Poisson Modeling and Predicting English Premier League Goal Scoring

Quang Nguyen
nnguyen22@luc.edu

Follow this and additional works at: https://ecommons.luc.edu/grs

Nguyen, Quang, "Poisson Modeling and Predicting English Premier League Goal Scoring" (2021). Graduate Research Symposium. 1.
https://ecommons.luc.edu/grs/2021/Posters/1

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Poisson Modeling and Predicting English Premier League Goal Scoring

Quang Nguyen – MS Student in Applied Statistics

Abstract: The English Premier League is well-known for being not only one of the most popular professional sports leagues in the world, but also one of the toughest competitions to predict. The first purpose of this research was to verify the consistency between goal scoring in the English Premier League and the Poisson process; specifically, the relationships between the number of goals scored in a match and the Poisson distribution, the time between goals throughout the course of a season and the exponential distribution, and the time location of goals during football games and the continuous uniform distribution. We found that the Poisson process and the three probability distributions do perform a great job of describing Premier League goal scoring. In addition, Poisson regression was utilized to predict outcomes for a Premier League season, using different sets of season data and with a large number of simulations being involved. We examined and compared various soccer metrics from our simulation results, including English club's chances of being the champions, finishing in the top four and bottom three, and relegation points.

Related link: github.com/qntkhvn/eplgoals

nnguyen22@luc.edu
Background and Data

• Poisson process describes the occurrences of events over a continuous interval, with key distributions:
 - Poisson (number of events)
 - Exponential (time between events)
 - Uniform (time locations of events)
→ Can soccer goal scoring be modeled by a Poisson process?

• Poisson regression is used to model responses that are counts and follow a Poisson distribution (like number of goals)
→ Determine teams’ expected scoring rate
→ Simulate and examine results

Data

All EPL final scores from 1992-93 to 2018-19

Season	HomeTeam	AwayTeam	Home.Goals	Away.Goals
2018-2019	Man United	Cardiff	0	2
2018-2019	Southampton	Huddersfield	1	1
2018-2019	Tottenham	Everton	2	2
2018-2019	Watford	West Ham	1	4

All Manchester United's goal scoring times in 2018-19

Min	Matchweek	H1_stoppage	H2_stoppage	TimeBetween	
3	1	1	2	5	0
83	1	2	5	0	
34	2	2	5	6	46
95	2	5	6	6	66
Goal Scoring and the Poisson Process

- How well do our data fit the distributions?
 1. Poisson and number of goals
 2. Exponential and time between goals
 3. Uniform and (re-scaled) goal times

- Goodness-of-fit tests
 - Chi-square for (1)
 - Kolmogorov-Smirnov for (2) and (3)

Chi-square for number of goals:

Goals	ObsMatches	PoisProb	ExpMatches
0	158	0.147	153
1	286	0.282	293
2	282	0.270	280
3	178	0.173	180
4+	134	0.128	133
Using Poisson Regression to Predict Season Outcomes

• Fit Poisson regression models (Goals ~ Teams) to get expected scoring rate for home and away games from the models’ coefficients

• Predict “what would happen” in 2018-19
 - 10000 simulations
 - 3 subsets of season data
 (all seasons, the 2010s, all seasons but put more weight on recent years)
 - Compare different metrics
 (champions, top 4, bottom 3,…)

• Future work
 - Factor in more soccer statistics
 - Organizational changes
 - Win probabilities → betting odds

HomeTeam	HomeRate	AwayTeam	AwayRate	HomeScore	AwayScore
Southampton	1.440	Brighton	0.684	3	1
West Ham	1.440	Cardiff	0.658	0	0
Newcastle	1.650	Tottenham	1.274	2	1
Huddersfield	0.684	Brighton	0.684	0	1

Scoring rates and randomly generated scores

Rank	Team	FinalPoints	GD
1	Man United	86	43
2	Arsenal	81	33
3	Tottenham	67	15
4	Man City	63	12
5	West Ham	59	11
6	Leicester	58	0
7	Liverpool	57	13

Sample simulated season

Team	All Seasons	2010s	Assign Weight
Arsenal	19.68	15.05	14.07
Chelsea	14.28	11.70	9.03
Liverpool	12.50	10.96	17.61
Man City	7.00	41.71	38.09
Man United	36.99	10.47	10.53
Tottenham	3.91	7.38	8.34

Chances (%) of winning 2018-19 season

nnguyen22@luc.edu - 4