Annealing Temperature on Contact Properties between Nickel Film and Hydrogen-Terminated Single Crystal Diamond

Pengfei Zhang ¹,², Shaopeng Zhang ², Weidong Chen ¹,³,*, Shufang Yan ¹,³, Wen Ma ¹,³ and Hong-Xing Wang ²

¹ College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; pfzhang.kk@foxmail.com (P.Z.); ysfch@163.com (S.Y.); w.ma@imut.edu.cn (W.M.)
² Institute of wide band gap semiconductors, Xi’an Jiaotong University, Xi’an 710049, China; spzhang23@foxmail.com (S.Z.); hxwangcn@mail.xjtu.edu.cn (H.-X.W.)
³ Inner Mongolia Key Laboratory of Thin Film and Coatings, Hohhot 010051, China

Received: 8 August 2020; Accepted: 7 September 2020; Published: 10 September 2020

Abstract: Ohmic contact of nickel on hydrogen-terminated single-crystal diamond film was investigated with an annealing temperature ranging from room temperature to 750 °C in hydrogen atmosphere. Nickel film was deposited on a hydrogen-terminated single-crystal diamond surface with gold film in order to protect it from oxidation. Contact properties between nickel and hydrogen-terminated single crystal diamond were measured by a circular transmission line model. The lowest specific contact resistivity was 7.82×10⁻⁵ Ω cm² at annealing temperature of 750 °C, indicating good ohmic contact, which reveals improved thermal stability by increasing temperature.

Keywords: H-diamond; I-V; Ohmic contact; CTLM; specific contact resistance

1. Introduction

Diamond has many attractive properties as a semiconductor, such as wide band gap (5.47 eV), large breakdown field (>10 MV cm⁻¹), high saturation velocities (1.5×10⁷ cm s⁻¹ for electrons and 1.05×10⁷ cm s⁻¹ for holes), high carrier mobility (4500 cm² V⁻¹ s⁻¹ for electrons, 3800 cm² V⁻¹ s⁻¹ for holes), and highest thermal conductivity (22 W cm⁻¹ K⁻¹), making it a promising semiconductor for future high-frequency, high-power, and high-temperature electronic devices, such as metal-oxide-semiconductor field effect transistors (MOSFETs), which have been studied extensively [1–17]. Nevertheless, the activation energies are too large to utilize the conventional doping technology for diamond dopants (370 meV for boron and 570 meV for phosphorus) as it is difficult for them to be activated at room temperature (RT). In order to solve this problem, δ-doping technology was used, but this technology had great limitations in device fabrication and cannot be widely used due to its complex process and low carrier mobility [18–20]. Fortunately, a new technology breaks this deadlock by treating diamond with hydrogen plasma to form hydrogen termination on a diamond (H-diamond) surface, which generates two-dimensional hole gas (2DHG) (density: 10¹³ cm⁻²; mobility: 50–150 cm² V⁻¹ s⁻¹). This 2DHG layer resides several nanometers below the diamond surface which possesses many characteristics such as an almost-constant current density within a temperature range from 20 to 300K and ease of fabrication [9,12]. Stable ohmic contact with low resistance is crucial to ensure future applications in low-dimensional devices. For example, high-quality ohmic contact with a low specific contact resistance is required to limit electrical losses in power electronic devices operation [6]. It is necessary to find electrode materials to achieve good ohmic contact between the electrode layer and the H-diamond surface, by which superior diamond electronic devices could be
were fabricated on H-diamond surface with photolithography, electron beam evaporation (EB) and lift-off techniques, in which the spaces between the inner circular electrodes were 100 μm in diameter and the outer electrodes varied from 5 to 30 μm. The CTLM electrodes were composed by a 20-nm-thick Ni layer protected with a 200-nm-thick Au layer. The fabrication process is shown in Figure 1. After that, the sample was annealed in hydrogen atmosphere for 20 min from RT to 750 °C. Finally, the current-voltage (I-V) properties of Ni/H-diamond were measured by Agilent B1505A parameter analyzer after annealing at each temperature.

2. Materials and Methods

In this experiment, 3 × 3 × 0.5 mm³ dimension CVD-synthesized (001) single-crystal diamond was used as the substrate. First, the diamond substrate was cleaned in a mixture acid (H₂SO₄:HNO₃:HCLO₄ = 31.2:36:11.4) at 250 °C for 1h and then treated with mixed alkali (NH₄OH:H₂O₂:H₂O = 4:3:9) at 80 °C for 10 min to remove the non-diamond phase. After that, a 300 nm homoeptaxial diamond epilayer with hydrogen termination was deposited on the diamond substrate by commercial microwave plasma CVD system (AX5200 Seki Technotron Corp., Tokyo, Japan). During diamond growth, the pressure and temperature were 100 Torr, 900 °C and 1 kW, respectively. The ratio of CH₄/H₂ was 1% with a 500 sccm total flow rate of the reaction gas. The H-diamond surface was characterized by Atomic Force Microscope (AFM, INNOVA Bruker Corp., Billerica, MA, USA), X-Ray Diffraction (XRD, PANalytical The Analytical X-ray Company, Almelo, The Netherlands) and Raman spectra. The CTLM structures were fabricated on H-diamond surface with photolithography, electron beam evaporation (EB) and lift-off techniques, in which the spaces between the inner circular electrodes were 100 μm in diameter and the outer electrodes varied from 5 to 30 μm. The CTLM electrodes were composed by a 20-nm-thick Ni layer protected with a 200-nm-thick Au layer. The fabrication process is shown in Figure 1. After that, the sample was annealed in hydrogen atmosphere for 20 min from RT to 750 °C. Finally, the current-voltage (I-V) properties of Ni/H-diamond were measured by Agilent B1505A parameter analyzer after annealing at each temperature.

3. Results and Discussion

In order to characterize the quality of diamond substrate, AFM, Raman and XRD techniques were used. Full-width-at-half-maximum (FWHM) of XRD rocking curve was 0.0256 with a sharp peak centered at 59.174° (Standerr: 59.761°) which was operated in four-bounce Ge (2 2 0)-monochromated Cu-Kα with a 1-mm slit on the detector arm, as shown in Figure 2a. On the other hand, Figure 2b shows Raman spectra with 532 nm excitation laser and 0.4 cm⁻¹/pixel resolution in 20× objective.
lens; the narrow symmetrical sharp peak can be seen at 1331.4 cm$^{-1}$ (Stander: 1332 cm$^{-1}$), and the FWHM was measured as 4.48 cm$^{-1}$. Along with that, the Raman spectra also illustrates the existence of nitrogen impurities, which could reduce the current density [24,25]. Moreover, the root–mean–square (RMS) roughness of H-diamond was 0.651 nm within an area of 10 × 10 μm2, showing a smooth surface. All data illustrate a high-quality diamond layer.

![Figure 2](image-url)

Figure 2. (a) XRD rocking curve of H-diamond. (b) Raman spectra of H-diamond. (c) Atomic force microscope (AFM) image of the diamond surface with an area of 10 × 10 μm2.

Figure 3a,b show the I-V characteristics of Ni/H-diamond contact measured at as-deposited and different annealing temperatures. In Figure 3a, the I–V curves were non-linear, indicating that ohmic contact was not formed from RT to 600 °C. Nevertheless, when temperature is higher than 600 °C, linear I–V curves appear, indicating an obvious ohmic contact between Ni/H-diamond, shown in Figure 3b. Consequently, as shown in the graph, the absolute value of current increases as the annealing temperature increases. The data plotted in Figure 3a,b come from one circular ring with a spacing of 20 μm. The I-V characteristics of other circular rings also exhibit the same results, which were not shown here.

As an important parameter of electrical properties to evaluate ohmic contact, the specific contact resistance (ρ_c) can be calculated by Equation (1)

$$\rho_c = R_s \times L_T^2$$ \hspace{1cm} (1)

where R_s is the sheet resistance of the H-diamond, L_T is the transfer length. R_s and L_T can be obtained from the contact resistance (R_c) vs. the circular ring spacing curve in which R_c is obtained from I–V properties [26].

Linear fitting of all the CTLM patterns about the average contact resistance versus the spacing d after annealing in H$_2$ at 650, 700, 750 °C for 20 min is investigated (see Figure 3c). The linearity of contact resistance at the same temperature is very good and R_c gradually declines as annealing temperature rises, which illustrates obvious promotion of the ohmic behavior. Average specific contact resistance...
(\(\rho_c\)) is exhibited in Figure 3d by measuring CTLM configurations at different annealing temperatures with a downtrend of \(\rho_c\), presenting good ohmic contact. After annealing at 600 °C, I–V curve began to become linear, which could be ascribed to the improvement in the interface performance by the annealing process. Besides, the formation of carbide might also be the reason for the formation of ohmic contact at higher temperature between Ni and H-diamond film [27]. Nickel carbide has good electrical conductivity. The increase in the proportion of nickel carbide will reduce the potential barrier between diamond and nickel, thus reducing the contact resistance. As temperature increases, \(\rho_c\) of ohmic contact shows a gradual decrease, which could be due to the formation of electrical active defects in carbide [6]. Consequently, the minimum \(\rho_c\) obtained was 1.19 \(\times\) 10\(^{-4}\) and 7.82 \(\times\) 10\(^{-5}\) Ω cm\(^2\), respectively, at 750 °C.

\[\begin{align*}
\text{(a)} & \quad \text{Current (A)} \\
\text{20 µm circular ring gap} & \quad \text{Voltage (V)} \\
\text{(b)} & \quad \text{Current (A)} \\
\text{20 µm circular ring gap} & \quad \text{Voltage (V)} \\
\text{(c)} & \quad \text{specific contact resistance (}\rho_c\text{)} \\
\text{anneal-650°C} & \quad \text{anneal-700°C} \\
\text{anneal-750°C} & \quad \text{vs. the circular ring spacing curve in which } \rho_c \text{ is obtained is exhibited in Figure 3d by measuring CTLM configurations at different annealing temperatures.} \\
\text{(d)} & \quad \text{specific contact resistance (}\rho_c\text{)} \\
\text{Temperature (°C)} & \quad \text{specific contact resistance (}\rho_c\text{)} \\
\end{align*}\]

Figure 3. I–V characteristics of as-deposited and annealed Ni/H-diamond contact of CTLM configuration: (a) before and after annealing in H\(_2\) from 100 to 600 °C for 20 min; (b) before and after annealing in H\(_2\) at 650, 700, 750 °C for 20 min. (c) Linear fitting of the average contact resistance after annealing in H\(_2\) at 650, 700, 750 °C for 20 min. (d) Relationship between temperature and average specific contact resistance (\(\bar{\rho}_c\)) with annealing temperature from 650 to 750 °C in H\(_2\) for 20 min at each temperature.

4. Conclusions

Ohmic contact of nickel on hydrogen-terminated single-crystal diamond film was investigated with an annealing temperature ranging from room temperature to 750 °C in hydrogen atmosphere. After annealing at 650 °C in the H\(_2\) ambient for 20 min, I–V curves appear, indicating linear behavior, which showed a conversion from Schottky to Ohmic contact. The \(\bar{\rho}_c\) of ohmic contact decreases with the increase in temperature. The measurement results of CTLM at 750 °C indicate a best ohmic contact value of 7.82 \(\times\) 10\(^{-5}\) Ω cm\(^2\) and the minimum \(\bar{\rho}_c\) obtained was 1.19 \(\times\) 10\(^{-4}\) Ω cm\(^2\), exhibiting an excellent ohmic contact. Our results contribute to the low specific contact resistance Ohmic contact of Ni with H-diamond, showing great potential for the fabrication of Diamond-based power devices.
Author Contributions: Conceptualization, S.Z. and P.Z.; methodology, S.Z.; software, W.C.; validation, P.Z.; formal analysis, S.Z.; investigation, P.Z.; resources, H.-X.W.; data curation, S.Y.; writing—original draft preparation, P.Z.; writing—review and editing, W.C.; visualization, H.-X.W.; supervision, H.-X.W.; project administration, W.M.; funding acquisition, W.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 51964035), the Natural Science Foundation of Inner Mongolia Autonomous Region (2019MS0520) and the Natural Science Foundation of Inner Mongolia Autonomous Region (2020LH05017).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Isberg, J.; Hammersberg, J.; Johansson, E.; Wikstrom, T.; Twitchen, D.; Whitehead, A.; Coo, S.; Scarsbrook, G. High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond. Science 2002, 297, 1670–1672. [CrossRef] [PubMed]
2. Geis, M. Growth of device-quality homoepitaxial diamond thin films. Mater. Res. Soc. Symp. Proc. 1990, 162, 15. [CrossRef]
3. Wort, C.; Balmer, R.S. Diamond as an electronic material. Mater. Today 2008, 11, 22–28. [CrossRef]
4. Reggiani, L.; Bosi, S.; Canali, C.; Nava, F.; Kozlov, S.F. Hole-drift velocity in natural diamond. Phys. Rev. B 1981, 23, 3050. [CrossRef]
5. Wang, W.; Hu, C.; Li, F.; Li, S.; Liu, Z.; Wang, F.; Fu, J.; Wang, H. Palladium ohmic contact on hydrogen-terminated single crystal diamond film. Diam. Relat. Mater. 2015, 59, 90. [CrossRef]
6. Zhao, D.; Li, F.; Liu, Z.; Chen, X.; Wang, Y.; Shao, G.; Zhu, T.; Zhang, M.; Zhang, J.; Wang, J.; et al. Effects of rapid thermal annealing on the contact of tungsten/p-diamond. Appl. Surf. Sci. 2018, 443, 361–366. [CrossRef]
7. Yu, X.; Zhou, J.; Qi, C.; Cao, Z.; Kong, Y.; Chen, T. High frequency hydrogen-terminated diamond MISFET with fT/fmax of 70/80 GHz. IEEE Electron Device Lett. 2018, 39, 1373–1376. [CrossRef]
8. Wang, Y.; Chang, X.; Li, S.; Zhao, D.; Shao, G.; Zhu, T.; Fu, J.; Zhang, P.; Chen, X.; Li, F.; et al. Ohmic contact between iridium film and hydrogen-terminated single crystal diamond. Sci. Rep. 2017, 7, 12157.
9. Kitabayashi, Y.; Kudo, T.; Tsuboi, H.; Yamada, T.; Xu, D.; Shibata, M.; Matsumura, D.; Hayashi, Y.; Syamsul, M.; Inaba, M.; et al. Normally-Off C–H Diamond MOSFETs With Partial C–O Channel Achieving 2-kV Breakdown Voltage. IEEE Electron Device Lett. 2017, 38, 363–366.
10. Wang, W.; Fu, K.; Hu, C.; Li, F.; Liu, Z.; Li, S.; Lin, F.; Fu, J.; Wang, J.; Wang, H. Diamond based field-effect transistors with SiN_X and ZrO_2 double dielectric layers. Diam. Relat. Mater. 2016, 69, 237–240. [CrossRef]
11. Kawarada, H.; Yamada, T.; Xu, D.; Tsuboi, H.; Saito, T.; Hiraiwa, A. Wide Temperature (10 K–700 K) and High Voltage (~1000V) Operation of C-H Diamond MOSFETs for Power Electronics Application. In Proceedings of the 2014 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 15–17 December 2014.
12. Kawarada, H.; Tsuboi, H.; Naruo, T.; Yamada, T.; Xu, D.; Daicho, A.; Saito, T.; Hiraiwa, A. CH surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation. Appl. Phys. Lett. 2014, 105, 013510. [CrossRef]
13. Imanishi, S.; Horikawa, K.; Oi, N.; Okubo, S.; Kageura, T.; Hiraiwa, A.; Kawarada, H. 3.8 W/mm RF Power Density for ALD Al_2O_3-Based Two-Dimensional Hole Gas Diamond MOSFET Operating at Saturation Velocity. IEEE Electron Device Lett. 2019, 40, 279–282. [CrossRef]
14. Saha, N.; Kasu, M. Heterointerface properties of diamond MOS structures studied using capacitance–voltage and conductance–frequency measurements. Diam. Relat. Mater. 2019, 91, 219–224. [CrossRef]
15. Liu, J.; Liao, M.; Imura, M.; Oosato, H.; Watanabe, E.; Tanaka, A.; Iwai, H.; Koide, Y. Interfacial band configuration and electrical properties of LaAlO_3/Al_2O_3/hydrogenated-diamond metal-oxide-semiconductor field effect transistors. J. Appl. Phys. 2013, 114, 084108. [CrossRef]
16. Verona, C.; Cicogna, W.; Colangeli, S.; Pietrantonio, F.D. Gate–source distance scaling effects in H-terminated diamond MESFETs. IEEE Trans. Electron Devices 2015, 62, 1150–1156. [CrossRef]
17. Zhao, J.; Liu, J.; Sang, L.; Liao, M.; Coathup, D.; Imura, M.; Shi, B.; Gu, C.; Koide, Y.; Ye, H. Assembly of a high-dielectric constant thin TiO_x layer directly on H-terminated semiconductor diamond. Appl. Phys. Lett. 2016, 108, 012105. [CrossRef]
18. Wang, Y.; Wang, W.; Chang, X.; Zhang, X.; Fu, J.; Liu, J.; Zhao, D.; Shao, G.; Fan, S.; Bu, R.; et al. Hydrogen-terminated diamond field-effect transistor with AlO_x dielectric layer formed by autoxidation. Sci. Rep. 2019, 9, 5192. [CrossRef]
19. Kunze, M.; Vescan, A.; Dollinger, G.; Bergmaier, A.; Kohn, E. δ-Doping in diamond. Carbon 1999, 37, 787–791. [CrossRef]
20. El-Hajj, H.; Denisenko, A.; Bergmaier, A.; Dollinger, G.; Kubovic, M.; Kohn, E. Characteristics of boron δ-doped diamond for electronic applications. Diam. Relat. Mater. 2008, 17, 409–414. [CrossRef]
21. Gu, C.; Tu, J. One-Step Fabrication of Nanostructured Ni Film with Lotus Effect from Deep Eutectic Solvent. Langmuir 2011, 27, 10132–10140. [CrossRef]
22. Gu, C.; Lian, J.; He, J.; Jiang, Z.; Jiang, Q. High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy. Surf. Coat. Technol. 2006, 200, 5413–5418. [CrossRef]
23. Cheng, Y.; Zheng, Y.; Huang, X.; Zhong, K.; Chen, Z.; Huang, Z. Magnetism and work function of Ni-Cu alloys as metal gates. Rare Metals 2012, 31, 130–134. [CrossRef]
24. Baranauskas, V.; Li, B.; Peterlevitz, A.; Tosin, M.; Durrant, S. Nitrogen-doped diamond films. J. Appl. Phys. 1999, 85, 7455. [CrossRef]
25. Michael, W.; Jonathan, C. Hole Traps in Natural Type IIb Diamond. IEEE Trans. Electron Devices 1997, 44, 1514–1522.
26. Davydova, M.; Taylor, A.; Hubík, P.; Fekete, L.; Klimša, L.; Trémouilles, D.; Soltani, A.; Mortet, V. Characteristics of zirconium and niobium contacts on boron-doped diamond. Diam. Relat. Mater. 2018, 83, 184–189. [CrossRef]
27. Nakanish, J.; Ostuki, A.; Oku, T. Formation of ohmic contacts to p-type diamond using carbide forming metals. J. Appl. Phys. 1994, 76, 2293–2298. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).