ON STRONG r-HELIX SUBMANIFOLDS AND SPECIAL CURVES

EVREN ZIPLAR, ALI ŞENOL, AND YUSUF YAYLI

Abstract. In this paper, we investigate special curves on a strong r-helix submanifold in Euclidean n-space E^n. Also, we give the important relations between strong r-helix submanifolds and the special curves such as line of curvature, geodesic and slant helix.

1. Introduction

In differential geometry of manifolds, an helix submanifold of IR^n with respect to a fixed direction d in IR^n is defined by the property that tangent planes make a constant angle with the fixed direction d (helix direction) in [5]. Di Scala and Ruiz-Hernández have introduced the concept of these manifolds in [5]. Besides, the concept of strong r-helix submanifold of IR^n was introduced in [4]. Let $M \subset IR^n$ be a submanifold and let $H(M)$ be the set of helix directions of M. We say that M is a strong r-helix if the set $H(M)$ is a linear subspace of IR^n of dimension greater or equal to r in [4].

Recently, M. Ghomi worked out the shadow problem given by H.Wente. And, He mentioned the shadow boundary in [8]. Ruiz-Hernández investigated that shadow boundaries are related to helix submanifolds in [12].

Helix hypersurfaces has been worked in nonflat ambient spaces in [6,7]. Cermelli and Di Scala have also studied helix hypersurfaces in liquid crystals in [3].

The plan of this paper is as follows. In section 2, we mention some basic facts in the general theory of strong r-helix, manifolds and curves. And, in section 3, we give the important relations between strong r-helix submanifolds and some special curves such as line of curvature, geodesic and slant helix.

2. Preliminaries

Definition 2.1. Let $M \subset IR^n$ be a submanifold of a euclidean space. A unit vector $d \in IR^n$ is called a helix direction of M if the angle between d and any tangent space T_pM is constant. Let $H(M)$ be the set of helix directions of M. We say that M is a strong r-helix if $H(M)$ is a r-dimensional linear subspace of IR^n [4].

Definition 2.2. A submanifold $M \subset IR^n$ is a strong r-helix if the set $H(M)$ is a linear subspace of IR^n of dimension greater or equal to r [4].

Definition 2.3. A unit speed curve $\alpha : I \to E^n$ is called a slant helix if its unit principal normal V_2 makes a constant angle with a fixed direction U [1].

Definition 2.4. Let the $(n-k)$-manifold M be submanifold of the Riemannian manifold $\overline{M} = E^n$ and let \overline{D} be the Riemannian connexion on $\overline{M} = E^n$. For C^∞ fields X and Y with domain A on M (and tangent to M), define D_XY and $V(X,Y)$ on A by decomposing \overline{D}_XY into unique tangential and normal components, respectively; thus,

$$\overline{D}_XY = D_XY + V(X,Y).$$

Then, D is the Riemannian connexion on M and V is a symmetric vector-valued 2-covariant C^∞ tensor called the second fundamental tensor. The above composition equation is called the Gauss equation [9].

Definition 2.5. Let the $(n-k)$-manifold M be submanifold of the Riemannian manifold $\overline{M} = E^n$, let \overline{D} be the Riemannian connexion on $\overline{M} = E^n$ and let D be the Riemannian connexion on M. Then, the formula of Weingarten

$$\overline{D}_XN = -AN(X) + D^2N$$

for every X and Y tangent to M and for every N normal to M. AN is the shape operator associated to N also known as the Weingarten operator corresponding to N and D^2 is the induced connexion in the

2000 Mathematics Subject Classification. 53A04, 53B25, 53C40, 53C50.

Key words and phrases. Strong r-helix submanifold; Line of curvature; Geodesic curve; Slant helix.

Corresponding author: Evren Ziplar, e-mail: evrenziplar@yahoo.com.
normal bundle of M ($A_N(X)$ is also the tangent component of $\overline{\nabla}_X N$ and will be denoted by $A_N(X) = \text{tang}(\overline{\nabla}_X N)$). Specially, if M is a hypersurface in E^n, we have $(V(X, Y), N) = (A_N(X), Y)$ for all X, Y tangent to M. So,

$$V(X, Y) = \langle V(X, Y), N \rangle N = \langle A_N(X), Y \rangle N$$

and we obtain

$$\overline{\nabla}_X Y = D_X Y + \langle A_N(X), Y \rangle N.$$

For this definition 2.5, note that the shape operator A_N is defined by the map $A_N : \kappa(M) \to \kappa(M)$, where $\kappa(M)$ is the space of tangent vector fields on M and if $p \in M$, the shape operator A_N is defined by the map $A_p : T_p(M) \to T_p(M)$. The eigenvalues of A_p are called the principal curvatures (denoted by λ_j) and the eigenvectors of A_p are called the principal vectors \cite{10,11}.

Definition 2.6. If α is a (unit speed) curve in M with C^∞ unit tangent T, then $V(T, T)$ is called normal curvature vector field of α and $k_T = \|V(T, T)\|$ is called the normal curvature of α \cite{9}.

3. MAIN THEOREMS

Theorem 3.1. Let M be a strong r-helix hypersurface and $H(M) \subset E^n$ be the set of helix directions of M. If $\alpha : I \subset R \to M$ is a (unit speed) line of curvature (not a line) on M, then $d_j \notin Sp\{N, T\}$ along the curve α for all $d_j \in H(M)$, where T is the tangent vector field of α and N is a unit normal vector field of M.

Proof. We assume that $d_j \in Sp\{N, T\}$ along the curve α for any $d_j \in H(M)$. Then, along the curve α, since M is a strong r-helix hypersurface, we can decompose d_j in tangent and normal components:

$$d_j = \cos(\theta_j)N + \sin(\theta_j)T \quad (3.1)$$

where θ_j is constant. From (3.1), by taking derivatives on both sides along the curve α, we get:

$$0 = \cos(\theta_j)N' + \sin(\theta_j)T' \quad (3.2)$$

Moreover, since α is a line of curvature on M,

$$N' = \lambda_n^\alpha \quad (3.3)$$

along the curve α. By using the equations (3.2) and (3.3), we deduce that the system $\{\alpha', T\}$ is linear dependent. But, the system $\{\alpha', T\}$ is never linear dependent. This is a contradiction. This completes the proof. \hfill \Box

Theorem 3.2. Let M be a submanifold with $(n-k)$ dimension in E^n. Let $\overline{\nabla}$ be Riemannian connexion (standard covariant derivative) on E^n and D be Riemannian connexion on M. Let us assume that $M \subset E^n$ be a strong r-helix submanifold and $H(M) \subset E^n$ be the space of the helix directions of M. If $\alpha : I \subset R \to M$ is a (unit speed) geodesic curve on M and if $\langle V_2, \xi_j \rangle$ is a constant function along the curve α, then α is a slant helix in E^n, where V_2 is the unit principal normal of α and ξ_j is the normal component of a direction $d_j \in H(M)$.

Proof. Let T be the unit tangent vector field of α. Then, from the formula Gauss in Definition (2.4),

$$\overline{\nabla}_T T = D_T T + V(T, T) \quad (3.4)$$

According to the Theorem, since α is a geodesic curve on M,

$$D_T T = 0 \quad (3.5)$$

So, by using (3.4),(3.5) and Frenet formulas, we have:

$$\overline{\nabla}_T T = k_1 V_2 = V(T, T)$$

That is, the vector field $V_2 \in \vartheta(M)$ along the curve α, where $\vartheta(M)$ is the normal space of M. On the other hand, since M is a strong r-helix submanifold, we can decompose any $d_j \in H(M)$ in its tangent and normal components:

$$d_j = \cos(\theta_j)\xi_j + \sin(\theta_j)T_j \quad (3.6)$$

where θ_j is constant. Moreover, according to the Theorem, $\langle V_2, \xi_j \rangle$ is a constant function along the curve α for the normal component ξ_j of a direction $d_j \in H(M)$. Hence, doing the scalar product with V_2 in each part of the equation (3.6), we obtain:

$$\langle d_j, V_2 \rangle = \cos(\theta_j) \langle V_2, \xi_j \rangle + \sin(\theta_j) \langle V_2, T_j \rangle \quad (3.7)$$
Since \(\cos(\theta_j) \langle V_2, \xi_j \rangle \) = constant and \(\langle V_2, T_j \rangle = 0 \) (\(V_2 \in \vartheta(M) \)) along the curve \(\alpha \), from (3.7) we have:
\[
\langle d_j, V_2 \rangle = \text{constant}.
\]
along the curve \(\alpha \). Consequently, \(\alpha \) is a slant helix in \(E^n \).

Theorem 3.3. Let \(M \) be a submanifold with \((n-k)\) dimension in \(E^n \). Let \(\overline{D} \) be Riemannian connexion (standard covariant derivative) on \(E^n \) and \(D \) be Riemannian connexion on \(M \). Let us assume that \(M \subset E^n \) be a strong \(r \)-helix submanifold and \(H(M) \subset E^n \) be the space of the helix directions of \(M \). If \(\alpha : I \subset IR \to M \) is a (unit speed) curve on \(M \) with the normal curvature function \(k_T = 0 \) and if \(\langle V_2, T_j \rangle \) is a constant function along the curve \(\alpha \), then \(\alpha \) is a slant helix in \(E^n \), where \(V_2 \) is the unit principal normal of \(\alpha \) and \(T_j \) is the tangent component of a direction \(d_j \in H(M) \).

Proof. Let \(T \) be the unit tangent vector field of \(\alpha \). Then, from the formula Gauss in Definition (2.4),
\[
\overline{D}_TT = D_T T + V(T, T)
\]
(3.8)

According to the Theorem, since the normal curvature \(k_T = 0 \),
\[
V(T, T) = 0
\]
(3.9)

So, by using (3.8),(3.9) and Frenet formulas, we have:
\[
\overline{D}_TT = k_1 V_2 = D_T T.
\]
That is, the vector field \(V_2 \in T_{\alpha(t)}M \), where \(T_{\alpha(t)}M \) is the tangent space of \(M \). On the other hand, since \(M \) is a strong \(r \)-helix submanifold, we can decompose any \(d_j \in H(M) \) in its tangent and normal components:
\[
d_j = \cos(\theta_j) \xi_j + \sin(\theta_j) T_j
\]
(3.10)

where \(\theta_j \) is constant. Moreover, according to the Theorem, \(\langle V_2, T_j \rangle \) is a constant function along the curve \(\alpha \) for the tangent component \(T_j \) of a direction \(d_j \in H(M) \). Hence, doing the scalar product with \(V_2 \) in each part of the equation (3.10), we obtain:
\[
\langle d_j, V_2 \rangle = \cos(\theta_j) \langle V_2, \xi_j \rangle + \sin(\theta_j) \langle V_2, T_j \rangle
\]
(3.11)

Since \(\sin(\theta_j) \langle V_2, \xi_j \rangle \) = constant and \(\langle V_2, \xi_j \rangle = 0 \) (\(V_2 \in T_{\alpha(t)}M \)) along the curve \(\alpha \), from (3.11) we have:
\[
\langle d_j, V_2 \rangle = \text{constant}.
\]
along the curve \(\alpha \). Consequently, \(\alpha \) is a slant helix in \(E^n \).

Definition 3.1. Given an Euclidean submanifold of arbitrary codimension \(M \subset IR^n \). A curve \(\alpha \) in \(M \) is called a line of curvature if its tangent \(T \) is a principal vector at each of its points. In other words, when \(T \) (the tangent of \(\alpha \)) is a principal vector at each of its points, for an arbitrary normal vector field \(N \in \vartheta(M) \), the shape operator \(A_N \) associated to \(N \) says \(A_N(T) = \text{tang}(-\overline{D}_TN) = \lambda_j T \) along the curve \(\alpha \), where \(\lambda_j \) is a principal curvature and \(\overline{D} \) be the Riemannian connexion (standard covariant derivative) on \(IR^n \) [2].

Theorem 3.4. Let \(M \) be a submanifold with \((n-k)\) dimension in \(E^n \) and let \(\overline{D} \) be Riemannian connexion (standard covariant derivative) on \(E^n \). Let us assume that \(M \subset E^n \) be a strong \(r \)-helix submanifold and \(H(M) \subset E^n \) be the space of the helix directions of \(M \). If \(\alpha : I \to M \) is a line of curvature with respect to the normal component \(N_j \in \vartheta(M) \) of a direction \(d_j \in H(M) \) and if \(N_j \in \vartheta(M) \) along the curve \(\alpha \), then \(d_j \in SP \{ T \}^\perp \) along the curve \(\alpha \), where \(T \) is the unit tangent vector field of \(\alpha \).

Proof. We assume that \(\alpha : I \to M \) is a line of curvature with respect to the normal component \(N_j \in \vartheta(M) \) of a direction \(d_j \in H(M) \). Since \(M \) is a strong \(r \)-helix submanifold, we can decompose \(d_j \in H(M) \) in its tangent and normal components:
\[
d_j = \cos(\theta_j) N_j + \sin(\theta_j) T_j
\]
where \(\theta_j \) is constant. So, \(\langle N_j, d_j \rangle \) = constant and by taking derivatives on both sides along the curve \(\alpha \), we get \(\langle N_j, d_j \rangle = 0 \). On the other hand, since \(\alpha : I \to M \) is a line of curvature with respect to the \(N_j \in \vartheta(M) \),
\[
A_{N_j}(T) = \text{tang}(-\overline{D}_TN_j) = \text{tang}(-N_j) = \lambda_j T
\]
along the curve \(\alpha \). According to this Theorem, \(N_j \in \vartheta(M) \) along the curve \(\alpha \). Hence,
\[
\text{tang}(N_j) = -N_j = \lambda_j T
\]
(3.12)
Therefore, by using the equalities \(\langle N_j', d_j \rangle = 0 \) and (3.12), we obtain:
\[
(T, d_j) = 0
\]
along the curve \(\alpha \). This completes the proof. \(\square \)

Theorem 3.5. Let \(M \) be a submanifold with \((n-k) \) dimension in \(E^n \) and let \(\overline{\nabla} \) be Riemannian connexion (standart covariant derivative) on \(E^n \). Let us assume that \(M \subset E^n \) be a strong \(r \)-helix submanifold and \(H(M) \subset E^n \) be the space of the helix directions of \(M \). If \(\alpha : I \rightarrow M \) is a curve in \(M \) and if the system \(\{T_j', T\} \) is linear dependent along the curve \(\alpha \), where \(T_j' \) is the derivative of the tangent component \(T_j \) of a direction \(d_j \in H(M) \) and \(T \) the tangent to the curve \(\alpha \), then \(\alpha \) is a line of curvature in \(M \).

Proof. Since \(M \) is a strong \(r \)-helix submanifold, we can decompose \(d_j \in H(M) \) in its tangent and normal components:
\[
d_j = \cos(\theta_j)N_j + \sin(\theta_j)T_j
\]
where \(\theta_j \) is constant. If we take derivative in each part of the equation (3.13) along the curve \(\alpha \), we obtain:
\[
0 = \cos(\theta_j)N_j' + \sin(\theta_j)T_j'
\]
From (3.14), we can write
\[
N_j' = -\tan(\theta_j)T_j'
\]
So, for the tangent component of \(-N_j'\), from (3.15) we can write:
\[
A_{N_j}(T) = \tan(-\overline{\nabla}_T N_j) = \tan(-N_j') = \tan(\tan(\theta_j)T_j)
\]
along the curve \(\alpha \). According to the hypothesis, the system \(\{T_j', T\} \) is linear dependent along the curve \(\alpha \). Hence, we get \(T_j' = \lambda_j T \). And, by using the equation (3.16), we have:
\[
A_{N_j}(T) = \tan(\tan(\theta_j)T_j)
\]
and
\[
A_{N_j}(T) = \tan(\tan(\theta_j)\lambda_j T)
\]
Moreover, since \(T \in \pi(M) \), \(\tan(\tan(\theta_j)\lambda T) = (\tan(\theta_j)\lambda_j)T = k_j T \). Therefore, from (3.17), we have:
\[
A_{N_j}(T) = k_j T
\]
It follows that \(\alpha \) is a line of curvature in \(M \) for \(N_j \subset \partial(M) \). This completes the proof. \(\square \)

Acknowledgment. The authors would like to thank two anonymous referees for their valuable suggestions and comments that helped to improve the presentation of this paper.

References

[1] Ali, A.T., Turgut, M., Some characterizations of slant helices in the euclidean space \(E^n \), Hacettepe Journal of Mathematics and Statistics, Volume 39 (3) (2010), 327-336.
[2] Cartan, E., Geometry of Riemannian spaces, Brookline Mass., Math. Sci. Press, (1983).
[3] Cermelli, P., Di Scala, A.J., Constant angle surfaces in liquid crystals, Philos. Mag. 87, (2007) 1871-1888.
[4] Di Scala, A.J., Weak helix submanifolds of Euclidean spaces, Abh.Math.Semin.Univ.Hambg., (2009) 79: 37-46
[5] Di Scala, A.J., Ruiz-Hernández, G., Helix submanifolds of euclidean spaces, Monatsh Math 157, (2009) 205-215.
[6] Dillen, F., Fastenakels, J., Van der Venken, J., Vrancken, L., Constant angle surfaces in \(S^2 \times IR \), Monatsh. Math. 152, (2007) 89-96.
[7] Dillen, F., Munteanu, M.I., Constant angle surfaces in \(H^2 \times IR \), Bull. Braz. Math. Soc. 40, (2009) 1, 85-97.
[8] Ghomi, M., Shadows and convexity of surfaces, Ann. Math. (2) 155 (1), (2002) 281-293.
[9] Hicks, N.J., Notes on differential geometry, Van Nostrand Reinhold Company, London, 1974.
[10] Lopez, R., Munteanu, M.I., Constant angle surfaces in Minkowski space, Bull.Belg. Math. Soc.-Simon Stevin,18 (2011) 2, 271-286.
[11] Munteanu, M.I., From golden spirals to constant slope surfaces, Journal of Mathematical Physics, 51 (2010) 7, 073507: 1-9.
[12] Ruiz-Hernández, G., Helix, shadow boundary and minimal submanifolds, arXiv: 0706.1524 (2007).

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF ANKARA, TANDOĞAN, TURKEY
E-mail address: evrenziplar@yahoo.com

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, ÇANKIRI KARATEKİN UNIVERSITY, ÇANKIRI, TURKEY
E-mail address: asenol@karatekin.edu.tr

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF ANKARA, TANDOĞAN, TURKEY
E-mail address: yayli@science.ankara.edu.tr