Differences in rate and medical indication of caesarean section between Germany and Japan

Matthias Fröhlich, Chie Koga, Christoph Bührer, Chisato Mori, Midori Yamamoto, Kenichi Sakurai, Larry Hinkson and Japan Environment, Children’s Study Group

Department of Neonatology, Department of Obstetrics, Charité - Universitätsmedizin Berlin, Berlin, Germany, Center for Preventive Medical Sciences, and Department of Sustainable Health Science, Center of Preventive Medical Sciences, Chiba University, Chiba, Japan

Abstract
Background: There are growing concerns about the increasing rate of caesarean section (CS) worldwide. Various strategies have been implemented to reduce the proportion of CS to a reasonable level. Most research on medical indications for CS focuses on nationwide evaluations. Comparative research between different countries is sparse. The aim of this study was to evaluate differences in the rate and indications for CS between Japan and Germany in 2012 and 2013.

Methods: Comparison of the overall rate and medical indications for CS in two cohort studies from Germany and Japan. We used data from the German Perinatal Survey and the Japan Environment and Children’s Study (JECS).

Results: We analyzed data of 1 335 150 participants from the German perinatal survey and of 62 533 participants from JECS and found significant differences between the two countries in CS rate (30.6% vs 20.6%) and main medical indications: cephalopelvic disproportion (3.2% vs 1.3%; OR: 2.4 [95% CI: 2.2–2.6]), fetal distress (7.3% vs 2.3%; OR: 3.4 [95%-CI: 3.2–3.6]), and past uterine surgery/repeat CS (8.4% vs 8.8%; OR: 0.9 [95%-CI: 0.9–1]).

Conclusion: There are differences in the rate and medical indications for CS between Germany and Japan at the population level. Fetal distress was identified as a medical indication for CS more often Germany than in Japan. Considering the substantial diagnostic uncertainty of electronic fetal monitoring (EFM) as the major indicator for fetal distress, it would seem to be reasonable to rethink CS decision algorithms.

Key words
birth mode, caesarean section, epidemiology, indication, neonates.

Over the past three decades, increasing rates of caesarean section (CS) have continued to be an issue of great concern among health care professionals and public health experts. A CS rate <10% is suggestive of poor access to medically indicated CS in low-resource settings, but rates >20% have failed to show improved perinatal and neonatal outcomes. There are large differences in CS rates between countries belonging to the Organization for Economic Co-operation and Development (OECD), ranging from 10–40%. The rise of CS rates is particularly alarming in emerging economies such as Brazil, Egypt, and China.

Since 1984, as the World Health Organization (WHO) recommended a CS rate of 10–15% as adequate for the contemporary population level, there has been ongoing debate around the appropriate rate, while the use of CS has increased to unprecedented levels. In a recent statement, WHO corroborates that CS, as a major abdominal surgery, is effective in terms of reducing maternal and perinatal morbidity and mortality, but only when medically indicated. Considering the adverse effects of CS for the mother and newborn in a subsequent pregnancy, such as higher potential for repeat CS, abnormal placentation, stillbirth, preterm birth, and high blood loss, the benefit–risk balance remains poor for CS without medical indications. However, the reasons of the global increase in CS are multifactorial and include medical as well as non-medical aspects such as personal, cultural, institutional, legal, and financial factors. A change in the risk profiles of women giving birth, especially an increase in the age of primiparous, only partly explains this rise. Factors related to medical staff, such as the lack of medical personnel who can confidently and competently attend a vaginal delivery, or the convenience of scheduling a CS compared with unplanned vaginal deliveries of varying duration, may make CS more
favorable to obstetricians. Furthermore, financial incentives for both doctors and hospitals lead to an institutional preference for CS over vaginal delivery.17 Besides this, there is an increasing number of women requesting CS because of anxiety about labor pain, pelvic floor damage, urinary incontinence, and reduced quality of sexual satisfaction.18–21

Most research on indications for CS focuses on nationwide evaluations.22–25 Comparative research on indications for CS between different countries is sparse. Therefore, the aim of this study was to identify the differences in the overall rate and medical indications for CS between Germany and Japan at the population level for 2012 and 2013. While Japan and Germany have comparable levels of economic development and comparable health systems, there is a surprising difference in CS rates. This provides a unique opportunity to study the impact of conditions associated with CS.

Methods

This was a retrospective study using data sets of two cohorts from Germany and Japan. As part of the nationwide mandatory instrument of quality assurance, since 2001 every childbirth is included in the German perinatal survey for benchmark comparison. Before that time, perinatal outcomes were first analyzed on a voluntary and regional federal states basis in the Munich perinatal survey in 1975.26 For our study period (2012–2013) the Institute for Applied Quality Promotion and Research in Healthcare an independent institute commissioned by the German government, organized this evaluation. All hospitals involved in the care of patients with statutory health insurance in Germany are obliged to participate in external quality assurance within the framework of the perinatal survey. Data from 764 hospitals in 2012 and 744 hospitals in 2013 were included in the survey. All levels of care and all geographical areas are included. The data are transferred to a central institute by the hospitals via a standardized data collection form that contains several biological and socio-economic items, usually extracted from final medical reports of the mother and child by documentation specialists.27 The transmitted data are statistically checked for completeness, plausibility, and integrity and for correctness on the basis of random samples, according to a directive on quality assurance measures in hospitals.28 In 2015, the Ministry of Health launched the Institute for Quality Assurance and Transparency in Healthcare, which currently performs all German cross-sectoral quality assurances in healthcare.29

The Japan Environment and Children’s Study (JECS) is a nationwide, epidemiological cohort study involving 100 000 mother–child pairs living throughout Japan from births between 2011 and 2014. JECS aims to identify environmental factors influencing children’s health and development. Standard operating procedures for medical record transcription and self-administered questionnaires were designed by the Program Office of JECS (National Institute for Environmental Studies) in cooperation with the Medical Support Center (the National Center for Child Health and Development). According to the procedures of the study, physicians, midwives, nurses, or research coordinators transcribed relevant information from medical records.30,31 A total of 417 obstetric facilities in 15 geographical study regions across Japan cooperated with JECS. The Program Office verified the plausibility and integrity of the data transmitted from the regional centers and validated the data set. We used the “jecs-ag-20160424” and the “allbirth_revice001_ver001” data sets, which were released in June 2016 and October 2016 respectively, containing the baseline characteristics of the cohort.

Every childbirth between January 2012 and December 2013 was used from both data sets. We extracted the number of all live births per year and the cases of CS, as well as the indications for the CS. Choosing multiple answers concerning the indication for CS was possible within both data sets. We assumed that the indication that contributed most to the decision was coded, being aware of the remaining uncertainty. Since mode of delivery for stillbirths and miscarriages was not reported in the German perinatal survey, they could not be considered within the secondary analysis.

For comparison of specific indication rates, we matched indications into comparable groupings. There were 34 possible indications in the German Perinatal Survey and 13 possible indications in JECS. A list of all items and how we matched them can be found in Table 3. After matching we identified 12 main indications for CS: cephalopelvic disproportion, fetal distress, past uterine surgery/ repeat CS, abnormal position, prolonged labor, premature rupture of membranes, pregnancy-induced hypertention, multiple gestation pregnancy, intrauterine infection, placenta praevia, post-term pregnancy, and other indications. To illustrate the difference between proportions of CS based on the respective indication among all women receiving CS and among all deliveries (natural delivery + CS), respectively, we calculated the odds ratios (OR) with 95% confidence intervals (95% CI) with country as independent variable (Germany vs Japan).

In both countries, fetal distress is defined in accordance with the International Federation of Gynecology and Obstetrics (FIGO) guidelines as evidence of fetal hypoxia by means of non-reassuring fetal heart rates or fetal blood sampling in.32 The statistical package SPSS, version 25.0, (IBM, New York) was used estimating ORs with 95% CIs. Descriptive statistics were used for comparison of proportions between the two data sets. The chi-square test was used for testing relationships between CS indications in Germany and Japan; significant difference was considered at $P < 0.05$.

Results

In the JECS, 63 806 infants were born by 63 181 mothers in 2012 and 2013, while within the German Perinatal survey for the same period, 1 335 150 infants were born to 1 310 431 women. The percentage of mothers aged 35–39 years were similar between the two cohorts, while there was a higher percentage of very young (<18 years) or very old (>40 years) mothers in Germany, as compared to Japan (Table 1).
German cohort also had a higher percentage of primiparae and multiple gestation pregnancies. There were also differences in the distribution of gestational age and birthweight, while the sex ratio did not differ significantly. Rates of CS were 20.2% in the Japanese cohort and 32.9% in the German cohort.

For assessing the differences in medical indications for CS between Germany and Japan, we established two approaches. First, we compared the respective indications for CS for all deliveries in general, following the assumption that reasons for CS do not differ between countries. Second, we compared the rates of individual indications for CS to all deliveries performed by CS. For the first approach, the three main indications for CS in both countries were past uterine surgery/repeat CS (8.4% vs 8.8%; OR: 0.9 [95% CI: 0.9–1]), fetal distress (7.3% vs 2.3%; OR: 3.4 [95% CI: 3.2–3.6]), and abnormal position (6% vs 2.6%; OR: 2.4 [95% CI: 2.3–2.5]). Compared

Table 1 General characteristics of mothers and infants

Year	Germany	Japan
2012	651 696 (100)	658 735 (100)
N (%)	3 101 431 (100)	35 221 (100)
2013	63 181 (100)	

Mothers
Age of mother
<18
18–29
30–34
35–39
≥40
Missing

| Parity |
Primipara	324 070 (49.7)	327 701 (49.7)	651 771 (49.7)
Multipara	327 626 (50.3)	331 034 (50.3)	658 660 (50.3)
Missing	871 (3.1)	786 (2.2)	1,657 (2.6)

| Singleton pregnancy |
| Multiple gestation pregnancy |
| Missing |

| Infants |
| Spontaneous |
| Caesarean Section |
| Operative vaginal |
| Other |
| Missing |

| Labor induction |
| Male |
| Female |
| Missing |

| Gestational age |
| <28 |
| 28–31 |
| 32–36 |
| 37–41 |
| ≥41 |
| Missing |

| Birthweight |
| <1,000 |
| 1,000–1,499 |
| 1,500–1,999 |
| 2,000–2,499 |
| 2,500–2,999 |
| 3,000–3,999 |
| 4,000–4,499 |
| ≥4,500 |
| Missing |

© 2020 The Authors. Pediatrics International published by John Wiley & Sons Australia, Ltd on behalf of Japan Pediatric Society
to Japan, the proportion of CS indicated by fetal distress or abnormal position was significantly higher in Germany. The distribution of indications over the 2 years by country was constant, only abnormal position was more frequently stated in 2012 among Japanese women, as compared to 2013 (3.4% vs 1.9%). Apart from past uterine surgery/repeat CS and intrauterine infection, all other indications for CS were more frequent in Germany than in Japan. Of note, not all effects were constant depending on the analytical approach. Compared to all deliveries (vaginal and CS), CS due to pregnancy-induced hypertension and placenta previa was performed significantly more often in Germany than in Japan. This effect was, however, no longer significant when compared to all deliveries by CS. In Germany, CS due to premature rupture of the membranes was performed significantly more frequently when compared to all deliveries in general (vaginal and CS), but became insignificant when compared to the other indications for CS (Table 2).

Since the German list of possible indications was more detailed than the Japanese one, we had to consider a large number of indications from the German population that could not be matched, such as others (5.6%), maternal disease (1.5%), placental insufficiency (1%), diabetes (0.5%), umbilical cord complications (0.6%), lack of cooperation (0.5%), uterine rupture (0.3%), uterine hemorrhages (0.3%), miscarriage (0.2%), umbilical cord prolapse (0.1%), intrauterine fetal death (0.04%), and rh-incompatibility (0.02%) (Table 3).

Discussion

In this study, we identified the differences in rates and medical indications of CS between Germany and Japan on a population level. The overall rate of CS in all childbirths differed significantly between both countries, with a substantially higher rate of CS in Germany than in Japan. Most of the indications were equally distributed between both countries; however, we found a major difference in CS performed because of fetal distress. In Germany, 7.3% of childbirths occurred through CS because of fetal distress, whereas in Japan this proportion was only 2.3%.

Since the data sets used for this study were not initially created for comparative analyses, relevant methodological limitations must be considered, and conclusions should be made with caution. Choosing multiple answers concerning the indication for CS was possible within both data sets; therefore, we cannot determine a single main reason for deciding to use CS. Furthermore, we had to combine indications that were used either in the one or the other data set exclusively within the item “other”. This method resulted in an unneglectable group of CS but which is not categorized in detail. The data from the German perinatal survey are based on aggregated data so we were not able to calculate point estimates and could only compare proportions.

There are several established risk factors for CS such as high-resource settings, high level of education of mother, higher age of mother, previous CS, and multiple gestation pregnancy.\(^3\)\(^3\) Considering the reported information in the two analyzed data sets, it is difficult to blame these factors for the difference in total CS rate. Mothers in Germany were younger and had lower rates of past uterine surgery or repeat CS, as compared to Japanese mothers. Only cephalopelvic disproportion, abnormal position, and multiple gestation pregnancy were more frequent among the German, as compared to the Japanese population. Considering that not only the total CS rate but also the proportion of CS performed because of fetal distress is higher in Germany, it seems more likely that this is an expression of major differences in clinical judgement, even though both countries use the same FIGO definition. One important indicator for fetal distress is non-reassuring patterns seen in electronic fetal heart monitoring (EFM). EFM was designed to provide an early warning that permits caregivers to recognize the onset of fetal hypoxia to prevent neurological impairment; however, its diagnostic accuracy for detecting asphyxia is weak.\(^3\)\(^4\)

Table 2 Medical indications for caesarean section by country with odds ratio (OR) and 95% confidence intervals (95% CI) for Germany versus Japan (reference)

Indication	Germany	Japan	All deliveries	All CS		
	N (of all deliveries, of all CS)	N (of all deliveries, of all CS)	OR\(^2\) (95 CI)	p-value	OR\(^2\) (95 CI)	P-value
Cephalopelvic Disproportion	42 287 (3.2–10.4)	838 (1.3–6.5)	2.4 (2.2–2.6)	<0.001	1.5 (1.4–1.6)	<0.001
Fetal Distress	96 811 (7.3, 23.7)	1,413 (2.3–10.9)	3.4 (3.2–3.6)	<0.001	2.3 (2.2–2.4)	<0.001
Past uterine surgery/Repeat CS	112 180 (8.4–27.5)	5,525 (8.8–42.8)	0.9 (0.9–1)	<0.001	0.5 (0.4–0.5)	<0.001
Abnormal Position	79 944 (6–196)	1,602 (2.6–12.4)	2.4 (2.3–2.5)	<0.001	1.6 (1.5–1.7)	<0.001
Prolonged Labor	75 226 (5.6, 18.4)	1,051 (1.7–8.1)	3.5 (3.3–3.7)	<0.001	2.3 (2.2–2.5)	<0.001
Premature rupture of membranes	27 280 (2, 6.7)	968 (1.5–7.5)	1.3 (1.2–1.4)	<0.001	0.8 (0.8–0.9)	<0.001
Pregnancy-induced hypertension	18 837 (1.4–4.6)	573 (0.9–4.4)	1.5 (1.4–1.7)	<0.001	1 (0.9–1.1)	n. s.
Multiple conception	29 207 (2.7–7.2)	255 (0.4–2)	5.5 (4.8–6.2)	<0.001	3.5 (3.1–4)	<0.001
Intrauterine infection	11 069 (0.8–2.7)	863 (1.4–6.7)	0.6 (0.6–0.6)	<0.001	0.4 (0.3–0.4)	<0.001
Placenta praevia	4,632 (0.3–1.1)	132 (0.2–1)	1.6 (1.4–2)	<0.001	1 (0.9–1.2)	n. s.
Postdate	13 483 (1–3.3)	352 (0.6–2.7)	1.8 (1.6–2)	<0.001	1.1 (1–1.3)	<0.05
Others	139 731 (10.5–34.2)	2,076 (3.3–16.1)	3.4 (3.3–3.6)	<0.001	2.4 (2.3–2.6)	<0.001

\(^1\)Cases with missing data concerning birth mode excluded. \(^2\)Germany versus Japan. \(^3\)German. CS, cesarean section.
The most recent systematic review on cerebral palsy (CP) prevalence in population-based studies reported a prevalence of 2.11 per 1,000 live births (95% CI: 1.98–2.25), pooling data from 19 studies. The pooled estimate in the review was not significantly different from the first included study by Hagberg in 1996, suggesting a stable incidence of CP in developed countries over the last decades. A minor decline in overall prevalence of CP (1.90 to 1.77 per 1,000 live births) was reported for Europe in 2015 by Sellier et al. This decline is mainly influenced by substantial improvements in neonatal care of very-preterm infants. In an Australian case control study, only 4% of CP cases were attributable to intrapartum risk factors, whereas the major risks for neonatal encephalopathy were related to antepartum or intrapartum factors for fetal hypoxemia. Considering this level of uncertainty with EFM, it seems reasonable to rethink the position of EFM in the management of pregnancy complicated by fetal distress.

Table 3

Matching of variables for medical indication for caesarean section
Data set

Cephalopelvic disproportion
Fetal distress
Abnormal findings in fetal heart rate monitoring
Pathological Doppler findings
Fetal acidosis (in fetal blood sampling)
Previous CS/ Past uterine surgery
Abnormal position
Transverse/oblique lie
Breech presentation
Face/brow presentation
Deep transverse arrest
High longitudinal position
Other presentation
Prolonged Labor
Prolonged labor (first stage)
Prolonged labor (second stage)
Premature rupture of membranes
Preterm birth
Premature placental separation
Pregnancy-induced hypertension
Gestosis/eclampsia
HELLP-syndrome
Multiple conception
Intrauterine infection
Amnion infection syndrome
Fever during labor
Placenta prævia
Postdate
Others
Others

CS, cesarean section; HELLP, hemolysis, elevated liver enzyme levels, and low platelet levels.

© 2020 The Authors. Pediatrics International published by John Wiley & Sons Australia, Ltd on behalf of Japan Pediatric Society
of this diagnostic method for decisions on birth mode. Assessing fetal heart rate by cardiotocography is a well-established form of EFM in labor, sometimes aided by fetal blood sampling, while fetal electrocardiography (fetal ECG) with ST wave analysis is considered to be more experimental. However, there is no consensus on whether these modalities, alone or in concert, clearly indicate the need for urgent delivery of the baby.46–48

Furthermore, the term “fetal distress” is sometimes not clearly defined and covers a wide range of clinical conditions. The American College of Obstetrics and Gynecology pointed out in 2005 that the term is imprecise and unspecific and proposed to replace it with “non-reassuring fetal status”, followed by a further description of findings (e.g. repetitive variable decelerations, fetal tachycardia or bradycardia, late decelerations, or a low biophysical profile).39 This could lead to a more precise description of the clinical symptoms that may require a change in the choice of birth mode, or explain an urgent delivery. We assume that a more precise description and subsequent de-escalation of the language may also lead to a reduction in the CS rate.

Several non-clinical strategies have been implemented to reduce the evitable use of CS, but only a few of these interventions have been shown to be effective with moderate- or high-certainty evidence.50 The lack of experience and supervision of medical personnel, caused by reduced working time for trainees and other factors, is a contributing factor, leading to reduced confidence in making decisions for CS.51 Many decisions to abandon labor are driven by uncertainty regarding fetal risk, leading physicians to resort to CS, even in the absence of an appropriate benefit for mother or infant.52,53 Besides improvement of health professionals training and eliminating financial incentives for CS that exist in several countries including Germany, it is essential to address the role played by fear of litigation among medical staff and ways to mitigate this.52,53 Collective international efforts are needed to standardize the definitions for indications for CS to allow for better comparisons of data sets.

Conclusion

The rate of CS has increased over the last decades. The comparison between data from Germany and Japan shows a higher rate of CS in Germany. Most indications were equally distributed, but fetal distress as the reason to perform CS was three times more frequent in Germany than in Japan. As a diagnosis of fetal distress is often derived from fetal heart rate patterns considered non-reassuring, addressing the diagnostic uncertainty of fetal heart rate monitoring may help to reduce the rate of unnecessary CS.

Acknowledgement

The Japan Environment and Children’s Study was funded by the Ministry of the Environment, Japan. The findings and conclusions of this article are solely the responsibility of the authors and do not represent the official views of the above government.

Disclosure

The authors declare no conflict of interest.

Author contributions

M.F. and C.B. designed the study, C.K. and M.F. performed acquisition and analysis of data and drafted the manuscript and figures; C.B., C.M., and L.H. supervised research process and gave conceptual advice; JECSG provided data of JECS; C.K., C.B., C.M., M.Y., K.S., L.H., and JECSG edited the manuscript and gave methodological advice. All authors read and approved the final manuscript.

References

1 Betran AP, Torloni MR, Zhang JJ, Gulmezoglu AM. WHO statement on caesarean section rates. BJOG 2016; 123: 667–70.
2 Molina G, Weiser TG, Lipsitz SR et al. Relationship between cesarean delivery rate and maternal and neonatal mortality. JAMA 2015; 314: 2263–70.
3 Ye J, Betran AP, Guerrero Vela M, Souza JP, Zhang J. Searching for the optimal rate of medically necessary cesarean delivery. Birth 2014; 41: 237–44.
4 Betran AP, Ye J, Moller AB, Zhang J, Gulmezoglu AM, Torloni MR. The increasing trend in caesarean section rates: global, regional and national estimates: 1990–2014. PLoS One 2016; 11: e0148343.
5 Gibbons L, Belizan JM, Lauer JB, Betran AP, Meriali M, Alhabes F. Inequities in the use of cesarean section deliveries in the world. Am. J. Obstet. Gynecol. 2012; 206 (331): e1–e19.
6 Vogel JP, Betran AP, Vindevoghel N et al. Use of the Robson classification to assess cesarean section trends in 21 countries: a secondary analysis of two WHO multicountry surveys. Lancet Global Health 2015; 3: e260–e70.
7 World Health Organization (WHO). Statement on cesarean section rates. Reprod. Health Matters 2015; 23: 149–50.
8 World Health Organization (WHO). Appropriate technology for birth. Lancet 1985; 2: 436–7.
9 Cavallaro FL, Cresswell JA, Ronsmans C. Obstetricians’ opinions of the optimal caesarean rate: a global survey. PLoS One 2016; 11: e0152779.
10 Betran AP, Torloni MR, Zhang J et al. What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reprod. Health 2015; 12: 57.
11 Sandall J, Tribe RM, Avery L et al. Short-term and long-term effects of caesarean section on the health of women and children. Lancet 2018; 392: 1349–57.
12 Abdelazim I, Alanwar A, Svetlana S et al. Complications associated with higher order compared to lower order cesarean sections. J. Matern. Fetal. Neonatal. Med. 2018; 1–161.
13 Silver RM, Landon MB, Rouse DJ et al. Maternal morbidity associated with multiple repeat cesarean deliveries. Obstet. Gynecol. 2006; 107: 1226–32.
14 Barros AJ, Santos IS, Matijasevich A et al. Patterns of deliveries in a Brazilian birth cohort: almost universal cesarean sections for the better-off. Rev. Saude Publica. 2011; 45: 635–43.
Appendix 1

The following individuals were members of the JECS Group as of 2019: Michihiro Kamijima (principal investigator, Nagoya City University, Nagoya, Japan), Shin Yamazaki (National Institute for Environmental Studies, Tsukuba, Japan), Yukihiro Ohya (National Center for Child Health and Development, Tokyo, Japan), Reiko Kishi (Hokkaido University, Sapporo, Japan), Nobuo Yaegashi (Tohoku University, Sendai, Japan), Koichi Hashimoto (Fukushima Medical University, Fukushima, Japan), Chisato Mori (Chiba University, Chiba, Japan), Shuichi Ito (Yokohama City University, Yokohama, Japan), Zentaro Yamagata (University of Yamanashi, Chuo, Japan), Hidekuni Inadera (University of Toyama, Toyama, Japan), Takeo Nakayama (Kyoto University, Kyoto, Japan), Hiroyasu Ito (Osaka University, Suita, Japan), Masayuki Shima (Hyogo College of Medicine, Nishinomiya, Japan), Youichi Kurozawa (Tottori University, Yonago, Japan), Narufumi Suganuma (Kochi University, Nankoku, Japan), Koichi Kusuhara (University of Occupational and Environmental Health, Kitakyushu, Japan), and Takahiko Katoh (Kumamoto University, Kumamoto, Japan).