enantiomeric distribution of linalool was 87% (+)-linalool:13% (−)-linalool in both coriander and cilantro essential oils, while α-pinene was 93% (+):7% (−) in coriander, 90% (+):10% (−) in cilantro; and (+)-camphor:(−)-camphor was 13%:87% in both essential oils. Chiral GC–MS analysis was able to detect an adulterated coriander essential oil sample. Coriander essential oil has apparently shown no human toxicity. There are no published reports on any adverse effects of cilantro essential oil. Both coriander and cilantro essential oils can be considered safe for use in human foods. The data provided in this study serves to establish a baseline for future evaluations of these essential oils as well as a screen for authenticity or adulteration.

Materials and Methods

Essential Oil Samples

Essential oils of *C. sativum* fruit (coriander) and herb (cilantro) were obtained from a collection of commercial essential oils housed with the Aromatic Plant Research Center (APRC, Lehi, UT, USA). Coriander fruits were dried and the essential oil obtained by steam distillation (distillation time 3 hours, temperature 97-105°C, pressure 1 atm, yield 1.5%). Freshly cut cilantro herb was steam distilled within 3 hours after harvest (distillation time 2 hours, temperature 97-105°C, pressure 1 atm, yield 0.3%). The essential oils were labeled, stored under

Table 5. Percent Compositions of the Major Components in *Coriandrum Sativum* Herb (Cilantro) Essential Oils.

Compound	Cluster #1 Average (range)	Cluster #2 Average (range)	Cluster #3 Average (range)	Overall Average (range)
α-Pinene	1.4 (0.9-2.4)	1.3 (1.2-1.6)	1.1 (0.9-1.4)	1.3 (0.9-2.4)
γ-Terpinene	1.2 (0.9-3.1)	1.2 (0.9-1.5)	0.9 (0.5-1.3)	1.2 (0.5-3.1)
Linalool	20.1 (14.3-29.8)	15.7 (14.0-19.9)	12.7 (11.8-13.5)	16.6 (11.8-29.8)
Decanal	7.0 (5.1-8.8)	8.4 (7.4-8.7)	17.4 (15.6-18.7)	9.2 (5.2-18.7)
(2E)-Decenal	28.7 (20.5-34.8)	20.9 (16.0-24.4)	39.5 (35.8-46.6)	24.9 (16.0-46.6)
(2E)-Decen-1-ol	14.9 (10.6-17.4)	19.1 (16.6-24.7)	0.6 (0.0-1.0)	15.7 (0.0-24.7)
1-Decanol	4.9 (2.0-6.4)	7.2 (6.1-9.5)	0.4 (0.0-0.6)	5.8 (0.0-9.5)
(2E)-Undecenal	1.1 (0.0-1.5)	1.7 (0.8-2.1)	4.0 (3.2-4.4)	1.8 (0.0-4.4)
(2E)-Dodecenal	7.0 (4.1-8.2)	7.1 (5.3-8.7)	6.4 (4.9-7.5)	6.9 (4.1-8.7)
(2E)-Tetradecenal	3.4 (1.7-4.8)	4.1 (2.0-4.9)	2.5 (1.1-3.6)	3.7 (1.1-4.9)

Table 6. Enantiomeric Distribution of Monoterpenoids in *Coriandrum Sativum* Herb (Cilantro) Essential Oils.

Compounds	191113A (+):(−)	191113B (+):(−)	200221E (+):(−)	200221F (+):(−)
α-Pinene	(+)94:(−)6	(+)87:(−)13	(+)85:(−)15	(+)94:(−)6
Camphene	(+)100:(−)0	(+)100:(−)0	(+)100:(−)0	(+)100:(−)0
Sabinene	(+)100:(−)0	(+)100:(−)0	(+)100:(−)0	(+)100:(−)0
β-Pinene	(+)82:(−)18	(+)83:(−)17	(+)78:(−)22	(+)80:(−)20
Limonene	(+)62:(−)38	(+)63:(−)37	(+)63:(−)37	(+)62:(−)38
Linalool	(+)87:(−)13	(+)87:(−)13	(+)87:(−)13	(+)87:(−)13
Camphor	(+)13:(−)87	(+)13:(−)87	(+)14:(−)86	(+)13:(−)87
Terpinen-4-ol	(+)80:(−)20	(+)77:(−)23	(+)77:(−)23	(+)81:(−)19
Borneol	(+)0:(−)100	(+)0:(−)100	(+)0:(−)100	(+)0:(−)100
refrigeration (4°C), and analyzed within days of receipt, generally within 1 month after production. The first 2 numbers of the label codes indicate the year that the sample was processed. All of the coriander samples were from suppliers from Russia. Nineteen commercial coriander and 28 commercial cilantro essential oil samples were obtained.

Gas Chromatography–Mass Spectrometry

The essential oils of *C. sativum* (19 commercial coriander (Supplemental Table S1) and 28 commercial cilantro (Supplemental Table S2) essential oil samples) were analyzed by GC–MS using a Shimadzu GCMS-QP2010 Ultra (Shimadzu Scientific Instruments, Columbia, MD, USA) with a ZB-5 column (Phenomenex, Torrance, CA, USA) as previously described. Identification of the essential oil components was based on their retention indices determined by reference to a homologous series of *n*-alkanes and by comparison of their mass spectral fragmentation patterns with those reported in the databases.86

Chiral GC–MS

Chiral analysis of the *C. sativum* essential oils (5 commercial coriander and 4 commercial cilantro samples) was carried out on a Shimadzu GCMS-QP2010S (Shimadzu Scientific Instruments, Columbia, MD, USA) with a Restek B-Dex 325 capillary column (Restek Corporation, Bellefonte, PA, USA) as described previously.86

Hierarchical Cluster Analyses

The *C. sativum* fruit (19 coriander samples) and herb (28 cilantro samples) essential oil compositions from the collections of the Aromatic Plant Research Center (Lehi, UT, USA) were treated as operational taxonomic units. The percentage composition of the essential oil components (123 compounds for coriander, 56 compounds for cilantro) was used to determine the chemical relationship between the various *C. sativum* essential oil samples by AHC analysis using the XLSTAT software, version 2018.1.1.6097 (Addinsoft, Paris, France). Euclidean distance was used to measure dissimilarity, and Ward’s method was used for cluster definition.

Acknowledgements

This work was carried out as part of the activities of the Aromatic Plant Research Center (APRC, https://aromaticplant.org/).

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID ID

William N. Setzer https://orcid.org/0000-0002-3639-0528

Supplemental Material

Supplemental material for this article is available online.

References

1. Coriander DA. *Coriander (Coriandrum Sativum L.).* Rome, Italy: International Plant Genetic Resources Institute; 1996.
2. Parthasarathy VA, Zachariah TJ. Coriander. In: Parthasarathy VA, Chempakam B, Zachariah TJ, eds. *Chemistry of Spices.* Wallingford, U.K: CAB International; 2008.
3. Asgarpanah J, Kazemivash N. Phytochemistry, pharmacology and medicinal properties of *Coriandrum sativum L.* Afr J Pharm Pharmacol. 2012;6(31):2340-2345. doi:10.5897/AJPP12.901
4. Bhat S, Kaushal P, Kaur M, Coriander SHK. Coriander (*Coriandrum sativum L.*): processing, nutritional and functional aspects. *African J Plant Sci.* 2014;8(1):25-33.
5. Larbhi B, Kouki K, M’Handi M, Bertaieb T, M’Handi M, Coriander BT. *Coriander (Coriandrum sativum L.*) and its bioactive constituents.* Fitoterapia. 2015;103:9-26. doi:10.1016/j.fitote.2015.03.012
6. Nadeem M, Muhammad Anjum F, Issa Khan M, Tehseen S, El-Ghorab A, Iqbal Sultan J. Nutritional and medicinal aspects of coriander (*Coriandrum sativum L.*): a review. *Br Food J.* 2013;115(5):743-755. doi:10.1108/00070701311331526
7. Rout B. Agriculture commodity crisis: An international evidence for 2007-2008 (January 16, 2016). SSRN. Accessed April 17, 2020. http://dx.doi.org/10.2139/ssrn.2716912
8. Sharma MM, Coriander SRK. Coriander. In: Peter K V, ed. *Handbook of Herbs and Spices.* Woodhead Publishing; 2012:216-249.
9. Kerrola K, Kallio H. Volatile compounds and odor characteristics of carbon dioxide extracts of coriander (*Coriandrum sativum L.*) fruits. *J Agric Food Chem.* 1993;41(5):785-790. doi:10.1021/jf00029a021
10. Zheljazkov VD, Astatkie T, Schlegel V. Hydrodistillation extraction time effect on essential oil yield, composition, and bioactivity of coriander oil. *J Oleo Sci.* 2014;63(9):857-865. doi:10.5650/jos.ess14014
11. Mandal S, Mandal M, Coriander MM. *Coriander (Coriandrum sativum L.*) essential oil: chemistry and biological activity.* *Asian Pac J Trop Biomed.* 2015;5(6):421-428. doi:10.1016/j.apjtb.2015.04.001
12. Burdock GA, Carabin IG. Safety assessment of coriander (*Coriandrum sativum L.*) essential oil as a food ingredient. *Food Chem Toxicol.* 2009;47(1):22-34. doi:10.1016/j.fct.2008.11.006
13. ISO. *ISO3516. 2nd ed. Coriander Seed (Fruit) Oil (Russian Origin);* 1997.
14. Kamatou GPP, Viljoen AM. Linalool – a review of a biologically active compound of commercial importance. *Nat Prod Commun.* 2008;3(7):1183-1192. doi:10.1177/1934578X0800300727
15. Aprotosoaie AC, Hăncianu M, Costache I-I, Miron A. Linalool: a review on a key odorant molecule with valuable biological properties. *Flavour Fragr J.* 2014;29(4):193-219. doi:10.1002/ffj.3197
16. Wojtunik-Kulesza KA, Kasprzak K, Oniszczuk T, Oniszczuk A. Natural monoterpenes: much more than only a scent. Chem Biodivers. 2019;16(12):e19004310.1002/cbvd.201900434 doi:10.1002/cbvd.201900434

17. Silva F, Ferreira S, Queiroz JA, Domingues FC. Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. J Med Microbiol. 2011;60(Pt 10):1479-1486. doi:10.1099/jmm.0.034157-0

18. Lo Cantore P, Iacobellis NS, De Marco A, Capasso F, Senatore F. Antibacterial activity of Coriandrum sativum L. and Foeniculum vulgare Miller var. vulgare (Miller) essential oils. J Agric Food Chem. 2004;52(26):7862-7866. doi:10.1021/jf0493122

19. Orchard A, Sandasi M, Kamatou G, Viljoen A, van Vuuren S. The in vitro antimicrobial activity and chemometric modelling of 59 commercial essential oils against pathogens of dermatological relevance. Chem Biodivers. 2017;14(1):e1600218.1002/cbvd.201600218

20. Sourmarghi MHS, Kiace G, Golfakhrabadi F, Jamalifar H, Khanavi M. Comparison of essential oil composition and antimicrobial activity of Coriandrum sativum L. extracted by hydrodistillation and microwave-assisted hydrodistillation. J Food Sci Technol. 2015;52(4):2452-2457. doi:10.13197/j-014-1286-x

21. Casetti F, Bartelke S, Biehler K, Augustin M, Schempp CM, Casetti F, Bartelke S, Biehler K, Augustin M, Schempp CM, Augustin M, Schempp CM, Augustin M, Schempp CM. Antioxidant and hepatoprotective potential of essential oil from Coriandrum sativum L. fruits. Phytother Res. 2015;52(4):2452-2457. doi:10.1002/ptr.3571

22. Powers CN, Osier JL, McFeeters RL, et al. Antifungal and cytotoxic activities of sixty commercially-available essential oils. Molecules. 2018;23(7):1549. doi:10.3390/molecules23071549

23. Singh G, Maurya S, de Lampasona MP, Catalan CAN. Studies on essential oils, part 41. Chemical composition, antifungal, antioxidant and spout suppressant activities of coriander (Coriandrum sativum essential oil and its oleoresin. Flavour Fragr J. 2006;21(3):472-479. doi:10.1002/ffj.1608

24. Orchard A, van Vuuren SF, Viljoen AM. Commercial essential oil combinations against topical fungal pathogens. Nat Prod Commun. 2019;14(1):151-158. doi:10.1177/1934578X1901400139

25. Monzote I, Herrera I, Satyal P, Setzer WN. In-vitro evaluation of 52 commercially-available essential oils against Leishmania amazonensis. Molecules. 2019;24(7):1248. doi:10.3390/molecules24071248

26. Rometah RM, Fayed SA, Mahmoud GI. Chemical compositions, antiviral and antioxidant activities of seven essential oils. J Appl Sci Res. 2010;6(1):50-62.

27. Cioanca Q, Hritcu L, Mihasan M, Trifan A, Hanciana M. Inhalation of coriander volatile oil increased anxiety-antidepressant-like behaviors and decreased oxidative status in beta-amyloid (1-42) rat model of Alzheimer’s disease. Physiol Behav. 2014;131:68-74. doi:10.1016/j.physbeh.2014.04.021

28. Samojlik I, Lakić N, Minica-Dukić N, Daković-Svajcer K, Božin B. Antioxidant and hepatoprotective potential of essential oils of coriander (Coriandrum sativum L.) and caraway (Carum carvi L.) (Apiaceae). J Agric Food Chem. 2010;58(15):8848-8853. doi:10.1021/jf101645n

29. Duarte A, Lúis Ângelo, Oleastro M, Domingues FC. Antioxidant properties of coriander essential oil and linalool and their potential to control Campylobacter spp. Food Control. 2016;61:115-122. doi:10.1016/j.foodcont.2015.09.033

30. Benelli G, Flamini G, Fiore G, Cioni PL, Conti B. Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filarialis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res. 2013;112(3):1155-1161. doi:10.1007/s00436-012-3246-6

31. Khani A, Rahdari T. Chemical composition and insecticidal activity of essential oil from Coriandrum sativum seeds against Tribolium confusum and Callistethus maiali. J Agric Food Chem. 2012;1021/ jf10 1645n

32. Gasóst MS, Cid MP, Vázquez AM, et al. Sedative effect of central administration of Coriandrum sativum essential oil and its major component linalool in neonatal chicks. Pharmacol Biol. 2016;54(10):1954-1961. doi:10.1016/j.pharmsbio.2015.1137602

33. Sartoratto A, Machado ALM, Delarmelina C, Figueira GM, Duarte MCT, Rehder VLG. Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Braz J Microbiol. 2004;35(4):275-280. doi:10.1590/S1517-83822004000300001

34. Schmidt JM, Noletto JA, Vogler B, Setzer WN. Abaco bush medicine: chemical composition of the essential oils of four aromatic medicinal plants from Abaco Island, Bahamas. J Herbs Spices Med Plants. 2007;12(3):43-65. doi:10.1300/J044v12n03_04

35. Prashar A, Locke IC, Evans CS. Cytotoxicity of lavender oil and its major components to human skin cells. Cell Prolif. 2004;37(3):221-229. doi:10.1111/j.1365-2184.2004.00307.x

36. Ravizza R, Gariboldi MB, Molteni R, Monti E, Linalool ME. Linalool, a plant-derived monoterpene alcohol, reverses doxorubicin resistance in human breast adenocarcinoma cells. Oncol Rep. 2008;20(3):625-630.

37. Miyashita M, Sadzuka Y. Effect of linalool as a component of Huminus lupulus on doxorubicin-induced antitumor activity. Food Chem Toxicol. 2013;53:174-179. doi:10.1016/j.fct.2012.11.035

38. Wright BS, Bansal A, Morarity DM, Takaku S, Setzer WN. Cytotoxic leaf essential oils from Neotropical Lauraceae: synergistic effects of essential oil components. Nat Prod Commun. 2007;2(12):1241-1244. doi:10.1177/1934578X0700201210

39. do Socorro S Rosa MdoSS, Mendonça-Filho RR, Bizzio HR, et al. Antileishmanial activity of a linalool-rich essential oil from Croton cajucara. Antimicrob Agents Chemother. 2003;47(6):1895-1901. doi:10.1128/aac.47.6.1895-1901.2003

40. Guardo NI, Sainz P, González-Coloma A, Burillo J, Martinez-Díaz RA. Trypanocidal effects of essential oils from selected medicinal plants. Synergy among the main components. Nat Prod Commun. 2017;12(5):709-712. doi:10.1177/1934578X1701200516

41. Matasyoh JC, Matyo ZC, Ngure RM, Chepkorir R. Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chem. 2009;113(2):526-529. doi:10.1016/ j.foodchem.2008.07.097

42. Furlletti VF, Teixeira IP, Obando-Pereda G, et al. Action of Coriandrum sativum L. essential oil upon oral Candida albicans biofilm
formation. *Evid Based Complement Alternat Med.* 2011;2011:1-9. doi:10.1155/2011/985832

43. Freires IdeA, Murata RM, Furletti VF, et al. *Coriandrum sativum L.* (coriander) essential oil: antifungal activity and mode of action on *Candida* spp., and molecular targets affected in human whole-genome expression. *PLoS One.* 2014;9(6):e99086.10.1371/journal.pone.0099086 doi:10.1371/journal.pone.0099086

44. Begnami AF, Duarte MCT, Furletti V, Rehler VLG. Antimicrobial potential of *Coriandrum sativum* L. against different *Candida* species in vitro. *Food Chem.* 2010;118(1):74-77. doi:10.1016/j.foodchem.2009.04.089

45. Sharopov FS, Valiev AK, Satyal P, Setzer WN, Wink M. Chemical composition and anti-proliferative activity of the essential oil of *Coriandrum sativum* L. *Am J Essent Oils Nat Prod.* 2017;5(1):11-14.

46. Guzmán-Gutiérrez SL, Gómez-Cansino R, García-Zebadúa JC, Jiménez-Pérez NC, Reyes-Chilpa R. Antidepressant activity of *Littena glaucescens* essential oil: identification of 7-pinene and linalool as active principles. *J Ethnopharmacol.* 2012;143(2):673-679. doi:10.1016/j.jep.2012.07.026

47. Linck VM, da Silva AL, Figueirô M, et al. Inhaled linalool-induced sedation in mice. *Phytochemistry.* 2009;66(4):303-307. doi:10.1016/j.phytochem.2008.08.001

48. Linck VM, da Silva AL, Figueirô M, Caramão EB, Moreno PRH, Elisabetsky E. Effects of inhaled linalool in anxiety, social interaction and aggressive behavior in mice. *Phytochemistry.* 2010;71(8-9):679-683. doi:10.1016/j.phytochem.2009.10.002

49. Harada H, Kashiwadani H, Kanmura Y, Kuwaki T. Linalool odor-induced anxiolytic effects in mice. *Front Behav Neurosci.* 2018;12:24110.3389/fnbeh.2018.00241 doi:10.3389/fnbeh.2018.00241

50. Sugawara Y, Haru C, Tamura K, et al. Sedative effect on humans of inhalation of essential oil of linalool: sensory evaluation and physiological measurements using optically active linalools. *Anat Chim Acta.* 1998;365(1-3):293-299.

51. Kuroda K, Inoue N, Ito Y, et al. Sedative effects of the jasmine tea odor and (R)-(-)- linalool, one of its major odor components, on autonomic nerve activity and mood states. *Eur J Appl Physiol.* 1998;80(6):333-349. doi:10.1007/s00421-001-0402-8

52. Cheng B-H, Sheen L-Y, Chang S-T. Evaluation of anxiolytic potency of essential oil and S-(+)-linalool from *Cinnamomum ozotheca* ct. linalool leaves in mice. *J Tradit Complement Med.* 2015;5(1):27-34. doi:10.1016/j.jtcme.2014.10.007

53. Morales-Payan JP. Herbs and leaf crops: Cilantro, broadleaf cilantro, and vegetable amaranth. *Soils, Plant Growth Crop Prod.* 2011;3:1-28.

54. Potter TL. Essential oil composition of cilantro. *J Agric Food Chem.* 1996;44(7):1824-1826. doi:10.1021/jf950814c

55. Delaquis PJ, Stanich K. Antilisterial properties of cilantro essential oil. *Journal of Essential Oil Research.* 2004;16(5):409-414. doi:10.1007/108412905.2004.9698757

56. Rao VK, Rao TK, Shivashankara KS, Varalakshmi B. A comparative study of whole herb and leaf essential oils of coriander. *J Essent Oil-Bearing Plants.* 2004;7(1):49-55. doi:10.1007/0972-060X.2004.10643364

57. Telev I, Hisil Y. Biomass yield and herb essential oil characters at different harvest stages of spring and autumn sown *Coriandrum sativum.* *Eur J Hortic Sci.* 2008;73(6):267-272.

58. Priyadarshi S, Borse BB. Effect of the environment on content and composition of essential oil in coriander. *Int J Sci Eng Res.* 2014;5(2):57-65.

59. Nurzyńska-Wierdak R. Essential oil composition of the coriander (*Coriandrum sativum* L.) herb depending on the development stage. *Acta Agrobot.* 2013;66(1):53-60. doi:10.5586/aa.2013.006

60. Yildiz H. Chemical composition, antimicrobial, and antioxidant activities of essential oil and ethanol extract of *Coriandrum sativum* L. leaves from Turkey. *Int J Food Prop.* 2016;19(7):1593-1603. doi:10.1080/10942912.2015.1092161

61. Ghasemi Pirbalouti A, Salehi S, Craker L. Effect of drying methods on qualitative and quantitative properties of essential oil from the aerial parts of coriander. *J Appl Res Med Aromat Plants.* 2017;4:35-40. doi:10.1016/j.jarmap.2016.07.006

62. Mauer L, El-Sohemy A. Prevalence of cilantro (*Coriandrum sativum*) disliking among different ethnocultural groups. *Flavour.* 2012;1(1):8. doi:10.1186/2044-7248-1-8

63. Eyres G, Dufour J-P, Hallifax G, Sotheeswaran S, Marriott PJ. Identification of character-impact odorants in coriander and wild coriander leaves using gas chromatography-olfactometry (GCO) and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC X GC-TOFMS). *J Sep Sci.* 2005;28(9-10):1061-1074. doi:10.1002/jssc.200500012

64. Mauer LK. Genetic determinants of cilantro preference [M.Sc. Thesis]. University of Toronto; 2011.

65. Eriksson N, Wu S, Do CB, et al. A genetic variant near olfactory receptor genes influences cilantro preference. *Flavour.* 2012;1(1):22. doi:10.1186/2044-7248-1-22

66. Witz G. Biological interactions of α,β-unsaturated aldehydes. *Free Radic Biol Med.* 1989;7(3):333-349. doi:10.1016/0891-5849(89)90137-8

67. Chan K, Poon R, O'Brien PJ. Application of structure-activity relationships to investigate the molecular mechanisms of hepatocytotoxicity and electrophilic reactivity of α,β-unsaturated aldehydes. *J Appl Physiol.* 2008;28(8):1027-1039. doi:10.1016/j.jat.1369

68. Xie M-Z, Shoulkamy MI, Salem AMH, et al. Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets. *Mutat Res.* 2017;4:35-40. doi:10.1016/j.mrfmmm.2016.02.005

69. Setzer WN, Schmidt JM, Eiter LC, Haber WA. The leaf oil composition of *Zanthoxylum fagara* (L.) Sarg. from Monteverde, Costa Rica, and its biological activities. *Journal of Essential Oil Research.* 2005;17(3):333-335. doi:10.1080/10942912.2005.9698923

70. Bayala B, Bassoie HIN, Maqslay S, Baron S, Simpore J, Lobacaro J-MA. *Cymbopogon citratus* and *Cymbopogon giganteus* essential oils have cytotoxic effects on tumor cell cultures. Identification of citral as a new putative anti-proliferative molecule. *Biochimie.* 2018;153:162-170. doi:10.1016/j.biochi.2018.02.013

71. Silva CdeBda, Guteries SS, Weisheimer V, Schapoval EES. Antifungal activity of the lemongrass oil and citral against *Candida*
72. Saddiq AA, Khayyat SA. Chemical and antimicrobial studies of monoterpene: citral. *Pestic Biochem Physiol.* 2010;98(1):89-93. doi: 10.1016/j.pestbp.2010.05.004

73. Leite MCA, Bezerra APdB, de Sousa JP, Guerra FQS, Lima EdeO. Evaluation of antifungal activity and mechanism of action of citral against *Candida albicans.* *Evid Based Complement Alternat Med.* 2014;2014:1-9. doi: 10.1155/2014/378280

74. Sharopov FS, Valiev A, Satyal P, Setzer WN, Wink M. Chemical composition and anti-proliferative activity of the essential oil of *Galagania fragrantissima* Lipsky (Apiaceae). *Am J Essent Oils Nat Prod.* 2013;1(1):11-13.

75. Frank C, Dietrich A, Kremer U, Mosandl A. GC-IRMS in the authenticity control of the essential oil of *Coriandrum sativum* L. *J Agric Food Chem.* 1995;43(6):1634-1637. doi: 10.1021/jf001388a

76. Özek T, Tabanca N, Demirci F, Wedge DE. Hüsnü Can Başer K. enantiomeric distribution of some linalool containing essential oils and their biological activities. *Rec Nat Prod.* 2010;4(4):180-192.

77. Uitterhaegen E, Deletraz A, Dufour A. Biorefinery of coriander seeds cultivated in France. In: 10th Baltic Conference on Food Science and Technology. Kaunas, Lithuania: Eprints ID: 13988; 2015.

78. de Sousa DP, Nóbrega FFF, Santos CCMP, de Almeida RN. Anticonvulsant activity of the linalool enantiomers and racemate: investigation of chiral influence. *Nat Prod Commun.* 2010;5(12):1847-1851. doi: 10.1177/1934578X1000501201

79. Satyal P, Setzer WN. Adulteration analysis in essential oils. In: Malik S, ed. *Essential Oil Research Cham.* Springer Nature; 2019:261-273.

80. Tateo F, Bononi M, De Dominicis E, Fumagalli V. Update on enantiomeric composition of (1R)-(+)- and (1S)-(-)-camphor in essential oils by enantioselective gas chromatography. *Anal Commun.* 1999;36(4):149-151. doi: 10.1039/a901388a

81. Seo S-M, Kim J, Lee S-G, Shin C-H, Shin S-C, Park I-K. Fumigant antitermitic activity of plant essential oils and components from ajowan (*Trachyspermum ammi*), allspice (*Pimenta dioica*), caraway (*Carum carvi*), dill (*Anethum graveolens*), geranium (*Pelargonium graveolens*), and litsea (*Litsea cubba*) oils against Japanese termite (*Reticulitermes speratus* Kolbe). *J Agric Food Chem.* 2009;57(15):6596-6602. doi: 10.1021/jf9015416

82. Schepetkin IA, Kushnarenko SV, Özek G, et al. Modulation of human neutrophil responses by the essential oils from *Verula akitschkensis* and their constituents. *J Agric Food Chem.* 2016;64(38):7156-7170. doi: 10.1021/acs.jafc.6b03205

83. Calva J, Bec N, Gilardoni G, et al. Acorenone B: AChE and BChE inhibitor as a major compound of the essential oil distilled from the Ecuadorian species *Niphogeton dissecta* (Benth.) J.E. Machr. *Pharmaceuticals.* 2017;10(4):84. doi: 10.3390/ph10040084

84. Api AM, Belsito D, Bhatta S, et al. RIFM fragrance ingredient safety assessment, linalool, CAS registry number 78-70-6. *Food Chem Toxicol.* 2015;82(Suppl):S29-S38. doi: 10.1016/j.fct.2015.01.005

85. Cadwallader KR, Benitez D, Pojjanapimol S, Suriyaphan O, Singh T. Characteristic aroma components of the cilantro mimics. In: Rouseff R, ed. *Natural Flavors and Fragrances: Chemistry, Analysis, and Production.* American Chemical Society; 2005:117-128.

86. Satyal P, Jones TH, Lopez EM, et al. Chemotypic characterization and biological activity of *Rosmarinus officinalis.* *Foods.* 2017;6(3):20. doi: 10.3390/foods6030020

87. Mondello L. FFNSC 3. Columbia, Maryland, USA: Shimadzu Scientific Instruments; 2016.

88. *NIST17.* Gaithersburg, Maryland, USA: National Institute of Standards and Technology. 2017

89. Satyal P. Development of GC-MS Database of Essential Oil Components by the Analysis of Natural Essential Oils and Synthetic Compounds and Discovery of Biologically Active Novel Chemotypes in Essential Oils [Ph.D. Dissertation]. University of Alabama in Huntsville; 2015.