P67-phox (NCF2) Lacking Exons 11 and 12 Is Functionally Active and Leads to an Extremely Late Diagnosis of Chronic Granulomatous Disease (CGD)

Joachim Roesler1*, Florian Segerer2, Henner Morbach2, Stefan Kleinert3, Sebastian Thieme1, Angela Rösen-Wolff1, Johannes G. Liese2

1 Department of Pediatrics, University Hospital Carl Gustav Carus, Dresden, Germany, 2 Department of Pediatrics, University Hospital of Wuerzburg, Würzburg, Germany, 3 Rheumatology/Clinical Immunology, University Hospital of Wuerzburg, Würzburg, Germany

Abstract

Two brothers in their fifties presented with a medical history of suspected fungal allergy, allergic bronchopulmonary aspergillosis, alveolitis, and invasive aspergillosis and pulmonary fistula, respectively. Eventually, after a delay of 50 years, chronic granulomatous disease (CGD) was diagnosed in the index patient. We found a new splice mutation in the NCF2 (p67-phox) gene, c.1000+2T→G, that led to several splice products one of which lacked exons 11 and 12. This deletion was in frame and allowed for remarkable residual NADPH oxidase activity as determined by transduction experiments using a retroviral vector. We conclude that p67-phox which lacks the 34 amino acids encoded by the two exons can still exert considerable functional activity. This activity can partially explain the long-term survival of the patients without adequate diagnosis and treatment, but could not prevent progressing lung damage.

Introduction

Chronic granulomatous disease (CGD) is caused by inherited defects in the NADPH oxidase multienzyme complex. This rare disorder is associated with life-threatening opportunistic infections and dysregulated inflammation, often accompanied by granuloma formation even in the absence of detectable infections [1–6]. In most cases, CGD manifests itself before the third year of life, but a delayed diagnosis, especially in patients with residual NADPH oxidase activity, is quite common [3,5]. Indeed, more and more cases emerge with manifestations in adulthood. In such cases, the diagnosis is often delayed for years or even decades [6–10] preventing adequate treatment.

In addition to infections, older CGD patients frequently suffer from various autoinflammatory symptoms. They need regular medical checkups [11], prophylactic and interventional antimicrobial and/or immunosuppressive treatment [6,12,13], and their disorder may be corrected by hematopoietic stem cell transplantation [1,14]. Gene therapy may be a future therapeutic option [15].

The phagocyte NADPH oxidase is needed for appropriate microbial killing and regulation of inflammation. CGD is caused by mutations affecting the expression or function of one out of four components of this enzyme complex [3]. These components are gp91-phox (also referred to as NOX2), p22-phox, p47-phox, and p67-phox, [MIM#s 608515, 233710; -phox, phagocyte oxidase). Rac2 [16], p40-phox, and severe G6PD deficiency also cause CGD-like diseases, but differ from the classical form. In about two-thirds of all CGD cases, mutations are found in the X-chromosomal CIBB gene encoding gp91-phox/NOX2. The genetic aberrations are family-specific and comprise a wide range of mutation types [17]. Mutations are also family-specific in autosomal-recessive p22-phox [18] and in p67-phox [19] deficiencies, which are much rarer than the X-linked form (each 5% of all CGD cases). In contrast, autosomal recessive p47-phox deficiency (25% of all CGD cases [19,20]) is mostly due to recombination events between the NCF1 gene and one out of two highly homologous pseudogenes, thus leading to the same GT deletion at the beginning of exon 2 in 80–90% of all p47-phox-deficient CGD patients.

In healthy individuals, the p67-phox protein combines with other components of the NADPH oxidase to form the fully-functional reactive oxygen species (ROS)-producing enzyme complex [21,22]. The SH3 domain close to the C-terminal end of p67-phox interacts with the proline-rich region (PRR) of p47-phox, the PB1 domain links p67-phox to p40-phox, and the tetra-tri-cotide peptide repeat (TPR) region of p67-phox domain binds Rac-GTP [21,23].

Here we describe a new splice mutation in NCF2 (p67-phox) leading to residual NADPH oxidase activity, thereby contributing to an extremely late diagnosis of CGD in adulthood.

Results

Case reports

At age 8 years, the index patient was first hospitalized for six months with a fungal pneumonia after threshing of mouldy grain. Thirty years later, he had another fungal pneumonia caused by...
non-specified *Aspergillus*. Thereafter, he suffered from recurrent episodes of dyspnea mostly after exposure to moulding organic material (Table 1). These episodes were interpreted as fungal allergy, allergic bronchopulmonary aspergillosis or hypersensitivity pneumonitis and treated with steroids and antimycotic drugs. At age 48 years a persisting pulmonary fistula and local infiltration with *Aspergillus fumigatus* prompted lobectomy of the lower left lung lobe. Between age 54 and 56 years two invasive pulmonary *Aspergillus* infections of the right and left upper lobe and a fistula of the left upper lobe were treated by dissection of the affected lung parts. Prolonged immunosuppression by steroids was thought to be the reason for these complications. However, after discontinuation the patient experienced a rapid deterioration of his pulmonary function requiring continuous oxygen supplementation and causing cor pulmonale.

The 53 year-old brother of the 58 year-old index patient had to give up his profession as a beer brewer due to recurrent episodes of dyspnea after exposure to moulding organic materials. These episodes were thought to be of allergic etiology. Furthermore, a liver abscess caused by *Staph. aureus* was drained. (Table 1, bottom).

Laboratorial findings

To diagnose CGD, reactive oxygen species (ROS) were measured using the DHR assay and lucigenine enhanced chemoluminescence (CL) [24]. Both tests showed small amounts of residual NADPH oxidase activity (Fig. 1, A; Table 2). Neutrophils and monocytes from the index patient expressed cytochrome b558 normally as revealed by staining with the mab 7D5 and flow cytometry (Fig. 1, B). In the majority of CGD cases, leukocytes are cytochrome b558 negative when mutations are located in the membrane associated components gp91-phox (*C1BB*) and p22-phox (*C1BA*) of the NADPH oxidase, but always positive when the mutations are located in the cytosolic factors of this enzyme. Consequently, we focussed on these factors and sequenced exon 2 of the *NCF1* (p47-phox) gene to check for the hot spot mutation c.75_76delGT [20], and the *NCF2* gene on the genomic level.

The index patient and his brother were normal at the p47-phox hot spot, but homozygous for a splice mutation (c.1000+2T→G) downstream of exon 11 in *NCF2*. This mutation destroyed the splice consensus sequence. Accordingly, several deranged splice products, but no normally spliced *NCF2* cDNA could be detected by separation on an agarose gel (data not shown). cDNA strands of different length were cut out and sequenced. However, many bands consisted of heterodimers of different splice products complicating the analysis. As expected, exon 11 was always skipped and one main splice product lacked exon 11, but was otherwise normal.

However, *NCF2* mRNA without exon 11 could not account for the residual NADPH oxidase activity because this exon skipping deranged the sequence by setting it out of frame (Fig. 1, B). Further search raised suspicion for a splice product lacking two exons, 11 and 12 (p67delex11,12) and thereby 34 triplets. The presence of this splice product was confirmed by two PCR approaches, one using a forward primer located in exon 10 with

Table 1. Overview over medical histories.

Age (years)	Symptoms	Therapy
Before 8 *	Eczema, recurrent tonsillitis	Tonsillectomy
8*	Fungal pneumonia	Antimycotics for 6 months
38 (and later)	Suspected pulmonary aspergillosis	Intermittent treatment with itraconazole and corticosteroids
38	Documentation of chronic inflammatory lung disease	Starting long term treatment with corticosteroids, further intermittent treatments with antifungal compounds, especially itraconazole
39	Suspected hypersensitivity pneumonitis	
47	Suspected allergic bronchopulmonary aspergillosis	
48	Lung biopsy complicated by fistula formation, *Aspergillus fumigatus* found	Resection of left lower lobe
51–54	Recurrent pulmonary aspergillosis	At age 54: Resection of right upper lobe infiltrated by *Aspergillus fumigatus*
56	Aspergillosis of left upper lobe	Resection of left segments 1–3, complicated by fistula formation
58	Unspecified pneumonia	Addition of antibiotics
58	Pulmonary deterioration after discontinuation of corticosteroids: diagnosis of pulmonary hypertension and partial respiratory insufficiency	Home oxygen supply

Age (years)	Symptoms	Therapy
Whole childhood*	Recurrent skin abscesses	Drainage
3*	Fungal pneumonia	Antimycotics for 6 months
41–48	Recurrent dyspnea after grain dust exposure (ale brewer), suspected exogen allergic alveolitis	Intermittent treatment with corticosteroids
48	Official recognition of “severe grain dust allergy” as work-related disease	

*The medical histories of childhood are slightly vague because no documents were available, but rely on what the patients and their mother remember.

doi:10.1371/journal.pone.0034296.t001
an overlap into exon 13 and a downstream reverse primer, and a second PCR using a reverse primer in exon 13 with an overlap into exon 10 and an upstream forward primer (PCR 1, 2, Table 3, Fig. 3). Both PCR approaches gave strong bands when applied to patient cDNA, but gave no amplimer when applied to normal cDNA (Fig. 3). The splice product p67dela11,12 was the only one found to be in frame (Fig. 2).

In order to confirm that p67dela11,12 could indeed lead to a functional NADPH oxidase, we inserted a p67dela11,12-cDNA into a retroviral vector and transduced K562 cells expressing all NADPH oxidase components except p67-phox (model p67-CGD cells). As shown in Table 4 the NADPH oxidase multi-enzyme-complex that contained p67dela11,12 instead of complete p67-phox could still produce remarkable amounts of ROS (approximately 10% superoxide compared to the wild-type form) after stimulation with phorbol myristate acetate (PMA).

IFNγ has been described to influence splicing and nuclear export of normal transcripts in a case of gp91-phox deficient CGD caused by a splice mutation [25]. To analyze if IFNγ could also be effective in our patients, we incubated EBV-transformed B cells from the index patient with 10 or 20 ng/ml IFNγ [25], but found no improvement in the production of ROS (data not shown).

Discussion

We report two brothers who suffered from symptoms typical for CGD, starting with the first manifestation of their disorder in childhood (Table 1). The extreme delay of 50 years between the first symptom and the diagnosis of CGD in the index patient may be explained by the severe inflammatory lung disease, a condition erroneously not considered to be typical for primary immunodeficiency. Unfortunately, physicians other than specialized pediatricians are seldom familiar with CGD, which is a rare disorder (approx. 1 in 200,000 newborns).

The prognosis of CGD patients clearly depends on residual NADPH oxidase activity [26]. However, there are other environmental and genetic effects that also influence the outcome [27]. The ROS production of neutrophils from our patients was very low. Nevertheless, it has most probably helped to slow down the progression of CGD complications.

The patients were homozygous for the new disease-causing splice mutation (c.1000+2T→G) and their parents therefore most probably consanguineous. The mutation could not easily explain the residual NADPH oxidase activity. It predicts skipping of exon 11 that was found indeed, but sets the downstream mRNA out of frame. Splice mutations often generate several aberrant splice products for example by indirectly activating cryptic splice sites.

Table 2. Residual ROS (superoxide) production by 10⁵ neutrophils.

CL	Indexpatient	Healthy donor
unstimulated	1.5×10⁶	2.8×10⁶
PMA	2.8×10⁶	2.8×10⁶
Zymosane A	3.7×10⁶	2.1×10⁶

CL: lucigenine enhanced chemoluminescence, arbitrary light units in 30 min. PMA: phorbol myristate acetate.

doi:10.1371/journal.pone.0034296.t002

Figure 1. Production of small amounts of ROS (hydrogen peroxide) by neutrophils from the index patient (A, straight line) and normal expression of cytochrome b558 (consisting of gp91-phox and p22-phox, B). A, DHR assay; no stimulation, gray area; activation with PMA, patient’s cells, straight line; cells from a healthy control donor, dotted line; the residual NADPH oxidase activity was reproducible in different labs. B, cell staining with the mab 7D5; gray area, isotype control; lines as in A. Abscissa, green fluorescence.

doi:10.1371/journal.pone.0034296.g001

Figure 2. Schematic representation of the normal exon arrangement (A) and two main splice products in the patients (B). Italic letters represent the bp sequence at the exon 11/12 junction, the other capital letters represent the amino acid sequences at exonic junctions. The deletion of exons 11 and 12 does not affect a known functional domain (A, top), but may shorten the distance between the first SH3 domain (possibly binding to gp91-phox) and the P81 domain (binding to p40-phox).

doi:10.1371/journal.pone.0034296.g002

Figure 3. Production of small amounts of ROS (hydrogen peroxide) by neutrophils from the index patient (A, straight line) and normal expression of cytochrome b558 (consisting of gp91-phox and p22-phox, B). A, DHR assay; no stimulation, gray area; activation with PMA, patient’s cells, straight line; cells from a healthy control donor, dotted line; the residual NADPH oxidase activity was reproducible in different labs. B, cell staining with the mab 7D5; gray area, isotype control; lines as in A. Abscissa, green fluorescence.

doi:10.1371/journal.pone.0034296.g001
However, such a splice site could not be found, neither in silico nor by sequencing.

Skipping of two (or more) exons does also occur when splicing is impaired. We detected a splice product, p67delex11,12, that was absent from cDNA of healthy donors. This splice product was a candidate mRNA that could possibly account for the residual NADPH oxidase activity because it remained in frame and the deletion did not affect a known functional domain [21,22], Fig. 2. A transduction experiment using a retroviral vector and model p67-CGD cells could indeed substantiate this assumption. p67delex11,12 supports considerable ROS production (approximately 10% of normal, Table 4). This finding contrasts to skipping of exon 5 that leaves also the p67-phox mRNA in frame, but leads to a non-functional protein variant that is rapidly degraded [28].

Interestingly, the exons 11 and 12 of the NCF2 gene are not highly conserved in the evolution of vertebrates as all have orthologues of p67-phox [29]. The genome of the lizard Anolis carolinensis lacks exons homologous to the human exons 11 and 12, but has exonic sequences homologous to all other human NCF2 exons that are translated [according to ENSEMBL Genomic alignments, http://www.ensembl.org]. Anolis carolinensis could be representative for other reptiles, but this has not yet been checked. Frogs and fish have also no homologies to exons 11 and 12, but lack some additional homologies to human NCF2 exons.

The low residual NADPH oxidase activity in the patients in spite of the considerable functional potential of p67delex11,12 can be easily explained by the fact that only a small portion of aberrant mRNA consisted of p67delex11,12. In an agarose gel, the respective cDNA did not form a clear band, but formed heterodimers with other splice products and was presumed by respective cDNA did not form a clear band, but formed...
analyzed by flow cytometry (FACS Calibur; BD Biosciences, San Jose, CA).

K562 Cell Line, Culture Conditions, and Incubation of EBV transformed B Cells with IFNγ

We used a human K562 cell model of p67-phox–deficient CGD (model p67-CGD cells) that was engineered to contain p47-phox and gp91-phox (and that naturally expresses p22phox mRNA). Only when K562-67def-CGD cells are transduced to also produce p67-phox do these cells become capable of generating superoxide in response to phorbol 12-myristate 13-acetate (PMA) stimulation [32]. The cells were cultured in RPMI-1640 medium supplemented with 10% (v/v) fetal bovine serum (FBS), 2 mM glutamine, 100 U/mL penicillin, and 0.1 mg/mL streptomycin. EBV-transformed B cells from the index patient and a healthy control donor were incubated with IFNγ (10 or 20 ng/ml) for seven days as described [25].

PCR and Sequencing

Genomic DNA was isolated with the QIAamp DNA Blood kit (Qiagen, Hilden, Germany). PCR reactions were performed with AmpliTaq Gold DNA Polymerase (Applied Biosystems, Warrington, UK). DNA analysis was performed with the ABI BigDye terminator-cycle-sequencing kit (Perkin Elmer, Weiterstadt, Germany) and an ABI 3130XL automatic sequencer (Applied Biosystems, Carlsbad, CA, USA). Aberrant sequences were confirmed on both DNA strands and in a second DNA sample to avoid PCR artifacts. The ENSEMBL NCF2 (ENSG00000116701) sequence was used.

Special primers were used for the verification of a splice product lacking exons 11 and 12 (Table 3). A forward primer was located in exon 10 with a 5 bp overlap into exon 13 and was combined with a downstream reverse primer, and a reverse primer in exon 13 had a 4 bp overlap into exon 10 and was combined with an upstream forward primer.

Table 4. NADPH oxidase with p67delex11,12 instead of complete p67-phox yields ROS.

	A Complete NADPH oxidase	C Model p67-CGD cells +p67-phox
	PMA	PMA
	−	+
	4.4 ± 1.9	3590 ± 1600
	3.4 ± 0.3	1950 ± 670

A, K562 cells that permanently express all components of the NADPH oxidase. B, same cells, but lacking p67-phox. C, same cells as in B, but transduced with complete p67-phox. D, same cells as in B, but transduced with p67delex11,12. Arbitrary light units ×10⁶ over 45 min; 5 independent transductions.

doi:10.1371/journal.pone.0034296.t004

Retroviral Vectors and Vector Production

Full-length p67-phox-cDNA was ligated into NdeI/XhoI-opened pET15b (Novagen; Merck Chemicals, Darmstadt, Germany), to obtain pET15b-p67. To remove exons 11 and 12, we applied overlap extension PCR and ligated the final PCR product into AvrII/NcoI-opened pET13b-p67 to obtain pET.p67delex11,12. Full-length p67-phox and p67delex11,12 were PCR amplified and cloned into a gammaretroviral transfer vector [33] (MFGS). Virus-particle-containing medium was from HEK 293T cells cotransfected in 10-cm dishes with 10 mg of transfer vector (pM.p67.iG or pM. p67delex11,12.iG), 2 mg pMD.G (vesicular stomatitis virus glycoprotein envelope plasmid), and 6.5 mg of pHT60 (gagpol-packaging plasmid) in the presence of 6.75 mg/ml polyethyleneimine. K562 cells were transduced with virus-containing media in the presence of protamine sulfate (5 mg/ml) and by using spinoculation (1,200 g, 30 min).

Acknowledgments

We thank Romy Opitz, Jenny Marzahn, and Petra Mitscherling for excellent assistance; Andrea Groß for distinguished graphic design; Thomas Leto, NIH, NIAID, Bethesda, MD, USA, for the K562 model CGD cells; and Frank Pessler for a critical reading and editing of the manuscript.

Author Contributions

Conceived and designed the experiments: JR ST AR FS JL. Performed the experiments: JR ST AR. Analyzed the data: JR FS HM SK AR JL. Contributed reagents/materials/analysis tools: JR ST AR. Wrote the paper: JR AR JL. Patient’s care: FS HM ST JL.

References

1. Schwartz C, Hoeiniz M, Schulz A, Lee-Kirsch MA, Roesler J, et al. (2006) Successful unrelated bone marrow transplantation in a child with chronic granulomatous disease complicated by pulmonary and cerebral granuloma formation. Eur J Pediatr.

2. Segal BH, Leito TL, Gullin JI, Malech HL, Holland SM (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 79: 170–200.

3. van den Berg JM, van KE, Ablin A, Belohradsky BH, Bernatowska E, et al. (2009) Chronic granulomatous disease: the European experience. PLoS One 4: e5234.

4. Winkelstein JA, Marino MC, Johnston RB, Jr., Boyle J, Curnutte J, et al. (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79: 155–169.

5. Liese J, Kloos S, Jendrossek V, Petropoulou T, Wintergerst U, et al. (2000) Long-term follow-up and outcome of 39 patients with chronic granulomatous disease. J Pediatr 137: 687–693.

6. Liese J, Jendrossek V, Jansson A, Petropoulou T, Kloos S, et al. (1996) Chronic granulomatous disease in adults. Lancet 347: 222–223.

7. Iran-Nikkenbaum G, Wohle B, Gariel R, Ross D, Sprecher E, et al. (2011) Chronic granulomatous disease of childhood: an unusual cause of recurrent uncommon infections in a 61-year-old man. Clin Exp Dermatol.

8. Lin A, Roesler J, Renz H (2002) Unusual late onset of X-linked chronic granulomatous disease in an adult woman after unsuspicous childhood. Clin Chem 48: 780–781.

9. Rosen-Wolf A, Soldan W, Heyne K, Bickhardt J, Gahr M, et al. (2001) Increased susceptibility of a carrier of X-linked chronic granulomatous disease
(CGD) to Aspergillus fumigatus infection associated with age-related skewing of
lymphocyte. Ann Hematol 80: 113–115.
10. Schapiro BL, Newburger PE, Klemmner MS, Dinaner MC (1991) Chronic
granulomatous disease presenting in a 69-year-old man. N Engl J Med 325:
1786–1790.
11. Roessler J, Koch A, Porsen G, Brenner S, Hahn G, et al. (2005) Benefit
assessment of preventive medical check-ups in patients suffering from chronic
granulomatous disease (CGD). J Eval Clin Pract 11: 513–521.
12. Margolis DM, Melnick DA, Alling DW, Gallin JJ (1990) Trimethoprim-
sulfamethoxazole prophylaxis in the management of chronic granulomatous
disease. J Infect Dis 162: 723–726.
13. Mony R, Veher F, Blanche S, Donadieu J, Brauner R, et al. (1994) Long-term
itraconazole prophylaxis against Aspergillus infections in thirty-two patients with
chronic granulomatous disease. J Pediatr 125: 998–1003.
14. Seger RA, Gungor T, Belohradsky BH, Blanche S, Bordini P, et al. (2002)
Treatment of chronic granulomatous disease with myeloablative conditioning
and an unmodified hemopoietic allograft: a survey of the European experience,
1985–2000. Blood 100: 4344–4350.
15. Ryser MF, Roessler J, Gentsch M, Brenner S (2007) Gene therapy for chronic
granulomatous disease. Expert Opin Biol Ther 7: 1799–1809.
16. Ambruso DR, Knall C, Abel N, Panepinto J, Kurkchubasche A, et al. (2000)
Human neutrophil immunodeficiency syndrome is associated with an inhibitory
Rac2 mutation. Proc Natl Acad Sci U S A 97: 4654–4659.
17. Roos D, Kuhns DB, Maddalena A, Roessler J, Lopez JA, et al. (2010)
Hematologically important mutations: X-linked chronic granulomatous disease
(third update). Blood Cells Mol Dis 45: 246–265.
18. Yamada M, Ariga T, Kawanuma N, Ohtsu M, Imai-Sohmi S, et al. (2000)
Genetic studies of three Japanese patients with p22-phox-deficient chronic
granulomatous disease: detection of a possible common mutant CYBA allele in
Japan and a genotype-phenotype correlation in these patients. Br J Haematol
108: 511–517.
19. Roos D, Kuhns DB, Maddalena A, Bastamanje, J, Kammengieser C, et al. (2010)
Hematologically important mutations: the autosomal recessive forms of chronic
granulomatous disease (second update). Blood Cells Mol Dis 44: 291–299.
20. Roessler J, Carmona JT, Rae J, Barren D, Palm P, et al. (2000) Recombination
events between the p47-phox gene and its highly homologous pseudogenes are
the main cause of autosomal recessive chronic granulomatous disease. Blood 95:
2150–2156.
21. Grisot S, Fieschi F, Daghet MC, Pehay-Peyroula E (2003) The active N-
terminal region of p67phox. Structure at 1.8 A resolution and biochemical
characterizations of the A128V mutant implicated in chronic granulomatous
disease. J Biol Chem 276: 21627–21631.
22. Mizuki K, Takeya R, Kuribayashi F, Nobuhisa I, Kohda D, et al. (2005) A
region C-terminal to the proline-rich core of p67phox regulates activation of the
phagocyte NADPH oxidase by interacting with the C-terminal SH3 domain of
p67phox. Arch Biochem Biophys 444: 185–194.
23. Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Sunden SJ, et al. (2000)
Structure of the TPR domain of p67phox in complex with Rac-GTP. Mol Cell
6: 899–907.
24. Mauch I, Lun A, O’Gorman MR, Harris JS, Schuler I, et al. (2007) Chronic
granulomatous disease (CGD) and complete myeloperoxidase deficiency both
yield strongly reduced dihydrorhodamine 123 test signals but can be easily
discerned in routine testing for CGD. Clin Chem 53: 890–896.
25. Condino-Neto A, Newburger PE (2000) Interferon-gamma improves splicing
efficiency of CYBB gene transcripts in an interferon-responsive variant of
chronic granulomatous disease due to a splice site consensus region mutation.
Blood 95: 3548–3554.
26. Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, et al. (2010) Residual
NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med
363: 2600–2610.
27. Foster CB, Lehrnbecher T, Mol F, Steinberg SM, Venzon DJ, et al. (1998) Host
defense molecule polymorphisms influence the risk for immune-mediated
complications in chronic granulomatous disease. J Clin Invest 102: 2146–2155.
28. Gentsch M, Kazmierzczak A, Kais-Drobek M, Daghet MC, Kaiser P, et al.
(2010) A visible-repeat induced deletions within the NCF2 gene causing p67phox-
deficient chronic granulomatous disease (CGD). Hum Mutat 31: 151–158.
29. Kawahara T, Lambeth JD (2007) Molecular evolution of Phox-related
regulatory subunits for NADPH oxidase enzymes. BMC Evol Biol 7: 178.
30. no authors listed (1991) A controlled trial of interferon gamma to prevent
infection in chronic granulomatous disease. The International Chronic
Granulomatous Disease Cooperative Study Group. N Engl J Med 324: 509–516.
31. Seger RA (2010) Hematopoietic stem cell transplantation for chronic
granulomatous disease. Immunol Allergy Clin North Am 30: 193–208.
32. Leto TL, Lavigne MC, Homoyounpour N, Lekstrom K, Linton G, et al. (2007)
The K-562 cell model for analysis of neutrophil NADPH oxidase function.
Methods Mol Biol 412: 365–383.
33. Roessler J, Brenner S, Bokovsky AA, Whiting-Theobald N, Dull T, et al. (2002)
Third-generation, self-inactivating gp91(phox) lentivector corrects the oxidase
function of peripheral blood mononuclear cells from patients with X-linked chronic
granulomatous disease. Blood 100: 4381–4390.