Antimicrobial Activity Spectrum, cDNA Cloning, and mRNA Expression of a Newly Isolated Member of the Cecropin Family from the Mosquito Vector Aedes aegypti*

(Received for publication, February 23, 1999, and in revised form, April 26, 1999)

Carl Lowenberger‡§†, Maurice Charlet‡§, Jacopo Vizioli**†, Sofie Kamal‡, Adam Richman‡‡, Bruce M. Christensen‡, and Philippe Bulet†

From the ‡Animal Health and Biomedical Sciences University of Wisconsin, Madison, Wisconsin 53706, the §UPR CNRS 9022, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg Cedex, France, and the ¶European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany

An antimicrobial peptide belonging to the cecropin family was isolated from the hemolymph of bacteria-challenged adult Aedes aegypti. This new peptide, named cecropin A, was purified to homogeneity and fully characterized after cDNA cloning. The 34-residue A. aegypti cecropin A is different from the majority of reported insect cecropins in that it is devoid of a tryptophan residue and C-terminal amidation. The importance of these two structural features on the activity spectrum was investigated using a chemically synthesized peptide. A comparison of the antimicrobial activity spectrum of A. aegypti and Drosophila cecropin A showed a lower activity for the mosquito molecule. A. aegypti cecropin mRNA expression was not detected by Northern blot or reverse transcription-polymerase chain reaction analysis in any immature stage of the mosquito, nor in naïve adults, but it was observed in challenged adults 6 h after bacteria inoculation, and it continued over 7–10 days.

One factor contributing to the enormous success that insects have exhibited through evolutionary time is their ability to mount a rapid and effective response against invading pathogens. This response includes the rapid production of potent antimicrobial peptides effective against bacteria and fungi; transcriptional activity may be detected within minutes of a stimulus, resulting in 1–100 μg concentrations of specific peptides in the hemolymph within 24 h (1). Since the isolation of cecropin from Hyalophora cecropia by Boman and co-workers (2), approximately 170 immune peptides have been characterized from insects and other invertebrates (for a recent review, see Ref. 1). In insects, these molecules are rapidly synthesized, easily stored, and promptly available after infections. These features, together with the low metabolic cost for the insect and a low specificity (see review in Ref. 3), make antimicrobial peptides a very versatile component of the insect immune response.

In mosquitoes, which serve as obligate vectors for serious debilitating human diseases such as malaria, lymphatic filariasis, and numerous arboviruses, the predominant immune peptide is a member of the insect defensin family (4–7). Although it has been suggested that inducible antimicrobial peptides have no impact on eukaryotic parasites (8), several studies suggest otherwise. Reports have implicated cecropins or synthetic cecropin derivatives (9–12), insect defensins (13), or a general immune activation process (14, 15) in reducing the development of parasites in mosquitoes.

Because of the potential role cecropins might play in the anti-parasite responses cited above and the recent reports of synthesized cecropin-like molecules that kill Plasmodium sp. (16, 17), we have attempted to isolate and characterize cecropins from mosquitoes. Cecropins are a family of inducible antibacterial peptides of 4 KDa, devoid of cysteine residues, constituted by two α-helices linked by a short hinge, with a strongly basic N-terminal region and a long hydrophobic domain in the C-terminal half. Cecropins integrate into the bacterial cell membrane and cause lysis and cell death by a loss of cations (18). Cecropins have been characterized from Lepidoptera and Diptera (1, 19), but in mosquitoes, there has been only limited information (20, 21) until recently, when Sun et al. (22) reported the purification of a 35-amino acid cecropin from an Aedes albopictus cell line. We report herein the identification and full characterization of a new member of the cecropin family isolated from the hemolymph of immune-activated Aedes aegypti.

MATERIALS AND METHODS

Insect Immunization and Hemolymph Collection—A. aegypti (Liverpool strain) mosquitoes were reared as described previously (23). Adult female mosquitoes were immunized (4), and 24 h later, the hemolymph was collected from individual mosquitoes by perfusing the hemocoeel with Aedes saline as described previously (23). The hemolymph from about 2800 bacteria-challenged mosquitoes or 2000 naïve mosquitoes was centrifuged at 5000 × g for 5 min at 4 °C, and the supernatant was frozen until use.

Extraction and Purification of Antibacterial Peptides—Antibacterial peptides were purified from acidified cell-free hemolymph. Acidification was performed with ammonium acetate buffer at pH 3.5 (final concentration, 25 mM), supplemented with aprotinin (Sigma) as a protease inhibitor (final concentration, 1.5 μM) and phenylthiourea (Prolabo) as a melanization inhibitor (final concentration, 20 μM). After extraction under gentle stirring for 30 min in an ice-cold water bath, the sample was centrifuged at 10,000 × g for 20 min at 4 °C. The supernatant then was loaded onto a 12-cc Sep-Pak Vac C18 cartridge (Waters™) equilibrated with acidified water (0.05% trifluoroacetic acid). Stepwise elution was performed with 2, 40, and 80% acetonitrile in acidified water.
The 40% Sep-Pak fraction was analyzed by reversed-phase HPLC on an Aquapore RP 300 C8 column (250 x 7 mm; Brownlee1,2) using a linear gradient of 2–60% acetonitrile in acidic water for 120 min (flow rate 1.3 ml/min). The antibacterial activity of the collected fractions was detected by liquid growth inhibition assay against Micrococcus luteus 253 and Escherichia coli SBS363, as described previously (4). The active fractions were further purified on a Delta-Pak HPIC\textsubscript{18} column (150 x 2 mm; Waters3) with a linear biphasic gradient of acetonitrile in acidic water from 2 to 22% over 10 min and from 22 to 32% over 50 min at a flow rate of 0.2 ml/min at 35 °C. The first step of HPLC purification was performed with a Beckman Gold HPLC system equipped with the avoid-bead array detector and the Beckman 168. Phase subsequent steps were carried out using a Waters HPLC system (Waters, model 626) attached to a tunable absorbance detector (Waters, model 486) and equipped with an internal oven. For all HPLC purification steps, the effluent was monitored by its UV absorption at 225 nm. Fractions were hand collected, concentrated under vacuum, and reconstituted in MilliQ water (Millipore4) before antimicrobial assays.

Capillary Zone Electrophoresis—The purity of the isolated peptides was ascertained by capillary zone electrophoresis as described previously (4). Analyses were conducted on a model 270A-HT capillary electrophoresis system (PE Applied Biosystems) equipped with a fused silica capillary.

Mass Measurement by Matrix-assisted Laser Desorption Ionization Time-of-flight Mass Spectrometry (MALDI-TOF MS)—Measurements were carried out on a Bruker (BIFLEX4) mass spectrometer equipped with a delayed extraction ion source. Mass spectrometry analysis was performed as described previously (24), using a cyano-4-hydroxycinnamic acid (Sigma) as matrix.

Peptide Synthesis—The isolated peptides were subjected to Edman degradation on a pulse liquid automatic sequenator (PE Applied Biosystems, model 473A).

Cecropin cDNA Isolation—Total RNA was extracted from whole bodies of immune-activated mosquitoes 1–24 h after inoculation and reverse-transcribed as described previously (25), using the primer 5'-CGGGCACGTGAGCGCAACGT14-3' for the RT reaction. PCR amplification of cecropin cDNA was performed using a reverse primer, consisting of the initial 18 nucleotides of the RT primer, and two forward degenerate primers (5'-GGIAARAYTIGARGGIGC-3' and 5'-AAIA-THTTTYGITTIGTCG-3') designed to the cecropin sequence obtained by Edman degradation. PCR conditions used were 94 °C (2 min) and 30 cycles of 94 °C (1 min), 50 °C (1 min), and 72 °C (2 min), followed by one 10-min extension period at 72 °C. PCR products were cloned and sequenced as previously described (25). Full-length cDNAs were obtained using a PCR and cDNA synthesis kit (Clontech) using specific primers designed to the partial cDNA sequence obtained and the kit primers. PCR amplification and cDNA cloning were done as described above. Phylogenetic analysis and multiple alignment of A. aegypti cecropin A with other insect cecropins were performed with the computer program DNAstar5 (using Clustal method with PAM 250 matrix).

Northern Analysis—Northern analysis was performed as described previously (25) using 5 μg of total RNA extracted from whole bodies of immature stages of A. aegypti and naive and immune-activated adults. 32P Probes were made using specific primers to amplify 50 ng of a 177-base pair cecropin cDNA clone in a PCR described previously (25). The ribosomal probe rpL8 was used as a loading control.

RT-PCR—RNA from naive larvae, white and black pupae, and naive immune-activated adults were tested by reverse transcription with a same biphasic linear gradient of acetonitrile in acidic water (dotted line). Absorbance was monitored at 225 nm (solid line). Peaks 1 and 2 highlighted in dark gray were active against both M. luteus and E. coli, whereas those in light gray were only active against M. luteus. Peak 3 (hatched lines) was exclusively active against E. coli.

RESULTS

Purification of Cecropin from the Hemolymph of A. aegypti—With regard to our previous study on Aedes defensins (4), we focused the present analysis on the fraction, eluted with 40% acetonitrile, that contained the bulk of antibacterial activity. This fraction was subjected to reversed-phase HPLC analysis (Fig. 1, Step 1). A marked antibacterial activity against M. luteus and E. coli was observed in eight consecutive fractions eluted from 25 to 30% acetonitrile. Each individual active fraction (Fig. 1, Step 1, shaded area) was further subjected to a second reversed-phase chromatography. The collected fractions were tested against M. luteus and E. coli, as before. The results obtained are only reported for the three most representative fractions (Fig. 1, A-C). After the antibacterial assays, three individual active peaks were purified from fractions A, B, and C. Two peaks (Fig. 1, Step 2, peaks 1 and 2 in dark gray) eluted at 26 and 28% acetonitrile, respectively, were active against M. luteus and E. coli at high concentrations. At a lower concentration (in regards to the absorbance at 225 nm), an activity was detected only against M. luteus. In contrast, peak 3 (Fig. 1, Step 2, hatched peak) was active only against E. coli. Mass measurements of fractions 1 and 2 by MALDI-TOF MS indicated the presence of compounds with mass values similar to those of the A. aegypti defensins A, B, and C (data not shown). Partial
The measured molecular mass by MALDI-TOF-MS at 3391.5 Da predicted sequence (3391.1 Da) was in perfect agreement with what would end at the leucine residue at position 57 in the deduced mature peptide (3391.5 Da) established that it contained a glycine. This residue was found at position 2) to determine what residues were missing. By Edman degradation, we determined that the N-terminal residue of the mature peptide was a glycine. This residue was found at position 23-amino acid sequence was obtained: GGLKKLGKKLE-

N-terminal sequencing by Edman degradation confirmed that peak 1 was Aedes defensin C (4155.7 Da) and that peak 2 contains the isoforms A and B, as judged by an additional capillary zone electrophoresis analysis (data not shown). To obtain structural information on the compound present in peak 3, this peak was further purified to homogeneity by an additional chromatography step using the same reversed-phase column as in step 2 (data not shown). After the antibacterial assay against E. coli, only a single active fraction was found. The purity was ascertained by capillary zone electrophoresis and MALDI-TOF-MS. Only a single mass signal at 3391.5 Da corresponded to a 34-amino acid peptide with the residues Ala-Leu-dipeptide (Arg-Lys). The signal peptide region is highly hydrophobic and is predicted to terminate with an alanine residue (Ala23). This prediction is based on the fact that the mature cecropin peptide found in the hemolymph of immune-challenged mosquitoes started with, and did not contain any of the residues preceding, Gly24.

Northern and RT-PCR Analysis—By Northern analysis, we did not detect cecropin mRNA in any immature stage of A. aegypti, nor in naive adults (Fig. 3A). Expression was found in immune-activated adults: transcription was detected 6 h postinoculation and continued for 7–10 days. Similarly, by RT-PCR we could not detect cecropin in cDNAs isolated from larvae, pupae, or naive adults of A. aegypti (Fig. 3B). However, a strong signal for cecropin was detected in immune-activated mosquitoes.

Activity Spectrum of A. aegypti Cecropin—After synthesis, HPLC purification, and mass spectrometry measurement to confirm the authenticity of the molecule, 9.3 mg of pure cecropin were obtained (approximate yield, 11.6%). The activity spectrum of A. aegypti cecropin A was compared with Drosophila cecropin A, which presents the typical features of cecropins (presence of a tryptophan residue and a C-terminal amidation). The activity spectra of these two peptides are presented in Table I, compared with two control antibiotics forming α-helices, PG1a and MSI-94. In the antibacterial assays, A. aegypti and Drosophila cecropins were more effective against Gram-negative strains than against Gram-positive bacteria. Among the 11 Gram-negative strains tested, only one bacteria (S. marcescens) was not affected by A. aegypti and Drosophila cecropins at the highest concentration tested (100 μM). The insect cecropins were more active than the two control antibiotics against the Gram-negative bacteria (Table I), and the Drosophila cecropin was several times more effective than the A. aegypti cecropin. The measured difference factors were (i) 8-fold against E. coli, (ii) 2-fold against P. aeruginosa and S. typhimurium, and (iii) 10-fold against E. cloacae. Gram-positive bacteria were affected almost equally by the two cecropins. A. aegypti cecropin A was essentially inactive against three of the four Bacillus species tested (B. cereus, B. thuringiensis, and B. subtilis), as well as against L. monocytogenes and S. aureus, up to a concentration of 100 μM. Against B. subtilis and S. pyogenes, however, the results differed according to the cecropin used: the growth of B. subtilis was not affected by 100 μM of A. aegypti cecropin A but...
was sensitive to the *Drosophila* molecule (MIC, 10–25 μM). In contrast, the growth of *S. pyogenes* was not affected by *Drosophila* cecropin A but was inhibited by the *A. aegypti* peptide (MIC, 10–25 μM). The two cecropins were less active against Gram-positive bacteria than PGLα and MSI-94. *A. aegypti* and *Drosophila* cecropins were generally equally active against the fungi *F. culmorum*, *F. oxysporum*, *C. neoformans*, and *C. albicans* (MIC, 1–2.5, 2.5–5, and 5–10 μM, respectively). *A. fumigatus* and *B. bassiana*, however, were insensitive to cecropins. In antyeast assays, only *A. aegypti* cecropin showed a moderate activity against *C. albicans*, *C. neoformans* (MIC, 25–50 μM), and *S. cerevisiae* (MIC, 50–100 μM).

DISCUSSION

The data presented here established that the cell-free hemoymph of bacteria-challenged adults of *A. aegypti* contains several antibacterial substances, among them the previously described *A. aegypti* defensins (4, 5). Following a detailed study by reversed-phase HPLC of the defense zone, we have isolated and partially characterized a novel antibacterial peptide belonging to the cecropin family. This is the first report presenting the full primary structure of a mature mosquito cecropin isolated from the insect hemoymph. Previously, the only report in mosquitoes was the cecropin isolated from an *A. albopictus* cell line (22). In common with all preprocecropin sequences isolated from Diptera, the *A. aegypti* preprocecropin ends with an alanine residue (Fig. 4). In most of the dipteran cecropins listed in Fig. 4, the terminal region of the signal peptide has a highly conserved consensus sequence (GQSEA). All the sequences deduced from the cDNAs showed conserved residues (MNF) at the translation start site and other highly conserved areas within the preproregion, showing the following overall consen-
sus sequence: MNF-K-FIFVIALIA-GQSEA. In contrast to the Diptera, preprocecropin sequences from Lepidoptera all end in a proline residue, preceded by either an alanine or a glutamic acid residue (Fig. 4). With the exception of the *Bombus mori* cecropin (39) and the *Trichoplusia ni* cecropin A (40), the lepidopteran preprosequences begin with the consensus MNF, suggesting that the cecropin molecules occurred in the insects before the divergence of the Diptera and Lepidoptera. Similar cecropins also have been isolated from tunicates, marine invertebrates belonging to the phylum Chordata (42), which share many of the residues in the consensus region of dipteran cecropins, suggesting the conservation of these peptides among phyla other than insects.

Sequence comparison of *A. aegypti* mature cecropin A with other dipteran cecropins (Fig. 4) showed similarities of 82.4, 88.2, and 35.3% with the *A. albopictus*, *Anopheles gambiae*, and *Drosophila* cecropins, respectively. Comparison of *A. aegypti* cecropin with previously characterized dipteran and lepidopteran cecropins revealed several interesting contrasts. Of specific note is the absence of a tryptophan residue in the *A. aegypti* sequence, because a tryptophan residue has been reported, at amino acid position 1 or 2, in all characterized insect cecropins, except for the other mosquito cecropins (22) and the *B. mori* cecropin D (39). *A. aegypti* cecropin A is not amided at the C-terminal end, as deduced from the characterization of the full cDNA sequence. This is in contrast to the common

Table I

Microorganism	Aedes cecropin	Drosophila cecropin	PGLα	MSI-94
Gram-negative bacteria				
E. coli D92	0.25–0.5	0.1–0.25	1–2.5	0.5–1
E. coli D31	0.25–0.5	0.1–0.25	1–2.5	0.5–1
E. coli SBS363	0.1–0.25	0.1–0.25	1–2.5	0.5–1
E. coli 1106	0.25–0.5	0.25–0.5	1–2.5	0.5–1
Enterobacter cloacae b12	50–100	0.5–1	ND	5–10
E. carotovora	0.25–0.5	0.5–1	1–2.5	1–2.5
K. pneumoniae	1–2.5	0.5–1	10–20	2.5–5
Pseudomonas aeruginosa	10–25	1–2.5	20–40	1–2.5
S. typhimurium	1–2.5	0.5–1	1–2.5	1–2.5
S. marcescens Db11	ND	ND	ND	ND
X. campestris	0.5–1	0.5–1	5–10	0.5–1
Gram-positive bacteria				
Aerococcus viridans	2.5–5	5–10	0.5–1	0.5–1
Bacillus cereus	ND	ND	2.5–5	1–2.5
B. megaterium	1–2.5	1–2.5	0.5–1	0.5–1
Bacillus subtilis	ND	10–25	0.5–1	0.5–1
Bacillus thuringiensis	ND	ND	5–10	1–2.5
L. monocytogenes	ND	ND	1–2.5	1–2.5
M. luteus	10–25	5–10	0.5–1	0.5–1
Staphylococcus aureus	ND	ND	1–2.5	1–2.5
Streptococcus pyogenes	10–25	ND	1–2.5	1–2.5
Fungi				
A. fumigatus	ND	ND	10–20	20–40
B. bassiana	ND	ND	ND	ND
F. culmorum	1–2.5	1–2.5	0.5–1	0.5–1
F. oxysporum	2.5–5	2.5–5	2.5–5	5–10
N. crassa	5–10	5–10	2.5–5	5–10
Yeasts				
C. albicans	25–50	ND	1–2.5	0.5–1
C. glabrata	ND	ND	ND	ND
C. neoformans	25–50	ND	ND	ND
Saccharomyces cerevisiae	50–100	ND	ND	ND

2 J. Vizioli, P. Bulet, M. Charlet, C. A. Lowenberger, C. Bass, C., H.-M. Muller, G. Dimopoulos, J. Hoffmann, F. C. Kafatos, and A. Richman, submitted for publication.
feature of a C terminus blocked by an amine group, in all insect cecropins except the *A. albopictus* cecropin A (22) (Fig. 4). The *A. aegypti* cecropin A has more than 13 amino acids in common with the other representative dipteran cecropins over the 15 first N-terminal amino acids. This high degree of identity (87%) was not observed in the C-terminal region. It is surprising that only two amino acids (one valine and two alanine residues) are common among the 10 last residues of mosquito cecropins and the same C-terminal region of other dipteran cecropins (Fig. 4).

A phylogenetic analysis of the insect cecropin family was performed at the amino acid level. The phylogenetic tree of the mature peptides (Fig. 5) shows that mosquito cecropins appear in one branch and all other dipteran and lepidopteran cecropins are grouped in another branch. This suggests an earlier divergence between the cecropins isolated from mosquito species and the other Diptera and Lepidoptera. All dipteran cecropins, except those from *Aedes* and *Anopheles*, originate from only one root, whereas the lepidopteran cecropins are separated in two rooted groups. This same pattern of separation is maintained when only the prepro sequences of these cecropins are compared (data not shown).

Interestingly, if the phylogenetic analysis is based on a partial amino acid sequence corresponding to the hydrophobic C-terminal half of the cecropins, this pattern is altered; mosquito cecropins are more similar to lepidopteran than to dipteran cecropins and are closest to *B. mori* cecropin D (data not shown).

Transcription for *A. aegypti* cecropin was restricted to immune-activated individuals (Fig. 3). In contrast with the *A. aegypti* defensin (25), there is no detectable transcription in any immature stage of this species. Once immune-activated, transcripts can be detected by 6 h and remain detectable for at least 7 days, which represents a large portion of the life span of a mosquito. Northern blot analysis done with whole body or fat body alone produce similar results (data not shown), suggesting that the majority of transcription for cecropin occurs in the fat body.

The cecropins isolated from *A. aegypti* and *D. melanogaster* were generally effective against the same bacteria and filamentous fungi species tested, but the *Aedes* cecropin was

Table: Aedes aegypti Cecropin

Feature	Pre-pro region	Mature peptide
DIPTERA		
Ae. aegypti	MNFLKVLPLLHILV	GQKQVQRRG
Ae. albopictus	MNFLKVLPLLHILV	GQKQVQRRG
An. Gambiaceae	MNFLKVLPLLHILV	GQKQVQRRG
D. virilis 1	MNFLKVLPLLHILV	GQKQVQRRG
D. virilis 2	MNFLKVLPLLHILV	GQKQVQRRG
M. meloagaster	MNFLKVLPLLHILV	GQKQVQRRG
D. meloagaster	MNFLKVLPLLHILV	GQKQVQRRG
S. peregrina	MNFLKVLPLLHILV	GQKQVQRRG
C. capitata	MNFLKVLPLLHILV	GQKQVQRRG
C. capitata	MNFLKVLPLLHILV	GQKQVQRRG

Figure 4: Comparison of the amino acid sequence of Aedes preprocecropin with typical dipteran and lepidopteran cecropin precursors. The sequences are aligned for similarities and gaps were introduced for optimal alignment. The number in parentheses after the species name indicates the reference from which the sequence was obtained.

Figure 5: Phylogenetic analysis of insect cecropins. Constructions are performed on the basis of the homology sequences calculated from the complete amino acid sequence of the mature cecropins. Sequences were selected from Hetru et al. (1) with the following, in addition: *A. albopictus* cecropin A (22), *A. aegypti* cecropin A (20), and *H. cunea* cecropin A (41). The homology sequences were calculated using the Clustal method with the PAM250 residue weight table.

Note: The text continues with further details and discussions related to the biological implications of these findings, including the implications for immune response and evolutionary divergence among insect species.
generally less active than the *Drosophila* peptide. In addition, only the *A. aegypti* molecule was active against yeast. These qualitative and quantitative differences between these two peptides could be related to the absence of tryptophan residue and C terminus amidation in *A. aegypti* cecropin A. In *H. cecropia*, the activity of a synthetic analogue of cecropin was strongly reduced when the tryptophan residue was replaced by a nonaromatic residue (43, 44), and in *Sarcophaga peregrina*, the amidated cecropin was reported to have an antibacterial activity 3–4 fold higher than the corresponding compound with a free carboxylic group (45). Similar results were reported for *Hyalophora* cecropins and analogues, in which a marked decrease in activity was observed for the nonamidated forms (43, 46). In addition, Callaway and colleagues (47) showed that only the recombinant form with an amidated C terminus had an activity similar to the native cecropin. In *B. mori* (39), a cecropin D precursor form showed a higher efficiency against bacteria, after a posttranslational C-terminal amidation.

In our bioassays, *A. aegypti* cecropin exhibited a marked activity against fungi and medically important yeasts such as *Candida* spp. Similar anti-fungal and anti-yeast activities have been reported for *Hyphanthria* and *Hyalophora* cecropins (41, 48).

The activity of *A. aegypti* cecropin is sufficient to affect the growth of certain bacteria strains that are naturally present in *A. aegypti* mosquitoes from pathogens. Proteolytic enzymes released by the active peptides could be related to the absence of tryptophan residue in *A. aegypti* cecropins as compared to the native cecropin A. In *B. mori* (39), the activity of a synthetic analogue of cecropin was strongly reduced when the tryptophan residue was replaced by a nonaromatic residue (43, 44), and in *Sarcophaga peregrina*, the amidated cecropin was reported to have an antibacterial activity 3–4 fold higher than the corresponding compound with a free carboxylic group (45). Similar results were reported for *Hyalophora* cecropins and analogues, in which a marked decrease in activity was observed for the nonamidated forms (43, 46). In addition, Callaway and colleagues (47) showed that only the recombinant form with an amidated C terminus had an activity similar to the native cecropin. In *B. mori* (39), a cecropin D precursor form showed a higher efficiency against bacteria, after a posttranslational C-terminal amidation.

Acknowledgments—We are indebted to Dr. S. Utenweiler-Joseph for mass spectrometry determination and to Dr. J. P. Briand for *A. aegypti* cecropin synthesis. We thank J. K. Chiles and L. Christensen for mosquito rearing and maintenance. We also thank Dr. J. A. Hoffmann for his continued interest in this work.

REFERENCES

1. Hetru, C., Hoffmann, D., and Bulet, P. (1998) in *Molecular Mechanisms of Immune Responses in Insects* (Brey, P. T., and Hultmark, D., eds) pp. 40–66; Chapman & Hall, London.
2. Steiner, H., Hultmark, D., Engstrom, A., Bennich, H., and Boman, H. G. (1981) *Nature* 292, 246–248.
3. Shai, Y. (1986) in *Molecular Mechanisms of Immune Responses in Insects* (Brey, P. T., and Hultmark, D., eds) pp. 111–134; Chapman & Hall, London.
4. Lowenberger, C., Bulet, P., Charlet, M., Hetru, C., Hodgeman, B., Christensen, B. M., and Hoffmann, J. A. (1995) *Insect Biochem. Mol. Biol.* 25, 867–873.
5. Chalk, R., Albuquerque, C. M. R., Ham, P. J., and Townson, H. (1995) *Proc. R. Soc. Lond. B. Biol. Sci.* 261, 217–221.
6. Cho, W. L., Fu, Y. C., Chen, C. C., and Ho, C. M. (1996) *Insect Biochem. Mol. Biol.* 26, 395–402.
7. Richman, A. M., Bulet, P., Hetru, C., Barillas-Mury, C., Hoffmann, J. A., and Kafatos, F. C. (1996) *Insect Mol. Biol.* 5, 203–210.
8. Cociancich, S., Bulet, P., Hetru, C., and Hoffmann, J. A. (1994) *Parasitol. Today* 10, 122–123.
9. Gwadz, R. W., Kaslow, D., Lee, J. Y., Maloy, W. L., Zaaslov, M., and Miller, L. H. (1989) *Infect. Immun.* 57, 2628–2633.
10. Chalk, R., Townson, H., and Ham, P. J. (1995) *Exp. Parasitol.* 80, 401–406.
11. Rodriguez, M. C., Zanudio, F., Torres, J. A., Gonzalez-Ceron, L., Possani, L. D., and Rodriguez, M. H. (1995) *Exp. Parasitol.* 80, 596–604.
12. Jaynes, M. J., Burton, C. A., Barr, S. B., Jeffers, G. W., Julian, G. R., White, K. L., Enright, F. M., Kesi, T. R., and Laine, R. A. (1988) *FASEB J.* 2, 2878–2883.
13. Shahabuddin, M., Fields, I., Bulet, P., Hoffmann, J. A., and Miller, L. H. (1998) *Exp. Parasitol.* 89, 103–112.
14. Lowenberger, C. A., Perdigon, G., Sastre, J., Aluja, C., Corbalan, J., and Hafez, M. (1999) *Parasitol. Res.* 85, 203–206.
15. Lowenberger, L. M., Alonso, E., and Zanudio, F. (1998) *Experientia* 54, 460–464.
16. Chalk, R., Townson, H., Ham, P. J., and Hoffmann, J. A. (1995) *Insect Biochem. Mol. Biol.* 25, 867–873.
17. Hetru, C., and Bulet, P. (1997) *In Methods in Molecular Biology* (Shafer, W. M., ed) Vol. 78, pp. 35–49; Humana Press Inc., Totowa, NJ.
18. Castells, P., Ampe, C., Jacobs, F., and Tempst, P. (1993) *J. Biol. Chem.* 268, 7044–7054.
19. Straif, S. C., Mhoro, C. N. M., Toure, A. M., Walker, E. D., Kaufman, M., Toure, Y. T., and Beier, J. C. (1998) *J. Med. Entomol.* 35, 222–226.
20. Zhou, X., Nguyen, T., and Kimbell, D. A. (1997) *J. Mol. Biol.* 249, 727–736.
21. Kylsten, P., Samakovlis, C., and Hultmark, D. (1998) *EMBO J.* 7, 217–224.
22. Tryselius, Y., Samakovlis, C., Kimbell, D. A., and Hultmark, D. (1992) *Eur. J. Biochem.* 210, 395–399.
23. Okada, M., and Natori, S. (1985) *J. Biol. Chem.* 260, 7174–7177.
24. Rossetta, M., Manetti, A. G., Marchini, D., Dallai, R., Telldor, J. L., and Baldari, C. T. (1993) *Gene* 134, 241–243.
25. Hultmark, D., Engstrom, A., Bennich, H., Kapur, R., and Boman, H. G. (1982) *Eur. J. Biochem.* 127, 207–217.
26. Qu, Z., Steiner, H., Engstrom, A., Bennich, H., and Boman, H. G. (1982) *Eur. J. Biochem.* 127, 219–224.
27. Dickinson, L., Russell, V., and Dunn, P. E. (1988) *J. Biol. Chem.* 263, 19424–19429.
28. Taniai, K., Kato, Y., Hirochika, H., and Yamakawa, M. (1992) *Biochem. Biophys. Acta* 1132, 203–206.
29. Hara, S., Taniai, K., Kato, Y., and Yamakawa, M. (1994) *Comp. Biochem. Physiol.* 108B, 203–206.
30. Kang, D., Liu, G., Gunne, H., and Steiner, H. (1996) *Insect Biochem. Mol. Biol.* 26, 177–184.
31. Park, S. S., Shin, S. W., Park, D. S., Oh, H. W., Boo, K. S., and Park, H. Y. (1997) *Insect Biochem. Mol. Biol.* 27, 711–720.
32. Zhao, C., Liaw, L., Lee, I. H., and Lehrer, R. I. (1997) *FEBS Lett.* 412, 144–148.
33. Andreu, D., Merrifield, R. B., Steiner, H., and Boman, H. G. (1983) *Proc. Natl. Acad. Sci. U. S. A.* 80, 6477–6479.
34. Andreu, D., Merrifield, R. B., Steiner, H., and Boman, H. G. (1985) *Biochem. Biophys. Acta* 80, 107–118.
35. Andreu, D., Merrifield, R. B., Steiner, H., and Boman, H. G. (1985) *Biochem. Biophys. Acta* 80, 107–118.
36. Andreu, D., Merrifield, R. B., Steiner, H., and Boman, H. G. (1985) *Biochem. Biophys. Acta* 80, 107–118.