Branching fraction and CP-violation charge asymmetry measurements for B-meson decays to ηK^{\pm}, $\eta\pi^{\pm}$, $\eta'K^{\pm}$, $\eta'\pi^{\pm}$, ωK, and $\omega\pi^{\pm}$

B. Aubert,1 T. Cuhadar-Donszelmann,2 T. Held,5 J. G. Smith,6 D. A. Sanders,3 J. A. Nash,6 R. J. Wilson,21 F. Wilinkmeier,21 D. D. Altenburg,22 E. Feltresi,22,48 A. T. Watson,6 T. Held,5 H. Koch,7 B. Aubert,2,32 J. W. Berryhill,16 C. Campagnari,16 A. Cunha,16 B. Dahmes,16 T. M. Hong,16 D. Kovalskyi,16 J. D. Richman,16 T. W. Beck,17 A. M. Eiser,17 C. J. Flacco,17 A. J. Kroseberg,17 W. S. Lockman,17 T. Schalk,17 B. A. Schumm,17 A. Seiden,17 M. G. Wilson,17 L. O. Winstrom,17 E. Chen,18 C. H. Cheng,18 F. Fang,18 D. G. Hitlin,18 I. Narsky,18 T. Piatenko,18 F. C. Porter,18 R. Andreasen,19 G. Mancinelli,19 B. T. Meadows,19 K. Mishra,19 M. D. Sokoloff,19 F. Blanc,20 P. C. Bloom,20 S. Chen,20 Z. C. Clifton,20 W. T. Ford,20 J. F. Hirschauer,20 A. Kreisel,20 M. Nagel,20 U. Nauenberg,20 A. Olivas,20 J. G. Smith,6 M. T. Ronan,5 T. J. West,20 R. J. Barlow,43 C. K. Lae,43 R. Andreassen,43 S. Chen,20 J. M. Bauer,43 S. J. Sekula,43 M. Spitznagel,44 K. Wacker,22 V. Klose,23 M. J. Kobel,24 H. M. Lacker,23 W. F. Mader,23 R. Rogowski,23 J. Schubert,23 R. R. Schubert,23 R. Schwartz,23 J. E. Sundermann,23 A. Volk,23 D. Bernard,24 G. R. Bonneaud,24 E. Latour,24 V. Lombardo,24 Ch. Thiebaux,24 M. Verderi,24 P. J. Clark,25 W. Gradl,25 F. Muheim,25 S. Playfer,25 A. I. Robertson,25 Y. Xie,25 M. Andreotti,26 D. Bettoni,26 C. Bozzi,26 R. Calabrese,26 A. Cecchi,26 G. Cibinetto,26 P. Franchini,26 E. Luppi,26 M. Negrini,26 A. Petrella,26 L. Piemontese,26 E. Prencipe,26 V. Santoro,26 F. Anulli,27 R. Baldini-Ferroli,27 A. Calcatera,27 R. de Sangro,27 G. Finocchiaro,27 S. Pacetti,27 P. Patteri,27 I. M. Peruzzi,27 M. Piccolo,27 M. R. Monge,28 S. Passaggio,28 C. Patrignani,28 C. Robutti,28 A. Santroni,28 S. Tosi,28 K. S. Chaisanguanthum,29 M. Morii,29 J. Wu,29 R. S. Dubitzky,30 J. Marks,30 S. Schenk,30 U. Wuer,30 D. J. Bard,31 P. D. Damace,31 R. R. Flack,31 J. A. Nash,31 W. Panduro Vazquez,31 M. Tibbetts,31 P. K. Behera,32 X. Chai,32 M. J. Charles,32 U. Mallick,32 V. Ziegler,32 J. Cochran,33 H. B. Crawley,33 L. Dong,33 V. Eyges,33 W. T. Meyer,33 S. Prell,33 E. I. Rosenberg,33 A. E. Rubin,33 Y. Y. Gao,33 A. V. Gritsan,34 Z. J. Guo,34 C. K. Lae,34 A. G. Denig,35 M. Fritsch,35 G. Schott,35 N. Arnaud,36 J. Béqueilleux,36 M. Davier,36 G. Grosdidier,36 A. Höcker,36 V. Lepeltier,36 F. Le Diberder,36 A. M. Lutz,36 S. Pruvot,36 S. Rodier,36 P. Roudeau,36 M. H. Schune,36 J. Serrano,36 V. Sordini,36 A. Stocchi,36 W. F. Wang,36 G. Wormser,36 D. J. Lange,37 M. Wright,37 I. Bingham,38 C. A. Chavez,38 I. J. Forster,38 J. R. Fry,38 E. Gabathuler,38 R. Gamet,38 D. E. Hutchcroft,38 D. J. Payne,38 K. C. Schofield,38 C. Touramanis,38 A. J. Bevan,39 K. A. George,39 F. Di Lodovico,39 W. Menges,39 R. Sacco,39 G. Cowan,40 H. U. Flaecher,40 D. A. Hopkins,40 S. Parameswaran,40 F. Salvatore,40 A. C. Wren,40 D. N. Brown,41 C. L. Davis,41 J. Allison,42 N. R. Barlow,42 R. J. Barlow,42 Y. M. Chia,42 C. L. Edgar,42 G. D. Lafferty,42 J. T. West,42 J. I. Yi,42 J. Anderson,43 C. Chen,43 A. Jawahery,43 D. A. Roberts,43 G. Simi,43 J. M. Tuggle,43 G. Blaylock,44 C. Dallapiccola,44 S. S. Hertzbach,44 X. Li,44 T. B. Moore,44 E. Salvati,44 S. Sarem,44 R. Cowan,45 D. Dujnic,45 P. H. Fischer,45 K. Koencke,45 G. Sciolla,45 S. J. Sekula,45 M. Spitznagel,45 F. Taylor,45 R. K. Yamanoto,45 M. Zhao,45 Y. Zheng,45 S. E. Mclachlin,46 P. M. Patel,46 S. H. Robertson,46 A. Lazzaro,47 F. Palombo,47 J. M. Bauer,48 L. Cremaldi,48 V. Eschenburg,48 R. Godang,48 R. Kroeger,48 D. A. Sanders,48 D. J. Summers,48 H. W. Zhao,48 S. Brunet,49 D. Côté,49 M. Simard,49 P. Taras,49

Submitted to Physical Review D

Work supported in part by US Department of Energy contract DE-AC02-76SF00515
We present measurements of the branching fractions for B^0 meson decays to $\eta'K^0$ and ωK^0, and of the branching fractions and CP-violation charge asymmetries for B^+ meson decays to $\eta\pi^+$, $\eta'\pi^+$, $\eta'K^+$, $\omega\pi^+$, and ωK^+. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center, represent 383 million $B\bar{B}$ pairs produced in e^+e^- annihilation. The measurements agree with previous results; we find no evidence for direct CP violation.

PACS numbers: 13.25.Hw, 11.30.Er, 12.15.Hh, 12.39.St

Charmless B decays are becoming increasingly useful to test the accuracy of theoretical estimation methods, such as those based on QCD factorization or flavor SU(3) symmetry. In this paper we present measurements of branching fractions and, where applicable, charge asymmetries, for eight charmless B decays (and their charge-conjugates, implied throughout the paper): $B^+ \to \eta\pi^+$, $B^+ \to \eta K^+$, $B^+ \to \eta'\pi^+$, $B^+ \to \eta'K^+$, $B^0 \to \eta'K^0$, $B^+ \to \omega\pi^+$, $B^+ \to \omega K^+$, and $B^0 \to \omega K^0$. The results presented here represent improvement in precision over previous measurements of these quantities by BABAR, Belle, and CLEO. We previously reported a branching fraction for $B^0 \to \eta K^0$ and CP asymmetries for $B^0 \to \eta'K^0$ and $B^0 \to \omega K^0$.

Charmless B decays with kaons are usually expected to be dominated by $b \to s$ loop ("penguin") amplitudes, while $b \to u$ tree amplitudes typically dominate for the decays with pions. However, the $B \to \eta K$ decays are especially interesting since they are suppressed relative to the abundant $B \to \eta'K$ decays due to destructive interference between two penguin amplitudes. The CKM-suppressed $b \to u$ tree amplitudes may interfere significantly with $b \to s$ penguin amplitudes of similar magnitudes, possibly leading to large direct CP violation in $B^+ \to \eta\pi^+$ and $B^+ \to \eta'\pi^+$. Numerical estimates are available in a few cases.

Finally, phenomenological fits to the branching fractions and charge asymmetries of charmless B decays can be used to understand the relative importance of tree and penguin contributions and may provide sensitivity to the CKM angle γ or to the effect of non-Standard-Model heavy particles in the loops.

The results presented here are based on data collected with the BABAR detector at the PEP-II e^+e^- collider located at the Stanford Linear Accelerator Center. An integrated luminosity of 347 fb^{-1}, corresponding to 383 x 10^{6} $B\bar{B}$ pairs, was recorded at the $T(4S)$ resonance (center-of-mass energy $\sqrt{s} = 10.58$ GeV).

Charged particles from the e^+e^- interactions are detected, and their momenta measured, by a combination of five layers of double-sided silicon microstrip detectors and a 40-layer drift chamber, both operating in the 1.5 T magnetic field of a superconducting solenoid. Photons and electrons are identified with a CsI(Tl) electromagnetic calorimeter (EMC). Further charged particle identification (PID) is provided by the average energy loss (dE/dx) in the tracking devices and by an internally reflecting ring imaging Cherenkov detector (DIRC) covering the central region.

We establish the event selection criteria with the aid of a detailed Monte Carlo (MC) simulation of the B production and decay sequences, and of the detector response. These criteria are designed to retain signal events with high efficiency. When applied to the data, they result in a sample much larger than the expected signal, but with well characterized backgrounds. We extract the signal yields from this sample with a maximum likelihood (ML) fit.

The B-daughter candidates are reconstructed through their decays $\pi^0 \to \gamma\gamma$, $K^0 \to K^+_S \to \pi^+\pi^-$, $\omega \to \pi^+\pi^-\pi^0$, $\eta \to \gamma\gamma$ ($\eta'\gamma$), $\eta \to \pi^+\pi^-\pi^0$ ($\eta\pi\pi$), $\eta' \to \eta_{\gamma\eta}$, $\eta_{\gamma\eta}$, $\eta' \to \rho\rho\gamma$ ($\eta'\gamma$), where $\rho^0 \to \pi^+\pi^-$. The invariant mass of these particles’ final states are required to lie within about two standard deviations of the nominal mass unless the mass is an observable in the ML fit, in which case we accept a wider range. For a K^0_S candidate we require a successful fit of the decay vertex with the flight direction constrained to the pion pair momentum direction, yielding a flight length greater than three times its uncertainty. Secondary charged pions in η', η and ω candidates are rejected if classified as protons, kaons, or electrons by their DIRC, dE/dx, and EMC PID signatures. For the primary charged track in B^+ decays we define the PID variables S_π and S_K as the number of standard deviations between the measured DIRC Cherenkov angle and that expected for pions and kaons, respectively. We include these observables in the ML fits to distinguish between primary π and K. For $B^+ \to \eta'K^+$ the backgrounds, including cross feed from the pion channel, are small. For this mode we perform a dedicated fit with less restrictive continuum background rejection (see below), and $S_K < 2$ to exclude pions (and lighter particles).

We reconstruct the B-meson candidate by combining the four-momenta of a pair of daughter mesons, with a vertex constraint if the ultimate final state includes at least two charged particles. Since the natural widths of the η, η', and π^0 are much smaller than the resolution, we also constrain their masses to nominal values in the fit of the B candidate. From the kinematics of $T(4S)$ decay we determine the energy-substituted mass $m_{ES} = \sqrt{\frac{1}{2} s - p_B^2}$ and energy difference $\Delta E = E_B - \frac{1}{2} \sqrt{s}$, where

\((E_B, \p_B)\) is the \(B\)-meson 4-momentum vector, and all
values are expressed in the \(Y(4S)\) frame. The resolution
in \(m_{ES}\) is 3.0 MeV and in \(\Delta E\) is 24–50 MeV, depending
on the decay mode. We require \(5.25 < m_{ES} < 5.29\) GeV
and \(|\Delta E| < 0.2\) GeV.

Backgrounds arise primarily from random combina-
tions of particles in continuum \(e^+e^- \to q\bar{q}\) events \((q = u, d, s, c)\). We reduce these with requirements on the an-
gle \(\theta_p\) between the thrust axis of the \(B\) candidate in the
\(Y(4S)\) frame and that of the rest of the charged tracks
and neutral calorimeter clusters in the event. The distri-
bution is sharply peaked near \(|\cos \theta_p| = 1\) for \(q\bar{q}\) jet pairs,
and nearly uniform for \(B\)-meson decays. We require
\(|\cos \theta_p| < 0.65–0.90\) depending on the mode, which opti-
mizes the expected signal relative to its background-
dominated statistical error. In the ML fit we discriminate
further against \(q\bar{q}\) background with a Fisher discriminant
\(F\) that combines several variables which characterize the
energy flow in the event [22]. It provides about one stan-
dard deviation of separation between \(B\) decay events and
\(q\bar{q}\) background (see Fig. II).

We also impose restrictions on resonance decay an-
gles to exclude the most asymmetric decays where soft-
particle backgrounds accumulate and the acceptance
changes rapidly. We define the decay angle \(\theta_{\text{dec}}\) for a
meson \(r\) that decays to two particles as the angle be-
tween the momenta of a daughter particle and the me-
sion’s parent, measured in the meson’s rest frame. We de-
finite \(H'\equiv \cos \theta_{\text{dec}}\) and require \(|H'| < 0.9\) for \(B \to \eta'K\)
and \(|H'| < 0.7\) for \(B^+ \to \eta'\pi^+\). For the three-body
\(\omega \to 3\pi\) mode the direction for the decay is the normal
to the decay plane, and we include \(H''\) as an observable
in the ML fit.

The average number of candidates found per selected
event is in the range 1.05 to 1.13, depending on the fi-
nal state. We choose the candidate with the daughter
resonance mass closest to the nominal value. From the
simulation we find that this algorithm selects the correct-
combination candidate in about two thirds of the events
containing multiple candidates, and that it induces neg-
ligible bias in the ML fits.

We obtain yields for each channel from an extended
maximum likelihood fit with the input observables \(\Delta E,
m_{ES}, \mathcal{F}, m_r\) (the invariant mass of the \(\eta, \eta', \) or \(\omega\) candidate), and, for charged decays other than \(B^+ \to \eta'K^+\), the
PID variables \(S_\eta\) and \(S_K\). The selected data sample
sizes are given in the second column of Table II. Besides
the signal events they contain \(q\bar{q}\) (dominant) and \(B\bar{B}\)
with \(b \to c\) combinatorial background, and a fraction of
background from other charmless \(B\bar{B}\) modes, which we esti-
mate from the simulation to be less than 2% of the
total fit sample. The latter events have ultimate final states
different from the signal, but with similar kinematics so
that broad peaks near those of the signal appear in some
observables, requiring a separate component in the prob-
ability density function (PDF). The yield of this com-
ponent is free in the fit for all cases except \(B^0 \to \omega K^{0}\),
where the fit stability requires fixing the yield to the ex-
pectation from MC. The likelihood function is

\[
\mathcal{L} = \exp\left(-\sum_{j,k} Y_{jk}\right) \prod_{i,j,k} Y_{jk} \times \left(1 \right. \\
= Y_{jk} \left. \prod_{j,k} \mathcal{P}_j(m_{ES}) \mathcal{P}_j(\mathcal{F}) \mathcal{P}_j(\Delta E_{\eta'}) \left[\mathcal{P}_j(S_\eta) \mathcal{P}_j(m_{\omega}) \mathcal{P}_j(H'') \right] \right),
\]

where \(N\) is the number of events in the sample, and for
each component \(j\) (signal, combinatorial background, or
charmless \(B\bar{B}\) background) and flavor \(k\) (primary \(K^+\) or
\(\pi^+\), \(Y_{jk}\) is the yield of events and \(\mathcal{P}_j(x)\) the PDF for ob-
servable \(x\) in event \(i\). Some factors in \([\]\) are omitted for
some modes. The flavor-dependent factors \(\mathcal{P}_j(\Delta E_{\eta'})\)
and \(\mathcal{P}_j(S_\eta)\) take common functional forms for pion or kaon,
\(e.g., F_j(\Delta E_{\eta'})\) or \(F_j(\Delta E_{\eta'} = \Delta E_{\eta'} + \delta \Delta E(p^i))\),
where \(p\) is the primary track momentum; \(S_\eta\) is treated similarly.

For the modes \(B \to \eta'\eta\pi K\) we found no need for the \(B\bar{B}\)
background component. The factored form of the PDF
indicated in Eq. [I] is a good approximation, particularly
for the \(q\bar{q}\) component, since correlations among observ-
ables measured in the data are typically a few percent or
less. Distortions of the fit results caused by our approxi-
mations are measured in simulation and included in the
bias corrections and systematic errors discussed below.

We determine the PDFs for the signal and \(B\bar{B}\) back-
ground components from fits to MC samples. We cali-
brate the resolutions in \(\Delta E\) and \(m_{ES}\) with large data con-
trol samples of \(B\) decays to charmed final states of simi-
lar topology \((e.g., B \to D(K\pi\pi))\). We develop PDFs for
the combinatorial background with fits to the data from
which the signal region \((5.27\) GeV \(< m_{ES} < 5.29\) GeV
and \(|\Delta E| < 0.1\) GeV) has been excluded.

We use the following functional forms for the PDFs:
sum of two Gaussians for \(\mathcal{P}_{\text{sig}}(m_{ES})\), \(\mathcal{P}_{\text{sig,BB}(\Delta E)}\),
and the sharper structures in \(\mathcal{P}_{BB}(m_{ES})\) and \(\mathcal{P}_{J}(m_r)\); linear
or quadratic dependences for combinatorial components
of \(\mathcal{P}_{BB,q\bar{q}}(m_r)\) and for \(\mathcal{P}_{\eta\pi}(\Delta E)\); and a Gaussian func-
tion with separate low- and high-side width parameters
for \(\mathcal{P}_J(F)\). The \(q\bar{q}\) background in \(m_{ES}\) is described by
the threshold function \(x\sqrt{1-x^2}\exp\left[-\xi(1-x^2)\right]\),
with \(x \equiv 2m_{ES}/\sqrt{s}\) and parameter \(\xi\). These functions are
discussed in more detail in [23], and some of them are illus-
trated in Fig. I

We allow the parameters most important for the de-
termination of the background PDFs to vary in the fit,
along with the yields for all components, and for charged
modes the signal and \(q\bar{q}\) background charge asymmetries.
Specifically, the free background parameters are most or
all of the following, depending on the decay mode: \(\xi\)
for \(m_{ES}\), linear and quadratic coefficients for \(\Delta E\), area
and scope of the combinatorial component for \(m_r\),
and the mean, width, and width difference parameters for \(F\).
Results for the signal yields are presented in the third
column of Table II for each sample.
We validate the fitting procedure by applying it to ensembles of simulated η^τ experiments drawn from the PDF into which we have embedded the expected number of signal and $B\overline{B}$ background events randomly extracted from the fully simulated MC samples. Biases obtained by this procedure with inputs that reproduce the yields found in the data are reported in the fourth column of Table I.

In Fig. I we show, as a representative of the fits, the projections of the PDF and data for the $B^+ \to \omega K^+$ fit, and in Fig. II projections onto m_{ES} for each of the eight decays, with submodes combined. The data plotted are subsamples enriched in signal with a threshold requirement on the ratio of signal to total likelihood (computed without the plotted variable) that retains 35%–80% of the signal, depending on the mode.

We determine the reconstruction efficiencies as the ratio of reconstructed and accepted events in simulation to the number generated. We compute the branching fraction for each channel by subtracting the fit bias from the measured yield, and dividing the result by the efficiency (including secondary branching fractions) and the number of produced $B\overline{B}$ pairs. We assume equal decay rates of the $T(4S)$ to $B^+ B^-$ and $B^+ B^-$. Table I gives the numbers pertinent to these computations. The statistical error on the signal yield or branching fraction is taken as the change in the central value when the quantity $-2 \ln \mathcal{L}$ increases by one unit from its minimum value.

We combine results where we have multiple decay channels by adding the functions $-2 \ln \left(\frac{\mathcal{L}(\mathcal{B})}{\mathcal{L}(\mathcal{B}_0)} \times G(\sigma') \right)$, where \mathcal{B}_0 is the central value from the fit for each decay channel, and $\otimes G$ denotes convolution with a Gaussian function to include the systematic error σ' discussed below. We give the resulting final branching fractions for each mode in Table I.

Systematic uncertainties on the branching fractions arise from the PDFs, $B\overline{B}$ backgrounds, fit bias, and efficiency. PDF uncertainties not already accounted for by free parameters in the fit are estimated from the consistency of fits to MC and data in control modes. Varying the signal-PDF parameters within these errors, we estimate yield uncertainties of 0.4%–2.2%, depending on the mode. For the $B\overline{B}$ backgrounds we vary the input branching fractions within their uncertainties for the modes that contribute most to the selected sample. The resulting changes in the signal yield are taken in quadrature and scaled to the total of all modes to determine the systematic uncertainty. For the $\eta^\prime \pi$, $\eta^\prime K$, and ωK^0 modes, where no $B\overline{B}$ component is used, we use 10% of the expected $B\overline{B}$ background in the sample as this is the typical correlation with the signal yield. For ωK^0, where the $B\overline{B}$ yield is fixed, we take as a systematic uncertainty the average change in the signal yield when the $B\overline{B}$ yield is varied between zero and twice the nominal value. The uncertainty of the bias (Table I) is a quadrature sum of its components: the statistical uncertainty from the simulated experiments, and half of the corrections attributable to correlations omitted from the signal and $B\overline{B}$ background models, and to PID of the primary charged track. The primary-track PID correction is significant only for misidentified kaons from $B^+ \to \eta^\prime K^+$. We assume equal decay rates of the $T(4S)$ to $B^+ B^-$ and $B^+ B^-$. Table I gives the numbers pertinent to these computations. The statistical error on the signal yield or branching fraction is taken as the change in the central value when the quantity $-2 \ln \mathcal{L}$ increases by one unit from its minimum value.
are below 0.5%. Uncertainties in the efficiency from the event selection daughter product branching fractions (0.7–3.2%). The published data [24] provide the uncertainties in the B.

These by comparing this effect in MC for the signal, $q\eta$ background in the data, and control samples mentioned previously. We apply corrections, and assign systematic errors, to A_{ch} equal to -0.010 ± 0.005 for modes with a primary kaon and 0.000 ± 0.005 for those with a primary pion. We apply an additional correction with uncertainty for dilution of the A_{ch} measurement associated with the yield bias, which is significant only for $B^+ \rightarrow \eta_{\eta\pi\pi}$. This is obtained from the same MC studies that are used to estimate the yield bias.

After combining the measurements we obtain for the branching fractions:

$$B(B^+ \rightarrow \eta\pi^+) = (5.0 \pm 0.5 \pm 0.3) \times 10^{-6}$$
$$B(B^+ \rightarrow \eta K^+) = (3.7 \pm 0.4 \pm 0.1) \times 10^{-6}$$
$$B(B^+ \rightarrow \eta'\pi^+) = (3.9 \pm 0.7 \pm 0.3) \times 10^{-6}$$
$$B(B^+ \rightarrow \eta' K^+) = (70.0 \pm 1.5 \pm 2.8) \times 10^{-6}$$
$$B(B^0 \rightarrow \eta' K^0) = (66.6 \pm 2.6 \pm 2.8) \times 10^{-6}$$
$$B(B^+ \rightarrow \omega\pi^+) = (6.7 \pm 0.5 \pm 0.4) \times 10^{-6}$$
$$B(B^+ \rightarrow \omega K^+) = (6.3 \pm 0.5 \pm 0.3) \times 10^{-6}$$
$$B(B^0 \rightarrow \omega K^0) = (5.6 \pm 0.8 \pm 0.3) \times 10^{-6}.$$
For the charge asymmetries we find

\[A_{ch}(B^+ \to \eta \pi^+) = -0.08 \pm 0.10 \pm 0.01 \]
\[A_{ch}(B^+ \to \eta K^+) = -0.22 \pm 0.11 \pm 0.01 \]
\[A_{ch}(B^+ \to \eta' \pi^+) = 0.21 \pm 0.17 \pm 0.01 \]
\[A_{ch}(B^+ \to \eta' K^+) = 0.010 \pm 0.022 \pm 0.006 \]
\[A_{ch}(B^+ \to \omega \pi^+) = -0.02 \pm 0.08 \pm 0.01 \]
\[A_{ch}(B^+ \to \omega K^+) = -0.01 \pm 0.07 \pm 0.01 . \]

The first error quoted is statistical and the second systematic. These results are generally consistent with published measurements [7, 8, 9, 10, 11, 12, 13] and supersede our previous ones [1, 2, 3]. Approaches that fit all available data with a moderate number of model parameters have proved fruitful [4, 5, 6]. We find no clear evidence for direct CP-violation charge asymmetries in these decays. The world average of the measurements of \(A_{ch} \) for \(B^+ \to \eta \pi^+ \) \((B^+ \to \eta K^+)\) are both negative and 2.3 (3.0) standard deviations from zero, while the predictions of [3] are positive, though with large errors.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BaBar. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMFU and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

* Deceased
† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
‡ Also with Università della Basilicata, Potenza, Italy
§ Also with Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
\# Also with IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom

[1] M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003) and references therein.
[2] M.-Z. Yang and Y.-D. Yang, Nucl. Phys. B 609, 469 (2001); M. Beneke and M. Neubert, Nucl. Phys. B 651, 225 (2003).
[3] A. Williamson and J. Zupan, hep-ph/0601214 (2006).
[4] H. K. Fu et al., Phys. Rev. D 69, 074002 (2004).
[5] C.-W. Chiang et al., Phys. Rev. D 70, 034020 (2004).
[6] C.-W. Chiang, M. Gronau, and J. L. Rosner, Phys. Rev. D 68, 074012 (2003); C.-W. Chiang et al., Phys. Rev. D 69, 034001 (2004).
[7] BABAR Collaboration: B. Aubert et al., Phys. Rev. Lett. 95, 131803 (2005).
[8] BABAR Collaboration: B. Aubert et al., Phys. Rev. Lett. 94, 191802 (2005).
[9] BABAR Collaboration: B. Aubert et al., Phys. Rev. D 74, 011106 (2006).
[10] Belle Collaboration: P. Chang et al., Phys. Rev. D 75, 071104(R) (2007).
[11] Belle Collaboration: J. Schumann et al., Phys. Rev. Lett. 97, 061802 (2006).
[12] Belle Collaboration: C. H. Wang et al., Phys. Rev. D 70, 012001 (2004).
[13] CLEO Collaboration: S. J. Richichi et al., Phys. Rev. Lett. 85, 520 (2000); C. P. Jessop et al., Phys. Rev. Lett. 85, 2881 (2000); S. Chen et al., Phys. Rev. Lett. 85, 525 (2000).
[14] BABAR Collaboration: B. Aubert et al., Phys. Rev. D 74, 051106 (2006).
[15] BABAR Collaboration: B. Aubert et al., Phys. Rev. Lett. 98, 031801 (2007).
[16] H. J. Lipkin, Phys. Lett. B 254, 247 (1991).
[17] M. Bander, D. Silverman, and A. Soni, Phys. Rev. Lett. 43, 242 (1979); S. Barshay, D. Rein, and L.M. Sehgal, Phys. Lett. B 259, 475 (1991); A.S. Dighe, M. Gronau, and J.L. Rosner, Phys. Rev. Lett. 79, 4333 (1997).
[18] G. Kramer, W.F. Palmer, and H. Simma, Nucl. Phys. B 428, 77 (1994); A. Ali, G. Kramer, and C-D. Lü, Phys. Rev. D 59, 014005 (1999).
[19] A. Soni and D. A. Suprun, Phys. Rev. D 75, 054006 (2007).
[20] A. Datta and D. London, Phys. Lett. B 595, 453 (2004); M. Ciuchini et al., Phys. Rev. D 67, 075016 (2003).
[21] BABAR Collaboration: B. Aubert et al., Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[22] PEP-II Conceptual Design Report, SLAC-R-418 (1993).
[23] The BABAR detector Monte Carlo simulation is based on GEANT4: S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[24] Particle Data Group, Y.-M. Yao et al., J. Phys. G33, 1 (2006).
[25] BABAR Collaboration: B. Aubert et al., Phys. Rev. D 70, 032006 (2004).