Interactions between microplastics and unit processes of wastewater treatment plants: a critical review

Vaishnavi Koyilath Nandakumara,b, Sankar Ganesh Palanic,* and Murari Raja Raja Varmaa

a Department of Civil Engineering, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India
b Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, USA
c Environmental Biotechnology Laboratory, Department of Biological Sciences, BITS Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad 500078, Telangana, India
*Corresponding author. E-mail: sangan@hyderabad.bits-pilani.ac.in

ABSTRACT

Microplastics are classified as emerging pollutants of the aquatic environment, necessitating a comprehensive understanding of their properties for successful management and treatment. Wastewater treatment plants (WWTPs) serve as point sources of microplastic pollution of the aquatic and terrestrial (eco)systems. The first part of this review explores the basic definitions of microplastics, sources, types, physical and chemical methods of identifying and characterizing microplastics in WWTPs. The next part of the review details the occurrence of microplastics in various unit processes of WWTPs and sewage sludge. Followed by this, various methods for removing microplastics from wastewater are presented. Finally, the research gaps in this area were identified, and suggestions for future perspectives were provided.

Key words: microplastics, unit process, wastewater, wastewater treatment plant, water pollution

HIGHLIGHTS

- Wastewater treatment plants act as point sources of microplastic pollution.
- Microplastics in wastewater treatment plants are diverse in composition, size, shape and origin.
- Microplastics are seen in all unit processes of wastewater treatment plants.
- Wastewater treatment plants remove bulk of microplastics entering them.
- Majority of microplastics enter the environment from sludge generated in wastewater treatment plants.
1. INTRODUCTION

Globally the annual production of plastics is over 380 million tonnes (Plastics Europe Publications 2020). However, plastic waste is barely treated but mixed with municipal solid waste and discarded in the dump yards, landfills, and water bodies, which results in plastic pollution in various matrices of the environment. Changes that plastics undergo when they are in the environment has led to a new type of plastic pollutants termed microplastics.

Some of the earliest investigations that have set the pace for microplastic research include the studies of Carpenter et al. (1972) on polystyrene spherules in coastal waters of south New England, USA, Colton et al. (1974) on plastic pollution in the North Atlantic, and Ryan & Moloney (1990) on plastic debris in the beaches of South Africa. The word ‘microplastics’ was first used in 2004 for plastics of size <5 mm, as reported by Thompson et al. (2004). Despite the common usage of the term,
there is a lack of consensus on its definition. The accepted size range for the lower limit is 1–20 μm, and the upper limit is 500 μm to either 1 mm or 5 mm (Frias & Nash 2019). There have been a few attempts to define them based on their physicochemical characteristics (Verschoor 2015). However, it is imperative to understand the fundamental properties such as source, chemical composition, and solubility of microplastics to devise a standard classification method.

Based on their production, microplastics are classified into primary and secondary microplastics. Primary microplastics, such as microbeads commonly used in the cosmetic industry, are manufactured within the specified size range. Secondary microplastics are plastic debris that fragment/break down into the size range of microplastics due to photochemical, biological, or mechanical processes. Their classification into types is also a matter of contention, as there are no fixed criteria based on which they are classified. The most abundant types of microplastics in decreasing order are pellets, fragments, fibres, films, ropes, filaments, sponges, foams, rubber, and microbeads.

It is crucial to study microplastics in natural environments because of the risks that microplastics pose to environmental compartments. Low density, high persistence, and a wide range of occurrences are the unique characteristics of (micro)plastics, making them quite different from most other common pollutants. Their size and non-biodegradable nature make them pollutants that are almost impossible to treat/remove, especially from aquatic ecosystems. Their persistence in various environments and ubiquitous existence qualifies them as a planetary boundary threat (Villarrubia-Gómez et al. 2018).

Microplastics can cause detrimental effects in two ways – they can be harmful by themselves and serve as carriers of other contaminants. Microplastics can easily be internalized by biota and accumulated in the food chain (Anbumani & Kakkar 2018). Over 50% of commonly used plastics contain at least one hazardous component (Rochman et al. 2013a). Once they enter aquatic ecosystems, their high specific surface area and hydrophobic nature make them act as carriers of hydrophobic organic contaminants (Rochman et al. 2013b). Microplastics thus facilitate the entry of hazardous chemicals used in their manufacturing and other contaminants (mainly persistent organic pollutants) into the food chain. Hence, there is an imminent need to develop efficient microplastic removal and disposal methods to ensure that they do not find their way into aquatic ecosystems and the food chain. To do this, sources, types, and characteristics of microplastics in aquatic ecosystems, including point sources such as WWTPs, need to be extensively studied. WWTPs act as a point source of microplastics as the microplastics produced in/disposed of in household and industrial wastewater streams, and oftentimes in the stormwater drain system, make their way into WWTPs. This makes WWTPs important in the study of microplastics. Across the globe, the interest to study microplastics in WWTPs is catching up and an overview of the key publications reported in the literature from various parts of the world is presented in Table 1.

However, a SCOPUS search done on 16 October 2021, showed only 382 and 16 documents on microplastics in WWTPs and microplastics in unit processes of WWTPs, respectively. Hence there is a dire need to study how the microplastics interact with each and every unit process of WWTPs. This review provides a comprehensive understanding of interactions of microplastics with various unit processes of WWTPs, which paves the way for their removal from and modelling as pollutants in WWTPs. This review has explored the basic definitions of microplastics, sources, types, physical and chemical methods of identifying and characterizing microplastics in WWTPs. The study focuses on the occurrence of microplastics in various unit processes of WWTPs and sewage sludge. Next, methods for removing microplastics from wastewater are presented. Gaps in this research area were identified, and some suggestions were provided for future perspectives.

2. IDENTIFICATION AND CHARACTERIZATION OF MICROPLASTICS IN WWTPs – CHEMICAL (ANALYTICAL) AND PHYSICAL METHODS

Identification and characterization of microplastics in WWTPs are necessary to understand how they act as point sources and make them more efficient in microplastic removal.

The main steps involved in the characterization process are (i) Sampling and separation, (ii) Digestion, and (iii) Identification.

2.1. Sampling and separation

Proper sampling is critical for the characterization of microplastics. Sampling methods vary according to the environment from which the microplastics are to be collected. For in situ sampling of microplastics from marine and other large aquatic environments, usually plankton, neuston and manta nets are used. However, for smaller aquatic environments and WWTPs, either in situ or ex situ sampling strategies are followed, using various types of sieves and pumps.
Country	Wastewater treated	Unit processes studied	Type of microplastics recovered	Size of microplastics	Concentration of microplastics in the influent	Cumulative removal of microplastics from WWTP	References
Iran	Domestic wastewater	Bar screen, Grit chamber, Primary settling tank, Anoxic tank, Aeration basin, Clarifier	Fibres, Particles	210 μm – 6.3 mm	12.667 ± 668 MP/m³	96.7%	Alavian Petroody et al. (2020)
Spain	Domestic wastewater	MBR, RSF	Fragments, Fibres, Microbeads, Films	60 – 2,800 μm	8.1 × 10⁸ MP/day	96%	Bayo et al. (2020)
United Kingdom	Domestic and industrial wastewater	Coarse screen, Grit chamber, Primary settling tank, ASP and clarification tank, Nitrification tank	Fragments, Fibres, Films	100 μm – 5 mm	4.40 ± 1.01 MP/L	79%	Blair et al. (2019)
South Korea	Domestic and industrial wastewater	Grit chamber, Primary settling tank, MBR, ASP, and settling tank, Coagulation tank, Membrane DF	Fragments, Fibres, Microbeads, Sheets	250 μm – 5 mm	8.400 MP/L	92–99%	Hidayaturrahman & Lee (2019)
China	Domestic wastewater and pretreated industrial wastewater	Primary treatment, Secondary treatment, Seasonal tertiary treatment	Fragments, Fibres, Pellets, Granules	250 μm – 5 mm	1.57–13.69 MP/L	79.3–97.8%	Long et al. (2019)
China	Domestic and industrial wastewater	Aerated grit chambers, O/D, MBR, Secondary settling tank, UV disinfection chamber	Fragments, Fibres, Films, Foam	250 μm – 5 mm	4.0 MP/L	97–99%	Lv et al. (2018)
Italy	Domestic wastewater	ASP and sedimentation tank, RSF and disinfection tank	Fragments, Fibres, Films, Lines	0.01 – 5 mm	2.5 ± 0.3 MP/L	84%	Magni et al. (2019)
China	Domestic and industrial wastewater	Primary aerated grit treatment tank, A/A/O, Denitrification, UF, Ozonation, UV tanks	Fibres, Particles	100 μm – 5 mm	12.03 ± 1.29 MP/L	95%	Yang et al. (2019)
Canada	Domestic wastewater and storm water from combined sewers	Bar screen, Primary clarifier, Trickling filters, Solids contact tanks, Secondary clarifiers	Fragments, Fibres, Pellets	250 μm – 5 mm	31.1 ± 6.7 MP/L	94%	Gies et al. (2018)
Finland	Domestic wastewater	MBR, ASP	Fragments, Fibres	250 μm – 5 mm	1.5 × 10⁸ MP/d	98.3%	Lares et al. (2018)

(Continued.)
Samples are to be collected from all relevant points in the WWTPs, mainly at the start and end of each unit process. Sampling is done in conjunction with the separation step. Separation can be done through filtration, using a series of sieves, and through density separation, using denser solutions such as NaCl or ZnCl₂. The latter method is followed if the sample has a high concentration of organics, which would lead to clogging of the pores during filtration (Long et al. 2019).

The oil extraction protocol (OEP) takes advantage of microplastics' oleophilic properties to cost-effectively extract them in an FTIR-compatible method. While OEP has been used to study microplastics in sediments, it can also be used for studying microplastic in WWTPs (Crichton et al. 2017).

2.2. Digestion

Digestion removes the organic matter from the sample and ensures that only inorganic microplastic particles remain. Digestion of microplastics is done using acid, alkali, oxidizing agents, or enzymes, as described below.

Various kinds of acids are used to digest the organic matter present in the microplastic samples. At low concentrations and room temperature, mineral HCl is inefficient and inconsistent (Cole et al. 2014). Higher concentrations or stronger acids like HNO₃ cannot be used because they may affect the microplastic polymers, which have a low resistance to acids (He et al. 2018). Conversely, low concentrations of stronger acids may not have the desired effect on organics. Hence it is imperative to perform acid digestion at optimum concentration and temperature (Prata et al. 2019).

When alkali agents are used in microplastic digestion, the polymers may become discoloured or affected by high concentrations. It has the added issue of the possibility of organics being deposited over the polymers (Prata et al. 2019).

Oxidizing agents like hydrogen peroxide/Fenton’s reagent are widely used to oxidize the organic matter present in the sample. Hydrogen peroxide can digest organic matter more efficiently than most acids and alkalis, without causing any changes to the microplastic polymers (Prata et al. 2019). Hydrogen peroxide can be directly used (Ziajahromi et al. 2017), or organic matter may be separated by chemical settling and decantation, then dissolved in hydrogen peroxide (Bretas Alvim et al. 2020). A combination of hydrogen peroxide, heat, and catalysts such as Fenton’s reagent can be used to speed up the digestion process and yield the desired results (Lares et al. 2018; Prata et al. 2019; Bretas Alvim et al. 2020).

Various enzymes can be employed for digestion, and this accomplishes the task with minimal damage to polymers. However, the process is a multistep process, hence may cause contamination of samples (Bretas Alvim et al. 2020), and it is also expensive (Prata et al. 2019).

Table 1 | Continued

Country	Wastewater treated	Unit processes studied	Type of microplastics recovered	Size of microplastics	Concentration of microplastics in the influent	Cumulative removal of microplastics from WWTP	References
Finland	Domestic wastewater	• DF	Fragment	10 μm – 5 mm	6 MP/L	97%	Talvitie et al. (2017a)
Denmark	Domestic and industrial wastewater	• Coarse screen	Fragments	100 μm – 5 mm	15.70 ± 5.23 MP/L	98.41%	Murphy et al. (2016)
United States of America	Domestic wastewater and storm water	• Bar screen	Fragments	100 μm – 5 mm	133.0 ± 35.6 MP/L	97-99%	Michielsen et al. (2016)
2.3. Identification
Identification of microplastics is the final step, in which microplastics present in the samples are classified according to their physical and chemical characteristics.

2.3.1. Physical characteristics
Physical characteristics include size, shape, colour, and type (foam, granules, pellets, etc.). Physical characterization is done visually, using microscopes, a time-consuming but cost-effective process to quantify microplastics in the sample. (Prata et al. 2019).

For studying the morphology of smaller sized microplastics, electron and scanning probe microscopes such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning tunnelling microscopy (STM) are used (Barbosa et al. 2020). SEM is well suited for spotting and differentiating impurities and microplastics in the sample due to its potential to generate high-resolution images. This approach is not best suited for analyzing multiple samples because it is time consuming (Barbosa et al. 2020).

2.3.2. Chemical characteristics
For studying the chemical composition of microplastics, the most commonly used technique is Fourier transform infrared (FT-IR) spectroscopy (Renner et al. 2018; Silva et al. 2018). FT-IR spectroscopy has the added advantage of observing the ageing process of microplastics by surface oxidation and visual characterization by transmission mode (Silva et al. 2018). As more microplastics can be identified than visual inspection and the results are accurate and reliable, FT-IR spectroscopy is widely used (Prata et al. 2019). Shortcomings of FT-IR spectroscopy include lower sensitivity and the incapability of detecting smaller microplastics (nano-size) at lower concentrations (Barbosa et al. 2020). However, attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy and focal plane array-based transmission micro-FT-IR imaging (FPA-FT-IR) spectroscopy allow the identification of polymers to a size of up to 20 μm (Mintenig et al. 2017).

Raman spectroscopy with a better size resolution, up to 1 μm, has also been used to characterize microplastics (Nguyen et al. 2019). However, the fluorescence background from filter papers can interfere with the results. This drawback has been overcome by using cellulose filters but at an increased cost of the analysis.

Thermal methods of analyzing the chemical compositions of microplastics are gas chromatography coupled with pyrolysis followed by mass spectroscopy (Py-GC-MS) and gas chromatography coupled with thermal desorption followed by mass spectroscopy (TDS-GC-MS). In Py-GC-MS, pyrograms of known standards serve as references to measure the production of thermal degradation due to pyrolysis in a mass spectrometer. This process’s limitations include high reliance on sample preparation and manual introduction of particles into the pyrolysis tube. Testing only one particle per cycle limits its application only to smaller sample sizes (Barbosa et al. 2020). In TDS-GC-MS mode, the sample is mounted and heated to 1,000 °C in a thermo-gravimetric balance, and then the degradation products are first adsorbed in a solid phase, then desorbed and analyzed by mass spectroscopy. However, this method is less sensitive than Py-GC-MS (Nguyen et al. 2019).

A summary of separation, digestion, and identification steps involved in microplastics’ characterization is presented in Table 2.

The ubiquitous nature of microplastics has paved the way for them to enter into sewage streams and consequently into WWTPs. As an integral part of the sanitation system, WWTPs have become prominent sources of microscopic release into aquatic systems, that receive treated effluent (Talvitie et al. 2015; Ziajahromi et al. 2016; Kalčíková et al. 2017; Kay et al. 2018; Conley et al. 2019; Bretas Alvim et al. 2020), and terrestrial ecosystem, when sewage sludge is applied as soil amendment/fertilizer (Corradini et al. 2019; Rolsky et al. 2020). Studies that quantify and characterize microplastics in WWTPs have been done by comparing the influent and effluent for calculating the removal efficiencies (Talvitie et al. 2017a; Blair et al. 2019).

Considering WWTPs as sources of microplastics to freshwater ecosystems, studies have been conducted in river catchments, which show that concentrations of microplastics are found to increase downstream from WWTPs (Kay et al. 2018). Further, WWTPs serving a larger population equivalent have shown more significant fluctuations in the downstream concentrations of microplastics. WWTPs serve as a source of microplastics that enter marine environments as well. Studies on the Baltic Sea (Talvitie et al. 2015) and the sea in Greece have identified WWTPs as a route for microplastics present in the seawater and ocean sediments (Talvitie et al. 2015; Mourgogiannis et al. 2018).

While studies have shown that WWTPs have high removal efficiencies of microplastics (Talvitie et al. 2017a), a significant quantity is being released from WWTPs. Hence it is imperative to remove microplastics from WWTPs to reduce their release.
into aquatic environments significantly. In this pursuit, it is essential to understand (i) the types, sizes, and distribution of microplastics in the wastewater treatment process, (ii) how each unit process in wastewater treatment contributes towards the removal of microplastics, (iii) the effect of microplastics on treatment mechanisms (physical and chemical), and vice versa. The above information would enable identifying crucial unit processes that remove microplastics and undertake necessary alterations in WWTPs to minimize the release of microplastics into the natural environment.

3. SOURCES AND TYPES OF MICROPLASTICS IN WWTPS

Microplastics that make their way into WWTPs are incredibly diverse, as depicted in Table 3. As microplastics originate from diverse sources, they are of different types, chemical composition, origin, and concentration (Michielsen et al. 2016; Gies et al. 2018; Blair et al. 2019; Hidayaturrahman & Lee 2019; Long et al. 2019; Lv et al. 2019; Magni et al. 2019; Yang et al. 2019; Bayo et al. 2020). Microplastics enter WWTPs from household and industrial sewage (Carr 2017). The cosmetics and personal care industries release more microplastics than others (Carr et al. 2016). The chemical composition of microplastics is dependent on the source industry. The quantity and type of microplastics in a WWTP vary according to the season as well.

Microplastics found in WWTPs are diverse in chemical composition, size, shape, and origin, hence generalizing their types and treatment is challenging. Secondary microplastics, including fibres, fragments, and films, are more commonly found in wastewater than primary microplastics (Blair et al. 2019). Fibres are thought to find their way into sewage streams primarily from household sewage (Carr 2017). Fragments are found in all stages of wastewater treatment and are of varied sizes and shapes (Ziajahromi et al. 2016). They are also harder to remove and can be found in higher concentrations in the treated effluent. Films are less common and are almost entirely removed in the skimming process in primary treatment (Blair et al. 2019).

The presence of primary microplastics in WWTPs cannot be neglected. Microbeads, commonly used in the personal healthcare industry, are removed in primary treatment and sludge (Michielsen et al. 2016; Bayo et al. 2020).

Chemical composition-wise, the most commonly found microplastics in WWTPs are polyethylene, and polypropylene (Talvitie et al. 2015; Hidayaturrahman & Lee 2019; Magni et al. 2019), which is used in the packaging industry and has other household uses (Talvitie et al. 2015; Hidayaturrahman & Lee 2019; Magni et al. 2019; Bretas Alvim et al. 2020). Microplastics have a shorter residence time, resulting from fast fragmentation and degradation rates (Long et al. 2019). Smaller sized microplastics exhibit a higher removal rate, and unit processes influence the size distribution of microplastics in a WWTP (Lv et al. 2019).

Table 2 | Separation, digestion, and identification steps in characterization of microplastics

Characterization Step	Process	Method	Reagent/Equipment
Separation	Filtration	Size fractionation	Sieves in series
	Density separation	High-density supernatants	ZnCl₂, NaCl
	Oil extraction protocol	Oils	Filtered canola oil
Digestion	Acid digestion	Mild acids/in low concentration	HCl in low concentration
	Alkaline digestion	Mild alkali/in low concentration	NaOH in low concentration
	Oxidation	Mild, stable oxidizing agents	Hydrogen peroxide
	Enzymatic digestion	Enzymes	Fenton's reagent
Identification	Visual	Optical microscopy	Proteolytic enzyme (proteinase-K)
	Morphology	Electron and scanning probe microscopy	SEM
	Chemical composition	Spectroscopy	TEM
	Chemical composition	Thermal methods	STM

Water Science & Technology Vol 85 No 1, 502

Downloaded from http://iwaponline.com/wst/article-pdf/85/1/496/985847/wst085010496.pdf by guest
Table 3 | Different types of microplastics identified from WWTPs

Type of microplastics	Sources of microplastics	Specific microplastic type out of total microplastic sample, %	Presence in WWTP influent/effluent	References	
Fragments	Household sewage, industry, produced in wastewater treatment process (Blair et al. 2019)	6.7	Influent	Bayo et al. (2020)	
		10.8–53.4		Hidayaturrahman & Lee(2019)	Blair et al. (2019)
		15		Lares et al. (2018)	Magni et al. (2019)
		18			Michiels sen et al. (2016)
		21			Gies et al. (2018)
		22.9–25.9			Long et al. (2019)
		28.1			Lv et al. (2019)
		30			Murphy et al. (2016)
		65			Hidayaturrahman & Lee (2019)
		67.3			Michiels sen et al. (2016)
		5.6–21.4		Effluent	Bayo et al. (2020)
		13–35			Hidayaturrahman & Lee (2019)
Fibre	Laundry discharges and household sewage (Carr 2017)	14.6–46.7	Influent	Hidayaturrahman & Lee (2019)	
		17.7			Long et al. (2019)
		18.5			Murphy et al. (2016)
		21			Lv et al. (2019)
		54.5–62			Michiels sen et al. (2016)
		61.09			Bayo et al. (2020)
		65.6			Gies et al. (2018)
		67			Blair et al. (2019)
		82			Lares et al. (2018)
		85.4			Yang et al. (2019)
		0.5–22.5		Effluent	Bayo et al. (2020)
		61–84.7			Hidayaturrahman & Lee (2019)
Microbeads	Cosmetics and personal care products (Kalčíková et al. 2017)	0.6	Influent	Bayo et al. (2020)	
		3			Murphy et al. (2016)
		11.1–15.8			Michiels sen et al. (2016)
		18.1–70.4			Hidayaturrahman & Lee (2019)
		55.7–93.2		Effluent	Bayo et al. (2020)
		Negligible			Hidayaturrahman & Lee (2019)
					Michiels sen et al. (2016)
Films	Packaging and industries (Gündoğdu et al. 2018)	9.9	Influent	Murphy et al. (2016)	
		12			Lv et al. (2019)
		18			Blair et al. (2019)
		31.5			Bayo et al. (2020)
		73			Magni et al. (2019)
Foam	Industries (Murphy et al. 2016)	1.3	Influent	Murphy et al. (2016)	
		2			Lv et al. (2019)
Sheet	Localized fragmentation of larger plastics (Kapp & Yeatman 2018; Hidayaturrahman & Lee 2019)	3.8–4.5	Influent	Hidayaturrahman & Lee (2019)	
		0–3			Hidayaturrahman & Lee (2019)
Pellets	Industries (Gies et al. 2018)	2.5	Influent	Long et al. (2019)	
		5.4			Gies et al. (2018)

(Continued.)
4. MICROPLASTICS IN VARIOUS UNIT PROCESSES OF WWTPs

Microplastics have been recorded in all unit processes of WWTPs. Their presence is diverse in size, shape, type, and concentrations, and inconsistent across reported studies. To effectively control the release of microplastics into the environment by WWTPs, it is imperative to study the characterization, removal, impact, and fate of microplastics in each WWTP unit process. The unit processes employed by WWTPs to process wastewater play a critical role in deciding the types and concentrations of microplastics released into the environment (Talvitie et al. 2017a). However, such studies are lacking. It can be seen that each unit process responds differently to microplastics in terms of impact, removal, and fate. Understanding the fate of microplastics in unit processes is key to removing WWTPs and modelling microplastics as pollutants.

Figure 1 represents wastewater treatment stages and their overall removal efficiencies, which is the cumulative removal of microplastics up to a given treatment stage. However, the removal efficiency of the unit processes is calculated as the percentage of several microplastic particles or mass of microplastic particles or a combination of both; hence there is no uniformity.

4.1. Primary treatment

Primary treatment is the first step in the wastewater treatment process. It consists of preliminary treatment and primary settling tanks. Figure 2(a) represents the standard primary treatment unit processes, where microplastic removal efficiencies...
have been studied. The maximum removal of microplastics happens during the primary treatment in conventional WWTPs (Michielssen et al. 2016; Blair et al. 2019). Standard primary treatment unit processes and their microplastic removal efficiencies are tabulated in Table 4(a).

Most WWTPs employ pre-treatment to prepare the influent for further treatment by removal of large debris. Most of the studies reported in the literature focus on primary treatment as a whole, but pre-treatment removal efficiencies are not measured individually (Blair et al. 2019), except for a few studies (Michielssen et al. 2016; Murphy et al. 2016; Blair et al. 2019).

As bar screens and grit chambers are commonly used in WWTPs, the studies on removing microplastics seem to be limited to mainly these pre-treatment processes, and others like coagulation and flocculation (to remove turbidity) and equalization tanks have been overlooked.

Racks and bar screens are used to filter out large debris when raw wastewater passes through them. The effect of such screens on microplastics depends on the size of the gaps between the bars. Mostly spaced at 2–6 cm, they easily allow microplastics to pass through them. Grit chambers, used to remove grit (denser inorganics), are where microplastic removal happens in the pre-treatment process.

Preliminary treatment has shown a removal efficiency of 39–58% (Michielssen et al. 2016; Murphy et al. 2016; Blair et al. 2019). Microfibers with higher densities and settling behaviour seem to be the microplastics group most influenced by grit chambers (Alavian Petrood et al. 2020).

Owing to their high specific surface area and hydrophobic nature, microplastics may adsorb chemical agents used in wastewater treatment, which would require an additional dosage of these chemicals (Zhang & Chen 2020). Microplastics may also adsorb additional pollutants, which may hinder the treatment process.

The primary settling tank is the next phase of primary treatment. The objective of having a primary settling tank is to remove suspended solids (both organic and inorganic) by sedimentation and flotation. Most primary settling tanks involve a surface skimming mechanism, along with sedimentation. Here, along with oil and grease, most microplastics in the wastewater stream rise to the surface and are removed by skimmers, as reported in some studies (Michielssen et al. 2016; Ziajahromi et al. 2016; Kay et al. 2018; Conley et al. 2019; Hidayaturrahman & Lee 2019; Yang et al. 2019).
Table 4 | Different types of microplastics removed from various unit processes of WWTPs

Treatment process	Removal efficiency (%)	Type of microplastic removed	References
(a) Primary Treatment			
Screened by grit removal and primary settling tank	62.7–64.4	Fragments	Hidayaturrahman & Lee (2019)
Coarse screening (12 mm) and grit removal, primary settling tanks	82	Pellets, fragments, fibres	Blair et al. (2019)
Bar screen (20 mm), an aerated grit chamber, a flow metering, primary settling tank	72.3	Low-density microplastics, fibres	Alavian Petroody et al. (2020)
Bar screen, grit chamber, primary settling tank	84.1–88.4	Microbeads, fibres	Michielssen et al. (2016)
Primary aerated grit treatment	58.84 ± 8.05	Not mentioned	Yang et al. (2019)
Coarse screening (20 mm) and grit removal, primary settling tanks	78.34	Microbeads	Murphy et al. (2016)
(b) Secondary Treatment			
MBR, ASP, and settling tank	83.1–91.9	Fragments	Hidayaturrahman & Lee (2019)
ASP and clarification	92	Fragments, fibres	Blair et al. (2019)
Anoxic tank, aeration basin, clarifier	24.4	Smaller microplastics	Alavian Petroody et al. (2020)
ASP	93.8	Microbeads	Michielssen et al. (2016)
TF and ASP	89.8	Microbeads	
MBR	79.01	Fibres, polypropylene, polystyrene	Bayo et al. (2020)
A/A/O	71.67 ± 11.58	Not mentioned	Yang et al. (2019)
ASP, sedimentation	64	Fibres	Magni et al. (2019)
Aeration and clarification treatment	98.4	Not mentioned	Murphy et al. (2016)
MBR	99	Fragments, fibres	Lv et al. (2019)
OD	97	Fragments, fibres	
(c) Tertiary Treatment			
Coagulation	92.2–95.7	Not mentioned	Hidayaturrahman & Lee (2019)
Ozone	99.2	Not mentioned	
Membrane DF	99.1	Not mentioned	
RSF	98.9	Not mentioned	
Nitrification on plastic media TF	96	Fibres, fragments	Blair et al. (2019)
RSF	97.2	Fibres	Michielssen et al. (2016)
Anaerobic MBR	99.4	Microbeads, fragments	
RSF	75.49	Polypropylene, polystyrene	Bayo et al. (2020)
Denitrification, UF, ozonation, UV	95.16 ± 1.57	Not mentioned	Yang et al. (2019)
RSF and disinfection	84	Fibres, fragments	Magni et al. (2019)
DF (pore size = 10 μm)	40	All size fractions (20 μm – 5 mm)	Talvitie et al. (2017a)
DF (pore size = 20 μm)	98.5	All size fractions (20 μm – 5 mm)	
RSF	97.1	All size fractions (20 μm – 5 mm)	
MBR	94	All size fractions (20 μm – 5 mm)	
DAF	95	All size fractions (20 μm – 5 mm)	
The skimmers remove low-density microplastics in the primary treatment process as they float to the surface. Further, Alavian Petroody et al. (2020) stated that the skimming mechanism could remove a wide range of low-density microplastics of size >500 μm. Microbeads, a significant category of primary microplastics with low density, are removed in the primary treatment process (Murphy et al. 2016). Another explanation could be that most microbeads are made of polyethylene and associate themselves with grease and fat floating on the water surface, only to get skimmed out.

Mourkogiannis et al. (2018) studied 101 WWTPs in Greece and noted that 34% did not have any primary treatment, especially the smaller WWTPs designed to cater to population sizes of 10,000–15,000. The lack of primary treatment can radically increase the microplastic release into the environment.

4.2. Secondary treatment
Secondary treatment aims to treat the wastewater emanating from primary treatment and eliminate the residual organics and suspended solids. In this stage, aerobic or anaerobic biological treatment methods are employed to remove dissolved and colloidal biodegradable organic matter. During secondary treatment, often a secondary clarifier is put to use. Figure 2(b) represents the standard secondary treatment unit process, where microplastic removal efficiencies have been studied. Microplastic removal efficiencies of standard secondary treatment unit processes have been tabulated in Table 4(b).

Biological treatment is not known to remove microplastics directly. Significant microplastic removal at the secondary treatment stage happens due to microplastics settling with organic matter as flocs. Microplastics thus find their way into sludge streams from the biological treatment systems.

Biological treatment processes are pretty diverse, and each one responds to various types of microplastics uniquely. Hence, the microplastic type that is removed from each unit process also varies. For example, MBR technology and rapid sand filters remove particulates more efficiently than fibres (Bayo et al. 2020). Some processes are found to be more efficient than others in removing microplastics. MBR technology expressed a marginally better removal efficiency than the conventional activated sludge process (Lares et al. 2018).

The efficiency of the sequencing batch reactor was not affected by microplastics (Kalčíková et al. 2017). In the active filter process, microplastics provided surfaces for the attachment of microorganisms. However, they can lead to an uneven distribution of water due to the formation of spheres with suspended solids (Talvitie et al. 2017b). Microplastics can decrease volatile solids destruction, leading to an increase in waste sludge production. In the study done by Wei et al. (2019), waste sludge production increased by 9%.

Studies on the effect of microplastics on microorganisms showed a facilitating effect on biological treatment processes. However, activities of ammonium-oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB), denitrifiers, polyphosphate accumulating organisms (PAOs) were seen to be unaffected by microplastics (Liu et al. 2019).

Studies on the effects of microplastics on biological unit processes have not exhibited consistent results. It was also found that microplastics in wastewater have minimal effects on nitrification and denitrification processes (Li et al. 2020b). However, they caused a significant increase in N₂O emission during denitrification. Nevertheless, this result is not consistent, as Zhang & Chen (2020) claim that microplastics inhibit the nitrification process and cause ammonium accumulation in water.

There has been no research on removing microplastics in secondary clarifiers because the studies reported in the literature combine secondary clarifiers with biological treatment. Secondary clarifiers, due to their sedimentation mechanisms, could significantly contribute towards the removal of microplastics.

4.3. Tertiary treatment
Tertiary (advanced) treatment is the final step in the wastewater treatment process. Here, left-over contaminants are present after previous treatment steps are removed. Figure 2(c) represents the standard tertiary treatment unit process, in which microplastic removal efficiencies have been studied. Tertiary treatment at WWTPs increases microplastic removal efficiency, and newer advanced treatments that could entirely remove microplastics are being researched. It is only in the recent past that advanced treatment processes to remove microplastics have gained momentum, as reported previously (Talvitie et al. 2017a; Bayo et al. 2020; Padervand et al. 2020). Microplastic removal efficiencies of standard tertiary treatment unit processes have been tabulated in Table 4(c).

Recent studies have shown that advanced treatment technologies are highly efficient in the removal of microplastics. Removal efficiencies of 75% (Bayo et al. 2020), 90% (Hidayaturrahman & Lee 2019), and 98% (Talvitie et al. 2017a) were
reported. Combining MBR, ultrafiltration (UF), and granular activated carbon has been shown to remove microplastics below the deductible levels (Baresel et al. 2019).

It was seen that unit processes that involve filtration mechanisms have performed better in the removal of microplastics. However, microplastics have irregular shapes that may wear the filters (Zhang & Chen 2020) and pose a high risk of membrane fouling due to their surface properties (Ma et al. 2019b).

Some studies consider nitrogen and phosphorous removal mechanisms and MBRs to be the tertiary treatment. These studies have also shown significant microplastic removal efficiencies (Bayo et al. 2020).

Coagulation is a commonly used method in wastewater treatment to remove suspended solids. It has been found that coagulation before the final advanced treatment increases the microplastics removal efficiency (Hidayaturrahman & Lee 2019). Microplastics' high surface area allows them to adsorb reagents used for coagulation, meaning a higher concentration must be used to achieve desired results. Similar problems will arise in air flotation because microplastics will adsorb other pollutants and agglomerate, which will not match the tank's design parameters.

Disinfection processes are a crucial part of tertiary treatment. Chlorination and ozonation are commonly used disinfection processes in wastewater treatment processes. However, little research has been done on the effect of chemical treatments on microplastics. Kelkar et al. (2019) studied the effects of chlorination on microplastics in WWTPs and concluded that common microplastic polymers have the potential to be affected by chlorination. The microplastic polymer most affected by chlorination is polystyrene. However, high-density polyethylene and polypropylene proved to be quite resistant to chlorine concentrations used in conventional WWTPs. Ozone treatment causes an alteration in the physical properties of microplastics and influences polymer degradation. They seem to increase the rate of degradation and affect the end products (Hidayaturrahman & Lee 2019). However, the long-term effects of ozonation have not been extensively studied. There is also a possibility of microplastics hindering the disinfection process by acting as a protective surface for the targeted microorganisms.

4.4. Processing of sewage sludge

Sewage sludge processing encompasses the steps to manage and dispose off the sewage sludge produced during wastewater treatment. Sludge is produced in the primary settling tank, biological treatment processes, and secondary clarifiers.

All the microplastics removed during the wastewater treatment process as skimmings and settled sludge from primary settling tank and secondary clarifier, as waste activated sludge from biological treatment, end up in sewage sludge. Studying microplastics in sludge processing is expensive and time-consuming due to the difficulty in extraction.

Microplastics in the sewage sludge are received from varying sources in the sewage treatment process, so they vary widely in properties (size, shape, composition), making their removal complicated (Talvitie et al. 2017a). Gravity flotation as a pretreatment process for sludge processing is the most commonly used method for their removal.

On studying the effect of microplastics on the anaerobic digestion of sludge, it was observed that methane production potential decreased due to the sludge’s incomplete digestion because microplastics hinder its biochemical processing. However, there seemed to be no effect on the microbial community (Li et al. 2020a). The presence of microplastics also showed an increase in the dewaterability of sludge. Anaerobic digestion decreases the microplastic concentration in sewage sludge because it may be causing their breakdown (Mahon et al. 2017).

There is a paucity of research on the fate, behaviour, and removal of microplastics during sewage sludge processing, which is a matter of concern. High concentrations of microplastics present in the sewage sludge could find their way into landfills and enter the environment, if left untreated.

5. SPECIFIC METHODS FOR REMOVAL OF MICROPLASTICS IN WASTEWATER

The existing methods of removing microplastics in wastewater streams are either expensive, inefficient, or ineffective or use chemical reagents (coagulants), which eventually add to the sewage treatment process. If the coagulants are not appropriately treated, then they could be detrimental to the receiving environments. There have been developments in recent times on methods to remove microplastics from the wastewater stream. These can be broadly categorized into filtration-based and coagulation-based. However, recent times have seen the development of other methods (Table 5).
5.1. Filtration-based methods

Filtration has been reported to be the most cost-effective and relatively simple way to remove microplastics. This method does not use any external chemical reagents. However, the smaller size of microplastics can lead to the clogging of filters making their maintenance complicated (Zhang & Chen 2020).

A gravity-powered filtration system for removing microplastics from the secondary effluent in WWTPs was developed and tested (Beljanski 2016). It includes both filtration and backflush. However, the system was tested only for a synthetic microplastic-water solution and not evaluated for actual wastewater. Dynamic membrane filtration (DMF) uses a physical barrier (e.g., cloth or mesh) on which a cake layer is formed. DMF can be used to remove small-sized and low-density inorganics. Their ability to remove micro-particles from wastewater has been studied by Li et al. (2018). DMF has been shown to be more efficient, cost-effective, low energy-intensive, and poses a low risk of fouling than MBR (Ersahin et al. 2012).

Enfrin et al. (2019) suggest that the density separation method can separate microplastics by altering the density of wastewater using chemicals like ZnCl2. However, it may not be feasible to employ density separation in WWTPs due to the volume of wastewater treated and the fact that the wastewater stream contains many other pollutants.

5.2. Coagulation-based methods

Electrocoagulation produces coagulants with metal electrodes. Here, the suspended microplastics are collected on a layer formed by coagulants. Electrocoagulation is a cost-efficient way of removing microplastics and has been studied in detail (Ma et al. 2019a; 2019b) to remove microplastics in drinking water treatment. Nevertheless, this method could be modified and adapted for the wastewater treatment process. It was also found that aluminium-based coagulants showed better performance than iron-based coagulants. The sol-gel method uses synthetic amorphous silica (which is chemically stable and acts as an adsorbent) to induce the agglomeration of microplastics so that they can be removed easily. This process can be used in a wide range of pH and can result in a floating floculate (Herbort et al. 2018; Zhang & Chen 2020).

5.3. Other methods

However, it is interesting to note that methods that do not use either filtration or coagulation principles are also proposed to remove microplastics from aquatic environments. Microplastics’ hydrophobic nature has been exploited in magnetic recovery by binding hydrophobic Fe nanoparticles to microplastics (Grbic et al. 2019).

There have been suggestions to increase the degradation of microplastics using biological agents that use polymers as a carbon source (Enfrin et al. 2019). There have been studies that demonstrated the biodegradation of polyethylene (Auta et al. 2018), polypropylene (Caruso 2015), and polyethylene terephthalate (Yoshida et al. 2016). However, there is a lack of research regarding the effect of microplastics on these organisms and the environment.

6. Research Gaps and Suggestions

Research on microplastics and their removal has been studied since their identification as a pollutant in 2004 (Thompson et al. 2004). There are still many areas that require further understanding. Some of the key aspects have been reviewed in this section.
6.1. Definitions and characterization

- Finding an all-inclusive definition for microplastics, including their properties such as chemical composition, and solubility would contribute to a standard characterization (Verschoor 2015; Frias & Nash 2019).
- There is a lack of standard experimental procedures to be followed during sampling, characterization, and identification of microplastics (Silva et al. 2018; Prata et al. 2019).
- Removal efficiency definitions have not been consistent over different studies – total removal, removal in each treatment stage, based on total plastic mass, based on the number – are ways to measure removal efficiency, making comparative studies complicated (Ziajahromi et al. 2016).
- The removal efficiencies of various unit processes of WWTPs vary because of the varied nature and concentration of microplastics in the samples/influents used in each study. The differences introduced by the experimental setup and design parameters of the treatment systems cannot be ignored (Talvitie et al. 2015; Carr et al. 2016; Michielssen et al. 2016; Bayo et al. 2020).
- The size distribution of microplastics in unit processes of WWTPs has not been extensively studied. Size distribution over the wastewater processing stream could be connected to unit processes, size, composition, and type of microplastics (Lv et al. 2019).

6.2. Unit processes of wastewater treatment plants

- Although presently established wastewater treatment methods may be incapable of efficiently tackling microplastics, it would be beneficial (economically and technology-wise) to alter them to cater to microplastic removal.
- As the maximum microplastic removal happens at the primary treatment stage (Carr et al. 2016), there could be an attempt to study the influence of operational parameters such as loading rate on microplastic removal. Optimizing flotation and sedimentation in the primary settling tank would directly contribute to removing microplastics from this step. Flocculants that promote microplastics accumulation may be considered a possible means of increasing removal efficiency (Herbort et al. 2018; Zhang & Chen 2020). Pre-treatment processes studied have been limited to bar and screens and grit chamber. Other pre-treatment processes, such as equalization tanks and comminuting devices, have to be explored (Blair et al. 2019).
- Skimmings from primary settling tanks are often landfilled (Alavian Petroody et al. 2020). However, landfilling is not a permanent solution to microplastic pollution because the microplastics could find their way into soil and water from landfills.
- As the biological treatment processes are very diverse, research gaps exist on the behaviour and removal of microplastics through the biological treatment process, especially on attached growth processes.
- Despite being a vital component of the wastewater treatment process, secondary clarifiers have been overlooked. They have a sedimentation-skimming mechanism, which could potentially be significant in microplastic removal. There is only a handful of studies on the removal of microplastics by secondary clarifiers.
- Research on the impact of chemical agents on microplastics during wastewater treatment is imperative because many chemical agents are used in the treatment process, such as coagulants and disinfectants (Hidayaturrahman & Lee 2019; Kelkar et al. 2019; Zhang & Chen 2020).
- In the filtration methods, altering the membrane’s material to suit the hydrophobicity and negative charge of microplastics can improve removal efficiency. Adjusting the size of bubbles in air flotation may be conducive to removing microplastics (Zhang & Chen 2020).
- Agglomeration between microplastics and other contaminants in the wastewater stream has not been studied extensively. Better insight into this may prove quite valuable for coagulation-based removal of microplastics (Hidayaturrahman & Lee 2019).
- The separation of microplastics from sewage sludge is a relatively unexplored area and challenging because it is complicated, time consuming, and expensive (Talvitie et al. 2017b).
- All microplastics removed from WWTPs end up in the sludge, yet, there is no comprehensive study on microplastics during sludge processing. The few studies that have been conducted are isolated and not corroborated by further research (Mahon et al. 2017; Li et al. 2020a; Zhang & Chen 2020). Pyrolysis could be an effective treatment method in permanently removing microplastics so that they do not re-enter the environment (Li et al. 2020a; Zhang & Chen 2020).
6.3. Microplastic-specific removal technologies

- Beyond altering existing WWTPs for microplastic removal, specific technologies targeted at microplastic removal must be explored. Some of the promising technologies have been listed below.

 - **Filtration-based removal** has been explored, but they have filter clogging and membrane fouling issues (Ersahin et al. 2012; Beljanski 2016).
 - **Coagulation-based removal** requires the addition of other chemical reagents into wastewater streams. The effects of these chemicals, if released into the ecosystem, are yet to be keenly studied (Herbort et al. 2018; Zhang & Chen 2020).
 - **The biological treatment** of microplastics, although explored at the laboratory scale, has not been studied from all aspects, especially on the impact of plastic degradation on microorganisms and the formation of intermediate products and by-products and their effects on the environment (Caruso 2015; Tiwari et al. 2020). Adaptability of biological treatment at the actual industrial scale WWTPs remains unanswered (Caruso 2015; Beljanski 2016; Grbic et al. 2019; Tiwari et al. 2020).
 - Specific **industries** such as cosmetics, personal health care, and packaging contribute disproportionately to microplastic production (Carr et al. 2016). Drawing policy frameworks for responsible usage and arresting microplastics’ release into the environment would be conducive for reducing microplastic production itself.

7. CONCLUSIONS

Despite extensive research, there exists a lack of consensus on the definition, characterization, and identification of microplastics. Studies on the impacts of microplastics on the unit processes of WWTPs and vice versa are imperative, but rare. Their unique properties make microplastics pollutants that challenge their treatment and removal from WWTPs. From the available studies on microplastics in WWTPs, it can be concluded that although WWTPs remove the bulk of microplastics entering them, yet they act as a point source of microplastics pollution to the aquatic environment, through treated wastewater and to the terrestrial environment, through sludge. Understanding the fate of microplastics in unit processes is crucial in modelling the impact of microplastics as pollutants in each unit process. Microplastics entering and leaving WWTPs are exceedingly diverse in their size, type, shape, chemical composition, and concentration, which further vary based on the unit process, time of the day and year, population equivalent the WWTP caters to and the influent (domestic/industrial). WWTPs serve as epicentres for converting primary microplastics entering with the wastewater into secondary microplastics that emanate out with the sludge and treated wastewater. Microplastic-specific removal technologies remain an unexplored area of research. However, the currently available technologies can be broadly categorized into filtration based, coagulation based, and biological degradation. This review would serve as a ready reckoner for a comprehensive understanding of interactions between a variety of microplastics and the unit processes of WWTPs.

ACKNOWLEDGEMENTS

All the authors thank BITS Pilani, Hyderabad Campus, India, for extending the required support to conduct this work. The authors thank Mr Subham Mishra for the artwork.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Alavian Petroody, S. S., Hashemi, S. H. & van Gestel, C. A. M. 2020 Factors affecting microplastic retention and emission by a wastewater treatment plant on the southern coast of Caspian Sea. *Chemosphere* 261, 128179. https://doi.org/10.1016/j.chemosphere.2020.128179.

Anbumani, S. & Kakkar, P. 2018 Ecotoxicological effects of microplastics on biota: a review. *Environmental Science and Pollution Research* 25 (15), 14373–14396. https://doi.org/10.1007/s11356-018-1999-x.

Auta, H. S., Emenike, C. U., Jayanthi, B. & Fauziah, S. H. 2018 Growth kinetics and biodeterioration of polypropylene microplastics by *Bacillus* sp. And *Rhodococcus* sp. isolated from mangrove sediment. *Marine Pollution Bulletin* 127, 15–21.

Barbosa, F., Adeyemi, J. A., Bocato, M. Z., Comas, A. & Campiglia, A. 2020 A critical viewpoint on current issues, limitations, and future research needs on micro- and nanoplastics studies: from the detection to the toxicological assessment. *Environmental Research* 182, 109089. https://doi.org/10.1016/j.envres.2019.109089.
Baresel, C., Harding, M. & Fång, J. 2019 Ultrafiltration/granulated active carbon filter: efficient removal of a broad range of micropollutants. Applied Sciences 9 (4), 710. https://doi.org/10.3390/app9040710.

Bayo, J., López-Castellanos, J. & Olmos, S. 2020 Membrane bioreactor and rapid sand filtration for the removal of microplastics in an urban wastewater treatment plant. Marine Pollution Bulletin 156, 111211.

Beljanski, A. 2016 Efficiency and effectiveness of a low-cost, self-cleaning microplastic filtering system for wastewater treatment plants. 2016 NCUR 0 (0), Article 0. Available from: https://www.ncurproceedings.org/ojs/index.php/NCUR2016/article/view/2064.

Blair, R. M., Waldron, S. & Gauchotte-Lindsay, C. 2019 Average daily flow of microplastics through a tertiary wastewater treatment plant over a ten-month period. Water Research 163, 114909. https://doi.org/10.1016/j.watres.2019.114909.

Bretas Alvim, C., Mendoza-Roca, J. A. & Bes-Piá, A. 2020 Wastewater treatment plant as microplastics release source – quantification and identification techniques. Journal of Environmental Management 255, 109739. https://doi.org/10.1016/j.jenvman.2019.109739.

Carpenter, E. J., Anderson, S. J., Harvey, G. R., Miklas, H. P. & Peck, B. B. 1972 Polystyrene spherules in coastal waters. Science 178 (4062), 749–750. https://doi.org/10.1126/science.178.4062.749.

Carr, S. A., Liu, J. & Tesoro, A. G. 2016 Transport and fate of microplastic particles in wastewater treatment plants. Water Research 91, 174–182.

Carr, S. A. 2017 Sources and dispersive modes of micro-fibers in the environment. Integrated Environmental Assessment and Management 13 (3), 466–469.

Caruso, G. 2015 Plastic degrading microorganisms as a tool for bioremediation of plastic contamination in aquatic environments. Journal of Pollution Effects & Control 3 (5), 1–2.

Cole, M., Webb, H., Lindeque, P. K., Fileman, E. S., Halsband, C. & Galloway, T. S. 2014 Isolation of microplastics in biota-rich seawater samples and marine organisms. Scientific Reports 4 (1), 4528. https://doi.org/10.1038/srep04528.

Colton, J. B., Knapp, F. D. & Burns, B. R. 1974 Plastic particles in surface waters of the Northwestern Atlantic. Science 185 (4150), 491–497.

Conley, K., Clum, A., Deepe, J., Lane, H. & Beckham, B. 2019 Wastewater treatment plants as a source of microplastics to an urban estuary: removal efficiencies and loading per capita over one year. Water Research X 3, 100030. https://doi.org/10.1016/j.watex.2019.100030.

Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E. & Geissen, V. 2019 Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment 671, 411–420.

Crichton, E. M., Noël, M., Gies, E. A. & Ross, P. S. 2017 A novel, density-independent and FTIR-compatible approach for the rapid extraction of microplastics from aquatic sediments. Analytical Methods 9 (9), 1419–1428.

Enfrin, M., Dumée, L. F. & Lee, J. 2019 Nano/microparticles in water and wastewater treatment processes—origin, impact and potential solutions. Water Research 161, 621–638.

Ersahin, M. E., Ozgun, H., Dereli, R. K., Ozturk, I., Roest, K. & van Lier, J. B. 2012 A review on dynamic membrane filtration: materials, applications and future perspectives. Bioresource Technology 122, 196–206. https://doi.org/10.1016/j.biortech.2012.03.086.

Frias, J. & Nash, R. 2019 Microplastics: finding a consensus on the definition. Marine Pollution Bulletin 138, 145–147.

Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R. & Ross, P. S. 2018 Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin 133, 553–561. https://doi.org/10.1016/j.marpolbul.2018.06.006.

Grbic, J., Nguyen, B., Guo, E., You, J. B., Sinton, D. & Rochman, C. M. 2019 Magnetic extraction of microplastics from environmental samples. Environmental Science & Technology Letters 6 (2), 68–72.

Gümüşgül, S., Çevik, C., Güzel, E. & Kilercioglu, S. 2018 Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations. Environmental Monitoring and Assessment 190 (11), 626. https://doi.org/10.1007/s10661-018-7010-y.

He, D., Luo, Y., Lu, S., Liu, M., Song, Y. & Lei, L. 2018 Microplastics in soils: analytical methods, pollution characteristics and ecological risks. TrAC Trends in Analytical Chemistry 109, 163–172.

Herbort, A. F., Sturm, M. T. & Schuhlen, K. 2018 A new approach for the agglomeration and subsequent removal of polyethylene, polypropylene, and mixtures of both from freshwater systems—a case study. Environmental Science and Pollution Research 25 (15), 15226–15234.

Hidayaturrahman, H. & Lee, T.-G. 2019 A study on characteristics of microplastic in wastewater of South Korea: identification, quantification, and fate of microplastics during treatment process. Marine Pollution Bulletin 146, 696–702. https://doi.org/10.1016/j.marpolbul.2019.06.071.

KaliciKová, G., Alíc, B., Skalar, T., Bundschuh, M. & Gotvajn, A. Ž. 2017 Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere 188, 25–31.

Kapp, K. J. & Yeatman, E. 2018 Microplastic hotspots in the snake and lower Columbia rivers: a journey from the greater Yellowstone ecosystem to the Pacific Ocean. Environmental Science 241, 1082–1090. https://doi.org/10.1016/j.envol.2018.06.033.

Kay, P., Hiscoe, R., Moberly, I., Bajic, L. & McKenna, N. 2018 Wastewater treatment plants as a source of microplastics in river catchments. Environmental Science and Pollution Research 25 (20), 20264–20267. https://doi.org/10.1007/s11356-018-2070-7.

Kelkar, V. P., Rolsky, C. B., Pant, A., Green, M. D., Tongay, S. & Halden, R. U. 2019 Chemical and physical changes of microplastics during sterilization by chlorination. Water Research 163, 114871.
Lares, M., Ncibi, M. C., Sillanpää, M. & Sillanpää, M. 2018 Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research 153, 236–246. https://doi.org/10.1016/j.watres.2018.01.049.

Li, L., Xu, G., Yu, H. & Xing, J. 2018 Dynamic membrane for micro-particle removal in wastewater treatment: performance and influencing factors. Science of the Total Environment 627, 332–340.

Li, L., Geng, S., Li, Z. & Song, K. 2020a Effect of microplastic on anaerobic digestion of wasted activated sludge. Chemosphere 247, 125874.

Li, L., Song, K., Yeerken, S., Geng, S., Liu, D., Dai, Z., Xie, F., Zhou, X. & Wang, Q. 2020b Effect evaluation of microplastics on activated sludge nitrification and denitrification. Science of the Total Environment 707, 135953.

Liu, H., Zhou, X., Ding, W., Zhang, Z., Nghiem, L. D., Sun, J. & Wang, Q. 2019b Do microplastics affect biological wastewater treatment performance? implications from bacterial activity experiments. ACS Sustainable Chemistry & Engineering 7 (24), 20097–20101.

Long, Z., Pan, Z., Wang, W., Ren, J., Yu, X., Lin, L., Lin, H., Chen, H. & Jin, X. 2019 Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Research 155, 255–265.

Lv, X., Dong, Q., Zuo, Z., Liu, Y., Huang, X. & Wu, W.-M. 2019 Microplastics in a municipal wastewater treatment plant: fate, dynamic distribution, removal efficiencies, and control strategies. Journal of Cleaner Production 225, 579–586.

Ma, B., Xue, W., Ding, Y., Hu, C., Liu, H. & Qu, J. 2019a Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. Journal of Environmental Sciences 78, 267–275.

Ma, B., Xue, W., Hu, C., Liu, H., Qu, J. & Li, L. 2019b Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chemical Engineering Journal 359, 159–167.

Magni, S., Binelli, A., Pittura, L., Avio, C. G., Della Torre, C., Parenti, C. C., Gorbi, S. & Regoli, F. 2019 The fate of microplastics in an Italian Wastewater Treatment Plant. Science of the Total Environment 652, 602–610.

Mahon, A. M., O’Connell, B., Healy, M. G., O’Connor, L., Officer, R., Nash, R. & Morrison, L. 2017 Microplastics in sewage sludge: effects of treatment. Environmental Science & Technology 51 (2), 810–818.

Michielsen, M. R., Michielsen, E. R., Ni, J. & Duhaime, M. B. 2016 Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environmental Science: Water Research & Technology 2 (6), 1064–1073. https://doi.org/10.1039/C6EW00207B.

Mintenig, S. M., Int-Veen, I., Löder, M. G. J., Primpke, S. & Gerds, G. 2017 Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Research 108, 365–372. https://doi.org/10.1016/j.watres.2016.11.015.

Mourgkogiannis, N., Kalavroutzios, I. K. & Karapanagioti, H. K. 2018 Questionnaire-based survey to managers of 101 wastewater treatment plants in Greece confirms their potential as plastic marine litter sources. Marine Pollution Bulletin 133, 822–827. https://doi.org/10.1016/j.marpolbul.2018.06.044.

Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. 2016 Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environmental Science & Technology 50 (11), 5800–5808.

Nguyen, B., Claveau-Mallet, D., Hernandez, L. M., Xu, E. G., Farner, J. M. & Tufenkji, N. 2019 Separation and analysis of microplastics and nanoplastics in complex environmental samples. Accounts of Chemical Research 52 (4), 858–866.

Padevand, M., Lichtfouse, E., Robert, D. & Wang, C. 2020 Removal of microplastics from the environment. A review. Environmental Chemistry Letters 18, 807–828.

Plastics Europe Publications 2020 Plastics Europe Org. Available from: https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2020.

Prata, J. C., da Costa, J. P., Duarte, A. C. & Rocha-Santos, T. 2019 Methods for sampling and detection of microplastics in water and sediment: a critical review. TrAC Trends in Analytical Chemistry 110, 150–159.

Renner, G., Schmidt, T. C. & Schram, J. 2018 Analytical methodologies for monitoring micro(nano)plastics: which are fit for purpose? Current Opinion in Environmental Science & Health 1, 55–61. https://doi.org/10.1016/j.coesh.2017.11.001.

Rochman, C. M., Browne, M. A., Halpern, B. S., Hentschel, B. T., Hoh, E., Karapanagioti, H. K., Rios-Mendoza, L. M., Takada, H., Teh, S. & Thompson, R. C. 2013a Classify plastic waste as hazardous. Nature 494 (7436), 169–171. https://doi.org/10.1038/494169a.

Rochman, C. M., Hoh, E., Hentschel, B. T. & Kaye, S. 2013b Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environmental Science & Technology 47 (3), 1646–1654.

Rolsky, C., Kelkar, V., Driver, E. & Halden, R. U. 2020 Municipal sewage sludge as a source of microplastics in the environment. Current Opinion in Environmental Science & Health 14, 16–22.

Ryan, P. & Moloney, C. 1990 Plastic and other artefacts on South African beaches: temporal trends in abundance and composition. South African Journal of Science 86, 450–452.

Silva, A. B., Bastos, A. S., Justino, C. I., da Costa, J. P., Duarte, A. C. & Rocha-Santos, T. A. 2018 Microplastics in the environment: challenges in analytical chemistry-A review. Analytica Chimica Acta 1017, 1–19.

Talvitie, J., Heimonen, M., Pääkkönen, J.-P., Valthera, E., Mikola, A., Setälä, O. & Vahala, R. 2015 Do wastewater treatment plants act as a potential point source of microplastics? preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology 72 (9), 1495–1504.

Talvitie, J., Mikola, A., Koistinen, A. & Setälä, O. 2017a Solutions to microplastic pollution–removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Research 125, 401–407.
Talvitie, J., Mikola, A., Setälä, O., Heinonen, M. & Koistinen, A. 2017b How well is microlitter purified from wastewater?—a detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. *Water Research* **109**, 164–172.

Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W. G., McGonigle, D. & Russell, A. E. 2004 Lost at Sea: where is all the plastic? *Science*. Available from: www.sciencemag.org/cgi/content/full/304/5672/838/DC1.

Tiwari, N., Santhiya, D. & Sharma, J. G. 2020 Microbial remediation of micro-nano plastics: current knowledge and future trends. *Environmental Pollution* **265**, 115044. https://doi.org/10.1016/j.envpol.2020.115044.

Verschoor, A. J. 2015 Towards A Definition of Microplastics: Considerations for the Specification of Physico-Chemical Properties.

Villarrubia-Gómez, P., Cornell, S. E. & Fabres, J. 2018 Marine plastic pollution as a planetary boundary threat—The drifting piece in the sustainability puzzle. *Marine Policy* **96**, 213–220.

Wei, W., Huang, Q.-S., Sun, J., Dai, X. & Ni, B.-J. 2019 Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge. *Environmental Science & Technology* **53** (16), 9604–9613.

Yang, L., Li, K., Cui, S., Kang, Y., An, L. & Lei, K. 2019 Removal of microplastics in municipal sewage from China’s largest water reclamation plant. *Water Research* **155**, 175–181.

Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., Toyohara, K., Miyamoto, K., Kimura, Y. & Oda, K. 2016 A bacterium that degrades and assimilates poly (ethylene terephthalate). *Science* **351** (6278), 1196–1199.

Zhang, Z. & Chen, Y. 2020 Effects of microplastics on wastewater and sewage sludge treatment and their removal: a review. *Chemical Engineering Journal* **382**, 122955.

Ziajahromi, S., Neale, P. A. & Leusch, F. D. 2016 Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms. *Water Science and Technology* **74** (10), 2253–2269.

Ziajahromi, S., Neale, P. A., Rintoul, L. & Leusch, F. D. L. 2017 Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. *Water Research* **112**, 95–99. https://doi.org/10.1016/j.watres.2017.01.042.

First received 25 July 2021; accepted in revised form 10 November 2021. Available online 22 November 2021.