Sánchez, C., Alarcon, A., Bernstein, G.M., Sanchez, J., Pandey, S., Raveri, M., Prat, J., Weaverdyck, N., Sevilla-Noarbe, I., Chang, C., Baxter, E., Omori, Y., Jain, B., Alves, O., Amon, A., Bechtol, K., Becker, M.R., Blazek, J., Choi, A., Campos, A., Carnero Rosell, A., Carrasco Kind, M., Crocce, M., Cross, D., DeRose, J., Diehl, H.T., Dodelson, S., Drlica-Wagner, A., Eckert, K., Eifler, T.F., Elvin-Poole, J., Everett, S., Fang, X., Fosalba, P., Gruen, D., Gruendl, R.A., Harrison, I., Hartley, W.G., Huang, H., Huff, E.M., Kuepfer, N., MacCrann, N., McCullough, J., Myles, J., Krause, E., Porredon, A., Rodriguez-Monroy, M., Rykoff, E.S., Secco, L.F., Sheldon, E., Troxel, M.A., Yanny, B., Yin, B., Zhang, Y., Zuntz, J., Abbott, T.M.C., Aguena, M., Allam, S., Andrade-Oliveira, F., Bertin, E., Bocquet, S., Brooks, D., Burke, D.L., Carretero, J., Castander, F.J., Cawthon, R., Conselice, C., Costanzi, M., Pereira, M.E.S., Desai, S., Doel, P., Doux, C., Ferrero, I., Flaugher, B., Frieman, J., Garcia-Bellido, J., Gutierrez, G., Herner, K., Hinton, S.R., Hollowood, D.L., Honscheid, K., James, D.J., Kuehn, K., Marshall, J.L., Mena-Fernández, J., Menanteau, F., Miquel, R., Ogando, R.L.C., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A.A., Sanchez, E., Scarpine, V., Schubnell, M., Smith, M., Suchyta, E., Tarle, G., Thomas, D. and To, C. 2023. The Dark Energy Survey Year 3 high-redshift sample: Selection, characterization, and analysis of galaxy clustering. Monthly Notices of the Royal Astronomical Society 525 (3), 3896–3922. 10.1093/mnras/stad2402

Publishers page: http://dx.doi.org/10.1093/mnras/stad2402

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
The Dark Energy Survey Year 3 high redshift sample: Selection, characterization and analysis of galaxy clustering

C. Sánchez,1,2* A. Alarcon,3† G. M. Bernstein,2 J. Sanchez,4 S. Pandey,2 M. Raveri,5 J. Prat,6,7 N. Weaverdyck,8,9 I. Sevilla-Noarbe,10 C. Chang,6,7 E. Baxter,11 Y. Omori,6,12,7,13 B. Jain,2 O. Alves,8 A. Amon,14,15 K. Bechtol,16 M. R. Becker,3 J. Blazek,17 A. Choi,18 A. Campos,19 A. Carnero Rosell,20,21,22 M. Carrasco Kind,23,24 M. Crocce,25,1 D. Cross,1 J. DeRose,9 H. T. Diehl,26 S. Dodelson,19,27 A. Driaca-Wagner,6,26,7 K. Eckert,2 T. F. Eifler,28,29 J. Elvin-Poole,30 S. Everett,29 X. Fang,31,28 P. Fosalba,25,1 D. Gruen,32 R. A. Gr unlend,23,24 I. Harrison,33 W. G. Hartley,34 H. Huang,28,35 E. M. Huff,29 N. Kuvropatkin,26 N. MacCrann,36 J. McCullough,13 J. Myles,12,13,37 E. Krause,28 A. Porredon,38,39,40 M. Rodriguez-Monroy,41,10 E. S. Rykoff,13,37 L. F. Secco,7 E. Sheldon,42 M. A. Troxel,43 B. Yanny,26 B. Yin,19 Y. Zhang,44 J. Zuntz,40 T. M. C. Abbott,44 M. Aguena,21 S. Allam,26 F. Andrade-Oliveira,8 E. Bertin,45,46 S. Bocquet,32 D. Brooks,47 D. L. Burke,13,37 J. Carretero,48 F. J. Castander,25,1 R. Cawthon,49 C. Conselice,50,51 M. Costanzi,52,53,54 M. E. S. Pereira,55 S. Desai,56 P. Doel,47 C. Doux,2,57 I. Ferrero,58 B. Flaugher,26 J. Frieman,26,7 J. García-Bellido,59 G. Gutierrez,26 K. Herner,26 S. R. Hinton,60 D. L. Hollowood,61 K. Honscheid,38,39 D. J. James,62 K. Kuehn,63,64 J. L. Marshall,65 J. Mena-Fernández,10 F. Menanteau,23,24 R. Miquel,66,48 R. L. C. Ogando,67 A. Palmese,31 F. Paz-Chinchón,23,14 A. Pieres,21,67 A. A. Plazas Malagón,68 E. Sanchez,10 V. Scarpine,26 M. Schubnell,8 M. Smith,69 E. Suchyta,70 G. Tarle,8 D. Thomas,71 and C. To38

(DES Collaboration)

Author affiliations are shown at the end of this paper.

ABSTRACT

The fiducial cosmological analyses of imaging galaxy surveys like the Dark Energy Survey (DES) typically probe the Universe at redshifts z < 1. This is mainly because of the limited depth of these surveys, and also because such analyses rely heavily on galaxy lensing, which is more efficient at low redshifts. In this work we present the selection and characterization of high-redshift galaxy samples using DES Year 3 data, and the analysis of their galaxy clustering measurements. In particular, we use galaxies that are fainter than those used in the previous DES Year 3 analyses and a Bayesian redshift scheme to define three tomographic bins with mean redshifts around z ∼ 0.9, 1.2 and 1.5, which significantly extend the redshift coverage of the fiducial DES Year 3 analysis. These samples contain a total of about 9 million galaxies, and their galaxy density is more than 2 times higher than those in the DES Year 3 fiducial case. We characterize the redshift uncertainties of the samples, including the usage of various spectroscopic and high-quality redshift samples, and we develop a machine-learning method to correct for correlations between galaxy density and survey observing conditions. The analysis of galaxy clustering measurements, with a total signal-to-noise S/N ∼ 70 after scale cuts, yields robust cosmological constraints on a combination of the fraction of matter in the Universe Ω_m and the Hubble parameter h, Ω_m h = 0.195±0.023, and 2-3% measurements of the amplitude of the galaxy clustering signals, probing galaxy bias and the amplitude of matter fluctuations, b08. A companion paper (in preparation) will present the cross-correlations of these high-z samples with CMB lensing from Planck and SPT, and the cosmological analysis of those measurements in combination with the galaxy clustering presented in this work.

Key words: large-scale structure of Universe, cosmological parameters, galaxies: high-redshift

1 INTRODUCTION

The combination of large-scale structure (LSS) and weak gravitational lensing (WL) constitutes one of the main avenues to study
cosmology and to stress test the standard cosmological model. In recent years, several imaging surveys such as the Hyper Suprime-Cam (HSC\(^1\)), the Kilo-Degree Survey (KiDS\(^2\)), and the Dark Energy Survey (DES\(^3\)), analyzing data from more than 100 million galaxies, have used galaxy weak lensing to produce cosmological constraints that rival in precision those from CMB experiments like Planck (see Hikage et al. 2019; Heymans et al. 2021; DES Collaboration 2022 and references therein). These analyses have reported tensions between the amplitude of structures at late time and the predictions from the CMB (the so-called “S\(_8\) tension”). However, the majority of these analyses probe the Universe at low redshifts, \(z < 1\). There exist at least three reasons for this. First, due to the faint nature of high redshift galaxies, it is difficult for imaging surveys to characterize such populations, both in terms of redshift distributions and also in terms of mapping the effect of spatially varying observing conditions on the selection function. Second, it is challenging to measure shapes of high-redshift sources for galaxy lensing at sufficient signal-to-noise. And third, even if those galaxy sources could be defined, their lensing signals are still most sensitive to mass structure at \(z < 1\). On the other hand, if one can get around the first of these issues and characterize high-redshift lens galaxy samples, then the use of CMB lensing will provide a solution for the second and third problems.

The definition and characterization of galaxy samples at higher redshifts would enable a more optimal combination with CMB lensing, whose sensitivity peaks around \(z = 2\) and drops significantly at redshifts \(z < 1\). In this way, a combination of galaxy clustering and CMB lensing at high redshift would be key to cosmology in several ways. On the one hand, the regime at redshifts \(z \gtrsim 1.5\) remains largely unexplored by galaxy surveys in the context of the \(S\(_8\) tension\), and various alternative dark energy models predict deviations from the standard model at high redshifts (Bull et al. 2021), which could be tested in this way. On the other hand, being able to make this measurement is important to constrain large-scale observables like primordial non-Gaussianity, which would open the window to the physics of the early inflationary period sourcing the large-scale structures we see in the Universe today (Schmittfull & Seljak 2018). Furthermore, CMB lensing is subject to different systematic errors than galaxy lensing—the former measurement is not affected by intrinsic alignments or galaxy blending, and the redshift of the CMB is well known as opposed to the case of galaxy sources.

There exist numerous previous analyses that have explored the combination of galaxy clustering and CMB lensing to probe cosmology at redshifts \(z < 1\) (Abbott et al. 2019; Marques & Bernui 2020; Hang et al. 2021; Alonso et al. 2021; Chang et al. 2022). Some analyses have also used the combination to probe cosmology at higher redshifts. In particular, the analysis of the unWISE sample (Schlafly et al. 2019; Krolewski et al. 2020, 2021) provided such measurements in three broad redshift bins, the last one with a median redshift around \(z = 1.5\). Also, the HSC survey has explored much higher redshift regimes using dropout galaxies over smaller areas (Ono et al. 2018; Harikane et al. 2018), probing the Universe at the 4 < \(z < 7\) regime (Miyatake et al. 2022).

For the particular case of the Dark Energy Survey, the analysis of Year 3 (Y3) data has so far used two different lens galaxy samples, MacLm and \(\text{r}e\text{dMaGIC}\) (Porredon et al. 2021a; Pandey et al. 2022; DES Collaboration 2022). The MacLm sample is a magnitude-limited galaxy selection, split into six redshift bins using the Directional Neighborhood Fitting (DNF) algorithm (De Vicente et al. 2016), and the first four bins of the sample, covering an approximate redshift range \(0 < z < 1\), were used as the fiducial lens sample in the DES Y3 analysis. The \(\text{r}e\text{dMaGIC}\) (Rozo et al. 2016) is a sample of bright Luminous Red Galaxies (LRGs), covering a similar redshift range in five redshift bins, and was used in Y3 as an alternative lens sample.

In this work we push the limits of the DES Y3 data to explore the regime at redshift \(z > 1\). To this end, we select and characterize “high-redshift” (high-\(z\)) samples of galaxies in the DES wide-field survey. This includes the estimation of the redshift distributions of the samples and their uncertainties, corrections for variations in completeness across the survey footprint due to varying observing conditions, and characterization of the lens magnification coefficients of the samples. The definition and characterization of these high-\(z\) samples differs from the process used for the fiducial DES Y3 lens samples (Porredon et al. 2021a; Pandey et al. 2022) in several ways:

(i) We start from a fainter galaxy selection, already excluding all lens galaxies used in the DES Y3 fiducial analysis.

(ii) Both the selection and redshift characterization of the samples are based on a Bayesian scheme using Self-Organizing Maps (SOMs), and we use a new SOM algorithm, better suited for lower S/N galaxies (different than that used in Myles et al. 2021).

(iii) We use a different redshift marginalization scheme, explicitly accounting for uncertainties in low-redshift tails of the redshift distributions.

(iv) We use a non-linear, machine-learning-based approach to account for correlations in the galaxy number density with survey observing properties.

Steps (i) and (ii) are the ones responsible for the selection of high redshift galaxies, while steps (iii) and (iv) are necessary because of that faint, high redshift selection. The definition and characterization of the high-\(z\) sample in this work is followed by the analysis of the clustering measurements of the galaxies in the sample. The clustering measurements are used to place constraints on the cosmological model, in particular as the shape of the clustering signal is sensitive to the scale of matter - radiation equality in the mass power spectrum, which in turn depends on a combination of the matter density \(\Omega_m\) and the Hubble constant \(h\), close to the direction \(\Omega_m h\) (see e.g. Philcox et al. 2021).

The high-\(z\) samples defined in this work, given their redshift range and sky density, will make excellent lens galaxy samples for CMB lensing. In this way, this paper will be followed by a companion paper (in preparation) that will present the cross-correlations between these high-\(z\) samples and CMB lensing from Planck (Planck Collaboration 2020) and the South Pole Telescope(Carlstrom et al. 2011), and use the combination of clustering and CMB lensing to place constraints on the cosmological model using information from high redshift.

This paper is organized as follows. Section 2 describes the different data products used for the analysis. Section 3 describes the redshift inference scheme and the method to select tomographic bins. Section 4 describes the way we correct for correlations between galaxy density and survey observing properties. Section 5 presents the characterization of redshift uncertainties, and the parametrization we use to marginalize over them in the clustering analysis. Section 6 describes the characterization of lens magnification for the high-\(z\) samples. Finally, section 7 presents the measurements and analysis of galaxy clustering, and we conclude in Section 8.
2 DATA

In this section we describe and motivate the different data samples to be used in this work. We begin with the DES Y3 wide-field data, which will contain our high-z samples, and then describe other data sets needed for the characterization of those samples: the DES deep-field data, and the external data used for redshift characterization.

2.1 DES wide-field data

The high-z samples are subsets of the DES Year 3 Gold catalogue of photometric objects (Sevilla-Noarbe et al. 2021), which has a total of nearly 400 million objects in about 5000 sq. deg. of area, covering the entire DES footprint. After removing stars and applying quality cuts (following Sevilla-Noarbe et al. 2021), the catalog consists of ~227 million galaxies. For these objects, we use single-object-fitting (SOF) photometry in the griz bands, which have magnitude limit (defined as the average SOF magnitude at S/N = 10) of 23.8, 23.6, 23.0 and 22.4, respectively. We apply an initial i-band magnitude "pre-selection" of 22 < i < 23.5. The lower limit of this cut removes bright galaxies that are unlikely to be at redshifts z > 1, and the faint limit excludes the region of magnitude space where the DES Y3 Gold catalog becomes highly incomplete. Please note that, even with the i < 23.5 cut, this selection includes galaxies measured with S/N < 10 in the i band, pushing the limits of the DES Y3 sample, and therefore the completeness of the sample has significant spatial variations. The characterization of that spatial completeness is a key aspect of this work, and is described in Section 4.

For the pre-selected sample, we apply the standard DES Y3 mask, which includes masking of astrophysical foregrounds (e.g. bright stars and large nearby galaxies) and of regions with recognized data processing issues, as described in Sevilla-Noarbe et al. (2021). Given that we are pushing the limits of DES Y3 photometry, we apply some additional conservative cuts on the mask to avoid regions where our completeness corrections would be less reliable: we remove the 3% of the footprint area with the highest stellar density, the 3% with the highest (worst) g-band seeing, and then we remove the worst 10% area in photometric depth, exposure times and sky brightness in each of the griz bands, some of which are correlated. After applying this mask, the 22 < i < 23.5 pre-selected galaxy sample has a total of 77 million galaxies in 2621 sq. deg. of area. For comparison, the fiducial DES Y3 analysis uses 4143 sq. deg. of total area.

The analysis presented here will be followed by a companion paper (in preparation) that will combine the clustering measurements shown here with CMB lensing measurements from the Planck satellite and the South Pole Telescope (SPT). Due to SPT data being available only in the south region of the DES Y3 footprint, we will split the sample in this work into two independent regions, "North" (DEC > -39°) and "South" (DEC < -40°), and test for the consistency of the two. For that test, we choose to leave a separation of 1 degree between the two regions, which corresponds to the maximum angular separation used later on in the galaxy clustering measurements. A similar separation of the DES footprint was made in the analyses studying CMB lensing for the fiducial DES Y3 sample (Abbott et al. 2019; Omori et al. 2019a,b; Baxter et al. 2019).

2.2 DES deep-field data and artificial wide-field data

The scheme for redshift selection and characterization, described in detail in Section 3, makes extensive use of DES deep-field data, described extensively in Hartley et al. (2022). In short, we use four deep fields, named E2, X3, C3, and COSMOS (COS), covering areas of 3.32, 3.29, 1.94, and 1.38 square degrees, respectively (see Fig. 2 in Myles et al. 2021 for a visual description). After masking regions with artefacts such as cosmic rays, artificial satellites, meteors, and regions of saturated pixels, 5.2 square degrees of overlap with the UltraVISTA and VIDEO near-infrared (NIR) surveys (McCracken et al. 2012; Jarvis et al. 2013) remain. This yields 2.8M detections with measured ugrizJHK_s photometry with limiting magnitudes 24.64, 25.57, 25.28, 24.66, 24.06, 24.02, 23.69, and 23.58, substantially fainter than the faintest galaxies in the sample of source galaxies. In this work we frequently refer to this sample and its photometry as deep (field) data.

So far we have described the wide-field DES data to be used over the full footprint and a set of deep-field photometry over a smaller area. In order to establish the relationship between these two data sets we use the BALROG (Suchyta et al. 2016) software, which injects simulated galaxies based on the DES deep fields into real images from DES wide-field observations. For this analysis, BALROG was used to inject model galaxies, with profiles fit to deep-field galaxies, into the wide-field footprint (Everett et al. 2022). After injecting galaxies into images, the output is analyzed by the DES Y3 photometric pipeline (Morganson et al. 2018). Each deep-field galaxy is injected multiple times at different positions in the footprint. The resulting matched catalogue of 3,194,291 injection-realization pairs, which contains both deep and wide photometric information, is a key part of our redshift calibration scheme since it quantitatively connects the two photometric spaces. This catalogue will be referred to as the Deep/BALROG Sample, and contains a total of 432,657 unique deep-field galaxies having at least 1 BALROG realization that passes the wide-field selection criteria.

Because we will use the BALROG sample to establish the relationship between wide and deep photometry in DES Y3, it is important that BALROG wide-field detections follow similar photometric distributions to the actual DES Y3 wide-field data in the Gold sample. Figure 1 shows the distribution of colors in the DES Y3 photometry for the data (Gold) and for the artificial realizations of deep galaxies (Balrog) for the pre-selected sample described in §2.1 (22 < i < 23.5). As desired, the color distributions of data and artificial realizations of deep galaxies are in excellent agreement.

2.3 Redshift data

Our analysis relies on the use of galaxy samples with known redshift and deep-field photometry. To this end, we use catalogues of both high-resolution spectroscopic and multi-band photometric redshifts, and we develop an experimental design that allows us to test uncertainty in our redshift calibration due to biases in these samples. The spectroscopic catalogue we use contains both public and private spectra from the following surveys: zCOSMOS (Lilly et al. 2009), C3R2 (Masters et al. 2017, 2019; Stanford et al. 2021), VVDS (Le Fèvre et al. 2013), and VIPERS (Scodégio et al. 2018). We use two multi-band photo-z catalogues from the COSMOS field (Scoville et al. 2007): the COSMOS2015 30-band photometric redshift catalogue (Laigle et al. 2016), which includes 30 broad, intermediate, and narrow bands covering the UV, optical, and IR regions of the electromagnetic spectrum, and the PAU+CLESOS 6-band photometric redshift catalogue (Alarcon et al. 2021) from the combination of PAU Survey data (Padilla et al. 2019; Eriksen et al. 2019) in 40 narrow-band filters and 26 COSMOS2015 bands excluding the mid-
We build a redshift calibration sample in the deep fields from the overlapping redshift information we find in these surveys. We prioritize information coming from spectroscopic surveys (S), then PAUS+COSMOS (P) and finally COSMOS2015 (C), and we call this redshift sample SPC4. We use different samples to estimate the different terms in it, as we describe next:

(i) $p(\hat{c}|\hat{s})$ is computed from our wide sample, which consists of all galaxies in the DES Year 3 Gold catalog passing the pre-selection performed in Section 2 ($22 < i < 23.5$).

(ii) $p(c|\hat{c}, \hat{s})$ is computed from our Deep and BALROG Samples, which consist of all detected and selected BALROG realisations of the galaxies in the Deep Sample. We call this term the transfer function.

(iii) $p(z|c, \hat{b}, \hat{s})$ is computed from the Redshift Sample subset of the Deep Sample, for which we have reliable redshifts, 8-band deep photometry, and wide-field BALROG realisations5. The redshift scheme followed in this work is similar to that used in Myles et al. (2021) for the selection and characterization of weak lensing source galaxy samples, but there exist some important differences:

- We perform a pre-selection cut on our sample of $22 < i < 23.5$, to remove bright galaxies at low redshift and low S/N faint galaxies, cutting the bright end of the $18.5 < i < 23.5$ used in Myles et al. (2021).

- In this work we use DES $griz$ wide photometry, while the analysis in Myles et al. (2021) uses riz information only.

4 An identical notation was used in Myles et al. (2021).

5 This term could, in principle, be computed from the overlapping photometry of the deep and wide fields. However the region where these samples overlap is small and it is not representative of the observing conditions found across the whole survey footprint, which are much more well sampled by making use of BALROG.
• We also use a different SOM algorithm, improved to better handle the classification of lower-S/N galaxies. This will be described in detail in §3.1.

• The tomographic bins for this work are selected using both the mean redshifts of the Wide SOM cells and also their estimated low-redshift fraction, to avoid having large low-z tails in the tomographic bins. The selection in Myles et al. (2021) relies only on mean redshift information.

3.1 The Deep SOM

In this work we use a Self-Organizing Map (SOM) to characterize and discretize the deep photometric space, described in §2.2. The SOM algorithm uses unsupervised learning to project the 8-dimensional deep photometric data ($ugrizJHK_s$) onto a lower-dimensional grid, in our case a 2-dimensional grid, while attempting to preserve the topology of the 8-dimensional space. This means that similar objects in the 8-D space will be grouped together in the SOM, enabling a visual understanding of features, especially in a 2-D SOM. Each of the cells in the Deep-SOM 2-D grid will be considered a galaxy phenotype in our scheme.

There is considerable flexibility in the implementation of the SOM algorithm. We alter the SOM algorithm from that used in previous DES analyses (such as Myles et al. 2021; Giannini et al. 2022) with the purpose of improving the classification of galaxies of the low- and modest-S/N photometry used in this work. This is done by altering the distance metric used by the SOM algorithm to incorporate flux uncertainties. We also allow magnitude (or flux) information, not just colors, to be used in redshift estimation, and we do not impose periodic boundary conditions on the map. This SOM algorithm was introduced and is described in detail in the Appendix of Sánchez et al. (2020).

There is also flexibility in the size of the SOM. A larger number of SOM cells can improve the representative power of the map, and hence can be used to describe more complex spaces and resolve finer redshift distinctions. Using too many cells can, however, cause over-fitting, with the map modeling noisy features of the data. The Deep SOM in this work uses a 48×48 SOM. For comparison purposes, the Deep SOM describing the DES Year 3 space in Myles et al. (2021) was 64×64 in size. We use a smaller SOM size since the wide-field pre-selection cut of $22 < i < 23.5$ we apply to our sample reduces the volume of our wide-field photometric space, and our Deep SOM only uses deep galaxies whose Balrog injections have passed this criteria at least once (see §2.2).

Figure 2 shows several properties of the Deep SOM used in this work. It is worth noting that the particular structure of the map depends on randomized initial conditions and training, but the overall topological structure will be similar across different runs. The figure shows different photometric properties of the SOM, mapping colors and i-band magnitude. The $u - g$ color mapping shows how most of the map has a near-constant value of $u - g$, but there are well-defined areas showing strong positive (red) values of $u - g$, corresponding to breaks in the spectrum of galaxies such as the Lyman and Balmer breaks (these behavior is also seen in other SOM analyses such as Masters et al. 2015). The $z - J$ color shows a different structure across the map, showing variation across the regions where $u - g$ was constant and close to zero. We also show the mapping of i-band magnitude across the map. In this case, it is worth noting that even though our target sample has a selection of $22 < i < 23.5$, galaxies fainter than $i = 23.5$ have a non-zero probability of being selected in our sample because of noise fluctuations. Since we are including in the Deep SOM all deep galaxies whose artificial injections make the selection at least once, that means that we include some galaxies as faint as $i = 25$.

Figure 2 also shows the Deep SOM galaxy occupation, $n(c)$, the density of galaxies as a function of position in the deep photometric space probed by the SOM. Perhaps most importantly, the lower left panel shows the redshift mapping of the Deep SOM. For this panel we use the subset of deep galaxies that have a match in the SPC redshift sample (described in §2.3), and compute the mean redshift of the galaxies occupying each SOM cell. This plot depicts a smooth mapping of redshift in the SOM, reasonably smoother than the mapping of some colors or magnitudes, even though redshift information is never used in the SOM training.

Since we are mainly concerned about high redshift in this work, it is interesting to explore the regions of the map that correspond to that regime. There exist two main areas of high-z galaxies in the SOM. There is a first high-z region in the upper-right part of the SOM, with a smooth gradient to middling redshifts in the central part of the map. Figure 2 shows the upper high-z region to have a small $u - g$ color (no break between the u and g bands), with positive and smoothly varying $z - J$ color, and faint magnitudes in the i band. There is a second “island” in the lower center of the SOM where very-high-z galaxies live, surrounded by low redshift galaxies. This region has large (red) $u - g$ color and also large (faint) i-band magnitude, i.e. is the part of photometric space where we encounter Lyman-break galaxies at high redshift. It also hosts faint Balmer-break galaxies at low redshift, and these two galaxy populations are known to present important degeneracies in the color-redshift relation. That degeneracy is also responsible for a large redshift scatter in that part of the SOM. Finally, regarding the redshift mapping of the Deep SOM, it is important to point out that the vast majority of cells in the map contain galaxies from the SPC redshift sample, with only a four cells (out of 2304) containing no redshift information. In §5, when we characterize the redshift uncertainties in the defined tomographic bins, we will use the Balrog sample to estimate how the tomographic bin photometric spaces map into the Deep SOM, and quantify the (small) impact of deep galaxies in cells with no redshift information.

3.2 The Wide SOM

We now turn to characterizing the DES wide space, using the same SOM algorithm as for the deep space. We now use $griz$ DES wide photometry as described in §2.1 to construct a Wide SOM having 22×22 cells. By comparison, the Wide SOM describing the DES Year 3 space in Myles et al. (2021) was 32×32 in size and was constructed using riz photometry (because the g-band was not used for galaxy selection in the weak lensing analysis). We use a smaller SOM size due to the pre-selection cut of $22 < i < 23.5$ applied to our wide-field sample. Figure 3 shows the photometric properties of...
the Wide SOM, including the mapping of i-band magnitude and the three observed colors.

Given the characterization of galaxy phenotypes in the Deep SOM and its redshift mapping using the SPC redshift sample, we can use the BALROG sample to characterize the redshift mapping of the Wide SOM using Eq. (1). This equation yields a probability density function for the redshift of each Wide SOM cell, using the redshift mapping of the Deep SOM with the SPC redshift sample and the transfer function between Wide and Deep spaces characterized with the Balrog sample. This is shown in the lower left panel of Fig. 3, where we can see a good separation between low- and high-z regions in the Wide SOM, and now we can use this redshift mapping of the Wide SOM to perform the selection of our redshift bins.

3.3 Selecting tomographic bins

Since each Wide galaxy can be placed in a cell of the Wide SOM, and we have an estimate of the redshift distribution $n(z|\hat{c})$ within each Wide SOM cell, we can construct tomographic bins as groups of Wide SOM cells. With the goal of constructing tomographic bins at high redshift with the least possible low-redshift contamination, we compute the mean redshift of each Wide SOM cell and the fraction of the redshift distribution at low redshift $z < 0.5$. We choose to define 3 tomographic bins at mean redshifts around 0.9, 1.2 and 1.5 that minimize the low redshift contamination, as described in Fig. 4. Using this procedure, the resulting cells in the Wide SOM that make up each redshift bin are depicted in the lower right panel of Fig. 3. From that representation, we see how the first redshift bin comes from the upper right part of the Wide SOM and hence contains galaxies with strong (red) $u - g$ and $g - r$ colors, and as the selection moves to the second and third redshift bins the corresponding galaxies will have smaller (blue) $u - g$ colors and fainter i-band magnitudes (the average i-band magnitude for bins 0, 1, 2 is 22.6, 22.9 and 23.1, respectively). To visualize these trends directly, Fig. 5 shows a small random sample of galaxy images images from each of the redshift bins, which confirm the characteristics of each bin inferred from the Wide SOM in Fig. 3.

It is notable that the wide-SOM cells \hat{c} selected for the high-z sam-
Given these tomographic bin selections as lists of Wide SOM cells, we can now use Eq. (4) to estimate the redshift distribution of each of these bins. Figure 6 shows the three resulting redshift distributions, and compares them with the four tomographic bins of the fiducial DES Year lens galaxy sample, the so-called MagLM sample (Porredon et al. 2021a). As apparent from that figure, the three tomographic bins defined in this work significantly extend the redshift range probed by the DES Year 3 Fiducial lens galaxy sample. Besides extending the redshift range, the three tomographic bins from this work also provide larger number of galaxies and galaxy number densities than the MagLM fiducial DES lens sample, and also the rιnMAGiC lens galaxy sample (Pandey et al. 2022) (see Table 1). The characterization of the uncertainties associated with these three redshift distributions, and the way we will parametrize such uncertainties, will be described in detail in Section 5.

4 CHARACTERIZING THE COMPLETENESS OF THE SAMPLES IN THE FOOTPRINT

Due to the faint, low-S/N nature of the galaxies in the three tomographic bins defined in Section 3, it is expected that their selection function will fluctuate across the survey footprint because of varying observing conditions (such as exposure time, seeing, airmass) and also due to astrophysical fluctuations (such as stellar density or extinction). These variations in the selection function will induce correlations between galaxy density and survey properties for the different tomographic bins. Any such fluctuations will induce spurious signal in the measurement of galaxy clustering, exacerbated by patterns in e.g. survey observing strategies or Galactic structure. We must correct the high-z density maps for the survey selection function if we want to recover accurate measures of the high-z intrinsic galaxy clustering.

These kind of corrections due to varying observing properties have been studied extensively in DES and elsewhere (Leistedt et al. 2016a; Ross et al. 2017; Elvin-Poole et al. 2018; Weaverdyck & Huterer 2021; Rodríguez-Monroy et al. 2022). In many of these cases, the relationship between survey properties and galaxy selection rates was close to linear, and therefore the correction methodologies assumed a linear relationship. The samples in this work, however, present significant non-linearities in that relationship. We therefore introduce a non-linear, neural-network-based approach for characterizing the completeness of the sample with respect to the different survey properties (see Rezaie et al. 2020 for a similar approach applied to the DECaLS DR7 data sample).

In this section we describe the different survey properties we consider, the methodology used to correct for their correlations with galaxy density for the different tomographic bins, and the validation of the results. The outcome of this procedure will be a derived correction weight for each galaxy in the different tomographic bins, inverse to the selection rate in its vicinity. This weight will then be used throughout the analysis, for the characterization of redshift distributions and uncertainties in Section 5, for the estimation of lens magnification in Section 6, and for the calculation of correlation functions in Section 7.

4.1 Maps of survey properties (SP)

The DES collaboration develops spatial templates for different observing conditions and potential contaminants in the survey footprint by creating HealPix (Gorski et al. 2005) sky maps (at $\text{NSIDE} = 2048$).

Table 1. Summary description of the lens galaxy samples defined using DES Year 3 data, as a comparison to the samples defined in this work. The fiducial lens sample in the DES Year 3 analysis consists of the first four MagLM bins. The other two MagLM bins and the rιnMAGiC sample bins are marked in red as they were not part of the fiducial analysis. The table shows N_{gal} as the number of galaxies in each redshift bin, n_{gal} as the galaxy number density in units of gal/arcmin2, and $\langle z \rangle$ as the mean redshift of each bin.

Redshift bin	N_{gal}	n_{gal}	$\langle z \rangle$
DES Year 3 Fiducial MagLM sample			
0	2 236 473	0.150	0.30
1	1 599 500	0.107	0.46
2	1 627 413	0.109	0.62
3	2 175 184	0.146	0.77
4	1 583 686	0.106	0.89
5	1 494 250	0.100	0.97

DES Year 3 rιnMAGiC sample
0
1
2
3
4

DES Year 3 High-z sample (This work)
0
1
2

... and also due to astrophysical fluctuations (such as stellar density or extinction). These variations in the selection function will induce spurious signal in the measurement of galaxy clustering, exacerbated by patterns in e.g. survey observing strategies or Galactic structure. We must correct the high-z density maps for the survey selection function if we want to recover accurate measures of the high-z intrinsic galaxy clustering.

These kind of corrections due to varying observing properties have been studied extensively in DES and elsewhere (Leistedt et al. 2016a; Ross et al. 2017; Elvin-Poole et al. 2018; Weaverdyck & Huterer 2021; Rodríguez-Monroy et al. 2022). In many of these cases, the relationship between survey properties and galaxy selection rates was close to linear, and therefore the correction methodologies assumed a linear relationship. The samples in this work, however, present significant non-linearities in that relationship. We therefore introduce a non-linear, neural-network-based approach for characterizing the completeness of the sample with respect to the different survey properties (see Rezaie et al. 2020 for a similar approach applied to the DECaLS DR7 data sample).

In this section we describe the different survey properties we consider, the methodology used to correct for their correlations with galaxy density for the different tomographic bins, and the validation of the results. The outcome of this procedure will be a derived correction weight for each galaxy in the different tomographic bins, inverse to the selection rate in its vicinity. This weight will then be used throughout the analysis, for the characterization of redshift distributions and uncertainties in Section 5, for the estimation of lens magnification in Section 6, and for the calculation of correlation functions in Section 7.

4.1 Maps of survey properties (SP)

The DES collaboration develops spatial templates for different observing conditions and potential contaminants in the survey footprint by creating HealPix (Gorski et al. 2005) sky maps (at $\text{NSIDE} = 2048$).
Figure 5. Visualization of color images of random galaxies from each of the three redshift bins defined in §3.3. As apparent from Fig. 3, the first bin is made predominantly of red galaxies and then the selection moves to bluer and fainter galaxies for the second and third bin.

Figure 6. Comparison of the redshift distributions used in the fiducial DES Year 3 lens galaxy sample (MacLIM, upper panel) with the redshift distributions of the three tomographic bins defined in this work (§3.3, bottom panel). The three high-z redshift bins defined in this work considerably extend the lens redshift range probed by the DES Year 3 data sample. The number of galaxies, galaxy density and mean redshift of these samples can be found in Table 1.

4096, corresponding to a pixel resolution of 0.86 arcmins; see Leistedt et al. 2016b for details on the implementation). We will refer to these maps as survey property maps (or “SP maps”) and we will use them to characterize and remove any possible correlations with the observed density fields of each tomographic bin. In particular, in this analysis we consider maps of the following survey observing properties, each of them having a different map for each observed photometric band griz:

- **Depth**: Mean survey depth, computed as the mean magnitude for which galaxies are detected at $S/N = 10$.

- **Sky variance**: Estimated sky brightness, or more precisely, the standard deviation of sky pixels due to shot noise and read noise, measured in units of electrons/second/pixel.

- **Exposure time**: Total exposure time at a given point in the survey footprint, measured in seconds.

- **Airmass**: Mean airmass, computed as the optical path length for light from a celestial object through Earth’s atmosphere (in the secant approximation), relative to that at the zenith for the altitude of the telescope site.

- **Seeing**: Mean seeing, measured in arcseconds, computed as the full width at half maximum of the flux profile.

Those make 20 SP maps of observing properties. Additionally, we consider two maps of potential contaminants:

- **Galactic extinction**: We use the SFD dust extinction map from Schlegel et al. (1998), which measures the $E(B-V)$ reddening, in magnitudes.

- **Stellar density**: We use a map of stellar density, in deg$^{-2}$, using stellar sources from Gaia EDR3 (Gaia Collaboration 2021). This amounts to a total of 22 survey property maps that we will use in this analysis. For a technical description of these survey observing properties, please see Sevilla-Noarbe et al. (2021); Rodríguez-Monroy et al. (2022); Leistedt et al. (2016b). In principle, these SP’s should be a complete list of all factors that could affect galaxy detectability. The images themselvesshould be completely specified by the passband (which is constant, with very minor airmass variation), the background noise level of the images (a.k.a. sky brightness), the PSF (primarily seeing FWHM), and the shot noise from the sources (primarily exposure time). The Galactic dust and stellar background are the two astrophysical effects expected to alter the detectability of background galaxies. The depth map should be redundant but we include it to perhaps ease the task of training the neural network.

4.2 Correction method

We aim to model the relationship between the survey property maps defined above and the observed galaxy count maps for each of the tomographic bins defined in §3. For this, we will use a neural network (NN), with the 22 SP maps being the features and the observed galaxy count maps being the label. Naturally, the network will be able to model a nonlinear relationship between the SP maps and the raw galaxy counts. It is important to note, however, that we do not include any spatial information in the process, since we do not want the network to learn about the clustering of galaxies.

The neural network is asked to predict whether or not a particular
Healpixel (at the same $\text{NSIDE} = 4096$ resolution) contains any galaxies [that is, $p(n \geq 1)$] based on the SP values for that pixel. Note that this ignores any distinctions between Healpixels with $n = 1$ vs $n = 2$ or more galaxies. This helps prevent the network from learning any intrinsic galaxy clustering, since Healpixels with large number of galaxies are likely to be due to intrinsic density peaks rather than survey observing properties. At the resolution of $\text{NSIDE} = 4096$, most pixels contain either zero or one galaxies (the average number of galaxies per pixel for bins 0, 1 and 2 is 0.307, 0.200 and 0.187, respectively). The loss function for the network is the binary cross-entropy between the predicted pixel occupancy and the occupancy of the training set.

The architecture of the network is based on our guess that the selection function scales primarily as some power law combination of the SPs. To this end, the input SP values are all logarithmically scaled (except those, such as depth, which are already logarithmic quantities), and the output of the network is exponentiated to form the selection probability. The network output is a sum of two branches: the first branch is a simple linear combination of the 22 scaled SP’s, since we expect this to capture most of the functional variation. The second branch is intended to capture departures from a simple power law: it takes the input layer of 22 dimensions through 3 hidden layers of 64, 32 and 4 fully connected neurons, respectively, and a single neuron on the output layer, each with relu activation. The output of the network, for each tomographic bin, consists of a single value for each Healpixel within our mask, which will be used to weight the galaxies accordingly. Figure 7 shows the resulting weight maps for each tomographic bin, as well as four examples of survey property maps.

To prevent the network from overfitting, it is constructed with k-fold cross-validation, which works in the following way: The $\text{NSIDE} = 4096$ maps are re-binned into a coarser grid of $\text{NSIDE _split} = 16$ (with a resolution of about 4 degrees). We then randomly divide these cells into k equal-area groups. To derive the weights for a given fold k, we train the NN on the other folds, using fold k as a validation sample (the training halts when the training metric no longer improves on the validation set). This cross-validation scheme will only work to prevent overfitting on scales below the resolution defined by NSIDE _split, in this case around 4 degrees. A test using the corrected and uncorrected galaxy clustering of log-normal mock catalogs demonstrated no overfitting from the method at scales below 1 degree, and an impact of around 5% overfitting at scales of 2 degrees. Being conservative, we keep the galaxy clustering analysis in this work to angular scales below one degree.

4.3 Validation of the derived correction weights

Different survey property maps show significant correlations with the raw galaxy density in each of the tomographic bins. Using the neural network implementation described above, Figure 8 shows these correlations, and how the derived set of weights is able to correct for any correlations between SP maps and galaxy density. Figure 8 shows only a limited number of examples of these correlations, for easier visualization, but we also compute the χ^2 for the null hypothesis for all correlations between the 22 SP maps and the corrected galaxy density, using a jackknife approach to estimate the corresponding uncertainties. The distribution of these null χ^2 values, for each of the tomographic bins, can be found in Fig. 9, and we do not find evidence of significant correlations between the SP maps and the corrected (weighted) galaxy density. The median null χ^2 values for the corrected case in the three tomographic bins are 11.6, 3.4 and 7.5 for 10 degrees of freedom. On the other hand, for the raw, uncorrected case the median null χ^2 values for the three bins are 92.1, 35.0 and 51.6 for 10 degrees of freedom, clearly inconsistent with the null hypothesis.

Beyond being successful at correcting for all the correlations between galaxy density and survey property maps, we need to ensure the derived neural network weights did not learn any physical galaxy clustering at the training phase. For that purpose, we compute the cross-correlation between the weight maps as shown in Fig. 7 and several tracers of the large-scale structure of the Universe. In particular, in this work we perform the correlation of the three weight maps.
Figure 8. Visualization of the correlation between survey properties (SP) and the observed galaxy density (relative to the mean galaxy density over the full footprint), before (red) and after (blue) the correction using the galaxy weights described in §4.2. We show this relationship for depth, exposure time (in seconds), sky variance (in electrons/s/pixel) and seeing (in arcseconds), all estimated in the i-band, and also with stellar density (in stars/deg2), in 10 bins of equal area. The uncertainties come from jackknife resampling, and the gray shaded region in the plot corresponds to a 1% deviation. The distribution of the null χ^2 values for these relationships, including all the 22 SP maps and for each of the tomographic bins, can be found in Fig. 9.

Figure 9. Distribution of the null hypothesis χ^2 values for the relationship between survey property maps and the corrected (weighted) galaxy density, including all the 22 SP maps and for each of the tomographic bins. The median null χ^2 values in the three tomographic bins are 11.6, 3.4 and 7.5 for 10 degrees of freedom. For the raw, uncorrected case the median null χ^2 values for the three bins are 92.1, 35.0 and 51.6 for 10 degrees of freedom.

Table 2. Values of χ^2/dof for different correlations between galaxy weights and tracers of the large-scale structure of the Universe, for the three high-z bins defined in this work. We find no significant correlations between weight maps and LSS tracers.

Tracer	Bin0	Bin1	Bin2
Planck CMB lensing	9.6/9	6.4/10	6.8/10
DES Mass Map	8.2/9	9.9/10	16.1/10
Planck Compton γ	7.3/9	5.9/10	2.7/10

At this point we have now tested for the correlation of the weighted galaxy density with SP maps and the correlation of weight maps with known tracers of structure, and found a null signal in both cases. These tests are necessary, but not sufficient, to show that our corrections are not imposing a significant bias on the clustering measurements, as it is still possible that the residuals in the estimation of the weight maps could affect the clustering measurements. To account for this potential effect in the clustering analysis, we will marginalize over an additive constant in the correlation function, as done in e.g. Kwan et al. (2017) (see also Ross et al. 2011). This procedure, which will be described in Section 7.3, will account for a potential spurious systematic effect in the clustering at first order, and it is a conservative way to marginalize over this uncertainty in the analysis. In that section we will also explore the impact of the choice of maximum angular scale in the galaxy clustering measurements.
5 CHARACTERIZING REDSHIFT UNCERTAINTIES

In this section we will describe the various sources of uncertainty in the distributions of redshift $N(z)$ within each of the three bins defined in §3.3, and how we will propagate them into cosmological analyses. We will follow a similar procedure to that in Myles et al. (2021), and propagate uncertainty arising from: (i) sample variance (SV) and shot noise (SN) from the finite area covered by the deep fields; (ii) biases in the individual redshift estimates of deep-field galaxies having multi-band photometry (COSMOS2015 and PAUS+COSMOS) but no spectroscopic redshift (PZ); (iii) uncertainty in the photometric calibration (zero-point) of deep-field galaxies (ZP); and (iv) uncertainties from the “bin conditionalization” approximation in Eq. (B6) (BCE).

To model SV and SN, we use the approximate 3sDir model (a product of three Dirichlet distributions), first presented in Sánchez et al. (2020) and then further developed in Myles et al. (2021). Mathematically the model describes $p(f_{zc} | N_{zc}) \approx 3sDir$, where N_{zc} are the number counts of galaxies that have been observed to be at redshift bin z and colour phenotype c, and with (f_{zc}) a finite set of coefficients indicating the probability in the redshift bin z and color phenotype c, where $\sum_{zc} f_{zc} = 1$ and $0 \leq f_{zc} \leq 1$. For extensive details of the model we refer the interested reader to Appendices D and E in Myles et al. (2021). The 3sDir method yields realizations of the f_{zc}, which then can be summed into Eq. (B6) to yield $N(z)$ estimates. The mean of these realizations is the fiducial $N(z)$.

We smooth the fiducial $N(z)$ distribution with a Savitzky–Golay filter: sample variance and shot noise from the small area of the calibration deep fields manifests in the $N(z)$ as rapid fluctuations in redshift and enter squared in the galaxy clustering signal, while the true redshift distribution over a larger area is smoother as these variations average out. We try different smoothing lengths and find compatible constraints on the main parameters of interest (see Appendix B6).

Deviations from the nominal $N_l(z)$ will be modeled with three parameters: a shift Δz^f_l, a stretch parameter $\sigma_z^f_l$, and an adjustment A_{low}^f of the low-redshift tail of $N_l(z)$. The main peak of the distribution is altered according to

$$N(z) \rightarrow N(z) + n(z) A_{\text{low}}^f \cdot \Delta z^f_l \cdot \sigma_z^f_l$$

(5)

and the fraction of galaxies at low redshift ($z < 0.5$) is altered as

$$n(z) \rightarrow \begin{cases} n(z), & z \leq 0.5 \\ n(z) \cdot A_{\text{low}}^f, & z > 0.5 \end{cases}$$

(6)

Details of this transformation are in Appendix B1. Figure 11 illustrates the effects of each of these parameters.

Prior on the $N(z)$ alteration parameters $\theta_l = \{\Delta z^f_l, \sigma_z^f_l, A_{\text{low}}^f\}$ are chosen to represent the potential effects of the systematic errors by:

- Quantifying the possible effects of the PZ, BCE and ZP systematic errors on the input catalogs to the redshift calibration process, as detailed in Appendices B2, B3, and B4, respectively.
- Creating realizations of the input catalogs drawing from these systematic errors and realizing the SV and SN variations with the 3sDir process.
- Measuring the mean, width, and low-z fractions of each realized $N_l(z)$.
- Creating a prior for the θ_l based on the distribution of these properties of the realizations.

Figure 12 shows the resultant distributions of the $N_l(z)$ recalibration parameters when various sources of systematic errors are included, and values of their means and standard deviations are listed in Table 3. Sample variance/shot noise, redshift biases and zero point uncertainty all contribute significantly to the uncertainty in the mean redshift. On the other hand, the stretch uncertainty is dominated by sample variance at low redshift (Bin 0), with the zero point uncertainty significantly increasing its importance in the highest redshift bin. Finally, the low redshift probability uncertainty is primarily dominated by sample variance and shot noise. Similar results for redshift uncertainties are found from the North and South subsets of the data.

6 CHARACTERIZING WEAK LENSING MAGNIFICATION

In this section we study the impact of lensing magnification on the observed angular correlations of our high-z galaxy samples. On top of distorting the image shapes, gravitational lensing from the foreground large scale structure of the Universe also magnifies the images without changing the surface brightness, creating two effects: (i) a dilution of the source density due to the locally stretched image; and (ii) an increased flux of individual galaxies making them more likely to be detected (Bartelmann & Schneider 2001; Ménard et al. 2003;
redshift distributions, as described in §5, for the three tomographic bins

\begin{align}
\delta^i_{\mu}(\theta) = C^i k^i_{\mu}(\theta)
\end{align}

The change in density contrast due to magnification can be shown to be proportional to the convergence experienced by the lens galaxies κ_i^j (Elvin-Poole et al. 2022):

\begin{align}
\delta^i_{\mu}(\theta) = C^i k^i_{\mu}(\theta)
\end{align}

The constant of proportionality C^i is given by the response of the number of selected galaxies per unlensed area, and it can be split in two terms, one fixed term corresponding to the change of area and another term corresponding to changes in the light flux distribution of galaxies, which will affect their selection in different samples:

\begin{align}
C^i = C_{\text{area}} + C_{\text{sample}}^i
\end{align}

where $C_{\text{area}} = -2$ regardless of the sample selection. In this way, the characterization of lens magnification amounts to estimating the C_{sample}^i term for each tomographic bin. This term can be estimated empirically by artificially magnifying a galaxy sample and measuring the change in number density with respect to the applied magnification. In particular, if we apply some extra convergence $\delta \kappa$ to the images, the proportionality constant can be written as:

\begin{align}
C_{\text{sample}}^i = \frac{\delta n}{n \delta \kappa},
\end{align}

where $\delta n/n$ corresponds to the fractional change in number density of a given sample meeting selection criteria due to the applied magnification. In this work we will follow the approach of Elvin-Poole et al. (2022) and estimate C_{sample}^i in two different ways, using the BALROG sample and directly perturbing the measured fluxes in the data.

6.1 Estimate from artificial galaxy injections

A number of BALROG catalogs were produced for the DES Year 3 analysis (Everett et al. 2022). In this analysis we have already used BALROG to estimate the transfer function between the deep and wide photometric spaces (parametrized with SOMs), as described in §3. In this part we use an additional BALROG run, in which the exact same deep field objects are injected at the same coordinates as in the fiducial run, but now with a 2% magnification applied to each galaxy image, $\mu_0 = 1.02$ ($\kappa_0 = 0.01$). For all cases, we account for the galaxy correction weights defined in §4 and shown in Fig. 7.

We apply the tomographic bin selections described in §3.3 on both the fiducial $\kappa = 0$ BALROG run (label i, for intrinsic) and the $\kappa = \kappa_0$ run (label o, for observed). In order to estimate C_{sample}^i, we need, for each tomographic bin selection:

(i) N_i: Selected number of galaxies in the BALROG $\kappa = 0$ run. Accounting for galaxy weights w_i^j, it becomes $N_i = \sum_j w_i^j$, where j runs over all selected galaxies.
Figure 12. Prior distributions for each redshift uncertainty parameter. Each column shows the parameters for each tomographic bin (left: Bin 0; middle: Bin 1, right: Bin 2). Each row shows a different parameter (top: Δz^i; center: σ^i_z; bottom: A^i_{low-z}). The different lines show the cumulative uncertainty on each parameter from considering different effects. The dotted line shows the uncertainty from Sample Variance and Shot Noise in the calibration fields (SV+SN). The dot-dashed line adds the uncertainty from redshift biases in the redshift calibration samples (PZ). The dashed line adds uncertainty from redshift selection effects (BCE). The solid lines add the zero-point photometric uncertainty in the deep field photometry (ZP). The distributions are measured from individual $N(z)$ samples generated to include these uncertainties. For $p(\Delta z^i)$ we measure the mean redshift of individual samples and subtract the mean redshift of the fiducial $N(z)$. For $p(\sigma^i_z)$ we measure the $N(z)$ width of individual samples and divide by the width of the fiducial $N(z)$. For $p(A^i_{low-z})$ we measure the integral of each individual sample at $z < 0.5$. See Section 5 and Appendix B for details.

(ii) N_o: Selected number of galaxies in the magnified BALROG run, which applies a constant magnification to the galaxy images. Accounting for galaxy weights w_o^i, it becomes $N_o = \sum_j w_o^j$.

At this point, the estimate is simply the fractional difference between the two:

$$C_{\text{sample}} = \frac{N_o - N_i}{k_0 N_i}.$$ \hspace{1cm} (10)

This estimate should capture the impact of magnification on the specific color selection of the high-z bins defined in §3.3, and also include possible contributions due to size selections such as the star - galaxy separation cuts. We compute the uncertainties on these estimates by following a jackknife approach, splitting the footprint over 150 regions.

6.2 Estimate from perturbing measured fluxes

The second method we consider uses the data itself to estimate the flux gradient of the samples. In this case, we add a constant offset Δm to all photometric magnitudes in our sample:

$$\Delta m = -2.5 \log_{10}(1 + 2\Delta \kappa),$$ \hspace{1cm} (11)

where $\Delta \kappa = 0.01$ is the constant magnification difference we are applying to each galaxy.

Using this new magnified data sample, we repeat the assignment of the detected galaxies to the three high-z bins, and estimate C_{sample} from the differential in the resultant counts in each bin, directly from Eq. (9), again accounting for individual galaxy weights from §4. This method provides an additional estimate of the magnification coefficients using only the magnification effect on the fluxes, hence ignoring other possible contributions from size selection or observational systematics.

6.3 Results

Table 4 shows the estimates of C_{sample} using the BALROG and data-based methods described above, for the three tomographic bins and the North and South regions defined in this work. Since we have two independent methods to estimate these values, we use the average of the two methods as our final estimates C_{sample}. For the associated uncertainties, we follow a conservative approach and add the uncertainties of the methods in quadrature, in addition to the standard uncertainty.
The first term is the line-of-sight projection of the three-dimensional galaxy density contrast \(\delta_{g,\text{3D}} \); the other terms correspond to the contributions from linear redshift-space distortions (RSD) and magnification (\(\mu \)), which are described in detail in Krause et al. (2021). We relate the galaxy density to the matter density assuming a local, linear galaxy bias model (Fry & Gaztanaga 1993), \(\delta_g(x) = b \delta_m(x) \), with \(\delta_Y = (Y(x) - \bar{Y}) / \bar{Y} \). We assume the galaxy bias to be constant across each tomographic bin \(b_i \), and we discuss more about this assumption later in this section.

Given the three terms in Eq. 13, the angular power spectrum \(C_{\ell}^{g,\text{obs}} \) has six different components, corresponding to the auto- and cross-power spectra of galaxy density, RSD, and magnification. For the accuracy of the DES Year 3 analysis, it was shown by Krause et al. (2021) that the commonly-used Limber approximation is insufficient to estimate these terms, and therefore we use the non-Limber algorithm of Fang et al. (2020). Using the full expressions for the angular power spectrum, including RSD and magnification, from Fang et al. (2020), the angular correlation function is given by:

\[
w^i(\theta) = \sum_{\ell} \frac{2\ell + 1}{4\pi} P_\ell(\cos \theta) C_{\ell}^{g,\text{obs}} \delta_{g,\text{obs}}(\ell),
\]

where \(P_\ell \) are the Legendre polynomials. For the implementation of these calculations, we use the CosmoSIS framework (Zuntz et al. 2015), which in turn uses CAMB (Lewis & Bridle 2002) to obtain the evolution of linear density fluctuations and HALOFIT (Takahashi et al. 2012) to convert to a non-linear matter power spectrum. The modeling of redshift uncertainties has been described in detail in §5, and that parametrization has been implemented in CosmoSIS for this analysis.

In addition, as explained in §4, we marginalize over an additive constant parameter, parametrized by \(R_i \), in the galaxy angular correlation function:

\[
w^i(\theta) \rightarrow w^i(\theta) + 10^{R_i}.
\]

This parametrization accounts for potential residuals in the calculation of galaxy weights affecting the galaxy clustering measurements (Kwan et al. 2017). Later in §7.3 we will explore the impact of the choice of maximum angular scale in the galaxy clustering measurements.

7.1.1 Choice of scales

Given the fact that we assume a linear galaxy bias model for this analysis, we are required to remove small-scale information that can potentially be affected by non-linearities. We follow the approach of the DES Year 3 fiducial analysis (DES Collaboration 2022) and we remove all galaxy clustering information below \(8 h^{-1} \text{Mpc} \) (Krause et al. 2021) (corresponding to a minimum angular scale of 12.9, 10.5 and 9.0 arcmins for the three tomographic bins in this work, respectively). We also test for the robustness of the results to a minimum scale of \(12 h^{-1} \text{Mpc} \). The maximum angular scale we use is set to 60 arcmins for all measurements. This choice is driven by the correction method of obtaining galaxy weights, described in §4, in particular by the cross-validation scheme to avoid overfitting, which shows no signs of overfitting at angular scales below 1 degree.

7.2 Measurements and covariance

Equation (14) shows the modeling of the galaxy angular 2-point correlation function, \(w(\theta) \). For the measurement of this galaxy clustering...
observable, we use HEALPix maps (nside = 4096) of the corrected galaxy density contrast for each tomographic bin, including the correction weights described in §4, and then use a pixel-based version of the Landy-Szalay estimator (Landy & Szalay 1993), following the notation of Crocce et al. (2016):

\[\hat{w}(\theta) = \sum_{i=1}^{N_{\text{pix}}} \sum_{j=1}^{N_{\text{pix}}} \frac{(N_i - \bar{N}) \cdot (N_j - \bar{N})}{\bar{N}^2} \omega_{ij} \omega_{ji} \Theta_{ij}(\theta), \] (16)

where \(N_i \) is the galaxy number density in pixel \(i \), and \(\omega_{ij} \) is the weight of each pixel \(i \) (see §4). \(\bar{N} \) is the corrected mean galaxy number density over all pixels within the footprint and \(\Theta_{ij} \) is a tophat function which is equal to 1 when pixels \(i \) and \(j \) are separated by an angle \(\theta \) within the bin size \(\Delta \theta \). In practice, these correlation functions are computed using TreeCorr\(^9\) (Jarvis et al. 2004). Figure 13 shows the \(w(\theta) \) measurements for the galaxy auto-correlations of the three redshift bins considered in this work.

We estimate the covariance matrices using two complementary methods: using Gaussian simulations, and using Jackknife. The Gaussian simulations are generated following the procedure described in Giannantonio et al. (2008) (see Appendix C for details). We generate 100 realizations of a set of four correlated maps via HEALPix anafast routine. These maps, three for galaxy overdensity and one for CMB \(\kappa \), are generated using the non-linear (HALOFIT) power spectrum with our fiducial cosmology. Each map includes its respective (uncorrelated) noise contribution. The advantage of this simulation-based approach is that it allows us to have an accurate estimation of the effects of the mask, and angular binning. The main downside is that this approach does not account for the non-Gaussian terms of the covariance. In order to cross-check the validity of this approach, we also estimate the covariance using the Jackknife technique, defining 150 subsamples for the measurements in TreeCorr. We find that both approaches are in good agreement within the range of scales used for this work, pointing to a negligible contribution of the non-Gaussian terms for this particular study. A detailed comparison can be found in Appendix C.

Defining these data measurements as \(\mathbf{D} \equiv \{ \hat{w}^{ij}(\theta) \} \) and the covariance \(\mathbf{C} \), we use the following expression to compute the signal-to-noise of the measurements:

\[S/N = \sqrt{\mathbf{D} \mathbf{C}^{-1} \mathbf{D}^T} / \text{ndf}, \] (17)

where ndf is the number of degrees of freedom, which equals the number of data points passing the scale cuts defined in §7.1.1. For reference, the fiducial DES Year 3 analysis had a galaxy clustering \(S/N = 63 \) (Rodríguez-Monroy et al. 2022). For the sample in this work, the total \(S/N \), including the 3 auto-correlations after applying scale cuts, is \(S/N = 70 \). Breaking this into the individual measurements, the auto-correlations for bins 0, 1 and 2 get \(S/N = 43, 49, \) and 37, respectively.

7.3 Analysis and results

7.3.1 Parameter inference

In this part we are interested in placing model constraints given the measured two-point functions of galaxy clustering shown in Fig. 13. In general, given our model \(M \), we want to infer parameters \(\mathbf{p} \) from the set of measured two-point correlation functions in our data, \(\mathbf{D} \). The theoretical model prediction for the two-point correlation functions, computed using the parameters \(\mathbf{p} \) of the model \(M \), is \(\mathbf{T}_M(\mathbf{p}) \equiv \{ w^{ij}(\theta, \mathbf{p}) \} \). We compare the measurements and model predictions using a Gaussian likelihood, using the data covariance, \(\mathbf{C} \), defined above:

\[\mathcal{L}(\mathbf{D}|\mathbf{p}, M) \propto e^{-\frac{1}{2} \left(\mathbf{D} - \mathbf{T}_M(\mathbf{p}) \right)^T \mathbf{C}^{-1} \left(\mathbf{D} - \mathbf{T}_M(\mathbf{p}) \right)}. \] (18)

In this way, the posterior probability distribution for the parameters \(\mathbf{p} \) of the model \(M \) given the data \(\mathbf{D} \) is given by

\[P(\mathbf{p} | \mathbf{D}, M) \propto \mathcal{L}(\mathbf{D}|\mathbf{p}, M) P(\mathbf{p}|M), \] (19)

where \(P(\mathbf{p}|M) \) is the prior probability distribution on the parameters.

We sample the posterior of the galaxy clustering measurements in the flat \(\Lambda \)CDM model, using the same parameter space as the DES Year 3 fiducial analysis (DES Collaboration 2022). The six cosmological parameters we vary are listed in Table 5, together with their respective uniform priors. These prior ranges are chosen to encompass at least five times the 68% C.L. from relevant external constraints. Also, even though we sample the amplitude of primordial scalar density perturbations \(A_s \), sometimes we will refer to the amplitude of density perturbations at \(z = 0 \) in terms of the RMS amplitude of mass on scales of \(8h^{-1} \text{Mpc} \) in linear theory, \(\sigma_8 \). In addition to these cosmological parameters, our fiducial analysis includes 18 nuisance parameters to describe: galaxy bias (see §7.1), potential residuals in the galaxy weight calculation (see §4), lens magnification (see §6) and uncertainties in the redshift distribution of our three redshift bins (see §5), all of them described in Table 5.

\(^9\) https://rmjarvis.github.io/TreeCorr

Table 5. The model parameters and their priors used in the fiducial flat \(\Lambda \)CDM analysis, using the entire DES Y3 footprint. The parameters are defined in Sec. 7.3.

Parameter	Prior
Cosmology	
\(\Omega_m \)	Flat (0.1, 0.9)
\(10^3A_s \)	Flat (0.5, 5.0)
\(n_s \)	Flat (0.87, 1.07)
\(\Omega_b \)	Flat (0.03, 0.07)
\(h \)	Flat (0.55, 0.91)
\(10^3\Omega_m h^2 \)	Flat (0.60, 6.44)
Galaxy Bias	
\(b^i(i \in [0, 2]) \)	Flat (0.8, 3.0)
Weight residuals	
\(R^0 \)	Flat(–8, –2)
\(R^1 \)	Flat(–8, –2)
\(R^2 \)	Flat(–8, –2)
Lens magnification	
\(C^0 \)	Gaussian (0.0275, 0.24)
\(C^1 \)	Gaussian (1.305, 0.375)
\(C^2 \)	Gaussian (2.145, 0.36)
Redshifts	
\(\Delta z^0 \)	Gaussian (0.0, 0.0051)
\(\Delta z^1 \)	Gaussian (0.0, 0.0075)
\(\Delta z^2 \)	Gaussian (0.0, 0.0208)
\(\sigma_8 \)	Gaussian (0.0, 0.0208)
\(\sigma_8 \)	Gaussian (0.0, 0.0208)
\(A_s^{\text{low}} \)	Gaussian (0.0044, 0.0013)
\(A_s^{\text{low}} \)	Gaussian (0.0091, 0.0023)
\(A_s^{\text{high}} \)	Gaussian (0.0383, 0.0059)

MNRAS 000, 1–28 (2022)
7.3.2 DES Y3 High-z results and robustness tests

Next we analyze the model constraints from the measurements of galaxy clustering. In this case, there exists a strong degeneracy between galaxy bias and the amplitude of matter fluctuations, \(\sigma_8 \), and therefore the analysis presented here is not sensitive to \(\sigma_8 \). The combination of clustering and weak gravitational lensing can be used to break these degeneracies, and that will be presented in a companion paper (in preparation), using CMB lensing from the South Pole Telescope (SPT) and Planck. However, for the clustering-only case analyzed here, the shape of the galaxy clustering measurements is sensitive to the scale of matter-radiation equality in the matter power spectrum, which in turn depends on a combination of the matter density \(\Omega_m \) and the Hubble constant \(h \), close to the direction \(\Omega_{m0}h \) (see e.g. Philcox et al. 2021).

Figure 13 shows the constraints we obtain for the parameters we are sensitive to, namely \(\Omega_{m0}h \) and the product of \(\sigma_8 b^i \) for the three redshift bins we use. The fiducial constraints use the entire survey footprint, the auto-correlations shown in Fig. 13, the scale cuts described in §7.1.1 and the priors shown in Table 5, and they result in constraints on a combination of the fraction of matter in the Universe \(\Omega_m \) and the Hubble parameter \(h \), \(\Omega_{m0}h = 0.195^{+0.023}_{-0.018} \), and 2-3% measurements of the amplitude of the galaxy clustering signals for the three redshift bins, probing galaxy bias and the amplitude of matter fluctuations, \(b\sigma_8 \). The best-fit theory model for this fiducial case is shown together with the measurements in Fig. 13, and the corresponding \(\chi^2/\text{ndf} = 8.3/8.6 \). Error bars are smaller than the symbols, if not indicated. (Lower panels:) Residuals of the measurements given the best-fit theory model shown in the upper panels.

Figure 14 also shows the galaxy clustering constraints under some different analysis choices. In particular, we study the impact of redshift and magnification priors, both described in Table 5, by studying the conservative case of doubling the width these priors. When broadening the width of redshift priors by a factor of 2, the constraints on \(b^0 \sigma_8 \), \(b^1 \sigma_8 \), and \(b^2 \sigma_8 \) widen by a factor of 1.47, 1.41 and 1.27, respectively. When broadening the width of magnification priors by a factor of 2, the constraints on \(b^2 \sigma_8 \) broaden by a factor of 1.20. Therefore, redshift priors are relevant for all bins, especially for bins 0 and 1, while lens magnification is only relevant in bin 2, at higher redshift. None of these changes has an important effect on \(\Omega_{m0}h \), which shows very robust constraints under all different analysis choices. Using larger minimum angular scales, corresponding to 12 h^{-1} Mpc, as opposed to the fiducial 8 h^{-1} Mpc, broadens the constraints on \(b^i \sigma_8 \) by a factor of 1.28, 1.21 and 1.17 for bins \(i = 0, 1 \), while having no significant effect on \(\Omega_{m0}h \).

In addition, to assess the robustness of the results, in Fig. 14 we show constraints for various alternative cases. First, we analyze the constraints we obtain from the independent North and South regions, where we split the data into two independent patches: “North” (DEC > 23°) and “South” (DEC < 23°). This is motivated by the fact that we will combine the clustering measurements shown here with CMB lensing measurements from Planck and SPT in a companion paper (in prep.). Since SPT only covers the South region in this split, we do this test to check for the consistency of the clustering measurements. In this test, the redshift and magnification priors are computed specifically for each region, although they are largely consistent (see Tables 3 and 4), and the galaxy clustering measurements are also performed separately for the two regions. The analysis of the North and South regions yields best-fit theory models with \(\chi^2/\text{ndf} = 10.1/8.6 \) and \(\chi^2/\text{ndf} = 15.7/8.6 \), respectively. When using the entire parameter space, the constraints from the two independent regions are in agreement, with an estimated tension of 0.65 \(\sigma \), using the non-Gaussian parameter difference tension metric from Raveri & Doux (2021); Lemos et al. (2021). When restricting the set of parameters to \(\Omega_m, \Omega_{m0}h, b^0 \sigma_8, b^1 \sigma_8, b^2 \sigma_8 \), the constraints from the independent North and South regions are also in agreement, with an estimated tension of 0.41 \(\sigma \).
Figure 14. Constraints on the combination of cosmological parameters and galaxy bias derived from out measurements of galaxy clustering, for various analysis configurations. The left panel shows the fiducial constraints using the entire footprint (All), compared to the constraints using the independent splits in North and South regions. The right panel shows the comparison between the fiducial constraints and three analysis variations, one with conservative redshift priors (×2 width in all redshift parameter priors), one with conservative magnification priors (×2 width in all magnification parameter priors), and larger minimum angular scales.

Figure 15. Comparison of the parameter constraints from galaxy clustering using different choices for the maximum angular scale, as well as not marginalizing over an additive constant in the galaxy clustering measurements.

bin R^i (see Eq. 15). Figure 15 shows the galaxy clustering constraints when limiting the maximum angular scale to 40 and 30 arcmins, and also, for the latter case, when not marginalizing over additive constants (setting $R^i = 0$). The figure shows how the galaxy clustering constraints are robust to these choices. The constraints on $\Omega_m h$ are not sensitive to the variations, and the main impact of limiting the maximum angular scale is a ~20% decrease in constraining power for $b^2 \sigma_8$. Regarding the posterior values of R^i, we find $R^0 = -5.13^{+0.84}_{-1.93}$, $R^1 = -3.42^{+0.31}_{-0.65}$, and $R^2 = -3.21^{+0.06}_{-0.09}$. We can see how this parameter is constrained to be very small for the first bin, and its importance grows with redshift (and i-band magnitude) of the tomographic bin.

7.3.3 Blinding procedure

In order to minimize a potential impact of experimenter bias, we have adopted a blinding procedure throughout this work. In that way, we have kept the results on the main parameters constrained in this analysis (those depicted in Figs. 14 and 15) blinded to the analysis until the robustness tests performed in §7.3.2 satisfied the tension metrics reported there. An internal review committee set up by the DES collaboration was in charge of over-viewing this procedure and allowing for the unblinding of the constraints.

7.3.4 Comparison with other DES Y3 clustering analyses

Given the parameter constraints obtained in the analysis of galaxy clustering with the DES Y3 High-\(z\) sample presented in this work, we can now compare how these constraints compare with the corresponding clustering analyses of the other DES Y3 lens samples already defined and used in other works. The fiducial DES Y3 lens sample is the so-called MagLim sample (Porredon et al. 2021b), while the alternative lens sample is REDMaGIC (Pandey et al. 2022) (see Table 1 for a comparison of the number densities of the three samples). Figure 16 shows the constraints on the cosmological parameter combination of $\Omega_m h$ provided by each of the three DES Y3 lens samples, together with the Planck 2018 constraint. The figure shows the DES Y3 constraints to be in agreement between the three samples, and with the Planck result, and also having similar constraining power. However, while the constraints from MagLim and REDMaGIC probe similar redshift ranges, the High-\(z\) constraints
come from significantly higher redshifts, extending the redshift range probed by the DES Y3 data. This results demonstrate the robustness of the clustering measurements in this work and our ability to produce a well-characterized high-redshift sample, which is complimentary to the DES fiducial analysis in terms of the redshift range it probes. Note that the upcoming analyses combining the High-z galaxy clustering presented in this work with cross-correlation with weak gravitational lensing will be able to break the degeneracy between galaxy bias and the amplitude of matter fluctuations, σ_8, allowing us to place constraints on the latter at higher redshifts than probed in the fiducial DES analysis.

8 SUMMARY AND OUTLOOK

The cosmological analysis of imaging galaxy surveys provides powerful measurements of the amplitude of matter fluctuations in the late time Universe. In recent years, the analyses of different surveys like DES, KiDS and HSC, probing the regime at $z < 1$, have reported persistent tensions with the predicted value from the CMB, a problem known as the S_8 tension. Measurements at a higher redshift regime ($1 < z < 3$) would be crucial for understanding the origin of this tension. In addition, such measurements would probe the matter-dominated epoch and would shed light on dynamical dark energy models that can mimic a cosmological constant at late times but differ substantially during the matter-dominated era.

In this work we describe the selection and characterization of three galaxy samples covering the approximate redshift range $0.8 < z < 2.5$ (see Figure 6) using data from the third year of the Dark Energy Survey (DES Y3). To enable the selection and characterization of these high-z samples, which push the limits of DES Y3 data, we introduce several changes with respect to the fiducial DES Y3 lens galaxy sample:

(i) We start from a fainter galaxy selection, excluding all lens galaxies used in the DES Y3 fiducial analysis. The average i-band magnitude of the three High-z redshift bins is 22.6, 22.9 and 23.1, respectively, while all four redshift bins used in the fiducial analysis had average i-band magnitudes brighter than $i = 22$.

(ii) Both the selection and redshift characterization of the samples are based on a principled, Bayesian scheme using a novel Self-Organizing Map (SOM) algorithm better suited for the characterization of lower S/N galaxies (Sánchez et al. 2020).

(iii) We use a redshift marginalization scheme that explicitly accounts for uncertainties in the tails of redshift distributions.

(iv) We use a non-linear, machine-learning-based approach to correct for correlations between galaxy number density and survey observing properties like depth, stellar density and sky noise.

Out of this list of changes with respect to the fiducial analysis, steps (i) and (ii) are responsible for the selection of high redshift galaxies, and steps (iii) and (iv) are required due to the faint, high redshift selection. The procedure results in the definition of three redshift bins with mean redshifts around $z = 0.9, 1.2$ and 1.5, which significantly extend the redshift coverage of the fiducial DES Year 3 analysis. In addition, these samples contain a total of about 9 million galaxies, resulting in a galaxy density that is more than 2 times higher than those in the DES Year 3 fiducial case (Porredon et al. 2021a).

After the selection and characterization of the High-z galaxy samples, we perform an analysis of their galaxy clustering auto-correlation measurements. The analysis provides robust constraints on the product of the fraction of matter in the Universe Ω_m and the Hubble parameter h, $\Omega_m h = 0.195^{+0.023}_{-0.018}$, and 2-3% measurements of the amplitude of the galaxy clustering measurements for the three redshift bins, probing galaxy bias times the amplitude of matter fluctuations, $b\sigma_8$. The constraints on $\Omega_m h$ are compatible and show comparable uncertainties to the clustering analyses on the fiducial and alternative lens galaxy samples using DES Y3 data (Porredon et al. 2021a; Pandey et al. 2022), but probing a complementary, much higher redshift range. This part also showcases the robustness of the galaxy clustering analysis, which is highly non-trivial when using galaxy samples going as faint as $i \sim 23$ in DES Y3 data.

The definition and characterization of high redshift galaxy samples in this work represents the first step to analyze the $0.8 < z < 2.5$ redshift range made by DES and other Stage III surveys. It therefore develops the tools that will enable similar analyses with other data sets, including Rubin LSST and Euclid, and it opens the door to a range of scientific analyses exploiting the unique nature of the selections. In subsequent publications, we will explore this set of applications using the samples defined in this work. We will present the cross-correlation of High-z galaxies with CMB lensing maps from SPT and Planck, providing crucial constraints on S_8 at high redshift (Planck Collaboration 2020; Omori et al. 2022). We will also study their cross-correlations with galaxy lensing, probing S_8, lensing magnification and intrinsic alignments at high redshifts, and the clustering cross-correlations with lower-redshift galaxies, probing lensing magnification and the redshift evolution of galaxy bias. The redshift regime of these samples is also well suited to study the star formation history using cross-correlations with the Cosmic Infrared Background (CIB) (Jego et al. 2022a,b). The outcome of these analyses will provide important information about this particularly unexplored period in the Universe, and will set the tools and expectations for future analyses with more powerful data sets.
ACKNOWLEDGEMENTS

CS is supported by a Junior Leader fellowship from the "la Caixa" Foundation (ID 100010434), with code LCF/BQ/PI22/11910018. CS and GMB are supported by grants AST-2009210 from the U.S. National Science Foundation, and DE-SC0007901 from the U.S. Department of Energy (DOE). Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of High Energy Physics. Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated by UChicago Argonne LLC under contract no. DE-AC02-06CH11357.

Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey.

The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NSF's NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium.

Based in part on observations at Cerro Tololo Inter-American Observatory at NSF's NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation (NSF). The DES data management system is supported by the National Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universe (CNPq grant 465376/2014-2).

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231.

We thank the developers of NumPy (Harris et al. 2020), SciPy (Virtanen et al. 2020), Jupyter (Kluyver et al. 2016), IPython (Pérez & Granger 2007), conda-forge (conda-forge community 2015), Matplotlib (Hunter 2007) and Keras (Chollet et al. 2015) for their extremely useful free software.

DATA AVAILABILITY

A general description of DES data releases is available on the survey website at https://www.darkenergysurvey.org/the-des-project/data-access/. DES Y3 cosmological data has been partially released on the DES Data Management website hosted by the National Center for Supercomputing Applications at https://des.ncsa.illinois.edu/releases/y3a2.

REFERENCES

Abbott T. M. C., et al. 2019, Phys. Rev. D, 100, 023541
Alarcon A., et al. 2020, MNRAS, 498, 2614
Alarcon A., et al. 2021, MNRAS, 501, 6103
Alonso D., et al. 2021, MNRAS, 502, 876
Bartelmann M., Schneider P., 2001, Phys. Rep., 340, 291
Baxter E. J., et al. 2019, Phys. Rev. D, 99, 023508
Buchs R., et al. 2019a, MNRAS, 489, 820
Buchs R., et al. 2019b, MNRAS, 489, 820
Bull P., White M., Slosar A., 2021, MNRAS, 505, 2285
Carlstrom J. E., et al. 2011, PASP, 123, 568
Chang C., et al. 2022, arXiv e-prints, p. arXiv:2203.12440
Chollet F., et al., 2015, Keras, https://keras.io
Croce M., et al. 2016, MNRAS, 455, 4301
DES Collaboration 2022, Phys. Rev. D, 105, 023520
De Vicente J., Sánchez E., Sevilla-Noarbe I., 2016, MNRAS, 459, 3078
Elvin-Poole J., et al. 2018, Phys. Rev. D, 98, 042006
Elvin-Poole J., et al. 2022, arXiv e-prints, p. arXiv:2209.09782
Eriksen M., et al. 2019, MNRAS, 484, 4200
Euclid Collaboration 2022, A&A, 662, A93
Everett S., et al. 2022, ApJS, 258, 15
Fang X., et al. 2020, J. Cosmology Astropart. Phys., 2020, 010
Fry J. N., Gaztanaga E., 1993, Astrophys. J., 413, 447
Gaia Collaboration 2021, A&A, 649, A1
Garcia-Fernandez M., et al. 2018, Monthly Notices of the Royal Astronomical Society, 476, 1071
Gaztanaga E., et al. 2021, MNRAS, 503, 4964
Giannantonio T., et al. 2008, Phys. Rev. D, 77, 123520
Giannini G., et al. 2022, arXiv e-prints, p. arXiv:2209.05853
Gorski K. M., et al. 2005, Astrophys. J., 622, 759
Hang Q., et al. 2021, MNRAS, 501, 1481
Harikane Y., et al. 2018, PASJ, 70, S11
Harris C. R., et al. 2020, Nature, 585, 357
Hartley W. G., et al. 2022, MNRAS, 509, 3547
Heymans C., et al. 2021, A&A, 646, A140
Hikage C., et al. 2019, PASJ, 71, 43

MNRAS 000, 1–28 (2022)
Hildebrandt H., van Waerbeke L., Erben T., 2009, A&A, 507, 683
Hunter J. D., 2007, Computing in Science & Engineering, 9, 90
Jarvis M., Bernstein G., Jain B., 2004, Mon. Not. R. Astron. Soc., 352, 338
Jarvis M. J., et al. 2013, MNRAS, 428, 1281
Jeffrey N., et al. 2021, MNRAS, 505, 4626
Jero B., et al. 2022a, arXiv e-prints, p. arXiv:2206.15394
Jero B., et al. 2022b, arXiv e-prints, p. arXiv:2209.05472
Joudaki S., et al. 2020, A&A, 638, L1
Kluyver T., et al. 2016, in ELPUB. Positioning and Power in Academic Publishing: Players, Agents and Agendas, pp 87 – 90, doi:10.3233/978-1-6499-649-1-87
Kohonen T., 1982, Biological Cybernetics, 43, 59
Krause E., et al. 2021, arXiv e-prints, p. arXiv:2105.13548
Krolewski A., et al. 2020, J. Cosmology Astropart. Phys., 2020, 047
Krolewski A., Ferraro S., White M., 2021, J. Cosmology Astropart. Phys., 2021, 028
Kwan J., Sánchez C., et al., 2017, Mon. Not. R. Astron. Soc., 464, 4045
Laigle C., et al. 2016, ApJS, 224, 24
Landy S. D., Szalay A. S., 1993, ApJ, 412, 64
Le Févre O., et al. 2013, A&A, 559, A14
Leistedt B., et al. 2016a, ApJS, 226, 24
Leistedt B., Mortlock D. J., Peiris H. V., 2016b, MNRAS, 460, 4258
Lemos P., et al. 2021, MNRAS, 505, 6179
Lewis A., Bridle S., 2002, Phys. Rev. D, 66, 103511
Lilly S. J., et al. 2009, ApJS, 184, 218
Malz A. I., Hogg D. W., 2022, ApJ, 928, 127
Marques G. A., Bernui A., 2020, J. Cosmology Astropart. Phys., 2020, 052
Masters D., et al. 2015, ApJ, 813, 53
Masters D. C., et al. 2017, ApJ, 841, 111
Masters D. C., et al. 2019, ApJ, 877, 81
McCracken H. J., et al. 2012, A&A, 544, A156
Ménard B., et al. 2003, A&A, 403, 817
Miyatake H., et al. 2022, Phys. Rev. Lett., 129, 061301
Morganson E., et al. 2018, PASP, 130, 074501
Myles J., et al. 2021, MNRAS, 505, 4249
Omori Y., et al. 2019a, Phys. Rev. D, 100, 043501
Omori Y., et al. 2019b, Phys. Rev. D, 100, 043517
Omori Y., et al. 2022, arXiv e-prints, p. arXiv:2203.12439
Ono Y., et al. 2018, PASJ, 70, S10
Padilla C., et al. 2019, AJ, 157, 246
Pandey S., et al. 2022, Phys. Rev. D, 106, 043520
Pérez F., Granger B. E., 2007, Computing in Science and Engineering, 9, 21
Philcox O. H. E., et al. 2021, Phys. Rev. D, 103, 023538
Planck Collaboration 2016, A&A, 594, A22
Planck Collaboration 2020, A&A, 641, A8
Porredon A., et al. 2021b, Phys. Rev. D, 103, 043503
Porredon A., et al. 2019, ApJ, 877, 81
Rau M. M., et al. 2022, MNRAS, 459, 2868
Ravet L., et al. 2014, Phys. Rev. D, 90, 043504
Rouvet T., et al. 2022, MNRAS, 511, 1330
Rodríguez-Monroy M., et al. 2022, MNRAS, 511, 2665
Ross A. J., et al. 2011, MNRAS, 417, 1350
Ross A. J., et al. 2017, MNRAS, 464, 1168
Ross E., et al., 2016, Mon. Not. R. Astron. Soc., 461, 1431
Sánchez C., Bernstein G. M., 2019, MNRAS, 483, 2801
Sánchez C., et al. 2020, MNRAS, 498, 2984
Schlafly E. F., Meisner A. M., Green G. M., 2019, ApJS, 240, 30
Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525
Schmidtfull M., Seljak U., 2018, Phys. Rev. D, 97, 123540
Scodeller C., et al. 2018, A&A, 609, A84
Scoville N., et al. 2007, ApJS, 172, 1
Sevilla-Noarbe I., et al. 2021, ApJS, 254, 24
Stanford S. A., et al. 2021, ApJS, 256, 9
Suchyta E., et al. 2016, MNRAS, 457, 786
Takahashi R., et al. 2012, Astrophys. J., 761, 152
Virtanen P., et al. 2020, Nature Methods, 17, 261
Weaverdyck N., Huterer D., 2021, MNRAS, 503, 5061
Zuntz J., et al. 2015, Astron. Comput., 12, 45

APPENDIX A: REMOVING STARS FROM THE DEEP SAMPLE

In a previous version of the Deep SOM, we found that a significant fraction of Deep SOM cells did not have redshift information, i.e. no deep galaxies with spectroscopic or high-quality redshift information were matched to any of those SOM cells. These regions with no redshift information were also clustered together and placed at the edges of the Deep SOM (see left panel in Fig. A1). When investigating the source of this issue, we found that these regions were mainly populated by stars in the Laigle et al. (2016) catalog (see right panel). To correct for the contamination of stars into our Deep sample, we remove all the deep objects falling into Deep SOM cells with majority of stellar occupation. Since those regions are very well clustered, this only removes 0.3% of the galaxies in the sample, we remove from the sample to then re-train the SOM on the cleaned sample.

APPENDIX B: REDSHIFT DISTRIBUTION UNCERTAINTIES

In this section we go over the redshift calibration presented in Section 5 in detail.
B1 Redshift uncertainty parametrization

We can express the parametric $N(z)$ error model as:

$$
N_i(z, \theta^i, A^i_{\text{low-z}}) = C_{N_i} \times \begin{cases}
G_i A^i_{\text{low-z}} & z \leq 0.5 \\
G_i (1 - A^i_{\text{low-z}}) & z > 0.5
\end{cases} \tag{B1}
$$

$$
G_i(z, \theta^i) = C_{G_i} \times \begin{cases}
F_i(y) & |z - \bar{z}_i| \leq 2\Sigma_{z_i} \\
F_i(z) & |z - \bar{z}_i| > 2\Sigma_{z_i}
\end{cases}
$$

where $A^i_{\text{low-z}}$ is the low redshift fraction free parameter of the model.

A visualization of the shift, stretch and low-z fraction parameters can be seen in Figure 11. On the one hand, the galaxy clustering signal cares both about the mean redshift of the distribution but also of its spread in redshift, as the more spread out galaxies are the less physically correlated they become, reducing the clustering signal. On the other hand, the majority of the selected galaxies live primarily at high redshift, but with $griz$ colors a population of low-z galaxies leaks into the selection, especially in our highest redshift bin, producing a distinct clustering signal than that of the high redshift galaxies. Furthermore, we smooth the fiducial redshift distribution with a Savitzky–Golay filter: sample variance and shot noise from the small area of the calibration deep fields manifests in the $N(z)$ as rapid fluctuations in redshift and enter squared in the galaxy clustering signal, while the true redshift distribution over a larger area is way more smooth as these variations average out. We try different smoothing lengths and find compatible constraints on the main parameters of interest (see Appendix B6).

B2 Redshift biases

To measure the color-redshift relation in the deep fields we build our redshift sample from a combination of the redshift information that we have available from spectroscopic and multi-band photometric redshifts, SPC (see Section 2.3). Whenever a galaxy has spectroscopic measurements, we use them. Alternatively, we use photometric redshifts from the PAUS+COSMOS, and when that is not available we use redshifts from COSMOS2015. After removing color regions with significant stellar contamination and retraining the deep SOM (see Section 3), we find that only 9 out of 2304 cells (0.4%) do not have any overlapping redshifts, but relative to the probability of finding galaxies in these cells $p(z)$, they amount to only 0.1% of the probability. Each tomographic bin relates with different probability to each deep cell, and when we take that into account the relative probability without redshift information in each tomographic bin is 0.1%, 0% and 0%.

We only use high-quality spectroscopic redshifts, therefore we assume the spectroscopic redshifts are accurate and precise. However, the photo-z from COSMOS2015 and PAUS+COSMOS are estimated from multi-band photometric band data, with band filters spanning a wide range in wavelength and with multiple intermediate and narrow bands. The individual $p(z)$ from these catalogs are broader, but their width is still negligible compared to the redshift resolution from noisier wide field observations with $griz$ broad bands, and so we simply stack the individual $p(z)$. Stacking the $p(z)$ is statistically incorrect, and for galaxies where the $p(z)$ is degenerate between two different redshift values, or if the $p(z)$ were wider, then a more correct technique should be used (e.g. Leistedt et al. 2016b; Sánchez & Bernstein 2019; Alarcon et al. 2020; Malz & Hogg 2022; Rau et al. 2022). We defer the application of such techniques for future work.

An additional concern is whether the photo-z estimates from these catalogs are systematically biased from an incorrect modeling of the galaxy SEDs (e.g. Joudaki et al. 2020; Myles et al. 2021; van den Busch et al. 2022). Here we measure the bias by comparing the photo-z estimates of individual objects in both catalogs to overlapping spectroscopic measurements (described in Section 2.3). For each of these objects, we calculate $(\bar{z}_{\text{phot}} - z_{\text{spec}})/(1 + z_{\text{spec}})$, with z_{phot} the mode of the $p(z)$, and we plot the distributions. By visual inspection we find that the distributions of COSMOS2015 and PAUS+COSMOS are generally unimodal, but sometimes slightly biased. We define the median bias as a function of the DES deep field i-band magnitude as

$$
b(i) = \text{Median} \left(\frac{z_{\text{phot}} - z_{\text{spec}}}{1 + z_{\text{spec}}} \right) \tag{B2}
$$

Figure B1 shows $b(i)$ from both catalogs: we find a slight positive bias $b(i) \sim 0.002$ at faint magnitudes in the PAUS+COSMOS catalog, while the COSMOS2015 catalog presents a negative bias reaching a minimum value of $b(i = 22.5) \sim -0.005$. We model the redshift bias uncertainty in these samples with a parameter α that shifts the individual $p(z)$ of COSMOS2015 or PAUS+COSMOS galaxies (one α parameter for each catalog). This α parameter shifts $p(z) \rightarrow p(z - \delta(a,i) \cdot (1 + z))$ by an amount δ that is proportional to the median bias of a galaxy of magnitude i:

$$
\delta(a,i) = \alpha \cdot b(i) \tag{B3}
$$

We place a Gaussian prior on this parameter and marginalize over it, $p(\alpha) = N(\mu = 1, \sigma = 1)$. Therefore, our most likely guess for the systematic bias is centered at the measured median bias $b(i)$, but we assign an uncertainty equal to the magnitude of $b(i)$. Note that the value α is the same for all galaxies in the same catalog, but the magnitude of the shift to the $p(z)$ ultimately depends on both the redshift and magnitude of each galaxy:

$$
\delta(a,i) = \alpha \cdot (1 + z) \tag{B3}
$$

B3 Selection biases

We empirically measure the prior on the color-redshift relation from the galaxies in the deep field that have overlapping redshifts. Since we do not parametrize this prior and let the parameters update hierarchically with wide field galaxies, it is crucial to include all selection effects for the final estimate to be unbiased. Balrog injects versions of these galaxies into the wide field and allows us to measure the probability they will be selected into each of our tomographic bins, and therefore to correct for these selection effects. However, due to the limited number of Balrog injections, we cannot always measure these effects accurately, leading to several approximations to the SOMPZ.
methodology described in section 3. In this section we explain these approximations and their validity, and provide a way to marginalize over the potential systematic biases that they might introduce.

The first row of panels (from the top) of Figure B2 show the distribution of deep field galaxies in the deep SOM weighted by their probability of being selected in each tomographic bin as measured by Balrog. This distribution is different than the one presented in Figure 2, where we show the distribution of deep field galaxies weighted by their probability of being selected at $22 \leq i \leq 23.5$ according to Balrog. Note how in each panel the distribution peaks around deep SOM cells with high redshift and has little to no overlap with cells at lower redshift, as expected (compare to Figure B3 for the distribution of mean redshift in the deep SOM).

The redshift distribution of each deep SOM cell formally depends on the pre-selections \hat{s} and on the wide SOM cell where galaxies are selected, $p(z|c, \hat{c}, \hat{s})$, see Equation B5:

$$p(z|\hat{c}, \hat{s}) = \sum_{c \in h} p(z|c, \hat{c}, \hat{s}) p(c|\hat{c}, \hat{s}) p(\hat{c}|\hat{s}, \hat{b}) \quad (B4)$$

Using Balrog we can empirically measure how often deep field galaxies c will get through our pre-selections \hat{s} and also how often they get selected in the different wide field cells \hat{c}. However, due to the limited number of Balrog injections it is not possible to accurately measure the relation between all (z, c, \hat{c}). Following Myles et al. (2021), we use the approximation shown in Eq. B6 for our fiducial estimation of the redshift distribution of deep cells using $p(z|c, \hat{c}) \approx p(z|c, \hat{b})$, with \hat{b} representing the set of \hat{c} of a tomographic bin. When no redshift galaxy satisfies both c and \hat{b} then we use $p(z|c, \hat{b}, \hat{s})$ (Eq. B7) using redshift information from galaxies that are selected into any of the tomographic bins $\hat{B} \equiv \{\hat{b}_0, \hat{b}_1, \hat{b}_2\}$, or else $p(z|c, \hat{s})$ (Eq. B8), using redshift information from any galaxies satisfying our pre-selection \hat{s}.

The second row of panels of Figure B2 shows the difference in the mean redshift of each cell from including the tomographic bin selection, showing:

$$\Delta(z)_i \equiv \int z p(z|c, \hat{b}_i, \hat{s}) \, dz - \int z p(z|c, \hat{s}) \, dz \quad (B9)$$

Note how the $\Delta(z)_i$ values tend to be close to 0 where the distribution of $p(c \mid \hat{b}_i)$ peaks (top panels), as most galaxies from these cells get selected very often into that tomographic bin. However, note that $\Delta(z)_i$ shows larger differences at the tails of the $p(c \mid \hat{b}_i)$ distribution. In such cells, generally speaking, galaxies with a redshift that is closer to the average redshift of the tomographic bin get preferentially selected, and consequently cells with a z smaller than the average redshift of the bin tend to have a positive $\Delta(z)_i$, and vice-versa. This effect is very clear in bin 0, where cells at the lower part of the SOM have a z that is smaller than the typical redshift of galaxies in bin 0, and they show a positive $\Delta(z)_0$, implying that additionally conditioning on the tomographic bin tends to increase the mean redshift of these cells. We find the contrary for cells at the top of the SOM, which have a z that is larger than the typical redshift of galaxies in this bin and they present a negative $\Delta(z)_0$ that lowers the average redshift of the cell when we condition their selection to the bin.

This highlights how important it is to at least include the so-called bin conditionalization10, i.e. using $p(z|c, \hat{b}, \hat{s})$ instead of just $p(z|c, \hat{s})$. Otherwise one will introduce important selection effect biases, as those found by Buchs et al. (2019b), where they found a positive bias for low redshift bins relative to the average redshift and a negative bias for high redshift bins, as a result of just using $p(z|c, \hat{s})$.

The third row of panels in Figure B2 shows with a color code which cells have redshift estimates that include accurate tomographic bin selection effects. The color code goes as:

(i) Dark green: cells that have at least one redshift galaxy that has been selected by Balrog into the corresponding tomographic bin, we use Eq. B6, $p(z|c, \hat{b}, \hat{s})$.

(ii) Light green: cells that have do not have any galaxy selected into the corresponding tomographic but at least one redshift galaxy that has been selected by Balrog into one of the other two tomographic bins, we use Eq. B7, $p(z|c, \hat{B}, \hat{s})$.

(iii) Light red: cells that have do not have any galaxy selected into any tomographic bin, but at least some galaxy satisfying our pre-selection \hat{s}. We use Eq. B8, $p(z|c, \hat{s})$.

(iv) Dark red: cells that have do not have any redshift galaxy satisfying our pre-selection \hat{s}. We do not have direct redshift information for these cells.

Note how the $\Delta(z)_i$ from the second row of panels can only be calculated for (i)/Dark Green cells in the third row of panels. The remaining cells do not have any galaxy selected by Balrog into the corresponding tomographic bin, and bin conditionalization cannot be estimated directly, which is a source of potential systematic uncertainty. We test this effect by calculating the mean redshift bias in Dark Green cells from neglecting the bin conditionalization, and

10 We follow the notation introduced in Myles et al. (2021).
Figure B2. The redshift selection effects and the extrapolated Δz selection effect bias. Each column shows a different tomographic bin. The first row of panels shows the pdf of deep field cells conditioned on each tomographic bin, $p(c|\hat{b}_i)$. The second row of panels shows the mean redshift difference of deep field cells when galaxies are additionally conditioned to be observed by Balrog into our each tomographic bin. The third row of panels shows which cells have some galaxy with redshift information selected into the bin by Balrog (i), which do not (ii)-(iii), and also which do not have any z information (iv) (only five cells for bin 0, four for bin 1 and one for bin 2). The fourth row of panels show an extrapolated redshift bias. The redshift bias due to the additional selection of galaxies into the bin is extrapolated from (i) cells that have galaxies selected into the bin to cells (ii)-(iii)-(iv) that do not. See §B3 for more details.

extrapolating it to other nearby cells using a Gaussian smoothing. The last row of panels in Figure B2 shows the bias values from extrapolation for every deep cell, showing that certain groups of cells have under-/over-estimated mean redshifts. We parametrize this possible systematic bias with the same parameter ϵ that shifts the $p(z|c) \rightarrow p(z - \epsilon, \beta, c)$ of each deep cell; with $\epsilon(\beta, c) = \beta b(c)$; and $b(c)$ the estimated systematic bias from the last row of panels in Figure B2. We place a Gaussian prior on this parameter and marginalize over it, $p(\beta) = N(\mu = 1, \sigma = 1)$. Figure 12 shows that this missing selection effect (labelled as BCE in the figure) has a very negligible effect to all the $N(z)$ parameters relative to the other sources of uncertainty.

B3.1 Cell conditionalization

An additional source of systematic error comes from the approximation of using binconditionalization (or bincond, Equation B6) instead of the exact cell conditionalization (or cellcond, Equation B5). Fig-
We have calculated the $N(z)$ using cellcond, and despite the large biased trend seen in Figure B4, we have found the resulting $n(z)$ from using cellcond or bincond to have very negligible differences to its mean redshift, width and low redshift fraction. Upon closer inspection, the $p(z|c, \hat{c})$ and $p(z|c, \hat{h})$ distributions differ at their tails, which produces significant changes to their mean redshifts $\langle z|c, \hat{c}\rangle$ and $\langle z|c, \hat{h}\rangle$, but this effect ends up cancelling out after adding up the contributions from each deep field cell to calculate the final $N(z)$ for each bin.

B4 Zero-point uncertainty

As measured in Hartley et al. (2022), the deep field photometry has some residual photometric zero point error. This error is largest in the u-band (0.055), and much smaller in the other bands: 0.005 in griz and 0.008 in JHK (Table 5 in Hartley et al. (2022)). This in principle impacts our analysis in two ways. First, most of the redshift information is in the COSMOS fields, while X3, C3, E2 have little or no redshift information. Therefore, we are extrapolating the redshift information measured in one field to the colors of all fields, and measuring the color abundance from all fields. The zero-point uncertainty affects the accuracy of this extrapolation, as well as the measured deep color abundance. On the other hand, a zero-point error on the deep field fluxes introduces an error in the input injected model fluxes used by Balrog, which in turn will induce a slight error on the distribution of recovered wide field Balrog fluxes. Since the error in the u-band is the largest, there is no u-band in the wide field, and the zero-point errors in griz are small, we assume the former is the only form of zero-point error we need to worry about.

Since the zero-point photometric uncertainty is mainly measured from the variance of the stellar and red galaxy loci between each band and field (for full details see Hartley et al. 2022), we perturb the zero-point magnitude of each deep field (X3, C3, E2, COSMOS) and band by an amount drawn from a Gaussian distribution with zero mean and variance equal to the measured variance from Hartley et al. (2022). Since only the relative zero-point matters, we fix the zero-point of one of the fields (COSMOS) and perturb the zero-point of the remaining fields (X3, C3, E2). We marginalize over this uncertainty by (i) drawing 3 zero-point shifts for each X3, C3, E2 field, (ii) we modify the fluxes and flux errors by the corresponding amount, (iii) we reassign each galaxy to the deep SOM based on the perturbed fluxes, and (iv) we re-calculate the $n(z)$ based on this new assignment.

Since the zero-point photometric uncertainty is mainly measured from the variance of the stellar and red galaxy loci between each band and field (for full details see Hartley et al. 2022), we perturb the zero-point magnitude of each deep field (X3, C3, E2, COSMOS) and band by an amount drawn from a Gaussian distribution with zero mean and variance equal to the measured variance from Hartley et al. (2022). Since only the relative zero-point matters, we fix the zero-point of one of the fields (COSMOS) and perturb the zero-point of the remaining fields (X3, C3, E2). We marginalize over this uncertainty by (i) drawing 3 zero-point shifts for each X3, C3, E2 field, (ii) we modify the fluxes and flux errors by the corresponding amount, (iii) we reassign each galaxy to the deep SOM based on the perturbed fluxes, and (iv) we re-calculate the $n(z)$ based on this new assignment.

B5 Redshift uncertainty parameter priors

To estimate priors $p(\Delta z^j)$, $p(\sigma_{\Delta z}^j)$ and $p(A_{\text{iso}}^j)$ on these parameters we draw $N(z)$ samples from the sources of uncertainty described in this appendix and calculate the spread in the mean redshift, $\bar{N}(z)$.
width and low-\(z\) fraction (\(z < 0.5\)) values of the individual distribution samples. Summarizing, we have 24 zero point systematic shifts (8 bands and 3 out of 4 fields), two redshift systematic shifts (one for COSMOS2015 and one for PAUS+COSMOS) and one selection effect bias parameter. We draw 100 samples in quantile space using Latin hypercube sampling, a stratified random sampling technique for generating near-random samples of parameter values that is more efficient than a pure random sampling. For each of these 100 samples we shift the \(p(z)\) of individual galaxies, we shift the deep fluxes of galaxies and reassign them to deep cells. Then for each of these 100 samples we generate 5,000 \(N(z)\) samples using 3sDx. We properly weight deep field galaxies injected by Balrog by the clustering weight (Section 4) of the spot where they were injected. We produce samples for all the area, and the North (Planck) and South (SPT) regions.

The fiducial redshift distribution \(F(z)\) of Equation B1 is the average \(N(z)\) of the distribution samples with an additional smoothing. We apply a Savitzky-Golay filter on the average \(N(z)\), using a 0.21 smoothing length in redshift for Bins 0 and 1, while for Bin 2 we use a combination of two smoothing lengths: we use a length of 0.21 at \(z < 0.5\) and a length of 0.45 for \(z > 0.5\).

B6 Smoothing of the redshift distributions

The redshift inference methodology described in §3 is subject to effects of shot noise and especially sample variance in the redshift samples (Sánchez et al. 2020), which result in noisy estimates of the redshift distributions of our tomographic bins. The uncertainties coming from these effects are properly taken into account in §5. In addition, we also apply a smoothing procedure to the redshift distributions used in this work, since noise in the redshift distributions can cause instabilities in the analysis of galaxy clustering. For that purpose, we apply a Savitzky Golay (SG) filter with a third-order polynomial to the raw redshifts distributions, as depicted in Fig. B6. In our fiducial case, the length of the filter window is set to 0.21 in redshift for the low redshift part of the distributions (\(z < 0.5\)), and 0.45 in redshift for the higher redshift part of the distributions (\(z > 0.5\)). In order to test the stability of our results to the particular smoothing filter choices, we define two alternative sets of smoothed redshift distributions, corresponding to lower (higher) smoothings, using SG filters with window lengths of 0.15 (0.27) in redshift for the low redshift part of the distributions (\(z < 0.5\)), and 0.27 (0.55) in redshift for the higher redshift part of the distributions (\(z > 0.5\)). The comparison between the raw estimates and the smoothed versions of the redshift distributions for the three tomographic bins is shown in Fig. B6, and the negligible impact on parameter constraints from galaxy clustering is shown in Fig. B7.

APPENDIX C: COMPARISON BETWEEN JK AND THEORY COVARIANCE

In this section we compare the two covariance estimates (based on Gaussian simulations, and based on Jackknife estimates) presented in section 7. In order to generate each realization of the Gaussian simulations, we generate a set of four maps following the procedure detailed in Giannantonio et al. (2008). In order to obtain correlated maps with the correct power spectrum, we have to generate a set of correlated (in-phase) screens with an amplitude \(T_{i,k}\), where the subindex \(i\) refers to the final map, and \(k\) to the phase. So we add all contributions with the same index \(i\) to get the \(i\)-th map, and all screens that have the same index \(k\) are generated using the same random seed (are in-phase). Each screen is generated using \(hp.anafast(T^{*2}_{ij}, nside)\).
The amplitudes T_{ik} are calculated as follows:

$$T_{1a} = \sqrt{C_{00}^{00}}$$ \hspace{1cm} (C1) \\
$$T_{2a} = \frac{C_{01}^{01}}{T_{1a}}$$ \hspace{1cm} (C2) \\
$$T_{2b} = \sqrt{C_{1}^{11} - T_{2a}^{2}}$$ \hspace{1cm} (C3) \\
$$T_{3a} = \frac{C_{02}^{02}}{T_{1a}}$$ \hspace{1cm} (C4) \\
$$T_{3b} = \frac{C_{12}^{12} - T_{2a}}{T_{3a}}$$ \hspace{1cm} (C5) \\
$$T_{3c} = \sqrt{C_{2}^{22} - T_{3a}^{2} - T_{3b}^{2}}$$ \hspace{1cm} (C6) \\
$$T_{4a} = \frac{C_{0}^{0k}}{T_{1a}}$$ \hspace{1cm} (C7) \\
$$T_{4b} = \frac{C_{1}^{1k} - T_{2a}T_{4a}}{T_{2b}}$$ \hspace{1cm} (C8) \\
$$T_{4c} = \frac{C_{2}^{2k} - T_{3a}T_{4a} - T_{3b}T_{4b}}{T_{3c}}$$ \hspace{1cm} (C9) \\
$$T_{4d} = \sqrt{C_{3}^{3k} - T_{3a}^{2} - T_{3b}^{2} - T_{3c}^{2}}$$ \hspace{1cm} (C10)

We generate 100 realizations of these maps, and get their covariance. We compare the resulting covariance with the Jackknife estimate in Figure C1. In this Figure we can see that the diagonal terms from both covariance estimates are in excellent agreement in the range of scales that we are considering.

AFFILIATIONS

1 Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, 08193 Barcelona, Spain
2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
3 Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
5 Department of Physics, University or Genova and INFN, Genova division, Via Dodecaneso 33, 16146, Genova, Italy
6 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
7 Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
8 Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
9 Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
10 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
11 Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
12 Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
13 Kavli Institute for Particle Astrophysics & Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
14 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
Figure C1. Comparison of the diagonal elements of the theory and jackknife covariance matrices for the auto-correlations of angular galaxy clustering for the three redshift bins (0, 1, 2) defined in this work. The methodology for the measurements and covariance can be found in §7.2 and Appendix C.
