Distributed Adaptive Huber Regression

Jiyu Luo*, Qiang Sun† and Wen-Xin Zhou‡

Abstract

Distributed data naturally arise in scenarios involving multiple sources of observations, each stored at a different location. Directly pooling all the data together is often prohibited due to limited bandwidth and storage, or due to privacy protocols. This paper introduces a new robust distributed algorithm for fitting linear regressions when data are subject to heavy-tailed and/or asymmetric errors with finite second moments. The algorithm only communicates gradient information at each iteration, and therefore is communication-efficient. Statistically, the resulting estimator achieves the centralized nonasymptotic error bound as if all the data were pooled together and came from a distribution with sub-Gaussian tails. Under a finite $(2 + \delta)$-th moment condition, we derive a Berry-Esseen bound for the distributed estimator, based on which we construct robust confidence intervals. Numerical studies further confirm that compared with existing distributed methods, the proposed methods achieve near-optimal accuracy with low variability and better coverage with tighter confidence width.

Keywords: Adaptive Huber regression; Communication efficiency; Distributed inference; Heavy-tailed distribution; Nonasymptotic analysis.

1 Introduction

In many applications, there are a massive number of individual agents/organizations collecting data independently. Multiple-site research has brought the possibility of studying rare outcome that require larger sample sizes, accelerating more generalizable findings, and bringing together investigators with different expertise from various backgrounds (Sidransky et al., 2009). Due to limited resources, such as bandwidth and storage, or privacy concerns, researchers across different sites are only allowed to share summary statistics without allowing collaborating parties to access raw data (Wu et al., 2012). Moreover, the collected data may often be contaminated by high level of noise, and thus of low quality. For example, in the context of gene expression data analysis, it has been observed that some gene expression levels have kurtosis values much larger than 3, despite of the normalization methods used (Wang et al., 2015). It is therefore important to develop robust and distributed learning algorithms with controlled communication cost and desirable statistical performance, measured by both efficiency and robustness.

*Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA. E-mail: jil130@ucsd.edu.
†Department of Statistical Sciences, University of Toronto, Toronto, ON M5S 3G3, Canada. E-mail: qsun@utstat.toronto.edu.
‡Department of Mathematics, University of California, San Diego, La Jolla, CA 92093, USA. E-mail: wez243@ucsd.edu.
Distributed learning algorithms have received considerable attention for multi-source studies in the past decade. Due to privacy concerns, data collected at each source, such as node, sensor or organization, must remain local. The goal is to develop efficient statistical learning methods that allow shared analyses or summary statistics without sharing individual level data. The classical divide-and-conquer principle is based on aggregating local estimators, that is, estimators computed separately on local machines, to form a final estimator; see, for example, Chen and Xie (2012), Li et al. (2013), Zhang et al. (2015), Zhao et al. (2016), Rosenblatt and Nadler (2016), Lee et al. (2017), Battey et al. (2018) and Volgushev et al. (2019), among many others. We refer to Huo and Cao (2018) for a more complete literature review. One-step averaging takes one communication round, and therefore is convenient and has minimal communication cost. However, in order for the averaging estimator to achieve to same convergence rate as the centralized estimator, each local machine must have access to at least \sqrt{N} samples, where N is the total sample size. This limits the number of machines allowed in the communication network.

To overcome this barrier of one-step averaging, multi-round procedures have been proposed for distributed data analysis with a large number of local agents (Shamir et al., 2014; Wang et al., 2017; Jordan et al., 2019; Wang et al., 2019). For linear and generalized linear models, Wang et al. (2017) and Jordan et al. (2019) proposed multi-round distributed (penalized) M-estimators that achieve optimal rates of convergence under very mild constraints on the number of machines. Chen et al (2019) studied an iterative algorithm with proper smoothing for quantile regression under memory constraint, which may also apply under distributed computing platform. Alternatively, Dobriban and Sheng (2018) proposed an iterative weighted parameter averaging scheme for distributed linear regression when the dimension is comparable to the sample size.

For linear models under data parallelism, most of the existing distributed algorithms work with the least squares method, either by (weighted) averaging local least squares estimators or iteratively minimizing shifted (penalized) least squares loss functions. From a robustness viewpoint, distributed least squares based method inherits the sensitivity (non-robustness) of its centralized counterpart to the tails of the error distributions, hence increasing the variability of the estimator. In this paper, we propose a robust distributed algorithm for linear regression with heavy-tailed errors. Our setup includes the heteroscedastic linear model with asymmetric errors, to which the least absolute deviation (LAD) regression does not naturally apply. Following the terminology in Catoni (2012), the type of “robustness” considered in this paper is quantified by nonasymptotic exponential deviation of the estimator versus polynomial tail of the error distribution. The ensuing procedure does sacrifice a fair amount of robustness to adversarial contamination of the data. The motivation of this work is different from and should not be confused with the classical notion of robust statistics (Huber and Ronchetti, 2009).

The distributed method is built upon the iterative, multi-round algorithm proposed by Wang et al. (2017) and Jordan et al. (2019), which only communicates gradient information at each round and therefore is communication-efficient. By a delicate choice of local and global robustifications parameters, the proposed estimator satisfies exponential-type deviation bounds when the errors only have finite variance. Specifically, we show that the distributed estimator, obtained by a few rounds of communications, achieves the optimal centralized deviation bound as if the data were pooled together and subject to sub-Gaussian errors. The robustification parameters are also self-tuned, making the algorithm computationally convenient. We further derive a Berry-Esseen bound for the distributed estimator, based on which we construct robust confidence intervals. Finally, we propose
a distributed penalized adaptive Huber regression estimator for high-dimensional sparse models, and establish its (near-)optimal theoretical guarantees.

Notation: For each integer $k \geq 1$, we use \mathbb{R}^k to denote the the k-dimensional Euclidean space. The inner product of two vectors $u = (u_1, \ldots, u_k)^T, v = (v_1, \ldots, v_k)^T \in \mathbb{R}^k$ is defined by $u^T v = \sum_{i=1}^k u_i v_i$. We use $\| \cdot \|_p$ $(1 \leq p \leq \infty)$ to denote the ℓ_p-norm in \mathbb{R}^k: $\|u\|_p = (\sum_{i=1}^k |u_i|^p)^{1/p}$ and $\|u\|_\infty = \max_{1 \leq i \leq k} |u_i|$. For any $k \times k$ symmetric matrix $A \in \mathbb{R}^{k \times k}$, $\|A\|_2$ is the operator norm of A. For a positive semidefinite matrix $A \in \mathbb{R}^{k \times k}$, $\| \cdot \|_A$ denotes the norm induced by A, that is, $\|u\|_A = \|A^{1/2}u\|_2$, $u \in \mathbb{R}^k$. Moreover, we use $S^{k-1} = \{u \in \mathbb{R}^k : \|u\|_2 = 1\}$ to denote the unit sphere in \mathbb{R}^k. For two sequences of non-negative numbers $\{a_n\}_{n \geq 1}$ and $\{b_n\}_{n \geq 1}$, $a_n \leq b_n$ indicates that there exists a constant $C > 0$ independent of n such that $a_n \leq C b_n$; $a_n \preceq b_n$ is equivalent to $b_n \preceq a_n$; $a_n \asymp b_n$ is equivalent to $a_n \preceq b_n$ and $b_n \preceq a_n$.

2 Distributed Adaptive Huber Regression

2.1 Distributed Huber regression with adaptive robustification parameters

Consider a linear regression model

$$y_i = x_i^T \beta^* + \varepsilon_i, \quad \mathbb{E}(\varepsilon_i | x_i) = 0, \quad i = 1, \ldots, N, \quad (2.1)$$

where $x_i = (x_{i1}, \ldots, x_{ip})^T$ with $x_{i1} \equiv 1$ is the covariate for the ith individual, and $\beta^* \in \mathbb{R}^p$ is the underlying coefficient vector. This setting allows conditional heteroscedastic models, where ε_i can depend on x_i. For example, in a local-scale model we have $\varepsilon_i = \sigma(x_i) \varepsilon_i$, where $\sigma(x_i)$ is a function of x_i, and ε_i is independent of x_i. In the absence of normality assumption on the (conditional) error distribution, Huber’s M-estimator (Huber, 1973) is one of the most widely used robust alternative to the least squares estimator. Given some $\tau > 0$, referred to as the robustification parameter, Huber’s regression M-estimator for estimating β^* is defined as

$$\widehat{\beta} = \widehat{\beta}_\tau \in \arg \min_{\beta \in \mathbb{R}^p} \frac{1}{N} \sum_{i=1}^N \ell_\tau(y_i - x_i^T \beta),$$

where $\ell_\tau(u) = 0.5 u^2 I(|u| \leq \tau) + (\tau |u| - 0.5 \tau^2) I(|u| > \tau)$ is the Huber loss. Traditionally, τ is often chosen to be 1.345σ with σ either determined by a robust scale estimate or simultaneously estimated by solving a system of equations, in order to achieve 95% asymptotic relative efficiency while gaining robustness when there are contaminated or heavy-tailed symmetric errors (Bickel, 1975; Western, 1995). In the presence of asymmetric heavy-tailed errors, Fan et al. (2017) and Sun et al. (2020) proposed (regularized) adaptive Huber regression estimators with τ scaling with the sample size and parametric dimension, and established exponential-type deviation bounds when ε_i’s only have finite $(1 + \delta)$-th moments for some $0 < \delta \leq 1$.

In the linear model (2.1), we allow heteroscedastic errors that are of the form $\varepsilon_i = \sigma(x_i) \varepsilon_i$, where $\sigma(\cdot)$ is an unknown function on \mathbb{R}^p and ε_i is independent of x_i. When the error variables ε_i are heavy-tailed, asymmetric and have finite variance σ^2, Sun et al. (2020) showed that Huber’s estimator $\widehat{\beta}_\tau$ with $\tau = \sigma \sqrt{N/(p + \log N)}$, referred to as the adaptive Huber regression (AHR) estimator, exhibits sharp finite-sample deviation properties (Catoni, 2012), while the least squares estimator is far less concentrated around β^*. We say ε_i is heavy-tailed if it has infinite k-th absolute moment for some $k > 2$.

3
Theorem 2.1. Assume Condition (C1) holds. For any where \(\Theta \) on the data generating process.

This procedure requires one communication round of \(\nabla \) which essentially depends on the score of the initial estimator \(\tilde{\beta} \). Implicitly the shifted loss \(L(\beta) = (1/N) \sum_{t=1}^{N} \ell(y_t - x_t^\top \beta) \) and \(\tilde{L}(\beta) = (1/n) \sum_{i \in I_i} \ell(y_i - x_i^\top \beta) \) for \(j = 1, \ldots, m \). Using this adaptive robustification procedure, we then extend the approximate Newton-type method (Shamir et al., 2014; Jordan et al., 2019) to robust regression with heavy-tailed skewed errors.

Starting with an initial estimator \(\tilde{\beta}^{(0)} \) of \(\beta^* \), we define the shifted adaptive Huber loss

\[
\tilde{L}(\beta) = \tilde{L}_{1,\kappa}(\beta) - (\nabla \tilde{L}_{1,\kappa}(\tilde{\beta}^{(0)})) - (\nabla \tilde{L}_{1,\kappa}(\tilde{\beta}^{(0)}), \beta) \\
= \tilde{L}_{1,\kappa}(\beta) - (\nabla \tilde{L}_{1,\kappa}(\tilde{\beta}^{(0)})) - \frac{1}{m} \sum_{j=1}^{m} \tilde{L}_{j,\kappa}(\tilde{\beta}^{(0)}), \beta), \quad \beta \in \mathbb{R}^p. \tag{2.2}
\]

Implicitly the shifted loss \(\tilde{L}(\cdot) \) depends on both local and global robustification parameters \(\kappa \) and \(\tau \). It uses data available only on the first machine, used as the central machine, along with \(p \)-dimensional gradient vectors \(\tilde{L}_{j,\kappa}(\tilde{\beta}^{(0)}) \) \((j = 2, \ldots, m)\) that were sent from the remaining local machines. The ensuing one-step estimator is given by

\[
\tilde{\beta}^{(1)} = \tilde{\beta}^{(1)}_{\kappa,\tau} \in \arg\min_{\beta \in \mathbb{R}^p} \tilde{L}(\beta). \tag{2.3}
\]

This procedure requires one communication round of \(O(pm) \) bits, and thus is communication-efficient. To investigate the statistical properties of \(\tilde{\beta}^{(1)} \), we impose the following moment condition on the data generating process.

(C1). The predictor \(x \in \mathbb{R}^p \) is sub-Gaussian: there exists \(\nu_1 \geq (2 \log 2)^{-1/2} \) such that \(\mathbb{P}(|x^\top u| \geq \nu_1 t) \leq 2e^{-t^2/2} \) for every unit vector \(u \in \mathbb{S}^{p-1} \) and \(t \geq 0 \), where \(z = \Sigma^{-1/2} x \) and \(\Sigma = \mathbb{E}(xx^\top) \) is positive definite. Moreover, the regression error \(\epsilon \) satisfies \(\mathbb{E}(\epsilon | x) = 0 \) and \(\mathbb{E}(\epsilon^2 | x) \leq \sigma^2 \) almost surely.

For prespecified parameters \(r, r_0 > 0 \), define the events

\[
\Theta_0(r) = \{ \tilde{\beta}^{(0)} \in \Theta(r) \} \quad \text{and} \quad \Theta_{r_0}(r_0) = \{ \| |\nabla \tilde{L}_i(\beta^*)\| \leq r_0 \}, \tag{2.4}
\]

where \(\Theta(r) := \{ \beta \in \mathbb{R}^p : \| \beta - \beta^* \|_2 \leq r \} \) and \(\Omega := \Sigma^{-1} \). Here \(r \) quantifies the statistical accuracy of the initial estimator \(\tilde{\beta}^{(0)} \), and \(r^* \) determines the estimation error of the centralized AHR estimator which essentially depends on the score \(\nabla \tilde{L}_i(\beta^*) \) with the global robustification parameter.

Theorem 2.1. Assume Condition (C1) holds. For any \(u > 0 \), let the robustification parameters satisfy \(\tau \geq \kappa \geq \sigma \sqrt{n/(p + u)} \), and suppose the local sample size satisfies \(n \geq p + u \). Then, conditioned
on the event $E_0(r_0) \cap E_\epsilon(r_\epsilon)$ with $8r_\epsilon \leq r_0 \leq \sigma$, the one-step estimator $\beta^{(1)}$ defined in (2.3) satisfies

$$\|\beta^{(1)} - \beta^*\|_\Sigma \leq \sqrt{\frac{p + u}{n}} \cdot r_\epsilon + r_\epsilon$$ \hspace{1cm} (2.5)$$

with probability at least $1 - 3e^{-u}$.

In the above theorem, the bound (2.5) reflects the delicate dependence of the one-step error on the initial error r_ϵ as well as the centralized error rate r_ϵ. If we take $\tilde{\beta}^{(0)}$ to be a local estimator constructed on a single local machine that has access to only n observations, we may expect a sub-optimal convergence rate $r_\epsilon \approx \sigma \sqrt{p/n}$. Moreover, it can be shown that $\|\nabla L_j(\beta^*)\|_\Omega \leq \sigma \sqrt{p/N} + \sigma^2/\tau + \tau p/N$ with high probability, up to logarithmic factors; see Lemma A.2 in the Supplementary Material. Hence, the choice of r_ϵ corresponds to the optimal rate of convergence when the entire dataset is available and $\tau = \sigma \sqrt{N/p}$. Under the prescribed sample size scaling $n \gg p$, the one-step estimator $\tilde{\beta}^{(1)}$ refines the statistical accuracy of $\tilde{\beta}^{(0)}$ by a factor of order $\sqrt{p/n}$, which is strictly less than 1. We thus expect the multi-step estimator, with sufficiently many communication rounds, will achieve the optimal convergence rate obtainable on the entire dataset.

The proposed multi-round procedure for adaptive Huber regression is iterative, starting at iteration 0 with an initial estimate $\tilde{\beta}^{(0)} \in \mathbb{R}^p$. At iteration $t \geq 1$, it updates the estimate $\tilde{\beta}^{(t)}$ by fitting a shifted adaptive Huber regression which leverages global first-order information, depending on τ, and local higher-order information, depending on κ. The procedure involves two steps.

1. **Communicating Gradient Information.** The central machine broadcasts $\tilde{\beta}^{(t-1)}$ to every local machine. The jth machine, $1 \leq j \leq m$, computes the gradient $\nabla L_{j,\epsilon}(\tilde{\beta}^{(t-1)})$, and sends it back to the central machine. This step requires a communication of $2(m-1)p$ bits.

2. **Fitting Local Shifted AHR.** The central machine computes the update $\tilde{\beta}^{(t)}$, defined as a solution to the optimization problem

$$\min_{\beta \in \mathbb{R}^p} \tilde{L}_j(\beta) := \tilde{L}_{j,\epsilon}(\beta) - \left(\nabla \tilde{L}_{j,\epsilon}(\tilde{\beta}^{(t-1)}) - \frac{1}{m} \sum_{j=1}^m \nabla \tilde{L}_{j,\epsilon}(\tilde{\beta}^{(t-1)}), \beta\right),$$ \hspace{1cm} (2.7)$$

which can be solved by the method of iteratively reweighted least squares or quasi-Newton methods. Details are given in section 4.1. We summarize the procedure, with an early stopping criterion, in Algorithm 1.

Theorem 2.2. Assume the same conditions in Theorem 2.1, and let $8r_\epsilon \leq r_0 \leq \sigma$. Conditioned on event $E_0(r_0) \cap E_\epsilon(r_\epsilon)$, the distributed AHR estimator $\tilde{\beta}^{(T)}$ with $T \geq \lceil \log(r_0/r_\epsilon)/\log(n/(p + u)) \rceil$ satisfies the bounds

$$\|\tilde{\beta}^{(T)} - \beta^*\|_\Sigma \leq r_\epsilon \quad \text{and} \quad \|\tilde{\beta}^{(T)} - \beta^* + \Sigma^{-1} \nabla \tilde{L}_\epsilon(\beta^*)\|_\Sigma \leq \sqrt{\frac{p + u}{n}} \cdot r_\epsilon$$ \hspace{1cm} (2.8)$$

with probability at least $1 - (2T + 1)e^{-u}$.

The above result shows that, with proper choices of τ and κ as well as the number of iterations, the statistical error of the multi-step distributed AHR estimator matches that of the centralized AHR estimator on the entire dataset. For the initialization, we may take $\tilde{\beta}^{(0)}$ to be a local AHR estimator.
Algorithm 1 Communication-Efficient Adaptive Huber Regression.

Input: data batches \(\{ (y_i, x_i) \}_{i \in I}, j = 1, \ldots, m \), stored on \(m \) machines, robustification parameters \(\tau \geq \kappa > 0 \), initialization \(\hat{\beta}^{(0)} \), number of iterations \(T \), \(g_0 = 1 \).

1: for \(t = 1, 2, \ldots, T \) do
2: Broadcast \(\hat{\beta}^{(t-1)} \) to all local machines;
3: The \(j \)th \((1 \leq j \leq m) \) machine computes \(\nabla \widehat{L}_{j,i}(\hat{\beta}^{(t-1)}) \), and transmit it to the central machine;
4: Compute \(\nabla \widehat{L}_{r}(\hat{\beta}^{(t-1)}) = (1/m) \sum_{j=1}^{m} \nabla \widehat{L}_{j,i}(\hat{\beta}^{(t-1)}) \), \(\nabla \widehat{L}_{l,k}(\hat{\beta}^{(t-1)}) \) and \(g_t = \| \nabla \hat{L}_{r}(\hat{\beta}^{(t-1)}) \|_\infty \) on the central machine;
5: If \(g_t \geq g_{t-1} \) or \(g_t \leq 10^{-5} \) break; otherwise, on the central machine, solve the shifted adaptive Huber regression problem in (2.7) to update the estimate \(\hat{\beta}^{(t)} \);
6: end for

Output: \(\hat{\beta}^{(T)} \).

computed on the central machine. With the above preparations, we are ready to explicitly describe the estimation error and Bahadur linearization error of the proposed distributed AHR estimator. The result is nonasymptotic, and carefully tracks the impact of the parametric dimension \(p \), local sample size \(n \) and the number of machines \(m \).

Theorem 2.3. Assume Condition (C1) holds, and suppose the local sample size satisfies \(n \geq p + \log n + \log_2 m \), where \(\log_2 m := \log(\log m) \) and \(m = N/n \). Choose the robustification parameters \(\tau \geq \kappa > 0 \) as \(\tau = \sigma \sqrt{N/(p + \log n + \log_2 m)} \) and \(\kappa = \sigma \sqrt{n/(p + \log n + \log_2 m)} \). Then, starting at iteration 0 with a local AHR estimate \(\hat{\beta}^{(0)} \), the distributed estimator \(\hat{\beta} = \hat{\beta}^{(T)} \) with \(T = \lceil \frac{\log(m)}{\log(n/p + \log n + \log_2 m)} \rceil \) satisfies

\[
\| \hat{\beta} - \beta^* \|_\Sigma \leq \sigma \sqrt{\frac{p + \log n + \log_2 m}{N}} \quad \text{and} \quad (2.9)
\]

\[
\left\| \hat{\beta} - \beta^* - \Sigma^{-1} \sum_{i=1}^{N} \frac{1}{N} \psi_x(e_i) x_i \right\|_\Sigma \leq \sigma \sqrt{\frac{p + \log n + \log_2 m}{(nN)^{1/2}}} \quad (2.10)
\]

with probability at least \(1 - Cn^{-1} \), where \(\psi_x(u) := \ell'_x(u) = \text{sign}(u) \min(|u|, \tau) \).

The above theorem indicates that the multi-step distributed AHR estimator \(\hat{\beta} \) achieves the optimal statistical rate of convergence by a delicate combination of the local robustification parameter, the global robustification parameter, and number of communication rounds. The second bound, (2.10), explicitly describes the error term of the Bahadur linearization. This allows to establish the asymptotic distribution of \(\hat{\beta} \) when both \(p, n \) tend to infinity. Moreover, to achieve statistical optimality and communication efficiently simultaneously, the above results impose minimal conditions on the number of machines \(m \). In summary, when data are heavy-tailed and collected on each machine remain local, the proposed procedure delivers a statistically optimal estimate by communicating as many as \(O(pm \log(m)) \) bits.

2.2 Distributed confidence estimation

In this section, we consider uncertainty quantification of the multi-step estimator in a distributed setting, with a particular focus on statistical confidence estimation. We first establish a Berry-
Esseen bound for linear functionals of the distributed AHR estimator $\tilde{\beta}$, which explicitly quantifies the normal approximation error.

Theorem 2.4. In addition to the conditions in Theorem 2.3, assume $\mathbb{E}(e^2|x) = \sigma^2$ and $\mathbb{E}(|e|^{2+\delta}|x) \leq v_{2+\delta}$ almost surely for some $0 < \delta \leq 1$. Then, the distributed estimator $\tilde{\beta} = (\tilde{\beta}^T)$ satisfies
\[
\sup_{i \in \mathbb{R}, a \in \mathbb{R}^p} \left\{ \mathbb{P} \left[\frac{N^{1/2}a^T(\tilde{\beta} - \beta^*)}{\sqrt{\mathbb{E}(\psi_r(e)a^T\Sigma^{-1}x)^2}} \leq t \right] - \Phi(t) \right\}
\leq p + \log n + \log_2 m \quad \text{uniformly over } a \in \mathbb{R}^p \text{ as } n \to \infty,
\]
where $\Phi(\cdot)$ is the standard normal distribution function. In particular, assume $\mathbb{E}(|e|^3|x) \leq v_3 < \infty$ almost surely. Then, under the dimension constraint $p + \log_2 m = o(n^{1/2}),$
\[
\frac{N^{1/2}a^T(\tilde{\beta} - \beta^*)}{\sqrt{\mathbb{E}(\psi_r(e)a^T\Sigma^{-1}x)^2}} \xrightarrow{d} \mathcal{N}(0,1) \quad \text{and} \quad \frac{N^{1/2}a^T(\tilde{\beta} - \beta^*)}{\sigma(a^T\Sigma^{-1}a)^{1/2}} \xrightarrow{d} \mathcal{N}(0,1)
\]
uniformly over $a \in \mathbb{R}^p$ as $n \to \infty$.

Let $\tilde{\beta} = (\tilde{\beta}_1, \ldots, \tilde{\beta}_p)^T$ be the distributed estimator described in the previous subsection. Theorem 2.4 implies that, for each $1 \leq j \leq p$, $N^{1/2}(\tilde{\beta}_j - \beta_j^*)$ is asymptotically normal with zero mean and variance $(\Sigma^{-1}\mathbb{E}(\psi_r(e)xx^T)\Sigma^{-1})_{jj}$. Let $\tilde{\Sigma} = (1/N) \sum_{i=1}^N x_i x_i^T$ be the sample version of Σ, and $\tilde{e}_i = y_i - x_i^T \tilde{\beta}$ be the fitted residuals. It can be shown that $(\tilde{\Sigma} - N^{-1}\sum_{i=1}^N \psi_r(e_i)x_i x_i^T \tilde{\Sigma}^{-1})_{jj}$ provides a consistent estimator of $(\Sigma^{-1}\mathbb{E}(\psi_r(e)xx^T)\Sigma^{-1})_{jj}$. In a distributed setting, the computation of this variance estimator requires communicating $O(p^2m)$ bits, thus incurring exorbitant communication costs when p is large.

To achieve a tradeoff between communication and statistical efficiencies, we propose averaging pointwise variance estimators, defined by $\tilde{\sigma}_j^2 := (1/m) \sum_{k=1}^m \tilde{\sigma}_{jk}^2$ for $j = 1, \ldots, p,$ where
\[
\tilde{\sigma}_{jk}^2 = (\tilde{\Sigma}_k^{-1} \tilde{e}_k \tilde{e}_k^{-1})_{jj}, \quad \tilde{e}_k = \frac{1}{n} \sum_{i=1}^n \psi_r(e_i)x_i x_i^T \text{ and } \tilde{\Sigma}_k = \frac{1}{n} \sum_{i=1}^n x_i x_i^T.
\]
This approach takes one additional round of communication, and is robust against heteroscedastic errors that are of the form $e_i = \sigma(x_i)\epsilon_i$. When ϵ_i is independent of x_i, the asymptotic variances reduce to $\mathbb{E}(\psi^2_r(e)/(\Sigma^{-1})_{jj}$, and thus can be consistently estimated by $\tilde{\sigma}_j^2 := (\tilde{\sigma}_e^2/m) \sum_{k=1}^m (\tilde{\Sigma}_k^{-1})_{jj},$ where $\tilde{\sigma}_e^2 = (N - p)^{-1} \sum_{i=1}^N \psi_r^2(e_i).$ For $\alpha \in (0,1)$, the distributed $100(1 - \alpha)%$ normal-based confidence intervals for β_j^*, $j = 1, \ldots, p,$ are given by $[\tilde{\beta}_j - z_{\alpha/2} \tilde{\sigma}_j N^{-1/2}, \tilde{\beta}_j + z_{\alpha/2} \tilde{\sigma}_j N^{-1/2}]$ or $[\tilde{\beta}_j - z_{\alpha/2} \tilde{\sigma}_j N^{-1/2}, \tilde{\beta}_j + z_{\alpha/2} \tilde{\sigma}_j N^{-1/2}]$, where $z_{\alpha/2} = \Phi^{-1}(1 - \alpha/2)$.

3 Distributed Regularized Adaptive Huber Regression

In this section, we consider high-dimensional linear models under sparsity. Specifically, we allow the parametric dimension p to be much larger than the local sample size n, and assume $\beta^* = s$-sparse, where $s = |S|$ and $S = \text{supp}(\beta^*) = \{1 \leq j \leq p : \beta_j^* \neq 0 \}$ denotes the true active set.

Given independent observations $\{(y_i, x_i)\}_{i=1}^N$ from the linear model (2.1), the centralized/global ℓ_1-penalized Huber regression estimator (ℓ_1-Huber) is defined as
\[
\tilde{\beta} = \tilde{\beta}_r(A) = \arg\min_{\beta \in \mathbb{R}^p} \{ \tilde{L}_r(\beta) + \lambda \| \beta \|_1 \},
\]
where $\lambda = \lambda(n, s)$, and $\tilde{L}_r(\beta)$ is the Huber loss function, which is a convex combination of the ℓ_1-penalty and the ℓ_2-loss.
where \(\lambda > 0 \) is a regularization parameter. Statistical properties of \(\ell_1 \)-penalized Huber regression have been thoroughly studied by Lambert-Lacroix and Zwald (2011), Fan et al. (2017), Loh (2017) and Chinot et al. (2020) from different perspectives. To deal with asymmetric heavy-tailed errors, Fan et al. (2017) established high probability bounds for the \(\ell_1 \)-Huber estimator with \(\tau = \sigma \sqrt{N/\log(p)} \) in the high-dimensional regime \(p \gg n \geq s \log(p) \).

Remark 3.1. In practice, it is natural to leave the intercept or a given subset of the parameters unpenalized in the penalized \(M \)-estimation framework (3.1). Denote by \(\mathcal{R} \subseteq \{1, \ldots, p\} \) the index set of unpenalized parameters, which is typically user-specified and contains at least index 1. A more flexible \(\ell_1 \)-Huber estimator can be obtained by solving \(\min_{\beta \in \mathbb{R}^p} \{ \tilde{L}_r(\beta) + \lambda \| \beta \|_1 \} = \min_{\beta \in \mathbb{R}^p} \{ \tilde{L}_r(\beta) + \lambda \sum_{j \in \mathcal{R}} |\beta_j| \} \). Similar theoretical analysis can be carried out with slight modifications, and thus will be omitted.

In a distributed setting, we integrate the ideas of Wang et al. (2017) and Jordan et al. (2019) with adaptive robustification to parallelize regularized Huber regression with controlled communication cost and optimal statistical guarantees. As before, let \(\tau \) and \(\kappa \) be the global and local robustification parameters. Recall that \(\tilde{L}_{1,\kappa}(\cdot) \), \(j = 1, \ldots, m \), denote local Huber loss functions. Commenced with a regularized estimator \(\tilde{\beta}^{(0)} \), let \(\tilde{L}(\beta) = \tilde{L}_{1,\kappa}(\beta) - \langle \nabla \tilde{L}_{1,\kappa}(\tilde{\beta}^{(0)}) - \nabla \tilde{L}_{1}(\tilde{\beta}^{(0)}), \beta \rangle \) be the shifted adaptive Huber loss as in (2.2). With slight abuse of notation, we define the one-step \(\ell_1 \)-penalized Huber regression estimator as

\[
\tilde{\beta}^{(1)} = \frac{1}{\lambda_0} \argmin_{\beta \in \mathbb{R}^p} \{ \tilde{L}(\beta) + \lambda \| \beta \|_1 \}.
\]

To assess the statistical properties of the one-step estimator \(\tilde{\beta}^{(1)} \), we work under the following moment condition on the random covariate vector in high dimensions.

(C2). The covariate vector \(x = (x_1, \ldots, x_p)^T \in \mathbb{R}^p \) with \(x_1 \equiv 1 \) has bounded components and uniformly bounded kurtosis. That is, \(\max_{1 \leq j \leq p} |x_j| \leq B \) for some \(B \geq 1 \) and \(\mu_4 = \sup_{u \in \mathbb{R}} \mathbb{E}(z^4) < \infty \), where \(z = \Sigma^{-1/2} x \) and \(\Sigma = (\sigma_{jk})_{1 \leq j, k \leq p} = \mathbb{E}(xx^T) \). Write \(\sigma^2 = \max_{1 \leq j \leq p} \sigma_{jj}^{1/2} \) and \(\lambda = \lambda_{\text{min}}(\Sigma) > 0 \). For simplicity, we assume \(\lambda = 1 \). Moreover, the error variables \(e_i \) satisfy \(\mathbb{E}(e_i|x_i) = 0 \) and \(\mathbb{E}(e_i^2|x_i) \leq \sigma^2 \) almost surely.

As before, we first examine the performance of \(\tilde{\beta}^{(1)} \) conditioned on certain “good” events in regard of the initialization and the centralized \(\ell_1 \)-Huber estimator. For \(r_0, \lambda_* > 0 \), define

\[
\mathcal{E}_0(r_0) = \{ \tilde{\beta}^{(0)} \in \Theta(r_0) \cap \Lambda \} \quad \text{and} \quad \mathcal{E}_*(\lambda_*) = \{ \| \nabla \tilde{L}_r(\beta^*) - \nabla \tilde{L}_r(\beta^*) \|_\infty \leq \lambda_* \},
\]

where \(\Lambda := \{ \beta \in \mathbb{R}^p : \| \beta - \beta^* \|_1 \leq 4s^{1/2}\| \beta - \beta^* \|_2 \} \) is an \(\ell_1 \)-cone.

Theorem 3.1. Assume Condition (C2) holds. Given \(\delta \in (0, 1) \) and \(0 < r_0, \lambda_* \leq \sigma \), let \((\tau, \kappa, \lambda) \) satisfy \(\tau \geq \kappa \times \sigma \sqrt{n/\log(p/\delta)} \) and \(\lambda = 2.5(\lambda_* + \rho) \) with

\[
\rho = \max \left\{ r_0 \sqrt{\frac{s \log(p/\delta)}{n}}, s^{-1/2} \sigma^2 \tau^{-1} \right\}.
\]

Moreover, suppose the local sample size satisfies \(n \geq s \log(p/\delta) \). Then, conditioned on the event \(\mathcal{E}_0(r_0) \cap \mathcal{E}_*(\lambda_*) \), the one-step regularized estimator \(\tilde{\beta}^{(1)} \) defined in (3.2) satisfies \(\tilde{\beta}^{(1)} \in \Lambda \) and

\[
\| \tilde{\beta}^{(1)} - \beta^* \|_\Sigma \leq s \sqrt{\frac{\log(p/\delta)}{n}} \cdot r_0 + \sigma^2 \tau^{-1} + s^{1/2} \lambda_* \]

with probability at least \(1 - \delta \).
Theorem 3.1 indicates that the one-step procedure is able to reduce the statistical error of the initial estimator by a factor of $s \sqrt{\log(p)/n}$ when the local sample size satisfies $n \geq s^2 \log(p)$; see the first term on the right-hand of (3.4). The second term, $\sigma^2 \tau^{-1} + s^{1/2} \lambda_*$, corresponds to the global error rate achievable on the entire dataset. In view of Theorem B.2 (with $\delta = 1$) in Sun et al. (2020), if we take $\lambda_* = \sigma \sqrt{\log(p)/N}$ and $\tau = \sigma \sqrt{N/n} \log(p)$, the centralized ℓ_1-Huber estimator given in (3.1) satisfies $|\beta - \beta^*|_\Sigma \leq \sigma^2 \tau^{-1} + s^{1/2} \lambda_* = \sigma \sqrt{s \log(p)/N}$ with probability at least $1 - C^{-1}$.

Now we extend the iterative procedure in Section 2 to high-dimensional settings, starting at iteration 0 with an initial estimate $\tilde{\beta}^{(0)} \in \mathbb{R}^p$. At iteration $t = 1, 2, \ldots$, it proceeds as follows:

Communicating gradient information. The jth ($2 \leq j \leq m$) machine receives $\tilde{\beta}^{(t-1)}$ from the central machine, computes the local gradient $\nabla \tilde{L}_{j, t}(\tilde{\beta}^{(t-1)})$, and sends it back to the central.

Fitting local regularized AHR: On the central machine, solve $\min_{\beta \in \mathbb{R}^p} \{ \tilde{L}^{(t)}(\beta) + \lambda_t ||\beta||_1 \}$ to obtain $\tilde{\beta}^{(t)}$, where $\tilde{L}^{(t)}(\beta) = \tilde{L}_{1, t}(\beta) - \langle \nabla \tilde{L}_{1, t}(\tilde{\beta}^{(t-1)}), \beta \rangle - (1/m) \sum_{j=1}^{m} \nabla \tilde{L}_{j, t}(\tilde{\beta}^{(t-1)}), \beta \rangle$ and $\lambda_t > 0$ is a regularization parameter.

Computationally, we use a variant of the majorize-minimize algorithm (Lange et al., 2000), a proximal gradient descent type method, to solve the regularized optimization problem at each iteration. Details are provided in section 4.2. Theorem 3.2 below describes the statistical properties of the solution path $[\tilde{\beta}^{(t)}]_{t \geq 1}$ conditioned on a prespecified level of accuracy of the initial estimator.

Theorem 3.2. Assume Condition (C2) holds. Given $\delta \in (0, 1)$ and $0 < \rho_0, \lambda_* \leq \sigma$, let (τ, κ) satisfy $\tau \geq \kappa = \sigma \sqrt{n/\log(p/\delta)}$. For $t = 1, 2, \ldots$, set $\lambda_t = 2.5(\sigma + \rho_t) > 0$ with $\rho_t = s^{-1/2} \max[\alpha^t \rho_0, \sigma^2 \tau^{-1}]$ and $\alpha = s^{1/2} \log(p/\delta)/n$. Suppose the local sample size satisfies $n \geq s^2 \log(p/\delta)$, and let $\rho_0 = \sigma^2 \tau^{-1} + s^{1/2} \lambda_*$. Then, conditioned on event $E_0(\rho_0) \cap E_1(\lambda_*)$, the distributed regularized estimator $\tilde{\beta}^{(T)}$ with $T = \log(\rho_0) \log(1/\delta)$ satisfies $\tilde{\beta}^{(T)} \in \Lambda$ and $||\tilde{\beta}^{(T)} - \beta^*||_\Sigma \leq r_*$ with probability at least $1 - T \delta$.

With sufficiently many samples on the central machine—$n \geq s^2 \log(p)$, Theorems 3.1 and 3.2 ensure that the initial estimation error, albeit being sub-optimal, can be repeatedly refined by a factor of order $s \sqrt{\log(p)/n}$ until it reaches the optimal rate. For simplicity, we take $\tilde{\beta}^{(0)}$ to be a local ℓ_1-penalized AHR estimator, that is, $\tilde{\beta}^{(0)} \in \arg\min_{\beta \in \mathbb{R}^p} \{ \tilde{L}_{1, t}(\beta) + \lambda_t ||\beta||_1 \}$.

Corollary 3.1. Assume Condition (C2) holds, and the sample size per machine satisfies $n \geq s^2 \log p$. Choose the robustification and regularization parameters as $\tau = \sigma \sqrt{N/n} \log(p), \kappa = \sigma \sqrt{n/\log(p)}$ and

$$
\lambda_t = \sigma \sqrt{\log p} \left(1 + \alpha \left(\frac{s^2 \log p}{n}\right)^{1/2} \sqrt{\frac{\log p}{n}} \right)^t, \quad t = 0, 1, 2, \ldots
$$

Starting at iteration 0 with a local ℓ_1-penalized AHR estimator, the multi-step estimator $\tilde{\beta}^{(T)}$ after $T = \lceil \log(m) \rceil$ rounds of communication satisfies the bounds

$$
||\tilde{\beta}^{(T)} - \beta^*||_\Sigma \leq \sigma \sqrt{\frac{s \log p}{n}} \quad \text{and} \quad ||\tilde{\beta}^{(T)} - \beta^*||_1 \leq \sigma s \sqrt{\frac{\log p}{n}}
$$

with probability at least $1 - C \log(m)/p$.

Corollary 3.1, along with the global error analysis in Fan et al. (2017) and Loh (2017), implies the optimality of distributed adaptive Huber regression in terms of the tradeoff between communication cost and statistical accuracy.
Remark 3.2. Under light-tailed error distributions (e.g., sub-Gaussian errors), Lee et al. (2017) and Battey et al. (2018) studied a one-shot approach based on averaging debiased Lasso estimators (Zhang and Zhang, 2014; van de Geer et al., 2014). Theoretically, averaged debiased Lasso achieves the optimal error rate when the local size satisfies \(n \approx m s^2 \log(p) \); and computationally, each local machine needs to estimate a \(p \times p \) matrix for debiasing the Lasso. We may expect the same issues for the robust one-shot method that averages debiased \(\ell_1 \)-Huber estimators. The proposed distributed AHR method not only requires the minimum sample complexity but also is computationally efficient.

4 Optimization Methods

4.1 Barzilai-Borwein gradient descent for distributed AHR

Let us first recall the multi-round distributed procedure for adaptive Huber regression. Starting with an initial estimator \(\hat{\beta}^{(0)} \in \mathbb{R}^p \), and given robustification parameters \(\tau \) and \(\kappa \), for \(t = 1, \ldots, T \), we update

\[
\hat{\beta}^{(t)} \in \arg\min_{\beta \in \mathbb{R}^p} \tilde{L}^{(t)}(\beta) = \tilde{L}_{1,\lambda}(\beta) - \langle \nabla \tilde{L}_{1,\lambda}(\hat{\beta}^{(t-1)}) - \nabla \tilde{L}_{\tau}(\hat{\beta}^{(t-1)}), \beta \rangle. \tag{4.1}
\]

Since \(\tilde{L}^{(t)}(\cdot) \) is convex, twice-differentiable and provably locally strongly convex, we propose to use the gradient descent method with a Barzilai-Borwein update step (GD-BB) (Barzilai and Borwein, 1988) to solve the optimization problem in (4.1). The Barzilai-Borwein method is motivated by quasi-Newton methods, which avoid calculating the inverse Hessian at each iteration. The latter is computationally expensive when \(p \) is large. To be specific, let us consider the optimization \(\min_{\beta \in \mathbb{R}^p} \tilde{L}^{(t)}(\beta) \) for a fixed \(t \geq 1 \). Starting with the initialization \(\tilde{\beta}^{(t,0)} = \tilde{\beta}^{(t-1)} \), at (inner) iteration \(k = 1, 2, \ldots \), compute the update \(\tilde{\beta}^{(t,k+1)} = \tilde{\beta}^{(t,k)} - \eta_k [\nabla \tilde{L}^{(t)}(\tilde{\beta}^{(t,k)})] \), where \(\eta_1 = 1 \) and for \(k \geq 2 \),

\[
\eta_k = \frac{\langle \tilde{\beta}^{(t,k)} - \tilde{\beta}^{(t,k-1)}, \nabla \tilde{L}^{(t)}(\tilde{\beta}^{(t,k)}) - \nabla \tilde{L}^{(t)}(\tilde{\beta}^{(t,k-1)}) \rangle}{\langle \nabla \tilde{L}^{(t)}(\tilde{\beta}^{(t,k)}) - \nabla \tilde{L}^{(t)}(\tilde{\beta}^{(t,k-1)}) \rangle^2}. \tag{4.2}
\]

or

\[
\eta_k = \frac{\langle \tilde{\beta}^{(t,k)} - \tilde{\beta}^{(t,k-1)}, \nabla \tilde{L}^{(t)}(\tilde{\beta}^{(t,k)}) - \nabla \tilde{L}^{(t)}(\tilde{\beta}^{(t,k-1)}) \rangle}{||\nabla \tilde{L}^{(t)}(\tilde{\beta}^{(t,k)}) - \nabla \tilde{L}^{(t)}(\tilde{\beta}^{(t,k-1)})||_2^2}.
\]

In practice, the step size computed in GD-BB may sometimes vibrate to some extent, and this may cause instability of the algorithm. Therefore, we set a upper bound for the step sizes by taking \(\min(\eta_k, 10) \). This procedure is summarized in Algorithm 2.

4.2 Majorize-minimize algorithm for distributed penalized AHR

In the high-dimensional setting, we need to solve \(\ell_1 \)-penalized shifted Huber loss minimization problems. With slight abuse of notation, given an initial regularized estimator \(\tilde{\beta}^{(0)} \), at each iteration \(t = 1, 2, \ldots, T \), define the update as

\[
\tilde{\beta}^{(t)} \in \arg\min_{\beta \in \mathbb{R}^p} \left\{ \tilde{L}^{(t)}(\beta) + \lambda ||\beta||_1 = \tilde{L}_{1,\lambda}(\beta) - \langle \nabla \tilde{L}_{1,\lambda}(\hat{\beta}^{(t-1)}) - \nabla \tilde{L}_{\tau}(\hat{\beta}^{(t-1)}), \beta \rangle + \lambda ||\beta||_1 \right\}. \tag{4.3}
\]
Algorithm 2 Gradient Descent with Barzilai-Borwein stepsize for solving (4.1)

Input: Local data vectors \{(y_i, x_i)\}_{i \in I}, initial estimator \(\hat{\beta}^0 = \tilde{\beta}^{(t-1)}\), gradient \(\nabla \tilde{L}_{1,\alpha}(\tilde{\beta}^{(t-1)})\) and \(\nabla \tilde{L}_{1,\tau}(\tilde{\beta}^{(t-1)})\) for \(j = 1, \ldots, m\), and gradient tolerance level \(\delta = 10^{-4}\).

1: Compute \(\hat{\beta}^1 \leftarrow \hat{\beta}^0 - \nabla \tilde{L}(\hat{\beta}^0)\)
2: for \(k = 1, 2 \ldots \) do
3: Compute \(\eta_k\) as defined in (4.2).
4: Update \(\hat{\beta}^{k+1} \leftarrow \hat{\beta}^k - \min\{\eta_k, 10\} \nabla \tilde{L}(\hat{\beta}^k)\);
5: end for when \(\|\nabla \tilde{L}(\hat{\beta}^k)\|_\infty \leq \delta\)

Here we use \(\beta_- \in \mathbb{R}^{p-1}\) to denote the subvector of \(\beta\) with its first component removed. To solve the optimization problem in (4.3), we employ the locally adaptive majorize-minimize (LAMM) principle Fan et al. (2018), which extends the classical MM algorithm (Hunter and Lange, 2000) to accommodate \(\ell_1\) penalty. This procedure minimizes a surrogate \(\ell_1\)-penalized isotropic quadratic function at each iteration, thus permitting an analytical solution.

Let \(\hat{L}(\cdot)\) be the loss function of interest. For \(k = 1, 2, \ldots\), define
\[
g_k(\beta; \beta^{k-1}, \phi_k) = \hat{L}(\beta^{k-1}) + \langle \nabla \hat{L}(\beta^{k-1}), \beta - \beta^{k-1} \rangle + \frac{\phi_k}{2} \| \beta - \beta^{k-1} \|^2.
\]

We say \(g_k(\beta; \beta^{k-1}, \phi_k)\) majorizes \(\hat{L}(\beta)\) at \(\beta^{k-1}\) if
\[
g_k(\beta; \beta^{k-1}, \phi_k) \geq \hat{L}(\beta) \quad \forall \beta \in \mathbb{R}^p \quad \text{and} \quad g_k(\beta^{k-1}; \beta^{k-1}, \phi_k) = \hat{L}(\beta^{k-1}). \tag{4.4}
\]

By choosing \(\phi_k\) large enough, \(g_k(\cdot; \beta^{k-1}, \phi_k)\) is guaranteed to satisfy (4.4). To find the smallest such \(\phi_k\), we start with \(\phi_0 = 0.0001\), and repeatedly inflate it by a constant factor, say 1.1, until (4.4) is satisfied. Finally, we update \(\beta^k\) by minimizing
\[
g_k(\beta; \beta^{k-1}, \phi_k) + \lambda \| \beta_\cdot \|_1. \tag{4.5}
\]

Due to the isotropic quadratic term in \(g_k(\beta; \beta^{k-1}, \phi_k)\), \(\beta^k\) can be obtained by a simple analytic formula:
\[
\left\{
\begin{array}{ll}
\beta_1^k = \beta_1^{k-1} - \phi_k^{-1}(\nabla \hat{L}(\beta^{k-1}))_1 \\
\beta_j^k = S(\beta_j^{k-1} - \phi_k^{-1}(\nabla \hat{L}(\beta^{k-1}))_j, \phi_k^{-1} \lambda), & j = 2, \ldots, p,
\end{array}
\right.
\]

where \(S(u, \lambda) = \text{sign}(u) \max(|u| - \lambda, 0)\) denotes the soft-thresholding operator. This algorithm also guarantees a descent in the overall loss function at every iteration, which is a direct consequence of (4.4) and (4.5):
\[
\tilde{L}(\beta^k) + \lambda \| \beta^{k-1}_\cdot \|_1 \leq g_k(\beta^k; \beta^{k-1}, \phi_k) + \lambda \| \beta^k_\cdot \|_1 \\
\leq g_k(\beta^{k-1}; \beta^{k-1}, \phi_k) + \lambda \| \beta^{k-1}_\cdot \|_1 = \tilde{L}(\beta^{k-1}) + \lambda \| \beta^{k-1}_\cdot \|_1.
\]

Algorithm 3 summarizes the LAMM algorithm described above.

5 Numerical Studies

In this section, we compare the numerical performance of the proposed method with several state-of-the-art distributed regression methods in both low and high dimensions.
5.1 Distributed robust regression and inference

In the low-dimensional setting where $n \gg p$, we consider five distributed regression methods: (i) the global adaptive Huber regression (AHR) estimator (Sun et al., 2020) that uses all the available $N = mn$ observations; (ii) divide-and-conquer AHR (DC-AHR) estimator based on averaging m local AHR estimators; (iii) DC-OLS estimator that averages m local OLS estimators; (iv) distributed OLS estimator (Shamir et al., 2014); and (v) the proposed distributed AHR estimator with early stopping.

To implement methods (i) and (ii), we use the self-tuning principle proposed by Wang et al. (2021) which automatically selects the robustification parameter τ. The distributed procedures (iv) and (v) are iterative, and require a reasonably well initial estimator, say $\tilde{\beta}^{(0)}$. In our simulations, we take $\tilde{\beta}^{(0)}$ to be either the DC-AHR or the DC-OLS estimator, which only requires one communication round. When the error distribution is heavy-tailed and symmetric, DC-AHR often has better finite-sample performance than DC-OLS. However, it produces biased estimate when the error is asymmetric. In contrast, although the DC-OLS exhibits larger variability due to heavy-tailedness, it has smaller bias on average. Therefore, we use DC-OLS estimator as the initialization for both methods (iv) and (v). Recall that the distributed AHR estimator involves two robustification parameters κ and τ. The local parameter κ can be automatically obtained by the self-tuning procedure (Wang et al., 2021). Guided by theoretical orders of (κ, τ) stated in Theorem 2.3, we choose the global parameter τ to be $cm^{1/2}K$, where $c \geq 1$ is a numerical constant that can be tuned by the validation set approach. We suggest to choose c from $\{1, 2, 3, 4, 5\}$, which suffices to achieve promising performance in a wide range of simulation settings.

We generate data vectors $\{(y_i, x_i)\}_{i=1}^n$ from a heteroscedastic model \(y_i = x_i^T \beta^* + c^{-1}(x_i^T \beta^*)^2 \varepsilon_i \), where $\beta^* = (1.5, \ldots, 1.5)^T \in \mathbb{R}^p$, $x_i = (1, x_{i2}, \ldots, x_{ip})^T$ with $x_{ij} \sim N(0, 1)$ for $j = 2, \ldots, p$ and $c = \sqrt{3||\beta^*||_2^2}$ that makes $\mathbb{E}[c^{-1}(x_i^T \beta^*)^2] = 1$. The regression errors ε_i are generated from one of the following four distributions (centered if the mean is nonzero): (a) $N(0, 1)$ (standard normal), (b) t_2 (t-distribution with 2 degrees of freedom), (c) Par(4,2)–Pareto distribution with scale parameter 4 and shape parameter 2, and (d) Burr(1,2,1)–Burr distribution or the Singh-Maddala distribution (Singh and Maddala, 1976), which is commonly used to model household income. First, we fix $(n, p) = (400, 20)$ and let the number of machines m increase from 10 to 500. Figure 1 plots the ℓ_2-
error $\| \hat{\beta} - \beta^* \|_2$ versus the number of machines, averaged over 500 replications, for all five methods. The global and distributed AHR estimators have almost identical performance, thus corroborating our theoretical results. The DC-AHR estimator only performs well under symmetric errors and suffers from non-negligible bias if the errors come from asymmetric distributions. This is largely expected because the robustification parameter for a local AHR estimator is tuned by a small subset of the data and results in a bias scaling with the local sample size. After averaging, this bias will not be offset when the number of machines increases. This points out a key drawback of the one-shot averaging approach when dealing with skewed data distributed across local machines. The DC-OLS method has decaying estimation error as m grows, but at a slower rate compared to the global and the distributed AHR estimators. The boxplots in Figure 2 show that the DC-OLS method often produces very poor estimates with high variability, while the distributed AHR method exhibits high degree of robustness.

Turning to uncertainty quantification, we construct approximate 95% confidence intervals for the slope coefficients based on distributed OLS and AHR methods. As before, we set $(n, p) = (400, 20)$ and let m increase from 10 to 500. Table 1 shows the average coverage probabilities and widths, with standard errors in parentheses, across all slope coefficients based on 500 Monte Carlo simulations. Across all the settings, the AHR-based confidence intervals are consistently accurate with tight width and reliable with high coverage. In the presence of heavy-tailed errors, the OLS-based confidence intervals tend to be wider, and standard errors of the interval width are also larger than those of the AHR method by one order of magnitude.

5.2 Distributed regularized Huber regression

In the high-dimensional setting where the dimension p exceeds the sample size n, we compare four methods across a range of settings: (1) centralized ℓ_1-penalized AHR estimator; (2) DC ℓ_1-penalized AHR estimator; (3) centralized Lasso; and (4) distributed regularized AHR estimator with $T = \lfloor \log(m) \rfloor$ rounds of communication and with a local Lasso estimator as the initialization. All four methods involve a regularization parameter λ, which will be tuned by a held-out validation set of size $\lfloor 0.25N \rfloor$. The robustification parameter τ in methods (1), (2) and (4) is selected by the self-tuning principle proposed by Wang et al. (2021).

The simulated data $\{(y_i, x_i)\}_{i=1}^N$ is generated from a heteroscedastic model $y_i = x_i^T \beta^* + c^{-1}(x_i^T \beta^*)^2 \epsilon_i$, where $\beta^* = (1.5, 1.5, 1.5, 1.5, 1.5, 0, \ldots, 0)^T \in \mathbb{R}^p$, $x_i = (1, x_{i2}, \ldots, x_{ip})^T$ with $x_{ij} \sim \mathcal{N}(0, 1)$ for $j = 2, \ldots, p$, and $c = \sqrt{3}||\beta^*||_2^2$. The regression errors ϵ_i are generated from one of the four distributions considered in Section 5.1, which are $\mathcal{N}(0, 1)$, t_2 (heavy-tailed and symmetric), Par(4, 2) and Burr(1,2,1) (heavy-tailed and skewed). We fix $(n, p) = (250, 1000)$ and let m increase from 10 to 50. Figure 3 plots the ℓ_2 error $||\hat{\beta} - \beta^*||_2$ versus the number of machines m, averaged over 100 replications, for all four methods. The averaging ℓ_1-penalized AHR estimator has a nondecaying estimation error as m increases, which is expected because of its sub-optimal convergence rate that scales with the local sample size n. The distributed AHR estimator with $T = \lfloor \log(m) \rfloor$ rounds of communication performs as good as the centralized AHR on the entire data set, and has much smaller estimation errors than the centralized Lasso in heavy-tailed cases. Furthermore, from the boxplots displayed in Figure 4 we see that the distributed AHR improves upon centralized Lasso in terms of both average performance and variability.
Figure 1: Plots of estimation error (under ℓ_2-norm) versus number of machines when $(n, p) = (400, 20)$, averaged over 500 replications. Five estimators are presented: global AHR estimator (●-●-●); DC-AHR estimator (●-●); DC-OLS estimator (●-●); distributed OLS estimator (△-△); and distributed AHR estimator (●-●-●).

Figure 2: Boxplots of estimation error (under ℓ_2-norm) versus the number of machines when $(n, p) = (400, 20)$ for distributed OLS estimator (●) and distributed AHR estimator (●), averaged over 500 replications.

Figure 3: Plots of estimation error (under ℓ_2-norm) versus the number of machines, over 100 replications, under a high-dimensional heteroscedastic model when $(n, p, s) = (250, 1000, 5)$. Four estimators are presented: centralized ℓ_1-penalized AHR estimator (●-●-●); DC ℓ_1-penalized AHR estimator (●-●); centralized Lasso estimator (△-△); and proposed distributed regularized AHR estimator (●-●-●).
Appendix

A Preliminaries

For any convex function $\psi : \mathbb{R}^k \to \mathbb{R}$, define the corresponding Bregman divergence $D_\psi(w', w) = \psi(w') - \psi(w) - \langle \nabla \psi(w), w' - w \rangle$ and its symmetrized version

$$\tilde{D}_\psi(w, w') = D_\psi(w, w') + D_\psi(w', w) = \langle \nabla \psi(w) - \nabla \psi(w'), w - w' \rangle, \quad w, w' \in \mathbb{R}^k. \quad (A.1)$$

Let $z = \Sigma^{-1/2} x \in \mathbb{R}^p$ be the standardized vector of covariates such that $\mathbb{E}(zz^\top) = I_p$, and define $\mu_k = \sup_{u \in S_{p-1}} \mathbb{E}|z^\top u|^k$ for $k \geq 1$. In particular, $\mu_2 = 1$. For every $\delta \in (0, 1]$, define

$$\eta_\delta = \inf \left\{ \eta > 0 : \sup_{u \in S_{p-1}} \mathbb{E}(|z^\top u|^2 1(|z^\top u| > \eta)) \leq \delta \right\}. \quad (A.2)$$

Under Condition (C1), η_δ depends only on δ and ν_1, and the map $\delta \mapsto \eta_\delta$ is non-increasing with $\eta_\delta \downarrow 0$ as $\delta \to 1$. A crude bound for η_δ, as a function of δ, is $\eta_\delta \leq (\nu_4/\delta)^{1/2}$.

Table 1: Coverage probabilities and widths (with standard errors in parentheses) of the normal-based CIs (averaged over all slope coefficients) for the distributed OLS and distributed AHR methods, based on 500 Monte Carlo simulations.

m	Dist-OLS	Dist-AHR
50	$0.93(0.011)$, $0.029(0.001)$	$0.95(0.007)$, $0.031(0.001)$
100	$0.93(0.012)$, $0.020(0.000)$	$0.95(0.010)$, $0.022(0.001)$
200	$0.93(0.011)$, $0.022(0.001)$	$0.96(0.008)$, $0.058(0.005)$
300	$0.93(0.011)$, $0.014(0.000)$	$0.96(0.007)$, $0.056(0.003)$
400	$0.93(0.010)$, $0.010(0.000)$	$0.96(0.007)$, $0.054(0.003)$

Figure 4: Boxplots of estimation errors (under ℓ_2-norm) versus the number of machines, over 100 replications, for centralized Lasso (●) and distributed AHR (○) under a high-dimensional het eroscedastic model when $(n, p, s) = (250, 1000, 5)$.

15
In Lemmas A.1 and A.2 below, we provide a lower bound on the symmetrized Bregman divergence and an upper bound on the score, respectively. The former is a direct consequence of Lemmas C.3 and C.4 in Sun et al. (2020) with slight modifications, and the latter combines Lemmas C.5 and C.6 in Sun et al. (2020) with $\delta = 1$. For the shifted Huber loss $\tilde{L}(\cdot)$, note that

$$\tilde{D}_{\tilde{L}}(\beta, \beta^*) = \langle \nabla \tilde{L}_{1, \tau}(\beta) - \nabla \tilde{L}_{1, \tau}(\beta^*), \beta - \beta^* \rangle.$$

Moreover, define the ℓ_1-cone

$$\Lambda = \{ \beta \in \mathbb{R}^p : \| \beta - \beta^* \|_1 \leq 4 \sqrt{s/2} \| \beta - \beta^* \|_2 \}.$$

Lemma A.1. Let $\kappa, r > 0$ satisfy $\kappa \geq 4 \max(\eta, 2\delta r, \sigma)$.

(i) Condition (C1) ensures that, with probability at least $1 - e^{-u}$,

$$\tilde{D}_{\tilde{L}}(\beta, \beta^*) \geq \frac{1}{4} \| \beta - \beta^* \|_2^2$$

holds uniformly over $\beta \in \Theta(r)$ as long as $n \geq (\kappa/r)^2(p + u)$.

(ii) Condition (C2) ensures that, with probability at least $1 - e^{-u}$,

$$\tilde{D}_{\tilde{L}}(\beta, \beta^*) \geq \frac{1}{4} \| \beta - \beta^* \|_2^2$$

holds uniformly over $\beta \in \Theta(r) \cap \Lambda$ as long as $n \geq (\kappa/r)^2(s \log p + u)$.

Proof. Without loss of generality, assume $I_1 = \{1, \ldots, n\}$. It suffices to prove (A.4) under Condition (C2). Following the proof of Lemma C.4 in Sun et al. (2020), the key is to upper bound the expected value of the maximum $\| (1/n) \sum_{i=1}^n e_i x_i \|_\infty$, where e_1, \ldots, e_n are independent Rademacher random variables. Let E_x be the expectation with respect to e_1, \ldots, e_n conditional on the remaining variables. By Hoeffding’s moment inequality,

$$E_x \left\| \left(\frac{1}{n} \sum_{i=1}^n e_i x_i \right) \right\|_\infty \leq \max_{1 \leq i \leq p} \left\{ \frac{1}{n} \sum_{i=1}^n x_i^2 \right\}^{1/2} \sqrt{\frac{2 \log(2p)}{n}} \leq B \sqrt{\frac{2 \log(2p)}{n}},$$

which in turns implies $E_x \| (1/n) \sum_{i=1}^n e_i x_i \|_\infty \leq B \sqrt{2 \log(2p)/n}$. Keep the rest of the proof the same proves the claimed bound. \hfill \Box

Consider the gradient $\nabla \tilde{L}(\cdot)$ evaluated at β^*, namely,

$$\nabla \tilde{L}_r(\beta^*) = -\frac{1}{N} \sum_{i=1}^N \psi_r(x_i) x_i,$$

where $\psi_r(u) = \ell_r'(u)$. The following lemma provides high probability bounds on both ℓ_2- and ℓ_∞-norms of $\nabla \tilde{L}_r(\beta^*)$. Recall that $\Theta = \Sigma^{-1}$.

Lemma A.2. Let $u > 0$ and write $L_r(\cdot) = E \tilde{L}_r(\cdot)$.

(i) Condition (C1) ensures that, with probability at least $1 - e^{-u}$,

$$\| \nabla \tilde{L}_r(\beta^*) - \nabla L_r(\beta^*) \|_{\ell_2} \leq C_0 \left[\sigma \sqrt{(p + u)/N} + \tau (p + u)/N \right],$$

where $C_0 > 0$ is a constant depending only on ν_1. Moreover, $\| \nabla L_r(\beta^*) \|_{\ell_1} \leq \sigma^2/\tau$.

16
(ii) Condition (C2) ensures that, with probability at least $1 - e^{-u}$,
\[
\|\nabla \tilde{L}_e(\beta^*) - \nabla L_e(\beta^*)\|_\infty \leq \sigma \sigma_u \sqrt{\frac{2(\log(2p) + u)}{N}} + \frac{B\tau \log(2p) + u}{N}. \tag{A.6}
\]

Proof. The bound (A.5) is an immediate consequence of Lemma C.3 in Sun et al. (2020). It suffices to prove (A.6) under Condition (C2). Note that
\[
\|\nabla \tilde{L}_e(\beta^*) - \nabla L_e(\beta^*)\|_\infty = \max_{1 \leq j \leq p} \sqrt{\frac{1}{N} \sum_{i=1}^{N} (1 - \mathbb{E}) \xi_i x_{ij}^2}.
\]
where $\xi_i := \psi(x_i)$ satisfy $|\xi_i| \leq \tau$ and $\mathbb{E}(\xi_i^2) \leq \mathbb{E}(\xi_i^2) \leq \sigma^2$. For any $1 \leq j \leq p$ and $z \geq 0$, applying Bernstein’s inequality yields that with probability at least $1 - 2e^{-z}$,
\[
\frac{1}{N} \sum_{i=1}^{N} (1 - \mathbb{E}) \xi_i x_{ij}^2 \leq \sigma_j^{1/2} \sigma \sqrt{\frac{2}{N} + \frac{B\tau z}{N}}.
\]
Taking $z = \log(2p) + u$, the claimed bound (A.6) then follows from the union bound. \qed

B Proof of Main Results

B.1 Proof of Theorem 2.1

Proof. (2.5). For simplicity, we write $\tilde{\beta} = \tilde{\beta}^{(1)}$, which minimizes the shifted Huber loss $\tilde{L}(\cdot)$ and thus satisfies the first-order condition $\nabla \tilde{L}(\tilde{\beta}) = 0$. Throughout the proof we assume the event $\mathcal{E}_0(r_0) \cap \mathcal{E}_r(r_0)$ occurs. In view of Lemma A.1, we consider a local region $\Theta(r_{loc})$ with $r_{loc} = \kappa/(4\eta_{0.25})$, and define an intermediate estimator $\tilde{\beta}_c = (1 - c)\beta^* + c\tilde{\beta}$, where
\[
c := \sup \{ u \in [0, 1] : (1 - u)\beta^* + u\tilde{\beta} \in \Theta(r_{loc}) \} = \begin{cases} 1 & \text{if } \tilde{\beta} \in \Theta(r_{loc}) , \\ (0, 1) & \text{otherwise}. \end{cases}
\]
By construction, $\tilde{\beta}_c \in \Theta(r_{loc})$. In particular, if $\tilde{\beta} \notin \Theta(r_{loc})$, we must have $\tilde{\beta}_c$ lying on the boundary of $\Theta(r_{loc})$, i.e. $\|\tilde{\beta}_c - \beta^*\|_\Sigma = r_{loc}$.

Applying Lemma C.1 in Sun et al. (2020), we see that the three points $\tilde{\beta}, \tilde{\beta}_c$ and β^* satisfy
\[
\tilde{D}_\Sigma(\tilde{\beta}_c, \beta^*) \leq c\tilde{D}_\Sigma(\tilde{\beta}, \beta^*), \quad \tilde{D}_\Sigma(\beta, \beta^*) = \langle \nabla \tilde{L}(\tilde{\beta}) - \nabla \tilde{L}(\beta^*), \beta - \beta^* \rangle = \langle \nabla \tilde{L}_{1,\Sigma}(\beta) - \nabla \tilde{L}_{1,\Sigma}(\beta^*), \beta - \beta^* \rangle.
\]
Together with the first-order condition $\nabla \tilde{L}(\tilde{\beta}) = 0$, this implies
\[
\tilde{D}_\Sigma(\tilde{\beta}_c, \beta^*) \leq -c\langle \nabla \tilde{L}(\beta^*), \beta - \beta^* \rangle \leq \|\nabla \tilde{L}(\beta^*)\|_{\Sigma} \cdot \|\tilde{\beta}_c - \beta^*\|_\Sigma. \tag{B.1}
\]
For the left-hand side of (B.1), applying Lemma A.1 with $r = r_{loc}$ and the fact $\tilde{\beta}_c \in \Theta(r_{loc})$ yields that with probability at least $1 - e^{-u}$,
\[
\tilde{D}_\Sigma(\tilde{\beta}_c, \beta^*) \geq \frac{1}{4}\|\tilde{\beta}_c - \beta^*\|_\Sigma^2 \tag{B.2}
\]
as long as $n \geq p + u$.

To bound the right-hand side of (B.1), we define vector-valued random processes
\[
\Delta_1(\beta) = \Sigma^{-1/2}[\nabla \tilde{L}_{1,\Sigma}(\beta) - \nabla \tilde{L}_{1,\Sigma}(\beta^*)] - \Sigma^{1/2}(\beta - \beta^*), \\
\Delta(\beta) = \Sigma^{-1/2}[\nabla \tilde{L}_e(\beta) - \nabla \tilde{L}_e(\beta^*)] - \Sigma^{1/2}(\beta - \beta^*), \tag{B.3}
\]
for \(1 \leq i \leq p\), where
\[
\mathbb{E}(\Delta_1(\beta)) = 0, \quad \mathbb{E}(\Delta_1(\beta)^2) = \Sigma, \quad \mathbb{E}(\Delta(\beta)) = 0, \quad \mathbb{E}(\Delta(\beta)^2) = \Sigma.
\]
Let $0 < r_0 \leq \sigma$. Following the proof of Theorem B.1 in the supplement of Sun et al. (2020), it can be similarly shown that, with probability at least $1 - 2e^{-u}$,

$$
\sup_{\beta \in \Theta_{(r_0)}} \|\Delta_1(\beta)\|_2 \leq C_1 \left(\sqrt{\frac{p + u}{n}} + \frac{\sigma^2}{\kappa^2}\right) r_0 \quad \text{and} \quad \sup_{\beta \in \Theta_{(r_0)}} \|\Delta(\beta)\|_2 \leq C_1 \left(\frac{p + u}{N} + \frac{\sigma^2}{\tau^2}\right) r_0
$$

as long as $n \geq p + u$, where $C_1 > 0$ is a constant depending only on ν_1. Recall that $\tau \geq \kappa \approx \sigma \sqrt{n/(p + u)}$. Conditioned on event $E_0(r_0) \cap E_\nu(r_\nu)$, it follows that

$$\begin{align*}
\|\nabla \tilde{L}(\beta^*)\|_{\Omega} &= \|\Delta(\tilde{\beta}(0)) - \Delta_1(\tilde{\beta}(0)) + \Sigma^{-1/2}\nabla \tilde{L}_r(\beta^*)\|_2 \\
&\leq \|\Delta(\tilde{\beta}(0)) - \Delta_1(\tilde{\beta}(0))\|_2 + \|\nabla \tilde{L}_r(\beta^*)\|_{\Omega} \\
&\leq C_{2} r_0 \sqrt{\frac{p + u}{n} + r_*}.
\end{align*}$$

Together, the bounds (B.1), (B.2) and (B.5) imply that, conditioning on $E_0(r_0) \cap E_\nu(r_\nu)$,

$$
\|\tilde{\beta}_c - \beta^*\|_2 \leq 4\|\nabla \tilde{L}(\beta^*)\|_{\Omega} \leq 4 \left(C_2 r_0 \sqrt{\frac{p + u}{n} + r_*}\right)
$$

with probability at least $1 - 3e^{-u}$. Provided that the sample size is sufficiently large---$n \geq p + u$, the right-hand side of the above inequality is strictly less than $r_{\text{loc}} = \kappa/(4\eta_0.25)$ with $\kappa \approx \sigma \sqrt{n/(p + u)}$. As a result, the intermediate estimator $\tilde{\beta}_c$ falls into the interior of $\Theta_{(r_{\text{loc}})}$ with high probability conditioned on $E_0(r_0) \cap E_\nu(r_\nu)$. Via proof by contradiction, we must have $\tilde{\beta} \in \Theta_{(r_{\text{loc}})}$ and hence $\tilde{\beta} = \tilde{\beta}_c$; otherwise if $\tilde{\beta} \notin \Theta_{(r_{\text{loc}})}$, we have demonstrated that $\tilde{\beta}_c$ must lie on the boundary of $\Theta_{(r_{\text{loc}})}$, which is a contradiction. Consequently, the bound (B.6) also applies to $\tilde{\beta}$, as claimed.

Proof of (2.6). To establish the Bahadur representation, note that the random process $\Delta_1(\cdot)$ defined in (B.3) can be written as $\Delta_1(\beta) = \Sigma^{-1/2} \nabla \tilde{L}(\beta) - \nabla \tilde{L}(\beta^*) - \Sigma^{1/2}(\beta - \beta^*)$. Moreover, note that

$$
\nabla \tilde{L}(\beta^*) = \nabla \tilde{L}_{1,\nu}(\tilde{\beta}_0) - \nabla \tilde{L}_{1,\nu}(\tilde{\beta}(0)) + \nabla \tilde{L}_r(\tilde{\beta}(0)) - \nabla \tilde{L}_r(\beta^*) + \nabla \tilde{L}_r(\beta^*),
$$

which in turn implies

$$
\|\nabla \tilde{L}(\beta^*) - \nabla \tilde{L}_r(\beta^*)\|_2 \leq \|\Delta_1(\tilde{\beta}(0))\|_2 + \|\Delta(\tilde{\beta}(0))\|_2.
$$

Recall that $\nabla \tilde{L}(\tilde{\beta}) = 0$, and by (B.6), $\|\tilde{\beta} - \beta^*\|_2 \leq r_1 := 4 C_2 r_0 \sqrt{(p + u)/n + 4r_*}$, with high probability conditioned on $E_0(r_0) \cap E_\nu(r_\nu)$. For $r_0 \geq 8r_\nu$, we have $r_1 \leq r_0/2 + r_0/2 = r_0$ as long as $n \geq p + u$, and hence $\tilde{\beta} \in \Theta(r_0)$. Applying the bounds in (B.4) again, we obtain that conditioned on $E_0(r_0) \cap E_\nu(r_\nu)$,

$$
\|\Sigma^{1/2}(\tilde{\beta} - \beta^*) + \Sigma^{-1/2}\nabla \tilde{L}_r(\beta^*)\|_2 \\
= \|\Delta_1(\tilde{\beta}) + \Sigma^{-1/2}\nabla \tilde{L}(\beta^*) - \Sigma^{-1/2}\nabla \tilde{L}_r(\beta^*)\|_2 \\
\leq \|\Delta_1(\tilde{\beta})\|_2 + \|\Delta(\tilde{\beta}(0))\|_2 + \|\Delta(\tilde{\beta}(0))\|_2 \\
\leq 2 \sup_{\beta \in \Theta_{(r_0)}} \|\Delta_1(\beta)\|_2 + \sup_{\beta \in \Theta_{(r_0)}} \|\Delta(\beta)\|_2 \\
\leq \sqrt{\frac{p + u}{n}} \cdot r_0
$$

with probability at least $1 - 3e^{-u}$. This completes the proof. \qed
B.2 Proof of Theorem 2.2

Given a sequence of iterates \(\{\tilde{\beta}(t)\}_{t=0,1,\ldots,T} \), we define “good” events

\[
E_r(r_t) = \{ \tilde{\beta}(t) \in \Theta(r_t) \}, \quad t = 0, \ldots, T, \tag{B.7}
\]

for some sequence of radii \(r_0 \geq r_1 \geq \cdots \geq r_T > 0 \) to be determined. Examine the proof of Theorem 2.1, we see that the statistical properties of \(\tilde{\beta}(t) \) depends on both first-order and second-order information of the loss function \(\tilde{\mathcal{L}}^{(t)}(\cdot) \), namely, the \(f_2 \)-norm of the gradient \(\nabla \tilde{\mathcal{L}}^{(t)}(\beta^*) \) and the (symmetrized) Bregman divergence of \(\tilde{\mathcal{L}}^{(t)}(\cdot) \). For the former, we have

\[
\nabla \tilde{\mathcal{L}}^{(t)}(\beta^*) = \nabla \tilde{\mathcal{L}}_{1,\delta}(\beta^*) - \nabla \tilde{\mathcal{L}}_{1,\delta}(\beta^{(t-1)}) + \nabla \tilde{\mathcal{L}}_{\tau}(\beta^{(t-1)}). \tag{B.8}
\]

Let \(\Delta_t(\cdot) \) and \(\Delta(\cdot) \) be the random processes defined in (B.3), and observe that \(\Sigma^{-1/2} \nabla \tilde{\mathcal{L}}^{(t)}(\beta^*) = \Delta(\beta^{(t-1)}) - \Delta(\tilde{\beta}^{(t-1)}) + \Sigma^{-1/2} \nabla \tilde{\mathcal{L}}_{\tau}(\beta^*) \). By the triangle inequality,

\[
||\nabla \tilde{\mathcal{L}}^{(t)}(\beta^*)||_\Omega \leq ||\Delta(\tilde{\beta}^{(t-1)})||_2 + ||\Delta(\tilde{\beta}^{(t-1)})||_2 + ||\nabla \tilde{\mathcal{L}}_{\tau}(\beta^*)||_\Omega. \tag{B.9}
\]

On the other hand, note that the shifted Huber losses \(\tilde{\mathcal{L}}^{(t)}(\cdot) \) have the same Bregman divergence, denoted by

\[
\tilde{D}(\beta_1, \beta_2) = \langle \nabla \tilde{\mathcal{L}}^{(t)}(\beta_1) - \nabla \tilde{\mathcal{L}}^{(t)}(\beta_2), \beta_1 - \beta_2 \rangle = \langle \nabla \tilde{\mathcal{L}}_{1,\delta}(\beta_1) - \nabla \tilde{\mathcal{L}}_{1,\delta}(\beta_2), \beta_1 - \beta_2 \rangle.
\]

Define the local radius \(r_{loc} = \kappa/(4\eta_{0.25}) \). Then, applying Lemma A.1 with \(r = r_{loc} \) yields that, with probability at least 1 - \(e^{-u} \),

\[
\tilde{D}(\beta, \beta^*) \geq \frac{1}{4} ||\beta - \beta^*||^2_\Sigma \tag{B.10}
\]

holds uniformly over \(\beta \in \Theta(r_{loc}) \). Let \(E_{loc} \) be the event that the local strong convexity (B.10) holds.

With the above preparations, we are ready to extend the argument in the proof of Theorem 2.1 to deal with \(\tilde{\beta}(t) \) sequentially. At each iteration, we construct an intermediate estimator \(\tilde{\beta}^{(t)}_{mid} \)—a convex combination of \(\tilde{\beta}(t) \) and \(\beta^* \)—which falls in \(\Theta(r_{loc}) \) and satisfies

\[
\tilde{D}(\tilde{\beta}^{(t)}_{mid}, \beta^*) \leq ||\nabla \tilde{\mathcal{L}}^{(t)}(\beta^*)||_\Omega \cdot ||\tilde{\beta}^{(t)}_{mid} - \beta^*||_\Sigma.
\]

If event \(E_r(r_t) \cap E_{loc} \) occurs, the bounds (B.9) and (B.10) imply

\[
||\tilde{\beta}^{(t)}_{mid} - \beta^*||_\Sigma \leq 4(||\Delta(\tilde{\beta}^{(t-1)})||_2 + ||\Delta(\tilde{\beta}^{(t-1)})||_2) + 4r_t. \tag{B.11}
\]

Moreover, it follows from (B.8) and the first-order condition \(\nabla \tilde{\mathcal{L}}^{(t)}(\tilde{\beta}(t)) = 0 \) that

\[
||\Sigma^{1/2} (\tilde{\beta}(t) - \beta^*) + \Sigma^{-1/2} \nabla \tilde{\mathcal{L}}_{\tau}(\beta^*)||_2 \\
= ||\Sigma^{-1/2} [\nabla \tilde{\mathcal{L}}^{(t)}(\tilde{\beta}(t)) - \nabla \tilde{\mathcal{L}}^{(t)}(\beta^*)] - \Sigma^{1/2} (\tilde{\beta}(t) - \beta^*) + \Sigma^{-1/2} [\nabla \tilde{\mathcal{L}}^{(t)}(\beta^*) - \nabla \tilde{\mathcal{L}}_{\tau}(\beta^*)]||_2 \\
\leq ||\Delta(\tilde{\beta}^{(t)})||_2 + ||\Delta(\tilde{\beta}^{(t-1)})||_2 + ||\Delta(\tilde{\beta}^{(t-1)})||_2.
\tag{B.12}
\]

In view of the bounds in (B.4), for every \(0 < r \leq \sigma \) we define the event

\[
\mathcal{F}(r) = \left\{ \sup_{\beta \in \Theta(r)} \{ ||\Delta(\beta)||_2 + ||\Delta(\beta)||_2 \} \leq \gamma(u) \cdot r \right\} \tag{B.13}
\]

19
with $\gamma(u) = C \sqrt{(p + u)/n}$ for some $C > 0$, which satisfies $\mathbb{P}(\mathcal{F}(r)) \geq 1 - 2e^{-u}$.

Let $8r^* \leq r_0 \leq \sigma$. In the following, we assume the event $E_0(r_0) \cap E_s(r_s) \cap E_{1,s} \cap E_{4,s}$ occurs, and deal with\{($\beta_{1,\text{mad}}^{(t)}, \beta^{(t)}$), $t = 1, 2, \ldots, T$\} sequentially. At iteration 1, it follows from (B.11) that, conditioned on $\mathcal{F}(r_0)$,

$$\|\tilde{\beta}_{1,\text{mad}}^{(1)} - \beta^*\|_2 \leq r_1 := 4\gamma(u) \cdot r_0 + 4r_s.$$

Provided that $n \geq p + u$, we have $4\gamma(u) \leq 1/2 < 1$ and $r_1 \leq r_0 < r_{\text{loc}} = \kappa/(4\eta_{0,25})$, so that $\tilde{\beta}_{1,\text{mad}}^{(1)} \in \Theta(r_1) \subseteq \text{int}(\Theta(r_{\text{loc}}))$. Via proof by contradiction, we must have $\tilde{\beta}^{(1)} - \beta_{1,\text{mad}}^{(1)} \in \Theta(r_{\text{loc}})$, which in turns certifies event $E_1(r_1)$. Combining this with (B.12), we see that conditioned on $\mathcal{F}(r_0)$, the event $E_1(r_1)$ must happen and hence

$$\begin{align*}
\|\tilde{\beta}^{(1)} - \beta^*\|_2 &\leq r_1 = 4\gamma(u) \cdot r_0 + 4r_s, \\
\|\tilde{\beta}^{(1)} - \beta^* + \Sigma^{-1}\nabla L_r(\beta^*)\|_2 &\leq 2\gamma(u) \cdot r_0.
\end{align*}$$

Now assume that for some $t \geq 1$, $\tilde{\beta}^{(t)} \in \Theta(r_t)$ with $r_t = 4\gamma(u) \cdot r_{t-1} + 4r_s \leq r_{t-1} < r_{\text{loc}}$. At $(t + 1)$-th iteration, applying (B.11) again yields that, conditioned on event $E_t(r_t) \cap \mathcal{F}(r_t)$,

$$\|\tilde{\beta}_{1,\text{mad}}^{(t+1)} - \beta^*\|_2 \leq r_{t+1} := 4\gamma(u) \cdot r_t + 4r_s.$$

By induction, $r_t \leq r_{t-1} < r_{\text{loc}}$ so that $r_{t+1} \leq 4\gamma(u) \cdot r_{t-1} + 4r_s = r_t < r_{\text{loc}}$. This implies that $\tilde{\beta}_{1,\text{mad}}^{(t+1)}$ falls into the interior of $\Theta(r_{\text{loc}})$, which enforces $\tilde{\beta}^{(t+1)} = \beta_{1,\text{mad}}^{(t+1)} \in \Theta(r_{t+1})$ and thus certifies event $E_{t+1}(r_{t+1})$. Combining this with the bound (B.12), we find that

$$\begin{align*}
\|\tilde{\beta}^{(t+1)} - \beta^*\|_2 &\leq r_{t+1} = 4\gamma(u) \cdot r_t + 4r_s, \\
\|\tilde{\beta}^{(t+1)} - \beta^* + \Sigma^{-1}\nabla L_r(\beta^*)\|_2 &\leq 2\gamma(u) \cdot r_t.
\end{align*}$$

Repeat the above argument until we obtain $\tilde{\beta}^{(T)}$. We have shown that conditioned on $E_s(r_s) \cap E_{1,s} \cap E_{T-1}(r_{T-1}) \cap \mathcal{F}(r_{T-1})$ for every $0 \leq t \leq T - 1$, the event $E_t(r_t)$ must occur. Therefore, conditioned on $E_s(r_s) \cap E_{1,s} \cap E_{0}(r_0) \cap \cap_{t=0}^{T-1} \mathcal{F}(r_t)$, $\tilde{\beta}^{(T)}$ satisfies the bounds

$$\begin{align*}
\|\tilde{\beta}^{(T)} - \beta^*\|_2 &\leq r_T = 4\gamma(u) \cdot r_{T-1} + 4r_s, \\
\|\tilde{\beta}^{(T)} - \beta^* + \Sigma^{-1}\nabla L_r(\beta^*)\|_2 &\leq 2\gamma(u) \cdot r_{T-1}.
\end{align*}$$

(B.14)

Observe that $r_t = \lceil 4\gamma(u) \rceil r_0 + 1/4\gamma(\gamma(u)/4)4r_s$ for $t = 1, \ldots, T$. We choose T to be the smallest integer such that $4\gamma(u)/4r_0 \leq r_s$, that is, $T = \lceil \log(r_0/r_s)/\log(1/(4\gamma(u))) \rceil + 1$. Consequently, the bounds in (B.14) become

$$\begin{align*}
\|\tilde{\beta}^{(T)} - \beta^*\|_2 &\leq \gamma(u) + \frac{1}{4\gamma(u)}4r_s \leq 4\gamma(u) + 8r_s, \\
\|\tilde{\beta}^{(T)} - \beta^* + \Sigma^{-1}\nabla L_r(\beta^*)\|_2 &\leq 18\gamma(u) \cdot r_s.
\end{align*}$$

(B.15)

Finally, it suffices to show that the event $E_{1,s} \cap \cap_{t=0}^{T-1} \mathcal{F}(r_t)$ occurs with high probability. Recall from (B.10) and (B.13) that $\mathbb{P}(E_{1,s}) \geq 1 - 2e^{-u}$ and $\mathbb{P}(\mathcal{F}(r_t)) \geq 1 - 2e^{-u}$ for every $t = 0, 1, \ldots, T - 1$. The claimed result then follows from (B.15) and the union bound. \square
B.3 Proof of Theorem 2.3

Let \(u > 0 \). Applying Theorem B.1 in Sun et al. (2020) with a robustification parameter \(\kappa = \sigma / \sqrt{n/(p + u)} \) yields that with probability at least \(1 - 2e^{-u} \), \(|\tilde{\beta}^{(0)} - \beta^*| \leq r_0 \approx \sigma \sqrt{(p + u)/n} \) as long as \(n \geq p + u \). For event \(\mathcal{E}'(r^*) \) defined in (2.4), we take \(r^* \approx \sigma \sqrt{(p + u)/N + r(p + u)/N + \alpha^2 / \tau} \) in Lemma A.2 and obtain that \(\mathbb{P}(\mathcal{E}'(r^*)) \geq 1 - e^{-u} \). Putting together the pieces, we conclude that event \(\mathcal{E}_0(r_0) \cap \mathcal{E}_u(r_u) \) occurs with probability at least \(1 - 3e^{-u} \), provided that \(n \geq p + u \).

Set \(u = \log n + \log_2 m \). Since \(\tau = \sigma \sqrt{N/(p + \log n + \log_2 m)} \), we see that

\[
 r_0 = \sigma \sqrt{\frac{p + \log n + \log_2 m}{n}} \quad \text{and} \quad r_s = \sigma \sqrt{\frac{p + \log n + \log_2 m}{N}}.
\]

and hence \(r_0 / r_s \approx \sqrt{m} \). Finally, applying Theorem 2.2 yields the claimed bounds (2.9) and (2.10).

\(\square \)

B.4 Proof of Theorem 2.4

For simplicity, we write \(q = p + \log n + \log_2 m \) throughout the proof. For every vector \(a \in \mathbb{R}^p \), define \(S_a = N^{-1/2} \sum_{i=1}^N \xi_i w_i \) and \(S_a^0 = S_a - \mathbb{E} S_a \), where \(\xi_i = \psi_i(e_i) \) and \(w_i = a^T \Sigma^{-1} x_i \). Under the moment condition \(\mathbb{E}(|\xi|^4|x_i) \leq \nu_{2+\delta} \), using Markov’s inequality yields \(\mathbb{E}(|\xi_i|^4|x_i) \leq \nu_{2+\delta} \tau^{-1-\delta} \). Hence, \(\mathbb{E}(\xi_i w_i) \leq \nu_{2+\delta} \|a\|_{\Sigma^2 \tau^{-1-\delta}} \) and \(\mathbb{E} S_a \leq \nu_{2+\delta} \|a\| \cdot N^{1/2} \tau^{-1-\delta} \).

With the above preparations, we are ready to prove the normal approximation for \(\tilde{\beta} \). Note that

\[
|N^{1/2} a^T (\tilde{\beta} - \beta^*) - S_a^0| = N^{1/2} \left| \sum_{i=1}^N a_i \psi_i(x_i) x_i \right| + \mathbb{E} S_a \leq N^{1/2} \|a\| \cdot \left| \sum_{i=1}^N a_i \psi_i(x_i) x_i \right| + \nu_{2+\delta} \|a\| \cdot N^{1/2} \tau^{-1-\delta}. \]

Applying (2.10) in Theorem 2.3, we find that with probability at least \(1 - C/n \),

\[
|N^{1/2} a^T (\tilde{\beta} - \beta^*) - S_a^0| \leq C_1 \|a\| \cdot (\sigma q n^{1/2} + N^{1/2} \nu_{2+\delta} \tau^{-1-\delta}), \tag{B.16}
\]

where \(C_1 > 0 \) is a constant independent of \((N, n, p)\).

For the centered partial sum \(S_a^0 \), it follows from the Berry-Esseen inequality (see, e.g. Theorem 2.1 in Chen and Shao (2001)) that

\[
\sup_{\xi \in \mathbb{R}} \mathbb{P}(\mathcal{S}_a^0 \leq \mathbb{V} a^{(0)^{1/2} t} - \Phi(t) \leq 4.1 \frac{\mathbb{E} |\xi w - \mathbb{E}(\xi w)|^{2+\delta}}{\text{var}(\xi w)^{1/2} N^{\delta/2}}, \tag{B.17}
\]

where \(\xi = \psi_i(e) \) and \(w = a^T \Sigma^{-1} x \). Recall that \(\tau = \sigma \sqrt{N/q} \), and write \(\sigma_\tau^2 \equiv \mathbb{E}(\xi w)^2 \). By Proposition A.2 in Zhou et al. (2018), \(\mathbb{E}(\xi^2|x) - \sigma^2 \leq 2\delta^{-1} \nu_{2+\delta} \tau^{-\delta} \leq \nu_{2+\delta} \sigma^{-\delta}(q/N)^{\delta/2} \), and hence

\[
\frac{\sigma_\tau^2}{\delta^2 N^{-\delta/2}} - 1 \leq \frac{\nu_{2+\delta} \sqrt{\delta^2 / N^{\delta/2}} \sqrt{q}}{N^{\delta/2}}. \tag{B.18}
\]

Moreover, \(\mathbb{E} |\xi w|^{2+\delta} \leq \mathbb{E} |\xi w|^{2+\delta} \leq \mu_{2+\delta} \|a\|^{2+\delta} \nu_{2+\delta} \), where \(\mu_{2+\delta} \equiv \sup_{\xi \in \mathbb{R}^{p-1}} \|\xi w\|^{2+\delta} \) depends only on \(v_1 \) under Condition (C1). Substituting these bounds into (B.17) yields

\[
\sup_{\xi \in \mathbb{R}} \mathbb{P}(\mathcal{S}_a^0 \leq \mathbb{V} a^{(0)^{1/2} t} - \Phi(t) \leq C_2 \frac{\nu_{2+\delta} \sqrt{\delta^2 / N^{\delta/2}} \sqrt{q}}{N^{\delta/2}} \), \tag{B.19}
\]
provided that \(N \geq q \). For the variance term, the bound \(\mathbb{E}(\xi|x) \leq \sigma^2 \tau^{-1} \) guarantees that
\[
\mathbb{E}(\xi w)^2 \geq \text{var}(S_0) = \mathbb{E}(\xi w)^2 - \mathbb{E}(\xi w)^2 \geq \mathbb{E}(\xi w)^2 - (\sigma |d||\Omega)^2 \cdot \sigma^2 \tau^{-2}.
\]
Combined with (B.18), this implies \(|\text{var}(S_0)/\sigma^2 \tau^{-1} - 1| \leq \sigma^2 \tau^{-2} \), from which it follows that
\[
\sup_{t \in \mathbb{R}} \left| \Phi(t/\text{var}(S_0)^{1/2}) - \Phi(t/\sigma^2 \tau^{-1}) \right| \leq C_3 \frac{\sigma^2}{\tau^2}.
\] (B.20)

Let \(G \sim \mathcal{N}(0, 1) \) and \(t \in \mathbb{R} \). Combining the bounds (B.16), (B.19) and (B.20), we obtain
\[
\mathbb{P}[N^{1/2} a^{T}(\tilde{\beta} - \beta^*) \leq t] \\
\leq \mathbb{P}[S_0 \leq x + C_1 ||a||_\Omega \cdot (\sigma qn^{-1/2} + N^{1/2} v_\sigma t^{-1/2})] + \mathbb{P}^{-1}[C_2 v_\sigma t^{-1/2} + C_2 \sigma^2 / \tau^2] \\
\leq \mathbb{P}[\text{var}(S_0)^{1/2} G \leq t + C_1 ||a||_\Omega \cdot (\sigma qn^{-1/2} + N^{1/2} v_\sigma t^{-1/2})] + \mathbb{P}^{-1}[C_2 v_\sigma t^{-1/2} + C_2 \sigma^2 / \tau^2] \\
\leq \mathbb{P}[\sigma_{\tau, a} G \leq t + C_1 ||a||_\Omega \cdot (\sigma qn^{-1/2} + N^{1/2} v_\sigma t^{-1/2})] + \mathbb{P}^{-1}[C_2 v_\sigma t^{-1/2} + C_2 \sigma^2 / \tau^2].
\]

A similar argument leads to a series of reverse inequalities, and thus completes the proof. \(\square \)

B.5 Proof of Theorem 3.1

As before, we assume without loss of generality that \(I_1 = \{1, \ldots, n\} \). Write \(\tilde{\beta} = \tilde{\beta}_1 \) for simplicity, and let \(g = \tilde{\beta} - \beta^* \) be the error vector. By the first-order optimality condition, there exists a subgradient \(g \in \partial \eta(\tilde{\beta}) \) such that \(g^T \tilde{\beta} = \| \tilde{\beta} \|_1 \) and \(\nabla \tilde{L}(\tilde{\beta}) + \lambda \cdot g = 0 \). Moreover, the convexity of \(\tilde{L}(\cdot) \) implies
\[
0 \leq \tilde{D}_{\tilde{\beta}}(\tilde{\beta}, \beta^*) = g^T(\nabla \tilde{L}(\tilde{\beta}) - \nabla \tilde{L}(\beta^*)) = -\lambda \cdot g^T g - g^T \nabla \tilde{L}(\beta^*).
\]
Recall the true active set \(S = \text{supp}(\beta^*) \subseteq \{1, \ldots, p\} \), we have
\[
-g^T g \leq \| \beta^* \|_1 - \| \tilde{\beta} \|_1 = \| \beta^*_S \|_1 - \| g_S \|_1 - \| g_S + \beta S \|_1 \leq \| g_S \|_1 - \| g_S \|_1.
\]
Together, the above two displays yield
\[
0 \leq \tilde{D}_{\tilde{\beta}}(\tilde{\beta}, \beta^*) \leq \lambda(\| g_S \|_1 - \| g_S \|_1) - g^T \nabla \tilde{L}(\beta^*). \] (B.21)

To deal with \(\nabla \tilde{L}(\beta^*) = \nabla \tilde{L}_{1, a}(\beta^*) - \nabla \tilde{L}_{1, a}(\tilde{\beta}^0) + \nabla \tilde{L}_{1, a}(\tilde{\beta}^0) \), we define random processes
\[
\tilde{D}_1(\beta) = \nabla \tilde{L}_{1, a}(\beta) - \nabla \tilde{L}_{1, a}(\beta^*), \quad \tilde{D}(\beta) = \nabla \tilde{L}_{1, a}(\beta) - \nabla \tilde{L}_{1, a}(\beta^*)
\]
and write \(D_1(\beta) = \mathbb{E}\tilde{D}_1(\beta) \) and \(D(\beta) = \mathbb{E}\tilde{D}(\beta) \). The gradient \(\nabla \tilde{L}(\beta^*) \) can thus be written as
\[
[D(\beta) - D(\beta)]_{\beta = \tilde{\beta}^0} + \left[D_1(\beta) - \tilde{D}_1(\beta) \right]_{\beta = \tilde{\beta}^0} + \nabla \tilde{L}_{1, a}(\beta^*) - \nabla \tilde{L}_{1, a}(\beta^*) \\
+ \left[D(\beta) - D_1(\beta) \right]_{\beta = \tilde{\beta}^0} + \nabla \tilde{L}(\beta^*). \]

22
For any \(r > 0 \), define
\[
\Delta_1(r) = \sup_{\beta \in \Theta(r) \cap \Lambda} \| \hat{D}_1(\beta) - D_1(\beta) \|_\infty, \quad \Delta(r) = \sup_{\beta \in \Theta(r) \cap \Lambda} \| \hat{D}(\beta) - D(\beta) \|_\infty,
\]
\[
\delta(r) = \sup_{\beta \in \Theta(r)} \| D_1(\beta) - D(\beta) \|_\Omega \quad \text{and} \quad b^* = \| \nabla \mathcal{L}_c(\beta^*) \|_\Omega.
\]
(B.22)
(B.23)

The quantity \(b^* \) can be viewed as the robustification bias and by Lemma A.2, \(b^* \leq \sigma^2 r^{-1} \).

Back to the right-hand of (B.21), conditioning on the event \(\mathcal{E}_0(r_0) \cap \mathcal{E}_s(\lambda_s) \), it follows from Hölder’s inequality that
\[
|g^T \nabla \mathcal{L}(\beta^*)| \leq (\Delta(r_0) + \Delta_1(r_0) + \lambda_s \| g \|_1 + [\delta(r_0) + b^*] \| g \|_\Sigma.
\]
(B.24)

Let \(\lambda = 2.5(\lambda_s + \rho) \) for some \(\rho > 0 \). Provided that
\[
\rho \geq \max \left[\Delta(r_0) + \Delta_1(r_0), s^{-1/2} [\delta(r_0) + b^*] \right],
\]
we have \(|g^T \nabla \mathcal{L}(\beta^*)| \leq 0.4 s \| g \|_1 + 0.4 s^{1/2} \| g \|_\Sigma \). Combined with (B.21), this yields \(0 \leq 1.4 s \| g \|_1 - 0.6 \| g \|_1 + 0.4 s^{1/2} \| g \|_\Sigma \). Consequently, \(\| g \|_1 \leq (1/3) \| g \|_1 + (2/3) s^{1/2} \| g \|_\Sigma \leq 4 s^{1/2} \| g \|_\Sigma \), and hence \(\beta \in \Lambda \). Throughout the rest of the proof, we assume that the constraint (B.25) holds.

Next, we apply Lemma A.1 to bound the left-hand side of (B.21) from below. As in the proof of Theorem 2.1, we set \(r_{loc} = \kappa/(4\eta_{0.25}) \) and define \(\beta_c = (1 - c)\beta^* + c \beta \), where \(c = \sup \{ u \in [0, 1] : (1 - u)\beta^* + u\beta \in \Theta(\eta_{0.25}) \} \). The same argument therein implies \(\bar{D}_L(\beta_c, \beta^*) \leq c \bar{D}_L(\beta, \beta^*) \). Recall that conditioned on \(\mathcal{E}_0(r_0) \cap \mathcal{E}_s(\lambda_s) \), \(\beta \) falls in the \(\ell_1 \)-cone \(\Lambda \) and thus so does \(\beta_c \). Moreover, \(\beta_c \in \Theta(\eta_{0.25}) \) by construction. Then it follows from Lemma A.1 that, with probability at least \(1 - \epsilon^{-n} \),
\[
\bar{D}_L(\beta_c, \beta^*) \geq \frac{1}{4} \| \beta_c - \beta^* \|_\Sigma^2
\]
as long as \(n \geq s \log p + u \). Combining this with (B.21), (B.24) and (B.25), we obtain that
\[
\frac{1}{4} \| \beta_c - \beta^* \|_\Sigma^2 \leq c \lambda (1.4 s \| g \|_1 + 0.4 s^{1/2} \| g \|_\Sigma) \leq 1.8 s^{1/2} \| \beta_c - \beta^* \|_\Sigma.
\]

Canceling \(\| \beta_c - \beta^* \|_\Sigma \) on both sides yields
\[
\| \beta_c - \beta^* \|_\Sigma \leq 7.2 s^{1/2} \lambda.
\]
(B.26)

Provided that \(\kappa > 28.8 \eta_{0.25} s^{1/2} \lambda \), the right-hand side is strictly less than \(r_{loc} \). Via proof by contradiction, we must have \(\beta = \beta_c \in \Theta(\eta_{0.25}) \), and hence the bound (B.26) also applies to \(\beta \).

It remains to choose \(\rho \) properly so that the constraint (B.25) holds with high probability. Recall from Lemma A.2 that \(b^* \leq \sigma^2 r^{-1} \). The following two lemmas provide upper bounds on the suprema \(\Delta(r_0), \Delta_1(r_0) \) and \(\delta(r_0) \) defined in (B.22) and (B.23).

Lemma B.1. Assume Condition (C2) holds. Then, for any \(r, u > 0 \),
\[
\Delta(r) \leq C_1 B^2 r \left\{ \sqrt{\frac{s \log(2p)}{N} + s^{1/2} \frac{\log(2p) + u}{N}} + C_2 (\sigma u \mu_4)^{1/2} \sqrt{\frac{\log(2p) + u}{N}} \right\}
\]
with probability at least \(1 - \epsilon^{-u} \), where \(C_1, C_2 > 0 \) are absolute constants. The same bound, with \(N \) replaced by \(n \), holds for \(\Delta_1(r) \).
Lemma B.2. Condition (C2) guarantees $\delta(r) \leq \kappa^{-2}r(\sigma^2 + \mu_4 r^2/3)$ for any $r > 0$.

Let $0 < r_0 \leq \sigma$ and set $\delta = 2e^{-u}$, so that $\log p + u \geq \log(p/\delta)$. Suppose the sample size per machine satisfies $n \geq s\log(p/\delta)$. Then, in view of Lemmas B.1 and B.2, a sufficiently large ρ, which is of order

$$
\rho = \max \left\{ r_0 \sqrt{\frac{s\log(p/\delta)}{n}}, s^{-1/2}\sigma^2(\kappa^{-2}r_0 + \tau^{-1}) \right\},
$$
guarantees that (B.25) holds with probability at least $1 - \delta/2$. With this choice of ρ, we see that the right-hand of (B.26) is strictly less than r_{loc} as long as $\kappa \geq s^{1/2}(x^* + r_0 \sqrt{s\log(p/\delta)/n}) + \sigma^2(\kappa^{-2}r_0 + \tau^{-1})$. Since $\kappa = \sigma \sqrt{n/\log(p/\delta)}$, this holds trivially under the assumed sample size scaling, and thus completes the proof. \hfill \square

We end this subsection with the proofs of Lemmas B.1 and B.2.

B.5.1 Proof of Lemma B.1

For any r_1, r_2, define the ℓ_1/ℓ_2-ball $B(r_1, r_2)$. Consider the change of variable $v = \beta - \beta^*$, so that $v \in B(4s^{1/2}r, r)$ for $\beta \in \Theta(r) \cap A$. It follows that

$$
\sup_{\beta \in \Theta(r) \cap A} \|D(\beta) - D(\beta)\|_\infty \leq \max_{1 \leq j \leq p} \sup_{v \in B(4s^{1/2}r, r)} \left| \frac{1}{N} \sum_{i=1}^{N} (1 - \mathbb{E}) [\psi_x(e_i - x_i^Tv) - \psi_x(e_i)] x_{ij} \right| = \max_{1 \leq j \leq p} \Phi_j, \tag{B.28}
$$

where $\Phi_j := \sup_{v \in B(4s^{1/2}r, r)} [(1/N) \sum_{i=1}^{N} (1 - \mathbb{E}) \phi_j(v)]$ and $\psi_x(u) = \text{sign}(u) \min(|u|, \tau)$. By the Lipschitz continuity of $\psi_x(\cdot)$, $\sup_{v \in B(4s^{1/2}r, r)} |\phi_j(v)| \leq \sup_{v \in B(4s^{1/2}r, r)} |x_i^Tv| \cdot |x_{ij}| \leq 4B^2 s^{1/2}r$ and, for each $v \in B(4s^{1/2}r, r)$,

$$
\mathbb{E} \phi_j^2(v) = \mathbb{E}[x_j^2 |x_i^Tv|^2] \leq (\mathbb{E} x_i^2) 1/2 \mathbb{E}(x_i^2)^{1/2} \leq \sigma/s^2 r^2.
$$

We then apply Bousquet’s version of Talagrand’s inequality (Bousquet, 2003) and obtain that, for any $z > 0$,

$$
\Phi_j \leq \mathbb{E} \Phi_j + \sup_{v \in B(4s^{1/2}r, r)} [\mathbb{E} \phi_j(v)]^{1/2} \sqrt{\frac{2z}{N}} + 4 \mathbb{E} \phi_j \cdot B^2 s^{1/2}r \frac{z}{N} + (4/3) B^2 s^{1/2}r \frac{z}{N} \tag{B.29}
$$

with probability at least $1 - 2e^{-z}$. For the expected value $\mathbb{E} \Phi_j$, by Rademacher symmetrization we have

$$
\mathbb{E} \Phi_j \leq 2 \mathbb{E} \sup_{v \in B(4s^{1/2}r, r)} \left| \frac{1}{N} \sum_{i=1}^{N} e_i \phi_j(v) \right| = 2 \mathbb{E} \left(\mathbb{E} \sup_{v \in B(4s^{1/2}r, r)} \left| \frac{1}{N} \sum_{i=1}^{N} e_i \phi_j(v) \right| \right),
$$

where e_1, \ldots, e_N are independent Rademacher random variables. For each i, write $\phi_j(v) = \phi_j(x_i^Tv)$, where $\phi_j(\cdot)$ is such that $\phi_j(0) = 0$ and $|\phi_j(u) - \phi_j(v)| \leq |x_{ij}| \cdot |u - v|$. It thus follows from Talagrand’s contraction principle that

$$
\mathbb{E} \sup_{v \in B(4s^{1/2}r, r)} \left| \frac{1}{N} \sum_{i=1}^{N} e_i \phi_j(v) \right| \leq 2B \cdot \mathbb{E} \sup_{v \in B(4s^{1/2}r, r)} \left| \frac{1}{N} \sum_{i=1}^{N} e_i x_i^Tv \right| \leq 8B s^{1/2} r \cdot \mathbb{E} \left\| \frac{1}{N} \sum_{i=1}^{N} e_i x_i \right\|_\infty.
$$
Again, applying Hoeffding’s moment inequality yields $\mathbb{E}_\epsilon[(1/N) \sum_{i=1}^N e_i x_i] \leq B \sqrt{2 \log(2p)/N}$. Putting together the pieces, we conclude that, for $j = 1, \ldots, p$,

$$
\mathbb{E}\Phi_j \leq 16B^2r \sqrt{\frac{2s \log(2p)}{N}}.
$$

Finally, taking $z = \log(2p) + u$ in (B.29), the claimed bound follows from the union bound. □

B.5.2 Proof of Lemma B.2

Let $\mathcal{L}_0(\beta) = \mathbb{E}_{\epsilon} \mathcal{L}_0(\beta)$ be the population loss, so that

$$
D_1(\beta) = \nabla \mathcal{L}_0(\beta) - \nabla \mathcal{L}_0(\beta^*) \quad \text{and} \quad D(\beta) = \nabla \mathcal{L}_0(\beta) - \nabla \mathcal{L}_0(\beta^*).
$$

Starting with $D_1(\beta)$, consider the change of variable $v = \Sigma^{1/2} (\beta - \beta^*)$. Then, by the mean value theorem for vector-valued functions,

$$
\Sigma^{-1/2} D_1(\beta) - \Sigma^{-1/2} (\beta - \beta^*) = \Sigma^{-1/2} \mathbb{E} \int_0^1 \nabla^2 \mathcal{L}_0 ((1 - t)\beta^* + t\beta) \Sigma^{-1/2} \cdot \nu - \nu
$$

$$
= - \mathbb{E} \int_0^1 \mathbb{P}(|\epsilon - tz^\top v| > \kappa |x)zz^\top| \nu \cdot \nu.
$$

Similarly, it can be obtained that

$$
\Sigma^{-1/2} D(\beta) - \Sigma^{-1/2} (\beta - \beta^*) = - \mathbb{E} \int_0^1 \mathbb{P}(|\epsilon - tz^\top v| > \tau |x)zz^\top| \nu \cdot \nu.
$$

Recall that $\tau \geq \kappa > 0$. We have

$$
\Sigma^{-1/2} [D_1(\beta) - D(\beta)] = - \mathbb{E} \int_0^1 \mathbb{P}(\kappa < |\epsilon - tz^\top v| \leq \tau |x)zz^\top| \nu \cdot \nu
$$

By Markov’s inequality and the fact that $\mathbb{E}(\epsilon | x) = 0$, $\mathbb{P}(|\epsilon - tz^\top v| > \kappa |x) \leq \kappa^{-2} [\mathbb{E}(\epsilon^2 | x) + t^2(z^\top v)^2] \leq \kappa^{-2}(\sigma^2 + r^2(z^\top v)^2)$. Substituting this into the above bound yields

$$
\sup_{\beta \in \Theta(\nu)} ||D_1(\beta) - D(\beta)||_\Omega \leq \kappa^{-2} r (\sigma^2 + \mu_4 r^2 / 3),
$$

as desired. □

B.6 Proof of Theorem 3.2

The proof will be carried out conditioning on the “good event” $\mathcal{E}_0(r_0) \cap \mathcal{E}_s(\lambda_*)$ for some predetermined $0 < r_0, \lambda_* \leq \sigma$. Given $\delta \in (0, 1)$, let the robustification parameters satisfy $\tau \geq \kappa = \sigma \sqrt{n/\log(p/\delta)}$. Theorem 3.1 implies that the first iterate $\mathcal{L}_1(\beta) \in \arg\min_{\beta \in \mathbb{R}_+^p} \{\mathcal{L}^{(1)}(\beta) + \lambda_1 ||\beta||_1\}$ with

$$
\lambda_1 = 2.5(\lambda_* + \rho_1) \quad \text{and} \quad \rho_1 \approx \max \left\{ r_0 \sqrt{\frac{s \log(p/\delta)}{n}}, s^{-1/2} \sigma^2 \tau^{-1} \right\}
$$

25
satisfies the cone property $\tilde{\beta}^{(1)} \in \Lambda$ and the error bound
\[
\|\tilde{\beta}^{(1)} - \beta^*\|_\Sigma \leq C_1 s \sqrt{\log(p/\delta)/n} \cdot r_0 + C_2 (\sigma^2 \tau^{-1} + s^{1/2} \lambda_*):= r_1
\]
with probability at least $1 - \delta$. In (B.30), we set $\alpha = \alpha(s, p, n, \delta) = C_1 s \sqrt{\log(p/\delta)/n}$ and $r_* = C_2 (\sigma^2 \tau^{-1} + s^{1/2} \lambda_*)$, so that $r_1 = \alpha r_0 + r_*$. Provided the sample size per machine is sufficiently large, namely, $n \geq s^2 \log(p/\delta)$, the contraction factor α is strictly less than 1, and hence the initial estimation error r_0 is reduced by a factor of α after one round of communication.

For $t = 2, 3, \ldots, T$, define the events $\mathcal{E}_t(r_t) = [\tilde{\beta}^{(t)} \in \Theta(r_t) \cap \Lambda]$ and radius parameters $r_t = \alpha r_{t-1} + r_* = \alpha^2 r_{t-2} + (1 + \alpha) r_* = \cdots = \alpha^t r_0 + \frac{1 - \alpha^t}{1 - \alpha} r_*$. In the t-th iteration, we choose the regularization parameter $\lambda_t = 2.5(\lambda_* + \rho_t)$ with
\[
\rho_t = \max \left\{ r_{t-1} \sqrt{\frac{s \log(p/\delta)}{n}}, s^{-1/2} \sigma^2 \tau^{-1} \right\} \leq s^{-1/2} \max \{ \alpha r_0, \alpha^2 \tau^{-1} \}.
\]
Commenced with $\tilde{\beta}^{(t-1)}$ at iteration $t \geq 2$, we apply Theorem 3.1 to obtain that conditioned on event $\mathcal{E}_{t-1}(r_{t-1}) \cap \mathcal{E}_t(\lambda_t)$,
\[
\tilde{\beta}^{(t)} \in \Lambda \quad \text{and} \quad \|\tilde{\beta}^{(t)} - \beta^*\|_\Sigma \leq \alpha r_{t-1} + r_* = r_t
\]
with probability at least $1 - \delta$. In other words, event $\mathcal{E}_t(r_t)$ occurs with probability at least $1 - \delta$ conditioned on $\mathcal{E}_{t-1}(r_{t-1}) \cap \mathcal{E}_t(\lambda_t)$.

Finally, we choose $T = \lceil \log(r_0/r_*)/\log(1/\alpha) \rceil$ so that $\alpha^T r_0 \leq r_*$. Then, applying (B.30), (B.31) and the union bound over $t = 1, \ldots, T$ yields that, conditioned on $\mathcal{E}_0(r_0) \cap \mathcal{E}_t(r_*)$, the T-th iterate $\tilde{\beta}^{(T)}$ falls into the cone Λ and satisfies the error bound
\[
\|\tilde{\beta}^{(T)} - \beta^*\|_\Sigma \leq r_T = r_*
\]
with probability at least $1 - T \delta$. This completes the proof of the theorem. \hfill \square

References

BARZILAI, J. and BORWEIN, J. M. (1988). Two-point step size gradient methods. IMA J. Numer. Anal. 8 141–148.

BATTEY, H., FAN, J., LIU, H., LU, J. and ZHU, Z. (2018). Distributed testing and estimation under sparse high dimensional models. Ann Statist. 46 1352–1382.

BICKEL, P. J. (1975). One-step Huber estimates in the linear model. J. Amer. Statist. Assoc. 70 428–434.

BOUSQUET, O. (2003). Concentration inequalities for sub-additive functions using the entropy method. In Stochastic Inequalities and Applications. Progress in Probability 56 213–247. Birkhäuser, Basel.

CARIOTI, O. (2012). Challenging the empirical mean and empirical variance: a deviation study. Ann. Inst. H. Poincaré. Probab. Statist. 48 1148–1185.

26
CHEN, L. H. Y. and SHAO, Q.-M. (2001). A non-uniform Berry-Esseen bound via Stein’s method. *Probab. Theory Relat. Fields* **120** 236–254.

CHEN, X., LIU, W. and ZHANG, Y. (2019). Quantile regression under memory constraint. *Ann. Statist.* **47** 3244–3273.

CHEN, X. and XIE, M. G. (2012). A split-and-conquer approach for analysis of extraordinarily large data. *Statistica Sinica* **24** 1655–1684.

CHINOT, G., LECUÉ, G. and LERASLE, M. (2020). Robust statistical learning with Lipschitz and convex loss functions. *Probab. Theory Relat. Fields* **45** 866–896.

DOBРИBAN, E. and SHENG, Y. (2018). Distributed linear regression by averaging. *arXiv preprint arXiv:1810.00412*.

FAN, J., LI, Q. and WANG, Y. (2017). Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions. *J. R. Stat. Soc. Ser. B. Stat. Methodol.* **79** 247–265.

FAN, J., LIU, H., SUN, Q. and ZHANG, T. (2018). I-LAMM for sparse learning: Simultaneous control of algorithmic complexity and statistical error. *Ann. Statist.* **46** 814–841.

HUBER, P. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo. *Ann. Statist.* **1** 799–821.

HUBER, P. J. and RONCHETTI, E. M. (2009). *Robust Statistics*, 2nd ed. Wiley, New York.

HUNTER, D. R. and LANGE, K. (2000). Quantile regression via an MM algorithm. *J. Comput. Graph. Stat.* **9** 60–77.

HUO, X. and CAO, S. (2018). Aggregated inference. *Wiley Interdisciplinary Reviews: Computational Statistics* **11**(1): e1451.

JORDAN, M. I., LEE, J. D. and YANG, Y. (2019). Communication-efficient distributed statistical inference. *J. Amer. Statist. Assoc.* **114** 668–681.

LAMBERT-LACROIX, S. and ZWALD, L. (2011). Robust regression through the Huber’s criterion and adaptive lasso penalty. *Electron. J. Statist.* **5** 1015–1053.

LANGE, K., HUNTER, D. R. and YANG, I. (2000). Optimization transfer using surrogate objective functions. *J. Comput. Graph. Stat.* **9** 1–20.

LEE, J. D., LIU, Q., SUN, Y. and TAYLOR, J. E. (2017). Communication-efficient sparse regression *J. Mach. Learn. Res.* **18**(5): 1–30.

LI, R., LIN, D. K. and LI, B. (2013). Statistical inference in massive data sets. *Appl. Stoch. Model Bus.* **29** 399–409.

LOH, P. (2017). Statistical consistency and asymptotic normality for high-dimensional robust M-estimators. *Ann. Statist.* **45** 866–896.
Rosenblatt, J. D. and Nadler, B. (2016). On the optimality of averaging in distributed statistical learning. *Information and Inference: A Journal of the IMA* **5**(4): 379–404.

Shamir, O., Srebro, N. and Zhang, T. (2014). Communication efficient distributed optimization using an approximate Newton-type method. In *Proceedings of the 31st International Conference on Machine Learning* **32** 1000–1008.

Sidransky, E., Nalls, M. A. Aasly, J. O. Aharon-Peretz, J. Annesi, G., Barbosa, E. R., Bar-Shira, A., Berg, D., Bras, J. and Brice, A. (2009). Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. *New England Journal of Medicine* **361** 1651–1661.

Singh, S. K. and Maddala, G. S. (1976). A function for size distribution of incomes. *Econometrica* **44** 963–970.

Sun, Q., Zhou, W.-X. and Fan, J. (2020). Adaptive Huber regression. *J. Amer. Statist. Assoc.* **115** 254–265.

van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. *Ann. Statist.* **42** 1166–1202.

Volgushev, S., Chao, S.-K. and Cheng, G. (2019). Distributed inference for quantile regression processes. *Ann. Statist.* **47** 1634–1662.

Wang, J., Kolar, M., Srebro, N. and Zhang, T. (2017). Efficient distributed learning with sparsity. In *Proceedings of the 34th International Conference on Machine Learning* **70** 3636–3645.

Wang, L., Peng, B. and Li, R. (2017). A high-dimensional nonparametric multivariate test for mean vector. *J. Amer. Statist. Assoc.* **110** 1658–1669.

Wang, L., Zheng, C., Zhou, W. and Zhou, W.-X. (2021). A new principle for tuning-free Huber regression. *Statistica Sinica*, in press.

Wang, X., Yang, Z., Chen, X. and Liu, W. (2019). Distributed inference for linear support vector machine. *J. Mach. Learn. Res.* **20**(113): 1–41.

Western, B. (1995). Concepts and suggestions for robust regression analysis. *Am. J. Political Sci.* **39** 786–817.

Wu, Y., Jiang, X., Kim, J. and Ohno-Machado, L. (2012). Grid Binary LOGistic REgression (GLORE): building shared models without sharing data. *J. Am. Med. Inform. Assoc.* **19** 758–764.

Zhang, C.-H. and Zhang, S.-S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. *J. R. Stat. Soc. Ser. B. Stat. Methodol.* **76** 217–242.

Zhang, Y., Duchi, J. and Wainwright, M. (2015). Divide and conquer kernel ridge regression: A distributed algorithm with minimax optimal rates. *J. Mach. Learn. Res.* **16**(102): 3299–3340.

Zhao, T., Cheng, G. and Liu, H. (2016). A partially linear framework for massive heterogeneous data. *Ann. Statist.* **44** 1400–1437.
Zhou, W.-X., Bose, K., Fan, J. and Liu, H. (2018). A new perspective on robust M-estimation: Finite sample theory and applications to dependence-adjusted multiple testing. *Ann. Statist.* **46** 1904–1931.