Assessment of Metabolic Adaptations in Periparturient Dairy Cows Provided 3-Nitrooxypropanol and Varying Concentrate Proportions by Using the GreenFeed System for Indirect Calorimetry, Biochemical Blood Parameters and Ultrasonography of Adipose Tissues

Matthias Schilde 1,* , Dirk von Soosten 1, Jana Frahm 1, Susanne Kersten 1, Ulrich Meyer 1, Annette Zeyner 2 and Sven Dänicke 1

1 Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; Dirk.von_Soosten@fli.de (D.v.S.); Jana.Frahm@fli.de (J.F.); Susanne.Kersten@fli.de (S.K.); Ulrich.Meyer@fli.de (U.M.); Sven.Daenicke@fli.de (S.D.)
2 Institute of Animal Nutrition, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; annette.zeyner@landw.uni-halle.de
* Correspondence: Matthias.Schilde@fli.de; Tel.: +49-531-58044-153

Abstract: Methanogenesis in ruminants contributes to both greenhouse gas emissions and feed energy losses whereby the latter becomes specifically important in energy-deficient periparturient cows. It was hypothesized that increased concentrate feed proportions (CFP) and feeding with the methane inhibitor 3-nitrooxypropanol (3-NOP), as well as their potential synergism, improve the energy status of peripartal cows. Periparturient dairy cows were fed low or high dietary CFP either tested without or combined with 3-NOP. The GreenFeed system was used to calculate the metabolic respiration quotient (RQmetabolic) and tissue energy retention (ERTissue) by methods of indirect calorimetry. The calorimetrically estimated ERTissue coincided with a conventionally calculated energy balance except for the antepartal period. Neither CFP nor 3-NOP affected the ultrasonographically assessed lipomobilization in adipose depots. In the group fed 3-NOP and a high concentrate feed proportion, the RQmetabolic significantly rose over the course of the experiment and the ERTissue was also increased. Serum non-esterified fatty acid concentrations were lower in the 3-NOP groups albeit β-hydroxybutyrate (BHB) remained unaffected. Higher CFP reduced BHB and increased blood glucose levels. In conclusion, 3-NOP and high CFP improved the energy budget of the cows in an interactive manner, which was, however, not apparent in all of the examined parameters. The application of the GreenFeed system for indirect calorimetry is a promising approach, which needs further validation in the future.

Keywords: dairy cows; methane production; 3-nitrooxypropanol; GreenFeed; indirect calorimetry; energy metabolism

1. Introduction

In ruminants, feed is mainly converted to volatile fatty acids (VFA) by the rumen microbiota, thereby yielding hydrogen (H2) and carbon-dioxide (CO2), which are redirected to methane (CH4) formation in methanogenic archaea [1]. 3-nitrooxypropanol (3-NOP), a structural analogue of methyl-coenzyme M, is currently supposed to be one of the most potent CH4 inhibitors in cattle [2,3]. The CH4-mitigating effect of 3-NOP potentially amounts to 39.0 ± 5.40% in dairy cows [4] but ranges widely from 7 [5] to 60% [6] depending on the provided ration type (neutral-detergent fibre (NDF) content), administration technique (mixing in with the total-mixed ration (TMR), infusion, pulse-dose) and dosage level [4].
Besides the ecological benefits of reducing greenhouse gas emissions from ruminant livestock [7], CH₄ mitigation is assumed to improve feed energy efficiency as up to 12% of the gross energy intake (GEI) can be lost by methanogenesis in the bovine rumen [8]. Furthermore, both increased dietary concentrate feed proportion (CFP) [9] and 3-NOP [4] were observed to shift rumen fermentation to H₂-consuming propionic-metabolic typed pathways [4,9] which could increase the hepatic supply of glucogenic precursors [10], with this being specifically advantageous in periparturient cows. Hence, transitional dairy cows metabolically adapt to the negative energy balance (EB), which is the disparity between energy intake and requirements for maintenance and lactogenesis, by induction of an accelerated lipolysis in adipose tissue (AT) depots [11]. Subsequently, the massive hepatic influx of non-esterified fatty acids (NEFA) risks a metabolic overload of the hepatic capacity for NEFA oxidation, which results in increased ketone body synthesis and predisposition of the cow to hyperketonaemia and hepatic lipidosis [11,12].

Reynolds et al. [5] identified a decreased total EB and increased heat production (HP) when energy metabolism was expressed as a percentage of digested energy in dairy cows supplemented with 2500 mg of 3-NOP per day. In contrast, van Gastelen et al. [13] reported that HP and energy retention in body fat and protein remained unaffected in 16 early-lactation dairy cows supplemented with 51 mg of 3-NOP/kg dry matter (DM). Correspondingly, energy allocation to body weight gain (BWG), representing a positive EB at the tissue level, was observed to be either increased [2,13] or not affected in 3-NOP-fed dairy cows, as reported by Haisan et al. [14] and in the accompanying manuscript [15]. 3-NOP was comprehensively reported to exert no influence on energy expenditure (EE) for milk production [16] even though varying 3-NOP effects on milk composition were published [13,16,17]. However, the effects on milk ingredients were attributed to the aforementioned 3-NOP-induced shift in the rumen fermentation pattern toward a decreased acetate–propionate ratio [18] rather than being associated with alterations in post-ruminal energy metabolism [17]. Accordingly, excessive accumulation of NEFA and ß-hydroxybutyrate (BHB) in blood, being indicative of a severe negative EB [19], were not affected in early- [20] and mid-lactating [14] 3-NOP-supplemented cows.

However, there is a gap in the knowledge of the energy turnover at the tissue level and intermediary pools of correspondingly regulated blood metabolites in cows provided varying CFP combined with 3-NOP in their rations during the periparturient period. Gas exchange measurements of CO₂ production and O₂ consumption in dairy cows are commonly measured in the respiration chamber (RC), which is often referred to as the ‘gold-standard’ technique. These gas measurements allow for an indirect calorimetric estimation of the HP and the total (RQ_{total}) and metabolic (rumen fermentation corrected) respiration quotient (RQ_{metabolic}). The RQ_{total} mirrors the whole animal metabolism including feed nutrient degradation in the rumen, whereby the RQ_{metabolic} rather reflects the intermediary oxidation of specific macronutrients and, therefore, dynamics in physiological and nutritional adaptations [21]. Accordingly, RQ_{metabolic} values of 1.0 mirror a prevailing carbohydrate oxidation whereas those of fat oxidation and deposition amount to 0.71 and above 1.0, respectively. Protein oxidation is associated with RQ_{metabolic} values of 0.81 [22]. However, the costly gas quantification in RC restricts the cow’s normal behaviour and only allows the measurement of small animal numbers over short-term periods [23]. Therefore, the present approach aimed to use spot gas flux measurements of CH₄, CO₂ and O₂ from the open-circuit GreenFeed (GF) system (C-Lock Inc., Rapid City, SD, USA) for the indirect calorimetric estimation of EE for maintenance, production and energy retention in body tissues (ER_{tissue}) in periparturient dairy cows provided 3-NOP and varying CFP in the ration. This assessment of cow energetics was accompanied by an ultrasonic-based estimation of lipomobilization from AT depots in concert with frequent blood sampling for analyses of energy-related metabolites.

It was hypothesized that increased glucogenic propionate [15] and energy spared from methanogenesis due to feeding 3-NOP in combination with high CFP caused a surplus of energy being utilized to cope with the negative EB in periparturient dairy cows, which was
reflected by the decreased lipomobilization from AT depots and serum concentrations of NEFA and BHB.

2. Materials and Methods

The experiment was carried out at the experimental station of the Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI) in Brunswick, Germany in accordance with the German Animal Welfare Act and approved by the LAVES (Lower Saxony State Office for Consumer Protection and Food Safety, Oldenburg, Germany) (33.19-42502-04-15/1858).

2.1. Experimental Design

The presented investigations are part of a comprehensive experiment: the fundamental experimental design, CH$_4$ and CO$_2$ emissions, dry matter intake (DMI), rumen VFA, BW measures, EB according to the ‘Gesellschaft für Ernährungsphysiologie’ (GFE) [24] (EB$_{GFE}$), milk performance parameters and feed efficiency are presented in Schilde et al. [15]. During the present experiment, 55 pluriparous German Holstein cows were assigned to four groups according to a 2 × 2-factorial design. In this context, treatments of low (LC) or high (HC) CFP were tested without supplements (CONLC ($n=14$), CONHC ($n=15$)), or combined with 3-NOP (DSM Nutritional Products AG, Kaiseraugst, Switzerland) (NOPLC, 48.4 mg/kg dry matter (DM) ($n=14$); NOPHC, 51.2 mg 3-NOP/kg DM ($n=12$)) in the ration from d 28 ante-partum (a.p.) until d 120 post-partum (p.p.). The whole experimental period (d 28 a.p. until d 120 p.p.) was split into three periods, namely the ante-partum (Per 1: d 28 a.p. until parturition) and post-partum (Per 2: d 1 until d 28 p.p.) phase of the transition period and the early-lactation period (Per 3: d 29 until d 120 p.p.) in order to compare metabolic and respiratory changes assessed by indirect calorimetry with energy expenditures and supply between the different periods. The experimental groups were balanced for calculated date of calving, 4% fat-corrected milk yield (FCM) in their previous lactation (6207 ± 1248 kg; mean ± SD), body condition score six weeks ante-partum (a.p.) (3.3 ± 0.4) and number of lactations (3.0 ± 1.1). The cows were housed in a free stall barn with high bed cubicles and slatted floor. Three cows out of the initial 58 did not complete the trial (two cases of abomasal displacement and one case of necrotising endometritis in the NOPLC group). Ten out of the 55 cows were cannulated (three cows in each of the 3-NOP and two cows in each of the CON groups). During the a.p. period (d 28 a.p. until d 120 p.p.) was split into three periods, namely the ante-partum (Per 1: d 28 a.p. until parturition) and post-partum (Per 2: d 1 until d 28 p.p.) phase of the transition period and the early-lactation period (Per 3: d 29 until d 120 p.p.) in order to compare metabolic and respiratory changes assessed by indirect calorimetry with energy expenditures and supply between the different periods. The experimental groups were balanced for calculated date of calving, 4% fat-corrected milk yield (FCM) in their previous lactation (6207 ± 1248 kg; mean ± SD), body condition score six weeks ante-partum (a.p.) (3.3 ± 0.4) and number of lactations (3.0 ± 1.1). The cows were housed in a free stall barn with high bed cubicles and slatted floor. Three cows out of the initial 58 did not complete the trial (two cases of abomasal displacement and one case of necrotising endometritis in the NOPLC group). Ten out of the 55 cows were cannulated (three cows in each of the 3-NOP and two cows in each of the CON groups). During the a.p. period, CFP amounted to 15% for LC and 40% for HC groups. Starting from the day of parturition until d 21 p.p., a gradual increase in CFP from 30 to 55%, where it remained until the end of the experiment, was scheduled in HC groups. In LC groups, CFP was fixed at 30% from the day of parturition until termination of the trial. The target CFP was administered by computerized self-feeding stations.

Cows were offered a partial mixed ration (PMR) for ad libitum intake in weighing troughs (type RIC, Insentec B.V., Marknesse, the Netherlands) which was composed of 70% maize silage, 20% grass silage and 10% of a pelleted concentrate including either 3-NOP or the placebo (DM basis). Further 3-NOP compound was incorporated into pelleted concentrates, which was provided by the concentrate feeders to adjust the aforementioned 3-NOP target concentration. This two-way method of supplementing concentrate pellets, including 3-NOP via mixing with the PMR and the concentrate feeders, facilitated the regulation of 3-NOP target consumption and the 3-NOP supply synchronously to the meal event [15]. The CONLC and CONHC groups received a placebo in the concentrate feed pellets that contained propylene glycol, with SiO$_2$ also being part of the 3-NOP supplement.

2.2. Sample Collection

The DMI of the PMR and concentrates was continuously monitored by the computerized weighing troughs and concentrate feeders. Concentrates and PMR were sampled once and twice a week and pooled to collective samples of four-week periods, respectively.

 Continuously from d 28 a.p. until d 120 p.p., gas samples were collected from the exhaust air pipe to measure gas mass fluxes (g/d) of O$_2$ consumption and CH$_4$ and
CO₂ emissions using the GF system (C-Lock Inc., Rapid City, SD, USA) as described previously [15].

Rectal temperature was measured each time before blood sampling. Blood samples were taken by puncturing a Vena jugularis externa at d 28, 14, 7, 3 a.p. and d 1, 3, 7, 14, 21, 28, 35, 49, 73, 98, and 120 p.p. after morning milking using heparinized sample syringes (Werfen GmbH, Kirchheim, Germany) and serum tubes. Serum tubes were allowed to clot for 30 min at 303 K, were subsequently centrifuged (Heraeus Varifuge 3.0R Heraeus Instruments GmbH, Hanau, Germany; 2125 × g, 288 K, 15 min), and separated serum was stored at −80 °C until further analyses were conducted.

According to Raschka et al. [25], ultrasonic measurements (UM) of fat layer thickness in millimetres were conducted in duplicate at the seven topographic points on the right side of the cow at d 3 and 28 p.p. with the use of a Mindray M5 Vet (Mindray, Shenzhen, China) diagnostic ultrasound system equipped with a linear (6 MHz, Mindray 6LE5Vs) and a convex probe (3 MHz, Mindray 3C5s). The description of the seven topographic measurement points was detailed in Schäfers et al. [26].

2.3. Analyses

Samples of concentrates and PMR components were dried for 72 h at 55 °C, ground to pass a 1-mm screen (SM 1, Retsch GmbH, Haan, Germany) and analysed for chemical composition according to the standard methods published by the Association of German Agricultural Analysis and Research Centers [27]. The chemical composition of the experimental diets is illustrated in Table 1. The 3-NOP contents in concentrate feed samples were analysed by DSM Nutritional Products AG, Kaiseraugst, Switzerland.

Table 1. Chemical composition, peNDF and energy (means) of the total rations offered during the experimental period from d 28 ante-partum until d 120 post-partum (reproduced from and with permission from Schilde et al. [15] at Taylor & Francis Group [https://www.tandfonline.com/] © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group [https://www.tandfonline.com/] under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License [https://creativecommons.org/licenses/by-nc-nd/4.0/], which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

Item	CON †	3-NOP §
DM † (g/kg)	467	597
Nutrient (g/kg of DM)	582	
Crude ash	63	61
Crude protein	130	140
Utilizable crude protein	142	151
Ether extract	32	36
aNDF₀₉₈₉₀ †	402	337
Acid detergent fibre₀₉₈₉₀ #	226	187
Starch	249	307
Sugar	17	27
Energy § (MJ/kg of DM)		
GE	18.4	18.4
ME	11.0	11.5
NE₃	6.6	6.6

† Control (CON) groups were provided a placebo and low (LC) or high (HC) concentrate feed proportion in the ration. § 3-nitrooxypropanol (3-NOP) groups were supplemented with 48.4 and 51.2 mg of 3-NOP/kg of DM and LC and HC in the ration. † DM, dry matter. † aNDF₀₉₈₉₀, α-amylase treated neutral detergent fibre without residual ash. # peNDF₀₉₈₉₀, physically effective NDF in the partial mixed ration defined as the proportion of DM retained by a 8-mm screen multiplied by the dietary NDF content [28]. § Calculations for concentrates based on table values according to DLG [29], silages according to VDLUFA [27] analyses and GE calculated according to GfE [30].
Gas samples and background gases were analysed by the already installed GF sensors. CH\textsubscript{4} and CO\textsubscript{2} concentrations were analysed by non-dispersive infrared absorption sensors and O\textsubscript{2} was analysed using a paramagnetic sensor. Sensor calibration was performed automatically on a daily basis using a zero (O\textsubscript{2} = 200,000 mg/kg, N\textsubscript{2} = 800,000 mg/kg) and a span gas (CH\textsubscript{4} = 1004 mg/kg, CO\textsubscript{2} = 10,000 mg/kg, O\textsubscript{2} = 210,000 mg/kg, H\textsubscript{2}S = 9.80 mg/kg, while the remainder of the gas was nitrogen). The air velocity in the pipe was measured by an anemometer to determine total mass flow of all gases. CO\textsubscript{2} recovery tests were conducted once a month (recovery rate ± SD: 101% ± 5.7). The amount of bait feed delivered per feed drop was calibrated on a weekly basis.

Serum samples were photometrically analysed (Indiko Plus, Thermo Scientific GmbH, Dreieich, Germany) for concentrations of BHB, NEFA, triacylglycerides (TAG) and glucose. An automated blood gas and electrolyte analyser (GEM Premier 4000, Werfen GmbH, Kirchheim, Germany) was used to determine the temperature-corrected pH, hydrogen carbonate ions, haemoglobin and lactate concentrations immediately after sample collection.

2.4. Calculation of Energy Metabolism Parameters by Indirect Calorimetry and Ultrasonography

Processing and validation of gas exchange data were conducted by C-Lock Inc. Gas measurements were converted from g/d to L/d according to the gas density of 0.717 kg/m3 for CH\textsubscript{4}, 1.977 kg/m3 for CO\textsubscript{2} and 1.729 g/m3 for O\textsubscript{2} under standard conditions (1013.25 hPa). The cow’s visiting time and head position in the GF were used to check for data plausibility [31]. Daily means of GF data were averaged to weekly means using the previously described arithmetic averaging method [32]. Due to technical reasons, O\textsubscript{2} consumption in CON groups was estimated from weekly means of CO\textsubscript{2} production and DMI using the following regression equation:

\[O_2 \text{ (g/d)} = 2056 - 72.5 \times \text{dry matter intake (kg/d)} + 0.62 \times \text{CO}_2 \text{ (g/d)} \] \hspace{1cm} (1)

with \(R^2 = 0.90 \) and a residual standard error (RSE) of 371 g/d on 337 degrees of freedom.

In ruminants, total CO\textsubscript{2} production (VCO\textsubscript{2}) is the sum of fermentative (VCO\textsubscript{2fermentative}) and metabolic (VCO\textsubscript{2metabolic}) CO\textsubscript{2} derived from microbial fermentation in the rumen and the intermediary metabolism, respectively [33]. A differentiation between the two is essential in order to refer to the intermediary substrate oxidation [34]. As proposed by Chwalibog et al. [33], VCO\textsubscript{2fermentative} was calculated by applying the stoichiometrically derived factor of 1.7, which was confirmed to be applicable for a variety of ration compositions [35].

\[\text{VCO}_{2fermentative} \text{ (L/d)} \text{=} 1.7 \times \text{VCH}_4 \text{ (L/d)} \] \hspace{1cm} (2)

Then, VCO\textsubscript{2fermentative} was subtracted from VCO\textsubscript{2} to obtain VCO\textsubscript{2metabolic}, which was used to calculate the RQ\textsubscript{metabolic} mirroring the intermediary oxidation of the macronutrients of carbohydrates, fat and protein [36]:

\[\text{RQ}_{metabolic} = \text{VCO}_{2metabolic} \text{ (L/d)} \div \text{VO}_2 \text{ (L/d)} \] \hspace{1cm} (3)

The total RQ (RQ\textsubscript{total} = total VCO\textsubscript{2} production (L/d) \div VO\textsubscript{2} consumption (L/d)) reflected the cow’s nutritional plane. Gross energy (GE) content of the feedstuffs was calculated according to GfE [24]. The metabolizable energy (ME) content of the concentrates was derived from tabular values according to DLG [29] and that of silages was derived according to VDLUFA [27] analyses.

HP was quantified according to the Brouwer [22] formula:

\[\text{HP (kJ)} = 16.18 \times \text{VO}_2 \text{ (L/d)} + 5.02 \times \text{VCO}_2 \text{ (L/d)} - 2.17 \times \text{VCH}_4 \text{ (L/d)} - 5.99 \times N_U \text{ (g/d)}, \] \hspace{1cm} (4)

whereby urinary nitrogen excretion (N\textsubscript{U}) was set to 50 g/d [37] even though the real N\textsubscript{U} in dairy cows varies between 75 and 150 g/d [38]. However, the N\textsubscript{U} contribution to HP is negligible and an error of about 0.3% in the absolute HP values was accepted [39].
Methane energy (CH₄; MJ/d) was derived from the multiplication of the energy equivalent value of 39.54 kJ/L of CH₄ [22] and the daily CH₄ production (L/d).

The partitioning of EE for energy retention (ER) was computed as follows:

- ER in body tissues and milk (ER_total; MJ/d) = ME intake − HP
- ER in body tissues (ER_tissue; MJ/d) = ME intake − HP − ME_E − NE_P

Analyses and calculations of milk energy excretion (ME_E; MJ/d) according to GfE [24] were used from Schilde et al. [15]. Net energy demand for pregnancy (NE_P; MJ/d) was averaged for period 1 according to constants proposed by GfE [24] with 13 MJ NE_L/d for week 4 a.p. and 18 MJ NE_L/d for week 3 a.p. until calving resulting in an average of 17 MJ NE_L/d for period 1. The EB_GFE data were extracted from Schilde et al. [15] in which EB_GFE was calculated according to GfE [24].

The residual ER in body protein and intramuscular fat was assessed as:

- ER_residual (MJ/d) = ER_tissue − ER_fat_depot

ER_fat_depot was calculated from UM as described in the following:

- ER_fat_depot (MJ/d) = daily mobilized fat depot masses (kg/d) × 39.8 (MJ/kg) × 0.84

The daily mobilization of fat depot masses from each AT depot was described by the difference in AT masses between d 3 p.p. and d 28 p.p. divided by the number of days. The energy release from mobilized fat depots being used for milk production was calculated based on the assumption that 1 g of body fat corresponds to 39.8 kJ of GE [22], whereby 16% is lost as heat energy when body tissue energy is used for milk synthesis [40].

Depot masses of each AT, namely the retroperitoneal (RAT), mesenteric (MAT) and omental (OAT), collectively referred as the visceral AT (VAT), and the subcutaneous AT (SAT) were estimated in kg from ultrasonographically measured distances of the different sites as described in Schäfers et al. [26] according to the following regression equations established by Raschka et al. [25]:

- SAT = −6.66 + 0.72 × R12 + 0.31 × AW3c
- RAT = −9.55 + 0.62 × R12 + 0.06 × KD3b
- OAT = −2.32 + 0.55 × BFT + 0.37 × AW3b
- MAT = −12.8 + 0.38 × AW1b + 1.73 × AW3b − 1.45 × AW3c + 0.07 × KD2c
- VAT = RAT + OAT + MAT

The efficiency of utilization of ME for lactation (k_l) was calculated according to AFRC [41]:

\[k_l = (\text{ME}_E + a \times \text{ER}_{\text{tissue}}) / (\text{ME \text{intake}} - \text{ME}_m), \]

where ME_E is adjusted to zero energy balance with a coefficient of a = 0.84 for negative ER_tissue or a = 1/0.95 for positive ER_tissue. ER_tissue is the energy balance obtained by indirect calorimetry using the GreenFeed system. The maintenance requirement (ME_m) was estimated using the equation from GfE [24]:

\[\text{ME}_m (\text{MJ/d}) = 0.488 \times \text{BW}^{0.75} (\text{kg}), \]

where BW^{0.75} is the metabolic body weight.

2.5. Statistical Analyses

Prior to statistical evaluation, means were calculated per cow and week for variables used in indirect calorimetry. A.p. blood samples were retrospectively assigned to the actual
day relative to parturition by tolerating a deviation of 24 h for the d\(^{-3}\) sample and a deviation of 2 days for the d\(^{-7}\) and d\(^{-14}\) samples. Due to gas leakage through the fistula, cannulated cows were excluded from statistics except for blood and ultrasonic variables. The statistical analyses were conducted using the SAS software package (version 9.4; SAS Institute Inc., Cary, NC, USA) and a repeated measures mixed model (PROC MIXED) fitted by a restricted maximum likelihood \([42]\). The sequence of day, week of sampling or period (PER) was a repeated measure. 3-NOP, CFP, time relative to parturition and the interaction between them were set as fixed effects and each cow within treatment was set as a random effect. Data on indirect calorimetry and gas measurements were evaluated according to periods fixed at d 28 a.p. until parturition (period 1), d 1 until d 28 p.p. (period 2) and d 29 until d 120 p.p. (period 3). For clinical chemistry parameters, the autoregressive variance–covariance structure was selected based on the best fit according to the lowest Akaiki Information Criterion and the result of the first measurement at d 28 before 3-NOP supplementation was regarded as a covariate. Parameters of indirect calorimetry and ultrasonic measurements were tested using a compound symmetry structure. Effects were regarded as statistically significant at \(p\)-values \(\leq 0.05\) and a trend was implied at \(p\)-values between 0.05 and 0.10. Multiple t-tests (PROC PDIF) with Tukey-adjusted \(p\)-values were computed to evaluate significant means.

The R software package (version 3.6.1, R Foundation for Statistical Computing, Vienna, Austria) was used to calculate Pearson correlation coefficients and to perform linear regression of \(\text{EB}_{\text{GFE}}\) and \(\text{ER}_{\text{tissue}}\) data. Further, R was applied to estimate the \(\text{O}_2\) consumption in CON groups in a linear regression model, whereby significant independent variables and related regression coefficients were estimated in a forward stepwise manner.

The degree of agreement between both methods to estimate the energy balance (\(\text{ER}_{\text{tissue}}\) and \(\text{EB}_{\text{GFE}}\)) was assessed according to Bland and Altman \([43]\). The differences between \(\text{EB}_{\text{GFE}}\) and \(\text{ER}_{\text{tissue}}\) were plotted against the arithmetic mean of these pairs at each cow and period. The bias as the mean difference including a 95% confidence interval and the standard deviation (SD) of the differences were calculated. The lower and upper limits of agreement (LoA) were calculated (bias \(\pm 1.96\) SD) and used to define the range within which 95% of the differences lay. A regression line was plotted through the differences to detect changes in the bias depending on the magnitudes of the measurements themselves. The normality of differences was tested using the Shapiro–Wilk test in R.

3. Results

3.1. Methane Emission and Respiratory Gas Exchange Measured with the GreenFeed SYSTEM

Data on the emitted fermentation gases and metabolic respiratory gas exchange are presented in Table 2 while detailed dynamics of \(\text{VCH}_4\) and \(\text{VCO}_2\) emissions on a weekly basis are presented in Schilde et al. \([15]\). The \(\text{VCO}_2\)\(_{\text{metabolic}}\) expressed as a percentage of total \(\text{VCO}_2\) decreased after parturition until week 4 p.p. in the LC groups, as depicted in Figure 1A. \(\text{VCO}_2\)\(_{\text{metabolic}}\) in NOPLC continued to decline over the course of the experiment (Figure 1A; 3-NOP \(\times\) CFP \(\times\) PER; \(p < 0.001\)). The mean \(\text{VCH}_4\) over the three periods was reduced by 24.2% in NOPLC and 29% in NOPHC when compared to the respective CON group (Table 2). \(\text{VCH}_4\) increased from an average of 315 L/d in period 2 by 27.7% to 438 L/d in NOPLC and by 8% to 341 L/d in NOPHC in period 3 and, therefore, to a greater extent in the NOPLC than in the NOPHC group. \(\text{VCH}_4\) (L/d) positively correlated to \(\text{VCO}_2\) (L/d) (\(r = 0.67; p < 0.001; N = 917\)). Both \(\text{VCH}_4\) and \(\text{VCO}_2\) production (total and metabolic \(\text{VCO}_2\)) decreased from the a.p. period to parturition but increased thereafter over the p.p. period, which was also the case for \(\text{VO}_2\) consumption (Table 2). In period 3, \(\text{VCO}_2\) and \(\text{VCH}_4\) emissions were affected by 3-NOP and the high CFP (Table 2; 3-NOP \(\times\) CFP \(\times\) PER; \(p < 0.001\)). Hence, \(\text{VCO}_2\) was significantly higher in CONHC, whereas \(\text{VCH}_4\) decreased, which was most apparent for NOPHC. \(\text{VCO}_2\) production was positively correlated to \(\text{VO}_2\) consumption (\(r = 0.92; p < 0.001; N = 915\)). \(\text{VO}_2\) consumption decreased in the 3-NOP groups over the course of the experiment (Table 2; 3-NOP \(\times\) PER; \(p < 0.001\)), whereas CFP did not exert an influence. Both the RQ\(_{\text{total}}\) and RQ\(_{\text{metabolic}}\) were affected by the
3-NOP × CFP × TIME interaction (Table 3; p < 0.001). The R_{Q_m} markedly dropped from approximately 0.92 ± 0.03 during the a.p. period to its lowest point of 0.90 ± 0.007 in week 1 p.p. (Figure 1B; Table 2). Afterwards, the R_{Q_m} increased to 0.99 in NOPHC and 0.94 in CONLC until week 4 p.p. and remained more or less constant. In contrast, the R_{Q_m} continued to slightly increase to 1.01 in NOPHC and 0.98 in CONHC until week 9 p.p., respectively (Table 2; Figure 1B; 3-NOP × CFP × TIME; p = 0.024).

Table 2. Fermentation and respiration gases (L/d; measured using the GreenFeed system), total (R_{Q_t}) and metabolic respiration quotient (R_{Q_m}) of the experimental groups during period (Per) 1 (d 28 ante-partum until day of calving), 2 (d 1 until d 28 post-partum (p.p.)) and 3 (d 29 until d 120 p.p.).

Item	Treatments †	p-Values ‡								
	CONHC (n = 12)	CONLC (n = 13)	NOPHC (n = 11)	NOPLC (n = 9)	SEM	3-NOP	CFP	3-NOP × PER	CFP × PER	3-NOP × CFP × PER
VCH₄ production										
Per 1	0490	0495	0381	0397	20	<0.001	0.156	<0.001	<0.001	<0.001
Per 2	0440	0475	0314	0316						
Per 3	0535	0542	0341	0438						
Total VCO₂ production					160	<0.064	0.132	<0.001	<0.282	<0.001
Per 1	6632	6378	6662	6369						
Per 2	6368	6289	6002	5823						
Per 3	7278	6719	6557	6553						
VCO₂metabolic †					140	<0.653	0.041	<0.001	<0.043	<0.003
Per 1	5798	5537	6014	5695						
Per 2	5621	5481	5468	5285						
Per 3	6368	5797	5978	5809						
VO₂ consumption					138	<0.073	0.436	<0.001	<0.342	<0.166
Per 1	6348	6190	6267	6205						
Per 2	5988	5933	5709	5693						
Per 3	6480	6167	5910	5911						
Rₘ ‡					0.007	<0.001	<0.001	<0.001	<0.014	<0.001
Per 1	0.91	0.90	0.96	0.92						
Per 2	0.94	0.92	0.95	0.93						
Per 3	0.98	0.94	1.01	0.99						
Rₜ ‡						0.008	0.638	0.004	0.001	0.602 <0.001
Per 1	1.04	1.03	1.06	1.03						
Per 2	1.06	1.06	1.05	1.02						
Per 3	1.12	1.09	1.11	1.11						

† Values presented as LS-means; CONHC, control high concentrate; CONLC, control low concentrate; NOPHC, 3-nitroxypropanol (3-NOP) high concentrate; NOPLC, 3-NOP low concentrate. § Effects of 3-NOP; concentrate feed proportion (CFP); time period relative to parturition (PER), and interactions between them; effect of PER with p < 0.001 and 3-NOP × CFP with p > 0.1 for all variables. † VCO₂metabolic (L/d) = Total VCO₂ production (L/d) − VCO₂fermentative (L/d), whereby VCO₂fermentative (L/d) = 1.7 × VCH₄ production (L/d). ‡ Rₘ = VCO₂metabolic (L/d) ÷ VO₂ (L/d), corrected for fermentative VCO₂. # Rₜ = VCO₂ (L/d) ÷ VO₂ (L/d).
Table 2. Variables (LS-means) and their interaction with 3-NOP and CFP, estimated according to gas measurements presented in Table 4.

Item	Treatments †	SEM	3-NOP × CFP	3-NOP × TIME	CFP × TIME	3-NOP × CFP × TIME		
Metabol. CO₂	144	144	144	146	2.9	0.003	<0.001	<0.001
Metabol. RQ	0.781	0.781	<0.001	<0.004	0.024			
ERtissue	0.905	0.905	0.007	0.097	0.283			

† Effects of 3-NOP, CFP and TIME with p < 0.001 for all variables.

§ PSEM, pooled standard error of the means.

Figure 1. Effects of 3-nitrooxypropanol (3-NOP), dietary concentrate feed proportion (CFP) and time relative to parturition (TIME) on (A) metabolic CO₂ production, (B) metabolic respiration quotient (Metabolic RQ) and (C) energy retention in body tissues (ERtissue) in peripartal dairy cows. ■, solid line = control high CFP (CONHC, n = 12); □, dashed line = control low CFP (CONLC, n = 13); ▲, solid line = 3-NOP high CFP (NOPHC, n = 11); ∆, dashed line = 3-NOP low CFP (NOPLC, n = 9). Values are presented as LS-means.
Table 3. Cont.

Item	Treatments ‡	ConHC (n = 12)	CONLC (n = 13)	NOPHC (n = 11)	NOPLC (n = 9)	SEM	p-Values §				
Energy intake (kJ/kg BW⁰.⁷⁵ and d)											
Gross energy intake (GEI)											
Per 1	1963	1812	2022	1738	64	0.546	<0.001	0.210	0.146	<0.001	0.092
Per 2	2468	2434	2620	2335							
Per 3	3272	2900	3379	2961							
Metabolizable energy intake (MEI)											
Per 1	1193	1076	1288	1031	40	0.325	<0.001	0.110	0.379	<0.001	0.084
Per 2	1529	1458	1631	1402							
Per 3	2032	1734	2111	1769							
Energy expenditures (kJ/kg BW⁰.⁷⁵ and d)											
Net energy demand for pregnancy (NEP) †											
Per 1	115	117	118	116	2.9	0.702	0.951	0.575			
Per 2	978	991	945	960	25	0.195	0.492	0.476	0.852	<0.001	0.056
Per 3	1010	931	948	935							
Milk energy excretion (MEE) ¶											
Per 2	976	966	940	918							
Per 3	1071	1044	1001	987							
Heat production (HP) †											
Per 1	916	905	930	896	17	0.028	0.211	0.738	<0.001	0.750	0.267
Per 2	967	966	940	918							
Per 3	1071	1044	1001	987							
Methane energy (CH₄E) †											
Per 1	134	137	106	106	5.3	<0.001	0.099	0.913	<0.001	<0.001	<0.001
Per 2	132	144	96	95							
Per 3	161	170	106	134							
Energy retention (kJ/kg BW⁰.⁷⁵ and d)											
Energy retention in body tissues and milk (ERtotal) ‡											
Per 1	295	183	372	125	41	0.084	<0.001	0.137	0.002	<0.001	0.176
Per 2	562	492	697	485							
Per 3	961	690	1103	783							
Energy retention in body tissues (ERtissue) ‡											
Per 1	170	65	254	6	45	0.036	<0.001	0.101	0.003	0.022	0.715
Per 2	396	−499	−222	−474							
Per 3	−23	−230	167	−139							
Energy balance calculated according to GIE [24] (ERGIE) ‡											
Per 1	323	245	379	216	28	0.104	<0.001	0.077	0.066	0.059	0.982
Per 2	323	379	−229	−398							
Per 3	78	−171	54	−154							
Energy retention in fat depots (ERfat depot) ‡											
Per 2	−185	−175	−169	−181	24	0.841	0.974	0.637			
Residual energy retention (ERresidual) ‡											
Per 2	−211	−324	−55	−292	48	0.058	0.001	0.205			

‡ Values presented as LS-means; CONHC, control high concentrate; CONLC, control low concentrate; NOPHC, 3-nitroxypropanol (3-NOP) high concentrate; NOPLC, 3-NOP low concentrate. ¶ Effects of 3-NOP, concentrate feed proportion (CFP), time period relative to parturition (PER), and interactions between them; effect of PER with p < 0.001 for all variables. † NEP (MJ/kg) = mean of 13 MJ of NEI/d in week 4 a.p. and 18 MJ of NEI/d during week 3 until parturition according to GIE [24]. ‡ MEE (MJ/kg) data from Schilde et al. [15]. § HP (MJ/d) = 16.18 × O₂ (L/d) + 5.02 × CO₂ (L/d) − 2.17 × CH₄ (L/d) − 5.99 × 50 (g of urine nitrogen excretion/d) [22], gas volumes used from Table 4. ¶ CH₄E (MJ/kg) = CH₄ (L/d) × 0.03954 (MJ/L) [22]. † ERtotal (MJ/d) = MEI − HP. ‡ ERtissue = MEI − HP − NEP and MEE, resp. ¶ ERGIE (MJ/d) = energy balance data from Schilde et al. [15] and calculated according to GIE [24] (footnote Figure 2). † ERfat depot (MJ/d) = loss of fat depot masses (kg/d) from d 3 until d 28 p.p. from ultrasonic measurements × 39.8 (MJ/kg) × 8.4, 1 kg of body fat corresponds to 39.8 MJ of GE [22], whereby 16% is lost as heat when body tissue energy is converted into milk [40], 1 kg of body fat corresponds to 39.8 MJ of GE [22]. ‡ ERresidual (MJ/d) = ERtissue − ERfat depot.
Figure 2. Bland–Altman plot (A) and linear relationship (B) of energy balance (EB_{GFE}) and energy retention in body tissues (ER_{tissue}) during ■ = period 1 (d 28 ante-partum – d 1 post-partum (p.p.)), ● = period 2 (d 1 p.p. – d 28 p.p.) and ▲ = period 3 (d 28 p.p. – d 120 p.p.). ER_{tissue} was calculated by indirect calorimetry using the GreenFeed system and E_{GFE} according to GFE [24].

Formula EB_{GFE}: EB (kJ NE\textsubscript{L}/kg body weight0.75 (BW0.75) and d) = net energy intake – net energy requirements for maintenance (NE\textsubscript{M}) – net energy for pregnancy (NE\textsubscript{P}) – net energy for lactation (NEL) with NE\textsubscript{M} (kJ NE\textsubscript{L}/d) = 0.293 × BW0.75 (kg), milk energy (kJ NE\textsubscript{L}/d) = 0.3 × milk fat % + 0.21 × milk protein % + 0.95, and NEL (kJ NE\textsubscript{L}/d) = milk energy (kJ NE\textsubscript{L}/d) + 0.1 × milk yield (kg/d). **Formula ER\textsubscript{tissue}:** ER in body tissues (kJ NE\textsubscript{L}/kg BW0.75 and d) = metabolizable energy intake – heat production – NEL – NE\textsubscript{P} (period 1). **Statistics 2A:** Bias (■): 70 kJ NE\textsubscript{L}/kg BW0.75 and d; p < 0.001 with confidence interval (● – ●): −149 kJ NE\textsubscript{L}/kg BW0.75 and d; lower limits of agreement (LoA) (■ – ■): −149 kJ NE\textsubscript{L}/kg BW0.75 and d; upper LoA: 288 kJ NE\textsubscript{L}/kg BW0.75 and d; regression line (●): y = 0.01x + 71 (RSE = 112 kJ/kg BW0.75 and d on 133 degrees of freedom, R2 = 0.92, p = 0.756). **Statistics 2B:** regression line (●): period 2 and 3; y = 0.67\textsubscript{(0.02)} × − 51\textsubscript{(7)}; (RSE = 51 kJ NE\textsubscript{L}/kg BW0.75 and d on 88 degrees of freedom, R2 = 0.92, p < 0.001).

3.2. Energy Turnover Estimated by Indirect Calorimetric and Ultrasonic Methods

The parameters of BW0.75, GEI, metabolizable energy intake (MEI), EE and ER are presented in Table 3. GEI and MEI significantly increased in the HC groups by an average of 28% from period 1 to period 2 and by 31% up to period 3, whereas in the LC groups, GEI and MEI increased, on average, by 35% from period 1 to period 2 and by 23% up to period 3 (CFP × PER; p < 0.001). The experimentally intended gradual increase in energy intake resulted, during period 3, in significantly higher daily GE and ME uptakes in the HC groups, by about 0.4 MJ and 0.32 MJ/kg BW0.75 and d, respectively, when compared to the LC groups.

The 3-NOP × PER interaction (p < 0.001) of HP was driven by a decreasing HP from 3-NOP when compared to the CON groups in period 3 (Table 3). HP was positively correlated with MEI, which was not different between treatment groups (r = 0.37; p < 0.001; N = 895). During the course of the experiment, MEI decreased in the LC groups, whereas that of the HC groups increased (CFP × PER; p < 0.001). With regard to period 3, CH\textsubscript{3}E was lowest in NOPHC, in contrast with the NOPLC and the CON groups (3-NOP × CFP × PER; p < 0.001).
Table 4. Changes in fat layer thickness (mm/d) and adipose tissue (AT) depot mass (kg/d) estimated from ultrasonic measurements of the experimental cows from d 3 until d 28 post-partum.

Item	Treatments †	SEM	p-Values §					
	CONHC (n = 14)	CONLC (n = 15)	NOPHC (n = 14)	NOPLC (n = 12)	3-NOP	CFP	3-NOP × CFP	
Change in fat layer thickness								
Back fat thickness	−0.15	−0.15	−0.14	−0.12	0.03	0.709	0.847	0.786
Rib fat thickness	−0.16	−0.15	−0.17	−0.13	0.03	0.814	0.493	0.699
Change in AT depot mass								
Mesenteric	−0.26	−0.22	−0.20	−0.31	0.05	0.775	0.479	0.136
Omental	−0.18	−0.18	−0.16	−0.15	0.02	0.285	0.956	0.952
Retroperitoneal	−0.12	−0.10	−0.13	−0.11	0.02	0.780	0.367	0.894
Subcutaneous	−0.17	−0.18	−0.17	−0.14	0.02	0.410	0.616	0.399
Visceral ‡	−0.56	−0.50	−0.48	−0.57	0.07	0.998	0.996	0.330
Visceral and subcutaneous	−0.73	−0.68	−0.65	−0.70	0.08	0.758	0.994	0.627

† Values are presented as LS-means; CONHC, control high concentrate; CONLC, control low concentrate; NOPHC, 3-nitrooxypropanol (3-NOP) high concentrate; NOPLC, 3-NOP low concentrate. § Effects of 3-NOP, concentrate feed proportion (CFP), and interactions between them. ‡ SEM, pooled standard error of the means. * Visceral AT depot mass (kg/d) = mesenteric + omental + retroperitoneal AT depot mass (kg/d).

During the course of the experiment ER\text{total} and ER\text{tissue} increased with elevated CFP in the diet (Table 3; CFP × PER; p < 0.05). ER\text{tissue} was more positive in the NOPHC group over the experimental periods (Table 3; Figure 1C: 3-NOP × CFP; p = 0.006). ER\text{tissue} is shown on a weekly basis in Figure 1C and a sharp drop can be seen in ER\text{tissue} starting from the initiation of the trial until week 1 p.p., when the tissue energy balance was the most negative, independent of the experimental group (Figure 1C; TIME; p < 0.001). In all of the treatment groups, a continuous rise in ER\text{tissue} was observed from week 1 p.p. onwards, with this being the most distinctive in the HC groups (CFP; p < 0.001). In the NOPHC group, ER\text{tissue} reached a positive range in week 4 p.p. which was earlier when compared to CONHC (positive ER\text{tissue} from week 8 p.p.). In contrast, ER\text{tissue} in the LC groups remained in a negative range until termination of the trial.

The described group differences concerning the extent of energy retained in body tissues were, however, not recovered in the ER\text{fat depot} (Table 3; 3-NOP × CFP; p = 0.637) which was estimated ultrasonographically during period 2. The effect of time (Table A1; TIME; p < 0.001) was reflected by a decrease in each AT depot (Table 4). Irrespective of treatment group, the average lipomobilization from the visceral and subcutaneous AT of 0.69 kg of fat depot masses per day contributed to a daily energy release of about 177.5 kJ/kg BW\text{0.75} and d being potentially utilizable for milk synthesis (Table 3). Correspondingly, back fat and rib fat thickness decreased, on average, by 0.14 and 0.15 cm/d, respectively (Table 4). In addition, the visceral fat deposit was mobilized to a larger extent when compared to the subcutaneous one (0.53 kg/d vs. 0.17 kg/d; Table 4).

Due to the described differences in ER\text{tissue} between groups but the missing effects of 3-NOP and CFP on depot fat mobilization from ultrasonic measurements, ER\text{residual} was higher in the 3-NOP and HC groups (Table 3; 3-NOP; p = 0.058; CFP; p = 0.001).

3.3. Validation of the ER\text{tissue} Outcome of the GreenFeed Indirect Calorimetry Method

The EB\text{GFE} varied between experimental periods, which was similar to ER\text{tissue} (Table 3; PER; p < 0.001). In contrast to ER\text{tissue}, the EB\text{GFE} of the NOPHC group was more positive
during each of the experimental periods when compared to the other treatment groups (Table 3; 3-NOP × CFP; p = 0.082). The Bland–Altman analysis (Figure 2A; mean bias of 70 kJ NE L/kg BW0.75 and d; p < 0.001 over all of the experimental periods) and the slope of the regression line of the linear relationship indicated that the EB GFE was estimated to be approximately 33% (Figure 2B) higher when compared to EB tissue. The slope of the regression line through the data points of differences was not significant (p = 0.756), indicating a constant bias over the experimental periods (Figure 2A). Nevertheless, greater differences between both methods with increasing magnitude of a positive energy balance can be visually identified regarding the a.p. period 1 (Figure 2A,B). Furthermore, the agreement between the EB GFE and the calorimetrically obtained ER tissue was most accurate concerning period 2 and 3 (Figure 2A,B). Hence, a non-significant mean bias of 21 kJ NE L/kg BW0.75 and d (p = 0.051) was calculated for the agreement between both methods for period 2 and 3. In contrast, greater differences between EB GFE and ER tissue were found in period 1, with a mean bias of 167 kJ NE L/kg BW0.75 and d (p < 0.001). The average k l over the experimental groups and periods totalled 0.61 (data not shown).

3.4. Biochemical Blood Parameters

Lactate peaked on the day of calving (Figure 3A; TIME; p < 0.001). Hydrogen carbonate and the temperature-corrected blood pH marginally fluctuated around their mean of 28.9 mmol/L (TIME; p = 0.208; Figure 3B) and 7.39, respectively. However, a slight drop in blood pH values was observed at d 1 p.p. (TIME; p < 0.001; Figure 3C). Antepartal haemoglobin levels slightly increased, on average, from 10.6 to 12.0 g/dL on the day of parturition but continuously decreased by approximately 24% afterwards. From d 49 until termination of the experiment, haemoglobin diverged to constant levels of 9.5 g/dL in the HC groups but still decreased to approximately 8.5 g/dL in the LC groups (Figure 3D; CFP × TIME; p < 0.001).

Blood serum concentrations of BHB, NEFA, TAG and glucose are presented in Figure 4. During the transitional period, the characteristic changes of BHB, NEFA, TAG and glucose were observed in all treatment groups (TIME; p < 0.001; Figure 4). In all experimental groups, TAG and glucose decreased by 68% from d 3 a.p. until d 3 p.p. and by 11% from d 1 p.p. to d 7 p.p., respectively. Starting from an initial value of 0.205 mmol/L, the NEFA concentration peaked to 0.856 mmol/L at d 1 p.p. followed by a decline to the a.p. baseline level until d 98 p.p. BHB increased from 0.63 mmol/L at d 3 a.p. to 1.11 mmol/L at d 7 p.p. in the CON groups, whereas a numerically lower peak of 0.88 mmol/L was observed in the 3-NOP groups. 3-NOP treatment did not impact the BHB, TAG and glucose concentrations but lowered that of NEFA by approximately 19.5% in the 3-NOP compared to the CON groups (3-NOP; p < 0.001). CFP affected neither NEFA nor TAG but did affect BHB (CFP × TIME; p = 0.009). Thus, a more pronounced decrease in BHB serum concentrations was observed in the HC compared to the LC groups from d 7 p.p. until termination of the experiment. Elevated blood glucose levels in the HC groups were considered significant from d 21 p.p. until d 73 p.p., in contrast with the LC groups (CFP × TIME; p = 0.073; CFP; p = 0.006). NEFA concentration was correlated with TAG after parturition (r = 0.47; p < 0.001; N = 350). Blood glucose was positively related to TAG (r = 0.49; p < 0.001; N = 532) and HP (r = 0.24; p < 0.001; N = 512) but negatively associated with both serum NEFA (r = −0.28; p < 0.001; N = 532) and BHB (r = −0.47; p < 0.001; N = 532). NEFA and BHB were significantly interrelated (r = 0.42; p < 0.001; N = 532) and decreased with elevated ER tissue (r = −0.52; p < 0.001 for NEFA and r = −0.29; p < 0.001 for BHB; N = 511) and MEI (r = −0.29; p < 0.001; N = 525 for NEFA and r = −0.18; p < 0.001; N = 514 for BHB). Accordingly, increased MEI went along with increased ER tissue (r = 0.39; p < 0.001; N = 914) and CO2 yield (g CO2/kg DMI) (r = 0.41; p < 0.001; N = 914). CO2 yield had a strongly positive correlation with TAG (r = 0.56; p < 0.001; N = 511) and postpartal NEFA levels (r = 0.44; p < 0.001; N = 350) but had a negative relationship with ER tissue (r = −0.35; p < 0.001; N = 914).
Figure 3. Effects of 3-nitrooxypropanol (3-NOP), concentrate feed proportion in the ration (CFP) and time relative to parturition (TIME) on blood chemical parameters of (A) lactate, (B) hydrogen carbonate, (C) temperature-corrected pH, and (D) haemoglobin in peripartal dairy cows. ■, solid line = control high CFP (CONHC, n = 14); □, dashed line = control low CFP (CONLC, n = 15);▲, solid line = 3-NOP high CFP (NOPHC, n = 14); Δ, dashed line = 3-NOP low CFP (NOPLC, n = 12). Values are presented as LS-means. SEM, standard error of the means. Statistics with first measured value as covariate.

3.5. Interrelations between Metabolic RQ, Energy Metabolism and Methane Emission

Figure 5A shows that RQ_{metabolic} was positively correlated with ER_{tissue} (r = 0.37; \(p < 0.001; N = 912 \)) and negatively with serum NEFA (r = -0.29; \(p < 0.001; N = 510 \)) (multiple R^2 = 0.37; \(p = 0.015 \)). ER_{tissue} and serum NEFA levels were adversely interrelated. Lower serum NEFA concentrations could be identified for 3-NOP groups (Figure 5A) and the NOPHC group showed increased ER_{tissue} (Figure 5A). Figure 5B shows that CH_4 yield was negatively related to molar propionate proportions in rumen fluid (r = -0.46; \(p < 0.001; N = 510 \)).
N = 165; data from Schilde et al. [15]), whereby the opposite holds true concerning p.p. NEFA concentration (multiple $R^2 = 0.59$, $p < 0.001$). Serum NEFA and propionate were inversely related ($r = -0.22; p = 0.007; N = 165$) and affected CH$_4$ yield in an interactive manner (Figure 5B). Approximately, 59% of the variation of the CH$_4$ yield can be explained by the explanatory variables (multiple $R^2 = 0.59$, $p < 0.001$). The CH$_4$ yield was decreased by 3-NOP supplementation (Figure 5B).

Variable	PSEM	3-NOP	CFP	TIME	3-NOP ×CFP	3-NOP ×TIME	CFP ×TIME	3-NOP ×CFP ×TIME
β-hydroxybutyrate	0.075	0.111	0.003	<0.001	0.595	0.634	0.009	0.998
Non-esterified fatty acids	8.091	<0.001	0.633	<0.001	0.138	0.334	0.703	0.437
Triacylglycerides	0.001	0.254	0.842	<0.001	0.991	0.932	0.914	0.344
Glucose	0.086	0.989	0.006	<0.001	0.665	0.949	0.073	0.395

Figure 4. Effects of 3-nitrooxypropanol (3-NOP), concentrate feed proportion in the ration (CFP) and time relative to parturition (TIME) on energy-related biochemical blood parameters of (A) β-hydroxybutyrate, (B) non-esterified fatty acids, (C) triacylglycerides, and (D) glucose in peripartal dairy cows. ■, solid line = control high CFP (CONHC, $n = 14$); □, dashed line = control low CFP (CONLC, $n = 15$);▲, solid line = 3-NOP high CFP (NOPHC, $n = 14$); ∆, dashed line = 3-NOP low CFP (NOPLC, $n = 12$). Values are presented as LS-means. PSEM, pooled standard error of the means. Statistics with first measured value as covariate.
11.1%, respectively. Correspondingly, this could have resulted in deviations of HP of (2.76% of total HP), respectively, indicating that HP estimation is most sensitive towards variations in O₂ post-partum in experimental dairy cows supplied with 3-nitrooxypropanol (3-NOP) and varying acquisition, which was realized by a high-sampling frequency being evenly distributed gas mass flux measurements was stated to be low. This was related to an accurate data ± approximately ± 1.3 MJ (1.02% of total HP), ± 9.7 MJ (7.65% of total HP) and ± 3.5 MJ (2.76% of total HP), respectively, as shown for RQ kinetics [23] and potentially explained some of the variations, as shown for RQ consumption rates were temporarily observed in the CON groups, the metabolic respiratory quotient (metabolic RQ), energy re-

Statistics (B): multiple R² = 0.59, p < 0.001. Statistics (A): multiple R² = 0.38, p < 0.001.

4. Discussion

4.1. Limitations of the GreenFeed Technology for Its Use in Indirect Calorimetry

The accurate indirect calorimetric calculation of the HP and RQ depends on precise gas respiration measurements [44]. Due to technical reasons, the VO₂ consumption of CON groups needed to be regressively predicted from VCO₂ and DMI. Even though slightly increased VO₂ consumption rates were temporarily observed in the CON groups, the highly predictive performance of the applied model (R² = 0.90; RSE = 371 g/d) confirmed its validity. In contrast to RC, a reliable within-day gas exchange pattern could not be obtained from GF measurements, which precluded investigations on intraday HP and RQ kinetics [23] and potentially explained some of the variations, as shown for RQmetabolic and HP. Over the present trial period, the coefficients of variation for the within-day GF spot measurements of VCH₄, VO₂ and VCO₂ were, on a weekly average, 22.1, 10.0 and 11.1%, respectively. Correspondingly, this could have resulted in deviations of HP of approximately ± 1.3 MJ (1.02% of total HP), ± 9.7 MJ (7.65% of total HP) and ± 3.5 MJ (2.76% of total HP), respectively, indicating that HP estimation is most sensitive towards variations in O₂ consumption. In conclusion, the overall variability of the present GF gas mass flux measurements was stated to be low. This was related to an accurate data acquisition, which was realized by a high-sampling frequency being evenly distributed throughout the day. In addition, GF data were averaged over seven days and validated for visiting time and head positioning of the cow in the GF hood. Hence, the measurement...
procedure applied herein (detailed in Schilde et al. [15]) was previously noted to produce comparable results to those obtained from RC [23,32]. In particular, both RC and GF used the same equations and sensor types for O₂ (para-magnetic), CH₄ and CO₂ (non-dispersive infrared) respiration measurements. However, in particular, further validation of the GF algorithm principles is needed as O₂ sensor validation data from RC measurements are lacking. In the present study, the VCO₂metabolic was differentiated from the fermentative VCO₂ to calculate RQmetabolic at the intermediary level. Indeed, this fractionation can be visually conducted for each cow visit from the VCO₂ gas-measurement trajectory depicted in the GF graphical online interface. In this way, a “baseline” CO₂ level reflects the amount of expired lung-derived CO₂ (VCO₂metabolic) that needs to be corrected for background CO₂ gas concentration. The “baseline” CO₂ level is temporarily interrupted by CO₂ eructation peaks (VCO₂fermentative) [45]. However, this visual evaluation is impractical for large datasets and, therefore, algorithms for an automatized graphical assessment should be developed in the future. As a consequence, the commonly applied factor of 1.7 [34,36] was used, resulting in VCO₂fermentative proportions of 12 ± 0.5% in CONHC, 9 ± 0.5% in NOPHC and, more incrementally, 13 ± 0.4% in CONLC and 10 ± 1.1% in NOPLC (mean ± SD) (Figure 1A; Table 2). Comparatively, Caetano et al. [45] visually estimated the VCO₂fermentative from the GF online interface to be between 6 and 20% of the total VCO₂ production in beef cattle offered diets of varying energy density for ad libitum and restricted intake.

4.2. Validation of the Energy Partitioning Estimated by Indirect Calorimetry and Ultrasonography

The present GF method of indirect calorimetry resulted in ERissue values that strongly corresponded to the EBGF values measured for period 2 and 3. However, both methods significantly differed with regard to the a.p. period (period 1; Figure 2A; compare ERissue and EBGF in Table 3). Erdmann et al. [39] compared the EBGF with that calculated from indirect calorimetric RC measurements over the same antepartal period as the present period 1 and also reported higher EBGF values (by about 33 MJ/d) when compared to the RC energy balance. The higher EBGF could have been a result of an underestimation of EE during the ante-partum period 1 when compared to the calorimetrically derived ERissue. Thus, the dynamically increasing antepartal energy requirements for the onset of lactogenesis and foetal growth could have been captured more accurately by continuous calorimetric measurements in contrast with the constants applied in EBGF calculations. Furthermore, the impact of maintenance requirements on the EB outcome was proportionally higher during the dry period when compared to the lactation period. The factors applied in the German NE system for calculating MEₘ were derived from 40-year-old data. Meanwhile, the breeding of higher genetic merit cows resulted in generally increased body sizes of cows and a greater proportion of liveweight as body protein mass while back fat thickness decreased [46]. As a consequence, the increased feed intake resulted in greater digestive loads and blood flow-rates in the total splanchnic tissues being paralleled by increased metabolic rates, internal organ masses and O₂ consumption [47]. These metabolic changes are related to higher energy demands for maintenance metabolism, which implies an underestimation of maintenance energy requirements in the German NE feeding system and a further explanation of the higher EBGF when compared to the ERissue values.

The mean k₁ value of 0.61 is within the range of k₁ values (0.60 to 0.67) summarized in a literature review by Agnew and Yan [47] and close to the k₁ value of 0.60 reported by Van Es [48], which confirms the suitability of the GreenFeed system as an indirect calorimeter.

The estimated energy released from the ultrasonographically assessed lipolysis in AT depots (ERfatdepot; Equation (8)) was subtracted from the negative ERissue in period 2 (Table 3) yielding the remaining fraction of glycogen, triglycerides and proteins deposited in skeletal muscles and organs (ERresidual). It was supposed that protein and lipid breakdown in skeletal muscles around parturition partially compensated for the observed negative ERissue (Figure 1C; Table 3) and contributed to the decreased RQmetabolic (Figure 1B) [11]. Thus, gluconeogenesis from the oxidation of alanine, one of the most important glucogenic
amino acids (AA) [11], and intramuscular lipids result in very low RQ\text{metabolic} values of 0.13 and 0.7, respectively. Tamminga et al. [49] estimated the fractional rate of skeletal muscle protein breakdown in dairy cows to be 0.38, 0.22, 0.04 and 0.02 kg per day in week 1, 2, 3 and 4 p.p. From a rough calculation, this would correspond to a total of 4.6 kg mobilized body protein (92 M J NE\text{L} \text{d}^{-1}) during the complete period 2 and an energy equivalent of 3.3 M J NE\text{L} \text{d}^{-1}; 1 g of body protein = 23.8 kJ [22]; energy efficiency of 84% [50]. Comparatively, von Soosten et al. [51] reported a lower energy yield from body protein mobilization, which amounted to an average of 2.1 M J/d over the period from d 1 until d 42 p.p. in primiparous cows measured by the comparative slaughter technique. However, those results are not directly comparable to the present periparturient pluriparous dairy cows and observation period (d 1 until d 28). Von Soosten et al. [51] assumed protein accretion in the growing primiparous cows (BW of approximately 490 kg) and protein mobilization is generally supposed to change to repletion from d 35 p.p. onwards [52]. The non-explained remainder of the difference between ER\text{residual} and the estimated energy supply from skeletal muscle proteolysis can be partially assigned to energy mobilized from inter- and intramuscular and organ tissues. Furthermore, the corresponding models estimating the fat depot masses are, to some extent, prone to error. Although ER\text{tissue} was more positive in the HC groups (Figure 1C), the ultrasonographically assessed lipolysis from AT and serum NEFA levels (indicative for negative EB) were not different between the HC and LC groups (Table 3; Figure 4B). Raschka et al. [25] validated the ultrasonographic-based multiple regression model for the predicted weights of the SAT and VAT depots as highly accurate with R^2 values of 0.88 and 0.94 and root mean square errors of 3.4 and 6.1 kg, respectively. In the present experiment, an assumed ± 10% variation between the predicted and actual daily changes in SAT and VAT would result in ER\text{fat depot} variations of approximately ± 2.3 M J NE\text{L} \text{d}^{-1}.

4.3. Effects of 3-NOP, CFP and Parturition on Energy Metabolism Parameters

Both RQ and HP notably depend on the magnitude of MEI ($r = 0.69$ and $r = 0.22$ resp.; $p < 0.001; N = 914$), its utilization for maintenance and productive purposes [53], whether substrates are either deposited or mobilized in tissues (Figure 5A) and, finally, on the type of the metabolized substrate itself [22,34]. In contrast to LC groups, the higher RQ\text{metabolic} (Figure 1B) and ER\text{tissue} (Figure 1C) in HC groups reflected their increased GEI:EE ratio (Table 3) and dietary content of non-fibre carbohydrates (Table 1) being microbially degraded into gluconeogenic substrates. Correspondingly, increased blood glucose (Figure 4C) and reduced BHB (Figure 4A) concentrations were observed in the HC groups.

During the a.p. period, the pro-lipogenic effect of the dietetically designed energetic oversupply was manifested in the positive ER\text{tissue} (Figure 1C) and RQ\text{metabolic} values of 0.92 (Figure 1B). In principle, lipid deposition in AT would result in RQ\text{metabolic} values above 1.0 [44] but RQ\text{metabolic} reflects the net oxidation rates of a mixture of substrates irrespective of the metabolic interconversions of the substrate [44]. Hence, flowing transitions between oxidation and de novo synthesis of lipids were assumed, which became apparent in the steady decrease in ER\text{tissue} since the beginning of the trial in spite of the energetic oversupply (Figure 1C). The present energy-deficient transition from gestation to lactation was accompanied by significant metabolic adaptations (Figure 4). The decreased RQ\text{metabolic} corresponded to the negative ER\text{tissue} and accumulation of serum NEFA (Figure 5A), collectively indicating excessive fat oxidation from AT resulting in increased O_2 consumption (NEFA vs. O_2 consumption (g/d); $r = 0.18; p < 0.001; N = 511$) and ketogenesis from acetyl-CoA and NEFA (NEFA vs. BHB; $r = 0.42; p < 0.001; N = 532$). The observed increased circulating BHB (Figure 4A) likely originated from an oxaloacetate deficiency [10] and a concomitant hepatic overload to completely oxidize the excessively flooding NEFA (Figure 4B), released by lipolysis in AT (Table A1 and Table 4), into ATP and CO$_2$ [11]. It can be summarized that the decrease in RQ\text{metabolic} could be partially explained by the increased O_2 consumption due to lipolysis in AT, whereby CO$_2$ did not increase
due to the aforementioned incomplete metabolism of NEFA into BHB but not into CO₂. Correspondingly, the RQ_{metabolic} did not behave in the same manner as the RQ_{total} because the latter also reflected CO₂ production arising from rumen fermentation. Hence, in the early-lactation period, increased fermentative CO₂ production from high-forage diets led to higher RQ_{total} values, whereby RQ_{metabolic} decreased due to the abovementioned increased but incomplete fat oxidation resulting in less intermediary CO₂ formation when NEFA were converted to BHB, rather than CO₂ and ATP. Accordingly, as previously published for the present experiment, the CO₂ yield (g CO₂ production/kg DMI) was significantly higher in LC when compared to the HC groups, but the opposite was the case when it came to total CO₂ production (g CO₂/d) over the complete experimental period [15].

In the present experiment, the tendency for an increased ER_{total} in the NOPHC group (Table 3; Figure 1C) confirmed similar results reported by van Gastelen et al. [13]. The increased ER_{tissue}, ER_{residual} and RQ_{metabolic} of 1.01 in the NOPHC group (Figure 1B; Table 2) could be explained by an improved energy budget in that group. Hence, decreased NEFA levels were associated with increased ruminal propionate concentrations, and both were inversely related to CH₄ production (Figure 5B). Recently, it was observed that supplementing 3-NOP combined with high CFP in the ration shifted rumen fermentation pathways to hydrogen-consuming glucogenic propionate and decreased loss of CH₄ energy in a synergistic manner (Tables 2 and 3) (details in Schilde et al. [15]). Correspondingly, lower serum NEFA concentrations were observed in the 3-NOP cows (Figure 4B) although neither 3-NOP nor CFP affected ER_{fat depot} and lipomobilization in AT depots (Tables 3 and 4). This could indicate that the increased glucogenic propionate proportions in the 3-NOP groups improved the intramitochondrial oxaloacetate availability and, therefore, the hepatic capacity for NEFA oxidation. Interestingly, neither blood glucose (NEFA oxidation and conversion of elevated propionate levels to glucose and CO₂) nor TAG (re-esterification of NEFA) and BHB (reduced incomplete NEFA oxidation) were affected by 3-NOP, which confirms previous findings [20]. This opens the question as to whether the direct extrapolation of NEFA concentrations to circulating BHB levels is appropriate in the present CH₄ mitigation experiment. Accordingly, in the companion study, Schilde et al. [15] observed that butyrate formation was preferred to that of acetate in the 3-NOP-treated cows, which can be explained by the reduced hydrogen release when carbohydrates are degraded into butyrate and not into acetate [54]. Butyrate also serves as a carbon source for ketone body synthesis in the rumen epithelium [55]; therefore, increased circulating BHB originating from enhanced intraepithelial ketogenesis could have masked the assumed causal relationship that decreased serum NEFA concentrations in the 3-NOP-treated cows, which would necessarily have led to reduced BHB in the blood stream. Besides the intraepithelial butyrate metabolism, propionate can be metabolized to lactate in the rumen epithelium, which could also have reduced the propionate flux to the liver, thereby eliminating the energetic advantage of the 3-NOP-mediated increased propionate formation in the rumen. The observed accumulation of ketoacids (BHB) and the blood lactate peak at d 1 p.p. (Figure 3A) could have increased the risk for metabolic acidosis [44]. Indeed, blood pH was observed to slightly drop from 7.41 to 7.38 at parturition contemporaneously to the lactate peak at d 1 p.p. (Figure 3C; TIME; p < 0.001). In this context, the temporal decrease in the 3-NOP groups (Figure 3C; 3-NOP × TIME; p = 0.014) is, however, difficult to explain as blood lactate and BHB were not affected by 3-NOP treatment. The pH decrease at d 1 p.p. possibly caused buffering reactions via the largest CO₂ body pool, hydrogen carbonate, which could have led to an overestimation of HP and RQ_{metabolic} [44]. Indirect calorimetry is stated to be accurate as long as body pool sizes of energy-related metabolites (ketone bodies, lactate) and intermediary products (O₂ and CO₂, Nₐ) remain stable [44]. However, the potential effects of intermediary pool sizes on HP from nutrient oxidation and RQ_{metabolic} were considered negligible because the bicarbonate and pH values remained within their physiological area [56,57] (Figure 3B,C). In general, the CO₂ pool size is supposed to be subjected to greater fluctuations when compared to the O₂ body pool [44]. Accordingly, blood concentrations of haemoglobin, the main O₂ body pool, remained stable within the
physiological range [57] although a slight divergence was observed between the LC and HC groups at the end of the experiment (Figure 3D; CFP × TIME; p < 0.001).

5. Conclusions

The present study revealed that using the GF system as an indirect calorimetry chamber for the assessment of cows’ energy metabolisms is a promising approach, although further validations of the O₂ sensor and algorithm principles are needed. The ER

_{tissue}

determined by indirect calorimetry coincided with that calculated from GfE [24], except for the antepartal period. The hypothesis that feeding 3-NOP in combination with high CFP synergistically improves the cows’ energy budgets was partially confirmed because effects were not apparent in all of the examined parameters. 3-NOP combined with high CFP increased RQ_{metabolic} and ER_{tissue} and decreased serum NEFA. In contrast, lipomobilization from fat depots and blood lactate were neither affected by 3-NOP nor CFP and 3-NOP did not affect blood glucose, TAG and BHB levels. Blood pH and bicarbonate remained within their physiological range and metabolic adaptations to energy-related changes via the CO₂ body pool were not observed. High CFP decreased BHB but increased blood glucose and, at the end of the trial, haemoglobin levels, which possibly indicates that the cows adapted differently to metabolic changes. Future research will be focused on the relationship between the 3-NOP-induced changes in the rumen VFA profile and gene expression in the liver.

Author Contributions: Conceptualization, M.S. and S.D.; Data curation, M.S., J.F. and S.K.; Formal analysis, M.S.; Funding acquisition, D.v.S., S.K. and U.M.; Investigation, M.S. and J.F.; Methodology, M.S. and S.D.; Project administration, D.v.S. and U.M.; Resources, D.v.S., J.F., S.K., U.M. and S.D.; Supervision, A.Z. and S.D.; Validation, M.S., A.Z. and S.D.; Visualization, M.S.; Writing—original draft, M.S.; Writing—review and editing, M.S. All authors have read and agreed to the published version of the manuscript.

Funding: The project is supported by funds from the Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE) under the innovation support programme (grant number 281B101416).

Institutional Review Board Statement: The experiment was conducted according to the guidelines of the German Animal Welfare Act, and approved by the LAVES (Lower Saxony State Office for Consumer Protection and Food Safety, Germany) (approval number: 33.19-42502-04-15/1858).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the present article and in the previously published manuscript of the comprehensive experiment by Schilde et al. [15] (article number: 1877986).

Acknowledgments: The authors thank the staff of the Institute of Animal Nutrition, Friedrich-Loeffler-Institut (FLI) and the co-workers of its experimental station for taking care of the experimental animals and supporting the sample collection and analysis. The authors also thank DSM Nutritional Products AG (Kaiseraugst, Switzerland) for their support in providing 3-NOP and 3-NOP analyses in the feedstuffs.

Conflicts of Interest: The authors declare no conflict of interest.
Appendix A

Table A1. Thickness and absolute masses of adipose tissue (AT) depots of the experimental groups at d 3 and d 28 post-partum (p.p.).

Item	Treatments †	SEM	p-Values §	3-NOP	CFP	3-NOP × CFP	3-NOP × TIME	CFP × TIME	3-NOP × CFP × TIME		
	CONHC (n = 14)										
Back fat thickness (cm)											
d 13 p.p.	1.49			0.08		0.341	0.538	0.152	0.551	0.938	0.924
d 28 p.p.	1.16			0.08		0.424	0.671	0.395	0.739	0.395	0.355
Rib fat thickness (cm)											
d 13 p.p.	1.6			0.08		0.424	0.671	0.395	0.739	0.395	0.355
d 28 p.p.	1.2			0.08		0.424	0.671	0.395	0.739	0.395	0.355
Absolute masses of AT depot (kg)											
Mesenteric AT											
d 13 p.p.	13.5	8.4		0.84		0.197	0.300	0.415	0.452	0.551	0.486
d 28 p.p.	7.3	7.0		0.84							
Omental AT											
d 13 p.p.	14.8	10.4		0.66		0.395	0.320	0.305	0.353	0.588	0.806
d 28 p.p.	10.4	9.3		0.66							
Retroperitoneal AT											
d 13 p.p.	9.4	6.8		0.53		0.422	0.837	0.539	0.603	0.184	0.552
d 28 p.p.	8.8	6.6		0.53							
Subcutaneous AT											
d 13 p.p.	13.6	9.6		0.73		0.453	0.499	0.594	0.559	0.468	0.336
d 28 p.p.	12.8	8.7		0.73							
Visceral AT §											
d 13 p.p.	37.7	24.5		1.72		0.276	0.387	0.359	0.683	0.324	0.679
d 28 p.p.	33.8	22.9		1.72							

† Values presented as LS-means; CONHC, control high concentrate; CONLC, control low concentrate; NOPHC, 3-nitrooxypropanol (3-NOP) high concentrate; NOPLC, 3-NOP low concentrate. § Effects of 3-NOP, concentrate feed proportion (CFP), time relative to parturition (TIME), and interactions between them; effect of TIME with p < 0.001 for all variables. + Visceral AT = mesenteric + omental + retroperitoneal AT.

References

1. Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. *J. Dairy Sci.* **2014**, *97*, 3231–3261. [CrossRef] [PubMed]

2. Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.W.; Harper, M.T.; Weeks, H.L.; Branco, A.F.; Moate, P.J.; Deighton, M.H.; Williams, S.R.; et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. *Proc. Natl. Acad. Sci. USA* **2015**, *112*, 10663–10668. [CrossRef]

3. Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. *J. Anim. Sci. Biotechnol.* **2017**, *8*, 13. [CrossRef]

4. Dijkstra, J.; Bannink, A.; France, J.; Kebreab, E.; van Gastelen, S. Short communication: Antimethanogenic effects of 3-nitrooxypropanol depend on supplementation dose, dietary fiber content, and cattle type. *J. Dairy Sci.* **2018**, *101*, 9041–9047. [CrossRef] [PubMed]

5. Reynolds, C.K.; Humphries, D.J.; Kirton, P.; Kindermann, M.; Duval, S.; Steinberg, W. Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows. *J. Dairy Sci.* **2014**, *97*, 3777–3789. [CrossRef] [PubMed]

6. Haisan, J.; Sun, Y.; Guan, L.L.; Beauchemin, K.A.; Iwaasa, A.; Duval, S.; Barreda, D.R.; Ob, M. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. *J. Dairy Sci.* **2014**, *97*, 3110–3119. [CrossRef]

7. Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkmann, J.; Falcucci, A.; Tempio, G. *Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities*; 9789251079201; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013.

8. Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. *J. Anim. Sci.* **1995**, *73*, 2483–2492. [CrossRef]

9. Penner, G.B.; Taniguchi, M.; Guan, L.L.; Beauchemin, K.A.; Ob, M. Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue. *J. Dairy Sci.* **2009**, *92*, 2767–2781. [CrossRef]
10. Aschenbach, J.R.; Kristensen, N.B.; Donkin, S.S.; Hammon, H.M.; Penner, G.B. Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. *IUBMB Life* **2010**, *62*, 869–877. [CrossRef]

11. Drackley, J.K.; Overton, T.R.; Douglas, G.N. Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. *J. Dairy Sci.* **2001**, *84*, E100–E112. [CrossRef]

12. Gross, J.; van Dorland, H.A.; Bruckmaier, R.M.; Schwarz, F.J. Performance and metabolic profile of dairy cows during a lactational and deliberately induced negative energy balance with subsequent realimentation. *J. Dairy Sci.* **2011**, *94*, 1820–1830. [CrossRef]

13. Van Gastelen, S.; Dijkstra, J.; Binnendijk, G.; Duval, S.M.; Heck, J.M.L.; Kindermann, M.; Zandstra, T.; Bannink, A. 3-Nitrooxypropanol decreases methane emissions and increases hydrogen emissions of early lactation dairy cows, with associated changes in nutrient digestibility and energy metabolism. *J. Dairy Sci.* **2020**, *103*, 8074–8093. [CrossRef]

14. Haisan, J.; Sun, Y.; Guan, L.; Beauchemin, K.A.; Iwaasa, A.; Duval, S.; Kindermann, M.; Barreda, D.R.; Oba, M. The effects of feeding 3-nitrooxypropanol at two doses on milk production, rumen fermentation, plasma metabolites, nutrient digestibility, and methane emissions in lactating Holstein cows. *Anim. Prod. Sci.* **2017**, *57*, 282–289. [CrossRef]

15. Schilde, M.; von Soosten, D.; Hüther, L.; Meyer, U.; Zeyner, A.; Dänicke, S. Effects of 3-nitrooxypropanol and varying concentrate feed proportions in the ration on methane emission, rumen fermentation and performance of periparturient dairy cows. *Arch. Anim. Nutr.* **2021**, *75*, 79–104. [CrossRef]

16. Jayanegara, A.; Sarwono, K.A.; Kondo, M.; Matsui, H.; Ridla, M.; Laconi, E.B. Use of 3-nitrooxypropanol as feed additive for mitigating enteric methane emissions from ruminants: A meta-analysis. *Ital. J. Anim. Sci.* **2018**, *17*, 650–656. [CrossRef]

17. Melgar, A.; Welter, K.C.; Nedelkov, K.; Martins, C.M.R.R.; Harper, M.T.; Oh, J.; Räisänen, S.E.; Chen, X.; Cueva, S.F.; Duval, S.; et al. Dose-response effect of 3-nitrooxypropanol on enteric methane emissions in dairy cows. *J. Dairy Sci.* **2020**, *103*, 6145–6156. [CrossRef] [PubMed]

18. Kim, H.; Lee, H.G.; Baek, Y.C.; Lee, S.; Seo, J. The effects of dietary supplementation with 3-nitrooxypropanol on enteric methane emissions, rumen fermentation, and production performance in ruminants: A meta-analysis. *J. Anim. Sci. Technol.* **2020**, *62*, 31–42. [CrossRef]

19. Grummer, K.R. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. *J. Anim. Sci.* **1995**, *73*, 2820–2833. [CrossRef]

20. Melgar, A.; Harper, M.T.; Oh, J.; Giallongo, F.; Young, M.E.; Ott, T.L.; Duval, S.; Hristov, A.N. Effects of 3-nitrooxypropanol on rumen fermentation, lactational performance, and resumption of ovarian cyclicity in dairy cows. *J. Dairy Sci.* **2020**, *103*, 410–432. [CrossRef]

21. Gerrits, W.J.; Labussiere, E. *Indirect Calorimetry: Techniques, Computations and Applications*; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; p. 294.

22. Brouwer, E. Report of sub-committee on constants and factors. In *Proceedings of the 3rd Symposium on Energy Metabolism*; Blaxter, K.L., Ed.; Academic Press: London, UK, 1965; pp. 441–443.

23. Hammond, K.J.; Humphries, D.J.; Crompton, L.A.; Green, C.; Reynolds, C.K. Methane emissions from cattle: Estimates from short-term measurements using a GreenFeed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer. *Anim. Feed Sci. Technol.* **2015**, *203*, 41–52. [CrossRef]

24. GfE. Empfehlung zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder; Deutsche Landwirtschafts-Gesellschaft-Verlags-GmbH: Frankfurt am Main, Germany, 2001; p. 136.

25. Raschka, C.; Ruda, L.; Wenning, P.; von Steem, C.I.; Pfarrer, C.; Huber, K.; Meyer, U.; Dänische, S.; Rehage, J. In vivo determination of subcutaneous and abdominal adipose tissue deposits in German Holstein dairy cattle. *J. Anim. Sci.* **2016**, *94*, 2821–2834. [PubMed]

26. Schäfers, S.; von Soosten, D.; Meyer, U.; Drogn, C.; Frahm, J.; Kluess, J.; Raschka, C.; Rehage, J.; Tröscher, A.; Pelletier, W.; et al. Influence of conjugated linoleic acid and vitamin E on performance, energy metabolism, and change of fat depot mass in transitional dairy cows. *J. Dairy Sci.* **2017**, *100*, 3193–3208. [CrossRef]

27. III Die chemische Untersuchung von Futtermitteln. In *Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUFA-Methodenbuch)*; VDLUFA-Verlag: Darmstadt, Germany, 2006.

28. Lammers, B.P.; Buckmaster, D.R.; Heinrichs, A.J. A simple method for the analysis of particle sizes of forage and total mixed rations. *J. Dairy Sci.* **1996**, *79*, 922–928. [CrossRef]

29. DLG-Verlags-GmbH. *Futterwerttabellen-Wiederkäuer*; DLG-Verlags-GmbH: Frankfurt am Main, Germany, 1997.

30. GfE. Zur Energiebewertung beim Wiederkäuer. *Proc. Soc. Nutr. Physiol.* **1995**, *4*, 121–123.

31. Huhtanen, P.; Cabezas-Garcia, E.H.; Utsumi, S.; Zimmerman, S. Comparison of methods to determine methane emissions from dairy cows in farm conditions. *J. Dairy Sci.* **2015**, *98*, 3394–3409. [CrossRef] [PubMed]

32. Manafiazar, G.; Zimmerman, S.; Basarab, J.A. Repeatability and variability of short-term spot measurement of methane and carbon dioxide emissions from beef cattle using GreenFeed emissions monitoring system. *Can. J. Anim. Sci.* **2016**, *96*, 118–126. [CrossRef]

33. Chwalibog, A.; Jensen, K.; Thorbek, G. Oxidation of nutrients in bull calves treated with beta-adrenergic agonists. *Arch. Tierernähr.* **1996**, *49*, 255–261. [CrossRef] [PubMed]

34. Chwalibog, A.; Tauson, A.-H.; Thorbek, G. Quantitative oxidation of nutrients in growing calves. *Z. Ernährungswiss* **1997**, *36*, 313–316. [CrossRef]
35. Blümmel, M.; Aiple, K.-P.; Steingaß, H.; Becker, K. A note on the stoichiometrical relationship of short chain fatty acid production and fermentation in vitro in feedstuffs of widely differing quality. *J. Anim. Physiol. Anim. Nutr.* **1999**, *81*, 157–167. [CrossRef]
36. Derno, M.; Nürnberg, G.; Schön, P.; Schwarm, A.; Röntgen, M.; Hammon, H.M.; Metges, C.C.; Bruckmaier, R.M.; Kuhla, B. Short-term feed intake is regulated by macronutrient oxidation in lactating Holstein cows. *J. Dairy Sci.* **2013**, *96*, 971–980. [CrossRef]
37. Derno, M.; Nürnberg, G.; Kuhla, B. Characterizing the metabotype and its persistency in lactating Holstein cows: An approach toward metabolic efficiency measures. *J. Dairy Sci.* **2019**, *102*, 6559–6570. [CrossRef] [PubMed]
38. Dijkstra, J.; Oenema, O.; van Groenigen, J.W.; Spek, J.W.; van Vuuren, A.M.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. *Animal* **2013**, *7*, 292–302. [CrossRef] [PubMed]
39. Erdmann, S.; Derno, M.; Schäff, C.T.; Börner, S.; Kautzsch, U.; Kuhla, B.; Hammon, H.M.; Tuchscherer, A.; Röntgen, M. Comparative analyses of estimated and calorimetrically determined energy balance in high-yielding dairy cows. *J. Dairy Sci.* **2019**, *102*, 4002–4013. [CrossRef]
40. Moe, P.W.; Tyrrell, H.F.; Flatt, W.P. Energetics of body tissue mobilization. *J. Dairy Sci.* **1971**, *54*, 548–553. [CrossRef]
41. Agricultural and Food Research Council (AFRC). *Energy and Protein Requirements of Ruminants: An Advisory Manual Prepared by the AFRC Technical Committee on Responses to Nutrients*; CAB Int.: Wallingford, UK, 1993; p. 183.
42. Litell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. *J. Anim. Sci.* **1998**, *76*, 1216–1231. [CrossRef] [PubMed]
43. Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. *Lancet* **1986**, *1*, 307–310. [CrossRef]
44. Van den Borne, J.J.G.C.; Heetkamp, M.J.W.; Alferink, S.J.J.; Gerrits, W.J.J. Moving from a complete energy balance towards substrate oxidation: Use of stable isotopes. In *Indirect Calorimetry Techniques, Computations and Applications*; Gerrits, W.J.J., Labussiere, E., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 87–106.
45. Caetano, M.; Wilkes, M.J.; Pitchford, W.S.; Lee, S.J.; Hynd, P.I. Energy relations in cattle can be quantified using open-circuit gas-quantification systems. *Anim. Prod. Sci.* **2018**, *58*, 1807–1813. [CrossRef]
46. Gruber, L.; Knaus, W.; Susenbeth, A.; Schwarz, F.J.; Guggenberger, T.; Fischer, B.; Speikers, H.; Steingaß, H.; Meyer, U.; Münger, A.; et al. Evaluation of the net energy for lactation system and estimation of the energy requirements of dairy cows based on a comprehensive analysis of feeding trials. *Arch. Anim. Nutr.* **2021**, *75*, 1–17. [CrossRef]
47. Agnew, R.E.; Yan, T. Impact of recent research on energy feeding systems for dairy cattle. *Livest. Prod. Sci.* **2000**, *66*, 197–215. [CrossRef]
48. Van Es, A.J.H. Feed evaluation for dairy cows. *Livest. Prod. Sci.* **1975**, *2*, 95–107. [CrossRef]
49. Tammenga, S.; Luteijn, P.A.; Meijer, R.G.M. Changes in composition and energy content of liveweight loss in dairy cows with time after parturition. *Livest Prod. Sci.* **1997**, *52*, 31–38. [CrossRef]
50. Moe, P.W. Energy metabolism of dairy cattle. *J. Dairy Sci.* **1981**, *64*, 1120–1139. [CrossRef]
51. von Soosten, D.; Meyer, U.; Piechotta, M.; Flachowsky, G.; Dänicke, S. Effect of conjugated linoleic acid supplementation on body composition, body fat mobilization, protein accretion, and energy utilization in early lactation dairy cows. *J. Dairy Sci.* **2012**, *95*, 1222–1239. [CrossRef]
52. Komaragiri, M.V.; Erdman, R.A. Factors affecting body tissue mobilization in early lactation dairy cows. 1. Effect of dietary protein on mobilization of body fat and protein. *J. Dairy Sci.* **1997**, *80*, 929–937. [CrossRef]
53. Williams, C.B.; Jenkins, T.G. A dynamic model of metabolizable energy utilization in growing and mature cattle. I. Metabolizable energy utilization for maintenance and support metabolism. *J. Anim. Sci.* **2003**, *81*, 1371–1381. [CrossRef]
54. Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. *Anim. Feed. Sci. Tech.* **2010**, *160*, 1–22. [CrossRef]
55. Reynolds, C.K.; Aikman, P.C.; Lupoli, B.; Humphries, D.J.; Beever, D.E. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. *J. Dairy Sci.* **2003**, *86*, 1201–1217. [CrossRef]
56. Bigner, D.R.; Goff, J.P.; Faust, M.A.; Burton, J.L.; Tyler, H.D.; Horst, R.L. Acidosis effects on insulin response during glucose tolerance tests in Jersey cows. *J. Dairy Sci.* **1996**, *79*, 2182–2188. [CrossRef]
57. Kraft, W.; Dürr, U.M. *Klinische Labordiagnostik in der Tiermedizin*, 7th ed.; Moritz, A., Ed.; Schattauer Verlag: Stuttgart, Germany, 2013; p. 934.