Dedekind Multiplication Semimodules

Ahmed H. Alwan¹*, Asaad M. A. Alhossaini²

¹ Department of Mathematics, College of Education for Pure Sciences, Thi-Qar University, Thi-Qar, Iraq
² Department of Mathematics, College of Education for Pure Sciences, Babylon University, Babylon, Iraq

Abstract
The aim of this paper is to introduce the concept of Dedekind semimodules and study the related concepts, such as the class of D-semimodules, and Dedekind multiplication semimodules. And thus study the concept of the embedding of a semimodule in another semimodule.

Keywords: Semirings, semimodules, invertible subsemimodules, Dedekind semirings, Dedekind semimodules, multiplication semimodules.

Introduction
In ring theory, an ideal I of a commutative ring with identity R is said to be invertible if I' = R where I' = \{ x ∈ R_S : xI ⊆ R \} and R_S is the total quotient ring of R. The concept of an invertible submodule was introduced by Naoum and Al-Alwan [1] as a generalization of the concept of an invertible ideal.

A semiring is a non-empty set R together with two binary operations addition (+) and multiplication (·) such that (R, +) is a commutative monoid with identity element 0; (R, ·) is a monoid with identity element 1 ≠ 0; r0 = 0r = 0 for all r ∈ R; a(b + c) = ab + ac and (b + c)a = ba + ca for every a, b, c ∈ R. We say that R is a commutative semiring if the monoid (R, ·) is commutative. Let (M, +) be an additive abelian monoid with additive identity 0_M. Then M is called an R-semimodule if there exists a scalar multiplication R × M → M denoted by (r, m) ↦ rm, such that (rr')m = r(r'm); r(m + m') = rm + r'm; (r + r')m = rm + r'm; 1m = m and r0_M = 0_M = 0m for all r, r' ∈ R and all m, m' ∈ M.

Throughout this paper R will denote a commutative semiring with identity, M is unitary (left) R-semimodule. This paper consists four sections. Section I is devoted to introducing the concept of invertible subsemimodules of semimodules as a generalization of the concept of an invertible ideal in semiring. We will also find out some properties of this invertible subsemimodules. A non-zero

Email: ahha7810@gmail.com
semimodule \(M \) is a Dedekind semimodule if each non-zero subsemimodule of \(M \) is invertible.

Section 2 argues multiplication semimodules. We show that every multiplicatively cancellative multiplication semimodule is finitely generated.

Section 3 discusses Dedekind multiplication semimodules. We show that if \(M \) is a faithful multiplication \(R \)-semimodule, then \(M \) is a Dedekind semimodule if \(R \) is a Dedekind semiring.

Let \(A \) and \(B \) be \(R \)-semimodules, and \(H = \text{Hom}_R(A, B) \). Here’s a question that shows: when does \(H \) contain a monomorphism? If \(H \) contains a monomorphism we say that \(A \) is embeds in \(B \).

It was proved by Low and Smith [2] that if \(A \) is a torsionless multiplication \(R \)-module then \(A \) embeds in \(R \) if and only if \(\exists \beta \in A^* = \text{Hom}_R(A, R) \) such that \(\text{ann}(R\beta) = \text{ann}(A^*) \).

Indeed if \(A \) is not a multiplication semimodule then this condition is not sufficient see Remark 3.2.

Here the importance of the invertible subsemimodules in obtaining the sufficient condition for the existence of a monomorphism.

In the last section we establish that if \(A \) is any semimodule, with \(\bigcap_{\beta \in H} \ker \beta = \{0\} \) and \(T_H \subseteq T_B \), and if there is a cyclic invertible subsemimodule \(Rf \) in \(H \), then \(f \) is a monomorphism.

1. Invertible Subsemimodules and Invertible Ideals

In this section we introduce the concept of invertible subsemimodule of a semimodule as a kind of generalization of the concept of invertible ideal in semiring.

Remark (1.1): Let \(R \) be a commutative semiring with identity 1. A set \(S \subseteq R \) is said to be a multiplicatively closed set of \(R \) provided that if \(a, b \in S \), then \(ab \in S \). The localization of \(R \) at \(S \) (\(R_S \)) is defined in the following way:

First define the equivalence relation \(\sim \) on \(R \times S \) by \((a, b) \sim (c, d) \) if and only if \(\text{sad} = \text{sbc} \) for some \(s \in S \). Then put \(R_S \) the set of all equivalence classes of \(R \times S \) and define addition and multiplication on \(R_S \) respectively by \([a, b] + [c, d] = [ad + bc, bd] \) and \([a, b] \cdot [c, d] = [ac, bd] \), where \([a, b] \) also denoted by \(a/b \), we mean the equivalence class of \((a, b) \). It is, then, easy to see that \(R_S \) with the mentioned operations of addition and multiplication on \(R_S \) above is a semiring [3, 4].

Definition (1.2): In Remark 1.1, if \(S \) is the set of all not zero-divisors of \(R \). Then, the total quotient semiring \(Q(R) \) of the semiring \(R \) is defined as the localization of \(R \) at \(S \). Note that \(Q(R) \) is also an \(R \)-semimodule. If \(R \) is a semidomain one can define the semifield of fractions \(F(R) \) of \(R \) as the localization of \(R \) at \(R - \{0\} \) [5, 6].

Definition (1.3): Let \(M \) be an \(R \)-semimodule. In Remark 1.1, if \(S \) is the set of all not zero-divisors of \(R \), and \(T = T_M = \{ s \in S | sm = 0 \text{ for some } m \in M \text{ implies } m = 0 \} \). The total quotient semiring \(Q_T(R) \) of the semiring \(R \) is defined as the localization of \(R \) at \(T \). Note that \(Q_T(R) \) is also an \(R \)-semimodule.

Consider \(R = \mathbb{N} \) and \(M = Q^+ / \mathbb{N} \). Then \(T = \{1\} \) and so \(Q_T(R) = \{ \frac{1}{n} : n \in \mathbb{N} \} \).

Similar to that in modules see [1], we give the following remark.

Remark (1.4): Let \(M \) be an \(R \)-semimodule and let \(N \) be a non-zero subsemimodule of \(M \). Suppose that \(N' = \{ x \in Q_T(R) | xN \subseteq M \} \). Then \(N' \) is an \(R \)-subsemimodule of \(Q_T(R) \) and \(R \subseteq N' \), and \(N'N \subseteq M \).

Definition (1.5): Let \(M \) be an \(R \)-semimodule. A **subactive** subsemimodule (or \(k \)-subsemimodule) \(N \) is a subsemimodule of \(M \) such that if \(x, x + y \in N \), then \(y \in N \). A **prime** subsemimodule of \(M \) is a proper subsemimodule \(P \) of \(M \) in which \(x \in P \) or \(rM \subseteq P \) whenever \(rx \in P \). We define \(k \)-ideals and prime ideals of a semiring \(R \) in a analogous manner [5].

Remark (1.6): Let \(M \) be an \(R \)-semimodule, we say that \(M \) is a torsion-free semimodule whenever \(r \in R \) and \(m \in M \) with \(rm = 0 \) implies that either \(m = 0 \) or \(r = 0 \). If \(N \) is a subsemimodule of \(M \), then \([N : M] = \{ r \in R : rM \subseteq N \} \) and \(\text{ann}(M) = [0 : M] = \{ r \in R : rM = 0 \} \) are \(k \)-ideals of \(R \), [5].

Proposition (1.7): Let \(M \) be a non-zero \(R \)-semimodule, and let \(T \) be the set defined as in Definition 1.3, then \(T \) has the following properties:

1) \(T \cap \text{ann}(M) \) is the empty set.
2) \(T \) is a multiplicative subset of \(S \) and \(1 \in T \).
3) \(M \) is torsion-free then \(T = S \).

Proof: For (1) from the definition of \(T \) we have \(T \cap \text{ann}(M) = \emptyset \). For (2) first observe that \(1 \in T \). Let \(s_1, s_2 \in T \), and \(s_1s_2m = 0 \) for some \(m \in M \), then since \(s_1, s_2 \in T \), then \(s_2m = 0 \) and hence \(m = 0 \), therefore \(s_1s_2 \in T \) Thus \(T \) a multiplicative subset of \(S \). For (3) from definition of \(T \), then \(T \subseteq S \). Now, assume that \(M \) is torsion-free. Let \(s \in S \) and \(sm = 0 \) for some \(m \in M \), since \(M \) is torsion-free then \(m = 0 \), and hence \(s \in T \). Thus \(S \subseteq T \). This completes the proof.
Definition (1.8): [4] A subset \(I \) of the total quotient semiring \(\mathbb{Q}(R) \) of \(R \) is called fractional ideal of a semiring \(R \), if the following hold:

1. \(I \) is an \(R \)-subsemimodule of \(\mathbb{Q}(R) \), that is, if \(a, b \in I \) and \(r \in R \), then \(a + b \in I \) and \(ra \in I \).

2. There exists a not zero-divisor element \(d \in R \) such that \(dl \subseteq R \).

 Let \(I \) be two fractional ideals of a semiring \(R \). Then \(I = \{ a_1b_1 + a_2b_2 + \cdots + a_nb_n : a_i \in I, b_i \in J, \forall i, 1 \leq i \leq n, n \in \mathbb{N} \} \).

 By \(\text{Frac}(R) \), we mean the set of all nonzero fractional ideals of a semiring \(R \). It is easy to check that \(\text{Frac}(R) \) equipped with the above multiplication of fractional ideals is an abelian monoid [4].

 It is clear that each ideal \(I \) of \(R \) is fractional ideal of a semiring \(R \) since (1) and (2) holds for \(d = 1, 1I \subseteq R \).

Definition (1.9): [4] Let \(I \) be a fractional ideal of a semiring \(R \), then \(I \) is called invertible if there exists a fractional ideal \(J \) of \(R \) such that \(IJ = R \). Note that \(I \) is unique and will be denoted that by \(I^{-1} \).

 The set of all invertible fractional ideals of \(R \) is an abelian group.

Example (1.10): Let \(\mathbb{N} \) be the set of all non-negative integers. Clearly \(\mathbb{Q}^+ \) its semifield of fractions.

 Let \(n \) be a positive integer. The set \(I = \{ \frac{m}{n} : m \in \mathbb{N} \} \) is a fractional ideal of \(\mathbb{N} \). It is clear I as an \(\mathbb{N} \)-subsemimodule of \(\mathbb{Q}^+ \) is generated by \(\frac{1}{n} \) and \(nl \subseteq N \). While \(J =< \frac{1}{2^n} > \), where \(n \) runs over all positive integers. Since there is no positive integer \(d \) such that \(df \subseteq \mathbb{N} \), \(J \) is not a fractional ideal of \(\mathbb{N} \).

 Let \(R \) be a semidomain, \(\text{Frac}(R) \) its semifield of fractions, \(A \) and \(B \) \(R \)-subsemimodules of \(\text{Frac}(R) \). Then the residual quotient of \(A \) by \(B \) is defined as \([A : B] = \{ x \in \text{Frac}(R) : xB \subseteq A \} \), see [6].

Proposition (1.11): Let \(R \) be a semidomain, \(A \) and \(B \) some fractional ideals of \(R \). Then the following statements hold:

1. \([AB : A] A = AB \).
2. \([R : A] \) is a fractional ideal of \(R \).
3. If \(A \) is invertible, then \(A^{-1} = [R : A] \).
4. If \(A \) is an invertible ideal of \(R \), then \(A \) is finitely generated.

Proof: (1): Suppose that \(t \in AB \), then \(t = \sum_{i=1}^{n} a_ib_i \), where \(a_i \in A, b_i \in B, \forall i \). Now \(b_iA \subseteq AB \), so \(b_i \in [AB : A] \), \(\forall i \). Therefore \(t \in [AB : A]A \), and \(AB \subseteq [AB : A]A \).

 By similar way we prove that \([AB : A]A \subseteq AB \). Thus \([AB : A]A = AB \).

(2): \(R \) is fractional and \(A \) an \(R \)-semimodule, \(1 \) is a common denominator of \(R \). Choose a non-zero \(t \) in \(A \cap R \). Clearly, for any \(x \in [R : A] \), then \(xt \in R \). Therefore, \(t \) is a common denominator of \([R : A] \) and hence \([R : A] \) is fractional.

(3): In the formula, \([AB : A]A = AB \), put \(AB = R \).

(4): Let \(A \) be an invertible ideal of \(R \). So, there is a fractional ideal \(B \) of \(R \) such that \(AB = R \). This implies that \(1 = \sum_{i=1}^{n} x_iy_i \), for some \(x_1, x_2, \cdots, x_n \in A \) and \(y_1, y_2, \cdots, y_n \in B \). Clearly, the set \(\{ x_i \}_{i=1}^{n} \) generates \(A \) in \(R \).

 Now we can give our definition of invertible subsemimodule, as in modules theory [1].

Definition (1.12): Let \(M \) be a non-zero \(R \)-semimodule and \(N \) be a subsemimodule of \(M \). If \(N'N = M \), then we say that \(N \) is an invertible subsemimodule of \(M \). Note that if \(N \) is invertible then \(N \neq 0 \). It is clear that \(M \) is invertible in \(M \).

 The following proposition is useful for testing the invertibility of subsemimodules.

Proposition (1.13): Let \(M \) be a non-zero \(R \)-semimodule.

1) A non-zero subsemimodule \(N \) of \(M \) is invertible of \(M \) iff \(\forall m \in M, \exists \sum_{i=1}^{k} \omega_i n_i \leq k \) such that \(m = \sum_{i=1}^{k} \omega_i n_i \).

2) If \(N \) is invertible subsemimodule in \(M \), then \(\forall m \in M, \exists t \in T \) such that \(tm \in N \).

Proof: The proof of (1) is an immediate consequence of the Definition 1.12. For (2) Since \(N'N = M \), then \(\forall m \in M, \exists \sum_{i=1}^{k} \omega_i n_i \leq k \) such that \(m = \sum_{i=1}^{k} \omega_i n_i \), where \(r_i \in R, \ t_i \in T \). Put \(t = t_1t_2\cdots t_k \), and \(q_i = r_i \sum_{i=1}^{k} \omega_i t_i \), \(1 \leq i \leq k \), then \(tm = \sum_{i=1}^{k} q_i n_i \in N \).

 As a special case of Proposition 1.13 we obtain.

Corollary (1.14): A non-zero cyclic subsemimodule \(R_n \) of \(M \) is invertible in \(M \) iff \(\forall m \in M, \exists t \in T, \ r \in R \) such that \(tm = rn, r \) depends on \(m \).

Proposition (1.15): If \(N \) is a non-zero invertible subsemimodule of \(R \)-semimodule \(M \). Then \(M = \sum_{\phi \in H} \phi(N) \), where the sum is taken over all \(\phi \in H = \text{Hom}(N, M) \).
Proof: Since $N'N = M$. Hence each element of N' can be thought of as an R-homomorphism in $\text{Hom}(N,M)$. In fact, $\forall m \in M$, $m = \sum_{i=1}^{k} q_{i} n_{i}$, where $q_{i} \in N'$, $n_{i} \in N, 1 \leq i \leq k$. i.e. $m = \sum_{i=1}^{k} q_{i}(n_{i})$, where if $q \in N'$, then $q(n) = qn, \forall n \in N$. This completes the proof.

Definition (1.10): A non-zero R-semimodule M is called a Dedekind semimodule (or D semimodule), if each non-zero subsemimodule of M is invertible in M, and M is called a D_{1} semimodule if each non-zero cyclic subsemimodule of M is invertible in M. It is clear that every D semimodule is a D_{1} semimodule.

Example (1.17): Here some examples to explain invertible subsemimodules and D semimodules:

1) Let $R = \mathbb{Z}_{4}$ as a semiring, and let $I = R2 = \{0, 2, 4, 6\}$. So $T = T_{1} = \{1, 3, 5, 7\}$. Let $H = R4$. $H' = \{x \in \mathbb{Q}(R) | xH \subseteq \mathbb{I}\}$. It is easy to check that $\mathbb{Q}(R) = R$, and hence $H' = R$. Then $H' = H \neq I$. Thus H is not invertible in I.

2) Let N be the semiring of non-negative integer numbers and $0 \neq a \in N$. Let $I = aN$, since the set S of all not zero-divisors of N is $N - \{0\}$, hence $T = T_{1} = \{s \in N - \{0\} | sa \neq 0\} = N - \{0\}$. Therefore, $(aN)' = I' = \{x \in \mathbb{Q}^{+} | x(aN) \subseteq N\} = \frac{1}{a} N$, where \mathbb{Q}^{+} is the semifield of non-negative rational numbers. Then it is clear that $I' = I^{-1}$. Since I is an invertible ideal in N, we have $I^{-1} = I'N = N$, and I is an invertible subsemimodule. Now let $H = 4N$ be a subsemimodule of the N-semimodule $2N$. Then $H = \{x \in \mathbb{Q}^{+} | x(4N) \subseteq 2N\}$.

One can check that $H' = \frac{a}{2} N$, therefore $H'H = (\frac{1}{2} N)(4N) = 2N$, i.e., $4N$ is an invertible subsemimodule in $2N$.

3) Consider \mathbb{Q}^{+} as an N-semimodule. Suppose that N be a non-zero subsemimodule of \mathbb{Q}^{+}. Since \mathbb{Q}^{+} is torsion-free, then $T = S = N - \{0\}$, and $Q_{T}(R) = Q(R) = \mathbb{Q}^{+}$. Thus $N' = (\mathbb{Q}^{+})_{\mathbb{Q}(\mathbb{Q}^{+})(\mathbb{Q}^{+})}$. It is clear that $N' = \mathbb{Q}^{+}$, and we obtain $\mathbb{Q}^{+}N = \mathbb{Q}^{+}$, hence \mathbb{Q}^{+} is a Dedekind N-semimodule.

4) Consider Z_{n} as a Z-semimodule, where n is any positive integer > 1, which is not prime number. Let N be a non-zero proper subsemimodule of Z_{n}. Now $T = \{\frac{m}{m} \in Z | \gcd(m, n) = 1\}$. $Q_{T}(Z) = \{\frac{n}{m} \in Z | \gcd(m, n) = 1\}$. Hence it is clear that, $N' = \{x \in Q_{T}(Z) | xN \subseteq Z_{n}\} = Q_{T}(Z)$. Therefore $N'N = Q_{T}(Z)N = N \neq Z_{n}$. Hence N is not an invertible subsemimodule in Z_{n}. While, if n is a prime number, then Z_{n} is simple semimodule; Z_{n} has no non-zero proper subsemimodule, hence Z_{n} is a Dedekind N-semimodule.

5) Let p be a prime number, and let $N_{(p)}$ be the set of $\mathbb{N}^{\mathbb{N}}$-rational numbers of the form m/n, with m and n are in \mathbb{N} and n is not divisible by p. Then $N_{(p)}$ is a subsemigroup of Q^{+}. $N_{p} = Q^{+}/N_{(p)}$ is a N-semimodule. It is known that each proper non-zero subsemigroup of N_{p} is cyclic of the form N_{p}. Note that since each element of $f(N_{p})$, where $f \in \text{Hom}(N_{p})$, is of order less than or equal to p^n. Thus $N_{p} = \sum f \in \text{Hom}(N_{p}, N_{p})$. Hence by Proposition 1.15, we have N_{p} has no proper invertible subsemimodule.

Lemma (1.18): Let M_{1} and M_{2} be torsion-free R-semimodules and f be an R-epimorphism from M_{1} to M_{2}. If N is an invertible subsemimodule of M_{1} then $f(N)$ is an invertible subsemimodule of M_{2}.

Proof: Suppose N is invertible subsemimodule in M_{1}. Then $N'N = M_{1}$, $N' = \{x \in Q_{T}(R) | xN \subseteq M_{1}\}$. If $x \in N'$ then $xN \subseteq M_{1}$ and so $xf(N) = f(xN) \subseteq M_{2}$.

So $N' \subseteq (f(N))' = \{x \in Q_{T}(R) | xf(N) \subseteq M_{2}\}$.

Take $m \in M_{2}$. Let $m' \in M_{1}$ be such that $f(m') = m$.

Then $m' = x_{1}n_{1} + \cdots + x_{k}n_{k}$ for some $k \in \mathbb{N}, x_{i} \in N$ and $n_{i} \in N$.

Then $m = f(m') = x_{1}f(n_{1}) + \cdots + x_{k}f(n_{k})$, and therefore $M_{2} = N'f(N) \subseteq (f(N))'f(N) \subseteq M_{2}$. Thus $f(N)$ is an invertible subsemimodule in M_{2}.

Corollary (1.19): Every homomorphic image of a Dedekind semimodule is again Dedekind.

Remark (1.20): If N is a non-zero proper direct summand of an R-semimodule M, then N is not invertible subsemimodule in M.

1491
Proof: Let N be invertible subsemimodule in M; thus $N'N = M$, where $N' = \{ x \in Q_T(R) \mid xN \subseteq M \}$, and $T = \{ s \in S \mid sm = 0 \text{ for some } m \in M \text{ implies } m = 0 \}$. Since N is a direct summand of M, i.e. there is a subsemimodule K of M such that $M = N \oplus K$. If $0 \neq k \in K$, since N is invertible in M, then by Proposition 1.13, $\exists t \in T$ with $tk \in N$, but $tk \in K$, hence $tk \in N \cap K = \emptyset$, and since $t \in T$, then $k = 0$, which is a contradiction, then N is not invertible in M.

Corollary (1.21): It easy checked that if $M = N \oplus K$, and N is an invertible subsemimodule in M, then $M = N$.

Proposition (1.22): Let R be a semiring and I be a non-zero ideal of R, then I is an invertible ideal in R if and only if I is an invertible R-subsemimodule in R.

Proof: Let S be the set of all not zero-divisors of R. Then $T = T_I = \{ s \in S \mid sa = 0 \text{ for some } a \in I \text{ implies } a = 0 \}$. So that $T = S$. Thus $Q_T(R)$ is the total quotient semiring $Q(R)$. Hence $I' = I^{-1}$, i.e. $I'I = I^{-1}I$, and so I is an invertible ideal in R if and only if I is invertible R-subsemimodule in R.

A semiring R is said to be a *Dedekind semidomain* if every non-zero ideal of R is invertible in R [6]. According to the equivalent conditions explained on page 143 in Narkiewicz’ book [7], a Dedekind domain is a domain in which non-zero fractional ideals form a group under multiplication. Inspired by this, we give the following definition: We define a semidomain R to be a Dedekind semidomain if every non-zero fractional ideal of R is invertible. Hence R is a Dedekind semidomain if and only if $\text{Frac}(R)$ is an abelian group.

Corollary (1.23): Let R be a semiring. Then

1) R is Dedekind R-semimodule if and only if R is a Dedekind semidomain.
2) R is a D$_1$ semimodule if and only if R is a semidomain, i.e. each non-zero principal ideal of R is invertible as a subsemimodule in R if and only if it is generated by not a zero divisor.

The following remark shows that D_1 semimodule may not be D semimodule.

Remark (1.24): Let R be a semidomain, and R_1 the polynomial semiring $R[x, y]$ in two independent variables x and y. Then R_1 is a semidomain. By Corollary 1.21, R_1 is a D$_1$ semimodule. But if we take the ideal I generated by x and y, it is clear that I is not invertible subsemimodule of R_1. Thus R_1 is not a D R_1 -semimodule.

Next, we defined the notion of "essential" subsemimodule. In Golan book’s [8], it was proposed the following definitions. An R-monomorphism $f : M \rightarrow M'$ of R-semimodules is essential if for any R-homomorphism $g : M' \rightarrow M''$, $g \circ f$ is a monomorphism implies that g is a monomorphism.

A subsemimodule N of an R-semimodule M is essential (or large) in M if the inclusion mapping $i_N : N \hookrightarrow M$ is an essential R-monomorphism. Note that $f : M \rightarrow M'$ is an essential R-homomorphism if and only if $f(M)$ is a large subsemimodule of M' [8].

Another way for defining the notion of ”essential” is proposed in [9] as follows. A subsemimodule N of M is said to be semi-essential in M, written as $N \triangleleft_\text{ ess} M$, if for every subsemimodule H of $M : N \cap H = 0 \Rightarrow H = 0$. A monomorphism $f : M \rightarrow M'$ of R-semimodules is said to be semi-essential if: $f(M) \triangleleft_\text{ ess} M'$.

In [9], we have the following characterization of semi-essential subsemimodules.

Lemma (1.25): A subsemimodule N of an R-semimodule M is a semi-essential if and only if for each $0 \neq m \in M$, there exists $r \in R$ such that $0 \neq rm \in N$.

Lemma (1.26): Every invertible subsemimodule of M is a semi-essential subsemimodule of M.

Proof: Let N be invertible subsemimodule of M. Let $0 \neq m \in M$. By Proposition 1.13, $\exists t \in T$ such that $0 \neq tm \in N$ and hence N is essential.

Proposition (1.27): Let M be a D_1 semimodule. Then $\text{ann}(Rm) = \text{ann}(M)$, for each $0 \neq m \in M$.

Proof: It is clear that $\text{ann}(M) \subseteq \text{ann}(Rm)$, so it is enough to show that $\text{ann}(Rm) \subseteq \text{ann}(M)$. Let $r \in \text{ann}(Rm)$, then $rm = 0$. Let $a \in M$. Since M is a D_1 semimodule; then Rm is invertible in M, and hence by Corollary 1.14, $\exists t \in T, s \in R$ such that $ta = sm$. Thus $tra = rms = 0$. Hence $ra = 0$, and $\text{ann}(Rm) \subseteq \text{ann}(M)$. This completes the proof.

From now on, we will put $\text{End}_R(M)$, for the semiring of endomorphisms of R-semimodule M.

Lemma (1.28): Let M be a non-zero R-semimodule and $f \in \text{End}_R(M)$. If kerf contains an
invertible subsemimodule of M then $f = 0$. Therefore if M is a D_1 semimodule then every non-zero element of $\text{End}_R(M)$ is a monomorphism.

Proof: Let $N \subseteq \ker f$ is invertible in M. Then by Proposition 1.13, $\forall m \in M, \exists t \in T, and n \in N$ such that $tm = n$. So $0 = f(n) = tf(m)$; but $t \in T$ hence $f(m) = 0$ and $f = 0$.

Now assume that M is a D_1 semimodule and $0 \neq f \in \text{End}_R(M)$. Let $0 \neq k \in \ker f$, then Rk invertible in M and subset of $\ker f$ from above; we have $f = 0$, which is a contradiction, then $\ker f = 0$, and f is a monomorphism.

For any R-semimodule M, there exists an obvious semiring monomorphism: $\phi : R/\text{ann}(M) \to \text{End}_R(M)$. Hence one may think of as a subsemiring of $\text{End}_R(M)$. So we have:

Corollary (1.29): If M is a D_1 semimodule, then $R/\text{ann}(M)$ is a semidomain and thus $\text{ann}(M)$ is a prime ideal.

As a special case, we record the following.

Corollary (1.30): If a semiring R is a D_1 R-semimodule. Then R is a semidomain.

2. Multiplication Semimodules

In this section we study multiplication semimodules. We begin with following definition:

Definition (2.1): Let R be a semiring and M an R-semimodule. Then M is said to be a multiplication semimodule if for all subsemimodule N of M there exists an ideal I of R such that $N = IM$. In this case it is easy to show that $N = [N : M]M$. For instance, all cyclic R-semimodule are multiplication R-semimodule [10, Example 2].

Note that, if I is an ideal of R, then the set IM consisting of all finite sums of elements r_im_i with $r_i \in R$ and $m_i \in M$ is a subsemimodule of M.

Example (2.2): Let R be a multiplicatively idempotent semiring. Then all ideals of R are multiplication R-semimodule [11].

An element r of a semiring R is multiplicatively-cancellable (abbreviated as MC), if $rx = rwy$ implies $x = y$ for all $x, y \in R$. Each non-zero element in a semidomain is a MC element.

Theorem (2.3): Let R be a semiring. An ideal I of R is invertible if and only if it is a multiplication R-semimodule which contains an MC element of R, see [11].

Proposition (2.4): Let R be a semiring. An R-semimodule M is a multiplication semimodule if and only if for each $m \in M$ there exists an ideal I of R such that $I_m = IM$.

Proof: The necessity is clear. For the sufficiency, assume that for each $m \in M$ there exists an ideal I of R such that $I_m = IM$.

Theorem (2.5): Let M be a multiplication semimodule over a semiring R. If N is a finitely generated subsemimodule of M, then there exists a finitely generated ideal I of R such that $N = IM$.

Proof: Suppose that $N = <x_1, x_2, \ldots, x_n>$. Since M is a multiplication, we have $N = [N : M]M$. So, there exists $a_{i, j} \in [N : M]$ and $y_{i, j} \in M$ such that $x_i = a_{i, 1}y_{i, 1} + \cdots + a_{i, r}y_{i, r}$ for $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, r$. Let I be an ideal of R generated by $\{a_{1, r}, \ldots, a_{n, r}\}$. It is easy to see that $I \subseteq [N : M]$ and $IM \subseteq [N : M]M$. On the other hand, since for every $i, x_i \in IM$, we must have $N \subseteq IM$. Hence $N \subseteq IM \subseteq [N : M]M \subseteq N$. Thus $N = IM$ and I is finitely generated.

The following shows that every homomorphic image of a multiplication semimodule is again multiplication [11].

Theorem (2.6): Let M and N R-semimodules and $f : M \to N$ a surjective R-homomorphism. If M is a multiplication R-semimodule, then N is a multiplication R-semimodule.

A semiring R is called yoked if for all $a, b \in R$, there exists an element $t \in R$ such that $a + t = b$ or $b + t = a$ [8, p. 49]. A semiring is entire if $ab = 0$ implies that $a = 0$ or $b = 0$ [8, p. 4].

An R-semimodule M is called multiplicatively cancellative (or simply MC) if for any $r, r' \in R$ and $0 \neq m \in M$, $r_m = r'm$ implies $r = r'$ [11]. For example every ideal of a semidomain R is an MC R-semimodule.

Note that if M is an MC R-semimodule, then M is a faithful semimodule. Let $rM = \{0\}$ for some $r \in R$. If $0 \neq m \in M$, then $r_m = 0 m = 0$. Hence $r = 0$. Thus M is faithful.

An element m of an R-semimodule M is called cancellable if $m + m' = m + m''$ implies that $m' = m''$. The semimodule M is cancellative if and only if every element of M is cancellable [8, P. 172].

Lemma (2.7): Let R be a yoked entire semiring and M a cancellative faithful
Multiplication R-semimodule. Then M is an MC semimodule.

Theorem (2.8):[11] Let R be a yoked semidomain and M a cancellative torsion-free R-semimodule. Then M is an MC semimodule.

Lemma (2.9):[11] Let M be an R-semimodule and $\theta(M) = \sum_{m \in M} [Rm : M]$. If M is a multiplication R-semimodule, then $M = \theta(M)M$.

Theorem (2.10):[11] Let R be a semiring and M an MC multiplication R-semimodule. Then M is finitely generated.

By Lemma 2.7, we have the following result.

Corollary (2.11): Let R be an entire yoked semiring and M a cancellative faithful multiplication R-semimodule. Then M is finitely generated.

The next theorems give a characterization of MC multiplication semimodules, for the proof see[11].

Theorem (2.12): If M is an MC multiplication R-semimodule. Then M is a projective R-semimodule.

Theorem (2.13): Let R be a semidomain. If M is an MC multiplication R-semimodule, then M is a torsion-free semimodule.

Theorem (2.14): Let R be a semidomain. If M is an MC multiplication R-semimodule, then M is isomorphic to an invertible ideal in R.

3. Dedekind Multiplication Semimodules

From Remark 2.3 we can say that a semiring R is a Dedekind semidomain iff each non-zero ideal in R is a multiplication ideal which contains a not zero-divisor. In this section we study Dedekind multiplication semimodules. We begin with the following.

Lemma (3.1): Let M be a torsion-free R-semimodule. If N is an invertible subsemimodule of M and I is an invertible ideal in R, then IN is an invertible subsemimodule of M.

Proof: Suppose $H = IN$. But $N'N = M$, $I^{-1}I = R$, and hence $I^{-1}N'H = (I^{-1}I)N'N = M$. From Proposition 1.7, we have $T_M = S$ and from Proposition 1.22, we have $Q_T(R) = Q(R)$. Hence easy to see that $I^{-1}N' \subseteq H$. By above we have $I^{-1}N' = H'$, and H is invertible.

Lemma (3.2): Let M be a non-zero R-semimodule and I is invertible ideal in R. Then IM is an invertible subsemimodule of M.

Proof: Suppose $K = IM$. But $I^{-1}I = R$, and hence $I^{-1}K = (I^{-1})IM = (I^{-1}I)M = RM = M$. From Proposition 1.22, we have $Q_T(R) = Q(R)$, thus it follows that $I^{-1} \subseteq K'$. Hence $M = I^{-1}K \subseteq K'K \subseteq M$, so $K'K = M$, and K is invertible.

A subsemimodule N of an R-semimodule M is called **invariant** subsemimodule if $f(N) \subseteq N$, $\forall f \in \text{Hom}(M,M)$, [3, 12].

Definition (3.3): A semimodule M is said to be **duo** if each subsemimodule of M is invariant, [12].

In [12], we have the following characterization of duo subsemimodules.

Theorem (3.4): Let R be a yoked semidomain, and M a torsion-free R-semimodule. Then M is duo if and only if for each R-endomorphism f of M, there exists $r \in R$ such that $f(m) = rm$ for all $m \in M$.

Remark (3.5): It is clear that any multiplication semimodule is duo. Hence by Theorem 3.4, if M is a multiplication torsion-free semimodule over a yoked semidomain R, then for each $f \in \text{End}_R(M)$, $\exists r \in R$, such that $f(m) = rm$ for all $m \in M$.

Corollary (3.6): If M is a torsion-free multiplication semimodule over a yoked semidomain R, then there exists an epimorphism of semirings from R onto $\text{End}_R(M)$.

Proof: By Remark 3.5, $\forall f \in \text{End}_R(M)$, $\exists r \in R$, such that $f = f_r$ and $f_r(m) = rm$ for all $m \in M$. Hence $\phi: R \rightarrow \text{End}_R(M)$, defined by $\phi(r) = f_r$. It is easily check, that ϕ is an epimorphism of semirings.

Theorem (3.7): If M is a torsion-free multiplication semimodule over a yoked semidomain R, then $\text{End}_R(M) \cong R/\text{ann}(M)$

Proof: By Corollary 3.6, $\ker\phi = \{r \in R | \phi(r) = 0\} = \{r \in R | f_r = 0\} = \{r \in R | rm = 0 \ \forall m \in M\} = \text{ann}(M)$. But $\text{End}_R(M) \cong R/\ker\phi$, then $\text{End}_R(M) \cong R/\text{ann}(M)$.

By Lemma 2.7, Theorem 2.13, and Theorem 3.7 we have.

Theorem (3.8): If M a cancellative faithful multiplication semimodule over a yoked semidomain R. Then $\text{End}_R(M) \cong R$.

The following lemma shows the importance of the faithful multiplication semimodules.

Lemma (3.9): Let M be a finitely generated cancellative faithful multiplication semimodule over
a yoked semidomain R. If $N = IM$ is an invertible subsemimodule of M for some ideal I of R, then I is an invertible ideal in R.

Proof: Since $N \neq 0$, then $I \neq 0$. By assumption $N'N = M$, hence $M = N'N = N'IM$. It is clear that $N'I$ is an R-subsemimodule of R. Also, it is easy to see that every element of $N'I$ can be considered as an R-endomorphism of M. Now, since M is a faithful multiplication semimodule, then by Theorem 3.8, $\text{End}_R(M) \cong R$. Therefore $N'I$ is an ideal in R. As in modules see [13], it follows that $N'I = R$. Hence $N' \subseteq I^{-1}$, so $R = N'I \subseteq I^{-1}I \subseteq R$ which implies $I^{-1}I = R$.

Theorem (3.10): Let M be a cancellative faithful multiplication R-semimodule over a yoked Dedekind semidomain R. Then M is a finitely generated Dedekind R-semimodule.

Proof: Since M is a faithful multiplication semimodule, and R is a semidomain. By Corollary 2.11, we have M is a finitely generated. Now, let N be a non-zero subsemimodule of M. Hence there exists a non-zero ideal I in R such that $N = IM$. Since R is a Dedekind semidomain, thus I is invertible in R, and by Lemma 3.2, N is invertible.

The following theorem is a converse of above theorem:

Theorem (3.11): Let M be a cancellative faithful multiplication semimodule over a yoked semidomain R. If M is a Dedekind semimodule, then R is a Dedekind semidomain.

Proof: By assumption, R is a semidomain. By Corollary 2.11, we get M is a finitely generated. Assume that I is any non-zero ideal of R. Then IM is a non-zero subsemimodule of M, hence IM is invertible. From Lemma 3.9, I is an invertible ideal.

A semidomain R is said to be a **Prüfer semidomain** if every non-zero finitely generated ideal of R is invertible in R [6]. Note that R is a Dedekind semidomain if and only if R is a Noetherian (each of its ideals is finitely generated) Prüfer semidomain.

Let D be a Dedekind domain (D is a ring). By Theorem 3.7 in [4], the semiring of ideals $\text{Id}(D)$ of D (the set of all ideals of D) is a Prüfer semidomain. By Theorem 3.7 in [4], $\text{Id}(D)$ is subtractive (each of its ideals is subtractive). If $\text{Id}(D)$ is also Noetherian, then $\text{Id}(D)$ is a Dedekind semidomain. Note that the semiring $\text{Id}(D)$ is proper semiring, i.e., it is not a ring. If D is a Dedekind semidomain then the above argument remains true. Note that, each Noetherian Prüfer semidomain is Dedekind.

For a more specific example, we assert that $(\text{Id}(\mathbb{Z}), +, \cdot)$ is a principal ideal semidomain (each of its ideals is principal) [6]. Hence, $\text{Id}(\mathbb{Z})$ is evidently a Dedekind semidomain. Note that the semiring $(\text{Id}(\mathbb{Z}), +, \cdot)$ is isomorphic to the semiring $(\mathbb{N}, \text{gcd}, \cdot)$.

Definition (3.12): A semimodule M is said to be a **Prüfer semimodule** if every non-zero finitely generated subsemimodule of M is invertible in M.

The proof of the above theorem is basically the same as the proof of the last results.

Theorem (3.13): Let M be a cancellative faithful multiplication semimodule over a yoked semiring R. Then M is a Prüfer semimodule if and only if R is a Prüfer semidomain.

If M is a D_1 semimodule, we have the following remark which is special case of above theorem.

Remark (3.14): Let M be a cancellative faithful multiplication semimodule over a yoked semiring R. Then M is a D_1 semimodule if and only if R is a semidomain.

Proof: (⇒) By Corollary 1.29, we get R is a semidomain, so each non-zero principal ideal is invertible.

(⇐) Assume that R is a semidomain. Let now Rm be a non-zero cyclic subsemimodule of M, $Rm = IM$, for some ideal I of R. In this case we can take $I = [Rm:M]$, and hence $Rm = [Rm:M]M$. By Corollary 2.11, we get M is finitely generated, and thus $[Rm:M]$ is a multiplication ideal in R [13]. But R is a semidomain; thus by Theorem 2.3, $[Rm:M]$ is an invertible ideal in R. Then by Lemma 3.2, Rm is an invertible subsemimodule of M.

Proposition (3.15): If M is a faithful multiplication Dedekind R-semimodule. Then $M^* = \text{Hom}_R(M, R)$ is also a faithful multiplication Dedekind R-semimodule.

Proof: Similarly in the proof of Theorem 3.10, M is a f.g. faithful multiplication semimodule. So as in the modules see Corollary (2) of [2], we obtain that M^* is a f.g. faithful multiplication R-semimodule. By assumption and using Theorem 3.11, we get R is a Dedekind semidomain. Now M^* is a f.g. faithful multiplication R-semimodule over the Dedekind semidomain R, then by Theorem 3.10, M^* is a Dedekind R-semimodule.

4. **Embedding of Semimodules**

In this section we study "embeddability proplem", thus we look for necessary and (or) sufficient
conditions under which an R-semimodule A is isomorphic to a subsemimodule of the R-semimodule B. Now, put $H = \text{Hom}_R(A, B)$, H is an R-semimodule. We start by the following.

Proposition 4.1: Let A and B be R-semimodules. If there exists a monomorphism $f \in H$, then $\text{ann}(Rf) = \text{ann}(H)$.

Proof: It is clear that $\text{ann}(H) \subseteq \text{ann}(Rf)$, so it is enough to show that $\text{ann}(Rf) \subseteq \text{ann}(H)$. Let $r \in \text{ann}(Rf)$, then $0 = rf(a) = f(ra)$. But f is a monomorphism, therefore $ra = 0$, and $r \in \text{ann}(A)$. But it is easily seen that $\text{ann}(A) \subseteq \text{ann}(H)$, thus $\text{ann}(Rf) = \text{ann}(H)$.

Remark 4.2: The converse of Proposition 4.1 is not true in general.

Proof: Let A be a projective R-semimodule with a non-commutative endomorphisms semiring, $E(A)$ (for example, A can be any free semimodule of rank > 1, such as $A = \mathbb{Z} \oplus \mathbb{Z}$ as \mathbb{Z}-semimodule). Put $B = A \oplus R$. Then $B^* = A^* \oplus R^* \cong A^* \oplus R$, where $B^* = \text{Hom}(B, R)$ and $A^* = \text{Hom}(A, R)$.

If β represents a generator of a semiring R in the last direct sum, hence it is clear that $\text{ann}(RB^*) = \text{ann}(B^*) = 0$. Whereas B^* does not contain any monomorphism. To prove this, let $f \in B^*$ such that $\ker f = 0$. Thus $f(B)$ is a projective ideal of R (since B is projective). And thus by [14], $f(B)$, so also B is a multiplication ideal. By [15], $\text{End}_R(B)$ is commutative. By [16, lemma 2.1], we have $\text{End}_R(A)$ is commutative, which is a contradiction.

Now, let us observe that if there exists a monomorphism $f: A \rightarrow B$, for any R-semimodules, A and B, then it is clear that $\cap_{g \in H} \ker g = \{0\}$.

The following theorem gives a sufficient condition for the existence of a monomorphism in $H = \text{Hom}(A, B)$, in the case A is a multiplication R-semimodule.

Theorem 4.3: Let A be a multiplication R-semimodule and B any R-semimodule such that $\cap_{g \in H} \ker g = \{0\}, \forall g \in H = \text{Hom}(A, B)$. Then for any $f \in H$, then f is a monomorphism if $\text{ann}(Rf) = \text{ann}(H)$.

Proof: (\Rightarrow) If f is a monomorphism then by Proposition 4.1, we have $\text{ann}(Rf) = \text{ann}(H)$.

(\Leftarrow) Put $N = \ker f$. There is an ideal I in R such that $N = IA$. So $0 = f(N) = f(IA) = If(A)$, which implies $f \subseteq \text{ann}(Rf)$. Then $IH = \{0\}$, hence $I \subseteq \ker g, \forall g \in H$, and thus $IA = \{0\}$. Therefore $N = \{0\}$ and f is a monomorphism.

As a special case of Theorem 4.3, we give the following, comparison with [2, Lemma 1.1]. We say that an R-semimodule A is called torsionless if $\cap_{g \in H} \ker g = \{0\}, \forall g \in A^*$. Let A be a torsionless multiplication R-semimodule. Then A is embeddable in R iff $\exists \beta \in A^*$ such that $\text{ann}(RB^*) = \text{ann}(A^*)$.

More generally, we have:

Corollary 4.4: Let A be a torsionless multiplication R-semimodule. Then A is embeddable in R^n iff \exists a f.g. subsemimodule N of A^*, which is generated by a set $\{\beta_1, \beta_2, ..., \beta_n\}$, where $\beta_i \in A^*, 1 \leq i \leq n$ and $\text{ann}(N) = \text{ann}(A^*)$.

Proof: (\Rightarrow) Assume that A embeds in R^n, i.e. $\exists \beta: A \rightarrow R^n$ which is a monomorphism. $\forall i, 1 \leq i \leq n$ define $\beta_i: A \rightarrow R$ as follows $\beta_i = \rho_i \circ \beta$, where $\rho_i \forall i, 1 \leq i \leq n$ is the natural projection of R^n onto the ith component. Note, since $\text{Hom}(A, R^n)$ is isomorphic to the direct sum of n copies of $A^* = \text{Hom}(A, R)$.

Therefore $\text{ann}(f(A, R^n)) = \text{ann}(A^*)$ and since β is a monomorphism hence, by Proposition 4.1 $\text{ann}(\beta) = \text{ann}(A^*)$. Now, $\text{ann}(\beta) = \cap_{\beta \in H} \text{ann}(\beta) = \text{ann}(N)$. Thus $\text{ann}(N) = \text{ann}(A^*)$.

(\Leftarrow) Assume that \exists a f.g. subsemimodule N of A^*, which is generated by a set $\{\beta_1, \beta_2, ..., \beta_n\}$, and $\text{ann}(N) = \text{ann}(A^*)$. Now let us define an R-homomorphism $\beta: A \rightarrow R^n$ as follows $\beta(x) = (\beta_1(x), \beta_2(x), ..., \beta_n(x)), \forall x \in A$. Now since $\text{ann}(f(A, R^n)) = \text{ann}(A^*)$, and by assumption $\text{ann}(A^*) = \text{ann}(N) = \cap_{\beta \in H} \text{ann}(\beta) = \text{ann}(\beta)$. Therefore by using Theorem 4.3, we obtain β is a monomorphism in $\text{Hom}(A, R^n)$.

From our main results in this section, is that if $\exists \beta \in A^*$ such that (RB^*) is invertible in A^*, and A is torsionless, then β is a monomorphism, and hence A embeds in R, this means A is isomorphic to an ideal of R. But now, let us recall that for any R-semimodule B, $T_B = \{s \in S | s \beta = 0 \text{ for some } b \in B, \text{ then } b = 0\}$. Hence, for an R-semimodule $H = \text{Hom}(A, B)$, $T_B = \{s \in S | s \beta = 0 \text{ for some } b \in H, \text{ then } b = 0\}$.

Theorem 4.6: Let A and B be any two R-semimodules, with $\cap_{\beta \in H} \ker \beta = \{0\}$, and $T_B \subseteq T_B$. If there exists a cyclic invertible subsemimodule (RF) in H, then f is a monomorphism, and hence A embeds in B. Moreover, if $\Sigma_{\beta \in H} \beta(A) = B$, then $f(A)$ is invertible subsemimodule in B.

1496
Proof: By Corollary 1.14 \(\forall \beta \in H, \exists t \in T_H, s \in R \) such that \(tf = sf \). Put \(N = ker f \) and let \(x \in N \), then \(sf(x) = t\beta(x) = 0 \), which implies \(x = 0 \). Thus \(f \) is a monomorphism. Next, by assumption, \(\forall \beta \in B, f_1, f_2, \ldots, f_m \in H \) and \(a_1, a_2, \ldots, a_m \in A \) such that \(b = \sum_{i=1}^{m} f_i(a_i) \). Since \((Rf) \) is invertible in \(H \), so by Corollary 1.14 \(v \), \(1 \leq i \leq m, \exists t_i \in R, t_i \in T_H \) such that \(f_i = \frac{t_i}{t_i} f \). Hence \(b = \sum_{i=1}^{m} \frac{t_i}{t_i} f(a_i) \), and by Proposition 1.13, we obtain that \(f(A) \) is invertible in \(B \).

The following two corollaries are special case of Theorem 4.6.

Corollary (4.7): Let \(A \) be a torsionless \(R \)-semimodule. If \(A^* \) contains a cyclic invertible subsemimodule, then \(A \) is isomorphic to an ideal of \(R \). Further if \(\text{trace}(A) = R \), then \(A \) is isomorphic to an invertible ideal, and thus is a faithful multiplication semimodule.

Proof: Since \(T_R = S \), where \(S \) is the set of all non-zero devisors in \(R \), and hence \(T_A^* \subseteq T_R \). Let \(\alpha \in A^* \) such that \((R\alpha) \) is invertible in \(A^* \). Thus by Theorem 4.6, \(\alpha \) is a monomorphism. Since \(\text{trace}(A) = \sum_{\beta \in A} \beta(A) = R \), again by Theorem 4.6, \(\alpha(A) \) is an invertible subsemimodule of \(R \). Hence by Proposition 1.20, \(\alpha(A) \) is an invertible ideal in \(R \). By Remark 2.3, we obtain \(\alpha(A) \), and hence \(A \) is a faithful multiplication semimodule

Corollary (4.8): Let \(A \) be a torsionless \(R \)-semimodule. If \(A^* \) contains a f.g. invertible subsemimodule \(N \), and \(N \) can be generated by \(n \) elements. Then \(A \) embeds in \(R^n \).

Proof: Let \(\{\beta_1, \beta_2, \ldots, \beta_n\} \) be a set of generators of \(N \). Define \(\beta: A \rightarrow R^n \), as follows, \(\beta(x) = (\beta_1(x), \beta_2(x), \ldots, \beta_n(x)) \), \(\forall x \in A \). Now our aim is to show that \(\beta \) is a monomorphism. Suppose \(N \) is invertible in \(A^* \), then by Proposition 1.13, we have \(\forall \alpha \in A^* \), \(\exists t \in T_A^* \subseteq S \) and \(\exists r_i \in R, 1 \leq i \leq n \) such that \(ta = \sum_{i=1}^{n} r_i \beta_i \). Now, let \(y \in ker \beta = \cap_{i=1}^{n} ker \beta_i \). Thus \(ta(y) = \sum_{i=1}^{n} r_i \beta_i(y) = 0 \), but \(t \in S \), then \(\alpha(y) = 0 \) \(\forall \alpha \in A^* \), i.e. \(y \in \cap_{i=1}^{n} ker \alpha = (0) \). Thus \(ker \beta = (0) \), and \(A \) embeds in \(R^n \).

Theorem (4.9): Let \(M \) be a Dedekind semimodule and let \(m \) be a non-zero element of \(M \). Then \(M \) is isomorphic to the \(R \)-subsemimodule \((Rm) \) of \(Q(R) \).

Proof: Since \(M \) is a Dedekind semimodule, then \(\forall m_i \in M, \exists z_i \in (Rm) \) such that \(m_i = zm \). Define a homomorphism \(f: (Rm) \rightarrow M \) with \(f(z) = zm \) for each \(z \in (Rm) \). It is clear that \(f \) is an \(R \)-isomorphism.

References
1. Naoum, A. G. and Al-Alwan, F. H. 1996. Dedekind modules. Comm. In Algebra, 24(2): 397-412.
2. Low, G. M. and Smith, P. F. 1990. Multiplication Modules and Ideals. Comm. Algebra, 18(12): 4353-4375.
3. Alwan, A. H. and Alhossaini, A. M. 2020. On Dense Subsemimodules and Prime Semimodules. Iraqi Journal of Science, 12 Pages.
4. Ghalandarzadeh, S., Nasehpour, P. and Razavi, R. 2017. Invertible Ideals and Gaussian Semirings. Arch. Math. (Brno), 53: 179-192.
5. Ebrahim Atani, R. and Ebrahim Atani, S. 2010. On subsemimodules of semimodules. Buletinul Academiei De Stiinte A Republicii Moldova. Matematica, 2(63): 20-30.
6. Nasehpour, P. 2019. Dedekind semidomains. Cornell University, arXiv:1907.07162v1. Pages (20).
7. Narkiewicz, W. 2018. The Story of Algebraic Numbers in the First Half of the 20th Century. From Hilbert to Tate, Springer Nature Switzerland AG, Cham.
8. Golan, J. S. 1999. Semirings and Their Applications. Kluwer Academic Publishers, Dordrecht.
9. Diop, E. and Sow, D. 2016. On Essential Subsemimodules and Weakly Go-Hopfian Semimodules. Euro. J. of pure and applied algebra, 9(3): 250-265.
10. Yesilot, G., Orel, K. and Tekir, U. 2010. On prime subsemimodules of semimodules. Int. J. Algebra, 4: 53–60
11. Razavi N. R. and Ghalandarzadeh, S. 2019. Multiplication semimodules. Acta Univ. Sapientiae, Mathematica, 11(1): 172-185.
12. Alhossaini, A. M. and Aljebory, Z. A. 2017. Fully Dual Stable Semimodules J. of Iraqi Al-Khwairizmi Soc. 1(1): 92-100.
13. Smith, P. F. 1988. Some remarks on multiplication modules. Arch. Der Math., 50: 223-235.
14. Smith, W. W. 1969. Projective ideals of finite type. Canad J. Math., 21: 1057-1061.
15. Naoum, A. G. 1990. A note on projective modules and multiplication modules. Period. Math. Hungar., 21: 249-255.
16. Zelmanowitz, J. 1971. Commutative endomorphism rings. Can. J. Math., XXIII(1): 69-76.

1497