A Qualitative Meta-analysis Reveals Consistent Effects of Atrazine on Freshwater Fish and Amphibians

Jason R. Rohr and Krista A. McCoy

doi: 10.1289/ehp.0901164 (available at http://dx.doi.org/)
Online 23 September 2009
A Qualitative Meta-analysis Reveals Consistent Effects of Atrazine on Freshwater Fish and Amphibians

Authors: Jason R. Rohr\(^1,\!*\) & Krista A. McCoy\(^1\)

Affiliations:
\(^1\)Integrative Biology Department, University of South Florida, Tampa, FL

\(*\)Corresponding author: University of South Florida, Department of Integrative Biology, SCA 110, 4202 East Fowler Ave., Tampa, FL 33620; Telephone: (813) 974-0156, Fax: (813) 974-3263. E-mail: jasonrohr@gmail.com
Running title: Atrazine Meta-analysis on Fish and Amphibians

Keywords: aromatase, behavior, disease, gonads, immunity, metamorphosis, parasite, reproduction, testicular ovarian follicles, vitellogenin

Descriptor to be run in table of contents: Toxicology

Acknowledgements: We thank the Rohr lab, M. McCoy, and anonymous reviewers for comments on this work. Funds were provided by National Science Foundation (NSF: DEB 0516227), U.S. Department of Agriculture (USDA: NRI 2006-01370, 2009-35102-0543), and U.S. Environmental Protection Agency STAR (R833835) grants to J.R.R.

The authors declare they have no competing financial interests.

Abbreviations:

EEC expected environmental concentration
LOEC lowest observable effect concentrations
TOF testicular ovarian follicle
USDA United States Department of Agriculture
Outline of Section Headers

Abstract

Introduction

Atrazine Persistence, Transport, and Exposure

Methods

Results and Discussion

 Effects of Atrazine on Fish and Amphibian Survival

 Effects of Atrazine on Fish and Amphibian Development and Growth
 Background on metamorphosis
 Effects on metamorphic traits

 Effects of Atrazine on Fish and Amphibian Behavior
 Effects on locomotor activity
 Effects on anti-predator behaviors
 Effects on olfaction
 Effects on other behaviors

 Effects of Atrazine on Fish and Amphibian Immunity and Infections
 Effects on immunity
 Effects on infections

 Effects of Atrazine on Fish and Amphibian Gonadal Morphology
 General morphological endpoints
 Testicular ovarian follicles as a natural phenomenon

 Effects of Atrazine on Fish and Amphibian Sex Ratios

 Effects of Atrazine on Fish and Amphibian Gonadal Function
Effects on testicular cell types

Effects on sex hormone concentrations

Effects on reproductive success

Effects of Atrazine on Fish and Amphibian Vitellogenin

Effects of Atrazine on Fish and Amphibian Aromatase

Effects of Atrazine on Fish and Amphibian Populations and Communities

Caveats

Conclusions

Literature Cited

Tables
OBJECTIVE: The biological effects of the herbicide atrazine on freshwater vertebrates are highly controversial. In an effort to resolve the controversy, we conducted a qualitative meta-analysis on the effects of ecologically relevant atrazine concentrations on amphibian and fish survival, behavior, metamorphic traits, infections, and immune, endocrine, and reproductive systems.

DATA SOURCES: We used published, peer-reviewed research and applied strict quality criteria for inclusion of studies in the meta-analysis.

DATA SYNTHESIS: We found little evidence that atrazine consistently caused direct mortality of fish or amphibians, but found evidence that it can have indirect and sub-lethal effects. The relationship between atrazine concentration and timing of amphibian metamorphosis was regularly non-monotonic, indicating that atrazine can both accelerate and delay metamorphosis. Atrazine reduced size at or near metamorphosis in 19 of 19 studies. Atrazine elevated amphibian and fish activity in 12 of 14 studies, reduced anti-predator behaviors in six of seven studies, and reduced olfactory abilities for fish but not for amphibians. Atrazine was associated with a reduction in 35 of 43 immune function endpoints and with an increase in 13 of 16 infection endpoints. Atrazine altered at least one aspect of gonadal morphology in eight of 10 studies, and consistently affected gonadal function, altering spermatogenesis in two of two studies and sex hormone concentrations in six of seven studies. Atrazine did not affect vitellogenin in five studies and only increased aromatase in one of six studies. Effects of atrazine on fish and amphibian reproductive success, sex ratios, gene frequencies, populations, and communities remain uncertain.
CONCLUSIONS: Although there is much left to learn about the effects of atrazine, we identified several consistent effects of atrazine that must be weighed against any of its benefits and the costs and benefits of alternatives to atrazine use.

INTRODUCTION

The herbicide atrazine (2-chloro-4-ethylamino-6-isopropyl-amino-s-triazine) is the second most commonly used pesticide in the United States (Kiely et al. 2004), and perhaps the world (Solomon et al. 1996; van Dijk and Guicherit 1999). It is a photosynthesis inhibitor used to control certain annual broadleaf weeds, predominantly in corn but also in sorghum, sugarcane, and other crops and landscaping. The environmental risk posed by atrazine to aquatic systems is presently being re-evaluated by the US Environmental Protection Agency (USEPA: USEPA 2003, 2007). One of the challenges in evaluating the safety of atrazine has been that its biological effects are highly controversial, and much of the debate in the literature has been targeted at its effects on freshwater vertebrates (Hayes 2004; Renner 2004).

There have been four reviews on the biological effects of atrazine, all of which were funded by the corporation that produced or produces this chemical (Giddings et al. 2005; Huber 1993; Solomon et al. 1996; Solomon et al. 2008). However, none of the past reviews used a meta-analytical approach to identify generalities in responses to atrazine exposure. Meta-analysis, as paraphrased from the USEPA, is the systematic analysis of studies examining similar endpoints to draw general conclusions, develop support for hypotheses, and/or produce an estimate of overall effects. This sort of weight-of-evidence approach would provide directional hypotheses for future work on atrazine. Furthermore, it would offer invaluable information to regulatory agencies on general and expected impacts of atrazine on freshwater vertebrates that
might help resolve much of the controversy surrounding atrazine. Given the lack of a meta-analytical assessment and the potential importance of any atrazine effects, we set out to conduct an objective, qualitative meta-analysis on the effects of atrazine on amphibian and fish survival, behavior, metamorphic traits, and immune, endocrine, and reproductive systems.

ATRAZINE PERSISTENCE, TRANSPORT, AND EXPOSURE

To place the results of this meta-analysis within an ecological context and to evaluate the relevance of studied atrazine concentrations and exposure regimes, we briefly discuss the fate, transport, and field concentrations of atrazine. Atrazine is persistent relative to most current-use pesticides. Ciba-Giegy Corporation (1994), the previous atrazine producer, reported no detectable change in atrazine concentration after 30 d in hydrolysis studies conducted at pHs between 5 and 7, and an aqueous photolysis half-life of 335 days under natural light and a neutral pH. Half-lives from field and mesocosms studies are variable because degradation can depend on various environmental conditions. Nevertheless, several field and mesocosm studies report half-lives over three months (e.g. de Noyelles et al. 1989; Klaassen and Kadoum 1979).

Atrazine is also relatively mobile, regularly entering water bodies through run-off, with concentrations in surface waters often peaking after rains. Several researchers have suggested that atrazine can be transported 1000 km aerially (see van Dijk and Guicherit 1999). Indeed, atrazine has regularly been found in surface waters and precipitation great distances from where it is used, such as above the Arctic circle, albeit at low concentrations (van Dijk and Guicherit 1999).

Wet deposition of atrazine might also be important in some areas. In a review on atmospheric dispersion of current-use pesticides, van Dijk and Guicherit (1999) report more
studies detecting atrazine in rain or air (from European and US sites) than any other current-use pesticide. The maximum reported wet deposition of atrazine is 154 µg/L from Iowa, USA precipitation (Hatfield et al. 1996). Wet deposition above 1 µg/L has been reported regularly in North America and Europe between 1980 and the early 1990s (reviewed by van Dijk and Guicherit 1999). As a reference point, the maximum contaminant level for drinking water set by the USEPA is 3 µg/L of atrazine (USEPA 2002).

Surface water is likely the primary source of atrazine exposure for freshwater vertebrates. Data on atrazine concentrations in surface water, however, are more abundant for lotic (streams and rivers) than lentic (lakes, ponds, wetlands, ditches) systems (Solomon et al. 2008), primarily because of the extensive stream monitoring conducted by the US Geological Survey NAWQA project and Syngenta Crop Protection, Inc. (USEPA 2007). In lentic systems, water is not replenished like it is in lotic systems and chemicals can concentrate as lentic systems dry. Maximum reported concentrations in lentic systems are often between 2.5 to 10 times higher than maximum concentrations in lotic systems (Baker and Laflen 1979; Edwards et al. 1997; Evans and Duseja 1973; Frank et al. 1990; Kadoum and Mock 1978; Kolpin et al. 1997). Additionally, many amphibians develop in ephemeral agricultural ponds that might receive and concentrate atrazine (Knutson et al. 2004).

Given the limited data on atrazine concentrations in lentic systems, the expected (or estimated) environmental concentration (EEC) is a reasonable alternative for estimating concentrations to which aquatic organisms are likely to be exposed. The USEPA GENEEC v2 software calculates standardized EECs that are used by the USEPA for Tier 1 chemical risk screening. EECs are important because chemical registration decisions entail comparing lowest observable effect concentrations (LOEC) to EECs to determine whether higher level modeling is
warranted. Hence, effects of a chemical near or below the EEC can affect the decision to
approve its use.

For present atrazine application rates, EECs based on GENECE v2 software are typically
near 100 µg/L but can be higher for some crops. However, the recommended application rates
are now (~2lbs active ingredient/acre) two to four times less than they were in the early 1990s
(~8 lbs active ingredient/acre). Hence, at the time of atrazine registration, LOECs near or below
500 µg/L, a feasible EEC at the time, might have triggered Tier 2 testing and might have raised
concerns about the safety of atrazine that could have compromised its registration. Given both
past and present day conditions, the lack of thorough data on atrazine concentrations in lentic
systems, and the common use of agricultural ponds, ditches, and wetlands by amphibians and
fish, we suggest that concentrations near or below historical EECs (≤500 µg/L) are ecologically
relevant when considering the findings of this meta-analysis. This is arguably conservative
given that atrazine concentrations have been regularly recorded in agricultural ponds and ditches
above 500 µg/L (Baker and Laflen 1979; Edwards et al. 1997; Evans and Duseja 1973; Frank et
al. 1990; Kadoum and Mock 1978; Kolpin et al. 1997).

METHODS

We selected studies for this meta-analysis by starting with those cited by Solomon et al. (2008),
the most recent review of atrazine effects on amphibians and fish. We then supplemented these
studies with a Web of Science search to identify studies that might have been missed by
Solomon et al. (2008). The search terms were “atrazine” combined with either “amphibian*” or
“fish*”.
Selection criteria for inclusion of studies in meta-analyses can affect the conclusions that are drawn (Englund et al. 1999). Hence, we excluded studies from this meta-analysis that had substantial contamination in control treatments or reference sites (unless a regression approach was taken to analyze the data), no presentation of statistics and within-group variance estimates, considerable inconsistencies that could affect the biological conclusions, spatial confounders associated with atrazine treatments, pseudoreplication, or other considerable flaws in experimental design. We evaluated whether the exclusion of these studies changed the conclusion of the meta-analysis for each endpoint (Englund et al. 1999). Out of the 15 response variables, never did including studies that did not meet our criteria alter the conclusions of our meta-analyses and in some cases they actually strengthened the conclusions. Because of this and space limitations, which studies were excluded and why, as well as the directions of effects in these studies, are only provided in Supplemental Material.

We chose to conduct a qualitative meta-analysis, where we tallied the number of studies that did and did not detect effects of atrazine (“vote-counting” method), for several reasons. We quantify the effects of atrazine on 15 response variables from over 125 studies, and vote-counting, the simplest approach to meta-analyses, made it feasible to manage this complexity. Vote-counting also facilitates identifying response variables that might warrant more sophisticated meta-analyses based on effect sizes. Finally, vote-counting was chosen because it is a conservative approach, biasing results towards detecting no overall effect (Gurevitch and Hedges 1993). Because most atrazine studies conducted analysis of variance to test for dose-responses, despite regression analyses providing much greater statistical power (Cottingham et al. 2005), we also include studies that had substantial trends for effects of atrazine with significant effects and make this lumping clear in tables and text.
RESULTS AND DISCUSSION

Effects of Atrazine on Fish and Amphibian Survival

Many researchers have evaluated the effects of atrazine on fish (reviewed by Giddings et al. 2005; Huber 1993; Solomon et al. 1996) and amphibian survival (e.g. Allran and Karasov 2000, 2001; Brodeur et al. 2009; Diana et al. 2000; Freeman and Rayburn 2005; Rohr et al. 2003, 2004; Rohr et al. 2006b). Our general conclusion from these studies are consistent with the conclusions of authors from previous atrazine reviews (Giddings et al. 2005; Huber 1993; Solomon et al. 1996; Solomon et al. 2008) – there is not consistent, published evidence that ecologically relevant concentrations of atrazine are directly toxic to fish or amphibians. There are, however, some important exceptions (e.g. Alvarez and Fuiman 2005; Rohr et al. 2006b; 2008c; Storrs and Kiesecker 2004). Given journal space limitations and that our conclusions are consistent with previous reviews, we did not conduct a meta-analysis on survival.

Effects of Atrazine on Fish and Amphibian Development and Growth

Background on metamorphosis

A basic understanding of four concepts about amphibian metamorphosis is necessary to interpret the effects of any chemical on time to, or size at, metamorphosis. First, amphibians must reach a minimum size before they can metamorphose (Wilbur and Collins 1973). Second, once they reach this size, they can accelerate development and metamorphose earlier if they are in a “stressful” environment or metamorphose later if they are in a “good” environment (Wilbur and Collins 1973). Last, metamorphosis is predominantly controlled by corticosterone and thyroid
hormones (Larson et al. 1998), thus endocrine system disruption can lead to inappropriately
timed metamorphosis.

These important facts have profound implications for understanding the effects of
pollution on metamorphic traits. For example, imagine that an amphibian shunts energy away
from growth to detoxify a chemical and, as a result, reaches the minimum size for
metamorphosis five days later than amphibians not exposed to the chemical. Once this
amphibian reaches the minimum size for metamorphosis, it might accelerate its developmental
rate and metamorphose five days earlier to get out of the “stressful” chemical environment. In
this example, there is no net effect of the chemical on time to metamorphosis despite it
inarguably having considerable effects on energy use, growth, and developmental (Larson et al.
1998). A single chemical could delay, accelerate, or have no effect on timing of metamorphosis
depending on chemical type and concentration.

This example was meant to highlight four points. First, a lack of an effect of a chemical
on timing of metamorphosis does not mean there was no effect on developmental rate or
hormones that drive metamorphosis, as Solomon et al. (2008) conclude. Second, non-monotonic
dose-responses in the timing of metamorphosis are expected and are likely common. This is
because there are several processes occurring (detoxification, growth, and modulation of
developmental timing) that can be temporally offset and that likely have different (and
potentially opposite) functional responses to the same chemical. Third, timing of metamorphosis
in response to chemicals should be highly variable. This variation should not be interpreted as
inconsistencies across studies (e.g. Solomon et al. 2008) because the complexity of
metamorphosis is expected to induce extreme variability. Finally, unlike timing of
metamorphosis, size at metamorphosis is expected to monotonically decrease with increasing
chemical concentration across species and studies (controlling for time to metamorphosis). This is because energy used for detoxification is often taken away from that used for growth and development.

Effects on metamorphic traits

Our qualitative meta-analysis on the effects of atrazine on metamorphic traits is consistent with the predictions just described. Thirteen of 21 studies found significant effects of atrazine on metamorphic timing, with seven showing an increase and seven showing a decrease in time to metamorphosis, and thus, as predicted, the direction of the effect was not consistent across studies (Table 1). Seven of the 21 studies had either clear non-monotonic dose-responses or were possibly non-monotonic (Table 1). These results are consistent with the high variability and high probability of non-monotonicity expected for this endpoint.

Only two studies explicitly quantified the effects of atrazine on both thyroid hormones and timing of metamorphosis, and both showed significant non-monotonic effects (Freeman et al. 2005; Larson et al. 1998; Table 1). Further, Larson et al. (1998) revealed delays in growth and development early in life followed by accelerated development and early metamorphosis once a critical size for metamorphosis was reached. Additional studies that quantify the impacts of atrazine on thyroid hormones, corticosteroid hormones, and changes in growth and development through time are needed.

In contrast to timing of metamorphosis, size at metamorphosis shows a clear dose-dependent response to atrazine exposure (Table 1). Nineteen out of nineteen studies reported that atrazine was associated with significant reductions, or considerable trends toward reductions, in amphibian size at metamorphosis, and all of these studies reported effects at
ecologically relevant concentrations based on the above criteria (Table 1). Similar growth reductions have been observed in fish (Alvarez and Fuiman 2005; McCarthy and Fuiman 2008).

Atrazine consistently reduced amphibian size, which is likely to have adverse effects on amphibian populations because smaller metamorphs generally have lower terrestrial survival, lower lifetime reproduction, and compromised immune function (Carey et al. 1999, Scott 1994, Smith 1987). However, population-level effects of atrazine have not been empirically tested for in nature, and thus need to be evaluated explicitly.

Effects of Atrazine on Fish and Amphibian Behavior

Effects on locomotor activity

Twelve out of fourteen studies reported that atrazine exposure increased amphibian or fish locomotor activity over at least a portion of the concentration gradient tested (Table 2). Interestingly, four out five studies on fish, but none of the studies on amphibians, reported non-monotonic dose responses. For fish, low concentrations of atrazine stimulated hyperactivity but higher concentrations caused reductions in activity. For amphibians, hyperactivity was typically observed at the concentrations tested, but higher concentrations would likely eventually become toxic and reduce activity. All studies conducted on fish detected effects of atrazine on locomotor activity, whereas 75% of the studies on amphibians detected atrazine effects (Table 2).

The effects of atrazine on amphibian and fish locomotor activity are consistent with atrazine-induced changes in locomotor activity in mammals. Atrazine seems to cause hyperactivity in mammals by competing with receptors for the inhibitory neurotransmitter gamma aminobutyric acid, by altering monoamine turnover, and through neurotoxicity of the dopaminergic system (Das et al. 2001; Rodriguez et al. 2005). One study showed that atrazine
has similar effects on the nervous system of Ranid frogs (Papaefthimiou et al. 2003), but additional studies are needed that evaluate the mechanisms responsible for atrazine-induced activity changes in fish and amphibians.

Effects on anti-predator behaviors

Six out of seven studies reported that atrazine decreased amphibian and fish behaviors associated with “predation-related” risk reduction (Table 2). Reduced predation avoidance behaviors increases predation risk, whereas increased hyperactivity (noted above) should increase encounter rates with predators (Skelly 1994). Hence, reduced risk-reduction behaviors coupled with hyperactivity is expected to increase predation. However, there are no published studies on the effects of atrazine on predator-prey relationships to which we are aware. Given that atrazine might have effects on both predators and prey, the effects of atrazine on predator-prey interactions are difficult to predict without additional studies.

Effects on olfaction

Five out of five studies reported that atrazine exposure reduced olfactory sensitivity of fish in a dose-dependent manner (Table 2). In contrast, three out of three studies on amphibians detected no effects of atrazine on olfaction at much higher concentrations than were tested on fish (Table 2). One study on amphibians stained activated olfactory neurons with agmatine and found no difference in the stimulation of olfactory neurons between atrazine-treated and control animals (Lanzel 2008).

Effects on other behaviors
One study showed that atrazine reduced amphibian water conserving behaviors which increased their rate of water loss (Rohr and Palmer 2005) (Table 2). Interestingly, both the hyperactivity and the reduced water conserving behaviors in this study occurred hundreds of days after atrazine exposure had ceased and there was no evidence that these endpoints recovered from atrazine exposure, suggesting permanent effects (Rohr and Palmer 2005). Amphibians are extremely susceptible to desiccation, and thus atrazine-induced changes in water conserving behaviors would be expected to increase mortality risk.

Effects of Atrazine on Fish and Amphibian Immunity and Infections

Effects on immunity

Our qualitative meta-analysis revealed that atrazine exposure consistently reduced immune functioning of fish and amphibians, with 16 of 18 studies finding effects at ecologically relevant concentrations. However, many of the endpoints (16/39) were from studies where atrazine was tested as part of a mixture of pesticides, and thus the effects of atrazine were not isolated (Table 3). Nevertheless, atrazine exposure, alone (22/27 endpoints) or in a pesticide mixture (13/16 endpoints), was associated with reduced immune functioning, resulting in an overall reduction in 81% (35/43) of the quantified fish and amphibian immune endpoints (including trends for a decrease; Table 3). These results are somewhat conservative because in one study multiple genes associated with immunity were significantly down-regulated (Langerveld et al. 2009), but they were counted as a single endpoint (Table 3).

Effects on infections
Similar to the effects of atrazine on amphibian and fish immunity, atrazine exposure was consistently associated with an increase in infection endpoints in fish and amphibians at ecologically relevant concentrations (Table 4). Atrazine elevated trematode, nematode, viral, and bacterial infections (Table 4). Of the studies with sufficient statistical power and without obvious confounders, 12 out of 14 of the infection endpoints increased or showed a strong trend toward increasing, indicating either more infected individuals, more infections per individual, faster maturation or greater reproduction of the parasite within the host, or greater parasite-induced host mortality (Table 4). As with immunity, these patterns should be considered with caution because many of these endpoints (6/16) came from studies where atrazine was part of a mixture of pesticides tested. Nevertheless, atrazine exposure, alone (4/7 endpoints) or in a pesticide mixture or field study (9/9 endpoints), was associated with an increase in infection endpoints (Table 4). In general, high concentrations of atrazine seem to be directly toxic to trematodes and viruses, possibly reducing infection risk for amphibians (Forson and Storfer 2006a; Koprivnikar et al. 2006, 2007; Rohr et al. 2008b), whereas more ecologically common concentrations seem to increase amphibian susceptibility, elevating infection risk (Forson and Storfer 2006b; Gendron et al. 2003; Kiesecker 2002; Rohr et al. 2008c).

Several atrazine studies only collected immunological data from animals that were also exposed to parasites, thus confounding immune parameters with parasite exposure and loads (Christin et al. 2003; Forson and Storfer 2006b; Gendron et al. 2003; Hayes et al. 2006; Kiesecker 2002; Rohr et al. 2008c). However, in every one of these studies, atrazine was associated with both reduced immune parameters and elevated parasite loads. Parasites reducing immune responses cannot explain the elevated infections associated with atrazine. Hence, the parsimonious explanation for both of these findings is that atrazine reduced immune responses
which elevated infections, especially given that vertebrates typically up-regulate immunity upon infection (Raffel et al. 2006).

Despite the apparent consistency in the effects of atrazine on immunity and infections (Table 3), much remains to be learned about the effects of atrazine, and other chemicals, on parasite-host interactions (Raffel et al. 2008; Rohr et al. 2006a). For instance, we know little about how atrazine-induced changes affect population or community dynamics or most human diseases.

Effects of Atrazine on Fish and Amphibian Gonadal Morphology

General morphological endpoints

Sex differentiation is the process by which gonads develop into either testes or ovaries from an undifferentiated or bi-potential gonad (Hayes 1998). This process is distinct from reproductive maturation where the differentiated gonad becomes reproductively functional (e.g., undergoes spermatogenesis, in males). Determining if atrazine induces changes in gonadal morphology is an important step in evaluating whether it can influence sexual differentiation.

Atrazine consistently affected male gonadal morphology in fish and amphibians (Table 5). Eight of the 10 studies included in our meta-analysis report strong trends or statistically significant (six studies) alterations in at least one aspect of general gonadal morphology associated with atrazine exposure. Alterations included discontinuous and multiple testes, sexually ambiguous gonadal tissue, testicular ovarian follicles, altered gonadal somatic index (GSI- body size corrected gonadal size), expanded testicular lobules and spermatogenic tubule diameter (Table 5).
Effects on ovarian morphology are generally less obvious than those on testicular morphology and are typically dismissed without quantification. None of the three studies on fish or amphibians included in our meta-analysis found significant effects of atrazine on ovarian morphology, suggesting that atrazine induces fewer gonadal abnormalities in females than males. However, additional studies are necessary to fully evaluate the effects of atrazine on female gonadal morphology.

Testicular ovarian follicles as a natural phenomenon

Jooste et al (2005) and Solomon et al. (2008) argue that experiments with high numbers of testicular ovarian follicles (TOFs) in control *X. laevis* support the hypothesis that TOFs are normal in some *X. laevis* populations. Although it was argued, long ago, that some anurans in some environments transition through a hermaphroditic phase during development (Witschi 1929), this literature does not argue that adult amphibians commonly have oocytes within testicular tissue or are naturally hermaphroditic (Eggert 2004; Hayes 1998). Indeed, *X. laevis* sexually differentiates (without a transitional/hermaphroditic stage) during the larval period prior to sexual maturation (Iwasawa and Yamaguchi 1984). Thus, cases of gonadal abnormalities in “healthy” adult *X. laevis* populations should be rare. Given that simultaneous hermaphroditism has not been previously reported in *X. laevis* despite decades of research on their reproductive biology, an equally or more plausible explanation for high numbers of TOFs in control animals (e.g. Jooste et al. 2005; Orton et al. 2006) is exposure to some type of unmeasured endocrine disrupting contaminant.

Effects of Atrazine on Fish and Amphibian Sex Ratios
Given that atrazine exposure has been proposed to feminize gonadal development (Hayes et al. 2002), it might lead to female-biased sex ratios. Many studies, however, have severe methodological errors, such as contaminated controls, or inadequate data reporting (See Supplemental Material, Text, Table S1), preventing a conclusive synthesis of the effects of atrazine on sex ratios. None of the sex ratio studies used the most accepted and powerful approaches for testing for changes in sex ratios (e.g. Wilson and Hardy 2002). Only four studies, all on *X. laevis*, were of sufficient quality to be included in our meta-analysis and only one found that atrazine induced a female-biased sex ratio (See Supplemental Material, Table S2).

Effects of Atrazine on Fish and Amphibian Gonadal Function

Chemicals that alter gonadal development can affect gonadal function, such as germ cell (e.g. spermatogenesis in males) and steroid hormone production (McCoy et al. 2008; McCoy and Guillette in press), and thus can lead to altered reproductive success.

Effects on testicular cell types

Spermatogenesis is the process through which mature male gametes, spermatozoa, are produced from precursor cells (spermatogenic cells). The relative ratios of different spermatogenic cell types, rather than abundance of spermatozoa alone, is the most sensitive metric of altered spermatogenesis. Unfortunately, few studies on effects of atrazine on spermatogenesis met our inclusion criteria. Two of two studies demonstrated that atrazine was associated with altered spermatogenesis and that several cell types were affected (Table 6). Thus, atrazine appears capable of altering spermatogenesis, but the contexts and generality of these affects cannot be firmly established. Our analysis once again highlights a need for more rigorous investigations.
Effects on sex hormone concentrations

Sex hormone production is an important function of gonads that can be altered by gonadal abnormalities (McCoy et al. 2008). Indeed, altered hormone concentrations are the defining characteristic, in many cases, of “endocrine disruption”. Six of seven studies on fish and amphibians document strong trends or significantly (five studies) altered sex hormone concentrations associated with atrazine exposure (Table 6). Although many of these studies were conducted in the field and are therefore correlative, the consistency of these results across studies suggests that atrazine alters sex hormone production and should be considered an endocrine disrupting chemical. A more thorough understanding of the effects of atrazine on hormone concentrations will require more detailed studies that account for the inherent variability endocrine system processes.

Effects on reproductive success

Reproductive success is strongly linked to population persistence and is likely one of the most important endpoints in toxicological studies. Five studies that evaluated the effects of atrazine on measures of reproductive success met our meta-analysis requirements (Table 6). Two studies on adult fish, *Pimephales promelas*, found no significant effect of atrazine on number of eggs produced, fertilization success, proportion of hatchlings, or larval development. However, one of these studies (Bringolf et al. 2004) found several non-significant, adverse trends (Table 6). Two of three studies on amphibians found no effects of atrazine on hatching success, whereas one showed reduced hatching success and delayed hatching (Table 6). Given the mixed results, the effect of atrazine on reproductive success needs to be studied in more thoroughly.
Effects of Atrazine on Fish and Amphibian Vitellogenin

Vitellogenin is an egg yolk precursor protein produced in the livers of female fish and amphibians. Estrogens induce vitellogenin synthesis in both males and females \textit{in vivo} and quantification of vitellogenin is now an accepted screening test for estrogenic effects of chemicals (Scholz and Mayer 2008). None of the five studies (four on fish) found significant effects of atrazine on circulating or whole body concentrations of vitellogenin (See Supplemental Material, Table S2). Hence, these data do not support the hypothesis that atrazine is strongly estrogenic to fish.

Effects of Atrazine on Fish and Amphibian Aromatase

Cytochrome p450 aromatase catalyzes the conversion of androgens to estrogens in gonads and is critical for maintaining a balance between these sex hormone classes. Hayes et al. (2002) hypothesized that decreases in testosterone associated with atrazine exposure in their study could be driven by an atrazine-induced increase in aromatase and a concomitant increase in the conversion of testosterone and other androgens to estrogens. This hypothesis seemed reasonable because atrazine was known to increase aromatase in human cancer cell lines and in alligator gonadal-adrenal mesonephros (Crain et al. 1997; Sanderson et al. 2000). However, since 2002, several studies have explicitly tested whether atrazine increases aromatase in fish and amphibians, and only one of six studies included in our meta-analysis found that atrazine was associated with increased aromatase gene expression (See Supplemental Material, Table S2).

Effects of Atrazine on Fish and Amphibian Populations and Communities
Although there are too few studies examining the effects of atrazine on freshwater vertebrate populations to warrant meta-analysis and virtually all community-level studies infer, rather than test for, indirect effects (Rohr and Crumrine 2005), the effects of atrazine on populations and communities warrants a brief discussion. Any chemical that affects physiology, growth, development, reproduction, survival, or species interactions can affect population and community dynamics (Clements and Rohr 2009; Rohr et al. 2006a). However, the effects of contaminants might not result in immediate population declines because the survivors of chemical exposure frequently have less competition for resources, thus providing density-mediated compensation for adverse effects of the chemical (Rohr et al. 2006b). Demonstrating that a factor is the cause of any population decline is, indeed, incredibly difficult (Rohr et al. 2008a). Rohr et al. (2006b) revealed significant and delayed declines in *Ambystoma barbouri* salamander “populations” at 4, 40, and 400 µg/L of atrazine, above and beyond the counteracting effects of density-mediated compensation. Although this study provided greater ecological realism than many studies on atrazine, caution should be taken extrapolating these effects to populations in nature because this study was conducted in laboratory terraria. There is certainly a need for controlled studies on the effects of pesticides on wildlife populations.

Several studies have examined the effects of atrazine on amphibian and fish communities (Boone and James 2003; de Noyelles et al. 1989; Kettle 1982; Rohr and Crumrine 2005; Rohr et al. 2008c). Many of these studies reported alterations in fish or amphibian growth and abundance that seem to be caused by atrazine-induced changes in photosynthetic organisms (reviewed by Giddings et al. 2005; Solomon et al. 2008). At ecologically relevant concentrations, atrazine is expected to have a bevy of indirect effects by altering the abundance of periphyton, phytoplankton, and macrophytes (Huber 1993; Solomon et al. 1996). However,
none of these studies distinguish between direct and indirect effects of atrazine on fish or amphibians. There are several field studies comparing amphibian populations or species richness between atrazine-exposed and unexposed habitats (Bonin et al. 1997; Du Preez et al. 2005; Knutson et al. 2004). All of these studies are correlational and none thoroughly considered or ruled out alternative hypotheses for the observed patterns.

Caveats

We would be remiss to not mention some caveats regarding this meta-analysis. First, a problem with many meta-analyses is the “file-drawer” effect. This refers to the fact that researchers tend to place the results of experiments showing no effects in their file drawer and many journals tend to publish fewer studies showing no effects than effects (Gurevitch and Hedges 1993; Osenberg et al. 1999). This might be less of a problem in studies on pesticides because these chemicals are designed to kill biota and thus, in many cases, the null hypothesis might be an effect rather than the absence of one. Additionally, a substantial industry contingent works to ensure that both significant and non-significant effects of chemicals get published. Indeed, in the atrazine review by Solomon et al. (2008), there were approximately 63 cases where atrazine had significant adverse effects and 70 cases where atrazine had no significant effects (Rohr and McCoy in review), suggesting that the file-drawer effect is unlikely to be strongly biasing submission and publication of non-significant atrazine results. However, we cannot completely discount the possibility that the file-drawer effect generated a bias toward greater publication of significant effects of atrazine.
Another admonishment is that some of the endpoints in this meta-analysis were not independent of one another. For example, we tallied multiple endpoints from a single study despite the possibility that they might not be entirely independent.

Finally, we must consider the findings of this meta-analysis on atrazine relative to alternative strategies for weed control. If the alternative to atrazine is another chemical, then we should ideally compare the effects of atrazine to the replacement chemical. In fact, atrazine might be less detrimental to freshwater vertebrates than a replacement herbicide. If the alternative to atrazine does not entail a chemical replacement, then the effects revealed here might indeed be disconcerting. However, we also cannot ignore the benefit, if any, that atrazine provides. Interestingly, several studies estimate that atrazine only increases corn yields by 1-3% (reviewed by Ackerman 2007). To adequately evaluate any chemical, we should ideally conduct a thorough cost-benefit analysis that considers the focal chemical and alternatives to its use and that is based on comprehensive and accurate knowledge (see Ackerman 2007 for a review and critique of atrazine cost-benefit analyses).

Conclusions

Like past reviews, we found little evidence that atrazine consistently causes direct mortality of freshwater vertebrates at ecologically relevant concentrations, but there is evidence that atrazine might have adverse indirect ecological effects. However, in contrast to a previous review on atrazine (Solomon et al. 2008), we unveiled consistent effects of atrazine at ecologically relevant concentrations for many other response variables in our meta-analysis. The discrepancy between our findings and the conclusions of previous reviews could partly be a function of differences in criteria for including studies in the group used to draw general conclusions about atrazine effects.
Past reviews (e.g. Solomon et al. 2008) did not clearly define their inclusion criteria and did not make it clear which studies affected, or how they came to, their conclusions and regularly dismissed significant effects of atrazine.

Here, we revealed that, for freshwater vertebrates, atrazine consistently reduced growth rates, had variable effects on timing of metamorphosis that were often non-monotonic, elevated locomotor activity, and reduced anti-predator behaviors. Amphibian and fish immunity was reliably reduced by ecologically relevant concentrations of atrazine and this was regularly accompanied by elevated infections. Atrazine exposure induced diverse morphological gonadal abnormalities in fish and amphibians and was associated with altered gonadal function, such as modified sex hormone production. This suggests that atrazine should be considered an endocrine disrupting chemical. Finally, we do not have a thorough appreciation of the reproductive repercussions of atrazine.

Several endpoints had enough well-conducted studies to warrant more sophisticated meta-analyses based on effect sizes (e.g. growth, timing of metamorphosis, activity, immunity, infections, gonadal abnormalities). Meta-analyses based on effect sizes can provide parameter and standard errors estimates and thus can be useful for probabilistic risk assessment and for predicting atrazine effects.

Although we revealed consistent effects of atrazine on freshwater vertebrates, the consequences of these effects remain uncertain. We know little about how atrazine-induced changes in vertebrate growth, somatic development, behavior, immunity, gonadal development, or physiology affect reproduction, populations, gene frequencies, or communities. However, it was Sir Austin Bradford Hill who wisely stated in his address to the Royal Society of medicine in 1965 that:
All scientific work is incomplete [and]...liable to be upset or modified by advancing knowledge. That does not confer upon us freedom to ignore the knowledge we already have, or to postpone action that it appears to demand at a given time (Hill 1965).

Whatever action is taken in the USEPA’s re-evaluation of atrazine, we strongly encourage regulators to consider the consistent effects of atrazine on various taxa and to weigh these effects against any benefits atrazine provides and alternatives to atrazine use.

REFERENCES

Ackerman F. 2007. The economics of atrazine. Int J Occup Environ Health 13(4): 437-445.

Allran JW, Karasov WH. 2000. Effects of atrazine and nitrate on northern leopard frog (Rana pipiens) larvae exposed in the laboratory from posthatch through metamorphosis. Environ Toxicol Chem 19:2850-2855.

Allran JW, Karasov WH. 2001. Effects of atrazine on embryos, larvae, and adults of anuran amphibians. Environ Toxicol Chem 20:769-775.

Alvarez MD, Fuiman LA. 2005. Environmental levels of atrazine and its degradation products impair survival skills and growth of red drum larvae. Aquat Toxicol 74:229-241.

Baker JL, Laflen JM. 1979. Runoff losses of surface-applied herbicides as affected by wheel tracks and incorporation. J Environ Qual 8:602-607.

Biaganti-Risbourg S. 1990. Contribution a l’ du foie de juveniles de muges teleosteens, (muglides) contamines experimentalment par l’ atrazine (s-triazine, herbicide): Interet en ectoxicologie [PhD dissertation]. Montpellier: University of Perpigan, France.
Bonin J, Des Granges J, Rodrigue J, Oullet M. 1997. Anuran species richness in agricultural landscapes of Quebec: Foreseeing long-term results of road call surveys. Herpetol Conserv 1:141-149.

Boone MD, James SM. 2003. Interactions of an insecticide, herbicide, and natural stressors in amphibian community mesocosms. Ecol Appl 13:829-841.

Bridges C, Little E, Gardiner D, Petty J, Huckins J. 2004. Assessing the toxicity and teratogenicity of pond water in north-central Minnesota to amphibians. Environ Sci Pollut R 11:233-239.

Bringolf RB, Belden JB, Summerfelt RC. 2004. Effects of atrazine on fathead minnow in a short-term reproduction assay. Environ Toxicol Chem 23:1019-1025.

Britson CA, Threlkeld ST. 1998. Abundance, metamorphosis, developmental, and behavioral abnormalities in Hyla chrysoscelis tadpoles following exposure to three agrichemicals and methyl mercury in outdoor mesocosms. Bull Environ Contam Toxicol 61:154-161.

Brodeur JC, Svartz G, Perez-Coll CS, Marino DJG, Herkovits J. 2009. Comparative susceptibility to atrazine of three developmental stages of Rhinella arenarum and influence on metamorphosis: Non-monotonous acceleration of the time to climax and delayed tail resorption. Aquat Toxicol 91:161-170.

Brodkin MA, Madhoun H, Rameswaran M, Vatnick I. 2007. Atrazine is an immune disruptor in adult northern leopard frogs (Rana pipiens). Environ Toxicol Chem 26:80-84.

Carey C, Cohen N, Rollins-Smith L. 1999. Amphibian declines: an immunological perspective. Dev Comp Immunol 23:459-472.
Carr JA, Gentles A, Smith EE, Goleman WL, Urquidi LJ, Thuett K, et al. 2003. Response of larval *Xenopus laevis* to atrazine: Assessment of growth, metamorphosis, and gonadal and laryngeal morphology. Environ Toxicol Chem 22:396-405.

Christin MS, Gendron AD, Brousseau P, Menard L, Marcogliese DJ, Cyr D, et al. 2003. Effects of agricultural pesticides on the immune system of *Rana pipiens* and on its resistance to parasitic infection. Environ Toxicol Chem 22:1127-1133.

Christin MS, Menard L, Gendron AD, Ruby S, Cyr D, Marcogliese DJ, et al. 2004. Effects of agricultural pesticides on the immune system of *Xenopus laevis* and *Rana pipiens*. Aquat Toxicol 67:33-43.

Ciba-Giegy. 1994. Environmental fate reference data source book for atrazine. Greensboro, NC: Ciba-Giegy Corporation.

Clements WH, Rohr JR. 2009. Community responses to contaminants: Using basic ecological principles to predict ecotoxicological effects. Environ Toxicol Chem in press.

Cottingham KL, Lennon JT, Brown BL. 2005. Knowing when to draw the line: Designing more informative ecological experiments. Front Ecol Environ 3:145-152.

Crain DA, Guillette LJ, Rooney AA, Pickford DB. 1997. Alterations in steroidogenesis in alligators (*Alligator mississippiensis*) exposed naturally and experimentally to environmental contaminants. Environ Health Persp 105:528-533.

Das PC, McElroy WK, Cooper RL. 2001. Alteration of catecholamines in pheochromocytoma (pc12) cells in vitro by the metabolites of chlorotriazine herbicide. Toxicol Sci 59:127-137.

Davies PE, Cook LSJ, Goenarso D. 1994. Sublethal responses to pesticides of several species of Australian fresh-water fish and crustaceans and rainbow trout. Environ Toxicol Chem 13:1341-1354.
de Noyelles F, Kettle WD, Fromm CH, Moffett MF, Dewey SL. 1989. Use of experimental ponds to assess the effects of a pesticide on the aquatic environment. In: Using mesocosms to assess the aquatic ecological risk of pesticides: Theory and practice (Voshell JR, ed). Lanham, MD: Entomological Society of America.

Diana SG, Resetarits WJ, Jr., Schaeffer DJ, Beckmen KB, Beasley VR. 2000. Effects of atrazine on amphibian growth and survival in artificial aquatic communities. Environ Toxicol Chem 19:2961-2967.

Du Preez LH, Kunene N, Everson GJ, Carr JA, Giesy JP, Gross TS, et al. 2008. Reproduction, larval growth, and reproductive development in African clawed frogs (*Xenopus laevis*) exposed to atrazine. Chemosphere 71:546-552.

Du Preez LH, Solomon KR, Carr JA, Giesy JP, Gross TS, Kendall RJ, et al. 2005a. Population structure of the African clawed frog (*Xenopus laevis*) in maize-growing areas with atrazine application versus non-maize-growing areas in South Africa. Afr J Herpetol 54:61-68.

Du Preez LH, van Rensburg PJJ, Jooste AM, Carr JA, Giesy JP, Gross TS, et al. 2005b. Seasonal exposures to triazine and other pesticides in surface waters in the western highveld corn-production region in South Africa. Environ Pollut 135:131-141.

Dunier M, Swicki AK. 1993. Effects of pesticides and other organic pollutants in the aquatic environment on immunity of fish: A review. Fish Shellfish Immun 3:423-438.

Edwards WM, Shipitalo MJ, Lal R, Owens LB. 1997. Rapid changes in concentration of herbicides in corn field surface depressions. J Soil Water Conserv 52:277-281.

Eggert C. 2004. Sex determination: The amphibian models. Reprod Nutr Dev 44:539-549.

Englund G, Sarnelle O, Cooper SD. 1999. The importance of data-selection criteria: Meta-analyses of stream predation experiments. Ecology 80:1132-1141.
Evans JO, Duseja DR. 1973. Herbicide's contamination of surface runoff waters EPA R2–73–266. Technical Report. Washington DC: U.S. Environmental Protection Agency.

Fatima M, Mandiki SNM, Douxfils J, Silvestre F, Coppe P, Kestemont P. 2007. Combined effects of herbicides on biomarkers reflecting immune-endocrine interactions in goldfish immune and antioxidant effects. Aquat Toxicol 81:159-167.

Forson D, Storfer A. 2006a. Effects of atrazine and iridovirus infection on survival and life-history traits of the long-toed salamander (*Ambystoma macrodactylum*). Environ Toxicol Chem 25:168-173.

Forson DD, Storfer A. 2006b. Atrazine increases ranavirus susceptibility in the tiger salamander, *Ambystoma tigrinum*. Ecol Appl 16:2325-2332.

Frank R, Braun HE, Ripley BD, Clegg BS. 1990. Contamination of rural ponds with pesticide, 1971-85, Ontario, Canada. Bull Environ Contam Toxicol 44:401-409.

Freeman JL, Beccue N, Rayburn AL. 2005. Differential metamorphosis alters the endocrine response in anuran larvae exposed to T-3 and atrazine. Aquat Toxicol 75:263-276.

Freeman JL, Rayburn AL. 2005. Developmental impact of atrazine on metamorphing *Xenopus laevis* as revealed by nuclear analysis and morphology. Environ Toxicol Chem 24:1648-1653.

Gendron AD, Marcogliese DJ, Barbeau S, Chrsitin MS, Brousseau P, Ruby S, et al. 2003. Exposure of leopard frogs to a pesticide mixture affects life history characteristics of the lungworm *Rhabdias ranae*. Oecologia 135:469-476.

Giddings JM, Anderson TA, Hall LW, Kendall RJ, Richards RP, Solomon KR, et al. 2005. A probabilisitec aquatic ecological risk assessment of atrazine to North American surface waters. Pensacola, FL: SETAC Press.
Gurevitch J, Hedges LV. 1993. Meta-analysis: Combining the results of independent experiments. In: The design and analysis of ecological experiments (Scheiner SM, Gurevitch J, eds). New York: Chapman & Hall, 378-398.

Hatfield JL, Wesley CK, Prueger JH, Pfeiffer RL. 1996. Herbicide and nitrate distribution in central Iowa rainfall. J Environ Qual 25:259-264.

Hayes T, Haston K, Tsui M, Hoang A, Haeffele C, Vonk A. 2003. Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): Laboratory and field evidence. Environ Health Persp 111:568-575.

Hayes TB. 1998. Sex determination and primary sex differentiation in amphibians: Genetic and developmental mechanisms. J Exp Zool 281:373-399.

Hayes TB. 2004. There is no denying this: Defusing the confusion about atrazine. Bioscience 54:1138-1149.

Hayes TB, Case P, Chui S, Chung D, Haeffele C, Haston K, et al. 2006. Pesticide mixtures, endocrine disruption, and amphibian declines: Are we underestimating the impact? Environ Health Persp 114:40-50.

Hayes TB, Collins A, Lee M, Mendoza M, Noriega N, Stuart AA, et al. 2002. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. P Natl Acad Sci USA 99:5476-5480.

Hecker M, Giesy JP, Jones PD, Jooste AM, Carr JA, Solomon KR, et al. 2004. Plasma sex steroid concentrations and gonadal aromatase activities in African clawed frogs (Xenopus laevis) from South Africa. Environ Toxicol Chem 23:1996-2007.
Hecker M, Kim WJ, Park JW, Murphy MB, Villeneuve D, Coady KK, et al. 2005a. Plasma concentrations of estradiol and testosterone, gonadal aromatase activity and ultrastructure of the testis in *Xenopus laevis* exposed to estradiol or atrazine. Aquat Toxicol 72:383-396.

Hecker M, Park JW, Murphy MB, Jones PD, Solomon KR, Van Der Kraak G, et al. 2005b. Effects of atrazine on cyp19 gene expression and aromatase activity in testes and on plasma sex steroid concentrations of male African clawed frogs (*Xenopus laevis*). Toxicol Sci 86:273-280.

Hill AB. 1965. The environment and disease: Association or causation? Proc Royal Soc Med 58:295-300.

Houck A, Sessions SK. 2006. Could atrazine affect the immune system of the frog, *Rana pipiens*? Bios 77:107-112.

Huber W. 1993. Ecotoxicological relevance of atrazine in aquatic systems. Environ Toxicol Chem 12:1865-1881.

Iwasawa H, Yamaguchi K. 1984. Ultrastructural-study of gonadal development in *Xenopus laevis*. Zool Sci 1:591-600.

Jooste AM, Du Preez LH, Carr JA, Giesy JP, Gross TS, Kendall RJ, et al. 2005. Gonadal development of larval male *Xenopus laevis* exposed to atrazine in outdoor microcosms. Environ Sci Tech 39:5255-5261.

Kadoum AM, Mock DE. 1978. Herbicide and insecticide residues in tailwater pits: water and pit bottom soil from irrigated corn and sorghum fields. J Agr Food Chem 26:45-50.

Kazeto Y, Place AR, Trant JM. 2004. Effects of endocrine disrupting chemicals on the expression of cyp19 genes in zebrafish (*Danio rerio*) juveniles. Aquat Toxicol 69:25-34.
Kerby JL, Storfer A. 2009. Combined effects of atrazine and chloropyrifos on susceptibility of the tiger salamander to *Ambystoma tigrinum* virus. EcoHealth in press DOI: 10.1007/s10393-009-0234-0

Kettle WD. 1982. Description and analysis of toxicant-induced responses of aquatic communities in replicated experimental ponds [PhD dissertation]. Lawrence, KS: University of Kansas.

Kiely T, Donaldson D, Grube A. 2004. Pesticide industry sales and usage: 2000 and 2001 market estimates. Washington, D.C.: U.S. Environmental Protection Agency.

Kiesecker JM. 2002. Synergism between trematode infection and pesticide exposure: A link to amphibian limb deformities in nature? PNAS 99:9900-9904.

Klaassen HE, Kadoum AM. 1979. Distribution and retention of atrazine and carbofuran in farm pond ecosystems. Arch Environ Contam Toxicol 8:345-353.

Kloas W, Lutz I, Springer T, Krueger H, Wolf J, Holden L, et al. 2009. Does atrazine influence larval development and sexual differentiation in *Xenopus laevis*? Toxicol Sci 107:376-384.

Knutson MG, Richardson WB, Reineke DM, Gray BR, Parmelee JR, Weick SE. 2004. Agricultural ponds support amphibian populations. Ecol Appl 14:669-684.

Kolpin DW, SneckFahrer D, Hallberg GR, Libra RD. 1997. Temporal trends of selected agricultural chemicals in Iowa's groundwater, 1982-1995: Are things getting better? J Environ Qual 26:1007-1017.

Koprivnikar J, Forbes MR, Baker RL. 2006b. Effects of atrazine on cercarial longevity, activity, and infectivity. J Parasitol 92:306-311.
Langerveld AJ, Celestine R, Zaya R, Mihalko D, Ide CF. 2009. Chronic exposure to high levels of atrazine alters expression of genes that regulate immune and growth-related functions in developing *Xenopus laevis* tadpoles. Environ Res 109:379-389.

Lanzel S. 2008. Atrazine and info-disruption: Does the pesticide atrazine disrupt the transfer of chemical information in the terrestrial salamander *Plethodon shermani*? Pittsburgh: Dusquene University.

Larson DL, McDonald S, Fivizzani AJ, Newton WE, Hamilton SJ. 1998. Effects of the herbicide atrazine on *Ambystoma tigrinum* metamorphosis: Duration, larval growth, and hormonal response. Phys Zool 71:671-679.

McCarthy ID, Fuiman LA. 2008. Growth and protein metabolism in red drum (*Sciaenops ocellatus*) larvae exposed to environmental levels of atrazine and malathion. Aquat Toxicol 88:220-229.

McCoy KA, Bortnick LJ, Campbell CM, Hamlin HJ, Guillette LJ, St Mary CM. 2008. Agriculture alters gonadal form and function in the toad *Bufo marinus*. Environ Health Persp 116:1526-1532.

McCoy KA, Guillette LJ. in press. Endocrine disruptors. In: Amphibian biology: Volume 8a conservation and decline of amphibians (Heatwole HF, ed), Chap 9.

McDaniel TV, Martin PA, Struger J, Sherry J, Marvin CH, McMaster ME, et al. 2008. Potential endocrine disruption of sexual development in free ranging male northern leopard frogs (*Rana pipiens*) and green frogs (*Rana clamitans*) from areas of intensive row crop agriculture. Aquat Toxicol 88:230-242.
Moore A, Lower N. 2001. The impact of two pesticides on olfactory-mediated endocrine function in mature male Atlantic salmon (Salmo salar l.) parr. Comp Biochem Phys B 129:269-276.

Moore A, Waring CP. 1998. Mechanistic effects of a triazine pesticide on reproductive endocrine function in mature male Atlantic salmon (Salmo salar l.) parr. Pestic Biochem Phys 62:41-50.

Muncke J, Junghans M, Eggen RIL. 2007. Testing estrogenicity of known and novel (xeno-) estrogens in the moldart using developing zebrafish (Danio rerio). Environ Toxicol 22:185-193.

Murphy MB, Hecker M, Coady KK, Tompsett AR, Higley EB, Jones PD, et al. 2006a. Plasma steroid hormone concentrations, aromatase activities and GSI in ranid frogs collected from agricultural and non-agricultural sites in Michigan (USA). Aquat Toxicol 77:153-166.

Murphy MB, Hecker M, Coady KK, Tompsett AR, Jones PD, Du Preez LH, et al. 2006b. Atrazine concentrations, gonadal gross morphology and histology in ranid frogs collected in Michigan agricultural areas. Aquat Toxicol 76:230-245.

Oka T, Tooi O, Mitsui N, Miyahara M, Ohnishi Y, Takase M, et al. 2008. Effect of atrazine on metamorphosis and sexual differentiation in Xenopus laevis. Aquat Toxicol 87:215-226.

Osenberg CW, Sarnelle O, Cooper SD, Holt RD. 1999. Resolving ecological questions through meta-analysis: Goals, metrics, and models. Ecology 80:1105-1117.

Papaefthimiou C, Zafeiridou G, Topoglidi A, Chaleplis G, Zografou S, Theophilidis G. 2003. Triazines facilitate neurotransmitter release of synaptic terminals located in hearts of frog (Rana ridibunda) and honeybee (Apis mellifera) and in the ventral nerve cord of a beetle (Tenebrio molitor). Comp Biochem Physiol C-Pharmacol Toxicol Endocrinol 135:315-330.
Raffel TR, Martin LB, Rohr JR. 2008. Parasites as predators: Unifying natural enemy ecology. Trends Ecol Evol 23:610-618.

Raffel TR, Rohr JR, Kiesecker JM, Hudson PJ. 2006. Negative effects of changing temperature on amphibian immunity under field conditions. Funct Ecol 20:819-828.

Reeder AL, Foley GL, Nichols DK, Hansen LG, Wikoff B, Faeh S, et al. 1998. Forms and prevalence of intersexuality and effects of environmental contaminants on sexuality in cricket frogs (Acris crepitans). Environ Health Persp 106:261-266.

Renner R. 2004. Controversy clouds atrazine studies. Environ Sci Tech 38:107A-108A.

Rodriguez VM, Thiruchelvam M, Cory-Slechta DA. 2005. Sustained exposure to the widely used herbicide atrazine: Altered function and loss of neurons in brain monoamine systems. Environ Health Persp 113:708-715.

Rohr JR, Crumrine PW. 2005. Effects of an herbicide and an insecticide on pond community structure and processes. Ecol Appl 15:1135-1147.

Rohr JR, Elskus AA, Shepherd BS, Crowley PH, McCarthy TM, Niedzwiecki JH, et al. 2003. Lethal and sublethal effects of atrazine, carbaryl, endosulfan, and octylphenol on the streamside salamander, Ambystoma barbouri. Environ Toxicol Chem 22:2385-2392.

Rohr JR, Elskus AA, Shepherd BS, Crowley PH, McCarthy TM, Niedzwiecki JH, et al. 2004. Multiple stressors and salamanders: Effects of an herbicide, food limitation, and hydroperiod. Ecol Appl 14:1028-1040.

Rohr JR, Kerby JL, Sih A. 2006a. Community ecology as a framework for predicting contaminant effects. Trends Ecol Evol 21:606-613.

Rohr JR, Palmer BD. 2005. Aquatic herbicide exposure increases salamander desiccation risk eight months later in a terrestrial environment. Environ Toxicol Chem 24:1253-1258.
Rohr JR, Raffel TR, Romansic JM, McCallum H, Hudson PJ. 2008a. Evaluating the links between climate, disease spread, and amphibian declines. P Natl Acad Sci USA 105:17436-17441.

Rohr JR, Raffel TR, Sessions SK, Hudson PJ. 2008b. Understanding the net effects of pesticides on amphibian trematode infections. Ecol Appl 18:1743-1753.

Rohr JR, Sager T, Sesterhenn TM, Palmer BD. 2006b. Exposure, postexposure, and density-mediated effects of atrazine on amphibians: Breaking down net effects into their parts. Environ Health Persp 114:46-50.

Rohr JR, Schotthoefer AM, Raffel TR, Carrick HJ, Halstead N, Hoverman JT, et al. 2008c. Agrochemicals increase trematode infections in a declining amphibian species. Nature 455:1235-1239.

Rohr JR, Swan A, Raffel TR, Hudson PJ. 2009. Parasites, info-disruption, and the ecology of fear. Oecologia 159:447-454.

Rymuszka A, Siwicki AK, Sieroslawska A. 2007. Determination of modulatory potential of atrazine on selected functions of immune cells isolated from rainbow trout (Oncorhynchus mykiss). Centr Eur J Immunol 32:97-100.

Saglio P, Trijasse S. 1998. Behavioral responses to atrazine and diuron in goldfish. Arch Environ Contam Toxicol 35:484-491.

Sanderson JT, Seinen W, Giesy JP, van den Berg M. 2000. 2-chloro-s-triazine herbicides induce aromatase (cyP19) activity in h295r human adrenocortical carcinoma cells: A novel mechanism for estrogenticity? Toxicol Sci 54:121-127.

Scholz S, Mayer I. 2008. Molecular biomarkers of endocrine disruption in small model fish. Mol Cell Endocrinol 293:57-70.
Scott DE. 1994. The effect of larval density on adult demographic traits in *Ambystoma opacum*. Ecology 75:1383-1396.

Skelly DK. 1994. Activity level and the susceptibility of anuran larvae to predation. Anim Behav 47:465-468.

Solomon KR, Baker DB, Richards RP, Dixon DR, Klaine SJ, LaPoint TW, et al. 1996. Ecological risk assessment of atrazine in North American surface waters. Environ Toxicol Chem 15:31-74.

Solomon KR, Carr JA, Du Preez LH, Giesy JP, Kendall RJ, Smith EE, et al. 2008. Effects of atrazine on fish, amphibians, and aquatic reptiles: A critical review. Crit Rev Toxicol 38:721-772.

Smith DC. 1987. Adult recruitment in chorus frogs: effects of size and date at metamorphosis. Ecology 68:344-350.

Storrs SI, Kiesecker JM. 2004. Survivorship patterns of larval amphibians exposed to low concentrations of atrazine. Environ Health Persp 112:1054-1057.

Storrs SI, Semlitsch RD. 2008. Variation in somatic and ovarian development: Predicting susceptibility of amphibians to estrogenic contaminants. Gen Comp Endocr 156:524-530.

Sullivan KB, Spence KM. 2003. Effects of sublethal concentrations of atrazine and nitrate on metamorphosis of the African clawed frog. Environ Toxicol Chem 22:627-635.

Tierney KB, Singh CR, Ross PS, Kennedy CJ. 2007. Relating olfactory neurotoxicity to altered olfactory-mediated behaviors in rainbow trout exposed to three currently-used pesticides. Aquat Toxicol 81:55-64.

USEPA. 2002. List of contaminants and their MCLs EPA 816-F-02-013. Washington, D. C.: U. S. Environmental Protection Agency.
USEPA. 2003. Interim reregistration eligibility decision for atrazine EPA-HQ-OPP-2003-0367
US Environmental Protection Agency.

USEPA. 2005. Draft final report on multi-chemical evaluation of the short-term reproduction assay with the fathead minnow. Washington, D.C.: U.S. Environmental Protection Agency.

USEPA. 2007. Preliminary interpretation of the ecological significance of atrazine stream-water concentrations using a statistically designed monitoring program EPA-HQ-OPP-2007-0934-0004. Washington, DC: US Environmental Protection Agency.

van Dijk HFG, Guicherit R. 1999. Atmospheric dispersion of current-use pesticides: A review of the evidence from monitoring studies. Water Air Soil Poll 115:21-70.

Walsh AH, Ribelin WE. 1975. The pathology of pesticide poisoning. In: The pathology of fish (Ribelin WE, Migaki E, eds). Madison, WI: University of Wisconsin Press, 515-557.

Wilbur HM, Collins JP. 1973. Ecological aspects of amphibian metamorphosis. Science 182:1305-1314.

Wilson K, Hardy ICW. 2002. Statistical analysis of sex ratios. In: Sex ratios: Concepts and research methods (Hardy ICW, ed). New York: Cambridge University Press, 48-92.

Witschi E. 1929. Studies on sex differentiation and sex determination in amphibians iii rudimentary hermaphroditism and y chromosome in Rana temporaria. J Exp Zool 54:157-223.

Zeeman MG, Brindley WA. 1981. Effects of toxic agents upon fish immune systems: A review. In: Immunologic consideration in toxicology (Sharma RP, ed). Boca Raton, FL: CRC Press, 1-47.
Table 1. Summary of the results for the effects of atrazine on the developmental rate and size at or near metamorphosis for amphibians. Excluded studies can be found in Table S1.

Taxon	Species	Net effect on developmental rate	Size at or near metamorphosis	Reference										
		Effect direction	Conc. where effect was observed (µ/L)	Non-mono-tonic dose response	Excluded from meta-analysis?	Conc. Atrazine grade	Experiment type	Exposure duration	Reference					
Frog	*Bufo americanus*	None detected	-	NA	No	Decreased	200	NA	No	Commercial; Aatrex	PE	88 d or less	Boone and James 2003	
Frog	*B. americanus*	Decreased	250, 500, 1000	Yes	No	Decreased^a	No conc. differed from controls	No	No	250, 500, 1000, 5000, 10000	Technical	SR	3 wk	Freeman et al. 2005
Frog	*B. americanus*	None, trend toward decrease	-	No	No	Data not provided	-	Data not provided	Yes	Technical	SR, LTM		Storrs and Semlitsch 2008	
Frog	*Rhinella arenarum*	Increased at 100 & 1000, decreased at 5000	100, 1000, 5000	Yes	No	Data not provided	-	Data not provided	Yes	Technical	SR, LTM		Brodeur et al. 2009	
Frog	*Hyla chrysoscelis*	Increased	192	No	No	Data not provided	-	Data not provided	Yes	Technical	PE, two pulses	129 d or less	Briston and Thrleld 1998^a	
Frog	*H. versicolor*	None detected^a	-	Possibly	No	Decreased	200, 2000	No	No	20, 200, 2000	Technical	PE	Mean of 13 d	Diana et al. 2000
Frog	*H. versicolor*	None detected^a	-	NA	No	Data not provided	-	Data not provided	Yes	Technical	SR, LTM		Storrs and Semlitsch 2008	
Frog	*Rana clamitans*	Decreased	10	Yes	No	Decreased	10	Yes	No	10, 25	Technical	SR	273 d or less	Coady et al. 2004
Frog	*R. pipiens*	Unknown^j	-	No	Yes	Decreased^a	Not tested	No	No	20, 200	Technical	SR	LTM	Allran and Karasov 2000
Frog	*R. pipiens*	None detected^j	-	NA	No	Decreased	0.1	NA	No	0.1	Technical	SR	LTM	Hayes 2006
Frog	Species	Detection	Treatment	UV Effect	Concentration	Methodology	Result	Notes						
--------------	------------------	-----------	-----------	-----------	---------------	----------------	--------------	--						
Frog	*R. pipiens*	None	NA	None, trend toward decrease under UV	-	NA	No	5, Not provided	SR ETM, 45 d or less Bridges et al. 2004					
Frog	*R. sphencephala*	None	NA	Decreased	200	NA	No	200 Commercial; Aatrex² PE 57 d or less Boone and James 2003^a						
Frog	*R. sphencephala*	None	NA	Data not provided	-	Data not provided	Yes	1, 3, 30 Technical SR LTM Storrs and Semlitsch 2008 Kiesecker 2002^b						
Frog	*R. sylvatica*	Data not provided	NA	Decreased	Unknown, conc. in ponds not provided	NA	No	3, 30 Commercial FS Unknown						
Frog	Xenopus laevis	Data not provided	-	None, trend toward decrease	-	No	No	1, 10, 25 Technical SR Mean of 56 d Carr et al. 2003						
Frog	X. laevis	None	NA	Data not provided	-	Data not provided	Yes	1, 10, 25 Technical SR ETM Du Preez et al. 2008						
Frog	X. laevis	Increased	100, 450, 800	No	Unknown^p	Unknown	Yes	4 wk Freeman and Rayburn 2005 Kraas et al. 2009						
Frog	X. laevis	Unknown^u	Unknown	Decreased^u	0.01, 1, 100	Possibly No	No	4, 40, 400 Technical SR Mean of 52 d or less Sullivan and Spence 2003						
Frog	X. laevis	Decrease detected by regression	No conc. differed from controls	No	No	Decreased	20, 40, 80, 160, 320	No	No	20, 40, 80, 160, 320	Technical SR LTM Langerveld et al. 2009			
Frog	X. laevis	Data not provided	NA	Decreased	400	NA	No	400 Technical SR LTM Rohr et al. 2004						
Salamander	Ambystoma barbouri	Increased	40, 400	No	No	Decreased	400	No	No	4, 40, 400 Technical SR Mean of 52 d exposure Forson and Storfer 2006a				
Salamander	A. macrodactylum	Increased	184	No	No	Decreased	184	No	No	1.84, 18.4, 184 Technical SR 30 d Forson and Storfer 2006a				
Species	Treatment	Concentration	Decreased	NA	None, trend toward decrease	Data not provided	Control Concentrations	Technical	SR	LTM				
--------------	-----------	---------------	-----------	----	----------------------------	------------------	------------------------	------------	----	-----				
A. tigrinum	Increased	16 vs 1.6, but not vs 0	Possibly, data not provided	No	None	Data not provided	1.6, 16, 160	Technical	SR	LTM				
A. maculatum	Increased and decreased	250	Yes	No	Decreased	250	No	No	75, 250	Technical	SR	86 d		
A. maculatum	Decreased	200	NA	No	Decreased	200	NA	No	200	Commercial; Aatrex	PE	57 d or less		
A. texanum	Decreased	200	NA	No	Decreased	200	NA	No	200	Commercial; Aatrex	PE	88 d or less		

* NA = Not applicable, used when there were too few concentrations to evaluate non-monotonicity
* PE = Pulse experiment, SR = Static renewal experiment, FS= Field survey
* LTM = Early larva to metamorphosis, ETM = Embryo to metamorphosis, "or less" refers to cases where amphibians metamorphosed before atrazine exposure ceased
* Aatrex is 59.2% inactive ingredients
* Community-level study
* Authors show that atrazine modifies the thyroid axis for both *Xenopus laevis* and *Bufo americanus*
* All five atrazine concentrations tested reduced frog size relative to controls, but no within group variance estimates were provided
* 200 ppb developed faster than 2000 ppb
* Only a single egg mass, might not reflect general response
* Only use 50% of the metamorphs in the time to metamorphosis analysis without describing how they selected this subset of metamorphs or why they only used 50% for time to metamorphosis but 100% of the metamorphs for size at metamorphosis
* They report an interaction between atrazine and time for frog length, indicating that control animals were larger than those exposed to atrazine by the end of the experiment
* Tested as a mixture of 5 µ/L of atrazine and 5 µ/L of carbaryl
* Provide no within-group variance estimate
* No statistics provided but conclude that there was no effect of atrazine
* Compared ponds with and without atrazine, effects might be due to other factors
* Frogs lose weight at metamorphosis, and thus mass measurements were confounded by lumping tadpole and metamorph weights
* Graphs for developmental rate through time are indiscernible
* Only detected effects in one of two experiments and for females only
* $P=0.080$ for regression analysis, one-tailed test
* Results depended on developmental stage. Authors show that atrazine modifies thyroxine and corticosterone horomones
* Results depended on drying conditions
Table 2. Summary of the results for the effects of atrazine on fish and amphibian behaviors. Excluded studies can be found in Table S1.

Taxon	Species	Endpoint	Effect direction	Conc. where effect was observed (µ/L)	Conc. tested (µ/L)	Atrazine grade	Experiment type	Exposure duration	Reference		
Locomotor activity	Sala-mander	*Ambystoma barbouri* A. barbouri	Locomotor activity after disturbance	Increased	400	4, 40, 400	No	Technical	SR	37 d	Rohr et al. 2003
Locomotor activity	Sala-mander	A. barbouri	Locomotor activity after disturbance	Increased	400	4, 40, 400	No	Technical	SR	Mean of 52 d; LTM	Rohr et al. 2004
Locomotor activity	Sala-mander	A. barbouri	Locomotor activity after disturbance	Increased	40, 400	4, 40, 400	No	Technical	SR	Mean of 47 d; LTM	Rohr and Palmer 2005
Locomotor activity	Sala-mander	A. barbouri	Locomotor activity	Increased	400	40, 400, 800	No	Technical	PE	4 d	Rohr et al. unpublished data
Locomotor activity	Frog	*Rana sylvatica*	Locomotor activity	Increased	Two doses of 25 separated by two weeks	Two doses of 25 separated by two weeks	NA	Technical	PE	1 mos	Rohr and Crumrine 2005d
Locomotor activity	Frog	*Bufo americanus*	Locomotor activity	None detected	-	201	NA	Technical	PE	4 d	Rohr et al. 2009
Locomotor activity	Frog	*Xenopus laevis*	Abnormal swimming	Increased	25	1, 10, 25	No	Technical	SR	Mean of 56 d, LTM	Carr et al. 2003
Locomotor activity	Frog	*Hyla chrysoscelis*	Burst swimming	Increased	Positive dose response	96, 192	No	Technical	PE, two pulses	129 d or less, LTM	Briston and Threlkeld 1998
Locomotor activity	Fish	*Carassius auratus*	Burst swimming	Increased	0.5, 50	0.5, 5, 50	Possibly	Technical	PE	1 d	Saglio and Tijasse 1998
Locomotor activity	Fish	C. auratus	Burst swimming	Increased	0.1, 1, 10	0.1, 1, 10	Possibly	Technical	PE	1 d	Saglio and Tijasse 1998
Animal	Species	Response	Stimulation	Outcome	Technical	Time	Reference				
--------	---------	----------	-------------	---------	-----------	------	-----------				
Fish	*Oncorhynchus mykiss*	Locomotor activity	Increased	1, 10, 100	Yes	Technical	PE	30 min	Tierney et al. 2007		
Fish	*Lepomis cyanellus*	Locomotor activity	Increased/decreased	400 but not 800	Yes, only in presence of natural prey	Technical	PE	4 d	Rohr et al. unpublished data		
Fish	larval *Sciaenops ocellatus*	Locomotor activity and abnormal swimming	Increased	40, 80	No	Technical	PE	72 h	Alvarez and Fuiman 2005		

"Predation-related" risk reduction

Animal	Species	Response	Stimulation	Outcome	Technical	Time	Reference			
Salamander	*A. barbouri*	Refuge use	Decrease, detected with regression	None	4, 40, 400	No	Technical	SR	37 d	Rohr et al. 2003
Salamander	*A. barbouri*	Refuge use	Decreased	400	4, 40, 400	No	Technical	SR	Mean of 52 d, LTM	Rohr et al. 2004
Frog	*R. sylvatica*	Refuge use	Decreased	Two doses of 25 separated by two weeks	NA	Technical	PE, two pulses	1 mos	Rohr and Crumrine 2005	
Fish	*C. auratus*	Grouping	Decreased	5, 50	0.5, 5, 50	No	Technical	PE	1 d	Saglio and Tijasse 1998
Fish	*C. auratus*	Sheltering in presence of predator cue	Decreased	5	0.5, 5, 50	Possibly	Technical	PE	1 d	Saglio and Tijasse 1998
Fish	*C. auratus*	Grouping in presence of predator cue	Decreased	5	0.5, 5, 50	Possibly	Technical	PE	1 d	Saglio and Tijasse 1998
Fish	larval *S. ocellatus*	Predation rates	None detected	40, 80	40, 80	No	Technical	PE	72 h	Alvarez and Fuiman 2005

Olfaction
Animal	Species	Behavior Type	Response	Cues	Technical	Duration	Source			
Frog	B. americanus	Chemical detection of food, parasites, & predator cues	None detected		NA	Technical	PE	4 d	Rohr et al. 2009	
Salamander	P. shermani	Chemical detection of food or sex pheromones	None detected		NA	Technical	SR	28 d	Lanzel 2008	
Salamander	P. shermani	Activated olfactory neurons	None detected		NA	Technical	SR	28 d	Lanzel 2008	
Fish	S. salar	Olfactory response (electroolfactogram)	Decreased	2, 5, 10, 20	0.1, 1, 2, 5, 10, 20	No	Technical	PE	30 min	Moore & Waring 1998
Fish	S. salar	Olfactory response (electroolfactogram)	Decreased	0.5, 1	0.5, 1	No	Technical	PE	30 min	Moore & Lower 2001
Fish	O. mykiss	Olfactory response (electroolfactogram)	Decreased	10, 100	1, 10, 100	No	Technical	PE	30 min	Tierney et al. 2007
Fish	O. mykiss	Response ratio to L-histidine	Decreased	10	1, 10, 100	Possibly	Technical	PE	30 min	Tierney et al. 2007

Other behaviors

Animal	Species	Behavior Type	Response	Cues	Technical	Duration	Source		
Salamander	A. barbouri	Water conserving behaviors	Decreased	40, 400	4, 40, 400	No	Technical	SR	Mean of 52 d; LTM Palmer 2005

* NA = Not applicable, used when there were too few concentrations to evaluate non-monotonicity

* PE = Pulse experiment, SR = Static renewal experiment

* LTM = Early larvae to metamorphosis

* Community-level study

* Larval red drum are often found in freshwater so they were included in this meta-analysis
Mixture of 0.5:0.5 and 1.0:1.0 atrazine and simazine; thus total conc. of triazine was 1 and 2 ppb, respectively

Increased salamander water loss and thus desiccation risk
Table 3. Summary of the results for the effects of atrazine, through water column exposure, on fish and amphibian immunity. Excluded studies can be found in Table S1.

Taxon	Species	Endpoint	Effect direction	Conc. where effect was observed (µ/L)	Conc. tested (µ/L)	Non-monotonic dose response^a	Atrazine grade	Experiment type^b	Exposure duration	Reference
Salamander	Ambystoma	No. of peripheral leukocytes	Decreased	16, 160	1.6, 16, 160	No	Technical	SR	Until metamorphosis	Forson and Storfer 2006b
Frog	Rana pipiens	Splenocyte viability	None detected	-	2.1, 21, 210	No	Technical	SR	21 d	Christin et al. 2003, 2004^c
Frog	R. pipiens	No. of splenocytes	Decreased, if use appropriate one-tailed test	210	2.1, 21, 210	No	Technical	SR	21 d	Christin et al. 2003, 2004^c
Frog	R. pipiens	No. of phagocytic splenocytes	Decreased post-infection	210	2.1, 21, 210	No	Technical	SR	21 d	Christin et al. 2003^c
Frog	R. pipiens	T-cell proliferation	Decreased in presence of mitogens	2.1, 21, 210	2.1, 21, 210	No	Technical	SR	21 d	Christin et al. 2003, 2004^c
Frog	R. pipiens	T-cell proliferation	Decreased in absence of mitogens	2.1, 21, 210	2.1, 21, 210	No	Technical	SR	21 d	Christin et al. 2003, 2004^c
Frog	R. pipiens	Absolute no. of phagocytic cells in spleen	Decreased	2.1, 21, 210	2.1, 21, 210	No	Technical	SR	21 d	Christin et al. 2004^c
Frog	R. pipiens	No. of thymic plaques	Increased, indicating reduced immune capacity^d	0.1	0.1	NA	Technical	SR	Until metamorphosis	Hayes et al. 2006
Species	Condition	Change	Values	Control	Technique	SR	References			
--------------	--	-----------------	--------------	---------	-----------	----	-----------------------------			
Frog R. pipiens	No. of hemolytic plaques representing antibody secreting B-cells	Decreased	1, 10	No	Not provided	SR	4 wk	Houck and Sessions 2006		
Frog R. pipiens	No. of lymphocyte from spleen	None detected	- 1, 10	Possibly	Not provided	SR	8 wk	Houck and Sessions 2006		
Frog R. pipiens	No. of white blood cells	Decreased	0.01 to 10	No	Technical	SR	8 d	Brodkin et al. 2007		
Frog R. pipiens	No. of highly phagocytic cells	Decreased	0.01 to 10	No	Technical	SR	8 d	Brodkin et al. 2007		
Frog Xenopus laevis	Splenocyte viability	None detected, trend toward decrease at 7 d	- 2.1, 21, 210, 2100	No	Technical	SR	21 d	Christin et al. 2004		
Frog X. laevis	Splenocyte cellularity	Decreased	210, 2100	No	Technical	SR	21 d	Christin et al. 2004		
Frog X. laevis	Relative no. of phagocytic cells in spleen	Increased	21, 210, 2100	No	Technical	SR	21 d	Christin et al. 2004		
Frog X. laevis	Absolute no. of phagocytic cells in spleen	Decreased	210, 2100	No	Technical	SR	21 d	Christin et al. 2004		
Frog X. laevis	T-cell proliferation	None detected	- 2.1, 21, 210, 2100	Data not provided	Technical	SR	21 d	Christin et al. 2003		
Frog X. laevis	Down-regulation of several genes involved in skin peptide defense	Decreased	400 400	NA	Technical	SR	Until metamorphosis	Langerveld et al. 2009		
Animal	Species	Trait	Effect	Value	Value	Value	Method	Control	Publication	
--------	---------	-------	--------	-------	-------	-------	--------	---------	-------------	
Frog	X. laevis	Down-regulation of several genes involved in blood cell function	Decreased	400	400	NA	Technical	SR	Until metamorphosis	Langerveld et al. 2009
Frog	R. sylvatica	No. of eosinophil from circulating blood	Decreased	3, 30	3, 30	No	Technical	SR	4 wk	Kiesecker 2002
Frog	R. pipiens	No. of melanomacrophages from liver	Decreased	<1, do not know max. conc.	Unknown	No	Commercial	FS	Unknown	Rohr et al. 2008c
Frog	R. paulustris	No. of melanomacrophages from liver	Decreased	117	117	NA	Technical	PE	4 wk	Rohr et al. 2008c
Frog	R. paulustris	No. of eosinophil from liver	None detected, trend toward decrease, p=0.10	117	117	NA	Technical	PE	4 wk	Rohr et al. 2008c
Frog	R. clamitans	No. of eosinophil from liver	Decreased	117	117	NA	Technical	PE	4 wk	Rohr et al. 2008c
Frog	R. clamitans	No. of melanomacrophages from liver	None detected, trend toward decrease	117	117	NA	Technical	PE	4 wk	Rohr et al. 2008c
Fish	Carassius auratus	No. of superoxide radical from macrophages of spleen and kidney	Increased 4 and 8 weeks; "indicator of oxidative stress"	42	42	NA	Technical	SR	12 wk	Fatima et al. 2007c
Fish	C. auratus	Plasma lysozyme activity	Increased at 8 and 12 weeks, argued as a reduction in resistance to infection	42	42	NA	Technical	SR	12 wk	Fatima et al. 2007c
Fish	C. auratus	Antibody titres against Aeromonas hydrophila	Decreased	42	42	NA	Technical	SR	12 wk	Fatima et al. 2007c
Fish	Species	Parameter	Effect	Concentration Range	Data Type	Duration	Reference			
------------	--------------------------	--	----------------------	-------------------------	-------------------	----------	-------------------------------------			
Fish	*C. auratus*	Antioxidant enzyme in spleen (superoxide	Decreased at 4,	42	NA	12 wk	Fatima et al. 2007			
		dismutase)	8, and 12 weeks		Technical					
Fish	*Galaxias maculatus*	Leucocrit	Decreased	3, 50	Possibly	10 d	Davies et al. 1994			
Fish	*Onchorhyncus mykiss*	Proliferative ability of circulating T	Decreased	>5000	Possibly	2 d	Rymuszka et al. 2007			
		lymphocytes (ConA)		1000-10,000	Technical					
Fish	*O. mykiss*	Proliferative ability of circulating B	Decreased	>5000	Possibly	2 d	Rymuszka et al. 2008			
		lymphocytes (LPS)		1000-10,000	Technical					
Fish	*O. mykiss*	Respiratory burst activity of circulating	Decreased	>2,500	Possibly	2 d	Rymuszka et al. 2009			
		phagocytes		1000-10,000	Technical					
Fish	*Liza ramada* and *L.	Macrophage quality	Decreased	25-280	Unknown	Unknown	Biagianti-Risbourg 1990			
Fish	aurata*				Unknown	Unknown				
Fish	*L. ramada* and *L.	Melanomacrophage centers in liver	Increased	25-280	Unknown	Unknown	Biagianti-Risbourg 1990			
Fish	aurata*				Unknown	Unknown	Walsh and Ribelin 1975			
Fish	*Salmonidae* (species	White blood cells	Decreased	100-1000	Unknown	Unknown	Zeeman and Brindley 1981			
	not specified)				Unknown	Unknown				
Fish	*Salmonidae* (species	Lymphoid organ quality	Decreased	100-1000	Unknown	Unknown	Walsh and Ribelin 1975			
	not specified)				Unknown	Unknown				
Fish	*Salvelinus namaycush,*	Spleen weight	Decreased/ no effect	1500-13500	Unknown	Unknown	Zeeman and Brindley 1981			
	O. kisutch				Unknown	Unknown				
Fish	*Salvelinus namaycush,*	Number of lymphocytes	Decreased/ no effect	1500-13500	Unknown	Unknown	Zeeman and Brindley 1981			
	O. kisutch				Unknown	Unknown				

* NA = Not applicable, used when there were too few concentrations to evaluate non-monotonicity

b PE = Pulse experiment, SR = Static renewal experiment, FS = Field survey
Atrazine was a component of a mixture of pesticides tested and thus the experiment did not isolate the effects of atrazine.

Atrazine alone and every mixture containing atrazine increased thymic plaques.

Immune response stimulated by thioglycollate.

No quantified factors correlated with atrazine could parsimoniously explain patterns in infection.

As reported by Dunier and Swicki 1993; could not obtain original works.
Table 4. Summary of the results for the effects of atrazine, through water column exposure, on fish and amphibian parasite infections. Excluded studies can be found in Table S1.

Taxon	Species	Endpoint	Effect direction	Conc. where effect was observed (µ/L)	Conc. tested (µ/L)	Non-monotonic dose response a	Atrazine grade	Experiment type	Exposure duration	Reference
Salamander	*Ambystoma macrodactylum*	Infectivity of *Ambystoma tigrinum virus* (ATV)	Decreased	Not provided	1.84, 18.4, 184	Dose response not provided	Technical	SR	30 d	Forson and Storfer 2006a
Salamander	*A. tigrinum*	Percent infected with ATV	Increase at 16 but not 1.6 or 160	16	1.6, 16, 160	Yes	Technical	SR	Until metamorphosis	Forson and Storfer 2006b
Salamander	*A. tigrinum*	Viral load	None detected, $p=0.14$	-	20, 200	No	Technical	SR	2 wk	Kerby and Storfer 2009
Salamander	*A. tigrinum*	Mortality due to ATV	Increased	Not provided	20, 200	No	Technical	SR	2 wk	Kerby and Storfer 2009
Frog	*Rana pipiens*	*Rhabdias ranae* nematode prevalence	None detected, trend toward increase	-	2.1, 21, 210	No	Technical	SR	21 d	Christin et al. 2003
Frog	*R. pipiens*	No. of adult *Rhabdias ranae* nematode	Increased, clear dose response	21+210 > controls, 210 > water control	2.1, 21, 210	No	Technical	SR	21 d	Gendron et al. 2003
Frog	*R. pipiens*	*Chryseobacterium* (Flavobacterium) *menigosepticum* infections	Increased	0.1	0.1	NA	Technical	SR	Until metamorphosis	Hayes et al. 2006
Frog	*R. pipiens*	*Rhabdias ranae* nematode within host migration	Faster	21, 210	2.1, 21, 210	No	Technical	SR	21 d	Gendron et al. 2003
Animal	Species	Organism	Effect	Concentration	Exposure	Method	Duration	Source		
--------	---------	----------	--------	---------------	----------	--------	----------	--------		
Frog	*R. pipiens*	*Rhabdias ranae* nematode maturation and reproduction	Earlier	21, 210	2.1, 21, 210	No	Technical	SR	21 d	Gendron et al. 2003*
Frog	*R. sylvatica*	**Increased** No. of *Ribieoria* sp. and *Telorchis* sp.		3, 30	3, 30	No	Technical	SR	4 wk	Kiesecker 2002
Frog	*R. sylvatica*	Limb deformities caused by *Ribieoria* sp.	Increased	ponds with atrazine	unknown	NA	Commercial	FS	Unknown	Kiesecker 2002
Frog	*R. clamitans*	**Increased** No. of *Echinostoma trivolvis* cercariae		201	201	NA	Technical	SR	2 wk	Rohr et al. 2008b*
Frog	*R. pipiens*	**Increased** No. of larval trematodes		<1, but do not know max. conc.	unknown	No	Commercial	FS	Unknown	Rohr et al. 2008c*
Frog	*R. clamitans*	No. of larval *Plagiorchid* trematodes	Increased	117	117	NA	Technical	PE	4 wk	Rohr et al. 2008c
Frog	*R. clamitans*	**Decreased**, but amphibians not exposed to atrazine	Decreased, but amphibians not exposed to atrazine	20, 200	20, 200	No	Commercial; Aatrex*	PE	Cercariae exposed for 2h	Koprivnikar et al. 2006*
Fish	*Carassius auratus*	Mortality due to *Aeromonas hydrophila* challenge	Increased	42	42	NA	Technical	SR	12 wk	Fatima et al. 2007*

* NA = Not applicable, used when there were too few concentrations to evaluate non-monotonicity
* PE = Pulse experiment, SR = Static renewal experiment, FS = Field survey
* Effect was observed when combining of 1.84, 18.4, and 184 treatments and comparing to controls, effect might be predominantly due to 184
* 160 ppb was thought to reduce ATV infectivity explaining non-monotonicity
* Atrazine was a component of a mixture of pesticides tested and thus the experiment did not isolate the effects of atrazine
* Only saw this effect when atrazine was mixed with eight other pesticides
Effect was found pooling pesticides and comparing them to control treatments.

No quantified factors correlated with atrazine could parsimoniously explain patterns in infection.

Aatrex is 59.2% inactive ingredients.

Effects could be due to inactive ingredients.

Effects could be due to chemicals other than atrazine that might be in the pond water used to make the stock solutions.

All LC50s were calculated incorrectly.
Taxon	Species	Endpoint	Effect direction	Conc. where effect was observed (µ/L)	Conc. tested (µ/L)	Atrazine grade	Experiment type	Exposure duration	Reference	
Testes										
Fish	*Pimephales promelas*	Testis size corrected for body size	Trend for decrease	5, 50	5, 50	Technical	SR	21 days	Bringolf et al. 2004^b	
Frog	*Xenopus laevis*	Discontinuous gonads (abnormal segmentation)	Increased	25	1.0, 10, 25	Technical	SR	~78 days during larval period	Carr et al. 2003	
Frog	*X. laevis*	Ambiguous gonads (not obviously male or female)	Increased	25	1.0, 10, 25	Technical	SR	~78 days during larval period	Carr et al. 2003^c	
Frog	*X. laevis*	Testis size corrected for body size	Increased	10	10, 100	Technical	SR	48 days	Hecker et al. 2005a^b	
Frog	*X. laevis*	Sperm/area	None	-	10, 100	Technical	SR	48 days	Hecker et al. 2005a^b	
Frog	*X. laevis*	Testis size corrected for body size	None	-	1, 25, 250	Technical	SR	36 days	Hecker et al. 2005a^b	
Frog	*Rana clamitans*	Testis size corrected for body size	Decreased in juvenile males	ND^d-3.13	ND^d-3.13	Commercial	FS	Unknown	McDaniel et al. 2008^e	
Frog	*R. pipiens*	Testicular ovarian follicles (testicular oocytes)	Increased where atrazine was detected in 2003 (but see ^e)	ND-3.14	ND-3.13	Commercial	FS	Unknown	McDaniel et al. 2008^{e,f}	
Frog	various spp., mostly *R. clamitans*	Discontinuous testes (abnormal segmentation)	None	-	ND-2^g	Commercial	FS	Unknown	Murphy et al. 2006a	
Frog	various spp., mostly *R. clamitans*	Intersex (having testicular and ovarian tissues)	None	-	ND-2^g	Commercial	FS	Unknown	Murphy et al. 2006a	
----	----	--	--------	--------	--------	--------	--------	----	----	----
Frog	various spp., mostly R. clamitans	Testicular ovarian follicles (testicular oocytes)	Increased in one of two years in juveniles, positively correlated with max. atrazine conc. in that year	ND-0.73	ND-2^a	Commercial	FS	Unknown	Murphy et al. 2006a	
Frog	R. clamitans	Testis size corrected for body size	Increased in adult males at agricultural sites in one of two years	ND-250	ND-2^a	Commercial	FS	Unknown	Murphy et al. 2006b^b	
Frog	X. laevis	Hermaphroditism (testicular oocytes, intersex, mixed sex)	None	-	0.1, 1, 10, 100	Technical	SR	~65 days during larval period	Oka et al. 2008	
Frog	Acris crepitans	Intersex or testicular oocytes	Trend for increase	atrazine detections	ND-70	Commercial	FS	Unknown	Reeder et al. 1998^b	
Fish	P. promelas	Spermatogenic tubule diameter	Reduced	250	25, 250	Technical	FT	21 days	USEPA 2005	
Ovaries	Fish	P. promelas	Ovary size corrected for body size	Trend for decrease	50	5, 50	Technical	SR	21 days	Bringolf et al. 2004^b
Frog	Hyla versicolor, R. sphenocephal a	Ovarian developmental stage	None	-	1, 3, 30ⁱ	Technical	SR	Through metamorphosis	Storrs and Semlitsch 2004	
Frog	Bufo americanus	Ovarian developmental rate	None	-	1, 3, 30ⁱ	Technical	SR	Through metamorphosis	21 days	Storrs and Semlitsch 2004
Fish	P. promelas	Proportion of oocytes undergoing atresia	None	-	25, 250	Technical	FT	21 days	USEPA 2006	

^a FS = Field study, FT = Flow through experiment, PE = Pulse experiment, SR = Static renewal experiment
^bNo test statistics or degrees of freedom are presented. However, means and variances are presented in the text or in a figure.
Xenopus are typically sexually differentiated at the gross morphological level at metamorphosis. Individuals in this study exposed to 25 µ/L were so sexually ambiguous they were initially considered intersexes (having both testicular and ovarian issues).

\(^d\)ND = Nondetectable

\(^a\)Atrazine concentration for the non-agricultural reference site during 2003 is reported incorrectly. Repeated attempts to contact the author for clarification have not been forthcoming.

\(^b\)When atrazine concentrations were highest (2003), testicular ovarian follicles (TOF) per individual occurred in higher numbers. TOFs were positively associated with atrazine, nitrate, and quantity of pesticides in a multivariate comparison suggesting that atrazine is contributing to TOFs.

\(^c\)Concentrations were between ND and 2 except on two occasion at one site when levels were 65 and 250 µ/L.

\(^d\)Authors argue that differences in gonadal somatic index (GSI) between agricultural and non-agricultural sites cannot be due to atrazine because GSI does not correlate with atrazine concentration. However, no statistics are presented to support this claim.

\(^e\)The relationship between detection of atrazine and the presence of one or more intersex cricket frogs approached significance (p = 0.07).

\(^f\)Actual concentrations of the 30 ug/L treatment was 125ug/L.
Table 6. Summary of the effects of atrazine on gonadal function. Excluded studies can be found in Table S1.

Taxon	Species	Endpoint	Effect direction	Conc. where effect was observed (µ/L)	Conc. tested (µ/L)	Atrazine grade	Experiment type	Exposure duration	Reference
Testicular cell types									
Frog	*Rana clamitans*	Proportion of juvenile males with > 50% tubules containing spermatids and spermatozoa	Lower at agricultural site with highest atrazine concentrations	median range 0.68 -0.78	ND-3.13^b	Commercial	FS	Unknown	McDaniel et al. 2008^b
Frog	*R. pipiens*	Proportion of juvenile males with > 50% tubules containing spermatids and spermatozoa	Higher at agricultural site with highest atrazine concentrations	0.342 (mean of medians conc.)	ND-3.13^b	Commercial	FS	Unknown	McDaniel et al. 2008^b
Fish	*Pimephales promelas*	Proportion of primary spermatogonia	Increased	25, 250	25, 250	Test	FT	21 d	USEPA 2005
Fish	*P. promelas*	Proportion of secondary spermatogonia	Reduced	25, 250	25, 250	Test	FT	21 d	USEPA 2005
Sex hormone concentrations									
Frog	*Xenopus laevis*	Testosterone in adult males	Decreased	25	25	Technical	SR	46 d	Hayes et al. 2002^c
Frog	*X. laevis*	Testosterone in adult males	None	-	10, 100	Technical	SR	48 d	Hecker et al. 2005a
Frog	*X. laevis*	Estradiol in adult males	None	-	10, 100	Technical	SR	48 d	Hecker et al. 2005a
Frog	*X. laevis*	Estradiol in adult males	None	-	1, 25, 250	Technical	SR	36 d	Hecker et al. 2005b
Frog	*X. laevis*	Testosterone in adult males	Decreased	250	1, 25, 250	Technical	SR	36 d	Hecker et al. 2005b
Species	Treatment	Condition	Effect	Testosterone in Females	Testosterone in Males	Estradiol in Females	Additional Information		
---------	-----------	-----------	--------	--------------------------	-----------------------	----------------------	------------------------		
X. laevis	Testosterone	Decreased at agricultural sites, negatively correlated with conc. of atrazine & breakdown product	0.1-4.14	0.1-4.14	Commercial	FS	Unknown	Hecker et al. 2004	
X. laevis	Testosterone	Negatively correlated with diaminochlorotriazine concentration (a product of atrazine breakdown)	0.1-4.14	0.1-4.14	Commercial	FS	Unknown	Hecker et al. 2004	
X. laevis	Estradiol	Decreased at agricultural sites, negatively correlated with conc. of atrazine & breakdown product	0.1-4.14	0.1-4.14	Commercial	FS	Unknown	Hecker et al. 2004	
R. pipiens	Testosterone in juvenile males (2003)	Decreased at agricultural sites	median range 0.380-0.780	ND-3.13	Commercial	FS	Unknown	McDaniel et al. 2008b	
R. pipiens	Testosterone in juvenile males (2003)	Negatively correlated with atrazine concentration	ND-3.13	ND-3.13	Commercial	FS	Unknown	McDaniel et al. 2008h,d	
R. pipiens	11-ketotestosterone in juvenile males (2003)	Negatively correlated with atrazine concentration	ND-3.13	ND-3.13	Commercial	FS	Unknown	McDaniel et al. 2008h,d	
R. pipiens	Testosterone in adult females (2003)	Negatively correlated with atrazine concentration	ND-3.13	ND-3.13	Commercial	FS	Unknown	McDaniel et al. 2008h,d	
Frog	R. clamitans	11-ketotestosterone to testosterone ratio in adult females (Late summer Aug.-Sept. 2002)	Increased at agricultural sites	ND-250	Commercial	FS	Unknown	Murphy et al. 2006b	
------	-------------	--	-----------------------------	--------	------------	----	---------	------------------	
Frog	R. clamitans	11-ketotestosterone to testosterone ratio in adult males (Late summer Aug.-Sept. 2002)	Increased at agricultural sites	ND-250	Commercial	FS	Unknown	Murphy et al. 2006b	
Frog	R. clamitans	11-ketotestosterone to testosterone ratio in adult males (Early summer May 2003)	Increased at agricultural sites	ND-250	Commercial	FS	Unknown	Murphy et al. 2006b	
Frog	R. clamitans	Estradiol to testosterone ratio in adult females (Late summer Aug.-Sept. 2002)	Increased at agricultural sites	ND-250	Commercial	FS	Unknown	Murphy et al. 2006b	
Frog	R. clamitans	Estradiol to testosterone ratio in adult males (Late summer Aug.-Sept. 2002)	Increased at agricultural sites	ND-250	Commercial	FS	Unknown	Murphy et al. 2006b	
Frog	R. clamitans	Estradiol to testosterone ratio in adult males (Early summer May 2003)	Decreased at agricultural sites	ND-250	Commercial	FS	Unknown	Murphy et al. 2006b	
Frog	R. clamitans	Estradiol to testosterone ratio in juvenile males (July 2003)	Increased at agricultural sites	ND-250	Commercial	FS	Unknown	Murphy et al. 2006b	
Frog	R. clamitans	Testosterone in adult males (Early summer May 2003)	Increased at agricultural sites	ND-250	Commercial	FS	Unknown	Murphy et al. 2006b	
Frog	R. clamitans	Testosterone in juvenile females (July 2003)	Increased at agricultural sites	ND-250	Commercial	FS	Unknown	Murphy et al. 2006b	
Organism	Species	Description	Effect	Testosterone in	Testosterone female	Estradiol female	Testosterone male	11-ketotestosterone male	Reproductive success
----------	---------	-------------	--------	-----------------	---------------------	------------------	------------------	-----------------------	---------------------
Frog	*R. clamitans*	Testosterone in juvenile males (July 2003)	Increased at agricultural sites (see comment)	ag. sites ranged from ND-0.73	ND-250	Commercial	FS	Unknown	Murphy et al. 2006b
Fish	*P. promelas*	Testosterone female	None	-	25, 250	Technical	FT	21 d	USEPA 2005
Fish	*P. promelas*	Estradiol female	Trend (up to a 44% decrease)	25, 250	25, 250	Technical	FT	21 d	USEPA 2005
Fish	*P. promelas*	Testosterone male	Trend (up to a 31% decrease)	25, 250	25, 250	Technical	FT	21 d	USEPA 2005
Fish	*P. promelas*	11-ketotestosterone male	Trend (up to a 47% decrease)	25, 250	25, 250	Technical	FT	21 d	USEPA 2005
Reproductive success	Ambystoma barbouri	Proportion hatched and timing of hatching	None	-	4, 40, 400	Technical	SR	37 d	Rohr et al. 2003
Reproductive success	A. barbouri	Proportion hatched and timing of hatching	Decreased and delayed hatching	400	4, 40, 400	Technical	SR	Mean of 52 d	Rohr et al. 2004
Frog	*R. pipiens*	Proportion hatched	None	-	2590-20,000	Technical	SR	10 d	Allran and Karasov 2001
Frog	*R. clamitans*	Proportion hatched	None	-	2590-20,001	Technical	SR	10 d	Allran and Karasov 2001
Frog	*Bufo americanus*	Proportion hatched	None	-	2590-20,002	Technical	SR	10 d	Allran and Karasov 2001
Fish	*P. promelas*	Eggs per spawning of exposed adults	Trend for a decrease	5	5, 50	Technical	SR	21 d	Bringolf et al. 2004
Fish	*P. promelas*	Number of spawnings of exposed adults	Trend for a decrease	50	5, 50	Technical	SR	21 d	Bringolf et al. 2004
Fish	*P. promelas*	Fertilization success of exposed adults	Trend for a decrease	50	5, 50	Technical	SR	21 d	Bringolf et al. 2004
Fish	*P. promelas*	Proportion hatched and larval development of offspring from exposed adults	None	-	5, 50	Technical	SR	21 d	Bringolf et al. 2004
---	---	---	---	---	---	---	---	---	---
Fish	*P. promelas*	Egg production of exposed adults	None	-	25, 250	Technical	FT	21 d	USEPA 2005
Fish	*P. promelas*	Fertilization success of exposed adults	None	-	25, 250	Technical	FT	21 d	USEPA 2005
Fish	*P. promelas*	Proportion hatched and larval development of offspring from exposed adults	None	-	25, 250	Technical	FT	21 d	USEPA 2005

* FS = Field study, FT = Flow through experiment, SR = Static renewal experiment

Atrazine concentration for the non-agricultural reference site during 2003 is reported incorrectly. Repeated attempts to contact the author for clarification have not been forthcoming.

No test statistics or degrees of freedom are presented. However, means and variances are presented in the text or in a figure.

Authors report no significant correlation between atrazine and sex hormones in their abstract when, in fact, these endpoints are negatively correlated. The negative correlations across sexes and age groups reported in this study are unlikely to occur due to a low sample size or sampling error as argued by the authors.

Authors argue that differences in hormone levels between agricultural and non-agricultural sites cannot be due to atrazine because hormone concentrations do not correlate with atrazine concentration. However, no statistics are presented to support this claim.

Low samples sizes (7-8 fish) likely precluded detecting these considerable effects.