Chronic Exposure to Arsenic and Markers of Cardiometabolic Risk: A Cross-Sectional Study in Chihuahua, Mexico

Michelle A. Mendez,1,2,3 Carmen González-Horta,4 Blanca Sánchez-Ramírez,4 Lourdes Ballinas-Casarrubias,4 Roberto Hernández Cerón,5 Danián Viniegra Morales,5 Francisco A. Baeza Terrazas,5 María C. Ishida,3 Daniela S. Gutiérrez-Torres,5 R. Jesse Saunders,1 Zuzana Drobná,1 Rebecca C. Fry,6 John B. Buse,8 Dana Loomis,9 Gonzalo G. García-Vargas,10 Luz M. Del Razo,11 and Miroslav Stýblo1

1Department of Nutrition, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA; 2Carolina Population Center, and 3Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; 4Programa de Maestría en Ciencias en Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, México; 5Colegio de Médicos Cirujanos y Homeópatas del Estado de Chihuahua, A.C., Mexico; 6Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA; 7Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; 8Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; 9International Agency for Research on Cancer, Monographs Section, Lyon Cedex, France; 10Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, México; 11Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México DF, México

Background: Exposure to arsenic (As) concentrations in drinking water > 150 μg/L has been associated with risk of diabetes and cardiovascular disease, but little is known about the effects of lower exposures.

Objective: This study aimed to examine whether moderate As exposure, or indicators of individual As metabolism at these levels of exposure, are associated with cardiometabolic risk.

Methods: We analyzed cross-sectional associations between arsenic exposure and multiple markers of cardiometabolic risk using drinking-water As measurements and urinary As species data obtained from 1,160 adults in Chihuahua, Mexico, who were recruited in 2008–2013. Fasting blood glucose and lipid levels, the results of an oral glucose tolerance test, and blood pressure were used to characterize cardiometabolic risk. Multivariable logistic, multinomial, and linear regression were used to assess associations between cardiometabolic outcomes and water As or the sum of inorganic and methylated As species in urine.

Results: After multivariable adjustment, concentrations in the second quartile of water As (25.5 to < 47.9 μg/L) and concentrations of total speciated urinary As (< 55.8 μg/L) below the median were significantly associated with elevated triglycerides, high total cholesterol, and diabetes. However, moderate water and urinary As levels were also positively associated with HDL cholesterol. Associations between arsenic exposure and both dysglycemia and triglyceridemia were higher among individuals with higher proportions of dimethylarsenic in urine.

Conclusions: Moderate exposure to As may increase cardiometabolic risk, particularly in individuals with high proportions of urinary dimethylarsenic. In this cohort, As exposure was associated with several markers of increased cardiometabolic risk (diabetes, triglyceridemia, and cholesterolemia), but exposure was also associated with higher rather than lower HDL cholesterol.

Citation: Mendez MA, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Hernández Cerón R, Viniegra Morales D, Baeza Terrazas FA, Ishida MC, Gutiérrez-Torres DS, Saunders PJ, Drobná Z, Fry RC, Buse JB, Loomis D, García-Vargas GG, Del Razo LM, Stýblo M. 2016. Chronic exposure to arsenic and markers of cardiometabolic risk: a cross-sectional study in Chihuahua, Mexico. Environ Health Perspect 124:104–111; http://dx.doi.org/10.1289/ehp.1408742

Introduction

There is growing evidence that chronic exposure to inorganic As (iAs) may increase the risk of cardiometabolic (CM) disorders, including diabetes mellitus (DM) and cardiovascular diseases (CVD) (Kuo et al. 2013; Maull et al. 2012; Moon et al. 2012). Experimental studies report adverse effects of iAs and its metabolites on mechanisms associated with CM disorders, such as insulin secretion and signaling, lipid metabolism, systemic inflammation, and atherosclerosis (Cheng et al. 2011; Douillet et al. 2013; Druwe et al. 2012; Fu et al. 2010; Lemaire et al. 2011; Muthumani and Prabu 2014; Paul et al. 2007). Recent reviews of the epidemiological literature suggest that exposure to levels of iAs in drinking water > 150 μg As/L may increase the risk of diabetes (Maull et al. 2012) and CVD outcomes (Abhyankar et al. 2012; Moon et al. 2012; Navas-Acien et al. 2005). Evidence of relationships at low to moderate levels of exposure is more limited and equivocal.

To date, few epidemiologic studies have examined associations between moderate iAs exposure and markers of CM risk. Such studies may help to provide insight into the potential role of iAs exposure in the development and progression of CVD and diabetes. A few studies in industrially contaminated areas, or in settings with mean water As concentrations > 150 μg/L, have reported As exposure to be associated with CM markers such as elevated blood pressure and elevated fasting glucose, triglyceride, and low-density lipoprotein (LDL) cholesterol levels (Chen et al. 2012; Karim et al. 2013; Wang et al. 2007). However, there are limited and inconsistent data on associations with CM risk markers, most notably dyslipidemias, at lower As exposures (Abhyankar et al. 2012; Gribble et al. 2012; Jones et al. 2011).

Evidence is also limited regarding the role of iAs metabolism in determining health risks associated with iAs exposure in humans. iAs is enzymatically methylated to yield methylarsenic (MAs) and subsequently dimethylarsenic (DMAs) metabolites that are, along with residual iAs, excreted mainly in urine (Thomas et al. 2007). Urinary As profiles characterized by low percentages of DMAs and high percentages of MAs are thought to indicate a low capacity to methylate iAs. These indicators have been linked to an increased risk of cancer and precancerous skin lesions (Ahsan et al. 2007; Chen et al. 2003a, 2003b; Pierce et al. 2013; Yu et al. 2000). However, the relationship between urinary profiles of iAs metabolites and non-cancerous outcomes remains unclear (Chen et al. 2013b; Del Razo et al. 2011; Huang et al. 2007; Kim et al. 2013; Nizam et al. 2013).

This work was funded by the National Institutes of Health (grants R01ES015326 and R01ES015326, to M.S.). Support was also provided by the University of North Carolina Nutrition Obesity Research Center (grant DK056350) and by the Center for Environmental Health and Susceptibility (grant P30ES010126). The authors declare they have no actual or potential competing financial interests.
This cross-sectional study explored associations between CM risk and chronic exposure to iAs in a recently established cohort of adult residents of Chihuahua (Mexico) who consume water with a wide range of iAs concentrations. We examined the relationship between iAs in drinking water and urine; we also investigated the relationship between urinary indicators of iAs metabolism and CM risk based on measurements of dysglycemia, including diabetes, dyslipidemia, and blood pressure levels.

Materials and Methods

The Chihuahua cohort. All procedures involving human subjects were approved by institutional review boards at the University of North Carolina at Chapel Hill and Cinvestav-JPN (Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico). All participants provided signed informed consent. A total of 1,160 participants were randomly selected from the population of adults (≥ 18 years old) with a minimum 5-year residence in Chihuahua (Mexico). All participants provided signed informed consent. An interviewer-administered study questionnaire was used to record data on residency, occupation, drinking-water sources and use, smoking, alcohol consumption, and medical history. As described previously (Currier et al. 2014), spot urine and fasting venous blood were collected during a morning medical examination that included an oral glucose tolerance test with blood drawn 2 h after a 75-g glucose dose. Plasma from both fasting and 2-hr blood samples was stored at –80°C until analysis. Urine samples were aliquoted and immediately frozen. Trained staff obtained measurements of participants’ weight (without shoes and in light clothing) to the nearest 0.1 kg and measurements of their height to the nearest 0.1 cm; this information was used to calculate the body mass index (BMI) of the participants. BMI cutoffs of ≥ 25.0, ≥ 30, and ≥ 35 kg/m² were used to define overweight, obese, and underweight individuals, respectively (World Health Organization [WHO] Expert Committee on Physical Status 1995). Participants’ waist circumference was measured at the midpoint between the lowest rib and the iliac crest. Blood pressure was assessed using a manual sphygmomanometer. Three measurements were taken at intervals of at least 1 min, with a 5-min rest before obtaining the first reading; the mean of the last two measurements was used. Participants were seated with their backs supported, feet on the floor, and the arm supported in a horizontal position, with the cuff at the level of the heart.

Arsenic analyses. Hydride generation-atomic absorption spectrometry coupled with a cryotrap (HG-CT-AAS) (Hernández-Zavala et al. 2008) was used to determine the concentration of As in drinking water and the concentration of iAs in spot urine. Arsenic species were determined by atomic absorption spectrometry coupled with a cryotrap (HG-CT-AAS) (Hernández-Zavala et al. 2008) using a method similar to that described by Currier et al. (2014).

Table 1. Characteristics of the sample by concentration of arsenic in household water.

Characteristic	All participants	< 25.5	≥ 25.5 to < 47.9	≥ 47.9 to < 79.0	≥ 79.0
n	1,038	260	260	259	259
Sociodemographic, lifestyle					
Age, years*	45.6 ± 15.9	47.4 ± 16.8	43.4 ± 16.4	44.6 ± 14.5	47.0 ± 15.4
Female	712 (68.6)	180 (69.2)	174 (68.9)	185 (71.4)	173 (68.8)
Higher than primary education*	320 (30.8)	93 (35.6)	106 (40.8)	71 (27.4)	50 (19.3)
Smokes	291 (28.0)	65 (25.0)	71 (27.6)	70 (27.0)	85 (32.8)
Drinks alcohol**	423 (40.8)	90 (34.6)	114 (43.9)	115 (44.4)	104 (40.2)
Recent seafood intake**	269 (25.1)	79 (30.4)	84 (30.4)	64 (24.6)	64 (24.7)
Anthropometric, cardiometabolic					
Weight status**					
Overweight	368 (35.5)	91 (35.0)	88 (33.9)	87 (33.6)	102 (39.4)
Obese	411 (39.6)	92 (35.4)	112 (43.1)	118 (45.6)	89 (34.4)
Waist circumference, cm					
Female**	98.8 (13.0)	96.2 (12.0)	100.7 (12.9)	100.1 (14.5)	98.2 (12.1)
Male	96.7 (12.1)	97.7 (11.8)	96.5 (12.0)	97.0 (12.3)	95.6 (12.2)
Dysglycemiab					
Diabetes	183 (17.6)	33 (12.7)	53 (20.4)	47 (18.2)	50 (19.3)
Prediabetes	156 (15.0)	41 (15.8)	37 (14.2)	38 (14.7)	40 (15.4)
Triglycerides ≥ 150 mg/dL*	412 (41.0)	85 (33.5)	104 (41.4)	110 (43.8)	113 (45.6)
Total cholesterol ≥ 200 mg/dL**	234 (23.3)	44 (17.3)	61 (24.3)	67 (26.7)	62 (25.0)
LDL cholesterol ≥ 130 mg/dLc	160 (16.3)	33 (13.2)	43 (17.4)	45 (18.5)	39 (16.3)
HDL < 40 mg/dL**	589 (57.8)	161 (55.0)	151 (60.1)	144 (57.4)	133 (53.6)
Hypertensiond	439 (42.3)	106 (40.8)	106 (40.8)	109 (42.1)	119 (45.6)

Data are n (%), mean ± SD, or median (25th–75th percentile) unless otherwise indicated. One-way analysis of variance (ANOVA), Pearson’s chi-square, or Kruskal–Wallis test was used to infer differences across increasing quartiles of water As. Associations among individuals with household water As, n = 1,038 for all variables except LDL (n = 980) and other lipids (n = 1,004).

*Weight status: BMI ≥ 25 to < 30 overweight, BMI ≥ 30 obese. **Diabetes: fasting plasma glucose (FPG) ≥ 126 mg/dL, 2-hr plasma glucose (2HPG) ≥ 200 mg/dL, or self-reported diabetes diagnosis or medication use. Prediabetes: FPG ≥ 110 to < 126 mg/dL or 2HPG ≥ 140 mg/dL. cLDL cholesterol: estimated using the Friedewald equation if triglycerides < 400 mg/dL (Oliveira et al. 2013). dHypertension: SBP ≥ 140 mmHg, DBP ≥ 90 mmHg or anti-hypertensive medication use (medication use reported by n = 128 (28.7%) of the hypertensive individuals).

*Total speciated urinary arsenic: Δ dimethylated (DMAs), monomethylated (MAs), and inorganic (iAs) arsenic species. *p < 0.05; **p < 0.10.
concentrations of inorganic and methylated As species in urine. Arsenobetaine, arsenocholine, and arsenosugars cannot be measured using this method. A certified standard reference material, Arsenic Species in Frozen Human Urine (SRM 2669; National Institute of Standards and Technology, Gaithersburg, MD) was used to ensure accuracy. Concentrations of As species measured in SRM 2669 by HG-CT-AAS ranged from 86.7 to 106.4% of the certified values. The limit of detection (LOD) for As in water as well as for As species in urine was 0.01 μg/L. The concentration of creatinine in urine was determined using a colorimetric assay (Cayman Chemical Company, Ann Arbor, MI). Concentrations of water As and urinary As species below the LOD (1.9% for water As, 1.6% for urinary iAs) were imputed at LOD/2. Total speciated As in urine (tAs) was calculated as the sum of iAs, MAs, and DMAs. The pattern of tAs metabolism was characterized using the percentage of tAs present as DMAs, MAs, and iAs and the ratios of MAs/iAs and DMAs/MAs.

Cardiometabolic outcome. CM risk markers. A Prestige 24i Chemistry Analyzer (Tokyo Bocki Medisys Inc., Tokyo, Japan) was used to determine fasting plasma glucose (FPG) and 2-hr plasma glucose (2HPG) concentrations, in addition to triglyceride (TG), total cholesterol (TC), and high-density lipoprotein cholesterol (HDL) concentrations in fasting plasma. Reference human sera (Serodos and Serodos PLUS; Human Diagnostics Worldwide) were used for quality control. LDL was calculated using the Friedewald equation; 28 individuals with measured lipids outside accepted ranges for this approach were excluded from this calculation (Oliveira et al. 2013). Diabetes was classified by FPG ≥ 126 mg/dL, 2HPG > 200 mg/dL, or self-reported diabetes diagnosis or medication use (WHO/International Diabetes Federation 2006). Prediabetes was defined as the absence of diabetes with FPG ≥ 100 mg/dL or 2HPG > 140 mg/dL. Individuals with diabetes or prediabetes were classified as having dysglycemia. Elevated fasting levels of each lipid were defined as plasma TG ≥ 150 mg/dL, TC ≥ 200 mg/dL, and LDL ≥ 130 mg/dL (Miller et al. 2011; National Cholesterol Education Program 2002). Fasting HDL < 40 mg/dL in men and < 50 mg/dL in women were designated as low. Hypertension was defined by systolic blood pressure (SBP) > 140 mmHg, diastolic blood pressure (DBP) > 90 mmHg, or self-reported use of anti-hypertensive medication (Chobanian et al. 2003).

Statistical analysis. Associations between iAs exposure and each CM risk marker were analyzed using both categorical and continuous exposure measures. Arsenic concentrations in water and urine, as well as urinary DMAs/MAs and MAs/iAs ratios, were either categorized in quartiles or were natural log-transformed when used as continuous measures to make their distributions more normal. Associations with the presence of urinary tAs comprised by DMAs, MAs, and iAs were presented as quartiles or dichotomized at the median. Chi-square, ANOVA, and Kruskal–Wallis tests were used as appropriate to determine the significance of differences in subject characteristics by level of iAs exposure.

Multinomial (diabetes and prediabetes vs. neither) or simple logistic regression models (other variables) were used to analyze associations between iAs exposure and each CM risk outcome. To evaluate associations at various exposure doses, both categorical and log-transformed continuous exposure variables were used. Models were adjusted for age, sex, education, ethnicity, smoking, alcohol consumption, waist circumference, BMI, primary source of household drinking water (wells, treatment plants, and other), and self-reported seafood intake in the past week (a potential source of arsenobetaine or arsenosugars). Supplementary models examined the effects of adjusting for log-transformed urinary creatinine concentrations as recommended (Maul et al. 2012) or of normalizing As concentrations by dividing by the concentration of urinary creatinine. Statistical significance of main effects was set at \(p < 0.05 \) with \(p < 0.10 \) indicating marginal significance. Product terms (continuous outcomes) or relative excess risk for interaction (categorical outcomes) were calculated to assess interactions (\(p < 0.10 \)) when exploring combined effects of iAs exposure and metabolism (Vanderweede and Knol 2014). Thus, all interactions were evaluated on an additive scale. The primary analysis sample (\(n = 1,090 \)) excluded individuals with missing data (\(n = 70 \) for urinary tAs, blood pressure, dysglycemia, or covariates); 37 additional individuals were missing lipid measurements (\(n = 1,053 \)). Water As measurements were unavailable for an additional 52 participants in the analysis sample (\(n = 1,038 ; 1,004 \) for lipids). Multiple imputations fit using 10 replicates of chained equations indicated that the results of the complete case analysis did not differ significantly when missing data were imputed (data not shown). All analyses used STATA version 13.1 (StataCorp; College Station, TX).

Results

As exposure. Sociodemographic and anthropometric characteristics of the Chihuahua cohort, as well as data characterizing CM risk prevalence, iAs exposure, and urinary iAs metabolites are provided in Table 1. Concentrations of As in drinking water ranged from below the LOD to 419.8 μg/L, with a median of 47.9 μg/L. A total of 83.3% of the sample analysis exceeded the U.S. Environmental Protection Agency (EPA) and WHO recommended limit of 10 μg As/L, and 75.3% of the analysis sample exceeded the limit in Mexico of 25 μg As/L (Dirección General de Normas 1994; U.S. EPA 2014). Concentrations of total speciated urinary As (tAs) ranged from 0.52 to 491.5 μg/L, with a median of 55.8 μg/L. DMAs was the major metabolite (median 76.8% of tAs), followed by MAs (14.0%) and iAs (8.9%). Urinary tAs (Table 1) and concentrations of each As species increased with increasing concentrations of water As. However, the percentages of MAs and iAs increased with increasing amounts of urinary tAs (see Supplemental Material, Table S1). Water As and urinary tAs were correlated.

Table 2. Household drinking water arsenic concentrations and prevalent cardiometabolic risk outcomes: odds ratios (95% CI).

Cardiometabolic outcome	Water arsenic exposure quartile (μg/L)	In-Water As (μg/L)	
	≥ 25.5 to < 47.9	≥ 47.9 to < 79.0	≥ 79.0
Dysglycemia			
Diabetes	2.46 (1.44, 4.21)*	1.74 (1.01, 2.98)*	1.65 (0.97, 2.81)*
Prediabetes	1.14 (0.68, 1.91)	1.04 (0.62, 1.73)	1.13 (0.68, 1.88)
Triglycerides ≥ 150 mg/dL	1.45 (0.95, 2.14)**	1.53 (1.04, 2.24)*	1.69 (1.15, 2.49)*
Total Cholesterol ≥ 200 mg/dL	1.75 (1.11, 2.74)**	1.89 (1.21, 2.95)*	1.65 (1.05, 2.59)*
LDL ≥ 130 mg/dL	1.54 (0.92, 2.56)**	1.59 (0.96, 2.65)**	1.35 (0.80, 2.27)
HDL < 40 mg/dL	0.78 (0.52, 1.17)	0.63 (0.42, 0.93)*	0.59 (0.40, 0.88)*
Hypertension	1.30 (0.84, 2.00)	1.27 (0.82, 1.94)	1.41 (0.91, 2.17)

Results are derived from multinomial or logistic models adjusted for age, sex, education, smoking status, alcohol consumption, recent seafood intake, weight status, elevated waist circumference, and main water source (well, treatment plant, or other); multinomial models used for diabetes and prediabetes versus neither; logistic models used for other outcomes. Diabetes: fasting plasma glucose (FPG) > 126 mg/dL, 2-hr plasma glucose (2HPG) ≥ 200 mg/dL, or self-reported diabetes diagnosis or medication use. Prediabetes: FPG ≥ 110 to < 126 mg/dL or 2HPG ≥ 140 mg/dL. Normoglycemic individuals (i.e., individuals with no diabetes or prediabetes) are the referent. LDL-cholesterol estimated using the Friedewald equation if triglycerides < 400 mg/dL (Oliveira et al. 2013). Hypertension: SBP > 140, DBP > 90, or use of anti-hypertensive medication (medication use reported by 27.9% of hypertensive individuals). Normotensive individuals (no stage 1 or 2 hypertension) are the referent. *\(p < 0.05 \), **\(p < 0.10 \) for odds ratios for elevated versus low cardiometabolic risk associated with increasing water As exposure versus the lowest quartile (< 25.5 μg/L).
Arsenic exposure and cardiometabolic risk

outcomes (adjusted ORs for the highest vs. referent of < 27.5 μg/L) were 1.07 (95% CI: 1.01, 1.14) for TG, 1.15 (0.99, 1.33) for LDL-cholesterol, 1.54 (0.88, 2.69) for HDL, and 1.16 (0.96, 1.40) for HOMA-IR. Among normoglycemic individuals, n = 183, the referent was individuals without either diabetes or prediabetes (see Supplemental Material, Table S2). After multivariable adjustment, increasing concentrations of water As were also associated with significant increases in mean FPG and 2HPG among individuals not using diabetes medications and among individuals without diabetes (see Supplemental Material, Table S2). The relationships with continuous CM markers after multivariable adjustment (see Supplemental Material, Table S2) were similar to those with categorical outcomes, with urinary tAs positively associated with TG, TC, HDL, and FPG, as well as with 2HPG in subjects not using medications to control the levels of those markers. Among individuals without diabetes, associations with 2HPG were attenuated. Urinary tAs was not associated with SBP or DBP even when normalized to creatinine [coefficients did not significantly affect relationships with other outcomes associated with water As [adjusted ORs for log-transformed water As were 1.07 (95% CI: 1.01, 1.14) for TG, 1.07 (95% CI: 1.00, 1.15) for TC, and 0.87 (95% CI: 0.82, 0.93) for HDL].

Associations with continuous CM measurements are shown in the Supplemental Material, Table S2. Although water As was not associated with prediabetes (Table 2), increasing exposure was associated with elevated mean FPG and 2HPG among individuals not using diabetes medications and among individuals without diabetes (see Supplemental Material, Table S2). After multivariable adjustment, increasing concentrations of water As were also associated with significant increases in mean FPG and 2HPG among fully normoglycemic participants (i.e., individuals without either diabetes or prediabetes; Figure 1). Consistent with the categorical outcomes, after adjustment, increasing concentrations of water As were associated with increases in mean TG and TC and decreases in mean HDL, but not with mean LDL. Water As was not associated with mean DBP; the association with SBP was attenuated when individuals with diabetes were excluded (see Supplemental Material, Table S2).

Urinary tAs and CM risk. Urinary tAs concentrations were associated with multiple markers of CM risk. Similarly to the findings for water As, increasing concentrations of urinary tAs were associated with increased odds of diabetes and elevated TG, and there was evidence of increased risk at moderate concentrations (≥ 27.1 to < 55.8 μg/L) (Table 3). The highest quartile of tAs (≥ 105 μg/L) was associated with elevated TC (p < 0.05). There were, however, reduced odds of low HDL associated with log tAs (p < 0.05). Additional adjustment for urinary creatinine and urinary tAs metabolite composition (Table 3) tended to strengthen the magnitude of the associations. Similarly to water As, urinary tAs was not associated with prediabetes, but it was associated with significant increases in mean FPG among normoglycemic individuals in multivariable adjusted models (Figure 1); the highest quartile of tAs was also associated with mean increases in 2HPG. Excluding individuals with diagnosed diabetes did not meaningfully influence relationships between urinary tAs and other outcomes [adjusted ORs for the highest vs.

lowest quartiles: 1.71 (95% CI: 1.08, 2.71) for high TG, 2.14 (95% CI: 1.26, 3.62) for high TC, and 0.71 (95% CI: 0.44, 1.12) for low HDL].

The relationships with continuous CM markers after multivariable adjustment (see Supplemental Material, Table S2) were similar to those with categorical outcomes, with urinary tAs positively associated with TG, TC, HDL, and FPG, as well as with 2HPG in subjects not using medications to control the levels of those markers. Among individuals without diabetes, associations with 2HPG were attenuated. Urinary tAs was not associated with SBP or DBP even when normalized to creatinine [coefficients did not significantly affect relationships with other outcomes associated with water As [adjusted ORs for the highest vs. referent of < 27.5 μg/L] were 1.07 (95% CI: 1.01, 1.14) for TG, 1.07 (95% CI: 1.00, 1.15) for TC, and 0.87 (95% CI: 0.82, 0.93) for HDL].
in individuals not using anti-hypertensive medication: 1.19 (95% CI: 0.29, 2.66) \(p = 0.12 \) for SBP; 0.02 (95% CI: 0.88, 0.93) \(p = 0.95 \) for DBP).

iAs metabolism and CM risk markers. Higher %DMAs and DMAs/MAs in urine were associated with increased odds of diabetes, elevated TG, and hypertension (Figure 2). The relationships between these indicators and other CM outcomes were non-linear and weak. Conversely, an elevated %MAs was associated with reduced odds of diabetes, elevated TG, and hypertension. Similarly to %MAs, a high MAs/iAs ratio was negatively associated with diabetes. Associations of this ratio with other outcomes did not reach significance \((p < 0.05) \), but in contrast to diabetes, such associations generally suggested weak increases in risk. A high %As was associated with reduced odds of elevated TG [adjusted OR for the highest vs. lowest quartiles: 0.58 (95% CI: 0.39: 1.86)]; other associations were weaker and were not significant.

iAs metabolism, iAs exposure, and CM risk markers. We also examined joint effects of iAs metabolism and iAs exposure to assess whether associations between CM risk markers and iAs in drinking water varied depending on profiles of iAs metabolites in urine. For subjects with high levels of exposure to water iAs, the odds of diabetes (Figure 3) and of elevated TG (see Supplemental Material, Table S3) were significantly increased when individuals had not only higher exposure but also elevated %DMAs in urine (interaction \(p < 0.10 \)). For example, the adjusted OR for diabetes associated with being in the highest versus the lowest quartile of water iAs was 2.61 (95% CI: 1.22, 5.57) for participants with elevated %DMAs, but it was 0.87 (95% CI: 0.37, 2.04) for participants with low DMAs. Similarly, an elevated %DMAs increased the odds of elevated TG associated with elevated concentrations of urinary tAs (interaction \(p < 0.10 \); see Supplemental Material, Table S3). The adjusted OR for the association between the highest versus the lowest quartiles of water iAs and high TG was 3.31 (95% CI: 1.89, 5.78) versus 1.18 (95% CI: 0.37, 2.04) for participants with low DMAs. Similarly, an elevated %DMAs was associated with increased odds of diabetes and elevated plasma TG and TC. Similar concentrations of urinary tAs (≥ 27.1 μg/L) were also associated with diabetes and elevated TG, with higher levels (≥ 105.0 μg/L) associated with high TC. Although neither water As nor urinary tAs was associated with increased odds of prediabetes (Tables 2 and 3), both were positively associated with increases in mean FPG and 2HPG among normoglycemic individuals (Figure 1).

Discussion

In this study, both moderate exposure to iAs in drinking water and modest concentrations of speciated urinary iAs were associated with several CM risk markers. Water As concentrations ≥ 25.5 μg/L were associated with increased odds of diabetes and elevated plasma TG and TC. Similar concentrations of urinary tAs (≥ 27.1 μg/L) were also associated with diabetes and elevated TG, with higher levels (≥ 105.0 μg/L) associated with high TC. Although neither water As nor urinary tAs was associated with increased odds of diabetes, elevated TG, and hypertension. Moreover, the increased odds of diabetes and elevated TG associated with increased concentrations of water As were stronger among individuals with an elevated %DMAs. This finding suggests that individuals with patterns of metabolism characterized by this

![Figure 2. Associations between urinary As metabolism indicators and cardiometabolic risk. Odds ratios (95% CIs) for %iAs quartiles of urinary dimethylarsenic (DMAs) and DMAs/MAs (A), and MAs/iAs (B-C) ratios associated with diabetes (DM), triglycerides (TG), hypertension (HTN), total cholesterol (TC), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL).](image-url)
Arsenic exposure and cardiometabolic risk

These studies suggest the possibility of increased susceptibility to adverse health outcomes associated with As exposure. Similarly, for urinary iAs, individuals with an elevated %DMAs had significantly higher mean increases in fasting and 2-hr glucose, and fasting TG and TC than individuals with decreased %DMAs.

Elevated %DMAs and decreased %MAs, as well as elevated DMAs/MAs and MAs/iAs ratios, have been proposed as indicators of efficient enzymatic methylation of iAs (Del Razo et al. 1997; Tseng 2007). Several studies in settings with high iAs exposure have reported a high %MAs to be associated with markers of increased CM risk (Chen et al. 2013a, 2013b; Li et al. 2013a). Results from our independent population-based study in the Zimapán and Laguna regions of Mexico suggest that the positive association with urinary DMAs species may be at least partly attributable to elevated urinary concentrations of the toxic trivalent form of DMAs, DMAIII (Del Razo et al. 2011).

Notably, consistent with our findings, several recent cross-sectional studies in settings with high iAs exposure have had considerably higher exposures than those in this population: median 136 μg versus 47.4 μg As/g creatinine. Future research should assess whether moderate exposure may be more closely linked to alternative indicators of vascular function (Kunrath et al. 2013; Li et al. 2013b; Wu et al. 2012) or may vary in genetically or nutritionally vulnerable subgroups with varying iAs metabolism (Chen et al. 2007).

Despite increases in mean 2HPG and FPG associated with iAs exposure among normoglycemic individuals (Figure 1), iAs exposure was not associated with prediabetes. It is possible that the cutoffs used to characterize prediabetes were not sufficiently sensitive in our population, that iAs exposure may promote rapid progression to more severe disease, or that associations with glucose measurements are not causal.

Although additional prospective studies are needed to evaluate these relationships, laboratory studies suggest that iAs or its metabolites may inhibit insulin secretion or signaling (Douillet et al. 2013; Fu et al. 2010; Paul et al. 2007), alter lipid metabolism (Cheng et al. 2011; Hossain et al. 2013; Muthumani and Prabu 2014), and generate proinflammatory responses (Calatayud et al. 2014; Druwe et al. 2012). Increases in TC, LDL, and TG—along with decreases in HDL—have been observed in rodents treated with iAs (Muthumani and Prabu 2014), in addition to increases in hypertension, cardiac hypertrophy, and atherosclerosis (Cheng et al. 2011; Lemaire et al. 2011; Sanchez-Soria et al. 2012). The unexpected association with HDL requires further study in diverse populations and in laboratory settings. It is important to note that large disparities in the prevalence, predictors, and health consequences of low HDL have been described in Mexican and other Hispanic populations compared with populations of European descent (Aguilar-Salinas et al. 2001; Morales et al. 2014; Paramothay et al. 2010; Salas et al. 2014). Despite the limitations inherent in a cross-sectional design, the findings from this study are largely consistent with those from experimental research and from several smaller epidemiological studies in high-exposure settings. Moreover, although personal exposure was characterized on the basis of a single urine sample, the findings for water As and urinary iAs were largely consistent. Few previous studies have provided comparisons of urinary and water As measures or have used urinary indicators to assess how metabolism may modify the health effects of environmental exposure through drinking water contaminated by As (Chen et al. 2013a, 2013b). The consistency of unadjusted and multivariable-adjusted results, as well as those of sensitivity analyses excluding individuals previously diagnosed with hypertension or diabetes who may have adjusted behaviors such as water consumption, also supports the possibility of a causal relationship. Moreover, the close resemblance of the high prevalence

![Figure 3. Water As and odds of prevalent diabetes in subjects with vs. without elevated % urinary DMAs. ORs (95% CIs) for prevalent diabetes associated with household water As categories (< 25, 25 to < 50, 50 to < 100, and ≥ 100 μg/L) in subjects with proportions of DMAs defined as low versus high based on the median of 76.6%. The referent group for all ORs is subjects with %DMAs below the median in the lowest quartile of water As. The results are derived from multinomial models adjusted for age, sex, smoking status, alcohol consumption, BMI, elevated waist circumference, and main water source (well, treatment plant, or other). *p < 0.10 for additive interaction (relative excess risk for interaction) for the joint effect of water As and high %DMAs.](image-url)
of obesity and cardiometabolic risk reported herein to that reported for the general population of Mexico (Barquera et al. 2009; Salas et al. 2014; Villalondo et al. 2010) does not suggest selectivity in our cohort with respect to these outcomes. Studies in such settings may help provide a more complete understanding of how iAs exposure may influence cardiometabolic risk because many previous studies of these relationships have been conducted in settings such as Bangladesh, where the prevalence of obesity and CM disorders is relatively low (Chen et al. 2013b; Pan et al. 2013).

Conclusion

In summary, the results of this study fill a gap in current knowledge by suggesting potential CM risks associated with chronic exposure to As at levels < 100 μg/L in drinking water (Maull et al. 2012; Moon et al. 2013). Associations with measurements of dyslipidemia, which have been infrequently studied to date, warrant further study, given that the implications of our results for health risks were inconsistent for HDL, LDL, and triglycerides. Studies that incorporate measurements of specific lipid fractions and particles may be better able to evaluate the health risks of any association with iAs exposure (Genest 2008; Vickers and Remaley 2014). Our findings also suggest that iAs metabolism may influence the extent to which environmental exposure to iAs adversely affects the risk of CM impairment. Studies that measure trivalent and pentavalent urinary As species are needed to better understand the impact of metabolism on the health risks associated with iAs exposure.

References

Abhyankar LN, Jones MR, Guallar E, Navas-Acien A. 2012. Arsenic exposure and hypertension: a systematic review. Environ Health Perspect 120:494–506; doi:10.1289/ehp.1103988.

Aguilar-Salinas CA, Olaiz V, Valles V, Torres JM, Gómez Pérez FJ, Rull JA, et al. 2001. High prevalence of low HDL cholesterol concentrations and mixed hyperlipidemia in a Mexican nationwide survey. J Lipid Res 42:1298–1307.

Ahsan H, Chen Y, Kibriya MG, Slavkovich V, Parvez F, Jasmine F, et al. 2007. Arsenic metabolism, genetic susceptibility, and risk of premalignant skin lesions in Bangladesh. Cancer Epidemiol Biomarkers Prev 16:2432–2439.

Barquera S, Campos-Nonato I, Hernández-Barrera L, Aguilar-Salinas CA, Olaiz G, Valles V, Torres JM, et al. 2010a. Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh. Am J Epidemiol 178:372–381.

Chen Y, Wu F, Liu M, Parvez F, Slavkovich V, Eunus M, et al. 2013b. A prospective study of arsenic exposure, arsenic methylation capacity, and risk of cardiovascular disease in Bangladesh. Environ Health Perp 121:352–363; doi:10.1289/ehp.1205797.

Chen YC, Guo YL, Su HJ, Hsieh YM, Smith TJ, Ryan LM, et al. 2003a. Arsenic methylation and skin cancer risk in southwestern Taiwan. J Occup Environ Med 45:241–249.

Chen YC, Su HJ, Hsieh YM, Smith TJ, Ryan LM, et al. 2003b. Arsenic methylation and bladder cancer risk in Taiwan. Cancer Causes Control 14:303–310.

Chen Y, Wu F, Liu M, Parvez F, Slavkovich V, Guo Y, et al. 2010a. Artherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism. Toxicol Appl Pharmacol 256:146–153.

Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. 2003. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 42:1206–1252.

Currier JM, Ishida MC, González-Horta C, Sánchez-Ramírez B, Ballinas-Casarrubias L, Gutiérrez-Torres DS, et al. 2014. Associations between arsenic species in exfoliated uterine cells and prevalence of diabetes among residents of Chihuahua, Mexico. Environ Health Perspect 122:1088–1094; doi:10.1289/ehp.1307756.

Del Razo LM, Díaz-Barriga F, Valenzuela DL, Castellanos EH, Sánchez-Peña LC, Currier JM, et al. 2011. Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapán and Lagunera regions in Mexico. Environ Health 10:73; doi:10.1186/1476-069X-10-73.

Díaz-Barriga F, Garcia-Vargas GG, Vargas H, Albores A, Gonsebatt ME, Montero R, et al. 1997. Altered lipid profiles in arseniasis-hyperendemic areas in southwestern Mexico. J Environ Res Public Health 9:4522–4536.

Druwe IL, Sollome JJ, Sanchez-Soria P, Hardwick RN, Dirección General de Normas (DGN). 1994. Norma oficial mexicana. Salud medio ambiente, que debe someterse el agua para su potabilización [in Spanish]. Oficial del diario de la federación. México.

Druwe IL, Díaz-Barriga F, Sollome JJ, Sanchez-Soria P, Hardwick RN, Dirección General de Normas (DGN). 1994. NOM-127-SSA. Norma oficial mexicana. Salud medio ambiente, que debe someterse el agua para su potabilización [in Spanish]. Oficial del diario de la federación. México.

Ehrenreich RM, Pena-Santiago CM, Vargas HC, Ugalde EE. 1992. Arsenic methylation capacity, and carotid intima-media thickness in Bangladesh. Am J Epidemiol 178:372–381.

Fu J, Woods CG, Yehuda-Shapira E, Zhang Q, Wong Y, Collins S, et al. 2010. Low-level arsenic impairs glucose-stimulated insulin secretion in pancreatic beta cells: involvement of cellular adaptive response to oxidative stress. Environ Health Perp 118:864–870.

Genest J. 2008. The Yin and Yang of high-density lipo protein cholesterol. J Am Coll Cardiol 51:643–644.

Gribble MD, Howard BV, Umanes JG, Shara NM, Francesconi KA, Goessler W, et al. 2012. Arsenic exposure, diabetes prevalence, and diabetes control in the Strong Heart Study. Am J Epidemiol 176:865–874.

Hernández-Zavala A, Matousek T, Drobná Z, Paul DS, Walton F, Adair BM, et al. 2008. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrap-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer). J Anal At Spectrom 23:342–351.

Hossain E, Ota A, Karnan S, Damdimjor L, Takahashi M, Konishi Y, et al. 2013. Arsenic augments the uptake of low-density lipoprotein by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells. Toxicol Appl Pharmacol 273:651–658.

Huang YK, Tseng CH, Huang YL, Yang MH, Chen CJ, Hsieh YM. 2007. Arsenic methylation capacity and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan. Toxicol Appl Pharmacol 218:135–142.

Islam MR, Khan I, Attia J, Hassan SM, McEvoy M, D’Este C, et al. 2012. Association between hypertension and chronic arsenic exposure in drinking water: a cross-sectional study in Bangladesh. Int J Environ Res Public Health 9:4522–4536.

James KA, Marshall JA, Hokanson JE, Meliker JR, Zerbe GO, Byers TE. 2013. A case-cohort study examining lifetime exposure to inorganic arsenic in drinking water and diabetes mellitus. Environ Res 123:33–38.

Jones MR, Telles-Plaza M, Sharrett AR, Guallar E, Navas-Acien A. 2011. Urine arsenic and hypertension in US adults: the 2003–2008 National Health and Nutrition Examination Survey. Epidemiology 22:153–161.

Karim MR, Rahman M, Islam K, Mamun AA, Hossain S, Hossain E, et al. 2013. Increases in oxidized low-density lipoprotein and other inflammatory and adhesion molecules with a concomitant decrease in high-density lipoprotein in the individuals exposed to arsenic in Bangladesh. Toxicol Sci 135:17–25.

Kim NH, Mason CC, Nelson RG, Afton SE, Essader AS, Medlin JE, et al. 2013. Arsenic exposure and incidence of type 2 diabetes in Southwestern American Indians. Am J Epidemiol 177:962–969.

Kunnath Jr, Guzaua E, Guzzaua W, Gelmaner W, Thach TT, et al. 2013. Blood pressure hyperreactivity: an early cardiovascular risk in normotensive men exposed to low-to-moderate inorganic arsenic in drinking water. J Hypertens 31:361–369.

Kuo CC, Moon K, Thayer KA, Navas-Acien A. 2013. Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr Diab Rep 13:831–849.

Lemaire M, Lemarié CA, Molina MF, Schifflin ER, Lehoux S, Mann KK. 2011. Exposure to moderate arsenic concentrations increases atherosclerosis in ApoE−/− mouse models. Toxicology 297:211–221.

Li X, Li B, Xi S, Zheng Q, Wang D, Sun G. 2013a. Arsenic activates NFkB through induction of C-reactive protein. Toxicol Appl Pharmacol 281:263–270.

Mendez et al.
concentration and risk of hypertension: a cross-sectional study from arsenic contaminated areas in northwestern China. Environ Health 12:37; doi:10.1186/1476-069X-12-37.

Mauil EA, Ahsan H, Edwards J, Longnecker MP, Navas-Acien A, Pi J, et al. 2012. Evaluation of the association between arsenic and diabetes: a National Toxicology Program workshop review. Environ Health Perspect 120:1658–1670; doi:10.1289/ehp.1104579.

Miller M, Stone NJ, Ballantyne C, Bittner V, Criqui MH, Ginsberg RN, et al. 2011. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation 123:2292–2332.

Moon K, Guillar E, Navas-Acien A. 2012. Arsenic exposure and cardiovascular disease: an updated systematic review. Curr Atheroscler Rep 14:542–555.

Moon KA, Guallar E, Umann JG, Devereux RB, Best LG, Francesconi KA, et al. 2013. Association between exposure to low to moderate arsenic levels and incident cardiovascular disease. A prospective cohort study. Ann Intern Med 159:649–659.

Morales LS, Flores YN, Leng M, Sportche N, Gallegos-Carrillo K, Salmerón J. 2014. Risk factors for cardiovascular disease among Mexican-American adults in the United States and Mexico: a comparative study. Salud Publica Mex 56:197–205.

Muthumani M, Prabu SM. 2014. Silibinin potentially attenuates arsenic-induced oxidative stress mediated cardiotoxicity and dyslipidemia in rats. Cardiovasc Toxicol 14:83–97.

National Institute of Standards and Technology. 2008. Development of SRM 2669 for Accurate Assessment of Arsenic Exposure. Available: http://www.nist.gov/mml/csd/inorganic/arsenicurl.cfm [accessed 1 July 2014].

Navas-Acien A, Sharrett AR, Silbergeld EK, Schwartz BS, Nachman KE, Burke TA, et al. 2005. Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am J Epidemiol 162:1037–1049.

Navas-Acien A, Silbergeld EK, Pastor-Barriuso R, Guallar E. 2008. Arsenic exposure and prevalence of type 2 diabetes in US adults. JAMA 300:814–822.

Navas-Acien A, Silbergeld EK, Pastor-Barriuso R, Guallar E. 2009. Rejoinder: arsenic exposure and prevalence of type 2 diabetes: updated findings from the National Health Nutrition and Examination Survey, 2003–2006. Epidemiology 20:816–820.

Navas-Acien A, Silbergeld EK, Streeter RA, Clark JM, Burke TA, Guallar E. 2006. Arsenic exposure and type 2 diabetes: a systematic review of the epidemiological and experimental evidence. Environ Health Perspect 114:641–648; doi:10.1289/ehp.8551.

NCEP [National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III)]. 2002. Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Final Report. Circulation 106:3143–3421.

Nizam S, Kato M, Yatsuyu H, Khaleduzzaman M, Ohnuma S, Naito H, et al. 2013. Differences in urinary arsenic metabolites between diabetic and non-diabetic subjects in Bangladesh. Int J Environ Res Public Health 10:1006–1019.

Olivera MJ, van Deventer HE, Bachmann LM, Warnick GR, Nakajima K, Nakamura M, et al. 2013. Evaluation of four different equations for calculating LDL-C with eight different direct HDL-C assays. Clin Chim Acta 423:135–146.

Pan WC, Seow WJ, Kile ML, Hoffman EB, Quamruzzaman Q, Rahman M, et al. 2013. Association of low to moderate levels of arsenic exposure with risk of type 2 diabetes in Bangladesh. Am J Epidemiol 178:1563–1570.

Paramsothy P, Knopp RH, Berton AG, Blumenthal RS, Pan WC, Seow WJ, Liou SH, Wang HJ, Li WF, Hsieh DP. 2007. Inorganic arsenic exposure and its relation to metabolic syndrome in an industrial area of Taiwan. Environ Int 33:805–811.

WHO (World Health Organization) Expert Committee on Physical Status. 1995. Physical Status: The Use and Interpretation of Anthropometry: Report of a WHO Expert Committee. Technical report series No. 854 Geneva:World Health Organization. Available: http://apps.who.int/iris/bitstream/10665/37003/1/WHO_TRS_854.pdf [accessed 1 October 2014].

WHO/International Diabetes Federation. 2006. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation. Geneva: World Health Organization. Available: http://apps.who.int/iris/bitstream/10665/43558/1/9241594343_eng.pdf [accessed 1 October 2014].

Wu F, Jasmine F, Kibriya MG, Liu M, Wójcik O, Parvez F, et al. 2012. Association between arsenic exposure from drinking water and plasma levels of cardiovascular markers. Am J Epidemiol 175:1252–1261.

Yu RC, Hsu KH, Chen CJ, Froines JR. 2008. Arsenic methylation capacity and skin cancer. Cancer Epidemiol Biomarkers Prev 9:1259–1262.