SHORT COMMUNICATION

Biofunctional properties of *Eruca sativa* Miller (rocket salad) hydroalcoholic extract

Khushbakht Sultana, Muhammad Zakira, Haroon Khanb*, Abdur Raufc*, Noor Ul Akberd and Murad Ali Khana

aDepartment of Chemistry, Kohat University of Science and Technology, Kohat, Pakistan; bDepartment of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; cInstitute of Chemical Sciences, University of Peshawar, Peshawar, KPK 25120, Pakistan; dDepartment of Zoology, Kohat University of Science and Technology, Kohat, Pakistan

(Received 8 March 2015; final version received 25 April 2015)

Eruca sativa Miller is a worldwide common alimentary plant (rocket leaves). The aim of this study was to correlate the potential in vitro scavenging activity of the *E. sativa* hydroalcoholic extract (HAE) with its in vivo hypoglycaemic effect. In DDPH free radical (DFR) and ferric-reducing antioxidant power assays, HAE in a concentration dependent manner (25–100 μg/mL) displayed a strong scavenging activity with maximum effect of 88% and 75% at 100 μg/mL, respectively. Daily administration of HAE (50 mg/kg; p.o.) in the in vivo model of alloxan-induced diabetic rabbits for 28 days showed significant reduction in glycaemia, also supported by recovery of body weight. In conclusion, our results give preliminary information on the potential use of this plant as a nutraceutical, useful to control and/or prevent a hyperglycaemic status.

Keywords: *Eruca sativa* Miller; rocket salad; hypoglycaemic activity; antioxidant

1. Introduction

Free radicals released during an oxidation process cause endogenous damage in humans and are associated with various diseases and disorder such as cancer, cardiovascular disease, inflammation, diabetes and immune function decline (Al-Rawi & Al-Rawi 2011; Wu & Schauss 2012). Diabetes is known to be associated with increased oxidative stress and impaired antioxidant defence mechanisms which are due to greater production of free radicals. The formation of free radicals in diabetes leads to a decrease in total antioxidant status of the body. Evidence that food consumption, especially some vegetable and fruits are related to a reduction of such disease comes from epidemiological studies (Villatoro-Pulido et al. 2012).

Corresponding authors. Email: hkdr2006@gmail.com; mashaljcs@yahoo.com

© 2015 Taylor & Francis
The mechanisms by which vegetables and fruit exert their protective effects are not completely known but likely include antioxidant effects. The ‘diet’ in promoting health, via certain nutrients or dietary components, is nowadays a certainty rather than a mere speculation.

Eruca sativa Miller is a diploid herbaceous plant belonging to the family Brassicaceae. This plant is native of Mediterranean area but is distributed worldwide. _E. sativa_, also known as rocket, rucola, rugula, colewort, roquette and arugula, is considered of high economic value and its leaves are usually consumed as green edible leaves. This plant is reported to exhibit antiscorbutic, diuretic and antiulcer activity. It is also used as a carminative and to alleviate abdominal discomfort and improve digestion (Barillari et al. 2005; Khan & Khan 2014; Landi et al. 2015). Besides glucosinolates, _E. sativa_ is also an excellent source of fibre, minerals and secondary metabolites such as ascorbic acid, flavonoids and carotenoids also known as antioxidants molecules that scavenge free radicals (Kim et al. 2007; Cavaiuolo & Ferrante 2014). On this basis, the current study aimed to assess in vitro the antioxidant activity of a HAE of this plant and also give preliminary in vivo evidence of its hypoglycaemic properties.

2. Result and discussion
An antioxidant is defined as ‘a substance that considerably suspends or inhibits an oxidation process’ (Gutteridge & Halliwell 1994). Antioxidant efficacy is likely correlate to the antioxidant ability to scavenge free radicals. In this study in order to assess the free radical scavenging effect of HAE, we have chosen DFR and ferric-reducing antioxidant power assays as they are the simplest ways of determining antioxidant power. The DDPH radical scavenging assay is an easy rapid and sensitive method for the antioxidant screening of plant extracts. HAE caused marked scavenging effect on DDPH with 47%, 59%, 74% and 88% results at 25, 75, 50 and 100 μg/mL, respectively, Figure S1 (See Figure S1 on supplementary data online only). At low pH, measuring the change in absorption at 593 nm can monitor reduction of a ferric complex to the ferrous form. The change in absorbance is directly related to the reducing power of the electron-donating antioxidants present in the reaction mixture. Figure S2 (See Figure S2 on supplementary data online only) shows the free radical scavenging activity of HAE. This extract, in a concentration dependent manner, yielded a percentage scavenging activities of 17%, 37%, 66% and 75% at concentrations of 25, 75, 50 and 100 μg/mL, respectively.

Diabetes is known to be associated with increased oxidative stress mediated mainly by hyperglycaemia-induced generation of free radicals (Ceriello 2003; Rahimi et al. 2005). The induction of experimental diabetes by systemic administration of alloxan is characterised, among other things, by the formation of reactive oxygen species (Heikkila et al. 1976). One of the targets of the ROS is the DNA of pancreatic islets (Asawa et al. 1991). In alloxan-treated animals, a significant increase in blood glucose level and decrease in body weight was evident.

Our results show a significant increase in blood glucose levels in alloxan-treated rabbits compared to those that received saline. The treatment with glibenclamide (5 mg/kg, p.o.), a well known antidiabetic drug, displayed a significant hypoglycaemic effect since 7 days whereas such effect, in a less extent manner, appeared at 21 days in HAE (50 mg/kg; p.o.) treated rabbits (See Figure S2 on supplementary data online only). We also took into account the growth of rabbits’ body weight. We observed an increase in body weight of normoglycaemic rabbits (≈40%) whereas the hyperglycaemics displayed only a partial increase (≈10%). On the other hand, after 28 days we observed a recovery of rabbits’ body weight using glibenclamide (GLB-treated rabbits) and _E. sativa_ hydroalcoholic extracts (HAE-treated rabbits) to treat the animals (≈20 and ≈13% of increase respectively).
3. Conclusion

In conclusion, our results demonstrate (i) a scavenging activity of HAE in vitro and (ii) a protective trend on alloxan-induced hyperglycaemic response in vivo. Taken together, these results suggest a potential use of this plant as a nutraceutical useful to provide extra health benefits.

Supplementary material

Experimental details related to this article along with Figures S1 and S2 are available online at http://dx.doi.org/10.1080/14786419.2015.1046380.

Conflict of interests

The authors of this article declared that there is no conflict of interests regarding the publication of this research article.

References

Al-Rawi H, Al-Rawi. 2011. Oxidative stress, antioxidant status and lipid profile in the saliva of type 2 diabetics. Diabetes Vasc Dis Re. 8:22–28. doi:10.1177/1479164110390243.

Asawa N, Komiya T, Nagasawa I, Yamada T. 1991. Alloxan-induced DNA strand breaks in pancreatic islets. J Biol Chem. 266:2112–2114.

Barillari J, Canistro D, Paolini M, Ferroni F, Pedulli GF, Iori R, Valgimigli L. 2005. Direct antioxidant activity of purified glucoerucin, the dietary secondary metabolite contained in rocket (Eruca sativa Mill.) seeds and sprouts. J Agric Food Chem. 53:2475–2482. doi:10.1021/jf047945a.

Cavaiuolo M, Ferrante A. 2014. Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients. 6:1519–1538. doi:10.3390/nu6041519.

Ceriello A. 2003. New insights on oxidative stress and diabetic complications may lead to a ‘causal’ antioxidant therapy. Diabetes Care. 26:1589–1596. doi:10.2337/diacare.26.5.1589.

Gutteridge JMC, Halliwell B. 1994. Antioxidants in nutrition, health, and disease. Oxford: Oxford University Press.

Heikkila RE, Winston B, Cohen G, Barden H. 1976. Alloxan-induced diabetes — evidence for hydroxyl radical as a cytotoxic intermediate. Biochem Pharmacol. 25:1085–1092. doi:10.1016/0006-2952(76)90502-5.

Khan H, Khan MA. 2014. Antiulcer effect of extract/fractions of Eruca sativa: attenuation of urease activity. J Evid Based Compl Altern Med. 3:176–180.

Kim SJ, Kawaharada C, Jin S, Hashimoto M, Ishii G, Yamauchi H. 2007. Structural elucidation of 4-(cystein-S-yl)butyl glucosinolate from the leaves of Eruca sativa. Biosci Biotechnol Biochem. 71:114–121. doi:10.1271/bbb.60400.

Landi M, Degl’Innocenti E, Guglielminetti L, Guidi L. 2013. Role of ascorbic acid in the inhibition of polyphenol oxidase and the prevention of browning in different browning-sensitive Lactuca sativa var. capitata (L.) and Eruca sativa (Mill.) stored as fresh-cut produce. J Sci Food Agric. 93:1814–1819. doi:10.1002/jsfa.5969.

Rahimi R, Nikfar S, Larjani B, Abdollahi M. 2005. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 59:365–373. doi:10.1016/j.biopha.2005.07.002.

Villatoro-Pulido M, Font R, Saha S, Obregón-Cano S, Anter J, Muñoz-Serrano A, De Haro-Bailón A, Alonso-Moraga A, Del río-Celestino M. 2012. In vivo biological activity of rocket extracts (Eruca vesicaria subsp. Sativa (Miller) Thell) and sulforaphane. Food Chem Toxicol. 50:1384–1392. doi:10.1016/j.fct.2012.02.017.

Wu X, Schauss AG. 2012. Mitigation of inflammation with foods. J Agric Food Chem. 60:6703–6717. doi:10.1021/jf3007008.