DESARROLLO DE PLÁNTULAS DE HUIZACHE
(*Acacia farnesiana*) EN SUSTRATOS CON VERMICOMPOST

DEVELOPMENT OF HUIZACHE (*Acacia farnesiana*) SEEDLINGS IN SUBSTRATES WITH VERMICOMPOST

Alejandro Moreno-Reséndez1; Guadalupe Solís-Morales1; Eduardo Blanco-Contreras1; Jesús Vásquez-Arroyo1; Luz M. P. Guzmán-Cedillo1; Norma Rodríguez-Dimas1; Uriel Figueroa-Viramontes2.

1Universidad Autónoma Agraria Antonio Narro-Unidad Laguna. Periférico Raúl López Sánchez km 1.5, Carretera a Santa Fe s/n. Torreón, Coahuila. MÉXICO. C. P. 27059. Correo-e: alejamorsa@yahoo.com.mx Tel.: 01 871 729 7677 (Autor para correspondencia).

2Campo experimental La Laguna, Centro de Investigación Regional Norte Centro, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. km 17.5 Carretera Torreón-Matamoros. Matamoros, Coahuila. MÉXICO. C. P. 27440.

RESUMEN

Se estudió el efecto del vermicompost, como parte del sustrato de crecimiento, sobre el desarrollo de plántulas de huizache (*Acacia farnesiana*) colocadas bajo un sombreador rústico construido a base de carrizo, durante un periodo de 240 días. Se evaluaron cinco mezclas de vermicompost-arena con proporciones: 10:90, 20:80, 30:70, 40:60 y 50:50 (% volumen) y como testigo se utilizó suelo natural de la zona donde los huizaches se desarrollan. Las semillas para producir las plántulas se obtuvieron de la zona donde se desarrollan los huizaches. Los tratamientos se repitieron 30 veces y de cada uno se cosecharon cinco plántulas para evaluar la altura, diámetro de tallo, número de ramificaciones, peso fresco y peso seco. El efecto de los tratamientos se determinó mediante un diseño completamente al azar y se aplicó la prueba de comparación de medias DMS(5%). El desarrollo del huizache en los diferentes sustratos no fue uniforme. Las variables presentaron las respuestas más sobresalientes con la mezcla vermicompost-arena 10:90, por lo que se puede concluir que el vermicompost, en baja concentración, favoreció el desarrollo de *A. farnesiana*.

PALABRAS CLAVE: Abono orgánico, humus de lombriz, sustratos de crecimiento, vegetación nativa.

ABSTRACT

The effect of vermicompost, as part of the growth substrate, on the development of huizache (*Acacia farnesiana*) seedlings placed under a rustic shelter made from reeds was evaluated over a period of 240 days. Five vermicompost-sand mixtures with five ratios, namely 10:90, 20:80, 30:70, 40:60 and 50:50 (% by volume), were assessed, and natural soil from the area where huizaches grow was used as the control. Seeds for producing the seedlings were obtained from the huizaches of the area. The treatments were replicated 30 times, and five seedlings were harvested from each one to determine plant height, main stem diameter, number of branches, and fresh and dry weight. The effect of the treatments was determined using a completely randomized experimental design and the averages were compared by the LSD test. Huitzache growth was not uniform in the different substrates; however, the 10:90 vermicompost-sand mixture had the best variable responses in terms of plant height and fresh and dry weight. Therefore, vermicompost at low concentration promoted the growth of *A. farnesiana*.

PALABRAS CLAVE: Organic amendment, earthworm vermicast, growth substrates, native vegetation.
INTRODUCCIÓN

En la actualidad, en diversas regiones de México, los productores manejan los sustratos con poco o escaso conocimiento acerca de sus propiedades físico-químicas, a pesar de la importancia de éstos en las actividades viveristas y ornamentales. Este desconocimiento ha traído como consecuencias tanto el deterioro y agotamiento de recursos no renovables como el suelo, así como un impacto ambiental significativo e indeseable (González-Chávez, Ferrera-Cerrato, Villegas-Monter, & Oropeza, 2000). En el caso del huizache (Acacia farnesiana [L.] Willd.), las plántulas se producen utilizando materiales como: a) un sustrato inerte conformado por la mezcla 55:35:10 de turba, vermiculita, y perlita o agrolita; y b) una combinación 3:2:1 de arena media, arcilla y limo. Esta combinación es adecuada para lograr buenas características de drenaje y retención de agua (Comisión Nacional Forestal [CONAFOR], s/f).

Los estudios con vermicompost (VC), entre los cuales destacan los desarrollados por Atiyeh et al. (2000a) y Domínguez-Salvador, Pasqual y Nicoli-Spera (2001), han demostrado consistentemente que su empleo provoca efectos benéficos sobre el crecimiento de las plantas. Domínguez-Salvador et al. (2001) reportaron que el sustrato con humus de lombriz generó mayor beneficio sobre el crecimiento de Polypodium aureum L. y que 88.32 % de las plantas alcanzaron su punto de comercialización 120 días después del trasplante, mientras que con otros métodos de cultivo, dicho punto se alcanzó aproximadamente a los 270 días.

Segura-Castruita et al. (2008) sugieren que deben emplearse sustratos conformados por materiales de origen natural y desechos que se encuentran disponibles en cada región, pues algunos de los materiales empleados son productos de importación y de costo elevado. En relación a la disponibilidad de materiales o residuos, se resalta que en la Comarca Lagunera se localiza una de las regiones productoras de leche más importantes de México con más de 400,000 cabezas de ganado bovino, por lo que se estima que, tan sólo de este tipo de ganado, se pueden obtener cerca de 1,000 t de estiércol seco por día (Salazar-Sosa et al., 2004). Estos residuos pueden ser transformados en VC empleando lombrices Eisenia fetida (Bansal & Kapoor, 2000).

Por lo anterior y debido a que en la Comarca Lagunera se carece de información para sustituir los sustratos tradicionales, algunos de costo elevado como el peat moss por ser un producto de importación, se estudió el efecto de diversas combinaciones de VC con arena sobre el desarrollo de plántulas de A. farnesiana. Las combinaciones estudiadas podrían utilizarse potencialmente para actividades de forestación y reforestación en las zonas áridas y semiáridas de México.

INTRODUCTION

Nowadays, in several regions of Mexico, producers handle substrates with little or limited knowledge about their physical-chemical properties despite their importance in nursery activities and ornamentals. This lack of knowledge has resulted in the deterioration and depletion of non-renewable resources such as soil, as well as a significant and undesirable environmental impact (González-Chávez, Ferrera-Cerrato, Villegas-Monter, & Oropeza, 2000). In the case of huizache (Acacia farnesiana [L.] Willd.), seedlings are produced using materials such as: a) an inert substrate composed of a 55:35:10 mixture of peat, vermiculite, and perlite or agrolita, and b) a 3:2:1 mixture of medium sand, clay and silt. This combination is suitable for achieving good drainage and water retention properties (Comisión Nacional Forestal [CONAFOR], s/f).

Studies with vermicompost (VC), among which conducted by Atiyeh et al. (2000a) and Domínguez-Salvador, Pasqual y Nicoli-Spera (2001) stand out, have consistently shown that its use has beneficial effects on plant growth. Domínguez-Salvador et al. (2001) reported that substrate with earthworm vermicast generated more beneficial effects on the growth of Polypodium aureum L. and that 88.32 % of the plants reached their marketing point 120 days after transplantation, whereas with other cultivation methods, the marketing point was reached in approximately 270 days.

Segura-Castruita et al. (2008) suggest using substrates made of natural materials and wastes that are available in each region, since some of the materials used are imported products that are more expensive. In relation to the availability of materials or waste, the Comarca Lagunera stands out as one of the most important milk-producing regions in Mexico with more than 400,000 head of cattle, so it is estimated that only from this type of livestock 1,000 t of dry manure can be obtained per day (Salazar-Sosa et al., 2004). This waste can be transformed into VC using Eisenia fetida earthworms (Bansal & Kapoor, 2000).

For this reason and because the Comarca Lagunera lacks information to replace traditional substrates, and because some of them, such as peat moss, are expensive due to being imported products, the effect of various combinations of VC with sand on the development of A. farnesiana seedlings was studied. The studied combinations could potentially be used for forestation and reforestation in arid and semiarid regions of Mexico.

MATERIALS AND METHODS

Obtaining seedlings

The experiment was conducted in a rustic shelter constructed of reed (Phragmites australis [Cav.] Trin. Ex Steud) (Gerritsen, Ortiz-Aronna, & González-Figueroa, 2009), at the Universi-
MATERIALES Y MÉTODOS

Obtención de plántulas

El experimento se realizó en un sombreador rústico, construido a base de carrizo (*Phragmites australis* [Cav. Trin. Ex Steud]) (Gerritsen, Ortiz-Arrona, & González-Figueroa, 2009), en la Universidad Autónoma Agraria Antonio Narro Unidad Laguna, en Torreón, Coahuila. La institución se localiza en la Comarca Lagunera (24° 22'-26° 23 N, 102° 22'-104° 47' W) al norte de México, a una altitud de 1,139 m, con precipitación de 235 mm y temperatura media anual de 18.6 ºC (Orona-Castillo et al., 2006).

Las semillas frescas de *A. farnesiana* se obtuvieron de vainas cosechadas en un rodal existente dentro de la Unidad Laguna. Las vainas de color marrón oscuro se tomaron directamente de los arbustos y se colocaron en costales de material plástico; éstos se golpearon hasta liberar las semillas. La selección se realizó manualmente desechando los restos de los frutos y las simientes dañadas o con coloraciones anormales. Las semillas se colocaron en bolsas de papel durante 30 días aproximadamente, para concluir el secado; finalmente, se depositaron en frascos de vidrio sellados y se mantuvieron a la sombra a una temperatura media de 26 ºC, para conservar su viabilidad.

Las semillas frescas de *A. farnesiana*, debido a que poseen un porcentaje de germinación entre 10 y 40 % (Centro Agronómico Tropical de Investigación y Enseñanza [CATIE], s/f), se escarificaron en H$_2$SO$_4$ concentrado por 5 min (Rivas-Medina, González-Cervantes, Valencia-Castro, Sánchez-Cohen, & Villanueva-Díaz, 2005); el exceso de ácido se lavó con agua. Concluido este proceso, las semillas se sembraron en charolas de poliestireno de 200 celdillas rellenas con peat negrio, 300-gauge, 3-liter black polyethylene bags (Francis, 1999), con una capacidad de 3 litros, colocando una plántula por maceta.

Diseño experimental

Los sustratos utilizados para el desarrollo de las plántulas fueron, suelo natural (SN) como testigo (T0) y cinco mezclas de vermicompost-arena (VC:A) como tratamientos con las siguientes proporciones (% en volumen): 10:90 (T1), 20:80 (T2), 30:70 (T3), 40:60 (T4) y 50:50 (T5). El SN del predio donde se localiza el rodal de huizaches presentó las siguientes características: textura migajón, pH 7.73, capacidad de intercambio cationico de 11.0 meq-100 g$^{-1}$ de suelo, y conductividad eléctrica de 3.21 dS·cm$^{-1}$; Hernández-Martínez, Cetina-Alcalá, González-Chávez, y Cervantes-Martínez dad Autonoma Agraria Antonio Narro Unidad Laguna, in Torreón, Coahuila. The institution is located in the Comarca Lagunera (24° 22'-26° 23 N, 102° 22'-104° 47' W) in northern Mexico, at an altitude of 1,139 m, with mean annual precipitation of 235 mm and a mean annual temperature of 18.6 ºC (Orona-Castillo et al., 2006).

Fresh *A. farnesiana* seeds were obtained from harvested pods in an existing stand within the university's Laguna unit. The dark brown pods were taken directly from the bushes and placed in plastic sacks. After that, the sacks were beaten until the seeds were released. The selection was done manually, discarding the remains of the fruits and damaged or abnormally colored seeds. The seeds were placed in paper bags for about 30 days to complete the drying; finally, they were deposited in sealed glass jars and kept in the shade at an average temperature of 26 ºC to preserve their viability.

Fresh *A. farnesiana* seeds, because they have a germination rate of between 10 and 40 % (Centro Agronómico Tropical de Investigación y Enseñanza [CATIE], s/f), were scarified in concentrated H$_2$SO$_4$ for 5 min (Rivas-Medina, González-Cervantes, Valencia-Castro, Sánchez-Cohen, & Villanueva-Díaz, 2005); the excess acid was removed with water. When this process was completed, the seeds were sown in polyethylene trays with 200 cells filled with moistened peat moss (Premier®, Serviagrícola del Bajo S. A. de C. V., Querétaro). The trays were placed in black plastic bags and then taken to a greenhouse where they were watered every other day until the seeds (90 to 95 %) germinated. When the seedlings reached a height of 2 to 3 cm and had a pair of true leaves (30 days after planting [dap]), they were transplanted into 500-gauge, 3-liter black polyethylene bags (Francis, 1999), placing one seedling per pot.

Experimental Design

The substrates used for seedling development were natural soil (NS) as the control (C) and five vermicompost-sand (VC: S) mixtures as treatments with the following proportions (% by volume): 10:90 (T1), 20:80 (T2), 30:70 (T3), 40:60 (T4) and 50:50 (T5). The NS of the property where the huizache stand is located presented the following characteristics: loam texture, pH 7.73, cation exchange capacity of 11.0 meq·100 g$^{-1}$ of soil, and electrical conductivity of 3.21 dS·cm$^{-1}$; Hernández-Martínez, Cetina-Alcalá, González-Chávez, and Cervantes-Martínez (2006) stress that agricultural soil can be used as substrate for the production of *A. farnesiana* and *Prosopis glandulosa*. The VC used to satisfy the nutrient demand of huizache was generated from the combination of horse, goat and rabbit manure with a volume ratio of 1:1:1. This mixture was subjected to the transforming action of *E. fetida* earthworms, for 90 days (Bansal & Kapoor, 2000). The sand used in the mixtures, due to lacking nutrient elements, was considered inert material (Wightman, 2000). When the VC stabilization process was completed, and prior to its use in the substrates, a chemical analysis was done to determine
Desarrollo de plántulas...

Las plantas de huizache erguidas se ataron a un tutor de madera cuando alcanzaron una altura aproximada de 30 cm, para evitar que la parte vegetativa tocara el suelo. El tutor fue enterrado en cada recipiente, evitando dañar las raíces. Las macetas se regaron cada tercer día para cubrir las necesidades hídricas.

Cada uno de los tratamientos contó con 30 repeticiones. Las plantas se desarrollaron durante 240 días. Al concluir este periodo se registraron las siguientes variables: altura (AP), diámetro (DT), número de ramificaciones (NR) a partir del tallo principal, así como los pesos fresco (PF) y seco (PS) de la plántula, para lo cual se seleccionaron al azar cinco macetas por tratamiento. La AP se midió con una cinta métrica flexible (TRUPER, JTF-018-014/07, Taiwán), ajustándola a lo largo del tallo principal, mientras que el DT se midió con un pie de rey (Foy Tools, 142070, China), el cual se colocó en la base del tallo principal y se registró el valor correspondiente.

Las plantas se extrajeron de cada maceta aplicando agua de la llave a presión, para separar el sustrato de las raíces y así determinar los PF y PS. Esta operación se realizó sobre un tamiz núm. 60 de 250 μm, evitando la pérdida de material vegetal. Éste se colocó sobre papel toalla para eliminar el exceso de humedad e inmediatamente se depositó en bolsas de papel, previamente identificadas. El PF se registró utilizando una balanza de precisión (CPA Sartorius®, SAR CPA5201, Alemania). Posteriormente, las bolsas se colocaron en una estufa (Felisa 293A®, México) a temperatura de 70 °C hasta alcanzar peso constante para obtener el PS.

Statistical Analysis

El efecto de los tratamientos sobre las variables se determinó con un diseño completamente al azar. Los datos de los parámetros evaluados se analizaron estadísticamente mediante ANDEVA y se hizo comparación de medias aplicando la prueba DMS_{0.05} con el Programa de diseños experimentales versión 2.4 de Olivasres-Sáenz (1993).

RESULTS AND DISCUSSION

The ANOVA showed highly significant differences (P ≤ 0.01) among treatments for the variables PH, SD, FW and DW and significant differences (P ≤ 0.05) for NB (Table 1). The variables PH, FW and DW showed the highest values with T1 (VC:S = 10:90), while the highest values of ST and NB were obtained with T4 (VC:S = 40:60) and T2 (VC:S = 20:80), respectively. Additionally, in all variables, at least one of the mixtures with VC:S exceeded the effect caused by the control. Table 1 also shows that with the exception of SD, the rest of the variables evaluated in huizache seedlings had higher values with 10:90 and 20:80 (VC:S) mixtures. This coincided with the findings reported by Subler, Edwards, and...
RESULTADOS Y DISCUSIÓN

Los ANDEVA mostraron diferencias altamente significativas (P ≤ 0.01) entre tratamientos para las variables AP, DT, PF y PS y diferencias significativas (P ≤ 0.05) para NR (Cuadro 1). Las variables AP, PF y PS mostraron los valores más altos con el T1 (VC:A = 10:90) mientras que los mayores valores de DT y NR se obtuvieron con T4 (VC:A = 40:60) y T2 (VC:A = 20:80), respectivamente. Adicionalmente, en todas las variables, al menos una de las mezclas con VC:A superó el efecto provocado por el testigo. En el Cuadro 1 también se aprecia que a excepción del DT, el resto de las variables evaluadas en las plántulas de huizache registraron los valores más altos con las mezclas 10:90 y 20:80 (VC:A). Esto coincidió con lo expresado por Subler, Edwards, y Metzger (1998) y Atiyeh, Arancon, Edwards y Metzger (2000), quienes determinaron que la incorporación de pequeñas cantidades de vermicompost de estiércol de cerdo fue suficiente para generar un incremento significativo de la biomasa total de las plántulas en el cultivo de tomate. Específicamente, Atiyeh et al. (2000) señalaron que la disminución en el crecimiento de las plantas con las concentraciones de vermicompost superiores al 60 %, se debió a una elevada concentración de sales solubles, una pobre aireación, toxicidad por metales pesados y fitotoxicidad de la planta.

Parrott (1992) encontró que el crecimiento de *Acacia farnesiana* durante el primer año puede ser rápido y determinó que la manure vermicompost was enough to generate a significant increase in total seedling biomass in the tomato crop. Specifically, Atiyeh et al. (2000) noted that the decreased growth in plants that had vermicompost concentrations above 60 % was due to a high concentration of soluble salts, poor aeration, heavy metal toxicity and plant phytotoxicity.

Parrotta (1992) found that *A. farnesiana* growth during the first year can be fast and also determined that maximum seedling height, at 365 dap, ranged between 63 and 210 cm, when they were grown in the nursery, which was open to rain and irrigated, respectively. Therefore, in this study, it is reasonable to assume that the 10:90 (VC: S) mixture, in which a mean height of 136 ± 15.54 cm was obtained, largely favored seedling development. This height was reached at 240 dap. Similarly, the average PH values obtained with the different VC: S treatments (between 93.4 and 136.0 cm) were much higher than the values reported by García-Sánchez (2005) who transplanted huizache seedlings, with and without mycorrhizal inoculation, into soil in the Mezquital Valley, Hidalgo, Mexico, reporting heights of 11.17 and 10.88 cm, a year after their establishment.

García-Sánchez (2005) also recorded values of 2.77 and 2.76 g FW in *A. farnesiana* seedlings, with and without mycorrhizae, respectively, 365 days after transplantation. Compa-

CUADRO 1. Variables evaluadas en *Acacia farnesiana* desarrollada durante 240 días con diferentes mezclas de vermicompost-arena como sustratos de crecimiento.

TABLE 1. Variables evaluated in *Acacia farnesiana* developed for 240 days with different vermicompost-sand mixtures used as growth substrates.

Tratamiento / Treatment	Mezcla VC:A / Mixture VC:S (%)	Altura de la planta** / Number of branches*	Diámetro del tallo** / Stem diameter**	Peso fresco** / Fresh weight**	Peso seco** / Dry weight**
T0	SN	104.2b	0.86c	11.8ab	98.6b
T1	10:90	136.0a	1.16ab	9.4b	126.4a
T2	20:80	107.2b	1.10bc	12.4a	99.0b
T3	30:70	93.4b	0.94bc	8.8c	97.4b
T4	40:60	97.4b	1.42a	8.2c	91.4b
T5	50:50	97.6b	0.92bc	8.8c	79.6b
Media / Mean		105.97	1.07	9.90	98.73
DE / SD		15.54	0.21	1.86	15.41
DMS / LSD (5 %)		23.82	0.29	2.41	20.98
CV (%)		17.78	20.36	18.63	16.20

VC = Vermicompost; A = Arena; SN = Suelo natural. ANDEVA: *significativo (P ≤ 0.05), **altamente significativo (P ≤ 0.01). Letras distintas en las mismas columnas indican diferencias significativas, según la prueba de diferencia mínima significativa (DMS: P ≤ 0.05). DE = Desviación estándar; CV = Coeficiente de variación. VC = Vermicompost; S = Sand; NS = Natural soil. ANOVA: *significant (P ≤ 0.05), **highly significant (P ≤ 0.01). Different letters in the same column indicate significant differences according to the least significant difference test (LSD: P ≤ 0.05). SD = Standard deviation, CV = Coefficient of variation.
altura máxima de las plántulas, 365 dds, osciló entre 63 y 210 cm, cuando éstas se desarrollaron en almácigos de vivero abiertos a la lluvia e irrigados, respectivamente. Por lo anterior, en el presente estudio, es factible suponer que la mezcla 10:90 (VC:A), en la que se obtuvo una altura promedio de 136 ± 15.54 cm, favoreció ampliamente el desarrollo de las plántulas, pues dicha altura se alcanzó en 240 dds. En el mismo sentido, los valores promedio de AP obtenidos con los diferentes tratamientos VC:A (entre 93.4 y 136.0 cm) fueron muy superiores a los valores reportados por García-Sánchez (2005) quien trasplantó plántulas de huizache, con y sin inoculación de micorrizas, en suelos del Valle del Mezquital, Hidalgo, México, reportando alturas de 11.17 y 10.88 cm, un año después de su establecimiento.

García-Sánchez (2005) también registró valores de 2.77 y 2.76 g de PF en plántulas de *A. farnesiana*, con y sin micorrizas, respectivamente, 365 días después del trasplante. Al comparar estos resultados con el PF promedio de 98.73 g obtenido en el presente trabajo, se puede apreciar que con los sustratos evaluados (suelo natural y las mezclas VC:A) se obtuvieron 95 g más de PF promedio, 240 dds. Esta diferencia resalta la importancia que tiene, por un lado, la propagación de las especies vegetales en los viveros, donde de acuerdo con Arriaga, Cervantes, y Vargas-Mena (1994) se brindan cuidados y condiciones propicias que garantizan la supervivencia de las plantas, y por otro, el empleo de los sustratos, sobre todo si se pueden generar con los recursos disponibles en cada región (Moreno-Reséndez, Valdés-Perezgasga, & Zarate-López, 2005).

El valor promedio de DT registrado (1.07 ± 0.21 cm) 240 dds (Cuadro 1), representó 27.44 % del DT (3.9 cm) reportado por Parrotta (1992) en huizaches de tres años de edad, correspondientes a 1,095 dds. Por lo anterior es posible pensar que los VC favorecieron el crecimiento de *A. farnesiana* como lo han corroborado Atiyeh et al. (2000a) y Domínguez-Salvador et al. (2001) en diferentes especies vegetales.

La respuesta de las variables AP, PF, PS y NR con los sustratos de 10 y 20 % de VC corresponde a lo establecido por Atiyeh et al. (2000a), quienes también obtuvieron los mejores resultados sobre el crecimiento de *Lycopersicum esculentum* y *Calendula officinalis* con los mismos niveles de VC.

En atención a los resultados obtenidos, al igual que García, Alcántar, Cabrera, Gavi, y Volke (2001) quienes evaluaron la producción de *Epipremnum aureum* y *Spathiphyllum wallisii* en medios de crecimiento orgánicos e inorgánicos, se destaca que el VC, como abono orgánico, generó una influencia significativa sobre las plántulas de huizache. Adicionalmente, las respuestas obtenidas durante el desarrollo de *A. farnesiana* con la aplicación del VC reafirman la idea de que es posible utilizar sustratos de crecimiento obtenidos de forma natural y/o a través de procesos de reciclaje, sin provocar impactos significativos a las áreas naturales (Chávez-Anaya et al., 2006).

ring these results with the average of 98.73 g FW obtained in the present work, it can be seen that with the substrates tested (natural soil and VC:S mixtures) an average of 95 g more FW was obtained 240 dap. This difference highlights the importance of, first, the propagation of plant species in nurseries, where according to Arriaga, Cervantes, and Vargas-Mena (1994), proper care and conditions that ensure the survival of the plants are given, and secondly, the use of substrates, particularly if they can be generated with the resources available in each region (Moreno-Reséndez, Valdés-Perezgasga, & Zarate-López, 2005).

The average SD value recorded (1.07 ± 0.21 cm) 240 dap (Table 1) represented 27.44 % of the SD (3.9 cm) reported by Parrotta (1992) in three-year-old huizaches, corresponding to 1,095 dap. Therefore, it can be concluded that the VC favored the growth of *A. farnesiana* as corroborated by Atiyeh et al. (2000a) and Domínguez-Salvador et al. (2001) in different plant species.

The response of the variables PH, FW, DW and NB with substrates containing 10 and 20 % VC corresponds to that reported by Atiyeh et al. (2000a), who also obtained the best growth results for *Lycopersicum esculentum* and *Calendula officinalis* with the same VC level.

In view of the obtained results, like García, Alcántar, Cabrera, Gavi, and Volke (2001) who evaluated the production of *Epipremnum aureum* and *Spathiphyllum wallisii* on organic and inorganic growth media, VC, as organic fertilizer, stood out by generating a significant influence on huizache seedlings. Additionally, the responses obtained during the development of *A. farnesiana* with the application of VC reinforce the idea that it is possible to use growth substrates obtained naturally and/or through recycling processes without causing significant impacts to natural areas (Chávez-Anaya et al., 2006).

CONCLUSIONS

The use of VC, as part of growth substrates, favored huizache seedling development. The best response was recorded in plant height, fresh weight and dry weight by applying VC at a concentration of 10 % in volume. Therefore, it is possible to assume that the nutrient demand of huizache was satisfied with the chemical composition of the VC employed. The VC also reduced the time required for *A. farnesiana* plants grown in a nursery to reach the marketing point.
CONCLUSIÓN

El empleo del VC, como parte de los sustratos de crecimiento, favoreció el desarrollo de las plantas de huizache. La respuesta más adecuada se registró en la altura de la planta, peso fresco y peso seco, al aplicar el VC en una concentración de 10% en volumen. Por tanto, es posible suponer que la demanda nutritiva del huizache se logró satisfacer con la composición química del VC empleado. El VC también redujo el periodo para alcanzar el punto de comercialización.

REFERENCIAS

Arriaga, V., Cervantes, V., & Vargas-Mena, A. (1994). Manual de reforestación con especies nativas: Colecta y preservación de semillas, propagación y manejo de plantas. México, D. F.: Instituto Nacional de Ecología, Secretaría de Desarrollo Social. Obtenido de http://www.manosalatierra.org/descargables/Manual_detalleado_de_reforestacion.pdf

Atiyeh, R. M., Arannon, N., Edwards, C. A., Metzer, J. D. (2000). Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia, 44(5), 579–590. Obtenido de http://www.earthworm.com.co/wp-content/uploads/2009/04/effect-vc-plant-growth.pdf

Bansal, S., & Kapoor, K. K. (2000). Vermicomposting of crop residues and cattle dung with Eisenia fetida. Bioresource Technology, 73(2), 95–98. doi: 10.1016/S0960-8524(99)00173-X

Centro Agronómico Tropical de Investigación y Enseñanza (CATIE). (s/f). *Acacia farnesiana* (L.) Willd. Nota técnica 62. Obtenido de http://orton.catie.ac.cr/repdoc/A0008S/A0008S62.PDF

Chávez-Anaya, J. M., Godínez-Herrera, J. J., Peña-Zepeda, Á., Rentaria-García, A., Pérez-Murillo, R., & Moeller-Luthin, A. (2006). La germinación de semillas de *Pinus devesiana* en nueve tipos de mezclas de sustratos. In Memoria de la XVII Semana de la Investigación Científica (Ed.), Avances en la investigación científica en el CUCBA (pp. 48–52). México. Obtenido de http://www.cucba.udg.mx/actualidad/publicaciones1/avances_avances_2006/Agronomia/ChavezAnayaJoseMaria/Chavez_Anaya_Jose_Maria.pdf

Comisión Nacional Forestal (CONAFOR). (s/f). *Acacia farnesiana* (L.) Willd. Paquetes tecnológicos. México: Sistema de Información para la Reforestación, Comisión Nacional Forestal-Comisión Nacional para la Biodiversidad. Obtenido de http://www.conafor.gob.mx:8080/documentos/docs/13/874Acacia%20farnesiana.pdf

Domínguez-Salvador, E., Pasqual, M., & Nicolli-Spera, M. R. (2001). Efecto de diferentes sustratos no crecimiento de Samambaia-Matogrossense (*P. aureum* L.). Ciencia e Agrotecnología, *Lavras*, (3), 249–258. Obtenido de: http://www.redalyc.uaemex.mx/pdf/573/5731194008.pdf

Francis, J. K. (1999). *Especies forestales para plantar en áreas forestales, rurales y urbanas de Puerto Rico*. USA: International Institute of Tropical Forestry. Obtenido de http://edicionesdigitales.info/biblioteca/especiesforestales.pdf

García, C. O., Alcántar, G. G., Cabrera, R. L., Gavi, R. F., & Volke, H. V. (2001). Evaluación de sustratos para la producción de *Epipremnum aureum* y *Spathiphyllum wallisii* cultivadas en maceta. *Terra*, 19(4), 249–258. Obtenido de http://www.chapingo.mx/terra/articulo/19/4/art249-258.pdf

García-Sánchez, R. (2005). Restauración de la cubierta vegetal de los matorrales semiáridos del Valle del Mezquital, Hidalgo, México. Obtenido de http://www.globalrestorationnetwork.org/database/case-study/?id=131

González-Chávez, M. C., Ferrera-Cerrato, R., Villegas-Monter, A., & Oropeza, J. L. (2000). Selección de sustratos de crecimiento en microplantulas de cítricos inoculadas con *Glomus* sp. *Zac-19*. *Terra*, 18(4), 369–377. Obtenido de http://redalyc.uaemex.mx/pdf/573/57373341.pdf

Gerritsen, P. R. W., Ortiz-Arrona, C., & González-Figueroa, R. (2009). Usos populares, tradición y aprovechamiento del carrizo: Estudio de caso en la costa sur de Jalisco, México. *Economía, Economía Sociedad y Territorio*, 9(29), 185–207. Obtenido de http://fenix.cmq.edu.mx/documentos/Revista/revista29/est29_8.pdf

Hernández-Martínez, M., Cetina-Alcalá, V. M., González-Chávez, M. C., & Cervantes-Martínez, C. T. (2006). Incualización micorrízica y su efecto en el crecimiento de dos leguminosas arbóreas. *Terra Latinoamericana*, 24(1), 65–73. Obtenido de http://redalyc.uaemex.mx/pdf/573/57311494008.pdf

Moreno-Reséndez, A., Valdés-Perezgasga, M. T., & Zarate-López, T. (2005). Desarrollo de tomate en sustratos de vermicompost/arena bajo condiciones de invernadero. *Agricultura Técnica (Chile)*, 65(1), 26–34. Obtenido de http://www.chileanjar.cl/online/espanol/v65n1/pdf/art3.pdf

Olivares-Sáenz, E. (1993). *Paquete de diseños experimentales versión 2.4*. Ciudad Marín, Nuevo León: Facultad de Agronomía, Universidad Autónoma de Nuevo León.

Orona-Castillo, I., Espinoza-Arellano, J. J., González-Cervantes, G. Murillo-Amador, B., García-Hernández, J. L., & Santamaria-César, J. (2006). Aspectos técnicos y socioeconómicos de la producción de nuez (*Carya illinoiensis* Koch.) en la Comarca Lagunera, México. *Agricultura Técnica en México*, 23(3), 295–301. Obtenido de http://www.scielo.org.mx/pdf/agritm/v32n3/v32n3a5.pdf

Parrotta, J. A. (1992). *Acacia farnesiana* (L.) Willd. Aroma, huizache. New Orleans, LA, USA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. Obtenido de http://www.fs.fed.us/global/itf/pdf/Acaciafarnesiana.pdf

Rivas-Medina, P., González-Cervantes, G., Valencia-Castro, C. M., Sánchez-Cohen, L., & Villanueva-Díaz, J. (2005). Morfología y escarificación de la semilla de mezquite, huizache y ahuehuete. *Tecnica Pecuaria México*, 43(3), 441–448. Obtenido de http://redalyc.uaemex.mx/pdf/613/61343314.pdf

Salazar-Sosa, E., Vázquez-Vázquez, C., Leos-Rodríguez, J. A., Fortis-Hernández, M., Montemayor-Trejo, J. A., Figueroa-Viramones, R., & López-Martínez, J. D. (2004). Mineralización del estiércol bovino y su impacto en la calidad del suelo y la...
producción de tomate (L. sculentum Mill) bajo riego subsuperficial. *International Journal of Experimental Botany, 73*(1), 259–273. Obtenido de http://www.scielo.org.ar/pdf/phyton/v73/v73a32.pdf

Segura-Castruita, M. A., Preciado-Rangel, P., González-Cervantes, G., Frías-Ramírez, J. E., García-Legaspi, G., Orozco-Vidal, J. A., & Enríquez-Sánchez, M. (2008). Adición de material pomáceo a sustratos de arena para incrementar la capacidad de retención de humedad. *Interciencia, 33*(12), 923–928. Obtenido de http://www.scielo.org.ve/pdf/inci/v33n12/art12.pdf

Subler, S. Edwards, C. A., Metzger, J. D. (1998). Comparing vermicomposts and composts. *BioCycle, 39*, 63–66. Obtenido de http://www.vermica.com/articles/comparing_castings_compost.htm

Wightman, K. E. (2000). *La calidad del sustrato. Manual de prácticas adecuadas para los viveros forestales. Guía práctica para los viveros comunitarios*. Kenia: ICRAF. Obtenido de http://www.worldagroforestry.org/NurseryManuals/Nursery.htm