Latrine site and its use pattern by Large Indian Civet
Viverra zibetha Linnaeus, 1758: record from camera trap

Bhuwan Singh Bist 1, Prashant Ghimire 2, Basant Sharma 3, Chiranjeevi Khanal 4, & Anoj Subedi 5

1 The School of Forestry and Natural Resource Management, Institute of Forestry (IOF), Tribhuvan University (TU), Kathmandu, Nepal.
2 Faculty of Science, Health and Technology, Nepal Open University, Lalitpur, Nepal.
3 Institute of Forestry, Pokhara Campus, Tribhuvan University, Pokhara 33700, Nepal.
4 bhuwanbistaiof@gmail.com (corresponding author), prashantghimire66@gmail.com, b.s.sharma237@gmail.com, chirankanatl@gmail.com, anojsubedi90@gmail.com

Abstract: Latrine sites are the places used for urination and defecation, which mostly act as a signaling agent for multiple purposes like territorial marking, confrontation with extruders or potential predators, delivering different inter and intra-communication messages. To understand latrine site visit pattern, a single camera trap was deployed for 91 trap nights at the latrine site of Large Indian Civet during the months of December 2016 and February & March 2017. Latrine site was found under the tree with abundant crown cover and bushes. At least two individuals were found to be using a single latrine site in an irregular manner between 1800 h and 0600 h with higher activity between 1800 h and 2300 h. Our results indicated an irregular latrine site visit pattern, hence similar studies with a robust research design in larger areas are required to understand specific latrine use patterns.

Keywords: Activity pattern, behavior, camera trap, clock chart, seasonal, scent marking, territorial marking, territory, urination.

The repeated use of specific latrine sites has been described for several mammals, including omnivores, ungulates, and primates (Dröscher & Kappeler 2014). Such sites vary in location (arboreal, terrestrial, or subterranean), in volume of faeces, spatial distribution, and behaviours associated with defecation and seem to vary in the functions they serve (Irwin et al. 2004).

Understanding the use of latrine sites is one of the most effective and fundamental tools that provides future directions and insights into the ecological and behavioural relationships among conspecifics. Time stamped camera trap data have been very useful for understanding the presence, ecology and behaviour of the species (Ridout & Linkie 2009; Rowcliffe et al. 2014). The Large Indian Civet Viverra zibetha is a widespread species and has been recorded up to 2,420 m in Nepal (Appel et al. 2013), and up to 3,080 m in India (Khatiwara & Srivastava 2014). Its presence was documented in the riverine and Sal Shorea robusta forests, near human settlements (Ghimirey & Acharya 2014), grasslands and in thick bushes (Jnawali et al. 2011) as well as in the primary, secondary, degraded forest, scrubland and plantations areas (Duckworth 1997; Azlan 2003; Jennings & Veron 2011; Choudhury 2013; Chutipong et al. 2014). Due to its wide distribution across a variety of habitats, it is listed as Least Concern (LC) in IUCN Red List (Timmins et al. 2016). It is a ground dwelling (Lekagul & McNeely 1977; Duckworth 1997) solitary, nocturnal animal; with occasional records at daytime (Than et al. 2014).
2008; Gray et al. 2014). In this note, we documented its latrine site and its use pattern in the premises of the Institute of Forestry, Pokhara, using camera trap records.

Study area

The Institute of Forestry (IOF), Pokhara campus is situated in Pokhara, Kaski district, Gandaki province of Nepal. We identified the latrine site of the Large Indian Civet during mammalian profile survey within Banpale forest, a legal asset of IOF, which mainly includes the natural Schima-Castanopsis forest; having species of Dalbergia, Albezia, Michelia, and Alnus. The Seti river is a perennial that flows within a close vicinity of the forest. The recorded latrine site was very close to the Marshyangdi hostel. Agricultural crops, vegetables, and banana gardens were found around the study site.

Material and methods

A single piece of Bushnell camera trap was deployed without any lure for 91 days from 1–30 December 2016 and 01 February to 30 March 2017. The camera trap, having active motion inbuilt function with non-motion sensor, was deployed at the base of a D. sissoo tree at a height of 25–30cm above the ground in such a way that the entire latrine site was visible. It was set to both photo and video mode option so as to record two photos per second followed by a video of 10 seconds from 1800–0600 h for each trap night.

Data analysis

Both photo and video from the camera trap were imported, collated, and cleaned for further analysis. Only those photos and videos with the evidence of the record of a Large Indian Civet in the latrine site were considered for the interpretation. The obtained data were analyzed in R software using the package ggplot2, dplyr, lubridate (R core team 2019) to create the clock chart.

Results

The geographic location of the latrine site was at an elevation of 808 m. Monitoring of the latrine site for three months yielded a total of 215 videos and 1,017 camera trap images during the effort of 91 camera trap nights.

The latrine site was under the bush coverage of a D. sissoo tree, with 80% canopy intertwined with bushes and climbers, making the site enclosed with openings at two ends. The defecating site was excavated 5-cm deep at the center of the pit (a cavity or hole in the ground usually made by digging). The individuals deposited the feces along with spraying of urine in the latrine site, and rubbing their anus in soil right after defecation. Two
Large Indian Civets were seen together in the recorded video of March 2017 in the latrine site, however, their sexes could not be distinguished.

Large Indian Civets visited the latrine site from 1800–0500 h (Figure 1). It was active for most of the night time with the highest record during the hour between (2100–2200 h) followed by (1800–1900 h), with the lowest at the start of the day (0500–0600 h). It visited the site for eight days in December, seven days in February and six days in March. After the first eight days of frequent visits, the animal was not observed for the next 22 days in December.

Of the total video duration (1,423 seconds), the presence of the Large Indian Civet was recorded for 1,046 seconds, the major activity during this was sniffing (782 seconds, 78%) and defecating & urinating (224 seconds, 22%). It initially sniffed the site, afterwards urinated and defecated.

DISCUSSION

The recorded latrine site was outside the forest area and in close proximity to the settlement area. A tree surrounded by tall bushes with a small outlet in both sides was used by the Large Indian Civet as latrine site.

Irregular visits to the monitored latrine site suggest that the animals have maintained other latrine sites too. A species maintaining more than one latrine site can be attributed to territory marking such as in otters (Torgerson 2014) and could be an interesting aspect of study. It could be a special vigilance behavior of the small carnivores to avoid any risk or conflict around the habitat.

The Malay Civets *Viverra tangalunga* were predominantly active from 1800 h to 0700 h (Colon 2006), and reported frequent walking and sniffing as a physiological olfactory sense use of carnivores to check the potential predator and conspecifics before the use of the latrine site for defecation and urination. This could be attributed as a special form of scent marking serving as a commonly invoked chemical communication function (Irwin et al. 2004; Wronski et al. 2013; Dröscher & Kappeler 2014; King et al. 2017) for avoidance of parasite transmission (Gilbert 1997), avoidance of detection by predators (Boonstra et al. 1996), and territoriality (Gorman & Trowbridge 1989). The nocturnal and crepuscular activity would help in increasing the encounters with prey (Colon 2006), a similar behavior was observed in our current study.

Image 2. Camera trapped photographs taken from the video recorded during the latrine site monitoring of Large Indian Civet: 1—the latrine trench of the species marked by yellow circle | 2—species urinating on its latrine site | 3—species defecating on its latrine site.
Figure 1. Frequency of camera-trap photographs and videographs of Large Indian Civet during survey period (1800–0500 h has been treated as night while the rest is day).

REFERENCES

Appel, A. G., Werhahn, R., Acharya, Y., Ghimirey & B. Adhikary (2013). Small carnivores in the Annapurna Conservation Area, Nepal. Vertebrate Zoology 63: 111–121.

Azlan, J. (2003). The diversity and conservation of mustelids, viverrids, and herpestids in a disturbed forest in Peninsular Malaysia. Small Carnivore Conservation 29: 8–9.

Boonstra, R., C.J. Krebs & A. Kenney (1996). Why lemments have indoor plumbing in summer. Canadian. Journal of Zoology 74: 1947–1949.

Choudhury, A. (2013). The Mammals of North East India. Gibbon Books and the Rhino Foundation for Nature in NE India, Guwahati, Assam, India.

Chutipong, W., N. Tantipisanuh, D. Ngoprasert, A.J. Lynam, R. Line, K. Jenks, J.F. Kamler & S. Prum (2014). Why lemments have indoor plumbing in summer. Canadian. Journal of Zoology 74: 1947–1949.

Colon, C. (2006). Ranging behaviour and activity of the Malay civet (Viverra tangalunga) in a logged and an unlogged forest in Danum Valley, East Malaysia. Journal of Zoology 257: 473–485. https://doi.org/10.1017/S0952836902001073

Gray, T.N.E., C. Pin, C. Phan, R. Crouthers, J.F. Kamler & S. Prum (2014). Camera-trap records of small carnivores from eastern Cambodia, 1999–2013. Small Carnivore Conservation 50: 20–24

Drösscher, I. & R. Kappeler (2014). Maintenance of familiarity and social bonding via communal latrine use in a solitary primate (Lepilemur leucopus). Behavioral Ecology and Sociobiology 68: 2043–2058. https://doi.org/10.1007/s00265-014-1810-z

Duckworth, J.W. (1997). Small carnivores in Laos: a status review with notes on ecology, behaviour and conservation. Small Carnivore Conservation 16: 1–21.

Ghimirey, Y. & R. Acharya (2014). Notes on the distribution of Large Indian Civet in Nepal. Small Carnivore Conservation 50: 25–29.

Gorman, M.L. & B.J. Trowbridge (1989). The role of odor in the social lives of carnivores, pp. 57–88. In: Gittleman, J.L. (ed.). Carnivore Behavior, Ecology, and Evolution. Cornell University Press, Ithaca, New York.

Gilbert, K.A. (1997). Red howling monkey use of specific defecation sites as a parasite avoidance strategy. Animal Behavior 54: 451–455.

Irwin, M., K. Samonds, J.L. Raharison & P. Wright (2004). Lemur latrines: Observations of latrine behavior in wild primates and possible ecological significance. Journal of Mammalogy 85: 420–427. https://doi.org/10.1644/1545-1542(2004)085<0420:LLODLB>2.0.CO;2

Jnawali, S.R., H.S. Baral, S. Lee, K.P. Acharya, G.P. Upadhyay, M. Pandey, R. Shrestha, D. Joshi, B.R. Laminchhane, J. Griffiths, A.P. Khatiwada, N. Subedi & R. Amin (compilers) (2011). The Status of Nepal Mammals: The National Red List Series, Department of National Parks and Wildlife Conservation Kathmandu, Nepal.

Jennings, A.P. & G. Veron (2011). Predicted distributions and ecological niches of 8 civet and mongoose species in Southeast Asia. Journal of Mammalogy 92: 316–327.

Khatwara, S. & T. Srivastava (2014). Red Panda Ailurus fulgens and other small carnivores in Khangpong Alpine Sanctuary, East Sikkim, India. Small Carnivore Conservation 50: 35–38.

King, T., R. Salom, L. Shipley, H. Quigley & D. Thornton (2017). Ocelot latrines: communication centers for Neotropical mammals. Journal of Mammalogy: 98: 106–113. https://doi.org/10.1093/jmammal/gyw174

Lekagul, B. & J.A. McNeely (1977). Mammals of Thailand. Association for the Conservation of Wildlife, Bangkok, Thailand, 758pp.

R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.URL https://www.R-project.org/

Rowcliffe, J., M.R. Kays, B. Kranauskaib, C. Carbone & P.A. Jansen (2014). Quantifying levels of animal activity using camera trap data. Methods Ecology Evolution 5: 1170–1179.

Ridout, M.S. & M. Linkie (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics 14: 322–337.

Torgerson, T. (2014). Latrine site selection and seasonal habitat use of a coastal river otter population. A Thesis Presented To The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Wildlife, xii+91pp. https://doi.org/10.13140/RG.2.2.35183.43685

Than, Z., H. Saw, Po Tha, M. Myint, A.J. Lynam, T.L. Kyaw & J.W. Duckworth (2008). Status and distribution of small carnivores in Myanmar. Small Carnivore Conservation 38: 2–28.

Timmins, R.J., J.W. Duckworth, W. Chutipong, Y. Ghimirey, D.H.A. Willcox, H. Rahman, B. Long & A. Choudhury (2016). Viverra zibetha. The IUCN Red List of Threatened Species 2016: e.TA109A45220429. Accessed 19 May 2020. https://doi.org/10.2305/IUCN.UK.20161.RLTS.TA109A45220429.en

Wronska, T., A. Apio, M. Plath & M. Ziege (2013). Sex difference in the communicatory significance of localized defecation sites in Arabian Gazelles (Gazella arabica). Journal of Ethology 31: 125–140.
Communications

Updated distribution of seven Trichosanthes L. (Cucurbitaceae) taxa in India, along with taxonomic notes
Kanakasabapathi Pradheep, Soymchiten, Ganjalagatta Dasaiha Harish, Mohammed Abdul Nizar, Kailash Chandra Bhatt, Anjula Pandey & Sudhir Pal Ahyawat, Pp. 20143–20152

Dragonflies and Damselflies (Insecta: Odonata) of Aryanad Grama Panchayat, Kerala, India
– Reji Chandran & A. Vivek Chandran, Pp. 20153–20166

Checklist of Odonata (Insecta) of Doon Valley, Uttarakhand, India
– Kirit De, Sarika Bhatt, Amar Paul Singh, Manisha Uniyal & Virendra Prasad Uniyal, Pp. 20167–20173

Diversity of moths from the urban set-up of Valmiki Nagar, Chennai, India
– Vikas Madhav Nagarajan, Rohith Srinivasan & Mahathi Narayanaswamy, Pp. 20174–20189

Ichthyofaunal diversity with relation to environmental variables in the snow-fed Tamor River of eastern Nepal
– Jawan Tumbahangfe, Jash Hang Limbu, Archana Prasad, Bharrat Raj Subba & Dil Kumar Limbu, Pp. 20190–20200

Observations on the foraging behavior of Tricoloured Munia Lonchura malacca (Linnaeus, 1766) and its interaction with pearl millet fields in Villupuram District, Tamil Nadu, India
– M. Pandian, Pp. 20201–20208

Roosting patterns of House Sparrow Passer domesticus Linn., 1758 (Aves: Passeridae) in Bhavnagar, Gujarat, India
– Foram P. Patel & Pravin San P. Dodia, Pp. 20209–20217

Review

Comprehensive checklist of algal class Chlorophyceae (sensu Fritsch, 1935) for Uttar Pradesh, India, with updated taxonomic status
– Sushma Verma, Kiran Toppo & Sanjeeta Nayaka, Pp. 20218–20248

View Point

Wildlife managers ignore previous knowledge at great risk: the case of Rivaldo, the iconic wild Asian Elephant Elephas maximus L. of the Sigur Region, Nilgiri Biosphere Reserve, India
– Jean-Philippe Puyravaud & Priya Davidar, Pp. 20249–20252

Short Communications

Diversity and distribution of macro lichens from Kalpetta Municipality of Wayanad District, Kerala, India
– Greeshma Balu, A.R. Rasi, Stephen Sequeira & Biju Haridas, Pp. 20253–20257

Extended distribution of two endemic epiphytes from the Western Ghats to the Deccan Plateau
– Sonali Vishnu Deore, Mangala Dala Sonawane & Sharad Suresh Kambale, Pp. 20258–20260

Nomenclatural notes and report of Boehmeria penduliflora Wedd. ex D.G. Long from the Terai region of Uttar Pradesh, India
– Arnit Gupta, Imtiyaz Ahmad Hurrah, Aparna Shukla & Vijay V. Wagh, Pp. 20261–20265

New distribution record of a true coral species, Psammocora contigua (Esper, 1794) from Gulf of Kachchh Marine National Park & Sanctuary, India
– R. Chandran, R. Senthil Kumar, D.T. Vasavada, N.N. Joshi & Osman G. Husen, Pp. 20266–20271

A new species of flat-headed mayfly Afronurus meenmuttii (Ephemeroptera: Heptageniidae: Ecdyonurinae) from Kerala, India
– Marimuthu Muthukatturaja & Chellaiah Balasubramanian, Pp. 20272–20277

Photographic record of Dholes preying on a young Banteng in southwestern Java, Indonesia
– Dede Aulia Rahman, Mohamad Syamssudin, Asep Yayus Firdaus, Herry Trisna Afriandi & Anggodo, Pp. 20278–20283

Latrine site and its use pattern by Large Indian Civet Viverra zibetha Linnaeus, 1758: record from camera trap
– Bhawan Singh Bist, Prashant Ghimire, Basant Sharma, Chiranjeevi Khanal & Anoj Subedi, Pp. 20284–20287

Notes

Two additions to the flora of Kerala, India
– M. Murugar, Basil Paul & M. Sulaiman, Pp. 20288–20291

Pentatropis R.B. ex Wight & Arn. (Apocynaceae), a new generic record for Kerala, India
– V. Ambika, Jose Sojan & V. Suresh, Pp. 20292–20294

New record of Kashmir Birch Mouse Sicista concolor leathemi (Thomas, 1893) (Rodentia: Sminthidae) in the Indian Himalaya
– S.S. Talmale, Avtar Kaur Sidhu & Uttam Saikia, Pp. 20295–20298

Breeding record of Black-headed Ibis Threskiornis melanocephalus (Aves: Threskiornithidae) at Mavoor wetland, Kozhikode District, Kerala, India
– C.T. Shifa, Pp. 20299–20301

Response

Crop and property damage caused by Purple-faced Langurs Trachypithecus vetulus (Mammalia: Primates: Cercopithecidae)
– Vincent Nijman, Pp. 20302–20306

Reply

If habitat heterogeneity is effective for conservation of butterflies in urban landscapes of Delhi, India? Unethical publication based on data manipulation: Response of original authors
– Monalisa Paul & Aisha Sultana, Pp. 20307–20308

Book Review

Freshwater fishes of the Arabian Peninsula
– Rajeev Raghavan, Pp. 20309–20310