ON THE ZETA-FUNCTION OF A POLYNOMIAL AT INFINITY

S.M. GUSEIN–ZADE, I. LUENGO, A. MELLE–HERNÁNDEZ

Abstract. We use the notion of Milnor fibres of the germ of a meromorphic function and the method of partial resolutions for a study of topology of a polynomial map at infinity (mainly for calculation of the zeta-function of a monodromy). It gives effective methods of computation of the zeta-function for a number of cases and a criterium for a value to be atypical at infinity.

§1.- Introduction

The main idea of the paper is to bring together methods of [7] and [8] for computing the zeta-function of the monodromy at infinity of a polynomial. Let P be a complex polynomial in $(n + 1)$ variables. It defines a map from \mathbb{C}^{n+1} to \mathbb{C} which also will be denoted by P. It is known ([13]) that there exists a finite set $B(P) \subset \mathbb{C}$ such that the map P is a C^∞ locally trivial fibration over its complement. The monodromy transformation h of this fibration corresponding to the loop $z_0 \cdot \exp(2\pi i \tau)$ $(0 \leq \tau \leq 1)$ with $\|z_0\|$ big enough is called the geometric monodromy at infinity of the polynomial P. Let h_* be its action in the homology groups of the fibre (the level set) \(\{P = z_0\} \).

Definition. The zeta-function of the monodromy at infinity of the polynomial P is the rational function

$$
\zeta_P(t) = \prod_{q \geq 0} \{ \det [id - t h_*|_{H_q(\{P = z_0\}; \mathbb{C})}] \}^{(-1)^q}.
$$

Remark 1. We use the definition from [2], which means that the zeta-function defined this way is the inverse of that used in [1].

The degree of the zeta-function (the degree of the numerator minus the degree of the denominator) is equal to the Euler characteristic χ_P of the (generic) fibre \(\{P = z_0\} \). Formulae for the zeta-functions at infinity for certain polynomials were given in particular in [6], [9].

Key words and phrases. Complex polynomial function, monodromy, zeta-function, bifurcation set.

First author was partially supported by Iberdrola, INTAS–96–0713, RFBR 96–15–96043. Last two authors were partially supported by DGCYT PB94-0291.
§2.- ZETA-FUNCTION OF A POLYNOMIAL VIA
ZETA-FUNCTIONS OF MEROMORPHIC GERMS

A polynomial function $P : \mathbb{C}^{n+1} \rightarrow \mathbb{C}$ defines a meromorphic function P on the projective space $\mathbb{C}P^{n+1}$. At each point x of the infinite hyperplane $\mathbb{C}P^{n}_\infty$ the germ of the meromorphic function P has the form $F(u, x_1, \ldots, x_n)$ where u, x_1, \ldots, x_n are local coordinates such that $\mathbb{C}P^{n}_\infty = \{u = 0\}$, F is the germ of a holomorphic function, and d is the degree of the polynomial P.

In [8], for a meromorphic germ $f = \frac{F}{G}$, there were defined two Milnor fibres (the zero and the infinite ones), two monodromy transformations, and thus two zeta-functions $\zeta_0^f(t)$ and $\zeta_\infty^f(t)$. Let $\zeta^P_{x}(\cdot \in [0, \infty))$ be the corresponding zeta-function of the germ of the meromorphic function P at the point $x \in \mathbb{C}P^{n}_\infty$.

For the aim of convenience, in [8] we considered only meromorphic germs $f = \frac{F}{G}$ with $F(0) = G(0) = 0$. At a generic point of the infinite hyperplane $\mathbb{C}P^{n}_\infty$ the meromorphic function P has the form $\frac{1}{u^d}$. For a germ of the form $f = \frac{1}{u}$ with $G(0) = 0$, it is reasonable to give the following definition: its infinite Milnor fibre coincides with the (usual) Milnor fibre of the holomorphic germ G and its zero Milnor fibre is empty. Thus $\zeta_0^f(t) = 1$ and $\zeta_\infty^f(t) = \zeta_G(t)$. According to this definition, for the germ $\frac{1}{u^d}$, its infinite zeta-function is equal to $(1 - t^d)$.

Let $\mathcal{S} = \{\Xi\}$ be a prestratification of the infinite hyperplane $\mathbb{C}P^{n}_\infty$ (that is a partitioning of $\mathbb{C}P^{n}_\infty$ into semi-analytic subspaces without any regularity conditions) such that, for each stratum Ξ of \mathcal{S}, the infinite zeta-function $\zeta_\infty^P_{x}(t)$ does not depend on x, for $x \in \Xi$. Let us denote this zeta-function by $\zeta_\Xi^P(t)$ and by χ_Ξ^∞ its degree $\deg \zeta_\Xi^P(t)$. A straightforward repetition of the arguments from the proof of Theorem 1 in [7] gives

Theorem 1.

$$\zeta_P(t) = \prod_{\Xi \in \mathcal{S}} [\zeta_\Xi^P(t)]^{\chi(\Xi)},$$

$$\chi_P = \sum_{\Xi \in \mathcal{S}} \chi_\Xi^\infty \cdot \chi(\Xi).$$

Remark 2. One can write the formula for χ_P in the form of an integral with respect to the Euler characteristic

$$\chi_P = \int_{\mathbb{C}P^{n}_\infty} \chi_{P,x} \, d\chi$$

in the sense of Viro ([14]).

Remark 3. Let P_d be the (highest) homogeneous part of degree d of the polynomial P. Then at each point $x \in \mathbb{C}P^{n}_\infty \setminus \{P_d = 0\}$ the germ of the meromorphic function P is of the form $\frac{1}{u^d}$. The set $\Xi^n = \mathbb{C}P^{n}_\infty \setminus \{P_d = 0\}$ can be considered as the n-dimensional stratum of a partitioning. It brings the factor $(1 - t^d)\chi(\Xi^n)$ into the zeta-function $\zeta_P(t)$.

§3.- EXAMPLES

3.1. Yomdin-at-infinity polynomials. This name was introduced in [4]. For a polynomial $P \in \mathbb{C}[z_0, z_1, \ldots, z_n]$ let P_d be its homogeneous part of degree d. Let a
polynomial P be of the form $P = P_d + P_{d-k} + \text{terms of lower degree, } k \geq 1$. Let us consider hypersurfaces in $\mathbb{C}P^n$ defined by $\{P_d = 0\}$ and $\{P_{d-k} = 0\}$. Let $\text{Sing}(P_d)$ be the singular locus of the hypersurface $\{P_d = 0\}$ (including all points where $\{P_d = 0\}$ is not reduced). One says that P is a Yomdine-at-infinity polynomial if $\text{Sing}(P_d) \cap \{P_{d-k} = 0\} = \emptyset$ (in particular it implies that $\text{Sing}(P_d)$ is finite).

Y. Yomdin ([15]) has considered critical points of holomorphic functions which are local versions of such polynomials. He gave a formula for their Milnor numbers. The generic fibre (level set) of a Yomdin-at-infinity polynomial is homotopy equivalent to the bouquet of n-dimensional spheres ([5]). Its Euler characteristic χ_P (or rather the (global) Milnor number) has been determined in [4]. For $k = 1$, the zeta-function of such a polynomial has been obtained in [6].

Let $P(z_0, z_1, \ldots, z_n) = P_d + P_{d-k} + \ldots$ be a Yomdin-at-infinity polynomial. Let $\text{Sing}(P_d)$ consist of s points Q_1, \ldots, Q_s. One has the following natural stratification of the infinite hyperplane \mathbb{CP}^n_{∞}:

1. the n-dimensional stratum $\Xi^n = \mathbb{C}P^n_{\infty} \setminus \{P_d = 0\}$;
2. the $(n-1)$-dimensional stratum $\Xi^{n-1} = \{P_d = 0\} \setminus \{Q_1, \ldots, Q_s\}$;
3. the 0-dimensional strata $\Xi_i^n (i = 1, \ldots, s)$, each consisting of one point Q_i.

The Euler characteristic of the stratum Ξ^n is equal to

$$\chi(\mathbb{C}P^n_{\infty}) - \chi(\{P_d = 0\}) = (n+1) - \chi(n, d) + (-1)^{n-1} \sum_{i=1}^s \mu_i,$$

where $\chi(n, d) = (n+1) + \frac{(1-d)^{n+1}-1}{d}$ is the Euler characteristic of a non-singular hypersurface of degree d in the complex projective space $\mathbb{C}P^n_{\infty}$, μ_i is the Milnor number of the germ of the hypersurface $\{P_d = 0\} \subset \mathbb{C}P^n_{\infty}$ at the point Q_i. At each point of the stratum Ξ^n, the germ of the meromorphic function P has (in some local coordinates u, y_1, \ldots, y_n) the form $\frac{1}{w^d} (\mathbb{C}P^n_{\infty} = \{u = 0\})$ and its infinite zeta-function $\zeta^\infty_{\Xi^n}(t)$ is equal to $(1 - t^d)$.

At each point of the stratum Ξ^{n-1}, the germ of the polynomial P has (in some local coordinates u, y_1, \ldots, y_n) the form $\frac{1}{w^d}$. Its infinite zeta-function $\zeta^\infty_{\Xi^{n-1}}(t)$ is equal to 1 and thus it does not contribute a factor to the zeta-function of the polynomial P.

At a point Q_i ($i = 1, \ldots, s$), the germ of the meromorphic function P has the form $\varphi(u, y_1, \ldots, y_n) = \frac{g_i(y_1, \ldots, y_n) + u^k}{u^d}$, where g_i is a local equation of the hypersurface $\{P_d = 0\} \subset \mathbb{C}P^n_{\infty}$ at the point Q_i. Thus μ_i is its Milnor number.

To compute the infinite zeta-function $\zeta^\infty_{\varphi}(t)$ of the meromorphic germ φ, let us consider a resolution $\pi : (\mathcal{X}, \mathcal{D}) \to (\mathbb{C}^n, 0)$ of the singularity g_i, i.e., a proper modification of $(\mathbb{C}^n, 0)$ which is an isomorphism outside the origin in \mathbb{C}^n and such that, at each point of the exceptional divisor \mathcal{D}, the lifting $g_i \circ \pi$ of the function g_i to the space \mathcal{X} of the modification has (in some local coordinates) the form $y_1^{m_1} \ldots y_n^{m_n}$ ($m_i \geq 0$).

Let us consider the modification $\tilde{\pi} = id \times \pi : (\mathbb{C}_u \times \mathcal{X}, 0 \times \mathcal{D}) \to (\mathbb{C}^{n+1}, 0) = (\mathbb{C}_u \times \mathbb{C}^n, 0)$ of the space $(\mathbb{C}^{n+1}, 0)$ – the trivial extension: $(u, x) \mapsto (u, \pi(x))$. Let $\tilde{\varphi} = \varphi \circ \tilde{\pi}$ be the lifting of the meromorphic function φ to the space $\mathbb{C}_u \times \mathcal{X}$ of the modification $\tilde{\pi}$. Let $\mathcal{M}^\infty_{\varphi} = \tilde{\pi}^{-1}(\mathcal{M}^\infty_{\varphi})$ $(\mathcal{M}^\infty_{\varphi}$ is the infinite Milnor fibre of the germ φ) be the local level set of the meromorphic function $\tilde{\varphi}$ (close to the infinite point). In the natural way one has the (infinite) monodromy h^∞_{φ} acting on $\mathcal{M}^\infty_{\varphi}$ and its zeta function $\zeta^\infty_{\tilde{\varphi}}(t)$.
Theorem 2.
\[\zeta_{\varphi}^\infty(t) = (1 - t^{d-k})^{\chi(D)} \zeta_{\varphi}^\infty(t). \]

Proof. The infinite monodromy transformation of the function \(\tilde{\varphi} \) can be described in the following way. Let \(h^\infty_{\varphi}: \mathcal{M}^\infty_{\varphi} \to \mathcal{M}^\infty_{\varphi} \) be the infinite monodromy transformation of the germ \(\varphi \). One can suppose that it preserves the intersection of the Milnor fibre \(\mathcal{M}^\infty_{\varphi} \) with the line \(\mathbb{C}_u \times \{0\} \). There it coincides with the infinite monodromy transformation of the restriction \(\varphi|_{\mathbb{C}_u \times \{0\}} = \frac{u^k}{u^d} \) of the germ \(\varphi \) to this line, i.e., with a cyclic permutation of \((d-k) \) points. The zeta-function of a cyclic permutation of \((d-k) \) points is equal to \((1 - t^{d-k}) \). The projection \(\tilde{\pi} : \mathcal{M}^\infty_{\varphi} \to \mathcal{M}^\infty_{\varphi} \) is an isomorphism outside \(\mathcal{M}^\infty_{\varphi} \cap (\mathbb{C}_u \times \{0\}) \), the preimage of each point from \(\mathcal{M}^\infty_{\varphi} \cap (\mathbb{C}_u \times \{0\}) \) is isomorphic to the exceptional divisor \(D \). This means that the transformation (the diffeomorphism) \(h^\infty_{\varphi}: \mathcal{M}^\infty_{\varphi} \to \mathcal{M}^\infty_{\varphi} \) can be constructed in such a way that it preserves \(\tilde{\pi}^{-1}(\mathcal{M}^\infty_{\varphi} \cap (\mathbb{C}_u \times \{0\})) \) and acts on it by a cyclic permutation of \((d-k) \) copies of \(D \). The zeta-function of this transformation of \(\{(d-k) \text{ points}\} \times D \) is equal to \((1 - t^{d-k})^{\chi(D)} \). The result follows from the multiplication property of the zeta-function of a transformation (see [2] p. 94).

For \(\tilde{m} = (m_1, m_2, \ldots, m_n) \) with integer \(m_1 \geq m_2 \geq \ldots \geq m_n \geq 0 \), let \(S_{\tilde{m}} \) be the set of points of the exceptional divisor \(D \) of the resolution \(\pi \) at which the lifting of the germ \(g_i \) has the form \(y_1^{m_1} \cdot \ldots \cdot y_n^{m_n} + u^k \). Thus, for fixed \(\tilde{m} \), the infinite zeta-function \(\zeta_{\varphi,x}^\infty(t) \) of the germ of the meromorphic function \(\tilde{\varphi} \) at a point \(x \) from \(\{0\} \times S_{\tilde{m}} \) is one and the same. It can be determined by the Varchenko type formula from [8]. If there are more than one integers \(m_i \) different from zero, \(\zeta_{\varphi,x}^\infty(t) = (1 - t^{d-k})^{-1} \). For \(x \in \{0\} \times S_m \),
\[\zeta_{\varphi,x}^\infty(t) = (1 - t^{d-k})(1 - t^{\frac{m(d-k)}{g.c.d.(m,k)}})^{-g.c.d.(m,k)}. \]

According to Theorem 1
\[\zeta_{\varphi}^\infty(t) = (1 - t^{d-k})^{\chi(D)} \prod_{m \geq 1} \left(1 - t^{\frac{m(d-k)}{g.c.d.(m,k)}} \right)^{-g.c.d.(m,k)} \chi(S_m) \]
and by Theorem 2
\[\zeta_{\varphi}^\infty(t) = (1 - t^{d-k}) \prod_{m \geq 1} \left(1 - t^{\frac{m(d-k)}{g.c.d.(m,k)}} \right)^{-g.c.d.(m,k)} \chi(S_m). \]

The zeta-function \(\zeta_h(t) \) of a transformation \(h : X \to X \) of a space \(X \) into itself determines the zeta-function \(\zeta^k_h(t) \) of the \(k \)-th power \(h^k \) of the transformation \(h \). In particular, if \(\zeta_h(t) = \prod_{m \geq 1} (1 - t^m)^{a_m} \), then
\[\zeta^k_h(t) = \prod_{m \geq 1} \left(1 - t^{\frac{m}{g.c.d.(k,m)}} \right)^{g.c.d.(k,m) a_m}. \]
The formulae (1) and (2) mean that
\[\zeta_\varphi^\infty(t) = (1 - t^{d-k}) \left(\zeta_k(t^{d-k}) \right)^{-1} \] (3).

Combining the computations for the stratification \(\{ \Xi^n, \Xi^{n-1}, \Xi^0 \} \) of the infinite hyperplane \(\mathbb{CP}^n_\infty \), one has

Theorem 3. For a Yomdin-at-infinity polynomial \(P = P_d + P_{d-k} + \ldots \), its zeta-function at infinity is equal to

\[\zeta_P(t) = (1 - t^{d-k}) \chi(\Xi^n) (1 - t^{d-k})^s \left(\prod_{i=1}^s \zeta_{g_i}(t^{d-k}) \right)^{-1}, \]

where \(\chi(\Xi^n) = \frac{1-(1-d)^{n+1}}{d} + (-1)^{n-1} \sum_{i=1}^s \mu(g_i) \) and \(g_i \) is a local equation of the hypersurface \(\{ P_d = 0 \} \subset \mathbb{CP}^n_\infty \) at its singular point \(Q_i \).

3.2. Let \(n + 1 \) be equal to 3, \(P = P_d + P_{d-k} + \ldots \), \(P_d = 0 \) is a curve in \(\mathbb{CP}^2_\infty \). Let \(C_{q_1}^1 + \ldots + C_{q_r}^r \) be its decomposition into irreducible components. Let \(\{ P_d = 0 \}_{\text{red}} \) be the reduced curve \(C_1 + \ldots + C_r \) and let \(\text{Sing}(\{ P_d = 0 \}_{\text{red}}) \) consist of \(s \) points \(\{ Q_1, \ldots, Q_s \} \). Suppose that:

1. the curve \(\{ P_{d-k} = 0 \} \) is reduced;
2. \(Q_i \notin \{ P_{d-k} = 0 \} \), \(i = 1, \ldots, s \);
3. for each \(j \) with \(q_j > 1 \), the curves \(C_j \) and \(\{ P_{d-k} = 0 \} \) intersect transversally, i.e., the set \(C_j \cap \{ P_{d-k} = 0 \} \) consists of \(d_j(d-k) \) different points \(d_j = \deg C_j \).

The generic fibre of the polynomial \(P \) is homotopy equivalent to the bouquet of 2-dimensional spheres. In this case the number of these spheres is equal to \(\mu(P) = \dim \mathbb{C}[x, y, z]/\text{Jac}(P) \) and is equal to

\[(d-1)^3 - k \cdot \left(\chi(\{ P_d = 0 \}) + d(2d-d-3) \right) + k^2 \cdot (d-d), \]

where \(\tilde{d} = d_1 + \ldots + d_r \) is the degree of the (reduced) curve \(\{ P_d = 0 \}_{\text{red}} \), [4]. Let us consider the following partitioning of the infinite hyperplane \(\mathbb{CP}^2_\infty \):

1. the 0-dimensional stratum \(\Xi^0 \) consisting of one point \(Q_i \) each \(i = 1, \ldots, s \);
2. the 0-dimensional stratum \(\Lambda^0_j = C_j \cap \{ P_{d-k} = 0 \} \), for each \(j = 1, \ldots, r \);
3. the 1-dimensional stratum \(\Xi_j^1 = C_j \setminus \{ Q_i \} \cup \Lambda^0_j \), for each \(j = 1, \ldots, r \);
4. the 2-dimensional stratum \(\Xi^2 = \mathbb{CP}^2_\infty \setminus \{ P_d = 0 \} \).

At each point of the stratum \(\Xi^2 \), the germ of the meromorphic function \(P \) has the form \(\frac{1}{u^r} (\mathbb{CP}^2_\infty = \{ u = 0 \}) \). Its infinite zeta-function is equal to \((1 - t^d) \). The Euler characteristic \(\chi(\Xi^2) \) of the stratum \(\Xi^2 \) is equal to

\[\chi(\mathbb{CP}^2_\infty) - \chi(\{ P_d = 0 \}) = 3 - 3\tilde{d} + \tilde{d}^2 - \sum_{i=1}^s \mu_i, \]

where \(\mu_i \) is the Milnor number of the (reduced) curve \(\{ P_d = 0 \}_{\text{red}} \) at the point \(Q_i \).
At each point of the stratum Ξ^1_λ, the germ of the meromorphic function P has the form $g_{ij}u^k$. Its infinite zeta-function can be determined by the Varchenko type formula from [8] and is equal to
\[
(1 - t^{d-k})(1 - t^{g.c.d.(q_j,k)} - g.c.d.(q_j,k)).
\]
The Euler characteristic of the stratum Ξ^1_λ is equal to
\[
\chi(C_j) - d_j(d - k) - \#\{C_j \cap \{Q_i : i = 1, \ldots, s\}\}.
\]

At each point of the stratum Λ^0, the germ of the meromorphic function P has the form $\frac{g_{ij}u^k + y_2}{u^d}$. Its infinite zeta-function is equal to 1.

At a point Q_i, the germ of the meromorphic function P has the form $\frac{g_{ij}(y_1,y_2) + u^k}{u^d}$, where $\{g_i = 0\}$ is the local equation of the (non-reduced) curve $\{P_d = 0\}$ at the point Q_i. Its infinite zeta-function is equal to
\[
(1 - t^{d-k})\left(\epsilon_q^k(t^{d-k})\right)^{-1}.
\]

Remark 4. We can not apply the formula (3) directly since the singularity of the germ g_i is, in general, not isolated. However, it is not difficult to see that, actually, the proof of this formula uses only the fact that the singularity of the germ g_i can be resolved by a modification which is an isomorphism outside the origin. This is so for a curve singularity.

Thus one obtains
\[
\zeta_P(t) = (1 - t^d)\chi(\Xi^2)(1 - t^{d-k})(3d - d^2 - d(d-k) + \sum \mu_i) \times
\prod_{j=1}^r \left(1 - t^{g_{ij}(d-k)}\right)^{-g.c.d.(q_j,k)\chi(\Xi^1_\lambda)} \cdot \prod_{i=1}^s \left(\epsilon_q^k(t^{d-k})\right)^{-1}.
\]

§4.- **ON THE BIFURCATION SET OF A POLYNOMIAL MAP**

As we have mentioned, a polynomial map $P : \mathbb{C}^{n+1} \to \mathbb{C}$ defines a locally trivial fibration over the complement to a finite set in \mathbb{C}. The minimal set $B(P)$ with this property is called the bifurcation set of P. The bifurcation set consists of critical values of the polynomial P (in the affine part) and of atypical ("critical") values at infinity.

In order to consider a level set $\{P = c\}$, one can substitute the polynomial P by the polynomial $(P - c)$ and consider the zero level set. Thus let us consider the zero level set $V_0 = \{P = 0\} \subset \mathbb{C}^{n+1}$ of the polynomial P. Let us suppose that the level set V_0 of the polynomial P has only isolated singular points (in the affine part \mathbb{C}^{n+1}). For $\rho > 0$, let B_ρ be the open ball of radius ρ centred at the origin in \mathbb{C}^{n+1} and $S_\rho = \partial B_\rho$ be the $(2n + 1)$-dimensional sphere of radius ρ with the centre at the origin. There exists $R > 0$ such that, for all $\rho \geq R$, the sphere S_ρ is transversal to the level set $V_0 = \{P = 0\}$ of the polynomial map P. The restriction $P|_{\mathbb{C}^{n+1} \setminus B_R} : \mathbb{C}^{n+1} \setminus B_R \to \mathbb{C}$ of the function P to the complement of the ball B_R defines a C^∞ locally trivial fibration over a punctured neighbourhood of the origin in \mathbb{C}. The loop $\varepsilon_0 \cdot \exp(2\pi i \tau)$ (0 \leq τ \leq 1, $\|\varepsilon_0\|$ small enough) defines the monodromy transformation $h : V_{\varepsilon_0} \setminus B_R \to V_{\varepsilon_0} \setminus B_R$. Let us denote its zeta-function $\zeta_h(t)$ by $\zeta^0(t)$. We use the following definition.
Definition. The value 0 is atypical at infinity for the polynomial P if the restriction $P|_{C^{n+1}\setminus B_R}$ of the function P to the complement of the ball B_R is not a C^∞ locally trivial fibration over a neighbourhood of the origin in \mathbb{C}.

Remark 5. This definition does not depend on a choice of coordinates, i.e., it is invariant with respect to polynomial diffeomorphisms of the space \mathbb{C}^{n+1}. One can see that an atypical at infinity value is atypical, i.e. it belongs to the bifurcation set $B(P)$ of the polynomial P. Moreover the bifurcation set $B(P)$ is the union of the set of critical values of the polynomial P (in \mathbb{C}^{n+1}) and of the set of values atypical at infinity in the described sense. If the singular locus of the level set $V_0 = \{P = 0\}$ is not finite, the value 0 hardly can be considered as typical at infinity. Thus, one should consider this definition as a (possible) general definition of a value atypical at infinity. In fact the same definition was used in [10].

Let S be a prestratification of the infinite hyperplane \mathbb{CP}_∞^n such that, for each stratum Ξ of S, the zero zeta-function $\zeta^0_{P,x}(t)$ of the germ of the meromorphic function P at a point $x \in \mathbb{CP}_\infty^n$ does not depend on the point x, for $x \in \Xi$ (let it be $\zeta^0_\Xi(t)$ and let its degree be χ_{Ξ}^0).

Theorem 4.

$$\zeta^0_P(t) = \prod_{\Xi \in S} [\zeta^0_{\Xi}(t)]^{\chi(\Xi)},$$

$$\chi(V_{\varepsilon} \setminus B_R) = \sum_{\Xi \in S} \chi^0_{\Xi} \cdot \chi(\Xi).$$

The proof is essentially the same as that of Theorem 1. Since the Euler characteristic of the set $V_\varepsilon \setminus B_R$ is equal to 0, one has

Corollary 1. If $\zeta^0_P(t) \neq 1$, then the value 0 is atypical at infinity for the polynomial P.

In several papers (see, e.g., [3], [11], [12]) there was considered an integer $\lambda_P(c)$ ($c \in \mathbb{C}$) such that

$$\chi(\{P = c\}) = \chi(\{P = c + \varepsilon\}) + (-1)^{n+1} \left(\sum \mu_i + \lambda_P(c)\right),$$

where μ_i are the Milnor numbers of the (isolated) singular points of the level set $\{P = c\} \subset \mathbb{C}^{n+1}$. Theorem 4 gives the following formula for this invariant:

Corollary 2.

$$\lambda_P(0) = (-1)^n \deg \zeta^0_P(t) = (-1)^n \sum_{\Xi \in S} \chi^0_{\Xi} \cdot \chi(\Xi) \left(-1^n \int_{\mathbb{CP}_\infty^n} \chi^0_{P,x} \, d\chi\right).$$

Example. Let $P(x,y,z) = x^a y^b (x^c y^d - z^{c+d}) + z$, $(ad - bc) \neq 0$, and let $D = \deg(P) = a + b + c + d$. The curve $\{P_D = 0\} \subset \mathbb{CP}^2_\infty$ consists on three components: the line $C_1 = \{x = 0\}$ with multiplicity a, the line $C_2 = \{y = 0\}$ with multiplicity b, and the reduced curve $C_3 = \{x^c y^d - z^{c+d} = 0\}$. Let $Q_1 = C_1 \cap C_3 = (1 : 0 : 0)$, $Q_2 = C_1 \cap C_3 = (0 : 1 : 0)$, $Q_3 = C_1 \cap C_2 = (0 : 0 : 1)$. At each point x of the infinite hyperplane \mathbb{CP}^2_∞ except Q_1 and Q_2, one has $\zeta^0_{P,x}(t) = 1$. At the point Q_1, the germ of the meromorphic function P has the form $y^b (y^d - z^{c+d}) + zu^{D-1}$.

Its zero zeta-function can be obtained by the Varchenko type formula from [8]. If \((ad - bc) < 0\), then \(\zeta_{P,Q}^0(t) = 1\). If \((ad - bc) > 0\), then
\[
\zeta_{P,Q}^0(t) = (1 - t^{\frac{ad-bc}{G.C.D.}})^{G.C.D.},
\]
where \(G.C.D. = g.c.d(c, d) \cdot g.c.d(\frac{ad-bc}{g.c.d(c,d)}, D - 1)\). At the point \(Q_2\), we have just the symmetric situation. Finally
\[
\zeta_p^0(t) = (1 - t^{\frac{|ad-bc|}{G.C.D.}})^{G.C.D.}.
\]
It means that the value 0 is atypical at infinity. In the same way \(\zeta_{P-c}^0(t) = 1\), for \(c \neq 0\).

References

1. N. A’Campo, *La fonction zêta d’une monodromie*, Comment. Math. Helv. **50** (1975), 233–248.
2. V.I. Arnold, S.M. Gusein-Zade, A.N. Varchenko, *Singularities of Differentiable Maps*, vol. II, Birkhäuser, Boston–Basel–Berlin.
3. E. Artal-Bartolo, I. Luengo, A. Melle-Hernández, *Milnor number at infinity, topology and Newton boundary of a polynomial function*, Preprint (1997).
4. E. Artal-Bartolo, I. Luengo, A. Melle-Hernández, *On the topology of a generic fibre of a polynomial map*, Preprint (1997).
5. A. Dimca, *On the connectivity of complex affine hypersurfaces*, Topology **29** (1990), 511–514.
6. R. García López, A. Némethi, *On the monodromy at infinity of a polynomial map*, Compositio Math. **100** (1996), 205–231.
7. S.M. Gusein-Zade, I. Luengo, A. Melle-Hernández, *Partial resolutions and the zeta-function of a singularity*, Comment. Math. Helv. **72** (1997), 244–256.
8. S.M. Gusein-Zade, I. Luengo, A. Melle-Hernández, *Zeta-functions for germs of meromorphic functions and Newton diagrams*, Preprint of the Fields Institute for Research in Mathematical Sciences FI–ST 1997–005, to appear in Funct. Anal. and its Appl., 1998.
9. A. Libgober, S. Sperber, *On the zeta-function of monodromy of a polynomial map*, Compositio Math. **95** (1995), 287–307.
10. A. Némethi, A. Zaharia, *Milnor fibration at infinity*, Indag. Mathem., N.S. **3** (1992), 323–335.
11. D. Siersma, M. Tibăr, *Singularities at infinity and their vanishing cycles*, Duke Math. J. **80** (1995), 771–783.
12. M. Tibăr, *Regularity at infinity of real and complex polynomial maps*, Prepublications Angers **23** (1996).
13. A.N. Varchenko, *Theorems on the topological equisingularity of families of algebraic varieties and families of polynomials mappings*, Math. USSR Izvestija **6** (1972), 949–1008.
14. O.Y. Viro, *Some integral calculus based on Euler characteristic*, Topology and Geometry — Rohlin seminar. Lecture Notes in Math., vol. 1346, Springer, Berlin–Heidelberg–New York, 1988, pp. 127–138.
15. Y.N. Yomdin, *Complex surfaces with a one-dimensional set of singularities*, Siberian Math. J. **5** (1975), 748–762.