Rapid response to anthropogenic climate change by *Thuja occidentalis*: implications for past climate reconstructions and future climate predictions

Rebekah A. Stein, Nathan D. Sheldon and Selena Smith

Department of Earth and Environmental Sciences, University of Michigan—Ann Arbor, Ann Arbor, MI, USA

**ABSTRACT**

Carbon isotope values of leaves (δ13Cleaf) from meta-analyses and growth chamber studies of C3 plants have been used to propose generalized relationships between δ13Cleaf and climate variables such as mean annual precipitation (MAP), atmospheric concentration of carbon dioxide ([CO2]), and other climate variables. These generalized relationships are frequently applied to the fossil record to create paleoclimate reconstructions. Although plant evolution influences biochemistry and response to environmental stress, few studies have assessed species-specific carbon assimilation as it relates to climate outside of a laboratory. We measured δ13Cleaf values and C:N ratios of a wide-ranging evergreen conifer with a long fossil record, *Thuja occidentalis* (Cupressaceae) collected 1804–2017, in order to maximize potential paleo-applications of our focal species. This high-resolution record represents a natural experiment from pre-Industrial to Industrial times, which spans a range of geologically meaningful [CO2] and δ13Catm values. Δleaf values (carbon isotope discrimination between δ13Catm and δ13Cleaf) remain constant across climate conditions, indicating limited response to environmental stress. Only δ13Cleaf and δ13Catm values showed a strong relationship (linear), thus, δ13Cleaf is an excellent record of carbon isotopic changes in the atmosphere during Industrialization. In contrast with previous free-air concentration enrichment experiments, no relationship was found between C:N ratios and increasing [CO2]. Simultaneously static C:N ratios and Δleaf in light of increasing CO2 highlights plants’ inability to match rapid climate change with increased carbon assimilation as previously expected; Δleaf values are not reliable tools to reconstruct MAP and [CO2], and δ13Cleaf values only decrease with [CO2] in line with atmospheric carbon isotope changes.

**Subjects** Paleontology, Climate Change Biology, Biogeochemistry

**Keywords** Atmosphere, Biogeochemistry, Carbon isotopes, Northern white cedar, Biosphere, Terrestrial, Climate, Paleoclimate
These changes have been accompanied by regional changes in mean annual temperature (MAT), mean annual precipitation (MAP), maximum summer temperature, and other climate variables (Yonetani & Gordon, 2001). The rapid decline in the carbon isotopic composition of CO$_2$ ($\delta^{13}$C$_{atm}$) due to fossil fuel combustion, deforestation, and other human inputs, is known as the Suess Effect, and is a chemical representation of anthropogenic changes to the atmosphere—and more broadly, the environment. $\delta^{13}$C$_{atm}$ values provide a useful way to see changes in CO$_2$ sources, sinks, and fluxes in the modern environment (Keeling, 1979; Boutton, 1991; Deines, 1992). It can also be applied to geologic problems (Schmitt et al., 2012) due to the naturally differing isotopic compositions of different CO$_2$ sources (e.g., methane, volcanism). $\delta^{13}$C$_{atm}$ values are particularly useful because they are parameters in models that reconstruct past changes to atmospheric [CO$_2$] using paleosol carbonates (Cerling et al., 1991, 1992) or atmospheric [CO$_2$] using plant stomatal parameters (Franks et al., 2014). Direct measurements of $\delta^{13}$C$_{atm}$ values only go back 50 years due to technological limitations, and longer-reaching ice core CO$_2$ bubbles (~800,000 years) are poorly resolved for recent times and limited by the presence of glacial ice (Keeling & Whorf, 2004; Augustin et al., 2004; Barnola et al., 1987; Trudinger et al., 1999; Petit et al., 1999). The biosphere provides an excellent system that directly interacts with the atmosphere and fills the gap to provide high-resolution recent and long-term records, potentially extending into geologic time (Arens, Jahren & Amundson, 2000).

This direct interaction means that plants potentially provide a robust record of $\delta^{13}$C$_{atm}$ values in their own leaf carbon isotope values ($\delta^{13}$C$_{leaf}$) and fractionation values ($\Delta_{leaf}$, Eq. (1); Farquhar, Ehleringer & Hubick, 1989; Feng, 1999; Farquhar & Sharkey, 1982), which gives insight into changes in carbon assimilation over time. In Eq. (1), $a$ represents the fractionation of $\delta^{13}$C due to diffusion in air (4.4‰) and $b$ represents the fractionation due to the carboxylation (instigated by the Rubisco enzyme, 27‰; Farquhar, Ehleringer & Hubick, 1989). These fractionation factors are compiled and multiplied by the ratio of $C_i$ (intercellular [CO$_2$]) to $C_a$ (atmospheric [CO$_2$]), a ratio that is often used to represent water use efficiency.

$$\Delta_{leaf} = \frac{\delta^{13}C_{atm} - \delta^{13}C_{leaf}}{1 + \delta^{13}C_{leaf}/1000} = a + \frac{(b-a)}{C_a} C_i$$  \hspace{1cm} (1)

While $a$ and $b$ are thought to be constant, we know that $\delta^{13}$C$_{atm}$ and $C_a$ are changing rapidly. This could result in a corresponding change in $\Delta_{leaf}$ values as plants adapt to increased [CO$_2$] or subsequent regional climate changes, for example, systematic changes in local precipitation). Alternatively, $\Delta_{leaf}$ values of leaves may stay constant but show marked changes in $\delta^{13}$C$_{leaf}$ values corresponding to changes in $\delta^{13}$C$_{atm}$ values if leaves are incorporating $\delta^{13}$C$_{atm}$ into leaf tissues at a rate unaffected by other climate conditions.

**CARBON ISOTOPES RELATED TO CLIMATE VARIABLES**

Previous studies have related $\Delta_{leaf}$ values to climate variables such as MAP, water availability and soil moisture (Diefendorf et al., 2010; Kohn, 2010; Wernerehl & Givnish, 2015; Mårtensson et al., 2017), MAT (Troughton & Card, 1975; O’Leary, 1993); latitude
(Diefendorf et al., 2010; Kohn, 2010), [CO₂] (Schubert & Jahren, 2012, 2018), altitude (Korner, Farquhar & Wong, 1991; O’Leary, 1993), seasonality (Ehleringer, Phillips & Comstock, 1992), and δ¹³C atm values during growth seasons (Peñuelas & Azcón-Bieto, 1992; Arens, Jahren & Amundson, 2000; Pedicino et al., 2002). The studies that incorporate potential influence from a wide range of climate variables have been conducted via meta-analysis with no normalized collection procedure or investigated species, or via growth chamber experiment conducted under idealized conditions. The few studies that have used naturally-obtained specimens (i.e., natural history collections such as herbaria) to look at isotope change over time and changing atmospheric conditions ([CO₂] and δ¹³C atm values) have focused on localized regions with little range in climate (i.e., all dry, mid- to high- altitude, hot regions of eastern Arizona/western New Mexico, or the Mediterranean climate of Catalonia; Peñuelas & Azcón-Bieto, 1992; Pedicino et al., 2002). These collections-based experiments are limited in scope and while they provide information on specific ecosystems, do not address these biosphere-atmosphere interactions across climate regimes or on a regional and global scale. Very little is known about whether individual species respond to any, some, or all of these potential forcings across a range of climatic conditions.

**POTENTIAL CLIMATE DRIVERS**

**[CO₂] and elevation**

We would expect higher [CO₂] to affect biochemical discrimination because of the known effects elevated [CO₂] has on stomata (size, density, and conductance; Woodward, 1987; Woodward & Bazzaz, 1988; Tognetti et al., 2000; Ainsworth & Rogers, 2007). In a meta-analysis of trees in European temperate and boreal forests, leaves responded to an increase in [CO₂] with a significant (21%) decrease in stomatal conductance (the rate of passage of atmospheric CO₂ into plant tissue; Medlyn et al., 2001). Increased [CO₂] also causes a decrease in stomatal density (the number of pores on a leaf surface) and stomatal index (the number of pores compared to the number of total epidermal cells); these indices have been liberally applied to the geologic record to reconstruct [CO₂] (Retallack, 2001; Beerling & Royer, 2002; Roth-Nebelsick et al., 2014). Because stomata directly control the flow of carbon dioxide into leaves and control carbon isotope fractionation by diffusion (Farquhar, Ehleringer & Hubick, 1989), changes in stomatal parameters could affect fractionation as well. Additional factors must be considered; the dependence of Δ_leaf on [CO₂] may in part be due to isotopic discrimination associated with photorespiration (Schubert & Jahren, 2018). Indeed, previous growth chamber studies in prescribed CO₂ environments showed increased carbon isotope fractionation with increased [CO₂]; Schubert & Jahren (2012) found a strong hyperbolic correlation (r > 0.94) between [CO₂] and Δ_leaf values in two species of herbaceous angiosperms. Based upon these growth chamber experiments (Schubert & Jahren, 2012, 2018), the relationship between [CO₂] and Δ_leaf is expected to be most sensitive at geologically low [CO₂] (including pre-Industrial to present values) as it was in the levels present during plant growth in this study.
Elevation has been shown to factor into carbon isotope discrimination but is frequently not evaluated independently, due to its covariant relationship with climate variables such as temperature, vapor pressure, partial pressure of CO$_2$ (pCO$_2$), soil [CO$_2$], and soil texture (Diefendorf et al., 2010). A study looking at *Salix herbacea* leaves along an altitudinal gradient (2,000–2,800 m) in Austria showed a decrease in carbon isotope value with increased altitude, did not account for corresponding changes in other climate variables (Beerling, Mattey & Chaloner, 1993). Another study done in Utah and New Mexico using a number of desert and woodland species, including angiosperms and gymnosperms, found similar negative trends in $\delta^{13}$C$_{\text{leaf}}$ with increased altitude without controlling for other climate variables (Van de Water, Leavitt & Betancourt, 2002). In 2010, a meta-analysis assessing carbon isotope fractionation and discrimination values across a wide range of C$_3$ plants (Diefendorf et al., 2010) found that when combined with MAP, elevation explained 61% of variability in $\Delta$$_{\text{leaf}}$ values. Based upon these studies, we included elevation as a potential variable in our study, however, we chose sample locations to minimize changes in elevation because it is difficult to completely separate this variable from regional variation in [CO$_2$] and $\delta^{13}$C$_{\text{atm}}$.

$\delta^{13}$C$_{\text{atm}}$

With the current increase in [CO$_2$], we have observed the aforementioned Suess Effect, wherein $\delta^{13}$C$_{\text{atm}}$ has changed in response to increased inputs of more isotopically negative CO$_2$ into the atmosphere (Keeling, 1979). The composition of CO$_2$ involved in the making of organic tissue is likely to affect the composition of that organic tissue (Arens, Jahren & Amundson, 2000); our study will test if this effect is compounded or mitigated by changes in other climate variables over this chronologically robust natural experiment.

### Latitude

Latitude is expected to affect stomatal traits and therefore be related to carbon isotope fractionation due to its inverse relationship with light (specifically length of growing season and length of day) and temperature, and consequent effects on the maximum operating times for photosynthesis. A meta-analysis across 760 species in nine Chinese forest ecosystems showed a latitudinal variation in stomatal density and stomatal length at the community level (Wang et al., 2015). Given these morphological changes due to latitude, and the relationship between latitude and temperature, we might expect that $\Delta_{\text{leaf}}$ values would be inversely related to latitude as well (Farquhar, Ehleringer & Hubick, 1989; Eq. (1)). The relationship between $\Delta_{\text{leaf}}$ and latitude (15.9°S through 69.5°N) was observed in results of a meta-analysis of plants that used C$_3$ photosynthetic pathways ($n = 506$) (Diefendorf et al., 2010), but any changes in $\Delta_{\text{leaf}}$ as a function of latitude disappeared when latitude was decoupled from temperature and precipitation.

### Precipitation

The stomata act as an inlet for CO$_2$ uptake as well as an outlet for leaf water loss via transpiration, which is why one might expect a relationship between carbon isotope
fractionation and available water (represented in the paleo-record as reconstructed MAP). With decreased available water (i.e., decreased MAP) comes increased need for plant “water use efficiency” (as measured by the ratio of water used in photosynthesis to water lost through transpiration); plants therefore minimize water loss through the same stomata by fully closing, resulting in decreased carbon isotope fractionation (Farquhar, Ehleringer & Hubick, 1989). Previous meta-analyses, such as those by Diefendorf et al. (2010) and Kohn (2010), compared $\Delta_{\text{leaf}}$ values of a wide variety of modern C$_3$ plants from many regions with MAP and found that $\Delta_{\text{leaf}}$ varied significantly with MAP ($p$-value = 0.0001 and $R^2 = 0.57$; Diefendorf et al., 2010).

**Temperature and seasonality**

In addition to the climate variables with pre-established and applied relationships with $\Delta_{\text{leaf}}$ values ([CO$_2$, MAP]), various hypotheses have been proposed about the relationships between carbon isotope discrimination and other climate variables. For example, MAT could also constrain photosynthetic processes and associated carbon isotope fractionation because it gives a rough representation of extreme conditions and growing season length during which carbon assimilation occurs. For this reason, MAT is a well-addressed climate variable in previous isotope fractionation studies, but none have identified a relationship between fractionation and MAT (Arens, Jahren & Amundson, 2000; Diefendorf et al., 2010; Kohn, 2010; Schubert & Jahren, 2012). Furthermore, Helliker & Richter (2008) found that leaves maintained a constant internal temperature ideal for photosynthesis of 21.4 ± 2.2 °C (total range of measurements), independent of external temperatures. In addition to MAT, maximum summer temperatures (particularly, the extreme highs associated with a warming climate) are expected to increase (Mirza, 2003). Increased maximum summer temperatures lead to increased evapotranspiration and more plant stress, which might affect carbon assimilation rates and stomatal conductivity (Farquhar, Ehleringer & Hubick, 1989; Diefendorf et al., 2010).

Seasonal variation is also thought to affect isotopic discrimination, resulting in a change in $\delta^{13}$C$_{\text{leaf}}$ of up to 1–2‰ (Ehleringer, Phillips & Comstock, 1992; Arens, Jahren & Amundson, 2000), or in some deciduous trees such as maples, up to 6‰ between early spring and late fall (Lowdon & Dyck, 1974). Typically, more positive values are found in the winter (indicative of less isotopic discrimination) and more negative values occur in the summer (indicative of more discrimination). This effect strongest in arid and semiarid environments because they experience amplified seasonal temperature, precipitation, and evaporation effects (up to 4‰; Ehleringer, Phillips & Comstock, 1992). Our choice of sample locations should minimize this effect, as our specimens come from humid regions.

Though we do not expect a correlation between temperature and seasonality with $\Delta_{\text{leaf}}$ values, nor are there good proxies for these variables in the fossil record, we include them here for completeness. This ensures that any observed noise is random or unaccountable for in the fossil record, rather than related to variables that are commonly measured and potentially relevant in plant isotope discrimination (Farquhar, Ehleringer & Hubick, 1989; Arens, Jahren & Amundson, 2000).
Finding a focal species
In addition to potentially confounding climate variables, variation in $\delta^{13}C_{\text{leaf}}$ and $\Delta_{\text{leaf}}$ values can be related to species-inherent carbon isotope fractionation. In a recent meta-analysis of C$_3$ plants conducted by Diefendorf et al. (2010), $\Delta_{\text{leaf}}$ values ranged from 13.4‰ for Pinus edulis in Utah, USA (Van de Water, Leavitt & Betancourt, 2002) to 28.4‰ for Cryptocarya concinna in Guangdong Province, China (Ehleringer, Phillips & Comstock, 1992). However, the focus on geographic and climatic variability within that dataset resulted in a small number of analyses of any individual species. Thus, while some previous studies have proposed a universal $\Delta_{\text{leaf}}$ value that represents C$_3$ plants on average (Arens, Jahren & Amundson, 2000; Gröcke, 2002), we focus here instead on an individual species (Thuja occidentalis; Cupressaceae) in order to avoid interspecific variation and phylogenetic/evolutionary effects in plant biochemistry.

Thuja occidentalis is a widespread evergreen gymnosperm with a distribution today extending throughout temperate deciduous and boreal forests in North America, and an extensive fossil record in localities across North America dating back to the Late Cretaceous (~71 million years ago; LePage, 2003; Eckenwalder, 2009). T. occidentalis leaves have longer life spans (>1 year) than deciduous trees (Givnish, 2002; Pease, 1917), which makes them less vulnerable to seasonal variability and harder in sedimentary archives (Diefendorf, Leslie & Wing, 2015). While some studies of other individual species have demonstrated unexplained internal isotopic variation of up to 3‰ (Tieszen, 1991), Mervenne (2015) found that $\Delta_{\text{leaf}}$ values of T. occidentalis showed the least amount of internal isotopic variation within a single species grown in a common garden site (e.g., 18.91 ± 0.46‰ vs. Taxus: 20.05 ± 1.93‰) when compared to 56 species native to temperate forests. This makes T. occidentalis an excellent focal taxon for a single-species study.

This study incorporates the natural shifts in $[\text{CO}_2]$ concentrations as driven by fossil fuel combustion and other anthropogenic inputs since the Industrial Revolution (280 ppm: Pre-Industrial, to ~410 ppm in 2014; IPCC, 2014) and $\delta^{13}C_{\text{atm}}$ values (from ~6.5‰: Pre-Industrial to ~8.5‰: present; Araus & Buxó, 1993; Elsig et al., 2009; White, Vaughn & Michel, 2015) to examine the relationship between T. occidentalis’ carbon isotope fractionation and leaf chemistry (C:N ratios) within a range of climate variables.

The patterns of $\Delta_{\text{leaf}}$ values over a range of $\delta^{13}C_{\text{atm}}$ values highlight the limitations of $\delta^{13}C_{\text{leaf}}$ change as a tool for better understanding the biosphere and atmosphere. If $\delta^{13}C_{\text{leaf}}$ values change in sync with $\delta^{13}C_{\text{atm}}$ values, this could mean that carbon assimilation is continuing in this species as it was prior to Industrialization, perhaps indicating T. occidentalis’ lack of adaptation to increased $[\text{CO}_2]$. Additionally, it may indicate that $\delta^{13}C_{\text{leaf}}$ provides another way to track anthropogenic changes to the environment in the recent past and the future.

MATERIALS AND METHODS
We measured $\delta^{13}C_{\text{leaf}}$ values of T. occidentalis extending from present-day to Pre-Industrial historical records using both newly collected and herbarium material. This included collecting leaf material of T. occidentalis specimens ($n = 142$ collected between 1804 and
2017 with four unknown dates of collection) from across the Great Lakes region from herbaria (Figs. 1A and 1B; Table S1) and in natural present-day occurrences across a range of climate conditions (see Table S2). *Thuja* has small, 1–10 mm long scale-leaves adpressed along a small branch. Three cm portions of branches representing a single growth year with multiple scale-leaves were cleaned in an ultrasonic bath of deionized water to remove surface debris, oven dried at 50 °C for 48 h and homogenized; this removes any within-leaf isotopic variation. Aliquots of each *T. occidentalis* specimen (0.6–0.8 mg) were placed into tin capsules and placed in a Costech elemental analyzer to measure %C and %N (as well as C:N ratio). Second aliquots of each *T. occidentalis* specimen (0.6–0.8 mg) were placed into tin capsules and placed in a combustion module inlet coupled to a Picarro G2201-i cavity ring-down spectrometer (CRDS) to measure δ\(^{13}\)C values of each specimen. Duplicates were run on both machines to insure homogeneity. Results of each CRDS run were internally calibrated using nine acetanilide standards (δ\(^{13}\)C = −28.17 ± 0.16‰), two IAEA-600 caffeine standards (δ\(^{13}\)C = −27.77 ± 0.04‰) and two IAEA-CH-6 sucrose...
standards ($\delta^{13}C = -10.45 \pm 0.03\%$) in each run, as seen in Cotton, Sheldon & Strömberg (2012) study. Reproducibility of replicate analyses was better than 0.3\%.

To test whether other climate variables confounded the relationship between $\delta^{13}C_{\text{atm}}$ and $\delta^{13}C_{\text{leaf}}$, we calculated carbon isotope fractionation values ($\Delta_{\text{leaf}}$) for each specimen using known yearly $\delta^{13}C_{\text{atm}}$ values (Eq. (1)). We derived global $\delta^{13}C_{\text{atm}}$ values from direct (Rubino et al., 2013) and interpolated ice and firn core measurements according to the year of sampling (White, Vaughn & Michel, 2015). This does not account for ecosystem or microbiome-level deviations in $\delta^{13}C_{\text{atm}}$, but does account for the greater source isotopic value. $\Delta_{\text{leaf}}$ values made it possible to de-couple the human-driven relationship between increased [CO$_2$] and decreased $\delta^{13}C_{\text{leaf}}$ values (the Suess Effect; Keeling, 1979) because they were calculated by isolating leaf isotope ratios from the atmospheric isotopic signal.

For each specimen locality, environmental data expected to affect $\delta^{13}C_{\text{leaf}}$ values (MAP, MAT, and maximum summer temperature; Farquhar, Ehleringer & Hubick, 1989) were derived from global databases using exact latitude and longitude coordinates of specimen origin (PRISM Climate Group, 2004; Fick & Hijmans, 2017; Government of Canada, 2018). All contiguous United States data was compiled from Oregon State University’s PRISM database, which interpolates data from local weather stations at a resolution of four km (PRISM Climate Group, 2004). $\delta^{13}C_{\text{leaf}}$ values were also compared with $\delta^{13}C_{\text{atm}}$ and [CO$_2$] values at collection times, as retrieved from NOAA databases documenting values found at Mauna Loa Observatory in Hawaii (White, Vaughn & Michel, 2015) and measured on an isotope-ratio mass spectrometer at the institute of arctic and alpine research (INSTAAR) in the University of Colorado, Boulder. $\delta^{13}C_{\text{leaf}}$ values for which $\delta^{13}C_{\text{atm}}$ values were unavailable were not included in $\Delta_{\text{leaf}}$ calculations or comparisons to climate variables (Table S3). While $\Delta_{\text{leaf}}$ values combine $\delta^{13}C$ values measured in this experiment on the CRDS with $\delta^{13}C_{\text{atm}}$ values measured on the IRMS at INSTAAR, we did not have access to individual errors for $\delta^{13}C_{\text{atm}}$ and could not propagate the error. Therefore, we used our reproducibility error of 0.3\%, which is larger than the expected error for the IRMS (0.1\%), to be conservative.

Five-point moving averages of $\delta^{13}C_{\text{leaf}}$ values were calculated to eliminate random noise caused by estimating older specimens’ exact collection dates (a result of long collecting expeditions and limited recording resources). We regressed isotope values against climate variables (MAT, MAP, $\delta^{13}C_{\text{atm}}$ and annual [CO$_2$]) to examine potential drivers of the $\delta^{13}C_{\text{leaf}}$ values. We calculated the best-fit line using linear least squares regression to minimize the average distance between modeled $y$-values and actual $y$-values ($\delta^{13}C_{\text{leaf}}$ and $\Delta_{\text{leaf}}$) and calculated coefficients of determination. We used $R^2$ to determine predictive relationship between the given $x$-variable and $y$-variable. Additionally, we calculated $p$-values using the $F$-test to determine the chance of null hypothesis ($p$-value > 0.05).

The map of sampling location was created using R version 3.5.0 (R Core Team, 2014), and the ggplot2 (Wickham, 2016) and maps (v3.3.0, Becker & Wilks, 2018) packages. The full code is available in the Supplemental Files.
RESULTS

Values of $\delta^{13}C_{\text{leaf}}$ ranged from $-21.92\%$ (collected in 1899) to $-28.51\%$ (collected in 2017), with a mean of $-25.05 \pm 1.32\%$ (standard deviation; Table S2). $\Delta_{\text{leaf}}$ values ranged from $15.11\%$ to $20.97\%$ (mean: $17.93 \pm 1.11\%$ standard deviation). Minimum, maximum, and mean values for climate variables are shown in Table S2. All data can be found in Table S3.

$\Delta_{\text{leaf}}$ vs. MAT, maximum summer temperature, latitude, seasonality, and MAP

There was no relationship between $\Delta_{\text{leaf}}$ values of *Thuja occidentalis* and MAT (Fig. S1A; $R^2 = 0.0152$, $p$-value = 0.19), nor between $\Delta_{\text{leaf}}$ of *Thuja occidentalis* and maximum summer temperature (Fig. S1B; $R^2 = 0.0051$, $p$-value = 0.51) in the temperature range listed in Table S2. No relationship was found between $\Delta_{\text{leaf}}$ and latitude (Fig. S1C; $R^2 = 0.0057$, $p$-value = 0.42). Additionally, no relationship was found using a multivariate linear regression approach to combine codependent variables: MAT and latitude ($R^2 = 0.002$, $p$-values = 0.92, 0.79 respectively). There was no relationship between $\Delta_{\text{leaf}}$ of *Thuja occidentalis* and MAP (Fig. 2; Fig. S1D; $R^2 = 0.0138$, $p$-value = 0.21), nor was there a relationship between $\Delta_{\text{leaf}}$ of *Thuja occidentalis* and elevation (Fig. S4A; $R^2 = 0.0138$, $p$-value = 0.55).

Figure 2  Carbon isotope fractionation values ($\Delta_{\text{leaf}}$) vs. mean annual precipitation for *Thuja occidentalis*. $\Delta_{\text{leaf}}$ vs. mean annual precipitation for *Thuja occidentalis* (black filled diamonds; $\Delta_{\text{leaf}} = -0.0003(MAP) + 18.75$, $R^2 < 0.01$). Data are compared with Diefendorf et al.’s (2010) global study (gray circles; $\Delta_{\text{leaf}} = 5.54(\log{\text{MAP}}) + 4.07$, $R^2 = 0.55$), showing $C_3$ specimens growing from 147 to 3,700 mm yr$^{-1}$. Error bars along the y-axis represent the $\pm0.3\%$ replicate reproducibility of standards.
There was no relationship between $\Delta_{\text{leaf}}$ of *T. occidentalis* and month of collection. T-test results showed that the mean residual $\Delta_{\text{leaf}}$ values for each season were not significantly different (Spring: 0.19, Summer: −0.13, Fall: −0.01, Winter: −0.20; Fig. S5A; Month-by-month $R^2 = 0.0057$; Fig. S5B).

**%C, %N and C:N ratios**

Values of %C ranged from 30.56 weight % to 61.44 weight % (±7.90%), with a dataset average of 48.86 %C. %N values ranged from 0.55 weight % to 2.28 weight %, with a dataset average of 1.31% (±0.21%). C:N ratios ranged from 20.1:1 (due to high %N) to 86.2:1 with an average C:N value of 40.7:1 (±7.9 C:N). There was no relationship between C:N ratios and time, $\delta^{13}C_{\text{leaf}}$, $\delta^{13}C_{\text{atm}}$, or [CO$_2$] ($R^2 = 0.0227$, *p*-value = 0.25; $R^2 = 0.0297$, *p*-value = 0.68; $R^2 = 0.0157$, *p*-value = 0.94; and $R^2 = 0.0029$, *p*-value = 0.18, respectively; Fig. 3; Figs. S2A–S2C).

**The atmosphere: $\delta^{13}C_{\text{leaf}}$ and $\Delta_{\text{leaf}}$ vs. [CO$_2$]**

There was a linear relationship between $\delta^{13}C_{\text{leaf}}$ and [CO$_2$] (Fig. S3; $R^2 = 0.61$, *p*-value < 0.001), but there was no relationship between $\Delta_{\text{leaf}}$ and [CO$_2$] (Fig. 4; Fig. S4; $R^2 = 0.0059$, *p*-value = 0.38). Because $\Delta_{\text{leaf}}$ stayed constant, with simultaneous changes in $\delta^{13}C_{\text{leaf}}$ and $\delta^{13}C_{\text{atm}}$, we can determine that changing $\delta^{13}C_{\text{leaf}}$ with increased CO$_2$ was an effect of the changing isotopic composition of atmospheric CO$_2$ ($\delta^{13}C_{\text{atm}}$) and was not related to [CO$_2$].
There was a relationship between δ^{13}C_{leaf} and δ^{13}C_{atm} (Fig. 5; $R^2 = 0.74$, $p$-value < 0.001) as represented by Eq. (2). The $y$-intercept (-16.52) represents the average offset between δ^{13}C_{atm} and δ^{13}C_{leaf}, otherwise expressed as the fractionation value, Δ_{leaf}. The slope of 1.20 (with 95% confidence intervals between 1.07 and 1.32) further indicates relatively little impact of other environmental variables on leaf fractionation from atmospheric CO$_2$.

This relationship was compared to that as extrapolated from the regression found in Jahren, Arens & Harbenson (2008; Eq. (3); Fig. 5) study using Raphanus sativus in growth chamber experiments.

δ^{13}C_{leaf} = 1.20 (±0.06) × δ^{13}C_{atm} - 16.52(±0.44)  \tag{2}

δ^{13}C_{leaf} = 0.95 × δ^{13}C_{atm} - 25.4  \tag{3}

**DISCUSSION**

**Potentially complicating factors**

Herbarium specimens are a useful way to look in high-resolution on this time scale, but were not necessarily consistently sampled between expeditions and years. Thus some factors such as maturity and height of tree, which have been shown to relate to carbon isotope discrimination (Brienen et al., 2017), are not specifically accounted for here. However, Brienen et al. (2017) found that height was not a significant factor in δ^{13}C_{leaf} values of the gymnosperm used (P. sylvestris), in contrast to broadleaf species (Quercus...
robur, Fagus sylvatica, Cedrela odorata) where there was an influence. Additionally, regional variations in $\delta^{13}\text{C}_{\text{atm}}$ resulting from proximity to respiring soil could provide a different baseline $\delta^{13}\text{C}_{\text{atm}}$ value than the global one used based upon Mauna Loa Observatory’s gas samples (Wehr & Saleska, 2015). While we were unable to control exactly where on the tree each sample was taken from nor the ecosystem-specific parameters that might influence $\delta^{13}\text{C}_{\text{atm}}$, each herbarium record includes notes on the sampling location, often including approximate maturity of the tree and height sampled from. Additionally, as expeditions are done without heavy machinery, it is likely that our specimens were sampled from approximately the height of a human, which is well out of the range of isotopic influence from soil respired CO$_2$ (Bazzaz & Williams, 1991). Finally, differences in $\delta^{13}\text{C}_{\text{leaf}}$ values differ depending on where on the leaf isotopes are sampled from (Gao et al., 2015). We controlled for this effect by homogenizing several entire leaves per sample and running duplicate isotope analyses, which all came within machine error (0.3‰) of one another.

Complex nitrogen dynamics, as well as those of other macro- and micro-nutrients, may play a role in vital effects that relate ultimately to carbon assimilation and/or carbon isotope fractionation, but these changes are very difficult and complicated to reconstruct in the geologic record and thus were not investigated in this study (Godfrey & Glass, 2011). It is not possible to understand shifts in regional nitrogen availability fully even within the historical record: without soil cores collected and preserved from

Figure 5 $\delta^{13}\text{C}_{\text{leaf}}$ vs. $\delta^{13}\text{C}_{\text{atm}}$ values of Thuja occidentalis. There is a linear relationship between $\delta^{13}\text{C}_{\text{leaf}}$ and $\delta^{13}\text{C}_{\text{atm}}$ values (%o) of T. occidentalis, defined by $\delta^{13}\text{C}_{\text{leaf}} = 1.20 \pm 0.06 \text{ (standard error)} \times (\delta^{13}\text{C}_{\text{atm}} - 16.52 \pm 0.44 \text{ (standard error)})$ with an R$^2$ value of 0.74 and a p-value <0.001. Error bars along the y-axis represent the ±0.3‰ replicate reproducibility of standards, error bars along the x-axis represent the ±0.1‰ replicate reproducibility associated with the isotope-ratio mass spectrometer at the Institute of Arctic and Alpine Research (INSTAAR) in Boulder, Colorado. Data points represent specimens collected for this study. The regression line below is derived from Jahren, Arens & Harbenson (2008), which used Raphanus sativus grown under elevated [CO$_2$] within growth chambers to look at the relationship between $\delta^{13}\text{C}_{\text{leaf}}$ and $\delta^{13}\text{C}_{\text{atm}}$ values.
the same sites and times of leaf collection, it is not straightforward to consider anything other than nitrogen content. Given that no one collected soils at each historical site, we cannot address changes in nitrogen dynamics quantitatively. Furthermore, for geologic applications fossil leaves and corresponding paleosols (fossil soils) are not typically preserved together. In order to account for the potential range in nitrogen dynamics, we focus here on using many specimens from across a wide landscape of different land-uses and thus a wide range of potential nitrogen dynamics, but under known [CO₂] conditions. To account for historical and geological limitations of reconstructing the nitrogen cycle, this study focuses instead on the relationship between systemic changes in C:N ratios in relation to δ¹³C\text{leaf}, δ¹³C\text{atm}, or as indication of changes in carbon dynamics.

\( \Delta_{\text{leaf}}, \) temperature, latitude and seasonality

There were a number of climate variables that we did not expect to have a correlative relationship with \( \Delta_{\text{leaf}} \), but we addressed to ensure that they were not confounding variables (MAT, maximum summer temperature, latitude, seasonality). Due to the consistent internal temperature and lack of relationship between \( \Delta_{\text{leaf}} \) to MAT in previous studies, we expected no relationship between \( \Delta_{\text{leaf}} \) and MAT nor maximum summer temperature. As we expected, MAT showed no significant relationship with \( \Delta_{\text{leaf}} \) values neither in meta-analyses, growth chamber experiments (Diefendorf et al., 2010; Schubert & Jahren, 2012) nor this study (Fig. S1A).

Because MAT and latitude are inherently related, we expected \( \Delta_{\text{leaf}} \) values to relate to latitude in the same way as when compared to MAT. As predicted, there was no relationship between \( \Delta_{\text{leaf}} \) of \( T. \) occidentalis and latitude. In order to ensure that these two codependent variables were treated as such, we ran a multiple linear regression, which gave a similarly low coefficient of determination \( (R² = 0.002) \) comparing actual \( \Delta_{\text{leaf}} \) values with \( \Delta_{\text{leaf}} \) values predicted using this regression. Thus, we are confident that both treated as independent and co-dependent variables, MAT and latitude do not play a role in variance of \( \Delta_{\text{leaf}} \) values.

Additionally, we took into account variation in time of year specimen was collected and found no significant relationship between season and \( \Delta_{\text{leaf}} \), (Figs. S5A and S5B). This is likely because \( T. \) occidentalis is not deciduous and does not shed its leaves annually, thus, once homogenized, the isotopic composition of the leaf is representative of average discrimination during the leaf’s exposure.

\( \Delta_{\text{leaf}} \) and [CO₂]

In this study we found no relationship between \( \Delta_{\text{leaf}} \) and [CO₂] from 280 to 410 ppm (Fig. 4; Fig. S4). It is possible that the relationship observed by Schubert & Jahren (2012) exists only for idealized controlled growth chamber conditions and not in natural environments (Lomax et al., 2019). Alternatively, gymnosperms may respond more slowly than angiosperms to increases in [CO₂] due to their longer average lifespans and lack of senescence (Brodribb, Pittermann & Coomes, 2012). The changes in carbon assimilation as represented by increased carbon fractionation under short-term, ideal growth chamber conditions.
conditions cannot be used to predict biological response to rapid changes in [CO$_2$]. In other words, plants, especially slow-growing woody plants, may not successfully adapt to anthropogenic changes of the present and future (Jump & Peñuelas, 2005).

$\Delta_{\text{leaf}}$ and mean annual precipitation

When $\Delta_{\text{leaf}}$ values of $T$. occidentalis were compared with MAP, Diefendorf et al.’s (2010) previously established relationship did not hold (Fig. 2), especially in low precipitation regimes ($<1,000$ mm yr$^{-1}$) where the change in Diefendorf et al.’s $\Delta_{\text{leaf}}$ values was most sensitive to changes in MAP. One explanation for the lack of relationship between $\Delta_{\text{leaf}}$ of $T$. occidentalis and MAP is that this relationship breaks down on the single-species, or even plant functional type, level. In the aforementioned meta-analyses, plant functional type, species, and region were not controlled. $\Delta_{\text{leaf}}$ values may be inherent to specific biomes but may not be representative of a general trend of any given plant or plant type to MAP. It is possible that the relationships seen in the meta-analyses by Diefendorf et al. (2010) and Kohn (2010) instead represent an array of taxon-specific constant isotopic values that collectively show a meta-relationship. This experiment could be further explored by performing the same experiment in natural settings across different biomes and different plant functional types. Assuming that $\Delta_{\text{leaf}}$ values are indicative of water use (Givnish, 1979; Farquhar, Ehleringer & Hubick, 1989), this lack of relationship may also mean that plants with specific water use efficiencies and representative $\Delta_{\text{leaf}}$ values are generally located in areas where they are not living in conditions that are stressed for water given their evolutionary adaptations. Geologically, this could mean that the presence of a particular taxon in fossil localities could provide a quantitative estimate for range of MAP, which could allow more specificity of paleoclimate regimes based on macrofossils (Nearest Living Relative and Coexistence Approach; Mosbrugger & Utescher, 1997; Mosbrugger, 2009). In terms of future climate, this is indication that the chemistry of C$_3$ plants may not respond to regional changes as previously thought. This is of particular concern because the velocity of climate change, especially for continued high emission rate scenarios, is substantially faster than trees will be able to adapt to (Loarie et al., 2009; Diffenbaugh & Field, 2013).

It is also possible that the predicted relationship between $\Delta_{\text{leaf}}$ and MAP is present for plants that are more responsive to their environment and/or have less extensive roots (to access deeper water sources), and thus the signal seen by Diefendorf et al. (2010) is a result of incorporating sensitive plants. Indeed, other studies using rapidly growing, highly sensitive herbaceous angiosperms have found a relationship between water treatment and carbon isotope discrimination (Lomax et al., 2019). However, the fossil record is biased toward preserving less sensitive, often woody plants due to preservation potential as well as presence within the fossil record (Looy et al., 2014); therefore, the utility of relationships based on highly sensitive plants may be muted in the fossil record.

Another explanation is that MAP is not an appropriate metric for measuring plant-available water, and while $\Delta_{\text{leaf}}$ is still a measure of water use efficiency and this value is dynamic over conditions, snowmelt volumes and/or soil water—as driven by soil porosity and other factors—are better indicators of plant-available water. Further
investigations using these variables will better constrain which water-related variables affect Δ_leaf values of leaf tissues. The weak R² value between Δ_leaf of T. occidentalis and MAP (0.0138) means that Δ_leaf of T. occidentalis cannot be used to reconstruct paleo-MAP using the relationship determined by Diefendorf et al. (2010). Additional single-species experiments, particularly within angiosperms, should be conducted to look for correlations between Δ_leaf and MAP to test whether the lack of relationship is due to a difference inherent to gymnosperms.

**Carbon biomass (%C) and elemental leaf chemistry (%N, C:N ratios) as related to climate variables**

In addition to the response of δ¹³C_leaf values to climate variables, %C alone has been shown to respond directly to elevated [CO₂]. Cᵣ/Cₐ ratios (the ratio of internal [CO₂] to atmospheric [CO₂]) of old growth T. occidentalis trees along Lac Duparquet, Quebec, increased under anthropogenic CO₂ fertilization, indicating tree response to enhanced CO₂ (Giguère-Croteau et al., 2019). This increase in tree productivity was demonstrated in the results of free-air concentration enrichment (FACE) experiments as well; in northern USA mid-latitude forests with loblolly pines (P. taeda), FACE experiment results indicated that elevated CO₂ induced increased carbon assimilation, resulting in increased carbon biomass, in woody tissues and increased %C of foliar storage as compared to trees grown under ambient CO₂ (Oren et al., 2001; Ainsworth & Long, 2005; Talhelm et al., 2013). Preliminary work in herbarium leaves found that increased [CO₂] related to Industrialization resulted in an increase in foliar %C with no change in %N (as source of N remains constant), and thus increased C:N ratios in some species (Mervenne, 2015). In order to contextualize changes in δ¹³C_leaf, this study examined coeval trends in leaf chemistry through elemental analysis of C and N (using N as a comparison point to see whether %C changes significantly with time).

These FACE experiments also showed that when run over longer time scales, trees reached a point of CO₂ acclimation and stopped increased carbon assimilation under enhanced CO₂; thus, predicted shifts in tree C-uptake may be short-lived, a pattern that will be inevitably discernable in a long-term study incorporating pre-Industrial leaf tissues through the present (Nowak, Ellsworth & Smith, 2004). Based on FACE experiments, we expected %C to have increased in leaves sampled from the early 1800s to the present, though we might see the rate of increase slow with time. However, we saw no relationship between %C, nor C:N ratios and time nor increase in [CO₂].

In fact, T. occidentalis specimens collected between 1804 and 2017 did not show changes in assimilation rates due to elevated CO₂. C:N values of T. occidentalis showed no response to changes over time (with increased [CO₂]) or with atmospheric isotopic value (Figs. S2A and S2B). Though other organs in previous experiments responded to [CO₂], leaves, which are instrumental in the photosynthetic process as they are the organs directly in-taking atmospheric CO₂, do not. A better understanding of all plant organ behavior is imperative to defining and quantifying potential carbon sinks or plant chemistry responses to global change (Goodale et al., 2002).
δ¹³C<sub>leaf</sub> and δ¹³C<sub>atm</sub>

Strong relationships have been found between above ground tissue and δ¹³C<sub>atm</sub> values ($p < 0.001$; *Jahren, Arens & Harbenson, 2008; Fig. 5), and this study provides a higher resolution look at the relationship between δ¹³C<sub>leaf</sub> and δ¹³C<sub>atm</sub> in a long-lived species within a natural system. In this initial natural experiment, the δ¹³C<sub>leaf</sub> of *T. occidentalis* tracked changes in δ¹³C<sub>atm</sub> ($R^2 = 0.74$, $p$-value $< 0.0001$), mostly unencumbered by other climate factors. The slope for the linear relationship between δ¹³C<sub>leaf</sub> and δ¹³C<sub>atm</sub> is close to, but not exactly, 1, likely because the rate of change for δ¹³C<sub>atm</sub> has not been linear, and acceleration in the change of δ¹³C<sub>atm</sub> may not have been recorded immediately. Additionally, while there is no statistically significant relationship between any of the climate variables we tested and Δ<sub>leaf</sub>, it is unlikely that climate variables, especially in aggregate, play no role in carbon isotope discrimination within this species. Because δ¹³C<sub>leaf</sub> showed a strong coefficient of determination with δ¹³C<sub>atm</sub> and no climate variables showed significant relationships with Δ<sub>leaf</sub> values, we can assume that δ¹³C<sub>leaf</sub> values of modern *T. occidentalis* are strongly affected by δ¹³C<sub>atm</sub> values. Additional work must be done to evaluate error in paleo uses of δ¹³C<sub>leaf</sub> values of *T. occidentalis*, and future experiments should recreate more geologically reasonable conditions and climate changes (independent of anthropogenic factors). The relationship between δ¹³C<sub>leaf</sub> and δ¹³C<sub>atm</sub> values has implications for paleoclimate reconstructions of δ¹³C<sub>atm</sub> as well as reconstructions of [CO<sub>2</sub>] (*Cerling et al., 1991; Franks et al., 2014*). We emphasize how important it is to identify the value of δ¹³C<sub>atm</sub>, such as in *Tipple, Meyers & Pagani (2010)* study, rather than just using the Pre-Industrial value of −6.5‰ (*Cerling et al., 1991*) because the δ¹³C<sub>atm</sub> value has such a dramatic effect on the terrestrial part of the carbon cycle.

**CONCLUSIONS**

Though δ¹³C<sub>leaf</sub> and Δ<sub>leaf</sub> values have been proposed as a proxy for [CO<sub>2</sub>] and MAP based on previous research, this natural-world, species-controlled study shows no indication of such relationships. Thus, the use of Δ<sub>leaf</sub> values to reconstruct MAP and [CO<sub>2</sub>] in the fossil record without taxonomic identification should be reconsidered. The relationship between δ¹⁵C<sub>leaf</sub> and δ¹³C<sub>atm</sub> values is more informative, and may provide a new proxy (δ¹³C<sub>leaf</sub> values of *Thuja*) for reconstructing paleo- δ¹³C<sub>atm</sub> or may indicate a lag in plant adaptation to unprecedentedly rapid climate change. *Thuja* extends up to 100 million years back to the Late Cretaceous, which makes this relationship potentially useful throughout the Cenozoic and into the Mesozoic era (*Berry, 1915*).

While this study focuses on one single species, further work is needed to assess other taxa at the species, genus, and family levels to examine whether the relationship between δ¹³C<sub>atm</sub> and δ¹³C<sub>leaf</sub> is consistent, and furthermore, generalizable. δ¹³C<sub>leaf</sub> values of individual fossil leaves (in particular of *Thuja* leaves) cannot be used to reconstruct paleo-MAP as proposed by *Kohn (2010)*, but average δ¹³C<sub>leaf</sub> values of sites, as recorded in bulk soil organic matter, may allow us to predict precipitation ranges. Aboveground δ¹³C<sub>leaf</sub> is thought to translate directly into the isotopic value of soil carbon.
Bulk soil organic matter (\(\delta^{13} C_{\text{org}}\)) is the combination of \(\delta^{13} C\) of all decaying material from the ecosystem, with leaves especially abundant due to sheer volume. The average \(\delta^{13} C_{\text{leaf}}\) value of all trees found in a certain region will be found in the soil; therefore, soil \(\delta^{13} C_{\text{org}}\) values could be more reflective of particular precipitation at time of deposition than \(\delta^{13} C_{\text{leaf}}\) values. Further studies could evaluate the reliability of \(\delta^{13} C_{\text{org}}\) as a tool for MAP prediction and reconstruction.

This study implies constant carbon and nitrogen use and isotope fractionation relative to \(\delta^{13} C_{\text{atm}}\) by *T. occidentalis*. Due to the unprecedentedly rapid changes \(\delta^{13} C_{\text{atm}}\) and \([\text{CO}_2]\) throughout Industrialization, this lack of change in carbon assimilation patterns, despite previous studies using modern \(\delta^{13} C_{\text{leaf}}\) values to reconstruct \([\text{CO}_2]\), may indicate that modern systems are not appropriate analogues for many periods of the geologic record during which climate evolved more slowly. Modern climate change may be too rapid for plants to adapt, though more research should be done to evaluate whether this response is replicable in other species, genera, and plant functional types. It is possible that the pace of anthropogenic climate change makes modern relationships inappropriate analogues for paleoclimate.

**ACKNOWLEDGEMENTS**

We thank Drs. A. Reznicek and R. Rabeler and the University of Michigan Herbarium (MICH), Drs. M. Donoghue and P. Sweeney and the Yale Peabody Museum (Y), Dr. T. Lumbsch and C. Niezgoda and the Chicago Field Museum (F), M. J. Bian and the Shanghai Botanical Garden (SG), and Dr. A. Fryday and the Michigan State Herbarium (MSC). We would additionally like to thank S. Fernandes at the University of Michigan’s School for Environment and Sustainability (UM-SEAS), and R. Dzombak, A. Hamersma and M. Ng in the Department of Earth and Environmental Sciences at the University of Michigan (UM-EES) for the assistance obtaining historical and present-day collections.

**ADDITIONAL INFORMATION AND DECLARATIONS**

**Funding**

This work was supported by the Herman and Margaret Sokol Foundation Award to Dr. Nathan D. Sheldon through the University of Michigan and the Scott Turner Graduate Research Grant awarded to Rebekah Stein through the University of Michigan. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

**Grant Disclosures**

The following grant information was disclosed by the authors:
The Herman and Margaret Sokol Foundation Award (University of Michigan).
The Scott Turner Graduate Research Grant (University of Michigan).
Competing Interests
The authors declare that they have no competing interests.

Author Contributions
• Rebekah A. Stein conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, approved the final draft.
• Nathan D. Sheldon conceived and designed the experiments, analyzed the data, contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.
• Selena Smith conceived and designed the experiments, analyzed the data, contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:
Raw data is available in Table S3, which provides our raw isotope, elemental, and climate data. All specimens used in isotope analysis are stored in the University of Michigan’s Earth Systems Lab (of Dr. Ingrid Hendy and Dr. Nathan Sheldon) within the Earth and Environmental Science Department. The living (or former) trees sampled are located at the provided locations in Table S3 Column D, “Original tree location” (GPS columns J and K “Latitude” and “Longitude” respectively), and the residence of the herbaria collections is listed in Table S3 column E “Source.”

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.7378#supplemental-information.

REFERENCES
Ainsworth EA, Long SP. 2005. What we have learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties, and plant production to rising CO₂. New Phytologist 165(2):351–371.
Ainsworth EA, Rogers A. 2007. The response of photosynthesis and stomatal conductance to rising [CO₂]: mechanisms and environmental interactions. Plant, Cell & Environment 30(3):258–270 DOI 10.1111/j.1365-3040.2007.01641.x.
Araus JL, Buxó R. 1993. Changes in carbon isotope discrimination in grain cereals from the north-western Mediterranean Basin during the past seven millennia. Functional Plant Biology 20(1):117–128 DOI 10.1071/pp9930117.
Arens NC, Jahren AH, Amundson R. 2000. Can C₃ plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology 26(1):137–164 DOI 10.1666/0094-8373(2000)026<0137:ccpftr>2.0.co;2.
Augustin L, Barbante C, Barnes PR, Barnola JM, Castellano E, Dreyfus G. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429(6992):623–628.
Barnola JM, Raynaud D, Korotkevich YS, Lorius C. 1987. Vostok ice core provides 160,000-year record of atmospheric CO$_2$. *Nature 329*(6138):408–414 DOI 10.1038/329408a0.

Bazzaz FA, Williams WE. 1991. Atmospheric CO$_2$ concentrations within a mixed forest: implications for seedling growth. *Ecology 72*(1):12–16 DOI 10.2307/1938896.

Beerling DJ, Mattey DP, Chaloner WG. 1993. Shifts in the $\delta^{13}$C composition of *Salix herbacea* L. leaves in response to spatial and temporal gradients of atmospheric CO$_2$ concentration. *Proceedings of the Royal Society of London. Series B: Biological Sciences 253*(1366):53–60 DOI 10.1098/rspb.1993.0081.

Beerling DJ, Royer DL. 2002. Fossil plants as indicators of the Phanerozoic global carbon cycle. *Annual Review of Earth and Planetary Sciences 30*(1):527–556 DOI 10.1146/annurev.earth.30.091201.141413.

Berry EW. 1915. The age of the Cretaceous flora of southern New York and New England. *Journal of Geology 23*(7):608–618 DOI 10.1086/622279.

Boutton TW. 1991. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. *Carbon Isotope Techniques 1*:173–185 DOI 10.1016/b978-0-12-179730-0.50016-3.

Brienen RJW, Gloor E, Clerici S, Newton R, Arppe L, Boom A, Bottrell S, Callaghan M, Heaton T, Helama S, Helle G, Leng MJ, Mielikainen K, Oinonen M, Timonen M. 2017. Tree height strongly affects estimates of water-use efficiency responses to climate and CO$_2$ using isotopes. *Nature Communications 8*(299):1–10 DOI 10.1038/s41467-017-00225-z.

Brodribb TJ, Pittermann J, Coomes DA. 2012. Elegance versus speed: examining the competition between conifer and angiosperm trees. *International Journal of Plant Sciences 173*(6):673–694 DOI 10.1086/666005.

Cerling TE. 1992. Use of carbon isotopes in paleosols as an indicator of the p(CO$_2$) of the paleo atmosphere. *Global Biogeochemical Cycles 6*(3):307–314 DOI 10.1029/92gb01102.

Cerling TE, Solomen DK, Quade J, Bowman JR. 1991. On the isotopic composition of carbon in soil carbon dioxide. *Geochimica et Cosmochimica Acta 55*(11):3403–3405 DOI 10.1016/0016-7037(91)90498-t.

Cotton JM, Sheldon ND, Strömbärg CAE. 2012. High-resolution isotopic record of C$_4$ photosynthesis in a Miocene grassland. *Palaeogeography, Palaeoclimatology, Palaeoecology 337–338*:88–98 DOI 10.1016/j.palaeo.2012.03.035.

Deines P. 1992. Mantle carbon: concentration, mode of occurrence, and isotopic composition. In: Schidlowski M, Golubic S, Kimberley MM, McKirdy DM, Trudinger PA, eds. *Early Organic Evolution: Implications for Mineral and Energy Resources*. Berlin, Heidelberg: Springer.

Diefendorf AF, Leslie AB, Wing SL. 2015. Leaf wax composition and carbon isotopes vary among major conifer groups. *Geochimica et Cosmochimica Acta 170*:145–156 DOI 10.1016/j.gca.2015.08.018.

Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH. 2010. Global patterns in leaf $^{13}$C discrimination and implications for studies of past and future climate. *Proceedings of the National Academy of Sciences of the United States of America 107*(13):5738–5743 DOI 10.1073/pnas.0910513107.

Diffenbaugh NS, Field CB. 2013. Changes in ecologically critical terrestrial climate conditions. *Science 341*(6145):486–492 DOI 10.1126/science.1237123.

Eckenwalder JE. 2009. *Conifers of the world: the complete reference*. China: Timber Press.

Ehleringer JR, Phillips SL, Comstock JP. 1992. Seasonal variation in the carbon isotopic composition of desert plants. *Functional Ecology 6*(4):396–404 DOI 10.2307/2389277.
Elsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M, Leuenberger M, Stocker TF. 2009. Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461(7263):507–510 DOI 10.1038/nature08393.

Farquhar GD, Ehleringer JR, Hubick KT. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology and Plant Molecular Biology 40(1):503–537 DOI 10.1146/annurev.arplant.40.1.503.

Farquhar GD, Sharkey TD. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33(1):317–345.

Feng X. 1999. Trends in intrinsic water-use efficiency of natural trees for the past 100–200 years: a response to atmospheric CO2 concentration. Geochimica et Cosmochimica Acta 63(13–14):1891–1903 DOI 10.1016/s0016-7037(99)00088-5.

Fick SE, Hijmans RJ. 2017. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12):4302–4315 DOI 10.1002/joc.5086.

Franks PJ, Royer DL, Beerling DJ, Van de Water PK, Cantrill DJ, Barbour MM, Berry JA. 2014. New constraints on atmospheric CO2 concentration for the Phanerozoic. Geophysical Research Letters 41(13):4685–4694 DOI 10.1002/2014gl060457.

Gao L, Guimond J, Thomas E, Huang Y. 2015. Major trends in leaf wax abundance, δ2H and δ13C values along leaf venation in five species of C3 plants: physiological and geochemical implications. Organic Geochemistry 78:144–152 DOI 10.1016/j.orggeochem.2014.11.005.

Giguère-Croteau C, Boucher E, Bergeron Y, Girardin MP, Drobyshev I, Silva LCR, Helie JF, Garneau M. 2019. North America's oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proceedings of the National Academy of Sciences of the United States of America 116(7):2749–2754 DOI 10.1073/pnas.1816686116.

Givnish T. 2002. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica 36(3):703–743 DOI 10.14214/sf.535.

Givnish T. 1979. On the adaptive significance of leaf form. In: Solbrig OT, Jain S, Johnson GB, Raven PH, eds. Topics in Plant Population Biology. London: Palgrave, 375–407.

Godfrey LV, Glass JB. 2011. The geochemical record of the ancient nitrogen cycle, nitrogen isotopes, and metal cofactors. Methods in Enzymology 486:483–506.

Goodale CL, Apps MJ, Birse RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu S, Nabuurs GJ, Nilsson S, Schvidenko AZ. 2002. Forest carbon sinks in the northern hemisphere. Ecological Applications 12(3):891–899.

Government of Canada. ed. 2018. 1981–2010 Climate Normals & Averages. Retrieved from Canadian Climate Normals website. Available at http://climate.weather.gc.ca/climate_normals (accessed 15 February 2018).

Gröcke DR. 2002. The carbon isotope composition of ancient CO2 based on higher-plant organic matter. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 360(1793):633–658 DOI 10.1098/rsta.2001.0965.

Helliker BH, Richter SL. 2008. Subtropical to boreal convergence of tree-leaf temperatures. Nature 454(7203):511–514 DOI 10.1038/nature07031.

IPCC. 2014. Intergovernmental panel on climate change guidelines. IPCC Fifth Assessment Report.

Jahren AH, Arens NC, Harbenson SA. 2008. Prediction of atmospheric δ13CO2 using fossil plant tissues. Reviews of Geophysics 46(1):1–12.
Jump AS, Peñuelas J. 2005. Running to stand still: adaptation and the response of plants to rapid climate change. *Ecology Letters* **8**(9):1010–1020 DOI 10.1111/j.1461-0248.2005.00796.x.

Keeling CD. 1979. The Suess effect: $^{13}$Carbon–$^{14}$Carbon interrelations. *Environment International* **2**(4–6):229–300 DOI 10.1016/0160-4120(79)90005-9.

Keeling CD, Piper SC, Bascatow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA. 2005. Exchanges of atmospheric CO$_2$ and $^{13}$CO$_2$ with the terrestrial biosphere and oceans from 1978-2000: observations and carbon cycle implications. In: Ehleringer JR, Cerling T, Dearing MD, eds. *A History of Atmospheric CO$_2$ and its Effects on Plants, Animals, and Ecosystems*. Vol. 177. New York: Springer, 83–113.

Keeling CD, Whorf TP. 2004. Atmospheric CO$_2$ from continuous air samples at Mauna Loa observatory. Hawaii: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.

Kohn MJ. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. *Proceedings of the National Academy of Sciences of the United States of America* **107**(46):19691–19695 DOI 10.1073/pnas.1004933107.

Korner C, Farquhar GD, Wong SC. 1991. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. *Oecologia* **88**(1):30–40 DOI 10.1007/bf00328400.

LePage BA. 2003. A new species of Thuja (Cupressaceae) from the Late Cretaceous of Alaska: implications of being evergreen in a polar environment. *American Journal of Botany* **90**(2):167–174.

Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD. 2009. The velocity of climate change. *Nature* **462**:1052–1055.

Lomax BH, Lake JA, Leng MJ, Jardine PE. 2019. An experimental evaluation of the use of $\Delta^{13}$C as a proxy for palaeoatmospheric CO$_2$. *Geochimica et Cosmochimica Acta* **247**:162–174 DOI 10.1016/j.gca.2018.12.026.

Looy C, Kerp H, Duijnstei I, DiMichele B. 2014. The late Paleozoic ecological-evolutionary laboratory, a land-plant fossil record perspective. *Sedimentary Record* **12**(4):4–18 DOI 10.2110/sedred.2014.4.4.

Lowdon J, Dyck W. 1974. Seasonal variations in the isotope ratios of carbon in maple leaves and other plants. *Canadian Journal of Earth Sciences* **11**(1):79–88 DOI 10.1139/e74-007.

Mårtensson LM, Carlsson G, Prade T, Kørup K, Lærke PE, Jensen ES. 2017. Water use efficiency and shoot biomass production under water limitation is negatively correlated to the discrimination against $^{13}$C in the C$_3$ grasses Dactylis glomerata, Festuca arundinacea and Phalaris arundinacea. *Plant Physiology and Biochemistry* **113**:1–5 DOI 10.1016/j.plaphy.2017.01.021.

Medlyn BE, Barton CVM, Rey A, Roberntz P, Sigurdsson BD, Strassmeyer J, Wang K, Curtis PS, Jarvis PG, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomaki S, Laitat E. 2001. Stomatal conductance of European forest species after long-term exposure to elevated [CO$_2$]: a synthesis of experimental data. *New Phytologist* **149**:247–264.

Mervenne C. 2015. Isotope ecology of temperate conifers. Master’s thesis Ann Arbor, Michigan: University of Michigan.

Mirza MMQ. 2003. Climate change and extreme weather events: can developing countries adapt? *Climate Policy* **3**(3):233–248.

Mosbrugger V. 2009. Nearest-living-relative method. In: Gornitz V, ed. *Encyclopedia of Paleoeclimatology and Ancient Environments*. Dordrecht: Springer, 607–609.

Mosbrugger V, Utescher T. 1997. The coexistence approach—a method for quantitative reconstructions of Tertiary terrestrial paleaeoclimate data using plant fossils. *Palaeogeography, Palaeoclimatology, Palaeoecology* **134**(1–4):61–86 DOI 10.1016/s0031-0182(96)00154-x.
Nowak RS, Ellsworth DS, Smith SD. 2004. Functional responses of plants to elevated atmospheric CO₂: do photosynthetic and productivity data from FACE experiments support early predictions? *New Phytologist* **162**(2):253–280. DOI 10.1111/j.1469-8137.2004.01033.x.

O’Leary MH. 1993. Biochemical basis of carbon isotope fractionation. *Stable Isotopes and Plant Carbon-Water Relations* 1993:19–28. DOI 10.1016/b978-0-08-091801-3.50009-x.

Oren R, Ellsworth DS, Johnsen KH, Phillips N, Maier C, Schafer KR, McCarthy H, Hendrey G, McNulty SG, Katul GG. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO₂-enriched atmosphere. *Nature* **411**(6836):469–472. DOI 10.1038/35078064.

Original S code by Richard A. Becker, Allan R. Wilks. R version by Ray Brownrigg. Enhancements by Thomas P Minka and Alex Deckmyn. 2018. *Maps: draw geographical maps* R package Version 3.3.0. Available at https://CRAN.R-project.org/package=maps.

Pease VA. 1917. Duration of leaves in evergreens. *American Journal of Botany* **4**(3):145–160. DOI 10.1002/j.1537-2197.1917.tb05448.x.

Pedicino LC, Leavitt SW, Betancourt JL, Van de Water PK. 2002. Historical variations in δ¹³C of herbarium specimens in the southwestern U. S. *Western North American Naturalist* **62**(3):348–359.

Peñuelas J, Azcón-Bieto J. 1992. Changes in leaf Δ¹³C of herbarium plant species during the last 3 centuries of CO₂ increase. *Plant, Cell & Environment* **15**(4):485–489. DOI 10.1111/j.1365-3040.1992.tb01000.x.

Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov M, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Steienard M. 1999. Climate and Atmospheric History of the Past 420,000 years from the Vostok Ice Core, Antarctica. *Nature* **399**:429–436.

PRISM Climate Group. 2004. Oregon State University. Available at http://prism.oregonstate.edu created 4 February 2004.

R Core Team. 2014. *R: a language and environment for statistical computing*. Vienna: R Foundation for Statistical Computing. Available at http://www.R-project.org/.

Retallack GJ. 2001. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. *Nature* **411**(6835):287–290. DOI 10.1038/35077041.

Roth-Nebelsick A, Oehm C, Grein M, Utescher T, Kunzmann L, Friedrich JP, Konrad W. 2014. Stomatal density and index data of *Platanus neptuni* leaf fossils and their evaluation as a CO₂ proxy for the Oligocene. *Review of Palaeobotany and Palynology* **206**:1–9. DOI 10.1016/j.revpalbo.2014.03.001.

Rubino M, Etheridge DM, Trudinger CM, Allison CE, Battle MO, Langenfelds RL, Jenk TM. 2013. A revised 1000 year atmospheric δ¹³C-CO₂ record from Law Dome and South Pole, Antarctica. *Journal of Geophysical Research: Atmospheres* **118**(15):8482–8499. DOI 10.1002/jgrd.50668.

Schmitt J, Schneider R, Elsig J, Leuenberger D, Lourantou A, Chappellaz J, Köhler P, Joos F, Stocker TF, Leuenberger M, Fischer H. 2012. Carbon isotope constraints on the deglacial CO₂ rise from ice cores. *Science* **336**(711):711–713. DOI 10.1126/science.1217161.

Schubert BA, Jahren AH. 2012. The effects of atmospheric CO₂ concentration on carbon isotope fractionation in C₃ land plants. *Géochimica et Cosmochimica Acta* **96**:29–43. DOI 10.1016/j.gca.2012.08.003.

Schubert BA, Jahren AH. 2018. Incorporating the effects of photorepiration into terrestrial paleoclimate reconstruction. *Earth-Science Reviews* **177**:637–642. DOI 10.1016/j.earscirev.2017.12.008.
Talhelm AF, Pregitzer K, Kubiske M, Zak D, Campany C, Burton A. 2013. Elevated CO\textsubscript{2} and O\textsubscript{3} alter productivity and carbon storage in Northern Temperate Forests: results from Aspen FACE. In: American Geophysical Union Annual Meeting. San Francisco.

Tieszen LL. 1991. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. Journal of Archaeological Science 18(3):227–248 DOI 10.1016/0305-4403(91)90063-u.

Tipple BJ, Meyers SR, Pagani M. 2010. Carbon isotope ratio of Cenozoic CO\textsubscript{2}: a comparative evaluation of available geochemical proxies. Paleoceanography 25(3) DOI 10.1029/2009pa001851.

Tognetti R, Minnocci A, Penuelas J, Rachi A, Jones MB. 2000. Comparative field water relations of three Mediterranean shrub species co-occurring at a natural CO\textsubscript{2} vent. Journal of Experimental Botany 51(347):1135–1146 DOI 10.1093/jexbot/51.347.1135.

Troughton JH, Card KA. 1975. Temperature effects on the carbon-isotope ratio of C\textsubscript{3}, C\textsubscript{4} and Crassulacean-acid-metabolism (CAM) plants. Planta 123(2):185–190 DOI 10.1007/bf00383867.

Trudinger CM, Enting IG, Francey RJ, Etheridge DM, Rayner PJ. 1999. Long-term variability in the global carbon cycle inferred from a high-precision CO\textsubscript{2} and δ\textsuperscript{13}C ice-core record. Tellus B: Chemical and Physical Meteorology 51(2):233–248 DOI 10.3402/tellusb.v51i2.16276.

Van de Water PK, Leavitt SW, Betancourt JL. 2002. Leaf δ\textsuperscript{13}C variability with elevation, slope aspect, and precipitation in the southwest United States. Oecologia 132(3):332–343 DOI 10.1007/s00442-002-0973-x.

Wang R, Yu G, He N, Wang Q, Zhao N, Xu Z, Ge J. 2015. Latitudinal variation of leaf stomatal traits from species to community level in forests: linkage with ecosystem productivity. Scientific Reports 5:14454.

Wehr R, Saleska SR. 2015. An improved isotopic method for partitioning net ecosystem-atmosphere CO\textsubscript{2} exchange. Agricultural and Forest Meteorology 214–215:515–531.

Wernerehl RW, Givnish TJ. 2015. Relative roles of soil moisture, nutrient supply, depth, and mechanical impedance in determining composition and structure of Wisconsin prairies. PLOS ONE 10(9):e0137963 DOI 10.1371/journal.pone.0137963.

White JWC, Vaughn BH, Michel SE. 2015. University of Colorado, Institute of Arctic and Alpine Research (INSTAAR), stable isotopic composition of atmospheric carbon dioxide (\textsuperscript{14}C and \textsuperscript{18}O) from the NOAA ESRL carbon cycle cooperative global air sampling network, 1990–2014 Version 2015-10-26. Available at ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2c13/flask/surface/README_surface_flask_co2c13.html.

Wickham H. 2016. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag.

Woodward FI. 1987. Stomatal numbers are sensitive to increases in CO\textsubscript{2} from pre-industrial levels. Nature 327(6123):617–618 DOI 10.1038/327617a0.

Woodward FI, Bazzaz FA. 1988. The responses of stomatal density to CO\textsubscript{2} partial pressure. Journal of Experimental Botany 39(12):1771–1781.

Yonetani T, Gordon HB. 2001. Simulated changes in the frequency of extremes and regional features of seasonal/annual temperature and precipitation when atmospheric CO\textsubscript{2} is doubled. Journal of Climate 14(8):1765–1779 DOI 10.1175/1520-0442(2001)014<1765:sictfo>2.0.co;2.

Zhang YG, Pagani M, Liu Z, Bohaty SM, DeConto R. 2013. A 40-million-year history of atmospheric CO\textsubscript{2}. Philosophical Transactions of the Royal Society: Mathematical, Physical and Engineering Sciences 371(2001):20130096 DOI 10.1098/rsta.2013.0096.