Detection of vacuum entanglement in a linear ion trap

A. Retzker1, J.I. Cirac2, and B. Reznik1

(1) School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.

(2) Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, Garching, D-85748, Germany

\textbf{Dated: November 13, 2018}

We propose and study a method for detecting ground-state entanglement in a chain of trapped ions. We show that the entanglement between single ions or groups of ions can be swapped to the internal levels of two ions by sending laser pulses that couple the internal and motional degrees of freedom. This allows to entangle two ions without actually performing gate operations. A proof of principle of the effect can be realized with two trapped ions and is feasible with current technology.

A remarkable phenomenon that appears naturally in quantum field theory, is that the ground state (vacuum) is entangled, and that observables in two separated regions can be entangled. Recent studies in quantum information theory have taught us that entanglement is a physical property which can be exchanged between systems or used in quantum processes such as quantum communication, teleportation and quantum cryptography1. This suggests that vacuum entanglement as well could be detected and used in quantum processes. There have been several studies of vacuum entanglement in field theory2,3, as well as in other systems4,5,6, but none have proposed a way to observe vacuum entanglement in a realistic experiment. The main purpose of this Letter is to suggest a realistic physical implementation to observe this phenomenon.

A gedanken-experiment that allows the observation of vacuum entanglement in field theory has been suggested3, which utilizes two basic ingredients of relativistic field theory and quantum information: the presence of a causal structure, and the non-increase of entanglement under local operations; operations performed at two causally disconnected regions do not increase the entanglement between these regions. Consider two atoms, A and B, which locally interact with the field and with one another through the long range field interaction. The interaction with the field can either entangle A and B via the exchange of propagating quanta, or by transporting vacuum entanglement into the atoms. Using the fields’ built-in causal structure, one can eliminate the former unwanted process, by demanding that $cT < L$, where T is the interaction time and L the separation between the atoms. Vacuum entanglement can then be “swapped” to the atoms’ internal levels, which can then be used for detecting vacuum entanglement. However this method requires precise control of the atom-field interaction, which, in the case of an electromagnetic field, renders the experiment highly unrealistic. Nevertheless, experimentalists in atomic physics are taming their systems at the quantum level and can test quantum effects with the required precision and control for this type of experiments.

In the following, we propose and analyze the possibility of observing vacuum entanglement with trapped ions. We consider a system of trapped ions that are brought to equilibrium in a linear chain configuration. The ground state (vacuum) of the system is an entangled state of the different motional modes (phonons) of the chain, and manifests entanglement between single ions or distant groups of ions. In order to detect vacuum entanglement, we consider processes wherein the external motional degrees of freedom are mapped to the internal ions states, which are then used for entanglement detection. The internal levels are well isolated, they can be temporarily coupled ‘on demand’ to the phonon modes by sending finite duration laser pulses, and finally can be measured with nearly perfect precision. In analogy with the field-theoretical case, the interaction must be limited to a duration shorter than the time it takes for perturbations to propagate between the two (probe) ions along the chain. We comment that in the case of ion chains, this process is interesting on its own, because one can entangle the internal levels of two ions without actually doing gates3. The most spectacular manifestation of the idea would involve a chain with many ions. However a proof of principle can be attained with just two trapped ions, and is feasible using current technology. We shall study both cases and analyze the latter in detail.

We now consider a system of N ions trapped in a linear Paul trap at very low temperature4. The Hamiltonian describing the ions’ motion relative to their equi-
librium positions, and internal levels is $H_0 = \frac{1}{2} \omega_z (\sigma_z^{(A)} + \sigma_z^{(B)}) + \sum \nu_n a_n^\dagger a_n$. Here ω_z is the internal levels energy gap of the two relevant (probe) ions A and B, and ν_n are the phonon normal-mode frequencies, with corresponding creation (annihilation) operators $a_n^\dagger (a_n)$. Typically, ω_z is in the optical region and $\nu_n \sim \text{MHz}$.

We shall begin by analyzing the simplest case with just two trapped ions. The vacuum state is then defined as the ground state of the normal modes of the system, i.e. a product state of the collective and breathing modes $|0\rangle$ and $|0\rangle$. In terms of the local single oscillator states $|n\rangle_{A,B}$, the vacuum is an entangled two mode squeezed state:

$$|\text{vac}\rangle = |0\rangle_A |0\rangle_B = \sqrt{1 - e^{-2\beta}} \sum_n e^{-\beta n} |n\rangle_A |n\rangle_B \label{eq:vac}$$

The local number states are the single ion energy eigenstates obtained when the displacement of the other ion is set to zero. We get $e^{-\beta} = \sqrt{1 - (\lambda - 1/2)/(\lambda + 1/2)}$, where $\lambda = (1/4) \sqrt{\nu_0/\nu_1 + \nu_1/\nu_0}$, and ν_0 and ν_1 are the frequencies of the collective and breathing modes. Since $\nu_0/\nu_1 = \sqrt{3}$, we get $\lambda = 0.5189$, and the von Neumann entanglement of the squeezed state is $E = (\lambda + 1/2) \log_2 (\lambda + 1/2) - (\lambda - 1/2) \log_2 (\lambda - 1/2) = 0.136$ e-bits.

In order to transfer vacuum entanglement into the ion internal states, we use laser pulses to couple the internal and motional states of atoms A and B. Close to resonance, with $\omega_{\text{laser}} \approx \omega_z$, the interaction terms for the k'th ion (in the Lamb-Dicke limit) is given by:

$$H^{(k)}_{\text{int}} = \Omega(t)(e^{-i\phi} \sigma_+^{(k)} + e^{i\phi} \sigma_-^{(k)}) x_k \label{eq:int}$$

where σ_{\pm} are the raising and lowering operators, ϕ is the laser phase, and x_k the displacement of the k'th ion. Above we have applied the rotating wave approximation with respect to the internal levels but not (as is usually done) to position operators. That is because, the duration T of the laser pulses satisfies $1/\omega_z \ll T \ll 1/\nu_0$. The upper bound on T follows from the requirement that perturbations do not propagate between the ions during the interaction.

Using the available interaction \eqref{eq:int}, we would like to swap the motional entanglement into the internal ion levels which are initially prepared in a non-entangled state $|\downarrow\rangle_A |\downarrow\rangle_B$. The smallness of $e^{-\beta}$ implies that the entanglement arises mostly from the first two terms of \eqref{eq:int}. We therefore seek a procedure, of typical duration $T \ll 1/\nu_0$, that maps

$$|\text{vac}\rangle |\downarrow\rangle |\downarrow\rangle \rightarrow |\chi\rangle |\downarrow\rangle |\downarrow\rangle + e^{-\beta} |\uparrow\rangle |\uparrow\rangle |\uparrow\rangle \label{eq:map}$$

where $|\chi\rangle$ is the final state of the ions. The interaction then acts separately on each ion, and swaps the lowest two motional states $|0\rangle$ and $|1\rangle$ to the two ion internal states. In this 4×4 subspace the map is expected to approximate the unitary swap transformation $e^{i\tau/4 (\sigma_x \sigma_y + \sigma_y \sigma_x)}$, where $\sigma_x = |0\rangle \langle 1| + |1\rangle \langle 0|$ and $\sigma_y = i(|1\rangle \langle 0| - i|0\rangle \langle 1|$ act on the number states. (We have ignored a $\sigma_z \sigma_z$ term which in our case adds a trivial phase since the initial state is a $|\downarrow\rangle |\downarrow\rangle$ state). Note that σ_x and σ_y can be approximated by x and p respectively. We therefore expect that the swap will require coupling of the internal levels with both position and momentum, since the truncation of the x operator yields the σ_x operator and truncation of momentum yields the σ_y operator. Based on this intuition we proceed with the following construction. We consider the following sequence of unitary operations, $U_s = V(\alpha_1) W(\beta_1) V(\alpha_2) W(\beta_2) \cdots V(\alpha_n) W(\beta_n)$, where

$$V(\alpha) = e^{i\alpha \sigma_x}, \quad W(\beta) = e^{i\beta \sigma_y} \label{eq:uv}$$

to be performed on each ion separately by sending a sequence of laser pulses. The $V(\alpha)$ evolution, can be obtained by sending a laser pulse of duration T and phase $\phi = 0$, such that $T \ll 1/\nu_0$ and $\int \Omega(t) dt = \alpha$. In order to generate a $W(\beta)$ evolution, we set the laser phase to $\phi = \pi/2$, and allow the system evolve freely for short time interval $dt = \tau$ in between a pair of pulses. Denoting $V'(\beta) = \exp(i\beta \sigma_y)$, we obtain:

$$V'_{t=\tau}(-\beta') V'_{t=0}(\beta') = e^{-i(\beta' \sigma_y (x + \Delta z) + O(\nu^2 \tau^2))} e^{i\beta' \sigma_y x} = e^{-i\beta' \sigma_y p + \frac{1}{2} \beta' \gamma} + O(\nu^2 \tau^2) \label{eq:uv'ev}$$

where we have used the approximation $x(\tau) = x(0) + p(0) \tau/m + O(\nu^2 \tau^2)$. (Alternatively, in the Schrodinger picture we notice that $V^\dagger e^{-i\text{photon}^t V}$ shifts the kinetic term as $p^2 \rightarrow (p + \beta' \sigma_y)^2 = p^2 + 2\beta' \sigma_y p + \beta^2 \sigma_y^2$.) Taking the limit $\nu^2 \tau^2 \ll 1$, and maintaining $\beta \equiv \beta' \tau/m = O(1)$ we obtain the required effective coupling to p. Therefore the sequence of n pairs of $V(\alpha) W(\beta)$ pulses, can be generated by $3n$ ordinary pulses with n free evolution intermediate intervals of total duration $dt = n\tau$. By optimizing the entanglement of formation \eqref{eq:vac}, $E_{\text{F}}(\alpha_i, \beta_i)$, over the free parameters α_i and β_i the transformation \eqref{eq:map}, where $|\chi\rangle$ is the final motional state of the ions, can be generated with high efficiency. This transformation swaps the first two terms in Eq. \eqref{eq:vac} to the
ion’s internal level states. After a sequence of three VW pulses, the entanglement of formation of the final internal level state contains 97% of the computed ground-state entanglement. The optimal sequence is in this case $V(W(0.31)W(0.50)W(0.39)V(0.53)W(0.16))$. With two pulses we get at most 93%). Expressed in the relevant 4×4 subspace, this unitary operation has indeed a structure which closely resembles a swap. Testing the purity of the final state ρ_{AB}, we find $tr\rho^2_{AB} = 0.997$. The final density matrix of the internal levels is depicted in Fig. 2. The measurement precision for the density matrix in recent experiments is about 1% [13], and hence sufficient for observing the entanglement of the final state.

We comment that an alternative to the above approach could be to separate the two ions by moving them apart. This effectively "turns off" the interaction between them, allowing for longer duration of the detection process. It is then easier to generate the desired swap using continuous on-resonance laser pulses [14]. In order not to affect the entanglement between the ions, the separation has to be fast compared with the propagation time scale $1/\nu_0$. This can be done by increasing the potential between the ions. The possibility of changing the local potential and moving ions, without effecting the internal ion states, has been recently demonstrated experimentally [15, 16].

We next turn to the more general case of entanglement in a chain with N ions, and consider first the entanglement properties of the system. Since the vacuum is a pure Gaussian state, the Schmidt decomposition for two complementary parts of the chain can be expressed as a direct product of squeezed states [9]. The von-Neumann bi-partite entanglement can then be obtained by summing the entanglement contribution of each squeezed state (Fig. 3).

The state of two sub-groups, \tilde{A} and \tilde{B}, each consisting of n_A and n_B ions, separated by l_s ions, is described by a reduced Gaussian density matrix $\rho_{\tilde{A}\tilde{B}} = tr_{l_s} \rho_{\tilde{A}\tilde{B}}(\text{vac})(\text{vac})$. The entanglement between the groups (Fig. 4) can be characterized by the Negativity [17, 18]. It vanishes for separation larger then one. However as the group size increases, it persists for larger separations.

We shall examine the possibility of detecting the entanglement by coupling to the internal levels of two ions, A and B, for a time duration T. We can check that as long as $T < 1/\nu_0$, the interaction with respect to two complementary parts of the chain can be regarded as local. This is seen by noticing that the evolution operator, $U(T)$, can be factorized in the interaction picture as

$$U = U_A \otimes U_B \otimes e^{-i/2 \int dt df(t,t') \sigma_{AB}},$$

where U_k act on A or B, $\sigma_{AB} = \Pi_k (e^{-i\phi} \sigma_{+}^{(k)} + e^{i\phi} \sigma_{-}^{(k)})$, and $f(t-t') = [x_A(t), x_B(t')]$. The last term above, involving σ_{AB}, is a unitary operator that can increase entanglement "non-locally". However, as can be seen in Fig. 4 the non-commutativity described by $f(t-t')$ vanishes rapidly, and for sufficiently short interaction time, or large enough spatial separation, this non-causal effect is suppressed.

We begin with the initial ground-state $|\text{vac}\rangle \downarrow \downarrow \rangle$, and proceed to evaluate the reduced state $\rho_{AB}(T) = tr [U(T)|I]\langle I|U(0)\rangle$ perturbatively. Assuming that the intensity of the laser pulses is sufficiently weak, we expand $U(T)$ in a power series, and to lowest order in Ω we obtain

$$\rho_{AB} = \begin{pmatrix} ||X_{AB}||^2 & 0 & 0 & -\langle 0|X_{AB}\rangle \\ 0 & \langle E_A||E_B\rangle & \langle E_B||E_A\rangle & 0 \\ 0 & \langle E_A||E_B\rangle & ||E_B||^2 & 0 \\ -\langle X_{AB}|0\rangle & 0 & 0 & 1-\langle E_A\rangle^2-||E_B||^2 \end{pmatrix}$$

Here $|E_A\rangle = X_A|\text{vac}\rangle$, $|X_{AB}\rangle = X_A X_B|\text{vac}\rangle$ and $X_k = \int dt \Omega(t) e^{z t} x_k(t)$, $(k = A, B)$, and z is the detuning. Using the Peres-Horodecki separability criterion, it then follows that $\rho_{AB}(T)$ is entangled iff $\mathcal{N}(\rho_{AB}) \approx ||X_{AB}\rangle - ||E_A|| ||E_B|| > 0$, where $\mathcal{N}(\rho_{AB})$ is the negativity. This condition can be understood physically as the requirement that the virtual off-shell single phonon exchange process (described by X_{AB}), is sufficiently large to overcome the decoherence effects due to local phonon emission (described by the E_{AB} terms).

To verify that the above condition amounts to a detection of vacuum entanglement, rather than a direct interaction due to the non-local correction in Eq. (3), we have repeated the computation, using the same initial state $|I\rangle$, but with a modified truncated evolution. In the latter truncated case, we "disconnected" the chain.
FIG. 5: a) Classical propagation of a perturbation originating at the center of the chain. b) The commutation relation between the displacement operators of the \(n \)th ion and the central ion in a chain of 80 trapped ions, at different time slices.

FIG. 6: The ratio \(\eta \) for ions in a chain of \(N = 20 \) ions as a function of the detuning \(\delta \). a) The ion probes are located at \(l = 6, 15 \) and \(T = 0.8 \) (in units where \(\nu_0 = 1 \)). b) \(l = 10, 11 \) and \(T = 0.05 \). The range \(\eta > 1 \) signifies entanglement.

by eliminating the interaction between ions at the different halves, \(n > N/2 \) and \(n < N/2 \), of the chain. This can be easily achieved by replacing the potential term in the free phonon Hamiltonian by \(\sum x_i G_{ij} x_k \rightarrow \sum x_i G_{ij} x_k \) where \(G^T = G_A \oplus G_B \) is block-diagonal. This truncated evolution, does not change the entanglement between the two halves of the chain since an exact separability holds in Eq. (3), (i.e. \(f(t - t') = 0 \)). The ratio \(\eta = |\langle 0 | X_{AB} | 0 \rangle| / || E_A || || E_B || \) is plotted Fig. 6 as a function of the detuning \(\delta \), for \(N = 20 \) ions. In Fig. 6, the probe-ions are situated at sites \(l_A = 6 \) and \(l_B = 15 \), and we can see that A and B become entangled (\(\eta > 1 \)) in a range of frequencies. Since small violations of causality are expected in the non-truncated model, one could have anticipated that the non-truncated case should give rise to more entanglement. On the contrary, we see that it is the truncated case which gives rise to more entanglement. To understand this consider first Fig. 6b, in which nearest neighbor ions \(l_A, B = 10, 11 \) have been used as probes. We find that the truncated and non-truncated models precisely agree for sufficiently small \(T < 1/\nu_0 \). In this case, since there is pre-existing local entanglement between the close ions, the probe can detect entanglement in an arbitrarily short time, and the truncated interaction has here no effect because evolution is not required. On the other hand, in the case of separated ions, propagation effects “communicate” between the probes and ions closer to the center of the trap which carry the most entanglement. This suggests that the larger entanglement in the truncated model is due to perfect wave reflection at the boundary between the regions.

In conclusion, we have proposed an efficient method for detecting vacuum entanglement by mapping motional states of trapped ions or groups of ions to the ions’ internal levels. It is remarkable that this phenomenon, which can be considered as purely fundamental, may also help to realize quantum information tasks. Further investigations will determine whether vacuum entanglement can be used to entangle internal degrees of freedom in a fast way, and to produce spin squeezing, which would be of practical interest in, for example, atomic clocks [10].

AR and BR acknowledge the support by ISF, grant 62/01-1. JIC was supported by EU projects, the DFG, and the Bayerischen Staatsregierung.

[1] M. Nielsen, I. Chuang, *Quantum Computation and Quantum Information*, Cambridge Univ. Press, 2000.
[2] S. J. Summers and R. F. Werner, Phys. Lett. A 110, 257 (1985); R. Verch, R. F. Werner, quant-ph/0403089.
[3] B. Reznik, Found. Phys. 33, 167 (2003); quant-ph/0080006; B. Reznik, A. Retzker, J. Silman, quant-ph/0310058.
[4] T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110, (2002); G. Vidal et. al. Phys. Rev. Lett 90, 227902 (2002).
[5] K. Audenaert et. al., Phys. Rev. A 66, 042327 (2002); A. Botero, B. Reznik, Phys. Rev. A 70, 052329 (2004).
[6] U.V. Poulsen, T. Meyer, M. Lewenstein, cond-mat/0405550.
[7] I. J. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
[8] D. Leibfried et. al., Rev. Mod. Phys. 75, 281 (2003).
[9] A. Botero, B. Reznik, Phys. Rev. A 67, 052311 (2003).
[10] A. Peres, *Quantum Theory: Concepts and Methods* (Kluwer, Dordrecht, 1995).
[11] J. I. Cirac, L. M. Duan, P. Zoller, quant-ph/0405030.
[12] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[13] M. A. Rowe et al., Nature 409, 791 (2001).
[14] B. Kraus, J. I. Cirac, Phys. Rev. Lett. 92, 013602 (2004).
[15] M. A. Rowe et al., Quant. Inf. Comp. 4 257 (2002).
[16] M. D. Barrett et al., Nature 429, 737 (2004).
[17] G. Vidal, R. F. Werner, Phys. Rev. A 65, 032314 (2002).
[18] The logarithmic negativity measures the degree of which the partial transposed density matrix (which is a transpose of the density matrix with respect to one of the subsystems) fails to be positive, moreover it bounds the distillable entanglement.
[19] D. J. Wineland, et al., Phys. Rev. A 50, 67 (1994).