BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open’s open peer review process please email info.bmjopen@bmj.com
Access to mass media and teenage pregnancy among adolescents in Zambia: a national cross-sectional survey

Journal	BMJ Open
Manuscript ID	bmjopen-2021-052684
Article Type	Original research
Date Submitted by the Author	23-Apr-2021
Complete List of Authors	Sserwanja, Quraish; GOAL Ireland, Programs Department Sepenu, Abigail ; Swedish Organization for Global Health Mwamba, Daniel; Center for Infectious Disease Research in Zambia, Programs Department Mukunya, David ; Busitema University, Department of Public Health; Sanyu Africa Research Institute
Keywords	Epidemiology < TROPICAL MEDICINE, MEDICAL JOURNALISM, PUBLIC HEALTH
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Access to mass media and teenage pregnancy among adolescents in Zambia: a national cross-sectional survey

Quraish Sserwanja¹*, Abigail S. Sepenu², Daniel Mwamba³, David Mukunya⁴,⁵

¹Programs Department, GOAL, Khartoum, Sudan

Email: qura661@gmail.com

²Maternal and Child Health Project, Swedish Organization for Global Health, Mayuge, Uganda

Email: bebepesepenu@gmail.com

³Programs Department, Centre for Infectious Disease Research, Lusaka, Zambia

Email: daniel.mwamba@cidrz.org/mwambalonga@gmail.com

⁴Department of Public Health, Busitema University, Mbale, Uganda

Email: zebdaavid@gmail.com

⁵Sanyu Africa Research Institute, Mbale, Uganda

Email: zebdaavid@gmail.com

*Corresponding author

GOAL

Arkaweet Block 65 House No. 227

Khartoum, Sudan

Tel: +256782295939/+249900933232

Email: qura661@gmail.com/ qsserwanja@sd.goal.ie
Abstract

Introduction Teenage pregnancies and childbirths are associated with negative health outcomes. Access to health information enables adolescents to make appropriate decisions. Therefore, we examined the association between access to mass media and teenage pregnancy in Zambia.

Methods Our study used weighted data from the Zambian Demographic and Health Survey (ZDHS) of 2018 for 3000 adolescents aged 15 to 19 years. Multistage stratified sampling was used to select study participants. Multivariable logistic regression was conducted to explore the associations between access to mass media and teenage pregnancy among adolescents in Zambia. All our analyses were done using SPSS version 25.

Results Out of 3000 adolescents, 897 (29.9%, 95% CI: 28.1-31.3) were pregnant or had ever been pregnant. Majority of the adolescents resided in rural areas (55.9%) and had a secondary education (53.6%). Adolescents who had exposure to internet, newspapers or magazines, radio and television were 10.5%, 22.6%, 43.1% and 43.1% respectively. Adolescents who had daily access to newspapers or magazines (AOR:0.33, 95% CI: 0.13-0.82) or using internet (AOR:0.55, 95% CI: 0.31-0.97) were less likely to be pregnant or to have had a pregnancy compared to those with no access to newspapers and internet respectively.

Conclusion Our study suggests that internet use and reading of newspapers or magazines may be an effective behavioral change approach to reduce teenage pregnancy. Behavioral change communicators can implement mass media campaigns using newspapers, magazines and the internet to publicise adolescent health messages and encourage adolescents to adopt healthy behaviours and prevent teenage pregnancies.
Strengths and limitations of the study

- This is the foremost nationwide analysis that explores the association between mass media exposure and teenage pregnancy.
- The study used a nationally representative sample using most recent Zambia Demographic and Health Survey (ZDHS) 2018 data, making the findings of the present study generalisable for Zambia female adolescents.
- The temporal relationship between the outcome variable and the independent variables could not be established due to the cross-sectional nature of the survey.
- ZDHS did not collect information on access to social media sites such as Facebook that can also impact sexual and reproductive health (SRH) information and behaviour as well the content of mass media that the adolescents were accessing.
Introduction

Globally, over 16 million girls aged 15 to 19 years give birth each year, contributing nearly 11% of all births worldwide. Over 90% of these births occur in low and middle-income countries and sub-Saharan Africa has the highest prevalence. Teenage pregnancies and childbirths are associated with negative maternal and perinatal health outcomes such as preterm delivery, low birth weight and death. Teenage pregnancy is further associated with social problems such as high school dropouts which prevents adolescents from achieving their full social and economic potential. Children born to adolescents are more likely to have lower school achievement and drop out of high school.

In low-and-middle-income countries (LMIC), limited access to SRH information, especially among adolescents undermines efforts to bring health care services closer to the people which further negatively affects progress towards universal health coverage. Mass media has been acknowledged globally as a cost-effective communication channel and it has been used successfully in various health programmes in low and middle income countries (LMIC). However, there is also some documented evidence of inconsistent outcomes with mass media campaigns, and some authors have argued that the effects observed are short term. To ensure effective adolescent health programming especially in a COVID era where use of mass media is highly recommended, there is need to examine the associations between different mass media channels and teenage pregnancy.

Furthermore, mass media is among the strategies used to promote utilisation of family planning through increased awareness, sensitization and debunking of false beliefs leading to a desired behavioral change. Irrespective of the global efforts employed in promoting interventions against teenage pregnancy such as uptake of family planning, the progress is slow. It is against this backdrop that this study examined the association between access to mass media and teenage pregnancy in Zambia. It also investigated the impacts of socio-economic variables on the relationship between access to mass media and teenage pregnancy using data from the 2018-2019 Zambia demographic and health survey (ZDHS). The findings will be crucial in identifying ways of improving the use of mass media and effectiveness of the socio-economic characteristics in reducing teenage pregnancies.
Methods

Data

Our study used the 2018-2019 Zambia Demographic and Health Survey (ZDHS) data to examine the association between mass media exposure and teenage pregnancy using a subsample of adolescents aged 15–19 years. The 2018 ZDHS data were collected between 18th July 2018 and 24th January 19. DHS are nationally representative household surveys that are periodically conducted using the cross-sectional design and widely used to monitor and evaluate population, health and nutrition indicators in low and middle income countries. The data used was collected using the women’s questionnaire in which information on individuals, household characteristics, nutrition and reproductive health history of women of reproductive age (15–49 years) was captured. Standardized sampling procedures are employed with a two-stage stratified method that resulted in the random selection of a representative sample of 13,625 households. The first stage involved 545 cluster (sample points) selection which consisted of enumeration areas using a sampling frame that was used during the 2010 census of population and housing (CPH). Enumeration areas were selected with a probability proportional to their size within each sampling stratum with the second stage having household selection using systematic sampling. Our secondary analysis included only adolescents aged 15 to 19 years. A total of 13,683 women aged 15-49 years in the sampled households who consented to participate in the survey were interviewed. Of the 13,683 women, 10,683 were aged 20-49 years hence our secondary analysis included a weighted sample of 3,000 adolescents aged 15-19 years. Written informed consent was provided by all participants of the survey. Written permission to access the whole ZDHS database was obtained through DHS program website.

Variables

Outcome variable

The outcome variable was teenage pregnancy that included adolescents who were currently pregnant or had an abortion or had given birth in the last five years preceding the survey and coded as one (1) and zero (0) for those who had never had a pregnancy.
Exposures
Adolescents were asked whether they use the internet (yes or no), own a mobile phone (yes or no), read a newspaper or magazine, listen to radio or watch television (TV) (almost every day, at least once a week, less than once a week or not at all).

Covariates
We included determinants of teenage pregnancy basing on available literature and data. Ten variables were considered and of these, two were community level factors that included; place of residence (rural and urban), and the ten provinces of Zambia. Three household level factors included; household size (less than six and six and above), sex of household head (male and female), and wealth index that was categorized into quintiles that ranged from the poorest to the richest quintile. Five individual level factors that included; age (15, 16, 17, 18 and 19), working status (yes and no), marital status (married and not married), education level (no education, primary, secondary and tertiary) and engaging in risky sexual behaviour (yes and no).

Adolescents were considered to have engaged in ‘risky sexual behavior’ if they reported to have engaged in sex with more than one partner or had transactional sex or had inconsistent condom use or had alcohol consumption at last sexual intercourse or had sexual intercourse before age 16.

Data analysis
We used SPSS version 25.0 statistical software and conducted the analysis using the complex sample function to account for the multi-stage cluster study design. Proportions and frequencies were tabulated for all the independent variables. To assess the association of each independent variable with teenage pregnancy, bivariable logistic regression was conducted and we presented crude odds ratio (COR), 95% confidence interval (CI) and p-values. Multivariable logistic regression was conducted with mass media and other sociodemographic independent variables that were found significant at bivariable level (p-value < 0.25). Adjusted odds ratios (AOR), 95% Confidence Intervals (CI) and p-values were calculated with statistical significance level set at p-value < 0.05. All variables in the model were assessed for collinearity, which was considered present if the variables had a variance inflation factor (VIF) greater than 10. To ensure validity of our study findings, sampling weights provided by UDHS were used.

Patient and public involvement
Patients were not involved. However, local authorities in the different provinces were contacted before data collection. A comprehensive report on the survey results was released and openly available on the DHS website.

Ethics approval

High international ethical standards are ensured for MEASURE DHS surveys as ethical approval from the country is obtained from a national ethical review board and local authorities before implementing the survey and well-informed verbal consent is sought from the respondents prior to data collection. For the 2018 ZDHS, ethical approval was obtained from the Inner City Fund (ICF) and the Zambia Tropical Diseases Research Centre (TDRC), institutional review boards (IRBs). All methods of data collection were performed in accordance with the relevant guidelines and regulations and all participants gave informed consent before participating in the survey. However, ethical approval ID was not provided in the ZDHS survey report.

Results

Sociodemographic characteristics of study population

Out of 3000 adolescents, 897 (29.9% 95% CI: 28.1-31.3) were pregnant or had ever been pregnant. The mean age of adolescents was 17.0 (standard deviation (SD) 1.4) years with majority (80.8%) of them having no exposure to internet (89.5%), newspapers (77.4%), radio (56.9%) or TV (56.9%). Majority of the adolescents resided in rural areas (55.9%), were not working (82.6%), not married (85.4%), had secondary education (53.6%), and were aged between 15 to 17 years (57.8%). More detailed characteristics of study participants are shown in Table 1.

Associations between access to mass media and teenage pregnancy

Results from multivariable logistic regression (Table 2) showed that exposure to newspapers or magazines, internet use, engaging in risky sexual behaviour, age, wealth quintiles, marital status and residence were positively associated with teenage pregnancy. Adolescents who had daily exposure to newspapers or magazines, using internet, aged 18-19 years, residing in urban areas, married, belonging to the poorest wealth quintile and engaging in risky sexual behaviour were 67% and 45% less likely to be pregnant or have had a pregnancy.
compared to those with no exposure to newspapers and internet respectively. Adolescents aged 18-19 years, residing in urban areas, married, belonging to the poorest wealth quintile and engaging in risky sexual behaviour were, 225%, 63%, 1182%, 552% and 2655% more likely to be pregnant or have had a pregnancy respectively compared to aged 15-17, in rural areas, not married, in the wealthiest quintile and not engaging in risky sexual behaviour respectively.

Discussion

This study assessed the association between exposure to mass media and teenage pregnancy in Zambia. The prevalence of teenage pregnancy in Zambia was 29.9% (95% CI: 28.1-31.3) similar to that of studies conducted in Sudan (31%), Ethiopia, (28.6%), and Turkey (29%) \(^{2,28,29}\). However, our study found a higher prevalence compared to the overall pooled prevalence of adolescent pregnancy in Africa (18.8%), East Africa (21.5%), and Latin America (6.4%) as shown by a systematic review by Kassa et al. \(^{30}\). The differences in accessibility of modern contraceptives, societal attitude towards the adolescent contraceptive use and knowledge of adolescents of the SRH issues could possibly explain the observed higher prevalence in Zambia. In Zambia, adolescent contraceptive services and SRH is only available in selected health facilities that offer youth friendly corner service \(^{31,32}\).

Contraceptive service being offered in the general reproductive health department is not tailored to adolescent needs hence they feel stigmatised and out of place leading to low utilisation \(^{31,32}\). Countries in East Africa such as Kenya have increased funding of policies and interventions towards contraceptives access and availability \(^{33,34}\). Rwanda’s small population size and the large population density made it easier for the government to ensure easier and faster implementation of family planning programs which lead to decreased prevalence of teenage pregnancy \(^{6,33,35}\). Furthermore, countries in Latin America and Asia have a higher gender equality compared to Zambia which makes women empowered to make positive decisions regarding contraceptive use and other SRH rights. However, our finding is lower than that in the Democratic Republic of the Congo and Central Africa Republic \(^{23}\). This could be partly attributed to the fact that Congo has one of the highest rates of child marriage globally \(^{23}\). Internet use was associated with less likelihood of teenage pregnancy. It is a popular observation that parents in most African communities rarely communicate about reproductive health with their children hence, adolescents tend to rely on informal sources for information about their
sexuality. Furthermore, traditional sexual education in Zambia deprive women of any bargaining power and hence the use of condom, sex frequency and practices are decided by the male partner. Different internet resources such as web pages, social media platforms, bulletin boards, and chatrooms may contain health information and provide access to information for a potentially large number of adolescents. Internet enables adolescents to have a high degree of interactivity, offers an anonymous, confidential and easily accessible space to find sensitive information about their sexuality. Internet enables adolescents to explore sensitive topics online which they may not want to reveal to other people. Besides being a source of health information that aids in sexual health promotion, contraceptive literacy and individual adolescent counseling via Web chat, internet can as well be used to purchase contraceptives.

Since most health programmes use mainstream mass media, the content of these mainstream media can be improved and become available on various social media platforms such as Facebook and on different websites by those using the internet. Social media platform access by adolescents is on the rise and we recommend further studies to look at the effect of social media platforms on teenage pregnancy. Adolescents who had almost daily access to newspapers or magazines were less likely to have had a teenage pregnancy compared to those without any access to newspapers or magazines. Newspapers or magazines are usually printed in many languages which enables a wide readership represent a time-honored means of disseminating printed information. They can contribute maximally to adolescent health education by publishing articles on diverse issues. This exposure enables adolescents to have greater access to sexual and reproductive health (SRH) information which empowers them and enables them to make positive SRH decisions and also become aware of availability of the different SRH services including family planning. Studies have documented that exposure to mass media is associated with increased utilisation of modern contraceptives as mass media is likely to lead to exposure to family planning messages capable of challenging negative attitudes to contraceptives.

The observed association between watching TV and listening to radio with teenage pregnancy at bivariable analysis level was lost when socio-economic variables were included during multivariable analysis. This indicates that socio-economic variables have an influence on teenage pregnancy by affecting how these mass media messages are received or accessed, utilised and
interpreted by respondents. This finding is in agreement with other studies conducted in similar contexts. Lim et al. showed that mainstream media such as TV and radio were the least comfort source of SRH for adolescents and internet was the most comfortable source. The non-significance observed with watching TV and listening to radio could be partly attributed to; media messages not addressing cultural and practical barriers to behaviour change, limited involvement of adolescent peers and role models who can easily influence the adolescents as they easily relate to them and limited engagement of local people or communities to ensure context specific and epidemiologically appropriate SRH messages. Furthermore, the SRH information provided by radio and TVs may increase awareness and sensitisation but fail to motivate adolescents to behavioral change hence the need to focus on behavioural change in the communities.

However, as much as exposure to media has been suggested to be effective in disseminating SRH information, some studies have shown increased engagement in risky sexual behaviour depending on the content being broadcasted hence the need to regulate internet and mass media use. Different studies examined the effects of mass media on adolescent sexual behavior have shown that exposure to media has influences on their sexual behavior which could be positive or negative depending on the content and in some contexts non-significant. To ensure effective use of mass media campaigns and that correct SRH information is passed on, we suggest that information professionals and other adolescent health practitioners should promote and prioritise pro-health internet sites addressing different adolescent health needs as a health information resource. However, there is need for guided internet access when adolescents use it.

Strengths and limitations

This is the foremost nationwide analysis that explores the association between mass media exposure and teenage pregnancy. Therefore, it can be used as a yardstick and motivation for further studies on related subject matter in order to ensure effective reduction in teenage pregnancies. Secondly, we used the most current nationally representative data hence the findings are generalisable to all adolescents in Zambia. However, use of cross-sectional data only enables the establishment of associations but not causal relationships and the self-reported answers risked the possibility of recall bias. ZDHS did not collect information on access to social
media sites such as Facebook that can also impact SRH information and behaviour. Lastly, the dataset did not include information about the content of mass media that the adolescents were accessing.

Conclusion and public health implications

A third of adolescents in Zambia were or had been pregnant at the time of the survey which shows that teenage pregnancy is more prevalent in Zambia compared to the African and Sub-Saharan average of 19%. Decreased exposure to newspapers or magazines and internet use were significantly associated with increased odds of teenage pregnancy. However, as much as exposure to media has been shown to be effective in disseminating SRH information, some studies have shown increased engagement in risky sexual behaviour depending on the content being broadcasted hence the need the regulate internet and mass media use. To ensure effective use of mass media campaigns and that correct SRH information is passed on, we would like to recommend the need for SRH workers to be highly involved in the production of campaign materials and to have internet use control measures. Further research is needed to understand the effects of other mass media such as social media on adolescent pregnancy.

Socio-economic variables such as older age, engaging in risky sexual behaviour, low wealth index, marriage and urban residence were significantly associated with teenage pregnancy. Findings show that factors are multidimensional, as they are related to the individual adolescents, household and the community which are beyond the control of adolescents. Multi-sectoral activities across sectors that encourage delayed marriage, contraceptive use, discourage risky sexual behaviour and empower households financially to reduce household poverty with urban areas being more targeted are essential. The Zambian government and the different stakeholders need to ensure that efforts are made to accommodate married and pregnant girls in schools. Additionally, the use of qualitative research can provide a better understanding of the complexities of adolescent pregnancy. Since the study participants were already pregnant during the survey, we recommend cohort studies that can further inform policy regarding casual relationships between access to mass media and teenage pregnancy. These studies can be designed to include social media platforms in addition to the traditional mass media.
Acknowledgements We thank the MEASURE DHS program for availing us with the data.

Contributors QS was the principal investigator on the project, conceptualised the study, designed the analysis, conducted the analysis and wrote the first draft of the paper. AAS was involved reviewing the study design, the results and drafting the article. DM was involved in data analysis, presentation and interpretation of the results. DM was involved in reviewing and interpreting the results, and reviewing the manuscript. All the authors reviewed and approved the manuscript. All the authors take responsibility for their contributions.

Funding No funding was obtained.

Competing interests None declared.

Patient and public involvement Patients were not involved. However, local authorities in the different provinces were contacted before data collection. A comprehensive report on the survey results was released and openly available on the DHS website.

Patient consent for publication Not required.

Data availability statement All data are available from the Demographic and Health Surveys website (URL: https://www.dhsprogram.com/data/available-datasets.cfm) upon registration.

Ethics approval High international ethical standards are ensured for MEASURE DHS surveys as ethical approval from the country is obtained from a national ethical review board and local authorities before implementing the survey and well-informed verbal consent is sought from the respondents prior to data collection 19. For the 2018 ZDHS, ethical approval was obtained from the Inner City Fund (ICF) and the Zambia Tropical Diseases Research Centre (TDRC), institutional review boards (IRBs) 19. All methods of data collection were performed in accordance with the relevant guidelines and regulations and all participants gave informed consent before participating in the survey. However, ethical approval ID was not provided in the ZDHS survey report.

References

1. Wado YD, Sully EA, Mumah JN. Pregnancy and early motherhood among adolescents in five East African countries: a multi-level analysis of risk and protective factors. BMC pregnancy and childbirth. 2019;19(1):59-59. doi:10.1186/s12884-019-2204-z

2. Ayanaw Habitu Y, Yalew A, Azale Bistegn T. Prevalence and Factors Associated with Teenage Pregnancy, Northeast Ethiopia, 2017: A Cross-Sectional Study. J Pregnancy. 2018;2018:1714527. doi:10.1155/2018/1714527
3. Mezmur H, Assefa N, Alemayehu T. Teenage Pregnancy and Its Associated Factors in Eastern Ethiopia: A Community-Based Study. Int J Womens Health. 2021;13:267-278. https://doi.org/10.2147/IJWH.S287715.

4. Shibanuma A, Yeji F, Okawa S, Mahama E, Kikuchi K. The coverage of continuum of care in maternal, newborn and child health: a cross-sectional study of woman-child pairs in Ghana. 2018;3(4):e000786. doi:10.1136/bmjgh-2018-000786

5. Sserwanja, Q., & Kawuki, J. (2020). Prevalence of Underweight and Associated Factors among Lactating Women in Ethiopia: A Mini-review. Journal of Advances in Medicine and Medical Research, 32(8), 1-9. https://doi.org/10.9734/jammr/2020/v32i830459.

6. Sserwanja Q, Musaba MW, Mukunya D. Prevalence and factors associated with modern contraceptives utilization among female adolescents in Uganda. BMC Women's Health. 2021/02/10 2021;21(1):61. doi:10.1186/s12905-021-01206-7

7. Mathewos S, Mekuria A. Teenage Pregnancy and Its Associated Factors among School Adolescents of Arba Minch Town, Southern Ethiopia. Ethiopian journal of health sciences. May 2018;28(3):287-298. doi:10.4314/ejhs.v28i3.6

8. Zamawe COF, Banda M, Dube AN. The impact of a community driven mass media campaign on the utilisation of maternal health care services in rural Malawi. BMC pregnancy and childbirth. Jan 27 2016;16:21. doi:10.1186/s12884-016-0816-0

9. Meekers D, Van Rossem R, Silva M, Koleros A. The reach and effect of radio communication campaigns on condom use in Malawi. Studies in family planning. Jun 2007;38(2):113-20. doi:10.1111/j.1728-4465.2007.00122.x

10. Sood S, Shefner-Rogers C, Skinner J. Health Communication Campaigns in Developing Countries. Journal of Creative Communications. 2014/03/01 2014;9(1):67-84. doi:10.1177/0973258613517440

11. Umeano-Enemuoh JC, Uzochukwu B, Ezumah N, Mangham-Jefferies L, Wiseman V, Onwujekwe O. A qualitative study on health workers’ and community members’ perceived sources, role of information and communication on malaria treatment, prevention and control in southeast Nigeria. BMC Infect Dis. Oct 22 2015;15:437. doi:10.1186/s12879-015-1187-2

12. Gupta N, Katende C, Bessinger R. An evaluation of post-campaign knowledge and practices of exclusive breastfeeding in Uganda. J Health Popul Nutr. Dec 2004;22(4):429-39.

13. Reijer P, Chalimba M, Nakwagala AA. Malawi goes to scale with anti-AIDS clubs and popular media. Evaluation and Program Planning. 2002/11/01 2002;25(4):357-363. doi:https://doi.org/10.1016/S0149-7189(02)00047-2

14. Asp G, Odberg Pettersson K, Sandberg J, Kabakyenga J, Agardh A. Associations between mass media exposure and birth preparedness among women in southwestern Uganda: a community-based survey. Glob Health Action. 2014;7:22904. doi:10.3402/gha.v7.22904

15. Hornik R, McAnany E. Theories and Evidence: Mass Media Effects and Fertility Change. Communication Theory. 2006;11(4):454-471. doi:10.1111/j.1468-2885.2001.tb00253.x

16. Raut MK. Interpersonal communication and contraception: Insights and evidences from Bangladesh demographic and health survey, 2011. Indian journal of public health. Jul-Sep 2015;59(3):220-4. doi:10.4103/0019-557X.164666

17. Sserwanja Q, Kawuki J, Kim JH. Increased child abuse in Uganda amidst COVID-19 pandemic. Journal of Paediatrics and Child Health. n/a(n/a)doi:https://doi.org/10.1111/jpc.15289

18. Ajaero CK, Odimegwu C, Ajaero ID, Nwachukwu CA. Access to mass media messages, and use of family planning in Nigeria: a spatio-demographic analysis from the 2013 DHS. BMC Public Health. May 24 2016;16:427. doi:10.1186/s12889-016-2979-z

19. Zambia Statistics Agency - ZSA, Ministry of Health - MOH, University Teaching Hospital Virology Laboratory - UTH-VL, ICF. Zambia Demographic and Health Survey 2018. 2020. https://www.dhsprogram.com/pubs/pdf/FR361/FR361.pdf
20. Sserwanja Q, Mukunya D, Habumugisha T, Mutisya LM, Tupe R, Olal E. Factors associated with undernutrition among 20 to 49 year old women in Uganda: a secondary analysis of the Uganda demographic health survey 2016. *BMC Public Health*. 2020/11/03 2020;20(1):1644. doi:10.1186/s12889-020-09775-2

21. DHS. The DHS program. https://www.dhsprogram.com/.

22. Uwizeye D, Muhayiteto R, Kantarama E, Wiehler S, Murangwa Y. Prevalence of teenage pregnancy and the associated contextual correlates in Rwanda. *Heliyon*. 2020;6(10):e05037-e05037. doi:10.1016/j.heliyon.2020.e05037

23. Ahinkorah BO, Kang M, Perry L, Brooks F, Hayen A. Prevalence of first adolescent pregnancy and its associated factors in sub-Saharan Africa: A multi-country analysis. *PLoS One*. 2021;16(2):e0246308. doi:10.1371/journal.pone.0246308

24. Yakubu I, Salisu WJ. Determinants of adolescent pregnancy in sub-Saharan Africa: a systematic review. *Reprod Health*. Jan 27 2018;15(1):15. doi:10.1186/s12978-018-0460-4

25. Chawla N, Sarkar S. Defining “High-risk Sexual Behavior” in the Context of Substance Use. *Journal of Psychosexual Health*. 2019;1(1):26-31. doi:10.1177/2631831818822015

26. SHRH Africa Trust (SAT). Age of consent: legal review Zambia Country report. https://www.satregional.org/wp-content/uploads/2018/05/Age-of-consent-Zambia.pdf. Accessed December 2020.

27. Farid NDN, Rus SC, Dahlui M, Al-Sadat N, Aziz NA. Predictors of sexual risk behaviour among adolescents from welfare institutions in Malaysia: a cross sectional study. *BMC Public Health*. 2014/11/24 2014;14(3):S9. doi:10.1186/1471-2458-14-S3-S9

28. Adam GK, Elhassan EM, Ahmed AM, Adam I. Maternal and perinatal outcome in teenage pregnancies in Sudan. *International Journal of Gynecology & Obstetrics*. 2009;105(2):170-171. doi:10.1016/j.ijgo.2008.11.028

29. Canbaz S, Sunter AT, Cetinoglu CE, Peksen Y. Obstetric outcomes of adolescent pregnancies in Turkey. *Advances in Therapy*. 2005/11/01 2005;22(6):636-641. doi:10.1007/BF02849957

30. Kassa GM, Arowojolu AO, Odukogbe AA, Yalew AW. Prevalence and determinants of adolescent pregnancy in Africa: a systematic review and Meta-analysis. *Reprod Health*. Nov 29 2018;15(1):195. doi:10.1186/s12978-018-0640-2

31. Silumbwe A, Nkole T, Munakampe MN, et al. Community and health systems barriers and enablers to family planning and contraceptive services provision and use in Kabwe District, Zambia. *BMC Health Serv Res*. May 31 2018;18(1):390. doi:10.1186/s12913-018-3136-4

32. PRB. Improving Family Planning Policies to Ensure Zambian Youth Can Choose Their Future. https://www.prb.org/improving-family-planning-policies-to-ensure-zambian-youth-can-choose-their-future/.

33. Dennis ML, Radovich E, Wong KLM, et al. Pathways to increased coverage: an analysis of time trends in contraceptive need and use among adolescents and young women in Kenya, Rwanda, Tanzania, and Uganda. *Reproductive Health*. 2017/10/17 2017;14(1):130. doi:10.1186/s12978-017-0393-3

34. Izugbara CO, Wekesah FM, Tilahun T, Amo-Adjei J, Tsala Dimbuene ZT. Family planning in East Africa: trends and dynamics. Nairobi, Kenya: African Population and Health Research Center (APHRC); 2018.

35. World Population Prospects, the 2015 Revision [https://esa.un.org/unpd/wpp/Download/Standard/Population/].

36. Nwagwu WE. The Internet as a source of reproductive health information among adolescent girls in an urban city in Nigeria. *BMC Public Health*. 2007/12/20 2007;7(1):354. doi:10.1186/1471-2458-7-354
439. White M, Dorman SM. Receiving social support online: implications for health education. *Health education research*. Dec 2001;16(6):693-707. doi:10.1093/her/16.6.693

440. McKenna KYA, Bargh JA. Plan 9 From Cyberspace: The Implications of the Internet for Personality and Social Psychology. *Personality and Social Psychology Review*. 2000;4(1):57-75. doi:10.1207/s15327957pspr0401_6

441. Aicken CRH, Estcourt CS, Johnson AM, Sonnenberg P, Wellings K, Mercer CH. Use of the Internet for Sexual Health Among Sexually Experienced Persons Aged 16 to 44 Years: Evidence from a Nationally Representative Survey of the British Population. *J Med Internet Res*. 2016;18(1):e14-e14. doi:10.2196/jmir.4373

442. Bacchus LJ, Reiss K, Church K, et al. Using Digital Technology for Sexual and Reproductive Health: Are Programs Adequately Considering Risk? *Glob Health Sci Pract*. 2019;7(4):507-514. doi:10.9745/GHSP-D-19-00239

443. Chetty-Mhlanga S, Fuhrimann S, Eeftens M, et al. Different aspects of electronic media use, symptoms and neurocognitive outcomes of children and adolescents in the rural Western Cape region of South Africa. *Environmental research*. May 2020;184:109315. doi:10.1016/j.envres.2020.109315

444. Pfeiffer C, Kleeb M, Mbelwa A, Ahorlu C. The use of social media among adolescents in Dar es Salaam and Mtwara, Tanzania. *Reprod Health Matters*. May 2014;22(43):178-86. doi:10.1016/s0968-8080(14)43756-x

445. Paul S, Singh AB. Coverage of health-related articles in major local newspapers of Manipur. *Journal of education and health promotion*. 2016;5:3-3. doi:10.4103/2277-9531.184567

446. Thin Zaw PP, Liabsuetrakul T, McNeil E, Htay TT. Gender differences in exposure to SRH information and risky sexual debut among poor Myanmar youths. *BMC Public Health*. Dec 5 2013;13:1122. doi:10.1186/1471-2458-13-1122

447. Ahinkorah BO. Predictors of modern contraceptive use among adolescent girls and young women in sub-Saharan Africa: a mixed effects multilevel analysis of data from 29 demographic and health surveys. *Contraception and Reproductive Medicine*. 2020/11/19 2020;5(1):32. doi:10.1186/s40834-020-00138-1

448. Appiah F, Seidu A-A, Ahinkorah BO, Baatiema L, Ameyaw EK. Trends and determinants of contraceptive use among female adolescents in Ghana: Analysis of 2003-2014 Demographic and Health Surveys. *SSM - population health*. 2020;10:100554-100554. doi:10.1016/j.ssmph.2020.100554

449. Lim MS, Vella A, Sacks-Davis R, Hellard ME. Young people's comfort receiving sexual health information via social media and other sources. *International journal of STD & AIDS*. Dec 2014;25(14):1003-8. doi:10.1177/0956462414527264

450. Landry M, Gonzales FA, Wood S, Vyas A. New media use and sexual behavior among Latino adolescents. *American journal of health behavior*. May 2013;37(3):422-30. doi:10.5993/ajhb.37.3.15

451. Masemola-Yende JP, Mataboge SM. Access to information and decision making on teenage pregnancy prevention by females in Tshwane. *Curationis*. Nov 5 2015;38(2):1540. doi:10.4102/curationis.v38i2.1540

452. Escobar-Chaves SL, Tortolero SR, Markham CM, Low BJ, Eitel P, Thickstun P. Impact of the media on adolescent sexual attitudes and behaviors. *Pediatrics*. Jul 2005;116(1):303-26.
Table 1: Background characteristics of adolescents as per 2018 Zambia demographic health survey

Characteristics	N=3000	Percent (%)
Teenage pregnancy		
Yes	897	29.9
No	2103	70.1
Mobile phone use		
Yes	944	31.5
No	2056	68.5
Listening to radio		
Almost every day	386	12.9
At least once a week	499	16.6
Less than once a week	409	13.6
Not at all	1707	56.9
Reading newspaper		
Almost every day	100	3.3
At least once a week	274	9.1
Less than once a week	303	10.1
Not at all	2323	77.4
Watching TV		
Almost every day	808	26.9
At least once a week	296	9.9
Less than once a week	190	6.3
Not at all	1706	56.9
Internet use		
Yes	316	10.5
No	2684	89.5
Household size		
6 and above	2017	67.2
Less than 6	983	32.8
Residence		
Urban	1323	44.1
Rural	1677	55.9
Provinces		
Location	Count	Percentage
------------------	-------	------------
Central	297	9.9
Copper belt	491	16.4
Eastern	342	11.4
Luapula	253	8.4
Lusaka	475	15.8
Muchinga	191	6.4
Northern	248	8.3
North Western	186	6.2
Southern	327	10.9
Western	190	6.3

Working status

Status	Count	Percentage
Not working	2477	82.6
Working	523	17.4

Marital status

Status	Count	Percentage
Not Married	2563	85.4
Married	437	14.6

Education Level

Level	Count	Percentage
Higher	9	0.3
Secondary	1609	53.6
Primary Education	1283	42.8
No Education	99	3.3

Wealth Index

Index	Count	Percentage
Richest	709	23.6
Richer	655	21.8
Middle	585	19.5
Poorer	541	18.0
Poorest	510	17.0

Age

Range	Count	Percentage
15-17	1735	57.8
18-19	1265	42.2

Sex of Household Head

Sex	Count	Percentage
Male	2166	72.2
Female	834	27.8

Risky sexual behavior

Status	Count	Percentage
No	1647	54.9
Yes	1353	45.1
Table 2: Associations between media exposure and teenage pregnancy among adolescents in Zambia as per ZDHS 2018

Characteristics	Teenage pregnancy n=897	Univariable OR (95%CI)	P-value	Adjusted Model AOR (95% CI)
Mobile phone use				
No	626 (69.8)	1	1	
Yes	271 (30.2)	0.92(0.74-1.15)	0.473	1.05 (0.70-1.58)
Listening to radio			<0.001	
Not at all	583 (65.0)	1	1	
Less than once a week	97 (10.8)	**0.60(0.45-0.80)**	**<0.001**	**0.79(0.51-1.23)**
Atleast once a week	116 (12.9)	**0.59(0.44-0.78)**	**<0.001**	**0.75(0.47-1.19)**
Almost every day	101 (11.3)	**0.68(0.50-0.94)**	**<0.001**	**0.81(0.48-1.37)**
Reading newspaper				
Not at all	776 (86.5)	1		
Less than once a week	69 (7.7)	**0.58(0.38-0.89)**	**<0.001**	**0.99(0.59-1.70)**
Atleast once a week	45 (5.0)	**0.40(0.27-0.59)**		**0.75(0.44-1.27)**
Almost every day	7 (0.8)	**0.15(0.07-0.31)**		**0.33(0.13-0.82)**
Watching TV				
Not at all	671 (74.8)	1		
Less than once a week	55 (6.1)	**0.64(0.44-0.93)**	**<0.001**	**1.21(0.59-2.49)**
Atleast once a week	62 (6.9)	**0.41(0.25-0.68)**		**0.91(0.49-1.71)**
Almost every day	109 (12.2)	**0.24(0.17-0.35)**		**1.15(0.56-2.36)**
Internet use				
No	860 (95.9)	1	**<0.001**	1
Yes	37 (4.1)	**0.28(0.19-0.42)**		**0.54(0.30-0.97)**
Age			**<0.001**	
15-17	296 (33.0)	1		
18-19	601 (67.0)	**4.40(3.62-5.36)**	**<0.001**	**3.23(2.45-4.27)**
Residence				
Rural	637 (71.0)	1		
Urban	260 (29.0)	**0.40(0.30-0.53)**	**<0.001**	**1.63(1.06-2.49)**
Marital status				
Not Married	502 (56.0)	1		
Married	395 (44.0)	**37.93(26.72-53.85)**	**<0.001**	**12.84(8.02-20.56)**
Wealth Index				<0.001
--------------	---	---	---	--------
Richest	54 (6.0)	1		1
Richer	178 (19.8)	4.51 (2.82-7.23)	2.23 (1.16-4.28)	
Middle	215 (24.0)	7.05 (4.59-10.82)	4.01 (1.84-8.76)	
Poorer	211 (23.5)	7.75 (5.06-11.86)	4.43 (1.92-10.20)	
Poorest	239 (26.6)	10.74 (6.99-16.50)	6.57 (2.69-16.05)	
Risky sexual behavior		<0.001		
No	61 (6.8)	1		1
Yes	836 (93.2)	42.30 (30.87-57.98)	27.44 (20.44-37.83)	
Sex of household head		<0.028		
Male	676 (75.4)	1		1
Female	221 (24.6)	0.79 (0.65-0.98)	1.03 (0.76-1.40)	
Provinces		<0.001		
Western	82 (9.1)	1		1
Southern	142 (15.8)	1.02 (0.62-1.67)	1.69 (0.85-3.35)	
North Western	67 (7.5)	0.73 (0.49-1.09)	0.70 (0.42-1.17)	
Northern	66 (7.4)	0.47 (0.32-0.70)	0.67 (0.32-1.40)	
Muchinga	56 (6.2)	0.55 (0.36-0.84)	0.76 (0.38-1.54)	
Lusaka	71 (7.9)	0.23 (0.14-0.38)	0.83 (0.41-1.67)	
Luapula	77 (8.6)	0.58 (0.39-0.85)	0.83 (0.49-1.42)	
Eastern	138 (15.4)	0.89 (0.61-1.28)	0.99 (0.58-1.69)	
Copperbelt	104 (11.6)	0.35 (0.23-0.53)	1.71 (0.93-3.14)	
Central	94 (10.5)	0.61 (0.42-0.88)	1.16 (0.68-2.00)	
Working status		<0.001		
Not working	632 (70.5)	1		1
Working	264 (29.5)	2.98 (2.44-3.66)	1.41 (0.98-2.02)	
Education Level		<0.001		
Higher	2 (0.2)	1		1
Secondary	378 (42.1)	1.23 (0.19-7.80)	1.01 (0.21-4.90)	
Primary Education	476 (53.1)	2.35 (0.37-15.01)	0.89 (0.18-4.51)	
No Education	41 (4.6)	2.88 (0.44-19.04)	0.61 (0.10-3.60)	
Household size		<0.001		
Six and above	518 (57.7)	1		1
Less than 6	379 (42.3)	1.82 (1.44-2.28)	0.71 (0.50-1.01)	

Bold significant at p-value less than 0.05
STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies*

Item No	Recommendation	Page No
1	(a) Indicate the study’s design with a commonly used term in the title or the abstract	1
	(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
2	Explain the scientific background and rationale for the investigation being reported	4
3	State specific objectives, including any prespecified hypotheses	4
4	Present key elements of study design early in the paper	5
5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	5
6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5
7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5,6
8	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6
9	Describe any efforts to address potential sources of bias	6
10	Explain how the study size was arrived at	5
11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6,7
12	(a) Describe all statistical methods, including those used to control for confounding	6
	(b) Describe any methods used to examine subgroups and interactions	6
	(c) Explain how missing data were addressed	NA
	(d) If applicable, describe analytical methods taking account of sampling strategy	6
	(e) Describe any sensitivity analyses	NA
13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	5
	(b) Give reasons for non-participation at each stage	5
	(c) Consider use of a flow diagram	NA
14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	7, 16-17
	(b) Indicate number of participants with missing data for each variable of interest	NA
15*	Report numbers of outcome events or summary measures	7
16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	18-19
(b) Report category boundaries when continuous variables were categorized

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period

Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	8
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	10-11
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	8-10
Generalisability	21	Discuss the generalisability (external validity) of the study results	10
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	NA

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.
Access to mass media and teenage pregnancy among adolescents in Zambia: a national cross-sectional survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052684.R1
Article Type:	Original research
Date Submitted by the Author:	01-Apr-2022
Complete List of Authors:	Sserwanja, Quraish; GOAL Ireland, Programs Department Sepenu, Abigail ; Swedish Organization for Global Health Mwamba, Daniel; Center for Infectious Disease Research in Zambia, Programs Department Mukunya, David ; Busitema University, Department of Public Health; Sanyu Africa Research Institute
Primary Subject Heading:	Obstetrics and gynaecology
Secondary Subject Heading:	Obstetrics and gynaecology, Reproductive medicine
Keywords:	Epidemiology < TROPICAL MEDICINE, MEDICAL JOURNALISM, PUBLIC HEALTH
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Access to mass media and teenage pregnancy among adolescents in Zambia: a national cross-sectional survey

Quraish Sserwanja1*, Abigail S. Sepenu2, Daniel Mwamba3, David Mukunya4,5

1Programs Department, GOAL, Khartoum, Sudan

Email: qura661@gmail.com

2Maternal and Child Health Project, Swedish Organization for Global Health, Mayuge, Uganda

Email: bebepesepenu@gmail.com

3Programs Department, Centre for Infectious Disease Research, Lusaka, Zambia

Email: daniel.mwamba@cidrz.org/mwambalonga@gmail.com

4Department of Public Health, Busitema University, Mbale, Uganda

Email: zebdaevid@gmail.com

5Busoga Health Forum, Jinja, Uganda

Email: zebdaevid@gmail.com

*Corresponding author

GOAL

Arkaweet Block 65 House No. 227

Khartoum, Sudan

Tel: +256782295939/+249900933232

Email: qura661@gmail.com/ qsserwanja@sd.goal.ie
Abstract

Objective: Teenage pregnancies and childbirths are associated with negative health outcomes. Access to health information enables adolescents to make appropriate decisions. However, the relationship between access to health information through mass media and teenage pregnancy has not received much attention in existing literature. We therefore examined the association between access to mass media and teenage pregnancy in Zambia.

Setting: Weighted data from the latest Zambian Demographic and Health Survey (ZDHS).

Participants: Weighted sample of 3000 adolescents aged 15-19 years

Primary and secondary outcome measure: Teenage pregnancy that included adolescents who were currently pregnant or had had an abortion or had given birth in the last five years preceding the survey (primary) and predictors of teenage pregnancy (secondary).

Results: Out of 3000 adolescents, 897 (29.9%, 95% CI: 28.1-31.3) were pregnant or had ever been pregnant. Majority of the adolescents resided in rural areas (55.9%) and had a secondary education (53.6%). Adolescents who had exposure to internet, newspapers or magazines, radio and television were 10.5%, 22.6%, 43.1% and 43.1% respectively. Adolescents who had daily access to newspapers or magazines (AOR:0.33, 95% CI: 0.13-0.82) or using internet (AOR:0.54, 95% CI: 0.30-0.95) were less likely to be pregnant or to have had a pregnancy compared to those with no access to newspapers and internet respectively.

Conclusion: Our study suggests that internet use and reading of newspapers or magazines may trigger behavioral change as an effective approach to reducing teenage pregnancy. Behavioral change communicators can implement mass media campaigns using newspapers, magazines and
the internet to publicise adolescent health messages that can encourage adolescents to adopt healthy behaviours and prevent teenage pregnancies.

Strengths and limitations of the study

- This is the foremost nationwide analysis that explores the association between mass media exposure and teenage pregnancy.
- The study used a sub-sample of adolescents from the latest nationally representative sample, making the findings generalisable for Zambian female adolescents.
- The temporal relationship between the outcome variable and the independent variables could not be established due to the cross-sectional nature of the survey.
- ZDHS did not collect information on what social media sites and content of information were accessed by those using internet.

Introduction

Globally, over 16 million girls aged 15 to 19 years give birth each year, contributing nearly 11% of all births worldwide. At least 90% of these births occur in low and middle-income countries and sub-Saharan Africa has among the highest prevalence of teenage pregnancy globally. Teenage pregnancies and childbirths are associated with negative maternal and perinatal health outcomes such as preterm delivery, low birth weight and death. Teenage pregnancy is further associated with social problems such as school dropouts which prevents the affected teenagers from achieving their full social and economic potential. Children born to adolescents are more likely to have lower school achievement and drop out of high school.

In low-and-middle-income countries (LMIC), limited access to sexual and reproductive health information, especially among adolescents undermines efforts to bring health care services closer
to the people which further negatively affects progress towards universal health coverage9,10.

Although Zambia has registered an increase in the use of mass media among the young population through initiatives such as information communication technology (ICT) clubs in schools and the integration of ICTs into the education curriculum11, there are still challenges of low access. Only 24.4\% and 3.8\% of women in urban and rural areas respectively reported ever using internet and 46\% of all women have no weekly access to the three traditional mass media channels (radio, television and newspapers)12.

Mass media has been acknowledged globally as a cost-effective communication channel9,13 and it has been used successfully in various health programmes in low and middle income countries (LMIC)9,10,14-16. However, there is also some documented evidence of inconsistent outcomes of mass media campaigns9,17 and some authors have argued that the effects observed are short term18,10,19. Furthermore, mass media is among the strategies used to promote utilisation of family planning through increased awareness, sensitization and debunking of myths leading to a desired behavioral change20. Lou et al. analysed data from three Asian countries and reported that access to and use of mass media has an influence on sexual intercourse-related knowledge, attitudes, and behaviors of adolescents and young adults21. Although the association between mass media exposure and teenage pregnancy has not been studied in Zambia, some studies have examined the association of mass media and sexual reproductive health among the youth. Using demographic health survey (DHS) data of three countries (Kenya, Nigeria, and Zambia), Somefun et al. analysed influence of media exposure on human immunodeficiency virus (HIV) testing among the youth and documented a positive association between exposure to mass media and HIV testing22. Van Rossem et al. also analysed data from Zambia Demographic and Health Survey (ZDHS) 2002 and reported that exposure to family planning and HIV radio and television
programmes was associated with higher odds of using condoms for both men and women. Worku et al. analysed East African countries’ DHS data to assess prevalence and associated factors of teenage pregnancy in the region and further documented exposure to mass media to be associated with less odds of teenage pregnancy. However, Worku et al. did not focus on mass media as main exposure but combined mass media as one variable making it impossible to examine the association of the different mass media with teenage pregnancy.

Despite the global efforts employed in promoting interventions against teenage pregnancy such as uptake of family planning, the progress is slow. In Zambia, 13% and 2.2% of adolescents have sexual intercourse and are married before age 15 respectively. The low contraceptive prevalence rate in this age group, puts Zambian adolescents at an increased risk of teenage pregnancies. Given the documented increase in the use of mass media among the young Zambians, we aimed to examine the association between access to mass media and teenage pregnancy in Zambia. The study also examined the association between other socio-economic variables and access to mass media and teenage pregnancy using data from the 2018-2019 Zambia demographic and health survey (ZDHS). The findings will be crucial in identifying ways of reducing teenage pregnancies by increasing mass media exposure and the effectiveness of other socio-economic characteristics.

Methods

Data

The 2018-2019 ZDHS data were used to examine the association between mass media exposure and teenage pregnancy using a subsample of adolescents aged 15–19 years. The 2018-2019
ZDHS data were collected between 18th July 2018 and 24th January 2019. The ZDHS are nationally representative and are conducted every five years to monitor and evaluate population, health and nutrition indicators in low and middle income countries. The data used for this study were collected using the women’s questionnaire in which information on individuals, household characteristics, nutrition and reproductive health history of women of reproductive age (15–49 years) was captured. Standardized sampling procedures are employed with a two-stage stratified method that resulted in the random selection of a representative sample of 13,625 households. “The first stage involved 545 cluster (sample points) selection which consisted of enumeration areas (EAs) using a sampling frame that was used during the 2010 census of population and housing (CPH)”.

The EAs in the first stage were selected with a probability proportional to their size within each sampling stratum with the second stage having household selection using systematic sampling. Our secondary analysis included only adolescents aged 15 to 19 years. A total of 13,683 women aged 15-49 years in the sampled households who consented to participate in the survey were interviewed. Of the 13,683 women, 10,683 were aged 20-49 years hence our secondary analysis included a weighted sample of 3,000 adolescents aged 15-19 years. A detailed description of the sampling process can be obtained in the 2018-2019 ZDHS report at the DHS program website.

Variables

Outcome variable

The outcome variable was teenage pregnancy that included adolescents who were currently pregnant or had an abortion or had given birth in the last five years preceding the survey and coded as one (1) and zero (0) for those who had never had a pregnancy.
Exposures

Adolescents were asked whether they use the internet (yes or no), own a mobile phone (yes or no), read a newspaper or magazine, listen to radio or watch television (TV) (almost every day, at least once a week, less than once a week or not at all).

Covariates

We included determinants of teenage pregnancy basing on available literature and data27-29. Eleven variables were considered and of these, two were community level factors that included; place of residence (rural and urban), and the ten provinces of Zambia. Three household level factors included; household size (less than six and six and above), sex of household head (male and female), and wealth index that was categorized into quintiles that ranged from the poorest to the richest quintile. Six individual level factors that included; age (15 to 17 and 18 to 19), working status (yes and no), marital status (married including those legally and not legally married but living with their partnerships and not married including those divorced, separated and widowed), education level (no education, primary and post-primary (tertiary only had two adolescents so it was combined with secondary), knowledge of any modern contraceptive (yes and no) and engaging in risky sexual behaviour (yes and no). Adolescents were considered to have engaged in ‘risky sexual behaviour’ if they reported to have engaged in sex with more than one partner or had transactional sex or had inconsistent condom use or had alcohol consumption at last sexual intercourse or had sexual intercourse before age 1630-32.

Data analysis

Analysis was conducted using SPSS version 25.0 statistical software’s complex sample function in order to account for the multi-stage cluster study design. Proportions and frequencies were
tabulated for all the independent variables. To assess the association of each independent variable with teenage pregnancy, bivariable logistic regression was conducted and we presented crude odds ratio (COR), 95% confidence interval (CI) and p-values. Multivariable logistic regression was conducted with mass media and other sociodemographic independent variables with a p-value < 0.25 at bivariable level. Adjusted odds ratios (AOR), 95% CI and p-values were calculated with statistical significance level set at p-value < 0.05. All variables in the model were assessed for collinearity, which was considered present if the variables had a variance inflation factor (VIF) greater than 5. To ensure validity of our study findings, sampling weights provided by ZDHS were used. **Supplementary file 1 shows the STROBE checklist.**

Patient and public involvement

The ZDHS did not involve patients. However, before data collection, the different provincial local authorities were contacted, and their permission sought. The results of the 2018-2019 ZDHS are openly available to the public on the DHS website (https://www.dhsprogram.com/).

Ethics approval

The 2018-2019 ZDHS protocol was reviewed and approved by the Inner City Fund (ICF) and the Zambia Tropical Diseases Research Centre (TDRC), institutional review boards (IRBs)\(^\text{12}\). The team ensured that all field activities followed the relevant national and international guidelines and regulations including informed consent. However, ethical approval ID was not provided in the ZDHS survey report.

Results

Sociodemographic characteristics of study population
Out of 3000 adolescents, 897 (29.9% 95% CI: 28.1-31.3) were pregnant or had ever been pregnant. The mean age of adolescents was 17.0 (standard deviation (SD) 1.4) years. Majority of the adolescents resided in rural areas (55.9%), were not working (82.6%), not married (85.4%), had post-primary education (53.9%), and were aged between 15 to 17 years (57.8%). More detailed characteristics of study participants are shown in Table 1.

Mass media use

Majority of the adolescents have no exposure to internet (89.5%), newspapers (77.5%), radio (56.9%) or TV (56.9%). Exposure to newspapers/magazines was the lowest at 22.5% of which only 3.3% had exposure almost every day. Although exposure to radio and television both are at 43.1%, being exposed to television almost every day is at 26.9% compared to 12.9% for being exposed to radio almost every day.

Associations between access to mass media and teenage pregnancy

Results from multivariable logistic regression (Table 2) showed that exposure to newspapers or magazines and internet use were significantly associated with teenage pregnancy. Adolescents who had daily exposure to newspapers or magazines (AOR: 0.33, 95% CI: 0.13-0.82), using internet (AOR: 0.54, 95% CI: 0.30-0.95), had less odds of being pregnant or have had a pregnancy compared to those with no exposure to newspapers and internet respectively. Other socio-economic variables such as engaging in risky sexual behaviour, age, wealth quintiles, marital status, knowledge of modern contraceptives and residence were significantly associated with teenage pregnancy. Adolescents without knowledge of any modern contraceptive
(AOR: 0.26, 95% CI: 0.08-0.80) had less odds of being pregnant or have had a pregnancy compared to those with knowledge of any modern contraceptive. Adolescents aged 18-19 years (AOR: 3.22, 95% CI: 2.44-4.25), residing in urban areas (AOR: 1.64, 95% CI: 1.07-2.50), married (AOR: 12.67, 95% CI: 7.90-20.30), belonging to the poorest wealth quintile (AOR: 6.70, 95% CI: 2.76-16.24), and engaging in risky sexual behaviour (AOR: 26.31, 95% CI: 19.58-35.36) were associated with higher odds of being pregnant or have had a pregnancy compared to those aged 15-17, in rural areas, not married, in the wealthiest quintile and not engaging in risky sexual behaviour respectively.

Discussion

This study assessed the association between exposure to mass media and teenage pregnancy in Zambia. Majority of the adolescents have no exposure to internet (89.5%), newspapers (77.5%), radio (56.9%) or TV (56.9%). The prevalence of teenage pregnancy in Zambia was 29.9% (95% CI: 28.1-31.3) similar to that of studies conducted in Sudan (31%), Ethiopia, (28.6%), and Turkey (29%) \(^2,33,34\). However, our study found a higher prevalence compared to the overall pooled prevalence of adolescent pregnancy in Africa (18.8%), East Africa (21.5%), and Latin America (6.4%) as shown by a systematic review by Kassa et al. \(^35\). The differences in accessibility of modern contraceptives, societal attitude towards the adolescent contraceptive use and knowledge of adolescents of the SRH issues could possibly explain the observed higher prevalence in Zambia. Among the mass media variables, exposure to newspapers/magazines and internet were the significant ones and these were associated with less odds of teenage pregnancy.
Internet use was associated with less likelihood of teenage pregnancy. It is a popular observation that parents in most African communities rarely communicate about reproductive health with their children hence, adolescents tend to rely on informal sources for information about their sexuality. Furthermore, traditional sexual education in Zambia deprive women of any bargaining power and hence the use of condom, frequency of sexual intercourse and practices are decided by the male partner. Different internet resources such as web pages, social media platforms, bulletin boards, and chatrooms may contain health information and provide access to information for a potentially large number of adolescents. Internet enables adolescents to have a high degree of interactivity, offers an anonymous, confidential and easily accessible space to find sensitive information about their sexuality. Internet enables adolescents to explore sensitive topics online while ensuring their privacy is protected. Besides being a source of health information that aids in sexual health promotion, contraceptive literacy and individual adolescent counseling via Web chat, internet can as well be used to purchase contraceptives.

Since most health programmes use mainstream mass media, the content of these mainstream media can be improved and be made available on various social media platforms such as Facebook and on different websites by those using the internet. Social media platform access by adolescents is on the rise and we recommend further studies to look at the effect of social media platforms on teenage pregnancy. Adolescents who had almost daily access to newspapers or magazines were less likely to have had a teenage pregnancy compared to those without any access to newspapers or magazines. Newspapers or magazines are usually printed in many languages which enables a wide readership represent a time-honored means of disseminating printed information. They can contribute maximally to adolescent health education by publishing articles on diverse issues. This exposure enables adolescents to have greater access...
to sexual and reproductive health (SRH) information which empowers them and enables them to make positive SRH decisions and also become aware of availability of the different SRH services including family planning. The culture of reading is not particularly common in many African communities. There is, therefore, the possibility that adolescents who read newspapers and magazines are academically inclined or focused on their studies. Such adolescents would rarely indulge in risky sexual behaviours. Studies have documented that exposure to mass media is associated with increased utilisation of modern contraceptives as mass media is likely to lead to exposure to family planning messages capable of challenging negative attitudes to contraceptives.

The observed association between watching TV and listening to radio with teenage pregnancy at bivariable analysis level was lost when socio-economic variables were included during multivariable analysis. This indicates that socio-economic variables have an influence on teenage pregnancy by affecting how these mass media messages are received or accessed, utilised and interpreted by respondents. This finding is in agreement with other studies conducted in similar contexts. Lim et al. showed that mainstream media such as TV and radio were the least comfort source of SRH (information?) for adolescents and internet was the most comfortable source. The non-significance observed with watching TV and listening to radio could be partly attributed to; media messages not addressing cultural and practical barriers to behaviour change, limited involvement of adolescent peers and role models who can easily influence the adolescents as they easily relate to them and limited engagement of local people or communities to ensure context specific and epidemiologically appropriate SRH messages. Furthermore, the SRH information provided by radio and TVs may increase awareness and sensitisation but fail to
motivate adolescents to behavioral change hence the need to focus on behavioural change in the communities 19.

However, as much as exposure to media has been suggested to be effective in disseminating SRH information, some studies have shown increased engagement in risky sexual behaviour depending on the content being broadcasted hence the need to regulate internet and mass media use 28, 48. Different studies examined the effects of mass media on adolescent sexual behavior have shown that exposure to media has influences on their sexual behavior which could be positive or negative depending on the content 1, 49, 50 and in some contexts, non-significant 19. Mercy et al. analysed association between social media and teenage Pregnancy among secondary school Students in Kenya and documented high access to social networking sites and this contributed to increased teenage pregnancy prevalence since most of the students accessed sexually explicit content and less of directed academic information 51. Chandra et al. further showed that without control of content, accessing sexual content on television was associated with higher odds of teenage pregnancy which finding was similar to that of Lin et al. in Taiwan with mass media exposure increasing the odds of risky sexual behaviour 52. To ensure effective use of mass media campaigns and that appropriate SRH information is passed on, we suggest that information dissemination professionals and other adolescent health practitioners should promote and prioritise pro-health internet sites addressing different adolescent health needs as a health information resource. However, there is need for guided internet access when adolescents use it.

Strengths and limitations
This is the foremost nationwide analysis that explores the association between mass media exposure and teenage pregnancy. Therefore, it can be used as a yardstick and motivation for further studies on related subject matter in order to ensure effective reduction in teenage pregnancies. Secondly, we used a sub-sample from the most current nationally representative data hence the findings are generalisable to all adolescents in Zambia. However, use of cross-sectional data only enables the establishment of associations but not causal relationships and the self-reported answers risked the possibility of recall bias. Besides providing information on use of internet, ZDHS did not collect information on what specific social media sites or content were accessed by those using internet which information would be crucial to analyse. Lastly, the dataset did not include information about the content of mass media that the adolescents were accessing.

Conclusion

A third of adolescents in Zambia were or had been pregnant at the time of the survey which shows that teenage pregnancy is more prevalent in Zambia compared to the African and Sub-Saharan average of 19%. Exposure to newspapers or magazines and internet use were associated with less odds of teenage pregnancy. To ensure effective use of mass media campaigns and that correct SRH information is passed on, we would like to recommend the need for SRH workers to be highly involved in the production of SRH mass media content, encourage and support provision of newspapers/magazines containing SRH sections to adolescents in schools/adolescent health units in health centres and to subsidise internet access costs as a way of increasing access. Further research is needed to understand the effects of other mass media such as social media on adolescent pregnancy.
Socio-economic variables such as older age, engaging in risky sexual behaviour, low wealth index, marriage, knowledge on modern contraceptives and urban residence were significantly associated with teenage pregnancy. Findings show that factors are multidimensional, as they are related to the individual adolescents, household and the community which are beyond the control of adolescents. Multi-sectoral activities across sectors that encourage delayed marriage, contraceptive use, discourage risky sexual behaviour and empower households financially to reduce household poverty with urban areas being more targeted are essential. The Zambian government and the different stakeholders need to ensure that efforts are made to accommodate married and pregnant girls in schools. Having knowledge of any contraceptive method was associated with more odds of teenage pregnancy which could be due to inadequate knowledge, barriers in accessing and using contraceptives, including stigma and discrimination by contraceptive providers hence the need to strengthen the quality of contraceptive counselling, increase access to adolescent friendly health units that can enable adolescents easily access contraceptives. Additionally, the use of qualitative research can provide a better understanding of the complexities of adolescent pregnancy. Since the study participants were already pregnant during the survey, we recommend cohort studies that can further inform policy regarding casual relationships between access to mass media and teenage pregnancy. These studies can be designed to include social media platforms in addition to the traditional mass media.

Acknowledgements We thank the MEASURE DHS program for granting us permission to use the 2018-2019 ZDHS dataset.

Contributors QS was the principal investigator on the project, conceptualised the study, designed the analysis, conducted the analysis and wrote the first draft of the
paper. AAS was involved reviewing the study design, the results and drafting the article. DM was involved in data analysis, presentation and interpretation of the results. DM was involved in reviewing and interpreting the results, and reviewing the manuscript. All the authors reviewed and approved the manuscript. All the authors take responsibility for their contributions.

Funding None was obtained.

Competing interests None declared.

Patient and public involvement The ZDHS did not involve patients. However, before data collection, the different provincial local authorities were contacted and their permission sought. The results of the survey are openly available on the DHS website in a summarised report.

Patient consent for publication Not required.

Data availability statement All data are available from the Demographic and Health Surveys website (URL: https://www.dhsprogram.com/data/available-datasets.cfm) upon registration.

Ethics approval. The 2018-2019 ZDHS protocol was reviewed and approved by the Inner City Fund (ICF) and the Zambia Tropical Diseases Research Centre (TDRC), institutional review boards (IRBs)\(^{12}\). The team ensured that all field activities followed the relevant national and international guidelines and regulations including informed consent. However, ethical approval ID was not provided in the ZDHS survey report.

ORCID

Quraish Sserwanja http://orcid.org/0000-0003-0576-4627

David Mukunya http://orcid.org/0000-0002-3892-9777

Abigail Sitsope Sepenu https://orcid.org/0000-0002-4765-2941
References

1. Wado YD, Sully EA, Mumah JN. Pregnancy and early motherhood among adolescents in five East African countries: a multi-level analysis of risk and protective factors. *BMC pregnancy and childbirth*. 2019;19(1):59-59. doi:10.1186/s12884-019-2204-z

2. Ayanaw Habitu Y, Yalew A, Azale Bisetegn T. Prevalence and Factors Associated with Teenage Pregnancy, Northeast Ethiopia, 2017: A Cross-Sectional Study. *J Pregnancy*. 2018;2018:1714527. doi:10.1155/2018/1714527

3. Mezmur H, Assefa N, Alemayehu T. Teenage Pregnancy and Its Associated Factors in Eastern Ethiopia: A Community-Based Study. *Int J Womens Health*. 2021;13:267-278. https://doi.org/10.2147/IJWH.S287715

4. Shibanuma A, Yeji F, Okawa S, Mahama E, Kikuchi K. The coverage of continuum of care in maternal, newborn and child health: a cross-sectional study of woman-child pairs in Ghana. 2018;3(4):e000786. doi:10.1136/bmjgh-2018-000786

5. Gunawardena N, Fantaye AW, Yaya S. Predictors of pregnancy among young people in sub-Saharan Africa: a systematic review and narrative synthesis. 2019;4(3):e001499. doi:10.1136/bmjgh-2019-001499

6. Sserwanja, Q., & Kawuki, J. (2020). Prevalence of Underweight and Associated Factors among Lactating Women in Ethiopia: A Mini-review. *Journal of Advances in Medicine and Medical Research*, 32(8), 1-9. https://doi.org/10.9734/jammr/2020/v32i830459.

7. Sserwanja Q, Musaba MW, Mukunya D. Prevalence and factors associated with modern contraceptives utilization among female adolescents in Uganda. *BMC Women's Health*. 2021/02/10 2021;21(1):61. doi:10.1186/s12905-021-01206-7

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
8. Mathewos S, Mekuria A. Teenage Pregnancy and Its Associated Factors among School Adolescents of Arba Minch Town, Southern Ethiopia. *Ethiopian journal of health sciences*. May 2018;28(3):287-298. doi:10.4314/ejhs.v28i3.6

9. Zamawe COF, Banda M, Dube AN. The impact of a community driven mass media campaign on the utilisation of maternal health care services in rural Malawi. *BMC pregnancy and childbirth*. Jan 27 2016;16:21. doi:10.1186/s12884-016-0816-0

10. Meekers D, Van Rossem R, Silva M, Koleros A. The reach and effect of radio communication campaigns on condom use in Malawi. *Studies in family planning*. Jun 2007;38(2):113-20. doi:10.1111/j.1728-4465.2007.00122.x

11. UNZA Repository. Young People and The Digital Age: An Investigation of The ‘Sociability’ of Teenagers In Lusaka, 2018. http://dspace.unza.zm/handle/123456789/5277.

12. Zambia Statistics Agency - ZSA, Ministry of Health - MOH, University Teaching Hospital Virology Laboratory - UTH-VL, ICF. *Zambia Demographic and Health Survey 2018*. 2020. https://www.dhsprogram.com/pubs/pdf/FR361/FR361.pdf

13. Sood S, Shefner-Rogers C, Skinner J. Health Communication Campaigns in Developing Countries. *Journal of Creative Communications*. 2014/03/01 2014;9(1):67-84. doi:10.1177/0973258613517440

14. Umeano-Enemuoh JC, Uzochukwu B, Ezumah N, Mangham-Jefferies L, Wiseman V, Onwujeke O. A qualitative study on health workers' and community members' perceived sources, role of information and communication on malaria treatment, prevention and control in southeast Nigeria. *BMC Infect Dis*. Oct 22 2015;15:437. doi:10.1186/s12879-015-1187-2

15. Gupta N, Katende C, Bessinger R. An evaluation of post-campaign knowledge and practices of exclusive breastfeeding in Uganda. *J Health Popul Nutr*. Dec 2004;22(4):429-39.
16. Reijer P, Chalimba M, Nakwagala AA. Malawi goes to scale with anti-AIDS clubs and popular media. *Evaluation and Program Planning*. 2002/11/01/ 2002;25(4):357-363. doi:https://doi.org/10.1016/S0149-7189(02)00047-2

17. Asp G, Odberg Pettersson K, Sandberg J, Kabakyenga J, Agardh A. Associations between mass media exposure and birth preparedness among women in southwestern Uganda: a community-based survey. *Glob Health Action*. 2014;7:22904. doi:10.3402/gha.v7.22904

18. Hornik R, McAnany E. Theories and Evidence: Mass Media Effects and Fertility Change. *Communication Theory*. 2006;11(4):454-471. doi:10.1111/j.1468-2885.2001.tb00253.x

19. Raut MK. Interpersonal communication and contraception: Insights and evidences from Bangladesh demographic and health survey, 2011. *Indian journal of public health*. Jul-Sep 2015;59(3):220-4. doi:10.4103/0019-557x.164666

20. Ajaero CK, Odimegwu C, Ajaero ID, Nwachukwu CA. Access to mass media messages, and use of family planning in Nigeria: a spatio-demographic analysis from the 2013 DHS. *BMC Public Health*. May 24 2016;16:427. doi:10.1186/s12889-016-2979-z

21. Lou C, Cheng Y, Gao E, Zuo X, Emerson MR, Zabin LS. Media's contribution to sexual knowledge, attitudes, and behaviors for adolescents and young adults in three Asian cities. *The Journal of adolescent health : official publication of the Society for Adolescent Medicine*. Mar 2012;50(3 Suppl):S26-36. doi:10.1016/j.jadohealth.2011.12.009

22. Somefun OD, Wandera SO, Odimegwu C. Media Exposure and HIV Testing Among Youth in Sub-Saharan Africa: Evidence From Demographic and Health Surveys (DHS). *SAGE Open*. 2019;9(2):2158244019851551. doi:10.1177/2158244019851551

23. Van Rossem R, Meekers D. The reach and impact of social marketing and reproductive health communication campaigns in Zambia. *BMC Public Health*. 2007/12/18 2007;7(1):352. doi:10.1186/1471-2458-7-352
24. Worku MG, Tessema ZT, Teshale AB, Tesema GA, Yeshaw Y. Prevalence and associated factors of adolescent pregnancy (15–19 years) in East Africa: a multilevel analysis. *BMC pregnancy and childbirth.* 2021/03/26 2021;21(1):253. doi:10.1186/s12884-021-03713-9

25. Sserwanja Q, Mukunya D, Habumugisha T, Mutisya LM, Tuke R, Olal E. Factors associated with undernutrition among 20 to 49 year old women in Uganda: a secondary analysis of the Uganda demographic health survey 2016. *BMC Public Health.* 2020/11/03 2020;20(1):1644. doi:10.1186/s12889-020-09775-2

26. DHS. The DHS program. https://www.dhsprogram.com/.

27. Uwizeye D, Muhayiteto R, Kantarama E, Wiehler S, Murangwa Y. Prevalence of teenage pregnancy and the associated contextual correlates in Rwanda. *Heliyon.* 2020;6(10):e05037-e05037. doi:10.1016/j.heliyon.2020.e05037

28. Ahinkorah BO, Kang M, Perry L, Brooks F, Hayen A. Prevalence of first adolescent pregnancy and its associated factors in sub-Saharan Africa: A multi-country analysis. *PLoS One.* 2021;16(2):e0246308. doi:10.1371/journal.pone.0246308

29. Yakubu I, Salisu WJ. Determinants of adolescent pregnancy in sub-Saharan Africa: a systematic review. *Reprod Health.* Jan 27 2018;15(1):15. doi:10.1186/s12978-018-0460-4

30. Chawla N, Sarkar S. Defining “High-risk Sexual Behavior” in the Context of Substance Use. *Journal of Psychosexual Health.* 2019;1(1):26-31. doi:10.1177/2631831818822015

31. SHRH Africa Trust (SAT). Age of consent: legal review Zambia Country report. https://www.satregional.org/wp-content/uploads/2018/05/Age-of-consent-Zambia.pdf. Accessed December 2020.

32. Farid NDN, Rus SC, Dahlui M, Al-Sadat N, Aziz NA. Predictors of sexual risk behaviour among adolescents from welfare institutions in Malaysia: a cross sectional study. *BMC Public Health.* 2014/11/24 2014;14(3):S9. doi:10.1186/1471-2458-14-S3-S9
33. Adam GK, Elhassan EM, Ahmed AM, Adam I. Maternal and perinatal outcome in teenage pregnancies in Sudan. *International Journal of Gynecology & Obstetrics*. 2009;105(2):170-171.
doi:https://doi.org/10.1016/j.ijgo.2008.11.028

34. Canbaz S, Sunter AT, Cetinoglu CE, Peksen Y. Obstetric outcomes of adolescent pregnancies in Turkey. *Advances in Therapy*. 2005/11/01 2005;22(6):636-641. doi:10.1007/BF02849957

35. Kassa GM, Arowojolu AO, Odukogbe AA, Yalew AW. Prevalence and determinants of adolescent pregnancy in Africa: a systematic review and Meta-analysis. *Reprod Health*. Nov 29 2018;15(1):195.
doi:10.1186/s12978-018-0640-2

36. Nwagwu WE. The Internet as a source of reproductive health information among adolescent girls in an urban city in Nigeria. *BMC Public Health*. 2007/12/20 2007;7(1):354. doi:10.1186/1471-2458-7-354

37. White M, Dorman SM. Receiving social support online: implications for health education. *Health education research*. Dec 2001;16(6):693-707. doi:10.1093/her/16.6.693

38. McKenna KYA, Bargh JA. Plan 9 From Cyberspace: The Implications of the Internet for Personality and Social Psychology. *Personality and Social Psychology Review*. 2000;4(1):57-75.
doi:10.1207/s15327957pspr0401_6

39. Aicken CRH, Estcourt CS, Johnson AM, Sonnenberg P, Wellings K, Mercer CH. Use of the Internet for Sexual Health Among Sexually Experienced Persons Aged 16 to 44 Years: Evidence from a Nationally Representative Survey of the British Population. *J Med Internet Res*. 2016;18(1):e14-e14.
doi:10.2196/jmir.4373

40. Bacchus LJ, Reiss K, Church K, et al. Using Digital Technology for Sexual and Reproductive Health: Are Programs Adequately Considering Risk? *Glob Health Sci Pract*. 2019;7(4):507-514.
doi:10.9745/GHSP-D-19-00239
463 41. Chetty-Mhlanga S, Fuhrimann S, Eeftens M, et al. Different aspects of electronic media use, symptoms and neurocognitive outcomes of children and adolescents in the rural Western Cape region of South Africa. Environmental research. May 2020;184:109315. doi:10.1016/j.envres.2020.109315

466 42. Pfeiffer C, Kleeb M, Mbelwa A, Ahorlu C. The use of social media among adolescents in Dar es Salaam and Mtwara, Tanzania. Reprod Health Matters. May 2014;22(43):178-86. doi:10.1016/s0968-8080(14)43756-x

469 43. Paul S, Singh AB. Coverage of health-related articles in major local newspapers of Manipur. Journal of education and health promotion. 2016;5:3-3. doi:10.4103/2277-9531.184567

471 44. Thin Zaw PP, Liabsuetrakul T, McNeil E, Htay TT. Gender differences in exposure to SRH information and risky sexual debut among poor Myanmar youths. BMC Public Health. Dec 5 2013;13:1122. doi:10.1186/1471-2458-13-1122

474 45. Ahinkorah BO. Predictors of modern contraceptive use among adolescent girls and young women in sub-Saharan Africa: a mixed effects multilevel analysis of data from 29 demographic and health surveys. Contraception and Reproductive Medicine. 2020/11/19 2020;5(1):32. doi:10.1186/s40834-020-00138-1

478 46. Appiah F, Seidu A-A, Ahinkorah BO, Baatiema L, Ameyaw EK. Trends and determinants of contraceptive use among female adolescents in Ghana: Analysis of 2003-2014 Demographic and Health Surveys. SSM - population health. 2020;10:100554-100554. doi:10.1016/j.ssmph.2020.100554

481 47. Lim MS, Vella A, Sacks-Davis R, Hellard ME. Young people's comfort receiving sexual health information via social media and other sources. International journal of STD & AIDS. Dec 2014;25(14):1003-8. doi:10.1177/0956462414527264

484 48. Landry M, Gonzales FA, Wood S, Vyas A. New media use and sexual behavior among Latino adolescents. American journal of health behavior. May 2013;37(3):422-30. doi:10.5993/ajhb.37.3.15
49. Masemola-Yende JP, Mataboge SM. Access to information and decision making on teenage pregnancy prevention by females in Tshwane. *Curationis*. Nov 5 2015;38(2):1540.

doi:10.4102/curationis.v38i2.1540

50. Escobar-Chaves SL, Tortolero SR, Markham CM, Low BJ, Eitel P, Thickstun P. Impact of the media on adolescent sexual attitudes and behaviors. *Pediatrics*. Jul 2005;116(1):303-26.

51. Mercy M. Mugambi KAK, amp. Social Media and Teenage Pregnancy among Students In Secondary Schools In Imenti North Sub-County, Meru County, Kenya. *International Journal of Scientific Research and Management*. 09/24 2016;4(9)

52. Chandra A, Martino SC, Collins RL, et al. Does watching sex on television predict teen pregnancy? Findings from a national longitudinal survey of youth. *Pediatrics*. Nov 2008;122(5):1047-54.

doi:10.1542/peds.2007-3066

Table 1: Background characteristics of adolescents as per 2018 Zambia demographic health survey

Characteristics	N=3000	Percent (%)
Teenage pregnancy		
Yes	897	29.9
No	2103	70.1
Mobile phone use		
Yes	944	31.5
No	2056	68.5
Listening to radio		
Almost every day	386	12.9
At least once a week	499	16.6
Less than once a week	409	13.6
Not at all	1707	56.9
Reading newspaper		
Almost every day	100	3.3
At least once a week	274	9.1
	Count	Percentage
-------------	-------	------------
Watching TV		
Almost every day	808	26.9
At least once a week	296	9.9
Less than once a week	190	6.3
Not at all	1706	56.9
Internet use		
Yes	316	10.5
No	2684	89.5
Household size		
6 and above	2017	67.2
Less than 6	983	32.8
Residence		
Urban	1323	44.1
Rural	1677	55.9
Provinces		
Central	297	9.9
Copper belt	491	16.4
Eastern	342	11.4
Luapula	253	8.4
Lusaka	475	15.8
Muchinga	191	6.4
Northern	248	8.3
North Western	186	6.2
Southern	327	10.9
Western	190	6.3
Working status		
Not working	2477	82.6
Working	523	17.4
Marital status		
Not Married	2563	85.4
Married	437	14.6
Education Level		
Secondary	1618	53.9
Primary Education	1283	42.8
No Education	99	3.3
Wealth Index		
Richest	709	23.6
Richer	655	21.8
Middle	585	19.5
Poorer	541	18.0
Poorest	510	17.0
Age		
15-17	1735	57.8
Table 2: Associations between media exposure and teenage pregnancy among adolescents in Zambia as per ZDHS 2018

Characteristics	Teenage pregnancy n=897	Univariable OR (95%CI)	P-value	Adjusted Model AOR (95% CI)
Mobile phone use				
No	626 (69.8)	1	0.173	
Yes	271 (30.2)	0.92 (0.74-1.15)		1.05 (0.70-1.57)
Listening to radio				
Not at all	583 (65.0)	1	<0.001	1
Less than once a week	97 (10.8)	0.60 (0.45-0.80)		0.78 (0.51-1.20)
Atleast once a week	116 (12.9)	0.59 (0.44-0.78)		0.75 (0.47-1.18)
Almost every day	101 (11.3)	0.68 (0.50-0.94)		0.80 (0.48-1.35)
Reading newspaper				
Not at all	776 (86.5)	1	<0.001	1
Less than once a week	69 (7.7)	0.58 (0.38-0.89)		0.98 (0.57-1.67)
Atleast once a week	45 (5.0)	0.40 (0.27-0.59)		0.73 (0.43-1.25)
Almost every day	7 (0.8)	0.15 (0.07-0.31)		0.33 (0.13-0.82)
Watching TV			<0.001	
Not at all	671 (74.8)	1		1
Less than once a week	55 (6.1)	0.64 (0.44-0.93)		1.19 (0.58-2.44)
Atleast once a week	62 (6.9)	0.41 (0.25-0.68)		0.90 (0.48-1.68)
Almost every day	109 (12.2)	0.24 (0.17-0.35)		1.13 (0.55-2.31)
Internet use				
No	860 (95.9)	1	<0.001	1
Yes	37 (4.1)	0.28(0.19-0.42)		0.54 (0.30-0.95)
Age			<0.001	

Sex of Household Head
- Male: 2166 (72.2)
- Female: 834 (27.8)

Risky sexual behavior
- No: 1647 (54.9)
- Yes: 1353 (45.1)

Knowledge of any modern contraceptive
- Yes: 2845 (94.8)
- No: 155 (5.2)
Residence

Group	Count	95% CI	\(p \)-value	
Rural	637 (71.0)	4.40 (3.62-5.36)	<0.001	
Urban	260 (29.0)	0.40 (0.30-0.53)	1.64 (1.07-2.50)	<0.001

Marital status

Group	Count	95% CI	\(p \)-value	
Not Married	502 (56.0)	37.93 (26.72-53.85)	12.67 (7.90-20.30)	<0.001
Married	395 (44.0)	7.75 (5.06-11.86)	4.54 (1.99-10.39)	<0.001

Wealth Index

Group	Count	95% CI	\(p \)-value	
Richest	54 (6.0)	4.51 (2.82-7.23)	2.27 (1.19-4.33)	<0.001
Richer	178 (19.8)	7.05 (4.59-10.82)	4.03 (1.86-8.75)	<0.001
Middle	215 (24.0)	7.75 (5.06-11.86)	4.54 (1.99-10.39)	<0.001
Poorer	211 (23.5)	10.74 (6.99-16.50)	6.70 (2.76-16.24)	<0.001
Poorest	239 (26.6)	10.74 (6.99-16.50)	6.70 (2.76-16.24)	<0.001

Risky sexual behavior

Group	Count	95% CI	\(p \)-value	
No	61 (6.8)	0.79 (0.65-0.98)	1.03 (0.76-1.41)	<0.001
Yes	836 (93.2)	42.30 (30.87-57.98)	26.31 (19.58-35.36)	<0.001

Sex of household head

Group	Count	95% CI	\(p \)-value	
Male	676 (75.4)	0.79 (0.65-0.98)	1.03 (0.76-1.41)	0.028
Female	221 (24.6)	2.35 (1.48-3.74)	0.74 (0.32-1.71)	<0.001

Provinces

Province	Count	95% CI	\(p \)-value	
Western	82 (9.1)	1.02 (0.62-1.67)	1.67 (0.85-3.29)	0.028
Southern	142 (15.8)	0.73 (0.49-1.09)	0.67 (0.40-1.12)	<0.001
North Western	67 (7.5)	0.47 (0.32-0.70)	0.67 (0.32-1.41)	<0.001
North	66 (7.4)	0.55 (0.36-0.84)	0.72 (0.36-1.45)	0.028
Muchinga	56 (6.2)	0.23 (0.14-0.38)	0.86 (0.42-1.76)	<0.001
Luanshya	71 (7.9)	0.58 (0.39-0.85)	0.81 (0.48-1.38)	<0.001
Luapula	77 (8.6)	0.58 (0.39-0.85)	0.81 (0.48-1.38)	<0.001
Eastern	138 (15.4)	0.89 (0.61-1.28)	0.96 (0.56-1.64)	<0.001
Copperbelt	104 (11.6)	0.35 (0.23-0.53)	1.66 (0.90-3.06)	<0.001
Central	94 (10.5)	0.61 (0.42-0.88)	1.16 (0.68-1.98)	<0.001

Working status

Status	Count	95% CI	\(p \)-value	
Not working	632 (70.5)	2.98 (2.44-3.66)	1.39 (0.97-1.99)	<0.001
Working	265 (29.5)	0.23 (0.14-0.38)	0.86 (0.42-1.76)	<0.001

Education Level

Level	Count	95% CI	\(p \)-value	
Post-Primary	380 (42.3)	1.92 (1.54-2.40)	0.90 (0.63-1.28)	<0.001
Primary Education	476 (53.1)	2.35 (1.48-3.74)	0.74 (0.32-1.71)	<0.001
No Education	41 (4.6)	1.82 (1.44-2.28)	0.71 (0.50-1.01)	<0.001

Household size

Size	Count	95% CI	\(p \)-value	
Six and above	518 (57.7)	0.17 (0.08-0.36)	0.26 (0.08-0.80)	<0.001
Less than 6	379 (42.3)	0.17 (0.08-0.36)	0.26 (0.08-0.80)	<0.001

Knowledge of any modern contraception

Status	Count	95% CI	\(p \)-value	
Yes	886 (98.8)	0.17 (0.08-0.36)	0.26 (0.08-0.80)	<0.001
No	11 (1.2)	0.17 (0.08-0.36)	0.26 (0.08-0.80)	<0.001
Bold significant at p-value less than 0.05
STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

Item No	Recommendation	Page No
Title and abstract		
1	(a) Indicate the study’s design with a commonly used term in the title or the abstract	1
2	(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction		
2	Explain the scientific background and rationale for the investigation being reported	3-5
Objectives		
3	State specific objectives, including any prespecified hypotheses	5
Methods		
4	Present key elements of study design early in the paper	6
5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6
6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	5-6
7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6,7
8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7
9	Describe any efforts to address potential sources of bias	8
10	Explain how the study size was arrived at	6
11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7,8
Statistical methods		
12	(a) Describe all statistical methods, including those used to control for confounding	8
	(b) Describe any methods used to examine subgroups and interactions	8
	(c) Explain how missing data were addressed	NA
	(d) If applicable, describe analytical methods taking account of sampling strategy	7,8
	(g) Describe any sensitivity analyses	NA
Results		
13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed	6
	(b) Give reasons for non-participation at each stage	6
	(c) Consider use of a flow diagram	NA
14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	8-9
	(b) Indicate number of participants with missing data for each variable of interest	NA
Outcome data		
15*	Report numbers of outcome events or summary measures	8
Main results		
16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included	9-10
(b) Report category boundaries when continuous variables were categorized

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period

| Other analyses | 17 | Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses | NA |

Discussion

Key results	18	Summarise key results with reference to study objectives	10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	14
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	10-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	14

Other information

| Funding | 22 | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based | NA |

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.
Access to mass media and teenage pregnancy among adolescents in Zambia: a national cross-sectional survey

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-052684.R2
Article Type:	Original research
Date Submitted by the Author:	29-May-2022
Complete List of Authors:	Sserwanja, Quraish; GOAL Ireland, Programs Department Sepenu, Abigail ; Swedish Organization for Global Health Mwamba, Daniel; Center for Infectious Disease Research in Zambia, Programs Department Mukunya, David ; Busitema University, Department of Public Health; Sanyu Africa Research Institute
Primary Subject Heading:	Obstetrics and gynaecology
Secondary Subject Heading:	Obstetrics and gynaecology, Reproductive medicine
Keywords:	Epidemiology < TROPICAL MEDICINE, MEDICAL JOURNALISM, PUBLIC HEALTH
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Access to mass media and teenage pregnancy among adolescents in Zambia: a national cross-sectional survey

Quraish Sserwanja1, Abigail S. Sepenu2, Daniel Mwamba3, David Mukunya4,5

1Programs Department, GOAL, Khartoum, Sudan

Email: qura661@gmail.com

2Maternal and Child Health Project, Swedish Organization for Global Health, Mayuge, Uganda

Email: bebepesepenu@gmail.com

3Programs Department, Centre for Infectious Disease Research, Lusaka, Zambia

Email: daniel.mwamba@cidrz.org/mwambalonga@gmail.com

4Department of Public Health, Busitema University, Mbale, Uganda

Email: zebdaevd@gmail.com

5Busoga Health Forum, Jinja, Uganda

Email: zebdaevd@gmail.com

*Corresponding author

GOAL

Arkaweet Block 65 House No. 227

Khartoum, Sudan

Tel: +256782295939/+249900933232

Email: qura661@gmail.com/ qsserwanja@sd.goal.ie
Abstract

Objective: Teenage pregnancies and childbirths are associated with negative health outcomes. Access to health information enables adolescents to make appropriate decisions. However, the relationship between access to health information through mass media and teenage pregnancy has not received much attention in existing literature. We therefore examined the association between access to mass media and teenage pregnancy in Zambia.

Design: Cross-sectional

Setting: Zambia.

Participants: Weighted sample of 3000 adolescents aged 15-19 years

Outcome measure: Teenage pregnancy that included adolescents who were currently pregnant or had had an abortion or had given birth in the last five years preceding the survey.

Results: Out of 3000 adolescents, 897 (29.9%, 95% CI: 28.1-31.3) were pregnant or had ever been pregnant. Majority of the adolescents resided in rural areas (55.9%) and had a secondary education (53.6%). Adolescents who had exposure to internet, newspapers or magazines, radio and television were 10.5%, 22.6%, 43.1% and 43.1% respectively. Adolescents who had daily access to newspapers or magazines (AOR:0.33, 95% CI: 0.13-0.82) or using internet (AOR:0.54, 95% CI: 0.30-0.95) were less likely to be pregnant or to have had a pregnancy compared to those with no access to newspapers and internet respectively.

Conclusion: Our study suggests that internet use and reading of newspapers or magazines may trigger behavioral change as an effective approach to reducing teenage pregnancy. Behavioral change communicators can implement mass media campaigns using newspapers, magazines and
the internet to publicise adolescent health messages that can encourage adolescents to adopt healthy behaviours and prevent teenage pregnancies.

Strengths and limitations of the study

- This is the foremost nationwide analysis that explores the association between mass media exposure and teenage pregnancy.
- The study used a sub-sample of adolescents from the latest nationally representative sample, making the findings generalisable for Zambian female adolescents.
- The temporal relationship between the outcome variable and the independent variables could not be established due to the cross-sectional nature of the survey.
- ZDHS did not collect information on what social media sites and content of information were accessed by those using internet.

Introduction

Globally, over 16 million girls aged 15 to 19 years give birth each year, contributing nearly 11% of all births worldwide. At least 90% of these births occur in low and middle-income countries and sub-Saharan Africa has among the highest prevalence of teenage pregnancy globally. Teenage pregnancies and childbirths are associated with negative maternal and perinatal health outcomes such as preterm delivery, low birth weight and death. Teenage pregnancy is further associated with social problems such as school dropouts which prevents the affected teenagers from achieving their full social and economic potential. Children born to adolescents are more likely to have lower school achievement and drop out of high school.

In low-and-middle-income countries (LMIC), limited access to sexual and reproductive health information, especially among adolescents undermines efforts to bring health care services closer
to the people which further negatively affects progress towards universal health coverage 9-11.

Although Zambia has registered an increase in the use of mass media among the young population through initiatives such as information communication technology (ICT) clubs in schools and the integration of ICTs into the education curriculum 12, there are still challenges of low access. Only 24.4% and 3.8% of women in urban and rural areas respectively reported ever using internet and 46% of all women have no weekly access to the three traditional mass media channels (radio, television and newspapers) 13.

Mass media has been acknowledged globally as a cost-effective communication channel 9, 14 and it has been used successfully in various health programmes in low and middle income countries (LMIC) 9, 10, 15-18. However, there is also some documented evidence of inconsistent outcomes of mass media campaigns, 9, 19 and some authors have argued that the effects observed are short term 20 10, 21. Furthermore, mass media is among the strategies used to promote utilisation of family planning through increased awareness, sensitization and debunking of myths leading to a desired behavioral change 22. Lou et al. analysed data from three Asian countries and reported that access to and use of mass media has an influence on sexual intercourse-related knowledge, attitudes, and behaviors of adolescents and young adults 23. Although the association between mass media exposure and teenage pregnancy has not been studied in Zambia, some studies have examined the association of mass media and sexual reproductive health among the youth. Using demographic health survey (DHS) data of three countries (Kenya, Nigeria, and Zambia), Somefun et al. analysed influence of media exposure on human immunodeficiency virus (HIV) testing among the youth and documented a positive association between exposure to mass media and HIV testing 24. Van Rossem et al. also analysed data from Zambia Demographic and Health Survey (ZDHS) 2002 and reported that exposure to family planning and HIV radio and television
programmes was associated with higher odds of using condoms for both men and women. Worku et al. analysed East African countries’ DHS data to assess prevalence and associated factors of teenage pregnancy in the region and further documented exposure to mass media to be associated with less odds of teenage pregnancy. However, Worku et al. did not focus on mass media as main exposure but combined mass media as one variable making it impossible to examine the association of the different mass media with teenage pregnancy.

Despite the global efforts employed in promoting interventions against teenage pregnancy such as uptake of family planning, the progress is slow. In Zambia, 13% and 2.2% of adolescents have sexual intercourse and are married before age 15 respectively. The low contraceptive prevalence rate in this age group, puts Zambian adolescents at an increased risk of teenage pregnancies. Given the documented increase in the use of mass media among the young Zambians, we aimed to examine the association between access to mass media and teenage pregnancy in Zambia. The study also examined the association between other socio-economic variables and access to mass media and teenage pregnancy using data from the 2018-2019 Zambia demographic and health survey (ZDHS). The findings will be crucial in identifying ways of reducing teenage pregnancies by increasing mass media exposure and the effectiveness of other socio-economic characteristics.

Methods

Data

The 2018-2019 ZDHS data were used to examine the association between mass media exposure and teenage pregnancy using a subsample of adolescents aged 15–19 years. The 2018-2019
ZDHS data were collected between 18th July 2018 and 24th January 2019. The ZDHS are nationally representative and conducted every five years to monitor and evaluate population, health and nutrition indicators in low and middle income countries. The data used for this study were collected using the women’s questionnaire in which information on individuals, household characteristics, nutrition and reproductive health history of women of reproductive age (15–49 years) was captured. Standardized sampling procedures are employed with a two-stage stratified method that resulted in the random selection of a representative sample of 13,625 households. “The first stage involved 545 cluster (sample points) selection which consisted of enumeration areas (EAs) using a sampling frame that was used during the 2010 census of population and housing (CPH)” The EAs in the first stage were selected with a probability proportional to their size within each sampling stratum with the second stage having household selection using systematic sampling. Our secondary analysis included only adolescents aged 15 to 19 years. A total of 13,683 women aged 15-49 years in the sampled households who consented to participate in the survey were interviewed. Of the 13,683 women, 10,683 were aged 20-49 years hence our secondary analysis included a weighted sample of 3,000 adolescents aged 15-19 years. A detailed description of the sampling process can be obtained in the 2018-2019 ZDHS report at the DHS program website.

Variables

Outcome variable

The outcome variable was teenage pregnancy that included adolescents who were currently pregnant or had an abortion or had given birth in the last five years preceding the survey and coded as one (1) and zero (0) for those who had never had a pregnancy.
Exposures

Adolescents were asked whether they use the internet (yes or no), own a mobile phone (yes or no), read a newspaper or magazine, listen to radio or watch television (TV) (almost every day, at least once a week, less than once a week or not at all).

Covariates

We included determinants of teenage pregnancy basing on available literature and data. Eleven variables were considered and of these, two were community level factors that included; place of residence (rural and urban), and the ten provinces of Zambia. Three household level factors included; household size (less than six and six and above), sex of household head (male and female), and wealth index that was categorized into quintiles that ranged from the poorest to the richest quintile. Six individual level factors that included; age (15 to 17 and 18 to 19), working status (yes and no), marital status (married including those legally and not legally married but living with their partnerships and not married including those divorced, separated and widowed), education level (no education, primary and post-primary (tertiary only had two adolescents so it was combined with secondary), knowledge of any modern contraceptive (yes and no) and engaging in risky sexual behaviour (yes and no). Adolescents were considered to have engaged in ‘risky sexual behavior’ if they reported to have engaged in sex with more than one partner or had transactional sex or had inconsistent condom use or had alcohol consumption at last sexual intercourse or had sexual intercourse before age 16.

Data analysis

Analysis was conducted using SPSS version 25.0 statistical software’s complex sample function in order to account for the multi-stage cluster study design. Proportions and frequencies were
tabulated for all the independent variables. To assess the association of each independent variable with teenage pregnancy, bivariable logistic regression was conducted and we presented crude odds ratio (COR), 95% confidence interval (CI) and p-values. Multivariable logistic regression was conducted with mass media and other sociodemographic independent variables with a p-value < 0.25 at bivariable level. Adjusted odds ratios (AOR), 95% CI and p-values were calculated with statistical significance level set at p-value < 0.05. All variables in the model were assessed for collinearity, which was considered present if the variables had a variance inflation factor (VIF) greater than 5. To ensure validity of our study findings, sampling weights provided by ZDHS were used. Supplementary file 1 shows the STROBE checklist.

Patient and public involvement

The ZDHS did not involve patients. However, before data collection, the different provincial local authorities were contacted, and their permission sought. The results of the 2018-2019 ZDHS are openly available to the public on the DHS website (https://www.dhsprogram.com/).

Ethics approval

The 2018-2019 ZDHS protocol was reviewed and approved by the Inner City Fund (ICF) and the Zambia Tropical Diseases Research Centre (TDRC), institutional review boards (IRBs). The team ensured that all field activities followed the relevant national and international guidelines and regulations including informed consent. However, ethical approval ID was not provided in the ZDHS survey report.

Results

Sociodemographic characteristics of study population
Out of 3000 adolescents, 897 (29.9% 95% CI: 28.1-31.3) were pregnant or had ever been pregnant. The mean age of adolescents was 17.0 (standard deviation (SD) 1.4) years. Majority of the adolescents resided in rural areas (55.9%), were not working (82.6%), not married (85.4%), had post-primary education (53.9%), and were aged between 15 to 17 years (57.8%). More detailed characteristics of study participants are shown in Table 1.

Mass media use

Majority of the adolescents have no exposure to internet (89.5%), newspapers (77.5%), radio (56.9%) or TV (56.9%). Exposure to newspapers/magazines was the lowest at 22.5% of which only 3.3% had exposure almost every day. Although exposure to radio and television both are at 43.1%, being exposed to television almost every day is at 26.9% compared to 12.9% for being exposed to radio almost every day.

Associations between access to mass media and teenage pregnancy

Results from multivariable logistic regression (Table 2) showed that exposure to newspapers or magazines and internet use were significantly associated with teenage pregnancy. Adolescents who had daily exposure to newspapers or magazines (AOR: 0.33, 95% CI: 0.13-0.82), using internet (AOR: 0.54, 95% CI: 0.30-0.95), had less odds of being pregnant or have had a pregnancy compared to those with no exposure to newspapers and internet respectively. Other socio-economic variables such as engaging in risky sexual behaviour, age, wealth quintiles, marital status, knowledge of modern contraceptives and residence were significantly associated with teenage pregnancy. Adolescents without knowledge of any modern contraceptive
(AOR: 0.26, 95% CI: 0.08-0.80) had less odds of being pregnant compared to those with knowledge of any modern contraceptive. Adolescents aged 18-19 years (AOR: 3.22, 95% CI: 2.44-4.25), residing in urban areas (AOR: 1.64, 95% CI: 1.07-2.50), married (AOR: 12.67, 95% CI: 7.90-20.30), belonging to the poorest wealth quintile (AOR: 6.70, 95% CI: 2.76-16.24), and engaging in risky sexual behaviour (AOR: 26.31, 95% CI: 19.58-35.36) were associated with higher odds of being pregnant or have had a pregnancy compared to those aged 15-17, in rural areas, not married, in the wealthiest quintile and not engaging in risky sexual behaviour respectively.

Discussion

This study assessed the association between exposure to mass media and teenage pregnancy in Zambia. Majority of the adolescents have no exposure to internet (89.5%), newspapers (77.5%), radio (56.9%) or TV (56.9%). The prevalence of teenage pregnancy in Zambia was 29.9% (95% CI: 28.1-31.3) similar to that of studies conducted in Sudan (31%), Ethiopia, (28.6%), and Turkey (29%)\(^2, 35, 36\). However, our study found a higher prevalence compared to the overall pooled prevalence of adolescent pregnancy in Africa (18.8%), East Africa (21.5%), and Latin America (6.4%) as shown by a systematic review by Kassa et al.\(^37\). The differences in accessibility of modern contraceptives, societal attitude towards the adolescent contraceptive use and knowledge of adolescents of the SRH issues could possibly explain the observed higher prevalence in Zambia. Among the mass media variables, exposure to newspapers/magazines and internet were the significant ones and these were associated with less odds of teenage pregnancy.
Internet use was associated with less likelihood of teenage pregnancy. It is a popular observation that parents in most African communities rarely communicate about reproductive health with their children hence, adolescents tend to rely on informal sources for information about their sexuality. Furthermore, traditional sexual education in Zambia deprive women of any bargaining power and hence the use of condom, frequency of sexual intercourse and practices are decided by the male partner. Different internet resources such as web pages, social media platforms, bulletin boards, and chatrooms may contain health information and provide access to information for a potentially large number of adolescents. Internet enables adolescents to have a high degree of interactivity, offers an anonymous, confidential and easily accessible space to find sensitive information about their sexuality. Internet enables adolescents to explore sensitive topics online while ensuring their privacy is protected. Besides being a source of health information that aids in sexual health promotion, contraceptive literacy and individual adolescent counseling via Web chat, internet can as well be used to purchase contraceptives.

Since most health programmes use mainstream mass media, the content of these mainstream media can be improved and be made available on various social media platforms such as Facebook and on different websites by those using the internet. Social media platform access by adolescents is on the rise and we recommend further studies to look at the effect of social media platforms on teenage pregnancy. Adolescents who had almost daily access to newspapers or magazines were less likely to have had a teenage pregnancy compared to those without any access to newspapers or magazines. Newspapers or magazines are usually printed in many languages which enables a wide readership represent a time-honored means of disseminating printed information. They can contribute maximally to adolescent health education by publishing articles on diverse issues. This exposure enables adolescents to have greater access
to sexual and reproductive health (SRH) information which empowers them and enables them to make positive SRH decisions and also become aware of availability of the different SRH services including family planning 30,46. The culture of reading is not particularly common in many African communities. There is, therefore, the possibility that adolescents who read newspapers and magazines are academically inclined or focused on their studies. Such adolescents would rarely indulge in risky sexual behaviours. Studies have documented that exposure to mass media is associated with increased utilisation of modern contraceptives 9,22,47,48 as mass media is likely to lead to exposure to family planning messages capable of challenging negative attitudes to contraceptives 47.

The observed association between watching TV and listening to radio with teenage pregnancy at bivariate analysis level was lost when socio-economic variables were included during multivariable analysis. This indicates that socio-economic variables have an influence on teenage pregnancy by affecting how these mass media messages are received or accessed, utilised and interpreted by respondents. This finding is in agreement with other studies conducted in similar contexts 22. Lim et al. showed that mainstream media such as TV and radio were the least comfort source of SRH information for adolescents and internet was the most comfortable source 49. The non-significance observed with watching TV and listening to radio could be partly attributed to; media messages not addressing cultural and practical barriers to behaviour change, limited involvement of adolescent peers and role models who can easily influence the adolescents as they easily relate to them and limited engagement of local people or communities to ensure context specific and epidemiologically appropriate SRH messages 9. Furthermore, the SRH information provided by radio and TVs may increase awareness and sensitization 18 but fail
to motivate adolescents to behavioral change hence the need to focus on behavioural change in
the communities 21.

However, as much as exposure to media has been suggested to be effective in disseminating
SRH information, some studies have shown increased engagement in risky sexual behaviour
depending on the content being broadcasted hence the need to regulate internet and mass media
use 30, 50. Different studies examined the effects of mass media on adolescent sexual behavior
have shown that exposure to media has influences on their sexual behavior which could be
positive or negative depending on the content 1, 51, 52 and in some contexts, non-significant 21.

Mercy et al. analysed association between social media and teenage Pregnancy among secondary
school Students in Kenya and documented high access to social networking sites and this
contributed to increased teenage pregnancy prevalence since most of the students accessed
sexually explicit content and less of directed academic information 53. Chandra et al. further
showed that without control of content, accessing sexual content on television was associated
with higher odds of teenage pregnancy which finding was similar to that of Lin et al. in Taiwan
with mass media exposure increasing the odds of risky sexual behaviour 54. To ensure effective
use of mass media campaigns and that appropriate SRH information is passed on, we suggest
that information dissemination professionals and other adolescent health practitioners should
promote and prioritise pro-health internet sites addressing different adolescent health needs as a
health information resource. However, there is need for guided internet access when adolescents
use it.

Strengths and limitations
This is the foremost nationwide analysis that explores the association between mass media exposure and teenage pregnancy. Therefore, it can be used as a yardstick and motivation for further studies on related subject matter in order to ensure effective reduction in teenage pregnancies. Secondly, we used a sub-sample from the most current nationally representative data hence the findings are generalisable to all adolescents in Zambia. However, use of cross-sectional data only enables the establishment of associations but not causal relationships and the self-reported answers risked the possibility of recall bias. Besides providing information on use of internet, ZDHS did not collect information on what specific social media sites or content were accessed by those using internet which information would be crucial to analyse. Lastly, the dataset did not include information about the content of mass media that the adolescents were accessing.

Conclusion

A third of adolescents in Zambia were or had been pregnant at the time of the survey which shows that teenage pregnancy is more prevalent in Zambia compared to the African and Sub-Saharan average of 19%. Exposure to newspapers or magazines and internet use were associated with less odds of teenage pregnancy. To ensure effective use of mass media campaigns and that correct SRH information is passed on, we would like to recommend the need for SRH workers to be highly involved in the production of SRH mass media content, encourage and support provision of newspapers/magazines containing SRH sections to adolescents in schools/adolescent health units in health centres and to subsidise internet access costs as a way of increasing access. Further research is needed to understand the effects of other mass media such as social media on adolescent pregnancy.
Socio-economic variables such as older age, engaging in risky sexual behaviour, low wealth index, marriage, knowledge on modern contraceptives and urban residence were significantly associated with teenage pregnancy. Findings show that factors are multidimensional, as they are related to the individual adolescents, household and the community which are beyond the control of adolescents. Multi-sectoral activities across sectors that encourage delayed marriage, contraceptive use, discourage risky sexual behaviour and empower households financially to reduce household poverty with urban areas being more targeted are essential. The Zambian government and the different stakeholders need to ensure that efforts are made to accommodate married and pregnant girls in schools. Having knowledge of any contraceptive method was associated with more odds of teenage pregnancy which could be due to inadequate knowledge, barriers in accessing and using contraceptives, including stigma and discrimination by contraceptive providers hence the need to strengthen the quality of contraceptive counselling, increase access to adolescent friendly health units that can enable adolescents easily access contraceptives. Additionally, the use of qualitative research can provide a better understanding of the complexities of adolescent pregnancy. Since the study participants were already pregnant during the survey, we recommend cohort studies that can further inform policy regarding casual relationships between access to mass media and teenage pregnancy. These studies can be designed to include social media platforms in addition to the traditional mass media.

Acknowledgements We thank the MEASURE DHS program for granting us permission to use the 2018-2019 ZDHS dataset.

Contributors QS was the principal investigator on the project, conceptualised the study, designed the analysis, conducted the analysis and wrote the first draft of the
paper. AAS was involved reviewing the study design, the results and drafting the article. DM was involved in data analysis, presentation and interpretation of the results. DM was involved in reviewing and interpreting the results, and reviewing the manuscript. All the authors reviewed and approved the manuscript. All the authors take responsibility for their contributions.

Funding None was obtained.

Competing interests None declared.

Patient and public involvement The ZDHS did not involve patients. However, before data collection, the different provincial local authorities were contacted and their permission sought. The results of the survey are openly available on the DHS website in a summarised report.

Patient consent for publication Not required.

Data availability statement All data are available from the Demographic and Health Surveys website (URL: https://www.dhsprogram.com/data/available-datasets.cfm) upon registration.

Ethics approval. The 2018-2019 ZDHS protocol was reviewed and approved by the Inner City Fund (ICF) and the Zambia Tropical Diseases Research Centre (TDRC), institutional review boards (IRBs)13. The team ensured that all field activities followed the relevant national and international guidelines and regulations including informed consent. However, ethical approval ID was not provided in the ZDHS survey report.

ORCID

Quraish Sserwanja http://orcid.org/0000-0003-0576-4627

David Mukunya http://orcid.org/0000-0002-3892-9777

Abigail Sitsope Sepenu https://orcid.org/0000-0002-4765-2941
References

1. Wado YD, Sully EA, Mumah JN. Pregnancy and early motherhood among adolescents in five East African countries: a multi-level analysis of risk and protective factors. *BMC pregnancy and childbirth*. 2019;19(1):59-59. doi:10.1186/s12884-019-2204-z

2. Ayanaw Habitu Y, Yalew A, Azale Bisetegn T. Prevalence and Factors Associated with Teenage Pregnancy, Northeast Ethiopia, 2017: A Cross-Sectional Study. *J Pregnancy*. 2018;2018:1714527. doi:10.1155/2018/1714527

3. Mezmur H, Assefa N, Alemayehu T. Teenage Pregnancy and Its Associated Factors in Eastern Ethiopia: A Community-Based Study. *Int J Womens Health*. 2021;13:267-278 https://doi.org/10.2147/IIWH.S287715.

4. Shibanuma A, Yeji F, Okawa S, Mahama E, Kikuchi K. The coverage of continuum of care in maternal, newborn and child health: a cross-sectional study of woman-child pairs in Ghana. 2018;3(4):e000786. doi:10.1136/bmjgh-2018-000786

5. Gunawardena N, Fantaye AW, Yaya S. Predictors of pregnancy among young people in sub-Saharan Africa: a systematic review and narrative synthesis. 2019;4(3):e001499. doi:10.1136/bmjgh-2019-001499

6. Sserwanja Q, Kawuki, J. (2020). Prevalence of Underweight and Associated Factors among Lactating Women in Ethiopia: A Mini-review. *Journal of Advances in Medicine and Medical Research*, 32(8), 1-9. https://doi.org/10.9734/jammr/2020/v32i830459.

7. Sserwanja Q, Musaba MW, Mukunya D. Prevalence and factors associated with modern contraceptives utilization among female adolescents in Uganda. *BMC Women's Health*. 2021/02/10 2021;21(1):61. doi:10.1186/s12905-021-01206-7

8. Mathewos S, Mekuria A. Teenage Pregnancy and Its Associated Factors among School Adolescents of Arba Minch Town, Southern Ethiopia. *Ethiopian journal of health sciences*. May 2018;28(3):287-298. doi:10.4314/ehjs.v28i3.6

9. Zamawe COF, Banda M, Dube AN. The impact of a community driven mass media campaign on the utilisation of maternal health care services in rural Malawi. *BMC pregnancy and childbirth*. Jan 27 2016;16:21. doi:10.1186/s12884-016-0816-0

10. Meekers D, Van Rossem R, Silva M, Koleros A. The reach and effect of radio communication campaigns on condom use in Malawi. *Studies in family planning*. Jun 2007;38(2):113-20. doi:10.1111/j.1782-4466.2007.00122.x

11. Sserwanja Q, Mukunya D, Nabachenje P, et al. Continuum of care for maternal health in Uganda: A national cross-sectional study. *PloS One*. 2022;17(2):e0264190. doi:10.1371/journal.pone.0264190

12. UNZA Repository. Young People and The Digital Age: An Investigation of The ‘Sociability’ of Teenagers In Lusaka, 2018. http://dspace.unza.zm/handle/123456789/5277.

13. Zambia Statistics Agency - ZSA, Ministry of Health - MOH, University Teaching Hospital Virology Laboratory - UTH-VL, ICF. *Zambia Demographic and Health Survey 2018*. 2020. https://www.dhsprogram.com/pubs/pdf/FR361/FR361.pdf

14. Sood S, Shefner-Rogers C, Skinner J. Health Communication Campaigns in Developing Countries. *Journal of Creative Communications*. 2014/03/01 2014;9(1):67-84. doi:10.1177/0973258613517440

15. Umeano-Enemuoh JC, Uzochukwu B, Ezumah N, Mangham-Jeffries L, Wiseman V, Onwujekwe O. A qualitative study on health workers’ and community members’ perceived sources, role of information and communication on malaria treatment, prevention and control in southeast Nigeria. *BMC Infect Dis*. Oct 22 2015;15:437. doi:10.1186/s12879-015-1187-2

16. Gupta N, Katende C, Bessinger R. An evaluation of post-campaign knowledge and practices of exclusive breastfeeding in Uganda. *J Health Popul Nutr*. Dec 2004;22(4):429-39.
17. Reijer P, Chalimba M, Nakwagala AA. Malawi goes to scale with anti-AIDS clubs and popular media. *Evaluation and Program Planning*. 2002/11/01/ 2002;25(4):357-363. doi:https://doi.org/10.1016/S0149-7189(02)00047-2

18. Sserwanja Q, Musaba MW, Mutisya LM, Olal E, Mukunya D. Continuum of maternity care in Zambia: a national representative survey. *BMC pregnancy and childbirth*. 2021/09/05 2021;21(1):604. doi:10.1186/s12884-021-04080-1

19. Asp G, Odberg Pettersson K, Sandberg J, Kabakyenga J, Agardh A. Associations between mass media exposure and birth preparedness among women in southwestern Uganda: a community-based survey. *Glob Health Action*. 2014;7:22904. doi:10.3402/gha.v7.22904

20. Hornik R, McAnany E. Theories and Evidence: Mass Media Effects and Fertility Change. *Communication Theory*. 2006;11(4):454-471. doi:10.1111/j.1468-2885.2001.tb00253.x

21. Raut MK. Interpersonal communication and contraception: Insights and evidences from Bangladesh demographic and health survey, 2011. *Indian journal of public health*. Jul-Sep 2015;59(3):220-4. doi:10.4103/0019-557x.164666

22. Ajaero CK, Odimegwu C, Ajaero ID, Nwachukwu CA. Access to mass media messages, and use of family planning in Nigeria: a spatio-demographic analysis from the 2013 DHS. *BMC Public Health*. May 24 2016;16:427. doi:10.1186/s12889-016-2979-z

23. Lou C, Cheng Y, Gao E, Zuo X, Emerson MR, Zabin LS. Media's contribution to sexual knowledge, attitudes, and behaviors for adolescents and young adults in three Asian cities. *The Journal of adolescent health: official publication of the Society for Adolescent Medicine*. Mar 2012;50(3 Suppl):S26-36. doi:10.1016/j.jadohealth.2011.12.009

24. Somefun OD, Wandera SO, Odimegwu C. Media Exposure and HIV Testing Among Youth in Sub-Saharan Africa: Evidence From Demographic and Health Surveys (DHS). *SAGE Open*. 2019;9(2):e05037-e05037. doi:10.1177/2158244019851551

25. Van Rossem R, Meekers D. The reach and impact of social marketing and reproductive health communication campaigns in Zambia. *BMC Public Health*. 2007/12/18 2007;7(1):352. doi:10.1186/1471-2458-7-352

26. Worku MG, Tessema ZT, Teshale AB, Tesema GA, Yeshaw Y. Prevalence and associated factors of adolescent pregnancy (15–19 years) in East Africa: a multilevel analysis. *BMC pregnancy and childbirth*. 2021/03/26 2021;21(1):253. doi:10.1186/s12884-021-03713-9

27. Sserwanja Q, Mukunya D, Habumugisha T, Mutisya LM, Tuke R, Olal E. Factors associated with undernutrition among 20 to 49 year old women in Uganda: a secondary analysis of the Uganda demographic health survey 2016. *BMC Public Health*. 2020/11/03 2020;20(1):1644. doi:10.1186/s12889-020-09775-2

28. DHS. The DHS program. https://www.dhsprogram.com/.

29. Uwizeye D, Muhayiteto R, Kantarama E, Wiehler S, Murangwa Y. Prevalence of teenage pregnancy and the associated contextual correlates in Rwanda. *Heliyon*. 2020;6(10):e05037-e05037. doi:10.1016/j.heliyon.2020.e05037

30. Ahinkorah BO, Kang M, Perry L, Brooks F, Hayen A. Prevalence of first adolescent pregnancy and its associated factors in sub-Saharan Africa: A multi-country analysis. *PLoS One*. 2021;16(2):e0246308. doi:10.1371/journal.pone.0246308

31. Yakubu I, Salisu WJ. Determinants of adolescent pregnancy in sub-Saharan Africa: a systematic review. *Reprod Health*. Jan 27 2018;15(1):15. doi:10.1186/s12978-018-0460-4

32. Chawla N, Sarkar S. Defining “High-risk Sexual Behavior” in the Context of Substance Use. *Journal of Psychosexual Health*. 2019;1(1):26-31. doi:10.1177/2631831818822015

33. SHRH Africa Trust (SAT). Age of consent: legal review Zambia Country report. https://www.satregional.org/wp-content/uploads/2018/05/Age-of-consent-Zambia.pdf. Accessed December 2020.
34. Farid NDN, Rus SC, Dahlui M, Al-Sadat N, Aziz NA. Predictors of sexual risk behaviour among adolescents from welfare institutions in Malaysia: a cross sectional study. *BMC Public Health*. 2014/11/24 2014;14(3):S9. doi:10.1186/1471-2458-14-S3-S9

35. Adam GK, Elhassan EM, Ahmed AM, Adam I. Maternal and perinatal outcome in teenage pregnancies in Sudan. *International Journal of Gynecology & Obstetrics*. 2009;105(2):170-171. doi:https://doi.org/10.1016/j.ijgo.2008.11.028

36. Canbaz S, Sunter AT, Cetinoglu CE, Peksen Y. Obstetric outcomes of adolescent pregnancies in Turkey. *Advances in Therapy*. 2005/11/01 2005;22(6):636-641. doi:10.1007/BF02849957

37. Kassa GM, Arowojolu AO, Odukogbe AA, Yalew AW. Prevalence and determinants of adolescent pregnancy in Africa: a systematic review and Meta-analysis. *Reprod Health*. Nov 29 2018;15(1):195. doi:10.1186/s12978-018-0640-2

38. Nwagwu WE. The Internet as a source of reproductive health information among adolescent girls in an urban city in Nigeria. *BMC Public Health*. 2007/12/20 2007;7(1):354. doi:10.1186/1471-2458-7-354

39. White M, Dorman SM. Receiving social support online: implications for health education. *Health education research*. Dec 2001;16(6):693-707. doi:10.1093/her/16.6.693

40. McKenna KYA, Bargh JA. Plan 9 From Cyberspace: The Implications of the Internet for Personality and Social Psychology. *Personality and Social Psychology Review*. 2000;4(1):57-75. doi:10.1207/s15327957pspr0401_6

41. Aicken CRH, Estcourt CS, Johnson AM, Sonnenberg P, Wellings K, Mercer CH. Use of the Internet for Sexual Health Among Sexually Experienced Persons Aged 16 to 44 Years: Evidence from a Nationally Representative Survey of the British Population. *J Med Internet Res*. 2016;18(1):e14-e14. doi:10.2196/jmir.4373

42. Bacchus LJ, Reiss K, Church K, et al. Using Digital Technology for Sexual and Reproductive Health: Are Programs Adequately Considering Risk? *Glob Health Sci Pract*. 2019;7(4):507-514. doi:10.9745/GHSP-D-19-00239

43. Chetty-Mhlanga S, Fuhrimann S, Eeftens M, et al. Different aspects of electronic media use, symptoms and neurocognitive outcomes of children and adolescents in the rural Western Cape region of South Africa. *Environmental research*. May 2020;184:109315. doi:10.1016/j.envres.2020.109315

44. Pfeiffer C, Klee M, Mbelwa A, Ahorlu C. The use of social media among adolescents in Dar es Salaam and Mtwara, Tanzania. *Reprod Health Matters*. May 2014;22(43):178-86. doi:10.1016/s0968-8080(14)43756-x

45. Paul S, Singh AB. Coverage of health-related articles in major local newspapers of Manipur. *Journal of education and health promotion*. 2016;5:3-3. doi:10.4103/2277-9531.184567

46. Thin Zaw PP, Liabsuetrakul T, McNeil E, Htay TT. Gender differences in exposure to SRH information and risky sexual debut among poor Myanmar youths. *BMC Public Health*. Dec 5 2013;13:1122. doi:10.1186/1471-2458-13-1122

47. Ahinkorah BO. Predictors of modern contraceptive use among adolescent girls and young women in sub-Saharan Africa: a mixed effects multilevel analysis of data from 29 demographic and health surveys. *Contraception and Reproductive Medicine*. 2020/11/19 2020;5(1):32. doi:10.1186/s40834-020-00138-1

48. Appiah F, Seidu A-A, Ahinkorah BO, Baatiema L, Ameyaw EK. Trends and determinants of contraceptive use among female adolescents in Ghana: Analysis of 2003-2014 Demographic and Health Surveys. *SSM - population health*. 2020;10:100554-100554. doi:10.1016/j.ssmph.2020.100554

49. Lim MS, Vella A, Sacks-Davis R, Hellard ME. Young people's comfort receiving sexual health information via social media and other sources. *International journal of STD & AIDS*. Dec 2014;25(14):1003-8. doi:10.1177/0956462414527264
Table 1: Background characteristics of adolescents as per 2018 Zambia demographic health survey

Characteristics	N=3000	Percent (%)
Teenage pregnancy		
Yes	897	29.9
No	2103	70.1
Mobile phone use		
Yes	944	31.5
No	2056	68.5
Listening to radio		
Almost every day	386	12.9
At least once a week	499	16.6
Less than once a week	409	13.6
Not at all	1707	56.9
Reading newspaper		
Almost every day	100	3.3
At least once a week	274	9.1
Less than once a week	303	10.1
Not at all	2323	77.5
Watching TV		
Almost every day	808	26.9
At least once a week	296	9.9
Less than once a week	190	6.3
Not at all	1706	56.9
Internet use		

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Yes	316	10.5		
No	2684	89.5		
Household size				
6 and above	2017	67.2		
Less than 6	983	32.8		
Residence				
Urban	1323	44.1		
Rural	1677	55.9		
Provinces				
Central	297	9.9		
Copper belt	491	16.4		
Eastern	342	11.4		
Luapula	253	8.4		
Lusaka	475	15.8		
Muchinga	191	6.4		
Northern	248	8.3		
North Western	186	6.2		
Southern	327	10.9		
Western	190	6.3		
Working status				
Not working	2477	82.6		
Working	523	17.4		
Marital status				
Not Married	2563	85.4		
Married	437	14.6		
Education Level				
Secondary	1618	53.9		
Primary Education	1283	42.8		
No Education	99	3.3		
Wealth Index				
Richest	709	23.6		
Richer	655	21.8		
Middle	585	19.5		
Poorer	541	18.0		
Poorest	510	17.0		
Age				
15-17	1735	57.8		
18-19	1265	42.2		
Sex of Household Head				
Male	2166	72.2		
Female	834	27.8		
Risky sexual behavior				
No	1647	54.9		
Yes	1353	45.1		
Knowledge of any modern contraceptive				
Characteristics	Teenage pregnancy n=897	Univariable OR (95%CI)	P-value	Adjusted Model AOR (95% CI)
-------------------------------------	-------------------------	------------------------	---------	-----------------------------
Mobile phone use				
No	626 (69.8)	1	0.173	1
Yes	271 (30.2)	0.92(0.74-1.15)		1.05 (0.70-1.57)
Listening to radio			<0.001	
Not at all	583 (65.0)	1		1
Less than once a week	97 (10.8)	0.60(0.45-0.80)		0.78(0.51-1.20)
At least once a week	116 (12.9)	0.59(0.44-0.78)		0.75(0.47-1.18)
Almost every day	101 (11.3)	0.68(0.50-0.94)		0.80(0.48-1.35)
Reading newspaper				
Not at all	776 (86.5)	1	<0.001	1
Less than once a week	69 (7.7)	0.58(0.38-0.89)		0.98(0.57-1.67)
At least once a week	45 (5.0)	0.40(0.27-0.59)		0.73(0.43-1.25)
Almost every day	7 (0.8)	0.15(0.07-0.31)		0.33(0.13-0.82)
Watching TV			<0.001	
Not at all	671 (74.8)	1		1
Less than once a week	55 (6.1)	0.64(0.44-0.93)		1.19(0.58-2.44)
At least once a week	62 (6.9)	0.41(0.25-0.68)		0.90(0.48-1.68)
Almost every day	109 (12.2)	0.24(0.17-0.35)		1.13(0.55-2.31)
Internet use				
No	860 (95.9)	1	<0.001	1
Yes	37 (4.1)	0.28(0.19-0.42)		0.54(0.30-0.95)
Age			<0.001	
15-17	296 (33.0)	1		1
18-19	601 (67.0)	4.40(3.62-5.36)		3.22(2.44-4.25)
Residence			<0.001	
Rural	637 (71.0)	1		1
Urban	260 (29.0)	0.40(0.30-0.53)		1.64(1.07-2.50)
Marital status			<0.001	
Not Married	502 (56.0)	1		1
Married	395 (44.0)	37.93(26.72-53.85)		12.67(7.90-20.30)
Wealth Index				
--------------------	--------			
Richest	54 (6.0)	<0.001		
Richer	178 (19.8)	4.51 (2.82-7.23)	2.27 (1.19-4.33)	
Middle	215 (24.0)	7.05 (4.59-10.82)	4.03 (1.86-8.75)	
Poorer	211 (23.5)	7.75 (5.06-11.86)	4.54 (1.99-10.39)	
Poorest	239 (26.6)	10.74 (6.99-16.50)	6.70 (2.76-16.24)	

Risky sexual behavior			
Yes	836 (93.2)	42.30 (30.87-57.98)	26.31 (19.58-35.36)

Sex of household head			
Male	676 (75.4)	1	
Female	221 (24.6)	0.79 (0.65-0.98)	1.03 (0.76-1.41)

Provinces			
Western	82 (9.1)	1	
Southern	142 (15.8)	1.02 (0.62-1.67)	1.67 (0.85-3.29)
North Western	67 (7.5)	0.73 (0.49-1.09)	0.67 (0.40-1.12)
Northern	66 (7.4)	0.47 (0.32-0.70)	0.67 (0.32-1.41)
Muchinga	56 (6.2)	0.55 (0.36-0.84)	0.72 (0.36-1.45)
Lusaka	71 (7.9)	0.23 (0.14-0.38)	0.86 (0.42-1.76)
Luapula	77 (8.6)	0.58 (0.39-0.85)	0.81 (0.48-1.38)
Eastern	138 (15.4)	0.89 (0.61-1.28)	0.96 (0.56-1.64)
Copperbelt	104 (11.6)	0.35 (0.23-0.53)	1.66 (0.90-3.06)
Central	94 (10.5)	0.61 (0.42-0.88)	1.16 (0.68-1.98)

Working status			
Not working	632 (70.5)	1	
Working	265 (29.5)	2.98 (2.44-3.66)	1.39 (0.97-1.99)

Education Level			
Post-Primary	380 (42.3)	1	
Primary Education	476 (53.1)	1.92 (1.54-2.40)	0.90 (0.63-1.28)
No Education	41 (4.6)	2.35 (1.48-3.74)	0.74 (0.32-1.71)

Household size			
Six and above	518 (57.7)	1	
Less than 6	379 (42.3)	1.82 (1.44-2.28)	0.71 (0.50-1.01)

Knowledge of any modern contraception			
Yes	886 (98.8)	1	
No	11 (1.2)	0.17 (0.08-0.36)	0.26 (0.08-0.80)

Bold significant at p-value less than 0.05
STROBE Statement—Checklist of items that should be included in reports of *cross-sectional studies*

Item No	Recommendation	Page No
Title and abstract	1	
(a) Indicate the study’s design with a commonly used term in the title or the abstract		
(b) Provide in the abstract an informative and balanced summary of what was done and what was found	1, 2	
Introduction	2	
Explain the scientific background and rationale for the investigation being reported	3-5	
Objectives	3	
State specific objectives, including any prespecified hypotheses	5	
Methods	4	
Present key elements of study design early in the paper	6	
Setting	5	
Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6	
Participants	6	
(a) Give the eligibility criteria, and the sources and methods of selection of participants	5-6	
Variables	7	
Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6, 7	
Data sources/measurement	8*	
For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	7	
Bias	9	
Describe any efforts to address potential sources of bias	8	
Study size	10	
Explain how the study size was arrived at	6	
Quantitative variables	11	
Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7, 8	
Statistical methods	12	
(a) Describe all statistical methods, including those used to control for confounding		
(b) Describe any methods used to examine subgroups and interactions		
(c) Explain how missing data were addressed		
(d) If applicable, describe analytical methods taking account of sampling strategy		
(g) Describe any sensitivity analyses	8, NA, NA, 7.8, NA	
Results	13*	
(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed		
(b) Give reasons for non-participation at each stage		
(c) Consider use of a flow diagram	6, 6, NA	
Descriptive data	14*	
(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders		
(b) Indicate number of participants with missing data for each variable of interest	8-9, NA	
Outcome data	15*	
Report numbers of outcome events or summary measures	8	
Main results	16	
(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included | 9-10 |
(b) Report category boundaries when continuous variables were categorized

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period

| Other analyses | 17 | Report other analyses done—e.g. analyses of subgroups and interactions, and sensitivity analyses | NA |

Discussion

Key results	18	Summarise key results with reference to study objectives	10
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	14
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	10-14
Generalisability	21	Discuss the generalisability (external validity) of the study results	14

Other information

| Funding | 22 | Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based | NA |

Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.