Supplementary Information
‘Metal Free’ fluorescent Supramolecular Assemblies for Distinct Detection of Organophosphate/Organochlorine Pesticides

Pooja Sharma, Manoj Kumar and Vandana Bhalla†

Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II

Guru Nanak Dev University, Amritsar 143005, Punjab-143005

vanmanan@yahoo.co.in

The supporting information includes:

Number of pages: 28

Number of figures: 44

Number of tables: 1

S4-7 General Experimental.

S8-9 \(^1\)H and \(^{13}\)C NMR spectrum of derivative 2.

S10 \(^1\)H NMR spectrum of derivative 3.

S11 Mass spectrum of derivative 2 and UV-vis spectra of derivative 2 in THF and water.
S12 Fluorescence spectra of derivative 2 in THF and water and concentration dependent 1H NMR of derivative 2.

S13 UV-vis spectra of derivative 2 in presence of Cu²⁺ ions, XPS spectra of derivative 2 and fluorescence spectra of derivative 2 in presence of Cu²⁺ ions.

S14 Bar diagram of derivative 2 with different biomolecules and metal ions and different amines.

S15 UV-Vis spectra of derivative 2 with CPF, CIE coordinates of derivative 2 alone and with CPF and Detection limit of derivative 2 with CPF.

S16 Detection limit of copper ensemble of derivative 2 with CPF, fluorescence spectra of copper ensemble of derivative 2 with CPF.

S17 UV-Vis spectra of derivative 2 with DCN, Fluorescence spectra of derivative 2 with different excitation wavelength and detection limit of derivative 2 with DCN.

S18 Bar diagram of derivative 2 with different pesticides, Fluorescence life time spectra of derivative 2 alone and with CPF in water.

S19 Overlay 1H NMR of derivative 2 with CPF, XRD diffraction pattern of derivative 2 alone and with CPF.

S20 DLS data of derivative 2 alone and with CPF.

S21 XRD diffraction pattern of derivative 2 with DCN, fluorescence life time spectra of derivative 2 with DCN and DLS data of derivative 2 with DCN.
S22 Spectral overlap of absorption spectra of DCN and emission spectra of derivative 2, absorption spectra and fluorescence spectra of derivative 3 in water and fluorescence spectra of derivative 3 in DCN.

S23 Fluorescence spectra of derivative 3 with CPF and detection limit of derivative 3 with CPF.

S24 Fluorescence spectra of derivative 4 with CPF, detection limit of derivative 4 with CPF and fluorescence spectra of derivative 4 with DCN.

S25 Fluorescence spectra of derivative 5 with CPF, detection limit of derivative 5 with CPF and fluorescence spectra of derivative 5 with DCN.

S26 Detection limit of derivative 5 with DCN, plot of F/F₀ of derivative 2 with CPF in water and apple and with DCN in water and grapes, bar graph of F/F₀ values for DCN residues in grapes.

S27 Table S1: Comparison table of sensing of pesticides with other literature reports.
Experimental Section

1. **General Experimental Methods and Instrumentations**

1.1 **Physical Measurements**
UV-vis spectra were recorded on a SHIMADZU UV-2450 spectrophotometer, with a quartz cuvette (path length: 1 cm). The cell holder was thermostat 25°C. The fluorescence spectra were recorded with HORIBA Scientific Fluoromax-4 spectrofluorometer and one of the fluorescence spectra was recorded with SHIMADZU-5301 PC spectrofluorometer. TEM images were recorded from Transmission Electron Microscope HR-TEM-JEOL 2100. The time-resolved fluorescence spectra were recorded with a HORIBA time-resolved fluorescence spectrometer. 1H and 13C NMR spectra were recorded on a JOELFT NMR-AL 400 MHz and BRUKER-AVANCE-II FT-NMR-AL 500 MHz spectrophotometer using CDCl$_3$, DMSO and D$_2$O as solvent and tetramethyl silane, SiMe$_4$ as internal standards. Data are reported as follows: chemical shifts in ppm, multiplicity (s = singlet, br = broad signal, d = doublet, t = triplet, m = multiplet), coupling constants J (Hz), integration, and interpretation. Silica gel 60 (60-120 mesh) was used for column chromatography.

1.2 **UV-vis and Fluorescence Titrations**
For UV-vis and fluorescence titrations stock solutions (10$^{-4}$ M) of derivative 2 was freshly prepared in DMSO while the stock solutions (10$^{-4}$ M) of derivatives 1, 3, 4 and 5 were prepared in THF. For each experiment, titrations were performed with solutions of all the derivatives in H$_2$O prepared by mixing 300 µl of stock solution with 2700 µl distilled H$_2$O. Typically, aliquots of freshly prepared standard solutions (10$^{-2}$ M) of metal ions such as Fe$^{2+}$, Cu$^{2+}$, Co$^{2+}$, Ni$^{2+}$, Zn$^{2+}$, Ag$^+$ and Al$^{3+}$ ions as their perchlorate salt. In titration experiments, each time a 3 ml solution of derivative 2 was filled in a quartz cuvette (path length, 1 cm) and spectra were recorded.
Biomolecules such as spermine, spermidine, glutathione, cysteine, homocysteine, hydrazine, H$_2$O$_2$, ClO$^-$ and amines were freshly prepared in distilled water. In each titration experiments, 3 mL, 1µM solutions of derivative 2 were filled in a quartz cuvette (path length, 1 cm) and biomolecules were added into the quartz cuvette by using a micro-pipette.

1.3 Calculation of detection limit

The calculations of detection limit was based on the fluorescence titrations. To determine S/N ratio, the emission intensity of all the derivatives (2, 3, 4 and 5) without additions of pesticides (CPF and DCN) was measured 10 times and standard deviations of blank measurements was determined. The detection limit was calculated by using following equation:

\[
DL = 3 \times \frac{SD}{S}
\]

Where SD is the standard deviation of blank solution measured by 10 times and S is slope of the calibration curve.

1.4 Analysis in real samples

Apples and grapes were chosen for evaluating potential of CPF and DCN in real samples. After washing with water, these were chopped and crushed to make a homogenate. The 10g of homogenate was mixed with 10 ml of methanol and was filtered twice using fine paper to remove the insoluble particles. Then different volumes (0, 10, 30, 50, 70 and 100 µl) of CPF and DCN solution was mixed with 1ml solution of above homogenate of apple and grapes juice respectively and their fluorescence spectra was recorded.

1.5 Determination of residues of DCN in real samples
Grapes were used to measure the residue level of DCN with time. For this, solution of DCN (10^{-2}M) was used was spiked on skin of grapes and stored for overnight at room temperature. Then samples were prepared by using method outlined above. The samples were prepared each day for four consecutive days and their fluorescence spectra was recorded every day.

2. Synthesis and Characterization

2.1 Synthesis of derivative 2

9, 10-dibromoanthracene 6 and 4-formyl phenyl boronic acid 7 in dioxane were added in a two neck rbf followed by addition of K$_2$CO$_3$ in distilled water (1mL) and Pd (0) and reaction was refluxed under nitrogen for overnight. Then after evaporating solvent under vacuum residue was extracted using CHCl$_3$/water and dried over anhydrous Na$_2$SO$_4$. Then after removing organic layer under pressure, residue was purified using column chromatography using hexane/CHCl$_3$, 1:9 to furnish derivative 2 as yellow solid in 50% yield. 1H NMR (400 MHZ, CDCl$_3$): δ (ppm) = 7.36-7.40 (m, 4H, Ar-H), 7.60-7.64 (m, 4H, Ar-H), 7.68 (d, $J = 10$ Hz, 4H, Ar-H), 8.16 (d, $J = 10.4$ Hz, 4H, Ar-H) and 10.2 (s, 2H, CHO). 13C NMR (100 MHZ, CDCl$_3$): δ = 125.69, 126.51, 129.38, 129.92, 132.12, 135.75, 136.15, 145.77, 192.10. ESI-MS calculated for C$_{26}$H$_{18}$O$_2$: 386.131; Found: 387. 15 for [M+H]$^+$.

Scheme S1: Synthesis of derivative 2
2.2 Synthesis of derivative 8

Derivative 8 was synthesized according to previous reported method.³

2.3 Synthesis of derivative 3

![Scheme S2: Synthesis of derivative 3.]

Derivative 8 and phenyl boronic acid 7 in Dioxane were added in a two neck rbf followed by addition of K$_2$CO$_3$ in distilled water (1mL) and Pd (0) and reaction was refluxed under nitrogen for overnight. Then after evaporating solvent under vacuum residue was extracted using CHCl$_3$/water and dried over anhydrous Na$_2$SO$_4$. Then after removing organic layer under pressure, residue was purified using column chromatography using hexane/CHCl$_3$, 1:8 to furnish derivative 3 as dark reddish solid in 52% yield. 1H NMR (400 MHz, CDCl$_3$): δ = 0.85 (t, J = 8Hz, 6H), 1.16-1.30 (m, 36H), 1.65-1.72 (m, 4H), 4.16 (t, J = 8Hz, 4H), 7.42-7.53 (m, 10H, Ar-H), 7.75-7.81 (m, 2H, Ar-H), 8.11-8.15 (m, 2H, Ar-H), 8.61 (d, J = 4Hz, 2H, Ar-H).

Synthesis of derivative 4 and 5

Derivative 4 and 5 were also synthesized according to previous reported method.³
Figure S1: 1H NMR of derivative 2 in CDCl$_3$ as solvent (400MHz).
Figure S2: 13C NMR spectrum of derivative 2 (100MHz).
Figure S3: 1H NMR spectrum of derivative 3 (400MHz).
Figure S4: Mass spectrum of derivative 2.

Figure S5: UV-vis spectra of derivative 2 (10µM) in THF and water.
Figure S6: Fluorescence spectra of derivative 2 (10µM) in THF and water, λ_{ex} = 380 nm, slit = 3-3.

Figure S7: Concentration dependent ¹H NMR of derivative 2 a) 3 mg b) 10 mg in CDCl₃.
Figure S8: UV-vis spectra of derivative 2 (10µM) upon addition of Cu$^{2+}$ ions (0-150 equiv.) in 90% water.

Figure S9: XPS spectra of Cu 2p region of assemblies of derivative 2.

Figure S10: Fluorescence spectra of assemblies of derivative 2 (10µM) with addition of 150 equiv. of Cu$^{2+}$ ions, λex = 380 nm, slit = 3-3.
Figure S11: Bar diagram of derivative 2 (10µM) with different biomolecules in 90% water, λ_{ex} = 380 nm, slit = 3-3.

Figure S12: Bar diagram of derivative 2 (10µM) with different metal ions in 90% water, λ_{ex} = 380 nm, slit = 3-3.

Figure S13: Bar diagram of derivative 2 (10µM) with different amines in 90% water, λ_{ex} = 380 nm, slit = 3-3.
Figure S14: UV-vis spectra of assemblies of derivative 2 (10µM) on addition of CPF (100 equiv.) in 90% water, $\lambda_{ex} = 380$ nm.

Figure S15: a) CIE coordinates of assemblies of derivative 2 (10µM) in aqueous solution b) in presence of CPF.

Figure S16: Calibration curve showing fluorescence intensity of derivative 2 (10µM) at 475 nm as a function of CPF concentration (equiv.) in 90% water, $\lambda_{ex} = 380$ nm.
From the graph, slope (S) = 806431 and standard deviation (SD) = 0.009
Then using the formula we get the detection limit = 3×0.009/806431 = 3.34×10⁻⁸ M

From the graph, slope (S) = 7×10^3 and standard deviation (SD) = 0.009
Then using the formula we get the detection limit = 3×0.009/7×10^3 = 3.85×10⁻⁶ M
Figure S19: UV-vis spectra of assemblies of derivative 2 on addition of DCN (150 equiv.) in 90% water, $\lambda_{ex} = 380$ nm, slit= 3-3.

Figure S20: Fluorescence spectra of solution of derivative 2 in presence of DCN (150 equiv.) with changing excitation wavelength from 310 nm to 400 nm.

Figure S21: Calibration curve showing fluorescence intensity of derivative 2 (10µM) at 475 nm as a function of DCN concentration (equiv.) in 90% water, $\lambda_{ex} = 380$ nm.
From the graph, slope (S) = 456832 and standard deviation (SD) = 0.009

Then using the formula we get the detection limit = \(3 \times 0.009 / 80000000 = 3.3 \times 10^{-10}\) M

Figure S22: Bar diagram of assemblies of derivative 2 (10µM) in 90% water in presence of different pesticides (CPF, DCN, BPA, dichlorvos, glyphosate and DCP).

Figure S23: Fluorescence life time spectra of derivative 2 (10µM) at 475 nm in 90% water and in presence of CPF.
Figure S24: Overlay 1H NMR spectra of a) derivative 2 b) CPF c) derivative 2 in presence of CPF in DMSO-d$_6$-D$_2$O (500 MHz).

Figure S25: XRD diffraction pattern of a) assemblies of derivative 2 b) in presence of CPF
Figure S26: DLS data of assemblies of derivative 2 (10µM) in 90% aqueous solution with average particle size of 365.1 nm

Figure S27: DLS data of assemblies of derivative 2 (10µM) in 90% water in presence of CPF with average particle size of 231.0 nm.
Figure S28: Fluorescence lifetime spectra of derivative 2 (10µM) at 475 nm in 90% water and in presence of DCN.

Figure S29: XRD diffraction pattern of assemblies of derivative 2 in presence of DCN.

Figure S30: DLS data of assemblies of derivative 2 (10µM) in 90% water in presence of DCN (150 equiv.) with average particle size of 542.5 nm.
Figure S31: Spectral overlapping graph of absorption spectrum of DCN and emission spectrum of assemblies of derivative 2 (10µM) in 90% water.

Figure S32: a) UV-vis spectrum b) fluorescence spectrum of derivative 3 (10µM) in 90% water.

Figure S33: Fluorescence spectrum of derivative 3 (10µM) in presence of DCN (150 equiv.) in 90% water, λex = 525 nm
From the graph, slope (S) = 725696 and standard deviation (SD) = 0.012

Then using the formula we get the detection limit = \(3 \times 0.012 / 725696 = 4.96 \times 10^{-8} \text{ M}\)
From the graph, slope (S) = 3×10^{-6} and standard deviation (SD) = 0.011

Then using the formula we get the detection limit = $3 \times 0.011/3 \times 10^{-6} = 1.1 \times 10^{-8}$ M
From the graph, slope \((S) = 34531\) and standard deviation \((SD) = 0.012\)

Then using the formula we get the detection limit = \(3 \times 0.012/34531 = 1.04 \times 10^{-6}\) M
From the graph, slope \((S) = 2 \times 10^6\) and standard deviation \((SD) = 0.012\)

Then using the formula we get the detection limit \(= 3 \times 0.012/874788 = 1.8 \times 10^{-8}\) M

Figure S42: Calibration curve showing fluorescence intensity of derivative 5 (10µM) at 458 nm as a function of DCN concentration (equiv.) in 90% water, \(\lambda_{ex} = 320\) nm.

Figure S43: a) plot of \(F/F_0\) versus different concentrations of CPF in apple b) DCN in grapes juice.

Figure S44: Bar graph of \(F/F_0\) values for DCN residues in grapes juice in four consecutive days.
No	Pesticide Class	Type of Detection	Type of Derivatives	Reaction-Mediated Change	Type of Response	Sensing Media	Real-time Application in	Design of MoF/Polyaminals		
1	Organochlorine	Fluorescence, UV	Simple anthracene/PBI derivatives	Interaction between pesticide and MoF	"Turn off"	Ethanol, THF, DMF, CHCl₃ and water	Real-time in fruits/vegetables	Using PBI/hexaphenylbenzene based scaffolds		
2	Organophosphate	Fluorescence, UV	Simple anthracene/PBI derivatives	Interaction between pesticide and MoF	"Turn off"	Ethanol, THF, DMF, CHCl₃ and water	Real-time in fruits/vegetables	Using PBI/hexaphenylbenzene based scaffolds		
3	Organophosphate	Fluorescence, UV	Simple anthracene/PBI derivatives	Interaction between pesticide and MoF	"Turn off"	Ethanol, THF, DMF, CHCl₃ and water	Real-time in fruits/vegetables	Using PBI/hexaphenylbenzene based scaffolds		
4	Organophosphate	Fluorescence, UV	Simple anthracene/PBI derivatives	Interaction between pesticide and MoF	"Turn off"	Ethanol, THF, DMF, CHCl₃ and water	Real-time in fruits/vegetables	Using PBI/hexaphenylbenzene based scaffolds		
5	Organophosphate	Fluorescence, UV	Simple anthracene/PBI derivatives	Interaction between pesticide and MoF	"Turn off"	Ethanol, THF, DMF, CHCl₃ and water	Real-time in fruits/vegetables	Using PBI/hexaphenylbenzene based scaffolds		
6	Organophosphate	Fluorescence, UV	Simple anthracene/PBI derivatives	Interaction between pesticide and MoF	"Turn off"	Ethanol, THF, DMF, CHCl₃ and water	Real-time in fruits/vegetables	Using PBI/hexaphenylbenzene based scaffolds		
7	Organophosphate	Fluorescence, UV	Simple anthracene/PBI derivatives	Interaction between pesticide and MoF	"Turn off"	Ethanol, THF, DMF, CHCl₃ and water	Real-time in fruits/vegetables	Using PBI/hexaphenylbenzene based scaffolds		
8	Organophosphate	Fluorescence, UV	Simple anthracene/PBI derivatives	Interaction between pesticide and MoF	"Turn off"	Ethanol, THF, DMF, CHCl₃ and water	Real-time in fruits/vegetables	Using PBI/hexaphenylbenzene based scaffolds		
9	Organophosphate	Fluorescence, UV	Simple anthracene/PBI derivatives	Interaction between pesticide and MoF	"Turn off"	Ethanol, THF, DMF, CHCl₃ and water	Real-time in fruits/vegetables	Using PBI/hexaphenylbenzene based scaffolds		
10	Organophosphate	Fluorescence, UV	Simple anthracene/PBI derivatives	Interaction between pesticide and MoF	"Turn off"	Ethanol, THF, DMF, CHCl₃ and water	Real-time in fruits/vegetables	Using PBI/hexaphenylbenzene based scaffolds		

Table S1: Comparison table for sensing of pesticides with other literature reports.
References

1. Pramanik, S.; Bhalla, V.; Kumar, M. Hexaphenylbenzene stabilized luminescent silver nanoclusters: a potential catalytic system for the cyclo-addition of terminal alkynes with isocyanides. *ACS Appl. Mater. Interfaces* **2015**, *7*, 22786-22795.

2. Liu, D.; Chen, W.; Wei, J.; Li, X.; Wang, Z.; Jiang, X. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. *Anal. Chem.* **2012**, *84*, 4185-4191.

3. Sharma, K.; Singh, G.; Singh, G.; Kumar, M.; Bhalla, V. Silver nanoparticles: facile synthesis and their catalytic application for the degradation of dyes. *RSC Adv.* **2015**, *5*, 25781-25788.
