NONDEGENERACY OF THE ENTIRE SOLUTION FOR THE N-LAPLACE LIOUVILLE EQUATION

FUTOSHI TAKAHASHI

Abstract. In this note, we prove the nondegeneracy of the explicit finite-mass solution to the N-Laplace Liouville equation on the whole space, which is recently shown to be unique up to scaling and translation.

1. Introduction

Let $N \geq 2$ be an integer. In this note, we concern the following quasi-linear Liouville equation:

$$
\begin{cases}
-\Delta_N U = e^U & \text{in } \mathbb{R}^N, \\
\int_{\mathbb{R}^N} e^U\,dx < \infty,
\end{cases}
$$

(1.1)

here $\Delta_N U = \text{div}(\nabla |\nabla U|^{N-2} \nabla U)$ denotes the N-Laplacian of a function U. Problem (1.1) has the explicit solution (Liouville bubble)

$$
U(x) = \log \frac{C_N}{\left(1 + |x|^{N-1}\right)^{N}}, \quad x \in \mathbb{R}^N,
$$

(1.2)

where $C_N = N \left(\frac{N^2}{N-1}\right)^{N-1}$. Thanks to the scaling and translation invariance of the problem, the functions

$$
U_{\lambda,a}(x) = U(\lambda(x - a)) + N \log \lambda, \quad \lambda > 0, \, a \in \mathbb{R}^N
$$

(1.3)

constitute a $(N + 1)$-dimensional family of solutions to (1.1) with

$$
\int_{\mathbb{R}^N} e^{U_{\lambda,a}}\,dx = \left(\frac{\omega_{N-1}}{N}\right)C_N,
$$

where ω_{N-1} denotes the area of the unit sphere S^{N-1} in \mathbb{R}^N. Indeed, all the solutions of (1.1) are of the form (1.3). This fact is first proven by Chen and Li [2] when $N = 2$ by the method of moving planes. Recently, P. Esposito [4] proves the same classification result for (1.1) when $N \geq 3$. His method exploits a weighted Sobolev estimates at infinity for any solution to (1.1),

Date: November 4, 2022.

2010 Mathematics Subject Classification. Primary 35J60; Secondary 35J20, 35B08.

Key words and phrases. Liouville equation, nondegeneracy, N-Laplacian.
an isoperimetric argument, and the Pohozaev identity, and does not use the moving plane arguments.

We are interested in the linear nondegeneracy of the explicit solution U in (1.2). Thus we consider the linearized operator around U:

$$L(\phi) = \frac{d}{dt} \bigg|_{t=0} N(U + t\phi)$$

where $N(U + t\phi) = \Delta_N(U + t\phi) + e^{U+t\phi}$ for $t \in \mathbb{R}$ and a function ϕ. Then we compute directly that

$$L(\phi) = \text{div}(|\nabla U|^N - 2 \nabla U \cdot \nabla \phi) + e^{U+t\phi}$$

(1.4)

here and henceforth, “·” denotes the standard inner product in \mathbb{R}^N. Since $U_{\lambda,a}$ in (1.3) solves the equation

$$\Delta_N U_{\lambda,a} + e^{U_{\lambda,a}} = 0 \quad \text{in} \quad \mathbb{R}^N,$$

by differentiating the above equation with respect to the parameters λ and a_1, \ldots, a_N at $\lambda = 1$ and $a = 0$, we obtain the bounded solutions

$$Z_0(x) = \frac{d}{d\lambda} \bigg|_{\lambda=1, a=0} U_{\lambda,a} = x \cdot \nabla U + N,$$

(1.5)

$$Z_i(x) = \frac{d}{da_i} \bigg|_{\lambda=1, a=0} U_{\lambda,a} = \frac{\partial U}{\partial x_i}, \quad (i = 1, \ldots, N)$$

(1.6)

to the linearized equation $L(\phi) = 0$.

The aim of this note is to prove the following nondegeneracy of U:

Theorem 1. Let U be as in (1.2) and let ϕ be a solution in $L^\infty \cap C^2(\mathbb{R}^N)$ to the linearized equation $L(\phi) = 0$, here L is as in (1.4). Then ϕ can be written as a linear combination of Z_0, Z_1, \ldots, Z_N defined by (1.5), (1.6).

The above theorem was known already when $N = 2$, see [1], [3]. In this note, we extend the result to $N \geq 3$.

Our proof is similar to that of [6], in which the authors study the critical p-Laplace equation

$$-\Delta_p U = U^{p^*-1} \quad \text{in} \quad \mathbb{R}^N, \quad U > 0,$$

where $p^* = \frac{Np}{N-p}$, $1 < p < N$, is the critical Sobolev exponent. They prove the linear nondegeneracy of the explicit entire solution (Aubin-Talenti bubble)

$$U(x) = \left(\frac{\alpha_{N,p}}{1 + |x|^{N-p}}\right)^{\frac{N-p}{p-1}}$$

where $\alpha_{p,N} = N^\frac{1}{p} \left(\frac{N-p}{p-1}\right)^{\frac{p-1}{p}}$, extending the former result by Rey [5] for $p = 2$.
2. Proof of Theorem 1

In this section, we prove Theorem 1. We follow the method by [6]. See also [1], [3].

First, we prove the next proposition:

Proposition 1. Let L be as in (1.4). Then $\phi \in C^2(\mathbb{R}^N)$ solves $L(\phi) = 0$ if and only if ϕ is a solution to

$$
|x|^2 \Delta \phi + N(N - 2) \left(\frac{x \cdot \nabla \phi}{1 + |x|^\frac{N-2}{N}} + (N - 2) \sum_{i,j=1}^{N} \frac{\partial^2 \phi}{\partial x_i \partial x_j} x_i x_j \right) \tag{2.1}
$$

$$
+ \left(\frac{N^3}{N - 1} \right) \left(\frac{|x|^\frac{N}{N-1}}{1 + |x|^\frac{N}{N-1}} \right)^2 = 0.
$$

Proof. We rewrite the equation $L(\phi) = 0$ as

$$
L(\phi) = \text{div}(\nabla U^{N-2} \nabla \phi) + (N - 2) \text{div}(\nabla U^{N-4} (\nabla U \cdot \nabla \phi) \nabla U) + e^U \phi
$$

$$
= |\nabla U|^{N-2} \Delta \phi
$$

$$
+ \nabla (|\nabla U|^{N-2}) \cdot \nabla \phi
$$

$$
+ (N - 2) |\nabla U|^{N-4} (\nabla U \cdot \nabla \phi) \Delta U
$$

$$
+ (N - 2) (\nabla U \cdot \nabla \phi) \nabla (|\nabla U|^{N-4}) \cdot \nabla U
$$

$$
+ (N - 2) |\nabla U|^{N-4} (\nabla (\frac{1}{2} |\nabla U|^2) \cdot \nabla \phi
$$

$$
+ (N - 2) |\nabla U|^{N-4} (D^2 \phi)(\nabla U, \nabla U)
$$

$$
+ e^U \phi
$$

$$
= A + B + C + D + E + F + G = 0,
$$

where we have used

$$
\nabla (\nabla U \cdot \nabla \phi) \cdot \nabla \phi = \nabla (\frac{1}{2} |\nabla U|^2) \cdot \nabla \phi + D^2 \phi(\nabla U, \nabla U)
$$

with the notation that $(D^2 \phi)(\nabla U, \nabla U) = \sum_{i,j=1}^{N} \frac{\partial^2 \phi}{\partial x_i \partial x_j} \frac{\partial U}{\partial x_i} \frac{\partial U}{\partial x_j}$.

Now, we compute that

$$
\nabla U = - \left(\frac{N^2}{N - 1} \right) \frac{|x|^\frac{N-2}{N}}{1 + |x|^\frac{N-2}{N}} \frac{x}{|x|},
$$

$$
|\nabla U|^k = \left(\frac{N^2}{N - 1} \right)^k \frac{|x|^\frac{N-2}{N}}{(1 + |x|^\frac{N}{N-1})^k}, \quad (k \in \mathbb{Z})
$$

$$
\nabla (|\nabla U|^k) = \left(\frac{N^2}{N - 1} \right)^k \left(\frac{k}{N - 1} \right) \frac{|x|^\frac{N-2}{N} - 1}{(1 + |x|^\frac{N}{N-1})^{k+1}} \left(1 + (1 - N)|x|^\frac{N}{N-1} \right)^{-1} \frac{x}{|x|}, \quad (k \in \mathbb{Z}).
$$
Thus we have
\[\nabla U \cdot \nabla \phi = -\left(\frac{N^2}{N - 1} \right) \frac{|x|^\frac{N-4}{N-2}}{1 + |x|^\frac{N}{N-2}} (x \cdot \nabla \phi), \]
\[\nabla \left(|\nabla U|^N \right) \cdot \nabla U = -\left(\frac{N^2}{N - 1} \right)^{N-3} \left(\frac{N - 4}{N - 1} \right) \frac{|x|^\frac{N^2}{N-2}}{(1 + |x|^\frac{N}{N-2})^{N-2}} \left\{ 1 + (1 - N)|x|^\frac{N}{N-2} \right\}, \]
\[(D^2 \phi)(\nabla U, \nabla U) = \left(\frac{N^2}{N - 1} \right)^2 \frac{|x|^\frac{N}{N-2}}{(1 + |x|^\frac{N}{N-2})^2} \sum_{i,j=1}^N \frac{\partial^2 \phi}{\partial x_i \partial x_j} x_i x_j. \]

Also we see
\[\Delta U = -\left(\frac{N^2}{N - 1} \right) \frac{|x|^\frac{N-4}{N-2}}{(1 + |x|^\frac{N}{N-2})^2} \left\{ \left(N - 1 + \frac{1}{N - 1} \right) + (N - 2)|x|^\frac{N}{N-2} \right\}. \]

From these, we obtain
where
\[A = |\nabla U|^N \Delta \phi = \left(\frac{N^2}{N - 1} \right)^N \frac{|x|^\frac{N}{N-2}}{(1 + |x|^\frac{N}{N-2})^N} \Delta \phi, \]
\[B = \nabla (|\nabla U|^N) \cdot \nabla \phi \]
\[= \left(\frac{N^2}{N - 1} \right)^{N-2} \left(\frac{N - 2}{N - 1} \right) \frac{|x|^\frac{N}{N-2}}{(1 + |x|^\frac{N}{N-2})^{N-2}} \left\{ 1 + (1 - N)|x|^\frac{N}{N-2} \right\} (x \cdot \nabla \phi), \]
\[C = (N - 2)|\nabla U|^N (\nabla U \cdot \nabla \phi) \Delta U \]
\[= (N - 2) \left(\frac{N^2}{N - 1} \right)^{N-2} \frac{|x|^\frac{N}{N-2}}{(1 + |x|^\frac{N}{N-2})^{N-1}} \left\{ \left(N - 1 + \frac{1}{N - 1} \right) + (N - 2)|x|^\frac{N}{N-2} \right\} (x \cdot \nabla \phi), \]
\[D = (N - 2)(\nabla U \cdot \nabla \phi) \nabla (|\nabla U|^N) \cdot \nabla U \]
\[= (N - 2) \left(\frac{N^2}{N - 1} \right)^{N-2} \left(\frac{N - 4}{N - 1} \right) \frac{|x|^\frac{N}{N-2}}{(1 + |x|^\frac{N}{N-2})^{N-1}} \left\{ 1 + (1 - N)|x|^\frac{N}{N-2} \right\} (x \cdot \nabla \phi), \]
\[E = (N - 2)|\nabla U|^N \nabla \left(\frac{1}{2} |\nabla U|^2 \right) \cdot \nabla \phi \]
\[= \left(\frac{N^2}{N - 1} \right)^{N-2} \left(\frac{N - 2}{N - 1} \right) \frac{|x|^\frac{N}{N-2}}{(1 + |x|^\frac{N}{N-2})^{N-1}} \left\{ 1 + (1 - N)|x|^\frac{N}{N-2} \right\} (x \cdot \nabla \phi), \]
\[F = (N - 2)|\nabla U|^N (D^2 \phi)(\nabla U, \nabla U) \]
\[= (N - 2) \left(\frac{N^2}{N - 1} \right)^{N-2} \frac{|x|^\frac{N}{N-2}}{(1 + |x|^\frac{N}{N-2})^{N-2}} \sum_{i,j=1}^N \frac{\partial^2 \phi}{\partial x_i \partial x_j} x_i x_j, \]
\[G = e^U \phi = \frac{C_N}{(1 + |x|^\frac{N}{N-2})^N} \phi. \]
Returning to the equation $L(\phi) = 0$ with these expressions and after some manipulations, we obtain that $L(\phi) = 0$ is equivalent to that ϕ satisfies (2.1).

□

Proof of Theorem 1.

As in [1], [3], and [6], we decompose a solution ϕ to (2.1) by using spherical harmonics. Let us denote $x = r\omega$, $r = |x|$, $\omega = \frac{x}{|x|} \in S^{N-1}$ for a point $x \in \mathbb{R}^N$. We write

$$
\phi(x) = \phi(r, \omega) = \sum_{k=0}^{\infty} \psi_k(r) Y_k(\omega), \quad \psi_k(r) = \int_{S^{N-1}} \phi(r, \omega) Y_k(\omega) dS_{\omega}, \quad (2.2)
$$

where $Y_k(\omega)$ denote the k-th spherical harmonics, that is, the k-th eigenfunctions for the Laplace-Beltrami operator $\Delta_{S^{N-1}}$ on S^{N-1} associated with the k-th eigenvalue λ_k:

$$-\Delta_{S^{N-1}} Y_k = \lambda_k Y_k \quad \text{on } S^{N-1}
$$

where

$$\lambda_k = k(k + N - 2), \quad k = 0, 1, 2, \ldots,
$$

denotes the k-th eigenvalue. It is known that the multiplicity of λ_k is $\frac{(2k+N-2)(N+k-3)!}{k!(N-2)!}$, especially, $\lambda_0 = 0$ has the multiplicity 1 and $\lambda_1 = N - 1$ has the multiplicity N.

We derive the equation satisfied by ψ_k for $k = 0, 1, 2, \ldots$. Let ∇_ω denote the spherical gradient operator on S^{N-1}. Since the decomposition of the gradient operator

$$\nabla = \omega \frac{\partial}{\partial r} + \frac{1}{r} \nabla_\omega, \quad \omega \cdot \nabla_\omega \equiv 0
$$

holds, for a function ϕ of the form $\phi(x) = \psi(r) Y(\omega)$, we have

$$x \cdot \nabla \phi = x \cdot \nabla (\psi(r) Y(\omega)) = r \psi'(r) Y(\omega),
$$

$$\sum_{i,j=1}^{N} \frac{\partial^2 \phi}{\partial x_i \partial x_j} x_i x_j = \sum_{i,j=1}^{N} \frac{\partial^2 (\psi(r) Y(\omega))}{\partial x_i \partial x_j} x_i x_j = r^2 \psi''(r) Y(\omega).
$$

Also recall the formula

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{N - 1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \Delta_{S^{N-1}}.$$

Thus we have, for ϕ of the form $\phi(x) = \psi(r)Y(\omega)$, the equation \((2.1)\) becomes
\[
\begin{aligned}
&\quad \quad \quad r^2 \left(\psi''(r) + \frac{N - 1}{r} \psi'(r) \right) Y(\omega) + \psi(r) \Delta S_{N - 1} Y(\omega) \\
&\quad + N(N - 2) \frac{r \psi'(r) Y(\omega)}{1 + r^{\frac{N}{N - 1}}} + (N - 2) r^2 \psi''(r) Y(\omega) + \left(\frac{N^3}{N - 1} \right) \frac{r^{\frac{N}{N - 1}}}{\left(1 + r^{\frac{N}{N - 1}} \right)^2} \psi(r) Y(\omega) = 0.
\end{aligned}
\]
Thus inserting \((2.2)\) into \((2.1)\), we see that each ψ_k must be a solution to
\[
L_k(\psi) := \psi''(r) + \left(1 + \frac{N(N - 2)}{N - 1} \frac{1}{1 + r^{\frac{N}{N - 1}}} \right) \frac{\psi'(r)}{r} - \frac{\lambda_k}{N - 1} r^{\frac{N}{N - 1}} \psi(r) + \frac{N^3}{(N - 1)^2} \frac{r^{\frac{N}{N - 1}}}{\left(1 + r^{\frac{N}{N - 1}} \right)^2} \psi(r) = 0.
\]
Also note that, by using the expression $U(r) = \log \frac{C_{\phi}}{x^{\frac{N}{N - 1}}}$, we see that the equation
\[
L(\phi) = \text{div}(|\nabla U|^{N - 2} \nabla \phi) + (N - 2) \text{div}(|\nabla U|^{N - 4} (\nabla U \cdot \nabla \phi) \nabla U) + e^U \phi = 0
\]
for $\phi(x) = \psi(r)Y(\omega)$ is equivalent to that ψ satisfies
\[
\left\{ r^{N - 1} \psi'(r)|U'(r)|^{N - 2} \right\} - \lambda_k r^{N - 3} \left(\frac{1}{N - 1} \right) |U'(r)|^{N - 2} \psi(r) + \frac{e^{U(r)}}{N - 1} r^{N - 1} \psi(r) = 0.
\]
In the following, we treat the equation $L_k(\psi) = 0$ in \((2.3)\) for $k = 0, k = 1$, and $k \geq 2$ separately.

The case $k = 0$.

By the invariance under the scaling, we know that $Z_0(x)$ defined in \((1.5)\) satisfies \((2.1)\). Since
\[
Z_0(x) = x \cdot \nabla U(x) + N = \left(\frac{N}{N - 1} \right) \frac{(N - 1) - |x|^{\frac{N}{N - 1}}}{1 + |x|^{\frac{N}{N - 1}}},
\]
we see that
\[
\psi_0(r) = \frac{(N - 1) - r^{\frac{N}{N - 1}}}{1 + r^{\frac{N}{N - 1}}}
\]
is a solution of $L_0(\psi) = 0$, which is bounded on $[0, +\infty)$. We claim that any other bounded solution of $L_0(\psi) = 0$ must be a constant multiple of ψ_0. Indeed, assume the contrary that there existed the second
linearly independent, bounded solution \(\psi \) satisfying \(L_0(\psi) = 0 \). We may always assume that \(\psi \) is of the form

\[
\psi(r) = c(r)\psi_0(r)
\]

for some \(c = c(r) \). Inserting this into (2.3) and noting \(\lambda_0 = 0 \), we obtain

\[
c''(r)\psi_0(r) + c'(r)\left[2\psi_0'(r) + \frac{\psi_0(r)}{r}\left(1 + \frac{N(N-2)}{N-1} \frac{1}{1 + \frac{N}{N-1} r}\right)\right]
+ c \left[\psi''_0(r) + \left(1 + \frac{N(N-2)}{N-1} \frac{1}{1 + \frac{N}{N-1} r}\right) \frac{\psi'_0(r)}{r} + \frac{N^3}{(N-1)^2} \frac{r^{\frac{N}{N-1}}}{1 + \frac{N}{N-1} r^2} \psi_0(r)\right] = 0,
\]

which leads to

\[
\frac{c''(r)}{c'(r)} = -2\frac{\psi_0'(r)}{\psi_0(r)} - \frac{1}{r}\left(1 + \frac{N(N-2)}{N-1} \frac{1}{1 + \frac{N}{N-1} r}\right).
\]

This can be written as

\[
(\log |c'(r)|)' = -2(\log |\psi_0(r)|)' - \left(1 + \frac{N(N-2)}{N-1}\right)(\log r)' + (N-2)\left[\log \left(1 + \frac{N}{N-1} r\right)\right] ',
\]

so we have that

\[
c'(r) = A\frac{\psi_0^2(r)r^{1+\frac{2(N-2)}{N-1}}}{\psi_0^2(r)}^N N^{-2}
\]

for some \(A \neq 0 \). Since \(\psi_0(r) \sim -1 \) near \(r = \infty \), we have

\[
c'(r) \sim A\frac{r^{\frac{N}{N-1}}}{r^{1+\frac{2(N-2)}{N-1}}} = A \frac{r}{r} \text{ as } r \to \infty
\]

which implies \(c(r) \sim A \log r + B \) as \(r \to \infty \) for some \(A \neq 0 \) and \(B \in \mathbb{R} \). However, in this case, \(|\psi(r)| \sim |(A \log r + B)\psi_0(r)| \to +\infty \) as \(r \to +\infty \), which contradicts to the assumption that \(\psi \) is bounded. Therefore, we obtain the claim.

The case \(k = 1 \).

By the invariance under the translation, we know that \(Z_i(x) \) \((i = 1, \ldots, N)\) defined in (1.6) satisfies (2.1). Since

\[
Z_i(x) = \frac{\partial U}{\partial x_i} = -\left(\frac{N^2}{N-1}\right) \frac{r^{\frac{1}{N-1}}}{1 + \frac{N}{N-1} r^\frac{N}{N-1}} x_i \Bigg|_{x = \psi_1(r)}, \quad (i = 1, \ldots, N),
\]

we see that

\[
\psi_1(r) = \frac{r^{\frac{1}{N-1}}}{1 + \frac{N}{N-1} r^\frac{N}{N-1}}
\]
is a solution of $L_1(\psi) = 0$, which is bounded (decaying) on $[0, +\infty)$. \(\psi_1(r) \sim \frac{1}{r}\) as \(r \to +\infty\).

As before, we claim that any other bounded solution of \(L_1(\psi) = 0\) must be a constant multiple of \(\psi_1\). Indeed, assume the contrary that there existed the second linearly independent, bounded solution \(\psi\) satisfying \(L_1(\psi) = 0\). We may always assume that \(\psi\) is of the form

\[\psi(r) = c(r)\psi_1(r)\]

for some \(c = c(r)\). Inserting this into (2.3) and noting \(\lambda_1 = N - 1\), we obtain

\[
c''(r)\psi_1(r) + c'(r) \left[2\psi_1'(r) + \frac{\psi_1(r)}{r} \left(1 + \frac{N(N-2)}{N-1} \frac{1}{1 + \frac{N}{N-1}}\right)\right] + c \left[\frac{\psi_1''(r)}{r} + \left(1 + \frac{N(N-2)}{N-1} \frac{1}{1 + \frac{N}{N-1}}\right) \frac{\psi_1'(r)}{r} - \frac{\psi_1(r)}{r^2} + \frac{N^3}{(N-1)^2} \frac{r^{\frac{N}{N-1}}}{1 + \frac{N}{N-1}} \frac{\psi_1(r)}{r^2}\right] = 0,
\]

which leads to

\[
\frac{c''(r)}{c'(r)} = \frac{-2\psi_1'(r)}{\psi_1(r)} - \frac{1}{r} \left(1 + \frac{N(N-2)}{N-1} \frac{1}{1 + \frac{N}{N-1}}\right).
\]

Again we have that

\[
c'(r) = A \left(1 + \frac{N}{N-1}\right)^{\frac{N-2}{N-1}} \psi_1'(r) r^{\frac{N(N-2)}{N-1} - \frac{2}{N-1}}\]

for some \(A \neq 0\). Since \(\psi_1(r) \sim \frac{1}{r}\) as \(r \to +\infty\), we obtain

\[
c'(r) \sim A \frac{N}{r^{1 + \frac{N(N-2)}{N-1}}} = Ar \quad \text{as } r \to +\infty
\]

which implies \(c(r) \sim \frac{Ar}{r^{2 + \frac{2}{N-1}}} + B\) as \(r \to +\infty\) for some \(A \neq 0\) and \(B \in \mathbb{R}\). However, in this case, \(\psi(r) \sim (\frac{N}{2} r^2 + B)\psi_1(r) \sim \frac{Ar}{r^{\frac{3}{N-1}}} \psi_1(r)\) as \(r \to +\infty\), which contradicts to the assumption that \(\psi\) is bounded. Therefore, we obtain the claim.

The case \(k \geq 2\).

In this case, we claim that all the bounded solutions of \(L_k(\psi) = 0\) are identically zero. Assume the contrary that there existed \(\psi \neq 0\) satisfying \(L_k(\psi) = 0\). We may assume that there exists \(R_k > 0\) such that \(\psi(r) > 0\) on \((0, R_k)\) and \(\psi'(R_k) \leq 0\). Now, \(\psi\) satisfies (2.4):

\[
\left[r^{N-1}\psi'(r)|U'(r)|^{N-2}\right] - \lambda_k r^{N-3} \left(\frac{1}{N-1}\right)|U'(r)|^{N-2}\psi(r) + \frac{e^{U(r)}}{N-1} r^{N-1}\psi(r) = 0.
\]

(2.5)
Also ψ_1 is a solution of (2.4) for $k = 1$:
\[
\left\{ r^{N-1}\psi_1'(r)|U'(r)|^{N-2}\right\}' - \lambda_1 r^{N-3} \left(\frac{1}{N-1} \right) |U'(r)|^{N-2} \psi_1(r) + \frac{e^{U(r)}}{N-1} r^{N-1} \psi_1(r) = 0.
\]

(2.6)

Multiply (2.5) by ψ_1 and multiply (2.6) by ψ_k and subtracting, we have
\[
\left\{ r^{N-1}\psi_k'(r)|U'(r)|^{N-2}\right\}' \psi_1 - \left\{ r^{N-1}\psi_1'(r)|U'(r)|^{N-2}\right\}' \psi_k = \frac{\lambda_k - \lambda_1}{N-1} r^{N-3} |U'(r)|^{N-2} \psi_k \psi_1.
\]

Integrating both sides of the above from $r = 0$ to $r = R_k$ and using $\psi_k(R_k) = 0$, we obtain
\[
R_k^{N-1} |U'(r)|^{N-2} \psi_k'(R_k) \psi_1(R_k) = \frac{\lambda_k - \lambda_1}{N-1} \int_0^{R_k} r^{N-3} |U'(r)|^{N-2} \psi_k(r) \psi_1(r) dr.
\]

(2.7)

Since $\lambda_k > \lambda_1$ for $k \geq 2$, $\psi_k(r) > 0$ on $(0, R_k)$, and $\psi_1(r) > 0$, the right-hand side of (2.7) is positive. On the other hand, the left-hand side of (2.7) is non positive since $\psi_k'(R_k) \leq 0$. This contradiction implies the claim.

Combining all these facts, we have finished the proof of Theorem 1. □

Acknowledgments.

Part of this work was supported by JSPS Grant-in-Aid for Scientific Research (B), No.19H01800. This work was partly supported by Osaka Central Advanced Mathematical Institute; MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849.

References

[1] S. Baraket, and F. Pacard: Construction of singular limits for a semilinear elliptic equation in dimension 2, Calc. Var. Partial Differential Equations 6 (1998), no. 1, 1–38

[2] W. X. Chen, and C. Li: Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (1991), no. 3, 615–622.

[3] K. El Mehdi, and M. Grossi: Asymptotic estimates and qualitative properties of an elliptic problem in dimension two, Adv. Nonlinear Stud. 4 (2004), no. 1, 15–36.

[4] P. Esposito: A classification result for the quasi-linear Liouville equation, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 35 (2018), no. 3, 781–801.

[5] O. Rey: The role of the Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Funct. Anal. 89 (1990), no. 1, 1–52.

[6] A. Pistoia, and G. Vaira: Nondegeneracy of the bubble for the critical p-Laplace equation, Proc. Royal Soc. Edinburgh 151 (2021), 151–168.

Department of Mathematics, Osaka Metropolitan University & OCAMI, Sumiyoshi-ku, Osaka, 558-8585, Japan

Email address: futoshi@omu.ac.jp