Role of magnetic resonance cholangiopancreatography in diagnosing choledochal cysts: Case series and review

Vikas Y Sacher, James S Davis, Danny Sleeman, Javier Casillas

Abstract

AIM: To determine the merits of magnetic resonance cholangiopancreatography (MRCP) as the primary diagnostic test for choledochal cysts (CC's).

METHODS: Between 2009 and 2012, patients who underwent MRCP for perioperative diagnosis were identified. Demographic information, clinical characteristics, and radiographic findings were recorded. MRCP results were compared with intraoperative findings. A PubMed search identified studies published between 1996-2012, employing MRCP as the primary preoperative imaging and comparing results with either endoscopic retrograde cholangiopancreatography (ERCP) or operative findings. Detection rates for CC's and abnormal pancreaticobiliary junction (APBJ) were calculated. In addition detection rates for clinically related biliary pathology like choledocholithiasis and cholangiocarcinomas in patients diagnosed with CC's were also evaluated.

RESULTS: Eight patients were identified with CC's. Six patients out of them had type IV CC's, 1 had type I and 1 had a new variant of choledochal cyst with confluent dilatation of the common bile duct (CBD) and cystic duct. Seven patients had an APBJ and 3 of those had a long common-channel. Gallstones were found in 2 patients, 1 had a CBD stone, and 1 pancreatic-duct stone was also detected. In all cases, MRCP successfully identified the type of CC's, as well as APBJ with ductal stones. From analyzing the literature, we found that MRCP has 96%-100% detection rate for CC's. Additionally, we found that the range for sensitivity, specificity, and diagnostic accuracy was 53%-100%, 90%-100% and 56%-100% in diagnosing APBJ. MRCP's detection rate was 100% for choledocholithiasis and 87% for cholangiocarcinomas with concurrent CC's.

CONCLUSION: After initial ultrasound and computed tomography scan, MRCP should be the next diagnostic test in both adult and pediatric patients. ERCP should be reserved for patients where therapeutic intervention is needed.

© 2013 Baishideng. All rights reserved.

Key words: Magnetic resonance cholangiopancreatography; Choledochal cyst; Abnormal pancreaticobiliary junction; Diagnostic test; Choledocholithiasis; Cholangiocarcinomas

Core tip: Magnetic resonance cholangiopancreatography (MRCP) is used as primary diagnostic approach in various biliary pathologies. This is the first literature review of published studies discussing MRCP as a diagnostic modality for choledochal cysts. This review further outlines how recent imaging techniques have improved diagnostic accuracy of MRCP in diagnosing choledochal cysts and their associated anatomic variants. Advantages, disadvantages and contraindication for MRCP with respect to endoscopic retrograde cholangiopancreatography are also discussed.
Sacher VY, Davis JS, Sleeman D, Casillas J. Role of magnetic resonance cholangiopancreatography in diagnosing choledochal cysts: Case series and review. *World J Radiol* 2013; 5(8): 304-312

Available from: URL: http://www.wjgnet.com/1949-8470/full/v5/i8/304.htm DOI: http://dx.doi.org/10.4329/wjr.v5.i8.304

INTRODUCTION

Choledochal cysts (CCs) are congenital cystic, fusiform dilations of extrahepatic or intrahepatic bile ducts. The anatomy of choledochal cyst disease was first described by Vater[1], and Alonso-Lej et al[2] categorized three types of choledochal cysts. This was later modified by Todani to the five cyst categories that are in use today. Choledochal cysts estimated prevalence in Western countries varies between 1:100000-150000, although it is higher in Asia[3-5]. Choledochal cysts occur preferentially in females (75%-80%) and younger patients, with 80% of cases are diagnosed before the age of 10[6].

Choledochal cysts carry a long-term burden of morbidity and potential mortality. Choledocholithiasis, recurrent cholangitis, pancreatitis, biliary cirrhosis, biliary strictures, liver abscess, portal hypertension, pancreatic stones, cyst rupture, and portal aneurism, are all well-recognized complications[7]. A ductal anomaly with an unresected choledochal cyst remnant is believed to have a considerable risk for developing cholangiocarcinoma[8-14]. Therefore, the optimal treatment is total surgical excision and possible biliary diversion[15-17].

Operative intervention requires careful attention to anatomic detail. Choledochal cysts are frequently associated with anatomic variants, which have pathologic and surgical implications. Patients with an anomalous pancreaticobiliary junction (APBJ) are at increased risk for cholangiocarcinoma or gall bladder carcinoma[18-20]. Attendant stones within the biliary tree may further complicate resection and repair. Delineating precise anatomic detail enables surgeons to carefully plan their procedure while preventing complications.

Proper imaging plays an essential role in preoperative planning. Ultrasonography, computed tomography (CT) and radionuclide scintigraphy may be used initially for diagnosis. However, these techniques are inadequate for delineating the exact pathologic anatomy, APBJ and, duct stones, or concomitant carcinoma. Surgeons have traditionally turned to endoscopic retrograde cholangiopancreatography (ERCP) to visualize biliary anatomy in sufficient detail[16,17,22]. However, ERCP is not without risk, and known complications include cholangitis, duodenal perforation, hemorrhage, contrast allergy, biliary sepsis, and pancreatitis. In the past few years, magnetic resonance cholangiopancreatography (MRCP) has received increasing attention as a less invasive option.

This study presents our institution’s experience with choledochal cysts where MRCP was used as the major preoperative diagnostic approach. In addition, a literature review was performed on existing published studies. The purpose of this study is to determine whether MRCP may be used as the primary pre-operative imaging modality in patients with choledochal cysts.

MATERIALS AND METHODS

Patients

From January 2009 to July 2012, all patients at our institution in whom MRCP was used to diagnose and classify the choledochal cysts were identified. Demographic information, clinical characteristics, and imaging details, and operative reports were collected for each patient. MRCP results were compared with intraoperative findings. ERCP’s if done, were also included and compared to the MRCP results.

Imaging techniques

Four commercially available MR imagers were used (Siemens 1.5-T Magnetom (Avanto), Siemens Magnetom 1.5 T (Symphony), Siemens Magnetom 1.5 T (Sonata), and Siemens 3-T Magnetom (Trio)). MRCP imaging was performed using T2 weighted half-fourier acquisition single-shot turbo spin-echo (HASTE) sequences. Abnormal pancreaticobiliary ductal junction was diagnosed when the union between the common bile duct and pancreatic duct was located far from the duodenum and the length of common channel exceeded 15 mm in adults and more than 5 mm in pediatric patients.

All images were obtained using breath holding techniques except in one patient where non-breath-holding method (with respiratory triggering) was used. We obtained both sequential multislice imaging followed by maximum-intensity projection (MIP) reconstruction and single slice projection images.

Image review

The MRCP images were reviewed by a trained radiologist, with substantial experience reading MRCPs. The radiologist had no knowledge of the patients’ presentation or clinical data. Relevant findings included pancreaticobiliary junction, common channel, and pancreatic duct location, choledochal cyst type and characterization, and additional gallbladder pathology. All MRCP findings were compared with intraoperative and ERCP findings. However, secretin stimulation test was not performed at our center.

Literature review criteria

The English language literature was searched to identify relevant studies. PubMed, Google Scholar and Scopus, were searched using the keywords “MRCP” and “choledochal cyst”. Reference lists of all retrieved articles were further reviewed, and inclusion/exclusion criteria were applied to identify the potentially relevant studies. Studies were included that had a minimum of 5 patients in whom MRCP was used as a diagnostic tool and findings were compared to ERCP or surgery. Smaller case series were excluded, as is consistent with previously published
Table 1 Demographics, physical exam, abdominal ultrasound, computed tomography scan, magnetic resonance cholangiopancreatography, endoscopic retrograde cholangiopancreatography and intraoperative findings for each subject

Patient/age (yr)/sex	Abdominal pain RUQ/epigastric	Ultrasound	CT abdomen	MRCP	Intraoperative/ERCP results
1/16/F	Yes	Intrahepatic biliary dilatation, cystic mass from porta hepatis to pancreatic head	Type IV CC, positive APBJ	Type IV CC, positive APBJ	
2/6/F	Yes	Saccular dilatation of CBD	Dilated cystic structure in CBD, choledocholithiasis	Type IV CC, Long common channel, CBD stones	
3/74/F		Dilated cystic structure in CBD, choledocholithiasis	Dilated cystic structure in CBD, choledocholithiasis	Type IV CC, positive APBJ, choledolithiasis	
4/47/M	Yes	Dilated CBD	Dilated cystic structure in CBD, choledocholithiasis	Type IV CC, Long common channel	
5/30/F	Yes	Not done	Not done	Type IV CC, Long common channel	
6/69/M	Yes	Dilated CBD, distended gall bladder wall	Not done	Type IV CC, Long common channel	
7/58/M	Yes	Dilated CBD, distended gall bladder wall	New variant (dilated CBD and dilated cystic duct), long common channel	Type IV CC, positive APBJ, pancreatic duct stone, choledolithiasis	
8/49/M	Yes	Not done	Not done	Type IV CC, Long common channel	

F: Female; M: Male; RUQ: Right upper quadrant; CBD: Common bile duct; CT: Computerized tomography; MRCP: Magnetic resonance cholangiopancreatography; ERCP: Endoscopic retrograde cholangiopancreatography; CC: Choledochal cyst; APBJ: Abnormal pancreaticobiliary junction.

RESULTS

Eight patients from our institution were included in the initial part of the study. The patients ranged in age from 6 years to 74 years old, and 5 were females. Table 1 summarizes demographics, symptoms, initial imaging results, MRCP and subsequent surgical findings.

Types of choledochal cyst

Subsequently, the patients underwent MRCP as their primary preoperative diagnostic study. Six patients had type IV and 1 patient had type I according to the Todani classification scheme. One patient had a new variant of choledochal cyst with confluent dilatation of the CBD and cystic duct. In every case except for one, ultrasound (US) and CT findings were the same as those seen on MRCP. Patient 3 was found to have type I cyst on US, but was shown to have type IV on MRCP. All MRCP reads were confirmed intraoperatively.

APBJ

Seven of the patients had APBJ. Three patients had long common channel, while four were classified based on their acute angle of union. MRCP also detected gallbladder stones in 2 patients, a CBD stone in 1 patient and a pancreatic duct stone in one patient. All findings were later confirmed surgically except in a patient with choledocholithiasis where ERCP was also done (Figures 1-4).

Surgical techniques

Surgical resection of choledochal cysts was performed in all the patients. The types of resection were choledochal cyst excision with roux-en-y hepaticejejunostomy, cyst excision with Hutson-Russell loop, and hepatic segmentectomy and cholecystectomy with roux-en-y hepaticejejunostomy.

DISCUSSION

MRCP is a relatively recent addition to the surgeon’s diagnostic armamentarium. Initially, MRCP images were reported with gradient-echo balanced steady-state free precision technique to study biliary obstruction.

Subsequently, various sequences including fast spin-echo (FSE) pulse, rapid acquisition with rapid enhancement, HASTE and fast-recovery fast spin echo have been used to improve spatial resolution and hasten acquisition times. Breath-hold and non-breath-hold techniques were employed, as were two-dimensional (2D) and three-dimensional (3D) acquisition.

MRCP vs ERCP

Over the past decade, MRCP has started to replace ERCP as the diagnostic study of choice for a variety of biliary and pancreatic conditions. Specifically, MRCP has been reported to have similar diagnostic accuracy for extrahepatic biliary diseases such as choledocholithiasis and biliary malignancies. A similar trend is notable with respect to choledochal cysts. Initially, MRCP was extremely limited in its diagnostic accuracy and used sparingly in extremely cooperative patients. The advent of respiratory trigger and non-breath holding techniques...
gradually enabled MRCP use in less cooperative patients, especially children. Concurrently, rapid imaging techniques including HASTE/single-shot FSE/single-shot turbo spin echo (TSE) decreased image acquisition time to 2-5 s. Today, MRCP is utilized to study the biliary system in almost all populations.

ERCP is the definitive diagnostic method for evaluating choledochal cysts and ABPJ, but the procedure comes with inherent risks (Table 2). ERCP is invasive and requires sedation in all patients. For pediatric patients and those with low respiratory reserve, general anesthesia is required. Morbidity from ERCP ranges from 2%-8% in children and 1%-2% in adults, which rises to 10% when combined with sphincterotomy, and mortality estimates is estimated between 0.05%-0.90%. Cholangitis, duodenal perforation, hemorrhage, contrast allergy, biliary sepsis, and pancreatitis are all recognized complications. Even without untoward complications, complete pancreatico-biliary opacification fails in 5%-30% of patients. Incompletely visualizing the pancreaticobiliary duct union, or potentially missing a small CBD stone or cancer can impact operative intervention and results. Hence, the interest in the MRCP as a less invasive, less morbid diagnostic and preoperative modality has increased.

Table 2: Comparisons, relative disadvantages, and contraindications for magnetic resonance cholangiopancreatography, endoscopic retrograde cholangiopancreatography

MRCP	ERCP
Highlight any structure with static fluid	Requires opacification with injected contrast media
Noninvasive so safe esp. in children and pregnant patients	Invasive
Lower cost, faster	20% more expensive than MRCP
No sedation except in few patients	Sedation required
Delineate structures proximal to obstruction.	May fail in patients because of possible tight stricture
No therapeutic intervention	Therapeutic intervention possible
Does not use iodine-based compounds	Requires iodine-based compound usage
Disadvantages	Disadvantages
Duct images obscured by other fluid structures	Risk of pancreatitis
(renal cysts, ascites, pseudocyst)	Intraluminal bleeding
Image artifacts from stents, clips, etc.	Duodenal perforation
Contraindications	Contraindications
Claustrophobic patient	Patient with previous biliary or gastric surgery
Patients with ferromagnetic implants	Patients with high risk profile for general anesthesia

MRCP: Magnetic resonance cholangiopancreatography; ERCP: Endoscopic retrograde cholangiopancreatography.

Figure 1 Sixty-year-old female. A, B: Coronal and axial T2 weighted half-fourier acquisition single-shot turbo spin-echo images show a type IV Choledochal cyst; C: Thin-slice magnetic resonance cholangiopancreatography sequence demonstrates the anomalous union of pancreaticobiliary duct (arrow).

Figure 2 Forty-nine-year-old male. Maximum intensity projection reconstruction of thin-slice magnetic resonance cholangiopancreatography half-fourier acquisition single-shot turbo spin-echo images demonstrates a choledochal cyst type IV. Note the anomalous union of the pancreaticobiliary duct (black arrow) and the presence of a small stones in the pancreatic duct (arrows).

Literature review

A total of 19 published studies including our case-series on adult and pediatric patients met criteria for inclusion in the review. The study populations and methodologies did vary somewhat. While ten studies were devoted to children exclusively, nine case-series evaluated MRCP in all ages. Fourteen studies were retrospective, and five were prospectively designed. Since the studies spanned a 17-year period, the MRCP technology has evolved, and a range of image acquisition techniques were employed. However, all studies compared and rated MRCP findings...
Table 3 Ability of magnetic resonance cholangiopancreatography to determine the presence of choledochal cysts in previous studies

Ref.	Total No. of Pts.	Enrollment	Blinding	Total with CC	CC detected	Not detected
Hirobashi et al[53]	10	Retrospective	Not stated	5	5	0
Sugiyama et al[52]	11	Prospective	Unblinded	7	7	0
Chan et al[54]	11	Retrospective	Not stated	6	6	0
Irie et al[66]	16	Retrospective	Blinded	16	16	0
Maton et al[55]	8	Prospective	Blinded	8	8	0
Govil et al[56]	9	Retrospective	Not stated	9	9	0
Miyazaki et al[57]	6	Prospective	Blinded	6	6	0
Frampas et al[58]	5	Retrospective	Not stated	5	5	0
Shimizu et al[59]	16	Prospective	Blinded	7	7	0
Tang et al[60]	10	Prospective	Not stated	10	10	0
Kim et al[61]	20	Retrospective	Blinded	20	20	0
Park et al[62]	72	Retrospective	Blinded	72	69	3
Suzuki et al[43]	33	Retrospective	Blinded	32	32	0
Fitoz et al[63]	23	Retrospective	Blinded	5	5	0
Huang et al[64]	60	Retrospective	Unblinded	22	22	0
Saito et al[65]	16	Retrospective	Blinded	16	16	0
Michaelides et al[66]	6	Retrospective	Not stated	6	6	0
De Angelis et al[67]	28	Retrospective	Not stated	15	15	0
Sacher et al[68]	8	Retrospective	Blinded	8	8	0

1As determined by intraoperative/endoscopic retrograde cholangiopancreatography findings. CC detected: Choledochal cyst detected by magnetic resonance cholangiopancreatography.

Table 4 Ability of magnetic resonance cholangiopancreatography to determine the presence of an abnormal pancreaticobiliary junction in previous studies

Ref.	Patients with CC	True positives	True negatives	False positives	False negatives	MRI sequences
Hirobashi et al[53]	5	4	0	0	1	HASTE
Sugiyama et al[52]	7	5	0	0	2	HASTE
Chan et al[54]	6	0	4	0	2	2D TSE
Irie et al[66]	16	10	1	0	5	HASTE
Maton et al[55]	8	6	2	0	0	SSFSE
Miyazaki et al[57]	6	2	3	0	1	HASTE
Frampas et al[58]	5	1	4	0	0	HASTE
Shimizu et al[59]	7	6	0	2	0	HASTE
Tang et al[60]	10	6	2	0	2	HASTE
Kim et al[61]	20	12	3	0	5	SSFSE
Park et al[62]	72	34	28	3	7	HASTE
Suzuki et al[43]	32	16	2	0	14	HASTE
Fitoz et al[63]	5	1	4	0	0	SSFSE
Saito et al[65]	16	9	2	0	5	3D SSFSE
Sacher et al[68]	8	7	1	0	0	HASTE

CC: Choledochal cyst; MRI: Magnetic resonance imaging; HASTE: Half-fourier acquisition single-shot turbo spin-echo (Siemens); SSFSE: Single-shot fast spin echo (GE Medical systems); SSFSE: Single-shot turbo spin echo (Philips); 2D TSE: 2 dimensional turbo spin echo; 3D SSFSE: 3 dimensional single shot turbo spin echo.

with at least one more established diagnostic modality.

Detection rate for choledochal cyst

MRCP demonstrated excellent overall detection rate for choledochal cysts, albeit with some specific limitations. Out of 368 patients (age range 6 d-78 years old), the range for choledochal cyst detection rate was 96%-100% (Table 3). Of note, all 3 false negatives were reported in one study (73%) is likely due to its location near the ampulla, and perhaps because a small choledochocele may become evident only when contrast medium is injected under pressure. Kamisawa et al[68] also suggested the use of 3 dimensional MRCP and dynamic MRCP with secretin stimulation for congenital pancreaticobiliary malformations especially choledochocele.

APBJ detection

Our review also assessed MRCP's ability to detect APBJ in the setting of a choledochal cyst (Table 4). Fifteen studies provided information about APBJ detection, providing a total of 223 cases. MRCP diagnosis of APBJ yielded a sensitivity of 53%-100%, specificity of 90%-100%, and...
The overall diagnostic accuracy of 50%-100%. In contrast, ERCP has been reported with sensitivity and specificity > 90% for diagnosing APBJ. Possible explanations for these differences include the broad range of patient ages and heterogeneous imaging techniques used across studies. Choledochal cyst size and concurrent impacted stones may limit MRCP’s sensitivity. Furthermore, MRCP does not distend the bile ducts, leading to a suboptimal representation of the pancreaticobiliary junction. Newer imaging sequences, such as secretin-enhanced MRCP, 3D SSFSE, HASTE sequence, single-slice, and MIP images, all have increased diagnostic accuracy in adults and pediatric patients.

Choledocholithiasis and cholangiocarcinoma detection

Choledochal cysts and APBJ aside, we also evaluated MRCP’s ability to visualize clinically related biliary pathology in patients diagnosed with CC’s. MRCP detected choledocholithiasis in nearly all studies (Table 5), and 87% (13/15) of reported cholangiocarcinomas in this cohort. MRCP images are helpful when detecting cholangiocarcinomas because they display periductal anatomy, a critical element in surgical decision-making. Previous studies support using MRCP for this purpose. Irie et al. recommended MRCP axial plane images in detecting concurrent choledocholithiasis, especially in the common channel. Following cyst excision, MRCP may also play a role in surveillance for the subsequent development of cholangiocarcinoma.

This study is subject to certain limitations. First, the cases presented represent a small number of patients from our local institution, and they were treated according to our own practices and protocols. They may not represent other patients in other institutions. Moreover, some caution is necessary in interpreting findings from our literature review. The studies that were included span

Table 5 Ability of magnetic resonance cholangiopancreatography to detect choledocholithiasis in previous studies

Ref.	Choledocholithiasis detected by MRCP	Choledocholithiasis detected by all means
Hirohashi et al	4	4
Sugiyama et al	1	2
Irie et al	0	2
Matos et al	2	2
Govil et al	3	3
Frampaz et al	3	3
Kim et al	8	8
Park et al	8	8
Suzuki et al	10	13
Sacher et al	1	1

MRCP: Magnetic resonance cholangiopancreatography.

Figure 3 Seventy four-year-old female. Axial and coronal T2 weighted half-fourier acquisition single-shot turbo spin-echo images showing type IV choledochal cyst with multiple stones in the lumen.

Figure 4 Forty seven-year-old male. A, B: Coronal T2 weighted half-fourier acquisition single-shot turbo spin-echo image and thick-slice magnetic resonance cholangiopancreatography sequence; C: Maximum intensity projection reconstruction demonstrate a choledochal cyst type IV.
15 years, employing different designs, techniques, and gold standards as imaging and detection protocols have evolved. Due to those improvements, contemporary detection rates are possibly higher than what our cumulative data indicates.

In conclusion, our retrospective study and review of relevant literature suggest that MRCP is as effective as an initial pre-operative diagnostic study for choledochal cysts in adult and pediatric populations. In addition, MRCP is equivalent to ERCP in determining choledochal cyst type, and helpful in diagnosing related pancreaticobiliary anomalies, such as ABPJ, cholangiocarcinoma, and choledocholithiasis. Given its relatively moderate risk profile and lower cost, MRCP should be the diagnostic test of choice when pre-operatively evaluating choledochal cysts and their associated anomalies. But more evaluation needs to be done to assess the MRCP ability to detect APBJ and choledochocele. ERCP should be used when MRCP inadequately visualizes the terminal CBD or the pancreaticobiliary duct junction, or when a therapeutic procedure is anticipated.

Acknowledgments

The authors thank Miami CTSI and division of biostatistics in their assistance to prepare the Biostatistician review report for the manuscript.

Comments

Background

Choledochal cysts carry a long term morbidity and mortality. Choledochal cysts are frequently associated with various anatomic variants that carry considerable risk of complications such as cholangiocarcinoma. Therefore outlining these anatomic details are critical in order to help surgeons plan their operations and prevent complications.

Research frontiers

Various techniques like ultrasound, computed tomography, radionuclide scintigraphy and endoscopic retrograde cholangiopancreatography (ERCP) are used to visualize choledochal cyst and their anatomic variants. However magnetic resonance cholangiopancreatography (MRCP) has received increasing attention as the primary diagnostic study. This study presents our institution’s experience using MRCP to diagnose choledochal cysts. A literature review on the topic accompanies the results.

Innovations and breakthroughs

This is the first study which review the literature from past 16 years explaining MRCP as primary diagnostic approach in adult and pediatric patients for choledochal cysts. Authors report the advancement of MRCP with time. It shows how newer imaging techniques have improved diagnostic accuracy of MRCP.

Applications

MRCP being lower cost and noninvasive should be diagnostic test of choice used pre-operatively for choledochal cysts and their associated anomalies. ERCP should be used when MRCP inadequately visualizes the terminal common bile duct or the pancreaticobiliary junction or when a therapeutic procedure is needed.

Terminology

Half-fourier acquisition single-shot turbo spin-echo (HASTE) refers to a rapid magnetic resonance imaging protocol with an image acquisition time of 2-5 s. HASTE has increased the diagnostic accuracy of MRCP in both adult and pediatric patients.

Peer review

This article deals with new diagnostic approach for choledochal cysts. The results are interesting and suggest that after initial ultrasound and computed tomography scan, MRCP should be the next diagnostic test in both adult and pediatric patients. ERCP should be reserved for patients where therapeutic intervention is needed.

References

1. Vater A. Dissertation in auguralis medica, poes diss. Qua Scirris viscerum dissert, c.s. ezlerus. Edinburgh: University Library, 1723
2. Alonso-Lej F, Rever WB, Pessagno DJ. Congenital choledochal cyst, with a report of 2, and an analysis of 94, cases. Int Abstr Surg 1959; 108: 1-30 [PMID: 13625059]
3. de Vries JS, de Vries S, Aronsen DC, Bosman DK, Rauws EA, Bosma A, Heij HA, Gouma DJ, van Gulik TM. Choledochal cysts: age of presentation, symptoms, and late complications related to Todani’s classification. J Pediatr Surg 2002; 37: 1568-1573 [PMID: 12407541 DOI: 10.1053/jpsu.2002.36186]
4. Weyant MJ, Maluccio MA, Bertagnolli MM, Daly JM. Choledochal cysts in adults: a report of two cases and review of the literature. Am J Gastroenterol 1998; 93: 2580-2583 [PMID: 9860432 DOI: 10.1111/j.1572-0241.1998.00633.x]
5. Shian WJ, Wang YJ, Chi CS. Choledochal cysts: a nine-year review. Acta Paediatr 1993; 82: 383-386 [PMID: 8318807 DOI: 10.1111/j.1651-2227.1993.tb12072.x]
6. Swisher SG, Cates JA, Hunt KK, Robert ME, Bennion RS, Thompson JE, Roslyn JJ, Reber HA. Pancreatitis associated with adult choledochal cysts. Pancreas 1994; 9: 633-637 [PMID: 7890018]
7. Yamaguchi M. Congenital choledochal cyst. Analysis of 1,433 patients in the Japanese literature. Am J Surg 1980; 140: 653-657 [PMID: 6776832 DOI: 10.1016/0002-9440(80)90185-4]
8. Yoshida H, Itai Y, Minami M, Kubo T, Ohtomo K, Kuroda A. Biliary malignancies occurring in choledochal cysts. Radiology 1989; 173: 389-392 [PMID: 2678253]
9. Flanigan DP. Biliary carcinoma associated with biliary cysts. Cancer 1977; 40: 880-883 [PMID: 890668 DOI: 10.1002/1097-0142(197708)
10. Todani T, Tabuchi K, Watanabe Y, Kobayashi T. Carcinoma arising in the wall of congenital bile duct cysts. Cancer 1979; 44: 1134-1141 [PMID: 383269 DOI: 10.1002/1097-0142(197909)
11. Kimura K, Ohto M, Saisho H, Unozawa T, Tsuchiya Y, Morita M, Ebara M, Matsutani S, Okuda K. Association of gallbladder carcinoma and anomalous pancreaticobiliary ductal union. Gastroenterology 1985; 89: 1258-1265 [PMID: 4054181]
12. Kobayashi S, Asano T, Yamasaki M, Kenmochi T, Nakagohri T, Ochiai T. Risk of bile duct carcinoma after excision of extrabiliary bile ducts in pancreaticobiliary maljunction. Surgery 1999; 126: 939-944 [PMID: 10568195]
13. Watanabe Y, Toki A, Todani T. Bile duct cancer developed after cyst excision for choledochal cyst. J Hepatobiliary Pancreat Surg 1999; 6: 207-212 [PMID: 10526053]
14. Sandoh N, Shirai Y, Hatakeyama K. Incidence of anomalous union of the pancreaticobiliary ductal system in biliary cancer. Hepatogastroenterology 1997; 44: 1580-1583 [PMID: 9427026]
15. Saini H, Tam PK, Lee JM. Surgical management of choledochal cysts: a review of 60 cases. J Pediatr Surg 1985; 20: 443-448 [PMID: 4045673]
16. Chijiwa K, Koga A. Surgical management and long-term follow-up of patients with choledochal cysts. Am J Surg 1993; 165: 238-242 [PMID: 8427440]
17. Shi LB, Peng SY, Meng XK, Peng CH, Liu YB, Chen XP, Ji ZL, Yang DT, Chen HR. Diagnosis and treatment of congenital choledochal cyst: 20 years’ experience in China. World J Gastroenterol 2001; 7: 732-734 [PMID: 11819865]
18. Yamauchi S, Koga A, Matsumoto S, Tanaka M, Nakayama F. Anomalous junction of pancreaticobiliary duct without congenital choledochal cyst: a possible risk factor for gallbladder cancer. Am J Gastroenterol 1987; 82: 20-24 [PMID: 3799576]
Sacher VY et al. MRCP as primary diagnostic study for choledochal cyst biliary disease. *Ann Intern Med* 2003; 139: 547-557 [PMID: 14530225]

Griffin N, Waste ML, Dunn WK, Ryder SD, Beckingham IJ. Magnetic resonance cholangiopancreatography versus endoscopic retrograde cholangiopancreatography in the diagnosis of choledocholithiasis. *Eur J Gastroenterol Hepatol* 2003; 15: 809-813 [PMID: 12811312]

Bret PM, Reinhold C. Magnetic resonance cholangiopancreatography. *Endoscopy* 1997; 29: 472-486 [PMID: 9342565 DOI: 10.1055/s-2007-104252]

Park DH, Kim MH, Lee SS, Lee SK, Kim KP, Han JM, Kim SY, Song MH, Seo DW, Kim AV, Kim TK, Min YI. Accuracy of magnetic resonance cholangiopancreatography for locating hepatolithiasis and detecting accompanying biliary strictures. *Endoscopy* 2004; 36: 987-992 [PMID: 15520917 DOI: 10.1055/s-2004-825812]

Irie H, Honda H, Tajima T, Kuroiwa T, Yoshimitsu K, Makisumi K, Masuda K. Optimal MR cholangiopancreatographic sequence and its clinical application. *Radiology* 1998; 206: 379-387 [PMID: 9475195]

Chan YL, Chan AC, Lam WW, Lee DW, Chung SS, Sung JJ, Cheung HS, Li AK, Metreweli C. Choledocholithiasis: comparison of MR cholangiography and endoscopic retrograde cholangiography. *Radiology* 1996; 200: 85-89 [PMID: 8675949]

Soto JA, Barish MA, Yucel EK, Clarke P, Siegengberg D, Chuttani R, Ferrucci JT. Pancreatic duct: MR cholangiopancreatography with a three-dimensional fast spin-echo technique. *Radiology* 1995; 196: 439-446 [PMID: 7617861]

Lee MG, Lee HJ, Kim MH, Kang EM, Kim YH, Lee SG, Kim PN, Ha HK, Auh YH. Extrahepatic biliary diseases: 3D MR cholangiopancreatography compared with endoscopic retrograde cholangiopancreatography. *Radiology* 1997; 202: 663-669 [PMID: 9051013]

Miyazaki T, Yamashita Y, Tang Y, Tsugichage T, Takashima M, Sera Y. Single-shot MR cholangiopancreatography of neonates, infants, and young children. *AJR Am J Roentgenol* 1998; 170: 33-37 [PMID: 9423993]

Chan YL, Yeung CK, Lam WW, Fok TF, Metreweli C. Magnetic resonance cholangiography--feasibility and application in the paediatric population. *Pediatr Radiol* 1998; 28: 307-311 [PMID: 9569266]

van Heurn-Nijsten EW, Snoep G, Kootstra G, Greve JW, Forget P, van Heurn LW. Preoperative imaging of a choledochal cyst in children: non-breath-holding magnetic resonance cholangiopancreatography. *Pediatr Surg Int* 1999; 15: 546-549 [PMID: 10631766]

Schaefer JF, Kirschner HJ, Lichy M, Schlemmer HP, Schick F, Claussen CD, Fuchs J. Highly resolved free-breathing magnetic resonance cholangiopancreatography in the diagnostic workup of pancreaticobiliary diseases in infants and young children--initial experiences. *Pediatr Surg* 2006; 41: 1645-1651 [PMID: 17011262 DOI: 10.1016/j.jpedsurg.2006.05.052]

Hirohashi S, Hirohashi R, Uchida H, Akira M, Itoh T, Haku E, Ohishi H. Pancreatitis: evaluation with MR cholangiopancreatography in children. *Radiology* 1997; 203: 411-415 [PMID: 9114096]

Yamataka A, Kuwatsuru R, Shim aH, Kobayashi H, Lane G, Segawa O, Katayama H, Miyano H, Inada K. Initial experience with non-breath-hold magnetic resonance cholangiopancreatography: a new noninvasive technique for the diagnosis of choledochal cyst in children. *J Pediatr Surg* 1997; 32: 1560-1562 [PMID: 9396529 DOI: 10.1016/S0022-3468(97)00452-8]

Hekimoglu K, Ustundag Y, Dusak A, Erdem Z, Karademir B, Aydemir S, Gundogdu S. MRCP vs. ERCP in the evaluation of biliary pathologies: review of current literature. *J Dig Dis* 2008; 9: 162-169 [PMID: 18956595 DOI: 10.1111/j.1751-2980.2008.00339.x]

Alber JG, Riemann JF. ERCP and MRCP–when and why. *Best Pract Res Clin Gastroenterol* 2002; 16: 399-419 [PMID: 12079266 DOI: 10.1053/bega.2002.0315]
Sacher VY et al. MRCP as primary diagnostic study for choledochal cyst

51 Cheng CL, Fogel EL, Sherman S, McHenry L, Watkins JL, Croffie JM, Gupta SK, Fitzgerald JF, Lazzell-Fannell L, Schmidt S. Diagnostic and therapeutic endoscopic retrograde cholangiopancreatography in children: a large series report. J Pediatr Gastroenterol Nutr 2005; 41: 445-453 [PMID: 16205513]

52 Pfau PR, Chelimsky GG, Kinnard MF, Sivak MV, Wong RC, Isenberg GA, Gurumurthy P, Chak A. Endoscopic retrograde cholangiopancreatography in children and adolescents. J Pediatr Gastroenterol Nutr 2002; 35: 619-623 [PMID: 12454575]

53 Prasil P, Laberge JM, Barkun A, Flageole H. Endoscopic retrograde cholangiopancreatography in children: A surgeon’s retrospective. J Pediatr Surg 2001; 36: 733-735 [PMID: 11329577 DOI: 10.1053/jpsus.2001.22948]

54 Frampas E, Moussaly F, Léauté F, Heloury Y, Le Neel JC, Dupas B. [MR cholangiopancreatography in choledochal cysts]. J Radiol 1999; 80: 1659-1663 [PMID: 10642660 DOI: JR-12-1999-80-12-0221-0363-101019-ART4]

55 Park DH, Kim MH, Lee SK, Lee SS, Choi JS, Lee YS, Seo DW, Won HJ, Kim MY. MRCP can replace the diagnostic role of ERCP for patients with choledochal cysts. Gastrointest Endosc 2005; 62: 360-366 [PMID: 16111952 DOI: 10.1016/j.gie.2005.04.026]

56 Irie H, Honda H, Jimi M, Yokohata K, Chijiwa K, Kuroiwa T, Hanada K, Yoshimitsu K, Tajima T, Matsu S, Sita S, Masuda K. Value of MR cholangiopancreatography in evaluating choledochal cysts. AJR Am J Roentgenol 1998; 171: 138-1385 [PMID: 9798883]

57 Matos C, Nicole N, Deviere J, Cassart M, Metens T, Struyven J, Cremer M. Choledochal cysts: comparison of findings at MR cholangiopancreatography and endoscopic retrograde cholangiopancreatography in eight patients. Radiology 1998; 209: 443-448 [PMID: 9807571]

58 Govil S, Justus A, Korah I, Perakath A, Zachariah N, Sen S. Choledochal cysts: evaluation with MR cholangiography. Abdom Imaging 1998; 23: 616-619 [PMID: 9922196]

59 Shimizu T, Suzuki R, Yamashiro Y, Segawa O, Yamataka A, Kuwatsuru R. Magnetic resonance cholangiopancreatography in assessing the cause of acute pancreatitis in children. Pancreas 2001; 21: 196-199 [PMID: 11249076]

60 Kim MJ, Han SJ, Yoon CS, Kim JH, Oh JT, Chung KS, Yoo HS. Using MR cholangiopancreatography to reveal anomalous pancreaticobiliary ductal union in infants and children with choledochal cysts. AJR Am J Roentgenol 2002; 179: 209-214 [PMID: 12079398]

61 Suzuki M, Shimizu T, Kudo T, Suzuki R, Ohtsuka Y, Yamashiro R, Shimotakahara A, Yamataka A. Usefulness of non-breathhold 1-shot magnetic resonance cholangiopancreatography for the evaluation of choledochal cyst in children. J Pediatr Gastroenterol Nutr 2006; 42: 539-544 [PMID: 16709798]

62 Fitzo S, Erden A, Boruham S. Magnetic resonance cholangiopancreatography of biliary system abnormalities in children. Clin Imaging 2007; 31: 93-101 [PMID: 17320775 DOI: 10.1016/j.clinimag.2006.11.002]

63 Huang CT, Lee HC, Chen WT, Jiang CB, Shih SL, Yeung CY. Usefulness of magnetic resonance cholangiopancreatography in pancreato-biliary abnormalities in pediatric patients. Pediatr Neonatol 2011; 52: 332-336 [PMID: 22192261 DOI: 10.1016/j.pedneo.2011.08.006]

64 Saito T, Hishiki T, Terui K, Sato Y, Mitsunaga T, Terui E, Nakata M, Takenouchi A, Matsuura G, Yahata E, Ohno S, Sato H, Yanagawa N, Masuda Y, Yoshida H. Use of preoperative, 3-dimensional magnetic resonance cholangiopancreato- graphy in pediatric choledochal cysts. Surgery 2011; 149: 569-575 [PMID: 21234453 DOI: 10.1016/j.surg.2010.11.004]

65 Michaelides M, Dimarelos V, Kostantinou D, Bintoudi A, Tzikos F, Kyriakou V, Rodokalakis G, Tsitouridis I. A new variant of Todani type 1 choledochal cyst. Imaging evaluation. Hippokratia 2011; 15: 174-177 [PMID: 22110303]

66 De Angelis P, Foschia F, Romeo E, Caldarro T, Rea F, Di Abrilola GF, Caccamo R, Santì MR, Torroni F, Monti L, Dell’Oglio L. Role of endoscopic retrograde cholangiopancreatography in diagnosis and management of congenital choledochal cysts: 28 pediatric cases. J Pediatr Surg 2012; 47: 885-888 [PMID: 22595566 DOI: 10.1016/j.jpedsurg.2012.01.040]

67 Kim MH, Myung SJ, Lee SK, Yoo BM, Seo DW, Lee MH, Jung SA, Kim YS, Min YI. Ballooning of the papilla during contrast injection: the semaphore of a choledochocele. Gastrointest Endosc 1998; 48: 258-262 [PMID: 9746400]

68 Kamisawa T, Tu Y, Egawa N, Tsuruta K, Okamoto A, Kamata N. MRCP of congenital pancreaticobiliary malformation. Abdom Imaging 2007; 32: 129-133 [PMID: 16680507]

69 Fulcher AS, Turner MA. Pitfalls of MR cholangiopancreato- graphy (MRCP). J Comput Assist Tomogr 1998; 22: 845-850 [PMID: 9843219]

70 Hosoki T, Hasuike Y, Takeda Y, Michita T, Watanabe Y, Sakamori R, Tokuda Y, Yutani K, Sai C, Mitomo M. Visualization of pancreaticobiliary reflux in anomalous pancreatico- biliary junction by secretin-stimulated dynamic magnetic resonance cholangiopancreatography. Acta Radiol 2004; 45: 375-382 [PMID: 15323388]

71 Ernst O, Calvo M, Sergent G, Mizzahl D, Carpentier F. Breath-hold MR cholangiopancreatography using a HASTE sequence: comparison of single-slice and multislice acquisition techniques. AJR Am J Roentgenol 1997; 169: 1304-1306 [PMID: 9353446]

72 Coakley FV, Quyyum A. Magnetic resonance cholangio- pancreatography. Gastrointest Endosc 2002; 55: 52-12 [PMID: 12024115]

73 Becker CD, Grossholz M, Becker M, Mentha G, de Peyer R, Terrier F. Choledocholithiasis and bile duct stenosis: diagnostic accuracy of MR cholangiopancreatography. Radiology 1997; 205: 523-530 [PMID: 9356699]

74 Young WT, Thomas GV, Blethen AJ, Lawrie BW. Choledochal cyst and congenital anomalies of the pancreatico- biliary junction: the clinical findings, radiology and outcome in nine cases. Br J Radiol 1992; 65: 33-38 [PMID: 13366994]

75 Chaudhuri PK, Chaudhuri B, Schuler JJ, Nyhus LM. Carcinoma associated with congenital cystic dilation of bile ducts. Arch Surg 1982; 117: 1349-1351 [PMID: 7125900 DOI: 10.1001/archsurg.1982.01380340067016]

76 Hamada Y, Tanano A, Takada K, Watanabe K, Tokuhara K, Sato M. Magnetic resonance cholangiopancreatography on postoperative work-up in children with choledochal cysts. Pediatr Surg Int 2004; 20: 43-46 [PMID: 14689215]

77 Tang Y, Yamashita Y, Abe Y, Namimoto T, Tsuchigame T, Takahashi M. Congenital anomalies of the pancreaticobiliary tract: findings on MR cholangiopancreatography (MRCP) using half-Fourier-acquisition single-shot turbo spin-echo sequence (HASTE). Comput Med Imaging Graph 2001; 25: 423-431 [PMID: 11390197 DOI: 10.1016/s0895-6111(00)00707-7]

P- Reviewer Kim GJ S- Editor Gou SX L- Editor A E- Editor Liu XM
