Pyramiding resistances based on translation initiation factors in Arabidopsis is impaired by male gametophyte lethality

Caroline Callot and Jean-Luc Gallois*

INRA-UR1052; Genetics and Breeding of Fruits and Vegetables; Dom. St Maurice; F-84143 Montfavet Cedex, France

Keywords: eIF4E, translation initiation, gametophyte development, virus resistance, Arabidopsis

In eukaryotes, eIF4E translation initiation factors are essential proteins encoded by a small multigene family. In plants, they are a source of host plant resistance to potyviruses that require specific 4E factors to infect cells. Combining mutations in different eIF4E genes could be a way of broadening the spectrum of plant resistance to viruses. We attempted to combine null mutations affecting the two main Arabidopsis thaliana 4E factors eIF4E1 and eIFiso4E but discovered that this combination is lethal. Transmission through the male gametophyte is completely abolished in the eif4e1 eifiso4e double mutant. This shows that eIF4E1 and eIFiso4E are essential for male gametophyte development and act redundantly. These results may have implications for eIF4E-based pyramiding strategies to improve crop resistance.

Eukaryotic translation is initiated by the interaction between the mRNA cap structure that is present at the 5' end of most mRNAs and the eIF4E protein. Other elf factors, including the large scaffold protein eIF4G, are involved in this process that results in the assembly of the 43S pre-initiation complex. Translation initiation is thought to be a fundamental process in cell development, and mutation of the Saccharomyces cerevisiae elf4E gene (or CDC33) shows that this gene is indeed essential for cell growth. Plants have two types of translation initiation complex. The elf4F complex is made up of the elf4E and elf4G proteins, and the elfiso4F complex is made up of their respective isoforms elfiso4E and elfiso4G. In Arabidopsis thaliana, elf4E proteins are encoded by a small multigene family of the three elf4E genes elf4E1 (At4g18040), elf4E2 (At1g29590) and elf4E3 (At1g29550), the isoform elfiso4E gene (At5g35620) and the atypical nCBP gene (At5g18110). The elf4G family members are elf4G (At3g60240) and the two isoform genes elfiso4G1 (At5g35870) and elfiso4G2 (At2g24050). All single Arabidopsis mutants affecting these translation initiation factor genes are viable, suggesting a high degree of redundancy among the respective elf4E and elf4G genes. However, an elfiso4g1 elfiso4g2 double mutant displays pleiotropic developmental defaults including dwarfism and reduced fertility. Likewise, silencing of several elf4E genes in Nicotiana tabacum or Lycopersicon esculentum led to dwarf plants.

In plants, the 4E and 4G translation initiation factors have also been shown to be central in plant resistance to RNA viruses, especially members of the Potyvirus genus of single-stranded, positive sense RNA viruses. In Arabidopsis, systematic studies of mutants affecting translation initiation factors showed that distinct potyviruses can recruit different specific elf4F isoforms. For example, the Turnip Mosaic Virus (TuMV) requires elfiso4E to infect Arabidopsis whereas the Clover Yellow Vein Virus (CIYVV) uses elf4E1. If mutations affecting both these host genes were combined it may be possible to enlarge the resistance spectrum of the host and possibly counter overcoming viral strains that manage to bypass specific elf4E-mediated resistance.

To implement such a strategy, KO mutations affecting elf4E1 and elfiso4E were combined. An F1 population was obtained by crossing plants homozygous for the elfiso4e mutation caused by a d5pm element insertion with plants homozygous for the elf4e1 mutation caused by a T-DNA insertion in the first intron of elf4E1 (SALK_145583). The F1 plants were genotyped to ensure that they were heterozygous at both loci (elf4e1;elf4e1; elfiso4e;elfiso4e) (Fig. 1) and were allowed to self. F2 plants were genotyped to search for elf4e1 elfiso4e double mutants but no plants homozygous for both mutations were isolated (n > 500 F2 plants, resulting from 3 independent selfed F1 parents). This shows clear segregation bias in the F2 progenies.

Besides the diploid sporophytic phase, the higher plant life cycle includes a postmeiotic haploid phase that takes place in male and female reproductive organs. Given the effect of mutations affecting elf4E in haploid yeast, we hypothesized that the haploid lethality of the gametophytes harboring mutations in both elf4E1 and elfiso4E could be the reason for the segregation bias observed in the F2 Arabidopsis plants.

*Correspondence to: Jean-Luc Gallois; Email: jgallois@paca.inra.fr
Submitted: 01/11/2014; Accepted: 01/21/2014; Published Online: 02/03/2014
Citation: Callot C, Gallois JL. Pyramiding resistances based on translation initiation factors in Arabidopsis is impaired by male gametophyte lethality. Plant Signaling & Behavior 2014; 9:e27940; PMID: 24492391; http://dx.doi.org/10.4161/psb.27940
Mutations that are gametophytic lethal can be readily inferred from the non-Mendelian segregation of alleles.18 If a gene is essential for haploid gametophyte development, either male or female, gametes harboring this mutation will not develop properly or be transmitted to the progeny. As a result, the transmission of the mutation to the progeny will be skewed.19 If two genes are essential for gametophyte development but act redundantly, a single mutation affecting one of those genes will be transmitted normally through the gametes, but combined mutations affecting both genes will not be transmitted.20

Large genomic deletions have been shown to correlate with gametophytic lethality19 so it was checked that there was no deletion at the insertion site of either \textit{eif4e1} nor \textit{eifiso4e} mutations.8 We then tested whether single mutations affecting \textit{eIF4E1} or \textit{eIFiso4E} had any effect on gametophyte development. Reciprocal crosses were performed between heterozygous \textit{eif4e1/eIF4E1} \textit{F1} plants and wild-type Columbia (Col). The progenies were sown and the percentage of plants harboring the \textit{eif4e1} allele was assessed by genotyping. This percentage reflects the proportion of viable gametophytes (male or female) carrying the \textit{eif4e1} mutation that have been transmitted successfully. If the mutation has no effect on the gametophyte development, it is expected that 50% of the plants will be heterozygous for the \textit{eif4e1} mutation. No segregation bias was found for the null \textit{eif4e1} allele, either through the male gametophyte (48\% male transmission of \textit{eif4e1}, \textit{n} = 56) or through the female gametophyte (52\% female transmission of \textit{eif4e1}, \textit{n} = 44). Similar reciprocal crosses were performed with \textit{eifiso4e} and again, no male nor female transmission defect was associated with this mutant allele (61\% male transmission of \textit{eifiso4e}, \textit{n} = 56; 44\% female transmission of \textit{eifiso4e}, \textit{n} = 56). These experiments show that single mutations affecting \textit{eIF4E1} or \textit{eIFiso4E} do not affect either male or female transmission and therefore have no significant effect on gametophyte development.

To assess the effect of a loss of function of both \textit{eIF4E1} and \textit{eIFiso4E} in gametophytes, \textit{F1} plants heterozygous for both mutations (\textit{eif4e1/eIF4E1}; \textit{eifiso4e/eIFiso4E}) were crossed to wild-type Col. Progenies were genotyped to determine the transmitted gamete genotypes (Table 1). When the \textit{eif4e1/eIF4E1}; \textit{eifiso4e/eIFiso4E} plants were used as the female parent, both single and double mutations segregated as expected, showing that loss of function of \textit{eIF4E1} and \textit{eIFiso4E} has no effect on female gametophyte development in \textit{Arabidopsis}.

mutant	oligo name	sequence
\textit{eif4e1}	LBb1	ATTTTGCGATTTCCGAAC
	Z2014	TTCCATTGTTTCCAAATGCTC
	Z2015	GAAACCAACCTCTGAGGGAAG
\textit{eifiso4e}	dspm1	CTTATTTCAGTAAGAGTGCTGAGGGTTTGG
	Z2835	AAGAAGATTTAAATGCTCTGATGGAC
	Z2836	CTCATCTGCTTCAATGCTCT

Figure 1. Genotyping of the plants used in this study. (A) Oligonucleotides used for genotyping. For \textit{eIF4E1}, wild-type and mutant alleles were genotyped with Z2014-Z2015 and LBb1-Z2015, respectively. For \textit{eIFiso4E}, wild-type and mutant alleles were genotyped with Z2835-Z2836 and dspm1-Z2835, respectively. (B) Wild-type plants (Col), plant homozygous for the \textit{eif4e1} mutation or for the \textit{eifiso4e} mutation (\textit{iso}) and \textit{F1} plants were genotyped for the T-DNA or transposon insertion in \textit{eIF4E1} (\textit{e1}) or \textit{eIFiso4E} (\textit{iso}), respectively.
However, when *eif4e1/eIF4E1; eifiso4e/eIFiso4E* plants were used as the male parent, a strong segregation bias was detected in progeny. No plant carrying both the *eif4e1* and *eifiso4e* mutations was obtained out of 211 plants tested from the progeny (expected number of double heterozygous plants if unbiased segregation, 53). This result shows that eIF4E1 and eIFiso4E are essential for male gametophyte development. These results highlight the functional redundancy between eIF4E1 and eIFiso4E as the male gametophyte develops normally when either one of the genes is functional. This redundancy implies that both eIF4E1 and eIFiso4E are expressed similarly during the male gametophyte development. We looked at transcriptomes from different stages of male gametophyte development from data collected by microarray analysis. The level of expression of eIF4E1 and eIFiso4E are very similar at the different stages of pollen development (Table 2). However, we noted that two other genes encoding 4E initiation factors, eIF4E3 (At1g29550) and nCBP (At5g18110), are expressed in male gametophytes, albeit at a lower level. The genetic results indicate that neither eIF4E3 nor nCBP can replace eIF4E1 and eIFiso4E during male gametophyte development. This might be due to their low expression level or to differential functions during translation initiation. The latter explanation is very likely for nCBP, which encodes a non-canonical eIF4E protein. Future experiments based on promoter swaps between eIF4E homologs could help to confirm this.

The stage at which *eif4e1 eifiso4e* male gametophyte development is impaired remains to be determined. The analysis of pollen using viral pollen Alexander staining shows that pollen harvested from *eif4e1/eIF4E1; eifiso4e/eIFiso4E* F1 plants is 100% viable. This suggests that the lack of eIF4E1 and eIFiso4E affects later stages of pollen development. Interestingly, proteomics studies in *Oryza sativa* have pinpointed an upregulation of translational initiation factors eIF4G and eIF4A during pollen tube growth, consistent with an increased requirement for protein synthesis at that stage. In the *eiffie eifiso4e* gametophyte, we might predict that without such a boost in protein production, pollen tube germination and/or growth and/or ovule fertilization would be impaired. In contrast, the female gametophytic transcription was not affected by the combined *eif4el eifiso4e* mutations. This may be because the gene redundancy among genes encoding 4E proteins is different in the female gametophyte. Perhaps eIF4E2, eIF4E3 or nCBP are sufficient to initiate translation in the female gametophyte. Alternatively, the female gametophyte may contain enough 4E proteins to develop until fertilization.

These results also bring significant insights to the domain of plant-potyvirus interactions. Coevolution between plants and potyviruses has resulted in naturally occurring non-synonymous mutations in eIF4E genes. Often, these genes have retained their translation initiation properties but lost the capacity to interact with the viral proteins, hence resulting in the plant gaining resistance to the virus. This is exemplified by the *Capsicum annuum/Potato virus Y* and *Capsicum annuum/Tobacco etch Virus* pathosystems. Besides natural alleles, resistance to potyviruses can also be associated with *de novo* eIF4E mutants: in *Lycopersicon esculentum*, a *eIF4E1 KO* allele was obtained that made plants resistant to potyviruses. The results presented here highlight that in some cases the crop improvement strategy of pyramiding resistance using eIF4E KO alleles will be limited by gametophyte lethality. As eIF4E proteins are implicated in essential cell processes, it may be necessary to rely more on functional resistance alleles like the ones produced by natural variation to reinforce strategies to enlarge the resistance spectrum or to limit the spread of overcoming strains.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

This research was supported by INRA AAP MARASME. We thank Sandrine Bonhomme (INRA, Versailles) for very helpful comments on the manuscript. We thank Carole Caranta for support.

Table 1. Gametophytic transmission of eif4e1 and eifiso4e alleles in a backcross of eif4e1/eIF4E1; eifiso4e/eIFiso4E plants to wild-type Columbia plants

Gamete genotypes	eIF4E1	eIF4E1	eIF4E1	eIF4E1	eIF4E1
Unbiased	25%	25%	25%	25%	
Gametophytic lethal	33%	33%	33%	0%	
Tmale	39%	30%	30%	0%	211
Tfemale	25%	24%	29%	22%	249

Predicted frequency of different allele combinations according to the type of segregation, aTmale and bTfemale are respectively percentage of allele transmission in progenies of male and female backcrosses between double heterozygous mutant plants and wild type. *Total number of plants genotyped for each progeny.

Table 2. Expression of the genes encoding translation initiation factors 4E in transcriptomes of the developing male gametophytes

AGI	Gene Name	UNM	BCP	TCP	MPG
At4g18041	eif4e1	1770	1807	752	317
At5g35620	eifiso4e	1327	1338	682	455
At1g29550	eif4e3	382	413	320	224
At5g18110	nCBP	658	564	293	236

Microarray data (gathered from Honys et al.) on relative gene expression during male gametophyte development. The development stages are: UNM, uninucleate microspores; BCP, bicellular pollen; TCP, tricellular pollen; and MPG, mature pollen grains.
References

1. Hernández G, Altman M, Lasko P. Origins and evolution of the mechanisms regulating translation initiation in eukaryotes. Trends Biochem Sci 2010; 35:63-73; PMID:19926289; http://dx.doi.org/10.1016/j.tibs.2009.10.009

2. Altman M, Handschin C, Trachsel H. mRNA cap-binding protein: cloning of the gene encoding protein synthesis initiation factor eIF-4E from Saccharomyces cerevisiae. Mol Cell Biol 1987; 7:998-1003; PMID:3550438

3. Brenner C, Nakayama N, Goebl M, Tanaka K, Tolve A, Matsumoto K. CDC33 encodes mRNA cap-binding protein eIF-4E of Saccharomyces cerevisiae. Mol Cell Biol 1988; 8:3556-9; PMID:3062383

4. Patrick RM, Browning KS. The eIF4F and eIF4G Complexes of Plants: An Evolutionary Perspective. Comp Funct Genomics 2012; 2012:287814.

5. Lelli AD, Allen ML, Aariker AW, Tran JK, Hilles DM, Harbin CR, Caldwell C, Gallie DR, Browning KS. Deletion of the eIF3G8 subunit of the Arabidopsis eIF3F translocation initiation complex impairs health and viability. Plant Mol Biol 2010; 74:249-63; PMID:20694742; http://dx.doi.org/10.1007/s11103-010-9670-7

6. Robaglia C, Caranta C. Translation initiation factors: a weak link in plant RNA virus infection. Trends Plant Sci 2006; 11:40-5; PMID:16343979; http://dx.doi.org/10.1016/j.tplants.2005.11.004

7. Ruud KA, Kuklow C, Goss DJ, Browning KS. Identification and characterization of a novel cap-binding protein from Arabidopsis thaliana. J Biol Chem 1998; 273:10325-30; PMID:9553087; http://dx.doi.org/10.1074/jbc.273.17.10325

8. Duprat A, Caranta C, Revers F, Menand B, Browning KS, Robaglia C. The Arabidopsis eukaryotic initiation factor iso4E is dispensable for plant growth but required for susceptibility to potyviruses. Plant J 2002; 32:927-34; PMID:12492835; http://dx.doi.org/10.1046/j.1365-313X.2002.01481.x

9. Nicaisse V, Gaillot JL, Chaffai F, Allen LM, Schurdi-Levrard V, Browning KS, Candresse T, Caranta C, Le Gall O, German-Retana S. Coordinated and selective recruitment of eIF4E and eIF4G factors for potyvirus infection in Arabidopsis thaliana. FEBS Lett 2007; 581:104-6; PMID:17316629; http://dx.doi.org/10.1016/j.febslet.2007.02.007

10. Yoshii M, Nishikiori M, Tomita K, Yoshioka N, Kozuka R, Naito S, Ishikawa M. The Arabidopsis cucumovirus multiplication 1 and 2 loci encode translation initiation factors 4E and 4G. J Virol 2004; 78:6022-31; PMID:15163703; http://dx.doi.org/10.1128/JVI.78.12.6022-6111.2004

11. Mazier M, Flamain F, Nicolai M, Sarrette V, Caranta C. Knock-down of both eIF4E1 and eIF4E2 genes confers broad-spectrum resistance against potyviruses in tomato. PLoS One 2011; 6:e29595; PMID:22242134; http://dx.doi.org/10.1371/journal.pone.0029595

12. Combe JP, Petracek ME, van Eldik G, Meulewaeter F, Twell D. Translation initiation factors eIF4E and eIF3F are required for polysome formation and regulate plant growth in tobacco. Plant Mol Biol 2005; 57:769-66; PMID:15988567; http://dx.doi.org/10.1007/s11103-005-3098-x

13. Wang A, Krishnaswamy S. Eukaryotic translation initiation factor 4E-mediated recessive resistance to plant viruses and its utility in crop improvement, Mol Plant Pathol 2012; 13:795-803; PMID:22879950; http://dx.doi.org/10.1111/j.1365-3703.2012.00791.x

14. Sato M, Nakahara K, Yoshi M, Ishikawa M, Uyeda I. Selective involvement of members of the eukaryotic initiation factor 4E family in the infection of Arabidopsis thaliana by potyviruses. FEBS Lett 2005; 579:1167-71; PMID:15710407; http://dx.doi.org/10.1016/j.febslet.2004.12.086

15. Gaillot JL, Charron C, Sánchez F, Pagny G, Houvenaghel MC, Moretti A, Ponz F, Revers F, Caranta C, German-Retana S. Single amino acid changes in the turnip mosaic virus viral genome-linked protein (VPg) confer virulence towards Arabidopsis thaliana mutants knocked out for eukaryotic initiation factors eIF(iso)4E and eIF(iso)4G. J Gen Virol 2010; 91:288-95; PMID:19741065; http://dx.doi.org/10.1099/vir.0.015321-0

16. Reinbold C, Lacombe S, Ziegler-Graff V, Scheidecker D, Wiss L, Beuve M, Caranta C, Brault V. Closely related potexviruses depend on distinct translation initiation factors to infect Arabidopsis thaliana. Mol Plant Microbe Interact 2013; 26:257-65; PMID:23013438; http://dx.doi.org/10.1094/MPMI-07-12-0174-R

17. Boivida LC, Becker JD, Feijó JA. The making of gametes in higher plants. Int J Dev Biol 2005; 49:595-614; PMID:16096968; http://dx.doi.org/10.1387/ijdb.052019hb

18. Page DR, Grossniklaus U. The art and design of generic screens: Arabidopsis thaliana. Nat Rev Genet 2002; 3:124-36; PMID:11836506; http://dx.doi.org/10.1038/nrg730

19. Bonhomme S, Horlow C, Yezon D, de Laissardière S, Guyon A, Férault M, Marchand M, Bechtold N, Pellerier G. T-DNA mediated disruption of essential gametophytic genes in Arabidopsis is unexpectedly rare and cannot be inferred from segregation distortion alone. Mol Gen Genet 1998; 260:444-52; PMID:9894914; http://dx.doi.org/10.1007/s00438050915

20. Gallois JL, Guyon-Debais A, Lécureuil A, Yezon D, Carpentier V, Bonhomme S, Guerche P. The Arabidopsis prosome RPT5 subunits are essential for gametophyte development and show accession-dependent redundancy. Plant Cell 2009; 21:442-59; PMID:19223514; http://dx.doi.org/10.1105/ tpc.108.062372

21. Honys D, Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 2004; 5:R85; PMID:15535861; http://dx.doi.org/10.1186/gb-2004-5-11-r85

22. Alexander MP. Differential staining of aborted and nonaborted pollen. Stain Technol 1969; 44:117-22; PMID:481665

23. Peterson R, Slovin JP, Chen C. A simplified method for differential staining of aborted and non-aborted pollen grains. Int J Plant Biol 2010; 1:1-13; http://dx.doi.org/10.4081/ijp.2010.e13

24. Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics 2007; 6:207-30; PMID:17112620; http://dx.doi.org/10.1074/mcp.M600146-MCP200

25. Charron C, Nicolai M, Gallois JL, Robaglia C, Moury B, Palloix A, Caranta C. Natural variation and functional analyses provide evidence for co-evolution between plant eIF4E and potyviral VPg. Plant J 2008; 54:56-68; PMID:18182024; http://dx.doi.org/10.1111/j.1365-313X.2008.03407.x

26. Piron F, Nicolai M, Minotia S, Piednoir E, Moretti A, Salgues A, Zamir D, Caranta C, Bendahmane A. An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS One 2010; 5:e11313; PMID:20593023; http://dx.doi.org/10.1371/journal.pone.0011313