Natural variation in social conditions affects male mate choosiness in the amphipod *Gammarus roeselii*

Konrad Lipkowski*, Sophie Steigerwaldb, Lisa M Schultea, Carolin Sommer-Trembo, and Jonas Jourdanb, c

*Department of Wildlife/Zoo-Animal-Biology and Systematics, Institute for Ecology, Evolution and Diversity Goethe University Frankfurt, Max-von-Laue-Straße 13, Frankfurt am Main, D-60438, Germany
bDepartment of Environmental Science, Stockholm University, Svanete Arrheniusväg 8, Stockholm, SE-11418, Sweden
cZoological Institute, University of Basel, Vesalgasse 1, Basel, CH-4051, Switzerland

*Address correspondence to Konrad Lipkowski. E-mails: lipkowski@bio.uni-frankfurt.de.

Handling Editor: Zhi-Yun Jia

Abstract

The extent of male mate choosiness is driven by a trade-off between various environmental factors associated with the costs of mate acquisition, quality assessment and opportunity costs. Our knowledge about natural variation in male mate choosiness across different populations of the same species, however, remains limited. In this study, we compared male mate choosiness across 10 natural populations of the freshwater amphipod *Gammarus roeselii* (Gervais 1836), a species with overall high male mating investments, and evaluated the relative influence of population density and sex ratio (both affecting mate availability) on male mate choosiness. We investigated amplexus establishment after separating mating pairs and presenting focal males with a novel, size-matched female from the same population. Our analysis revealed considerable effects of sex ratio and (to a lesser extent) population density on time until amplexus establishment (choosiness). Male amphipods are able to perceive variable social conditions (e.g., sex ratio) and modify their mating strategy accordingly: We found choosiness to be reduced in increasingly male-biased populations, whereas selectivity increases when sex ratio becomes female biased. With this, our study expands our limited knowledge on natural variations in male mate choosiness and illustrates the importance of sex ratio (i.e., level of competition) for male mating decisions in natural environments. Accounting for variation in sex ratios, therefore, allows envisioning a distinctive variation of choosiness in natural populations and highlights the importance of considering social background information in future behavioral studies.

Keywords: amplexus, Crustacea, local adaptation, mate choice, population density, sex ratio

Traditionally, only females have been considered to be choosy during mate choice as they usually invest more resources into offspring than males (Darwin 1871; Bateman 1948; Trivers 1972). However, the important role of male mate choice is increasingly acknowledged (e.g., Bonduriansky 2001; Edward and Chapman 2011; Ah-King and Gowaty 2016; Schlupp 2018). Systems in which male mate choice occurs are often characterized by high male mating investment (e.g., due to costs associated with finding females and copulation) and high variance in quality among females (Edward and Chapman 2011). The extent of male mate choice is assumed to be driven by a trade-off between costs of being choosy (e.g., energy expenditure, Wong and Jennions 2003; opportunity costs, Barry and Kokko 2010) and net benefits from choosing a high-quality mate (Hubbell and Johnson 1987; Kvarnemo and Simmons 1999; Reading and Backwell 2007). Interestingly, this trade-off has shown to be context-dependent and is affected by various biotic and abiotic environmental factors; consequently, male choosiness varies among populations that are exposed to different conditions (Gwynne 1993; Wong and Jennions 2003; Dunn et al. 2008; Candolin and Salesjo 2009; Lipkowski et al. 2019). For example, male poeciliid fish *Poecilia reticulata* are less choosy when exposed to high than low stream velocity (Head et al. 2010), and amphipod crustaceans show reduced choosiness in a high predation risk environment, *Gammarus duebeni* (Dunn et al. 2008).

However, social factors such as mate availability also affect male mate choosiness. For instance, theoretical models predict reduced choosiness under low mate availability (Bleu et al. 2012; Etienne et al. 2014; Courtiol et al. 2016). In terms of male mate choice, this can be expected in populations with low population density or male-biased sex ratio. In both cases, the probability to encounter a female mating partner is relatively low and the risk of remaining unmated upon rejection of a partner is high (Parker 1983). Hence, males from low-density populations and male-biased sex ratio are assumed to accept a broader range of female phenotypes. This hypothesis is supported by empirical evidence from insects (Shelly and Bailey 1992), crustaceans (Reading and Backwell 2007; Lipkowski et al. 2019), and fish (Berglund 1995; Svensson et al. 2010;
Head et al. (2015). However, most studies investigated the influence of social parameters on male mate choice by artificially altering the respective social parameters after test animals have been introduced to the laboratory (see Table 2 in Ah-King and Gowaty 2016 for details). These studies mostly used a single population from which individuals were distributed to different social conditions. Thus, our knowledge about natural variation in male mate choosiness across different populations of the same species remains very limited. Furthermore, empirical studies in which the relative role of several social factors on male mate choosiness have been integrated and compared are scarce.

In this study, we compared male mate choosiness across 10 natural populations of the freshwater amphipod *G. roeselii* (Gervais 1835) and evaluated the relative influence of 2 social factors on choosiness: population density and sex ratio. Male mating costs in amphipods are high due to prolonged precopulatory mate guarding (Hynes 1955; Birkhead and Clarkson 1980; Ward 1984; Elwood and Dick 1990). The mate guarding process begins with the formation of a so-called amplexus pair where the male grabs the female with its 1st gnathopods while being on the back of the female (Borowsky 1984; Conlan 1991). Males are mainly responsible for locomotion of amplexus pairs and effectively carry the females during precopula (Adams and Greenwood 1983). The amplexus lasts several days or weeks (Hynes 1955; Birkhead and Clarkson 1980; Sutcliffe 1992; Dick and Elwood 1996; Jormalainen 1998; Hume et al. 2002) and ends once the female molts and lays eggs for the male to fertilize (Sutcliffe 1992; Jormalainen 1998). This guarding behavior is usually considered as a male competitive strategy that may have evolved under high male–male competition for females (Parker 1974; Grafen and Ridley 1998). This test medium is commonly used in amphipod behavioral studies to provide standardized maintenance and test environment (e.g., Feckler et al. 2012; Bundschuh et al. 1996). This test medium is commonly used in amphipod behavioral studies to provide standardized maintenance and test environment (e.g., Feckler et al. 2012; Bundschuh et al. 2020).

Materials and Methods

Study organism and sampling sites

Gammarus roeselii was described by Gervais in 1835 from a river near Paris (France; Karaman and Pinkster 1977), but actually originates from the Balkan region (Jażdżewski 1980; Grabowski et al. 2017; Csapó et al. 2020). Nowadays, it is known that *G. roeselii* is a species complex of which only one genetic lineage has colonized Central Europe (Csapó et al. 2020). Our study sites are situated in the Kinzig catchment, a tributary of the river Main (Supplementary Figure S1; Supplementary Table S1). A previous study confirmed that only one genetic lineage of *G. roeselii* is present in this area (Weigand et al. 2020), but at the same time, there are considerable differences in density and sex ratio between populations (Jourdan et al. 2019), rendering it an excellent model system for the investigation of social factors on male mating decision in amphipods. We collected animals using a “kick-and-sweep” technique (Barbour et al. 1999; Meier et al. 2006) by 2 people during a predefined time period of 60 min in an area of about 25 m². On pebbly and rocky ground, we turned stones by hand and wiped animals from the stone surface into the net. Additionally, we carefully moved roots and aquatic plants that might serve as shelter for amphipods. We found pronounced differences in population densities ranging from 36–2,400 individuals per time effort collecting (2 persons/60 min) and predominant sex ratios ranging from male to heavily female-biased in sampled populations (Table 1). These results indicate pronounced differences in population density that appear to be stable over time (Jourdan et al. 2019).

Maintenance conditions

We collected individuals for our behavioral tests in August 2019. All individuals were transferred into well-aerated cooling boxes filled with water from the collection site and brought within 1 h to the animal maintenance facilities of the Goethe University of Frankfurt. We maintained individuals separated by population in plastic aquaria (20 × 40 cm, water level 17 cm) containing stream water from the respective sampling site in climate chambers (KK2, THERMOTEC Weilburg GmbH & Co. KG, Weilburg, Germany). We gradually acclimated them to the maintenance temperature (10°C) and the test medium SAM-5S, prepared according to Borgmann (1996). This test medium is commonly used in amphipod behavioral studies to provide standardized maintenance and test environment (e.g., Feckler et al. 2012; Bundschuh et al. 2020). The acclimatization to the test medium was done by exchanging the water from the sampling sites with the SAM-5S medium via water exchanges over the course of 2 consecutive days (50% each day). Aquaria were equipped with air stones, securing continuously high oxygen contents, small stones, and leaves from the respective sampling sites to provide shelter and food. Individuals were additionally fed with a small amount of TetraMin Flakes (Tetra GmbH, Melle, Germany) ad libitum. The respective number of individuals per liter in the maintenance aquaria reflected the differences in actual population densities among populations. Males
could freely choose from the pool of females inside the tanks and form amplexus pairs. We gave all test subjects 2 days for acclimatization before we randomly collected amplexus pairs for the behavioral tests.

Environmental population parameters

To investigate the extent to which population density and sex ratio influence male mate choosiness, we assessed both parameters for each sampled population. To this end, all individuals that were not used for the behavioral tests (i.e., all remaining individuals from maintenance tanks) were preserved in 70% ethanol for body size and sex determination. Amphipods exceeding a length of 10 mm were considered to have reached sexual maturity (Macneil and Platvoet 2013), and were used to ascertain adult population density (APD = total number of adult individuals in maintenance tanks) and adult sex ratio (ASR = total number of adult females/total number of adult males). Individuals were sexed according to external sexual characteristics: males were identified by the presence of genital papillae and Oostegites or eggs in the brood pouch for females (Jourdan et al. 2019).

Behavioral experiments—assessment of choosiness

We conducted behavioral tests in August 2019 to investigate the extent to which social population parameters influence male mate choosiness. To this end, we measured time until establishment of an amplexus pair after having separated the focal male from the female it had chosen initially (Elwood et al. 1987; Dick and Elwood 1989) and instead offering a novel, size-matched female (i.e., size-matched between the initial and the secondary female) from the same population, following Lipkowski et al. (2019). Our experimental design gave males ample opportunity to find their novel mate as individuals could easily swim through the small test area within several seconds to few minutes, consequentially resulting in frequent random tactile encounters between males and females. This minimized potential influences of female escape behavior (Sparkes et al. 2000; Bisazza et al. 2001), as well as potential variations in mate finding (Jones and Culver 1989), and locomotor abilities between populations (Bell and Stamps 2004; Dingemanse et al. 2007; Archard and Braithwaite 2011; Sommer-Trembo et al. 2017).

We placed N=249 amplexus pairs into individual glass beakers (diameter: 6.5 cm), filled with 200 mL of SAM-5S Medium, and gently separated the pair by briefly transferring it onto a wet piece of tissue, upon which the amplexus pair separated voluntarily. This approach is assumed to be the least invasive form of separating amplexus pairs (Dick and Elwood 1989). We visually size-matched body size between the initial and the secondary female. Upon completion of the behavioral trials, body sizes were determined to the closest 10th of a millimeter using a multizoom macroscope (Nikon AZ 100, Nikon GmbH, Düsseldorf, Germany) and an attached Nikon DS-Fi1 camera (Nikon GmbH, Düsseldorf, Germany). We used the software NIS-Elements BR 3.2 (Nikon GmbH, Düsseldorf, Germany) for all measurements of linear distances (millimeter). We determined the distance from the anterior margin of the head to the posterior margin of the telson as a measure of body size (Nahavandi et al. 2011). Mean (± SD) male body size was 13.8 ± 1.7 mm; mean female body size was 11.5 ± 1.6 mm. The average size difference between initially preferred and experimentally-offered novel females was 1.1 ± 1.0 mm.

The novel female stemmed from another experimentally separated amplexus pair, such that we could make sure that all females were in a similar reproductive state (i.e., before molt and sexually attractive to males). After the novel female was introduced on the side opposite to the focal male, we observed both individuals for 120 min. We measured the time until amplexus establishment and also noted down how many individuals did not form an amplexus within these 120 min. The applied period of observation time was chosen since a previous study showed that in this experimental setup most amplexus establishments occurred within the first 2 h (Lipkowski et al. 2019). Upon completion of the amplexus establishment tests, amplexus pairs were separated again and preserved in 70% ethanol with their initially chosen mate from the maintenance tank for subsequent measurements mentioned above.

Statistical analyses

Amplexus establishment

All statistical analyses were conducted using SPSS 27 (SPSS Inc., Chicago, IL) and GraphPad Prism for visualization of results (Version 5.01, GraphPad Software). We used Event

Population	River	ASR (female/male)	ASR category	APD (individuals/h)	APD category
K1	Kinzig	1.8	F	300	High
S	Schwarzbach	0.3	M	134	Medium
U	Ulmbach	1	F/M	60	Medium
Sa	Salz	3.3	F0⇌	39	Low
Br1	Bracht	3.2	F0⇌	640	Very high
Br2	Bracht	1.6	F	86	Medium
K2	Kinzig	1.3	F	135	High
G1	Gröündau	4.6	F0⇌	72	Medium
G2	Gröündau	4	F0⇌	2400	Very High
K3	Kinzig	10.5	F0⇌	36	Low

APD categories (low n = 1–50, medium n = 51–100, high n = 101–500, very high n = 501).

ASR categories (# adult females/# adult males: M = male-biased <1, F/M = sex equilibrium, F = female-biased 1, 1–3, F0⇌ = strong female-biased >3).
The observation took place for a maximum of 2 h. After that amplexus establishment was considered unsuccessful. Every event resembles an amplexus establishment.

Table 2. Descriptive of the event history analysis of amplexus establishments according to APD and ASR

APD Category	N	Events	Ratio [0%]	750% [min]	Median [min]	250% [min]
Low	40	29	72.5	3.4	6.5	12.0
Medium	68	54	79.4	2.1	5.3	34.4
High	81	73	90.1	1.4	5.4	17.2
Very high	60	51	85	3.5	7.5	28
Overall	249	207	83.1	2.3	5.6	32.2

ASR Category	N	Events	Ratio [0%]	750% [min]	Median [min]	250% [min]
M	30	28	93.3	1.2	3.0	12.2
F/M	22	17	77.3	2.1	5.4	46.3
F	73	62	84.9	2.4	5.5	21.4
F0≫	124	100	80.6	3.3	7.0	45.4

APD categories (low n = 1–50, medium n = 51–100, high n = 101–500, very high n ≥ 501).

ASR categories (# adult females/# adult males: M = male-biased <1, F/M = sex equilibrium, F = female-biased 1,1–3, F ≫ = strong female-biased >3).

The observation took place for a maximum of 2 h. After that amplexus establishment was considered unsuccessful. Every event resembles an amplexus establishment.

Results

Event history analysis—amplexus establishments

We used **Event History Analysis** to test for differences between the time until amplexus establishment in dependency of “APS” and “ASR.” Descriptive results of amplexus establishments according to categorized social population parameters are summarized in Table 2. Log-rank test for trend (i.e., tests for a linear trend of factor levels) revealed a significant effect of “ASR” (log-rank test for trend, \(\chi^2 = 4.472, \ p = 0.034 \)) but not for “APD” (log-rank test for trend, \(\chi^2 = 1.222, \ p = 0.269 \)), indicating increasing ASR (female-biased populations) translates into longer time until amplexus establishments (Figure 1).

GLM—socioenvironmental population parameters

We used extracted median times and ratios of amplexus establishments for each individual population for our GLMs (Supplementary Table S2). Final GLMs (main effects) for “time until amplexus establishment” revealed significant effects of “APD” and “ASR” on extracted median time of amplexus establishment (APD: \(F_{1,7} = 7.573, \ MS = 5.050; \ p = 0.028 \); ASR: \(F_{1,7} = 13.820, \ MS = 9.215; \ p = 0.007 \)). Subsequent visual examination reveals a positive association between “time until re-establishment” and the predictor variables “APD” (\(R^2 = 0.263 \)) as well as “ASR” (\(R^2 = 0.484 \)), indicating median time until reforming amplexus pairs increases with increasing population density and sex ratio; Figure 2). Final GLM for “ratio amplexus establishment” revealed no effect of “APD” or “ASR” on the ratio of amplexus establishment (APD: \(F_{1,7} = 2.590, \ MS = 162.414; \ p = 0.132 \); ASR: \(F_{1,7} = 0.882, \ MS = 55.321; \ p = 0.379 \)).

Discussion

In this study, we investigated the degree of male mate choosiness in 10 natural populations of *G. roeselii* which differed in 2 crucial social factors: population density and sex ratio. Our analyses revealed considerable effects of sex ratio and (to a lesser extent) population density on time until amplexus establishment (i.e., choosiness). Males from populations with a strongly female-biased sex ratio and from populations with higher population density took longer (i.e., were choosier) to establish an amplexus than males from less female-biased, sex equilibrium, male-biased populations, or populations with low population densities (Figure 2).

History Analysis (a.k.a. **Survival Analysis**, Kaplan–Meier Method) to analyze the time of amplexus establishment in *G. roeselii* populations. Therefore, we categorized populations according to APD and ASR into 4 categories each. APD was categorized as low (1–50), medium (51–100), high (101–500), or very high (≥ 500). ASR was categorized as male-biased (1; M), sex equilibrium (= 1; F/M), female-biased (1.1–3; F), and strongly female-biased (>3; F ≫). We used “time until amplexus establishment” as the dependent variable in a Kaplan–Meier Survival Analysis to test for population-wise differences in the time until amplexus establishment in relation to “APD” and “ASR” individually. Because our categories (factors; “APD,” “ASR”) follow a natural ordering (i.e., increasing sex ratio or densities for each factor level) we applied a log-rank test for trend to assess the statistical significance of the difference between the factor groups.

Social population parameters

We used GLMs in a population-specific analysis, to determine which of the explanatory variables “APD” and “ASR” best predicts male mating decisions. The dependent variables “time re-establishment” and “ratio amplexus establishment” derived from a preceding population-specific **Event History Analyses** (Supplementary Table S2; Supplementary Figure S2). The explanatory variables “APD” and “ASR” were log-transformed to filter off extreme values and improve linearity of the predictor variables. We included “APD” and “ASR” and their possible interaction terms as predictor variables in the initial model, but removed the interaction term if not significant at \(P \geq 0.05 \) (stepwise exclusion; see Supplementary Table S3 for nonsignificant effects). Assumptions of normality were assessed by testing for normality distribution (Shapiro–Wilk) and visual inspection of QQ-plots. Both, dependent variables as well as standardized model residuals of the applied final GLMs met the assumption of normality (Supplementary Table S4; see Supplementary Figure S3 for Q–Q plots). Additionally, Pearson-correlation revealed no colinearity of our predictor variables (|r| = 0.07; \(p = 0.983 \)).

Ethical approval

All applicable national and institutional guidelines for the care and use of animals were followed.
Choosiness is predicted to increase with increasing encounter rates of potential mates (Bleu et al. 2012; Etienne et al. 2014; Courtiol et al. 2016). Under low population density, the probability to encounter a suitable mate is decreased. Differences in population densities can be modulated by an array of biotic factors, including resource availability (Carbone and Gittleman 2002; Singh et al. 2016), predation pressure (Heithaus 2004; Beauchamp et al. 2007; Heithaus et al. 2008), as well as abiotic environmental conditions (Leite et al. 2014). We found considerable differences in population density among our study populations. Congruent with our predictions, males from low-density populations were less choosy than males with ample opportunities to meet females in high-density populations. It should be pointed out though that despite extreme differences in population density (range: 36 individuals—2,400 individuals per unit effort sampling) the effect of population density on male choosiness was weaker than we expected. This could be explained by amphipods occurring in aggregations (Aumack et al. 2011; Vitaliano et al. 2013; Beermann et al. 2015) in some microhabitats (Korpinen and Westerbom 2010; Cooper et al. 2012) while being rather evenly distributed in others. Population density can therefore be low on average, but when animals encounter an aggregation of conspecifics, they can afford to be choosy. Therefore, even though population densities technically translate into encounter rates, the encounter probability of potential mates might still be high due to local aggregations.

Sex ratio had a strong effect on choosiness: males from increasingly male-biased populations established amplexus pairs significantly more readily than males from more female-biased populations. This is most likely due to a decreased pre-amplexus assessment of the offered female (Dick and Elwood 1989). Before mate guarding, male Gammarus spp. assess different parameters of female quality and try to increase their reproductive success, by choosing and investing in high-quality females to maximize their reproductive success (Elwood et al. 1987; Dick and Elwood 1989, 1990; Elwood and Dick 1990; Kelly et al. 2001; Bollache et al. 2002). Our results are congruent with those of Dick and Elwood (1996) who sampled amplexus pairs from several G. duebni celticus populations differing in sex ratios and investigated the duration of mate guarding. They found that males from populations with balanced sex ratio form an amplexus up to 11 days longer than males from female-biased populations. The authors assumed that males under more intraspecific competition start to guard a female earlier. Our

Figure 1. Visualization of event history analysis (N=249 amplexus pairs). Percentage of unpaired G. roeselii couples from 10 populations over the course of our experiment in relation to (A) APD and (B) ASR. Increments resemble amplexus establishments. Schematic view of an amplexus pair modified after Borowsky (1984).

Figure 2. Visualization of significant main effects from the final GLM using “time until amplexus establishment” as a dependent variable (N=10 each) and log-transformed population parameters (A) APD and (B) ASR as predictor variables.
findings support this hypothesis and provide additional evidence that not only duration of mate guarding increase, but also the preamplexus assessment (i.e., choosiness) is reduced under higher male mate competition. The reproductive system in amphipods with brood-carrying females results in male-biased operational sex ratios (OSRs; Emlen and Oring 1977; Andersson 1994; Kvarnemo and Ahnesjo 1996; Székely et al. 2014) because the numbers of fertilizable females are much lower than the number of sexually-active males. This renders receptive females a scarce resource and results in general high male–male competition, which is thought to further intensify under increasingly male-biased sex ratios (Grafen and Ridley 1983; Elwood and Dick 1990; Weir et al. 2011). Reasons for a biased sex ratio in amphipods are manifold and still not fully understood (Dunn et al. 2020). Sometimes a greater susceptibility to mortality of 1 sex, due to differential sensitivity to adverse environmental conditions (e.g., Charlat et al. 2003), food availability (Trewick 1997; Kneib et al. 1997; Appleby et al. 1997), or predation mortality (Iwasa and Odendaal 1984; McKellar et al. 2009) can explain skewed sex ratios. Furthermore, some invertebrates are known for their environmental sex determination (determination in response to environmental conditions experienced by developing offspring; ESD; Adams and Adams 1987; Korpelainen 1990), including sex determination cued by biotic (Bulnheim and Vávra 1968; Becheikh et al. 1998; Bouchon et al. 1998; Ironside et al. 2003; Moreau and Rigaud 2003) and abiotic factors (Bulnheim 1978; Ferguson and Joanen 1982; Naylor et al. 1988; Dunn et al. 2005; Warner and Shine 2008). Although not yet documented for G. roselii, adaptive ESD might have evolved multiple times in amphipods (including closely-related ones; Bulnheim 1978; Korpelainen 1990; Dunn et al. 2005, 2020; Duffy et al., 2015). Our findings illustrate that male amphipods are able to perceive such changes in sex ratios and modify their mating strategy accordingly: reduced choosiness and extended guarding duration (Dick and Elwood 1996) is expected to occur in male-biased population, and increasing selectivity henceforth as the sex ratio becomes female biased. This is also reflected in the expression of crucial morphological characteristics: males under female-biased sex ratio have increased first antennae (relative to body size; Jourdan et al. 2019), indicating an increased investment into sensory traits used for mate assessment (Thornhill and Alcock 1983; Elgar et al. 2019; Lipkowski et al. 2019).

Since different sex ratios can have essential impact on behavioral (mating) decisions of amphipods, unraveling of factors that cause this immense variation in sex ratios across amphipod populations and species (Helan et al. 1973; Dick and Elwood 1996; Prato and Biandolino 2003; Jourdan et al. 2019) is an interesting field of future research. This is also linked to the question of how consistent sex ratios are over time. The consistency (i.e., predictability) of social conditions may impact to what degree heritability (e.g., Seghers 1974; Ariyomo et al. 2013; Dochtermann et al. 2014) and phenotypic plasticity (e.g., Daza-Bustamante et al. 2002; Hays et al. 2002; Sommer-Trembo et al. 2017) underlie the observed behavioral responses between populations. In the populations used for this study, our measurements of sex ratio, were similar to previous investigations (2017–2019; see Jourdan et al. 2019), suggesting rather stable sex ratios over time, which renders rapid local adaptation based on inheritable differences in choosiness among populations a possible explanation for our observations. However, sex ratios of many amphipod species are known to be variable (e.g., Helan et al. 1973; Naylor et al. 1988; Dick and Elwood 1996; Prato and Biandolino 2003) and our limited number of measurements on the same populations cannot rule out variation within or between years. A straightforward approach to investigate the relative contributions of genetic adaptation and phenotypic plasticity of male mate choosiness would be to conduct trans-generational experiments in the laboratory. The Hyalessa azteca species complex (e.g., Weston et al. 2013) could be considered as a surrogate species, since these species are easier to maintain and breed. Altogether, our results identify mate-guarding amphipods as a promising model to further elucidate the underlying evolutionary phenomena shaping mate choice behavior under variable social conditions.

Acknowledgments
We are grateful to M. Plath for his encouragement and valuable discussions at the beginning of this study. We further thank J. Oehlmann for rendering support to this project. We also thank 2 anonymous reviewers for their helpful and constructive comments on the previous version of this manuscript.

The data underlying this article is available at https://zenodo.org/record/4560491.

Conflict of Interests
The authors declare that they have no conflict of interests.

Authors’ Contributions
K.L., C.S.-T., and J.J. developed the study idea. K.L. and J.J. established the research protocol. K.L. and S.S. collected amphipods and performed experiments. K.L. analyzed the data. K.L., C.S.-T., and J.J. discussed the conceptual framework and outline of this manuscript. K.L., C.S.-T., and J.J. took the lead in writing the manuscript. All authors provided critical feedback, helped finalizing the manuscript, and gave final approval for publication.

Supplementary Material
Supplementary material can be found at https://academic.oup.com/cz.

References
Adams J, Greenwood P, Naylor C, 1987. Evolutionary aspects of environmental sex determination. Int J Invertebr Reprod Dev 11:123–135.
Adams J, Greenwood PJ, 1983. Why are males bigger than females in pre-copula pairs of Gammarus pulex? Behav Ecol Sociobiol 13:239–241.
Ah-King M, Gowaty PA, 2016. A conceptual review of mate choice: stochastic demography, within-sex phenotypic plasticity, and individual flexibility. Ecol Evol 6:4607–4642.
Andersson MB, 1994. Sexual Selection. Princeton (NJ): Princeton University Press.
Appleby BM, Petty SJ, Blakey JK, Rainey P, MacDonald DW, 1997. Does variation of sex ratio enhance reproductive success of offspring in tawny owls (Strix aluco). Proc R Soc London Ser B Biol Sci 264:1111–1116.
Archard GA, Braithwaite VA, 2011. Increased exposure to predators increases both exploration and activity level in Brachyrhaphis episcopi. J Fish Biol 78:593–601.
Ariyomo TO, Carter M, Watt PJ, 2013. Heritability of boldness and aggressiveness in the zebrafish. *Behav Genet* 43:161–167.

Aumack CF, Amsler CD, McClintock JB, Baker BJ, 2011. Changes in amphipod densities among macroalgal habitats in day versus night collections along the Western Antarctic Peninsula. *Mar Biol* 158:1879–1885.

Barbour MT, Gerritsen J, Snyder BD, Stribling JB, 1999. Early Bioassay Protocols for Use in Streams and Wadable Rivers: *Periplaneta*, Benthic Macroinvertebrates and Fish, 2nd edn. Washington (DC): U.S. Environmental Protection Agency.

Barry KL, Kokko H, 2010. Male mate choice: why sequential choice can make its evolution difficult. *Anim Behav* 80:163–169.

Bateman AJ, 1948. Intra-sexual selection in *Drosophila*. *Heredity* 2:349–368.

Beauchamp DA, Wahl DH, Johnson BM, 2007. Predator-prey interactions. In: Guy CS, Brown MJ editors. *Analysis and Interpretation of Inland Fisheries Data*. Bethesda (MD): American Fisheries Society. 765–842.

Becheikh S, Michaud M, Thomas F, Raibaut A, Renaud F, 1998. Roles of resource and partner availability in sex determination in a parasitic copepod. *Proc R Soc B Biol Sci* 265:1153–1156.

Beermann J, Dick JTA, Thiel M, 2015. Social recognition in amphipods. *An Invertebrate: The Knowns and the Unknowns*. Cham: Springer International Publishing. 85–100.

Bell AM, Stamps JA, 2004. Development of behavioural differences between individuals and populations of sticklebacks *Gasterosteus aculeatus*. *Anim Behav* 68:1339–1348.

Berglund A, 1995. Many mates make male pipefish choosy. *Behaviour* 132:213–218.

Birkhead TR, Clarkson K, 1980. Mate selection and precopulatory guarding in *Gammarus pulex*. *Z Tierpsychol* 52:365–380.

Bisazza A, Vaccari G, Pilastro A, 2001. Female mate choice in a mating system dominated by male sexual coercion. *Behav Ecol* 12:59–64.

Bleu J, Bessa-Gomes C, Laloi D, 2012. Evolution of female choosiness and mating frequency: effects of mating cost, density and sex ratio. *Anim Behav* 83:131–136.

Bollache L, Rigaud T, Cézilly F, 2002. Effects of two acanthochepalan parasites on the fecundity and pairing status of female *Gammarus pulex* (Crustacea: Amphipoda). *J Invertebr Pathol* 79:102–110.

Bonduriansky R, 2001. The evolution of male mate choice in insects: a synthesis of ideas and evidence. *Bioul Rev* 76:305–339.

Borgmann U, 1996. Systematic analysis of aqueous ion requirements of *Hyalella azteca*: a standard artificial medium including the essential bromide ion. *Arch Environ Contam Toxicol* 30:356–363.

Borowsky B, 1984. The use of the males’ gnathopods during precopulation in some gammaridean amphipods. *Crustacea* 47:245–250.

Bouchon D, Rigaud T, Juchault P, 1998. Evidence for widespread Wolbachia infection in isopod crustaceans: molecular identification and host feminization. *Proc R Soc Lond B Biol Sci* 265:1081–1090.

Bulnheim HP, 1978. Interaction between genetic, external and parasitic factors in sex determination of the crustacean amphipod *Gammarus duebeni*. *Helgoland Wiss Meer* 31:1–33.

Bulnheim HP, Vávra J, 1968. Infection by the microsporidian *Bulnheim HP*. 1978. Interaction between genetic, external and parasitic factors in sex determination of the crustacean amphipod *Gammarus duebeni*. *Helgoland Wiss Meer* 31:1–33.

Bundschuh M, Zubrod JP, Klöttschen S, Englert D, Schulz R, 2020. Infection by the microsporidian *Bulnheim HP*. 1978. Interaction between genetic, external and parasitic factors in sex determination of the crustacean amphipod *Gammarus duebeni*. *Helgoland Wiss Meer* 31:1–33.

Charlat S, Hornett EA, Dyson EA, Ho PYY, Loc NT , et al, 2005. Prevalence and penetration variation of male-killing *Wolbachia* across Indo-Pacific populations of the butterfly *Hypolimnas bolina*. *Mol Ecol* 14:3525–3530.
Etienne L, Rousset F, Godelle B, Courtiol A, 2014. How choosy should I be? The relative searching time predicts evolution of choosiness under direct sexual selection. *Proc R Soc B Biol Sci* 281:20140190.

Fecker A, Thielch A, Schwenk K, Schulz R, Bundschuh M, 2012. Differences in the sensitivity among cryptic lineages of the *Gammarus fossarum* complex. *Sci Total Environ* 439:158–164.

Ferguson MW, Joanne T, 1982. Temperature of egg incubation determines sex in *Alligator mississippiensis*. *Nature* 296:850–853.

Grabowski M, Mamos T, Bajclata-Spychalska K, Rewicz T, Watter RA, 2017. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. *PeerJ* 5:e3016.

Grafen A, Ridley M, 1983. A model of mate guarding. *J Theor Biol* 102:549–567.

Gwynne D, 1993. Food quality controls sexual selection in Mormon crickets by altering male mating investment. *J 1406–1413.

Hays GC, Glen F, Broderick AC, Godley BJ, Metcalfe JD, 2002. Behavioural plasticity in a large marine herbivore: contrasting patterns of depth utilisation between two green turtle *Chelonia mydas* populations. *Mar Biol* 141:985–990.

Head ML, Wong BBM, Brooks R, 2010. Sexual display and mate choice in an energetically costly environment. *PloS ONE* 5:1–4.

Head ML, Jacomb F, Vega-Trejo R, Jennions MD, 2015. Male mate choice and insemination success under simultaneous versus sequential choice conditions. *Anim Behav* 103:99–105.

Heithaus MR, 2004. Predator-prey interactions. In: *Carrier JC, Musick JA*, editors. *Biology of Sharks and Their Relatives*. Boca Raton (FL): CRC Press. 487–521.

Heithaus MR, Frid A, Wirsing AJ, Worm B, 2008. Predicting ecological consequences of marine top predator declines. *Trends Ecol Ecol* 23:202–210.

Helan J, Kubiček F, Losos B, Sedláček E, Zelinka M, 1973. Production conditions in the trout brooks of the Beskydy Mountains. *Folia Fac Sci Nat Univ Purkynickanae Brun Biol* 38:1–105.

Hubbell SP, Johnson LK, 1987. Environmental variance in lifetime mating success, mate choice, and sexual selection. *Am Soc Nat* 130:91–112.

Hume KD, Elwood RW, Dick JTA, Connaghan KM, 2002. Size-assortative pairing in *Gammarus pulex* (Crustacea: Amphipoda): a test of the timing hypothesis. *Anim Behav* 64:239–244.

Hunte W, Myers RA, Doyle RW, 1985. Bayesian mating decisions in an amphipod *Gammarus laurencianus* Bousfield. *Anim Behav* 33:366–372.

Hynes HBN, 1955. The reproductive cycle of some British freshwater Gammaridae. *J Anim Ecol* 24:352–387.

Ilitis C, Dechaume-Moncharmont FX, Galipaud M, Moreau J, Bollache L, et al, 2017. The curse of being single: both male and female *Gammarus pulex* benefit energetically from precopulatory male guarding. *Anim Behav* 130:67–72.

Ironside JE, Smith JE, Hatcher MJ, Sharpe RG, Rollinson D, et al, 2002. Two species of feminizing microsporidian parasite coexist in populations of *Gammarus duebeni*. *J Evol Biol* 16:467–473.

Iwasa Y, Odendaal FJ, 1984. A theory on the temporal pattern of operational sex ratio: the active-inactive model. *Ecology* 65:886–893.

Jazdewski K, 1980. Range extensions of some gammaridean species in European inland waters caused by human activity. *Crustac Suppl* 6:84–107.

Jones R, Culver DC, 1989. Evidence for selection on sensory structures in a cave population of *Gammarus minus* (Amphipoda). *Evolution* 43:688–693.

Jormalainen V, 1998. Precopulator mate guarding in crustaceans: male competitive strategy and intersexual conflict. *Q Rev Biol* 73:275–304.

Jourdan J, Piro K, Weigand A, Plath M, 2019. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. *Front Zool* 16:29.
Shelly TE, Bailey WJ, 1992. Experimental manipulation of mate choice by male katydids: the effect of female encounter rate. Behav Ecol Sociobiol 30:277–282.

Singh A, Mukherjee A, Dookia S, Kumara HN, 2016. High resource availability and lack of competition have increased population of a meso-carnivore: a case study of Golden Jackal in Keoladeo National Park. India Mammal Res 61:209–219.

Sommer-Trembo C, Cristina A, Guilherme P, Silva G, Martin S, et al 2017. Predation risk and abiotic habitat parameters affect personality traits in extemophile populations of a Neotropical fish Poecilia vivipara. Ecol Evol 7:6570–6581.

Sparkes TC, Keogh DP, Haskins KE, 2000. Female resistance and male preference in a stream-dwelling isopod: effects of female molt characteristics. Behav Ecol Sociobiol 47:145–155.

Strong DR, 1973. Amphipod amplexus, the significance of ecotypic variation. Ecology 54:1384–1388.

Sutcliffe DW, 1992. Reproduction in Gammarus (Crustacea, Amphipoda): basic processes. Freshw Forum 2:102–128.

Svensson PA, Lehtonen TK, Wong BBM, 2010. The interval between sexual encounters affects male courtship tactics in a desert-dwelling fish. Behav Ecol Sociobiol 64:1967–1970.

Szekely T, Weissing FJ, Komdeur J, 2014. Adult sex ratio variation: implications for breeding system evolution. J Evol Biol 27:1500–1512.

Thornhill R, Alcock J, 1983. The Evolution of Insect Mating Systems. Cambridge: Harvard University Press.

Trewick SA, 1997. On the skewed sex ratio of the Kakapo Strigops habroptilus: sexual and natural selection in opposition. Ibis (Lond 1859) 139:652–663.

Trivers RL, 1972. Parental investment and sexual selection. In: Campbell B, editor. Sexual Selection and the Descent of Man. Chicago: Aldine. 136–179.

Vitaliano J, Packer D, Reid R, Guida V, 2013. Broad_scale, dense amphipod tube aggregations on the sea bed: implications for resource species that utilize benthic habitats. Fish Oceanogr 22:61–67.

Ward PL, 1983. Advantages and a disadvantage of large size for male Gammarus pulex (Crustacea: Amphipoda). Behav Ecol Sociobiol 14:69–76.

Ward PL, 1984. The effect of size on the mating decisions of Gammarus pulex (Crustacea, Amphipoda). Z Tierpsychol 64:174–184.

Ward PL, 1986. A comparative field study of the breeding behaviour of a stream and a pond population of Gammarus pulex (Amphipoda). 46:29–36.

Warner DA, Shine R, 2008. The adaptive significance of temperature-dependent sex determination in a reptile. Nature 451:566–568.

Weigand AM, Michler-Kozma D, Kuenmerlen M, Jourdan J, 2020. Substantial differences in genetic diversity and spatial structuring among (cryptic) amphipod species in a mountainous river basin. Freshw Biol 65:1641–1656.

Weir LK, Grant JWA, Hutchings JA, 2011. The influence of operational sex ratio on the intensity of competition for mates. Am Nat 177:167–176.

Weston DP, Poynton HC, Wellborn GA, Lydy MJ, Blalock BJ, et al, 2013. Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proc Natl Acad Sci USA 110:16532–16537.

Wong BBM, Jennions MD, 2003. Costs influence male mate choice in a freshwater fish. Proc R Soc B Biol Sci 270:36–38.
