Fork-Resilient Cross-Blockchain Transactions through Algebraic Topology

Dongfang Zhao
University of Nevada, United States
dzhao@unr.edu

Abstract
The cross-blockchain transaction (CBT) serves as a cornerstone for the next-generation, blockchain-based data management systems. However, state-of-the-art CBT models do not address the effect of the possible local fork suspension that might invalidate the entire CBT. This paper takes an algebraic-topological approach to abstract the blockchains and their transactions into simplicial complexes and shows that CBTs cannot complete in either a committed or an aborted status by a t-resilient message-passing protocol. This result implies that a more sophisticated model is in need to support CBTs and, thus, sheds light on the future blockchain designs.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Blockchains, distributed transactions, algebraic topology, solvability

Funding Dongfang Zhao: U.S. Department of Energy, contract No. DE-SC0020455

1 Introduction
The cross-blockchain transaction (CBT) serve as a cornerstone for the next-generation, blockchain-based data management systems: the inter-blockchain operations would enable the interoperability among distinct, potentially heterogeneous, blockchains. The state-of-the-art blockchain implementation can only support two-party transactions between two distinct blockchains through the sidechain protocol [4], incurring considerable latency in terms of hours and yet acceptable for the targeting cryptocurrency applications [1]. One recent work by Herlihy [2] notably studied how to support general cross-blockchain operations among an arbitrary number of distinct blockchains through serialized hash locks implemented in smart contracts, assuming a relaxed semantics on the atomicity of operations. Later, Zakhary et al. [5] proposed a 2PC-based protocol to support both parallelism and atomicity. One denominator of these recent works is that they did not consider the possible forks commonly seen in blockchain implementations: a cross-blockchain transaction can still be invalidated if part of its “local” changes on some blockchains is committed but then suspended due to the fork competition within a blockchain. To this end, Zhao [7] proposed a point-set-topological approach to map the fork-induced topological space to the transaction’s topological space—providing a powerful tool to study a fork-resilient CBT through topological equivalence, i.e., homeomorphism.

This paper takes into account the possible local fork suspension and analyzes the completeness of CBTs: whether a CBT can proceed to a completed or aborted final status. Our assumption of the underlying computation model is as follows: a message-passing communication model, an asynchronous timing model, and a crash-failure adversary model with t-resilience, $2t < (n + 1)$ where $n \in \mathbb{Z}_+$ and $(n + 1)$ is the total number of nodes. We take an algebraic-topological approach to abstract the blockchains and their transactions into simplicial complexes, and show that CBTs cannot complete in either a committed or an aborted status by a t-resilient message-passing protocol. This result, thus, implies that a more sophisticated model is in need to support CBTs in the face of local fork suspension.
2 Fork-Resilient Cross-Blockchain Transactions through Algebraic Topology

We denote the set of distinct blockchains \(C \), whose cardinality is at least two: \(|C| \geq 2 \). Each blockchain is an element \(C_i \in C \), where \(0 \leq i \leq n = |C| - 1 \). Each blockchain is a list of blocks, each of which is identified by its index \(j \): \(C_i = (v_i^0, \ldots, v_i^l) \). Of note, \(v_i^0 \) is also called the genesis block of \(C_i \) in the literature of blockchains. An \((n + 1)\)-party transaction carried out on \(C \) touches one and only one block at each blockchain. Specifically, an \((n + 1)\)-party global transaction \(T \) can be represented as a set of \(n + 1 \) local transactions \(t_i \), an element in block \(v_i^l \). The granularity of blockchain growth (and suspension when forks occur) is a block, and if we assume our interest is in a single global transaction, we can represent the transaction with the set of involved blocks: \(T = \bigcup_{0 \leq i \leq n} v_i^l \).

We use \(\dim \) and \(\skel^k \) as the function operators of a simplex’s dimension and \(k \)-skeleton, respectively. We use \(|\sigma|\) to denote the geometric realization, i.e. the polygon, of (abstract) simplex \(\sigma \). The \(N \)-time Barycentric and Chromatic subdivisions are denoted \(\text{Bary}^N \) and \(\text{Ch}^N \), respectively. A complete list of notations and definitions in combinatorial topology can be found in [3]. We assume an asynchronous, message-passing communication model among blockchains. We only consider crash failures in this preliminary study and assume the number of faulty nodes \(t \) is less than 50%: \(t < \frac{n+1}{2} \) in blockchains.

2.1 Models

We denote the set of distinct blockchains \(C \), whose cardinality is at least two: \(|C| \geq 2 \). Each blockchain is an element \(C_i \in C \), where \(0 \leq i \leq n = |C| - 1 \). Each blockchain is a list of blocks, each of which is identified by its index \(j \): \(C_i = (v_i^0, \ldots, v_i^l) \). Of note, \(v_i^0 \) is also called the genesis block of \(C_i \) in the literature of blockchains. An \((n + 1)\)-party transaction carried out on \(C \) touches one and only one block at each blockchain. Specifically, an \((n + 1)\)-party global transaction \(T \) can be represented as a set of \(n + 1 \) local transactions \(t_i \), an element in block \(v_i^l \). The granularity of blockchain growth (and suspension when forks occur) is a block, and if we assume our interest is in a single global transaction, we can represent the transaction with the set of involved blocks: \(T = \bigcup_{0 \leq i \leq n} v_i^l \).

We use \(\dim \) and \(\skel^k \) as the function operators of a simplex’s dimension and \(k \)-skeleton, respectively. We use \(|\sigma|\) to denote the geometric realization, i.e. the polygon, of (abstract) simplex \(\sigma \). The \(N \)-time Barycentric and Chromatic subdivisions are denoted \(\text{Bary}^N \) and \(\text{Ch}^N \), respectively. A complete list of notations and definitions in combinatorial topology can be found in [3]. We assume an asynchronous, message-passing communication model among blockchains. We only consider crash failures in this preliminary study and assume the number of faulty nodes \(t \) is less than 50%: \(t < \frac{n+1}{2} \) in blockchains.

2.2 Task

A task of CBT is represented by a triple \((I, O, \Delta)\), where \(I \) is the input simplical complex, \(O \) is the output simplical complex, and \(\Delta \) is the carrier map \(\Delta : I \rightarrow 2^O \).

Each vertex, i.e., 0-simplex, in \(I \) is a tuple in the form of \((v_i^0, \text{val}_i)\), where \(v_i^0 \) is defined in §2.1 is block-\(i \) at blockchain-\(j \) and \(\text{val}_i \in \{0, 1, \bot\} \). The meaning in the input set is as follows, 0: local transaction not committed, 1: local transaction committed, and \(\bot \): the branch where this block resides is suspended. There is an edge, i.e., 1-simplex, between every pair of vertices in \(I \) except that both vertices are the same block. In general, an \(l \)-simplex in \(I \) comprises a set of distinct \(l + 1 \) blocks as vertices and the higher-dimensional \(k \)-skeletions, \(1 \leq k \leq l \). Overall, for a \((n + 1)\)-blockchain transaction, the input complex \(I \) comprises \(3(n + 1) \) vertices and simplices of dimension up to \(n \), i.e., \(\dim(I) = n \).

Each vertex in \(O \) is a tuple \((v_i^l, \text{val}_{\text{out}})\), where \(v_i^l \) is, again, a specific block and \(\text{val}_{\text{out}} \in \{1, 0\} \) with the same semantics defined for \(\text{val}_i \). Indeed, all of local transactions in \(T \) should only end up with either committed \(1 \) or aborted \(0 \), respecting the atomicity requirement. The 1-simplices of \(O \) are all the edges connecting vertices whose \(\text{val}_{\text{out}} \)’s are equal, either 0 or 1, among all blocks. Therefore, by definition, the output simplicial complex is disconnected and has two path-connected components: the global transaction is either (i) successfully committed, or (ii) aborted without partial changes.

We now construct the carrier map \(\Delta \), which maps each simplex from \(I \) to a subcomplex of \(O \). Without loss of generality, pick any \(l \)-simplex \(\sigma \in I \), \(0 \leq l \leq n \), and \(\Delta \) specifies:

- If all the \(\text{val}_i \)’s in \(\sigma \) are 1, then \(\skel^0 \Delta(\sigma) = \{(v, 1) : v \in \skel^0 \sigma\} \).
- If any of the \(\text{val}_i \)’s in \(\sigma \) is \(\bot \), \(\skel^0 \Delta(\sigma) = \{(v, 0) : v \in \skel^0 \sigma\} \).
- For other cases, \(\skel^0 \Delta(\sigma) = \{(v, 0), (v, 1) : v \in \skel^0 \sigma\} \).
- Any \(k \)-face \(\tau \in \sigma \), \(0 \leq k \leq l \), is similarly mapped.

Note that, by definition, \(\Delta \) is rigid: In any of the above three cases, for any \(l \)-simplex \(\sigma \in I \), \(\dim(\Delta(\sigma)) = l \). Evidently, \(\Delta \) is monotonic: adding new simplices into \(\sigma \) can only
enlarge the mapped subcomplex in \mathcal{O}. Furthermore, Δ is name-preserving as constructed. Therefore, Δ is a well-defined carrier map from \mathcal{I} to $2^\mathcal{O}$.

2.3 Solvability

- **Definition 1 (Colorless CBT).** A colorless version of CBT, $(\mathcal{I}, \mathcal{O}', \Xi)$, is defined similarly as the general, “colored” CBT, $(\mathcal{I}, \mathcal{O}, \Delta)$, without the block identities on vertices in \mathcal{O}'. Also, no identity match is required for the carrier map $\Xi : \mathcal{I} \rightarrow 2^{\mathcal{O}'}$.

- **Lemma 2.** For colorless CBT $(\mathcal{I}, \mathcal{O}', \Xi)$, there does not exist a continuous map $f : |\text{skel}^t\mathcal{I}| \rightarrow |\mathcal{O}'|$ carried by Ξ, where $0 < t < \frac{n+1}{2}$.

 Proof Sketch. The condition $t < \frac{n+1}{2}$ is trivially satisfied by the assumption of crash failures, as the blockchains would have been hard forked otherwise. Since we assume at least one fork suspension would occur, we have $t > 0$. The input simplicial complex \mathcal{I} is pure of dimension n by construction, meaning that $|\text{skel}^t\mathcal{I}|$ is $(t-1)$-connected. Because $t > 0$, $|\text{skel}^t\mathcal{I}|$ is at least 0-connected (i.e., path-connected). As a result, the geometric realization $|\text{skel}^t\mathcal{I}|$ must be connected. However, we know that \mathcal{O}' has two disjoint connected components; so $|\mathcal{O}'|$ is not connected. Therefore, a continuous map carried by Ξ does not exist.

- **Lemma 3.** Colorless CBT $(\mathcal{I}, \mathcal{O}', \Xi)$ does not have a t-resilient message-passing protocol.

 Proof Sketch. For contradiction, suppose a protocol solves task $(\mathcal{I}, \mathcal{O}', \Xi)$. Then we know that, after N times of Barycentric subdivisions, the carrier map can be written in this form $\Xi(\sigma) = Bary^N \text{skel}^1 \sigma$, for $\sigma \in \mathcal{I}$. That is, there exists a carrier map $\Phi : Bary^N \text{skel}^1 \mathcal{I} \rightarrow 2^{\mathcal{O}'}$. Taking the geometric realizations, we thus have a continuous map $f = |\Phi| : |Bary^N \text{skel}^1 \mathcal{I}| \rightarrow |\mathcal{O}'|$. Note that a subdivision does not change the geometric realization: $|Bary^N \text{skel}^1 \mathcal{I}| = |\text{skel}^1 \mathcal{I}|$. Thus, we have $f : |\text{skel}^1 \mathcal{I}| \rightarrow |\mathcal{O}'|$, a contradiction to Lemma 2.

- **Lemma 4.** A model for colorless CBT $(\mathcal{I}, \mathcal{O}', \Xi)$ reduces to one for general CBT $(\mathcal{I}, \mathcal{O}, \Delta)$.

 Proof Sketch. Suppose a protocol P solves $(\mathcal{I}, \mathcal{O}, \Delta)$, we simulate P with a protocol P' for $(\mathcal{I}, \mathcal{O}', \Xi)$ as follows. For any l-simplex in \mathcal{O}, we drop the prefix of the l vertices with map $\varphi : \mathcal{Z} \times V \rightarrow V$ such that $(k, val_{out}) \mapsto (val_{out}) \in \mathcal{O}'$, $0 \leq k \leq l$. The carrier map in the colorless counterpart is $\Xi = \Delta \circ \varphi$, such that for $\sigma \in \mathcal{I}$, $\Xi(\sigma) = \Delta(\varphi(\sigma)) \subseteq \Delta(\sigma)$, i.e., Ξ is carried by Δ.

- **Proposition 5.** For $t < \frac{n+1}{2}$, $(\mathcal{I}, \mathcal{O}, \Delta)$ does not have a t-resilient message-passing protocol.

 Proof. The claim follows directly from Lemma 3 and Lemma 2.
Dongfang Zhao. Topological properties of multi-party blockchain transactions. *CoRR*, abs/2004.01045, 2020. URL: https://arxiv.org/abs/2004.01045