Investigation into the Effect of Photodynamic Therapy and Cisplatin on the Cervical Cancer Cell Line (A2780)

Jaber Zafari1, Shahrzad Zadehmodarres1, Fatemeh Javani Jouni2, Zahra Bagheri-Hosseinabadi2, Nabaa Najjar1, Mohammad Asnaashari4*

1Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Department of Biomedical Engineering, Faculty of Health, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
3Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
4Department of Endodontic, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Introduction: Cervical cancer is recognized as one of the major causes of mortality among elderly women. Although there are several different therapeutic worldwide guidelines, many researchers have focused on screening new methodologies and technologies to elevate the efficiency of cervical cancer treatment. The simultaneous use of photodynamic therapy (PDT) along with chemotherapy as cisplatin has achieved good aims in the treatment of cervical cancer.

Methods: A2780 cells were treated with cisplatin, photodynamic progress (laser with methylene blue as a photosensitizer compound) and a combination of cisplatin and PDT. The lethal effect of the laser, methylene blue and their combination and the IC50 value of cisplatin were calculated for each group. The amount of malondialdehyde (MDA) as membrane lipid peroxidation product and released lactate dehydrogenase was measured in the medium. The toxicity of each agent was evaluated by the MTT technique.

Results: The results show that a combination of PDT and chemotherapeutic agent cisplatin caused a twofold decrease in viable cervical cancer cells compared to each therapeutic progress. The combination of both laser therapy and cisplatin enhanced cancer cell membrane disruption by increased membrane lipid peroxidation and apoptotic enzyme activation by the elevation of lactate dehydrogenase activity.

Conclusion: The results indicated that cisplatin combined with PDT had a greater therapeutic effect on A2780 as a cervical cancer cell line. Therefore, PDT in combination with chemotherapy enhances the effectiveness of chemotherapeutic agents by the disruption of the cancer cell membrane and switching the apoptosis progress with less adverse effects.

Keywords: Cancer; Chemotherapy; Photodynamic therapy; Cisplatin; Cervical cancer; Laser.
and RNA is also possible. The cellular mechanisms suggested for cisplatin resistance include decreased drug accumulation through increased efflux and decreased uptake, detoxification by glutathione, increased DNA repairability, and the inhibition of apoptosis. The side effects of cisplatin include dose-dependent nephrotoxicity, hepatotoxicity, cardotoxicity, anaphylactic reaction, and hemorrhage. More than 3000 years ago, Egyptians, Indians, and the Chinese used the chemical reaction of some substances to light. for the first time in 1900; Professor Hermann von Tappeiner from Germany witnessed the killing of living cells by a chemical reaction by a combination of light and a chemical substance. This was called Photodynamic Action. In the year 1970, a person named Dougherty used this phenomenon to treat cancer and called this new treatment photodynamic therapy (PDT). Lipson et al reported in the 1960s that the clinical use of PDT requires the presence of a specific photosensitizing substance. When the photosensitizer is activated by the appropriate wavelength of light, it interacts with molecular oxygen to form a short-lived toxic species called singlet oxygen. This molecular oxygen is thought to mediate cell death. On the other hand; treatment with chemicals can cause resistance as well as side effects. As known, other strategies, such as co-treatment, can achieve better response and thus less toxicity. This study attempted to evaluate the mechanism of the anticancer potential of PDT mediated by methylene blue as a photosensitizer alone or combined with a general cervical chemotherapeutic agent, cisplatin.

Materials and Methods

Cell Culture

In this study, a cervical cancer cell line (A2780) was used. The cells were cultured in an RPMI 1640 medium containing 10% fetal bovine serum at 37°C CO₂ 5%.

Laser Treatment

The cells were first seeded in a 96-well plate (cells were cultured at a distance of one well to prevent radiation interference) and then they were exposed to a gallium aluminum arsenide diode Laser (λ=630 nm, 5 mW; P1 Dental Laser, Pioon, China) at 4 J/cm² (in a dark room).

MTT Assay

To determine the toxicity of each agent alone, we calculate their toxicity by the MTT method alone. The basis of this method is based on the optical absorption of formazan sediments created by living cells. After the treatment of cells with different agents, the supernatant was removed and the culture medium containing 500 μg MTT salt was added. This water-soluble salt was converted to a formazan insoluble precipitate by mitochondrial dehydrogenase enzymes. After 4 hours, the MTT salt medium was removed from the cells and the DMSO compound was added to dissolve the formazan precipitate. Upon the dissolution of formazan sediments, a purple solution was formed which was absorbed in the 570 regions to measure its absorption and divided into the control group to be cell alive. Cell viability results were shown as percentages in comparison with the control group. To quantify the sensitivity of selected cell types, the half maximal inhibitory concentration (IC50) which is the cisplatin concentration required for a 50% inhibition of cell growth was also calculated by GraphPad Prism 5.

Methylene Blue Treatment

The methylene blue compound was used for sensitivity to light and cell viability was calculated relative to the compound at a concentration of 20 μM after 2 hours. They were treated with methylene blue for 2 hours and then the medium containing serum was poured onto the cells and after 22 hours the percentage of living cells was calculated.

To evaluate the combined therapeutic effects, the cells were treated with different concentrations of cisplatin in the first step, and then they were treated with methylene blue for 2 hours. The culture medium containing methylene blue was discarded and the medium containing serum and the same concentration of cisplatin was added and mortality was measured by MTT after 22 hours.

Measurement of Membrane Lipid Peroxidation

Malondialdehyde (MDA) concentrations were quantified using the lipid peroxidation assay kit (Kia-Zist, IRI). After each treatment, cell suspension was collected and centrifuged at 1230 rpm for 5 minutes to get the cell pellet, and the cell pellet was suspended in a cell lysis buffer. After centrifugation at 13 000 g for 10 minutes, a 200 µL aliquot was assayed for MDA levels according to the lipid peroxidation assay kit protocol. The absorbance of the sample was read at 532 nm with a 96-well plate reader. The concentrations of MDA were determined from the standard curve.

Measurement of Lactate Dehydrogenase Enzyme Leakage

Lactate dehydrogenase enzyme (LDH) enzyme leakage into the culture medium is a well-known indicator of cell membrane injury and cell cytotoxicity. It was measured using the LDH cytotoxicity assay kit (Pars-Azmoon, Iran). Briefly, 24 hours after the treatment, 100 μL of the medium from each well was carefully transferred to the new 96-well plate, and 100 μL of LDH reaction solution was prepared according to the manufacturer’s instructions, added to each well. The 96-well plate was shaken at 37°C for 30 minutes, and then absorbance was measured at 490 nm with a 96-well plate reader. LDH release was expressed as a percentage of the control group.
Statistical Analysis
The results were expressed as the mean ± standard deviation (SD) value of 3 independent experiments. Data analysis was performed by using one-way ANOVA with Tukey post hoc test using GraphPad Prism® version 5.01 software (GraphPad Software, USA). \(P < 0.05 \) was considered statistically significant.

Results
In this study, A2780 cervical cancer cells were treated with cisplatin, photodynamic (laser with a light-sensitive methylene blue compound), and cisplatin with photodynamic, and mortality was calculated in these cells.

Figure 1 shows the effect of different laser and methylene blue treatments and the laser-methylene blue combination on A2780 cells. The methylene blue and laser groups alone did not differ from the control group, whereas the combination of laser and methylene blue groups showed a decrease in the viability of A2780 cells.

The viability of A2780 cells treated with different concentrations of cisplatin is plotted in Figure 2. The concentration of 0.1 µg/mL cisplatin was not significantly different from the control group, but with increasing cisplatin concentration to 1.6 µg/mL, the percentage of cells decreased.

The results from IC50 for the combination of cisplatin alone and cisplatin with photodynamics are reported in Table 1. IC50 reported for cisplatin is approximately twice as high as IC50 for cisplatin, laser, and methylene blue.

Figure 3 shows the survival of A2780 cells in the cisplatin, laser and methylene blue, laser and methylene blue treatments in combination with cisplatin. At all concentrations of cisplatin examined in this study, the viability of A2780 cells treated with cisplatin decreased compared to the combination of methylene blue, laser and cisplatin concentrations. The cell viability of laser and methylene blue was lower than that of cisplatin at a concentration of 0.1 µg/mL and slightly higher at the concentration of 0.2 µg/mL.

The MDA content as the end-product of lipid peroxidation in different groups is shown in Figure 4. Low-level laser, cisplatin and methylene blue

Groups	Viability (%)
Control	100
MB	100
Laser	100
MB+Laser	100

Cisplatin (µg/ml)	Viability (%)
Control	100
0.1	100
0.2	100
0.4	100
0.8	100
1.6	100

Groups	MDA vs Control
Control	1
Cisplatin	2
Laser + MB	3
Laser + Cis + MB	4

Figure 1. Graph of the Effect of Different Laser and Methylene Blue Treatments and the Laser-Methylene Blue Combination on A2780 Cell. Different groups are compared with the control group (**P<0.001).

Figure 2. The Viability of A2780 Cells Treated With Different Concentrations of Cisplatin. Different groups are compared with the control group (**P<0.001).

Figure 3. Diagram of the viability of A2780 cells in cisplatin, low-level laser and methylene blue, laser and methylene blue treatments with cisplatin. The presence of a common letter in both columns indicates no significant difference between the two groups (P≤0.05).

Figure 4. the Membrane Lipid Peroxidation Rate in Different Treatment Groups (cisplatin protection is the same as IC50 obtained from the previous step). All groups are compared with the control group (**P<0.001).
Discussions

PDT is one of the novel therapeutic concepts in cancer therapy methods. New investigations have focused on the mechanisms of biological activity of PDT, especially in cancer therapy. Chemotherapy based on drugs with a metal ion core, such as Cisplatin, is generally administered by blood infusion.25 It diffuses through the cell wall into the cell and due to the decrease in intracellular chloride concentration, the cisplatin hydrolysis reaction occurs.26 Cisplatin is bound to phospholipid and phosphatidylinosine in the cell membrane. Besides, the binding of this compound is carried out in cellular cytoplasmic RNA and sulfur-containing molecules. The process of inducing apoptosis and cell necrosis is due to cisplatin binding to DNA and impaired proliferation, transcription and repair.27 Research on the mechanism of the action of laser light has been ongoing for about fifty years. Various ways have been suggested that lasers directly or indirectly generate hydrogen peroxide (H₂O₂) in the cell. Therefore, lasers affect biological activity by producing a small amount of H₂O₂.28 On the other hand, many studies have shown the amount of H₂O₂ in cancer cells has increased rather normal cells, which may play a role in DNA alterations,29 apoptosis resistance,30 cell proliferation,31 angiogenesis32 and metastasis.33 Furthermore, high levels of H₂O₂ can predispose the cell to death. Somehow, it can be stated that H₂O₂ has a dual role in cancer.34 PDT is a phototherapy method in which visible light and medication are used simultaneously. Activation of the light-sensitive drug by visible light results in the production of cytotoxic oxygen species and free radicals. These free radicals cause cell death directly via necrosis or apoptosis, vascular obstruction, and destruction of tumor tissue by inflammatory and immunologic factors. Generally, PDT operates through the production of reactive oxygen after the drug is delivered to the cancer patient and light irradiation.35

Among various chemotherapeutic agent treatments in patients with cervical cancer, cisplatin, according to Alberts et al, is the only toxic active agent against this cancer. However, they state that the short life span and the development of tumor resistance to cisplatin are the disadvantages of this drug combination.36 As the results of this study show, the viability of the A2780 cells as the in vitro model of cervical cancer decreased in elevating the concentrations of cisplatin. Buxton et al investigated the combination of bleomycin, ifosfamide, and cisplatin in patients with cervical cancer, and Cisplatin was active against this type of cancer. The side effects of this treatment were also reported.37 In 2006, Crescenzi et al conducted a study on the effect of cisplatin and gemcitabine in the presence of PDT on H1299 cells. The results showed the synergism effect of cisplatin and PDT.38 Rose et al compared radiotherapy and cisplatin in women with cervical cancer and reported favorable antitumor outcomes.39 Zhou et al examined the effect of timeless on cell proliferation and cisplatin sensitivity in cervical cancer and reported that timeless regulated cisplatin cell proliferation and susceptibility, and could serve as an attractive target for cis-sensitizer. Platinum was involved in cervical cancer.40 In a similar study, the destruction of cervical cancer cells was investigated using PDT in 2004. The result of this study showed that Photogem (photosensitizing agent whit hematoporphyrin derivative) is specifically dependent on the cancer tumor and that necrosis is due to plasma membrane damage. The researchers asserted that the main mechanism of the anti-tumor effect of PDT using Photogem was likely.41 In 2014, de Freitas et al conducted a study into the combined therapeutic effects of PDT and cisplatin on the HaCaT, SiHa, and C-33A cell lines. The results showed that the effect of PDT with cisplatin was greater than the treatment with each of the agents individually. The order of treatment with cisplatin and PDT was also important, and the cells that were first irradiated and then treated with the drug showed higher mortality.42 In 2004, Crescenzi et al conducted a study on MCF-7 cells and examined the combined therapeutic effects of cisplatin and PDT. In the study, a diode laser with a

Table 1. IC50 Obtained for the Combination of Cisplatin Alone and Cisplatin With Photodynamic Therapy

Treatment	IC50 (µg/mL)
Cisplatin	0.3553
Cisplatin + Laser	0.3043
Cisplatin + Laser + Methylene Blue	0.1680

Figure 5. The Lactate Dehydrogenase Release Rate in Different Treatment Groups (cisplatin protection is the same as IC50 obtained from the previous step). All groups are compared with the control group (**P<0.001).
wavelength of 805 nm was used and the results showed the effects of cisplatin synergism and PDT. Similarly, a study on the simultaneous effects of cisplatin and PDT on the in-vivo and in-vivo environment showed that a combination of both treatments was more effective than the two treatments individually. In this study, as can be seen, concurrent combination therapy was better than individual therapy for each of the agents. The IC50 level in the combination of cisplatin, laser and MB agents was about 2 times lower than that of cisplatin alone, which indicates the superiority of the use of cisplatin, laser and MB complex over cisplatin alone in observing the desired therapeutic effect. In more previous research studies, a phenomenon known as the Warburg effect suggested that the rate of metabolism of glucose-to-lactate conversion (aerobic glycolysis) occurs about 10-fold higher in tumor tissue than in healthy tissue. Lactate dehydrogenase is an enzyme in the glycolytic pathway that is expressed in many tumors, and its activity increases. The results of an enzyme in the glycolytic pathway that is expressed in superoxide, hydrogen peroxide, and hydroxyl radicals, cause cell membrane disruption.

The effect of cisplatin, laser, and MB synergism in the treatment of cervical cancer cells is thought to be due to the fact that PDT produces reactive oxygen species such as superoxide, hydrogen peroxide, and hydroxyl radicals. These compounds, in addition to damage to DNA, protein, and lipid, cause cell membrane disruption. The results of the present study suggest that cisplatin combined with PDT has more desirable effects than the treatment of each of the agents alone for cervical cancer therapy through enhancing the cancer cell membrane lipid peroxidation and the activation of apoptotic enzymes.

Ethical Considerations
This study was approved by the ethics committee of Shahid Beheshti University of Medical Sciences (IR. SBMU.REC.1398.140).

Conflict of Interests
The authors declare no conflict of interest.

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492.
2. Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284-96. doi: 10.3322/caac.21456.
3. Tatarov I, Panda A, Petkov D, Kolappaswamy K, Thompson K, Kavirayani A, et al. Effect of magnetic fields on tumor growth and viability. Comp Med. 2011;61(4):339-45.
4. Kearney N, Richardson A, editors. Nursing Patients With Cancer: Principles and Practice. Edinburgh: Elsevier/ Churchill Livingstone; 2006.
5. Coates A, Abraham S, Kaye SB, Sowerbutts T, Frewin C, Fox RM, Tattersall MH. On the receiving end—patient perception of the side-effects of cancer chemotherapy. Eur J Cancer Clin Oncol. 1983;19(2):203-8. doi: 10.1016/0277-5379(83)90418-2.
6. Cohen SM, Lippard SJ. Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol. 2001;67:93-130. doi: 10.1016/s0079-6603(01)67026-0.
7. Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364-78. doi: 10.1016/j.ejphar.2014.07.025.
8. Torigoe T, Isumi H, Ishiguchi H, Yoshida Y, Tanabe M, Yoshida T, et al. Cisplatin resistance and transcription factors. Carr Med Chem Anticancer Agents. 2005;5(1):15-27. doi: 10.2174/156801053352585.
9. Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin–DNA adducts. Chem Rev. 1999;99(9):2467-98. doi: 10.1021/cr980421n.
10. Mandic A, Hansson J, Linder S, Shoshan MC. Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J Biol Chem. 2003;278(11):9100-6. doi: 10.1074/jbc.M210284200.
11. Wang X, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem. 2000;275(50):39435-43. doi: 10.1074/jbc.M004583200.
12. Stordal B, Davey M. Understanding cisplatin resistance using cellular models. JUUMB Life. 2007;59(1):696-9. doi: 10.1080/15216540701636287.
13. Rabik CA, Dolan ME. Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev. 2007;33(1):9-23. doi: 10.1016/j.ctrv.2006.09.004.
14. Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutat Res. 2001;478(1-2):23-43. doi: 10.1016/S0027-5107(01)00141-5.
15. Yao X, Panichpasil K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334(2):115-24. doi: 10.1097/MAJ.0b013e31813812de1e.
16. dos Santos NA, Martins NM, Curti C, Pires Bianchi ML, dos Santos AC. Dimethylthiourea protects against mitochondrial oxidative damage induced by cisplatin in liver of rats. Chem Biol Interact. 2007;170(3):177-86. doi: 10.1016/j.cbi.2007.07.014.
17. Al-Majed AA, Sayed-Ahmed MM, Al-Yahya AA, Aleisa AM, Al-Rejaie SS, Al-Shabanah OA. Propionyl-L-carnitine prevents the progression of cisplatin-induced cardiomyopathy in a cardiitine-depleted rat model. Pharmacol Res. 2006;53(3):278-86. doi: 10.1016/j.phrs.2005.12.005.
18. Goldberg A, Altaras MM, Mekori YA, Beyth Y, Confino-Cohen R. Anaphylaxis to cisplatin: diagnosis and value of pretreatment in prevention of recurrent allergic reactions. Ann Allergy. 1994;73(3):271-2.
therapy in dermatology. *Eur J Dermatol.* 2006;16(4):340-8.
22. Lipson RL, Baldes EJ, Olsen AM. Hematoporphyrin derivative: a new aid for endoscopic detection of malignant disease. *J Thorac Cardiovasc Surg.* 1961;42(5):623-9. doi: 10.1016/S0022-5223(19)32560-7.
23. Hsi RA, Rosenthal DI, Glattstein E. Photodynamic therapy in the treatment of cancer: current state of the art. *Drugs.* 1999;57(5):275-34. doi: 10.2165/0000349-199957050-00005.
24. van Meerlo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. *Methods Mol Biol.* 2011;731:237-45. doi: 10.1007/978-1-61779-080-5_20.
25. Martin RB. Hydrolytic Equilibria and N7 versus N1 binding in purine nucleosides of cis-Diaminedichloroplatinum (II) palladium (II) as a guide to platinum (II) reactions at equilibrium. In: Lippard SJ, ed. *Platinum, Gold, and Other Metal Chemotherapeutic Agents.* Washington, D.C: American Chemical Society; 1983. p. 231-44.
26. Reeddijk J, Lohman PH. Cisplatin: synthesis, antitumour activity and mechanism of action. *Pharm Weekbl Sci.* 1985;7(5):173-80. doi: 10.1007/BF02307573.
27. Fuertes MA, Castilla J, Alonso C, Pérez JM. Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. *Curr Med Chem.* 2003;10(3):257-66. doi: 10.2174/0929867033368484.
28. Tata DB, Waynant RW. Laser therapy: a review of its mechanism of action and potential medical applications. *Laser Photon Rev.* 2011;5(1):1-12. doi: 10.1002/lpor.200900032.
29. Hunt CR, Sim JE, Sullivan SJ, Featherstone T, Golden W, Kapp-Herr CV, et al. Genomic instability and catalase gene activity and mechanism of action. *Cancer Res.* 1998;58(17):3986-92.
30. del Bello B, Paolichi A, Comporti M, Pompella A, Maellaro E. Hydrogen peroxide produced during γ-glutamyl transeptapeptide activity is involved in prevention of apoptosis and maintenance of proliferation in U937 cells. *FASEB J.* 1999;13(1):69-79. doi: 10.1096/fasebj.13.1.69.
31. Burdon RH. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. *Free Radic Biol Med.* 1995;18(4):773-94. doi: 10.1016/0891-5849(94)00198-s.
32. Qian Y, Luo J, Leonard SS, Harris GK, Millecchia L, Flynn DC, et al. Hydrogen peroxide formation and actin filament reorganization by Cdc42 are essential for ethanol-induced in vitro angiogenesis. *J Biol Chem.* 2003;278(18):16189-97. doi: 10.1074/jbc.M207517200.
33. Polytarchou C, Hatziapostolou M, Papadimitriou E. Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affinity regulatory peptide gene. *J Biol Chem.* 2005;280(49):40428-35. doi: 10.1074/jbc.M505120200.
34. López-Lázaro M. Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. *Cancer Lett.* 2007;252(1):1-8. doi: 10.1016/j.canlet.2006.10.029.
35. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, et al. Photodynamic therapy. *J Natl Cancer Inst.* 1998;90(12):889-905. doi: 10.1093/jnci/90.12.889.
36. Alberts DS, Garcia D, Mason-Liddell N. Cisplatin in advanced cancer of the cervix: an update. *Semin Oncol.* 1991;18(1 Suppl 3):11-24.
37. Buxton EJ, Meanwell CA, Hilton C, Mould JJ, Spooner D, Chetiyawardana A, et al. Combination bleomycin, ifosfamide, and cisplatin chemotherapy in cervical cancer. *J Natl Cancer Inst.* 1989;81(5):359-61. doi: 10.1093/jnci/81.5.359.
38. Crescenzi E, Chiaviello A, Canti G, Reddi E, Veneziani BM, Palumbo G. Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non-small cell lung cancer cells (H1299). *Mol Cancer Ther.* 2006;5(3):776-85. doi: 10.1158/1535-7163.MCT-05-0425.
39. Rose PG, Bundy BN, Watkins EB, Thiggen JT, Deppe G, Mainman MA, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. *N Engl J Med.* 1999;340(15):1144-53. doi: 10.1056/NEJM199904153401502.
40. Zhou J, Zhang Y, Zou X, Kuai L, Wang L, Wang J, et al. Abrantly expressed Timeless regulates cell proliferation and cisplatin efficacy in cervical cancer. *Hum Gene Ther.* 2020;31(5-6):385-95. doi: 10.1089/hum.2019.080.
41. Ahn WS, Bae SM, Huh SW, Lee JM, Namkoong SE, Han SJ, et al. Necrosis-like death with plasma membrane damage against cervical cancer cells by photodynamic therapy. *Int J Gynecol Cancer.* 2004;14(3):475-82. doi: 10.1111/j.1048-891X.2004.14308.x.
42. de Freitas LM, Soares CP, Fontana CR. Synergistic effect of photodynamic therapy and cisplatin: A novel approach for cervical cancer. *J Photochem Photobiol B.* 2014;140:365-73. doi: 10.1016/j.jphotobiol.2014.08.021.
43. Crescenzi E, Varriale L, Iovino M, Chiaviello A, Veneziani BM, Palumbo G. Photodynamic therapy with indocyanine green complements and enhances low-dose cisplatin cytotoxicity in MCF-7 breast cancer cells. *Mol Cancer Ther.* 2004;3(5):537-44.
44. Ge R, Ahn JC, Shin JI, Bahk CW, He P, Chung PS. An in vitro and in vivo study of combination therapy with Photogem®-mediated photodynamic therapy and cisplatin on mouse cancer cells (CT-26). *Photomed Laser Surg.* 2011;29(3):155-60. doi: 10.1089/pho.2009.2750.
45. Koppenol WH, Bounds PL, Dang CV. Otto Warburg's contributions to current concepts of cancer metabolism. *Nat Rev Cancer.* 2011;11(5):325-37. doi: 10.1038/nrc3038.
46. Warburg O. On the origin of cancer cells. *Science.* 1956;123(3191):309-14. doi: 10.1126/science.123.3191.309.
47. Girgis H, Masui O, White NM, Scorilas A, Rotondo F, Seiwright A, et al. Lactate dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma. *Mol Cancer.* 2014;13(1):101. doi: 10.1186/1476-4598-13-101.
48. Wang J, Wang H, Liu A, Fang C, Hao J, Wang Z. Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer. *Oncotarget.* 2015;6(23):19456-68. doi: 10.18632/oncotarget.3318.
49. Koukourakis MI, Giatromanolaki A, Stivridis E, Bougioukas G, Didilis V, Gatter KC, et al. Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. *Br J Cancer.*
50. Okabe K, Hayakawa T, Hamada M, Koike M. Purification and comparative properties of human lactate dehydrogenase isozymes from uterus, uterine myoma, and cervical cancer. *Biochemistry*. 1968;7(1):79-90. doi: 10.1021/bi00841a011.

51. Halliwell B, Gutteridge MC. *Free Radicals in Biology And Medicine*. 5th ed. Oxford: Clarendon Press; 2015.

52. Davies KJ. Protein damage and degradation by oxygen radicals. I. general aspects. *J Biol Chem*. 1987;262(20):9895-901.

53. Schumacker PT. Reactive oxygen species in cancer: a dance with the devil. *Cancer Cell*. 2015;27(2):156-7. doi: 10.1016/j.ccell.2015.01.007.