AML1-ETO is the most common fusion oncoprotein causing acute myeloid leukemia (AML), a disease with a 5-year survival rate of only 24%. AML1-ETO functions as a rogue transcription factor, altering the expression of genes critical for myeloid cell development and differentiation. Currently, there are no specific therapies for AML1-ETO-positive AML. While known for decades to be the translational product of a chimeric gene created by the stable chromosome translocation t(8;21)(q22;q22), it is not known how AML1-ETO achieves its native and functional conformation or whether this process can be targeted for therapeutic benefit. Here, we show that the biosynthesis and folding of the AML1-ETO protein is facilitated by interaction with the essential eukaryotic chaperonin TRiC (or CCT). We demonstrate that a folding intermediate of AML1-ETO binds to TRiC directly, mainly through its β-strand rich, DNA-binding domain (AML-(1–175)), with the assistance of HSP70. Our results suggest that TRiC contributes to AML1-ETO proteostasis through specific interactions between the oncoprotein’s DNA-binding domain, which may be targeted for therapeutic benefit.

Acute myeloid leukemia (AML)\(^4\) is characterized by the uncontrolled proliferation and incomplete differentiation of a malignant clone of myeloid stem or progenitor cells (1). The majority of cases can be categorized based on the stable, non-random chromosome translocation they contain. The most common translocation in AML is t(8;21)(q22;q22), which juxtaposes portions of two genes, AML1 and ETO, generating the fusion oncoprotein AML1-ETO (2). The AML1 gene encodes a critical transcription factor that regulates a variety of genes involved in proliferation and differentiation of many cell types, including those within the hematopoietic system (3, 4). On the other hand, the ETO (eight twenty-one) protein is a protein harboring transcriptional repressor activities (5). The DNA-binding domain of AML1 is located within the amino-terminal portion of AML1-ETO and is fused in-frame to portions of the ETO gene containing dimerization and zinc finger motifs shown to interact with nuclear receptor co-repressors such as the N-CoR (nuclear receptor co-repressor)/SMRT (silencing mediator for retinoid and thyroid receptors) complex and HDAC (histone deacetylase) (6–8). Thus, AML1-ETO functions as a rogue transcriptional repressor, rather than as a transcriptional activator.

Unfortunately, there are currently no specific treatments for AML1-ETO-positive leukemia and the prognosis for this disease remains dismal. However, it has been shown that targeting of AML1-ETO using small interfering RNAs (siRNAs) supports normal myeloid differentiation of t(8;21)-positive leukemic cells (9), which highlights AML1-ETO as a direct clinical target to treat AML. Interestingly, inhibition of heat shock protein 70/90 (HSP70/90), two major proteostasis regulators, has shown antileukemic effects in AML1-ETO-positive cells (10, 11), suggesting that AML1-ETO might rely on chaperones to fold and function properly. However, there has been little direct evidence to support this hypothesis.

The proper folding of proteins into their native conformation in the crowded milieu of the cell is facilitated by molecular chaperones, a network of cellular proteostasis regulators (12). Chaperonins, an important class of molecular chaperones, are large, multi-subunit complexes that form stacked, double-ring structures with a central cavity in each ring (13). During a folding reaction, the rings of a chaperonin can close through large conformational changes driven by ATP hydrolysis, thereby providing an isolated environment for client proteins to fold (14, 15). TRiC (T-complex protein-1 ring complex), also known as CCT (chaperonin containing TCP-1), is an essential 1 MDa eukaryotic chaperonin composed of eight homologous but distinct subunits (CCT 1–8) (16, 17), arranged in a specific order (18). TRiC has the unique ability to fold many essential proteins that cannot be folded by simpler chaperone systems, most notably actin and tubulin. Indeed, this chaperonin plays a central role in the cytosol by assisting the folding of ~10–15% of all newly synthesized polypeptides (19). Furthermore, TRiC has...
been suggested to play a role in cancer cell development by modulating the folding and activity of client proteins involved in oncogenesis, such as the tumor suppressor proteins Von Hippel-Lindau (VHL) (20, 21) and p53 (22), as well as the pro-oncogenic protein STAT3 (signal transducer and activator of transcription 3) (23). Of note, the expression levels of TRiC in leukemic cells are higher than in normal hematopoietic cells (24), suggesting a potential contribution of TRiC to leukemogenesis through its interactions with leukemia-causing oncoproteins.

We demonstrate in this report that the leukemogenic fusion oncoprotein AML1-ETO is a novel TRiC client. Its folding is facilitated by direct interaction with TRiC, mainly through its β-strand rich, DNA-binding domain (AML-(1–175)), and this interaction is assisted by HSP70.

Experimental Procedures

Plasmids—All of the AML1-ETO domain sequences described here were subcloned from pCDNA3-flag-AML1-ETO (Addgene) into the respective vector described in each section.

Stable AML1-ETO Inducible Human Embryonic Kidney (HEK293) Cells—The pEF1a-Tet3G tetracycline-responsive mammalian expression vector was obtained from Clontech. AML1-ETO with N terminus 3×Flag-tags was cloned into this vector using SalI and Ndel restriction sites. pEF1a-Tet3G AML1-ETO plasmid was transfected by Xfect Transfection Reagents (Clontech) into HEK293 tet-on 3G (Clontech) that was maintained and selected at 37 °C in 5% CO2 in DMEM with 10% fetal bovine serum, 1% penicillin/streptomycin, glutamax, and 10 mM G418. After 2 days incubation, puromycin was subsequently added to the medium at a final concentration of 10 nM. We also confirmed the expression of AML1-ETO or AML-(1–175) fractions were concentrated and stored at −80 °C until further use.

TRiC Immunodepletion in RRLs—Rat monoclonal anti-CCT1 antibody (91a, Santa Cruz) or rabbit IgG control antibody (Abcam; 6 µg) were added to rabbit reticulocyte lysates and incubated at 4 °C for 4 h. The immune complexes were bound by protein A-agarose and removed by centrifugation. This process was repeated twice.

In Vitro Transcription and Translation—Each sequence encoding either full-length AML1-ETO or truncations corresponding to individual domains (1–175, 176–364, 365–490, 491–615 or 616–752) was amplified by PCR and subcloned into pEnTr/o-topo (Invitrogen) Gateway entry vector by Topo cloning and subsequently recombined with pDest17 expression vector (Invitrogen) by recombinase cloning. The forward primer of 176–364 has two extra methionines to compensate for the number of methionines labeled by 35S, pCMV6-β-Actin (Origene), pet15-STAT3 (23), and pCMV6-AMLIa (Origene) were included as controls. In vitro transcription and translation reactions were carried out using [35S]methionine and rabbit reticulocyte lysates (RRL) system (TNT T7 Quick-Coupled Transcription/Translation System; Promega, Madison, WI) with the constructs containing the insert of full-length or domains of AML1-ETO according to the manufacturer’s instruction for 30 min at 30 °C, and terminated by the addition of 2 mM puromycin, 5 mM EDTA, and 1 mM azide. Protein translation was confirmed by SDS-PAGE followed by autoradiography.

Immunoprecipitation-In RRLs—10 µl of each RRL reaction containing a 35S labeled protein of interest was diluted to 100 µl with buffer (25 mM Tris, pH 7.5, 10% glycerol, 5 mM EDTA, 100 mM NaCl, 1 mM azide) and treated with antibodies to TRiC (mixture of rabbit anti-CCT2 and anti-CCT5) or rabbit anti-human IgG control antibody (Abcam, Cambridge, MA) for 1 h on ice. The mixture was incubated with 30 µl of protein A-Sepharose (Dynabead, Invitrogen) and gently agitated in a cold room for 1 h. The immune complexes were pelleted by magnet (Invitrogen) and then washed 6 times with buffer containing 0.5% Triton X-100. The protein samples were separated by SDS-PAGE and visualized by autoradiography; In HEK293
cells: ~2 × 10⁶ HEK293-AML1-ETO cells were seeded on 100 mm plates and induced with 1 mM doxycycline when the cells reached ~80% confluence. After 24 h of incubation, the cells were detached by pipetting and harvested by centrifugation. Cell lysate was prepared using a Dounce homogenizer. Other materials and procedures were identical to those for RRLs described above. The precipitated immune complexes were separated by SDS-PAGE and blotted with different antibodies depending on the protein of interest; Flag (M2, Sigma), HSC/HSP70 (Santa Cruz), HSP90 (Santa Cruz), beta actin (Sigma) and CCT1 (91a, Santa Cruz); Of purified proteins: Purified human TRiC was diluted to 0.1 μM with MQA-based buffer (MQA 10% glycerol, 1% PEG8000). Purified HSP70 (Abcam) was added to TRiC buffer to yield a 1:1 molar ratio of HSP70 to TRiC. The TRiC-HSP70 mixture was pre-warmed at 30 °C in a water bath before 30 min and then full-length or 1–175 of human AML1-ETO denatured in 6 M Gn-HCl was diluted 100-fold into 0.1 μM purified TRiC with and without HSP70, resulting in a 5:1 molar ratio of substrate to TRiC. The binding mixture was incubated at 30 °C for 30 min and the insoluble fraction was removed by centrifugation. Only the supernatant was used for immunoprecipitation experiments following the same protocol as for RRLs as described above. The precipitated immune complexes were separated by SDS-PAGE and blotted with appropriate antibodies against proteins of interest as described above.

Pull-down and Mass-spectroscopy Analysis—Stable His-StrepII-AML1-ETO expression in HEK293 was prepared as described above Protein complex purification and mass spectrometry analyses were performed as previously described (28). The sample was digested while still bound to the Ni-NTA resin, by treating with 8 mM urea, 5 mM TCEP in 100 mM ammonium bicarbonate (15 min at 50 °C), followed by the addition of 10 mM iodoacetamide (30 min at room temperature). The samples were diluted to 2 mM urea, 50 mM ammonium bicarbonate, and digested with 1 μg of trypsin (Promega) (overnight at 37 °C). The supernatant was adjusted to 0.5% TFA and desalted online using a C₁₈ peptide macrotrap column (Michrom Bioreources). The sample was fractionated by size exclusion chromatography as previously described to enrich for crosslinked peptides (29). Fractions were analyzed on an Orbitrap Velos mass spectrometer (Thermo Scientific). Precursor ions were measured in the Orbitrap at 30,000 resolution. The six most intense precursor ions were selected for HCD dissociation, and the product ions were measured in the Orbitrap analyzer at 7,500 resolution. Peaklists were searched using Protein Prospector against the 2013.06.27 version of the human SwissProt database (540546 entries) with the sequence of the tagged protein construct appended.

Gel-shift DNA Binding Assays—Gel-shift assays were performed as described above using 10 μg of whole cell extract of AML1-ETO from induced and uninduced HEK293 cells as well as from KASUMI-1 cells (NIH) as a positive control (30). Briefly, cell extracts were incubated with ³²P-labeled duplex oligonucleotide AML1 binding elements from RUNX3 for 30 min at 37 °C temperature and then in ice for 30 min in binding buffer (20 mM HEPES, pH 7.9, 0.5 mM EDTA, 2 mM DTT, 10% glycerol, 50 mM KCl, 1 μg of poly (dl-dC) (Thermo pierce)). Supershift experiments were performed using 1 μg of antibody against the N-terminal AML1 (Cell Signaling) or the C-terminal of ETO (Santa Cruz). Protein/DNA complexes were separated on 4% (or 5%) polyacrylamide gels equilibrated in 0.5× TBE. Gels were dried and analyzed by autoradiography.

In Vitro Protein Refolding—Chemically denatured full-length AML1-ETO in 6 M GnHCl was rapidly diluted 100 fold into refolding buffer (25 mM HEpes at pH 7.5, 100 mM KAc, 10 mM Mg(OAc)₂, 2 mM DTT, 10 mM creatine phosphate, 200 mM NaCl, 10% glycerol), containing TRiC, HSP70, and/or 1 mM ATP resulting in a 5:1 molar ratio of substrate to TRiC. The mixture was incubated at 30 °C for 1 h and examined by gel shift DNA binding assay as described above.

Results

AML1-ETO Binds to TRiC Directly and Their Interaction Is Facilitated by HSP70—To begin examining the interaction of AML1-ETO with TRiC in human cells, we engineered the human embryonic kidney cell line HEK293 to allow for inducible expression of AML1-ETO in response to doxycycline. AML1-ETO induction did not affect cell viability, nor did it change the levels of actin, HSP70, HSP90, or TRiC proteins (Fig. 1A). In our cell line, as previously reported for HEK293 cells (7), AML1-ETO also localizes predominantly to the nucleolus in our cell line (Fig. 1B) and is biochemically active in terms of DNA binding (Fig. 1C) (31). We first investigated the interaction between TRiC and AML1-ETO by immunoprecipitation using the cytoplasmic fraction of doxycycline-induced HEK293 cells. Immunoblotting of anti-CCT2/CCT5 immunoprecipitates demonstrated the presence of AML1-ETO, as well as actin and HSP70/90, known to interact with TRiC (27, 32, 33). In a reciprocal immunoprecipitation experiment using anti-FLAG-antibody, TRiC co-precipitated with FLAG-AML1-ETO, along with HSP70 and HSP90, while actin was not detected (Fig. 1D). To further investigate TRiC putative interaction with AML1-ETO, we undertook a global proteomics approach to identify the AML1-ETO protein–protein interactions. We enriched the AML1-ETO interactome by tandem purification using a StrpIII/6His–tag and performed mass spectroscopy. In agreement with results from our immunoprecipitation experiments, we found all eight CCT subunits with high frequency and also identified HSP90 and HSP70 in this interactome (Fig. 1E). These results show that AML1-ETO interacts with major elements of the protein folding machinery, specifically TRiC and HSP70/HSP90, inside human cells.

Having solid evidence substantiating the interaction between TRiC and AML1-ETO in human cells, we then tested for their direct binding by immunoprecipitation using purified human TRiC (hTRiC) and denatured AML1-ETO. AML1-ETO chemically denatured in GnHCl was rapidly diluted with buffer containing purified TRiC. Most of AML1-ETO immediately precipitated as pellet and was removed by centrifugation; however, a portion remained in the supernatant and co-precipitated with TRiC during immunoprecipitation. Furthermore, adding purified HSP70 to the buffer (shown to interact with AML1-ETO and TRiC in human cells) increased the fraction of AML1-ETO that co-precipitated with TRiC (Fig. 2, A and B). In light of previous studies showing that HSP70 mediates unfolded protein delivery to chaperonins (34), these results suggest that
while denatured AML1-ETO can by itself bind to TRiC directly, and that HSP70 enhances this direct interaction.

TRiC Interaction with AML1-ETO Is Early in Its Translation and Is Required for Biogenesis in RRL—Previous studies have shown that TRiC-substrate interactions are typically early translational and transient (19). To test whether this is also the case for AML1-ETO association with TRiC, we performed immunoprecipitation experiments at various time points using rabbit reticulocyte lysates (RRL). Endogenous TRiC was immunoprecipitated from RRL aliquots containing an AML1-ETO expression plasmid, at various time points after de novo transcription/translation and quenching (Fig. 3A). In agreement with our results from immunoprecipitation experiments using HEK293 cells, 35S radio-labeled AML1-ETO also immunoprecipitated with TRiC in a cell-free translation system, further substantiating their direct interaction. Of note, the interaction between AML1-ETO and TRiC was transient, as suggested by markedly reduced levels of AML1-ETO in TRiC immunoprecipitated from RRL aliquots containing an AML1-ETO expression plasmid, at various time points after de novo transcription/translation and quenching (Fig. 3A). In agreement with our results from immunoprecipitation experiments using HEK293 cells, 35S radio-labeled AML1-ETO also immunoprecipitated with TRiC in a cell-free translation system, further substantiating their direct interaction. Of note, the interaction between AML1-ETO and TRiC was transient, as suggested by markedly reduced levels of AML1-ETO in TRiC immunopre-
cipitates 30 min after termination of the transcription/translation reaction, time during which AML1-ETO protein levels remained constant (Fig. 3, B and C). Considering TRiC’s paramount role in protein folding, our results suggest that AML1-ETO folding intermediates have high affinity for TRiC, both during and immediately after protein translation.

A TRiC interaction early in translational has been shown to be required for the biogenesis of some essential proteins in cells (35). To test whether TRiC’s interaction with AML1-ETO poly-peptides is coupled to the oncoprotein biogenesis, we immunodepleted RRL with specific antibodies. The reaction mixture with CCT2/5 antibodies. Each protein of interest was detected by Western blot with specific antibodies as indicated. B, histogram showing the average and S.D. of three independent experiments. Significance is shown by t test with p value less than 0.05.

FIGURE 2. HSP70 facilitates the direct association of AML1-ETO with TRiC. A, chemically denatured AML1-ETO was diluted into physiological buffer containing purified human TRiC and/or HSP70 at a final molar ratio of TRiC:HSP70:AML1-ETO of 1:1:5. TRiC was immunoprecipitated from the reaction mixture with CCT2/5 antibodies. Each protein of interest was detected by Western blot with specific antibodies as indicated. B, histogram showing the average and S.D. of three independent experiments. Significance is shown by t test with p value less than 0.05.

FIGURE 3. Early-translational AML1-ETO interacts with TRiC. A, experimental scheme is shown. [35S]methionine-labeled AML1-ETO was synthesized in RRL. Addition of RNase A and puromycin quenched de novo protein translation after 30 min from initiation of protein synthesis. The reaction lysate was further incubated for additional 0, 30, and 60 min, respectively, and then CCT2/5 were immunoprecipitated from the lysate at each time point. B, input and immunoprecipitated 35S-labeled AML1-ETO were detected by autoradiography. C, histogram showing the mean and standard deviation of two independent experiments.

TRiC Restores the DNA Binding Activity of Denatured AML1-ETO—The early translational association of AML1-ETO with TRiC strongly suggests that the chaperonin might play a role in promoting the folding of AML1-ETO into its native conformation. To further test this, we examined the DNA binding ability of full-length AML1-ETO in the presence of TRiC. Denatured AML1-ETO was diluted into refolding buffer containing purified human TRiC. The reaction mixture was incubated with an AML1-binding DNA probe labeled with 32P and analyzed by electrophoresis mobility shift assay (EMSA) with native PAGE (31). KASUMI-1 cell lysates served as a positive control, showing normal DNA binding activity for native, endogenous AML1-ETO. On the other hand, wild-type HEK293 served as a negative control (Fig. 5A). Rapid dilution of denatured AML1-ETO in physiological buffer lead to immediate precipitation and no DNA binding activity in the absence of TRiC. However, when incubated with TRiC, AML1-ETO displayed increasing DNA binding activity in a dose-dependent manner (Fig. 5, B and C). Unexpectedly, addition of ATP or HSP70, and incubation time variations, did not improve AML1-ETO DNA binding activity compared with TRiC alone (Fig. 5B). Taken together, these results demonstrate that TRiC can refold denatured AML1-ETO and restore its DNA binding activity in vitro. Interestingly, our finding suggests that the refolding of denatured AML1-ETO by TRiC is independent of ATP hydrolysis, indicating that the direct contact occurring in the initial recognition complex suffices for substrate refolding. This implies that TRiC helps to fold AML1-ETO along a pathway different from the canonical ATP-dependent model for assisted-protein folding by chaperonins (37–39).

In addition to using EMSA to examine the activity of denatured AML1-ETO, we also identified the location of TRiC and AML1-ETO on native PAGE by Western blot with specific antibodies. Consistent with previous results, denatured AML1-
ETO by itself was not soluble and could not enter the gel in the absence of TRiC. However, in the presence of TRiC, AML1-ETO entered the gel and migrated, as expected. Interestingly, the positions on the native gel for DNA, AML1-ETO and TRiC overlapped and remained unchanged in the presence of ATP, indicating that the AML1-ETO-DNA complex co-migrated with TRiC independently of TRiC ATP usage (Fig. 5B). Of note, ATP hydrolysis by TRiC is typically required for substrate folding and release (37, 38). Yet, our results suggest that while AML1-ETO is folded by TRiC to achieve its native function, ATP hydrolysis alone does not suffice to trigger its release from the chaperonin. This stable interaction using purified proteins differs from our results using a cell-free translational system, where TRiC interaction with AML1-ETO was transient.

AML1-ETO Binds to Multiple TRiC Subunits—While TRiC eight subunits are homologous, they are also highly divergent in their apical domains, which confer substrate binding specificity (25, 40). Therefore, AML1-ETO binding to TRiC is likely to occur via a specific subset of CCT subunits. To identify these, we mixed RRL expressing a single radiolabeled CCT subunit (1 through 8, one at a time) with denatured Flag-AML1-ETO followed by immunoprecipitation with anti-Flag antibody. The immunoprecipitant was analyzed by SDS-PAGE and autoradiography (Fig. 6A). These experiments revealed that CCT subunits 2, 3, 4, 6, and 7 interact with AML1-ETO but subunits 1, 5, and 8 do not (Fig. 6B). In particular, CCT4 and 6 showed the most reproducible interaction with denatured AML1-ETO. These results suggest that multiple but not all TRiC subunits interact with AML1-ETO with different affinity (Fig. 6C).

AML1-ETO Binds to Multiple TRiC Subunits—While TRiC eight subunits are homologous, they are also highly divergent in their apical domains, which confer substrate binding specificity (25, 40). Therefore, AML1-ETO binding to TRiC is likely to occur via a specific subset of CCT subunits. To identify these, we mixed RRL expressing a single radiolabeled CCT subunit (1 through 8, one at a time) with denatured Flag-AML1-ETO followed by immunoprecipitation with anti-Flag antibody. The immunoprecipitant was analyzed by SDS-PAGE and autoradiography (Fig. 6A). These experiments revealed that CCT subunits 2, 3, 4, 6, and 7 interact with AML1-ETO but subunits 1, 5, and 8 do not (Fig. 6B). In particular, CCT4 and 6 showed the most reproducible interaction with denatured AML1-ETO. These results suggest that multiple but not all TRiC subunits interact with AML1-ETO with different affinity (Fig. 6C).
TRiC/CCT Modulates Leukemogenic Fusion Oncoprotein AML1-ETO

FIGURE 6. AML1-ETO binds to the multiple TRiC subunits. A, experimental scheme is shown. B, eight individual 35S-labeled TRiC subunits were expressed in an in vitro translation system (RRL). Chemically denatured AML1-ETO was added into lysate containing single TRiC subunits, one at a time. The interactions between single TRiC subunits and AML1-ETO were identically tested using the same co-IP protocol, as described (“Experimental Procedures”). C, histogram shows the mean and standard deviation of three independent experiments.

To identify the AML1-ETO domains that bind to TRiC, we performed TRiC immunoprecipitation from RRL expressing individual AML1-ETO domains, one at a time. Of the individual domains, the DBD appears to have the strongest association and participates in AML1-ETO refolding (Fig. 5). These findings suggest that HSP70 aids TRiC in preventing denatured AML1-ETO from aggregating (Fig. 8). Thus, in agreement with our results for full-length AML1-ETO, the solubility of AML1-(1–175) is directly dependent on its ability to bind TRiC.
Therefore, it would be of interest to determine whether the association between TRiC and AML1-ETO can be modulated in the presence of AML1-ETO DNA-binding elements. It also would be interesting to determine the effects of such modulation on AML1-ETO downstream protein-protein interactions, and whether these could be exploited for therapeutic benefit. Experiments to address these issues are underway.

Our refolding experiments using purified proteins in vitro show that folded AML1-ETO remains associated with TRiC throughout the chaperonin ATP hydrolysis cycle (Fig. 5), in contrast to actin and luciferase which are released from TRiC in the presence of ATP (26). On the other hand, the interaction of AML1-ETO with TRiC is transient in our cell-free translational system (Fig. 3). Thus, it is tempting to speculate that RRL contains co-factors required for AML1-ETO to dissociate from TRiC, as seen for tumor suppressor VHL, which requires Elongin-B/C to be released from TRiC after protein folding is completed (49). Based on our observations, TRiC not only assists protein folding but might also work as a regulatory hub by holding onto transcription factors until other proteins release them. This additional layer of complexity we have uncovered for TRiC action on AML-(1–175) could reflect a more general mechanism, perhaps common to other TRiC sub-

FIGURE 7. The TRiC binding domain within AML1-ETO maps predominantly to its DNA binding domain. A, schematic depiction of the five AML1-ETO domains with their corresponding structure and PDB ID: DNA-binding (DB), transactivation (TAF), linker, oligomerization (NHR), and Zn-finger (Zn-F). AML1 is depicted in gray and ETO in black. B, TRiC was immunoprecipitated using antibodies to CCT2/5 or control antibody (Ctrl) from RRL containing expression constructs with inserts encoding each of the five domains or wild type AML1a in the presence of [35S]methionine. C, histogram showing the mean and S.D. of two independent experiments.

FIGURE 8. TRiC contributes to the solubility of the denatured DNA binding domain (AML-(1–175)). A, chemically denatured Flag-AML-(1–175) was diluted 100-fold into buffer containing TRiC without or with HSP70. The insoluble fraction was removed by centrifugation and filtration. The soluble fraction was separated by SDS-PAGE and analyzed by Western blot with anti-FLAG, HSP70, or CCT1. B, Western blot intensity was quantified and analyzed statistically by t test based on two independent experiments.
strates, which might facilitate regulation by co-factors during chaperonin-assisted protein folding. Thus, it would be extremely interesting to investigate the question of how AML1-ETO is released from TRiC (20).

Author Contributions—S. R., W. C., and D. J. T. designed the project. S. R. and M. K. performed biochemistry experiments. A. B. and M. T. performed mass-spec analysis. S. R., J. G., W. C., and D. J. T. wrote the manuscript with input from all other co-authors.

References

1. Deschler, B., and Lubbert, M. (2006) Acute myeloid leukemia: epidemiology and etiology. *Cancer* **107**, 2099–2107
2. Look, A. T. (1997) Oncogenic transcription factors in the human acute leukemias. *Science* **278**, 1059–1064
3. Cameron, E. R., and Neil, J. C. (2004) The Runx genes: lineage-specific oncogenes and tumor suppressors. *Onco. Gene* **23**, 4308–4314
4. de Bruijn, M. F., and Speck, N. A. (2004) Core-binding factors in hemato-

5. Davis, J. N., McGhee, L., and Meyers, S. (2003) The ETO (MTG8) gene family. *Gene* **303**, 1–10
6. Downing, J. R. (1999) The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. *Br. J. Haematol.* **106**, 296–308
7. Meyers, S., Lenny, N., and Hiebert, S. W. (1995) The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. *Mol. Cell. Biol.* **15**, 1974–1982
8. Lutterbach, B., and Hiebert, S. W. (2000) Role of the transcription factor AML-1 in acute leukemia and hematopoietic differentiation. *Gene* **245**, 223–235
9. Heidenreich, O., Krauter, J., Riehle, H., Hadwiger, P., John, M., Heil, G., Vornlocher, H. P., and Nordheim, A. (2003) AML1/MTG8 oncogene suppression by small interfering RNAs supports myeloid differentiation of t(8;21)-positive leukemic cells. *Blood* **101**, 3157–3163
10. Yu, W., Wang, J., Jin, J., Qian, W., Qian, J., Cheng, Y., and Wang, L. (2011) Heat shock protein 90 inhibition results in altered downstream signaling of mutant KIT and exerts synergistic effects on Kasumi-1 cells when combined with histone deacetylase inhibitor. *Leukemia Res.* **35**, 1212–1218
11. Reikvam, H., Hatfield, K. J., Ersvaer, E., Hovland, R., Skavlund, J., Gjertsen, B. T., Petersen, K., and Bruserud, O. (2012) Expression profile of heat shock proteins in acute myeloid leukaemia patients reveals a distinct signature strongly associated with FLT3 mutation status—consequences and potentials for pharmacological intervention. *Br. J. Haematol.* **156**, 468–480
12. Hartl, F. U., Bracher, A., and Hayer-Hartl, M. (2011) Molecular chaperones in protein folding and protein synthesis. *Nature* **475**, 324–332
13. Frydman, J. (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. *Annu. Rev. Biochem.* **70**, 603–647
14. Saibil, H. R., Fenton, W. A., Clare, D. K., and Horwich, A. L. (2013) Structure and allostery of the chaperonin GroEL. *J. Mol. Biol.* **425**, 1476–1487
15. Yébenes, H., Mesa, P., Muñoz, I. G., Montoya, G., and Valpuesta, J. M. (2011) Chaperonins: two rings for folding. *Trends Biochem. Sci.* **36**, 424–432
16. Cong, Y., Schröder, G. F., Meyer, A. S., Jakana, J., Ma, B., Dougherty, M. T., Schmid, M. F., Reissmann, S., Levitt, M., Ludtke, S. L., Frydman, J., and Chiu, W. (2012) Symmetry-free cryo-EM structures of the chaperonin TRiC along its ATPase-driven conformational cycle. *EMBO J.* **31**, 720–730
17. Muñoz, I. G., Yébenes, H., Zhou, M., Mesa, P., Serna, M., Park, A. Y., Bragado-Nilsson, E., Beloso, A., de Cárcer, G., Malumbres, M., Robinson, C. V., Valpuesta, J. M., and Montoya, G. (2011) Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. *Nat. Struct. Mol. Biol.* **18**, 14–19
18. Leitner, A., Joachimiak, L. A., Bracher, A., Mönkemeyer, L., Walzthoeni, T., Chen, B., Pechmann, S., Holms, S., Cong, Y., Ma, B., Ludtke, S., Chiu, W., Hartl, F. U., Aebersold, R., and Frydman, J. (2012) The molecular architecture of the eukaryotic chaperonin TRiC/CCT. *Structure* **20**, 814–825
19. Yam, A. Y., Xia, Y., Lin, H. T., Burlingame, A., Gerstein, M., and Frydman, J. (2008) Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. *Nat. Struct. Mol. Biol.* **15**, 1255–1262
20. McVie, M. W., McClellan, A. J., Meyer, A. S., Darveau, A., and Frydman, J. (2003) The Hsp70 and TRiC/CCT chaperone systems cooperate in vivo to assemble the von Hippel-Lindau tumor suppressor complex. *Mol. Cell. Biol.* **23**, 3141–3151
21. McClellan, A. J., Scott, M. D., and Frydman, J. (2005) Folding and quality control of the VH-L domain of the VHH tumor suppressor system. *Cell* **121**, 739–748
22. Trinidad, A. G., Muller, P. A., Cuellar, J., Klejnot, M., Nobis, M., Valpuesta, J. M., and Vousden, K. H. (2013) Interaction of p53 with the CCT complex promotes protein folding and wild-type p53 activity. *Mol. Cell* **50**, 805–817
23. Kasembi, M., Lai, W. C., Roh, S. H., Eckols, T. K., Frydman, J., Chiu, W.,
TRiC/CCT Modulates Leukemogenic Fusion Oncoprotein AML1-ETO

and Tweardy, D. J. (2014) Modulation of STAT3 folding and function by TRiC/CCT chaperonin. *Plos Biol.* 12, e1001844

24. Boudiaf-Benmammar, C., Cresteil, T., and Melki, R. (2013) The cytosolic chaperonin CCT/TRiC and cancer cell proliferation. *Plos One* 8, e60895

25. Feldman, D. E., Spiess, C., Howard, D. E., and Frydman, J. (2003) Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding. *Mol. Cell* 12, 1213–1224

26. Thulasiraman, V., Ferreyra, R. G., and Frydman, J. (2000) Folding assays. Assessing the native conformation of proteins. *Methods Mol. Biol.* 140, 169–177

27. Knee, K. M., Sergeeva, O. A., and King, J. A. (2013) Human TRiC complex purified from HeLa cells contains all eight CCT subunits and is active in vitro. *Cell Stress Chaperones* 18, 137–144

28. Herzog, F., Kahraman, A., Boehringer, D., Mak, R., Bracher, A., Walzthoeni, T., Lettner, A., Beck, M., Hartl, F. U., Ban, N., Malamström, L., and Aebersold, R. (2012) Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. *Science* 337, 1348–1352

29. Leitner, A., Reischl, R., Walzthoeni, T., Herzog, F., Bohn, S., Forster, F., and Aebersold, R. (2012) Expanding the chemical cross-linking toolbox by the use of multiple proteases and enrichment by size exclusion chromatography. *Mol. Cell. Proteomics* 11, M111 014126

30. Dong, S., Stenoien, D. L., Qiu, J., Mancini, M. A., and Tweardy, D. J. (2004) Reduced intranuclear mobility of APL fusion proteins accompanies their mislocalization and results in sequestration and decreased mobility of retinoid X receptor α. *Mol. Cell. Biol.* 24, 4465–4475

31. Qiu, J., Wong, J., Tweardy, D. J., and Dong, S. (2006) Decreased intranuclear mobility of acute myeloid leukemia 1-containing fusion proteins is accompanied by reduced mobility and compartmentalization of core binding factor β. *Oncogene* 25, 3982–3993

32. Llorca, O., Martín-Benito, J., Rício-Vonsovici, M., Grantham, J., Hynes, G. M., Willson, K. R., Carrascosa, J. L., and Valpuesta, J. M. (2000) Eu- karyotic chaperonin CCT stabilizes actin and tubulin folding intermediates in open quasi-native conformations. *EMBO J.* 19, 5971–5979

33. Cuéllar, J., Martín-Benito, J., Scheres, S. H., Sousa, R., Moro, F., López-Viñas, E., Gómez-Puertas, P., Muga, A., Carrascosa, J. L., and Valpuesta, J. M. (2008) The structure of CCT-Hsc70 NBD suggests a mechanism for Hsp70 delivery of substrates to the chaperonin. *Nat. Struct. Mol. Biol.* 15, 858–864

34. Siegers, K., Bölter, B., Schwarz, J. P., Böttcher, U. M., Guha, S., and Hartl, F. U. (2003) TRiC/CCT cooperates with different upstream chaperones in the folding of distinct protein classes. *EMBO J.* 22, 5230–5240

35. Saegusa, K., Sato, M., Sato, K., Nakajima-Shimada, J., Harada, A., and Sato, K. (2014) C. elegans chaperonin CCT/TRiC is required for actin and tubulin biogenesis and microvillus formation in intestinal epithelial cells. *Mol. Biol. Cell* 25, 3095–3104

36. Rüssmann, F., Stemp, M. J., Mönkeleyer, L., Etcchells, S. A., Bracher, A., and Hartl, F. U. (2012) Folding of large multidomain proteins by partial encapsulation in the chaperonin TRiC/CCT. *Proc. Natl. Acad. Sci. U.S.A.* 109, 21208–21215

37. Gao, Y., Thomas, J. O., Chow, R. L., Lee, G. H., and Cowan, N. J. (1992) A cytoplasmic chaperonin that catalyzes beta-actin folding. *Cell* 69, 1043–1050

38. Melki, R., Batelier, G., Soulé, S., and Williams, R. C., Jr. (1997) Cytoplasmic chaperonin containing TCP-1: structural and functional characterization. *Biochemistry* 36, 5817–5826

39. Meyer, A. S., Gillespie, J. R., Walther, D., Millet, I. S., Doniach, S., and Frydman, J. (2003) Closing the folding chamber of the eukaryotic chaperonin requires the transition state of ATP hydrolysis. *Cell* 113, 369–381

40. Spiess, C., Miller, E. J., McClellan, A. J., and Frydman, J. (2006) Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. *Mol. Cell.* 24, 25–37

41. Bartfeld, D., Shimon, L., Couture, G. C., Rabinovich, D., Frolow, F., Levanon, D., Groner, Y., and Shakked, Z. (2002) DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. *Structure* 10, 1395–1407

42. Wei, Y., Liu, S., Lausen, J., Woodroll, C., Cho, S., Biris, N., Kobayashi, N., Wei, Y., Yokoyama, S., and Werner, M. H. (2007) A TAF4-homology domain from the corepressor ETO is a docking platform for positive and negative regulators of transcription. *Nat. Struct. Mol. Biol.* 14, 653–661

43. Corpora, T., Roudaia, L., Oo, Z. M., Chen, W., Manuylova, E., Cai, X., Chen, M. I., Cierpicki, T., Speck, N. A., and Bushweller, J. H. (2010) Structure of the AML1-ETO NHR3-PKA(RII) complex and its contribution to AML1-ETO activity. *J. Mol. Biol.* 402, 560–577

44. Liu, Y., Cheney, M. D., Gaudet, J. J., Chruszcz, M., Lukasik, S. M., Sugiyama, D., Lary, J., Cole, J., Dauter, Z., Minor, W., Speck, N. A., and Bushweller, J. H. (2006) The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO’s activity. *Cancer Cell* 9, 249–260

45. Mitani, K. (1997) Leukemogenesis by the chromosomal translocations. *Leukemia* 11, 294–296

46. Aso, H., Tashiro, S., Hamamoto, K., Otsuji, A., Kita, K., and Kamada, N. (1991) Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8:21 chromosome translocation. *Blood* 77, 2031–2036

47. Spiess, C., Meyer, A. S., Reissmann, S., and Frydman, J. (2004) Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets. *Trends Cell Biol.* 14, 598–604

48. Priya, S., Sharma, S. K., Sood, V., Matteo, R. U., Finka, A., Azem, A., De Los Rios, P., and Goloubinoff, P. (2013) GroEL and CCT are catalytic unfol dases mediating out-of-cage polypeptide refolding without ATP. *Proc. Natl. Acad. Sci. U.S.A.* 110, 7199–7204

49. Feldman, D. E., Thulasiraman, V., Ferreyra, R. G., and Frydman, J. (1999) Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. *Mol. Cell* 4, 1051–1061