Potential therapeutic targets from genetic and epigenetic approaches for asthma

Youming Zhang

Youming Zhang, Genomic Medicine Section, National Heart and Lung Institute, London SW3 6LY, United Kingdom

Author contributions: The author contributed to this paper with conception and literature review and analysis, drafting and critical revision and editing, and final approval of the final version.

Conflict-of-interest statement: There are no known conflicts of interest arising from this review.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Dr. Youming Zhang, Genomic Medicine Section, National Heart and Lung Institute, Dovehouse Street, London SW3 6LY, United Kingdom. y.zhang@imperial.ac.uk
Telephone: +44-20-759479174

Received: August 5, 2015
Peer-review started: August 7, 2015
First decision: November 3, 2015
Revised: November 17, 2015
Accepted: December 29, 2015
Article in press: January 4, 2016
Published online: April 12, 2016

Abstract

Asthma is a complex disorder characterised by inflammation of airway and symptoms of wheeze and shortness of breath. Allergic asthma, atopic dermatitis and allergic rhinitis are immunoglobulin E (IgE) related diseases. Current therapies targeting asthma rely on non-specific medication to control airway inflammation and prevent symptoms. Severe asthma remains difficult to treat. Genetic and genomic approaches of asthma and IgE identified many novel loci underling the disease pathophysiology. Recent epigenetic approaches also revealed the insights of DNA methylation and chromatin modification on histones in asthma and IgE. More than 30 microRNAs have been identified to have regulating roles in asthma. Understanding the pathways of the novel genetic loci and epigenetic elements in asthma and IgE will provide new therapeutic means for clinical management of the disease in future.

Key words: Asthma; Immunoglobulin E; Genome-wide association studies; Epigenetics; MicroRNA

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Asthma is a complex disorder characterised by inflammation of airway. Allergic asthma is an immunoglobulin E (IgE) related disease. Severe asthma remains difficult to treat. Genetic and genomic approaches of asthma and IgE identified many novel loci underling the disease pathophysiology. Recent epigenetic approaches also revealed the insights of DNA methylation and chromatin modification on histones in asthma and IgE. More than 30 microRNAs have been identified to have regulation roles in asthma. Understanding the pathways of the novel genetic loci and epigenetic elements in asthma and IgE will provide new therapeutic means for clinical management of the disease in future.

Zhang Y. Potential therapeutic targets from genetic and epigenetic approaches for asthma. World J Transl Med 2016; 5(1): 14-25 Available from: URL: http://www.wjgnet.com/2220-6132/full/v5/i1/14.htm DOI: http://dx.doi.org/10.5528/wjtm.v5.i1.14

INTRODUCTION

Asthma runs strongly in families and has a heritability of up to 60%[1]. Allergic asthma, atopic dermatitis and
allergic rhinitis are immunoglobulin E (IgE) related diseases. The Th2 inflammation in airway is a predominant feature of asthma. A sharp increase in the prevalence of asthma was observed in many countries in recent years and a report from the International Study of Asthma and Allergies in Childhood found that the prevalence of symptoms of asthma in children differed more than 20-fold between study centres around the world[2]. Genetic and environmental factors contribute to the prevalence of the disease. The current management of asthma relies on non-specific medication to control airway inflammation and prevent symptoms. Severe asthma remains difficult to treat.

The genetic approaches to asthma include candidate gene studies, positional cloning studies and genome-wide association studies (GWASs)[3]. The gene FCERB on chromosome 11 encoding high-affinity IgE receptor (FɛR) β unit identified almost three decades ago was one of the early mile stones for genetic approaches of asthma[4]. It then turned out the genetic approaches to identify genes underlie complicated diseases were confined by many factors. Genetic associations to asthma for certain locus may be found in one population but may not always be replicated in the other populations. GWAS is powerful approach to overcome the limitations of candidate gene and positional cloning studies. In a GWAS approach the relationship between disease and allele frequencies is examined across a large number of markers spaced in the genome in a big case and control population, robust genetic effects that have substantial population risk can be identified.

Genetic approaches of asthma and IgE have brought remarkable results, but only a small component of the overall genetic contribution to asthma so far has been identified. The missing heritability may be due to rare highly penetrant mutations, multiple small effects, or epigenetic modifications of gene function and other regulating elements for the genome. Epigenetic regulation modifies gene expression that is not caused by changes in the DNA sequence but by DNA methylation, histone modification and other mechanisms. DNA methylation involves the addition of a methyl group to the DNA nucleotide cytosine and adenine which lead to gene silencing. Histones are highly alkaline proteins in eukaryotic cell nuclei that package and order the DNA into nucleosome. The major histone modifications are methylation, acetylation, phosphorylation, ubiquitination and sumoylation. Such modifications affect range from gene activation to gene silencing.

This review discusses the recent discoveries from genetic and epigenetic approaches to asthma and also summarizes the implications of specific loci or regulating elements for therapeutic intervention for asthma.

Genetic approaches

More than one hundred genes have been found to have associations with asthma by candidate gene approaches. The candidate gene approach cannot identify novel pathways[5]. Positional cloning is another genetic approach that identifies disease genes by progressive dissection of linkage regions that are consistently co-inherited with the disease. ADAM33[6], PHF11[7], DPP10[8], GPRA[9], HLA-G[10], CYFIP2[11], IRK3[12], OPN3/CHML[13] were discovered as asthma genes by positional cloning. Most associations identified by candidate gene studies and positional cloning studies were moderate. GWAS is more efficient and can be performed to investigate the entire genome simultaneously. It provides the opportunity to identify novel mechanisms of disease pathogenesis.

The first GWAS study for asthma was carried out in the GABRIEL Consortium. The consortium consisted of collaborations among 35 partners across the European Community. In 2007, the consortium reported SNPs in the chromosome 17q12-q21 region to be significantly (P < 10⁻⁶) associated with childhood asthma and asthma associated SNPs were associated with the expression levels of the ORM1-like 3 Saccharomyces cerevisiae (ORMDL3) gene[14]. Then a large consortium GWAS study also confirmed ORMLD3 as an important asthma suspected gene. The consortium also identified IL-18R1, HLA-DRB1, HLA-DQ, IL-33, SMAD3, IL-2RBL, SLC22A5, IL-13 and RORA as asthma or IgE suspected genes[15].

To date, more than ten GWASs on asthma or asthma-relevant traits have been published. Serum YKL-40 levels were shown to elevate in patients with asthma and were correlated with asthma severity, thickening of the subepithelial basement membrane in airway, and pulmonary function[16]. Polymorphisms of Ch13L1 were associated YKL-40 level in 753 Huttenites in a GWAS study for asthma[17]. Polymorphisms of PDE4D, TLE4, ADRA1B, PRNP, DPP10 and GNAI3 were found to associate with asthma in GWASs studies of different populations[18-20]. Polymorphisms of DENND1B and ORMDL3 were also found to associate with asthma in an European American population GWAS study[21]. In another European GWAS study, RAD50, IL-13, HLA-DR-DQ, LRP1B, SNX10, CA10, KCNJ2 were shown associations with asthma[22]. In the EVE Consortium, ORMDL3, IL-1RL1, TSLP, RTP2, IL-33, PYHIN1 were found to associate with asthma[23].

Genome-wide association study identified IL-12A, IL-12RB1, STAT4, and IRF2 genes associated with lung function in asthmatic patients[24]. ORMLD3/GSDMB, IL-1RL1/IL-18R1 loci were also found to associate with severe asthma[25]. In a Danish GWAS study for asthma exacerbations in childhood, GSDMB, IL-33, RAD50 and IL-1RL1 and CDHR3 showed association with asthma[26]. CTNNAL3 and SEMA3D also were associated asthma exacerbation in GWASs studies in two paediatric clinical trials in the United States[27]. IL-4R was found increased in genome-wide expression profiling in allergic asthma[28]. Genome-wide differential gene expression in response to dust mite allergen also identified IL-5, IL-9 and PRG2 to interact with environmental dust mite to increase severe asthma exacerbations in children[29]. In a Japanese GWAS study, TSLP-WDR36 and USP38-GAB1 loci were found to associate with asthma[30]. Lung function, particularly for forced expiratory volume in the first second [FEV(1)] and its ratio to forced vital capacity
Potential therapeutic targets for asthma

[FEV(1)/FVC], was studied in meta-analyses of GWAS studies. It identified HHH, GPR126, ADAM19, AGER-PPT2, FAM13A, PTC1H, PID1, HTR4, INTS12-GSTCD-NPNT, THSD4 as suspected genes for lung function change[31,32].

Epigenetic approaches

Epigenetic effects are other possible causes of asthma. The patterns of gene expression become stably restricted during development, majorly through methylation of CpG sequences and gene silencing. Sex, age, environmental factors and genetic polymorphisms have all been strongly associated with altered methylation at selected loci. To asthma, allergens, microbes, tobacco smoke, diet and metabolism, fish oil, obesity and stress are important environmental factors that influence epigenetic effects in human cells[33]. CD19 (+) B lymphocytes methylation patterns and expression levels showed difference in the locus CYP26A1 in house dust mite allergic patients[34]. Children growing up in a traditional farming environment had lower risk of allergic respiratory diseases. Demethylation of the FOX3 promoter was association with higher number of FOXP3 cells in cord blood mononuclear cells in an extensive farming exposure environment[35]. Hypomethylation of ORMDL1 and STAT6 and hypermethylation of RAD and IL-13 were also found from farm children[36]. DNA methylation in the CD14 promoter was also significantly less in farm mothers[37]. PBMC s from obese asthmatic children had lower levels of promoter methylation of the CCL5, IL-2RA and TBX21 and higher level promoter methylation of TGFBI and FCER2[38]. Recent epigenome-wide approach identified 36 loci that had association with serum IgE level[39]. Among them, DNA methylation events have been found in cytokine signalling genes IL-4, IL-5R, transcription factor genes ZNF22, RAB1, GATA1, KLF1, transmembrane or transporter genes SLC25A33, SLC17A4, SLC43A3, TMEM52B, TMEM41A, ecosinophil associated genes PRG2 and PRG3, phospholipid metabolism genes LPCAT2, CLC and MEMB68, and metabolic enzyme genes L2HGDH, CEL, KEL, PDE6H, EFNA3, ALDH3B2.

Noncoding RNAs emerged as novel molecules that are important in lung diseases in recent years[40]. Noncoding RNAs include housekeeping RNAs, long noncoding RNAs and small noncoding RNAs. Micro RNAs (miRNAs) are the most studied small noncoding RNAs. miRNAs are about 18-25 nucleotide long noncoding RNAs that silence target mRNA. More than 3000 human miRNA genes have been identified so far. There is a significant number of miRNAs that are still uncharacterized[39]. miRNAs induce messenger RNA (mRNA) degradation and then inhibit the translation. miRNAs can target 60% of mRNAs and control the signal pathways in most cell types[41]. More than 30 miRNAs have been found to associate with asthma[42]. These miRNAs regulate epithelium cells, airway smooth muscle cells and T2 response.

To date, it is not reality to assume that genetic targets and regulating elements for asthma identified by genetic and epigenetic approaches can be accessed either by biologics (antibodies and proteins) or small molecules (drugs), but several genes regulate in pathways from epithelial damage to the adaptive immune system in asthma, providing a new means for effective therapies. This review focuses on the novel genes expressing on human airway epithelium cells and cytokine networks that play important roles in asthma pathophysiology. It also summarizes the miRNAs that were found to regulating asthma pathogenesis.

THE POTENTIAL THERAPEUTIC TARGETS FOR ASTHMA IN EPITHELIAL CELLS

Human airway epithelium is now believed to be central to the pathogenesis of asthma[43,44]. Several asthma candidate genes identified by genetic and epigenetic approaches may modify the inflammatory response to epithelial damage or regulate homeostatic and healing pathways. The following novel genes identified by GWASs express in the airway epithelium and understanding their pathways in inflammation response will provide unique opportunities to develop new therapeutic means for asthma (Table 1).

ORMDL3

The association signals on human chromosome 17 with asthma are maximal within an island of linkage disequilibrium that contains ORMDL3, GSDMA and GSDMB. Now the associations have been found in many GWAS studies. The loci were not only associated childhood asthma, but also associated with severe asthma or asthma exacerbations. ORMDL3 protein is found in the membranes of the endoplasmic reticulum (ER). ER stress is one of important stage linked to cellular responses to inflammation[45]. ORMDL3 has been found to be up-regulated in transcriptional activator XBP-1(S)[46]. ORM gene expression regulates sphingolipid metabolism[47]. Ceramide and sphingosine-1-phosphate (S1P) are two important bioactive signalling sphingolipids. They mediate cell survival, proliferation, apoptosis, differentiation and cell-cycle arrest[48]. Clinical observation showed that they were increased in asthmatic airways[49]. Recent study showed Ormdl3 may regulate ceramide level in epithelial cells and then regulate the inflammation response[50]. Transfection of ORMDL3 in human bronchial epithelial cells in vitro induced expression of many chemokines and selectively activated activating transcription factor 6, suggest an ER UPR pathway through which ORMDL3 may be linked to asthma[51]. ORMDL3 also regulates eicosphin trafficking, recruitment and degranulation[52]. ORMDL3 was shown to modify SERCA in the ER and induce inflammation[53]. A recent study showed in 17q21 risk allele carrier children their mononuclear cells significantly increased IL-17 secretion[54]. ORMDL3 may influence multiple pathways in the ER that mediate inflammation during asthma and regulating ORMDL3 may have the potential therapeutic effects on inflammation disease such as asthma.
GSDMB and GSDMA

The human chromosome 17 locus of asthma covers a genomic area of approximately 200Kb. ORMDL3 and GSDMB reside in one island of linkage disequilibrium that contains all the maximally associated SNPs. Independent associations are also detectable telomERICally near the GSDMA which may make contributions to asthma susceptibility as well\(^\text{[14]}\). The GSDM family genes were first identified in mouse. They are expressed primarily in the gastrointestinal tract and expressed a lower level in the skin. The mouse syntenic homology areas including mouse Gsdm1, Gsdm2 and Gsdm3 are on mouse chromosome 11. Mouse Gsdm proteins contain DFN15 domain of Pfam domains. They are expressed predominantly in the gastrointestinal tract and in the skin\(^\text{[58]}\), in a highly tissue-specific manner\(^\text{[58]}\). In humans GSDMA and GSDMB are expressed in the gastrointestinal and bronchial epithelium. Members of the gene family may have a role in regulation of apoptosis\(^\text{[57]}\). GSDMA was shown to mediate cell-growth inhibition. GSDMB is expressed in stem cell-resided region and has a potential role in stem cell proliferation. The GSDMB-driven HSVtk expression vector had a therapeutic effect on the occult peritoneal dissemination (PD) model mice. This strategy can potentially be used to treat GC patients with PD in clinical\(^\text{[58]}\). The specific expression of GSDMB and GSDMA in epithelium may also service to therapeutic means to asthma in future.

Thymic stromal lymphopoietin

Thymic stromal lymphopoietin (TSLP gene) was found to associate with asthma by GWAS and SNPs in TSLP may have asthma risk through up-regulating its mRNA expression or the protein secretion\(^\text{[59]}\). It expresses mainly by epithelial cells at barrier surfaces (skin, gut and lung)\(^\text{[60,61]}\). TSLP plays a critical role in orchestrating the inflammatory response and a critical factor in airway remodelling in asthma. Airway remodelling is a repair process that happens after injury resulting in airway hyper-responsiveness in asthma. TSLP induces cellular senescence during airway remodelling in asthma\(^\text{[62,63]}\). Myeloid dendritic cells (DCs) are the cell populations with the highest known co-expression of the TSLP receptor and its associated subunit IL-7R. Treatment of human DCs with TSLP induces improved survival, up-regulation of major histocompatibility complex class II and the production of a variety of chemokines\(^\text{[60]}\). It promotes Th2 cytokine-associate inflammation by directly promoting the effector functions of CD4\(^+\) Th2 cells\(^\text{[61]}\).

SMAD3

SMAD3 encodes SMAD (mothers against decapentaplegic homolog) family member 3 and has a role in modifying tumour growth\(^\text{[64,65]}\) through the transforming growth factor-beta (TGFβ) pathway\(^\text{[66]}\). SMAD3 is concentrated in the nuclei of bronchial epithelial cells and macrophages and functions as a transcriptional modulator activated by TGFβ. The family members of TGFβ maintain immune function in lung\(^\text{[67]}\) and the TGFβ signalling pathways can be activated after allergen challenge in mice\(^\text{[68]}\). A mouse knockout of Smad3 showed accelerated wound healing and an impaired local inflammatory response\(^\text{[69]}\), even though mice lacking Smad3 may exhibit increased baseline levels of pro-inflammatory cytokines in their lungs\(^\text{[70]}\). Smad3 signalling is required for myogenic differentiation of myoblasts\(^\text{[71]}\), this may be linked a role in airway smooth muscle hypertrophy.

DPP10

DPP10 was the only gene that was identified both by positional cloning and GWAS studies. DPP10 genetic variants could affect lung function decline in aging and also associate aspirin-exacerbated respiratory disease. The DPP proteins have a β-propeller that regulates substrate access to an α/β hydrolase catalytic domain. Unlike other DPP family members, DPP10 lack of enzymatic activity is unable to cleave terminal dipeptides from asthma-related cytokines and chemokines\(^\text{[8]}\). In neurons, DPP10 forms part of the A-type K+ (Kv4) ion channel complex and DPP10 variants accelerate channel gating kinetics. It is not clear what exact roles of DPP10 in the airway epithelial cells, the future research will focus on how DPP10 regulate inflammation response in epithelial cells in asthma by applying animal models and cellular models.

Cadherin-related family member 3

Cadherin-related family member 3 (CDHR3) is a transmembrane protein with six extracellular cadherin
domains. The biological function of CDHR3 remains. It belongs to the cadherin family of transmembrane proteins that have function roles in homologous cell adhesion. It is important for epithelial polarity, cell-cell interaction and differentiation[72]. Other members including E-cadherin of the family have been associated with asthma[73]. CDHR3 Protein structure modelling showed that the CysS29Tyr risk-associated alteration was located at the interface between two D5 and D6 membrane-proximal cadherin domains. The variant residue may interfere with interdomain stabilization, folding or conformation[26].

Semaphorin-3D

Semaphorin-3D (SEMA3D) is a member of the semaphorin class 3 signalling molecules. SEMA3A and SEMA3E are secreted transmembrane proteins involved in immune response and the recruitment of CD4+ and CD8+ T cells[74]. SEMA3D is responsible for endothelial cell migration[75] and has been shown to be essential for healthy angiogenesis during development[51]. Angiogenesis is also a feature of airway remodelling. It is possible that SEMA3D plays a role in airway remodelling from plausible mechanisms. It directs angiogenesis and airway epithelium migration, resulting in a reduction of epithelial cells. Like other semaphorins, it has effects on immune cell recruitment during the inflammatory response, which leads to remodelling[27].

Table 2 The genetic and epigenetic loci modify cytokines and receptors of asthma

Genes	Chromosome location	Phenotypes methods	Identifying and functions in asthma	Possible pathways	Ref.
IL-18R1	2	Asthma	GWAS	Activation of NF-κB, inducing T1-associated cytokines	[15,25]
IL-1RL1	2	Asthma, Eos	GWAS	Receptor for IL-33	[15,23,94]
IL-5RA	3	IgE	Epigenetics	Tr1 inflammation, regulating eosinophils	[39]
IL-12A	3	Lung function	GWAS	Tr1 regulation, activating IFN-γ	[24]
IL-4	5	IgE	Epigenetics	Tr2 inflammation, promoting IgE class switching	[39]
IL-13	5	Asthma, IgE	GWAS/epigenetics	Tr2 inflammation, promoting IgE class switching	[15,22]
IL-5	5	Asthma	GWAS/epigenetics	Tr2 inflammation, regulating eosinophils	[15,22]
IL-9	5	Asthma	Expression profiling	Stimulates cell proliferation and prevents apoptosis	[29]
IL-33	9	Asthma	GWAS	Inducing T1-associated cytokines	[15,23,26,94]
IL-2RA	10	Asthma	Epigenetics	PI3K-Akt signalling pathway and Akt signalling	[38]
IL-4R	16	Asthma	Expression profiling	Tr2 inflammation	[28]
IL-12RB1	19	Lung function	GWAS	Tr1 regulation, activating IFN-γ	[24]
IL-2RB	22	Asthma	GWAS	Endocytosis and transducer mitogenic signals	[15]

GWAS: Genome-wide association study; IL: Interleukin; IgE: Immunoglobulin E; IFN-γ: Interferon-γ; NF-κB: Nuclear factor kappa-B.

THE POTENTIAL THERAPEUTIC TARGETS IN CYTOKINE NETWORKS FOR ASTHMA

Genetic and epigenetic approaches of asthma and IgE have revealed many cytokines and cytokine receptors that regulate the inflammation in the airways. These cytokines and cytokine networks play critical roles for inflammation response in epithelium cells and immune cells. Specific targeting the cytokines and the networks may provide new therapeutic means to asthma. The cytokines identified by GWAS and epigenetic approaches are discussed here (Table 2).

IL-33, IL-18R1 and IL-1RL1

IL-33, IL-18 and IL-1 belong to the IL-1 family of cytokines that alter host responses to inflammatory and infectious challenges. They employ their functions through a toll-like receptor-IL-1 receptor (TLR-IL-1R) superfamily. IL-1 receptor signalling activates transcription factor nuclear factor kappa-B (NF-κB), mitogen-activated protein (MAP) kinases p38, JNK, and ERK1/2[27].

IL-33 was originally identified as a nuclear factor in vascular endothelial cells[27], and was subsequently detected in airway epithelial cells[39,80]. The activities of IL-33 as a nuclear factor remain unclear[24]. IL-33 is constitutively expressed and has function as an endogenous danger signal to alert the immune system after endothelial or epithelial cell damage during trauma or infection stresses[81]. A mouse IL-33 gene knockout has shown IL-33 works as a crucial amplifier of innate immunity[83]. IL-33 expression is induced by a range of environmental and endogenous triggers, suggesting an essential role during infection, inflammation and tissue damage[84]. IL-33 activates a heterodimeric receptor complex containing IL-1RL1 (ST2) and IL-1 receptor accessory protein (IL-1RAP), leading to activation of NF-κB and MAP kinases and then drives production of Tr2 cytokines IL-4, IL-5, and IL-13[29].

The IL-18R1 gene is located on chromosome 2q. It form a gene cluster along with four other members of the interleukin 1 receptor family [IL-1R2, IL-1R1, IL-1R2 (IL-1Rrp2), and IL-1RL1 (TI/ST2)] on the loci. IL-18R1 and IL-1RL1 flank each other with the same
April 12, 2016 Volume 5 Issue 1

Zhang Y. Potential therapeutic targets for asthma

orientation of translation. They are within the same island of linkage disequilibrium and it has not yet been possible to assign the genetic effects at this locus to one gene or the other. It is possible that both genes may be co-regulated. IL-1RL1 encodes the receptor of IL-33. IL-18 is closely related to IL-33[29] and synergizes with IL-12 to induce interferon gamma and to promote Th1 responses[85]. These loci therefore identify a pathway for the communication of epithelial damage to the adaptive immune system and a potential switch point for choosing between Th1 or Th2 responses.

IL-2RB
IL-2RB encodes the beta receptor of IL-2. IL-2 is secreted by antigen-activated T cells. It controls the survival and proliferation of regulatory T cells[86] and plays a prominent role in the maintenance of natural immunologic self-tolerance[87]. The IL-2 receptor has α (CD25), β (CD122) and γ chains[88]. The β chain (IL-2RB) is a signal transduction element that is also present in the IL-15 receptor. It belongs to the type I cytokine receptor family and has no intrinsic kinase activity[89]. The receptor regulates T cell-mediated immune responses through endocytosis, whereby ectodomain shedding of IL-2Rβγ generates an intracellular fragment[89]. In a mouse model of asthma, local inhibition of IL2rb restored an immunosuppressive cytokine milieu that ameliorated lung inflammation[90].

IL-4 and IL-4R
IL-4 is adjacent to RAD50 on chromosome 5. The locus is exceptional in showing strong association to IgE in addition to doctor-diagnosed asthma[15]. The 3’ end of RAD50 has several enhancer elements and conserved non-coding sequences that act as a locus control region for IL-4 and IL-13[81]. IL-4 is one of the key Th2 cytokines and immunoglobulin class switching in B cells. IL-4 methylation was associated with IgE production[89]. IL-4R is the best candidate allergic biomarker and shows to have association with allergic asthma in a genome-wide expression profiling study[28]. A soluble form of the IL-4 receptor can block B cell-binding of IL-4 or other IL-4R antagonists[92].

IL-5 and IL-5RA
IL-5 encodes a growth and differentiation factor for B cells. IL-5 also controls the activation and localization of eosinophils[93]. A SNP (rs4143832) located near IL-5 on 5q31 showed to have association with blood eosinophil counts[34]. Eosinophils are an important source of cytokines and chemokines at the allergic inflammation sites[93]. IL-5RA was methylation different with asthma[29]. IL-5RA encodes a receptor that selectively stimulates eosinophil production and activation[96]. In clinic, therapies directed at eosinophil may be effect in a subgroup of refractory asthma individuals[97].

IL-13
IL-13 encodes an immunoregulatory cytokine primarily by activated Th2 cells. IL-13 is involved in several stages of B-cell maturation and differentiation. It up-regulates CD23 and MHC class II expression. It also promotes IgE isotype switching of B cells. IL-13 down-regulates macrophage activity and inhibits the production of pro-inflammatory cytokines and chemokines. This cytokine is critical to the pathogenesis of allergen-induced asthma but works through mechanisms independent of IgE and eosinophils. rs20541 (Arg130Gln or IL13 +4257GA) in the coding region of IL-13 has been shown to be associated with asthma[98] and total serum IgE levels[99]. One GWAS study confirmed the important role of Th2 cytokine and antigen presentation genes in asthma[95].

IL-12A and IL-12RB1
IL-12 is a key cytokine that regulates innate and adaptive immune responses. IL-12 is composed of the p35 subunit and the p40 subunit (encoded by IL-12A and by IL-12B respectively). The formation of the high-affinity IL-12 is lead by the co-expression and dimerization of the IL-12RB1 and IL-12RB2 proteins. IL-12 activates interferon-γ (IFN-γ) production. STAT4 regulates the response of lymphocytes to IL-12; it induces the expression of IL-12RB2 and transcription factor IRF1. IRF1 is induced by IFN-α, IFN-β, and IFN-γ. IRF2 can competitively inhibit the expression of genes induced by IRF1. The IL-12-STAT4-IFN-γ signalling pathway is essential for the differentiation of naive Th0 cells into Th1 cells[24].

IL-9
IL-9 was found to interact with environmental dust mite to increase severe asthma exacerbations in children[29]. IL-9 induces cell proliferation and prevents apoptosis through the IL-9R. IL-9R activates different STAT proteins. IL-9 has been shown to promote mast cell recruitment to the lung, increase mast cell activity, and enhance airway remodelling in a murine model of asthma and also mast cells act as the main expressers of IL-9 receptor in human asthmatic lung tissue[100]. IL-9 production from bronchoalveolar lavage lymphocytes increases after an inhaled allergen challenge in atopic asthmatic patients[101] and IL-9 has been shown to up-regulate expression of eotaxin in cultured human airway smooth muscle cells[102].

miRNAs AND THEIR REGULATIONS IN ASTHMA

miRNA can act as a regulator between genetic and environmental factors in the pathogenesis of asthma. Epigenetic changes are potentially reversible and therapeutic modulation of miRNAs may provide opportunities to regulate or suppress allergic inflammation[103]. There are more than 11 miRNAs differentially expressed in human exhaled breath condensate from asthma patients compared with health subjects[104].
570-3p was found to have lower level in serum and exhaled breath condensate from asthma patient[105]. miR-221, miR-146a and miRNA146b has been found to have altered expressions in asthmatic patients airway smooth muscle[42,106]. There are number of miRNAs down-regulated or up-regulated in nasal biopsies of asthma patients[107]. Here the most potential miRNAs that could be used as therapeutic targets for asthma are discussed (Table 3).

miR-1
Vascular endothelial growth factor (VEGF) is an important regulator of pulmonary T\(\text{h}2\) inflammation. Lung-specific overexpression of VEGF can decrease miR-1 expression in the endothelium of lung. Intranasal delivery of miR-1 inhibited inflammatory responses to allergen ovalbumin, house dust mite, and IL-13 overexpression. Myeloproliferative leukaemia (Mpl protein) is the receptor for thrombopoietin and has roles in megakaryopoiesis and hematopoietic stem cell differentiation[108]. VEGF controlled the expression of endothelial Mpl during T\(\text{h}2\) inflammation via the regulation of miR-1. In vivo silence of Mpl inhibited T\(\text{h}2\) inflammation. It indirectly inhibited the expression of P-selectin in lung endothelium. These experiments defined a novel VEGF-miR-1-Mpl-P-selectin effector pathway in lung T\(\text{h}2\) inflammation. The utility of miR-1 and Mpl may be potential therapeutic targets for asthma management[109].

miR-126a
In a mouse model, blockage of miR-126 suppressed the asthma phenotype, resulting in diminished T\(\text{h}2\) response, inflammation, airway hyper-responsiveness, eosinophil recruitment and mucus over secretion. In vivo activation of TLR4 by house dust mite antigens led to the induction of allergic disease, a process that is associated with expression of many small, noncoding miRNAs. miR-126 inhibition resulted in augmented expression of POU domain class 2 associating factor 1 that regulated GATA3 expression. Targeting miRNA-126a in the airways may lead to anti-inflammatory treatments for allergic asthma[110].

miR-221
The mass of airway smooth muscle (ASM) is increased as a feature of asthmatic airways. Increased miR-221 expression was found in ASM cells from individuals with severe asthma. miR-221 increased ASM proliferation and IL-6 release. In severe asthma patients the inhibition of miR-221 reduced proliferation and IL-6 release. miR-221 regulated p21(WAF1) and p27(kip1) expression levels and regulated the hyper-proliferation and IL-6 release of ASM cells from severe asthma patients[42].

miR-146a and miR-146b
miR-146a and miR-146b gene expressions were a pattern of induction in response to a variety of microbial components and pro-inflammatory cytokines. miR-146a is a NF-\(\kappa\)B dependent gene. miR-146a/b were predicted to base-pair with sequences in the 3′UTRs of the tumor necrosis factor (TNF) receptor-associated factor 6 gene and IL-1 receptor-associated kinase 1 gene. These genes encode two key adapter molecules of Toll-like and cytokine receptors. miR-146 controls toll-like receptor and cytokine signalling. It works through a negative feedback regulation loop involving down-regulation of IL-1 receptor-associated kinase 1 and TNF receptor-associated factor 6 protein levels[111].

miR-150
miR-150 down-regulated transcription factor c-Myb that regulates lymphocyte development. MiR-150 is specifically expressed in mature lymphocytes. c-Myb is a transcription factor controlling lymphocyte development. In vivo miR-150 controls c-Myb expression in a dose-dependent manner over a narrow range of miRNA and c-Myb concentrations. MiR-150 and other miRNAs have evolved to control the expression of a few critical target proteins in particular cellular contexts[112]. c-Myb is an important regulator of Gata3[113]. c-Myb and GATA-3 cooperatively regulate IL-13 expression as regulate IL-13 expression[114].

miR-155
Like miR-146a, miR-155 is one of the most frequently studied miRNAs in both innate and adaptive immune response. Mice without miR-155 displayed increased airway remodelling and were unable to produce the cytokines for immune system homeostasis and function[115,116]. miR-155 targets transcription factor c-Maf, which promotes T\(\text{h}2\) cells to generate IL-4, IL-5 and

Table 3 The microRNAs and their potential roles in asthma

miRNA	Possible function roles in asthma	Ref.
miR-1	Targeting Mpl to regulate T\(\text{h}2\) inflammation and P-selectin in lung endothelium	[109]
miR-126a	Regulating T\(\text{h}2\) inflammation, airway hyper-responsiveness, eosinophil recruitment	[110]
miR-221	Mediator IL-6 proliferation in airway smooth muscle	[42]
miR-146a	NF-\(\kappa\)B dependent gene, control toll-like receptors and cytokine signalling	[111]
miR-146b	NF-\(\kappa\)B dependent gene, control toll-like receptors and cytokine signalling	[111]
miR-150	Down-regulated transcription factor c-Myb to control lymphocyte development	[112]
miR-155	Targeting c-Maf to promote T\(\text{h}2\) cells to generate IL-4, IL-5 and IL-10	[115,116]

IL: Interleukin; NF-\(\kappa\)B: Nuclear factor kappa-B.
IL-10 cytokines.

FUTURE RESEARCH DIRECTIONS

The genetic and epigenetic approaches identified many novel loci and regulating elements in human genome. The airway epithelial expressions of some loci and inflammatory cytokines in asthma provide unique therapeutic targets. Regulating elements such as miRNAs also can be served as potential therapeutic targets for the disease. RNA sequencing, deep DNA sequencing, ChIP-sequencing, exome sequencing, transcript profiling and miRNA profiling are becoming more and more powerful platforms to discover more genetic variants, regulators of transcriptions that are more and more powerful platforms to discover more genetic models, animal models and pharmacological models for these novel loci and regulation elements will eventually decipher the precise functions of these targets and it will provide new therapeutic means for asthma in future.

REFERENCES

1. **Duffy DL**, Martin NG, Battistutta D, Hopper JL, Mathews JD. Genetics of asthma and hay fever in Australian twins. *Am Rev Respir Dis* 1990; 142: 1351-1358 [PMID: 2252523 DOI: 10.1164/ajrccm/142.6 Pt_1.1351]

2. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. The International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. *Lancet* 1999; 351: 1225-1232 [PMID: 9643741 DOI: 10.1016/S0140-6736(97)07302-9]

3. Zhang Y, Moffatt MF, Cookson WO. Genetic and genomic approaches to asthma: new insights for the origins. *Curr Opin Pulm Med* 2012; 18: 6-13 [PMID: 22112999 DOI: 10.1097/MCP.0b013e32834dc532]

4. Cookson WO, Sharp PA, Faux JA, Hopkin JM. Linkage between immunoglobulin E responses underlying asthma and thi尼斯 and chromosome 11q. *Lancet* 1989; 1: 1292-1295 [PMID: 2556826 DOI: 10.1016/S0140-6736(89)92687-1]

5. Ober C, Yao TC. The genetics of asthma and allergic disease: a 21st century perspective. *Immunol Rev* 2011; 242: 10-30 [PMID: 21682736 DOI: 10.1111/j.1600-065X.2011.01029.x]

6. Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J, Torrey D, Pandit S, McKenney J, Walsh A, Liu Z, Hayward B, Folz C, Manning SP, Bawa A, Saracino L, Thackston M, Benefekton Y, Capparell N, Wang M, Adair R, Feng Y, Dubois J, FitzGerald MG, Huang H, Gibson R, Allen KM, Pedan A, Danzig MR, Umland SP, Egan RW, Cuss FM, Ronke S, Clough JB, Holloway JW, Holgate ST, Keith TP. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. *Nature* 2002; 418: 426-430 [PMID: 12110844 DOI: 10.1038/nature00878]

7. Zhang Y, Leaves NI, Anderson GG, Ponting CP, Broxholme J, Holt R, Edser P, Bhattacharya S, Dunham A, Adcock IM, Pullen Y, Barnes PJ, Harper JL, Aebischer G, Cardon L, White M, Burton J, Matthews L, Mott R, Ross M, Cox R, Moffatt MF, Cookson WO. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. *Nat Genet* 2003; 33: 181-186 [PMID: 12754510 DOI: 10.1038/ng1166]

8. Allen M, Heinemann A, Noguchi E, Aebischer G, Broxholme J, Ponting CP, Bhattacharya S, Tinsley J, Zhang Y, Holt R, Jones EY, Lench N, Carey A, Jones H, Dickens NJ, Dinon C, Nicholls R, Baker C, Xue L, Townsend E, Kabesch M, Weiland SK, Carr D, von Mutius E, Adcock IM, Barnes PJ, Lathrop GM, Edwards M, Moffatt MF, Cookson WO. Positional cloning of a novel gene influencing asthma from chromosome 2q14. *Nat Genet* 2003; 35: 258-263 [PMID: 14566338 DOI: 10.1038/ng1256]

9. Laitinen T, Polvi A, Rydman P, Vendelin J, Pullikainen V, Salmi-Kangas P, Mäkkelä S, Ruhn P, Pirskanen L, Rautanen A, Zucchielli M, Gullstén H, Leino M, Aleluus H, Pétäys T, Hahtelä T, Laitinen A, Laprise C, Hudson TJ, Laitinen LA, Kore J. Characterization of a common susceptibility locus for asthma-related traits. *Science* 2004; 304: 300-304 [PMID: 15073379 DOI: 10.1126/science.1090010]

10. Nicolae D, Cox NJ, Lester LA, Schneider D, Tan Z, Billstrand C, Kuldianan S, Donfack J, Kogut P, Patel NM, Goedenbourj H, Howard T, Wolf R, Koppelman GH, White SR, Parry R, Postma DS, Meyers D, Bleecker ER, Hunt JS, Solway J, Ober C. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. *Am J Hum Genet* 2005; 76: 349-357 [PMID: 15611928 DOI: 10.1086/427763]

11. Noguchi E, Yokouchi Y, Zhang J, Shibuya K, Shibuya A, Bannai M, Tokunaga K, Doi H, Tamari M, Shimizu M, Shirakawa T, Shibasaki M, Ichikawa K, Ariyama T. Positional identification of an asthma susceptibility gene on human chromosome 5q3. *Am J Respir Crit Care Med* 2005; 172: 183-188 [PMID: 15879417 DOI: 10.1146/rrc.200404-1233OC]

12. Balaci L, Spada MC, Olla N, Sole G, Loddo L, Amedda F, Naizta S, Zunchehda MA, Maschio A, Altea D, Uda M, Pilia S, Sanna S, Masala M, Crisponi L, Fattori M, Devoto M, Doratiottio S, Rassu S, Mereu S, Guia E, Cadeddu NG, Atzeni R, Pelosi F, Torriana G, Capparell N, Wang M, Adair R, Feng Y, Dubois J, FitzGerald MG, Huang H, Gibson R, Allen KM, Pedan A, Danzig MR, Umland SP, Egan RW, Cuss FM, Ronke S, Clough JB, Holloway JW, Holgate ST, Keith TP. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. *Nature* 2002; 418: 426-430 [PMID: 12110844 DOI: 10.1038/nature00878]

13. Zhang Y, Moffatt MF, Kabeski M, Liang D, Dixon AL, Strachan D, Heath S, Depner M, von Berg A, Bufer A, Rietels C, Heinznann A, Simon B, Frischer T, Willis-Owen SA, Wong KC, Illig T, Volberg C, Weiland SK, von Mutius E, Aebischer GR, Farrall M, Gut IG, Lathrop GM, Cookson WO. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. *Nature* 2007; 448: 470-473 [PMID: 17611496 DOI: 10.1038/nature06041]

14. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, von Mutius E, Farrall M, Lathrop M, Cookson WO. A large-scale, consortium-based genomewide association study of asthma. *N Engl J Med* 2010; 363: 1211-1221 [PMID: 20865033 DOI: 10.1056/NEJMoa0906312]

15. Chupp GL, Lee CG, Jarjour N, Shin YM, Holm CT, He S, Dziura JD, Reed J, Coyle AJ, Kieren P, Cullen M, Grundsauge M, Dombret MC, Aubier M, Pretolani M, Elias JA. A chitinase-like protein in the lung and circulation of patients with severe asthma. *N Engl J Med* 2005; 357: 2016-2027 [PMID: 16300538 DOI: 10.1056/NEJMoa053760]

16. Ober C, Tan Z, Sun Y, Possick JD, Pan L, Nicole R, Radford S, Parry RR, Heinzen A, Dieichmann KA, Lester LA, Gern JE, Lemanske RF, Nicolee DL, Elias JA, Chupp GL. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. *N Engl J Med* 2008; 358: 1682-1691 [PMID: 18403759 DOI: 10.1056/NEJMoa0708801]

17. Himes BE, Benninghake GM, Baurely JW, Rafael NM, Sleiman P, Strachan DP, Wilk JB, Willis-Owen SA, Klander B, Lasky-Su J, Lazarus R, Murphy AJ, Soto-Quiros ME, Avila L, Beatty T, Mathias RA, Ruzicznki I, Barnes KC, Celenk JD, Cookson WO, Gauderman WJ, Hakonarson H, Lange C, Moffatt MF, O’Connor AM, Raby BA, Silverman EK, Weiss ST. Genome-wide association analysis identifies PDE4D as an asthma susceptibility gene. *Am J Hum Genet* 2009; 84: 581-593 [PMID: 19426955 DOI: 10.1016/j.ajhg.2009.04.006]
Hancock DB, Romieu I, Shi M, Siena-Monge JJ, Wu H, Chiu GY, Li H, del Rio-Navarro BE, Willis-Owen SA, Weiss ST, Raby BA, Gao H, Eng C, Chapela R, Burchard EG, Tang H, Sullivan PF, London SJ. Genome-wide association study implicates chromosome 9q21.31 as a susceptibility locus for asthma in mexican children. PLoS Genet 2009; 5: e1000623 [PMID: 19714205 DOI: 10.1371/journal.pgen.1000623]

Mathias RA, Grant AV, Rafaels N, Hand T, Gao L, Vergara C, Zhang Y, Wan YI, 2014; Flory J, Imielinski M, Bradfield JP, Annaiah K, April 12, 2016, Grant AV, Rafaels N, Hand T, Gao L, Vergara C, Zhang Y, Wan YI, function in asthmatic patients. Erzurum SC, Israel E, Lemanske RF, Szefler SJ, Wasserman SI, Li X, North American populations. genome-wide association studies of asthma in ethnically diverse phenotypes and pharmacogenomic interactions by race-ethnicity management program (CAMP), Williams LK; Study of Asthma Genetics of Asthma in Latino Americans (GALA) Study, Jr, Beaty TH, Bleecker ER, Raby BA, Weiss ST, Togias A, Li X, Myers BM, London SJ. Genome-wide association study implicates chromosome 9q21.31 as a susceptibility locus for adult asthma in the Japanese population. J Allergy Clin Immunol 2014; 134: 972-975 [PMID: 24975796 DOI: 10.1016/j.jaci.2014.05.015]

Sordillo JE, Kelly R, Bunyavanchich S, McGeachie MJ, Wu Q, Croteau-Chonka DC, Avila L, Celedón JC, Brehm JD, van Durme YM, Chen TH, Barr RG, Schabath MB, Couper DJ, Brusselle GG, Psaty BM, van Marciante KD, Franceschini N, Pascual M, Roa S, Garcia-Sanchez A, Sanz C, Hernandez-Hernandez L, Grealy JM, Lorente F, Dávila I, Isidoro-García M. Genome-wide expression profiling of B lymphocytes reveals ILAR increase in allergic asthma. J Allergy Clin Immunol 2014; 134: 22

Repapi E, Sayers I, Wan LV, Burton PR, Johnson T, Obiedat M, Zhao JH, Ramasamy A, Zhai G, Vitart V, Huffman JE, Igl W, Abecasis G, Moffatt MF, Bush A, ChungKF, Cookson WO, Strachan DP, Heaney L, Al-Momani BA, Mansur AH, Manney S, Thomson NC, Chaudhari R, Brightling CE, Bafadhel M, Singapari A, Niven R, Simpson A, Holloway JW, Howarth PH, Hui J, Mask AW, James AL, Brown MA, Balmes J, Ferreira MA, Thompson PJ, Tohin MD, Sayers I, Hall IP. Genome-wide association study to identify genetic determinants of severe asthma. Thorax 2012; 67: 762-768 [PMID: 22561531 DOI: 10.1136/thoraxjnl-2011-201262]

Genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet 2014; 46: 51-55 [PMID: 24241537 DOI: 10.1038/ng.2830]

McGeachie MJ, Wu AC, Tse SM, Clemmer GL, Sordillo J, Beraldo E, Lasky-Su J, Chase RP, Martinez FD, Weeko P, Shaffer CM, Xu H, Denny JC, Roden DM, Panettieri RA, Raby BA, Weiss ST, Tantisira KG. CTNNA3 and SEMA3D: Promising loci for asthma exacerbation identified through multiple genome-wide association studies. J Allergy Clin Immunol 2015; 136: 1503-1510 [PMID: 26073756 DOI: 10.1016/j.jaci.2015.04.039]

Sordillo JE, Kelly R, Bunyavanchich S, McGeachie MJ, Wu Q, Croteau-Chonka D, Soto-Quiros M, Avila L, Celedón JC, Brehm JD, van Durme YM, Chen TH, Barr RG, Schabath MB, Couper DJ, Brusselle GG, Psaty BM, van Duin CM, Rotter JI, Utterlinendi AG, Hofman A, Punjabi NM, Rivadeneira F, Morrison AC, Enright PL, North KE, Heckbert SR, Lunney T, Strieker BH, O’Connor GT, London SJ. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet 2010; 42: 45-52 [PMID: 20010835 DOI: 10.1038/ng.500]

WJTM · www.wjgnet.com 22 April 2016 · Volume 5 · Issue 1
Muscle cell functions that promote inflammation and airway remodeling in asthma. FASEB J 2001; 15: 1212-1214 [PMID: 11344691 DOI: 10.1096/fj.00-7042fj]

Oyeniran CA, Sturgill JL, Hait NC, Huang WC, Avni D, Maceyka M, Newton J, Allegood JC, Montpetit A, Conrad DH, Milisien S, Spiegel S. Aberrant ORM (yeast)-like protein isoform 3 (ORMDL3) expression dysregulates ceramide homeostasis in cells and cell culture exacerbates allergic asthma in mice. J Allergy Clin Immunol 2015; 136: 1035-1046.e6 [PMID: 25842287 DOI: 10.1016/j.jaci.2015.02.031]

Miller M, Tam AB, Cho YJ, Doherty TA, Pham A, Khorram N, Rosenthal P, Mueller JL, Hoffman HM, Suzukawa M, Niwa M, Brodie DH. ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6. Proc Natl Acad Sci USA 2012; 109: 16648-16653 [PMID: 23011799 DOI: 10.1073/pnas.1204151109]

Ha SG, Ge XN, Bahaeia NS, Kang BN, Rao A, Rao SP, Siriramaro P. ORMDL3 promotes eosinophil trafficking and activation via regulation of integrins and CD48. Nat Commun 2013; 4: 2479 [PMID: 24056518 DOI: 10.1038/ncomms4379]

Cantero-Recasens G, Fandos C, Rubio-Moscardo F, Valverde MA, Vicente R. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. J Exp Med 2012; 210: 1619-1633 [PMID: 22684109 DOI: 10.1084/jem.20122831.x]

Michel S, Busato F, Gueunet I, Pekkanen J, Dalphin JC, Rieder J, Mazaleyrat N, Weber J, Karvonam OM, Hirvonen MR, Braun-Falchlander C, Lauen R, von Mutius E, Kabesch M, Tost J. Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy 2013; 68: 355-364 [PMID: 23346394 DOI: 10.1111/all.12097]

Staats GG, Reinius LE, Aln J, Kere J, Scheynius A, Joerink M. DNA methylation levels within the CD14 promoter region are lower in placenta of mothers living on a farm. Allergy 2012; 67: 895-903 [PMID: 22564189 DOI: 10.1111/j.1398-9995.2011.02831.x]

Rastogi D, Suzuki M, Gueunet I, Great JM. Differential epigenome-wide DNA methylation patterns in childhood obesity-associated asthma. Sci Rep 2013; 3: 2164 [PMID: 23585731 DOI: 10.1038/srep02164]

Liang L, Willis-Owen SA, Laprise C, Wong KC, Davies GA, Hudson TJ, Binia A, Hopkin JM, Yang IV, Grundberg E, Busche S, Hudson M, Runblom L, Pastinen TM, Schwartz DA, Lathrop GM, Moffat CF, Cookson WO. An epigenome-wide association study of total serum immunoglobulin E concentration. Nat Commun 2015; 520: 670-674 [PMID: 25707804 DOI: 10.1038/nature14125]

Boothen R, Lindsay MA. Emerging role of MicroRNAs and long noncoding RNAs in respiratory disease. Chest 2014; 146: 193-204 [PMID: 25010962 DOI: 10.1378/chest.13-2736]

Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92-105 [PMID: 18955434 DOI: 10.1101/gr.082701.108]

Perry MM, Baker JE, Gibson DS, Adcock IM, Chung KF. Airway smooth muscle hypertrophy is regulated by microRNA-221 in severe asthma. Am J Respir Cell Mol Biol 2014; 50: 7-17 [PMID: 23849457 DOI: 10.1165/rcmb.2013-0670OC]

Holgate ST, Mazaleyrat N, Weber J, Karvonam OM, Braun-Falchlander C, Lauen R, von Mutius E, Kabesch M, Tost J. Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy 2013; 68: 355-364 [PMID: 23346394 DOI: 10.1111/all.12097]

Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92-105 [PMID: 18955434 DOI: 10.1101/gr.082701.108]

Zhang K, Kaufman RJ. From endodermal-reticulum stress to the inflammatory response. Nature 2008; 454: 455-462 [PMID: 18659016 DOI: 10.1038/nature07203]

Sriburi R, Bomnisamy H, Buldak GL, Robbins GR, Frank M, Jackowski S, Brewer JW. Coordinate regulation of phospholipid biosynthesis and secretory pathway gene expression in XBP-1(S)-induced endoplasmic reticulum biogenesis. J Biol Chem 2007; 282: 7024-7034 [PMID: 17213183 DOI: 10.1074/jbc.M609490200]

Breslow DK, Collins SR, Bodenmiller B, Aeberson S, Simons K, Shevchenko A, Eising CS, Weissman JS.Orm family proteins mediate sphingolipid homeostasis. Nature 2010; 463: 1048-1053 [PMID: 20182505 DOI: 10.1038/nature08787]

Uhlig S, Gubins E. Sphingolipids in the lungs. Am J Respir Crit Care Med 2006; 178: 1100-1114 [PMID: 18755926 DOI: 10.1164/ rccm.2008-0559SS]

Ammit AJ, Hastie AT, Edsall LC, Hoffman RK, Amrani Y, Krymskaya VP, Kane SA, Peters SP, Penn RB, Spiegel S, Panettieri RA. Sphingosine-1-phosphate modulates human airway smooth muscle cell functions that promote inflammation and airway remodeling in asthma. FASEB J 2001; 15: 1212-1214 [PMID: 11344691 DOI: 10.1096/fj.00-7042fj]

Oyeniran CA, Sturgill JL, Hait NC, Huang WC, Avni D, Maceyka M, Newton J, Allegood JC, Montpetit A, Conrad DH, Milisien S, Spiegel S. Aberrant ORM (yeast)-like protein isoform 3 (ORMDL3) expression dysregulates ceramide homeostasis in cells and cell culture exacerbates allergic asthma in mice. J Allergy Clin Immunol 2015; 136: 1035-1046.e6 [PMID: 25842287 DOI: 10.1016/j.jaci.2015.02.031]

Miller M, Tam AB, Cho YJ, Doherty TA, Pham A, Khorram N, Rosenthal P, Mueller JL, Hoffman HM, Suzukawa M, Niwa M, Brodie DH. ORMDL3 is an inducible lung epithelial gene regulating metalloproteases, chemokines, OAS, and ATF6. Proc Natl Acad Sci USA 2012; 109: 16648-16653 [PMID: 23011799 DOI: 10.1073/pnas.1204151109]

Cantero-Recasens G, Fandos C, Rubio-Moscardo F, Valverde MA, Vicente R. The asthma-associated ORMDL3 gene product regulates endoplasmic reticulum-mediated calcium signaling and cellular stress. J Exp Med 2012; 210: 1619-1633 [PMID: 22684109 DOI: 10.1084/jem.20122831.x]
Zhang Y. Potential therapeutic targets for asthma

R, Dong L. Central role of cellular senescence in TSLP-induced airway remodeling in asthma. PLoS One 2013; 8: e77795 [PMID: 24167583 DOI: 10.1371/journal.pone.007795] 64

Yang VA, Zhang GM, Feigenbaum L, Zhang YE. Smad3 reduces susceptibility to hepatocarcinoma by sensitizing hepatocytes to apoptosis through downregulation of Bcl-2. Cancer Cell 2006; 9: 445-457 [PMID: 16766264 DOI: 10.1016/j.ccr.2006.04.025]

Tian F, DaCosta Byfield S, Parks WT, Yoo S, Felici A, Tang B, Piek E, Wakefield LM, Roberts AB. Reduction in Smad2/3 signaling enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Res 2003; 63: 8284-8292 [PMID: 14679087]

Daly AC, Vizán P, Hill CS. Smad3 protein levels are modulated by Ras activity and during the cell cycle to dictate transforming growth factor-beta responses. J Biol Chem 2010; 285: 6489-6497 [PMID: 20037188 DOI: 10.1074/jbc.M109.043877]

Lloyd CM, Hawrylowicz CM. Regulatory T cells in asthma. Immunity 2009; 31: 438-449 [PMID: 19766086 DOI: 10.1016/j.immuni.2009.08.007]

Kariyawasam HH, Pecorier S, Barkans J, Xanthou G, Aizen M, Ying S, Kay AB, Lloyd CM, Robinson DS. Activin and transforming growth factor-beta signals are antagonized by a novel "alarmin", PLoS One 2008; 3: e3331 [PMID: 18365228 DOI: 10.1371/journal.pone.0003331]

Oboki K, Ohno T, Kajiwara N, Araki M, Morita H, Iashi A, Nambu A, Abe T, Kiyonori H, Matsumoto K, Sako K, Okumura K, Saito H, Nakas S. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci USA 2010; 107: 18581-18586 [PMID: 20939781 DOI: 10.1073/pnas.1003591017]

Lloyd CM. IL-33 family members and asthma - bridging innate and adaptive immune responses. Curr Opin Immunol 2010; 22: 800-806 [PMID: 20171194 DOI: 10.1016/j.coi.2010.06.006]

Fukao T, Matsuda S, Koyasu S. Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFN-gamma production by dendritic cells. J Immunol 2000; 164: 64-71 [PMID: 10604994 DOI: 10.4049/jimmunol.164.1.64]

Létourneau S, Krieg C, Pantaleo G, Boyman O. IL-2 and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin Immunol 2009; 123: 758-762 [PMID: 19348914 DOI: 10.1016/j.jaci.2009.02.011]

Setoguchi R, Horii S, Takahashi T, Sakaguchi S. Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med 2005; 201: 723-735 [PMID: 15753206 DOI: 10.1084/jem.20041982]

Gaffen SL. Signaling domains of the interleukin 2 receptor. Cytokine 2001; 14: 63-77 [PMID: 11356607 DOI: 10.1006/cyto.2000.0862]

Montes de Oca P, Malardé V, Proust R, Dauty-Varsat A, Gesbert F. Ectodomain shedding of interleukin-2 receptor beta and generation of an intracellular functional fragment. J Biol Chem 2010; 285: 22050-22058 [PMID: 20495002 DOI: 10.1074/jbc.M110.093088]

Doganci A, Karwot R, Maxeiner JH, Scholtes P, Schmitt E, Neurath MF, Lehr HA, Ho IC, Fentino S. IL-2 receptor beta-chain signaling controls immunosuppressive CD4+ T cells in the draining lymph nodes and lung during allergic airway inflammation in vivo. J Immunol 2008; 181: 1917-1926 [PMID: 18641329 DOI: 10.4049/jimmunol.181.3.1917]

Lee GR, Fields PE, Griffin TJ, Flavell RA. Regulation of the Th2 cytokine locus by a locus control region. Immunity 2003; 19: 145-153 [PMID: 12871646 DOI: 10.1016/S1074-7613(03)00179-1]

Andrews AL, Holloway JW, Holgate ST, Davies DE. IL-4 receptor alpha is an important modulator of IL-4 and IL-13 receptor binding: implications for the development of therapeutic targets. J Immunol 2006; 176: 7456-7461 [PMID: 16751391 DOI: 10.4049/jimmunol.176.12.7456]

Martinez-Moczygemba M, Huston DP. Biology of common beta receptor-signaling cytokines: IL-3, IL-5, and GM-CSF. J Allergy Clin Immunol 2003; 112: 653-665; quiz 666 [PMID: 14563431 DOI: 10.1016/j.jaci.2003.08.015]

Guddbjartsson DT, Bjornsdottir US, Halapi E, Helgadottir A, Solem P, Jonsdottir GM, Thorleifsson G, Helgadottir H, Steinthorsdottir V, Stefansson H, Williams C, Hui J, Beilby J, Warrington NM, James A, Palmer LJ, Koppelman GH, Heinzmann A, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zirwas G, Mosheri M, Qin J, Li X, Gorman DM, Bazan JF, Kastelijn RA. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005; 23: 479-490 [PMID: 16286016 DOI: 10.1016/j.immuni.2005.09.015]

Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, Bouche G, Girard JP. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA 2007; 104: 282-287 [PMID: 17185418 DOI: 10.1073/pnas.0608654104]

Kuwoska-Stolarska M, Hueber A, Stolarski B, McInnes IB. Interleukin-33: a novel mediator with a role in distinct disease pathologies. J Intern Med 2011; 269: 29-35 [PMID: 21158975 DOI: 10.1111/j.1365-2796.2010.02316.x]

Mouscion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel "alarmin"? PLoS One 2008; 3: e3331 [PMID: 18365228 DOI: 10.1371/journal.pone.0003331]
enclosed microRNAs in exhaled breath hold potential for biomarker discovery in patients with pulmonary diseases. J Allergy Clin Immunol 2013; 132: 219-222 [PMID: 23683467 DOI: 10.1016/j.jaci.2013.03.035]

105 Roff CA, Craig TJ, August J, Stellato C, Ishmael FT. MicroRNA-570-3p regulates HuR and cytokine expression in airway epithelial cells. Am J Clin Exp Immunol 2014; 3: 68-83 [PMID: 25143867]

106 Comer BS, Camoretti-Mercado B, Kogut PC, Halayko AJ, Soliwaj J, Gerthoffer WT. MicroRNA-146a and microRNA-146b expression and anti-inflammatory function in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2014; 307: L727-L734 [PMID: 25217662 DOI: 10.1152/ajplung.00174.2014]

107 Suojalehto H, Lindström I, Majuri ML, Mirtt C, Karjalainen J, Wolf H, Alenius H. Altered microRNA expression of nasal mucosa in long-term asthma and allergic rhinitis. Int Arch Allergy Immunol 2014; 163: 168-178 [PMID: 24513959 DOI: 10.1159/000358486]

108 Chou FS, Mulloy JC. The thrombopoietin/MPL pathway in hematopoiesis and leukemogenesis. J Cell Biochem 2011; 112: 1491-1498 [PMID: 21360575 DOI: 10.1002/jcb.23089]

109 Takyar S, Vasavada H, Zhang JG, Abhangari F, Niu N, Liu Q, Lee CG, Coln D, Elia J. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene-P) selectin axis. J Exp Med 2013; 210: 1993-2010 [PMID: 24043765 DOI: 10.1084/jem.20121200]

110 Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2009; 106: 18704-18709 [PMID: 198435690 DOI: 10.1073/pnas.0905063106]

111 Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2009; 106: 12481-12486 [PMID: 16885212 DOI: 10.1073/pnas.0602598103]

112 Xiao C, Calado DP, Gallier G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bentley JP, Rajewsky K. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007; 131: 146-159 [PMID: 17923094 DOI: 10.1016/j.cell.2007.07.021]

113 Pykäläinen M, Kinos R, Valkonen S, Rydman P, Kilpeläinen M, Laitinen LA, Karjalainen J, Nieminen M, Hurme M, Kere J, Laitinen T, Lahesmaa R. Association analysis of common variants of STAT6, GATA3, and STAT4 to asthma and high serum IgE phenotypes. J Allergy Clin Immunol 2005; 115: 80-87 [PMID: 15637551 DOI: 10.1016/j.jaci.2004.10.006]

114 Kozuka T, Sugiya T, Shuttzline S, Gewirtz AM, Nakata Y. c-Myb and GATA-3 cooperatively regulate IL-13 expression via the germinal center response by microRNA-155. Science 2007; 316: 604-608 [PMID: 17463289 DOI: 10.1126/science.1141229]

115 Rodriguez A, Vigorito E, Clare S, Warren MV, Couettet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A. Requirement of bic/microRNA-155 for normal immune function. Science 2007; 316: 608-611 [PMID: 17463290 DOI: 10.1126/science.1139253]
