BOTANY OF IRREDUCIBLE AUTOMORPHISMS OF FREE GROUPS

THIERRY COULBOIS, ARNAUD HILION

Abstract. We give a classification of iwip outer automorphisms of the free group, by discussing the properties of their attracting and repelling trees.

1. Introduction

An outer automorphism Φ of the free group F_N is fully irreducible (abbreviated as iwip) if no positive power Φ^n fixes a proper free factor of F_N. Being an iwip is one (in fact the most important) of the analogs for free groups of being pseudo-Anosov for mapping classes of hyperbolic surfaces. Another analog of pseudo-Anosov is the notion of an atoroidal automorphism: an element $\Phi \in \text{Out}(F_N)$ is atoroidal or hyperbolic if no positive power Φ^n fixes a nontrivial conjugacy class. Bestvina and Feighn [BF92] and Brinkmann [Bri00] proved that Φ is atoroidal if and only if the mapping torus $F_N \rtimes_{\Phi} \mathbb{Z}$ is Gromov-hyperbolic.

Pseudo-Anosov mapping classes are known to be “generic” elements of the mapping class group (in various senses). Rivin [Riv08] and Sisto [Sis11] recently proved that, in the sense of random walks, generic elements of $\text{Out}(F_N)$ are atoroidal iwip automorphisms.

Bestvina and Handel [BH92] proved that iwip automorphisms have the key property of being represented by (absolute) train-track maps.

A pseudo-Anosov element f fixes two projective classes of measured foliations $[(\mathcal{F}^+, \mu^+)]$ and $[(\mathcal{F}^-, \mu^-)]$:

$$(\mathcal{F}^+, \mu^+) \cdot f = (\mathcal{F}^+, \lambda \mu^+) \quad \text{and} \quad (\mathcal{F}^-, \mu^-) \cdot f = (\mathcal{F}^-, \lambda^{-1} \mu^-)$$

where $\lambda > 1$ is the expansion factor of f. Alternatively, considering the dual \mathbb{R}-trees T^+ and T^-, we get:

$$T^+ \cdot f = \lambda T^+ \quad \text{and} \quad T^- \cdot f = \lambda^{-1} T^-.$$

We now discuss the analogous situation for iwip automorphisms. The group of outer automorphisms $\text{Out}(F_N)$ acts on the outer space \mathcal{CV}_N and its boundary $\partial \mathcal{CV}_N$. Recall that the compactified outer space $\overline{\mathcal{CV}_N} = \mathcal{CV}_N \cup \partial \mathcal{CV}_N$ is made up of (projective classes of) \mathbb{R}-trees with an action of F_N by isometries which is minimal and very small. See [Vog02] for a survey on outer space. An iwip outer automorphism Φ has North-South dynamics on $\overline{\mathcal{CV}_N}$: it has a unique attracting fixed tree $[T_\Phi]$ and a unique repelling fixed tree $[T_{\Phi^{-1}}]$ in the boundary of outer space (see [LL03]):

$$T_\Phi \cdot \Phi = \lambda_\Phi T_\Phi \quad \text{and} \quad T_{\Phi^{-1}} \cdot \Phi = \frac{1}{\lambda_{\Phi^{-1}}} T_{\Phi^{-1}},$$

where $\lambda_\Phi > 1$ is the expansion factor of Φ (i.e. the exponential growth rate of non-periodic conjugacy classes).
Contrary to the pseudo-Anosov setting, the expansion factor λ_Φ of Φ is typically different from the expansion factor $\lambda_{\Phi^{-1}}$ of Φ^{-1}. More generally, qualitative properties of the fixed trees T_Φ and $T_{\Phi^{-1}}$ can be fairly different. This is the purpose of this paper to discuss and compare the properties of Φ, T_Φ and $T_{\Phi^{-1}}$.

First, the free group, F_N, may be realized as the fundamental group of a surface S with boundary. It is part of folklore that, if Φ comes from a pseudo-Anosov mapping class on S, then its limit trees T_Φ and $T_{\Phi^{-1}}$ live in the Thurston boundary of Teichmüller space: they are dual to a measured foliation on the surface. Such trees T_Φ and $T_{\Phi^{-1}}$ are called surface trees and such an iwip outer automorphism Φ is called geometric (in this case S has exactly one boundary component).

The notion of surface trees has been generalized (see for instance [Bes02]). An \mathbb{R}-tree which is transverse to measured foliations on a finite CW-complex is called geometric. It may fail to be a surface tree if the complex fails to be a surface.

If Φ does not come from a pseudo-Anosov mapping class and if T_Φ is geometric then Φ is called parageometric. For a parageometric iwip Φ, Guirardel [Gui05] and Handel and Mosher [HM07] proved that the repelling tree $T_{\Phi^{-1}}$ is not geometric. So we have that, Φ comes from a pseudo-Anosov mapping class on a surface with boundary if and only if both trees T_Φ and $T_{\Phi^{-1}}$ are geometric. Moreover in this case both trees are indeed surface trees.

In our paper [CH10] we introduced a second dichotomy for trees in the boundary of Outer space with dense orbits. For a tree T, we consider its limit set $\Omega \subseteq \overline{T}$ (where \overline{T} is the metric completion of T). The limit set Ω consists of points of \overline{T} with at least two pre-images by the map $Q : \partial F_N \to \overline{T} = \overline{T} \cup \partial T$ introduced by Levitt and Lustig [LL03], see Section 4A. We are interested in the two extremal cases: A tree T in the boundary of Outer space with dense orbits is of surface type if $T \subseteq \Omega$ and T is of Levitt type if Ω is totally disconnected. As the terminology suggests, a surface tree is of surface type. Trees of Levitt type where discovered by Levitt [Lev93].

Combining together the two sets of properties, we introduced in [CH10] the following definitions. A tree T in ∂CV_N with dense orbits is

- a surface tree if it is both geometric and of surface type;
- Levitt if it is geometric and of Levitt type;
- pseudo-surface if it is not geometric and of surface type;
- pseudo-Levitt if it is not geometric and of Levitt type.

The following Theorem is the main result of this paper.

Theorem 5.2. Let Φ be an iwip outer automorphism of F_N. Let T_Φ and $T_{\Phi^{-1}}$ be its attracting and repelling trees. Then exactly one of the following occurs

1. The trees T_Φ and $T_{\Phi^{-1}}$ are surface trees. Equivalently Φ is geometric.
2. The tree T_Φ is Levitt (i.e. geometric and of Levitt type), and the tree $T_{\Phi^{-1}}$ is pseudo-surface (i.e. non-geometric and of surface type). Equivalently Φ is parageometric.
3. The tree $T_{\Phi^{-1}}$ is Levitt (i.e. geometric and of Levitt type), and the tree T_Φ is pseudo-surface (i.e. non-geometric and of surface type). Equivalently Φ^{-1} is parageometric.
4. The trees T_Φ and $T_{\Phi^{-1}}$ are pseudo-Levitt (non-geometric and of Levitt type).

Case (1) corresponds to toroidal iwips whereas cases (2), (3) and (4) corresponds to atoroidal iwips. In case (4) the automorphism Φ is called pseudo-Levitt.
Gaboriau, Jaeger, Levitt and Lustig [GJLL98] introduced the notion of an index $\text{ind}(\Phi)$, computed from the rank of the fixed subgroup and from the number of attracting fixed points of the automorphisms φ in the outer class Φ. Another index for a tree T in \overline{CV}_N has been defined and studied by Gaboriau and Levitt [GL95], we call it the geometric index $\text{ind}_{\text{geo}}(T)$. Finally in our paper [CH10] we introduced and studied the Q-index $\text{ind}_Q(T)$ of an \mathbb{R}-tree T in the boundary of outer space with dense orbits. The two indices $\text{ind}_{\text{geo}}(T)$ and $\text{ind}_Q(T)$ describe qualitative properties of the tree T [CH10]. We define these indices and recall our botanical classification of trees in Section 4A.

The key to prove Theorem 5.2 is:

Propositions 4.2 and 4.4. Let Φ be an iwip outer automorphism of F_N. Let T_Φ and $T_{\Phi^{-1}}$ be its attracting and repelling trees. Replacing Φ by a suitable power, we have

$$2 \text{ind}(\Phi) = \text{ind}_{\text{geo}}(T_\Phi) = \text{ind}_Q(T_{\Phi^{-1}}).$$

We prove this Proposition in Sections 4B and 4C.

To study limit trees of iwip automorphisms, we need to state that they have the strongest mixing dynamical property, which is called **indecomposability**.

Theorem 2.1. Let $\Phi \in \text{Out}(F_N)$ be an iwip outer automorphism. The attracting tree T_Φ of Φ is indecomposable.

The proof of this Theorem is quite independent of the rest of the paper and is the purpose of Section 2. The proof relies on a key property of iwip automorphisms: they can be represented by (absolute) train-track maps.

2. INDECOMPOSABILITY OF THE ATTRACTING TREE OF AN IWIP AUTOMORPHISM

Following Guirardel [Gui08], a (projective class of) \mathbb{R}-tree $T \in \overline{CV}_N$ is **indecomposable** if for all non degenerate arcs I and J in T, there exists finitely many elements u_1, \ldots, u_n in F_N such that

$$J \subseteq \bigcup_{i=1}^{n} u_i I$$

and

$$\forall i = 1, \ldots, n - 1, \quad u_i I \cap u_{i+1} I \text{ is a non degenerate arc.}$$

The main purpose of this Section is to prove

Theorem 2.1. Let $\Phi \in \text{Out}(F_N)$ be an iwip outer automorphism. The attracting tree T_Φ of Φ is indecomposable.

Before proving this Theorem in Section 2C, we collect the results we need from [BH92] and [GJLL98].

2A. Train-track representative of Φ.

The rose R_N is the graph with one vertex $*$ and N edges. Its fundamental group $\pi_1(R_N, *)$ is naturally identified with the free group F_N. A **marked graph** is a finite graph Γ with a homotopy equivalence $\tau : R_N \to \Gamma$. The marking τ induces an isomorphism $\tau_* : F_N = \pi_1(R_N, *) \xrightarrow{\cong} \pi_1(\Gamma, v_0)$, where $v_0 = \tau(*)$.

A homotopy equivalence $f : \Gamma \to \Gamma$ defines an outer automorphism of F_N. Indeed, if a path m from v_0 to $f(v_0)$ is given, $a \mapsto mf(a)m^{-1}$ induces an automorphism φ of $\pi_1(\Gamma, v_0)$,
and thus of F_N through the marking. Another path m' from v_0 to $f(v_0)$ gives rise to another automorphism φ' of F_N in the same outer class Φ.

A topological representative of $\Phi \in \text{Out}(F_N)$ is an homotopy equivalence $f : G \to G$ of a marked graph G, such that:

(i) f maps vertices to vertices,
(ii) f is locally injective on any edge,
(iii) f induces Φ on $F_N \cong \pi_1(G, v_0)$. Let e_1, \ldots, e_p be the edges of G (an orientation is arbitrarily given on each edge, and e^{-1} denotes the edge e with the reverse orientation). The transition matrix of the map f is the $p \times p$ non-negative matrix M with (i, j)-entry equal to the number of times the edge e_i occurs in $f(e_j)$ (we say that a path (or an edge) w of a graph G occurs in a path u of G if it is w or its inverse w^{-1} is a subpath of u).

A topological representative $f : G \to G$ of Φ is a train-track map if moreover:

(iv) for all $k \in \mathbb{N}$, the restriction of f^k on any edge of G is locally injective,
(v) any vertex of G has valence at least 3.

According to [BH92 Theorem 1.7], an iwip outer automorphism Φ can be represented by a train-track map, with a primitive transition matrix M (i.e. there exists some $k \in \mathbb{N}$ such all the entries of M^k are strictly positive). Thus the Perron-Frobenius Theorem applies. In particular, M has a real dominant eigenvalue $\lambda > 1$ associated to a strictly positive eigenvector $u = (u_1, \ldots, u_p)$. Indeed, λ is the expansion factor of Φ: $\lambda = \lambda_\Phi$. We turn the graph G to a metric space by assigning the length u_i to the edge e_i (for $i = 1, \ldots, p$). Since, with respect to this metric, the length of $f(e_i)$ is λ times the length of e_i, we can assume that, on each edge, f is linear of ratio λ.

We define the set $\mathcal{L}_2(f)$ of paths w of combinatorial length 2 (i.e. $w = ee'$, where e, e' are edges of G, $e^{-1} \neq e'$) which occurs in some $f^k(e_i)$ for some $k \in \mathbb{N}$ and some edge e_i of G:

$$\mathcal{L}_2(f) = \{ ee' : \exists e_i \text{ edge of } G, \exists k \in \mathbb{N} \text{ such that } ee' \text{ is a subpath of } f^k(e_i) \pm 1 \}.$$

Since the transition matrix M is primitive, there exists $k \in \mathbb{N}$ such that for any edge e of G, for any $w \in \mathcal{L}_2(f)$, w occurs in $f^k(e)$.

Let v be a vertex of G. The Whitehead graph W_v of v is the unoriented graph defined by:

- the vertices of W_v are the edges of G with v as terminal vertex,
- there is an edge in W_v between e and e' if $e'e^{-1} \in \mathcal{L}_2(f)$.

As remarked in [BFH97 Section 2], if $f : G \to G$ is a train-track representative of an iwip outer automorphism Φ, any vertex of G has a connected Whitehead graph. We summarize the previous discussion in:

Proposition 2.2. Let $\Phi \in \text{Out}(F_N)$ be an iwip outer automorphism. There exists a train-track representative $f : G \to G$ of Φ, with primitive transition matrix M and connected Whitehead graphs of vertices. The edge e_i of G is isometric to the segment $[0, u_i]$, where $u = (u_1, \ldots, u_p)$ is a Perron-Frobenius eigenvector of M. The map f is linear of ratio λ on each edge e_i of G.

Remark 2.3. Let $f : G \to G$ be a train-track map, with primitive transition matrix M and connected Whitehead graphs of vertices. Then for any path $w = ab$ in G of combinatorial length 2, there exist $w_1 = a_1b_1, \ldots, w_q = a qb_q \in \mathcal{L}_2(f)$ (a, b, a_i, b_i edges of G) such that:
• $a_{i+1} = b^{-1}_i$, $i \in \{1, \ldots, q-1\}$
• $a = a_1$ and $b = b_q$.

2B. Construction of T_Φ. Let $\Phi \in \text{Out}(F_N)$ be an iwip automorphism, and let T_Φ be its attracting tree. Following [GJLL98], we recall a concrete construction of the tree T_Φ.

We start with a train-track representative $f : G \to G$ of Φ as in Proposition 2.2. The universal cover \tilde{G} of G is a simplicial tree, equipped with a distance d_0 obtained by lifting the distance on G. The fundamental group F_N acts by deck transformations, and thus by isometries, on \tilde{G}. Let \tilde{f} be a lift of f to \tilde{G}. This lift \tilde{f} is associated to a unique automorphism φ in the outer class Φ, characterized by

\begin{equation}
\forall u \in F_N, \forall x \in \tilde{G}, \quad \varphi(u)\tilde{f}(x) = \tilde{f}(ux).
\end{equation}

For $x, y \in \tilde{G}$ and $k \in \mathbb{N}$, we define:

\[d_k(x, y) = \frac{d_0(\tilde{f}^k(x), \tilde{f}^k(y))}{\lambda^k}. \]

The sequence of distances d_k is decreasing and converges to a pseudo-distance d_∞ on \tilde{G}. Identifying points x, y in \tilde{G} which have distance $d_\infty(x, y)$ equal to 0, we obtain the tree T_Φ.

The free group F_N still acts by isometries on T_Φ. The quotient map $p : \tilde{G} \to T_\Phi$ is F_N-equivariant and 1-Lipschitz. Moreover, for any edge e of G, for any $k \in \mathbb{N}$, the restriction of p to $f^k(e)$ is an isometry. Through p the map \tilde{f} factors to a homothety H of T_Φ, of ratio λ_Φ:

\[\forall x \in \tilde{G}, \quad H(p(x)) = p(\tilde{f}(x)). \]

Property (2.3) leads to

\begin{equation}
\forall u \in F_N, \forall x \in T_\Phi, \quad \varphi(u)H(x) = H(ux).
\end{equation}

2C. Indecomposability of T_Φ. We say that a path (or an edge) w of the graph G occurs in a path u of the universal cover \tilde{G} of G if w has a lift \tilde{w} which occurs in u.

Lemma 2.4. Let I be a non degenerate arc in T_Φ. There exists an arc I' in \tilde{G} and an integer k such that

• $p(I') \subseteq I$
• any element of $\mathcal{L}_2(f)$ occurs in $H^k(I')$.

Proof. Let $I \subset T_\Phi$ be a non-degenerate arc. There exists an edge e of \tilde{G} such that $I_0 = p(e) \cap I$ is a non-degenerate arc: $I_0 = [x, y]$. We choose $k_1 \in \mathbb{N}$ such that $d_\infty(H^{k_1}(x), H^{k_1}(y)) > L$ where

\[L = 2 \max\{u_i = |e_i| : e_i \text{ edge of } G\}. \]

Let x', y' be the points in e such that $p(x') = x$, $p(y') = y$, and let I' be the arc $[x', y']$. Since p maps $f^{k_1}(e)$ isometrically into T_Φ, we obtain that $d_0(f^{k_1}(x'), f^{k_1}(y')) \geq L$. Hence there exists an edge e' of \tilde{G} contained in $[f^{k_1}(x'), f^{k_1}(y')]$. Moreover, for any $k_2 \in \mathbb{N}$, the path $f^{k_2}(e')$ isometrically injects in $[H^{k_1+k_2}(x), H^{k_1+k_2}(y)]$. We take k_2 big enough so that any path in $\mathcal{L}_2(f)$ occurs in $f^{k_2}(e')$. Then $k = k_1 + k_2$ is suitable. \qed
Proof of Theorem 2.1. Let I, J be two non-trivial arcs in T_Φ. We have to prove that I and J satisfy properties (2.1) and (2.2). Since H is a homeomorphism, and because of (2.4), we can replace I and J by $H^k(I)$ and $H^k(J)$, accordingly, for some $k \in \mathbb{N}$.

We consider an arc I' in \tilde{G} and an integer $k \in \mathbb{N}$ as given by Lemma 2.4. Let x, y be the endpoints of the arc $H^k(J)$: $H^k(J) = [x, y]$. Let x', y' be points in \tilde{G} such that $p(x') = x$, $p(y') = y$, and let J' be the arc $[x', y']$. According to Remark 2.3, there exist w_1, \ldots, w_n such that:

- w_i is a lift of some path in $L_2(f)$,
- $J' \subseteq \bigcup_{i=1}^n w_i$,
- $w_i \cap w_{i+1}$ is an edge.

Since Lemma 2.4 ensures that any element of $L_2(f)$ occurs in $H^k(I')$, we deduce that $H^k(I)$ and $H^k(J)$ satisfy properties (2.1) and (2.2), concluding the proof of Theorem 2.1. □

3. INDEX OF AN OUTER AUTOMORPHISM

An automorphism φ of the free group F_N extends to a homeomorphism $\partial \varphi$ of the boundary at infinity ∂F_N. We denote by $\text{Fix}(\varphi)$ the fixed subgroup of φ. It is a finitely generated subgroup of F_N and thus its boundary $\partial \text{Fix}(\varphi)$ naturally embeds in ∂F_N. Elements of $\partial \text{Fix}(\varphi)$ are fixed by $\partial \varphi$ and they are called singular. Non-singular fixed points of $\partial \varphi$ are called regular. A fixed point X of $\partial \varphi$ is attracting (resp. repelling) if it is regular and if there exists an element u in F_N such that $\varphi^n(u)$ (resp. $\varphi^{-n}(u)$) converges to X. The set of fixed points of $\partial \varphi$ is denoted by $\text{Fix}(\partial \varphi)$.

Following Nielsen, fixed points of $\partial \varphi$ have been classified by Gaboriau, Jaeger, Levitt and, Lustig:

Proposition 3.1 ([GJLL98, Proposition 1.1]). Let φ be an automorphism of the free group F_N. Let X be a fixed point of $\partial \varphi$. Then exactly one of the following occurs:

- (1) X is in the boundary of the fixed subgroup of φ;
- (2) X is attracting;
- (3) X is repelling. □

We denote by $\text{Att}(\varphi)$ the set of attracting fixed points of $\partial \varphi$. The fixed subgroup $\text{Fix}(\varphi)$ acts on the set $\text{Att}(\varphi)$ of attracting fixed points.

In [GJLL98] the following index of the automorphism φ is defined:

$$\text{ind}(\varphi) = \frac{1}{2}\#(\text{Att}(\varphi)/\text{Fix}(\varphi)) + \text{rank}(\text{Fix}(\varphi)) - 1$$

If φ has a trivial fixed subgroup, the above definition is simpler:

$$\text{ind}(\varphi) = \frac{1}{2}\#\text{Att}(\varphi) - 1.$$

Let u be an element of F_N and let i_u be the corresponding inner automorphism of F_N:

$$\forall w \in F_N, i_u(w) = uwu^{-1}.$$

The inner automorphism i_u extends to the boundary of F_N as left multiplication by u:

$$\forall X \in \partial F_N, i_u(X) = uX.$$
The group $\text{Inn}(F_N)$ of inner automorphisms of F_N acts by conjugacy on the automorphisms in an outer class Φ. Following Nielsen, two automorphisms, $\varphi, \varphi' \in \Phi$ are isogredient if they are conjugated by some inner automorphism i_u:

$$\varphi' = i_u \circ \varphi \circ i_u^{-1} = i_{u\varphi(u)^{-1}} \circ \varphi.$$

In this case, the actions of $\partial \varphi$ and $\partial \varphi'$ on ∂F_N are conjugate by the left multiplication by u. In particular, a fixed point X' of $\partial \varphi'$ is a translate $X' = uX$ of a fixed point X of $\partial \varphi$. Two isogredient automorphisms have the same index: this is the index of the isogrediency class. An isogrediency class $[\varphi]$ is essential if it has positive index: $\text{ind}([\varphi]) > 0$. We note that essential isogrediency classes are principal in the sense of [FH06], but the converse is not true.

The index of the outer automorphism Φ is the sum, over all essential isogrediency classes of automorphisms φ in the outer class Φ, of their indices, or alternatively:

$$\text{ind}(\Phi) = \sum_{[\varphi] \in \Phi/\text{Inn}(F_N)} \max(0; \text{ind}(\varphi)).$$

We adapt the notion of forward rotationless outer automorphism of Feighn and Handel [FH06] to our purpose. We denote by $\text{Per}(\varphi)$ the set of elements of F_N fixed by some positive power of φ:

$$\text{Per}(\varphi) = \bigcup_{n \in \mathbb{N}^*} \text{Fix}(\varphi^n);$$

and by $\text{Per}(\partial \varphi)$ the set of elements of ∂F_N fixed by some positive power of $\partial \varphi$:

$$\text{Per}(\partial \varphi) = \bigcup_{n \in \mathbb{N}^*} \text{Fix}(\partial \varphi^n).$$

Definition 3.2. An outer automorphism $\Phi \in \text{Out}(F_N)$ is FR if:

(1) for any automorphism $\varphi \in \Phi$, $\text{Per}(\varphi) = \text{Fix}(\varphi)$ and $\text{Per}(\partial \varphi) = \text{Fix}(\partial \varphi)$;

(2) if ψ is an automorphism in the outer class Φ^n for some $n > 0$, with $\text{ind}(\psi)$ positive, then there exists an automorphism φ in Φ such that $\psi = \varphi^n$.

Proposition 3.3. Let $\Phi \in \text{Out}(F_N)$. There exists $k \in \mathbb{N}^*$ such that Φ^k is FR.

Proof. By [LL00, Theorem 1] there exists a power Φ^k with (FR1). An automorphism $\varphi \in \text{Aut}(F_N)$ with positive index $\text{ind}(\varphi) > 0$ is principal in the sense of [FH06, Definition 3.1]. Thus our property (FR2) is a consequence of the forward rotationless property of [FH06, Definition 3.13]. By [FH06, Lemma 4.43] there exists a power $\Phi^{k\ell}$ which is forward rotationless and thus which satisfies (FR2). □

4. Indices

4A. Botany of trees. We recall in this Section the classification of trees in the boundary of outer space of our paper [CH10].

Gaboriau and Levitt [GL95] introduced an index for a tree T in \overline{CV}_N, we call it the geometric index and denote it by $\text{ind}_{\text{geo}}(T)$. It is defined using the valence of the branch points, of the \mathbb{R}-tree T, with an action of the free group by isometries:

$$\text{ind}_{\text{geo}}(T) = \sum_{[P] \in \overline{T}/F_N} \text{ind}_{\text{geo}}(P).$$
where the local index of a point P in T is
\[\text{ind}_{\text{geo}}(P) = \#(\pi_0(T \setminus \{P\})/\text{Stab}(P)) + 2 \text{rank}(\text{Stab}(P)) - 2. \]

Gaboriau and Levitt [GL95] proved that the geometric index of a geometric tree is equal to $2N - 2$ and that for any tree in the compactification of outer space $\overline{\text{CV}}_N$ the geometric index is bounded above by $2N - 2$. Moreover, they proved that the trees in $\overline{\text{CV}}_N$ with geometric index equal to $2N - 2$ are precisely the geometric trees.

If, moreover, T has dense orbits, Levitt and Lustig [LL03, LL08] defined the map $Q : \partial F_N \to \hat{T}$ which is characterized by

Proposition 4.1. Let T be an \mathbb{R}-tree in $\overline{\text{CV}}_N$ with dense orbits. There exists a unique map $Q : \partial F_N \to \hat{T}$ such that for any sequence $(u_n)_{n \in \mathbb{N}}$ of elements of F_N which converges to $X \in \partial F_N$, and any point $P \in T$, if the sequence of points $(u_nP)_{n \in \mathbb{N}}$ converges to a point $Q \in \hat{T}$, then $Q(X) = Q$. Moreover, Q is onto.

Let us consider the case of a tree T dual to a measured foliation (\mathcal{F}, μ) on a hyperbolic surface S with boundary (T is a surface tree). Let $\hat{\mathcal{F}}$ be the lift of \mathcal{F} to the universal cover \hat{S} of S. The boundary at infinity of \hat{S} is homeomorphic to ∂F_N. On the one hand, a leaf ℓ of $\hat{\mathcal{F}}$ defines a point in T. On the other hand, the ends of ℓ define points in ∂F_N. The map Q precisely sends the ends of ℓ to the point in T. The Poincaré-Lefschetz index of the foliation \mathcal{F} can be computed from the cardinal of the fibers of the map Q. This leads to the following definition of the Q-index of an \mathbb{R}-tree T in a more general context.

Let T be an \mathbb{R}-tree in $\overline{\text{CV}}_N$ with dense orbits. The Q-index of the tree T is defined as follows:
\[\text{ind}_Q(T) = \sum_{[P] \in \hat{T}/F_N} \max(0; \text{ind}_Q(P)). \]
where the local index of a point P in T is:
\[\text{ind}_Q(P) = \#(Q^{-1}(P)/\text{Stab}(P)) + 2 \text{rank}(\text{Stab}(P)) - 2 \]
with $Q^{-1}(P) = Q^{-1}(P) \setminus \partial \text{Stab}(P)$ the regular fiber of P.

Levitt and Lustig [LL03] proved that points in ∂T have exactly one pre-image by Q. Thus, only points in \hat{T} contribute to the Q-index of T.

We proved [CH10] that the Q-index of an \mathbb{R}-tree in the boundary of outer space with dense orbits is bounded above by $2N - 2$. And it is equal to $2N - 2$ if and only if it is of surface type.

Our botanical classification [CH10] of a tree T with a minimal very small indecomposable action of F_N by isometries is as follows

Surface type	geometric	not geometric
	$\text{ind}_Q(T) = 2N - 2$	$\text{ind}_Q(T) < 2N - 2$

The following remark is not necessary for the sequel of the paper, but may help the reader’s intuition.

Remark. In [CHL08a, CHL08], in collaboration with Lustig, we defined and studied the dual lamination of an \mathbb{R}-tree T with dense orbits:
\[L(T) = \{(X, Y) \in \partial^2 F_N \mid Q(X) = Q(Y)\}. \]
The Q-index of T can be interpreted as the index of this dual lamination.

Using the dual lamination, with Lustig [CHL09], we defined the compact heart $K_A \subseteq T$ (for a basis A of F_N). We proved that the tree T is completely encoded by a system of partial isometries $S_A = (K_A, A)$. We also proved that the tree T is geometric if and only if the compact heart K_A is a finite tree (that is to say the convex hull of finitely many points).

In our previous work [CH10], we used the Rips machine on the system of isometries S_A to get the bound on the Q-index of T. In particular, an indecomposable tree T is of Levitt type if and only if the Rips machine never halts.

4B. Geometric index. As in Section 2B, an iwip outer automorphism Φ has an expansion factor $\lambda_\Phi > 1$, an attracting \mathbb{R}-tree T_Φ in ∂CV_N. For each automorphism φ in the outer class Φ there is a homothety H of the metric completion $\overline{T_\Phi}$, of ratio λ_Φ, such that

$$\forall P \in T_\Phi, \forall u \in F_N, \ H(uP) = \varphi(u)H(P)$$

In addition, the action of Φ on the compactification of Culler and Vogtmann’s Outer space has a North-South dynamic and the projective class of T_Φ is the attracting fixed point [LL03]. Of course the attracting trees of Φ and Φ^n ($n > 0$) are equal.

For the attracting tree T_Φ of the iwip outer automorphism Φ, the geometric index is well understood.

Proposition 4.2 ([GJLL98, Section 4]). Let Ψ be an iwip outer automorphism. There exists a power $\Phi = \Psi^k$ ($k > 0$) of Ψ such that:

$$2 \text{ind}(\Phi) = \text{ind}_{\text{geo}}(T_\Phi),$$

where T_Φ is the attracting tree of Φ (and of Ψ).

4C. Q-index. Let Φ be an iwip outer automorphism of F_N. Let T_Φ be its attracting tree. The action of F_N on T_Φ has dense orbits.

Let φ an automorphism in the outer class Φ. The homothety H associated to φ extends continuously to an homeomorphism of the boundary at infinity of T_Φ which we still denote by H. We get from Proposition 4.1 and identity 4.1:

$$\forall X \in \partial F_N, Q(\partial \varphi(X)) = H(Q(X)).$$

We are going to prove that the Q-index of T_Φ is twice the index of Φ^{-1}. As mentioned in the introduction for geometric automorphisms both these numbers are equal to $2N - 2$ and thus we restrict to the study of non-geometric automorphisms. For the rest of this section we assume that Φ is non-geometric. This will be used in two ways:

- the action of F_N on T_Φ is free;
- for any φ in the outer class Φ, all the fixed points of φ in ∂F_N are regular.

Let C_H be the center of the homothety H. The following Lemma is essentially contained in [GJLL98], although the map Q is not used there.

Lemma 4.3. Let $\Phi \in \text{Out}(F_N)$ be a FR non-geometric iwip outer automorphism. Let T_Φ be the attracting tree of Φ. Let $\varphi \in \Phi$ be an automorphism in the outer class Φ, and let H be the homothety of T_Φ associated to φ, with C_H its center. The Q-fiber of C_H is the set of repelling points of φ. 9
Proof. Let $X \in \partial F_N$ be a repelling point of $\partial \varphi$. By definition there exists an element $u \in F_N$ such that the sequence $(\varphi^{-n}(u))_n$ converges towards X. By Equation 4.1

$$\varphi^{-n}(u)C_H = \varphi^{-n}(u)H^{-n}(C_H) = H^{-n}(uC_H).$$

The homothety H^{-1} is strictly contracting and thus the sequence of points $(\varphi^{-n}(u)C_H)_n$ converges towards C_H. By Proposition 4.1, we get that $Q(X) = C_H$.

Conversely let $X \in Q^{-1}(C_H)$ be a point in the Q-fiber of C_H. Using the identity 4.2, $\partial \varphi(X)$ is also in the Q-fiber. The Q-fiber is finite by [CH10, Corollary 5.4], X is a periodic point of $\partial \varphi$. Since Φ satisfies property (FR1), X is a fixed point of $\partial \varphi$. From [GJLL98, Lemma 3.5], attracting fixed points of $\partial \varphi$ are mapped by Q to points in the boundary at infinity ∂T_Φ. Thus X has to be a repelling fixed point of $\partial \varphi$. □

Proposition 4.4. Let $\Phi \in \text{Out}(F_N)$ be a FR non-geometric iwip outer automorphism. Let T_Φ be the attracting tree of Φ. Then

$$2\text{ind}(\Phi^{-1}) = \text{ind}_Q(T_\Phi).$$

Proof. To each automorphism φ in the outer class Φ is associated a homothety H of T_Φ and the center C_H of this homothety. As the action of F_N on T_Φ is free, two automorphisms are isogredient if and only if the corresponding centers are in the same F_N-orbit.

The index of Φ^{-1} is the sum over all essential isogredient classes of automorphism φ^{-1} in Φ^{-1} of the index of φ^{-1}. For each of these automorphisms the index $2\text{ind}(\varphi^{-1})$ is equal by Proposition 4.3 to the contribution $\#Q^{-1}(C_H)$ of the orbit of C_H to the Q index of T_Φ.

Conversely, let now P be a point in T_Φ with at least three elements in its Q-fiber. Let φ be an automorphism in Φ and let H be the homothety of T_Φ associated to φ. For any integer n, the Q-fiber $Q^{-1}(H^n(P)) = \partial \varphi^n(Q^{-1}(P))$ of $H^n(P)$ also has at least three elements. By [CH10, Theorem 5.3] there are finitely many orbits of such points in T_Φ and thus we can assume that $H^n(P) = wP$ for some $w \in F_N$ and some integer $n > 0$. Then P is the center of the homothety $w^{-1}H^n$ associated to $i_{w^{-1}} \circ \varphi^n$. Since Φ satisfies property (FR2), P is the center of a homothety uH associated to $i_u \circ \varphi$ for some $u \in F_N$. This concludes the proof of the equality of the indices. □

This Proposition can alternatively be deduced from the techniques of Handel and Mosher [HM06].

5. **Botanical classification of irreducible automorphisms**

Theorem 5.1. Let Φ be an iwip outer automorphism of F_N. Let T_Φ and $T_{\Phi^{-1}}$ be its attracting and repelling trees. Then, the Q-index of the attracting tree is equal to the geometric index of the repelling tree:

$$\text{ind}_Q(T_\Phi) = \text{ind}_{geo}(T_{\Phi^{-1}}).$$

Proof. First, if Φ is geometric, then the trees T_Φ and $T_{\Phi^{-1}}$ have maximal geometric indices $2N - 2$. On the other hand the trees T_Φ and $T_{\Phi^{-1}}$ are surface trees and thus their Q-indices are also maximal:

$$\text{ind}_{geo}(T_\Phi) = \text{ind}_Q(T_\Phi) = \text{ind}_{geo}(T_{\Phi^{-1}}) = \text{ind}_Q(T_{\Phi^{-1}}) = 2N - 2$$

We now assume that Φ is not geometric and we can apply Propositions 4.2 and 4.4 to get the desired equality.
From Theorem 5.1 and from the characterization of geometric and surface-type trees by the maximality of the indices we get

Theorem 5.2. Let Φ be an iwip outer automorphism of F_N. Let T_Φ and $T_{\Phi^{-1}}$ be its attracting and repelling trees. Then exactly one of the following occurs

1. T_Φ and $T_{\Phi^{-1}}$ are surface trees;
2. T_Φ is Levitt and $T_{\Phi^{-1}}$ is pseudo-surface;
3. $T_{\Phi^{-1}}$ is Levitt and T_Φ is pseudo-surface;
4. T_Φ and $T_{\Phi^{-1}}$ are pseudo-Levitt.

Proof. The trees T_Φ and $T_{\Phi^{-1}}$ are indecomposable by Theorem 2.1 and thus they are either of surface type or of Levitt type by [CH10, Proposition 5.14]. Recall, from [GL95] (see also [CH10, Theorem 5.9] or [CHL09, Corollary 6.1]) that T_Φ is geometric if and only if its geometric index is maximal:

$$\text{ind}_{\text{geo}}(T_\Phi) = 2N - 2.$$

From [CH10, Theorem 5.10], T_Φ is of surface type if and only if its Q-index is maximal:

$$\text{ind}_{Q}(T_\Phi) = 2N - 2.$$

The Theorem now follows from Theorem 5.1.

Let $\Phi \in \text{Out}(F_N)$ be an iwip outer automorphism.

The outer automorphism Φ is geometric if both its attracting and repelling trees T_Φ and $T_{\Phi^{-1}}$ are geometric. This is equivalent to saying that Φ is induced by a pseudo-Anosov homeomorphism of a surface with boundary, see [Gui05] and [HM07]. This is case 1 of Theorem 5.2.

The outer automorphism Φ is parageometric if its attracting tree T_Φ is geometric but its repelling tree $T_{\Phi^{-1}}$ is not. This is case 2 of Theorem 5.2.

The outer automorphism Φ is pseudo-Levitt if both its attracting and repelling trees are not geometric. This is case 4 of Theorem 5.2.

We now bring expansion factors into play. An iwip outer automorphism Φ of F_N has an expansion factor $\lambda_\Phi > 1$: it is the exponential growth rate of (non fixed) conjugacy classes under iteration of Φ.

If Φ is geometric, the expansion factor of Φ is equal to the expansion factor of the associated pseudo-Anosov mapping class and thus $\lambda_\Phi = \lambda_{\Phi^{-1}}$.

Handel and Mosher [HM07] proved that if Φ is a parageometric outer automorphism of F_N then $\lambda_\Phi > \lambda_{\Phi^{-1}}$ (see also [BBC08]). Examples are also given by Gautero [Gau07].

For pseudo-Levitt outer automorphisms of F_N nothing can be said on the comparison of the expansion factors of the automorphism and its inverse. On one hand, Handel and Mosher give in the introduction of [HM07] an explicit example of a non geometric automorphism with $\lambda_\Phi = \lambda_{\Phi^{-1}}$; thus this automorphism is pseudo-Levitt. On the other hand, there are examples of pseudo-Levitt automorphisms with $\lambda_\Phi > \lambda_{\Phi^{-1}}$. Let $\varphi \in \text{Aut}(F_3)$ be the automorphism such that

$$\varphi: \begin{align*}
a & \mapsto b \\
 b & \mapsto ac \\
 c & \mapsto a
\end{align*}$$

and

$$\varphi^{-1}: \begin{align*}
a & \mapsto c \\
b & \mapsto a \\
c & \mapsto c^{-1}b
\end{align*}$$

Let Φ be its outer class. Then Φ^6 is FR, has index $\text{ind}(\Phi^6) = 3/2 < 2$. The expansion factor is $\lambda_\Phi \approx 1.3247$. The outer automorphism Φ^{-3} is FR, has index $\text{ind}(\Phi^{-3}) = 1/2 < 2$.

The expansion factor is $\lambda_{\Phi^{-1}} \simeq 1, 4655 > \lambda_{\Phi}$. The computation of these two indices can be achieved using the algorithm of \cite{Jul09}.

Now that we have classified outer automorphisms of F_N into four categories, questions of genericity naturally arise. In particular, is a generic outer automorphism of F_N iwip, pseudo-Levitt and with distinct expansion factors? This is suggested by Handel and Mosher \cite{HM07}, in particular for statistical genericity: given a set of generators of $\text{Out}(F_N)$ and considering the word-metric associated to it, is it the case that

$$\lim_{k \to \infty} \frac{\#(\text{pseudo-Levitt iwip with } \lambda_{\Phi} \neq \lambda_{\Phi^{-1}}) \cap B(k)}{\#B(k)} = 1$$

where $B(k)$ is the ball of radius k, centered at 1, in $\text{Out}(F_N)$?

5A. **Botanical memo.** In this Section we give a glossary of our classification of automorphisms for the working mathematician.

For a FR iwip outer automorphism Φ of F_N, we used 6 indices which are related in the following way:

$$2 \text{ ind}(\Phi) = \text{ ind}_{\text{geo}}(T_{\Phi}) = \text{ ind}_{\text{Q}}(T_{\Phi^{-1}})$$

$$2 \text{ ind}(\Phi^{-1}) = \text{ ind}_{\text{geo}}(T_{\Phi^{-1}}) = \text{ ind}_{\text{Q}}(T_{\Phi})$$

All these indices are bounded above by $2N - 2$. We sum up our Theorem \ref{thm:5.2} in the following table.

Automorphisms	Trees	Indices
Φ geometric	T_{Φ} and $T_{\Phi^{-1}}$, geometric	$\text{ ind}(\Phi) = \text{ ind}(\Phi^{-1}) = N - 1$
Φ^{-1} geometric	T_{Φ} surface	
	$T_{\Phi^{-1}}$ surface	
Φ parageometric	$\begin{cases} T_{\Phi}$ geometric \\ and \\ $T_{\Phi^{-1}}$ non geometric \end{cases}$	$\begin{cases} \text{ ind}(\Phi) = N - 1 \\ \text{ and} \\ \text{ ind}(\Phi^{-1}) < N - 1 \end{cases}$
	T_{Φ} Levitt	\uparrow
	$T_{\Phi^{-1}}$ pseudo-surface	\uparrow
Φ pseudo-Levitt	T_{Φ} and $T_{\Phi^{-1}}$, non geometric	$\begin{cases} \text{ ind}(\Phi) < N - 1 \\ \text{ and} \\ \text{ ind}(\Phi^{-1}) < N - 1 \end{cases}$
Φ^{-1} pseudo-Levitt	T_{Φ} pseudo-Levitt	\uparrow
	$T_{\Phi^{-1}}$ pseudo-Levitt	\uparrow

Acknowledgments

We thank Martin Lustig for his constant interest in our work and the referee for the suggested improvements.
References

[BBC08] Jason Behrstock, Mladen Bestvina, and Matt Clay. Growth of intersection numbers for free group automorphisms. J. Topol., 3:280-310, 2010.

[Bes02] Mladen Bestvina. R-trees in topology, geometry, and group theory. In Handbook of geometric topology, pages 55–91. North-Holland, Amsterdam, 2002.

[BF92] Mladen Bestvina and Mark Feighn. A combination theorem for negatively curved groups. J. Differential Geom., 35(1):85–101, 1992.

[BF95] Mladen Bestvina and Mark Feighn. Stable actions of groups on real trees. Invent. Math., 121(2):287–321, 1995.

[BFH97] Mladen Bestvina, Mark Feighn and Michael Handel. Laminations, trees, and irreducible automorphisms of free groups. Geom. Funct. Anal., 7(2):215–244, 1997.

[BH92] Mladen Bestvina and Michael Handel. Train tracks and automorphisms of free groups, Ann. of Math. (2), 135(2):1–51, 1992.

[Bri00] P. Brinkmann. Hyperbolic automorphisms of free groups. Geom. Funct. Anal., 10(5):1071–1089, 2000.

[CH10] Thierry Coulbois, and Arnaud Hilion. Rips Induction: Index of the dual lamination of an R-tree Preprint. arXiv:1002.0972

[CHL07] Thierry Coulbois, Arnaud Hilion, and Martin Lustig. Non-unique ergodicity, observers’ topology and the dual algebraic lamination for R-trees. Illinois J. Math., 51(3):897–911, 2007.

[CHL08a] Thierry Coulbois, Arnaud Hilion, and Martin Lustig. R-trees and laminations for free groups. I. Algebraic laminations. J. Lond. Math. Soc. (2), 78(3):723–736, 2008.

[CHL08] Thierry Coulbois, Arnaud Hilion, and Martin Lustig. R-trees and laminations for free groups. II. The dual lamination of an R-tree. J. Lond. Math. Soc. (2), 78(3):737–754, 2008.

[CHL09] Thierry Coulbois, Arnaud Hilion, and Martin Lustig. R-trees, dual laminations, and compact systems of partial isometries. Math. Proc. Cambridge Phil. Soc., 147:345–368, 2009.

[CL89] Marshall M. Cohen and Martin Lustig. On the dynamics and the fixed subgroup of a free group automorphism. Invent. Math., 96(3):613–638, 1989.

[CV86] Marc Culler and Karen Vogtmann. Moduli of graphs and automorphisms of free groups. Invent. Math., 84:91–119, 1986.

[FH06] Mark Feighn and Michael Handel. The recognition theorem for Out(F_n). Groups Geom. Dyn., 5:39-106, 2011.

[FLP79] A. Fathi, F. Laudenbach, and V. Poénaru, editors. Travaux de Thurston sur les surfaces. Société Mathématique de France, Paris, 1979. Astérisque No. 66-67.

[Gab96] Damien Gaboriau. Dynamique des systèmes d’isométries: sur les bouts des orbites. Invent. Math., 126(2):297–318, 1996.

[Gab97] Damien Gaboriau. Générateurs indépendants pour les systèmes d’isométries de dimension un. Ann. Inst. Fourier (Grenoble), 47(1):101–122, 1997.

[Ger83] S. M. Gersten. Intersections of finitely generated subgroups of free groups and resolutions of graphs. Invent. Math., 71(3):567–591, 1983.

[GJLL98] Damien Gaboriau, Andre Jaeger, Gilbert Levitt, and Martin Lustig. An index for counting fixed points of automorphisms of free groups. Duke Math. J., 93(3):425–452, 1998.

[GL95] Damien Gaboriau and Gilbert Levitt. The rank of actions on R-trees. Ann. Sci. École Norm. Sup. (4), 28(5):549–570, 1995.

[GLP94] Damien Gaboriau, Gilbert Levitt, and Frédéric Paulin. Pseudogroups of isometries of R and Rips’ theorem on free actions on R-trees. Israel J. Math., 87(1-3):403–428, 1994.

[Gui07] Vincent Guirardel. Combinatorial mapping-torus, branched surfaces and free group automorphisms. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6(3):405–440, 2007.

[Gui05] Vincent Guirardel. Cœur et nombre d’intersection pour les actions de groupes sur les arbres. Ann. Sci. École Norm. Sup. (4), 38(6):847–888, 2005.

[Gui08] Vincent Guirardel. Actions of finitely generated groups on R-trees. Ann. Inst. Fourier (Grenoble), 58(1):159–211, 2008.
Michael Handel and Lee Mosher. Axes in outer space. *Mem. Amer. Math. Soc.*, 1004, 2011.

Michael Handel and Lee Mosher. Parageometric outer automorphisms of free groups. *Trans. Amer. Math. Soc.*, 359(7):3153–3183 (electronic), 2007.

Yann Jullian. *Représentations géométriques des systèmes dynamiques substitutifs par substitutions d’arbre*. PhD thesis, Université Aix-Marseille II, 2009.

Michael Kapovich. *Hyperbolic manifolds and discrete groups*, volume 183 of *Progress in Mathematics*. Birkhäuser Boston Inc., Boston, MA, 2001.

Gilbert Levitt. La dynamique des pseudogroupes de rotations. *Invent. Math.*, 113(3):633–670, 1993.

Gilbert Levitt and Martin Lustig. Periodic ends, growth rates, Hölder dynamics for automorphisms of free groups. *Comment. Math. Helv.*, 75(3):415–429, 2000.

Gilbert Levitt and Martin Lustig. Irreducible automorphisms of F_n have north-south dynamics on compactified outer space. *J. Inst. Math. Jussieu*, 2(1):59–72, 2003.

Gilbert Levitt and Martin Lustig. Automorphisms of free groups have asymptotically periodic dynamics. *J. Reine Angew. Math.*, 619:1–36, 2008.

John W. Morgan. Ergodic theory and free actions of groups on \mathbb{R}-trees. *Invent. Math.*, 94(3):605–622, 1988.

Patrick Reynolds. On indecomposable trees in outer space. *Geom. Dedicata*, 153:59–71, 2011.

Igor Rivin. Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms. *Duke Math. J.*, 142(2):353–379, 2008.

Alessandro Sisto. Contracting elements and random walks. [arXiv:1112.2666](https://arxiv.org/abs/1112.2666), 2011.

John R. Stallings. Topology of finite graphs. *Invent. Math.*, 71(3):551–565, 1983.

Karen Vogtmann. Automorphisms of free groups and outer space. *Geom. Dedicata*, 94:1–31, 2002.

Thierry Coulbois

LATP
Avenue de l’escadrille Normandie-Niémen
13013 Marseille
France
thierry.coulbois@univ-amu.fr

Arnaud Hilion

LATP
Avenue de l’escadrille Normandie-Niémen
13013 Marseille
France
arnaud.hilion@univ-amu.fr