Major ion chemistry and identification of hydrogeochemical processes of evolution of ground water in a small tropical coral Island of Minicoy, Union Territory of Lakshadweep, India

Abstract

Major ion chemistry and identification of hydrogeochemical processes of groundwater in the small island of Minicoy indicate that ground water occurs under phreatic condition and is seen as a thin lens floating over the saline water. The coral sands and coral lime-stones act as principal aquifers. The depth of the wells varies from 1.9 to 3.5m and depth to the water table 0.62 to 1.75m. The ground water is generally alkaline and EC varies from 592 to 2130 micromhos/cm at 25°C. The ground water is under Na+–SO42- type and shallow meteoric percolation type and generally alkaline in nature. The factors affecting the quality of ground water are rainfall, tides, ground water recharge and draft, human and animal wastes, oil spills and fertilizers. Water samples collected from different parts of the island during pre-monsoon period and post monsoon samples had not been collected due to inaccessibility caused by rough weather. The water sample chemical analysis indicates that water type ranges from Ca-HCO₃ (recharge type) to Na-HCO₃ (Base Exchange water type). Among the cations Ca²⁺ and Na⁺ and anions HCO₃⁻ and Cl⁻ dominate the ionic concentration in groundwater which made the water both recharge and base exchange water types. The hydrochemistry is mainly controlled by evaporation, partly influenced by water-rock interaction and aquifer materials. The chloro alkalai indices of water samples of Minicoy atoll are negative indicating the ion exchange predominance in the study area. The rock water interaction played major role in the evolution of water chemistry, which was partly by evaporation process also. The ground water in the study area is generally suitable irrigation for all types of soil.

Keywords: atoll, fresh water lens, chloro alkalai indices, rock-water interaction, irrigation

Abbreviations: pH, potential of hydrogen; F, florine; Cl, chlorine; NO₃, nitrate; HCO₃⁻, bicarbonate; SO₄²⁻, sulphate ion; Ca²⁺, calcium ion; Mg²⁺, magnesium ion; Na⁺, nitrate ion; K⁺, potassium ion; EC, electrical conductivity; SAR, sodium adsorption ratio; Na; sodium; PI, permeability index; KI, kelley’s index; SSP, soluble sodium percentage; MR, magnesiu ratio

Introduction

The Lakshadweep islands (LD islands) are a group of tiny coral islands, located in the Arabian Sea, about 400km from the main land (southern tip of the Indian peninsula). They spread over a distance of 300km, consists of 36 coral islands and a number of sunken banks, open coral reef and sand banks. These islands are typically a chain of low islands surrounding a shallow lagoon, consisting of large recent sediments on top of older coral lime-stones. Minicoy Island has a delicate ecosystem with very limited fresh water resources. Though the island receives high rainfall, lack of surface storage and the limited ground water storage capacity, where fresh water is occurring as a small lens floating over saline water, makes fresh water a precious commodity. High porosity of the aquifers allow mixing of fresh water with sea water and due to high population density, waste water gets mixed with the fresh water in the aquifer, make the management of the limited fresh water resources multifaceted. The purpose of the study is to assess the evolution of ground water resources of the island and to know the hydro geological characteristics. The small island hydro geological and hydro chemical studies were carried out by many authors at international and regional levels. These include Nura UK, et al.¹ on evaluation of factors Influencing the Groundwater Chemistry in a Small Tropical Island of Malaysia, Aris AZ, et al.² applied factor analysis tool to the hydro chemical data set of Manukan Island in order to extract the principal factors corresponding to the different sources of variation in the hydrochemistry, Belkkhira L, et al.³ studied geochemical evolution of groundwater in an alluvial aquifer in the case of El Eulma aquifer, East Algeria, Arslan H⁴ used application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey. Kumar G⁵ carried out assessment of groundwater quality for Veppanthattai taluk, Perambalur district, Tamil Nadu using Remote Sensing and GIS, Barker JA⁶ on fresh water-salt water relation, Mondal NCVS, et al.⁷ studied geochemical evolution of groundwater in an alluvial aquifer in the case of El Eulma aquifer, East Algeria, Arslan H⁴ used application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey. Kumar G⁵ carried out assessment of groundwater quality for Veppanthattai taluk, Perambalur district, Tamil Nadu using Remote Sensing and GIS, Barker JA⁶ on fresh water-salt water relation, Mondal NCVS, et al.⁷ studies geochemical evolution of groundwater in the case of El Eulma aquifer, East Algeria, Arslan H⁴ used application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey. Kumar G⁵ carried out assessment of groundwater quality for Veppanthattai taluk, Perambalur district, Tamil Nadu using Remote Sensing and GIS, Barker JA⁶ on fresh water-salt water relation, Mondal NCVS, et al.⁷ Appraisal of groundwater resources in an island condition and many others. The present study is an attempt to highlight the major ion chemistry and identification of hydro geochemical processes of evolution groundwater in a small tropical coral island of Minicoy small coral island of Minicoy, Union Territory of Lakshadweep, India.
Study area

The Minicoy Island is the southern-most island of Lakshadweep, situated at a distance of 398 km south-west of Kochi between 8°15’ and 8°20’ N latitude and 73°01’ and 73°05’ E longitude, having an area of 4.80sq.km. This island lies near the 9.0 Channel, which is one of the busiest shipping routes and is about 130km from the northern-most island of Maldives. The climate of Minicoy is similar to the climatic conditions of Kerala. March to May is the hottest period of the year. The temperature ranges from 25°C to 35°C and humidity ranging from 70-76 per cent for most of the year. The average rainfall received is 1600mm a year. Monsoon prevails here from 15th May to 15th September. During the monsoon time, boats are not allowed outside the lagoon because of the violent sea. The presence of the reef maintains calm at the lagoon.

The location map of LD islands including Minicoy Island is compiled (Figure 1) and various salient features of Minicoy are compiled (Table 1). The coral island is the work of minute sea organisms called coral polyps and they congregate in large colonies. When the organisms die, their skeletons, which are made of limestones, form big clusters, some of which rise above the water. Charles Darwin first described the different types of coral reef after his voyage by HMS Beagle among the Galapagos Isles in Pacific Ocean (Subsidence theory for the origin of coral reefs). In oceanic island fresh ground water occurs as a lens floating over saline water. The hydro dynamic balance of fresh and saline water determines the shape and movement of interface and may be controlled by some of the following factors viz. water table fluctuation due to diurnal tides, seasonal fluctuation of water table due to recharge or draft, dispersion and molecular diffusion. Due to these factors there is an alternate up and down movement of the interface.

![Location Map of Lakshadweep Islands](image_url)

Figure 1 Location Map of Lakshadweep Islands.

#	Item	Detail
1	Latitudes	8° 15’ and 8° 20’N
2	Longitudes	73° 01’ and 73° 05’E
3	Total geographical area	4.80sq.km
4	Population (as per 2011 census)	10444
5	Average annual rainfall	1660mm
6	Annual range of temperature	25-30°C
7	Major geological formation	Coral
8	Net ground water availability	0.55MCM/Yr
9	Stage of ground water development	63%
10	Lithology	Coralline sand and coral lime stones
11	Drainage	Surface water bodies and rivers
		generally absent or ephemeral
12	Aquifer geometry	Not well defined by coral colonies &
		eustatic changes
13	Effect of over draft of ground	Upcoming of saline water from
	water	bottom
14	Effect of recharge	Fresh water lens expands & fractional
		rise in levels
15	Ground water estimation	By water balance or chloride
		budgeting
16	Ground water potential	Lower the per permeability, higher
		the potential
17	Drainage	Surface water bodies and rivers
		generally absent or are ephemeral
18	Aquifer geometry	Not well defined by coral
		colonies & eustatic changes
19	Ground water	As lens, in hydraulic continuity
		with sea water
20	Effect of over draft of	Upcoming of saline water from
	ground water	bottom
21	Effect of recharge	Fresh water lens expands & fractional
		rise in levels
22	Ground water estimation	By water balance or chloride
		budgeting
Materials and methods

The base map of Minicoy and various layers were prepared by using Map Info 6.5 techniques and in the ground water resource of Minicoy has been computed based on the methodology recommended by the GEC 1997. The recharge to ground water lens is rain fall interception evapo-transpiration and Ground water utilisation = Evapotranspiration + mixing + pumping + outflow, for water balance study monthly water budgeting or weekly water budgeting gives appropriate value of recharge. The main consumer of ground water is coconut palms because one coconut tree consumes 40 lpd and density of coconut trees is 25,000-35,000 sq. km but draft through plant is slow, steady and spread uniformly.

The various hydro geological parameters collected during the field study and water level data observed during low and high tide. The pre monsoon groundwater samples collected from shallow aquifers (dug wells) in polyethylene bottles and analysed for pH, EC, F, Cl, NO2, HCO3, SO4, Ca2, Mg2, Na, and K as per standard procedures and the in situ measurements of EC and pH were carried out by using EC and pH meters. The total dissolved solids were estimated by ionic calculation methods. The F, Cl and NO3 ions were determined by ion selective electrode; HCO3 by potentiometric titration; SO4 by modified titration method after Fritz JS, et al.9 and Haartz IC, et al.;10 Ca2 and Mg2 in absorption mode while Na and K in emission mode of the atomic absorption spectrophotometer. The analytical results were tested for accuracy by calculating the Normalized Inorganic Charge Balance.11 The analytical precision was such that the ion charge balance was little above ±5% for the samples. The quality of the analysis was ensured by standardization using blank, spike, and duplicate samples.

Results and discussion

The major factors influence the hydrological characteristics of the island are climate, humidity, temperature, evapo-transpiration, physiography, hydro geological aspects, soil, vegetation, population, geomorphology, aquifer nature and human interference. The major hydrochemistry is discussed below.

Climate, humidity, temperature, evapo-transpiration, physiography, hydro geological aspects, soil, vegetation, population, geomorphology, aquifer nature and human interference

The climate of a small island is one of the major influences on the availability of naturally occurring freshwater resources.11 The rainfall distribution, quantity and its spatial and temporal variations and the evapo-transpiration play an important role on the availability of the freshwater resources. The maximum, mean and minimum annual rainfall on Minicoy for the period 1961-1991 is 2634 (1961), 1555 and 945mm (1980) respectively. The humidity is lower during January to April when it is between 75 and 78% in the morning hours and 66 to 69% evening hours. It is higher during June to August when it ranges from 85 to 87% in the morning hours and 83 to 86% in the evening hours. April and May months are the hottest with the mean minimum and maximum temperatures of 26.8 and 33.1°C respectively. The evapo-transpiration is very high and most of the months except in high rainfall season it exceed the rainfall making the water surplus on the negative side. The entire LD islands lay on the northern edge of the 2500km long North-South aligned submarine Lakshadweep-Chagos ridge. The island has coarse sandy soil of high porosity and permeability resulting in little or no surface runoff. The vegetation of LD islands consists of coconut trees, bushes and grasses. The Minicoy Island is a typical atoll and height of the land above mean is about 1-2m and the coral sands and the coral lime-stones act as principal aquifers. The Ghyben-Herzberg relation determines the depth of the interface between fresh water and sea water. The water level data of monitoring wells in Minicoy Island is compiled (Table 2) and depth of the wells ranges from 1.9 to 3.5mbgl and the DTW ranges between 0.62 to 1.75mbgl whereas diurnal fluctuation in water level due to tides is in the range of 0 to 80cms. The climate water balance method of recharge estimation widely used for estimating the recharge on small islands (Falkland, 1992). Human activities influence both the availability of freshwater and water quality.

Major ion chemistry and hydro geochemical processes

The major ion chemistry and hydro geochemical processes of ground water and its evolution have been examined. The groundwater of different geological horizons can be classified depending upon their ionic strength of select anions and Soltan ME12 categorized groundwater based on the meq/l content of Cl, SO42 and HCO3. The water is Normal chloride type if Cl /HCO3 < 15meq/l, Normal sulphate type if SO42 < 6meq/l and Normal bicarbonate type if HCO3 varies between 2 and 7meq/l. Distribution of groundwater samples based on the Soltan ME13 classification has indicated that majority of the samples are of Normal chloride type, followed by Normal sulphate type and concentration of salts in natural waters depend on the geology, environment, and movement of water.14,15 The Base Exchange indices, r1 (Na+Cl+SO42− - meq/l) and r2 (2−K+Na−Cl− SO42− - meq/l) after Soltan ME16 could be applied for the further classification of groundwater. The groundwater can be grouped as Na−HCO3 type if r1>1 and Na−SO4 type with r1<1; r2<1 groundwater is of deep meteoric percolation type and >1, shallow meteoric percolation type. The groundwater of the area comes under Na−HCO3 type and shallow meteoric percolation type except a few one which is deep meteoric percolation type, chemical analysis data of ground water and other details are compiled (Table 3 & Table 4).

Hydro chemical evolution study based Na−Cl molar ratio Na+/ Cl− molar ratio will be 1 if halite dissolution is responsible for sodium dominance in groundwater and >1 if Na+ is released from silicate weathering process.17 The Na+/Cl− molar ratio is <1 in many samples of the season, indicating that halite dissolution was the primary process responsible for the release of Na+ into the groundwater.

Hydro-chemical facies

The groundwater is further evaluated to determine its facies by plotting the percentages of select chemical constituents in Modified Piper diagram.18 The plots for the season indicated distribution within the fields 2, 5 and 8 of the Chadha’s diagram (Figure 2) and are characterized by alkalai metals exceed alkalai earths Na>K>Ca>Mg, alkalai earths and weak acidic anions exceed both alkalai metals and strong acidic anions, respectively (Ca+ Mg)+(CO32+HCO3−)> (Na+ K)+(Cl−SO42−) and alkalai metals exceed alkalai earths and weak acidic anions exceed strong acidic anions. (Na+ K)+(Ca+ Mg)+(CO32+HCO3−)> (Cl−SO42−) respectively. As the water samples falls under the hydro chemical facies Field I and IV, they are of Ca-HCO3 Type (recharge type) and Na-HCO3 type (base exchange water type) respectively. The Chadha’s diagram further strengthens that the mineralogy of the aquifer material played an important role in determining the water chemistry. The plots also suggest that among
Major ion chemistry and identification of hydrogeochemical processes of evolution of ground water in a small tropical coral Island of Minicoy, Union Territory of Lakshadweep, India

Hydro-geochemical evaluation

The high sodium content among cations in the groundwater for the period could be due to halite dissolution which was further enhanced by evaporation and/or evapo-transpiration processes. The Na+/Cl- molar ratio will be 1 if halite dissolution is responsible for sodium dominance in groundwater and >1 if Na- is released from silicate weathering process. The Na+/Cl- molar ratio is >1 in the samples indicating the ion exchange predominance in the study area. As CAI-1 and CAI-2 are negative in the samples indicating the ion exchange predominance in the study area.

Irrigation suitability

The irrigation suitability of ground water has been attempted based on the study of electrical conductivity (EC), Sodium Adsorption Ratio (SAR), Percent Sodium (% Na), Permeability index (PI), Kelley’s Index (KI), Soluble Sodium Percentage (SSP) and Magnesium Ratio (MR) methodologies (Table 5) and Wilcox classification of irrigation water and U S Salinity diagram for irrigation Water, methodology and analytical results are compiled (Table 6).

Electrical conductivity

The EC is a measure of salinity hazard to crops and classified into five major types, as per Raghunath HM and that the samples in the study area are under excellent, good, permissible and doubtful categories.

Sodium absorption ratio, SAR

The sodium alkali hazard or Sodium Absorption Ratio (SAR) of water is an indicator of sodium hazard in irrigation water (Gholami and Srikantawamy, 2009). As per Richard, 1954, the computed SAR values show that all the samples are excellent. Wilcox’s (1955) diagrams relating to Percent Sodium and electrical conductivity of the samples (Figure 5) and U S Salinity diagrams for irrigation water (Figure 6) show that majority of samples fall under the excellent to good categories of Percent Sodium and in the case of EC good to permissible for irrigation.

Percent sodium (% Na)

The % Na is used to assess the ground water quality, because a higher level of sodium in irrigation water may increase the exchange of sodium content of irrigated soil and affect soil permeability, structure and create toxic condition for plants. Based on the relative proportions of cation concentration, samples come under good to permissible categories and can be used for irrigation on almost all types of soil.

Permeability index, PI

Doneen (1964) has classified the irrigation water quality into three classes based on permeability-class I, II and III and all the samples come under Class II and suitable for irrigation in all types of soil.

Kelley’s index, KI

Kelley (1940) and Paliwal (1967) proposed the suitability of irrigation water quality based on the sodium concentration against calcium and magnesium. The water is suitable for irrigation if KI value is<1; water with KI value of>1 is considered as of poor quality for irrigation and>2 KI makes the water unsuitable for irrigation. Both cation exchange and reverse ion exchange are encouraged by aquifer materials and land use practices, in waterlogged area, marshy/swampy land, creek, mud/tidal flat represented by Montmorillonite clays, which lead to the release of Na or Ca into groundwater and adsorption of Ca or Na, respectively (Alison, et al. 1992). About 82% KI values are below 1 indicating the water in the study area is suitable for irrigation.

Citation: Joji VS. Major ion chemistry and identification of hydrogeochemical processes of evolution of ground water in a small tropical coral Island of Minicoy, Union Territory of Lakshadweep, India. MOJ Eco Environ Sci. 2016;1(2):40–48. DOI: 10.15406/mojes.2016.01.00008
Table 2 Depth to the water table (mgl) data of monitoring wells in Minicoy island

Period of monitoring	T1- zainaba manzil South bandaram	T3- korimaug South bandaram	T4- govt quarter no.93/B, 50 Acre	T5- quarter no.29/c, 50 Acre	T7- holida complex bada village	T8- valum augothi amina bada village	T10- RO plant well near PWD office						
FN	AN	AN	AN	AN									
01.02.2010	0.73	0.69	0.95	0.89	1.03	0.96	0.86	0.82	0.99	0.93	1.72	1.6	1.45
08.02.2010	0.76	0.62	0.96	0.97	1.11	1.05	0.93	0.81	0.85	0.76	1.73	1.52	1.53
15.02.2010	0.78	0.71	0.94	0.81	0.93	0.88	0.78	0.63	0.88	0.83	1.52	1.42	1.44
22.02.2010	0.71	0.67	1.72	1	1.08	1.03	0.94	0.91	1.04	0.97	1.71	1.52	1.52

Table 3 Chemical analysis data of ground water in Minicoy

| Pre Monsoon 2010 | pH | EC | TH | Ca | Mg | Na | K | CO₂ | HCO₃⁻ | Cl | SO₄²⁻ | NO₃⁻ | F | SAR | RSC | TDS | %Na |
|------------------|----|----|----|----|----|----|----|-----|------|----|-------|------|----|-----|-----|-----|-----|-----|
| 1 | 8.53 | 1720 | 410 | 92 | 44 | 202 | 48 | 60 | 500 | 185 | 97 | 81 | 0.56 | 4.33 | 1.98 | 1030 | 54.91 |
| 2 | 8.22 | 950 | 215 | 56 | 18 | 95 | 25 | 0 | 256 | 107 | 49 | 77 | 0.53 | 2.82 | -0.08 | 556 | 52.7 |
| 3 | 7.97 | 2130 | 440 | 92 | 51 | 275 | 58 | 0 | 683 | 298 | 117 | 79 | 0.39 | 5.7 | 2.4 | 1312 | 60.44 |
| 4 | 8.06 | 592 | 215 | 64 | 13 | 34 | 5 | 0 | 299 | 39 | 25 | 8.5 | 0.28 | 1.01 | 0.63 | 338 | 27.37 |
| 5 | 8.38 | 798 | 280 | 84 | 17 | 50 | 11 | 6 | 293 | 60 | 27 | 73 | 0.16 | 1.3 | -0.6 | 472 | 30.48 |
| 6 | 8.23 | 1770 | 390 | 112 | 27 | 214 | 26 | 0 | 537 | 185 | 91 | 150 | 0.37 | 4.7 | 0.98 | 1074 | 56.04 |
| 7 | 7.92 | 1270 | 340 | 96 | 24 | 106 | 11 | 0 | 342 | 128 | 62 | 136 | 0.52 | 2.5 | -1.17 | 735 | 41.92 |
| 8 | 7.37 | 1095 | 265 | 68 | 23 | 55 | 14 | 0 | 415 | 67 | 40 | 21 | 0.6 | 1.47 | 1.51 | 496 | 34.19 |
| 9 | 7.67 | 920 | 305 | 86 | 22 | 63 | 10 | 0 | 378 | 99 | 43 | 47 | 0.86 | 1.57 | 0.09 | 560 | 32.89 |
| 10 | 7.19 | 1369 | 400 | 108 | 32 | 108 | 17 | 0 | 488 | 185 | 87 | 7.3 | 0.85 | 2.34 | -0.03 | 789 | 38.97 |
| 11 | 7.48 | 1785 | 630 | 106 | 89 | 152 | 4 | 0 | 726 | 288 | 95 | 3.9 | 0 | 2.63 | -0.72 | 1101 | 34.7 |
| Min | 7.19 | 592 | 280 | 64 | 13 | 34 | 4 | 0 | 293 | 39 | 25 | 3.9 | 0 | 1.01 | -1.17 | 338 | 27.37 |
| Max | 8.53 | 2130 | 630 | 112 | 89 | 214 | 48 | 60 | 726 | 288 | 97 | 150 | 0.86 | 4.33 | 1.98 | 1312 | 60.44 |
| Mean | 8 | 1309 | 354 | 88 | 33 | 123 | 21 | 6 | 447 | 149 | 67 | 62 | 1 | 3 | 0.5 | 769 | 42 |
| SD | 0.4 | 488.7 | 120 | 19 | 21.9 | 78 | 18 | 18 | 156.5 | 87.7 | 32 | 50.4 | 0.2 | 1.5 | 1.2 | 317.1 | 11.7 |
| BIS | 8.5 | 750 | 300 | 75 | 30 | NR | NR | NR | 500 | 250 | 200 | 45 | 1 |
Table 4 Different parameters of pre monsoon water samples

Well Nos	Cl (−)	SO₄ (−)	HCO₃⁻	Base Exchange Index, (r₁)	Base Exchange Index, (r₂)	Na/Cl	Ca/Mg	Chloroalkali Indices for Cations, CAI-1	Chloroalkali Indices for Anions, CAI-2
1	5.22	2.02	8.2	6.2	2.37	1.09	1.27	-0.92	-0.35
2	3.02	1.02	4.2	1.17	1.72	0.89	1.89	-0.58	-0.27
3	8.41	2.44	11.2	8.51	2.07	0.92	1.1	-0.6	-0.34
4	1.1	0.52	4.9	-0.63	0.98	0.87	2.99	-0.46	-0.09
5	1.69	0.56	4.8	-0.84	1.36	0.83	3	-0.45	-0.11
6	5.22	1.9	8.8	6.55	2.51	1.16	2.52	-0.91	-0.36
7	3.61	1.29	5.61	1.81	0.99	0.83	2.43	-0.35	-0.14
8	1.89	0.83	6.8	0.12	1.03	0.82	1.8	-0.45	-0.11
9	2.79	0.9	6.2	-0.38	0.23	0.64	2.38	-0.07	-0.03
10	5.22	1.81	8	1.82	-0.05	0.58	2.05	0.02	0.01
11	8.12	1.98	11.9	2.5	-0.72	0.53	0.72	0.17	0.1
Mean	4.21	1.39	7.33	2.44	1.13	0.83	2.01	-0.42	-0.15
Min	1.1	0.52	4.2	-0.84	-0.72	0.53	0.72	-0.92	-0.36
Max	8.41	2.44	11.9	8.51	2.51	1.16	3	0.17	0.1
SD	2.47	0.66	2.57	3.22	1.02	0.19	0.75	0.35	0.16

(All Concentration, meq/l)

Table 5 Methodology adopted for computations of irrigation suitability

	Formula	Range	Classification	Reference
EC, μS/cm at 25°C	EC, μS/cm at 25°C	<250	Excellent	Raghunath¹⁵
		250-750	Good	
		750-2000	Permissible	
		2000-3000	Doubtful	
		>3000	Unsuitable	
		<10	Excellent	Richards
		10–18	Good	
	SAR=Na/(Ca+Mg)/2	18–26	Doubtful	
		>26	Unsuitable	
		<20	Excellent	Raghunath¹⁵
		20–40	Good	
	%Na=((Na+K)/(Ca+Mg+Na+K))*100	40–60	Permissible	
		60–80	Doubtful	
		> 80	Unsuitable	
	PI=((Na+√(HCO₃⁻))/(Ca+Mg+Na))*100	>75	Class I	Durfer²⁸
		25–75	Class II	
		<25	Class III	
		>	Unsuitable	
	KI=Na/Ca+Mg	2-Jan	Poor	Kelley
		<1	Suitable	
	SSP=Na*100/(Ca+Mg+Na)	>50	Unsuitable	Khodapanah
		< 50	suitable	
	MR=(Mg*100)/(Ca+Mg)	>50	Unsuitable	Lloyd and Heathcote
		< 50	suitable	

Citation: Joji VS. Major ion chemistry and identification of hydrogeochemical processes of evolution of ground water in a small tropical coral Island of Minicoy, Union Territory of Lakshadweep, India. MOJ Eco Environ Sci. 2016;1(2):40–48. DOI: 10.15406/mojes.2016.01.00008
Table 6 Quality parameters of Pre monsoon water samples determined for Irrigation Suitability

#	Location	SAR	%Na	KI	P I	SSP	EC, µS/cm	Mg Ratio
1	Lom Bomauge	4.33	54.91	1.07	68.49	51.65	1720	0.79
2	Dondale Kagothi	2.82	52.7	0.96	73.46	49.1	950	0.53
3	Fallisery Mosque	5.7	60.44	1.36	73.74	57.61	2130	0.91
4	Juma Masjid	1.01	27.37	0.35	64.23	25.72	592	0.33
5	Aoukhorathm Manikage	1.3	30.48	0.39	56.16	27.97	798	0.33
6	Kibula Mosque	4.7	56.04	1.19	71.65	54.33	1770	0.4
7	Odivalu Mosque	2.5	41.92	0.68	61.29	40.49	1270	0.41
8	Badu Village	1.47	34.19	0.45	65.07	31.12	1095	0.56
9	New Govt. Quarter	1.57	32.89	0.45	59.08	30.95	920	0.42
10	Dak Bungalow	2.34	38.97	0.58	59.11	36.89	1369	0.49
11	LPWD PWSW	2.63	34.7	0.52	52.3	34.36	1785	1.38
Mean		2.76	42.24	0.73	64.05	40.02	1309	0.6
Min		1.01	27.37	0.35	52.3	25.72	592	0.33
Max		5.7	60.44	1.36	73.74	57.61	2130	1.38
SD		1.53	11.71	0.36	7.2	11.34	488.71	0.32

Figure 2 Modified piper diagram.

Figure 3 Plot of Ca+Mg and SO4+HCO3 pre-monsoon.

Figure 4A Gibb’s plots for cation, 2010.

Figure 4B Gibbs plots for anion 2010.
Major ion chemistry and identification of hydrogeochemical processes of evolution of ground water in a small tropical coral Island of Minicoy, Union Territory of Lakshadweep, India

Conclusion

Major ion chemistry and identification of Hydro geochemical processes of groundwater in the small coral island of Minicoy, Union Territory of Lakshadweep, India has been examined. The Minicoy Island is of coral origin (a typical atoll) and ground water occurs under phreatic condition floats as thin lens over saline water and is abstracted mainly by open dug wells. The DWT in the island varies from 0.62 to 1.75mbgl and depth of the wells varies from less than a meter to about 6mbgl and is controlled by tides when compared to the groundwater recharge and draft. The ground water in the island is generally alkaline with few exceptions. The electrical conductivity ranges from 592 to 2130 micromhos/cm at 25°C. The factors affecting the quality are rainfall, tides, ground water recharge and draft, human and animal wastes, oil spills and fertilizers. The EC varies from 592 to 2130 micromhos/cm at 25°C and the ground water is generally alkaline and under Na-SO$_4$$_2$-type and shallow meteoric percolation type. The groundwater samples of different areas are of Ca- HCO$_3$-type and Na- HCO$_3$- Type (Base Exchange water type) and among cations Ca$^+$ and Na$^+$ and anions HCO$_3$- and Cl$^-$ dominate the ionic concentration. The hydrochemistry is mainly controlled by water-rock interaction, evaporation and aquifer material.

Acknowledgements

The author is grateful to Sh. Alok Kumar Dube, Regional Director, Rajiv Gandhi National Ground Water Training and Research Institute, Govt. of India, Raipur for all the encouragement given during the course of the work. Thanks are also due to Kumari Himaganga Joji, daughter of the author for the data entry and editing of the manuscript.

Conflict of interest

The author declares no conflict of interest.

References

1. Kura NU, Ramli MF, Sulaiman WN, et al. Evaluation of factors influencing the groundwater chemistry in a small tropical Island of Malaysia. Int J Environ Res Public Health. 2013;10(5):1861–1881.
2. Aris AZ, Abdullah MH, Ahmed A, et al. Controlling factors of groundwater hydrochemistry in a small Island’s aquifer. International Journal of Environmental Science & Technology. 2007;4(4):441–450.
3. Belkhira L, Mounib L, Boudoukh A. Geochemical evolution of groundwater in an alluvial aquifer: Case of El Eulma aquifer, East Algeria. Journal of African Earth Sciences. 2012;66-67:46–55.
4. Arslan H. Application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey. Environ Monit Assess. 2013;185(3):2439–2452.
5. Kumar G. Assessment of groundwater quality for Veppanthattai taluk, Perambalur district, Tamil Nadu using Remote Sensing and GIS techniques. International Journal of Recent Scientific Research. 2015;6:3142–3146.
6. Barker JA. Freshwater - Saltwater relation workshop on water resources of small islands. Suva, Fiji: 1984.
7. Mondal NC, Singh VS, Sarwade DV, et al. Appraisal of groundwater resources in an island condition. *Journal of Earth System Science*. 2009;118(3):217–229.

8. APHA. *Standard methods for the examination of water and waste water*. 19th ed. Washington, USA: American Public Health Association; 1995.

9. Fritz JS, Yamamura SS. Rapid micro titration of sulphate. *Analytical Chemistry*. 1995;27(9):1461–1464.

10. Haartz JC, Eller PM, Hornung RW. Critical parameters in barium per chloride, Thorin titration of sulphate. *Analytical Chemistry*. 1979;51(13):2293–2295.

11. Huh Y, Tsoi MY, Zaitiser A, et al. The fluvial geochemistry of the river of Eastern Siberia, 1. Tributaries of Lena river drainage the sedimentation platform of the Siberia Craton. *Geochimica et Cosmochimica Acta*. 1998;63(1/8):1657–1676.

12. UNESCO. *Hydrology and water resources of Small Island. A Practical Guide*. Studies and Reports on Hydrology No.49, Paris: UNESCO; 1991.

13. Soltan ME. Evaluation of groundwater quality in Dakhla Oasis (Egyptian Western Desert). *Environmental Monitoring and Assessment*. 1999;57(2):157–168.

14. Soltan ME. Characterization, classification and evaluation of some groundwater samples in Upper Egypt. *Chemosphere*. 1998;37(4):735–747.

15. Raghunath HM. *Groundwater*. Wiley; 1982, 456 p.

16. Gopinath G, Seralathan P. Chemistry of ground water in the laterite formation of Muvattupuzha river basin, Kerala. *Journal of the Geological Society of India*. 2006;68:705–714.

17. Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved leads. *American Journal of Science*. 1987;287(5):401–428.

18. Chadha DK. A proposed new diagram for geochemical classification of Natural waters and Interpretation of chemical data. *Hydrogeology Journal*. 1999;7(5):431–439.

19. Gosselin CD, Edwin HF, Flowerday C. The complex Dakota aquifer: Managing groundwater in Nebraska; 2003.

20. May AL, Loucks MD. Solute and isotope geochemistry and groundwater flow in the Central Wasatch Range, Utah. *Journal of Hydrology*. 1995;170(1-4):795–840.

21. Elango L, Kannan R, Senthil KM. Major ion chemistry and identification of Hydrogeochemical processes of groundwater in a part of Kancheepuram district. *Environmental Geosciences*. 2003;1(4):157–166.

22. Gibbs RJ. Mechanisms controlling World’s Water chemistry. *Science*. 1970;170(3962):1088–1090.

23. Beck BF, Asmussen L, Leonard RS. Relationship of geology, physiography, agricultural land use and groundwater quality in south-west Georgia. *Ground Water*. 1985;23(5):627–634.

24. Schoeller H. Qualitative evaluation of groundwater resources. *In Methods and techniques of groundwater investigation and development, Water Research*. India: UNESCO; 1967, p. 44–52.

25. McIntosh JC, Walter LM. Palaeowater in Silurian-Devonian carbonate aquifers: Geochemical evolution of groundwater in the great lakes region since late Pleistocene. *Geochimica Cosmochimica Acta*. 2006;70:2454–2479.

26. Srty JCV. *Groundwater chemical quality in river basins, hydrogeochemical facies and hydrogeochemical modeling, in Lecture notes-refresher course conducted by school of earth sciences*. India: Bharathidasan University; 1994.

27. Banagar KS, Tiwari SC, Vermaudu SK, et al. Quality of groundwater used for irrigation in Ujjain district of Madhya Pradesh, India. *J Environ Sci Eng*. 2008;50(3):179–186.

28. Durfer CM, Backer E. *Public water supplies of the three largest cities in the U.S*. USGS Water supply paper No, 1812; 1964. 364 p.

29. Pophare MA, Dewalkar SM. Groundwater quality in eastern and south eastern parts of Rajura Tehsil, Chendrapur district, Maharashtra. *Gondwana Geological Magazine*. 2007;11:119–129.