Theoretical and Experimental Studies for Inhibition Potentials of Imidazolidine 4-One and Oxazolidine 5-One Derivatives for the Corrosion of Carbon Steel in Sea Water

Rehab M. Kubba*, Nada M. Al-Joborry, Naeemah J. Al-lami
Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq

Abstract
Two derivatives of Imidazolidin 4-one (IMID4) and Oxazolidin 5-one (OXAZ5), were investigated as corrosion inhibitors of corrosion carbon steel in sea water by employing the theoretical and experimental methods. The results revealed that they inhibit the corrosion process and their %IE followed the order: IMID4 (89.093%) > OXAZ5 (80.179%). The %IE obtained via theoretical and experimental methods were in a good agreement with each other. The thermodynamic parameters obtained by potentiometric polarization measurements have supported a physical adsorption mechanism which followed Langmuir adsorption isotherm. Quantum mechanical method of Density Functional Theory (DFT) of B3LYP with a level of 6-311++G (2d, 2p) were used to calculate the geometrical structure, physical properties and inhibition efficiency parameters, in vacuum and two solvents (DMSO and H2O), all calculated at the equilibrium geometry, and correlated with the experimental %IE. The local reactivity has been studied through Mulliken charges population analysis. The morphology of the surface changes of carbon steel were studied using SEM and AFM techniques.

Keywords: Imidazolidine, Oxazolidine, Corrosion inhibitors, Quantum chemical calculations, Thermodynamic parameters.

*Email: Rehab_mmr_kb@yahoo.com
1. Introduction

Corrosion of metals is a serious material deterioration problem from both structural and economic integrity standpoint, but it can be largely controlled by the suitable strategies. Carbon steel (C.S) is being widely used as engineering alloy, however, corrosion of carbon steel occurs in almost all practical environments [1]. Metallic corrosion is a spontaneous process (∆G<0) that causes damage in almost all sections of human activity. Among the most influenced structures are the pipes for oil transportation [2]. The biggest anxiety of the corrosion scientists is efficient protection of the metals without disturbing the environmental peace. Hence, the study of corrosion processes and their inhibition turn out to be the main goal of many researchers now [3]. Basically, corrosion inhibitor is a substance added in a small amount of the corrosive environment to reduce the corrosion rate of the metal or alloys [4]. Most inhibitors utilized in manufacturing are organic compounds. These organic inhibitors containing donor atoms such as O, S and N. Inhibitors including triple or double bonds had an important role in simplifying the adsorption process of these compounds [5]. The type of mechanism that inhibitors applied was adsorption mechanism, these mechanism summarized in adhere the inhibitor molecule on the metal surface to form a protective barrier against corrosive agents in the environment. The adsorbed molecule of inhibitors can affect the corrosion reaction either by physically blocking the active sites presents on the metal surface, or by changing the activation barriers of the anodic and cathodic partial reactions of the corrosion process, or may be both [6]. The study of inhibition efficiency also involved quantum calculations to support the experimental results. In density function theory (DFT) the researcher has to test huge number of organic compounds to select a potential corrosion inhibitor. This type of search costs money, effort and time. However, the development of hardware and software technology in this field makes it capable to choose a good corrosion inhibitor from organic compounds with reduced cost, effort and time [7].

The aim of this work is to study the inhibition efficiency of two organic compounds of (IMID4) and (OXAZ5) [8], see Figure-1. The inhibition of (IMID4) and (OXAZ5) were studied experimentally in saline solution of 3.5% NaCl using potentiostatic polarization measurements, and theoretically, using DFT method of (6-311/ B3LYP++G (2d, 2p)) level using Gaussian 09 program. These calculations were done for obtaining the parameters of the corrosion efficiency in three media (vacuum, DMSO, and water). (IMID4 and OXAZ5 were also recently proved to have a wide range of biological and pharmacological activities, anti-tumor and anti oxidant activities [8]).

![Figure 1-Two dimensions chemical structures of the studied organic inhibition compound for the corrosion of carbon steel in sea waters; 2-(2-biphenyl-4-yl-2,3- dihydro-imidazo [1,2-a] pyridine-3-yl)-3-(4-nitro-phenyl)-imidazolidin-4-one (IMID4) and 2-[2-(4-bromo-phenyl)-imidazo [1,2-a] pyridine-3-yl]-3- (4-methoxy-phenyl)-oxazolidin-5-one (OXAZ5).](attachment:Figure1.png)
2. Experimental details

2.1. Preparation of carbon steel samples
Carbon steel's rod was symbolized as (C45) with the following percentage of metallic materials in composition (wt %): (0.122% C, 0.206% Si, 0.641% Mn, 0.016% P, 0.031% S, 0.118% Cr, 0.02% Mo, 0.105% Ni, and 0.451% Cu) [9]. The rod mechanically cutting into pieces forming a cyclic specimen of carbon steel with 1.6 cm diameter and 3 mm thickness, each of these specimen was refined with emery paper (silicon carbide SiC) in different grades (80, 150, 220, 320, 400, 1000, 1200 and 2000) grades, then washed with tap water, distilled water and degreased with acetone, washed again with distilled water, and finally held in a desiccators after it is dried in room temperature.

2.2. Preparation of solutions
2.2.1. Salt blank solution
35 gm of sodium chloride (NaCl) was dissolved in (100 ml) distilled water; then transferred into 1liter volumetric flask which contained 6ml of dimethyl sulfoxide (DMSO) solvent. The solution volume was then completed to (1L) with distilled water. We used 3.5% NaCl in this study in order to avoid some problems related to ohmic drop.

2.2.2. Preparation of salty solutions of 2-(2-Biphenyl-4-yl)-2,3-dihydro-imidazo[1,2-a]pyridine-3-yl)-3-(4-nitro-phenyl)-imidazolidin-4-one (IMID4) and 2-[2-(4-Bromo-phenyl)-imidazo[1,2-a]pyridine-3-yl]-3-(4-methoxy-phenyl)-oxazolidin-5-one (OXAZ5) inhibitors
For each of (IMID4 and OXAZ5) three concentrations of (5, 10 and 20) ppm were prepared by dissolving (0.005, 0.01 and 0.02) gm, respectively in 6ml (DMSO), then transferred each one to (1L) volumetric flask containing 35gm (3.5%) of NaCl (dissolved in distilled water). The volume of each solution was completed to (1L) with the distilled water.

2.3. Electrochemical measurements
Potentiostatic polarization study
The potentiostat set up has included the following: a host computer with Mat lab software, magnetic stirrer, thermostat, potentiostat and galvanostat (Germany, 2000). The main part in apparatus is the corrosion cell; which was made out of Pyrex with (1L) capacity. This cell consisted of two bowls: external and internal. Three electrodes are mainly present in the electrochemical corrosion cell. Carbon steel specimen (with 1cm²) surface area which is represented the working electrode. This is used to determine the working electrode potential due to another electrode namely as reference electrode; located close to working electrode. A reference electrode was silver-silver chloride (Ag/AgCl, 3.0M KCl). The third electrode is a platinum auxiliary electrode with (10cm) length. The starting step was represented in immersing the working electrode in the test solution for fifteen minutes (15 min), to establish a steady state open circuit potential (E_ocp). This potential was noted for starting the electrochemical measurements in the range of (±200) mV. All tests solution were done at temperatures of (293, 303, 313 and 323) K.

2.4. Results and discussion
Quantum chemical calculations
The quantum electronic parameters are used to investigate the efficiency of corrosion inhibition such as: the highest occupied molecular orbital (E_HOMO), the energy of the lowest unoccupied molecular orbital (E_LUMO), the energy gap (ΔE_HOMO-LUMO), electro-negativity (χ), dipole moment (μ), electron affinity (EA), ionization energy (IP), softness (S), global hardness (η), global electro-philicity (ω), the fraction of transferred electrons (ΔN) and the total energy (E_tot) [10].

Molecular structures calculations
The organic inhibitors compounds were built using Chem. Draw of Mopac program, see Figure-1. Gaussian 09 packages were used for calculating the fully optimize structure [8], see Figure-2, using quantum mechanical method of DFT of Becke's three-parameter of Lee, Yang and Parr (B3LYP) with 6-311++G (2d, 2p) level of the theory [11]. In addition to vacuum, the equilibrium geometry was calculated in two solvents of DMSO and H₂O.
The three dimensions optimize structure of the two inhibition compound for the corrosion of carbon steel in sea waters;

Tables-(1, 2) display the geometrical structure (such as bond lengths, bond angles and dihedral angles) of the two inhibitors in vacuum and two solvents of (DMSO and H2O). Figure-3 shows the numbering of atoms for the calculated inhibitors which calculated using DFT method. C19-C20 (1.5129 Å) was the longest bond length and N21-H (1.00983 Å) was the shortest bond length found in IMID4 inhibitor. The bond angles were calculated between (103.1937 degree) for N18C17N21 and (133.256 degree) for C8C7C17. For OXAZ5 inhibitor, C13-Br (1.916 Å) was the longest bond length and C22-H (1.0800 Å) was the shortest bond length. The bond angles were calculated between (104.845 degree) for N17C18C19 and (132.563 degree) for C3N4C7. The values of the dihedral angles (trans & cis) for the two inhibitors showed that they are not planar (within C1 point group) and the cis dihedral angles are not zero degree. All trans dihedral angles are more or less than 180.0 degree.

Figure 2 - The three dimensions optimize structure of the two inhibition compound for the corrosion of carbon steel in sea waters.

Figure 3 - The numbering of atoms for two calculated inhibitors using for the corrosion of carbon steel in sea waters.
Table 1 - The geometrical structure of compound IMID4 in vacuum and two solvents (DMSO, and H$_2$O) calculated using DFT method.

Description	Bond length (Å)	Bond angle (deg.)	Angle (deg.)	Description	Dihedral angle (deg.)
C1-C2	1.42591	C2C1C6	120.01087	HC1C2H	-0.18606
C1-C6	1.37443	C2C1H	119.57821	C6C1C2H	179.61098
C1-H	1.07936	C1C2C3	120.81295	HC2C3H	-0.56685
C2-C3	1.36698	C2C3N4	119.55463	C1C2C3H	179.26020
C3-N4	1.38381	N4C3H	117.56144	HC3N4C7	1.02179
N4-C5	1.42011	C3N4C7	132.40602	HC3N4C5	-179.00058
N4-C7	1.40274	C3N4C5	120.92210	C3N4C5C6	-0.38316
C5-C6	1.41023	C4C5N9	110.40884	C3N4C5N9	179.43873
C5-N9	1.33981	N9C5C6	130.66968	N9C5C6H	0.28877
C7-C8	1.39429	N4C7C8	105.31342	N4C5C6H	179.93131
C7-C17	1.50276	C8C7C17	133.25616	C4C5N9	179.72437
C8-N9	1.38225	C7C8N9	111.24687	N4C7C8C10	177.72437
C8-C10	1.47558	C7C8C10	128.76870	C7C8C10	1.27813
C13-C14	1.40663	C11C12C13	121.12433	C10C11C12H	-179.38007
C17-N18	1.49936	C12C13C16	121.02586	HC12C13C14	177.97197
C17-N21	1.48299	C14C15C10	120.73840	C16C13C14H	-0.40503
C17-H	1.09239	N18C17N21	103.1937	C12C13C14H	179.52400
N18-C19	1.39275	N18C17H	108.5931	HC14C15H	1.54751
N18-C22	1.41653	C19N18C17	112.2036	HC14C15C10	-178.69437
C19-C20	1.51293	C17N18C22	123.1324	HC17N18C22	59.31058
C19-O	1.24056	N18C19C20	108.0054	HC17N18C19	-121.00957
C20-N21	1.46899	N18C19O	126.4053	N18C19C20H	123.16112
N21-H	1.00983	C17N21C20	110.6890	N18C19C20N21	1.97576
C22-C23	1.40967	N18C22C23	120.4717	OC19C20N21	-177.76416
C22-C27	1.41056	N18C22C27	120.5335	N18C22C23H	-0.53982
C23-C24	1.39013	C22C23H	120.8150	N18C22C23C24	-179.74419
C25-N28	1.45783	C24C25C26	121.2903	HC24C25N28	0.27818
C26-C27	1.38943	C24C25N28	119.2680	HC24C25C26	-179.61271
C26-H	1.07737	C26C27C22	120.8150	N28C25C26H	0.46300
N28-O29	1.27035	O29N28O30	120.2861	N28C25C26C27	179.93660
N28-O30	1.27148	C25N28O29	123.3757	HC26C27H	-0.38806
Table 2: The geometrical structure of compound OXAZ5 in vacuum and two solvents (DMSO and H2O) calculated using DFT method.

Description bond length	Bond length (Å)	Description angle	Angle (deg)	Description dihedral angle	Dihedral angle (deg)
C1-C2	1.41816	C2C1C6	120.03044	HC1C2H	-0.47138
C1-C6	1.36800	C2C1H	119.57741	HC1C2C3	179.97916
C1-H	1.08001	C1C2C3	120.60608	C1C2C3N4	-0.41795
C2-C3	1.36129	C2C3N4	119.64724	C1C2C3H	178.68756
C3-N4	1.37303	C3N4C7	132.56396	C2C3N4C5	1.20483
N4-C5	1.40355	C3N4C5	121.19118	C2C3N4C7	-179.46964
N4-C7	1.39023	N4C5C6	118.90285	C3N4C5C6	-1.21204
C5-C6	1.40806	N4C5N9	111.04959	N4C5C6C1	0.42816
C5-N9	1.32776	C5C6C1	119.61042	N4C5C6C1	-1.34894
C7-C8	1.38647	N4C7C8	105.21598	N4C7C8N9	179.63751
C7-C16	1.49349	N4C7C16	122.58440	N4C7C8N9	179.46063
C8-N9	1.36108	C7C8N9	111.51652	N4C7C8C10	179.46063
C8-C10	1.48001	C7C8C10	128.29863	C7C8N9C5	0.89893
C10-C11	1.39615	C8N9C5	105.95809	C10C8N9C5	-179.83603
C13-Br	1.91765	C12C13Br	119.36469	HC12C13Br	-0.07526
C14-C15	1.39037	C13C14C15	119.02998	BrC13C14C15	-179.89669
C15-C10	1.39642	C14C15C10	120.89213	BrC13C14H	0.48437
C16-N17	1.47883	C7C16O	112.93854	HC14C15H	0.00083
C16-H	1.09070	C7C16N17	114.29324	HC14C15C10	179.50180
C16-O	1.45104	C16N17C18	111.9003	C7C16N17C21	-58.85837
N17-C18	1.41947	C16N17C21	123.64384	C7C16N17C18	120.93857
N17-C21	1.39858	N17C18C19	104.84507	C16N17C18C19	-0.47304
C18-C19	1.49948	C18C19O20	108.28759	N17C18C19O20	-175.98134
C19-O	1.20899	C19OC16	110.73852	N17C18C19O20	3.53708
C19-O20	1.41277	N17C21C22	121.07857	N17C21C22H	-0.71947
C21-C22	1.40315	N17C21C26	120.33652	N17C21C22C23	179.61463
C22-H	1.07794	C22C23C24	119.68371	HC23C24O	0.72303
C24-C25	1.38744	C23C24O	119.53028	OC24C25H	-0.26828
C24-O	1.40948	C24C25C26	119.98347	OC24C25C26	179.07628
O27-C28	1.43360	C24OC28	111.86216	HC25C26C21	179.55982
C28-H	1.08469	OC28H	110.59542	C24OC28H	55.28257

Figure 4 shows the geometrical optimization of the studied inhibitors in vacuum including HOMO and LUMO density distributions. For (IMID4) inhibitor the HOMO is mainly located on (2-(2-Biphenyl-4-yl-imidazo [1,2-a] pyridine-3-yl)) moiety. This indicates that the preferred active sites for an electrophilic attack are located within the region around the nitrogen atoms. Moreover, the electronic density of LUMO was distributed at the aromatic ring and around the ring of (4-nitrophenyl) moiety (which is the most planar moiety in the molecule). For (OXAZ5) inhibitor, the HOMO...
is mainly located on the imidazo[1,2-a] pyridine-3-yl]-3-(4-methoxy-phenyl)oxazolidin-5-one moiety, and LUMO is located on the imidazo[1,2-a] pyridine-3-yl moiety only.

LUMO	HOMO
![Image](image1.png)	![Image](image2.png)

Figure 4-Frontier Molecular Orbital density distributions for the calculated inhibitors using DFT method.

Global molecular reactivity

To study the influence of molecular geometry on the mechanism and efficiency of inhibition, the chemical quantum calculations for inhibition efficiency were performed. The quantum chemical parameters, such as: the energy of the highest occupied molecular orbital \((E_{\text{HOMO}})\), the energy of the lowest unoccupied molecular orbital \((E_{\text{LUMO}})\), energy gap \((\Delta E_{\text{HOMO-LUMO}})\), the dipole moment \((\mu)\), hardness \((\eta)\), electro-negativity \((\chi)\), global softness \((S)\), global electrophilicity index \((\omega)\) and electron transferred \((\Delta N)\), are all shown in Tables- (3a, 3b), (4a, 4b) for \((\text{IMID4})\) inhibitor and \((\text{OXAZ5})\) inhibitor, respectively.

Frontier orbital theory was used in predicting the adsorption centers of the inhibitor responsible of the reaction metal surface/molecule [12]. According to this theory, the formation of a transition state is due to an interaction between the Frontier orbital’s (HOMO and LUMO) of the reactants. Parr et al. has introduced the index of global electrophilicity \((\omega)\) which is also related to the electron affinity \((\text{EA})\) and ionization potential \((\text{IP})\) [4]. When interaction occurs between the inhibitor and the metal surface, flow of electrons takes place from the lower electronegativity molecule to the higher electronegativity metal, this transfer of electrons continues until the chemical potential becomes equal [4]. The electron transferred \((\Delta N)\) was calculated using theoretical \((\chi_{\text{Fe}})\) and \((\eta_{\text{Fe}})\) values for mild steel of \((7.0eV \text{ mol}^{-1})\) and \((0.0eV \text{ mol}^{-1})\). The following Equations (1-8) are used for calculating the chemical parameters [13]:

\[
\begin{align*}
\text{IP} \ (= \text{Ionization potential}) & = -E_{\text{HOMO}} \\
\text{EA} \ (= \text{Electron-affinity}) & = -E_{\text{LUMO}} \\
\Delta E & = E_{\text{LUMO}} - E_{\text{HOMO}} \\
\text{H} \ (= \text{Hardness}) & = (\text{IE} - \text{EA})/2 \\
\chi \ (= \text{Electro-negativity}) & = (\text{IE} + \text{EA})/2 \\
S \ (= \text{Global softness}) & = 1/\eta \\
\text{Global electrophilicity index} \ (\omega) & = \left(-\chi\right)\left(2/2\eta = \mu/2\eta\right) \\
\text{Electron-transferred} \ (\Delta N) & = \left(\chi_{\text{Fe}} - \chi_{\text{inhib}}\right)/[2 \left(\eta_{\text{Fe}} + \eta_{\text{inhib}}\right)]
\end{align*}
\]
The inhibition of the studied inhibitors was determined via DFT Mulliken charges population analysis; which gave an indication of the reactive centers of the molecules (electrophilic and nucleophilic centers). For that, region that have a large electronic charge are chemically softer than the region that have a small electronic charge. Thus, the density of electron may play an important role in the chemical reactivity calculating. The chemical adsorption interactions are either by orbital interactions or by electrostatic. The nucleophilic attack sites will be the place where the positive charge value is a maximum, and hence, only the charges on the oxygen (O), nitrogen (N) and some carbon atoms would be present. The electrophilic attack site was controlled by the negative charge value.

The nucleophilic and electrophilic electronic charge values of the two inhibitors are found to be greater in the solutions of DMSO and H2O than in vacuum, this is shown in Tables- (5, and 6) for IMID4 and OXAZ5, respectively.

The orders of the nucleophilic reactive sites of IMID4 inhibitor were found to be as: C14 > C12 > C15 > C1 > C2 > N9 > N20 > C8 > C7 and the electrophilic reactive sites order were found to be as: C5 > C13 > C16 > C10 > C22 > C19

For OXAZ5 inhibitor, the orders of the nucleophilic reactive sites of OXAZ5 inhibitor were found to be as: C24 > O27 > O20 > C14 > C1 > N9 > C12 > C7 > C2 and the electrophilic reactive sites order are: C5 > C19 > C16.

Table 3a- DFT calculations for some physical properties of Imidazolidin-4-one derivative (IMID4) calculated at the equilibrium geometry.

Inhib. medium	P. G.	M. formula	E_HOMO (eV)	E_LUMO (eV)	ΔE_HOMO-LUMO (eV)	μ (Debye)	E_total (eV)
Vacuum	C1	C28H23N5O3	-6.299	-3.079	3.220	8.191	-42979.234
DMSO	C1		-6.160	-3.364	2.796	11.363	-42979.979
Water	C1		-6.159	-3.368	2.791	11.423	-42979.990

Table 3b- DFT quantum chemical parameters for Imidazolidin-4-one derivative (IMID4) calculated at the equilibrium geometry.

Inhib. medium	IP (eV)	EA (eV)	η (eV)	χ (eV)	S (eV)	ω (eV)	ΔN
Vacuum	6.299	3.079	1.61	4.689	0.621	6.829	0.717
DMSO	6.160	3.364	1.398	4.762	0.715	8.110	0.800
Water	6.159	3.368	1.395	4.763	0.716	8.131	0.801

Table 4a- DFT calculations for some physical properties of Oxazolidin-5-one derivative (OXAZ5) calculated at the equilibrium geometry.

Inhib. medium	P. G.	M. formula	E_HOMO (eV)	E_LUMO (eV)	ΔE_HOMO-LUMO (eV)	μ (Debye)	E_total (eV)
Vacuum	C1	C28H20N5O3Br	-5.908	-1.708	4.200	6.224	-104812.558
DMSO	C1		-5.797	-1.515	4.282	8.469	-104813.086
Water	C1		-5.796	-1.514	4.282	8.509	-104813.094

Table 4b- DFT quantum chemical parameters for Oxazolidin-5-one derivative (OXAZ5) calculated at the equilibrium geometry.

Inhib. medium	IP (eV)	EA (eV)	η (eV)	χ (eV)	S (eV)	ω (eV)	ΔN
Vacuum	5.908	1.708	2.1	3.808	0.476	3.452	0.76
DMSO	5.797	1.515	2.141	3.656	0.467	3.121	0.780
Water	5.796	1.514	2.141	3.655	0.467	3.119	0.781
Table 5- DFT Mulliken charges population analysis for IMID4 molecule in three media of (vacuum, DMSO, and H₂O).

Atom no.	Electronic charge/ ecu						
C₁	-0.310V		-0.228V		0.744V		-0.137V
	-0.333D		-0.358D		0.679D		-0.112D
	-0.334H		-0.350H		0.678H		-0.112H
N₉	-0.033H		-0.191V		0.044D		-0.158V
C₁₀	0.499V		0.486V		0.225V		-0.174D
	0.485H		0.491D		0.262D		-0.174H
N₁₁	-0.212D		-0.213H		0.075V		-0.054V
C₁₂	0.694V		0.603D		0.071D		-0.044D
	0.601H		0.491D		0.070H		-0.033H
N₂							
C₁₃	0.696V		0.601D		0.071D		
	0.601V		0.491D		0.070H		
N₂₁	-0.261V		-0.302D		0.129V		
C₁₄	-0.528V		-0.521D		0.189D		
	-0.521H		-0.521H		0.190D		
N₂₂	0.472V		0.459D		0.131V		
C₁₅	-0.491V		-0.485D		0.188D		
	-0.484D		-0.484D		0.187V		
V: Vacuum, D: Dimethyl sulfoxide (DMSO), H: Water, ecu: electron control unit.							

Table 6- DFT Mulliken charges population analysis for OXAZ5 molecule in three media of (vacuum, DMSO, and H₂O).

Atom no.	Electronic charge/ ecu						
C₁	-0.324V		-0.253V		0.260V		-0.043V
	-0.343D		-0.373D		0.284D		-0.044D
	-0.343H		-0.375H		0.285H		-0.044H
N₉	-0.055H		-0.012V		-0.041V		-0.057V
C₁₀	0.279V		0.302D		0.193D		-0.001H
	0.302H		0.302H		0.194D		-0.002H
N₁₁	-0.047D		-0.047D		-0.028D		-0.000D
C₁₂	-0.273V		-0.311D		-0.027H		-0.000D
	-0.311H		-0.312H		0.118H		-0.001H
N₂							
C₁₃	0.075V		0.071D		0.119D		-0.056V
	0.071H		0.071H		0.119D		-0.064D
C₁₄	-0.334V		-0.361D		-0.333V		-0.369V
	-0.361H		-0.361H		-0.366D		-0.418D
V: Vacuum, D: Dimethyl sulfoxide (DMSO), H: Water, ecu: electron control unit.							
Corrosion inhibition measurement

Potentiodynamic Polarization Measurements.

Tables-(7, and 8) show the electrochemical corrosion parameters, such as: corrosion current density (I_{corr}), corrosion potential (E_{corr}) and Tafel slopes (ba and/or bc) for the two inhibitors [14]. Figure-3 presents potentiodynamic polarization curves for carbon steel in salt media containing different conditions of the two inhibitors. Corrosion efficiency (IE%) and the surface coverage (Θ) were measured using Equations (9, 10):

$$\%IE = \frac{I_{corr(un)} - I_{corr(in)}}{I_{corr(un)}} \times 100 \quad ... \quad (9)$$

$$\Theta = \frac{\%IE}{100} \quad \quad (10)$$

Where $I_{corr (in)}$ is the inhibited corrosion current densities, $I_{corr (un)}$ is the uninhibited current densities.

The addition of the two derivatives cause a reduce in the corrosion rate (CR), i.e. shifts the cathodic and anodic curves to lower values of (I_{corr}), and both cathodic and anodic reactions of carbon steel electrode corrosion inhibited by the two organic compounds in saline media. Figure-5 shows the polarisation curve for the corrosion of carbon steel in the salt solution, with and without the addition of IMID4 inhibitor at various concentrations, and at the optimum conditions of (20ppm) with temperature of (293K). Figure-6 shows the polarisation curve for the corrosion of carbon steel in the salt solution with and without the addition of OXAZ5 inhibitor at various concentrations, and with the optimum conditions of (20ppm) and at temperature of (293K).

Tables- (7, and 8) show that the increase in temperature led to increase (I_{corr}), while the efficiencies IE% enhance with the increase the inhibitor concentration. The optimum conditions for IMID4 in the salt solution were observed at (293K and 20ppm); which corresponded to the lowest $I_{corr}(14.52 \mu A.cm^{-2})$ and maximum IE% (89.093%), while OXAZ5 inhibitor have the optimum conditions at 293K and 20ppm too, this corresponded to lowest $I_{corr}(25.33 \mu A.cm^{-2})$ and maximum IE% (80.973 %). The values of iron CR have decreased with increasing the concentration of the inhibitors and the addition of inhibitor to the blank solutions have led to increase the cathodic and anodic I_{corr} without shifting the E_{corr}. So, the two inhibitors can be described as mixed-type inhibitors. Inhibition occurred by adsorption and the inhibition effect results from the reduction corrosion reaction on the carbon steel surface area [15].

Table 7- Electrochemical data of C.S corrosion in sea water at different concentrations for IMID4 compound.

Soln.	T (K)	E_{corr} (mV)	I_{corr} (μA.cm²⁻¹)	Ba (mV.dec⁻¹)	Ba (mV.dec⁻¹)	IE%	Θ	CR mm.y⁻¹
Blank 3.5% NaCl	293	-408.0	133.13	-230.4	138.5	------	------	33.15
	303	-446.7	172.04	-279.6	110.2	------	------	42.84
	313	-491.2	189.34	-269.0	96.5	------	------	47.15
	323	-547.7	192.99	-252.9	84.4	------	------	48.05
5ppm	293	-358.8	18.07	-47.7	43.7	86.426	0.864	4.50
	303	-421.2	37.49	-97.9	55.5	78.208	0.782	9.34
	313	-439.2	49.76	-93.0	58.0	73.719	0.737	12.39
	323	-518.0	52.95	-93.2	52.6	72.563	0.726	13.18
10ppm	293	-388.7	15.51	-97.6	58.7	88.349	0.883	3.86
	303	-426.3	22.92	-63.8	38.8	86.677	0.867	5.71
	313	-453.6	47.75	-99.4	56.0	74.780	0.748	11.89
	323	-489.1	66.25	-115.6	64.4	65.671	0.657	16.50
20ppm	293	-356.1	14.52	-62.8	43.9	89.093	0.891	3.62
	303	-439.9	31.99	-119.6	45.7	81.405	0.814	7.97
	313	-527.4	35.81	-160.4	64.4	81.086	0.811	8.92
	323	-548.9	38.40	-147.5	65.7	80.102	0.801	9.56
Figure 5- Polarisation curve of C.S in sea water for (IMID4) compound (a) at different concentrations and T (of 293K), and (b) at the optimum concentration and T (of 293K).

Table 8- Electrochemical data of the C.S corrosion in sea water at different concentrations for OXAZ5 compound.

Solun.	T (K)	E_{corr} (mV)	I_{corr} (μA.cm$^{-2}$)	bc (mV.dec$^{-1}$)	ba (mV.dec$^{-1}$)	IE%	Θ	CR mm.y$^{-1}$
Blank 3.5% NaCl	293	-408.0	133.13	-230.4	138.5	-----	-----	33.15
	303	-446.7	172.04	-279.6	110.2	-----	-----	42.84
	313	-491.2	189.34	-290.0	96.5	-----	-----	47.15
	323	-547.7	192.99	-252.9	84.4	-----	-----	48.05
5ppm	293	-504.2	31.53	-182.6	71.5	76.316	0.763	7.85
	303	-630.7	41.68	-175.6	68.8	75.773	0.758	10.38
	313	-662.8	50.77	-257.3	71.6	73.185	0.732	12.64
	323	-712.4	55.77	-365.4	72.2	71.102	0.711	13.89
10ppm	293	-533.1	27.72	-171.2	77.8	79.178	0.792	6.90
	303	-651.6	36.45	-300.1	74.0	78.813	0.788	9.08
	313	-670.5	42.18	-245.9	72.3	77.722	0.777	10.50
	323	-744.4	46.86	-343.0	88.7	75.718	0.757	11.67
20ppm	293	-491.4	25.33	-90.0	48.2	80.973	0.810	6.31
	303	-524.1	34.10	-70.3	49.1	80.179	0.802	8.49
	313	-582.2	40.01	-93.9	57.4	78.868	0.789	9.96
	323	-612.6	44.68	-95.8	53.6	76.848	0.768	11.13
Kinetic and thermodynamic activation parameters for corrosion processes

Figures (7, and 9) shown the straight line plots between log I_{corr} and $1/T$ for (IMID4) and (OXAZ5) inhibitors respectively. The Arrhenius law is presented as a straight line of the logarithm of the corrosion rate. The activation parameters were calculated with and without inhibitors at different concentrations. The activation energy of the corrosion process (E_a), and the pre-exponential factor (A), were calculating from Equations 11. A plot of log (CR/ T) against (1/T) or log (I_{corr}/T) against (1/T), Equation (12) gave a linear relationship with a slope of ($-\Delta H^*/2.303R$) and an intercept of $[\log(R/ Nh)+ (\Delta S^*/2.303R)]$. This is shown in Figures- (8, and 10) for (IMID4) and (OXAZ5) inhibitors, respectively.

$$\log (I_{corr}) = \log A - Ea/ 2.303RT$$ \hspace{1cm} (11) \\
$$\log (I_{corr}/ T)= \log (CR/ T) = \log (R/ N h) + \Delta S^*/ 2.303R - \Delta H^*/ 2.303RT$$ \hspace{1cm} (12)

Where (I_{corr}) is the corrosion current density which is equal to the corrosion rate (CR), (R) is the universal gas constant (8.314 J mol$^{-1}$ K$^{-1}$), (T) is the absolute temperature in K, (h) is Planck’s constant (6.626 x 10$^{-34}$ J s), (N) is Avogadro’s number (6.022 x 1023 mol$^{-1}$), ΔH^* is the enthalpy of activation and ΔS^* is the entropy of activation. Accordingly, the activation thermodynamic parameters (ΔH^* and ΔS^*) were calculated for (IMID4) and (OXAZ5) inhibitors, respectively, as shown in Tables- (9, and 10). (ΔH^*) values for the corrosion reaction in 3.5% NaCl at the temperature range of (293-323) K and different concentration were found to be positive values for both inhibitors; which may give an indication of an endothermic nature for this reaction [16]. Negative values of (ΔS^*) for the corrosion reaction indicate a decrease in the degree of freedom and a consequent inhibition action [17]. The values of ΔG^* for corrosion reaction were calculated from equation 13. The positive values of ΔG^* indicating that the transition state of the adsorption process is not spontaneous, (see Tables- 9, 10).

$$\Delta G^* = \Delta H^* - T \Delta S^*$$ \hspace{1cm} (13)

Table 9- Corrosion kinetic parameters for carbon steel in sea water (3.5% NaCl) for blank with various concentrations of (IMID4) inhibitor.

Conc. (ppm)	ΔG (kJ/mol)	ΔH^* (kJ/mol)	ΔS^* (kJ/mol)	E_a (kJ/mol)	A (Molecule/cm2S)				
	293K	303K	313K	323K					
Blank	63.042	64.932	66.862	68.772	7.079	-0.191	9.636	1.10305E+27	
5	67.372	69.012	70.452	71.892	25.380	-0.144	27.936	3.03417E+29	
10	68.560	69.620	70.680	71.840	37.502	-0.106	40.060	3.09272E+31	
20	68.235	69.825	71.415	72.005	21.648	-0.159	24.204	5.45683E+28	
Figure 7- Plot of log (Icorr) vs. (1/ T) for carbon steel in sea water for blank and in presence of different concentrations of the (IMID4) compound.

Figure 8- Plot for log (CR/ T) vs (1/T) for carbon steel in sea water for blank and in presence of different concentration of (IMID4) compound.
Table 10- Corrosion kinetic parameters for carbon steel in sea water for blank and with various concentrations of (OXAZ5) inhibitor.

Conc. (ppm)	ΔG^* kJ/mol	ΔH^* kJ/mol	ΔS^* kJ/mol K	E_a kJ/mol	A Molecule/ cm2 S			
Blank	63.042	64.952	66.862	68.772	7.079	-0.191	9.635	1.10305E+27
5	66.750	68.600	70.450	72.300	12.545	-0.185	15.102	2.41402E+27
10	67.092	68.439	70.849	72.759	11.065	-0.191	13.622	1.1862E+27
20	67.901	69.151	71.031	72.911	12.187	-0.188	14.744	1.68438E+27

Figure 9- Plot for log (Icorr) vs. (1/ T) for carbon steel in sea water for blank and in presence of different concentrations of (OXAZ5) compound.

Figure 10-Plot of log (CR/ T) vs. (1/T) for carbon steel in saline water for blank and in presence of different concentrations of (OXAZ5) inhibitor compound.
Adsorption isotherm

Adsorption isotherms are necessary to elucidate the corrosion inhibition mechanism since they express the interaction between the inhibitor molecules and the active sites on the carbon steel surface. In this study, the results were based on the Langmuir isotherm; see Figures-(12, 14) for (IMID4) inhibitor and (OXAZ5) inhibitor, respectively. Langmuir adsorption isotherm can be expressed by Equation (14) as follows [18]:

\[\frac{C}{\theta} = \left(\frac{1}{K_{ads}} \right) + C \ldots \]

(14)

Whereas \(C \) is the inhibitor concentration in 3.5% NaCl and \(K_{ads} \) is the adsorption/ desorption equilibrium constant. A plot of \(C/\theta \) versus \(C \) in the salt media, could be used to determine the equilibrium adsorption constant \(K_{ads} \). Further the standard free energy change \(\Delta G^o_{ads} \) values for the adsorption are calculated using Equation 15.

\[K_{ads} = \frac{1}{55.55} \exp \left(\frac{-\Delta G^o_{ads}}{RT} \right) \]

(15)

Where \(K \) is the equilibrium constant, \(R \) is the universal gas constant and \(T \) is the absolute temperature and 55.5 is the concentration of water in solution in mol/dm\(^3\). The negative values of \(\Delta G^o_{ads} \) ensured the spontaneity of the adsorption process and stability of the adsorbed layer on the carbon steel surface. The enthalpy and entropy for the adsorption of (IMID4 and OXAZ5) on mild steel are deduced by using the thermodynamic Equation of (16).

\[\Delta G^o_{ads} = \Delta H^o_{ads} - T\Delta S^o_{ads} \]

(16)

\(\Delta H^o_{ads} \) can be also deduced from the integrated version of the Vant_Hoff equation expressed by:

\[\ln K = \frac{-\Delta H^o_{ads}}{RT} + \text{constant} \]

(17)

Figures-(14, 16) and Tables-(11, 12) show the thermodynamic functions of the adsorption process for (IMID4 and OXAZ5) inhibitors.

Table 11- Thermodynamic parameters for (IMID4) adsorption on carbon steel surface in 3.5% NaCl at different temperatures

T (K)	\(K_{ads} \) (L mol\(^{-1}\))	\(\Delta G^o_{ads} \) (kJ. mol\(^{-1}\))	\(\Delta H^o_{ads} \) (kJ.mol\(^{-1}\))	\(\Delta S^o_{ads} \) (kJ.mol\(^{-1}\))	\(R^2 \)
293	2.112 x 10\(^6\)	-13.640	-68.393	0.141	1.000
303	3.850 x 10\(^6\)	-15.127			0.996
313	4.196 x 10\(^6\)	-9.634			0.998
323	4.972 x 10\(^6\)	-8.221			0.979
Figure 11- Plot of log K_{ads} vs (1/T) for (IMID4) inhibitor.

Figure 12- Langmuir isotherms plot for the (IMID4) adsorption on carbon steel surface in the saline media at the temperature range of (293, 303, 313 and 323) K.
Table 12 - Langmuir parameters for the adsorption of (OXAZ5) organic compound on carbon steel surface in sea water solutions at different temperatures.

T (K)	K_{ads} (L mol^{-1})	ΔG°_{ads} (kJ. mol^{-1})	ΔH°_{ads} (kJ.mol^{-1})	ΔS°_{ads}(kJ.mol^{-1})	R^2
293	7.570 x 10^5	-11.975	-5.692	0.128	1.00
303	8.967 x 10^5	-11.815			1.00
313	9.879 x 10^5	-11.258			0.99
323	9.890 x 10^5	-11.155			0.99

Figure 13 - Plot of (log K_{ads}) vs (1/T) for (OXAZ5) inhibitor.

Figure 14 - Langmuir isotherms plot for the adsorption compound (OXAZ5) on C.S in saline solution at the temperature range of (293, 303, 313 and 323)K.
Scanning Electron Microscopy (SEM)
Figures- (15a, 16a), show the damaged surface of carbon steel obtained when the metal was remained immersed in saline water without (IMID4) and (OXAZ5) inhibitors, respectively. However, Figures- (15b, 16b) show the smoothness and regularity on the surface of carbon steel in the presence of (IMID4) and (OXAZ5) inhibitors, respectively, in saline water when compared to Figures- (15a, 16a); which indicated the reduction of the surface corrosion. This improvement in the surface morphology is due to the formation of protective films of inhibitors (IMID4) and (OXAZ5) on the carbon steel surface, and hence, indicated the inhibition of the corrosion [20].

![Figure 15](image1.png)

Figure 15- SEM images of C.S in a 3.5% NaCl saline solution at 293K (a) without (IMID4), (b) In the presence of 20 ppm of the organic compound (IMID4).

![Figure 16](image2.png)

Figure 16- SEM images of carbon steel in a 3.5% NaCl saline solution at 293K (a); without (OXAZ5) and (b); In the presence of 20 ppm of the organic compound of (OXAZ5).

Atomic Force Microscopy (AFM)
The surface morphology of carbon steel samples in a saline solution of 3.5% NaCl in absence and presence of the optimum concentration (20 ppm) of the two inhibitors were investigated by AFM. The results are shown in Figures- (17(a-f)). The average roughness is shown in Figures- (17(a, b))), indicated that the C.S samples surface is badly damaged due to 3.5% NaCl salt attack. The average roughness (S_a) for the carbon steel surface is 3.97nm in salt solution without the presence of any inhibitor [21]. (S_a) was reduced to 2.53nm in the presence of the optimum concentration (20 ppm) of compound (IMID4) Figures- (17 (c,d)), and it was reduced to 2.26nm in the presence of the optimum concentration (20 ppm) of (OXAZ5) inhibitor Figures- (17 (e,f)).
Figure 17- AFM image of carbon steel surface. (a, b); in a 3.5% NaCl saline solutions, (c, d); in presence of 20 ppm of (IMID4) inhibitor, and (e,f) in presence of 20 ppm of (OXAZ5) inhibitor.

Conclusions
1. The newly synthesized inhibitors (IMID4 and OXAZ5) were theoretically found to be good organic corrosion inhibitors for carbon steel in saline water with an order of inhibition efficiencies (%IE) of: IMID4 (89.093%) > OXAZ5 (80.179%).
2. The inhibition efficiency was measured for inhibitors using potentiodynamic polarization measurements indicated that the studied inhibitors are classified as mixed inhibitors in saline water, because the addition of the two inhibitors is found to affect both the anodic and cathodic process.
3. The inhibition efficiency increased with the increase of inhibitors concentration and decreased with the increase of temperature (physisorption inhibition).
4. The adsorption of the studied compounds on carbon steel surface followed the Langmuir adsorption isotherm model. The high values of the equilibrium constant which obtained from the Langmuir isotherm for both inhibitors indicates stronger adsorption on the carbon steel surface in 3.5% NaCl
solution. The negative value of (ΔG^0_{ads}) indicates that the adsorption of (IMID4 and OXAZ5) on mild steel surface is a spontaneous process.

5- SEM and AFM images have shown that inhibition of corrosion by (IMID4 and OXAZ5) inhibitors is due to the formation of a physisorbed film on the metal surface.

References

1. Fan, Z. 2013. "The Mussel Adhesive Protein (Mefp-1)- A Green Corrosion Inhibitor". Ph.D Thesis Stockholm, Sweden.
2. Kubba, R.M., Challoolo, D.A and Hussen, S.M. 2017. Quantum mechanical and electrochemical study of new isatin derivative as corrosion inhibitor for carbon steel in 3.5 % NaCl. Int. J. of Sci. and Res, 6(7): 1656-1669.
3. Abdallah, M., Asghar, B.H., Zaafarany, I. and Fouda, A.S. 2012. The inhibition of carbon steel corrosion in hydrochloric acid solution using some phenolic compounds, Int. J. Electrochem. Sci., (7): 282-304.
4. Ahmed, A.H., Kubba R.M. and Al-Majidi S.M.H. 2018. Synthesis, identification, theoretical and experimental studies of carbon steel corrosion inhibition in sea water by some new diazine derivatives linked to 5-nitro isatin moiety. Iraqi Journal of Science, 59(3B): 1347-1365.
5. Fouda , A.S., Abd El-Maksoud, S.A., El-Hossiany, A. and Ibrahim, A. 2019. Corrosion protection of stainless steel 201 in acidic media using novel hydrazine derivatives as corrosion inhibitors. Int. J. Electrochem. Sci., (14): 2187 – 2207
6. Obot, I.B., Macdonald, D.D. and Gasem, Z.M. 2015. Density Functional Theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An overview. Corrosion Science, 99: 1-30.
7. Shaban SM. 2016. N-(3-(dimethyl benzyl ammonium) propyl) alkanamide chloride derivatives as corrosion inhibitors for mild steel in 1 M HCl solution: Experimental and theoretical investigation. RSC Advances, (6): 39784-39800
8. Al-Lami, N. and Salom K.J. 2018. Synthesis and biological activity evaluation of new imidazo and bis imidazo (1,2-A) pyridine derivatives. J. Glob. Pharm. Tech., 10(11): 603-611.
9. Duboscq, J., Sabot, R., Jeannin M. and Refait, Ph. 2019. Localized corrosion of carbon steel in seawater: Processes occurring in cathodic zones. Materials and corrosion.m 70(6): 973-984.
10. Rajendran, M., Keerthika, K., Kowsalya, M. and Devapiriam, D. 2016. Theoretical studies on corrosion inhibition efficiency of pyridine carbonyl derivatives using DFT method. Der. Pharma. Chemica., 8(3): 1-79.
11. Becke, A. 1993. Density-functional thermochemistry. III. The role of exact exchange. Journal of Chem. and Phys. 98: 5648-5652.
12. Kubba R.M. and Mohammed, M. 2016. Theoretical studies of corrosion inhibition efficiency of two new N-phenyl-ethylidene-5-bromo isatin derivatives. Iraqi Journal of Science, 57(2B): 1041-1051.
13. Zhang, J., Liu, J., Yu, W., Yan, Y., You, L. and Liu, L. 2010. Molecular modeling of the inhibition mechanism of 1- (2-aminoethyl)-2-alkyl-imidazoline, Corros. Sci., 52(6): 2059-2065.
14. Tafel, J. Polarization in cathodic hydrogen evolution, 1905. Zeitschrift Fuer Physikalische Chemie,Stochemiatetverke Verwandtschaftslehre, 50: 641-712.
15. Hong, S., Chen, W., Luo, H.Q. and Li, N.B. 2012. Inhibition effect of 4-amino-antipyrine on the corrosion of copper in 3 wt. % NaCl solution, Corro. Sci., 57: 270–278.
16. Ben Hmamou, D., -Aouad, M., Salghi, R., Zarrour, A., Assouag, M., Benali, O., Messali, M., Zarrok, H. and Hammouti, B. 2012. Inhibition of C38 steel corrosion in hydrochloric acid solution by 4,5- diphenyl-1H-imidazole-2-thiol: gravimetric and temperature effects treatments. Int. J. of Sci. and Res. 4(7): 3498-3504.
17. Abd-El-Naby, B., Abdullatef, O., Khamis, E. and El-Mahmody, W. 2016. Effect of cetyl trimethyl ammonium bromide surfactant as novel inhibitor for the corrosion of steel in 0.5 M H2SO4. Int.J. Electrochom.and Sci. 11: 1271-1281.
18. Singh, A., Ansari, K.R., Lin, Y., Quraishi, M.A., Lgaz, H. and Ill-Min Chung. 2018. Corrosion inhibition performance of imidazolidine derivatives for J55 pipeline steel in acidic oilfield formation water: Electrochemical, surface and theoretical studies. J. of Taiw. Inst. of Chem. Eng., 0 0 0, 1–16
19. Louadi, Y.E., Abrigach, F., Bouyanzer, A., Touzani, R., El Assyry, A., Zarrouk, A., and Hammoutia, B. 2017. Theoretical and Experimental Studies on the Corrosion Inhibition Potentials of Two Tetrakis Pyrazole Derivatives for Mild Steel in 1.0M HCl. *Portugaliae Electrochimica Acta*, 35(3): 159-178.

20. Mohamed, A., Khaled, Z., Hamdy, A., Abo-Elenien, O. and Olfat, E. 2015. Synthesis of novel schiff base silicon compound for employing as corrosion inhibitor for carbon steel in the 1 M HCL and 3.5% NaCl aqueous media. *International Journal of Chemical, Environmental & Biological Sciences*, 3: 2320-4087.

21. Gowri, S., Sathiayabama, J., Prabhakar, P. and Rajendran, S. 2012. Inhibition behaviour of carbon steel in sea water in the presence of tyrosine- Zn$^{2+}$ system. *International Journal of Research in Chemistry and Environment*, 3: 156-162.