First Case Report of Acute Renal Failure After Mesh-Plug Inguinal Hernia Repair in a Kidney Transplant Recipient

Massimiliano Veroux, MD, PhD, Vincenzo Ardita, MD, Domenico Zerbo, MD, Pietro Caglià, MD, Stefano Palmucci, MD, Nunziata Sinagra, MD, Alessia Giaquinta, MD, and Pierfrancesco Veroux, MD

Abstract: Acute renal failure due to ureter compression after a mesh-plug inguinal repair in a kidney transplant recipient has not been previously reported to our knowledge. A 62-year-old man, who successfully underwent kidney transplantation from a deceased donor 6 years earlier, was admitted for elective repair of a direct inguinal hernia. The patient underwent an open mesh-plug repair of the inguinal hernia with placement of a plug in the preperitoneal space. We did not observe the transplanted ureter and bladder during dissection of the inguinal canal. Immediately after surgery, the patient became anuric, and a graft sonography demonstrated massive hydronephrosis. The serum creatinine level increased rapidly, and the patient underwent an emergency reoperation 8 hours later. During surgery, we did not identify the ureter but, immediately after plug removal, urine output increased progressively. We completed the hernia repair using the standard technique, without plug interposition, and the postoperative course was uneventful with complete resolution of graft dysfunction 3 days later.

Furthermore, we reviewed the clinical features of complications related to inguinal hernia surgery. An increased risk of urological complications was reported recently in patients with a previous prosthetic hernia repair undergoing kidney transplantation, mainly due to the mesh adhesion to surrounding structures, making the extraperitoneal dissection during the transplant surgery very challenging. Moreover, older male kidney transplant recipients undergoing an inguinal hernia repair may be at higher risk of graft dysfunction due to inguinal herniation of a transplanted ureter.

Mesh-plug inguinal hernia repair is a safe surgical technique, but this unique case suggests that kidney transplant recipients with inguinal hernia may be at higher risk of serious urological complications. Surgeons must be aware of the graft and ureter position before proceeding with hernia repair. A prompt diagnosis with graft sonography and abdominal computed tomography scan and emergency surgery may avoid the need for nephrostomy and may resolve graft dysfunction more rapidly.

INTRODUCTION

Kidney transplantation is the optimal replacement therapy for patients with end-stage renal disease. Impressive improvements in surgical techniques and the routine use of intraoperative ureteric stenting have significantly reduced the rate of major urological complications after kidney transplantation. Ureteral stenosis represents up to 50% of all urological complications after kidney transplantation and may affect 2% to 7.5% of patients. Inguinal hernia is a common complication of peritoneal dialysis, affecting up to 37% of patients, and may present rarely in the post-transplant follow-up of kidney transplant recipients. In most cases, the clinical course of inguinal hernia repair is uneventful, but inguinal herniation of a transplanted ureter may, in rare instances, cause obstructive uropathy with graft dysfunction in kidney transplant recipients.

We report a unique case of acute renal failure due to ureteral obstruction after a mesh-plug inguinal hernia repair in a kidney transplant recipient. The patient involved in this study gave his written informed consent authorizing all procedures, and ethical consent for this study was not necessary as it did not involve any experimental treatment, and does not reveal any confidential information about patient that could violate their privacy.

We also review the clinical features of urological complications caused by inguinal hernia surgery.

CASE REPORT

A 62-year-old man with an end-stage renal disease secondary to polycystic kidney disease underwent successful deceased donor kidney transplantation. Six years after transplantation, the patient presented with vague abdominal pain and an inguinal hernia. His renal function was stable (Scr 1.5 mg/dL), and preoperative abdominal ultrasonography demonstrated a well-functioning kidney with no hydronephrosis and the presence of a direct inguinal hernia. An elective, open mesh-plug repair of the inguinal hernia was performed, by opening the external oblique muscle in the direction of the muscle fibers and reinserting the direct sac into the abdominal cavity, without opening the sac. We subsequently inserted an umbrella-shaped plug into the posterior wall defect and secured it with 3 interrupted Prolene® stitches. We placed an unsecured onlay mesh patch with the ends draped around the cord structures at the level of the internal ring. We did not note the donor transplanted ureter and bladder during dissection, neither medial nor superior to the right-sided inguinal hernia, and...
we completed the surgical intervention without intraoperative complications.

Immediately after the surgery, the patient became oliguric and then anuric. A graft sonography performed 6 hours after the hernia repair revealed massive hydroureteronephrosis (Figure 1).

The distal portion of the ureter appeared to be absent. The serum creatinine level increased rapidly to 4.1 mg/dL; we decided to reoperate on the patient, still anuric, 8 hours after the first surgical procedure. During surgery, we did not identify the ureter, but there was a progressive increase in urine output immediately after plug removal. The transversalis fascia defect was closed, therefore, by the 3 interrupted Prolene 1 stitches without plug interposition. We then placed an onlay mesh and completed the hernia repair using the standard technique. The postoperative course was uneventful and there was a progressive improvement in graft function. Three days after reoperation, the serum creatinine level decreased to 1.5 mg/dL and graft sonography demonstrated significantly reduced hydronephrosis. Magnetic resonance imaging (MRI) of the lower abdomen, performed 2 days after surgery, demonstrated fluid collection in the inguinal region at the site of previous plug implantation, near the passage of the ureter, confirming that the plug was responsible for ureteral compression (Figure 2). The patient was discharged 4 days after surgery, in good health, with stable renal function, and graft sonography demonstrated near-complete resolution of hydronephrosis (Figure 3).

DISCUSSION

To our knowledge, this is the first reported case of acute renal failure in a kidney transplant recipient after inguinal hernia mesh-plug repair. Inguinal hernia repair is one of the...
TABLE 1. Analysis of Reported Cases of Obstructive Uropathy Caused by Inguinal Hernia in Kidney Transplant Recipients

Authors	Type of Hernia	Sex/Age	Time From Transplant (y)	Clinical Presentation	Diagnosis	Surgical Procedures	Ureteral Re-implantation	Outcome
Osman et al18	Right Direct inguinal hernia	M/44	8	Graft dysfunction, hydronephrosis	MRI	Nephrostomy Hernioplasty with proline mesh	No	Partial resolution of graft dysfunction (4 weeks)
Sánchez et al17	Right inguinal hernia	M/72	5	Hydrenephrosis Normal graft function	MRI	Ureter resection Lichtenstein hernioplasty with polypropylene mesh	Yes	Normal graft function
Odisho et al14	Right external oblique hernia	M/58	15	Fatigue, graft dysfunction, hydronephrosis	US CT scan	Nephrostomy Mesh repair	No	Unknown
Ingber et al19	Left external oblique hernia	M/72	12	Graft dysfunction, shortness of breath	CT scan	Nephrostomy Hernioplasty with polypropylene mesh	No	Complete resolution of graft dysfunction (4 weeks)
Furtado et al15	Left external oblique hernia	M/44	12	Graft dysfunction	Ct scan	Nephrostomy Hernia repair	No	Unknown
Otani et al16	Right	M/53	9	Graft dysfunction, fever, Hydrenephrosis	US	Nephrostomy Hernia Surgery	No	Complete resolution of graft dysfunction (3 days)
Azhar et al11	Right inguinal hernia	M/76	20	Graft dysfunction	US CT scan	Nephrostomy Hernia repair	No	Complete resolution of graft dysfunction
Tran et al15	Left external inguinal hernia	M/52	8	Graft dysfunction, hydrenephrosis, lower left abdominal pain	CT scan	Nephrostomy Shouldice hernia repair	No	Complete resolution of graft dysfunction
Vyas et al13	Right inguinal hernia	M/37	7	Graft dysfunction, shortness of breath	MRI	Herniorrhaphy	No	Partial resolution of graft dysfunction
Tse and Clancy10	Indirect bilateral recurrent hernia	M/57	2	Moderate graft dysfunction, urinary tract infection after TAPP procedure	US	Nephrostomy, ureter dissection and resection of the stricured segment with reanastomosis	Yes	Partial resolution of graft dysfunction. Recurrence of hernia
Pourafkari et al6	Right inguinal hernia	M/50	12	Moderate/severe graft dysfunction, hydronephrosis	US	Nephrostomy with dilatation of ureterovesical junction by flexible ureteroscopy	No	Moderate reduction of graft dysfunction. Death due to cardiac arrest 4 months later.
Esposito et al12	Right femoral hernia	M/50	16	Rising creatinine level, hydrenephrosis and ureteral necrosis	US CT scan	Reanastomosis of necrotic ureter segment and reimplantation Hernia repair with a biological mesh	Yes	Complete resolution of graft dysfunction (6 days)
Hakeem et al8	Right inguinal hernia	M/72	9	Progressive graft dysfunction with hydronephrosis	US	Reanastomosis of ureter Hernia repair with Vicryl mesh	Yes	Complete resolution of graft dysfunction

CT = computed tomography, MRI = magnetic resonance imaging, TAPP = trans-abdominal pre-peritoneal, US = ultrasound.

* Literature search was performed in Medline with “Inguinal hernia and kidney transplantation” as search terms.
most common surgical interventions performed worldwide. By some estimates, ~0.8% of the general population in developed countries undergoes surgical repair in a 5-year period.20 Based on the European Hernia Society 2014 update of the Guidelines for the Treatment of Inguinal Hernia, all adult men with symptomatic inguinal hernia should be treated using a mesh procedure, regardless of the hernia type.21–23 Open Lichtenstein and mesh-plug techniques, as well as trans-abdominal preperitoneal (TAPP) and totally extraperitoneal (TEP) endoscopic techniques, are currently the methods of choice for the treatment of primary unilateral inguinal hernia. Open Lichtenstein and mesh-plug techniques provide similar outcomes in terms of hernia recurrence and chronic pain.21–23 Although recent evidence suggests a lower likelihood of reoperation for mesh-plug repair,24 compared with the Lichtenstein repair, endoscopic TEP and TAPP repairs have the advantages of lower rates of wound infection as well as earlier resumption of normal working activity, and, most importantly, a lower risk of chronic pain.25,26

An increased risk of urological complications was reported recently in patients with a previous prosthetic hernia repair undergoing kidney transplantation. Nadalin et al27 described a kidney transplant recipient who underwent laparoscopic TAPP repair of a symptomatic bilateral inguinal hernia 2 years earlier; at surgery, the fundus of the bladder and the pubis were completely encased in fibrous tissue compounded with mesh, making the extraperitoneal dissection of the bladder exceptionally challenging. More recently, Tse and Clancy28 reported a patient who developed stenosis of the renal transplant ureter after a laparoscopic repair of a bilateral recurrent inguinal hernia. The transplanted ureter was obstructed and adhered to the mesh. After dissection from the mesh, the stenotic segment was resected and the ureter was reanastomosed over a ureteric stent to the bladder. Similar findings were encountered in patients undergoing an open mesh-plug repair before transplantation. Weale et al29 reported surgical technical difficulties in 4 patients who underwent kidney transplantation on the same side of previous mesh-plug hernia repairs because of adherence of surrounding structures to the mesh and fixation of the cord. Ortiz et al30 reported ureteral necrosis in a kidney transplant recipient with a previous mesh-plug hernia repair. In this patient, the ureteral necrosis may have been related to an inflammatory reaction near the transplanted ureter, which was proximal to the implanted prosthetic mesh. Taken together, these studies suggest that kidney transplantation should be performed in the contralateral site of a previously implanted, unilateral mesh for inguinal hernia repair, and, in cases of bilateral hernia, laparoscopic repair with mesh should be avoided whenever possible.10,27–29

Inguinal hernia after renal transplantation may present as a urological complication because of herniation into the inguinal canal of the transplanted ureter. A total of 13 cases of inguinal herniation of a transplanted ureter have been reported in the literature (Table 1).7–19 Factors that may contribute to inguinal herniation of the transplant kidney include the existence of a redundant long ureter, placement of donor ureter over the spermatic cord, obesity, and stricture of the ureterovesical anastomosis leading to twisting and kinking of the ureter into the inguinal canal.7,11,17,19 Older male patients, with a median age of 56.9 years, were more commonly affected. Inguinal herniation of the ureter is a late cause of obstructive uropathy and presented at a mean of 10.6 years (range 2–20 years) after transplantation. Almost all patients presented with graft dysfunction together with inguinal pain. Graft sonography usually demonstrated various degrees of hydronephrosis, and, in most cases, the diagnosis was confirmed by computed tomography or MRI, which allowed a clear picture for surgical planning. Although conservative treatment has been described,2 most patients required a nephrostomy procedure before elective surgical repair. The definitive treatment was inguinal herniorrhaphy without the need for ureter reimplantation. However, in the case of ureter necrosis,12 long redundant ureter,6,17 or stricture of the ureter,10 a ureteral resection with reanastomosis, was required.

Acute renal failure after inguinal hernia repair is reported rarely among kidney transplant recipients. Selman et al10 reported a case of anuria in a renal transplant recipient following inguinal herniorrhaphy due to accidental ligation of the ureter, and successful treatment included a nephrostomy and ureteral reimplantation. In the present case, we attributed acute renal failure to ureteral compression by the plug that was placed in the preperitoneal space (Figure 4). Immediate surgical reintervention with plug removal resulted in rapid improvement of graft function, and the patient recovered completely 4 days after reintervention.

In conclusion, although mesh-plug inguinal hernia repair is a safe surgical technique, this unique report highlights that kidney transplant recipients presenting inguinal hernia may be predisposed to a higher risk of urological complications and graft dysfunction. Surgeons must be aware of graft and ureteral positions before proceeding with hernia repair. A prompt diagnosis with graft sonography and abdominal computed tomography scan, followed by emergency surgery, may avoid the need for nephrostomy positioning and may improve the resolution of graft dysfunction.

![FIGURE 4. Mechanism of ureteral compression. (A) The patient presents with a direct inguinal hernia, without herniation of the transplanted ureter. (B) The plug is inserted into the preperitoneal space to reduce the direct hernia and causes direct compression of the ureter and its complete occlusion.](image-url)
ACKNOWLEDGMENTS

The authors would like to thank Editage by Cactus for the English language review.

REFERENCES

1. Wilson CH, Rix DA, Manas DM. Routine intraoperative ureteric stenting for kidney transplant recipients. Cochrane Database Syst Rev. 2013;6:CD004925.

2. Culley T, Timsit MO, Neuzillet Y, et al. Membres du Comité de transplant de l’Association française d’urologie (CTAFU). [Urological complications of renal transplantation]. [Article in French]. Prog Urol. 2014;24:723–732.

3. Karam G, Hëtet JF, Maillet F, et al. Late ureteral stenosis following transplant kidney: a case report. Iran J Radiol. 2012;10:48–50.

4. Del Peso G, Bajo MA, Costero O, et al. Risk factors for abdominal wall complications in peritoneal dialysis patients. Perit Dial Int. 2003;23:249–254.

5. Garcia-Ureña MA, Rodriguez CR, Vega Ruiz V, et al. Prevalence and management of hernias in peritoneal dialysis patients. Perit Dial Int. 2006;26:198–202.

6. Balda S, Power A, Papalois V, et al. Impact of hernias on peritoneal dialysis technique survival and residual renal function. Perit Dial Int. 2013;33:629–634.

7. Furtado CD, Sirlin C, Precht A, et al. Unusual cause of ureteral wall complications in peritoneal dialysis patients. Perit Dial Int. 2006;31:379–382.

8. Hakeem AR, Gopalakrishnan P, Dooldeniya MD, et al. Inguinal herniation of a transplant ureter: lesson learned from a case of “Water Over the Bridge”. Exp Clin Transplant. 2016;14:103–105.

9. Pourakbari M, Gholami M, Riahi M, et al. Inguinal herniation of a transplant kidney ureter: a case report. Iran J Radiol. 2012;10:48–50.

10. Tse GH, Clancy M. Transplant ureteric stenosis complicating laparoscopic recurrent inguinal hernia repair. Hernia. 2013;17:271–273.

11. Azhar R, Boutros M, Hassanain M, et al. A rare case of obstructive uropathy in renal transplantation: ipsilateral indirect inguinal herniation of a transplant ureter. Transplantation. 2009;88:1038–1039.

12. Esposito M, Ratnasekera A, Sebastian E, et al. Femoral herniation of transplanted ureter after deceased-donor kidney transplantation. Int J Surg Case Rep. 2015;10:115–117.

13. Vyas S, Chabra N, Singh SK, et al. Inguinal herniation of the bladder and ureter: an unusual cause of obstructive uropathy in a transplant kidney. Saudi J Kidney Dis Transpl. 2014;25:153–155.

14. Odisho AY, Freise CE, Tomlanovich SI, et al. Inguinal herniation of a transplant ureter. Kidney Int. 2010;78:115.

15. Tran D, Gaboriault J, Collette S, et al. Obstructive uropathy caused by an inguinal hernia in a kidney transplant recipient: report of hernia by the shouldice technique. Dial Transplant. 2011;40:413–414.

16. Otani LH, Jayanthi SK, Chiarantano RS, et al. Sonographic diagnosis of a ureteral inguinal hernia in a renal transplant. J Ultrasound Med. 2008;27:1759–1765.

17. Sánchez AS, Tebar JC, Martin MS, et al. Obstructive uropathy secondary to ureteral herniation in a pediatric en bloc renal graft. Am J Transplant. 2005;5:2074–2077.

18. Osman Y, Ali-El-Dein B, El-Leithy R, et al. Sliding hernia containing the ureter—a rare cause of graft hydroureteronephrosis: a case report. Transplant Proc. 2004;36:1402–1404.

19. Ingber MS, Girdler BJ, Moy JF, et al. Inguinal herniation of a transplant ureter: rare cause of obstructive uropathy. Urology. 2007;70:1224.e1–1224.e3.

20. Burchartz J, Pedersen M, Bisgaard T, et al. Nationwide prevalence of groin hernia repair. PLoS One. 2013;8:e54367.

21. Bittner R, Arregui ME, Bisgaard T, et al. Guidelines for laparoscopic (TAPP) and endoscopic (TEP) treatment of inguinal hernia [International Endohernia Society (IEHS)]. Surg Endosc. 2011;25:2773–2843.

22. Miserez M, Peeters E, Aufenacker T, et al. Update with level 1 studies of the European Hernia Society guidelines on the treatment of inguinal hernia in adult patients. Hernia. 2014;18:151–163.

23. Köckerling F, Schug-Pass C. Tailored approach in inguinal hernia repair—decision tree based on the guidelines. Front Surg. 2014;1:1–4.

24. Droser RA, Dell-Kuster S, Kurmann A, et al. Long-term follow-up of a randomized controlled trial of Lichtenstein’s operation versus mesh plug repair for inguinal hernia. Ann Surg. 2014;259:966–972.

25. Köckerling F, Stechemesser B, Hukauf M, et al. TEP versus Lichtenstein: which technique is better for the repair of primary unilateral inguinal hernias in men? Surg Endosc. 2015; doi: 10.1007/s00464-015-4603-1.

26. Antoniou SA, Pointner R, Granderath FA. Current treatment concepts for groin hernia. Langenbecks Arch Surg. 2014;399:553–558.

27. Nadalin S, Paul A, Malagò M, et al. Laparoscopic inguinal hernia repair as a potential complicating factor in kidney transplantation. Transplantation. 2005;79:1767–1768.

28. Weale AR, Baynham SJ, Pentlow AK, et al. The impact of open mesh repair of inguinal herniae in renal transplantation. Transplantation. 2007;84:938.

29. Ortiz JA, Palladino H, Thomas S, et al. Mesh plug inguinal herniorrhaphy and ureteral necrosis after kidney transplantation. Transplantation. 2008;86:483–484.

30. Selman SH, Grecos GP, Koo BC, et al. Anuria in a transplant patient following inguinal herniorrhaphy. J Urol. 1985;133:669–670.