Probing the *In Vitro* Cytotoxicity of the Veterinary Drug Oxytetracycline

Zhenxing Chi¹,²*, Rutao Liu³, Hong You¹,², Shanshan Ma², Hao Cui², Qiang Zhang²

¹ State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, PR China, ² School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, PR China, ³ School of Environmental Science and Engineering, Shandong University, Jinan, PR China

Abstract

The study investigated the effect of oxytetracycline (OTC) on the anti-oxidative defense system, the structure (hemolysis rate and morphology) and function (ATP enzyme activity) of human red blood cells (hRBCs) to investigate the possible toxic mechanism of OTC to hRBCs. The experimental results indicate that OTC can cause a decline in the function of the antioxidant defense system of hRBCs, resulting in oxidative stress. OTC can bring about morphological changes to hRBCs, and further leads to hemolysis, when the concentration of OTC is over 8×10^{-5} M (about 164 μg/ml). At a low OTC concentration, below 4×10^{-5} M (82 μg/ml), OTC can enhance the activity of ATP enzyme of hRBCs, known as hormesis. However, at a high concentration, above 4×10^{-5} M (about 82 μg/ml), the ATP enzymatic activity was inhibited, affecting the function of hRBCs. The established mechanism of toxicity of OTC to hRBCs can facilitate a deeper understanding of the toxicity of OTC in vivo.

Introduction

Oxytetracycline (OTC, structure shown in Fig. 1), a type of tetracycline antibiotics with broad-spectrum antibiotic activity [1], [2], is extensively applied for therapeutic purposes in humans as well as an antibiotic and growth promoter in intensive farming systems and aquaculture [3]. Effective therapy should be obtained when plasma OTC concentrations are above 0.5 g/ml [6–10]. OTC concentrations in blood can be achieved 4 h after administration, respectively [6–10]. OTC can bioaccumulate in various organisms including invertebrates and fish in food chain and enter human bodies by water drinking and food intake such as milk, meat, and eggs (at nanogram to low-microgram levels) [14–16], posing a threat to human health [13]. OTC can also be taken up by blood cells [17]. The Joint FAO/WHO Expert Committee of Food Additives and Contaminants (JECFA), at its 50th Meeting in 1998, established a group acceptable daily intake (ADI) of 0–0.03 mg kg$^{-1}$ body weight for the tetracyclines (oxytetracycline (OTC), tetracycline (TC) and chlortetracycline (CTC)), alone or in combination. The committee also recommended maximum residue limits (MRLs) of 100 μg L$^{-1}$ in milk and muscle of all food-producing species [18], [19].

The toxicity of OTC residues in the environment including animal food, soils, surface and ground water, has attracted widespread attention [1], [2], [20], [21]. OTC can inhibit the antibody levels in fish (dose rate equivalent to 73 mg/kg body weight/day) [22], induces DNA damage in carp kidney cells (exposure dose 250 μg/l) [23], has teratogenic effects on carp embryos (exposure dose 127.3±364.1 μg/l) [24], interacts with cytoplasmic protein synthesis (incubation with 100–500 μg/ml of OTC) [25], and induce blood disorder in Juvenile Nile Tilapia *Oreochromis niloticus* (fish fed with 1.25% OTC and above) [26]. OTC also has effect on the secretion kinetics of the rat exocrine pancreas and can lead to the decrease in trypsin level in male wistar rats (OTC dose 30 mg/kg/day) [27], [28].

Red blood cells (RBCs), also referred to as erythrocytes, are the most abundant cells in the bloodstream [29]. The primary function of RBCs is to transport oxygen from the lungs to various parts of the body [30]. In addition, RBCs are also a key player in getting waste carbon dioxide from the tissues to the lungs of the body where it is expelled [30], and regulate blood pH [31]. However, intake of hazardous substances may result in injury of RBCs, affecting its functions.
OTC can cause significant reductions in several blood parameters including erythrocyte, hematocrit, and hemoglobin values, for Juvenile Nile Tilapia Oreochromis niloticus [26]. However, the effect of OTC on the anti-oxidative defense system of RBCs is still unknown. The changes in the activities of anti-oxidative defense system have been regarded as one of the toxic mechanisms of many hazardous substances. We also have little knowledge about the influence of OTC on the structure and function of RBCs. In this work, we investigated the toxicity indexes of OTC to human red blood cells (hRBCs) including the antioxidant capacity, the hemolysis rate and morphology (structure), and the ATP enzyme activity (function). We consider the work as a worst case scenario in view of the common concentration of OTC residues in the environment. The study is helpful for understanding the effect of OTC on hRBCs during the blood transportation process and its toxicity in vivo.

Materials and Methods

2.1. Reagents and apparatus

EDTA dipotassium salt dihydrate (Tianjin Kermel Chemical Reagent Co., Ltd.) stabilized human blood samples were freshly obtained from Hospital of Shandong University (Jinan). A stock solution of OTC (1.0×10^{-3} M) was prepared by dissolving 0.0497 g oxytetracycline hydrochloride (Sigma) in 100 ml of saline solution.

2,3-naphthalenedicarboxaldehyde (NDA) was obtained from Nippon Kasei Chemical Co., Ltd. Glutaraldehyde (Tianjin Kermel Chemical Reagent Co., Ltd.) was used as fixative. Isoamyl acetate was obtained from Tianjin Chemagent Research Co., Ltd. PBS buffer (10x, pH 7.4) was purchased from Shanghai Biocolor BioScience & Technology Company. All other reagents were of analytical grade.

All UV-visible absorption spectra and absorption value were measured on a UV-2450 spectrophotometer (SHIMADZU, Kyoto, Japan). Automatic balance centrifuge (LDZ4-2, Jiangsu Jiantan Medical Instrument Factory) was used for centrifugation. Vortex mixer (vortex-6) was purchased from Kylin-Bell Lab Instruments Co., Ltd. Digital dry bath incubator (HB-100, Hangzhou Bioer Technology Co., Ltd) was used to control temperature of the samples.

2.2. Ethics statement

The study was approved by the Ethics Committee of Hospital of Shandong University (Jinan). Written informed consent was obtained from all study participants.

Figure 1. Molecular structure of OTC. doi:10.1371/journal.pone.0102334.g001

Figure 2. Effect of OTC on SOD activity of hRBCs. Data represent the mean ± SD of three independent experiments. doi:10.1371/journal.pone.0102334.g002

Figure 3. Effect of OTC on CAT activity of hRBCs. Data represent the mean ± SD of three independent experiments. doi:10.1371/journal.pone.0102334.g003

2.3. Determination of the activities of SOD, CAT and GSH-Px

SOD is a potent protective enzyme that can selectively scavenge O_{2}^{-} by catalyzing its dismutation to H_{2}O_{2} and molecular oxygen (O_{2}) to protect the cells from being injured [32]. CAT catalyzes the degradation of H_{2}O_{2} to H_{2}O and O_{2}: 2H_{2}O_{2}→2H_{2}O+O_{2} [33]. The GSH-Px is an important enzyme extensively existing in vivo, which can specifically catalyze the reduction of H_{2}O_{2} by GSH to protect the integrity of the structure and function of the membrane. With the activities of SOD, CAT and GSH-Px as the indicators, we studied the effect of OTC on the antioxidant defense of hRBCs.

2.3.1. SOD activity determination. Test principle: superoxide anion radical (O_{2}^{-}) produced in xanthine and xanthine oxidase reaction systems, can oxidize hydroxylamine to nitrite, which shows violet under the effect of color reagent. The absorbance can be measured with visible or UV-vis spectrophotometer. When the measured sample contains superoxide...
dismutase (SOD), its specific inhibition of O$_2^-$ can reduce the formation of nitrite, the absorbance value is lower than that of the control with colorimetry. The SOD activity was determined by utilizing the SOD detection kit (Nanjing Jiancheng Bioengineering Institute).

The freshly obtained blood sample (1 ml) was added to 2 ml of PBS, mixed by vortexing, and then the hRBCs were isolated from serum by centrifugation at 2000 rpm for 5 min. After being washed two times with 2 ml of PBS solution, the purified hRBCs were diluted to 2 ml with PBS. 0.2 ml of the diluted cell suspension was added to 0.8 ml OTC solutions of different concentrations and mixed by vortexing, then incubated for 3 hours under gentle shaking. Following incubation, the samples were centrifuged (2000 rpm×5 min), and the supernatant was discarded and the pellet was resuspended in 0.3 ml ultrapure water to achieve hemolysis. The hemolytic blood was used to measure the CAT activity according to the procedure of the detection kit (Nanjing Jiancheng Bioengineering Institute).

2.3.2. CAT activity determination. Test principle: the decomposition of hydrogen peroxide (H$_2$O$_2$) by catalase (CAT) can be rapidly stopped by ammonium molybdate. The residual H$_2$O$_2$ interacts with ammonium molybdate to produce a yellowish complex. The amount formed can be determined at 405 nm to calculate the CAT activity.

The freshly obtained blood sample (1 ml) was washed three times with 2 ml PBS by centrifugation for 5 min at 2000 rpm. The purified hRBCs were diluted to 10 ml with PBS. 0.2 ml of the diluted cell suspension was mixed with 0.8 ml OTC solutions of different concentrations by vortexing, and then incubated for 3 hours under gentle shaking. Following incubation, the samples were centrifuged (2000 rpm×5 min), and the supernatant was discarded and the pellet was resuspended in 0.3 ml ultrapure water to achieve hemolysis. The hemolytic blood was used to measure the CAT activity according to the procedure in Section 2.3.2. The supernatant was discarded and the pellet was resuspended in 1 ml ultrapure water to achieve hemolysis. 0.2 ml of the hemolytic blood was used to measure the CAT-Px activity according to the procedure of the detection kit (Nanjing Jiancheng Bioengineering Institute).

2.3.3. GSH-Px activity determination. Test principle: glutathione peroxidase (GSH-Px) can promote the reaction of H$_2$O$_2$ with reduced glutathione (GSH) to produce H$_2$O and GSSG. The GSH-Px activity can be expressed by the speed of the enzymatic reaction, detected by the consumption of GSH. In the experiment, the GSH-Px activity was determined by utilizing the GSH-Px detection kit (Nanjing Jiancheng Bioengineering Institute) with spectrophotometry method.

The freshly obtained blood sample (1 ml) was washed, diluted, incubated with OTC and centrifuged according to the procedure in Section 2.3.2. The supernatant was discarded and the pellet was resuspended in 1 ml ultrapure water to achieve hemolysis. 0.2 ml of the hemolytic blood was used to measure the GSH-Px activity according to the procedure of the detection kit (Nanjing Jiancheng Bioengineering Institute).

2.4. Determination of GSH

Test principle: GSH is an important nonenzymatic antioxidant. It participates in the maintaining of redox equilibrium which may alleviate cellular oxidative injury. In this work, NDA was used to label the intracellular GSH of hRBCs. Nonfluorescent NDA can readily penetrate the cell membrane, interacting with the nonfluorescent GSH to produce a green fluorescent GSH-NDA derivative [35]. The fluorescence intensity of GSH-NDA derivative was directly proportional to the intracellular content of GSH by fluorescence image analysis. NDA can react concomitantly with the amino and thiol groups of GSH, and no additional nucleophile reagent is required [36]. So the bifunctional reaction is rapid, nonenzymatic, and highly selective [36].

The freshly obtained blood sample (1 ml) was washed, diluted, incubated with OTC and centrifuged according to the procedure...
in Section 2.3.2. The supernatant was discarded and the pellet was resuspended in 1 ml PBS. For the determination of GSH, 0.3 ml cell suspension was incubated with 100 µl 0.02 mol/L NDA solution and 0.6 ml PBS for 0.5 hour in the dark at room temperature. 0.05 ml of the suspension was placed on the no-clean cover glass for investigation (24×50 mm, Citotest Labware Manufacturing Co., Ltd).

An inverted microscope (Model IX81, Olympus, Tokyo, Japan) equipped with a 10× objective (PlanApo, Olympus, Tokyo, Japan), a mercury lamp, a mirror unit consisting of 470–490 nm excitation filter (BP470–490), a 505 nm dichromatic mirror (DM 505), a 510–550 nm emission filter (BA510–550) and a 16-bit thermoelectrically cooled EMCCD (Cascade 512B, Tucson, AZ, USA) were used for epifluorescence measurements. The derivatized GSH was excited with a 470–490 nm light ray through the objective. The fluorescence emitted by these molecules were collected by the same objective and the fluorescence images were acquired by the EMCCD. Image acquisition was controlled by the MetaMorph software (Universal Imaging, Downingtown, PA, USA). The micrographs of hRBCs without derivatization were observed by the inverted microscope under bright field and epifluorescence illumination conditions.

2.5. Determination of Malondialdehyde (MDA)

Test principle: MDA is the degradation product of lipid peroxidation which can indicate the level of oxidative stress. It can condense with TBA to form a coloured MDA-TBA complex, with the maximum absorption peak at 532 nm that can be measured by visible absorption spectrophotometry.

The freshly obtained blood sample (1 ml) was washed, diluted, incubated with OTC and centrifuged according to the procedure in Section 2.3.1. The supernatant was discarded and the pellet was resuspended in 1 ml ultrapure water to achieve hemolysis. 0.1 ml of the hemolytic blood was used to measure the MDA concentration according to the procedure of the detection kit (Nanjing Jiancheng Bioengineering Institute).

2.6. Hemolysis assay

The freshly obtained blood sample (1 ml) was washed, diluted and mixed with OTC according to the procedure in Section 2.3.2. RBC incubation with ultrapure water and PBS were used as the positive and negative controls, respectively. All the sample tubes were kept in static condition at room temperature for 3 h. Finally, the mixtures were centrifuged at 2000 rpm for 5 min, and 500 µl of supernatant of all samples was diluted with 2.5 ml ultrapure water. The absorbance values of the diluted supernatants (3 ml) at
effect of OTC on the morphology of hRBCs. Scanning electron microscope (Hitachi, S-570) to investigate the ion sputtering coater (Eiko, IB-5) and then observed with a conventional critical point drying method, platinum-coated with (100%) for 15 min (twice). Finally, the sample was dried with the ethanol was displaced by isoamyl acetate with increasing concentrations of ethanol (50%, 70%, 80%, 90%) twice. The ethanol was discarded. Fixation was performed by addition of 2.5% glutaraldehyde and 12 h incubation. The fixed samples were washed in double-distilled water for 2 h. Dehydration was done with 25 times with PBS. 0.2 ml of the diluted cell suspension was incubated with 0.8 ml OTC solutions of different concentrations for 3 hours under gentle shaking. Following incubation, the samples were centrifuged (2000 rpm x 5 min) and the supernatant was discarded. Fixation was performed by addition of 2.5% glutaraldehyde and 12 h incubation. The fixed samples were washed with 0.1 M phosphate buffer for more than 3 h. Then, the sample was fixed in osmium tetroxide (1%) for 1~1.5 h and washed in double-distilled water for 2 h. Dehydration was done with increasing concentrations of ethanol (50%, 70%, 80%, 90% and 100%) twice. The ethanol was displaced by isoamyl acetate (100%) for 15 min (twice). Finally, the sample was dried with the conventional critical point drying method, platinum-coated with ion sputtering coater (Eiko, IB-5) and then observed with a scanning electron microscope (Hitachi, S-570) to investigate the effect of OTC on the morphology of hRBCs.

2.7. Scanning electron microscopy (SEM) studies of hRBCs

The freshly obtained blood sample (1 ml) was washed according to the procedure in Section 2.3.1. The purified hRBCs were diluted by 25 times with PBS. 0.2 ml of the diluted cell suspension was incubated with 0.8 ml OTC solutions of different concentrations for 3 hours under gentle shaking. Following incubation, the samples were centrifuged (2000 rpm x 5 min) and the supernatant was discarded. Fixation was performed by addition of 2.5% glutaraldehyde and 12 h incubation. The fixed samples were washed with 0.1 M phosphate buffer for more than 3 h. Then, the sample was fixed in osmium tetroxide (1%) for 1~1.5 h and washed in double-distilled water for 2 h. Dehydration was done with increasing concentrations of ethanol (50%, 70%, 80%, 90% and 100%) twice. The ethanol was displaced by isoamyl acetate (100%) for 15 min (twice). Finally, the sample was dried with the conventional critical point drying method, platinum-coated with ion sputtering coater (Eiko, IB-5) and then observed with a scanning electron microscope (Hitachi, S-570) to investigate the effect of OTC on the morphology of hRBCs.

2.8. ATPase activity assay determination

ATPase is an important enzyme existing in the membrane of cells in vivo [39]. It functions in maintaining ionic and osmotic balance inside and outside the cell, maintaining transmembrane electrochemical gradients, and in cellular energy metabolism [39], [40]. The reduction in ATPase activity can result in the disorder of the functions, which affects the normal function of cells [39], [40]. For example, a rise in internal Na+, K+ or Ca2+, Mg2+ ions of RBCs can cause changes in cell shape and volume, increase in cellular rigidity and hemolysis. ATPase can cause the decomposition of ATP into ADP and inorganic phosphorus. The activity of ATPase can be determined by measuring the amount of inorganic phosphorus.

The freshly obtained blood sample (1 ml) was washed with PBS, incubated with OTC, and then centrifuged according to the procedure in Section 2.3.1. The supernatant was discarded and the pellet was resuspended in 0.5 ml ultrapure water to achieve hemolysis. 0.2 ml of the hemolytic blood was used to measure the ATPase activity according to the procedure of the detection kit (Nanjing Jiancheng Bioengineering Institute).

2.9. Statistical analysis

Data are from three independent experiments and presented as mean ± SD in the study of the effect of OTC on the activities of SOD, CAT, GSH-Px and ATPase, content of GSH and MDA, and hemolysis rate of hRBCs.

Results and Discussion

3.1. Effects of OTC on antioxidant capacity of hRBCs

Radicals are present in tissues in vivo as free and bound forms. The bound radical is necessary for normal physiological activity. However, the free radical is highly reactive, easily combining with electrons from tissue macromolecules to achieve more stability through electron pairing. In toxicology, there is interest in free radicals and reactive oxygen species (ROS), which can be produced by the normal metabolism of cells or by the exogenous factors (e.g. smoking, radiation, dust). ROS are free radicals and non-free radical oxygen-containing molecules that have higher chemical reactivity than ground state molecular oxygen [41], including species such as O3, hydroxyl radicals (-OH), nitric...
In the experiments, SOD activities decreased with increasing OTC concentrations ranging from 0 to 1.5×10^{-5} M and decreases by 41.85% at OTC concentration 1.5×10^{-5} M (Fig. 2). CAT activity also decreased as OTC concentration increased from 0 to 7.5×10^{-5} M. 19.58% reduction in CAT activity was observed at OTC concentration 7.5×10^{-5} M (Fig. 3).

For GSH-Px, the activity also decreased at increasing OTC concentrations (0–6×10^{-5} M) (Fig. 4), and was only 68.89% of the initial concentration when exposed to 6×10^{-5} M OTC.

NDA was used to probe the content of GSH in hRBCs. Fig. 5A shows the hRBCs under bright field. When observed under epifluorescence illumination condition, the cell without derivation with NDA had a very weak fluorescence (Fig. 5B). However, the derived hRBCs exhibited a strong fluorescence (Fig. 5C). The integrated fluorescence intensity of the hRBCs in Fig. 5B is only about 0.6%–0.7% of that of the derived hRBCs in Fig. 5C, so it is negligible. Therefore, the GSH content can be represented by the integrated fluorescence intensity of the derived hRBCs (Fig. 5C).

To investigate the influence of OTC on the GSH concentration in hRBCs, 250 hRBCs were selected for every different OTC concentration used. Fig. 6 shows the distribution map of integrated fluorescence intensity. With increasing OTC concentration, the GSH concentration decreased (Fig. 7). At OTC concentration 6×10^{-5} M, GSH content reduced to 93% of the initial concentration (5.48×10^0 compared to 5.89×10^0 average fluorescence intensity).

Exposure of hRBCs to OTC resulted in decreased antioxidant activity of enzymes including SOD, CAT and GSH-Px, and non-enzymatic defenses such as GSH, which all scavenge ROS [32]. So, OTC can reduce antioxidant capacity of hRBCs, which may predispose cells to oxidative injury [48]. To confirm this, we determined the effect of OTC on the concentration of MDA in hRBCs, which is a marker of lipid peroxidation induced by oxidative injury [49], [50]. From Fig. 8, we can see that MDA content in hRBCs increased with increasing OTC concentrations ranging from 0 to 8×10^{-5} M. 5.5% increment in MDA content was observed at OTC concentration 8×10^{-5} M.

In conclusion, OTC can reduce the antioxidant capacity of hRBCs and induce lipid peroxidation, causing oxidative injury.

3.2. Impact of OTC on the hemolytic activity of hRBCs

In the process of lipid peroxidation in the cell membrane by ROS, membrane fluidity and permeability is altered, affecting cellular structure and function. When RBCs are destroyed, known as hemolysis, contents of the RBCs are released into the bloodstream and can accumulate, causing health problems that can occur suddenly at any time [51], [52], including kidney failure and serious blood clots, which may cause damage to important organs of the body such as the liver, brain, and lung [53]. So, it is very important to investigate the effect of toxic substances on the hemolytic activity of RBCs. The hemolysis caused by toxic substances, which can be expressed as the leakage of hemoglobin,
is reflective of membrane damage to the RBCs [38]. After centrifugation, the supernatant from unhemolyzed hRBCs has no absorbance at the range of 425 to 625 nm (Fig. 9). However, the released hemoglobin from damaged hRBCs has two absorption peaks at about 540 nm and 576 nm (Fig. 9). In this research, the absorbance values at 540 nm were used to evaluate the hemolysis rate of hRBCs [37].

To determine if OTC produces hemolysis of hRBCs, hRBCs were exposed to OTC solutions at concentrations ranging from 0 to 4×10^{-4} M for 3 h. The experimental result (Fig. 10a) showed that when the OTC concentration was lower than 8×10^{-5} M, OTC did not induce hemolysis and no hemoglobin was observed in the supernatant, as seen in Fig. 10b, indicating that hRBCs can preserve itself from hemolysis. Hemolysis of hRBCs increased significantly with increasing OTC concentrations starting at a concentration of 8×10^{-5} M, based on the increase in hemoglobin concentrations in the supernatant (Fig. 10b). When the OTC concentration was 1.1×10^{-4} M, hemolysis was 80.99%, however, at higher OTC concentrations (above 1.1×10^{-4} M), hemolysis declined with increasing OTC. The phenomenon was not caused by the oxidation of hemoglobin to methemoglobin, because the absorption peak of methemoglobin at 630–631 nm did not appear in the experimental result. According to our previous study [54], OTC can bind into the central cavity of the hemoglobin molecule. So, we think that OTC interacts with the released hemoglobin, causing the absorbance to decrease. The experimental result that the absorbance of the hemolysate at 540 nm declined after the addition of OTC verified our conclusion.

In conclusion, at lower OTC concentrations ($\leq 8 \times 10^{-5}$ M), hRBCs are protected from membrane hemolysis. OTC has hemolytic activity at a concentration greater than 8×10^{-5} M.

3.3. Effect of OTC on the morphology of hRBCs

Under physiological conditions, the normal hRBCs have a biconcave discoid shape (discocyte) ~8 μm in diameter, consisting of a lipid bilayer membrane filled with aqueous hemoglobin solution [55], [56]. The effect of OTC on hRBC morphology was investigated by SEM. At the concentration of 1.0×10^{-3} M, OTC produced spicule formation on the hRBC membrane (acanthocyte, Fig. 11B) compared with the control hRBCs (Fig. 11A). At a higher concentration of 5.0×10^{-3} M, hRBCs became more deformed, with more cytoplasmic projections (Fig. 11C). The morphological alterations of hRBCs can ultimately lead to the destruction of the cells [57], which explains the observed high hemolytic activity of OTC. According to the bilayer-couple hypothesis [58], shape changes arise from the intercalation of OTC in either the outer or the inner monolayer of the RBC membrane. The lipid bilayer is the main permeability barrier of membrane, so the structural perturbation induced by OTC will affect its permeability, and thus may affect the function of ion channels, receptors, and enzymes immersed in the membrane lipid [59].

3.4. Influence of OTC on the ATPase activity of hRBCs

ATPase is an important enzyme existing in the membrane of cells in vivo [39]. It functions in maintaining ionic and osmotic balance inside and outside the cell, maintaining transmembrane electrochemical gradients, and in cellular energy metabolism [39], [40].

In this section, we investigated the influence of OTC on the activity of (Na$^+$, K$^+$)-ATPase and (Ca$^{2+}$, Mg$^{2+}$)-ATPase. From Fig. 12, we found that both the activity of (Na$^+$, K$^+$)-ATPase and (Ca$^{2+}$, Mg$^{2+}$)-ATPase increased with increasing OTC concentrations ranging from 0.4×10^{-5} M. At an OTC concentration of 4×10^{-5} M, the activity increased to 120.62% and 142.86% of the initial level for (Na$^+$, K$^+$)-ATPase and (Ca$^{2+}$, Mg$^{2+}$)-ATPase, respectively. However, at higher OTC concentration, the activity decreased. Inhibition rates of 16.67% and 22.25% were observed at the OTC concentration of 4×10^{-5} M for the activity of (Na$^+$, K$^+$)-ATPase and (Ca$^{2+}$, Mg$^{2+}$)-ATPase, respectively.

In summary, at a low concentration of OTC, the ATPase activity increased, known as hormesis. However, at a higher concentration, OTC can inhibit the activity of ATPase, affecting cell function, which verifies the analysis of the experimental results of the antioxidant capacity determination and morphology investigation of hRBCs under different concentrations of OTC (3.1 and 3.3).

Conclusions

The research systematically studied the effect of OTC on the antioxidative defense system, the structure (hemolysis rate and morphology) and function (ATP enzyme activity) of hRBCs. The experimental results indicated that OTC can cause a decline in the function of the antioxidiant defense system of hRBCs, enhancing the lipid peroxidation, which further result in the change of morphology and ATP enzyme activity of hRBCs. The established possible toxic mechanism of OTC to hRBCs can facilitate a deeper understanding of the toxicity of OTC in vivo.

Author Contributions

Conceived and designed the experiments: ZC. RL. Performed the experiments: ZC. Analyzed the data: ZC SM QZ. Wrote the paper: ZC HY HC.

References

1. Boleas S, Alonso C, Pro J, Fernandez C, Carbonell G, et al. (2005) Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS5) and influence of manure co-addition. J Hazard Mater 122: 233–241.
2. Ferreira CS, Nunes BA, Henriques-Almeida JM, Guilhermino I (2007) Acute toxicity of oxytetracycline and Brefencio to the microalgae Tetraselmis chuii and to the crustacean Artemia parthenogenetica. Ecotoxicol Environ Saf 67: 432–438.
3. Rigo G, Nengas I, Alexis M, Troisi GM (2004) Potential drug (oxytetracycline and oxolinic acid) pollution from Mediterranean sparid fish farms. Aquat Toxicol 69: 281–288.
4. Doi AM, Stoskopf MK, Lehwalt GA (1998) Pharmacokinetics of oxytetracycline in the red porgy (Carolosoma brachypondium) following different routes of administration. J Vet Pharmacol Ther 21: 364–368.
5. Brentnall C, Cheng Z, McKellar QA, Lee P (2013) Pharmacokinetic-pharmacodynamic integration and modelling of oxytetracycline administered alone and in combination with carprofen in calves. Res Vet Sci 94: 687–698.
6. Girardi C, Re G, Farca AM, Ducasto M, Ferretto E, et al. (1990) Blood kinetics of sulfamonomethoxine and oxytetracycline following intramuscular injection in dairy cows. Pharmacol Res 22: 79–86.
7. Reja A, Moreno L, Serrano JM, Santiago D, Soler F (1996) Concentration-time profiles of oxytetracycline in blood, kidney and liver of trout (Tilapa tinca L) after intramuscular administration. Vet Hum Toxicol 38: 344–347.
8. Novos IF, Vree TB (1983) Effect of injection site on the bioavailability of an oxytetracycline formulation in ruminant calves. Vet Quart 5: 165–170.
9. Uno K (1996) Pharmacokinetic study of oxytetracycline in healthy and vibriosis-infected ayu (Plecoglossus altivelis). Aquaculture 143: 33–42.
10. Roncada P, Emrini I, Schleming A, Stracciari GL, Strocchia A (2000) Pharmacokinetics and residual behaviour in milk of oxytetracycline in cows following administration of uterine pessaries. J Vet Pharmacol Ther 23: 281–285.
11. Sun Y, Peng Y, Akorsoune O, Johnson JR, Boring LG, et al. (2002) Controlled release of oxytetracycline in sheep. J Control Release 85: 125–134.
12. Kong WD, Zhu YG, Liang YC, Zhang J, Smith FA, et al. (2007) Uptake of oxytetracycline and its phototoxicity to alfalfa (Medicago sativa L.). Environ Pollut 147: 187–193.
13. Ye Z, Weinberg HS, Meyer MT (2007) Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated
drinking water using liquid chromatography electropray tandem mass spectrometry. Anal Chem 79: 1135–1144.

14. Bloh B, Burch CW (1960) Oxytetracycline concentrations in blood serums and milk secretions of cows following intravenous or intramammary treatment. Jour Anim Sci Vet Med Assoc 137: 124-128.

15. Dinmore RP, Stevens RD, Cartell MB, Salmon MD, Sundloff SF (1996) Oxytetracycline residues in milk after intruterine treatment of cows with retained fetal membranes. J Am Vet Med Assoc 209: 1753–1755.

16. Vereduskin NV, Pikkanen M, Elveskik J, Ko K, et al. (2008) Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria. J Agric Food Chem 56: 11065–11070.

17. Gahler VL (1991) Fluxes and accumulation of tetracyclines by human blood cells. Res Commun Chem Pathol Pharmacol 72: 39–51.

18. Loke ML, Jespersen S, Vreken R, Halling-Sorensen B, Tjernlund JU (2003) Determination of oxytetracycline and its degradation products by high-performance liquid chromatography-tandem mass spectrometry in manure-containing anaerobic test systems. J Chromatogr A 101: 11–23.

19. Mamani MCV, Reyes FGR, Rath S (2009) Multiresidue determination of tetracyclines, sulphonamides and chloramphenicol in bovine milk using HPLC-DAD. Food Chem 117: 545–552.

20. Jiao S, Zheng S, Yin D, Wang L, Chen L (2008) Aquous oxytetracycline degradation and the toxicity change of degradation compounds in photoreinforcement process. J Environ Sci (China) 20: 806–813.

21. Li K, Yediler A, Yang M, Schulte-Hostede S, Wong MH (2008) Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products. Chemosphere 72: 473–478.

22. Lundt T, Miettinen S, Lounstrom LG, Lilius EM, Bylund G (1998) Influence of oxytetracycline and enrofloxacin on the immune response of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 8: 217–230.

23. Qu MM, Sun LW, Chen J, Li YQ, Chen YG, et al. (2004) Toxicological characters of amaricine acid and oxytetracycline. J Agro-Environ Sci 23: 240–242.

24. Li ZL, Chen HG, Xu Y, Kong ZM (2006) Toxicological effects of three veterinary drugs and feed additives on fish, J Foshan Univ 22: 84–96.

25. De Jonge HR (1973) Toxicity of tetracyclines in rat-small-intestinal epithelium and liver. Biochem Pharmacol 22: 2659–2677.

26. Omegre E, Oyebanji SM (2002) Oxytetracycline-induced blood disorder in juvenile Nile tilapia (Oreochromis niloticus). Revwater. J World Aquacult Soc 33: 377–382.

27. Hobusch D, Putke HP (1971) Effect of oxytetracycline (OTC) on the secretion process of oxytetracycline. Br J Pharmacol 46: 316–320.

28. Wennmalm A, Benthin G, Petersson AS (1992) Dependence of the metabolism of nitric oxide (NO) in healthy human whole blood on the oxidation of its red cell haemoglobin. Br J Pharmacol 106: 507–508.

29. Skou JC, Esmann M (1992) The Na,K-ATPase. J Bioenerg Biomembr 24: 261–264.

30. Kovacs JA, Zsuga J, Pudlika M, Tarnoki L, et al. (2000) Voltage-clamped anion-selective channel in human red blood cells. In Vitro Cytotoxicity of Oxytetracycline.