Acaricidal activity of *Alstonia scholaris* and *Sida cordifolia* leaf extracts against *Hyalomma anatolicum* ticks

R GODARA1,2, S I RAFIQI1, R SHARMA3, R KATOCH1, A YADAV1, P K PILANIA1 and P K VERMA1

Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Jammu and Kashmir 181 102 India

Received: 22 February 2020; Accepted: 14 April 2020

ABSTRACT

Development of acaricidal resistance and environmental pollution has driven need for eco-friendly pesticides and herbal acaricides. Leaf extracts of *Alstonia scholaris* and *Sida cordifolia* in four different solvents were used in the range of 0.25–8.0% for larval immersion test against unfed larvae of *Hyalomma anatolicum*. Mortality rates of larval ticks were in dose-dependent manner ranged from 0.5 to 100% for *A. scholaris* and from 0.8 to 100% for *S. cordifolia*. Acetone extract of *A. scholaris* and methanolic extract of *S. cordifolia* were most effective against larval ticks with LC50 values of 0.71% and 0.42%, respectively. Significant larvicidal activity of *A. scholaris* and *S. cordifolia* leaf extracts against unfed larvae of *H. anatolicum* qualify them as green pesticides which could be combined with other tools for integrated pest management.

Keywords: *Alstonia scholaris*, *Hyalomma anatolicum*, Larval immersion test, *Sida cordifolia*

Hyalomma anatolicum is an economically important ixodid tick infesting dairy animals in central and north-western plain regions of India and is responsible for transmitting theileriosis in dairy animals with an estimated annual loss of US$ 239.5 million (Ghosh and Nagar 2014). The advent of cheap and easily available acaricides has led to upsurge in their use for tick control resulting in development of resistance. The emergence of acaricidal resistance ultimately initiated the quest for newer compounds. Acaricides of herbal origin are a viable alternative against the challenges of resistance development and environmental contamination. Many plants can synthesize secondary metabolites to protect them from pathogens and pests (Chhabra and Saxena 1998). The structural diversity of natural compounds of plant origin provides the advantage of wide range of target sensitivity which can be explored to combat resistance. The pesticidal effects of plant substances have been used against arthropods and initially, people used to crush parts of the plants to obtain a fine powder, which was then applied against various ectoparasites (Khare et al. 2019).

Alstonia scholaris is a tree belonging to Apocynaceae family and is widely used in traditional system of medicine in Asia, America and Africa. It is a rich source of flavonoidal glycosides, steroids, terpenoids and other alkaloids (Dung et al. 2001). Various phytotoconstituents such as cycloeucalenol, cycloartanol, lupeol, lupeol acetate and botulin have been reported from the leaves of *A. scholaris* (Ragasa et al. 2016) and have been evaluated for their bactericidal, fungicidal and anthelmintic properties (Kulkarni 2013). *Sida cordifolia* (Family: Malvaceae), a perennial shrub is widely distributed throughout the tropical and sub-tropical plains of India and Sri Lanka (Sutrathar et al. 2006). It has been proven experimentally that the aerial parts of plant possess analgesic (Sutrathar et al. 2006), hepato-protective (Rao and Mishra 1998) and anthelmintic properties (Pawar et al. 2011). However, no published report is available regarding acaricidal activities of *A. scholaris* and *S. cordifolia* against ixodid ticks. Thus, the aim of present study was to evaluate the acaricidal properties of *A. scholaris* and *S. cordifolia* leaf extracts against unfed larvae of *H. anatolicum*.

MATERIALS AND METHODS

Collection of plant materials and extract preparation:
The leaves of *A. scholaris* and *S. cordifolia* were collected from University Campus at R.S. Pura (Jammu, India) and Meerut city (Uttar Pradesh, India), respectively. The plant samples were identified by Taxonomist Dr. Harish Chander, Department of Botany, University of Jammu with voucher specimen number AU-2875 and AU-2893, respectively. Sufficient fresh leaves were collected and air-dried in shade (temperature not exceeding 40°C) for 3–4 weeks. Air dried leaves were pre-crushed and later pulverized into fine powder using electric blender. The aqueous extracts were prepared by soaking dry powder in 1:10 ratio in distilled water for 72 h with intermittent shaking. After 72 h of soaking, the contents were filtered through filter paper (0.45

Present address: 1SKUAST-Jammu; 2Animal Husbandry Department, Jammu and Kashmir. *Corresponding author e-mail: godara1972@gmail.com*
µm) and filtrate was concentrated under reduced pressure using rotatory evaporator (temp 40–45°C, 10–15 rpm). Methanolic, acetone and ethanolic extracts were prepared by using methanol, acetone and ethyl alcohol, respectively in extract container of Soxhlet apparatus according to method described by Harborne (1984) and the dried extracts were stored in airtight containers at –20°C till subsequent use.

Preparation of test concentrations: Dimethylsulphoxide (DMSO) was used to dissolve the leaf extracts obtained from A. scholaris and S. cordifolia. After preparing stock solutions, different working concentrations (0.25, 0.5, 1.0, 2.0, 4.0 and 8.0%) were made in distilled water to conduct Larval Immersion Test (LIT).

Collection of ticks: Adult female ticks which dropped off from the host after full engorgement were collected from cattle sheds located at Bikaner, Rajasthan (India). Ticks placed into plastic boxes covered with muslin cloths to allow exchange of air were transported to Division of Veterinary Parasitology, Sher-e-Kashmir University of Agriculture Sciences and Technology of Jammu (SKUAST-J), India. After thorough washing and drying with paper towels, ticks were placed in individual vials in a desiccator which was kept in an incubator maintained at 28±1°C and 85±5% relative humidity to obtain eggs. About 14–21 days ticks were discarded and the eggs were kept in similar conditions of incubation to obtain larvae. About 14–21 days old unfed larvae were used in LIT.

Larval immersion test: For the evaluation of acaricidal activity of A. scholaris and S. cordifolia leaf extracts against 14–21 days old unfed larvae of H. anatolicum ticks LIT (Shaw 1966) was used with minor modifications as described by Singh et al. (2017). For each concentration of extract, the test was repeated four times. Dimethylsulphoxide (2%) and distilled water were used as negative controls and the larvae in positive control group were treated with deltamethrin (0.0025%).

Statistical analyses: Dose-response data were analysed by probit method (Finney 1962) using Graph Pad Prism 4 software (La Jolla, CA, USA). The lethal concentrations (LC50 and LC95) and their respective 95% confidence intervals (CI) were determined by applying regression equation analysis to the probit transformed data of mortality.

RESULTS AND DISCUSSION

The per cent mean larval mortality (Figs. 1 and 2), slope (95% CI), R2, LC50 and LC95 (95% CI) values for different extracts of A. scholaris and S. cordifolia are presented in Tables 1 and 2, respectively. The mortality rates of larval ticks were in dose-dependent manner ranged from 0.5 to

Table 1. Effect of various A. scholaris (leaf) extracts on unfed larvae of H. anatolicum

Extract	Conc. (%) (mean±SE)	Mortality (%) (95% CI)	Slope±SE	R2	LC50 (%) (95% CI)	LC95 (%) (95% CI)
Methanolic	0.25 6.2±2.1ab		3.39±0.51	0.91	0.91	2.76
	0.5 17.2±6.1c		(1.95–4.83)	0.88–0.93	(2.61–2.91)	
	1.0 40.5±8.9e		65.2±6.4f	1.00±0.0b	(0.88–0.93)	(2.61–2.91)
	2.0 100.0±0.0b		100.0±0.0b	100.0±0.0b	(2.61–2.91)	
	8.0 100.0±0.0b					
Acetone	0.25 12.5±3.2bc		28.0±2.3d	57.0±2.1f	(1.99–4.21)	(0.69–0.73)
	0.5 65.2±6.4f				(2.61–2.91)	(2.61–2.91)
	1.0 100.0±0.0b				(2.61–2.91)	(2.61–2.91)
	2.0 100.0±0.0b				(2.61–2.91)	(2.61–2.91)
	4.0 100.0±0.0b				(2.61–2.91)	(2.61–2.91)
	8.0 100.0±0.0b				(2.61–2.91)	(2.61–2.91)
Ethanolic	0.25 4.2±1.1ab		19.0±3.7c	51.5±4.1f	(2.04–4.82)	(0.69–0.73)
	0.5 61.7±4.2f				(2.61–2.91)	(2.61–2.91)
	1.0 100.0±0.0b				(2.61–2.91)	(2.61–2.91)
	2.0 100.0±0.0b				(2.61–2.91)	(2.61–2.91)
	4.0 100.0±0.0b				(2.61–2.91)	(2.61–2.91)
Aqueous	0.25 0.5±0.1a		1.7±0.5a	3.7±1.1ab	(0.92–5.52)	(2.23–2.36)
	0.5 10.2±3.5abc				(7.01–7.86)	
	1.0 55.8±3.9f				(7.01–7.86)	
	2.0 100.0±0.0h				(7.01–7.86)	
Distilled	- 0.0±0.0a					
water	2.0 0.0±0.0a					
DMSO	0.0025 40.0±4.6e					

DMSO, Dimethyl sulphoxide; CI, Confidence interval. Mean followed by same letters do not differ statistically at a significance level of 5%.
Table 2. Effect of various S. cordifolia (leaf) extracts on unfed larvae of H. anatolicum

Extract	Conc. (%) (mean±SE)	Mortality (%) (95% CI)	Slope±SE	R²	LC50 (%) (95% CI)	LC95 (%) (95% CI)	Mean±SE	(95% CI)	(95% CI)	(95% CI)
Methanolic	0.25	8±1.1b	3.27±0.61	0.88	0.52	1.67	0.25±0.1a	3.34–5.79	0.51–0.54	1.57–1.76
	0.5	2.2±0.5a	3.32±0.71	0.84	2.1	6.38	0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	1.0	7.5±0.7a	1.34–5.29	0.84	8.0	16.0	0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	2.0	13.5±2.2a			100.0±0.0		0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	4.0	70.2±4.65c					0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	8.0	100.0±0.0					0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
Acetone	0.25	0.8±0.1a	3.32±0.71	0.84	2.1	6.38	0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	0.5	2.2±0.5a	3.32±0.71	0.84	2.1	6.38	0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	1.0	7.5±0.7a	1.34–5.29	0.84	8.0	16.0	0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	2.0	13.5±2.2a			100.0±0.0		0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	4.0	70.2±4.65c					0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	8.0	100.0±0.0					0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
Ethanolic	0.25	8±1.1a	3.27±0.61	0.88	0.52	1.67	0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	0.5	2.2±0.5a	3.32±0.71	0.84	2.1	6.38	0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	1.0	7.5±0.7a	1.34–5.29	0.84	8.0	16.0	0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	2.0	13.5±2.2a			100.0±0.0		0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	4.0	70.2±4.65c					0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	8.0	100.0±0.0					0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
Aqueous	0.25	0.8±0.1a	3.32±0.71	0.84	2.1	6.38	0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	0.5	2.2±0.5a	3.32±0.71	0.84	2.1	6.38	0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	1.0	7.5±0.7a	1.34–5.29	0.84	8.0	16.0	0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	2.0	13.5±2.2a			100.0±0.0		0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	4.0	70.2±4.65c					0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
	8.0	100.0±0.0					0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
Distilled water	-	0±0.0					0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
DMSO	2.0	0±0.0					0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75
Deltamethrin	0.0025	40±4.65c					0.25±0.1a	3.34–5.79	1.98–2.09	6.03–6.75

DMSO, Dimethyl sulphoxide; CI, Confidence interval. Mean followed by same letters do not differ statistically at a significance level of 5%.

Fig. 1. Probit mortality of larvae of H. anatolicum against log concentrations of A. scholaris.

Fig. 2. Probit mortality of larvae of H. anatolicum against log concentrations of S. cordifolia.

100% for A. scholaris and from 0.8 to 100% for S. cordifolia. Acetone extract of A. scholaris and methanolic extract of S. cordifolia were most effective against larval ticks with LC50 values of 0.71% and 0.42%, respectively. Mortality slope values ranged from 3.11 to 3.43 with R² values of 0.79 to 0.93 for various extracts of A. scholaris whereas, mortality slope values of S. cordifolia extracts ranged from 2.88 to 3.32 with R² values of 0.84 to 0.88, indicating that the statistical model was a good fit. No mortality of larval ticks was seen in controls exposed to distilled water and DMSO (2%) whereas, deltamethrin caused 40.0% mortality of larval ticks at recommended dose (0.0025%) for field use.

In the current study, the minimum LC50 and LC95 (95% CI) values of 0.71% (0.69–0.73) and 2.37% (2.23–2.51), respectively were recorded for acetone extract of A. scholaris. For S. cordifolia, the minimum LC50 and LC95 (95% CI) values of 0.42% (0.41–0.43) and 1.55% (1.45–1.65), respectively were recorded for methanolic extract. In a previous study, the leaf extract of A. scholaris showed significant insecticidal activity against Aedes aegypti with LC50 value of 239.9 ppm (Kaushik and Saini 2009). Earlier,
evaluation of ethanolic extract of aerial parts of Artemisia absinthium against adults of H. anatolicum revealed maximum mortality of 86.7% at 20% concentration with LC50 and LC95 values of 6.51 and 55.43%, respectively. However, in larval packet test (LPT) the extract caused 100% mortality at all the concentrations (2.5, 5.0, 10.0 and 20.0%) used (Godara et al., 2015).

Similarly, Singh et al. (2017) studied acaricial activities of alcoholic and various aqueous extracts of Piper longum, P. nigrum and Zingiber officinale against unfed larvae of H. anatolicum using LIT. They observed the highest acaridal activity with the alcoholic extract of P. longum seeds with the minimum LC50 and LC95 values of 0.071 and 0.135%, respectively. However, the extracts prepared from the rhizome of Z. officinale had shown no acaridal activity. In another study, Singh et al. (2014) observed a concentration dependent increase in larval tick mortality while evaluating the aqueous and ethanolic extracts of leaves of Cymbopogon winterianus, Vitex negundo and Withania somnifera along with roots of V. negundo for their acaridal activity against larvae of deltamethrin resistant H. anatolicum. They observed the highest mortality of 93.7% at the 5% concentration of C. winterianus leaves extract. The extract of neem (Azadirachta indica) seed caused significant mortalities of newly hatched larvae, unfed larvae and unfed adults of H. a. excavatum, reaching 100% mortality on day 15, 3 and 15 post-treatment, respectively (Abdel-Shafy and Zayed, 2002). The crude ethanolic extract prepared from the leaves of Annona squamosa showed high acaridal activity against H. anatolicum larvae with LC50 and LC99 values of 1.36 and 10.17%, respectively (Ilham et al., 2014).

The present study is an attempt towards exploring tick control potential of A. scholaris and S. cordifolia. From the above findings it can be concluded that the leaf extracts of A. scholaris and S. cordifolia possess acaridal properties and may be a promising alternative to control H. anatolicum ticks.

ACKNOWLEDGEMENTS

The authors are thankful to SKUAST-Jammu, India for facilities provided. The financial support was provided by Rashtriya Krishi Vikas Yojana (RKVY) number AUJ/DR/14-15/F-420/7888-7903.

REFERENCES

Abdel-Shafy S and Zayed A A. 2002. In vitro acaridal effect of plant extract of neem seed oil (Azadirachta indica) on egg, immature and adult stages of Hyalomma anatolicum excavatum (Ixodoidea: Ixodidae). Veterinary Parasitology 106: 89–96.

Chhabra M B, Saxena M J. 1998. The use of phytherapeutic agents for the control of acarasis in animals: A review. Journal of Veterinary Parasitology 12(1): 3–8.

Dung N X, Ngo P H and Rang D D. 2001. Chemical composition of volatile concentrate from the flower of Vietnamese Alstonia scholaris. Essential Oil Research 13: 424–28.

Finney D J. 1962. Probit Analysis- A Statistical Treatment of the Response Curve. Cambridge University Press, Cambridge.

Ghosh S and Nagar G. 2014. Problem of ticks and tick-borne diseases in India with special emphasis on progress in tick control research: A review. Journal of Vector Borne Diseases 51: 259–70.

Godara R, Praveen S, Katoch R, Yadav A, Katoch M, Khajuria J K, Kaur D, Ganai A, Verma P K, Khajuria V and Singh N K. 2015. Acaridal activity of ethanolic extract of Artemisia absinthium against Hyalomma anatolicum ticks. Experimental and Applied Acarology 65: 141–48.

Harbome J B. 1984. Phytochemical methods: A Guide to Modern Techniques of Plant Analysis, 2nd ed. Chapman and Hall, London, pp 288.

Ilham M O, Razzig A A A, Elhaj M T and Mohammed Y O. 2014. Acaridal activity of crude extract of Annona squamosa against Hyalomma anatolicum (Ixodoidea: Ixodidae). Alternative Integrated Medicine 3: 173.

Kaushik R and Saini P. 2009. Screening of some semi-arid region plants for larvicidal activity against Aedes aegypti mosquitoes. Journal of Vector Borne Diseases 46: 244–46.

Khare R K, Das G, Kumar S, Bendigiri S, Sachan S, Saiyam R, Banerjee D K and Khare D S. 2019. Herbal insecticides and acaricides: challenges and constraints. International Journal of Chemical Studies 7(4): 118–22.

Kulkarni B D. 2013. Bactericidal, fungicidal and anthelmintic activities of Alstonia scholaris bark extracts. International Journal of Phytomedicine 5: 18–25.

Pawar R, Jain A, Sharma P, Chaurasiya P and Singour P. 2011. In vitro studies on Sida cordifolia Linn for anthelmintic and antioxidant properties. Chinese Medicine 2: 47–52.

Ragasa C Y, Batarral T C, Tan M C S and Altena I A V. 2016. Chemical constituents of Alstonia scholaris (L.) R. Br. Der Pharma Chemica 8: 193–96.

Rao K S and Mishra S H. 1998. Antihelminthic activity of Sida cordifolia plant. Fitoterapia 69: 20–33.

Shaw R D. 1966. Culture of an organophosphorus resistant strain of Boophilus microplus (Canestrini) and assessment of its resistance spectrum. Bulletin of Entomology Research 56: 398–405.

Singh N K, Jyoti, Vemu B, Nandi A, Singh H, Kumar R and Dunka V K. 2014. Laboratory assessment of acaridal activity of Cymbopogon winterianus, Vitex negundo and Withania somnifera against deltamethrin resistant Hyalomma anatolicum. Experimental and Applied Acarology 71: 303–17.

Sutraddhar R K, Rahman A K M M, Ahmad M U, Bachar S C, Saha A and Guha S K. 2006. Bioactive alkaloid from Sida cordifolia L. with analgesic and anti-inflammatory activities. Iranian Journal of Pharmacology and Therapeutics 5: 175–78.