Laser micromarking technique in studying the negative gravitropism in pea stem

Akira Watanabe1,*, Ashiqur Rahman1, Kazuhiko Nishitani2, Rie Yamada3, Mariko Takahashi3, Satoru Tsugawa4, Taku Demura4

1Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577, Japan; 2Department of Biological Sciences, Faculty of Science, Kanagawa University, 259-1293, Japan; 3Tohoku Electronic Industrial Co., Ltd., 2-14-1 Mukaiyama, Taihaku-ku, Sendai-shi, Miyagi 982-0841, Japan; 4Division of Biological Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayamacho, Ikoma-shi, Nara 630-0192, Japan
*E-mail: akira.watanabe.c6@tohoku.ac.jp Tel & Fax: +81-22-217-5851

Received June 13, 2020; accepted September 23, 2020 (Edited by T. Kotake)

Abstract A laser micromarking technique on plant epidermis was developed to study how a plant can reduce the stress in bending behavior by controlling the growth and morphogenesis. The negative gravitropism in a pea seedling (Pisum sativum L.) was discussed based on the time-dependent displacement of laser marking points which were formed by spatially-selective laser ablation of the cuticle layer that covers the outer surface of a plant. The elongation of the stem in the horizontal direction was remarkable in the first half of the gravitropism. The elongation percentages of the stem length between laser-marking points at around upper surface, middle, and bottom surface were evaluated to be 2.57, 4.87, and 7.70%, respectively. The characteristic feature of the stem bending in gravitropism is the elongation even at the upper surface region, that is, inside of the bending. This is a different feature from cantilever beams for structural materials like metals and polymers, where the compression of the upper surface and elongation of the bottom surface are caused by bending. Another laser micromarking technique was developed to improve the resolution of a dot-matrix pattern by fluorescent material transfer to a plant through a masking film with a micro-hole matrix pattern. Similar time-dependent displacement behavior was observed for a fluorescent dot-marked stem showing a feedback control loop in the mechanical optimization. These results suggested that plants solve the problem of the stress in stem bending through growth. The laser micromarking is an effective method for studying the mechanical optimization in plants.

Key words: gravitropism, laser micromarking, mechanical optimization in plants, stem bending.

Plants optimize the size, shape and organs under external loads such as wind, rain, temperature, light, gravity, neighboring structures and internal loads such as plant’s own weight, turgor pressure in cells, and so on. Beam models have been applied for the bending of a plant stem in the field of mechanobiology (Moulia et al. 2015). A beam is a structural element of building to withstand a load. A beam of any elastic material shows a change in shape under external loads. When a simply supported structural beam is loaded downwards at the middle, the upper surface of the bending beam is in compression and the bottom surface is in tension. Figure 1 is the image of static stress simulation for a cantilever beam based on finite element analysis (FEA) by a computer aided design software (Fusion 360), where a low-density polyethylene (LDPE) rod with the size of 40 mm long and 2 mm diameter was loaded with a concentrated load of 0.1 N upwards at the right-hand edge. The upward bending of the LDPE rod was shown with the stress distribution. The maximum compression and tension stresses indicated by red color are distributed around the upper and bottom surfaces at the left-hand edge, respectively. The blue color is assigned to the unstressed region and distributed at the center of the beam, which is called the neutral axis (NA) of a beam. Such a stress distribution caused the compression of the upper surface and elongation of the bottom surface. On the other hand, NA region showed no change in the length. Such distortions are characteristic of a bending beam consisting of structural materials. An overload distortion causes the risk of breakages. In this paper, we report the mechanical optimization process in plants studied by using laser micromarking technique on a plant stem. The issue in this study is how a plant can reduce the stress in bending by controlling the growth and morphogenesis. As a bending behavior of a plant, the gravitropism in a pea seedling (Pisum sativum L.) was studied by using laser micromarking technique. Plant tropisms are the

Abbreviations: FEA, finite element analysis; LDPE, low-density polyethylene.

This article can be found at http://www.jspcmb.jp/
Published online December 11, 2020
mechanisms by which plants optimize the shape to environmental changes. Gravitropism is important in plants as it directs stem growth in the opposite direction to gravity (negative gravitropism) (Morita 2010; Sack 1991). The displacement of a plant stem in gravitropism was studied by measuring the position changes for small dot matrix on a plant stem.

Laser micromarking on a plant stem was conducted by using a nanosecond pulse laser (355 nm, 30 kHz, 3 W, FWHM 13 ns, INNGU LASER Pulse 355-3W). The laser beam was scanned by a galvano-scanner (MASTER LASER) with an f-θ lens (F=100 mm). Figure 2A shows the macro-photographic image of a dot-matrix pattern directly drawn on a pea seedling stem, where the spacing distance among dot patterns was 400 µm. The formation of dot pattern can be attributed to the laser-ablation of the cuticle layer that covers the outer surface of a plant.

In this type of the laser micromarking, the dot size was several tens micrometer because of the heat formation at the laser-irradiated point although the spot size of the focused laser beam was several micrometer.

The displacements of laser marking dots were recorded by a digital camera (61 megapixels, Sony α7R IV) equipped with a macro lens (Zhongyi Mitakon 20 mm F2 4.5x) partially irradiating a white LED light on a pea seedling stem through an optical fiber, where a cut pea seedling stem was set in a sample tube bottle with a hydroponic sponge and water. The upward bending of a pea seedling stem in this experiment can be attributed to the gravitropism mainly because the white LED light was partially irradiated on a narrow region of the stem from diagonally below. In addition, gravitropism is the dominant tropic response in the early stage of bending compared with phototropism (Franssen 1980; Fukaki et al. 1996; Hart and Macdonald 1981). The macro-
photographic images before and after gravitropism are shown in Figure 2B. The time-dependent displacement of a laser-making point indicated by a blue broken-line circle during gravitropism was analyzed and plotted in Figure 3. The X-axis displacement in the horizontal direction of stem elongation showed the increase at the early stage of the gravitropism and then decreased after 70 min (Figure 3A). The Z-axis displacement in the direction of negative gravitropism showed a gradual increase of slope in the upward curve (Figure 3B). The trajectory of the laser marking point on the plant stem in X–Z plane is shown in Figure 3C. The elongation of the stem to the horizontal direction was remarkable in the first half of the gravitropism. The bending of the stem caused the decrease of X-displacement in the latter half of the gravitropism.

The elongation percentage of the stem length between right and left hand laser-marking points was evaluated as shown in Figure 4, where the elongation percentages for different positions of the stem were compared at around upper surface a, middle b, and bottom surface c of the stem in gravitropism. The lengths before and after gravitropism and the elongation percentages are summarized in Table 1. The elongation percentages at around upper surface a, middle b, and bottom surface c are 2.57, 4.87, and 7.70%, respectively. The growth in elongation even at the upper surface region, that is, inside of the bending is characteristic of a stem bending in gravitropism. This is a different feature from a cantilever beam as shown in Figure 1, where the compression of the upper surface and elongation of the bottom surface were caused by bending.

Another laser micromarking technique was developed to improve the resolution of a dot-matrix pattern by fluorescent material transfer through a masking film with a laser-written hole-matrix pattern. A thin black masking tape (Teraoka) was pasted on a pea seedling stem, which further reduced the damage of a plant during laser marking because the black masking tape has a high absorption efficiency for the 355 nm laser beam. A fluorescent dot-matrix pattern was formed on a pea seedling stem by coating a fluorescent paint (TURNER Lumi. Red) on the mask film and then peeling off it from the pea seedling stem. Figure 5A, B show a micro-hole matrix pattern prepared on a masking tape covering a pea seedling surface and a fluorescent dot-matrix pattern on a pea seedling surface. The advantages of the fluorescent marking technique compared to the direct marking on the cuticle layer are the smaller marking size and the higher visibility. When the direct laser marking on a plant in a laboratory is difficult, for example, in the cases of the marking on outdoor plants or large size plants, the fluorescent marking technique can be applied by using a previously prepared masking film on a mold release film and pasting it on a plant. It is expected that such a marking technique can be applicable to various kinds of plants.

Figure 5C shows the macro-photographic images of a fluorescent-dot marked stem during gravitropism. The displacement of fluorescent dots marked at the upper and bottom surfaces are indicated by red and blue arrows, respectively. The red arrows for the upper surface dots are almost in a perpendicular direction. The time-dependent displacements for right-hand dots indicated...
by U and L (Figure 5C) are plotted in Figure 6. The X-axis displacement in the horizontal direction of the stem elongation prior to the stem bending as shown in Figure 3A was observed again. The repeating cycle of such a displacement behavior was observed as shown in Figure 6A, C, which seems to be a feedback control loop in the mechanical optimization in plants. Plants solve the problem of the stress in stem bending through growth. Plant hormones, like auxins, are thought to help regulate the differential growth of a plant organ optimizing morphogenesis of plants (Kato et al. 2002; Okamoto et al. 2015; Taniguchi et al. 2017; Yoshihara et al. 2013). Such a behavior is quite different from the properties of structural materials like metals, polymers, and so on. In addition, the difference in the shape of a plant stem such as thickness, straightness, epicotyl length, hypocotyl length, position of leaf and so on change the mechanical balance of the stem in gravitropism and growth, which cause the complex dynamic behavior as shown in the difference between Figure 3A and Figure 6A. In the case of a plant which has non-uniform structure, the homogeneous bending of a plastic rod as shown in Figure 1 may be unsuitable, and so the complex dynamic behavior like a feedback control loop in the mechanical optimization may be necessary.

In this study, we successfully developed a laser micromarking technique on plant epidermis which can be applied to the dynamic behavior study of a plant. The time-dependent displacement behavior of a laser-marked pea seedling stem in gravitropism was studied. In the negative gravitropism, the elongation of the stem was observed both at the upper and bottom surfaces. Plants solve the problem of the stress in stem bending by optimizing the stem length through growth. The laser micromarking is expected to be an effective method for studying the mechanical optimization in plants.

Acknowledgements

This work was supported by MEXT KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas “Plant-Structure Optimization Strategy” Grant Numbers JP19H05356.

References

Franssen JM (1980) Phototropism in seedlings of sunflower Helianthus annuus L. Meded Landbouwhogeschool Wageningen 80: 1–83
Fukaki H, Fujisawa H, Tasaka M (1996) Gravitropic response of inflorescence stems in Arabidopsis thaliana. Plant Physiol 110: 933–943
Hart JW, Macdonald IR (1981) Phototropism and geotropism in hypocotyls of cress (Lepidium sativum L.). Plant Cell Environ 4: 197–201
Kato T, Morita MT, Fukaki H, Yamazaki Y, Uchimaru M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of arabidopsis. Plant Cell 14: 33–46
Morita MT (2010) Directional gravity sensing in gravitropism. Annu Rev Plant Biol 61: 705–720
Moulia B, Coutand C, Julien JL (2015) Me chanosensitive control of plant growth: Bearing the load, sensing, transducing, and responding. Front Plant Sci 6: 1–20
Okamoto K, Ueda H, Shimada T, Tamura K, Kato T, Tasaka M, Morita MT, Hara-Nishimura I (2015) Regulation of organ straightening and plant posture by an actin–myosin XI cytoskeleton. Nat Plants 1: 15031
Sack FD (1991) Plant gravity sensing. Int Rev Cytol 127: 193–252
Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, et al. (2017) The arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell 29: 1984–1999
Yoshihara T, Spalding EP, Iino M (2013) tLAZY1 is a signaling component required for gravitropism of the arabidopsis thaliana inflorescence. Plant J 74: 267–279

Figure 6. Time-dependent displacements of fluorescent dots marked at the upper (open square) and bottom (filled square) surfaces. (A) X-axis displacement, (B) Z-axis displacement, and (C) X–Z plane displacement.