Inferring the plasticity of epithelial tissues from their geometry

Marko Popović, 1 Valentin Druelle, 1, 2 Natalie A. Dye, 3, 4 Frank Jülicher, 4, 5 and Matthieu Wyart 1

1 Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
2 Biozentrum, University of Basel, Klingelberstrasse 70, 4056 Basel
3 Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 10307 Dresden, Germany
4 Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
5 Max Planck Institute for Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany

Inferring flow properties from geometry alone is of practical importance in a range of systems, including biological tissues and particulate materials. In the latter case, a key and hard-to-measure quantity controlling plasticity is the density \(P(x) \) of weak spots, where \(x \) is the additional stress required for local failure. In the thermodynamic limit \(P(x) \) is singular at \(x = 0 \) in the entire solid phase below the yield stress \(\Sigma_c \), and marks the presence of avalanches of plastic events that become smaller only for stresses \(\Sigma > \Sigma_c \). We first show that the vertex model of epithelial tissues has a similar phenomenology: in the absence of noise, it presents a yield stress \(\Sigma_c \) above which a stationary flow rate \(\dot{\gamma} > 0 \) is sustainable. The avalanches size \(S \) and their duration \(\tau \) diverge as \(S \sim \dot{\gamma}^{-a} \) and \(\tau \sim \dot{\gamma}^{-b} \) respectively, with \(a \approx 1/4 \) and \(c \approx 2/3 \). Yet, we argue quite generally and test in that model that for energy functionals that depend on topology, the stability \(x \) of weak spots (called T1 transitions in that context) is proportional to the length \(L \) of the bond that vanishes in this event. This implies that for this class of models \(P(x) \) is readily measurable from geometry alone. We find that \(P(L) \) exhibits a power law in the developing fruit fly wing with exponents similar to that of the vertex model in its solid phase. It raises the possibility that collective and non-linear effects are important during development, and suggests a new route to study outstanding questions associated with the yielding transition.

INTRODUCTION

A fascinating aspect of biological systems is their ability to grow into well-defined shapes [1]. Thinking about tissues as materials, what should their properties be to allow for robust morphogenesis? One view is that tissues are viscoelastic fluids, molded into desired shapes by surface tension and active forces [2–9]. An alternative picture is that they are yield stress materials [10] similar to clay. Such materials allow for great control, since shape is changed only if the magnitude of shear stress \(\Sigma \) is above the threshold yield stress \(\Sigma_c \). These approaches can be thought of as two extremes of a continuous spectrum of models, since at finite temperature, or at finite level of active stress and cell divisions in biological systems [3–11], materials always eventually flow. Experimental evidence of glassy behaviour [12–14] indeed suggests relevance of intermediate cases. Quantitatively, an interesting observable to distinguish these regimes is the ratio between the strain rate increment \(\dot{\delta} \) and the stress increment \(\delta \Sigma \) causing it. This ratio is simply \(\dot{\gamma}/\Sigma \) for a Newtonian liquid, but is infinite at \(\Sigma_c \) in a yield stress material at zero temperature. As discussed below, this divergence is associated with collective events where large chunks of the material rearrange. This fact suggests that one may be able to decide in which regime tissues operate simply by imaging their dynamics and geometry. One of our aims is to build the first steps of this long term goal. Note that this endeavour is distinct from non-invasive force inference methods [15, 16], in which one seeks to reconstruct stress - instead of plasticity and rheological properties - from geometry.

As it turns out, there is currently a considerable interest in understanding the relationship between geometry and plasticity in particulate amorphous materials [17–21]. Flow is mediated by local rearrangements termed shear transformations [22] that are coupled by long range elastic interactions [23]. If thermal fluctuations are small, for \(\Sigma > \Sigma_c \) the flow consists of avalanches of correlated shear transformations. The characteristic avalanche size diverges at \(\Sigma_c \) [24–26], and is system spanning for non-stationary slow (quasi-static) flows occurring in the solid phase \(\Sigma < \Sigma_c \) [24]. At a macroscopic level, for \(\Sigma > \Sigma_c \) the shear rate is singular and follows the Herschel-Bulkley law \(\dot{\gamma} \sim (\Sigma - \Sigma_c)^{\beta} \) [27]. A key ingredient of the scaling theory of this phase transition [28] is that the density \(P(x) \) of shear transformations at a distance \(x \) to their local yield stress (i.e. the shear transformations that yield if the shear stress is increased by \(x \)) follows \(P(x) \sim x^\theta \), with \(\theta > 0 \) [29, 31], which is directly related to the presence of extended avalanches [32]. The exponent \(\theta \) is predicted [33] to vary non-monotonically as shear strain is increased from an isotropic state, as observed in particle-based models [34–36], whereas for \(\Sigma > \Sigma_c \) there are no singularities in \(P(x) \) and \(\theta = 0 \) [33]. Various computationally expensive numerical methods are being devel-
oped to extract the field of shear transformations and their associated distance to yield stress \(\mathbf{x} \) from the structure alone \([17, 21]\), as it would allow one to study fundamental questions including the possible localization of plastic strain. In this work we present an alternative approach by showing that some models of disordered materials present the same phase transition, in which this extraction is straightforward.

We consider the vertex model of epithelial tissues \([37]\) in its solid phase where it displays a finite elastic modulus \([38, 39]\). We first show that its yielding transition is similar to particulate amorphous materials: its flow curve is singular with a Herschel-Bulkley exponent \(\beta \approx 1.3 \), associated with avalanches of plastic events whose size diverges as \(S \sim \dot{\gamma}^{-a} \) and last a duration \(\tau \sim \dot{\gamma}^{-c} \) where \(a \approx 1/4 \) and \(c \approx 2/3 \). In such a model, just like for dry foams, shear transformations are known to correspond to T1 events \([40]\). We argue quite generally and test numerically that in models where the energy function depends on the topology, the distance \(x \) to the local yield stress follows \(x \sim L \) where \(L \) is the bond length between two vertices. It implies that \(P(x) \) is readily obtainable from the bond length distribution, from which we extract \(\theta \). It is found to change non-monotonically under strain with \(\theta = 0.5 - 0.6 \) in isotropic state and with a similar value at large strain at \(\Sigma = \Sigma_c; \theta \approx 0.56 - 0.77 \). By contrast, \(\theta \) vanishes in the liquid phase for \(\Sigma > \Sigma_c \). Finally, we measure the bond length distribution in fruit fly wing disc and pupal wing epithelia, and find a similar behaviour with \(\theta \approx 0.7 - 0.9 \). This measurement suggests the existence of collective effects in tissues and raises the possibility that these materials function in a regime of high sensitivity \(\delta \dot{\gamma} / \delta \Sigma \gg \dot{\gamma} / \Sigma \).

FLOW AND LOADING CURVES OF VERTEX MODEL

We use the standard vertex model of epithelial tissues \([37, 41]\) where the 2D network of polygonal cells is assigned an energy function

\[
E = \sum_{c \in \text{cells}} \frac{1}{2} \left[K (A_c - A_{0,c})^2 + \Gamma_c P_c^2 \right] + \sum_{b \in \text{bonds}} \Lambda_b L_b ,
\]

where \(A_c \), \(L_b \) and \(P_b \) are cell area, bond length and cell perimeter, respectively. Model parameters specify preferred cell area \(A_{0,c} \), bond tensions \(\Lambda_b \) and cell perimeter stiffness \(\Gamma_c \). To avoid localisation of flow in a narrow shear band, which occurs in the homogeneous vertex model \([42]\), we introduce cell size polydispersity for shear flows, see Supplementary Information (SI). In all simulations the network is in solid phase with the normalised preferred perimeter \(p_0 \equiv -\Lambda_b / (2\Gamma_c \sqrt{A_{0,c}}) \approx 3.41 \) for all cells, below the rigidity transition point \(p_0^* \approx 3.81 \). Note that our results below may not hold in the fluid phase of the vertex model \([43]\), or in active tension networks with isogonal soft modes \([44]\).

The dynamics of the cellular network is described by overdamped dynamics of vertex positions \(\dot{\mathbf{r}}_\alpha \)

\[
\frac{d\mathbf{r}_\alpha}{dt} = -\nu \nabla_{\alpha} E ,
\]

where \(\nu = 1 \) is a mobility. A T1 transition occurs when a bond length becomes smaller than a threshold length \(\epsilon_{T1} \), see SI.

We use two ensembles of isotropic disordered networks with \(N = 400 \) and \(N = 2500 \) cells, as described in SI. An example of a network with \(N = 400 \) cells is shown in Fig. 1 a) left. We perform simple shear strain simulations on these networks at a constant strain rate, illustrated in Fig. 1 a) right for \(\dot{\gamma} = 10^{-4} \). The network initially responds elastically: the shear stress \(\Sigma \) in the network grows almost linearly (Fig. 1 b)). As the strain is increased, T1 transitions occur and relax the stress in the network, visible as sudden drops in the stress vs strain curve. In Fig. 1 a) right we visualise recent T1 transitions that occurred during a strain increment \(\Delta \gamma = 0.15 \) by colouring participating cells in red. T1 transitions appear to be correlated and organised into avalanches of various sizes, corresponding to widely distributed stress drops in Fig. 1 c). Eventually a steady state is reached in which stress relaxation due to T1 transitions balances the elastic loading. In Fig. 1 d) we show the steady state flow curve. It is well described by the Herschel-Bulkley law \(\dot{\gamma} \sim (\Sigma - \Sigma_c)^{\beta} \) \([27]\) with the yield stress \(\Sigma_c \approx 0.93 \) and exponent \(\beta \approx 1.3 \).

ENERGY CUSP AT T1 TRANSITIONS

Next we characterize the T1 transitions or elementary plastic events. For this purpose, we identify the bond in a network that will first disappear under strain. We then constrain the length of that bond to a value \(L^* \) and determine the energy of the network under strain. The original bond length is assigned negative values and the new bond that appears through the T1 transition is assigned positive values. In Fig. 2 we show the energy of the network relative to the energy of the unconstrained network, as a function of strain \(\Delta E(L^*; \gamma) \equiv E(L^*; \gamma) - E(\gamma) \). Originally the system is in a metastable state, corresponding to the local minimum of \(\Delta E \). As the shear stress increases the minimum disappears and the T1 transition occurs. The energy profile shows a cusp at the onset of T1 where \(L^* = 0 \), a well known feature of the vertex model energy landscape \([38, 43, 47]\). The presence of a cusp in the energy profile allows us to relate the bond

\[1\] The stress component corresponding to the simple shear is defined by \(\Sigma \equiv (\partial E/\partial \gamma)/N \). In our simulations \(\Gamma = 1 \) and a typical bond length is \(L_0 = 1 \). Therefore, the reported values of stress can be understood as normalised by \(\Gamma L_0^2 \).
FIG. 1. a) Left: Isotropic disordered polydisperse periodic network of \(N = 400 \) cells. Right: Snapshot of a network in a steady state simple shear flow. Colored cells recently participated in a T1 transition. b) Initial elastic regime of network under shear strain is followed by plastic regime where elastic loading and relaxation by T1 transitions are equilibrated. Ruggedness of the stress vs strain curve appears due to periods of stress increase through elastic loading and stress drops by T1 rearrangements. c) Steady state flow in two different network size: 400 cells in blue and 2500 cells in green. Dotted line shows the fit of Herschel-Bulkley law.

The length of short bonds to the additional force \(x \) at the bond needed to drive a T1 transition. Namely, expanding \(\Delta E(L^*, \gamma) \) in bond length around the equilibrium value \(L \) reads:

\[
\Delta E(L^*) \approx \Delta E(L) + \frac{1}{2} \Delta E''(L)(L^* - L)^2
\]

and we see that at T1 transition, corresponding to \(L^* = 0 \), the energy barrier to the T1 transition is:

\[
E_b \equiv \Delta E(L^* = 0) \approx \frac{1}{2} \Delta E''(L)L^2
\]

Thus, the force on that bond required to trigger the T1 transition is:

\[
x \approx \Delta E''(L)L
\]

Since the effective stiffness of the bond \(\Delta E''(L) \) is expected to be finite at a T1 transition, we find \(E_b \sim L^2 \) and \(x \sim L \). This relationship between geometry and plasticity follows from presence of the cusp in the energy profile. Ultimately, the origin of this cusp lies in the form of the energy function that depends on the cell perimeters and area. These quantities are smooth functions of the vertex positions for a given network topology. However they are not smooth, but simply continuous, at the point where two vertices meet and the network topology changes. Consequently, forces can change discontinuously at the transition point. Therefore, we expect to generically find \(x \sim L \) in cellular systems such as epithelial tissues and dry foams for which the dependence of the energy on the vertex position is topology-dependent. By contrast, particle systems in which the energy depends on the particle positions independently of any notion of topology cannot show such a cusp (as long as the interaction potential is smooth). Furthermore, due to the cusp at the T1 transition the stiffness of the corresponding displacement mode does not vanish, as it would at the plastic event in particle systems\(^3\). Therefore, we do not expect to find a signature of local plastic events in the eigenvalues of Hessian matrix of energy function, which could explain the lack of soft modes non-localised modes recently observed in the Voronoi vertex model\(^4\).

FIG. 2. a) The energy profile parameterised by the imposed length of a bond \(L^* \) evolves under strain until the metastable state disappears at strain \(\gamma_{T1} \) and a T1 transition occurs. Negative values of bond lengths denote lengths before the T1 transition. b) Schematic of the cusp in the energy profile: the energy barrier is quadratic in bond length \(E_b \sim L^2 \) and the force required to shrink the bond is linear \(x \sim L \). Tests of scaling relations between the length \(L \) and: c) the energy barrier \(E_b \), d) the force distance to a T1 transition \(x \), in isotropic disordered networks. Error bars represent one standard deviation of the sample.

\(^2\) Note that exerting a stress increment at the boundary of the system will in general generate a bond force proportional to that increment, so the quantity \(x \) we use here characterizes well the distance to a local yield stress.

\(^3\) In systems with smooth energy function a plastic event corresponds to the usual saddle-node bifurcation.

\(^4\) A type of vertex model with the same energy function as the usual vertex model but with degrees of freedom corresponding to cell centers and network topology which is constructed from them by Voronoi tessellation at each time-point.
We test these predictions in isotropic disordered networks by forcing bond length to attain a very small value \(L_{\text{min}} = 10^{-6} \) and determining the corresponding network energy change and the constraining force magnitude \(x \). Results shown in Fig. 2(c) and d) are consistent with our predictions. Therefore, identifying the locations of short bonds allows us to read the map of “weak spots” in the system, as well as to deduce the distribution \(P(x) \).

STABILITY OF THE CELLULAR NETWORK

After a T1 transition, the network relaxes to a new metastable state with redistributed shear stresses. We measure the stress redistribution by enforcing a T1 transition and measuring the change in stress within each cell after the network had relaxed (the cellular stress is defined as in [49]). In an elastic 2D medium we expect the shear stress redistribution to be consistent with that of a force dipole in an elastic medium: \(\Delta \sigma_{xx} \sim \cos (4\varphi)/r^2 \), \(\Delta \sigma_{xy} \sim \sin (4\varphi)/r^2 \) [23]. Fig. 2(a) shows the shear stress redistribution, obtained by orienting the disappearing bond direction along the \(x \)-axis and averaging over 50 realisations, as detailed SI. We find a clear four-fold symmetry of \(\Delta \sigma_{xx} \) (inset) as well as inverse quadratic decay of its magnitude, as expected for a force dipole and consistent with simulations of 2D foams [19].

The stress change after a T1 transition can trigger new T1 transitions if there are bonds with small \(x \) in the network. In the solid phase, the stability of the network with respect to extensive avalanches of T1 transition imposes \(P(x) \sim x^\theta \) with \(\theta > 0 \), otherwise never-ending avalanches would occur [31]. As we have demonstrated \(x \sim L \) in the vertex model. Therefore, bond length distribution should vanish with the same exponent \(P(L) \sim L^\theta \), and \(\theta \) can be extracted from \(P(L) \). We measure the cumulative distribution \(C(L) \equiv \int_0^L P(L')dL' \) in disordered isotropic networks. We find a scaling regime, whose range of validity grows with system size, for which \(\theta \approx 0.5 - 0.6 \) (Fig 3 b), see SI for details. At even smaller \(L \), the bond lengths distribution departs from this scaling as \(P(L) \sim \text{const.} \), as expected due to finite size effects and also observed in elasto-plastic models [28].

Interestingly, these values are consistent with those found in two-dimensional elasto-plastic models [28]. In these coarse-grained models, the material is described as a collection of mesoscopic blocks with a simplified description of plastic events: a block yields when the local yield stress is reached, it accumulates plastic strain and redistributes stress in the material as a force dipole [50, 51]. Since both ingredients are present in vertex model as well, as we have seen, it is not surprising that we find a consistent value of \(\theta \).

We next studied the evolution of the exponent \(\theta \) during the transient loading period, between the initially isotropic network and the steady state. Surprisingly, it has been predicted that \(\theta \) would then non-monotonically depend on strain [33], a result observed in elasto-plastic models [26] but only indirectly observable in amorphous solids where \(P(x) \) is very hard to access [31,36]. To test directly this prediction, we measure the bond length distribution as a function of strain at a small constant strain rate \(\dot{\gamma} = 5 \cdot 10^{-5} \) (blue line) and \(\dot{\gamma} = 1 \) (bright green line). We find that at the lowest strain rates the effective exponent \(\theta^{\text{eff}} \) converges to \(\theta \approx 0.56 - 0.77 \), see SI for details. As in isotropic networks, at low \(L \), we find \(P(L_r) \sim \text{const.} \), as expected for any finite strain rate [33].
COLLECTIVE BEHAVIOUR OF T1 TRANSITIONS

Quite generally in disordered systems [32], a singularity in the density of weak regions \(P(x) \) is synonymous to avalanche-type response where many weak regions - here T1’s - rearrange in concert. To test if this idea holds in the vertex model, we quantify the correlation between T1 transitions by using a susceptibility motivated by the four-point susceptibility \(\chi_4 \) studied in glasses [52], elasto-plastic models [53, 54] and vertex models [48]. We define \(\chi_4 \) as a normalised variance of the number \(n_T(\tau) \) of T1 transitions in the time-window \(\tau \) [53, 55]:

\[
\tilde{\chi}_4(\tau) = \frac{(\langle n_T(\tau) \rangle - \langle n_T(\tau) \rangle^2)}{\langle n_T(\tau) \rangle}.
\]

If T1 transitions were completely independent, the variance would be equal to the mean at any \(\tau \) and \(\tilde{\chi}_4(\tau) = 1 \). For T1 transitions organised in avalanches \(\tilde{\chi}_4 \) grows and reaches a maximum at \(\tau_A \), corresponding to the typical avalanche duration. The value at the maximum can be interpreted as the characteristic avalanche size \(S \equiv \tilde{\chi}_4(\tau_A) \). After an avalanche, the stress has relaxed locally and new avalanches are less likely to occur. This effect leads to a decay of \(\tilde{\chi}_4(\tau) \) for \(\tau > \tau_A \).

![FIG. 4. a) The susceptibility \(\tilde{\chi}_4(\tau) \) in the steady state flow at different strain rates grows with \(\tau \) to a maximal value, which can be interpreted as the avalanche size \(S \) of T1 transitions. b) The collapse of \(\tilde{\chi}_4(\tau) \) curves after rescaling axes shows that the characteristic avalanche size diverges as \(S \sim \tilde{\chi}^{-1/4} \) and that the characteristic avalanche duration diverges as \(\tau_A \sim \tilde{\chi}^{-2/3} \). Measurements shown are obtained with \(N = 400 \).](image)

We measure \(\tilde{\chi}_4(\tau) \) in steady state shear flow at different strain rates, see Fig 4 a) and b). We find that \(\tilde{\chi}_4 \) displays a peak which grows near the transition point \(\gamma \rightarrow 0 \), indeed supporting the idea that the dynamics becomes collective at that point. Furthermore, we find that the \(\tilde{\chi}_4 \) curves at different strain rates collapse when re-scaling the axes as \(\tilde{\chi}^{2/3} \tau \) and \(\tilde{\chi}^{-1/4} \). Therefore, as the strain rate vanishes, the mean avalanche size diverges as \(S \sim \tilde{\chi}^{-1/4} \) and the mean avalanche duration as \(\tau_A \sim \tilde{\chi}^{-2/3} \).

FLY WING EPITHELIA

We have shown that in the vertex model, the bond length distribution \(P(L) \) is indicative of the regime in which the material flows: it presents a singular distribution approaching the solid phase, where the dynamics becomes collective and the flow curve is non-linear.

As a first test of the relevance of these ideas to real tissues, we analyse the bond length distribution in wing epithelium of the fruit fly at two stages of development: i) during pupal wing morphogenesis, imaged \textit{in vivo} [6] and ii) the wing disc epithelium, in third instar larva wing disc epithelium imaged \textit{ex vivo} [56]. In the pupal wing we considered a region defined by the longitudinal veins denoted L4 and L5, and the posterior crossvein (yellow cells in Fig. 5 a), imaged at 5 min intervals between 19 and 23 hours after puparium formation, collected from 3 experiments [57]. In Fig. 5 b) we show the analysed region in the wing disc epithelium, corresponding to the wing disc pouch, imaged at 5 min intervals over about 13 hours and collected from 5 experiments. In both Figs. 5 a) and b) we indicate in red the cells that have lost or gained a bond as a part of T1 transition in the last 5 minutes. c) Cumulative bond length distribution in developing fruit fly wing at the pupal stage of development (blue) and in the larval wing disc (green) both show a clear power-law scaling of \(P(L) \) at small bond lengths. Measured effective is in the range \(\theta_{\text{eff}} \approx 0.7 - 0.9 \).

![FIG. 5. a) Pupal wing and b) wing disc of a fruit fly with regions used for analysis highlighted in yellow. Red colored cells have either lost or gained a bond as a part of T1 transition in the last 5 minutes. c) Cumulative bond length distribution in developing fruit fly wing at the pupal stage of development (blue) and in the larval wing disc (green) both show a clear power-law scaling of \(P(L) \) at small bond lengths. Measured effective is in the range \(\theta_{\text{eff}} \approx 0.7 - 0.9 \).](image)
small ($\sim 0.1 - 0.2$ for pupal wings \cite{57} and $\sim 0.05 - 0.1$ for wing discs \cite{56}), it is not clear if we are in a large or small strain regime, with respect to the strain where Fig. \cite{3} c) displays a minimum.

Remarkably, we find that in both tissues the bond length distribution $P(L)$ vanishes at small L with the effective exponent $\theta_{\text{eff}} \approx 0.7 - 0.9$ (see Fig. \cite{5} c) and SI for details), similar to those measured in the slowly flowing vertex model at small or large strain. This observation suggests that the scaling relation $x \sim L$ holds in real tissues as well, in the range of L that we can probe. Clearly for very small bonds, this relationship must eventually break down due to finite size of vertices \cite{55} \cite{60}.

It would be very interesting to test this scaling relation directly by perturbing the system. It could be achieved by observing tissue response to a localised mechanical perturbation, such as laser ablation of a single bond: if the energy landscape were smooth with no cusps, the stiffness of the corresponding displacement mode would vanish in approach to a T1 transition as expected near a saddle node bifurcation. As a consequence, a strong locally heterogeneous response would be observed in the experiment at locations of short bonds just before they rearrange, as observed in particulate amorphous solids \cite{61} preceding a plastic event. On the other hand, in presence of a cusp there would be no softening and no strong locally heterogeneous displacement preceding cell rearrangements.

Our observation also raises the possibility that developing tissues can lie in a non-linear regime with $\delta \dot{x}/\delta \Sigma \gg \dot{\gamma}/\Sigma$, where collective effects are important. Unfortunately, such collective effects are very hard to measure in our experimental data, because the strain rate is not stationary, leading to difficulties using the definition of χ_4. Thus, it would be important to look for non-linear effects more directly by measuring stress dynamics using laser ablation experiments and comparing them to elastic and plastic flow components \cite{62 \cite{64}, \cite{65}. Alternatively, epithelia obtained as cultured cell monolayers might provide interesting experimental systems that allow for direct rheological experiments. In such systems non-linear flow properties have been observed \cite{65} and bond length distributions $P(L)$ could be measured in different flow regimes.

DISCUSSION

We have shown that in the vertex model in its solid phase, the distribution of bond lengths provides the distribution of local distances to yield stress x. The distribution $P(x)$ reveals properties of the regime in which flow is occurring. This result has two consequences.

First in developing epithelia, we observe a singular distribution of bond lengths, consistent with the one found in the vertex model. This result raises the intriguing possibility that non-linear collective effects may be important in tissues, and suggests further empirical tests. Yet, to precisely relate geometry to flow properties would require us to incorporate active forces and cell divisions or extrusions \cite{3 \cite{11}. From a theoretical perspective, how the density of weak spots depends on stress in the presence of noise - even a simple thermal noise - is not well understood in amorphous solids, and is just starting to be investigated \cite{11} \cite{66}. In this light, it would be important to study in the future how different kinds of noise affect the flow curve and the distribution $P(L)$ in the vertex model.

Secondly, despite the fact that the energy functional of the vertex model is more complex than that of usual particulate materials (in which interaction can be radially symmetric), the relationship between geometry and the presence of weak spots is much simpler in the vertex model. Outstanding questions in the context of amorphous materials, such as predicting how amorphous solids break by forming shear bands in which most plastic events occur, are hampered by the difficulty of measuring the distribution of weak spot with small x \cite{17} \cite{21}. The vertex model may thus be ideal to understand the universal aspects by which amorphous materials break and flow.

[1] D. W. Thompson, *On growth and form* (Cambridge University Press, 1945).

[2] T. Bittig, O. Wartlick, A. Kicheva, M. González-Gaitán, and F. Jülicher, *New Journal of Physics* **10**, 063001 (2008).

[3] J. Ranft, M. Basan, J. Elgeti, J.-F. Joanny, J. Prost, and F. Jülicher, *Proceedings of the National Academy of Sciences* **107**, 20863-20868 (2010).

[4] P. Lee and C. W. Wolgemuth, *PLOS Computational Biology* **7**, 1 (2011).

[5] C. Blanch-Mercader, J. Casademunt, and J. F. Joanny, *The European Physical Journal E* **37** (2014), 10.1140/epje/i2014-14041-2.

[6] R. Etournay, M. Popović, M. Merkel, A. Nandi, C. Blasse, B. Aigouy, H. Brandl, G. Myers, G. Salbreux, F. Jülicher, and et al., *eLife* **4** (2015), 10.7554/eLife.07090.

[7] S. Banerjee, K. J. Utuje, and M. C. Marchetti, *Physical Review Letters* **114**, 228101 (2015).

[8] M. Popović, A. Nandi, M. Merkel, R. Etournay, S. Eaton, F. Jülicher, and G. Salbreux, *New Journal of Physics* **19**, 033006 (2017).

[9] F. Jülicher, S. W. Grill, and G. Salbreux, *Reports on Progress in Physics* **81**, 076601 (2018).

[10] A. Mongera, P. Rowghanian, H. J. Gustafson, E. Sheldon, D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucejo, J. Gianmona, and O. Camps, *Nature* **561**, 401405 (2018).
[11] D. Matoz-Fernandez, E. Agoritsas, J.-L. Barrat, E. Bertin, and K. Martens, Physical Review Letters 118, 158105 (2017).
[12] T. E. Angelini, E. Hannezo, X. Trepot, M. Marquez, J. J. Fredberg, and D. A. Weitz, Proceedings of the National Academy of Sciences 108, 47144719 (2011).
[13] K. D. Netteu, M. Knorr, J. Ks, and M. Zink, New Journal of Physics 14, 115012 (2012).
[14] E.-M. Schotz, M. Lanio, J. A. Talbot, and M. L. Manning, Journal of The Royal Society Interface 10, 20130726 (2013).
[15] S. Ishihara and K. Sugimura, Journal of Theoretical Biology 313, 201211 (2012).
[16] K. K. Chiou, L. Hufnagel, and B. I. Shraiman, PLoS Computational Biology 8, e1002512 (2012).
[17] E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone, J. Rottler, D. J. Durian, E. Kaxiras, and A. J. Liu, Physical review letters 114, 108001 (2015).
[18] L. Gartner and E. Lerner, SciPost Phys. 1, 016 (2016).
[19] S. Patinet, D. Vandembroucq, and M. L. Falk, Physical review letters 117, 045501 (2016).
[20] S. Wijtmans and M. L. Manning, Soft matter 13, 5649 (2017).
[21] Z. Schwartzman-Novik, E. Lerner, and E. Bouchbinder, Phys. Rev. E 99, 060601 (2019).
[22] A. Argon, Acta Metallurgica 27, 47 (1979).
[23] G. Picard, A. Ajdari, F. Lequeux, and L. Bocquet, The European Physical Journal E 15, 371 (2004).
[24] A. Lemaître and C. Caroli, Phys. Rev. Lett. 103, 065501 (2009).
[25] A. Nicolas, E. E. Ferrero, K. Martens, and J.-L. Barrat, Reviews of Modern Physics 90 (2018), 10.1103/RevModPhys.90.045506.
[26] J. Lin, T. Gneudrė, A. Rosso, and M. Wyart, Phys. Rev. Lett. 115, 168001 (2015).
[27] W. H. Herschel and R. Bulkley, Kolloid-Zeitschrift 39, 291 (1926).
[28] J. Lin, E. Lerner, A. Rosso, and M. Wyart, Proceedings of the National Academy of Sciences 111, 14382 (2014).
[29] A. Lemaître and C. Caroli, arXiv preprint arXiv:0705.3122 (2007).
[30] S. Karmakar, E. Lerner, and I. Procaccia, Phys. Rev. E 82, 055103 (2010).
[31] J. Lin, A. Saade, E. Lerner, A. Rosso, and M. Wyart, EPL (Europhysics Letters) 105, 26003 (2014).
[32] M. Müller and M. Wyart, Annual Review of Condensed Matter Physics 6, 177 (2015).
[33] J. Lin and M. Wyart, Physical Review X 6, 011005 (2016).
[34] W. Ji, M. Popović, T. W. de Geus, E. Lerner, and M. Wyart, Physical Review E 99, 023003 (2019).
[35] M. Ozawa, L. Berthier, G. Biroli, A. Rosso, and G. Tarjus, Proceedings of the National Academy of Sciences 115, 6656 (2018).
[36] B. Shang, P. Guan, and J.-L. Barrat, arXiv preprint arXiv:1908.08820 (2019).
[37] R. Farhadifar, J.-C. Röper, B. Aigouy, S. Eaton, and F. Jülicher, Current Biology 17, 20952104 (2007).
[38] D. Bi, J. J. Lopez, J. M. Schwarz, and M. L. Manning, Nature Physics 11, 10741079 (2015).
[39] D. Bi, X. Yang, M. C. Marchetti, and M. L. Manning, Physical Review X 6 (2016), 10.1103/PhysRevX.6.021011.
[40] A. Kabla and G. Debrégeas, Phys. Rev. Lett. 90, 258303 (2003).
[41] D. B. Staple, R. Farhadifar, J. C. Röper, B. Aigouy, S. Eaton, and F. Jülicher, The European Physical Journal E 33, 117127 (2010).
[42] M. Merkel, From cells to tissues: Remodeling and polarity reorientation in epithelial tissues, Ph.D. thesis, Technische Universität Dresden (2014).
[43] J.-A. Park, J. H. Kim, D. J. A. Mitchell, N. T. Qazvini, K. Tantisira, C. Y. Park, M. McGill, S.-H. Kim, B. Gweon, and et al., Nature Materials 14, 10401048 (2015).
[44] N. Noll, M. Mani, I. Heemskerk, S. J. Streichan, and B. I. Shraiman, Nature Physics 13, 12211226 (2017).
[45] D. Bi, J. J. Lopez, J. M. Schwarz, and M. L. Manning, Soft Matter 10, 1885 (2014).
[46] T. Su and G. Lan, arXiv Prepr. 1610.04254 (2016).
[47] M. Krajc, S. Dasgupta, P. Zherl, and J. Prost, Physical Review E 98, 022409 (2018).
[48] D. M. Sussman, M. Paoluzzi, M. Cristina Marchetti, and M. Lisa Manning, EPL (Europhysics Letters) 121, 36001 (2018).
[49] M. Alice, Dynamics and mechanics of compartment boundaries in developing tissues, Ph.D. thesis, Technische Universität Dresden (2013).
[50] J.-C. Baret, D. Vandembroucq, and S. Roux, Phys. Rev. Lett. 89, 195506 (2002).
[51] G. Picard, A. Ajdari, F. Lequeux, and L. Bocquet, Physical Review E 71, 010501 (2005).
[52] S. Whitelam, L. Berthier, and J. P. Garrahan, Physical Review Letters 92, 185705 (2004).
[53] K. Martens, L. Bocquet, and J.-L. Barrat, Physical Review Letters 106, 156001 (2011).
[54] A. Nicolas, K. Martens, L. Bocquet, and J.-L. Barrat, Soft Matter 10, 46484661 (2014).
[55] B. Tyukodi, S. Patinet, S. Roux, and D. Vandembroucq, Physical Review E 93, 063005 (2016).
[56] N. A. Dye, M. Popović, S. Spann, R. Etournay, D. Kännmüller, S. Ghosh, E. W. Myers, F. Jülicher, and S. Eaton, Development 144, 44064421 (2017).
[57] R. Etournay, M. Merkel, M. Popović, H. Brandl, N. A. Dye, B. Aigouy, G. Salbreux, S. Eaton, and F. Jülicher, eLife 5 (2016), 10.7554/eLife.14334.
[58] C. H. Waddington, Journal of Genetics 41, 75 (1940).
[59] M. Furuse, Y. Izumi, Y. Oda, T. Higashi, and N. Iwamoto, Tissue Barriers 2, e28960 (2014).
[60] F. Bosveld, Z. Wang, and Y. Bellaiche, Current Opinion in Cell Biology 54, 8088 (2018).
[61] C. E. Maloney and A. Lemaître, Phys. Rev. E 74, 016118 (2006).
[62] M. Merkel, R. Etournay, M. Popović, G. Salbreux, S. Eaton, and F. Jülicher, Physical Review E 95 (2017), 10.1103/PhysRevE.95.032401.
[63] G. B. Blanchard, A. J. Kabla, N. L. Schlütz, L. C. Butler, B. Sanson, N. Gorfinkeil, L. Mahadevan, and R. J. Adams, Nature Methods 6, 458464 (2009).
[64] B. Guirao, S. U. Rigaud, F. Bosveld, A. Bailles, J. Lopez-Gay, S. Ishihara, K. Sugimura, F. Graner, and Y. Bel-lache, eLife 4, e08519 (2015).
[65] A. R. Harris, L. Peter, J. Bellis, B. Baum, A. J. Kabla, and G. T. Charras, Proceedings of the National Academy of Sciences 109, 164916454 (2012).
[66] J. Chatteraj, C. Caroli, and A. Lemaître, Physical Review Letters 105, 266001 (2010).
Supplementary Information

1. Vertex model parameters

We used the following parameter values in most simulations:

- $K_c = 10$
- $\Lambda_b = -11$
- $A_{0,c}$ and Γ_c were always chosen so that $p_0 = -\Lambda_b/(2\Gamma_c\sqrt{A_{0,c}}) = 11/(2\sqrt{3}\sqrt{3}/2) \approx 3.41$ is constant throughout the network.
- $\nu = 1$

Any change of parameters in a particular simulation is explicitly listed below.

2. T1 transition implementation

When a bond length becomes smaller than a threshold value ϵ_T, a T1 transition is attempted: old bond and corresponding vertices are destroyed and new ones are created, then forces on the new bond are computed and T1 transition is allowed if the tension in the new bond is positive (forces are stretching the new). Otherwise, the T1 transition is canceled and the network is reverted to the original state. The choice of ϵ_T is specified for particular simulations below. To avoid the possibility of an extrusion we do not allow bond loss by T1 transition for cells with 3 neighbors.

3. Cell size polydispersity

In the flow simulations we avoided crystallization and shear banding by introducing cell size polydispersity: preferred cell areas $A_{0,c}$ are uniformly distributed on the interval $[A_{0,c}/2, 3A_{0,c}/2]$, where the mean preferred cell area $A_{0,c} = 3\sqrt{3}/2$ corresponds to size of regular hexagons before initial network randomization. Parameter Γ_c was then chosen so that all cells have the same value of p_0. Finally, we set $K_c = 40$.

4. Isotropic disordered networks

To create isotropic disordered networks, we first create a hexagonal network with bond length $l = 1$. The energy function parameters are then set so that the network is in the solid phase $p_0 \approx 3.7$, but close to the transition point $p_0^0 = 3.81$ \cite{33}. The parameters used are:

- $K_c = 1$
- $\Lambda_b = -12$
- $\Delta t = 5 \cdot 10^{-4}$
- $\epsilon_T = 5 \cdot 10^{-4}$

For the randomization process we introduce fluctuations of the bond tension Λ independently in each bond by simulating its dynamics as a time-discretised Ornstein-Uhlenbeck process:

$$\Lambda(t + \delta t) = \Lambda(t) - k(\Lambda(t) - \Lambda_0) + \xi \sqrt{\delta t},$$

where $\Lambda_0 = -12$, $\delta t = 10^{-2}$, $k = 1$ and ξ a random variable taken from a normal distribution $\mathcal{N}(0, 1)$.

Networks are evolved for $t_r = 50$, then fluctuations are frozen and the network is relaxed for time 0.5. Finally, network parameters are set to simulation values and networks are further relaxed over time using $\epsilon_T = 10^{-4}$ until the net force on any vertex was below $\epsilon_F = 10^{-4}$.

5. Stress redistribution by a T1 transition

Results of the stress redistribution from a T1 event were obtained from a $N = 2500$ network. After initial relaxation (until net force on any vertex is below $\epsilon_F = 10^{-5}$) 50 bonds of length $l < 0.1$ were selected randomly. Each of these bonds was shrunk below the T1 threshold. If the tension in the newly formed bond was negative (so that T1 transition would revert back, see Section A) the bond was not considered, otherwise the T1 was performed and the network was relaxed (with $\epsilon_F = 10^{-4}$) and shear stress change for each cell was recorded. We defined cell position as the position of its center of mass and the position was recorded in a coordinate system centered at the middle of the original bond that was selected and whose x-axis was aligned with the original bond direction. Finally, we obtained the average shear stress change in space by performing a cell area-weighted average in spatial bins.

6. Direct measurement of $P(x)$

In a subset of isotropic disordered networks each bond of length $L < 0.5$ was selected and constrained to be of length $L_c = 10^{-6}$. With this constraint on the bond, the network is then relaxed (until the net force on any vertex was below $\epsilon_F = 10^{-3}$). Once the relaxation is over, the magnitude of the force acting on the vertices of the constrained bond is recorded as x, as well as network energy change ΔE.

7. **Steady state shear flow**

We apply simple shear strain to a network at each time-step using an affine transformation of all vertex positions:

\[\Delta x_\alpha = \frac{y_\alpha}{L_y} \Delta \gamma, \tag{8} \]

where \((x_\alpha, y_\alpha)\) are coordinates of vertex \(\alpha\), \(\Delta \gamma\) is strain increment, and \(L_y\) simulation box size in \(y\) direction. The applied strain rate \(\dot{\gamma} = \Delta \gamma / \Delta t\) was always constant during a simulation. T1 transition threshold was \(\epsilon_{T1} = 10^{-2}\) and simulation time step \(\Delta t = 10^{-3}\).

8. **Isotropic \(\theta\)**

We determined the range of values corresponding to this exponent by fitting cumulative bond length distribution obtained from 50 isotropic networks of size \(N = 2500\), which exhibit a broader range of scaling than \(N = 400\) networks. We performed the power law fit on a range of data \([l, 0.2]\) with varying lower limit \(l\) as shown in Fig. 6 a). We find that for values of lower limit \(l\) in the range \([0.01, 0.05]\) the exponent \(\theta\) varies between 0.5 and 0.60.

9. **Transient \(\theta_L^{\text{eff.}}\)**

We fitted the effective exponent on cumulative distribution of adjusted bond lengths \(L_r = L - \epsilon_{T1}\) in the range \([0.03, 0.3]\), accumulated from 700 realisations obtained in \(N = 400\) networks at strain rate \(\dot{\gamma} = 10^{-4}\), recorded at strain resolution \(\delta \gamma_1 = 0.02\). The plot in Fig. 3 c) was obtained by averaging the results in windows of width \(\delta \gamma_2 = 0.1\) with the shaded regions indicating the corresponding standard deviation in each window.

10. **Steady state \(\theta\)**

Cumulative bond length distribution of adjusted bond lengths \(L_r = L - \epsilon_{T1}\) shown in Fig. 3 d) of the main text are obtained from 1400 networks at strain beyond \(5\) taken at strain intervals \(\Delta \gamma = 0.02\). For the lowest strain rate \(\dot{\gamma} = 5 \cdot 10^{-5}\) we fitted a power law on a range of data \([l, 0.3]\) with varying lower limit \(l\) as shown in Fig. 6 b). We find that for values of lower limit \(l\) in the range \([0.02, 0.05]\) the exponent \(\theta\) varies between 0.56 and 0.77.

11. **Effective exponent in experimental data**

To determine the effective exponent \(\theta_L^{\text{eff.}}\) in experimental data we fitted a power law to the cumulative distribution of bond lengths. We vary the fitting range to estimate confidence interval of the fits and we find that in most cases fitted exponents fall in the range \(0.7 < \theta_L^{\text{eff.}} < 0.9\), as shown in Fig. 6 c) - f).
FIG. 6. a) and b) Values of exponent θ obtained by fitting cumulative bond length distribution in isotropic networks and steady state networks, respectively, using different values of lower limit l of data range (see SI text above). Values of the effective exponent θ^{eff} obtained by fitting the cumulative distribution of bond lengths in experimental data. Subplots c) and e) show the values of the exponent in pupal wings and wing discs, respectively. Subplots d) and f) show in purple choices of data limits for which the exponent value falls in the range 0.7 – 0.9 in pupal wings and wing discs, respectively.