The high-pressure stability of Ni$_2$In-type structure of ZrO$_2$ with respect to OII and Fe$_2$P-type phases: A first-principles study

H. Al-Taani1, K. Tarawneh2, Y. Al-Khatatbeh2 and B. Hamad3,4

1School of Basic Sciences and Humanities, German Jordanian University, Amman 11180, Jordan
2Department of Basic Sciences, Princess Sumaya University for Technology, Amman 11941, Jordan
3Physics Department, The University of Jordan, Amman 11942, Jordan
4Physics Department, University of Arkansas, Fayetteville, AR 72701, USA

Abstract: The density-functional theory is used to investigate the stability of the Ni$_2$In-type hexagonal structure with the space group: $P6_3/mmc$ at high pressures and compared to the orthorhombic OII and Fe$_2$P-type phases of zirconia (ZrO$_2$). The calculations showed that the high-pressure phase transition sequence in ZrO$_2$ is as follows: OII \rightarrow Fe$_2$P \rightarrow Ni$_2$In, which is consistent with the recent measurements that are observed in Fe$_2$P as a post-OII phase of ZrO$_2$. We obtained a very small volume change across OII \rightarrow Fe$_2$P transition, whereas an appreciable volume change is found across the Fe$_2$P \rightarrow Ni$_2$In transition. The compressibility of Ni$_2$In phase is found to be high as compared to the other two high-pressure phases.

1. Introduction
The transition-metal dioxide zirconia (ZrO$_2$) is involved in many industrial applications [1–7] due to its important properties. As a result of the bonding nature of this dioxide, ZrO$_2$ has received an obvious attention regarding its structural and mechanical properties, where many experimental (e.g., Refs. [8–13]) and theoretical (e.g., Refs. [8, 11, 14–17]) studies have focused on investigating the high-pressure behavior of ZrO$_2$ including the determination of the EOS of its various polymorphs, phase stability, and mechanical strength. At ambient temperature, the well-known high-pressure phase transition sequence [8, 12, 14, 15, 18, 19] is as follows: MI \rightarrow OI \rightarrow OII, where MI has a monoclinic structure (space group: $P2_1/c$) and both OI and OII have an orthorhombic structure (space groups: $Pbca$ and $Pnma$, respectively). Recent measurements and calculations have confirmed the discovery of Fe$_2$P-type structure (Hexagonal, space group: $P6_2m$) as a post-OII phase for ZrO$_2$ at ultrahigh pressures [11], and thus, the most recent high-pressure sequence becomes as follows: MI \rightarrow OI \rightarrow OII \rightarrow Fe$_2$P (Fig. 1). We should mention that Fe$_2$P-type structure has been also discovered as a post-OII phase in the similar dioxides TiO$_2$ [20] and HfO$_2$ [21]. Recently, after this discovery, another theoretical study [16] has proposed a new hexagonal phase (Ni$_2$In-type structure) of ZrO$_2$ (Fig. 1) to be the most stable phase at pressures greater than 380 GPa. However, in this work [16], the transition to Ni$_2$In phase is claimed to likely occur from OII phase rather than Fe$_2$P phase, indicating that this study [16] suggests the following transition sequence: MI \rightarrow OI \rightarrow OII \rightarrow Ni$_2$In. In fact, ignoring Fe$_2$P phase from the high-pressure phase transition sequence is not consistent with the recent experimental and theoretical studies [11, 20, 21] that have confirmed the phase stability of Fe$_2$P as a post-OII phase. Thus, the reasonable expectation is that any new proposed phase transition in ZrO$_2$ should occur from the experimentally observed Fe$_2$P phase.

In our study, we use DFT calculations to test the stability of Ni$_2$In-type structure at high pressures with respect to OII and Fe$_2$P phases. The main goal in this work is to investigate the upper part of high-pressure phase transition sequence of ZrO$_2$ in an effort to better understand the high-pressure phase diagram of this dioxide.
2. Theoretical Methods

To investigate the high-pressure phase transitions and the EOSs within the three ZrO\textsubscript{2} phases, we used density-functional theory (DFT) [22] based static first-principles computations. The projector-augmented wave (PAW) formalism [23, 24] was used to treat the interactions between the atoms having a core radii of 2.500 Bohr for hafnium Hf (with the valence configuration of 4\textit{s}^24\textit{p}^65\textit{s}^24\textit{d}^2) and 1.520 Bohr for oxygen O (with the valence configuration of 2\textit{s}^22\textit{p}^4). The generalized gradient approximation (GGA) [25] was used to treat the electronic exchange and correlation effects. We performed our calculations using the VASP software package [26–29] with an energy cutoff of 600 eV and Γ-centered \textit{k}-point meshes [30]. For all phases, total energies and pressures were converged to better than ~0.1 meV/atom and ~0.1 GPa, respectively. The Brillouin zone integration was performed using the following \textit{k}-point meshes for the ZrO\textsubscript{2} phases: 4x8x4 for OII, 6x6x10 for Fe\textsubscript{2}P, and 10x10x8 for Ni\textsubscript{2}In. For a fixed volume, all internal degrees of freedom and unit-cell parameters of the structure were optimized simultaneously during the geometry optimizations. The ground-state energy for each phase was determined for 13-20 volumes. Up to highest pressure achieved in our calculations, all ZrO\textsubscript{2} phases remain insulators.

3. Results and Discussion

3.1. Bulk modulus determination

To study the compressibility of the three phases, we used Birch-Murnaghan (BM-) EOS to determine the bulk modulus for each phase. In the third-order BM-EOS [31], the pressure \(P\) is given by

\[
P(V) = \frac{3}{2} K_0 \left[\left(\frac{V}{V_0} \right)^{7/3} - \left(\frac{V}{V_0} \right)^{5/3} \right] + \frac{3}{4} K_0 \left(\frac{V}{V_0} \right)^{5/3} \left(\frac{V}{V_0} \right)^{2/3} - 1 \] \quad \text{Eqn. (1)}

Figure 1: Crystal structures of ZrO\textsubscript{2} phases. The larger dark spheres represent the Zr atom, while the smaller light spheres represent the O atom.
where V is the volume at pressure P, V_0 is the zero-pressure volume, K_0 is the zero-pressure bulk modulus, and K_0' is the first pressure derivative of the bulk modulus at zero pressure. From the thermodynamic relationship: $P(V) = -\frac{\partial E}{\partial V}$, the total energy E in the third-order form of BM-EOS is written as

$$E(V) = \frac{9K_0V_0}{2}\left[\frac{1}{2}\left(\frac{V}{V_0}\right)^\frac{2}{3} - 1\right]^2 + (K_0' - 4)\left[\frac{1}{2}\left(\frac{V}{V_0}\right)^\frac{2}{3} - 1\right] + E_0$$

Eqn. (2)

Where E_0 is the total energy at zero pressure. One can obtain the second-order BM-EOS by substituting $K_0' = 4$ in Eqns. 1 and 2. The EOS parameters for each ZrO$_2$ phase were obtained by fitting the total energy as a function of volume to the second- and third-order BM-EOS [31] (Table I). We determined the EOSs for the three phases and summarized them in Table I. We note that our bulk modulus (K_0) for both OII and Fe$_2$P phases is in excellent agreement with previous studies [8, 11, 16]. On the other hand, our computed K_0 for Ni$_2$In phase is ~16% less than previous results [16]. However, we should note that BM-EOS is sensitive to both V_0 and K_0' [31], where K_0 decreases with increasing V_0 and/or K_0'. Although our K_0 value (200 GPa) of Ni$_2$In is less than the previously reported one (239 GPa) [16], V_0 (31.81 Å3) and K_0' (4) are greater than the reported values [16] of V_0 (29.21 Å3) and K_0' (3.86). The EOS calculations show that the change in K_0 across the phases is as follows: OII \rightarrow Fe$_2$P (K_0 increases) and Fe$_2$P \rightarrow Ni$_2$In (K_0 decreases), in agreement with previous studies [8, 11, 16]. In details, using the second-order BM-EOS, K_0 increases by ~5.8% across OII \rightarrow Fe$_2$P and decreases by ~26% across Fe$_2$P \rightarrow Ni$_2$In. This clearly indicates that Ni$_2$In-ZrO$_2$ phase is noticeably more compressible than OII and Fe$_2$P phases.

Table I: Theoretical EOSs of various ZrO$_2$ phases using the second- and third-order BM-EOS [31].

For comparison, we list other theoretical results [8, 11, 16]. 1σ uncertainties are given in parentheses.

Phase	Equation of state	Reference		
	V_0 (Å3)	K_0 (GPa)	K_0'	
OII	31.35 (0.04)	251 (3)	4 (fixed)	Ref. [8]
	30.66	258	4 (fixed)	Ref. [11]
	30.78	242	4.24	Ref. [11]
	30.88	211	4.01	Ref. [16]
	31.28 (0.04)	257 (2)	4 (fixed)	This work
	31.44 (0.03)	234 (3)	4.43 (0.06)	This work
Fe$_2$P	30.34	272	4 (fixed)	Ref. [11]
	30.43	260	4.18	Ref. [11]
	30.17	248	3.76	Ref. [16]
	30.94 (0.03)	272 (2)	4 (fixed)	This work
	31.03 (0.01)	255 (1)	4.31 (0.01)	This work
Ni$_2$In	29.21	239	3.86	Ref. [16]
	31.81 (0.13)	200 (5)	4 (fixed)	This work
	32.18 (0.03)	151 (2)	5.10 (0.04)	This work

To explain the noticeable compressibility in Ni$_2$In phase, we have investigated the change in the lattice parameters (a and c) of this phase with increasing pressure. Figure 2 clearly shows that up to a few tens
of GPa, the c/a ratio sharply decreases as pressure increases. This indicates that at relatively low pressure the lattice parameter a is much more incompressible than the parameter c, which likely explains the low K_0 value of Ni$_2$In phase.

Figure 2: c/a ratio for Ni$_2$In-ZrO$_2$ phase as a function of pressure. The lattice parameter a is more incompressible than the parameter c, especially at low pressures.

3.2. Phase stability
Figure 3 shows the change in enthalpy of Fe$_2$P and Ni$_2$In phases with respect to OII phase. Our calculated transition pressures are as follows: across OII \rightarrow Fe$_2$P is 94 GPa (99 GPa) using the second-(third-) order BM-EOS [31], and across Fe$_2$P \rightarrow Ni$_2$In is 317 GPa (311 GPa) using the second- (third-) order BM-EOS [31]. Although our calculated transition pressure across OII \rightarrow Fe$_2$P of \sim26-30% is less than previously reported results [11, 16], this transition is consistent with the recent measurements and calculations, where Fe$_2$P is observed to be the post-OII phase in ZrO$_2$ [11] and in the similar dioxide TiO$_2$ [20], and thus, any high-pressure phase transition to a new structure should occur from Fe$_2$P phase. However, a recent theoretical study [16] has concluded that the transition to Ni$_2$In phase is likely to occur from OII phase and not from Fe$_2$P phase which is not consistent with the recent experimental and theoretical results [20, 11]. These studies have obviously shown that Fe$_2$P phase is more stable at high pressures compared to OII phase. On the other hand, our high-pressure phase transition sequence for ZrO$_2$ (OII \rightarrow Fe$_2$P \rightarrow Ni$_2$In) is in reasonable agreement with previous experimental studies [20, 11] as we propose the transition to Ni$_2$In to occur from Fe$_2$P rather than from OII. Even though Ni$_2$In-ZrO$_2$ phase has not been experimentally observed yet, likely due to the extreme pressure-temperature conditions required to stabilize it, our calculations show that it is the most stable phase of ZrO$_2$ at ultra-high pressures in agreement with previous calculations [16].
Figure 3: Change in enthalpy with respect to OII phase versus pressure of one ZrO$_2$ formula unit. The transition pressures from OII to Fe$_2$P (left) and from Fe$_2$P to Ni$_3$In (right) using a second- (dashed curve) and third- (solid curve) order BM-EOS [31] are given.

3.3. Volume change across transitions
In this section we discuss the volume decrease across each transition of the phase sequence OII \rightarrow Fe$_2$P \rightarrow Ni$_3$In. Figure 4 shows the volume of each ZrO$_2$ phase as a function of pressure as well as the volume decrease across each transition. Our calculations predict a small volume decrease of ~0.4% across OII \rightarrow Fe$_2$P, while we predict a large volume change of ~3.6% across Fe$_2$P \rightarrow Ni$_3$In. However, we should note that the coordination number (CN) across the transition OII \rightarrow Fe$_2$P remains unchanged, which explains the small volume decrease across this transition. On the other hand, the Fe$_2$P \rightarrow Ni$_3$In transition is associated with a CN increase from 9 to 11, and therefore, a large volume decrease is found as expected. This large volume decrease is consistent with previous studies on ZrO$_2$ [8] and similar dioxides TiO$_2$ [32] and HfO$_2$ [33] that have shown a large volume collapse when the transition across the phases is associated with a CN increase.
Figure 4: Pressure versus volume of one ZrO₂ formula unit using the third-order BM-EOS [31]. The dotted line represents the OII phase, and the solid line represents the Fe₂P phase, whereas the dashed line represents the Ni₂In phase. The volume change at the transition pressure is shown (upper inset: across Fe₂P → Ni₂In, lower inset: across OII → Fe₂P).

4. Conclusions
In summary, using DFT calculations, we investigated the stability of Ni₂In phase at high pressures with respect to OII and Fe₂P phases for ZrO₂. Our calculations showed that the predicted high-pressure phase sequence across these phases is as follows: OII → Fe₂P → Ni₂In, where Ni₂In phase is stable at pressures greater than ~317 GPa. Furthermore, we computed BM-EOS for the three phases, and found that the compressibility of Ni₂In phase is obviously high when compared to the other two high-pressure phases. Finally, we have predicted a very small volume change across OII → Fe₂P and a noticeably large volume change across Fe₂P → Ni₂In transition.

Acknowledgements
This work was completed utilizing the Holland Computing Center of the University of Nebraska.

References
[1] D. Panda and T.-Y. Tseng, “Growth, dielectric properties, and memory device applications of ZrO₂ thin films,” Thin Solid Films, vol. 531, pp. 1–20, 2013.
[2] Y. H. Wu, L. L. Chen, W. C. Chen, C. C. Lin, M. L. Wu, and J. R. Wu, “MOS devices with tetragonal ZrO₂ as gate dielectric formed by annealing ZrO₂/Ge/ZrO₂ laminate,” in Microelectronic Engineering, 2011, vol. 88, no. 7, pp. 1361–1364.
[3] I. J. Berlin and K. Joy, “Optical enhancement of Au doped ZrO₂ thin films by sol-gel dip coating method,” Phys. B Condens. Matter, vol. 457, pp. 182–187, 2015.
[4] B. Lee et al., “A novel thermally-stable zirconium amidinate ALD precursor for ZrO₂ thin films,” Microelectron. Eng., vol. 86, no. 3, pp. 272–276, 2009.
[5] A. G. Sato, D. P. Volanti, D. M. Meira, S. Damyanova, E. Longo, and J. M. C. Bueno, “Effect of the ZrO₂ phase on the structure and behavior of supported Cu catalysts for ethanol conversion,” J. Catal., vol. 307, pp. 1–17, 2013.
[6] T. Van Gestel, D. Sebold, H. Kruidhof, and H. J. M. Bouwmeester, “ZrO₂ and TiO₂
membranes for nanofiltration and pervaporation. Part 2. Development of ZrO\(_2\) and TiO\(_2\) toplayers for pervaporation,” *J. Memb. Sci.*, vol. 318, no. 1–2, pp. 413–421, 2008.

[7] I. A. Siddiquey, T. Furusawa, M. Sato, N. M. Bahadur, M. N. Uddin, and N. Suzuki, “A rapid method for the preparation of silica-coated ZrO\(_2\) nanoparticles by microwave irradiation,” *Ceram. Int.*, vol. 37, no. 6, pp. 1755–1760, 2011.

[8] Y. Al-Khatatbeh, K. K. M. Lee, and B. Kiefer, “Phase relations and hardness trends of ZrO\(_2\) phases at high pressure,” *Phys. Rev. B*, vol. 81, p. 214102, 2010.

[9] J. Haines, J. M. Leger, and A. Atouf, “Crystal structure and equation of state of cotunninite-type zirconia,” *J. Am. Ceram. Soc.*, vol. 78, no. 2, pp. 445–448, 1995.

[10] J. M. Leger, P. E. Tomaszewski, A. Atouf, and A. S. Pereira, “Pressure-induced structural phase transitions in zirconia under high pressure,” *Phys. Rev. B*, vol. 47, no. 21, pp. 14075–14083, 1993.

[11] D. Nishio-Hamane, H. Dekura, Y. Seto, and T. Yagi, “Theoretical and experimental evidence for the post-cotunninite phase transition in zirconia at high pressure,” *Phys. Chem. Miner.*, vol. 42, no. 5, pp. 385–392, 2015.

[12] O. Ohtaka, D. Andrault, P. Bouvier, E. Schultz, and M. Mezouar, “Phase relations and equation of state of ZrO\(_2\) to 100 GPa,” *J. Appl. Crystallogr.*, vol. 38, pp. 727–733, 2005.

[13] G. Fadda, L. Colombo, and G. Zanzotto, “First-principles study of the structural and elastic properties of zirconia,” *Phys. Rev. B*, vol. 79, p. 214102, 2009.

[14] M. Durandurdu, “Novel high-pressure phase of ZrO\(_2\): An ab initio prediction,” *J. Solid State Chem.*, vol. 230, no. July, pp. 233–236, 2015.

[15] H. Ozturk and M. Durandurdu, “High-pressure phases of ZrO\(_2\): An ab initio constant-pressure study,” *Phys. Rev. B*, vol. 79, p. 134111, 2009.

[16] Y. Al-Khatatbeh and K. K. M. Lee, “From superhard to hard: A review of transition metal dioxides TiO\(_2\), ZrO\(_2\), and HfO\(_2\) hardness,” *J. Superhard Mater.*, vol. 36, no. 4, pp. 231–245, 2014.

[17] O. Ohtaka, T. Yamanaka, S. Kume, E. Ito, and A. Navrotsky, “Stability of monoclinic and orthorhombic zirconia: Studies by high-pressure phase equilibria and calorimetry,” *J. Am. Ceram. Soc.*, vol. 74, no. 3, pp. 505–509, 1991.

[18] H. Dekura, T. Tsuchiya, Y. Kuwayama, and J. Tsuchiya, “Theoretical and Experimental Evidence for a New Post-Cotunninite Phase of Titanium Dioxide with Significant Optical Absorption,” *Phys. Rev. Lett.*, vol. 107, p. 45701, 2011.

[19] Y. Al-Khatatbeh, K. Tarawneh, H. Taani, and K. K. M. Lee, “Unpublished data.”

[20] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” *Phys. Rev.*, vol. 136, no. 3B, pp. B864–B871, 1964.

[21] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” *Comput. Mater. Sci.*, vol. 6, no. 1, pp. 15–50, 1996.

[22] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set,” *Phys. Rev. B*, vol. 54, no. 16, pp. 11169–11186, 1996.

[23] G. Kresse and J. Hafner, “Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements,” *J. Phys. Condens. Matter*, vol. 6, no. 40, p. 8245, 1994.
[29] G. Kresse and J. Hafner, “Ab initio molecular dynamics for open-shell transition metals,”
Phys. Rev. B, vol. 48, no. 17, pp. 13115–13118, 1993.
[30] H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev.
B, vol. 13, no. 12, pp. 5188–5192, 1976.
[31] F. Birch, “Elasticity and constitution of the Earth’s interior,” J. Geophys. Res., vol. 57, pp.
227–234, 1952.
[32] Y. Al-Khatatbeh, K. K. M. Lee, and B. Kiefer, “High-pressure behavior of TiO$_2$ as
determined by experiment and theory,” Phys. Rev. B, vol. 79, p. 134114, 2009.
[33] Y. Al-Khatatbeh, K. K. M. Lee, and B. Kiefer, “Phase diagram up to 105 GPa and
mechanical strength of HfO$_2$,” Phys. Rev. B, vol. 82, p. 144106, 2010.