Highlighting the gaps in hazard and risk assessment of unregulated Endocrine Active Substances in surface waters: retinoids as a European case study

Barbara Kubickova1, Carmel Ramwell2, Klara Hilscherova1* and Miriam Naomi Jacobs3*

Abstract

Regulatory hazard and risk assessment of endocrine-active substances currently specifies four modes of action: interference with sex hormone (oestrogen, androgen) pathways, steroidogenesis, and thyroid hormone signalling. This does not encompass the full complexity of the endocrine system and its extended interfaces with environmental pollutants that can potentially disrupt the carefully maintained balance. Here we take the retinoid signalling pathway as a European case study for both, under- and unregulated endocrine pathways and outline the different levels of interference, discuss their adversity, and indicate crosstalk to other signalling pathways. Retinoid compounds already exist in drinking water sources, occur naturally in cyanobacterial blooms and/or enter surface waters via wastewater discharge, where they pose a potential hazard to the environment and human health - a situation that can be expected to worsen due to water shortages induced by climate-change and population growth. We briefly review relevant aspects of current endocrine disruptor (ED) testing for regulatory purposes and then expand upon the needs for inclusion of disruption of retinoid signalling in (ED) regulatory safety assessment contributing to adverse health outcomes that include cognitive function and neurological disease. An overview of developmental effects of retinoid signalling disruption across species highlights critical processes and potential crosstalk with other signalling pathways. A focused weight of evidence-based evaluation of the biologically plausible associations between neurological disorders and altered retinoid signalling highlights the evidence gaps. We show that monitoring only a limited number of anthropogenic priority chemicals in water is insufficient to address the environmental risks of retinoid signalling disruption. To comprehensively assess impacts on the endpoints, processes, and pathways of the endocrine system that are most vulnerable to chemical interference we need further investigation of the true mixture composition in environmental matrices. On a weight of evidence-basis this information can then be integrated into a reliable, inclusive, quantitative approach that ultimately accommodates all the critical pathways. By focusing on the retinoid signalling pathway, we intend to improve the scope and relevance of an integrated approach for the risk assessment of endocrine disruptors.
Introduction

Internationally, chemical substances are currently screened for endocrine activity in regulatory risk assessments (as for example in the European Union’s Biocides regulation [1, 2]), utilizing standard test methods that refer to chemical substances as endocrine active when interfering with sex hormone (oestrogen, androgen) receptors, steroidogenesis, or thyroid hormone signalling (EATS; the available tests are introduced in the “infobox” below) [3]. It is recognized that the endocrine system, however, is a complex interplay of different, often evolutionary highly conserved, mechanisms that by far exceed the above-mentioned four modes of action. It includes all hormone signalling pathways, interlinking and regulating an extensive set of functions, including development, growth, reproduction and metabolism [4–8], and this is being actively examined at inter-governmental levels [8–16]. The endocrine system is highly sensitive and circulating hormone levels are in the pM–µM range, making it highly susceptible to interfering compounds [17, 18]. Interference of exogenous chemicals with the tightly regulated endocrine system may result in adverse health effects, that, especially when encountered during development, may have sustained and life-long [12 and references therein, 19] or even transgenerational impacts on individuals or contribute to non-communicable diseases like metabolic disorders and cancer [4, 18, 20–29].

To allow an assessment of risks related to chemicals in the environment, information on the ecological or human health hazard of these chemicals is needed [2, 3] together with information on exposure to these chemicals and/or mixtures, i.e. their levels and fate in the environment, to conclude as to whether there is a risk of adverse outcomes or not [30, 31].

Despite the progress in the development of test methods screening for endocrine disrupting activity, endocrine pathways other than EATS remain under-investigated. Whilst currently there are no specific test methods available with respect to other endocrine mechanisms, these are being actively explored at the European level (https://eurion-cluster.eu/), and internationally, for retinoids [13, reviewed in 14]. Such comprehensive reviews together with identification of relevant assays with reference and test chemicals are needed to address regulatory needs, prior to the development of the test method tools that can be included into legislative mechanisms.

In surface waters, endocrine disruption gained public attention when altered sex ratios, genital malformations, and reproductive impairment were discovered in aquatic vertebrates [6, 33–38]. Most strikingly, feminization of male fish occurred at oestrogen levels below the limit of detection by analytical methods available at that time and also led to the collapse of a fish population in a Canadian experimental lake [39]. The oestrogen levels in the respective water bodies have been frequently attributed to poor treatment of communal wastewaters, containing high levels of human contraceptives [40]. More recently progesterone has been detected in UK shores in molluscs at concentrations equivalent to those used in contraceptives and hormone replacement therapy [41]. The striking impact of compounds interfering with the oestrogen hormone system has expanded the field of environmental endocrine disruption and enabled investigation of other endocrine pathways sensitive to environmental interference [42].

It is intended that this review provides a useful contribution to the discussion of under- and unregulated endocrine pathways, particularly in relation to the gap in hazard and risk assessment approaches to address anthropogenic and naturally occurring toxic retinoid substances for water quality. We focus on two key aspects of environmental chemicals’ potential to interfere with retinoid signalling: (1) with respect to the presence of chemicals that elicit retinoid-like activity via retinoid receptors, and (2) the potential of the endogenous retinoid system to be a target for an expanded range of chemicals which could disrupt this system. In addition to retinoid signalling pathway-related developmental and reproductive endpoints [reviewed in 13, 14], here we facilitate the addition of the less well studied endpoints of cognitive function and neurological disease. We thereby intend to contribute to the evidence base needed for the development of the tools and approaches to address endocrine adverse outcomes related to disruption of retinoid signalling pathway.
Hazard characterization of retinoid substances - from molecular interactions to developmental and neurological outcomes in vivo

Retinoid substances are chemically related to retinol (vitamin A). They are small organic molecules biosynthesized from isoprenoid precursors, mostly by photosynthetic organisms like phytoplankton and plants [69]. Retinoids, generally obtained from the diet [70–72], particularly retinoic acid, play a pivotal role during early development, driving anterior–posterior patterning in developing embryos and development of the vertebrate brain [73–77]. At the same time, retinoic acids are classified as teratogenic, due to the pronounced dependence on the spatio-temporal distribution of retinoids in the tissues of developing organisms [73, 78–81]. The developmental processes in which retinoids are involved are further discussed in “Phenotypic patterns of interference with retinoid signalling during development” section. Besides the tissue distribution and metabolization of retinoid isomers, also the expression pattern of retinoid receptors plays a critical role in their activity in tissues and cells. For both oestrogenic and androgenic activity, there are further whole animal (fish and amphibian) systems currently under validation, under the auspices of the OECD and specifically transgenic models are now on the OECD workplan that are intended to address the gap between in vitro and in vivo test methods. These include the “Rapid Estrogen Activity In Vivo” [56, REACTIV; 57, 58], the “Endocrine Active Substance, acting through estrogen receptors, using transgenic cyp19a1bGFP Zebrafish embryos” [EASZY; 59] and the “Rapid Androgen Disruption Adverse outcome Reporter” [RADAR; 60, 61] assays. Whilst the in vitro ER test methods correlate well with in vivo models [2, 62], in vitro AR assay data do not correlate well with the Hershberger assay [63]. So in terms of refinement, it is expected that the RADAR assay will potentially be a great improvement on the Hershberger method.

Interference of chemicals with the steroidogenesis pathway, and therefore also with the biosynthesis of sex hormones, is covered by the Test Guideline 456 [64]. Similar to the ER and AR transactivation assays, this in vitro screening test provides mechanistic data on the potential of a substance to interfere with the production of corticosteroids and sex steroids, such as 17β-estradiol or testosterone.

In vitro screening tests for interference with the mammalian thyroid hormone system are currently undergoing [32] and those documented in the OECD thyroid scoping document [10] are being validated by EURL ECVAM [65, 66]. For amphibians, eleutherembryos of transgenic Xenopus laevis can be utilized to obtain qualitative information about interference with thyroid hormone signalling [57]. The recorded response is the expression of green fluorescent protein, that is governed by a thyroid hormone receptor sensitive promoter [67, 68].
the biologically active and most potent atRA is obtained by sequential oxidation from all-trans retinol (vitamin A; Fig. 1) via alcohol dehydrogenases (esp. retinol dehydrogenase 10) [89] and retinal dehydrogenases (RALDHs, mainly RALDH2 in mammals) [90, 91]. Retinol is stored in the liver as retinyl esters [92–94]. atRA cannot be synthetized de novo in vertebrates and requires nutritional sources, which can be in the easily metabolized precursor forms such as β-carotene [80, 94–96]. The Population Reference Intake ranges between 250 µg retinol equivalent/day in infants below the age of 1 year and up to 750 µg retinol equivalent/day in children and adults [97] and is within the same range as the daily vitamin A intake recommended by Public Health England [72].

Binding of retinoids, primarily atRA, to RAR results in their heterodimerization with RXR and subsequent transcriptional activation of retinoic acid-responsive elements (RAREs), which govern a number of crucial cellular processes, including inflammation, proliferation, differentiation and carcinogenesis [28, 98, 99]. RAR–RXR heterodimers furthermore can recruit co-repressor complexes and, depending on the presence of natural or synthetic ligands, modulate or suppress gene expression [100–102].

While RARs show a higher specificity towards retinoid compounds binding and are the main driver in retinoid-mediated patterning and teratogenicity [e.g. recently reviewed by 103], the role of RXRs is broader. One of the reasons is the molecular promiscuity of RXR. Type II nuclear receptors, characterized by forming heterodimers with RXR, govern the transcription of a large variety of target genes [104]. They are involved in the biological responses to many endogenous ligands, anthropogenic and natural chemicals and therapeutic drugs. The affected functions include lipid metabolism (peroxisome-proliferator activated receptor, PPAR), steroidogenesis, xenobiotic response (pregnane X receptor, PXR; constitutive androstane receptor, CAR), vitamin D receptor (VDR), liver functions (FXR, LXR), orphan nuclear receptors (Nurs), and thyroid hormone signalling (thyroid hormone receptor, TR) [7, 85, 88, 105–107]. Whilst the receptors TR, VDR, and RAR form non-permissive heterodimers, the others (Fig. 2) form permissive heterodimers with RXR, where the transcriptional activity is regulated by a ligand binding to one of the dimerization partners [85, 104, 106]. Dimerization is achieved via the asymmetrical so-called identity box - a small region within the ligand binding domain, which, in the case of RXRα, consists of 40 amino acids [108, 109]. This subdomain shows a very high degree of conservation. Especially, the two amino acids A416 and R421 have been shown crucial for dimerization of RXRα with RAR [108, 109]. The high conservation of the RXR identity box even across animal phyla underlines the evolutionary importance of RXR [110, 111].
Molecular crosstalk in the RXR signalling pathway
The fact that nuclear receptors share the common heterodimerization partner, RXR, indicates the potential for molecular crosstalk between signalling pathways dependent on RXR heterodimerization. The sequestration of ligand-bound RXR from the pool of active RXR monomers with downstream modulating activities is indicated [7], and also direct ligand activation of, e.g. the PPAR family by retinoic acids [112, 113] has been reported in addition to activation of retinoid receptors. Additionally, there is evidence of crosstalk to the thyroid hormone signalling pathway by heterodimers of TR with RXR in vitro [114] and augmentation of thyroid hormone-related effects by RXR activation in vivo [67]. Most often, the ubiquitous RXRα isoform is involved in heterodimerization and it is essential for xenobiotic metabolism [7, 13, 115]. Competitive decrease of effect due to RXRα sequestration by retinoic acid/RAR has been reported for CAR [116], LXR, FXR, PPARα [106], and PPARγ [117] and may be implied in the metabolism and detoxification capacity mediated via activation of, e.g. PPARs. The capacity of RXRs to form heterodimers with several dimerization partners allows integration of signals from simultaneous and independent signalling pathways that can be further modulated by transcription co-factors [13, reviewed in 87]. The importance of allosteric modulators has been also stressed in a recent study on nuclear receptor binding to DNA target sequences (direct repeats and half-sites), where in vitro binding was predictive of in vivo binding, but not of in vivo function [104].

The importance of co-evolution of nuclear receptors and overlapping cis-regulatory elements also becomes apparent at the intersection of RAR/RXR and ERα signalling pathways. RAR/RXR signalling has been demonstrated several times to antagonize ER binding to respective DNA target sequences [118–121]. Besides the therapeutic use of this observation particularly in ER-responsive breast cancer [121], ERs play a critical role in organogenesis and maturation processes that, thus, can be affected by dietary and environmental factors.

Steroidogenesis critically influences the production and subsequently the circulating amount of the prototype sex steroids oestrogen and testosterone [13]. RAR/RXR play a pivotal role at the beginning of the steroidogenesis pathway, but RXR also as the essential dimerization partner for adjacent and subsequent steps interlinked with lipid metabolism (PPARs, LXR) and xenobiotic response (CAR, PXR) [13, 106]. At this interface, delivery of retinoic acid to the various nuclear receptors (RAR, PPAR or VDR) can have different consequences with respect to adiposity, such that, for example VDR activation in fibroblasts induces non-adipogenic gene transcription, whilst PPARγ/RXR heterodimers contribute to adipogenic processes [7, 122].
Whilst the therapeutic potential of the interdependency amongst many pathways and retinoid signalling via RXR has already been discovered and drugs specific to RXR, so-called “rexinoids” (e.g. bexarotene) are available to treat certain types of cancers [123], the implications of unintentional deregulation of retinoid signalling remain to be elucidated.

Phenotypic patterns of interference with retinoid signalling during development

Interference with retinoic acid signalling has the highest impact on humans during development and was first observed in vitamin A (retinol) deficiency. This has been understood since the early twentieth century from studies that investigated the teratogenic effects of both excess and a lack of retinoid activity [124–130]. To date, vitamin A deficiency is still a concern, especially in developing countries where one-third (33.3%) of pre-school age children and 15.3% of pregnant women have serum retinol levels below 0.7 µM [131], resulting in severe risk of vitamin A-preventable blindness that has a fatality rate in children of 50% within one year [131–133]. Without nutritional supplementation within the first year of life, this can be considered as irreversible retinoid disruption and interpreted as an example of an (irreversible) adverse outcome in humans justifying classification as an endocrine disruption pathway.

Retinoic acid gradients determine the dorso-ventral and anterior–posterior patterning of the embryo in the first trimester [73, 75, 78, 82]. Furthermore, the differential expression and activation of retinoid receptor variants and isoforms, together with the spatio-temporal regulation of RA synthesis and metabolism, drives organogenesis and elongation of the spinal axis [74, 76, 78, 134]. It also determines progenitor cells to the neural lineage, thus initiating the formation of the neural system including the spinal cord and the brain [73, 76, 82]. Notably, retinoid signalling drives the formation and segmentation of the hindbrain and neural network formation even before thyroid receptors are being expressed [73, 75, 78, 82].

Around expression of RA governs a multitude of developmental effects and also RA signalling is outlined in Table 1.

The metabolizing enzymes of the cytochrome P450 subfamily 26 (CYP26) CYP26A1, CYP26B1, and CYP26C1 [94, 161, 162], the retinol-converting alcohol dehydrogenase (ADH), and retinal-oxidizing dehydrogenases (RALDHs) [90, 94, 163, 164]. Efforts to identify key players and switches in the hierarchical signalling network and sort them into adverse outcome pathways (AOPs) continue to be undertaken with respect to vertebrate axial and neural tube development [14, 165, 166], as well as mammalian reproduction [reviewed in 13].

Besides retinoids themselves, other environmental contaminants, such as pharmaceuticals (e.g. valproic acid), flame retardants (e.g. polybrominated diphenyl ethers), plasticizers (phthalate esters), and pesticides (triazole fungicides) have been reported to alter retinoid signalling biomarkers and induce retinoid-like teratogenic effects [111, 167–170] (see also Table 1). Exposure assessment of pharmaceuticals with the retinoid mode of action may require different regulatory approaches, depending upon the route of exposure, i.e. whether there is oral intake/dermal application, as opposed to their occurrence and potency in (waste)waters.

Contribution of retinoids to chronic neurological disorders

The contribution of endocrine disruptors to neurological disorders is receiving more attention, and increasing resources are being put into funding such research [e.g. 32, 171]. In addition to known adverse teratogenic effects during development, particularly, brain and neurodegenerative conditions such as Alzheimer’s and Parkinson’s disease, or depression may be linked to altered retinoid signalling [172, 173].

While retinoid compounds are well described as early morphogens of the central nervous system (CNS) during development, their role in postnatal development of the brain is less investigated. Retinoid signalling is implied in neural plasticity, required for the formation of new memories and for learning [151, 174–176], in affective disorders [177], and in ageing - namely in Alzheimer’s disease and dementia [178].

To date, neurodegenerative diseases such as dementia, Parkinson’s, Alzheimer’s, and Huntington’s disease, are the 6th leading cause of deaths in adults in the US [179, 180]. Unlike mortality due to heart disease, stroke, or HIV, deaths linked to Alzheimer’s disease have more than doubled between 2000 and 2018 [179]. Even more severe is the situation regarding neurological disorders in general, which are the second leading cause of death after heart disease and the leading cause of disability worldwide [181, 182]. To date, there is no cure for dementia and treatment focuses on ameliorating the symptoms of
Table 1: Examples of the impacts of retinoic acid signalling effects on morphology, phenotype, and/or development. Explanations and abbreviations are at the end of this table.

Apical Effect/ Key mechanism/ Endpoint	Morphological alteration level	Developmental stage	Test system (species)	Main relevant and related pathways, genes, enzymes	Endpoint/hallmark affected cross-reactions	Substances associated with key mechanism/ adverse outcome	Associated human pathology	Reference(s)	
Axial development, Anterior-posterior patterning, osteogenesis	Tissue	Embryo, larvae	Branchiostoma floridae (amphioxus), zebrafish (stock steif mutant), chicken, mouse	ADH/ RALDH, Cyp26b1, Cyp26a1, RARα, RARβ, RARγ, Wnt, FGF, Hox (esp. 1&3), BMP	RA acts as an early developmental morphogen along the anterior-posterior axis; it coordinates the position of endoderm-derived organs along the anterior-posterior axis. Cyp26/ RA concentration drives the osteogenesis in the vertebral column (in osteoblasts); posteriorization of gills and mouth in invertebrate chordates. Hyperactive RAR induces higher expression levels of RA-metabolizing Cyp26a1 and acts in a paracrine way.	RA, retinol		[76, 148, 313–322]	
			Human, zebrafish, rat, mouse	Dhrs3, Cyp26a1	Symmetric somite development is mediated by RA. Axial skeletal and craniofacial defects upon exposure	Triazole fungicides (flusilazole, triadimefon)			[323–325]
Neural tube formation	Organ/Organism	Embryo	Quail	FGF and Wnt gradients/signalling, CYP26A1, RALDH activity	Mesodermal segmentation, somite formation, and neurogenesis in caudal neural tube (future spinal cord) are RA dependent	RA	Neural tube (and axial) defects; proposed Adverse Outcome Pathway: “for neural tube and axial defects mediated by modulation of retinoic acid homeostasis”	Triazole fungicides (flusilazole)	[165]
Neural differentiation and spinal cord formation	Tissue/Organ	Embryo, (adult)	Mouse, zebrafish, Xenopus	FGF and Wnt, CYP26A1, RALDH, RARβ, RARα, Hox	The nervous system develops sequentially along this axis, starting anteriorly (CNS/brain), continuing via hindbrain to spinal cord. Determination of cell fate and differentiation of ventral neuronal cell types in developing spinal cord. Neurite outgrowth in embryos and adults is dependent on RARβ expression; RARα knockdown abolishes atRA-mediated dendritic growth	RA (endogenous)		[76, 196, 314, 327, 330–336]	
Apical Effect/Key mechanism/Endpoint	Morphological alteration level	Developmental stage	Test system (species)	Main relevant and related pathways, genes, enzymes	Endpoint/hallmark affected cross-reactions	Substances associated with key mechanism/adverse outcome	Associated human pathology	Reference(s)	
-----------------------------------	-------------------------------	---------------------	-----------------------	--	---	---	--------------------------	--------------	
Early neural differentiation	Tissue/organ system	Embryo	Mouse	RAR, TR, MCT8	Organization of the (central) nervous system; RA signalling precedes TRα expression/TR signaling; RA induces MCT8 expression in the developing brain allowing TH transport	RA, TH	Congenital hearing loss	[338, 339]	
			Zebrafish		RA co-administration (1 nM) prevents adverse effects (behavioural and histological) of ethanol (150 mM) exposure during gastrulation.	RA, ethanol	Fetal alcohol syndrome; cerebellar maldevelopment	[364, 365]	
Hindbrain segmentation, Ear development and hearing recovery	Tissue/organ system	Embryo, adult	Mouse, rat, zebrafish, VAD quail model, chicken, X. laevis	RARα, RAα, (CRABP), SHH, Wnt, FGF, Hox; CYP26A1, CYP26C1, RALDH activity	RA guides the formation of 8 segments (rhombomeres) that give rise to e.g. otic vesicle, sensory tract. RA determines the forebrain-hindbrain and hindbrain-spinal cord boundary (excess leads to posteriorization); midbrain-hindbrain boundary is unaffected (in mouse and Xenopus). RA directly influences the differentiation of branchiomotor neurons (zebrafish).	RA	Congenital hearing loss	[338, 339]	
			Mouse, zebrafish		Development of the olfactory region requires RA. RA stimulates regeneration of auditory hair cells			[360–363]	
Head and forebrain development; Eye development	Tissue/organ system	Embryo	Mouse, VAD quail model, pig, rabbit, cattle, sheep, rat, zebrafish	RALDH, CYP26, AhR	Formation of optic vesicle (retina precursor; invagination of neuroepithelium); micro-/anophthalmia in absence of RA. However: head development in general requires absence of RA [76].	RA	Cleft palate and lip	[368–372]	
Apical Effect/ Key mechanism/ Endpoint	Morphological alteration level	Developmental stage	Test system (species)	Main relevant and related pathways, genes, enzymes	Endpoint/hallmark affected cross-reactions	Substances associated with key mechanism/ adverse outcome	Associated human pathology	Reference(s)	
--------------------------------------	-------------------------------	---------------------	----------------------	---	---	--	-----------------------------	-------------	
Telencephalon differentiation	Tissue	Embryo	Mouse	Changed population of ganglia; altered precursor population; RA stimulates production of dopaminergic neurons	RA	[373–377]			
Cerebral cortex	Tissue	Embryo, postnatal	Mouse	Influence on neurogenesis/migration/ differentiation in other brain regions/ at other developmental stages. Sensitivity to RA is retained in the mature cortex	RA (endogenous), 13cRA	Affective liability and behavioural disinhibition upon 13cRA treatment, depression [177]	[73, 374, 378–380]		
Hippocampus, neuronal plasticity	Cell/tissue/ Adult	Mouse, rat, zebra finch	RAR/RXR, esp. RARβ, RXRγ	Defects in spatial learning and memory, and recognition working memory (RXRγ) upon vitamin A deprivation; restoration of cognitive impairment with vitamin A supply; cognitive impairment also in excess RA scenario (13cRA). Decreased ability to learn mating song in zebra finches	RA, vitamin A	Learning and memory impairment, depression	[150–153, 177, 192, 381–383]		
Hippocampus	Tissue/organ	Adult	Rat, human (Alzheimer’s disease patients), mouse	Regulation of memory and spatial learning. RA acts as a proamnesic molecule. Deprivation leads to amyloid-β accumulation, RARα downregulation, CHAT expression loss in forebrain cortical neurons. RA regulates proteins linked to protection from Alzheimer’s disease	Vitamin A	Alzheimer’s disease, ageing	[82, 151, 178, 192, 205, 211, 384–392]		
Hippocampus	Organ	Postnatal	Mouse, rat	RARs (esp. RARα), RXRs, GR, somatostatin, RALDH2 (in adjacent meninges)	RARβ-/- and RXRγ-/- deficiency in spatial learning and memory, like VAD rats (rescue by RA treatment). Degradation of hippocampal function in aging mice via proliferation/differentiation of hippocampal stem cells. VAD increases GR binding capacity and modulates the somatostatinergic and acetylcholinergic hippocampal system	Vitamin A, atRA, 13cRA	Memory/learning impairment, dementia, Alzheimer’s disease, depression [73, 151–153, 173, 188, 192, 193, 203, 374, 381, 391, 393–398]		
			Rat	Hipocampal volume is reduced after 3 weeks of 13cRA treatment				[190]	
Table 1 (continued)

Apical Effect/ Key mechanism/ Endpoint	Morphological alteration level	Developmental stage	Test system (species)	Main relevant and related pathways, genes, enzymes	Endpoint/hallmark affected cross-reactions	Substances associated with key mechanism/ adverse outcome	Associated human pathology	Reference(s)
Learning Organism Embryo Rat RALDH, PC2	Exposure during gestation (day 11–13 in rat) impaired amphetamine-stimulated activity and avoidance learning, but not performance in complex spatial maze or auditory startle response in offspring. A signalling decline is observed in aging and associated with cognitive impairment, decreased acquisition of new memories; reversible by RA administration	atRA, 13cRA, 9cRA	Possibly: affective disorders, neurodegenerative disorders, schizophrenia, autism	[172, 186, 188, 203, 220, 395, 399–401]				
Postnatal Rat, Mouse RARβ, RXRγ	Vitamin A deprivation and RARβ-/- mutants show spatial learning and memory impairment	[151–153]						
Behavioural changes Organism Adult Mouse, rat Extended low-dose exposure in mice induced depression-like behaviour. This was partially confirmed in 91 days-old rats, but not in older rats.	13cRA use/treatment is associated with depression and suicidal behaviour with longer onset (~4–8 weeks; long term effect).	Depression	[177, 187, 226–231, 374, 395, 402–404]					
Human D2, (D1), Ser1A	13cRA use/treatment is associated with depression and suicidal behaviour with longer onset (~4–8 weeks; long term effect).	Case studies are reviewed in the reference	[177]					
Striatum Tissue/organ Adult Mouse, rat, human D2, RARαβ, RXRβγ, Nurr1/RXR, RALDH1, RALDH3, neurogranin, GAP43	The striatum shows the highest endogenous RA concentrations in the adult brain. Dopaminergic neurons; autocrine action on neurotransmission, paracrine action on striatal cells; locomotor impairment in RAR/RXR and Nurr1/RXR mutant mice. RXRγ-/- mutants: increased despair behaviour, anhedonia (reversible by re-expression of RXRγ). Induction of Parkinsonism and catatonia by lesions in basal ganglia. Extended 13cRA dose (in rat) increases dopamine and serotonin metabolites	RA (endogenous), disulphiram*	Depression, (potentially: Parkinson’s and Huntington’s disease), mood disorders	[177, 226–231, 374, 395, 402–404]				
Apical Effect/Key mechanism/Endpoint	Morphological alteration level	Developmental stage	Test system (species)	Main relevant and related pathways, genes, enzymes	Endpoint/hallmark affected cross-reactions	Substances associated with key mechanism/adverse outcome	Associated human pathology	Reference(s)
-------------------------------------	-------------------------------	---------------------	-----------------------	---	--	---	---------------------------	-------------
GABAergic (inter-)neurons	Cell/tissue	Embryo/foetus	Mouse	Raldh3	Enhanced differentiation; migration to olfactory bulb and cortex. Raldh3 activity is required for efficient differentiation of GABAergic interneurons, while Raldh2 is not. GABAergic interneurons of the olfactory bulb are RA sensitive.	RA (endogenous)	DiGeorge syndrome, CATCH22 syndrome	[163, 380]
Branchial arches	Tissue/organ	Embryo	Mouse	RAR, Hoxa1, Hoxb1, Pax1/9	3rd–6th arch are RA responsive, give rise to endodermal pouches, thymus, parathyroid glands, aorta and associated large blood vessels, nerves etc. Linked to rhombomeric (hindbrain) origin of mesenchyme/neural crest cells.	RA	[343, 358, 406–410]	
Heart development	Organ	Embryo	Mouse, chicken, zebrafish	RARs, RXRs (esp. RXRα), Hoxb1, Hoxb5, Tbx1, RALDH2, STRA6, CYP26A1, FGFB, NR2F5	Congenital heart disease, incl. conotruncal and aortic arch artery malformations (patterning defects); defects in RA synthesis can be, in some cases, partly rescued by maternal RA levels/RA supplementation. STRA6 mutations (vitamin A transport/cellular uptake) may result in developmental defects in atrial and venous vessels. Later in development, RA is cardiotoxic (in zebrafish).	RA	Rarely observed/undocumented, maybe due to embryonic death. Matthew-Wood syndrome (STRA6 mutation) [411, 412], DiGeorge syndrome [413]	[89, 138, 140, 164, 196, 369, 414–425]
Lung development and regeneration	Tissue/organ	Embryo, adult	Mouse; embryonic explants, rat	RALDH2, Wnt, TGF-β, FGF10, BMP, SHH	Lack of RA/RAR activity prevents induction and growth of primary lung buds; RA induces regeneration of alveoli in rat and rescues lung functionality in experimental hypoplasia. RA is not required for endodermal lung cell fate, but essential for primordial lung bud formation.	RA	Flame retardants (miTP, TPP, PBDE), TCDD	[169, 170, 370, 426]
				VEGF, FGF18	RA regulates angiogenesis and elastin production in the maturing lung.			[434]
Apical Effect/Key mechanism/Endpoint	Morphological alteration level	Developmental stage	Test system (species)	Main relevant and related pathways, genes, enzymes	Endpoint/hallmark affected cross-reactions	Substances associated with key mechanism/ adverse outcome	Associated human pathology	Reference(s)
------------------------------------	-------------------------------	---------------------	-----------------------	---	---	--	--------------------------	----------------
Pancreas formation	Tissue/organ	Embryo	Zebrafish, Xenopus, mouse	Cyp26a1, Cdx4, RALDH	Formation of dorsal pancreatic bud (pancreatic and hepatic endoderm); specification of pancreatic endoderm cell lineages. RA is required for ventral pancreas patterning. In mouse and human pancreas, β-cell differentiation may be influenced by RA	RA	[148, 334, 435–442]	
Kidney formation	Organ	Embryo	Xenopus, zebrafish, mouse	RARα, RARβ, RALDH2, Notch signalling, mec3	Inactivation of RARα and RARβ results in renal malformation (mouse); ureteric bud cell signalling depends mainly on RALDH2-generated atRA. Specification of renal progenitor cells depends on RA signaling (Xenopus, zebrafish)	RA	[149, 443–448]	
Limb (and tail) development and regeneration	Organ	Embryo, postnatal	Amphibians, chicken, mouse, zebrafish	FGF8, SHH, FGF4, RALDH2, Cyp26(b1), Hoxb8	RA can induce development (embryonic) or regeneration (postnatal) of supernumerary limbs or digits, when locally applied to the limb bud. In mice, RA exposure on gestational day 12 (33–41 somite pairs) affected rather forelimbs, on gestational day 13 (40–51 somite pairs) rather hindlimbs. Also, tail and tail vertebrae development is impaired by RA exposure	RA, 9cRA	[130, 134, 363, 451–459]	
Gene expression repression by unliganded receptors (RARs)	Cellular	Embryo	Xenopus, mouse	RAR, NCoR-1/2, SMRT, CYP26. (further: Fgf, Wnt, Hox genes)	Head development in Xenopus and skeletal development in mice requires gene repression by unliganded RAR (otherwise: malformation of the head, anterior/posterior shift)	RA	[460–463]	

Acute pro-myelocytic leukemia [462]
Apical Effect/Key mechanism/Endpoint	Morphological alteration level	Developmental stage	Test system (species)	Main relevant and related pathways, genes, enzymes	Endpoint/hallmark affected cross-reactions	Substances associated with key mechanism/adverse outcome	Associated human pathology	Reference(s)
Invertebrate development	Organ/organism		Chordata, Arthropoda, Mollusca, Porifera	RAR, RXR, CYP26, RALDH	Conservation of the retinoid signalling pathway and involvement in invertebrate development; incl.: all body, digestive glands, gonads, limb buds, regeneration of body parts	RA, retinol	Reviewed in [322]	
			Crustacea, Drosophila	EcR, USP	Ecdysone is the driver of invertebrate molting. EcR dimerizes with USP (RXR-homolog), which increases dimer stability and affinity towards target DNA sequences	Ecdysone, tributyltin	[464–467]	
			Mollusca, Gastropoda	RXR	Imposex (gastropods), shell thickening, reproduction perturbation (Cossostrea gigas); RAR/RXR heterodimers have a repressive function (instead of activating)	Tributyltin, HK630 (only linked to imposex in gastropods), 9cRA	[111, 468–470]	
Reproductive tract development	Organ		Molluscs	RXR; potential crosstalk with PPARγ	Induction of outgrowth of male reproductive structures (T. clavigera), regulation of male/female seasonality (reproductive tract recrudescence; Ilyanassa obsolete)	9cRA	[111, 144, 322, 469, 471–473]	
Reproductive organ development, testes, male fertility	Organ/organism	Embryo, adult	Mouse	RARα, RARγ, RXRβ, RALDH2, Cyp26b1, SHH, BMP4, STRA8	Degeneration of testes after knockout of all RARα isoforms; sterility of male mice after knockout of RARγ; male sterility in RXRβ knockout mice. RA is required for spermatogenesis	RA	[13, 76, 145–147, 474–478]	
		Mouse, in vitro (P19 and C3H10T1/2), human	RALDH, Cyp26, Hoxa1, HDAC1, AR (via SHH)			Phthalate esters (esp. containing aryl and cyclohexane groups), valproic acid	[168, 479–482]	
Peripheral nervous system, regeneration	Organ system	Adult	Human	RARα, RAβ, RBP	Regeneration of spinal cord motor neurons depends on RA-induced RARβ(2) expression; RA peaks 4-7 days after encountering the injury	RA, 9cRA	[82, 154–156, 158, 483]	
Nervous system	Organ system	Adult	Human	RARα, RAβ, RBP	Motor neurons neurofilament accumulation, astrocytosis; decrease in neuron numbers; elimination of RARα and reduction of RALDH2 expression; reduction in retinol binding protein levels in spinal cord	Vitamin A, RA	[82, 484–486]	
		Embryo	Rat		Gestational exposure (day 11-13) led to difficulty to swallow milk (motor control); delayed righting reflex at 35 days; Decreased locomotor activity, motor coordination, and learning (90 days)	Amyotrophic lateral sclerosis (ALS)	[177, 186, 395, 487–490]	
Apical Effect/ Key mechanism/ Endpoint	Morphological alteration level	Developmental stage	Test system (species)	Main relevant and related pathways, genes, enzymes	Endpoint/hallmark affected cross-reactions	Substances associated with key mechanism/ adverse outcome	Associated human pathology	Reference(s)
--------------------------------------	-------------------------------	---------------------	----------------------	--	---	---	-----------------------------	-----------------
Vision	Morphological alteration level	Developmental stage	Test system (species)	Main relevant and related pathways, genes, enzymes	Endpoint/hallmark affected cross-reactions	Substances associated with key mechanism/ adverse outcome	Associated human pathology	Reference(s)
Vision	Pregnancy	Human (pregnant women)	Human (pregnant women)	Vitamin A	Night blindness; associated with miscarriage	[131]		
Keratinization of epithelia	Tissue	Adult, embryo	Human, rat	RA, 13cRA	Mucous epithelia (as with the tracheal respiratory/gastrointestinal tract) become keratinized in absence of RA; RA is required for continuous renewal of skin epithelia. Treatment of cystic and nodular acne with "Accutane" (13cRA) RA, 13cRA	[124–139, 160, 221, 492]		
Keratinization of epithelia	Adult, embryo	Human (in vitro)	AhR, RA-signaling	TCDD alters matrix protein (esp. collagen) deposition; arT3 shows an additive effect. The increased protein deposition is due to promoter activation and increased mRNA stability	TCDD, arT3	[29]		
Immune function	Organ system	Adult	Human, mouse	RARα	Immune function severely compromised in absence of RA. RA is required for (CD4⁺) T cells in the thymus	RA	[124–126, 157–160, 493–496]	

Bold indicates high level of confidence. Gene and protein nomenclature has been adapted to human, though homologous genes/proteins in other species may have been assessed in the original studies.

ADH: alcohol dehydrogenase, AR: androgen receptor, BMP: bone morphogenetic protein, 9cRA: 9-cis retinoic acid, 13cRA: 13-cis retinoic acid, Cdx4: Homeobox protein transcription factor, CHAT: choline acetyl transferase, CRABP: cellular retinoic acid-binding protein, Dhrs3: short-chain dehydrogenase/reductase 3, EcR: ecdysone receptor (homologous to vertebrate farnesoid X receptor, FXR, though endogenous ligand is the ecdysone steroid), FGF: fibroblast growth factor, GR: glucocorticoid receptor, HDAC: histone deacetylase, Hox: Homeobox gene family, H6C30: selective RXR agonist, MCT8: monocarboxylate transporter 8, mecom: mds1/evi1 complex transcription factor, miTP: monosubstituted isopropylated triaryl phosphate, NCoR: NCoR-1/2; nuclear receptor corepressor 1/2, NR2F5: nuclear receptor 2F5 (COUP-transcription factor family), PBDE: polybrominated diphenyl ether, RA: retinoic acid, PPARγ: peroxisome proliferator activator receptor γ, RALDH: retinal dehydrogenase, RAR: retinoic acid receptor, RXR: retinoid X receptor, Ser1A: serotonin receptor 1A, SHH: sonic hedgehog gene family, SMRT: silencing mediator of RAR and thyroid hormone receptor, TCDD: 2,3,7,8-tetrachlorodibenzo-p-dioxin, TH: thyroid hormone, TTP: triphenylphosphate, TR: thyroid hormone receptor, USP: ultraspiracle (nuclear receptor in Drosophila, homologous to vertebrate RXR), VAD: vitamin A deficiency.

* Disulfiram acts a selective antagonist to RALDH, hence prevents endogenous RA synthesis. Therefore, effects are often reported as RA-dependent rather than disulfiram-sensitive.
cognitive decline and increasing or maintaining quality of life [179].

While risk factors associated with dementia are mostly age, genetic predisposition (family history of dementia), or life-style related (high BMI, non-healthy diet, lack of physical and cognitive exercise) [179, 182], the contribution of environmental exposure has also been considered [183–185].

Most observations regarding retinoid signalling and adverse health outcomes in adolescents and adults have been derived from human intervention and clinical studies together with animal in vivo modelling. Of particular relevance are studies with pharmacological application of 13cRA for the treatment of acne or cancer [177, 186, 187].

Retinoic acid signalling is necessary for the differentiation and speciation of cell types, particularly in neurons [82]. While the differentiation of neurons is often perceived as restricted to early developmental stages, in fact many postnatal processes, including memory and learning, are dependent on neural differentiation and speciation (also known as neural plasticity) throughout life [174, 188–190].

Cognitive function, memory, learning, and dementia

Postnatal disturbance of RAR/RXR signalling impairs cognitive functions, especially in the prefrontal cortex [191]. Indeed the hippocampus region retains high postnatal RAR expression, and so is most susceptible to RA signalling interference [192–194]. One potential role of RA signalling in the adult brain is the modulation of synaptic plasticity, that is required for learning and the formation of memories [173, 174, 188]. In a mouse model, functional expression of retinoid receptors has been shown to be critical for long-term potentiation (RARβ) and long-term depression (RARβ and RXRγ) [151]. The same study linked the decreased synaptic plasticity with a substantial performance loss in spatial learning and memory tasks in mice. While Chi et al. [151] did not study the role of RARα, Aoto et al. [195] observed a rapid increase in synaptic strength upon treatment of primary rat neurons in vitro with 1 µM atRA or increased endogenous atRA synthesis due to decreased neuronal activity. The homeostatic modulation of synaptic strength was mediated by atRA via dendritic, i.e. non-nuclear, RARα and upregulated postsynaptic glutamate receptor 1 (GluR1) expression in a transcription-independent fashion [195]. Membrane-bound RARα was also shown to be involved in the differentiation of spine neurons from the hippocampus [196], suggesting a non-transcriptional role of RARs and perhaps of RA as a paracrine signalling molecule.

Interestingly, the involvement of RA signalling in learning processes in vertebrates is not limited to mammals and may even play a role in invertebrate learning [197]. It has been shown that RA is critical for learning and song maturation in songbirds (zebra finches) [198, 199]. Unlike vocalization in mice, song maturation involves a learning aspect similar to that in human speech [200]. Convergent signalling mechanisms of forhead box protein P2 and RA have been hypothesized to play a role in learned vocalization in both, birds and humans [200].

Involvement of RA signalling in these key cognitive functions raises the questions of its role in neurodegenerative diseases. Age-related cognitive decline with impaired spatial learning and memory is associated with decreased RA signalling in elderly vertebrates (human and mice) [201, 202]. In elderly mice with impaired cognitive function, the administration of 13cRA re-established RA signalling and hippocampal RARβ and RXRβ/γ expression and rescued the cognitive impairment [153, 201, 203].

Therapeutic applications

As a specific form of dementia, Alzheimer’s disease (AD) is characterized by formation of amyloid-β plaques in the CNS, which leads to inflammation and subsequent neurodegeneration [179, 204]. Due to a reported decrease in RA signalling in AD patients’ brains, particularly in the hippocampus region responsible for the formation of memories [201, 202], retinoids, especially 13cRA, are proposed for AD treatment as neuroprotectants [123, 205–209]. Furthermore, specific synthetic agonists of RARα/β, such as tamibarotene, that are in use for cancer treatment, have been explored for AD treatment [209], but the clinical trials seem not to have progressed since [210]. For AD, disruption of RA signalling was linked to increased amyloid-β deposition in rats [211], and RAR-agonism was effective to act both preventively and therapeutically to decrease amyloid-β-induced damage to human cell cultures in vitro and to mice in vivo [212–218]. Besides RARs, also RXRs are being explored for their pharmacological potential in neurodegenerative and inflammatory disease treatment, though the results are not conclusive so far [123, 219].

In contrast to the recovery of learning and memory abilities in elderly mice, longer-term (6 week) administration of 13cRA at a therapeutic dose (1 mg/kg/day, i.p.) during young adulthood decreased cell proliferation in the murine hippocampus and was associated with impaired learning and memory formation [192]. The authors consider this result to be due to an insufficient growth factor supply to maintain a large differentiating neuron population, leading to premature neuronal death and longer-term decreased performance in RA-sensitive
tasks. However, the impaired cognitive functions could also be linked to affective depression disorders, as reported in humans after extended periods of RA treatment [177].

Affective disorders - altered mood, depression, and suicide

RA was first linked to altered behaviour in rats in 1986 [220]. Later a link between affective disorders and RA in humans was proposed after 13cRA was approved for medical use as a treatment of severe cystic and recalcitrant acne in 1982, leading to the inclusion of a warning on the label [221, 222]. A systematic review conducted by Marqueling and Zane [223] and an almost parallel review of studies by Strahan and Raimer [224] concluded that the current data available neither confirm nor disprove the association. The latter however noted that changes in mood can be accounted to 13cRA [224]. Further case studies and reports on the involvement of retinoid exposure in affective disorders have been summarized by Bremner et al. [225].

Here, we briefly introduce mechanistic data generated from animal models, with respect to the involvement of RA signalling in the dopaminergic system, as this is of particular interest with respect to the development and manifestation of affective disorders, as well as schizophrenia.

In the late 1990s, mutation and knockout of RARβ, RXRB, and RXRγ in mice were observed to be linked to impaired locomotion and decreased signalling via dopamine receptors 1 and 2 (D1R and D2R) [226, 227]. Also, the involvement of the orphan nuclear retinoid receptor 1 (Nurr1) in the differentiation and/or maturation of dopaminergic neurons was hypothesized [226, 228]. Consecutively, the involvement of RA signalling in the development of the dopaminergic system, particularly in the expression of D2R, was confirmed in mice [229] and rats [227, 230, 231]. Of interest are also studies of chronic 13cRA administration in mice that better reflect an extended exposure to retinoids. Administration of therapeutic doses (1 mg/kg/day) to young adult mice over 6 weeks did not alter general locomotor activity, but increased depression-like behaviour in the forced swim test and tail suspension test [232]. A follow-up literature review to this study proposed alterations to the serotonin neurotransmitter system rather than dopamine [233]. This is in line with an extended 13cRA exposure study in rats, which affected the serotonin rather than the dopamine neurotransmitter system [187]. Interestingly, a parallel study with chronic exposure to 13cRA or atRA in rats did not confirm the observed behavioural despair (forced swim test) observed by O’Reilly et al. [232], indicating species differences in sensitivity to RA [234].

Another parallel between depression in (elderly) human and in mice was drawn rather recently, when Qi et al. [235] observed post-mortem a decrease in mRNA levels of brain-derived neurotropic factor (BDNF) and RA signalling pathway elements in the brain of depressed patients and were able to confirm this observation in mice (BDNF is a biomarker also considered for inclusion in AOPs for developmental neurotoxicity and learning impairment [236–238]). Additionally, they identified a RA-responsive element in the tropomyosin receptor kinase B (TrkB; receptor for BDNF) promoter region specifically targeted by RARα and thereby confirmed crosstalk between the RA and BDNF signalling pathways [235].

Schizophrenia

While the multifactorial aetiology of schizophrenia includes genetic and environmental risk factors, critical areas are early neurodevelopment, social behaviour and cognitive ability [239, 240]. In fact, genetic predisposition by itself is not necessary nor sufficient for the development of schizophrenia and the developmental cascade leading to the disease should include interactions with the environment [241]. Whilst no discrete substance has been proven to cause schizophrenia, it has been hypothesized that the neurochemical processes affected by some recreational drugs play a role in the development of schizophrenia and psychoses [summarized in 241]. These processes are signal transduction via dopaminergic [242] and glutamergic synapses [243], the endocannabinoid system [244], and (neuro-)inflammation [245].

Twenty years ago retinoid signalling was postulated to be involved in the development of schizophrenia [246], and whilst further mechanistic evidence is present, it is not sufficient for confirmation. The link has been established based on a predisposition for schizophrenia in children with congenital anomalies similar to RA signalling disturbance, convergent gene loci of schizophrenia risk factors and the RA signalling cascade (esp. CYP26B1) [240, 247], and the already mentioned sensitivity of the dopamine neurotransmitter system, particularly D2R, to RA interference (see “Affective disorders - altered mood, depression, and suicide” section) [outlined in 246]. Besides the dopamine system, also γ-amino butyric acid (GABA)-ergic interneurons in the prefrontal cortex, whose aberrant development is associated with neurological disorders including schizophrenia, have been shown to be sensitive to RA [248].

Although a considerable number of studies address the biologically plausible link between retinoid signalling and
neurological diseases, on balance, the evidence supporting the link is currently insufficient to attribute causation (see Table 2).

Whilst the causal link between aberrant retinoid signalling and neurological disease is currently weak, the biological plausibility of the association is high: RA is a morphogen during early development and is strongly involved in shaping the CNS, including differentiation and maturation of neurons. Despite the significant role during development, the role of RA signalling in the adult or postnatal brain is less clear. Still, the conserved mechanisms of RA signalling are most likely to act also in the adult brain, though the effects may be less evident due to the multitude of parallel processes and potential influencing factors. Also, it is difficult to simulate and assess the many hues of neurological disease in animal models that are distinctly different from humans and it is not possible to assess behavioural changes in in vitro systems.

The “Cognitive function, memory, learning, and dementia”–“Schizophrenia” sections introduced several neurological conditions that share common affected personality traits due to changed connections in the CNS and altered neural plasticity. While modified RA signalling is not the single cause of adverse psychological and neurological outcomes, it is a strong candidate for connecting environmental exposure to neurological and/or neurodegenerative disease by modulating neurotransmitter systems (i.e. the dopaminergic system) and altering the base-line population of (non-) differentiated cells in the CNS. The role of the retinoid signalling pathways is especially pronounced, because interference of environmental chemicals does not have to be mediated via the molecular initiating events of the nuclear receptors (RARs and RXRs) directly, but could interfere with the endogenous retinoid homeostasis, e.g. by altering RA degradation (via CYP26 enzymes) or its biosynthesis (via ALDH and/or RALDH).

Sources of retinoids in surface water - exposure

Whilst retinoids are an intrinsic part of the diet for terrestrial animals and humans, aquatic animals in particular may be susceptible to involuntary exposure to excess retinoids at critically sensitive early-life stages [79] due to the prevalence of retinoid sources, both natural - cyanobacteria (blue-green algae) in eutrophic (fresh)water ecosystems [249–252] - and/or anthropogenic - wastewater discharge [253].

Retinoid-like activities in environmental matrices mediated via RAR or RXR can be measured by in vitro receptor transactivation assays, similar to ER and AR (see “Infobox”). In fact, ligand binding to specific nuclear receptors that leads to the transcription of target genes which, in the case of reporter assays, govern the expression of an easily detectable (e.g. luciferase) product, has become the method-of-choice for recent screening programmes targeted at uncovering endocrine activities of chemicals in a high-throughput manner [254–256]. The signal reflecting the extent of receptor transactivation can be quantified relative to the reference ligand (atRA for RAR, 9cRA for RXR) [257–259]. Detected retinoid-like activity for the different types of samples is expressed as equivalent concentration of the reference ligand that would cause the same response. These retinoic acid equivalent concentrations integrate the potential of a given mixture to activate the transcriptional response of the receptor and are more informative than targeted analyses for a limited set of compounds.

Cyanobacteria

An important source of retinoids to surface waters is cyanobacterial blooms in eutrophic freshwater ecosystems. Anthropogenic eutrophication of water bodies is driven by agricultural activities and insufficient removal of nutrients (mainly nitrogen and phosphorus) from communal wastewaters [260, 261]. The ability of cyanobacteria to fix dissolved carbon dioxide \((\text{HCO}_3^-)\) by photosynthesis makes their occurrence independent of bioavailable carbon [262]. Together with global climate change, these are the biggest factors enhancing cyanobacterial blooms in (fresh-)water environments [260, 263]. As a result, the limiting nutrients are bioavailable inorganic nitrogen (nitrate, \(\text{NO}_3^-\)) and phosphorous (phosphate, \(\text{PO}_4^{3-}\)) [261]. These nutrients are further concentrated in long, dry warm periods in summer, that are increasing with, and exacerbated by, global climate change. Evaporation and increased abstraction from surface water bodies leads to increasing water temperatures especially in shallow surface waters, further fuelling the development of cyanobacterial blooms [264–266]. Greater abstraction will also be expected with the growth in human population. In addition, climate change increases the frequency and size of flooding events which, in turn, (a) increase sediment loss to surface water (which is a key mechanism via which phosphorus enters water [267]) and (b) promote resuspension of nutrient-laden benthic sediment, both of which further exacerbate cyanobacterial blooms [268]. Besides being an integral part of the aquatic ecosystem, cyanobacteria produce a large variety of secondary metabolites, many of which show bioactive or even toxic properties [269, reviewed in 270]. Amongst others, cyanobacterial bloom biomass and affected waters were shown to contain retinoids, elicit retinoid-like activity in vitro, and to cause in vivo...
teratogenic effects in *Xenopus laevis* tadpoles and *Danio rerio* embryos, which implies relevance towards wildlife populations [79, 249, 251, 252, 271–275]. Although algae contain retinoids at comparable levels in their biomass to cyanobacteria [251, 271, 274], it is the latter that are major contributors to retinoids in surface waters due to their proliferation. While the occurrence of cyanobacteria themselves is natural, their hazardous massive blooming events are strongly driven by human actions making it an “anthropo-natural” phenomenon.

European and Asian environmental case examples

The chemical assessment of environmentally occurring retinoids or a quantification of retinoid-like activity is a monitoring data gap. However, the few studies systematically analysing water samples reveal highly concerning levels of retinoids or their activity.

Measured in Czech lake waters, retinoid-like activities reached up to 263 ng atRA equivalent (REQ) × L$^{-1}$ [249]. While this concentration does not exceed the nominal EC20 of atRA in zebrafish embryos, total bloom biomass extracts did cause teratogenic effects at these concentrations [272]. This indicates that environmental retinoids extend beyond atRA and 9cRA. Indeed, a broad spectrum of retinoids has been detected in field samples of cyanobacterial blooms and their surrounding water, as well as in laboratory cultures and their exudates [84, 249, 251–253, 271, 275, 276]. Among the retinoids detected are retinoic acids (atRA, 9cRA, 11cRA, 13cRA), RA derivatives (5,6-epoxy atRA, 7-hydroxy atRA, 4-oxo atRA, 4-oxo 9cRA, 4-oxo 13cRA), retinal and its derivatives (all-trans retinal, all-trans 4-oxo retinal) [249, 251–253, 271, 272, 276]. However, the chemical analysis of retinoids could not entirely explain the retinoid-like bioactivity observed in the biological assays, hence it underestimates the endocrine active potential arising from these waters.

Besides occurring in cyanobacterial blooms, retinoids also enter the environment via wastewater effluents [reviewed in 253]. Humans, as well as animals, excrete retinoids most often as 4-oxo derivatives [277–279]. Even though retinoids are sensitive to oxidation and isomerization processes that significantly alter their activity, in municipal wastewater treatment plants the treatment efficiency may not be sufficient for their complete removal and, consequently, retinoids can be released to the receiving water bodies at concentrations of up to 11.5 ng REQ × L$^{-1}$ [253, 271, 280–283]. Amongst the detected isomers, oxidized (i.e. 4-oxo-) derivatives of retinoic acids dominate over the parent compounds. Besides dietary excreted retinoids, pharmaceutical retinoids (tretinoin (atRA), altretinoin (9cRA), isotretinoin (13cRA), bexarotene, and others; pharmaceutical use: cancer, acne (≥ 0.5 mg isotretinoin/kg/days), eczema treatment [222, 284, 285]) and cosmetically used retinoids (retinol, retinyl palmitate, retinyl acetate; cosmetic use: body lotion ($\leq 0.05\%$ retinol equivalent), hand/face cream or rinse-off products ($\leq 0.3\%$ retinol equivalent) [279, 286]) can be excreted into wastewaters or washed-off after topical application. The use of retinoic acid in cosmetics is restricted within the EU and Norway [70, 286, 287], recommendations are provided by the European Medical Agency, with respect to oral use of the retinoid containing medicinal products in pregnancy, and also for those suffering from neuropsychiatric disorders [222]. The potential contribution routes to retinoid compounds in surface waters are also summarized in Fig. 3.

Anthropogenic and natural endocrine-active substances

The presence of unregulated endocrine-active substances (EAS), like retinoids, in waters raises the questions: to what extent do they contribute to mixture effects? Do we need to update the assessment of water safety for human consumption? To date, EAS in the environment are managed by regulating their commercial release: the manufacturer is responsible for correct labelling of the product and has to assure an acceptable risk of the active ingredient, or the preparation, to the environment. While this management scheme covers anthropogenic releases of chemicals, it cannot capture natural sources that contribute to the cumulative effects observed in the environment in situ. Hence, it does not reflect the need to tackle mixture effects in the environment directly or just before release of complex mixtures like waste water effluents into the environment [288–291].

The European Union’s visionary concept of water legislation, encompassed in the Water Framework Directive (WFD, [291]), the Urban Waste Water Treatment Directive [288, 292], the Nitrates Directive [293], and the Drinking Water Directive [DWD, 294], aims to secure safe drinking water now and for future generations. However, the demand for water, for nutritional, recreational and agricultural purposes, increasingly challenges water supply managers and may require switching to less-favourable water sources to provide the consumers with the desired supply [295, 296].

To meet the high expectations for surface and drinking water safety, a holistic assessment at the point of abstraction for drinking water, including sub-acute and/or longer-term effects of EAS and putative endocrine disruptors, rather than managing only anthropogenic inputs of active substances (e.g. pesticides, fertilizers, pharmaceuticals) to the environment would be beneficial for risk assessment and more reflective of the true burden of EAS exposure via drinking water [44, 290, 297, 298].
Table 2 Summary weight-of-evidence matrix for retinoid signalling perturbation by environmental contaminants

Associated condition	Line of evidence, uncertainties, and limitations	Biological relevance (B), strength (S) of the study, and correlation of data (Corr.)	Reliability of the source and “test system” with respect to human health	Conclusion: incl. identification of data gaps
Developmental effects (teratogenicity, malformations)	Various (see Table 1); strongest associations are supported by in vivo loss-of-function and developmental toxicity/teratogenicity studies in, amongst others, mammals, fish and amphibians (also recently reviewed in [103])	B: ++, S: ++	Very high	
Affective disorders	RAS contributes to the development of mood changes, aggressive behaviour, depression, and/or suicidal thoughts [177, 222, 223, 232, 234]	B: +, S: +	Very high (confirmed independently multiple times in human and rodent studies)	Though a comment on the association of 13cRA with affective disorders is included on medication labelling, the causal link is not definitively established yet
Mood changes, aggressive behaviour, depression, and/or suicidal thoughts [222] (Basis for decision to include it on the label is not provided.)	B: -, S: ++, Corr.: ?/↑	Very high (official note for isotretinoin treatment); human		
Depression and suicidal behaviour [223] Systematic review; many of the sources are reported to be of limited use to the review, esp. with respect to suicidal thoughts	B: +, S: +, Corr.: 0/↓	High (systematic review); human	A trend, but no statistically significant correlation between depression/suicidal thoughts and 13cRA treatment, but epidemiologic data are insufficient to draw associations esp. with respect to suicidal thoughts	
Depression [187, 234] Very thorough and broad studies, covering longer-term (28 days) and chronic (>100 days) exposure in adult/elderly rats; doses of 13cRA and aTRA reflect serum levels in human during 13cRA treatment. No histopathological examination was conducted	B: +, S: ++, Corr.: 0	Moderate (original research); rat	The data do not substantiate the hypothesis of 13cRA inducing depression. No effects were observed on behaviour, nor on monoamine levels in the brain. Observations differ from other studies perhaps due to interspecies variation	
Autism, schizophrenia, ADHD, depression	RA modulates the correct distribution of GABAergic interneurons in the prefrontal cortex via corticothalamic interaction [248] Focus on CYP26B1 (co-)detection with parvalbumin-positive GABAergic interneurons in the prefrontal cortex in mice. The study concludes on the role of thalamic signalling (controlling CYP26B1 expression) during interneuron maturation, not on RA signalling itself	B: 0, S: +, Corr.: ↑	Weak/moderate (original research); mouse	The study satisfactorily links altered corticothalamic influence on CYP26B1 expression in the prefrontal cortex, together with subsequently altered RA signalling, however, the study only indirectly assessed RA signalling
Associated condition	Line of evidence, uncertainties, and limitations	Biological relevance (B), strength (S) of the study, and correlation of data (Corr.)	Reliability of the source and "test system" with respect to human health	Conclusion: incl. identification of data gaps
----------------------	---	---	---	---
Schizophrenia	CYP26B1 mutation in humans is a risk factor for schizophrenia [240, 247]. Genome-wide association study (GWAS) including 36,989 cases of schizophrenia and 113,075 controls, and a multi-laboratory combined cohort of 153 patients vs. 153 controls examined for gene expression changes. While both studies identified CYP26B1 as a potential schizophrenia risk factor, other enzymes in the RAS cascade/pathway (e.g. RALDH, RARs, RXRs) were not identified.	B: +, S: ++, Corr: 0/↑	High (genome-wide association study, large cohort); human	Identification of 108 conservatively defined loci of genome-wide significance towards schizophrenia, including CYP26B1 (rank 74). While GWAS is a powerful tool to uncover rare mutations and genetic risk factors, the causal link needs to be confirmed in mechanistic studies.
	RAS is disrupted in schizophrenia [497] GWAS on Australian Schizophrenia Research Bank cohort (425 schizophrenia cases and 251 controls included in study). The polygenic risk score of 22 retinoid genes was significantly associated with the disorder. In addition, a rare variation in the gene encoding RARβ was associated with severe cognitive deficits.	B: +, S: ++, Corr: ↑	High (genome-wide association study, large cohort); human	The study strengthens the link between neurological disease, particularly schizophrenia with cognitive deficits, and disturbed (decreased) retinoid signalling. This study paves the way for preventive or therapeutic use of retinoids in schizophrenia, though responsiveness of cognitive symptoms needs to be investigated individually first.
Learning disabilities	Prolonged post-natal vitamin A deficiency decreases RAS and RAR expression in the brain [153]. Vitamin A deficiency simulated age-related decline of RAS in mice (C57BL6.Jico). Unlike in age-related decline in function, RA treatment (150 µg/kg) could not rescue the effects to control levels. The results need to be taken with caution; the trends observed in treated and control mice are very similar.	B: +, S: 0, Corr: ↑	Moderate (original research); mouse	Vitamin A deprivation during adolescence is associated with a sustained decrease in learning/memory function and, which cannot be rescued by RA treatment. These results need further investigation and independent reproduction.
Table 2 (continued)

Associated condition	Biological relevance (B), strength (S) of the study, and correlation of data (Corr.)	Reliability of the source and “test system” with respect to human health	Conclusion: incl. identification of data gaps
Decreased retinoid signaling impairs locomotion [226]	B: +, S: +, Corr: ↑	Moderate/high (original research); mouse	This study is amongst the first to link retinoid signalling and cognitive function mechanistically. Follow-up studies based on these initial findings have been conducted, though the link is still not understood entirely
Open field behaviour of morphologically and histologically normal mutant mice (RXRβ–RXRγ double null or single mutant and WT) was observed. Double null mutants showed impaired locomotion. Additionally, double mutants (but not single-mutants) showed a decreased striatal expression of dopamine receptors, which are involved in voluntary movement. Though the authors are addressing mechanistic endpoints (retinoid and dopamine receptors), the mechanistic investigation is insufficient.			
RARα modulates synaptic plasticity and affects hippocampal learning [174]	B: ++, S: +, Corr: ↑	High (original research); mouse	Hippocampal RARα deletion enhances spatial learning but decreases learning flexibility. In this study, RARα alters AMPA receptor expression indirectly by an intermediate pathway rather than having direct transcriptional/translations effects. The conflicting observation between initial learning and memory modification, and its implications for cognitive performance has to be investigated further. This publication may contribute to teasing out the reasons for apparently conflicting findings regarding retinoid signalling in cognitive functions.
In mice (homozygous RARα floxed mice, C57BL/6 background. 10 days environmental enhancement in young adults before assessment at PND 60-70), deletion of RARα in hippocampal circuits blocks homeostatic synaptic plasticity and enhances long-term potentiation via/together with mTOR. The Morris water maze was used to assess memory/learning capacity (RARα KO mice performed better than WT) and for reversal learning/memory modification testing (RARα KO mice performed worse than WT). The results are the first to look into stable (i.e. not chronically suppressed) synaptic plasticity, which makes comparisons to other studies difficult.			
Table 2 (continued)

Associated condition	Line of evidence, uncertainties, and limitations	Biological relevance (B), strength (S) of the study, and correlation of data (Corr.)	Reliability of the source and "test system" with respect to human health	Conclusion: incl. identification of data gaps
Dementia/neurodegenerative diseases	Modulation of RAS contributes to Parkinson’s disease (PD) by modulating the dopaminergic system. [498] No statistically significant correlation between vitamin A/carotene blood levels and PD was identified in the pooled dataset; significant associations detected only in case-studies. Out of 362 potentially relevant papers, the sample size included in the meta-analysis was low (n = 8 studies)	B: ++, S: -, Corr.: 0 Very high (23-y. epidemiology-based meta-analysis)	Epidemiological data on the association of PD with vitamin A/carotenoid blood levels are insufficient to draw conclusions; recommended reporting schemes for epidemiological data need to be followed	
Age-related memory deficit in mice (C57BL6 Jico) due to decreased RAS associated with decreased RAR expression [153, 203]	Observations are clearly linked to RAS and RAR activity due to the experimental design	B: +, S: ++, Corr. ↑ Moderate (original research), mouse	Age-related, but not postnatal vitamin A deficiency-induced, decline in RAS and learning/memory could be restored to normal adult levels by subcutaneous injection of 150 µg RA/kg bw. These results need independent reproduction	

AMPA: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, KO: knock out, mTORC1: mammalian target of rapamycin, PD: Parkinson’s disease, PND: post-natal day, RA: retinoic acid, RAR: retinoic acid receptor, RAS: Retinoic acid signalling/retinoid signalling, RXR: retinoid X receptor, WT: wild type. +: relevant/strong/reliable line of evidence, 0 neutral, - not relevant/strong/reliable line of evidence. "Biological relevance" is interpreted as: “the working hypothesis to be tested is scientifically sound”. Strength is interpreted as: “the tools to investigate the hypothesis are fit-for purpose”. Arrows indicate if the results of the study support the hypothesis (positive correlation, ↑), contradict the hypothesis (negative correlation, ↓), are neutral (no correlation/effect, 0), a trend was observed but no statistical significance (0/↑; 0/↓), or are still under development (?)
The impact of substances such as pesticides, fertilizers, and pharmaceuticals upon the growth of cyanobacterial blooms causing increased “anthropo-natural” retinoid production is also a critical factor to include in the hazard and risk assessment process.

Discussion - implications for risk assessment

We have presented evidence here indicating that altered endogenous retinoid signalling is plausibly implicated in a variety of major public health areas of concern. In particular these include brain and neurodegenerative conditions such as Parkinson’s disease, dementia, schizophrenia, and depression (see sections “Contribution of retinoids to chronic neurological disorders”–“Schizophrenia”, Tables 1 and 2), as well as developmental effects. However, the available evidence causally linking these diseases with aberrant retinoid signalling is currently weak - particularly with respect to environmental exposure.

Retinoids in the form of vitamin A and its precursors are essential nutritional requirements, and it is well established that too little or too much can lead to adverse health outcomes. Whilst vitamin A dietary reference values are clearly specified [70, 72, 97], these are advisory and on the whole are not controlled by regulatory bodies, with the exception of fortified functional/novel foods, where fortification can impact upon vulnerable populations, as for example, with infant formula [71].

Retinoid-based orally administered pharmaceuticals can also contribute to the daily exposure, while not being accounted for by nutritional reference values [222]. Critical limitations in attributing altered retinoid signalling to environmental exposure are the lack of monitoring of retinoid compounds and virtual absence of effect-based screenings for retinoid-like activity, even though monitoring reports from the Czech Republic and Asia indicate significant (anthropo-)natural sources of retinoids [249–252, 271]. This data gap is aggravated by the retinoid signalling pathway not (yet) being included as a contributory pathway that can be adequately assessed by standardized test methods, as part of endocrine disruption hazard assessment and by the unknown hazards related to environmental mixtures of anthropogenic contaminants and (anthropo-)natural compounds adversely interfering with this pathway. Retinoid signalling is directly involved (via RAR) in a multitude of developmental, neurological and repair processes as well as indirectly via the universal heterodimerization partner RXR. This contributes to the non-linear intercommunication web of cause–effect relationships that are observed upon disturbed retinoid signalling and additionally allows pleiotropic effects through crosstalk with other pathways such as TR [114], or PPARβ/δ signalling [113] and steroidogenesis [7]. In addition, the substantial evidence for the teratogenicity of retinoids is usually addressed under developmental toxicity hazard assessment, rather than endocrine disruption per se (see Table 1), whilst the proposed adverse outcomes in relation to spermatogenesis and male reproduction [summarized in 13], fall under reproductive toxicity, and the biologically plausible hypothesis of involvement in the development and manifestation of neurological disease, under (developmental) neurotoxicity (see Table 2). Furthermore, the elucidation of the link between neurological disease and altered RA signalling also requires more basic investigation into the role of retinoid signalling in the brain (using experimental models and clinical investigations) together with population-based studies - as has been done, e.g. for polychlorinated biphenyls [299, 300]. This would need a characterization of the exposure to compounds with potential retinoid signalling disruptive effects - as depicted in Table 2.

In addition to hazard assessment, the characterization and quantification of environmental levels of retinoid compounds and retinoid-like activity is key for the exposure evidence base needed to assess whether they are likely to pose a risk to the environment and human health. This needs to include a consideration of exceedance of vitamin A nutritional requirements and dietary sources of exposure. (Anthropo-)natural sources of EAS such as cyanobacterial blooms often exhibit pronounced cyclic recurrent (i.e. seasonal, non-continuous) patterns [270, 301]. Consequently, derived exposure limits should consider intermediate longer-term values in addition to lifetime-daily exposure, such as seasonal, monthly, or weekly exposure. This has been recently proposed and conducted by the WHO for a few selected cyanobacterial toxins [270]. In surface waters, wastewater treatment and pharmaceuticals upon the growth of cyanobacterial blooms causing increased “anthropo-natural” retinoid production is also a critical factor to include in the hazard and risk assessment process.

Besides recognizing the occurrence of endocrine disruptors in the environment, it is also critical to develop more accurate tools to assess their potential impact and hence any associated risk. In the case of interference with retinoid signalling, this means mainly to direct research efforts into the augmentation of already existing test
guidelines and the validation of (non-animal alternative) methods for regulatory testing of retinoid signalling pathway disruption, which is already initiated at international intergovernmental levels (see “Introduction” section).

In addition to distinct test methods, AOPs are being developed with the intention of regulatory applications, to convey biologically plausible hierarchical structures of causes, effects, and outcomes from basic research to regulatory actions. It is important to refine and strengthen AOPs under development for retinoid signalling disturbance [13, 303]. Besides only linking the sequential “event-train”, recent efforts to define tipping points for transition between key events could make AOPs become quantitative, thus more useful for computational predictive approaches [21, 303, 304]. An analogous approach to AOPs has also been taken in exposure science with aggregate exposure pathways (AEPs). They aim to summarize exposure from different sources, and integrate target site exposure, e.g. at a receptor in the tissue [305]. AEPs take into account potential environmental or metabolic transformation of a substance or cumulative effects of structurally similar substances in mixtures and are inclusive to substances of natural origin that may contribute to target site effects [305, 306]. The integration of exposure and effect assessment is also called for by European partnerships to achieve the ambitious goals laid out in the WFD [307].

Substances of emerging concern often show endocrine activity and/or are candidate endocrine disruptors [308, 309]. Although not intended, these substances often find their way into the environment, and, most importantly their environmental occurrence is augmented by human actions [309]. For the sustainable development of society, we need to recognize our environmental impact and try to retain or re-establish the delicate balance of maintaining and protecting landscapes and ecosystems (see Fig. 3). Only then will we be able to achieve the visionary milestones identified and articulated, e.g. by the United Nations Organization as the “Sustainable Development Goals” [310, Goal 6: “Clean water and sanitation”], by the European Commission in water-related directives (e.g. WFD [291], DWD [294]) and, most recently, by the European Green Deal, which aims at ensuring a “toxic-free environment”, including a zero pollution approach and the development of an action plan regarding endocrine disruptors in the environment and circular economies [311]. With respect to mixtures in the environment, it was recently proposed to combine all EU chemical-related legislation, independent of the use scenario, in order to allow an inclusive mixture impact assessment [312]. A further proposal is to formulate “human health protection goals”, similar to the protection goals defined in the WFD for aquatic environments, with respect to involuntary and cumulative exposure to chemicals [312].

Conclusion

Here, we have presented the (anthropo-)natural occurrence of retinoids in freshwater environments as a case study example to highlight the importance of regulatory recognition of non-EATS endocrine disruption pathways,
specifically the retinoid signalling pathway. Elaborating on diffuse and especially (anthropo-)natural sources of these teratogenic EAS, we highlight the necessity of including exposure to mixtures from different environmental media and evaluating environmental and human health impacts of compounds, irrespective of and independent to their initial use, e.g. biocide/plant protection product; environmental matrices like water or soil are indifferent to the use-case of a product.

The (anthropo-)natural occurrence and production of retinoids in water bodies in addition to anthropogenic sources suggests a human health hazard. However, due to insufficient data on environmental levels of retinoids, especially spatio-temporal screening data, an adequate risk assessment cannot be conducted to date. Future monitoring studies need to take into account both point sources such as wastewater treatment plants and diffuse (anthropo-)natural sources of EAS that include retinoids.

The retinoid signalling pathway is conserved at least across vertebrates and plays a pivotal role during prenatal development, such that its disturbance can cause teratogenic effects that range from mild malformations across vertebrates and plays a pivotal role during prenatal development, such that its disturbance can cause teratogenic effects that range from mild malformations to lethality. Phenotypically similar developmental defects were observed in aquatic vertebrates exposed to environmental cyanobacterial bloom extracts with retinoid-like activity.

Postnatal roles of retinoids include epithelial integrity and spermatogenesis, and retinoid signalling disruption may play a role in the epidemic of neurological and neurodegenerative disease. A preliminary weight-of-evidence matrix for the association of disturbed retinoid signalling with neurological disease was presented to flag uncertainties in the experimental design or the biological link, however despite biological plausibility, the weight of evidence to date is insufficient to support the causality of retinoid signalling disturbance in neurological diseases.

Also, agonistic/antagonistic and additive actions that are not covered by the current assessment methods may occur due to the high degree of molecular cross-talk between different endocrine signalling pathways, as depicted for example for RXR.

To strengthen the retinoid relevant AOPs for regulatory applications, future toxicological studies need to further address and elucidate the toxicological tipping points from one key event to the next. Understanding the adaptive stress response in a concentration and time-dependent manner is crucial to derive not only acute and chronic (i.e. life-time daily) exposure limits, but also more realistic prolonged-short time exposure limits that, for example, reflect seasonal variations in exposure scenarios as recently conducted by WHO [270], although retinoids are not currently included in this proposed approach. It may also lead to a better understanding of life-stage and gender differences in toxic effects. The development of high-throughput methods and an increasing number of validated non-animal methods will enable more rapid and efficient understanding of these differences that could ultimately contribute to safer waters in the future - for humans and ecosystems.

Abbreviations

9cRA: 9-cis Retinoic acid; alitretinoin; 13cRA: 13-cis Retinoic acid; isotretinoin; AD: Alzheimer’s disease; AEP: Aggregate exposure pathway; AOP: Adverse outcome pathway; AR: Androgen receptor; atRA: All-trans retinoic acid; tretinoin; BDNF: Brain-derived neurotropic factor; CAR: Constitutive androstane receptor; CNS: Central nervous system; CYP26: Cytochrome P450 monooxygenase subfamily 26 (detoxifying enzyme); D1R, D2R: Dopamine receptors 1 and 2; DWD: Drinking Water Directive; EAS: Endocrine-active substances; EATS: Sex hormone (oestrogen, androgen) receptors, stereoidogenesis, and thyroid hormone signalling; EC: European Commission; EC20: Effective concentration affecting 20% of the tested population; ER: Oestrogen receptor; GABA: γ-Amino butyric acid; OECD: Organisation for Economic Co-operation and Development; PPAR: Peroxisome-proliferator activated receptor; PXR: Pregnane X receptor; RA: Retinoic acid; RALDH: Retinal dehydrogenase; RAR: Retinoic acid receptor; RARE: Retinoic acid-responsive element; REQ: atRA equivalent; RXR: Retinoid X receptor; TG: Test guideline; TH: Thyroid hormone; TR: Thyroid hormone receptor; VAD: Vitamin A (retinol) deficiency; VDR: Vitamin D receptor; WFD: Water Framework Directive; WHO: World Health Organization.

Acknowledgements

Not applicable.

Disclaimer

The opinions are those of the authors’ and not necessarily the organisations’ involved. The European Union’s Research Executive Agency cannot be held responsible for any use that may be made of the information it contains.

Authors’ contributions

Conceptualization: BK, CR, KH, MNJ. Methodology: BK, MNJ. Writing - original draft preparation, BK. Writing - review and editing: MNJ, KH, CR, and BK. Supervision: MNJ and KH. Funding acquisition: KH, CR. All authors read and approved the final manuscript.

Funding

The research has received funding from the Czech Science Foundation, Czechia, project No. 18-151995, the RECETOX Research Infrastructure (Projects LM2018121 and the CETOCOEN EXCELLENCE Teaming 2 project supported by European Union’s Horizon 2020 (857560) and the Czech Ministry of Education, Youth and Sports (02.1.01/0.0/0.0/18_046/0015975)), the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 722493 NaToxAq (BK), and grant agreement No. 825753 ERGO (KH). MNJ was supported by Public Health England, CR did not receive specific funding for this study. The European Union’s Research Executive Agency was not involved in any step of the study design.

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest. MNJ is on the Scientific Advisory Board of ERGO.

Author details

1 Masaryk University, Faculty of Science, RECETOX, Kamenice 753/5, 62500 Brno, Czech Republic. 2 Fera Science Ltd. (Fera), Sand Hutton, York, UK.
References

1. European Commission (2018) Commission Regulation (EU) 2018/605 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. https://doi.org/10.2903/j.efsa.2013.3132
2. EFSA, ECHA, with the technical support of the JRC, et al (2018) Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J 16:e05311. https://doi.org/10.2903/j.efsa.2018.5311
3. OECD GD 150 (2018) Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption
4. La Merrill MA, Vandenberg LN, Smith MT et al (2020) Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol 16:45–57. https://doi.org/10.1038/s41574-019-0273-8
5. Crain DA, Rooney AA, Orlando E, Guillette LJ (2000) Endocrine disruptor contaminants and hormone dynamics: lessons from wildlife. In: Guillette LJ, Crain DA (eds) Environmental endocrine disruptors: an evolutionary perspective. Taylor & Francis, New York, p 355
6. Schug TT, Johnson AF, Birnbaum LS et al (2016) Minireview: endocrine disruptors: Past Lessons and Future Directions. Mol Endocrinol 30:833–847. https://doi.org/10.1210/me.2016-1096
7. Jacobs MN (2005) Nutrients and cell signaling. CRC Press, New York
8. OECD DRP 97 (2008) Detailed Review Paper on the use of metabolising systems for in vitro testing of endocrine disruptors. In: OECD Series on Testing and Assessment. OECD, p 213
9. OECD DRP 178 (2014) Detailed Review Paper on the state of the science on novel in vitro and in vivo screening and testing methods and endpoints for evaluating endocrine disruptors. In: OECD Series on Testing and Assessment. OECD
10. OECD (2017) New scoping document on in vitro and ex vivo assays for the identification of modulators of thyroid hormone signalling. In: OECD Series on Testing and Assessment, No. 207
11. Geally JM, Jacobs MN (2013) In vitro and in vivo testing methods of epigenomic endpoints for evaluating endocrine disruptors. Altex 30:445–471. https://doi.org/10.14573/altex.2013.4.445
12. Jacobs MN, Marzyclo EL, Guerrero-Bosagna C, Ugg Jr (2017) Marked for life: epigenetic effects of endocrine disrupting chemicals. Annu Rev Environ Resour 42:1–23. https://doi.org/10.1146/annurev-environ-161016.100001
13. Nilsson C (2020) Retinoids in Mammalian Reproduction, with an Initial Scoping Effort to Identify Regulatory Methods. TemaNord 2020:507. Nordic Council of Ministers
14. Grignon E, Hakansson H, Munn S (2020) Regulatory needs and activities to address the retinoid system in the context of endocrine disruption: the European viewpoint. Reprod Toxicol 99:250–258. https://doi.org/10.1016/j.reprotox.2020.03.002
15. Jacobs MN, Lawes SC, Willett K, et al (2013) In vitro metabolism and bioavailability tests for endocrine active substances: What is needed next for regulatory purposes? Altex 30:331–351. https://doi.org/10.14573/altex.2013.3.331
16. Jacobs M, Janssens W, Bernauer U et al (2008) The use of metabolising systems for in vitro testing of endocrine disruptors. Curr Drug Metab 9:796–826. https://doi.org/10.2174/138900808786049294
17. Vandenbrouck LN, Colborn T, Hayes TB et al (2012) Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev 33:378–455
18. Bergman Å, Heindel JJ, Jobling S et al (2013) Endocrine disruptors and metabolic disorders. State Sci Endocr Disrupt Chem 2012:296
19. Marczyno EL, Jacobs MN, Gant TW (2016) Environmentally induced epigenetic toxicity: potential public health concerns. Crit Rev Toxicol 46:676–700
20. Legler J, Zalko D, Jourdan F et al (2020) The GOLIATH project: towards an internationally harmonised approach for testing metabolism disrupting compounds. Int J Mol Sci 21:3480. https://doi.org/10.3390/ijms21103480
21. Jacobs MN, Colacci A, Corvi R et al (2020) Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Arch Toxicol 1:3. https://doi.org/10.1007/s00204-020-02784-5
22. Bergman Å, Heindel JJ, Kasten T et al (2013) The impact of endocrine disruption: a consensus statement on the state of the science. Environ Health Perspect. https://doi.org/10.1289/ehp.1205448
23. Schug TT, Janesick A, Blumberg B, Heindel JJ (2011) Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 127:204–215
24. Li M, Sun Y, Guan X et al (2014) Advanced progress on the relationship between RA and its receptors and malignant tumors. Crit Rev Oncol Hematol 91:271–282
25. Stoj J, Legler J (2015) The role of epigenetics in the latent effects of early life exposure to obesogenic endocrine disrupting chemicals. Endocrinology 156:3466–3472. https://doi.org/10.1210/endo.2015-1434
26. Heindel JJ, Blumberg B, Cave M et al (2017) Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 68:3–33. https://doi.org/10.1016/j.reprotox.2016.10.001
27. Trasande L, Blumberg B (2018) Endocrine disruptors as obesogens. In: Contemporary Endocrinology. Humana Press Inc., pp 243–253
28. Jacobs MN, Colacci A, Louekari K, et al (2016) International regulatory needs for development of an IATA for non-genotoxic carcinogenic chemical substances. Altex 33:359–392. https://doi.org/10.14573/altex.1601201
29. Murphy KA, Villano CM, Dorn R, White LA (2004) Interaction between the aryl hydrocarbon receptor and retinoic acid pathways increases matrix metalloproteinase-1 expression in keratinocytes. J Biol Chem 279:25284–25293. https://doi.org/10.1074/jbc.M402168200
30. Gormley Á, Pollard S, Rocks S, Black E (2011) Guidelines for Environmental Risk Assessment and Management – Green Leaves III
31. Scientific Committee EFSA, More SJ, Bampidis V et al (2019) Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J 17:77. https://doi.org/10.2903/j.efsa.2019.5634
32. EURON (2018) Improving Identification of Endocrine Disruptors. https://eurion-cluster.eu/. Accessed 24 Feb 2020
33. Jobling S, Beresford N, Nolan M et al (2002) Altered Sexual Maturation and Gamete Production in Wild Roach (Rutilus rutilus) Living in Rivers That Receive Treated Sewage Effluents1. Biol Reprod 66:272–281. https://doi.org/10.1095/biolreprod.66.2.272
34. Tyler CR, Jobling S, Sprister JP (1998) Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol 28:319–361
35. Semenza JC, Tolbert PE, Rubin CH et al (1997) Reproductive toxins and reproductive endpoints for evaluating endocrine disruptors. Altex 33:359–392. https://doi.org/10.14573/altex.1601201
36. Purdom CE, Hardiman PA, Bye VJ et al (1994) Estrogenic Effects of Effluents from Sewage Treatment Works. Chemistry and Ecology 8:275–285. https://doi.org/10.1080/02757549408038554
37. Harris CA, Hamilton PB, Runnalls TJ et al (2011) The consequences of feminization in Breeding groups of wild fish. Environ Health Perspect 119:306–311. https://doi.org/10.1289/ehp.1002555
38. Jobling S, Nolan M, Tyler CR et al (1998) Widespread sexual disruption in wild fish. Environ Sci Technol 32:2498–2506. https://doi.org/10.1021/es9710870
39. Kidd KA, Blanchfield PJ, Mills KH et al (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci USA 104:8897–8901. https://doi.org/10.1073/pnas.0609568104
40. Shoee LS, Gurevitz M, Shemesh M (1993) Estrogen as an environmental pollutant. Bull Environ Contam Toxicol 51:361–366. https://doi.org/10.1007/BF00201753
41. Schwarz T, Katsiadaki I, Maskey BH, Scott AP (2018) Uptake and metabolism of water-born oestrogen by the mussel, Mytilus spp. (Mollusca). J Steroid Biochem Mol Biol 178:13–21. https://doi.org/10.1016/j.jsbmb.2017.10.016
42. Marty MS, Carney EW, Rowlands JC (2011) Endocrine disruption: historical perspectives and its impact on the future of toxicology testing. Toxicol Sci 120:593–5108. https://doi.org/10.1093/toxsci/kfq329

43. WHO/UNEP (2013) State of the science of endocrine disrupting chemicals - 2012: an assessment of the state of the science of endocrine disruptors prepared by a group of experts for the United Nations Environment Programme (UNEP) and WHO. ISBN: 978 92 4 150503 1

44. Solecki R, Kortenkamp A, Bergman Å et al (2017) Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement. Arch Toxicol 91:1001–1006. https://doi.org/10.1007/s00204-016-1866-9

45. OECD (2015) Test No. 493: Performance-Based Test Guideline for Human Recombinant Estrogen Receptor (hER) in Vitro Assays to Detect Chemicals with ER Binding Affinity, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. https://doi.org/10.1787/9789264242623-en

46. OECD (2015) Test No. 455: Performance-Based Test Guideline for Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgen Agonist and Antagonist Activity of Chemicals, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. https://doi.org/10.1787/9789264243040-en

47. OECD (2007) Test No. 440: Uterotrophic Bioassay in Rodents: A short-term screening test for oestrogenic properties, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. https://doi.org/10.1787/978926407417-1

48. OECD (2007) Guidance Document on the uterotrophic bioassay - procedure to test for Antioestrogenicity, ENV/JM/MONO(2007)15. JT03230411. In: OECD Series on Testing and Assessment. OECD Publishing, Paris. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2007)15&doclanguage=en

49. OECD (2020) Test No. 458: Stably Transfected Human Androgen Receptor Transcriptional Activation Assay for Detection of Androgen Agonist and Antagonist Activity of Chemicals, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. https://doi.org/10.1787/9789264264366-en

50. OECD (2011) Guidance Document on the androgenised female stickleback screen. JT03305970. ENV/JM/MONO(2011)129. In: OECD Series on Testing and Assessment: Testing for Endocrine Disrupters No. 148. OECD Publishing, Paris. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2011)129&doclanguage=en

51. OECD (2009) Test No. 441: Hershberger Bioassay in Rats: A Short-term Screening Test for Oestrogenic and Androgenic Activity, and Aromatase Inhibition, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. https://doi.org/10.1787/9789264076334-en

52. OECD (2009) Test No. 230: 21-day Fish Assay: A Short-term Screening for Oestrogenic and Androgenic Activity, and Aromatase Inhibition, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. https://doi.org/10.1787/9789264076228-en

53. OECD (2010) Validation report on the 21-day androgenised female stickleback screening assay. In: Series on Testing and Assessment: Testing for Endocrine Disrupters No. 128. ENV/JM/MONO(2010)19. OECD Publishing, Paris. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2010)19&doclanguage=en

54. Jolly C, Katsiadiki I, Morris S et al (2009) Detection of the anti-androgenic effect of endocrine disrupting environmental contaminants using in vivo and in vitro assays in the three-spined stickleback. Aquat Toxicol 92:228–239. https://doi.org/10.1016/j.aquatox.2009.02.006

55. Katsiadiki I, Morris S, Squires C et al (2006) Use of the three-spined stickleback (Gasterosteus aculeatus) as a sensitive in vivo test for detection of environmental antiandrogens. Environ Health Perspect 114:115–121. https://doi.org/10.1289/ehp.80683

56. Kurauchi K, Hisata T, Kinoshita M (2008) Characteristics of ChgH-GFP transgenic medaka lines, an in vivo estrogenic compound detection system. Mar Pollut Bull 57:441–444. https://doi.org/10.1016/j.marpolbul.2008.03.016

57. Kurauchi K, Nakaguchi Y, Tsutsumi M et al (2005) In vivo visual reporter system for detection of estrogen-like substances by transgenic medaka. Environ Sci Technol 39:2762–2768. https://doi.org/10.1021/es0486465

58. Spirhantlova P, Leleu M, Sibillot A et al (2016) Oestrogen reporter transgenic medaka for non-invasive evaluation of aromatase activity. Comparative Biochem Physiol 179:64–71. https://doi.org/10.1016/j.cbpc.2015.08.011

59. Brion F (2017) Draft report of the phase 1 validation study of the EASZY assay. In: National Institute of Industrial Environment and Risks (INERIS) Chronic Risk Division. France, pp 1–12

60. Kianitsa K, Maizels N (2013) A rapid and sensitive assay for DNA-protein covalent complexes in living cells. Nucleic Acids Res 41:e104. https://doi.org/10.1093/nar/gkt171

61. Sibillot A, Damdimopoulos P, Ogino Y et al (2014) Rapid fluorescent detection of (anti)androgens with spggin-gfp medaka. Environ Sci Technol 48:10919–10928. https://doi.org/10.1021/es5030977

62. Browne P, Judson RS, Casey WM et al (2018) Evaluation of androgen assay results using a curated Hershberger database. Reprod Toxicol 81:272–280. https://doi.org/10.1016/j.reprotox.2018.08.017

63. OECD (2011) Test No. 456: H29SR Steroidogenesis Assay, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. https://doi.org/10.1787/9789264122642-en

64. JRC (2017) Thyroid receptor microarray assay for real-time Nuclear Receptor-coregulator interaction] EURL ECVAM - TSAR. https://tsar.jrc.europa.eu/test-method/tm2017-02. Accessed 2 Jul 2020

65. OECD (2019) Test No. 248: Xenopus Eleutherobrionic Thyroid Assay (XETA), OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris. https://doi.org/10.1787/815c8f2ee-en

66. Fini JB, Le Mevel S, Turque N et al (2007) An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption. Environ Sci Technol 41:5908–5914. https://doi.org/10.1021/es074129

67. IUPAC (1983) Nomenclature of retinoids. Pure Appl Chem 55:721–726

68. SCCS (2016) Opinion on vitamin A (retinol, retinyl acetate, retinyl palmitate). Final version of 6 October 2016, CORRIGENDUM on 23 December 2016. SCCS/1576/16 1–85. https://doi.org/10.2875/642624

69. COT (2014) Committee on toxicity of chemicals in food, consumer products and the environment: statement on the potential risks from high levels of vitamin A in the infant diet. COT Statement 2015(03):1–28

70. PHE (2016) Government dietary recommendations. Government recommendations for energy and nutrients for males and females aged 1-18 years and 19 + years. PHE publications; Nutrition Science TeamNutrition Science Team

71. Maden M (2000) The role of retinoic acid in embryonic and post-embryonic development. Proc Nutr Soc 59:65–73

72. Maden M (1993) The effect of vitamin A (retinoids) on pattern formation implies a uniformity of development mechanisms throughout the animal kingdom. Acta Biotheor 41:425–445. https://doi.org/10.1007/BF0079375

73. Cunningham TJ, Duester G (2015) Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nat Rev Mol Cell Biol 16:110–123. https://doi.org/10.1038/nrm3932

74. Gardiner D, Ndayibagira A, Grün F, Blumberg B (2003) Deformed frogs and environmental retinoids. In: Pure and Applied Chemistry. De Gruyter, pp 2263–2273

75. Tzimas G, Nau H (2001) The role of metabolism and toxicokinetics in retinoid teratogenesis. Cyto Pharmac Des 7:803–831. https://doi.org/10.1017/S1381612001397708

76. Hendrickx AG, Peterson P, Hartmann D, Hummler H (2000) Vitamin A teratogenicity and risk assessment in the macaque retinoi
model. Reprod Toxicol 14:311–323. https://doi.org/10.1016/S0890-6238(00)00091-5
82. Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8:755–765. https://doi.org/10.1038/nrn2112
83. Allenby G, Bocquel MT, Saunders M et al (1993) Retinoid acid receptors and retinoid X receptors: interactions with endogenous retinoidic acids. Proc Natl Acad Sci USA 90:30–34. https://doi.org/10.1073/pnas.90.1.30
84. Priebojová J, Hilšerová K, Procházka T et al (2018) Intracellular and extracellular retinoid-like activity of widespread cyanobacterial species. Ecotoxicol Environ Saf 150:312–319. https://doi.org/10.1016/j.ecoenv.2017.12.048
85. De Lera ÁR, Krężel W, Rühl R (2016) An endogenous mammalian retinoid X receptor ligand, at Last! ChemMedChem 11:1027–1037. https://doi.org/10.1002/cmdc.201600105
86. Dawson ML, Xia Z (2012) The retinoid X receptors and their ligands. Biochem Biophys Acta 1821:121–56. https://doi.org/10.1016/j.bbalip.2011.09.014
87. Clark AK, Wilder JH, Grayson AW et al (2016) The Promiscuity of RDH10 oxidation of vitamin A is a critical step in synthesis of retinoidic acid during mouse embryogenesis. PLoS ONE 7:e30698. https://doi.org/10.1371/journal.pone.0030698
88. Ribes V, Wang Z, Dollé P, Niederreither K (2006) Retinoldehyde dehydrogenase 2 (RALDH2)-mediated retinoidic acid synthesis regulates early mouse embryonic forebrain development by controlling FGF and sonic hedgehog signaling. Development 133:351–361. https://doi.org/10.1242/dev.02024
89. Niederreither K, Vermot J, Schuhbaud B et al (2000) Retinoidic acid synthesis and hindbrain patterning in the mouse embryo. Development 127:75–85
90. Lucek RW, Colburn WA (1985) Clinical pharmacokinetics of the retinoids. Clin Pharmacokinet 10:38–62. https://doi.org/10.2165/00003495-198510000-00002
91. Shirakami Y, Lee SA, Clugston RD, Blaner WS (2012) Hepatic metabolism of retinoids and disease associations. Biochem Biophys Acta 1821:124–136
92. Blomhoff R, Blomhoff HK (2006) Overview of retinoid metabolism and function. J Neurobiol 66:606–630. https://doi.org/10.1002/neu.20242
93. Rodriguez-Concepcion M, Aválos J, Bonet ML et al (2018) A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93
94. Morris-Kay GM, Wardt DJ (1999) Retinoids and mammalian development. Int Rev Cytol 188:73–131. https://doi.org/10.1016/S0071-0266(08)56166-1
95. EFSA NDA (2015) Scientific opinion on dietary reference values for vitamin A. EFSA panel on dietetic products, nutrition, and allergies (NDA) EFSA J 13:4028. https://doi.org/10.2903/j.efsa.2015.4028
96. Germán P, Chambon P, Eichele G et al (2006) International union of pharmacology. LX. Retinoid acid receptors. Pharmacol Rev 58:712–725. https://doi.org/10.1124/pr.100.016852
97. Dar BC, Thapa P, Karki R et al (2014) Retinoidic acid signaling pathways in development and diseases. Bioorg Med Chem 22:673–683. https://doi.org/10.1016/j.bmcc.2013.11.025
98. Mouchon A, Delmotte M-H, Formstecher P, Lefebvre P (1999) Allosteric regulation of nuclear receptors by retinoid X receptor. J Physiol Pharmacol 50:289–298. https://doi.org/10.1016/S1097-2765(99)50012-1
99. Al Tanouzy Z, Piskunov A, Rochette-Egly C (2013) Vitamin A and retinoid signaling: genomic and nongenomic effects. J Lipid Res 54:1761–1775
100. Schug TT, Berry DC, Shaw NS et al (2007) Opposing effects of retinoid acid on cell growth result from alternate activation of two different nuclear receptors. Cell 129:723–733. https://doi.org/10.1016/j.cell.2007.02.050
101. Paul-Friedman K, Martin M, Crofton KM et al (2019) Limited Chemical Structural Diversity Found to Modulate Thyroid Hormone Receptor in the Tox21 Chemical Library. Environ Health Perspect 127:097009. https://doi.org/10.1289/EHP5314
102. Pascussi JM, Gerbal-Chaloin S, Duret C et al (2008) The tangle of nuclear receptors that controls xenobiobic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol 48:1–32. https://doi.org/10.1146/annurev.pharmaco.47.120505.103549
103. Kakizaki S, Karami S, Negishi M (2002) Retinoidic acids repress constitutive active receptor-mediated induction by 1,4-bis(3,5-dichloropyridyloxy)benzene of the CYP2B10 gene in mouse primary hepatocytes. Drug Metab Dispos 30:208–211. https://doi.org/10.1128/dmd.30.2.208
104. Dubusquoy L, Dharancy S, Nutten S et al (2002) Role of peroxisome proliferator-activated receptor γ and retinoid X receptor heterodimer in hepatogastroenterological diseases. Lancet 360:1410–1418
105. Hua S, Kittler R, White KP (2009) Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 137:1259–1271. https://doi.org/10.1016/j.cell.2009.04.043
106. Segars JH, Marks MS, Hirschfeld S et al (1993) Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways. Mol Cell Biol 13:2258–2268. https://doi.org/10.1128/mcb.13.4.2258
107. Rubin M, Fenig E, Rosenauer A et al (1994) 9-Cis retinoic acid inhibits growth of breast cancer cells and down-regulates estrogen receptor RNA and protein. Cancer Res 54:6549–6556
108. Rousset C, Nicholl JN, Pettersson F et al (2004) ERβ sensitizes breast cancer cells to retinoic acid: evidence of transcriptional crosstalk. Mol Cancer Res 2:523–531
109. Wang B, Yang Q, Harris CL et al (2016) Nutrigenomic regulation of adipose tissue development - role of retinoic acid: a review. Meat Sci 120:100–106. https://doi.org/10.1016/j.meatsci.2016.04.003
110. Schierle S, Merk D (2019) Therapeutic modulation of retinoid X receptors—SAR and therapeutic potential of RXR ligands and recent patents. Expert Opin Ther Pat 29:605–621. https://doi.org/10.1080/1354776.2019.1643322
111. Burt Wolbach S, Howe PR (1925) Tissue changes following deprivation of fat-soluble A vitamin. J Exp Med 42:753–778. https://doi.org/10.1086/jem.42.6.753
112. Hale F (1933) Pigs born without eye balls. J Hered 24:105–106. https://doi.org/10.1093/oxfordjournals.jhered.a103720
126. Green HN, Mellanby E (1928) Vitamin a as an anti-infective agent. BMJ 2:691–696. https://doi.org/10.1136/bmj.2.3537.691

127. Wilson JG, Roth CB, Warkany J (1953) An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin a at various times during gestation. Am. J. Anatomy 92:189–217. https://doi.org/10.1002/aja.1009920022

128. Thompson JD, Howell JM, Pitt GAJ, McLaughlin CI (1969) The biological activity of retinoid acid in the domestic fowl and the effects of vitamin A deficiency on the chick embryo. Br. J. Nutr. 23:471–490. https://doi.org/10.1017/S000711456900036X

129. Kalter H, Warkany J (1959) Experimental production of congenital malformations in mammals by metabolic procedure. Physiol. Rev. 39:69–115. https://doi.org/10.1152/physrev.1959.39.1.69

130. Kubickova et al. Environ Sci Eur (2021) 33:20

131. Wilson JG, Roth CB, Warkany J (1953) An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin a at various times during gestation. Am. J. Anatomy 92:189–217. https://doi.org/10.1002/aja.1009920022

132. WHO (2009) Global prevalence of vitamin A deficiency in populations at risk 1995–2005 WHO Global Database on Vitamin A Deficiency. World Health Organization, Geneva

133. Perez-Jimenez F, Perez-Círdano J, Sedano M, et al. (2014) Impact of vitamin A deficiency on the incidence of adverse outcomes in human pregnancy. J Obstet Gynecol Res 40:214–222. https://doi.org/10.1111/jog.12207

134. Sommer A, Djunaedi E, Loeden AA et al (1986) Impact of vitamin A deficiency on the chick embryo. Br. J. Nutr. 56:213–220. https://doi.org/10.1017/S0007114500006190

135. Brent GA (2012) Mechanisms of thyroid hormone action. J Clin. Investig. 124:164–172. https://doi.org/10.1172/JCI60047

136. Duester G (2008) Retinoic acid synthesis and signaling during lung morphogenesis. Development 135:3035–3043. https://doi.org/10.1242/dev.02834

137. Duester G (2008) Retinoic acid synthesis and signaling during early organogenesis. Cell 134:921–931. https://doi.org/10.1016/j.cell.2008.09.002

138. D’Aniello E, Waxman JS, D’Aniello E, Waxman JS (2015) Input overload: learning and memory impairment in adult mice: relationships with changes in brain retinoid signaling. Behav. Brain Res. 290:137–49. https://doi.org/10.1016/j.bbr.2015.06.012

139. D’Aniello E, Waxman JS, D’Aniello E, Waxman JS (2015) Input overload: learning and memory impairment in adult mice: relationships with changes in brain retinoid signaling. Behav. Brain Res. 290:137–49. https://doi.org/10.1016/j.bbr.2015.06.012

140. Etchamendy N, Enderlin V, Marighetto A et al (2003) Vitamin A deficiency and retinoic acid signaling during sciatic nerve injury: up-regulation of cellular retinoid binding proteins. Eur. J. Neurosci. 18:1033–1040. https://doi.org/10.1046/j.1460-9589.2003.02634.x

141. Vennstrom B, Diehl-Cohen M, Exner M, et al. (2012) Inhibition of the thyroid hormone transporter, monocarboxylate transporter 8 (Mct8). J. Biol. Chem. 287:14267–14284. https://doi.org/10.1074/jbc.M111.280345

142. Wendland K, Niss K, Kotarsky K et al (2018) Retinoid signaling in thymic epithelial cells regulates thymopoiesis. J. Immunol. 201:524–532. https://doi.org/10.4049/jimmunol.1800148

143. Woodrow BA (1984) Vitamin A in animal and human nutrition. In: The Retinoids. Elsevier, pp 281–392

144. Topletz AR, Tripathy S, Foti RS et al (2015) Induction of CYP26A1 by metabolites of retinoic acid: evidence that CYP26A1 is an important enzyme in the elimination of active retinoids. Mol. Pharmacol. 87:430–441. https://doi.org/10.1124/mol.114.10967834

145. Samarat E, Fraher D, Laurad M, Gilbert Y (2015) ZebRA: an overview of retinoid signaling during zebrafish development. Biochimica et Biophysica Acta - Gene Regulatory Mechanisms 1849:73–83

146. Molotkova N, Molotkov A, Duester G (2007) Role of retinoid acid during forebrain development begins late when Radlh3 generates retinoic acid in the ventral subventricular zone. Develop. Biol. 303:601–610. https://doi.org/10.1016/j.ydbio.2006.11.035

147. Ruhm M, Schuhbaur B, Niederreiter K, Dollé P (2011) Involvement of retinol dehydrogenase 10 in embryonic patterning and rescue of its loss of function by maternal retinaldehyde treatment. Proc. Natl Acad. Sci. USA 108:16687–16692. https://doi.org/10.1073/pnas.1103877108

148. Tonk ECM, Pennings JLA, Pierson AH (2015) An adverse outcome pathway framework for neural tube and axial defects mediated by modulation of retinoid acid homeostasis. Reprod Toxicol. 55:104–113. https://doi.org/10.1016/j.reprotox.2014.10.008

149. Robinson JF (2014) Retinoids and developmental neurotoxicity in vivo and in vitro. Available via OECD. https://www.oecd.org/chemicalsafety/testing/RetinoidCNVs2.pdf. Accessed 27 Apr 2020.

150. Pierson AH,ressel EV, Staal YC (2017) Retinoic acid in developmental toxicology: teratogen, morphogen and biomarker. Reprod. Toxicol. 72:53–61. https://doi.org/10.1016/j.reprotox.2017.05.014

151. Chen Y, Reese DH (2016) Disruption of retinol (vitamin A) signaling by phthalate esters: SAR and mechanism studies. PLoS ONE 11:e0161167. https://doi.org/10.1371/journal.pone.0161167

152. Ellis-Hutchings RG, Cherf GN, Hanna LA, Keen CL (2009) The effects of marginal maternal vitamin A status on perinatal-brominated diphenyl ether mixture-induced alterations in maternal and conceptual vitamin A
and fetal development in the Sprague Dawley rat. Birth Defects Res B 86:48–57. https://doi.org/10.1002/bdbr.20181

170. Haggard DE, Das SR, Tanguay RL (2017) Comparative toxicogenomic responses to the flame retardant mITP in developing Zebrafish. Chem Res Toxicol 30:508–515. https://doi.org/10.1021/acs.chemrestox.0b0042

171. ENDOtoNts (2019) Novel Testing Strategies for Endocrine Disruptors in the Context of Developmental Neurotoxicity. ENDOtoNts Project. https://cordis.europa.eu/project/id/825759. Accessed 2 Jun 2020

172. van Neerden S, Kampmann E, Mey J (2008) RAR/RXR and PPAR/RXR signaling in neurological and psychiatric diseases. Prog Neurobiol 85:433–451

173. Lane MA, Bailey SJ (2005) Role of retinoid signalling in the adult brain. Prog Neurobiol 75:275–293

174. Wondolowski J, Dickman D (2013) Emerging links between homeostatic synaptic plasticity and neurological disease. Front Cell Neurosci 7:223

175. Walters BJ, Josselyn SA (2019) Retinoid acid receptor plays both sides of homeostatic plasticity. Proc Natl Acad Sci USA 116:6528–6530

176. Hsu YT, Li J, Wu D et al (2019) Synaptic retinoic acid receptor signaling mediates mTOR-dependent meta-plasticity that controls hippocampal learning. Proc Natl Acad Sci USA 116:7113–7122

177. Bremner JD, McCaffery P (2008) The neurobiology of retinoic acid in affective disorders. Prog Neuropsychopharmacol Biol Psychiatry 32:315–331. https://doi.org/10.1016/j.pnpbp.2007.07.007

178. Goodman AB (2006) Retinoid receptors, transporters, and metabolizers as therapeutic targets in late onset Alzheimer disease. J Cell Physiol 209:598–603

179. Alzheimer’s Association (2020) 2020 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia 16:391–460. https://doi.org/10.1002/alz.12068

180. McCaffery P, Zhang J, Crandall JE (2006) Retinoic acid signaling and synaptic plasticity. Mol Nutr Food Res 54:489–495

181. Carroll WM (2019) The global burden of neurological disorders. Lancet 393:1990–1999

182. Gauthier E, Fortier I, Courchesne F et al (2001) Environmental pesticide exposure as a risk factor for Alzheimer’s disease: a case-control study. Environ Res 86:37–45. https://doi.org/10.1006/ensr.2001.4254

183. Killin LOJ, Starr JM, Shiue IJ, Russ TC (2016) Environmental risk factors for dementia: a systematic review. BMC Geriatrics 16:1–28. https://doi.org/10.1186/s12877-016-0342-y

184. Adams J (2010) The neurobehavioral teratology of retinooids: a 50-year history. Birth Defects Res B 88:895–905. https://doi.org/10.1002/bdbr.20721

185. Ferguson SA, Cisneros FJ, Gough BJ, Ali SF (2005) Four weeks of oral isotretonin treatment causes few signs of general toxicity in male and female Sprague-Dawley rats. Food Chem Toxicol 43:1289–1296. https://doi.org/10.1016/j.fct.2005.02.016

186. Olson CR, Mello CV (2010) Significance of vitamin A to brain function, behavior and learning. Mol Nutr Food Res 54:489–495

187. Galván A (2010) Neural plasticity of development and learning. Hum Brain Mapp 31:879–900. https://doi.org/10.1002/hbm.21029

188. McCaffery P, Zhang J, Crandall JE (2006) Retinoic acid signaling and function in the adult hippocampus. J Neurobiol 66:780–791

189. Nomoto M, Takeda Y, Uchida S et al (2012) High expression of retinoic acid receptors and synthetic enzymes in the human hippocampus. Brain Struct Function 217:473–483. https://doi.org/10.1007/s00429-011-0359-0

190. Aoto J, Nam CI, Poon MM et al (2008) Synaptic signaling by all-trans retinoic acid in the adult zebrafish. Chem Res Toxicol 21:623–629. https://doi.org/10.1021/acs.chemrestox.07-8739.com

191. Aoto J, Luo T, Dräger UC (2002a) Retinoic acid synthesis in the postnatal mouse brain marks distinct developmental stages and functional systems. Cerebral cortex (New York, NY : 1991) 12:1244–1253. https://doi.org/10.1093/cercor/12.12.1244

192. Fragoso YD, Shearer KD, Sementilli A et al (2012) High expression of retinoic acid receptors and synthetic enzymes in the human hippocampus. Brain Struct Function 217:473–483. https://doi.org/10.1007/s00429-011-0359-0

193. Wagner E, Luo T, Dräger UC (2002a) Retinoic acid synthesis in the postnatal mouse brain marks distinct developmental stages and functional systems. Cerebral cortex (New York, NY : 1991) 12:1244–1253. https://doi.org/10.1093/cercor/12.12.1244
216. Tippmann F, Hundt J, Schneider A et al (2009) Up-regulation of the α-secretase ADAM10 by retinoid acid receptors and acitretin. FASEB J 23:1643–1654. https://doi.org/10.1096/fj.08-121392

217. Endres K, Fahrenholz F, Lotz J et al (2014) Increased CSF APPs-α levels in patients with Alzheimer disease treated with acetretin. Neurology 83:1930–1935. https://doi.org/10.1212/WNL.0000000000001017

218. Jarvis CJ, Goncalves MB, Clarke E et al (2010) Retinoic acid receptor-α signalling antagonizes both intracellular and extracellular amyloidβ production and prevents neuronal cell death caused by amyloidβ. Eur J Neurosci 32:1246–1255. https://doi.org/10.1111/j.1460-9558.2010.07426.x

219. Cummings J, Zhong K, Kinney JW et al (2016) Double-blind, placebo-controlled, proof-of-concept trial of bexarotene in moderate Alzheimer’s disease. Alzheimer’s Res Ther 8:1–9. https://doi.org/10.1186/s13195-016-0173-2

220. Nolen GA (1986) The effects of pretinal retinoid acid on the viability and behavior of the offspring. Neurobehav Toxicol Teratol 8:643–654

221. US FDA (2005) Isotretinoin (marketed as Accutane) Capsule Information

222. EMA (2018) Updated measures for pregnancy prevention during retinoid use. Warning on possible risk of neuropsychiatric disorders also included for oral retinoids. EMA/261767/2018. Committee for Medicinal Products for Human Use (CHMP) EMEA/VR/A-3

223. Marqueling AL, Zane LT (2005) Depression and suicidal behavior of the offspring. Neurobehav Toxicol Teratol 8:643–654

224. Wang HF, Liu FC (2005) Regulation of multiple dopamine signal transduction molecules by retinoids in the developing striatum. Neurosci 134:97–105. https://doi.org/10.1016/j.neuroscience.2005.04.008

225. Vandenbroucke M, Ausma-Moatti M, Vincent J-D et al (2002) Retinoic acid regulates the developmental expression of dopamine D2 receptor in rat striatal primary cultures. J Neurochem 71:929–936. https://doi.org/10.1046/j.1471-4159.1998.7103092.x

226. Krzysztofik W, Churchman P, Borrelli E (1997) Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor-retinoid X receptor family. Proc Natl Acad Sci USA 94:14349–14354. https://doi.org/10.1073/pnas.94.26.14349

227. Zetterstrom RH, Solomin L, Jansson L et al (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250. https://doi.org/10.1126/science.276.5331.248

228. Krzyzosiak A, Szyszka-Niagolov M, Wietrzych M et al (2010) Retinoid X receptor gamma control of affective behaviors involves dopaminergic signaling in mice. Neuron 66:908–920. https://doi.org/10.1016/j.neuron.2010.05.004

229. Valdenaire O, Mau-Moatti M, Vincent J-D et al (2002) Retinoic acid regulates the developmental expression of dopamine D2 receptor in rat striatal primary cultures. J Neurochem 71:929–936. https://doi.org/10.1046/j.1471-4159.1998.7103092.x

230. Wang HF, Liu FC (2005) Regulation of multiple dopamine signal transduction molecules by retinoids in the developing striatum. Neurosci 134:97–105. https://doi.org/10.1016/j.neuroscience.2005.04.008

231. O’Reilly KC, Shumake J, Gonzalez-Lima F et al (2006) Chronic administration of 13-cis-retinoic acid increases depression-related behavior in mice. Neuropsychopharmacology 31:1919–1927. https://doi.org/10.1038/sj.npp.1300998

232. O’Reilly K, Bailey SJ, Lane MA (2008) Retinoid-mediated regulation of mood: possible cellular mechanisms. Exp Biol Med 233:251–258. https://doi.org/10.3181/0706-MR-138

233. Ferguson SA, Cisneros FJ, Gough B et al (2005) Chronic oral treatment with 13-cis-retinoic acid (isotretinoin) or all-trans-retinoic acid does not alter depression-like behaviors in rats. Toxicol Sci 87:451–459. https://doi.org/10.1093/toxicolsci/kfi262

234. Qi XR, Zhao J, Liu J et al (2015) Abnormal retinoid and TrkB signaling in the prefrontal cortex in mood disorders. Cereb Cortex 25:75–83. https://doi.org/10.1093/cercor/bht203

235. Rulak A, Pistollato F, Munn S, Bal-Price A (2019) AOP 12: Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development leads to neurodegeneration with impairment in learning and memory in aging. https://aopwiki.org/aops/12. Accessed 7 Jul 2020

236. Sachana M, Munn S, Bal-Price A (2019) AOP 13: Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities. https://aopwiki.org/aops/13. Accessed 7 Jul 2020

237. Rolaki A, Pistollato F, Munn S, Bal-Price A (2019) AOP 54: Inhibition of Na+-/Ca2+-symporter (NIS) leads to learning and memory impairment. https://aopwiki.org/aops/54. Accessed 7 Jul 2020

238. Jablensky A (2000) Epidemiology of schizophrenia: the global burden of disease and disability. Eur Arch Psychiatry Clin Neurosci 250:274–285. https://doi.org/10.1007/s0040600007002

239. Ripke S, Neale BM, Corvin A et al (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427. https://doi.org/10.1038/nature13595

240. Stilo SA, Murray RM (2019) Non-genetic factors in schizophrenia. Curr Psychiatry Rep 21:100. https://doi.org/10.1007/s11920-019-1091-3

241. Laruelle M, Abi-Dargham A (1999) Dopamine as the wind of the psychotic fire: New evidence from brain imaging studies. J Psychopharmacol 13:358–371

242. Foote JL (2006) Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 26:365–384

243. Vanderbei RK, Zhang H, Zhu J et al (2019) Endocannabinoids and endocannabinoids in the genesis of schizophrenia. Psychopharmacology 206:531–549

244. Radhakrishnan R, Kaser M, Gulukotu S (2017) The Link between the Immune System, Environment, and Psychosis. Schizophr Bull 134:97–105. https://doi.org/10.1016/j.neuroscience.2005.04.008

245. Goodman AB (1998) Three independent lines of evidence suggest retinoids as causal to schizophrenia. Proc Natl Acad Sci USA 95:7240–7244

246. Larsen M, Gillis J, Pavlidis P (2013) Genome-wide expression profiling of schizophrenia using a large combined cohort. Mol Psychiatry 18:215–225. https://doi.org/10.1038/mp.2011.172

247. O’Reilly K, Bailey SJ, Lane MA (2008) Retinoid-mediated regulation of mood: possible cellular mechanisms. Exp Biol Med 233:251–258. https://doi.org/10.3181/0706-MR-138

248. Xu W, Jiang J, Wang Y et al (2012) Cyanobacteria blooms produce teratogenic retinoic acids. Proc Natl Acad Sci USA 95:7240–7244

249. Xu W, Jiang J, Hu J (2013) Determination and Occurrence of Retinoids in a Eutrophic Lake (Taihu Lake, China): cyanobacteria Blooms Produce Teratogenic Retinol. Environ Sci Technol 47:807–814. https://doi.org/10.1021/es303582u

250. Yeung KKW, Zhou G-J, Hilchenkov K et al (2020) Current understanding of potential ecological risks of retinoid acids and their metabolites in aquatic environments. Environ Int 136:105464. https://doi.org/10.1016/j.envint.2020.105464

251. Vandenberg LN, Hunt PA, Gore AC (2019) Endocrine disruptors and the future of toxicology testing—Lessons from CLARITY–BPA. Nat Rev Endocrinol 15:366–374

Page 31 of 38
pancreas development. Dev Dyn 232:950–957. https://doi.org/10.1002/dev.20256
335. Novitch BG, Wichterle H, Jessell TM, Sockanathan S (2003) A requirement for retinoic acid-mediated transcripational activation in ventral neural patterning and motor neuron specification. Neuron. 40:81–95. https://doi.org/10.1016/S0896-6273(03)00408-5
336. Wilson L, Gale E, Chambers D, Maden M (2004) Retinoic acid and the control of dorsoventral patterning in the avian spinal cord. Develop Biol 269:433–446. https://doi.org/10.1016/j.ydbio.2004.01.034
337. Ferdous J, Mukherjee R, Ahmed KTT, Ali DWW (2017) Retinoic acid prevents synaptic deficiencies induced by alcohol exposure during gastrulation in zebrafish embryos. NeuroToxicology 62:100–110. https://doi.org/10.1016/j.neurotox.2017.05.011
338. Emmett SD, West KP (2014) Gestational vitamin A deficiency: a novel cause of sensorineural hearing loss in the developing world? Med Hypotheses 82:6–10. https://doi.org/10.1016/j.mehy.2013.09.028
339. Frenz DA, Liu W, Czeh A, et al (2010) Retinoid signaling in inner ear development: A “Goldilocks” phenomenon. American Journal of Medical Genetics, Part A 152A:2947–2961
340. Morris-Kay GM, Sokolova N (1996) Embryonic development and neural patterning and motor neuron specification. Neuron 40:81–95. https://doi.org/10.1016/j.neuro.2003.08.006
341. White JC, Shankar VN, Highland ME et al (1998) Defects in embryonic hindbrain development and fetal resorption resulting from vitamin A deficiency in the rat are prevented by feeding pharmacological levels of all-trans-retinoic acid. Proc Natl Acad Sci USA 95:13459–13464. https://doi.org/10.1073/pnas.95.23.13459
342. Hollemann T, Chen Y, Grunz H, Pieler T (1998) Regionalized metabolic lability and alteration of retinoid metabolism in the avian spinal cord. Develop Biol 197:361–372. https://doi.org/10.1006/evmb.1998.8779
343. Dupé V, Ghyselinck NB, Wendling O et al (1999) Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development 126:5051–5059
344. Gale E, Zile M, Maden M (1999) Hindbrain respecification in the retina-deficient quail. Mech Dev 89:43–54. https://doi.org/10.1016/S0925-4773(99)00202-6
345. Yee KK, Rawson NE (2000) Retinoic acid enhances the rate of olfactory recovery after olfactory nerve transection. Brain Res Dev Brain Res 124:129–132. https://doi.org/10.1016/S0165-3806(99)00108-5
346. Chen Y, Pollet N, Niehrs C, Pieler T (2001) Increased XRALDH2 activity has a posteriorizing effect on the central nervous system of Xenopus embryos. Mech Dev 101:91–103. https://doi.org/10.1016/S0925-4773(00)00558-X
347. Abu-Abed S, Dölle P, Metzger D et al (2001) The retinoic acid metabolizing enzyme, CYP26AlA1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15:226–240. https://doi.org/10.1101/gad.85501
348. Wagner E, Luo T, Dräger UC (2002) Retinoic acid synthesis in the postnatal mouse brain maps distinct developmental stages and functional systems. Cerebral cortex (New York, NY : 1991) 12:1244–53. https://doi.org/10.1093/cercor/12.12.1244
349. Linville A, Gumasenelli E, Chandraratna RASS, Schilling TF (2004) Retinoic acid depletes postnatal retinal RGCs by a novel mechanism. J Neurosci 24:6051–6059. https://doi.org/10.1523/JNEUROSCI.0391-04.2004
350. Herrmann K (1995) Teratogenic effects of retinoic acid and related substances on the early development of the zebrafish (Brachydanio rerio) as assessed by a novel scoring system. Toxicol In Vitro 9:267–283. https://doi.org/10.1016/0896-8773(95)90012-W
351. Deltour L, Ang HL, Dueter G (1996) Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome. FASEB J 10:1050–1057. https://doi.org/10.1096/fasebj.10.9.8801166
352. Kaur A, LaVoie H, DiPette D, Singh U (2013) Ethanol neurotoxicity in the developing cerebellum: underlying mechanisms and implications. Brain Sci 3:941–963. https://doi.org/10.3390/brainsci3030209
353. Dickman ED, Thaller C, Smith SM (1997) Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development 124:3111–3121
354. Mic FA, Molotkov A, Molotkova N, Dueter G (2004) Raldh2 expression in optic vesicle generates a retinoic acid signal needed for invagination of retina during optic cup formation. Dev Dyn 231:270–277. https://doi.org/10.1002/dvdy.20128
355. Abbott BD, Harris MW, Birnbaum LS (1989) Etiology of retinoic acid-induced cleft palate vanes with the embryonic stage. Teratology 40:533–553. https://doi.org/10.1002/tera.1420400602
356. Lammer EJ, Chen DT, Hoar RM et al (1985) Retinoic acid embryopathy. N Engl J Med 313:837–841. https://doi.org/10.1056/NEJM198510331401
357. Jacobs H, Dennefeld C, Férét B et al (2011) Retinoic acid drives aryl hydrocarbon receptor expression and is instrumental to dioxin-induced toxicity during palatal development. Environ Health Perspect 119:1590–1595. https://doi.org/10.1289/ehp.1003075
358. Okano J, Udagawa J, Shiohara K (2014) Roles of retinoic acid signaling in normal and abnormal development of the palate and tongue. Congenital Anomalies 54:69–76. https://doi.org/10.1111/cga.12049
359. Baker NC, Sipes NS, Fransoza J et al (2020) Characterizing cleft palate toxicants using ToxCast data, chemical structure, and the biomedical literature. Birth Defects Res 112:19–39. https://doi.org/10.1002/bdr2.11581
360. Marklund M, Sjodal M, Beehler BC et al (2004) Retinoic acid signalling specifies intermediate character in the developing telencephalon. Development 131:4323–4332. https://doi.org/10.1242/dev.01308
361. Luo T, Wagner E, Grün F, Dräger UC (2004) Retinoic acid signaling in the brain marks formation of optic projections, maturation of the dorsal telencephalon, and function of limbic sites. J Comparative Neuro 490:327–316. https://doi.org/10.1002/cne.20031
375. McCaffery P, Drager UC (1994) High levels of a retinoic acid-generating dehydrogenase in the meso-telencephalic dopamine system. Proc Natl Acad Sci USA 91:7772–7776. https://doi.org/10.1073/pnas.91.16.7772

376. Smith D, Wagner E, Koul O, et al. (2001) Retinoic acid synthesis for the developing telencephalon. Cerebral cortex (New York, NY : 1991) 11:894–905. https://doi.org/10.1093/cercor/11.10.894

377. Rajaii F, Bitzer ZT, Xu Q, Sockanathan S (2008) Expression of the dominant negative retinoid receptor, RAR403, alters telencephalic progenitor proliferation, survival, and cell fate specification. Developmental Biology 316:371–382. https://doi.org/10.1016/j.ydbio.2008.01.041

378. Zhang J, Smith K, Yamamoto M et al (2003) The meningioma is a source of retinoic acid for the late-developing hindbrain. J Neurosci 23:7610–7620. https://doi.org/10.1523/JNEUROSCI.23-06-7610.2003

379. Romand R, Kondo T, Cammas L et al (2008) Dynamic expression of the retinoic acid-synthesizing enzyme retinol dehydrogenase 10 (rdh10) in the developing mouse brain and sensory organs. J Comparative Neurology 508:879–892. https://doi.org/10.1002/cne.21707

380. Chatzi C, Brade T, Duester G (2011) Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia. PLoS Biol 9:e1000609. https://doi.org/10.1371/journal.pbio.1000609

381. Misner DL, Jacobs S, Shimizu Y et al. (2001) Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proc Natl Acad Sci USA 98:11714–11719. https://doi.org/10.1073/pnas.98.19.11797

382. Wietrzch M, Meziane H, Sutter A et al (2005) Working memory deficits in retinoid X receptor γ-deficient mice. Learning and Memory 12:318–326. https://doi.org/10.1101/lm.89805

383. Silva AJ (2003) Molecular and cellular cognitive studies of the role of retinoid nuclear receptor mediated hypo-expression of proteins involved in β-amyloid deposits in the cortical cementum of vitamin A deprived rats. Neurobiol Dis 21:393–402. https://doi.org/10.1016/s0960-0769(03)00121-0

384. Husson M, Enderlin V, Delacourte A et al (2006) Thyroid hormones and retinoids: a possible link between genes and environment in schizophrenia. Brain Res Rev 51:61–71. https://doi.org/10.1016/j.brainresrev.2005.10.001

385. Krauss JK, Mohajer M, Wahlko A, Mundinger F (1991) Dystonia and akinesia due to pallidoputaminal lesions after disulfiram intoxication. Mov Disord 6:166–70. https://doi.org/10.1002/mds.870060214

386. Palha JA, Goodman AB (2003) Thyroid hormones and retinoids in the developing mouse brain and sensory organs. J Comparative Neurol 452:228–241. https://doi.org/10.1002/cne.10369

387. Pasutto F, Sticht H, Hammersen G et al (2007) Mutations in STRA6 cause essential link between genes and environment in schizophrenia. Psychol Med 37:135–152. https://doi.org/10.1017/S0033291707000925

388. Golzio C, Martinovic-Bouriel J, Thomas S et al (2007) Matthew-Wood syndrome produces a phenocopy of DiGeorge Syndrome in the chick. Hum Mol Genet 16:3252–2534. https://doi.org/10.1093/hmg/ddm416
414. Keegan BR, Feldman JL, Begemann G et al (2005) Retinoic acid signal-
415. Bilbija D, Haugen F, Sagave J et al (2012) Retinoic acid signalling is acti-
416. Merki E, Zamora M, Raya A et al (2005) Epicardial retinoid X receptor
421. Yutzey KE, Bader D (1995) Diversification of cardiomyogenic cell line-
424. Yasui H, Nakazawa M, Morishima M et al (1995) Morphological observa-
426. Isales GM, Hipszer RA, Raftery TD et al (2015) Triphenyl phosphate-
427. De Carlo Massaro G, Massaro D (1997) Retinoic acid treatment
429. Desai TJ, Malpel S, Flentke GR et al (2004) Retinoic acid selectively regu-
431. Wang Z, Dollé P, Cardoso WV, Niederreither K (2006) Retinoic acid regu-
432. Rankin SA, Han L, McCracken KW et al (2016) A retinoic acid-hedgehog
433. Pederiva F, Martinez L, Tovar JA (2012) Retinoic acid rescues deficient
434. Yun EJ, Lorizio W, Seedorf G et al (2016) VEGF and endothelium-derived
435. Chen Y, Pan FC, Brandes N et al (2004) Retinoic acid signaling is essen-
436. Stafford D, Prince VE (2002) Retinoic acid signaling is required for
438. Kinkel MD, Alonzo MR, Prince VE (2008) Cdx4 is required in the endoderm to localize the pancreas and limit β-cell number. Develop-
439. Ostrom M, Loffler KA, Edfalk S et al (2008) Retinoic acid promotes the generation of pancreatic endothocrine progenitor cells and their further differentiation into β-cells. PLoS ONE 3:e2841. https://doi.org/10.1371/journal.pone.0002841
440. Alexia K, Choe SK, Hafs N et al (2009) Maternal and zygotic aldha2a activity is required for pancreas development in zebrafish. PLoS ONE 4:e8261. https://doi.org/10.1371/journal.pone.0008261
441. Martin M, Gallego-Llamas J, Ribes V et al (2005) Dorsal pancreas agenesia in retinoic acid-deficient Raldh2 mutant mice. Developmental Biology 284:399–411. https://doi.org/10.1016/j.ydbio.2005.05.035
442. Kinkel MD, Sefton EM, Kikuchi Y et al (2009) Cyp26 enzymes function in endoderm to regulate pancreas size. Proc Natl Acad Sci USA 106:7864–7869. https://doi.org/10.1073/pnas.0813108106
443. De Carlo Massaro G, Massaro D (1997) Retinoic acid treatment
445. Mendelsohn C, Lohnes D, Decimo D et al (1994) Function of the retinoic acid receptors (RARs) during development. (II) Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120:2749–2771
446. Osafune K, Nishinakamura R, Komazaki S (2002) In vitro induction of the proepithelial duct in Xenopus explants. Dev Growth Differ 44:161–167. https://doi.org/10.1111/j.1440-1695.2002.00647.x
447. Wingert RA, Selleck R, Yu J et al (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish proephron. Development 134:1922–1938. https://doi.org/10.1242/dev.003018
448. Rosselot C, Spraggan L, Chia I et al (2010) Non-cell-autonomous retinoic acid signalling is crucial for renal development. Development 137:283–292. https://doi.org/10.1242/dev.040287
449. Gray SP, Cullen-McEwan LA, Bertram JM, Moritz KM (2012) Mechanism of alcohol-induced impairment in renal development: could it be reduced by retinoic acid? Clin Exp Pharmacol Physiol 39:807–813. https://doi.org/10.1111/j.1440-1681.2011.05597.x
450. Kot-Leibovich H, Fansold A (2006) Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. DMM Dis Models Mech 2:295–305. https://doi.org/10.1242/dmm.001420
451. Zuniga A (2015) Next generation limb development and evolution: old questions, new perspectives. Development (Cambridge) 142:3810–3820. https://doi.org/10.1242/dev.125575
452. Probst S, Kraemer C, Demougin P et al (2011) SHH propagates distal limb bud development by enhancing CYP26B1-mediated retinoic acid clearance via AER-FGF signalling. Development 138:1913–1923. https://doi.org/10.1242/dev.063966
453. Mohanty-Hejmdal P, Dutta SK, Mahapatra P (1992) Limbs generated at site of tail amputation in marbleleed balloon frog after vitamin A treatment. Development 111:105–114. https://doi.org/10.1242/dev.111.105.105
454. Niazi IA, Ratnasamy CS (1984) Regeneration of whole limbs in toad tadpoles treated with retinol palmitate after the wound-healing stage. J Exp Zool 230:501–505. https://doi.org/10.1002/jez.14023050320
455. Niazi IA, Saxena S (1978) Abnormal hind limb regeneration in tadpoles of the toad, Bufo andersoni, exposed to excess vitamin A. Folia Biol (Praha) 26:3–8.
456. Viviano CM, Horton CE, Maden M, Brockes JP (1995) Synthesis and release of 9-cis retinoic acid by the urodele wound epidermis. Development 121:3753–3762
457. Maden M (1993) The homeotic transformation of tails into limbs in Rana temporaria by retinoids. Develop Biol 159:379–391. https://doi.org/10.1006/dbio.1993.1249

458. Thaller C, Eichele G (1987) Identification and spatial distribution of retinoids in the developing chick limb bud. Nature 327:625–628. https://doi.org/10.1038/327625a0

459. Stratford T, Horton C, Maden M (1996) Retinoic acid is required for the initiation of outgrowth in the chick limb bud. Curr Biol 6:1124–1133. https://doi.org/10.1016/S0960-9822(02)07679-9

460. Brent GA, Dunn MK, Harney JW et al (1989) Thyroid hormone aporeceptor represses T3-inducible promoters and blocks activity of the retinoid acid receptor. New Biol 3:129–336

461. Koide T, Downes M, Chandraratna RASS et al (2001) Active repression of RAR signaling is required for head formation. Genes Dev 15:2111–2121. https://doi.org/10.1101/gad.908801

462. Westen AD, Blumberg B, Underhill TM (2003) Active repression by unliganded retinoid receptors in development: less is sometimes more. J Cell Biol 161:223–228. https://doi.org/10.1083/jcb.20021117

463. Astarpova I, Lee LJ, Morales C et al (2008) The nuclear coactivator, NCoR, regulates thyroid hormone action in vivo. Proc Natl Acad Sci USA 105:19544–19549. https://doi.org/10.1073/pnas.0804604105

464. Verhaegen Y, Parmentier K, Swevers L et al (2011) The heterodimeric ecdysoid steroid receptor complex in the brown shrimp Crangon crangon: eCR and RXR isoform characteristics and sensitivity towards the marine pollutant tributyltin. Gen Comp Endocrinol 172:158–169. https://doi.org/10.1016/j.ygcen.2011.02.019

465. Thummel CS (1995) From embryogenesis to metamorphosis: the regulation and function of drosophila nuclear receptor superfamily members. Cell 83:671–877. https://doi.org/10.1016/0092-8674(95)90203-1

466. Ghebriel H, Tsai CC, Schubiger M et al (2001) The dual role of ultraspiracle, the Drosophila retinoid X receptor, in the eyecore response. Proc Natl Acad Sci USA 98:3867–3872. https://doi.org/10.1073/pnas.011647798

467. Ollikainen N, Chandsawanghbuwana C, Baker ME (2006) Evolution of the thyroid hormone, retinoic acid, ecdysone and liver X receptors. Integr Comp Biol 46:615–826. https://doi.org/10.1093/icb/icd035

468. Héral M, Alzeu C, Deslouis-Paoli JM (1989) Effect of organom compounds (TBT) used in antifouling paints on cultured marine molluscs - a literature study. In: Pauv D, Jaspers E, Ackerlos H, Wilkins N (eds) Aquaculture - a biotechnology in progress. European Aquaculture Society, Bredene, Belgium, pp 1081–1089

469. Lima D, Reis-Henriques MA, Silva R et al (2011) Tributyltin-induced imposex in marine gastropods involves tissue-specific modulation of the retinoid X receptor. Aquat Toxicol 101:221–227. https://doi.org/10.1016/j.aquatox.2010.09.022

470. Vogeler S, Galloway TS, Isopov M, Bean TP (2017) Cloning retinoid X receptor α in vitro gastrulation model entails activation of retinoic acid signaling. Reprod Toxicol 77:435–474. https://doi.org/10.1016/j.reprotox.2017.09.015

471. Corcoran J, So PL, Barber SD et al (2002) Retinoic acid receptor β2 and neurite outgrowth in the adult mouse spinal cord in vitro. J Cell Sci 115:3779–3786. https://doi.org/10.1242/jcs.00046

472. Corcoran J, So PL, Maden M (2002) Absence of retinoids can induce motoneuron disease in the adult rat and a retinoid defect is present in motoneuron disease patients. J Cell Sci 115:4735–4741. https://doi.org/10.1242/jcs.00169

473. Malaspina A, Kaushik N, De Belleruche J (2001) Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J Neurochem 77:132–145. https://doi.org/10.1046/j.1471-4159.2001.00231.x

474. Jiang YM, Yamamoto M, Kobayashi Y et al (2005) Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis. Ann Neurol 57:236–251. https://doi.org/10.1002/ana.20379

475. Holson RR, Adams J, Ferguson SA, Scalzo FM (2000) Retinoic acid exposure on gestational days 11 to 13 impairs swallowing in rat offspring. Neurotoxicol Teratol 22:541–545. https://doi.org/10.1016/S0892-8674(00)00072-6

476. Holson RR, Cogan JE, Adams J (2001) Gestational retinoid acid exposure in the rat: effects of sex, strain and exposure period. Neurotoxicol Teratol 23:147–156. https://doi.org/10.1016/S0892-8674(01)00133-7

477. Coluccia A, Borracci P, Belfiore D et al (2009) Late embryonic exposure to all-trans retinoic acid induces a pattern of motor deficits unrelated to the developmental stage. NeuroToxicology 30:1120–1126. https://doi.org/10.1016/j.neurotox.2009.08.002

478. Coluccia A, Belfiore D, Bizzoza A et al (2008) Gestational all-trans retinoic acid treatment in the rat: neurofunctional changes and cerebellar phenotype. NeuroToxicol Teratol 30:395–403. https://doi.org/10.1016/j.jtnt.2008.03.064

479. Sahu B, Maeda A (2016) Retinol dehydrogenases regulate vitamin A metabolism for visual function. Nutrients 8:746. https://doi.org/10.3390/nu8060362

480. Fuchs E, Green H (1981) Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell 25:617–625. https://doi.org/10.1016/0007-8526(81)90169-0

481. Ross AC, Zolfaghari R, Weisz J (2001) Vitamin A: recent advances in the biotransformation, transport, and metabolism of retinoids. Curr Opin Gastroenterol 17:184–192

482. Wiseman EM, Bar-El Davon S, Reifer R (2017) The vicious cycle of vitamin A deficiency: a review. Crit Rev Food Sci Nutr 57:3703–3714. https://doi.org/10.1080/10408398.2016.1163062

483. Hall JA, Cannons JL, Grainger JR et al (2011) Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor alpha. Immunity 34:435–447. https://doi.org/10.1016/j.immuni.2011.03.003

484. Bono MR, Tejon G, Flores-Santibañez F et al (2016) Retinoic acid as a modulator of T cell immunity. Nutrients 8:349. https://doi.org/10.3390/nu8060349
497. Reay WR, Atkins JR, Quidé Y et al (2020) Polygenic disruption of retinoid signalling in schizophrenia and a severe cognitive deficit subtype. Molecular Psychiatry 25:719–731. https://doi.org/10.1038/s41380-018-0305-0

498. Takeda A, Nyssen OP, Syed A et al (2014) Vitamin A and carotenoids and the risk of Parkinson's Disease: a systematic review and meta-analysis. Neuroepidemiology 42:25–38. https://doi.org/10.1159/000355849

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.