Elevated CO₂ offsets the alteration of foliar chemicals (n-icosane, geranyl acetate, and elixene) induced by elevated O₃ in three taxa of O₃-tolerant eucalypts

Eka Novriyanti¹ ² · Qiaozhi Mao² ³ · Evgenios Agathokleous⁴ · Makoto Watanabe² ⁵ · Yasuyuki Hashidoko⁶ · Takayoshi Koike² ⁷ ⁸

Received: 26 November 2019 / Accepted: 2 January 2020
© The Author(s) 2020

Abstract Eucalypts are important forest resources in southwestern China, and may be tolerant to elevated ground-level ozone (O₃) concentrations that can negatively affect plant growth. High CO₂ may offset O₃-induced effects by providing excess carbon to produce secondary metabolites or by inducing stomatal closure. Here, the effects of elevated CO₂ and O₃ on leaf secondary metabolites and other defense chemicals were studied by exposing seedlings of Eucalyptus globulus, E. grandis, and E. camaldulensis × E. deglupta to a factorial combination of two levels of O₃ (< 10 nmol mol⁻¹ and 60 nmol mol⁻¹) and CO₂ (ambient: 370 μmol mol⁻¹ and 600 μmol mol⁻¹) in open-top field chambers. GC-profiles of leaf extracts illustrated the effect of elevated O₃ and the countering effect of high CO₂ on compounds in leaf epicuticular wax and essential oils, i.e., n-icosane, geranyl acetate and elixene, compounds known as a first-line defense against insect herbivores. n-Icosane may be involved in tolerance mechanisms of E. grandis and the hybrid, while geranyl acetate and elixene in the tolerance of E. globulus. Elevated O₃ and CO₂, singly or in combination, affected only leaf physiology but not biomass of various organs. Elevated CO₂ impacted several leaf traits, including stomatal conductance, leaf mass per area, carbon, lignin, n-icosane, geranyl acetate and elixene. Limited effects of elevated O₃ on leaf physiology (nitrogen, n-icosane, geranyl acetate, elixene) were commonly offset by elevated CO₂. We conclude that E. globulus, E. grandis and the hybrid were tolerant to these O₃ and CO₂ treatments, and n-icosane, geranyl acetate and elixene may be major players in tolerance mechanisms of the tested species.

Keyword Carbon dioxide · Epicuticular wax · Eucalypts · Secondary metabolism · Tropospheric ozone
Introduction

High concentrations of tropospheric ozone (O₃) can induce damage in plants and reduce forest productivity (Broadmeadow et al. 1999; Percy et al. 2003; Manning 2005; Piogetti et al. 2016; Yuan et al. 2015, 2016). As a result of increasing O₃ concentrations, 50% (17 million km²) of the world’s forest may be exposed to O₃ levels > 60 nmol mol⁻¹ and, thus, decrease photosynthetic productivities by the year 2100 (Fowler et al. 1999; Sitch et al. 2007). The considerable genetic variability among plants results in substantially different levels of damage in response to particular O₃ levels (Booker et al. 2009). At the same time, atmospheric carbon dioxide (CO₂) concentrations have also increased and are predicted to reach 600 μmol mol⁻¹ near the year 2060 (IPCC 2007). Elevated CO₂ may enhance photosynthetic rates and increase plant growth (e.g., Ainsworth and Long 2005). Hence, it is imperative to determine the interactive effects of CO₂ and O₃ on such representative species for future afforestation practices (e.g., Karnosky et al. 2003; Kitao et al. 2015; Shi et al. 2017).

Exposure to O₃ generates a response comparable to that of hypersensitive response of plants to pathogen attack; thus, O₃ is considered an abiotic "elicitor" of plant defense reaction, with the potential to alter the chemistry and metabolism of plant tissue (Sandermann et al. 1998; Matyssek et al. 2012; Agathokleous et al. 2019a). At elevated concentrations, O₃ is a strong oxidant, which reacts with leaf apoplast components and induces high production of reactive chemical species, leading to death of cells, inhibition of carbon assimilation and acceleration of senescence (Singh and Agrawal 2017). Conversely, elevated CO₂ can reduce water loss through transpiration, enhance carbon assimilation and the apparent quantum yield of CO₂ uptake and plant growth and yields, and improve water- and light-use efficiency (Ainsworth and Long 2005; Eguchi et al. 2008). Elevated CO₂ and O₃ can also alter leaf chemistry, including secondary metabolites, in multiple ways (Booker and Maier 2001; Kopper and Lindroth 2003; Oksanen et al. 2005; Lindroth 2010; Novriyanti et al. 2012a; Shi et al. 2016, 2017; Araminiene et al. 2018).

Because CO₂ is a substrate of photosynthesis, elevated CO₂ may increase C availability for secondary metabolite production (Bryant et al. 1983; Herms and Mattson 1992; Mattson et al. 2005); thus, the altered secondary metabolites are more likely due to resource availability rather than induced defense. Hence, it is important to understand whether enhancement of growth and secondary metabolite concentration caused by elevated CO₂ can counteract damage caused by O₃. Several studies have provided evidences of elevated CO₂ alleviating the adverse effects of elevated O₃ (Booker and Maier 2001; Karnosky et al. 2003; Kopper and Lindroth 2003; Paoletti and Grulke 2005). Moreover, as stomatal conductance can be suppressed by elevated CO₂ (e.g., Larcher 2003; Schulze et al. 2005), O₃ absorption is expected to be somewhat lessened. CO₂ amelioration of O₃ adverse effects is assumed to be related with the so-called fertilizer effect of elevated CO₂ by which net photosynthesis increases and a C surplus is available for secondary metabolite production.

Eucalypts have been widely used in commercial plantation due to their fast growing traits and broad adaptability (e.g., Orwa et al. 2009) and are one of the most important forest resources in southwestern China (Wang and Koike 2019). Numerous studies have therefore investigated the effects of CO₂ on different eucalypt species, singly or in combination with other factors such as ambient air temperature, light availability, nitrogen deposition, soil nutrients, and water deficit (Lawler et al. 1996; Roden and Ball 1996; McKiernnan et al. 2012; Novriyanti et al. 2012a; Murray et al. 2013; Plett et al. 2015; Ghini et al. 2015; Quentin et al. 2015; Xu et al. 2019). Despite the many studies on CO₂ interactive effects with other factors, the interactive effects of CO₂ and O₃ on eucalypts remain unknown, and studies on single effects of O₃ on eucalypts are very limited (Murray and Murray 1995). Furthermore, elevated CO₂ and O₃ alter the concentrations of secondary metabolites in trees in a gas-specific manner and with significant interactive effects of the two gases (Gleadow et al. 1998; Oksanen et al. 2005; McKiernnan et al. 2012; Xu et al. 2019). The effects on leaf chemical defense, including secondary metabolites, are of high ecological relevance because they can drive plant–herbivore interactions (Gleadow et al. 1998; Bidart-Bouzat and Imeh-Nathaniel 2008). It is therefore important to investigate the effects of O₃ singly or in combination with CO₂ on leaf chemical defense, and especially secondary metabolites, in eucalypt species. If elevated CO₂ and O₃ affect the leaf chemicals of these promising afforestation species, their defense traits and fitness to grow and succeed in the changing environments should be of concern.

The present study aimed to examine the single and combined effects of elevated CO₂ and O₃ on leaf chemical traits, including both primary and secondary chemistry, in representative afforestation eucalypt species. We hypothesized that, under elevated O₃, a trade-off may occur between growth and secondary metabolites. Both growth and secondary metabolites concentrations would be enhanced by elevated CO₂ due to the fertilizer effect of CO₂. We predicted that the stimulatory effect of elevated CO₂ will moderate the inhibitory effect of elevated O₃ on leaf chemicals. To test this prediction, three eucalypt species were grown in the field in open-top chambers (OTCs) supplied with ambient air or elevated CO₂ and/or O₃. The selected eucalypts are fast-growing and widely planted in
Asian forest plantations (Novriyanti et al. 2012a, b; Wang and Koike 2019) toward informing forestry applications in an O₃-polluted, CO₂-enriched world.

Materials and methods

Study sites and plant materials

The experiment was conducted at the experimental nursery of the Field Science Center of Hokkaido University, Sapporo, Japan (43° 0′ N, 141° 2′ E, 15 m a.s.l.). The seedlings were grown in 10-L pots filled with a commonly used nursery mixture of pumice soil and clay soil (1:1, v/v), with 200 mL of 500-fold diluted liquid fertilizer (balanced nutrients; 6:10:5, Hyponex Corp. JAPAN, Osaka, Japan) per plant at 2-week intervals to provide 192 mg N per pot. The pots were watered periodically to sustain the soil moisture.

Seedlings of Eucalyptus globulus (Glo) and Eucalyptus grandis (Gra) and cuttings of hybrid E. deglupta × E. camaldulensis (Hyb) were used because they are popular for plantations. The seeds were obtained from the Australian Tree Seed Centre of CSIRO, Australia. At the initiation of the experiment, all plants were 5 months old; average height and basal diameter was 25.0 cm and 2.4 mm for Glo, 24.3 cm and 3.0 mm for Gra, and 26.7 cm and 2.4 mm for Hyb. The experiment lasted from June to October 2010.

Gas treatment system

The seedlings were placed in 16 OTCs (1.2 × 1.2 × 1.2 m high; Dalton Co. Ltd. Sapporo, Japan) supplied with one of two levels of O₃ for 7 h during the daytime (ambient [AO]: < 10 nmol mol⁻¹; elevated [EO]: 60 nmol mol⁻¹) in combination with one of two levels of CO₂ (ambient [AC]: about 370 μmol mol⁻¹; elevated [EC]: 600 μmol mol⁻¹) during the daytime. Four chamber replications were deployed for each treatment; therefore, there were 16 OTCs.

Except for the EO chambers, the OTCs were equipped with charcoal filters to first clean the inlet air. The level of EO was selected because similar concentrations have been often observed in many regions in Japan. The CO₂ level of EC is the atmospheric level predicted near the year 2060 (IPCC 2007). The OTCs had an average temperature of 22.3 °C (max 29.8 °C and min 17.8 °C) and relative humidity of 76.4%.

Gas exchange measurements

Gas exchange rates were measured on third and fourth leaves from the shoot top using an open-type gas-exchange system (LI-6400, Li-Cor, Lincoln, NE, USA) with a photosynthetic photon flux of 1500 μmol m⁻² s⁻¹, the light level corresponding to the light-saturated photosynthetic rate for these plants in the growing environment. Leaf temperature was controlled at 25 °C ± 1 °C and leaf vapor pressure deficit (VPD) maintained at 1.2 ± 0.2 kPa to regulate stomatal conductance during the measurements. The leaves acclimated to the chamber conditions at growth CO₂ concentrations (i.e., 370 μmol mol⁻¹ for AC and 600 μmol mol⁻¹ for EC) for 15–20 min after clipping the leaf to the chamber. After the acclimation, light saturated net photosynthetic rate at growth CO₂ concentration (A_growth), stomatal conductance (g_s) and leaf transpiration rate (E) were determined.

To obtain the response curve for net photosynthetic rate (A) to intercellular CO₂ concentration (C_i), i.e., the A_growth/C_i curve, 12 levels of external CO₂ concentration were supplied to the chamber (60–1500 μmol mol⁻¹), and the corresponding values for maximum rate of carboxylation (Vc_max) and maximum rate of electron transport (J_max) were determined (Farquhar et al. 1980; Long and Bernacchi 2003). The Rubisco Michaelis constants for CO₂ (K_c) and O₂ (K_o) and the CO₂ compensation point in the absence of dark respiration (Γ⁎) for the analysis of the A_growth/C_i curve were obtained from Bernacchi et al. (2001). All gas-exchange variables were expressed on the basis of the projected (one-sided) leaf area covered.

Total phenolic and condensed tannin measurements

Total phenolics were determined using the Folin–Ciocalteu method as modified by Julkunen-Tiitto (1985), and condensed tannins were measured using the proanthocyanidin method of Bate-Smith (1977) (Matsuki et al. 2004). A powdered, freeze-dried leaf sample (20 mg) was placed in 5 mL of 50% methanol in an ultrasonic machine (ST-02M, Sonic Tech, Tokyo, Japan) at 40 °C for 1 h.

For measuring condensed tannins, 1 mL of the methanolic extract solution was placed in a test tube with 4 mL of 38% HCl–1-butanol (1: 19). The solution was then boiled for 2 h, then cooled before the optical density at 55 nm was measured with a spectrophotometer (UV-2700, Shimadzu Kyoto, Japan).

For measuring total phenolics, 50 μL of the filtered methanolic extract solution was placed in a test tube with 2.25 mL of deionized water, 0.25 mL of 50% phenol reagent and 2.5 mL of 20% w/v Na₂CO₃, and the mixture was mixed thoroughly. After the solution rested for approximately 15 min, the optical density at 760 nm was measured with the spectrophotometer.

The total condensed tannins (mg g⁻¹) content was calculated as (4.5A/4 + 0.011)/(20.255 × 5000)/B, and total phenolics (mg g⁻¹) as (A/2 − 0.03)/12.281 × 100,000/B, where A is the absorbance reading and B is the mass of the sample (± 20 mg).
Gas chromatography

A powdered sample of fresh leaves was soaked 3 times in 15 mL methanol (MeOH), then 1 mL of the MeOH extract was roteovaporated (< 35 °C and 80 Pa), dissolved in 1 mL CHCl₃, then added to 3 mL Sep-Pak silica cartridge (Waters Corp., Milford, MA, USA) eluted with CHCl₃. The eluate of 0.05. The data for each trait and species were averaged

Data analysis

The statistical significance was set a priori to an alpha level of 0.05. The data for each trait and species were averaged per OTC to provide four replicates per gas treatment. Data were tested against the requirements of parametric statistical tests, and, when needed, subjected to a Box–Cox transformation (Box and Cox 1964) according to the methodology explained by Agathokleous et al. (2016a). Statistical hypothesis testing was done with Spiegel’s Method I sum of squares-adjusted (Howell and McConaughy 1982) general linear models (GLM) where species and gas treatment were fixed factors and OTC was a random factor. For significant species, treatment or species × treatment interactions, Bonferroni post-hoc test was applied for multiple comparisons among the experimental groups. The results are shown as means ± SD. Data processing and statistics were performed with EXCEL 2010 (Microsoft, Redmond, CA, USA) and STATISTICA v.10 (StatSoft, Tulsa, OK, USA).

Results

Biomass

Biomasses varied significantly among species but were not significantly affected by gas treatment; the species × treatment interaction was also not significant (Fig. 1).

Gas exchange, leaf mass per area (LMA) and photosynthetic pigments

A growth, gs, Vc max and J max varied significantly among species; and values were greater for the hybrid than for the other two species, except that Vc max for E. globulus did not differ significantly from E. grandis and the hybrid (Table 1). Gas treatment was a significant factor only for g s. In particular, EC did not significantly affect g s in AO but did increase g s in EO, suggesting a significant interaction between CO2 and O3 (Table 1).

LMA varied among species and among gas treatments (Table 1). E. grandis and the hybrid had a higher LMA than E. globulus did. EC tended to increase LMA, compared to AC, in AO; however, variation was large, and the difference was not significant. The EC-induced increase in LMA was significant in EO (Table 1).

Chlorophyll a, b and a + b contents did not vary significantly among species (Table 1). However, the chlorophyll a to b ratio (a/b) was in the order hybrid > E. globulus > E. grandis. Gas treatment was a significant factor for chlorophyll a, b and a + b contents but not for chlorophyll a/b. EC significantly decreased chlorophyll a and a + b levels, but not chlorophyll b in AO (Table 1). However, EC significantly decreased chlorophyll a, b and a + b content in EO. EO per se did not affect the photosynthetic pigments.
The interaction between species and gas treatment was not significant for any trait for gas exchange and photosynthetic pigments as for LMA (Table 1).

Phenolics, tannins, C and N

Total phenolics varied only among species; the hybrid had lower phenolic content than the other two species (Table 2). Condensed tannins varied among species and among gas treatments; however, the species x treatment interaction was not significant. The hybrid and *E. grandis* had similar content, significantly more than that of *E. globulus*. While EC did not significantly affect tannin content in AO, it increased tannin content in EO. EO did not significantly affect the total phenolics or tannins in AC or EC.

Regarding C and N traits, there were significant differences among species and among gas treatments, but the interaction between species and treatments was not significant (Table 2). In both AO and EO, EC significantly increased the area-based C, but there was a trend toward lower mass-based C content, which was significant only in EO. EO did not affect Carea and Cmass in either AC or EC. EC decreased Narea and Nmass in both AO and EO, although for Narea the difference was not significant in EO. EO decreased significantly both Narea and Nmass in AC, but this effect was offset by EC (no significant differences between AO×EC and EO×EC). Interestingly, EC significantly increased the C/N ratio in both AO and EO, this effect was mainly due to a decrease in N content than an increase in C content by EC. EO increased the C/N ratio in AC but did not affect C/N ratio in EC where C/N ratio was driven by EC.

Lignin content was significantly decreased by EC in EO but was not significantly affected by EC in AO (Table 2). However, this difference seems to be due to higher lignin content in EO×AC (compared to AO×AC), although the difference between the two groups was not significant. EO did not significantly affect lignin. While species and treatments had significant effects on lignin, the interaction of the two factors was not significant. Interestingly, the hybrid that tended to have high biomass was also the species with the highest lignin content and lowest phenolic content; it also had high tannin content (across gas treatments).

GC profiles of leaf extracts

Peaks in the GC profile for *E. globulus* were the most abundant, compared with those of hybrid and *E. grandis* (Fig. 2). Although the GC profiles differed among the species and hybrid, all showed the same peak pattern at retention time (RT) 34.8 min (hereafter compound 1).

Regarding *E. grandis*, EO increased the peak height of compound 1 in AC but not in EC (Fig. 3a), indicating that EC offsets the EO-induced effect. Regarding the hybrid, EO increased the peak height of compound 1 in both AC and EC, while EC decreased it in both AO and EO; nonetheless, EC did not fully offset the EO-induced effect because the value was still higher in EO×EC than in AO×EC (Fig. 3b). As for *E. globulus*, there were no significant differences in the relative peak height of compound 1 among treatments (Fig. 4a). However, *E. globulus* displayed an EO-induced increase in the relative concentration of compounds at RT 17.2 min (hereafter compound 2; Fig. 4b) and 24.1 min (hereafter compound 3; Fig. 4c) in AC. This EO-induced effect did not appear in EC, where there were no significant differences between AO×EC and EO×EC, due to CO2 mediation. Similarly with EO, EC significantly increased...
Table 1 Photosynthetic rate (A_{growth}), stomatal conductance (g_s), maximum rate of carboxylation (V_{cmax}), maximum rate of electron transport (J_{max}), leaf mass per unit area (LMA) and photosynthetic pigments of *Eucalyptus globulus*, *E. grandis*, and hybrid *E. deglupta* × *E. camaldulensis*

Plant	Treatment	A_{growth} (µmol m$^{-2}$ s$^{-1}$)	g_s (mol m$^{-2}$ s$^{-1}$)	V_{cmax} (µmol m$^{-2}$ s$^{-1}$)	J_{max} (µmol m$^{-2}$ s$^{-1}$)	LMA (g m$^{-2}$)	Chl a (µg mg$^{-1}$)	Chl b (µg mg$^{-1}$)	Chl a/b	Chl $a+b$ (µg mg$^{-1}$)
E. globulus	AO×AC	9.41 ± 5.34A	0.20 ± 0.11AB	45.37 ± 23.80A	74.81 ± 23.4A	72.93 ± 14.3A	3.98 ± 1.19A	1.68 ± 0.48AB	2.40 ± 0.21A	5.66 ± 1.66A
	AO×EC	10.85 ± 2.94A	0.25 ± 0.09A	38.57 ± 15.19A	72.39 ± 17.18A	93.61 ± 19.98A	2.81 ± 0.63A	1.39 ± 0.44BC	2.14 ± 0.14A	4.20 ± 1.07B
	EO×AC	6.81 ± 3.05A	0.14 ± 0.08B	34.92 ± 14.95A	67.89 ± 23.66A	74.22 ± 6.61A	3.41 ± 0.22A	1.55 ± 0.25A	2.25 ± 0.31A	4.97 ± 0.42A
	EO×EC	10.25 ± 2.26A	0.37 ± 0.19A	45.52 ± 11.74A	89.62 ± 25.29A	89.55 ± 15.37A	2.78 ± 0.48B	1.23 ± 0.17B	2.28 ± 0.17B	4.01 ± 0.64B
E. grandis	AO×AC	8.80 ± 1.40A	0.19 ± 0.05AB	38.07 ± 4.17A	63.71 ± 5.44A	77.37 ± 15.44A	3.71 ± 0.33A	1.93 ± 0.46AB	1.98 ± 0.30A	5.63 ± 0.79A
	AO×EC	8.38 ± 0.77A	0.23 ± 0.02A	31.63 ± 6.68A	58.16 ± 3.43A	97.49 ± 6.86A	2.39 ± 0.60B	1.21 ± 0.25BC	1.98 ± 0.21B	3.60 ± 0.83B
	EO×AC	8.07 ± 1.14A	0.19 ± 0.03B	38.05 ± 7.67A	73.88 ± 9.64A	80.12 ± 6.72B	3.54 ± 0.31B	1.84 ± 0.19A	1.93 ± 0.23B	5.38 ± 0.41A
	EO×EC	8.64 ± 2.95A	0.16 ± 0.04A	36.01 ± 7.50A	72.37 ± 6.54A	106.95 ± 10.26A	2.51 ± 0.27A	1.16 ± 0.27C	2.23 ± 0.09A	3.68 ± 0.46B
Hybrid	AO×AC	13.53 ± 1.53A	0.39 ± 0.26A	56.71 ± 8.73A	83.84 ± 14.98A	95.73 ± 5.87AB	3.19 ± 0.27A	1.22 ± 0.13AB	2.62 ± 0.19A	4.41 ± 0.37A
	AO×EC	16.50 ± 1.77A	0.47 ± 0.36A	42.38 ± 11.16A	84.75 ± 15.55A	96.95 ± 6.30AB	3.27 ± 0.25B	1.18 ± 0.13BC	2.76 ± 0.08A	4.45 ± 0.38B
	EO×AC	13.16 ± 5.81A	0.52 ± 0.48A	53.3 ± 11.11A	94.81 ± 13.21A	79.22 ± 8.82B	4.02 ± 1.00B	1.67 ± 0.64A	2.54 ± 0.33A	5.69 ± 1.61A
	EO×EC	13.45 ± 3.94A	0.64 ± 0.49A	44.90 ± 12.00A	87.39 ± 16.34A	101.05 ± 11.06A	2.79 ± 0.18B	1.11 ± 0.10C	2.53 ± 0.09A	3.90 ± 0.28B

Different capital letters beside the trait names indicate statistically significant differences among species (across gas treatments). Different capital letters after values indicate significant differences among gas treatments (across species). Data are mean values ± SD ($n=4$). Data were tested with general linear model at $\alpha=0.05$, followed by a Bonferroni post-hoc test when the main effect was significant. The significance of the main effects is provided in Supplementary Material (Table S2). Species×treatment interaction was not significant for any trait.

AO ambient O$_3$ (<10 nmol mol$^{-1}$), EO elevated O$_3$ (60 nmol mol$^{-1}$), AC ambient CO$_2$, EC elevated CO$_2$ (600 µmol mol$^{-1}$), A_{growth} light saturated net photosynthetic rate at growth CO$_2$ concentration, Chl chlorophyll, g_s stomatal conductance, J_{max} maximum rate of electron transport, LMA leaf mass per area, V_{cmax} maximum rate of carboxylation.
Elevated CO₂ offsets the alteration of foliar chemicals…

the relative concentration of compound 2 in AO; the value decreased when EO and EC were combined in such an extent that it was not significantly different from AO × AC (Fig. 4b). On the other hand, EC significantly decreased the relative concentration of compound 3 in AO, and this CO₂-induced effect also prevailed in EO, ruling out the EO-induced effect (Fig. 4c).

GC/MS analysis revealed that compound 1 is an alkane, n-icosane (Fig. 5). Based on the mass fragmentation resulted from GC/MS analysis, the library provided a match for

Table 2 Leaf chemistry of Eucalyptus globulus, E. grandis, and hybrid E. deglupta × E. camaldulensis

Plant	Treatment	Total phenolics (mg g⁻¹)	Condensed tannins (mg g⁻¹)	C/N ratio (unitless)	C(area) (g m⁻²)	C(max) (mg g⁻¹)	N(area) (g m⁻²)	N(max) (mg g⁻¹)	Lignin (%)
E. globulus	AO × AC	125.60 ± 14.03ₐ	3.31 ± 0.01ₐ	4.91 ± 10.74ₐ	36.92 ± 7.59ₐ	50.54 ± 1.17ₐ	0.75 ± 0.10ₐ	1.06 ± 0.22ₐ	6.69 ± 0.85ₐ
	AO × EC	148.42 ± 19.00ₐ	3.93 ± 1.39ₐ	96.71 ± 17.53ₐ	44.17 ± 11.17ₐ	49.97 ± 1.88ₐ	0.46 ± 0.06ₐ	0.54 ± 0.12ₐ	6.09 ± 1.46ₐ
	EO × AC	129.08 ± 6.26ₐ	3.39 ± 0.7ₐ	69.71 ± 6.0ₐ	37.31 ± 3.2ₐ	50.29 ± 0.9ₐ	0.54 ± 0.07ₐ	0.72 ± 0.07ₐ	8.53 ± 2.61ₐ
	EO × EC	132.94 ± 14.25ₐ	4.35 ± 1.2ₐ	94.98 ± 10.₅ₐ	44.05 ± 7.5₆ₐ	49.19 ± 0.7₅ₐ	0.47 ± 0.09ₐ	0.52 ± 0.06ₐ	5.7₄ ± 0.7₆ₐ
E. grandis	AO × AC	140.83 ± 12.8₁ₐ	5.7₈ ± 1.1₃ₐ	48.0₃ ± 8.₃₄ₐ	37.2₉ ± 7.₅ₐ	4₈.1₈ ± 0.₄₄ₐ	0.7₈ ± 0.0₅ₐ	1.₀₃ ± 0.2₁ₐ	6.₅₈ ± 2.₀₃₄ₐ
	AO × EC	133.₈₆ ± 3.₃₇ₐ	8.2₃ ± 1.₅₆ₐ	1₀₀.₁₁ ± 8.₀₁₅ₐ	4₇.₁₁ ± 4.₀₄ₐ	4₈.2₀ ± 1.₀₄₅ₐ	0.₄₇ ± 0.₀₇₅ₐ	0.₄₈ ± 0.₀₄₅ₐ	5.₂₄ ± 0.₆₉₅ₐ
	EO × AC	128.₃₃ ± 17.₂₄ₐ	5.2₁ ± 0.₈₈ₐ	6₂.₃₂ ± 3.₇₄₄ₐ	3₈.₇₆ ± 3.₈₂₄ₐ	4₈.₃₈ ± 1.₁₄ₘₐ	0.₆₂ ± 0.₀₂ₘₐ	0.₇₈ ± 0.₀₅ₘₐ	6.₁₀ ± 0.₁₃ₘₐ
	EO × EC	1₃₁.₄₁ ± 1₅.₇₆₅ₐ	6.₈₄ ± 2.₀₃ₘ₅ₐ	9₀.₅₃ ± 9.₂₉₅ₐ	4₉₆.₉₆ ± 0.₆₃₅ₐ	5₀.₂₁ ± 4.₆₈₅ₐ	0.₅₆ ± 0.₀ₘ₈₅ₐ	0.₅₂ ± 0.₀₄ₘ₅ₐ	5.₂₉ ± 0.₈₉₅ₐ
Hybrid	AO × AC	107.₃₃ ± 5.₅₅₅₉	6.₇₆ ± 0.₉₄₅₉	4₃.₇₁ ± 8.₆₁₅₉	4₇.₃₆ ± 3.₆₂₅₉	4₉.₄₄ ± 1.₀₁₅ₙ	1.₃₉ ± 0.₂₉₅₉	1.₁₈ ± 0.₃₁₅ₙ	9.₃₄ ± 0.₅₀₅₉
	AO × EC	1₦₉.₇₀ ± 7.₆₁₅₆	7.₉₅ ± 1.₁₉₅₆	7₈.₅₇ ± 7.₈₉₅₆	4₇.₂₈ ± 3.₃₉₅₆	4₉.₇₅ ± 0.₅₄₅₉₅₆	0.₆₀ ± 0.₀₆₅₆	0.₆₃ ± 0.₀₇₅₆	8.₅₉ ± 1.₃₇₅₆
	EO × AC	1₦₄.₅₇ ± 4.₉₂₅₆	6.₄₀ ± 0.₉₃₅₆	5₀.₄₉ ± 8.₄₅₅₆	₃₉.₀₅ ± 4.₅₁₅₆	₄₉.₇₉ ± 0.₈₉₅₆	0.₇₉ ± 0.₁₃₅₆	0.₉₉ ± 0.₁₅₅₆	1₀.₇₉ ± ₂.₃₅₆
	EO × EC	1₁₅.₂₈ ± ₆.₃₁₅₆	7.₇₇ ± ₁.₅₅₅₆	₆₆.₁₁ ± ₁₄.₈₉₅₆	₄₉.₃₀ ± ₄.₄₄₅₆	₄₈.₈₀ ± ₀.₄₉₅₆	0.₇₇ ± 0.₁₄₅₆	₀.₇₇ ± ₀.₁₈₅₆	₈.₅₂ ± ₁.₄₈₅₆

Total phenolics, condensed tannin, area-based carbon to nitrogen ratio (C/N), C content per unit leaf area (C(area)), C content per unit leaf mass (C(max)), N content per unit leaf area (N(area)), N content per unit leaf mass (N(max)), lignin, and chlorophyll content of the tested eucalypts. Different capital letters above the trait names indicate statistically significant differences among species (across gas treatments). Different capital letters above the SD values indicate statistically significant differences among different gas treatments (across species). Data are mean values ±SD (n = 4). The data were tested with General Linear Model at a level of significance $\alpha = 0.05$, followed by a Bonferroni post-hoc test when the main effect was significant. The significances of the main effects are provided in Supplementary Material (Table S2). Species × treatment interaction was not significant for any trait.

AO ambient O₃ (< 10 nmol mol⁻¹), EO elevated O₃ (60 nmol mol⁻¹), AC ambient CO₂, EC elevated CO₂ (600 µmol mol⁻¹)
compounds 2 and 3: 2,6-octadien-1-ol, 3,7-dimethylacetate, (E)-geranyl acetate or geranyl acetate (Fig. 6) and cyclohexane, 1-ethenyl-1-methyl-2-(1-methylethylidene) or elixene (Fig. 7). These terpenes are commonly found in plant essential oils.

Discussion

Despite the species-specific biomass A_{growth}, V_{cmax}, and J_{max}, the fact that the eucalypts biomass A_{growth}, V_{cmax}, and J_{max} were not significantly affected by gas treatments suggests that the three species are not susceptible to EO and EC (Agathokleous and Saitanis 2020). This hypothesis is further supported by lack of a significant effect on the R/S ratio, indicating no adverse single or combined effect of EO and EC (Agathokleous et al. 2016b, 2019b). E. globulus has been found to be tolerant to acute O_3 exposures, as indicated by unaffected physiological measures (including photosynthetic traits and lipoxygenase pathway emission rates) when exposed to 0.3–2.0 μmol mol$^{-1}$ O_3 for a few hours (O’Connor et al. 1975; Kanagendran et al. 2018). In a different study, E. globulus had neither visible injury nor biomass reduction after exposure to diurnally varied concentrations of 26 or 172 nil$^{-1}$ for 7 h day$^{-1}$, 5 days every 14 days, for 18 weeks (Monk and Murray 1995). Although that study with a chronic exposure (Monk and Murray 1995) and other studies with acute exposures (O’Connor et al. 1975; Kanagendran et al. 2018) indicate that E. globulus is tolerant to EO, a different study suggested an “extreme sensitivity”, with reduced biomass, A_{growth} and g_s, after seedlings were exposed to 50 nmol mol$^{-1}$ (7 h day$^{-1}$) for 37 days under low light and controlled temperature (20 °C) (Pearson 1995); however, the susceptibility of the plants might have been affected by the low light condition and/or the controlled temperature. Chronic and acute exposure to O_3 can differ in their effects on plant physiology due to secondary acclimation responses (Liu et al. 2019). However, our study and the study of Monk and Murray (1995) indicate that E. globulus is tolerant to O_3, and the tolerance of E. grandis and the hybrid seem to be similar that of E. globulus to EO. It is therefore important to pinpoint biological mechanisms underpinning the tolerance of these eucalypts to the gas treatments.

The absence of a significant effect of the gas treatments on A_{growth}, V_{cmax}, and J_{max} may indicate acclimation, as reported for many species (Koike et al. 1996; Tissue et al. 1999; Watanabe et al. 2011). This may explain why no significant biomass enhancement or inhibition was induced by EC and EO, respectively. Not only elevated O_3 (Kitao et al. 2009; Koike et al. 2012), but also elevated CO_2 is known to induce stomatal closure (Chater et al. 2015; Dusenge et al. 2019). However, this was not the case in our experiment with the three eucalypts, where EC did not affect g_s in AO but increased g_s in EO. This EC-induced increase in g_s in EO, however, may indicate a permanent stomatal impairment when EO is combined with EC (Hoshika et al. 2019).

Interestingly, EC tended to increase LMA, especially in EO where the effect was significant. This increase has been observed often in plants grown in elevated CO_2 concentrations and may result from accumulation of carbohydrates that are not used for plant growth (Hikosaka et al. 2005). Increased LMA may also indicate enhanced stored carbohydrates (Booker 2001).

Elevated O_3 exposures have been extensively shown to decrease the level of chlorophylls, an effect associated with inhibition of quantum yield (Saitanis et al. 2001; Li et al. 2017). However, we found no significant effect of the tested EO exposure on the three eucalypt species. We postulate
that the three eucalypts might have maintained the chlorophyll content as a tolerance mechanism to maintain the photosynthetic activity at homeostatic levels. Conversely, EC decreased chlorophyll levels in AO and EO. The CO₂ effect on chlorophyll pigments depends on CO₂ concentration (concentration-specific), and our findings agree with those of other studies that show an EC-induced negative effect on chlorophyll levels that can result from reallocation of limiting resources away from the photosynthetic apparatus (Ong et al. 1998; Grams et al. 1999; Ormrod et al. 1999; Pritchard et al. 2000). Since we analyzed chlorophyll levels only at the end of the experiment, the EC-induced decrease in chlorophyll contents in AO and EO may also be due to accelerated development induced by EC (Centritto and Jarvis 1999), although there are no empirical data to support this hypothesis.

The finding that phenolics and tannins were not significantly affected by EO, but tannins were increased by EC when O₃ was elevated, suggests that total phenolics were insensitive but tannins were sensitive to the gas treatment. This finding also suggests that when EO and EC are combined, plant–herbivore interactions might be affected because increased tannins would decrease leaf palatability.

Elevated O₃ and CO₂ can alter C and N metabolism, stock, and allocation to different plant organs (Uddling et al. 2006; Ainsworth et al. 2007; Dusenge et al. 2019; Shang et al. 2019a, b). However, C_area and C_mass in the three eucalypts were not significantly affected by EO in our study. The results suggest that EC drove the C response in EO as indicated by increased C_area and decreased C_mass. The fact that the EO-induced decrease in N_area and N_mass and the increased in C/N ratio were offset by EC, indicates that N response is regulated by EC but not by EO in elevated O₃. The increased C/N ratio (commonly in both AO and EO) by EC was due to decreased N_area and N_mass. Bloom et al. (2010) reported that elevated CO₂ inhibited the assimilation of nitrate into organic N compound in leaves of wheat and Arabidopsis. This inhibition of nitrate assimilation may lead to the decreased organic N content and may play an important role in the photosynthetic acclimation under EO (Bloom et al. 2010). The EC-induced decrease in leaf N might also be due to inhibited N resorption. For example, elevated O₃ substantially impairs N resorption in birch leaves before leaf abscission (Uddling et al. 2006; Shi et al. 2017), causing a significant loss in foliar N. The impairment in N resorption may be due to impaired phloem-loading in leaves due to accumulated starch along leaf veins (Uddling et al. 2006). That the species×treatment interaction was not significant while the single effects of species and treatment were significant suggests that C and N metabolism was an important
common mechanism among the three eucalypts under the tested gas treatments.

Area-based traits are important for studying photosynthesis-related processes that are measured as a flux per unit of leaf area, whereas mass-based traits are important for studying leaf economy in terms of biomass investment for carbon fixation (Hikosaka 2004; Shang et al. 2019b). Thylakoid N is proportional to the chlorophyll content (e.g., 50 mol thylakoid N per mol chlorophyll); hence, there is a positive correlation between chlorophyll content and total leaf N under typical growth conditions (Evans 1989). A recent study on O₃ effects on two poplar clones revealed that chlorophyll per unit mass was negatively correlated with Nmass whereas chlorophyll per unit area was positively correlated with Narea (Shang et al. 2019b). Conversely to the negative correlation that Shang et al. (2019b) found in poplars, a regression analysis with the data of all eucalypt species and gas treatments from our study revealed that chlorophyll per unit mass was positively correlated with Nmass (*y* = 0.1349*x* + 0.1456, *r* = 0.571, *F* = 22.2, *P* < 0.001); interestingly, the *R²* value was nearly identical with that found by Shang et al. (2019b). The finding that EC increased the Carea but tended to decrease Cmass content (although significant only in EO) and the findings of Shang et al. (2019b) suggest that care should be exercised when selecting the appropriate unit for assessing C and N responses to gaseous treatments.

Lignin content was significantly decreased by EC in EO but was not significantly affected by EC in AO. However, this difference seems to be due to higher lignin content in EO×AC (compared to AO×AC).

Elevated CO₂ can modify lignin concentration in leaves, but the effect is species specific, and no general conclusion can be drawn (Coûteaux et al. 1999; Norby et al. 2001; Zheng et al. 2019). In the present study, EC decreased lignin in EO but not in AO; however, this difference seems to be due to more lignin in EO×AC (compared to AO×AC). Blaschke et al. (2002) reported that lignin in seedlings grown with sufficient nutrients was unaffected or even decreased by elevated CO₂. Because nutrients were normally supplied in the present study and lignification is a physiologically important process during growth, development and tissue maturation in woody plants (e.g., Blaschke et al. 2002), impairment of lignification may be related to the unaffected biomass in high CO₂. Interestingly, a regression analysis of the data of all eucalypt species and gas treatments from our study revealed that lignin was negatively correlated with leaf biomass (*y* = −0.535*x* + 11.602, *r* = 0.537, *F* = 18.6, *P* < 0.001) and with stem biomass (*y* = −0.626*x* + 10.093,
Elevated CO$_2$ offsets the alteration of foliar chemicals…

$r = 0.606$, $F = 26.7$, $P < 0.001$), but was not correlated with root biomass ($y = 0.296x + 6.742$, $r = 0.222$, $F = 2.4$, $P = 0.130$).

GC profiles of the leaf extracts suggest that the compounds n-icosane, geranyl acetate and elixene seem to be involved in the eucalypt tolerance to O$_3$ and CO$_2$. In particular, n-icosane appears to be involved in the response mechanisms of E. grandis and the hybrid, and its O$_3$-induced increase was partly or fully offset by EC. n-Icosane is a saturated aliphatic hydrocarbon (a component of wax that is commonly found in leaf epicuticle; Dubis et al. 2001). Epicuticular waxes act as physical barrier against pathogen penetration. Air pollutants, such as O$_3$, could alter the structure of leaf waxes from crystallite to amorphous with longer carbon chains (e.g., Karnosky et al. 2002). The increased relative concentration of n-icosane induced by EO may indicate a defensive mode for preventing O$_3$ penetration into the leaves. Epicuticular waxes can also be found surrounding the stomata (photo data not shown). EO may enhance the synthesis of n-icosane for accumulation in higher concentrations around the stomata (and therefore O$_3$ uptake through stomata to be reduced).

Geranyl acetate and elixene appear to be involved in the O$_3$ response mechanisms of E. globulus. The relative concentration of geranyl acetate and elixene were increased by EO in AC. However, EC increased the relative concentration of geranyl acetate and decreased the relative concentration of elixene in AO and ruled out an O$_3$ effect and acted as the primary control of geranyl acetate and elixene in EO. A recent study also revealed that six formylated phloroglucinol compounds (metabolites of Myrtaceae), including five macrocarpals and one sideroxylonal, showed distinct patterns to single and combined effects of acute O$_3$ exposure (5 μmol mol$^{-1} \times 3$ h) and wounding in E. globulus; total macrocarpals and total formylated phloroglucinol compounds increased by single elevated O$_3$ (Liu et al. 2019). Geranyl acetate is a component of plant essential oils that are released from fresh plants as a possible defense mechanism against damage from insects (e.g., Carpino et al. 2004; Peñaflor et al. 2011). Elixene is also a terpene essential oil and insecticidal (e.g., Wang et al. 2011). O$_3$ can act as an abiotic elicitor of plant defense reaction and generate adaptive responses, which precondition plants for more severe environmental challenges, by activating defense signaling networks and enhancing “stress coping skills”, such as

Fig. 6 Mass fragmentation of compound 2 at RT 17.2 min in GC/MS of extracts from *Eucalyptus globulus*. Possible identity of compound is based on comparison with GC/MS library. Insert is from the NIST/EPA/NIH/EINECS/IRDB library.
antioxidative systems (Sandermann et al. 1998; Agathokleous et al. 2019a). Such organismic responses can involve fitness trade-offs between defense and growth/reproduction (Karabourniotis et al. 2014; Agathokleous and Calabrese 2020); however, based on the studied traits, none of the tested eucalypts displayed a negative fitness response to the gas treatments.

Conclusion

Overall, EO and EC, singly and in combination, had no effect on the biomass of the three eucalypts. EO had limited effects on leaf physiology \((N_{area}, N_{mass}, n\text{-icosane}, \text{geranyl acetate}, \text{elixene}) \) in AC. EC affected more traits of leaf physiology \((g', \text{LMA}, \text{tannins}, C_{area}, C_{mass}, \text{lignin}, n\text{-icosane}, \text{geranyl acetate and elixene}) \) and offset most of the limited EO effects on leaf physiology. *E. globulus*, *E. grandis* and the hybrid eucalypt appear to be tolerant to a chronic realistic exposure of \(O_3 \) and \(CO_2 \). \(n\text{-Icosane} \) seems to be involved in the tolerance mechanisms of *E. grandis* and the hybrid, and geranyl acetate and elixene seem to be involved in the tolerance of *E. globulus*. Although the mass fragmentation of the compounds mentioned herein is similar to those in the GC/MS library, further studies are needed to verify whether these specific compounds in plants are involved in the mechanisms of tolerance to \(O_3 \) and \(CO_2 \).

Acknowledgements

E.A acknowledges multi-year support from the National Natural Science Foundation of China (NSFC) (Grant No. 31950410547) and The Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (NUIST), Nanjing, China (Grant No. 003080). Q.M. was supported by China Scholarship Council (CSC), China. T.K. and M.W. acknowledge support from the Strategic International Collaborative Research Program (SICORP) of the Japan Science and Technology Agency (JST), Japan (Grant No. JPMJSC18HB).

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
Elevated CO₂ offsets the alteration of foliar chemicals…

otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agathokleous E, Calabrese EJ (2020) A global environmental health perspective and optimisation of stress. Sci Total Environ 704:135263

Agathokleous E, Saitanis CJ (2020) Plant susceptibility to ozone: a tower of Babel? Sci Total Environ 703:134962

Agathokleous E, Saitanis CJ, Stamatelopoulos D, Mouzaki-Paxinou A-C, Paoletti E, Manning WJ (2016a) Olive oil for dressing plant leaves so as to avoid O₃ injury. Water Air Soil Poll 227:282

Agathokleous E, Saitanis CJ, Wang X, Watanabe M, Koike T (2016b) A review study on past 40 years of research on effects of tropospheric O₃ on belowground structure, functioning, and processes of trees: a linkage with potential ecological implications. Water Air Soil Poll 227:33

Agathokleous E, Belz RG, Calatayud V, De Marco A, Hoshika Y, Kitao M, Saitanis CJ, Sicard P, Paoletti E, Calabrese EJ (2019a) Predicting the effect of ozone on vegetation via the linear non-threshold (LNT), threshold and hormetic dose-response models. Sci Total Environ 649:61–74

Agathokleous E, Belz RG, Kitao M, Koike T, Calabrese EJ (2019b) Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. J For Res 30:1569–1580

Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. New Phytol 165:351–372

Ainsworth EA, Rogers A, Leakey AD, Heady LE, Gibon Y, Stitt M, Schurr U (2007) Does elevated atmospheric [CO₂] alter diurnal C uptake and the balance of C and N metabolites in growing and fully expanded soybean leaves? J Exp Bot 58:579–591

Arainmienė V, Varnagirytė-Kabašinskienė I, Stakėnas V (2018) Pilot study on the effects of elevated air temperature and CO₂ on artificially defoliated silver birch saplings. J For Res 29:1507–1518

Bate-Smith EC (1977) Astringent tannins of Acer species. Phytocochemistry 16:1421–1426

Bencacchi CJ, Singsaa AS, Pimentel C, Portis AR, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:233–259

Bidart-Bouzat MG, Imeh-Nathaniel A (2008) Global change effects on loblolly pine (Pinus taeda) needles. Tree Physiol 21:609–616

Bookey F, Muntifering R, McGrath M, Burkey K, Decoteau D, Fiscus E, Manning W, Krupa S, Chappelka A, Grantz D (2009) The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol 51:337–351

Box GE, Cox DR (1964) An analysis of transformations. J R Stat Soc B 26:211–252

Broadmeadow MSJ, Heath J, Randle TJ (1999) Environmental limitations to O₃ uptake—some key results from young trees growing at elevated CO₂ concentrations. Water Air Soil Poll 116:299–310

Bryan JP, Chapin FSH, Klein DR (1983) Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368

Carpino S, Mallia S, La Terra S, Mellili C, Licirta G, Acree TE, Barbanco DM, Van Soest PJ (2004) Composition and aroma compounds of ragusano cheese: native pasture and total mixed rations. J Dairy Sci 87:816–830

Centritto M, Jarvis PG (1999) Long-term effects of elevated carbon dioxide concentration and provenance on four clones of Sitka spruce (Picea sitchensis). II. Photosynthetic capacity and nitrogen use efficiency. Tree Physiol 19:807–814

Chater C, Peng K, Movahedi M, Dunn JA, Walker HJ, Liang YK, McLachlan DH, Casson S, Isner JC, Wilson I, Neill SJ, Hedrich R, Gray JE, Hetherington AM (2015) Elevated CO₂-induced responses in stomata require ABA and ABA signaling. Curr Biol 25:2709–2716

Coûteaux MM, Kurz C, Bottner P, Raschi A (1999) Influence of increased atmospheric CO₂ concentration on quality of plant material and litter decomposition. Tree Physiol 19:301–311

Dubis EN, Dubis AT, Poplawski J (2001) Determination of the aromatic compounds in plant cuticular waxes using FT-IR spectroscopy. J Mol Struct 596:83–88

Dusenget ME, Duarte AG, Way DA (2019) Plant carbon metabolism and climate change: elevated CO₂ and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol 221:32–49

Eguchi N, Karatsu K, Ueda T, Funada R, Takagi K, Hiura T, Sasa K, Koike T (2008) Photosynthetic responses of birch and alder saplings grown in a free air CO₂ enrichment system in northern Japan. Trees 22:437–447

Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C₃ plants. Oecologia 78:9–19

Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO₂ assimilation in leaves of C₃ species. Planta 149:78–90

Fowler D, Cape JN, Coyle M, Flechard C, Kuylenstierna J, Hicks K, Derwent D, Johnson C, Stevenson D (1999) The global exposure of forests to air pollutants. Water Air Soil Pollut 116:5–32

Ghini R, MacLeod REO, Santos MS, Silva CEO (2015) Elevated atmospheric carbon dioxide concentration increases eucalyptus plantlet growth and reduces diseases severity. Proc Environ Sci 29:206–207

Gleadow RM, Foley WJ, Woodrow IE (1998) Enhanced CO₂ alters the relationship between photosynthesis and defence in cyanogenic Eucalyptus cladocalyx F. Mueller. Plant Cell Environ 21:12–22

Grams TEE, Anegg S, Haberle K-H, Langebartels C, Matyssek R (1999) Interactions of chronic exposure to elevated CO₂ and O₃ levels in the photosynthetic light and dark reactions of European beech (Fagus sylvatica). New Phytol 144:95–107

Hermes DA, Matson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–335

Hikosaka K (2004) Interspecific difference in the photosynthesis–nitrogen relationship: patterns, physiological causes, and ecological importance. J Plant Res 117:481–494

Hikosaka K, Onoda Y, Kinugasa T, Nagashima H, Anten NPR, Hirose T (2005) Plant responses to elevated CO₂ concentration at...
different scales: leaf, whole plant, canopy, and population. Ecol Res 20:243–253
Hoshika Y, De Carlo A, Baraldi R, Neri L, Carrari E, Agathokleous E, Zhang L, Fares S, Paoletti E (2019) Ozone-induced impairment of night -time stomatal closure in O$_3$-sensitive poplar clone is affected by nitrogen but not by phosphorus enrichment. Sci Total Environ 692:713–722
Howell DC, McConaughy SH (1982) Nonorthogonal analysis of variability: putting the question before the answer. Educ Psychol Meas 42:9–24
IPCC (2007) Summary for policy makers. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental panel on Climate Change. Cambridge University Press, New York
Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J Agric Food Chem 33:213–217
Kanagendran A, Pazouki L, Niinemets Ü (2018) Differential emission of Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake. Environ Exp Bot 145:21–38
Karabourniotis G, Liakopoulos G, Nikolopoulos D, Bresta P, Stavroulaki V, Sunbele S (2014) “Carbon gain vs. water saving, growth vs. defence”: two dilemmas with soluble phenolics as a joking. Plant Sci 227:21–27
Karnosky DF, Percy KE, Xiang B, Callan B, Noormets A, Mankovska B, Hopkin A, Sober J, Jones W, Dickson RE, Isebrands JG (2002) Interacting elevated CO$_2$ and tropospheric O$_3$ predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae). Glob Change Biol 8:329–338
Karnosky DF, Zak DR, Pregitzer KS, Bockheim JG, Dickson RE, Hendrey GR, Host GE, King JS, Kopper BJ, Kru-fi. sp. medusae (McKernan AB, O’Reilly-Wapstra JM, Price C, Davies NW, Potts BM, Havenden MJ (2012) Stability of plant defensive traits among populations in two Eucalyptus species under elevated carbon dioxide. J Chem Ecol 38:204–212
Monk RJ, Murray F (1995) The relative tolerance of some Eucalyptus species to ozone exposure. Water Air Soil Pollut 85:1405–1411
Murray TJ, Ellsworth DS, Tissue DT, Riegler M (2013) Interactive direct and plant-mediated effects of elevated atmospheric [CO$_2$] and temperature on a eucalypt-feeding insect herbivore. Glob Change Biol 19:1407–1416
Norby RJ, Cotrufo MF, Ineson P, Neil EGO, Canadell JG (2001) Elevated CO$_2$, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165
Novriyanti E, Watanabe M, Kitao M, Utsugi H, Uemura A, Koike T (2012a) High nitrogen and elevated [CO$_2$] effects on the growth, defense and photosynthetic performance of two eucalypt species. Environ Pollut 170:124–213
Novriyanti E, Watanabe M, Makoto K, Takeda T, Hashidoko Y, Koike T (2012b) Photosynthetic nitrogen and water use efficiency of acacia and eucalypt seedlings as afforestation species. Photosynthetica 50:273–281
O’Connor JA, Parbery DG, Strauss W (1975) The effects of phytotoxic gases on native Australian plant species: part 2. Acute injury due to ozone. Environ Pollut 7:7–23
Oksanen E, Riikonen J, Kaakinen S, Holopainen T, Vapaavuori E (2005) Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO$_2$ and ozone. Glob Change Biol 11:732–748
Ormsby DP, Lesser VM, Olszyk DM, Tingley DT (1999) Elevated temperature and carbon dioxide affect chlorophylls and carotenoids in Douglas-fir seedlings. Int J Plant Sci 160:529–534
Orwa C, Mutua A, Jamnaddass R, Anthony S (2009) Agroforestry database: a tree reference and selection guide version 4.0. World
Elevated CO₂ offsets the alteration of foliar chemicals…

Paoletti E, Gruulke NE (2005) Does living in elevated CO₂ ameliorate tree response to ozone? A review on stomatal responses. Environ Pollut 137:483–493

Pearson M (1995) Effects of ozone on growth and gas exchange of Eucalyptus globulus seedlings. Tree Physiol 15:207–210

Peñaflor M, Erb M, Robert C, Miranda L, Werneburg A, Dossi F, Turlings T, Bento J (2011) Oviposition by a moth suppresses constitutive and herbivore-induced plant volatiles in maize. Planta 234:207–215

Percy KE, Legge AH, Krupa SV (2003) Tropospheric ozone: a continuing threat to global forest? In: Karnosky DF, Percy KE, Chapelka AH, Simpson C, Pikkarainen J (eds) Air pollution, global change and forest in the new millennium. Elsevier, Oxford, pp 85–118

Plett JM, Kohler A, Khachane A, Keniry K, Plett KL, Martin F, Anderson IC (2015) The effect of elevated carbon dioxide on the interaction between Eucalyptus grandis and diverse isolates of Pisolithus sp. is associated with a complex shift in the root transcriptome. New Phytol 206:1423–1436

Pritchard SG, Ju Z, van Santen E, Qiu J, Weaver DB, Prior SA, Rogerson HH (2000) The influence of elevated CO₂ on the activities of antioxidative enzymes in two soybean genotypes. Austral J Plant Physiol 27:1061–1068

Proietti C, Anav A, De Marco A, Sicard P, Vitale M (2016) A multisites analysis on the ozone effects on gross primary production of European forests. Sci Total Environ 556:1–11

Quentin AG, Crous KY, Barton CVM, Ellsworth DS (2015) Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees. Tree Physiol 35:1249–1263

Rodens JS, Ball MC (1996) The effect of elevated [CO₂] on growth and photosynthesis of two Eucalyptus species exposed to high temperatures and water deficits. Plant Physiol 111:909–919

Saitanis CJ, Riga-Karandinos AN, Karandinos MG (2001) Effects of ozone on chlorophyll and quantum yield of tobacco (Nicotiana tabacum L.) varieties. Chemosphere 42:945–953

Sandermann H Jr, Ernst D, Heller W, Langebartels C (1998) Ozone: An abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50

Schulze E-D, Beck E, Müller-Hohenstein K (2005) Plant ecology. Springer, Berlin

Shang B, Yuan X, Li P, Xu Y, Feng Z (2019a) Effects of elevated ozone and water deficit on poplar saplings: changes in carbon and nitrogen stocks and their allocation to different organs. For Ecol Manag 441:89–98

Shang B, Xu Y, Dai L, Yuan X, Feng Z (2019b) Elevated ozone reduced leaf nitrogen allocation to photosynthesis in poplar. Sci Total Environ 657:169–178

Shi C, Eguchi N, Meng F, Watanabe T, Satoh F, Koike T (2016) Retranslocation of foliar nutrients of deciduous tree seedlings in different soil condition under free-air O₃ fumigation. iForest 9:835–841

Shi C, Watanabe T, Koike T (2017) Leaf stoichiometry of deciduous tree species in different soils exposed to free-air O₃ enrichment over two growing seasons. Environ Exp Bot 138:148–163

Singh AA, Agrawal SB (2017) Tropospheric ozone pollution in India: effects on crop yield and product quality. Environ Sci Pollut Res 24:4367–4382

Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794

Tissue DT, Griffin KL, Ball JT (1999) Photosynthetic adjustment in field-grown ponderosa pine trees after six years of exposure to elevated CO₂. Tree Physiol 19:221–228

Uddling J, Karlsson PE, Glorvigen A, Sellidén G (2006) Ozone impairs autumnal resorption of nitrogen from birch (Betula pendula) leaves, causing an increase in whole-tree nitrogen loss through litter fall. Tree Physiol 26:113–120

Wang YN, Koike T (2019) Current status of eucalypts and broadleaved trees in southeastern part of China and their future. For Tech 932:30–33 (in Japanese)

Wang CF, Yang K, Zhang HM, Cao J, Fang R, Liu ZL, Du SS, Wang YY, Deng ZW, Ligang Z (2011) Components and insecticidal activity against the Maize Weevils of Zanthoxylum schinifolium fruits and leaves. Molecules 16:3077–3088

Watanabe M, Watanabe Y, Kitaoka S, Utugi H, Kita K, Koike T (2011) Growth and photosynthetic traits of hybrid larch F₁ (Larix gmelini var. japonica × L. kaempferi) under elevated CO₂ concentration with low nutrient availability. Tree Physiol 31:965–975

Xu H, Xue H, Wu S, Wang Z, He K (2019) Effects of elevated CO₂ and increased N fertilization on plant secondary metabolites and chewing insect fitness. Front Plant Sci 10:739

Yuan X, Calatayud V, Jiang L, Manning WJ, Hayes F, Tian Y, Feng Z (2015) Assessing the effects of ambient ozone in China on snap bean genotypes by using ethylendimurea (EDU). Environ Pollut 205:199–208

Yuan X, Calatayud V, Gao F, Fares S, Paoletti E, Tian Y, Feng Z (2016) Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar. Plant Cell Environ 39:2276–2287

Zheng Y, Li F, Hao L, Yu J, Guo L, Zhou H, Ma C, Zhang X, Xu M (2019) Elevated CO₂ concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC Plant Biol 19:255

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.