Computing exact D—optimal designs by mixed integer second order cone programming

Guillaume Sagnol∗, Radoslav Harman†‡

May 11, 2014

Abstract

Let the design of an experiment be represented by an s-dimensional vector w of weights with non-negative components. Let the quality of w for the estimation of the parameters of the statistical model be measured by the criterion of D-optimality defined as the m-th root of the determinant of the information matrix $M(w) = \sum_{i=1}^{s} w_i A_i A_i^T$, where A_i, $i = 1, ..., s$, are known matrices with m rows.

In the paper, we show that the criterion of D-optimality is second-order cone representable. As a result, the method of second order cone programming can be used to compute an approximate D-optimal design with any system of linear constraints on the vector of weights. More importantly, the proposed characterization allows us to compute an exact D-optimal design, which is possible thanks to high-quality branch-and-cut solvers specialized to solve mixed integer second order cone programming problems.

We prove that some other widely used criteria are also second order cone representable, for instance the criteria of A-, and G-optimality, as well as the criteria of D_K- and A_K-optimality, which are extensions of D-, and A-optimality used in the case when only a specific system of linear combinations of parameters is of interest.

We present several numerical examples demonstrating the efficiency and universality of the proposed method. We show that in many cases the mixed integer second order cone programming approach allows us to find a provably optimal exact design, while the standard heuristics systematically miss the optimum.

1 Introduction

Consider an optimal experimental design problem of the form

$$\max_{w \in W} \Phi \left(\sum_{i=1}^{s} w_i A_i A_i^T \right),$$

where Φ is a criterion mapping the space S_m^+ of $m \times m$ positive semidefinite matrices over the set $\mathbb{R}_+ := [0, \infty)$. In (1), $A_i \in \mathbb{R}^{m \times \ell_i}$, $i = 1, ..., s$, are known matrices, and W is a compact subset of \mathbb{R}_+^s representing the set of all permissible designs.

The problem (1) arises in linear regression models with a design space $X \equiv [s] := \{1, ..., s\}$, independent trials, and a vector $\theta \in \mathbb{R}^m$ of unknown parameters, provided that the trial in the i-th design point results in an ℓ_i-dimensional response y_i satisfying $E(y_i) = A_i^T \theta$, and $\text{Var}(y_i) = \sigma^2 I_k$, where I_k is the $k \times k$–identity matrix. For a design $w \in W$, the matrix $M(w) := \sum_{i=1}^{s} w_i A_i A_i^T$ represents the total information gained from the design w.

∗Zuse Institut Berlin, Dept. Optimization, Takustr. 7, 14195 Berlin, Germany, sagnol@zib.de
†Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, 84248 Bratislava, Slovakia, harman@fmph.uniba.sk
‡The research of the second author was supported by the VEGA 1/0163/13 grant of the Slovak Scientific Grant Agency
When the criterion Φ satisfies certain properties, Problem (1) can be interpreted as selecting the weights w_i that yield the most accurate estimation of θ. In this paper, we mainly focus on the D-optimal problem, where the criterion Φ is set to

$$\Phi_D : M \to (\det M)^{1/2}.$$ \hspace{1cm} (2)

In the case of a Gaussian measurement error, this corresponds to the problem of minimizing the volume of the standard confidence ellipsoid for the best linear unbiased estimator (BLUE) $\hat{\theta}$ of θ. More generally, if the experimenter is interested in the estimation of the parameter subsystem $\theta = K^T \theta$, where K is an $m \times k$ matrix ($k \leq m$) of full column rank (rank $K = k$), a relevant criterion is D_K-optimality, obtained when the D-criterion is applied to the information matrix $C_K(M)$ for the linear parametric subsystem given by the coefficient matrix K, defined by (Section 3.2 in [Puk93]):

$$C_K(M) = \min_{L \in \mathbb{R}^{k \times m}} \{ LML^T \}.$$

Here the minimum is taken with respect to Löwner ordering, over all left inverses L of K. This information matrix is equal to $(K^T M^{-1} K)^{-1}$ if the estimability condition holds (range $K \subseteq \text{range } M$), and otherwise $C_K(M)$ is a singular matrix, so

$$\Phi_{D/K} : M \to \begin{cases} (\det K^T M^{-1} K)^{-1/2} & \text{if range } K \subseteq \text{range } M; \\ 0 & \text{otherwise}. \end{cases}$$ \hspace{1cm} (3)

In the previous formula M^{-1} denotes a generalized inverse of M, i.e. a matrix satisfying $MM^{-1}M = M$. Although the generalized inverse is not unique in general, the definition of $\Phi_{D/K}$ is consistent. Indeed the matrix $K^T M^{-1} K$ does not depend on the choice of the generalized inverse M^{-1} if the columns of K are included in the range of M, cf. Pukelsheim [Puk93].

Other optimality criteria, such as A, A_K, G and I-optimality are also discussed in Appendix A. For more details on the subject, we refer the reader to the monographs of Fedorov [Fed72], Pázman [Páz86] or Pukelsheim [Puk93].

In the standard form of the problem, W takes the form of the probability simplex

$$W_\Delta := \{ w \in \mathbb{R}_+^s : \sum_{i=1}^s w_i = 1 \},$$

and the design w is a weight vector indicating the percentage of trials in the individual design point. This problem, called optimal approximate design problem in the literature, is in fact a relaxation of a complicated combinatorial problem: the optimal exact design problem of size N, where W takes the form

$$W_N := \{ \frac{n}{N} : n \in \mathbb{N}_0^s, \sum_{i=1}^s n_i = N \}.$$

Here, the experiment consists of N trials, and $n_i = N w_i$ indicates the number of trials in the design point i (in the above definition, \mathbb{N}_0 denotes the set of all nonnegative integers, i.e. $0 \in \mathbb{N}_0$). Note that the constraint $w \in W_\Delta$ is obtained from $w \in W_N$ by relaxing the integer constraints on $N w_i$.

Many different approaches have been proposed to solve Problems of type (1). However, most methods are specialized and work only if the feasibility set W is the probability simplex W_Δ or the standard discrete simplex W_N. In the former case (approximate optimal design, $W = W_\Delta$), the traditional methods are the Fedorov-Wynn type vertex-direction algorithms [Fed72, Wyn70], and the multiplicative algorithms [Tit76, STT78, Yu10]. In the latter case (exact optimal design, $W = W_N$), the classical methods are heuristics such as exchange algorithms [Fed72, Mit74, AD92], rounding methods [PR92], and metaheuristics like simulated annealing [Hai87] or genetic algorithms [HLCM+03]. For some small to medium size models, branch-and-bound methods [Wec82] have been used to compute provably optimal solutions.
In many practical situations however, more complicated constraints are imposed on the design [CF95], and there is a need for more general algorithms. For example, assume that the experimental region can be partitioned as $X = X_1 \cup X_2$, and that 40% (resp. 60%) of the trials should be chosen in X_1 (resp. X_2), i.e. the constraint $w \in W_\Delta$ is replaced by

$$w \in W := \{ w \in R^*_+ : \sum_{i \in X_1} w_i = 0.4, \sum_{i \in X_2} w_i = 0.6 \}.$$

This is an example of a stratified design [Har14], which is a notion generalizing the well known marginally constrained design [CT80]. Other examples of relevant design domains W defined by a set of linear inequalities are discussed in [VBW98]. For example, it is possible to consider the case where a total budget is allocated, and the design points are associated to possibly unequal costs c_1, \ldots, c_s. It is also possible to consider decreasing costs when trials of specific design points are grouped, or to avoid designs that are concentrated on a small number of design points.

For some special linear constraints, the approximate $D-$optimal design problem can be solved by modifications of the vertex-direction algorithms and the multiplicative algorithms (see e.g. [CF95] and [MMTLF07]), but the convergence of these methods is usually slow. Recently, modern mathematical programming algorithms [VBW98, FL00, HJ08, Sag11, ETH12, LP12, Pap12, Sag13] have been gaining in popularity. The idea is to reformulate the optimal design problem under a canonical form that specialized solvers can handle, such as maxdet programs (MAXDET), semidefinite programs (SDP), or second order cone programs (SOCP). The great advantage of these methods is that using a mathematical programming reformulation of the problem, modern software can be used to compute the approximate optimal designs, usually much more rapidly than the classical vertex exchange or multiplicative algorithms. Nevertheless, inclusion of general linear constraints to the mathematical programming characterizations is not completely straightforward. For instance, in a recent paper [Sag11], it has been proved that the $D-$optimal design problem can be solved by SOCP, but, as we show in Section 2, it is valid only for the classical approximate design problem, where w varies in the probability simplex W_Δ. In other words, the solution of the $D-$optimality SOCP of [Sag11], where the constraint $w \in W_\Delta$ is replaced by $w \in W$ for some arbitrary set W, does not necessarily coincide with the design maximizing $\Phi_D(M(w))$ over W.

The main result of this paper is proved in Section 3 and states that the determinant criterion is SOC-representable. More precisely, it is possible to express that (t, w) belongs to the hypograph of $w \rightarrow \Phi_D(M(w))$, i.e. $t^m \leq \det M(w)$, as a set of second order cone inequalities. As a consequence, we obtain an alternative SOCP formulation for $D-$optimality, which remains valid for any weight domain W that can be expressed by SOC inequalities, see Section 3. In particular, we can formulate an MISOCP to compute exact $D-$optimal designs. In Appendix A we prove that other widely used criteria, such as A, G, or $I-$optimality are also SOC-representable. The (MI)SOCPs of this paper are summarized in Table I (page 10).

Recently, much progress has been done in the development of solvers for second order cone programming, when some of the variables are constrained in the integral domain (MISOCP: Mixed Integer Second Order Cone Programming). Thus, the SOCP formulation of $D-$optimality presented in this article allows us to use those specialized codes to solve exact design problems. Compared to the raw branch-and-bound method to compute exact designs proposed by Welch [Wel82], the MISOCP approach is not only easier to implement, but it is also much more efficient. The reason is that specialized solvers such as CPLEX [CPL09] or MOSEK [AJJ+09] rely on branch-and-cut algorithms with sophisticated branching heuristics, and use cut inequalities to separate non-integer solutions. Also, it may be necessary to point out that most solvers handling the former MAXDET formulation of $D-$optimality [VBW98] actually reformulate the problem using semidefinite programming, and there is currently no reliable solver to handle SDPs with integer variables.

We demonstrate the universality of the proposed approach in Section 5 with il-
lustrative examples taken from different application areas of the theory of optimal experimental designs. The key aspects of the MISOPC approach will be emphasized:

1. The possibility to handle any system of linear constraints on the weights.
2. The possibility to compute exact-optimal designs with a proof of optimality.
3. For applications where the computing time must remain short, the MISOPC approach can find quickly a near exact-optimal design, and it gives a lower bound on its efficiency. Moreover this bound is usually much better than the standard bound obtained from the approximate optimal design.

In particular, our algorithm can compute constrained exact optimal designs, a feature out of reach of the standard computing methods, although some authors have proposed heuristics to handle some special cases such as cost constraints [TV04, WSB10]. A notable exception is the recent DQ-optimality approach of Harman and Filova [HF14], a heuristic based on Integer Quadratic Programming (IQP) able to handle the general case of linearly constrained exact designs.

In practice the MISOPC solvers take an input tolerance parameter \(\epsilon > 0 \), and the computation stops when a design \(\mathbf{w}^* \) is found, with a guarantee that no design \(\mathbf{w} \) with value \(\Phi(M(\mathbf{w})) \geq (1 + \epsilon)\Phi(M(\mathbf{w}^*)) \) exists. For \(D \)-optimal block designs, there is a positive value of \(\epsilon > 0 \) for which the design returned is verifiably optimal (see Section 5). Otherwise we can set \(\epsilon > 0 \) to a reasonably small constant (i.e., a tolerance allowing a reasonable computation time), so the design found with the MISOPC approach will have an efficiency guarantee of \((1 + \epsilon)^{-1} \geq 1 - \epsilon \), which is usually a much better efficiency bound than the one based on the comparison with the approximate optimal design. In many situations, the solver is furthermore able to terminate with an optimality status, which means that the branch and bound tree has been completely trimmed and constitutes a proof of optimality. Moreover, it often produces better designs than the standard heuristics (also in the cases when the perfect optimality is not guaranteed) and, perhaps even more importantly, it can be applied under various practical restrictions on the design that are completely out of the scope of applications of the standard methods. Our numerical results show that

(i) the SOCP approach is numerically more stable than the MAXDET programming approach for the case of approximate (i.e., continuous) optimal designs;

(ii) the MISOPC method can find a provably optimal design for many models where the KL-exchange algorithm [AD92] or the DQ-optimality IQP [HF14] misses the optimum;

(iii) the MISOPC approach finds exact optimal designs much faster than the raw branch-and-bound approach originally proposed by Welch [Wel82];

(iv) we can compute exact optimal designs with complicated constraints on the weights representing concrete restrictions that apply to the design of the experiment.

2 Former SOCP formulation of \(D \)-optimality

We first recall the result of [Sag11] about \(D \)-optimality, rewritten with the notation of the present article. Note that \(\|M\|_F := \sqrt{\text{trace} MM^T} \) denotes the Frobenius norm of the matrix \(M \), which also corresponds to the Euclidean norm of the vectorization of \(M \): \(\|M\|_F = \|\text{vec}(M)\| \).

Proposition 2.1 (Former SOCP for \(D \)-optimality [Sag11]). Let \((Z_1, \ldots, Z_s, L, \mathbf{w})\) be
optimal for the following SOCP:

\[
\begin{array}{l}
\max_{Z_i \in \mathbb{R}^{l_i \times m}, L \in \mathbb{R}^{m \times m}, w \in \mathbb{R}^s} \left(\prod_{k=1}^{m} L_{k,k} \right)^{1/m}
\end{array}
\]

s. t.

\[
\begin{array}{l}
\sum_{i=1}^{s} A_i Z_i = L \\
L \text{ is lower triangular} \\
\|Z_i\|_F \leq \sqrt{m} \, w_i \quad \forall i \in [s], \\
w \in \mathcal{W}_\Delta.
\end{array}
\]

Then \(\Phi_D(M(w)) = \det^{1/m} M(w) = \left(\prod_k L_{k,k} \right)^{1/m} \) and \(w \in \mathcal{W}_\Delta \) is optimal for the standard approximate \(D \)-optimal design problem.

If we want to solve a \(D \)-optimal design problem over another design region \(\mathcal{W} \), it is very tempting to replace the last constraint in Problem (4) by \(w \in \mathcal{W} \). However, we show with a small example that this approach does not work. Consider for example the following experimental design problem with three regression vectors in a two-dimensional space: \(A_1 = [1, 0]^T, A_2 = [-\frac{1}{2}, \frac{\sqrt{3}}{2}]^T, A_3 = [-\frac{1}{2}, -\frac{\sqrt{3}}{2}]^T \). For symmetry reasons it is clear that the approximate \(D \)-optimal design (over \(\mathcal{W}_\Delta \)) is \(w_1 = w_2 = w_3 = \frac{1}{3} \), and this is the vector \(w \) returned by Problem (4) indeed. Define now \(\mathcal{W} := \{ w \in \mathbb{R}^3_+ : \sum_{i=1}^{3} w_i = 1, w_1 \geq w_2 + 0.25 \} \). The optimal design over \(\mathcal{W} \) is \(w^* = [0.4583, 0.2083, 0.3333] \), but solving Problem (4) with the additional constraint \(w_1 \geq w_2 + 0.25 \) yields the design \(w = [0.4482, 0.1982, 0.3536] \), which is suboptimal.

We point out that a similar behaviour occurs for the problem of \(c \)-optimality, where the optimality criterion is

\[
\Phi_c : M \to \begin{cases}
1/c^T M^{-1} c & \text{if } c \in \text{range } M; \\
0 & \text{otherwise.}
\end{cases}
\]

The SOCP for \(c \)-optimality (Theorem 3.3 in [Sag11]), which has a geometric interpretation related to Elfving’s theorem, is only valid on the standard simplex domain \(\mathcal{W}_\Delta \). However, an alternative SOCP is provided in Theorem 4.3 of the same paper, in which an arbitrary polyhedral domain \(\mathcal{W} \) can be used (see also the generalization to \(A_K \)-optimality in Section A.1 and its MISOCP formulation in Table 1).

In the present article, we give an alternative SOCP formulation of the \(D \)-optimal problem, which remains valid for any compact design region \(\mathcal{W} \). Moreover, our SOCP handles the more general case of \(D_K \)-optimality. To derive our result, we use the notion of SOC-representability, which we next present.

3 SOC-representability

In this section, we briefly review some basic notions about second order cone representability. A Second Order Cone Program (SOCP) is an optimization problem where a linear function \(f^T x \) must be maximized, among the vectors \(x \) belonging to a set \(S \) defined by second order cone Inequalities, i.e.

\[
S = \{ x \in \mathbb{R}^n : \forall i = 1, \ldots, N_c, \|G_i x + h_i\| \leq c_i^T x + d_i \}
\]

for some \(G_i, h_i, c_i, d_i \) of appropriate dimensions. Optimization problems of this class can be solved efficiently to the desired precision by interior-point techniques, see [BV04].

We now recall the definition of a second order cone representable set, as introduced by Ben-Tal and Nemirovski [BTNS7]:

3 SOC-representability

In this section, we briefly review some basic notions about second order cone representability. A Second Order Cone Program (SOCP) is an optimization problem where a linear function \(f^T x \) must be maximized, among the vectors \(x \) belonging to a set \(S \) defined by second order cone Inequalities, i.e.

\[
S = \{ x \in \mathbb{R}^n : \forall i = 1, \ldots, N_c, \|G_i x + h_i\| \leq c_i^T x + d_i \}
\]

for some \(G_i, h_i, c_i, d_i \) of appropriate dimensions. Optimization problems of this class can be solved efficiently to the desired precision by interior-point techniques, see [BV04].

We now recall the definition of a second order cone representable set, as introduced by Ben-Tal and Nemirovski [BTNS7]:

3 SOC-representability

In this section, we briefly review some basic notions about second order cone representability. A Second Order Cone Program (SOCP) is an optimization problem where a linear function \(f^T x \) must be maximized, among the vectors \(x \) belonging to a set \(S \) defined by second order cone Inequalities, i.e.

\[
S = \{ x \in \mathbb{R}^n : \forall i = 1, \ldots, N_c, \|G_i x + h_i\| \leq c_i^T x + d_i \}
\]

for some \(G_i, h_i, c_i, d_i \) of appropriate dimensions. Optimization problems of this class can be solved efficiently to the desired precision by interior-point techniques, see [BV04].

We now recall the definition of a second order cone representable set, as introduced by Ben-Tal and Nemirovski [BTNS7]:

3 SOC-representability

In this section, we briefly review some basic notions about second order cone representability. A Second Order Cone Program (SOCP) is an optimization problem where a linear function \(f^T x \) must be maximized, among the vectors \(x \) belonging to a set \(S \) defined by second order cone Inequalities, i.e.

\[
S = \{ x \in \mathbb{R}^n : \forall i = 1, \ldots, N_c, \|G_i x + h_i\| \leq c_i^T x + d_i \}
\]

for some \(G_i, h_i, c_i, d_i \) of appropriate dimensions. Optimization problems of this class can be solved efficiently to the desired precision by interior-point techniques, see [BV04].

We now recall the definition of a second order cone representable set, as introduced by Ben-Tal and Nemirovski [BTNS7]:

3 SOC-representability

In this section, we briefly review some basic notions about second order cone representability. A Second Order Cone Program (SOCP) is an optimization problem where a linear function \(f^T x \) must be maximized, among the vectors \(x \) belonging to a set \(S \) defined by second order cone Inequalities, i.e.

\[
S = \{ x \in \mathbb{R}^n : \forall i = 1, \ldots, N_c, \|G_i x + h_i\| \leq c_i^T x + d_i \}
\]

for some \(G_i, h_i, c_i, d_i \) of appropriate dimensions. Optimization problems of this class can be solved efficiently to the desired precision by interior-point techniques, see [BV04].

We now recall the definition of a second order cone representable set, as introduced by Ben-Tal and Nemirovski [BTNS7]:
Definition 3.1 (SOC representability). A convex set $S \subseteq \mathbb{R}^n$ is said to be second order cone representable, abbreviated SOC-representable, if S is the projection of a set in a higher dimensional space that can be described by a set of second order cone inequalities. In other words, S is SOC-representable if and only if there exists $G_i \in \mathbb{R}^{n \times (n+m)}, h_i \in \mathbb{R}^n, c_i \in \mathbb{R}^{n+m}, d_i \in \mathbb{R}$ ($i = 1, \ldots, N_c$), such that

$$x \in S \iff \exists y \in \mathbb{R}^m : \forall i = 1, \ldots, N_c, \quad \left\| G_i \begin{bmatrix} x \\ y \end{bmatrix} + h_i \right\| \leq c_i^T \begin{bmatrix} x \\ y \end{bmatrix} + d_i.$$

An important example of SOC-representable set is the following:

Lemma 3.2 (rotated second order cone inequalities). The set

$$S = \{x \in \mathbb{R}^n, t \in \mathbb{R}, u \in \mathbb{R} : \|x\|^2 \leq tu, \ t \geq 0, u \geq 0\} \subseteq \mathbb{R}^{n+2}$$

is SOC-representable. In fact, it is easy to see that

$$S = \{x \in \mathbb{R}^n, t \in \mathbb{R}, u \in \mathbb{R} : \left\| \frac{2x}{t-u} \right\| \leq t+u\}.$$

The notion of SOC-representability is also defined for functions:

Definition 3.3 (SOC representability of a function). A convex (resp. concave) function $f : S \subseteq \mathbb{R}^n \rightarrow \mathbb{R}$ is said to be SOC-representable if and only if the epigraph of f, $\{(t, x) : f(x) \leq t\}$ (resp. the hypograph $\{(t, x) : t < f(x)\}$), is SOC-representable.

It follows immediately from these two definitions that the problem of maximizing a concave SOC-representable function (or minimizing a convex one) over an SOC-representable set can be cast as an SOCP. It is also easy to verify that sets defined by linear equalities (i.e., polyhedrons) are SOC-representable, that intersections of SOC-representable sets are SOC-representable and that the (pointwise) maximum of convex SOC-representable functions is still convex and SOC-representable.

We next give another example which is of major importance for this article: the geometric mean of n nonnegative variables is SOC-representable.

Lemma 3.4 (SOC-representability of a geometric mean). Let $n \geq 1$ be an integer. The function f mapping $x \in \mathbb{R}^n_+$ to $\prod_{i=1}^n x_i^{1/n}$ is SOC-representable.

For a construction of the SOC representation of f, see [LVB98] or [AG03]. We give below an example in the case $n = 5$: for all $t \in \mathbb{R}^n_+$, $x \in \mathbb{R}_+^5$, we have:

$$t^5 \leq x_1 x_2 x_3 x_4 x_5 \iff t^3 \leq x_1 x_2 x_3 x_4 x_5 t \iff \exists u \in \mathbb{R}_+^5 : \left\{ \begin{array}{l} u_1^2 \leq x_1 x_2, \\
 u_2^2 \leq x_3 x_4, \\
 u_3^2 \leq x_5, \\
 t^2 \leq u_4 u_5 \end{array} \right.$$

and each of these inequalities can be transformed to a standard second order cone inequality by Lemma 3.2.

4 SOC-representability of the D–criterion

The key for the SOC-representation of the D–criterion is a Cholesky decomposition of the information matrix, as given by the following lemma. Note that the lemma is general in the sense that it does not require the estimability conditions to be satisfied.

Lemma 4.1. Let H be an $m \times n$ matrix ($m \leq n$) and let K be an $m \times k$ matrix ($k \leq m$) of full column rank. If $k = m$ let $U = K$ and if $k < m$ let U be a non-singular matrix of the form $[V, K]$, where $V \in \mathbb{R}^{m \times (m-k)}$. Then, there exists a QR-decomposition of $H^T U^{-T} = QR$ satisfying $R_{ii} \geq 0$ for all $i \in [m]$ and

$$\tilde{R}_{ii} = 0 \text{ implies } \tilde{R}_{i1} = \ldots = \tilde{R}_{im} = 0 \text{ for all } i \in [m].$$

(5)
Let L^T_1 be the $k \times k$ upper triangular sub-block of \bar{R} with elements $(L^T_1)_{ij} = \bar{R}_{m-k+i,m-k+j}$ for all $i, j \in [k]$. Then, $C_K(\mathbf{H H}^T) = L^T_1$, that is, L^T_1 is a Cholesky factorization of the information matrix for the linear parametric system given by the coefficient matrix K, corresponding to the moment matrix $\mathbf{H H}^T$.

Proof. It is simple to show that a QR decomposition satisfying \([\mathbf{H H}^T] = \tilde{Q}\tilde{R}\), can be obtained from any QR-decomposition $\mathbf{H}^T \mathbf{U}^{-T} = \tilde{Q}\tilde{R}$, using an appropriate sequence of Givens rotations and row permutations applied on \tilde{R}. Consider the decomposition $\mathbf{H}^T \mathbf{U}^{-T} = \tilde{Q}\tilde{R}$ satisfying \([\mathbf{H H}^T] = \tilde{Q}\tilde{R}\).

Assume that $k < m < n$. Partition the orthogonal matrix \tilde{Q} and the upper triangular matrix \tilde{R} as follows:

$$
\tilde{Q} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix}, \quad \tilde{R} = \begin{bmatrix} L^T_1 & B \quad \tilde{R} \end{bmatrix},
$$

where the block sizes are indicated on the border of the matrices. Let $U^{-1} = [\mathbf{Z}, \mathbf{X}^T]^T$, where X is a $k \times m$ matrix. Note that $[\mathbf{Z}, \mathbf{X}^T]^T K = U^{-1} K = [0, \mathbf{I}_k]^T$, which implies $\mathbf{X} K = \mathbf{I}_k$, i.e., X is a left inverse of K. Define $Y = I_m - K X$. By a direct calculation, we obtain $X H = B^T Q_1^T + \bar{L}_Q^T$ and $Y H = H - K X H = [V, K]^{\mathbf{H}} \tilde{Q}_1^T - K (B^T Q_1^T + \bar{L}_Q^T) = V \bar{L}_Q^T$. Therefore, using the orthogonality of \tilde{Q}, i.e., $Q_1^T Q_1 = I_{m-k}$, $Q_1^T Q_2 = K_k$, $Q_1^T Q_2 = 0$ and a representation of C_K given by [Psh53], Section 3.2., we have

$$
C_K(\mathbf{H H}^T) = X \mathbf{H}^T X^T - X H [B^T Q_1^T + \bar{L}_Q^T] Y H^T X^T = B^T B + L_T L_T^T - (B^T Q_1^T + \bar{L}_Q^T)^T P (Q_1 B + Q_2) = B^T B + L_T L_T^T - (B^T Q_1^T + \bar{L}_Q^T)^T P (Q_1 B + Q_2) = 0
$$

where P is the orthogonal projector on range($H^T Y^T$). Note that \([\mathbf{I}]$ implies range B\) of $Q_1^T \subseteq$ range L_T^T, which together with rank $V = m$ gives range($Q_1 B$) = range($Q_1 L_T^T$), that is, $P Q_1 B = Q_1 B$. Also, $Q_1^T Q_2 = 0$ implies $Y H (Q_1 L_T^T) = 0$, therefore $\text{range}(Q_1 L_T^T) \subseteq \text{Ker}(Y H) = (\text{range}(H^T Y^T))^\perp$, which means $P Q_1 L_T^T = 0$. Using the obtained equalities $P Q_1 B = Q_1 B$, $P Q_1 L_T^T = 0$ and \([\mathbf{I}]$, we obtain the required result $C_K(\mathbf{H H}^T) = L_T L_T^T$.

If $k = m$ or $m = n$, the lemma can be proved in a completely analogous way, treating the matrices Q_1, L_T, B (iff $k = m$) and Q_2 (iff $m = n$) as empty.

The next theorem shows that the block Q_2 and L_2 from the decomposition \([\mathbf{I}]$ can be computed by solving an optimization problem over an SOC-representable set.

Theorem 4.2. Let H be an $m \times n$ matrix ($m \leq n$), let K be an $m \times k$ matrix ($k \leq m$) of full column rank and let L_* be optimal for the following problem:

$$
\max_{\substack{Q \in \mathbb{R}^{m \times k} \\ L \in \mathbb{R}^{m \times k}}} \det L
\quad \text{s.t.} \quad L \text{ is lower triangular}
\quad HQ = KL
\quad \|QE_j\| \leq 1 \quad (j \in [k])
$$

Then, $\Phi_{D|K}(\mathbf{H H}^T) = (\det(L_*))^{2/k}$.

Proof. Consider the QR decomposition $H^T \mathbf{U}^{-T} = \tilde{Q}\tilde{R}$ from the statement of Lemma \([\mathbf{I}]$ and the block partition \([\mathbf{I}]$. We will show that the blocks Q_2, L_2 form an optimal solution of the problem from the theorem.

First, L_2 is clearly lower triangular and, using direct block multiplication together with $Q_2^T Q_2 = I_k$, we can verify that $Q_2^T H^T = L_2^T K$, i.e., $HQ_2 = KL_*$. Second, Q_2 has columns of unit length, which implies $\|Q_2 e_j\| = 1$ for all $j \in [k]$. Therefore, Q_2, L_2
are feasible. By Lemma 4.1, we know that $C_K(HH^T) = L_sL_s^T$, i.e., $(\det(L_s))^{2/k} = \Phi_{D,I,K}(HH^T)$. To conclude the proof of the theorem, we only need to show that any feasible L satisfies $(\det(L))^{2/k} \leq \Phi_{D,I,K}(HH^T)$.

Let Q, L be a feasible pair of matrices. As in the proof of Lemma 4.1 let $U = [V, K]$ be an invertible matrix and let $U^{-1} = [Z^T, X^T]^T$, where X is a $k \times m$ matrix. Obviously, $U^{-1}H = [C^T, D^T]^T$, where $C = ZH$ and $D = XH$, and $[C^T, D^T]^TQ = U^{-1}HQ = U^{-1}KL = [0, I_k]^T \bar{L} = [0, L]^T$, which implies $CQ = 0$ and $DQ = L$. Define the projector $P = I_{m} - C^T(CCT)^{-1}C$, i.e., $P^2 = P$, and observe that $CQ = 0$ entails $PQ = Q$. From the previous equalities and the Cauchy-Schwarz inequality for determinants (e.g., [Seb08], formula 12.5(c)), we have

$$\det(LL^T) = (\det(DQ))^2 = (\det(DPD^T))^2 \leq \det(DPD^T) \det(Q^TQ).$$

Feasibility of Q and the Hadamard determinant inequality (e.g., [Seb08], formula 12.27.) give

$$\det(Q^TQ) \leq \prod_{i=1}^{k} ||(Q^TQ)_{ii}|| = \prod_{i=1}^{k} ||Qe_i||^2 \leq 1.$$

(10)

Combining (9) and (10), we obtain $\det(LL^T) \leq \det(DPD^T)$ and the proof will be complete, if we prove $DPD^T = C_K(HH^T)$.

Note that $I_m = UU^{-1} = [V, K][Z^T, X^T]^T = VZ + KX$, that is, $Y := I_m - KX = VZ$. Moreover, rank $V = m$ implies $\text{range}(HTY^T) = \text{range}(Y^TH^TY^T) = \text{range}(HH^T)$, i.e., the orthogonal projectors $H^TY^T(Y^THHY^T)^{-1}YH$ and $H^TY^T(Z^HY^T)^{-1}ZH$ coincide. Consequently, using Section 3.2., we have

$$C_K(HH^T) = XHH^TX - XHH^TY^T(Y^THHY^T)^{-1}YHHT^TX = XHH^TX - XHH^TZY^T(ZH^T)^{-1}ZH^TZ^T = DD^T - DC^T(CCT)^{-1}CD^T = DPD^T.$$

We next apply Theorem 4.2 to the matrix $H = [\sqrt{w_1}A_1, \ldots, \sqrt{w_s}A_s]$. This will allow us to express $\Phi_{D,I,K}(M(w))$ as the optimal value of an SOCP. Besides, we make a change of variables which transforms the optimization problem into an SOCP where w may play the role of a variable.

Theorem 4.3. Let K be an $m \times k$ matrix ($k \leq m$) of full column rank. For all non-negative weight vectors $w \in \mathbb{R}^+_s$, denote by $OPT(w)$ the optimal value of the following optimization problem, where the optimization variables are $t_{ij} \in \mathbb{R}_+$ ($i \in [s], j \in [k]$), $Z_i \in \mathbb{R}^{l_i \times k}$ ($\forall i \in [s]$), and $J \in \mathbb{R}^{k \times k}$.

Problem:

$$\max_{Z_i, t_{ij}, J} \left(\prod_{j=1}^{k} J_{i,j} \right)^{1/k}$$

S. t.

$$\sum_{i=1}^{s} A_i Z_i = KJ$$

$$J \text{ is lower triangular}$$

$$\|Z_i e_j\|^2 \leq t_{ij}w_i \quad (i \in [s], j \in [k])$$

$$\sum_{i=1}^{s} t_{ij} \leq J_{i,j} \quad (j \in [k])$$

Then, we have

$$OPT(w) = \Phi_{D,I,K}(M(w)).$$

8
Proof. Let $w \in \mathbb{R}_+^s$, and define $H := \begin{bmatrix} \sqrt{w_1} A_1, \ldots, \sqrt{w_s} A_s \end{bmatrix}$. We are going to show that every feasible solution of Problem (11) yields a feasible solution for Problem (8) in which $J_{j,j} = L_{j,j}^2$ for all $j \in [k]$, and vice versa. Hence the optimal value of Problem (11) is:

$$OPT(w) = (\det J)^{1/k} = (\det L)^{2/k} = \Phi_{D|K}(HH^T) = \Phi_{D|K}(M(w)),$$

from which the conclusion follows.

Consider a feasible solution (Z, t_{ij}, J) of Problem (11). We denote by z_{ij} the j^{th} column of Z; $z_{ij} := Z_i e_j$. We now make the following change of variables: denote by Q_i the matrix whose j^{th} column is q_{ij}, where

$$q_{ij} = \begin{cases} \frac{z_{ij}}{\sqrt{w_i} J_{j,j}} & \text{if } w_i > 0 \text{ and } J_{j,j} > 0; \\ 0 & \text{otherwise}, \end{cases}$$

and define Q as the vertical concatenation of the Q_i: $Q = [Q_1^T, \ldots, Q_s^T]^T$. Let $j \in [k]$. If $J_{j,j} = 0$, then $q_{ij} = 0$ for all i, so $\|Qe_j\|^2 = \sum_i \|q_{ij}\|^2 = 0 \leq 1$. Otherwise ($J_{j,j} > 0$), Constraint (11d) together with the nonnegativity of t_{ij} implies $\|q_{ij}\|^2 \leq \frac{t_{ij}}{J_{j,j}}$, and by Constraint (11e), we must have

$$\|Qe_j\|^2 = \sum_i \|q_{ij}\|^2 \leq \sum_i \frac{t_{ij}}{J_{j,j}} \leq 1.$$

Observe that constraints (11d)-(11e) also imply that $z_{ij} = 0$ whenever $w_i = 0$ or $J_{j,j} = 0$, so that for all $i \in [s], j \in [k]$, we can write $z_{ij} = \sqrt{w_i} J_{j,j} q_{ij}$. Now, we define the matrix L columnwise as follows:

$$\forall j \in [k], \quad L_{e,j} := \begin{cases} \frac{J_{e,j}}{\sqrt{J_{j,j}}} & \text{if } J_{j,j} > 0; \\ 0 & \text{otherwise}. \end{cases}$$

Note that L is lower triangular (because so is J, see (11b)). We can now prove that $HQ = KL$, where H has been set to $[\sqrt{w_1} A_1, \ldots, \sqrt{w_s} A_s]$, which we do columnwise. If $J_{j,j} = 0$, then we know that $Qe_j = 0$, so the j^{th} columns of HQ and KL are zero. If $J_{j,j} > 0$, then using (11b) we have

$$K_{e,j} = \frac{K_{e,j}}{\sqrt{J_{j,j}}} = \sum_i A_i z_{ij} \sqrt{\frac{1}{w_i} A_i \|q_{ij}\|^2} = H_{e,j}.$$

Hence, the proposed change of variables transforms a feasible solution (Z, t_{ij}, J) of Problem (11) into a feasible pair (Q, L) for Problem (8), with the property $J_{j,j} = L_{j,j}^2$ for all $j \in [k]$.

Conversely, let (Q, L) be feasible for Problem (8), where H has been set to $[\sqrt{w_1} A_1, \ldots, \sqrt{w_s} A_s]$. For $i \in [s]$, define Z_i as the matrix of size $\ell_i \times k$ whose j^{th} column is $z_{ij} = \sqrt{w_i} L_{j,j} q_{ij}$, and J as the lower triangular matrix whose j^{th} column is $J_{e,j} = L_{j,j} L_{e,j}$. We have $\sum_i A_i Z_i = KJ$, which can be verified columnwise:

$$K_{e,j} = L_{j,j} K_{e,j} = L_{j,j} H_{e,j} = L_{j,j} \sum_i \sqrt{w_i} A_i q_{ij} = \sum_i A_i z_{ij} = \sum_i A_i Z_i e_j.$$

Define further $t_{ij} = L_{j,j}^2 \|q_{ij}\|^2$, so that Constraints (11d) and (11e) hold. This shows that (Z_i, t_{ij}, J) is feasible, with $J_{j,j} = L_{j,j}^2$ for all $j \in [k]$, and the proof is complete.

Corollary 4.4 (SOC-representability of $\Phi_{D|K}$). For any $m \times k$ matrix K of rank k, the function $w \mapsto \Phi_{D|K}(M(w))$ is SOC-representable.

Proof. Problem (11) can be reformulated as an SOCP, since by Lemmas 3.3 and 3.2 the geometric mean in (11a) is SOC-representable, as well as inequalities of the form (11d). Hence the optimal value of (11), $w \mapsto OPT(w)$, is SOC-representable, and we know from Theorem 4.3 that $OPT(w) = \Phi_{D|K}(M(w))$. □
\[\max_{w \in W} \Phi_{D|K}(M(w)) = \max_{w, Z_i, t_{ij}, J} \prod_{j=1}^{k} (J_{ij})^{\frac{1}{2}} \]

s.t. \(\sum_{i \in [s]} A_i Z_i = K J \)

\(J \) is lower triangular

\(||Z_i e_j||^2 \leq t_{ij} w_i \) (\(i \in [s], j \in [k] \))

\(\sum_{i=1}^{s} t_{ij} \leq J_{ij}, \) (\(j \in [k] \))

\(t_{ij} \geq 0 \) (\(i \in [s], j \in [k] \))

\(w \in \mathcal{W} \)

\[\left(\max_{w \in \mathcal{W}} \Phi_{A|K}(M(w)) \right)^{-1} = \min_{w, Y_i, \mu_i} \sum_{i \in [s]} \mu_i \]

s.t. \(\sum_{i \in [s]} A_i Y_i = K \)

\(||Y_i||_F^2 \leq \mu_i w_i \) (\(i \in [s] \))

\(\mu_i \geq 0 \) (\(i \in [s] \))

\(w \in \mathcal{W} \)

\[-\left(\max_{w \in \mathcal{W}} \Phi_{G}(M(w)) \right) = \min_{w, H_i, u_i, \rho} \rho \]

s.t. \(\sum_{j \in [s]} A_j H_i = A_i \) (\(i \in [s] \))

\(||H_i||_F^2 \leq w_j u_i \) (\(i \in [s], j \in [s] \))

\(u_i \geq 0 \) (\(i \in [s], j \in [s] \))

\(\sum_{j \in [s]} u_i \leq \rho \) (\(i \in [s] \))

\(w \in \mathcal{W} \).

Table 1: SOCP formulations of the \(D_K, A_K \) and \(G \)-optimal design problems over a compact weight region \(\mathcal{W} \subseteq \mathbb{R}^+ \). In the above, \(K \) represents a given \(m \times k \) matrix of full column rank. The particular case \(k = 1 \) (where \(c = K \) is a column vector) gives SOCP formulations for the \(c \)-optimal design problem, and the case \(K = I_m \) yields the standard \(D \) and \(A \)-optimality problems. In these SOCPs, the variables \(Z_i \) and \(Y_i \) (\(i \in [s] \)) are of size \(\ell_i \times k \), the variables \(H_i^j \) (\(i \in [s], j \in [s] \)) are of size \(\ell_j \times \ell_i \), \(J \) is of size \(k \times k \), the weight vector is \(w \in \mathcal{W} \), and the variables \(t_{ij} \) (\(i \in [s], j \in [k] \)), \(u_i^j \) (\(i \in [s], j \in [s] \)), \(\mu_i \) (\(i \in [s] \)) and \(\rho \) are scalar.
where e projection that transforms a t be a feasible block design and denote by G m = (1, 2, 3) the first (associated with the block tested pairwise against each other, a design can be represented by a vector of block designs. The optimal design problem consists in choosing which treatments should be tested together in each block. We refer the reader to Bailey and Cameron [BC09] for a comprehensive review on the combinatorics in choosing which treatments should be tested together in each block. W e refer the reader to the example section of the PICOS documentation for a practical implementation of the (MI)SOCPs for optimal design problems. For K = I m, Corollaries 4.4 and 4.5 cover the case of the standard D−optimality. The (MI)SOCP formulations of Problem [1] for D−optimality (Φ = ΦD|K), as well as for the other criteria presented in appendix, are summarized in Table 1.

5 Examples

In this section we will present numerical results for several examples taken from various application areas of the theory of optimal designs. With these examples, we aim to demonstrate the universality of the (MI)SOCP technique for the computation of exact or approximate D− (and A−) optimal designs.

Our computations were worked out on a PC with 4 cores at 3GHz. We have used MOSEK [AJJ+09] to solve the approximate optimal design problems, and CPLEX [CPL09] for the exact optimal design problems (with integer constraints). The solvers were interfaced through the Python package PICOS [Sag12], which allows the users to pass (MI)SOCP models such as those of Table 1 to different solvers in a painless fashion. We refer the reader to the example section of the PICOS documentation for practical implementation of the (MI)SOCPs for optimal design problems.

It is common to compare several designs against each other by using the metric of D−efficiency, which is defined as

\[\text{eff}_D(w) = \frac{\Phi_D(M(w))}{\Phi_D(M(w^*))} = \left(\frac{\det M(w)}{\det M(w^*)} \right)^{1/m}, \]

where w* is a reference design, such that M(w*) is nonsingular. Unless stated otherwise, we always give D−efficiencies relatively to the optimal design, i.e. w* is a solution of Problem [1].

Two-block designs An important category of models studied in the experimental design literature is the class of block designs. Here the effect of t treatments should be compared, but their effects can only be measured inside a number b of blocks, each inducing a block effect on the measurements. The optimal design problem consists in choosing which treatments should be tested together in each block. We refer the reader to Bailey and Cameron [BC09] for a comprehensive review on the combinatorics of block designs.

In the case where the blocks are of size two, i.e. the treatments can be tested pairwise against each other, a design can be represented by a vector w = [w_{1,2}, w_{1,3}, \ldots, w_{1,t}, \ldots, w_{t-1,t}] of size s = (t-1). For i < j, w_{i,j} indicates the number of blocks where treatments i and j are tested simultaneously. The observation matrix associated with the block (i, j) can be chosen to be the column vector of dimension m = (t − 1):

\[A_{i,j} = P(e_i - e_j), \]

(12)

where e_j denotes the jth unit vector in the canonical basis of \(\mathbb{R}^t \) and P is the matrix of projection that transforms a t-dimensional vector v to the vector obtained by keeping the first (t − 1) coordinates of v.

The problem of D-optimality has a nice graph theoretic interpretation: let w ∈ \(\mathbb{N}^s \) be a feasible block design and denote by G the graph with t vertices and an edge of multiplicity w_{i,j} for every pair of nodes (i, j). (If w_{i,j} = 0, then there is no edge from i to j). This graph is called the concurrence graph of the design. We have M(w) = PL(w)P^T, where L(w) := \[\sum_{i,j} w_{i,j} (e_i - e_j)(e_i - e_j)^T \in \mathbb{R}^{m \times m} \] is the Laplacian of G. In other words, M(w) is the submatrix of the Laplacian of G obtained by
removing its last row and last column. So by Kirchhoff’s theorem the determinant of $M(w)$ is the number of spanning trees of G. In other words, the exact D–optimal designs of size N correspond to the graphs with t nodes and N vertices that have a maximum number of spanning trees.

Remark 5.1. There is an alternative parametrisation of two-block designs (see [HF14]). Define the observation matrices by

$$A'_{i,j} = U^T(e_i - e_j),$$

(13)

where the columns of $U \in \mathbb{R}^{t \times (t-1)}$ form an orthonormal basis of Ker 1 (1 is the vector with all components equal to 1), that is, the $t \times t$–matrix $[U, \sqrt{t}1]$ is orthogonal. It can be seen that the $(t-1)$ eigenvalues of $M'(w) = \sum_{i,j} w_{i,j} A'_{i,j} A'^T_{i,j} = U^T L(w) U$ coincide with the $t-1$ largest eigenvalues of $L(w)$, and the smallest eigenvalue of $L(w)$ is 0. So the set of D–optimal designs for the observation models (12) and (13) coincide.

In our experiments, we have used the former model (12), because it involves sparse information matrices and yields more efficient computations.

We have computed some 2-block designs for different values of t and N, with three different algorithms: The MISOCP approach proposed in this paper, the KL-exchange algorithm of Atkinson and Donev [AD92], and the DQ-optimality integer quadratic program of Harman and Filova [HF14]. Results are reported in Table 2. For every algorithm, we have indicated the number of spanning trees in the concurrence graph of the obtained design, as well as its D–efficiency. Note that the D–efficiency is often very high, even when the number of spanning trees is far from the optimum, because of the exponent $\frac{1}{m}$ in the criterion Φ_D defined by (2), which shifts the ratio toward 1.

We next explain the settings used by each of these algorithms for the computation of the results in Table 2.

We used CPLEX to solve the MISOCP. To achieve a faster convergence, linear equalities were added in the SOCP formulation to restrain the search on the space W_{eq} of (almost) equireplicate designs, i.e. designs where the numbers of times that each treatment is tested (the replication numbers) are as similar as possible. In other words, the designs $w \in W_{eq}$ are those designs whose concurrence graph is almost regular, i.e. the difference of degrees between any two nodes is at most 1. The equireplicatedness of designs is a natural property wished by many practitioners, and it has been conjectured that every optimal 2-block-designs is equireplicate for $t-1 \leq N \leq (\frac{3}{2})$. The conjecture is known to hold for $t \leq 11$ [CE05]. In order to demonstrate the flexibility of the MISOCP approach, we have also computed designs of $N = 15$ blocks on $t = 10$ treatments by imposing other kind of constraints on the replication numbers. The concurrence graphs of these constrained optimal designs are displayed in Figure 1.

For the KL-exchange algorithm we have used the procedure described in [AD92]: an initial design with $N^{(2)}$ blocks is first chosen at random, where $N^{(2)}$ itself is randomly taken in the interval $0 \leq N^{(2)} \leq [m/2]$. Then, this design is completed to form a design with N blocks, by using a greedy, forward sequential procedure. Finally, the KL-exchange procedure takes place per se: design points are replaced by other candidate points in a greedy manner until no improvement occurs. The authors of [AD92] suggest to repeat the above procedure several times, and to keep the best design obtained after N^R runs. Two parameters (K and L) are used to specify the size of the pools of candidate points for addition and deletion from the current design. For our experiments, we have indicated the best design after $N^R = 20$ runs of the KL-exchange algorithm, with K and L chosen at random in their admissible range for each run of the algorithm. In the table, we have also displayed the frequency at which the global optimum was found, out of $N^R = 1000$ runs of the exchange algorithm. This table shows that the KL-exchange algorithm is able to find a very efficient design for all the considered values of t and N. However, there are many examples where the exchange algorithm systematically misses the optimum, and cases where the probability to find the optimum in one run is very low.

The Integer Quadratic Programs (IQP) for DQ-optimality were also solved with CPLEX. The authors of [HF14] mention the case of block designs as a pathological
Table 2: Comparison of three algorithms for the computation of exact two-blocks designs, with N blocks on t treatments.

(t, N)	MISOCP	KL-exchange	DQ-opt			
	sp.tr.	eff$_D$	t$_sol$	success	sp.tr.	eff$_D$
(8,12)	392	100.00%	0.36	1.76	392	100.00%
	1280	100.00%	0.42	9.89	1272	99.91%
(8,16)	4096	100.00%	0.37	1.07	3840	99.08%
(9,11)	96	100.00%	2.80	31.82	96	100.00%
(9,13)	560	100.00%	2.44	66.48	553	99.84%
(9,14)	1200	100.00%	1.05	13.40	1168	99.66%
(9,15)	2223	100.00%	0.78	182.38	2176	99.73%
(10,12)	128	100.00%	7.40	430.19	128	100.00%
(10,15)	2000	100.00%	9.07	333.74	1881	99.32%
(10,20)	40960	100.00%	32.24	1182.77	39040	99.80%

(1) Number of spanning trees in the concurrence graph of the design; for the KL exchange algorithm, the value is based on the best design found in $N_R = 20$ independent runs.

(2) $D -$efficiency of the design (relatively to the exact optimal design of size N); for the KL exchange algorithm, the value is based on the best design found in $N_R = 20$ independent runs.

(3) CPU time (sec.) until CPLEX found the optimal solution

(4) CPU time (sec.) until CPLEX closed the gap (proof of optimality, cf. Remark 5.2)

(5) Frequency of success of the KL-exchange algorithm, calculated on 1000 runs

Remark 5.2. Let T_w denote the number of spanning trees of the concurrence graph G, and T^* denote the maximal number of spanning trees for a particular block design problem. By using the fact that $T_w = \det M(w)$ is an integer, it can be seen that a tolerance parameter of

$$\epsilon = \left(1 + \frac{1}{T^*}\right) - 1 \leq \frac{1}{mT^*}$$

ensures that the design w^* returned by the MISOCP approach is (perfectly) optimal. Indeed, every feasible design w must satisfy $\Phi_D(M(w)) < (1 + \epsilon)\Phi_D(M(w^*))$, which gives $T_w < T^* + 1$ by rising to the exponent m. We have used this value of ϵ in our numerical experiments. When the value of T^* is not known, note that an upper bound can be used (e.g. the bound $T^* \leq \left(\frac{2m}{t^2}\right)^{t-1}$ given by the approximate optimal design $w = [N_s^1, \ldots, N_s^T]$).

We have also compared the running time of the MISOCP approach proposed in this
paper with that of the original branch and bound approach of Welch [Wel82]. In this algorithm, continuous relaxations of the design problem with bounds on the weights must be solved at each node of a binary search tree. This is done by a coordinate exchange algorithm. In addition, the algorithm of Welch uses another upper bound based on the Hadamard inequality for positive definite matrices, and it is also possible to take into account the spectral bound of Ko, Lee, and Wayne [KLW98]. In our experiments, the use of this spectral bound did not seem to improve our computation times. Moreover, we point out that it would be possible to use both the Hadamard and the spectral bounds in conjunction with the proposed MISOCP formulation, by using solver callbacks which allow the user to interact with the branch-and-cut process.

The MISOCP approach also relies on a branch-and-bound procedure, but additional cut inequalities are automatically added by the solver to separate non-integer solutions. Another important difference between the two approaches resides in the branching decisions: high-quality integer programming solvers implement sophisticated heuristics to choose the next variable to branch on, which can considerably reduce the computation time.

The graphics of Figure 2 show the evolution of the best lower and upper bounds with the CPU time in seconds, for \(t = 7, N = 12 \) (left) and \(t = 9, N = 14 \) (right). For the latter case, we have used a log scale for the time, and we have included the bounds for the MISOCP with additional constraints forcing the design to be equireplicate. The y-axis is scaled relatively to the optimum \(\Phi_D(M(w^*)) \), so that at a given point in time, the ratio between the lower and the upper bounds can be interpreted as a guarantee of \(D \)-efficiency for the best design found so far. For both instances, the MISOCP is much faster (by two orders of magnitude) to find the optimal solution: for \((t, N) = (7, 12) \), the lower bounds reach the optimum after 1.26s (MISOCP) vs. 357s (B&B), and for \((t, N) = (9, 14) \) after 15.57s (MISOCP) vs. 841s (B&B). The MISOCP was also much quicker to provide a proof of optimality: for \((t, N) = (7, 12) \), the lower and upper bounds met after 53s (MISOCP) vs. 734s (B&B), and for \((t, N) = (9, 14) \) the optimality was proved after 179s by the MISOCP while the branch and bound algorithm of Welch still had a gap of 0.2% after 1500s. Note that the addition of constraints to force the design to be equireplicate drastically reduces the computation time (optimality was proved in the class of equireplicate designs after 13.4s).

For completeness, we have also tried to use the MAXDET programming approach in conjunction with the branch and bound algorithm implemented in YALMIP [Lö04]. For the case of \(t = 7 \) treatments and \(N = 12 \) blocks, it took more than 2 hours to close the gap (vs. 53s for the MISOCP).

Block designs with other optimality criteria Another meaningful criterion for block designs is \(A \)-optimality. For a block design \(w \in \mathbb{N}_0^t \), the quantity \(R_{i,j} := (e_i - e_j)^T L(w)(e_i - e_j) \) is proportional to the variance of the best estimator (BLUE) for the difference of effects of treatments \(i \) and \(j \). The \(A \)-optimal design for the model (13) is known to minimize the average pairwise variance \(s^{-1} \sum_{i<j} R_{i,j} \) of the estimators of differences in treatment effects (see e.g. [BCO09]). In other words, in block designs with model (13) the concepts of \(A \)- and \(I \)-optimality coincide (see Appendix A.3).

The \(A \)-optimal design also has a nice graph theoretic interpretation: consider the concurrence graph \(G \) of a design \(w \) as an electric circuit whose each edge represents a unit resistor. Then, the quantity \(R_{i,j} \) is the effective resistance between the poles \(i \) and \(j \) of the circuit. An \(A \)-optimal design hence connects the vertices so as to minimize the average pairwise resistance of the electrical network. Similarly, a \(G \)-optimal design minimizes the largest effective resistance between 2 nodes of the network.

As for \(D \)-optimal designs, it is possible to use the sparse matrices of model (12) for improved performance (see Remark 5.1). Indeed, it can be seen that \(R_{i,j} = A_{i,j}^TM(w)A_{i,j} = A_{i,j}^TM'(w)^{-1}A_{i,j} \), by using properties of the Moore-Penrose inverse \(L(w)^{-1} \), see [BCO09]. So it is straightforward that \(G \)-optimal designs coincide for models (12) and (13). This is not true for \(A \)-optimal designs. However, the previous equality shows that \(A \)-optimal block designs are still \(I \)-optimal in the model (12), that
Note that these three designs are distinct (the concurrence graphs are not isomorphic), and the G–optimal design contains duplicated trials. The A and D–optimal designs have mutual efficiencies of $\approx 100\%$ (see Table 3). In contrast, note that the D– and G–optimal designs only differ in one edge, and so their mutual efficiencies are close to 100% (see Table 3). These designs were found after a CPU time of respectively 0.42s, 1.39s and 38.99s for the D–optimal design, for the branch and bound and MISOCP approaches.

Figure 2: Evolution of the lower and upper bounds with time for two instances of optimal block design, for the branch and bound and MISOCP approaches.

Locally D–optimal design in a study of chemical kinetics Another classical field of application of the theory of optimal experimental designs is the study of chemical kinetics. The goal is to select the points in time at which a chemical reaction should be observed, in order to estimate the kinetic parameters $\theta \in \mathbb{R}^m$ of the reaction (rates, orders,...). The measurements at time t are of the form $y_t = \eta_t(\theta) + \epsilon_t$, where $\eta_t(\theta)$ is the expected response at time t given θ.
Figure 3: Concurrence Graphs of the D_-, A- and G-optimal designs for $t = 8$ treatments and $N = 14$ blocks.

Design	D-optimal	A-optimal	G-optimal
D-efficiency	100%	99.91%	96.25%
A-efficiency	99.92%	100%	93.26%
G-efficiency	88.39%	92.92%	100%

Table 3: Efficiencies of the A, D, and G-optimal block designs for $(t, N) = (8, 14)$.

where $\eta_t(\theta) = [\eta_1^t, \ldots, \eta_k^t]^T$ is the vector of the concentrations of k reactants at time t and ϵ_t is a random error. The kinetic models are usually given as a set of differential equations, which can be solved numerically to find the concentrations $\eta_t(\theta)$ over time.

Unlike the linear model described in the introduction of this paper, in chemical kinetics the expected measurements $E[y_t] = \eta_t(\theta)$ at time t depend nonlinearly on the vector θ of unknown parameters of the reaction. So a classical approach is to search for a locally optimal design using a prior estimate θ_0 of the parameter, i.e. a design which would be optimum if the true value of the parameters was θ_0. To do this, the observation equations are linearized around θ_0, so in practice we replace the observation matrix A_t of each individual trial at time t by its sensitivity at θ_0, which is defined as:

$$F_t := \frac{\partial \eta_t(\theta)}{\partial \theta} \bigg|_{\theta=\theta_0} = \begin{pmatrix} \frac{\partial \eta_1^t}{\partial \theta_1} & \cdots & \frac{\partial \eta_k^t}{\partial \theta_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial \eta_1^t}{\partial \theta_m} & \cdots & \frac{\partial \eta_k^t}{\partial \theta_m} \end{pmatrix} \in \mathbb{R}^{m \times k}.$$

A classical example is presented in [AD92]: the study of two consecutive reactions

$$A \xrightarrow{\theta_1} B \xrightarrow{\theta_2} C.$$

The chemical reactions are assumed to be of order θ_3 and θ_4 respectively, so the concentrations of the reactants are determined by the differential equations

$$\begin{align*}
\frac{d[A]}{dt} &= -\theta_1 [A]^{\theta_3} \\
\frac{d[B]}{dt} &= \theta_1 [A]^{\theta_3} - \theta_2 [B]^{\theta_4} \\
\frac{d[C]}{dt} &= \theta_2 [B]^{\theta_4},
\end{align*} \tag{14}$$

together with the initial condition $([A], [B], [C])|_{t=0} = (1, 0, 0)$. These equations can be differentiated with respect to $\theta_1, \ldots, \theta_4$, which gives another set of differential equations that determines the elements $\frac{\partial \eta_i^t}{\partial \theta_j}$ of the sensitivity matrices.

We now assume that measurements can be performed at each $t \in X = \{0.2, 0.4, \ldots, 19.8, 20\}$, and that the observed quantities are the concentrations of the reactants A and C, i.e. $k = 2$ and $\eta_t^T = ([A](t), [C](t))$. We have
solved numerically the differential equations governing the entries of \((F_t)_{t \in X}\) for \(\mathbf{\theta}_0 := [1, 0.5, 1, 2]^T\). These sensitivities are plotted in Figure 4.

We have used the MISOCOP method to compute the exact \(D\)-optimal design of size \(N = 5\) for this problem (for the prior estimate \(\mathbf{\theta}_0\)). The optimum consists in taking 1 measurement at \(t = 0.8\), 3 measurements at \(t = 2.8\), and 1 measurement at \(t = 16.6\). In comparison, the exchange algorithm (using the same settings as described for the block designs, with \(N^R = 100\)) found a design with 1 measurement for each \(t \in \{0.8, 3.4, 17.4\}\), and 2 measurements at \(t = 2.6\). This design is of course very close to the optimum (its \(D\)-efficiency is 98.42\%), but we point out that the true optimum could not be found by the exchange algorithm, even with a very large number of trials. We have run the exchange procedure \(N^R = 5000\) times which took 100s and returned a design of \(D\)-efficiency 99.42\%, while the MISOCOP found a provable optimal design after 25s (CPLEX returned the status MIP_OPTIMAL).

We have plotted these designs in Figure 5 together with the concentrations of the reactants over time when we assume \(\mathbf{\theta} = \mathbf{\theta}_0\). On the figure, we have also plotted other designs which can be of interest for the practitioners. For example, it might be natural to search designs where at most 1 measurement is taken at a given point in time. The exchange algorithm can also be adapted to the case of binary designs (by rejecting candidate points that are already in the support of the design during the exchange procedure). It returned a design of \(D\)-efficiency 98.97\%. The last case we have considered is the following: assume that the experimenter must wait at least one second after a measurement before performing another measurement. This constraint can be modelled as a set of inequalities that can be added in the MISOCOP formulation:

\[
\{ w_{0.2} + w_{0.4} + w_{0.6} + w_{0.8} + w_{1.0} \leq 1, \ w_{0.4} + w_{0.6} + w_{0.8} + w_{1.0} + w_{1.2} \leq 1, \\
\ldots, \ w_{19.2} + w_{19.4} + w_{19.6} + w_{19.8} + w_{20.0} \leq 1 \}
\]

This model was solved in 42s with CPLEX, and the corresponding optimal design is depicted on the last row of Figure 5. We do not know any other algorithm which can handle this kind of exact design problem with several linear constraints.

Figure 4: Sensitivities of the measurements (entries of \(F_t\)) plotted against time for \(\mathbf{\theta}_0 = [1, 0.5, 1, 2]^T\).
Constrained designs for the quadratic model with two factors Consider the quadratic regression model on a (18×3)-grid in the plane:

\[
y(x) = \theta_1 + \theta_2 x_1 + \theta_3 x_2 + \theta_4 x_1^2 + \theta_5 x_2^2 + \theta_6 x_1 x_2 + \epsilon(x) \\
x = [x_1, x_2]^T \in \mathcal{X} = \{94.9, 95.1, 95.2, \ldots, 96.6, 96.7\} \times \{0, 10, 20\}.
\]

This model was used in [MMTLF07] for the sintering of uranium pellets, and it served as an example for constrained DQ-optimality in [HF14]. The explanatory variables represent the “initial density” (x_1) and the “percentage of additive U_3O_8” (x_2). The nature of the experiment requires marginal constraints on the variable x_1. More precisely, the numbers of trials under the 18 levels of the variable x_1 are restricted to 1, 3, 14, 59, 52, 29, 25, 32, 36, 29, 36, 38, 12, 10, 8, 2, 3, 3, which amounts to the total of $N = 392$ trials. If we denote the levels of the factor x_1 by L_1, \ldots, L_{18}, and the required marginal sums by a_1, \ldots, a_{18}, the constraints have the form

\[
w \in \mathcal{W} := \{w \in \mathbb{N}_0^2 : \forall j \in \{1, \ldots, 18\}, \sum_{x_2 \in \{0,10,20\}} w(L_j, x_2) = a_j\}.
\]

We first say a word about the computation of an approximate D–optimal design for Model (15), i.e. when the integer constraint on $w(x_1, x_2)$ is relaxed. Martín-Martín et. al. [MMTLF07] have adapted the multiplicative algorithm to compute marginally constrained approximate optimal designs. Their algorithm finds an optimal design in 0.08 minute. In comparison, MOSEK solved the SOCP of Table 1 in 0.04 second. The SOCP approach has also been compared to the widespread MAXDET programming approach [VBW98]. In a first attempt, we have tried to solve the MAXDET SDP with SeDuMi [Stu99] interfaced through YALMIP [Lö04], by using the natural observation matrices $A(x_1, x_2) = [1, x_1, x_2, x_1^2, x_2^2, x_1 x_2]^T$. The solver ran into numerical problems and was not able to find a solution. However, it is well known that the D–optimal
The authors of [HF14] have used the DQ-optimality method to compute an efficient design. Their design w_{DQ} computed in [HF14] ($\text{eff}_{D}(w_{DQ}) \simeq 96.75\%$); (b) D–optimal design w_{D} computed by MISOCP ($\text{eff}_{D}(w_{D}) \geq 99.998\%$); (c) A–optimal design w_{A} computed by MISOCP ($\text{eff}_{D}(w_{A}) \simeq 98.24\%$).

design problem is invariant to linear transformations of the parameter, hence we can shift the regression domain X to the regular 18×3 grid X' over $[-1,1] \times [-1,1]$. This has the effect to scale the D–criterion Φ_{D} by a constant multiplicative factor, so the D–optimal design remains the same. The transformed problem (over X') has better numerical properties, and SeDuMi was able to find a solution in 0.3s. A similar behaviour was observed with the CVXOPT solver [DV06], interfaced through PICOS: CVXOPT failed to solve the original problem over X, but found a solution of the transformed problem after 0.14s. In our opinion, this example shows that the SOCP approach is not only faster than the MAXDET approach for the computation of approximate optimal designs, but also numerically more stable.

Concerning the exact design problem, we could solve the MISOCP of Table IV in 1.41s for a tolerance parameter $\epsilon = 10^{-4}$. In [HF14], another illustrative example with an additional cost constraints is considered. Here it is assumed that 1% of the additive costs one unit, and a total budget of 1965 price units is allowed:

$$w \in \mathcal{W} := \left\{ \begin{array}{l} w \in \mathbb{N}_{0}^{X} : \forall j \in \{1, \ldots, 18\}, \sum_{x \in \{0,10,20\}} x w(L_{j}, x) = a_{j}, \\
\sum_{j=1}^{18} 10 w(L_{j}, 10) + 20 w(L_{j}, 20) \leq 1965. \end{array} \right\} \quad (16)$$

The authors of [HF14] have used the DQ-optimality method to compute an efficient design. Their design w_{DQ} is plotted in Figure 6(a) and has a D–efficiency of 96.68% relatively to the continuous optimum. We have computed an exact de-
sign by using the MISOCP approach and a tolerance parameter of $\epsilon = 10^{-4}$ (Figure 6(b)). This took 1.55s with CPLEX. This design w_D achieves a criterion value of $\Phi_D(M(w_D)) = 62.1898$, and CPLEX gives us a proof that every feasible design w must satisfy $\Phi_D(M(w)) < 62.1909$, which is a better bound that the one obtained from the approximate optimal design \tilde{w}: $\Phi_D(M(\tilde{w})) = 62.237$. Indeed, this bound shows that $\text{eff}_D(w_D) \geq 99.998\%$, while the approximate design only gives $\text{eff}_D(\tilde{w}) \geq 99.92\%$. Nevertheless we point out that CPLEX was not able to find a design with a tolerance parameter of $\epsilon = 10^{-5}$ after two hours of computation, showing the limit of the MISOCP approach when a formal proof of optimality is needed. To illustrate the universality of the MISOCP method, we have also computed an exact A–optimal design for this problem (up to $\epsilon = 10^{-4}$). The solution is depicted in Figure 6(c) and was found after 10.84s with CPLEX. This design w_A has a D–efficiency of approximately 98.24% (as compared to w_D or the upper bound 62.1909).

References

[AD92] A.C. Atkinson and A.N. Donev. Optimum Experimental Designs, volume 8. Oxford Statistical Science Series, 1992.

[AG03] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical programming, 95(1):3–51, 2003.

[AJJ+09] E.D. Andersen, B. Jensen, J. Jensen, R. Sandvik, and U. Worsøe. Mosek version 6. Technical report, Technical Report TR–2009–3, MOSEK, 2009.

[BC09] RA Bailey and Peter J Cameron. Combinatorics of optimal designs. Surveys in Combinatorics, 365:19–73, 2009.

[BTN87] A. Ben-Tal and A. Nemirovski. Lectures on modern convex optimization: analysis, algorithms, and engineering applications, volume 2. Society for Industrial Mathematics, 1987.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[CE05] A. Chen and A.H. Esfahanian. A demography of t-optimal (n, m) graphs where n <= 12. In AMCS, pages 121–127, 2005.

[CF95] D. Cook and V. Fedorov. Constrained optimization of experimental design. Statistics, 26:129–178, 1995.

[CPL09] IBM ILOG CPLEX. V12. 1 user’s manual for cplex. Technical report, International Business Machines Corporation, 2009.

[CT80] R. D. Cook and L.A. Thibodeau. Marginally restricted d-optimal designs. Journal of the American Statistical Association, 75(370):366–371, 1980.

[DV06] J. Dahl and L. Vandenberghe. Cvxopt: A python package for convex optimization. In Proc. Eur. Conf. Op. Res, 2006.

[Fed72] V.V. Fedorov. Theory of optimal experiments. New York : Academic Press, 1972. Translated and edited by W. J. Studden and E. M. Klimko.

[FL00] V. Fedorov and J. Lee. Design of experiments in statistics. In H.Wolkowicz, R.Saigal, and L.Vandenberghe, editors, Handbook of semidefinite programming, chapter 17. Kluwer, 2000.

[FTH12] L. Filová, M. Trnovská, and R. Harman. Computing maximin efficient experimental designs using the methods of semidefinite programming. Metrika, 75(5):799–719, 2012.

[Hai87] L.M. Haines. The application of the annealing algorithm to the construction of exact optimal designs for linear–regression models. Technometrics, 29(4):439–447, 1987.

[Har14] R. Harman. Multiplicative methods for computing d-optimal stratified designs of experiments. Journal of Statistical Planning and Inference, 146:82 – 94, 2014.

[HF14] R. Harman and L. Filová. Computing efficient exact designs of experiments using integer quadratic programming. Computational Statistics & Data Analysis, 71:1159 – 1167, 2014.
L. Vandenberghe, S. Boyd, and S. Wu. Determinant maximization with linear matrix inequality constraints. *SIAM Journal on Matrix Analysis and Applications*, 19:499–533, 1998.

W.J. Welch. Branch-and-bound search for experimental designs based on d optimality and other criteria. *Technometrics*, 24(1):41–48, 1982.

S.E. Wright, B.M. Sigal, and A.J. Bailer. Workweek optimization of experimental designs: exact designs for variable sampling costs. *Journal of agricultural, biological, and environmental statistics*, 15(4):491–509, 2010.

H.P. Wynn. The sequential generation of D-optimum experimental designs. *Annals of Mathematical Statistics*, 41:1655–1664, 1970.

Y. Yu. Monotonic convergence of a general algorithm for computing optimal designs. *The Annals of Statistics*, 38(3):1593–1606, 2010.
A Other optimality criteria

A.1 A_K–optimality

Another widely used criterion in optimal design is A–optimality, which is defined through

$$
\Phi_A : M \to \begin{cases}
(\text{trace } M^{-1})^{-1} & \text{if } M \text{ is nonsingular;} \\
0 & \text{otherwise.}
\end{cases}
$$

More generally, it is possible to use the criterion of A_K–optimality if the experimenter is interested in the estimation of the parameter subsystem $\vartheta = K\theta$:

$$
\Phi_{A|K} : M \to \begin{cases}
(\text{trace } K^T M^{-1} K)^{-1} & \text{if range } K \subseteq \text{range } M; \\
0 & \text{otherwise.}
\end{cases}
$$

Here M^- denotes a generalized inverse of M, see the discussion following Eq. (3) in the introduction. For consistency we adopt the convention $\text{trace } K^T M^{-1} K := +\infty$ whenever the range inclusion condition is not satisfied. Note that $\Phi_{A|K}$ coincides with Φ_A if $K = I_m$ and $\Phi_{A|K}$ reduces to the criterion of c–optimality when $K = c$ is a column vector.

The function $w \to \text{trace } K^T M(w)^-K$ was shown to be SOC-representable in [Sag11]. This fact has not been stated in those terms in this article, but can be obtained by following the first steps of the proof of Theorem 4.3 of [Sag11]. We give below a short proof of this result for completeness.

Proposition A.1. Let K be an $(m \times k)$–matrix, and let $w \in \mathbb{R}^k_+$ be a vector of design weights. Then,

$$
\text{trace } K^T M(w)^-K = \min_{\mu \in \mathbb{R}^k_+, Y_i \in \mathbb{R}^{\ell_i \times k}} \sum_{i \in [s]} \mu_i
$$

s.t.

$$
\sum_i A_i Y_i = K \\
\|Y_i\|_F^2 \leq w_i \mu_i.
$$

Proof. We first handle the case where the columns of K are included in the range of $M(w)$, so that $\text{trace } K^T M(w)^-K < \infty$. A well known consequence of the Gauss-Markov theorem is that the variance-covariance matrix of the best linear unbiased estimator of $K^T \theta$ is proportional to $K^T M(w)^-K$. More precisely, if $I \subseteq [s]$ denotes the subset of indices i such that $w_i > 0$, we have:

$$
K^T M(w)^-K = \min_{(Y_i)_{i \in I}} \sum_{i \in I} \frac{Y_i^T Y_i}{w_i}
$$

s.t.

$$
\sum_{i \in I} A_i Y_i = K,
$$

where the variables Y_i ($i \in I$) are of size $\ell_i \times k$, and the minimum is taken with respect to the Löwner ordering of $(k \times k)$–symmetric matrices (see e.g. Pukelsheim [Puk93]). The equality of the proposition is then simply obtained by taking the trace, and by introducing auxiliary variables $\mu \in \mathbb{R}^s_+$ and $Y_i \in \mathbb{R}^{\ell_i \times k}$ for all $i \in [s] \setminus I$, that satisfy

$$
\forall i \in [s], \quad \left\{ \begin{array}{ll}
\mu_i \geq \frac{\text{trace } Y_i^T Y_i}{w_i} & \text{if } w_i > 0; \\
\mu_i = 0 & \text{otherwise,}
\end{array} \right.
$$

and $Y_i = 0 \in \mathbb{R}^{\ell_i \times k}$ for $i \notin I$.

Assume now that a column of K does not lie in the range of the singular information matrix $M(w)$, which is also the range of the matrix $[A_{i_1}, \ldots, A_{i_q}]$, where $I = \{i \in [s] : w_i > 0\} = \{i_1, i_2, \ldots, i_q\}$. Then, the equation $\sum_{i \in I} A_i Y_i = K$ has no solution $(Y_{i_1}, \ldots, Y_{i_q})$, and so the SOCP of the proposition has no feasible solution, which implies that its optimal value is $+\infty$. □
Corollary A.2. Let K be an $m \times k$ matrix. The convex function $f : w \rightarrow \text{trace } K^T M(w)^{-1} K$, which maps \mathbb{R}^+ onto $\mathbb{R} \cup \{+\infty\}$, is SOC-representable.

The reformulation of Problem (1) for the criterion $\Phi = \Phi_{A|K}$ as an (MI)SOCP is indicated in Table 1.

Remark A.3 (The case of c-optimality). The case of c-optimality arises as a special case of both A_K and D_K-optimality when the matrix $K = c \neq 0$ is a column vector ($k = 1$). In this situation, the reader can verify that the two SOCP formulations (for $\Phi_{A|c}$ and $\Phi_{D|c}$) are equivalent, which can be verified by the change of variables: $Y_i = J_{1,1}^{-1}Z_i$, $\mu_i = J_{1,1}^{-1}t_{1,1}^\top$ (note that here the matrix J is of size 1, i.e. a scalar).

We next show how Proposition A.1 can be used to obtain an SOC-representation of several other criteria, namely for G and I-optimality.

A.2 G-optimality

A criterion closely related to D-optimality is the criterion of G-optimality,

$$
\Phi_G : M \rightarrow -\max_{i \in [s]} \text{trace } A_i^T M^{-1} A_i.
$$

In the common case of single-response experiments for linear models, the matrices A_i are column vectors, and the scalar $\sigma^2 A_i^T M(w)^{-1} A_i$ represents the variance of the prediction $\hat{y}_i = A_i^\top \hat{\theta}$. Hence G-optimality seeks at minimizing the maximum variance of the predicted values $\hat{y}_1, \ldots, \hat{y}_s$.

The G and D-optimality criteria are related to each other by the celebrated equivalence theorem of Kiefer and Wolfowitz [KW60], which has been generalized to the case of multivariate regression ($\ell_i > 1$) by Fedorov in 1972. We give below a version of this theorem for the case of a finite design space $X \equiv [s]$:

Theorem A.4 (Equivalence Theorem [Fed72]). Assume that the matrix $A = [A_1, \ldots, A_s] \in \mathbb{R}^{m \times l}$ contains m independent vectors among its columns. Then the following statements are equivalent:

(i) The design w maximizes $\Phi_D(M(w))$ over W_Δ.

(ii) The design w maximizes $\Phi_G(M(w))$ over W_Δ.

(iii) For all $i \in [s]$, $\text{trace } A_i^T M(w)^{-1} A_i \leq m$.

Moreover, if the design $w^* \in W_\Delta$ is D-optimal, then the bound of (iii) is attained at the support points of w^*:

$$
w_i^* > 0 \Rightarrow \text{trace } A_i^T M(w^*)^{-1} A_i = m.
$$

In other words, the D- and G-optimal designs coincide when the weight domain W is the probability simplex W_Δ. However, exact G-optimal designs do not necessarily coincide with their D-optimal counterpart. In a recent article [RJBM10], the Brent’s minimization algorithm has been proposed to compute near exact G-optimal factorial designs. But in general, we do not know any standard algorithm for the computation of exact G-optimal or G-optimal designs over arbitrary weight domains W that are defined by a set of linear inequalities.

We know from Corollary A.2 that the convex functions $f_i : w \rightarrow \text{trace } A_i^T M(w)^{-1} A_i$, are SOC-representable, and hence their maximum is also convex and SOC-representable. An (MI)SOCP formulation of Problem (1) for the criterion $\Phi = \Phi_G$ is indicated in Table 1. For the case where the weight domain W is the probability simplex W_Δ, it gives a new alternative SOCP formulation for D-optimality. Note however that in this situation, the SOCP formulation [Sag11] for D-optimality is usually more compact (i.e., it involves less variables and less constraints) than the G-optimality SOCP of Table 1.
Another widely used criterion is the one of I–optimality (or V–optimality). Here, the criterion is the average of the variances of the predicted values y_1, \ldots, y_s:

$$\Phi_I : M \rightarrow -\frac{1}{s} \sum_{i \in [s]} \text{trace} A_i^T M^{-1} A_i.$$

In fact, this criterion coincides with the $\Phi_{A_{\Gamma}}K$ criterion, by setting K to any matrix of full column rank satisfying $KK^T = \frac{1}{s} \sum_{i=1}^{s} A_i A_i^T$ (see e.g. §9.8 in [Puk93]). Hence Φ_I–optimal designs can be computed by SOCP. Note that there is also a weighted version of I–optimality, which can be reduced to an A_{Γ}–optimal design problem in the same manner.