The M, 165,000 M-protein Myomesin:
A Specific Protein of Cross-striated Muscle Cells

HANS M. EPPENBERGER, JEAN-CLAUDE PERRIARD, URS B. ROSENBERG, and
EMANUEL E. STREHLER
Institute for Cell Biology, Swiss Federal Institute of Technology, CH-8093 Zürich, Switzerland

ABSTRACT The tissue specificity of chicken 165,000 M-protein, tentatively named "myomesin," a tightly bound component of the M-line region of adult skeletal and heart myofibrils, was investigated by immunological techniques. Besides skeletal and heart muscle, only thymus (known to contain myogenic cells) was found to contain myomesin. No myomesin could, however, be detected in smooth muscle or any other tissue tested. This result was confirmed in vitro on several cultured embryonic cell types. Only skeletal and heart muscle cells, but not smooth muscle or fibroblast cells, showed the presence of myomesin. When the occurrence and the distribution of myomesin during differentiation of breast muscle cells in culture were studied by the indirect immunofluorescence technique, this protein was first detected in postmitotic, nonproliferating myoblasts in a regular pattern of fluorescent cross-striations. In electron micrographs of sections through young myotubes, it could be shown to be present within the forming H-zones of nascent myofibrils. In large myotubes the typical striation pattern in the M-line region of the myofibrils was observed. Synthesis of myomesin measured by incorporation of $^{[35S]}$methionine into immunoprecipitable protein of differentiating cells increased sharply after ~ 48 h in culture, i.e., at the time when the major myofibrillar proteins are accumulated. No significant amounts of myomesin were, however, found in cells prevented from undergoing normal myogenesis by 5'-bromodeoxyuridine.

The results indicate that myomesin (a) is a myofibrillar protein specific for cross-striated muscle, (b) represents a highly specific marker for cross-striated muscle cell differentiation, and (c) might play an important role in myofibril assembly and/or maintenance.

The temporal appearance of myofibrillar proteins as well as the composition and organization of myofibrils in differentiating muscle cells have been subjects of intense studies in recent years (for review, see references 1, 5, 11, 13, 17, 19, 24, and 30). Investigations of the properties of a number of newly detected, so-called minor components of the myofibrillar compartment (12, 14, 25, 28, 31, 48, 53) have provided a better insight into the molecular organization of the unit of contractility, the sarcomere. There is, however, still considerable lack of knowledge regarding the sequence of appearance and organization of the myofibrillar structures during development (1, 13, 19, 37, 49). One of the major transverse structures in a mature cross-striated muscle fiber, the Z-band, has been described as the initial site of myofibrillogenesis (19), whereas the second one, the so-called M-line, has only recently been found to play a role in the organization of the assembly of the myofibrillar structure (10, 12, 16, 43).

Our own investigations on the structure and function of the M-line region of chicken skeletal and heart muscle indicate the presence of two major protein components: the muscle type isoprotein of creatine kinase (MM-CK) (48, 50, 52) and the 165,000 M-protein (42, 43).

The M-protein was first isolated from cross-striated skeletal muscle by Masaki and Takaiti (26) and more recently by Trinick and Lowey (44) and Strehler et al. (42). It is also present in myofibrils lacking a visible M-line, e.g., those from chicken heart muscle (41-43, 51), while the second M-line protein MM-CK most certainly is responsible for the electron-dense material forming the visible M-line (43, 48, 50, 52). We propose that the 165,000 M-protein be called "myomesin". The new terminology will, firstly, help to distinguish this muscle protein from other components with similar molecular

1 Myomesin: derived from Greek μυομένος μύεται.
weights and, secondly, avoid confusion with "M-protein" of other types. Myomesin is a tightly bound component of the M-line region. It can only be extracted quantitatively under conditions where the myofibrils are virtually destroyed (43); in vitro experiments also indicate a high affinity of this protein for myosin (23). Thus, a key role of myomesin in the molecular organization of the thick filaments and their spatial organization can be assumed. In this communication we report on three interdependent approaches to better understand the characteristics of myomesin. Immunological techniques employing specific antibodies against chicken myomesin were used (a) to determine whether myomesin is restricted to cross-striated skeletal and heart muscle cells or whether it can be found in smooth muscle and in nonmuscle cells as well; (b) to study the time of appearance and the location of myomesin in differentiating and in differentiation-blocked muscle cells; and (c) to obtain data on the rate of synthesis of myomesin in differentiating cells.

MATERIALS AND METHODS

Cell Cultures

Cells from the heart muscle (3) of 8- to 10-d chicken embryos and from the breast muscle and the gizzard (47) of 10- to 12-d chicken embryos were obtained as described. 1 x 10^5 cells in 4 ml of standard medium (85 parts minimal essential medium (MEM), 10 parts horse serum, 5 parts chicken embryo extract, supplemented with antibiotics (47)) were usually plated into 60-mm gelatinized tissue culture dishes (Falcon Labware, Div. Becton, Dickinson & Co., Oxnard, Calif.) containing four to six sterilized and gelatinized glass coverslips. Breast muscle cells in suspension were grown according to Purrie et al. (36). Incubation conditions were as those already described (47). Fibroblast cells were obtained either by dissociating the connective tissue surrounding the breast muscle of 11-d chicken embryos or by subculturing 72-h-old primary breast muscle cultures after trypsinization and filtration of the cell suspension through 10-µm nylon mesh (47). To prevent overgrowth of primary skeletal muscle cells by fibroblasts, 1-β-D-arabinofuranosylcytosine (ara-C; Sigma Chemical Co., St. Louis, Mo.) was added to the cultures after 48 h to a final concentration of 5 x 10^-5 M. Normal differentiation was prevented by culture in medium containing 5'-bromodeoxyuridine (2.5 µg/ml; BrdUrd, Calbiochem-Behring Corp., American Hoechst Corp., San Diego, Calif.) or in standard medium with 1.7 mM EGTA. To prevent overgrowth of primary skeletal muscle cell cultures by fibroblasts, 1-β-D-arabinofuranosylcytosine (ara-C; Sigma Chemical Co., St. Louis, Mo.) was added to the cultures after 48 h to a final concentration of 5 x 10^-5 M. Normal differentiation was prevented by culture in medium containing 5'-bromodeoxyuridine (2.5 µg/ml; BrdUrd, Calbiochem-Behring Corp., American Hoechst Corp., San Diego, Calif.) or in standard medium with 1.7 mM EGTA.

Antibody

The characterization of myomesin and of the affinity column-purified rabbit anti-chicken myomesin antibody has been described in recent publications from this laboratory (42, 43). Preimmune serum or IgG fraction prepared as described by Sober and Peterson (40) from the same rabbits was always used in control experiments.

Indirect Immunofluorescence Technique

Cells grown on coverslips were washed for 5 min in phosphate-buffered saline (PBS), fixed for 30 min in 3% (wt/vol) paraformaldehyde in PBS, 0.1 mM CaCl_2, 1 mM MgCl_2, washed again in PBS, incubated for 30 min in 1 M glycine in PBS (quenching), and permeabilized for 3-5 min in 0.2% Triton X-100 in PBS according to Ash et al. (2). After washing in PBS, the coverslips were incubated for 15-30 min on a drop of PBS containing antimyomesin IgG (20 µg/ml) or IgG from preimmune serum (40 µg/ml), washed with PBS (15 min, three changes of PBS), and then incubated for 15-30 min in fluorescein-conjugated goat-anti-rabbit IgG (Grand Island Biological Co., Grand Island, N. Y.) diluted 1:50 in PBS. The coverslips were then extensively washed with PBS and mounted on slides with 90% glycerol. Cells were observed under a Zeiss Standard Model 18 microscope equipped with epi-fluorescence optics.

Electron Microscopy

Cells were prefixed for 30 min with 3% (wt/vol) paraformaldehyde in PBS, 0.1 mM CaCl_2, 1 mM MgCl_2, washed with PBS, permeabilized for 30 min with 0.2% Triton X-100 in PBS containing 5 mg/ml bovine serum albumin, and incubated for 60 min in the same solution containing 40 µg/ml antimyomesin IgG or 100 µg/ml preimmune IgG. After washing with PBS, cells were fixed with 3% glutaraldehyde in PBS (15 min), postfixed in 1.5% Oso_4 in PBS (30 min), dehydrated in ethanol, and embedded in Epon 812. Thin sections were cut on an LKB-Ultratome 4801 A (LKB Produkter AB, Stockholm, Sweden), poststained with 2% uranyl acetate in H_2O (45 min) followed by lead citrate (0.13 M Pb(NO_3)_2, 0.19 M Na-citrate in H_2O, 15 min), and observed under a Siemens Elmiskop 102 electron microscope at 100 kV.

Determination of the Rate of Myomesin Synthesis in Cultured Cells

Primary breast muscle cell cultures (2 x 10^5 cells/100-mm gelatinized Falcon tissue culture dish) were labeled at different intervals after plating for 2 h with 250 µCi of [35]S-methionine (New England Nuclear, Boston, Mass., sp act 500 Ci/mM) in 2.5 ml of culture medium (86.5% MEM, 10% horse serum, 3.5% embryo extract). Labeled cultures were washed three times with PBS and stored frozen at -20°C. Cells were scraped from plates in 500 µl of PBS, 0.1% sodium dodecyl sulfate, 0.5% Triton X-100, and then sonicated (three times 15 s, maximal output). An aliquot of the cell homogenate was used for the determination of DNA (4).

The rest of the homogenate was digested for 15 min at 37°C with 0.12 vol of an RNAase/DNase solution (10 µg of pancreatic RNAse I (Sigma Chemical Co.) and 5 µg of pancreatic RNAse II (Sigma Chemical Co.) in 10 ml of 0.5 M Tris-HCl, 0.05 M MgCl_2, pH 7) and the total acid-precipitable radioactivity was measured as described by Caravatti et al. (6). Myomesin was isolated from the radioactive cell extract by immunoprecipitation as described for MM-CK (6, 35).

Preparation of Tissue Extracts

Tissues were excised on ice from chicken embryos or freshly killed adult chicken, cut into small pieces, and either used directly or stored in liquid nitrogen until use. About 0.5 g of tissue was homogenized with 1-2 ml of extraction buffer (0.6 M KCl, 1 mM EDTA, 1 mM MgCl_2, 10 mM Na_2PO_4, 0.3 mM dithiothreitol, 0.1 M K-phosphate buffer, pH 6.4) in a Dounce homogenizer (Kontes Co., Vineland, N. J.) and 54). The same was found recently for chickenthymus (J.C. Perriard, personal communication). The data in Table I ap-
Myomesin in Developing Primary Muscle Cell Cultures

In isolated chick myofibrils, myomesin is associated exclusively with sarcomere M-lines (42-44). Thus, the myofibrillar M-line localization of myomesin as revealed by the indirect immunofluorescence technique can be used as a very sensitive assay for the accumulation of this protein during differentiation. Staining with antimyomesin antibody demonstrates that still proliferating presumptive myoblasts (6 h in culture) do not accumulate detectable amounts of antigen (Fig. 2a and b) while 18 h later nascent myotubes already show some distinct fluorescence in a cross-striated arrangement (Fig. 2c and d). However, later the myotubes become stuffed with aligned myofibrils (Fig. 2e and f), and myomesin can be easily localized within the H-region of the single sarcomeres (Fig. 2i and k).

It is fair to assume that the accumulation of myomesin is coordinately regulated with the accumulation of the major myofibrillar proteins characteristic of differentiated muscle cells. Accumulation of a number of muscle-specific isoproteins is thought to begin after withdrawal of myogenic cells from the mitotic cycle and can occur independent of fusion into myotubes (7, 9, 27, 29, 33, 46, 49). Myogenic cells were cultured in suspension and later allowed to attach and spread for 24 h according to Puri et al. (36). As can be seen in Figs. 3a and b, most of the cells show bright, regular cross-striations extending into the processes of the still mostly unfused myoblasts after incubation with antimyomesin antibody. A similar result could be obtained when myogenic cells were cultured in EGTA-containing medium (Fig. 3c and d) which is known to prevent fusion but not differentiation of myogenic cells (45, 46). Addition of the thymidine analogue BrdUrd to the medium not only prevents presumptive myoblasts from becoming postmitotic but also prevents accumulation of muscle-specific proteins or isoenzymes (6, 32, 34, 45-47). This is also true for the accumulation of myomesin as is shown in Fig. 3. No significant immunofluorescence can be detected in proliferating cultures which have been subcultured in BrdUrd-containing medium (Fig. 3e and f); a switch from BrdUrd medium to standard medium, however, allows the formation of myotubes, and the concomitant appearance of myomesin-specific fluorescence within myofibrils can be observed (Fig. 3g and h).

In addition, myomesin synthesis in developing skeletal muscle cell cultures was measured by immunoprecipitation techniques (6, 35). Significant synthesis was not detectable during the first 2 d of culture; the low background synthesis could be attributed to the presence of a few contaminating early-fusing myotubes in the culture. During the next 2 d, synthesis rose sharply to much higher values at 96 h (Fig. 4). Culture in BrdUrd-containing medium resulted in suppression of significant myomesin synthesis, while synthesis was resumed if cells were transferred into standard medium.

Thus, these results corroborate the results from the immunofluorescence studies and demonstrate that accumulation of myomesin into M-line structures parallels its synthesis. A similar behavior has been described for, e.g., the MM-type isoenzyme of creatine kinase (6, 34). The decrease in myomesin synthesis after day 4 may be a culture artifact or reflects a net decrease in the rate of myomesin synthesis as has been observed also for myosin heavy chain (8).

Ultrastructural Localization of Myomesin in Myogenic Cells

We have shown in previous reports that myomesin is an integral component of myofibrils in adult cross-striated muscle even if no visible M-line can be detected (42, 43). This assertion apparently documents that the array of the thick filaments of myofibrils does not necessarily need to be accompanied by what is a visible M-line which, as we assume, is made up, at least partially, of MM-C (50, 52). In addition, it has also been reported that during myofibril assembly in developing muscle a visible M-line (i.e., electron-dense material) appears only relatively late as compared to the formation of the Z-line structure (11, 13, 19). Judging, however, from the immunofluorescence observations and from the synthesis rate studies described above, we expected myomesin to be present very early during myofibrillar assembly. Thus, we had been interested in corroborating the idea of an analogy between the situation in chicken heart myofibrils and the one in newly assembled myofibrils in early myotubes or postmitotic myoblasts. Cells were fixed after 48 h in culture, subsequently

Table 1

Tissue	1-d Embryos	19-d Embryos	Adult
Breast muscle	(+)	+	+
Leg muscle	ND	+	+
Heart	(+)	+ Ventricle: +	Atrium: +
Gizzard	-	-	-
Crop	-	-	-
Gut	ND	-	-
Lung	ND	ND	-
Liver	-	-	-
Kidney	ND	ND	-
Spleen	ND	ND	-
Thymus	ND	ND	+
Oviduct	ND	ND	-
Ovary	ND	ND	-
Pancreas	ND	ND	-
Brain	-	-	-

(+), Very weak reaction; ND, not determined.

Eippenberger et al. Myomesin in Muscle Cell Development
FIGURE 1 Indirect immunofluorescence on 96-h chicken cell cultures using affinity-purified antibody against myomesin. (a and b) breast muscle; (c and d) heart muscle; (e and f) smooth muscle (gizzard); (g and h) fibroblast cultures. Left side: phase contrast; right side: epifluorescence optics. Arrows (c and d): Note the absence of myomesin-staining in fibroblasts contaminating the heart cell culture. Bars, 40 μm.
FIGURE 2 Indirect immunofluorescence using affinity-purified antibodies against myomesin. Chicken breast muscle cell cultures were 6 h (a and b) (representing proliferating presumptive myoblasts), 24 h (c and d), and 6 d (e and f) after plating. (g and h) 6- d culture incubated with preimmune IgG. (i and k) close-up of myofibrils in a 15-d-old myotube. Left side: phase contrast; right side: epifluorescence optics. M, M-line region. Bars, 20 μm.
FIGURE 3 Indirect immunofluorescence using myomesin-specific antibody on chicken breast muscle cell cultures grown in suspension for 48 h and allowed to attach to substrate for 24 h (a and b), grown for 72 h in 1.7 mM EGTA-containing medium (c and d), grown for 96 h in BrdUrd-containing medium (e and f), or grown for 48 h in BrdUrd-containing medium and then switched to standard medium for 48 h (g and h). Left side: phase contrast; right side: epifluorescence optics. The diffuse additional fluorescence occasionally observed stems from myofibrils out of focus or from background staining varying with cell thickness. Bars, 40 μm.
incubated with antmyomesin IgG, sectioned, and prepared for
electron microscopy. There is indeed no visible M-line detect-
able in most of the sarcomeres of untreated or preimmune
IgG-incubated myofibrils of young myotubes as shown in Fig.
5a. After incubation with specific antmyomesin antibody, a
strong IgG deposit in the M-line region can be observed (Fig.
5b), indicating the presence of the antigen at this stage of
differentiation. The data suggest that myomesin itself does not
contribute to the electron-dense M-line (very probably made
up by primary M-bridges [20, 22, 39, 43]) which seems to be
formed at a later stage and which consists predominantly
of MM-creatine kinase (28, 43, 48, 50, 52). Traces of electron-
dense material within the M-line region in individual sarco-
meres very probably represent the beginning integration of
MM-CK into the maturing sarcomeres. A similar sequence of
events has been observed in immunofluorescence studies where
MM-CK hardly can be detected within the M-line of myofibrils
in very young myotubes (unpublished observation).

DISCUSSION

The results presented here demonstrate that the 165,000 dalton
M-protein myomesin, a component of the M-line region of
skeletal and heart myofibrils, represents an excellent marker
of cross-striated muscle cells. In contrast to published data (38),
no myomesin could be found in any other cell type, neither in
smooth muscle cells nor in other motile systems, e.g., the stress
fibers of fibroblasts. It has to be stated, however, that Scholl-
meyer and co-workers (38) purified the putative M-protein
from chicken gizzard, whereas we refer to myomesin isolated
from skeletal muscle tissue; thus the observed differences could
originate from the different tissue sources used, and the possible
existence of isoproteinic forms of myomesin should therefore
be kept in mind. A number of molecular weights have been
reported for putative M-proteins ranging from M_r 140,000 to
190,000 (11, 12, 23, 26, 42-44); therefore the possibility that
different myofibrillar proteins have been discussed can also not
be excluded.

Myomesin from chicken skeletal muscle is a tissue-specific
protein but seems not to display a distinct species specificity,
e.g., shows cross-reaction of antibody with hamster myofibrils
(M. Eppenberger, personal communication) and with quail
myofibrils (D. Turner, personal communication). The antibody
against the putative M-protein from chicken gizzard has been
reported to react with human tissues and mouse 3T3 cells (38).
The high antigenicity of myomesin combined with a remark-
able organelle specificity make this protein well suited for the
study of the progress of muscle cell development, particularly
of myofibrillogenesis. The data presented here indicate that
myomesin can be found in myogenic cells as soon as the very
first myofibrils are observed. It is remarkable that the small
amounts of myomesin synthesized (constituting only 0.036% of
the total protein synthesized at the time of maximal synthesis)
and accumulated are so easily stained with the immunofluo-
rescence technique. Obviously, the antigen is highly concen-
trated in the M-line region, thus little or no myomesin is
available anywhere else within the cell. This is also true for
cells differentiating in suspension cultures where M-line-con-
taining myofibrils wound about the nucleus can be detected as
long as the cells are not allowed to attach to a substrate (36).
Furthermore, myomesin can be used as a sensitive marker for
the localization of muscle cells in somites and in myotomes
during early embryonic development in vivo as has been shown
on cryostat sections of as early as stage 24 (15) chick embryos
(M. Chiquet, personal communication).

It is becoming clear that the lack of a visible M-line either
early in muscle differentiation or in a particular muscle type
such as chicken cardiac muscle does not mean that there is no
myomesin; on the contrary, in such muscles myomesin has
been shown to interact strongly with other structural compo-
nants in the M-region from which it can hardly be released
(42, 43). Even if the relationship between M-line material and
myofibril assembly and myofibril maintenance is still un-
certain, a key role of myomesin in myofibrillogenesis has to be
assumed. Several facts support such an assumption: (a) the
synchronous appearance of myomesin and other myofibrillar
proteins in differentiating myogenic cells; (b) antibodies against
myomesin stain a transverse structure within the nascent H-
zone of small myofibrils consisting of only few aligned myofi-
laments (while it is impossible to detect any myomesin when
only single myofilaments in a still random fashion are present),
and (c) in vitro experiments show a strong binding of the
165,000 M-protein (= myomesin) to myosin and myosin frag-
ments (23).

All the results discussed demonstrate clearly that myomesin
represents a differentiation marker for myofibrillogenesis un-
surpassed so far. One certainly must strive for a better under-
standing of its function in myofibril assembly and myofibril
maintenance. Experiments directed toward this goal are un-
derway in our laboratory.

Preliminary experiments were performed during a sabbatical leave in
the Department of Biology, University of California, San Diego, La
Jolla, Calif. H. M. Eppenberger is most grateful to Drs. J. F. Ash and
B. Geiger for valuable help and discussion and to Dr. S. J. Singer for
the use of his laboratory facilities. We are indebted to Irene Fioz and
Gisela Kunz for skilful technical assistance and Dr. M. Caravatti for
experimental advice.

EPPENBERGER ET AL. Myomesin in Muscle Cell Development 191
This research was supported by grant 3.187-0.77 from the Swiss National Science Foundation and by a grant to H. M. Eppenberger from the Muscular Dystrophy Association, Inc.

Received for publication 17 September 1980, and in revised form 2 December 1980.

REFERENCES

1. Allen, R. E., and F. Pepe. 1965. Ultrastructure of developing muscle cells in the chick embryo. Am. J. Anat. 116:115-148.

2. Ash, J. F., D. Lovard, and S. J. Singer. 1977. Antibody-induced linkage of plasma membrane proteins to intracellular actomyosin-containing filaments in cultured fibroblasts. Proc. Natl. Acad. Sci. U. S. A. 74:5584-5588.

3. Bogenmann, E., and H. M. Eppenberger. 1980. DNA-synthesis and polyploidization of chicken heart muscle cells in mass cultures. J. Mol. Cell. Cardiol. 12:7-27.

4. Brunk, C. F., K. C. Jones, and T. W. James. 1979. Assay for nanogram quantities of DNA in cellular homogenates. Anal. Biochem. 92:497-500.

5. Buckingham, M. E. 1977. Muscle protein synthesis and its control during the differentiation of skeletal muscle cells in vitro. In International Review of Biochemistry. Biochemistry of Cell Differentiation. II. J. P. Paul, editor. University Park Press, Baltimore. 13.

6. Caravatti, M., J-C. Perriard, and H. M. Eppenberger. 1979. Developmental regulation of creatine kinase isoenzymes in myogenic cell cultures from chicken. Biosynthesis of creatine kinase subunits M and B. J. Biol. Chem. 254:1388-1394.

7. Cho, J. C. H., N. Rubinstein, K. Straha, and H. Holtzer. 1975. Synthesis of myosin heavy and light chains in muscle cultures. J. Cell Biol. 67:523-537.
8. Doetschman, T. C., H. P. Dyrm., E. J. Siegel, and S. M. Heywood. 1980. Myoblast stored myosin heavy chain transcripts are precursors to the myosin polypeptide myosin heavy chain mRNAs. *Differentiation* 16:149-162.

9. Emerson, C. P., Jr., and S. H. Becker. 1975. Activation of myosin synthesis in fusing and mononucleated myoblasts. *J. Biol. Chem.* 250:431-448.

10. Eppenberger, H. M., T. Wallimann, H. J. Kuhn, and D. C. Turner. 1975. Localization of creatine kinase isoenzymes in muscle cells: physiological significance. In *Isoenzymes*. I. C. Markert, ed., Academic Press, Inc., New York, 409-424.

11. Etlinger, J. D., and D. A. Fischman. 1973. Morphological homodimerization of myosin from rabbit skeletal muscle. *J. Cell Biol.* 68:123-141.

12. Fischman, D. A. 1970. The synthesis and assembly of myofibrils in embryonic muscle. *Car. Top. Dev. Biol.* 2:257-280.

13. Golli, D. E., A. Szuk, I. Temple, and G. R. Holmes. 1972. Studies on purified α-actinin. I. Effect of temperature and tropomyosin on the α-actinin-F-actinin interaction. *J. Biol. Chem.* 247:469-488.

14. Harms, H., M. T. K. Laemmli. 1975. Structure of the M-line in skeletal muscle. *Exp. Cell Res.* 97:231-238.

15. Jockusch, H., and B. M. Jockusch. 1980. Structural organization of the Z-line protein, α-actinin, in developing skeletal muscle cells. *Dev. Biol.* 75:231-238.

16. Ketelsen, U.-P., and H. Wekerle. 1976. Thymus-derived striated muscle clones. An ultrastructural analysis of cell differentiation. *Differentiation* 5:185-197.

17. Kilarski, W., and M. Jakubowska. 1979. An electron microscope study of myofibril formation in embryonic rabbit skeletal muscle. *Z. Mikrosk. Anat. Forsch.* (Leipz.) 93:1159-1181.

18. Kassner, G., J. M. Thomas, and F. Carlsen. 1968. The ultrastructure of the M-line in the skeletal muscle. *J. Cell Biol.* 38:202-211.

19. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature (Land.)* 227:680-685.

20. Luther, P., and J. Squire. 1976. Three-dimensional structural model of the vertebrate muscle M-line. *J. Mol. Biol.* 105:333-324.

21. Mani, R. S., and C. M. Kay. 1978. Isolation, purification and characterization of creatine kinase from bovine cardiac muscle. *Biochim. Biophys. Acta.* 534:28-47.

22. Masaki, T., and O. Takaiti. 1974. M-protein. *J. Biochem. (Tokyo).* 75:367-380.

23. Markwald, R. R. 1973. Distribution and relationship of precursors to the organizing myofibrillar bundles in embryonic rat haematoxylin ventricular myocytes. *J. Mol. Cell. Cardiol.* 5:241-250.

24. Masaki, T., M. Endo, and S. Ebashi. 1967. Localization of 6S component of α-actinin at Z-band. *Zool. Sci. (Tokyo).* 42:630-632.

25. Merlie, J. P., and F. Gros. 1976. Expression of muscle-specific function in the absence of cell fusion. *Exp. Cell Res.* 97:406-412.

26. Markwald, R. R. 1973. Distribution and relationship of precursors to the organizing myofibrillar bundles in embryonic rat haematoxylin ventricular myocytes. *J. Mol. Cell. Cardiol.* 5:241-250.

27. Morimoto, K., and W. F. Harrington. 1972. Localization of pigmentous and chemical properties of an M-line protein from skeletal muscle. *J. Biol. Chem.* 247:3052-3061.

28. Mosca, P. S., and R. C. Strohman. 1976. Myosin synthesis in fusion arrested chick embryo myocytes in cell culture. *Dev. Biol.* 48:431-437.

29. Obinata, T., M. Yamamoto, and K. Mamyama. 1966. The identification of randomly formed thin filaments in differentiating muscle cells of the chick embryo. *Dev. Biol.* 14:231-253.

30. Offer, G. 1973. C-Protein and the periodicity in the thick filaments of vertebrated skeletal muscle. *Cold Spring Harbor Symp. Quant. Biol.* 38:87-95.

31. O'Neill, M. C., and F. E. Stockdale. 1974. 5-bromo-3- deoxynucleoside inhibition of differentiation. Kinetics of inhibition and reversal in myoblasts. *Dev. Biol.* 37:117-132.

32. Paterson, B., and R. C. Strohman. 1972. Myosin synthesis in cultures of differentiating chicken embryo skeletal muscle. *Dev. Biol.* 29:113-138.

33. Perriard, J. C. 1979. Developmental regulation of creatine kinase isoenzymes in myogenic cell cultures from chicken. Levels of mRNA for creatine kinase subunits M and B. *J. Biol. Chem.* 254:7036-7041.

34. Paterson, B., R. C. Strohman, and H. M. Eppenberger. 1978. Detection and relative quantitation of mRNA for creatine kinase isoenzymes in RNA from myogenic cell cultures and embryonic chicken tissues. *J. Biol. Chem.* 253:6229-6335.

35. Perriard, J.-C., C. V. Cavalli, J.-C. Perrard, D. C. Turner, and H. M. Eppenberger. 1980. Anchorage-independent muscle cell differentiation. *Proc. Natl. Acad. Sci. U. S. A.* 77:5297-5301.

36. Perriard, J.-C., E. R. Perriard, and H. M. Eppenberger. 1976. M-protein in chicken cardiac muscle. *Exp. Cell Res.* 124:395-405.

37. Perriard, J.-C., E. G. Pelloni, C. W. Heizmann, and H. M. Eppenberger. 1980. M-protein in chicken muscle. *Exp. Cell Res.* 124:39-45.

38. Perriard, J.-C., E. G. Pelloni, C. W. Heizmann, and H. M. Eppenberger. 1980. Biochemical and ultrastructural aspects of M, 165,000 M-protein in cross-striated chicken muscle. *J. Cell Biol.* 86:775-783.

39. Perriard, J.-C., S. Lowey. 1977. M-protein from chicken pectoralis muscle: Localization and characterization. *J. Mol. Biol.* 113:343-368.

40. Turner, D. C., R. Grumb, M. Singru, E. Bouchard, and H. M. Eppenberger. 1976. Isoenzyme transitions in cultures derived from embryonic chicken muscle. I. Muscle-specific enzyme changes before fusion in EGTA-synchronized cultures. *Dev. Biol.* 48:258-283.

41. Turner, D. C., R. Grumb, H. G. Lembret, M. Singru, T. Wallimann, and H. M. Eppenberger. 1976. Differentiation in cultures derived from embryonic chicken muscle. II. Phosphorylase b isoform and fluorescent antibody staining for creatine kinase and aldolase. *Dev. Biol.* 48:268-307.

42. Turner, D. C., R. Grumb, H. M. Eppenberger. 1974. Creatine kinase and aldolase isoenzyme transitions in cultures of chick skeletal muscle cells. *Dev. Biol.* 37:63-89.

43. Wallimann, T., and M. Wallimann. 1973. A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. *Proc. Natl. Acad. Sci. U. S. A.* 70:702-705.

44. Wallimann, T., and M. Wallimann. 1973. A protein that binds specifically to the M-line of skeletal muscle is identified as the muscle form of creatine kinase. *Proc. Natl. Acad. Sci. U. S. A.* 70:702-705.

45. Wallimann, T., D. C. Turner, and H. M. Eppenberger. 1977. Localization of creatine kinase isoenzymes in myocardial cells of chicken skeletal muscle. *J. Cell Biol.* 75:297-317.

46. Wallimann, T., D. C. Turner, and H. M. Eppenberger. 1977. Localization of creatine kinase isoenzymes in myocardial cells of chicken skeletal muscle. *J. Cell Biol.* 75:318-325.

47. Wallimann, T., G. Pelloni, D. C. Turner, and H. M. Eppenberger. 1978. Monoclonal antibodies against MM-creatine kinase remove the M-line from myofibrils. *Proc. Natl. Acad. Sci. U. S. A.* 75:4964-4970.

48. Wang, K., J. McClure, and A. Tu. 1979. Titin: Major myofibrillar components of striated muscle. *Proc. Natl. Acad. Sci. U. S. A.* 76:7309-7303.

49. Weiskirchen, H., B. Paterson, U. F. Kristensen, and M. Feldman. 1975. Striated muscle fibres differentiate in monolayer cultures of adult thymus reticulum. *Nature (Land).* 256:493-494.