GENERALIZATION OF THE GROSS-PERRY METRICS

M. Jakimowicz and J. Tafel

Institute of Theoretical Physics, University of Warsaw,
Hoża 69, 00-681 Warsaw, Poland, email: tafel@fuw.edu.pl

Abstract

A class of $SO(n+1)$ symmetric solutions of the $(N+n+1)$-dimensional Einstein equations is found. It contains 5-dimensional metrics of Gross and Perry and Millward.

1 Introduction

An extra spatial dimension was introduced by Kaluza and Klein (see e.g. [1]) in order to unify electromagnetism and gravity. Recently, due to the string theory, extra dimensions became a permanent part of the high energy theoretical physics. For instance, in brane-world models (see [2] for a review) matter fields are confined to a four-dimensional brane and gravity can propagate in higher dimensional bulk. These higher dimensional models motivate studying Einstein’s equations in $D > 4$ dimensions. Some techniques of the 4-dimensional Einstein theory were already generalized to higher dimensions. They refer mainly to the classification of the Weyl tensor, the Robinson-Trautman solutions, spacetimes with vanishing invariants and metrics with $D-2$ abelian symmetries (see e.g. [3, 4, 5, 6]).

Symmetry assumptions are one the most efficient methods of solving the Einstein equations. All well known multidimensional exact solutions like the Myers-Perry black hole [7], black ring of Emparan and Reall [8] and the Gross-Perry metrics [9] (see also [10]) admit several dimensional symmetry groups.

In [11] we proposed a construction of vacuum metrics admitting $SO(n+1)$ spherical symmetry, which was based on the symmetry reduction of $(N + n + 1)$–dimensional Einstein equations to $(N + 1)$–dimensional equations with a scalar field ϕ. There was used an additional assumption that the field of normal vectors to surfaces $\phi = const$ is geodetic and the induced metric of the surfaces is an Einstein metric. The construction, for zero cosmological constant and timelike surfaces $\phi = const$, can be summarized as follows.

Let γ_{ij} and P_{ij} be symmetric tensors depending on coordinates $x^i, i = 0, \ldots, N - 1$. Assume that γ_{ij} has the Lorentz signature and P_{ij} satisfies the following conditions

$$P^i_{\ i} = 0,$$
(1)

$$P^i_j P^j_i = 2c = const,$$
(2)

$$P^k_{\ ;i;k} = 0.$$
(3)

1
where \(P^i_j = \gamma^i_{jk} P_{kj} \) and the semicolon denotes covariant derivative related to the metric \(\gamma_{ij} dx^i dx^j \). From matrices \(\gamma = (\gamma_{ij}) \) and \(P = (P^i_j) \) we compose metric corresponding to \(\gamma e^{Pr} \), where \(\tau \) is a function of another coordinate \(s \). We assume that its Ricci tensor satisfies

\[
R^i_j (\gamma e^{Pr}) = \lambda \delta^i_j \, , \quad \lambda = \text{const} \, .
\]

Given \(c \) and \(\lambda \) we look for solutions \(\beta(s) \) and \(\phi(s) \) of the following equations

\[
(\beta \dot{\phi}) \dot{\phi} = -\beta V_{,\phi} \, ,
\]

\[
-N\lambda \beta^{-2/N} = \left(1 - \frac{1}{N}\right) \frac{\dot{\beta}^2}{\beta^2} - \frac{2c}{\beta^2} - \dot{\phi}^2 + 2V \, ,
\]

where the dot denotes the partial derivative with respect to \(s \) and \(V \) is a function of \(\phi \).

The main result of [11] is that, under conditions (1)-(4), metric

\[
\tilde{g} = -ds^2 + \tilde{g}_{ij} dx^i dx^j \, ,
\]

was

\[
\tilde{g}_{ij} = \beta^{2/N} (\gamma e^{Pr})_{ij}
\]

and \(\tau(s) \) is defined via equation

\[
\beta \dot{\tau} = 2 \, ,
\]

satisfies \((N+1)\)–dimensional Einstein equations with the scalar field \(\phi \) and potential \(V \).

Moreover, if

\[
V = -\frac{1}{2} n (n-1) e^{-2\sqrt{\frac{N}{n(n-1)}}} \phi
\]

then

\[
g = e^{-2\sqrt{\frac{n}{n(n-1)}}} \tilde{g} - e^{2\sqrt{\frac{N-1}{n(n-1)}}} \phi d\Omega_n^2
\]

is an \((N+n+1)\)–dimensional vacuum metric invariant under the group \(SO(n+1) \). Here \(d\Omega_n^2 \) is the standard metric of the \(n \)-dimensional sphere.

A particular solution of conditions (1)–(4), for any \(N > 1 \), is given by

\[
\gamma_{ij} = \text{diag}(+1, -1, -1, ..) \, , \quad P_{ij} = P_{ji} = \text{const} \, , \quad P^i_i = 0 \, , \quad \lambda = 0.
\]

For \(N = 2 \) conditions (1)–(4) can be solved in full generality. They lead either to \(\gamma^i_{j} \) or to \(c = 0 \) and to \(\gamma e^{Pr} \) equivalent to the metric

\[
(\gamma e^{Pr})_{ij} dx^i dx^j = \frac{dudv}{(1 + \frac{1}{2} uv)^2} + \tau h(u) du^2 \, ,
\]

where \(h \) is an arbitrary function of coordinate \(u \). In the next section we find solutions of equations (3), (4) and construct corresponding vacuum metrics. In section 3 we discuss properties of these metrics.
2 Multi dimensional vacuum metrics

In [11] we gave examples of vacuum metrics derived by our method. Other solutions with \(n > 1 \) can be obtained by inspection of the Gross-Perry metrics [9]. Let \(\lambda = 0 \) and \(s = s(r) \) be a function of a new coordinate \(r \). Then equations (5), (6), (9) take the form

\[
\left(\frac{\beta \phi'}{\alpha} \right)' = \alpha \beta V, \phi (14)
\]

\[
(1 - \frac{1}{N}) \frac{\beta^2}{\alpha^2} - \frac{\beta^2 \phi^2}{\alpha^2} + 2\beta^2 V = 2c , \quad (15)
\]

\[
\tau' = \frac{2\alpha}{\beta} , \quad (16)
\]

where the prime denotes the derivative with respect to \(r \) and \(\alpha = s' \). Metric (7) is given by

\[
\tilde{g} = -\alpha^2 dr^2 + \beta^2/N (\gamma e^{P r})_{i,j} dx^i dx^j . \quad (17)
\]

If \(N = n = 2 \) equations (14), (15) are satisfied by functions \(\alpha, \beta, \phi \) corresponding to the Gross-Perry metric [9]. Changing parameters in these functions leads to the following solutions for arbitrary dimensions \(N > 1 \) and \(n > 1 \)

\[
\alpha = \alpha_0 |r|^{l-1} |r - r_0|^{-p} |r + r_0|^{l+p} \quad (18)
\]

\[
\beta = \beta_0 (r^2 - r_0^2) \alpha \quad (19)
\]

\[
e^{V \frac{n(N-1)}{n-1} \phi} = (n - 1)|r\alpha| . \quad (20)
\]

Here \(l \) is a number defined by \(n \) and \(N \)

\[
l = \frac{n + N - 1}{(n-1)(N-1)} \quad (21)
\]

and \(p, \alpha_0, \beta_0 \) and \(r_0 \neq 0 \) are parameters related to the constant \(c \) via

\[
c = 2\beta_0^2 r_0^2 \left[\frac{n}{n-1} - p^2 (n-1)(N-1)^2 \right] N(n + N - 1) . \quad (22)
\]

Integrating equation (16) yields

\[
\tau = \frac{1}{\beta_0 r_0} \ln \left| \frac{r + r_0}{r - r_0} \right| + \tau_0 . \quad (23)
\]

Due to a freedom of transformations of \(r, P \) and \(\gamma \) we can assume

\[
r_0 > 0 , \quad |\alpha_0| = \frac{1}{n-1} , \quad \beta_0 = 1 , \quad \tau_0 = 0 \quad (24)
\]

(note that a sign of \(\alpha_0 \) can be still adjusted to have \(\beta > 0 \) for \(r \neq 0, \pm r_0 \)). Thus, \(p \) and \(r_0 > 0 \) remain as free parameters.
Let $N = 2$. In the case (12) and $c > 0$ the matrix P can be diagonalized by a 2-dimensional Lorentz transformation. Hence, one obtains

$$\tilde{g} = -\alpha^2 dr^2 + \beta \left(e^{\pm \sqrt{c} \tau} dt^2 - e^{\mp \sqrt{c} \tau} dy^2 \right),$$ \hspace{1cm} (25)$$

where t and y denote coordinates x^i. Substituting (18)-(24) into (25) and (11) yields the following (n+3)-dimensional vacuum metric

$$g = \left| \frac{r - r_0}{r + r_0} \right|^{p' - q} \left| \frac{r - r_0}{r + r_0} \right|^{p' + q} dt^2 - \frac{r + r_0}{|r|^2} \frac{2^{p' + 2}}{(n-1)^2} \left(\frac{dt^2}{(n-1)^2} + r^2 d\Omega_n^2 \right).$$ \hspace{1cm} (26)$$

Parameters p' and q are related to p and c by

$$p' = \frac{n - 1}{n + 1} p , \quad q = \pm \frac{\sqrt{|c|}}{r_0}. \hspace{1cm} (27)$$

Because of (22) they are constrained by

$$(n + 1)p^2 + (n - 1)q^2 = 2n. \hspace{1cm} (28)$$

For n=2 solution (26) is exactly the Gross-Perry metric [9] under the identification

$$r_0 = m, \quad p' = \frac{1}{\alpha}(\beta + 1), \quad q = \frac{1}{\alpha}(\beta - 1). \hspace{1cm} (29)$$

Here m, α and β are parameters used by Gross and Perry, constrained by the condition $\alpha = \sqrt{\beta^2 + \beta + 1}$.

If $c < 0$ the matrix P can be put into the off diagonal form. Instead of (25) one obtains

$$\tilde{g} = -\alpha^2 dr^2 + \beta \left[\cos(\sqrt{|c|})(dt^2 - dy^2) \pm 2 \sin(\sqrt{|c|} \tau) dt dy \right].$$ \hspace{1cm} (30)$$

In this case the vacuum metric corresponding to (18)-(24) reads

$$g = \left| \frac{r - r_0}{r + r_0} \right|^{p'} \left[\cos \left(q \ln \left| \frac{r + r_0}{r - r_0} \right| \right)(dt^2 - dy^2) + 2 \sin \left(q \ln \left| \frac{r + r_0}{r - r_0} \right| \right) dt dy \right]$$

$$- \frac{|r + r_0|^{2^{p' + 2}}}{|r|^2 |r - r_0|^{2^{p' - 2}} (n-1)^2} \left(\frac{dr^2}{r^2} + r^2 d\Omega_n^2 \right).$$ \hspace{1cm} (31)$$

Relation (27) is still valid, but now parameters p', q are constrained by

$$(n + 1)p^2 - (n - 1)q^2 = 2n. \hspace{1cm} (32)$$

If $N = 2$ and

$$p = \pm \frac{\sqrt{2n(n+1)}}{n - 1} \hspace{1cm} (33)$$
then it follows from (22) that \(c = 0 \) and one can merge solutions (18)-(20) with metric (13) for \(\lambda = 0 \). In this way the following vacuum metric is obtained

\[
g = \left| \frac{r - r_0}{r + r_0} \right|^{\pm \sqrt{\frac{2n}{n+1}}} \left(dudv + \ln \left| \frac{r + r_0}{r - r_0} \right| h(u)du^2 \right) \tag{34}
\]

\[
- \frac{|r + r_0|^{\frac{2}{n+1}} (\pm \sqrt{\frac{2n}{n+1} + 1})}{|r|^{\frac{2}{n+1}} |r - r_0|^{\frac{2}{n+1}} (\pm \sqrt{\frac{2n}{n+1} - 1})} \left(\frac{dr^2}{(n-1)^2} + r^2 d\Omega_n^2 \right).
\]

In the case \(n = 2 \), \(h(u) = 0 \) metric (34) with the lower sign coincides with the metric given by Millward [12] under the identification

\[
b = \frac{1}{\sqrt{3}} \ln \left| \frac{r - r_0}{r + r_0} \right|, \quad M = \frac{\sqrt{3}}{2} r_0. \tag{35}
\]

For \(N > 2 \) one can easily construct vacuum solutions based on relations (11), (12), (17)-(24). They generalize metrics (26) and (31). In this case a classification of symmetric tensors (here \(P_{ij} \)) in multidimensional Lorentzian manifolds [3] can be useful in order to distinguish nonequivalent solutions. One can also construct metrics which generalize (34) by taking \(\gamma e^{\tau u} \) corresponding to the metric

\[
dudv + \tau h(u)du^2 + \sum_{a=1}^{N-2} e^{c_a \tau} dy_a^2, \tag{36}
\]

where constants \(c_a \) are constrained by

\[
\sum_{a=1}^{N-2} c_a = 0. \tag{37}
\]

In this case we can use functions defined by (18)-(24) with constant \(c \) given by

\[
c = \frac{1}{2} \sum_{a=1}^{N-2} c_a^2. \tag{38}
\]

3 Discussion

In addition to \(SO(n+1) \) symmetries metrics (26) and (31) admit one timelike and one spacelike Killing vector (note that interpretation of \(\partial_t \) and \(\partial_y \) in case (31) can change depending on value of \(r \)). Metric (26) is static and metric (31) is stationary. In the limit \(r \to \infty \) they behave like

\[
dt^2 - dy^2 - r^{-2(n-2)} \left(\frac{dr^2}{(n-1)^2} + r^2 d\Omega_n^2 \right). \tag{39}
\]
Under the change $r' = r^{\frac{1}{n-1}}$ metric (39) takes the standard form of the (n+3)-dimensional Minkowski metric. Thus, metrics (26) and (31) are asymptotically flat on surfaces $y = \text{const}$.

Metric (34) has a null Killing vector field ∂_v and it belongs to generalized Kundt’s class [14]. If $r \to \infty$ it tends asymptotically to the flat metric in the form

$$du dv - r^{-2 \frac{2n-2}{n-1}} \left(\frac{dr^2}{(n-1)^2} + r^2 d\Omega_n^2 \right). \tag{40}$$

Generalizing results of [13] for the Gross-Perry metric to arbitrary n, one can show that both metrics (26) and (31) are of algebraic type I. For $h \neq 0$ metric (34) is of algebraic type II_i and for $h(u) = 0$ it is of type D. Aligned null vector fields for metrics (26), (31) and (34) are given in Appendix A.

All metrics (26), (31) and (34) are singular at $r = \pm r_0$ and $r = 0$. Near $r = 0$ they behave as

$$dt^2 - dy^2 - r^{-\frac{2n}{n-1}} \left(\frac{dr^2}{(n-1)^2} + r^2 d\Omega_n^2 \right). \tag{41}$$

Substituting $r' = r^{\frac{1}{n-1}}$ shows that (41) is the flat metric. Thus, $r = 0$ is a coordinate singularity. By calculating the Kretschmann invariant (see Appendix B) it can be shown, that singularity at $r = \pm r_0$ is essential for all values of parameters in the case of metrics (26) and (34). In the case of metric (31) the singularity at $r = r_0$ and $r = -r_0$ is essential when, respectively, $p' < n$ or $p' > -n$. For $p' > n$ or $p' < -n$ the geodesic distance along ∂_r tends to infinity when $r \to r_0$ or $r \to -r_0$, respectively. Thus, these regions represents an infinity different from that given by $r \to \infty$. For these values of parameters the Riemann tensor (in an orthonormal basis) tends to zero when $r \to r_0$ or $r \to -r_0$, respectively. However, the asymptotic metric is not the (n+3)-dimensional Minkowski metric. Its coefficients in front of dt and dy tend to zero whereas the coefficient in front of $d\Omega_n^2$ tends to infinity like the geodesic distance to the power $2(p' - 1)/(p' - n)$ or $2(p' + 1)/(p' + n)$, respectively.

Since metrics (26), (31) are invariant under the nonnull field ∂_u they can be interpreted in the context of the Kaluza-Klein theory. Then metric (26) is equivalent to the scalar field given by g_{yy} and the asymptotically flat (n+2)-dimensional metric induced on the surface $y=\text{const}$. The case $n = 2$ (the Gross-Perry metric) was studied in this framework by Ponce de Leon [15]. In order to interpret metric (31) with $q \neq 0$ in this vein one can write it in the form

$$g = -\Phi(dy - A_0 dt)^2 + g_{n+2}. \tag{42}$$

Here

$$A_0 = \tan \left(q \ln \left| \frac{r + r_0}{r - r_0} \right| \right) \tag{43}$$

is the electromagnetic potential,

$$\Phi = \left| \frac{r - r_0}{r + r_0} \right|^{p'} \cos \left(q \ln \left| \frac{r + r_0}{r - r_0} \right| \right) \tag{44}$$
corresponds to a scalar field and
\[g_{n+2} = \frac{|r - r_0|^{\nu'}}{|r + r_0|} \left(\frac{dt^2}{\cos(q \ln \frac{r + r_0}{r - r_0})} - \frac{|r + r_0|^{2\nu' q}}{|r|^{2n-1}} - \frac{dr^2}{(n-1)^2 + r^2 d\Omega_n^2} \right) \] (45)
defines, modulo a power of \(\Phi \), a \((n+2)\)-dimensional metric. This metric is Lorentzian and asymptotically flat for large values of \(r \) and becomes singular when \(r \) diminishes to a value satisfying condition \(q \ln \frac{r + r_0}{r - r_0} = \pm \pi/2 \).

Acknowledgements. This work was partially supported by the Polish Committee for Scientific Research (grant 1 PO3B 075 29).

Appendix A

The aligned null direction is given by
\[\hat{l} = \left(\frac{|r - r_0|^{\nu - q}}{|r + r_0|} + \frac{1}{2} f^2 \right) dt + \left(\frac{|r - r_0|^{\nu}}{|r + r_0|} - \frac{1}{2} f^2 \frac{|r - r_0|^{q}}{|r + r_0|} \right) dy + \frac{f |r + r_0|^{\nu + 1}}{(n-1)|r|^{n-1}} |r - r_0|^{\nu - 1} dr \] (A.1)

for metric (26) and by
\[\hat{l} = \left(\sin \left(q \ln \frac{r + r_0}{r - r_0} \right) + 1 \right) \left(1 - \frac{1}{2} f^2 \frac{|r - r_0|^{q}}{|r + r_0|} \right) \cos \left(q \ln \frac{r + r_0}{r - r_0} \right) \frac{\cos \left(q \ln \frac{r + r_0}{r - r_0} \right)}{\left(\sin \left(q \ln \frac{r + r_0}{r - r_0} \right) + 1 \right)^2} dt + \left(\frac{1}{2} f^2 \frac{|r - r_0|^{\nu}}{|r + r_0|} - \cos \left(q \ln \frac{r + r_0}{r - r_0} \right) \right) dy + \frac{|r + r_0|^{\nu + 1}}{(n-1)|r|^{n-1}} |r - r_0|^{\nu - 1} dr \] (A.2)

for metric (31). The function \(f \) is a solution of the polynomial equation
\[f^4 - 8 f^2 \left(\frac{p'}{q} + \frac{2 q (n - 1) rr_0}{n (r^2 + r_0^2 - 2 p' r r_0)} \right) A - 16 A^2 = 0, \] (A.3)

where
\[A = \frac{|r - r_0|^{\nu - q}}{|r + r_0|} \] (A.4)
in the case (26) and
\[A = \frac{|r - r_0|^{- \nu}}{|r + r_0|} \left(\sin \left(q \ln \frac{r + r_0}{r - r_0} \right) + 1 \right) \] (A.5)
in the case (31). For metric (34) the aligned null directions are defined by

\[\hat{n} = \frac{r + r_0}{r - r_0} \pm \sqrt{\frac{2n}{n+1}} \] \quad (A.6)

and

\[\hat{l} = \frac{1}{2} \left(\ln \frac{r - r_0}{r + r_0} + f^2 \frac{r + r_0}{r - r_0} \pm \sqrt{\frac{2n}{n+1}} \right) du + \frac{1}{2} dv + \frac{r + r_0}{r - r_0} \frac{1}{n-1} \left(\pm \sqrt{\frac{2n}{n+1}} \right) dy. \] \quad (A.7)

In this case

\[f^2 = \left(\mp \sqrt{\frac{n+1}{2n}} + \frac{2(n^2 - 1)rr_0}{n(n+1)(r^2 + r_0^2)} \mp \sqrt{2n(n+1)rr_0} \right) h(u) \left(\pm \sqrt{\frac{2n}{n+1}} \right). \] \quad (A.8)

Appendix B

The Kretschmann invariant for metrics (26) and (31) has the following form

\[R_{\mu\nu\delta\sigma} R^{\mu\nu\delta\sigma} = 16n(n - 1)r_0^2 \left| r - r_0 \right|^{2(n+1)} \left(4(n - 2p^2) + 2p' (n(n + 1)(p^2 - 3) + 2(1 + p^2)) r_0 + (4 - 3n - 5n^2 - 2(-2 + n(n + 3))p^2 + 4(n(n + 3))p^2) r^2 r_0^2 + 2p'(n(n + 1)(p^2 - 3) + 2(1 + p^2)) r_0^3 + (n^2 + n - 2p^2) r_0^4 \right). \] \quad (B.1)

In the case of metric (31) the Kretschmann invariant is given by (B.1) with \(p' = \pm \sqrt{\frac{2n}{n+1}} \).

References

[1] Coquereaux R. and Jadczyk A. 1988, Riemannian geometry, fiber bundles, Kaluza-Klein theories and all that..., *World Scientific Lecture Notes in Physics* 16

[2] Maartens R. 2004, Brane-world gravity, *Living Rev. Relativity* 7, http://www.livingreviews.org/lrr-2004-7

[3] Coley A., Milson R., Pravda V., Pravdova A. 2004, Classification of the Weyl Tensor in Higher Dimensions *Class. Quantum Grav.* 21 L35-L42

[4] Podolsky J. and Ortaggio M. 2006, Robinson-Trautman spacetimes in higher dimensions, *Class. Quantum Grav.*, 23 57855797

[5] Coley A., Fuster A., Hervik S., Pelavas N. 2006, Higher dimensional VSI spacetimes, *Class. Quantum Grav.*, 23 7431-7444
[6] Harmark T. 2004, Stationary and Axisymmetric Solutions of Higher-Dimensional General Relativity, *Phys. Rev.*, **D70** 124002

[7] Myers R.C. and Perry M.J. 1986, Black holes in higher dimensional space-time, *Annals Phys.*, **172** 304

[8] Emparan R. and Reall H.S. 2002, Rotating black ring in five dimensions, *Phys. Rev. Lett.*, **88** 101101

[9] Gross D.J. and Perry M.J. 1983, Magnetic monopoles in Kaluza-Klein theories, *Nucl. Phys.*, **B 226** 29

[10] Davidson A. and Owen D. 1985, Black holes as a windows to extra dimensions *Phys. Lett.*, **B 155** 247

[11] Jakimowicz M. and Tafel J. 2008, SO(n + 1) symmetric solutions of the Einstein equations in higher dimensions, *Class. Quantum Grav.*, **25** 175002

[12] Millward R.S. 2008, A five-dimensional Schwarzschild-like solution, arXiv: gr-qc/0603132

[13] Coley A. and Pelavas N. 2006, Classification of Higher Dimensional Spacetimes, *Gen. Rel. Grav.* **38** 445-461

[14] Coley A. 2008, Classification of the Weyl Tensor in Higher Dimensions and Applications, *Class. Quantum Grav.*, **25** 033001

[15] Ponce de Leon J. 2007, Exterior spacetime for stellar models in 5-dimensional Kaluza-Klein gravity, *Class. Quantum Grav.* **24** 1755