Association between rs20417 polymorphism in cyclooxygenase-2 and gastric cancer susceptibility

Evidence from 15 case-control studies

Shimin Chen, MD^ab, Lu Chen, MD^b, Yuling Tan, MD^b, Jiehong Wang, MD^b,*

Abstract

Objective: Previous studies have reported an association between cyclooxygenase-2 (COX-2) polymorphism and gastric cancer (GC) susceptibility, but their results are controversial. This meta-analysis was intended to evaluate the relationship between the COX-2 rs20417 polymorphism and GC susceptibility in different ethnic groups.

Methods: We searched PubMed, EMBASE, Web of Knowledge, and the Chinese Biomedical Database (CBM) for relevant case-control studies published up to October 6, 2018, which reported an association between the COX-2 rs20417 polymorphism and gastric cancer risk. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of this association.

Results: 15 papers detailing case-control studies were included in the analysis, which included a total of 2848 GC cases and 4962 healthy controls. The meta-analysis results indicated that the COX-2 rs20417 polymorphism was associated with increased GC susceptibility under allele (G vs C: OR = 1.67, 95%CI = 1.19–2.35, P = .003), heterozygous (GG vs CG: OR = 1.44, 95%CI = 1.03–2.02, P = .034), dominant (GC+CC vs GG: OR = 1.66, 95%CI = 1.18–2.34, P = .004), homozygous (GG vs CC: OR = 2.20, 95%CI = 1.07–4.54, P = .033), and recessive models (CC vs GG+CG: OR = 2.05, 95%CI = 1.09–3.85, P = .025). An analysis of ethnic subgroups revealed that the COX-2 rs20417 polymorphism was significantly associated with GC susceptibility in Asians under all 5 models (G vs C: OR = 2.22, 95%CI = 1.66–2.96, P < .001; GG vs CC: OR = 4.29, 95%CI = 1.94–9.50, P < .001; GG vs CG: OR = 1.86, 95%CI = 1.34–2.58, P < .001; CC vs GG+CG: OR = 3.73, 95%CI = 1.92–7.24, P < .001; GC+CC vs GG: OR = 2.20, 95%CI = 1.65–2.93, P < .001). Helicobacter pylori positive patients suffered a high risk of GC, compared to H pylori negative patients under the dominant model (OR = 3.09, 95%CI = 1.80–5.32, P < .001).

Conclusion: This meta-analysis of 15 case-control studies provides strong evidence that the COX-2 rs20417 polymorphism increases the risk of GC susceptibility in general populations, especially in Asians. Helicobacter pylori positive patients and those with the COX-2 rs20417 polymorphism had a higher risk of developing GC.

Abbreviations: CI = confidence interval, COX-2 = cyclooxygenase-2, GC = gastric cancer, H pylori = Helicobacter pylori positive patients and those with the COX-2 rs20417 polymorphism had a higher risk of developing GC.

Keywords: cyclooxygenase-2, gastric cancer, polymorphism, rs20417

1. Introduction

With an estimated number of more than 700,000 deaths annually, gastric cancer (GC) is the 4th most common malignancy and the second leading cause of cancer-related death worldwide.[1] Fatal malignancies are mainly prevalent in Asia, especially China.[2] The exact etiology of GC is multifactorial and believed to involve host genetic variants and environmental factors, including inflammation, bacterial infection, and diet.[3–5] Although Helicobacter pylori infection is generally accepted as the leading risk factor for gastric cancer,[6,7] a previous study reported the occurrence of gastric cancer tumorigenesis to H pylori infection in only a small proportion of subjects, suggesting that individual genetic susceptibility may also play an important role in GC.[8,9]

The COX, also known as prostaglandin endoperoxide synthase, is a rate-limiting enzyme for the synthesis of important prostaglandins from free arachidonic acid. The COX-2 is the inducible isoform of COX and is rarely expressed in normal tissues; however, it is rapidly induced by growth factors, cytokines, and tumor promoters.[10,11] The elevated expression of COX-2 has been reported in various forms of cancer, including GC, and in precancerous tissues.[12,13] The increase in COX-2 expression results in the inhibition of tumor growth, invasion, metastasis, apoptosis, and angiogenesis, which are widely regarded as important steps in cancer development.[10,14–17]
Single Nucleotide Polymorphisms (SNPs) are considered to be the most common forms of genetic variation in the human genome. Recently, a polymorphism in the promoter region of COX-2 has been reported, characterized by a G>C point-mutation at position −765 (rs20417). The polymorphism has been revealed to have a functional effect on COX-2 transcription, which may result in GC. Although many studies have been previously performed to examine whether the COX-2 rs20417 polymorphism increases the risk of developing GC, the results from these studies are inconsistent. Therefore, this study aimed to perform a meta-analysis by combining the polymorphism results from all available published studies to explore the uncertain association between the COX-2 rs20417 and risk of GC susceptibility.

2. Materials and methods

2.1. Search strategy

The meta-analysis was conducted in adherence with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We retrieved potentially relevant studies on COX-2 rs20417 genetic polymorphisms and the risk of GC susceptibility from electronic databases, including Web of Knowledge, PubMed, EMBASE, and the CBM. Databases were searched for entries with dates up until October 2018 by using the following terms: (stomach OR gastric) and (cancer OR carcinoma OR neoplasm OR tumor OR adenocarcinoma) and (COX2 OR cyclooxygenase-2 OR PTGS2 OR cyclooxygenase II) and (variant OR polymorphism OR genotype OR SNP OR mutation OR single nucleotide polymorphism OR variation OR Alleles). In order to avoid the exclusion of any potentially relevant literature, publications listed under the references sections of retrieved articles were also reviewed carefully to find any other possibly relevant articles. The whole search process was carried out without any language restrictions. Ethical approval was not necessary since this study was based on previous publications.

2.2. Inclusion and exclusion criteria

The studies were considered eligible if the following requirements are met: First, research type design is in a case-control format with patients with GC and healthy populations as controls. Second, paper evaluates the uncertain relationship between the COX-2 rs20417 polymorphism and GC risk. Third, C/C, G/C, and G/G genotypes in both groups were available; and fourth, studies were performed on human beings. We further excluded studies that had no control group, review articles, letters, comments, or studies without detailed raw data regarding COX-2 rs20417 polymorphism.

2.3. Data extraction

Two experienced authors (SM Chen, Lu Chen) independently extracted the necessary information according to a standard form. Any disagreements encountered were resolved by discussing with a third author. The following detailed information was collected carefully: First author’s name, ethnicity, country of origin, publication year, number of patients with H pylori infection, genotyping method, the number of GC patients and controls with C/C, G/C, and G/G genotypes, and Hardy–Weinberg equilibrium (HWE) in control groups.

2.4. Methodological quality assessment

Quality assessments for eligible studies were conducted by 2 investigators independently using the Newcastle-Ottawa Scale (NOS). In this methodological quality assessment scale, 9 items, each with a score value between 1 and 9, are included. A research study with a NOS score of ≥6 stars is generally considered of high-quality.

2.5. Statistical analysis

The uncertain association strength between COX-2 rs20417 polymorphism and GC risk was assessed by calculating the ORs along with a 95% CI. P < 0.05 was regarded as consistent with HWE. The summary ORs were measured using the Z-test and combined using either the fixed-effects model (Mantel–Haenszel) or the random-effects model (DerSimonian and Laird), as previously described. Heterogeneity (between-study inconsistency) was determined using the I² statistical tests, with I² < 50% revealing an absence of heterogeneity among studies. Sensitivity analysis was also conducted to explore the stability of the pooled results under all genetic models by excluding one study at a time. Furthermore, Begg’s funnel plot test was utilized to explore possible publication bias, where P < 0.05 was considered to represent statistical significant. All statistical analyses were undertaken using STATA 12.0 software (StataCorp, College Station, TX).

3. Results

3.1. Characteristics of the included studies

An initial search of related electronic databases conducted according to the search strategy described above yielded 171 studies. A flow chart of the study selection process is shown in Figure 1. A total of 15 original papers that met the inclusion criteria were selected for the meta-analysis; they included an assessment of the association between COX-2 rs20417 polymorphism and GC in 2848 cancer cases and 4962 healthy controls. These papers reported studies of Asian (11 papers), Caucasian (3 papers), and American (1 paper) (details shown in Table 1). The association between COX-2 rs20417 polymorphism and GC susceptibility in H pylori positive and H pylori negative patients under the dominant model were available in 5 studies. The frequencies of each genotype and allele, along with their HWE values are presented in Table 2. Two studies were not in agreement with the HWE method in control subjects. The NOS score results indicated that the score ranged from 5 to 8, with an average of 6.53, showing that the methodological quality of 15 selected studies was generally reliable. Other details of the included studies are shown in Table 1.

3.2. Meta-analysis and Subgroup analysis

Overall, a total of 15 case-control studies were used to examine the association between the COX-2 rs20417 polymorphism and GC risk, and results are shown in Table 3. The main findings of this study indicated that COX-2 rs20417 polymorphism was...
associated with increased GC susceptibility under all genetic models (G vs C: OR = 1.67, 95% CI = 1.19–2.35, P = .003; GG vs CG: OR = 1.44, 95% CI = 1.03–2.02, P = .034; GC+CC vs GG: OR = 1.66, 95% CI = 1.18–2.34, P = .004; GG vs CC: OR = 2.20, 95% CI = 1.07–4.54, P = .033; and CC vs GG+CG: OR = 2.05, 95% CI = 1.09–3.85, P = .025). A forest plot of pooled OR of the association between COX-2 rs20417 polymorphism and GC risk under the dominant model is shown in Figure 2. We also

Table 1
Characteristics of the studies included in the meta-analysis.

First author	Year	Country	Ethnicity	H. pylori (positive/negative)	Genotyping method	Number (case/control)	HWE	NOS score
Liu	2006	China	Asian	175/73	PCR-DHPLC	248/427	0.2732	6
Zhang	2006	China	Asian	NP	PCR	323/646	0.6017	7
Pereira	2006	Portugal	Caucasian	NP	PCR-RFLP	73/210	0.2792	6
Hou	2007	Poland	Caucasian	NP	TaqMan	290/409	0.8963	6
Saxena	2008	India	Asian	35/27	PCR-RFLP	62/241	0.4225	7
Sitarz	2008	Netherlands	Caucasian	NP	PCR	240/100	0.1425	5
Tang	2009	China	Asian	67/33	PCR-RFLP	100/105	0.106	5
Zhang	2011	China	Asian	NP	PCR-RFLP	357/985	0.4632	7
Zhang*	2011	China	Asian	99/95	PCR-RFLP	323/944	<0.001	8
Shin	2012	Korea	Asian	28/80	PCR-RFLP	100/100	0.5987	8
Li	2012	China	Asian	214/82	PCR-RFLP	296/319	0.6162	7
Ho	2014	China	Asian	67/33	PCR	100/105	0.106	8
Campanholo	2014	Brasil	American	NP	PCR-RFLP	100/150	0.0806	5
Tao	2015	China	Asian	77/59	PCR-RFLP	136/121	0.0759	6
Zou	2017	China	Asian	NP	PCR-RFLP	100/100	<0.001	7

H. pylori = Helicobacter pylori; HWE = Hardy–Weinberg equilibrium, NOS = Newcastle–OttawaScale, NP = not provided, PCR = polymerase chain reaction, PCR-DHPLC = PCR-based denaturing high-performance liquid chromatography, PCR-RFLP = PCR-based restriction fragment length polymorphism.
performed sub-group analyses to investigate the effect of ethnicity. In Asians, we found a statistically increased GC risk under all genetic models (G vs C: OR=2.22, 95%CI=1.66–2.96, P<.001; GG vs CC: OR=4.29, 95%CI=1.94–9.50, P<.001; GG vs CG: OR=1.86, 95%CI=1.34–2.58, P<.001; CC vs GG+CG: OR=3.73, 95%CI=1.92–7.24, P<.001; GC +CG vs GG: OR=2.20, 95%CI=1.65–2.93, P<.001). In Caucasians, however, such association is not seen in any comparison (Table 3). Taken together, these results indicate that COX-2 rs20417 polymorphism was associated with an increased risk of GC in Asians. We also performed additional analysis with respect to the relationship between the COX-2 rs20417 polymorphism and GC susceptibility in *H pylori* positive vs *H pylori* negative patients under dominant model. *Helicobacter pylori* positive patients suffered a high risk of GC compared to *H pylori* negative patients under the dominant model (OR=3.09, 95%CI=1.80–5.32, P<.001), which suggests that a *H pylori* indication is associated with the risk of gastric cancer under the dominant genetic model with respect to COX-2 rs20417 polymorphism (Fig. 3).

3.3. Sensitivity analysis

Sequential omission of a single-study method was utilized to conduct a sensitivity analysis in all models. The summary ORs and their 95% CI showed no substantial change, confirming that the summary results of the meta-analysis are reliable and robust. Sensitivity analysis results of the association between COX-2 rs20417 polymorphism and GC susceptibility under the dominant model are shown in Figure 4.

3.4. Publication bias

Begg’s funnel plot test was used to explore a potential publication bias. No obvious publication bias was detected for the association between COX-2 rs20417 polymorphism and GC

Table 2

First author	Genotype (N)	Allele frequency (N)		
rs20417 G>C	Case	Control	Case	Control
Liu 2006	248	220	27	1
Zhang 2006	323	288	35	0
Pereira 2006	73	36	32	5
Hou 2007	290	210	70	10
Saxena 2008	62	14	29	19
Stracz 2008	240	176	57	8
Tang 2009	100	57	34	9
Zhang 2011	357	324	33	0
Zhang 2011	323	288	0	35
Shin 2012	100	82	18	0
Li 2012	296	241	53	2
He 2014	100	55	11	34
Campanholo 2014	100	59	34	7
Tao 2015	136	75	46	15
Zou 2017	100	89	10	1

Table 3

Outcome or subgroup	Study number	OR	95% CI	P_{Z-t}	I (%)	P_{Q-t}
G vs C	15	1.67	1.19–2.35	.003	88.7	<.001
Asian	11	2.22	1.66–2.96	<.001	75.1	<.001
Caucasian	3	0.9	0.54–1.48	.673	81.6	.004
GG vs GC	15	2.2	1.07–4.54	.033	81.5	<.001
Asian	11	4.29	1.94–9.50	<.001	72.1	.001
Caucasian	3	0.8	0.31–2.10	.655	65.1	.057
GG vs CG	15	1.44	1.03–2.02	.034	80.2	<.001
Asian	11	1.86	1.34–2.58	<.001	65.0	.002
Caucasian	3	0.95	0.56–1.62	.854	73.5	.023
CC vs GG+CG	15	2.05	1.09–3.85	.025	76.3	<.001
Asian	11	3.73	1.92–7.24	<.001	61.9	.01
Caucasian	3	0.8	0.35–1.82	.597	53.6	.116
GC+CC vs GG	15	1.66	1.18–2.34	.004	84.2	<.001
Asian	11	2.2	1.65–2.93	<.001	65.0	.001
Caucasian	3	0.92	0.52–1.62	.776	79.0	.006

Cl=confidence intervals, COX-2=cyclooxygenase-2, OR=odds ratios.
P_{Z-t} value for association test, P_{Q-t} value for heterogeneity test.
Figure 2. The forest plot of pooled odds ratios of the association of COX-2 rs20417 polymorphism with gastric cancer susceptibility under the dominant model.

Figure 3. Meta-analysis of the relationship between the COX-2 rs20417 polymorphism and gastric cancer susceptibility in Helicobacter pylori positive vs Helicobacter pylori negative patients under the dominant model.
susceptibility under the 5 models. Publication bias under the recessive model indicated that the result is statistically robust ($P = .146$, Fig. 5).

4. Discussion

In this study, we assessed the association between the COX-2 rs20417 polymorphism and GC susceptibility by conducting an ethnic-specific meta-analysis. Fifteen independent case-control studies were included, with a total of 2848 cancer cases and 4962 healthy control subjects. The meta-analysis results presented strong evidence that the COX-2 rs20417 polymorphism increases the risk of GC susceptibility in general populations. Subgroup analyses further indicated that, ethnicity greatly affected the link between COX-2 rs20417 polymorphism and GC susceptibility. COX-2 rs20417 was found to confer an elevated risk of GC susceptibility in Asians. In Caucasians, however, such an association was not observed.

Genetic polymorphism is regarded as an important factor for the development of cancer. Recently, significant advances in functional studies on various cancer associated SNPs have been reported.[40–42] An association between over-expression of COX-2 gene and gastrointestinal malignance, including gastric adenocarcinoma, has been confirmed.[12] It has been proven that the COX-2-765G>C SNP disrupts a SP-1 binding site, resulting in a 30% reduction of COX2 promoter transcriptional activity in vitro.[19] The frequency of COX-2 rs20417 polymorphism seems to be different among various ethnic populations. COX-2-765C carriers have been revealed to present a 3 to 8 fold increased risk of gastric cancer in some studies,[35,38] while this polymorphism was not related to gastric cancer susceptibility in other studies.[26,33] These inconclusive findings may have been caused by genotypic frequencies among various ethnic populations as well as various dietary, H pylori related, and environmental factors (smoking or consumption of alcohol). For example, COX-2-765C allele was found in only 5% of the control groups in Korean and Chinese populations,[24,26] whereas it was reported to be present in 22% and 16% of the control groups in Portuguese and Northern Indian populations, respectively.[38,35] This may account for the differences between Asians and Caucasians in our results. Thus, more studies are needed to further explore the effect of COX-2 rs20417 polymorphism on gastric cancer among different ethnic backgrounds.

Helicobacter pylori infection and SNPs are considered as leading pathogenic factors in GC development.[43] Helicobacter pylori infection induces an up-regulated transcriptional activation of inflammatory cytokines, which may contribute to further
alteration of COX-2 expression. Here, we conclude that *H pylori* positive patients suffered a high risk of GC compared to *H pylori* negative patients under the dominant model, indicating *H pylori* positive patients and patients with COX-2 rs20417 polymorphism had a higher risk to develop GC. Our results are in line with previous studies. Tan et al also reported that the COX-2 rs20417 polymorphism may be related to an increased susceptibility of gastric cancer, especially in Asian populations. However, two recent studies were not included in their study. In another study, even though only a limited number of 11 studies were included, it was also revealed that the COX-2 rs20417 may act as a genetic biomarker of gastric cancer in Asian populations, but not in Caucasians, and *H pylori* infection may increase the susceptibility of gastric cancer in COX2 rs20417 carriers.

Several limitations should be noted regarding the interpretation of our results. First, the results are based on unadjusted data. Several factors addressed across different studies, such as age, gender, environmental factors, family history, and living status, may have confounding effects and, thus, may influence the reliability of the results. Second, even in our subgroup analysis, a significant amount of heterogeneity was detected, and various potential factors accounted for this heterogeneity, including the basic characteristics of the study population and the study design. Third, 2 studies were not in agreement with HWE; even the combined ORs were not materially altered in the sensitivity analysis. Finally, owing to the limited number of studies in certain sub-groups, some conclusions from the subgroup analysis should be interpreted with caution.

In summary, the results of our meta-analysis based on 15 case-control studies indicate that the COX-2 rs20417 polymorphism increases the risk of GC susceptibility in general populations, especially in Asian populations. *Helicobacter pylori* positive patients and patients with COX-2 rs20417 polymorphism had a higher risk of developing GC. Further well-designed multi-ethnic epidemiological studies with large sample sizes are needed to validate these findings in the future.

Author contributions

Shimin Chen and Jiehong Wang conceived and designed the study; Lu Chen collected the data. Shimin Chen and Yuling Tan analyzed the data. Lu Chen confirmed the data. Shimin Chen and Lu Chen contributed to the writing of the manuscript and Jiehong Wang edited the manuscript.

Conceptualization: Shimin Chen, Jiehong Wang.

Formal analysis: Shimin Chen, Lu Chen.

Investigation: Lu Chen, Jiehong Wang.

Methodology: Lu Chen.

Resources: Yuling Tan.

Software: Yuling Tan.

Supervision: Lu Chen.

Validation: Lu Chen, Yuling Tan.

Visualization: Yuling Tan.

Writing – original draft: Shimin Chen.

Writing – review & editing: Jiehong Wang.

Shimin Chen orcid: 0000-0001-6123-0895.

References

[1] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55:74-108.

[2] Tran GD, Sun XD, Abnet CC, et al. Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. Int J Cancer 2005; 113:456-63.

[3] Shen X, Zhang J, Yan Y, et al. Analysis and estimates of the attributable risk for environmental and genetic risk factors in gastric cancer in a Chinese population. J Toxicol Environ Health A 2009; 72:759-66.

[4] Malik MA, Ashadyoy R, Mital RD, et al. Role of xenobiotic-metabolizing enzyme gene polymorphisms and interactions with environmental factors in susceptibility to gastric cancer in Kashmiri Valley. J Gastrointest Cancer 2009; 40:26-32.

[5] Pourfarzi F, Whelan A, Kaldor J, et al. The role of diet and other environmental factors in the causation of gastric cancer in Iran–a population based study. Int J Cancer 2009; 125:1935-60.

[6] Sugiyama T. Development of gastric cancer associated with Helicobacter pylori infection. Cancer Chemother Pharmacol 2004; 54:Suppl 1:S12-20.

[7] Konturek PC, Konturek SJ, Brazowski T. Helicobacter pylori infection in gastric carcinogenesis. J Physiol Pharmacol 2009; 60:5-21.

[8] Peek RM, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2002; 2:28-37.

[9] Vogel U, Christensen J, Wallin H, et al. Polymorphisms in genes involved in the inflammatory response and interaction with NSAI use or smoking in relation to lung cancer risk in a prospective study. Mutation Res 2008; 639:89-100.

[10] Wang D, Mann JR, DuBois RN. The role of prostaglandins and other eicosanoids in the gastrointestinal tract. Gastroenterology 2005; 128:1445-61.

[11] Bakhle YS. COX-2 and cancer: a new approach to an old problem. Br J Pharmacol 2001; 134:1137-50.

[12] Yu JR, Wu YJ, Qin Q, et al. Expression of cyclooxygenase-2 in gastric cancer and its relation to liver metastasis and long-term prognosis. World J Gastroenterol 2005; 11:4908-11.

[13] Chen XL, Su BS, Sun RQ, et al. Relationship between expression and distribution of cyclooxygenase-2 and bcl-2 in human gastric adenocarcinoma. World J Gastroenterol 2005; 11:1228-31.

[14] Uehu K, Ichikura T, Moeharuki H. Cyclooxygenase-2 expression is related to prostaglandin biosynthesis and angiogenesis in human gastric cancer. Clin Cancer Res 2000; 6:135-8.

[15] Cao Y, Prescott SM. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J Cell Physiol 2002; 190:279-86.

[16] Dempke W, Rue C, Grothey A, et al. Cyclooxygenase-2: a novel target for cancer chemotherapy? J Cancer Res Clin Oncol 2001; 127:411-7.

[17] Howe LR, Subbaramaiah K, Brown AM, et al. Cyclooxygenase-2: a target for the prevention and treatment of breast cancer. Endocr Relat Cancer 2001; 8:107-114.

[18] Hu Z, Miao X, Ma H, et al. A common polymorphism in the 3’UTR of cyclooxygenase 2/prostaglandin synthase 2 gene and risk of lung cancer in a Chinese population. Lung Cancer (Amsterdam, Netherlands) 2005; 48:11-7.

[19] Papafili A, Hill MR, Bruil DJ, et al. Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler Thromb Vasc Biol 2002; 22:1631-6.

[20] Zhang X, Miao X, Tan W, et al. Identification of functional genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer. Gastroenterology 2005; 129:565-76.

[21] Szczeklik W, Sanak M, Szczeklik A. Functional effects and gender association of COX-2 gene polymorphism G-765C in bronchial asthma. J Allergy Clin Immunol 2004; 114:248-53.

[22] Zhang XM, Miao XP, Tan W, et al. [Genetic polymorphisms in the promoter region of cyclooxygenase-2 and their association with risk of gastric cancer]. Acta Academica Medicinae Sinicae 2006; 25:119-23.

[23] Zou JP, Zhang JJ, Xiao-Yan MA, et al. Correlation of COX-2 genetic polymorphisms with incidence of gastric cancer in Bashang area of Zhangjiakou, Hainan Med J 2017.

[24] Shin WG, Kim HJ, Cho SJ, et al. The COX-2-1195AA genotype is associated with diffuse-type gastric cancer in Korea. Gut Liver 2012; 6:321-7.

[25] Zhang X, Zhong R, Zhang Z, et al. Interaction of cyclooxygenase-2 promoter polymorphisms with Helicobacter pylori infection and risk of gastric cancer. Mol Carcinog 2011; 50:876-83.

[26] Liu F, Pan K, Zhang X, et al. Genetic variants in cyclooxygenase-2: Expression and risk of gastric cancer and its precursors in a Chinese population. Gastroenterology 2006; 130:1975-84.

[27] Sitarz R, Leguit RJ, de Leng WW, et al. The COX-2 promoter polymorphism –763 G>C is associated with early-onset, conventional and stumpy gastric cancers. Mod Pathol 2008; 21:685-90.
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clinical research ed) 2009;339:b2700.

Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25:603–5.

DerSimonian R, Laird N. Meta-analysis in clinical trials. Contm Clin Trials 1986;7:177–88.

Tang XF, Li SX, Li X, et al. Correlation between the nucleotide polymorphisms of COX-2 and the susceptibility to gastric cancer in Hui ethnic group. World Chin J Digestol 2009;17:1772–6.

Tao M, Zhang L, Song Y, et al. Association of COX-2 genetic polymorphisms and H. pylori infection with susceptibility of gastric cancer in Shaanxi area. J Shanxi Med Uni 2015.

Hou L, Grillo P, Zhu ZZ, et al. COX1 and COX2 polymorphisms and gastric cancer risk in a Polish population. Anticancer Res 2007;27(6C):4243–7.

Zhang XM, Zhong R, Liu L, et al. Smoking and COX-2 functional polymorphisms interact to increase the risk of gastric cardia adenocarcinoma in Chinese population. PLoS One 2011;6:e23894.

Saxena A, Prasad KN, Ghoshal UC, et al. Polymorphism of -765G > C COX-2 is a risk factor for gastric adenocarcinoma and peptic ulcer disease in addition to H pylori infection: a study from northern India. World J Gastroenterol 2008;14:1498–503.

Yuchun LI, Dai L, Zhang J, et al. Cyclooxygenase-2 polymorphisms and the risk of gastric cancer in various degrees of relationship in the Chinese Han population. Oncol lett 2012;3:107–12.

He WT, Liu T, Tang XF, et al. The COX-2-765 G>C polymorphism is associated with increased risk of gastric carcinogenesis in the Chinese Hui ethnic population. Asian Pac J Cancer Prev 2014;15:4067–70.

Pereira C, Sousa H, Ferreira P, et al. -765G > C COX-2 polymorphism may be a susceptibility marker for gastric adenocarcinoma in patients with atrophy or intestinal metaplasia. World J Gastroenterol 2006;12:5473–8.

Campanholo VM, Felipe AV, de Lima JM, et al. -765g>c polymorphism of the cox-2 gene and gastric cancer risk in Brazilian population. Arq Gastroenterol 2014;51:79–83.

Zou D, Lou J, Ke J, et al. Integrative expression quantitative trait locus-based analysis of colorectal cancer identified a functional polymorphism regulating SLC22A5 expression. Eur J Cancer (Oxford, England: 1990) 2018;53:1–9.

Saeki N, Ono H, Sakamoto H, et al. Genetic factors related to gastric cancer susceptibility identified using a genome-wide association study. Cancer Sci 2013;104:1–8.

Chang J, Tian J, Yang Y, et al. A rare missense variant in TCF7L2 associates with colorectal cancer risk by interacting with a GWAS-identified regulatory variant in the MYC enhancer. Cancer Res 2018;78:5164–72.

Li C, Xia HH, Xie W, et al. Association between interleukin-1 gene polymorphisms and Helicobacter pylori infection in gastric carcinogenesis in a Chinese population. J Gastroenterol Hepatol 2007;22:234–9.

Kim SS, Ruiz VE, Carroll JD, et al. Helicobacter pylori in the pathogenesis of gastric cancer and gastric lymphoma. Cancer Lett 2011;305:228–38.

Tan H, Cui J, Jiang L, et al. COX-2-765 G>C (rs20417) gene polymorphism and the risk of gastric cancer: a meta-analysis. Chin J Evid Based Med 2016;16:1270–5.

Luo MX, Long BB, Li F, et al. Roles of Cyclooxygenase-2 gene -765G>C (rs20417) and -1195G>A (rs689466) polymorphisms in gastric cancer: a systematic review and meta-analysis. Gene 2019;685:125–35.