A Liouville type theorem for some conformally invariant fully nonlinear equations

Aobing Li & YanYan Li
Department of Mathematics
Rutgers University
110 Frelinghuysen Rd.
Piscataway, NJ 08854

Following the approach in our earlier paper [2] and using the gradient estimates developed in [2] and [3], we give another Liouville type theorem for some conformally invariant fully nonlinear equations. Various Liouville type theorems for conformally invariant equations have been obtained by Obata, Gidas-Ni-Nirenberg, Caffarelli-Gidas-Spruck, Viaclovsky, Chang-Gursky-Yang, and Li-Li. For these, as well as for related works, see [2] and the references therein.

For \(n \geq 3 \), let \(S_{n \times n} \) be the set of \(n \times n \) real symmetric matrices, \(S_{n \times n}^+ \subset S_{n \times n} \) be the set of positive definite matrices, and let \(O(n) \) be the set of \(n \times n \) real orthogonal matrices.

For \(1 \leq k \leq n \), let
\[
\sigma_k(\lambda) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \lambda_{i_1} \cdots \lambda_{i_k}, \quad \lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n,
\]
denote the \(k \)-th symmetric function, and let \(\Gamma_k \) denote the connected component of \(\{ \lambda \in \mathbb{R}^n \mid \sigma_k(\lambda) > 0 \} \) containing the positive cone \(\{ \lambda \in \mathbb{R}^n \mid \lambda_1, \ldots, \lambda_n > 0 \} \). It is known that
\[
\Gamma_n = \{ \lambda \in \mathbb{R}^n \mid \lambda_1, \ldots, \lambda_n > 0 \}, \quad \Gamma_1 = \{ \lambda \in \mathbb{R}^n \mid \lambda_1 + \cdots + \lambda_n > 0 \},
\]
\[
\Gamma_k = \{ \lambda \in \mathbb{R}^n \mid \sigma_1(\lambda) > 0, \ldots, \sigma_k(\lambda) > 0 \},
\]

*Partially supported by NSF Grant DMS-0100819.
Γ_k is a convex cone with its vertex at the origin with the properties

\[\Gamma_n \subset \cdots \subset \Gamma_2 \subset \Gamma_1, \]

\[\frac{\partial \sigma_k}{\partial \lambda_i} > 0 \text{ in } \Gamma_k, \ 1 \leq i \leq n, \]

\[\sigma_k^+ \text{ is concave in } \Gamma. \]

For a positive \(C^2 \) function \(u \), let

\[A^u := -\frac{2}{n-2}u^{-\frac{n+2}{2}} \nabla^2 u + \frac{2n}{(n-2)^2}u^{-\frac{2n}{n-2}} \nabla u \otimes \nabla u - \frac{2}{(n-2)^2}u^{-\frac{2n}{n-2}}|\nabla u|^2 I, \]

where \(I \) is the \(n \times n \) identity matrix.

Assume \(U \subset S^{n \times n} \) is an open set satisfying

\[O^{-1}UO = U, \quad \forall \ O \in O(n), \quad (1) \]

and

\[U \cap \{ M + tN \mid 0 < t < \infty \} \text{ is convex} \quad \forall \ M \in S^{n \times n}, N \in S_+^{n \times n}, \quad (2) \]

and

\[\Gamma_U := \{ \lambda(M) \mid M \in U \} \subset \Gamma_k, \quad \text{for some } k > \frac{n+1}{2}, \quad (3) \]

where \(\lambda(M) \) denotes the eigenvalues of \(M \).

Let \(F \in C^2(U) \) satisfy

\[F(O^{-1}MO) = F(M), \quad \forall \ M \in U, \ O \in O(n), \quad (4) \]

\[0 \text{ does not belong to } F^{-1}(1), \quad (5) \]

\[(F_{ij}(M)) > 0, \quad \forall \ M \in U, \quad (6) \]

\[F \text{ is locally concave in } U, \quad (7) \]

and, for some \(0 < \gamma \leq 1, \)

\[\sum_{i,j=1}^{n} F_{ij}(M)M_{ij} \leq \frac{1}{\gamma}|M|^{1-\gamma} \sum_{i=1}^{n} F_{ii}(M), \quad \forall \ M \in U, F(M) = 1, |M| \geq 1, \quad (8) \]

where \(F_{ij}(M) := \frac{\partial F}{\partial M_{ij}}(M). \)

We establish in this paper the following Liouville type theorem.
Theorem 1 For \(n \geq 3 \), let \(U \subset S^{n \times n} \) be an open set satisfying (2), (3) and (4), and let \(F \in C^2(U) \) satisfy (4), (5), (6) and (8). Let \(u \in C^4(\mathbb{R}^n) \) be a positive solution of
\[
F(A^u) = 1, \quad A^u \in U, \quad \text{on } \mathbb{R}^n.
\]
Then for some \(\bar{x} \in \mathbb{R}^n \), and some positive constants \(a \) and \(b \) satisfying
\[
2b^2a^{-2}I \in U \quad \text{and} \quad F(2b^2a^{-2}I) = 1,
\]
\[
\tag{9}
\]
\[
\]
Remark 1 In Theorem 1, if \(F \) is in \(C^{2,\beta}(U) \) for some \(\beta \in (0, 1) \), then, since the equation is elliptic, any positive \(C^2 \) solution \(u \) is in fact in \(C^{4,\beta} \).

We give a consequence of Theorem 1.

Let \(\Gamma \subset \mathbb{R}^n \) be an open convex cone with its vertex at the origin such that
\[
\Gamma_n \subset \Gamma \subset \Gamma_k, \quad \text{for some } k > \frac{n+1}{2},
\]
and
\[
\Gamma \text{ is symmetric in the } \lambda_i.
\]
Let
\[
f \in C^2(\Gamma) \cap C^0(\overline{\Gamma}) \text{ be concave and symmetric in the } \lambda_i.
\]
In addition, we assume that
\[
f = 0 \text{ on } \partial \Gamma; \quad f_{\lambda_i} > 0 \text{ on } \Gamma \forall 1 \leq i \leq n,
\]
and
\[
\lim_{s \to \infty} f(s\lambda) = \infty, \quad \forall \lambda \in \Gamma.
\]
By (14) and (13), there exists a unique \(\bar{b} > 0 \) such that
\[
\tag{16}
\]
where \(e = (1, \cdots, 1) \).
Corollary 1 For $n \geq 3$, let (f, Γ) satisfy (10), (11), (12), (13), (14) and (15), and let $u \in C^4(\mathbb{R}^n)$ be a positive solution of

$$f(\lambda(Au)) = 1, \quad \lambda(Au) \in \Gamma, \quad \text{on} \ \mathbb{R}^n.$$

Then for some $\bar{x} \in \mathbb{R}^n$, and some positive constant a,

$$u(x) \equiv \left(1 + \frac{a}{\frac{1}{2}a^2b|x - \bar{x}|^2}\right)^{-\frac{n-2}{2}}, \quad \forall \ x \in \mathbb{R}^n.$$

Proof of Theorem 1. Since (3) implies the superharmonicity of the positive function u on \mathbb{R}^n, we have $\liminf_{|x| \to \infty} |x|^{n-2}u(x) > 0$. Let $w(x) = \frac{1}{|x|^{n-2}}u(x)$ for $x \in \mathbb{R}^n \setminus \{0\}$. Then w is regular at ∞, $\liminf_{|x| \to 0} w(x) > 0$, and w satisfies

$$F(A^w) = 1, \quad A^w \in U, \quad \text{on} \ \mathbb{R}^n \setminus \{0\}.$$

Let $\xi(x) = \frac{n-2}{2}w(x)^{-\frac{n-2}{2}}$. Then, for some positive constant C_1,

$$0 < \xi < C_1 \quad \text{on} \ B_2 \setminus \{0\}. \quad (17)$$

By (3) and lemma 6.3 in [4], $\lambda(D^2 \xi(x)) \in \Gamma_k$ for $x \in B_2 \setminus \{0\}$. Let P be any hyperplane which intersects B_1 but does not pass through the origin, and let ξ_P be the restriction of ξ on P. Then

$$\lambda(D^2 \xi_P) \in \Gamma_{k-1} \subset \mathbb{R}^{n-1}, \quad \text{on} \ P \cap B_2,$$

where $D^2 \xi_P$ denotes $(n - 1) \times (n - 1)$ Hessian of ξ_P, and $\lambda(D^2 \xi_P)$ denotes the eigenvalues of $D^2 \xi_P$. Here we have used the following property of Γ_k: If $\lambda(M) \in \Gamma_k \subset \mathbb{R}^n$, then $\lambda(M) \in \Gamma_{k-1} \subset \mathbb{R}^{n-1}$ where $\hat{M}_{ij} = M_{ij}$ for $i \leq j \leq n - 1$. Since $k \geq \frac{n+1}{2}$, we have $k - 1 > \frac{n-1}{2}$. As in [4], by using theorem 2.7 in [4], we have, for some constants $\alpha \in (0, 1)$ (depending only on n and k) and $C > 0$ (depending only on n, k and C_1), that

$$\|\xi\|_{C^{\alpha}(P \cap B_2)} \leq C. \quad (18)$$

For any $x, y \in B_1 \setminus \{0\}$, we pick $z_i \in \mathbb{R}^n$ such that $z_i \to 0$ and the line going through x and $y + z_i$ does not go through the origin. Then x and $y + z_i$ lies on some hyperplane P_i which does not go through the origin. Thus, by (18),

$$|\xi(x) - \xi(y + z_i)| \leq C|x - (y + z_i)|^\alpha.$$
for some constant C depending only on n, k and C_1. Sending i to infinity, we have

$$|\xi(x) - \xi(y)| \leq C|x - y|^\alpha.$$

Therefore ξ can be extended to a function in $C^\alpha(B_1)$.

We distinguish into two cases.

Case 1. $\xi(0) = 0$.

Case 2. $\xi(0) > 0$.

In Case 1, $\lim_{|x| \to \infty} (|x|^{n-2}u(x)) = \infty$. For every $x \in \mathbb{R}^n$, as in the proof of lemma 2.1 in [4], there exists $\lambda_0(x) > 0$ such that $u_{x,\lambda}(y) := (\frac{\lambda}{|y - x|})^{n-2}u(x + \frac{\lambda^2(y - x)}{|y - x|^2}) \leq u(y), \forall 0 < \lambda < \lambda_0(x), |y - x| \geq \lambda$.

Set, for $x \in \mathbb{R}^n$,

$$\bar{\lambda}(x) = \sup\{\mu > 0 \mid u_{x,\lambda}(y) \leq u(y), \text{ for all } |y - x| \geq \lambda, 0 < \lambda \leq \mu\}.$$

Lemma 1 $\bar{\lambda}(x) = \infty$ for all $x \in \mathbb{R}^n$.

Proof of Lemma [4]. If $\bar{\lambda}(\bar{x}) < \infty$ for some $\bar{x} \in \mathbb{R}^n$. Making a translation, we may assume without loss of generality that $\bar{x} = 0$, and we still have $\lim_{|x| \to \infty} (|x|^{n-2}u(x)) = \infty$. Thus, there exists some $R > \bar{\lambda} + 9$ (we use notation $\bar{\lambda} = \bar{\lambda}(0)$ such that $u_\lambda(y) < u(y), \forall 0 < \lambda \leq \bar{\lambda} + 2, |y| \geq R$,

where we have used notation $u_\lambda = u_{0,\lambda}$.

By the definition of $\bar{\lambda}$,

$$u_\lambda(y) \leq u(y), \quad \forall |y| \geq \bar{\lambda}.$$

Let $w(t) := tu + (1 - t)u_\lambda, 0 \leq t \leq 1$. Then, as in the proof of lemma 2.1 in [4],

$$L(u - u_\lambda) = 0, \quad \text{in } \mathbb{R}^n \setminus B_\lambda,$$

where

$$L = a_{ij}(y)\partial_{ij} + b_i(y)\partial_i + c(y),$$

$$a_{ij} = -\frac{2}{n-2} \int_0^1 w_t^{\frac{n+2}{n}} F_{ij}(A^{w_t})dt,$$

and b_i and c are continuous functions.
Using the Hopf Lemma and the strong maximum principle as in the proof of lemma 2.1 in [2], we have
\[(u - u_{\lambda})(y) > 0, \quad \text{in } \mathbb{R}^n \setminus \overline{B}_{\lambda},\]
and
\[\frac{\partial(u - u_{\lambda})}{\partial r} \bigg|_{\partial B_{\lambda}} > 0,\]
where \(\frac{\partial}{\partial r}\) denotes the outer normal differentiation.

The following argument is similar to the one used in the proof of lemma 2.2 in [4]. Since \(\partial B_{\lambda}\) is compact, \(\frac{\partial(u - u_{\lambda})}{\partial r} \bigg|_{\partial B_{\lambda}}\) has a positive lower bound. Using the \(C^1\) regularity of \(u\), we can find some \(0 < \delta < 1\) such that
\[\frac{\partial(u - u_{\lambda})}{\partial r}(y) > 0, \quad \forall \, \lambda \leq \lambda \leq \lambda + \delta, \lambda \leq |y| \leq \lambda + \delta.\]
Since \((u - u_{\lambda})(y) = 0\) for \(|y| = \lambda\), the above implies
\[u_{\lambda}(y) \leq u(y), \quad \forall \, \lambda \leq \lambda \leq \lambda + \delta, \lambda \leq |y| \leq \lambda + \delta.\]
Since \((u_{\lambda} - u)(y) < 0\) for \(\lambda + \delta \leq |y| \leq R\), and since the set is compact, there exists \(\epsilon \in (0, \delta)\) such that
\[u_{\lambda}(y) < u(y), \quad \forall \, \lambda \leq \lambda \leq \lambda + \epsilon, \lambda + \delta \leq |y| \leq R.\]
Here we have used the the continuity of \(u\).

We have proved, for the \(\epsilon\) above, that
\[u_{\lambda}(y) \leq u(y), \quad \forall \, \lambda \leq \lambda \leq \lambda + \epsilon, \, |y| \geq \lambda.\]
This violates the definition of \(\lambda\). Lemma 1 is established.

It follows from Lemma 1 that
\[u_{x,\lambda}(y) \leq u(y), \quad \forall \, x \in \mathbb{R}^n, \, 0 < \lambda < \infty, \, |y - x| \geq \lambda.\]
This, together with some calculus lemma (see, e.g., lemma 11.2 in [4]), implies that \(u\) is a constant on \(\mathbb{R}^n\), thus \(A u \equiv 0\). This is impossible because of (5). We have ruled out Case 1.

In Case 2, there exists some constant \(0 < \delta < \frac{1}{20}\) such that
\[\delta \leq w \leq \frac{1}{\delta}, \quad \text{on } B_{10\delta}.\]
(20)
Lemma 2

\[\limsup_{|x| \to 0} (|x| |\nabla w(x)|) < \infty. \]

Proof of Lemma 2. For any \(0 < r < 5\delta\), let \(v(y) := w(ry)\) for \(0 < |y| < 2\). Then \(v\) satisfies

\[F(r^{-2} A^v) = 1, \quad A^v \in U, \quad \text{on } B_2 \setminus \{0\}. \] \tag{21}

For any \(x \in B_\frac{3}{2} \setminus B_\frac{1}{2}\), as in the proof of lemma 2.1 in [4], there exists \(\lambda_0(x) \in (0, \frac{1}{5})\) such that

\[v_{x,\lambda}(y) := \left(\frac{\lambda}{|y - x|} \right)^{n-2} v(x + \frac{\lambda^2(y - x)}{|y - x|^2}) \leq v(y), \quad \forall \ y \in (B_2 \setminus B_\frac{2}{3}) \setminus B_\lambda(x), \ 0 < \lambda \leq \lambda_0(x). \]

Set, for \(x \in B_\frac{3}{2} \setminus B_\frac{1}{2}\),

\[\bar{\lambda}(x) = \sup \{ \mu > 0 \mid v_{x,\lambda}(y) \leq v(y), \ \forall \ y \in (B_2 \setminus B_\frac{2}{3}) \setminus B_\lambda(x), \ 0 < \lambda \leq \mu \}. \]

Using the Hopf Lemma and the strong maximum principle as in the proof of lemma 2.1 in [3], and using the argument in Lemma 1, we know that stopping at \(\bar{\lambda}(x)\) is due to a boundary touching, i.e., there exists some \(y_0 \in \partial (B_2 \setminus B_\frac{1}{2})\) such that \(v_{x,\bar{\lambda}(x)}(y_0) = v(y_0)\), i.e.,

\[\left(\frac{\bar{\lambda}(x)}{|y_0 - x|} \right)^{n-2} w(rx + \frac{\lambda^2 r(y_0 - x)}{|y_0 - x|^2}) = w(r y_0), \]

from which we deduce, using (21), that

\[\bar{\lambda}(x)^{n-2} = |y_0 - x|^{n-2} \frac{w(r y_0)}{w(r x + \frac{\lambda^2 r(y_0 - x)}{|y_0 - x|^2})} \geq \delta^2 |y_0 - x|^{n-2} \geq 4^{2-n} \delta^2. \]

Thus we have shown that for any \(x \in B_\frac{3}{2} \setminus B_\frac{1}{2}\) and any \(0 < \lambda < \frac{1}{4} \delta^{-2}\) we have

\[v_{x,\lambda}(y) \leq v(y), \quad \forall \ y \in B_2 \setminus B_\frac{1}{2}, \ |y - x| \geq \lambda. \]

This and some calculus lemma (see lemma 1 in [3]) imply, for some constant \(C\) depending only on \(\delta\), that

\[|\nabla v(y)| \leq C v(y) \quad \forall \ |y| = 1, \]
i.e.,

$$|\nabla w(ry)| \leq C \frac{w(ry)}{r}, \quad \forall |y| = 1.$$

Since this holds for all $0 < r < 5\delta$, we have

$$|z||\nabla w(z)| \leq Cw(z), \quad \forall 0 < |z| < 5\delta.$$

Lemma 2 is established. □

Our next lemma provides estimates of the second derivatives of w near the origin.

Lemma 3

$$\limsup_{|x| \to 0} \left(|x|^2 |\nabla^2 w(x)| \right) < \infty.$$

Proof of Lemma 3. Let δ be as in the proof of Lemma 2, $0 < r < 5\delta$, and $v(y) := w(ry)$. Then v satisfies (21), i.e.,

$$\tilde{F}(A^v) = r^2, \quad A^v \in \tilde{U}, \quad \text{on } B_2 \setminus \{0\},$$

where $\tilde{U} := r^2U$ and $\tilde{F}(M) := r^2F(r^{-2}M), M \in \tilde{U}$. Clearly, (\tilde{F}, \tilde{U}) satisfies (1), (2), (3), (4), (6), (7) (with (F, U) replaced by (\tilde{F}, \tilde{U})), and

$$\sum_{i,j=1}^n \tilde{F}_{ij}(M)M_{ij} \leq \frac{1}{\gamma} |M|^{1-\gamma} \sum_{i=1}^n \tilde{F}_{ii}(M), \quad \forall M \in \tilde{U}, \tilde{F}(M) = r^2, |M| \geq 1.$$

We know from (20) and Lemma 2 that

$$v + |\nabla v| \leq C \quad \text{on } B_{\frac{3}{2}}^r \setminus B_{\frac{1}{2}}^r$$

for some constant C independent of r.

Following, with minor modification, the computation in the proof of theorem 1.6 in [2] (with F there replaced by our \tilde{F}, v there replaced by $-\frac{2}{n-2} \log v$ with our v, and keep in mind that h there is a constant r^2; for some earlier works on second derivative estimates, see remark 1.13 in [2]), we obtain

$$|\nabla^2 v| \leq C \quad \text{on } \partial B_1$$

for some constant C independent of r. Lemma 3 follows immediately.
Since $w \in C^\alpha(B_1)$ and since we have proved that
\[
\limsup_{|x| \to 0}(|x||\nabla w(x)| + |x|^2|\nabla^2 w(x)|) < \infty,
\]
we can apply lemma 6.4 in [2] to obtain $\limsup_{|x| \to 0}(|x|^{1-\frac{\alpha}{2}}|\nabla w(x)|) < \infty$. In particular,
\[
\lim_{|x| \to 0}(|x||\nabla w(x)|) = 0.
\]

Now we are in a position to apply theorem 1.2 in [2] (with $u_{0,1}$ there being our w) to conclude that u must be of the form (9). Theorem 1 is established.

\[\square\]

Proof of Corollary 1. Let
\[
U := \{M \in S^{n \times n} \mid \lambda(M) \in \Gamma\},
\]
and
\[
F(M) := f(\lambda(M)), \quad M \in U.
\]
To establish Corollary 1, we only need to verify that (F, U) satisfies the hypothesis of Theorem 1. These are well known to people in the field, but for convenience of the reader, we provide some details. Since Γ is an open subset of \mathbb{R}^n, U is an open subset of $S^{n \times n}$. Since orthogonal conjugation does not change the set of eigenvalues and since Γ is symmetric in the λ_i, we know that U satisfies (1) and F satisfies (4). Since $\Gamma_n \subset \Gamma$ and Γ satisfies (11), we know that $\lambda + \mu = 2(\frac{\lambda + \mu}{2}) \in \Gamma$ for all $\lambda \in \Gamma$ and $\mu \in \Gamma_n$. For $M \in U$ and $N \in S^{n \times n}$, let $\lambda_n(M) \geq \cdots \geq \lambda_1(M)$ denote the eigenvalues of M, we know that
\[
\lambda_i(M) = \inf_{\text{dim } K = i, x \in X, ||x|| = 1} \sup (x'Mx), \quad 1 \leq i \leq n.
\]
Similar formula holds for $M + N$. Thus $\lambda_i(M + N) \geq \lambda_i(M)$ for all $1 \leq i \leq n$. Write $\lambda = (\lambda_1(M), \cdots, \lambda_n(M))$ and $\mu = (\lambda_1(M + N) - \lambda_1(M), \cdots, \lambda_n(M + N) - \lambda_n(M))$, then $\lambda \in \Gamma$ and $\mu \in \Gamma_n$, thus $\lambda + \mu = (\lambda_1(M + N), \cdots, \lambda_n(M + N)) \in \Gamma$, i.e., $M + N \in U$. So U satisfies (2). Since $\Gamma_U = \Gamma$, (3) follows from (11). Clearly, (4) follows from $f(0) = 0$. Property (5) and (6) can be deduced from the concavity of f in Γ and the fact that $f_{\lambda_i} > 0$ in Γ for every $1 \leq i \leq n$, see e.g., [1]. For all $\lambda \in \Gamma$ satisfying $f(\lambda) = 1$, we have, using the concavity of f in Γ and the convexity of Γ,
\[
1 = f(\bar{b}e) \leq f(\lambda) + \sum_i f_{\lambda_i}(\lambda)(\bar{b} - \lambda_i) = 1 + \sum_i f_{\lambda_i}(|\bar{b} - \lambda_i|).
\]
i.e.,
\[\sum_i f_{\lambda_i}(\lambda) \lambda_i \leq \bar{b} \sum_i f_{\lambda_i}(\lambda). \]

This, after diagonalizing M by an orthogonal conjugation, implies (8). Corollary 1 is established.

\[\square \]

References

[1] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Math. 155 (1985), 261-301.

[2] A. Li and Y.Y. Li, On some conformally invariant fully nonlinear equations, preprint.

[3] A. Li and Y.Y. Li, A fully nonlinear version of the Yamabe problem and a Harnack type inequality, [arXiv:math.AP/0212031](http://arxiv.org/abs/math.AP/0212031) v1 2 Dec 2002.

[4] Y.Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, Journal d’Analyse Mathematique, to appear.

[5] N.S. Trudinger and X. Wang, Hessian measures II, Ann. of Math. 150 (1999), 579-604.