The Clinical Value of Copeptin in Acute Coronary Syndrome

Nora M Aborehab**, Tarek M Salman*, Ola S Mohamed*, Abdel Rahman H El Boquiry* and Manal A Mohamed*

**Assistant lecturer in Biochemistry Department, Faculty of Pharmacy, MSA University, Egypt
*Professor, Head of Biochemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
*Cardiology Consultant, National Heart Institute, Giza, Egypt
*Fellow of Medical Biochemistry, National Heart Institute, Giza, Egypt

Abstract

(1) The introduction of a novel immunoassay measuring copeptin, the c-terminal part of the vasopressin prohormone provided a unique window in common medical disorder. We examined the ability of copeptin in combination with cardiac troponin-I (cTn-I) in diagnosis of AMI, the differentiation between AMI and UA and finally evaluate the ability of copeptin in enhancing sensitivity of cTn-I at early hours of admission in emergency department.

(2) This study was carried out on 50 subjects; they were divided into 33 patients with AMI and 17 patients with UA. Concentrations of copeptin, cTn-I and CK-MB were determined in their sera.

(3) In AMI group, the mean serum level of copeptin was highly significant in three hours than admission time and six hours. The mean serum level of cTn-I was highly significant in six hours than the admission time and three hours. The sensitivity and specificity of copeptin and cTn-I combination were 100% and 100% at the admission time versus 72.7% and 82.4% with cTn-I alone also versus 97% and 94.1% with combination of cTn-I and CK-MB. The AUC of the combination of copeptin and cTn-I was 1 which was significantly higher than the AUC of cTn-I alone 0.81 and the AUC of combination of cTn-I and CK-MB 0.92

(4) Copeptin as a single marker has diagnostic value being superior to cTn-I within the first three hours after acute chest pain. Dual marker strategy combining cTn-I and copeptin show incremental value in the early rule out of AMI.

Keywords: Acute Coronary Syndrome (ACS); AMI; Copeptin; Cardiac Troponin-I (cTn-I); CK-MB

Introduction

Acute coronary syndrome (ACS) encompasses a broad and heterogeneous population ranging from a patient with atypical chest discomfort, non-specific electrocardiographic (ECG) changes, and normal cardiac biomarkers to the patient with a large ST-segment elevation myocardial infarction (STEMI), non-ST-elevation myocardial infarction (NSTEMI) and unstable angina (UA) [1].

Atherosclerosis is the underlying reason for nearly all causes of coronary artery disease, peripheral arterial disease and many cases of stroke. Atherosclerosis is a systemic inflammatory process characterized by the accumulation of lipids and macrophages/lymphocytes within the intima of large arteries [2].

Myocardial infarction; also known as heart attack, is defined in pathology as the death of cardiac muscle due to prolonged severe ischemia. The criteria meets the diagnosis when there is rise or fall in cTn-I with at least one value above the 99th percentile upper reference limit with symptoms of ischemia, ECG changes, Angiology [3].

Myocardial infarction can be recognized by clinical features, including ECG findings, elevated values of biochemical markers of myocardial necrosis and by imaging or may be defined by pathology [3].

Myocardial infarction can be classified into various types, based on pathological, clinical and prognostic differences, along with different treatment strategies [3].

Stable angina pectoris typically manifests as a deep, poorly localized chest or arm discomfort, reproducibly precipitated by physical exertion or emotional stress and relieved within 5 to 10 minutes by rest or sublingual nitroglycerin [4].

In contrast, UA is defined as angina pectoris or equivalent type of ischemic discomfort with at least one of three features: (1) occurring at rest or with minimal exertion and usually lasting >20 minutes; (2) being severe and usually described as frank pain; (3) occurring with a crescendo pattern [4].

Unstable angina can progress to NSTEMI and STEMI if left untreated. Unstable angina refers to a reduction in the blood flow in the coronary arteries typically caused by a rupture of atherosclerotic plaque leading to thrombus formation [5].

CKMB is an 86,000 Dalton is an enzyme that is predominantly located in myocardial cells and is released into the circulation in the setting of MI [6].

Tropinins are structural and regulatory proteins of skeletal and cardiac muscle cells and are of essential importance in the regulation of muscle cell contraction. They were discovered in the 1970s and introduces to cardiology clinical practice in the late 1980s [7,8].

The Troponin protein complex is immobilized on the thin filament
of the contractile apparatus of striated muscle. It consists of three
distinct proteins encoded by separate genes which are troponin T,
troponin I and troponin C [9].

Cardiac troponin I (cTnl) (molecular weight approximately 23
kDa) is a key regulatory protein in cardiac muscle contraction where
it binds to actin in the thin myofilaments to hold the actin-tropomyosin
complex in place and so the myosin cannot bind to actin in relaxed
muscle. Proteolysis of cTnl and cTnT occurs in the myocardium in
response to ischemia leading to post-translational modification [10-
12].

Arginine vasopressin (AVP), also described as the antidiuretic
hormone (ADH), is a nona peptide hormone with important
osmoregulatory, hemodynamic, hemostatic, neuroendocrine and
central nervous effects [13].

Copeptin was first time defined by Holwerda in 1972 [14], it
is named as the C-terminal portion of provasopressin (cT-proVP)
[15] and AVP associated glycopeptide. It is considered as a novel
neurohormone (NH) of the AVP system which is co-secreted with
AVP from hypothalamus [16].

Copeptin is a glycosylated 39 amino acid long peptide with leucine
rich core segment [17-20]. Its molecular weight is 5000 Daltons (Da)
[17,18].

Vasopressin is synthesized mainly in the perikarya of magnocellular
neurons in the supraoptic nucleus (SON) and paraventricular nucleus
(PVN) of the hypothalamus also in parvocellular neurons [19].

In humans, a 168-amino acid preprohormone is synthesized and a
signal peptide (residues -23 to -1) ensures incorporation of the nascent
polypeptide into ribosomes. During synthesis, the signal peptide is
removed to form vasopressin prohormone which is processed and
incorporated into the Golgi compartment and then into membrane-
associated granules. The prohormone contains three domains:
vasopressin (residues 1-9), vasopressin (VP)-neurophysin (residues
13-105) and copeptin (residues 107-145). The vasopressin domain
is linked to the VP-neurophysin domain through a glycine-lysine-
arginine-processing signal, and the VP-neurophysin is linked to the
copeptin domain by an arginine-processing signal [19].

Clinical assay of plasma AVP is challenging due to multiple causes;
AVP has a short plasma half-life (5-15 minutes), more than 90% of AVP
in the circulation is bound to platelets resulting in underestimation
of amounts of AVP actually released and it is highly unstable in
the circulation is bound to platelets resulting in underestimation
of amounts of AVP actually released and it is highly unstable in

Copeptin seems to be an ideal shadow for AVP in clinical
assessment due to the multiple advantages over AVP in clinical
assessment. It is a highly stable molecule in vivo and in vitro. It can
withstand in plasma and serum at room temperature for 7-10 days and
assessment. It is a highly stable molecule in vivo and in vitro. It can
withstand in plasma and serum at room temperature for 7-10 days and

Copeptin assay techniques need no special handling precautions
for samples and could be done on both plasma and serum using minute
volume of samples (50 µL) versus 1 mL for AVP. Copeptin assay is
faster and the results are available within 1-5.5 hours according to the
analytical method [13,18].

Subjects and Methods

This study was carried on 50 subjects suffering from acute chest pain
attending the National Heart Institute, in the period from February till
July 2012. They were divided into two groups:

(I) Acute Myocardial infarction group: comprised 33 diagnosed as
AMI of age (47-73 years) with mean (58.9 ± 1.11 years) and
BMI of range (23.2-39.1 Kg/m²) with mean (30.2 ± 0.75 Kg/

BMI of range (23.2-39.1 Kg/m²) with mean (30.2 ± 0.75 Kg/m²) for

All patients with positive ECG abnormalities
(2) All patients were using medications which can affect plasma
AVP level.
(3) All patients with other diseases that may alter normal patterns
of AVP release as in acute or chronic renal failure, end stage
liver diseases, systemic infections and chronic obstructive
pulmonary disease.

Copeptin was measured using ELISA technique using Phoenix
Pharmaceuticals, inc; USA, according to the principle of Porstmann
and Kiesseg et al. [25].

Cardiac troponin-I was measured using ELISA technique using
Monobind Inc: USA, according to the principle of Apple et al. [26].
CK-MB was measured using photometer 5010 using Stanbio: USA,
according to the principle of Dawson et al. [27].

Statistical methods

(1) Graph pad prism program version 5.0 was used for analysis of
all the data.
(2) Data were summarized as mean ± SEM; Paired, non-parametric
Wilcoxon test was used for analysis of two quantitative data.
(3) Non parametric Fried man’s test was used for analysis of more
than two quantitative data followed by Dunns for detection of
significance.

P-value was considered significant if<0.05.
(4) Mac Apple Epi-Stat S3A Pro statistics package (V. 4.0, Apple
Corporation, USA, 2012) was used for data analysis. Diagnostic validity test was done: It includes: diagnostic specificity, diagnostic specificity, positive predictive value (PPV) and negative predictive value (NPV). The receiver operator characteristic (ROC) curve was constructed to obtain the most sensitive and specific cutoff for each technique. To evaluate the most discriminating markers between the compared groups, area under ROC curve can also be calculated. Multi-ROC or combination between more than 1 parameter was used.

Results

Table 1 and Figure 1 showed that the mean serum level of copeptin was highly significant increased in three hours of AMI group than the admission time and six hours at P<0.001.

Table 2 and Figure 2 showed that the mean serum level of cTn-I was highly significant increased in six hours of the AMI group than the admission time and three hours at P<0.001. Also the mean serum level of cTn-I was significantly increased in three hours of the AMI group than the admission time at P<0.001.

Table 3 and Figure 3 showed that the mean serum level of CK-MB was highly significant increased in three and six hours of AMI group than the admission time at P<0.001. Also the mean serum level of CK-MB was highly significant increased in six hours of the AMI group than the admission time and six hours at P<0.001.

Regarding the mean serum copeptin value in UA group, a non-significant difference was found between the three time intervals as shown in Table 4 and Figure 4.

Table 5 and Figure 5 showed that the mean serum level of cTn-I (ng/mL) was significantly increased in three and six hours of the UA group than the admission time at P<0.001 also the mean serum level of cTn-I was highly significant increased in six hours than the three hours at P<0.001.

Regarding the mean serum level of CK-MB was highly significant increased in three and six hours of the UA group than the admission time at P<0.001 also the mean serum level of CK-MB was highly significant increased in six hours than the three hours at P<0.001 as shown in Figures 7-9.

In relation to the representative time courses of copeptin, cTn-I and CK-MB in patients suffering from AMI and UA during the first six hours after admission it was found that the mean serum copeptin level seemed to be increased during the first three hours and then decline afterward at P<0.001, by contrast the mean cTn-I levels strongly increased within six hours after admission at P<0.001 whereas the mean CK-MB concentration continuously increased within the observed six hours at P<0.001 in AMI group as shown in Figures 7-9.
While in UA group, it was found that copeptin and cTn-I levels remained unchanged within six hours after admission while the mean CK-MB concentration continuously increased within the observed six hours at \(P < 0.001 \) as shown in Figures 7-9.

It was cleared from Table 7 and Figure 10 that copeptin value 30.7 can be used as a cut-off point at which 93.9% of the AMI patients can be diagnosed correctly but 5.90% of normal persons are false positive. According to the ROC curve, the sensitivity was 93.9% while the specificity was 94.1%.

Regarding cTn-I, it was found from Table 7 and Figure 10 that cTn-I value 0.87 can be used as a cut-off point at which 72.7% of the AMI patients can be diagnosed correctly but 29.4% of normal persons are false positive. According to the ROC curve, the sensitivity was 72.7% while the specificity was 82.4%.

While CK-MB, it was found from Table 7 and Figure 10 that CK-MB no. 32 can be used as a cut-off point at which 66.7% of the AMI patients can be diagnosed correctly but 29.4% of normal persons are false positive. According to the ROC curve, the sensitivity was 66.7% while the specificity was 70.6%.

It was cleared from Table 8 and Figure 11 that copeptin value 51.7 can be used as a cut-off point at which 97% of the AMI patients can be diagnosed correctly and 11.8% of normal persons are false positive. According to the ROC curve, the sensitivity was 97% while the specificity was 88.2%.

Regarding cTn-I, it was found from Table 8 and Figure 11 that cTn-I value 1.017 can be used as a cut-off point at which 90.9% of the AMI patients can be diagnosed correctly but 35.3% of normal persons are false positive. According to the ROC curve, the sensitivity was 90.9% while the specificity was 64.7%.

Time of admission (hour)	No. of cases	Range	Mean ± SEM
Admission	17	0.21-1.07	0.58 ± 0.06
Three	17	0.24-1.17	0.86 ± 0.06
Six	17	0.40-1.22	1.01 ± 0.05*

* Significant from admission time at \(P < 0.001 \).
Significant from three hours at \(P < 0.001 \).

Time of admission (hour)	No. of cases	Range	Mean ± SEM
Admission	17	3.59-49.9	12.7 ± 2.96
Three	17	3.18-74.8	16.9 ± 5.43
Six	17	3.46-41.4	12.5 ± 2.93

Time of admission (hour)	No. of cases	Range	Mean ± SEM
Admission	17	2-80	32 ± 5.75
Three	17	20-338	126 ± 19.8
Six	17	54-448	189 ± 28.3*

* Significant from admission time at \(P < 0.001 \).
* Significant from three hours at \(P < 0.001 \).

Table 4: Serum copeptin (pmol/L) in UA group.

![Figure 4](image) The mean serum level of copeptin (pmol/L) ± SEM in UA group.

Table 5: Serum cTn-I (ng/mL) in UA group.

![Figure 5](image) The mean serum level of cTn-I (ng/mL) ± SEM in UA group.

Table 6: Serum CK-MB (U/L) in UA group.

![Figure 6](image) The mean serum level of CK-MB (U/L) ± SEM in UA group.

![Figure 7](image) The representative time course of copeptin level in patients suffering from AMI & UA during first six hours after admission.
While CK-MB, it was found from Table 8 and Figure 11 that CK-MB no. 146 can be used as a cut-off point at which 97.7% of the AMI patients can be diagnosed correctly but 35.3% of normal persons are false positive. According to the ROC curve, the sensitivity was 97.7% while the specificity was 100%.

It was cleared from Table 9 and Figure 12 that copeptin value 30.7 used as a cut-off point with cTn-I value 1.017 used as a cut-off point with CK-MB value 146 at which 97% of the AMI patients can be diagnosed correctly and no false positive. According to the ROC curve, the sensitivity was 97% while the specificity was 100%.

Discussion

The elevation of copeptin in the AMI group during the first three hours may be due to two hypothesis; first the stress hypothesis where copeptin/AVP is a substantial part of the endocrine stress response resulting in a synergistic release of ACTH and cortisol. While the second is the hemodynamic hypothesis where AMI results in cardiac underfilling leading to baroreceptor stimulation and finally secretion of copeptin/AVP from the posterior pituitary [28].
While the decline of copeptin afterwards may be due to the initiation of the formation of new angiogenesis of collateral coronaries which may reduce the ischemic symptoms, decrease the stimulation of cardiac baroreceptors and consequently decrease the copeptin/AVP release axis.

These results were in accordance with Reichlin et al., Keller et al., Charpentier et al. and Folli et al., where the copeptin values of UA subset of patients with ACS were normal and didn’t show any difference from those observed in patients with benign causes of chest pain [29-32].

In accordance with these results a study carried by Reichlin et al., Keller et al., Charpentier et al., and Folli et al., in which the copeptin values of UA subset of patients with ACS were normal and didn’t show any difference from those observed in patients with benign causes of chest pain [29-32].

In UA, there is no trigger for cTn-I release as the cardiac myocyte still intact without any pathological necrosis but the presence of minute amounts of serum cTn-I in the UA group may be due to the normal turnover rate of cardiac myocytes. According to these results the mean serum level of cTn-I didn’t reach the cutoff value for the different time intervals.

Regarding the mean serum level of CK-MB was highly significant in three and six hours of UA group than the admission time at P<0.001 also the mean serum level of CK-MB was highly significant in six hours than the three hour at P<0.001.

The increased level of CK-MB in UA group may be due to its release secondary to coronary obstruction, other forms of injury to cardiac muscle; such as those resulting from myocarditis, trauma, cardiac catheterization, shock and cardiac surgery.
Early identification of patients at risk in a population with undifferentiated chest pain is essential since these patients need an aggressive therapeutic regimen [30].

At admission time, cTn-I with cutoff value of 0.87 ng/mL revealed AUC=0.81, with sensitivity 72.7%, specificity 82.4%, NPV 60.9% and PPV 88.9%, while copeptin diagnostic accuracy at the same time at cutoff value of 30.7 pmol/L was much higher than that of cTn-I with AUC=0.98, with sensitivity 93.9%, specificity 94.1%, NPV 88.9%, PPV 96.9%, so copeptin was more sensitive and specific than cTn-I with better NPV and PPV.

These results were in accordance with Keller et al. and Ray et al. [30,37].

Using the dual marker strategy, involving the different pathophysiological basis of release of cTn-I as the most specific biomarker for cardiomycocytes injury and copeptin as indicator for stress and hemodynamic instability; theoretically it would provide more accurate diagnostic performance.

When both ROC of cTn-I and copeptin were merged together at the admission time, a positive impact on diagnostic performance was improved reaching AUC of 1.00, sensitivity 100%, Specificity 100%, NPV 100% and PPV 100% at cutoff value for copeptin 30.7 pmol/L and cut-off value for cTn-I 0.58 ng/mL.

These results were in accordance with Reichlin et al., Keller et al., Charpentier et al. and Ray et al., [29-31,37].

At the admission time; CK-MB with cutoff value of 32 U/L revealed AUC=0.77, with sensitivity 66.7%, specificity 70.6%, NPV 52.2% and PPV 81.5%.

However upon combination of both cTn-I and CK-MB at admission time, the AUC was 0.92 with sensitivity 97%, specificity 94.1%, NPV 94.1% and PPV 97% at cutoff value for cTn-I 0.87 ng/mL and for CK-MB 18 U/L.

In spite of the obvious added diagnostic value of CK-MB to cTn-I at admission time; but it was still lower than that of copeptin and cTn-I combination.

At three hours; cTn-I with cutoff value of 1.017 ng/mL revealed AUC=0.93, with sensitivity 90.9%, specificity 64.7%, NPV 78.6% and PPV 83.3%, while copeptin diagnostic accuracy at the same time at cutoff value of 51.7 pmol/L was much higher than that of cTn-I with AUC=0.97, with sensitivity 97%, specificity 88.2%, NPV 93.8%, PPV 94.1%, so copeptin was more sensitive and specific than cTn-I with better NPV and PPV.

When both ROC of cTn-I and copeptin were combined together at three hours, a positive impact on diagnostic performance was improved reaching AUC of 1.00, sensitivity 100%, Specificity 100%, NPV 100% and PPV 100% at cutoff value for copeptin 51.7 pmol/L and cut-off value for cTn-I 1.01 ng/mL.

These results were in accordance with Reichlin et al., Keller et al. [29,30].

At the three hours; CK-MB with cutoff value of 146 U/L revealed AUC=0.73, with sensitivity 69.7%, specificity 64.7%, NPV 52.4% and PPV 79.3%.

However upon combination of both cTn-I and CK-MB at three hours, the AUC was 0.97 with sensitivity 97%, specificity 100%, NPV 94.4% and PPV 100% at cutoff value for cTn-I 1.017 ng/mL and for CK-MB 146 U/L.

This combination provide a higher specificity and PPV than that at admission time

In spite of the obvious added diagnostic value of CK-MB to cTn-I at three hours; but it was still lower than that of copeptin and cTn-I combination.

Conclusion

1. The introduction of a novel immunoassay measuring copeptin, the c-terminal part of the vasopressin prohormone provided a unique window into the role of this system in common medical disorder.

2. Determination of copeptin as a single marker has diagnostic value being superior to a conventional cTn-I within the first three hours after acute chest pain but still single copeptin determination unable to displace or challenge a serial cTn-I measurement to detect myocardial necrosis within a rule-in approach.

3. The improvement in the early rule out of AMI offered by copeptin testing may have the potential to improve allocation of resources in the emergency department and markedly reduce total treatment cost.

4. Our data suggest that a dual marker strategy combining cTn-I and copeptin benefits from the integration of complementary information provided by pathophysiologically different processes: cTn-I for the detection and quantification of myocardial necrosis, and copeptin for the quantification of endogenous stress show incremental value in the early rule out of AMI with high NPV.

5. The combination of copeptin and cTn-I has higher diagnostic accuracy than that of cTn-I and CK-MB.

As per this conclusion, copeptin is considered to be an important biomarker in diagnosing acute myocardial infarction which should be applicable in the daily work not only the experimental field.

Study Limitations

The following limitations of the present study have to be addressed.

First, our study is limited by the enrollment of a limited number of patients included from single recruiting medical center (single center study). The results, therefore, are preliminary and need to be confirmed and extended in lager multicenter studies on a larger number of the population to get more valid and reliable cutoff values and diagnostic impact.

Second, in this study, patients having STEMI were excluded which precluded the differentiation of the clinical values and release pattern of copeptin in the three categories of ACS; STEMI, NSTEMI and UA.

Third, this study was only observational and cannot quantify exactly the clinical benefits associated with the combination of copeptin and cTnI since no clinical decision or pathway was based on Copeptin values. Thus, further randomized interventional studies are required to obtain this information.

Fourth, the use of conventional cTnI assay instead of the newest generation of high sensitivity cTnI and the use of a spectrophotometric method for CK-MB instead of the recommended mass detecting method for CK-MB instead of the recommended mass detecting
techniques as ELISA or gel electrophoresis were due to two causes. One of them related to the cost effectiveness of the study as it was self-funded, while the second was to mimic the actual diagnostic tools applied in Egypt, where both cTnI and CK-MB are usually detected using the mentioned methods.

Acknowledgements

We would like to thank all staff members of the national heart institute for their help and support, also the use of ginger program for grammar mistakes and language corrections was so helpful.

Funding

This work was self-funded.

Conflict of Interest

There is no conflict of interest.

References

1. Scirica BM (2010) Acute coronary syndrome: emerging tools for diagnosis and risk assessment. J Am Coll Cardiol 55: 1403-1415.
2. Badimon L, Padró T, Vilahur G (2012) Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur Heart J Acute Cardiovasc Care 1: 60-74.
3. ThYESsen K, Alpert J, Jaffe A, Simoons M, Chaitman B, et al. (2012) Third universal definition of myocardial infarction. Circulation 126: 2020-2035.
4. Cannon C, Braunwald E (2012) Unstable Angina and Non-ST Elevation Myocardial Infarction. In: Bonow RO, Mann DL, Zipes DP, Libby P (eds.) Braunwald’s Heart Disease. (9thedn). Elsevier.
5. Anderson J, Adams C, Antman E, Bridges C, Caillf R, et al. (2007) ACC/AHA task force members. Guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: executive summary. Circulation 116: 803-877.
6. McCoRD J (2008) Protocols for diagnosing myocardial infarction. In: De Lemos J (ed.) Biomarkers in heart disease. American Heart Association.
7. Freyningen MK, Tajishi M, Wojta J, Huber K (2012) Biomarkers in acute coronary artery disease. Wien Med Wochenschr 162: 489-498.
8. Teixeira R, Gonçalves L, Gersh B (2013) Acute myocardial infarction—historical notes. Int J Cardiol 167: 1825-1834.
9. ThYESgesen K, Mair J, Katus H, Piebarn M, Venge P, et al. (2010) Recommendations for the use of cardiac troponin measurement in acute cardic care. Eur Heart J 31: 2197-2204.
10. Parmacek MS, Solaro R (2004) Biology of the troponin complex in cardiac myocytes. Prog Cardiovasc Dis 47: 159-176.
11. Michielsen EC, Solaro RJ (2004) Biology of the troponin complex in cardiac myocytes. Prog Cardiovasc Dis 47: 159-176.
12. Peronnet E, Becquart L, Porier F, Cubizolles M, Chequet-Kastylevsky G, et al. (2006) SELDI-TOF MS analysis of the Cardiac Troponin I forms present in plasma from patients with myocardial infarction. Proteomics 6: 6288-6299.
13. Morgenthaler NG, Struck J, Jochberger S, Düsner MW (2008) Copeptin: clinical use of a new biomarker. Trends Endocrinol Metab 19: 43-49.
14. Holwerda DA (1972) A glycopeptide from the posterior lobe of pig pituitaries. I. Isolation and characterization. Eur J Biochem 28: 334-339.
15. Voors A, van Haehling S, Anker S, Hillege H, Struck J, et al. (2009) C-terminal pro-BNP (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: results from the OPTIMAAL study. Eur Heart J 30: 1187-1194.
16. Yalta K, Yalta T, Sivri N, Yetkin E (2013) Copeptin and cardiovascular disease: a review of a novel neurohormone. Int J Cardiol 167: 1750-1759.
17. Khan SQ, Dhillon OS, O’Brien RJ, Struck J, Quinn PA, et al. (2007) C-terminal pro-BNP (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) study. Circulation 115: 2103-2110.
18. Mastropietro CW, Mahan M, Valentine KM, Clark JA, Hines PC, et al. (2012) Copeptin as a marker of relative arginine vasopressin deficiency after pediatric cardiac surgery. Intensive Care Med 38: 2047-2054.
19. Brunton L, Chabner B, Knollman B (2011) Regulation of renal function and vas- "cular volume. In: Goodman and Gilman’s. The Pharmacological Basis of Therapeutics. (12thnedn). McGrow-Hill companies, China.
20. Szinnai G, Morgenthaler NG, Berneis K, Struck J, Müller B, et al. (2007) Changes in Plasma Copeptin, the C-Terminal Portion of Arginine Vasopressin during Water Deprivation and Excess in Healthy Subjects. J Clin Endocrinol Metab 92: 3973-3978.
21. Uric A, Rogic D, Rajisman G (2011) Copeptin—is there a role for another cardiac biomarker? J Med Microbiol 30: 224-229.
22. Jochberger S, Morgenthaler NG, Mayr VD, Luckner G, Wenzel V, et al. (2006) Copeptin and arginine vasopressin concentrations in critically ill patients. J Clin Endocrinol Metab 91: 4381-4386.
23. Morgenthaler NG, Struck J, Alonso C, Bergmann A (2006) Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem 52: 112-119.
24. Struck J, Morgenthaler NG, Bergmann A (2005) Copeptin, a stable peptide derived from the vasopressor precursor, is elevated in serum of sepsis patients. Peptides 26: 2500-2504.
25. Porstmann T, Kiessig ST (1992) Enzyme immunoassay techniques. An overview. J Immunol Methods 150: 5-21.
26. Apple FS, Christenson RH, Valdes R Jr, Andriak AJ, Berg A, et al. (1999) Simultaneous rapid measurement of whole blood myoglobin, creatine kinase MB, and cardiac troponin I by the triage cardiac panel for detection of myocardial infarction. Clin Chem 45: 199-205.
27. Dawson DM, Eppenberger HM, Kaplan NO (1965) Creatine kinase: evidence for a dimeric structure. Biochem Biophys Res Commun 21: 346-353.
28. Morgenthaler NG (2010) Copeptin: a biomarker of cardiovascular and renal function. Congest Heart Fail 16: S37-44.
29. Reichlin T, Hochholzer W, Stelzig C, Laule K, Freidank H, et al. (2009) Incremental value of copeptin for rapid rule out of acute myocardial infarction. J Am Coll Cardiol 54: 60-68.
30. Keller T, Tzikas S, Zeller T, Czyz E, Lillppp L, et al. (2010) Copeptin improves early diagnosis of acute myocardial infarction. J Am Coll Cardiol 55: 2096-2106.
31. Chartpentier S, Maupas-Schwalm F, Cournot M, Elbaz M, Botella JM, et al. (2012) Combination of copeptin and troponin assays to rapidly rule out non-ST elevation myocardial infarction in the emergency department. Acad Emerg Med 19: 517-524.
32. Folli C, Consonnni D, Spessot M, Salvini L, Velati M, et al. (2013) Diagnostic role of copeptin in patients presenting with chest pain in the emergency room. Eur J Intern Med 24: 189-193.
33. White HD (2011) Pathobiology of troponin elevations: do elevations occur with myocardial ischemia as well as necrosis? J Am Coll Cardiol 57: 2406-2408.
34. Antman E (2012) ST-segment Elevation Myocardial Infarction: Pathology, Pathophysiology and Clinical features. In: Bonow RO, Mann DL, Zipes DP, Libby P (eds.) Braunwald’s Heart Disease. (9thedn). Elsevier.
35. Chenevier-Gobeaux C, Freund Y, Claessens YE, Guérin S, Bonnet P, et al. (2013) Copeptin for rapid rule out of acute myocardial infarction in emergency department. Int J Cardiol 166: 198-204.
36. Esses D, Gallagher EJ, Iannaccone R, Bijur P, Srinivas VS, et al. (2001) Six-hour versus 12-hour protocols for AMI: CK-MB in conjunction with myoglobin. Am J Emerg Med 19: 182-186.
37. Ray P, Chartpentier S, Chenevier-Gobeaux C, Reichlin T, Twerentold B, et al. (2012) Combined copeptin and troponin to rule out myocardial infarction in patients with chest pain and a history of coronary artery disease. Am J Emerg Med 30: 440-448.