Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Pattern of SARS-CoV-2 infection among dependant elderly residents living in long-term care facilities in Marseille, France, March–June 2020

Tran Duc Anh Ly, Didier Zanini, Vincent Laforge, Sylvie Arlotto, Stephanie Gentile, Helene Mendizabal, Michael Finaud, David Morel, Olivier Quenette, Priscilla Malfuson-Clot-Faybesse, Alain Midejean, Phuc Le-Dinh, Gérard Daher, Berengere Labarriere, Anne-Marie Morel-Roux, Alain Coquet, Patrick Augier, Philippe Parola, Eric Chabriere, Didier Raoult, Philippe Gautret

Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
IHU-Méditerranée Infection, Marseille, France
Hospitalisation à Domicile (HAD), Hôpital de la Conception, Marseille, France
Service d’Évaluation Médicale, Hôpitaux Universitaires de Marseille Assistance Publique Hôpitaux de Marseille (APHM), Marseille, France
Aix Marseille Univ, School of medicine - La Timone Medical Campus, EA 3279: CEResS - Health Service Research and Quality of life Center, Marseille, France
Etablissement d’Hébergement pour Personnes Âgées Dépendantes Saint-Barthélemy-Fondation Saint-Jean-de-Dieu, Marseille, France
Etablissement d’Hébergement pour Personnes Âgées Dépendantes Korian Perier, Marseille, France
Etablissement d’Hébergement pour Personnes Âgées Dépendantes Chevillon, Marseille, France
Etablissement d’Hébergement pour Personnes Âgées Dépendantes La Joliette Marseille Groupe Colisée, Marseille, France
Etablissement d’Hébergement pour Personnes Âgées Dépendantes Des Sérulines groupe Domusvi, Marseille, France
Agès Dépendantes Les Opalines La Roseraie, Marseille, France
Etablissements d’Hébergement pour Personnes Âgées Dépendantes Aeria et Meissel, Marseille, France
Le Bataillon de marins-pompiers de Marseille (BMPM), Marseille, France
Aix Marseille Univ, MEPHI, Marseille, France

A R T I C L E I N F O

Article history:
Received 6 October 2020
Accepted 1 November 2020

Keywords:
COVID-19
SARS-CoV-2
Elderly resident
Long-term care facility
Mass testing
Hydroxychloroquine

A B S T R A C T

Objectives: This study aimed to report the results of SARS-CoV-2 PCR-based screening campaigns conducted on dependent elderly residents (compared with staff members) in long-term care facilities (LTCFs) in Marseille, France, and the follow-up of positive cases.

Methods: Data from 1691 elderly residents and 1000 members of staff were retrospectively collected through interviewing the medical teams in 24 LTCFs and using the hospitals’ electronic health recording systems.

Results: Elderly residents were predominantly female (64.8%) with a mean age of 83.0 years. SARS-CoV-2 detection among residents (226, 13.4%) was significantly higher than among staff members (87, 8.7%) (P < 0.001). Of the 226 infected residents, 37 (16.4%) were detected on a case-by-case basis due to their COVID-19 symptoms and 189 (83.6%) were detected through mass screening. Most (77.0%) had possible COVID-19 symptoms, including respiratory symptoms and signs (44.5%) and fever (46.5%); 23.0% were asymptomatic. A total of 116 (51.4%) patients received a course of oral hydroxychloroquine and azithromycin (HCQ-AZM) for ≥ 3 days; 47 (20.8%) died. Through multivariate analysis, the death rate was positively associated with being male (30.7% vs. 14.0%, OR = 3.95, P = 0.002), aged > 85 years (26.1% vs. 15.6%, OR = 2.43, P = 0.041) and receiving oxygen therapy (39.0% vs. 12.9%, OR = 5.16, P < 0.001).

https://doi.org/10.1016/j.ijantimicag.2020.106219
0924-8579/© 2020 Elsevier Ltd and International Society of Antimicrobial Chemotherapy. All rights reserved.
1. Introduction

As of 02 June 2020, 10 350 elderly residents living in long-term care facilities (LTCFs) or medical-social establishments in France had died from coronavirus disease (COVID-19) (27.6% fatality rate), accounting for 55.6% of COVID-19 deaths in France [1]. Similar pictures have also been reported in many European countries [2] and worldwide [3]. The prevalence of chronic conditions such as cardiovascular diseases, hypertension and diabetes mellitus is high among elderly people living in LTCFs; COVID-19 in this population may therefore have severe outcomes with a high mortality rate [2,4,5]. Other drivers of mortality among elderly people living in LTCFs already include type of facility, the number of people visiting the facilities during the week prior to lockdown, staff ratios [3], and lagged infection in staff members [6].

The treatment of COVID-19 has been the subject of widespread controversy, particularly regarding to the use of hydroxychloroquine (HCQ) [7]. It appears that some of the elements of the controversy are the heterogeneity of protocols using HCQ, with doses ranging from 800–1200 mg per day, the duration of treatment, whether or not it is combined with azithromycin (AZM), and the stage of the disease at which patients are treated. It can be considered that there is a purely viral phase of the disease, with a more or less strong immune response, which can become predominant, in what has been referred to as the cytokine storm, followed in a number of cases by necrotic lesions, linked to pulmonary infarctions [8]. Furthermore, mortality depends very significantly on age; therefore, almost all deaths in Europe have been among people aged > 60 years, with > 50% in people aged > 85 years [9]. Under these conditions it is very difficult to carry out comparative studies addressing the effect of HCQ on COVID-19-associated deaths. Very few randomised studies have been conducted and their interpretations have also led to heated debate. To assist the debate, it is believed that it may be important to assess whether there is a clear reduction in mortality in the most at-risk groups.

In Marseille, over a period of approximately two months, this study was able to test and treat COVID-19 patients in LTCFs with a combination of HCQ-AZM, as has been described on several occasions [8,10–12]. The objective of this study was to estimate the prevalence of SARS-CoV-2 carriage among elderly residents and staff members working in 24 LTCFs in Marseille, France. It also aimed to estimate the fatality among elderly residents treated in these LTCFs and informally compare it with the fatality of people in these LTCFs who were not treated and the general fatality of people in LTCFs in France.

2. Methods

2.1. Setting, study design and population

SARS-CoV-2 cross-sectional mass screening campaigns were conducted among residents and staff members from 24 LTCFs in Marseille, between 24 March and 02 June 2020. In some centres, screening campaigns were conducted following the diagnosis of confirmed COVID-19 cases in symptomatic patients who were sampled on a case-by-case strategy. In other centres, screening campaigns were systematically conducted. In all cases, screening campaigns were conducted following a request from the directors and medical staff of the LTCFs. Nasopharyngeal samples were processed for SARS-CoV-2 PCR testing at the Institut Hospitalo-Universitaire (IHU) Méditerranée Infection at Assistance Publique-Hôpitaux de Marseille (AP-HM), as previously described [13] or in private laboratories in Marseille, in some cases. Residents who tested positive were: i) treated at their FTCs by local medical staff only; ii) treated at their LTCFs in coordination with the AP-HM Home Hospitalisation Unit (HHU); iii) admitted to the IHU (day-care hospital or conventional units); or iv) transferred to the AP-HM Intensive Care Unit (ICU). For confirmed cases, information on demographics, chronic medical conditions, COVID-19 treatment and clinical data – including fever, asthenia, anorexia and weight loss, respiratory symptoms and signs (cough, rhinorrhea, dyspnoea, chest pain, acute respiratory distress syndrome) and death – were retrospectively collected from interviews with the medical team of 24 LTCFs and the electronic health recording systems of the AP-HM.

2.2. Statistical methods

Statistical procedures were performed using STATA 11.1. Pearson’s χ^2 or Fisher’s exact tests to compare between-group differences of patients, where appropriate. A two-sided P-value of < 0.05 was considered to be statistically significant. A separate logistic regression analysis was used to identify independent risk factors for SARS-CoV-2 death prevalence among all elderly residents testing positive for SARS-CoV-2. The results were presented by percentages and odds ratios (OR) with 95% confidence intervals (95% CI). The initial model included variables presenting $P < 0.2$. The stepwise regression procedure and likelihood-ratio tests were applied to determine the final model.

3. Results

Over the study period, 1691 elderly residents and 1000 staff members were tested (Table 1). For residents, the sex ratio (male to female) was 1:1.8 and the mean age (\pm standard derivation [SD]) was 83.0 (\pm 10.6) years (range 50–106 years). For staff members, the sex ratio was 1:3.5 and the mean age (\pm SD) was 40.8 (\pm 12.8) years (range 18–87 years). It should be noted that two religious staff members at one LTCF were aged 75 years and 87 years, respectively.

Overall, 313 participants (of 2691, 11.6%) were confirmed positive for SARS-CoV-2. The prevalence among residents (226 of 1691, 13.4%) was significantly higher than among staff members (87 of 1000, 8.7%; $P < 0.001$). With regard to the housing facilities, at least one individual was positive in 11/24 (45.8%) centres, with prevalence of SARS-CoV-2 detection ranging 0–57.6% among residents and 0–24.1% among staff members (Table 1). The fatality rate among residents was 20.8%, while no deaths occurred among staff members ($P < 0.001$).
Table 1
SARS-CoV-2 testing among residents and staff members at 24 long-term care facilities in Marseille, France, 27 March–2 June 2020.

Characteristics	Residents	Staff members	Total								
	Date of mass testing	No. tested 1001	No. (%) positive 226 (11.4)	No. (%) deaths among positive cases (fatality rate) 47 (20.8)	No. tested 1000	No. (%) positive 87 (8.7)	No. (%) deaths among positive cases (fatality rate) 0 (0)	P-value 1 < 0.001	P-value 2 < 0.001	No. tested 2001	No. (%) positive 311 (11.6)
Centre (26 91)											
01	01 April, 08 April, 19 April	99	57 (57.6)	17 (29.9)	83	20 (24.1)	0 (0)	0.002	0.04	182	77 (42.3)
02	08 April, 19 April, 20 May	112	50 (44.6)	9 (18.0)	71	17 (24.0)	0 (0)	0.007	0.053	183	67 (36.6)
03	20 April, 26 April, 04 May, 11 May, 18 May, 25 May, 02 June	52	23 (44.2)	2 (8.7)	35	7 (20.0)	0 (0)	0.002	N/A	87	30 (34.5)
04	06 April, 21 April	89	24 (27.0)	8 (33.3)	108	12 (11.1)	0 (0)	0.007	0.03	197	36 (18.3)
05	08 April, 29 April	37	10 (27.1)	3 (8.0)	32	1 (3.1)	0 (0)	0.035	N/A	69	11 (16.0)
06	08 April, 17 April, 22 April	230	45 (19.0)	7 (15.0)	180	15 (8.3)	0 (0)	0.002	0.18	410	60 (14.9)
07	02 April, 27 April, 25 May	81	8 (9.9)	0 (0)	57	11 (19.3)	0 (0)	0.18	N/A	138	19 (13.8)
08	13 April, 06 May	77	7 (9.1)	1 (14.3)	24	1 (4.2)	0 (0)	0.67	N/A	101	8 (7.9)
09	21 April	54	0 (0)	N/A	44	3 (6.8)	0 (0)	0.08	N/A	98	3 (3.1)
10	23 April	46	1 (2.2)	0 (0)	12	0 (0)	N/A	N/A	N/A	58	1 (1.7)
11	15 April	118	1 (0.9)	0 (0)	60	0 (0)	N/A	N/A	N/A	178	1 (0.5)
12	15 April	66	0 (0)	N/A	18	0 (0)	N/A	N/A	N/A	84	0 (0)
13	28 April	96	0 (0)	N/A	39	0 (0)	N/A	N/A	N/A	135	0 (0)
14	30 April	45	0 (0)	N/A	12	0 (0)	N/A	N/A	N/A	57	0 (0)
15	17 April	64	0 (0)	N/A	27	0 (0)	N/A	N/A	N/A	91	0 (0)
16	22 April	48	0 (0)	N/A	19	0 (0)	N/A	N/A	N/A	67	0 (0)
17	25 April	61	0 (0)	N/A	29	0 (0)	N/A	N/A	N/A	90	0 (0)
18	15 April	52	0 (0)	N/A	18	0 (0)	N/A	N/A	N/A	70	0 (0)
19	27 April	32	0 (0)	N/A	24	0 (0)	N/A	N/A	N/A	56	0 (0)
20	27 April	29	0 (0)	N/A	15	0 (0)	N/A	N/A	N/A	44	0 (0)
21	24 April	25	0 (0)	N/A	11	0 (0)	N/A	N/A	N/A	36	0 (0)
22	20 April	53	0 (0)	N/A	22	0 (0)	N/A	N/A	N/A	75	0 (0)
23	14 April	100	0 (0)	N/A	52	0 (0)	N/A	N/A	N/A	152	0 (0)
24	24 April	25	0 (0)	N/A	8	0 (0)	N/A	N/A	N/A	33	0 (0)

(continued on next page)
Table 1 (continued)

Characteristics	Total	No. tested	No. (%) deaths among positive cases (fatality rate)	P-value \(^1\)	P-value \(^2\)
Sex (male/female)	1000	1000	226 (13.4)		
Age (years)	83.0 \(\pm\) 10.6	83.4 \(\pm\) 10.6	86.8 \(\pm\) 10.2		
Residential Care Unit	1069	1069	226 (13.4)		
Date of mass testing	15/16	15/16	135 (12.6)		
Median (IQR)	91 (52.2)	91 (52.2)	28 (28.8)		

Abbreviations: NA, not applicable.

1 Comparison of positive testing prevalence between resident group and staff member group.
2 Comparison of fatality rate between infected resident group and infected staff member group. Number of individuals for whom data were available.

Table 2

Parameters	n (%)
Comorbidities (199)	
Hypertension	63 (39.6)
Cardiovascular diseases (other than hypertension)	59 (37.1)
Dementia	46 (28.9)
Mental disorder	39 (23.6)
Diabetes mellitus	25 (15.7)
Chronic lung diseases	19 (12.0)
Stroke	17 (10.7)
Cancer	15 (9.4)
Chronic neurological disorder	12 (7.6)
Obesity	7 (4.4)
Chronic kidney diseases	7 (4.4)
Asthma	3 (1.9)
Symptoms and signs (200)	
Respiratory symptoms and signs	89 (44.5)
Fever	93 (46.5)
Asthenia, anorexia, weight loss	21 (10.5)
No COVID-19 symptoms	46 (23.0)

Circumstances of diagnosis (226)	
Case-by-case testing in patients with COVID-19 symptoms	37 (16.4)
Mass testing	189 (83.6)

Medical management of patients (226)	
Managed at LTCFs by local medical staff only	62 (27.4)
Managed at LTCFs in coordination with the HHU	117 (51.8)
Admitted to ICU	16 (7.1)
Transferred ICU	31 (13.7)

HCQ-AZM therapy (226)	
At least a 3-day course	116 (51.4)
2-day course	1 (0.4)
HCQ alone	1 (0.4)
AZM alone	37 (16.4)
No HCQ, no AZM	71 (31.4)

HCQ-AZM therapy at least a 3-day course according to the housing facilities (226)	
Centre 07, n/N (%)	7/8 (87.5)
Centre 01, n/N (%)	39/50 (78.0)
Centre 02, n/N (%)	43/57 (75.4)
Centre 05, n/N (%)	4/10 (40.0)
Centre 06, n/N (%)	14/45 (31.1)
Centre 04, n/N (%)	4/23 (17.3)
Centre 03, n/N (%)	4/24 (16.7)
Centre 08, n/N (%)	17/81 (21.6)
Centre 10, n/N (%)	0/1 (0)
Centre 11, n/N (%)	0/1 (0)

Oxygen therapy (199)	
Ceftriaxone or ertapenem therapy	63 (31.6)
Low-molecular-weight heparin therapy (199)	24 (12.1)

Abbreviations: HCQ, hydroxychloroquine; AZM, azithromycin; HHU, Home Hospitalisation Unit; IHU, Institut Hospitalo-Universitaire; ICU, Intensive Care Unit; LTCFs, long-term care facilities

1 Number of individuals for whom data were available.

3.1. Characteristics of 226 elderly residents testing positive for SARS-CoV-2

Of the 226 SARS-CoV-2-positive elderly residents, 37 were diagnosed on a case-by-case basis through selected sampling of patients with COVID-19 symptoms, and 189 (83.4%) were detected through mass screening. Regarding comorbidities, the most frequent chronic condition was hypertension (39.6%), followed by other cardiovascular diseases (37.1%), dementia (28.9%) and other mental disorders (23.6%). In terms of clinical findings, 77.0% had possible COVID-19 symptoms, including respiratory symptoms and signs (44.5%) and fever (46.5%); 23.0% had no COVID-19 symptoms, representing 24.8% (40/161) of individuals tested through mass screening (Table 2).

When it came to therapeutic management, 62 (27.4%) patients were managed within their LTCFs by local medical staff only, 117 (51.8%) were managed within their LTCFs in collaboration with the
HHU, 16 (7.1%) were admitted to IHU, and 31 (13.7%) were transferred to ICU. Overall, 116 (51.4%) patients received an oral HCQ (200 mg three times daily for 10 days) and AZM (500 mg on day 1 followed by 250 mg daily for the next four days) for at least three days and were monitored as described in previous studies [10–12]. Of the 110 others (48.6%), one (0.4%) received a two-day course of HCQ-AZM, one (0.4%) received HCQ alone, 37 (16.4%) received AZM alone, and 71 (31.4%) did not receive either drug. The prevalence of HCQ-AZM treatment for at least three days ranged from 0–87.5% according to the housing facilities. Other treatments are described in Table 2. A total of 179 patients survived (79.2%) and 47 (20.8%) died. The baseline characteristics of the 116 patients who received HCQ-AZM treatment for at least three days compared with 110 patients who did not receive the treatment were largely similar (Table 3). A higher proportion of patients with a history of stroke was observed in the treated group (15.8%) compared with the untreated group (5.2%, P = 0.04).

Table 4 shows the fatality rate among elderly residents with SARS-CoV-2 infection, according to demographics, chronic conditions, circumstance of diagnosis, type of medical management of patients, use of HCQ-AZM, and housing facility effect according to prevalence of HCQ-AZM treatment for at least three days in each housing facility. Under univariate analysis, death from COVID-19 was significantly associated with being male. In addition, patients who were diagnosed on a case-by-case basis due to their COVID-19 symptoms were more likely to die (40.5%) than those diagnosed through systematic screening (16.5%). Finally, patients who received oxygen treatment were more likely to die (39.0%) than those who did not receive such a treatment (12.9%). In contrast, patients who received HCQ-AZM treatment for at least three days were less likely to die (15.5%) than those who did not receive such treatment (26.4%). Through multivariate analysis, the death rate was positively associated with being male (30.7% vs. 14.0%, OR = 3.95 [1.65–9.44]; P = 0.002), aged >85 years (26.1% vs. 15.6%, OR = 2.43 [1.04–5.69]; P = 0.041) and receiving oxygen therapy (OR = 5.16 [2.26–11.76]; P < 0.001), and negatively associated with being diagnosed through mass screening (16.9% vs. 40.5%, OR = 0.20 [0.08–0.53]; P = 0.001) and receiving HCQ-AZM treatment for at least three days (OR = 0.37 [0.17–0.86]; P = 0.02).

4. Discussion

The first case of COVID-19 in the general population of Marseille was diagnosed on 03 March 2020. The epidemic peaked during the first week of April and remained active until the end of the month. This survey of LTCFs began when the entire French population was placed under strict lockdown (17 March 2020) and when the epidemic was active in Marseille. All LTCFs became confined environments with very strict restrictions being placed upon visits. A 13.4% SARS-CoV-2 positivity rate was found among dependent elderly residents in Marseille, which was significantly higher than the 5.4% positivity rate among all French dependent elderly
Characteristics	Deaths N = 47	Survivors N = 179	Univariate OR [95% CI]	P-value	Multivariate aOR [95% CI]	P-value
Demographic factors (226)						
Gender						
Male, n (%)	28 (30.7)	63 (69.2)	2.71 [1.40–5.24]	0.003	3.95 [1.65–9.44]	0.002
Female, n (%)	19 (14.0)	116 (86.0)	Ref	Ref	Ref	Ref
Age (years) (Continued)						
50–85, n (%)	18 (15.6)	97 (84.4)	Ref	Ref	Ref	Ref
> 85, n (%)	29 (26.1)	82 (73.9)	1.90 [0.99–3.67]	0.055	2.43 [1.04–5.69]	0.041
Chronic conditions (199)						
Cardiovascular diseases (Continued)						
Hypertension						
No, n (%)	21 (21.0)	79 (78.9)	Ref			
Yes, n (%)	12 (20.3)	47 (79.7)	0.98 [0.43–2.12]	0.92		
Dementia						
No, n (%)	28 (24.8)	85 (75.2)	Ref			
Yes, n (%)	5 (10.9)	41 (89.1)	0.37 [0.13–1.02]	0.057		
Mental disorder						
No, n (%)	25 (20.9)	95 (79.1)	Ref			
Yes, n (%)	8 (20.5)	31 (79.5)	0.98 [0.40–2.39]	0.96		
Diabetes mellitus						
No, n (%)	27 (20.2)	107 (79.8)	Ref			
Yes, n (%)	6 (24.0)	19 (76.0)	1.25 [0.45–3.43]	0.66		
Chronic lung diseases						
No, n (%)	26 (18.6)	114 (81.4)	Ref			
Yes, n (%)	7 (36.9)	12 (63.1)	2.55 [0.91–7.12]	0.073		
Stroke						
No, n (%)	31 (21.8)	11 (78.2)	Ref			
Yes, n (%)	2 (11.7)	15 (88.3)	0.47 [0.1–2.20]	0.34		
Cancer						
No, n (%)	28 (19.4)	116 (80.6)	Ref			
Yes, n (%)	5 (33.3)	10 (66.7)	2.07 [0.65–6.54]	0.215		
Chronic neurological disorder						
No, n (%)	30 (20.4)	117 (79.6)	Ref			
Yes, n (%)	3 (25.0)	9 (75.0)	1.30 [0.33–5.10]	0.71		
Diagnostic and therapeutic management factors						
Circumstances of diagnosis (Continued)						
Case-by-case testing in patients with COVID-19 symptoms, n (%)	15 (40.5)	22 (59.5)	Ref		Ref	
Facility management of patients (Continued)						
Mass testing, n (%)	32 (16.9)	157 (83.1)	0.30 [0.14–0.64]	0.002	0.20 [0.08–0.53]	0.001
In LTCFs only	12 (19.4)	50 (80.3)	Ref			
Other	35 (21.3)	129 (78.7)	1.13 [0.54–2.35]	0.74		
HCQ-AZM treatment for at least 3 days (Continued)						
No, n (%)	29 (26.4)	81 (73.6)	Ref			
Yes, n (%)	18 (15.5)	98 (84.5)	0.51 [0.26–0.99]	0.047	0.37 [0.17–0.86]	0.02
> 75%	26 (22.6)	89 (77.4)	Ref			
25–75%	11 (20.0)	44 (80.0)	0.85 [0.38–1.89]	0.7		
< 25%	10 (17.9)	46 (82.1)	0.74 [0.33–1.67]	0.48		
Oxygen therapy (Continued)						
No, n (%)	18 (12.9)	122 (87.1)	Ref			
Yes, n (%)	23 (20.0)	61 (80.0)	4.33 [2.1–8.89]	< 0.001	5.16 [2.26–11.76]	< 0.001
Ceftriaxone or etepamem therapy (Continued)						
No, n (%)	26 (19.1)	110 (80.9)	Ref			
Yes, n (%)	15 (23.8)	48 (76.2)	1.32 [0.64–2.71]	0.45		
Low-molecular-weight heparin therapy (Continued)						
No, n (%)	36 (20.6)	139 (79.4)	Ref			
Yes, n (%)	5 (20.8)	19 (79.2)	1.01 [0.35–2.90]	0.97		

Abbreviations: Ref, Reference; NA, Not applicable; OR, Odds-ratio; aOR, adjusted Odds-ratio; LTCFs, long-term care facilities; HCQ, hydroxychloroquine; AZM, azithromycin.
1 Number of individuals for whom data were available.
2 Median of the variable was used for analysis.
3 According to prevalence of HCQ-AZM treatment for at least 3 days among infected residents in each housing facility, as seen in Table 2 Bold lines indicate the variables recruited in initial multivariate mode.
residents, according to a national survey (37 405 confirmed cases in an estimated 695 060 French dependant elderly residents, P < 0.001, 02 June update) [1,14]. The current study observed an overall 20.8% COVID-19 fatality rate among infected residents in Marseille, which was significantly lower than that in all French LTCFs or medical-social establishments (27.7% fatality rate, P = 0.026, 02 June update) [1].

The main drivers of mortality in Marseille residents were older age and being male, as already reported in many studies [15]. In addition, systematic screening by PCR was identified as an independent protective factor against death from COVID-19. A symptom-based diagnostic strategy is less effective in LTCFs, most likely because elderly residents with comorbidities such as chronic respiratory or cardiovascular diseases may be unable to accurately report new symptoms suggestive of COVID-infection or may present with atypical symptoms that challenge medical staff [16,17]. Furthermore, from experience, > 23% of SARS-CoV-2-infected residents had no symptoms at the time of sampling. A very high prevalence (ca. 80%) was observed in a cross-sectional study conducted on elderly residents living in 2074 Belgian LTCFs [18]. The current study showed that there was a significant difference in fatality between patients treated with standardised treatment and untreated patients, as already reported in a study conducted among elderly patients living in a Spanish public nursing home in the same period [19].

Treatment with HCQ alone was demonstrated to be associated with lower mortality in patients admitted with COVID-19 [20–23]. Another cohort study conducted among American patients with rheumatic conditions showed an association between long-term HCQ treatment and reduced COVID-19 fatality rate [24]. The potential mechanisms of HCQ in the decrease of mortality in COVID-19 might be its inhibitory effects upon the production of the pro-inflammatory cytokines interleukin (IL)-1β, TNF-α and IL-6, and chemokines (CCL2 and CCL3) involved in the recruitment of pro-inflammatory cells in the lungs [25].

The current study had some limitations: the population was not randomly and homogeneously recruited; data regarding demographic, chronic conditions and clinical status were not systematically documented; frailty, which has been shown to be a major risk factor for mortality in COVID-19, was not evaluated due to the retrospective design [26]; and the use of individual preventive measures was not documented.

Nevertheless, it is believed that even if there were biases, as in any comparative study including randomisation, these biases were relatively neutralised by the multifactorial study. Above all, it was demonstrated that the mortality in patients treated in LTCFs in Marseille was half that of those in nursing homes across France who, in most cases, very likely did not receive specific treatment, since its use is restricted to the hospital setting [27,28]. The current authors believe that it is important to focus on the population with the highest mortality, to show a significant effect, and agree in this sense with several studies that have shown a reduction in mortality of 30% to 50% by HCQ-AZM in populations most at risk [29,8].

Declarations

Funding: This work was supported by the French Government under the ‘Investments for the Future’ programme managed by the National Agency for Research (ANR), Méditerranée-Infection 10-IAUH-03, and was also supported by Région Provence-Alpes-Côte d’Azur. This work received financial support from the Fondation Méditerranée Infection.

Competing Interests: No potential conflict of interest relevant to this article was reported.

Ethical Approval: Ethical approval was obtained from the Marseille Institutional Review Board and Ethics Committee (N° 2020-028).

Acknowledgements

The authors thank all healthcare workers, laboratory technicians and the Marins Pompier de Marseille for their efforts in the fight against COVID-19. Our thanks also go to all directors and coordinating doctors of the 24 LTCFs for their support.

Authors' contributions statement: writing – original draft: TD, PG; writing – review and editing: TD, DZ, VL, SA, SG, HM, MF, DM, OQ, PM, AM, PL, GD, BL, AM, AC, PA, PP, EC and DR; conceptualisation: PG.

References

[1] Santé Publique France COVID-19 [COVID-19: epidemiological update of 2 June 2020]. St Maurice : Santé Publique France; 2 June 2020. Available from: https://www.gouvernement.fr/info-coronavirus/carte-ete-doctes [cited 25 October 2020].
[2] Danis K, Fonteneau L, Georges S, Daniau C, Bernard-Stoecklin S, Domelain L, et al. High impact of COVID-19 in long-term care facilities, suggestion for monitoring in the EU/EESA, May 2020. Euro Surveill 2020;25(21):2000956.
[3] Comas-Herrera A, Zalakain J, Lemmon E, Henderson D, Litwin C, Hsu AT, et al. Updated report: Updated international report on COVID-19 related mortality in care homes. International long-term care policy network; c2020: October 2020. Available from: https://iltcovid.org/wp-content/uploads/2020/10/Mortality-associated-with-COVID-among-people-living-in-care-homes-14-October-2020-3.pdf [cited 25]
[4] Etard JF, Vanhems P, Atlani-Duault I, Echard R. Potential lethal outbreak of coronavirus disease (COVID-19) among the elderly in retirement homes and long-term facilities, France, March 2020. Euro Surveill 2020;25(15):2000448.
[5] Moraes EN, Viana LG, Resende LMH, Vasconcellos LS, Moura AS, Menezes A, et al. COVID-19 in long-term care facilities for the elderly: labatory screening and disease dissemination prevention strategies. Cien Saude Colet 2020;25(9):3445-58. English, Portuguese. http://doi.org/10.1590/1413-8123202025-20382020.
[6] Fisman DN, Bogoch I, Lapointe-Shaw I, McCready J, Tuite AR. Risk Factors Associated With Mortality Among Residents With Coronavirus Disease 2019 (COVID-19) in Long-term Care Facilities in Ontario, Canada. JAMA Netw Open 2020;3(7):e2015957. http://doi.org/10.1001/jamanetworkopen.2020.15957.
[7] Zou L, Dai L, Zhang X, Zhang Z, Zhang Z. Hydroxychloroquine and chloroquine: a potential and controversial treatment for COVID-19. Arch Pharm Res 2020;1-8.
[8] Lagier JC, Million M, Gautret P, Colson P, Cortaredona S, Giraud-Gatineau A, et al. Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine and azithromycin and other regimens in Marseille, France: A retrospective analysis. Travel Med Infect Dis 2020;36:101791.
[9] European Centre for Disease Prevention and Control (ECDC) Coronavirus disease 2019 (COVID-19) in the EU/EESA and the UK – eighth update, 10 August 2020; c2020: August 2020. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-rapid-risk-assessment-20200810.pdf [cited 20]
[10] Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open label non-randomized clinical trial. Int J Antimicrob Agents 2020;105949.
[11] Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Sevestre J, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: an observational study. Travel Med Infect Dis 2020;101663.
[12] Million M, Lagier JC, Gautret P, Colson P, Fournier PE, Amranne S, et al. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France. Travel Med Infect Dis 2020;101738.
[13] Amranne S, Tissot-Dupont H, Doudier B, Eldin C, Hoëcart M, Mailhe M, et al. Rapid viral diagnosis and ambulatory management of suspected COVID-19 cases presenting at the infectious diseases referral hospital in Marseille, France. - January 31st to March 1st, 2020: A respiratory virus snapshot. Travel Med Infect Dis 2020;101832.
[14] Belmin J, Ut-Ni D, Donadio C, Magri M, Nghiem OD, Oquendo B, et al. Coronavirus Disease 2019 Outcomes in French Nursing Homes That Implemented Staff Confinement With Residents. JAMA Netw Open 2020;3(8):e2017533.
[15] Collaborative The OpenSAFELY, Williamson Elizabeth, Walker Alex J, Bhuskaram Krishnan J, Bacon Seb, Bates Chris, et al. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. [Preprint]; 2020. Available from: https://www.medrxiv.org/content/10.1101/2020.05.06.20092999v1 [cited 20 August 2020].
[16] Louie JK, Scott HM, Dubois A, Sturtz N, Lu W, Stolley J, et al. Lessons from mass-testing for COVID-19 in long-term care facilities for the elderly in San Francisco. Clin Infect Dis 2020;caaa1020.
The association of treatment with hydroxychloroquine and hospital mortality in COVID-19 patients. Intern Emerg Med 2020;1–6. doi: 10.1007/s11739-020-02505-x.

Ayerbe L, Risco-Risco C, Ayis S. The association of treatment with hydroxychloroquine and hospital mortality in COVID-19 patients. Intern Emerg Med 2020;56(4):106129. doi: 10.1016/j.ijantimicag.2020.106129

Ministère Des Solidarités Et De La Santé Arrêté du 26 mai 2020 complétant l’arrêté du 23 mars 2020 prescrivant les mesures d’organisation et de fonctionnement du système de santé nécessaires pour faire face à l’épidémie de Covid-19 dans le cadre de l’état d’urgence sanitaire ; c2020; Octobre 2020. Available from: https://www.legifrance.gouv.fr/notice/jo/2020/W7qKxTskldzoh95Nxt2kvygp6cVAoGuH3ITEMSIM=/JOE_TEXTE [cited 25]

Ministère Des Solidarités Et De La Santé Décret n° 2020-314 du 25 mars 2020 complétant le décret n° 2020-291 du 23 mars 2020 prescrivant les mesures générales nécessaires pour faire face à l’épidémie de Covid-19 dans le cadre de l’état d’urgence sanitaire ; c2020; October 2020. Available from: https://www.legifrance.gouv.fr/notice/jo/2020/c2020/W7qKxTskldzoh95Nxt2kvygp6cVAoGuH3ITEMSIM=/JOE_TEXTE [cited 25]

COVID-19 RISK and Treatments(CORIST) Collaboration. Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: Findings from the observational multicentre Italian CORIST study. Eur J Intern Med 2020 50953-6205(20);30335-6. doi: 10.1016/j.ejim.2020.08.019.