THE MOST MASSIVE ULTRA-COMPACT DWARF GALAXY IN THE VIRGO CLUSTER

Chengze Liu1,2, Eric W. Peng3,14,16, Elisa Toloba5,6, J. Christopher Mihos7, Laura Ferrarese8, Karla Alamo-Martínez9,10,14,15, Hong-Xin Zhang11,9,10,15, Patrick Côté9, Jean-Charles Cuillandre12, Emily C. Cunningham3,16, Puragra Guhathakurta5, Stephen Gwyn8, Gregory Herczeg4, Sungsoon Lim3,14, Thomas H. Puizia9, Joel Roediger1, Rubén Sánchez-Janssen8, and Jun Yin13

1 Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Key Lab for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai 200240, China
3 Department of Astronomy, Peking University, Beijing 100871, China; peng@pku.edu.cn
4 Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China
5 UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
6 Texas Tech University, Physics Department, Box 41051, Lubbock, TX 79409-1051, USA
7 Department of Astronomy, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106, USA
8 Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC V9E 2E7, Canada
9 Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, 7820436 Macul, Santiago, Chile
10 Chinese Academy of Sciences South America Center for Astronomy, Camino El Observatorio #1515, Las Condes, Santiago, Chile
11 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
12 CEA/IRFU/SAp, Laboratoire AIM Paris-Saclay, CNRS/INSU, Université Paris Diderot, Observatoire de Paris, PSL Research University, F-91191 Gif-sur-Yvette Cedex, France
13 Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China

Received 2015 July 20; accepted 2015 August 26; published 2015 October 2

ABSTRACT

We report on the properties of the most massive ultra-compact dwarf galaxy (UCD) in the nearby Virgo Cluster of galaxies using imaging from the Next Generation Virgo Cluster Survey and spectroscopy from Keck/DEIMOS. This object (M59-UCD3) appears to be associated with the massive Virgo galaxy M59 (NGC 4621), has an integrated velocity dispersion of 78 km s−1, a dynamical mass of $3.7 \times 10^9 M_\odot$, and an effective radius (R_e) of 25 pc. With an effective surface mass density of $9.4 \times 10^4 M_\odot$ kpc$^{-2}$, it is the densest galaxy in the local universe discovered to date, surpassing the density of the luminous Virgo UCD, M60-UCD1. M59-UCD3 has a total luminosity of $L_e = -14.2$ mag, and a spectral energy distribution consistent with an old (14 Gyr) stellar population with [Fe/H] = 0.0 and $[\alpha/Fe] = +0.2$. We also examine deep imaging around M59 and find a broad low surface brightness stream pointing toward M59-UCD3, which may represent a tidal remnant of the UCD progenitor. This UCD, along with similar objects like M60-UCD1 and M59cO, likely represents an extreme population of tidally stripped galaxies more akin to larger and more massive compact early-type galaxies than to nuclear star clusters in present-day dwarf galaxies.

Key words: galaxies: clusters: individual (Virgo) – galaxies: dwarf – galaxies: evolution – galaxies: individual (M59) – galaxies: nuclei – galaxies: star clusters: general

1. INTRODUCTION

The classic separation between galaxies and star clusters based on properties such as size and luminosity has become increasingly blurred since the discovery of a family of compact stellar systems (Hilker et al. 1999; Drinkwater et al. 2000) that are intermediate between compact elliptical galaxies (e.g., M32) and the most massive globular star clusters. These “ultra-compact dwarfs” (UCDs), or “dwarf-globular transition objects” (DGTs; Haşegan et al. 2005), have sizes 10 < $r_h < 100$ pc and luminosities of $M_V < -9$ mag, and are of indeterminate origin. Their properties are similar to both the nuclei of low-mass galaxies (Georgiev & Böker 2014), and to massive globular clusters (GCs), suggesting possible connections to both of those populations (see, e.g., Brodie et al. 2011; Norris et al. 2014; Zhang et al. 2015 for a review of current ideas). UCDs have so far been found mostly in dense environments, at the centers of galaxy clusters, or near massive galaxies, implying that environmental effects, such as tidal stripping, may play an important role in their formation (e.g., Bekki et al. 2003; Pfeffer & Baumgardt 2013). It is also possible that UCDs formed as compact galaxies at early times when the universe was much denser (Milosavljević & Bromm 2014), or are simply the massive extension of the GC population (Mieske et al. 2002, 2012), although UCD kinematics show that the latter is probably not the case in M87 (Zhang et al. 2015).

In recent years, two very massive UCDs have been discovered in the nearby Virgo Cluster. These UCDs, M60-UCD1 (Strader et al. 2013, hereafter S13) and M59cO (Chilingarian & Mamon 2008, hereafter CMO8) are among the densest stellar systems in the local universe, comparable to the densest stellar nuclei of local galaxies. M60-UCD1 had, up until now, the highest density of any known galaxy. The recent discovery of a massive black hole in M60-UCD1 (Seth et al. 2014) raises the possibility that UCDs could be a common host of galactic nuclear black holes (Mieske et al. 2013; although not necessarily ubiquitous, cf. Frank et al. 2011). The black hole in M60-UCD1 has a high mass fraction (∼0.15), two orders of magnitude larger than typical values (Volonteri 2010), which suggests a tidal stripping origin.
In this paper, we report on the properties of M59-UCD3, a remarkable UCD associated with the Virgo Cluster early-type galaxy M59 (NGC 4621/VCC 1903). While this paper was in the late stages of preparation, Sandóval et al. (2015) reported a concurrent discovery of M59-UCD3 using imaging from the SDSS and Subaru telescopes. Our paper uses independent imaging, and is based on follow-up spectroscopy obtained in 2014 and 2015.

2. OBSERVATIONS

2.1. Imaging

This study is part of a systematic search for UCDs across the entire Virgo Cluster using the homogeneous imaging of the Next Generation Virgo Cluster Survey (NGVS; Ferrarese et al. 2012). The NGVS imaged the Virgo cluster out to the virial radii of its two main subclusters, for a total sky coverage of 104 deg2, in four optical bands ($u'g'i'z'$). The NGVS produced two sets of stacked images for each 1×1 arcmin2: a "long exposure" stack consisting of images with exposure times from 2055 to 6400 s (depending on the band), and a "short exposure" stack, consisting of images with exposure times from 40 to 250 s. The long exposure images saturate at $g' \sim 18.5$ mag for point sources, so we use the short exposure images to study compact galaxies and galaxy nuclei. The methods used to generate catalogs and aperture photometry are similar to those described in Durrell et al. (2014) and Liu et al. (2015).

We selected UCD candidates based on their colors in the $(u'-g')-(g'-z')$ diagram, then fit them with King (1966) models convolved with the point-spread function (PSF) using the KINGPHOT software package (Jordán et al. 2005). The King model fits allow us to determine which objects are extended in appearance.

We identified NGVS J124211.05+113841.24 (M59-UCD3) as a bright, extended object 130" to the east of the massive early-type galaxy M59 (9.4 kpc at the distance of M59). There is no HST imaging of M59-UCD3, so our photometric analysis is based solely on the NGVS images, which had image quality of FWHM(g') = 0".58 and FWHM(i') = 0".46 (R_e of 12.0 and 9.5 pc, respectively, at M59). Figure 1 shows M59-UCD3 relative to the massive early-type galaxies, M60 (left) and M59 (right), and the other bright UCDs, M60-UCD1 (S13) and M59cO (CM08).

2.2. Spectroscopy

The radial velocity of M59-UCD3 was measured as 440 km s$^{-1}$ in a 320 s exposure obtained on 2014 November 29 with the Supernovae Integral Field Spectrograph (SNIFS) on the UH 2.2 m telescope (Lantz et al. 2004). This confirmed that M59-UCD3 is both in the Virgo Cluster, and likely to be associated with M59 (v_{hel} = 467 ± 5 km s$^{-1}$, Cappellari et al. 2011). The distance to M59 is 14.9 ± 0.5 Mpc (Mei et al. 2007; Blakeslee et al. 2009), and for the rest of the paper, we assume that M59-UCD3 is at the same distance.

To confirm the SNIFS radial velocity and obtain a measure of the internal velocity dispersion of M59-UCD3, on 2015 April 14, we obtained a 300 s exposure with the Keck/DEIMOS spectrograph (Fabre et al. 2003) using the 600-line grating and the 0".7-wide long slit, giving a spectral range of 2.8 Å (corresponding to σ = 50 km s$^{-1}$), and peak signal-to-noise ratio (S/N) of 107 Å$^{-1}$. These data were reduced using the Simon & Geha (2007) modification of the DEIMOS spec2d pipeline (Cooper et al. 2012; Newman et al. 2013), and the spectrum was optimally extracted by fitting a Gaussian function (FWHM = 10 pixels or 1".85) to the spatial intensity profile.

3. RESULTS

3.1. Photometry and Structural Parameters

To provide an internally consistent comparison of the photometric properties of M59-UCD3 with M60-UCD1 and M59cO, we used NGVS data for all three objects in the same way (Table 1). In the g'-band, we find that M59-UCD3 is 0.75 mag brighter than M60-UCD1, and 1.19 mag brighter than M59cO. M59-UCD3 has the highest effective surface brightness of the three UCDs, with $(g' - c)_{e} = 16.42$ mag arcsec$^{-2}$. After correcting for foreground extinction (Schlafly & Finkbeiner 2011), the total luminosity of M59-UCD3 is $L_{g'} = -14.2$ mag, or $L_g = 5.3 \times 10^7 L_\odot$.

We fit the g'-band surface brightness profile of M59-UCD3 with a PSF-convolved Sérsic model (Figure 2). Beyond $R \approx 1'$, the data show a slight excess above a Sérscic model. The uncertainty in subtracting the light from M59 makes it difficult to ascertain whether M59-UCD3 is best fit by a double-Sérsic, so we only report results for a single-Sérsic fit. Unlike for M60-UCD1, M59-UCD3’s ellipticity does not vary much with radius. The object is fairly round, except at the very center where systematic PSF uncertainties dominate. M59-UCD3 is best fit by a Sérscic profile with effective radius, $R_e = 0.345 \pm 0.035$ (25 ± 2 pc), Sérsic index, $n = 2.5$, and surface brightness at R_e, $\mu_e (g') = 17.57$ mag arcsec$^{-2}$.

Table 1 includes R_e from HST imaging for M60-UCD1 and M59cO from (Norris et al. 2014, hereafter N14). The size we measure for M60-UCD1 (36 ± 2 pc) is larger than that measured in HST/ACS images (27 pc), although our measurement for M59cO is consistent with (N14). Our R_e estimates may be biased toward larger sizes, given the larger PSF in the NGVS data (see, e.g, Puzia et al. 2014), or R_e may be affected by the details of subtracting light from M60. This is why we perform a relative comparison of all three UCDs using the same images and same fitting software, as relative measurements are more reliable. Even if we adopt the smaller size value for M60-
Photometric Properties of Luminous Virgo Cluster UCDs

Name	R.A. (J2000)	Decl. (J2000)	g' (mag)	$u' - g'$ (mag)	$g' - i'$ (mag)	$i' - z'$ (mag)	R_e (NGVS pc)	R_e (HST pc)	$(S_0')_e$ (mag arcsec$^{-2}$)
M59-UCD3a	190.5460471	11.6447937	16.74	1.63	1.10	0.28	25 ± 2	...	16.42
M60-UCD1	190.898699	11.5346389	17.49	1.77	1.13	0.27	36 ± 2	27	17.72
M59cO	190.4805689	11.6677212	17.93	1.70	1.11	0.27	37 ± 2	35	18.50

Notes. (4) Total g' magnitude from a single-Sérsic fit to M59-UCD3 and M59cO, and a double-Sérsic fit to M60-UCD1. (5)–(7) Colors measured within a 3′′ diameter aperture. (8) Effective radius and uncertainty measured from profile fits in the NGVS image, in parsecs, assuming distances of 14.9 ± 0.5 Mpc for M59 UCDs and 16.5 ± 0.6 Mpc for M60 (Blakeslee et al. 2009). Size uncertainties include the fitting uncertainty and the distance uncertainty added in quadrature, but not systematic errors (PSF, galaxy subtraction) that could be at the level of 20%. For M60-UCD1, R_e contains half the total light from a double-Sérsic fit. (9) Effective radius measured using HST imaging, from Norris et al. (2014) (10) Mean g'-band surface brightness within R_e assuming the effective radius in Column (8).

a Sandoval et al. (2015) reported $R_{SDSS} = 16.81$ mag, $(g - i)_{SDSS} = 1.20$ mag and $R_{e,Subaru} = 20 ± 4$ pc, all of which are consistent with our measurements.

3.2. Velocity and Internal Kinematics

Using our Keck/DEIMOS spectrum, we measured the line of sight velocity and velocity dispersion with the penalized pixel fitting (pPXF) software of Cappellari & Emsellem (2004), which fits a broadened combination of stellar templates with different weights. We used 31 stellar templates with spectral types from B to M, observed previously with DEIMOS using the same grating. Because sources can be mis-centered on the slit, we applied a velocity correction using the atmospheric A and B absorption bands, whose centers depend on how the source illuminates the slit. The heliocentric radial velocity of M59-UCD3 is $V_r = 447 ± 3$ km s$^{-1}$, and the integrated velocity dispersion is $σ = 77.8 ± 1.6$ km s$^{-1}$. As a consistency check, we also measured the velocity dispersion of M59cO, which we observed simultaneously with M59-UCD3 through the same slit. Our measurement of $σ = 28.1 ± 4.2$ km s$^{-1}$ is consistent with that of (N14), who reported a value of $σ = 29.0 ± 2.5$ km s$^{-1}$.

We estimate the mass of M59-UCD3 using a spherical isotropic Jeans equation analysis. We deproject the best-fit Sérsic profile, assume mass follows light, derive the projected dispersion profile, convolving both the model dispersion and luminosity profiles with a Moffat PSF (FWHM = 1″/2). We then apply a 0″7-wide slit to our model to simulate the observed integrated velocity dispersion. Matching our observed dispersion gives a total dynamical mass of $(3.7 ± 0.4) × 10^8 M_\odot$, with a mass-to-light ratio $(M/L)_g$ of $M_{dyn}/L_g = 7.1 ± 0.7$, or $M_{dyn}/L_V = 4.9 ± 0.5$ assuming $g' - V = 0.40$ mag (using the transformation in Peng et al. 2006). Our model gives an average velocity dispersion within R_e of $σ_e = 94.1 ± 1.9$ km s$^{-1}$.

3.3. Stellar Populations

We compared the absorption line indices of M59-UCD3 with single stellar population (SSP) models to derive age, metallicity, $[\alpha/Fe]$, and a stellar M/L. We used a Kroupa (2001) initial mass function (IMF) and the LIS-5 A system (Vazdekis et al. 2010) where we put the models and the target spectrum at a constant resolution of 5 Å. By comparing the Hβ and [MgFe]$^+$ indices with the SSP models of Vazdekis et al. (2015) we obtain age and metallicity estimates of 14 Gyr and $[Fe/H] = −0.01 ± 0.21$. The age is fixed to the oldest model available because Hβ is outside the model grid. This makes M59-UCD3 comparable in age and metallicity to the oldest and most metal-rich dE nuclei, and more metal-rich than typical dEs (e.g., Michielsen et al. 2008; Toloba et al. 2014). We compare the Mgb and (Fe) indices to 14 Gyr SSP models to obtain $[\alpha/Fe] = +0.21 ± 0.07$. For these SSP parameter values, the models provide a stellar $M_*/L_V = 3.4 ± 0.9$ for a Kroupa IMF or 5.7 ± 1.5 for a Salpeter IMF.

M59-UCD3 has a dynamical M_{dyn}/L between the M_*/L values derived from SSP models using Kroupa and Salpeter IMFs, and could be consistent with either, within the uncertainties.

3.4. Comparison with Sandoval et al. (2015)

Sandoval et al. (2015) reported the discovery of M59-UCD3 using SDSS and Subaru imaging, and spectroscopy from SOAR/Goodman. They reported g, r, i photometry, a size of...
$R_e = 20 \pm 4$ pc, a radial velocity $V_r = 373 \pm 18$ km s$^{-1}$, and SSP age and abundances. The photometry between our two studies for common filters (g and i) is consistent, as are the sizes, and the derived values of [Fe/H] and [α/Fe]. Our age estimate (14 Gyr) is larger than theirs (8.6 ± 2.2 Gyr), but the model grids at old ages are closely spaced and this discrepancy is not alarming, although merits further investigation. Our radial velocity is 74 km s$^{-1}$ higher, a significant difference that is difficult to explain given the high S/N of both of our observations. Sandoval et al. (2015) do not report a velocity dispersion.

4. DISCUSSION

4.1. M59-UCD3, an Extreme Spheroidal System

M59-UCD3 is the most extreme object of its type discovered to date, although it is basically similar to M60-UCD1. Figure 3 shows the location of dynamically hot stellar systems, mostly in the Virgo or Fornax Clusters. Dotted lines denote constant effective surface brightness (μe_B, bottom) and luminosity (M_B) for dynamically hot stellar systems, mostly in the Virgo or Fornax ETGs. We plot cluster early-type galaxies (ETGs) and Local Group ETGs from the compilation described in Ferrarese et al. (2012), compact ellipticals (Gaoue et al. 2015), M32 (Cappellari et al. 2006), galactic stellar nuclei (Côté et al. 2006; Turner et al. 2012), M87 UCDs (defined to have $R_e > 10$ pc; Zhang et al. 2015), GCs (Jordán et al. 2009), and the three Virgo UCDs discussed in this paper.

If UCDs are the compact remnants of relatively recent tidal stripping events, we may find stripped stellar material in their vicinities. There has been little evidence of tidal debris linked to UCDs (with a few exceptions, cf. Foster et al. 2014; Mihos 2015), but simulations show that the window of time during which tidally stripped starlight would be visible with current facilities is relatively short (Rudick et al. 2009). Given the high mass and metallicity of M59-UCD3, however, any stripped progenitor could be very massive, leaving a significant amount of debris. The average present-day stellar mass fraction of nuclear star clusters in early-type galaxies is of order 4×10^{-3} (e.g., Turner et al. 2012). If this was true for a system...
The NGVS team owes a debt of gratitude to the director and the staff of the Canada–France–Hawaii Telescope (CFHT), whose dedication, ingenuity, and expertise have helped make the survey a reality. We thank Connie Rockosi for help with the Keck observations.

C.L. acknowledges the National Key Basic Research Program of China (2015CB857002), NSFC grants 11203017.
and 11125313, and from the Office of Science and Technology, Shanghai Municipal Government (11DZ2260700). E.W.P acknowledges NSFC grants (11173003, 11573002), and the Strategic Priority Research Program of CAS (XDB09000105). NSF support is acknowledged through grants AST-1010039 (P.G.) and AST-1108964 (J.C.M.).

Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the CFHT which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work was supported by the Sino-French LIA-Origins joint exchange program and by the Canadian Advanced Network for Astronomical Research (CANFAR) which has been made possible by funding from CANARIE under the Network-Enabled Platforms program.

Facilities: CFHT, UH88, Keck.

REFERENCES

Bekki, K., Couch, W. J., Drinkwater, M. J., & Shioya, Y. 2003, MNRAS, 344, 399
Blakeslee, J. P., Jordán, A., Mei, S., et al. 2009, ApJ, 694, 556
Brodie, J. P., Romanowsky, A. J., Strader, J., & Forbes, D. A. 2011, AJ, 142, 199
Cappellari, M., & Emsellem, E. 2004, PASP, 116, 138
Cappellari, M., Bacon, R., Bureau, M., et al. 2006, MNRAS, 366, 1126
Chilingarian, I. V., & Mamon, G. A. 2008, MNRAS, 385, L83
Cooper, M. C., Newman, J. A., Davis, M., Finkbeiner, D. P., & Gerke, B. F. 2012, spec2d: DEEP2 DEIMOS Spectral Pipeline, Astrophysics Source Code Library, record ascl:1203.003
Côté, P., Pietak, S., Ferrarese, L., et al. 2006, ApJS, 165, 57
Drinkwater, M. J., Jones, J. B., Gregg, M. D., & Phillipps, S. 2000, PASA, 17, 227
Durrell, P. R., Côté, P., Peng, E. W., et al. 2014, ApJ, 794, 103
Faber, S. M., Phillips, A. C., Kibrick, R. L., et al. 2003, Proc. SPIE, 4841, 1657
Ferrarese, L., Côté, P., Guillochon, J.-C., et al. 2012, ApJS, 200, 4
Foster, C., Lux, H., Romanowsky, A. J., et al. 2014, MNRAS, 442, 3544
Frank, M. J., Hilker, M., Mieske, S., et al. 2011, MNRAS, 414, L70
Georgiev, I. Y., & Böker, T. 2014, MNRAS, 441, 3570
Guérou, A., Emsellem, E., McDermid, R. M., et al. 2015, ApJ, 804, 70
Hasegan, A., Jordán, A., Côté, P., et al. 2005, ApJ, 627, 203
Hilker, M., Infante, L., Vieira, G., Kissler-Patig, M., & Richtler, T. 1999, A&A, 314, 75
Hopkins, P. F., Murray, N., Quataert, E., & Thompson, T. A. 2010, MNRAS, 401, L19
Jordán, A., Côté, P., Blakeslee, J. P., et al. 2005, ApJ, 634, 1002
Jordán, A., Peng, E. W., Blakeslee, J. P., et al. 2009, ApJS, 180, 54
King, I. R. 1966, AJ, 71, 64
Kroupa, P. 2001, MNRAS, 322, 231
Lantz, B., Aldering, G., Antilogus, P., et al. 2004, Proc. SPIE, 5249, 146
Liu, C., Peng, E. W., Côté, P., et al. 2015, ApJ, in press (arXiv:1508.07334)
Mei, S., Blakeslee, J. P., Côté, P., et al. 2007, ApJ, 655, 144
Michielsen, D., Boselli, A., Conselice, C. J., et al. 2008, MNRAS, 385, 1374
Mieske, S., Frank, M. J., Baumgardt, H., et al. 2013, A&A, 558, A14
Mieske, S., Hilker, M., & Infante, L. 2002, A&A, 383, 823
Mieske, S., Hilker, M., & Misgeld, I. 2012, A&A, 537, A3
Mihos, C., Durrell, P. R., Ferrarese, L., et al. 2015, arXiv:1507.02270
Mihos, J. C., Harding, P., Feldmeier, J., & Morrison, H. 2005, ApJL, 631, L41
Milosavljević, M., & Bromm, V. 2014, MNRAS, 440, 50
Norris, M. A., Kannappan, S. J., Forbes, D. A., et al. 2014, MNRAS, 443, 1151
Peng, E. W., Côté, P., Jordán, A., et al. 2006, ApJ, 659, 838
Pfeffer, J., & Baumgardt, H. 2013, MNRAS, 433, 1997
Puzia, T. H., Paolillo, M., Goudfrooij, P., et al. 2014, ApJ, 786, 78
Radick, C. S., Mihos, J. C., Frey, L. H., & McBride, C. K. 2009, ApJ, 699, 1518
Sandoval, M. A., Vo, R. P., Romanowsky, A. J., et al. 2015, arXiv:1506.08828
Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
Seth, A. C., van den Bosch, R., Mieske, S., et al. 2014, Natur, 513, 398
Simon, J. D., & Geha, M. 2007, ApJ, 670, 313
Strader, J., Seth, A. C., Forbes, D. A., et al. 2013, ApJL, 775, L6
Toloba, E., Guhathakurta, P., Peletier, R. F., et al. 2014, ApJS, 215, 17
Turner, M. L., Côté, P., Ferrarese, L., et al. 2012, ApJS, 203, 5
Vazdekis, A., Sánchez-Blázquez, P., Falcón-Barroso, J., et al. 2010, MNRAS, 404, 1639
Vazdekis, A., Coelho, P., Cassisi, S., et al. 2015, MNRAS, 449, 1177
Volonteri, M. 2010, A&ARv, 18, 279
Zhang, H.-X., Peng, E. W., Côté, P., et al. 2015, ApJ, 802, 30