Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma

Meng Zhou†, Hengqiang Zhao†, Zhenzhen Wang†, Liang Cheng, Lei Yang, Hongbo Shi, Haixiu Yang and Jie Sun*

Abstract

Background: Dysregulated long non-coding RNAs (lncRNAs) have been found to have oncogenic and/or tumor suppressive roles in the development and progression of cancer, implying their potentials as novel independent biomarkers for cancer diagnosis and prognosis. However, the prognostic significance of expression profile-based lncRNA signature for outcome prediction in patients with multiple myeloma (MM) has not yet been investigated.

Methods: LncRNA expression profiles of a large cohort of patients with MM were obtained and analyzed by repurposing the publically available microarray data. An lncRNA-focus risk score model was developed from the training dataset, and then validated in the testing and another two independent external datasets. The time-dependent receiver operating characteristic (ROC) curve was used to evaluate the prognostic performance for survival prediction. The biological function of prognostic lncRNAs was predicted using bioinformatics analysis.

Results: Four lncRNAs were identified to be significantly associated with overall survival (OS) of patients with MM in the training dataset, and were combined to develop a four-lncRNA prognostic signature to stratify patients into high-risk and low-risk groups. Patients of training dataset in the high-risk group exhibited shorter OS than those in the low-risk group (HR = 2.718, 95 % CI = 1.937-3.815, p <0.001). The similar prognostic values of four-lncRNA signature were observed in the testing dataset, entire GSE24080 dataset and another two independent external datasets. Multivariate Cox regression and stratified analysis showed that the prognostic power of four-lncRNA signature was independent of clinical features, including serum beta 2-microglobulin (SB2M), serum albumin (ALB) and lactate dehydrogenase (LDH). ROC analysis also demonstrated the better performance for predicting 3-year OS. Functional enrichment analysis suggested that these four lncRNAs may be involved in known genetic and epigenetic events linked to MM.

Conclusions: Our results demonstrated potential application of lncRNAs as novel independent biomarkers for diagnosis and prognosis in MM. These lncRNA biomarkers may contribute to the understanding of underlying molecular basis of MM.

Keywords: Biomarkers, Expression profile, Long non-coding RNAs, Multiple myeloma, Overall survival

Background

Multiple myeloma (MM) is an incurable cancer of plasma cells caused by abnormal accumulation of monoclonal plasma cells in bone marrow [1]. MM is one of the most common blood cancers and is characterized by wide clinical and pathophysiologic heterogeneities leading to fatal outcome. The survival periods of patients with MM varied significantly, ranging from a few weeks to more than 10 years, and the five-year survival rate is nearly 40 % [2]. Identifying patients who are at the high risk may help optimize the choice of personalized treatment and improve clinical outcomes.

It is well known that the vast majority (>90 %) of the human genome sequence can be actively transcribed, while less than 2 % of transcripts serve as mRNA to encode protein [3, 4]. A substantial fraction of transcripts
is non-coding RNA (ncRNA) with no or limited protein coding capacity, including short ncRNA and long ncRNA. Long non-coding RNA (lncRNA), constituting an important class of ncRNA, are mRNA-like transcripts which are transcribed by RNA polymerase II and are longer than 200 nucleotides in length [5, 6]. Accumulating evidence indicates that lncRNA function as important regulators involved in diverse aspects of gene regulation at transcriptional, posttranscriptional and epigenetic levels [5, 7], and participate in a variety of biological processes [8, 9]. The aberrant lncRNA expression has also been observed in many complex human diseases, especially in cancers [10–12]. Similar to mRNA and miRNA, these dysregulated lncRNAs can play oncogenic and/or tumor suppressive roles in the development and progression of cancer. Some well-characterized lncRNAs, such as MALAT1, HOTAIR and SRA, were found to be highly up-regulated in lung cancer, breast cancer, hepatocellular cancer and so on [13–15], while MEG3, GAS5 and LincRNA-p21 have been shown to be tumor suppressors [16–18]. These cancer-associated lncRNAs displayed aberrant expression patterns in tissue- or cancer-type specific manner [19, 20], suggesting their potentials as novel independent biomarkers for cancer diagnosis and prognosis. Several expression-based lncRNA signatures have been established in glioblastoma multiforme [21], breast cancer [22], oesophageal squamous cell carcinoma [23], colorectal cancer [24] and lung cancer [25]. For multiple myeloma, recent studies have also found that lncRNAs MALAT1 and MEG3 are overexpressed in patients with MM compared to healthy individuals by real-time quantitative reverse transcription polymerase chain reactions (RT-PCR) analysis [26, 27]. However, the prognostic significance of lncRNA signature in patients with MM remains unknown.

In the present study, by integrating lncRNA expression profiles and matched clinical information in a large cohort of patients with MM, we identified four prognostic lncRNA biomarkers associated with overall survival of patients with MM and established a four-lncRNA-focus prognostic risk model that can effectively predict clinical survival. The significant prognostic power of four-lncRNA-focus prognostic risk model was further validated in testing dataset and another two independent external patient datasets.

Methods

GEO datasets and clinical information of patients with MM

The gene microarray expression data and corresponding clinical information of a large number of patients with MM used in this study were obtained from publicly available Gene Expression Omnibus (GEO) database, including 559 patients from GSE24080 (Affymetrix HG-U133_Plus_2.0 array) (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24080) [28], 55 patients from GSE57317 (Affymetrix HG-U133_Plus_2.0 array) (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57317) [29] and 264 patients from GSE9782 (Affymetrix HG-U133A array) (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9782) [30]. Detailed clinical information of patients with MM used in this study was shown in Additional file 1.

Microarray analysis and lncRNA re-annotation

The probe ID-centric gene expression data was normalized using the MAS5 algorithm and log2 transformed. To obtain lncRNA expression profiles of patients with MM, the microarray probes were re-annotated as previously described [31]. Briefly, the probes (probe sets) from Affymetrix HG-U133_Plus_2.0 array and Affymetrix HG-U133A array were re-mapped to the human genome (GRCh38) using SeqMap tool [32]. Then those probes (probe sets) that were uniquely mapped to the human genome with no mismatch were retained for further analysis. By matching the chromosomal position of retaining probes (probe sets) to the chromosomal position of lncRNA from the GENCODE project (http://www.gencodegenes.org, release 22) [33], we obtained 3215 probes (probe sets) covering 2330 lncRNAs for Affymetrix HG-U133_Plus_2.0 array and 855 probes (probe sets) covering 663 lncRNAs for Affymetrix HG-U133A array, respectively. The expression data of multiple probes (probe sets) mapping to the same lncRNA were integrated by using the arithmetic mean to represent the expression level of single lncRNA.

Identification of potential prognostic lncRNA biomarkers associated with OS in patients with MM

A univariate Cox regression analysis was carried out to evaluate the association between expression levels of lncRNAs and patients’ OS. Those lncRNAs whose expression levels were significantly associated with patients’ OS were fitted in a multivariate Cox regression analysis in the training dataset by using OS as the dependent variable and other clinical information as the covariates. We kept those lncRNAs with p value <0.01 to develop a risk score model for predicting OS in patients with MM. The lncRNA-based risk score model was defined as the linear combination of the expression values of the prognostic lncRNAs and the multivariable Cox regression coefficient as the weight. The patients with MM in each dataset were classified into high-risk group and low-risk group according to the median risk score derived from the training dataset.

Statistical analysis

Differences in patients’ OS between high-risk group and low-risk group were demonstrated using the Kaplan-Meier
survival curves, and the statistical significance was obtained using the two-sided log-rank test. Univariate and multivariate analyses with Cox proportional hazards regression were carried out with OS as the dependent variable and IncRNA risk score and other individual clinical features as explanatory variables in each dataset. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated. The time-dependent receiver operating characteristic (ROC) curve was used to evaluate the prognostic performance for survival prediction of the IncRNA risk score and the area under the ROC curves (AUC) value were calculated. All the analysis was performed using the R/Bio-Conector (version 3.1.1).

Functional enrichment analysis

The Pearson correlation coefficient was utilized to evaluate co-expression relationship between IncRNA and mRNA. The functional enrichment analysis of co-expressed mRNAs was performed to predict biological function of IncRNA using the DAVID Bioinformatics Tool (http://david.abcc.ncifcrf.gov/, version 6.7), which is widely used bioinformatics resources [34, 35]. The enriched results was reported limited to Gene Ontology (GO) terms in the "Biological Process"(GOTERM-BP-FAT) and Kyoto encyclopedia of genes and genomes (KEGG) pathway categories using the functional annotation clustering and functional annotation chart options. The GO terms and KEGG pathways with p value of <0.05 and Enrichment score > 2 was considered as significantly enriched function annotations.

Results

Identification of prognostic IncRNA biomarkers associated with patients’ OS from the training dataset

The 559 patients with MM from GSE24080 were randomly split into the training dataset (n = 280) and the testing dataset (n = 279). We first conducted a univariate Cox regression analysis for expression data of each IncRNA with OS as a dependent variable to measure the relationship between IncRNA expression and patients’ OS. A total of 59 IncRNAs, whose expression levels were significantly associated with patients’ OS (p < 0.01), were identified and ranked according to their univariate z scores (Fig. 1). Of these, the high expression levels of 40 IncRNAs with negative z scores were associated with longer OS, and high expression levels of the remaining 19 IncRNAs with positive z scores were associated with shorter OS. In order to evaluate whether these IncRNAs have independently predictive power to predict patients’ OS when considering the mutual effect among 59 IncRNAs and clinical features, a multivariate regression analysis was further performed on the expression levels of 59 IncRNAs with OS as a dependent variable and other individual clinical features as explanatory variables in the training dataset. When considering the mutual effect among 59 IncRNAs and clinical features, only 4 of 59 IncRNAs (RP4-803 J11.2, RPI-43E13.2, RP11-553 L6.5, ZFY-AS1) showed predictive power and were able to independently predict patients’ OS at a statistically significant level of 0.01 (Fig. 1). The detailed information of these four IncRNAs was summarized in Table 1. To build a predictive model that should be independent of other factors (such as clinical features or other IncRNAs), we only used these four IncRNAs to construct risk score model.

Construction and validation of IncRNA-focus risk score model for predicting OS in the training dataset

To construct a predictive model, these four IncRNAs were fitted in a multivariate Cox regression model with OS as a dependent variable to measure relative contributions for survival prediction. Then a IncRNA-focus risk score model for OS prediction was developed by integrating the expression data of these four IncRNA and corresponding coefficient derived from above multivariate regression analysis, as follows: Risk score = (0.3016 × expression value of RP4-803 J11.2) + (−0.2989 × expression value of ZFY-AS1) + (0.3191 × expression value of RPI-43E13.2) + (−0.1445 × expression value of RP11-553 L6.5). The risk score of each patient in the training dataset was calculated according to the IncRNA-focus risk score model. Then 280 patients of training dataset were assigned to a high-risk group (n = 140) or a low-risk group (n = 140) using the median risk score as the cutoff point. The result of Kaplan-Meier analysis showed significant differences in patients’ OS between high-risk group and low-risk group (log-rank test p < 0.001, Fig. 2a).

Patients in the high-risk group had significantly shorter OS (mean 58.7 months) than those in the low-risk group (mean 104.6 months). The univariate Cox regression analysis also demonstrated that the risk scores derived from the four-IncRNA signature was significantly correlated with patients’ OS with risk scores as a continuous variable (p < 0.001, HR = 2.718, 95% CI = 1.937−3.815) (Table 2). The expression of IncRNAs RP4-803 J11.2 and RPI-43E13.2 tended to be up-regulated and the remaining two IncRNAs (ZFY-AS1 and RP11-553 L6.5) were down-regulated for patients in high-risk group (Fig. 2b).

Performance evaluation of IncRNA-focus risk score model for survival prediction in the testing and entire GSE24080 datasets

To evaluate the prognostic power of IncRNA-focus risk score model for patients’ OS prediction, this risk score model and cutoff point derived from the training dataset was applied to patients with MM in the testing dataset and the entire GSE24080 dataset. The 279 patients of the testing dataset were classified into either high-risk group (n = 119) or low-risk group (n = 160). Kaplan-Meier curves
for the two groups within the testing dataset is shown in Fig. 3a, demonstrating a significant difference in OS between high-risk group and low-risk group (log-rank test $p = 0.054$). Patients in the high-risk group exhibited poorer OS (mean 68.5 months) than those in the low-risk group (mean 78.3 months). The significant association between risk score and OS has also been observed in the testing dataset with risk scores as a continuous variable in the univariate Cox regression analysis ($p = 0.014$, HR = 1.579, 95% CI = 1.099–2.270) (Table 2). The distribution of risk score, survival status and lncRNA expression in the testing dataset of 279 patients is shown in Fig. 3b. Patients in the

Table 1

Ensembl id	Gene symbol	Chromosomal position	P value*	Hazard ratio*	Coefficient*
ENSG0000023481	RP4-803 J11.2	Chromosome 1: 229,319,403–229,323,087(+)	1.42E-04	1.429	0.357
ENSG0000023424	RP1-43E13.2	Chromosome 1: 19,210,501–19,240,704(+)+	0.005	1.656	0.504
ENSG00000259976	RP11-S53 L6.5	Chromosome 3: 114,314,501–114,316,179(−)	0.007	0.702	−0.354
ENSG00000233070	ZFY-AS1	Chromosome Y: 2,966,844–3,002,626(−)	0.002	0.758	−0.276

*Derived from the univariate Cox regression analysis in the 280 patients of training dataset
high-risk group tended to express risky lncRNAs (RP4-803 J11.2 and RP1-43E13.2) at higher level than those in the low-risk group, whereas patients in the low-risk group tended to express protective lncRNAs (ZFY-AS1 and RP11-553 L6.5) at higher level than those in the high-risk group. In consistent with the finding in the training data-set and testing dataset, Kaplan-Meier and univariate Cox regression analysis showed that this lncRNA-focus risk score model was able to separate 559 patients in the entire GSE24080 dataset into two groups with significantly different OS (mean 63.3 months versus 100.1 months, HR = 2.099, 95 % CI = 1.638–2.688; p < 0.001, log-rank test) (Fig. 3c). The distribution of risk score, survival status and lncRNA expression also yielded similar results (Fig. 3d).

Further validation of lncRNA-focus risk score model for survival prediction in another two independent external patient datasets

To further examine the robustness and practical application of the four-lncRNA risk score model, we validated the prognostic power of the risk score model using lncRNA expression values and survival information of patients with MM in another two independent external datasets (GSE57317 and GSE9782). As shown in Fig. 4a, the lncRNA-focus risk score model could effectively predict OS in patients with MM from GSE57317 (log-rank test p = 0.053). All 55 patients in the GSE57317 dataset were divided into the high-risk group (n = 26) and the low-risk group (n = 29) with significant different OS according to the same risk score cutoff point derived from the training dataset (mean 31.3 months versus 37.5 months, HR = 2.64, 95 % CI = 1.013–6.879, p = 0.047). Another external patient dataset (GSE9782) was based on the Affymetrix U133A array platform. After probe re-annotating, we found that only 3 lncRNA (RP1-43E13.2, RP11-553 L6.5, ZFY-AS1) of four prognostic lncRNAs from the training dataset were covered on the Affymetrix U133A array. So, the risk score model only based on these three lncRNAs without re-estimating parameters was used to predict OS for GSE9782 dataset, which perhaps reduce the predictive power. The median risk score cutoff point obtained from GSE9782 dataset classified 264 patients into the high-risk group (n = 132) and the low-risk group (n = 132). The Kaplan-Meier curves for the high-risk group and the low-risk group in the independent external GSE9782 dataset are shown in Fig. 4b. Patients assigned into high-risk group tended to have shorter OS than those in the low-risk group (mean OS 18.4 months vs. 22.4 months, log-rank test p = 0.016). The univariate Cox regression analysis also showed that the risk scores were significantly associated with OS in patients with MM in the GSE9782 dataset (HR = 1.637, 95 % CI = 1.107–2.42, p = 0.014). The results of risk score distribution, survival status and lncRNA expression for GSE57317 and GSE9782 were consistent with those observed in the training dataset (Fig. 4c and d).
Variables	Univariate analysis	Multivariate analysis				
	HR	95 % CI of HR	P Value	HR	95 % CI of HR	P Value
Training dataset (n = 280)						
lncRNA-focus risk score	2.718	1.937–3.815	7.26E-09	2.066	1.395–3.060	2.94E-04
Age	1.032	1.008–1.056	0.008	1.020	0.997–1.044	0.090
Gender (female/male)	0.844	0.556–1.280	0.424	1.047	0.665–1.648	0.842
Total Therapy (TT2/TT3)	0.914	0.572–1.462	0.709	1.060	0.648–1.735	0.816
IgA isotype (N/Y)	1.044	0.654–1.666	0.857	1.032	0.794–2.134	0.295
Serum beta 2-microglobulin ≥ 3.5 mg/L (N/Y)	2.677	1.742–4.112	6.99E-06	1.733	1.057–2.843	0.029
C-reactive protein ≥ 8.0 mg/L (N/Y)	1.749	1.155–2.648	0.008	1.008	0.628–1.616	0.975
Creatinine ≥ 2.0 mg/dL (177 μmol/L) (N/Y)	3.821	2.338–6.245	8.84E-08	1.864	0.992–3.501	0.053
Lactate dehydrogenase > upper limit of normal (>190 U/L) (N/Y)	2.651	1.749–4.017	4.33E-06	1.484	0.928–2.371	0.099
Serum albumin <35 g/ L (N/Y)	2.003	1.228–3.266	0.005	1.559	0.929–2.618	0.093
Testing dataset (n = 279)						
lncRNA-focus risk score	1.579	1.099–2.270	0.014	1.726	1.113–2.675	0.015
Age	1.015	0.991–1.039	0.223	1.006	0.982–1.031	0.616
Gender (female/male)	1.130	0.722–1.768	0.593	1.667	0.981–2.831	0.059
Total Therapy (TT2/TT3)	0.651	0.368–1.150	0.139	0.590	0.329–1.060	0.077
IgA isotype (N/Y)	1.189	0.724–1.953	0.494	1.428	0.837–2.438	0.192
Serum beta 2-microglobulin ≥ 3.5 mg/L (N/Y)	1.866	1.206–2.888	0.005	1.470	0.886–2.437	0.136
C-reactive protein ≥ 8.0 mg/L (N/Y)	1.233	0.786–1.932	0.362	1.158	0.734–1.828	0.529
Creatinine ≥ 2.0 mg/dL (177 μmol/L) (N/Y)	1.774	0.937–3.359	0.078	0.954	0.467–1.946	0.896
Lactate dehydrogenase > upper limit of normal (>190 U/L) (N/Y)	1.993	1.283–3.097	0.002	1.918	1.133–3.249	0.015
Serum albumin <35 g/ L (N/Y)	1.877	1.055–3.340	0.032	1.791	0.933–3.437	0.080
Entire GSE24080 dataset (n = 559)						
lncRNA-focus risk score	2.099	1.638–2.688	4.40E-09	1.905	1.434–2.530	8.65E-06
Age	1.024	1.007–1.041	0.005	1.013	0.996–1.030	0.128
Gender (female/male)	0.973	0.717–1.319	0.860	1.338	0.955–1.875	0.090
Total Therapy (TT2/TT3)	0.797	0.556–1.143	0.218	0.805	0.554–1.168	0.254
IgA isotype (N/Y)	1.106	0.787–1.555	0.561	1.261	0.888–1.791	0.194
Serum beta 2-microglobulin ≥ 3.5 mg/L (N/Y)	2.236	1.651–3.028	2.0E-07	1.574	1.111–2.231	0.011
C-reactive protein ≥ 8.0 mg/L (N/Y)	1.485	1.097–2.011	0.011	1.123	0.818–1.543	0.474
Creatinine ≥ 2.0 mg/dL (177 μmol/L) (N/Y)	2.730	1.856–4.015	3.35E-07	1.377	0.877–2.160	0.165
Lactate dehydrogenase > upper limit of normal (>190 U/L) (N/Y)	2.317	1.714–3.133	4.77E-08	1.645	1.180–2.294	0.003
Serum albumin <35 g/ L (N/Y)	1.946	1.342–2.821	4.47E-04	1.519	1.028–2.245	0.036
GSE57317 dataset (n = 55)						
lncRNA-focus risk score	2.640	1.013–6.879	0.047			
GSE9782 dataset (n = 264)						
lncRNA-focus risk score	1.637	1.107–2.424	0.014	1.909	1.269–2.870	0.002
Age	1.014	0.998–1.03	0.087	1.016	0.999–1.032	0.054
Gender (female/male)	1.334	0.961–1.853	0.086	1.543	1.098–2.169	0.012

aIn lncRNA-focus risk score and age were evaluated as continuous variables in both univariate and multivariate Cox regression analysis

bThere was no available clinical features in GSE57317 dataset
Independence of lncRNA-focus risk score model for survival prediction from clinical features

To assess whether the prognostic values of lncRNA-focus risk score model is independent of other important clinical features of patients with MM, the multivariate Cox regression analyses were performed with OS as the dependent variable and lncRNA risk score and other clinical features as explanatory variables in each dataset. The multivariate Cox regression analyses showed that lncRNA-focus risk score was significantly correlated with OS of patients with MM after adjusting for various clinical features in the training dataset (HR = 2.066, CI = 1.395–3.066, p < 0.001), testing dataset (HR = 1.726, CI = 1.113–2.675, p = 0.015), GSE24080 dataset (HR = 1.905, CI = 1.434–2.53, p < 0.001) and another independent external patient dataset GSE9782 (HR = 1.909, CI = 1.269–2.87, p = 0.002; Table 2) (There was no available clinical features in GSE57317 dataset). We also found that higher levels of serum beta 2-microglobulin (Sβ2M), serum albumin (ALB) and lactate dehydrogenase (LDH) were significant in the multivariate analysis. However, the estimation of hazard ratios of lncRNA-focus risk score

Fig. 3 The four-lncRNA-focus risk score model predicts overall survival of patients with MM in the testing and entire GSE24080 datasets.

a Kaplan-Meier analysis for overall survival of patient with high-risk or low-risk scores in the testing dataset.
b The risk score distribution, survival status and expression pattern of four prognostic lncRNAs in 279 patients of testing dataset.
c Kaplan-Meier analysis for overall survival of patient with high-risk or low-risk scores in entire GSE24080 dataset.
d The risk score distribution, survival status and expression pattern of four prognostic lncRNAs in 559 patients of GSE24080 dataset.
for OS is 1.905 ($p < 0.001$) is higher than that of $\beta 2M$ (HR = 1.574, $p = 0.011$), ALB (HR = 1.519, $p = 0.036$) and LDH (HR = 1.645, $p = 0.003$) (Table 2), suggesting that lncRNA-focus risk score model may be more powerful prognostic factor than established laboratory prognostic parameters. Next, data stratification analysis was then performed according to these three significant clinical features. All patients of GSE24080 were stratified into patient group with higher $\beta 2M$ level (≥ 3.5 mg/L) or patient group with lower $\beta 2M$ level (<3.5 mg/L). All 239 patients with higher $\beta 2M$ level were divided into the high-risk group ($n = 119$) with shorter OS or the low-risk group ($n = 120$) with longer OS (mean 44.9 vs. 93.4 months, log-rank test $p < 0.001$) (Fig. 5a). For the patient with lower $\beta 2M$ level, patients with low-risk scores ($n = 180$) also had longer OS (mean 97.1 months) than those with high-risk scores ($n = 140$) (mean 75.2 months), although the p value of 0.068 was slightly above the 0.05 significance level (Fig. 5b). Another clinical feature, ALB, stratified the entire GSE24080 patients into two subgroups with higher (≥ 35 g/L) or lower (<35 g/L) levels of ALB. The lncRNA-focus risk score model could effectively classify patients into high-risk group and low-risk group with significantly different OS for both two subgroups with higher or lower levels of ALB (mean 66.4 vs. 100.8 months, log-rank test $p < 0.001$ for 482 patients with higher level of

Fig. 4 Performance validation of lncRNA-focus risk score model for survival prediction in another two independent external patient datasets.

- **A** Kaplan-Meier estimates for overall survival of patients in the GSE57317 dataset.
- **B** Kaplan-Meier estimates for overall survival of patients in the GSE9782 dataset.
- **C** The risk score distribution, survival status and expression pattern of four prognostic lncRNAs in 55 patients of GSE57317 dataset.
- **D** The risk score distribution, survival status and expression pattern of three prognostic lncRNAs in 264 patients of GSE9782 dataset.
ALB, and mean 44 vs. 74.1 months, log-rank test \(p = 0.001 \) for 77 patients with lower level of ALB) (Fig. 5c and d). Significant differences for OS between high-risk group and low-risk group also were observed for stratified subgroup by LDH level (mean 51.5 vs. 67.9 months, log-rank test \(p = 0.037 \) for 168 patients with LDH > 190 U/L, and mean 69.1 vs. 104.4 months, log-rank test \(p < 0.001 \) for 391 patients with LDH \(\leq \) 190 U/L) (Fig. 5e and f). Taken together, the results of multivariate Cox regression analyses and stratification analysis suggested that the predictive power of lncRNA-focus risk score is independent of other clinical features for OS of patients with MM.

Performance comparison by time-dependent ROC curve analysis

We performed the time-dependent ROC curve analysis to compare sensitivity and specificity for survival prediction between lncRNA-focus risk score model and an established UAMS 17-gene prognostic model [36] in the GSE24080 dataset, GSE57317 dataset and GSE9782. The AUC value was obtained from ROC analysis and compared between these two predictive models. In the GSE24080 dataset and GSE9782 dataset, the lncRNA-focus risk score model achieved AUC value of 0.682 and 0.595, which is higher than those (AUC = 0.666 and...
0.572) derived from UAMS 17-gene prognostic model (Fig. 6), indicating that the predictive ability of lncRNA-focus risk score model was better than UAMS 17-gene prognostic model in GSE24080 and GSE9782 datasets. However, in the GSE57317 dataset, established UAMS 17-gene prognostic model had a higher AUC value than our lncRNA-focus risk score model (0.937 vs. 0.656, Fig. 6).

Functional prediction of prognostic lncRNA biomarkers
To explore the functional implication of four prognostic lncRNA biomarkers in MM tumorigenesis and development, we performed bioinformatics analysis to predict lncRNA functions. We first calculated the Pearson correlation coefficient between lncRNA and mRNA by examining the paired lncRNA and mRNA expression profiles of 559 patients with MM in the GSE24080 dataset. The top 1 % mRNA was selected as co-expressed mRNAs with prognostic lncRNA biomarkers. A total of 789 mRNAs were positively or negatively correlated with at least one of the four prognostic lncRNAs (see Additional file 2). Functional enrichment analysis showed that these co-expressed mRNAs with prognostic lncRNAs were significantly enriched in 104 GO terms and 9 KEGG pathways ($p < 0.05$ and Fold Enrichment > 2) (see Additional file 3), which are mainly involved in six functional clusters including cell cycle, chromatin modification, DNA replication, microtubule-based process, DNA repair and RNA processing (Table 3). We further examined whether there were any important genes of interest identified from integrative analysis of lncRNA-mRNA. We found that 135 of 789 co-expressed mRNAs (corresponding to 62 genes) with four prognostic lncRNAs are known cancer genes recorded in NCG database (http://ncg.kcl.ac.uk/index.php, version 4.0) [37] (see Additional file 4), which is a manually curated cancer gene repository. Especially, gene NRAS has been verified experimentally to be associated with MM [38].

Discussion
During the past years, great progress in our understanding of the initiation and progression of multiple myeloma has been witnessed [39, 40]. However, the clinical outcome of patients with MM still remains highly heterogeneous. Traditional laboratory parameters $\beta 2M$ and serum albumin, referred to the International Staging System (ISS), have been used as an objective staging system [41]. Subsequent cytogenetic studies found that cytogenetic abnormalities, such as 13q14 deletion and t(4;14) translocation, also can provide valuable prognostic information [42, 43]. However, both ISS and cytogenetic abnormalities demonstrated limited ability for therapeutic risk stratification. With the development of high-throughput techniques, expression profiles-based

![Fig. 6](image_url) ROC analysis of the sensitivity and specificity for survival prediction by lncRNA-based risk model and 17-gene prognostic model. The time-dependent ROC curve was used to evaluate the prognostic performance for survival prediction. Performance comparison was assessed between four-lncRNA signature and 17-gene signature by calculating the area under the ROC curves (AUC) in three datasets.
molecular signatures have been reported in various types of cancers and have become more powerful prognostic tool to predict patient outcomes [44, 45]. Several multigene-expression signatures, including UAMS 17-gene [36], IFM 15-gene [2] and EMC 92-gene [46] models, have been developed to predict survival in patients

GO terms and KEGG pathways	NO. of genes	P-value	Fold enrichment
Cluster 1 (Enrichment Score: 11.01)			
GO:0000280 – nuclear division	33	4.55E-14	5.14
GO:0007067 – mitosis	33	4.55E-14	5.14
GO:0000279 – M phase	40	6.73E-14	4.16
GO:0000087 – M phase of mitotic cell cycle	33	7.61E-14	5.05
GO:0048285 – organelle fission	33	1.42E-13	4.94
GO:0022403 – cell cycle phase	43	1.43E-12	3.56
GO:0007049 – cell cycle	61	2.78E-12	2.69
GO:0000278 – mitotic cell cycle	39	1.25E-11	3.61
GO:0022402 – cell cycle process	47	2.41E-10	2.85
GO:0051301 – cell division	31	2.50E-09	3.60
GO:0000070 – mitotic sister chromatid segregation	12	3.47E-09	11.42
GO:0000819 – sister chromatid segregation	12	4.82E-09	11.11
GO:0007059 – chromosome segregation	16	9.96E-09	6.77
Cluster 2 (Enrichment Score: 4.27)			
GO:0051276 – chromosome organization	38	8.45E-08	2.68
GO:0016568 – chromatin modification	19	0.001137	2.37
GO:0006325 – chromatin organization	23	0.001656	2.08
Cluster 3 (Enrichment Score: 3.58)			
GO:0006260 – DNA replication	20	2.88E-06	3.61
hsa03200:DNA replication	7	9.85E-04	5.89
GO:0006261 – DNA-dependent DNA replication	7	0.006632	4.13
Cluster 4 (Enrichment Score: 3.33)			
GO:0007051 – spindle organization	8	2.94E-04	6.09
GO:0000226 – microtubule cytoskeleton organization	14	3.64E-04	3.26
GO:0007017 – microtubule-based process	19	4.48E-04	2.57
GO:0007010 – cytoskeleton organization	26	0.001002	2.04
Cluster 5 (Enrichment Score: 2.59)			
GO:0006259 – DNA metabolic process	34	1.31E-05	2.30
GO:0006974 – response to DNA damage stimulus	21	0.006553	1.93
GO:0006281 – DNA repair	16	0.019452	1.93
GO:0033554 – cellular response to stress	26	0.025459	1.57
Cluster 6 (Enrichment Score: 2.57)			
GO:0008380 – RNA splicing	23	3.03E-05	2.77
GO:0006397 – mRNA processing	23	1.82E-04	2.454
GO:0016071 – mRNA metabolic process	24	5.39E-04	2.22
GO:0006396 – RNA processing	31	6.70E-04	1.94
GO:0000358 – nuclear mRNA splicing, via spliceosome	11	0.014111	2.46
GO:0000377 – RNA splicing, via transesterification reactions with bulged adenosine as nucleophile	11	0.014111	2.46
GO:0000375 – RNA splicing, via transesterification reactions	11	0.014111	2.46
hsa03040:spliceosome	10	0.022655	2.40
with MM. More recently, dysregulation of IncRNA expres-
sion were observed in the newly diagnosed patients with
MM, indicating their potentials as biomarkers for diagnosis
and prognosis in MM [27]. However, the prognostic sig-
nificance of expression profile-based IncRNA signature for
outcome prediction in patients with MM has not yet been
investigated.

In this study, we have investigated the IncRNA expres-
sion profiles of a large cohort of patients with MM by
repurposing the publically available microarray data.
Through integrative analysis of IncRNA expression data
with clinical features, 59 IncRNAs were found to be sig-
nificantly associated with patients’ OS in MM. After
considering interrelation among 59 IncRNAs and clinical
features using multivariate analysis, we identified four
prognostic IncRNAs that were able to independently pre-
dict patients’ OS. Two (RP4-803 J11.2 and RP1-43E13.2)
of four IncRNAs are located chromosome 1 that has been
proven to be key players in MM progression [36], and
their expression correlated with shortened survival. Then
an IncRNA-focus risk model was developed by incorporat-
ing expression patterns of four prognostic IncRNAs and
their relative contributions in the multivariate analysis in
the training dataset. By applying this four-IncRNA-based
risk model to the patients of training dataset, a better risk
stratification for patients’ outcome was observed between
survival curves of patients with high-risk or low-risk
scores. Patients in the high-risk group had significant
shorter OS than those in the low-risk group. Further val-
ification of the four-IncRNA-based risk model constructed
in the training dataset showed similar prognostic power in
the testing dataset and another two independent external
patient datasets. These analyses suggested that the prog-
nostic value of the four-IncRNA-based risk model is ro-
bust and reliable for survival prediction in MM.

We next performed multivariate analysis to test
whether the prognostic power of the four-IncRNA-based
risk model for survival prediction is independent of
known prognostic variables and other clinical features.
The estimations of HR for OS were 2.066, 1.726, 1.905
and 1.909 in the training, testing, entire GSE24080 and
GSE9782 datasets, respectively. Also, some known prog-
nostic variables, including β2M, serum albumin and
LDH revealed significant correlation with patients’ OS.
So we carried out stratification analysis for β2M, ALB
and LDH to further evaluate the independence of the
four-IncRNA-based risk model for survival prediction.
The results of stratification analysis suggested that the
four-IncRNA-based risk model was able to effectively
classify patients into high-risk group and low-risk group
with significantly different OS for both two subgroups
stratified by three clinical prognostic variables. These
results of multivariate analysis, taken together with
stratification analysis, demonstrated that the four-IncRNA-
based risk model was an independent prognostic factor for
survival prediction in MM.

Although substantial computational evidence for the
prognostic significance of the IncRNA signature in MM
has been revealed, the underlying mechanisms of these
four prognostic IncRNAs in the development of MM
were still unclear. So we performed an integrative ana-
lysis of IncRNA-mRNA by utilizing the matched IncRNA
and mRNA expression profiles to infer functional impli-
cation of these four prognostic IncRNAs. The functional
enrichment analysis of mRNA co-expressed with IncRNAs
revealed that the biological functions annotated to the
four prognostic IncRNAs mainly involve cell cycle, chro-
matin modification, DNA replication, microtubule-based
process, DNA repair and RNA processing. These func-
tions are all of essential significance contributing to the
initiation and progression of MM [39]. Although bioinfor-
matics analysis indicated that these four prognostic
IncRNAs may play significant role in the initiation and
progression of MM through associations with known gen-
etic and epigenetic events linked to MM, further exper-
imental validation of these four prognostic IncRNAs is
necessary for understanding their functional roles in MM.

Conclusions
In summary, we identified four prognostic IncRNA bio-
markers that are significantly associated with OS of patients
with MM and developed an IncRNA-focus risk model for
survival prediction by integrating IncRNA expression pro-
files with clinical features of a large cohort of patients with
MM. The four-IncRNA signature could robustly predict
OS of patients with MM. The prognostic power of the
four-IncRNA signature was independent of known labo-
atory prognostic factors and other clinical features, and
exhibited superior performance compared to known tradi-
tional clinical parameters and multigene signature to
some extent. These results demonstrated potential ap-
lication of IncRNAs as novel independent biomarkers
for diagnosis and prognosis in MM. Moreover, identi-
fication of IncRNA biomarkers perhaps brings novel in-
sights into the understanding of underlying molecular
basis of MM.

Additional files

Additional file 1: Table S1. Clinical and pathological characteristics of
patients with MM in our study. (DOC 36 kb)
Additional file 2: Table S2. List of mRNAs co-expressed with at least
one of the four prognostic IncRNAs. (XLS 131 kb)
Additional file 3: Table S3. List of enriched GO terms and KEGG
pathways of mRNAs co-expressed with prognostic IncRNAs. (XLS 72 kb)
Additional file 4: Table S4. List of known cancer genes recorded in
NCG database which were co-expressed with four prognostic IncRNAs.
(XLSX 13 kb)
35. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. doi:10.1038/nprot.2008.211.

36. Shaughnessy Jr JD, Zhan F, Burlington BE, Huang Y, Colla S, Hanamura I, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109(6):2276–84. doi:10.1182/blood-2006-07-038430.

37. An O, Pendino V, D’Antonio M, Ratti E, Gentilini M, Ciccarelli FD. NCG 4.0: the network of cancer genes in the era of massive mutational screenings of cancer genomes. Database (Oxford). 2014;2014:bau015. doi:10.1093/database/bau015.

38. Bezieau S, Devilder MC, Avet-Loiseau H, Mellerin MP, Puthier D, Pennarun E, et al. High incidence of N and K-Ras activating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis. Hum Mutat. 2001;18(3):212–24. doi:10.1002/humu.1177.

39. Prideaux SM, Conway O’Brien E, Chevassut TJ. The genetic architecture of multiple myeloma. Adv Hematol. 2014;2014:864058. doi:10.1155/2014/864058.

40. Morgan GI, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12(5):335–48. doi:10.1038/nrc3257.

41. Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Blade J, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23(15):3412–20. doi:10.1200/JCO.2005.04.242.

42. Shaughnessy J, Jacobson J, Sawyer J, McCoy J, Fassas A, Zhan F, et al. Continuous absence of metaphase-defined cytogenetic abnormalities, especially of chromosome 13 and hypodiploidy, ensures long-term survival in multiple myeloma treated with Total Therapy I: interpretation in the context of global gene expression. Blood. 2003;101(10):3849–56. doi:10.1182/blood-2002-09-2873.

43. Fonseca R, Blood E, Rue M, Harington D, Oken MM, Kyle RA, et al. Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood. 2003;101(11):4569–75. doi:10.1182/blood-2002-10-3017.

44. Baxter C. Molecular signatures. Nat Rev Genet. 2003;4:84.

45. Sotiriou C, Piccart MJ. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer. 2007;7:545–53.

46. Kuiper R, Broly A, de Knecht Y, van Vliet MH, van Beers EH, van der Holt B, et al. A gene expression signature for high-risk multiple myeloma. Leukemia. 2012;26(11):2406–13. doi:10.1038/leu.2012.127.