Thermodynamics of the frustrated ferromagnetic spin-1/2 Heisenberg chain

J. Richter¹, M. Härteil¹, D. Ihle² and S.-L. Drechsler³

¹ Institut für Theoretische Physik, Universität Magdeburg, D-39016 Magdeburg, Germany
² Institut für Theoretische Physik, Universität Leipzig, D-04109 Leipzig, Germany
³ Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, D-01171 Dresden, Germany
E-mail: johannes.richter@physik.uni-magdeburg.de

Abstract. We studied the thermodynamics of the one-dimensional J_1-J_2 spin-1/2 Heisenberg chain for ferromagnetic nearest-neighbor bonds $J_1 < 0$ and frustrating antiferromagnetic next-nearest-neighbor bonds $J_2 > 0$ using full diagonalization of finite rings and a second-order Green-function formalism. Thereby we focus on $J_2 < |J_1|/4$ where the ground state is still ferromagnetic, but the frustration influences the thermodynamic properties. We found that their critical indices are not changed by J_2. The analysis of the low-temperature behavior of the susceptibility χ leads to the conclusion that this behavior changes from $\chi \propto T^{-2}$ at $J_2 < |J_1|/4$ to $\chi \propto T^{-3/2}$ at the quantum-critical point $J_2 = |J_1|/4$. Another effect of the frustration is the appearance of an extra low-T maximum in the specific heat $C_v(T)$ for $J_2 \gtrsim |J_1|/8$, indicating its strong influence on the low-energy spectrum.

Introduction: In low-dimensional frustrated quantum magnets thermal and quantum fluctuations strongly influence the low-temperature physics [1,2]. Special attention has been paid to one-dimensional (1D) J_1-J_2 quantum Heisenberg magnets, see Ref. [3] and references therein. Recent experimental studies have shown that edge-shared chain cuprates, such as LiVCuO$_4$, Li(Na)Cu$_2$O$_2$, Li$_2$ZrCuO$_4$, and Li$_2$CuO$_2$ [4–13], represent a family of quantum magnets for which the 1D J_1-J_2 Heisenberg model is a good starting point for a theoretical description. The above listed compounds are quasi-1D frustrated spin-1/2 magnets with a ferromagnetic (FM) nearest-neighbor (NN) in-chain coupling $J_1 < 0$ and an antiferromagnetic (AFM) next-nearest-neighbor (NNN) in-chain coupling $J_2 > 0$.

The model: The Hamiltonian of the 1D J_1-J_2 Heisenberg ferromagnet is given by

$$H = J_1 \sum_{\langle i,j \rangle} S_i S_j + J_2 \sum_{[i,j]} S_i S_j,$$

where the first sum runs over the NN bonds and the second sum over the NNN bonds. Henceforth we set $J_1 = -1$. For the model [11] a quantum critical point at $J_2 = 0.25$ exists where the FM ground state (GS) gives way for a singlet GS with spiral correlations for $J_2 > 0.25$ [14–16]. For most of the edge-shared chain cuprates J_2 is large enough to realize such a spiral GS. However, several materials considered as model systems for 1D spin-1/2 ferromagnets, such as TMCuC[(CH$_3$)$_4$NCuCl$_3$] [17] and p-NPNN (C$_{13}$H$_{16}$N$_3$O$_4$) [18], might have also a weak frustrating NNN interaction $J_2 < 0.25$. Moreover, recent studies [13] lead to the conclusion that Li$_2$CuO$_2$ is a quasi-1D spin-1/2 system with a dominant FM J_1 and weak frustrating AFM...
Here we focus on the parameter region $J_2 \leq 0.25$, i.e. the GS is ferromagnetic. Only at $J_2 = 0.25$ the FM GS multiplet is degenerate with a spiral singlet GS [14–16]. On the other hand, the frustrating J_2 influences the low-energy excitations, in particular, if J_2 is close to the quantum critical point. Hence, the frustration may have a strong effect on the low-T thermodynamics. We mention that previous studies [19, 20] of the thermodynamics of the 1D J_1–J_2 model with FM J_1 did not consider values of J_2 near the quantum critical point $J_2 \lesssim 0.25$.

Results: To study the thermodynamic properties we use the full exact diagonalization (ED) of finite rings of up to $N = 22$ lattice sites, complemented by data obtained by a spin-rotation-invariant second-order Green-function method (RGM) [21–24]. Note that by contrast to ED the RGM is limited to values $J_2 \leq 0.2$ [24] but yields results for $N \to \infty$, that allows the calculation of the correlation length by the RGM. Here we will present data for the spin-spin correlation functions $\langle S_0 S_n \rangle$, the uniform static spin susceptibility χ, and the specific heat C_v. For the discussion of the correlation length of the model (1), see Ref. [24]. For the unfrustrated model we will compare our results with available Bethe-ansatz data [25] and transfer-matrix renormalization group (TMRG) results [19].

The temperature dependence of the spin correlation functions $\langle S_0 S_n \rangle$ is shown for $n = 1$ (NN) and $n = 10$ for various J_2 in Fig. 1. With increasing frustration the correlation functions decrease, where the further-distant correlators decay much stronger than the NN correlator. Near and at the quantum critical point the large-distance correlator $\langle S_0 S_{10} \rangle$ vanishes already at $T \gtrsim 0.05$. Interestingly, for $J_2 = 0.2$, 0.24, and 0.25 the correlator $\langle S_0 S_{10} \rangle$ changes the sign and goes through a minimum. This behavior is not affected by finite-size effects, e.g., the correlators $\langle S_0 S_8 \rangle$ for $N = 16, 20$ and $\langle S_0 S_6 \rangle$ for $N = 12, 16, 20$ also change the sign and go through a minimum for $J_2 = 0.2$, 0.24, and 0.25.

Next we discuss the low-temperature properties of the susceptibility $\chi = \lim_{T \to 0} d\langle S_z \rangle/dh$. Due to the FM GS χ diverges at $T \to 0$. Using Bethe-ansatz for $J_2 = 0$ the critical behavior has been determined as $\chi \propto T^{-2}$ [25]. Using the RGM, recently it has been confirmed that the critical indices for the susceptibility and the correlation length, $\gamma = 2$ and $\nu = 1$, respectively, are not changed by frustration for $J_2 < 0.25$. However, at the quantum critical point $J_2 = 0.25$ a change of the low-temperature physics is expected [1]. To study that question we consider the

\begin{figure}
\centering
\includegraphics[width=0.45\textwidth]{fig1}
\caption{Spin correlation function $\langle S_0 S_1 \rangle$ (NN) and $\langle S_0 S_{10} \rangle$ calculated by ED for $N = 20$ sites.}
\end{figure}

\begin{figure}
\centering
\includegraphics[width=0.45\textwidth]{fig2}
\caption{χT^2 versus \sqrt{T} calculated by ED for $N = 22$ (thick lines – calculated data, thin lines – extrapolation to $T \to 0$, see Eq. (2) and text) and RGM (circles) as well as Bethe-ansatz data (squares) for $J_2 = 0$ from Ref. [25]. The inset shows the coefficient $y_0 = \lim_{T \to 0} \chi T^2$ versus J_2.}
\end{figure}
In Fig. 2 we plot $\chi T^2 = y_0 + y_1 \sqrt{T} + y_2 T + O(T^{3/2})$ \label{eq:chiT2}
related to the existence of the FM critical point at $T = 0$. It has been derived for $J_2 = 0$ in Ref. [25]. For the frustrated system 1 the coefficients y_0, y_1, and y_2 depend on J_2. In Fig. 2 we plot χT^2 versus \sqrt{T}. We find a good agreement of the ED data for χT^2 with Bethe-ansatz results down to quite low temperature T. The RGM results for χT^2 deviate slightly from the Bethe-ansatz results for finite T, but approach the Bethe-ansatz data for $T \to 0$, see also Ref. [22]. The behavior of the leading coefficient y_0 and the next-order coefficient y_1 can be extracted from the results for χT^2 by fitting them to Eq. \ref{eq:chiT2}. For the RGM we use data points up to a cut-off temperature $T = T_{cut} = 0.005$. To deal with finite-size effects in the ED data at very low T, we use the specific heat per site $C_v(T)$, see below, to determine that temperature T_{ED} down to which the first four digits of $C_v(T)$ for $N = 20$ and $N = 22$ coincide. Then we fit the ED data in the interval $T_{ED} \leq T \leq T_{ED} + T_{cut}$ to Eq. \ref{eq:chiT2}. Note that T_{ED} becomes smaller for increasing J_2, we find e.g., $T_{ED} = 0.22, 0.13, 0.09, 0.04, 0.03, 0.02$ at $J_2 = 0, 0.1, 0.15, 0.2, 0.24, 0.25$, respectively. For $J_2 = 0$ we found $y_0 = 1/24$ ($y_0 = 0.0418$) for the RGM (ED), which agrees with the Bethe-ansatz results of Ref. [25]. [Note the different definitions of χ in our paper and in Ref. [25].] Including frustration $J_2 > 0$ we observe a linear decrease of y_0 with J_2 down to zero at $J_2 = 0.25$ given by
\begin{equation}
y_0 = (1 - 4J_2)/24, \label{eq:y0}
\end{equation}

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{fig3}
\caption{ED data for the specific heat for $N = 22$. For comparison we show TMRG data (squares) from Ref. [19] for $J_2 = 0$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{fig4}
\caption{Finite-size dependence of the specific heat for $J_2 = 0.22$. The inset shows C_v^p and T^p versus J_2, see text.}
\end{figure}

cf. the inset of Fig. 2. The vanishing of y_0 at $J_2 = 0.25$ indicates the change of the low-T behavior of the physical quantities at the quantum critical point [1]. Indeed, a polynomial fit according to $y_1 = a_y + b_y J_2 + c_y J_2^2$ yields the finite value $y_1 \approx 0.05 (0.04)$ for RGM (ED). Hence, our data provide evidence for a change of the low-T behavior of χ from $\chi \propto T^{-2}$ at $J_2 < 0.25$ to $\chi \propto T^{-3/2}$ at the quantum critical point $J_2 = 0.25$. For a a similar discussion of the correlation length ξ, see Ref. [24], where it was found that the low-T behavior of ξ changes from $\xi \propto T^{-1}$ at $J_2 < 0.25$ to $\xi \propto T^{-1/2}$ at $J_2 = 0.25$.

In Fig. 3 we present ED results for the specific heat C_v. For $J_2 = 0$ we found a broad maximum at $T \approx 0.332$ and a steep decay to zero starting at about $T = 0.05$ in accord with the TMRG [19]. For $J_2 \gtrsim 0.125$ the specific heat exhibits a minimum located at around $T = 0.2$, and two maxima, namely a high-T maximum at around $T = 0.6$ and an additional low-T maximum at $T < 0.1$. If J_2 approaches $J_2 = 0.25$, a further quite sharp peak at very low T appears,
that is, however, strongly size dependent, see Fig. 4. From Fig. 4 it is obvious that the extra low-\(T\) finite-size peak behaves monotonously with \(N\). Hence, we have performed a finite-size extrapolation to \(N \to \infty\) of the height \(C^p\) and the position \(T^p\) of the peak in \(C_v(T)\) using the formula \(a(N) = \alpha_\infty + a_1/N^2 + a_2/N^4\). The extrapolated values \(C^p_\infty\) and \(T^p_\infty\) are shown in the insets of Fig. 4. Obviously, \(C^p_\infty > 0\) even near the quantum critical point \(J_1 = 0.25\), where \(C^p_\infty \approx 0.05\). On the other hand, \(T^p_\infty\) decreases with \(J_2\) and becomes very small near \(J_2 = 0.25\). This behavior suggests that a characteristic steep decay of \(C_v(T)\) down to zero starts at very low \(T\) when approaching \(J_2 = 0.25\).

Summary: We discussed the thermodynamics of frustrated FM spin-1/2 \(J_1-J_2\) Heisenberg chains and found as prominent features (i) a change of the low-\(T\) critical behavior at the quantum critical point \(J_2 = \left|J_1\right|/4\), (ii) and an additional low-\(T\) maximum in the specific heat for \(\left|J_1\right|/4 > J_2 \gtrsim \left|J_1\right|/8\).

Acknowledgments

This work was supported by the DFG (projects RI615/16-1 and DR269/3-1). One of us (S.-L. D.) is indebted to V. Ya. Krivnov for useful discussions.

References

[1] Sachdev S 1999 *Quantum Phase Transitions* (Cambridge University Press, Cambridge)

[2] Quantum Magnetism ed Schollwöck U, Richter J, Farnell D J J and Bishop R F, Lecture Notes in Physics 645 (Springer-Verlag, Berlin, 2004).

[3] Mikeska H-J and Kolezhuk A K 2004 in *Quantum Magnetism* ed Schollwöck U, Richter J, Farnell D J J and Bishop R F, Lecture Notes in Physics 645 (Springer, Berlin) p. 1.

[4] Gibson B J, Kremer R K, Prokofiev A V, Assmus W and McIntyre G J 2004 *Phys. Rev. B* 70 020406(R)

[5] Matsuda T, Zheludev A, Bush A, Markina M and Vasiliev A 2004 *Phys. Rev. Lett.* 92 177201

[6] Gippius A A, Morozova EN, Moskvin A S, Zalessky A V, Bush A A, Baenitz M, Rosner H and Drechsler S-L 2004 *Phys. Rev. B* 70 020406(R)

[7] M. Enderle et al. 2005 *Europhys. Lett.* 70 237

[8] Drechsler S-L, Málek J, Richter J, Moskvin A S, Gippius A A and Rosner H. 2005 *Phys. Rev. Lett.* 94 039705

[9] Drechsler S-L, Richter J, Gippius A A, Vasiliev A, Moskvin A S, Málek J, Prots Y, Schnelle W and Rosner H 2006 *Europhys. Lett.* 73 83

[10] Drechsler S-L, et al. 2007 *J. Magn. Magn. Mater.* 316 306

[11] Park S, Choi Y J, Zhang C L and Cheong S.-W. 2007 *Phys. Rev. Lett.* 98 057601

[12] Drechsler S-L et al. 2007 *Phys. Rev. Lett.* 98 077202

[13] Málek J, Drechsler S-L, Nitzsche U, Rosner H and Eschrig H 2008 *Phys. Rev. B* Rapid. Com. in press

[14] Bader H P and Schilling R 1979 *Phys. Rev. B* 20 3556

[15] Hamada T, Kane J, Nakagawa S and Natsume Y 1989 *J. Phys. Soc. Jpn.* 58 3869.

[16] Dmitriev D V, Krvinov V Ya and Richter J 2007 *Phys. Rev. B* 75 014424

[17] Landee C P and Willett R D 1979 *Phys. Rev. Lett.* 43 463; Dupas C, Renard J P, Seiden J and Cheikh-Rouhou A 1982 *Phys. Rev. B* 25 3261

[18] Takahashi M, Turek P, Nakazawa Y, Tamura M, Nozawa K, Shiomi D, Ishikawa M and Kinoshita M 1991 *Phys. Rev. Lett.* 67 746

[19] Lu H T, Wang Y J, Qin Shaojun and Xiang T 2006 *Phys. Rev. B* 74 134425

[20] Heidrich-Meisner F, Honecker A and Vekua T 2006 *Phys. Rev. B* 74 020403(R)

[21] Kondo J and Yamaji K 1972 *Prog. Theor. Phys.* 47 807; Shimahara H and Takada S 1991 *J. Phys. Soc. Jpn.* 60 2394; Winterfeldt S and Ihle D 1997 *Phys. Rev. B* 56 5535

[22] Suzuki F, Shibata N and Ishi C 1994 *J. Phys. Soc. Jpn.* 63 1539

[23] Yu W and Feng S 2000 *Eur. Phys. J. B* 13 265; Bernhard B H, Canals B and Lacroix C 2002 *Phys. Rev. B* 66 024422; Schmalfuß D, Richter J and Ihle D 2004 *Phys. Rev. B* 70 184412; Junger I, Ihle D, Richter J and Klümpfer A 2004 ibid. 104419; Schmalfuß D, Darradi R, Richter J, Schulenburg J and Ihle D 2006 *Phys. Rev. Lett.* 97 157201; Antsygina T N, Poltavskaya M I, Poltavsky I I and Chishko K A 2008 *Phys. Rev. B* 77 024430; Juhász Junger I, Ihle D, Bogacz L and Janke W 2008 ibid. 174411

[24] Härtel M, Richter J, Ihle D and Drechsler S-L 2008 *Phys. Rev. B* 78 174412

[25] Yamada M and Takahashi M 1986 *J. Phys. Soc. Jpn.* 55 2024