Software-based data acquisition system for Level-1 end-cap muon trigger in ATLAS Run-3

Kosuke Takeda (Kobe University) on behalf of the ATLAS Collaboration
The ATLAS experiment will be upgraded for Run-3 (2021-2023).

- The beam energy: $\sqrt{s} = 13 \rightarrow 14$ TeV
- Luminosity: $L = 2 \times 10^{34} \rightarrow 3 \times 10^{34}$ cm$^{-2}$s$^{-1}$

New inner muon station will be installed.

- New trigger electronics has been developed for the Level-1 endcap muon trigger.
 - Maximum Level-1 trigger rate is limited to 100 kHz even in an increasing energy/luminosity.
 - More precise trigger logics needed to suppress the Level-1 trigger rate.

The existing DAQ electronics also has been reformed.

- Software-based data acquisition system (SROD)
ATLAS Trigger and Data Acquisition System

Muon CTP Interface

Central Trigger Processor

Trigger electronics

SROD

ReadOut System (ROS)

Sub-Farm Output (SFO)

Region Of Interest

High Level Trigger

HLT processing

High-Level Trigger

Level-1 Accept

40 MHz

100 kHz

1 kHz

TGC, NSW

Other muon detectors, Calorimeter

4VC'BSN0VUQVU
Figure 1.1: Cut-away view of the ATLAS detector. The dimensions of the detector are 25 m in height and 44 m in length. The overall weight of the detector is approximately 7000 tonnes.

The ATLAS detector is nominally forward-backward symmetric with respect to the interaction point. The magnet configuration comprises a thin superconducting solenoid surrounding the inner-detector cavity, and three large superconducting toroids (one barrel and two end-caps) arranged with an eight-fold azimuthal symmetry around the calorimeters. This fundamental choice has driven the design of the rest of the detector.

The inner detector is immersed in a 2 T solenoidal field. Pattern recognition, momentum and vertex measurements, and electron identification are achieved with a combination of discrete, high-resolution semiconductor pixel and strip detectors in the inner part of the tracking volume, and straw-tube tracking detectors with the capability to generate and detect transition radiation in its outer part.

High granularity liquid-argon (LAr) electromagnetic sampling calorimeters, with excellent performance in terms of energy and position resolution, cover the pseudorapidity range $|\eta| < 3$. The hadronic calorimetry in the range $|\eta| < 1.7$ is provided by a scintillator-tile calorimeter, which is separated into a large barrel and two smaller extended barrel cylinders, one on either side of the central barrel. In the end-caps ($|\eta| > 1.5$), LAr technology is also used for the hadronic calorimeters, matching the outer $|\eta|$ limits of end-cap electromagnetic calorimeters. The LAr forward calorimeters provide both electromagnetic and hadronic energy measurements, and extend the pseudorapidity coverage to $|\eta| = 4.9$.

The calorimeter is surrounded by the muon spectrometer. The air-core toroid system, with a long barrel and two inserted end-cap magnets, generates strong bending power in a large volume within a light and open structure. Multiple-scattering effects are thereby minimised, and excellent muon momentum resolution is achieved with three layers of high precision tracking chambers.

Thanks to the software-based system:
- it is flexible for modifications.
- it is easy to debug.

SROD can take advantage of the latest developments in computing industry.
Endcap muon trigger logic boards calculate muon p_T.

- **Send the results to Central Trigger Processor.**

Magnetic fields bends the track

(For example, $1.03 < |\eta| < 1.9$)

Experimental hall

Counting room

Central trigger processor

Special Interface Electronics

Distributor of Timing, Trigger and Control signal
Level-1 trigger decision is done by CTP.

- **Muon system receives a signal related to the Level-1 trigger.**

(For example, $1.03 < |\eta| < 1.9$)

Experimental hall

Counting room

Level-1 Trigger

The maximum rate is **100 kHz**
To record raw data related to the Level-1 trigger

- Each board sends the hit information to SROD via Ethernet.

Data size ~ 2000 bit/event/board

Data size : 160 bit/event

(For example, $1.03 < |\eta| < 1.9$)
To record raw data related to the Level-1 trigger:

- Each board sends the hit information to SROD via Ethernet.

Central trigger processor

This unit:
- trigger logic boards $\times 12$
- Sync-signal distributor $\times 1$
- SROD $\times 1$

is for 1/6 endcap muon system.

(For example, $1.03 < |\eta| < 1.9$)
To record the hit information related to the Level-1 trigger:

- Each board sends the hit information to SROD via Ethernet.

Central trigger processor

SROD: Multi-process architecture

- **Software-based ROD on PC**
 - MsgReporter
 - TTCCollector
 - SLCollector
 - RunControlDriver
 - EventBuilder

10 GbE Network switch

Sync-signal distributor

(For example, $|\eta| > 1.9$)

Cavern

Counting room

Ethernet
To record the hit information related to the Level-1 trigger:

- Each board sends the hit information to SROD via Ethernet.

Central trigger processor

A TLAS Muon Desk Shifter Training - General Introduction

The ATLAS Muon Spectrometer

- Sub-systems:
 - CSC – Cathode Strip Chambers
 - MDT – Monitored Drift Tubes
 - RPC – Resistive Plate Chambers
 - TGC – Thin Gap Chambers

- Precision chambers
- Trigger chambers

- on-detector electronics

- other detector on-detector electronics

- Counting room
- Cavern

Ethernet

(For example, $|\eta| > 1.9$)

10 GbE

Network switch

Special Interface

Electronics

Sync-signal distributor

Trigger logic boards ×12

- Collector processes:
 - The total number of processes is 13.
 - collect data from each electronics.
 - The number of these processes equal to the number of boards.
 - write it to the subsequent shared memory.
Ring buffer:

- The total number of memories is 13.
- is the shared memory to absorb arrival delays.
 - The number of the share memory equal to the number of the collector processes.
- has control parameters.
 - The collector processes check this parameter when they write data to this buffer.
To record the hit information related to the Level-1 trigger:
- Each board sends the hit information to SROD via Ethernet.

Central trigger processor

A TLAS Muon Desk Shifter Training - General Introduction

The ATLAS Muon Spectrometer Sub-systems:
- CSC – Cathode Strip Chambers
- MDT – Monitored Drift Tubes
- RPC – Resistive Plate Chambers
- TGC – Thin Gap Chambers

Precision chambers

Trigger chambers

on-detector electronics
other detector electronics

Ethernet (For example, $|\eta| > 1.9$)

Special Interface

Electronics

Sync-signal distributor

Trigger logic boards x 12

Event builder process:
- builds an event.
 - Read data from the ring buffers
 - Check the IDs
- sends it to ROS.
 - By using the special PCIe card.
To record the hit information related to the Level-1 trigger, each board sends the hit information to SROD via Ethernet.

Sub-systems:
- **CSC – Cathode Strip Chambers**
- **MDT – Monitored Drift Tubes**
- **RPC – Resistive Plate Chambers**
- **TGC – Thin Gap Chambers**

Message Reporting System Process (MsgReporter):
- Collects messages from each process and posts them to the ATLAS message reporting system.

RunControlDriver Process:
- To synchronize the process sequence with the central system.

SROD: Multi-process architecture
After building an event, SROD sends it to ROS via S-LINK.

- S-LINK is a CERN specification.
 - ROS collects data and serve it to high-level trigger.

New PCIe card for S-LINK connection[2]

- Developing with TokushuDenshiKairo Inc.
 - Using Xilinx Kintex-7 FPGA XC7K160T
 - PCIe x4

- Three types of output ports
 - Optical output × 2 (SFP+)
 - To send data to subsequent systems
 - Open-drain output
 - To send BUSY signal to the external system
 - NIM output × 1 and NIM input × 2

[2] Owen Boyle, et al., The S-LINK Interface Specification, 27 March 1997
The SROD performance has been measured.

- In Run-3:
 - The average Level-1 trigger rate is 100 kHz.
 - The average event size is ~ 2000-bit.

SROD has good performance.

- The processing speed is higher than the requirement.
 - This bottleneck is coming from the network switch.
Software-based DAQ system has been developed for the Level-1 endcap muon trigger at higher luminosity run.

- To receive trigger data from new trigger logic boards.
 - Current DAQ system can’t handle these large data at high rate.

- Basic concepts:
 - Multi-process architecture
 - A special PCIe card is implemented.

Performance test has been done.

- This system can run at 100 kHz.
- The measured processing speed on SROD is enough good to use at Run3.
 - Current error handling procedures should be improved.
 - Monitoring functions should be more enhanced.
backup slides
The upgrade motivation

- Fake triggers will be more reduced by the new inner detectors.
 - New Small Wheel
 - $1.3 < \eta < 2.4$
 - RPC BIS 7/8
 - $1.0 < \eta < 1.3$ in small sectors

The coincidence between TGC-BW and these detectors will be used in Run-3

The existing inner detector:

- Tile Calorimeter
 - $1.0 < \eta < 1.3$
- EIL4
 - $1.0 < \eta < 1.3$ in Large sectors

The existing inner detector:

- Tile Calorimeter
 - $1.0 < \eta < 1.3$
- EIL4
 - $1.0 < \eta < 1.3$ in Large sectors
Firmware has two main flows.

- Trigger data can be used for the online monitoring, trigger analysis, and commissioning.

1. Readout for new trigger logic board

![Diagram of trigger path and readout path]

- This technology connects FPGA to Ethernet.
 - SROD can correct data using TCP/IP.

[1] T. Uchida, *Hardware-Based TCP Processor for Gigabit Ethernet*, Nuclear Science, IEEE Transactions on 55 (2008) no. 3, 1631–1637.
The trigger Logic board for Run-3

Optical inputs and outputs
- SFP+ with GTX in FPGA
- 12 optical inputs from NSW, Tile Calorimeter, RPC BIS 7/8.
- 2 optical outputs to MuCTPi. (10 optical outputs for spares.)

Optical inputs
- SFP RX + G-Link RX chip
- 14 optical inputs from TGC-BW and EIL4.

CPLD (XC2C256-7PQ208C)
for VME control

BPI (PC28F256P30TF)
for FPGA configuration

FPGA (Xilinx Kintex-7 XCK410T)

RJ45 connector
for readout (SiTCP)

16-pin connector
for TTC

LEMO IN/OUT
Data size

Input data to SROD

- This input data will be suppressed at the trigger logic board.
 - [31:16] : header
 - [15:0] : data

[31:16]	[15:0]
Trigger decision data	256 bit (Fixed)
Trigger decision data	256 bit (Fixed)
Data from NSW	1152 bit
ID information from NSW	192 bit (Fxed)
ID information from NSW	192 bit (Fxed)
Data from new RPC	192 bit
Data from new RPC	192 bit
Data from new RPC	192 bit
ID information from new RPC	32 bit (Fxed)
ID information from new RPC	32 bit (Fxed)
Data from Tile Calorimeter	96 bit
Data from TGC-BW	96 bit
Data from TGC-BW	96 bit
Data from TGC-BW	96 bit
Data from inner TGC	32 bit
Data from inner TGC	32 bit

96 bit [Header&trailer] + (256 + 192 + 32)×4 + (1152 + 192 + 96 + 200 + 32)×10⁻³ = 1922 bit/event/board