The hypernuclear physics heritage of Dick Dalitz (1925-2006)

Avraham Gal

Racah institute of Physics, The Hebrew University, Jerusalem 91904, Israel

Received: date / Revised version: date

Abstract. The major contributions of Richard H. Dalitz to hypernuclear physics, since his first paper in 1955 to his last one in 2005 covering a span of 50 years during which he founded and led the theoretical study of hypernuclei, are reviewed from a personal perspective. Topical remarks on the search for quasi-bound K-nuclear states are made.

PACS. 01.30.-y - 01.60.+q - 01.65.+g - 21.80.+a

1 Introduction

Dick Dalitz was born in Dimboola, in the state of Victoria, Australia, on February 28th 1925, and gained B.A. and B.Sc. degrees in Mathematics and Physics in 1944 and 1945, respectively, from the University of Melbourne. He moved to Britain in 1946 for postgraduate studies at Cambridge, and then worked at the University of Bristol before joining in 1949 Rudolf Peierls in Birmingham. There he completed and wrote up his Ph.D. thesis on ‘$0^+ \rightarrow 0^+$ transitions in nuclei’, supervised by Nicholas Kemmer of Cambridge, and subsequently became a Lecturer. He spent two years in the U.S. from 1953, holding research positions at Cornell and Stanford, visiting also Princeton and Brookhaven National Laboratory, and returned as a Reader in Mathematical Physics to the University of Birmingham for a year before becoming Professor of Physics in the Enrico Fermi Institute for Nuclear Studies and the Department of Physics at the University of Chicago in 1956. He moved to Oxford in 1963 as a Royal Society Research Professor, the post he held until his retirement in 1990. In addition to the Dalitz Plot, Dalitz Pair and the Castillejo-Dalitz-Dyson (CDD) Pole that bear his name, he pioneered the theoretical study of strange baryon resonances, of baryon spectroscopy in the quark model, and of hypernuclei, to all of which he made outstanding contributions. His formulation of the $\theta - \tau$ puzzle led to the discovery that parity is not a symmetry of the weak interactions. A complete bibliography of Dalitz’s works is available in Ref. 1.

During his postgraduate studies he spent a year working alongside Cecil Powell’s cosmic ray group at Bristol and it was during this period that he took particular interest in the strange particles that were beginning to appear in cosmic rays and at particle accelerators. These included the first hyperfragment in 1952 [2] which inspired a lifelong interest in hypernuclei. Later on, he made significant contributions to the strong interactions of the strange particles and their resonant states [3,4]. As early as 1959 Dalitz and Tuan, by analysing the data on the strong interactions of K^- mesons with protons, predicted the existence of an $I = 0$, $J^\pi = (1/2)^-$ strange resonance about 20 MeV below the $K^- p$ threshold [5]. This $\Lambda(1405)$ resonance was discovered two years later in the Berkeley hydrogen bubble chamber, studying the reaction $K^- p \rightarrow \Sigma + 3\pi$ for several charge states [6]. The proximity of this s-wave $\pi\Sigma$ resonance to the KN threshold suggested that it can be generated by $KN - \pi\Sigma$ inter-hadron forces, and this was shown in 1967 by Dalitz et al. to be possible within a dynamical model of SU(3)-octet vector-meson exchange [7] which is, in fact, the underlying physical mechanism for the Tomozawa-Weinberg leading term in the chiral expansion of the meson-baryon Lagrangian [59]. The vector mesons ρ, ω, K^*, ϕ, which were discovered in the years 1960-62, relying heavily on Dalitz plots for some of these, were unknown when the $\Lambda(1405)$ was predicted. In the years to follow, Dalitz repeatedly considered the completeness of this dynamical picture, whether or not the S-matrix pole of $\Lambda(1405)$ due to the inter-hadron forces need not be augmented by a CDD pole arising from interquark forces upon allowing for an intermediate uds configuration. It is here that the earlier CDD discussion [10] found a fertile physical ground.

Looking back years later at the development of his own career, he made the following remarks [11] (which he rarely allowed himself to make in public):

-- Yes, as Gell-Mann said, pion physics was indeed the central topic for theoretical physics in the mid 1950s, and that was what the young theoretician was expected to work on. The strange particles were considered generally to be an obscure and uncertain area of phenomena, as some kind of dirt effect which could not have much role to play in the nuclear forces, whose comprehension was considered to be the purpose of our research. Gell-Mann remarked that he spent the major
part of his effort on pion physics in that period, and I did the same, although with much less success, of course.

- Fashions have always been strong in theoretical physics, and that holds true today as much as ever. The young physicist who is not working on those problems considered central and promising at the time, is at a disadvantage when he seeks a post. This tendency stems from human nature, of course, but it is unfortunate, I think, that the system operates in such a way as to discourage the young physicist from following an independent line of thought.

Although about 30% of his research papers were devoted or connected to hypernuclei, Dalitz was primarily a particle physicist. This is reflected in the interview he gave during HYP03 [12], where hypernuclei get only the following two brief remarks:

- My interest in hypernuclear events developed particularly well in Chicago because a young emulsion experimenter, Riccardo Levi-Setti, whose work I had known from his hypernuclear studies in Milan, came to the Institute for Nuclear Studies at this time. We each benefited from the other, I think, and we got quite a lot done.

- I was responsible for organizing particle-physics theory in Oxford. Besides quark-model work, I still did work on hypernuclear physics, much of this with Avraham Gal of Jerusalem.

I first met Dalitz as a young student attending the 1966 Varenna International School of Physics “Enrico Fermi”, Course XXXVIII on ‘Interaction of High-Energy Particles with Nuclei’. He gave a series of lectures on the status of Hypernuclear Physics, and I was lucky to have been able to intercept him during one of the lectures, apprising him of an important omission he had made in a calculation of transition matrix elements with which I was familiar owing to my shell-model education at the Weizmann Institute. This was the beginning of a very close collaboration lasting about 20 years during which we would often meet for joint periods of work, always discussing the latest experimental results and their likely interpretations. I have been amazed at Dalitz’s encyclopaedic knowledge and mastery of measurements and calculations in particle physics and also of many aspects of nuclear physics, his critical assessment of experimental results and his thoroughness at work. He always insisted on and managed to calculate things in his own way, relying only on facts, never on fancy. Our ways somewhat diverged after 1985, but we still maintained a close relationship until very recently, when I edited his last publication, the talk he gave at HYP03 [13].

2 \(\Lambda \) hypernuclei

2.1 The beginning

Dalitz pioneered the theoretical study of hypernuclei. His first published work on \(\Lambda \) hypernuclei dates back to 1955, titled Charge independence in light hyperfragments [14]. It focused on the near equality of the \((\Lambda H, \Lambda He) \) binding energies and its origin in the charge symmetry of the \(\Lambda N \) interaction, and on the exceedingly small binding energy of \(\Lambda H \), the only bound \(A = 3 \) hypernucleus marking the onset of \(\Lambda \)-hypernuclear binding. By 1959 his analyses of the light, s-shell hyperfragments led him to state [15] that the existence of a bound \(\Lambda \)-nucleon system is strongly excluded and that the analysis of the \(T = 1 \) triplet \(\Lambda He \), \(\Lambda H \), \(\Lambda n \) indicates that these systems are not expected to form bound states, and that these essential conclusions would not be seriously affected if there exist moderately strong three-body forces arising from pion exchange processes. He returned in 1972 to consider the possible effects of three-body \(\Lambda NN \) forces in the s shell [16] quantifying what has been since called ‘the overbinding problem’, namely that the binding energy of \(\Lambda He \) comes out too large by \(2 – 3 \) MeV in any calculation that fits well the binding energies of the lighter hypernuclei [6].

In a series of works covering three decades, he used the main \(\Lambda \to p\pi^- \) weak-decay mode of light hypernuclear species studied in emulsion and bubble chambers to determine their ground-state spins and, thereby, to gain information on the spin dependence of the \(\Lambda N \) force. When he had begun this line of works, just before parity violation was realised during the turbulent 1956-1957 period, he wrongly concluded in a talk given at the 6th Annual Rochester Conference on High Energy Nuclear Physics in April 1956 that the triplet \(\Lambda N \) s-wave interaction was stronger than the singlet one [17]. His argument was based on assuming that parity was respected in the weak decay \(\Lambda He \to \pi^- + \Lambda He \). Since the final products all had spin zero, and the pion was known to have a negative intrinsic parity with respect to nucleons, (quoting Dalitz, in italics) the spin-parity possibilities for the \((\Lambda H, \Lambda He) \) doublet are \(0^-, 1^+, 2^-, \) etc. Assuming (at that time it was still uncertain) that the \(\Lambda \) hyperon had spin-parity \((1/2)^+ \), the spin-parity of \(\Lambda H \) had to be \(1^+ \), and this meant that the triplet \(\Lambda N \) s-wave interaction was stronger than the singlet one, and one also concludes that the spin-parity for \(\Lambda H \) is \((3/2)^+ \). Of course we now know that this was wrong; and indeed soon after Dalitz himself, realising the merits of the strong spin selectivity provided by parity violation in the weak-interaction pionic decays of \(\Lambda \) hypernuclei, calculated the branching ratios of the \(\pi^- \) two-body decays of \(\Lambda H \) and \(\Lambda He \) to the daughter ground states of \(\Lambda He \) and \(\Lambda He \), respectively, in order to determine unambiguously the ground-state spins of the parent hypernuclei [18] which in a few years became experimentally established as \(0^+ \) [19] and \((1/2)^+ \) [20] respectively. This led to the correct ordering of the triplet and singlet \(\Lambda N \) s-wave interactions as we understand it to date.

2.2 The later years

Dalitz’s work on the p-shell hypernuclei, dates back to 1963 when together with Levi Setti, in their only joint pa-
Some possibilities for unusual light hypernuclei were discussed, notably the neutron-rich isotopes of $^3\Lambda H$ and $^3\Lambda He$ belonging to $I = 3/2$ multiplets, but his systematic research of the p-shell hypernuclei started in 1967 together with me laying the foundations for a shell-model analysis of Λ hypernuclei. As early as 1969 data on excited states were reported with the Λ hyperon in a $(1p)_A$ state coupled to the nuclear ground-state configuration, first from emulsion data, observing proton decay in some special instances such as $^{12}\Lambda C$, and later on through in-flight (K^-, π^-) experiments at CERN and BNL. In the particular case of the $^{12}\Lambda C$ excited cluster of states about 11 MeV above the $(1s)_A$ ground state, Dalitz participated actively in the first round of theoretical analysis for both types of experiments. However, confronting these and similar data posed two difficulties which we identified and discussed during 1976. The first one was connected to understanding the nature of the A continuum spectrum which, owing to the small momentum transfer in the forward-direction (K^-, π^-) reaction in flight, was thought to consist of well defined Λ-hypernuclear excitations. It was not immediately recognised that since the Λ hyperon did not have to obey the Pauli exclusion principle with nucleons, hypernuclear quasi-free excitation was possible even at extremely small values of the momentum transfer, a possibility that was pointed out and analysed quantitatively by us following the first round of data taken by the Heidelberg-Saclay collaboration at the CERN-PS in 1975. The other difficulty was connected with understanding the role of coherent excitations in the $(1p)_A$ continuum, the so-called ‘substitutional’ or ‘analogue’ states, where the early theoretical concept of analogue states stemmed from considerations of octet-SU(3) unitary symmetry. Already in his first discussion of these states in 1969, Dalitz recognised that the strong excitation of these states does not depend on SU(3) symmetry. In fact it is reasonable to believe that SU(3) symmetry has almost no relevance to the relationship between Λ-hypernuclei and nuclei...simply because the mass difference of 80 MeV between the Λ and Σ hyperons...is a very large energy relative to the typical energies associated with nuclear excitations. This difficulty was eliminated by Kerman and Lipkin, who suggested in 1971 to consider the Sakata triplet-SU(3) unitary symmetry version in which the proton, neutron and Λ are degenerate. This suggestion was further limited by us in 1976 to $(1p)_{p,u,A}$ states and, together with Pauli-spin SU(2) symmetry, led to the consideration of Pauli-Sakata SU(6) supermultiplets encompassing nuclei and hypernuclei in direct generalisation of Wigner’s supermultiplet theory of spin-isospin SU(4) symmetry in light nuclei. The analysis of these SU(6) supermultiplets proved very useful for the development of shell model techniques in the 1980s and on by John Millener and collaborators. In particular, the 1976 work focused on the concept of the ‘supersymmetric’ state in addition to the ‘analogue’ state, with the low-lying supersymmetric state arising from the non existence of a Pauli exclusion principle between the Λ hyperon and nucleons.

2.3 Lasting contributions

I wish to highlight two contributions which are likely to remain with us and become textbook chapters in hypernuclear physics.

(i) Dalitz’s outstanding contribution in the 1960s to weak interactions in hypernuclei, together with Martin Block, was to formulate the $\Lambda N \rightarrow N \Lambda$ phenomenology of non-mesonic weak-interaction decay modes that dominate the decays of medium-weight and heavy hypernuclei, a process that cannot be studied on free baryons and which offers new systems, Λ hypernuclei, for exploring the little understood $\Delta I = 1/2$ rule in non-leptonic weak interactions. This subject was discussed thoroughly in HYP06 (talks by H. Outa and by G. Garbarino, in these Proceedings) but more experimentation is needed before the underlying physics is fully understood.

(ii) Another pioneering contribution, in the 1970s, following the introduction of shell-model techniques, was to chart the production and γ-ray decay schemes anticipated for excited states in light Λ hypernuclei in order to derive the complete spin dependence of the ΛN interaction effective in these hypernuclei. This work, which I was fortunate to co-author, was further developed together with John Millener and Carl Dover, serving as a useful guide to the hypernuclear γ-ray measurements completed in the last few years, at BNL and at KEK, which yielded full determination of the spin dependence in the low-lying spectrum (talks by H. Tamura and by D.J. Millener, in these Proceedings).

3 ΛA hypernuclei

Dalitz in fact anticipated that ΛA hypernuclei be observed and that as a rule they would be particle stable with respect to the strong interaction. His Letter titled The ΛA-hypernucleus and the $\Lambda − A$ interaction appeared as soon as the news of the first observed ΛA-hypernucleus $^{10}\Lambda Be$ was reported in 1963 and was followed by a regular paper. He did not work on ΛA hypernuclei for a long period, until 1989, apparently because there were no new experimental developments in this field except for the $^{6}\Lambda He$ dubious event reported by Prowse in 1966. He returned to this subject in 1989 feeling the need to scrutinise carefully the interpretation of the $^{10}\Lambda Be$ event and its implications in view of a renewed experimental interest to search for the H-dibaryon. This scientific chapter in Dalitz’s life is described in Don Davis’ companion talk in these Proceedings.

4 Σ hypernuclei

Dalitz was puzzled by the CERN-PS low-statistics evidence in the beginning of the 1980, and subsequently by the KEK-PS low-statistics evidence in 1985, for relatively
narrow Σ-hypernuclear peaks in the continuum. The large $\Sigma N \to \Lambda N$ low-energy cross section, due primarily to the strong pion exchange potential, did not leave much room for narrow Σ states in nuclei; indeed, the first rough estimate by Gal and Dover [40] gave nuclear-matter widths of order $\Gamma_\Sigma \sim 25$ MeV. The suggestion by these authors that some Σ-hypernuclear levels could selectively become fairly narrow due to the $S = 1$, $I = 1/2$ dominance of the $\Sigma N \to \Lambda N$ transition fascinated him to the extent that he argued favorably for the validity of this interpretation in his 1980 Nature article *Discrete Σ-hypernuclear states* [41], although taking it with a grain of salt. He came back to this subject in 1989, after hearing in HYP88 at Padova Hayano's report of the KEK experiment [42] finding evidence for a $\frac{1}{2}^- \text{He}$ near-threshold narrow state. Recalling some old bubble-chamber data on $K^-\text{absorption}$ yields in ^4He near the Σ threshold, he questioned together with Davis and Deloff [43] the compatibility of assigning this $\frac{1}{2}^- \text{He}$ as a quasi-bound state with the older data: *Is there a bound $\frac{1}{2}^- \text{He}$?* He came back to these questions with Deloff in both HYP91 in Shimoda and HYP94 in Vancouver [44,45].

5 Exotic structures

I have already mentioned that Dalitz was far from jumping on band wagons of speculative ideas unless there were some good experimental or phenomenological tests to be made in a concrete manner. In this context one finds a Nature paper coauthored by Dalitz, *Growing drops of strange matter* [46], discussing a possible scenario for getting into strange quark matter. It is therefore interesting to wonder how Dalitz would have reacted to the flood of recent reports on the possible existence of K-nuclear bound states and on the ongoing experimental searches for such objects. The methodology adopted in the KEK and in the Frascati dedicated experiments discussed in the HYP06 conference was to use stopped K^- reactions, partly relying on Akaishi and Yamazaki’s production rate estimate of $\sim 2\%$ per stopped K^- in ^4He [47]. This estimate is totally unacceptable since a similar production rate is known to hold at rest for (the most favourable) $A = 4$ hypernuclei [48]. Hypernuclei are produced via the dominant absorptive $K^-N \to \pi Y$ modes, whereas the $K^-N \to N\bar{K}$ backward-elastic mode responsible for replacing a bound nucleon by a bound K is suppressed at rest with respect to the former reactive modes owing to the $1/\sqrt{s}$ law near threshold. Realistic estimates should give rates of order 10^{-4} or less, per stopped K^-, for the production of K-nuclear bound states. In-flight K^- reactions are more promising, but unfortunately will not be feasible before J-PARC is operated, from 2009 on. Preliminary (K^-, p) and (K^-, n) spectra at $p_{\text{lab}} = 1$ GeV/c on ^{12}C obtained in KEK-E548 show only appreciable strength in the K^- bound-state region, but no peaks [49], in accordance with a recent in-flight reaction calculation [50]. Given this situation, the use of other methods, using proton or antiproton beams, or nucleus-nucleus collisions, has been advocated. Let me mention briefly some of the recent claims in this rather speculative area.

A preliminary evidence for a broad peak in the Ad invariant-mass spectrum at $M_{\text{inv}}(Ad) = 3159 \pm 20$ MeV, and a width $\Gamma = 100 \pm 50$ MeV, was reported recently by the FOPI detector collaboration at GSI [51] in a study of AX correlations ($X = p, d, t, \ldots$) in Ni+Ni collisions at 1.93 GeV/A. This is barely compatible with the very narrow peak at 3140 MeV reported in the E471 KEK $^4\text{He}(K^-, n)$ experiment [52] as an evidence for the $I = 0$, $KNNN$ deeply bound narrow state predicted by Akaishi and Yamazaki [47] and recently withdrawn (M. Iwasaki, these Proceedings). However, the Ad peak observed in the GSI experiment could be correlated with the Ap relatively narrow peak observed in $\bar{p} - ^4\text{He}$ annihilation at rest by the OBELIX spectrometer collaboration at the LEAR facility in CERN (T. Bressani, these Proceedings and in Ref. [53]) provided it is accompanied by an unseen neutron spectator. It should be noted that the statistical significance of these two peaks that imply deep binding $B_K \sim 160$ MeV is not particularly high, 4.5 and 4 respectively.[2]

Recently, the FOPI collaboration at GSI reported a more robust evidence for another peak [54] which naively would be interpreted as due to a deeply bound K^-pp, by detecting Ap pairs in both Ni+Ni and Al+Al collisions. Preliminary results are shown in Fig. 1 where the Ap invariant mass peaks at $M_{\text{inv}}(Ap) = 2.13 \pm 0.02$ GeV, near the ΣN threshold, with an appreciable width. This value of $M_{\text{inv}}(Ap)$ is substantially lower, by over 100 MeV, than the $M_{\text{inv}}(Ap)$ value assigned by the FINUDA spectrometer collaboration [55] as due to a K^-pp bound state. The possibility of a resonance or cusp phenomenon for the Ap system, at or near the opening of the ΣN threshold, which has been suggested in several old experiments [56,57], has always intrigued Dalitz who together with others considered it within K^-d calculations [58,59], in parallel to the Faddeev calculations done by my Ph.D. student Gregory Toker [60]. However, I dare say that had he been with us today, he would have considered favourably another possibility, that the light, only Σ hypernucleus known to be bound, $\frac{1}{2}^- \text{He}$ is the source of these Ap pairs. The binding energy of this hypernucleus with respect to the $\Sigma^+ + ^3\text{He}$ threshold is $B = 4.4 \pm 0.3$ (stat) ± 1 (syst) MeV, and the value of width assigned to it is $\Gamma = 7.0 \pm 0.7 + 1.2$ MeV [61]. Its quantum numbers are $I = 1/2, J^P = 0^+$ [52] with all four baryons in s states. In particular, it may be viewed in isospace as a linear combination of Σ^+ coupled to ^3He and Σ^0 coupled to ^3He. Its wavefunction is schematically given by:

$$\Psi(\frac{1}{2}^- \text{He}) = \alpha(\Sigma N)^{S=0}_{I=1/2,3/2}(NN)^{S=0}_{I=1} + \beta(\Sigma N)^{S=1}_{I=1/2}(NN)^{S=1}_{I=0},$$

(1)

where only the spin-isospin structure is specified. The decay of $\frac{1}{2}^- \text{He}$ is dominated by the $(\Sigma N \to AN)^{S=1}_{I=1/2}$ two-
Fig. 1. Λp invariant-mass spectra taken by the FOPI detector collaboration at GSI in Ni+Ni (two upper panels) and in Al+Al (two lower panels) collisions. The right-hand side panels follow alignment of the reaction plane (upper panel in each group) or alignment of the Λ direction (lower panel in each group). Figure provided by Norbert Herrmann and shown by Paul Kienle at this meeting. I am indebted to both of them for bringing these data to my attention and for instructive discussions.

body transition, proceeding therefore through the component with amplitude β in which the NN composition is pn. This means that the ΣN composition is a mixture of $\Sigma^+ n$ and $\Sigma^0 p$, both of which decay to Λp. One expects then $\frac{4}{3}$He to decay dominantly by emitting back-to-back Λp pairs with slower 'spectator' proton and neutron which will somewhat distort the $\Sigma N \rightarrow \Lambda p$ two-body kinematics. A more conclusive proof for this suggestion would come from the observation of back-to-back Λ^3He pairs in the two-body decay $\frac{4}{3}$He $\rightarrow \Lambda + \frac{4}{3}$He. The branching ratio for this decay relative to the inclusive ΛX decay rate is perhaps a few percent, as may be argued by analogy with the approximately $8\% (5\%)$ branching ratio measured for the nonmesonic decay $\frac{4}{3}$He $\rightarrow n + \frac{4}{3}$He relative to the inclusive π^- decay rate of $\frac{4}{3}$He $\rightarrow \Lambda X$.

Irrespective of whether or not the above conjecture of $\frac{4}{3}$He production is correct for the FOPI-Detector GSI experiments, it would be a wise practice for K-nuclear bound state searches in heavy ion collisions to look first for known hypernuclear signals in order to determine their production rates as calibration and normalization standards.

6 Concluding remarks

Dalitz's lifelong study of hypernuclei was central to his career as a phenomenologically inclined theoretical physicist. His style was unique. Asked by his then student Chris Llewellyn-Smith about 'new theories', Dalitz responded

– My job is not to make theories - it's to understand the data,
his life-long nourishment of hypernuclei has shaped and outlined for the last 50 years a field that is now maturing into a broader context of Strangeness Nuclear Physics. His wise
and critical business-like attitude will be missed as new experimental facilities are inaugurated with the promise of discovering new facets of this field.

References

1. I.J.R. Aitchison, F.E. Close, A. Gal, D.J. Millener, Nucl. Phys. A 771 (2006) 8.
2. M. Danysz, J. Pniowski, Phil. Mag. 44 (1953) 348.
3. R.H. Dalitz, Rev. Mod. Phys. 33 (1961) 471.
4. R.H. Dalitz, Annu. Rev. Nucl. Sci. 13 (1963) 339.
5. R.H. Dalitz, S.F. Tuan, Phys. Rev. Lett. 2 (1959) 425.
6. M. Alston et al., Phys. Rev. Lett. 6 (1961) 698.
7. R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153 (1967) 1617.
8. Y. Tomozawa, Nuovo Cimento A 46 (1966) 707.
9. S. Weinberg, Phys. Rev. Lett. 17 (1966) 616.
10. L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101 (1956) 453.
11. R.H. Dalitz, Strange particle theory in the cosmic-ray period, in Proc. Colloque Int. sur l’Histoire de la Physique des Particules, Paris 1982, J. Physique 43, Colloq. C8 Suppl. (1982) p. 406.
12. M. O’Byrne, From ‘tau’ to ‘top’ - the man behind the Dalitz plot, CERN COURIER 44, issue 2 (2004) article 19.
13. R.H. Dalitz, Nucl. Phys. A 754 (2005) 14c.
14. R.H. Dalitz, Phys. Rev. 99 (1955) 1475.
15. B.W. Downs, R.H. Dalitz, Phys. Rev. 114 (1959) 593.
16. R.H. Dalitz, R.C. Herndon, Y.C. Tang, Nucl. Phys. B 47 (1972) 109.
17. R.H. Dalitz, Nature of the $A^0 – N$ force from binding energies of light hyperfragments, in Proc. 6th Annual Rochester Conference on High Energy Nuclear Physics, Rochester 1956, Eds. J. Ballam et al. (Interscience, New York, 1956) pp. V 40-43.
18. R.H. Dalitz, L. Liu, Phys. Rev. 116 (1959) 1312.
19. R. Ammar, R. Levi Setti, W. Slater, S. Limentani, P. Schlein, P. Steinberg, Nuovo Cimento 19 (1961) 20.
20. R. Ammar, W. Dunn, M. Holland, Nuovo Cimento 26 (1962) 840.
21. R.H. Dalitz, R. Levi Setti, Nuovo Cimento 30 (1963) 489.
22. D.H. Davis, J. Sacton, Hypernuclear physics using photographic emulsion, in Proc. Int. Conf. Hypernuclear Physics, ANL 1969, Eds. A.R. Bodmer, L.G. Hyman (ANL, Argonne IL, 1969) pp. 159-192.
23. G. Bohm et al., Nucl. Phys. B 24 (1970) 248; M. Jurić et al., Nucl. Phys. B 47 (1972) 36.
24. R.H. Dalitz, D.H. Davis, D.N. Tovee, Nucl. Phys. A 450 (1986) 311c.
25. C.B. Dover, A. Gal, G.E. Walker, R.H. Dalitz, Phys. Lett. B 89 (1979) 26.
26. R.H. Dalitz, A. Gal, Phys. Lett. B 64 (1976) 154.
27. R.H. Dalitz, This present problem and future outlook in A-hypernuclear physics, in Proc. Int. Conf. Hypernuclear Physics, ANL 1969, Eds. A.R. Bodmer, L.G. Hyman (ANL, Argonne IL, 1969) pp. 798-747.
28. A.K. Kerman, H.J. Lipkin, Ann. Phys. 66 (1971) 738.
29. R.H. Dalitz, A. Gal, Phys. Rev. Lett. 36 (1976) 362.
30. E.H. Auerbach, A.J. Baltz, C.B. Dover, A. Gal, S.H. Kahana, L. Ludeking, D.J. Millener, Phys. Rev. Lett. 47 (1981) 1110; Ann. Phys. 148 (1983) 381.
31. M.M. Block, R.H. Dalitz, Phys. Rev. Lett. 11 (1963) 96.
32. A. Gal, J.M. Soper, R.H. Dalitz, Ann. Phys. 63 (1971) 53; 72 (1972) 445; 113 (1978) 79.
33. R.H. Dalitz, A. Gal, Ann. Phys. 116 (1978) 167.
34. D.J. Millener, A. Gal, C.B. Dover, R.H. Dalitz, Phys. Rev. C 31 (1985) 499.
35. O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.
36. R.H. Dalitz, Phys. Lett. 5 (1963) 53.
37. M. Danysz et al., Phys. Rev. Lett. 11 (1963) 29; Nucl. Phys. 49 (1963) 121.
38. R.H. Dalitz, G. Rajasekaran, Nucl. Phys. 50 (1964) 450.
39. R.H. Dalitz, D.H. Davis, P.H. Fowler, A. Montwill, J. Pniowski, J.A. Zakrzewski, Proc. Royal Soc. A 426 (1989) 1.
40. A. Gal, C.B. Dover, Phys. Rev. Lett. 44 (1980) 379.
41. R.H. Dalitz, Nature 285 (1980) 11.
42. R.S. Hayano et al., Nuovo Cimento A 102 (1989) 437.
43. R.H. Dalitz, D.H. Davis, A. Deloff, Phys. Lett. B 236 (1990) 76.
44. R.H. Dalitz, A. Deloff, Nucl. Phys. A 547 (1992) 181c.
45. R.H. Dalitz, A. Deloff, Nucl. Phys. A 585 (1995) 303c.
46. G.L. Shaw, M. Shin, R.H. Dalitz, M. Desai, Nature 337 (1989) 436.
47. Y. Akaishi, T. Yamazaki, Phys. Rev. C 65 (2000) 044005.
48. D.H. Davis, Nucl. Phys. A 754 (2005) 3c.
49. T. Kishimoto, private communication (2006).
50. J. Yamagata, H. Nagahiro, S. Hirezaki, Phys. Rev. C 74 (2006) 014604.
51. N. Herrmann, invited talk presented at EXA 2005, Vienna [http://www.oeaw.ac.at/smi/EXA05/program.htm].
52. T. Suzuki et al., Nucl. Phys. A 754 (2005) 375c.
53. G. Bendiscioli, A. Fontana, L. Lavezzi, A. Panzarasa, A. Rotondi, T. Bressani, submitted for publication in Nucl. Phys. A (2006).
54. P. Kienle, private communication (2006).
55. M. Agnello et al., Phys. Rev. Lett. 94 (2005) 212303.
56. T.H. Tan, Phys. Rev. Lett. 23 (1969) 395.
57. C. Pigot et al., Nucl. Phys. B 249 (1985) 172.
58. R.H. Dalitz, C.R. Hemming, E.J. Morris, Nukleonika 25 (1980) 1555; R.H. Dalitz, A. Deloff, Czech J. Phys. B 32 (1982) 701; R.H. Dalitz, A. Deloff, Australian J. Phys. 36 (1983) 617.
59. M. Torres, R.H. Dalitz, A. Deloff, Phys. Lett. B 174 (1986) 213.
60. G. Toker, A. Gal, J.M. Eisenberg, Phys. Lett. B 88 (1979) 235; G. Toker, A. Gal, J.M. Eisenberg, Nucl. Phys. A 362 (1981) 405.
61. T. Nagae et al., Phys. Rev. Lett. 80 (1998) 1605.
62. T. Harada, Phys. Rev. Lett. 81 (1998) 5287.
63. G. Coremans et al., Nucl. Phys. B 16 (1970) 209.
64. G. Keyes, J. Sacton, J.H. Wickens, M.M. Block, Nuovo Cimento A 31 (1976) 401.
65. C.H. Llewellyn-Smith, remarks at the Dalitz memorial meeting, University of Oxford, 3 June 2006 [http://www-thphys.physics.ox.ac.uk/user/SubirSarkar/dalitzmeeting/].