FAST AND EFFICIENT TEMPLATE FITTING OF DETERMINISTIC ANISOTROPIC COSMOLOGICAL MODELS APPLIED TO WMAP DATA

T. R. Jaffe, A. J. Banday, H. K. Eriksen, K. M. Górski, and F. K. Hansen

Received 2005 September 9; accepted 2006 January 12

ABSTRACT

We explore methods of fitting templates to cosmic microwave background (CMB) data, and in particular demonstrate the application of the total convolver algorithm as a fast method of performing a search over all possible locations and orientations of the template relative to the sky. This analysis includes investigation of issues such as chance alignments and foreground residuals. We apply these methods to compare Bianchi models of type VIIb to WMAP first-year data and confirm the basic result of our 2005 paper.

Subject headings: cosmic microwave background — cosmology: observations

1. INTRODUCTION

The widely accepted model in cosmology, the so-called concordance model, posits an isotropic and homogeneous universe with small anisotropies generated by primordial fluctuations in the inflationary field. These anisotropies are present in the cosmic microwave background (CMB), which should then be statistically isotropic and Gaussian. Many CMB studies therefore examine the CMB from a statistical point of view, with the intention of testing for violations of these properties. Alternative cosmological models have not, however, been completely ruled out, and there are several anomalies in the Wilkinson Microwave Anisotropy Probe (WMAP) data that indicate that such models merit further investigation by alternate means.

We investigate methods for testing any deterministic anisotropic cosmological model. The predicted anisotropy template can be compared to the data using fitting techniques in both pixel and harmonic space to search for correlations. We present a description of these methods and apply a fast and efficient algorithm for searching the full sky for the best orientation of a template relative to the data. We test these methods with both full- and incomplete-sky data sets, and use simulations to characterize the significance of the results.

Motivated by the morphology of several detected violations of Gaussianity and/or isotropy in the WMAP data (de Oliveira-Costa et al. 2004; Eriksen et al. 2004b; Hansen et al. 2004b; Vanel et al. 2004), we test our methods using Bianchi type VIIb models and the WMAP first-year data. A preliminary analysis was published in Jaffe et al. (2005), in which we reported on a surprisingly significant detection of a Bianchi model at the 99.7% significance level, compared to simulations. Here we present an improved search of the model space, confirm the basic result, and discuss in detail issues such as foreground contamination and chance alignments.

2. METHODS

2.1. Template Fitting

Given any anisotropy pattern that contributes to the data as an additional component of the observed microwave sky (whether topological in origin, as in the case of Bianchi models, or foreground), we perform a fit of the template to the WMAP data as has been done in the past by, e.g., Górski et al. (1996) and Banday et al. (1996) for foreground analysis. The best-fit amplitude α for a template vector \(t \) compared to a data vector \(d \) can be measured by minimizing

\[
\chi^2 = (d - \alpha t)^T M_{SN}^{-1}(d - \alpha t) = \tilde{d}^T M_{SN}^{-1} \tilde{d},
\]

where \(M_{SN} \) is the covariance matrix including both signal and noise for the template-corrected data vector \(\tilde{d} = d - \alpha t \). Solving for \(\alpha \) then becomes

\[
\alpha = \frac{\tilde{t}^T M_{SN}^{-1} \tilde{d}}{\tilde{t}^T M_{SN}^{-1} \tilde{t}}.
\]

To compare multiple template components to a given data set, e.g., different foregrounds, the problem becomes a matrix equation. In the case in which we have \(N \) different foreground components, we define

\[
\tilde{d} = d - \sum_{k=1}^{N} \alpha_k t_k,
\]

and

\[
M_{SN} = \langle \tilde{d}\tilde{d}^T \rangle = M_S + M_N.
\]

In this case, minimizing \(\tilde{d}^T M_{SN}^{-1} \tilde{d} \) leads to the following set of equations,

\[
\sum_{j=1}^{N} t_j^T M_{SN}^{-1} t_j \alpha_j = t_k^T M_{SN}^{-1} d,
\]

This is the simple system of linear equations \(Ax = b \), where

\[
A_{ij} = t_j^T M_{SN}^{-1} t_i,
\]

\[
b_k = t_k^T M_{SN}^{-1} d,
\]

\[
\alpha_k = x_k.
\]
When only one template is present, this reduces to equation (2) above. The errors $\delta\alpha^j$ are the square root of the diagonal of A^{-1}. The matrix A gives information about the cross-correlation between the templates themselves.

Note that the above equation is equally valid in pixel space or harmonic space. In the former, it is very easy to account for incomplete sky coverage or to remove, for example, the Galactic plane by simply including in the data vectors only the relevant pixels, and likewise by including only the corresponding rows and columns of the covariance matrix. The noise in pixel space is usually well represented by a diagonal matrix representing uncorrelated pixel noise. But the signal covariance matrix in pixel space is large and not sparse, which makes harmonic space more convenient when this is possible. In harmonic space and under the assumption of Gaussianity, the signal covariance is diagonal, and with the approximation of uncorrelated noise that is uniform over the sky, the noise covariance can be made to be so as well. The difficulty in harmonic space is the sky coverage. As discussed by Mortlock et al. (2002), the coupling matrix to cut out the Galactic plane using a cut the size of $|b| > 20^\circ$ becomes numerically singular for resolutions of $\ell_{\text{max}} > 50$. Cuts such as the conservative Kp0 mask, defined by the WMAP team, remove more of the sky and, due to their structure, the coupling matrix is more difficult to compute.

We define a method that applies harmonic space fitting to the full-sky cases using highly processed maps discussed in § 3.2. This allows us to increase the computational efficiency using the algorithm described in § 2.2. Here, we use a uniform mean noise approximation that has a diagonal covariance matrix. We use pixel-space fitting for each band separately in the cut-sky analysis in which the Galactic plane region is masked out. (At the WMAP signal-to-noise ratio level, little would be gained by simultaneously fitting the different bands, and the memory and CPU requirements to invert the matrix would become onerous.) Again, we use a diagonal noise approximation that this time takes into account the observation pattern but not the effects of smoothing. Comparisons of fits with fully correct noise to those using these approximations show that the results do not vary significantly (at most a few percent, or a small fraction of the error bar). All codes have been cross-checked with identical inputs to confirm identical outputs.

Note that the cosmic monopole and dipole are not known, and although a best-fit dipole is subtracted from the data in the map making process, small residual monopole and dipole terms remain in the data. For this reason, we cannot include this component in the fit. In harmonic space, any monopole and dipole terms can simply be excluded or ignored by setting, e.g., $C_1 = C_2 = 10^8 \mu K^2$. In pixel space, we fit the monopole and dipole simultaneously as independent components. See § 4.3 for discussion.

The above method determines the best-fit amplitude for a given template at a fixed orientation relative to the sky. For foreground fitting, that is generally all that is required, but in the search for an anisotropic cosmological component, there are two additional complexities. First we have no a priori guess for where the symmetry axis may be pointing and must thus search the entire sky. Section 2.2 describes the algorithm we use to do this quickly and efficiently. Second we may have an infinite number of possible templates (e.g., parameterized as described in § 3.1) among which we want to find the “best,” so in addition to determining the best-fit amplitude for each template, we need a way to compare how well different templates fit the data and to select the most interesting. Section 2.3 discusses how we address this.

2.2. Total Convolver

The search for the best orientation of a template compared to the data requires that we evaluate the statistic α described in the previous section at every possible relative orientation of the template and data. Working in harmonic space allows us to use an algorithm based on Fourier transforms to speed up this search significantly.

In the case of full-sky analysis, the location or orientation of the template does not affect the error, i.e., $\delta\alpha$ is invariant. Then the maximum of α is found at the maximum of the numerator in equation (2) above, $T_{\text{ML}}^* d$. Neglecting for the moment the covariance matrix of the data, the quantity to be maximized is simply the convolution of the data with the template. We seek the maximum over all possible locations and orientations, and this can be found efficiently using the total convolver algorithm described in Wandelt & Górski (2001), which was originally developed for map making using instrument beams.

This algorithm decomposes the Euler angles into what amounts to a scan pattern and then takes advantage of the form the convolution takes in harmonic space to simplify the calculation. The rotation operator $D(\Phi_2, \Theta, \Phi_3)$ can be factored into $D(\phi_E, \theta_E, \Phi_3) \times D(\phi, \theta, \omega)$, where a predefined scan pattern determines θ_E and Φ_3, which in the case of full-sky coverage are both $\pi/2$, so that the set of angles (ϕ_E, ϕ, ω) covers the full sky at all possible orientations (see Fig. 1 in Wandelt & Górski 2001). (In only this context of total convolution on the full sky, ϕ corresponds to the polar angle and ϕ_E to the azimuthal angle. Elsewhere in this paper, these are represented by the more common θ and Φ_2.) Defining $T_{\text{ML}}(\phi_E, \theta_E, \Phi_3)$ as the quantity to be maximized, b_{ML} as the spherical harmonic coefficients of the template t; and d_{ML} as that for the data d, the convolution is then (Wandelt & Górski 2001, eqs. [9] and [8])

$$T_{\text{ML}}(\phi_E, \theta_E, \Phi_3) = \sum_{m,m'} d_{\text{ML},m'}(\theta_E) b_{\text{ML},m}^* \exp(i\phi_E + i^m\phi + i^{m'}\Phi_3),$$

where $d_{\text{ML}}(\theta)$ is the real function such that

$$D_{\text{ML},m}(\phi, \theta, \Phi_3) = e^{-i\pi\Phi_3} d_{\text{ML},m}(\theta) e^{-i\pi\phi}. $$

The problem has then become simply to calculate $T_{\text{ML},m'}$ and Fourier transform to $T_{\text{ML}}(\phi_E, \theta_E, \Phi_3)$ to find the maximum. To take into account the signal and noise covariance, we simply use a “whitened” data vector, $M_{\text{ML}}^{-1} d$.

The total convolver can find the best-fit position with an accuracy limited only by the resolution of the inputs. The positional accuracy is π/ℓ_{max}, which for our analysis is $2\pi/8$. Note that this is larger than the size of a pixel at the usual HEALPix resolution of $N_{\text{side}} = \ell_{\text{max}}/2$.

It should also be noted that searching the full sky will not return an unbiased estimate for the amplitude. Simulations with a known input value for a particular template at a known position will, on average, have slightly higher amplitudes returned by the search. If the correct template location is simply fit to an ensemble of simulations with additional CMB and noise, the returned amplitudes will have a Gaussian distribution with the correct mean and variance, but the same is not true when one is searching for the best location and orientation as well. This is because the search is seeking the maximum, and the resulting distribution is a form of extreme value distribution, which introduces a small

5 See, e.g., http://mathworld.wolfram.com/ExtremeValueDistribution.html.
positive bias in the results. For realistic situations with CMB and noise in addition to the component we are fitting, the total convolver is likely to find a maximum amplitude a small distance away from the true position. How different the amplitudes and positions are on average depends on the particular case in question, since it is a function of how dominant the template is compared to the CMB and noise, and how much the template structure changes over angular distance, etc. This is quantified for the particular case in question in § 4.2 using simulations.

This method is approximately 2 orders of magnitude faster than performing the fit in harmonic space over a grid of individual rotations one at a time. The disadvantage is the storage requirement for the matrix \(T \), which increases with the third power of the resolution and becomes over 2 GB for a HEALPix resolution of \(N_{\text{side}} = 128 \) or angular resolution of 42'.

2.3. Best-Fit Model and Significance

As mentioned above, when it is not one unique template for which we are testing but rather a set of possibilities, we need not only to find the best fit of each to the data but also to find the best fit among the possible models.

Depending on how the model space is parameterized, there can be an infinite number of possibilities. Previous studies seeking upper limits on shear and vorticity (Kogut et al. 1997; Bunn et al. 1996) used two different statistics to determine the best-fit model.

Given a model, Kogut et al. define the best-fit position and amplitude in terms of \(\Gamma = \alpha \delta \alpha \). They used Cosmic Background Explorer (COBE) data, for which no full-sky analysis was possible. In the case of incomplete sky analysis, the amount of template structure that is masked changes the significance of the fit. A large amplitude in which most of the structure is masked by the Galactic plane cut is not as interesting as a lower amplitude fit in which the structure is included. By finding the maximum not of \(\alpha \) but of \(\Gamma \), they attempt to find the most significant fit rather than simply the maximum amplitude.

Bunn et al. (1996) use a different statistic to accomplish the same effective selection. They define \(\eta_i \equiv (\chi^2_0 - \chi^2_i) / \chi^2_0 \), where \(\chi^2_0 \) is defined as in equation (1), and \(\chi^2_0 \) is the corresponding statistic for the data by itself (are uncorrected for any anisotropic component). The difference is then an indication of how much better the data fit the (statistically isotropic CMB) theory after correction for the anisotropic model.

Finding the maximum of \(\Gamma \) is equivalent to finding the maximum of \(\eta_i \) (although Bunn et al. use a different statistical method). So for a given model, either statistic can be used to find the best-fit amplitude and position. But it becomes more complicated to compare one model to another in order to determine which model fits the data better.

The problem with the simple approach, used by Kogut et al. (1997) as well as in our preliminary analysis (Jaffe et al. 2005), of using \(\Gamma \) or \(\eta_i \) to find the best model is that the distribution of these values for chance alignments is not the same for all models. Although they are generally quite similar, differences in the tails of the distributions mean that a given value of \(\Gamma \) has a slightly different significance for different models. This means that finding the maximum of \(\Gamma \) might have missed other models that are significant but in which the tail of the distribution does not reach as high in \(\Gamma \). In other words, the significance of the fit found in our original result is not incorrect, but it is possible that such an analysis fails to detect another significant model.

For this more complete analysis, we analyze a set of LILC simulations (Eriksen et al. 2004a, 2005), using the above formalism to characterize the distributions of \(\alpha \) values for a given model. In this analysis, for a given model, we compare the \(\alpha \) value (equivalently \(\Gamma \)), since \(\delta \alpha \) does not change for a given model on the full sky) for the WMAP data against the ensemble of simulations. We can then quantify the significance of a given model fit to the data based on the percentage of LILC simulations in which the model fits with a lower amplitude. This gives clearer indication of which are the most interesting models than a simple \(\Gamma \) or \(\chi^2 \) statistic. Comparison of the results using \(\alpha \) or \(\eta_i \) in this way show there is little difference between the two in terms of how significant a given fit to the data is against the simulations. In the following analysis, we use the numbers for \(\alpha \) only.

2.4. Visualization: Cross-Correlation Signal Maps

It is helpful to be able to visualize what parts of the sky are driving a particular fit. To do this, we simply note that the numerator of equation (2), \(t^T M_{\text{SN}} d \), can be rewritten in pixel space as \(\sum_p [L^{-1}]_p [L^{-1}] d_p \), where \(L \) is the “square root” of the covariance matrix \(M_{\text{SN}} \), or its lower triangular decomposition found from, for example, Cholesky decomposition. A simple visualization is to turn this into a map, where each pixel contains the product of \([L^{-1}]_p \) and \([L^{-1}] d_p \) at that pixel. This map shows exactly what regions on the sky drive the fit at a given orientation. This is particularly important when certain regions of the sky are known to be contaminated; these plots show whether or how much those regions affect the fit. Examples will be shown in § 5.2.

3. DATA AND SIMULATIONS

Here we describe the particular class of models we investigate and the data sets used in the analysis.

3.1. Bianchi Models

Bianchi type VII\(_h\) refers to the class of spatially homogeneous generalizations of Friedmann universes that include small vorticity (universal rotation) and shear (differential expansion) components. (Type VII\(_h\) includes the flat Friedmann-Robertson-Walker model, and VII\(_h\) includes that with negative spatial curvature as special cases.) Barrow et al. (1985) solve the geodesic equations to derive the induced CMB anisotropy by linearizing the anisotropic perturbations about the Friedmann models. Their solution does not include any dark energy component, which is a significant shortcoming, considering the preponderance of evidence that now points to \(\Omega_\Lambda \sim 0.7 \). But we examine them first as a test of our template-fitting methods and second because of the intriguing possibility that they may explain several anomalies in the data.

Following the prescription in Barrow et al. (1985), we construct a template for the anisotropy induced by vorticity (\(\omega \)) and shear (\(\sigma \)). Bianchi type VII\(_h\) models are parameterized by the current total energy density \(\Omega_0 \) and a parameter \(x \) (Collins & Hawking 1973),

\[
x = \sqrt{\frac{h}{1 - \Omega_0}},
\]

where \(h \) is related to the canonical structure constants and is that to which the type VII\(_h\) refers (see Kogut et al. 1997; Bunn et al. 1996; Barrow et al. 1985). This parameter can be understood as the ratio of the scale on which the basis vectors change orientation to the Hubble radius (present values). The resulting temperature anisotropy pattern is then described by (Barrow et al. 1985, eq. [4.11])

\[
\frac{\Delta T}{T} = \left(\frac{\sigma}{H} \right)_0 \left[B(\theta_K) + A(\theta_K) \sin (\phi_K) \right] \\
\pm \left[B(\theta_K) - A(\theta_K) \right] \cos (\phi_K),
\]
where A and B are also functions of x and Ω_0 and include integrals over conformal time that trace the geodesic from the surface of last scattering to observation. The angles θ_R and ϕ_R are not the observing angles; those are rather $\theta_{ob} = \pi - \theta_R$ and $\phi_{ob} = \pi + \phi_R$. The sign on the $\cos(\phi_R)$ term (or alternatively, the ϕ_R to ϕ_{ob} transformation) determines the handedness. Then σ determines the amplitude of the fluctuation and x the pitch angle of the spiral. The vorticity is then

$$\left(\frac{\omega}{H}\right)_0 = \frac{\sqrt{2(1+h)(1+9h)}}{6x^2\Omega_0} \left(\frac{\sigma}{H}\right)_0.$$ \hfill (10)

Note that the shear and vorticity values in our original paper (Jaffe et al. 2005) contain an error in amplitude, although the basic conclusions are not affected.

Equation (9) can be rewritten as

$$\Delta T/T \propto \cos \left(\phi_R \pm \phi\right).$$ \hfill (11)

In other words, for a given θ_R, the temperature variation follows a $\cos(\phi_R)$ dependence. The phase shift ϕ is ultimately a function of θ_R and the two physical parameters, x and Ω_0. The result is a spiral pattern with approximately $N = 2/\pi x$ twists. The smaller the x, the smaller the scale at which the basis vectors change their orientations and the tighter the resulting spiral. In the case of $\Omega_0 < 1$ models, geodesic focusing leads to an asymmetry wherein the spiral structure appears compressed in one direction along the rotation axis.

The template is calculated as $\Delta T/(\sigma/H)_0$, i.e., the contents of the curly brackets in equation (9) times the average CMB temperature, so that the shear $(\sigma/H)_0$ is the amplitude of the template to be found by fitting it against the CMB anisotropies, ΔT. Examples are shown in Figure 1, where the template is plotted without the normalization by the shear. In generating all of our Bianchi templates, we have taken the redshift to the surface of last scattering, or recombination, as $z_{rec} = 1100$. [Changing to, for example, $z_{rec} = 1000$ lowers the amplitude of the anisotropy by $\sim 15\%$, implying a corresponding increase in the value of the shear $(\sigma/H)_0$ for a given ΔT.] We make the simple and pragmatic assumption that the anisotropy induced by the geometry simply adds to the statistically isotropic and Gaussian component.

We examine a grid of such models over $0.1 \leq \Omega_0 \leq 1.0$, in increments of 0.05, and over $0.1 \leq x \leq 10.0$, in increments of 0.05 in the interval $0.1 \leq x \leq 1.0$ and then logarithmically sampled up to $x = 10$. A finer grid was also examined surrounding the best-fit model, $0.52 \leq x \leq 0.68$ and $0.42 \leq \Omega_0 \leq 0.58$ in increments of 0.02. For the largest values of x, the spiral has almost disappeared (because the scale on which the basis vectors change orientations becomes larger than the horizon size), and so models of higher x are self-similar. Smaller values of x start to become physically unrealistic. Collins & Hawking (1973) point out that for $x \sim 0.05$, the characteristic length scale over which basis vectors change orientation becomes comparable to the size of large-scale structure, which means that lower values are ruled out by observations of large-scale homogeneity. Furthermore, as discussed in § 5.3, small values of x require higher precision analysis than is feasible.

3.2. Data

For this work, we are interested only in large-scale structure. In all of the following, unless otherwise noted, we use maps in HEALPix\footnote{See http://healpix.jpl.nasa.gov/} format (G"orski et al. 2005) at a resolution of $N_{side} = 32$ and smoothed to an effective beam of FWHM 5.5', with harmonics up to $\ell_{max} = 64$.

The following full-sky maps are used in this analysis (where all WMAP data products are from the first-year data release):

1. The full-sky WMAP Internal Linear Combination (WILC) map released by the WMAP team (see Bennett et al. 2003b). This map is formed by taking linear combinations of the different bands such that the foregrounds, each of which has a different spectral dependence from the CMB, are removed, leaving only CMB. The different weights of the linear combination are determined solely by the data, via minimum variance, rather than by any prior assumptions about the foreground behavior.

2. The Lagrange Internal Linear Combination (LILC) map of Eriksen et al. (2004a, 2005). The weights used to form the WILC map are slightly suboptimal with respect to the minimum-variance criterion (Eriksen et al. 2005), and this is corrected in the LILC map, which uses Lagrange multipliers to compute the ILC weights.

3. The foreground-cleaned map of Tegmark et al. (2003, hereafter TOH). This map is also generated by a linear combination of bands, where in this case, the weights are determined in harmonic space.

All of these maps contain residual foreground emission, some of which is visible by eye along the Galactic plane and some of which extends to high latitudes. It should be noted that none of these maps is intended for high-precision CMB analysis, but we nevertheless use them in the following to locate the best-fit Bianchi template by full-sky convolution. Simulations show that these fits are affected by two opposing biases (see §§2.2 and 5.3) that are larger than the effects of the foreground residuals (see § 4.2), thus justifying our use of these maps despite their known disadvantages. In general, we use the full-sky maps initially to locate best-fit axes for each Bianchi model (see § 4.2), and then verify the amplitude using partial-sky algorithms on the following additional data:

1. WMAP uncorrected maps for each of the five frequency bands, co-added from each differencing assembly using noise weighting (see Bennett et al. 2003a) and noise-weighted, co-added combinations of bands $Q+V, V+W, Q+V+W, Q-V, V-W$, and $Q-W$.

2. The Kp0 intensity mask, excluding 23.2% of the pixels in which the K-band intensity is high and also 0.6 around known point sources, downgraded to $N_{side} = 32$.

Finally, we use observations at other wavelengths as foreground templates:

1. the Finkbeiner et al. (1999) model for thermal dust emission (hereafter FDS);

2. the Schlegel et al. (1998) 100 μm intensity dust template (hereafter SFD), which is used an alternative to the FDS model (see discussion in § 5.2.2);

3. the Finkbeiner (2003) Hα template, with dust correction $f_d = 0.5$;

4. the Dickinson et al. (2003) Hα template with no dust correction, which is used as an alternative to the Finkbeiner template;

5. and the Haslam et al. (1982) 408 MHz map of synchrotron emission processed by Davies et al. (1996).

These foreground components are fit simultaneously to each band over the incomplete sky using the Kp0 mask, which reduces the effects of foreground contamination on the fit amplitude (see § 4.3). Note that although we are simultaneously fitting
the foreground components, these templates are not accurate enough in the Galactic plane region for full-sky fits to be reliable.

3.3. Gibbs Samples

In addition to the WMAP data products, we also analyze a set of Gibbs-sampled maps that were generated by the method described by Jewell et al. (2004), Wandelt et al. (2004), and Eriksen et al. (2004c). Effectively, this method samples the space of CMB signal maps that are consistent with the data, taking into account both noise characteristics and limited sky coverage. Thus, each single Gibbs sample represents a full-sky, noiseless CMB signal consistent with the data assuming Gaussianity, and the distribution of such maps describes the full CMB signal posterior distribution.

Such sampled maps can thus be analyzed very efficiently using the total convolver method described above, since neither sky cut nor nonuniform noise complicate the analysis. These allow us to avoid the problem of foreground residuals in the Galactic plane, since this region of the Gibbs samples contains only CMB signal.

Fig. 1. Examples of left-handed Bianchi anisotropy templates in orthographic projection, all on a common color scale to show the relative amplitudes. These must be multiplied by a factor of \(\alpha = \sigma / H_0 \), i.e., the shear (realistically of order \(< 10^{-3} \)), in order to give the amplitude of the observed anisotropy in \(\mu K \). Note that these have been rotated by \(\beta = -90^\circ \) to move the center of the structure from the \(-\hat{z}\) pole (as defined in eq. [9]) to the Galactic center.
that is either consistent with the structure outside the plane, in the case of large enough scales, or entirely Gaussian random, in the case of smaller scales. The ensemble of fit results then reflects how well the template fits the CMB signal posterior distribution. In the following, we analyze ensembles of 1000 samples corresponding to each of the three cosmologically important WMAP Q, V, and W bands.

3.4. Assumed Signal Covariance

Given that we are searching for evidence of anisotropy, the description of the expected signal covariance is not trivial. Bianchi models in particular are not compatible with inflation theory and do not make any prediction for fluctuations at the surface of last scattering. Clearly, a self-consistent theory is required to explain the observed anisotropies in addition to the Bianchi component, and in particular, that theory must be consistent with the acoustic peaks now detected at smaller scales. No such theory currently exists, but we note that the Harrison-Zel’dovich power-law spectrum predicts inflation theory. Because it has been shown to match the data very well on small scales, we use the inflationary prediction as a starting point.

The signal covariance expected after subtraction of any Bianchi component is then assumed to be that of Gaussian, isotropic CMB fluctuations fully characterized by the power spectrum. We use the best-fit WMAP theoretical power-law spectrum to perform our fit. One could then refine the input spectrum based on the result (i.e., do a new parameter estimation using the corrected sky) and iterate. In the present analysis, however, we do not aim to improve the power spectrum estimation. Template fitting proves to be insensitive to the assumed power spectrum. (The fit result changes by less than 3% when using a flat, $Q = 18 \mu K$ power spectrum instead.) So for the purposes of this analysis, the best-fit WMAP theoretical power-law spectrum is sufficient.

4. PERFORMANCE, BIAS, AND ACCURACY

In order to interpret the results of the analysis using real data, we need first to quantify the effects described above. The model selection accuracy, the bias due to the maximization over rotations, any bias due to foreground residuals, and the distribution of chance alignments are all effects that we can quantify using simulations.

These are generated by the LILC simulation pipeline of Eriksen et al. (2004a, 2005). The simulations start with a Gaussian CMB signal generated from an assumed power spectrum and are then smoothed to the beam width of each WMAP differencing assembly. Pixel noise is added uncorrelated and following the instrument properties and observation pattern described in Bennett et al. (2003a). Finally, the three foreground components above are added to create simulated raw data for each of the 10 differencing assemblies. The LILC algorithm is then used to reconstruct the corresponding processed, foreground-cleaned sky. Although these are known to underestimate somewhat the amount of residual emission along the Galactic plane, they provide a vital indication of the morphology and approximate amount of such residuals that may be present in the WILC or LILC maps.

We apply the fitting methods outlined above to the ensemble of LILC simulations, with and without an additional known anisotropic signal, to characterize how well the methods perform. In most of the analysis below, a set of 1000 simulations were used in the full grid searches and cut-sky pixel-space fitting. An expanded ensemble of 10,000 LILC reconstructions was used to refine the significance measures for the two best-fit models found as described in § 5.

4.1. Model Selection Accuracy

First we add a known Bianchi component (the particular template and amplitude found in our initial analysis, Jaffe et al. 2005) to a set of LILC simulations and perform the full-sky search over all rotations (using the total convolver) and over the grid of models. We find that the most significant model returned is close (± 0.1 in Ω_0) to the correct model in $\sim 50\%$ of cases. Among the other $\sim 50\%$, a qualitatively different model was found to be the best-fit, but the correct model was still found to be over 99% significant in most cases. In other words, only in $\sim 23\%$ of realizations was the correct model not detected.

We must then see if we can distinguish the correct model from a false detection by other means, such as incomplete sky fits with simultaneous foreground template fitting. These give an idea how much the full-sky fit is affected by residuals in the Galactic plane.

Furthermore, models that appear far apart in the model space may in fact be fitting to the same CMB structure. We therefore select the several most significant models to examine in more detail. Then we look at what structures are driving the fits and how they behave when the Galactic plane is excluded and foreground templates simultaneously fit. These tools give an additional qualitative way to compare different model fits.

4.2. Full-Sky Fitting Accuracy

Next we consider a known Bianchi component added to the input noiseless, pure CMB realization (as opposed to the LILC reconstruction) and see how well its position and amplitude are recovered by the full-sky fit. For 1000 simulations, a Bianchi component (at the same position and amplitude as our best-fit against the real data) is added to the input CMB sky and then fit using the total convolver method described above. In $\sim 80\%$ of realizations, the returned fit is within 5° (approximately the beam width) of the correct location. (In the orientation angle, it is less accurate due to the self-similarity of the spiral structure under such rotations. The returned orientation is within 10° in 52% of the simulations.) The amplitudes average $\sim 7\%$ higher than the input value (as noted in § 2.2), with an rms error of about 80% the calculated error. Neither of these facts is unexpected, since these values are the selected maxima, and their distribution is not Gaussian. The results are quantitatively the same for the LILC reconstructed skies, indicating that the foreground residuals do not introduce a significant additional bias in the case in which a real Bianchi component is being fitted. Note that simulations in which the input Bianchi model has an amplitude a factor of ~ 3 higher show a much smaller relative bias ($\sim 1\%$), as one would expect.

4.3. Cut-Sky Fitting Accuracy

The cut-sky fits are performed with the Bianchi model at the fixed location found as the best-fit using the full-sky total convolver method. As described in § 2.2, there is a bias introduced by the selection of the maximum amplitude position. This bias will also be reflected in the cut-sky fits, although masking out the Galactic plane should remove some of the bias due to residual foreground emission. For fits to the raw data outside the Kp0 mask, eight template components are fit simultaneously to each band, the three foreground templates described in § 3.2, a monopole term, the three spherical harmonics representing the real-valued dipole terms, and the Bianchi template.

For simulations with no additional Bianchi component, the results show amplitudes on average 6% lower than those from the LILC fits. This is further indication that chance alignments
are affected by residuals in the plane, since the exclusion of that region tends to lower the fit amplitude.

Simulations with an additional Bianchi component at a known position and amplitude were run through the same pipeline, i.e., first the full-sky LILC reconstruction was used to find the best-fit location, then that location used to fit the template to the cut sky in pixel space. As described above, the total convolver will return a position that is very close to the true position but one where the fit amplitude happens to be highest due to CMB and noise contributions. These will also affect the cut-sky fits, which also show a bias of ~3%. This is lower than the bias in the full-sky fits, showing that a few percent of the full-sky bias is due to residuals in the Galactic plane region. The relative drop in amplitude between the full- and cut-sky fits for true detections is on average half the drop in the case of chance alignment detections.

Figure 2 shows what these distributions look like for the fit to 1000 simulations in the V band, both in the case where a Bianchi component is added (red histogram) and where it is not (black histogram). Also plotted as vertical lines are the mean and rms errors on the distributions, and the true value and expected errors plotted in green. The small bias in the value of the Bianchi fit is seen in the distance between the vertical red and green lines.

Note that in all these cases, the bias in the fits affects the absolute amplitude (i.e., shear) estimate, but not the significance of the fit, since the ensemble of simulations used to estimate the significance is also affected by such a bias. The expected bias in the amplitude is also much smaller than the error bar. Therefore, this does not affect our basic results, namely the particular best-fit model, its location, its approximate amplitude, and its approximate significance relative to chance alignments.

4.4. Chance Alignments

For a given sky realization, we find the best model as described in § 2.3 and then simply compare the amplitude of that fit against the ensemble of amplitudes for that model relative to Gaussian simulations to estimate the significance. Visual inspection of the WMAP sky maps shows no obvious Bianchi component, so any such signal must remain at or below the level of the stochastic component. Chance alignments may therefore either cancel a Bianchi-induced signal or give a false positive. The former effect was quantified in § 4.1 at ~23%, but the latter is more difficult to quantify.

The family-wise error rate (FWER), the expected number of false detections when testing m hypotheses, is ~mp when p is the probability of one false detection. If 3 σ is the detection threshold (implying p ~ 0.003) and one tests 100 different hypotheses (or models), the FWER is then 0.3, meaning one gets a false detection somewhere in the model space one-third of the time. Over our grid of Bianchi parameters, the models are not independent [since models close in (x, Ω0) space would resemble each other closely], so we cannot determine a priori what the true frequency of false detections would be, but we can get this from the ensemble of Gaussian simulations.

We perform the full-sky search using the total convolver over the grid of Bianchi models and find the best-fit model for each realization. We find that a false detection due to a chance alignment that has a significance of 99.7% occurs in ~17% of the cases. A better comparison might be to use the χ² representing the goodness of the fit. We then compare the statistic τl = (λl0 − λl)√λl/λl0 (defined above in § 2.3), namely, the relative improvement in the χ² when the Bianchi model is subtracted. We find that by this measure ~10% of the best chance alignments fit their respective realizations as well as our best-fit model does the WMAP data (see § 5). Note, however, that these statistics are dependent on the assumed amount of large-scale power. The above numbers simply imply that a detection of a Bianchi model with an amplitude higher than in 99.7% of simulations is more than 4 times as likely to be real as it is to be a chance alignment, in the absence of all other information.

5. APPLICATION TO THE FIRST-YEAR WMAP DATA

Armed with the information gained from the analyses of simulations, we can now examine the fits to the real data.

5.1. Fits Over Model Space Grid

Using the total convolver to find the best orientation, we fit the grid of Bianchi models to each of the WILC, LILC, and TOH full-sky processed maps. Figure 3 shows filled contours over this grid for the LILC. (The results for the WILC and TOH look very similar.) For each point on the grid corresponding to a model of the given (x, Ω0), the template is fit to the LILC map, and the color indicates the significance estimate of the resulting amplitude, i.e., the fractional number of Gaussian LILC simulations (out of 1000) with lower amplitude. As discussed in § 2.3, we use a finer grid and better method for determining the best-fit model, and thereby select a slightly different model than the analysis in Jaffe et al. (2005). But it is apparent from the right panels of Figure 3 that the significance as a function of the Bianchi parameters x and Ω0 is flat in the region ±0.1 in both x and Ω0 about the maximum.

We find that the most significant fit is found with a right-handed Bianchi template of x = 0.62 and Ω0 = 0.5 when that template is rotated to a position and orientation given by Euler angles (following the total convolver’s “yzx” convention about fixed axes) (Φ2, Θ, Φ1) = (42°, 28°, −51°). As defined in § 3.1, the spiral structure of the unrotated model is centered on the south pole (or −z axis), so this rotation places the center of that structure at Galactic longitude and latitude of (l, b) = (222°, −62°) and changes its orientation about that location by Φ1 = −51°. This model fits at an amplitude of (σ/H)l0 = 4.29 × 10⁻¹⁰, which is higher than 99.7% of the 10,000 simulations. This model and the best-fit from previous work (Jaffe et al. 2005) at x = 0.55 are almost identical.

All models near this best-fit (x, Ω0) return the same location for the center of the spiral within 3° but vary the orientation...
The broad spiral in all of these models is very self-similar under these rotations, so the change is driven largely by the precise locations of the paired hot and cold spots. Looking at Figure 3, one can see that more than one model appears “significant” in the sense of fitting with an amplitude above 99% of the amplitudes found fitting that same model to Gaussian simulations. As discussed above in §4.1, this is not surprising, and we must examine each of these models in more detail.

The full-resolution ILC map is shown along with the best-fit Bianchi model on the same scale and the corrected ILC map in Figure 4. A summary of all fit results is shown in Table 1. The expected bias in these results is discussed in §4.3. The following sections describe the two most interesting models in more detail.

5.2. Two Best Fits

5.2.1. Left-handed Model $(x; \Omega_0) = (0.62, 0.15)$

The most significant left-handed model, at 99.4%, is at $(x; \Omega_0) = (0.62, 0.15)$. This model was not found in our earlier work (Jaffe et al. 2005) because it is only in a fairly small region of the model space that this fits with any significance, and our previous, coarser grid effectively straddled the peak in Ω_0. The best-fit location for this model puts the center of the structure at $(l, b) = (320, -20)$, which is closer to the Galactic center region than the best-fit right-handed model, raising the question of how much it is driven by foreground residuals.

Cut-sky fits give fit amplitudes for this component that are 8% lower and significances of ~96% in most cases. Furthermore, the Galactic center region tends to draw the template in simulations; the best-fit location among the simulated LILC maps for this model is twice as likely to be found in the area around $(0^\circ, -20^\circ)$ as should be expected from a uniform distribution. The only thing that all of the LILC simulations have in common is foregrounds, so this is an indication that there is some residual there that is a weak attractor. One possibility is the “free-free haze” described by Finkbeiner (2004; see also Patanchon et al. 2004), although this haze does not match up well with the template structure, the two show little cross-correlation, and inclusion of Finkbeiner’s haze template in the simultaneous fitting does not alter the fit amplitude of the Bianchi model.

In Figure 5, it looks like the fit should be largely driven by the cold region below the Galactic center. The cross-correlation maps described in §2.4 do show correlation there but also indicate that the fit is largely driven by a very strong signal in the Galactic plane. Figure 5 shows these maps for both this model and the best-fit right-handed model. Where the right-handed model shows relatively uniform correlation over the hemisphere about the best-fit axis, this model shows a rather concentrated region, including a very strong driver on the Galactic plane.
The Gibbs samples throw further doubt on this model. Among the 1000 Gibbs samples in each of Q, V, and W bands, this model fits at the same approximate location as for the LILC map less than half of the time. Where the location was the same, the amplitude of the best-fit model is significantly lower for the ensemble of Gibbs-sampled maps, which drop over 15% in amplitude to a mean of 2.1×10^{-10}, indicating that some of the structure in the data that drives the fit is not consistent with the posterior CMB distribution as determined by the Gibbs sampling technique. Furthermore, this model is almost as likely to fit near the location of the best-fit right-handed model instead of near the Galactic center. This is largely driven by the cold spot.

In summary, this model is quantitatively less significant than the best-fit right-handed model based on the cut sky and Gibbs sample fit values. Furthermore, the morphology indicates that foreground residuals drive the full-sky fit.

5.2.2. Right-handed Model (x, Ω_0) = (0.62, 0.5)

Figure 3 shows that the best-fit model is this right-handed model. The amplitude of the best-fit Bianchi component varies somewhat across the different frequencies, in all cases lower than the full-sky amplitude fit with the LILC. As discussed in §4.3, this is likely due to small foreground residuals but does not mean that the detection is a false positive; the same effect occurs in simulations that include a Bianchi component. The amplitude in the W band, in which the least foreground residuals are expected, is still higher than $\sim99\%$ of simulations. The K and Ka band fits are significantly lower when the FDS dust and Finkbeiner Hα templates are used, but are consistent with the other bands when the SFD dust and Dickinson Hα templates are used instead. It is known that foreground subtraction is a problem even at high latitudes in the K and Ka bands, and these residuals are clearly affecting the low frequency fits. Looking at the residuals of the two fits shows that the difference may be driven by a small region around $(l, b) = (300^\circ, -15^\circ)$ where the dust templates differ strongly. The higher frequency fits, however, are more consistent.

Table 1

| Map | $(\sigma/H)^0_0$ ($\times 10^{-10}$) | $(\omega/H)^0_0$ ($\times 10^{-10}$) | $P(\{|\sigma^i| < |\sigma^i|\text{sim}\})$ (%) |
|-----------|-----------------------------------|-----------------------------------|--|
| Right-handed (x, Ω_0) = (0.62, 0.5) |
WILC	4.33 ± 0.82	9.58	99.8
LILC	4.29 ± 0.82	9.49	99.7
TOH	4.03 ± 0.82	8.92	98.6
K^*	2.59 (4.13) ± 0.83	5.72	99.1
Ka^*	3.50 (4.09) ± 0.83	7.74	98.9
Q^*	3.76 (4.11) ± 0.83	8.31	98.0
V^*	3.99 (4.19) ± 0.83	8.82	98.1
W^*	4.08 (4.35) ± 0.82	9.03	99.1
QVW^*	3.84 (4.15) ± 0.83	8.49	97.6
V^*	3.99 (4.22) ± 0.83	8.84	98.2
Q^*	0.06 (0.11) ± 0.02	0.13	99.0
V^*	0.05 (0.08) ± 0.02	0.36	99.0
Q^*	4.09 ± 0.010	9.04	...
V^*	4.11 ± 0.100	9.09	...
W^*	4.12 ± 0.110	9.12	...
Left-handed (x, Ω_0) = (0.62, 0.15)			
WILC	2.39 ± 0.47	22.31	97.8
LILC	2.49 ± 0.47	23.29	97.3
TOH	2.45 ± 0.47	22.94	99.0
K^*	2.33 (3.31) ± 0.50	21.76	96.3 (99.9)
Ka^*	2.24 (2.63) ± 0.50	20.93	94.8 (99.3)
Q^*	2.29 (2.50) ± 0.50	21.42	96.0 (98.9)
V^*	2.33 (2.44) ± 0.50	21.81	96.7 (98.6)
W^*	2.32 (2.46) ± 0.49	21.69	96.3 (98.4)
QVW^*	2.30 (2.48) ± 0.50	21.46	96.1 (98.8)
V^*	2.34 (2.44) ± 0.50	21.85	96.7 (98.6)
Q^*	0.03 (0.02) ± 0.02	0.27	76.8 (63.1)
V^*	0.06 (0.10) ± 0.02	0.55	96.4 (99.9)
Q^*	0.03 (0.08) ± 0.02	0.29	73.1 (99.3)
V^*	2.10 ± 0.110	19.67	...
V^*	2.08 ± 0.110	19.46	...
W^*	2.09 ± 0.099	19.53	...

Notes.—Amplitudes of the best-fit model derived from various combinations of data and various methods as described in the text. The full sky was used in the analysis of the WILC, LILC, TOH, and Gibbs samples, while the Kp0 mask was imposed for the remaining maps.

- Simultaneous fits with foreground components. In parentheses are the values using the SFD dust template instead of the FDS, and the Dickinson et al. (2003) Hα instead of Finkbeiner (2003).
- Average over 1000 Gibbs samples.
- Errors are rms variation over Gibbs samples.
The difference maps, e.g., Q/V, should contain no CMB component but only foreground residuals and noise. The fact that the Bianchi component amplitude found from these maps is less than 2% of the co-added map amplitude is an indication that such residuals are not contributing significantly to the fit.

The results of fitting the Gibbs-sampled maps show that for this model, the amplitude is quite stable over the ensemble of Gibbs samples, with, e.g., a mean of $(4.12 \pm 0.1) \times 10^{-10}$ in the W band compared to 4.08×10^{-10} for the cut-sky fit to the raw data. Since the Gibbs samples represent the posterior CMB distribution, taking into account foregrounds and iterating over the power spectrum, these results are a strong indication that the fit is due primarily to CMB signal.

Figure 5 shows the cross-correlation map as described in §2.4, which gives a visual indication of what regions drive the fit. Unlike the left-handed model (left), which shows one concentrated region in the Galactic plane to be driving the fit, this model correlates over more than half the sky at moderate levels. One can see that the cold spot does partly drive the fit, but no particular region can be said to dominate. Fits to the combined $Q/V/W$ data where the cold spot is excluded [in a 10° radius around $(l,b) = (209,-57)$] have comparable amplitudes to fits where the region is included (only 6% lower). Further Gibbs samples were also computed while masking this region. Full-sky searches using these samples show that fewer than 20% return positions more than 10° from the original location, and amplitudes that are on average 15% lower (which is within the calculated error bar). These results confirm that the cold spot does affect but does not exclusively drive the fit amplitude.

5.3. Location and Orientation Accuracy

As mentioned above, where a Bianchi component was added to simulations at a known location, the full-sky search with the total convolver returned the correct position within 5° in ~80% of realizations. The uncertainty in the location is due to the CMB fluctuations, which are quite comparable to the Bianchi component at the amplitude detected.

To determine how the amplitude changes with the position and orientation of the template compared to the data, we take the best-fit Bianchi model and fit it to the LILC on a grid of fixed positions within 20° of the best-fit position. Results are shown in Figures 6 and 7. The orientation is not very sensitive in this model, whose spiral structure is self similar under rotations about its symmetry axis; only the precise positions of the hot and cold spots affect the variation with orientation angle. The amplitude drops by 1% when the orientation is 4° off. The location of the symmetry axis is a bit more sensitive, where the amplitude drops by 3% at 2°. The fact that the total convolver at this resolution uses steps of 2° means that its best-fit amplitude can be several percent off of the actual maximum. All the fits to the simulations as well as the data are subject to this same uncertainty. If we assume the worst, that the LILC amplitude was

The gray region is the excluded region of the Kp0 mask.

Fig. 5.—Two significant models. The left panels show the best-fit left-handed model with $(x, \Omega_0) = (0.62, 0.15)$, while the right panels show the best-fit overall model, right-handed, with $(x, \Omega_0) = (0.62, 0.5)$. The top panels show the template amplified by a factor of 3 to bring out the structure. The middle panels show the corresponding cross-correlation map (see §2.4) scaled from -1% to 2%. The bottom panels show the “corrected” WMAP $Q/V/W$ map, scaled from -150 to 150 μK. The gray region is the excluded region of the Kp0 mask.
found at its true maximum (i.e., the true axis of symmetry happened to lie exactly on the center of one of the total convolver’s bins) and the simulations are all at 1°4 away from their true maxima (i.e., the axis exactly between bins) and have true values correspondingly higher, the comparative significance could then be overestimated by only 0.5%. The likely effect is of course much smaller.

Using the LILC map at higher resolution, $\ell_{\text{max}} = 128$, gives an accuracy in the total convolver of $\pi/\ell_{\text{max}} = 1°4$. The position returned is identical, with only the orientation one step of 1°4 different.

The above applies to the best-fit model at $(x, \Omega_0) = (0.62, 0.5)$, but other models have structure at different angular scales. In particular, for the region of small x and Ω_0, where a tightly wound spiral is even more tightly focused in one hemisphere, the fit amplitudes are far more dependent on the exact position. Because the total convolver resolution is π/ℓ_{max}, our analysis is not as sensitive for this region of model space as it would be for a higher resolution analysis. In these cases, the difference of a few degrees can mean a large difference in amplitude. Simulations show that, although the location returned is the closest bin to the true location, the amplitude of a model $(x, \Omega_0) = (0.1, 0.1)$ is underestimated by ~20% on average due to the limited resolution. Increasing the resolution of the analysis to HEALPix $N_{\text{side}} = 64$ increases the mean and brings it closer to the correct value, but it is still underestimated. (Higher resolution analysis with the total convolver is not feasible due to the memory and CPU requirements.) In the region of model space where $x > 0.25$ and $\Omega_0 > 0.25$, this effect drops to less than a few percent.

A more detailed look at these models at increased resolution ($N_{\text{side}} = 64$) shows no evidence that the lower resolution analysis missed a significant detection. But the limits placed on shear and rotation are less stringent than they would be were a higher resolution analysis feasible.

5.4. DMR Fit

Our best-fit amplitude is below the upper limit DMR could place on the shear. Using this model, a fit to the DMR data gives $(\sigma/\mu)_0 = (3.38 \pm 0.98) \times 10^{-10}$, which is within our best-fit error bar for the WMAP data but which is not distinguishable from a chance alignment for DMR. Kogut et al. (1997) report a distribution of Γ values for chance alignments up to 4.5. Our fit value and error give $\Gamma = 3.4$, and although this value comes from different methods and assumptions, it is roughly comparable.

5.5. Sensitivity to Assumed Power Spectrum

As mentioned in § 3.4, assumptions about the cosmological parameters go into this analysis from the beginning, with the choice of the signal covariance matrix. In effect, we are assuming that the CMB signal consists of an anisotropic Bianchi-induced component plus a statistically isotropic, Gaussian random field described completely by its power spectrum, which is taken to be the WMAP best-fit theoretical power-law spectrum. As we are searching for evidence of a model that affects the power spectrum at large scales and that is inconsistent with inflation, this approach obviously lacks consistency.

We have verified, however, that changing the assumed parameters and using, for example, a flat $Q = 18 \mu K$ power-law spectrum, or a completely implausible spectrum, has little effect (less than 3%) on the resulting best-fit amplitude and position for the Bianchi component. In fact, the power spectrum affects only the estimated significance of the result, as that significance is dependent on the expected level of large-scale CMB structure that drives chance alignments. As shown in Figure 8, correction for this Bianchi model lowers the large-scale power. Our significance estimates are based on simulations generated assuming a higher level of large-scale power, so the significance of the detection would increase when compared to an ensemble consistent with the corrected power spectrum.

6. IMPLICATIONS

There are several interesting results based on WMAP first-year data that are inconsistent with the assumptions of isotropy and Gaussianity and that are immediately relevant to this study. De Oliveira-Costa et al. (2004), Land & Magueijo (2005), and Copi et al. (2006) (and sources therein) examine the low-ℓ multipoles of the foreground-cleaned data and find that in addition to the anomalously low quadrupole amplitude, the preferred axes of the quadrupole and octopole are anomalously well aligned in the direction of $(l, b) = (-110°, 60°)$. Eriksen et al. (2004b) and Hansen et al. (2004b) find a system of reference (roughly aligned with the ecliptic) in which there is a significant difference in large-scale power between the two hemispheres at the 98%–99%
level, with significantly more power in the south. Vielva et al. (2004) and Cruz et al. (2005) detect non-Gaussianity in the WMAP combined $Q/V/C_0$, V/C_0, and W map using spherical wavelets; they find significant kurtosis in the wavelet coefficients at a scale of 10^{-14} and identify a cold spot at $(l, b) = (209°, -57°)$ as the probable source. Our choice of models was partly motivated by the morphology of these anomalies, and indeed, subtracting for our best-fit Bianchi template corrects them.

6.1. Quadrupole Amplitude

The quadrupole amplitude has been considered anomalously low since COBE (see de Oliveira-Costa et al. 2004 and references therein). As pointed out by Jaffe et al. (2005), the correction for this Bianchi component raises the low quadrupole amplitude to a value more consistent with the theoretical power spectrum. This result is unchanged with the best-fit model of this work, since the models are almost the same. Should this be considered “fine tuning”?

We can simulate the situation by taking as the primordial quadrupole the WMAP quadrupole (as derived by Bielewicz et al. 2004) minus the quadrupole of our best-fit Bianchi model. If we then add the Bianchi quadrupole at random orientations, we can see how likely it is that the resulting total quadrupole be as low as the observed WMAP quadrupole. We find that the likelihood is ~5%. This implies that the level of “fine tuning” required to end up with the low observed quadrupole is not exceptional.

We further take a set of 1000 simulated Gaussian CMB skies, with and without a Bianchi component, and fit our best-fit Bianchi model to them. The “corrected” quadrupole is on average ~5% lower than the original, which is to be expected considering that the fit is a least-squares solution. In contrast, using the real LILC data, the correction has the effect of raising the quadrupole. This happens in over ~20% of the simulations, so while this is not the average behavior, it is not extraordinary.

6.2. Low-ℓ Alignment and Planarity

De Oliveira-Costa et al. (2004), Land & Magueijo (2005), and Copi et al. (2006) discuss the statistically anomalous alignment of the quadrupole and octopole in the WMAP data. The preferred axes of the $\ell = 2$ and $\ell = 3$ multipoles are only $7°$ apart (roughly in the direction of $(l, b) = (-110°, 60°)$), which is anomalous at the 99.3% level compared to simulations. After subtracting the best-fit Bianchi template, these axes lie $74°$ apart, consistent (at 27%) with the statistically isotropic simulations (see Fig. 9).

The planarity of the low-ℓ multipoles has also been considered somewhat anomalous (see de Oliveira-Costa et al. 2004 and Land & Magueijo 2005 for a discussion). The t-statistic defined by de Oliveira-Costa et al. (2004) provides a measure of this planarity. Again, subtracting the Bianchi template lowers the significance of the low-ℓ multipoles. The planarity of the octopole in particular drops from a significance of ~90% (depending on whether the WILC or LILC is used) to ~50%. Figures 9b and 9d show how the planarity of the octopole is disrupted. This will
also impact the results of multipole vector analyses such as that of Copi et al. (2006).

6.3. Large-Scale Power Asymmetry

Eriksen et al. (2004b) and Hansen et al. (2004b) reported that the large-scale power ($\ell \leq 40$) in the WMAP data is anisotropically distributed over two opposing hemispheres [in the reference frame in which the z-axis points toward ($l, b) = (57^\circ, 10^\circ)$; see Fig. 10], with a significance of 3 σ compared with simulations. Repeating the analysis and adopting the $Kp2$ sky coverage, we compare the corrected $V+W$ WMAP map with 2048 simulations. We find that $\sim 14\%$ of the simulations have a larger maximum power asymmetry ratio than the Bianchi-corrected map, whereas only 0.7% have a larger ratio than the uncorrected data (see Fig. 10). It is apparent that the maximum power ratio between any two hemispheres is significantly suppressed after subtracting the Bianchi template, as no asymmetry axis is found at any statistically significant level. It is apparent from that figure, however, that some residual power asymmetry remains. This comes largely from the range $20 < \ell < 40$, where the Bianchi template has little power, indicating that a model with more small-scale structure may be needed.

6.4. Wavelet Kurtosis

Vielva et al. (2004) and Cruz et al. (2005) used a wavelet technique to detect an excess of kurtosis in the wavelet coefficients and isolate an unusually cold spot ($\sim 3 \sigma$ significance relative to Gaussian simulations) at Galactic coordinates ($l, b) = (209^\circ, -57^\circ$). Referring again to Figure 4, we see that a cold spot is indeed present at the right location, in the form of the center of the spiral.

We therefore also repeat the analysis of Vielva et al. (2004) and compute the kurtosis of the wavelet coefficients as a function of scale from both the WILC and the corresponding Bianchi-subtracted map. A $|b| < 20^\circ$ Galactic cut is imposed in this case, for computational convenience.

7. DISCUSSION AND CONCLUSIONS

We have considered a fast and efficient method for fitting a template to the full sky in harmonic space and finding the best-fit location and orientation. The total convolver algorithm evaluates the correlation between the sky and the template at every possible relative orientation using fast Fourier transforms. With this algorithm, the search for the best-fit becomes 2 orders of magnitude faster than the corresponding search performed one rotation at a time. This method, along with pixel-space simultaneous foreground fitting, provides a powerful tool for testing any deterministic model for anisotropy in the CMB. Simulations generated by the LILC pipeline allow us to quantify the bias, investigate the effects of foreground contaminants, and show how well each of these methods detects a known input.

We have applied this method to the first-year WMAP data to search for evidence of shear and vorticity using templates derived for Bianchi type VII$_b$ universes. We find a surprisingly significant correlation between the WMAP data and a right-handed Bianchi model with $x = 0.62$, $\Omega_0 = 0.5$, and shear of $(\sigma/H)_0 = (4.3 \pm 0.8) \times 10^{-10}$, implying a vorticity of $(\omega/H)_0 = 9.5 \times 10^{-10}$. The center of the spiral structure lies at approximately ($l, b) = (222^\circ, -62^\circ$). Simulations show that this amplitude is likely to be biased by $\sim 7\%$, implying a true amplitude closer to 4.0×10^{-10}. Incomplete sky fits, simultaneous foreground fitting, and fits to a set of Gibbs samples are all consistent with this amplitude and indicate that confusion with Galactic emission is unlikely to contribute significantly to this detection.

Correcting the WMAP data for the effect of the best-fit model solves several problems seen in the data. The corrected maps show significantly reduced power asymmetry between any two hemispheres. The correction also eliminates the non-Gaussian kurtosis in the wavelet coefficients detected by Vielva et al. (2004) and Cruz et al. (2005), raises the low measured quadrupole by a factor of 2, and disrupts the planarity of the octopole and its anomalous alignment with the quadrupole. In short, the data appear far more Gaussian and isotropic after correction.
The original analyses by Kogut et al. (1997) and Bunn et al. (1996) were limited by the signal-to-noise ratio in the DMR instrument. Our best-fit result is just under their upper limit but still significant due to WMAP’s greatly improved signal-to-noise ratio. Furthermore, the Kogut analysis searched a coarse (≈10') grid of possible locations and orientations, while with the total convolver, we can efficiently search a finer grid.

How likely is it that our best-fit model is a true detection rather than a chance alignment? Considering the best-fit model by itself and comparing its fit amplitude to simulations, it is higher than 99.7% of simulations. However, the simulations also show that 10%–20% of Gaussian, statistically isotropic skies will have one of the Bianchi models appear as significant. Considering the fact that the sky is approximately Gaussian and isotropic, one would not expect to find a more definitive detection based on template fitting alone, but the distribution of chance alignments in the simulations is sensitive to the amount of large-scale power assumed, and that is lowered by the Bianchi correction to the WMAP data. Furthermore, the cumulative probability that a chance alignment not only fits at the level of our best-fit model but also has the effect of resolving the several anomalies in the data must also be considered in any qualitative judgment of the significance of this result.

Further improvement to the data will not refine these measures significantly, because at the WMAP sensitivity level, the analysis is already very close to the expected distribution of chance alignments in the absence of noise. Improved foreground subtraction will, however, remove some of the possible confusion and bias, but neither higher resolution nor higher signal-to-noise ratio data should change this result or be able to provide additional information concerning the question of whether the fit is a real detection of vorticity and shear. Answering that question will require additional verifiable predictions for the effects of vorticity and shear on other observables.

However, in the context of the anomalies that this hypothesis can explain, the possible detection is certainly provocative. The most important result of this analysis is that a model with vorticity and shear can explain the observed asymmetry in the CMB anisotropies and the non-Gaussian cold spot. Note that this asymmetry exists only in the $\Omega_0 < 1$ versions of these Bianchi models. Significant evidence currently indicates that Ω_0 is very close to 1, so our best-fit model cannot be considered physically realistic. However, as mentioned in §3.1, Barrow et al. (1985) did not include any dark energy component. Furthermore, the Bianchi model does not include a mechanism to generate structure at the surface of last scattering. A self-consistent theory is required that can explain the small-scale fluctuations, and in particular the acoustic peaks, in the context of a universe with shear and vorticity. But from a pragmatic point of view, one can conclude that, regardless of the viability of the particular Bianchi model, this result gives a measure of the significant deviation from isotropy in the data.

We consider this result to be further motivation for considering ideas outside of the so-called concordance model of cosmology. There are anomalies in the data that are inconsistent with the theory of a Gaussian, statistically isotropic universe, and Bianchi models are only one such anisotropic model that merits investigation. We have demonstrated a method of template fitting that can be applied to test any model that makes a deterministic prediction for an anisotropy pattern in the CMB. The best-fit Bianchi model provides a template temperature pattern that can explain the observed anomalies in the data and that describes the morphology theorists may need to reproduce in considering alternatives to the standard cosmological model.

We are grateful to M. Demianski, S. Hervik, and S. D. M. White for useful discussions, and to J. McEwen for finding errors in the original numbers. H. K. E. acknowledges financial support from the Research Council of Norway, including a Ph.D. scholarship. F. K. H. was supported by a Marie Curie Reintegration Grant within the 6th European Community Framework Program. We acknowledge use of the HEALPix software (Górski et al. 2005) and analysis package for deriving the results in this paper. We also acknowledge use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA).

REFERENCES

Banday, A. J., Górski, K. M., Bennett, C. L., Hinshaw, G., Kogut, A., & Smoot, G. F. 1996, ApJ, 468, L85
Barrow, J. D., Juszkiewicz, R., & Sonoda, D. H. 1985, MNRAS, 213, 917
Bennett, C. L., et al. 2003a, ApJS, 148, 1
Bennett, C. L., et al. 2003b, ApJS, 148, 97
Bielewicz, P., Górski, K. M., & Banday, A. J. 2004, MNRAS, 355, 1283
Bunn, E. F., Ferreira, P. G., & Silk, J. 1996, Phys. Rev. Lett., 77, 2283
Collins, C. B., & Hawking, S. W. 1973, MNRAS, 162, 307
Copi, C. J., Huterer, D., Schwarz, D. J., & Starkman, G. D. 2006, MNRAS, 367, 79
Cruz, M., Martínez-Gonzalez, E., Vielva, P., & Cayon, L. 2005, MNRAS, 356, 29
Davies, R. D., Watson, R. A., & Gutierrez, C. M. 1996, MNRAS, 278, 925
de Oliveira-Costa, A., Tegmark, M., Zaldarriaga, M., & Hamilton, A. 2004, Phys. Rev. D, 69, 063516
Dickinson,C., Davies, R. D., & Davis, R. J. 2003, MNRAS, 341, 369
Eriksen, H. K., Banday, A. J., Górski, K. M., & Lilje, P. B. 2004a, ApJ, 612, 633
Eriksen, H. K., Banday, A. J., Górski, K. M., & Lilje, P. B. 2004b, ApJ, 605, 14
Eriksen, H. K., O'Dwyer, I. J., Jewell, J. B., Wandelt, B. D., Larson, D. L., Górski, K. M., Levin, S., Banday, A. J., & Lilje, P. B. 2004c, ApJS, 155, 227
Finkbeiner, D. P. 2003, ApJS, 146, 407
Finkbeiner, D. P., Davis, M., & Schlegel, D. J. 1999, ApJ, 524, 867
Górski, K. M., Banday, A. J., Bennett, C. L., Hinshaw, G., Kogut, A., Smoot, G. F., & Wright, E. L. 1996, ApJ, 464, L11
Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., & Bartelmann, M. 2005, ApJ, 622, 759
Hansen, F. K., Balbi, A., Banday, A. J., & Górski, K. M. 2004a, MNRAS, 354, 905
Hansen, F. K., Banday, A. J., & Górski, K. M. 2004b, MNRAS, 354, 641
Haslam, C. G. T., Salter, C. J., Stoffel, H., & Wilson, W. 1982, A&AS, 47, 1
Jaffe, T. R., Banday, A. J., Eriksen, H. K., Górski, K. M., & Hansen, F. K. 2005, ApJ, 629, L1
Jewell, J., Levin, S., & Anderson, C. H. 2004, ApJ, 609, 1
Kogut, A., Hinshaw, G., & Banday, A. J. 1997, Phys. Rev. D, 55, 1901
Land, K., & Magueijo, J. 2005, preprint Phys. Rev. Lett., 95, 073101
Mortlock, D. J., Challinor, A. D., & Hobson, M. P. 2002, MNRAS, 330, 405
Patanchon, G., Cardoso, J.-F., Delabrouille, J., & Vielva, P. 2005, MNRAS, 364, 1185
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Tegmark, M., & de Oliveira-Costa, A., & Hamilton, A. 2003, Phys. Rev. D, 68, 123523
Vielva, P., Martínez-Gonzalez, E., Barreiro, R. B., Sanz, J. L., & Cayón, L. 2004, ApJ, 609, 22
Wandelt, B. D., & Górski, K. M. 2001, Phys. Rev. D, 63, 123002
Wandelt, B. D., Larson, D. L., & Lakshminarayanan, A. 2004, Phys. Rev. D, 70, 083511