Non-Porous versus Mesoporous Siliceous Materials for CO₂ Capture

Chiara Vittoni,[a] Giorgio Gatti,[a] Geo Paul,[a] Enzo Mangano,[b] Stefano Brandani,[b] Chiara Bisio,[a,c] and Leonardo Marchese[a]

In this study, the adsorption properties of a Stöber silica-based material towards CO₂ were evaluated for the first time. The use of Stöber silica as support is interesting for real technological applications mainly due to economic factors. Furthermore, a direct comparison between the non porous Stöber sample with an ordered porous material (based on MCM-41 silica) allowed to evaluate the effect of the porosity on the CO₂ adsorption properties. In order to make silica materials reactive towards CO₂, they were functionalized by introducing amino groups via grafting of 3-[2-(2-aminoethyl)aminoethyl]aminopropyltrime-thoxysilane. After a qualitative study of the CO₂ adsorption, the quantitative determination of CO₂ adsorption capacity at 35 °C revealed that the mesoporous material is more efficient compared to the Stöber-based one (adsorption capacity values of 0.49 and 0.58 mol/kg for Stöber-based and mesoporous samples). However, since the difference in the adsorption capacity is only about 15% and the Stöber-based sample is considerably cheaper, the non-porous sample should be considered as a favourable adsorbent material for CO₂ capture applications.

1. Introduction

The carbon dioxide concentration in atmosphere is rapidly growing, reaching today the alarming value of about 410 ppm.[1] This phenomenon, mainly due to anthropogenic causes, contributes to the increase of the Earth’s average temperature (Greenhouse Effect). In order to prevent a further increase of CO₂ concentration in atmosphere, carbon capture and storage (CCS) technologies have attracted great attention in the past few years.[2] Among the various CCS technologies, gas phase adsorption on solid adsorbents have been widely studied since it requires less energy compared to liquid absorption methods (i.e. the only commercially available methods), it is not associated with the production of any liquid waste and it is applicable to a wide range of temperatures.[3] Different types of ordered mesoporous siliceous materials have been investigated in literature as solid sorbents for CCS due to their structural and textural properties, such as large pore size, high surface area, and large number of active sites on the surface.[4] However, most of these ordered porous solids, such as MCM-41 and SBA-15 silicas, are quite expensive.[5,6] For example, it was estimated that in amino-based MCM-41 or SBA-15 materials the cost of the mesoporous support accounts for more than 90% over the total expense of the adsorbent (> $700/kg).[6] The high cost is mainly due to the use of very expensive templates (i.e. Hexadecyltrimethylammonium chloride and Hexadecyltrimethylammonium bromide), necessary for the formation of the ordered structure of pores typical of these solids. Hence, using a less expensive support, the preparation cost of the adsorbent can be considerably reduced.

To overcome these problems, in literature other types of silica have been studied as supports for carbon dioxide application. For example silica gel, a porous material produced on a large scale with a price less than $40/kg, has been investigated.[2] In this context, Zhang et al. studied a sorbent consisting of polyethylenimine-impregnated silica gel. In their work, they found that the silica-gel-based material is a promising adsorbent for carbon dioxide capture due to its high adsorption capacity (CO₂ adsorption capacity (q) at 75 °C and 1 bar: 3.13 mmol/g), low-preparation cost and easy commercial availability of the silica gel.[7] So far, however, among the various low cost siliceous materials, monodisperse silica particles have not yet been considered in literature as solid supports for CO₂ adsorption. The preparation of monodisperse silica spheres, for example using Stöber method, does not involve the use of any templates, and it is thus less expensive than that of ordered mesoporous solids.

Finally, a comparison of the carbon dioxide adsorption properties of Stöber silica particles (which are not characterized by a structural porosity, but present only inter-particle pores) with those of mesoporous ordered silica allows to investigate the effect of the porosity on the CO₂ capture performances. This aspect, fundamental for the comprehension of the carbon
dioxide adsorption process, has not been well explained to date in literature.

For these reasons, in this work, the adsorption properties of monodisperse silica particles obtained by Stöber method were studied. In order to introduce on the silica surface amino groups reactive toward CO₂, the materials have been modified via grafting of 3-[2-(2-aminoethy)laminoethyl]aminopropyltrimethoxysilane (PAPTS). This silane was selected on the basis of results reported in previous publications.[8,9] Moreover, in order to investigate the effect of the adsorbent porosity on the carbon dioxide adsorption performances, organo-modified Stöber-based adsorbents have been compared with MCM-41-based materials. A sample with micrometric particle size comparable to those of the Stöber silica particles was chosen among others MCM-41. Unlike the Stöber silica, as it is well known, MCM-41 sample presents an ordered array of pores. The carbon dioxide adsorption properties of the organo-modified silica samples were analyzed by the use of different techniques. First of all, FT-IR and ss-NMR spectroscopies were used to study both physisorption and chemisorption processes occurring by contacting CO₂ and the functionalized samples. Furthermore, quantitative TGA and Zero Length Column techniques were used to quantify the CO₂ adsorption capacity of the materials.

2. Results and Discussion

2.1. Physico-Chemical Characterization of the Sorbents

The morphology of silica samples was studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained micrographs are reported in Figure 1.

Stöber silica (Figure 1A) is made of spherical particles with micrometric size with a mean diameter of ca. 800 nm. The histogram reported in the inset (Figure 1A'), obtained by analyzing around 250 particles, shows that the particle diameter is in the range between 650 and 900 nm. The polydispersity index (P.I.), expressed by the relative standard deviation of the diameter, is 0.22 (for particles perfectly monodisperse P.I. = 0, while polydispersity yields higher P.I. values).[10] On the other hand, the MCM-41 silica sample (Figure 1B) is composed by micrometric particles with a mean diameter of about 200–300 nm and presents the typical ordered arrangement of pores.[12]

The textural properties of Stöber and MCM-41 silica samples and the relative functionalized materials were determined by using a N₂ physisorption analysis at −196°C. N₂ adsorption-desorption isotherms and pore size distribution are reported in Figure 2.

The adsorption isotherms of the Stöber silica sample (Figure 2A, curve a) is of type II (IUPAC classification), typical of non-porous solids, and presents a thin hysteresis loop of H1 type in a wide range between 0.2 and 0.9 p/p₀. This type of hysteresis loop, due to aggregation porosity, is often obtained with materials consisting of approximately uniform spheres agglomerates.[13] MCM-41 sample instead (Figure 2B, curve b) show type IV adsorption isotherm, indicating the presence of structural ordered mesoporosity in the sample.[14]

Table 1. Specific Surface Area, pores volume and particle diameter of the considered samples obtained from N₂ Physisorption analysis.

Sample	SSA [m²/g]	Vp [cc/g]	dp [Å]
Stöber	60	0.148	25–200
P_Stöber	15	0.033	35–150
MCM-41	1205	0.894	30–70
P_MCM-41	372	0.363	20–70

After the functionalization procedure both samples show a different isotherm (Figure 2A, 2B curves a’, b’) and, in particular, the volume of adsorbed N₂ in the grafted materials is decreased, due to the introduction of aminosilane species on the silica surface.

The Brunauer–Emmett–Teller (BET) model was used to estimate the specific surface area of the materials (Table 1) that was determined to be 60 and 15 m²/g, respectively for Stöber and P_Stöber samples. The reduction of specific surface area of P_Stöber sample compared to the bare one (about −75%) is due to the presence of the organic chains on the surface that reduce the aggregation porosity, as clearly seen in the pore size distribution determined by using the NLDFT method and the desorption branch of the isotherm. This graph (Figure 2A’, a) shows that inter-particle pores with size between 25 and 200 Å
(maximum at around 50 Å) characterizes the Stöber silica sample. After the grafting (Figure 2A’, a’), the porous volume decreases due to the presence of PAPTS chains: the smaller pores, between 25 and 40 Å, are especially affected by the grafting procedure. The specific surface area values for MCM-41 and P_MCM-41 are 1205 and 372 m²/g, respectively. The decreasing of the specific surface area of the grafted sample (ca. 69%) can be attributed to the presence of the organic chains that limit the access to the structural pores. This is also confirmed by the pore size distribution, centred at 37 Å (Figure 2B’): after the grafting procedure, the pore volume strongly decreased, suggesting that the access of the into the pores is limited by the presence of the organosilane.

The presence of the PAPTS on the surface of both Stöber and MCM-41 samples was monitored by infrared spectroscopy. Spectra of the samples before and after the grafting are reported in Figure 3. The FT-IR spectrum of the Stöber silica sample (Figure 3A, curve a) shows a broad band with maxima at 3690 and 3525 cm⁻¹, due to the stretching modes of different family of H-bonded OH groups. Moreover, bands in the 3000–2800 cm⁻¹ range are due to the stretching modes of CH₂ species deriving from incompletely reacted TEOS. In the low frequency region, the spectrum shows bands at 1980 and 1865 cm⁻¹, due to the overtones and combination modes of the silica framework. After the functionalization (Figure 3A, curve a’), new bands of surface silanols are found at lower wave-numbers, thus indicating an interaction between OH and amino groups of the PAPTS chains.

Moreover, the infrared spectrum of the grafted sample is characterized by the presence of components at 3370 and 3303 cm⁻¹ due to the asymmetric and symmetric stretching modes of amino groups, respectively; the associated bending mode falls at 1602 cm⁻¹. The band at 1648 cm⁻¹ instead is due to the stretching mode of the NH groups of PAPTS.
The interactions between CO₂ and the organo-modified Stöber silica sample have been evaluated by using infrared spectroscopy of adsorbed carbon dioxide. FT-IR spectra after the admission of 60 mbar of CO₂ at 35 °C on the organo-modified Stöber silica samples are reported in Figure 4.

After the admission of carbon dioxide the infrared spectrum of P_Stöber sample (Figure 4 A, curve a’) the large band between 3500 and 3000 cm⁻¹ and between 3000 and 2500 cm⁻¹ are shifted at lower frequencies, owing to the interaction of the silica surface (silanol groups and organic chain grafted on the surface) with carbon dioxide. Moreover, bands due to both physical and chemical adsorption of CO₂ are visible. In particular, at 2341 cm⁻¹ a band due to the asymmetric stretching mode of physisorbed CO₂ is observed, whereas bands due to products of the chemical reaction between NH₃ and carbon dioxide are located in the region between 1750 and 1250 cm⁻¹. In order to better appreciate these bands, spectra obtained after the subtraction of the spectrum recorded before the CO₂ admission are reported in Figure 4B. In the low frequency region (in which absorptions of chemisorbed species fall), bands due to the formation of both carbamate and carbamic acid are observable. In particular, bands due to ammonium carbamate species are visible at 1560, 1482 and 1406 cm⁻¹, while bands due to carbamic acid are located at 1692 and 1380 cm⁻¹ (a detailed description of the assignation of these bands is reported in a previous publication).[19] Furthermore, the band at 1625 cm⁻¹ is ascribed to the bending of NH₃⁺ species deriving from the interaction of amino groups with carbamic acid,[19] while the band at 1310 cm⁻¹ is attribute to skeletal vibrations of NCOO⁻ species.[21] By decreasing progressively the CO₂ pressure (Figure 4B, curves a’–a”) bands related to both physisorbed and chemisorbed CO₂ decrease in intensity. In particular, bands due to physically adsorbed CO₂ decrease faster, as the involved bonds are weaker. In order to evaluate the differences in terms of CO₂ adsorption on the two hybrid samples, a comparison between P_Stöber and P-MCM-41 spectra after the admission of carbon dioxide is reported in Figure S. Physisorbed CO₂ (Figure S, band at 2341 cm⁻¹) is much more abundant in P_Stöber sample compared to P_MCM-41. This result was unexpected, because the Stöber silica sample does not exhibit structural porosity. Such large adsorption, however, can occur in the porosity formed by the aggregation of the monodisperse silica particles. Moreover, regarding the chemisorption region, the bands related to the formation of carbamates and carbamic acid (Figure S, curves a a) and a” are present bands due to stretching modes of CH₂ groups of the silane grafted onto the silica surface; one of the associated bending modes is found at 1467 cm⁻¹. The FT-IR spectrum of the bare MCM-41 silica sample (Figure 3B, curve a) shows in the high frequency range a sharp band at 3745 cm⁻¹ due to isolated SiOH groups and a broad absorption in the 3700–3000 cm⁻¹ region (bands at ca. 3650 and 3500 cm⁻¹) due hydrogensonbnded OH groups weakly interacting with each other.[18] After the grafting procedure (Figure 3B, curve a’) the bands due to surface silanols, both isolated and hydrogen-bonded, are strongly decreased in intensity. This effect is due to the fact that these species react with the grafted organic chain and are hydrogen bonded with the PAPTS amino groups. This interaction is visible also by observing the broad adsorption between 3500 and 2000 cm⁻¹, due to the occurrence of strong H-bonds between the silanols and the PAPTS amino groups.[19] This effect is not visible for P_Stöber sample, probably because PAPTS groups grafted only on the external surface and they are less prone to interact with the silanols. Moreover, the stretching and bending vibrations related to PAPTS chains (vide supra) are also visible.

The Nitrogen content of the samples, determined by elemental analysis, is 2.25 and 3.67 mmol/g for P_Stöber and P_MCM-41 samples, respectively. This difference is due to the different number of silanol groups present in the two samples: 6.09*10¹⁰ and 3.35*10¹¹ and SiOH/g, respectively for Stöber and MCM-41 samples (details of the determination of the OH concentration are reported in Supporting Information).

2.2. Study of the Interaction Between Hybrid Samples and CO₂

The interactions between CO₂ and the organo-modified Stöber silica sample have been evaluated by using infrared spectroscopy of adsorbed carbon dioxide. FT-IR spectra after the admission of 60 mbar of CO₂ at 35 °C on the organo-modified Stöber silica samples are reported in Figure 4.

After the admission of carbon dioxide the infrared spectrum of P_Stöber sample (Figure 4 A, curve a) the large band between 3500 and 3000 cm⁻¹ and between 3000 and 2500 cm⁻¹ are shifted at lower frequencies, owing to the interaction of the silica surface (silanol groups and organic chain grafted on the surface) with carbon dioxide. Moreover, bands due to both physical and chemical adsorption of CO₂ are visible. In particular, at 2341 cm⁻¹ a band due to the asymmetric stretching mode of physisorbed CO₂ is observed, whereas bands due to products of the chemical reaction between NH₃ and carbon dioxide are located in the region between 1750 and 1250 cm⁻¹. In order to better appreciate these bands, spectra obtained after the subtraction of the spectrum recorded before the CO₂ admission are reported in Figure 4B. In the low frequency region (in which absorptions of chemisorbed species fall), bands due to the formation of both carbamate and carbamic acid are observable. In particular, bands due to ammonium carbamate species are visible at 1560, 1482 and 1406 cm⁻¹, while bands due to carbamic acid are located at 1692 and 1380 cm⁻¹ (a detailed description of the assignation of these bands is reported in a previous publication).[19] Furthermore, the band at 1625 cm⁻¹ is ascribed to the bending of NH₃⁺ species deriving from the interaction of amino groups with carbamic acid,[19] while the band at 1310 cm⁻¹ is attribute to skeletal vibrations of NCOO⁻ species.[21] By decreasing progressively the CO₂ pressure (Figure 4B, curves a’–a”) bands related to both physisorbed and chemisorbed CO₂ decrease in intensity. In particular, bands due to physically adsorbed CO₂ decrease faster, as the involved bonds are weaker. In order to evaluate the differences in terms of CO₂ adsorption on the two hybrid samples, a comparison between P_Stöber and P-MCM-41 spectra after the admission of carbon dioxide is reported in Figure S. Physisorbed CO₂ (Figure S, band at 2341 cm⁻¹) is much more abundant in P_Stöber sample compared to P_MCM-41. This result was unexpected, because the Stöber silica sample does not exhibit structural porosity. Such large adsorption, however, can occur in the porosity formed by the aggregation of the monodisperse silica particles. Moreover, regarding the chemisorption region, the bands related to the formation of carbamates and carbamic acid (Figure S, curves a and b) are present bands due to stretching modes of CH₂ groups of the silane grafted onto the silica surface; one of the associated bending modes is found at 1467 cm⁻¹. The FT-IR spectrum of the bare MCM-41 silica sample (Figure 3B, curve a) shows in the high frequency range a sharp band at 3745 cm⁻¹ due to isolated SiOH groups and a broad absorption in the 3700–3000 cm⁻¹ region (bands at ca. 3650 and 3500 cm⁻¹) due hydrogensonbnded OH groups weakly interacting with each other.[18] After the grafting procedure (Figure 3B, curve a’) the bands due to surface silanols, both isolated and hydrogen-bonded, are strongly decreased in intensity. This effect is due to the fact that these species react with the grafted organic chain and are hydrogen bonded with the PAPTS amino groups. This interaction is visible also by observing the broad adsorption between 3500 and 2000 cm⁻¹, due to the occurrence of strong H-bonds between the silanols and the PAPTS amino groups.[19] This effect is not visible for P_Stöber sample, probably because PAPTS groups grafted only on the external surface and they are less prone to interact with the silanols. Moreover, the stretching and bending vibrations related to PAPTS chains (vide supra) are also visible.

The Nitrogen content of the samples, determined by elemental analysis, is 2.25 and 3.67 mmol/g for P_Stöber and P_MCM-41 samples, respectively. This difference is due to the different number of silanol groups present in the two samples: 6.09*10¹⁰ and 3.35*10¹¹ and SiOH/g, respectively for Stöber and MCM-41 samples (details of the determination of the OH concentration are reported in Supporting Information).

2.2. Study of the Interaction Between Hybrid Samples and CO₂
more intense for P_MCM-41 with respect to P_Stöber sample, thus indicating that a greater amount of ammonium carba-
mates and carbamate acids species are present in the
mesoporous ordered sample. This effect is probably due to
the highest amount of PAPTS groups present in the
mesoporous ordered sample. At the end of the desorption process (Figure 5, curves
a', b'), the bands due to chemisorbed species are still
observable in in P_MCM-41 sample, whereas in P_Stöber are
not visible. This result suggests a difference on the stability of
ammonium carbamate and carbamic acid species due to the
location of NH₂ groups in the solid sorbents. In P_MCM-41
sample, the amino groups are indeed located into the pores,
while in Stöber sample, since is non porous, NH₂ groups are
mainly present on the external surface. For this reason, the
carbamate species formed on this sample are non confined in
restricted space and less protected in comparison to the P_
MCM-41 sample.

The comparison of ¹³C CO₂ adsorption process on the two
hybrid materials was further studied by using ¹³C MAS NMR
spectroscopy (Figure 6).

Figures 5 and 7. FTIR spectra of 60 mbar of carbon dioxide adsorbed at 35 °C on P_
Stöber (curve a) and P_MCM-41 (curve b) and FT-IR spectra recorded after
degassing CO₂ until vacuum (curve a' and b', respectively for P_Stöber and
P_MCM-41). Spectra are reported after subtraction of the spectrum recorded
before CO₂ interaction, used as a background.

¹³C MAS NMR spectrum of P_Stöber sample (Figure 6, curve a) shows a peak due to chemisorbed carbamate species
centered at 164 ppm and a peak related to the physisorbed
¹³C O₂ located at around 125 ppm. Quantitative data derived
from the ¹³C MAS NMR spectra of P_Stöber sample show that
the amount of ¹³C O₂ physically adsorbed represent about 30 wt
%, while the remaining part is due to the contribution from
chemisorbed species. These quantitative data confirm that
the physisorption in P_Stöber sample contribute higher compared
to that in P_MCM-41 (less than 1% of total adsorption) as
shown in Figure 6, curve b. This effect is probably due to the
higher pore accessibility and the presence of mesoporosity in
P_Stöber sample. In order to determine the influence of amino
groups on the physisorption in P_Stöber sample, we have
followed the CO₂ adsorption on bare Stöber sample (without
amino groups) by employing FT-IR spectroscopy (Figure 7).

As expected, for bare Stöber sample (Figure 7, curve b) no
bands attribute to chemisorbed CO₂ are observable. Only a
small band at 2341 cm⁻¹, due to the physisorbed carbon
dioxide, is visible. This band is much less intense compared to
P_Stöber sample (curve a), suggesting that PAPTS chains
grafted on the surface can aggregate forming pores in which
the physisorption occurs. We may suggest that this porosity
presents a small volume, that is hardly detectable by N₂
physisorption technique. As for chemisorption, as expected, no
bands are formed; this is due to the absence of amino groups in
this sample.

To confirm these observations, ¹³C MAS NMR spectroscopy
of adsorbed carbon dioxide on bare Stöber sample has been
performed. Results are reported in Figure 8.

In ¹³C MAS NMR spectrum of bare Stöber sample (Figure 8,
curve b), the signal of physisorbed ¹³C O₂, located at 125 ppm, is
not easily distinguishable from the background noise, indicating
that only an exceedingly small amount of ¹³C O₂ is physically
adsorbed on the bare sample. Therefore, we can confirm that
the PAPTS chains grafted on the Stöber silica surface are

Figure 6. ¹³C MAS NMR spectra of ¹³C CO₂ adsorbed on P_Stöber (a) and P_
MCM-41 (b), recorded using a MAS rate of 10 kHz.

Figure 7. FTIR spectra of 60 mbar of CO₂ adsorbed at 35 °C on P_Stöber
(curve a) and Stöber sample (curve b) and FT-IR spectra recorded after the
degassing (curve a' and b', respectively for P_Stöber and Stöber sample).
Spectra are reported after subtraction of the spectrum recorded before CO₂
interaction.

The predominant adsorption process occurs. In P_MCM-41 sample, compared to P_MCM-41 sample suggest that a different amount of CO\(_2\) is present. Furthermore, at the end of the desorption curve, different amount of CO\(_2\) (representing the irreversible fraction still chemisorbed on the samples) is present: while P_Stöber sample almost goes back to its original weight (i.e. before adsorption), P_MCM-41 sample approaches a sort of plateau. This indicates that part of the CO\(_2\) originally adsorbed is retained by the sample. In particular, for P_MCM-41 a higher percentage of CO\(_2\) is retained (about 27% of the total) compared to P_Stöber (ca. 6% of the total), thus indicating that in the mesoporous sample the chemisorption plays a more important role than in P_Stöber sample. These results agree with FT-IR and ss-NMR Spectroscopy observations.

Adsorption heat values (ΔH\(_{ads}\)) of P_Stöber and P_MCM-41 samples have been calculated from the heat flow measured by the DSC. Details on calculations are given in earlier publications.[12] The ΔH\(_{ads}\) values obtained for P_Stöber and P_MCM-41 samples are 33.2 and 52.9 kJ/mol, respectively (Heat Flow graph from DSC-TGA is reported in Supporting Information, Figure S.I.1), thus confirming that the predominant mechanism occurring in the non porous material is physisorption.

The gravimetric method was also used to study the temperature dependence (20-90°C) of the CO\(_2\) adsorption process (Figure S.I.2 and S.I.3 in Supporting Information). For both samples the gas uptake after 2 h of adsorption decreases with the increase of the temperature. The behavior of these samples with the temperature however is complex, and therefore deserves to be explored in a future dedicated study.

The quantitative determination of adsorbed carbon dioxide was also performed by using the ZLC analysis. Desorption curves as C/C\(_0\) (dimensionless concentration) versus the volume of gas eluted (flow rate × time) obtained for P_Stöber and P_MCM-41 at 35°C are reported in Figure 10.

The difference between the area under the desorption curve of the sample and the blank (Figure 10) is proportional to the amount of adsorbed CO\(_2\). Consequently, applying a mass balance on the column, the uptake can be calculated by integration of the obtained signals. The carbon dioxide adsorption capacity values calculated from ZLC desorption curves are 0.40 and 0.51 mmol/g for P_Stöber and P_MCM-41, respectively. These data reflect the behaviour observed by TGA analysis. These adsorption capacity values are only slightly lower than those obtained by gravimetric analysis (0.49 and 0.58 mmol/g for P_Stöber and P_MCM-41, respectively). These data reflect the behaviour observed by TGA analysis. These adsorption capacity values are only slightly lower than those obtained by gravimetric analysis (0.49 and 0.58 mmol/g for P_Stöber and P_MCM-41, respectively). These data reflect the behaviour observed by TGA analysis. These adsorption capacity values are only slightly lower than those obtained by gravimetric analysis (0.49 and 0.58 mmol/g for P_Stöber and P_MCM-41, respectively). These data reflect the behaviour observed by TGA analysis. These adsorption capacity values are only slightly lower than those obtained by gravimetric analysis (0.49 and 0.58 mmol/g for P_Stöber and P_MCM-41, respectively). These data reflect the behaviour observed by TGA analysis. These adsorption capacity values are only slightly lower than those obtained by gravimetric analysis (0.49 and 0.58 mmol/g for P_Stöber and P_MCM-41, respectively). These data reflect the behaviour observed by TGA analysis. These adsorption capacity values are only slightly lower than those obtained by gravimetric analysis (0.49 and 0.58 mmol/g for P_Stöber and P_MCM-41, respectively). These data reflect the behaviour observed by TGA analysis. These adsorption capacity values are only slightly lower than those obtained by gravimetric analysis (0.49 and 0.58 mmol/g for P_Stöber and P_MCM-41, respectively). These data reflect the behaviour observed by TGA analysis. These adsorption capacity values are only slightly lower than those obtained by gravimetric analysis (0.49 and 0.58 mmol/g for P_Stöber and P_MCM-41, respectively). These data reflect the behaviour observed by TGA analysis. These adsorption capacity values are only slightly lower than those obtained by gravimetric analysis (0.49 and 0.58 mmol/g for P_Stöber and P_MCM-41, respectively).

The CO\(_2\) capture field.

2.3. Evaluation of CO\(_2\) Capture Capacity of Hybrid Stöber

The carbon dioxide adsorption capacity was evaluated by gravimetric analysis. CO\(_2\) uptake curve at 35°C of P_Stöber sample, compared with that of MCM-41, is reported in Figure 9.

The CO\(_2\) adsorption capacity (q) of P_Stöber sample derived from gravimetric adsorption curve (Figure 9, curve b) is 0.49 mmol/g. This value is slightly lower compared to the CO\(_2\) adsorption capacity of P_MCM-41 (0.58 mmol/g). Moreover, the shape of the adsorption curves of the two samples is different. In detail, the diverse adsorption/desorption rate of P_Stöber compared to P_MCM-41 sample suggest that a different predominant adsorption process occurs. In P_MCM-41 sample, in fact, there is a faster initial uptake compared to P_Stöber sample, followed by a slower approach to the final equilibrium. This effect is probably due to the more heat released, thus indicating that a higher contribution of chemisorption is present. Furthermore, at the end of the desorption curve, different amount of CO\(_2\) (representing the irreversible fraction responsible for the gated porosity, where the physisorption occurs.

![Figure 8. 13C MAS NMR spectra of 13CO\(_2\) adsorbed on P_Stöber (a) and Stöber sample (b). The spectrum of Stöber sample (curve b) has been amplified (x5) for a better observation of the signals.](image)

![Figure 9. CO\(_2\) uptake curves obtained from TGA of P_Stöber (curve a) and P_MCM-41 (curve b) silica samples. Measurements were recorded at 35°C and 1 bar with 0.1 bar of CO\(_2\) in He.](image)
In this work, the CO$_2$ adsorption properties of amino-functionalized Stöber silica sample have been evaluated for the first time by using a combined experimental techniques. In particular, FT-IR and ss-NMR spectroscopies were used to provide information on the physical and chemical adsorption processes occurring by contacting CO$_2$ with the non-porous Stöber silica-based hybrid material. These analyses showed that a higher amount of physisorbed CO$_2$ as present in the Stöber-amino-functionalized sample, whereas almost negligible carbon dioxide (either physisorbed or chemisorbed) was observed in bare Stöber material. These analyses showed that a higher amount of physisorbed CO$_2$ as present in the Stöber-amino-functionalized sample, whereas almost negligible carbon dioxide (either physisorbed or chemisorbed) was observed in bare Stöber material. From these studies it has emerged that the generation of gated microporosity upon PAPTS grafting on Stöber silica surface is responsible for the larger amount of CO$_2$ physisorbed.

Moreover, the effect of the gated porosity on the carbon dioxide adsorption has been evaluated by comparing the organo-modified Stöber with a MCM-41-based material. The comparison of FT-IR and ss-NMR results show that higher amount of physisorbed CO$_2$ is present in the Stöber-based sample compared to the MCM-41-based one, probably because of the higher pore accessibility and because of the presence of mesoporosity created by PAPTS aggregation (absent in P-MCM-41 sample). With regard to chemisorption, conversely, the higher amount of CO$_2$ chemisorbed was observed in the ordered mesoporous sample. This effect is probably due to the presence of greater amount of PAPTS groups in this material (the nitrogen adsorption on the samples is 2.25 and 3.67 mmol/g for P-Stöber and P-MCM-41 samples, respectively).

The absolute carbon dioxide capture capacity has been determined by TGA and ZLC analyses. The values of CO$_2$ adsorption capacity obtained are 0.49 and 0.58 mol/kg (TGA) and 0.40 and 0.51 mol/kg (ZLC), respectively for P-Stöber and P-MCM-41 samples. Therefore, taking into account of the adsorption process as a whole (i.e. with respect to both physisorption and chemisorption), the ordered mesoporous-based material is slightly more efficient. However, the non-porous material is much cheaper, easy to synthesize, and an adsorption capacity not very different to that of MCM-41-based material. For this reason, non-porous materials such as P-Stöber, not explored until now for CO$_2$ capture, deserves special attention and should be considered among the various other solid adsorbents for the carbon dioxide capture.

Experimental Section

Materials Preparation

Stöber silica was synthesized by hydrolysis and condensation of tetraethyloorthosilicate (TEOS) catalyzed by ammonia. In a typical synthesis, a solution of 3.0 mL of aqueous ammonia, 7.28 mL of water and 50 mL of ethanol have been prepared. Subsequently, 5.6 mL of TEOS were added, and the solution was stirred for 2 hours at room temperature. The ethanol solution was then evaporated at 60°C for 5 hours and finally the precipitate was dried at 80°C for 2 hours.[21] The sample was named Stöber.

MCM-41 silica was synthesized by dissolving cetyl trimethylammonium bromide CTAB, 15.12 g, Sigma Aldrich, ≥ 98%) in 38 mL of deionized water and then heating the solution at 50°C. Tetraethylammonium hydroxide (TMAOH, 8.94 mL, Sigma-Aldrich) was then added, and after 30 minutes silica fumed (5.0 g, Aldrich, 99.8%) was introduced. After 1 h the gel was transferred in a Teflon cup (125 mL capacity) of an autoclave (Anton PAAR 4748) and heated in an oven at 120°C for 72 h. After the hydrothermal treatment, the sample was filtered, washed with deionized water and dried overnight at 120°C. The material was calcined under air flow at 600°C for 5 h (1°C/min heating ramp) in order to remove completely the CTAB surfactant.[22] The sample was named MCM-41.

Post Synthesis Functionalization.

Before the grafting procedure, 1.0 g of silica (Stöber or MCM-41) was treated in vacuum at 200°C for 2 h in order to remove physisorbed water. After this treatment, the sample was kept under N$_2$ flow and then dispersed in 100 mL of anhydrous toluene containing 0.48 mL of N-[3-(trimethoxysilyl)propyl)-diethylenetriamine (PAPTS, H$_2$N(CH$_2$)$_2$NH(CH$_2$)$_2$Si(OCH$_3$)$_3$, Sigma-Aldrich, M.W. = 265.43 g/mol) added drop-by-drop. Then the suspension was left for 20 h at 50°C under magnetic stirring. After this time, the sample was filtered, washed with toluene and ethyl ether in order to remove the unreacted silane, and finally dried overnight at 80°C.[23] The functionalized samples are hereafter named P-Stöber and P-MCM-41.

Figure 10. ZLC desorption curves for P_Stöber (section A) and P_MCM-41 sample (section B) and blank curves at 2 and 2.7 ml/min flow rates. CO$_2$ partial pressure: 0.1 bar, T: 35°C.
Characterization Techniques

Scanning Electron Microscopy

Scanning electron microscopy (SEM) images were acquired on a Quanta 200 (FEI, Eindhoven) scanning electron microscope, using a tungsten filament as electron source. A conductive coating of gold by low-pressure plasma was finally deposited on the samples to avoid the conducting particles were electronically charged under the electron beam.

Transmission Electron Microscopy

Transmission electron microscopy (TEM) images were collected by using a JEOL 2010 High Resolution Transmission Electron Microscope operating at 300 kV. Specimens were prepared by sonicating the sample in isopropanol and by depositing a drop of the suspension on carbon-coated grids.

N\textsubscript{2} Physisorption Analyses

\(\text{N}_2\) physisorption analyses were carried out at low temperature (−196 °C) by using a Quantachrome Autosorb iQ2 instrument. Before the analysis, the samples were outgassed at 135 °C for 3 h (residual pressure: 10\^ −5 Torr). Specific Surface Area (S.S.A) values were calculated by using the Brunauer-Emmett-Teller equation, in the residual pressure range from 0.01 to 0.1 p/p\textsubscript{0}. Pore size distributions were determined by applying the Non Localized Density Functional Theory (NLDFT) method (\(\text{N}_2\) silica kernel based on a cylindrical pore model).

Elemental Analysis

C–H–N elemental contents were determined by using an EA 3000 elemental analyser (EuroVector). He and O\textsubscript{2} at 120 and 35 kPa pressures were used, respectively.

Infrared Spectra

Infrared spectra were collected on a Thermo Electron Corporation FT Nicolet 5700 Spectrometer (resolution: 4 cm−1). Self-standing pellets were placed into an IR cell with KBr windows permanently attached to a vacuum line (residual pressure: 10\^ −4 mbar), allowing all treatments and adsorption–desorption experiments to be carried out in situ. Before the gas adsorption tests, the silica samples were outgassed at 135 °C (heating ramp: 5 °C min−1, holding: 3 h) by using an oil-free apparatus and a grease-free vacuum line. Afterwards the samples were cooled at room temperature for the collection of IR spectra upon CO\textsubscript{2} adsorption. All the spectra were normalized by dividing for the density of the self-supported pellets. Furthermore, the proper normalization of the IR spectra was verified taking as reference the intensity of the overtones and combination modes of the silica framework (bands in the 2200–1600 cm−1 range). In this way, differences in the band intensities among different samples related to intrinsic oscillators of the materials (e.g. hydroxyl groups) can be associated with actual differences in the amount of such species in the samples. As a consequence of the normalization, the absorbance values are reported as the arbitrary unit (a.u.).

Solid State NMR

Solid state NMR spectra were acquired on a Bruker Avance III 500 spectrometer and a wide bore 11.7 Tesla magnet with operational frequencies for 13 C of 125.77 MHz. A 4 mm triple resonance probe with MAS was employed in the experiments. The samples were packed on a Zirconia rotor and spun at a MAS rate of 10 kHz. The magnitude of radio frequency field for 90° pulse was 62.5 kHz for 13 C MAS NMR and the relaxation delay between accumulations was 60 s. Chemical shifts are reported using the δ scale and are externally referenced to TMS at 0 ppm. All 13 C MAS NMR spectra were fitted with DMFIT functions for quantitative deconvolution of overlapping peaks.[25] Before the gas adsorption tests, the samples were outgassed at 135 °C with a heating ramp of 1 °C min−1 for 3 h using an oil-free apparatus and grease-free vacuum line. The samples were cooled to room temperature and 100 mbar of 13 C\textsubscript{2}O\textsubscript{2} was placed in contact with the samples and then kept in that atmosphere for at least 2 days. The labelled 13 C\textsubscript{2}O\textsubscript{2} was used in order to increase the 13 C NMR signal intensity.

Zero Length Column

The Zero Length Column (ZLC) consists of a 1/8” Swagelok union in which a small amount of sample (about 10–15 mg) is housed between two sister discs.[26] This system can be modified allowing more samples to be packed in the adsorption column (about 20–40 mg) obtaining an Extended Zero Length Column (E-ZLC). In this system, used for all the analyses reported below, a 1/8” Swagelok bulkhead connector is used, allowing the utilization of the same apparatus developed for the standard ZLC experiment.[27] The experiment is based on following the desorption curve of a sample previously equilibrated with a feed gas mixture (10% CO\textsubscript{2} in He) at a constant flow rate (2 and 2.7 ml min−1). In order to determine the equilibration time of the samples, tests at increasing adsorption times were carried out. The sample was considered at equilibrium when the adsorbed amount of CO\textsubscript{2} did not change any more with the adsorption time (equilibration time 20 min for P\textsubscript{.}Stöber and 30 min for P\textsubscript{.}MCM-41 sample). Prior to each experiment the samples were regenerated overnight at 135 °C under helium flow in order to ensure the removal of any pre-adsorbed water. In addition, due to the very small amount of sample used, the system is equipped with drying columns to ensure that the gases entering the system are completely dry. The effluent gas concentration is monitored using a Dycor Ametek Benchtop quadrupole mass spectrometer connected to the outlet of the column. Full details of the system used for these experiments are given in an earlier publication.[28]

Gravimetric Analysis

Gravimetric CO\textsubscript{2} adsorption measurements were carried out on a Setaram Sensys Evo TG/DSC apparatus. In these experiments, a sample mass of about 20–30 mg was packed in a platinum crucible, which was counterbalanced by an identical platinum crucible packed with an equivalent mass of lead beads. Prior to the measurements the sample was pretreated at 135 °C for 3 h (2 °C min−1 heating rate) under He flow (flow rate: 50 ml min−1). The sample was then cooled to 35 °C and the adsorption was performed by contacting the sample with a mixture of 10% of CO\textsubscript{2} in He at a constant total flow rate of 50 ml min−1 for 2 h. The CO\textsubscript{2} concentration and the adsorption time were chosen to be representative of a typical post combustion capture process from a coal-fired power plant. At the end of the adsorption step the inlet flow is then switched to pure He at the same flow rate for 2 h, in order to allow the desorption of CO\textsubscript{2}. In the case of a purely physisorption process, assuming that equilibrium has been achieved and no transport resistances are present, the change in the sample weight in the adsorption and desorption step should be the same, indicating a perfectly reversible process. From the measure of the
mass difference and the heat flow the CO$_2$ capture capacity and the heat of adsorption were also calculated.11

Acknowledgements

The authors are fully grateful to Mrs. Chiara Zaccone for her help in the physico-chemical characterization of silica samples and to Dr. Claudia Evangelisti (ISTM-CNR, Milan) for TEM measurements. Authors also acknowledge the financial support by the Italian Minister of Education, University and Scientific Research (MIUR) through the PRIN Project 2010 A2F5S9.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: CO$_2$ Adsorption · hybrid materials · ss-NMR · Stöber silica · silica materials

[1] https://www.co2.earth/
[2] S. Cui, W. Cheng, X. Shen, M. Fan, A. Russell, Z. Wu X. Yi, Energy Environ. Sci. 2011, 4, 2070–2074.
[3] Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao, Q. Wang, D. O’Hareb, Z. Zhong, Energy Environ. Sci. 2014, 7, 3478–3518.
[4] S. Choi, W. Cheng, X. Shen, M. Fan, A. Russell, Z. Wu X. Yi, Energy Environ. Sci. 2011, 4, 2070–2074.
[5] Z. Zhang, X. Ma, D. Wang, C. Song, AIChE J. 2012, 58, 8, 2495–2502.
[6] M. G. Plaza, C. Pevda, A. Arenillas, F. Rubiera, J. J. Pis, Fuel 2007, 86, 14, 2204–2212.
[7] O. Leal, C. Bolivar, César Ovalles, J. J. García, Y. Espidel, Inorganica Chimica Acta 1995, 240, 1–2, 183–189.
[8] G. Gatti, D. Costenaro, C. Vittoni, G. Paul, V. Crocella, E. Mangano, S. Brandani, S. Bordiga, M. Cossi, L. Marchese, C. Bisio, Phys. Chem. Chem. Phys. 2017, 19, 14114–14128.
[9] C. Y. Lee, L. C. Lee, C. W. Jones, Langmuir 2015, 31, 49, 13350–13360.
[10] N. Plumerè, A. Ruff, B. Speiser, V. Feldmann, H. A. Mayer, J. Colloid Interface Sci. 2012, 368, 1, 208–219.
[11] C. Vittoni, V. Sacchetto, D. Costenaro, S. Mastroianni, A. Hinch, L. Marchese, C. Bisio, Sol. Energy Mater. Sol. Cells 2017, 140, 101–113.
[12] G. Gatti, C. Vittoni, D. Costenaro, G. Paul, E. Mangano, S. Brandani, L. Marchese, C. Bisio, Phys. Chem. Chem. Phys. 2017, 19, 29449–29460.
[13] Z. Wu, H. Xiang, T. Kim, M.-S. Chun, K. Lee, J. Colloid Interface Sci. 2014, 390, 1, 119–124.
[14] S. Lowell, J. E. Shields, M. A. Thomas, M. Thommes, Kluwer Academic Publishers 2004.
[15] A. Beganskiene, V. Sirutkaitis, M. Kurtinaitiene, R. Juskenas, A. Kareliva, Mater. Sci. 2004, 10, 4, 287–290.
[16] M. Palmi, L. N. Nagy, J. Mihály, Z. Varga, G. Tárkányi, R. Mizsei, I. C. Szigyártó, T. Kiss, T. Kremmer, J. Colloid Interfac Sci. 2013, 390, 1, 34–40.
[17] C.-Y. Chen, H.-Y. Li, M. E. Davis, Microporous Mater. 1993, 2, 1, 17–26.
[18] G. Socrates, John Willy & Sons, LTD, 2001.
[19] X. Wang, W. Schwartz, J. C. Clark, X. Ma, S. H. Overbury, X. Xu, C. Song, J. Phys. Chem. C 2009, 113, 17, 7260–7268.
[20] A. Donan, P. C. Stair, E. Weitz, J. Phys. Chem. C 2011, 115, 23, 11540–11549.
[21] S. A. Didas, M. A. Sakwa-Novak, G. S. Foo, C. Sievers, C. W. Jones, J. Phys. Chem. Lett. 2014, 5, 23, 4194–4200.
[22] C. Knofel, C. Martin, V. Hornebecq, P. L. Llewellyn, J. Phys. Chem. C 2009, 113, 52, 21726–21734.
[23] D. L. Green, J. S. Lin, Y.-H. Lam, M. Z.-C. Hu, D. W. Schaefer, M. T. Harris, J. Colloid Interface Sci. 2003, 266, 2, 346–358.
[24] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834–10843.
[25] L. Efgar, G. Schuchardt, D. Costenaro, F. Carniato, C. Bisio, S. M. Zakeeruddin, M. Nazeeruddin, L. Marchese, M. Graetzel, J. Mater. Chem. A 2013, 1, 10412–10417.
[26] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 2002, 40, 1, 70–76.
[27] M. Eis, D. M. Ruthven, Zeolites 1988, 8, 1, 40–45.
[28] J. A. Gibson, A. V. Gromov, Y. A. Gromov, M. M. Lozinska, D. Friedrich, E. E. B. Campbell, P. A. Wright, S. Brandani, Ind. Eng. Chem. Res. 2016, 55, 13, 3840–3851.
[29] X. Hu, S. Brandani, A. I. Benin, R. W. Willis, Ind. Eng. Chem. Res. 2015, 54, 26, 6772–6780.
[30] J. A. Gibson, A. V. Gromov, S. Brandani, E. E. B. Campbell, Microporous Mesoporous Mater. 2015, 208, 129–139.

Manuscript received: March 6, 2019
Revised manuscript received: May 7, 2019