Golden-Thompson’s inequality
for
deformed exponentials

Frank Hansen

September 3, 2014

Abstract

Deformed logarithms and their inverse functions, the deformed exponentials, are important tools in the theory of non-additive entropies and non-extensive statistical mechanics. We formulate and prove counterparts of Golden-Thompson’s trace inequality for q-exponentials with parameter q in the interval $[1,3]$.

MSC2010 47A64

Key words and phrases: deformed exponentials; Golden-Thompson’s trace inequality.

1 Introduction and main result

Tsallis [7] generalised in 1988 the standard Boltzmann-Gibbs entropy to a non-extensive quantity S_q depending on a parameter q. In the quantum version it is given by

$$S_q(\rho) = \frac{1 - \text{Tr} \rho^q}{q - 1} \quad q \neq 1,$$

where ρ is a density matrix. It has the property that $S_q(\rho) \to S(\rho)$ for $q \to 1$, where $S(\rho) = -\text{Tr} \rho \log \rho$ is the von Neumann entropy. The Tsallis entropy may be written on a similar form

$$S_q(\rho) = -\text{Tr} \rho \log_q(\rho),$$

1
where the deformed logarithm \(\log_q \) is given by

\[
\log_q x = \int_1^x t^{q-2} \, dt = \begin{cases}
x^{q-1} - 1 & q > 1 \\
q - 1 & q = 1 \\
\log x & q = 1
\end{cases}
\]

for \(x > 0 \). The deformed logarithm is also denoted the \(q \)-logarithm. The inverse function \(\exp_q \) is called the \(q \)-exponential and is given by

\[
\exp_q(x) = (x(q - 1) + 1)^{1/(q-1)} \quad \text{for} \quad x > \frac{-1}{q - 1}.
\]

The \(q \)-logarithm and the \(q \)-exponential functions converge, respectively, to the logarithmic and the exponential functions for \(q \to 1 \).

The aim of this article is to generalise Golden-Thompson’s trace inequality \([2, 6]\) to deformed exponentials. The main result is the following:

Theorem 1.1. Let \(A \) and \(B \) be positive definite matrices.

(i) If \(1 \leq q < 2 \) then

\[
\text{Tr} \, \exp_q(A + B) \leq \text{Tr} \, \exp_q(A)^{2-q}(A(q - 1) + \exp_q B).
\]

(ii) If \(2 \leq q \leq 3 \) then

\[
\text{Tr} \, \exp_q(A + B) \geq \text{Tr} \, \exp_q(A)^{2-q}(A(q - 1) + \exp_q B).
\]

Notice that we for \(q = 1 \) recovers Golden-Thompson’s trace inequality

\[
\text{Tr} \, \exp(A + B) \leq \text{Tr} \, \exp(A) \exp(B).
\]

This inequality is valid for arbitrary self-adjoint matrices \(A \) and \(B \). However, it is sufficient to know the inequality for positive definite matrices, since the general form follows by multiplication with positive numbers.

2 Preliminaries

We collect a few well-known results that we are going to use in the proof of the main theorem.
The q-logarithm is a bijection of the positive half-line onto the open interval $(-(q - 1)^{-1}, \infty)$, and the q-exponential is consequently a bijection of the interval $(-(q - 1)^{-1}, \infty)$ onto the positive half-line. For $q > 1$ we may thus safely apply both the q-logarithm and the q-exponential to positive definite operators. We also notice that
\[
\frac{d}{dx} \log_q(x) = x^{q-2} \quad \text{and} \quad \frac{d}{dx} \exp_q(x) = \exp_q(x)^{2-q}.
\]
The proof of the following lemma is rather easy and may be found in [4, Lemma 5].

Lemma 2.1. Let $\varphi : D \to A_{sa}$ be a map defined in a convex cone D in a Banach space X with values in the self-adjoint part of a C^*-algebra A. If φ is Fréchet differentiable, convex and positively homogeneous then
\[
d\varphi(x)h \leq \varphi(h).
\]
for $x, h \in D$.

Let H be any $n \times n$ matrix. The map
\[
A \to \text{Tr}(H^* A^p H)^{1/p},
\]
defined in positive definite $n \times n$ matrices, is concave for $0 < p \leq 1$ and convex for $1 \leq p \leq 2$, cf. [11, Theorem 1.1]. By a slight modification of the construction given in Remark 3.2 in the same reference, cf. also [3], we obtain that the mapping
\[
(A_1, \ldots, A_k) \to \text{Tr}(H_1^* A_1^p A_1 + \cdots + H_k^* A_k H_k)^{1/p},
\]
defined in k-tuples of positive definite $n \times n$ matrices, is concave for $0 < p \leq 1$ and convex for $1 \leq p \leq 2$; for arbitrary $n \times n$ matrices H_1, \ldots, H_k.

3 Deformed trace functions

Theorem 3.1. Let H_1, \ldots, H_k be matrices with $H_1^* H_1 + \cdots + H_k^* H_k = 1$ and define the function
\[
\varphi(A_1, \ldots, A_k) = \text{Tr} \exp_q \left(\sum_{i=1}^{k} H_i^* \log_q(A_i) H_i \right)
\]
in k-tuples of positive definite matrices. Then φ is positively homogeneous of degree one. It is concave for $1 \leq q \leq 2$ and convex for $2 \leq q \leq 3$.
Proof. For \(q > 1 \) we obtain

\[
\varphi(A_1, \ldots, A_k) = \text{Tr} \exp_q \left(\sum_{i=1}^{k} H_i^* \log_q (A_i) H_i \right)
\]

\[
= \text{Tr} \left((q - 1) \left(\sum_{i=1}^{k} H_i^* \log_q (A_i) H_i \right) + 1 \right)^{1/(q-1)}
\]

\[
= \text{Tr} \left((q - 1) \left(\sum_{i=1}^{k} H_i^* A_i^{q-1} - \frac{1}{q-1} H_i \right) + 1 \right)^{1/(q-1)}
\]

\[
= \text{Tr} \left(\sum_{i=1}^{k} H_i^* (A_i^{q-1} - 1) H_i + 1 \right)^{1/(q-1)}
\]

\[
= \text{Tr} \left(H_1^* A_1^{q-1} H_1 + \cdots + H_k^* A_k^{q-1} H_k \right)^{1/(q-1)}.
\]

From this identity it follows that \(\varphi \) is positively homogeneous of degree one. The concavity for \(1 < q \leq 2 \) and the convexity for \(2 \leq q \leq 3 \) now follows from (2). The statement for \(q = 1 \) follows by letting \(q \) tend to one. QED

Corollary 3.2. Let \(L \) be positive definite, and let \(H_1, \ldots, H_k \) be matrices such that \(H_1^* H_1 + \cdots + H_k^* H_k \leq 1 \). Then the function

\[
\varphi(A_1, \ldots, A_k) = \text{Tr} \exp_q \left(L + H_1^* \log_q (A_1) H_1 + \cdots + H_k^* \log_q (A_k) H_k \right),
\]

defined in \(k \)-tuples of positive definite matrices, is concave for \(1 \leq q \leq 2 \) and convex for \(2 \leq q \leq 3 \).

Proof. We may without loss of generality assume \(H_1^* H_1 + \cdots + H_k^* H_k < 1 \) and put \(H_{k+1} = (1 - (H_1^* H_1 + \cdots + H_k^* H_k))^{1/2} \). We then have

\[
H_1^* H_1 + \cdots + H_k^* H_k + H_{k+1}^* H_{k+1} = 1
\]

and may use the preceding theorem to conclude that the function

\[
(A_1, \ldots, A_{k+1}) \rightarrow \text{Tr} \exp_q \left(H_1^* \log_q (A_1) H_1 + \cdots + H_{k+1}^* \log_q (A_{k+1}) H_{k+1} \right)
\]

of \(k + 1 \) variables is concave for \(1 \leq q \leq 2 \) and convex for \(2 \leq q \leq 3 \). Since \(H_{k+1} \) is invertible we may choose

\[
A_{k+1} = \exp_q \left(H_{k+1}^{-1} L H_{k+1}^{-1} \right)
\]

which makes sense since \(H_{k+1}^{-1} L H_{k+1}^{-1} \) is positive definite. Concavity for \(1 \leq q \leq 2 \) and convexity for \(2 \leq q \leq 3 \) in the first \(k \) variables of the above function then yields the result. QED
Setting \(q = 1 \) we recover in particular [3, Theorem 3].

Corollary 3.3. Let \(H_1, \ldots, H_k \) be matrices with \(H_1^* H_1 + \cdots + H_k^* H_k \leq 1 \), and let \(L \) be self-adjoint. The trace function

\[
(A_1, \ldots, A_k) \rightarrow \text{Tr} \exp \left(L + H_1^* \log(A_1) H_1 + \cdots + H_k^* \log(A_k) H_k \right)
\]

is concave in positive definite matrices.

Corollary 3.4. The trace function \(\varphi \) defined in [3] satisfies

\[
\varphi(B_1, \ldots, B_k) \leq \text{Tr} \exp \left(\sum_{i=1}^k H_i^* \log_q(A_i) H_i \right) \sum_{j=1}^k H_j^* (d \log_q(A_j) B_j) H_j
\]

for \(1 \leq q \leq 2 \) and

\[
\varphi(B_1, \ldots, B_k) \geq \text{Tr} \exp \left(\sum_{i=1}^k H_i^* \log_q(A_i) H_i \right) \sum_{j=1}^k H_j^* (d \log_q(A_j) B_j) H_j
\]

for \(2 \leq q \leq 3 \), where \(A_1, \ldots, A_k \) and \(B_1, \ldots, B_k \) are positive definite matrices.

Proof. For \(1 \leq q \leq 2 \) we obtain

\[
d\varphi(A_1, \ldots, A_k)(B_1, \ldots, B_k) \geq \varphi(B_1, \ldots, B_k)
\]

by Lemma [2.1]. By the chain rule for Fréchet differentiable mappings between Banach spaces we therefore obtain

\[
\varphi(B_1, \ldots, B_k) \leq \sum_{j=1}^k d_j \varphi(A_1, \ldots, A_k) B_j
\]

\[
= \sum_{j=1}^k \text{Tr} \exp \left(\sum_{i=1}^k H_i^* \log_q(A_i) H_i \right) H_j^* (d \log_q(A_j) B_j) H_j
\]

\[
= \sum_{j=1}^k \text{Tr} \exp \left(\sum_{i=1}^k H_i^* \log_q(A_i) H_i \right) 2^{-q} H_j^* (d \log_q(A_j) B_j) H_j
\]

where we used the identity \(\text{Tr} \, df(A) B = \text{Tr} \, f'(A) B \) valid for differentiable functions. This proves the first assertion. The result for \(2 \leq q \leq 3 \) follows similarly. \textbf{QED}
4 Proof of the main theorem

In order to prove Theorem 1.1 (i) we set $k = 2$ in Corollary 3.4 and obtain
\[
\varphi(B_1, B_2) \leq \text{Tr} \exp_q(X)^{2-q}(H_1^*(d\log_q(A_1)B_1)H_1 + H_2^*(d\log_q(A_2)B_2)H_2)
\]
for $1 \leq q \leq 2$ and positive definite matrices A_1, A_2 and B_1, B_2 where
\[
X = H_1^* \log_q(A_1)H_1 + H_2^* \log_q(A_2)H_2.
\]
If we set $A_1 = B_1$ and $A_2 = 1$ the inequality reduces to
\[
\varphi(B_1, B_2) \leq \text{Tr} \exp_q(H_1^* \log_q(B_1)H_1)^{2-q}(H_1^* B_1^{q-1}H_1 + H_2^* B_2 H_2).
\]
We now set $H_1 = \varepsilon^{1/2}$ for $0 < \varepsilon < 1$, and to fixed positive definite matrices L_1 and L_2 we choose B_1 and B_2 such that
\[
L_1 = H_1^* \log_q(B_1)H_1 = \varepsilon \log_q(B_1)
\]
\[
L_2 = H_2^* \log_q(B_2)H_2 = (1 - \varepsilon) \log_q(B_2).
\]
It follows that
\[
B_1 = \exp_q(\varepsilon^{-1}L_1) \quad \text{and} \quad B_2 = \exp_q((1 - \varepsilon)^{-1}L_2).
\]
Inserting in the inequality we now obtain
\[
\text{Tr} \exp_q(L_1 + L_2)
\]
\[
\leq \text{Tr} \exp_q(L_1)^{2-q}(\varepsilon \exp_q(\varepsilon^{-1}L_1)^{q-1} + (1 - \varepsilon) \exp_q((1 - \varepsilon)^{-1}L_2))
\]
\[
= \text{Tr} \exp_q(L_1)^{2-q}(L_1(q - 1) + \varepsilon + (1 - \varepsilon) \exp_q((1 - \varepsilon)^{-1}L_2)).
\]
This expression decouple L_1 and L_2 and reduces the minimisation problem over ε to the commutative case. We furthermore realise that minimum is obtained by letting ε tend to zero and that
\[
\lim_{\varepsilon \to 0}(1 - \varepsilon) \exp_q((1 - \varepsilon)^{-1}L_2) = \exp_q(L_2).
\]
We finally replace L_1 and L_2 with A and B. This proves the first statement in Theorem 1.1.

The proof of the second statement is virtually identical to the proof of the
first. Since now \(2 \leq q \leq 3 \) the second inequality in Corollary 3.4 applies. Setting \(k = 2 \) and applying the same substitutions as in the proof of the first statement we arrive at the inequality

\[
\text{Tr } \exp_q(L_1 + L_2) \\
\geq \text{Tr } \exp_q(L_1)^{2-q}(L_1(q - 1) + \varepsilon + (1 - \varepsilon) \exp_q((1 - \varepsilon)^{-1}L_2)).
\]

Since \(2 \leq q \leq 3 \) the function

\[
\varepsilon \to \varepsilon + (1 - \varepsilon) \exp_q((1 - \varepsilon)^{-1}L_2)
\]

is now decreasing, and we thus maximise the right hand side in the above inequality by letting \(\varepsilon \) tend to zero. This proves the second statement in Theorem 1.1.

References

[1] E.A. Carlen and E.H. Lieb. A Minkowsky type trace inequality and strong subadditivity of quantum entropy II: Convexity and concavity. *Lett. Math. Phys.* 83:107–126, 2008.

[2] S. Golden. Lower bounds for the Helmhotz function. *Phys. Rev. B*, 137(1127-1128), 1965.

[3] F. Hansen. Trace functions with applications in quantum physics. *J. Stat. Phys.*, 154:807–818, 2014.

[4] E. Lieb. Convex trace functions and the Wigner-Yanase-Dyson conjecture. *Advances in Math.*, 11:267–288, 1973.

[5] Elliott H. Lieb and Robert Seiringer. Stronger subadditivity of entropy. *Physical Review A*, 71:062329, 2005.

[6] C.J. Thompson. Inequality with applications in statistical mechanics. *J. Math. Phys.*, 6:1812–1813, 1965.

[7] C. Tsallis. Nonadditive entropy and nonextensive statistical mechanics - an overview after 20 years. *Brazilian Journal of Physics*, 39(2A):337–356, 2009.

Frank Hansen: Institute for Excellence in Higher Education, Tohoku University, Japan.
Email: frank.hansen@m.tohoku.ac.jp.