Supporting Information to:

Modular Use of the Uniquely Small Ring A of Mersacidin Generates the Smallest Ribosomally Produced Lanthipeptide

Jakob H. Viel, Oscar P. Kuipers*

Department of Molecular Genetics, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.

*Correspondence:
Oscar P. Kuipers
o.p.kuipers@rug.nl
Table of contents

S1. Amino acid sequences of all constructs ...3
S2. List of primers used in this study ..4
S3. HPLC protocol truncated mersacidin variants...5
S4. HPLC spectra, LC-MS and free cysteine assays of truncated mersacidin mutants...6
S5. LC-MS Ring A mutants ...13
S6. Mass table of mersacidin variants ...16
S7. Tricine SDS-page of all mutants ...17
S8. Activity tests all mutants ..18
References ...19
S1. Amino acid sequences of all constructs

Truncated constructs

Wildtype	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGGVCTLTSECIC
a	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGVCTLTSECIC
b	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGGVNILL
c	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGGVAIL
d	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGG
e	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFL
f	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTF
g	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTF

Ring A mutants

Wildtype	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGGVCTLTSECIC
h	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGGVCTLTSECIC
i	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGGVCTLTSECIC
j	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGGVCTLTSECIC
k	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGGVCTLTSECIC
l	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGGVCTLTSECIC
m	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGGVCTLTSECIC
n	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGGVCTLTSECIC
o	MHHHHHHGSQEAIIRSWKDPFSRENSTQNPAGNPSELKEAQMDFKLVGAGDMEAACCTFLPGGGGVCTLTSECIC
S2. List of primers used in this study

Sequence	Template	Result
fw GACGGGTCTCTCTTCTATAATTTAAAGCTTTCTTTGAACCCTG	pACYC	pACYC a + MrsM
rv GACGGGTCTCCAGAATAACAAACACCGCGGCACCAGG		
fw GACGGGTCTCCATCTGATAATTAAAGCTTTCTTTGAACCCTG	pACYC	pACYC b + MrsM
rv GACGGGTCTCCGAATATTAACACCGCCGCCACCAGG		
fw GACGGGTCTCCGGCGGCGGTGTTGTTAATTTCTATAATTTAAAGCTTTCTTTGAACCCTG	pACYC	pACYC c + MrsM
rv GACGGGTCTCCCGCCACCAGGCGAAGGGAAGGACATGCTGCCTTC		
fw GACGGGTCTCCTGAATTATAAGCTTTCTTTGAACCCTGAGC	pACYC	pACYC d + MrsM
rv GACGGGTCTCCAGGACATGGTTAAGCTTTCTTTGAACCCTG		
fw GACGGGTCTCCCGGAGGGAAGGGAAGGACATGCTGCCTTC	pACYC	pACYC e + MrsM
rv GACGGGTCTCCCGCCACCAGGCGAAGGGAAGGACATGCTGCCTTC		
fw GACGGGTCTCCGCGGTGTTAATTTAAAGCTTTCTTTGAACCCTGCAGC	pACYC	pACYC f + MrsM
rv GACGGGTCTCCCGCCACCAGGCGAAGGGAAGGACATGCTGCCTTC		
fw GTCAAGGTCTCTCTTTAATTTAAAGCTTTCTTTGAACCCTGAC	pACYC	pACYC g + MrsM
rv GACGGGTCTCGTAAAAGTACATGCTGCTTCCATGTCTCCCG		
fw GACGGGTCTCCGTTTTAATTCTTCCTTGAGCTTTCTTTGAACCCTGAC	pACYC	pACYC h + MrsM
rv GACGGGTCTCCGTTTTAATTCTTCCTTGAGCTTTCTTTGAACCCTGAC		
fw GACGGGTCTCCGTTTTAATTCTTCCTTGAGCTTTCTTTGAACCCTGAC	pACYC	pACYC i + MrsM
rv GACGGGTCTCCGTTTTAATTCTTCCTTGAGCTTTCTTTGAACCCTGAC		
fw GACGGGTCTCCGGCGCAATTTGTCCTTTTACATTGCTGCTTCCATGTCTCCCGACCTAC	pACYC	pACYC j + MrsM
rv GACGGGTCTCGCAAGTTGCTGCTTCCATGTCTCCCGACCTAC		
fw GACGGGTCTCTGCAAGTTGCTGCTTCCATGTCTCCCGACCTAC	pACYC	pACYC k + MrsM
rv GACGGGTCTCTGCAAGTTGCTGCTTCCATGTCTCCCGACCTAC		
fw GACGGGTCTCTGGCGACTTTTACATTGCTGCTTCCATGTCTCCCGACCTAC	pACYC	pACYC l + MrsM
rv GACGGGTCTCTGGCGACTTTTACATTGCTGCTTCCATGTCTCCCGACCTAC		
fw GACGGGTCTCCGTGCGACTTTTACATTGCTGCTTCCATGTCTCCCGACCTAC	pACYC	pACYC m + MrsM
rv GACGGGTCTCCGTGCGACTTTTACATTGCTGCTTCCATGTCTCCCGACCTAC		
fw GACGGGTCTCCGTGCGACTTTTACATTGCTGCTTCCATGTCTCCCGACCTAC	pACYC	pACYC n + MrsM
rv GACGGGTCTCCGTGCGACTTTTACATTGCTGCTTCCATGTCTCCCGACCTAC		
fw GACGGGTCTCCGTCGTGCGACTTTTACATTGCTGCTTCCATGTCTCCCGACCTAC	pACYC	pACYC o + MrsM
rv GACGGGTCTCCGTCGTGCGACTTTTACATTGCTGCTTCCATGTCTCCCGACCTAC		

Note: The primer sequences are designed to amplify specific regions of the DNA template, and the results indicate the successful amplification of the target sequences.
S3. HPLC protocol truncated mersacidin variants

Time [min]	Milli-Q + 0.1% TFA	Acetonitrile + 0.1 % TFA	Flow [ml/min]
0.00	95.0	5.0	1.00
2.00	95.0	5.0	1.00
3.00	75.0	25.0	1.00
4.00	75.0	25.0	1.00
30.00	59.0	41.0	1.00
30.10	5.0	95.0	1.00
35.00	5.0	95.0	1.00
35.10	95.0	5.0	1.00
S4. HPLC spectra, LC-MS and free cysteine assays of truncated mersacidin mutants

a)

HPLC spectrum

LC-MS Peak 1	Peak 1 + TCEP	Peak 1 + TCEP + IAA
7441.47	7443.49	7557.56
7458.48	7500.54	7574.58
7600.37	7600.00	

Peak 1 contains a disulfide bridge that can reduced by TCEP, leading to a 2 Da mass shift.

b)

HPLC spectrum

LC-MS Peak 1	Peak 1 + TCEP	Peak 1 + TCEP + IAA
7454.52	7454.53	7454.54
7419.53	7436.53	7511.65
7471.52	7438.53	7704.00
7632.57	7560.46	

In peak 1, TCEP + IAA does not shift the expected mass for the dehydrated construct (S7), meaning that the ring was formed in this peak.
Peak 2 contains 1 x dehydrated disulfide bridge dimers lacking lanthionine rings (14882.00 Da), that is reduced to it’s monomer (7442.52 Da) by TCEP. In peak 1, TCEP + IAA does not shift the expected mass for the dehydrated construct (S7), meaning that the ring was formed in this peak.
In peak 1, TCEP + IAA does not shift the expected mass for the dehydrated construct (S7), meaning that the ring was formed in this peak. In peak 2 most product shifted. In peak 3 the product had the wrong mass and was not further analyzed.
In peak 1, the main product does not have the expected mass, probably through an unknown adduct. In peak 2, TCEP + IAA shifts the expected mass for the dehydrated construct (S7), meaning that the ring was mostly not formed in this peak. For this construct atmost a bit of product is formed, and, since the peak of interest (2) overlaps with peak 1 containing a strange adduct, it would be hard to purify.
f) HPLC spectrum

LC-MS Peak 1

Peak 1 + TCEP + IAA

Peak 1, like peak 1 of construct e, has an unknown adduct of approximately 305 Da. The reduction and free cysteine essay, leads to removal of the adduct, but the resulting peak is the alkylated product, meaning the ring is not formed. Peak 2 has the correct mass, and the free cysteine essay causes almost no shift, meaning that the ring is formed in the majority of the product. Peak 2 is also easily separated from other products by HPLC, making it an attractive candidate future work.

g) HPLC spectrum

No major products could be purified for construct g, which is an indication that no dehydration can occur in this construct. Lack of dehydration and or ring formation leads to degradation during the long expression time for these constructs.
Because the results of the free cysteine assay of construct a didn’t completely agree with the mass shift of the TCEP reduction (i.e., the fast majority rather than all of the peptide shifted), a free cysteine essay was done on construct a expressed without MrsM, that should thus always result in a shift resembling the alkylation of two cysteines. As can be seen in the top figure, the fast majority of the product has been alkylated twice (7597.59 Da, 7.598,45 Da theoretical), with trace amounts of once alkylated product (7539.56 Da, 7.541,38 Da theoretical). Small amounts of product with a higher retention time can be seen in the lower figure. Here the amount of once alkylated product is higher, and trace amounts of non-alkylated product are observed (7483.54 Da, 7484.305 Da theoretical). The control points out that trace amounts of product are not fully alkylated, which should be considered a
baseline of the free cysteine assays. And thus, from these experiments complete lack of ring formation cannot be confirmed. However, they are more than sufficient to compare ring formation efficiency between different mutants and confirm complete ring formation.

The same phenomenon can be seen in the control free cysteine essay of unmodified construct c (below). The cysteine residues in the majority of the product is completely alkylated (7521.91 Da, 7522.31 Da theoretical), with a trace amounts of non-alkylated peptide in the higher retention time products (7464.56 Da, 7465.24 Da theoretical (S6)).
S5. LC-MS Ring A mutants

	mono-isotopic mass $-\text{CO}_2$	
wildtype		
	8057.70	
-1H$_2$O	8039.69	
-2H$_2$O	8021.68	
-3H$_2$O	8003.67	
-4H$_2$O	7985.66	
-5H$_2$O	7967.65	
h		
	8070.69	
-1H$_2$O	8052.68	
-2H$_2$O	8034.67	
-3H$_2$O	8016.66	
-4H$_2$O	7998.65	
-5H$_2$O	7980.64	
i		
	8027.69	
-1H$_2$O	8009.68	
-2H$_2$O	7991.67	
-3H$_2$O	7973.66	
-4H$_2$O	7955.65	
-5H$_2$O	7937.64	
	mono-isotopic mass -CO₂	
---------------	-------------------------	
j		
63		
7900		
7915.65		
7910.65		
7932.65	7986.66	
7949.64	7968.65	
7965.64	7950.64	
7986.65	7932.63	
8012.63	7914.62	
8020	7896.61	
k		
	8057.70	
	8039.69	
	8021.68	
	8003.67	
	7985.66	
	7967.65	
l		
	8128.74	
	8110.72	
	8092.71	
	8074.70	
	8056.69	
	8038.68	
	m	mono-isotopic mass -CO₂
----	------------	-------------------------
	7893.67	7981.67
	7909.64	7963.66
	7926.65	7945.65
	7944.65	7927.64
	7961.65	7909.62
	7978.65	7891.61

	n	mono-isotopic mass -CO₂
	8033.72	8128.74
	8057.73	8110.72
	8074.72	8092.71
	8091.72	8074.70
	8107.72	8056.69
	8125.72	8038.68

	o	mono-isotopic mass -CO₂
	7944.68	8057.70
	7967.69	8039.69
	7985.68	8021.68
	8003.68	8003.67
	8019.68	7985.66
	8035.68	7967.65
S6. Mass table of mersacidin variants

Truncated mersacidin constructs (mono-isotopic)	Mono-isotopic masses (Da)	+ IAA	+2 IAA				
Mutant	Unmodified	-1 x H₂O	-2 x H₂O	-1 x H₂O	-2 x H₂O	-1 x H₂O	-2 x H₂O
a	7.479,52	7.461,51	7.443,49	7.518,58	7.500,56	7.575,65	7.557,64
b	7490,549	7.472,54	7.454,53	7.529,61	7.511,60	N/A	N/A
c	7460,539	7.442,53	N/A	7.499,60	N/A	N/A	N/A
d	6994,248	6.976,24	6.958,23	7.033,31	7.015,30	N/A	N/A
e	6726,131	6.708,12	6.690,11	6.765,19	6.747,18	N/A	N/A
f	6696,121	6.678,11	N/A	6.735,18	N/A	N/A	N/A
g	6511,999	6.493,99	N/A	6.551,06	N/A	N/A	N/A

Ring A mutants

Mono-isotopic masses (Da)	Unmodified	-CO₂	-1 x H₂O	-2 x H₂O	-3 x H₂O	-4 x H₂O	-5 x H₂O
wt	8.103,70	8.057,70	8.039,69	8.021,68	8.003,67	7.985,66	7.967,65
h	8.116,70	8.070,69	8.052,68	8.034,67	8.016,66	7.998,65	7.980,64
i	8.073,69	8.027,69	8.009,68	7.991,67	7.973,66	7.955,65	7.937,64
j	8.032,67	7.966,66	7.968,65	7.950,64	7.932,63	7.914,62	7.896,61
k	8.103,70	8.057,70	8.039,69	8.021,68	8.003,67	7.985,66	7.967,65
l	8.174,74	8.128,74	8.110,72	8.092,71	8.074,70	8.056,69	8.038,68
m	8.027,67	7.981,67	7.963,66	7.945,65	7.927,64	7.909,62	7.891,61
n	8.174,74	8.128,74	8.110,72	8.092,71	8.074,70	8.056,69	8.038,68
o	8.103,70	8.057,70	8.039,69	8.021,68	8.003,67	7.985,66	7.967,65

Truncated mersacidin constructs free cysteine control samples (average)

Average masses (Da)	Control samples	Unmodified	+IAA	+2IAA
a	7484,305	7.541,38	7.598,45	
c	7465,237	7.522,31	N/A	
S7. Tricine SDS-page of all mutants

For all samples except d, 12 µl of Ni-NTA chromatography elution fraction was loaded with 4 µl of 5 x loading dye. For sample d, 6 µl of Ni-NTA chromatography elution fraction was loaded with 4 µl of 5 x loading dye, because the expression volume was double that of the other mutants. Each slot contains the expression yield of 2 mL of expression culture. As the Wildtype mersacidin is expressed. As the expression yield of wild type mersacidin in the E. coli heterologous expression system is around 7.5 mg/L, we can estimate the yield of each individual construct to be between 1 and 15 mg/L of expression volume.
For all mutants, 8 µL of freeze-dried C-18 purified peptide, dissolved in 150 µL Milli-Q water, was digested by adding 1 µL of AprE-His, and setting the final volume to 10 µL by adding 1 µL of Milli-Q water, according to the previously described protocol. For the wild type control, containing MrsMD modified His6-MrsA, 2 µL of freeze-dried C-18 purified peptide, dissolved in 150 µL Milli-Q water was digested by adding 1 µL of AprE-His. For the control, the final volume was set to 10 µL by adding 7 µL of Milli-Q water. A nisin solution of 25 ng/µL was used as a positive control. Of all samples and controls, 9 µL was spotted on the activity plates.
References

(1) Viel, J. H.; Jaarsma, A. H.; Kuipers, O. P. Heterologous Expression of Mersacidin in Escherichia Coli Elucidates the Mode of Leader Processing. *ACS Synth. Biol.* **2021**, *10* (3), 600–608. https://doi.org/10.1021/acssynbio.0c00601.

(2) Viel, J. H.; Kuipers, O. P. Mutational Studies of the Mersacidin Leader Reveal the Function of Its Unique Two-Step Leader Processing Mechanism. *ACS Synth. Biol.* **2022**, *11* (5), 1949–1957. https://doi.org/10.1021/acssynbio.2c00088.