Time dynamics in chaotic many-body systems: can chaos destroy a quantum computer?

V.V. Flambaum *

School of Physics, University of New South Wales, Sydney 2052, Australia

Abstract

Highly excited many-particle states in quantum systems (nuclei, atoms, quantum dots, spin systems, quantum computers) can be “chaotic” superpositions of mean-field basis states (Slater determinants, products of spin or qubit states). This is a result of the very high energy level density of many-body states which can be easily mixed by a residual interaction between particles. We consider the time dynamics of wave functions and increase of entropy in such chaotic systems.

As an example we present the time evolution in a closed quantum computer. A time scale for the entropy $S(t)$ increase is $t_c \sim \tau_0/(n \log_2 n)$, where τ_0 is the qubit “lifetime”, n is the number of qubits, $S(0) = 0$ and $S(t_c) = 1$. At $t \ll t_c$ the entropy is small: $S \sim nt^2J^2 \log_2(1/t^2J^2)$, where J is the inter-qubit interaction strength. At $t > t_c$ the number of “wrong” states increases exponentially as $2^{S(t)}$. Therefore, t_c may be interpreted as a maximal time for operation of a quantum computer, since at $t > t_c$ one has to struggle against the second law of thermodynamics. At $t \gg t_c$ the system entropy approaches that for chaotic eigenstates.

*email address: flambaum@newt.phys.unsw.edu.au
I. INTRODUCTION

Highly excited many-particle states in many-body systems can be presented as “chaotic” superpositions of shell-model basis states - see the recent calculations for complex atoms \([1]\), multicharged ions \([2]\), nuclei \([3]\) and spin systems \([4,5]\). Indeed, the number of combinations to distribute \(n\) particles over \(m\) orbitals is exponentially large \(\binom{m}{n}/n!(m-n)! \) in a Fermi system. Therefore, the interval between the many-body levels \(D\) is exponentially small and residual interaction between the particles mixes a huge number of the mean-field basis states (Slater determinants) when forming eigenstates. The number of principal basis components in an eigenstate can be estimated as \(N_p \sim \Gamma/D\) where \(\Gamma\) is the spreading width of a typical component that can be estimated using the Fermi Golden Rule. In such chaotic eigenstates any external weak perturbation is exponentially enhanced. The enhancement factor is \(\sim \sqrt{N_p} \propto 1/\sqrt{D}\) - see e.g. \([6]\) and references therein. This huge enhancement have been observed in numerous experiments studying parity violation effects in compound nuclei - see e.g. review \([7]\) and references therein.

In a recent work \([8]\) the consideration of many-body chaos has been extended to quantum computers \([9–22]\). Any model of a quantum computer is somewhat similar to that of a spin system. In Ref. \([8]\) the authors modelled a quantum computer by a random Hamiltonian,

\[
H = \sum_i \epsilon_i \sigma^z_i + \sum_{i<j} J_{ij} \sigma^x_i \sigma^x_j,
\]

where the \(\sigma_i\) are the Pauli matrices for the qubit \(i\) and the second sum runs over nearest-neighbor qubit pairs. The energy spacing between the two states of a qubit was represented by \(\epsilon_i\) which was uniformly distributed in the interval \([0.5\Delta_0, 1.5\Delta_0]\). Here \(\epsilon_i\) can be viewed as the splitting of nuclear spin levels in a local magnetic field, as discussed in recent experimental proposals \([14,15]\). The different values of \(\epsilon_i\) are needed to prepare a specific initial state by electromagnetic pulses in nuclear magnetic resonance. In this case the couplings \(J_{ij}\) will represent the interactions between the spins, which are needed for multi-qubit operations in the quantum computer. The total number of states in this system is \(N = 2^n\), and the typical interval between the nearby energies of multiqubit states is \(\sim \Delta_0 n 2^{-n}\).

A rough estimate for the boundary of the chaos in the quantum computer eigenstates is \(J_c \sim \Delta_0/qn\), where \(qn\) is the number of interacting qubit pairs (\(qn = 2n\) in a 2D square array of “spins” with only short-range interactions). This follows from a simple perturbation theory argument: the mixing is strong when the perturbation is larger than the minimal energy interval between the basis states which can be directly mixed by this perturbation (see detailed discussion of the boundary of chaos in many-body systems in Refs. \([23–25]\)). Numerical simulations in \([8]\) have shown that the boundary of the chaos in the quantum computer eigenstates is \(J_c \simeq 0.4\Delta_0/n\). Above this point they observed a transition from Poissonian to Wigner-Dyson statistics for the intervals between the energy levels. For \(J < J_c\) one eigenstate is formed by one or few basis states built from the non-interacting qubits (products of “up” and “down” states). For \(J > J_c\) a huge number of basis states are required.

Because of the exponential laws it is convenient to study the entropy \(S\) of the eigenstates (in many-body systems the entropy \(S \simeq \ln N_p\), see e.g. Ref. \([24]\)). In Ref. \([8]\) they observed a dramatic increase of the eigenstate entropy in the transition from \(J < J_c\) to \(J > J_c\); in
fact, they defined J_c as a point where $S = 1$. In Ref. [8] this process of chaotization of the eigenstates with the increase of J, or number of qubits n, was termed as a melting of the quantum computer and was assumed to lead to destruction of its operability. The authors stress that this destruction of operability takes place in an isolated (closed) system without any external decoherence process (one could complement this picture by the enhancement of any weak external perturbation acting on the quantum computer).

This straightforward conclusion may be misleading. “Theoretically”, this picture is similar to that observed in nuclei and atoms. However, the “experimental” situation is very different. In nuclei and atoms experiments have resolved particular many-body energy levels. Therefore, the description of the systems based on a consideration of the eigenstates was an adequate one. In quantum computers the energy interval between the eigenstates is extremely small. The authors of Ref. [8] estimated that the average interval between the multi-qubit eigenstates for 1000 qubits, the minimum number for which Shor’s algorithm [10] becomes useful [13] is $D \sim 10^{-298}$ K (for a realistic $\Delta_0 \sim 1$ K). Therefore, in the case of a quantum computer it is impossible to resolve multiqubit energy levels. Temperature, or the finite time of the process τ, gives an uncertainty in energy $\delta E \gg D$. In this case the picture with chaotic eigenstates is not an adequate one and we should consider the time evolution of the quantum computer wave function and entropy. Quantum chaos in the eigenstates allows us to apply a statistical approach to this consideration.

II. TIME EVOLUTION OF THE CHAOTIC MANY-BODY STATE

Exact (“compound”) eigenstates $|k\rangle$ of the Hamiltonian H can be expressed in terms of simple shell-model basis states $|f\rangle$ in many-body systems or products of qubits in a computer:

$$|k\rangle = \sum_f C_f^{(k)} |f\rangle; \quad |f\rangle = a_{f_1}^+ ... a_{f_n}^+ |0\rangle.$$

These compound eigenstates $|k\rangle$ are formed by the residual interaction J; a_s^+ are creation or spin-raising operators (if the ground state $|0\rangle$ corresponds to spins down). Consider now the time evolution of the system. Assume that initially ($t = 0$) the system is in a basis state $|i\rangle$ (quantum computer in a state with certain spins “up”) which can be presented as a sum over exact eigenstates:

$$|i\rangle = \sum_k C_i^{(k)} |k\rangle.$$

Then the time-dependent wave function is equal to

$$\Psi(t) = \sum_{k,f} C_i^{(k)} C_f^{(k)} |f\rangle \exp(-iE^{(k)}t).$$

The sum is taken over the eigenstates k and basis states f; we put $\hbar = 1$. The probability $W_i = |A_i|^2 = |\langle i|\Psi(t)\rangle|^2$ to find the initial state in this wave function is determined by the amplitude
\[A_i = \langle i | \exp(-iHt)|i \rangle = \sum_k |C_i^{(k)}|^2 \exp(-iE^{(k)}t) \simeq \int dE P_i(E) \exp(-iEt). \tag{5} \]

Here we replaced the summation over a very large number of the eigenstates by the integration over their energies \(E \equiv E^{(k)} \) and introduced the “strength function” \(P_i(E) \) which is also known in the literature as the “local spectral density of states”,

\[P_i(E) \equiv |C_i^{(k)}|^2 \rho(E), \tag{6} \]

where \(\rho(E) \) is the density of the eigenstates. In chaotic systems the strength function is given by a Breit-Wigner-type formula \cite{26,25}:

\[P_i(E) = \frac{1}{2\pi} \frac{\Gamma_i(E)}{(E_i + \delta_i - E)^2 + (\Gamma_i(E)/2)^2}, \tag{7} \]

\[\Gamma_i(E) \simeq 2\pi |H_{if}|^2 \rho_f(E) \sim J^2 qn/\Delta_0. \tag{8} \]

Here \(\delta_i \) is the correction to the unperturbed energy level \(E_i \) due to the residual interaction \(J \), \(\rho_f(E) \sim qn/\Delta_0 \) is the density of the “final” basis states directly connected by the interaction matrix element \(H_{if} \) with the initial state \(|i \rangle \). We see from the equations above that the time dynamics is determined by the structure of the eigenstates.

It is easy to find \(W_i(t) \) for a small time \(t \). Let us separate the energy of the initial state \(E_i \equiv H_{ii} \) in the exponent and make a second order expansion in \(H - E_i \) or \(E - E_i \) in eq.\((5) \). The result is:

\[A_i = \exp(-iE_i t)(1 - (\Delta E)^2 t^2/2), \tag{9} \]

\[W_i(t) = (1 - (\Delta E)^2 t^2), \tag{10} \]

\[(\Delta E)^2 = \sum_{j \neq i} H_{ij}^2 = \sum_{i<j} J_{ij}^2 = qnJ_r^2. \tag{11} \]

Here \((\Delta E)^2 \) is the second moment of the strength function, \(J_r \) is the r.m.s. value of the interaction strength, \(J_r^2 \equiv \bar{J}_{ij}^2 \). The first moment is equal to \(E_i = H_{ii} \), see e.g. \cite{24,25} where one can also find the calculations of \((\Delta E)^2 \) and spreading width \(\Gamma(E) \) for many-body systems.

Note that in the special case of a very strong residual interaction \(J \gg \Delta_0 \) this short-time dependence can be extended to a longer time using the exact solution for the case of \(\Delta_0 = 0 \) (in this case it is easy to calculate \(\exp(-iHt) \)):

\[A_i = \prod_{i<j} \cos J_{ij} t \simeq \prod_{i<j} (1 - (J_{ij} t)^2/2) \simeq \exp(-(\Delta E)^2 t^2/2), \tag{12} \]

\[W_i(t) \simeq \exp(-(\Delta E)^2 t^2). \tag{13} \]
The strength function and density of states in this limit are also described by Gaussian functions with variance $\sigma^2 = (\Delta E)^2$:

$$P_i(E) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{E^2}{2\sigma^2}\right),$$

$$\rho(E) = \frac{2^n}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{E^2}{2\sigma^2}\right).$$

The density of states remains Gaussian for $\Delta_0 \neq 0$, with $\sigma^2 = n\epsilon^2 + (\Delta E)^2$ if there is no gap in the single-qubit spectra (in Ref. [8] the “up” and “down’ spectra were separated by a gap equal to Δ_0). In general the unperturbed density of states ($J = 0$) can be presented as a sum of the Gaussian functions (one should separate classes of states with a certain number of spins “up”). The interaction J in the Hamiltonian (1) mixes these classes and makes the density closer to the single Gaussian function.

The limit at large time in chaotic case can be obtained by calculation of the integral in eq. (5) in the complex E plain. We should close the contour of integration in the bottom part of the complex plane ($Im(E) < 0$) to provide a vanishing contribution at infinity. The limit at large time t is given by the pole of the strength function (7) closest to the real E axis. If Γ and δ_i do not depend on E the integration gives the usual exponential decay $W_i = \exp(-\Gamma t)$ [26]. However, the dependence of the spreading width on energy E is necessary to provide the finite second moment $(\Delta E)^2$ of the strength function (note that in many-body systems the dependence $\Gamma(E)$ can be approximated by a Gaussian function, since the density of final states $\rho_f(E_f)$ in eq. (8) is usually close to Gaussian [25]). If $\Gamma < \Delta E$ the closest pole is given by $\tilde{\Gamma} = -2Im(E_p)$, where E_p is a solution of the equation $E_p = E_i + \delta_i(E_p) - i\Gamma(E_p)/2$ with a minimal imaginary part. If $\Gamma \ll \Delta E$ we have $\tilde{\Gamma} = \Gamma$. As a result we obtain an exponential dependence for large t:

$$W_i(t) \sim \exp(-\tilde{\Gamma} t).$$

It is useful to have a simple extrapolation formula (valid for $\Gamma < \Delta E$) between the cases of small time eq. (10) and large time eq. (16):

$$W_i(t) = \exp\left(\frac{\Gamma^2}{2(\Delta E)^2} - \frac{\Gamma^4}{4(\Delta E)^4} + \Gamma^2 t^2\right).$$

Now we can estimate the probabilities of the other components W_f. For small time or small interaction J, other components can be populated due to direct transitions from the initial state only:

$$W_f = \left| \langle f | \exp(-iHt)|i \rangle \right|^2 \simeq \left| H_{if} \right|^2 \left| \int_0^t |A_i(t)| \exp(i\omega_xt)dt \right|^2 \simeq \frac{|H_{if}|^2}{\omega_{if}^2 + \Gamma^2/4} |\exp(i\omega_{if} - \Gamma/2)t - 1|^2.$$

$$\left(18\right)$$
Here \(\omega_{if} = E_f - E_i \). We stress again that this approximate equation does not contain transitions between the small components. For example, it does not contain the width of the state \(f \); the width \(\Gamma \) stands only to indicate some increase of the denominator and to clarify the “small time” condition that should include small \(\omega_{it}t \), \(\Gamma t \) or \(\Delta Et \). For small time \(W_f = |H_{if}|^2 t^2 \). Here \(H_{if} \) is equal to one of the \(J_{ij} \) that produces a change of the state of a pair of “spins” (qubits), transferring initial state \(i \) to another state \(f \). The result at larger times is different for perturbative and chaotic regimes. In the perturbative regime, \(J \ll \Delta_0/qn \) eq. (18) is the final one. In the chaotic regime we can find the asymptotic expression for large times. The projection of \(\Psi(t) \) in eq. (4) to the component \(f \) gives

\[
W_f(t) = W^s_f + W^{\text{fluct}}_f(t),
\]

\[
W^s_f = \sum_k |C_i^{(k)}|^2 |C_f^{(k)}|^2 \simeq \int \frac{dE}{\rho(E)} P_i(E) P_f(E) \simeq \frac{1}{2\pi \rho} \frac{\Gamma_t}{(E_i - E_f)^2 + (\Gamma_t/2)^2}.
\]

Here \(\Gamma_t \simeq \Gamma_i + \Gamma_f \simeq 2\Gamma \).

\[
W^{\text{fluct}}_f(t) = \sum_{k,p; k \neq p} C_i^{(k)} C_f^{(k)} C_i^{(p)} C_f^{(p)} \exp(i(E^{(k)} - E^{(p)})t).
\]

At large time \(t \), the different terms in \(W^{\text{fluct}}_f(t) \) rapidly oscillate and we can put \(W^{\text{fluct}}_f(t) = 0 \). Thus, asymptotically the distribution of the components in the time-dependent wave function is close to that in the chaotic eigenstates (see eqs (6,7)) with a doubled spreading width.

III. ENTROPY INCREASE

It is convenient to define the entropy of a many-body state as a sum over the basis components (a comparison with other definitions can be found, e.g. in Ref. [24]):

\[
S = -\sum_s W_s \log_2 W_s = -W_i \log_2 W_i - \sum_{f \neq i} W_f \log_2 W_f.
\]

Initially, we have only one component, \(W_i = 1 \) and the entropy is equal to zero. It is easy to obtain a small-time estimate for the entropy using eqs. (10, 11, 18):

\[
S \simeq (\Delta E)^2 t^2 \log_2(qn/(\Delta E)^2 t^2) = qnJ_r^2 t^2 \log_2(1/J_r^2 t^2).
\]

We see that the initial increase of the entropy is relatively small (\(\sim t^2 \)), however, it is proportional to the number of qubits \(n \).

The criterion of a quantum computer “melting” used in Ref. [8] is the entropy \(S = 1 \). We can extend the small-time consideration to include this point. For small time we have some decrease of the initial component and population of the components directly coupled to the initial one. The number of such small components is equal to the number of interacting pairs (qn) in the Hamiltonian eq. (1), since each pair can change its state due to interaction and this leads to a different many-body state. Using the normalization condition \(\sum_s W_s = 1 \)
we obtain an estimate $W_f = (1 - W_i)/n_f$ where n_f is the “principal” number of the final components. Initially $n_f = qn$. This gives us the following approximate expression for the entropy:

\[
S = -W_i \log_2 W_i - \log_2((1 - W_i)/n_f) \sum_{\hat{f} \neq i} W_f
\]

\[
= -W_i \log_2 W_i - (1 - W_i) \log_2((1 - W_i)/n_f) \simeq (1 - W_i) \log_2(n_f).
\]

(24)

The last approximate expression is an estimate with logarithmic accuracy, assuming $\log_2(n_f)$ is large.

The condition $S = 1$ combined with eq. (17) for $W_i(t)$ and eq. (24) for the entropy $S(t)$ gives

\[
W_i(t) = \exp \left(\frac{\Gamma^2}{2(\Delta E)^2} - \sqrt{\frac{\Gamma^4}{4(\Delta E)^4} + \Gamma^2 t^2} \right) = 1 - 1/\log_2(n_f).
\]

(25)

This means that the “melting” happens when the probability to be in the initial state W_i is still close to 1 (since $\log_2(n_f)$ is large). The loss of operability of the quantum computer is due to the admixture of a large number of the small components (“wrong” basis states).

We should note that, strictly speaking, the argument of the \log_2 may differ from $n_f = qn$, since the point t_c can be outside the small time approximation. However, the estimate in eq. (25) with $\log_2 n_f \simeq \log_2 n$ is valid with logarithmic accuracy (for example, a more accurate estimate in the case of $\Gamma \ll \Delta E$ is $n_f \simeq qn \Gamma/\Delta_0$; this follows from eq. (18)).

Equation (25) allows us to obtain a simple estimate for the maximal operable time t_c:

\[
t_c \simeq \frac{\hbar}{\Gamma \log_2(n)} \left(\sqrt{1 + \frac{\Gamma^2 \log_2 n}{(\Delta E)^2}} \right).
\]

(26)

In the case of $\Gamma \ll \Delta E$ we have

\[
t_c \simeq \frac{\hbar}{\Gamma \log_2(n)} = \frac{\tau_0}{n \log_2(n)}.
\]

(27)

Here $\tau_0 = \hbar/\Gamma_0$ is the “lifetime” related to a single qubit, $\Gamma_0 = \Gamma/n$; recall that Γ is proportional to the number of qubits n. More accurate result can be obtained numerically using expressions for W_i and W_f presented above.

At this point we can say something about the effects of the environment. They also lead to “depolarization” of a qubit, which means nonzero probability of the opposite spin state. If this probability is small we can speak about the probabilities of the population of n many-qubit basis states. Each admixed basis state in this case has one of the qubit states different from the initial state. To account for this effect one may use a real (experimental) qubit lifetime τ_0 in the estimate (27).

For $t > t_c$ the higher orders in $H_{ij}t^2$ expansion become important and the number of the small components increases exponentially: each state generates qn new states. This corresponds to an approximately linear increase in the entropy. At $t \gg t_c$ we can use the asymptotic form (20) of the component distribution. It is two times broader ($\Gamma_t = 2\Gamma$) than the basis component distribution of chaotic stationary states. This means that the
asymptotic number of the principal components is equal to \(N_p(t) = 2N_p^{(k)} \), where \(N_p^{(k)} \sim \Gamma/D \) is the number of principal components in a chaotic eigenstate. It is easy to calculate the entropy in this case. From the normalization condition \(\sum_s W_s = 1 \), it follows that \(W_s = 1/N_p \). Then

\[
S = -\sum_s W_s \log_2 W_s \approx \log_2 N_p \sum_s W_s = \log_2 N_p.
\]

Thus, the asymptotic value of the entropy is \(S(t \gg t_c) = \log_2(2N_p^{(k)}) = S^{(k)} + 1 \), where \(S^{(k)} = \log_2 N_p^{(k)} \) is the entropy of a chaotic eigenstate. Note, that it is smaller than the maximal possible entropy \(S_{max} = \log_2 2^n = n \). This is due to localization of the wave function within the energy shell centered at the energy of the initial state \(E_i \) with the width \(2\Gamma \).

IV. CONCLUSION

The time dependence of the closed quantum computer wave function is different in the non-chaotic and chaotic regime. In the non-chaotic case \(J \ll \Delta_0/n \), the number of principal components \(N_p \approx 1 \) and the wave function remains localized near the initial state (as it was pointed out in [8] the energy level density of the many-qubit states can be exponentially high even in this case). An increase in the number of qubits \(n \) leads to a transition to a chaotic regime where \(J > \Delta_0/n \). In this case one can operate the quantum computer within a limited time \(t < t_c = \tau_0/n \log_2 n \), where \(\tau_0 \) is the “lifetime” of one qubit. For \(t > t_c \) it is hardly possible to operate the quantum computer, since in this case one faces a hopeless struggle against the second law of thermodynamics: increase of the entropy \(S(t) \) and very fast exponential increase of the number of “wrong” states \(N_p(t) = \exp S(t) \). The asymptotic value of the entropy is then close to that for chaotic eigenstates.

A similar picture for the entropy increase is expected in other many-body systems. For example, one can consider a decay of a single-electron wave function in a many-electron quantum dot. In this case \(t_c \sim \tau/\log_2 n_f \) where \(n_f \) is the effective number of final states that contribute to the decay width \(\Gamma = \hbar/\tau \). One may also speculate about the “entropy” increase for decay of a single-particle wave function in chaotic quantum billiard or disordered system using expansion of this wave function in the plane wave basis or the orbital angular momentum basis.

This work was supported by the Australian Research Council. The author is grateful to M.Yu. Kuchiev for valuable discussion and to A.S. Dzurak for careful reading of the manuscript.
REFERENCES

[1] V. V. Flambaum, A. A. Gribakina, G. F. Gribakin, and M. G. Kozlov, Phys. Rev. A 50, 267 (1994).
[2] G.F. Gribakin, A.A. Gribakina, V.V. Flambaum, Aust. J. Phys. 52, 443 (1999).
[3] M. Horoi, V. Zelevinsky and B.A. Brown, Phys. Rev. Lett. 74, 5194 (1995); V. Zelevinsky, M. Horoi and B.A. Brown, Phys. Lett. B 350, 141 (1995); N. Frazier, B.A. Brown and V. Zelevinsky, Phys. Rev. C 54, 1665 (1996); V. Zelevinsky, B.A. Brown, M. Horoi and N. Frazier, Phys. Rep., 276, 85 (1996).
[4] V. V. Flambaum, Proc. 85th Nobel Symposium, Phys. Scr. 46, 198 (1993).
[5] B. Georgeot and D. L. Shepelyansky, Phys. Rev. Lett. 81, 5129 (1998).
[6] V.V. Flambaum, O.P. Sushkov, Nucl. Phys. A 412, 13 (1984). V.V. Flambaum, G.F. Gribakin. Progress in particle and nuclear physics, 35, Ch. 5, 423 (1995).
[7] G.E. Mitchell, J.D. Bowman and H.A. Weidenmuller, Rev. Mod. Phys. 71, 445 (1999).
[8] B. Georgeot, D.L. Shepelyansky, quant-ph/9909074.
[9] R. P. Feynman, Found. Phys. 16, 507 (1986).
[10] P. W. Shor, in Proc. 35th Annu. Symp. Foundations of Computer Science (ed. Goldwasser, S.), 124 (IEEE Computer Society, Los Alamitos, CA, 1994).
[11] A. R. Calderbank and P. W. Shor, Phys. Rev. A 54, 1098 (1996).
[12] A. Steane, Proc. Roy. Soc. Lond. A 452, 2551 (1996).
[13] A. Steane, Rep. Progr. Phys. 61, 117 (1998).
[14] J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
[15] N. A. Gershenfeld and I. L. Chuang, Science 275, 350 (1997).
[16] D. G. Cory, A. F. Fahmy and T. F. Havel, In Proc. of the 4th Workshop on Physics and Computation (Complex Systems Institute, Boston, MA, 1996).
[17] V. Privman, I. D. Vagner and G. Kventsel, Phys. Lett. A 239, 141 (1998).
[18] B. E. Kane, Nature 393, 133 (1998).
[19] D. Loss and D. P. Di Vincenzo, Phys. Rev. A 57, 120 (1998).
[20] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai, Nature 398, 786 (1999).
[21] G. K. Brennen, C. M. Caves, P. S. Jessen and I. H. Deutsch Phys. Rev. Lett. 82, 1060 (1999); D. Jaksch, H. J. Briegel, J. I. Cirac, C. W. Gardiner and P. Zoller, Phys. Rev. Lett. 82, 1975 (1999).
[22] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano and D. J. Wineland, Phys. Rev. Lett. 75, 4714 (1995).
[23] S. Aberg, Phys. Rev. Lett. 64, 3119 (1990). D.L. Shepelyansky and O.P. Sushkov, Europhys. Lett. 37, 121 (1997); B.L. Altschuler, Y. Gefen, A. Kamenev and L. S. Levitov, Phys. Rev. Lett., 78, 2803 (1997); A.D. Mirlin and Y.V. Fyodorov, Phys. Rev. B 56, 13393 (1997); D. Weinnmann, J.-L. Pichard and Y. Imry, J. Phys. I France, 7, 1559 (1997); P. Jacquod and D.L. Shepelyansky, Phys. Rev. Lett. 79, 1837 (1997); V.V. Flambaum and G.F. Gribakin, Phys. Rev. C 50, 3122 (1994); P.G. Silvestrov, Phys. Rev. Lett., 79, 3905 (1997); Phys. Rev. E. 58, 5629 (1998).
[24] V.V. Flambaum and F.M. Izrailev, Phys. Rev. E 55, R13 (1997); E 56, 5144 (1997).
[25] V.V. Flambaum and F.M. Izrailev, submitted to Phys. Rev. E.
[26] A. Bohr and B. Mottelson, Nuclear structure, Vol. 1 (Benjamin, New York, 1969).