Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Lipids in host–pathogen interactions: Pathogens exploit the complexity of the host cell lipidome

Ynske P.M. van der Meer-Janssen, Josse van Galen, Joseph J. Batenburg, J. Bernd Helms

Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, P.O. Box 80176, 3508 TD Utrecht, The Netherlands

Abstract

Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane trafficking. These properties make lipids an attractive target for pathogens to modulate host cell processes in order to allow their survival and replication. In this review we will summarize the often ingenious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The examples are categorized in generalized and emerging principles describing the involvement of lipids in host–pathogen interactions. Several pathogens are described that simultaneously induce multiple changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced changes may have important implications for drug development. The emergence of high-throughput lipidomic techniques will allow the description of changes of the host cell lipidome at the level of individual molecular lipid species and the identification of lipid biomarkers.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Lipids are loosely defined as biological molecules with hydrophobic or amphipathic properties that render them soluble in organic solvents [1]. Despite the fact that this definition includes thousands of different chemical structures, a more defined classification seemed unnecessary for a long period of time. Lipids were believed to have two general functions: a structural role in biomembranes and a role in energy storage in cells (lipid droplets) and body fluids (lipoproteins). During the last two decades, however, we have come to realize that lipids have a multitude of different and essential functions in the cell. First indications for the involvement of specific lipids in biological processes came from the identification of platelet-activating factor as a lipid molecule [2]. The groundbreaking work of Irvine and Berridge in the 1980s showed the involvement of lipids in intracellular cellular signaling by the generation of second messengers from phosphoinositides [3]. Almost concomitantly the discovery was made that diacylglycerol and phosphatidic acid are biologically active lipids, as well as lipidic breakdown products of cellular sphingolipids [4–7]. Since the identification of the phosphatidylinositol transfer protein as an essential factor for protein trafficking from the trans–Golgi network (TGN) in yeast in the early 1990s [8], an overwhelming body of evidence showed the involvement of lipids in the regulation of membrane traffic [9]. Lipids have also been implicated in the generation of lateral heterogeneity in cellular lipidomes [10].

Thus, lipids have a multitude of functions in many biological processes and we are beginning to understand the long-time mysterious reason why nature synthesizes thousands of different lipids. This multitude of functions makes lipids also an attractive target for pathogens. In the innate immune system, microbes can be internalized by a phagocytosis-like process in order to be degraded by the acidic environment in subsequent phagolysosomal compartments. Some pathogens, however, escape the immune system by interacting with the cellular machinery at any one of these steps, allowing their survival and multiplication. Today there are many indications for an important role of lipids in various stages of host–pathogen interactions. One of the first examples for such involvement comes from the bacterium *Vibrio cholerae* that secretes the enterotoxin cholera toxin. The receptor of the toxin is a lipid termed GMI [11]. This protein–lipid interaction results in the formation of a membrane pore, ultimately causing severe diarrhea.

In this review we will summarize the often ingenious strategies that pathogens utilize to divert cellular processes by modifying cellular lipid homeostasis. To this end pathogens take full advantage of the complexity of the lipidome (Fig. 1). The examples are categorized in generalized and emerging principles describing the involvement of lipids in host–pathogen interactions.

Many lipid-derived (signaling) molecules that classify as lipids themselves, and that might have a role in host–pathogen interaction, like prostaglandins, leukotrienes, quinones, vitamins, and tocopherols will not be discussed here. This still leaves us with thousands of different lipid species in the (phospho)lipid and sterol classes.

Until recently, only limited possibilities for lipid analysis were available, often only capable of lipid identification into different classes. Now the field of lipidology enters a new era, with mass spectrometry-based techniques providing novel tools to analyze samples at the single lipid species level and at the same time at the whole lipidome level [12–14]. We already see preliminary examples of and the urgent need for lipidomic approaches in various fields, including that of host–pathogen interaction, to unravel the involvement of lipids in infectious diseases [15]. This review aims to give an overview of the current status of our knowledge on the involvement of lipids in host–pathogen interactions, indicating that lipids from both host and pathogen play key roles in infection processes.

2. Modulation of the fatty acid moiety of host cell lipids

2.1. Fatty acid modulation of host cell lipids upon infection

During development in the erythrocyte, the malaria causing parasites, *Plasmodium* spp. modify the protein and lipid composition and various properties of the plasma membrane of their host cell [16–18]. In the membrane of erythrocytes parasitized by *Plasmodium falciparum* the composition of individual phospholipid classes, as well as that of their fatty acid constituents is altered [17–19]. Fatty acid alterations are not observed in all lipid classes.
Alterations in the fatty acid composition of phosphatidylcholine and phosphatidylethanolamine of erythrocyte membranes were observed for *Plasmodium knowlesi* [20]. Intraerythrocytic development of *Plasmodium chabaudi* is also associated with alterations in the overall fatty acid composition of the plasma membrane of the host cell [21], but not in that of the host cell’s plasma membrane phosphatidylcholine [22]. At this moment it is not clear whether the observed alterations in fatty acid composition are due to enzymatic modifications in situ of the phospholipids in the plasma membrane of the erythrocyte, or to selective uptake of phospholipid molecular species from the erythrocyte plasma membrane by the parasite. Alterations in fatty acid composition of host cell lipids are not limited to parasitic infections. Changes in phospholipid fatty acid composition were also observed in mouse tissues after infection with *Bacillus Calmette-Guérin*, an attenuated mutant of *Mycobacterium bovis* [23], while human immunodeficiency virus-1 (HIV-1) infection of cultured lymphocytes was found to result in alterations of the fatty acid composition of the membrane lipids of the lymphocytes [24].

Pathogens can modify the fatty acid composition of host cell lipids in several ways. One way is the modulation of host cell fatty acid uptake from the environment. Enteropathogenic *Escherichia coli* (EPEC) inhibits the uptake of short-chain fatty acids, as illustrated by inhibition of butyrate uptake into Caco-2 cells during infection [25]. Genome-wide RNAi screens in *Drosophila* SL2 cells indicated that infection by *M. fortuitum* or *L. monocytogenes* requires sufficient expression of acetyl-CoA carboxylase, fatty acid synthase and stearoyl-CoA 9-desaturase [26]. Likewise, inhibition of acetyl-CoA carboxylase or fatty acid synthase in the host cells inhibits Hepatitis C virus (HCV) RNA replication [28,29]. Moreover, during infection HCV induces an upregulation of the expression of mRNAs encoding enzymes of fatty acid synthesis [28,29]. It is not clear whether alterations in expression levels of enzymes involved in fatty acid biosynthesis also result in altered fatty acid profiles of membrane lipids. In the next sub-sections we will focus on a third way for pathogens to modulate the fatty acid composition of host cell lipids which involves phospholipase activities, lipase activities, and/or cholesterol acyltransferase activities to efficiently modify the fatty acid composition of host cell lipids by fatty acid exchange.

2.2 Pathogen and host cell phospholipases

Phospholipases, enzymes that cleave phospholipids, are involved in modification of membrane composition, in cell signaling pathways and in inflammatory cascades. Based on the position within the phospholipid at which the cleavage takes place, they are classified into four major groups: phospholipase A, B, C and D (PLA, PLB, PLC and PLD, respectively). Phospholipases from bacteria,
viruses and parasites act as virulence factors by modifying host cell lipids to their advantage [30,31]. They exert their action by being involved in a variety of aspects of host–pathogen interaction, such as causing membrane damage (hemolysis in the case of erythrocytes), entry into the host, and exit from vacuoles (Fig. 2). Phospholipases of pathogens may also be involved in acquisition of fatty acids for nutritional purposes (see Section 8), and activation of host signaling pathways to regulate the immune response (see Section 3). Lastly, pathogens can also trigger the activity of host cell phospholipases. Distinct isoforms of PLAc were found to mediate the ability of Salmonella typhimurium and Shigella flexneri to induce the transepithelial migration of neutrophils [32].

Pseudomonas aeruginosa injects an effector protein ExoU with PLAc activity directly into host cells by means of a type 3 secretion system [33–35]. This PLAc requires Cu²⁺, Zn²⁺-superoxide dismutase (SOD1) from the host cell as an activating factor [36]. Recently, ExoU was also found to have lysosphospholipase A activity [37]. ExoU injected into the host cell is cytotoxic. By lysing cell membranes it may contribute to the ability of Pseudomonas to disseminate rapidly from lung tissue into the bloodstream. However, the cellular effects of ExoU are not limited to localised cell death and tissue destruction. This protein triggers an arachidonic acid-depen-
dent inflammatory cascade in vivo [38]. Recent data indicate that ExoU liberates the arachidonic acid from intracellular lipid droplets [39]. In addition, it activates several transcription factors that control proliferative responses and proinflammatory cytokine production (for review, see [30]. S. typhimurium injects an effector protein SseJ into the host cell cytoplasm from within a vacuole in which the bacterium resides after its uptake into the host cell. SseJ exhibits both PLAc and glycerophospholipid:cholesterol acyltransferase activity [40,41]. The exact role of this enzyme, which is activated by as yet unidentified proteinaceous host cell factor(s), is not yet clear [40]. SseJ is not cytotoxic [42].

2.3. Phospholipases and host cell plasma membrane damage

Many pathogenic bacteria secrete or contain in their outer membrane a phospholipase activity, which can destabilize the erythrocyte plasma membrane. This hemolytic activity has been characterized for several pathogens: In the case of Campylobacter coli [43], Vibrio ssp. [44–46] and Legionella pneumophila [47] it is a PLAc, while in the case of P. aeruginosa [48,49] and Pseudomonas fluorescense [50] it is a PLC. The observation of a positive correlation between the presence of PLC activity and the hemolytic activ-

Fig. 2. Lipid metabolism at the pathogen-containing vacuole. The various effectors and enzymes are drawn in the vacuolar membrane. However, their exact location relative to the membrane is, in most cases, unknown. PLA: phospholipase A1 or A2; PLC: phospholipase C; PLD: phospholipase D; PL: phospholipid; PA: phosphatidic acid; DAG: diacylglycerol; Sph: sphingosine; S1P: sphingosine-1-phosphate; RSV: respiratory syncytial virus; CMV: cytomegalovirus; Chol: cholesterol; LDL: low-density lipoprotein; EspF: Escherichia coli effector molecule F; SapM: M. tuberculosis effector molecule; IpgD: Shigella flexneri effector molecule; SseJ: Salmonella SPI-2 effector molecule; Lda: Lipid droplet-associated Chlamydial effector proteins. For other abbreviations: see legend to Fig. 1.
ity in a range of *Mycobacterium* isolates indicates that also in *Mycobacterium* species a PLC is involved in hemolysis [51]. In some cases the bacteria may acquire iron from the lysed erythrocytes. PLA2 secreted by *L. pneumophila* may act as an important agent in causing lung disease by destruction of phospholipids of pulmonary surfactant and damage to cell membranes by the generated lyso phosphatidylcholine [52].

In addition to causing lysis of cells, membrane degradation by hydrolysis of phospholipids and (in the case of PLA2 activity) formation of lytic phospholipids may also facilitate entry of pathogens into host cells, while in the gastrointestinal tract phospholipases may also degrade the mucus layer overlying these cells. A PLA2 of *Helicobacter pylori* plays a role in colonization of the gastric mucosa [53,54]. A similar role may be played by a PLA2 secreted by *Campylobacter pylori*, which was shown to degrade phospholipids of gastric mucus [55]. The *Plasmodium berthelotii* phospholipase PbPL is involved in migration of sporozoites through cells to gain entry into the bloodstream [56]. PpPL is most similar in sequence to LCA, a member of the PLA2 family of serine lipases. Like LCA it contains the GXXSG motif found in many serine lipases, and the catalytic triad of serine, histidine and aspartate. The enzyme was shown to have PLA activity [56]. The penetration of host cells by *Rickettsia rickettsii*, *R. prowazekii* and *R. conorii* also appears to be mediated by a PLA2 of rickettsial origin [57,58]. A PLA2 may also be involved in host cell invasion by the protozoan parasites *Cryptosporidium parvum* [59] and *Toxoplasma gondii* [60,61]. PLB secreted by *Cryptococcus neoformans* is important in the binding of this fungus to human epithelial cells prior to its internalization, possibly due to the release of fatty acids from host cell plasma membranes or pulmonary surfactant [62].

2.4. Phospholipases and vacuolar membrane damage

After invasion into host cells or phagocytosis by macrophages, bacteria reside in a vacuole or phagosome. Some intracellular pathogens escape from this vacuole into the cytoplasm to successfully survive and replicate [63,64]. This vacuole escape involves the action of pore-forming proteins or phospholipases or both [64]. *Clostridium perfringens* escapes from its macrophage phagosome by use of its α-toxin (a PLC) in cooperation with its perfringolysin O, a cholesterol-dependent cytolysin [65]. The combined action of phospholipase and a pore-forming protein in escape from the vacuole is also seen for the well-studied *L. monocytogenes*, an intracellular pathogen that replicates in the cytosol of host cells [63,64]. After invasion into cells, *L. monocytogenes* escapes from its vacuole by the combined action of the pore-forming protein listeriolysin O (LLO) and a phosphatidylinositol-specific PLC (PI-PLC), both secreted by the bacterium [63,64,66,67]. It has been suggested that LLO forms holes into the vacuole membrane, which allow *L. monocytogenes* phospholipase to access exposed membrane leaflet [63]. However, in a liposome lysis assay membrane permeabilization by *L. monocytogenes* PI-PLC in cooperation with LLO was found to be independent of phospholipid hydrolysis [68]. In addition to directly invading a cell, *L. monocytogenes* can also spread from one cell to another without leaving the intracellular environment. After such cell-to-cell spread the bacterium resides in a secondary vacuole surrounded by a double membrane. The escape from this double-membrane vacuole requires the coordinated action of LLO, PI-PLC and PC-PLC (a PC-preferred PLC also secreted by *L. monocytogenes*) [67,69,70]. Recent data indicate that the PI-PLC and PC-PLC act specifically in the initial degradation of the inner membrane of the double-membrane vacuole, after which the outer membrane is disrupted by LLO [71]. PLCs may likewise be involved in phagosomal escape of *Bacillus anthracis*. Cooperation between the cholesterol-dependent cytolysin anthrolysin O and three PLCs in *B. anthracis* mediated macrophage-associated growth and survival of this pathogen, while ectopic expression of anthrolysin O from *B. anthracis in Bacillus subtilis* conferred limited phagosomal escape upon the recombinant bacterium [72]. However, at present it is unclear whether the mediation by the combined action of anthrolysin O and the PLCs of growth and survival of *B. anthracis* in macrophages is actually related to an effect on phagosomal escape. Also various *Rickettsia* species lyse their phagosomal compartment after entry into a host cell. The lysis of the vacuolar membrane has been attributed to the activity of rickettsial PLA2 [57,58,73]. The failure to identify a rickettsial PLA2 from the rickettsia genome, together with the identification of a PLD in *R. prowazekii* and *R. conorii* has led to the suggestion that a PLD is involved in the escape from the vacuole [74]. This is supported by the observation that expression of the *R. prowazekii* PLD gene in *S. typhimurium*, which normally does not escape from its vacuole, conferred on the *Salmonella* the ability of vacuole escape [75]. There are also viruses that use a phospholipase to escape from a host cell vesicle: parovirus virions deploy a capsid-tethered PLA2 to breach the endosomal membrane after entry into a cell [76].

2.5. Lipases

Lipases are enzymes hydrolyzing tri-, di- and monoacylglycerols and are in some cases involved in pathogenesis. *Burkholderia cepacia* secretes a lipase that increases its invasion into epithelial cells without affecting plasma membrane or tight junction integrity [77]. *F. aerogenes* uses a secreted lipase together with a secreted PLC to induce inflammatory mediator release from human platelets and leukocytes. Among these inflammatory mediators are the lipidic 12-hydroxyeicosatetraenoic acid (12-HETE) and leukotriene B4 [78,79]. A lipase secreted by *Staphylococcus aureus* decreases phagocytosis and intracellular killing by human granulocytes of staphylococci, but not the phagocytic killing of pneumococci or streptococci. The effect of the lipase was reported to be partly retained after heat inactivation, indicating that the effect of the lipase is not exerted by enzyme action alone [80]. Also *Candida parapsilosis* secretes a lipase which inhibits phagocytosis and intracellular killing by macrophages [81]. In addition to these functions, lipases secreted by pathogens may also be involved in generation of fatty acids from host cell lipids for the pathogens’ energy production or complex lipid synthesis (see Section 8).

2.6. Cholesterol acyltransferases

Several bacteria secrete enzymes with glycerophospholipid:cholesterol acyltransferase (GCAT) activity. These GCATs transfer an acyl chain from a phospholipid onto cholesterol, resulting in the formation of cholesterol esters and lysophospholipids. In addition, they possess phospholipase A activity. They are members of the GDSL lipase family, which is characterized by the presence of a conserved GDSL motif and a catalytic triad (S-D-H) [82,83]. Cholesterol is an important component of eukaryotic membranes, but is absent from the membranes of most prokaryotes. Acylation by a pathogen of host cell cholesterol might therefore be a good tool for the pathogen to specifically target host cells using an enzyme that in principle does not discriminate between host cell and pathogen lipids. Lowering the cholesterol level in the membranes of host cells may lead to increased fluidity of these membranes. In addition, GCAT/PLAs may influence signaling pathways in the host cell by generating lysophospholipids and fatty acids, or by affecting lipid raft composition through their effects on cholesterol. Here we will describe 3 examples of host–pathogen interactions involving GCAT activity that have been described in some detail.

In a survey of the distribution of a GCAT originally found in the culture supernatant of *Aeromonas hydrophila* [84] this enzyme was found to be present in the culture media of all *Aeromonas* species
tested, in that of *Vibrio anguillarum* and *V. parahaemolyticus*, and in that of *S. aureus* [85]. The enzyme has been purified from *Aeromonas salmonicida* and has a preference for phospholipids carrying short-chain or unsaturated fatty acids [86]. In addition to GCAT activity, the enzyme also possesses phospholipase A₂ and lysophospholipase A activity [87]. The enzyme is a major lethal toxin to fish, and lytic toward fish erythrocytes, especially when bound to lipopolysaccharide [88]. The AspA serine protease, another toxin secreted by *A. salmonicida*, is responsible for the proteolytic activation of pro-GCAT to GCAT after secretion of the former from the bacterium [89,90]. Despite their toxicity, however, neither the GCAT, nor the AspA appear to be essential for the virulence of *A. salmonicida* [91].

The second example comes from the intracellular pathogen *L. pneumophila* that secretes a GCAT activity termed PlaC. PlaC is probably secreted via a type 2 secretion system. It requires activation which is either directly or indirectly dependent on the type 2 secreted zinc metalloprotease ProA [92]. Beside GCAT activity, PlaC also possesses PLA and lysophospholipase A activity. As cholesterol is not present in the membrane of *Legionella*, PlaC may play a role in modification of host cell membranes. However, PlaC is not essential for infection of and replication within Acanthamoeba castellanii (*L. pneumophila*’s natural host) and U937 macrophages [92].

A third member of the GDSL lipase family is the *S. typhimurium* effector protein SseJ. This protein was recently found to have GCAT activity [40,41], PLA activity [40] and deacylase activity towards the artificial substrate para-nitrophenyl butyrate [93], but no lysophospholipase A activity. As cholesterol is not present in the membrane of *Legionella*, PlaC may play a role in modification of host cell membranes. However, PlaC is not essential for infection of and replication within Acanthamoeba castellanii (*L. pneumophila*’s natural host) and U937 macrophages [92].

As a final example of the involvement of cholesterol acyltransferase in host–pathogen interactions we mention the apicomplexan parasitic protozoa *T. gondii* that resides in a parasitophorous vacuole. In the vacuole the parasite depends on host cell cholesterol derived from endocytosed low-density lipoproteins (Fig. 3) (see Section 8 for further details). Replication of *T. gondii* in its vacuole is dependent on the conversion of cholesterol to cholesterol ester. The parasite expresses two isoforms of acyl-CoA:cholesterol acyltransferase (ACAT), which differ from mammalian ACAT in their substrate affinity and specificity, and in their mechanism of regulation [99]. The endogenous ACAT activities of *T. gondii*...
are thought to be involved in the parasite’s cholesterol ester synthesis and lipid droplet biogenesis [99,100] (Fig. 3).

Utilization of host cholesterol is also critical for the intracellular proliferation of a related apicomplexan parasite, *P. falciparum* [101]. The genome of this parasite was screened for genes that may be involved in acyl coenzyme A:DG acyltransferase (DGAT) [102]. In addition to this gene, a sequence was identified which, based on its homology to the sequences for human and mouse lecithin:cholesterol acyltransferase (LCAT), was suggested to encode a plasmodial LCAT [102]. LCAT transfers an acyl chain from phosphatidylcholine (lecithin) to cholesterol, similarly to the GCATs described above. Despite the presence of the sequence for the putative LCAT in the *Plasmodium*, this parasite was found not to produce cholesterol esters, at least not while residing in erythrocytes [102].

3. Pathogen interference with lipid signaling in host cells

3.1. Phosphoinositide signaling during phagocytosis

Lipids play a major role in cellular signaling [103,104]. In general, signaling lipids have a rapid turnover and are present in minute amounts. This does not exclude the possibility that signaling lipids transiently appear at high concentrations in subdomains of the membrane. Phosphoinositides are an important class of signaling lipids and they are involved in numerous cellular signaling cascades. Phosphatidylinositol can be phosphorylated at its 3, 4 and 5 position in all possible combinations, leading to 7 different phosphoinositide species. Phosphorylation at other positions is also possible but less common. Phosphoinositides are involved in cellular signaling via two different mechanisms: (1) their hydrolysis yields second messengers that transmit downstream signals; and (2) they serve as a docking site for proteins with domains that recognize specific phosphoinositides [105]. In the latter case, phosphoinositides must be present in stoichiometric amounts and must be generated at (or targeted to) specific organelles or membrane domains. Therefore, phosphoinositides help define the identity of an organelle or of a domain by recruitment of specific proteins [106].

Phosphoinositide metabolism plays a central role in the regulation of receptor-mediated endocytosis and phagocytosis [107,108]. It contributes to the dynamics of the entire phagocytic maturation process, starting with the formation of a phagocytic cup at the plasma membrane and ending with the maturation process transforming a phagosome into a phagolysosome. During these processes, lipid kinases and phosphatases act in concert to regulate the extensive interconversion of various phosphoinositides. In brief: at the phagocytic cup, rapid interconversions between PI(4)P, PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3 take place [109,110]. Some of the phosphoinositides are involved in the recruitment of cytoskeletal elements, necessary for the formation of a phagocytic cup [111]. During the subsequent maturation process, formation of PI(3)P is essential, as well as the action of PI(3) kinases. Multiple waves of PI(3)P attract effector proteins such as EEA1 and Hrs to the phagosome, which is important for downstream signaling events [112]. In later stages of phagosome maturation, PI(3,5)P2 is generated through phosphorylation of PI(3)P by PIKfyve [113]. As a result, PI(3)P effector proteins are released from the membrane and PI(3,5)P2 effector proteins are recruited to the phagosomes.

3.2. Modulation of phosphoinositide signaling by pathogens

Pathogens have evolved ingenious strategies to subvert phosphoinositide metabolism by interference with many of the interconversion steps [for excellent reviews on this topic, see 114,115]. Here we will discuss some general principles, updated with recent examples. By interference with phosphoinositide metabolism, pathogens can affect either the uptake process (A) or the phagosomal maturation process (B).

(A) *L. monocytogenes* is a Gram-positive pathogen that secretes an effector named Inlb via its type 3 secretion system. The *Listeria* surface protein InlB promotes bacterial internalization into host cells by activation of type I phosphatidylinositol 3-kinase (PI3K) [116], resulting in the generation of PI(3,4,5)P3. The effector protein InlB also results in the co-recruitment of type II phosphatidylinositol 4-kinases (PI4KII) to phagosomes [117]. The mechanism of action PI4KII remains to be established, as knockdown of PI4KII did not affect the levels of phosphoinositides but did affect the uptake process.

Yersinia pseudotuberculosis activates PI(4,5)P2 to form PI(4,5)P2 and causes activation of the small GTPase Rac1, involved in membrane ruffling during the uptake in epithelial cells [118].

An ingenious example of modulation of host cell phosphoinositide signaling is provided by *P. aeruginosa* that can only enter cells via basolateral membranes. To enable its uptake at the apical membrane, *P. aeruginosa* stimulates a Pl(3) kinase at the apical membrane to increase local phosphoinositide levels that are phosphorylated at the 3 position, including PI(3,4,5)P3 [119]. Formation of PI(4,5)P2 leads to the generation of domains in the apical membrane resembling a basolateral membrane [120]. This transformation makes the apical membrane accessible for *P. aeruginosa* entry [121].

S. typhimurium secretes SigD (also known as SopB) via a type 3 secretion system. SigD is a phosphatase that, at least in vitro, is capable of dephosphorylating inositol phosphates and phosphoinositides at various positions [122]. This effector influences phosphoinositide metabolism in several ways, affecting both the uptake process and the maturation process (see below). By elimination of host cell Pl(4,5)P2, SigD promotes membrane fission at the plasma membrane during Salmonella invasion [123,124]. At the same time, SigD phosphatase activity leads to an accumulation of PI(3,4)P2 and Pl(3,4,5)P3 on invasion ruffles, suggesting the concurrent recruitment to or activation at the plasma membrane of Pl(3)-kinase [125].

Enteropathogenic *E. coli* (EPEC) also induces a transient Pl(4,5)P2 accumulation at bacterial infection sites, resulting in local actin accumulation and induction of Pl(3,4,5)P3 clustering [126].

(B) After uptake, pathogens disrupt phosphoinositide signaling by secretion of lipid modifying enzymes, allowing them to interfere with the maturation process. As these enzymes lead to propagation of the infection, they are often regarded as virulence factors [127]. As mentioned before, Salmonella secretes SigD which affects phosphoinositide metabolism at the plasma membrane of the host cell. The same enzyme activity of SigD is, however, also active at the Salmonella-containing vacuole (SCV). After entry of the Salmonella, SigD is delivered from the plasma membrane to the SCV via a process controlled by SigD ubiquitination [128]. At the SCV, SigD promotes formation of Pl(3)P [125]. In this process SigD does not dephosphorylate phosphoinositides to produce Pl(3)P, as suggested earlier [129], but promotes recruitment of Rab5 and its effector the Pl(3) kinase Vps34, which in turn results in the formation of Pl(3)P [125]. The mechanism described for the effector protein SigD is reminiscent of the effector IpGd that is secreted by *S. flexneri*. IpGd is a phosphatase that dephosphorylates Pl(4,5)P2 to Pl(4)P, Pl(4,5)P2 is a key regulator of the actin cytoskeleton and in this way the cytoskeletal organization is affected [130,131]. Furthermore, IpGd is required for the formation of Pl(3)-kinase products during *S. flexneri* invasion, possibly by activating a class I Pl(3)-kinase [132].
Other pathogens that manipulate the phosphorylation at the 3 position of phosphoinositides to disrupt phagosome maturation include (i) Enteropathogenic E. coli that secretes EspF to block host Pl(3) kinase activity [133,134]; (ii) Helicobacter pylori that strongly activates Pl(3) kinases to disrupt actin cytoskeleton regulation and to cause a delayed phagocytosis [135]; and (iii) Mycobacterium tuberculosis that targets phosphoinositide metabolism in several ways. Via an unknown mechanism, M. tuberculosis secretes SapM, a lipid phosphatase that hydrolyzes Pl(3)P (Fig. 4) and inhibits phagosome-late endosome fusion in vitro, thereby arresting phagosomal maturation [136]. In addition, M. tuberculosis interferes with Pl-3 kinase hVps34 by using phosphatidylinositol homologues [137] (Fig. 4). This will be further discussed in Section 4.

3.3. Sphingolipid signaling

Sphingolipids are a major class of membrane lipids, virtually absent from mitochondria and the ER, but constituting 20–35 mol% of plasma membrane lipids [138]. As a bulk lipid, sphingomyelin is involved in the stability of the lipid scaffold of lipid-enriched microdomains or lipid rafts. These microdomains are important targets for pathogens and will be dealt with separately (see Section 6). During the past two decades it became clear that sphingosine and related lipids containing a sphingoid base have an important role in cellular signaling, in cell function including the cell cycle, and in apoptosis [104]. The sphingolipid metabolites ceramide (Cer) and sphingosine (Sph) are associated with growth arrest and apoptosis. Many stress stimuli increase the levels of Cer and Sph, whereas suppression of apoptosis is associated with increased intracellular levels of sphingosine-1-phosphate (S1P). The balance between the apoptotic signals of Cer and Sph and the pro-survival signal of S1P is referred to as the “sphingolipid rheostat” [139].

3.4. Pathogen targeting of sphingosine-1-phosphate

S1P directly stimulates Ca2+ release from the endoplasmic reticulum (ER) [140,141]. The sphingosine kinase 1-dependent increase in cytosolic [Ca2+] is necessary for the fusion and fission events during phagosomal maturation [142]. S1P also activates phagosome actin assembly required for killing of pathogenic mycobacteria [108]. Hence, inhibition of S1P may benefit pathogen survival in host cells and indeed, lysates from macrophages that were treated with M. tuberculosis inhibited sphingosine kinase activity, indicating direct inhibition of the enzyme by mycobacterial components [142] (Fig. 4). In addition, M. tuberculosis interferes with sphingosine kinase 1 translocation to the Mycobacterial phagosome, thereby inhibiting S1P accumulation and phagosomal maturation [143].

In contrast, some viruses that do depend on the phagocytic process, such as respiratory syncytial virus (RSV), stimulate sphingosine kinase activity resulting in increased levels of S1P. The pro-survival signal of S1P delays host cell death and results in increased viral replication [144]. Cytomegalovirus also activates sphingosine kinase, but in this case an elevated level of dihydrosphingosine-1-phosphate (dhS1P, also known as sphinganine-1-phosphate) was observed [145]. Sphingosine kinase can use both sphingosine and dihydrosphingosine (dhSph) as a substrate, resulting in the synthesis of S1P or dhS1P, respectively. As dhSph is a temporary intermediate in early steps of the synthesis of sphingolipids in the ER, levels of dhSph and its metabolites such as dhS1P are usually very low. Hence little is known about their potential biological (signaling) activity. dhS1P has been shown to be an S1P receptor agonist [146]. Opposite effects of dhS1P and S1P have been observed in transforming growth factor-beta/Smad signaling [147]. Thus, potential overlap and divergence in their biological activities have yet to be defined. It is interesting to note that the lipid composition of HIV-1, an enveloped retrovirus, shows an enrichment of the unusual sphingolipid dihydrosphingomyelin [148].

![Fig. 4. Effects of mycobacteria on the host cell lipidome. LD: lipid droplet; S1P: sphingosine-1-phosphate; SapM: M. tuberculosis effector molecule; PI(3)P: phosphatidylinositol-3-phosphate; EEA1: Early endosomal antigen 1; PI(3)K/Vps34: phosphoinositide 3-kinase; PIM: phosphatidylinositol mannoside; ManLam: mannose-capped form of Lam (lipoarabinomannan); ER: endoplasmic reticulum; TACO: tryptophan aspartate containing coat protein.](image-url)
3.5. Pathogens aid pharmaceutical targeting of sphingolipid metabolism

Many naturally occurring and synthetic sphingoid base-like compounds have been identified that interfere with various steps of the complex interconversion of sphingolipid metabolism [149]. These compounds bear promise for therapeutic interventions for cancer cells and pathogenic microorganisms. For example, specific inhibition of serine palmitoyltransferase (SPT), the first step in the synthesis of sphingolipids, suppresses virus replication [150–152]. In several of these cases, it is not clear whether the inhibition is the result of inhibition of cellular signaling, or is due to an altered interaction of pathogens with lipid rafts, in which sphingolipids play an important role (see Section 6).

Several of the naturally occurring sphingoid base-like compounds that interfere with sphingolipid metabolism are produced by pathogenic fungi (for an excellent review, see [149]). *Fusarium moniliforme* (=*F. verticillioides*) for example produces fumonisins which mimic metabolites of sphingolipid metabolism. Fumonisins inhibit ceramide synthase and are major toxins involved in inducing apoptosis [153–156]. The effects of the compounds produced by fungi are very diverse, ranging from causing disease to immunosuppression [157]. Some of these compounds act as (irreversible) enzyme inhibitors, whereas others act as molecular mimics, closely resembling host lipids (see Section 4).

3.6. Other signaling lipids

Upon host cell infection with *Chlamydia*, diacylglycerol (DAG) accumulates at the inclusion vacuole (Fig. 5), as detected by the expression of a fluorescently tagged C1 domain that specifically interacts with DAG [158]. The accumulation of DAG at the vacuole results in the recruitment of protein kinase C, resulting in an anti-apoptotic effect of bacterial infection.

Leishmania major induces cholesterol depletion in host cells [159]. Recent evidence suggests that this affects the DC40 signaling complex (signalosome) composition and effector function of this parasite [160]. This is the first time that a pathogen is shown to be capable of modulating lipid levels to such an extent, that the biophysical properties of biological membranes are altered. These biophysical properties are likely to be mediated via lipid rafts which are discussed below (see Section 6).

4. Molecular mimicry of lipids

4.1. Sphingolipids

One of the most complex forms of molecular mimicry occurs in sphingolipid metabolism. Sphingolipids play an important role in the regulation of the delicate balance between the pathogen and the host. Pathogens that cannot produce sphingolipids themselves are often capable of utilizing host sphingolipids to promote their virulence [161,162]. This is illustrated by *Chlamydia trachomatis*. The bacterial membrane contains up to 4% of (modified) sphingolipids although the bacterium is not capable of sphingolipid synthesis *de novo* [163]. The observations implying that pathogens can take up and modify host cell sphingolipids will be further discussed below (see Section 8). Pathogens capable of producing sphingolipids often produce types of sphingolipid species that are not present in mammalian hosts and that are specific to plants and fungi, including phytoceramide, inositolphosphorylceramide (IPC), and products thereof [156,161,162]. The functions of these pathogen-specific sphingolipids are not fully understood. Some are essential for pathogen function itself, as is seen for example in *Leishmania*. In this case, inhibition of sphingolipid synthesis results in an accumulation of small intracellular vesicles in internal vacuoles and the flagellar pocket [164,165]. The small vesicles in internal vacuoles resemble those occurring within the multivesicular bodies or multivesicular tubules of the endocytic pathway. These observations are consistent with the enrichment of sphingolipids in the endocytic pathway and multivesicular bodies [138]. Another potential function for these pathogen-specific
sphingolipids that they contribute to virulence. In this case it is interesting to note that pathogen-specific sphingolipids are not a substrate for host cell enzymes involved in sphingolipid metabolism and thus are not converted to other sphingolipid metabolites in host cells [162]. This does not exclude the possibility, however, that several of these pathogen-specific sphingolipids can bind to host cell enzymes involved in sphingolipid metabolism. In fact, by molecular mimicry several of these compounds are highly efficient inhibitors of host cell enzymes involved in sphingolipid metabolism [149]. Given the crucial role of sphingolipids in host cell function, including proliferation, differentiation and apoptosis, these inhibitors can effectively affect the host organisms, and cause disease or death. In fundamental and applied research, these inhibitors are used to study the involvement of sphingolipid metabolism in biological processes. For pharmaceutical research these compounds offer great potential for the development of anti-infectious disease drugs.

4.2. Phosphoinositides

Phosphatidylinositol with a mannose attached to the inositol headgroup at the 2 position (PIM) is one of the most common sphingolipids in the mycobacterial envelope [166]. Additional mannose groups can be attached at the 6 position of the inositol ring, giving rise to PIM2-PIM6. PIM stimulates Rab5 and EEA1 to enhance fusion of phagosomes with early endosomes (Fig. 4) instead of fusion with lytic organelles [136]. PIM is the precursor of lipoarabinomannan (LAM), which is a heavily glycosylated form of PI, and of ManLAM (mannose-capped form of LAM). ManLAM interferes with a PI(3)K kinase that synthesizes PI(3)P and thereby with subsequent recruitment of EEA1, affecting late endosomal and lysosomal trafficking events [137,167,168] (Fig. 4). The molecular mechanism(s) of action of PIMs and LAMs are not known. M. tuberculosis may disrupt phosphoinositide signaling by molecular mimicry of phosphoinositides. It has been suggested that especially the structure of PIM1 and PIM2 may resemble that of phosphoinositides, with the mannose residues replacing the phosphate groups [169]. The effect of PIM is independent of PI(3)K as it stimulates early endosomal fusion in the presence of wortmannin [170]. However, it is difficult to envision the binding of PIMs to phosphoinositide-specific protein domains in which electrostatic interactions of the phosphate groups play an important role [171]. Deretic and colleagues [170] suggest that PIMs may act either by insertion in membranes and subsequent recruitment of effector proteins [172], or by modifying the biophysical properties of the membrane bilayer.

4.3. Cholesterol

As will be discussed below (see Section 6), cholesterol plays an important role in host–pathogen interactions. In the case of Mycobacteria, cholesterol is involved in mycobacterial entry and survival [173,174]. Mycolic acids are major components of the cell wall of Mycobacteria [166]. These α-alkyl β-hydroxy long-chain fatty acids may resemble the structure of cholesterol according to several criteria, including binding to cholesterol-specific antibodies, binding to Amphotericin B, and binding to each other [175]. Thus, free mycolic acids from microbial origin seem to be capable of mimicking cholesterol. It is not clear how a small subset of mycolic acids via their cholesterol-like hydrophobic properties contribute to mycobacterial pathogenesis.

4.4. Lipid membrane mimicry

Many highly pathogenic viruses including influenza virus, vaccinia virus, and HIV are enveloped, i.e. they have a membrane around the nucleocapsid containing the viral genome. Whereas the proteins on the viral envelope are almost exclusively virally encoded, all lipids originate from the host and are recruited from host membranes. Thus, the lipid composition of the virus resembles the composition of the host cell membrane [176,177]. This form of mimicry may allow viruses to avoid immune detection. An example illustrating this principle is the recent observation that two rare antibodies against HIV-1 with potential clinical application were in fact reactive with the phospholipid cardiolipin [178]. Because of autoantigen mimicry, current HIV-1 vaccines may not induce these types of antibodies.

Vaccinia uses membrane mimicry to enter host cells [179]. The uptake of the virus by the host cell is critically dependent on the presence of phosphatidyserine in the viral membrane. By having phosphatidyserine at the outside of the membrane, Vaccinia mimics apoptotic bodies. This mimicking of apoptotic bodies causes efficient uptake of Vaccinia due to macropinocytosis by phagocytosing cells.

Schistosoma mansoni binds and ingests LDL particles, and breaks them down to serve as a source for lipids [180,181]. Next to lipid acquisition S. mansoni also uses LDL for immune evasion, by covering its surface with LDL to mask its own antigens [180].

4.5. Glycosylphosphatidylinositol (GPI)

GPI is a complex structure comprising a phosphoethanolamine linker, a glycan core, and a phosphatidylinositol tail. It is well known as a C-terminal post-translational modification of proteins [182]. Much less is known about the function of free glycosylphosphatidylinositol molecules that abundantly cover the cell surface of several parasites, including Leishmania, Trypanosoma, T. gondii, and malaria parasites (P. falciparum). The free GPIs of these protzoan pathogens closely resemble the mammalian GPI anchor, but differ from each other with respect to the composition of the glycan head group and/or the fatty acid-moieties of the lipid anchor [183,184]. Differences between free GPI structures are responsible for sometimes opposite biological effects. Depending on the isolation of GPIs from T. Brucei, P. falciparum, or Leishmania, the GPI isoforms activated or inhibited macrophage function [185–187]. Very little is known about the mechanism of action of free GPI on host cells. If free GPI from pathogens would act by molecular mimicry on host cells, this would suggest a signaling role of GPI in mammalian cells. So far, however, the only function ascribed to GPI in mammalian cells is to serve as anchoring device for peripheral proteins. Alternatively, the signal of pathogen-derived GPI might be mediated via Toll-like receptors (TLR) and be involved in induction of secretion of the cytokine tumor necrosis factor (TNF). Indeed, parasite GPIs have been shown to activate TLR1, TLR2, TLR4, and TLR6 [188–190]. A glycosylphosphatidylinositol-based treatment alleviates Trypanosomiasis-associated immunopathology [191].

5. Cholesterol and pathogens

Cholesterol is a ubiquitous component of all mammalian membranes. It influences the biophysical properties of biological membranes and is central to the organization, dynamics, function, and sorting of lipid bilayers in vivo [192]. Cholesterol is enriched in the plasma membrane of eukaryotic cells, where it is non-uniformly distributed. Within the plasma membrane, it is enriched in microdomains that play an important role in cellular signaling [193,194]. Because of the crucial roles of cholesterol, its (sub)cellular levels are carefully maintained [192,195–197]. The crucial roles played by cholesterol also make this lipid an attractive target for many pathogens via which they can influence host cell dynamics. In addition, the absence of cholesterol from prokaryotes makes it
an almost ideal biomarker that pathogens can use to recognize and infect mammalian host cells. Hence, pathogens have developed various ingenious ways to make use of the presence of cholesterol for the recognition of and interaction with host cell membranes. The interaction of pathogens with lipid rafts will be discussed in the next section. Here we will discuss indications for raft-independent interactions of pathogens with cholesterol.

5.1. Effector binding to cholesterol

Several type 3 secretion systems (T3SSs) have now been identified in Gram-negative bacteria to deliver virulence effectors proteins into eukaryotic target cells via a needle-like structure. They have been classified into three distinct phylogenetic groups in which e.g. Salmonella and Shigella entry-associated T3SSs are closely related and the T3SSs of EPEC and Pseudomonas are more divergent [218]. At the tip of the needle, bacterial proteins insert into the host cell membrane to form a translocon that perturbs the bilayer [199,200]. The translocon components SipB and IpaB of Salmonella and Shigella, respectively, are cholesterol-binding proteins. Cholesterol is required for the binding of SipB to the plasma membrane, and secretion of effectors by the T3SSs of Salmonella, Shigella and EPEC depends on cholesterol [201]. Of the Pseudomonas translocon components PopB and PopD, PopB directly binds cholesterol, while in addition both PopB and PopD can bind phosphatidylserine [202]. PopB together with PopD causes a cholesterol-dependent aggregation of liposomes [203]. This aggregation occurs in liposomes containing 15% cholesterol and is independent of the presence of sphingomyelin, suggesting that this effect is lipid raft-independent. The biological significance of the aggregation observed in this assay is not clear. Under different experimental conditions, PopB and PopD synergistically permeabilize vesicles without causing aggregation in a cholesterol-independent manner [202].

5.2. Cholesterol accumulation on pathogen-containing vacuoles

Host cell cholesterol accumulates at parasitophorous vacuoles of several intracellular pathogens (see Section 8). At later stages of infection the Salmonella-containing vacuole (SCV) contains up to 30% of the cellular cholesterol pool in both epithelial cells and macrophages [204]. The function of cholesterol recruitment to the pathogen-containing vacuoles is not clear.

First, it may be used as a nutrient, as was recently shown for mycobacteria [205]. See Section 8 for further details.

Second, cholesterol may influence the interaction of pathogen-containing vacuoles with other cellular organelles, which depends on membrane-trafficking pathways [206]. Various intracellular trafficking pathways of eukaryotic cells are sensitive to cholesterol, including ER to Golgi transport [207], intra-Golgi transport [208], endosomal transport [209–211], and phagosomal maturation [212,213]. Cholesterol levels may affect intracellular trafficking in various ways, including the recruitment of proteins and lipids to the pathogen-containing vacuole. For example, cholesterol was found to mediate the phagosomal association of TACO/coronin-1, affecting the degradation of mycobacteria in lysosomes [174] (Fig. 4). Coronin-1 is required for activation of the Ca²⁺-dependent phosphatase calcineurin, thereby blocking lysosomal delivery of mycobacteria [214]. This mechanism acts in concert with the effect of mycobacterium on sphingosine kinase (discussed in Section 3.4 and elsewhere [215]).

Third, the Salmonella effector SseJ has been described to use cholesterol as an acceptor of acyl chains and might therefore use cholesterol at SCVs as a substrate [40,41]. In addition, this function may also imply cholesterol-specific recruitment of SseJ to the SCVs. Vice versa, SseJ may be involved in the recruitment of cholesterol to the SCV, as overexpression of SseJ results in formation of cholesterol-rich membrane structures [42].

5.3. Pathogen uptake and modification of cholesterol

Cholesterol in the membranes of Helicobacter spp. [216–218], S. aureus [217], Anaplasma phagocytophilum [219] and Chlamydia EB and RB membranes [163] is of host origin. A sterol-binding protein in Toxoplasma was recently identified that may optimize pathogen handling of host cell derived cholesterol [220]. Helicobacter pylori extracts cholesterol from epithelial cells and converts it into cholesterol α-glucosides [221]. Cholesterol and cholesteryl glucosides represent 1.6% and 25%, respectively, of the total lipids of H. pylori [222]. The abundant presence of glucosylated cholesterol inhibits phagocytosis of and T-cell activation by H. Pylori, providing an immune escape mechanism for this pathogen.

6. Lipid rafts

The organization of biological membranes is based on interactions between membrane proteins and lipids. Recent evidence suggests that in these membranes specialized microdomains (so called lipid rafts) exist that are characterized by an enrichment of cholesterol, sphingolipids, and a specific subset of proteins. By selective inclusion and exclusion of proteins, rafts are involved in many cellular processes such as endocytosis, signaling, protein sorting and intracellular membrane trafficking. It is beyond the scope of this review to describe details and to discuss controversies surrounding the biological function and properties of lipid rafts. These topics are covered by many review articles [10,223–230].

The biophysical properties and the high concentration of signaling molecules make lipid rafts a natural target for pathogens through which they communicate with host cells and hijack membrane-trafficking pathways. This topic has also been the focus of several reviews to which the reader is referred [231–235]. An updated list now includes over 100 pathogens that have been suggested to interact with lipid rafts (Tables 1–4). Not in all cases the involvement of rafts, rather than e.g. cholesterol, in the host–pathogen interaction has been unambiguously established. The early methodology to show an involvement of lipid rafts in biological processes is rather diffuse, and uses detergents and cholesterol-extracting agents. Only a combination of several independent methods, which also include morphological and functional studies, can establish the involvement of lipid rafts in host–pathogen interactions. Hence, especially data from early publications, when these additional methods were not yet available, should be interpreted with some caution.

The basic property of lipid rafts that is exploited by pathogens is their intrinsic ability to transiently oligomerize. This property is abused by pathogens, resulting in stabilized, altered or disrupted oligomeric structures which (i) provide a mechanism for pathogen uptake, (ii) affect host cell signaling; (iii) alter intracellular trafficking including pathogen vacuole maturation, and (iv) offer strategies for exit from the host cell. Here we will focus on the role of lipids in the raft-mediated interactions between host cells and pathogens.

6.1. Raft lipids as receptors for pathogens

Several pathogens directly target sphingolipids in raft structures (Table 1). Recently, VacA was identified as a bacterial virulence factor, secreted by the gastric pathogen Helicobacter pylori that exploits a plasma membrane sphingolipid, sphingomyelin (SM), as a cellular receptor [298]. Helicobacter pylori may exploit the capacity of SM to partition into lipid rafts in...
order to access the raft-associated cellular machinery. Other pathogens that exploit lipid-binding toxins to localise to lipid rafts include toxigenic *E. coli*, which secrete the heat-labile enterotoxin LTI targeting GM1, or which secrete the heat-labile enterotoxin LTII targeting GD1, *Shigella dysenteriae* that secrete Shiga toxin targeting Gb3, and *Vibrio cholera* that secrete cholera

Table 1
Bacteria interacting with lipid rafts.

Bacterium	Involved in	Pathogen molecule involved	Raft molecule involved	Refs.
Anaplasma phagocytophilum	Entry		GPI-anchored proteins	[236]
Afpia felis	Entry via macropinocytosis			[237]
Brucella abortus	Entry	1.2 cyclic glycan	Class A scavenger receptor	[238–240]
Brucella suis	Entry			[238]
Campylobacter jejuni	Entry			[241]
Chlamydia pneumonia	Entry			[242]
Chlamydia psittaci	Entry			[242]
Chlamydia trachomatis (E and F)	Entry			[242–244]
Ehrlichia chaffeensis	Entry			[236]
Escherichia coli FimH expressing	Entry/survival	FimH	CD48/CD55 uroplakin-1a	[245–249]
Escherichia coli Enteropathogenic	Induces lipid rafts during pedestal formation			[250,251]
Escherichia coli Uropathogenic	Transcellular translocation	AfaE	CD55	[252]
Francisella tularensis	Entry /survival			[253], but see also [254]
Helicobacter pylori	Adhesion	HpaA	LacCer	[255]
Legionella pneumophila	Intraacellular survival	Internalin	E-cadherin	[257]
Listeria monocytogenes	Entry	Polar lipid fraction	CR3 in association with GPI-anchored protein(s)	[259]
Listeria monocytogenes	Entry/survival	Receptor-Ca		[174,261]
Mycobacterium avium	Entry		Polar lipid fraction	[259]
Mycobacterium kansasii	Entry	CR3 in association with GPI-anchored protein(s)		[260]
Mycobacterium tuberculosis	Entry/survival			[174]
Mycoplasma fermentans	Entry			[262]
Porphyromonas gingivalis	Entry/intracellular survival			[263,264]
Pseudomonas aeruginosa	Entry			[265–267]
Salmonella typhimurium	Entry/intracellular survival	SipB (T3SS) PipB and PipR2	Cholesterol	[201,204,268,269]
Shigella flexneri	Entry	Effectors	Components of the T3SS: IpαB	[270,271]
Yersinia enterolitica	Intracellular replication			[272]
Neisseria gonorrhoeae	Entry	CEACAM		[273,274]
Staphylococcus aureus	Entry		asiLOGM1/TLR2	[275]
Gram-negative bacteria	Binding/Entry	Lipopolysaccharide (LPS)	CD44	[276]

Table 2
Bacterial toxins interacting with lipid rafts.

Bacterial toxin

Bacterium	Binding	Pathogen molecule involved	Raft molecule involved	Refs.
Actinobacillus actinomycetemcomitans	Binding	Cytolethal distending toxin		[277,278]
Aeromonas hydrophila	Binding–oligomerization	Aerolysin	CD14 (GPI-anchored)	[279,280]
Bacillus anthracis	Oligomerization – Clathrin-coated pits	anthrax toxin (protective antigen)	Anthrax toxin receptor (ATR)	[281,282]
Bacillus thuringiensis	Binding/oligomerization	cry1A toxin	Aminopeptidase N	[283–285]
Clostridium botulinum	Binding	Neurotoxin		[286,287]
Clostridium difficile	Binding	Toxin TcdA and TcdB		[288]
Clostridium perfringens	Binding/oligomerization	epsilon-Toxin		[289]
Clostridium perfringens	Binding/oligomerization	iota-Toxin		[290]
Clostridium perfringens	Binding	theta-Toxin (CDC)b (+perfringolysin)	Cholesterol	[291,292]
Clostridium septicum	Binding	α-Toxin	GPI-anchored proteins	[293]
Clostridium tetani	Binding	Tetanin toxin		[294]
Escherichia coli	Binding	Heat-labile enterotoxin LTII	GD1	[295]
Escherichia coli	Binding	Heat-labile enterotoxin LTII	GM1	[296]
Helicobacter pylori	Binding/oligomerization	VacA	SM*	[297,298]
Listeria monocytogenes	Binding/oligomerization	Listeriolysin (a CDC)b	Cholesterol	[258,299,300]
Shigella dysenteriae	Binding/oligomerization	Vacuole lysis (via T3SS-raft interaction)	Shiga toxin	[301,302]
Streptococcus pyogenes	Oligomerization	Streptolysin (CDC)b	Gb3	[303]
Vibrio cholera	Binding/Caveolae	Vibrio cholera cytolsin (CDC)b	Cholesterol	[303,304]

* For a complete overview of CDC, secreted by 26 different pathogens, the reader is referred to a recent review by Rosado et al. [305].
* CDC: Cholesterol-dependent cytolysin.
* For a list additional toxins that interact with sphingomyelin (SM) but are secreted by other types of pathogens, the reader is referred to a recent review by Shogomori and Kobayashi [306].
toxin targeting GM1. The multimeric toxins have the potential to cluster rafts, thus allowing high affinity toxin-binding through relatively weak individual binding forces of carbohydrate binding sites [387,388]. In addition, the raft-dependent interaction also determines their mechanism of uptake. It is becoming increasingly clear that there are clathrin-dependent and clathrin-independent endocytic pathways which differ in their requirement of lipid rafts [389–392].

Table 3
Viruses interacting with lipid rafts.

Virus	Function	Receptor/Glycoprotein	Reference
Avian sarcoma and leukosis virus	Entry	GPI-anchored receptor TVA800	[307]
Bluetongue virus	Protein localisation	VP5	[308]
Coxackievirus	Entry/Golgi targeting	Association: non-structural glycoprotein NS1	[309]
Dengue virus	Association	Entry: fusion glycoprotein GP2	[310]
Ebola virus	Entry	Budding/assembly: VP40	[311]
Ecovirus 1	Entry/Non-caveolar endocytosis/ caveosomes/trafficking	Replication: NS proteins	[312]
Ecovirus 6	Entry	Replication: NS proteins	[313]
Ecovirus 11	EntryRAFT dependent	DAF GPI-anchored)	[314]
Ecovirus mellitus virus	Entry/Budding/Raft dependent	DAF GPI-anchored)	[315]
Epstein-Barr virus	Entry/Budding/Signaling	DAF GPI-anchored)	[316]
Hepatitis C virus	Entry/Budding/Assembly/Release	Glycoprotein Q1	[317]
Herpes simplex virus	Entry/Budding/Budding	Replication: NS proteins	[318]
Herpesvirus saimiri	Down regulation TCR	Tip	[319]
HIV	Transcytosis	Binding: gp120	[320]
Human herpes virus-6	Assembly/Budding/release	Transcytosis: gp41	[321]
Human herpesvirus B = Kaposi’s sarcoma-associated herpes virus	Entry/Budding/Assembly/Release	Assembly: Gag	[322]
Human T-cell leukemia virus	Entry/Budding/Assembly/Release	Glycoprotein Q1	[323]
Influenza virus	Entry/Budding/Assembly/Release	Replication: NS proteins	[324]
Marburg virus	Entry/Budding/Budding	Replication: NS proteins	[325]
Measles virus	Budding/Assembly	Replication: NS proteins	[326]
Newcastle disease virus	Assembly/Release	Replication: NS proteins	[327]
Pseudorabies virus	Entry/Proteins localisation	U59	[328]
Respiratory syncitial virus	Entry in caveolae Assembly	F protein	[329]
Human T-cell leukemia virus	Entry/Budding/Assembly/Release	Replication: NS proteins	[330]
Human herpes virus-6	Entry/Budding/Assembly/Release	Replication: NS proteins	[331]
Influenza virus	Entry/Budding/Assembly/Release	Replication: NS proteins	[332]
Marburg virus	Entry/Budding/Budding	Replication: NS proteins	[333]
Measles virus	Budding/Assembly	Replication: NS proteins	[334]
Newcastle disease virus	Assembly/Release	Replication: NS proteins	[335]
Pseudorabies virus	Entry/Proteins localisation	U59	[336]
Respiratory syncitial virus	Entry in caveolae Assembly	F protein	[337]
Rhinovirus	Entry/Budding/Assembly/Release	Replication: NS proteins	[338]
rotaviruses	Entry/Replication	Replication: NS proteins	[339]
SARS CoV	Entry/Budding/Budding	Replication: NS proteins	[340]
Sendai Virus	Budding/Assembly	Replication: NS proteins	[341]
Semliki Forest virus	Entry and exit	Replication: NS proteins	[342]
Simian virus 40	Entry/Caveolae/trafficking/Release	Replication: NS proteins	[343]
Vaccinia virus	Entry/Budding/Assembly/Release	Replication: NS proteins	[344]
Varicella zoster virus	Viral envelope integrity	Replication: NS proteins	[345]
West Nile virus	Entry/Budding/Assembly/Release	Replication: NS proteins	[346]

Table 4
Protozoa, fungi and other pathogens interacting with lipid rafts.

Protozoon	Function	Molecule	Reference
Cryptosporidium parvum	Entry/Attachment	Lipophosphoglycan	[376]
Entamoeba histolytica	Attachment	[377]	
Leishmania	Intracellular survival	Lipophosphoglycan	[378]
Plasmodium falciparum	Entry	Lipophosphoglycan	[379]
Theileria parva	Signaling	Lipophosphoglycan	[380]
Toxoplasma gondii	Invasion/Intracellular survival	Lipophosphoglycan	[381]
Fungus	Adhesion/signaling	Lipophosphoglycan	[382]
Other		Lipophosphoglycan	[383]
Prion protein PrPAC	Localisation to host cell membrane	PrPAC	[384]
Other		PrP	[385,386]

 toxin targeting GM1. The multimeric toxins have the potential to cluster rafts, thus allowing high affinity toxin-binding through relatively weak individual binding forces of carbohydrate binding sites [387,388]. In addition, the raft-dependent interaction also
The family of cholesterol-dependent cytolysins (CDCs) binds cholesterol in membranes, resulting in oligomeric ring structures in membranes that create pores with diameters ranging from 1 to 50 nm [305]. CDCs localise to lipid rafts, but how this property relates to their mode of action is not clear, as the biophysical properties of lipid rafts hamper the interaction of cholesterol with CDCs [393].

6.2. Lipid-dependent reorganization of rafts

Several lipids are targeted by pathogens in order to change the oligomeric state of lipid rafts, resulting in (i) stabilization, (ii) alteration, or (iii) disruption of lipid rafts. Examples of the first possibility, that of stabilization of lipid rafts, are provided by Neisseria gonorrhoeae, P. aeruginosa, S. aureus, rhinovirus or Sindbis virus, which activate the enzyme acid sphingomyelinase to release ceramide; M. tuberculosis, P. aeruginosa and Brucella abortus inhibit the sphingomyelinase activity, or (iii) disruption of lipid rafts. Examples of the first possibility, that of stabilization, (ii) alteration of lipid rafts, and (iii) disruption of lipid rafts have been suggested for lipoarabinomannan (LAM), an integral component of the M. tuberculosis that markedly alters the morphology of lipid domains in membranes [397]. As a result phagosome maturation is inhibited [398]. The third possibility is that pathogens target lipids to cause a disruption of lipid raft structures. Brucella abortus secretes 1,2 cyclic glycan, a component that resembles cycloextrins and extracts cholesterol from membranes, resulting in disruption of lipid rafts [399]. Together these results confirm that lipids are essential for the stability of microdomains in biological membranes. In model membranes that consist of only a specific subset of lipids, lipid rafts can easily be observed (see e.g. [400]). In biological membranes, the lipid composition is much more complex and heterogeneous, resulting in the suggestion that protein interactions are necessary to stabilize lipid rafts (see e.g. [229] for a discussion on this topic). The fact that pathogens can alter the oligomeric state of rafts in biological membranes by targeting lipids suggests that lipids provide a major driving force determining the biophysical state and hence physiological role of rafts.

6.3. Lipid rafts in budding of viruses

It appears that several enveloped viruses select raft-like domains to exit from cells. HIV viral membranes contain raft markers GM1, Thy-1 and CD59 [334]. HIV viral membranes are Triton X-100 resistant and contain typical raft lipids [148]. Other viruses known to assemble on or bud from lipid rafts in host membranes include influenza virus [176], measles virus [401] and Newcastle disease virus [352] (see Table 1 for a comprehensive list). As HIV-1 particles excluded a bona fide raft marker (flotillin-1), this indicates that the virus buds from a subset of cellular microdomains. The function of lipid rafts in virus assembly can be manifold, including recruitment of a subset of host lipids and proteins into viral membranes and determination of the oligomeric state of viral proteins. Another surprising possibility was suggested by the finding that assembly of the non-enveloped Rotavirus is dependent on cholesterol, suggesting that rafts may control the proper incorporation of viral proteins into virions [402].

7. Lipid droplets

Lipid droplets (LDs), also termed lipid bodies or adiposomes, are lipid storage organelles found in animals, plants and microorganisms [403]. Lipid droplets are thought to be formed by accumulation of neutral lipids between the membrane leaflets of the ER and bud from there [403–405], although some variations of this model have been presented [406,407]. Lipid droplets consist of a neutral core composed of triacylglycerols, cholesterol esters, retinoid esters and diacylglycerols surrounded by a monolayer of phospholipids. In addition, lipid droplets contain a specific and dynamic subset of structural and functional proteins that are involved in the biogenesis, turnover, and biological functions of these organelles. Recent proteomic approaches have identified a large variety of proteins associated with lipid droplets, which indicates that they are much more than lipid storage depots. A wide range of cellular functions have been suggested, including an involvement of lipid droplets in lipid transport and metabolism, membrane trafficking, intracellular signaling, production of inflammatory mediators, and in protein folding and aggregation [408,409]. These properties make them attractive targets for pathogens and indeed, recent work shows that several pathogens interact with lipid droplets.

7.1. Pathogen induction of lipid droplet formation

A variety of pathogens induce the formation of lipid droplets in host cells. For example, bacterial lipopolysaccharide (LPS), present in all Gram-negative bacteria, induces lipid droplet accumulation in host cells in a Toll-like receptor 4 (TLR4)-dependent way, which, in case of macrophages, results in formation of foam cells [410,411]. Other examples include the induction of lipid droplet formation by Plasmodium berghei in mouse kidney and liver cells [412,413] and the induction of lipid droplet formation by Candida albicans in macrophages and hepatocytes by use of an extracellular lipase [414]. The induction of lipid droplet formation by hepatitis C virus (HCV), Trypanosoma cruzi, M. tuberculosis, Chlamydia trachomatis, and Mycobacterium bovis (M. bovis) will be discussed in some detail below.

7.2. Lipid droplets and pathogen assembly

Hepatitis C virus induces the formation of more and larger lipid droplets in hepatic cells. In addition, structural proteins of HCV have been found to localise to lipid droplets [415]. The HCV capsid protein (core protein) localises to the LDs and recruits non-structural proteins and replication complexes, which appears critical for the production of virus particles [416,417]. The core protein most likely replaces adipose differentiation-related protein (ADRP), a major protein associated with the surface of lipid droplets, by progressively coating the entire surface. The absence of ADRP then results in lipid droplet aggregation around the nucleus [418]. The presence of the replication machinery and the observation of virions in close proximity to the LDs may indicate virus assembly at or in close proximity to lipid droplets. Recent work from Roingeard et al. [419] indicates that the overexpression of HCV core protein induces virion budding from ER membranes in close proximity to the LD rather than at membranes directly apposed to the lipid droplets.

7.3. Pathogen–vacuole interactions with lipid droplets

Trypanosoma cruzi induces both lipid droplet formation and eicosanoid production in macrophages [420]. This suggests that lipid droplets may have a role in eicosanoid production. Indeed, subsequent work showed that lipid droplets in cells infected with T. cruzi are found in close proximity to, attached to, and even internalized into the parasite-containing vacuole. Thus, a close interaction of lipid droplets with the pathogen vacuole allows a possible discharge of lipid droplet content [421]. A direct interaction
between lipid droplets and pathogen vacuoles is, however, not always necessary for the induction eicosanoid production: the membrane compound LAM of Mycobacterium induces a TLR2-dependent, but phagocytosis-independent induction of lipid droplets and eicosanoids in macrophages [422].

Cells infected with M. tuberculosis also show a close association of the mycobacterial phagosome with lipid droplets. In this case the close association of lipid droplets with the pathogen-containing vacuole is hijacked for the acquisition of iron (Fig. 4). M. tuberculosis secretes the metal-free siderophore mycobactin and after binding to host cell cytosolic iron, mycobactin is targeted to lipid droplets. The close interaction with lipid droplets subsequently allows the pathogen to acquire host cell iron [423].

Lipid droplets are also crucial in Chlamydia trachomatis intracellular survival and replication. In epithelial cells three Chlamydia proteins (Lda) were found to localise to host cell lipid droplets (Fig. 5). Similar to what had been observed for HCV, Lda association with lipid droplets occurred with a concomitant decrease of ADRP, suggesting a replacement of lipid droplet coat protein with a pathogen protein, allowing functional control of this organelle. For example, lipid droplet-associated Lda may be involved in the observed accumulation of lipid droplets around the Chlamydia-containing vacuole (inclusion) [424]. Alternatively, the chlamydial Lda proteins may function in the recently described translocation of lipid droplets into the Chlamydia inclusion, probably for the acquisition of nutrients [425]. See Section 8 for further details.

7.4. Pathogen-localised lipid droplets in detoxification

As a consequence of a hemoglobin diet for blood-feeding organisms such as P. falciparum, they produce large amounts of heme, a toxic molecule that can disrupt membranes, inhibit enzymatic processes and initiate oxidative damage. P. falciparum uses lipid droplets in close proximity to its digestive vacuole to detoxify heme by formation of haemoglobin crystals within the hydrophobic environment of lipid droplets [426,427]. Lipid droplet-mediated detoxification of host derived heme has also been suggested for Schistosoma mansoni and Rhodnius prolixus, allowing the formation of multicrystalline assemblies in the guts of these organisms [428].

In summary LDs are involved in a wide variety of host–pathogen interactions, such as inflammatory responses, pathogen assembly, pathogen nutrient acquisition and detoxification processes. As we are only beginning to understand the biological functions of lipid droplets, studies on the involvement of lipid droplets in host–pathogen interactions will also contribute to this area of research.

8. Lipid acquisition

The host provides an appealing habitat for numerous microorganisms and excluding them from critical nutritive resources has its role in host defense [429]. This nutrient restriction also provides an interesting pharmaceutical target, as many pathogen enzymes that utilize host cell lipids bear resemblance to host cell enzymes, but distinct differences allow the design of specific drugs to selectively inhibit pathogen enzymes. A recent publication by Brinster et al. [430], however, casts some doubts on this strategy, as inhibition of bacterial fatty acid synthesis is fully bypassed by the uptake of exogenous fatty acids. There is an enormous amount of literature available that indicates that pathogens require host cell lipids and it is beyond the scope of this review to give an extensive overview. For certain pathogens, it may seem obvious why they acquire host cell lipids as they are auxotroph for fatty acids (e.g. [431]), or cholesterol [205]. In many other cases, however, the reason for lipid acquisition from the host cell is not clear (e.g. [432]). Here, we will focus on the general principles, illustrated with prominent and recent examples.

8.1. Metabolic fate of acquired lipids

One function of acquired lipids is to modulate host–pathogen interactions and virulence, as has been discussed in other sections of this review (see also e.g. [433]). A second function of acquired lipids is to serve as an energy source. For example, Corynebacterium jeikeium cannot synthesize fatty acids, but upon their acquisition they are utilized for subsequent β-oxidation, as the bacterium contains all the enzymes required for this process [431]. Even cholesterol can be used as a substrate for energy production, for example by Rhodococcus species, soil bacteria related to M. tuberculosis [434]. To ensure expedited energy supply, Gram-negative bacteria can induce the release of fatty acids from host cells by stimulating adipose lipolysis via the lipid A moiety of LPS [435]. A third function of acquired lipids is to provide building blocks for pathogen assembly. In general, pathogens can synthesize the typical prokaryotic lipids phosphatidylserine, phosphatidylethanolamine, and phosphatidylglycerol and must acquire lipids generally associated with eukaryotes such as sphingomyelin, cholesterol, phosphatidylcholine and phosphatidylinositol [163]. Hence, several pathogens are auxotrophic for these lipids (e.g. sphingolipids [162] or cholesterol [99,219]). Host cell lipids can also be used as a carbon source, as has been described for e.g. M. tuberculosis [205,429], Salmonella [436], Candida albicans [437], and Cryptococcus neoformans [438]. The acquisition of a viral envelope from host cell membranes could also be considered as an effective mechanism to acquire building blocks for pathogen assembly. This has been discussed elsewhere in this review (Section 4).

Thus, there are various ways by which pathogens utilize host cell lipids. In the next section we will discuss which lipids are known to be acquired by pathogens via interactions with a host cell and describe the mechanisms involved.

8.2. Lipid acquisition by extracellular pathogens

Extracellular pathogens often reside in the host's nutrient-rich body fluids. Trypanosoma brucei acquires lysophosphatidylcholine from plasma pools. Lysophospholipids are more soluble in aqueous solution when compared to di-acylated phospholipids and are more readily imported by the parasite. After their uptake, two lysophosphatidylcholine molecules are then used for the generation of one molecule of phosphatidylcholine by 3 consecutive enzymatic steps involving a lyso-phospholipase A1, an acyl-CoA ligase and a lysophosphatidylcholine:acyl-CoA acyltransferase [439,440].

T. brucei also incorporates host cholesterol from plasma into its membranes. Cholesterol is not water soluble, but in this case T. brucei selective absorbs LDL particles from the plasma by receptor-mediated endocytosis [441,442] and acquires cholesterol from these particles. Trichomonas vaginalis and Schistosoma mansoni also internalize LDL particles for the acquisition of essential host lipids [180,181,443]. The endocytic uptake by T. vaginalis is mediated by a receptor for apolipoprotein CIII.

Extracellular pathogens acquire lipids from other body fluids as well. For example, P. aeruginosa acquires lipids from lung surfactant [444] and Salmonella ssp. might utilize phospholipids from intestinal mucus [445], although this has not been confirmed in vivo. Finally, extracellular pathogens can obtain lipids from the extracellular leaflet of the plasma membrane, as has been shown for Helicobacter pylori, which acquires cholesterol from lipid rafts in the plasma membrane [221].
8.3. Lipid acquisition inside a host cell via the pathogen vacuole

Many pathogens reside within membrane-enclosed vacuoles and determine the properties of these structures to avoid host cell-mediated degradation. The vacuolar membrane is the barrier between host and pathogen, and can at the same time function as source of lipids to the pathogen. Indeed, several host cell-derived vesicles accumulate in the membrane of pathogen vacuoles. Cholesterol accumulates in the vacuoles of e.g. *Coxiella* [446], *Salmonella* [204], *Chlamydia* [447], *T. gondii* [448–450], and *M. tuberculosis* [212]. Sphingomyelin accumulates in *Chlamydia* inclusions [451] and *T. gondii* vacuoles [452]. Diacylglycerol and the phospholipids PI and PC accumulate in *Chlamydia* inclusions [158,163]. *T. gondii* also preferentially recruits PC over other phospholipids to its parasitophorous vacuole [453]. How are these lipids delivered to the vacuole? In the case of *Chlamydia*, the observation that host transmembrane proteins are not delivered to the vacuole has intriguing implications for the mechanisms of transport [454]. Only for a few pathogens, including *Chlamydia* and *T. gondii*, the molecular mechanisms of lipid transport to the pathogen vacuole have been described in some detail. These pathogens will be discussed in some more detail, with evidence from other pathogens added as additional examples.

8.4. Lipid acquisition via vesicular trafficking to the pathogen vacuole

Chlamydia intercepts exocytic vesicles from the secretory pathway to acquire host cell lipid nutrients. In an elegant series of experiments, the group of Hackstadt provided evidence for the diversion of Golgi-derived vesicles, en route to the plasma membrane, to the pathogen vacuole (Fig. 5) (reviewed in [455]). The transport of both sphingomyelin [451] and cholesterol [447] was shown to be Brefeldin A-sensitive, suggesting a Golgi origin of these vesicles. In contrast, Golgi-derived glycoproteins en route to the plasma membrane were not intercepted by the pathogen [456]. These results indicate that only a subfraction of vesicles is targeted for delivery to the pathogen vacuole. Indeed, recent evidence suggests that *Chlamydia* preferentially intercepts basolaterally-directed sphingomyelin-containing exocytic vesicles [457]. Whether the intercepted vesicles represent bona fide exocytic vesicles derived from the Golgi complex remain to be established, as it cannot be excluded that *Chlamydia* induces an alternative or modified exocytic pathway from the Golgi to the plasma membrane. Recently, it was shown that *Chlamydia trachomatis* causes fragmentation of the Golgi complex and the generation of Golgi ministacks surrounding the bacterial inclusion [458]. This process is mediated by bacteria-induced proteolytic cleavage of the Golgi matrix protein Golgin-84. This Golgi fragmentation is involved in lipid acquisition, as inhibition of the cleavage of Golgin-84 also inhibited the transport of lipids to the pathogen vacuole. These observations open the possibility that lipid transport is not only mediated by exocytic vesicles, but also by Golgi fragments (Fig. 5). *T. gondii* also induces Golgi fragmentation in the host cell, but in this case, the Golgi fragments seem dispensable for parasite invasion and replication [459]. It will be interesting to determine whether the lipids from these Golgi fragments are transported by fusion of the Golgi fragments with the vacuole or by the generation of contact sites between the Golgi fragments and the bacterial vacuole (see also next Section 8.5). The Golgi fragments generated by knockdown of Golgin-84 are different from the Golgi fragments caused by Brefeldin A. First, in the presence of Brefeldin A, *de novo* synthesized sphingomyelin and cholesterol from the exocytic pathway are no longer delivered to the *Chlamydia* vacuole [447,451]. Second, whereas Golgin-84-induced Golgi fragmentation enhances bacterial replication [458], Brefeldin A does not affect bacterial multiplication [447,460]. The ineffectiveness of Brefeldin A on bacterial multiplication indicates that alternative pathways must be available to provide *Chlamydia* with lipids. Indeed, recent evidence suggests that *Chlamydia* can also recruit lipids from multivesicular bodies that are rich in cholesterol and sphingomyelin [461,462] (Fig. 5).

Salmonella is also known to direct exocytic vesicles from the Golgi complex toward the *Salmonella*-containing vacuole [463]. This process is dependent on effectors encoded by the *Salmonella* pathogenicity island 2 (SPI-2). Similar to *Chlamydia*, the *Salmonella* vacuole is also in close proximity to the Golgi complex. In contrast to *Chlamydia*, however, *Salmonella* replication is affected by Brefeldin A [464]. *Legionella pneumophila* also intercepts vesicular traffic, in this case from the endoplasmic reticulum exit sites, and the pathogen-containing vacuole becomes surrounded by these vesicles [465]. These vesicles attach and fuse with the *Legionella*-containing vacuole, allowing the acquisition of ER-derived proteins. Similar to *Legionella*, *Brucella abortus* interacts with the ER exit sites and its replication is inhibited by blockage of Sar1 activity, which disrupts the ER exit sites [466]. In the cases of *Salmonella*, *Legionella* and *Brucella*, it remains to be established whether, as a result of these specific interceptions of exocytic vesicles, the pathogens acquire lipids.

8.5. Lipid acquisition via novel translocation mechanisms across vacuolar membranes

Pathogen-containing vacuoles are often found in close proximity to other organelles (see also Fig. 3 and 5) such as the Golgi complex (*Chlamydia* [458], *Salmonella* [464]), the ER (*Brucella* [466], *Legionella* [465], *T. gondii* [467], and *Plasmodium* [468]), mitochondria (*T. gondii* [467]), lipid droplets (*Chlamydia* [424], *P. falciparum* [427], *Trypanosoma cruzi* [421]), multivesicular bodies (*Chlamydia* [462]) and possibly recycling endosomes (*Mycobacterium*, [205]). When the vacuole comes in close contact with another organelle, the two membranes may form local contact sites as an efficient means to transfer lipids from one membrane to the other [469,470].

Alternative models for lipid delivery to the pathogen have been suggested for cholesterol acquisition in the vacuole of *T. gondii*, as studied in an elegant series of experiments by Coppens and coworkers. The intracellular parasite *T. gondii* acquires cholesterol from the host. *T. gondii* scavenges cholesterol from LDL that is taken up by the host cell (Fig. 3) and does not utilize cholesterol synthesized *de novo* by the host cell. During *Toxoplasma* infection, cholesterol from LDL travels from the endosome to the parasitophorous vacuole and is taken up by the parasite in a microtubule dependent way [448,449]. The characteristics of cholesterol acquisition, such as temperature, energy, and microtubule dependency, supported a mechanism involving vesicular transport [449]. Recent evidence, however, allowed Coppens et al. [471] to propose an unconventional model that involves the inward budding of endosomal/lysosomal vesicles into the parasitophorous vacuole and subsequent fission of the vacuolar membrane, generating double membrane-layered vesicles in the vacuole.

A similar mechanism may apply to the appearance of lipid droplets in the *Chlamydia* vacuole [425]. Lipid droplets were found docked at the surface of the vacuole and can translocate from the host cell cytoplasm into the vacuolar lumen [425]. How entire organelles such as lipid droplets or vesicles derived from multivesicular bodies are translocated across the vacuolar membrane remains to be determined. Under physiological conditions, inward budding (i.e. into the lumen of an organelle) is so far only observed for multivesicular bodies. The ESCRT machinery provides the driving force for this process [472]. Pathogens such as HIV hijack this machinery to bud from the plasma membrane. It remains to be established whether the inward budding into the parasitophorous...
vacuole also requires elements of the ESCRT machinery, or whether specific virulence effectors, secreted by the pathogens, are sufficient for this process. Clearly, the uptake of lipid droplets and vesicles from multivesicular bodies is dependent on pathogen-secreted factors [425,471].

9. Conclusions and future perspectives

Lipids from host cells as well as from pathogens play important roles in the ability of pathogens to escape from the immune system. Pathogens make extensive use of the complexity of the host cell lipidome and have evolved very sophisticated mechanisms to use the diversity and complexity of the lipidome of their host to their advance. This is best illustrated by Mycobacterium tuberculosis, that uses a large portion of its coding capacity to the production of enzymes involved in lipogenesis and lipolysis [473]. Pathogens not only use lipids as building blocks or as a nutrient source, but also to influence the host cell physiology, enabling their survival and replication.

This review was written at the onset of the emergence of high-throughput lipidomic techniques. Lipidomic analysis of host–pathogen interactions by mass spectrometry will provide a great opportunity for future research and can be expected to reveal the specific roles of individual lipid species. This will greatly aid in the generation of more specific drugs against pathogens. An example of drug development that interferes with lipid metabolism is the statins. Statins have been reported to inhibit the replication of various pathogens in host cells, including viruses [29,474–483], bacteria [484–489] and parasites [490–493]. Clinical studies have been carried out concerning the use of statins for the management of septic patients [494]. Statins are inhibitors of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and reduce the biosynthesis of cholesterol, but also that of farnesylpyrophosphate and geranylgeranylprophosphate. The latter two compounds serve as lipid attachments for a post-translational modification, termed prenylation, of a great number of regulatory proteins in eukaryotes, among which small GTP-binding proteins. These GTP-binding proteins have crucial roles in intracellular inflammatory signaling [495]. The inhibition by statins of the prenylation of regulatory proteins in the eukaryotic cells is in most cases thought to cause the suppressing effect of statins on the replication of the microorganisms. In the case of the suppression of Salmonella replication in host cells by statins [485], the inhibition of host cell prenylation of the bacterial effector protein SifA [496] may also play a role.

Another opportunity of lipidomic analysis is lipid profiling of host–pathogen interactions. Lipid profiling may become an important indicator for the metabolic condition of a cell or organism. The specific depletion, presence or modulation of certain lipid species may generate lipid fingerprints unique to infection by specific pathogens, allowing the identification of biomarkers.

The study on host–pathogen interactions is a two-edged sword: On the one hand, these studies advance our molecular understanding of normal cellular processes, as they reveal novel intracellular signaling and trafficking pathways/mechanisms. One such example is the surprising capacity of lipid droplet organelles to pass biological membranes. Many novel and unanticipated findings are expected to emerge from these studies, in combination with novel methods of lipidomic analysis. On the other hand, these studies generate knowledge about pathogen-mediated changes in host cell metabolism. In this respect it is revealing that most pathogens studied so far do not play a single trick with the host cell but simultaneously induce several changes in the host cell signaling and trafficking mechanisms, both at the level of the proteome and of the lipidome. In this review, we have described several pathogens, such as *T. gondii* (Fig. 3), *Mycobacteria* (Fig. 4), *Salmonella* and *Chlamydia* (Fig. 5), which appeared in multiple sections, illustrating that they take full advantage of the complexity of the host cell lipidome.

This may have important implications for drug development. The goal to develop one drug for one pathogen in order to control host cell infection may be too simplistic. For most pathogens, a multidrug approach that aims at several pathogen-derived effector molecules or their host cell targets may be more effective. Moreover, the pathogens described in this review change the host cell lipidome in a unique way, characteristic for that particular pathogen. Thus lipidomic techniques will soon provide us with a detailed view on changes of the host cell lipidome in response to pathogen infection. Although lipidomic methods are technically more challenging than proteomic techniques, they may soon catch up and bypass proteomic analyses. Most lipids exist across species, allowing the application of lipidomic analyses to all species, independently of the knowledge of the genomic organization. In the field of host–pathogen interactions, with many pathogen genomes still unknown, this is a great advantage. Thus, lipidomic analysis of host–pathogens can be expected to contribute significantly to the fight against infectious diseases.

Acknowledgements

The authors are supported by Grants from The Netherlands Organisation for Scientific Research (NWO-ALW 817.02.023), The Dutch Technology Foundation (STW UDG.6488), and the European Union (Framework Program 7, Grant agreement no. 202272). They would like to thank Dr. Dora Kaloyanova for critical reading of the manuscript.

References

[1] Fahy E, Subramaniam S, Brown HA, Glass CK, Merril AH, Murphy RC, et al. A comprehensive classification system for lipids. J Lipid Res 2005;46:839–61.
[2] Benveniste J. Platelet-activating factor, a new mediator of anaphylaxis and immune complex deposition from rabbit and human basophils. Nature 1974;249:581–2.
[3] Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature 1989;341:197–205.
[4] Hannun YA, Bell RM. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science 1989;243:500–7.
[5] Moolenaar WH, Kruijer W, Tilly BC, Verlaan I, Bierman AJ, de Laat SW. Growth factor-like action of phosphatidic acid. Nature 1988;332:171–3.
[6] Niizoh H, Y. Studies and perspectives of protein kinase C. Science 1986;233:305–12.
[7] Bell RM. Protein kinase C activation by diacylglycerol second messengers. Cell 1986;45:631–2.
[8] Bankaitis VA, Aitken JR, Cleves AE, Dowhan W. An essential role for a phospholipid transfer protein in yeast Golgi function. Nature 1990;347:561–2.
[9] Haucke V, Di Paolo E. Lipids and lipid modifications in the regulation of membrane traffic. Curr Opin Cell Biol 2007;19:426–35.
[10] Simons K, Vaz WL. Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct 2004;33:269–95.
[11] King CA, Van Heyningen WE. Deactivation of cholera toxin by a sialidase-resistant monosialosylganglioside. J Infect Dis 1973;127:639–47.
[12] Van Meer G. Cellular Lipidomics. EMBO J 2005;24:1159–65.
[13] Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov 2005;4:594–610.
[14] Dennis EA. Lipidomics joins the omics evoc. Proc Natl Acad Sci USA 2009;106:2089–90.
[15] Helms JB. Host–pathogen interactions: lipids grease the way. Eur J Lipid Sci Technol 2006;108:895–7.
[16] Cabantchik ZI. Properties of permeation pathways induced in the human red cell membrane by malaria parasites. Blood Cells 1990;16:421–32.
[17] Simões AP, Roelofs B, Op den Kamp JAF. Lipid compartmentalization in erythrocytes parasitized by Plasmodium spp. Parasitol Today 1992;16:531–55.
[18] Vial HJ, Ancelin ML, Philippot JR, Thuery MG. Biosynthesis and dynamics of lipids in Plasmodium-infected mature mammalian erythrocytes. Blood Cells 1990;16:531–55.
phosphatidylethanolamine molecule species composition of parasitized monkey erythrocytes. Biochim Biophys Acta 1990;1022:135–45.

[21] Wunderlich F, Fiebig S, Vial H, Kleing H. Distinct lipid compositions of parasitized and non-parasitized Plasmodium falciparum erythrocytes. Mol Biochem Parasitol 1991;44:271–7.

[22] Siméos AP, Fiebig S, Wunderlich F, Vial H, Roelofs B, Op den Kamp JAF. Plasmodium falciparum: clonal parasites and host cell membranes. Mol Biochem Parasitol 1993;57:345–8.

[23] Jackson SK, Stark JM, Taylor S, Harwood JL. Changes in phospholipid fatty acid composition and transphosphatidyl transfer of mouse infection after infection with bacille Calmette-Guérin. Br J Exp Pathol 1989;70:435–41.

[24] Klein A, Mercure L, Gordon P, Bruser B, Ramcharitar S, Malkin A, et al. The effect of HIV-1 infection on the lipid fatty acid content in the membrane of cytotoxic T lymphocytes. J Biol Chem 1990;265:4809–18.

[25] Borthakur A, Gill RK, Hodges K, Ramaswamy K, Hecht G, Dudeja PK. ExoU is a potent intracellular phospholipase. Mol Microbiol 2004;53:1279–90.

[26] Saliba AM, Nascimento DO, Silva MCA, Assis MC, Gayer CRM, Raymond B, et al. Bacillus anthracis phospholipases C facilitate macrophage-to-cell spread of Listeria monocytogenes. Infect Immun 1997;65:1172–80.

[27] Grant KA, Belandia IU, Dekker N, Richardson PT, Park SF. Molecular mechanism of differentiation of the phagosome of Listeria monocytogenes. Microbes Infect 2006;8:99–110.

[28] Sato H, Feix JB, Frank DW. Identification of superoxide dismutase as a cofactor for ExoU. Cell Microbiol 2005;7:1811–22.

[29] Hybiske K, Stephens RS. Exit strategies of intracellular pathogens. Nat Rev Microbiol 2003;1:342–50.

[30] Goebel W, Kuhn M. Bacterial replication in the host cell cytosol. Curr Opin Microbiol 2004;7:543–8.

[31] Alberti-Segui C, Goeden KR, Higgins DE. Differential function of phospholipase A2 and phospholipase C in Listeria monocytogenes pathogenesis. Mol Microbiol 1993;8:143–57.

[32] Gedde MM, Higgins DE, Tilney LG, Portnoy DA. Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect Immun 1989;60:2733–40.

[33] Alberti-Segui C, Goeden KR, Higgins DE. Nontuberculous Mycobacteria express phospholipase A2 and A1 and use phosphatidylinositol-specific phospholipase C to induce the transepithelial migration of neutrophils. Infect Immun 2008;76:3614–7.

[34] Sato H, Frank DW, Hillard CJ, Feix JB, Pankhanjia RR, Miryama K, et al. The mechanism of action of the Pseudomonas aeruginosa-encoded type III cytoxin, ExoS. EMBO J 2003;22:2959–69.

[35] Phillips RM, Six DA, Dennis EA, Ghosh P. In vivo phospholipase activity of the Pseudomonas aeruginosa phospholipase A2 enzymes: better living through phospholipolysis. Trends Microbiol 2007;15:75–81.

[36] Heffernan BJ, Thomason B, Herring-Palmer A, Hanna P. Bacillus anthracis or Pseudomonas fluorescens. BMC Microbiol 2008;8:189.

[37] Heffernan BJ, Thomason B, Herring-Palmer A, Shaughnessy L, McDonald R, Agaisse H, Burrack LS, Philips JA, Rubin EJ, Perrimon N, Higgins DE. Genome-wide RNAseq for host factors required for intracellular bacterial infection. Science 2009;320:1248–51.

[38] Goransson Borthakur A, Gill RK, Hodges K, Ramaswamy K, Hecht G, Dudeja PK. Detection of phospholipase A2 in genome-wide RNAseq for host factors required for intracellular bacterial infection. Science 2009;320:1248–51.

[39] Saffer LD, Long Krug SA, Schwartzman JD. The role of phospholipase in host defense. FEMS Microbiol Lett 2001;198:935–42.

[40] Pollok RCG, McDonald V, Kelly P, Farthing MJG. The role of Cryptosporidium parvum-derived phospholipase in intestinal epithelial cell invasion. Parasitol Res 2000;90:181–6.

[41] Casseng S, Fauvel J, Bessières MH, Guy S, Séguéla JP, Chap H. Rickettsia prowazekii secretes a calcium-independent phospholipase A2. Int J Parasitol 2000;30:1137–42.

[42] Hybiske K, Stephens RS. Exit strategies of intracellular pathogens. Nat Rev Microbiol 2003;1:342–50.

[43] Bhanot P, Schauer K, Coppens I, Nussenzweig V. A surface phospholipase is required for entry of Plasmodium knowlesi into murine macrophages. J Biol Chem 1990;265:12709–79.

[44] Bhanot P, Schauer K, Coppens I, Nussenzweig V. A surface phospholipase is required for entry of Plasmodium knowlesi into murine macrophages. J Biol Chem 1990;265:12709–79.

[45] Bhanot P, Schauer K, Coppens I, Nussenzweig V. A surface phospholipase is required for entry of Plasmodium knowlesi into murine macrophages. J Biol Chem 1990;265:12709–79.

[46] Bhanot P, Schauer K, Coppens I, Nussenzweig V. A surface phospholipase is required for entry of Plasmodium knowlesi into murine macrophages. J Biol Chem 1990;265:12709–79.

[47] Bhanot P, Schauer K, Coppens I, Nussenzweig V. A surface phospholipase is required for entry of Plasmodium knowlesi into murine macrophages. J Biol Chem 1990;265:12709–79.

[48] Bhanot P, Schauer K, Coppens I, Nussenzweig V. A surface phospholipase is required for entry of Plasmodium knowlesi into murine macrophages. J Biol Chem 1990;265:12709–79.
Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from Pseudomonas aeruginosa. Int Arch Allergy Immunol 1994;103:33–41.

König B, Jaeger KE, König W. Induction of inflammatory mediator release (12-hydroxyeicosatetraenoic acids) from human platelets by Pseudomonas aeruginosa. J Immunol 1996;64:3252–8.

Rolf J, Bracconier JH, Söderström C, Nilsson-Ehle P. Interference of Shigella sonnei lipococcus mimiculin with human granulocyte function. Eur J Clin Microbiol Infect Dis 1988;7:505–10.

Gäser A, Trofa D, Schafer W, Nosanchuk JD. Targeted gene deletion in Pseudomonas aeruginosa demonstrates the role of secreted lipase in virulence. J Clin Invest 2007;117:3040–9.

Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF. GDSL family of serine esterases/acylhydrolases. Lipids 2010;45:1003–19.

Banerji S, Bewersdorff M, Hermes B, Cianciotto NP, Flieger A. Characterization of the serine protease gene (aspA) of Aeromonas salmonicida, a pathogenic bacterium. J Bacteriol 1990;172:5382–93.

Vipond R, Bricknell IR, Durant E, Bowden TJ, Ellis AE, Smith M, et al. Defined lipidic environment of Pseudomonas aeruginosa strain PAK internalizes the lipid rafts of human PAM 212 cells. J Biol Chem 2007;282:23605–12.

Whitby PW, Landon M, Coleman G. The cloning and nucleotide sequence of the serine protease gene (aspA) of Aeromonas salmonica ssp. Salmonomica. FEMS Microbiol Lett 1992;99:65–71.

Vipond R, Bricknell JR, Durant E, Bowden TJ, Ellis AE, Smith M, et al. Defined deletion mutants demonstrate that the major secreted toxins are not essential for the virulence of Aeromonas salmonica. Infect Immun 1998;66:1990–8.

Dewitt S, Tian W, Hallett B. Localised PtdIns(3, 4, 5)P3 or PtdIns(3, 4)P2 at sites of phagocytosis and phagosomal fate determinants. J Cell Sci 2005;118:6983–91.

Yeung T, Ozdamar B, Paroutis P, Grinstein S. Lipid metabolism and dynamics during phagocytosis. Curr Opin Cell Biol 2006;18:429–37.

Akes E, Küllner MF, Eos B, Moniz-Pereira J, Habermann A, Griffiths G. Selected lipids activate phagosome actin assembly and maturation resulting in killing of pathogenic mycobacteria. Nat Cell Biol 2005;3:793–802.

Botelho RJ, Tereul M, Dierckman R, Anderson W, Wells A, York JD, et al. Localized phosphatidylinositol-4, 5-bisphosphate at sites of phagocytosis. J Cell Biol 2000;151:1336–48.

Dewitt S, Tian W, Hallett B. Localised PtdIns(3, 4, 5)P3 or PtdIns(3, 4)P2 at the phagocytic cup is required for both phagosome closure and Ca2+ signalling in H660 murine alveolar macrophages. J Cell Sci 2001;114:443–51.

Scott CC, Dobson W, Botelho RJ, Coady-Oxsey N, Chavrier P, Knecht DA, et al. Phosphatidylinositol-4, 5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J Cell Biol 2005;169:139–49.

Chua J, Momany V. Mycobacterium tuberculosis reprograms waves of phosphatidylinositol-3-phosphate on phagosomal organelles. J Biol Chem 2004;279:36982–92.

Ikonosov OC, Shissova D, Fiti A, Matscheva T. PI(3,4,5)P3 controls actin polymerization and neutrophil transmigration. J Exp Med 2003;11:471–81.

Ikonomov OC, Sbrissa D, Foti M, Carpentier JL, Shisheva A. PIKfyve controls the role of lipids in the regulation of phagosome maturation. J Cell Sci 2008;121:139–47.

Scott CC, Dobson W, Botelho RJ, Coady-Oxsey N, Chavrier P, Knecht DA, et al. Phosphatidylinositol-4, 5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J Cell Biol 2005;169:139–49.

Chua J, Momany V. Mycobacterium tuberculosis reprograms waves of phosphatidylinositol-3-phosphate on phagosomal organelles. J Biol Chem 2004;279:36982–92.

Vipond R, Bricknell JR, Durant E, Bowden TJ, Ellis AE, Smith M, et al. Defined deletion mutants demonstrate that the major secreted toxins are not essential for the virulence of Aeromonas salmonica. Infect Immun 1998;66:1990–8.

Rangel Y, Beveridord M, Hermes B, Cianciotto NP, Flieger A. Characterization of the major secreted zinc metallocarpeptide-dependent glycolipidophospholipid: cholesterol acyltransferase, PLaC, of Legionella pneumophila. Infect Immun 2005;73:2899–909.

Oliveira MO, Fluit AC, Burgess JT, Psychological analysis reveals elevation of neutral lipids in Legionella pneumophila-infected target cells. J Biol Chem 2007;282:23605–12.

Sando S, Ting LM, Novak S, Kim K, Mahef JF, Fares JR RV, et al. Bacterial esterification by host and parasite is essential for optimal proliferation of Toxoplasma gondii. J Biol Chem 2001;276:34434–40.

Reyes E, VanWynsberghe T, McManus H, Sarmiento BJ, Hillier NL, et al. Vacular uptake of host components, and a role for cholesterol and acylglycerol import in malarial infection. EMBO J 2000;19:3556–64.

Nawash P, Lykindes A, Ji D, Hanlin M. Characterization of the serine protease gene (aspA) of Aeromonas salmonicida, a pathogenic bacterium. J Bacteriol 1990;172:5382–93.

Whitby PW, Landon M, Coleman G. The cloning and nucleotide sequence of the serine protease gene (aspA) of Aeromonas salmonica ssp. Salmonomica. FEMS Microbiol Lett 1992;99:65–71.

Vipond R, Bricknell JR, Durant E, Bowden TJ, Ellis AE, Smith M, et al. Defined deletion mutants demonstrate that the major secreted toxins are not essential for the virulence of Aeromonas salmonica. Infect Immun 1998;66:1990–8.

Rangel Y, Beveridord M, Hermes B, Cianciotto NP, Flieger A. Characterization of the major secreted zinc metallocarpeptide-dependent glycolipidophospholipid: cholesterol acyltransferase, PLaC, of Legionella pneumophila. Infect Immun 2005;73:2899–909.

Oliveira MO, Fluit AC, Burgess JT, Psychological analysis reveals elevation of neutral lipids in Legionella pneumophila-infected target cells. J Biol Chem 2007;282:23605–12.

Sando S, Ting LM, Novak S, Kim K, Mahef JF, Fares JR RV, et al. Bacterial esterification by host and parasite is essential for optimal proliferation of Toxoplasma gondii. J Biol Chem 2001;276:34434–40.

Reyes E, VanWynsberghe T, McManus H, Sarmiento BJ, Hillier NL, et al. Vacular uptake of host components, and a role for cholesterol and acylglycerol import in malarial infection. EMBO J 2000;19:3556–64.

Nawash P, Lykindes A, Ji D, Hanlin M. Characterization of the serine protease gene (aspA) of Aeromonas salmonicida, a pathogenic bacterium. J Bacteriol 1990;172:5382–93.

Whitby PW, Landon M, Coleman G. The cloning and nucleotide sequence of the serine protease gene (aspA) of Aeromonas salmonica ssp. Salmonomica. FEMS Microbiol Lett 1992;99:65–71.

Vipond R, Bricknell JR, Durant E, Bowden TJ, Ellis AE, Smith M, et al. Defined deletion mutants demonstrate that the major secreted toxins are not essential for the virulence of Aeromonas salmonica. Infect Immun 1998;66:1990–8.

Rangel Y, Beveridord M, Hermes B, Cianciotto NP, Flieger A. Characterization of the major secreted zinc metallocarpeptide-dependent glycolipidophospholipid: cholesterol acyltransferase, PLaC, of Legionella pneumophila. Infect Immun 2005;73:2899–909.

Oliveira MO, Fluit AC, Burgess JT, Psychological analysis reveals elevation of neutral lipids in Legionella pneumophila-infected target cells. J Biol Chem 2007;282:23605–12.

Sando S, Ting LM, Novak S, Kim K, Mahef JF, Fares JR RV, et al. Bacterial esterification by host and parasite is essential for optimal proliferation of Toxoplasma gondii. J Biol Chem 2001;276:34434–40.

Reyes E, VanWynsberghe T, McManus H, Sarmiento BJ, Hillier NL, et al. Vacular uptake of host components, and a role for cholesterol and acylglycerol import in malarial infection. EMBO J 2000;19:3556–64.

Nawash P, Lykindes A, Ji D, Hanlin M. Characterization of the serine protease gene (aspA) of Aeromonas salmonicida, a pathogenic bacterium. J Bacteriol 1990;172:5382–93.

Whitby PW, Landon M, Coleman G. The cloning and nucleotide sequence of the serine protease gene (aspA) of Aeromonas salmonica ssp. Salmonomica. FEMS Microbiol Lett 1992;99:65–71.
Merrill AH. De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway.

Merrill AH, van Echten G, Wang E, Sandhoff K. Fumonisin B1 inhibits sphingolipid biosynthesis by fumonisins. Implications for diseases associated with fumonisins. J Biol Chem 2002;277:18555–63.

Van Meer G, Lisman Q. Sphingolipid transport: rafts and translocators. J Biol Chem 2005;1:333–7.

Fratti RA, Backer JM, Gruenberg J, Corvera S, Deretic V. Role of sphingolipids in regulation of apoptosis. Adv Enzyme Regul 2001;41:189–218.

Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem 2001;70:1–33.

Denny PW, Goulding DM, Smith DF. Sphingolipid-free membranes. Microbiol Mol Biol Rev 1995;59:361–44.

Wylie JL, Hatch MC, McClarty G. Host cell phospholipids are trafficked to and utilized by microorganisms. Trends Parasitol 2003;19:533–40.

Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem 1995;64:29–63.

Rosenberger CM, Finlay BB. Phagocyte sabotage: disruption of macrophage signalling by bacterial pathogens. Nat Rev Mol Cell Biol 2003;4:385–96.

Fratti RA, Chua J, Vergne I, Deretic V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci USA 2003;100:5437–42.

Van der Meer-Janssen Y.P.M. et al. / Progress in Lipid Research 49 (2010) 1–26.
Hayward RD, Cain RJ, McClure PJ, Phillips N, Garner MJ, Koronakis V. The tip of a molecular syringe. Trends Microbiol 2002;10:186–92.

Haque M, Hirai Y, Yokota K, Oguma K. Lipid profiles of Helicobacter pylori and Helicobacter mustelae grown in serum-supplemented and serum-free media. Trends Microbiol 2002;10:35745–55.

Haque M, Hirai Y, Yokota K, Oguma K. Steryl glycosides: a characteristic feature of the Helicobacter spp.? J Bacteriol 1995;177:5334–7.
[235] Tamiselvam B, Daefler S. Francisella targets cholesterol-rich host cell membrane domains for entry into macrophages. J Immunol 2008;180:2190-96.

[236] Fanti M, Gorny N, Yah I. Prediction of glycolipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpaA, a protein involved in the adhesion of Helicobacter pylori to gastrointestinal mucus. J Mol Biol 2005;357:10957-6. doi:10.1016/j.jmb.2005.10.082

[237] Watarai M, Derre I, Kirly J, Growney JD, Wiedreich W, Isberg RR. Legionella pneumophila is internalized by a macrophocytotic uptake pathway controlled by the Dot/Icm system and the mouse Lng1 locus. J Exp Med 2003;194:1081-96.

[238] Seveau S, Bierné H, Giroux S, Prévost MC, Cossart P. Role of lipid rafts in E. coli infection. J Gen Virol 2002;83:1707-17.

[239] Tamilselvam B, Daefler S. Francisella targets cholesterol-rich host cell membrane domains for entry into macrophages. J Immunol 2008;180:2190-96.

[240] Peyron P, Bordier C, N’Diaye EN, Maridonneau-Parini I. Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosphosphatidylinositol-anchored proteins. J Immunol 2000;165: 5186–91.

[241] Vavilov T, Kassenet E, Tarshis M, Hiagai AA, Rottem S. Mycoplasma fermentans binds to and invades HeLa cells: involvement of plasminogen and urokinase. Infect Immun 2004;72:5004–11.

[242] Wang PY, Kitchens RL, Munford RS. Bacterial lipopolysaccharide binds to CD14 in low-density domains of the monocyte-macrophage plasma membrane. J Immunol 1999;162:1099-106.

[243] Fong KP, Pacheco CMF, Otis LL, Baranwal S, Kieba IR, Harrison G, et al. Lipid raft-associated proteins are involved in Shiga toxin binding to the midgut epithelium and subsequent pore formation. J Biol Chem 2002;277:13863–72.

[244] Bravo A, Gómez I, Conde J, Muñoz-Garay C, Sánchez J, Miranda R, et al. Oligomerization triggers binding of a Bacillus thuringiensis Cry1A pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta 2004;1667:38–46.

[245] Abatikí T, Tokuyama Y, Kanamíto V, Tókó I, Németh E, Socóla A, Sekiguchi M, et al. Binding of botulinum type B neurotoxin to Chinese hamster ovary cells transfected with rat synaptogamin II cDNA. Neurosci Lett 1996;208:105–8.

[246] Petro KA, Dyer MA, Yowler BC, Schengrund CL. Disruption of lipid rafts enhances activity of botulinum neurotoxin serotype A Toxocin. 2006;48:1035–45.

[247] Narayan S, Barnard RJO, Young JAT. Two retroviral entry pathways mediated by CR3 associated with glycosylphosphatidylinositol-anchored proteins. J Immunol 2000;165: 5186–91.

[248] Knodler LA, Vallance BA, Hensel M, Jäckel D, Finlay BB, Steele-Mortimer O. A novel pathogenetic mechanism in a clinical isolate of Yersinia enterocolitica KU14. J Microbiol 2006;44:98–105.

[249] Wang PY, Kitchens RL, Munford RS. Bacterial lipopolysaccharide binds to CD14 in low-density domains of the monocyte-macrophage plasma membrane. J Immunol 2002;169:2445–57.

[250] Abrami L, van der Goot FG. Plasma membrane microdomains act as lipid raft receptor complex to signal infection in airway epithelial cells. J Clin Invest 2004;113:1482–9.

[251] Herreros J, Ng T, Schiavo G. Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol Cell Biol 2001;11:2947–60.

[252] Sato Y, Kaneko K, Sasahara T, Inoue M. Novel pathogenetic mechanism in a clinical isolate of Yersinia enterocolitica KU14. J Microbiol 2000;478:260–6.
Xing L, Huhtala M, Pietiäinen V, Käpylä J, Vuorinen K, Marjomäki V, et al. (2009) Lipid-raft-dependent Coxsackievirus B4 replication in microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med 2002;195:593–602.

Freitas MS, Gaspar LP, Lorenzoni M, Almeida FCL, Tinoco LW, Almeida MS, et al. Structure of the Ebola fusion peptide in a membrane-mimetic environment and the interaction with lipid rafts. J Biol Chem 2007;282:27306–14.

Marjomäki V, Pietiäinen V, Matilainen H, Upla P, Ivaska J, Nissinen L, et al. Internalization of echovirus 1 in caveolae. J Virol 2002;76:1856–65.

Xing L, Hulttala M, Pietiäinen V, Käpylä J, Vuorinen K, Marjomäki V, et al. Structural and functional analysis of integrin α3β1 domain interaction with echovirus 1. J Biol Chem 2004;279:11632–8.

Karlojainen M, Kakkonen E, Upla P, Palaronta H, Kankaanpää P, Liberali P, et al. A Raft-derived, Pak1-regulated entry participant in S2Iβ1-integrin-dependent sorting to caveosomes. Mol Biol Cell 2008;19:2317–29.

Lévéque N, Norder H, Kreik Y, Carter G, Falcon D, Rivat N, et al. Echovirus 6 strains derived from a clinical isolate show differences in haemagglutination efficiency and cell entry pathway. Virus Res 2007;130:1–9.

Shibata S, McNeil D, McIntosh K, Williams PA, Harper NA, Shen S, Stuart DJ, et al. Determination of the structure of a decay accelerating factor-binding clinical isolate of echovirus 11 allows mapping of mutants with altered receptor requirements for infection. J Virol 2002;76:794–704.

Lu X, Xiong Y, Silver J. Asymmetric requirement for cholesterol in receptor-bearing but not envelope-bearing membranes for fusion mediated by eototropic murine leukemia virus. J Virol 2002;76:6701–9.

Ikeda M, Longnecker R. Cholesterol is critical for Epstein-Barr virus latent membrane protein 2A trafficking and protein stability. Virology 2007;360:461–8.

Dykstra M, Cherukuri A, Pierce SK. Rafts and synapses in the spatial organization of immune cell signaling receptors. J Leukoc Biol 2001;70:699–707.

Aizaki H, Lee KJ, Sung VMH, Ishiko H, Lai MMC. Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology 2004;324:450–61.

Shi ST, Lee KJ, Aizaki H, Hwang SB, Lai MMC. Hepatitis C virus RNA replication complex associated with lipid rafts. Virology 2004;324:450–61.

Kawamura SB, Radley J, Raucher D, Raucher D. Influenza virus hemagglutinin concentrates in lipid raft microdomains for efficient viral fusion. Proc Natl Acad Sci USA 2003;100:4160–7.

Desplanques AS, Nasoynck HJ, Tillern K, Deforce D, Favoreel HW. Tyrosine phosphorylation and lipid raft association of pseudorabies virus glycoprotein E during antibody-mediated capping. Virology 2007;362:60–6.

Desplanques AS, Nasoynck HJ, Vercauteren D, Geens T, Favoreel HW. Plasma membrane cholesterol is required for efficient pseudorabies virus entry. Virology 2008;376:339–45.

Lyman MC, Curarovic D, Enquist LW. Targeting of pseudorabies virus structural protein P to lipid rafts requires association of the viral US9 protein with lipid rafts. PLoS Pathog 2008;4:e1000065.

Brown G, Rixon HWM, Sugrue RJ. Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1. J Gen Virol 2002;83:1841–50.

Werling D, Hope JC, Chaplin P, Collins RA, Taylor G, Howard C. Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells. J Leukoc Biol 1999;66:50–8.

Brown G, Rixon HWM, Sugrue RJ. Respiratory syncytial virus assembly occurs in GM1-rich regions of the host-cell membrane and alters the cellular distribution of tyrosine phosphorylated caveolin-1. J Gen Virol 2002;83:1841–50.

Werling D, Hope JC, Chaplin P, Collins RA, Taylor G, Howard C. Involvement of caveolae in the uptake of respiratory syncytial virus antigen by dendritic cells. J Leukoc Biol 1999;66:50–8.

Fleming EH, Kolokotsav AA, Davey RA, Nichols JE, Roberts NJ. Respiratory syncytial virus envelope protein associates with lipid rafts without a requirement for other virus proteins. J Virol 2008;80:12160–70.

Grasmeir H, Ribolz GC, Bultins E. Rhinoviruses infect human epithelial cells via ceramidemembrane-enriched membrane platforms. J Biol Chem 2005;280:26256–62.

Cuadras MA, Greenberg HB, Rotavirus infectious particles use lipid rafts during replication for entry to the cell surface in vitro and in vivo. Virology 2003;313:308–21.

Cuadras MA, Border BB, Zambrollo JL, Luedt JE, Greenberg HB. Dissecting rotavirus particle-receptor interaction with small interfering RNAs: insights into rotavirus transduction through the secretory pathway. J Virol 2008;82:104–46.

Cuadras MA, Border BB, Zambrollo JL, Luedt JE, Greenberg HB. Dissecting rotavirus particle-receptor interaction with small interfering RNAs: insights into rotavirus transduction through the secretory pathway. J Virol 2008;82:104–46.
Pisciotta JM, Coppens I, Trigatti AK, Scholl PF, Shuman J, Rajad S, et al. The role of neutral lipid nanospheres in Plasmodium falciparum haem crystallization. Biochem J 2007:402:197–204.

Jackson KE, Klonis N, Ferguson DJP, Adisa A, Dogovski C, Tilley L. Food vacuole-associated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum. Mol Microbiol 2004;54:109–22.

Olivera MF, Kycia SW, Gomez A, Kosar AJ, Bohle DS, Hempell E, et al. Structural and morphological characterization of hexosaminidase produced by Schistosoma mansoni and Rhodnius prolixus. FEBS Lett 2005;579:6010–6.

Shaible UE, Kaufmann SHE. A nutritive view on the host–pathogen interplay. Trends Microbiol 2003;13:373–80.

Boskey JS, Lambrechts R, Trieu-Cuot P, Gruss A, Poyart C. Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature 2009;458:83–6.

Hansmeier N, Chao TC, Daschkey S, Musken M, Kalinowski J, Pübler A, et al. A comprehensive proteome map of the lipid-requiring nosocomial pathogen Corynebacterium jeikeium K411. Proteom Tech 2007;7:1076–96.

Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, et al. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 1998;282:754–9.

Jain M, Petzold CJ, Chelle MW, Leavell MD, Mougous JD, Bertozzi CR, et al. Salmonella persistence but not for acute lethal infection in mice. Infect Immun 2008;76:872–81.

Kuhnen A, Abraham T, Schieler C, Voehringer D, Arndt M, et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci USA 2007;104:19447–52.

Zu Y, Li J, Jang W, Vo P, Xu G. Bacterial endotoxin stimulates adipose lipolysis via Toll-like receptor 4 and extracellular signal-regulated kinase pathway. J Biol Chem 2009;284:9519–26.

Fang FC, Libby SJ, Castor ME, Fung AM. Isocitrate lyase (Acerase) is required for Salmonella persistence but not for acute lethal infection in mice. Infect Immun 2005;73:2547–9.

Prignau O, Porta A, Poudrier JA, Colonna-Romano S, Noël T, Maresca B. Genes involved in pH, oxidation and glycolysis are induced by the presence of Salmonella typhimurium in the infected cell. J Cell Biol 2005;170:5684–94.

Bowe AE, Samad AH, Jiang P, Weaver B, Mellors A. The acquisition of lysophosphatidylcholine by African trypanosomes. J Biol Chem 1993;268:13885–92.

Mellors A, Samad A. The acquisition of lipids by African trypanosomes. Parasitol Today 1989;5:239–44.

Coppens I, Baudhuin P, Mougous JD, Bertozzí CR, et al. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc Natl Acad Sci USA 2007;104:5133–8.

Voehringer D, Geuze RJ, Reif JC, Arndt M, et al. Inhibition of cholesterol uptake in macrophages by Staphylococcus epidermidis: roles for lactate, arachidonic acid, and arachidonic acid metabolites. Proc Natl Acad Sci USA 2007;104:19447–52.

Rude TH, Toffaletti DL, Cox GM, Perfect JR. Relationship of the glyoxylate metabolic coupling. Proc Natl Acad Sci USA 2007;104:5133–8.

Ikeda M, Kato N. Life style-related diseases of the digestive system: cell adhesion molecules. Cell Struct Funct 2000;149:167–80.

Scheifele U, Baur J, Huttner WB. Late endocytic multivesicular bodies intersect the chlamydial vacuolar space. Cell 2006;125:261–74.

Field KA, Hackstadt T. The chlamydial inclusion: escape from the endocytic pathway. Annu Rev Dev Biol 2005;11:561–70.

Fields KA, Hackstadt T. The chlamydial inclusion: escape from the endocytic pathway. Annu Rev Cell Dev Biol 2008;24:182–221.

Scidmore MA, Fischer ER, Hackstadt T. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J Cell Biol 2008;179:363–74.

Moore ER, Fischer ER, Mead DJ, Hackstadt T. The chlamydial inclusion preferentially interacts basolaterally directed sphingomyelin-containing transmembrane vaccines. J Cell Sci 2008;121:310–20.

Heuer D, Lipinski AR, Machuy N, Karlas A, Wehrens A, Siedler F, et al. Chlamydia causes fragmentation of the Golgi apparatus to ensure intracellular parasite growth. Cell 2006;125:465–76.

Hackstadt T, Rockey DD, Heiner RA, Scidmore MA. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane. EMBO J 1996;15:964–77.

Beatty WL. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J Cell Sci 2006;119:350–9.

Beatty WL. Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63. Infect Immun 2008;76:2872–81.

Kuhnen A, Abraham T, Schieler C, Voehringer D, Arndt M, et al. Intracellular Salmonella enterica serovar Typhi redirects exocytic transport processes in a Salmonella pathogenicity island 2-dependent manner. Traffic 2006;7:716–30.

Salcedo SP, Holder DW, Seef, a virulence protein that targets Salmonella to the Golgi network. EMBO J 2003;22:5003–14.

Kagan JC, Roy CR. Legionella phagosomes interrupt vesicular traffic from endocytic reticulum exit sites. Nat Cell Biol 2002;4:945–54.

Celi S, Salcedo SP, Gorvel JP. Brucella coopts the small GTPase Sar1 for intracellular acclerelation. Proc Natl Acad Sci USA 2005;102:1673–8.

Salcedo SP, Holden DW. SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J 2003;22:5003–14.

Peculiarities of host cholesterol transport to the unique intracellular parasitophorous vacuole containing Toxoplasma. Proc Natl Acad Sci USA 2008;105:465–76.

Peculiarities of host cholesterol transport to the unique intracellular parasitophorous vacuole containing Toxoplasma. Proc Natl Acad Sci USA 2008;105:465–76.

Y.P.M. van der Meer-Janssen et al. / Progress in Lipid Research 49 (2010) 1–26
[484] Dechend R, Gieffers J, Dietz R, Joerres A, Rupp J, Luft FC, et al. Hydroxymethylglutaryl coenzyme A reductase inhibition reduces Chlamydia pneumoniae-induced cell interaction and activation. Circulation 2003;108:261–5.

[485] Catron DM, Lange Y, Borensztajn J, Sylvester MD, Jones BD, Haldar K. Salmonella enterica serovar Typhimurium requires nonsterol precursors of the cholesterol biosynthetic pathway for intracellular proliferation. Infect Immun 2004;72:1036–42.

[486] Erkkilä L, Jauhiainen M, Laitinen K, Haasio K, Tiirola T, Saikku P, et al. Effect of simvastatin, an established lipid-lowering drug, on pulmonary Chlamydia pneumoniae infection in mice. Antimicrob Agents Chemother 2005;49:3959–62.

[487] Botelho-Nevers E, Espinosa L, Raoult D, Rolain JM. Lovastatin, but not pravastatin, limits in vitro infection due to Coxiella burnetii. J Antimicrob Chemother 2008;62:845–7.

[488] Botelho-Nevers E, Rolain JM, Espinosa L, Raoult D. Statins limit Rickettsia conorii infection in cells. Int J Antimicrob Agents 2008;32:344–8.

[489] Schmeck B, Beermann W, N’Guessan PD, Hocke AC, Opitz B, Ettel J, et al. Simvastatin reduces Chlamydophila pneumoniae-mediated histone modifications and gene expression in cultured human endothelial cells. Circ Res 2008;102:888–95.

[490] Chen GZ, Foster L, Bennett JL. Antischistosomal action of mevinolin: evidence that 3-hydroxy-methylglutaryl-coenzyme a reductase activity in Schistosoma mansoni is vital for parasite survival. Naunyn Schmiedeberg’s Arch Pharmacol 1990;342:477–82.

[491] Haughan PA, Chance ML, Goad LJ. Synergism in vitro of lovastatin and miconazole as anti-leishmanial agents. Biochem Pharmacol 1992;44:2199–206.

[492] Grellier P, Valentin A, Millérioux V, Schrevel J, Rigomer D. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors lovastatin and simvastatin inhibit in vitro development of Plasmodium falciparum and Babesia divergens in human erythrocytes. Antimicrob Agents Chemother 1994;38:1144–8.

[493] Soliman MFM, Ibrahim MM. Antischistosomal action of atorvastatin alone and concurrently with medroxyprogesterone acetate on Schistosoma haematobium harboured in hamster: surface ultrastructure and parasitological study. Acta Trop 2005;93:1–9.

[494] Kopterides P, Falagas ME. Statins for sepsis: a critical and updated review. Clin Microbiol Infect 2009;15:325–34.

[495] Terblanche M, Almog Y, Rosenson RS, Smith TS, Hackam DG. Statins and sepsis: multiple modifications at multiple levels. Lancet Infect Dis 2007;7:358–68.

[496] Reinicke AT, Hutchinson JL, Magee AI, Mastroeni P, Trowsdale J, Kelly AP. A Salmonella typhimurium effector protein Sifa is modified by host cell prenylation and S-acylation machinery. J Biol Chem 2005;280:14620–7.