Invasive Ductal Carcinoma Arising in Mucinous Cystic Neoplasm of Pancreas: A Case Report

Patient: Female, 40
Final Diagnosis: Invasive ductal carcinoma arising in mucinous cystic neoplasm of pancreas
Symptoms: None
Medication: —
Clinical Procedure: Surgical resection
Specialty: Oncology

Objective: Rare co.existence of disease or pathology
Background: Mucinous cystic neoplasm (MCN) of the pancreas is a rare mucin-producing cystic neoplasm that has a characteristic histological feature referred to as ovarian-type stroma (OS) underlying the epithelium. Pancreatic ductal carcinoma arises from MCN as a precursor lesion, but data on progression pathways are limited.

Case Report: A 40-year-old female was referred to our hospital for further investigation of a pancreatic cyst. Further examination showed a 7.0 cm multilocular cyst in the pancreatic tail and a solid mass in the thick septum of the cystic tumor. Distal pancreatectomy and splenectomy were performed. Histological examination revealed a moderately differentiated invasive ductal carcinoma (IDC) with a diameter of 0.5 cm in the thick septum of the cystic lesion and a cyst wall composed of epithelium with low-grade to severe dysplasia. The epithelium covered an OS. Pathological diagnosis was IDC arising in MCN of the pancreas. Immunohistochemical examination showed that MUC1 expression was negative in MCN but positive in IDC. KRAS mutation was observed in both MCN and IDC regions.

Conclusions: We present a rare case of moderately differentiated pancreatic IDC arising in MCN. To elucidate the underlying progression pathway, we explored the correlation between KRAS mutation and MUC expression as a clinicopathological parameter.

MeSH Keywords: Carcinoma, Pancreatic Ductal • Cystadenoma, Mucinous • Genes, ras • Mucin-1 • Pancreas

Full-text PDF: https://www.amjcaserep.com/abstract/index/idArt/914092

Authors’ Contribution:
ABDEF 1 Hirozumi Sawai
ABD 1 Masaaki Kurimoto
BD 1 Shuji Koide
BCD 2 Yuka Kiriyama
BD 3 Shin Haba
AD 4 Yoichi Matsuo
AD 4 Mamoru Morimoto
BD 1 Hajime Koide
BD 1 Atsushi Kamiya
AD 3 Kenji Yamao

Corresponding Author: Hirozumi Sawai, e-mail: sawai@meiyokai.or.jp
Conflict of interest: None declared

1 Department of Surgery, Narita Memorial Hospital, Toyohashi, Aichi, Japan
2 Department of Pathology, Narita Memorial Hospital, Toyohashi, Aichi, Japan
3 Department of Gastroenterology, Narita Memorial Hospital, Toyohashi, Aichi, Japan
4 Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
Background

Compagno and Oertel [1] proposed to separate cystic, mucin-producing pancreatic neoplasm from serous cystic neoplasm of the pancreas in 1978. The World Health Organization (WHO) further classified mucin-producing cystic tumors of the pancreas into 2 distinct entities: mucinous cystic neoplasm (MCN) and intraductal papillary mucinous neoplasm (IPMN) [2]. The former is a rare, multicystic pancreatic tumor characterized by ovarian-type stroma (OS). It occurs almost exclusively in the body or tail of the pancreas in middle-aged women. Yamao et al. [3] reported that MCN features a favorable prognosis if diagnosed in the presence of OS. Noninvasive MCN is curative with an excellent survival rate achieved by complete surgical resection; however, for MCN with advanced invasive carcinoma of the pancreas, the 5-year disease-specific survival rate is 20% to 60% for patients [3–7]. To prevent progression to malignancy, all MCNs should be resected at a time when the lesion is small and mural nodules are absent. We herein present a rare case of a moderately differentiated invasive ductal carcinoma (IDC) arising in an MCN of the pancreas. Furthermore, we examined the differential expression of Mucin (MUC) and KRAS mutation in the MCN and IDC to investigate the pathway of malignant transformation in pancreatic cystic neoplasm.

Case Report

A 40-year-old female patient was found to have a 7.0 cm tumor in the pancreatic tail from ultrasound examination. The patient’s serum cancer antigen (CA) 19-9 level was within the normal range (<37 U/mL). Computed tomography (CT) demonstrated a 7.4×6.2×7.6-cm complex cystic mass in the pancreatic tail with irregular, enhancing internal septations and nodular foci of mural enhancement (Figure 1A, 1B). T2-weighted magnetic resonance imaging revealed that the cystic tumor was 6.8 cm in diameter and a thickening septum (Figure 1C, 1D). There were no pancreatic or biliary ductal dilatation and no

![Figure 1.](image-url) Enhanced computed tomography (CT) and T2-weighted magnetic resonance imaging (MRI) images. CT showed a multilocular cystic lesion in the pancreatic tail with irregular, enhancing internal septations (white arrowheads) and nodular foci (white arrow) of mural enhancement (A, B). MRI showed the cystic tumor with a thickening septum seen (white arrowheads) on T2-weighted imaging (C, D).
connection to the pancreatic ductal system. In addition, fluoro-
deoxyglucose positron emission tomography CT showed normal
uptake in part of the cystic tumor. As we were concerned about
the malignant potential of the lesion, we performed distal pan-
createctomy and splenectomy. Macroscopically, we observed a
multiloculated 7.0 cm cystic tumor filled with mucinous fluid
and a fibrotic wall but no solid mass lesion. Microscopically, the
cyst wall was lined by cuboidal columnar epithelial cells with
low-grade to high-grade dysplasia underlying OS (Figure 2A).
Immunohistochemical analysis showed that both estrogen re-
ceptor and progesterone receptor were partially positive in the
nucleus of the OS (Figure 2B, 2C). In the superficial layer of
the cyst wall in the OS, a moderately differentiated IDC mea-
suring up to 0.5 cm was identified. (Figure 3A). Furthermore,
transitional findings from mucinous cystadenoma to IDC were
observed (Figure 3B). Additional immunohistochemical analy-
Sawai H. et al.: Pancreatic ductal carcinoma in mucinous cystic neoplasm
© Am J Case Rep, 2019; 20: 242-247

Considering the patient's young age, the patient postoperatively
received oral administration of S-1 (an oral 5-fluorouracil pro-
drug) twice daily at a dose of 100 mg/day according to body
surface areas for 28 consecutive days followed by a 14 day rest,
as an adjuvant chemotherapy; however, she could not continue
the chemotherapy for more than 2 courses due to adverse drug
reactions such as liver dysfunction and increased bilirubin level.
Thereafter, she received close follow-up with no further treat-
ment. There was no recurrence by the 37-month follow-up.

Discussion

Though previous reports have acknowledged OS as usually
present in but not required for the diagnosis of MCN [9], the
Consensus Conference of the International Association of
Pancreatology in Sendai (Japan) established that the histo-
logical presence of unique OS was mandatory to diagnose
MCN, as OS was never found in other pancreatic neoplasms
in 2004 [10]. IPMN has often been confused with MCN which
partly accounts for this shift in diagnosis criteria, as the 2
conditions feature similarities in their cystic appearance and
mucin-producing epithelium [11]. Further confounding diag-
nosis, MCN-like lesions without OS have been observed to
cause similar clinicopathological features to those of MCNs
with OS [12]. To avoid such confusion, Yamao et al. [3] strictly
defined MCN by the presence of OS.

According to the Armed Forces Institute of Pathology classifi-
cations published in 2007, MCN is divided into 4 categories:
MCN with low-grade dysplasia, MCN with moderate dysplasia,
MCN with high-grade dysplasia (carcinoma in situ), and invasive

Figure 2. Microscopic and immunohistochemical analysis of
MCN. The cyst wall was lined with benign mucinous columnar epithelium underlying OS, (A) Hematoxylin and eosin, 100×. This stroma was immunoreactive for estrogen and progesterone receptors (B) estrogen receptor staining, 100×; (C) progesterone receptor staining, 100×. MCN – mucinous cystic neoplasm; OS – ovarian-type stroma.

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
mucinous cystadenocarcinoma [13]. According to the pathological classification of the seventh edition of the General Rules for the Study of Pancreatic Cancer published in 2016, the Japan Pancreatic Society classified MCN into cystadenoma, noninvasive cystadenocarcinoma, and invasive adenocarcinoma [14]. Noninvasive MCN is categorized as MCN low-grade, intermediate-grade, or high-grade dysplasia. If there is a component of invasive carcinoma, the lesions are designated as MCN with an associated invasive carcinoma.

Zamboni G et al. [11] reported that MCNs associated with pancreatic invasive adenocarcinoma follow the same pathways of local spread as invasive ductal adenocarcinoma. In our case, a moderately differentiated IDC measuring up to 0.5 cm in size was identified in the superficial layer of the cyst wall in the OS. Furthermore, transitional findings from mucinous cystadenoma to IDC were observed. The pancreatic IDC of less than 0.5 cm developing in the MCN like in this case is extremely rare.

Table 1. Findings of MUC immunostaining and KRAS mutation.

Dysplasia of MCN	IDC	
MUC1	Positive	Negative
MUC5AC	Positive	Negative
KRAS codon 12	G12D	G12D
KRAS codon 13	WT	WT

MCN – mucinous cystic neoplasm; IDC – invasive ductal carcinoma. WT – wild type.
an MCN have an excellent prognosis, like those of MCN with low-grade dysplasia or MCN with high-grade dysplasia. They also mentioned that careful histologic examination of the entire tumor is critical to identifying microscopic invasion (T1a and T1b carcinoma) if no invasive carcinoma is grossly identified. Despite their findings of complete sampling of the tumor, Hui et al. concluded that rather than aggressive systemic therapy, close follow-up might be a better approach to manage patients with T1a and T1b carcinoma arising in an MCN.

On the other hand, pancreatic IDC is an extremely lethal disease, which is characterized by its propensity to infiltrate adjacent tissues and to metastasize even at early stages [15–17]. Furthermore, IDC remains a disease of high mortality despite the availability of diagnostic and therapeutic techniques [18–21]. KRAS is well known to be a significant early driver in the carcinogenesis of IDC of pancreas [22,23]. Sinn et al. [24] reported that KRAS mutations in codon 12 or 13 were associated with worse prognosis of pancreatic ductal adenocarcinoma. KRAS mutations have also been identified in MCN, although the frequency of reported mutations has been variable [25–27]. Recently, Conner et al. [28] reported that KRAS mutations were present in all high-grade dysplasia; similar to what is found for conventional ductal adenocarcinoma, and this report suggested that the gene is significant to the pathogenesis of pancreatic adenocarcinomas arising from MCN. Among low-grade dysplasia lesions, however, KRAS mutations are reportedly less frequent. In our present case, the same KRAS mutation was observed in the IDC and the MCN regions, suggesting the possibility that MCN cells featured a higher malignant potential.

MUC1, a high-molecular-weight transmembrane mucin, plays crucial roles in carcinogenesis and tumor invasion in pancreatic neoplasms. These are overexpressed in many carcinomas, and high expression of these molecules is a risk factor associated with poor prognosis [21,29–32]. In the present case, immunohistochemical analysis revealed MUC1 expression in the transitional region from MCN to IDC; its expression was not observed in the MCN region. On the other hand, MUC5AC expression in MCN region was absent in IDC region. In this report, we examined KRAS mutation and its correlation with MUC expression as a clinicopathological parameter to elucidate the mechanism of tumor malignant transformation. Fujikura et al. [33] reported a positive correlation between KRAS mutation and MUC expression, especially the expressions of MUC1, MUC2, and MUC5AC. Molecular biological roles of MUC5AC in carcinogenesis are still unclear; however, it was suggested that MCN cells with KRAS mutation acquired MUC1 expression and lost MUC5AC expression in the course of malignant transformation. To the best of our knowledge, this is the first report of clear transitional findings from MCN to IDC and malignant transformation demonstrated by the investigation of MUC expression and KRAS mutation.

Conclusions

In summary, we encountered a rare case of a moderately differentiated IDC arising in MCN of the pancreas. Of course, with an increase in cases of MCN of pancreas, it cannot be denied that these results could change to some extent and new findings may arise. However, our findings suggest that MUC1 expression and KRAS mutation may contribute to an underlying mechanism of malignant transformation of pancreatic cystic neoplasm. The characteristics of MCN are still poorly understood, requiring further investigations to clarify the biological malignancy of MCN.

Department and Institution where work was done

Department of Surgery, Narita Memorial Hospital, Department of Pathology, Narita Memorial Hospital, and Department of Gastroenterology, Narita Memorial Hospital, Toyohashi, Aichi, Japan.

Conflicts of interest

None.

References:

1. Compagno J, Oertel JE: Mucinous cystic neoplasms of the pancreas with overt and latent malignancy (cystadenocarcinoma and cystadenoma): A clinicopathologic study of 41 cases. Am J Clin Pathol, 1978; 69: 573–80
2. World Health Organization: Histological typing of tumors of the exocrine pancreas. Klöppel G, Solcia E, Longnecker DS et al. (eds.), International histologic classification of tumors. Geneva, Switzerland, Springer, 1996
3. Yamato K, Yanagisawa A, Takahashi K et al: Clinicopathological features and prognosis of mucinous cystic neoplasm with ovarian-type stroma: A multi-institutional study of the Japan pancreas society. Pancreas, 2011; 40: 67–71
4. Crippa S, Salvia R, Warshaw AL et al: Mucinous cystic neoplasm of the pancreas is not an aggressive entity: lessons from 163 resected patients. Ann Surg, 2008; 247: 571–79
5. Suzuki Y, Atomi Y, Sugiyama M et al: Japanese multiinstitutional study of intraductal papillary mucinous tumor and mucinous cystic tumor. Cystic neoplasm of the pancreas: A Japanese multiinstitutional study of intraductal papillary mucinous tumor and mucinous cystic tumor. Pancreas, 2004; 28: 241–46
6. Hui L, Rashid A, Foo WC et al: Significance of T1a and T1b carcinoma arising in mucinous cystic neoplasm of pancreas. Am J Surg Pathol, 2018; 42: 578–86
7. Sawai H, Okada Y, Funahashi H et al: Immunohistochemical analysis of molecular biological factors in intraductal papillary-mucinous tumours and mucinous cystic tumours of pancreas. Scan J Gastroenterol, 2004; 39: 1159–65
8. Amin MB, Edge SB, Green FL et al: AJCC cancer staging manual. 8th ed. New York, Springer, 2017

© Am J Case Rep, 2019; 20: 242-247
