ABSTRACT. The knowledge of Collembola diversity is far from complete, especially on the territory of the Republic of Serbia. This paper presents a summary of all identified species of springtails in the area of Kosovo and Metohija. The list of species includes a total of 119 species of springtails classified into 65 genera, 16 families, and 4 orders. Representatives of all four recent orders of Collembola are present in this checklist. The order with the greatest number of species is Entomobryomorpha with 55 determined species, while the order Neelipleona is present with only one endemic cave species Neelus klasirensis Kovác & Papáč, 2010, which is found in the aphotic zone of the cave in Velika Klisura at the foot of Prokletije mountains. The family with the most number of species is Entomobryidae Schäffer, 1896 with 21 species, while the most scarce families are Poduridae, Paronellidae and Neelidae, each with one representative. The family with the most genera is Isotomidae with a total of 11 genera. The genus Entomobrya Rondani, 1861 is the genus with the most species, with a total of 11 species. The fauna of the springtails of Kosovo and Metohija has not been properly and sufficiently investigated, although great diversity and high endemism can be expected in this territory, especially in the unexplored caves and gorges. The importance of springtail research is manifold. This paper is a contribution to add knowledge to the existing fauna of Kosovo and Metohija and the starting point for further research of springtails in this area.

Key words: checklist, Collembola, species, diversity, Serbia.

INTRODUCTION

Springtails (Collembola) today represent a special class of arthropods with their four recent orders Poduromorpha Börner, 1913, Entomobryomorpha Börner, 1913, Symphypleona Börner, 1901, and Neelipleona Massoud, 1971 (Bellinger et al., 1996–2022). They are cosmopolitan, living mostly in soil and litter, but also on the surface layers of fresh and saltwater. In most terrestrial ecosystems, springtails, together with mites, are considered to be the most numerous groups of the terrestrial mesofauna, reaching a density of up to 100,000 individuals per m², in soils without direct anthropogenic impact (Hopkin, 1997). Known springtail fossils date back to the Early Devonian and are over 400 million years old (Daly et al., 1998). Their body consists of three tagma: head, thorax, and abdomen. Most species have a characteristic structure on the ventral side of the fourth abdominal segment - a
Collembola from Serbia

bouncing fork (furcula), which serves them for jumping (Brajković, 2004; Zhang et al., 2015). Springtails are a significant component of many ecosystems in terms of nutrient circulation and energy flow because of the numerous functions they play in trophic networks, as well as their high densities and biomass (Rusek, 1998). They play an important role in the soil ecosystem as a key soil decomposer group that regulates nutrient cycling and has an impact on soil fertility and water retention (Daghighi & Hajizadeh, 2019). Many studies have shown that soil contamination can alter the composition of species within Collembola compared to "clean habitats" and their importance in assessing soil status (Abel & Larink, 1994; Nüss, 1994; Chernova et al., 1995; Filser et al., 1995; Moldenke & Thies, 1996; Salminen & Haimi, 1996; Frampton, 1997; Kuznetsova & Potapov, 1997; Chernova & Kuznetsova, 2000; Rebecchi et al., 2000; Cole et al., 2001; Abbas & Parwez, 2020; Joimel et al., 2021; Bhagawati et al., 2021). Collembola are also hosts of many parasitic Protozoa, Nematoda, Trematoda and pathogenic bacteria, but also victims of various predators (Yahyapur et al., 2022). Today, about 9,000 species (more than 8,700) of springtails are known and described, but many authors estimate that there are between 50 and 65,000 of them, still unidentified (Hopkin, 1998; Porco et al., 2013). According to the data from 2001, the number of species in the Republic of Serbia is 228 (Radović & Ćetković, 2001). According to the same authors, based on the fauna records of Collembola of The Socialist Federal Republic of Yugoslavia and Serbia, one could expect an increase in the registered number of species by about 20-40%. According to Lučić (2006), 243 species of springtails were listed in Serbia. Most endemic and relict forms live in caves and pits, and some inhabit forests and cultivated steppes. Two centers of endemic differentiation of Collembola are recognized on the territory of Serbia and Montenegro: in the northern and eastern Serbia, and in the southern and western parts (Montenegro, western and south-western Serbia) (Ćurčić & Lučić, 1997).

The area of the Autonomous Province of Kosovo and Metohija in the center of the Balkan Peninsula, only 90 km away from the Adriatic Sea and 220 km from the Aegean Sea, with its openness to these seas, the Drim Valley and Lepenc and Vardar valleys, surrounded by high mountains along the periphery - west Prokletije, north Kopaonik and in the south, Shara Mountains, have very different climatic influences, but also numerous climatic modifications (Jakšić & Belij, 1995). There are three climatic types in Kosovo and Metohija - the altered Mediterranean, continental and mountainous type (Ivanović et al., 2016). Within these climatic types, several climatic sub-regions are present. Based on the geographical features of this area, which is divided into many micro-units, we can expect a high diversity of species. The accidental finding of an endemic species in one of the dozens of known caves in this area also speaks in favor of the expectation of a certain degree of endemism (Kováč & Papáč, 2010). It should be mentioned that none of them has been explored so far, and there are many caves that no one has ever entered. A major environmental problem in Kosovo and Metohija is dozens of tailings of the Trepca Metallurgical Industry, which are located in many locations. It is important to point out that the total volume of industrial tailings in this area exceeds one hundred million tons. Extremely few of these industrial landfills have been rehabilitated, some to a greater extent whereas some to a lesser extent. Urban landfills have been rehabilitated in recent years. Considering the sensitivity of Collembola to environmental changes, and by investigating the composition and structure of their communities, we can monitor the processes of soil recovery and remediation. In the light of climate change, which mildly affects this area as well, it is important to determine the diversity of species and monitor their adaptation to them (Jušević & Melecis, 2006; Xu et al., 2012; Yin et al., 2019; Bonfanti et al., 2022).

MATERIAL AND METHODS

The list of species was compiled based on all collected and published data on Collembola on the territory of the AP of Kosovo and Metohija (Koledin & Bogojević, 1976; Kováč & Papáč, 2010; Jakšić, 2013; Jakšić et al., 2018). So far, only two studies of the Collembola fauna have been conducted in the study area. The other two sources are accidental findings.
Figure 1. Map of the localities where Collembola were investigated in Kosovo and Metohija (in Serbia) in UTM projection (grid zone 34T; basic square 10 km × 10 km). Red circles – Kosovska Mitrovica region – KM (Jakšić, 2013; Jakšić et al., 2018), Pink circle – Velika Klišura, Prokletije Mountain – PK (Kováč & Papáč, 2010), Orange circle – Ošljak Mountain – OŠ (Koledin & Bogojević, 1976), Blue circles – Šar Planina Mountain – ŠP (Koledin & Bogojević, 1976).

The identification of Collembola relies on the known keys for European springtails in the collected literature. Classification of the taxa as well as a nomenclature used, almost entirely follows the information collected by the International Collembology Community at www.collembola.org (Bellinger et al., 1996–2022), so the nomenclature used in the sources has been adapted. Species within genera are arranged alphabetically. The UTM map of Serbia marks the areas where Collembola has been explored so far, and which are included in this paper (Fig. 1).

RESULTS

Based on the literature data, 119 species of springtails were found on the territory of the Autonomous Province of Kosovo and Metohija (Table 1). The highest frequency percentage of species belonged to the order Entomobryomorpha (46%), and order Poduromorpha (34%) respectively (Fig. 2). The nomenclature in the works of Jakšić (2013) and Koledin and Bogojević (1976) was revised in this work. In both cases, the localities of species Bourletiella repanda Agren, 1903 were added to the localities of species Deuterosminthurus pallipes Bourlet, 1843 as these are the same species according to Bellinger et al. (1996–2022). From Jakšić (2013), the localities of species Entomobrya bimaculata Stach, 1963 were added to the localities of species Entomobrya nicoleti Lubbock, 1870 as these are the same species according to Bellinger et al. (1996–2022). When merging the locality sites, there was no overlap.
Collembola from Serbia

Figure 2. The frequency percentage of the different species of Collembola for each order on the territory of Kosovo and Metohija.

Taxonomic Hierarchy
Phylum Arthropoda Latreille, 1829
Superclassis Hexapoda Blainville, 1816
Classis Collembola Lubbock, 1871

Table 1. Checklist of the Collembola of Autonomous Province, Kosovo and Metohija, Serbia.

ORDER	PODUROMORPHA	Börner, 1913	KM	SP	OŠ	PK
SUPERFAMILY	PODUROIDEA	Latreille, 1804				
FAMILY	PODURIDAE	Latreille, 1804				
Genus	PODURA	Linnaeus, 1758				
	Podura aquatica	Linnaeus, 1758	+	-	-	-
SUPERFAMILY	HYPOGASTRURIDAE	Börner, 1906				
FAMILY	HYPOGASTRURIDAE	Börner, 1906				
Genus	CERATOPOHYSELLA	Börner, 1932				
	Ceratophyssella armata	Nicolet, 1842	+	+	+	-
	Ceratophyssella bengtssonii	Ågren, 1904	+	-	-	-
	Ceratophyssella granulata	Stach, 1949	-	+	+	-
Genus	CHOREUTINULA	Paclt, 1944				
	Choreutinula inermis	(Tullberg, 1871)	-	-	+	-
Genus	HYPOGASTRURA	Bourlet, 1839				
	Hypogastrura distincta	(Axelson, 1902)	+	-	-	-
	Hypogastrura crassaegranaulata	(Stach, 1949)	-	+	-	-
	Hypogastrura manubrialis	(Tullberg, 1869)	+	-	-	-
	Hypogastrura sigillata	(Uzel, 1891)	+	+	-	-
Genus	MICROGASTRURA	Stach, 1922				
	Microgastrura duodecimoculata	Stach, 1922	-	+	-	-
Genus	WILLEMIA	Börner, 1901				
Table 1. Continued.

No.	Species	KM	SP	OŞ	PK
12	Willemia anophthalma Börner, 1901				
13	Xenylla acuda Gisin, 1947		+	-	-
14	Xenylla brevicunda Tullberg, 1869		-	+	+
15	Xenylla maritima Tullberg, 1869		+	-	+
16	Xenylla schillei Börner, 1903		-	+	-
	SUPERFAMILIY ONYCHIUROIDEA Börner, 1901				
	FAMILIY ONYCHIURIDAE Börner, 1901				
17	Agraphorura naglitschi (Gisin, 1960)		+	-	-
18	Hymenaphorura alticola (Bagnall, 1935)		+	-	-
19	Kalaphorura burmeisteri (Lubbock, 1873)		+	+	-
	Genus PROTAPHORURA Absolon, 1901				
20	Protaphorura armata (Tullberg, 1869)		+	-	-
21	Protaphorura cancellata (Gisin, 1956)		+	-	+
22	Protaphorura finata (Gisin, 1952)		+	-	-
23	Protaphorura glebata (Gisin, 1952)		-	+	-
24	Protaphorura meridiata (Gisin, 1952)		-	+	-
	Genus TETRODONTOPHORA Reuter, 1882				
25	Tetrodontophora bielanensis (Waga, 1842)		+	-	-
	FAMILIY TULLBERGIIIDAE Bagnall, 1935				
26	Thalassaphorura zschokkei (Handschin, 1919)		+	+	+
	Genus MESAPHORURA Börner, 1901				
27	Mesaphorura krausbaueri Börner, 1901		+	-	+
	Genus METAPHORURA Bagnall, 1936				
28	Metaphorura affinis (Börner, 1902)		+	-	+
	Genus NEONAPHORURA Bagnall, 1935				
29	Neonaphorura sp.		+	-	-
	Genus PARATULLBERGIA Womersley, 1930				
30	Paratullbergia callipygos (Börner, 1902)		+	-	-
	Genus TULLBERGIA Lubbock, 1876				
31	Tullbergia sp.		+	-	-
	SUPERFAMILIY NEANUROIDEA Börner, 1901				
	FAMILIY NEANURIDAE Börner, 1901				
32	Anurida maritima (Guérin-Méneville, 1836)		+	-	-
	Genus BILOBELLA Caroli, 1912				
33	Bilobella aurantiaca (Caroli, 1912)		-	+	-
	Genus ENDONURA Cassagnau, 1979				
Table 1. Continued.

STH.	SPECIES	AUTHORS	KM	ŠP	OŠ	PK
34.	*Endonura cantabrica* (Deharveng, 1979)		+	-	-	-
Genus **FRIESEA** von Dalla Torre, 1895						
35.	*Friesea mirabilis* (Tullberg, 1871)		+	-	-	-
Genus **IMPARITUBERCULA** Stach, 1951						
36.	*Imparitubercula villosa* (Kos, 1940)		+	-	-	-
Genus **NEANURA** MacGillivray, 1893						
37.	*Neanura muscorum* (Templeton, 1836)		+	-	-	-
Genus **PSEUDACHORUTES** Tullberg, 1871						
38.	*Pseudachorutes dubius* Krausbauer, 1901		+	-	-	-
39.	*Pseudachorutes parvulus* Börner, 1901		+	-	-	-
Genus **PSEUDACHORUTELLA** Stach, 1949						
40.	*Pseudachorutella asigillata* (Börner, 1901)		+	-	-	-
Genus **THAUMANURA** Börner, 1932						
41.	*Thaumanura carolii* (Stach, 1920)		+	-	-	-
	ORDER ENTOMOBRYOMORPHA Börner, 1913					
	SUPERFAMILY ISOTOMOIDEA Schäffer, 1896					
	FAMILY ISOTOMIDAE Schäffer, 1896					
Genus **AGRENIA** Börner, 1906						
42.	*Agrenia bidenticulata* (Tullberg, 1877)		+	-	-	-
Genus **ANUROPHORUS** Nicolet, 1842						
43.	*Anurophorus laricis* Nicolet, 1842		+	-	-	-
Genus **DESORIA** Agassiz & Nicolet, 1841						
44.	*Desoria canadensis* (Brown, 1932)		+	-	-	-
45.	*Desoria olivacea* (Tullberg, 1871)		+	-	-	-
46.	*Desoria violacea* (Tullberg, 1871)		+	-	-	-
Genus **FOLSOMIA** Willem, 1902						
47.	*Folsomia decemoculata* Stach, 1946		+	-	-	-
48.	*Folsomia diplophthalma* (Axelson, 1902)		+	-	-	-
49.	*Folsomia inoculata* Stach, 1946		+	-	-	-
50.	*Folsomia manolachei* Bagnall, 1939		+	-	-	-
51.	*Folsomia quadrioculata* (Tullberg, 1871)		+	-	-	-
52.	*Folsomia similis* Bagnall, 1939		+	-	-	-
Genus **ISOTOMA** Bourlet, 1839						
53.	*Isotoma riparia* Nicolet, 1842		+	-	-	-
54.	*Isotoma viridis* Bourlet, 1839		+	-	-	-
Genus **ISOTOMURUS** Börner, 1903						
55.	*Isotomurus fucicolus* (Schött, 1893)		+	-	-	-
56.	*Isotomurus graminis* Fjellberg, 2007		+	-	-	-
57.	*Isotomurus nebulosus* Lek & Carapelli, 1998		+	-	-	-
Genus **ISOTOMIELLA** Bagnall, 1939						
58.	*Isotomiella minor* (Schäffer, 1896)		+	-	-	-
Genus **PARISOTOMA** Bagnall, 1940						
Table 1. Continued.

	KM	SP	OŠ	PK	
59.	Parisotoma notabilis (Schäffer, 1896)	+	+	+	-
Genus	PSEUDISOTOMA	Handschin, 1924			
60.	Pseudisotoma monochaeta (Kos, 1942)	+	+	+	-
Genus	TETRACANTHELLE	Schött, 1891			
61.	Tetracanthella transylvanica Cassagnau, 1960	-	-	+	-
Genus	VERTAGOPUS	Börner, 1906			
62.	Vertagopus arboreus (Linneus, 1758)	+	-	-	-
SUPERFAMILIY	ENTOMOBRYOIDEA	Schäffer, 1896			
FAMILIY	ENTOMOBRYIDAE	Schäffer, 1896			
Genus	ENTOMOBRYA	Rondani, 1861			
63.	Entomobrya albanica Stach, 1922	+	-	-	-
64.	Entomobrya arborea (Tullberg, 1871)	+	-	-	-
65.	Entomobrya elegans Stach, 1963	+	-	-	-
66.	Entomobrya handschini Stach, 1922	+	-	+	-
67.	Entomobrya lunuginosa (Nicolet, 1842)	-	-	+	-
68.	Entomobrya multifasciata (Tullberg, 1871)	+	-	-	-
69.	Entomobrya muscorum (Nicolet, 1842)	+	-	-	-
70.	Entomobrya nicoleti (Lubbock, 1870)	+	-	-	-
71.	Entomobrya nigriventris Stach, 1930	+	-	-	-
72.	Entomobrya nivalis (Linneus, 1758)	+	-	-	-
73.	Entomobrya quinquelineata Börner, 1901	+	-	-	-
Genus	ENTOMOBRYOIDES	Maynard, 1951			
74.	Entomobryooides sp.	+	-	-	-
Genus	COECOBRYA	Yosii, 1956			
75.	Coecobrya caeca (Schött, 1896)	+	-	-	-
Genus	LEPIDOCYRTUS	Bourlet, 1839			
76.	Lepidocyrtus curvicollis Bourlet, 1839	+	-	-	-
77.	Lepidocyrtus cyaneus Tullberg, 1871	+	+	+	-
78.	Lepidocyrtus lanuginosus (Gmelin, 1790)	-	-	+	-
79.	Lepidocyrtus violaceus (Geoffroy, 1762)	+	-	-	-
Genus	PSEUDOSINELLA	Schäffer, 1897			
80.	Pseudosinella alba (Packard, 1873)	+	-	-	-
81.	Pseudosinella duodecimocellata Handschin, 1928	+	-	-	-
Genus	PRODREPANURA	Stach, 1963			
82.	Prodrepanura musatica (Stach, 1935)	+	-	-	-
Genus	WILLOWSIA	Shoebotham, 1917			
83.	Willowsia platani (Nicolet, 1842)	+	-	-	-
FAMILIY	PARONELLIDAE	Börner, 1906			
Genus	CYPHODERUS	Nicolet, 1842			
84.	Cyphoderus bidenticulatus (Parona, 1888)	+	-	-	-
FAMILIY	ORCHESELLIDAE	Börner, 1906			
Genus	ORCHESELLA	Templeton, 1836			
85.	Orchesella balcanica Stach, 1960	+	+	+	-

Journal of Insect Biodiversity and Systematics 2022 • 8 (3)
Table 1. Continued.

Table Number	Species Name	Authors	KM	ŠP	OŠ	PK
86.	Orchesella bulba	Christiansen & Tucker, 1977	+	-	-	-
87.	Orchesella capillata	Kos, 1936	-	-	+	-
88.	Orchesella flavescens	(Bourlet, 1839)	+	-	-	-
89.	Orchesella villosa	(Geoffroy, 1764)	+	-	-	-
Genus Heteromurus	Wankel, 1860					
90.	Heteromurus major	(Moniez, 1889)	+	-	-	-
91.	Heteromurus nitidus	(Templeton, 1836)	+	-	-	-
Superfamily Tomoceroidea	Schäffer, 1896					
Familiy Tomoceridae	Schäffer, 1896					
Genus Pogonognathellus	Paclt, 1944					
92.	Pogonognathellus flavescens	(Tullberg, 1871)	-	+	+	-
93.	Pogonognathellus longicornis	(Müller, 1776)	-	+	-	-
Genus Tomocerus	Nicolet, 1842					
94.	Tomocerus minor	(Lubbock, 1862)	+	+	+	-
95.	Tomocerus vulgaris	(Tullberg, 1871)	+	-	-	-
Genus Tritomurus	Frauenfeld, 1854					
96.	Tritomurus terrestrialis	Stach, 1922	+	-	-	-
Order Neelipleona	Massoud, 1971					
Familiy Neelidae	Folsom, 1896					
Genus Neelus	Folsom, 1896					
97.	Neelus klisurensis	Kovác & Papác, 2010	-	-	-	+
Order Symphypleona	Börner, 1901					
Superfamily Katiannoidea	Börner, 1913					
Familiiy Arrhopalitidae	Stach, 1956					
Genus Arrhopalites	Börner, 1906					
98.	Arrhopalites acanthophthalmus	Gisin, 1958	+	-	-	-
Genus Pygmarrhopalites	Vargovitsh, 2009					
99.	Pygmarrhopalites principalis	(Stach, 1945)	+	-	-	-
100.	Pygmarrhopalites sericus	(Gisin, 1947)	+	-	-	-
101.	Pygmarrhopalites terricola	(Gisin, 1958)	+	+	-	-
Familiiy Katianniidae	Börner, 1913					
Genus Sminthurinus	Börner, 1901					
102.	Sminthurinus aureus	(Lubbock, 1862)	+	+	+	-
103.	Sminthurinus elegans	(Fitch, 1862)	+	-	-	-
104.	Sminthurinus niger	(Lubbock, 1862)	+	-	+	-
Superfamily Sminthuroidea	Lubbock, 1862					
Familiiy Sminthuridae	Lubbock, 1862					
Genus Allacma	Börner, 1906					
105.	Allacma fusca	(Linnaeus, 1758)	+	-	-	-
106.	Allacma gallica	(Carl, 1899)	+	-	-	-
Genus Caprainea	Dallai, 1970					
107.	Caprainea bremondi	(Delamare Deboutteville & Bassot, 1957)	+	-	-	-
108.	Caprainea marginata	(Schött, 1893)	+	+	-	-
Table 1. Continued.

Genus	SPATULOSMINTHRUS Betsch & Betsch-Pinot, 1984			
109	*Spatulosminthurus flaviceps* (Tullberg, 1871)			
	KM	ŠP	OŠ	PK
Genus	LIPOTHRIX Börner, 1906			
110	*Lipothrix lubbocki* (Tullberg, 1872)			
FAMILIY	BOURLETIELLIDAE Börner, 1913			
Genus	BOURLETIELLA Banks, 1899			
111	*Bourletiella viridescens* Stach, 1920			
Genus	DEUTEROSMINTHRUS Börner, 1901			
112	*Deuterosminthurus pallipes* (Bourlet, 1843)			
113	*Deuterosminthurus bicinctus* (Koch, 1840)			
Genus	HETEROSMINTHRUS Stach, 1955			
114	*Heterosminthurus novemlineatus* (Tullberg, 1871)			
Genus	PSEUDOBOURLETIELLA Stach, 1956			
115	*Pseudobourletiella spinata* (MacGillivray, 1893)			
SUPERFAMILIY	DICYRTOMOIDEA Börner, 1906			
FAMILIY	DICYRTOMIDAE Börner, 1906			
Genus	DICYRTOMA Bourlet, 1842			
116	*Dicrytoma fusca* Lubbock, 1873			
Genus	DICYRTOMINA Börner, 1903			
117	*Dicrytomina minuta* (Fabricius, 1783)			
118	*Dicrytomina ornata* (Nicolet, 1842)			
119	*Dicrytomina saundersi* (Lubbock, 1862)			

DISCUSSION

In conclusion, 119 species of springtails in 10 superfamilies and 16 families, and also 65 genera were recorded on the territory of the Autonomous Province of Kosovo and Metohija (Serbia). Representatives of all four recent orders of Collembola are present. The order with the most species is Entomobryomorpha with 55 species, while the order Neelipleona has only one representative - endemic cave species *Neelus klisurenis* found in the aphotic zone of the cave in Velika Klisura at the foot of Prokletije mountains. The family with the most species is Entomobryidae Schäffer, 1896 with 21 species, while the most scarce families are Poduridae, Paronellidae and Neelidae with one representative each. The family with the most genera is Isotomidae with a total of 11 genera. The genus *Entomobrya* Rondani, 1861 is the genus with the most species, with a total of 11 species. Considering that only two local surveys were conducted and that two samples were random, a total number of 119 species is significant. By comparison, the checklist of Iranian Collembola includes 232 species in a territory about 150 times larger than the territory of Kosovo and Metohija (Shayanmehr et al., 2020). In relation to neighbouring countries, the Hungarian checklist, which is 8.5 times larger in area, has 414 species (Dányi & Traser, 2008). A checklist of the springtails (Collembola) of Romania is presented with 338 species in a territory about 22 times larger than our investigated area (Fiera, 2007).

The order Neelipleona is the smallest in the number of species, so a small number of species was expected (Schneider, 2017). This correlates with most checklist of Collembola (Fiera, 2007; Dányi & Traser, 2008; Buşmachiu, 2010; Sevgili & Özata, 2014; Babenko et al., 2019; Brahim-Bounab et al., 2020; Shayanmehr et al., 2020; Abdul-Rassoul, 2021; Arbea, 2021). Some of the possible reasons why no
representative of this order was found in earlier research in Kosovo and Metohija are possible errors at the time of separation (due to the small size of these species), lack of proper identification keys, or simply the very biology of the species of this order.

The fauna of the springtails of Kosovo and Metohija has been poorly studied, although a great diversity and high endemism can be expected in this territory, especially in the unexplored caves and gorges. As was previously mentioned, ecology-related factors have a significant impact on the composition and structure of the Collembola communities (Paul et al., 2011; Rendoš et al., 2016; Pollierer & Scheu, 2017; Vincent et al., 2018; Potapov et al., 2020; Suhadi et al., 2020; Herta et al., 2021). In this regard, climate changes represent a strong selective pressure on the Collembola communities, giving a big significance to their research on this territory in the aspect of conservation biology.

There are several studies on the responses of soil arthropod communities to climate change that use Collembola as a model group (Alatalo et al., 2015; Yan et al., 2015; Daghighi et al., 2017). The successional dynamics of Collembola communities on a rubble and debris dump in Bremen, Germany were studied between 1980 and 2000 and it was turned out to be correlated with temporal shifts of species between early and late years of succession, but are also significantly influenced by soil temperature (Daghighi et al., 2017). The area of Kosovo and Metohija is contaminated by industrial landfills as a consequence of long-term exposure to heavy metal industry and other chemical industries. In this aspect, it would be interesting to observe differences among communities located in clean and polluted environments. By monitoring changes in the composition and structure of springtails communities, we can monitor the recovery of rehabilitated landfills as well. Research in the northern part of the province has shown specifics in terms of distribution, community composition and abundance of certain species in relation to sources of pollution (Jakšić, 2013).

Finally, the Balkan Peninsula lying at the crossroads of Europe and Asia are also renowned as a focus of Pleistocene glacial refugia (Griffiths et al., 2004). The area of Kosovo and Metohija is located in the central part of the Balkan Peninsula, which is one of the world’s centers of biodiversity, as well as the former refugee, due to socio-political situations has not received the proper attention. This review can be a starting point and impetus for future studies on the Collembola fauna of Kosovo and Metohija province.

FUNDING
This research received no specific grant from any funding agencies.

AVAILABILITY OF DATA AND MATERIAL
Not applicable.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE
Not applicable.

CONSENT FOR PUBLICATION
Not applicable.

CONFLICT OF INTERESTS
The authors declare that there is no conflict of interest regarding the publication of this paper.

ACKNOWLEDGMENTS
The author would like to thank Dr. Elaheh Daghighi Masouleh for her support and constructive advice during the writing of this paper.
REFERENCES
Abbas, M.J. & Parwez, H. (2020) Effect of habitat quality, microclimatic conditions and waste water contamination on diversity and distribution of collembola community. *Asian Journal of Scientific Research*, 4 (3), 35–43. https://doi.org/10.1101/668749

Abdal-Rassoul, M.S. (2021) Checklist of springtails (Class, Collembola) from Iraq. *Bulletin of the Iraq Natural History Museum*, 39, 1–23. https://doi.org/10.26842/inhm.p.2021.39.0023

Abel, K. & Larink, O. (1994) Different effects of the insecticide Dursban (Chlorpyrifos) on various collembolan species. *Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie*, 9, 147–152.

Alatalo, J.M., Jägerbrand, A.K. & Čuchta, P. (2015) Collembola at three alpine subarctic sites resistant to twenty years of experimental warming. *Scientific Reports*, 5 (1), 1–8. https://doi.org/10.1038/srep18161

Arbea, J.I. (2021) Checklist de Fauna Ibérica. Clase Collembola Lubbock, 1870 (Hexapoda) en la península ibérica, islas Baleares y Macaronesia (edición 2021). In: Ramos, M.A. & Sánchez Ruiz, M. (eds.) *Documentos Fauna Ibérica*. Vol. 16. Museo Nacional de Ciencias Naturales, CSIC, Madrid, pp. 1–2 (sn) + 1–41.

Babenko, A., Stebaeva, S. & Turnbull, M.S. (2019) An updated checklist of Canadian and Alaskan Collembola. *Zootaxa*, 4592, 001–125. https://doi.org/10.11646/zootaxa.4592.1.1

Bhagawati, S., Bhattacharyya, B., Medhi, B.K., Bhattacharjee, S. & Mishra, H. (2021) Diversity of soil dwelling Collembola in a forest, vegetable and tea ecosystems of Assam, India. *Sustainability*, 13, 12628. https://doi.org/10.3390/su132212628

Bonfanti, J., Hedde, M., Cortet, J., Krogh, P.H., Larsen, K.S. & Holmstrup, M. (2022) Communities of Collembola show functional resilience in a long-term field experiment simulating climate change. *Pedobiologia*, 90. https://doi.org/10.1016/j.pedobi.2022.150789

Brahim-Bounab, H., Bendjaballah, M., Hamra-Kroua, S., Lachi, N., Bedos, A. & Deharveng, L. (2020) Checklist of the springtails (Hexapoda: Collembola) of the Edough massif, northeastern Algeria. *Zootaxa*, 4853 (1), 51–78. https://doi.org/10.11646/zootaxa.4853.1.3

Brajković, M. (2004) *Zoologija Invertebrata II*. Institute for Textbook Publishing and Teaching Aids, Belgrade. 497 p.

Buşmachiu, G. (2010) Checklist of springtails (Collembola) from the Republic of Moldova. *Travaux Du Muséum National d’Histoire Naturelle “Grigore Antipa”*, 53 (1), 149–160. https://doi.org/10.2478/v10191-010-0011-x

Chernova, N.M. & Kuznetsova, N.A. (2000) Collembolan community organization and its temporal predictability. *Pedobiologia*, 44 (3–4), 451–466. https://doi.org/10.1078/s0031-4056(02)00038-5

Chernova, N.M., Balabina, I.P., Ponomareva, O.N. (1995) Changes in population growth of springtail (Collembola) under the influence of herbicides. *Polskie Pismo entomologiczne*, 64, 91–98.

Cole, L.J., McCracken, D.I., Foster, G.N. & Aitken, M.N. (2001) Using Collembola to assess the risks of applying metal-rich sewage sludge to agricultural land in western Scotland. *Agriculture, Ecosystems & Environment*, 83 (1–2), 177–189. https://doi.org/10.1016/S0167-8809(00)00172-9

Čurčić, B.P. & Lučić, L.R. (1997) *Onychiurus (Protaphorura) zloti*, a new endemic species of springtails (Onychiuridae, Collembola) from East Serbia, Yugoslavia. *Archives of Biological Sciences*, 49 (3–4), 35–36.

Daghighi, E. & Hajizadeh, J. (2019) Symphypleon springtails (Collembola: Symphypleona) from Iran with a checklist and a key to the symphypleonan springtails of Iran and redescriptions of one new species record for Iran Collembola fauna. *Entomofauna*, 40 (2), 475–486.

Daghighi, E., Koechler, H., Kesel, R. & Filser, J. (2017) Long-term succession of Collembola communities in relation to climate change and vegetation. *Pedobiologia*, 64, 25–38. https://doi.org/10.1016/j.pedobi.2017.06.001

Daly, H., Doyen, J. & Purcell, A. (1998) *Introduction to Insect Biology and Diversity* (2nd ed.). Oxford University Press, New York. 680 p.

Dányi, L. & Traser, G. (2008) An annotated checklist of the springtail fauna of Hungary (Hexapoda: Collembola). *Opuscula Zoologica Budapest*, 38, 3–82.

Fiera, C. (2007) Checklist of Romanian springtails (Collembola). *Folia Entomologica Hungarica*, 68, 5–40.

Filser, J., Fromm, H., Nagel, R.F. & Winter, K. (1995) Effects of previous intensive agricultural management on microorganisms and the biodiversity of soil fauna. *Plant Soil*, 170 (1), 123–129. https://doi.org/10.1007/BF02183060
Frampton, G.K. (1997) The potential of Collembola as indicators of pesticide usage: evidence and methods from the UK arable ecosystem. *Pedobiologia*, 41, 179–184.

Griffiths, H.I., Kryštufek, B., Reed, J.M. [Eds] (2004) *Balkan Biodiversity: Pattern and Process in the European Hotspot*. Kluwer Academic Publishers, Dordrecht/Boston/London. 358 p. https://doi.org/10.1007/978-1-4020-2854-0

Harta, I., Simon, B., Vinogradov, S. & Winkler, D. (2021) Collembola communities and soil conditions in forest plantations established in an intensively managed agricultural area. *Journal of Forestry Research*, 32, 1819–1832. https://doi.org/10.1007/s11676-020-01238-z

Hopkin, S. (1997) *Biology of the Springtails (Insecta: Collembola)*. Oxford University Press, Oxford. 344 p.

Hopkin, S. (1998) *Collembola: The most abundant insects on earth.* *Antenna*, 22 (3), 117–121.

Ivanović, R., Valjarević, A., Vukočić, D. & Radovanović, D. (2016) Climatic regions of Kosovo and Metohija. *University Thought - Publication in Natural Sciences*, 6 (1), 49–54. https://doi.org/10.5937/univtho6-10409

Jakšić, P. & Belij, S. (1995) *Bibliografija o prirodi Kosova i Metohije*. [The Bibliography of the Nature of Kosovo and Metohija]. University of Pristina, Priština. 340 p. (in Serbian)

Jakšić, T. (2013) *Bioindikacija zagadenosti zemljišta teškim metalima u regionu Kosovske Mitrovice* (Unpublished PhD thesis), University of Pristina, Kosovska Mitrovica, Republic of Serbia. 119 p. (in Serbian)

Jaksčić, T., Živić, N., Vasić, P., Papović, O., Milošević, S., Stanojević, M. & Grujić, N. (2018) Puddle benthofauna in the site of remediated urban landfill in Kosovska Mitrovica. In: Djukić, A. (ed.) *Proceedings of The 47th Annual Conference of the Serbian Water Pollution Control Society WATER 2018* (12–14 June 2018, Sokobanja, Serbia), Sokobanja, 97–104. (in Serbian and English)

Joimel, S., Schwartz, C., Bonfanti, J., Hedde, M., Krogh, P.H., Perin, C., Rakoto, A., Salmon, S., Santoruf, L. & Cortet, J. (2021) Functional and taxonomic diversity of Collembola as complementary tools to assess land use effects on soils biodiversity. *Frontiers in Ecology and Evolution*, 9, 630919. https://doi.org/10.3389/fevo.2021.630919

Jucevica, E. & Melecis, V. (2006) Global warming affect Collembola community: A long-term study. *Pedobiologia*, 50 (2), 177–184. https://doi.org/10.1016/j.pedobi.2005.10.006

Koledin, D. & Bogoević, J. (1976) Rezultati dosadasnijih istrativanja faune Collembola u SR Srbiji. *Archives of Biological Sciences*, 28 (1–2), 79–94.

Kováč, L. & Papáč, V. (2010) Revision of the genus *Neelus* Folsom, 1896 (Collembola, Neelida) with the description of two new troglobiotic species from Europe. *Zootaxa*, 2663 (1), 36–52. https://doi.org/10.11646/zootaxa.2663.1.2

Kuznetsova, N.A. & Potapov, M.B. (1997) Changes in structure of communities of soil springtails (Hexapoda: Collembola) under industrial pollution of the South Taiga Bilberry pine forests. *Russian Journal of Ecology*, 28 (6), 386–392.

Lučić, L.R. (2006) Diversity of springtails (Collembola, Insecta) in the Obedska Bara special nature reserve. *Archives of Biological Sciences*, 58 (3), 21–22. https://doi.org/10.2298/ABS0603001L

Moldenke, A.R. & Thies, W.G. (1996) Effect on soil arthropods 1 year after application of chloropicrin to control laminated root rot. III Treatment effects on non-target soil invertebrates. *Canadian Journal of Forest Research*, 26 (1), 120–127. https://doi.org/10.1139/x96-013

Nüss, D. (1994) Outdoor experiments with monitor-systems: effects of acid rain, liming and heavy metals on decomposition and Collembola. *Zeologische Beiträge*, 35, 121–183.

Paul, D., Nongmaithem, A. & Jha, L. (2011) Collembolan Density and Diversity in a Forest and an Agroecosystem. *Open Journal of Soil Science*, 1 (2), 54–60. https://doi.org/10.4236/ojss.2011.12008

Pollierer, M.M. & Scheu, S. (2017) Driving factors and temporal fluctuation of Collembola communities and reproductive mode across forest types and regions. *Ecology and Evolution*, 7 (12), 4390–4403. https://doi.org/10.1002/ece3.3055

Porco, D., Skarżyński, D., Decaëns, T., Hebert, P.D.N. & Deharveng, L. (2013) Barcoding the Collembola of Churchill: a molecular taxonomic reassessment of species diversity in a sub-Arctic area. *Molecular Ecology Resources*, 14 (2), 249–261. https://doi.org/10.1111/1755-0998.12172

Potapov, A., Bellini, B., Chown, S., Deharveng, L., Janssens, F., Kováč, L., Kuznetsova, N., Ponge, J.-F., Potapov, M., Querner, P., Russell, D., Sun, X., Zhang, F. & Berg, M. (2020) Towards a global synthesis of Collembola knowledge - challenges and potential solutions. *Soil Organisms*, 92 (3), 161–188. https://doi.org/10.25674/so92iss3pp161
Radović, I. & Ćetković, A. (2001) Diverzitet faune insekata Jugoslavije. In: Lakušić, D. (ed.) Biodiverzitet i novi milenijum. Mala ekološka biblioteka 5. Držuško ekologa Srbije & Zavod za zaštitu prirode Srbije, Belgrade, pp. 59–78. (in Serbian)

Rebecchi, L., Sabatini, M.A., Cappi, C., Grazioso, D., Vicari, A., Dinelli, G. & Bertdani R. (2000) Effects of a sulfonylurea herbicide on soil microarthropods. *Biology and Fertility of Soils*, 30 (4), 312–317. https://doi.org/10.1007/s003740050009

Rendoš, M., Raschmanová, N., Kováč, L., Miklísová, D., Mock, A. & Luptáčik, P. (2016) Organic carbon content and temperature as substantial factors affecting diversity and vertical distribution of Collembola on forested scree slopes. *European Journal of Soil Biology*, 75, 180–187. https://doi.org/10.1016/j.ejsoibi.2016.06.001

Rusek, J. (1998) Biodiversity of Collembola and their functional role in the ecosystem. *Biodiversity and Conservation*, 7, 1207–1219. https://doi.org/10.1023/a:1008887817883

Salminen, J. & Haimi, J. (1996) Effects of pentachlorophenol in forest soil: A microcosm experiment for testing ecosystem responses to anthropogenic stress. *Biology and Fertility of Soils*, 23 (2), 182–188. https://doi.org/10.1007/bf00336061

Sevgili, H. & Özata, M.A. (2014) Checklist of the springtails (Hexapoda: Collembola) of Turkey. *Zoology in the Middle East*, 60 (2), 162–168. https://doi.org/10.1080/09397140.2014.914730

Shayanmehr, M., Yoosofe Lafooraki, E. & Kahrarian, M. (2020) A new updated checklist of Iranian Collembola (Arthropoda: Hexapoda). *Journal of Entomological Society of Iran*, 39 (4), 403–445. https://doi.org/10.22117/jesi.2019.124366.1285

Suhadi, P., Dharmawan, A., Nafiah, K., Akhasani, F. & Yulianiita, A. (2020) Comparative study of Collembola community on post fire land, transitional land, and control land in Teakforest Baluran National Park Situbondo. *AIP Conference Proceedings*, 2231, 040058. https://doi.org/10.1063/5.0002694

Vincent, Q., Leyval, C., Beguiri-stain, T. & Auclerc, A. (2018) Functional structure and composition of Collembola and soil macrofauna communities depend on abiotic parameters in derelict soils. *Applied Soil Ecology*, 130, 259–270. https://doi.org/10.1016/j.apsoil.2018.07.002

Xu, G.L., Kuster, T.M., Günthardt-Goerg, M.S., Dobbertin, M. & Li, M.H. (2012) Seasonal exposure to drought and air warming affects soil collembola and mites. *PLOS One*, 7 (8), e43102. https://doi.org/10.1371/journal.pone.0043102

Yahyapour, E., Shayanmehr, M., Miri, B. & Vafaie Shoushtari, R. (2022) A study on the relative abundance and biodiversity indicators of Springtails (Hexapoda: Collembola) in two ecosystems in Mazandaran province (Iran). *Journal of Insect Biodiversity and Systematics*, 8 (1), 131–144. https://doi.org/10.52547/jibs.8.1.131

Yan, X., Ni, Z., Chang, L., Wang, K. & Wu, D. (2015) Soil Warming Elevates the Abundance of Collembola in the Songnen Plain of China. *Sustainability*, 7 (2), 1161–1171. https://doi.org/10.3390/su7021161

Yin, R., Gruss, I., Eisenhauer, N., Kardol, P., Thakur, M.P., Schmidt, A., Xu, Z., Siebert, J., Zhang, C., Wu, G.-L. & Schädler, M. (2019) Land use modulates the effects of climate change on density but not community composition of collembola. *Soil Biology and Biochemistry*, 138 (107), 598. https://doi.org/10.1016/j.soilbio.2019.107598

Zhang, F., Sun, D-D., Yu, D-Y. & Wang, B-X. (2015) Molecular phylogeny supports S-chaetae as a key character better than jumping organs and body scales in classification of Entomobryoidea (Collembola). *Scientific Reports*, 5, 12471. https://doi.org/10.1038/srep12471
چکالیست گونه‌های دمنفری‌ها (Hexapoda, Collembola) از استان‌های کوزوو و متوهیا، جمهوری صربستان

نانکلا زد گرویج

گروه زیست‌شناسی و اکولوژی، دانشکده علوم، دانشگاه شهر نووی ساد، صربستان

* پست الکترونیک نویسنده مسئول مکاتبه: grujic.n@outlook.com

ا.ت.ر.پ.ک: ۱۰ خرداد ۱۴۰۱ | تاریخ پذیرش: ۱ مرداد ۱۴۰۱ | تاریخ انتشار: ۲۲ مرداد ۱۴۰۱

چکیده: هنوز راه زیادی تا تکمیل اطلاعات مربوط به تنوع دمنفری‌ها، به‌ویژه در کشور صربستان باقی مانده است. این مقاله به جمع‌بندی اطلاعات کل گونه‌های شناسایی شده دمنفری‌ها در نواحی دو استان کوزوو و متوهیا می‌پردازد. فهرست تیپه شده شامل نام ۱۱۹ گونه از دمنفری‌ها متعلق به ۴۵ جنس شامل ۱۶ خانواده و ۴ راسته است. بنا برای این است که از نظر Entomobryomorpha راسته این گروه گونه‌هایی در این فهرست وجود دارد. راسته بزرگ‌ترین گروه و شامل ۵۵ گونه است. در حالی که از نظر Neelipleona گزارش شده است. این گونه Neelus klisurensis Kovác et Papác, ۲۰۱۰ و دارای ۲۱ گونه در خانواده Entomobryidae دارای بیشترین تعداد گونه می‌باشد. در حالی که در خانواده Neelidae و Paronellidae Poduridae، این مناطق هستند. خانواده Isotomidae بین جنس‌های مختلف بیشترین تعداد گونه (۱۱) در جنس Entomobrya Rondani می‌باشد. در قرار Entomobrya Rondani بین جنس‌های مختلف بیشترین تعداد گونه (۱۱) در جنس دارند. گونه دمنفری‌های کوزوو و متوهیا به خویی بررسی نشده، با این حال انتظار می‌رود سطح بالایی از تنوع گونه‌ای و گونه‌های دیپلیو به‌ویژه در غار و در پارسی نشده یافت شود. مطالعه دمنفری‌ها از جنس‌های مختلف دارتی‌های اهمیت است. در این تحقیق سعی شده تا اطلاعات مربوط به فون شناخته شده کوزوو و متوهیا به اندازه نهایی شروعی برای تحقیقات بعدی را روز دمنفری‌های این منطقه گردآوری شوند.

واژگان کلیدی: چکالیست، دمنفری‌ها، گونه، تنوع، صربستان.