Adiposity and Cardiometabolic Risk assessment Among University Students in Saudi Arabia

Waleed Albaker¹, Said El-Ashker², Mohamed A. Baraka³,⁴, Nagla El-Tanahi², Mohammad Ahsan⁵ and Mohammed Al-Hariri⁶

¹College of Medicine, Department of Internal Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
²Self-Development Department, Deanship of Preparatory Year, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
³Clinical Pharmacy department, College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
⁴Clinical Pharmacy department, College of Pharmacy, Al-Azhar University, Cairo, Egypt
⁵College of Applied Medical Sciences, Department of Physical Therapy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
⁶College of Medicine, Department of Physiology, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

Abstract
Overweight and obesity have become a significant health hazard among adolescents on account of quick growth in its occurrence rate and its common comorbidities like cardiometabolic disease (CMD). The aim of this study was to evaluate the prevalence of adiposity and assess the risk of CMD among university students in Eastern Province, Saudi Arabia. A cross-sectional study was conducted during the academic year 2017–2018, in a sample of 310 subjects (127 males; 183 females). The measurements were taken using standardized instruments including Body Mass Index (BMI), Fat Mass Index (FMI), Body Fat Percentage (BFP), Mass of Body Fat (MBF), Visceral Fat Area (VFA), Waist Circumference (WC), and Waist to Hip Ratio (WHR). Moreover, CMD risk indicators were calculated by Conicity index (C index), WC, and WHR. The findings showed that the majority was overweight and obese (16.8% and 21.6%, respectively). While evaluating obesity indicators, males were found to have higher adiposity (obese students 34.6%) compared

Corresponding author:
Mohammed Al-Hariri, College of Medicine, Department of Physiology, Imam Abdulrahman Bin Faisal University, Dammam, P.O. Box 2114-31451, KSA.
Email: mtalhariri@iau.edu.sa

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
to female students (12.6%; \(p < 0.001 \)). Additionally, FMI showed that the mean was significantly higher among males (8.65 ± 6.06) compared to females (7.26 ± 3.30; \(p < 0.019 \)). Analysis of the predictors’ indices for cardiometabolic risk score highlighted a significantly higher percentage of WC, WHR, and C index among male students (50, 38.5, 59) compared to females (16.9, 14.2, 34; \(p < 0.001 \)). Significant positive correlations were observed between C index quartiles and BMI with the other cardiometabolic indices (\(p < 0.001 \)). This study highlighted a high prevalence of adiposity and CMD risk among university students. The prediction of CMD in early age is quite helpful in preventing adiposity related health issues. Decision makers need to spread awareness about healthy consumption as well as the relationship between physical inactivity and chronic diseases.

Keywords
Overweight, obesity, cardiometabolic disease, adiposity indicators, conicity index

Introduction
Overweight and obesity are defined by the World Health Organization (WHO) as irregular or excessive fat build-up that could negatively affect health.\(^1\)

It was reported in several studies that accumulation of body fat increased morbidity and mortality related to cardiometabolic diseases (CMD),\(^2,3\) resulting in an increased risk of diabetes type 2, stroke, cardiovascular diseases,\(^3,4\) and hypertension.\(^5\) Besides, increasing body fat percentage (BFP) became a critical health problem and a cause of concern globally.\(^6\)

Several socio-cultural changes have been documented among residents of the Gulf region. These changes were expected to affect the lifestyle of people and were linked to warning health outcomes because of the occurrence of both overweight and obesity in the region.\(^7\)

CMDs are a major public health concern due to their high prevalence locally as well as globally. There are several scoring systems available to predict the risk of developing CMD. The measurement of the anthropometric indices is the most useful and appropriate method to discriminate between low and high risk patients who require intensive control.\(^8\)

Anthropometric measurements are important tools to evaluate the tendency for the young to become overweight and/or obese as well as the tendency to develop poor lipo-metabolic profile.\(^9\)

The Conicity Index (C index) is another type of measurement of central obesity and is based on the hypothesis that the accumulated abdominal fat has a silhouette like a double cone “two cones sharing the same base, one positioned over the other” whereas participants with less visceral fat have the shape of a cylinder. Therefore, C index ranges from 1.73 (a perfect double cone) to 1.0 (a perfect cylinder).\(^10\) As cited in the literature, C index is strongly associated with CMD as compared to other anthropometric indicators\(^11\) and incorporates three measures namely height, weight and waist circumferences (WC).\(^12\) Moreover, it was reported that C index and Waist to Hip Ratio (WHR) were good discriminators for CMD events as compared to the other obesity indices.\(^13,14\)
The prevalence of CMD depends on many factors such as population characteristics (age, sex, and ethnicity), lifestyle and, geographic location. However, there is no data availability about the prevalence of CMD in Saudi academia. Recent studies on the clustering of the individual components within particular combined age, adiposity, anthropometric measurements, sex and CMD risk assessment in young Saudi population are limited. Therefore, this study aimed to determine the prevalence of adiposity as well as assess the risk of CMD on the basis of gender among university students in Eastern Province, Saudi Arabia.

Materials and methods

A cross-sectional study was conducted in the city of Dammam (Eastern Province, KSA), enrolling undergraduate students studying in preparatory year who were attending Imam Abdulrahman Bin Faisal University (IAU) during the academic year 2017/2018. Such students constituted the study population. All the students were asked to participate in the study. The participation was of voluntary nature. The students were notified by emails and WhatsApp messages. The students were informed about the study protocol and the methods of assessments before enrollment in the study. Data for each student were collected during official working hours by three trained researchers.

The sample size was calculated using Raosoft software. The total number of preparatory year students is around 3900 students. The female students constitute two-thirds of students \(^{n < 2600}\) whereas males constitute the remaining one third \(^{n < 1300}\) of the preparatory year students. The sample size was calculated using a 5% margin of error and a confidence level of 95%. With an expected response rate of 50% based on a pilot study, the calculated sample size was 351. Therefore, 351 participants were enrolled to participate in the study.

Lactating and/or pregnant women and those individuals with chronic diseases or any other disabilities that might have affected their anthropometric measures were recognized during screening and exempted from the participation. The study was approved by the Ethics Committee of IAU, Institutional Review Board (IRB number: IRB-2018-19-112) and written consent was obtained from each participant.

Measurements were taken using standardized equipment. Participants were asked to wear light clothing and remove their shoes before taking their measurements. The height of students was documented to the nearby 0.1 cm, and weight was calculated to the nearby 0.1 kg (Seca 704; Seca, Hamburg, Germany).\(^7\) The participants were instructed to fast for 4-h before body composition measurement.

The assessment of body composition was according to the manufacturer’s protocol of the Bioelectrical impedance analysis (BIA) (IOI 353, Jawon Medical, S. Korea). BIA device measured body segments through tetra-polar electrode method using 8 touch electrodes. The following parameters were determined: Body Mass Index (BMI), Body Fat Percentage (BFP), Mass of Body Fat (MBF) and Visceral Fat Area (VFA). Body composition was evaluated at normal body hydration in
similar external temperature (22–24°C). Subsequently, the subject’s hands and feet were cleaned using soap and water, then further dried, and cleaned with alcohol before electrodes were placed on the skin surface. The technique utilized bioelectrical impedance which presents a high correlation ($R < 0.88$) with dual X-ray absorptiometry.

According to both the National Institutes of Health (NIH) and WHO international classification, adults were classified based on their body mass index (BMI) to underweight (BMI < 18.5), normal (BMI = 18.5–24.9), overweight (BMI = 25–29.9), or obese (BMI ≥ 30). Furthermore, obesity is subdivided into three grades: Grade 1 (BMI = 30–34.9), Grade 2 (BMI = 35–39.9) and Grade 3 or extreme obesity (BMI ≥ 40).

Taking into consideration age and gender, the participants were classified as having low body fat percentage (BFP < 8), normal (BFP = 8–19.9), high (BFP = 20–24.9), or very high (BFP ≥ 25) body fat.

FMI was considered as fat mass (kg) ÷ height (m2). Using FMI developed from the National Health and Nutrition Examination Survey, the participants were classified into categories of fat deficit, normal, excess fat, obese I and obese II–III using FMI cut offs of <3, 3–6, 6–9, 9–12 and <12 for males and <5, 5–9, 9–13, 13–17 and <17 for females.

Other anthropometric indices, such as WC as well as WHR, are two of the most commonly used non-invasive biomarkers in predicting cardiometabolic risk factors. WC was measured with measuring tape (Gay Mill, WI) to the nearest centimeter (cm) midway between the inferior angle of the ribs and the suprailiac crest. Hip circumference was measured as the maximal circumference over the buttocks in cm.

According to the WHO, the recommended WC and WHR cut-off points for increased cardiometabolic risk in women is (<88 cm, ≥0.85) and (<94 cm, ≥0.90) in men.

For the calculation of the C index, “the measurements of weight, height, and WC were used” by means of the following mathematical equation:

$$C_{\text{index}} = \frac{\text{Waist Circumference} (m)}{0.109 \times \sqrt{\frac{\text{Body weight (kg)}}{\text{Height (m)}}}}$$

A score of ≥1.18 for women and ≥1.25 for men indicates a risk. Furthermore, we categorized C index (CIC) into four quartiles [first Q < 1.28, second Q 1.28–1.34, third Q 1.34–1.38, and fourth Q ≥ 1.38] for the comparison between the groups.

Statistical analysis

Data were analyzed using SPSS for Windows (version 25, SPSS, Inc., Chicago, IL, USA). The normality distribution was assessed using the Shapiro-Wilk test. The data were then categorized to compare gender differences in terms of the prevalence of obesity, overweight, excess fats and other categorical data using chi-square test.
Student \(t \)-test was used to investigate gender differences in the continuous data for all variables and the mean \(\pm SD \) were reported for each group associated with their \(p \)-value of the comparison results. In both cases, \(p \)-values below 0.05 were used as an indicator for statistical significance.

Results

Out of the total calculated sample size, 88\% of the students only accepted to participate in the study. Therefore, the sample comprised of 310 subjects, selected by a convenience sampling method. Female \((n = 183) \) students had greater representation as they comprised of 60\% of the study population, whereas male \((n = 127) \) students represented 40\% of the sample. This was concordant with the gender proportions among the whole preparatory year students in the university. Male students had a slightly higher mean \((18.57 \pm 0.85) \) compared to female students \((18.38 \pm 0.76) \) in regard to age. The age of students ranged from 16 to 23 years (Table 1).

The study results revealed that mean BMI was above 25 among all study participants \((25.32 \pm 7.67) \). Among them, more than one-third of students were overweight and obese \((16.8\% \) and 21.6\%, respectively). However, it was significantly higher among male students \((28.46 \pm 9.45) \) compared to females \((23.15 \pm 5.14; p < 0.001) \). Data showed male participants had a significantly higher proportion of obese students \((34.6\%) \) compared to female students \((12.6%; p < 0.001) \). Similarly, the percentage of overweight males \((17.3\%) \) was slightly higher than that of female students \((16.4%; p < 0.001) \). The study profile was also consistent with the results of the WC where males had also a higher mean \((99.31 \pm 23.61) \) compared to female students \((76.91 \pm 9.74; p < 0.000) \). This was also reflected in the higher mean WHR among male students \((0.88 \pm 0.12) \) compared to females \((0.78 \pm 0.08; p < 0.000) \) as shown in Table 1.

Table 1. General characteristics of participants.

Variables	Total \(n < 310 \)	Male \(n < 127 \)	Female \(n < 183 \)	\(p \)-Value
Age	18.45 ± 0.80	18.57 ± 0.85	18.38 ± 0.76	<0.040
Body mass index				
Mean ± SD	25.32 ± 7.67	28.46 ± 9.45	23.15 ± 5.14	<0.001
Underweight (%)	43 (13.9)	10 (7.9)	33 (18.0)	<0.001
Normal weight (%)	148 (47.7)	51 (40.2)	97 (53.0)	<0.001
Overweight (%)	52 (16.8)	22 (17.3)	30 (16.4)	<0.001
Obese (%)	67 (21.6)	44 (34.6)	23 (12.6)	<0.001
Waist circumference (cm)				
Mean ± SD	86.1 ± 20.1	99.3 ± 23.6	76.9 ± 9.7	<0.001
Waist to hip ratio				
Mean ± SD	0.82 ± 0.1	0.88 ± 0.1	0.78 ± 0.1	<0.001
Comparison of FMI highlighted that, the mean was statistically higher among males (8.65 ± 6.6) compared to females (7.26 ± 3.3; p < 0.019). In contrast, BFP data presented a different tendency, where female students had significantly higher mean of BFP (29.91 ± 6.88) in comparison with males (27.15 ± 10.58; p < 0.010). The MBF results were consistent with most parameters, where males scored significantly higher means (25.27 ± 17.99) compared to females (17.94 ± 8.21; p < 0.001). Similarly, VFA results indicated that males had significantly higher mean fat in the viscera (118.83 ± 81.83) when compared to their female counterparts (58.55 ± 36.25; p < 0.001) as presented in Table 2.

The FMI data showed a similar prevalence for excess fat (14.8%) and obesity (20.7%) among the preparatory year students in general. However, statistically significant differences (p < 0.000) were also observed between male (39.2%) and female (7.8%) students in terms of obesity. Comparison of BFP data revealed a very high fat percentage (65.8%) and high fat percentage (19.4%) among all students. However, in this case female students had a significantly higher percentage of BFP (74.3%) compared to males (53.5%; p < 0.001) (Table 2).

The MBF results displayed a consistent trend with most parameters, where males scored significantly higher means (25.2 ± 17.9) compared to females (17.9 ± 8.2; p < 0.001). Similarly, VFA results indicated that males had significantly higher mean fat in the viscera (118.83 ± 81.8) when compared to their female counterparts (58.5 ± 36.2; p < 0.001). This occurrence was also consistent with the results of the WC and WHR as reported before (Table 2).

Results show that male students were positively correlated with the increased quartiles of C index at the significance level (p < 0.001) than females, which indicated the double cone shape and higher cardiometabolic risk score (Figure 1).

As the BMI and CIC increased, the proportion of cardiometabolic risk increased significantly for both male and female students. Results show that BMI was

Variables	Total n < 310	Male n < 127	Female n < 183	p-Value
Fat mass index				
Deficit (%)	64 (21.1)	14 (11.2)	51 (27.9)	<0.001
Normal (%)	132 (43.4)	44 (35.2)	88 (49.2)	<0.001
Excess fat (%)	45 (14.8)	18 (14.4)	27 (15.1)	<0.001
Obese	63 (20.7)	49 (39.2)	14 (7.8)	<0.001
Body fat percentage				
Low fat percentage (%)	2 (0.6)	2 (1.6)	0 (0.0)	<0.001
Normal fat percentage (%)	44 (14.2)	36 (28.3)	8 (4.4)	<0.001
High fat percentage (%)	60 (19.4)	21 (16.5)	39 (21.3)	<0.001
Very high fat percentage (%)	204 (65.8)	68 (53.5)	136 (74.3)	<0.001
Mass of body fat				
Mean ± SD	20.9 ± 13.5	25.2 ± 17.9	17.9 ± 8.2	<0.001
Visceral fat area				
Mean ± SD	83.2 ± 66.2	118.8 ± 81.8	58.5 ± 36.2	<0.001

Table 2. Differences in adiposity indicators.
significant and positively associated with WHR \((r = 0.91; \ p < 0.001) \), WC \((r = 0.71; \ p < 0.001) \), and C index \((r = 0.26; \ p < 0.001) \). CIC was positively and significantly correlated with BMI \((r = 0.71; \ p < 0.001) \), WHR \((r = 0.75; \ p < 0.001) \), and WC \((r = 0.85; \ p < 0.001) \) as presented in Table 3.

Analysis of the predictors’ indices for cardiometabolic risk score by gender showed a significantly higher percentage of WC (Figure 2(a)), WHR (Figure 2(b)), and C index (Figure 2(c)), among male students (50, 38.5, 59) compared to females (16.9, 14.2, 34; \(p < 0.001 \)) respectively.

Discussion

This study revealed several interesting observations. The occurrence of adiposity and CMD risk indicators in males was significantly greater than females.

Higher family income could predispose a male individual to overweight and obesity.\(^2^8\) Furthermore, as indicated by another study that environmental and social factors in the college of medicine appears to be a strong influential factor
that force male students try to gain weight intentionally despite their medical knowledge. On the other hand, female students appear motivated to control their diet to maintain the preferred body size while utilizing their medical background.²⁸

However, female subjects had a significantly higher BFP than male students, that can be explained due to the physiological difference between both genders as females naturally store fat subcutaneously, and males store fat viscerally.²⁹,³⁰

The majority of males in this study were overweight and obese. This occurrence is also seen in other parts of the world.³¹ The rates of overweight and obesity observed were alarming since they were similar to one of the highest rates in the world.³²,³³

A potential indicator of body adiposity that may prove to be highly useful in this research field is the FMI.³⁴ The baseline means FMI for our sample was (♀8.65 and ♂7.26) which are higher than the figures reported in previous studies.³⁵,³⁶

The results of the present study showed that 85.2% of the whole sample either had a high fat or a very high fat percentage, according to their BFP. The findings also revealed that the total body fat exceeded the proper values in male subjects (VFA ≥100 cm²). It has been noted that visceral fats could lead to CMD.³⁷ Consequently, it was stated that nutritional management would go with consistent medical follow-up to cope or reduce the risk of the aforementioned illnesses in Saudi college students with high VFL.³⁸

Obesity has been recognized in terms of adiposity.³⁹ Measuring adiposity parameters beside to BMI could help to identify people with a higher risk of CMD.⁴⁰

Central obesity indicator is a major CMD risk predictor because it is associated with diabetes type 2, metabolic syndrome and dyslipidemia which increases atherogenic risk.⁴¹ Central obesity as indicated by C index and WC is more appropriate in predicting CMD and its components as compared to the peripheral obesity, as indicated by the BMI. However, a recent study found that both central and peripheral obesity indicators showed similar associations with CMD risk³⁰ and both were found significantly higher among male students. Furthermore, WC correlated

Figure 2. Cardiometabolic risk score assessments among participants. Classification according to the recommended cutoff points for increased cardiometabolic risk (female/male) WC score: (<88 cm/ <94 cm); WHR score: (≥0.85/≥0.90); C index risk score: (≥1.18/≥1.25); (a) waist circumference (%), (b) waist to hip ratio (%), and (c) conicity index (%).
strongly with C index more than WHR, suggesting that WC could be preferred over WHR for predicting central obesity and CMD risk. The use of ratios such as WHR to assess central obesity may not be appropriate because they are highly age dependent42 and may obscure stronger relations that may be present with separate circumference measurements.43 Additionally, differences in skeletal structure may confound the results.44

In the present data there were apparent gender-based differences in the prevalence of CMD risk in male students. Such a difference was documented in a similar screening program done in Saudi Arabia.45

Preparatory students start university as adolescents, while they orient themselves in new lifestyle and environmental changes, it may predispose them to obesity and CMD risk factors. This together with the impact of urbanization may add to increasing the prevalence of CMD in Saudi Arabia.46

Many factors have been recognized in the literatures that have led to growing obesity in the Gulf region. For instance, fast food chains, ease of transportation, and increased popularity of processed food are few to name.47,48 Additional significant factors have also been noted are the extreme consumption of fatty and salty food49 and living a sedentary lifestyle.47 Another important factor that has been observed is the increased use of mobile technologies, TVs, and internet that are most common leisure activities among populations.50

Many healthy individuals with abnormal adiposity profile may have variable degrees of CMD risk and according to the previous report, an early screen for young individuals could be a good predictor for various CMD.8

The study was cross-sectional in design and thus it may not representative, and the results of present study do not correlate the data related to cardiometabolic profile and other health and lifestyle information of participants. These aspects are important and recommended to be included in future data collection.

Conclusion

This study highlights a high prevalence of adiposity and CMD risk among male Saudi adolescent students. The prediction of CMD risk among students in early age may prove helpful in preventing any untoward complication in future. Adiposity may result in high social cost and damage to public health; therefore, this finding is alarming and necessitates the provision of public awareness about healthy food intake and impact of physical inactivity on chronic diseases.

Acknowledgements

The authors wish to acknowledge the preparatory year students, teachers, and administrations in IAU for collaboration in the study. We also thank the anonymous reviewers for their constructive comments that helped strengthen the article.
Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Ethics approval

Ethical approval for this study was obtained from *Ethical Committee of Imam Abdulrahman Bin Faisal University (IAU) (IRB-2018-19-112)*.

Informed consent

Written informed consent was obtained from all subjects before the study.

ORCID iDs

Said El-Ashker https://orcid.org/0000-0002-8145-2775
Mohamed A. Baraka https://orcid.org/0000-0002-7645-2420
Mohammed Al-Hariri https://orcid.org/0000-0002-9807-4870

References

1. World Health Organisation. Obesity and overweight 2018, http://bit.do/eAbxY (accessed 24 July 2018).
2. Su X and Peng D. The exchangeable apolipoproteins in lipid metabolism and obesity. *Clin Chim Acta* 2020; 503: 128–135.
3. Su X and Peng D. New insight into sortilin in controlling lipid metabolism and the risk of atherogenesis. *Biol Rev* 2020; 95(1): 232–243.
4. Lu Y, Day FR, Gustafsson S, et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. *Nat Commun* 2016; 7(1): 1–15.
5. Saxton SN, Clark BJ, Withers SB, et al. Mechanistic links between obesity, diabetes, and blood pressure: role of perivascular adipose tissue. *Physiol Rev* 2019; 99(4): 1701–1763.
6. El Ansari W, El Ashker S and Moseley L. Associations between physical activity and health parameters in adolescent pupils in Egypt. *Int J Environ Res Public Health* 2010; 7(4): 1649–1669.
7. Alkahtani S, Elkilany A and Alhariri M. Association between sedentary and physical activity patterns and risk factors of metabolic syndrome in Saudi men: a cross-sectional study. *BMC Public Health* 2015; 15(1): 1234.
8. Abulmeaty MM, Almajwal AM, Almadani NK, et al. Anthropometric and central obesity indices as predictors of long-term cardiometabolic risk among Saudi young and middle-aged men and women. *Saudi Med J* 2017; 38(4): 372.
9. Al-Hariri MT, Elkilany AM and Alkahtani SA. Effects of potentially modifiable risk factors on the health of adults in the Eastern Province of KSA. *J Taibah Univ Med Sci* 2018; 13(1): 16–21.
10. Mueller WH, Meininger JC, Liehr P, et al. Conicity: a new index of body fat distribution—what does it tell us? *Am J Hum Biol* 1996; 8(4): 489–496.
11. Mangla AG, Dhamija N, Gupta U, et al. Anthropometric markers as a paradigm for obesity risk assessment. *J Biosci Med* 2020; 8(2): 1–16.
12. Ghadimi R, Sadri M, Hajiahmadi M, et al. Anthropometric risk predictors of cardiometabolic disorders among farmers. *Int J Occup Hyg* 2016; 8(3): 165–171.
13. Motamed N, Perumal D, Zamani F, et al. Conicity index and waist-to-hip ratio are superior obesity indices in predicting 10-year cardiovascular risk among men and women. *Clin Cardiol* 2015; 38(9): 527–534.
14. Ramírez-Vélez R, Pérez-Sousa MA, Izquierdo M, et al. Validation of surrogate anthropometric indices in older adults: what is the best indicator of high cardiometabolic risk factor clustering? *Nutrients* 2019; 11(8): 1701.
15. Dehghan M and Merchant AT. Is bioelectrical impedance accurate for use in large epidemiological studies? *Nutr J* 2008; 7: 26.
16. Sun G, French CR, Martin GR, et al. Comparison of multifrequency bioelectrical impedance analysis with dual-energy X-ray absorptiometry for assessment of percentage body fat in a large, healthy population. *Am J Clin Nutr* 2005; 81(1): 74–78.
17. Sanikini H, Yuan J-M, Butler LM, et al. Body mass index and lung cancer risk: a pooled analysis based on nested case-control studies from four cohort studies. *BMC Cancer* 2018; 18(1): 220.
18. Finkelstein EA, Fiebelkorn IC and Wang G. National medical spending attributable to overweight and obesity: how much, and who’s paying? *Health Aff* 2003; 22(Suppl. 1): W3–219.
19. National Institutes of Health. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: executive summary. Expert Panel on the Identification, Evaluation, and Treatment of Overweight in Adults. *Am J Clin Nutr* 1998; 68(4): 899–917.
20. Gallagher D, Heymsfield SB, Heo M, et al. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. *Am J Clin Nutr* 2000; 72(3): 694–701.
21. Lee DH, Keum N, Hu FB, et al. Comparison of the association of predicted fat mass, body mass index, and other obesity indicators with type 2 diabetes risk: two large prospective studies in US men and women. *Eur J Epidemiol* 2018; 33(11): 1113–1123.
22. Kelly TL, Wilson KE and Heymsfield SB. Dual energy X-ray absorptiometry body composition reference values from NHANES. *PLoS One* 2009; 4(9): e7038.
23. Al-Attas OS, Al-Daghri NM, Aloka MS, et al. Association of body mass index, sagittal abdominal diameter and waist-hip ratio with cardiometabolic risk factors and adipocytokines in Arab children and adolescents. *BMC Pediatr* 2012; 12(1): 119.
24. World Health Organization. Waist circumference and waist-hip ratio: report of a WHO expert consultation, Geneva, 8–11 December 2008, 2011.
25. Valdez R. A simple model-based index of abdominal adiposity. *J Clin Epidemiol* 1991; 44(9): 955–956.
26. Pitanga F and Lessa I. Sensitivity and specificity of the conicity index as a coronary risk predictor among adults in Salvador, Brazil. *Rev Bras Epidemiol* 2004; 7(3): 259–269.
27. Kim KS, Owen WL, Williams D, et al. A comparison between BMI and Conicity index on predicting coronary heart disease: the Framingham Heart Study. *Ann Epidemiol* 2000; 10(7): 424–431.
28. Jiang S, Peng S, Yang T, et al. Overweight and obesity among Chinese college students: an exploration of gender as related to external environmental influences. *Am J Mens Health* 2018; 12(4): 926–934.
29. Iqbal M, Al-Regaiey KA, Ahmad S, et al. Body composition analysis to determine gender specific physical fitness equations in a cohort of Saudi population. *Pak J Med Sci* 2014; 30(4): 798.
30. Quaye L, Owiredu WKBA, Amidu N, et al. Comparative abilities of body mass index, waist circumference, abdominal volume index, body adiposity index, and conicity index as predictive screening tools for metabolic syndrome among apparently healthy Ghanaian adults. *J Obes* 2019; 2019: 1–10.
31. Alnohair S. Obesity in gulf countries. *Int J Health Sci* 2014; 8(1): 79–83.
32. Al-Baghli NA, Al-Ghamdi AJ, Al-Turki KA, et al. Overweight and obesity in the eastern province of Saudi Arabia. *Saudi Med J* 2008; 29(9): 1319–1325.
33. Jackson RT, Rashed M, Al-Hamad N, et al. Comparison of BMI-for-age in adolescent girls in 3 countries of the Eastern Mediterranean Region. *East Mediterr Health J* 2007; 13(2): 430–440.
34. Peltz G, Aguirre MT, Sanderson M, et al. The role of fat mass index in determining obesity. *Am J Hum Biol* 2010; 22(5): 639–647.
35. Kyle UG, Schutz Y, Dupertuis YM, et al. Body composition interpretation. Contributions of the fat-free mass index and the body fat mass index. *Nutrition* 2003; 19(7–8): 597–604.
36. Liu P, Ma F, Lou H, et al. The utility of fat mass index vs. Body mass index and percentage of body fat in the screening of metabolic syndrome. *BMC Public Health* 2013; 13: 629.
37. Misra A and Khurana L. Obesity-related non-communicable diseases: South Asians vs White Caucasians. *Int J Obes* 2011; 35(2): 167–187.
38. Shoji K, Maeda K, Nakamura T, et al. Measurement of visceral fat by abdominal bioelectrical impedance analysis is beneficial in medical checkup. *Obes Res Clin Pract* 2008; 2(4): 269–275.
39. Al-Rethaiaa AS, Fahmy A-EA and Al-Shwaiyat NM. Obesity and eating habits among college students in Saudi Arabia: a cross sectional study. *Nutr J* 2010; 9: 39.
40. De Lorenzo A, Bianchi A, Maroni P, et al. Adiposity rather than BMI determines metabolic risk. *Int J Cardiol* 2013; 166(1): 111–117.
41. Roriz AKC, Passos LCS, de Oliveira CC, et al. Evaluation of the accuracy of anthropometric clinical indicators of visceral fat in adults and elderly. *PLoS One* 2014; 9(7): e103499.
42. Power C, Lake JK and Cole TJ. Measurement and long-term health risks of child and adolescent fatness. *Int J Obes* 1997; 21(7): 507–526.
43. Goran M, Allison D and Poehlman E. Issues relating to normalization of body fat content in men and women. *Int J Obes Relat Metab Disord* 1995; 19(9): 638–643.
44. Ley CJ, Lees B and Stevenson JC. Sex-and menopause-associated changes in body-fat distribution. *Am J Clin Nutr* 1992; 55(5): 950–954.
45. Aljohani NJ. Metabolic syndrome: risk factors among adults in Kingdom of Saudi Arabia. *J Family Community Med* 2014; 21(3): 170.
46. Al-Daghri NM, Al-Attas OS, Alokail MS, et al. Diabetes mellitus type 2 and other chronic non-communicable diseases in the central region, Saudi Arabia (Riyadh cohort 2): a decade of an epidemic. *BMC Med* 2011; 9(1): 76.

47. Badran M and Laher I. Obesity in arabic-speaking countries. *J Obes* 2011; 2011: 686430.

48. Mahfouz AA, Abdelmoneim I, Khan MY, et al. Obesity and related behaviors among adolescent school boys in Abha City, Southwestern Saudi Arabia. *J Trop Pediatr* 2007; 54(2): 120–124.

49. Musaiger AO. *Food consumption patterns in the Eastern Mediterranean Region*. Manama-Bahrain: Arab Center for Nutrition, 2011, p.102.

50. Al-Hariri M. Life style activities and feeling state responses in community sample of diabetic patients in Eastern Providence Saudi Arabia. *J Diabetes Metab Disord* 2019; 18(2): 301–305.

Author biographies

Waleed Albaker is an Associate Professor of internal medicine American and Canadian board of internal medicine, university of British columbia, Vancouver, university of Alberta Edmonton (MBBS,FRCP,FACP). Consultant of diabetes and endocrinology, King Fahd Hospital of the University, Vice dean of clinical affairs, medicine college, Head section of diabetes and endocrinology and Head section of diabetes and endocrinology Unit at king Fahad university hospital.

Said El-Ashker holds a PhD 2010 (Mansoura University, Egypt & University of Gloucestershire United Kingdom) in Athletic Training and currently works at Self-Development Department, Deanship of Preparatory Year, Imam Abdulrahman Bin Faisal University, Saudi Arabia. Post-doctor 2013, at Physical Education and Sport Sciences, University of Limerick, Ireland. Full Professor 2020, at Faculty of Physical Education, Mansoura University, Mansoura 35516, Egypt. He pursues research in exercise sciences, exercise physiology, and Biomechanics with a precise motivation on performance development besides acute and chronic physiological adaptations in both young and elite athletes. His up-to-date projects also cover physical fitness, body composition, and nutritional behaviors of preparatory year students, in addition to the application of different neural networks approaches in analyzing variability in sports team tactics. His other research interests are resistance training in youth athletes, physical fitness, combat sports, performance analysis in sports.

Mohamed A. Baraka is currently an Assistant Professor of Clinical Pharmacy in College of Pharmacy, Al Ain University in Abu Dhabi, UAE. He was the head and founder of Pharmacy Practice department in the College of Clinical Pharmacy, in Imam Abdulrahman Bin Faisal University (IAU) and the curriculum committee coordinator. He was also a member in the founding committee/college council of the college for four years, where he participated in decision making in curriculum development, strategic planning and college accreditation activities. He got his PhD in Clinical Pharmacy from the college of Medicine and pharmacy, Free University of Brussels (VUB) in Belgium 2011, and worked as Assistant Professor in Al-Azhar University in Cairo, Egypt for two years. Afterwards, he joined the College of Clinical Pharmacy in IAU to participate in the college foundation and in the PharmD program development. He has several publications in Clinical Pharmacy practice.
and in pharmacy education research. He is also serving as a reviewer & editorial board member in several peer reviewed journals in Pharmacy field. Dr Baraka has quite good experience in curriculum development in Clinical Pharmacy education namely in PharmD programs where he provided consultation services for several colleges in the Middle East regarding courses and curriculum development in addition to quality improvements of academic programs. Finally, Dr Baraka contributes to the development of the Arabie board of Pharmacy and he is a member in the general scientific council of the Arab Board of Pharmacy.

Dr Nagla El-Tanahi holds a PhD 2005 (Zagazig University, Egypt) in physical Education and currently works at Self-Development Department, Deanship of Preparatory Year, Imam Abdulrahman Bin Faisal University, Saudi Arabia. Post-doctor 2011, in Athletic training and Sport Sciences, Full Professor 2016, at Faculty of Physical Education, Zagazig University, Egypt. She pursues research in exercise sciences Psychology and special needs, Athletic training. She publishes approach to 21 research and projects in combat sports, performance analysis in sports, special needs in Arabic and English journals.

Mohammad Ahsan holds a PhD in Physical Education and currently works at Physical Therapy, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia. He published near 40 articles and presented many papers at international conferences. Dr. Mohammed is heavily involved in the teaching and supervision of graduate and postgraduate students.

Mohammed Al-Hariri is working as Associate Professor in the department of physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, KSA. He has published near 47 scientific articles in the field of Exercise Physiology, Diabetes mellitus, evidence-based medicine, alternative medicine and medical education. Al-Hariri is coordinating the 6th year medical student research course, department of physiology and extracurricular activities at the college of medicine. Al-Hariri is a TV presenter for programs in the miracle of human creation and Prophetic medicine. He has participated in many conferences and conducted workshops both nationally and internationally.