Draft Genome Sequence of Two Marine Plantactinospora spp. from the Gulf of California

Luis Contreras-Castro,a Luis A. Maldonado,b Erika T. Quintana,a Luciana Raggi,c Alejandro Sánchez-Floresd

aLaboratorio de Bioprospección en Actinobacterias, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
bFacultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
cInstituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana San Nicolás de Hidalgo, Morelia, Mexico
dUnidad Universitaria de Secuenciación Masiva y Bioinformática (UUSMB), Instituto de Biotecnología, UNAM, Cuernavaca, Mexico

ABSTRACT Plantactinospora sp. strains BB1 and BC1 were isolated in 2009 from sediment samples of the Gulf of California from among almost 300 actinobacteria. Genome mining of their ∼8.5-Mb sequences showed the bioprospecting potential of these rare actinomycetes, providing an insight to their ecological and biotechnological importance.

The genus Plantactinospora within the class Actinobacteria currently contains seven validly described species (1–7), all of them recovered either in association with plants in China or from swamp forests in Thailand. None of them have been related to the marine environment yet. Plantactinospora spp. are Gram stain-positive and aerobic bacteria, which form extensive substrate mycelia that bear single or conglomerate spores, with little or no aerial mycelia. The genus has been identified mainly by its morphological and chemotaxonomical properties due to its high level of 16S rRNA similarities between its closely related members and to the genera Micromonospora, Salinispora, and Polymorphospora (>98.6%) (8).

Although the biotechnological potential of plantactinosporae has not yet been fully evaluated, the way in which they are related to members of the genus Salinispora could provide a first clue to its metabolic capabilities. Since its description in 2005 as the first marine obligate actinobacterial genus, Salinispora has proven to be a very promising source of secondary metabolites (9, 10).

Strains BB1 and BC1 were part of a previous study reporting the isolation of almost 300 actinobacteria (11) from the Gulf of California. Preliminary analyses have suggested that the isolates belonged to the family Micromonosporaceae. A phylogenetic reconstruction based on 16S rRNA gene sequences clustered the two strains within the genus Plantactinospora. EzTaxon (12) identified both BB1 and BC1 as being closely related to P. veratri, a species recovered from the root of Veratrum nigrum (5), with 99.17% and 98.97% 16S rRNA gene similarities, respectively.

The genomes of BB1 and BC1 were sequenced by ChunLab (Seoul, South Korea) using the Illumina MiSeq sequencing platform. The obtained reads for BB1 and BC1 were assembled in single chromosomes with SPAdes version 3.1.1 (13). Both genomes share a size of nearly 8.5 Mb. GC content values were also found to be extremely similar at 72.37% and 72.38%, respectively. Two-way average nucleotide identity values (14) indicated a 98.73% similarity, suggesting that both isolates belong to the same species.

The genomes were annotated with a pipeline running GeneMark under heuristic parameters (15) and an adapted Trinotate annotation workflow (16). The numbers of predicted open reading frames were 7,322 and 7,271, with 64 tRNAs and 65 tRNAs for
BB1 and BC1, respectively, and 6 rRNAs for both. Mining of the two genomes using antiSMASH version 3.0 (17) found 83 and 84 potential secondary metabolite-related clusters for BB1 and BC1, respectively. The antiSMASH suite predicted the presence of gene clusters related to the production of erythrochelin, fortimicin, friulimicin, gentamicin, jaragacin, landepoxcin, lymphhostin, naphthomycin, pradimicin, meilingmycin, tariomycin, thiolutin, viomycin, and yatmakemycin for the genome of BB1 and compound K-252a, erythrochelin, fortimicin, friulimicin, landepoxcin, lymphhostin, meridamycin, naphthomycin, orfamide, pradimicin, sisomicin, tariomycin, thiolutin, viomycin and yatmakemycin for the genome of strain BC1, among others predicted by the Web tool NapDos (18).

**ACKNOWLEDGMENTS**

Actinobacterial diversity studies were part of a collaborative agreement between UNAM (Instituto de Ciencias del Mar y Limnología [to L.A.M.]) and IPN (Escuela Nacional de Ciencias Biológicas [to E.T.Q.]) under the UNAM code UNAM 32939-2163-16-X-12 (2012 to 2016). Sequencing expenses were sponsored by Consejo Nacional de Ciencia y Tecnología (CONACyT Mexico) project 180692 (to L.A.M.). L.C.-C. was sponsored by a PhD scholarship from CONACyT Mexico.

**REFERENCES**

1. Qin S, Li J, Zhang YQ, Zhu WY, Zhao GZ, Xu LH, Li WJ. 2009. *Plantactinospora mayteni* gen. nov., *sp. nov.*, a member of the family Micromonosporaceae. Int J Syst Evol Microbiol 59:2527–2533. https://doi.org/10.1099/ijs.0.010793-0.
2. Thawai C, Tanasupawat S, Suwanborirux K, Kudo T. 2010. *Actinariuspora siamensis* gen. nov., *sp. nov.*, a new member of the family Micromonosporaceae. Int J Syst Evol Microbiol 60:1660–1666. https://doi.org/10.1099/ijs.0.013763-0.
3. Zhu WY, Zhao LX, Zhao GZ, Duan XW, Qin S, Li J, Xu LH, Li WJ. 2012. *Plantactinospora endophytica* sp. nov., an actinomycete isolated from *Camptotheca acuminata* Decne., reclassification of *Actinariuspora siamensis* as *Plantactinospora siamensis* comb. nov. and emended description of the genus *Plantactinospora* and *Plantactinospora mayteni*. Int J Syst Evol Microbiol 62:2435–2442. https://doi.org/10.1099/ijs.0.036459-0.
4. Ma X, Liu C, Fan J, He H, Li C, Li J, Zhao S, Xiang W, Wang X. 2015. *Plantactinospora sonchi* sp. nov., an actinobacterium isolated from the leaves of common sowthistle (*Sonchus oleraceus* L.). Int J Syst Evol Microbiol 65:4895–4901. https://doi.org/10.1099/ijs.0.000668.
5. Xing H, Liu C, Zhang Y, Zhao J, Li C, Liu H, Li L, Wang X, Xiang W. 2015. *Plantactinospora verrati* *sp. nov.*, an actinomycete isolated from black false hellebore root (*Veratrum nigrum* L.). Int J Syst Evol Microbiol 65:1799–1804. https://doi.org/10.1099/ijs.0.000180.
6. Guo X, Guan X, Li C, Jia F, Li J, Li J, Jin P, Li W, Wang X, Xiang W. 2016. *Plantactinospora soyae* *sp. nov.*, an endophytic actinomycete isolated from soybean root (*Glycine max* (L.) Merr.). Int J Syst Evol Microbiol 66:2578–2584. https://doi.org/10.1099/ijs.0.010088.
7. Li W, Guo X, Shi L, Zhao J, Yan L, Zhong X, Zhang C, Chen Y, Wang X, Xiang W. 2018. *Plantactinospora solaniradicis* *sp. nov.*, a novel actinomycete isolated from the root of a tomato plant (*Solanum lycopersicum* L.). Antonie van Leeuwenhoek 111:227–235. https://doi.org/10.1007/s10482-017-10493-2.
8. Li W, Salam N. 2016. *Plantactinospora*. In Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S (ed), Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, New York, NY. https://doi.org/10.1002/9781118960608.bmo1318.
9. Maldonado LA, Fenicik W, Jensen PR, Krumpe CA, Minier TJ, Ward AC, Bull AT, Goodfellow M. 2005. *Salinispora arenicola* gen. nov., *sp. nov.*, and *Salinispora tropica* *sp. nov.*, obligate marine actinomycetes belonging to the family Micromonosporaceae. Int J Syst Evol Microbiol 55:1759–1766. https://doi.org/10.1099/ijs.0.03625-0.
10. Jensen PR, Moore BS, Fenical W. 2015. The marine actinomycete genus *Salinispora*: a model organism for secondary metabolite discovery. Nat Prod Rep 32:738–751. https://doi.org/10.1039/c4np00167b.
11. Maldonado LA, Fragoso-Yáñez D, Pérez-García A, Rosellón-Drucker J, Quintana ET. 2009. Actinobacterial diversity from marine sediments collected in Mexico. Antonie van Leeuwenhoek 95:111–120. https://doi.org/10.1007/s10482-008-9294-3.
12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 165 rRNA and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijs.0.000755.
13. Bankевич A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Levin VM, Nikolenko SI, Pham S, Prijibelski AD, Pyschnik AV, Sirotkin AV, Vyakhhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021.
14. Rodriguez-R LM, Konstantinidis KT. 2016. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr 4:e1900v1. https://doi.org/10.7287/peerj.preprints.1900v1.
15. Besemer J, Borodovsky M. 1999. Heuristic approach to deriving models for gene finding. Nucleic Acids Res 27:3911–3920.
16. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regen A. 2013. *De novo* transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512. https://doi.org/10.1038/nprot.2013.084.
17. Weber T, Blin K, Duddela S, Krug D, Kim HU, Brucolieri R, Lee SY, Fischbach MA, Müller R, Wohleben W, Brestle R, Takano E, Medema MH. 2015. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243. https://doi.org/10.1093/nar/gkv437.
18. Ziemert N, Podell S, Penn K, Badger JH, Allen E, Jensen PR. 2012. The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS One 7:e34064. https://doi.org/10.1371/journal.pone.0034064.