PET Imaging of Perceptual Learning-Induced Changes in the Aged Rodent Cholinergic System

J. Miguel Cisneros-Franco1,2*, Patrice Voss1,2, Min Su Kang3,4, Maryse E. Thomas1,2, Jonathan Côté1,2, Karen Ross1, Pierrette Gaudreau5, David A. Rudko6, Pedro Rosa-Neto3,4 and Étienne de-Villers-Sidani1,2*

1 Montreal Neurological Institute, McGill University, Montreal, QC, Canada, 2 Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada, 3 Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada, 4 Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada, 5 Réseau Québécois de Recherche sur le Vieillissement, Université de Montréal, Montreal, QC, Canada, 6 Department of Biomedical Engineering, McGill University, Montreal, QC, Canada

The cholinergic system enhances attention and gates plasticity, making it a major regulator of adult learning. With aging, however, progressive degeneration of the cholinergic system impairs both the acquisition of new skills and functional recovery following neurological injury. Although cognitive training and perceptual learning have been shown to enhance auditory cortical processing, their specific impact on the cholinergic system remains unknown. Here we used [18F]FEOBV, a positron emission tomography (PET) radioligand that selectively binds to the vesicular acetylcholine transporter (VAChT), as a proxy to assess whether training on a perceptual task results in increased cholinergic neurotransmission. We show for the first time that perceptual learning is associated with region-specific changes in cholinergic neurotransmission, as detected by [18F]FEOBV PET imaging and corroborated with immunohistochemistry.

Keywords: positron emission tomography, aging, auditory cortex, operant training, somatostatin, [18F]FEOBV, choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT)

INTRODUCTION

The rules governing experience-dependent cortical plasticity vary during the lifespan. Important structural and functional changes that occur early in life during time-limited epochs, also known as critical periods (Knudsen, 2004), perdue well into adulthood. However, the magnitude of plastic changes as well as the type of interventions that may induce plasticity, change with age. Although plasticity is still possible in the adult brain, it occurs almost exclusively in the context of learning and requires sustained attention (Bavelier et al., 2010). Enhanced cortical plasticity during adulthood can be triggered by several mechanisms including deafferentation (Chino et al., 1992; Diamond et al., 1993; Van Brussel et al., 2011), disruption in the quality or quantity of sensory input (He et al., 2006; Zhou et al., 2011), direct manipulation of neuromodulatory systems (Rokem and Silver, 2010, 2013; Kang et al., 2014; Voss et al., 2016; Chamoun et al., 2017), and perceptual learning (de Villers-Sidani et al., 2010; Mishra et al., 2014; Voss et al., 2016).

Adult neuroplasticity is partly regulated by the cholinergic system through its main neurotransmitter, acetylcholine (ACh), which facilitates attention and learning (Hasselmo and Sarter, 2011). And like cortical plasticity, the cholinergic system is subject to significant alterations...
as it gets older. For example, aged cholinergic cells are vulnerable to degeneration (Perry, 1980; McGeer et al., 1984) leading to functional and structural damage of cortical projections (Gibson et al., 1981; Altavista et al., 1990) that have been linked to age-related cognitive and perceptual decline (Everitt and Robbins, 1997; Schliebs and Arendt, 2011). These deficits in neuromodulatory systems likely contribute to a state of dysregulated plasticity such that both diminished (Liguz-Lecznar et al., 2015) and enhanced plasticity (Cisneros-Franco et al., 2018) may occur with aging.

Recent investigations have shown that perceptual learning is a potent inducer of robust plastic changes in the aging brain, particularly in the auditory system (de Villers-Sidani et al., 2010; Mishra et al., 2014; Voss et al., 2016). However, whether these effects are mediated by neuromodulators such as the cholinergic system remains unclear. In other words, how plastic is the aging cholinergic system itself in response to perceptual learning? The purpose of the present study was to investigate how the aging rodent cholinergic system responds to perceptual learning in the auditory domain. A promising approach to achieve this goal was to use a novel positron emission tomography radioligand that allows in vivo quantification of cholinergic activity throughout the brain. This radioligand, $[^{18}\text{F}]$-fluoroethoxybenzovesamicol ($[^{18}\text{F}]$FEBOV) is a vesamicol analog that selectively binds to the vesicular acetylcholine transporter (VACHT), a protein expressed uniquely by cholinergic neurons (Kilbourn et al., 2009). $[^{18}\text{F}]$FEBOV has been used to study cholinergic activity in the context of aging and neurodegeneration both in humans (Parent et al., 2013a; Aghourian et al., 2017; Nejad-Davarani et al., 2019) and rodents (Parent et al., 2012; Cyr et al., 2014). In the present study, we scanned LOU rats, an inbred strain of Wistar origin described as a model of successful aging (Alliot et al., 2002; Boghossian et al., 2002; Garait et al., 2005; Dubau et al., 2011). LOU rats have a longer and healthier lifespan than many other strains (Alliot et al., 2002) due to reduced incidence of metabolic, neoplastic, and cognitive disorders (Kollen et al., 2010). Here we show for the first time that perceptual learning is associated with region-specific changes in cholinergic neurotransmission detected by $[^{18}\text{F}]$FEBOV PET imaging in LOU rats, and that these changes are mirrored by anatomical correlates.

**Materials and Methods**

**General Procedures and Study Design**

All experimental procedures used in this study were approved by the Montreal Neurological Institute Animal Care Committee and follow the guidelines of the Canadian Council on Animal Care. Aged LOU rats were housed in an environment with a 12-h light/dark cycle with unrestricted access to water. Those that underwent behavioral training were lightly food deprived. A group of rats that underwent perceptual learning training (Trained group, $n = 5$, two females, 31–37 months) was compared to a control group (Untrained group, $n = 10$; eight females, 30–40 months). Trained rats were scanned after an average of 12 weeks (range 9–18) of perceptual learning (60 min/day, 5 days/week), which was preceded by two behavioral shaping phases to ensure the rats could perform the auditory perceptual learning task (see “Auditory Training” section below). Training was stopped 1 day prior to the scan acquisition. Tissue collection for histological analysis was done 1–2 days after scan acquisition.

**Auditory Training**

Behavioral training consisted of three phases, all of which took place in an acoustically transparent operant training chamber (60 × 45 × 35 cm, length × width × height) contained within a sound-attenuated chamber. During phase #1, rats were trained to make a nose poke response to obtain a food reward. During phase #2, rats were trained to make a nose poke only after presentation of an auditory stimulus. Phase #3 was the actual training program, in which rats were trained to make a nose poke only for the target stimulus (a 7 kHz pure tone) and not for a foil non-target stimulus (12 kHz pure tone). The tones were 50 ms in duration (5 ms cosine ramps) presented at 60 dB SPL, stimulus presentation was randomized, and the probability of a target stimulus presentation was 20%. The protocol for the production and presentation of stimuli, data acquisition and analysis is described in Voss et al. (2016).

**Imaging Procedures**

$[^{18}\text{F}]$FEBOV was synthesized on scanning days at the Cyclotron Facility of the McConnell Brain Imaging Centre of the Montreal Neurological Institute (Canada). $[^{18}\text{F}]$FEBOV was synthesized using a modified method (Mzengeza et al., 2007) originally described by Mulholland et al. (1993). A levo enantiomerically pure precursor (ABX advanced biochemical compounds GmbH, Germany) was used, labeled with fluorine-18 using a SCINTOMICS (Lindach, Germany) hotbox module, resulting in (−)-$[^{18}\text{F}]$FEBOV, which is the only enantiomer showing affinity for VACHT (Mulholland et al., 1998). Radiochemical purity across a total of five syntheses was $97.6 \pm 1.4\%$ (mean ± SD). Total molar activity ranged from 404 to 1331 GBq/μmol, whereas the mean total activity injected was $15.8 \pm 1.4$ MBq.

All scans ($n = 15$) were acquired with a CTI Concorde rodent R4 microPET system (Siemens Medical Solutions). Rodents under general anesthesia (4% isoflurane during induction, followed by 1–2% isoflurane through a nose cone) were placed on a pre-warmed stereotaxic head holder and positioned in the center of the scanner’s field of view. Vital signs (temperature, heart rate, and blood pressure) were monitored throughout the procedure (BIOPAC physiological monitoring). Each PET session consisted of a brief 5 min transmission followed by a 60 min emission scan. The transmission scan was obtained using a rotating $[^{57}\text{Co}]$ point source. Emission scans were initiated immediately after the transmission scan with a bolus injection of 0.2 mL of $[^{18}\text{F}]$FEBOV radiotracer in the tail vein of the rat. Transmission and emission scans were obtained using list mode acquisition. After the procedure, animals were placed under a heating light and closely monitored until full recovery.

$T_2$-weighted structural MR images were also obtained in vivo for one rat using a 7T Bruker Pharmascan 70/16 US dedicated pre-clinical MRI system (Bruker, Billerica, MA, United States). The Pharmascan is equipped with an Avance II radiofrequency (RF) amplifier architecture. $T_2$-weighed axial images were...
specifically using a Turbo-Rapid Acquisition with Refocused Echoes (Turbo-RARE) sequence with 26 slices of 1 mm thickness and an in-plane resolution of 150 µm. Other MRI scan parameters were: TE = 30 ms, TR = 3 s, and a RARE factor of eight. A 640 mm quadrature volume transceiver RF coil was used for rat brain imaging.

Imaging Processing and Analysis
MicroPET images were histogrammed into 27 sequential time frames of increasing duration (8 × 30 s, 6 × 1 min, 5 × 2 min, 8 × 5 min) over 60 min. Images were reconstructed using a maximum a posteriori (MAP) algorithm, normalized and corrected for scatter, dead time and decay. The MINC software toolbox was used to perform all image analyses. Time-averaged tissue-radioactivity images were manually co-registered to the structural MR image using a seven degrees of freedom registration matrix (rigid body transformation plus one scaling constant) (Rubins et al., 2003). The microPET image outcome measure was non-displaceable binding potential (BP<sub>ND</sub>). BP<sub>ND</sub> was calculated using a simplified reference-tissue method (SRTM) for reversible ligands at the voxel level (Gunn et al., 1997). The cerebellar cortex served as a reference region due to its negligible amounts of cholinergic markers (Schafer et al., 1994). The resulting images were convolved using a Gaussian kernel (FWHM = 1.2 mm).

Immunohistochemistry, Microscopy, and Data Analysis
Tissue collection and processing were performed as previously described (Voss et al., 2016). Specific antibodies used to label brain tissue were: (1) rat anti-SOM (Millipore Sigma #MAB354, 1 : 500), (2) goat anti-ChAT (Millipore Sigma #AB144P, 1 : 200), (3) donkey anti-goat [conjugated to Alexa Fluor (AF647), 1 : 800, Jackson ImmunoResearch, West Grove, PA, United States], and (4) donkey anti-rat (AF488, 1 : 800, Jackson).

A Zeiss LSM 510 Meta confocal microscope equipped with filter for green Cy2/AF488, red Cy3, and infrared Cy5/AF647 was used to assess fluorescence in the immunostained sections. To locate the primary auditory cortex (A1) we used the stereotaxic coordinates (Paxinos and Watson, 2013): interaural between 5.76 and 2.16 mm and Bregma between −3.24 and −6.84 mm. To quantify the positive cells, 21 digital images of A1 were taken with a 40× objective (Zeiss LSM 510) at random locations within each A1 of both hemispheres for each animal. All quantifications were assessed in a subset of rats (trained, n = 6; untrained, n = 10) using a two-way repeated-measures ANOVA with group and layer as factors. Group × ROI multiple comparisons were corrected with Tukey–Kramer's test.

RESULTS
Through training, rats learned to perform a nose poke only for the target stimulus (7 kHz pure tone) and not for a foil non-target stimulus (12 kHz pure tone; Figure 1A). The behavioral results illustrated in Figures 1B–C show that both poke rate (the number of pokes per trial) and false-alarm rate (spontaneous pokes not preceded by any auditory stimuli) decreased over time, suggesting adequate procedural learning; i.e., rats successfully learned the association between training stimuli and rewards. All trained rats showed learning effects and generally improved steadily over the training period (Figures 1D–F). Prior to undergoing a PET scan, all trained animals had reached a criterion of d-prime >1, suggesting adequate perceptual learning; i.e., successful discrimination between target and non-target stimuli.

In order to quantify [18F]FE0B binding distribution in the rat brain, the following ROI were segmented using high resolution MR images of (see Figure 2): (1) frontal cortex; (2) temporoparietal cortex; (3) ventro-orbital cortex; (4) visual cortex; (5) auditory cortex; (6) nucleus basalis (7) striatum; (8) hippocampus, and (9) thalamus. The regional non-displaceable binding potential (BP<sub>ND</sub>) in all rats/scans was computed for each ROI in each hemisphere (resulting in 18 ROIs per rat/scan). An ROI of the cerebellum was also traced manually and used as the reference region for BP<sub>ND</sub>, because of its negligible amounts of cholinergic markers (Schafer et al., 1994). In agreement with previous reports, the regions with the highest tracer binding were the striatum and nucleus basalis (Parent et al., 2012; Cyr et al., 2014).

[18F]FE0B binding potentials were quantified for each ROI and compared between groups. For group comparisons, the average BP<sub>ND</sub> in each ROI was considered as a data point (two data points per rat/scan per ROI). A repeated measures model was used, where the repeated

---

1 http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
2 http://rsb.info.nih.gov/ij/
measure the density of ChAT immunoreactive cells per hpf between trained and untrained rats (Figure 4C). Somatostatin-positive (SST+) cells, the second largest interneuron subpopulation, are the primary targets of cholinergic afferents to the cortex, and contribute to the neuromodulation of sensory processing during both passive sound exposure (Chen et al., 2015) and operant training (Fu et al., 2015). For this reason, we also quantified the density of SST+ cells per hpf (Figure 4A, right). In line with these findings, we found no significant differences in the average number of SST+ immunoreactive cells per A1 hpf between trained and untrained rats (Figure 4A, right).
FIGURE 3 | Region-specific cholinergic enhancement following auditory discrimination training assessed with \( {^{18}F} \)FEOBV binding potential. Vertical scatter plots of mean regional \( {^{18}F} \)FEOBV distribution per hemisphere for each ROI, organized by group. For each subject, BP\textsubscript{ND} values for individual ROIs were calculated using the cerebellum as the reference region. Median values are marked with a green box. Multiple comparisons with group as predictor factor and ROI and hemisphere as within-subject (repeated) factors revealed a significant difference in \( {^{18}F} \)FEOBV BP\textsubscript{ND} in auditory cortex \( (p = 0.038) \) only (rest, all \( p \geq 0.17 \), with Tukey–Kramer correction). (A) striatum, (B) auditory cortex, (C) ventro-orbital cortex, (D) frontal cortex, (E) temporoparietal cortex, (F) hippocampus, (G) thalamus, (H) visual cortex, (I) nucleus basalis. * \( p < 0.05. \)

with our results on ChAT+ cells, the control and experimental groups did not differ in overall nor layer-specific SST+ cell density (Figure 4D). Taken together, these results suggest that training-related changes in \( {^{18}F} \)FEOBV binding detected by PET imaging were associated with an overall increase in cholinergic neurotransmission, without any layer-specific changes.

DISCUSSION

The purpose of the present study was to investigate how the aging rodent cholinergic system responds to auditory perceptual learning using a novel PET radioligand that selectively binds to VACHt. We showed that auditory perceptual learning increases cholinergic neurotransmission within the aged auditory cortex as assessed via both \( {^{18}F} \)FEOBV PET imaging and immunochemistry. Our findings suggest that auditory perceptual learning significantly increased cholinergic neurotransmission in auditory cortex only, and not in any of the other ROIs. To our knowledge, this is the first use of \( {^{18}F} \)FEOBV in rodents to demonstrate how perceptual learning can modulate the expression of ACh in a region-specific manner.

This increase in ACh binding following training sharply contrasts with the more typical age-related decline in binding observed with aging. Indeed, aging is associated with the degeneration of cholinergic cells (Perry, 1980; McGeer et al., 1984) and their projections (Gibson et al., 1981; Altavista et al., 1990). These age-related changes in cholinergic neurotransmission likely contribute to the attentional and cognitive deficits observed during aging (Everitt and Robbins, 1997; Schliebs and Arendt, 2011). This hypothesis is supported by converging evidence from various lines of research on the long-term effects of manipulating cholinergic neurotransmission in learning and attention. First, the activation of the cholinergic system during perceptual training leads to a long-lasting shaping of cortical circuits that forms the basis of learning (Rokem and Silver, 2013). Indeed, neurochemically boosting cholinergic transmission (Greuel et al., 1988; Furey et al., 2008; Rokem and Silver, 2010) and stimulating the basal forebrain (Greuel et al., 1988; Furey et al., 2008; Rokem and Silver, 2010) have both been shown to have a significant effect on both learning and the cortical processing of stimuli. Second, perceptual learning can itself produce long-lasting changes in perceptual abilities (Goldstone, 1998; Ohl and Scheich, 2005). Third, selective lesions of cholinergic neurons in the rat pedunculopontine tegmental nucleus resulted in attentional deficits that were proportional to the extent of neuronal loss (Cyr et al., 2015). Consequently, in general,
ACh is believed to mediate voluntary attention, a major requisite for adult learning (Hasselmo and Bower, 1993; Sarter et al., 2005).

Recent studies have shown that, on shorter time-scales, fast central cholinergic responses observed in sensory cortex during learning might in fact convey reinforcement- and reward-elicited signals that enable the brain to associate prior events with behavioral outcome, thereby promoting local cortical plasticity and learning (Hangya et al., 2015; Liu et al., 2015). Of note, such precisely timed cholinergic signaling onto sensory cortex appears to be essential for sustained performance even after the completion of training (Kuchibhotla et al., 2017). Given the time scale of the present study, both types of cholinergic influence – on attention and reinforcement – are likely to have played a role in promoting plasticity and learning. However, future studies are warranted in order to disentangle the relative attentional and reinforcement effects of cholinergic input during perceptual learning.

As highlighted above, we found elevated cholinergic binding in the auditory cortex following perceptual learning. Although peak $[^{18}F]$FEOBV levels are observed within the first 5 min post-injection in all brain regions, previous experiments have shown that relevant mapping of VACHT concentrations can be reliably obtained within a 60 min acquisition (Mulholland et al., 1998; Kilbourn et al., 2009).

Furthermore, $[^{18}F]$FEOBV binding distribution in the brain corresponds to the known anatomical distribution of cholinergic terminals (Kilbourn et al., 2009; Parent et al., 2012, 2013b). Moreover, $[^{18}F]$FEOBV PET can detect cholinergic depletion, whether it be following lesions of the nucleus basalis (Cyr et al., 2014) or in association with aging (Parent et al., 2012), deficits that were also confirmed with ChAT immunostaining (Parent et al., 2013b). Consequently, current evidence suggests that $[^{18}F]$FEOBV can reliably be used to assess both the integrity and the learning-induced changes of the ACh system.

Our anatomical findings of an overall ChAT staining intensity increase in the trained animals are consistent with our $[^{18}F]$FEOBV PET findings, and suggest that training-induced plasticity in the cholinergic system was indeed characterized by an overall increase in A1 ACh neurotransmission. We did not find any layer-specific group differences in ChAT staining intensity, albeit a non-statistically significant increase was observed for all layers (see Figure 4). Although the present findings do not allow us to conclude on the matter, recent evidence suggests that the cholinergic control of cortical synaptic plasticity may be layer-specific (Bloem et al., 2014), whereby cholinergic stimulation produces opposite plasticity modulation effects on the superficial and deep cortical layers (Verhoog et al., 2016; Obermayer et al., 2017).
CONCLUSION
In conclusion, we believe our study provides proof of principle data that PET combined with the [18F]FEOBV radioligand can be used to assess changes in cholinergic neurotransmission induced by neuroplastic learning processes.

DATA AVAILABILITY STATEMENT
The datasets generated for this study are available on request to the corresponding author. Data have been deposited in the online open access repository Mendeley Data: https://data.mendeley.com/datasets/ddm47dxms7/1.

ETHICS STATEMENT
The animal study was reviewed and approved by the Montreal Neurological Institute Animal Care Committee.

AUTHOR CONTRIBUTIONS
JC-F and ÉD-V-S: conceptualization. MK, KR, DR, and PR-N: methodology. JC-F, MK, and MT: formal analysis. JC-F, PV, MT, and ÉD-V-S: resources. PV: writing – original draft. JC-F, PV, MT, and ÉD-V-S: writing – review and editing. PR-N and ÉD-V-S: supervision. ÉD-V-S: funding acquisition.

FUNDING
This research was supported by the Canadian Institutes of Health Research (CIHR, Grant MOP-133426 to ÉD-V-S and a CIHR Vanier Canada Graduate Scholarship to JC-F). The Centre for Research on Brain, Language and Music is funded by Fonds de Recherche du Québec-Nature et Technologies and Fonds de Recherche du Québec-Société et Culture.

ACKNOWLEDGMENTS
We thank Lydia Ouellet for help with immunohistochemistry. We also thank Gassan Massarweh and Arturo Aliaga for excellent technical assistance with neuroimaging experiments.

REFERENCES
Aghourian, M., Legault-Denis, C., Soucy, J.-P., Rosa-Neto, P., Gauthier, S., Kostikov, A., et al. (2017). Quantification of brain cholinergic denervation in Alzheimer's disease using PET imaging with [F]-FEOBV. Mol. Psychiatry 22, 1531–1538. doi: 10.1038/mp.2017.183
Altavista, M. C., Rossi, P., Bentivoglio, A. R., Crociani, P., and Albanese, A. (1990). Aging is associated with a diffuse impairment of forebrain cholinergic neurons. Brain Res. 508, 51–59. doi: 10.1016/0006-8993(90)91116-x
Bavelier, D., Levi, D. M., Li, R. W., Dan, Y., and Hensch, T. K. (2010). Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J. Neurosci. 30, 14964–14971. doi: 10.1523/JNEUROSCI.4812-10.2010
Boghossian, S., Nzungu-Muiga, K., Jourdan, D., and Altavista, M. C. (2003). Old as mature LOU/c/jall rats enhance protein selection in response to a protein deprivation. Exp. Gerontol. 37, 1431–1440. doi: 10.1016/s0531-5565(02)00174-2
Chamoun, M., Huppé-Gourgue, F., Legault, L., Rosa-Neto, P., Dumbрова, D., Faubert, J., et al. (2017). Cholinergic potentiation improves perceptual-cognitive training of healthy young adults in three dimensional multiple object tracking. *Front. Hum. Neurosci.* 11:128. doi: 10.3389/fnhum.2017.00128

Chen, E.-W., Helmechen, F., and Lütké, H. (2015). Specific early and late oddball-evoked responses in excitatory and inhibitory neurons of mouse auditory cortex. *J. Neurosci.* 35, 12560–12573. doi: 10.1523/JNEUROSCI.2240-15.2015

Chino, Y. M., Kaas, J. H., Smith, E. L. III, Langston, A. L., and Cheng, H. (1992). Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina. *Vision Res.* 32, 789–796. doi: 10.1016/0042-6989(92)90021-a

Cisneros-Franco, J. M., Oulelt, L., Kamal, B., and de Villers-Sidani, E. (2018). A brain without brakes: reduced inhibition is associated with enhanced but dysregulated plasticity in the aged rat auditory cortex. *eNeuro* 5:ENEURO.0051-18.2018. doi: 10.1523/NEUROSCI.0051-18.2018

Cybulski-Klosowicz, A., Poslusny, A., Nowak, K., Siucinska, E., Kossut, M., and Lizgu-Lecznar, M. (2013). Interneurons containing somatostatin are affected by learning-induced cortical plasticity. *Neuroscience* 254, 18–25. doi: 10.1016/j.neuroscience.2013.09.020

Cyr, M., Parent, M. J., Mechawar, N., Rosa-Neto, P., Soucy, J.-P., Aliaga, A., et al. (2014). PET imaging with [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) following selective lesion of cholinergic pedunculopontine tegmental neurons in rat. *Nucl. Med. Biol.* 41, 96–101. doi: 10.1016/j.nucmedbio.2013.10.004

Cyr, M., Parent, M. J., Mechawar, N., Rosa-Neto, P., Soucy, J.-P., Clark, S. D., et al. (2015). Deficit in sustained attention following selective cholinergic lesion of the pedunculopontine tegmental nucleus in rat, as measured with both post-mortem immunocytochemistry and in vivo PET imaging with [18F]fluoroethoxybenzovesamicol. *Behav. Brain Res.* 278, 107–114. doi: 10.1016/j.bbr.2014.09.021

de Villers-Sidani, E., Elghoul, L., Zhou, X., Simpson, K. L., Lin, R. C. S., and Merzenich, M. M. (2010). Recovery of functional and structural age-related changes in the rat primary auditory cortex with operant training. *Proc. Natl. Acad. Sci. U.S.A.* 107, 15900–15905. doi: 10.1073/pnas.1007885107

Diamond, M. E., Armstrong-James, M., and Ebner, F. F. (1993). Experience-dependent plasticity in adult rat barrel cortex. *Proc. Natl. Acad. Sci. U.S.A.* 90, 2082–2086.

Dubé, S., Ferland, G., Gaudreau, P., Beaumont, E., and Lesage, F. (2011). Cerebrovascular hemodynamic correlates of aging in the Lou/c rat: a model of healthy aging. *Neuroimage* 56, 1892–1901. doi: 10.1016/j.neuroimage.2011.03.076

Evertt, B. J., and Robbins, T. W. (1997). Central cholinergic systems and cognition. *Annu. Rev. Psychol.* 48, 649–684. doi: 10.1146/annurev.psych.48.1.649

Fanselau, E. F., Richardson, K. A., and Connors, B. W. (2008). Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. *J. Neurophysiol.* 100, 2640–2652. doi: 10.1152/jn.00901.2008

Fu, Y., Kaneko, M., Tang, Y., Alvarez-Buylla, A., and Stryker, M. P. (2015). A cortical disinhibitory circuit for enhancing adult plasticity. *elife* 4:e05558. doi: 10.7554/elife.05558

Furey, M. L., Pietrini, P., Haxby, J. V., and Drevets, W. C. (2008). Preserved memory capacities in aged Lou/C/Jall rats. *Neurobiol. Aging* 31, 129–142. doi: 10.1016/j.neurobiolaging.2008.03.010

Kuchibhotla, K. V., Gill, J. V., Lindsay, G. W., Papadoyannis, E. S., Field, R. E., Sten, T. A. H., et al. (2017). Parallel processing by cortical inhibition enables context-dependent behavior. *Nat. Neurosci.* 20, 62–71. doi: 10.1038/nn.4436

Lizgu-Lecznar, M., Lehner, M., Kaliszewska, A., Zakrzewska, R., Sobolewska, A., and Kossut, M. (2015). Altered glutamate/GABA equilibrium in aged mouse cortex influences cortical plasticity. *Brain Struct. Funct.* 220, 1681–1693. doi: 10.1007/s00429-014-0752-7

Liu, C.-H., Coleman, J. E., Davoudi, H., Zhang, K., and Hussain Shuler, M. G. (2015). Selective activation of a putative reinforcement signal condition cue interval timing in primary visual cortex. *Curr. Biol.* 25, 1551–1561. doi: 10.1016/j.cub.2015.04.028

McGeer, P. L., McGeer, E. G., Suzuki, J., Dolman, C. E., and Nagai, T. (1984). Aging. Alzheimer's disease, and the cholinergic system of the basal forebrain. *Neurology* 34, 741–745.

Mishra, J., de Villers-Sidani, E., Merzenich, M., and Gazzaley, A. (2014). Adaptive training diminishes distractibility in aging across species. *Neuron* 84, 1091–1103. doi: 10.1016/j.neuron.2014.10.034

Mulholland, G. K., Jung, Y. W., Wieland, D. M., Kilbourn, M. R., and Kuhl, D. E. (1993). Synthesis of [18F]fluoroethoxy-benzovesamicol, a radiotracer for cholinergic neurons. *J. Label Compd. Radiopharm.* 33, 583–591. doi: 10.1002/jlcr.2580330704

Mulholland, G. K., Wieland, D. M., Kilbourn, M. R., Frey, K. A., Sherman, P. S., Carey, J. E., et al. (1998). [18F]fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. *Synapse* 30, 263–274. doi: 10.1002/(sici)1098-2396(199811)30:3<263::aid-syn4>3.0.co;2-9

Menzega, S., Massarweh, G., Rosa Neto, P., Soucy, J.-P., and Bedard, M. A. (2007). Radiosynthesis of [18F]FEOV and in vivo PET imaging of acetylcholine vesicular transporter in the rat. *J. Cereb. Blood Flow Metab.* 27, 10U–17U.

Nejad-Davarian, S., Koepe, R. A., Albin, R. L., Frey, K. A., Müller, M. L. T. M., and Bohnen, N. I. (2019). Quantification of brain cholinergic denervation in dementia with Lewy bodies using PET imaging with [F-18]FEOBV. *Mol. Psychiatry* 24, 322–327. doi: 10.1038/s41380-018-0130-5

Obermayer, J., Verhoog, M. B., Luchicchi, A., and Mansvelder, H. D. (2017). Cholinergic modulation of cortical microcircuits is layer-specific: evidence from rodent.*Monkey Hum. Brain. Front. Neural. Circuits* 11:100. doi: 10.3389/fncir.2017.00100

Obermayer, J., Verhoog, M. B., Luchicchi, A., and Mansvelder, H. D. (2017). Cholinergic modulation of cortical microcircuits is layer-specific: evidence from rodent.*Monkey Hum. Brain. Front. Neural. Circuits* 11:100. doi: 10.3389/fncir.2017.00100

Parent, M., Bedard, M.-A., Aliaga, A., Soucy, J.-P., Landry St-Pierre, E., Cyr, M., et al. (2012). PET imaging of cholinergic deficits in rats using
[18F]fluoroethoxybenzovesamicol ([18F]FEOBV). *Neuroimage* 62, 555–561. doi: 10.1016/j.neuroimage.2012.04.032

Parent, M. J., Bedard, M.-A., Aliaga, A., Minuzzi, L., Mechawar, N., Soucy, J.-P., et al. (2013a). Cholinergic depletion in Alzheimer’s disease shown by [18F]FEOBV autoradiography. *Int. J. Mol. Imag.* 2013:205045.

Parent, M. J., Cyr, M., Aliaga, A., Kostikov, A., Schirrmacher, E., Soucy, J.-P., et al. (2013b). Concordance between in vivo and postmortem measurements of cholinergic denervation in rats using PET with [18F]FEOBV and choline acetyltransferase immunohistochemistry. *EJNMMI Res.* 3:70. doi: 10.1186/2191-219x:3-7

Parent, M. J., Bedard, M.-A., Aliaga, A., Minuzzi, L., Mechawar, N., Soucy, J.-P., et al. (2013a). Cholinergic depletion in Alzheimer’s disease shown by [18F]FEOBV autoradiography. *Int. J. Mol. Imag.* 2013:205045.

Parent, M. J., Cyr, M., Aliaga, A., Kostikov, A., Schirrmacher, E., Soucy, J.-P., et al. (2013b). Concordance between in vivo and postmortem measurements of cholinergic denervation in rats using PET with [18F]FEOBV and choline acetyltransferase immunohistochemistry. *EJNMMI Res.* 3:70. doi: 10.1186/2191-219x:3-7

Paxinos, G., and Watson, C. (2013). *The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition*. Cambridge, MA: Academic Press.

Perry, E. K. (1980). The cholinergic system in old age and Alzheimer’s disease. *Age Ageing* 9, 1–8. doi: 10.1093/ageing/9.1.1

Rokem, A., and Silver, M. A. (2010). Cholinergic enhancement augments magnitude and specificity of visual perceptual learning in healthy humans. *Curr. Biol.* 20, 1723–1728. doi: 10.1016/j.cub.2010.08.027

Rokem, A., and Silver, M. A. (2013). The benefits of cholinergic enhancement during perceptual learning are long-lasting. *Front. Comput. Neurosci.* 7:66. doi: 10.3389/fncom.2013.00066

Rubins, D. J., Melega, W. P., Lacan, G., Way, B., Plenevaux, A., Luxen, A., et al. (2003). Development and evaluation of an automated atlas-based image analysis method for microPET studies of the rat brain. *Neuroimage* 20, 2100–2118. doi: 10.1016/j.neuroimage.2003.07.011

Sarter, M., Hasselmo, M. E., Bruno, J. P., and Givens, B. (2005). Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. *Brain Res. Brain Res. Rev.* 48, 98–111. doi: 10.1016/j.brainresrev.2004.08.006

Schäfer, M. K., Weihe, E., Varoqui, H., Eiden, L. E., and Erickson, J. D. (1994). Distribution of the vesicular acetylcholine transporter (VAcHT) in the central and peripheral nervous systems of the rat. *J. Mol. Neurosci.* 5, 1–26. doi: 10.1007/bf02736691

Schliebs, R., and Arendt, T. (2011). The cholinergic system in aging and neuronal degeneration. *Behav. Brain Res.* 221, 555–563. doi: 10.1016/j.bbr.2010.11.058

Van Brussel, L., Gerits, A., and Arckens, L. (2011). Evidence for cross-modal plasticity in adult mouse visual cortex following monocular enucleation. *Cereb. Cortex* 21, 2133–2146. doi: 10.1093/cercor/bhs286

Verhoog, M. B., Obermayer, J., Kortleven, C. A., Wilbers, R., Wester, J., Baayen, J. C., et al. (2016). Layer-specific cholinergic control of human and mouse cortical synaptic plasticity. *Nat. Commun.* 7:12826. doi: 10.1038/ncomms12826

Voss, P., Thomas, M., Chou, Y. C., Cisneros-Franco, J. M., Ouellet, L., and de Villers-Sidani, E. (2016). Pairing cholinergic enhancement with perceptual training promotes recovery of age-related changes in rat primary auditory cortex. *Neural Plast.* 2016, 1801979. doi: 10.1155/2016/1801979

Zhou, X., Panizziuti, R., de Villers-Sidani, E., Madeira, C., and Merzenich, M. M. (2011). Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. *J. Neurosci.* 31, 5623–5634. doi: 10.1523/JNEUROSCI.6470-10.2011

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Cisneros-Franco, Voss, Kang, Thomas, Côté, Ross, Gaudreau, Rudho, Rosa-Neto and de Villers-Sidani. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.