EVALUATION OF ANTI-TRICHOMONASE ACTIVITIES OF METHANOL EXTRACT OF Hypericum scabrum L. (1)

Hypericum scabrum L. METHANOL EKSTRAKTININ ANTI-TRİCHOMONAS AKTİVİTESİNİN DEĞERLENDİRİLMESİ

Necati OZPINAR1, Hulya OZPINAR2, Nuraniye ERUYGUR3, Tuğba KAYA4

1 Hatay Mustafa Kemal University, Faculty of Health Sciences, Antakya / Turkey
2 Sivas Camhuriyet University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Sivas / Turkey
3 Selcuk University, faculty of Pharmacy, Department of Pharmacognosy, Konya / Turkey
4 Hatay Mustafa Kemal University, Faculty of Medicine, Department of Parasitology Antakya / Turkey

ORCID ID: 0000-0002-7317-885X1, 0000-0001-8154-08742, 0000-0002-4674-70093, 0000-0001-7612-54144

Abstract: Aim: The objective of the study to evaluate the methanolic extracts of aerial parts of Hypericum scabrum L. for in vitro anti-trichomonase activity. Methods: Plant material were collected during the flowering period from natural populations in Sivas province of Turkey. Collected locality is: B6 Sivas: Sivas-Ankara road. The extracts obtained were analyzed by GC-MS to identify possible active substances. Trichomonas vaginalis strain was exposed with plant extracts at concentrations of 5 mg / mL, 2.5 mg / mL, 1.25 mg / mL, 0.6 mg / mL, 0.3 mg/mL, 0.15 mg/mL konsantrasyonlar altında bitki ekraktılari ile muamele edildi. Bulgular: The mini- mum inhibitory concentration (MIC) was found to be 2.5 mg/mL at the end of 2 hours, 1.25 mg/mL at the end of 4 hours, and 0.6 mg/mL at the end of 24 hours after resistant T. vaginalis strains exposed to H. scabrum methanol extract. When susceptible strains are to investigated, at the end of 2 hours the MIC value of 2.5 mg/mL is the lowest dose to the study, at 4 hours later even at the concentration of 0.15 mg/mL, no live parasite is found. Conclusion: The obtained results suggest that the finding can used to further bio-assay guided active compound isolation from this plant as promising resource.

Key Words: Hypericum Scabrum, Anti-Trichomonas Activity, GC-MS

Doi: 10.17363/SSTB.2020.34.2

(1) Sorumlu Yazar, Corresponding Author: Necati OZPINAR “Dr. Öğr. Üye. Assist. Prof”, Hatay Mustafa Kemal University, Faculty of Health Sciences, Antakya / Turkey, necatiozpinar@gmail.com, Geliş Tarihi / Received: 21.12.2019, Kabul Tarihi / Accepted: 19.03.2020, Makalenin Türü: Type of Article: (Araştırma – Uygulama; Research-Application) Çıkar Çatışması, Yok – Conflict of Interest, No, Etk Kurul Raporu veya Kurum İzin Bilgisi- Ethical Board Report or Institutional Approval, No
INTRODUCTION

The genus Hypericum (Hypericaceae) is represented by more than 400 species throughout the world, is mainly distributed in the Mediterranean and the Near East area (Simpson, 2006:122). In turkey, Hypericum is comprises of 96 species, in which half of them are endemic (Guner et al., 2000:2-28; Tekin, 2017:143-152). Hypericum species are known for the local name of “sarı kantoran” and “binbir delik out”, have been used for treatment of wound healing, sedative, antiulcer, antidiabetic, antispasmodic and antiseptic in Turkish folk medicine (Bingol et al., 2011:86-90). Phytochemical investigations on Hypericaceae revealed that they contain naphthodiantrones (hypericin and pseudohypericin), acylphloroglucinol derivatives (hyperforin and adhyperforin), flavonoids, tannins, and essential oils (Maggi et al., 2004:702-711; Zorzetto et al., 2015:95-109). The major components in fatty acids of H. scabrum L. were α-linolnic, linoleic and oleic acid (Ozen and Bashan, 2003:723-726). It was reported that α -Pinene, β –Pinene, spathulenol, p-cymene, acetophenone, and carvacrol were the main constituents of the essential oil of H. scabrum (Tabanca et al., 2015:62-72). Studies have shown that Hypericum species have many biological activities such as antioxidant (Boga et al., 2016:249-257), cytotoxicity (Tala et al., 2015:149-155) and enzyme inhibition activity (Mandrone et al., 2015:402-408). In spite of many biological activity study on Hypericum species, there was little study on H. scabrum L.

Trichomoniasis is a most common protozoan infectious disease of the urogenital tract of humans caused by Trichomonas vaginalis (T. vaginalis), which is the reason why the rate of illness is high in women who have reached sexual maturity. T. vaginalis, an anaerobic protozoan that causes trichomoniasis in humans, moves by itself with a whip and waving membrane. Trichomonal infection has a cosmopolitan distribution and is detected in all racial groups and socioeconomic layers. Approximately 333 million new Sexually Transmitted Diseases (STDs) occur annually in the world, of which 170 million are T. vaginalis infections (WHO, 2012). Metronidazole is the only drug for therapy of this disease approved by FDA. However, metronidazole has been reported for the resistance by T. vaginalis (Kirkcaldy et al., 2012:939; Schwebke and Barrientes, 2006:4209-4210; Snipes et al., 2000:3004-3009).

The aim of the present study focuses on the investigation of anti-Trichomonase activity of H. scabrum methanol extract.
MATERIAL and METHODS

GC-MS analysis was performed by GRUM-LAB (Giresun University Center Research Laboratory, Application and Research Center).

Plant Materials

Plant materials were collected during the flowering period from natural populations in Sivas province of Turkey. Collected locality is: B6 Sivas: Sivas-Ankara road, 25 km.

Preparation of the Extracts

The dried plant materials were powdered using a grinder. The extraction was done at room temperature. 10 g of dried and grounded herbs were extracted with methanol (250 mL×4) for 24 h with intermittent shaking. Then mixture were filtered through a filter paper (Whatman, No.1). The filtrates combined together and concentrated under vacuum on a rotary evaporator (Buchi R-100 equipped with Vacuum Pump V-300 and Control unit I-300) at 40°C and stored at -20°C for further processing. The yields of crude methanol extracts of H. scabrum was obtained as 18.9 %.

Anti-Trichomonase Vaginalis Activity

The metronidazole-resistant T. vaginalis ATCC 50143 and the metronidazole-sensitive strain, T. vaginalis ATCC50148 strain (obtained by Amerikcan Type Culture Collection (ATCC) were used in this study.

Culture of Trichomonase Vaginalis

Trichomonas Broth (TB, liofilchem, 610061) medium was purchased commercially and was prepared according to the manufacturer’s instructions. After preparation of the TB, it was distributed among the experimental tubes and placed in the autoclave at 121°C for 15 mins, then cooled to 37°C, and 10% inactive horse serum (Sigma, 1234598765) was added to the medium. The T. vaginalis strains were added to the TB medium and incubated for 3 days at 37°C under anaerobic conditions.

In Vitro Anti-Trichomonas Assay

The Minimum Lethal Dose (MLD) of the metronidazole-sensitive strain, T. vaginalis ATCC50148, and the metronidazole-resistant strain, T. vaginalis ATCC50143 against metronidazole was tested in comparison with the plant extract. For this purpose, 96-well plates were used. The T. vaginalis strains produced from seeding in the TB medium at 37°C were incubated in metronidazole (Sigma, 171154348111) concentrations of 400 µM, 200 µM, 100 µM, 50 µM, 25 µM, 12.5 µM, 0.6 µM and 0.3 µM and plant extract concentration 5 mg/mL, 2.5 mg/mL, 1.25 mg/mL, 0.6 mg/mL, 0.3 mg/mL, 0.15 mg/mL. After 2-4-24 h, the incubated live protozoa were checked on a Thoma slide for flagellated and
undulating membrane movement and were counted in a 1% eosin solution. A dose where no live parasites were found was determined microscopically and evaluated as MLD.

RESULTS

Chemical Composition by GC-MS Analysis

The chemical compositions of methanol extract of Hypericum scabrum aerial parts have been determined by GC-MS (Table 1). The methanol extract was found to have a higher component content. While the most abundant components are palmitic acid (8.78%), benzoic acid (2.97%), and -1-carbaldehyde (2.01%) for methanol extract (Table 1). Among the compounds, the 4H-Pyran-4-one are important for the biosynthesis of the hypericin that are main compound of Hypericum species.
Table 1. Chemical Compositions of Methanol Extracts of Hypericum scabrum

Components	RT	Methanol (%)
Ethanone	14.268	0.65
Benzoic acid	15.212	2.97
4H-Pyran-4-one	17.054	1.37
Isopropyl phenyl ketone	27.542	1.74
Naphthalene	28.435	0.27
Dodecanoic acid	30.867	0.36
Spathulenol	31.147	0.33
Hexadecanoic acid	37.773	0.90
Palmitic acid	38.792	8.78
Furo[2,3-b]quinolin-4(9H)-one	40.091	1.28
4,1-herbertenolide	40.354	0.46
9-Octadecenoic acid	40.600	0.79
9,12-Octadecadienoic acid	41.527	1.70
(1RS,2SR)-2-methyl-2-4’-methylpen-1-carbaldehyde	42.116	2.01
trans-Geranylgeraniol	43.587	0.73
Tetracosane	46.093	0.65
Geranyl-linalol	46.242	0.78
Octadecane	49.137	0.28
Ent-beyer-15-en-18-ol	57.383	1.25

Anti-Trichomonase vaginalis activity

The effect of *H. scabrum* methanol extract on metronidazole susceptible and resistant *T. vaginalis* strains is shown in Table 2. The minimum inhibitory concentration (MIC) was found to be 2.5 mg/mL at the end of 2 hours, 1.25 mg/mL at the end of 4 hours, and 0.6 mg/mL at the end of 24 hours after resistant *T. vaginalis* strains exposed to *H. scabrum* methanol extract. When susceptible strains are investigated, at the end of 2 hours the MIC value of 2.5 mg/mL is the lowest dose to the study; at 4 hours later even at the concentration of 0.15 mg/mL, no live parasite is found (Table 2).
Table 2. The Viable Counts of *T. Vaginalis* Isolates Exposed to Different Concentrations of Metronidazole at the End of 2, 4 and 24 Hours

TV strains	Metronidazol Concentration								
	400 µM	200 µM	100 µM	50 µM	25 µM	12.5 µM	0.6 µM	0.3 µM	Control
N1 2 h	14.10³	14.10³	14.10³	15.10³	17.10³	18.10³	18.10³	18.10³	18.10³
N2	0	0	0	0	6.10³	8.10³	12.10³	17.10³	
N1 4 h	14.10³	14.10³	14.10³	15.10³	17.10³	18.10³	18.10³	18.10³	18.10³
N2	0	0	0	0	6.10³	10.10³	18.10³		
N1 24 h	14.10³	16.10³	16.10³	18.10³	18.10³	20.10³	20.10³	20.10³	20.10³
N2	0	0	0	0	0	12.10³	22.10³		

TV strains	H. scabrum methanol extract concentration						
	5 mg/mL	2.5 mg/mL	1.25 mg/mL	0.6 mg/mL	0.3 mg/mL	0.15 mg/mL	Control
N1 2 h	0	0	2.10³	4.10³	10.10³	10.10³	18.10³
N2	0	0	1.10³	2.10³	5.10³	12.10³	17.10³
N1 4 h	0	0	0	2.10³	3.10³	7.10³	18.10³
N2	0	0	0	0	0	18.10³	
N1 24 h	0	0	0	0	2.10³	7.10³	20.10³
N2	0	0	0	0	0	0	22.10³

TV; *Trichomonas vaginalis*, N1; *T. vaginalis* ATCC50143 Resistance to Metronidazol, N2; *T. vaginalis* ATCC50148 Sentitive to Metronidazol.

DISCUSSION

The *T. vaginalis* is a sexually transmissible protozoan parasite and common all over the world and is found in every continent and climate and it is the commonest curable sexually transmitted infection. The prevalence of infection varies according to the way of living and socio-cultural structure of the society. The frequency of *T. vaginalis* infection in men is not well defined, because it is usually asymptomatic and the source of continuous infection are asymptomatic men (Petrin et al., 1998:300-317).

In recent studies, this parasite has become more important as it has been found to increase the transmission rate of HIV (Polat et al., 2011:35-68).
In studies in Turkey, 5-10% in healthy women who went to private clinics *T. vaginalis* was detected. In addition, 13-25% of women admitted to the gynecology and obstetrics clinic and 50-70% of women working in brothels and women’s prisons were detected (Culha et al., 2006:16-18).

Metronidazole-containing preparations are often used in the treatment of trichomoniasis. However, recently metronidazole has failed in some patients when not combined with another antibiotic, and in some patients the recurrence of the disease after a short time suggests two things. The first is that the disease is not caused by *T. vaginalis*. The second is that *T. vaginalis* has developed resistance to its medication like many living things. Although resistance studies are not sufficient, such studies have been encountered in recent years.

According to studies in the United States, metronidazole resistant *T. vaginalis* has been reported at rates varying between 4.3% and 9.6% (Kirkcaldy et al., 2012:939). In another study in Finland, 10 clinical isolates were tested positive for metronidazole resistance of these, 3 (30.0%) resistant strains were identified (Meri et al., 2000:763-767). In a 2018 study in Turkey, metronidazole resistance was tested using conventional and molecular methods and resistant isolates were determined at a rate of 33.3% (Ozcelik et al., 2018:188-194).

Hypericum scabrum is widely used in alternative medicine. However, we have not found any study on the antiprotozoal effect of *Hypericum scabrum* on *T. vaginalis* in literature. In our study, the effect of Hypericum scabrum on metronidazole resistant *T. vaginalis* strains is of great importance.

CONCLUSION

It is important to underline the fact that this is the first report about the anti-*T. vaginalis* activity on *Hypericum scabrum* methanol extract. The obtained results suggest that the finding can be used to further bio-assay guided active compound isolation from this plant as promising resource.

Conflict of interest

The authors declare that there is no conflict of interest.

REFERENCES

BINGOL, U., COSGE, B., GURBUZ, B., (2011). Hypericum species in flora of Turkey. Hypericum. Medicinal and Aromatic Plant Science and Biotechnology 5, 86-90

BOGA, M., ERTAS, A., EROGLU-OZKAN, E., KIZIL, M., CEKEN, B., TOPCU, G., (2016). Phytochemical analysis, anti-
oxidant, antimicrobial, anticholinesterase and DNA protective effects of Hypericum capitatum var. capitatum extracts. South African Journal of Botany 104, 249-257

CULHA, G., HAKVERDI, A.U., ZETEROGLU, S., DURAN, N., (2006). Investigation of the prevalence of Trichomonas vaginalis in women with complaints of vaginal discharge and itching. Turkiye Parazitoloji Dergisi. 30, 16-18

GUNER, A., OZHATAY, N., EKIM, T., BASER, K., (2000). Flora of Turkey and the east Aegean Islands. Supplement 2, 28

KIRKCALDY, R.D., AUGOSTINI, P., ASBEL, L.E., BERNSTEIN, K.T., KERANI, R.P., METTENBRINK, C.J., et al., (2012). Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD Surveillance Network, 2009–2010. Emerging Infectious Diseases 18, 939

MAGGI, F., FERRETTI, G., POCCESCHI, N., MENGHINI, L., RICCIUTELLI, M., (2004). Morphological, histochecmical and phytochemical investigation of the genus Hypericum of the Central Italy. Fitoterapia 75, 702-711

MANDRONE, M., LORENZI, B., VENDITTI, A., GUARCINI, L., BIANCO, A., SANNA, C., et al., (2015). Antioxidant and anti-collagenase activity of Hypericum hircinum. L. Industrial Crops and Products 76, 402-408

MERI, T., JOKIRANTA, T.S., SUHONEN, L., MERI, S., (2000). Resistance of Trichomonas vaginalis to metronidazole: report of the first three cases from Finland and optimization of in vitro susceptibility testing under various oxygen concentrations. Journal of Clinical Microbiology 38, 763-767

OZCELIK, S., OZPINAR, N., KARAKUS, S., AKYILDIZ, F., KARAKAYA, O., (2018). Metronidazole resistance in Trichomonas vaginalis determined by molecular and conventional methods. Tropical Biomedicine 35, 188-194

OZEN, H.C., BASHAN, M., (2003). The composition of fatty acids in Hypericum scabrum, H. scabroides and H. amblysepalum. Turkish Journal of Chemistry 27, 723-726

PETRIN, D., DELGATY, K., BHATT, R., GARBER, G., (1998). Clinical and microbiological aspects of Trichomonas vaginalis. Clinical Microbiology Reviews 11, 300-317

POLAT, E., SIREKBASAN, S., YILDIRIM, Z., BAGDATLI, Y., CEPNI, I., CIFT, T., et al., (2011). Comparing the occurrence of Trichomonas vaginalis infections to-
day to ten years ago among women prostitutes and gynecology and obstetrics patients. Türkiye Parazitolojii Dergisi 35-68

SCHWEBKE, J.R., BARRIENTES, F.J., (2006). Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrobial Agents and Chemotherapy 50, 4209-4210

SILVA, B.A., FERRERES, F., MALVA, J.O., DIAS, A.C., (2005). Phytochemical and antioxidant characterization of Hypericum perforatum alcoholic extracts. Food Chemistry 90, 157-167

SIMPSON, M., (2006). Phylogenetic Systematics. Plant Systematics. Elsevier academic press, Cannada

SNIPES, L.J., GAMARD, P.M., NARCISI, E.M., BEARD, C.B., LEHMANN, T., SECOR, W.E., (2000). Molecular epidemiology of metronidazole resistance in a population of Trichomonas vaginalis clinical isolates. Journal of Clinical Microbiology 38, 3004-3009

TABANCA, N., DEMIRCI, B., ALI, A., I KHAN, S., R JACOB, M., AYTAC, Z., et, al., (2015). Chemical composition, biting deterrent, antimalarial and antimicrobial activity of essential oil from Hypericum scabrum L. Current Bioactive Compounds 11, 62-72

TALA, M.F., TALONTSI, F.M., ZENG, G.-Z., WABO, H.K., TAN, N.-H., SPITELLER, M., et, al., (2015). Antimicrobial and cytotoxic constituents from native cameroonian medicinal plant Hypericum riparium. Fitoterapia 102, 149-155

TEKIN, M., (2017). Pharmacobotanical study of Hypericum thymopsis. Revista Brasileira de Farmacognosia 27, 143-152

WHO., (2012). Global incidence and prevalence of selected curable sexually transmitted infections-2008. World Health Organization

ZORZETTO, C., SÁNCHEZ-MATEO, C.C., RABANAL, R.M., LUPIDI, G., PETRELLI, D., VITALI, L.A., et, al., (2015). Phytochemical analysis and in vitro biological activity of three Hypericum species from the Canary Islands (Hypericum reflexum, Hypericum canariense and Hypericum grandifolium). Fitoterapia 100, 95-109