Constitutive G_s activation using a single-construct tetracycline-inducible expression system in embryonic stem cells and mice

Edward C Hsiao1,2*, Trieu D Nguyen1, Jennifer K Ng1, Mark J Scott1, Wei Chun Chang3, Hengameh Zahed4,5, Bruce R Conklin1,6

Abstract

Introduction: The controlled expression of many genes, including G-protein coupled receptors (GPCRs), is important for delineating gene functions in complex model systems. Binary systems for inducible regulation of transgene expression are widely used in mice. One system is the tTA/TRE expression system, composed of a tetracycline-dependent DNA binding factor and a separate tetracycline operon. However, the requirement for two separate transgenes (one for each tTA or TRE component) makes this system less amenable to models requiring directed cell targeting, increases the risk of multiple transgene integration sites, and requires extensive screening for appropriately-functioning clones.

Methods: We developed a single, polycistronic tetracycline-inducible expression platform to control the expression of multiple cistrons in mammalian cells. This platform has three basic constructs: regulator, responder, and destination vectors. The modular platform is compatible with both the TetOff (tTA) and TetOn (rtTA) systems. The modular Gateway recombineering-compatible components facilitate rapidly generating vectors to genetically modify mammalian cells. We apply this system to use the elongation factor 1a (EF1a) promoter to drive doxycycline-regulated expression of both the fluorescent marker mCherry and an engineered G_s-coupled GPCR “Rs1” separated by a 2A ribosomal skip site.

Results: We show that our combined expression construct drives expression of both the mCherry and Rs1 transgenes in a doxycycline-dependent manner. We successfully target the expression construct into the Rosa26 locus of mouse embryonic stem (ES) cells. Rs1 expression in mouse ES cells increases cAMP accumulation via both basal and ligand-induced G_s mechanisms and is associated with increased embryoid body size. Heterozygous mice carrying the Rs1 expression construct showed normal growth and weight, and developed small increases in bone formation that could be observed in the calvaria.

Conclusions: Our results demonstrate the feasibility of a single-vector strategy that combines both the tTA and TRE tetracycline-regulated components for use in cells and mouse models. Although the EF1a promoter is useful for driving expression in pluripotent cells, a single copy of the EF1a promoter did not drive high levels of mCherry and Rs1 expression in the differentiated tissues of adult mice. These findings indicate that promoter selection is an important factor when developing transgene expression models.

* Correspondence: edward.hsiao@ucsf.edu
1Gladstone Institute of Cardiovascular Disease, 1650 Owens St, San Francisco, CA 94158, USA
Full list of author information is available at the end of the article

© 2011 Hsiao et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

G-protein coupled receptors (GPCRs) are the largest family of cell-surface receptors. GPCRs mediate a wide variety of biological processes and responses to extracellular signals and are the major targets for over 40% of modern pharmaceuticals [1]. However, the diversity of the GPCR family, as well as the presence of constitutive signaling in some GPCRs, poses major challenges for studying the effects of GPCR signaling in in vitro and in vivo systems.

Receptors activated solely by synthetic ligands (RASSLs) provide one method for experimentally manipulating the timing and activation of G-protein pathways [2,3]. RASSLs are engineered receptors that no longer respond to endogenous hormones, but are activated by synthetic small-molecule drugs. They have proven valuable for studying the roles of activated G-protein signaling in complex systems, including cardiomyocyte function [4], neurological development and function [5-7], and bone development [8-11].

Since many GPCRs show both constitutive and ligand-activated signaling, having temporal and tissue-specific control of GPCR transgene expression is important for delineating specific signaling functions. A variety of binary expression systems are used in genetic model organisms to achieve regulated expression, including the GAL4/UAS [12] and the tetracycline-regulated (tTA/TRE) system [13]. The tTA/TRE system uses two separate components to regulate spatial and temporal gene expression: a regulator construct, containing a promoter to drive tissue-specific expression of either the tetracycline-controlled transactivator (tTA; TetOff) or the reverse tetracycline-controlled transactivator (rtTA; TetOn); and a responder construct bearing the minimal TRE components [14-22], our platform is compatible to several prior methods for combining the tTA/TRE components [14-22], our platform is compatible with both the TetOff (tTA) and TetOn (rtTA) technologies and is rapidly adaptable for multiple gene delivery backbones commonly used in eukaryotic cell lines (for example, lentivirus or Rosa26 targeting).

In this study, we demonstrate the utility of our single-vector constructs in mouse embryonic stem (ES) cells and mice. We show that expression of both mCherry and the Gs-coupled RASSL Rs1 can be tightly controlled with doxycycline in mouse ES cells. In addition, we show that a Rosa26 knock-in construct using the EF1α promoter to drive expression of Rs1 and mCherry is functional in mice, but that the EF1α promoter does not drive high expression of the transgenes in all tissues of adult mice. Finally, our results indicate that low-level expression of a GPCR with constitutive Gs activity leads to a mild increase in calvarial bone formation.

Materials and methods

Plasmids

All plasmid constructs used in this study, their Addgene accession numbers, and maps are summarized in Table S1 in Additional File 1 and Figures S1A-H in Additional File 2.

attL1L3 entry vectors

The pEntr2B entry vector (Invitrogen, Carlsbad, CA, USA) was digested with PstI and XhoI to remove the attL2 site. Oligonucleotides containing SalI-XhoI-attL1 and ccdb genes. Oligos containing the attL3 sequence on the 5’ side and PstI on the 3’ side were ligated in to create an intermediate plasmid carrying attL1 and attL3 sites (from pDest R4-R3, Invitrogen). A LoxP sequence was introduced at the XhoI site, and the 500-bp chicken β-globin (CBG) HS4 insulator sequence [23] was introduced at the Bsu36I/Ndel sites. The tTA and pA sequences were subsequently cloned into the EcoRI/NotI sites by PCR cloning from pUHG15-1 [24] to generate pEntL1L3 tTA-2. The EF1α promoter from pORF9 (Invivogen, San Diego, CA, USA) was cloned into the PacI site to generate the final entry vector pEntL1L3 EF1α-tTA-2. The construct was verified by sequencing.

attR3L2 entry vectors

The pEntr2B entry vector was digested with AflIII and XhoI to remove the attL1 and ccdb genes. Oligos containing the attR3 site flanked by AflIII on the 5’ end and a polylinker (NotI-PacI-Bsu36I-Ndel-XhoI) on the 3’
entry vectors were recombined with sequencing. Cells with G418. The modified regions were verified by Clonase Plus (Invitrogen). In accord with protocols provided by the manufacturer, the attL1L3 and attR3L2 entry vectors were recombined with attR1R2 destination vectors (pRosa26 R1R2 RexNeo or pcDNA3.2-GW(delCMV) to generate the expression vectors Exp-R26(Elfα-tTA/TetO-mCh-Rs1) and Exp-pcdNA3.2 (Elfα-tTA/TetO-mCh-Rs1). The recombineering junctions within the final expression vectors were verified by sequencing.

Generating Rosa26-targeted ES cells R26(Elfα-tTA/TetO-mCh-Rs1)

Feeder-independent mouse ES cells (129/OlaHsd strain, sub-line E14Tg2A.4) were maintained in normal growth medium supplemented with murine leukemia inhibiting factor as described [32]. Exp-R26(Elfα-tTA/TetO-mCh-Rs1) was linearized with AgeI. The DNA was electroplated into 3 × 10^6 ES cells using a BioRad Gene Pulser XCell at 800 V, 10 μF, and Tc = 0.3. ES cell cultures were selected in normal growth medium [32] supplemented with 175 ng/ml neomycin (Gibco BRL/Invitrogen, Carlsbad, CA, USA) and 1 ng/ml doxycycline (Sigma Aldrich, St. Louis, MO, USA) for 10 days. Twenty-nine colonies were identified and expanded, and colonies were subsequently genotyped by non-radioactive Southern blot (GE RPN3690 kit with CDP-Star) using PCR primers from pUNIV-SIG-ECH141 (5' TTCGCCCTTTAGGAACAAGA 3') and reverse primer ECH142 (5' TTTTGCCAATTTGTTCCGTG 3') from the Rosa26 5' region using forward primer ECH141 (5' TTGCCTTTAGGAACAGA 3') and reverse primer ECH142 (5' TTTTGCCAATTTGTTCCGTG 3') from the Rosa26-5' probe plasmid [30] [Addgene: 21715]. The R26(Elfα-tTA/TetO-mCh-Rs1) ES cells were deposited with the MMRRC [MMRRC: 34358].

Transiently transfected HEK-293 cells

HEK-293 cells were maintained in standard growth medium with 10% FBS. Plasmids were introduced into cells using Lipofectamine 2000 (Invitrogen), according to manufacturer’s protocol. Medium was supplemented with 1 ng/ml doxycycline (a tetracycline analog) (Sigma Aldrich). Expression of the transgenes was characterized by fluorescent microscopy and FACS analysis.

FACS analysis of transgene expression

R26(Elfα-tTA/TetO-mCh-Rs1) ES cells cultured in the presence or absence of doxycycline were treated with 3 mg/ml collagenase I (Worthington Biochemical Corp., Lakewood, NJ, USA) for 10 to 20 minutes until the cells detached from the culture plate. The cells were collected and passed through a cell strainer before FACS analysis using the BD LSRII (BD Biosciences, San Jose, CA, USA) for mCherry expression. FlowJo (TreeStar, Ashland, OR, USA) software was used to analyze flow cytometry data.
Analysis of embryoid body size
Suspension embryoid bodies (EBs) were formed by seeding 3 x 106 ES cells into a 10-cm low-attachment dish (Corning, Lowell, MA, USA) and allowing the cells to self-aggregate. Cells were maintained for eight days in differentiation medium containing 20% FBS [33,34]. Supplements included 10 ng/ml doxycycline or 50 ng/ml RS67333, as indicated in the experiment figures. Images of EBs were captured over the entire plate by a Zeiss Axiovert 200 M microscope and Axiovision software. EB size was determined by pixel counting using ImageJ software [35,36] and analyzed on Excel (Microsoft Corp., Seattle, WA, USA).

cAMP accumulation assay
Rs1-expressing cells were seeded in a poly-d-lysine and laminin-coated 24-well plate at a density of 350,000 cells/well. After 24 hours, the cells were treated with 1 μM drug (serotonin or RS67333) for 10 minutes at 37°C. The treatment solution was aspirated off and the cells were lysed. The cell lysates were assayed for cAMP accumulation using the cAMP HiRange HTRF kit (Cis-Bio US, Bedford, MA, USA).

Generation of EF1α-tTA/TetO-mCh-Rs1 mice
All transgenic mouse studies were approved by and performed in accordance with the Institutional Animal Care and Use Committee and the Laboratory Animal Research Center at the University of California, San Francisco. Mouse chimeras were generated by the Gladstone Transgenic/Gene Targeting Core facility by injection of E14 ES cells carrying the Exp-R26(EF1α-tTA-mCh-Rs1-TetO (sh)-2) knock-in construct and backcrossed to the C57Bl/6 line. Germline transmission was identified by PCR using the primers ECH103 (5’ CT ATGGGAAATCTCC-GAGGCG 3’) and ECH162 (5’ CGCCCAGAAGCTAGGTGTAG 3’); 262 bp product) to detect the wild-type R26 allele and ECH137 (5’ ACGTCGA TTGGGCTGTTT 3’) and ECH161 (5’ CCTCTCACGTATCGA 3’); 262 bp product) to detect the recombinant allele. Genotyping was performed with the REDExtract-N-Amp Tissue PCR kit (Sigma Aldrich) as directed by the manufacturer. Transgene expression was suppressed by continuous administration of doxycycline-impregnated mouse chow (DoxDiet 200 mg/kg; Bio-Serv, Frenchtown, NJ, USA). Transgene expression was activated by switching the mice to regular mouse chow without doxycycline (LabDiet 5053, PMI Nutrition, St. Louis, MO, USA). Both males and females were analyzed together in our experiments as no sex-dependent differences were observed. The Coll(2.3)-tTA and TetORs1 transgenic mice are as described [8]. The EF1α-tTA/TetO-mCh-Rs1 mice are deposited with the Mutant Mouse Regional Resource Center [MMRRC:034320].

RNA expression analysis
Gene expression analysis was performed on RNA isolated from the selected tissues or from the right humerus of adult experimental animals, as indicated in the figures. Bones for each experiment were batch processed by crushing (multi-sample Bio-Pulverizer, Research Products International, Prospect, IL, USA). All tissues, including the crushed bone, were homogenized (4.5 mm Tissue Tearor, Research Products International) in RNAStat-60 (Iso-Tex Diagnostics, Friendswood, TX, USA) and total RNA was isolated according to the manufacturer’s instructions. cDNA was generated using the SuperScript III First Strand Synthesis kit (Invitrogen) as directed by the manufacturer. Expression was assayed using SybrGreen or Taqman primers for Rs1 and GAPDH as described [8,10]; SybrGreen primers for tTA (Forward: 5’ CGCCCAGAAGCTAGGTGTAG 3’; Reverse 5’ CCCCTTCTAAAGGCGAAG 3’); and SybrGreen primers for mCherry (Forward: 5’ CCTGTCCCCCTCAGTTCATGT 3’; Reverse: 5’ GCTTCAAG TAGTCCGGGATG 3’). Taqman probe sets used for expression analysis for apoptosis, pluripotency, and differentiation markers are as follows: Bad (Mm00432042_m1), Ccnb3 (Mm00805476_m1), McI (Mm01257352_g1), Oct3/4 (Mm00658129_gH) and Sox2 (Mm00488369_s1), Foxa2 (Mm01976556_s1), Nestin (Mm00450205_m1), Nkx2.5 (Mm00657783_m1), ANF (Mm00431717-m1), MyoD (Mm00440387_m1), and Sox17 (Mm00488363_m1). All samples were assayed in technical triplicates, and expression levels were normalized to GAPDH. All qPCR reactions were run on an Applied Biosystems (Foster City, CA, USA) 7900 HT real-time thermocycler.

Bone densitometry
Mice identified for dual-energy x-ray absorptiometry (DEXA) to measure whole-body areal bone mineral density (BMD) were anesthetized with inhaled isofluorane (1.5 to 2% in oxygen) and scanned on a GE Lunar PIXI-mus2 (Waukesha, WI, USA) as described [8].

Results
Assembly of single-vector poly-cistronic Tet-regulated expression vectors
To create a single-vector Tet-regulated expression construct, we used a modular cloning strategy employing the Gateway recombineering system [37] with standardized entry vector plasmids to assemble the tetracycline-regulated components into different destination vector backbones (Figure 1A). Briefly, the regulator vector, containing attL1 and attL3 sites, carries the promoter (that is, the ubiquitous promoter EF1α [38]) used to drive expression of either the tTA or rtTA regulator. The responder vector, containing attL2 and attR3 sites,
Hsiao et al. Stem Cell Research & Therapy 2011, 2:11
http://stemcellres.com/content/2/2/11

Page 5 of 12

Figure 1 A single-vector tetracycline construct allows doxycycline-regulated expression. (A) Overview showing the regulator plasmid containing the EF1α-tTA cassette (pEntL1L3-EF1α-tTA, left) and the responder plasmid containing the TetO-mCh-Rs1 cassette (pEntR3L2 TetO-mCh-Rs1, right). The mCherry and Rs1 cistrons are separated by a P2A ribosomal skip sequence to allow simultaneous expression of both peptides. The entry plasmids were recombined using Gateway technology into the desired destination vector containing the AttR1 and AttR2 Gateway sites. The TetO and EF1α-tTA portions are in opposite orientation (indicated by upside-down text) to minimize steric hindrance between the two promoters, as well as potential cross-activation of the TetO by the EF1α promoter. In addition, flanking insulator sequences are included to minimize any read-through activation of the constructs by surrounding promoters (such as Rosa26) that may lead to “leakiness” or steric interference from endogenous promoter activity. (B, C) HEK-293 cells carrying the Exp-pcDNA3.2(EF1α-tTA/TetO-mCh-Rs1) expression cassette and cultured in doxycycline (suppressed expression) or in the absence of doxycycline (transgene expression allowed) demonstrate doxycycline-dependent mCherry expression. (D) Schematic of targeted Rosa26 locus and Southern screening strategy. The Rosa26 locus in E14 ES cells was targeted by homologous recombination with the Exp-R26(EF1α-tTA/TetO-mCh-Rs1) construct. Regions in hatch marks indicate the 5′ and 3′ homology regions of the targeting vector and the endogenous Rosa26 locus (abbreviated R26 in the figure). The location of the 5′ recombination Southern probe and HindIII restriction sites are indicated. (E) Southern blots of genomic DNA digested with HindIII and probed as in (D). Heterozygous ES cells at the Rosa26 locus are indicated by the two bands.

carries the minimal TetO tetracycline response element linked to the gene of interest. The destination vector contains the recipient attR1 and attR2 sites, as well as a selectable marker, and serves as the final backbone for expressing the transgenes in mammalian cells. Multiple Gateway destination vectors based on standard expression plasmids, lentiviral expression vectors, and knock-in constructs are now generally available (e.g., from Invitrogen or Addgene).

We combined the regulator, responder, and destination vectors by Gateway recombineering to create the final single-vector Tet-inducible expression constructs. The regulator and responder cassettes were designed to lie in opposite orientations with the polyA tails nearest each other, thus preventing cross-activation and transcriptional read-through. Additional spacer DNA was placed between the opposing pA sequences to minimize the risk of steric interference of the RNA polymerases. The unidirectional three-way Gateway recombination strategy ensures that the regulator and responder cassettes are always positioned in the proper orientation. In addition, insulator sequences from the chicken β-globin gene flank both sides of the construct to prevent inadvertent read-through into the expression cassettes. Finally, we placed flanking LoxP sites around the construct to allow for Cre-mediated
excision of the expression cassette, providing the option of a negative control by excision for epigenetic and integration effects.

Doxycycline-inducible transgenes in mammalian cells
To test the functionality of our platform, we created the expression construct Exp-pcDNA3.2(EF1a-tTA/TetO-mCh-Rs1) to express the Gs-coupled RASSL, “Rs1,” ubiquitously. The Rs1 and mCherry cistrons are separated by a P2A ribosomal skip sequence, which allows genes to be expressed simultaneously from the same promoter [28]. The 2A sequences have also been used to express peptides in equimolar ratios [26,27]. For ubiquitous tTA transactivator expression, we constructed a regulator vector where the EF1a promoter drives tTA. Previous studies indicate that the EF1a promoter could direct expression of reporter genes in a variety of cell types and tissues at high levels [38-40]. For the destination vector, we used a modified expression plasmid with the majority of the CMV promoter removed (pcDNA3.2GW-delCMV).

The Exp-pcDNA3.2(EF1a-tTA/TetO-mCh-Rs1) construct was transiently transfected into HEK-293 cells and cultured in either regular medium without doxycycline or in medium with 10 ng/ml doxycycline (Figure 1B,C). Cells cultured in the presence of doxycycline, thus suppressing the transactivator activity, showed no mCherry expression after 24 hours (Figure 1B). In contrast, cells cultured in the absence of doxycycline showed robust mCherry expression (Figure 1C), indicating doxycycline-dependent suppression of transgene expression from our expression construct.

Targeting the combined mCherry and Rs1 expression construct to the Rosa26 locus
To determine if activation of the Gs signaling pathway affects embryonic stem cell growth, we created a Gateway-modified destination vector to target the Rosa26 locus (pRosa26 R1R2 RexNeo) for expression of the combined EF1a-tTA and TetO-mCh-Rs1 components. Using Gateway recombineering, we combined the pEntL1L3 EF1a-tTA regulator, pEntR3L2 TetO-mCh-Rs1 responder, and the Rosa26 R1R2 RexNeo designation vectors to generate the Exp-R26(EF1a-tTA/TetO-mCh-Rs1) knock-in expression vector (Figure 1D). Site-specific introduction of the expression cassette into the transcriptionally-permissive Rosa26 locus was performed by gene targeting into E14Tg2A.4 mouse ES cells. Positive clones were identified after G418 selection. Twenty-nine colonies were screened by Southern blot. One ES cell colony (line A6) was identified carrying the correct Rosa26 modification, designated R26(EF1α-tTA/TetO-mCh-Rs1) (Figure 1E), and used for subsequent studies.

Rs1 activation induces cAMP accumulation in mouse ES cells
Analysis of the R26(EF1α-tTA/TetO-mCh-Rs1) mouse ES cell line demonstrated that both the Rs1 and mCherry cistrons were expressed in a doxycycline-dependent manner. ES cells cultured without doxycycline for 48 hours showed brighter labeling with mCherry than ES cells cultured in 10 ng/ml doxycycline. Furthermore, although a low level of mCherry expression was detected when the cells were cultured in doxycycline as compared to unlabeled wildtype ES cells, the percentage of mCherry-positive cells markedly increased when doxycycline was removed (Figure 2A).

Both constitutive and ligand-induced activities of the Rs1 RASSL were preserved in the presence of the P2A ribosomal skip sequence. We previously showed that the Rs1 RASSL is Gs-coupled and can induce an intracellular increase in cAMP levels by both basal and ligand-induced mechanisms [8,41]. In the R26(EF1α-tTA/TetO-mCh-Rs1) ES cells, cAMP accumulation was minimally increased in mock-treated cells expressing Rs1 as compared to wildtype or doxycycline-suppressed controls (Figure 2B). cAMP levels were further increased in the Rs1-expressing cells cultured with the serotonin receptor agonist RS67333 (Figure 2B) [8,41].

These data show that the R26(EF1α-tTA/TetO-mCh-Rs1) single vector Tet-off polycistronic expression construct in ES cells can be tightly controlled with doxycycline, that both the Rs1 and mCherry cistrons can be expressed from a single locus when separated by a P2A sequence, and that both basal and ligand-mediated increases in cAMP can be induced by the Rs1 RASSL in ES cells.

Rs1 activation leads to larger embryoid bodies
To determine the effect of higher cAMP levels during the differentiation of ES cells, we cultured the R26 (EF1α-tTA/TetO-mCh-Rs1) ES cells for 48 hours either with or without doxycycline and then formed EBs using suspension culture conditions. At Day 4 of differentiation, we divided the EBs cultured without doxycycline into two groups (Figure 2C). One group was treated with the Rs1 agonist RS67333, and the other remained untreated. EB size was analyzed on Day 8. We detected an increase in EB size in both the Rs1-expressing and RS67333-treated groups (Figure 2D, E). R26(EF1α-tTA/TetO-mCh-Rs1) EBs continually cultured with doxycycline to suppress Rs1 expression were the same size as EBs derived from wildtype E14 ES cells. Rs1 mRNA levels were not significantly different between EBs cultured with or without RS67333 (data not shown). R26(EF1α-tTA/TetO-mCh-Rs1) ES cells expressing Rs1 and grown without doxycycline appeared to proliferate similarly to cells grown with doxycycline. Additionally, the
Average Embryoid Body Size (mm²)

WT Rs1 +Dox Rs1 –Dox Rs1 -Dox +RS67333

% of mCherry-positive cells

Mock Isoproterenol Serotonin RS67333

cAMP (fmole/cell)

AB DE

t < 0.0001

t < 0.02

p < 0.01

NS

Day -2 + Doxycycline

Day 0

+ Doxycycline

Day 4

+ RS67333

Day 8

- RS67333

Monolayer
(Regular ES media with LIF)

Suspension EBs:
3x10⁶ cells per 10 cm plate (Remove LIF)

Figure 2 R26(EF1α-tTA/TetO-mCh-Rs1) function in mouse ES cells. (A) FACS analysis showing doxycycline-inducible mCherry expression in E14 mouse cells carrying the Exp-R26(EF1α-pTATetO-mCh-Rs1) construct. (B) Induction of Rs1 expression and treatment with the agonist RS67333 results in increased cAMP accumulation in mouse ES cells. Both basal and ligand-induced increases in cAMP are detectable. In addition, serotonin does not induce increased cAMP accumulation in either the wildtype or Rs1-expressing cells. (C) Schematic showing the differentiation protocol for making suspension EBs. (D) Expression and ligand activation of Rs1 during EB formation results in larger EB size. (E) Quantitation of EB size in the different culture conditions using ImageJ. A minimum of 114 EBs were measured for each condition. The analysis was performed on three separate EB differentiation experiments with similar results. Error bars represent average +/- 1 SD.
ES cells expressing Rs1 showed no changes in the mRNA levels of apoptosis or proliferation markers (Bad, Mc11, and Ccnb3) [42] as detected by qPCR. To test whether Rs1 expression may affect cellular differentiation, and thus cell size, we used qPCR to assess the mRNA levels of markers of pluripotency (Oct3/4 and Sox2) and mRNA markers for all three germ layers (Foxa2, Nestin, Nkx2.5, ANF, MyoD, and Sox17) [43]. Rs1-expressing ES cells cultured with or without doxycycline showed no differences in mRNA levels for these genes (data not shown).

These results demonstrate that Gs signaling during EB formation can increase EB size, but that this increase in size is not a result of detectable changes in cell proliferation, apoptosis, or cellular differentiation.

EF1α-tTA/TetO-mCh-Rs1 mice

Since Rs1 expression in mouse ES cells increased EB size, we sought to determine if global constitutive Gs signaling could affect tissue development of a whole mouse. ES cells carrying the R26(EF1α-tTA/TetO-mCh-Rs1) construct were injected into mouse blastocysts. Fourteen high-percentage chimeras were identified, and two lines (Line A and Line B) were backcrossed onto the C57Bl/6 background. Mice were maintained and mated on doxycycline-containing chow to suppress transgene expression and minimize any risk of embryonic lethality, as has been hypothesized to occur in diseases with activated Gs signaling during embryogenesis such as McCune-Albright Syndrome [44]. R26(EF1α-tTA/TetO-mCh-Rs1) mice raised off of doxycycline to allow global expression of Rs1 from gestation were viable and showed no detectable weight, length, or pigmentation changes. Despite the previous reports of ubiquitous EF1α promoter activity, expression analysis on four-week-old mice raised on and off doxycycline showed that Rs1 mRNA levels were generally very low and near the detection limit of our qPCR assay. Surprisingly, only whole bone showed an induction of Rs1 expression in mice raised off of doxycycline (Figure 3). In contrast to the induction of Rs1 expression in R26(EF1α-tTA/TetO-mCh-Rs1) mouse ES cells, these findings indicate that the R26(EF1α-tTA/TetO-mCh-Rs1) mice had poor induction of Rs1 expression in most tissues in the absence of doxycycline.

R26(1F1α-tTA/TetO-mCh-Rs1) test crosses

Since the R26(1F1α-tTA/TetO-mCh-Rs1) mice showed only minimal Rs1 expression in vivo, we sought to test whether the tTA regulator portion, the TetO responder portion, or both may be non-functional. Since Coll(2.3)-tTA/TetO-Rs1 mice have a dramatic and easily-detectable bone phenotype [8], we crossed the mice carrying the TetO-Rs1 and R26(1F1α-tTA/TetO-mCh-Rs1) transgenes to test the function of the TetO-mCh-Rs1 portion in vivo.

If the EF1α-tTA portion of the R26(1F1α-tTA/TetO-mCh-Rs1) construct was capable of regulating TetO activity in vivo, we would predict that the TetO-Rs1 x R26(1F1α-tTA/TetO-mCh-Rs1) mice would show symptoms reminiscent of McCune-Albright syndrome including embryonic lethality, fibrous dysplasia of the bone, short stature, hormonal disturbances, and skin pigmentation defects [45]. However, the TetO-Rs1 x R26(1F1α-tTA/TetO-mCh-Rs1) mice bred and maintained off of doxycycline showed no embryonic lethality (TetO-Rs1 single transgenic = 17; R26(1F1α-tTA/TetO-mCh-Rs1) single transgenic = 16; TetO-Rs1 x R26(1F1α-tTA/TetO-mCh-Rs1) double transgenic = 9; wildtype = 11. Total = 53 mice; Chi-squared P = 0.33) and were phenotypically indistinguishable from their littermates.

To determine if the TetO-mCh-Rs1 responder portion of the construct containing a P2A ribosomal skip sequence was functional, we generated Coll(2.3)-tTA x R26(1F1α-tTA/TetO-mCh-Rs1) mice. At nine weeks of age, the double mutants showed a significant increase in bone mineral density (Figure 4A) that was comparable to our published results in the Coll(2.3)-tTA/TetO-Rs1 mice [8]. Further analysis by qPCR of RNA isolated from whole femurs showed that Rs1, mCherry, and tTA expression could be easily detected in the double mutant mice and at relatively comparable levels, but Rs1, mCherry, and tTA expression were not readily detectable in the bones of R26(1F1α-tTA/TetO-mCh-Rs1) single mutant mice (Figure 4B). Images of calvaria from the double mutant mice Coll(2.3)-tTA x R26(1F1α-tTA/TetO-mCh-Rs1) show that red fluorescence from the mCherry could be visualized, but not in the
calvaria of the R26(EF1α-tTA/TetO-mCh-Rs1) single mutant or control mice (Figure 4C). However, a small amount of increased bone formation could be detected in the calvaria of R26(EF1α-tTA/TetO-mCh-Rs1) mice as indicated by the increased opacity in the frontal and parietal bones (Figure 4C), consistent with the low level of Rs1 expression previously observed (Figure 3).

These findings show that a single copy of the R26(EF1α-tTA) construct can drive a low level of Rs1 expression in some tissues, and that the low level of Rs1 expression is due to low activity of the EF1α-tTA portion of the combined transgene. Our results also show that the Rs1 and mCherry cistrons can be expressed from a single locus when separated by a P2A sequence, and that the Rs1 receptor expressed in this manner retains biological activity in vivo.

Discussion

We created a modular system that uses Gateway recombinering technology to combine the binarytetracycline-regulated expression components into a single vector. By using a targeting vector with a known genomic insertion site (Rosa26), we could introduce all of the components needed for tetracycline-regulated expression into a well-characterized and transcriptionally-active locus. This strategy allows us to use the same cell line for both the
In our experiment, expression of Rs1 and activation of Gs signaling in mouse ES cells induced larger EB size. Although Gs-induced cellular proliferation by cholera toxin can increase EB size [49], our results indicated no detectable increase in cellular proliferation, decrease in apoptosis, or change in ES cell differentiation. We were unable to definitively assess whether a change in cell size could be contributing to the increased EB size; however, the difference in observed ES cell proliferation may be a result of lower Gs activation from the weak EF1α promoter activity in our system, lower expression of Rs1 in the ES-cell derived differentiated tissues (as indicated by our mouse results), or differences in how cholera toxin or GPCRs activate the Gs or non-cannonical GPCR signaling pathways.

Although a single copy of the EF1α promoter could drive doxycycline-dependent expression of our construct in ES cells, it was insufficient to drive high expression of the transgenes in differentiated mouse tissues. Our study examined a limited number of founder mice and did not assess whether EF1α-tTA expression varies between founder lines. However, several other reasons could result in low levels of tTA expression: the EF1α promoter may not function as robustly in differentiated tissues as in pluripotent cells; the flanking insulator sequences could result in transgene silencing; or the reduced number of TetO repeats in our constructs results in a lower sensitivity to tTA activation. The latter two possibilities are less likely since our results from the mouse crosses indicate that the TetO-mCh-Rs1 portion of the transgene can respond to a separate transgene expressing tTA from the Coll(2.3) promoter, suggesting that the R26(EF1α-tTA/TetO-mCh-Rs1)-targeted locus is not silenced. In addition, prior studies show that constructs with as few as two TetO repeats can be induced by tTA [50]. Finally, while we cannot exclude that the parallel positioning of the EF1α-tTA construct with the endogenous Rosa26 promoter may cause transcriptional interference as previously reported for the CMV promoter [51], this should have been minimized by the use of a 5′ insulator sequence.

The observed low levels of Rs1 expression in mouse tissues likely accounts for the absence of embryonic lethality and other pathology we would have expected if our model mimicked McCune-Albright syndrome [44]. In addition, the differential activity of the EF1α promoter, or different susceptibility of certain tissues to Gs signaling, may be contributing to the heterogeneity of the Rs1 expression we observed in our R26(EF1α-tTA/TetO-mCh-Rs1) mice. Increasing the expression of the tTA transactivator by using an alternative ubiquitous promoter, such as the CMV-β actin (CAG) promoter [52], may allow more robust expression of Rs1 and increased activation of the Gs signaling pathway.

We believe that the modularly-designed single-vector tet system presented here provides an ideal system for the tissue-specific expression of tTA or rTAA as well as the controlled expression of a transgene from the tetracycline response element. This system could be used for a variety of genetic studies where a single cassette is advantageous. Having both components of the tet-inducible system in the same cassette could facilitate the genetic modification of ES and induced pluripotent stem cells for regulatory studies as well as for making engineered tissues.

To facilitate these applications, we generated a series of improved vectors (Table S2 in Additional File 3 and Figures S2A-F in Additional File 4). We created a new Rosa26 targeting vector that contains the yeast PI-SceI homing sequence (pR26 R1R2 RexNeo PI-SceI) to simplify linearization of large constructs. We also created pEntL1L3 and pEntR3L2 plasmids without the insulator sequences and adapter plasmids containing only a multiple cloning sequence (pEntL1L3-MCS and pEntR3L2-MCS) to allow use in lentiviral expression constructs (that is, to generate independent tet-regulator and -responder expression constructs in a Gateway-compatible lentivirus backbone such as pLenti6 (Invitrogen)). We believe that these constructs will help advance the generation of new inducible expression models. In addition, these constructs are compatible with new technologies such as transposon-mediated gene
transfer, which can move large segments of DNA (> 20 kb) as a single cassette and can be easily mobilized into or excised from the genome [53], as well as newer versions of the tet regulatory components such as Ptet [54].

Conclusions
The modular system described here allows for rapid generation of tetracycline-regulated expression constructs for gene expression studies in tissue culture, ES cells, and mice. The modular design allows rapid introduction of different combinations of promoters and expressed transgenes. The 2A site can also be used to combine a reporter with an effector gene into a single cistron and is functional even for membrane-bound receptors, such as GPCRs. Finally, a single copy of the EF1α promoter was sufficient to induce transgene expression in mouse ES cells but did not result in high expression in the differentiated tissues of a whole mouse. These findings indicate that the specific choice of the promoter is an important consideration for driving high expression of the transgenes and that promoters validated for use in tissue culture models may have different functional characteristics when used in vivo. We believe that our modular system for introducing the tetracycline-inducible expression components will facilitate further development of new types of regulated expression constructs for use in a wide variety of cell types, including human ES and induced pluripotent stem cells.

Additional material

Additional file 1: Table S1. List of plasmids used in this study with brief descriptions and accession numbers.

Additional file 2: Figures S1A-H. Maps of plasmids used in this study. S1A pEntL1L3 TTA-2.pdf: S1B pEntL1L3 EF1α-tTA-2.pdf: S1C pEntR3L2 TetO-β-2 (insulator).pdf: S1D pEntR3L2 TetO(66)h-mCh-Rs1-2.pdf: S1E pS26 R1R2 RexNeo Pi-Scel.pdf: S1F Exp-R26EF1α-tTA TetO(mCh-Rs1).pdf: S1G Exp-pcDNA3.2EF1α-tTA TetO(mCh-Rs1).pdf: S1H pcDNA3.2GWR-delCMV.pdf.

Additional file 3: Table S2. Additional plasmids created as part of this study with brief descriptions and accession numbers.

Additional file 4: Figures S2A-F. Maps of additional plasmids described in this study. S2A pEntL1L3 MCS.pdf: S2B pEntL1L3 TTA-3 (no ins).pdf: S2C pEntL1L3 rtTA-3 (no ins).pdf: S2D pEntL1L3 EF1α-tTA-3 (no insulator).pdf: S2E pEntR3L2 MCS.pdf: S2F pEntR3L2 TetOβ-3 (no insulator).pdf.

Abbreviations
EB: embryoid body; EF1α: elongation factor 1 alpha; ES: cell, embryonic stem cell; GPCR: G-protein coupled receptor; iPS: cell, induced pluripotent stem cell; RASSL: receptor activated solely by synthetic ligands; Tet: tetracycline; TRE: Tet-Responsive Element.

Acknowledgements
We thank Carly Manalac, Gary Howard, Jill Dunham, Shaun Coughlin, Hiroshi Katoka, Miles Berger, the Gladstone Blastocyst Injection Core, and the Gladstone Histology Core for valuable technical assistance and discussions. This work was supported by NHL grants R01 HL60664-07 (to BRC) and 7 KO8 AR056299-02 (to ECH). ECH also received support from a California Institute of Regenerative Medicine/Gladstone Institute CIRM Fellowship Program (Grant T2-00003). The J. David Gladstone Institutes received support from a National Center for Research Resources Grant RR18928-01.

Author details
1 Gladstone Institute of Cardiovascular Disease, 1650 Owens St., San Francisco, CA 94158, USA. 2 Division of Endocrinology and Metabolism, Department of Medicine, 400 Parnassus Ave., University of California, San Francisco, CA 94143-1222, USA. 3 Department of Cellular and Molecular Pharmacology, 600 16th Street Rm. S-222, University of California, San Francisco, CA 94158-2140, USA. 4 Gladstone Institute of Neurological Disease, 1650 Owens St., San Francisco, CA 94158, USA. 5 Biomedical Sciences Graduate Program, 513 Parnassus Ave. Rm. HSE-1285, University of California, San Francisco, CA 94158-0505, USA. 6 Department of Medicine, SOS Parnassus Ave., University of California, San Francisco, CA 94143, USA.

Authors’ contributions
ECH and BRC conceived of the expression system. ECH designed the components, created expression constructs, generated the mice, and analyzed the progeria. JKN, TDN, MS, and WC created the DNA constructs. JKN, HZ, and TDN analyzed the embryonic stem cell lines. ECH, JKN, TDN, and BRC wrote the paper. All authors read and approved the manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 20 November 2010 Accepted: 4 March 2011
Published: 4 March 2011

References
1. Brink CB, Harvey BH, Bodenstep J, Venter DP, Oliver DW: Recent advances in drug action and therapeutics: relevance of novel concepts in G-protein-coupled receptor and signal transduction pharmacology. Br J Clin Pharmacol 2004, 57:373-387.
2. Coward P, Wada HG, Falk MS, Chan SD, Meng F, Akil H, Conklin BR: Controlling signaling with a specifically designed Gi-coupled receptor. Proc Natl Acad Sci USA 1998, 95:352-357.
3. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL: Evolving the lock to fit the key to create a family of G protein-coupled receptors potentiy activated by an inert ligand. Proc Natl Acad Sci USA 2007, 104:S163-S168.
4. Redfern CH, Coward P, Degtyarev MY, Lee EK, Kwa AT, Hennighausen L, Bujard H, Fuhrman GJ, Conklin BR: Conditional expression and signaling of a specifically designed Gi-coupled receptor in transgenic mice. Nat Biotechnol 1999, 17:165-169.
5. Seearce-Levive K, Lieberman MD, Elliott HH, Conklin BR: Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling. BMC Biology 2005, 3:3.
6. Sweeg EJ, Garper KB, Seearce-Levive K, Conklin BR, McCarthy KD: Development of hydrocalphus in mice expressing the Gi(1)-coupled GPCR R1 RASSL receptor in astrocytes. J Neurosci 2007, 27:2309-2317.
7. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Elenbach I, Byba NJ, Zaber CS: The receptors for mammalian sweet and umami taste. Cell 2003, 115:265-266.
8. Hisao EC, Boudignon BM, Chang WC, Bencsik M, Peng J, Nguyen TD, Manalac C, Halloran BP, Conklin BR, Nissenson RA: Osteoblast expression of an engineered Gs-coupled receptor dramatically increases bone mass. Proc Natl Acad Sci USA 2008, 105:1209-1214.
9. Hisao EC, Boudignon BM, Halloran BP, Nissenson RA, Conklin BR: GsG protein-coupled receptor signaling in osteoblasts elicits age-dependent effects on bone formation. J Bone Miner Res 2010, 25:584-593.
10. Hisao EC, Millard SM, Loue A, Huang Y, Conklin BR, Nissenson RA: Ligand-mediated activation of an engineered Gs G protein-coupled receptor in osteoblasts increases trabecular bone formation. Mol Endocrinol (Baltimore, Md) 2010, 24:621-631.
11. Peng J, Bencsik M, Loue A, Lu W, Millard S, Nguyen P, Burghardt A, Majumdar S, Wronska TJ, Halloran B, Conklin BR, Nissenson RA: Conditional expression of a Gi-coupled receptor in osteoblasts results in trabecular osteopenia. Endocrinology 2008, 149:1329-1337.
12. Fischer JA, Giniger E, Maniatis T, Ptashne M: Conditional expression and signaling of a specifically designed Gi-coupled receptor in transgenic mice. Nat Biotechnol 1999, 17:165-169.
13. Scearce-Levive K, Lieberman MD, Elliott HH, Conklin BR: Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling. BMC Biology 2005, 3:3.
14. Scearce-Levive K, Lieberman MD, Elliott HH, Conklin BR: Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling. BMC Biology 2005, 3:3.
15. Scearce-Levive K, Lieberman MD, Elliott HH, Conklin BR: Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling. BMC Biology 2005, 3:3.
expression of tyrosine hydroxylase in brain grafts of human neural progenitors. Nat Biotechnol 1999, 17:349-354.

15. Vogel R, Amat L, Thi AD, Saillour P, Maillet J: A single lentivirus vector mediates doxycycline-regulated expression of transgenes in the brain. Hum Gene Ther 2004, 15:157-165.

16. Backman CM, Zhang Y, Hoffer BJ, Tornac AC. Tetracycline-inducible expression systems for the generation of transgenic animals: a comparison of various inducible systems carried in a single vector. J Neurosci Methods 2004, 139:257-262.

17. Chant A, Bender Hu, Hanemann CO, Kempp T, Lehtonen E, Levivier M, Brotch J, Velu T, Tenenbaum L. Tetracycline-inducible transgene expression mediated by a single AAV vector. Gene Ther 2003, 10:894-9.

18. Gomez-Gutierrez JG, Rao XM, Garcia-Garcia A, Hao H, McMasters KM, Zhou HS: Developing adenoviral vectors encoding therapeutic genes toxic to host cells: comparing binary and single-inducible vectors expressing truncated E2F-1. Virology 397:337-345.

19. Hofmann A, Nolan GP, Blau HM. Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc Natl Acad Sci USA 1996, 93:5185-5190.

20. Inoue K, Sone T, Onemaru C, Nishiumi F, Kishine H, Sasaki A, Andoh T, Okada M, Cherun JD, Inamoto F: A versatile nonviral vector system for tetracycline-dependent one-step conditional induction of transgene expression. Gene Ther 2000, 7:1383-1390.

21. Oguerta SB, Yao F, Marasco WA. Design and in vitro characterization of a single regulatory module for efficient control of gene expression in both plasmid DNA and a self-inactivating lentiviral vector. Mol Med 2001, 7:569-579.

22. Zhang XY, Su BL, Li H, Bai R, Xu ZH, Li CC: Inducible gene expression mediated by a single AAV vector. J Virol 2004, 78:8620-8624.

23. Yusufzai TM, Selenfred G. The S^5HS4 chicken beta-globin insulator is a CTCF-dependent nuclear matrix-associated element. Proc Natl Acad Sci USA 2004, 101:8620-8624.

24. Gossen M, Bonin AL, Freundlieb S, Bujard H: Inducible gene expression systems for higher eukaryotic cells. Curr Opin Biotechnol 1994, 5:516-520.

25. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY: Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 2004, 22:1567-1572.

26. Fang J, Qian JJ, Yi S, Harding TC, Tu GH, VanRoey M, Jooss K: Stabile antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 2005, 23:584-590.

27. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Diloglugr S, Vanin EF, Vignali DA: Correction of multi-gene deficiency in vivo using a single 'self-clearing' 2A peptide-based retroviral vector. Nat Biotechnol 2004, 22:589-594.

28. Donnelly ML, Luke G, Mehotra A, Li X, Hughes LE, Gani D, Ryan MD: Analysis of the aphthovirus 2A/2B polyprotein cleavage mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. J Gen Virol 2001, 82:1013-1025.

29. Hsiao EC, Yoshinaga Y, Nguyen TD, Musone SL, Kim JE, Swinton P, Espineda I, Manalac C, deJong PJ, Conklin BR: Gateway recombinational cloning: a biological operating system. Expert Opinion on Drug Discovery 2001, 257:587-589.

30. Kim DW, Uetsuki T, Kaziro Y, Yamaguchi N, Sugano S: Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. Gene 1990, 91:217-223.

31. Kim S, Kim GJ, Miyoshi H, Moon SH, Ahn SE, Lee JH, Lee HJ, Cha KY, Chung HM: Efficiency of the elongation factor-1alpha promoter in mammalian embryonic stem cells using lentiviral gene delivery systems. Stem Cells Dev 2007, 16:537-545.

32. Tokushige K, Moradpour D, Wakiita T, Geissler MA, Hayasaka N, Wands JR. Comparison between cytomegalovirus promoter and elongation factor-1 alpha promoter-driven constructs in the establishment of cell lines expressing hepatitis C virus core protein. J Virol Methods 1997, 64:73-80.

33. Chang WC, Ng J, Nguyen T, Pellerier L, Clayesen S, Hsiao EC, Conklin BR: Modifying ligand-induced and constitutive signaling of the human S- HT4 receptor. PLoS One 2007, 2:e1317.

34. Mohrin M, Bourke Y, Alexander D, Wang MR, Barry-Holston K, Le Beau MM, Morrison CG, Passegue E: Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7:174-185.

35. Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.

36. Ringel MD, Schwindner WF, Levine MA: Clinical implications of genetic defects in G proteins. The molecular basis of McCune-Albright syndrome and Albright hereditary osteodystrophy. Medicine (Baltimore) 1996, 75:171-184.

37. Shenker A, Weinstein LS, Moran A, Pescovitz OH, Charest NJ, Boney CM, Van Wyk JJ, Merino MJ, Feuillan PP, Spiegel MA: Severe endocrine and nonendocrine manifestations of the McCune-Albright syndrome associated with activating mutations of stimulatory G protein GS. J Pediatr 1993, 123:509-518.

38. Kuhnle F, Fritsch C, Krause S, Bundt B, Wirth T, Paul Y, Malek NP, Zender L, Manns MP, Kubicka S: Doxycycline regulation in a single retroviral vector by an autoregulatory loop facilitates controlled gene expression in liver cells. Nucleic Acids Res 2004, 32:e30.

39. Whetstone CR, Slusser JG, Zucker WR: Development of a single-plasmid-based regulatable gene expression system for Borrelia burgdorferi. Appl Environ Microbiol 2000, 70:653-658.

40. Hasegawa K, Cowan AB, Nakatsuji N, Suemori H: Efficient multicistronic expression of a transgene in human embryonic stem cells. Stem Cells (Dayton, Ohio) 2007, 25:1707-1712.

41. Layden BT, Newman M, Chen F, Fisher A, Lowe WL Jr. G protein coupled receptors in embryonic stem cells: a role for Gs-alpha signaling. PLoS One 2010, 5:e9103.

42. Gani E, Pediartia L, Aidea M, Herrero E: A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 1997, 13:837-848.

43. Strathdee D, Ibotton H, Grant SG: Expression of transgenes targeted to the GiiROSA265or locus is orientation dependent. PLoS ONE 2006, 1:e14.

44. Nawa H, Yarnamura K, Miyazaki T: Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991, 108:193-199.

45. Wilson MH, Coates CJ, George AL Jr. PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 2007, 15:139-145.

46. Heinz N, Schambach A, Gallia M, Maetzig T, Baum C, Loew R: Morphogenetic responses of embryonic stem cells to microgravity and space radiation. Biophotonics International 2007, 14(Suppl 1):36-42.

47. Abramoff MD, Magelhaes PJ, Ram SJ: Image processing with ImageJ. Biophotonics International 2004, 11:36-42.

48. Katzen F: Gateway recombinational cloning: a biological operating system. Expert Opinion on Drug Discovery 2001, 1:S1-15.

49. Iwata K, Morimoto K, Sugano S: Characterization of a thymidine kinase gene regulatory module for efficient control of gene expression in both mammalian and yeast cells. Biotechnol Appl Biochem 1999, 30:92-101.

50. Gari E, Piedrafita L, Aldea M, Herrero E: Efficient selection for high-expression alpha promoter-driven constructs in the establishment of cell lines expressing hepatitis C virus core protein. J Virol Methods 1997, 64:73-80.

51. Chang WC, Ng J, Nguyen T, Pellerier L, Clayesen S, Hsiao EC, Conklin BR, Gani D: Modifying ligand-induced and constitutive signaling of the human S-HT4 receptor. PLoS One 2007, 2:e1317.

52. Niwa H, Yamamura K, Miyazaki J: Efficient selection for high-expression transgenic mice using a single-plasmid-based regulatable gene expression system. Nat Biotechnol 2000, 18:463-466.

53. Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.