Eggshell (ES) and eggshell membrane (ESM) is a significant byproduct of the egg producing industry (Ahmed et al., 2019). Many studies have been undertaken to utilize ES waste for potential value added applications (Cordeiro and Hincke, 2011). Described here are the datasets from our evaluation of processed eggshell membrane powder (PEP) as a wound healing product using the mouse excisional wound splinting model (Ahmed et al., 2019). PEP biomaterial was characterized by proteomics using various extraction and solubilization strategies including moderate (lithium dodecyl sulphate (LDS) and urea/ammonium bicarbonate) and harsh conditions (3-mercaptopropionic acid (3-MPA) and NaOH/dimethylsulfoxide) in order to progressively overcome its stable, insoluble nature (Ahmed et al., 2019, Ahmed et al., 2017). Analysis of proteomic data allowed the relative abundance of the
main PEP protein constituents to be determined. The efficacy of PEP for promotion of wound healing was assessed using the mouse excisional wound splinting model, and well-established semi-quantitative histological scoring. (More details about the PEP biomaterial characterization and its in vivo evaluation can be found in the related research article (Ahmed et al., 2019)).

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Materials Science
More specific subject area	Biomaterials

Type of data	Tables and figures.
How data was acquired	Agilent 1200 nanopump (Reversed-phase (RP) nanoscale capillary liquid chromatography (nanoLC), Agilent Technologies Canada Inc., Ontario, Canada) connected to mass spectrometer 5600 with a nanoelectrospray ion source (ES-MS/MS, AB Sciex, MA, USA), LOGOS microwave hybrid tissue processor (Milestone, MI, USA). Leica microtome (Leica Biosystems Inc., ON, Canada). Zeiss Mirax Midi whole slide digital scanner (Carl Zeiss Canada Ltd, ON, Canada).

Data format	Raw and analyzed
Experimental factors	**Mass spectrometry:** Eggshell membrane collected at the egg breaking unit was processed (washed, milled, sieved, and γ sterilized) into a micronized powder (<100 μm), which was designated “Processed Eggshell Membrane Powder” (PEP). For proteomics, PEP samples were subjected to various extraction and solubilization strategies including moderate (via lithium dodecyl sulphate (LDS) and urea/ammonium bicarbonate (NH₄HCO₃)) and harsh conditions (via 3-mercaptopropionic acid (3-MPA) and NaOH/dimethylsulfoxide) conditions. Samples prepared by 3-MPA, NaOH/DMSO, and LDS/DTT treatment were subjected to in-gel digestion, while in the case of urea/NH₄HCO₃ extraction, in-solution digestion was performed. The protein constituents of PEP were identified using LC/MS/MS analysis, with a false discovery rate (FDR) of 1% and at least two unique peptides. Keratins were discarded from the identified protein inventory. In addition, any protein identified with only one unique peptide (according to the Scaffold software interface) was discarded from the final protein inventory. **Tissue processing:** The processed wound samples were cut into two halves (Upper and lower halves) and then embedded in paraffin (Leica Biosystems Inc., ON, Canada). PEP (50 mg) was suspended in PBS and centrifuged. The resultant pellet was centered in pre-embedding media and processed with the LOGOS tissue processor. **Digital scanning:** Stained tissue and PEP sections were scanned with Zeiss Mirax Midi whole slide digital scanner (12 slides/scan and 40X objective lens). Exposure time was 10-100 ms (bright field) and the specimen threshold level of 40–45.

| Experimental features | A complete protein inventory for PEP was created by merging the proteins identified by LC/MS/MS analysis after various extraction and solubilization strategies. Relative abundances of proteins identified in the PEP biomaterial were determined using Scaffold proteome software. The effect of PEP on wound healing was evaluated in the mouse excisional wound splinting model using the macroscopic planimetric timecourse (30–38 mice) and a histological scoring system (4 mice each at time points 3, 10, and 17). Various histological parameters related to wound healing were scored for all stained section. The absence of stainable collagen in the PEP biomaterial was confirmed using Masson’s trichrome staining of the PEP pellet. |

| Data source location | MS/MS spectrometry was conducted in the Proteomics Platform Of Québec Genomics Center, CHU de Québec Research Center (Laval, QC, Canada). In vivo experiments were carried out in the animal care and veterinary service facility (ACVS), Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. Wound tissue sample processing, embedding, sectioning, staining, and scanning was performed in the Histology Core Facility, Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada. |

| Data accessibility | The data are available within the article. |
| Related research article | Ahmed TAE, Suso HP, Maqbool A, and Hincke MT. Processed Eggshell Membrane Powder: Bioinspiration for an Innovative Wound Healing Product, Mater Sci Eng C Mater Biol Appl. 95 (2019) 192–203. |
1. Data

The presented data demonstrates the utilization of various extraction strategies (moderate to harsh conditions) \cite{1-4} to identify the protein constituents of PEP by proteomics. The proteomic approach allows the estimation of relative abundances of the main protein constituents of PEP biomaterial. The data demonstrates the use of animals (C57BL/6J mice) for the planimetric timecourse and histological assessment of healing of the splinted excisional wound after application of a biomaterial (PEP). The data describes an established histological scoring system used to assess the effect of PEP on various histological parameters critical to assess wound healing promotion. The histological processing of PEP biomaterial via pelleting and pre-embedding in agar-formalin media provides researchers with a strategy to process powdered biomaterials and even cells.

Table 1
Various extraction conditions used for the in-solution and in-gel digestion-based proteomic analysis of PEP.

Extraction strategy	In-solution digestion\(^a\)	In-gel digestion
Digestion buffer	urea 8 M/ammonium bicarbonate 100 mM, sonication (2 x 15s on – 1min off on ice), centrifugation (16,000 x g, 10min, 4 °C)	3-mercaptopropionic acid (1.25 M), 1.7 M acetic acid, 24 hours, 80 °C, shaking water bath.
		NaOH (5% w/v), DMSO, 4 hours, 50 °C, hot plate stirrer.
		LDS (73mM)/DTT (50 mM), NuPAGE sample buffer only, 30 minutes, 70 °C, Heat block.

\(^a\) Moderate extraction conditions.
\(^b\) Harsh solubilization conditions.

Fig. 1. Venn chart showing a comparison of the PEP proteome to the recently published ESM proteome (Ahmed et al., 2017) \cite{4}. Twenty four (24) of the PEP proteins were not previously identified in the ESM proteome. Micronization to prepare PEP facilitated the identification of a greater number of proteins by increasing the efficiency of the in-solution digestion approach.
Table 2
Inventory of the PEP proteome, as compared to the ESM (hand-peeled and flakes) proteome.

No.	Protein name	Gene Symbol	Gene ID	PEP	ESM
1	Actin, γ1	ACTG1	415296	YES	YES
2	ADAM metallopeptidase with thrombospondin type 1 motif, 5	ADAMTS5	427971	YES	NO
3	A-kinase anchoring protein 12	AKAP12	421634	NO	YES
4	Albumin	ALB	396197	YES	YES
5	Aminopeptidase N, Alanyl (membrane) aminopeptidase.	ANPEP	395667	NO	YES
6	Angiopoietin like 3	ANGPTL3	100189558	YES	NO
7	Annexin A2	ANXA2	396297	YES	NO
8	Antigen identified by monoclonal antibody Ki-67	MKI67	423963	NO	YES
9	Apolipoprotein A-1	APOA1	396536	YES	YES
10	Apolipoprotein B	APOB	396535	YES	YES
11	Apolipoprotein D	APOD	424893	YES	YES
12	Apolipoprotein H (β-2-glycoprotein I)	APOH			
13	Aponevotellenin 1	APOV1	396476	YES	YES
14	ash1 (absent, small, or homeotic)-like	ASH1L	425064	NO	YES
15	ATPase H+ transporting accessory protein 2	ATP6AP2	418573	YES	NO
16	ATP-binding cassette, sub-family A (ABC1), member 4	ABCA4	424490	NO	YES
17	Avian β-defensein 9	AvBD9	414343	YES	NO
18	Avian β-defensein 10	AvBD10	414341	YES	NO
19	Avian β-defensein 11	AvBD11	414876	YES	NO
20	Avidin	AVD	396260	YES	YES
21	BPI fold containing family C, member B	BPIFCB	771461	NO	YES
22	Breast cancer 2	BRCA2	374119	NO	YES
23	Bromodomain containing 8	BRD8	416219	YES	NO
24	BTB domain containing 7	BTBD7	423424	YES	NO
25	Ca+ + dependent secretion activator 2	CADPS2	417756	YES	NO
26	Cadherin 1, type 1, E-cadherin (epithelial)	CDH1	415860	YES	YES
27	Cadherin, EGF LAG seven-pass G-type receptor 3	CELSR3	107054381	NO	YES
28	Calcium channel, voltage-dependent, T type, α 1H subunit	CACNA1H	416526	YES	NO
29	Calcium/calmodulin-dependent protein kinase II β	CAMK2B	374174	YES	NO
30	Calmodulin 2	CALM	395855	YES	YES
31	Carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 6	CHST6	770257	YES	NO
32	Carboxypeptidase E	CPE	422424	YES	NO
33	Cathepsin B	CTSB	396329	YES	YES
34	Cathepsin E-A-like	CTEAL	417848	YES	NO
35	Cell division cycle 20B	CDC20B	426169	YES	NO
36	Centriolin	CNTRL	417121	YES	NO
37	Centrosomal protein 152kDa	CEP152	415437	YES	NO
38	Chondroitin sulphate proteoglycan 4	CSPG4	425524	YES	NO
39	Chromosome 1 open reading frame, human C12orf35	C1H12ORF35	418136	YES	NO
40	Clusterin	CLU	395722	YES	YES
41	Coagulation factor II (thrombin)	F2	395306	YES	NO
42	Cochlin	COCH	395779	YES	NO
43	Collagen III (α1 chain)	COL3A1	396340	NO	YES
44	Collagen IV (α1 chain)	COL4A1	395530	NO	YES
45	Collagen IV (α2 chain)	COL4A2	424797	NO	YES
46	Collagen IV (α6 chain)	COL4A6	422350	NO	YES
47	Collagen V (α2 chain)	COL5A2	423986	NO	YES
48	Collagen VII (α1 chain)	COL7A1	427584	YES	NO
49	Collagen VIII (α1 chain)	COL8A1	418378	YES	NO
50	Collagen X (α1 chain)	COL10A1	1000858979	YES	YES
51	Collagen XI (α chain)	COL11A1	374046	YES	NO
52	Collagen XII (α chain)	COL12A1	395875	NO	YES
53	Collagen XXII (α1 chain)	COL22A1	420315	NO	YES
54	Complement component 3	C3	396370	YES	NO
55	Contactin	CNTN5	395317	YES	NO
56	Cortactin binding protein 2	CTNBP2	417766	YES	NO
57	Corticotropin releasing hormone	CRH	404297	YES	NO
58	CREMP (cysteine rich ESM protein)	CREMP	776923	YES	YES
59	CREMP1	N/A	N/A	NO	YES
60	CREMP2	N/A	N/A	NO	YES
61	CREMP3	N/A	N/A	YES	YES
No.	Protein name	Gene Symbol	Gene ID	PEP	ESM
-----	--	-------------	----------	-----	-----
62	CREMP4	N/A	N/A	NO	YES
63	CREMP5	N/A	N/A	YES	NO
64	CREMP6	N/A	N/A	NO	YES
65	CTS telomere maintenance complex component 1	CTC1	418324	NO	YES
66	CUB and Sushi multiple domains 2	CSMD2	419640	NO	YES
67	Cystatin C	CST3	396947	YES	NO
68	Dedicator of cytokinesis 1	DOCK1	423960	NO	YES
69	Deleted in malignant brain tumors 1 protein-like (EW135).	DMBT1L	426826	YES	NO
70	DENN/MADD domain containing 4C	DENND4C	427236	NO	YES
71	Desmoplakin	DSP	420869	NO	YES
72	Dickkopf homolog 3	DKK3	396023	YES	NO
73	di-N-acetyl-chitobiase	CTB5	424535	NO	YES
74	DnaJ heat shock protein family (Hsp40) member C7	DNAJC7	428312	NO	YES
75	Dynein, axonemal, heavy chain 1	DNAH1	415943	NO	YES
76	Dynein, axonemal, heavy chain 12	DNAH12	416004	NO	YES
77	Dynein, axonemal, heavy chain 9	DNAH9	417314	NO	YES
78	Dynein, cytoplasmic 2, heavy chain 1	DYNC2H1	418979	NO	YES
79	Dystrophin	DMD	396236	NO	YES
80	EGF containing fibulin-like extracellular matrix protein 1	EFEMP1	428543	YES	NO
81	EGF-like repeats and discoidin I-like domains 3	EDIL3	427326	YES	NO
82	Enolase 2 (γ, neuronal)	ENO2	395689	NO	YES
83	Enolase 3	ENO3	396016	NO	YES
84	EPH receptor B3	EPHB3	396179	NO	YES
85	Eukaryotic translation elongation factor 1 al	EEF1A1	373963	NO	YES
86	Family with sequence similarity 20, member C	FAM20C	416445	YES	NO
87	Family with sequence similarity 21, member A	FAM21A	423772	NO	YES
88	F-box and WD repeat domain containing 8	FBXW8	417024	NO	YES
89	Fibrinogen γ chain	FGG	395837	YES	NO
90	Fibronectin 1	FN1	396133	YES	YES
91	Flightless I homolog	FFLI	416515	NO	YES
92	Folate receptor 1 (adult)	FOLR1	395638	NO	YES
93	G protein-coupled receptor kinase interactor 1	GIT1	417584	NO	YES
94	G protein-coupled receptor kinase interactor 2	GIT2	374035	NO	YES
95	Galactosylceramidase	GLAC	423394	YES	NO
96	Gastrokine 2	GKN2	419515	YES	NO
97	Glutamine and serine rich 1	QSER1	421599	NO	YES
98	Glutathione peroxidase 3	GPX3	427638	YES	NO
99	Glutathione S-transferase α 3	GSTA3	414896	NO	YES
100	Golgi glycoprotein 1	GLG1	396492	YES	NO
101	Group-specific component (vitamin D binding protein)	GC	395696	NO	YES
102	Heat shock 70kDa protein 5 (glucose-regulated protein, 78kDa)	HSPA5	396687	YES	NO
103	Heat shock 70kDa protein 8	HSPA8	395853	NO	YES
104	Hemoglobin, α 1	HBAα	416652	YES	NO
105	Hemoglobin, γ G	HBG2	396845	YES	NO
106	Hemopexin	HPX	415976	NO	YES
107	HEP21 protein	HEP21	395192	YES	NO
108	Heterogeneous nuclear ribonucleoprotein A2/B1	HNRNPAB2B1	420627	NO	YES
109	Heterogeneous nuclear ribonucleoprotein A3 homolog 1 -like	HNRNPA3	100859627	NO	YES
110	Heterogeneous nuclear ribonucleoprotein D-like	HNRNPDL	422601	NO	YES
111	Hexosaminidase B (β polypeptide)	HEBXB	427204	YES	NO
112	Histone H1.11L	HIST1H11L	427892	NO	YES
113	Histone H1.11R	HIST1H11R	427896	NO	YES
114	Histone H2A	HIST1H2A4	404299	NO	YES
115	Histone H2B	HIST1H2B	427886	YES	NO
116	Histone H3 family 3C	HIST1H3C	417950	YES	YES
117	Histone H4	HIST1H4	417950	YES	YES
118	Histone H5	HIST1H5	693250	NO	YES
119	Hyaluronan and proteoglycan link protein 3	HAPLN3	415495	YES	NO
120	Ig heavy chain	N/A	N/A	NO	YES
121	Ig heavy chain variable region	N/A	N/A	NO	YES
122	Ig J polypeptide, linker protein for Ig a and α polypeptides	IgJ	374117	NO	YES

(continued on next page)
No.	Protein name	Gene Symbol	Gene ID	PEP	ESM
123	Ig light chain variable region	N/A	N/A	NO	YES
124	Ig mu chain C region	N/A	N/A	YES	YES
125	Ig α heavy chain	N/A	N/A	YES	YES
126	Ig γ chain	N/A	N/A	YES	YES
127	Ig light chain	N/A	N/A	NO	YES
128	Ig λ-like polypeptide 1	IGLL1	416928	YES	YES
129	Immunoglobulin like domain containing receptor 1	ILDR1	418358	NO	NO
130	Junction plakoglobin	JUP	429710	NO	NO
131	Kinesin family member 21B	KIF21B	421178	NO	NO
132	Kinesin family member 26A	KIF26A	423489	NO	NO
133	La ribonucleoprotein domain family, member 4B	LARP4B	420457	NO	NO
134	LDL receptor-related protein 11	LRPR1	421629	NO	NO
135	Lectin, mannose-binding 2	LMAN2	100859676	NO	NO
136	Leucine zipper protein 1	LUZP1	428210	NO	NO
137	Lipocalin 8, extracellular fatty acid-binding protein	LCN	396393	YES	YES
138	Lymphocyte antigen 86	LYB6	420872	YES	YES
139	Lysyl oxidase-like 2	LOXL2	419533	YES	YES
140	Mediator complex subunit 15	MED15	416941	NO	NO
141	Melanoma inhibitory activity family, member 3	MIA3	421337	NO	NO
142	Milk fat globule-EGF factor 8 & protein (lactadherin isofrom 2)	MFGED8	415494	YES	YES
143	Mucin 6 oligomeric mucus/gel-forming (ovomucin, β subunit)	MUC6	414878	YES	YES
144	Mucin-5AC-like	LOC100859676	100859676	YES	YES
145	Myeloid/lymphoid or mixed-lineage leukemia 2	ML2	425846	NO	NO
146	Myeloid/lymphoid or mixed-lineage leukemia 3	ML3	420437	NO	NO
147	Myosin, heavy chain 10, non-muscle	MYH10	396465	NO	NO
148	Myosin, heavy chain 9, non-muscle	MYH9	396469	NO	NO
149	N-acetylglucosamine-1-phosphate transferase, a and β subunits	GNPTAB	418096	NO	NO
150	Neuron navigator 2	NAV2	422977	NO	NO
151	Neuron navigator 3	NAV3	417869	NO	NO
152	Neurotensin Y	NPY	396464	NO	NO
153	Neurotrin	NTM	395450	NO	NO
154	Olfactomedin 4, tiarin-like	OLFM4	418826	YES	YES
155	Ovalbumin	SRRBIN14	396058	YES	YES
156	Ovalbumin-related protein X	SERPINB14C	420898	YES	YES
157	Ovalbumin-related protein Y	SERPINB14B	420897	YES	YES
158	Ovalomucin, β subunit	MUC5B	395381	YES	YES
159	Ovocleidin 116 (matrix extracellular phosphoglycoprotein)	MEPE	395256	YES	YES
160	Ovocalyxin G2 (Ten)	OTEN	100313508	YES	YES
161	Ovocalyxin 32 (Retinoic acid receptor responder 1)	RARRRES1	395209	YES	YES
162	Ovocalyxin 36 (BPI fold containing family B, member 3)	BPIFB3	419289	YES	YES
163	Ovostatin	OVTST	396151	YES	YES
164	Ovotransferrin (transferrin)	OVTSL	425757	NO	NO
165	P21 protein (Cdc42/Rac)-activated kinase 3	PKA3	422342	NO	NO
166	Porphobilinogen synthase 5	PGM5	427215	NO	NO
167	Phospholipase B domain containing 1	PLBD1	417967	NO	NO
168	Piccolo (presynaptic cytomatrix protein)	PCLO	395319	NO	NO
169	Pgp-120 (PEM1)	PGT1	395364	YES	YES
170	Polycystic kidney and hepatic disease 1 (autosomal recessive)	PKHD1	422044	NO	NO
171	Polymeric immunoglobulin receptor	PIGR	419848	NO	NO
172	Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1	PLOD1	419485	YES	YES
173	Programmed cell death 6	PDCD6	420988	NO	NO
174	Prolyl 4-hydroxylase, β polypeptide	F4H8	374091	YES	YES
175	Prolactin	PRLX1	395802	NO	NO
176	Prostaglandin D2 synthase 21kDa	PGD2S	374110	YES	YES
177	Prostate stem cell antigen	PSCA	420302	YES	YES
No.	Protein name	Gene Symbol	Gene ID	PEP	ESM
-----	---	-------------	-------------	-----	-----
185	Prostatic acid phosphatase-like	LOC428451	428451	YES	YES
186	Protein 0-fucosyltransferase 2	POPUT2	395112	YES	NO
187	Protein phosphatase, Mg2+/Mn2+ dependent, 1J	PPM1J	419873	NO	
188	Protein tyrosine phosphatase, receptor type, A	PTPRA	396060	NO	
189	Protocadherin 1	PCDH1	416194	NO	
190	Quescin Q6 sulphhydril oxidase 1	QSOX1	373914	YES	
191	Retbindin (Riboflavin-binding protein)	RTBDN	396449	YES	
192	Retinoic acid receptor responder 2	RARRES2	420366	YES	
193	Rho guanine nucleotide exchange factor (GEF) 17	ARHGEF17	777518	NO	
194	Ribosomal protein L36	RPL36	373936	NO	
195	Ring finger protein 17	RNF17	418961	NO	
196	Rootletin, ciliary rootlet coiled-coil	CROCC	428191	NO	
197	RPE-spondin-like	LOC771089	771089	NO	
198	Salivary amylase, z/A	AMY1A	414139	NO	
199	Sal-like 4	SALL4	769286	NO	
200	Secretoglobulin family 1C member 1 -like	LOC101749303	101749303	NO	
201	Secretory trypsin inhibitor	SPINK1	101749216	NO	
202	Semadomain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3G	SEMA3G	415945	YES	
203	Serine peptidase inhibitor, Kazal type 2 (acrosin-trypsin inhibitor)	SPINK2	770729	YES	
204	Serine peptidase inhibitor, Kazal type 5, (Ovoinhibitor)	SPINK5	416235	YES	
205	Serine peptidase inhibitor, Kazal type 7 (ovomucoid)	SPINK7	416236	YES	
206	Serine/threonine kinase 38	STK38	428260	NO	
207	Serpin peptidase inhibitor, clade B (ovalbumin), member 1	SERPINB1	420894	NO	
208	Serpin peptidase inhibitor, clade B (ovalbumin), member 5	SERPINB5	420900	NO	
209	Serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), member 2	SERPINE2	424805	YES	
210	Serpin peptidase inhibitor, clade F (z-2 antiplasmin, pigment epithelium derived factor), member 2	SERPINF2	100857105	YES	
211	Shroom family member 3	SHROOM3	422636	NO	
212	Similar to arf-GAP with Rho-GAP domain of Zebrafish	N/A	N/A	NO	
213	Similar to CREB binding protein b of Zebrafish	N/A	N/A	NO	
214	Similar to cadherin 4 of Zebrafish	CDH4	N/A	NO	
215	Similar to Calumenin A of Zebrafish	N/A	N/A	YES	
216	Similar to IgGf-binding protein-like of wild turkey.	ZAN	N/A	NO	
217	Similar to Kunitz-like protease inhibitor	LOC771972	771972	YES	
218	Similar to metastasis associated 1 of Zebrafish	MTA1	N/A	NO	
219	Similar to Septin 4a of Zebrafish	N/A	N/A	NO	
220	Similar to transcription factor EB Zebrafish	TFEB	N/A	NO	
221	Similar to zinc finger ZZ-type and EF-hand domain-containing protein 1 of wild turkey	ZZEF1	100541118	NO	
222	Sperm repeat containing, nuclear envelope 1	SYNE1	421640	YES	
223	Spermin, β, non-erythrocytic 5	SPTBN5	423225	NO	
224	Sperm associated antigen 16	SPAG16	424009	NO	
225	Stromal cell derived factor	SDF4	419423	YES	
226	Syndecan binding protein (syntenin)	SDCBP	421136	NO	
227	TATA box binding protein like	TBPL2	776269	NO	
228	Tenascin C	TNC	396440	YES	
229	Teneurin transmembrane protein 3	TENM3	422557	NO	
230	Tetratricopeptide repeat domain 3	TTC3	418518	NO	
231	Thyroid hormone receptor interactor 11	TRIP11	423414	NO	
232	TIMP metallopeptidase inhibitor 3	TIMP3	396483	YES	
233	Titin	TTN	424126	NO	
234	transcobalamin 2	TCN2	429737	NO	
235	Transient receptor potential cation channel, subfamily M, member 1	TRPM1	427494	NO	
236	Transient receptor potential cation channel, subfamily V, member 2	TRPV2	417603	NO	
237	Transthyretin.	TTR	396277	YES	
238	Tsukushi, small leucine rich proteoglycan	TSUK1	419088	YES	
239	Tumor necrosis factor receptor superfamily, member 6b, decoy	TNFRSF6B	395086	YES	
240	Tumor necrosis factor superfamily member 10	TNFSF10	378894	NO	
241	Ubiquitin B	UBB	396190	NO	

(continued on next page)
the main protein constituents of PEP biomaterial (Table 3). The kinetics of wound healing (with and without PEP) in the mouse splinting excisional wound model was determined using a macroscopic planimetric strategy with histological scoring (Table 4). The histological scoring system was established to assess various histological parameters including degree of angiogenesis, collagen deposition, fibroblast infiltration, macrophage infiltration, polymorphonuclear cells (PMN) infiltration, fibrin clot formation, epidermal differentiation and indentation along with the presence of multinucleated giant cells (Table 5). Finally, PEP was stained with Masson’s trichrome to confirm the absence of stainable collagen using an innovative pre-embedding histological approach (Fig. 2).

2. Experimental design, materials, and methods

2.1. Proteomic analysis

Processed eggshell membrane powder (PEP, <100 μm) [3] was subjected to various extraction and solubilization strategies as utilized previously for ESM proteomics [4] (Table 1). A complete protein inventory for PEP was created by merging the proteins identified after application of moderate extraction [lithium dodecyl sulphate/dithiothreitol (LDS/DTT) or urea/ammonium bicarbonate (NH₄HCO₃)] and harsh solubilization conditions [3-mercaptopropionic acid (3-MPA) or sodium hydroxide/dimethylsulfoxide (NaOH/DMSO)] (Fig. 1 and Table 2). Conditions of in-gel (3-MPA, NaOH/DMSO, and LDS/DTT) or in-solution [urea/NH₄HCO₃] tryptic digestion were applied and the resultant
peptides were analyzed using the 5600 mass spectrometer with a nanoelectrospray ion source connected to Agilent 1200 nanopump (ES-MS/MS) [3,4].

2.2. Relative abundance of PEP protein constituents

MS/MS peak lists were generated using ProteinPilot (Version 4.5) and analyzed using Mascot (Version 2.4.0) and X!Tandem (CYCLONE version), both programmed to search the TAX_GallusGallus_9031_20141114 database (unknown version, 222,250 entries). Validation of MS/MS based peptide and protein identification was performed using Scaffold Proteome software (version 4.3.4).

Gene symbol	Average total spectral count	% abundance
LOXL2	33.3	28.0
CREMPs	31.2	27.0
LYZ	13.8	12.0
COL10A1	11.5	10.0
SERBIN14	7.3	6.0
MEPE	4.0	3.0
TF	3.0	3.0
CLU	2.0	2.0
HAPLN3	2.0	2.0
OC-17	2.5	2.0
GKN2	1.0	0.8
NUCB2	1.0	0.8
ORM1	1.0	0.8
QSOX1	1.0	0.8
SERPINB14B	1.0	0.8
SERPINB14C	1.0	0.8
VTG2	1.0	0.8

Table 4
Number of mice used for the in vivo study.

Purpose of the study	Number of C57BL/6J mice evaluated					
	Day 0	Day 3	Day 7	Day 10	Day 14	Day 17
Wound closure curve	38	38	34	34	30	30
Histology	0	4	0	4	0	4
Total	38	38	34	34	30	30

Table 5
Scoring scheme for the different histological parameters to assess wound healing.

Histological parameter	Score					
	0	1	2	3	4	5
Angiogenesis	Absent Scanty	Low	Moderate	Marked	Profound	
Collagen deposition	Absent Scanty/ disorganized	Low/ fragmented	Moderate/ separated	Marked/ organized	Profound/ Restored	
Fibroblast infiltration	Absent Scanty	Low	Moderate	Marked	Profound	
Macrophage infiltration	Absent Scanty	Low	Moderate	Marked	Profound	
PMN infiltration	Absent Scanty	Low	Moderate	Marked	Profound	
Fibrin clot	Absent Scanty	Low	Moderate	Marked	Profound	
Epidermal differentiation and indentation	Absent Scanty	Low	Moderate	Marked	Profound	
Multinuclear giant cells	Absent Scanty	Low	Moderate	Marked	Profound	
spectra were searched against the Uniprot and NCBI chicken databases. The relative abundance of the PEP protein constituents was estimated by averaging the total spectral count of each identified protein using the aforementioned Scaffold Proteome software (Table 3).

2.3. In vivo study

All in vivo experiments were conducted following the approved animal protocol (CMM 2108) by the University of Ottawa Animal Care committee and according to the guidelines of the Canadian Council on Animal Care (CCAC). All animal protocols are in compliance with the NIH Guide for Care and Use of Laboratory Animals (Animal Welfare Assurance # A5043-01). Capacity of PEP for promotion of wound healing was assessed using the well-established mouse excisional wound splinting model [5] and the subsequent macroscopic planimetric timecourse [6] and histological scoring. A total of 38 C57BL/6J male mice (10–12 weeks old, Jackson Laboratories, USA) were used for the entire study (Table 4).

2.4. Histological assessments

PEP (50 mg) was suspended in 1 mL PBS and centrifuged for 5 minutes at 13,000 rpm. The resultant pellet was centered in a base mould; pre-mounting media composed of 2% agar and 10% formalin was poured gently over the pellet and left for few minutes to solidify. The resulted PEP block was processed using the LOGOS tissue processor, embedded in paraffin and then sectioned using a Leica microtome. PEP sections were stained using Masson trichrome to confirm the absence of stainable collagen in the PEP biomaterial (Fig. 2). For evaluation of wound healing, histological scoring system was established to assess parameters that represent wound healing [7–9], including degree of angiogenesis, collagen deposition, fibroblast infiltration, macrophage infiltration, polymorphonuclear cells (PMN) infiltration, fibrin clot formation, epidermal differentiation and indentation along with presence of multinucleated giant cells. Every parameter was given a score of 0–5 based on its graded level of abundance. Score 0 indicates complete absence, while score 5 indicates profound manifestation of the assessed parameter. Scoring of collagen deposition was based, not only on the degree of abundance (i.e. absent,
scanty, low, moderate, profound, restored), but also on the degree of organization (disorganized, fragmented, separated, organized) (Table 5).

Acknowledgments

Funding for this study was provided by the Research Council of Norway (235545). The authors would like to thank Drs. Ralf Schmidt, Enda Kenny from Biovotec AS, Oslo, Norway; Drs. Mona Pederson and TramVuong from Nofima AS, Ås, Norway; and Drs. Matthias Schnabelrauch and Annika Wartenberg from Innoven e.V., Jena, Germany for helpful feedback and discussion. We would like to thank Drs. Sylvie Bourassa and Benjamin Nehmé from the Proteomics Platform of the Quebec Genomics Center (Laval, QC) for their proteomics services and their expertise. We would like also to thank the Animal Care and Veterinary Service (ACVS), Faculty of Medicine, University of Ottawa for coordinating and assistance with the animal experiments. We acknowledge the personnel of the Histology Core Facility, Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa for histopathology sample processing, and Dr. Manijeh Daneshmands, Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa and Dr. Ayesha Maqbool, Division of Clinical and Functional Anatomy for providing extremely helpful histology consultation.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] T.A.E. Ahmed, G. Kulshreshtha, M.T. Hincke, Chapter 19. Value added uses of eggshell and eggshell membranes, in: J. Wu (Ed.), Eggs as Functional Foods and Nutraceuticals for Human Health, Royal Society of Chemistry, 2019, pp. 359–397.
[2] C.M. Cordeiro, M.T. Hincke, Recent patents on eggshell: shell and membrane applications, Recent Pat. Food, Nutr. Agric. 3 (2011) 1–8.
[3] T.A.E. Ahmed, H.P. Suso, A. Maqbool, M.T. Hincke, Processed eggshell membrane powder: bioinspiration for an innovative wound healing product, Mater. Sci. Eng. C Mater. Biol. Appl. 95 (2019) 192–203.
[4] T.A. Ahmed, H.P. Suso, M.T. Hincke, In-depth comparative analysis of the chicken eggshell membrane proteome, J. Proteomics 155 (2017) 49–62.
[5] X. Wang, J. Ge, E.E. Tredget, Y. Wu, The mouse excisional wound splinting model, including applications for stem cell transplantation, Nat. Protoc. 8 (2013) 302–309.
[6] D.M. Ansell, L. Campbell, H.A. Thomason, A. Brass, M.J. Hardman, A statistical analysis of murine incisional and excisional acute wound models, Wound Repair Regen. 22 (2014) 281–287.
[7] N.D. Evans, R.O. Orefo, E. Healy, P.J. Thurnier, Y.H. Man, Epithelial mechanobiology, skin wound healing, and the stem cell niche, J. Mech. Behav. Biomed. Mater. 28 (2013) 397–409.
[8] A. Gosain, L.A. DiPietro, Aging and wound healing, World J. Surg. 28 (2004) 321–326.
[9] Z. Sheik, P.J. Brooks, O. Barzilay, N. Fine, M. Glogauer, Macrophages, foreign body giant cells and their response to implantable biomaterials, Materials 8 (2015) S671–S5701.