Photo-assisted electrolytic decomplexation of Cu-EDTA and Cu recovery enhanced by H$_2$O$_2$ and electro-generated active chlorine

Huabin Zenga,b, Shichao Tian a, Huifang Liua, Buyu Chai a, Xu Zhaoa,b,⇑

⇑Corresponding author at: P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 10085, China.
E-mail address: zhaoxu@rcees.ac.cn (X. Zhao).

Abstract

The performance of Cu-EDTA decomplexation and copper recovery by photo-assisted electrolysis (UPE) process using TiO$_2$/Ti as anode and stainless-steel as cathode was explored by adding H$_2$O$_2$/Cl$^-$. The Cu-EDTA decomplexation and Cu recovery were well fitted with a pseudo-first-order reaction model. The results indicated that with the addition of H$_2$O$_2$ into the UPE process (H$_2$O$_2$-UPE process), the kinetic constant of Cu-EDTA decomplexation was increased from 0.0677 min$^{-1}$ to 0.0880 min$^{-1}$, and the kinetic constant of Cu recovery was increased from 0.0607 min$^{-1}$ to 0.0749 min$^{-1}$. Similar enhancement was observed by adding Cl$^-$ into the UPE process (EC-UPE process), where the kinetic constant of Cu-EDTA decomplexation was increased from 0.0272 min$^{-1}$ to 0.0632 min$^{-1}$, and the kinetic constant of Cu recovery was increased from 0.0249 min$^{-1}$ to 0.0565 min$^{-1}$. In the H$_2$O$_2$-UPE process, the efficiency of Cu-EDTA decomplexation and Cu recovery was optimal at the initial solution pH of 2.5–3.5; in the EC-UPE process, an optimum current density of 1.00 mA/cm2 was obtained. Intermediates were detected in H$_2$O$_2$-UPE process and a decomplexation pathway was proposed. A different degradation pathway was concluded in the EC-UPE process.

1. Introduction

Copper was extensively used in many fields such as electroplating, construction, transportation equipment and electrical industry [1]. In the effluent from above fields, copper ions were usually combined with chelating agents, such as ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA) and citrate. The application of conventional precipitation and biological process for the removal of the copper complexes was limited [2,3]. Recently, advanced oxidation processes (AOPs) including Fenton oxidation process and UV/H$_2$O$_2$ process have been investigated in treating metal-binding EDTA [4,5]. In these processes, the complexing agents were efficiently oxidized by the active radicals and metal ions were liberated, which were needed to be further-
more treated. Recovery of the metal ions such as copper, nickel, and zinc et al. was desired.

The oxidation of Cu-EDTA by TiO₂ photocatalysis with a simultaneous reduction of copper ions was reported [6,7]. The liberated copper ions were deposited on the catalyst via reduction by photo-generated electrons. In comparison with the decomplexation of Cu-EDTA, the removal efficiency of copper ions remained relatively low, and separation of the TiO₂ powder and the deposited Cu was needed. Our previous work indicated that the combination of photocatalysis and electrochemical oxidation process can achieve a simultaneous decomplexation of Cu-EDTA complexes and copper recovery by the cathodic reduction process [8]. Cu-EDTA complexes were destroyed at the photoanode, and the liberated copper ions were electrodeposited on the cathode. In this process, destruction of Cu-EDTA mainly occurred near the photoanode with a relatively low efficiency. Efforts on enhancing the photoelectrocatalytic efficiency were performed to optimize the configuration of the photoelectrocatalytic cell, including the distance between the UV source, the working electrode and the electrode structure [9].

In the last two decades, many researchers have demonstrated that AOPs employing H₂O₂ with ultraviolet (UV/H₂O₂) were effective in the rapid degradation of organics [5,10–12]. It was indicated that high degradation efficiency of Pb-EDTA was achieved in 10 min [5]. In comparison with the UV/H₂O₂ process or the individual photocatalysis, the combination of TiO₂ photocatalysis with UV/H₂O₂ process increased the degradation efficiency of alachlor and Procion H-exi dyes [13,14]. It was concluded that the large amount of hydroxyl radicals produced by heterogeneous photocatalysis and homogeneous oxidation in the combined process may be responsible for the efficient degradation of targeted pollutants. Therefore, addition of H₂O₂ into the PEC system was desired for efficient oxidation of Cu-EDTA complexes.

It was reported that the addition of chloride ions in the electrolyte can increase the electrooxidation removal efficiency of many pollutants such as 2-naphthol, urea and microcystins [15–17]. In the case of EDTA, it was reported that in situ generated active chlorine allowed the decomplexation of metal-EDTA, which was beneficial to the metal recovery [18]. Furthermore, the combination of UV and chlorination was proved to be an improved oxidation technology in the aspect of some organics like metoprolol compared with pure chlorination due to the photogenerated hydroxyl radicals and chlorine radicals [19]. It's conceivable that the in the photoelectrocatalytic process assisted by Cl⁻ the degradation efficiency of the targeted pollutants may be improved [20,21].

Herein, the enhancement of decomplexation of Cu-EDTA using the TiO₂ film photoanode and recovery of copper ions at the stainless-steel cathode by electrodeposition was exhibited under high current density by adding H₂O₂/Cl⁻ into the photo-assisted electrolytic (UPE) reactor. In the case of H₂O₂ addition, a large amount of active OH⁻ radicals were produced for UV activation of H₂O₂. In the case of Cl⁻ addition, generated radicals including active chlorine, Cl⁻ and OH⁻ were responsible for the enhanced oxidation of Cu-EDTA. The different degradation pathways of Cu-EDTA with the addition of H₂O₂ or Cl⁻ were also proposed.

2. Experimental section

2.1. Chemicals

Copper sulfate (CuSO₄) was purchased from Acros. Sodium sulfate (Na₂SO₄), sodium chloride (NaCl), Ethylenediaminetetraacetic acid disodium salt (Na₂EDTA) and hydrogen peroxide (H₂O₂) were purchased from Sinopharm Chemical Reagent Co., Ltd. China. Imidodiacetate acid (IDA) and nitrioltriacetic acid (NTA) were purchased from Alfa Aesar. Ethylenediamine diacetate (EDDA) was purchased from Tokyo chemical industry Co., Ltd.

Cu-EDTA solution was prepared by mixing a solution of CuSO₄ and Na₂EDTA to obtain a 1:1 M percentage of copper ions to EDTA. Solution pH regulation was performed using either 100 mM NaOH or 50 mM H₂SO₄. Deionized water was used for the preparation and dilution of the solutions.

2.2. Setup and experiment

The UPE experiments were performed in a single-compartment photo-assisted electrolytic cell with a working volume of 450 mL in galvanostatic mode. As shown in Fig. 1, the cell was connected to a power supplier, the tubular TiO₂/Ti mesh electrode (50 mm diameter) was used as anode, and the TiO₂ film was deposited onto the Ti plate via a dip-coating method as described by Shang et al. [22]. A tubular stainless-steel was used as cathode. The gap between the anode and cathode was 3 mm. A UV lamp (main wavelength 254 nm; 15 W) in a quartz tube was put in the center of the tubular TiO₂/Ti mesh electrode. The UV fluence rate at the wavelength of 254 nm in the same position as photoanode in the reactor have been performed by an irradiatometer (UVB254, Beijing Normal University Photo-Electric Equipment Factory), which was determined as 7.0 mW/cm². The photon flux into the solution from the UV lamp was 2.59 × 10⁻³ Einstein/min according to the calculation. Untreated water containing given concentration of Cu-EDTA was pumped into the reactor from bottom by a peristaltic pump (BT100-2L, Longer pump).

2.3. Analytical method

The concentration of Cu-EDTA was measured by a high-performance liquid chromatography (HPLC, 1260, Agilent Technology) with a C18 column and ultraviolet detector. The elution was comprised of 92% oxalic acid (concentration, 15 mM; pH, 3.0)/8% acetonitrile (v/v) at a temperature of 25 °C. The flow rate was set as 1 mL/min and the detection wavelength was set as 254 nm.

Concentrations of total copper ions were measured using 700 series inductively coupled plasma-optical emission spectrometry.
Decomplexation of Cu-EDTA

The intermediates were identified by capillary electrophoresis (PACETM MDQ series capillary electrophoresis system). An uncoated fused silica capillary, 50 cm in length (to the detector) and 75 μm in diameter, was used with UV detection at 185 nm. The carrier electrolyte was 50 mM phosphate and 0.5 mM tetrade-cyltrimethylammonium bromide (TTAB, pH 7.12) according to the procedure [8]. Cu-EDDA, Cu-IDA, Cu-NTA (1:1 M ratio) were pre-pared according to the procedure of Cu-EDTA solution. The intermediates were identified by a comparison of the retention time to those of the prepared standards. Acetic acid, formic acid, oxalic acid and nitrate were detected by ion chromatography (IC) analysis (ICS-2000, DIONEX, USA). Dichloroacetic acid and trichloroacetic acid were detected by the GC-ECD analysis (Agilent technologies, USA).

3. Results and discussion

3.1. Effect of H2O2 and Cl− addition on the UPE performance

The effect of H2O2 addition on the UPE process was examined. Decomplexation of Cu-EDTA complexes and recovery of copper ions via individual H2O2 oxidation, electrooxidation (EO), photocatalysis (PC), UPE process, and UPE process with H2O2 addition (H2O2-UPE process) were investigated with the constant concentration of Cu-EDTA, initial solution pH, and current density. The variation of Cu-EDTA residual ratio (Ct/C0) was used as a probe of the Cu-EDTA decomposition. And the decomplexation ratio of Cu-EDTA can be calculated by the following equation:

\[
\text{Decomplexation ratio} = 1 - \text{Residual ratio}
\]

The recovery percentage of copper ions (RCu) in the reactor was calculated as following:

\[
\text{RCu} (\%) = \frac{\text{(initial amount of Cu ions} - \text{remaining amount of Cu ions)}}{\text{initial amount of Cu ions in the reaction cell}} \times 100
\]

As shown in Fig. 2(a), no Cu-EDTA decomplexation and Cu recovery occurs in the individual UV photolysis. By contrast, obvious decomplexation of Cu-EDTA and Cu recovery are obtained in the photocatalytic process. Furthermore, an increase in the performance in UPE process can be observed in comparison with EO process and PC process. At 60 min, the decomplexation ratios of Cu-EDTA in the EO process, PC process and UPE process are 89.99%, 39.33% and 97.63%, and the Cu recovery percentages are 89.98%, 43.86% and 97.66%, respectively. The decomplexation rate of Cu-EDTA and the recovery rate of Cu in Fig. 2(a) were simulated using a first-order reaction equation and results are shown in Fig. 2(c). The kinetic constants of UPE process (0.0677 min⁻¹, R² = 0.966; 0.0607 min⁻¹, R² = 0.976) are higher than the sum of the kinetic constants of single EO process (0.0361 min⁻¹, R² = 0.974; 0.0343 min⁻¹, R² = 0.968) and single PC process (0.0078 min⁻¹, R² = 0.954; 0.0081 min⁻¹, R² = 0.921), not only in the decomplexation process but also in the recovery process.

According to the work reported by Frontistis et al. [23], a synergy index (S) was used to assess the synergy effect of UPE process on the decomplexation of Cu-EDTA and Cu recovery.

\[
\%S = 100 \times \frac{(k_{\text{UPE}} - k_{\text{EO}} - k_{\text{PC}})}{k_{\text{UPE}}}
\]

In this case, the S in the decomplexation process of Cu-EDTA and recovery process of Cu were calculated as 35.16% and 30.15%, indicating that the individual EO and PC process does not simply add up (i.e. S = 0) but a synergistic effect toward both the decomplexation of Cu-EDTA and recovery of Cu was exhibited. Similar results under the low current density were observed and explained in our previous study [8].

As can be seen from Fig. 2(b) that the half-life time of Cu-EDTA decomposition is increased from 8 min in the H2O2-UPE process to 15 min in the UPE process. Correspondingly, the kinetic constant of Cu-EDTA decomposition is also increased from 0.0677 min⁻¹
It was obvious that the performance of Cu-EDTA decomplexation by UPE oxidation was enhanced with addition of \(\text{H}_2\text{O}_2 \). In this case, the S of the decomplexation process in the combination of UPE process and \(\text{H}_2\text{O}_2 \) oxidation process was calculated as 21.13%.

In individual UPE process, the heterogeneous electrooxidation or hydroxyl radicals oxidation of the pollutants may be restricted by low OH\(^+\) radicals concentration. By contrast, AOPs employing \(\text{H}_2\text{O}_2 \) with UV irradiation, as reported in previous literatures, were effective in the degradation of organics by producing a multitude of hydroxyl radicals [10,12]. Therefore, the decomplexation of Cu-EDTA was enhanced via the homogeneous and heterogeneous oxidation process with addition of \(\text{H}_2\text{O}_2 \). The recovery process followed the decomplexation process of Cu-EDTA, consequently, the enhancement in the copper recovery process is also observed (Fig. 2(a) and (b)).

The feasibility of the UPE process enhanced by Cl\(^-\) addition was investigated at a Cu-EDTA concentration of 0.50 mM. The EO process in the presence of Cl\(^-\) (EC process), UPE process in the absence of Cl\(^-\) and UPE process in the presence of Cl\(^-\) (EC-UPE process) were studied with a constant initial solution pH and current density. As shown in Fig. 3, the rate of Cu-EDTA decomplexation in the EC-UPE process is higher than that of EC process and UPE process in the absence of Cl\(^-\). The first-order kinetic constant in Cu-EDTA decomplexation process is increased from 0.0474 min\(^{-1}\) (EC process, \(R^2 = 0.983 \)) and 0.0272 min\(^{-1}\) (UPE process, \(R^2 = 0.987 \)) to 0.0632 min\(^{-1}\) (EC-UPE process, \(R^2 = 0.987 \)).

In the UPE oxidation process, active chlorine was generated through the following reactions (1–3). The generated active chlorine was transferred into the bulk solution in the form of chloramine, hypochlorous acid and hypochlorite [16]. It was proved that with the addition of Cl\(^-\) into the electrochemical process using non-photoactive dimensionally stable anode combined with UV light irradiation, the performance for the pollutant removal was improved [24,25].

\[
\begin{align*}
2\text{Cl}^- & \rightarrow \text{Cl}_2 + 2\text{e}^- \\
\text{Cl}_2 + \text{H}_2\text{O} & \rightarrow \text{HOCI} + \text{H}^+ + \text{Cl}^- \\
\text{HOCI} & \rightarrow \text{H}^+ + \text{OCl}^- \\
\text{HOCI} + \text{hv} & \rightarrow \text{OH}^- + \text{Cl}^-.
\end{align*}
\]

(1) (2) (3) (4)

It was reported that hydroxyl radicals and chlorine radicals were generated via reaction (4) [26]. In our case, the above active radicals may produce, which were responsible for the enhanced oxidation of Cu-EDTA with the addition of Cl\(^-\) ions into the UPE system.

3.2. Effect of the concentration of \(\text{H}_2\text{O}_2 \) and Cl\(^-\) ions

As shown in Fig. 4(a), a rapid decomplexation of Cu-EDTA accompanied with the recovery of Cu is observed in the \(\text{H}_2\text{O}_2 \)-UPE process in comparison with the UPE process in the absence of \(\text{H}_2\text{O}_2 \). Corresponding to the \(\text{H}_2\text{O}_2 \) concentration of 0.5 mM, 5 mM and 50 mM, the decomplexation ratios of Cu-EDTA are 34.67%, 43.77% and 69.87% at 10 min, and the recovery percentages of Cu are 29.76%, 44.47% and 67.12%, respectively. After 20 min, the enhancement becomes weak. The kinetic constants in the processes of both Cu-EDTA decomplexation and Cu recovery are also increased with the increase of \(\text{H}_2\text{O}_2 \) concentration (Fig. 4(b)). A similar result that high concentration of \(\text{H}_2\text{O}_2 \) benefited the UV/\(\text{H}_2\text{O}_2 \) process was also obtained by Jiraroj [5]. The consistency of decomplexation efficiency with \(\text{H}_2\text{O}_2 \) concentration may be ascribed to the increased amount of hydroxyl radicals generated from the UV irradiation of \(\text{H}_2\text{O}_2 \).

With respect to the effect of chloride ions on the UPE process, different amounts of chloride ions ranging from 0 to 0.20 M were added into the UPE system at a constant current density of 1.00 mA/cm\(^2\) and initial pH of 4.6. As shown in Fig. 5(a), in the UPE process, the decomplexation ratio of Cu-EDTA in 60 min is increased from 80.47% at a NaCl concentration of 0.02 mM to 90.48% with the addition of 0.20 M NaCl, and the recovery percentage is also improved. With the increase of Cl\(^-\) concentration from 0.02 M to 0.20 M, the kinetic constants are increased from 0.0351 min\(^{-1}\) (\(R^2 = 0.990 \)) and 0.0367 min\(^{-1}\) (\(R^2 = 0.994 \)) to 0.0445 min\(^{-1}\) (\(R^2 = 0.969 \)) and 0.0453 min\(^{-1}\) (\(R^2 = 0.995 \)) in the processes of Cu-EDTA decomplexation and Cu recovery (Fig. 5(b)). It was reported that high concentration of Cl\(^-\) would be recommended for the production of active chlorine [15,27]. As a result, a large amount of chlorine radicals and hydroxyl radicals were produced under UV irradiation via the reaction (4) [25,26], which can accelerate the decomplexation of Cu-EDTA and Cu recovery.

3.3. Effect of the initial solution pH

As shown in Fig. 6, under the constant Cu-EDTA concentration of 0.05 mM and current density of 0.50 mA/cm\(^2\), the largest kinetic constants of Cu-EDTA decomplexation and copper recovery are obtained at the initial solution pH of 3.5 and 2.5.
In acidic condition, a large portion of Cu-EDTA was adsorbed onto TiO₂ photoanode, and the adsorption was favorable to the electrooxidation and photocatalytic oxidation process. By contrast, in less acidic condition, the copper ions liberated from Cu-EDTA were inclined to be adsorbed onto TiO₂, and the oxidation was weakened because active sites were occupied or the generation of the oxidant (OH⁻) by photocatalysis was restrained [28]. In different solution pH, the species of Cu-EDTA varied, such as \((\text{CuOHEDTA})^3⁻, (\text{CuEDTA})^2⁻, (\text{CuHEDTA})^-, \text{Cu-H}_2\text{EDTA} \) and \((\text{CuH}_3\text{EDTA})^-\) existed in the solution, which can react with hydroxyl radicals more easily than other species [8]. Therefore, low solution pH value was beneficial to UPE oxidation process.

The influence of solution pH on the UV/H₂O₂ process demonstrated a different trend. Under UV irradiation, a molar of H₂O₂ was transferred into two molar of hydroxyl radicals by reaction (5) [10,12]. While the pH variation from 1 to 3 increased the oxidation ability, further increase of pH from 3.0 to 5.0 decreased the rate of H₂O₂ production by reaction (5). Under less acidic condition, H₂O₂ underwent photodecomposition to water and oxygen (reaction (6)) rather than production of hydroxyl radicals (reaction (5)) [10]. Therefore, oxidation of Cu-EDTA by the UV/H₂O₂ process was weakened.

\[
\begin{align*}
\text{H}_2\text{O}_2 + \text{hv} & \rightarrow 2\text{OH}^- \\
2\text{H}_2\text{O}_2 + \text{hv} & \rightarrow 2\text{H}_2\text{O} + \text{O}_2
\end{align*}
\]

In the case of Cl⁻ ions, the performance of EC-UPE process at solution pH varied from 2.0 to 5.5 was investigated at the Cu-EDTA concentration of 0.50 mM, current density of 1.00 mA/cm² and Cl⁻ concentration of 0.02 M. It should be pointed out here that, although pH was left uncontrolled, only slight pH increase occurred (Fig. S2). It’s obvious that when the initial solution pH changed from 2.0 to 5.5, the kinetic constants of both Cu-EDTA decomplexation and Cu recovery decreased rapidly in EC-UPE process (Fig. 7(b)). As suggested by literatures [15,25], the low solution pH had a slight negative effect on the electrochemical generation of active chlorine but a positive effect on the UV/chlorination oxidation process. In our cases, low pH condition benefited the decomplexation of Cu-EDTA and Cu recovery in EC-UPE process. Therefore, it was proposed that the UV/chlorination mechanism (reaction (4)) played a dominant role in our system.

3.4. Effect of the current density

Effect of current density on the decomposition of Cu-EDTA and recovery of Cu in the H₂O₂–UPE process was investigated. With the increase of current density from 0.25 mA/cm² to 2.50 mA/cm², decomposition of Cu-EDTA and Cu recovery are slightly improved (Fig. 8(a)), the first-order kinetic constant is increased from 0.0501 min⁻¹ \((R^2 = 0.959)\) to 0.0747 min⁻¹ \((R^2 = 0.963)\) in the decomposition process of Cu-EDTA, a similar trend of the kinetic constant in the Cu recovery process is obtained (Fig. 8(b)). When the current density was higher than a certain value, the indirect electrooxidation and photocatalysis played a predominant role in
the UPE process, and the photocatalysis cannot be improved by further increase of current density [8,29]. Furthermore, there was no effect of current density on the production of hydroxyl radicals in the UV/H2O2 oxidation process. Hence, it was concluded that the increase of Cu-EDTA decomplexation at high current density in the H2O2-UPE process may be induced by the indirect electrooxidation of the Cu-EDTA.

In the case of Cl− ions, the effect of current density on the decomplexation of Cu-EDTA and copper recovery of EC-UPE process is illustrated in Fig. 9(a) and (b). With an increase of the current density from 0.25 mA/cm2 to 1.00 mA/cm2, the kinetic constant of the decomplexation process is improved from 0.0029 min−1 (R2 = 0.918) to 0.0780 min−1 (R2 = 0.960), and the kinetic constant of Cu recovery is increased from 0.0023 min−1 (R2 = 0.937) to 0.0760 min−1 (R2 = 0.964). The performance of main oxidation processes including electro-enhanced photocatalysis, direct electrooxidation and electrochlorination in the EC-UPE process were highly in accordance with the current density. However, when the current density is higher than 1.00 mA/cm2, the first-order kinetic constants of decomplexation and recovery doesn’t increase. Both the UPE process and electrochlorination process (reaction (1–4)) reached the maximum rate. Under a current density of 1.00 mA/cm2, the electro-enhanced photocatalytic oxidation obtained its best performance due to the total disappearance of recombination between photogenerated electrons and hole. Moreover, the electrochlorination rate was also limited because the highest mass transfer velocity of Cl− induced by a concentration gradient was reached and most of the chloride ions that transfer to the anode surface were efficiently utilized.

3.5. Intermediates and proposed pathways

In order to explore the Cu-EDTA oxidation pathway in the UPE process with the addition of H2O\textsubscript{2} or Cl−, CE, IC and GC-ECD techniques were used to analyze the samples taken from various UPE process with the initial solution of 1.00 mM Cu-EDTA at pH 3.0. In the H2O\textsubscript{2}-UPE process, as shown in Fig. 10(a), Cu-EDDA is detected at the reaction time of 10 min with the peak intensity decrease of Cu-EDTA until the disappearance at 30 min; the peaks assigned to Cu-NTA and Cu-IDA are also observed at 10 min. Acetic acid was detected by IC analysis in the sample at reaction time of 10 min.

Based on the above results, it can be concluded that an acetic group was removed from Cu-EDTA, and then a Cu-EDDA and acetic acid were formed following reaction (7). Another possible pathway followed the reaction (8) or reaction (9), Cu-EDTA was broken from the C–N bond, forming Cu-NTA and IDA or Cu-IDA and NTA.

\[
\text{Cu-EDTA} \rightarrow \text{Cu-EDDA} + \text{CH}_3\text{COOH} \\
(7)
\]

\[
\text{Cu-EDTA} \rightarrow \text{Cu-NTA} + \text{IDA} \\
(8)
\]

\[
\text{Cu-EDTA} \rightarrow \text{NTA} + \text{Cu-IDA} \\
(9)
\]
With the reaction evolution, the above intermediates are further degraded. According to the TOC removal in Fig. 10(c), in the H$_2$O$_2$-UPE process, a dramatic TOC removal of 55.69 mg/L happens within reaction time of 60 min, which means some organics were thoroughly mineralized. The remained TOC was ascribed to some small molecular acids such as acetic acid, formic acid, and oxalic acid [8].

In the case of Cl$^-$ addition, no intermediate peaks of NTA, Cu-NTA, IDA, Cu-IDA, EDDA and Cu-EDDA are observed. Instead, only one peak appears at 10 min (Fig. 10(b)). Similarly, oxalic acid was detected by the IC analysis; dichloroacetic acid and trichloroacetic acid were detected by GC-ECD analysis. It can be concluded that a different removal pathway of Cu-EDTA occurred in the presence of Cl$^-$.

With respect to the mineralization degree, as shown in Fig. 10(c), only about 11% TOC removal in both UPE and EC-UPE processes is observed. As mentioned in other studies, UV/H$_2$O$_2$ system had an impressive performance in the TOC removal [30]. The effluent in the H$_2$O$_2$-UPE process was more beneficial to the environment not only due to high mineralization degree of organics in the H$_2$O$_2$-UPE process but also to avoid the generation of chlorinated products.

3.6. Comparison of various UPE processes

The comparison of UPE process and two enhanced UPE processes was carried out at a Cu-EDTA concentration of 0.50 mM. The initial solution pH and current density were adjusted as 3.0 and 1.00 mA/cm2. The concentration of NaCl and H$_2$O$_2$ was adjusted as 0.20 M and 50 mM, respectively. As shown in Fig. 11, the decomplexation ratio in the UPE process is determined as 75.27%. With the addition of H$_2$O$_2$ and NaCl, the decomplexation ratios are increased to 87.32% and 99.99%, respectively. In the Cu recovery process, the recovery percentages are also increased from 77.26% (UPE process) to 87.32% (H$_2$O$_2$-UPE process) and 99.89% (EC-UPE process). Under the optimum condition, the performance improvement in two enhanced UPE processes was impressive. Among them, the best enhancement can be obtained in the EC-UPE process.

4. Conclusions

The UPE process enhanced by adding H$_2$O$_2$/Cl$^-$ was possible from the view of Cu-EDTA decomplexation and simultaneous Cu recovery. The rate of Cu-EDTA decomplexation and Cu deposition for H$_2$O$_2$-UPE process and EC-UPE process were higher than that of the individual UPE process. In the H$_2$O$_2$-UPE system, the treatment of Cu-EDTA complexes at high concentration of H$_2$O$_2$, high current density and initial solution pH 2.5–3.5 could provide a high rate of Cu-EDTA decomplexation and Cu recovery. And, in the EC-UPE process, the process condition of high initial concentration of Cl$^-$, low solution pH and current density of 1.00 mA/cm2 benefits Cu-EDTA decomplexation and Cu recovery. Interme-
diates such as Cu-EDDA, Cu-NTA, Cu-IDA, EDDA, NTA and IDA and by-products like acetic acid, formic acid, oxalic acid and nitrate were identified in the H2O2-UPE process. By contrast, oxalic acid, dichloroacetic acid and trichloroacetic acid were detected in the EC-UPE process. The enhancement performance in the EC-UPE process was better than that in the H2O2-UPE process; the effluent of H2O2-UPE process was more environmental-friendly due to its higher mineralization degree and less generation of the by-products.

Fig. 10. Electropherograms of Cu-EDTA solution treated at various times in the H2O2-UPE process (a) and EC-UPE process (b): 50 phosphate buffer and 0.50 mM TTAB (pH 6.8), 195 nm, 20 kV, and 25 °C. A.u. = absorbance units; (c) TOC changes in UPE process, H2O2-UPE process, EC-UPE process. ([Cu-EDTA], 1 mM; Initial solution pH, 3.0; Current density, 1.00 mA/cm2; [Cl\(-\)], 0.20 M; [H2O2], 50 mM).

Fig. 11. The comparison of the UPE process and two enhanced UPE process. ([Cu-EDTA], 0.50 mM; initial solution pH, 3.0; current density, 1.00 mA/cm\(^2\); [Cl\(-\)], 0.20 M; [H2O2], 50 mM).

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21377148, 51438011, 51222802).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cej.2016.04.006.

References

[1] N.S. Foster, R.D. Noble, C.A. Koval, Reversible photoreductive deposition and oxidative dissolution of copper ions in titanium dioxide aqueous suspensions, Environ. Sci. Technol. 27 (1993) 350–356.

[2] O. Tunay, N.I. Kabdasli, Hydroxide precipitation of complexed metals, Water Res. 28 (1994) 2117–2124.

[3] A.D. Satroutdinov, E.G. Dedyukhina, T.I. Chistyakova, I.G. Minkevich, V.K. Eroshin, T. Egli, Bacterial degradation of EDTA, Microbiology 72 (2003) 8–11.

[4] K. Pirkanniemi, S. Metsärinne, M. Sillanpää, Degradation of EDTA and novel UPE+Cl\(^{+}\) and ozone, A.D. Satroutdinov, E.G. Dedyukhina, T.I. Chistyakova, I.G. Minkevich, V.K. Eroshin, T. Egli, Bacterial degradation of EDTA, Microbiology 72 (2003) 8–11.

[5] D. Jiraraj, F. Unob, A. Hagege, Degradation of Pb-EDTA complex by a H2O2/UV process, Water Res. 40 (2006) 107–112.

[6] E.H. Park, J. Jung, H.H. Chung, Simultaneous oxidation of EDTA and reduction of metal ions in mixed Cu(II)/Fe(III)-EDTA system by TiO\(_2\) photocatalysis, Chemosphere 64 (2006) 432–436.

[7] T.H. Madden, A.K. Datye, M. Fulton, M.R. Prairie, S.A. Majumdar, B.M. Stange, Oxidation of metal-EDTA complexes by TiO\(_2\) photocatalysis, Environ. Sci. Technol. 31 (1997) 3475–3481.

[8] X. Zhao, L. Guo, B. Zhang, H. Liu, J. Qu, Photoelectrocatalytic oxidation of Cu-EDTA at the TiO\(_2\) electrode and simultaneous recovery of Cu by electrodeposition, Environ. Sci. Technol. 47 (2013) 4480–4488.

[9] X. Zhao, L. Guo, J. Qu, Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor, Chem. Eng. J. 239 (2014) 53–59.

[10] M. Muruganandham, Photochemical oxidation of reactive azo dye with UV-H\(_2\)O\(_2\) process, Dyes Pigm. 52 (2004) 279–284.

[11] D. Vogna, R. Marotta, A. Napoli, R. Andreozzi, M. L’ischia, Advanced oxidation of the pharmaceutical drug diclofenac with UV/H\(_2\)O\(_2\) process, Environ. Sci. Technol. 41 (2007) 1696–1703.

[12] E.C. Wong, W. Chu, The hydrogen peroxide-assisted photocatalytic degradation of alachlor in TiO\(_2\) suspensions, Environ. Sci. Technol. 37 (2003) 2310–2316.

[13] A. Riga, K. Soutsas, K. Ntampliotis, V. Karayannis, G. Papapolymeros, Effect of system parameters and of inorganic salts on the decolorization and degradation of Procion H-exl dyes. Comparison of H2O2/UV, Fenton, UV, UV/Fenton, TiO\(_2\)/UV and TiO\(_2\)/UV/H\(_2\)O\(_2\) processes, Desalination 211 (2007) 72–86.

[14] M. Panizza, G. Cerisola, Electrochemical oxidation of 2-naphthol with in situ electrogenerated active chlorine, Electrochim. Acta 48 (2003) 1515–1519.
B.J. Hernlem, Electrolytic destruction of urea in dilute chloride solution using DSA electrodes in a recycled batch cell, Water Res. 39 (2005) 2245–2252.

H.X. Shi, J.H. Qu, A.M. Wang, J.T. Ge, Degradation of microcystins in aqueous solution with in situ electrogenerated active chlorine, Chemosphere 60 (2005) 326–333.

A. Khelifa, S. Aoudj, S. Moulay, M.D. Petris-Wery, A one-step electrochlorination/electroflotation process for the treatment of heavy metals wastewater in presence of EDTA, Chem. Eng. Process. 70 (2013) 110–116.

W. Liu, Z.L. Zhang, X. Yang, Y.Y. Xu, Y.M. Liang, Effects of UV irradiation and UV/chlorine co-exposure on natural organic matter in water, Sci. Total Environ. 414 (2012) 576–584.

M.E. Osugi, K. Rajeshwar, E.R.A. Ferraz, D.P. de Oliveira, A.R. Araujo, M.V.B. Zanoni, Comparison of oxidation efficiency of disperse dyes by chemical and photoelectrocatalytic chlorination and removal of mutagenic activity, Electrochim. Acta 54 (2009) 2086–2093.

L.E. Fraga, M.A. Anderson, M.L.P.M.A. Beatriz, F.M.M. Paschoal, L.P. Romao, M.V.B. Zanoni, Evaluation of the photoelectrocatalytic method for oxidizing chloride and simultaneous removal of microcystin toxins in surface waters, Electrochim. Acta 54 (2009) 2069–2076.

J. Shang, W. Li, Y.F. Zhu, Structure and photocatalytic characteristics of TiO2 film photocatalyst coated on stainless-steel webnet, J. Mol. Catal. A 202 (2003) 187–195.

Z. Frontistis, V.M. Daskalaki, E. Hapeshi, C. Drosou, D. Fatta-Kassinos, N.P. Xekoukoulotakis, D. Mantzavinos, Photocatalytic (UV-A/TiO2) degradation of 17 alpha-ethynylestradiol in environmental matrices: experimental studies and artificial neural network modeling, J. Photochem. Photobiol. A 240 (2012) 33–41.

S.H. Xiao, J.H. Qu, X. Zhao, H.J. Liu, D.J. Wan, Electrochemical process combined with UV light irradiation for synergistic degradation of ammonia in chloride-containing solutions, Water Res. 43 (2009) 1432–1440.

S.W. Nam, Y. Yoon, D.J. Choi, K.D. Zoh, Degradation characteristics of metoprolol during UV/chlorination reaction and a factorial design optimization, J. Hazard. Mater. 285 (2015) 453–463.

Z.H. Ye, H. Zhang, X. Zhang, D.J. Zhou, Treatment of landfill leachate using electrochemically assisted UV/chlorine process: Effect of operating conditions, molecular weight distribution and fluorescence EEM-PARAFAC analysis, Chem. Eng. J. 286 (2016) 508–516.

A. Khelifa, S. Moulay, F. Hamaune, S. Benslimene, M. Hecini, Application of an experimental design method to study the performance of electrochlorination cells, Desalination 160 (2004) 91–98.

J.K. Yang, A.P. Davis, Competitive adsorption of Cu(II)-EDTA and Cd(II)-EDTA onto TiO2, J. Colloid Interface Sci. 216 (1999) 77–85.

X. Zhao, Y.F. Zhu, Synergetic degradation of rhodamine B at a porous ZnWO4 film electrode by combined electro-oxidation and photocatalysis, Environ. Sci. Technol. 40 (2006) 3367–3372.

A. Karci, I. Arslan-Alaton, T. Olmez-Hanci, M. Bekbolet, Degradation and detoxification of industrially important phenol derivatives in water by direct UV-C photolysis and H2O2/UV-C process: a comparative study, Chem. Eng. J. 224 (2013) 4–9.