Novel Gene Rearrangement in the Mitochondrial Genome of Three *Garra* and Insights Into the Phylogenetic Relationships of Labeoninae

Chi Zhang¹, Kun Zhang², Ying Peng², Jianshe Zhou¹, Yifan Liu² and Bingjian Liu²*

¹Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China, ²National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, Zhoushan, China

Complete mitochondrial genomes (mitogenomes) can provide valuable information for phylogenetic relationships, gene rearrangement, and molecular evolution. Here, we report the mitochondrial whole genomes of three *Garra* species and explore the mechanisms of rearrangements that occur in their mitochondrial genomes. The lengths of the mitogenomes’ sequences of *Garra dengba*, *Garra tibetana*, and *Garra yajiangensis* were 16,876, 16,861, and 16,835, respectively. They contained 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNA genes, and two identical control regions (CRs). The mitochondrial genomes of three *Garra* species were rearranged compared to other fish mitochondrial genomes. The tRNA-Thr, tRNA-Pro and CR (T-P-CR) genes undergo replication followed by random loss of the tRNA-Thr and tRNA-Pro genes to form tRNA-Thr, CR1, tRNA-Pro and CR2 (T-CR-P-CR). Tandem duplication and random loss best explain this mitochondrial gene rearrangement. These results provide a foundation for future characterization of the mitochondrial gene arrangement of Labeoninae and further phylogenetic studies.

Keywords: Garra, gene rearrangement, complete mtDNA sequence, Labeoninae, phylogeny

INTRODUCTION

The subfamily Labeoninae is wildly distributed in Asia and Africa as one of the most diverse freshwater fishes in the family Cyprinidae (Cypriniformes). About 26 genera are distributed in China, 12 of which are endemic, with a great diversity of genera and species (Pei-Qi and Een-Duan, 1984). Once, Howes et al. (1991) and Winfield et al. (2012) proposed that the tribe Labeonini is essentially equivalent to the subfamily Labeoninae in Cyprininae (Howes et al., 1991; Winfield and Nelson, 2012). Because of the great diversity of Labeoninae orofacial morphology, it is often used as a key feature for identifying the included genera and for recovering the phylogenetic history hypothesis suite. However, since the morphological diversity and the difficulty of distinguishing the ambiguous morphological characteristics, the taxonomy of the Labeoninae has been constantly subject to revision, and the phylogenetic relationships within them remain amid change. Although some researchers erected a few new genera (e.g., *Hongshuia*, *Qianlabeo*, and *Stenorhinchus*) (Zhang and Chen, 2004; Zhang and Fang, 2005; Li et al., 2006; Zhang et al., 2008), and rearranged the generic assignment of some species based on the oromandibular morphology (Yuan et al., 2008). There was no input from molecule-based phylogenetic evidence. Furthermore, Yang and Mayden (2010) constructed the most comprehensive molecular phylogeny just including one species of each of 11
genera, supporting the monophyly of Labeoninae and proposing a model for the relationships of the major sublineages within Labeoninae (Yang and Mayden, 2010). However, limited by the number of mitogenomes, the monophyly of many genera and the validity of the nomenclature are unresolved. Therefore, re-establishing the Labeoninae phylogenetic relationship using suitable species is necessary.

Garra is a genus of fish in the carp family of the subfamily Labeoninae, distributed in southern China, across Southeast Asia, India, and the Middle East to northern and central Africa (STIASSNY and GETAHUN, 2007). Garra is usually found in swift-flowing streams, where they hold on to rocks with their highly modified mouths like suckers, including bottom-dwelling fishes. They feed on plant debris in open-water habitats and on periphyton in bottom-surface habitats (Kullander and Fang, 2004; Nebeshwar et al., 2009). Currently, 20 different Garra species have been identified from the Brahmaputra River basin, three of which in China, namely, G. dengba, G. Tibetan, and G. yajiangensis caught our attention due to the rearrangement in their mitochondrial genome (Deng et al., 2018; Gong, 2018; Gong et al., 2018; Zhang et al., 2020). They were all collected from high altitudes. Among them, G. dengba is derived from the Chayu-Qu, a stream that flows into the Brahmaputra River in eastern Tibet, China. It shares with the five Garra fishes (G. arupi, G. elongata, G. gravelyi, G. kalpangi, and G. rotundinasus) an incipient proboscis on the nose, but differs from them in its less divergent dorsal and anal fins and more perforated lateral line scales (Deng et al., 2018). Meanwhile, due to the similarity of morphological characters, G. tibetana was for a long time mistakenly identified as G. kempfi (Galtier et al., 1987). G. yajiangensis, a member of the long-nosed species group, is distinguished from other members of the group mainly by the presence of a prominent, quadrangular, slightly bilobed proboscis. Apart from G. tibetana has been reported as a complete mitochondrial sequence, current researches on these three Garra fishes are mainly stagnant in morphology while their corresponding molecular evolutions are still limited (Zhang et al., 2020). In addition, Zhang et al. (2020) identified two control regions in the mitochondrial genome of G. tibetana (Zhang et al., 2020). Also, Li et al. (2016) reported that the tRNA-Pro gene of G. kempfi is positioned between two control regions, and a 246 bp repeat unit is identified in the second control region, which is different from the typical mitochondrial genome organization in vertebrate (Li et al., 2016). However, He et al. (2016) reported that the complete mitochondrial genome of G. imberba is a classic structure (He et al., 2016). A different mitochondrial genome composition is present in Garra fish, and no one has yet identified the reason for this phenomenon. Therefore, this study reports novel gene rearrangement in the mitochondrial genome of G. dengba, G. tibetana, and G. yajiangensis, which could provide important genomic information for studying the evolutionary relationships and population genetics of the genus Garra.

The mitochondrial genome (Mitogenome) houses its DNA and encodes many key proteins for the assembling and activation of the mitochondrial respiratory complex (Yan et al., 2019). Mitogenomes as a molecule marker were used for species classification, population genetics, molecular systematic geography, molecular ecology, and other areas (Groves and Shields, 1996; Nielsen et al., 2010; Cheng et al., 2012; Zhang et al., 2018). Vertebrate mitogenomes are generally 16–20 kb in length (Boore, 1999), compared to plant mitochondrial genomes, which are shorter. The structure of the vertebrate mitogenome typically consists of 13 protein-coding genes (PCGs), 22 tRNA genes (tRNAs), and two rRNA genes (rRNAs) (Boore, 1999). In the vertebrate mitogenome, the order of these genes is conserved and generally unaltered (Bibb et al., 1981; Roe et al., 1985). The mitochondrial genome is inherited maternally in most animals and therefore has a very low rate of recombination (Brown et al., 1979). However, variants of the gene sequence have now been identified in a variety of vertebrates, including amphibians, reptiles, birds, marsupials, and fish (Pääbo et al., 1991; Macey et al., 1997; Eberhard and Wright, 2015; Liu et al., 2019a; Lü et al., 2019). In recent years, with the advancement of sequencing techniques, more and more mitochondrial rearrangements are being identified.

In general, the structure of the fish mitochondrial genome is extremely conserved (Gong et al., 2013). With the gradual increase in mitochondrial DNA sequence data for fish, reports of mitogenome rearrangements continue to appear (Miya et al., 2001; Inoue et al., 2003; Zhang et al., 2021). To date, a few models have been employed for mitochondrial gene rearrangement. These models include the tandem duplication/random loss (TDRL) (Moritz and Brown, 1987), recombination model (Lunt and Hyman, 1997), tRNA mismatch model (Cantatore et al., 1987), tandem duplication/nonrandom loss model (RDNL) (Lavrov et al., 2000) and double replication/random loss model (DRRL) (Shi et al., 2014). The TDRL model occurs by tandem duplication of certain genes that undergo rearrangement, followed by random deletion of repetitive sequences. The model has been widely applied to explain the translocation of genes encoded on the same strand (Shi et al., 2015; Wang et al., 2018). The RDNL model differs from TDRL in non-random loss and is dependent on the transcriptional polarity and location of the gene.

In this study, three mitogenomes of Garra species (G. dengba, G. tibetana, and G. yajiangensis) were sequenced and annotated. We have also characterized their mitochondrial genome structure and phylogenetic analysis within their subfamily Labeoninae. In addition to this, we have explored the mechanisms by which their mitochondrial genes undergo rearrangement. Based on the above analysis, we hope that these results will provide a better understanding of the mechanisms by which rearrangements occur in the mitochondrial genomes of Garra species, as well as their evolution.

MATERIALS AND METHODS

Sample Collection, DNA Extraction, and Sequencing

The sample of G. dengba was collected in Chayu City, Tibet, China (28°66' N, 97°46' E). Samples of G. tibetana and G. yajiangensis were collected in Motuo City, Tibet, China (29°32' N, 95°33' E). Total genomic DNA was extracted...
from muscle tissue using the Qiagen QIAamp tissue kit according to the manufacturer’s protocol. The DNA sediment was solubilized in double-distilled water, stored at 4°C, and then quantified in concentration. The G. tibetana mitochondrial genome was amplified with ten pairs of universal primer by general PCR. The general PCR cycle requirement for DNA amplification is 5 min at 94°C, [30 s at 94°C, 30 s at 55–56°C, 1 min at 72°C] X 35 cycles, and 10 min at 72°C. Sequences were sequenced using an ABI Genetic Analyzer (Applied Biosystems, China). Complete mitogenome sequencing of G. dengha and G. yajiangensis was performed on an Illumina HiSeq X Ten platform.

Assembly, Annotation, and Analysis

The acquired sequence PCR fragments were processed through CodonCode Aligner 9.0.1 (CodonCode Corporation, Dedham, MA) and the complete mitochondrial genome was assembled. Clean data without sequencing adapters were assembled de novo using NOVOPlasty software (Dierckxsens et al., 2016). The new mitogenome was annotated with the vertebrate mitochondrial code using the MITOS (Donath et al., 2019). The structures of the 22 tRNAs were determined using tRNA-scan 2.0 (Chan et al., 2021) and then the tRNA structures were mapped by online web software Forna (Kerpedjiev et al., 2015). The circular map of the mitochondrial genome was produced by using the OGDRAW v1.3.1 (Greiner et al., 2019). Base composition and relative synonymous codon usage (RSCU) for 13 PCGs of Garra were computed and sorted using MEGA X (Kumar et al., 2018). Composition skew values were calculated by the following formulas: AT skew = (A−T)/(A + T); GC skew = (G−C)/(G + C) (Peres and Kocher, 1995). The putative origin of L-strand replication (OL) was identified by the Mfold Web Server (Zuker, 2003).
Gene	A (%)	T (%)	C (%)	G (%)	A + T (%)	G + C (%)	AT-skew	GC-skew	Length (bp)
Mitogenome	29.36	28.07	26.86	15.72	57.42	42.58	0.0224	-0.2616	11,412
ND1	29.85	25.74	29.64	14.77	55.59	44.41	0.0738	-0.3349	975
ND2	32.22	23.14	31.26	13.36	55.35	44.65	0.1641	-0.4004	1,046
COI	26.96	30.56	24.63	17.86	57.51	42.49	-0.0628	-0.1583	1,551
COII	31.4	26.92	26.05	15.63	58.32	41.68	0.0769	-0.25	691
ATP8	34.55	27.88	26.06	11.52	62.42	37.58	0.1068	-0.3871	165
ATP6	29.09	30.41	26.17	14.33	59.5	40.5	-0.0221	-0.2924	684
COIII	27.61	26.34	28.75	17.3	53.94	46.06	0.0236	-0.2486	786
ND3	27.92	28.49	27.92	15.67	56.41	43.59	-0.0101	-0.281	351
ND4L	24.92	25.93	31.31	17.85	50.84	49.16	-0.0199	-0.274	297
ND5	31.43	27.23	27.52	13.83	58.65	41.35	0.0716	-0.331	1,381
ND6	32.8	26.93	27.32	12.95	59.74	40.26	0.0983	-0.3569	1,823
Cytb	34.98	29.1	26.64	14.37	58.98	41.02	0.0134	-0.2991	1,141
rRNAs	34.98	29.1	26.64	14.37	58.98	41.02	0.0134	-0.2991	1,141
tRNAs	34.98	29.1	26.64	14.37	58.98	41.02	0.0134	-0.2991	1,141
CR1	35.07	31.02	20.36	13.54	66.10	33.9	0.0613	-0.2013	938
CR2	45.04	28.72	21.63	4.61	73.76	26.24	0.2212	-0.6486	282

FIGURE 1 | The RSCU of the mitogenome in (A) *Garra dengba*, (B) *Garra tibetana* and (C) *Garra yajiangensis*. The RSCU of the three *Garra* species mitogenomes show that the usage of NNA and NNC (N for A, T, C, G) was more frequent than NNT and NNG in the *G. dengba*, *G. tibetana*, and *G. yajiangensis*.
Phylogenetic Analyses
Rapid identification of 12 PCGs in the mitochondrial genome was performed using DAMBE v7.2.3 software (Xia, 2018). 13 PCGs were used excluding ND6 owing to its heterogeneous base composition and poor consistent phylogenetic performance (Miya et al., 2003). Sequences were compared using the default parameters of Clustal X 2.0 (Larkin et al., 2007). The ambiguous sequences were eliminated by Gblock (Talavera and Castresana, 2007). Subsequently, the results of the multiple sequence comparisons were then used to construct phylogenetic trees based on maximum likelihood (ML) and Bayesian inference (BI) analyses. The ML tree was built in PhyML 3.0 (Guindon et al., 2010), using the best model (TVM + F + R8) selected in ModelFinder with 1000 nonparametric bootstrap replications (Kalyaanamoorthy et al., 2017). Bayesian inference (BI) methods were used with the program MrBayes 3.2

FIGURE 2 | Mitochondrial genome maps of the three Garra in this study. (A) Garra dengba mitochondrial genome visualization ring diagram. (B) Garra tibetana mitochondrial genome visualization ring diagram. (C) Garra yajiangensis mitochondrial genome visualization ring diagram. Genes encoded on the heavy or light strands are shown at the outside or inside of the circular gene map, respectively. The mitochondrial genome visualization ring diagram of the three species show the same structure and all have two control regions.
of the mitochondrial genomes of these three species (Ronquist et al., 2012). Based on the Akaike information criteria (AIC), MrModeltest 2.2 (Nylander et al., 2004) was performed to determine the best evolutionary model among 24 models for BI analysis and pointed out that GTR + G + I was the analytical data set for the best-fit substitution model. BI analysis was performed using Markov chain Monte Carlo (MCMC), sampled every 1,000 generations each with three heated chains and one cold chain run for 6,000,000 generations, and the first 25% of the burns were discarded. Visualization of the tree was realized using online web tool iTOL v5 (https://itol.embl.de) (Letunic and Bork, 2021).

RESULTS AND DISCUSSION

Genome Organization and Composition

The complete mitochondrial genomes of three Garra (G. dengba, accession no. OL826794; G. tibetana accession no. NC_045032 and G. yajiangensis, accession no. OL826795) in GenBank were 16,861, 16,861 and 16,835 bp in length, respectively (Table 1). The structure of the mitochondrial genomes of these three fish species is extremely similar. The mitochondrial genomes of all three species are very similar in structure, containing 13 protein-coding genes (PCGs), two rRNAs, 22 tRNAs, a light-stranded replication initiation region (OL), and two control regions (CR). Compared to the structure of the mitochondrial genomes of most teleost fishes, the mitochondrial genomes of the three fishes in this study have an extra CR. The main reason for this is the rearrangement of mitochondrial genes in these three fish species (Figure 5). The presence of replicating CR was considered a special feature in the vertebrate mitochondrial genome (Jiang et al., 2007; Shi et al., 2013). The nucleotide composition of G. dengba, G. tibetana, and G. yajiangensis mitogenomes had a higher A + T bias of 57.42, 58.44, and 58.44%, respectively, and both showed positive AT-skew and negative GC-skew (Table 2).

Protein-Coding Genes and Codon Usage

Like the typical mitochondrial genome of vertebrates (Zhang et al., 2021b; Liu et al., 2019b), the 13 PCGs consist of one cytochrome b (Cyt b), two ATPases (ATP6 and ATP8), and three cytochrome c oxidases (COI-COIII), and seven NADH dehydrogenases (ND1-ND6 and ND4L). Twelve PCGs (ND1, ND2, COI, COII, ATP8, ATP6, COIII, ND3, ND4L, ND4, ND5, and Cytb) were coded on the heavy strand (H-strand) and the remaining ND6 gene was coded on the light strand (L-strand) (Table 1). All PCGs use the start codon ATG except for COI, which uses GTG. Most of the 13 PCGs ended with TAA or TAG, whereas four other PCGs (COI, ND4, ND6, and Cytb) use a single T- or TA-as the stop codon (Table 1). The incomplete stop codon has also been found in all other Garra species (Su et al., 2015; Xiong et al., 2016). The presence of incomplete stop codons is a common phenomenon in invertebrate and vertebrate mitochondrial genes (Liu et al., 2020; Zhang et al., 2021c). All 12 PCGs genes (ND1-ND3, COI-COIII, ATP8, ATP6, ND4L, ND4, ND5) in the three Garra mitochonmdria had negative GC-skew values and they were all encoded on the H-strand, in addition, the ND6 gene encoded on the L-strand had a positive GC-skew value (Table 2, Supplementary Table S1, S2).

Depending on the codon degeneration pattern, the amino acids serine and leucine are encoded by six synonymous codons, and the remaining amino acids are encoded by four or two codons. A count of the translated amino acid content of 13 PCGs was found. The top utilized amino acids are Leu, Ile, and Ala, and the few top utilized amino acids are Asp, Arg, and Cys (Figure S1). This phenomenon is also commonly seen in the mitochondrial genomes of other fish (Su et al., 2015; Zhang et al., 2021b). We measured the RSCU of the three Garra species mitogenomes (Figure 1) and the results showed that the usage of NNA and NNC (N for A, T, C, G) was more frequent than NNT and NNG in the G. dengba, G. tibetana, and G. yajiangensis.
Transfer and Ribosomal RNAs

Like the typical set of tRNA genes in fish mitogenomes, all three Garra species mitogenomes included 22 tRNAs, a 12S rRNA, and 16S rRNA. Of these 22 tRNAs, 14 tRNAs were encoded on the H-strand and the remaining eight (tRNA-Gln, tRNA-Ala, tRNA-Asn, tRNA-Cys, tRNA-Tyr, tRNA-Ser, tRNA-Glu, and tRNA-Pro) were encoded on the L-strand (Figure 2). All of them had two kinds of tRNA-Leu and tRNA-Ser (Table 1). Secondary cloverleaf structure of tRNA genes identified in the mitogenome of G. dengba, G. tibetana, and G. yajiangensis were shown in Supplementary Figures S2–4. Out of 22 tRNAs, all have a typical cloverleaf structure except for tRNA-Ser (GCT), which lacks the entire dihydrouridine arm. The 12S rRNA gene was positioned between tRNA-Phe and tRNA-Val, and the 16S rRNA gene was located between tRNA-Val and tRNA-Leu (UUR). The lengths of 12S rRNA were 952, 951, and 950 in the mitochondrial genomes of G. dengba, G. tibetana, and G. yajiangensis, respectively. The size of the 16S rRNA in G. dengba and G. tibetana were 1,688 bp, both a little longer than in G. yajiangensis (1,687 bp). Positive AT-skew values for both tRNA and rRNA in the mitochondrial genomes of G. dengba, G. tibetana, and G. yajiangensis indicate that the As content is higher than the Ts content (Table 2, Supplementary Tables S1, S2).

L-Strand Origin of Replication and Control Region

The origin of light chain replication (OL) was usually found within a WANCY group and can fold into a stem-loop ring secondary structure (Zhang et al., 2021a). The OL of G. dengba and G. tibetana were located between tRNA-Asn and tRNA-Cys with the same length of 34 bp, and 1 bp longer than G. yajiangensis (33 bp) (Table 1). The two-structure prediction of the OL region revealed that the stem lengths in the OL regions of G. dengba, G. tibetana, and G. yajiangensis were 10, 5, and 9 bp, respectively, and the loops were 11, 15, and 10 nt, respectively (Figure 3). In these OL structures, the utilization of stem codons showed a clear asymmetry, with more pyrimidines at the 5′ end of the sequence. In contrast to other fish studies (Catanese et al., 2010), the conserved sequence 5′-GCCGG-3′ was not present in the OL region in this study, but rather a segment of the 5′-GGCGG-3′ sequence was present.
The CR is the greatest non-coding region in the fish mitogenome which is analogous to the A + T enriched region of the insect mitogenome (Liu et al., 2013). The CR1 and CR2 of mitogenome which is analogous to the A + T enriched region hairpin structure (the terminator region because of their ability to form a stable chain replication termination were found in both CRs. The ratio of AT was 73.76, 71.43, and 73.41%, respectively (Table 1), and the ratio of AT was 66.10, 66.37, and 65.75%, respectively (Table 2, Supplementary Tables S1, S2). The lengths of CR1 in the three Garra mitogenomes were 938, 901, and 914 bp (Table 1), and the ratio of AT was 73.76, 71.43, and 73.41%, respectively (Table 2, Supplementary Tables S1, S2). The palindromic sequence motifs “TACAT” and “ATGTA” related to heavy chain replication termination were found in both CRs. The “TACAT” and “ATGTA” motifs are generally referred to as the terminator region because of their ability to form a stable hairpin structure (Figure 4, in the red box). Six Garra CRs were compared to probe the conservation of sequences. The results revealed 12 conserved blocks in Figure 4 (In the yellow box). As far as we know, this is the first report of a study reporting conserved blocks of the CR in Garra mitogenomes.

Gene Rearrangement

By comparing the structure of the mitochondrial genomes of other vertebrates (Kim et al., 2004), we found that the mitochondrial genomes of the three Garra species had undergone partial recombination of genes. The two genes that changed position in the mitochondrial genome of these three Garra species were tRNA-Pro and CR. In general, the tRNA-Pro was positioned between the tRNA-Thr and CR, and only one CR region was positioned at the end of the mitogenome. However, the position of tRNA-Pro in the mitochondrial genome of these three Garra species changed, and a CR was copied (Figure 5). In this study, the gene sequences were identical to those of the vertebrate mitochondrial genome, except for the tRNA-Pro translocation and CR repeats.

To better characterize the mechanics of gene rearrangement that occur in the Garra mitochondrial genome, we have explored this in-depth. Several models have been proposed for the mechanism of rearrangement of the mitochondrial genome (Poulton et al., 1993; Arndt and Smith, 1998; Lavrov et al., 2002; Shi et al., 2014). The recombination model is only appropriate for the exchange and inversion of small fragments (Dowton and Campbell, 2001; Kong et al., 2009); thus, this recombination model was not suited to explaining the mitochondrial gene rearrangement of Garra. Regarding the two models, TDNL and DRRL, they are often used to explain mitochondrial gene rearrangements, but with genes aggregated in the same pole (encoded by the L- or H-strand) and with no change in relative order. Therefore, neither model can be used to explain the rearrangement mechanism that occurred in this study. The TDRL model was due to incomplete deletion of duplicated genes resulting in intergenic spacer regions or pseudogenes (Shi et al., 2015; Gong et al., 2019). This TDRL phenotype explains well the gene rearrangements with redundant genes. Evidence for the TDRL model was the presence of pseudogenes or duplicate genes and the location of gene spacer regions. Therefore, in the present study, the TDRL model was recommended to study rearrangement events, as gene rearrangements with duplicate CRs were observed in the mitochondrial genome of Garra.
TABLE 3 | List of 61 Labeoninae species and two outgroups used in this paper.

Organism	Family	Subfamily	Genus	Length	Accession NO.
Bangana decora	Cyprinidae	Labeoninae	Bangana	16607	NC_026221
Bengana rendahlí	Cyprinidae	Labeoninae	Bengana	16586	NC_028169
Cincluso cyprinos	Cyprinidae	Labeoninae	Cinclus	16588	NC_033964
Cincluso myrials	Cyprinidae	Labeoninae	Cinclus	16600	NC_017611
Crossocichla atrilmes	Cyprinidae	Labeoninae	Crossochelus	16596	NC_029947
Crossocichla langei	Cyprinidae	Labeoninae	Crossochelus	16569	NC_029433
Crossocichla reticulatus	Cyprinidae	Labeoninae	Crossochelus	16588	NC_031624
Crossocichla siamensis	Cyprinidae	Labeoninae	Crossochelus	16611	NC_031827
Descogobio laticeps	Cyprinidae	Labeoninae	Descogobio	16596	NC_045918
Descogobio longibarbatius	Cyprinidae	Labeoninae	Descogobio	16594	NC_036301
Descogobio macrophyssalidos	Cyprinidae	Labeoninae	Descogobio	16593	NC_035299
Descogobio tetrabarbatius	Cyprinidae	Labeoninae	Descogobio	16596	NC_032457
Descogobio yunnanensis	Cyprinidae	Labeoninae	Descogobio	16602	NC_025319
Garra congoensis	Cyprinidae	Labeoninae	Garra	16781	NC_021535
Garra dengba	Cyprinidae	Labeoninae	Garra	16796	OL826794
Garra flavatra	Cyprinidae	Labeoninae	Garra	16743	NC_022953
Garra imberba	Cyprinidae	Labeoninae	Garra	16600	NC_025662
Garra kempí	Cyprinidae	Labeoninae	Garra	17104	NC_028426
Garra motocensis	Cyprinidae	Labeoninae	Garra	16806	OK375462
Garra orientalis	Cyprinidae	Labeoninae	Garra	17288	NC_021935
Garra pingi pingi	Cyprinidae	Labeoninae	Garra	16599	MF958973
Garra poecilura	Cyprinidae	Labeoninae	Garra	16978	NC_031628
Garra qiaojensis	Cyprinidae	Labeoninae	Garra	17096	NC_028403
Garra rufa	Cyprinidae	Labeoninae	Garra	16783	NC_022941
Garra salveenaica	Cyprinidae	Labeoninae	Garra	16960	NC_033389
Garra sploita	Cyprinidae	Labeoninae	Garra	16822	NC_022944
Garra tibetana	Cyprinidae	Labeoninae	Garra	16861	NC_045032
Garra yaiangensis	Cyprinidae	Labeoninae	Garra	16835	OL826795
Henicorhynchus lineatus	Cyprinidae	Labeoninae	Henicorhynchus	16825	NC_022950
Henicorhynchus siamensis	Cyprinidae	Labeoninae	Henicorhynchus	17010	NC_031623
Labeo alvirens	Cyprinidae	Labeoninae	Labeo	16603	NC_029444
Labeo angra	Cyprinidae	Labeoninae	Labeo	16606	NC_022945
Labeo batesi	Cyprinidae	Labeoninae	Labeo	16603	NC_038656
Labeo calbasu	Cyprinidae	Labeoninae	Labeo	16607	AP012143
Labeo cafa	Cyprinidae	Labeoninae	Labeo	16590	NC_016892
Labeo chrysophedion	Cyprinidae	Labeoninae	Labeo	16602	NC_022942
Labeo cyclophus	Cyprinidae	Labeoninae	Labeo	16610	NC_022949
Labeo cylindrical	Cyprinidae	Labeoninae	Labeo	16602	NC_031536
Labeo dussumieri	Cyprinidae	Labeoninae	Labeo	16613	NC_031622
Labeo filiatus	Cyprinidae	Labeoninae	Labeo	16614	NC_026217
Labeo goniuz	Cyprinidae	Labeoninae	Labeo	16614	NC_028786
Labeo linea	Cyprinidae	Labeoninae	Labeo	16606	NC_022966
Labeo nasus	Cyprinidae	Labeoninae	Labeo	16601	NC_029449
Labeo pierrei	Cyprinidae	Labeoninae	Labeo	16786	NC_022943
Labeo rohita	Cyprinidae	Labeoninae	Labeo	16626	NC_017606
Labeo senegalensis	Cyprinidae	Labeoninae	Labeo	16604	NC_028657
Labiobarbus leptochelus	Cyprinidae	Labeoninae	Labiobarbus	16593	NC_022954
Labiobarbus lineatus	Cyprinidae	Labeoninae	Labiobarbus	16598	NC_022955
Labiobarbus ocellatus	Cyprinidae	Labeoninae	Labiobarbus	16596	NC_022947
Labiobarbus spilopleura	Cyprinidae	Labeoninae	Labiobarbus	16593	NC_031533
Osteochilus pentinalaeus	Cyprinidae	Labeoninae	Osteochilus	16563	NC_031625
Osteochilus salisburyi	Cyprinidae	Labeoninae	Osteochilus	16599	NC_021385
Osteochilus schlegelli	Cyprinidae	Labeoninae	Osteochilus	16575	NC_022851
Paraspinelaboe assimilis	Cyprinidae	Labeoninae	Paraspinelaboe	16602	NC_025947
Paraspinelaboe longicorpus	Cyprinidae	Labeoninae	Paraspinelaboe	16596	NC_035692
Ptychidio iordani	Cyprinidae	Labeoninae	Ptychidio	16602	NC_024294
Ptychidio macrops	Cyprinidae	Labeoninae	Ptychidio	16604	MF457481
Sahyadria chalakudakensis	Cyprinidae	Labeoninae	Sahyadria	16899	NC_018566
Sahyadria denisoni	Cyprinidae	Labeoninae	Sahyadria	16899	NC_021973
Semilaboe notabilis	Cyprinidae	Labeoninae	Semilaboe	16599	NC_045916
Semilaboe obscurus	Cyprinidae	Labeoninae	Semilaboe	16598	NC_037408
Thynnichthys polylepis	Cyprinidae	Labeoninae	Thynnichthys	16599	NC_022962
Thynnichthys thynnoides	Cyprinidae	Labeoninae	Thynnichthys	16599	NC_021609
Based on the putative model described above, we inferred the regions of mitochondrial gene rearrangement in three *Garra* species. First, normal mitochondrial gene blocks (T-P-CR) form gene blocks (T-P-CR-T-P-CR) after complete duplication (Figure 5A). Subsequently, after successive replications, some genes (T and P) undergo random loss events, leaving only an incompletely replicated CR (Figure 5B). Thus, after this replication and random loss, both CRs are preserved (Figure 5C).

Phylogenetic Analysis

To further study the evolutionary status of *G. dengba*, *G. tibetana*, and *G. yajiangensis* in the Labeoninae, we selected 58 closely related subfamilies and two outgroups (*Sahyadria chalakkudiensis* and *Sahyadria denisonii*) to construct evolutionary trees (BI and ML) to analyze phylogenetic relationships (Table 3). The results showed that the ML tree and the BI tree have the same topological structure. Thus, only one topology (BI) is displayed. In addition, the support values of
BI tree are higher than ML tree (Figure 6). The phylogenetic trees showed that the subfamily Labeoninae is divided into three major clades and 13 genera (Cirrhinus, Labeo, Henicorhynchus, Crossocheilus, Thynnichthys, Osteochilus, Labiobarbus, Garra, Bangana, Discogobio Parasiniplateo, Semilabeo, Psychiodio). First, the clade1, genera Cirrhinus, and Labeo show a sister relationship, both of them were once classified in the genus Labeonini (Yang et al., 2012). Then, the clade2, including Henicorhynchus, Crossocheilus, Thynnichthys, Osteochilus, and Labiobarbus, which belonged to “Osteochilini” (Saenjundaeng et al., 2020). The clade3 aggregates all mitochondrial genes with rearrangements in the genus Garra. Except for Bangana and Garra2, all other species of the fourth clade used to belong to the genus Semilabeonini (Stout et al., 2016). The genus Bangana belonged to the cyprinid tribe Labeonini too (Zhang and Chen, 2006; Kottelat, 2017).

In addition, four clades in this phylogenetic tree show high support values except for the value between clade3 and clade4 (posterior probabilities = 0.62; bootstrap = 3.8; Figure 6), indicating that these two clades in Labeoninae are not highly differentiated. All mitochondrial sequences of genus Garra in clade3 have two control regions (Figure 5C) (Li et al., 2016; Su et al., 2015; Xiong et al., 2016; Li et al., 2016), while G. pindi pindi and G. imberba have only one control region and clusters with other Labeoninae species in clade4 without rearrangements, which is consistent with previous studies (Figure 5A) (Zou et al., 2018). Furthermore, each of the 13 different Garra fishes in clade3 clustered into six pairs of sister branches, with only G. spiota forming a monophyletic branch. The three species from Tibet described in this study (species marked by dots in the tree), G. tibetana and G. dengba, form sister branches, showing the close relationship between them. G. yajiangensis and G. kempi cluster together, while G. qiaojensisi showed a close relationship with G. kempi in Zou et al. (2018)’s study, which may be limited by the number of mitochondria in Garra (Zou et al., 2018). It is certain that Garra1 and Garra2 are distantly related due to the rearrangement of mitochondria in Garra1 species, whereas Garra2 species are not rearranged. Thus, we also found that the species of Garra2 are all from Sichuan (He et al., 2016; Zou et al., 2018), and we speculated that none mitochondria of Garra in this region have two control regions or other rearrangements. However, due to the lack of Garra samples from Sichuan, further sample collection is needed to confirm this conjecture.

CONCLUSION

With the development of genetic investigations, the reliance on molecular info is gradually surpassing morphological data, and molecular assays have become the most used method in the study of biological system development. Therefore, in this study, we sequenced and assembled the complete mitochondrial gene of G. dengba, G. tibetana, and G. yajiangensis and determined its characteristics, which contains 37 genes and two control regions. Upon comparison with typical vertebrate mitochondrial genes, we discovered a clear rearrangement of mitochondrial genes in G. dengba, G. tibetana, and G. yajiangensis, the position of tRNA-Pro in the mitochondrial genome of these three Garra species changed, accompanied by CR repeat. The TDRL model is most suitable to explain the gene rearrangements with redundant genes in this study. The two phylogenetic trees (BI and ML) were generated based on the mitochondrial genomes of 61 Labeoninae. Both phylogenetic trees strongly favor the non-monophyly of Garra, which were divided into two different clades (rearrangement and no rearrangement), providing a more advanced classification of Labeoninae. Further, our findings provide a theoretical ground for a deeper understanding of the mechanism and evolution of genus Garra gene rearrangement and phylogenetic studies of Labeoninae.

DATA AVAILABILITY STATEMENT

The raw data is publicly accessible at GenBank under Bioproject accession number PRJNA837076 and the annotation sequences were submitted to NCBI (G. dengba, accession no. OL826794; G. tibetana accession no. NC_045032 and G. yajiangensis, accession no. OL826795).

ETHICS STATEMENT

The animal study was reviewed and approved by the Zhejiang Ocean University.

AUTHOR CONTRIBUTIONS

CZ, KZ, and BL conceived and designed research. CZ, KZ, YP, JZ, YL, and BL conducted experiments, analyzed data, and wrote the manuscript. The authors critically reviewed and approved the manuscript.

FUNDING

The study was supported by the Foreign Experts scientific research project in Tibet of China [2020WZ007]; Science and Technology Project of Zhoushan (2020C21016); Zhejiang Provincial Natural Science Foundation of China (LY22D060001&LY20C190008); National Natural Science Foundation of China (NSFC) (NO.41806156); Fund of Guangdong Provincial Key Laboratory of Fishery Ecology and Environment (FEEL-2021-8); Open Foundation from Marine Sciences in the First-Class Subjects of Zhejiang (2020Z201, 20200202).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2022.922634/full#supplementary-material
REFERENCES

Arndt, A., and Smith, M. J. (1998). Mitochondrial Gene Rearrangement in the Sea Cucumber Genus Cucumaria. Mol. Biol. Evol. 15 (8), 1009–1016. doi:10.1093/oxfordjournals.molbev.a025999

Bibb, M. J., Van Eten, R. A., Wright, C. T., Walberg, M. W., and Clayton, D. A. (1981). Sequence and Gene Organization of Mouse Mitochondrial DNA. Cell. 26, 167–180. doi:10.1016/0092-8674(81)90300-7

Boore, J. L. (1999). Animal Mitochondrial Genomes. Nucleic Acids Res. 27 (8), 1767–1780. doi:10.1093/nar/27.8.1767

Brown, W. M., George, M., and Wilson, A. C. (1979). Rapid Evolution of Animal Mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 76, 1967–1971. doi:10.1073/pnas.76.12.11497

Cantatore, P., Gadaleta, M. N., Roberti, M., Saccone, C., and Wilson, A. C. (1987). Duplication and Remoulding of tRNA Genes during the Evolutionary Rearrangement of Mitochondrial Genomes. Nature 329 (6142), 853–855. doi:10.1038/329853a0

Catanese, G., Manchado, M., and Infante, C. (2010). Evolutionary Relatedness of Mackeels of the Genus Scomber Based on Complete Mitochondrial Genomes: Strong Support to the Recognition of Atlantic Scomber Colias and Pacific Scomber japonicus as Distinct Species. Gene 452 (1), 35–43. doi:10.1016/j.gene.2009.12.004

Chan, P. P., Lin, B. Y., Mak, A. J., and Lowe, T. M. (2021). tRNASCANE-2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Res. 49 (16), 9077–9096. doi:10.1093/nar/gkaa688

Cheng, J., Ma, G.-q., Miao, Z.-q., Shui, B.-n., and Gao, T.-x. (2012). Complete Mitochondrial Genome of the Triops cancriformis. Acta Academiae Geologicae Henanensis. 31 (2), 83–88. doi:10.13435/j.cnki.issn1002-0154.2012.01.015

Diercksens, N., Mardulyn, P., and Smits, G. (2016). NOVOPlasty: De Novo Assembly of Organelle Genomes from Whole Genome Data. Mol. Phylogenet Evol. 92, 26–36. doi:10.1016/j.ympev.2015.08.011

Galtier, N., Nabholz, B., Glémin, S., and Hurst, G. D. D. (2009). Mitochondrial DNA Rearrangements Originated within the Eels. Mol. Phylogenet Evol. 15 (8), 1009–1016. doi:10.1016/j.ympev.2008.11.003

Greiner, S., Lehwark, P., and Bock, R. (2019). OrganellarGenomeDRAW (OGDRAW) Version 1.3.1: Expanded Toolkit for the Graphical Visualization of Organellar Genomes. Nucleic Acids Res. 47 (W1), W59–W64. doi:10.1093/nkx238

Groves, P., and Shields, G. F. (1996). Phylogenetics of the Caprinae Based on Cytochrome B Sequence. Mol. Phylogenet Evol. 5 (3), 467–476. doi:10.1006/mpve.1996.0043

Guindon, S., Dufayard, J.-F., Letof, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 59 (3), 307–321. doi:10.1093/sysbio/syq010

He, B., Lai, J., Liu, Y., Zhou, J., Chen, Y., and Liu, G. (2016). The Complete Mitochondrial Genome of Garra Imberba (Teleostei, Cyprinidae, Garra). Mitochondrial DNA A DNA Mapp. Seq. Anal. 27 (3), 1646–1647. doi:10.1080/19401736.2015.985710

Howes, G., Winfield, I., and Nelson, J. (1991). Cyprinid Fishes: Systematics, Biology and Exploitation. New Delhi: Chapman & Hall.

Inoue, J. G., Miyla, M., Tsukamoto, K., and Nishida, M. (2003). Evolution of the Deep-Sea Gulper Ed Mitochondrial Genomes: Large-Scale Gene Rearrangements Originated within the Eels. Mol. Phylogenet Evol. 11, 11. doi:10.1016/320903/molbev9206

Jiang, J., Castoe, T. A., Austin, C. C., Burbrink, F. T., Herron, M. D., McGuire, J. A., et al. (2007). Comparative Mitochondrial Genomics of Snakes: Extraterritorial Substitution Rate Dynamics and Functionality of the Duplicate Control Region. BMC Evol. Biol. 7 (1), 123. doi:10.1186/1471-2148-7-123

Kalyaanamoorthy, S., Miny, B. Q., Wong, T. K. F., von Hasele, A., and Jerumi, L. S. (2017). ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 14 (6), 587–589. doi:10.1038/nmeth.4285

Kerpelj, P., Hammer, S., and Hofacker, I. L. (2015). Forna (Force-directed RNA): Simple and Effective Online RNA Secondary Structure Diagrams. Bioinformatics 31 (20), 3377–3379. doi:10.1093/bioinformatics/btv572

Kim, I.-C., Kweon, H.-S., Kim, Y. J., Kim, C.-B., Gye, M. C., Lee, W.-O., et al. (2004). The complete mitochondrial genome of the javeline goby Acanthogobioides hasta (Perciformes, Gobiidae) and phylogenetic considerations. Gene 336 (2), 147–153. doi:10.1016/j.gene.2004.04.009

Kong, X., Dong, X., Zhang, Y., Shi, W., Wang, Z., and Yu, Z. (2009). A Novel Rearrangement in the Mitochondrial Genome of Tongue Sole Cygnoglossus Semilaevis: Control Region Translocation and a tRNA Gene Inversion. Genome 52 (12), 975–984. doi:10.1139/g09-069

Kottelat, M. (2017). Speolabeo, a New Genus Name for the Cave Fish Bangana musaei (Teleostei: Cyprinidae). Zootaxa 4254 (4), 493–499. doi:10.11646/2785.44.6.5

Kullander, S. O., and Fang, F. (2004). New Seven Species of Garra (Cyprinidae: Cyprininae) from the Rakhine Yoma, Southern Myanmar. Ichthyological Explor. Freshwaters 15, 257–278.

Kumar, S., Steger, G. L., Mi, X., Knysz, C., and Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35 (6), 1547–1549. doi:10.1093/molbev/msy096

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X Version 2.0. Trends Ecol. Evol. 22 (22), 836–840. doi:10.1016/j.tree.2007.06.012

Letunic, I., and Bork, P. (2021). Interactive Tree of Life (iTOL) V5: an Online Tool for Phylogenetic Tree Display and Annotation. Nucleic acids Res. 49 (1), 295–304. doi:10.1093/nar/gkaa128

Liu, J., Yu, J., Zhou, M., and Yang, J. (2019). Complete Mitochondrial Genome of Japalura flaviceps: Deep Insights into the Phylogeny and Gene Rearrangements
Zhang et al. Novel Rearrangement in Garra Mitogenome

of Agamidae Species. Int. J. Biol. Macromol. 125, 423–431. doi:10.1016/j.ijbiomac.2018.12.068

Liu, Q.-N., Zhu, B.-J., Dai, L.-S., and Liu, C.-L. (2013). The Complete Mitogenome of Bombymysis stratai Dazao (Lepidoptera: Bombycidae) and Comparison with Other Lepidopteran Insects. Genomics 101 (1), 64–73. doi:10.1016/j.ygeno.2012.10.002

Liu, Y., Wu, P.-D., Zhang, D.-Z., Zhang, H.-B., Tang, B.-P., Liu, Q.-N., et al. (2019). Mitochondrial Genome of the Yellow Catfish Pelteobagrus fulvidraco and Insights into Bagridae Phylogenetics. Genomics 111 (6), 1258–1265. doi:10.1016/j.ygeno.2018.08.005

Lü, Z., Zhu, K., Jiang, H., Lu, X., Lu, B., Ye, Y., et al. (2019). Complete Mitochondrial Genome of Ophiichthys Breviceadatus Reveals Novel Gene Order and Phylogenetic Relationships of Anguilliformes. Int. J. Biol. Macromol. 135, 669–618. doi:10.1016/j.ijbiomac.2019.05.139

Lunt, D. H., and Hyman, B. C. (1997). Animal Mitochondrial DNA

Roe, B. A., Ma, D. P., Wilson, R. K., and Wong, J. F. (1985). The Complete Mitochondrial Genome of Ophichthus Brevicaudatus Reveals Novel Gene Orders and the Role of Light-Strand Replication in Rearrangement of the Vertebrate Mitochondrial Genome. Mol. Genet. 260 (17), 9759–9774. doi:10.1002/jmg.2151739035-1

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Syst. Biol. 61 (3), 539–542. doi:10.1093/sysbio/sys029

Saenjundapong, P., Supiwong, W., Sassi, F. M. C., Bertollo, L. A. C., Rab, P., Kretschmer, R., et al. (2020). Chromosomes of Asian Cyprinid Fishes: Variable Karyotype Patterns and Evolutionary Trends in the Genus Osteochilus (Cyprinidae, Labeoninae, "Osteochilini"). Genet. Mol. Biol. 43, e20200195. doi:10.1590/1678-4685-GMB-2020-0195

Shi, W., Dong, X.-L., Wang, Z.-M., Miao, X.-G., Wang, S.-Y., and Kong, X.-Y. (2013). Complete Mitogenome Sequences of Four Flatfishes (Pleuronectiformes) Reveal a Novel Gene Arrangement of L-Strand Coding Genes. BMC Evol. Biol. 13 (1), 173. doi:10.1186/1471-2148-13-173

Shi, W., Gong, L., Wang, S.-Y., Miao, X.-G., and Kong, X.-Y. (2015). Tandem Duplication and Random Loss for Mitogenome Rearrangement in Symphurus (Teleostei: Pleuronectiformes). BMC Genomics 16 (1), 355. doi:10.1186/s12864-015-1581-6

Shi, W., Miao, X.-G., and Kong, X.-Y. (2014). A Novel Model of Double Replications and Random Loss Accounts for Rearrangements in the Mitogenome of Samariscus Latus (Teleostei: Pleuronectiformes). BMC Genomics 15 (1), 352. doi:10.1186/1471-2164-15-352

Staats, M. J., and Getahun, A. (2007). An Overview of Labeonin Relationships and the Phylogenetic Placement of the Afro-Asian Genus Garra Hamilton, 1922 (Teleostei: Cyprinidae), with the Description of Five New Species of Garra from Ethiopia, and a Key to All African Species. Zoological J. Linn. Soc. 150 (1), 41–83. doi:10.1111/j.1096-3642.2007.00281.x

Stout, C. C., Tan, M., Lemmon, A. R., Lemmon, E. M., and Armbuster, J. W. (2016). Resolving Cypriniformes Relationships Using an Anchored Enrichment Approach. BMC Evol. Biol. 16 (1), 244–257. doi:10.1186/s12862-016-0189-5

Su, L.-W., Liu, Z.-Z., Ueng, Y.-T., Tang, W.-Q., Bao, B.-L., Liu, D., et al. (2015). The Complete Mitogenome of the Oriental Sucking Barb Garra orientalis(Cypriniformes, Cyprinidae): Repetitive Sequences in the Control Region. Mitochondrial DNA 26 (2), 273–273. doi:10.1080/19401736.2013.823178

Talavera, G., and Castresana, J. (2007). Improvement of Phylogenies after Removing Divergent and Ambiguously Aligned Blocks from Protein Sequence Alignments. Syst. Biol. 56 (4), 564–577. doi:10.1080/1063515071427164

Wang, Z., Wang, Z., Shi, X., Wu, Q., Tao, Y., Guo, H., et al. (2018). Complete Mitochondrial Genome of Parasesarma Affine (Brachyura: Sesarmidae): Gene Rearrangements in Sesarmidae and Phylogenetic Analysis of the Brachyura. Int. J. Biol. Macromol. 118, 31–40. doi:10.1016/j.ijbiomac.2018.06.056

Winfield, I. J., and Nelson, J. S. (2012). Cyprinid Fishes: Systematics, Biology and Exploitation. 3. Springer Science & Business Media

Xia, X. (2018). DAMBE7: New and Improved Tools for Data Analysis in Molecular Biology and Evolution. Mol. Biol. Evol. 35 (6), 1550–1552. doi:10.1093/molbev/msy073

Xiong, H., Chen, W., Gan, X., and Wang, X. (2016). Complete Sequence and Rearrangement of the Mitochondrial Genome of Garra qiaojiensis(Cypriniformes: Cyprinidae). Mitochondrial DNA 27 (1), 36–37. doi:10.3109/19401736.2013.806962

Yang, L., and Mayden, R. L. (2010). Phylogenetic Relationships, Subdivision, and Biogeography of the Cyprinid Tribe Laboeini (Teleostei: Cyprinidae). Mol. Phylogenetics Evol. 65 (2), 362–379. doi:10.1016/j.ympev.2012.06.007

Yang, L., and Mayden, R. L. (2010). Phylogenetic Relationships, Subdivision, and Biogeography of the Cyprinid Tribe Laboeini (Sensu Rainboth, 1991) (Teleostei: Cypriniformes), with Comments on the Implications of Lips and Associated Structures in the Laboeini Classification. Mol. Phylogenetics Evol. 54 (1), 254–265. doi:10.1016/j.ympev.2009.09.027

Yuan, L.-Y., Zhang, E., and Huang, Y.-F. (2008). Revision of the Laboeine Genus Sinocrossocheilus (Teleostei: Cyprinidae) from South China. Zootaxa 1809 (1), 36–48. doi:10.11646/zootaxa.1809.1.2

Zhang, C., Wang, W., Zhou, J., Chen, M., and Han, X. (2020). The Complete Mitochondrial Genome of the Garra Tibetana (Cypriniformes: Cyprinidae). Mitochondrial DNA Part B 5 (2), 1737–1738. doi:10.1080/23820359.2020.1748537

Zhang, E., and Chen, Y.-Y. (2004). Qianlabeo Striatus, a New Genus and Species of Cyprinidae (Teleostei: Cyprinidae). Genet. Mol. Biol. 27 (1), 36–41. doi:10.1590/S1415-47572004000100007

Zhang, E., and Chen, Y.-Y. (2004). Qianlabeo Striatus, a New Genus and Species of Cyprinidae (Teleostei: Cyprinidae). Genet. Mol. Biol. 27 (1), 36–41. doi:10.1590/S1415-47572004000100007

Zhou, Y.-H., Zheng, Q., and Chen, W.-Q. (2018). The Complete Mitochondrial Genome of the Pearl Mullet (Lepisosteus platyrhincus, Teleostei: Lepisosteidae) from China. Genomics Data 21, 108–111. doi:10.1016/j.gd.2018.06.020
Zhang, E., and Fang, F. (2005). Linichthys: a New Genus of Chinese Cyprinid Fishes (Teleostei: Cypriniformes). *Copeia* 2005 (1), 61–67. doi:10.1643/ct-03-250r2

Zhang, E., Qiang, X., and Lan, J.-H. (2008). Description of a New Genus and Two New Species of Labeonine Fishes from South China (Teleostei: Cyprinidae). *Zootaxa* 1682 (1), 33–44. doi:10.11646/zootaxa.1682.1.3

Zhang, K., Liu, Y., Chen, J., Zhang, H., Gong, L., Jiang, L., et al. (2021). Characterization of the Complete Mitochondrial Genome of Macrotocinclus Affinis (Siluriformes; Loricariidae) and Phylogenetic Studies of Siluriformes. *Mol. Biol. Rep.* 48 (1), 677–689. doi:10.1007/s11033-020-06120-z

Zhang, K., Zhu, K., Liu, Y., Zhang, H., Gong, L., Jiang, L., et al. (2021). Novel Gene Rearrangement in the Mitochondrial Genome of *Muraenesox cinereus* and the Phylogenetic Relationship of Anguilliformes. *Sci. Rep.* 11 (1), 2411. doi:10.1038/s41598-021-81622-9

Zhang, L.-P., Cai, Y.-Y., Yu, D.-N., Storey, K. B., and Zhang, J.-Y. (2018). Gene Characteristics of the Complete Mitochondrial Genomes of *Paratoxodera Polyacantha* and *Toxodera Hauseri* (Mantodea: Toxoderidae). *PeerJ* 6, e4595. doi:10.7717/peerj.4595

Zhang, Y., Gao, Y., Gong, L., Lu, X., Jiang, L., Liu, B., et al. (2021). Mitochondrial Genome of Episesarma Lafondii (Brachyura: Sesarmidae) and Comparison with Other Sesarmid Crabs. *J. Ocean. Univ. China* 20 (6), 1545–1556. doi:10.1007/s11802-021-4779-z

Zou, Y.-C., Chen, M., Qin, C.-J., Wang, Y.-M., Li, R., Qi, Z.-M., et al. (2018). Identification of the Complete Mitochondrial Genome of Garra Pingi Pingi (Cypriniformes, Cyprinidae). *Conserv. Genet. Resour.* 10 (4), 693–696. doi:10.1007/s12686-017-0903-1

Zuker, M. (2003). Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. *Nucleic Acids Res.* 31 (13), 3406–3415. doi:10.1093/nar/gkg595

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Zhang, Zhang, Peng, Zhou, Liu and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.