Effect of CO₂ Concentration and Liquid to Gas Ratio on CO₂ Absorption from Simulated Biogas Using Monoethanolamine Solution

V Rajiman¹, N A H Hairul¹,²,⁴ and A M Shariff³

¹Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia.
²Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis, Malaysia.
³Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia.

E-mail: hairulnazirah@unimap.edu.my

Abstract. In industrial scale, removal of CO₂ by chemical absorption from raw biogas represents an imperative treatment and the cutting-edge technology towards improvement of its quality and heat value. In this work, CO₂ absorption studies were conducted in an absorption column packed with Sulzer metal gauze packing with simulated biogas absorbed using 30 wt. % of monoethanolamine (MEA) solution. Experimental works were conducted to determine the influence of different CO₂ concentrations in feed gas (30 % and 40 %) and L/G ratio (0.6 and 0.7) and subsequently assessed in terms of CO₂ absorption efficiency along the column. The results showed that 30 % CO₂ in feed gas has higher removal efficiency as compared to 40 % CO₂ with the ability to remove 94 % CO₂ during the process. In addition, the CO₂ absorption studied on the L/G ratio proved that CO₂ removal was improved at higher L/G ratio of 0.7.

1. Introduction

Biogas represents a renewable energy source that has good calorific value, produced under anaerobic condition from decomposition of organic matter. The principal components of biogas consist of methane (CH₄) (40 % – 75 %) and carbon dioxide (CO₂) (15 % – 60 %) with other trace gasses such as hydrogen sulphide (H₂S) [1]. CO₂ contained in the biogas is in terms of combustion, an inert gas. Thus, removal of CO₂ through biogas treatment is an essential process to improve its heat value. For enhancement of biogas quality, several CO₂ capture technologies such as adsorption [2], absorption [3] and membrane separation [4] may be implemented. Among these processes, chemical absorption stands out as the most well-established approach for CO₂ removal in industries due to its high removal efficiency, fast absorption rate and high product purity [5], [6]. Alkanolamines group of solvent has shown an effective absorption performance in CO₂ removal application. A primary amine, monoethanolamine (MEA) is a commercial solvent that has been widely used for the CO₂ absorption process which offers high reaction rate while being cost-effective [7].

The absorption performance in packed column is strongly influenced by the operating conditions. It has been reported for simulated flue gas treatment, removal efficiency is primarily affected by the CO₂ concentration in feed gas, followed by liquid flow rate (L) and gas flow rate (G). Under low pressure
conditions, a noticeable decrease in CO₂ removal efficiency was observed with increasing CO₂ concentrations [3 – 5]. A similar conclusion was reached by Hairul et al. [11] using natural gas (NG) containing 30 – 50 % CO₂ at high pressure conditions up to 4.04 MPa. In addition, for optimization of operating conditions and costs, the L/G ratios in the column have also been deemed essential for consideration [7, 8]. However, the influence of L/G ratios in the previous researches were mostly focused on the flue gas treatment of feed gas containing low CO₂ concentrations (1 – 15 %).

Hence, this study sought to understand the performance of CO₂ absorption from simulated biogas into MEA solution, conducted at relatively higher CO₂ concentrations (30 % and 40 %). In addition, the effect of L/G ratio towards the efficiency of CO₂ absorption was also studied via control of both flow rates entering the absorption column. The absorption performance was then quantified by degree of CO₂ removal (%) along the height of column.

2. Materials and methods

2.1. Chemical and gasses
Monoethanolamine (MEA) (99 % purity) was purchased from Merck, Germany. The CO₂ along with the natural gas (NG) which consists of CH₄ (97 %), CO₂ (2 %) and heavier hydrocarbon (1 %) were purchased from Air Product Malaysia and Petronas Dagangan Bhd, respectively. All chemicals and gasses for experimental works were used without additional purification.

2.2. Equipment and procedures
A fabricated packed absorption column with total height of 2.04 m and internal diameter of 0.046 m was used for all experiments. Sulzer metal gauze packing (Sulzer Chemtech Pte Ltd., Winterthur, Switzerland) with approximate surface area of 500 m²/m³ was packed in the column with 6 sampling points placed vertically at 0.34 m intervals.

Experimental setup of the process is as depicted in Figure 1. The simulated biogas was prepared as a mixture of NG and CO₂. Composition of the feed gas was determined by setting the mass flow controller of NG and CO₂ gases independently.

![Figure 1. The experimental set up for the absorption process.](image-url)
The mixed gas was pressurized up to 30 bar and kept in a gas vessel. From the bottom of the column, the simulated biogas was then introduced to flow upwards, controlled by a gas flow controller at a desired flow rate. Liquid phase was instead introduced from top of the column to travel downwards, thus establishing counter-current contact with the gas. Steady state condition of the absorption process was deemed reached upon operation for 30 minutes. Sampling was then conducted using CO$_2$-CH$_4$ IR Gas Analyzer (Fuji Electric Instrument, Japan) at each level of the absorption column under steady state condition. The CO$_2$-rich solvent was discharged from the bottom part of the absorption column and collected in a CO$_2$-rich solvent tank.

30 wt. % MEA solution with the simulated biogas containing either 30 % or 40 % CO$_2$ in NG gas acted as the liquid phase and gas phase, respectively. The CO$_2$ concentrations of 30 % and 40 % in NG were chosen to represent the intermediate concentration of raw biogas in real application. For process screening purpose, L/G ratios used were set at 0.6 and 0.7 by altering the gas flow rate while keeping constant the liquid flow rate. The experiments were conducted at operating pressure of 1.5 - 2 bar in the column. The absorption performance was finally quantified in terms of CO$_2$ removal percentage along the column and calculated using Equation (CO$_2$ removal (%) = $\frac{y_i - y_o}{y_i} \times 100\%$ (1)), where y_i and y_o represent the CO$_2$ mole fraction at the inlet and outlet of the column, respectively.

$$CO_2 \text{ removal (\%)} = \frac{y_i - y_o}{y_i} \times 100\%$$

3. Results and discussion

3.1. The influence of CO$_2$ concentration in feed gas on the CO$_2$ removal efficiency

The CO$_2$ removal at each level of the column at a fixed gas and liquid flow rate for both CO$_2$ concentrations is as depicted in Figure 2. From the graph, the feed gas containing 30 % CO$_2$ and 40 % CO$_2$ can be seen to have achieved 94 % and 82 % of CO$_2$ removal, respectively. Lower removal efficiency at higher CO$_2$ concentrations under the same operating conditions may be due to the increased CO$_2$ mole fraction to react with limited free active amines in the liquid phase [14]. Moreover, similar increasing trend of CO$_2$ removal was demonstrated by both CO$_2$ concentrations. The reactive area with highest removal can be seen in the middle section of the column in between 0.68 m and 1.36 m. In this section, the concentration of CO$_2$ in the gas phase decreases as it moves upward along the column due to absorption of several CO$_2$ molecules into the liquid phase. In the meantime, CO$_2$ loading in the solvent gradually increases as the liquid moving downwards and limits the reaction with CO$_2$ molecules in the gas phase. Hence, most reactions between amine and CO$_2$ molecules occurred in the middle section of the column with significant increment in the removal efficiency [15].

![Figure 2. Effect of different CO$_2$ concentrations in feed gas on CO$_2$ removal using MEA solution. (Gas flow rate = 24.63 kmol/m2.hr; liquid flow rate = 3.75 m3/m2.hr; [MEA] = 30 wt.%; P = 1.5 bar)](image-url)
3.2 The influence of L/G ratio on the CO₂ removal efficiency

Figure 3 shows the effect of L/G ratio at 0.6 and 0.7 on the CO₂ absorption performance using 30 wt.% MEA solution. The CO₂ removal at 0.7 ratio was about 73%, which was 15% higher than 0.6 ratio. This observation was possibly due to higher availability of amine molecules at the higher ratio to react with CO₂ molecules, consequently leading to higher absorption efficiency. Subsequently, at lower L/G ratios (higher gas flow rate), shorter residence time of gas in the absorption column further limits the reaction between CO₂ molecules and amine solvent. The same observation was also demonstrated by Zeng et al. [8] and Kasikamphaiboon et al. [16].

![Figure 3. Effect of L/G ratio on CO₂ removal using MEA solution.](image)

Figure 3. Effect of L/G ratio on CO₂ removal using MEA solution. (Liquid flow rate = 3.75 m³/m².hr; [MEA] = 30 wt.%; [CO₂] = 40 %; P = 2 bar)

4. Conclusion

The CO₂ absorption process was carried out in a packed column using 30 wt.% MEA solution with the influence of CO₂ concentration and L/G ratio on the removal performance investigated. This study proved that the efficiency of MEA as an absorbent was enhanced at low CO₂ concentration (30 % CO₂) in the feed gas and the parametric study on the effect of L/G ratio at 0.7 was higher than that at 0.6. Hence, this study concludes that both CO₂ concentration in feed gas and L/G ratio significantly affect the absorption performance and therefore play an important role in improving the removal process.

5. Acknowledgement

The authors would like to acknowledge the research funding from Ministry of Education Malaysia (MOE) through Fundamental Research Grant Scheme (FRGS/1/2018/TK02/UNIMAP/02/5), as well as the research facilities from CO₂ Research Centre (CO2RES), Universiti Teknologi PETRONAS, Malaysia.

References

[1] Ryckeboer E, Drouillon M and Vervaeren H 2011 Biomass and Bioenergy 35 1633–45
[2] Lu J, Cao H and Li J M 2020 Energy 202 117604
[3] Koronaki I P, Prentza L and Papaefthimiou V 2015 Renewable and Sustain. Energy Reviews 50 547–66,
[4] Zhang Y, Sunarso J, Liu S and Wang R 2013 Int. J. Greenh. Gas Control 12 84–107
[5] Chen G, Chen G, Cao F, Zhang R, Gao H and Liang Z 2020 Chem. Eng. Process. - Process Intensif 152 107932
[6] Kenarsari S D et al. 2013 RSC Adv. 3(45) 22739–773
[7] Khan A A, Halder G N and Saha A K 2015 Int. J. Greenh. Gas Control 32 15–23
[8] Zeng Q, Guo Y and Niu Z 2011 Energy Procedia 4 519–24
[9] Xu B, Gao H, Luo X, Liao H and Liang Z 2016 Int. J. Greenh. Gas Control 51 11–17
[10] Fu K et al. 2013 Chem. Eng. Sci. 100 195–202
[11] Hairul N A H, Shariff A M, Bustam M A 2017 Fuel Process. Technol. 157 20–28
[12] Godini H R, Mowla D 2008 Chem. Eng. Res. Des. 86(4) 401–9
[13] Mangalapally H P and Hasse H 2011 Energy Procedia 4 1–8
[14] Li F, Hemmati A and Rashidi H 2020 Process Saf. Environ. Prot. 142 83–91
[15] Tan L S, Shariff A M, Lau K K and Bustam M A 2015 Int. J. Greenh. Gas Control 34 25–30
[16] Kasikamphaiboon P, Chungsiriporn J, Bunyakan C and Wiyaratn W 2013 Songklanakarin J. Sci. Technol. 35(6) 683–91