A Tensor Product of Kantorovich-Stancu Type Operators with Shifted Knots and their kth Order Generalization

Behar Baxhakua, Rahul Shuklab, P. N. Agrawalb

a Department of Mathematics, University of Prishtina, Prishtina, Kosovo
b Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India

Abstract. In this paper, we introduce a tensor product of the Stancu-Kantorovich type operators defined by Içöz [11]. The rate of convergence of these operators is obtained in terms of the modulus of continuity and the Peetre’s K-functional. Further, we consider a generalization of the above operators via Taylor’s polynomials and examine their approximation behavior. Some applications of these two dimensional generalized Stancu-Kantorovich type polynomials are also discussed. Finally, we present some numerical examples and illustrations to show the convergence behavior of the operators under study using MATLAB algorithms.

1. Introduction

For $f \in C(I)$, the space of all continuous functions on $I = [0, 1]$ with sup-norm, Stancu [15] proposed a sequence of polynomials

$$S_m^{(\alpha, \beta)}(f; x) = \sum_{j=0}^{m} f\left(\frac{j + \alpha}{m + \beta}\right)b_{m,j}(x),$$

where the Bernstein basis functions $b_{m,j}(x)$ are defined by

$$b_{m,j}(x) = \binom{m}{j} x^j (1-x)^{m-j}, \quad x \in I,$$

and showed that these polynomials converge to the function $f(x)$ uniformly in $x \in I$. It is obvious that whenever $\alpha = \beta = 0$, the operators defined by equation (1) reduce to the classical Bernstein operators defined by Bernstein [6]. Gadjiev and Ghorbanalizadeh [10] constructed Bernstein-Stancu type polynomials with shifted knots involving some non-negative real numbers θ and θ_i, $i = 1, 2, 3$, as

$$G_{m,\theta}^{(\alpha, \beta)}(f; x) = \left(\frac{m + \theta}{m}\right)^m \sum_{j=0}^{m} \Omega_{m,j}^{(\alpha, \beta)}(x)f\left(\frac{j + \theta_1}{m + \theta_2}\right).$$

2020 Mathematics Subject Classification. Primary 41A10, 41A25, 41A36, 41A63.

Keywords. Kantorovich operators, Lipschitz-type space, K-functional, Modulus of continuity

Received: 03 August 2020; Accepted: 21 October 2020

Communicated by Miodrag Spalević

Email addresses: behar.baxhaku@uni-pr.edu (Behar Baxhaku), rshukla@ma.iitr.ac.in (Rahul Shukla), pnappfma@gmail.com (P. N. Agrawal)
where the basis functions \(\Omega^{(0,\phi)}_{m,j}(x) \) are defined by
\[
\Omega^{(0,\phi)}_{m,j}(x) = \frac{m!}{j!(m+j)!} \frac{m+\phi_2}{m+\phi_1} (x - \phi_2) (m+\phi_2)^{m-j},
\]
(4)
\[x \in \left[\frac{\phi_2}{m+\phi_1}, \frac{m+\phi_2}{m+\phi_1} \right] \] and \(0 \leq \phi_3 \leq \phi_2 \leq \phi_1 \leq 1 \). It is obvious that whenever \(\phi = \phi_i = 0 ; i = 1, 2, 3 \), the operators defined by equation (1.3) include the classical Bernstein operators. Wang et al. [17] obtained some direct results and a converse result in approximation by the polynomials defined in (3). To make it possible to approximate the Lebesgue integrable functions on \(I \), Kantorovich [12] proposed a modification of the Bernstein polynomials as
\[
K_m(f; x) = (m + 1) \sum_{j=0}^{m} b_{m,j}(x) \int_{t^1}^{t^2} f(t)dt.
\]
Inspired by the above idea, Icöz [11] introduced a Kantorovich variant of the Bernstein-Stancu type polynomials with shifted knots given by (3) as follows:
\[
k^{(0)}_{m,j}(f; x) = \frac{(m+\phi_1)^m}{m} (m+\phi_2)^{m+\phi_1+1} \sum_{j=0}^{m} \Omega^{(0,\phi)}_{m,j}(x) \int_{-\frac{m+\phi_1}{m+\phi_2}}^{1} \int_{-\frac{m+\phi_2}{m+\phi_1}}^{1} f(t_1, t_2)dt_1dt_2,
\]
(5)
where the basis functions \(\Omega^{(0,\phi)}_{m,j}(x) \) are defined in (4) and \(x \in \left[\frac{\phi_2}{m+\phi_1}, \frac{m+\phi_2}{m+\phi_1} \right] \). Evidently, in the particular case, \(\phi_i = \phi_j = 0 ; i = 1, 2, 3 \), the operators \(k^{(0)}_{m,j} \) reduce to the operators \(K_m \). The author [11] established some approximation results for the operators (5) in the continuous functions space with the aid of the usual modulus of continuity and the Peetre’s K-functional and also investigated the approximation properties of a \(k^{th} \) order generalization of these operators. For other contributions, in the direction of the above study, we refer the reader to (cf. [1], [3]-[5], [14] etc.).

In this article, we introduce the following tensor product of Kantorovich-Stancu type polynomials on the rectangle \(\square = \left[\frac{\phi_2}{m+\phi_1}, \frac{m+\phi_2}{m+\phi_1} \right] \times \left[\frac{\phi_3}{m+\phi_2}, \frac{m+\phi_3}{m+\phi_2} \right] \) as:
\[
\Omega^{(0,\phi)}_{n,m,j}(f; t_1, t_2; x, y) = \left(\frac{n+\phi_3}{m+\phi_2} \right)^m (n+\phi_3)^m (m+\phi_3+1)(m+\phi_3+1) \left(\frac{m+\phi_3}{m+\phi_2} \right)^n (m+\phi_3)^n \sum_{j=0}^{m} \Omega^{(0,\phi)}_{m,j}(x) \Omega^{(0,\phi)}_{n,j}(y) \int_{-\frac{m+\phi_1}{m+\phi_2}}^{1} \int_{-\frac{m+\phi_2}{m+\phi_1}}^{1} f(t_1, t_2)dt_1dt_2,
\]
(6)
where the basis functions \(\Omega^{(0,\phi)}_{n,m,j}(x) \) and \(\Omega^{(0,\phi)}_{n,m,j}(y) \) are as defined in (4).

We investigate the uniform convergence of these operators in the space \(C(I^2) \) where \(I^2 = I \times I \) and then determine the degree of convergence by these operators using the modulus of continuity and the Peetre’s K-functional. We also define a \(k^{th} \) order generalization of these operators to study the approximation of continuous functions having \(k^{th} \) order continuous partial derivatives on \(I^2 \) and present some applications of this study to bi-variate Bernstein type operators on a simplex. Finally, we validate the results of this paper by some graphs and error estimation tables using MATLAB.

2. Auxiliary results

In our future consideration, \(||\cdot||_{C(I^2)} \) denotes the sup-norm on \(I^2 \).

Lemma 2.1. Let \(e_i(t_1, t_2) = l_i^1 t_1^2 \), where \(i, j \in \mathbb{N} \cup \{0\} \). For \(x, y \in \Omega \), the Kantorovich type generalized Bernstein-Stancu operators \(\Omega^{(0,\phi)}_{n,m,j}(f; x, y) \), defined by (6), possess the following properties:

(i) \(\Omega^{(0,\phi)}_{n,m,j}(e_{i0}; x, y) = 1; \)
Following ([11], Thm.1), the proof of this lemma easily follows. Consequently, in view of Theorems 2 and 4 of [11], we are led to:

Lemma 2.2. For the operator \(R_{\theta, \phi}^{t_1, t_2}(f; x, y) \), following hold good:

(i) \(R_{m, n, \theta, \phi}^{t_1, t_2}(t_1 - x; x, y) = \frac{m+\phi}{m+\phi+1} x + \frac{\theta + \phi}{m+\phi+1} + \frac{1}{2(n+\theta+1)} \).

(ii) \(R_{m, n, \theta, \phi}^{t_1, t_2}(t_2 - y; x, y) = \frac{m+\phi}{m+\phi+1} y + \frac{\phi - \phi_2}{m+\phi+1} + \frac{1}{2(n+\theta+1)} \).

(iii) \(R_{m, n, \theta, \phi}^{t_1, t_2}((t_1 - x)^2; x, y) = \frac{1}{n+\theta+1}\left\{ x(\theta - \theta_1 - 1) - (\theta_2 - \theta_3 - 1) \right\} + \frac{(n+\theta)^2}{n} \left\{ x - \frac{\theta_1}{n+\theta} \right\} \left\{ x - \frac{\theta_2}{n+\theta} \right\} + \frac{1}{n+\theta+1} \).

Also, if \(\theta_2 - \theta_3 \geq 1 \) and \(\theta - \theta_1 \geq \theta_2 - \theta_3 \), we get

\[
\| R_{m, n, \theta, \phi}^{t_1, t_2}((t_1 - x)^2; x, y) \|_{C(\bar{\Omega})} \leq \frac{(\theta - \theta_1)^2 + \frac{n}{4} + 2}{(n + \theta + 1)^2};
\]

In the case \(\theta - \theta_1 < \theta_2 - \theta_3 \) such that \(\theta_2 - \theta_3 \geq 1 \), we obtain

\[
\| R_{m, n, \theta, \phi}^{t_1, t_2}((t_1 - x)^2; x, y) \|_{C(\bar{\Omega})} \leq \frac{(\theta_2 - \theta_3)^2 + \frac{n}{4} + 2}{(n + \theta + 1)^2}.
\]

(iv) \(R_{m, n, \theta, \phi}^{t_1, t_2}((t_2 - y)^2; x, y) = \frac{1}{m+\phi+1}\left\{ y(\phi - \phi_1 - 1) - (\phi_2 - \phi_3 - 1) \right\} + \frac{(m+\phi)^2}{m} \left\{ y - \frac{\phi_1}{m+\phi} \right\} \left\{ y - \frac{\phi_2}{m+\phi} \right\} - y(\phi - \phi_1 - 1) - (\phi_3 - \phi_2 + \frac{3}{2}).
\]

Also, if \(\phi_2 - \phi_3 \geq 1 \) and \(\phi - \phi_1 \geq \phi_2 - \phi_3 \), we get

\[
\| R_{m, n, \theta, \phi}^{t_1, t_2}((t_2 - y)^2; x, y) \|_{C(\bar{\Omega})} \leq \frac{(\phi - \phi_1)^2 + \frac{n}{4} + 2}{(m + \phi + 1)^2};
\]

In the case \(\phi - \phi_1 < \phi_2 - \phi_3 \) such that \(\phi_2 - \phi_3 \geq 1 \), we obtain

\[
\| R_{m, n, \theta, \phi}^{t_1, t_2}((t_2 - y)^2; x, y) \|_{C(\bar{\Omega})} \leq \frac{(\phi_2 - \phi_3)^2 + \frac{n}{4} + 2}{(m + \phi + 1)^2}.
\]
3. Rate of convergence by \(R_{n,m,d,\phi}^{\theta,\phi} (f; x, y) \)

In this section, we first give the following Korovkin type theorem on the convergence of \(R_{n,m,d,\phi}^{\theta,\phi} (f; x, y) \) to \(f(x, y) \).

Theorem 3.1. Let \(f \in C(I^2) \). Then

\[
\lim_{n,m \to \infty} \max_{(x,y) \in \Box} |R_{n,m,d,\phi}^{\theta,\phi} (f; x, y) - f(x, y)| = 0.
\]

Proof. Taking into consideration the equalities in Lemma 2.1, we obtain

\[
\lim_{n,m \to \infty} \max_{(x,y) \in \Box} |R_{n,m,d,\phi}^{\theta,\phi} (e_i; x, y) - e_i| = 0,
\]

for \((i, j) \in \{(0, 0), (1, 0), (0, 1)\}\). Further

\[
\lim_{n,m \to \infty} \max_{(x,y) \in \Box} |R_{n,m,d,\phi}^{\theta,\phi} (e_{20} + e_{02}; x, y) - x^2 - y^2| = 0.
\]

Let us define

\[
R_{n,m,d,\phi}^{\theta,\phi} (f; x, y) = \begin{cases} R_{n,m,d,\phi}^{\theta,\phi} (f; x, y) & \text{if } (x, y) \in \Box, \\ f(x, y) & \text{if } (x, y) \in I^2 \setminus \Box. \end{cases}
\]

Considering the above definition of the operators, we easily get

\[
\|R_{n,m,d,\phi}^{\theta,\phi} (f) - f\|_{C(I^2)} = \max_{(x,y) \in \Box} |R_{n,m,d,\phi}^{\theta,\phi} (f; x, y) - f(x, y)|.
\]

Now, using (7)-(8), we immediately get

\[
\lim_{n,m \to \infty} \|R_{n,m,d,\phi}^{\theta,\phi} (e_i) - e_i\|_{C(I^2)} = 0,
\]

for \((i, j) \in \{(0, 0), (1, 0), (0, 1)\}\) and

\[
\lim_{n,m \to \infty} \|R_{n,m,d,\phi}^{\theta,\phi} (e_{20} + e_{02}) - x^2 - y^2\|_{C(I^2)} = 0.
\]

Applying the two dimensional Korovkin’s type theorem (see [16]) to the sequence of operators \(R_{n,m,d,\phi}^{\theta,\phi} \), we obtain

\[
\lim_{n,m \to \infty} \|R_{n,m,d,\phi}^{\theta,\phi} (f) - f\|_{C(I^2)} = 0,
\]

for every continuous function \(f \in C(I^2) \). Therefore (9) gives

\[
\lim_{n,m \to \infty} \max_{(x,y) \in \Box} |R_{n,m,d,\phi}^{\theta,\phi} (f; x, y) - f(x, y)| = 0.
\]

This completes the proof. \(\Box \)

In order to discuss the next results, we recall some definitions of the modulus of continuity.
Definition 3.2. For \(f \in C(\Phi) \) and \(\delta > 0 \), the complete modulus of continuity is defined as

\[
\omega^{(c)}(f; \delta) = \sup \frac{\|f(t_1, t_2) - f(x, y)\|}{\sqrt{\|t_1 - x\|^2 + \|t_2 - y\|^2}} : (t_1, t_2), (x, y) \in \Phi.
\]

The partial moduli of continuity of \(f \) with respect to \(x \) and \(y \) is given by

\[
\omega^{(1)}(f; \delta) = \sup_{|x_1 - x_2| \leq \delta} \sup_{y \in \Phi} \|f(x_1, y) - f(x_2, y)\|
\]

and

\[
\omega^{(2)}(f; \delta) = \sup_{x \in \Phi} \sup_{|y_1 - y_2| \leq \delta} \|f(x, y_1) - f(x, y_2)\|
\]

respectively. We shall use the following property of the complete modulus of continuity:

\[
|f(t_1, t_2) - f(x, y)| \leq \omega^{(c)}(f; \delta) \left(1 + \frac{\sqrt{(t_1 - x)^2 + (t_2 - y)^2}}{\delta}\right).
\]

It is known that these definitions satisfy the properties analogous to the usual modulus of continuity. For more details, we refer to [2].

In the next result, we obtain an estimate of the rate of convergence in terms of the complete modulus of continuity for the operators defined by (6).

Theorem 3.3. Let \(f \in C(\Phi) \). If \(\theta_2 - \theta_3 \geq 1 \) and \(\phi_2 - \phi_3 \geq 1 \), then the following inequalities hold:

\[
\|\mathcal{R}_{n,m,\theta,\phi}^{\theta,\phi}(f) - f\| \leq \left\{\begin{array}{ll}
\frac{3}{2} \omega^{(c)}(f; \sqrt{\frac{4(\theta - \theta_1)^2 + n + 8}{(n + \theta_1 + 1)^2} + \frac{4(\phi - \phi_1)^2 + m + 8}{(m + \phi_1 + 1)^2}})}; & \text{if } \theta - \theta_1 \geq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \geq \phi_2 - \phi_3 \\
\frac{3}{2} \omega^{(c)}(f; \sqrt{\frac{4(\theta_2 - \theta_3)^2 + n + 8}{(n + \theta_3 + 1)^2} + \frac{4(\phi_2 - \phi_3)^2 + m + 8}{(m + \phi_3 + 1)^2}})}; & \text{if } \theta - \theta_1 < \theta_2 - \theta_3 \text{ and } \phi - \phi_1 < \phi_2 - \phi_3.
\end{array}\right.
\]

Proof. From the linearity and positivity of the operators (6), Cauchy-Schwarz inequality and Lemma 1, the property (12) of the complete modulus of continuity gives

\[
\|\mathcal{R}_{n,m,\theta,\phi}^{\theta,\phi}(f; x, y) - f(x, y)\| \leq \omega^{(c)}(f; \delta) \left(1 + \frac{\sqrt{\mathcal{R}_{n,m,\theta,\phi}^{\theta,\phi}(f; x, y)}}{\delta}\right).
\]

where \(\delta > 0 \). Therefore considering Lemma 2.2, for \(\theta - \theta_1 \geq \theta_2 - \theta_3 \geq 1 \) and \(\phi - \phi_1 \geq \phi_2 - \phi_3 \geq 1 \), we have

\[
\|\mathcal{R}_{n,m,\theta,\phi}^{\theta,\phi}(f) - f\| \leq \omega^{(c)}(f; \delta) \left(1 + \frac{\sqrt{\frac{4(\theta - \theta_1)^2 + n + 8}{(n + \theta_1 + 1)^2} + \frac{4(\phi - \phi_1)^2 + m + 8}{(m + \phi_1 + 1)^2}}}{\delta}\right).
\]

Now choosing \(\delta = \sqrt{\frac{4(\theta - \theta_1)^2 + n + 8}{(n + \theta_1 + 1)^2} + \frac{4(\phi - \phi_1)^2 + m + 8}{(m + \phi_1 + 1)^2}} \), we obtain

\[
\|\mathcal{R}_{n,m,\theta,\phi}^{\theta,\phi}(f) - f\| \leq \frac{3}{2} \omega^{(c)}(f; \sqrt{\frac{4(\theta - \theta_1)^2 + n + 8}{(n + \theta_1 + 1)^2} + \frac{4(\phi - \phi_1)^2 + m + 8}{(m + \phi_1 + 1)^2}}).
\]

Analogously, taking into account Lemma 2.2, for \(\theta - \theta_1 < \theta_2 - \theta_3 \) and \(\phi - \phi_1 < \phi_2 - \phi_3 \) such that \(\theta_2 - \theta_3, \phi_2 - \phi_3 \geq 1 \) (with \(\delta = \sqrt{\frac{4(\theta_2 - \theta_3)^2 + n + 8}{(n + \theta_3 + 1)^2} + \frac{4(\phi_2 - \phi_3)^2 + m + 8}{(m + \phi_3 + 1)^2}} \)), we are led to

\[
\|\mathcal{R}_{n,m,\theta,\phi}^{\theta,\phi}(f) - f\| \leq \frac{3}{2} \omega^{(c)}(f; \sqrt{\frac{4(\theta_2 - \theta_3)^2 + n + 8}{(n + \theta_3 + 1)^2} + \frac{4(\phi_2 - \phi_3)^2 + m + 8}{(m + \phi_3 + 1)^2}}).
\]
Theorem 3.4. Let $f \in C(I^2)$. If $\theta_2 - \theta_3 \geq 1$ and $\phi_2 - \phi_3 \geq 1$, then the following inequalities hold:

$$
\|R_{n,m,\theta,\phi}(f) - f\| \leq \left\{ \begin{array}{ll}
2(\omega^{(1)}(f; \sqrt{\frac{4(0-\theta_2)^2+n+8}{2(n+\theta_1+1)}}) + \omega^{(2)}(f; \sqrt{\frac{4(0-\theta_2)^2+n+8}{2(n+\theta_1+1)}})) & \text{if } \theta - \theta_1 \geq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \geq \phi_2 - \phi_3 \\
2(\omega^{(1)}(f; \sqrt{\frac{4(0-\theta_2)^2+n+8}{(n+\theta_1+1)^2}}) + \omega^{(2)}(f; \sqrt{\frac{4(0-\theta_2)^2+n+8}{(m+\phi_1+1)^2}})) & \text{if } \theta - \theta_1 < \theta_2 - \theta_3 \text{ and } \phi - \phi_1 < \phi_2 - \phi_3.
\end{array} \right.
$$

Proof. From linearity and monotonicity of the operators $R_{n,m,\theta,\phi}$ and the definitions of the partial moduli of continuity with respect to x and y as defined in (11), we have

$$
\left| R_{n,m,\theta,\phi}^{(i)}(f(t_1,t_2);x,y) - f(x,y) \right| \leq R_{n,m,\theta,\phi}^{(i)}(f(t_1-x);x,x) + R_{n,m,\theta,\phi}^{(i)}(f(t_2-y);y,y).
$$

Now using the property of modulus of continuity similar to (12) and the Cauchy-Schwarz inequality, for $\delta_1, \delta_2 > 0$, we get

$$
\left| R_{n,m,\theta,\phi}^{(i)}(f(t_1,t_2);x,y) - f(x,y) \right| \leq \left\{ \begin{array}{ll}
1 + \frac{1}{\delta_1} \left(R_{n,m,\theta,\phi}^{(i)}((t_1-x)^2;2x,2x) + \omega^{(1)}(f;\delta_1) \right) + \left(1 + \frac{1}{\delta_2} \left(R_{n,m,\theta,\phi}^{(i)}((t_2-y)^2;2y,2y) + \omega^{(2)}(f;\delta_2) \right) \right) & \text{for all } (x,y) \in I^2.
\end{array} \right.
$$

This proves the first assertion of our result. Similarly, for $\theta - \theta_1 < \theta_2 - \theta_3$ and $\phi - \phi_1 < \phi_2 - \phi_3$ such that $\theta_2 - \theta_3, \phi_2 - \phi_3 \geq 1$, using Lemma 2 with $\delta_1 = \frac{4(0-\theta_3)^2+n+8}{2(n+\theta_1+1)}$ and $\delta_2 = \frac{4(0-\theta_3)^2+n+8}{(m+\phi_1+1)}$, we immediately find the second assertion.

We study the rate of convergence of the bi-variate Bernstein-Stancu-Kantorovich type operators $R_{n,m,\theta,\phi}$ for elements of the Lipschitz class $Lip_\gamma(I^2)$, for $0 < \gamma \leq 1$. We recall the following definition:

Definition 3.5. A function $f \in C(I^2)$ is said to be in $Lip_\gamma(I^2)$ if

$$
|f(t_1,t_2) - f(x,y)| \leq M((t_1-x)^2 + (t_2-y)^2)^{\frac{\gamma}{2}},
$$

holds for all $(t_1, t_2), (x, y) \in I^2$.

Theorem 3.6. If $\theta_2 - \theta_3 \geq 1$ and $\phi_2 - \phi_3 \geq 1$, then for all $f \in Lip_\gamma(I^2)$, the following inequalities hold:

$$
\|R_{n,m,\theta,\phi}(f) - f\| \leq M \left\{ \begin{array}{ll}
\left(\frac{(\theta-\theta_1)^2+n+8}{(n+\theta_1+1)^2} + \frac{(\phi-\phi_1)^2+n+8}{(m+\phi_1+1)^2} \right)^{\frac{\gamma}{2}} & \text{for } \theta - \theta_1 \geq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \geq \phi_2 - \phi_3 \\
\left(\frac{(\theta-\theta_1)^2+n+8}{(n+\theta_1+1)^2} + \frac{(\phi-\phi_1)^2+n+8}{(m+\phi_1+1)^2} \right)^{\frac{\gamma}{2}} & \text{for } \theta - \theta_1 \geq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \geq \phi_2 - \phi_3.
\end{array} \right.
$$

where $0 < \gamma \leq 1$ and M is a positive constant.
Theorem 3.8. For all \(f \in \text{Lip}_M(\gamma) \), we have

\[
\left| \mathcal{R}_{n,m,	heta,\phi}^{\delta,\phi}(f(t_1,t_2);x,y) - f(x,y) \right| \leq M \mathcal{R}_{n,m,	heta,\phi}^{\delta,\phi}((t_1-x)^2 + (t_2-y)^2)^{\frac{\gamma}{2}}; x,y.
\]

Now, applying the Hölder’s inequality with \(p = \frac{2}{\gamma}, q = \frac{2}{2-\gamma} \) and Lemma 2.1, we obtain

\[
\left| \mathcal{R}_{n,m,	heta,\phi}^{\delta,\phi}(f(t_1,t_2);x,y) - f(x,y) \right| \leq M \left(\mathcal{R}_{n,m,	heta,\phi}^{\delta,\phi}((t_1-x)^2 + (t_2-y)^2); x,y \right)^{\frac{\gamma}{2}}.
\]

Finally using Lemma 2.2 and considering sup-norm, we reach to the desired result. \(\Box \)

Let \(C^2(\mathbb{R}^2) \) be the space of all continuous function \(f \) having continuous partial derivatives upto the second order. We consider the following norm on \(C^2(\mathbb{R}^2) \):

\[
\| f \|_{C^2(\mathbb{R}^2)} = \| f \|_{C(\mathbb{R}^2)} + \sum_{j=1}^{2} \left(\left\| \frac{\partial^2 f}{\partial x^2} \right\|_{C(\mathbb{R}^2)} + \left\| \frac{\partial^2 f}{\partial y^2} \right\|_{C(\mathbb{R}^2)} + \left\| \frac{\partial^2 f}{\partial x \partial y} \right\|_{C(\mathbb{R}^2)} \right).
\]

We use the following definition in our upcoming result.

Definition 3.7. Let \(f \in C^2(\mathbb{R}^2) \) and \(\delta > 0 \). The Peetre’s K-functional and second-order modulus of smoothness of \(f \) are given by

\[
K(f; \delta) = \inf_{g \in C(\mathbb{R}^2)} \left\{ \| f - g \|_{C(\mathbb{R}^2)} + \delta \| g \|_{C(\mathbb{R}^2)} \right\},
\]

and

\[
\omega_2(f; \delta) = \sup_{\| \nabla^2 f \| \leq \delta} \left\| \Delta^2 f(x,y) \right\|,
\]

where \(\Delta^2 f(x,y) = \sum_{j=0}^{2} (-1)^{2-j} \partial^j f(x+jt, y+js), \) respectively.

In the next result, we establish an order of approximation for the bi-variate operator \(\mathcal{R}_{n,m,	heta,\phi}^{\delta,\phi} \) in terms of the Peetre’s K-functional and the complete modulus of continuity.

Theorem 3.8. For all \(f \in C(\mathbb{R}^2) \) and \(\theta_2 - \theta_3, \phi_2 - \phi_3 \geq 1 \), the following inequalities hold

\[
\| \mathcal{R}_{n,m,	heta,\phi}^{\delta,\phi}(f) - f \| \leq \begin{cases} 4K(f, \delta_1) + \omega_2(f; \theta_2), & \text{if } \theta - \theta_1 \geq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \geq \phi_2 - \phi_3, \\ 4K(f, \delta_2) + \omega_2(f; \theta_2), & \text{if } \theta - \theta_1 \leq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \leq \phi_2 - \phi_3,
\end{cases}
\]

where

\[
\delta_1 = \frac{1}{8} \left[\left(\frac{\theta - \theta_1 + \frac{n + 2}{4} + 2}{n + \theta_1 + 1^2} \right)^2 + \left(\frac{\phi - \phi_1 + \frac{m + 2}{4} + 2}{m + \phi_1 + 1^2} \right)^2 \right] + \left(\frac{\theta - \theta_1 + \theta_2 - \theta_3 - \frac{1}{2}}{n + \theta_1 + 1} + \frac{\phi - \phi_1 + \phi_2 - \phi_3 - \frac{1}{2}}{n + \phi_1 + 1} \right)^2,
\]

\[
\delta_2 = \frac{1}{8} \left[\left(\frac{\theta_2 - \theta_3 + \frac{n + 2}{4} + 2}{n + \theta_1 + 1^2} \right)^2 + \left(\frac{\phi_2 - \phi_3 + \frac{m + 2}{4} + 2}{m + \phi_1 + 1^2} \right)^2 \right] + \left(\frac{\theta - \theta_1 + \theta_2 - \theta_3 - \frac{1}{2}}{n + \theta_1 + 1} + \frac{\phi - \phi_1 + \phi_2 - \phi_3 - \frac{1}{2}}{n + \phi_1 + 1} \right)^2,
\]

and

\[
\Delta^2 = \left(\frac{\theta - \theta_1 + \theta_2 - \theta_3 - \frac{1}{2}}{n + \theta_1 + 1} + \frac{\phi - \phi_1 + \phi_2 - \phi_3 - \frac{1}{2}}{n + \phi_1 + 1} \right)^2.
\]
Proof. We consider the following auxiliary operators:
\[\hat{S}_{n,m,0,0}^{\theta,\phi}(f; x, y) = R_{n,m,0,0}^{\theta,\phi}(f(x, y) + f(x, y) - f(S_{n,m,0,0}^{\theta,\phi}(t_1; x, y), S_{n,m,0,0}^{\theta,\phi}(t_2; x, y)). \]

From Taylor expansion, for any \(h \in C^2(I^2) \), we have
\[
h(t_1, t_2) - h(x, y) = \frac{\partial h(x, y)}{\partial x} (t_1 - x) + \iint_x (t_1 - \eta) \frac{\partial^2 h(\eta, \xi)}{\partial \eta^2} d\eta + \frac{\partial h(x, y)}{\partial y} (t_2 - y) + \iint_x \iint_y \frac{\partial^2 h(u, v)}{\partial u \partial v} dudv, \tag{14}
\]
and, let \(\psi_1^{i,j}(t_1, t_2) = \left(\int_x (t_1 - \eta) \frac{\partial^2 h(\eta, \xi)}{\partial \eta^2} d\eta \right) \left(\int_y (t_2 - \xi) \frac{\partial^2 h(\eta, \xi)}{\partial \xi^2} d\xi \right) \).

Applying the auxiliary operator \(\hat{S}_{n;m,0,0}^{\theta,\phi} \) on the equation (14) and taking \(\hat{S}_{n;m,0,0}^{\theta,\phi}(1; x, y) = 1; S_{n,m,0,0}^{\theta,\phi}(t_1 - x; x, y) = 0 = \hat{S}_{n,m,0,0}^{\theta,\phi}(t_2 - x; y, y), \) we have
\[
|\hat{S}_{n,m,0,0}^{\theta,\phi}(h; x, y) - h(x, y)| \leq |\hat{S}_{n,m,0,0}^{\theta,\phi}(\psi_1^{3,1}(t_1, t_2); x, y)| + |\hat{S}_{n,m,0,0}^{\theta,\phi}(\psi_1^{1,1}(t_1, t_2); x, y)| + |\hat{S}_{n,m,0,0}^{\theta,\phi}(\int_x \iint_y \frac{\partial^2 h(u, v)}{\partial u \partial v} dudv; x, y)|. \tag{15}
\]

Further, applying the auxiliary operator \(\hat{S}_{n,m,0,0}^{\theta,\phi} \) on \(\psi_1^{1,0} \) gives us
\[
|\hat{S}_{n,m,0,0}^{\theta,\phi}(\psi_1^{1,0}(t_1, t_2); x, y)| \leq \frac{|\hat{h}|_{C^2(I^2)}}{2} \left(|S_{n,m,0,0}^{\theta,\phi}(t_1 - x)^2; x, y) + |S_{n,m,0,0}^{\theta,\phi}(t_1 - x, y)|^2 \right) = \frac{|\hat{h}|_{C^2(I^2)}}{2} [\mu_{2,x} + \mu_{1,y}],
\]
where \(\mu_{2,x} \) and \(\mu_{1,y} \) are the second and first order central moments, respectively. Similarly,
\[
|\hat{S}_{n,m,0,0}^{\theta,\phi}(\psi_1^{0,1}(t_1, t_2); x, y)| \leq \frac{|\hat{h}|_{C^2(I^2)}}{2} [\nu_{2,y} + \nu_{1,y}],
\]
where \(\nu_{2,y} \) and \(\nu_{1,y} \) are the second and first order central moments, respectively. Also,
\[
|\hat{S}_{n,m,0,0}^{\theta,\phi}(\int_x \iint_y \frac{\partial^2 h(u, v)}{\partial u \partial v} dudv; x, y)| \leq |\hat{h}|_{C^2(I^2)} \left(|S_{n,m,0,0}^{\theta,\phi}(t_1 - x, t_2 - y; x, y) + |S_{n,m,0,0}^{\theta,\phi}(e_1, x; x, y) - x| \right) \left| S_{n,m,0,0}^{\theta,\phi}(e_1, x; x, y) - y \right|,
\]
hence using the Cauchy-Schwarz inequality
\[
|\hat{S}_{n,m,0,0}^{\theta,\phi}(\int_x \iint_y \frac{\partial^2 h(u, v)}{\partial u \partial v} dudv; x, y)| \leq \frac{|\hat{h}|_{C^2(I^2)}}{2} \left(|S_{n,m,0,0}^{\theta,\phi}(t_1 - x)^2; x, y) \right)^{\frac{1}{2}} \times \left(|S_{n,m,0,0}^{\theta,\phi}(t_2 - y)^2; x, y) \right)^{\frac{1}{2}} + \frac{|\hat{h}|_{C^2(I^2)}}{2} |S_{n,m,0,0}^{\theta,\phi}(t_1 - x, y) + |S_{n,m,0,0}^{\theta,\phi}(t_2 - y, y)| \right) \left(|\hat{h}|_{C^2(I^2)}[\mu_{2,y}^{1/2} + \nu_{1,y}^{1/2}]^2 + |\mu_{1,y}| \right). \tag{16}
\]
Consequently, from the equation (14)
\[
|\hat{S}_{n,m,0,0}^{\theta,\phi}(h; x, y) - h(x, y)| \leq \frac{|\hat{h}|_{C^2(I^2)}}{2} \left((\mu_{2,x}^{1/2} + \nu_{1,y}^{1/2})^2 + (|\mu_{1,y}| + |\mu_{1,y}|)^2 \right). \tag{17}
\]
Now, from the definition of auxiliary operator and equation (17), we may write
\[
|\mathcal{R}_{n,m,0,\phi}^{\Omega,(\theta,\varphi)}(f; x, y) - f(x, y)| \leq |\hat{\mathcal{R}}_{n,m,0,\phi}^{\Omega,(\theta,\varphi)}(f - h; x, y)| + |\hat{\mathcal{R}}_{n,m,0,\phi}^{\Omega,(\theta,\varphi)}(h; x, y) - h(x, y)| + |(f - h)(x, y)| + 4\|f - h\|_{C^2(P)} + \|h\|_{C^2(P)}
\]
\[
\leq 4\|f - h\|_{C^2(P)} + \|h\|_{C^2(P)} + \left\{ (|\mu_1| + |\nu_1|)^2 \right\}
\]
\[
+ \omega^2(f; \sqrt{|\mu_1|^2 + |\nu_1|^2}).
\]

Now, for \(\theta - \theta_1 \geq \theta_2 - \theta_3 \geq 1\) and \(\phi - \phi_1 \geq \phi_2 - \phi_3 \geq 1\), using Lemma 2.2 and taking infimum over all \(h \in C^2(P)\), we get
\[
|\mathcal{R}_{n,m,0,\phi}^{\Omega,(\theta,\varphi)}(f) - f| \leq 4K(f, \delta_1) + \omega^2(f; \Delta).
\]

By a similar reasoning, for the other case \(\theta - \theta_1 \leq \theta_2 - \theta_3\) and \(\phi - \phi_1 \leq \phi_2 - \phi_3\) such that \(\theta_2 - \theta_3, \phi_2 - \phi_3 > 1\), we have
\[
|\mathcal{R}_{n,m,0,\phi}^{\Omega,(\theta,\varphi)}(f) - f| \leq 4K(f, \delta_2) + \omega^2(f; \Delta).
\]

This proves the required result. \(\square\)

Corollary 3.9. Considering the well-known relation [8] that
\[
K(f; \delta) \leq C \omega^2(f; \sqrt{\delta}), \quad \text{for any } \delta > 0,
\]
where \(C\) is some positive constant, the result of the Theorem 3.8 takes the following form:
\[
|\mathcal{R}_{n,m,0,\phi}^{\Omega,(\theta,\varphi)}(f) - f| \leq \left\{ \begin{array}{ll}
\frac{5}{2} \omega^2(f; \sqrt{\delta}) + \omega^2(f; \Delta), & \text{if } \theta - \theta_1 \geq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \geq \phi_2 - \phi_3 \\
\frac{5}{2} \omega^2(f; \sqrt{\delta}) + \omega^2(f; \Delta), & \text{if } \theta - \theta_1 \leq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \leq \phi_2 - \phi_3,
\end{array} \right.
\]

4. A \(k^{th}\) order generalization of the operators \(\mathcal{R}_{n,m,0,\phi}^{\Omega,(\theta,\varphi)}\)

In this section, we use the method of Kirov and Popova [13] to introduce and investigate approximation properties of a \(k^{th}\) order generalization of our bi-variate Bernstein-Stancu-Kantorovich type operator \(\mathcal{R}_{n,m,0,\phi}^{\Omega,(\theta,\varphi)}(; x, y)\) defined in (6). Let \(C^k(P), k \in \mathbb{N} \cup \{0\}\), denote the set of all functions \(f : P \rightarrow \mathbb{R}\) having continuous partial derivatives upto the \(k^{th}\) order on the box \(P\). We now define, for any function \(f \in C^k(P)\), the \(k^{th}\) order generalization of Bernstein-Stancu-Kantorovich type polynomials \(\mathcal{R}_{n,m,0,\phi}^{\Omega,(\theta,\varphi)}(; x, y)\) as

\[
\mathcal{R}_{n,m,0,\phi}^{\Omega,(\theta,\varphi),k}(f(u, v); x, y) = \left(\frac{n + \theta}{n} \right)^m \left(\frac{m + \phi}{m} \right)^m (n + \theta_1 + 1)(m + \phi_1 + 1)
\]
\[
\times \sum_{s=0}^{n} \sum_{r=0}^{m} \Omega_{n,m,(\theta,\varphi),s} \Omega_{m,(\phi,\varphi),r}(y) \int_{\frac{n-s}{n+1}}^{\frac{n-r}{m+1}} \int_{\frac{n-s}{n+1}}^{\frac{n-r}{m+1}} \sum_{l=0}^{k} \frac{d^l f(u, v)}{dudv} \bigg|_{(y, x)} dudv,
\]

where \(d^l f(u, v) = \sum_{l=0}^{k} \left(\int_{\mathbb{R}^2} \frac{\partial^l f(u, v)}{\partial x^l \partial y^l} (x - u)^l(y - v)^l \right)\).

Now, there is a unit vector \((\mu, \eta)\) for which \((x - u, y - v) = w(\mu, \eta)\) where \(w > 0\). Let
\[
P(w) = f(u + w\mu, v + w\eta) = f(u + (x - u), v + (y - v)) = f(x, y).
\]

Following remarks can be made from the equations (18) and (19).
Remark 4.1. Note that, when $k = 0$ in the equation (18), we immediately get the operator defined in (6), i.e.

$$S_{n,m,0,0}^{0,\phi_{0}}(f; x, y) = S_{n,m,0,0}^{0,\phi_{0}}(f; x, y)$$

Remark 4.2. The k^{th} order derivative of the function $P(w)$ has the following form (See chapter 3 in [7])

$$P^{k}(w) = \sum_{i=0}^{k} \binom{k}{i} \frac{\partial^{k} f(u + w \mu, v + w \eta)}{\partial x^{k-i} y^{i}} \mu^{k-i} \eta^{i}, \quad (k \in \mathbb{N}).$$

(20)

Also, using the equation (20), we can easily deduce that the Taylor’s formula for $P(w)$ at $w = 0$ is the same as that of $f(x, y)$ at (u, v).

The following intermediate result is useful in the proof of some important corollaries which provide us a deeper insight into the approximation behavior of the operators defined by (18):

Theorem 4.3. For any $m, n, k \in \mathbb{N},$ and for all $f \in C^{k}(I^{2})$ such that $P^{k}(w) \in \text{Lip}_{M}(\gamma)$, we have

$$\|f - S_{n,m,0,0}^{0,\phi_{0}}(f)\|_{C(I^{2})} \leq \frac{M}{(k-1)!} \frac{(\gamma + k)}{\gamma} B(\gamma, k) \times \|R_{n,m,0,0}^{0,\phi_{0}}(n - u, y - v)\|^{k+\gamma}_{C(I^{2})},$$

where $0 < \gamma \leq 1, M > 0$ and $B(\gamma, k)$ denotes the usual Beta function.

Proof. Let $f \in C^{k}(I^{2})$ and $(x, y) \in I^{2}$. By the definition of the operators $S_{n,m,0,0}^{0,\phi_{0}}(f; x, y)$ in (18), we see that for any $m, n, k \in \mathbb{N},$

$$f(x, y) - S_{n,m,0,0}^{0,\phi_{0}}(f; u, v), x, y) = \left(\frac{n + \theta_{1}}{n}\right)^{n} \left(\frac{m + \phi_{1}}{m}\right)^{m} (n + \theta_{1} + 1)(m + \phi_{1} + 1)$$

$$\times \sum_{i=0}^{n} \sum_{j=0}^{m} \Omega_{n,m}^{(0,\phi_{0})}(x) \Omega_{n,m}^{(0,\phi_{0})}(j) \int_{0}^{x} \int_{0}^{y} \int_{0}^{z} f(x, y) - \sum_{i=0}^{k} \binom{k}{i} \frac{\partial^{k} f(u + z(x - u), v + z(y - v))}{\partial x^{k-i} y^{i}} (x - u)^{k-i} (y - v)^{i} dz.$$

(21)

It is known from Taylor’s integral remainder formula for $f(x, y)$ at (u, v) (see [7]) that

$$f(x, y) - \sum_{i=0}^{k} \frac{d^{i} f(u, v)}{i!} = \frac{1}{(k-1)!} \int_{0}^{1} (1 - z)^{k-1} \times \left(\sum_{i=0}^{k} \binom{k}{i} \frac{\partial^{k} f(u + z(x - u), v + z(y - v))}{\partial x^{k-i} y^{i}} (x - u)^{k-i} (y - v)^{i} \right) dz.$$

(22)

Using Remark 4.2, the equation (22) takes the form

$$P(u) - \sum_{i=0}^{k} P^{i}(0) w^{i} = \frac{w^{k}}{(k-1)!} \int_{0}^{1} (1 - z)^{k-1} [P^{k}(wz) - P^{k}(0)] dz.$$

Since $P^{k}(w) \in \text{Lip}_{M}(\gamma)$, it follows that

$$\left|f(x, y) - \sum_{i=0}^{k} \frac{d^{i} f(u, v)}{i!}\right| = \left|P(u) - \sum_{i=0}^{k} P^{i}(0) w^{i}\right| \leq \frac{Mw^{k+\gamma}}{(k-1)!} \int_{0}^{1} z^{\gamma} (1 - z)^{k-1} dz.$$

(23)

From the definition of Beta function, we have

$$\int_{0}^{1} z^{\gamma} (1 - z)^{k-1} dz = B(1 + \gamma, k) = \frac{\gamma B(\gamma, k)}{\gamma + k},$$

B. Baxhaku et al. / Filomat 35:12 (2021), 4239–4255
Hence, the equation (23) takes the following from
\[\left| f(x, y) - \sum_{j=0}^{k-1} \frac{d^j f(u, v)}{j!} \right| \leq \frac{M}{(k-1)!} \gamma B(y, k) \left| (x - u, y - v) \right|^k \]
(24)

Finally, using (24) in (21) and taking supremum over all \((x, y) \in I^2\), we obtain the desired result. \(\Box\)

Let \(g \in C(I^2)\) be a function defined by
\[g(u, v) = \left| (u, v) - (x, y) \right|^k \]
(25)

Since \(g \in C(I^2)\) and \(g(x, y) = 0\), Theorem 3.1 yields
\[\|R_n^{0,0;k}(g; x, y)\|_{C(I^2)} \to 0 \text{ as } m, n \to \infty. \]

Thus, Theorem 4.3 yields that for all \(f \in C^k(I^2)\) such that \(P^k(w) \in \text{Lip}_M(y)\),
\[\|R_n^{0,0;k}(f; x, y) - f(x, y)\|_{C(I^2)} \to 0 \text{ as } m, n \to \infty. \]

Taking into consideration Theorem 2, one can deduce the following result from Theorem 4.3 immediately:

Corollary 4.4. If \(\theta_2 - \theta_3 \geq 1\) and \(\phi_2 - \phi_3 \geq 1\), then for each \(m, n \in \mathbb{N}\), and for all \(f \in C^k(I^2)\) such that \(P^k(w) \in \text{Lip}_M(y)\) we have
\[\|f - R_n^{0,0;k}(f)\|_{C(I^2)} \leq \frac{2M}{(k-1)!} \gamma B(y, k) \times \begin{cases} \omega_d^{(0)}(g; \gamma) \left(\frac{4(0-0)^2+i+8}{(m+1)\gamma} + \frac{4(0-0)^2+i+8}{(m+1)\gamma} \right); & \text{for } \theta - \theta_1 \geq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \geq \phi_2 - \phi_3 \\ \omega_d^{(0)}(g; \gamma) \left(\frac{4(0-0)^2+i+8}{(m+1)\gamma} + \frac{4(0-0)^2+i+8}{(m+1)\gamma} \right); & \text{for } \theta - \theta_1 < \theta_2 - \theta_3 \text{ and } \phi - \phi_1 < \phi_2 - \phi_3. \end{cases} \]

where \(g\) is given by (25).

Applying Theorem 3.6, the following result is immediate from Theorem 4.3:

Corollary 4.5. For each \(m, n \in \mathbb{N}, k \in \mathbb{N} \cup \{0\}\) and \(f \in C^k(I^2)\) such that \(f^{(k)} \in \text{Lip}_M(y)\), and assuming that \(g \in \text{Lip}_M^{2+\gamma}(y)\) in Theorem 3.6, we have
\[\|f - R_n^{0,0;k}(f)\|_{C(I^2)} \leq \frac{2M}{(k-1)!} \gamma B(y, k) \times \begin{cases} \left(\frac{(\theta-0)^2+i}{(m+1)\gamma} + \frac{(\theta-0)^2+i}{(m+1)\gamma} \right); & \text{for } \theta - \theta_1 \geq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \geq \phi_2 - \phi_3 \\ \left(\frac{(\theta-0)^2+i}{(m+1)\gamma} + \frac{(\theta-0)^2+i}{(m+1)\gamma} \right); & \text{for } \theta - \theta_1 < \theta_2 - \theta_3 \text{ and } \phi - \phi_1 < \phi_2 - \phi_3. \end{cases} \]

Lastly, taking into account Theorem 3.8, we can easily deduce the following from Theorem 4.3:

Corollary 4.6. For all \(f \in C^k(I^2)\) such that \(f^{(k)} \in \text{Lip}_M(y)\), if \(\theta_2 - \theta_3, \phi_2 - \phi_3 \geq 1\), then we obtain
\[\|f - R_n^{0,0;k}(f)\| \leq \frac{M}{(k-1)!} \gamma B(y, k) \times \begin{cases} 4K(g, \delta_1) + \omega_d^{(0)}(f; \Delta); & \text{if } \theta - \theta_1 \geq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \geq \phi_2 - \phi_3 \\ 4K(g, \delta_2) + \omega_d^{(0)}(f; \Delta); & \text{if } \theta - \theta_1 \leq \theta_2 - \theta_3 \text{ and } \phi - \phi_1 \leq \phi_2 - \phi_3. \end{cases} \]

where \(\delta_1, \delta_2, \Delta\) are given in Theorem 3.8 and \(g\) is defined by (25).
Example 1. Let \(f(x, y) = (x + 2)^3 y^4 \) and \(\theta_1 = 1, \theta_2 = 2, \theta_1 = 3, \theta = 4 \) and \(\phi_3 = 1, \phi_2 = 2, \phi_1 = 3, \phi = 4 \). The convergence of the operators \(R_{n,m,\theta,\phi}^{0,\phi,k}(f) \) and \(R_{n,m,\theta,\phi}^{0,\psi,k}(f) \) to the function \(f \) for \(n = m = 5 \) and \(k = 2 \) and \(k = 5 \) is illustrated in Figure 1 and Figure 2 respectively. It is seen that if \(f \) is differentiable \(k \) times then \(R_{n,m,\theta,\phi}^{0,\phi,k}(f) \) yields a better convergence in comparison to the classical Bernstein-Stancu-Kantorovich operator \(R_{n,m,\theta,\phi}^{0,\phi}(f) \). In Table 1, we obtain estimates of the maximum absolute errors in the approximation of the function \(f(x, y) = (x + 2)^3 y^4 \) by using the operators \(R_{n,m,\theta,\phi}^{0,\phi,k}(f) \) as defined in (6) and \(R_{n,m,\theta,\phi}^{0,\psi,k}(f) \) as given in (18), namely \(E_{n,m,\theta,\phi}^{0,\phi,k} = ||R_{n,m,\theta,\phi}^{0,\phi,k}f - f||_{C[\Omega]}, \) and \(E_{n,m,\theta,\phi}^{0,\psi,k} = ||R_{n,m,\theta,\phi}^{0,\psi,k}f - f||_{C[\Omega]} \), respectively.

![Figure 1: Illustration of error bound](image)

Table 1: Comparison of \(R_{n,m,\theta,\phi}^{0,\phi,k}(f) \) **and** \(R_{n,m,\theta,\phi}^{0,\psi,k}(f) \) **for** \(n = m = 5 \) **and some values of** \(k \)

\(m, n \)	Error bound for \(R_{n,m,\theta,\phi}^{0,\phi,k}(f) \)	Derivative order \(k \)	Error bound \(R_{n,m,\theta,\phi}^{0,\psi,k}(f) \)
5,5	2.2878	2	0.1323
5,5	2.2878	3	0.0263
5,5	2.2878	4	0.0015
5,5	2.2878	5	0.0002

Example 2. For \(m = n = 5 \) and \(\theta_1 = 1, \theta_2 = 2, \theta_1 = 3, \theta = 4 \) and \(\phi_3 = 1, \phi_2 = 2, \phi_1 = 3, \phi = 4 \), the estimates of the maximum absolute errors in the approximation of the function \(f(x, y) = (x + 3)^2 e^{-y} \) by using operators \(R_{n,m,\theta,\phi}^{0,\phi}(f) \) and \(R_{n,m,\theta,\phi}^{0,\psi,k}(f) \) are listed in Table 2. The convergence of the operators \(R_{n,m,\theta,\phi}^{0,\phi,k}(f) \) and \(R_{n,m,\theta,\phi}^{0,\psi,k}(f) \) to the function \(f \) for \(k = 2 \) and \(k = 5 \) is illustrated in Figure 2. Further from the figure 2 and Table 2 it follows that, depending on the order of the derivative \(k \), \(R_{n,m,\theta,\phi}^{0,\phi,k}(f) \) gives better approximation to the function \(f \) in comparison to the Bernstein-Stancu-Kantorovich operators \(R_{n,m,\theta,\phi}^{0,\phi}(f) \).
5. Applications

We shall now consider some further generalized Bernstein type polynomials. To obtain an approximation process for \(k^{th}\) order generalization of the operator of Bernstein-type, we introduce some examples;

5.1. Bivariate Bernstein operators in rectangle

In [10], Gadjiev and Ghorbanalizadeh also introduced two dimensional Bernstein polynomials on the rectangle \(\Box = \{(x, y) | \frac{m}{m+\theta_1}, \frac{n}{n+\phi_1}, \frac{m+\theta_2}{m+\theta_1}, \frac{n+\phi_2}{n+\phi_1} \} \) and the polynomials \(B_{m,n}^{(\theta,\phi)}\) defined as follows:

\[
B_{m,n}^{(\theta,\phi)}(f; x, y) = \left(\frac{m + \theta}{m}\right)^m \left(\frac{n + \phi}{n}\right)^n \sum_{j=0}^{m} \sum_{r=0}^{n} \Omega_{m,s}^{(\theta,\phi)}(x) \Omega_{n,r}^{(\phi,\phi)}(y) f\left(\frac{s + m\theta_1 + \phi_1}{m + \theta_1}, \frac{r + n\phi_2}{n + \phi_2}\right),
\]

where the basis functions \(\Omega_{m,s}^{(\theta,\phi)}(x)\), \(\Omega_{n,r}^{(\phi,\phi)}(y)\); \((x, y) \in \Box\) are as defined in (4) and \(\theta, \phi, \theta_1, \phi_1, i = 1, 2, 3\) are non-negative real numbers satisfying \(0 \leq \theta_2 \leq \theta_1 \leq \theta\) and \(0 \leq \phi_3 \leq \phi_2 \leq \phi_1 \leq \phi\).

We consider the following generalization \(B_{m,n}^{(\theta,\phi,k)}(f; x, y)\) of the above linear positive operators:

\[
B_{m,n}^{(\theta,\phi,k)}(f; x, y) = \left(\frac{m + \theta}{m}\right)^m \left(\frac{n + \phi}{n}\right)^n \sum_{j=0}^{m} \sum_{r=0}^{n} \Omega_{m,s}^{(\theta,\phi)}(x) \Omega_{n,r}^{(\phi,\phi)}(y) \sum_{i=0}^{k} \frac{d^i f\left(\frac{s + m\theta_1 + \phi_1}{m + \theta_1}, \frac{r + n\phi_2}{n + \phi_2}\right)}{i!},
\]

(26)

where

\[
d^i f\left(\frac{s + \theta_3}{m + \theta_1}, \frac{r + \phi_3}{n + \phi_1}\right) = \sum_{i=0}^{l} \binom{l}{i} \frac{\partial^i f\left(\frac{s + m\theta_1 + \phi_1}{m + \theta_1}, \frac{r + n\phi_2}{n + \phi_2}\right)}{\partial x^{l-i} \partial y^i} \left(x - \frac{s + \theta_3}{m + \theta_1}\right)^{l-i} \left(y - \frac{r + \phi_3}{n + \phi_1}\right)^i.
\]

(27)
Example 3. For $\theta_3 = 1$, $\theta_2 = 2$, $\theta_1 = 3$, $\theta = 4$, $f(x,y) = (x + 3)^2 e^{-y}$ and $\varphi_3 = 1$, $\varphi_2 = 2$, $\varphi_1 = 3$, $\varphi = 4$, the convergence of the operators $B^{(0,\varphi,\phi)}_{m,n}(f)$ towards the function $f(x,y)$ for $k = 0, 2, 5$ is illustrated in Fig.3. From Fig 3 it is clear that the operators $B^{(0,\varphi,\phi)}_{m,n}(f)$ provides better approximation than the operator $B^{(0,\varphi,\phi)}_{m,n,0}(f)$ for both $k = 2, 5$. In Table 3, we observe that as the value of the order k of the derivative increases, the error in the approximation of function f by the operator $B^{(0,\varphi,\phi)}_{m,n,0}(f)$ becomes smaller.

m, n	Error bound for $B^{(0,\varphi,\phi)}_{m,n}$	Derivative order k	Error bound $B^{(0,\varphi,\phi)}_{m,n,0}$
5,5	0.4079	2	0.0103
5,5	0.4079	5	0.000004456

Figure 3: $B^{(0,\varphi,\phi)}_{m,n,0,0}(f)$ approximates $f(x,y)$ much better than $B^{(0,\varphi,\phi)}_{m,n,0}(f)$

5.2. Bivariate-Stancu type operators in a triangle

Gadjiev and Ghorbanalizadeh [10] defined another bivariate Bernstein-Stancu type operators on the triangle Δ for the functions $f : \Delta = \{(x,y) : x + y \leq \frac{m+\theta}{m+\theta} ; x, y \geq \frac{\theta}{m+\theta}\} \rightarrow \mathbb{R}$. More precisely, in [10], they considered $R^{(0,\varphi,\phi)}_{m,n,0,0}$ with:

$$
R^{(0,\varphi,\phi)}_{m,n,0,0}(f;x,y) = \left(\frac{m+\theta}{m}\right)^n \sum_{s=0}^{m} \sum_{r=0}^{m-s} \Omega^{(0,\varphi,\phi)}_{m,n,s,r}(x,y) f\left(\frac{s + \theta_3}{m + \theta_1}, \frac{r + \phi_3}{m + \phi_1}\right),
$$

where the basis functions $\Omega^{(0,\varphi,\phi)}_{m,n,s,r}(x)$ are defined by

$$
\Omega^{(0,\varphi,\phi)}_{m,n,s,r}(x) = \left(\frac{m}{s}\right)\left(\frac{m-s}{r}\right)^{m-s} \left(x - \frac{\theta_2}{m + \theta}\right)^r \left(y - \frac{\theta_2}{m + \theta}\right)^s \left(m + 2\theta_2 - x - y\right)^{m-s-r},
$$

and $\theta, \varphi, \theta_i, \varphi_i, i = 1, 2$ are the positive numbers satisfying $0 < \theta_2 \leq \theta_3 \leq \theta_1 \leq \theta$ and $0 < \varphi_2 \leq \varphi_3 \leq \varphi_1 \leq \varphi$.

The authors [10] derived the rate of convergence in terms of the complete and partial moduli of continuity for operators $R^{(0,\varphi,\phi)}_{m,n,0,0}$.
We now introduce the kth order generalization of the operators $B_{m,\theta,\phi}^{0,\phi,k}$:

$$B_{m,\theta,\phi}^{0,\phi,k}(f; x, y) = \left(\frac{m + \theta}{m}\right)^m \sum_{s=0}^{m-m} \sum_{r=0}^{m-s} \Omega_{m,s,r}(x, y) \sum_{l=0}^{k} \frac{d^l f}{l!} \left(\frac{s+\theta_{1}}{m+\theta_{1}}, \frac{r+\phi_{1}}{m+\phi_{1}}\right),$$

where $d^l f$ is given by (27).

Example 4. Let $\theta_{3} = 1, \theta_{2} = 2, \theta_{1} = 3, \theta = 4, f(x, y) = y^3 e^{-2x}$ and $\phi_{3} = 1, \phi_{2} = 2, \phi_{1} = 3, \phi = 4$, and $m = 5$. In Fig. 4, the comparison of convergence of the operators $B_{m,\theta,\phi}^{0,\phi}$ and $B_{m,\theta,\phi}^{0,\phi,k}$, $k = 2, 5$ towards the function $f(x, y)$ is illustrated. From Table 4, it is clear that the Bernstein-Stancu-Taylor operators $B_{m,\theta,\phi}^{0,\phi,k}$ give us a better approximation to $f(x, y)$ compared to Bernstein-Stancu operators $B_{m,\theta,\phi}^{0,\phi}$. Further, it may be remarked that the parameters $\theta_{3}, \theta_{2}, \theta_{1}, \theta$ and $\phi_{3}, \phi_{2}, \phi_{1}, \phi$, play an important role to achieve a better approximation.

![Figure 4: $B_{m,\theta,\phi}^{0,\phi,k}(f)$ approximates $f(x, y)$ much better than $B_{m,\theta,\phi}^{0,\phi}(f)$](image)

Table 4: Comparison of $B_{m,\theta,\phi}^{0,\phi}(f)$ and $B_{m,\theta,\phi}^{0,\phi,k}(f)$ for $m = 5$ and some values of k

m	Error bound for $B_{m,\theta,\phi}^{0,\phi}$	Derivative order k	Error bound $B_{m,\theta,\phi}^{0,\phi,k}$
5	0.1675	2	0.0340
5	0.1675	5	0.0004425

5.3. Bivariate Stancu-Kantorovich operators in a triangle

Inspired by the work [10], we present the following bivariate extension of the operators (28) on the triangle $\Delta = \{(x, y) : x + y \leq \frac{m+2\theta_{1}}{m+\theta_{1}}, x, y \geq \frac{\theta_{2}}{m+\theta_{2}}\}$:

$$B_{m,\theta,\phi}^{0,\phi}(f; x, y) = (m + \phi_{1} + 1)(m + \theta_{1} + 1) \left(\frac{m + \theta}{m}\right)^m \sum_{j=0}^{m} \sum_{l=0}^{m-j} \Omega_{m,j,l}(x, y) \int_{\frac{j+\theta_{1}}{m+\theta_{1}}}^{\frac{j+\theta}{m+\theta}} \int_{\frac{l+\phi_{1}}{m+\phi_{1}}}^{\frac{l+\phi}{m+\phi}} f(u, v) du dv,$$

where the basis functions $\Omega_{m,j,l}(x, y)$ are as defined by (28). At last, we define the Bernstein-Stancu-Kantorovich-Taylor extension of these operators as follows:
For $f \in C^k(l^2)$, $k \in \mathbb{N} \cup \{0\}$, we propose

$$
\Psi^{m,\theta,k}_{m,\theta,\phi}(f(u,v);x,y) = (m + \phi_1 + 1)(m + \theta_1 + 1)\left(\frac{m + \theta}{m}\right)^m \sum_{j=0}^{m} \sum_{l=0}^{m-j} \Omega_{m,j,l}^{(l),\phi}(x,y) \times \int_{r_{m+2k+1}}^{\infty} \int_{r_{m+2k+1}}^{\infty} \sum_{r=0}^{k} \frac{d^r f(u,v)}{r!} du dv,
$$

(31)

where $d^r f(u,v) = \sum_{j=0}^{r} \left(\int_{i}^{j} \frac{\partial^i f(u,v)}{\partial x^i \partial y^j}(x-u)^{-i}(y-v)^{j}\right)$.

Remark 5.1. It is remarked that the results analogous to Theorem 4.3 and the resulting corollaries can be easily deduced for the above k^{th} order generalizations (26), (29) and (31).

Example 5. Since $f(x, y) = e^{-2x}y^3$ is infinitely continuously differentiable on \mathbb{R}^2, we can use Bernstein-Stancu-Kantorovich-Taylor operators to study the approximation of f on l^2. It is observed that, we achieve a better approximation by these operators in comparison to Bernstein-Stancu-Kantorovich operators, if we make a suitable choice of the parameters. For $m = 5$, $k = 2, 5$ and $\theta_2 = 3$, $\theta_3 = 4$ and $\phi_1 = 1$, $\phi_2 = 2$, the illustrative graphics of $\Psi^{0,\phi}_{m,\theta,\phi}$, $\Psi^{1,\phi}_{m,\theta,\phi}$, $\Psi^{2,\phi}_{m,\theta,\phi}$ and the function $f(x, y) = e^{-2x}y^3$ are shown together in Fig. 5. From the estimates of the absolute maximum errors in the approximation of $f(x, y)$ by the operators $\Psi^{0,\phi}_{m,\theta,\phi}$ in (30) and $\Psi^{1,\phi}_{m,\theta,\phi}$ in (31) for $m = 5$ and $k = 2, 5$ presented in Table 5, it turns out that as the value of k increases, the error becomes smaller.

![Figure 5](image.png)

Table 5: Comparison of $\Psi^{0,\phi}_{m,\theta,\phi}(f)$ and $\Psi^{1,\phi}_{m,\theta,\phi}(f)$ for $m = 5$ and some values of k

m	Error bound for $\Psi^{0,\phi}_{m,\theta,\phi}$	Derivative order k	Error bound $\Psi^{1,\phi}_{m,\theta,\phi}$
5	0.1030	2	0.0228
5	0.1030	5	0.0002907
6. Conclusion

The Stancu-Kantorovich operators and the kth order generalization of Bernstein-Stancu-Kantorovich type operators for functions of two variables are constructed with the help of modified Bernstein basis functions with shifted knots for $x, y \in \left[\frac{\theta}{m} \cdot \frac{n+\theta}{m} \right] \times \left[\frac{\phi}{m} \cdot \frac{m+\phi}{m} \right]$. By introducing the parameters $\theta, \phi, \theta_i, \phi_i, i = 1, 2, 3$ we enable the shift of Bernstein basis functions over the subintervals of I. A simulation was performed through MATLAB and it was shown that depending on the order of the derivative k, the kth order generalization of Bernstein-Stancu-Kantorovich type polynomials $K_{\theta, \phi}^{h, k}(x, y)$ shows much better approximation results to a function compared to Bernstein-Stancu-Kantorovich operators which are presented in Examples 1 and 2. Finally, the kth order generalizations of the generalized bivariate Bernstein type polynomials are studied and elaborated by means of some examples.

References

[1] P. N. Agrawal, B. Baxhaku, R. Chauhan, The approximation of bivariate Chlodowsky-Szasz-Kantorovich-Charlier-type operators, J Inequal Appl 195 (2017), https://doi.org/10.1186/s13660-017-1465-1.
[2] G. A. Anastassiou, S. G. Gal, Approximation Theory: Moduli of Continuity and Global Smoothness Preservation., Birkhäuser Boston, Inc., Boston, MA (2000).
[3] D. Bărbosu, Kantorovich-Schurer bivariate operators, Miskolc Math Notes 5 (2004) 129-136.
[4] B. Baxhaku, P. N. Agrawal, Degree of approximation for bivariate extension of Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators, Appl. Math. Comput. 306 (2017), 56-72.
[5] B. Baxhaku, A. Kajla, Blending type approximation by bivariate generalized Bernstein type operators. Quaes. Math., (2019) 1-17.
[6] S. N. Bernstein, Demonstration du théoreme de Weierstrass fondee sur le calcul de probabilities., Commun. Soc. Math Kharkov. 13(2) (1912) 1-2.
[7] J. Callahan, Advanced Calculus: A Geometric View, Undergraduate Texts in Mathematics Springer (2010).
[8] R. A. DeVore, G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, (1993).
[9] E. Dobrescu, I. Matei, The approximation by Bernstein type polynomials of bidimensional continuous functions., An. Univ. Timişoara Ser. Sti. Mat.-Fiz. 4 (1966) 85-90.
[10] A. D. Gadjiev, A. M. Ghorbanalizadeh, Approximation properties of a new type Bernstein-Stancu polynomials of one and two variables., Appl. Math. Comput. 216(3) (2010) 890-901.
[11] G. Içöz, A Kantorovich variant of a new type Bernstein-Stancu polynomials, Appl. Math. Comput. 218(17) (2012) 8552-8560.
[12] L. V. Kantorovich, Sur certains développements suivant les polynômes de la forme de S. bernstein., C. R Acad URSS. 20 (1930) 563-568.
[13] G. Kirov, I. Popova, A generalization of liner positive operators, Math Balkanica, 7 (1993) 149-162.
[14] S. Rahman, M. Mursaleen, A. M. Acu, Approximation properties of λ-Bernstein-Kantorovich operators with shifted knots., Math Meth. Appl. Sci. (2019) 1-12.
[15] D. D. Stancu, Approximation of functions by a new class of linear polynomial operators. Rev. Roumaine Math. Pures Appl, 13 (1968) 1173-1194.
[16] V. I. Volkov, On the convergence of sequences of linear positive operators in the space of continuous functions of two variables., Dokl. Akad. Nauk. SSSR (N.S) 115 (1957) 17-19.
[17] M. Wang, D. Yu, P. Zhou, On the approximation by operators of Bernstein-Stancu types. Appl. Math. Comput. 246(1) (2014) 79-87.