Search for Darkonium in e^+e^- Collisions

J. P. Lees, 1 V. Poireau, 1 V. Tisserand, 1 E. Grauges, 2 A. Palano, 3 G. Eigen, 4 D. N. Brown, 5 Yu. G. Kolomensky, 5 M. Fritsch, 5 H. Koch, 6 T. Schroeder, 8 R. Cheaib, 7b C. Hearty, 7a, 7b T. S. Mattison, 7b J. A. McKenna, 7b R. Y. So, 7b V. E. Blinov, 8a, 8b, 8c, 9 A. R. Buzykova, 8a, 8b, 8c V. P. Druzhinin, 8a, 8b, 8c W. B. Golubev, 8a, 8b, 8c E. A. Kozyrev, 8a, 8b, 8c E. A. Kravchenko, 8a, 8b, 8c A. P. Onuchin, 8a, 8b, 8c S. I. Serednyakov, 8a, 8b Yu. I. Skovpen, 8a, 8b E. P. Solodov, 8a, 8b K. Yu. Todyshkov, 8a, 8b A. J. Lankford, 9 b D. N. Brown, 30 Yu. I. Skovpen, 8a, 8b E. P. Solodov, 8a, 8b K. Yu. Todyshkov, 8a, 8b A. J. Lankford, 9

1Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France

2Universitat de Barcelona, Facultat de Física, Departament ECM, E-08028 Barcelona, Spain

3INFN Sezione di Bari, I-70126 Bari, Italy

4University of Bergen, Institute of Physics, N-5007 Bergen, Norway

5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

6Ruhr Universität Bochum, Institut für Experimentalphysik I, D-44780 Bochum, Germany

7a Institut d’Annecy, Université Grenoble 1, CNRS/IN2P3, 74941 Annecy-Le-Vieux, France

7b University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

8a Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russia

8b Novosibirsk State University, Novosibirsk 630090, Russia

9University of California at Irvine, Irvine, California 92697, USA

10University of California at Riverside, Riverside, California 92521, USA

11University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

(BaBar Collaboration)
Collider searches for dark sectors, new particles interacting only feebly with ordinary matter, have largely focused on identifying signatures of new mediators, leaving much of dark sector structures unexplored. In particular, the existence of dark matter bound states (darkonia) remains to be investigated. This possibility could arise in a simple model in which a dark photon (A') is light enough to generate an attractive force between dark fermions. We report herein a search for a $J^{PC} = 1^{−−}$ darkonium state, the Υ_D, produced in the reaction $e^+e^- \rightarrow \gamma \Upsilon_D$, $\Upsilon_D \rightarrow A'A'$, where the dark photons subsequently decay into pairs of leptons or pions, using 514 fb$^{-1}$ of data collected with the BABAR detector. No significant signal is observed, and we set bounds on the $\gamma - A'$ kinetic mixing as a function of the dark sector coupling constant for 0.001 < $m_{A'}$ < 3.16 GeV and 0.05 < m_{Υ_D} < 9.5 GeV.

DOI: 10.1103/PhysRevLett.128.021802

The possibility of dark sectors, new quantum fields neutral under all standard model (SM) forces, has emerged as an intriguing framework to explain the presence of dark matter in the Universe [1,2]. While these particles do not couple directly to ordinary matter, indirect interactions through low-dimensional operators called “portals” are possible [3]. The physics of these dark sectors could involve an arbitrary number of fields and interactions, including the possibility of self-interacting dark matter. This scenario can be realized in a minimal dark sector model containing a single Dirac fermion (χ) charged under a new U(1) gauge group with a coupling constant g_D [4]. The corresponding force carrier is conventionally referred to as a dark photon (A'), and couples to the SM photon via kinetic mixing with strength ϵ [5,6]. A low-mass dark photon would give rise to an attractive force between the χ and $\bar{\chi}$ particles, resulting in the formation of bound states (darkonia) when $1.68m_{A'} < \alpha_D m_\gamma$ for $\alpha_D = \frac{g_D^2}{4\pi}$ [4,7].

The two lowest energy bound states in this model are denoted η_D ($J^{PC}=0^{+−}$) and Υ_D ($J^{PC}=1^{−−}$), in analogy with similar SM states. The quantum numbers predict the following production and decay mechanisms at $e^+e^−$ colliders: $e^+e^- \rightarrow \eta_D + A'$, $\eta_D \rightarrow A'A'$ and initial-state radiation (ISR) process $e^+e^- \rightarrow \Upsilon_D + \gamma_{ISR}$, $\Upsilon_D \rightarrow A'A'$. In the regime $m_{A'} < 2m_\gamma$, the dark photon decays visibly into a pair of SM fermions with a decay width proportional to the product $m_{A'}\epsilon^2$. Depending on the value of these parameters, the decays can be prompt or significantly displaced from the $e^+e^−$ interaction point. Current constraints on visible A' decays [8–18] exclude values of $\epsilon \gtrsim 10^{-3}$ over a wide range of masses from the dielectron threshold up to tens of GeV [19].

We report herein a search for darkonium in the ISR process $e^+e^- \rightarrow \gamma_{ISR} \Upsilon_D$, $\Upsilon_D \rightarrow A'A'$, where the dark photons subsequently decay into pairs of electrons, muons, or pions. The cross section is determined for prompt A' decays in the region 0.001 GeV < $m_{A'}$ < 3.16 GeV and 0.05 GeV < m_{Υ_D} < 9.5 GeV. For $m_{A'} > 0.2$ GeV, the flight distance in the detector is smaller than 0.01 mm, effectively indistinguishable from prompt decays. For $m_{A'} < 0.2$ GeV, the dark photon decay length becomes significant for values of ϵ we expect to probe, and we additionally report cross sections for lifetimes $\tau_{A'}$ corresponding to $c\tau_{A'}$ values of 0.1, 1, and 10 mm. This search is based on 514 fb$^{-1}$ of data collected with the BABAR detector at the SLAC PEP-II $e^+e^−$ collider at the $\Upsilon(4S)$, $\Upsilon(3S)$, and $\Upsilon(2S)$ resonances and their vicinities [20]. The BABAR detector is described in detail elsewhere [21,22]. To avoid experimental bias, the data are not examined until the selection procedure is finalized. The analysis is developed using simulated signal events and a small fraction of real data for background studies.

Signal events are generated using MadGraphs [23] with prompt dark photon decays for 119 different A' and Υ_D mass hypotheses. For $m_{A'} < 0.2$ GeV, we also simulate samples with non-zero dark photon lifetimes corresponding to proper decay lengths 0.1, 1, and 10 mm. The detector acceptance and reconstruction efficiencies are estimated with a simulation based on Geant4 [24]. Since the background is too complex to be accurately simulated, we use 5% of the data together with the simulated signal samples to...
optimize the selection criteria, assuming that any signal component has a negligible impact on this procedure. This data set, referred to as the optimization sample, is discarded from the final results.

The event selection for prompt A' decays proceeds by selecting events containing exactly six charged tracks, and reconstructing dark photon candidates as pairs of oppositely charged tracks identified as electrons, muons, or pions by particle identification algorithms. We require the presence of at least one lepton pair of opposite charge with the same flavor to limit the large accidental background. We form Υ_D candidates by combining three dark photon candidates, and fit them, constraining all tracks to originate from a common point compatible with the beam interaction region. For each Υ_D candidate, we additionally form same-sign track combinations by swapping particles with identical flavor between reconstructed A' pairs, such as $(e^+e^-)(e^-e^-)(\mu^+\mu^-)$ or $(\pi^+\pi^-)(\pi^+\pi^-)(e^+e^-)$. For the fully mixed final state $(\mu^+\mu^-)(\pi^+\pi^-)(e^+e^-)$, we use the same-sign combination $(\mu^+\pi^-)(\mu^-\pi^+)(e^+e^-)$, since pions are more easily misidentified as muons than electrons.

Because of the combinatoric nature of the background, the distributions of the mass difference for same-sign and opposite-sign pairs tend to be similar. By contrast, the differences between these distributions tend to be larger for signal events, effectively providing discrimination power.

The detection of the ISR photon accompanying Υ_D production is not explicitly required. Instead, we infer the kinematics of the particle recoiling against the Υ_D candidates, and we select the ISR photon candidate that is most compatible with the photon hypothesis as follows. If the recoiling particle is determined to have been emitted inside the electromagnetic calorimeter acceptance, we search for the presence of a corresponding ISR photon candidate, which is defined as a neutral cluster having an energy within 10% of that of the recoiling particle, and an angle compatible with the direction of the recoiling particle to better than 0.1 rad.

To improve the signal purity, we train three multivariate classifiers consisting of logistic regressions stacked on top of random forest (RF) classifiers [25]. The following 13 variables are used as inputs to the RF: the χ^2 of the constrained fit to the Υ_D candidate; combined particle identification information of the six tracks; the maximum mass difference between any pair of A' candidates; the polar angle and the invariant mass of the particle recoiling against the reconstructed Υ_D candidate; a categorical feature indicating whether the recoiling particle is emitted inside the calorimeter acceptance and if a corresponding ISR photon candidate is found; the sum of neutral energy deposited in the electromagnetic calorimeter, excluding the ISR photon candidate; the average of the three dark photon helicity angles [26]; the average of the angles between pairs of dark photons in the Υ_D rest frame; the average of the dihedral angles between pairs of dark photons; the average

![FIG. 1. The distribution of the classifier scores for each event category for the data (markers) and signal Monte Carlo (solid lines) samples. The MC simulations are arbitrarily normalized.](image)
\(\sigma_{m_{\Upsilon_D}} \) (\(\sigma_{m_e} \)) denotes the corresponding \(\Upsilon_D \) (\(A' \)) mass resolution. The resolutions are determined by fitting the different signal Monte Carlo (MC) samples with a crystal ball function [28] and interpolating the results throughout the full mass range. The \(\Upsilon_D \) (\(A' \)) mass resolution varies between 5–40 MeV (1–8 MeV); the detailed results are available in Supplemental Material [29]. The number of observed background events is estimated by averaging two neighboring regions along the \(m_{\Upsilon_D} \) axis: \(m_{\Upsilon_D} - 8\sigma_{m_{\Upsilon_D}} \); \(m_{\Upsilon_D} - 4\sigma_{m_{\Upsilon_D}} \) and \(m_{\Upsilon_D} + 4\sigma_{m_{\Upsilon_D}} ; m_{\Upsilon_D} + 8\sigma_{m_{\Upsilon_D}} \). This choice is motivated by the potential background contribution due to hadronic resonances or photon conversions, which would be concentrated at similar values of dark photon masses. The signal significance is assessed from MC samples, using sideband data from the classifier score distribution to model the \(\sigma_{m_{\Upsilon_D}} \) distribution of event candidates in the signal window, corresponding to a \(p \) value of 30%, which is compatible with the null hypothesis.

In the absence of signal, we derive 90% confidence level (C.L.) upper limits on the \(e^+e^- \rightarrow \gamma \Upsilon_D \) cross section using a profile likelihood method [30]. The probability of observing \(N \) events in a given signal region is described by the following model:

\[
P(N|n + b) = \frac{e^{-n}n^N}{N!} \frac{e^{-b}b^b}{b!} \frac{1}{2 \sigma_{Z} \sigma_{L}} e^{-(z - \bar{z})^2/2 \sigma_{Z}^2} e^{-(l - \bar{l})^2/2 \sigma_{L}^2},
\]

where \(b \) (\(B \)) is the expected (estimated) number of background events, and \(n = lZ\sigma(e^+e^- \rightarrow \gamma \Upsilon_D) \) is the expected number of signal events given by the product of the integrated luminosity \(l \), the \(e^+e^- \rightarrow \gamma \Upsilon_D \) cross section, and the signal efficiency \(z \). The measured luminosity, signal efficiency, and their uncertainties are denoted by \(L, Z, \sigma_L \), and \(\sigma_Z \), respectively. The signal efficiency includes the dark photon branching fractions, taken from Ref. [31].

The efficiency is determined for each simulated sample and interpolated to the full parameter space, ranging from 0.1% for \(m_{\Upsilon_D} \sim 0.15 \text{ GeV} \), \(m_A \sim 0.05 \text{ GeV} \) to 34% for \(m_{\Upsilon_D} \sim 8.0 \text{ GeV} \), \(m_A \sim 1.0 \text{ GeV} \). The uncertainty in the signal efficiency arises mainly from particle identification algorithms, assessed with high-purity samples of leptons and pions. This source of uncertainty varies between 9% and 11%. The uncertainty associated with the efficiency extrapolation procedure ranges from 4% to 7%, depending on the \(m_{\Upsilon_D} \) and \(m_A \). Other uncertainties include the tracking efficiency (1.2%) and the limited statistical precision of the simulated sample (1%–5%). The uncertainty in the dark photon branching fraction [31] ranges from parts per mille to 1%. The uncertainty in the luminosity is determined to be 0.6% [20].

The cross section at 90% C.L. upper limits are displayed in Fig. 3. The dark photon decays predominantly into \(\pi^+\pi^-\pi^0 \) (\(K^+K^- \)) near the \(\omega \) (\(\phi \)) resonance which are not considered.

FIG. 2. The \((m_{\Upsilon_D}, m_A) \) distribution for events passing all selection criteria for prompt dark photon decays.

FIG. 3. The 90% C.L. upper limits on the \(e^+e^- \rightarrow \gamma \Upsilon_D \) cross section for prompt dark photon decays.

FIG. 4. The \((m_{\Upsilon_D}, m_A) \) mass distribution of event candidates passing all selection criteria for the datasets optimized for each dark photon lifetime.
in this analysis, resulting in much looser bounds around $m_A \sim 0.8$ GeV ($m_A \sim 1$ GeV).

We follow a similar procedure to determine the $e^+ e^- \rightarrow \gamma \Upsilon_D$ cross section for each dark photon lifetime hypothesis. The measurement is performed for $m_A < 0.2$ GeV. In this mass range, the A' decays almost exclusively to an $e^+ e^-$ pair. The event selection is analogous to that previously described, except that we constrain the momentum vector of the A' candidates to point back to the beam interaction region instead of requiring the tracks to originate from this location when performing the Υ_D kinematic fit. To further suppress photon conversions in the detector material, we add the following variables to the RF classifier, averaged over the three dark photon candidates: the χ^2 of a fit of the A' candidate; the angle between the secondary vertex flight direction and the A' momentum; and the ratio between the flight length and its uncertainty. We train a classifier for the procedure described above is applied to each selected sample separately. No significant signal is observed for any A' lifetime hypothesis, and limits on the cross section for each value of $c \tau_{A'}$ are extracted. The classifier score distributions and the cross section at 90% C.L. upper limits are shown in Supplemental Material [29].

The 90% C.L. upper limits on the kinetic mixing parameter are extracted by an iterative procedure taking into account the effect of the potentially long dark photon lifetime. At each step, we estimate the dark photon lifetime given the current value of the kinetic mixing, compare the limit on the production cross section interpolated at that lifetime, update the kinetic mixing, and repeat the procedure until convergence is obtained. Since the dark photon lifetime is independent of the dark sector coupling constant, we derive separate limits for α_D values set to 0.1, 0.3, 0.5, 0.7, 0.9, and 1.1. The results are shown in Fig. 5 for $\alpha_D = 0.5$, and in Supplemental Material [29] for the remaining values. Bounds on the mixing strength ϵ down to $5 \times 10^{-5} - 10^{-3}$ are set for a large fraction of the parameter space. Constraints for different values of α_D, m_A and m_{Υ_D} are also shown in Fig. 6.

In summary, we report the first search for a dark sector bound state decaying into three dark photons in the range 0.001 GeV $< m_A < 3.16$ GeV and 0.05 GeV $< m_{\Upsilon_D} < 9.5$ GeV. No significant signal is seen, and we derive limits on the $\gamma - A'$ kinetic mixing ϵ at the level of $5 \times 10^{-5} - 10^{-3}$, depending on the values of the model parameters. These measurements improve upon existing constraints over a significant fraction of dark photon masses below 1 GeV for large values of the dark sector coupling constant. Were the η_D bound state to be included in the search, the upper limits on the cross section (in the absence of a signal) could be improved by around a factor of 2, leading to an improvement on the constraints on the kinetic mixing strength by about a factor of $\sqrt{2}$.

The authors wish to thank Haipeng An and Yue Zhang for useful discussions and for providing us with MADGRAPH...
simulations of self-interacting dark matter processes. We also thank Gaia Lanfranchi for providing us constraints from existing experiments. We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Énergie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Economía y Competitividad (Spain), the Science and Technology Facilities Council (U.K.), and the Binational Science Foundation (U.S.-Israel). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (U.S.).

††Also at Università di Sassari, I-07100 Sassari, Italy.
**Also at Università di Sassari, I-07100 Sassari, Italy.
¶Present address: University of South Alabama, Mobile, Alabama 36688, USA.
∥Present address: University of Huddersfield, Huddersfield HD1 3DH, United Kingdom.
§Present address: University of South Alabama, Mobile, Alabama 36688, USA.

[1] M. Pospelov, A. Ritz, and M. B. Voloshin, Phys. Lett. B 662, 53 (2008).
[2] N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009).
[3] J. Beacham et al., J. Phys. G 47, 010501 (2020).
[4] H. An, B. Echenard, M. Pospelov, and Y. Zhang, Phys. Rev. Lett. 116, 151801 (2016).
[5] P. Fayet, Nucl. Phys. B187, 184 (1981).
[6] B. Holdom, Phys. Lett. 166B, 196 (1986).
[7] F. J. Rogers, H. C. Gruboske Jr., and D. J. Harwood, Phys. Rev. A 1, 1577 (1970).
[8] E. M. Riordan et al. Phys. Rev. Lett. 59, 755 (1987).
[9] J. D. Bjorken, S. Ecklund, W. R. Nelson, A. Abashian, C. Church, B. Lu, L. W. Mo, T. A. Nunamaker, and P. Rassmann, Phys. Rev. D 38, 3375 (1988).
[10] A. Bross, M. Crisler, S. H. Pordes, J. Volk, S. Errede, and J. Wrbascek, Phys. Rev. Lett. 67, 2942 (1991).
[11] M. Davier and H. Nguyen Ngoc, Phys. Lett. B 229, 150 (1989).
[12] J. Blümlein and J. Brunner, Phys. Lett. B 731, 320 (2014).
[13] D. Curtin et al. Phys. Rev. D 90, 075004 (2014).
[14] J. P. Lees et al. (BABAR Collaboration), Phys. Rev. Lett. 113, 201801 (2014).
[15] J. R. Batley et al. (NA48/2 Collaboration), Phys. Lett. B 746, 178 (2015).
[16] A. Anastasi et al. (KLOE Collaboration), Phys. Lett. B 757, 356 (2016).
[17] D. Banerjee et al. (NA64 Collaboration), Phys. Rev. Lett. 120, 231802 (2018).
[18] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 124, 041801 (2020).
[19] Natural units (ℏ = c = 1) are used throughout this Letter.
[20] J. P. Lees et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 726, 203 (2013).
[21] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[22] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 729, 615 (2013).
[23] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, J. High Energy Phys. 07 (2014) 079.
[24] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[25] L. Breiman, Mach. Learn. 45, 5 (2001).
[26] The helicity angle is defined as the angle between the Tμ momentum in the center-of-mass frame and the dark photon momentum in the Tμ rest frame.
[27] J. Berkson, J. Am. Stat. Assoc. 39, 357 (1944).
[28] M. J. Oreglia, Ph.D. thesis, SLAC, 4158, 1981.
[29] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.128.021802 for additional plots about mass resolutions, classifier distribution and 90% C.L. upper limits on the signal cross section and kinetic mixing strength.
[30] W. A. Rolke, A. M. Lopez, and J. Conrad, Nucl. Instrum. Methods Phys. Res., Sect. A 551, 493 (2005).
[31] B. Batell, M. Pospelov, and A. Ritz, Phys. Rev. D 79, 115008 (2009).