Non-approximability and Polylogarithmic Approximations of the Single-Sink Unsplittable and Confluent Dynamic Flow Problems

Mordecai J. Golin\(^1\), Hadi Khodabande\(^2\), and Bo Qin\(^3\)

\(^1\) CSE Department, Hong Kong UST, golin@cse.ust.hk
\(^2\) CE Department, Sharif University of Technology, khodabande@ce.sharif.edu
\(^3\) CSE Department, Hong Kong UST, bqin@cse.ust.hk

Abstract

Dynamic Flows were introduced by Ford and Fulkerson in 1958 to model flows over time. They differ from standard network flows by defining edge capacities to be the total amount of flow that can enter an edge in one time unit. In addition, each edge has a length, representing the time needed to traverse it. Dynamic Flows have been used to model many problems including traffic congestion, hop-routing of packets and evacuation protocols in buildings. While the basic problem of moving the maximal amount of supplies from sources to sinks is polynomial time solvable, natural minor modifications can make it NP-hard. One such modification is that flows be confluent, i.e., all flows leaving a vertex must leave along the same edge. This corresponds to natural conditions in, e.g., evacuation planning and hop routing.

We investigate the single-sink Confluent Quickest Flow problem. The input is a graph with edge capacities and lengths, sources with supplies and a sink. The problem is to find a confluent flow minimizing the time required to send supplies to the sink. Our main results include:

- **Logarithmic Non-Approximability.** Directed Confluent Quickest Flows cannot be approximated in polynomial time with an \(O(\log n)\) approximation factor, unless \(P = NP\).
- **Polylogarithmic Bicriteria Approximations.** Polynomial time \((O(\log^8 n), O(\log^2 \kappa))\) bicriteria approximation algorithms for the Confluent Quickest Flow problem where \(\kappa\) is the number of sinks, in both directed and undirected graphs.

Corresponding results are also developed for the Confluent Maximum Flow over time problem. The techniques developed are also used to improve recent approximation algorithms for static confluent flows.

1998 ACM Subject Classification G.1.6, G.2.1, G.2.2

Keywords and phrases Optimization, Approximation, Dynamic Flow, Confluent Flow

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.41

1 Introduction

Network Flow problems are very well known. Their input is a graph network with capacities \(c(e)\) on its edges. \(c(e)\) is the maximum flow that can be pushed through \(e\). The problem is usually to maximize the amount of flow that can be pushed through the network. By contrast, Dynamic network flows, while introduced by Ford and Fulkerson \(^7\) in 1958, around the same time as regular network flows, are not as well known. In Dynamic Flows, \(c(e)\) becomes the amount of flow that can enter \(e\) in one time unit while edge length \(\ell(e)\) is the time that it takes for a unit of flow to traverse \(e\). Dynamic Flow problems need to consider the additional problem of congestion, which may arise while flow waits to enter an edge.

Dynamic flows have been used to model problems as diverse as traffic movement, evacuation protocols and hop-routing of packets. The (Dynamic) Maximum Flow Over Time problem is to find the maximum amount of flow that can be pushed from sources to sinks

* The work of all three authors was partially supported by RGC Hong Kong CERG grant 16208415.
in a given amount of time. The (Dynamic) Quickest Flow problem is to find the minimum
time in which a fixed amount of flow can be pushed from sources to sinks. In addition,
there are multicommodity-flow versions which require specific amounts of flow between given
source-sink pairs and transshipment problems versions which do not restrict which source’s
demands are pushed to which sinks. It is known that the Quickest Multicommodity Flow
Over Time problem is NP-Hard [10] while the Quickest Transshipment problem can be solved
in polynomial time [12] [13]. Good surveys on Dynamic Flow problems and an introduction
to its basic literature can be found in [16, 20, 24].

In basic (static) network flow problems, splittable flow is permitted, i.e., flow between a
source and sink can be divided into multiple parts with each being routed over a different
path. Unsplittable flows require that all flow between a particular source and sink be routed
over only one path. Confluent flows require that all flow passing through a vertex must leave
that vertex on the same edge[1] [3] [23]. Very recent work [22] has shown that, for the static
single-sink case, unless \(P = NP \), optimal unsplittable flows and optimal confluent flows do
not have polynomial time constant-factor approximation algorithms and, in fact, confluent
flows can not be approximated to within a factor of \(O(m^{1/2-\epsilon}) \).

Confluent flows were introduced by [4], with applications including Internet routing [1],
evacuation problems [18], and traffic coordination [15]. Several works have studied confluent
flows that minimize the maximum congestion in routing networks e.g., [4] [3] [23]. However,
these works usually do not take into consideration the transit time (or edge length) required
for a packet to traverse a single link, though this parameter is usually considered in general
network analyses (see, e.g., [11]). This immediately raises the Confluent Quickest Flow
problem: Does there exists any routing scheme that minimizes the total time for sending all
packets via a feasible (congestion bounded) confluent flow?

Another scenario in which confluent dynamic flows arise naturally is in modelling evacu-
at ion protocols. Let vertices represent locations to be evacuated and edges represent paths
between vertices. A vertex’s original supply is the number of people to be evacuated from it
and a sink corresponds to an emergency exit. \(\ell(e) \) is the time required to traverse path e;
\(c(e) \) is the number of people that can enter e in parallel, i.e., its width. The Confluent Flow
restriction states that all people passing through a vertex must leave by the same edge, i.e.,
following a sign pointing “This way out”. The Quickest Flow problem corresponds to placing
the exit signs so as to minimize the time required to evacuate all people. The Maximum
Flow Over Time problem corresponds to placing the signs so as to maximize the number of
people that can be evacuated in a given amount of time.

The single-source single-sink version of the Confluent Quickest Flow problem is known as
the Quickest-Path Problem and has long been known to be polynomial-time solvable [20]. The
Confluent Flow version of the multiple-source multiple-sink Quickest Transshipment problem
was known to be polynomial-time solvable when \(G \) is a tree [18]. It was also known that, for
general graphs, the single-sink Confluent Quickest Transshipment problem is NP-Hard [14].
But no other hardness complexity results, and in particular, non-approximability results,
were known for general \(G \).

Our first results are that Confluent Dynamic Flow problems on directed graphs, both
the Quickest Flow and Max Flow Over Time versions, cannot be approximated to within
\(O(\log n) \) (\(n \) being the number of vertices in \(G \)) unless \(P = NP \). Our results hold even when

1. Thus, confluent flows partition flows into edge disjoint in-trees, with the root of each tree being a sink.
2. The objectives studied in [22] are the total amount of flow that can be confluentally routed or the number
 of demands that can be confluentally satisfied in the static flow.
The graph has a single sink. Since, Multicommodity Flow and Transshipment are equivalent in the single-sink case we write “Quickest Flow” instead of “Quickest Multicommodity Flow” or “Quickest Transshipment”.

In the other direction, we present polylogarithmic bicriteria approximation algorithms for both the single-sink Confluent Quickest Flow and Confluent Maximum Flow Over Time problems, in both directed and undirected networks. Note that known approximation algorithms for confluent flows are restricted to static networks in [4, 3, 23], and known optimal algorithms for dynamic confluent flows are restricted to special graphs, e.g., trees [18]. To the best of our knowledge, our algorithm is the first polylogarithmic approximation for these problems in general networks. These results are presented in Tables 1 and 2.

1.1 Single-Sink Dynamic Unsplittable/Confluent Flow Problems

The input to the problems is a dynamic flow network, i.e., a graph $G = (V, E)$ with n nodes and m edges, where edge e has capacity $c(e)$ and length $l(e)$. Also specified are a collection of sources $\{s_1, \ldots, s_k\} \subset V$ and a sink $t \in V$. The problems studied are:

- **QUICKEST FLOW PROBLEM:** Provides additional inputs \{d_1, \ldots, d_k\}. d_i is the supply at source s_i. The problem is to find a flow minimizing the time it takes to send all of the d_i units of supply to sink t.

- **MAXIMUM FLOW OVER TIME PROBLEM:** Provides additional input of time horizon T. The problem is to find a flow maximizing the amount of supply sent to the sink t within time horizon T. Supply at the s_i is unlimited.

We treat two different types of flow restrictions:

- **Unsplittable Flow:** All flow from s_i to t must pass along the same path P_i from s_i to t.

- **Confluent Flow:** Any two supplies that meet at a node must traverse an identical path to the sink t. In particular, at most one edge out of each node v is allowed to carry flow. Consequently, the support of the flow is a tree with all paths in the tree terminating at t.

1.2 Our Results

Section 3 presents a simple proof that, unless $P = NP$, \(\forall \epsilon > 0\), it is impossible to construct a polynomial-time $3/2 - \epsilon$ approximation algorithm for the single-sink Quickest Flow problem.

* Corresponding results also hold for the single-sink Maximum Flow Over Time problem (Thms [8, 9, 11]).

Table 1: Hardness or lower bounds on approx. ratio for the single-sink Quickest Flow problem.

Network Type	Uncapacitated	Objective	Sources	Sinks	UB on Approx. Ratio
Static	Min Congestion*	n	k (k \leq n)	O(log^2 n) [3]	
Static	Min Congestion*	n	k (k \leq n)	1 + ln k [19]	
Static	Max Demand	n	k (k \leq n)	O(log^2 n) (Thm. 11)	
Static Edge/Node	Max Demand	\kappa (\kappa \leq n)	1	O(log^2 \kappa) with NBA [24] (Thm. 22)	
Dynamic Edge	Max Flow Over Time	\kappa (\kappa \leq n)	1	O(log^2 \kappa, O(log^2 n)) (Thm. 21)	
Dynamic Edge	Quickest Flow	\kappa (\kappa \leq n)	1	O(log^2 \kappa, O(log^2 n)) (Thm. 20)	

* Minimize the maximum node congestion in a network that admits a feasible splittable flow satisfying all supplies.

† These results hold with high probability, or more precisely, with probability $1 - \epsilon^{-1}$, where ϵ is a constant.

Table 2: Upper bounds on approximation ratio for variations of the Fixed-Sink Confluent Flow problem. The first three items are for uncapacitated problems but are included here because they serve as the internal building blocks for the approximation algorithms for the capacitated problems.

Network Type	Objective	Sources	Sinks	UB on Approx. Ratio
Confluent	Trees	Poly-Time Solvable [15]		
Confluent	Directed/Undirected	NP-Hard [14]		
Uncapacitated	Directed/Undirected	$\Omega(3/2 - \epsilon)$ (Thm. 1)		
Confluent	Directed	$\Omega(n)$ (Thm. 1)		
Uncapacitated	Directed/Confluent	No $(1/2 - \epsilon, 1 + \epsilon)$-Approx. (Thm. 10)		

To the best of our knowledge, our algorithm is the first polylogarithmic approximation for these problems in general networks. These results are presented in Tables 1 and 2.
when flows are restricted to be either unsplittable or confluent. This result holds for both
directed and undirected graphs and even when the graph is restricted to have only one sink.
Section 3.2 proves, for the confluent directed graph case, the much stronger result that
unless $P = NP$, it is impossible to construct a polynomial-time $O(\log n)$ approximation
algorithm for the single-sink Quickest Flow problem. The major tool used is a modification
of a grid graph construction from [22] which was an extension of one pioneered by [9]. We
note that our reduction is not the same as that in [22]. There, the objective function was
the maximum amount of static flow that could be pushed. Here, the objective function is
the minimum amount of time required to push the supplies. Our proof works by deriving
new properties of the grid-graph. Section 3.3 extends the analysis to the Maximum Flow
Over Time problem with our lower bounds on the approximation ratio being summarized in
Table 1.

We also note that it might seem intuitive that, because confluent flows are “harder”
than static flows, the non-approximability of confluent static flows, e.g., the result from [22],
should immediately imply the non-approximability of confluent dynamic flows. This is not
true, though. The two problems are trying to optimize very different things, making them
incomparable. More specifically, in the static case, the goal is Demand Maximization, i.e., to
find a subset of the demands of maximum total value that can be confluently routed. In the
dynamic case, the goal is to find a confluent routing of ALL demands in minimal time. To
appreciate the distinction it is instructive to examine confluent routing on trees where the
static problem is NP-Hard [6] but the dynamic case is polynomial-time solvable [18].

Despite the non-approximability shown above for confluent dynamic flows, one might
hope to create bicriteria (α, β) approximations. However, in Section 4, we demonstrate
that, for both directed and undirected graphs, there exists a constant $\alpha > 0$ such that, for
any $\epsilon > 0$, there is no polynomial-time $(\frac{\alpha}{1+\epsilon}, 1+\alpha)$-approximation for the Unsplittable/-
Confluent Quickest Flow problem, unless $P = NP$. Similar results are obtained for the
Unsplittable/Confluent Max Flow Over Time problem. Our proof utilizes a reduction from
the Bounded Occurrence 3-Dimensional Matching problem.

In contrast to the above we show, in Section 5, how to construct a $(O(\log^8 n), O(\log^2 \kappa))$-
approximation for the Confluent Quickest Flow problem, where κ is now the number of
sources, in polynomial time. To this end, we use the idea of routing a confluent flow in a
static monotonic network, i.e., one in which each vertex is given an additional vertex capacity
that satisfies that all edges go from a low-capacity node to a high-capacity one, which was
introduced in [23]. Recall that in our original confluent flow problem the support of the flow
is a tree. In that tree, a parent node never supports less flow than its child. So, intuitively, a
feasible confluent flow requires its tree support to be monotonic. We develop new techniques
(Theorem 16) that permit constructing, in polynomial time, a confluent flow that routes all
supplies in a given monotonic network, while bounding both node congestion and flow length.

Via this monotonic technique, we build a novel multi-layer monotonic network and
construct a confluent static flow on it which is finally re-routed to produce a confluent
dynamic flow for our original graph problem. Our method guarantees that a dynamic
flow can be found such that the total transit time is at most polylogarithmic factor times
the optimal. Similarly, this also lets us develop a polynomial-time $(O(\log^2 \kappa), O(\log^8 n))$-
approximation of the Confluent Maximum Flow Over Time problem.

Our technique mainly differs from that in [23] in constructing length-bounded confluent
flows in static networks (which might be of independent interest). It also permits us to

\[3\] These will be formally introduced in Definition 1.
improve their approximation algorithms when not all vertices are sources. More specifically, recall that [23] gives an $O(\log^k n)$ approximation algorithm for the demand maximization confluent flow problem, with the no-bottleneck assumption (NBA)\footnote{In node-/edge-capacitated networks, the NBA is that $\max_{e \in V} d(e) \leq \min_{e \in V} c(e)$, and $\max_{e \in E} d(e) \leq \min_{e \in E} c(e)$, resp..}. If restricted to static networks, our technique can give an $O(\log^{10} \kappa)$ approximation for the same problem. If κ is bounded, for example, this gives a constant approximation, which is nearly optimal.

Our improvement to the approximation ratio comes through a combination of (i) a novel construction of the multi-layer network, and (ii) a new building block inside our monotonic network technique—a better routing approach for uncapacitated networks (Theorem 13). This will be discussed in more detail in Section 5.

Our Theorem [23] enables us to route confluent flows in uncapacitated monotonic sub-networks with congestion bounded by $\text{poly}(\log \kappa)$ instead of $\text{poly}(\log n)$. While this might look weak compared to the $1 + \ln k$ (k being the number of sinks) bound from [3] this is only used as a subroutine. In fact, the internal constructions of both [23] and our proofs for approximating the capacitated static problem build uncapacitated sub-networks which can have $\Theta(n)$ induced sources and sinks. Plugging in the bound of [3] would give a $\text{poly}(\log n)$ bound. We develop a new combinatorial argument that, combined with our new $\text{poly}(\log \kappa)$ bounds for uncapacitated monotonic sub-networks, gives a $\text{poly}(\log \kappa)$ bound for the capacitated one as well, yielding our Theorem [17]. This leads us to the final improvement.

A chart presenting previously known results and our new ones is given in Table 2.

2 Preliminaries: Definitions and NP-Hard Problems

Let I be some input to an optimization problem, $OPT(I)$ be the optimum value to the given problem on I and $|I|$ be its size. As examples, I could be a dynamic flow problem on a graph with n vertices and m edges. We could have just as easily defined $|I| = m + n$.

We now define bicriteria approximations for the two-objective optimization problem.

Definition 1 (Bicriteria Approximation). For any $\alpha, \beta > 0$, an (α, β)-approximation algorithm A for the two-objective optimization problem is a function that takes as input any parameter k and any instance I, and outputs a solution x such that

1. $\alpha f(x) \geq f(x^*)$, $g(x) \leq \beta k$, if the optimization problem is to find a solution x maximizing the cost function $f(x)$ subject to another cost function $g(x) \leq k$,
2. $f(x) \leq \alpha f(x^*)$, $\beta g(x) \geq k$, if the optimization problem is to find a solution x minimizing the cost function $f(x)$ subject to another cost function $g(x) \geq k$,

where x^* is the optimal solution for the input I and k.

We can actually define two different types of confluent flows:

Definition 2. A flow in G is node-confluent if, for every vertex v, all flow leaving v leaves along the same edge. A flow in G is edge-confluent if, for every edge $e = (u, v)$ if all flow that passes through e must leave v through the same edge (v, w).

In this paper the term “confluent”, when used alone, will denote node-confluence. When edge-confluence is needed (in some proofs) it will be explicitly specified.

Finally we will use the following NP-hard problems in our reductions:

Definition 3. The Two-Disjoint Paths (Uncapacitated) Problem: Given a graph G and node pairs $\{x_1, y_1\}$ and $\{x_2, y_2\}$, decide if G contains paths P_1 from x_1 to y_1 and P_2 from x_2 to y_2 such that they are disjoint.
In undirected graphs the Two-Disjoint Paths (Uncapacitated) problem, for both edge-disjoint and node-disjoint paths, is polynomial-time solvable \cite{21}. However, in directed graphs, the problem is NP-hard for both edge-disjoint and node-disjoint paths \cite{8}.

\textbf{Definition 4. The Two-Disjoint Paths (Capacitated) Problem:} Let G be a (static) graph whose edges are labelled either α or β with $\beta \geq \alpha$. These labels are the \textit{capacities} of the edges. Given node pairs $\{x_1, y_1\}$ and $\{x_2, y_2\}$, decide whether G contains paths P_1 from x_1 to y_1 and P_2 from x_2 to y_2 such that:

i. P_1 and P_2 are disjoint (node-disjoint or edge-disjoint);

ii. P_2 may only use edges of capacity β (P_1 may use both capacity α and capacity β edges).

The version of node-disjoint paths was proven to be NP-hard for undirected graphs by \cite{9}. The version of edge-disjoint paths was proven to be NP-hard by \cite{19}.

\textbf{Definition 5} (The Bounded Occurrence 3-Dimensional Matching Problem (BO3DM)). Suppose there are three disjoint sets $A = \{a_1, \ldots, a_n\}$, $B = \{b_1, \ldots, b_n\}$ and $C = \{c_1, \ldots, c_n\}$, and a set $T = \{T_\mu \in A \times B \times C : \mu \in [m]\}$ such that each element of A, B, C occurs in the same constant number M of triples in T. The goal is to find the largest subset $T' \subseteq T$ such that all triples in T' are disjoint, i.e., no two elements of T' contain the same element of A, B, C.

\cite{15} shows that there exists an $\epsilon_0 > 0$ such that it is NP-hard to decide whether there exist n disjoint triples in T (satisfiable instance) or there exist at most $(1 - \epsilon_0)n$ disjoint triples in T (ϵ_0-unsatisifiable instance).

\textit{Dynamic Flows.} We first describe the mechanics of flow over one edge $e = (u, v)$ with capacity c and length ℓ. Suppose there are d units of supply on node u. Assume the discrete case in which d, c, ℓ are all integral and all d need to be moved from u to v. Items move in groups of size at most c, with one group entering e each time unit. Thus, the items are transported in $\lceil d/c \rceil$ groups. It takes ℓ time units for the first group to arrive at v. Since the groups left at u at consecutive time units they arrive at v in consecutive time units. Thus, it requires $\lceil d/c \rceil - 1 + \ell$ time to move all items from u to v over e. Also, in both cases, if other items arrived at u wanting to enter e they would have to wait until all items already at u had departed before entering e. To provide intuition, we give examples of quickest flows in the unsplittable/confluent cases in Figure 1.

Finally, we introduce some notations. A flow f is \textit{feasible} if $\forall e \in E$, $f(e) \leq c(e)$. For any $e \in E$, we define its \textit{edge congestion} as $EC(e) := f(e)/c(e)$. Under certain circumstance, we may introduce the \textit{node capacity} $c(v)$ of $v \in V$, and define its \textit{node congestion} $NC(v) := f^\text{out}(v)/c(v)$, where $f^\text{out}(v)$ is the total flow out of v. For a flow f, we let its edge congestion $EC(f) := \max_{e \in E} EC(e)$ and node congestion $NC(f) := \max_{v \in V \setminus \{t_1, \ldots, t_k\}} NC(v)$, where t_1, \ldots, t_k are sinks.

A static flow f can be specified by a collection of source-sink paths $P = \{P_1, \ldots, P_K\}$ and corresponding flow values f_1, \ldots, f_K. We define the \textit{length} of flow f as $L(f) := \max_{i \in [K]} L(P_i)$, where $L(P_i) := \sum_{e \in P_i} \ell(e)$ is the length of P_i. f is called as L-\textit{length-bounded} for some $L \in \mathbb{R}^+$ if $L(f) \leq L$, i.e., no path in P has path length longer than L. Also, if all f_i’s are identical, we call f as \textit{uniform}.

\section{Approximation Hardness for Unsplittable/Confluent Dynamic Flows}

\subsection{Constant Approximation Hardness of the Quickest Flows Problem}

This section gives a simple proof that a polynomial-time constant approximation algorithm for the single-sink Unsplittable/Confluent Quickest Flow problem would imply $P = NP$ (proof in Appendix 3).
The single-sink Unsplittable/Confluent Quickest Flow problem in both directed and undirected graphs cannot be approximated to within a factor $3/2 - \epsilon$, for any $\epsilon > 0$, unless $P = NP$.

3.2 Logarithmic Approximation Hardness of Confluent Quickest Flows

For the single-sink directed Confluent Quickest Flow problem we now derive a much stronger result than in the previous section. That is, it is NP-hard to even get a $O(\log n)$ approximation to the optimal solution.

Hard instance. Before building the desired hard instance, we describe the dynamic half-grid network G_N. It can be viewed as an extension of the static half-grid graph in [22]. There are N rows (numbered from bottom to top) and N columns (numbered from right to left). All the edges in the i-th row and all the edges in the i-th column have capacity $1/i$. The i-th row extends as far as the i-th column and vice versa. The sink t, located at the bottom of the half-grid, is connected with the bottom node t_i of the i-th column by an edge of capacity $1/i$. Also, at the leftmost node of the i-th row, there is a source s_i with supply M^2/i, where M is a sufficiently large constant. We set all edge lengths as 1, and always enforce edge directions to be downwards and to the right. The half-grid is given in Figure 3.

Suppose we are now given an instance I of the directed node-disjoint version of the Two-Disjoint Paths (Uncapacitated) problem. We replace each 4-degree node in the half-grid by a copy of I. Inside the copy, all edges have length 1. Consider the copy of I at the intersection of the i-th column and j-th row (with $j > i$) in G_N. That instance is incident to two edges of capacity $1/i$ and two edges of capacity $1/j$. Inside that I, we let the edges of capacity $1/j$ be incident to x_1 and y_1, and the edges of capacity $1/i$ be incident to x_2 and y_2; we set all edge capacities to $1/i$. This completes the hard instance of directed confluent dynamic flows. Denote the constructed network as G.

Utilizing G, we obtain the logarithmic approximation hardness for the Confluent Quickest Flow problem. The proof (Appendix C) works by showing that if we could get a logarithmic approximation, we could solve I.

Theorem 7. The single-sink Confluent Quickest Flow problem in directed graphs cannot be approximated to a factor within $O(\log n)$, unless $P = NP$.

3.3 Approximation Hardness of the Max Flow Over Time Problem

This section discusses the approximation hardness of the single-sink Unsplittable and Confluent Maximum Flow Over Time problem.

To derive the approximation hardness of the Unsplittable Maximum Flow Over Time problem, we will again reduce from the directed/undirected edge-disjoint version of Two-Disjoint Paths (Capacitated) problem. We construct the same network as in Section 3.1 and utilizing this constructed network, we show (see also proofs in Appendix D).

Theorem 8. The single-sink Unsplittable Maximum Flow Over Time problem in both directed and undirected graphs cannot be approximated to a factor within $3/2 - \epsilon$, for any $\epsilon > 0$, unless $P = NP$.

Although the above hard instance applies to the confluent flow, we present a stronger lower bound for the Confluent Maximum Flow Over Time in directed graphs.

Theorem 9. The single-sink Confluent Maximum Flow Over Time problem in directed graphs cannot be approximated to a factor within $O(\log n)$, unless $P = NP$.
4 Constant Bicriteria Approximation Hardness of Dynamic Flows

This section first proves the NP-hardness of constant bicriteria approximations for the Unsplittable and Confluent Maximum Flow Over Time problems.

Our proof uses reductions from the BO3DM problem. Inspired by the reduction\[\text{[9]}\] presented in [9,17], given an instance of BO3DM, we construct the following corresponding hard instance for the Unsplittable/Confluent Maximum Flow Over Time problem in undirected graphs. Note that the directed case is similar, except that we enforce all edge directions to point right. Suppose we are given an instance I of Bounded Occurrence 3-Dimensional Matching problem. Denote the μ-th triple T_{μ} as $(a_{p_{\mu}}, b_{q_{\mu}}, c_{r_{\mu}})$, where $p_{\mu}, q_{\mu}, r_{\mu} \in [n]$. We build an undirected graph $G = (V, E)$ (shown in Figure 5), where

\[\begin{align*}
V &= \{s, t\} \cup \{a_i : i \in [n], l \in [M - 1]\} \cup \{s_i, b_i, c_i : i \in [n]\} \cup \{s'_\mu, x_\mu, y_\mu : \mu \in [m]\}, \\
E &= \{(s, s_i), (s, b_i), (s, c_i), (a_i, t), (a_{il}, t) : i \in [n], l \in [M - 1]\} \\
&\cup \{(s'_\mu, s), (s, x_\mu), (y_\mu, a_{p_\mu}) : \mu \in [m], l \in [M - 1]\} \\
&\cup \{(b_{q_\mu}, x_\mu), (x_\mu, y_\mu), (y_\mu, c_{r_\mu}) : \mu \in [m]\}.
\end{align*}\]

Hereby, G contains a vertex representing each element in the sets B and C, and $(M - 1)$ copies of each element in A. Also, G contains a sink t, and sources $s_i (i \in [n])$, $s'_\mu (\mu \in [m])$ as well as one more node s (s is removed when considering confluent flows). Meanwhile, for each triple T_{μ} in T, there are two vertices x_μ, y_μ to represent it. We connect s_i with s, and s with b_i for each $i \in [n]$; we also connect s'_μ with s, and s with x_μ for each $\mu \in [m]$. Similarly, we connect t with a_{il}, c_i for each $i \in [n]$ and $l \in [M - 1]$. For each tuple, $T_{\mu} = (a_{p_\mu}, b_{q_\mu}, c_{r_\mu})$, we connect x_μ with b_{q_μ}, and y_μ with c_{r_μ} as well as $(M - 1)$ copies of a_{p_μ}.

\textbf{Edge capacities and lengths.} All edge capacities are set as 1. See Figure 5 for details. Let each (s'_μ, x_μ) have length 5 (red edges), and each (y_μ, c_{r_μ}) have length 4 (green edges), and each (a_{il}, t) have length 3 (blue edges), and all other edges have length 2 (black edges). Finally, we set the time horizon $T = 14$ in the constructed graphs for the Unsplittable/Confluent Maximum Flow Over Time problems. Based on the constructed instance, we have (proof in Appendix E)

\begin{itemize}
 \item \textbf{Theorem 10.} There exists a constant $\alpha > 0$ such that, for any $\epsilon > 0$, there is no polynomial-time $(1 + \alpha, \frac{15}{14} - \epsilon)$-approximation for the Unsplittable/Confluent Maximum Flow Over Time problem in both directed and undirected graphs, unless $P = NP$.
\end{itemize}

To show the hardness of the Unsplittable/Confluent Quickest Flow problem, we construct an instance similar to Theorem 10 except that we let each source have supply 1, and have

\begin{itemize}
 \item \textbf{Theorem 11.} There exists a constant $\alpha > 0$ such that, for any $\epsilon > 0$, there is no polynomial-time $(\frac{15}{14} - \epsilon, 1 + \alpha)$-approximation for the Unsplittable/Confluent Quickest Flow problem in both directed and undirected graphs, unless $P = NP$.
\end{itemize}

5 Polylogarithmic Approximation for Confluent Dynamic Flows

5.1 Static Confluent Flows in Uncapacitated Networks with κ Sources

We now develop techniques for routing confluent flows in uncapacitated networks with $\kappa \leq n$ sources. Through Section 5.3\[\text{[5]}\], unless otherwise specified, the flow discussed is \textit{static}.

\[\text{[5]}\] Even though we are reducing to the same problem note that our goal differs from [9], which aims at finding a maximum number of lengthbounded edge-disjoint paths. For technical reasons, this requires us to develop a totally different bounding technique.
Definition 12 (β-Satisfiable). For any $β \in [0, 1]$, a supply d_i is $β$-satisfiable in flow f if at least a $β$ fraction of d_i can be sent to the sink via f. A flow f is $β$-satisfiable if all supplies are $β$-satisfiable in f.

Again, suppose $G = (V, A)$ is a static directed graph with supply $d(v)$ located at each $v \in V$. There exists a collection of sinks $\{t_1, ..., t_k\} \subset V$. We let $κ$ be the number of non-zero supplies, and let all edge and node capacities be 1. We present (proof in Appendix F.1)

Theorem 13. In the directed uncapacitated network with $κ$ uniform non-zero supplies, given a (splittable) 1-satisfiable flow f, there exists a randomized algorithm for finding a multi-sink confluent flow f' with the node congestion bounded by $O((NC(f))^2 \log^3 κ)$ whp.

Note that if $κ$ is bounded and f is feasible, Theorem 13 can provide confluent flows with constant congestion.

Also, the support of the resulting flow is a collection of trees rooting at those sinks $t_1, ..., t_k$. We guarantee that the height of those trees can be bounded as below.

Lemma 14. Whp, the height of any tree constructed in the randomized algorithm is at most $O(\log NC(f) \log n)$.

5.2 Static Length-Bounded Confluent Flows in Monotonic Networks

This section gives an algorithm for constructing a length-bounded confluent flow in monotonic networks, utilizing techniques developed in Section 5.1. A monotonic network is a special (static) directed graph with vertex capacities and no edges pointing in the direction of decreasing capacity. Formally,

Definition 15 (Monotonic Network). A directed graph $G = (V, A)$ with node capacity $c(v)$ for each $v \in V$ is a monotonic network iff $c(u) ≤ c(v)$ for every arc (u, v).

The network $G = (V, A)$ is the same as Section 5.1 except that here each node has capacity $c(v)$ and each edge has capacity 1. Our first step is to prove (Appendix F.2)

Theorem 16. Let $G = (V, A)$ be a monotone network. Given a 1-satisfiable flow f with node congestion at most 1, one can, in polynomial time, construct a confluent 1-satisfiable flow with node congestion $O(\log^8 n)$ and flow length $O(L(f) \log n \log c_{\max} / \log \log n)$ whp, even without the no-bottleneck assumption.

The idea is to first decompose the monotonic network into several sub-networks, and in each, construct length-bounded confluent flows with small node congestion. Connecting all confluent flows in those sub-networks, we can construct a confluent flow in the original network as desired. Our monotonic network technique incorporates a new parameter, namely the edge length, and, more importantly, our objective is to construct a bicriteria confluent flow, namely bounding both node congestion and length (note that in [23], only node congestion can be bounded). The main difference from [23] lies in that we embed our new algorithms for uncapacitated networks into the monotonic network routing.

Our technique can be further improved if we remove the length-bounded constraint. The key observation is that the sources in each sub-network are only induced by the given (splittable) flow that we would like to re-route into a confluent one. We can guarantee that, if the given flow is unsplittable, at most $κ$ flow paths pass between two sequential sub-networks, inducing at most $O(κ)$ sources. This, combined with our new technique for uncapacitated networks, gives the improvement of the congestion from $\log(\log n)$ to $\log(\log κ)$.

\[\text{Throughout the paper, we use whp to mean with high probability, or more precisely, with probability} \quad 1 - n^{-c}, \text{ where } n \text{ is the number of nodes in the network and } c \text{ is a constant.}\]
Theorem 17. Let $G = (V, A)$ be a monotone network with a single sink. If there is 1-satisfiable flow f with node congestion at most 1, one can, in polynomial time, construct a confluent 1-satisfiable flow with node congestion $O(\log^8 \kappa)$ whp, under the NBA.

5.3 Static Length-Bounded Confluent Flows in General Networks

Via the techniques developed above for monotonic networks, this section develops a polynomial-time algorithm for determining a length-bounded confluent static flow in general networks.

Suppose we are given a directed/undirected edge-capacitated network $G(V, E)$ (Section 5.2 dealt with node capacitated networks). Each node $v \in V$ has a supply $d(v)$ to be sent to the unique sink t. Our goal is to find a subset of supplies of maximum total value that can be routed via a confluent flow, whose flow length and edge congestion are both bounded.

To this end, we need to pre-process the network as follows. First, we ignore those demands of size at most $d_{\text{max}}/2\kappa$, as they contribute at most half of the value of the optimal flow. Meanwhile, we round each supply up to the nearest power of 2, and group those with the same value together, producing $O(\log \kappa)$ groups of distinct supply sizes. To compute an approximation, we will separately route each supply group in G, and output the flow of the maximum value among all groups. Note that, this will lose a $O(\log \kappa)$ factor in the approximation ratio. Hence, we reduce the original problem to the uniform-supply case. Without loss of generality, by scaling, we can assume every supply is 1.

Second, we round each capacity up to the nearest power of 2, and assume all edges have capacity at most κd_{max}, i.e., $c_{\text{max}} \leq \kappa d_{\text{max}}$ as the extra capacity above this value is superfluous. Furthermore, when considering the uniform-supply case, those edges with capacity less than the supply size would never be used, as the supply should be routed confluently. Accordingly, we can assume each edge capacity is in $[1, \kappa]$ as $d_{\text{max}} = 1$ in unit-supply case, and then there exist $O(\log \kappa)$ distinct capacity sizes.

Given a directed/undirected edge-capacitated network $G(V, A)$ with a single sink t, let $k := \lfloor \log c_{\text{max}} \rfloor + 1$, we construct the directed k-layer (monotonic) network H (see Figure 7):

- **k layers.** Create k layers and k node sets $V(H_0), V(H_1), ..., V(H_{k-1})$, where $V(H_i) := V(G) \setminus \{t\}$ and the i-th layer contains $V(H_i)$.
- **Induced node capacities.** For the i-th node set $V(H_i)$ ($i = 0, ..., k - 1$), denote by u^i the i-th copy of node u, and let u^i have capacity 2^i.
- **Vertical arcs.** For each edge $(u, v) \in A(G)$, connect two vertical arcs (u^i, v^i) (and (u^i, u^i') if G is undirected) with capacity of 2^i in H, iff the capacity of (u, v) is at least 2^i ($i = 0, ..., k - 1$).
- **Horizontal arcs.** For $0 \leq i \leq k - 2$, $\forall u \in V$, connect a horizontal arc (u^i, u^{i+1}) with capacity 2^i.
- **Arc lengths.** Let vertical arcs have the same length as arcs in G, and horizontal arcs have length 0.
- **$H := (V(H), A(H))$.** Set $V(H)$ as the union of $V(H_0), V(H_1), ..., V(H_{k-1}), \{t\}$ plus those dummy sinks, and set $A(H)$ as the collection of those vertical and horizontal arcs.
- **Supplies.** Place the supply of v at its copy v^0 in Layer 0.
- **Dummy sinks.** If there exists an edge (u, t) with capacity of 2^i, then create a copy t^i_u of t in Layer j and let the capacity of t^i_u be 2^i, for each $j = i, ..., k - 1$. Connect the vertical arc (u, t^i_u) with capacity of 2^i, and the horizontal arc (t^i_u, t^{i+1}_u) with capacity of 2^i, for each $j = i, ..., k - 2$. Finally, connect the arc (t^k_{u-1}, t) with capacity of 2^{k-1}.

Our multi-layer network can be viewed as a new construction enabling our length-bounded routing technique to work in edge-capacitated networks. Applying Theorem 16 yields:
Theorem 18. In the layered network H, given a (splittable) flow f for routing all unit supplies with node congestion at most 1, there exists a polynomial-time algorithm for constructing a 1-satisfiable confluent flow with node congestion $O(\log^8 n)$ and flow length $O(L \log^2 n/\log \log n)$ whp.

Thus, via Theorem 18, we can obtain a confluent flow h in the k-layer network H with both node congestion and length being bounded. Nevertheless, since H is constructed from logarithmic copies of nodes in G, the constructed confluent flow h in H may induce a non-confluent flow in G, because some vertices v might contain logarithmic out-flow edges. We show by Lemma 38 that there is a polynomial-time scheme for re-routing h into a confluent flow in the original network G. Also, although we bound node congestion in H, the original network G is in fact edge-capacitated and we are actually interested in the edge congestion. Fortunately, our construction of multi-layer networks can be patched. With the help of the monotonic structure and dummy sinks, we can bound the edge congestion by Lemma 40.

Combining everything, we conclude that (see also Appendix F.3)

Theorem 19. Suppose G is a directed/undirected edge-capacitated network with one sink. If there is an L-length-bounded confluent flow for routing all supplies with edge congestion at most 1 in G, then, there exists a polynomial-time algorithm for finding a confluent flow for routing a subset of supplies with value at least $\sum_{i \in [\kappa]} d_i / O(\log^2 \kappa)$, with edge congestion $O(\log^8 n)$ and flow length $O(L \cdot \log^3 n/\log \log n)$ whp.

5.4 Polylogarithmic Approximation for the Confluent Dynamic Flows

With the techniques developed and transformations (Lemmas 42 and 43), the polylogarithmic approximation for the confluent dynamic problem immediately follows. Note that our algorithms do not use any storage at intermediate nodes.

Theorem 20. In directed/undirected dynamic networks, there is a polynomial-time algorithm that constructs an $(O(\log^8 n), O(\log^2 \kappa))$-approximation for the single-sink Confluent Quickest Flow problem whp.

Theorem 21. In directed/undirected dynamic networks, there is a polynomial-time algorithm that constructs an $(O(\log^2 \kappa), O(\log^8 n))$-approximation for the single-sink Confluent Maximum Flow Over Time problem whp.

Our technique can be restricted to static flows, yielding

Theorem 22. In directed/undirected, edge-/node-capacitated static networks that satisfy the no-bottleneck assumption, there is a polynomial-time algorithm that constructs an $O(\log^{10} \kappa)$-approximation for the single-sink Demand Maximization Confluent Flow problem whp.

Acknowledgement:

We would like to thank the authors of [23] for providing us with a pre-print of the full version of their paper.

References

1. A. Bley. Routing and capacity optimization for IP networks. In Operations Research Proceedings 2007, pages 9–16. Springer, 2008.
2. C. Chekuri, M. Mydlarz, and F. B. Shepherd. Multicommodity demand flow in a tree and packing integer programs. ACM Trans. Algorithms, 3(3), August 2007.
3. J. Chen, R. D. Kleinberg, L. Lovász, R. Rajaraman, R. Sundaram, and A. Vetta. (Almost) tight bounds and existence theorems for single-commodity confluent flows. Journal of the ACM, 54(4):16, 2007.
Non-approximability and Polylogarithmic Approximations of Dynamic Flows

4. J. Chen, R. Rajaraman, and R. Sundaram. Meet and merge: Approximation algorithms for confluent flows. In Proceedings of STOC ’03, pages 373–382. ACM, 2003.

5. Y. Dinitz, N. Garg, and M. X. Goemans. On the single-source unsplittable flow problem. Combinatorica, 19(1):17–41, 1999.

6. D. Dressler and M. Streher. Polynomial-time algorithms for special cases of the maximum confluent flow problem. Discrete Applied Mathematics, 163, Part 2:142 – 154, 2014.

7. L. R. Ford and D. R. Fulkerson. Constructing Maximal Dynamic Flows from Static Flows. Operations Research, 6(3):419–433, jun 1958.

8. S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem. Theoretical Computer Science, 10(2):111 – 121, 1980.

9. V. Gurusswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis. Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems. Journal of Computer and System Sciences, 67(3):473 – 496, 2003.

10. A. Hall, S. Hippler, and M. Skutella. Multicommodity flows over time: Efficient algorithms and complexity. Theoretical Computer Science, 379(3):387–404, 2007.

11. D. G. Harris and A. Srinivasan. Constraint satisfaction, packet routing, and the Lovasz Local Lemma. In Proceedings of STOC ’13, pages 685–694, New York, NY, USA, 2013. ACM.

12. B., Hoppe and É. Tardos. Polynomial time algorithms for some evacuation problems. In Proceedings of SODA ’94, pages 433–441, 1994.

13. B. Hoppe and É. Tardos. The quickest transshipment problem. Mathematics of Operations Research, 25(1):36–62, 2000.

14. N. Kamiyama. Studies on Quickest Flow Problems in Dynamic Networks and Arborescence Problems in Directed Graphs. PhD thesis, Kyoto University, 2009.

15. V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Information Processing Letters, 37(1):27–35, 1991.

16. E. Köhler, R.H. Möhring, and M. Skutella. Traffic networks and flows over time. In Algorithmics of Large and Complex Networks, pages 166–196. Springer, 2009.

17. S. G. Kolliopoulos and C. Stein. Improved approximation algorithms for unsplittable flow problems. In Proceedings of FOCS ’97, pages 426–436. IEEE, 1997.

18. S. Mamada, T. Uno, K. Makino, and S. Fujishige. A tree partitioning problem arising from an evacuation problem in tree dynamic networks. Journal of the Operations Research Society of Japan, 48(3):196–206, 2005.

19. G. Naves, N. Sonnerat, and A. Vetta. Maximum flows on disjoint paths. In Approximation, Randomization, and Combinatorial Optimization, pages 326–337. Springer, 2010.

20. M. M. B. Pascoal, M. E. V. Captivo, and J. C. N. Climaco. A comprehensive survey on the quickest path problem. Annals of Operations Research, 147(1):5–21, aug 2006.

21. N. Robertson and P.D. Seymour. Graph minors .XIII. the disjoint paths problem. Journal of Combinatorial Theory, Series B, 63(1):65 – 110, 1995.

22. F. B. Shepherd and A. Vetta. The inapproximability of maximum single-sink unsplittable, priority and confluent flow problems. ArXiv, abs/1504.00627, 2015.

23. F. B. Shepherd, A. Vetta, and G. T. Wilfong. Polylogarithmic approximations for the capacitated single-sink confluent flow problem. In Proceedings of FOCS ’15, pages 748–758, 2015.

24. Martin Skutella. An introduction to network flows over time. In Research Trends in Combinatorial Optimization, pages 451–482. Springer, 2009.
We start by constructing the reduction from Two-Disjoint Paths (Capacitated) to Quickest Flow. We construct a network based on \(I \), by connecting the unique sink \(t \) with \(y_1 \) and \(y_2 \), and connecting two sources \(s_1 \) and \(s_2 \) with \(x_1 \) and \(x_2 \), respectively. Let all edge lengths be 1. Choose the parameter \(\beta = 2\alpha \) in \(I \), and set the capacities of \((s_1, x_1)\) and \((y_1, t)\) as \(\alpha \), and those of \((s_2, x_2)\) and \((y_2, t)\) as \(\beta \) (see Figure 2). Finally, place supplies \(M\alpha \) and \(M\beta \) on the sources \(s_1 \) and \(s_2 \), respectively, where \(M \) is a sufficiently large constant, \(p \) is the number of vertices in \(I \) and \(M \gg p \).

Based on the instance constructed, we prove Theorem 6 as follows.

Proof of Theorem 6. We first consider the proof for unsplittable flows. In the undirected graphs, if \(I \) is a YES-instance (see Figure 2(a)), then there exist two edge-disjoint paths connecting \(t \) with \(s_1 \) and \(s_2 \), respectively such that the path connecting \(s_2 \) with \(t \) uses only edges with capacity \(\beta \). Recall that by construction the first edge on the path from \(s_1 \) has capacity \(\alpha \). Thus, the optimal plan is to send \(\alpha \) (and \(\beta \)) units of supplies along the edge-disjoint path from \(s_1 \) (and \(s_2 \)) to \(t \). The time for routing all supplies is then at most \(M + p + 2 \). Note that the flow constructed is unsplitable.

However, if \(I \) is a NO-instance, then either there don’t exist two edge-disjoint paths connecting \(t \) with \(s_1 \) and \(s_2 \) (see Figure 2(b)), or there exist two edge-disjoint paths but the...
path from \(s_2 \) to \(t \) must use at least one edge with capacity \(\alpha \) (see Figure 2(c)). In the first case at most \(\beta \) units of flow can reach \(t \) in any time unit and in the second case at most \(2\alpha \) units of flow can reach \(t \) in any time unit. Thus, since a total of \(M(\alpha + \beta) \) units of flow need to be routed, the time for routing all supplies to \(t \) via an unsplittable flow is at least \(M(\alpha + \beta)/(2\alpha) = 3M/2 \) (this is a rough lower bound since it doesn’t take into account the time that it takes for the first unit of flow to arrive at \(t \)).

Let \(\epsilon := \frac{3(p+2)}{2(p+2)^2} > 0 \). It immediately follows that, if the single-sink Unsplittable Quickest Flow problem in undirected graphs can be approximated to within a factor \(3/2 - \epsilon \), then one can determine whether the instance \(I \) is a YES- or NO-instance, which is NP-hard in undirected graphs. This immediately implies the \(3/2 \)-approximation hardness in the Fixed-Sink setting for unsplittable flow.

For the Confluent Quickest Flow in undirected graphs, the instance \(I \) to be used is the node-disjoint version of Two-Disjoint Paths (Capacitated) problem. The hardness result follows the same analysis.

The analysis of directed graphs is similar, except that we use the directed version of Two-Disjoint Paths (Capacitated) problem, and connect \(s_i \) with \(x_i \) by an arc \((s_i, x_i)\), and connect \(y_i \) with \(t \) by an arc \((y_i, t)\) \((i = 1, 2)\). This completes the proof. ◼

C Proofs of Logarithmic Approximation Hardness of Single-Sink Confluent Quickest Flows

Based on the hard instance in Figure 3, we have the following lemmas.
Lemma 23. If I is a YES-instance, then it takes at most $M^2 + Np + N + 2$ time for all supplies to be sent to the sink t via a dynamic confluent flow.

Proof. If I is a YES-instance, there exist two node-disjoint paths inside I: One is from x_1 to y_1, and the other is from x_2 to y_2. Hence, the source s_i can send $1/i$ supplies per unit time, without affecting others, along the i-th row and then down along the i-th column to t_i (i.e., the i-th canonical path). It then takes at most $M^2 + Np + N + 2$ time to route all the supplies at s_i to t, since the length of each canonical path inside G is at most $Np + N + 2$, where p is the number of vertices inside I. The proof is complete.

Now we consider the case when I is a NO-instance. For a confluent dynamic flow f, its support in G_N is a collection of trees rooting at certain t_i’s. Denote the set of those trees as $T = \{T_{i_1},...,T_{i_k}\}$, where T_{i_j} ($j \in [k]$) stands for the union of all the paths carrying the flow and terminating at t_{i_j}. Without loss of generality, suppose $i_1 > i_2 > ... > i_k$.

Clearly, those trees in T are edge-confluent in G_N. That is, when two flow paths share an edge, they must follow the same path to the same terminal t_i. Indeed, if two flow paths share an edge in G_N, they must, because the flow is a confluent flow in G, merge and go to the same terminal. However, because each degree-4 node in G_N is not a usual node – it just signifies the embedding of an instance I there – two flow paths sharing a node in G_N might go along two node-disjoint paths inside I and then continue on to different terminals. Recall that a degree-4 node in the i-th column and j-th row of G_N has two incident vertical edges and two incident horizontal edges. If two flow paths go along two node-disjoint paths inside I and one of the flow paths both enters and leaves along the vertical edges and the other both enters and leaves along the horizontal edges we say that the two flows are “crossing” in G_N. (If one enters via a horizontal and leaves via a vertical and the other enters via a vertical and leaves via a horizontal this is not considered “crossing”.) Finally, we say that two trees in T are crossing in G_N if there is a pair of flows, one from each tree, that are crossing in G_N.

The crucial observation is that, because the instance I is a NO instance of the directed version of the Two-Disjoint Paths problem, the trees in T must be non-crossing in G_N. That is, for any $i,j \in [k]$ satisfying $i \neq j$, T_i doesn’t cross T_j. This is because the fact that it is a NO instance means that there don’t exist two node-disjoint paths inside I such that one is from to x_1 to y_1 and the other is from x_2 to y_2. Under this circumstance, the crossing of T_i and T_j in G_N must induce the merging of two flows in T_i and T_j inside I to use the same edge, resulting in those flows continuing on to the same terminal, contradicting the fact that $t_i \neq t_j$.

To bound the maximum flow that can be sent to t via f per unit time, we would like to find a cut in T with bounded (capacity) weight. Indeed, for those non-crossing, edge-confluent trees in T, we have the following lemma.

Lemma 24. For a set of non-crossing, edge-confluent trees in G_N, i.e., $T = \{T_{i_1},T_{i_2},...,T_{i_k}\}$, there exists a cut separating all sources in T from t, whose weight is at most 2.

Proof. In the set of non-crossing, edge-confluent trees $T = \{T_{i_1},T_{i_2},...,T_{i_k}\}$, we will recursively construct a set of tree edges of T that form a cut of T, separating all sources in T from t, with the cut weight at most 2. Note that our technique here is an adaptation and generalization of a similar method in [19, 22], which was used to prove the approximation hardness of the maximum throughput of the static confluent flow under the no-bottleneck assumption.

First, we give some notations. For $i \leq j$, we define a subgrid $G(i,j)$ of G_N induced by columns and rows whose indices lie in the range $[i,j]$. Let $r_1 = 1, l_1 = N$ and $n_1 = i_1$. Then,
it is clear that all T_i’s are located inside the grid $G(r_1, l_1) = G(1, N)$. Consider all paths of T_i from sources to t_{i1}. Let P_i be the highest path in T_i, and r'_i be the highest row number where the path P_i intersects the n_1-th column, where the bottom node t_{i1} is located. Then, we define $r_2 = r'_i + 1$ and $l_2 = n_1 - 1$ (recall that the row number increases from the bottom to the top, while the column number increases from the right to the left). Recursively, we can define r'_j, and then $r_j := r'_j + 1$ and $l_j := n_j - 1$ for $j = 1, ..., k$. Also, let T_{n_j} (the tree rooted at the bottom node t_{n_j}) be the leftmost tree passing through the subgrid $G(r_j, l_j)$.

Let the edge set $C := \emptyset$ initially. For the paths of T_i in $G(r_1, l_1)$, since those paths finally goes to the bottom node t_{i1}, we choose into C the edge e_{i1} connecting t_{i1} with the bottom row. Note that e_{i1} separate the source nodes in T_i from the bottom node t_{i1}, and its capacity is $\frac{1}{n_1}$. Now consider the paths of T_{n_1} in $G(r_1, l_1)$. There exists three cases:

i. All paths completely avoid routing through the subgrid $G(r_2, l_2)$ (see Figure 4(a));

ii. Some paths go through $G(r_2, l_2)$, and some avoid $G(r_2, l_2)$ (see Figure 4(b));

iii. All paths completely go through the subgrid $G(r_2, l_2)$ (see Figure 4(c)).

In Case i, because P_{n_1} is the highest path of T_{n_1} and the paths of T_{n_1} cannot cross the P_{n_1}, those paths avoiding $G(r_2, l_2)$ must go through the i_1-th column, and then there must be an edge as e_{i_1}, and add it into C. In Case ii, by a similar observation, it can be seen that there must be an edge in the i_1-th column carrying all those paths avoiding $G(r_2, l_2)$. Again, we denote such an edge as e_{i_2} and add it into C. Note that e_{i_2} separates the terminal t_{i_2} from the sources that are connected with those paths in $G(r_1, l_1)$, and its capacity is at most $\frac{1}{n_2}$. For those paths going through $G(r_2, l_2)$ in Case ii or Case iii, we would consider them in subgrid $G(r_2, l_2)$. Thus, it can be seen that, no matter which case happens, the cut edge we choose, i.e., e_{i_1}, e_{i_2}, have total capacity at most $\frac{1}{n_2}$ (here we denote $n'_1 = i_2$).

We repeat the above process to determine the cut edge in the subgrid $G(r_j, l_j)$ until $j = k$ or $r_j > l_j$. Consider those paths of T_{n_j} passing through $G(r_j, l_j)$. They must go through the edge connecting t_{n_j} with the bottom row. We denote this edge as e_{n_j}, and add it into C. Note that this edge separates the sources from t_{n_j}, and its capacity is at most $\frac{1}{n_j}$. Let n'_j be the index after n_j in the set $\{i_1, i_2, ..., i_k\}$. Then, similar to the analysis above, we know those paths of T_{n_j} can completely or partly avoid routing through the subgrid $G(r_{j+1}, l_{j+1})$. No matter which case happens, we choose the edge $e_{n'}$ such that $e_{n'}$ separates the bottom node $t_{n'_j}$ from the sources that are connected with the paths of $T_{n'_j}$ in $G(r_j, l_j)$, and its capacity is at most $\frac{1}{n'_j}$. When the algorithm terminates, we have a set of cut edges C.

Since each subgrid contains at least one less tree in T than the subgrid before it, the number of iterations k^* is less than k. Note that, for $j < k^*$, $\frac{1}{n_j} \leq \frac{1}{l_{j+1}}$, since $l_{j+1} = n_j - 1$; for $j = k^*$, we have $\frac{1}{n_j} \leq \frac{1}{l_{k^*}}$, since $r_{k^*} \leq n_{k^*} \leq l_{k^*}$. It can be seen that $l_1 > ... > l_{k^*} \geq r_{k^*} > ... > r_1$, and $r_{j} \geq j$ for all j. This means that $r_{k^*} > k^*$ and $l_j \geq k^*$ for all j. Now, we can bound the weight $w(C)$ of the induced cut as follows:

$$w(C) \leq \sum_{1 \leq j \leq k^*} c(e_{n_j}) + c(e_{n'_j}) \leq \sum_{1 \leq j \leq k^*} \frac{2}{n_j} \leq 2 \left(\sum_{2 \leq j \leq k^*} \frac{1}{l_j} \right) + \frac{2}{r_{k^*}} \leq 2 \sum_{1 \leq j \leq k^*} \frac{1}{k^*} = 2$$

(1)

This completes the proof.

Lemma 25. If I is a NO-instance, then it takes at least $M^2H_N/2$ time to confiuently route all supplies to t, where $H_N := 1 + \frac{1}{2} + ... + \frac{1}{N}$.

\[\]
Figure 4 Three cases of the paths of T_i passing through $G(r_2, l_2)$. Red paths, green paths and blue paths represent T_{i_1}, T_{i_2} and T_{i_3}, respectively. Purple edges denote the chosen cut edges in C.

Mathematical expressions:

Let $i_1 = \max(1, N)$ and $i_2 = \min(2, l_2)$.

- **Case i**

 $t_1 = n_1$ and $t_2 = n_2 + t_1$.

 - Red path: T_{i_1}
 - Green path: T_{i_2}
 - Blue path: T_{i_3}

 Purple edges represent the chosen cut edges in C.

- **Case ii**

 $t_1 = n_1$ and $t_2 = n_2 + t_1$.

 - Red path: T_{i_1}
 - Green path: T_{i_2}
 - Blue path: T_{i_3}

 Purple edges represent the chosen cut edges in C.

- **Case iii**

 $t_1 = n_1$ and $t_2 = n_2 + t_1$.

 - Red path: T_{i_1}
 - Green path: T_{i_2}
 - Blue path: T_{i_3}

 Purple edges represent the chosen cut edges in C.

 ISAAC 2017
Proof. Consider a confluent flow in \(G \). Then, the support of the flows in \(G_N \) is a set of non-crossing, edge-confluent trees as stated before. Following the notation used before, denote the set of trees as \(\mathcal{T} = \{ T_{i_1}, ..., T_{i_k} \} \), where each \(T_{i_j} \) is a tree rooted at the bottom node \(t_{i_j} \). By Lemma 24, we know there exists a cut that separates all sources in \(\mathcal{T} \) from \(t \), whose cut weight is at most 2. Then, the amount of flow passing through this cut is at most 2 per unit time. Since the total weight of supplies is \(\sum_{1 \leq i \leq N} M^{2 \frac{1}{2}} = M^2 H_N \), it immediately means that the time for routing all supplies is at least \(M^2 H_N / 2 \). ▷

Utilizing Lemmas 23 and 25, we prove the logarithmic approximation hardness for the Confluent Quickest Flow problem.

Proof of Theorem 7. By Lemma 23, we know if \(I \) is a YES-instance, then the time for routing all supplies to \(t \) is at most \(M^2 + N p + N + 2 \). Here, we take a sufficiently large constant \(M \), ensuring that the first term dominates the routing time. By Lemma 25, we know if \(I \) is a NO-instance, then the time for routing all supplies to \(t \) is at least \(M^2 H_N / 2 \). It follows that if we could approximate the the routing time of the Confluent Quickest Flow problem in \(G \) to a factor within \(H_N / 2 \), we could determine whether \(I \) is a YES- or NO-instance, which is NP-hard.

Note that \(G \) has \(n = \Theta(pN^2) \) vertices, where \(p \) is the number of vertices in \(I \). If we take \(N = \Theta(p^{\frac{1}{\epsilon^2}}) \), where \(0 < \epsilon < \frac{1}{2} \) is small, then \(H_N = \Theta(\frac{1}{\epsilon} (\frac{1}{\epsilon} - 1) \log p) \). Also, since \(n = \Theta(p^2) \), we have \(H_N = \Theta(\frac{1}{\epsilon} (\frac{1}{\epsilon} - 1) \log n) = \Theta(\log n) \). Thus, it yields the bound as desired. ▷

D Proofs of Approximation Hardness of Single-Sink Maximum Flow Over Time Problem

D.1 Maximum Unsplittable Flow Over Time

This section gives the proof of the hardness of Unsplittable Maximum Flow Over Time problem, i.e., Theorem 8.

Proof of Theorem 8. We only need to consider the undirected case, since the directed case is similar except the embedded instance \(I \) is the directed version of Two-Disjoint Paths (Capacitated) problem, and edges are assigned with directions. Set \(T = M + p \), where \(p \) is the number of vertices in \(I \) and \(M \) is a large constant such that \(M \gg p \).

If \(I \) is a YES-instance (see Figure 2(a)), then there exist two edge-disjoint paths connecting \(t \) with \(s_1 \) and \(s_2 \), respectively, and hence the maximum value sent to \(t \) within the time horizon \(T \) is at least \((\alpha + \beta)(T - p) = 3\alpha M \). However, if \(I \) is a NO-instance, then either there don’t exist two edge-disjoint paths connecting \(t \) with \(s_1 \) and \(s_2 \) (see Figure 2(b)), or there exist two edge-disjoint paths but the paths from \(s_2 \) to \(t \) must use the edge with capacity \(\alpha \) (see Figure 2(c)). Then, in either case, the maximum value sent to \(t \) within the time horizon \(T \) is at most \(2\alpha T = 2\alpha (M + p) \). Thus, letting \(\epsilon := \frac{3p}{2(M + p)} > 0 \), if one can approximate the single-sink Unsplittable Maximum Flow Over Time problem to a factor within \(3/2 - \epsilon \), then one can distinguish whether \(I \) is YES- or NO-instance, which is NP-hard in the undirected graph. Thus, we complete the proof. ▷

D.2 Maximum Confluent Flow Over Time

This section gives the proof of the hardness of Confluent Maximum Flow Over Time problem, i.e., Theorem 9.
\textbf{Figure 5} Hard instance for constant bicriteria approximation.

Proof of Theorem 9. We construct a directed network the same as Figure 3(a), and let $T = M^2 + NP + N + 2$. If I is embedded in the network G is a YES-instance, then the maximum value of supplies sent to v within time horizon T is at least $H_N(T - NP - N - 2) = H_N M^2$. However, if I is a NO-instance, Lemma 24 shows there exists a cut whose weight is at most 2, and hence the maximum value of supplies sent to v within time horizon T is at most $2T = 2M^2$. Thus, if the single-sink Confluent Maximum Flow Over Time problem in the directed graphs can be approximated to a factor within $H_N / 2$, one can determine whether I is a YES- or NO-instance, which is NP-hard in directed graphs. By setting those parameters the same as Theorem 7 we obtain the lower bound as desired.

\section{Proofs of Constant Bicriteria Approximation Hardness of Dynamic Flows}

First, we have the following lemma about the constructed instance.

Lemma 26. If the instance I is satisfiable, then G contains Mn edge-disjoint paths from sources s_i, s_i' to v, whose length are at most 14; if I is ϵ_0-unsatisfied, then there are at most $(M - \epsilon_0 / 2)n$ such source-sink paths in G.

Proof. The proof is similar to that in [9]. The difference is that we add $(n + m)$ sources and change all lengths. This does not change the existence or non-existence of edge-disjoint paths.

Now, we prove Theorem 10.

Proof of Theorem 10. We first consider the Unsplittable Maximum Flow Over Time problem. Clearly, by Lemma 26 if the instance I is satisfiable, then G contains Mn edge-disjoint paths from sources s_i, s_i' to v, whose lengths are at most 14. It implies that we can unsplittably send at least Mn units of supplies to v within the time horizon $T = 14$.

However, if I is ϵ_0-unsatisfied, then there are at most $(M - \epsilon_0 / 2)n$ source-sink paths whose lengths are bounded by 14 in G. There are three kinds of paths with length at most 14:

1. **P_1-path:** For any $z \in \{s_i : i \in [n]\} \cup \{s_i' : \mu \in [m]\}$ and any $\mu \in [m]$, $P_1 = [z, s, b_{q_1}, x_{\mu}, y_{\mu}, c_{r_{\mu}}, t]$ has length 14;

2. **P_2-path:** For any $z \in \{s_i : i \in [n]\} \cup \{s_i' : \mu \in [m]\}$, any $\mu \in [m]$ and any $l \in [M - 1]$, $P_2 = [z, s, b_{q_1}, x_{\mu}, y_{\mu}, a_{p_1, l}, t]$ has length 13;
3. **Q-path:** For any \(z \in \{ s_i : i \in [n] \} \cup \{ s'_{\mu} : \mu \in [m] \} \), any \(\mu \in [m] \) and any \(l \in [M - 1] \), \(Q = [z, s, x_{\mu}, y_{\mu}, a_{p_{\mu}l}, t] \) has length 14. Note also that any path with length larger than 14 must have length at least 15.

Suppose we are given the maximum set \(S \) of edge-disjoint paths such that \(|S| \leq (M - \epsilon_0/2)n \). Then, adding into \(S \) any path \(P' \) with length at most 14 would make \(P' \) share at least one edge with some paths in \(S \). Note that \(P' \) must be \(P_1 \)-path, \(P_2 \)-path or \(Q \)-path. Since the time horizon \(T = 14 \) and the minimum length of any edge is 2, if one want to send the supply to \(t \) along \(P' \) within the time horizon \(T \), then the supply in \(P' \) must be sent at time 0 (or time 1, for \(P_2 \)-path), and cannot encounter other supplies in any edge at the same time (otherwise, the supply in \(P' \) would be delayed by at least time 2).

We show in the following that \(P' \) must encounter other supplies carried by some paths in \(S \). Suppose \(P' \) shares some edges with a path \(J \in S \). Let \(e = (u, v) \) be the first edge they share in \(G \). Note that \(J \) is \(P_1 \)-path, \(P_2 \)-path or \(Q \)-path. There are several cases:

Case i: If both \(J \) and \(P' \) are the same kind of path, since the supplies carried by them must be sent at time 0, the supplies must reach \(e \) at the same time. Hence, at least one unit of supply cannot be sent to \(t \) on time.

Case ii: If \(J \) is \(P_1 \)-path and \(P' \) is \(P_2 \)-path (or, \(P' \) is \(P_1 \)-path and \(J \) is \(P_2 \)-path), then \(e \) must be some edge no after \((x_{\mu}, y_{\mu}) \). Since \(P_1 \)- and \(P_2 \)-path have same sub-path pattern \([z, s, b_{\eta}, x_{\mu}, y_{\mu}]\), the supplies on \(P' \) and \(J \) must reach \(e \) at the same time, resulting in at least one unit of supply cannot be sent to \(t \) on time.

Case iii: If \(J \) is \(P_1 \)-path and \(P' \) is \(Q \)-path (or, \(P' \) is \(P_1 \)-path and \(J \) is \(Q \)-path), where \(i \in \{1, 2\} \), then \(e \) must be some edge no before \((x_{\mu}, y_{\mu}) \). Suppose \(J \) is from source \(z_1 \) while \(P' \) is from source \(z_2 \), where \(z_1, z_2 \in \{ s_i : i \in [n] \} \cup \{ s'_{\mu} : \mu \in [m] \} \). Note that the difference of length between the path from \(z_1 \) to \(u \) and the path from \(z_2 \) to \(u \) is 1. Also, the supply at \(Q \)-path must reach \(u \) no earlier than \(P_1 \)-path, and must wait for at least time 1 (since the edge \((u, v)\) will be occupied for time 2). Hence, the supply at \(Q \)-path cannot arrive at \(t \) on time.

Thus, one cannot send one more unit of supply to \(t \) along the path \(P' \) within the given time horizon. This immediately implies that, if \(\mathcal{I} \) is \(\epsilon_0 \)-unsatisfied, then one cannot send more than \((M - \epsilon_0/2)n\) units of supplies to \(t \), within the time horizon \((14 \epsilon - \epsilon)T\), for any \(\epsilon \) > 0. This result implies that it is NP-hard to obtain the \((1 + \frac{10\epsilon}{2M - \epsilon_0}, \frac{14}{14} - \epsilon)\)-approximation for the Unsplittable Maximum Flow Over Time problem in both directed and undirected graphs.

(The analysis for directed graphs is similar.)

Now consider the Confluent Maximum Flow Over Time problem. To simplify the analysis, we remove all sources and \(s, t \). We claim that after the node removal, those edge-disjoint paths with length at most 14 in \(G \) become node-disjoint. We now show this by contradiction. Suppose there are two edge-disjoint paths \(Q_1 \) and \(Q_2 \) with length at most 14 in \(G \), and they share one node \(v \).

1. If \(v = b_i \) for some \(i \in [n] \), then \(Q_1 \) and \(Q_2 \) share the edge \((s, b_i)\) in \(G \) (contradiction).
2. If \(v = x_{\mu} \) for some \(\mu \in [m] \), then \(Q_1 \) and \(Q_2 \) share \((s, x_{\mu})\) (contradiction).
3. If \(v = c_i \) for some \(i \in [n] \), then \(Q_1 \) and \(Q_2 \) share \((c_i, t)\) (contradiction).
4. If \(v = a_{p_{\mu}l} \) for some \(\mu \in [m] \) and some \(l \in [M - 1] \), then \(Q_1 \) and \(Q_2 \) share \((a_{p_{\mu}l}, t)\) (contradiction).
5. If \(v = y_{\mu} \) for some \(\mu \in [m] \), then \(Q_1 \) and \(Q_2 \) must share \((x_{\mu}, y_{\mu})\), because otherwise one path of them must pass through some \(a_{p_{\mu}l} \) in order to reach \(y_{\mu} \), resulting in that the length exceeds 14 (contradiction).

To show the lower bound of the confluent version, we need to slightly modify the graph \(G \). We split the node \(s \) into \(m + n \) copies, and connect each copy to \(s_i \) and \(b_i \) (or, connect it
to \(s'_i \) and \(x_i \) with edges of capacity 1 and length 2. Then, similar to the edge-disjoint paths, we can bound the number of the node-disjoint paths in both \(\epsilon \)-unsatisfied and satisfiable instance. Thus, applying the similar analysis for the unsplittable flow, we finally gives the desired approximation hardness for the Confluent Maximum Flow Over Time problem.

The proof of Theorem \(\boxed{11} \) is similar, which we omit here.

\section*{F Proofs of Polylogarithmic Approximation for Single-Sink Confluent Dynamic Flows}

\subsection*{F.1 Static Confluent Flows in Uncapacitated Networks with \(\kappa \) Sources}

In this section, we present an algorithm for finding a confluent flow in the uncapacitated network with \(\kappa \) sources. In this problem, we are given a static directed \(G = (V,A) \), where there are \(\kappa \) sources \(\{s_1,\ldots,s_\kappa\} \) with the non-zero supply \(d_i \) located at each \(s_i (i \in [\kappa]) \).

Since the case of \(\kappa = 1 \) is trivial, we assume \(\kappa \geq 2 \). Here we consider the case that all non-zero supplies are uniform. Without loss of generality, we assume all supplies are unit, i.e., \(d_1 = \ldots = d_\kappa = 1 \). Also, there exists a collection of sinks \(\{t_1,\ldots,t_k\} \subset V \). In addition, \(G \) is an uncapacitated network, i.e., all edge and node capacities are 1.

Before stating our algorithm, we give certain definitions regarding our \(\kappa \)-source setting.

\begin{definition}[Effective Length]
Given a network \(G \) and a path \(P \) in \(G \), we define the effective length of \(P \), or simply \(l_e(P) \), to be the number of sources in the path \(P \) excluding the starting node.
\end{definition}

\begin{definition}[Effective Height]
Given a network \(G \) and a subtree \(T \) inside \(G \), we define the effective height of the tree, or simply \(h_e(T) \), to be the maximum effective length over all leaf-to-root paths \(P \) of \(T \).
\end{definition}

Given a splittable flow \(f \) that satisfies all supplies in \(G \), we give a simple randomized rounding algorithm to get a confluent flow \(f' \) from \(f \):

For each node \(v \in V \setminus \{t_1,\ldots,t_k\} \), select exactly one of its outgoing edges with probability of \(f(e)/f^{out}(v) \), and let \(e \) carry all flows out of \(v \).

Clearly, the resulting flow \(f' \) is confluent. The selected edges together with the nodes in \(V \) form a forest, where each tree is an arborescence directed toward a distinct sink \(t_i \). Hence, the remaining work is to bound the node congestion of \(f' \). Suppose we denote by \(T_i \) the tree rooted at \(t_i \). Then, the node congestion of \(f' \) equals to the maximum number of sources in \(T_i \) over all \(i \in [k] \).

To analyze the congestion, we define the following random process \(\mathcal{P} \).

Suppose there is a directed acyclic graph (DAG) \(D = (V,A) \) with a probability function \(p(u,v) \) for each edge \((u,v) \in A \), satisfying that, for each node \(u \in V \), \(\sum_{(u,v) \in A} p(u,v) \leq 1 \).

Let \(\mathcal{P}(D) \) be the random process that each node \(u \) selects at most one of its outgoing edges \((u,v) \) with probability \(p(u,v) \).

Note that the edges selected by \(\mathcal{P}(D) \) form a forest. We denote by \(\hat{N}_D(v) \) the number of sources in the subtree rooted at \(v \) in the forest, under the random process \(\mathcal{P}(D) \). Let \(C_D(v) \)
be the expectation of $\hat{N}_D(v)$, i.e., $C_D(v) = E[\hat{N}_D(v)]$. We have
\[
C_D(v) = \begin{cases}
0 & \text{if } v \text{ is not a source and has no incoming edge} \\
1 & \text{if } v \text{ is a source and has no incoming edge} \\
1 + \sum_{(u,v) \in D} p(u,v)C_D(u) & \text{if } v \text{ is a source and has incoming edges} \\
\sum_{(u,v) \in D} p(u,v)C_D(u) & \text{otherwise}
\end{cases}
\] (2)

Now, let us induce the DAG from the given splittable flow f, as well as the probability function. Let $D = (V,A)$ be the DAG with A as the set of edges carrying the flow of f, and let $p(u,v) = f(u,v)/f^{out}(u)$, for each $(u,v) \in A$. It is easy to see that our randomized algorithm is equivalent to the random process $P(D)$. Then, the congestion of the resulting flow \tilde{f}' on each node v equals to $\hat{N}_D(v)$, and the congestion of \tilde{f}' equals to $NC(\tilde{f}') = \hat{N}_D^*(v) := \max_v \hat{N}_D(v)$. Also, the congestion of f equals to $NC(f) = C_D^*(v) := \max_v C_D(v)$.

To bound the congestion of \tilde{f}', we only need to bound the random variable $\hat{N}_D(v)$ for the given DAG D. Thus, we turn to analyze the random process. The idea is simple: We upper bound all the moments of the random variable $\hat{N}_D(v)$ for each $v \in V$, and utilize the Markov’s inequality to guarantee that, with high probability, $\hat{N}_D(v)$ slightly deviates from $C_D^*(v)$.

F.1.1 Bounding Effective Height

We start from bounding the effective height of the tree formed by the resulting flow \tilde{f}'.

Given a source node v, the effective distance from v to the root of the subtree containing v in $P(D)$ is the effective length of the random walk starting from v on D, according to the probability function p. Suppose a random walk will reach a node u in its next step (or hop). If u is a source in D, we call the step (or hop) as effective. Clearly, in a path from a node v to another node u, the number of effective steps is equal to the effective length of the path.

For any source u, let $P(u;i)$ be the probability that the random walk start from v and reaches the non-sink node u after i effective steps. Then, we have this recurrence relation:
\[
P(u;i) = \begin{cases}
0 & i = 0 \text{ and } u \neq v \\
1 & i = 0 \text{ and } u = v \\
\sum_{(w,u) \in D} P(w;i-1)p(w,u) & i > 0 \text{ and } u \text{ is a source} \\
\sum_{(w,u) \in D} P(w;i)p(w,u) & i > 0 \text{ and } u \text{ is not a source}
\end{cases}
\] (3)

▶ **Lemma 29.** For any non-sink node u and $i \geq 0$, $P(u;i) \leq \max(C_D(u), 1)(1 - 1/C_D)^i$.

Proof. We prove by induction on i. For $i = 0$ the claim is trivially true. To prove the induction step, consider two cases:
Thus, we complete the proof. ▷

Lemma 30. The effective height of any tree in \(\mathcal{P}(D) \) is at most \(O(C_D^n \log \kappa) \) with probability of at least \(1 - \kappa^{-c} \) for a large positive constant \(c \).

Proof. Suppose the random walk from \(v \) reaches a non-sink node \(u \) after \(\alpha C_D^n \log(\kappa C_D^n) \) effective steps. If \(u \) is not a source, we can back-track to the last source, denote as \(u' \), along the path in the random walk. Note that the random walk from \(v \) reaches \(u' \) after \(\alpha C_D^n \log(\kappa C_D^n) \) effective steps.

Since \(\kappa > 1 \), we have \(C_D > 1 \). By Lemma 29, the probability that the random walk from \(v \) reaches a source \(u \) (or \(u' \) if \(u \) is not a source) after \(\alpha C_D^n \log(\kappa C_D^n) \) effective steps is at most \(\kappa C_D^n(1 - 1/C_D^n)\alpha C_D^n \log(\kappa C_D^n) \leq \kappa^{1-\alpha} \). Thus, the random walk terminates at a sink in \(\alpha C_D^n \log(\kappa C_D^n) \) effective steps with the probability at least \(1 - \kappa^{1-\alpha} \). This means that the effective height of any tree in \(\mathcal{P}(D) \) is at most \(O(C_D^n \log \kappa) \) with probability of at least \(1 - \kappa^{-c} \) for a large positive constant \(c \). ▷

Suppose each node is a source. Then, the effective height of a tree equals to its height. Thus, by setting \(\kappa = n \), we bound the height of any tree in \(D \), and conclude as Lemma 14.

F.1.2 Bounding the Moment of \(\tilde{N}_D(v) \)

Instead of directly bounding the moment of \(\tilde{N}_D(v) \) in \(D \), we would like to transform \(D \) into the random process on some simpler tree graphs.

We transform \(D \) into a collection of trees, denote as \(\mathcal{T} \), through a sequence of steps. Let \(D_j \) denote the DAG obtained after \(j \) step (\(j \geq 0 \)), where \(D_0 = D \). For a given DAG \(D \), let \(D(v) \) denote the subgraph of \(D \) induced by all of the nodes that can reach \(v \) in \(D \). Step \(j + 1 \) proceeds as follows:

1. Find a node \(v \in D_j \) such that the subgraph \(D_j(v) \) is a tree and \(v \) has more than one outgoing edges. If no such node is found, then \(D_j \) is a tree and the transformation is completed.

2. Let \((v, u_1), ..., (v, u_k) \) denote the \(k \geq 2 \) edges going out of \(v \). We transform \(D_j \) into \(D_{j+1} \) as follows. Replace \(v \) and the subtree \(D_j(v) \) rooted at \(v \) by \(k \) copies of each, and replace
Also, it implies that

\begin{proof}
Due to Lemma 4.2 in [4], which assumes all nodes have unit supplies, we have

\begin{equation}
E[(\tilde{N}_{D_{j+1}}(u, v))^{r}] \leq E[(\tilde{N}_{D_{j}}(u, v))^{r}]
\end{equation}

since in the DAG \(D_{j} \) all nodes except sinks are sources.
\end{proof}
It immediately means that
\[E[(\hat{N}_D(u, h_e))^r] = E[(\hat{N}_{D'}(u, h_e))^r] = E[(N_{D'}(u, h_e))^r] \]
\[\leq E[(N_{D'+1}(u, h_e))^r] = E[(\hat{N}_{D'+1}(u, h_e))^r] \]
\[= E[(\hat{N}_D(u, h_e))^r]. \]

▶ **Lemma 32.** For any \(i \geq 0 \), \(E[(\hat{N}_{T'}(u, h_e))^i] \) is at most \(\frac{i! (C_D')^i (h_e \cdot O(\log \kappa))^i}{2^{i-1} \alpha h_c'^i (C_D' \cdot O(\log \kappa))^i} \).

Proof. Note that \(\hat{N}_{T'}(u, h_e) = N_{T'}(u, h_e) \). Thus, due to Corollary 4.5.1 in [4], the lemma follows. Also note that the transformation inside Corollary 4.5.1 would introduce a \(O(\log \kappa) \) factor in the tree height.

F.1.3 Proof of Theorem 13

This section completes the proof of Theorem 13. To bound the congestion of \(f' \), we only need to bound the number of sources in the subtree rooted at each sink \(t_j \) under the random process \(\mathcal{P}(D) \). Due to Lemma 30, the effective height of any tree in \(\mathcal{P}(D) \) is \(O(C_D' \log \kappa) \) with probability at least \(1 - \kappa^{-c} \). It suffices to bound \(\hat{N}_D(t_j, h_e) \), where \(h_e = O(C_D' \log \kappa) \).

We use Markov’s inequality
\[\Pr[\hat{N}_D(t_j, h_e) > \alpha h_c C_D' \cdot O(\log \kappa)] = \Pr[(\hat{N}_D(t_j, h_e))^i > \alpha^i h_c'^i (C_D' \cdot O(\log \kappa))^i] \]
\[\leq \frac{E[(\hat{N}_D(t_j, h_e))^i]}{\alpha^i h_c'^i (C_D' \cdot O(\log \kappa))^i} \]
\[\leq \frac{E[(\hat{N}_T(t_j, h_e))^i]}{\alpha^i h_c'^i (C_D' \cdot O(\log \kappa))^i} \]
\[\leq \frac{i! (C_D')^i (h_e \cdot O(\log \kappa))^i}{2^{i-1} \alpha h_c'^i (C_D' \cdot O(\log \kappa))^i} \] (due to Lemma 31)
\[\leq \frac{i!}{2^{i-1} \alpha h_c'^i \cdot O(\log \kappa)}. \]

Now, by setting \(\alpha = i = O(\log \kappa) \), the probability above is at most \(\kappa^{-r} \) for a large positive constant \(r \). It immediately means that the congestion of \(f' \) is at most \(O(NC(f)^2 \log^3 \kappa) \) (since \(NC(f) = C_D' \), with probability of at least \(1 - \kappa^{-r} \).

Since \(\kappa \geq 2 \), we have \(1 - \kappa^{-r} \geq 1/2 \). We repeat our randomized rounding algorithm for \(O(\log n) \) iterations, which yields a confluent flow with desired congestion with high probability. Therefore, we complete the proof of Theorem 13.

F.2 Static Length-Bounded Confluent Flows in Monotonic Networks

This section presents the proof of Theorem 16 and 17.

Construction of sub-networks. Without loss of generality, we assume the minimum node capacity is 1. We first process the original network: (i) Round up each node capacity to the nearest power of \(\log \) \(n \); (ii) Partition the nodes into groups according to their capacities, such that the nodes in the same group have the same capacity; (iii) For any edge \((u, v)\) with \(c(u) = \log^j n \) and \(c(v) = \log^{4(j+r)} n \) \((r > 1)\), add dummy nodes \(u^{(j)} \) of \(u \) with capacity of \(\log^{4(j+r)} n \) where \(1 \leq j < r \), and replace \((u, v)\) with a path connecting \(u, u^{(1)}, u^{(2)}, \ldots, u^{(r-1)}, v \) sequentially (all dummy nodes have zero supplies).
Given a 1-satisfiable flow f with node congestion at most 1, we now construct the i-th sub-network $G_i := (V_i, A_i)$ as follows:

- Set V_i as the set of nodes of capacity $\log^{4i} n$ and their incident nodes of capacity $\log^{4(i+1)} n$.
- Let S_i be the set of nodes of capacity $\log^{4(i+1)} n$, signifying the sink set in G_i.
- Let A_i consist of all arcs induced by V_i in G, excluding all arcs between nodes in S_i.
- Set the supply $d_i(v)$ at the node $v \in V_i \setminus S_i$ as $d_i(v) := d(v) + \sum_{u \in V_i \setminus S_i} f(u,v)$.

Conceptually, we would partition nodes into $r := \lceil \log \epsilon_{\max}/(4 \log \log n) \rceil$ groups, where ϵ_{\max} is the maximum node capacity, and then r sub-networks, the size of which might not be polynomial. However, because of the fact that the total number of nodes is at most n (excluding those dummy nodes whose total size will be reduced to polynomial later), there exist at most n sub-networks. Hence, the decomposition of network can be done in polynomial time.

Note that f induces a flow f_i with node congestion at most 1 in G_i. For each sub-network G_i: as f_i might not be confluent, we would like to round it to a confluent flow f_i'. Because all non-sink nodes have uniform capacity due to our construction, we then can view the sub-network as an uncapacitated network. On the other hand, since the node congestion of f_i is at most 1 in G_i, the supply $d_i(v)$ at each non-sink node v is at most the node capacity $\log^{4i} n$, and now we can view all supplies as $\log^{4i} n$ (i.e., uniform-supply case). Thus, we can utilize Theorem 13 to compute a confluent flow f_i' from f_i.

Remember that those rounding processes in each G_i are independent from each other. In the following, we bound the node congestion of f_i'.

Lemma 33. Whp, the node congestion at $v \in S_i$ is at most $1 + \frac{O(1)}{\log n}$ in the confluent flow f_i'.

Proof. Consider the i-th sub-network, where all non-sink nodes have capacity $\log^{4i} n$ and sink nodes have capacity of $\log^{4(i+1)} n$. Also, because the node congestion of f_i is at most 1 in G_i, according to our construction, the supply $d_i(v)$ at each non-sink node v is at most the node capacity $\log^{4i} n$. Hence, we scale all node capacities and supplies down by a $\log^{4i} n$ factor. Note that the scaling does not affect the congestion. We can view the new network as an “uncapacitated” network with unit supplies (ignoring the capacity and supplies of sinks in S_i at this stage).

Now, we can utilize Theorem 13 to round the flow f_i to a confluent flow f_i' in G_i, which results in the node congestion $O(NC(f_i)^2 \log^3 n) = O(\log^3 n)$ in the “uncapacitated” network G_i whp. This implies the rounding process adds the flow of value at most $O(\log^3 n)$ at any sink $v \in S_i$ (this flow increment only results from the supplies of non-sink nodes, and we have not yet taken into account those supplies at sinks in S_i).

On the other hand, note that after the scaling via Theorem 13 for each sink $v \in S_i$, the initial node congestion induced by the original flow f_i is at most 1, which means the supplies at v is at most equal to its capacity $\log^4 n$. Together with the flow increased by rounding, the total flow located at v is at most $\log^4 n + O(\log^3 n)$. Thus, it follows that, whp, the node congestion at v

$$NC(v) \leq \frac{\log^4 n + O(\log^3 n)}{\log^3 n} = 1 + \frac{O(1)}{\log n}.$$
induces a confluent flow \mathcal{f} for routing all supplies in the original network G. However, the node congestion of \mathcal{f} might be large, because the flows f_1, \ldots, f_r are turned into f'_1, \ldots, f'_r with larger congestion than before.

To bound the congestion of \mathcal{f}, let \mathcal{f}_i be the induced confluent flow by \{ f'_0, f'_1, \ldots, f'_r \} on $V_0 \cup V_1 \cup \cdots \cup V_i$. Observe that the congestion of node $v \in V_i$ in \mathcal{f}_i is the same as its congestion in \mathcal{f}. It suffices to analyze the node congestion of $v \in V_i$ in \mathcal{f}_i.

> **Lemma 34.** For any $i \in \{0, 1, \ldots, r\}$, the congestion of $v \in V_i$ is at most $O(\log^4 n)$ in the confluent flow \mathcal{f}_i whp.

Proof. Consider any sink $v^{(i)} \in S_i \subset V_i$. Before linking the flows, f_i has congestion at most 1 in G_i, and hence the flow f_i induces the supply of $\log^4 n$ at each non-sink node in V_i. By Lemma 33 we know, whp, the rounding of f_i would induces at most $(1 + O(1)/\log n) \log^{4(i+1)} n$ units of new flow load at $v^{(i)}$. Note that this is based on the fact that f_i only induces the supply of at most $\log^4 n$ at each non-sink node (up to now, we only consider the sub-network separately).

However, after linking those flows, the congestion of v is caused by the supplies induced by \mathcal{f}_{i-1}, rather than f_i. Suppose the sink $v^{(i-1)} \in S_{i-1}$ has congestion at most $NC(v^{(i-1)})$ in \mathcal{f}_{i-1}. This would bring in the supply of $NC(v^{(i-1)}) \log^4 n$ at those non-sink nodes in V_i. Hence, noting that the supply of non-sink node is $\log^4 n$ before linking (as mentioned above), the supply of non-sink node in V_i would be larger than the supply before linking by an $NC(v^{(i-1)})$ factor. It implies that the flow load at any sink $v^{(i)} \in S_i$ after rounding would be also increased by at most $NC(v^{(i-1)})$. Thus, whp, the congestion of $v^{(i)} \in S_i$ is

$$NC(v^{(i)}) \leq \frac{NC(v^{(i-1)})(1 + O(1)/\log n) \log^{4(i+1)} n}{\log^4 n} \leq NC(v^{(i-1)})(1 + O(1)/\log n).$$

Recall that the congestion of any sink in V_0 is at most (1 + $O(1)/\log n$), namely $NC(v^{(0)}) \leq (1 + O(1)/\log n)$. Recursively utilizing Inequality 4 yields $NC(v^{(i)}) \leq (1 + O(1)/\log n)^{i+1}$.

Now there exists two cases: (a) $0 \leq i \leq 2 \log n$, and (b) $2 \log n < i \leq r$. In Case (a), it is clear that the congestion $NC(v^{(i)}) \leq O(1)$. In Case (b), observe that the capacity, and hence the supply, of nodes in groups $\{ f'_0, f'_1, \ldots, f'_{2 \log n-1} \}$ are at most a factor $1/n^2$ of the capacity in S_i. Since at most n nodes have non-zero supplies, these nodes’ contribution to $NC(v^{(i)})$ is negligible. Thus, one can truncate those flows into $\{ f'_{2 \log n}, f'_{2 \log n+2}, \ldots, f'_r \}$, and thus the congestion brought by them is bounded by $NC(v^{(i)}) \leq O(1)$ as above. Hence, we bound the congestion of sinks in each V_i.

On the other hand, we also need to bound the congestion of non-sink nodes in each V_i. Since any non-sink node has capacity smaller than the sink in V_i by a $\log^4 n$ factor, while its load is at most as large as the load of sink, where its load is sent, then its congestion is at most $O(\log^4 n)$ times larger than the sink. Thus, we complete the proof.

This immediately yields the following lemma:

> **Lemma 35.** Whp, the node congestion of the confluent flow \mathcal{f} is at most $O(\log^4 n)$.

Up to now, we have guaranteed the computed confluent flow \mathcal{f} has small node congestion. More importantly, our method has one more advantage: The length of any path in the resulting confluent flow \mathcal{f} is bounded.

> **Lemma 36.** For any path in the confluent flow \mathcal{f}, the length is at most $O\left(\frac{4(f) \log n \log c_{\text{max}}}{\log \log n}\right)$ whp.
Non-approximability and Polylogarithmic Approximations of Dynamic Flows

Proof. First, note that we utilize Theorem 13 to round \(f_i \) to the confluent flow \(f'_i \), whose support is a tree. As \(f_i \) is induced by \(f \) in \(G_i \), it is clear that the flow length of \(f_i \) is at most that of \(f \), i.e., \(L(f_i) \leq L(f) \). Also, noting that the randomized rounding process in Theorem 13 is based on the support of \(f_i \), we know the length of any edge in the resulting tree is not larger than \(L(f_i) \). Furthermore, by Lemma 14 the height of the tree support of \(f'_i \) is at most \(O(\log n) \) whp. It immediately implies that any path length in \(f'_i \) is at most \(O(L(f) \log n) \) whp.

On the other hand, to construct the final confluent flow \(f \), we link the support of those confluent flows \(f'_0, \ldots, f'_r \), where \(r = \lceil \log c_{\max}/(4 \log \log n) \rceil \). As there exists at most \(r \) layers, it means any path length in \(f \) would be bounded by \(O(rL(f) \log n) \) as desired.

The remaining thing needed to be dealt with is those introduced dummy nodes in (iii). When the maximum capacity \(c_{\max} \) is large, there would be \(O(\log c_{\max}) \) dummy nodes. However, one can just introduce a single dummy node \(u' \) of capacity \(\log^{4+i} n \), and, after obtaining \(f_i \), contract \(u' \) into \(v \) as the other dummy nodes are superfluous. This renders the sub-networks of polynomial size as desired. Thus, combining Lemma 35 and 36 and noting that the rounding up of each node capacity in (i) also induces a \(O(\log^4 n) \) factor in congestion, we conclude as stated in Theorem 16.

Now we show how to restrict our technique to the confluent routing where the length-bounded constraint is removed, hence proving Theorem 17.

Proof of Theorem 17. Again, we assume the minimum node capacity is 1. First, we modify the construction of sub-networks such that all capacities depend on \(\kappa \): (i) Round up each node capacity to the nearest power of \(\log^4 \kappa \); (ii) Partition the nodes into groups according to their capacities, such that the nodes in the same group have the same capacity; (iii) For any edge \((u, v) \) with \(c(u) = \log^{4+i} \kappa \) and \(c(v) = \log^{4+i+j} \kappa \) \((r > 1) \), add dummy nodes \(u^{(i)} \) of \(u \) with capacity \(\log^{4+i+j} \kappa \) where \(1 \leq j < r \), and replace \((u, v) \) with a path connecting \(u, u^{(1)}, u^{(2)}, \ldots, u^{(r-1)}, v \) sequentially (all dummy nodes have zero supplies).

Then, we would like to find an unsplittable flow in \(G \). We will utilize the following theorem:

Theorem 37 ([3]). Let \(G = (V, E) \) be an edge-capacitated directed graph with a single sink \(t \) and \(k \) sources \(s_i \) with supplies \(d_i \) \((i \in [k]) \). If there is a feasible flow for routing all supplies to \(t \), and \(G \) satisfies \(\max_{e \in [k]} d_i \leq \min_{e \in E} c(e) \), then there exists a polynomial-time algorithm for computing an unsplittable flow satisfying all supplies with edge congestion at most 2.

In fact, Theorem 37 only works for edge-capacitated networks. However, we can use it to find an unsplittable flow in the node-capacitated network. Indeed, we can induce an edge-capacitated network \(G' \) from the original node-capacitated network \(G \) in the following:
(a) Divide each node \(v \) into \(v_{in} \) and \(v_{out} \) with capacity \(c(v) \); (b) Connect \(v_{in} \) with all arcs going into \(v \), and \(v_{out} \) with all arcs going out of \(v \), and add a new arc \((v_{in}, v_{out})\); (c) Let each arc \(e = (u, v) \) have the capacity \(c(e) = \min(c(u), c(v)) \).

Obviously, if there is a 1-satisfiable flow with node congestion at most 1 in \(G \), there must be a 1-satisfiable flow with edge congestion at most 1 in \(G' \). If \(G \) satisfies the no-bottleneck assumption \(\max_{e \in [k]} d_i \leq \min_{e \in E} c(e) \), \(G' \) must satisfy \(\max_{e \in [k]} d_i \leq \min_{e \in E} c(e) \). Now, we can apply Theorem 37 to \(G' \) for finding an unsplittable flow \(\zeta \) with edge congestion at most 2 in \(G' \). Consider the arc \(e = (v_{in}, v_{out}) \) for each \(v \in V \). This arc has congestion at most 2, which means the node congestion of \(v \) is at most 2. Thus, we can use \(\zeta \) to induce back an unsplittable flow \(f \) with node congestion at most 2 in \(G \).
Given a 1-satisfiable unsplittable flow \(f \) with node congestion at most 2, we now construct the \(i \)-th sub-network \(G_i := (V_i, A_i) \) as follows (similar to before):

- Set \(V_i \) as the set of nodes of capacity \(\log^{4i} \kappa \) and their incident nodes of capacity \(\log^{4(i+1)} \kappa \);
- Let \(A_i \) consist of all arcs induced by \(V_i \) in \(G \), excluding all arcs between nodes in \(S_i \);
- Set the supply \(d_i(v) \) at the node \(v \in V_i \setminus S_i \) as
 \[d_i(v) := d(v) + \sum_{u : u \in V_{i-1} \setminus S_{i-1}} f(u, v). \]

Note that the number of non-zero supplies is \(O(\kappa) \) in each \(G_i \). Because we utilize an unsplittable flow, and there are at most \(\kappa \) flow paths from \(V_{i-1} \setminus S_{i-1} \) to \(V_i \setminus S_i \), which means the number of the extra sources induced by flows between sub-networks is at most \(\kappa \).

Finally, we apply similar analysis as shown in the proof of Theorem 16, and bound the node congestion by \(O(\log^8 \kappa) \) whp. Thus, we complete the proof.

\[\triangleq \]

F.3 Static Length-Bounded Confluent Flows in General Networks

We give the missing lemmas and proofs in Section 5.3.

Note that our multi-layer network construction differs from [23] in three main places. (i) Our multi-layer network takes into account bounding the length of the resulting flow. (ii) Our technique works for the routing of confluent flow in edge-capacitated network. Moreover, because of (ii), our vertical arcs are contained in the \(i \)-th layers of \(H \) when their original edge capacities in \(G \) are at least \(2^i \), namely depending on their own capacities, rather than depending on the capacities of their incident nodes. (iii) Another big difference is that we introduce dummy sinks so as to bound the edge congestion of confluent flow. These facts allow us to have the following lemmas.

First, we show there is a polynomial-time scheme for re-routing \(h \), which is a confluent flow \(h \) in the \(k \)-layer network \(H \), into a confluent flow in the original network \(G \).

\[\blacktriangleright \text{Lemma 38.} \text{ Given a confluent flow } h \text{ for routing all unit supplies in the } k \text{-layer network } H \text{ with node congestion } NC(h) \text{ and flow length } L(h), \text{ one can, in polynomial time, re-route } h \text{ to produce a confluent flow } f \text{ that routes a subset of supplies with value of at least } \frac{1}{2^k - 1} \text{ fraction of the total amount in } G. \text{ Furthermore, the node congestion and flow length of } f \text{ are bounded by } NC(h) \text{ and } k \cdot L(h), \text{ respectively.} \]

\textbf{Proof.} We will use the following standard conflict-free routing technique to produce a confluent flow in \(G \).

\[\blacktriangleright \text{Lemma 39 [23].} \text{ Suppose } H \text{ is one } k \text{-layer node-capacitated network induced by } G. \text{ Given a confluent flow } h \text{ in } H \text{ that satisfies all unit supplies } \{d_i\}_{i \in [k]} \text{ and has node congestion } NC(h), \text{ one can, in polynomial time, find a confluent flow } f \text{ in } G \text{ that routes a subset of} \]

\[\]
supplies with value of at least a \(\frac{1}{2^k-1} \) fraction of the total amount and has node congestion at most \(NC(h) \).

Note that our multi-layer network differs from that in [23]. However, the differences would not influence the re-routing of \(h \). Indeed, when re-routing \(h \), we can ignore the new introduced parameters in each arc, i.e., arc capacity and arc length. Meanwhile, the bi-directional vertical arcs (for undirected graphs) in each layer of \(H \), as well as the fact that the appearance of vertical arcs depends on edge capacity rather than node capacity, would not bring in any difference. Because the re-routing of \(h \) is based on the support of \(h \) rather than the constructed network \(H \). Finally, we view those dummy sinks as the normal nodes in \(H \).

By the above analysis, we can find a confluent flow \(f \) in \(G \) from the given confluent flow \(h \). Also, \(f \) has node congestion at most \(NC(h) \), and it can route a subset of supplies with value of at least a \(\frac{1}{2^k-1} \) fraction of the total amount.

The only remaining thing is to bound the length of the resulting flow. Recall that the re-routing of \(h \) is carried out on the support of \(h \) (a directed rooted tree) plus all horizontal arcs. Without those horizontal arcs, the remaining support of \(h \) are a collection of (directed) sub-trees in the \(k \) corresponding layers. Also, because the flow length of \(h \) is bounded by \(L(h) \), any path in those sub-trees has its length bounded by \(L(h) \) as well. Note that the conflict-free method finds the confluent flow \(f \) by re-routing \(h \), and the support of any path in \(f \) in each layer is certain sub-path of \(h \) in that layer. Thus, any path in \(f \) has length at most \(k \cdot L(h) \), since there are at most \(k \) layers.

On the other hand, note that Lemma [38] can only bound the node congestion. With the help of monotonic structure and dummy sinks, we bound the edge congestion as follow.

Lemma 40. The confluent flow \(f \) in \(G \) found in Lemma [38] has edge congestion at most \(NC(h) \).

Proof. In Lemma [38] we bound the node congestion of the resulting confluent flow \(f \). We would like to bound the edge congestion of \(f \) by utilizing its node congestion.

Indeed, for a confluent flow, we have the following observations.

Observation 41. For a confluent flow in the uncapacitated network, the node congestion of any node \(v \) is no less than the maximum edge congestion over all edges incident to \(v \).

In fact, the confluent flow \(f \) can induce a confluent flow \(h' \) in \(H \) by mapping a flow on one edge \(e \) into its edge copy in \(H \) with capacity that is larger than and nearest to the value \(f(e) \). Note that the induced flow \(h' \) does not use the identical vertical arc-copy in different layers. Clearly, the node and edge congestion of \(f \) are identical to the node and edge congestion of \(h' \). Thus, it suffices to consider the node and edge congestion of \(h' \) in \(H \).

Now let us focus on only a fixed layer of \(H \), and consider the nodes and vertical arcs that the flow \(h' \) passes through inside that layer. Due to the construction of the multi-layer graph, all vertical arcs and nodes in the same layer possess the same capacity, which we can view as uncapacitated network. Thus, by Observation [11] we bound the edge congestion in each layer by the node congestion of \(h' \). Regarding those horizontal arcs, since they connect different copies of nodes, it would not induce any edge in the original network \(G \) and we don’t need to consider its edge congestion.

Finally, we need to consider the congestion of the edge incident to the sink \(t \) in \(f \), say \((u, t)\). Suppose \((u, t)\) has capacity of \(2^k \). Then, there are a copy \(t_0^u \) of \(t \) in the \(j \)-th layer, for each \(j = i, i + 1, ..., k - 1 \), and a directed path \(u^i, t_0^u, i^u_1, ..., k^u_{i-1}, t \), which is mapped to one arc \((u, t)\) in \(f \). Note that those dummy sinks are not connected with any other node.
in H except u' and t, and then there is no other in-flow to t along this path. Thus, this path contains flow of value the same as the arc (u', t'). We only need to consider the edge congestion of (u', t'), which is the same as the edge congestion of (u, t) in f. Clearly, the edge congestion of (u', t') is bounded by the node congestion of h'.

Since the node congestion of h' remains the same as the node congestion of h due to the re-routing scheme. Thus, the edge congestion of f is also bounded by $NC(h)$. ▶

Putting all together, we can prove Theorem 19.

Proof of Theorem 19. As described in the begin of Section 5.3, we pre-process the network and group together those supplies of the same size, and then consider routing each group separately via a confluent flow, outputting the best group as the solution. Note that this process will lose only an $O(\log \kappa)$ factor in the approximation guarantee. Also, note that the rounding up of capacities and supplies to the power of 2 would bring in a 2 factor to the edge congestion, because after rounding, certain supplies would be allowed to go through edges with smaller capacity.

Suppose there exists an L-length-bounded confluent flow f with edge congestion at most 1 for routing all supplies to the single sink in G. Observe that f induces an L-length-bounded confluent sub-flow f' for routing all supplies in that group (uniform-supply case). Then, we construct the multi-layer network H for this supply group. Also, notice that the such a confluent sub-flow f' induces a confluent L-length-bounded flow with edge congestion at most 1 in H. Due to the construction of H, in each layer, edge capacity is the same as node capacity, which can be viewed as uncapacitated network. Observe that a confluent flow in an uncapacitated network has node congestion the same as the edge congestion. Thus, the induced flow by f' has node congestion at most 1.

Thus, there exists an L-length-bounded flow with node congestion at most 1 in H. To route each group separately, we first utilize standard techniques\footnote{e.g., Theorems 2.5 and 2.8 in G. Baier, Flows with path restrictions, PhD thesis, TU Berlin, 2003.} to find out a feasible $O(1)L$-length-bounded (splittable) flow \bar{f} for routing all supplies to the sink. Then, applying Theorem 18 immediately yields a confluent flow for routing all supplies in this group with node congestion at most $O(\log^8 n)$ and with length bounded by $O(L \log^2 n/\log \log n)$ whp. Finally, utilizing Lemmas 38 and 40, we can obtain a confluent flow for routing a subset of supplies, with value of at least a $\frac{1}{2k-1} = 1/O(\log \kappa)$ faction of the total amount in this group. Furthermore, the found flow has edge congestion at most $O(\log^8 n)$ and length bounded by $O(L \log^3 n/\log \log n)$ whp.

Note that, together with the lose of approximation factor in grouping and rounding, this indeed gives us a confluent flow \bar{f} for routing a subset of supplies, with value of at least a $1/O(\log^2 \kappa)$ faction of the total amount in G, with the same edge congestion and flow length mentioned above. Thus, we complete the proof.

\section*{F.4 Polylogarithmic Bicriteria Approximation for Confluent Dynamic Flows}

This section proves the two main theorems for confluent dynamic flows. First, we give the following lemmas for the transformation between static and dynamic flows.

\begin{lemma}
A feasible unsplittable/confluent dynamic flow, which routes the supply d_i from s_i to t ($\forall i \in [k]$) within time horizon T, induces a feasible unsplittable/confluent
41:32 Non-approximability and Polylogarithmic Approximations of Dynamic Flows

\[T \text{-length bounded static flow, which routes the supply } d_i/T \text{ from } s_i \text{ to } t \ (\forall i \in [k]) \text{ in the same underlying network.} \]

Proof. Suppose \(f \) is the given dynamic flow for sending the supplies \(\{d_i\}_{i \in [k]} \) located at \(\{s_i\}_{i \in [k]} \). Let \(f^*_i(t) \) be the value of the supply brought from \(s_i \) by \(f \) on edge \(e \) at time \(t \). Set \(x^*_i := \frac{1}{T} \sum_{t=1}^{T} f^*_i(t) \), and let \(y_e = \sum_{i \in [k]} x^*_i \). Clearly, all \(y_e \)'s together induce a static flow, denoted as \(f' \), in the same underlying network.

Since \(f \) is feasible,

\[\forall e \in E, \quad \forall t \in \{0, 1, ..., T\}, \quad \sum_{i \in [k]} f^*_i(t) \leq c(e). \]

This implies

\[\forall e \in E, \quad y_e = \sum_{i \in [k]} \left(\frac{1}{T} \sum_{t=1}^{T} f^*_i(t) \right) = \frac{1}{T} \sum_{t=1}^{T} \left(\sum_{i \in [k]} f^*_i(t) \right) \leq c(e), \]

which mean \(f' \) is feasible.

Also, since we take the average of \(f \) over time \(T \) for each supply, \(f' \) can send only the supply \(d_i/T \) from \(s_i \) to the sink. Furthermore, when taking average of \(f \) to produce \(f' \), we still use the support of the dynamic flow \(f \) to route \(f' \). Hence, if \(f \) is an unsplittable/confluent dynamic flow, \(f' \) must be an unsplittable/confluent static flow. Finally, since \(f \) has time horizon \(T \), any path inside the support of \(f \) must be \(T \)-length bounded. Thus, we complete the proof. \(\Box \)

Lemma 43. A feasible unsplittable/confluent \(T \)-length bounded static flow, which routes the supply \(d_i \) from \(s_i \) to \(t \ (\forall i \in [k]) \), induces a feasible unsplittable/confluent dynamic flow, which routes the supply \(z \cdot d_i \) from \(s_i \) to \(t \ (\forall i \in [k]) \) within time horizon \(T + z \) in the same underlying network.

Proof. Suppose \(f \) is the given dynamic flow for sending the supplies \(\{d_i\}_{i \in [k]} \) located at \(\{s_i\}_{i \in [k]} \). Also, suppose \(f \) can be specified by a collection of source-sink paths \(P = (P_1, ..., P_K) \) and corresponding flow values \(f_1, ..., f_K \).

Then, we let \(f' \) be the dynamic flow that sends \(f_j \) units of supplies along the path \(P_j \) per unit time, for each \(j \in [K] \). Clearly, \(f' \) is feasible. Then, since each path \(P_j \) is \(T \)-length bounded, the supply we send along it will reach the sink after \(T \) units of time. Within time horizon \(T + z \), \(f' \) can totally send at least \(z f_j \) along \(P_j \). Recall that \(f \) routes the supply \(d_i \) from \(s_i \) to \(t \ (\forall i \in [k]) \). It means that \(f' \) can route the supply \(z \cdot d_i \) from \(s_i \) to \(t \ (\forall i \in [k]) \) within time horizon \(T + z \).

On the other hand, note that we use the same support of \(f \) to route \(f' \). Thus, if \(f \) is an unsplittable/confluent static flow, \(f' \) must be an unsplittable/confluent dynamic flow. Thus, we complete the proof. \(\Box \)

Now, we start to prove Theorem 20.

Proof of Theorem 20. Suppose \(G \) is a directed/undirected network with a sink \(t \) and a collection of supplies \(\{d_i\}_{i=1}^{n} \) located at sources \(\{s_i\}_{i=1}^{n} \). Since \(OPT \) is the optimal time, there exists a feasible confluent dynamic flow for routing all supplies \(\{d_i\}_{i=1}^{n} \) to the single

8 This paper assumes that the optimal solution \(OPT \) is bounded by \(2^{O(n)} \).
sink with time horizon \(OPT\). By Lemma 42 we know it induces a feasible confluent \(OPT\)-length-bounded static flow for routing supplies \(\{d_i/OPT\}_{i=1}^{\kappa}\).

Then, applying Theorem 19, we can compute, in polynomial time, a confluent static flow for routing a subset of supplies with value at least \(\sum_{i \in [\kappa]} d_i/O(\log^2 \kappa)\), with edge congestion \(O(\log^8 n)\) and flow length \(O(\log^3 n / \log \log n) \cdot OPT\), whp. We scale the flow down by an \(O(\log^8 n)\) factor, which ensures the resulting flow is feasible and allows it to send to the sink \(t\) a subset of supplies among \(\{d_i/(O(\log^8 n) \cdot OPT)\}_{i=1}^{\kappa}\), with value at least a \(1/O(\log^2 \kappa)\) fraction of the total amount. Now, by Lemma 43 we can change the found flow into a feasible confluent dynamic flow that routes a subset of supplies with value at least \(\sum_{i \in [\kappa]} d_i/O(\log^2 \kappa)\) to \(t\),

\[
O(\log^3 n / \log \log n) \cdot OPT + O(\log^8 n) \cdot OPT = O(\log^8 n) \cdot OPT.
\]

However, \(OPT\) is not explicitly known. To deal with this issue, we use a binary search to determine \(OPT\). Initially, we set \(T_1 = 0\) and \(T_2 \geq OPT\). Start from \(T = (T_1 + T_2)/2\) and find a confluent dynamic flow by the above process. Clearly, if \(T \geq OPT\), there is a feasible confluent dynamic flow to route all supplies with time \(T\), and we can find out a bicriteria approximation of such a flow; if \(T < OPT\), we fail and return no flow. When we succeed in constructing an approximation, we set \(T_2 = T\) and continue the binary search; otherwise, we set \(T_1 = T\) and repeat. Thus, at most \(O(\log(\text{OPT}))\) times of computation suffice to determine \(OPT\). This gives the polynomial-time algorithm for finding the desired bicriteria approximation of the single-sink Confluent Quickest Flow problem whp.

Similarly, we can prove Theorem 21.

Proof of Theorem 21 Suppose \(G\) is a directed/undirected network with a sink \(t\) and a collection of sources \(\{s_i\}_{i=1}^{\kappa}\). Since \(OPT\) is the optimal amount of supplies that can be conflently sent to \(t\) within the time horizon \(T\), there exists a feasible confluent dynamic flow for routing \(OPT\) units of supplies to the sink within the time horizon \(T\).

By Lemma 42 we know it induces a feasible confluent \(T\)-length-bounded static flow for routing totally \(OPT/T\) units of supplies to \(t\). By standard techniques\(^9\) one can find out a splittable \(O(1)T\)-length-bounded flow \(f\) with the total flow amount at least as large as the maximum \(T\)-length-bounded flow. Note that the total value of \(f\) is at least \(OPT/T\). Suppose \(f\) sends \(d_i\) units of supplies from \(s_i\) to \(t\), for each \(i \in [\kappa]\), with \(\sum d_i \geq OPT/T\). Hence, there exists a feasible splittable \(O(1)T\)-length-bounded static flow for routing all supplies \(\{d_i\}_{i=1}^{\kappa}\). Applying Theorem 19 we can compute, in polynomial time, a confluent static flow for routing at least a \(1/O(\log^2 \kappa)\) fraction of supplies \(\{d_i\}_{i=1}^{\kappa}\), with edge congestion bounded by \(O(\log^8 n)\) and flow length bounded by \(O(\log^3 n / \log \log n) \cdot T\), whp. Scaling the flow down by an \(O(\log^8 n)\) factor yields a feasible confluent flow. Now, we have a feasible \(O(\log^3 n / \log \log n) \cdot T\)-length-bounded confluent static flow that routes at least a \(1/O(\log^2 \kappa)\) fraction of supplies \(\{d_i/O(\log^8 n)\}_{i=1}^{\kappa}\) whp.

Thus, by Lemma 43 we can change the found flow into a feasible confluent dynamic flow \(f'\) that routes at least a \(1/O(\log^2 \kappa)\) fraction of supplies \(\{d_iT\}_{i=1}^{\kappa}\) to \(t\), and whp the time horizon is bounded by

\[
O(\log^3 n / \log \log n) \cdot T + O(\log^8 n) \cdot T = O(\log^8 n) \cdot T.
\]

Since \(\sum d_iT \geq OPT\), \(f'\) is a \((O(\log^2 \kappa), O(\log^8 n))\)-approximation for the single-sink Confluent Maximum Flow Over Time problem. Since the value of \(OPT\) is unknown, we again

\(^9\) e.g., Theorem 2.8 in G. Baier, *Flows with path restrictions*, PhD thesis, TU Berlin, 2003.
utilize the binary search to determine it. Thus, there exists a polynomial-time algorithm that, whp, computes the desired bicriteria approximation of the single-sink Confluent Maximum Flow Over Time problem.

We now restrict our technique to static networks, and prove Theorem 22.

Proof of Theorem 22 We start from the directed, edge-capacitated static network $G(V, A)$. Suppose $G(V, A)$ has κ supplies $\{d_i\}_{i=1}^\kappa$. We pre-process the network into a multi-layer network, the same as Section 5.3 except that we ignore arc lengths. Also, we group together those supplies of the same size, and then consider routing each group separately via a confluent flow, outputting the best group as the solution. Note that this process will lose only a $O(\log \kappa)$ factor in the approximation guarantee.

Since each group has uniform supplies, we can view all supplies as unit supplies and all capacities are integral. Hence we can use the standard technique to find an integral maximum flow, which upper bounds the maximum flow for routing supplies in a group. Then, because the constructed multi-layer network is a (node-capacitated) monotonic network with a single sink, satisfying the no-bottleneck assumption, we utilize Theorem 17 to find out a confluent flow in the multi-layer network. Recall that Lemma 38 works for the routing of static flows without the length-bounded constraint. Then, by the analysis similar to Theorem 19, we show one can find a confluent flow f' for routing a subset of supplies to the sink, with edge congestion at most $O(\log^8 \kappa)$ whp. The total value of those supplies is at least $\frac{1}{O(\log^2 \kappa)}$ of OPT.

Scaling f' down by a $O(\log^8 \kappa)$ factor makes it a feasible flow that sends at least $\frac{1}{O(\log^8 \kappa)}$ fraction of those supplies. Then, we apply the following theorem:

▶ Theorem 44 (\[2\]). Let T be an edge-capacitated tree instance with the NBA. Suppose there is a fractional flow that routes a fraction $\gamma_i \in [0, 1]$ of each commodity i. Then a subset of the items can be found, in polynomial time, that feasibly routes a total demand of $\Omega(\sum_i \gamma_i d_i)$ on T.

This gives us a confluent flow that routes a subset of supplies whose total value is at least $1/O(\log^8 \kappa)$ of OPT.

For directed, node-capacitated networks, we only need to induce edge capacities: For each edge $e = (u, v)$, we let edge capacity $c(e) = \min(c(u), c(v))$. Then, we utilize the method above for edge-capacitated network to compute a confluent flow with edge congestion bounded. Note that, in such a confluent flow, the node congestion of a node u is bounded by the congestion of edge that carried all flows out of u. This gives the desired approximation.

Undirected networks can be dealt with by replacing each edge by two opposite directional edges. Thus we complete the proof.

▶