Exercise Capacity Improvements Over Three Months Training: How Can we Relate Medium Term Training Results in A Competitive Roller Skiing Event?

Martin Ștefan Adrian¹, Martin-Hadmaș Roxana Maria²* and Graur Cristian³

¹Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
²Department of Nutrition and Dietetics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
³Department of Sport and Physical Education, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania

*Corresponding author: Martin-Hadmaș Roxana Maria, Department of Nutrition and Dietetics George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania

ARTICLE INFO

Received: December 11, 2020
Published: January 20, 2021

Citation: Martin Ștefan Adrian, Martin-Hadmaș Roxana Maria, Graur Cristian. Exercise Capacity Improvements Over Three Months Training: How Can we Relate Medium Term Training Results in A Competitive Roller Skiing Event?. Biomed J Sci & Tech Res 33(2)-2021. BJSTR. MS.ID.005375.

Keywords: Aerobic; Anaerobic; Ski; Training; VO₂

ABSTRACT

An adapted aerobic – anaerobic training ratio can improve short term VO₂peak but can limit long-term improvements aerobic and the anaerobic threshold changes. Twelve (n=12) international competitive male cross-country (G₁) and biathlon athletes (G₂) with a median age of 23 (21–27) years old were included as study subjects. Two VO₂max tests (n=2) were conducted in the study period (93 days), further approached as test 1 (T₁) during day 1 and test 2 (T₂) during day 93. Several training sessions were conducted over 3,800 km volume. Lack of changes regarding VT₁–VT₂ group values were obtained between T₁–T₂ tests. Yet, through an individual approach, both high aerobic (p=0.03, r=0.62, CI95%=0.04 to 0.89) and low aerobic training (p=0.04, r=-0.65, CI95% = -0.90 to -0.03) were correlated with VT in G₂. No similar results were obtained in G₁ training group (p>0.05). Volume training, unlike early high intensity training, induces changes over the athletes’ exercise capacity. Aerobic training will induce an improved relative oxygen consumption, while both aerobic and anaerobic training can increase peak VO₂ value, when implemented during the following 30-60 training days.

Introduction

During recent competitive activities, several questions are raised regarding the athletes’ exercise capacity and training methodology. Training activity is constantly adapted based on both volume and effort intensity changes. However, several papers had an objective to improve and generate new over coming data regarding individual exercise capacity and training methodology improvements but few concluded new outcomes [1-3]. By comparing two different training methods, this study is not an experimental one. Conducting an experimental training methodology can be difficult in competitive senior athletes over an Olympic year, as described in our case. Starting from several relevant results [2,4] training periodization is the main long term influence factor over both cross country skiing and roller skiing performance due to continuous physiological training induced changes. Of particular importance is the lack of change over the last 15 – 20 years over individual maximal or sub maximal testing results, whereas performance has improved significantly by doubling the average speed in different stages and competitive activities [5]. Unlike other endurance sports, such as running, classic roller skiing induces a higher VO₂peak and VO₂max ratio, over sub-techniques, which involve a lower muscle mass use [6]. Hoogsteen et al. [7] confirmed that excess cardiac output can be measured in cross country ski and roller ski training. However, based on Sandbakk et al. [8] outcomes, the performance will benefit from VO₂max value, which reaches up to 15% differences over both classical (diagonal stride, double poling with a kick, double
poling and herringbone) and skating skiing (G
2, G
3, G
4, G
5) [5]. The technique is permanently adapted over the training or competition track profile, inducing frequent changes in effort intensity.

Exercise capacity is described by a greater oxygen uptake as seen in several papers, which used different training methodologies over endurance athletes [9]. According to Guth et al. [10] an enhanced cardio pulmonary capacity will represent the basic training foundation, while various factors will relate the final training or competition outcome. Along training, the main objective is to prepare the athlete for the pre competition phase in which high intensity effort will occur. Both pulmonary system, oxygen uptake and transport along cardiovascular output and skeletal muscles will influence individual performance. From a physiological perspective, pulmonary gas exchange will follow normal O
2 saturation and blood pH values, whereas limiting in some cases aerobic power over physical effort. According to Holmberg et al. [11], both static and dynamic lung volumes can reach 5 to 20% improvement over training while an increased cardiovascular output will improve regulation over vascular conductance Calbet et al. [12]. As a result, the main training objective will follow similar physiological improvements, whereas Sandbakk Ø et al. [5] believe that the ability to transform metabolic energy efficiently into speed is a key determinant of performance.

General cross-country ski training consists of 700 – 850 hours of annual training, whereas more than 75% of the volume is attributive to low intensity effort, 5 – 15% to moderate intensity and 5 – 10% to high intensity effort. Even if general training data described a high aerobic volume, suggestive information over individual performance seems to relate that an improved performance is seen by conducting both moderate and high intensity effort during all season. The volume attribute to each training stage is rather adapted from one athlete to another. Further on based our hypothesis an adapted aerobic – anaerobic training ratio, with an enhanced aerobic and low anaerobic volume can improve short term VO
2max but limit long-term effect over both aerobic and anaerobic thresholds while reducing performance or relating lack of progress. Therefore our objective is to initiate several VO
2 measurements and a median training monitoring period to test the current hypothesis by performing a day by day training performance analysis.

Material and Methods

A cross sectional study was conducted over June – September 2017, as representing the 2017 – 2018 season general training period. To take part and publish the current results we obtained the University Ethical Committee approval along both the athletes and the Federal Management acceptance.

Participants

To be included as study subjects, the individuals had to fulfil the following criteria: (I.) male cross country ski, roller ski or biathlon athlete, (II.) >18 years old, (III.) currently competing at professional national or international level (IV.) along general medical acceptance. Due to lower age (<18 years old) two individuals (n=2) were excluded from the study group. Twelve (n=12) competitive male cross country and biathlon athletes (n=5 vs. n=7) with a median age of 23 (21 – 27) years old were included as study subjects. As part of the methodology, the biathlon athletes were included in sample 1 (G
1), while the roller skiing athletes were included in sample 2 (G
2). The two samples (G
1 and G
2) followed a different training program over 93 days, as part of the general 2017–2018 roller skiing training season. The main differences between G
1 and G
2 were related to both volume and exercise intensity. As a result sample 1 (G
1) reached 3500 km volume, while sample 2 (G
2) training volume was 4500 km over the study period (93 days). In both G
1 and G
2 groups, individual volume differences (±15%) were measured.

Measures

Two VO
2max tests (n=2) were conducted in the study period. The first test (T
1) was conducted during day 1 of 93 days, whereas the second test (T
2) was conducted over day 93 of 93. Over the training period, several training sessions were conducted at a temperature monitored between +10 and +20°C, over a median training volume of 3.800 km (G
1 + G
2). In the following training intensity guidance: low aerobic training (80%), high aerobic training (15%) and anaerobic training (5% of VO
2max). As illustrated in Figure 1, the athletes took part in a competitive 15 km roller skiing competition, as to conclude individual performance over three months training period.

Figure 1: Study protocol illustration detailing P
1 – P
3 training period.
Maximal oxygen consumption test (VO₂max)

The VO₂max tests (T₁) were conducted by applying the Bruce Maximal Testing Protocol. [13] The test was conducted through Cosmed Quark CPET equipment (Rome, Italy) and Cosmed T150 (Rome, Italy) running treadmill, during seven (n=7) different effort stages. Each stage lasted three minutes. The first testing stage (stage 1) consisted of 2.7 km speed, 5 METS, and 10% grade, while over the last stage (stage 7), a maximum running speed of 9.6 km/h, 20 METS and 22% grade was reached. The testing time depended on the athletes’ exercise capacity. Prior the VO₂max analysis, the athletes performed a 20 minutes warm up, reaching 50-85% of HRmax. The main device was calibrated before each test with know O₂ (16%) and CO₂ (4%) concentrations, while the flow meter was calibrated in the start of each test.

During T₁ and T₂ test, the following parameters were assessed: VO₂max (relative maximum oxygen consumption, ml/kg/min), VT₁ (aerobic ventilatory threshold, b/min), VT₂ (anaerobic ventilatory threshold, b/min) along with VE (Ventilation, L/min), VCO₂ (carbon dioxide production, ml/min), VE/VCO₂ (ventilatory equivalents for oxygen, ml/min), PetO₂ (end-tidal oxygen tension, mmHg) and PetCO₂ (end-tidal carbon dioxide tension, mmHg). Using VO₂max test data, the following training zones were confirmed through the V slop method [14]: Warm up aerobic zone, Training Zone 1, (Z₁ 45-65%); Aerobic zone, Zone 2 (Z₂ 66-80%); High Aerobic, Zone 3 (Z₃ 81-87%); Anaerobic, Zone 4 (Z₄ 88-93%) along Anaerobic Power, Zone 5 (Z₅ 94-100%) similar to Seiler and Tonnessen [15].

Effort intensity was used to confirm the athletes’ training objective. Anthropometric measurements were conducted before each test, including both body weight (kg) and height (cm), by using a calibrate scale.

Training Monitoring

Over the study period, 186 training sessions were analysed by using Global Positioning Systems, Polar V800 (Kempele, Finland), and Polar H7 Bluetooth Monitor (Kempele, Finland), as monitoring: training time (hh:mm:ss), distance (kilometres, km), heart rate (HR, b/min; % of HRmax), positive (+Dif, meters) and negative altitude gain (-Dif, meters).

15 km Skating Roller Skiing Test Course

During day 93, the athletes took part in a 15 km competitive activity. The action was held over a 4 km track placed +1300 m above sea level, with a positive gain of 148 meters and a negative gain of 69 meters per lap. The test consisted of 3.75 laps, 555 m positive difference and 258.75 m negative difference gain. The start between athletes was programed at 30 seconds intervals.

Statistical Analysis

GraphPad Prism 5.0 software was used for statistical analysis. The Standard Deviation (SD), the coefficient of variation (CV%), along with the median (median) value were used in the descriptive analysis. During the inferential statistics, D’Agostino Pearson omnibus normality test was used to obtain data normalization, while the Spearman test was applied in order to identify a correlation between two different parameters. One sample t test was used to assess the differences between T₁ and T₂ test parameters, while Kruskal-Wallis test was applied in order to measure the evolution over P₁ – P₃ training period. We considered a p value<0.05 as being statistically significant, with a standard Confidence Interval set at 95% (CI95%). T₁ and T₂ cardiopulmonary differences were analysed as a positive or a negative percentage (+/- %) from the maximum value measured in either of the two tests. The statistical analysis was conducted by using individual G₁ and G₂ samples, or by using a single sample (G₁ + G₂) to evaluate the main exercise capacity changes, based on training differences.

Results

During T₁, median body (72 vs. 73.6 kg) and height (176 vs. 175 cm) were similar in both G₁ and G₂ samples (p>0.05).

Athlete Training Data

Of the training volume, strength training was performed over 10.25% (409.28 minutes) whereas Trail Running 23.03% (875.14 km), Nordic Walking, 2.33% (88.54 km), Road Cycling, 17.53%, (666.14 km), Classic Roller skiing (10.83%, 411.54 km) and Free Roller skiing (35.75%, 1358.5 km) were monitored as main training activities in the main study group of G₁ and G₂. During 197.73 hours training the study group reached a median volume of 3.500 km and 4.500 km (G₁ vs. G₂) distance. Of the volume, High Intensity Training (HIT) was conducted over 3.5% (122.5 vs. 157.5 km) in G₁ vs. G₂. High aerobic training reached 11.63% (407.05 vs. 157.5 km) in G₁ vs. G₂. Over the training period several differences were monitored between G₁ and G₂ as illustrated in Table 1. The main training differences were used as performance improvement indicators.

Table 1: Descriptive data over the P₁ – P₃ training period.

Training data	P₁	P₂	P₃	Significant difference over 3 months training? (p value)				
G₁	G₂	G₁	G₂	G₁	G₂	G₁	G₂	
Time, min	4092	4237	3908	4543	2787	3894	0.009**	0.29*
Distance, km	830	1024	835.7	887.9	609,7	715.7	0.008**	0.10*
Positive difference gain, meters & 15.715 & 11.46 & 16.035 & 14.76 & 15.105 & 12.01 & 0.28* & 0.10* \\
Negative difference gain, meters & 15.815 & 11.973 & 22.053 & 10.798 & 11.75 & 10.918 & 0.55* & 0.65* \\
Z5, % & 0 & 3 & 0 & 2 & 1 & 2 & 0.10* & 0.17* \\
Z4, % & 0.5 & 7 & 15 & 9 & 2 & 5 & 0.02** & 0.28* \\
Z3, % & 16.5 & 29 & 6 & 15 & 2.5 & 11 & 0.09** & 0.13* \\
Z2, % & 43.5 & 31 & 32.5 & 41 & 34 & 26 & 0.40* & 0.10* \\
Z1, % & 38.5 & 25 & 59 & 28 & 6.5 & 53 & 0.28* & 0.11* \\

Note: P1 = training period 1 between day 1 and day 30, P2 = training period 2 between day 31 and day 60, p = probability level, p < 0.01**, p < 0.05, Z5 = anaerobic power training zone, Z4 = Anaerobic training zone, Z3 = High aerobic training zone, Z2 = Low aerobic training zone, Z1 = Warm up zone.

Relative VO2max changes over T1 - T2 training period

The median group VO2 value was significantly different during T2 unlike T1 measurement (69.23 vs. 79.29 ml/min/kg). The median group difference reached +8.86 ml/kg/min over T2 as against T1 result (p = 0.01). However, no significant differences (p>0.05) were monitored during T2 between G1 and G2 test results (Table 2). VO2 changes over T1 test were correlated to the training volume (p = 0.02, r=0.67, CI95%=0.119 to 0.906). The volume difference between the two samples was 22.3% in G2 vs. G1 (4500 vs. 3500 km) associating changes in peak VO2max value over G2 vs. G1 during T2 test (80.01 vs. 78.89 ml/min/kg). A higher volume along a positive difference gain in G1 (+13.430 m) was significantly correlated to VO2 (p=0.01, r=0.69, CI95%=0.91 to 0.15). Over training specificity, during P1 - P2 period, Cycling (20% vs. 30%) (p=0.02), Nordic walking (0 vs. 5%) (p = 0.019, r = -0.68, CI95% = -0.91 to -0.15) was significantly correlated to VT in G1, where carbon dioxide output was significantly correlated to VT in G1 (p = 0.027, r = -0.65, CI95% = -0.90 to -0.09). However, high aerobic training during P2 was significantly correlated to VO2 and VE/VO2 (p = 0.03, r = 0.64, CI95% = 0.07 to 0.08), while positive (p = 0.0482) and negative (p = 0.0496) difference gain were correlated to VO2 (p = 0.027).

Table 2: Comparative data regarding VO2 and VT changes over T1 and T2 tests.

Main Analysis	G1	G2	Statistical p value regarding T1 over T2 differences				
VO2, ml/min/kg	69.45	78.8	11.87%	68.12	80.01	14.87%	0.95*
VT,% of HRmax	83.01	78.79	-5.09%	78.14%	78.28	0.18%	0.15*
VT,% of HRmax	98.95	97.11	-1.86%	97.29%	96.13	-12.0%	0.10*

Note: G1 = sample 1, G2 = sample 2, T1 = VO2max test 1 over day 1, T2 = VO2max test 2 over day 63, VT1 = ventilator threshold 1, VT2 = ventilator threshold 2, p = probability level, p < 0.01**, p < 0.05, VO2 = maximum rate of oxygen consumption.

Ventilatory Threshold Improvement Over T1 - T2 Training Period

Lack of changes among VT1 - VT2 group values (G1 + G2) were obtained between T1 - T2 tests. Yet, through an individual approach both high aerobic (p = 0.03, r = 0.62, CI95% = 0.04 to 0.89) and low aerobic training (p = 0.04, r = -0.65, CI95% = -0.90 to -0.03) were correlated with the VT in G2. No similar results were obtained in G1 training group (p=0.05) as seen in Table 3. High aerobic training volume (>5%) was significantly correlated to VT1 (-2.94%) during P1 stage. As a result, both high aerobic (p = 0.020) and low aerobic (p = 0.026) training intensity were significantly correlated to VT1. As a result, minimum changes during T2 vs. T1 test results are confirmed through +0.18% vs. -5.09% in G1 vs. G2. Even though there were no significant (p>0.05) differences in VT2 values (T1 vs T2), the changes between the two tests (-1.23%) were related to other training outcomes. Among them, the anaerobic training volume was significantly correlated to VT2 values over T2 outcomes (p = 0.05, r = 0.87, CI95% = 0.56 to 0.96). Unlike volume, training intensity was of particular importance over both P1 - P2 periods, as illustrated in Table 3. P1 and P2 training volume was significantly correlated with VT1 (p=0.001). Over P2, both the number of training sessions (p = 0.39, r = -0.65, CI95% = -0.90 to -0.04) and anaerobic training volume was significantly correlated (p = 0.046) to further VT changes. Yet, VT1 measurement was significantly correlated to VO2 values (p = 0.01, r = 0.92, CI95% = 0.71 to 0.97).
Table 3: Training intensity influence, during P1 - P2 period, over T2 results (G1 and G2).

Proposed Parameters	Statistical Results						
Parameter 1	Median Value	Parameter 2	Median group value	p	r	CI95%	
						Upper	Lower
VT1	81.48% of HRmax	Distance, km	3537	0.98*	-0.005	-0.6	0.59
		Training time, min	18.864	0.71*	-0.12	-0.67	0.51
		Z5, %	1	0.03**	0.64	0.06	0.89
		Z4, %	3.5	0.03**	0.64	0.06	0.89
		Z3, %	14	0.02**	0.68	0.14	0.91
		Z2, %	35	0.02**	-0.66	-0.9	-0.1
		Z1, %	46.5	0.04**	-0.61	-0.88	0.02
VT2	98.06% of HRmax	Distance, km	3537	0.37*	-0.29	-0.76	0.36
		Training time, min	18.864	0.28*	-0.35	-0.78	0.31
		Z5, %	1	0.02**	0.67	0.12	0.9
		Z4, %	3.5	0.04**	0.61	0.03	0.88
		Z3, %	14	0.07**	0.55	-0.06	0.86
		Z2, %	35	0.62*	-0.16	-0.69	0.48
		Z1, %	46.5	0.11*	-0.5	-0.84	0.13

Note: VT1 = ventilator threshold 1, VT2 = ventilator threshold 2, p = probability level, p = < 0.01**, *p < 0.05, r = Pearson product-moment correlation coefficient, CI95% = confidence interval of 95%, Z5 = anaerobic power training zone, Z4 = Anaerobic training zone, Z3 = High aerobic training zone, Z2 = Low aerobic training zone, Z1 = Warm up zone.

Competitive, High Intensity Effort Analysis

Track time was significantly correlated to the training outcomes. As a result, anaerobic – aerobic training ratio was significantly correlated to individual performance, as illustrated through average pace in Table 4. Over P1 - P2 period, anaerobic training was correlated to the average pace unlike aerobic training which showed no significant relationship to individual performance. Further on, except for effort time, no correlations were obtained between P3 training and individual performance (p>0.05).

Table 4: Training intensity influence over high intensity roller skiing effort in the study group (G1 and G2).

Proposed Parameters	Statistical Results						
Parameter 1	Median Value	P1 - P2 period	Median Group Value	p	r	CI95%	
						Upper	Lower
Average pace	2.26 min/km	Distance, km	841.6	0.358*	-0.29	-0.74	0.33
		Training time, min	4022	0.895*	0.04	-0.54	-0.74
		Z5, %	1	0.003**	-0.77	-0.93	-0.35
		Z4, %	2	0.002**	-0.78	-0.93	-0.37
		Z3, %	15	0.014**	-0.68	-0.9	-0.17
		Z2, %	36	0.678*	0.13	-0.47	0.65
		Z1, %	39	0.031**	0.61	0.06	0.88
P3 period	Median group value	p	r	CI95%			
						Upper	Lower
		Distance, km	682.6	0.143*	-0.44	-0.81	0.16
		Training time, min	3059	0.026**	-0.63	-0.88	-0.09
		Z5, %	2	0.627*	-0.15	-0.67	0.45
		Z4, %	3	0.293*	-0.33	-0.76	0.3
		Z3, %	7.5	0.123*	-0.46	-0.82	0.14
		Z2, %	29.5	0.754*	0.1	-0.5	0.63
		Z1, %	60.5	0.374*	0.281	-0.34	0.73
Note: P_1 = training period 1 between day 2 and day 30, P_2 = training period 2 between days 31 and 60, P_3 = training period 3 over days 62 – 92, r = Pearson product-moment correlation coefficient, CI 95% = confidence interval of 95%, $p = $ probability level, $* = p< 0.05$, ** = $p< 0.01$, Z_5 = anaerobic power training zone, Z_4 = Anaerobic training zone, Z_3 = High aerobic training zone, Z_2 = Low aerobic training zone, Z_1 = Warm up zone

Discussion

Following the study outcomes, effort capacity was improved in G_2 unlike G_1 sample. The main improvements were related to both training intensity and volume whereas G_1 training methodology focused on both high aerobic and anaerobic training volume, while improving effort capacity over G_2 training methodology, which focused on high aerobic and low anaerobic volume. Based on the current findings the questions raised are related to the athletes’ exercise capacity development and metabolism adaptation in G_1 and G_2, as studied earlier by Sandbak et al. [5], over both general and specific training.

Exercise Specificity

Roller skiing and biathlon exercise is performed by using similar techniques, characterised through an increased oxygen consumption and power output [16-18]. According to Hartmann et al. [4] several differences can be observed between cross country and biathlon training periods. The differences are related to training volume and intensity, due to shooting in one as against other activity. Yet, training technique will be similar. Training specificity seems to influence effort capacity based on both G_1 vs. G_2 performance and training outcome. Further on, Cycling, Trail Running and Nordic Walking were included as training methods in our paper, imposing an improved effect over individual performance, as against Solli et al. [2] which failed to obtain improvements in individual performance based upon non-specific training sessions. During P_3, in G_2 unlike G_1, non-specific training methods along specific skating roller skiing resulted on an improved aerobic capacity as against classic roller skiing sessions. This approach is different to Stögg et al. [19] who obtained an improved overall performance over classic technique training. The differences between the two methods are related to exercise intensity by influencing oxygen demand, optimal tissue oxygenation and metabolism adaptation over comparative low intensity training periods [20].

Training Methodology

Two training methods, known as the threshold-training and the polarized training [21] were used in the study methodology. Of them, the threshold training was conducted near VT_2, whereas the polarized training either under or above, but not near VT_2 as described earlier by Stögg et al. [22]. Threshold training, specific applied in G_2 sample, improved effort capacity, as against G_1 polarized training program which consisted high volume of low aerobic activity (55 – 75% of VO_{2max}). Physical effort capacity improvements were related to both changes in volume and high intensity training, as shown in G_2 unlike G_1 whereas both VO_{2peak} and VO_{2max} along VT_1 and VT_2 improved in G_2, unlike G_1. Comparing both the VO_2 change and the competition outcome, we can observe an improper anaerobic exercise staging, which influenced both VE, $PetO_2$ and relative VO_2 value, similar to Patel et al. [23] results, which programed both anaerobic and aerobic training over a medium training period. However, during 93 days training period, low aerobic training was correlated to a drop in exercise capacity as seen in G_1 as against G_2.

Aerobic power has been considered of particular importance in individual performance. As a result, the pulmonary system, along the maximum cardiac capacity, oxygen transport and skeletal muscle can influence the final outcome. As we have seen in G_1 training methodology, aerobic training reached 80% of the volume, similar to Seller et al. [21] training methodology, while encountering differences regarding anaerobic training volume. In Soli and Kjerland paper (2006) [21], 5 to 10% of the volume was held between VT_1 and VT_2, whereas 15-20% of the volume increased over VT_1 intensity. One similar training method, published by Stögg et al. [19] improved exercise capacity based on anaerobic power development, as against our training methodology, in which an enhanced performance resulted of a well-adapted low - high aerobic and anaerobic effort. However, we believe that excessive sympathetic stress cannot be totally confirmed through the HR monitoring systems, and therefore important training recovery data could be unknown.

Soli et al. [2] confirmed that general aerobic power is related to high aerobic training, opposite to G_1 training directions and final outcomes. High aerobic training influenced VT_1 in G_2 while the final competitive result was negatively correlated to high intensity training, limiting high aerobic training volume, whereas improving low aerobic volume over P_3, period, without similar results in P_2. The average pace during the competitive effort was influenced by both aerobic and anaerobic volume, unlike Ateş et al. [24] outcome which described 10 to 15% high intensity effort (90 - 100% of VO_2max). An increased high aerobic training volume was correlated with VT_1 increase in G_2 unlike G_1, but without any influence over individual performance during high intensity effort. As described by Holmberg [25], excess high aerobic training could have imposed excessive sympathetic stress in G_2 unlike G_1. An important performance drop can be described in such situations due to improper protein synthesis, while inducing cellular stimulation over preserving individual autonomic balance. However, such data was not part of the current paper results.

Limitations

Conducting a VO_{2max} test within a group of cross country and biathlon athletes on a running treadmill, can reduce VO_{2max} due to lack of effort specificity, as illustrated by Losnegard et al. [26].
Cross-country skiing will represent a more important specific activity, unlike roller skiing and running. From the available data [27,28], motor-control is obtained through specific training, regardless of the sport. As a result, testing specificity will be of particular importance and if possible, further studies should measure the oxygen relative value by performing a specific cross country ski test, whereas improving the number of athletes and recovery systems, along cardio-pulmonary assessment, muscular fibre recruitment over medium- long term training.

Conclusion

Volume training, unlike early high intensity training, induces changes over the athletes’ exercise capacity. Specific roller skiing activities may have an important role in developing both specific strength and aerobic capacity. However, non-specific activities improved general aerobic capacity, while limiting the technical development of the athlete. Aerobic training will induce an improved relative oxygen consumption, while both aerobic and anaerobic training can impose a greater peak VO₂ value, when implement over the following 30–60 training days. Therefore our hypothesis is confirmed based on the current results which confirmed that anaerobic training improve short term VO₂max values, without a long term effect over both aerobic and anaerobic thresholds. Based on the current outcomes, 80% low aerobic, 15% high aerobic and 5% anaerobic volume facilitated an early effort capacity improvement in G, unlike G₁. Yet, relative oxygen consumption and anaerobic capacity will confirm the actual training capacity, through ventilation, relative oxygen consumption and ventilatory threshold assessment during specific or non-specific testing. Training periodization should sustain an appropriate balance between both volume and intensity training. However, an improved effort capacity should be further assess by using a specific method while using a larger study group.

Acknowledgment

To conduct the current research the authors used high-performance research equipment from the Centre for Advanced Medical and Pharmaceutical Research (CCAMF) - UMFST G.E. Palade Tg. Mures, Romania. Partial results of this paper are used in the first authors PhD thesis.

Conflicts of Interest

The authors declare no conflict of interest

References

1. Sandbakk Ø, Sandbakk SB, Ettema G, Wedde B (2013) Effects of intensity and duration in aerobic high-intensity interval training in highly trained junior cross-country skiers. J Strength Cond Res 27(7): 1974-1980.
2. Soll GJ, Tømmessen E, Sandbakk Ø (2017) The training characteristics of the world’s most successful female cross-country skier. Front Physiol 8: 1069.
3. Tømmessen E, Sylta Ø, Haugen TA, Hem E, Svendsen IS, et al. (2014) The road to gold: Training and peaking characteristics in the year prior to a gold medal endurance performance. PLoS One 9(7): e101796.
4. Hartmann H, Wirth K, Keiner M, Mickel C, Sander A, et al. (2015) Short-term Periodization Models: Effects on Strength and Speed-strength Performance. Sports Medicine 45(10): 1373-1386.
5. Sandbakk Ø, Holmberg HC (2017) Physiological capacity and training routines of elite cross-country skiers: Approaching the upper limits of human endurance. International Journal of Sports Physiology and Performance 12(8): 1003-1011.
6. Holmberg HC (2015) The elite cross-country skier provides unique insights into human exercise physiology. Scand J Med Sci Sport 25 Suppl 4: 100-109.
7. Hoogsteen J, Hoogveen A, Schaffers H, Wijn PFF, Van Der Wall EE (2003) Left atrial and ventricular dimensions in highly trained cyclists. Int J Cardiovasc Imaging 19(3): 211-217.
8. Sandbakk Ø, Ettema G, Holmberg HC (2014) Gender differences in endurance performance by elite cross-country skiers are influenced by the contribution from poling. Scand J Med Sci Sport 24(1): 28-33.
9. Nørvå G, Brown D, Godfrey R, Johnson PJ, Romer L, et al. (2003) Modeling maximum oxygen uptake of elite endurance athletes. Med Sci Sports Exerc 35(3): 488-494.
10. Guth LM, Roth SM (2013) Genetic influence on athletic performance. Curr Opin Pediatr 25(6): 653-658.
11. Holmberg HC, Calbet JAL (2007) Insufficient ventilation as a cause of impaired pulmonary gas exchange during submaximal exercise. Respir Physiol Neurobiol 157(2-3): 348-359.
12. Calbet JAL, González-Alonso J, Helge JW, Søndergaard H, Munch-Andersen T, et al. (2015) Central and peripheral hemodynamics in exercising humans: leg vs arm exercise. Scand J Med Sci Sports 25(5): 144-157.
13. Badawy MM, Misra PJ (2019) Cardio respiratory response: Validation of new modifications of Bruce protocol for exercise testing and training in elite Saudi triathlon and soccer players. Saudi J Biol Sci 26(1): 105-111.
14. Beaver WL, Wasserman K, Whipp BJ (2017) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60(6): 2020-2027.
15. Seiler S, Tømmessen E (2016) Intervals, Thresholds, and Long Slow Distance the Role of Intensity and Duration in Endurance Training. Sports Sci Rev 3: 52-53.
16. Starczewski M, Zmijewski P, Wittek K, Kusiewicz A (2019) Physiological Aspects of Different Roller Skiing Techniques in Field Conditions. J Hum Kinet 66: 111-120.
17. Stögg T, Müller E, Ainegren M, Holmberg HC (2011) General strength and kinetics: fundamental to sprinting faster in cross country skiing? Scand J Med Sci Sport 21(6): 791-803.
18. Stögg R, Müller E, Stögg T (2017) Do maximal roller skiing speed and double poling performance predict youth cross-country skiing performance? J Sports Sci Med 16(3): 383-390.
19. Stögg TL, Björklund G (2017) High intensity interval training leads to greater improvements in acute heart rate recovery and anaerobic power as high volume low intensity training. Front Physiol 8: 562.
20. Sandbakk Ø (2017) The evolution of champion cross-country-skier training: From lumbuckets to professional athletes. Int J Sports Physiol Perform 12(2): 254-259.
21. Seiler KS, Kjerland GØ (2006) Quantifying training intensity distribution in elite endurance athletes: Is there evidence for an “optimal” distribution? Scand J Med Sci Sport 16(1): 49-56.
22. Stögg TL, Sperlich B (2015) The training intensity distribution among well-trained and elite endurance athletes. Frontiers in Physiology 6: 295.
23. Patel H, Alkhawam H, Madanieh R, Shah N, Kosmas CE, et al. (2017) Aerobic vs anaerobic exercise training effects on the cardiovascular system. World J Cardiol 9(2): 134-138.
24. Ateş B, Çetin E (2017) Roller-Ski Aerobic High-Intensity Interval Training Improves the VO\textsubscript{2\text{max}} and Anaerobic Power in Cross-Country Skiers. Int J Appl Exerc Physiol 6(2): 27-33.

25. Holmberg HC, Rosdahl H, Svedenhag J (2007) Lung function, arterial saturation and oxygen uptake in elite cross country skiers: Influence of exercise mode. Scand J Med Sci Sport 17(4): 437-444.

26. Losnegard T, Hallén J (2014) Elite cross-country skiers do not reach their running VO\textsubscript{2\text{max}} during roller ski skating. J Sports Med Phys Fitness 54(4): 389-393.

27. Fuelscher IT, Ball K, MacMahon C (2012) Perspectives on learning styles in motor and sport skills. Frontiers in Psychology.

28. Stöggl R, Müller E, Stöggl T (2015) Motor abilities and anthropometrics in youth cross-country skiing. Scand J Med Sci Sport 25(1): e70-81.

ISSN: 2574-1241

DOI: 10.26717/BJSTR.2021.33.005375

Martin-Hadmaș Roxana Maria. Biomed J Sci & Tech Res

This work is licensed under Creative Commons Attribution 4.0 License

Submission Link: https://biomedres.us/submit-manuscript.php

Assets of Publishing with us

- Global archiving of articles
- Immediate, unrestricted online access
- Rigorous Peer Review Process
- Authors Retain Copyrights
- Unique DOI for all articles

https://biomedres.us/