VANISHING STRUCTURE SET OF 3-MANIFOLDS

S.K. ROUSHON*

Abstract. In this short note we update a result proved in [16]. This will complete our program of [12] showing that the structure set vanishes for compact aspherical 3-manifolds.

1. Introduction

This paper is to note that the program we started in [12] is now complete.

Let us first recall that a compact manifold \(M \) with boundary is called topologically rigid if any homotopy equivalence \(f : (N, \partial N) \to (M, \partial M) \) from another compact manifold with boundary, so that \(f|_{\partial N} : \partial N \to \partial M \) is a homeomorphism is homotopic to a homeomorphism relative to boundary.

Let \(M \) be a compact connected 3-manifold whose fundamental group is torsion free.

We prove the following theorem.

Theorem 1.1. If \(M \) is aspherical then \(M \times \mathbb{D}^n \) is topologically rigid for \(n \geq 2 \). Here \(\mathbb{D}^n \) denotes the \(n \)-dimensional disc.

In [12] and [13] we proved Theorem 1.1 under various conditions. In [12] we proved it for the nonempty boundary case and for the situation when the manifold contains an incompressible square root closed torus. In [13] we assumed the manifold has positive first Betti number. Due to some recent developments in Geometric Topology (see [1], [2], [14], [15] and [16]) we are now able to deduce Theorem 1.1. Also the main ideas from [12] and [13] go behind the proof of this general case.

The first step to prove Theorem 1.1 is to show that the Whitehead group of \(\pi_1(M) \) is trivial. We deduce the following for this purpose.

Date: July 06, 2010.

2000 Mathematics Subject Classification. 57R67, 19D35.

Key words and phrases. fibered isomorphism conjecture, 3-manifold groups, structure set, surgery theory, topological rigidity.
Theorem 1.2. Let G be isomorphic to the fundamental group of M then

$$Wh(G) = K_{-i}(G) = \tilde{K}_0(G) = 0$$

for all $i \geq 2$.

2. Proofs of Theorems 1.1 and 1.2

For terminologies on 3-manifolds used in the proofs see [7] or [12].

Proof of Theorem 1.2. By (Kneser-Milnor) prime decomposition theorem G is isomorphic to the free product of a free group and finitely many groups G_1, G_2, \ldots, G_n where for each i, G_i is isomorphic to the fundamental group of an aspherical irreducible 3-manifold M_i (see [[13], Lemma 3.1]). Since the Whitehead group of a free product is the direct sum of the Whitehead groups of the individual factors of the free product (see [18]) it is enough to prove that the Whitehead group vanishes for G_i. Now by the Geometrization Theorem (conjectured by Thurston and proved by Perelman) M_i is either Seifert fibered, Haken or hyperbolic. The hyperbolic case follows from some more general result of Farrell and Jones in [4], for Haken case it follows from Waldhausen’s result in [19]. For non-Haken Seifert fibered space the vanishing result is due to Plotnick (see [9]). For the reduced projective class groups $\tilde{K}_0(-)$ and for the negative K-groups $K_{-i}(-)$ the same sequence of arguments and references work. For details see [3]. In fact, more generally it is shown in [3] that G is K-flat, i.e., $Wh(G \times \mathbb{Z}^n) = 0$ for all non-negative integer n.

This completes the proof of Theorem 1.2. \hfill \Box

Below we recall the statement of the Fibered Isomorphism Conjecture of Farrell and Jones. For details about this conjecture see [5]. Here we follow the formulation given in [[6], Appendix].

Let \mathcal{F} be one of the three functors from the category of topological spaces to the category of spectra: (a) the stable topological pseudoisotopy functor $\mathcal{P}()$; (b) the algebraic K-theory functor $\mathcal{K}()$; and (c) the L-theory functor $L^{(-\infty)}()$. The L-theory functor also includes an orientation data, that is a homomorphism $\omega : \pi_1(X) \to \mathbb{Z}_2$. If the topological space is an oriented manifold then this homomorphism is zero.

Let \mathcal{M} be a category whose objects are continuous surjective maps $p : E \to B$ between topological spaces E and B. And a morphism between two maps $p : E_1 \to B_1$ and $q : E_2 \to B_2$ is a pair of continuous maps $f : E_1 \to E_2$, $g : B_1 \to B_2$ such that the following diagram commutes.
There is a functor defined by Quinn in [10] from \mathcal{M} to the category of Ω-spectra which associates to the map p a spectrum $\mathbb{H}(B, \mathcal{F}(p))$ with the property that $\mathbb{H}(B, \mathcal{F}(p)) = \mathcal{S}(E)$ if B is a single point space. For an explanation of $\mathbb{H}(B, \mathcal{F}(p))$ see [5], Section 1.4. Also the map $\mathbb{H}(B, \mathcal{F}(p)) \to \mathcal{F}(E)$ induced by the morphism: $\text{id}: E \to E; B \to \ast$ in the category \mathcal{M} is called the Quinn assembly map.

Let Γ be a discrete group and \mathcal{E} be a Γ-space which is universal for the class of all virtually cyclic subgroups of Γ and denote \mathcal{E}/Γ by \mathcal{B}. For definition and properties of universal space see [5], Appendix. Let X be a space on which Γ acts freely and properly discontinuously and $p : X \times_{\Gamma} \mathcal{E} \to \mathcal{E}/\Gamma = \mathcal{B}$ be the map induced by the projection onto the second factor of $X \times \mathcal{E}$.

The Fibered Isomorphism Conjecture for Γ states that the map

$$\mathbb{H}(\mathcal{B}, \mathcal{F}(p)) \to \mathcal{F}(X \times_{\Gamma} \mathcal{E}) = \mathcal{F}(X/\Gamma)$$

is an (weak) equivalence of spectra. The equality in the above display is induced by the map $X \times_{\Gamma} \mathcal{E} \to X/\Gamma$ and using the fact that \mathcal{F} is homotopy invariant. If X is simply connected then this is called the Isomorphism Conjecture for Γ.

In this paper we consider the case when $\mathcal{F}() = L^{(-\infty)}()$. We have already mentioned that this L-theory functor contains the orientation data $\omega : \Gamma \to \mathbb{Z}_2$ so as to include the case of nonorientable manifolds.

Let us now deduce the following theorem which is an immediate consequence of [[16], 3(a) of Theorem 2.2] and some recent results from [1] and [2].

Theorem 2.1. Let G be isomorphic to the fundamental group of a 3-manifold. Then the Farrell-Jones Fibered Isomorphism conjecture in $L^{(-\infty)}$-theory is true for $G \wr H$ where H is some finite group.

Proof. The theorem follows from [[16], 3(a) of Theorem 2.2] provided we show that the conjecture is true for $\Gamma \wr H$ where H is some finite group and Γ belongs to the following classes of groups:

1). $\mathbb{Z}^2 \rtimes_{\sigma} \mathbb{Z}$ for all actions σ of \mathbb{Z} on \mathbb{Z}^2.

2). Fundamental groups of closed nonpositively curved Riemannian 3-manifolds.
3). $\Gamma \simeq \lim_{i \in I} \Gamma_i$ where $\{\Gamma_i\}$ is a directed system of groups so that for each $i \in I$ the conjecture is true for $\Gamma_i \wr K$ where K is some finite group.

We now note the following to complete the proof of the Theorem.

(1) follows from [2] where the conjecture is proved for virtually polycyclic groups.

(2) follows from [1] where the conjecture is proved for finite dimensional CAT(0)-groups.

And (3) follows from [[6], Theorem 7.1].

□

Proof of Theorem 1.1. If $\partial M \neq \emptyset$ then the theorem follows from [[12], Theorem 1.1]. Therefore we can assume that M is closed. Now recall that the combination of Theorems 1.2 and 2.1 imply the isomorphism of the classical assembly map in L-theory. Namely, the map $H_k(BG, \mathbb{L}_0) \to L_k(G)$ is an isomorphism for all k. Since M aspherical it is a model of BG, thus we have the isomorphism $H_k(M, \mathbb{L}_0) \to L_k(G)$. See the proof of [[8], Theorem 1.28] or [[17], Corollary 5.3] for a detailed argument.

Next we recall the definition of structure set and the surgery exact sequence.

Let M be a compact manifold with boundary (may be empty) so that $Wh(\pi_1(M)) = 0$. Consider all objects $(N, \partial N, f)$, where N is a manifold with boundary ∂N and $f : N \to M$ is a homotopy equivalence such that $f|_{\partial N} : \partial N \to \partial M$ is a homeomorphism. Two such objects $(N_1, \partial N_1, f_1)$ and $(N_2, \partial N_2, f_2)$ are equivalent if there is a homeomorphism $g : N_1 \to N_2$ such that the obvious diagram commutes up to homotopy relative to the boundary. The equivalence classes of these objects is the homotopy-topological structure set $S(M, \partial M)$.

In [11] Ranicki defined homotopy functors $S_k(X)$ from the category of topological spaces to the category of abelian groups which fit into the following exact sequence:

$$\cdots \to S_k(X) \to H_k(X, \mathbb{L}_0) \to L_k(\pi_1(X)) \to S_{k-1}(X) \to \cdots.$$

Also it is shown in [11] that there is a bijection between $S(M \times \mathbb{D}^k, \partial(M \times \mathbb{D}^k))$ and $S_{k+\dim M}(M)$ provided $\dim M + k \geq 5$.

The proof of the theorem is now complete since we have already proved the isomorphism $H_k(M, \mathbb{L}_0) \to L_k(G)$ for all k. □
References

[1] A. Bartels and W. Lück, The Borel conjecture for hyperbolic and CAT(0)-groups, arXiv:0901.0442 [math.GT].

[2] A. Bartels, F.T. Farrell and W. Lück, The Farrell-Jones conjecture for cocompact lattices in virtually connected Lie groups, in preparation 2010.

[3] F.T. Farrell and L.E. Jones, Implication of the Geometrization Conjecture for the Algebraic K-theory of 3-Manifolds, Geometry and Topology, Athens, Georgia 1985. Lecture Notes in Pure and Applied Mathematics, vol. 105, Dekker, New York. (Ed. C. McCrory and T. Shifrin.), 109-113.

[4] ———, K-theory and dynamics. I, Ann. of Math. 124 (1986), 531-569.

[5] ———, Isomorphism conjectures in algebraic K-theory, J. Amer. Math. Soc., 6 (1993), 249-297.

[6] F.T. Farrell and P.A. Linnell, K-theory of solvable groups, Proc. London Math. Soc. (3), 87 (2003), 309-336.

[7] J. Hempel 3-manifolds, Annals of Mathematics Studies, Princeton University Press, 1976.

[8] Wolfgang Lück and Holger Reich, The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory, In Handbook of K-theory Volume 2, edited by E.M. Friedlander, D.R. Grayson, 703-842, Springer, 2005.

[9] S. Plotnick, Vanishing of Whitehead groups for Seifert manifolds with infinite fundamental group, Comment. Math. Helv. 55 (1980), 654-667.

[10] F. Quinn, Ends of maps. II, Invent. Math. 68 (1982) no. 3, 353-424.

[11] A. Ranicki, The total surgery obstruction, Lecture Notes in Math. 763, Springer-Verlag, New York 1979, 275-316.

[12] S.K. Roushon, Vanishing structure set of Haken 3-manifolds, Math. Ann. 318 (2000), no. 3, 609-620.

[13] ———, L-theory of 3-manifolds with nonvanishing first Betti number, Internat. Math. Res. Notices 2000, no. 3, 107-113.

[14] ———, The Farrell-Jones isomorphism conjecture for 3-manifold groups, J. K-theory 1 (2008), 49-82.

[15] ———, The isomorphism conjecture for 3-manifold groups and K-theory of virtually poly-surface groups, J. K-Theory 1 (2008) 83-93.

[16] ———, Algebraic K-theory of groups wreath product with finite groups, Topology Appl. 154 (2007), 1921-1930.

[17] ———, The isomorphism conjecture in L-theory: graphs of groups, preprint, 20 pages, math.KT/0709.4592v3.

[18] J.R. Stallings, Whitehead torsion of free products, Ann. of Math. 82 (1965) 354-363.

[19] F. Waldhausen, Algebraic K-theory of generalized free products, Parts 1 and 2, Ann. of Math. 108 (1978), 135-256.

School of Mathematics, Tata Institute, Homi Bhabha Road, Mumbai 400005, India
E-mail address: roushon@math.tifr.res.in