On the model companion of partial differential fields with an automorphism

DOI: 10.1007/s11856-016-1292-y

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Sanchez, O. (2016). On the model companion of partial differential fields with an automorphism. Israel Journal of Mathematics, 212(1), 419–442. Advance online publication. https://doi.org/10.1007/s11856-016-1292-y

Published in:
Israel Journal of Mathematics

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing relevant details, so we can investigate your claim.
ON THE MODEL COMPANION OF PARTIAL DIFFERENTIAL FIELDS WITH AN AUTOMORPHISM

OMAR LEÓN SÁNCHEZ

Abstract. We prove that the class of partial differential fields of characteristic zero with an automorphism has a model companion. We then establish the basic model theoretic properties of this theory and prove that it satisfies the canonical base property, and consequently the Zilber dichotomy, for finite dimensional types.

INTRODUCTION

The study of fields equipped with additive operators is a topic that has drawn the attention of the mathematical community since the early 1940’s. For instance, the study of meromorphic solutions of differential equations led to the study of arbitrary fields equipped with several commuting derivations. This subject, now known as differential algebra, is an extremely rich area of study with active research in differential Galois theory and applications to computer algebra and numerical integration techniques. Similarly, the study of difference equations, in the realm of fields equipped with automorphisms, has had several applications to algebraic dynamics and diophantine geometry.

Even though the study of the above two areas is interesting in its own right, the interplay between them has also led to the development of the theory of differential-difference fields; that is, fields equipped with commuting derivations and automorphisms. In the 1970’s, this theory was first studied from an algebraic perspective by Cohn [9]. Later on, a Galois theory for linear differential-difference equations was developed by Hardouin and Singer [12], among others.

Whether it is in the differential, difference, or differential-difference setting, the main applications come from understanding the analogue (or generalization) of algebraic geometry that arises when considering the solution sets of differential, difference, and differential-difference equations, respectively. A natural approach to the subject is to work in a large universal domain where all the varieties, defined over various fields, cohabit; much in the spirit of Weil’s algebraic geometry.

Model theory provides the right analogue notion of universal domains for the above settings. These domains are precisely the (highly saturated) existentially closed models of the theory under consideration; that is, the models that have a realization for every quantifier free formula for which a realization exists in some extension. In order to apply model-theoretic techniques (from geometric stability theory, for instance) it is customary to show that the class of existentially closed
models is axiomatizable. Equivalently, to show that the theories of differential, difference, and differential-difference fields have a model companion.

The existence of the model companions of the theories of differential and difference fields has already proven its fruitfulness. For example, in the setting of (partial) differential fields of characteristic zero, the model-theoretic properties of the model companion, such as \(\omega \)-stability and the Zilber dichotomy, were at the heart of the development of a generalized differential Galois theory [33] and the proof of the Mordell-Lang conjecture for function fields [16]. Similarly, in the context of difference fields with one automorphism (it is known that the theory of difference fields with \(n > 1 \) commuting automorphisms does not admit a model companion), again the model-theoretic properties of the model companion, such as supersimplicity and a version of the Zilber dichotomy, have been successfully utilized in number theoretic applications such as Hrushovski’s model-theoretic proof of the Manin-Mumford conjecture [17].

In this paper we study the model theory of differential-difference fields with several commuting derivations and one automorphism. In particular, we show that this theory admits a model companion, and that it is supersimple and it satisfies the Zilber dichotomy. We expect that the results of this paper can be applied in the context of differential-difference Galois theory, and that (using the properties of canonical bases in supersimple theories) a version of Zilber’s indecomposability theorem for definable groups holds.

It has been known for over fifteen years that the theory of ordinary differential fields of characteristic zero with an automorphism admits a model companion, and it has been studied intensively by Bustamante [2], [3], [4]. However, the techniques used to prove the existence of the model companion do not extend to the theory of partial differential fields with an automorphism. In this paper we use a different approach to show that the latter theory has indeed a model companion, which we denote by \(DCF_{0,m}A \) (here \(m \) denotes the number of commuting derivations).

For many geometrically well behaved theories one can prove the existence of a model companion by adapting the axiomatization of \(ACFA \) given by Chatzidakis and Hrushovski in terms of algebro-geometric objects [7]. These so called “geometric axiomatizations” have successfully been applied to yield the existence of model companions in several interesting theories: ordinary differential fields [28], partial differential fields (several commuting derivations) [21, 22], fields with commuting Hasse-Schmidt derivations in positive characteristic [20], fields with free operators [26], and in theories having a “geometric notion of genericity” [15].

In [11], Guzy and Rivière point out that the existentially closed partial differential fields with an automorphism are characterized by a certain differential-algebro geometric condition (see Fact 2.1 below), very much in the spirit of the geometric axioms for \(ACFA \). However, it remains open as to whether their geometric condition can be expressed in a first order way. The problem lies in determining the definability of differential irreducibility and differential dominance in definable families of differential algebraic varieties (these problems are related to the generalized Ritt problem, see [10] and [13]).

Motivated by the methods in [22], we bypass the above definability issues by applying the differential algebraic machinery of characteristic sets of prime differential ideals developed by Kolchin [18] (and Rosenfeld [34]). More precisely, we prove a characterization of the existentially closed models in terms of characteristic sets of
prime differential ideals (see Theorem 2.3). Then, using the fact that the condition of being a characteristic set of a prime differential ideal is definable (see Fact 1.4 below), we observe that our characterization is indeed first order.

Once we have the existence of the model companion $DCF_{0,m}A$, the results in §3 of [8] imply, among other things, that each completion of $DCF_{0,m}A$ is supersimple and it satisfies the independence theorem over differential-difference fields that are differentially closed. In Section 3, we formally state these results and observe that, following the spirit of the arguments in §1 of [7], one can show that the independence theorem holds over algebraically closed differential-difference fields. We also present, in Proposition 3.4, some basic properties of the fixed field and the various fields of constants.

In Section 5, we prove a Zilber dichotomy theorem for $DCF_{0,m}A$ via a now standard approach using jet spaces. More precisely, following the ideas of Pillay and Ziegler from [29], we develop a notion of (Δ, σ)-jet space for finite dimensional (Δ, σ)-varieties. Then, in Theorem 4.11, we use these (Δ, σ)-jet spaces and the properties of finite dimensional (Δ, σ)-modules to prove the canonical base property for finite dimensional types. Finally, a standard adaptation of the argument of Pillay [32] for compact complex manifolds, shows that the canonical base property implies (and is rather stronger than) the Zilber dichotomy.

Acknowledgements. I would like to thank Bradd Hart, Rahim Moosa, and an anonymous referee for their helpful comments and suggestions on a previous version of this paper.

1. Differential algebraic preliminaries

1.1. Differential algebra.

By a differential ring (field) we mean a ring (field) equipped with a finite set $\Delta = \{\delta_1, \ldots, \delta_m\}$ of commuting derivations. Let us fix a differential field (K, Δ) of characteristic zero. The set of derivative operators is defined as the commutative monoid

$$\Theta := \{\delta^{e_m} \cdots \delta^{e_1} : e_i < \omega\}.$$

Let $x = (x_1, \ldots, x_n)$ be a tuple of (differential) indeterminates, the set of algebraic indeterminates is $\Theta x = \{\theta x_i : \theta \in \Theta, i = 1, \ldots, n\}$. Then the ring of differential polynomials over K is defined as $K\{x\} := K[\Theta x]$. One can equip $K\{x\}$ with the structure of a differential ring by extending Δ, using the Leibniz rule and defining

$$\delta_j(\delta^{e_m} \cdots \delta^{e_1} x_i) = \delta^{e_m} \cdots \delta^{e_{j+1}} \cdots \delta^{e_1} x_i.$$

The canonical ranking on the algebraic indeterminates Θx is defined by

$$\delta^{e_m} \cdots \delta^{e_1} x_i < \delta^{e_m'} \cdots \delta^{e_1} x_j \iff \left(\sum e_k, i, e_m, \ldots, e_1 \right) < \left(\sum r_k, j, r_m, \ldots, r_1 \right)$$

in the lexicographical order. Let $f \in K\{x\} \setminus K$. The leader of f, v_f, is the highest ranking algebraic indeterminate that appears in f. The degree of f, d_f, is the degree of v_f in f. The rank of f is the pair (v_f, d_f). If $g \in K\{x\} \setminus K$ we say that g has lower rank than f if $\text{rank}(g) < \text{rank}(f)$ in the lexicographical order.
Let \(f \in K\{x\} \setminus K \). The separant of \(f \), \(S_f \), is the formal partial derivative of \(f \) with respect to \(v_f \), that is
\[
S_f := \frac{\partial f}{\partial v_f} \in K\{x\}.
\]
The initial of \(f \), \(I_f \), is the leading coefficient of \(f \) when viewed as a polynomial in \(v_f \), that is, if we write
\[
f = \sum_{i=0}^{d_f} g_i \cdot v_f^i,
\]
where \(g_i \in K\{x\} \) and \(v_{g_i} < v_f \), then \(I_f = g_d_f \). Note that both \(S_f \) and \(I_f \) have lower rank than \(f \).

Definition 1.1. Let \(f, g \in K\{x\} \setminus K \). We say \(g \) is partially reduced with respect to \(f \) if no (proper) derivative of \(v_f \) appears in \(g \). If in addition the degree of \(v_f \) in \(g \) is less than \(d_f \) we say that \(g \) is reduced with respect to \(f \).

A finite set \(\Lambda = \{ f_1, \ldots, f_s \} \subset K\{x\} \setminus K \) is said to be autoreduced if for all \(i \neq j \) we have that \(f_i \) is reduced with respect to \(f_j \). We will always write autoreduced sets in order of increasing rank, i.e., \(\text{rank}(f_1) < \cdots < \text{rank}(f_s) \). The canonical ranking on autoreduced sets is defined as follows: \(\{ g_1, \ldots, g_r \} \subset \{ f_1, \ldots, f_s \} \) if and only if, either there is \(i \leq r, s \) such that \(\text{rank}(g_i) = \text{rank}(f_j) \) for \(j < i \) and \(\text{rank}(g_j) < \text{rank}(f_i) \), or \(r > s \) and \(\text{rank}(g_s) = \text{rank}(f_j) \) for \(j \leq s \).

An ideal \(I \) of \(K\{x\} \) is said to be a differential ideal if \(\delta f \in I \) for all \(f \in I \) and \(\delta \in \Delta \). Given a set \(A \subseteq K\{x\} \) the differential ideal generated by \(A \) is denoted by \([A] \). It can be shown that every differential ideal \(I \) of \(K\{x\} \) contains a lowest ranking autoreduced set ([18], Chap. I, §10), called a characteristic set of \(I \).

Even though differential ideals are not in general generated by their characteristic sets, prime differential ideals are determined by these.

Fact 1.2. [18, Chap. IV, §9] Let \(\mathcal{P} \) be a prime differential ideal of \(K\{x\} \) and \(\Lambda \) a characteristic set of \(\mathcal{P} \). Then
\[
\mathcal{P} = [\Lambda] : H^\infty_{\Lambda} = \{ g \in K\{x\} : H^\ell_{\Lambda} \cdot g \in [\Lambda] \text{ for some } \ell < \omega \},
\]
where \(H_{\Lambda} = \prod_{f \in \Lambda} S_f I_f \).

1.2. Differentially closed fields.

Let \(L_m \) be the language of differential rings with \(m \) derivations, and \(DCF_{0,m} \) the \(L_m \)-theory of differential fields of characteristic zero with \(m \) commuting derivations. In [24], McGrail showed that this theory has a model companion, the theory of differentially closed fields \(DCF_{0,m} \), and proved it is a complete \(\omega \)-stable theory that admits quantifier elimination and elimination of imaginaries. We also have the following facts:

- Suppose \((K, \Delta) \models DCF_{0,m} \) and \(A \subseteq K \). Then \(\text{dcl}(A) \) equals the differential field generated by \(A \) and \(\text{acl}(A) \) equals \(\text{dcl}(A)^{df} \).
- If \(k \subseteq l \) are differential subfields of \((K, \Delta) \), then for any tuple \(a \) from \(K \) we have that \(a \models_k l \) if and only if the differential field generated by \(a \) over \(k \) is algebraically disjoint from \(l \) over \(k \).

Assume \((K, \Delta) \models DCF_{0,m} \). Given \(A \subseteq K\{x\} \) and \(V \subseteq K^n \), we let
\[
\mathcal{V}(A) := \{ a \in K^n : f(a) = 0 \text{ for all } f \in A \}
\]
and
\[\mathcal{I}(V/K)_\Delta := \{ f \in K\{x\} : f(a) = 0 \text{ for all } a \in V \}. \]

Also, if \(\Lambda \) is a characteristic set of a prime differential ideal we let
\[V^*(\Lambda) := V(\Lambda) \setminus V(H_\Lambda). \]

Note that \(V(\Lambda) \) is a closed set in the Kolchin topology of \(K^n \) (in other words, a \(\Delta \)-closed set). Recall that this topology is the differential analogue of the Zariski topology of \(K^n \); that is, the \(\Delta \)-closed sets of \(K^n \) are precisely the zero sets of finite systems of differential polynomial equations over \(K \). By the differential basis theorem, the Kolchin topology is Noetherian and thus every \(\Delta \)-closed set has an irreducible decomposition.

The following basic properties of characteristic sets are essential for our characterization of the existentially closed partial differential fields with an automorphism (see Theorem 2.3).

Proposition 1.3. Assume \((K, \Delta) \models DCF_{0,m}\). Let \(\mathcal{P} \) be a prime differential ideal of \(K\{x\} \) and \(\Lambda \) a characteristic set of \(\mathcal{P} \). Then \(V^*(\Lambda) = V(\mathcal{P}) \setminus V(H_\Lambda), V^*(\Lambda) \neq \emptyset \) and \(V(\mathcal{P}) \) is an irreducible component of \(V(\Lambda) \).

Proof. Let \(a \in V^*(\Lambda) \), we need to show that \(f(a) = 0 \) for all \(f \in \mathcal{P} \). Clearly if \(f \in [\Lambda] \) then \(f(a) = 0 \). Let \(f \in \mathcal{P} \), since \(\mathcal{P} = [\Lambda] : H_\Lambda^\infty \), we can find \(\ell \) such that \(H_\Lambda^\ell f \in [\Lambda] \). Hence, \(H_\Lambda(a)f(a) = 0 \), but \(H_\Lambda(a) \neq 0 \), and so \(f(a) = 0 \). The other containment is clear. If \(\mathcal{V}(\mathcal{P}) \subseteq V(H_\Lambda) \) then, by the differential Nullstellensatz, \(H_\Lambda \) would be in \(\mathcal{P} \) and so Fact 1.2 would yield that \(1 \in \mathcal{P} \). Thus \(\mathcal{V}(\mathcal{P}) \setminus V(H_\Lambda) \neq \emptyset \). Now let \(V \) be an irreducible component of \(V(\Lambda) \) containing \(\mathcal{V}(\mathcal{P}) \). Since \(V^*(\Lambda) = \mathcal{V}(\mathcal{P}) \setminus V(H_\Lambda) \), we have that \(V \setminus V(H_\Lambda) = \mathcal{V}(\mathcal{P}) \setminus V(H_\Lambda) \subseteq \mathcal{V}(\mathcal{P}) \). Hence \(\mathcal{V}(\mathcal{P}) \) contains a nonempty \(\Delta \)-open set of \(V \), and so, by irreducibility of \(V \), \(\mathcal{V}(\mathcal{P}) = V \). \(\square \)

In order to prove the existence of the model companion for partial differential fields with an automorphism we will make use of the following result of Tressl.

Fact 1.4. [35, §4] The condition that \(\Lambda = \{ f_1, \ldots, f_s \} \) is a characteristic set of a prime differential ideal” is a definable property (in the language \(L_{\Delta m} \)) of the coefficients of \(f_1, \ldots, f_s \). More precisely, for any \(\{ f_1(u,x), \ldots, f_s(u,x) \} \subset \mathbb{Q}[u]\{x\} \), where \(u = (u_1, \ldots, u_r) \) are (algebraic) indeterminates, there is an \(L_{\Delta m} \)-formula \(\phi \) such that for all \((K, \Delta) \models DCF_{0,m}\) and \(a \in K^r \) we have that \((K, \Delta) \models \phi(a)\) if and only if \(\{ f_1(a,x), \ldots, f_s(a,x) \} \) is a characteristic set of a prime differential ideal of \(K\{x\} \).

Let us comment that Tressl’s proof is essentially an application of Rosenfeld’s criterion ([18], Chap. IV, §9). This criterion reduces the problem of checking if a family \(\{ f_1, \ldots, f_s \} \subset K\{x\} \) is a characteristic set of a prime differential ideal, to the classical problem of checking primality of ideals in polynomial rings in finitely many variables where uniform bounds are well known [36].

2. **The model companion**

In this section we show that the theory of partial differential fields of characteristic zero with an automorphism has a model companion. The scheme of axioms we use are in terms of characteristic sets of prime differential ideals. We carry on the differential algebraic notation and terminology from the previous section.
We work in the language of differential rings with \(m \) derivations and an endomorphism \(\mathcal{L}_{m,\sigma} \). We denote by \(DF_{0,m,\sigma} \) the theory of differential fields of characteristic zero with \(m \) commuting derivations and an automorphism commuting with the derivations. By a differential-difference field we mean a field \(K \) equipped with a set of derivations \(\Delta = \{ \delta_1, \ldots, \delta_m \} \) and an automorphism \(\sigma \) such that \((K, \Delta, \sigma) = DF_{0,m,\sigma} \). In particular, our difference fields are all inversive.

We will use the following geometric characterization of the existentially closed models of \(DF_{0,m,\sigma} \).

Fact 2.1. Let \((K, \Delta, \sigma) \) be a differential-difference field. Then \((K, \Delta, \sigma) \) is existentially closed if and only if the following conditions hold

1. \((K, \Delta) \models DCF_{0,m} \)
2. Suppose \(V \) and \(W \) are irreducible \(\Delta \)-closed sets such that \(W \subseteq V \times V^\sigma \) and \(W \) projects \(\Delta \)-dominantly onto both \(V \) and \(V^\sigma \). If \(O_V \) and \(O_W \) are nonempty \(\Delta \)-open sets of \(V \) and \(W \), respectively, then there is \(a \in O_V \) such that \((a, \sigma a) \in O_W \).

If \(V \) is a \(\Delta \)-closed set then \(V^\sigma \) is the \(\Delta \)-closed set with defining differential ideal \(\{ f^\sigma : f \in \mathcal{I}(V/K)_{\Delta} \} \), where \(f^\sigma \) is the differential polynomial obtained by applying \(\sigma \) to the coefficients of \(f \).

Proof. A proof of this in the case of \(O_V = V \) and \(O_W = W \) appears in [11]. The argument given there can easily be adapted (in the usual way), but we include a proof for the sake of completeness.

Suppose \((K, \Delta, \sigma) \) is existentially closed and \(V, W, O_V \) and \(O_W \) are as in condition (ii). Working in a sufficiently saturated elementary extension \((U, \Delta) \) of \((K, \Delta) \), we can find a \(\Delta \)-generic point \((c, d)\) of \(W \) over \(K \) (i.e., a tuple from \(U \) such that \(\mathcal{I}(c, d)/K)_{\Delta} = \mathcal{I}(W/K)_{\Delta} \)). Clearly \((c, d) \in O_W \) and, since \(W \) projects \(\Delta \)-dominantly onto \(V \) and \(V^\sigma \), \(c \) and \(d \) are generic points of \(V \) and \(V^\sigma \), respectively, over \(K \). Thus, \(c \in O_V \). Because \(DCF_{0,m} \) has quantifier elimination we have that \(\mathcal{I}(d/K) = \sigma(\mathcal{I}(c/K)) \), where \(\mathcal{I}(a/K) \) denotes the type of \(a \) over \(K \) in the language of differential rings \(\mathcal{L}_m \). Hence, there is an automorphism \(\sigma' \) of \((U, \Delta) \) extending \(\sigma \) such that \(\sigma'(c) = d \). Since \((K, \Delta, \sigma) \) is existentially closed we can find a point in \(K \) with the desired properties.

Now suppose conditions (i) and (ii) are satisfied. Let \(\phi(x) \) be a conjunction of atomic \(\mathcal{L}_{m,\sigma} \)-formulas over \(K \). Suppose \(\phi \) has a realisation \(a \) in some differential-difference field \((F, \Delta, \sigma) \) extending \((K, \Delta, \sigma) \). Let

\[\phi(x) = \psi(x, \sigma x, \ldots, \sigma^r x) \]

where \(\psi \) is a conjunction of atomic \(\mathcal{L}_m \)-formulas over \(K \) and \(r > 0 \). Let \(b \) be the tuple \((a, \sigma a, \ldots, \sigma^{r-1} a)\), \(X \) be the \(\Delta \)-locus of \(b \) in \(F^{nr} \) over \(K \), and \(Y \) be the \(\Delta \)-locus of \((b, \sigma b)\) in \(F^{2nr} \) over \(K \). Let

\[\chi(x_0, \ldots, x_{r-1}, y_0, \ldots, y_{r-1}) := \psi(x_0, \ldots, x_{r-1}, y_{r-1}) \land \left(\bigwedge_{i=1}^{r-1} x_i = y_{i-1} \right) \]

then \(\chi \) is realised by \((b, \sigma b)\). Since \((b, \sigma b)\) is a \(\Delta \)-generic point of \(Y \), \(b \) is a \(\Delta \)-generic point of \(X \) and \(\sigma b \) is a \(\Delta \)-generic point of \(X^\sigma \), over \(K \), we have that \(Y \) projects \(\Delta \)-dominantly onto both \(X \) and \(X^\sigma \) over \(K \). Thus, since \((K, \Delta) \models DCF_{0,m} \), \(Y(K) \) projects \(\Delta \)-dominantly onto both \(X(K) \) and \(X^\sigma(K) \). Applying (2) with \(V = O_V = X(K) \) and \(W = O_W = Y(K) \), there is \(c \in V \) such that
(c, σc) ∈ W. Let c = (c_0, ..., c_{r-1}), then (c_0, ..., c_{r-1}, σc_0, ..., σc_{r-1}) realises χ. Thus, (c_0, σc_0, ..., σc_{r-1}) realises ψ. Hence, c_0 is a tuple from K realising φ. This proves (K, ∆, σ) is existentially closed. □

Remark 2.2. It is not known if condition (ii) is expressible in a first order way. One of the problems lies in the fact that it is not known if differential irreducibility is a definable condition. That is, given a differential algebraic family of ∆-closed sets V_a in a differentially closed field (K, ∆), it is not known if the set

\{ a ∈ K^r : V_a is irreducible \}

is definable (see [10] and [13] for partial results around this problem). The other problem is that it is not known if differential dominance onto irreducible ∆-closed sets is a definable condition. That is, given a differential algebraic family of ∆-closed sets V_a in a differentially closed field (K, ∆), it is not known if the set

\{ (a, b) ∈ K^r × K^s : f_a,b is ∆-dominant \}

is definable.

We bypass these definability issues by showing a new characterization of the existentially closed models in terms of characteristic sets of prime differential ideals. Recall, from Section 1.2, that if Λ is a characteristic set of a prime differential ideal

\{ V ∈ \mathcal{V}(\Lambda) : H(\Lambda) \}

is irreducible then Λ is a nonempty ∆-open subset of the irreducible ∆-closed set

\{ V ∈ \mathcal{V}(\Lambda) : H(\Lambda) \}

and, by Proposition 1.3, V*(Λ) ⊆ V(Λ) \setminus V(H_\Lambda).

Theorem 2.3. Let (K, ∆, σ) be a differential-difference field. Then (K, ∆, σ) is existentially closed if and only if the following conditions hold

1. (K, ∆) = DCF_{0,m}.
2. Suppose Λ and Γ are characteristic sets of prime differential ideals of K{x} and K{x, y}, respectively, such that

\{ V ∈ \mathcal{V}(\Lambda) : H(\Lambda) \}

is ∆-dominant onto irreducible ∆-closed sets in a differentially closed field (K, ∆), it is not known if the set

\{ (a, b) ∈ K^r × K^s : f_a,b is ∆-dominant \}

is definable.

\[V^*(\Gamma) \subseteq V(\Lambda) \setminus V(H_\Lambda) \]

Suppose O and Q are nonempty ∆-open subsets of V*(\Lambda) and V*(\Lambda^σ), respectively, such that O ⊆ π_x(V*(\Gamma)) and Q ⊆ π_y(V*(\Gamma)). Then there is a ∈ V*(\Lambda) such that (a, σa) ∈ V*(\Gamma).

Here, if Λ = \{ f_1, ..., f_s \}, then Λ^σ = \{ f_1^σ, ..., f_s^σ \}, and π_x and π_y denote the canonical projections from V(Λ) \times V(Λ^σ) onto V(Λ) and V(Λ^σ), respectively.

Proof. Suppose (K, ∆, σ) is existentially closed, and let Λ, Γ, O and Q be as in condition (2). Then Λ is a characteristic set of the prime differential ideal \[P = [\Lambda] : H_\Lambda^\infty \] and, by Proposition 1.3, V*(\Lambda) = V(\mathcal{P}) \setminus V(H_\Lambda). So O_V := V*(\Lambda) is a nonempty ∆-open subset of the irreducible ∆-closed set V := V(\mathcal{P}). Similarly, O_W := V*(\Gamma) is a nonempty ∆-open subset of the irreducible ∆-closed set W := V ([\Gamma] : H_\Gamma^\infty).

Next we show that W ⊆ V × V^σ. By Proposition 1.3

\[W \setminus V(H_W) = V^*(\Gamma) \subseteq V(\Lambda) \setminus V(\Lambda^σ), \]

so that by taking ∆-closures W ⊆ V(\Lambda) \setminus V(\Lambda^σ). Since W is irreducible it must be contained in some X × Y where X and Y are irreducible components of V(\Lambda) and V(\Lambda^σ), respectively. Hence O ⊆ π_x(W) ⊆ X. On the other hand, O ⊆ O_V ⊆ V, and so V = X. Similarly, since V^σ = V ([\Lambda^σ] : H_\Lambda^\infty) and working with Q rather than O, we get Y = V^σ. Therefore, W ⊆ V × V^σ. Since O ⊆ π_x(W) and Q ⊆ π_y(W),
Fact 2.1. In fact, it suffices to prove this statement in the case when $O\subseteq V$ and $O\subseteq W$ projects Δ-dominantly onto both V and V^σ, and we show that there is $a\in V$ such that $(a,\sigma a)\in W$. Let Λ and Γ be characteristic sets of $I(V/K)\Delta$ and $I(W/K)\Delta$, respectively. Then, by Proposition 1.3

$$V^*(\Gamma) = W \setminus V(H_\Gamma) \subseteq V \times V^\sigma \subseteq V(\Lambda) \times V(\Lambda^*)$$

Since W projects Δ-dominantly onto V and V^σ, $V^*(\Gamma)$ projects Δ-dominantly onto both V and V^σ. Thus, by quantifier elimination for $DCF_{0,m}$, there are nonempty Δ-open sets O and Q of $V^*(\Lambda)$ and $V^*(\Lambda^*)$, respectively, such that $O \subseteq \pi_1(V^*(\Gamma))$ and $Q \subseteq \pi_2(V^*(\Gamma))$. We are in the situation of condition (2), and there is $a\in V^*(\Lambda) \subseteq V$ such that $(a,\sigma a)\in V^*(\Gamma) \subseteq W$. \hfill \Box

What the above proof shows is that, in a differentially closed field, each instance of condition (ii) of Fact 2.1 is equivalent to an instance of condition (2) of Theorem 2.3. This is accomplished by the passing from prime differential ideals to their characteristics sets, and from Δ-dominant projections to containment of a nonempty Δ-open set. However, these two characterizations have a very different flavour in terms of first order axiomatizability. More precisely, our new characterization has the advantage that condition (2) is expressible in a first order way. Indeed, suppose $(K,\Delta) \models DCF_{0,m}$ and let $\{f_1(u,x),\ldots,f_s(u,x)\} \subseteq \mathbb{Q}[u]\{x\}$, where $u = (u_1,\ldots,u_r)$ are (algebraic) indeterminates; while it is not known if the set

$$\{a \in K^r: \mathcal{V}(f_1(a,x),\ldots,f_s(a,x)) \text{ is irreducible}\}$$

is definable, Fact 1.4 tells us precisely that

$$\{a \in K^r: \{f_1(a,x),\ldots,f_s(a,x)\} \text{ is a characteristic set of a prime } \Delta\text{-ideal}\}$$

is in fact definable. It follows easily now that condition (2) is first order. (Observe that by introducing the Δ-open sets O and Q of condition (2) in our scheme of axioms we have avoided the issue of Δ-dominance mentioned in Remark 2.2.)

By the above discussion, Theorem 2.3 and Fact 1.4 imply the following:

Corollary 2.4. The theory $DCF_{0,m,\sigma}$ has a model companion.

Henceforth we denote this model companion by $DCF_{0,m,A}$.

3. Basic model theory of $DCF_{0,m,A}$

In this section we present some of the model theoretic properties of the theory $DCF_{0,m,A}$. Many of these results are consequences of the work of Chatzidakis and Pillay in [8] or more or less immediate adaptations of the arguments from [2] or §5 of [26].

Let (K,Δ,σ) be a differential-difference field and $A \subseteq K$. The differential-difference field generated by A, denoted by (A), is the smallest differential-difference subfield of K containing A. Note that (A) is simply the subfield of K generated by

$$\{\delta_m^{e_m}\cdots\delta_1^{e_1}\sigma^ka: a\in A, e_i<\omega, k\in\mathbb{Z}\}.$$
If \(k \) is a differential-difference subfield of \(K \), we write \(k(B) \) instead of \((k \cup B) \).

The following are consequences of §3 of [8] and the fact that the model companion \(DCF_{0,m}A \) exists:

Proposition 3.1. Let \((K, \Delta, \sigma)\) and \((L, \Delta', \sigma')\) be models of \(DCF_{0,m}A \).

(i) If \(A \subseteq K \), then \(acl(A) = \langle A \rangle^{alg} \).

(ii) Suppose \(K \) and \(L \) have a common algebraically closed differential-difference subfield \(F \), then \((K, \Delta, \sigma) \equiv_F (L, \Delta', \sigma')\). In particular, the completions of \(DCF_{0,m}A \) are determined by the difference field structure on \(Q^{alg} \).

(iii) Suppose \(k \) is a differential-difference subfield of \(K \) and \(a, b \) are tuples from \(K \). Then \(tp(a/k) = tp(b/k) \) if and only if there is an \(k \)-isomorphism from \((k(a)^{alg}, \Delta, \sigma)\) to \((k(b)^{alg}, \Delta, \sigma)\) sending \(a \) to \(b \).

(iv) Every \(L_{m,\sigma} \)-formula \(\phi(x_1, \ldots, x_n) \) is equivalent, modulo \(DCF_{0,m}A \), to a disjunction of formulas of the form \(\exists y \psi(x_1, \ldots, x_n, y) \), where \(\psi \) is quantifier free, and such that for every tuple \((a_1, \ldots, a_n, b)\) if \(\psi(a_1, \ldots, a_n, b) \) holds then \(b \in \langle a_1, \ldots, a_n \rangle^{alg} \).

(v) Every completion of \(DCF_{0,m}A \) is supersimple. Moreover, if \(A, B, C \) are subsets of \(K \), then \(A \downarrow_C B \) if and only if \(\langle A \cup C \rangle \) is algebraically disjoint from \(\langle B \cup C \rangle \) over \(\langle C \rangle \).

By (v) of Proposition 3.1, \(DCF_{0,m}A \) satisfies the independence theorem over models. Furthermore, by adapting the proof of Theorem 3.31 of [2] or of Theorem 5.9 of [26], one can show that \(DCF_{0,m}A \) satisfies the independence theorem over algebraically closed differential-difference fields. That is,

Proposition 3.2. Let \((K, \Delta, \sigma)\) be a sufficiently saturated model of \(DCF_{0,m}A \). Suppose \(F \) is a (small) algebraically closed differential-difference subfield of \(K \), and

(i) \(A \) and \(B \) are (small) supersets of \(F \) with \(A \uparrow_F B \), and

(ii) \(a \) and \(b \) are tuples such that \(tp(a/F) = tp(b/F) \) and \(a \uparrow_F A \) and \(b \uparrow_F B \).

Then there is \(d \uparrow_F A \cup B \) with \(tp(d/A) = tp(a/A) \) and \(tp(d/B) = tp(b/B) \).

Thus, complete types over algebraically closed differential-difference fields are amalgamation bases, and hence each such type has a canonical base (see [14] or [6]). In other words, if \(p \) is a complete type over an algebraically closed differential-difference field \(F \), then there exists a set \(Cb(p) \) such that \(B := dcl(Cb(p)) \) is the smallest definably closed subset of \(F \) such that \(p \) does not fork over \(B \), and the restriction \(p|_B \) is again an amalgamation base. (The fact that we can take \(Cb(p) \) in the real sort follows from Proposition 3.3 below, and the fact that supersimple theories eliminate hyperimaginaries [6, Theorem 20.4].)

The proof of Proposition 3.36 of [2] extends to the partial case to yield (one can also adapt the proof of Theorem 5.13 of [26]):

Proposition 3.3. Every completion of \(DCF_{0,m}A \) eliminates imaginaries.

Let \((K, \Delta, \sigma)\) be a differential-difference field. We denote by \(K^\sigma \) the fixed field of \(K \), that is \(K^\sigma = \{ a \in K : \sigma a = a \} \), and by \(K^\Delta \) we denote the field of (total) constants of \(K \), that is \(K^\Delta = \{ a \in K : \delta a = 0 \text{ for all } \delta \in \Delta \} \). We let \(C_K \) be the field \(K^\sigma \cap K^\Delta \).

More generally, if \(\Delta' \) is a set of linearly independent elements of the \(C_K \)-vector space \(\text{span}_{C_K} \Delta \), we let \(K^{\Delta'} \) be the field of \(\Delta' \)-constants of \(K \), that is \(K^{\Delta'} = \{ a \in K : \delta a = 0 \text{ for all } \delta \in \Delta' \} \). In particular, \(K^0 = K \) and if \(\Delta' \) is a basis of \(\text{span}_{C_K} \Delta \).
then $K^{\Delta'} = K^{\bar{\Delta}}$. Note that both K^σ and $K^{\Delta'}$ are differential-difference subfields of (K, Δ, σ). Also, (K, Δ', σ) is itself a differential-difference field.

In the following proposition $DCF_{0,0}A$ stands for $ACFA_0$.

Proposition 3.4. Let $(K, \Delta, \sigma) \models DCF_{0,m}A$, Δ_1 and Δ_2 disjoint sets such that $\Delta' := \Delta_1 \cup \Delta_2$ forms a basis of span$_{K,\Delta}$, and $r = |\Delta_1|$. Then

(i) $(K, \Delta', \sigma) \models DCF_{0,m}A$

(ii) $(K, \Delta_1, \sigma) \models DCF_{0,r}A$

(iii) $(K^{\Delta_1}, \Delta_1, \sigma) \models DCF_{0,r}A$

(iv) $K^{\Delta_2} \cap K^\sigma$ is a pseudofinite field.

(v) For all $k \geq 1$, $(K, \Delta, \sigma^k) \models DCF_{0,m}A$

(vi) $(K^\sigma)^{alg}, \Delta) \models DCF_{0,m}$

Proof.

(i) It is easy to see that a set $V \subseteq K^n$ is Δ-closed if and only if it is Δ'-closed. Hence, irreducibility in the Δ-topology is equivalent to irreducibility in the Δ'-topology. Similarly a projection onto any set of coordinates is Δ-dominant if and only if it is Δ'-dominant. Therefore, each instance of the axioms of $DCF_{0,m}A$ (or rather of the characterization given by Fact 2.1) that needs to be checked for Δ' is true, as it is true for Δ.

(ii) By (i) we may assume that $\Delta_1 \subseteq \Delta$. By the relative version of Kolchin’s Irreducibility Theorem ([19], Chapter 0, §6), every Δ_1-closed set irreducible in the Δ_1-topology is also irreducible in the Δ-topology. Hence, every instance of the characterization of $DCF_{0,r}A$ given by Fact 2.1 that needs to be checked for Δ_1 is an instance of the characterization of $DCF_{0,m}A$ for Δ. But all these instances are true since $(K, \Delta, \sigma) \models DCF_{0,m}A$.

(iii) By (i) we may assume that $\Delta_1 \cup \Delta_2 = \Delta$. We show that $(K^{\Delta_2}, \Delta_1, \sigma)$ is existentially closed. Let $\phi(x)$ be a quantifier free $L_{r,\sigma}$-formula over K^{Δ_2} with a realisation a in some differential-difference field (F, Ω_1, γ) extending $(K^{\Delta_2}, \Delta_1, \sigma)$. Let $\Omega := \Omega_1 \cup \{\rho_1, \ldots, \rho_{m-r}\}$ where each ρ_i is the trivial derivation on F. Hence, (F, Ω, γ) is a differential-difference field extending $(K^{\Delta_2}, \Delta, \sigma)$. Let (L, Ω, γ) be a model of $DCF_{0,m}A$ extending (F, Ω, γ). Since K^{Δ_2} is a common algebraically closed differential-difference subfield of K and L, and $L \models \phi(a)$ and $\rho_i a = 0$ for $i = 1, \ldots, m - r$, by (ii) of Proposition 3.1 K has a realisation b of ϕ such that $b \in K^{\Delta_2}$. Thus, since ϕ is quantifier free, $K^{\Delta_2} \models \phi(b)$.

(iv) By (iii), we have that $(K^{\Delta_2}, \Delta_1, \sigma) \models DCF_{0,r}A$, and so, by (ii), $(K^{\Delta_2}, \sigma) \models ACFA_0$. Hence, the fixed field of (K^{Δ_2}, σ), which is $K^{\Delta_2} \cap K^\sigma$, is pseudofinite.

(v) This can be shown as in Corollary 3.38 of [2]. We give a slightly more direct argument using the characterization given by Fact 2.1. Let $V \subseteq K^n$ and $W \subseteq K^{2n}$ be irreducible Δ-closed sets such that $W \subseteq V \times V^\sigma k$ and W projects Δ-dominantly onto both V and V^σ. We aim to show that there is $a \in V$ such that $(a, \sigma^k a) \in W$. Let

$$\tilde{V} = V \times V^\sigma \times \cdots \times V^\sigma_{k-1}$$

and

$$\tilde{W} = \{(x_0, \ldots, x_{k-1}, y_0, \ldots, y_{k-1}) \in K^{2kn} : (x_0, y_{k-1}) \in W, (x_0, \ldots, x_{k-1}) \in \tilde{V}, x_{i+1} = y_i \text{ for } i = 0, \ldots, k - 2\}.$$

Then \tilde{W} is an irreducible Δ-closed subset of $\tilde{V} \times \tilde{V}^\sigma$ that projects Δ-dominantly onto both \tilde{V} and \tilde{V}^σ. Then, since $(K, \Delta, \sigma) \models DCF_{0,m}A$, we get a point in \tilde{W} of
the form

\[(a_0, \ldots, a_{k-1}, \sigma a_0, \ldots, \sigma a_{k-1})\].

By the equations of \(\hat{W}\), we have that \((a_0, \sigma a_{k-1}) \in W\) and \(a_{k-1} = \sigma^{k-1}a_0\). Hence, \((a_0, \sigma^ka_0) \in W\), as desired.

(ii) This appears in Theorem 3.2 of [11]. Let us give a brief sketch of the proof. Let \(V\) be an irreducible \(\Delta\)-closed set defined over \((K^\sigma)^{alg}\). We need to show that \(V\) has a \((K^\sigma)^{alg}\)-point. Since the unique extension of \(K^\sigma\) of degree \(n\) is \(K^\sigma^n\), we can find \(k \geq 1\) such that \(V^{\sigma^k} = V\). Let \(W\) be the diagonal in \(V \times V = V \times V^{\sigma^k}\), then \(W\) projects \(\Delta\)-dominantly onto \(V\) and \(V^{\sigma^k}\). Hence, by (v), there is a point \(a\) in \(V\) such that \((a, \sigma^k a)\) is in \(W\), and so \(\sigma^k a = a\). Hence, \(a\) is in \(K^{\sigma_k} \subseteq (K^\sigma)^{alg}\). \(\square\)

4. The canonical base property and the Zilber dichotomy

In this section we prove the canonical base property, and consequently the Zilber dichotomy, for finite dimensional types in \(DCF_{0,m}A\). Our proof follows the arguments given by Pillay and Ziegler in [29], where they prove the dichotomy for \(DCF_0\) and \(ACFA_0\) using the theory of jet spaces for algebraic varieties (this is also the strategy of Bustamante in [4] to prove the dichotomy for finite dimensional types in \(DCF_{0,1}A\)).

For the rest of this section fix a sufficiently saturated \((U, \Delta, \sigma) \models DCF_{0,m}A\), and an algebraically closed differential-difference subfield \(K\) of \(U\). We first recall the theory of jet spaces from algebraic geometry. We refer the reader to §5 of [27] for a more detailed treatment of this classical material.

Let \(V \subseteq U^n\) be an irreducible affine algebraic variety defined over \(K\). Let \(U[V] = \mathbb{U}[x]/I(V/\mathbb{U})\) denote the coordinate ring of \(V\) over \(U\). For each \(a \in V\), let

\[M_{V,a} = \{ f \in U[V] : f(a) = 0 \} .\]

Let \(r > 0\), the \(r\)-th jet space of \(V\) at \(a\), denoted by \(j_rV_a\), is defined as the dual space of the finite dimensional \(U\)-vector space \(M_{V,a}/M_{V,a}^{r+1}\).

The following gives explicit equations for the \(r\)-th jet space and allows us to consider it as an affine algebraic variety.

Fact 4.1. Let \(V \subseteq U^n\) be an irreducible affine algebraic variety defined over \(K\). Fix \(r > 0\). Let \(D\) be the set of operators of the form

\[\frac{\partial^s}{\partial x_1^{i_1} \cdots \partial x_k^{i_k}}\]

where \(0 < s \leq r\), \(1 \leq i_1 < \cdots < i_k \leq n\), \(s_1 + \cdots + s_k = s\), and \(0 < s_i\). Let \(a \in V\) and \(d = |D|\). Then \(j_rV_a\) can be identified with the \(U\)-vector subspace

\[\{ (u_D)_{D \in D} \in U^d : \sum_{D \in D} Df(a)u_D = 0, \text{ for all } f \in I(V/K) \} .\]

Let \(X \subseteq V\) be an irreducible algebraic subvariety and \(a \in X\). The containment of \(X\) in \(V\) yields a canonical linear embedding of \(j_rX_a\) into \(j_rV_a\) for all \(r\). We therefore identify \(j_rX_a\) with its image in \(j_rV_a\).

Fact 4.2. [29, Lemma 2.2] Let \(X\) and \(Y\) be irreducible algebraic subvarieties of \(V\) and \(a \in X \cap Y\). Then, \(X = Y\) if and only if \(j_rX_a = j_rY_a\), as subspaces of \(j_rV_a\), for all \(r\).
We now introduce the \((\Delta, \sigma)\) analogue of the notions of differential and difference modules from [29]. It should be noted that the notion of \((\Delta, \sigma)\)-module in the case of one derivation, \(\Delta = \{\delta\}\), was already considered by Bustamante [4, Definition 4.1], and that Lemma 4.4 below is a generalization of [4, Lemma 4.2] to the partial case.

Definition 4.3. By a \((\Delta, \sigma)\)-module over \((U, \Delta, \sigma)\) we mean a triple \((E, \Omega, \Sigma)\) such that \(E\) is a \(U\)-vector space, \(\Omega = \{\partial_1, \ldots, \partial_m\}\) is a family of additive endomorphisms of \(E\) and \(\Sigma\) is an additive automorphism of \(E\) such that
\[
\partial_i(\alpha e) = \delta_i(\alpha)e + \alpha \partial_i(e)
\]
and
\[
\Sigma(\alpha e) = \sigma(\alpha) \Sigma(e)
\]
for all \(\alpha \in U\) and \(e \in E\), and the operators in \(\Omega \cup \{\Sigma\}\) commute. If we omit \(\sigma\) and \(\Sigma\) we obtain Pillay and Ziegler’s definition of a \(\Delta\)-module over \((U, \Delta)\). Similarly, if we omit \(\Delta\) and \(\Omega\) we obtain the definition of a \(\sigma\)-module over \((U, \sigma)\).

The following is for us the key property of \((\Delta, \sigma)\)-modules.

Lemma 4.4. Let \((E, \Omega, \Sigma)\) be a finite dimensional \((\Delta, \sigma)\)-module over \(U\). Let \(E^\sigma = \{e \in E : \Sigma(e) = e\text{ and } \partial(e) = 0\text{ for all } \partial \in \Omega\}\). Then \(E^\sigma\) is a \(C_U\)-vector space (recall that \(C_U = U^\sigma \cap U^\Delta\)) and there is a \(C_U\)-basis of \(E^\sigma\) which is also a \(U\)-basis of \(E\).

Proof. Clearly \(E^\sigma\) is a \(C_U\)-vector space. Let \(\{e_1, \ldots, e_d\}\) be a \(U\)-basis of \(E\). With respect to this basis, let \(A_i\) be the matrix of \(\partial_i\), \(i = 1, \ldots, m\), and \(B\) the matrix of \(\Sigma\). By this we mean that \(A_i\) is the matrix whose \(j\)-th column consists of the coefficients of the linear combination of \(\partial_i(e_j)\) in terms of the basis, and similarly for \(B\). Under the linear transformation that takes the basis \(\{e_1, \ldots, e_d\}\) to the standard basis of \(U^d\), the \((\Delta, \sigma)\)-module \((E, \Omega, \Sigma)\) is transformed into the \((\Delta, \sigma)\)-module \((U^d, \{\delta_1 + A_1, \ldots, \delta_m + A_m\}, B\sigma)\).

It suffices to prove the result for this \((\Delta, \sigma)\)-module. As \(\Sigma\) is an additive automorphism of \(E\), the matrix \(B\) is invertible. Also, the commutativity of \(\Omega \cup \{\Sigma\}\) yields:
\[
\delta_j(A_i) - \delta_i(A_j) = [A_i, A_j], \quad i, j = 1, \ldots, m
\]
and
\[
B\sigma(A_i) = \delta_i(B) + A_iB, \quad i = 1, \ldots, m.
\]
Since \(\delta_i(B^{-1}) = -B^{-1}\delta_i(B)B^{-1}\), the previous equation yields
\[
B^{-1}A_i = \delta_i(B^{-1}) + \sigma(A_i)B^{-1}, \quad i = 1, \ldots, m.
\]
Now, note that \((U^d)^\sigma = \{u \in U^d : B\sigma(u) = u\text{ and } \delta_i(u) + A_iu = 0, i = 1, \ldots, m\}\), and thus it suffices to find a nonsingular \(d \times d\) matrix \(M\) over \(U\) such that \(B\sigma(M) = M\) and \(\delta_i(M) + A_iM = 0\). Indeed, the columns of this matrix \(M\) will form a basis of \(U^d\) whose elements are all in \((U^d)^\sigma\). Let \(X\) be an \(d \times d\) matrix of variables. Extend \(\Delta\) to derivations on \(U(X)\) by letting \(\delta_i(X) = -A_iX\) for \(i = 1, \ldots, m\), and \(\sigma\) to an automorphism on \(U(X)\) by letting \(\sigma(X) = B^{-1}X\). By 4.1 the derivations \(\Delta\) on \(U(X)\) commute and by 4.3 the automorphism \(\sigma\) on \(U(X)\) commutes with \(\Delta\). Hence, \(U(X)\) is a differential-difference field extension of \(U\) such that \(B\sigma(X) = X\).
and \(\delta_i(X) + A_iX = 0 \). As \((U, \Delta, \sigma)\) is existentially closed we can find a nonsingular matrix \(M \) over \(U \) satisfying the desired properties. \[\square \]

Notice that if \(\{e_1, \ldots, e_d\} \subset E^\sigma \) is a \(U \)-basis of \(E \), which exists by the previous lemma, then, under the linear transformation that takes this basis to the standard basis of \(U^d \), the \((\Delta, \sigma)\)-module \((E, \Omega, \Sigma)\) is transformed into the \((\Delta, \sigma)\)-module \((U^d, \Delta, \sigma)\).

Remark 4.5. Let \((E, \Omega)\) be a \(\Delta \)-module over \((U, \Delta)\) and \(E^* \) be the dual space of \(E \). If we define the dual operators \(\Omega^* = \{\partial^*_1, \ldots, \partial^*_m\} \) on \(E^* \) by

\[
\partial^*_i(\lambda)(e) = \delta_i(\lambda(e)) - \lambda(\partial_i(e))
\]

for all \(\lambda \in E^* \) and \(e \in E \), then \((E^*, \Omega^*)\) becomes a \(\Delta \)-module over \(U \). Indeed, by Remark 3.3 of [29], \((E^*, \partial^*_i)\) is a \(\{\delta_i\}\)-module. Hence, all we need to verify is that the \(\partial^*_i \)'s commute:

\[
\begin{align*}
\partial^*_j(\partial^*_i(\lambda))(e) &= \delta_j(\delta_i(\lambda(e))) - \delta_j(\lambda(\partial_i(e))) - \delta_i(\lambda(\partial_j(e))) + \lambda(\partial_j(\partial_i(e))) \\
&= \delta_i(\delta_j(\lambda(e))) - \delta_i(\lambda(\partial_j(e))) - \delta_j(\lambda(\partial_i(e))) + \lambda(\partial_i(\partial_j(e))) \\
&= \partial^*_i(\partial^*_j(\lambda))(e).
\end{align*}
\]

We now describe a natural \((\Delta, \sigma)\)-module structure on the jet spaces of an algebraic \(\Delta \)-variety equipped with a finite-to-finite correspondence with its \(\sigma \)-transform. We first need to recall the notion of an algebraic \(\Delta \)-variety (w.r.t. \(\Delta \)).

Definition 4.6. An (affine) algebraic \(\Delta \)-variety defined over \(K \) is a pair \((V, s)\) where \(V \subseteq U^n \) is an irreducible affine algebraic variety over \(K \) and \(s = (s_1, \ldots, s_m) \) is an \(m \)-tuple of polynomial maps over \(K \) such that each \(s_i = (s_i^{(1)}, \ldots, s_i^{(n)}) : V \to U^n \) satisfies

\[
\sum_{k=1}^n \frac{\partial f}{\partial x_k}(x)s_i^{(k)}(x) + f^s_i(x) \in \mathcal{I}(V/K)
\]

for every \(f \in \mathcal{I}(V/K) \), where \(f^s_i \) is the polynomial obtained by applying \(\delta_i \) to the coefficients of \(f \). We also require the following integrability condition

\[
(\mathbf{4.4}) \quad \sum_{k=1}^n \frac{\partial s_i^{(\ell)}}{\partial x_k}(x)s_j^{(k)}(x) + s_i^{(\ell)}(x) \equiv \sum_{k=1}^n \frac{\partial s_j^{(\ell)}}{\partial x_k}(x)s_i^{(k)}(x) + s_j^{(\ell)}(x) \mod \mathcal{I}(V/K)
\]

for all \(1 \leq i < j \leq m \) and \(\ell = 1, \ldots, n \).

In the ordinary case \(\Delta = \{\delta\} \) this notion coincides with the algebraic \(\Delta \)-varieties studied by Pillay in [30] and [31]. Moreover, the way we have presented them here is in the spirit of §3 of [23], where the more general notion of relative \(\Delta \)-variety was introduced (our algebraic \(\Delta \)-varieties are in fact relative \(\Delta \)-varieties w.r.t. \(\Delta/\emptyset \)).

The set of sharp points of an affine \(\Delta \)-variety \((V, s = (s_1, \ldots, s_m))\) is defined as

\[
(V, s)^\# = \{a \in V : s_i(a) = \delta_i a, i = 1, \ldots, m\}.
\]

In [23] it is shown that the integrability condition 4.4 is a necessary and sufficient condition for \((V, s)^\#\) to be Zariski dense in \(V \). Also, it follows from the equations of the sharp points that if \(a \in (V, s)^\# \) then the \(\Delta \)-field generated by \(a \) over \(K \) has finite transcendence degree over \(K \) (in fact it is equal to \(K(a) \)). Conversely, we have
Fact 4.7. [23, 3] Let \(a \) be a tuple such that the \(\Delta \)-field generated by \(a \) over \(K \) has finite transcendence degree over \(K \). Then, up to \(\Delta \)-interdefinability over \(K \), \(a \) is a \(\Delta \)-generic point of \((V, s)\)# over \(K \) for some algebraic \(D \)-variety \((V, s)\).

Here \(\Delta \)-interdefinability means interdefinable in the language of differential rings.

Let \((V, s = (s_1, \ldots, s_m))\) be an algebraic \(D \)-variety defined over \(K \). Then we can extend the derivations \(\Delta \) to the coordinate ring \(\mathbb{U}[V] \) by defining \(\delta_i(x) = s_i(x) \) where \(x = (x_1, \ldots, x_n) \) are the coordinate functions of \(\mathbb{U}[V] \). The integrability condition (4.4) shows that these extensions commute with each other. Hence, \((\mathbb{U}[V], \Delta)\) becomes a \(\Delta \)-ring (having a \(\Delta \)-ring structure on the coordinate ring is the approach of Buium to \(D \)-varieties [1]).

Let \(a \in (V, s)\)#. Then, \(M_{V,a}^r \) is a \(\delta_i \)-ideal of the \(\delta_i \)-ring \(\mathbb{U}[V] \) for all \(r > 0 \).

This is shown explicitly in Lemma 3.7 of [29]. Hence, \((M_{V,a}^r/M_{V,a}^r)\) becomes a \(\Delta \)-module over \((U, \Delta)\). By Remark 4.5, \((j_rV_a, \Delta^*)\) is a \(\Delta \)-module over \((U, \Delta)\).

Suppose now \(a \in (V, s)\)# is a \(\Delta \)-generic point over \(K \) and \(\sigma a \in K(a)_{alg} \). Let \(W \) be the Zariski locus of \((a, \sigma a)\) over \(K \). Then \(W \subseteq V \times V^\sigma \) projects dominantly and generically finite-to-one onto both \(V \) and \(V^\sigma \). Moreover, for each \(r > 0 \), \(j_rW_{a,\sigma a} \subseteq j_rV_a \times j_rV^\sigma_{a} \) is the graph of an isomorphism \(f : j_rV_a \rightarrow j_rV^\sigma_{a} \) and the map \(\sigma^* = f^{-1} \circ \sigma \) equips \(j_rV_a \) with the structure of a \(\sigma \)-module over \((U, \sigma)\) (see Lemma 4.3 of [29] for details). Furthermore, Lemma 4.4 of [4] shows that \((j_rV_a, \delta^*_i, \sigma^*)\) is a \((\delta_i, \sigma)\)-module over \((U, \delta_i, \sigma)\) for all \(i = 1, \ldots, m \). Thus, since we have already seen that the dual operators \(\Delta^* \) commute, \((j_rV_a, \Delta^*, \sigma^*)\) is a \((\Delta, \sigma)\)-module over \((U, \Delta, \sigma)\).

Remark 4.8. Let \(V \) be an algebraic \(D \)-variety defined over \(K \) and suppose that \(a \in (V, s)\)# is a \(\Delta \)-generic point over \(K \) such that \(\sigma a \in K(a)_{alg} \). Suppose \(L > K \) is an algebraically closed differential-difference field and \(W \) is the Zariski locus of \(a \) over \(L \). Then \((W, s|_W)\) is an algebraic \(D \)-variety and, under the identification of \(j_rW_a \) as a subspace of \(j_rV_a \), we have that \(j_rW_a \) is a \((\Delta, \sigma)\)-submodule of \((j_rV_a, \Delta^*, \sigma^*)\).

Indeed, by Lemma 4.7 of [4], \(j_rW_a \) is a \((\delta_i, \sigma)\)-submodule of \((j_rV_a, \delta^*_i, \sigma^*)\) for all \(i = 1, \ldots, r \).

A type \(p = tp(a/K) \) is said to be finite dimensional if the transcendence degree of \(K(a) \) over \(K \) is finite. We now show that, up to interdefinability over \(K \), if \(tp(a/K) \) is finite dimensional, then \(\sigma a \in K(a)_{alg} \) and \(a \) is a \(\Delta \)-generic point of the sharp points of an algebraic \(D \)-variety over \(K \).

Lemma 4.9. Suppose \(p = tp(a/K) \) is finite dimensional. Then there is an algebraic \(D \)-variety \((V, s)\) over \(K \) and a \(\Delta \)-generic point \(c \in (V, s)\)# over \(K \) such that \(K(a) = K(c) \) and \(\sigma c \in K(c)_{alg} \).

Proof. Since \(p \) is finite dimensional then there is \(s < \omega \) such that \(K(a) \subseteq K(\Theta_a)_{alg} \) where

\[
\Theta_a = \{ \delta_1^{e_1} \cdots \delta_m^{e_m} \sigma^k a : e_i, k < \omega \text{ and } e_1 + \cdots + e_m + k \leq s \}.
\]

In particular, \(\sigma^{s+1} a \in K(\Theta_a)_{alg} \). Hence, if we let \(b = (a, \sigma a, \ldots, \sigma^s a) \), then \(K(a) = K(b) \) and \(\sigma b \) is algebraic over the \(\Delta \)-field generated by \(b \) over \(K \). Since the latter has finite transcendence degree over \(K \), Fact 4.7 implies that there is a tuple \(c, \Delta \)-interdefinable with \(b \) over \(K \), such that \(c \) is a \(\Delta \)-generic point of \((V, s)\)# over \(K \) for some algebraic \(D \)-variety \((V, s)\). Hence, \(K(a) = K(c) \) and \(\sigma c \in K(c)_{alg} \) \(\square \)

We now give a standard description (up to interalgebraicity over \(K \)) of the canonical base for finite dimensional types.
Lemma 4.10. Suppose a is a tuple such that $\sigma_\delta a \in K(a)^{alg}$ for all $\delta \in \Delta$. Let $L > K$ be an algebraically closed differential-difference field, V the Zariski locus of a over L, and F the minimal field of definition of V. Then,

$$Cb(a/L) \subseteq acl(F,K) \quad \text{and} \quad F \subseteq Cb(a/L).$$

In particular, $acl(Cb(a/L), K) = acl(F,K)$.

Proof. As F is the minimal field of definition of $V = loc(a/L)$, a is algebraically disjoint from L over F. Then, as $\sigma_\delta a \in K(a)^{alg}$ for all $\delta \in \Delta$, $K(a) \subseteq K(a)^{alg}$ is algebraically disjoint from L over $acl(F,K)$. Hence, $a \downarrow_{acl(F,K)} L$. By Proposition 3.2, the restriction of $tp(a/L)$ to $acl(F,K)$ is an amalgamation base, and so, by definition, $Cb(a/L) \subseteq acl(F,K)$. On the other hand, since $a \downarrow_{Cb(a/L)} L$, a is algebraically disjoint from L over $Cb(a/L)$. Hence, the Zariski locus of a over $Cb(a/L)$ must also be V, and so V is defined over $Cb(a/L)$. Thus, $F \subseteq Cb(a/L)$.

We are now in position to prove the canonical base property for finite dimensional types. Let us first recall that a type $tp(a/K)$, over a differential-difference field k, is almost C_\emptyset-internal if there is $b \downarrow_k a$ and a tuple c from C_\emptyset such that $a \in acl(k,b,c)$.

Theorem 4.11 (Canonical base property). Suppose $tp(a/K)$ is finite dimensional and $L > K$ is an algebraically closed differential-difference field. Then

$$tp(Cb(a/L)/K\langle a \rangle)$$

is almost C_\emptyset-internal.

Proof. We may replace a by anything interdefinable with it over K. Hence, by Lemma 4.9, we may assume that $\sigma_\delta a \in K(a)^{alg}$ and that there is an algebraic D-variety (V,s) defined over K such that $a \in (V,s)^\emptyset$ is a Δ-generic point over K. Let W be the locus of a over L. Then $(W,s|_W)$ is an algebraic D-variety with a as a Δ-generic point of $(W,s|_W)^\emptyset$ over L. By Lemma 4.10, if F is the minimal field of definition of W then $acl(F,K) = acl(Cb(a/L), K)$. Thus, it suffices to prove that $tp(F/K\langle a \rangle)$ is almost C_\emptyset-internal.

Consider the (Δ,σ)-module $(j_*V_a, \Delta^*, \sigma^*)$ and recall that j_*W_a is a (Δ,σ)-submodule. For each r, let b_r a C_\emptyset-basis of $j_*V^a_r$ which is also a U-basis of j_*V_a. Let

$$B = \bigcup_{r=1}^\infty b_r,$$

we may choose the b_r’s such that $F \downarrow_{K\langle a \rangle, \Delta^*, \sigma^*} B$. The basis b_r yields a (Δ,σ)-module isomorphism between $(j_*V_a, \Delta^*, \sigma^*)$ and (U^{dr}, Δ, σ) which therefore takes j_*W_a into a (Δ,σ)-submodule S_r of (U^{dr}, Δ, σ). We can find a C_\emptyset-basis e_r of $S_r \subseteq C_{U^{dr}}$ which is also a U-basis of S_r, so S_r is defined over $e_r \subseteq C_{U^{dr}}$. Let $E = \bigcup_{r=1}^\infty e_r$.

It suffices to show that $F \subseteq acl(a,K,B,E)$. To see this, let ϕ be an automorphism of (U,Δ,σ) fixing a,K,B,E pointwise. Since j_*V_a is defined over $K\langle a \rangle$, then $\phi(j_*V_a) = j_*V_a$. Also, as each S_r is defined over E and the isomorphism between S_r and j_*W_a is defined over B, $\phi(j_*W_a) = j_*W_a$ for all $r > 0$. Since V is defined over K and ϕ fixes a pointwise, Fact 4.2 implies that $\phi(W) = W$. But F is the minimal field of definition of W, thus ϕ fixes F pointwise, as desired.
As a consequence of the canonical base property, we obtain the Zilber dichotomy for finite dimensional minimal types. We omit the standard proof (for detailed proofs in the settings of DCF_0 and $D{-}CF_0$ we refer the reader to Corollary 3.10 of [29] and Corollary 6.19 of [26], respectively).

Corollary 4.12 (Zilber dichotomy). Let p be a finite dimensional complete type over K with $SU(p) = 1$. Then p is either one-based or almost C_U-internal.

Remark 4.13. The assumption in Corollary 4.12 that p is finite dimensional should not be necessary, though a different proof is needed. To prove the general case one could work out the theory of arc spaces of Moosa, Pillay, Scanlon [25] in the (Δ, σ) setting, and apply their weak dichotomy for regular types. This is done in the (δ, σ) setting (i.e. $DCF_{0,1}$) by Bustamante in [5], and we expect that the arguments there extend to our setting.

References

[1] A. Buium. Differential algebraic groups of finite dimension. Lecture notes in mathematics, Vol. 1506, Springer-Verlag, 1992.
[2] R. Bustamante. Differentially closed fields of characteristic zero with a generic automorphism. Revista de Matemática: Teoría y Aplicaciones 14(1), pp. 81-100, 2007.
[3] R. Bustamante. Rank and dimension in difference-differential fields. Notre Dame Journal of Formal Logic, Vol. 52 (4), pp. 403-414, 2011.
[4] R. Bustamante. Algebraic jet spaces and Zilber’s dichotomy in DCFA. Revista de Matemática: Teoría y Aplicaciones 17 (1), pp. 1-12, 2010.
[5] R. Bustamante. Théorie des modèles des corps différentiellement clos avec un automorphisme générique. PhD Thesis. Université Paris 7, 2005.
[6] E. Casanovas. Simple theories and hyperimaginaries. Lecture Notes in Logic. Cambridge University Press, 2011.
[7] Z. Chatzidakis and E. Hrushovski. Model theory of difference fields. Trans. Amer. Math. Soc. 351 (8), pp. 2997-3071, 1999.
[8] Z. Chatzidakis and A. Pillay. Generic structures and simple theories. Annals of Pure and Applied Logic 95, pp. 71-92, 1998.
[9] R. Cohn. A difference-differential basis theorem. Canadian J. Math. 22, No. 6, pp. 1224-1237, 1970.
[10] O. Golubitsky, M. Kondratieva and A. Ovchinnikov On the generalised Ritt problem as a computational problem. Journal of Math. Sci. 163 (5), pp. 515-522, 2009.
[11] N. Guzy and C. Riviere. On existentially closed partial differential fields with an automorphism. Preprint 2007 (http://w3.umh.ac.be/math/logic/sources/pdcfa-cras.pdf)
[12] C. Hardouin and M. Singer. Differential Galois theory of linear difference equations. Mathematische Annalen 342(2), pp. 333-377, 2008.
[13] M. Harrison-Trainor, J. Klys and R. Moosa. Nonstandard methods for bounds in differential polynomial rings. Journal of Algebra, Vol. 360, pp. 71-86, 2012.
[14] B. Hart, B. Kim and A. Pillay. Coordinationisation and canonical basis in simple theories. Journal of Symbolic Logic. Vol. 65, No. 1, pp. 293-309, 2000.
[15] M. Hils. Generic automorphisms and green fields. J. Lond. Math. Soc. (2) 85, No. 1, pp. 223-244, 2012.
[16] E. Hrushovski. The Mordell-Lang conjecture for function fields. J. Amer. Math. Soc., 9, No. 3, pp. 667-690, 1996.
[17] E. Hrushovski. The Manin-Mumford conjecture and the model theory of difference fields. Annals of Pure and Applied Logic, 112(1), pp. 43-115, 2001.
[18] E. Kolchin. Differential algebra and algebraic groups. Academic Press. New York, New York, 1973.
[19] E. Kolchin. Differential algebraic groups. Academic Press, Inc. 1985.
[20] P. Kowalski. Geometric axioms for existentially closed Hasse fields. Annals of Pure and Applied Logic 135, pp. 286-302, 2005.
17

[21] O. León Sánchez. Geometric axioms for differentially closed fields with several commuting derivations. Journal of Algebra, Vol. 362, pp.107-116, 2012.
[22] O. León Sánchez. Corrigendum to “Geometric axioms for differentially closed fields with several commuting derivations”. Journal of Algebra, Vol. 382, pp.332-334, 2013.
[23] O. León Sánchez. Relative D-groups and differential Galois theory in several derivations. To appear in Trans. Amer. Math. Soc.
[24] T. McGrail. The model theory of differential fields with finitely many commuting derivations. Journal of Symbolic Logic, Vol. 65 (2), pp.885-913, 2000.
[25] R. Moosa, A. Pillay and T. Scanlon. Differential arcs and regular types in differential fields. J. reine angew. Math. 620, pp.35-54, 2008.
[26] R. Moosa and T. Scanlon. Model theory of fields with free operators in characteristic zero. Journal of Mathematical Logic. 2014, doi: 10.1142/s0219061314500093.
[27] R. Moosa and T. Scanlon. Jet and prolongation spaces. Journal of the Inst. of Math. Jussieu 9, pp.391-430, 2010.
[28] D. Pierce and A. Pillay. A note on the axioms for differentially closed fields of characteristic zero. Journal of Algebra, Vol. 204, pp.108-115, 1998.
[29] A. Pillay and M. Ziegler. Jet spaces of varieties over differential and difference fields. Selecta Mathematica. New series 9, pp.579-599, 2003.
[30] A. Pillay. Two remarks on differential fields. Model Theory and Applications. Quaderni di Matematica. Volume 11, 2003. Edited by Dipartimento di Matematica, Seconda Universita di Napoli.
[31] A. Pillay. Remarks on algebraic D-varieties and the model theory of differential fields. Lecture Notes in Logic 26, Logic in Tehran, pp.256-269, 2006.
[32] A. Pillay. Model-theoretic consequences of a theorem of Campana and Fujiki. Fund. Math. 174, pp.187-192, 2002.
[33] A. Pillay. Differential Galois theory I. Illinois Journal of Mathematics. Vol. 42, N. 4, 1998.
[34] A. Rosenfeld. Specializations in differential algebra. Trans. Amer. Math. Soc. 90, pp.394-407, 1959.
[35] M. Tressl. The uniform companion for large differential fields of characteristic 0. Trans. Amer. Math. Soc. 357 (10), pp.3933-3951, 2005.
[36] L. van den Dries and K. Schmidt. Bounds in the theory of polynomial rings over fields. A nonstandard approach. Invent. Math. 76 (1), pp.77-91, 1984.

Omar León Sánchez, Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
E-mail address: oleonsan@math.mcmaster.ca