KINEMATIC STRUCTURE OF THE ORION NEBULA CLUSTER AND ITS SURROUNDINGS1

Gábor Fúrész,2,3,4 Lee W. Hartmann,5 S. Thomas Megeath,6 Andrew H. Széntgyörgyi,2 and Erika T. Hamden7

Received 2007 August 13; accepted 2007 October 17

ABSTRACT

We present results from 1351 high-resolution spectra of 1215 stars in the Orion Nebula Cluster (ONC) and the surrounding Orion 1c association, obtained with the Hectochelle multiobject echelle spectrograph on the 6.5 m MMT. We confirmed 1111 stars as members, based on their radial velocity and/or Hα emission. The radial velocity distribution of members shows a dispersion of $\sigma = 3.1$ km s$^{-1}$. We found a substantial north-south velocity gradient and spatially coherent structure in the radial velocity distribution, similar to that seen in the molecular gas in the region. We also identified several binary and high velocity stars, a region exhibiting signs of triggered star formation, and a possible foreground population of stars somewhat older than the ONC. Stars without infrared excesses (as detected with the IRAC instrument on the Spitzer Space Telescope) exhibit a wider spread in radial velocity than the infrared excess stars; this spread is mostly due to a blueshifted population of stars that may constitute a foreground population. We also identify some accreting stars, based on Hα, that do not have detectable infrared excesses with IRAC, and thus are potential transitional disk systems (objects with inner disk holes). We propose that the substructure seen in both the stellar and gaseous components is the result of nonuniform gravitational collapse to a filamentary distribution of gas. The spatial and kinematic correlation between the stellar and gaseous components suggests that the region is very young, probably only ~ 1 crossing time old or less, to avoid shock dissipation and gravitational interactions which would tend to destroy the correlation between stars and gas.

Subject headings: ISM: kinematics and dynamics — stars: formation — stars: kinematics — stars: pre–main-sequence

Online material: color figures, extended figure set, machine-readable tables

1. INTRODUCTION

Because most stars are formed in clusters (e.g., Lada & Lada 2003), the processes responsible for cluster formation are important to include in any consideration of the mechanisms of star formation. Observations of very young clusters can provide clues to the initial conditions of cluster formation if the cluster has not dynamically relaxed. The increasing sensitivity of infrared studies with both ground-based instruments and the Spitzer Space Telescope has made it more feasible to search for substructure in embedded populations, as seen for example in the young cluster NGC 2264 (Teixeira et al. 2006). In addition, gas and dust can be cleared away rapidly by stellar energy input, revealing many young cluster members at optical wavelengths. In the case of NGC 2264, spatially coherent kinematic substructure in the stellar population has now been detected using optical spectroscopy (Fúrész et al. 2006).

The Orion Nebula Cluster (ONC) is a touchstone for studies of cluster formation, as it is the closest, relatively populous (\≥ 2000 members) young cluster containing an O star. While many stars in the ONC are heavily extincted (Ali & Depoy 1995; McCaughrean & Stauffer 1994; Carpenter et al. 2001; McCaughrean et al. 2002; see also O’dell 2001 and references therein), evaporation of molecular gas by the O6–7 central star θ^1 C Ori has revealed many of the members of the ONC at visible wavelengths. Optical studies of the stellar population show that it is quite young, with a median age of roughly 1 Myr or less (Hillenbrand 1997), suggesting that it is reasonable to search for substructure in the cluster related to the initial conditions of formation.

Hillenbrand & Hartmann (1998, hereafter HH98) conducted a preliminary study of the structure and kinematics of the ONC. HH98 constructed azimuthally averaged stellar source counts and showed that they could be fit with a simple, spherically symmetric, single-mass King cluster model of core radius ~ 0.2 pc and a central density of $\sim 2 \times 10^4$ stars pc$^{-3}$ (see also McCaughrean et al. 2002). However, HH98 pointed out that the cluster is not circular in projection; rather, it is elongated north-south along the same direction as the molecular gas filament, suggesting that the cluster might not be completely relaxed.

This elongation is particularly apparent on scales larger than 0.5 pc from the center. The filamentary structure is well expressed in CO observations of the region (Bally et al. 1987), as well as in the distribution of pre–main-sequence (PMS) stars, shown by recent infrared (IR) observations (S. T. Megeath et al. 2008, in preparation). According to the models of Burkert & Hartmann (2004), self-gravitationally collapsing gaseous sheets can form such elongated, filament-like clouds. The numerical simulations show that density and velocity dispersion become larger at the ends, inducing star formation to start at the tip of the filament, matching the position of the ONC within the Orion A cloud. The collapsing sheet model also predicts an overall velocity gradient along the filament, in agreement with CO observations of the ONC (Bally et al. 1987). For such a young star-forming region as ONC, the stars are still very close to their birthplace; therefore, the stellar kinematics may reflect initial conditions rather than being relaxed.

1 Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

2 Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138.

3 Most of this work was done while G. F. was a research fellow of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest, Hungary.

4 University of Szeged, Department of Experimental Physics, Dom ter 9, H-6723 Szeged, Hungary.

5 Department Astronomy, University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109.

6 Department Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606.

7 Department Astronomy, Harvard University, Cambridge, MA.
We therefore conducted a radial velocity (RV) survey of more than 1200 stars in the northern region of the Orion A cloud to search for clues to the initial conditions of the ONC’s formation. In this paper we present results based on high-resolution spectroscopic observations in the $\lambda \sim 6560$ Å region, which allowed us to measure RVs and identify T Tauri stars (TTSs) based on their Hα emission. We find that the stellar population exhibits a strong spatial and kinematic correlation with the 13CO gas in the region; the observed substructure conclusively demonstrates that the ONC is not relaxed, but instead reflects the initial conditions involved in its formation. We also comment on the detailed structure, distributional differences seen among stellar groups distinguished by infrared, Hα, and spatial and kinematic properties. In a subsequent paper we will incorporate follow-up spectroscopy we have obtained in the Mg triplet region (centered at 5225 Å) to examine rotational velocities and spectral typing, along with observations of the 6708 Å Li line to use as an age estimator.

2. TARGET SELECTION

To conduct the kinematic study, we selected targets in the northern end of Orion A. Thanks to the dense molecular cloud, there are few background stars in any stellar catalog of the region. At the same time, the ONC region exhibits a high-density of pre-main-sequence objects on the sky, so the foreground contamination is relatively low. Therefore, we initially used a simple color-magnitude selection from the 2MASS catalog to draw the first target list for our observations.

Our intent was to observe multiple fields to cover at least a $\sim 1^\circ \times 2^\circ$ area. Previous experience with Hectochelle suggested we could reach a signal-to-noise ratio (S/N) of 10 or higher for most of our targets in 1 hr exposure time for stars with $11.5 < J < 13.5$. We also initially selected stars with $0.2 < (H - K) < 0.5$ to avoid heavily reddened objects, but this also eliminated many stars with disks (see following paragraph). These selection criteria above therefore resulted in 2319 targets within a 1.5$^\circ \times 2.7$$^\circ$ field centered at $\alpha = 5^h35^m$ and $\delta = -5^\circ44'$. This region includes the Trapezium and areas to the south (NGC 1980) and north (NGC 1973–1975–1977, NGC 1981) of the ONC.

We added young stellar objects to the sample based on their IR excess, as identified using the IRAC and MIPS instruments on board the Spitzer Space Telescope (S. T. Megeath et al. 2008, in preparation). This selection went down to a fainter magnitude limit of $J = 15$, and included additional Class II members of the star forming region. These targets were observed during the second of the two spectroscopic runs, while 2MASS-selected objects were observed in the first. See Figure 1 for the spatial distribution of selected targets. Details will be given in a forthcoming paper (S. T. Megeath et al. 2008, in preparation).

3. SPECTROSCOPIC OBSERVATIONS

The spectroscopic observations were carried out using the Hectochelle multiobject spectrograph (Szentgyorgyi et al. 1998) at the 6.5 m MMT telescope in Arizona. We used the 190 Å wide echelle order centered at Hα, because we could get RV information as well as record the stellar hydrogen emission profiles, a sign of youth and membership, at the same time. This is the same instrumental setup that was used for the observations reported in Fürész et al. (2006; see § 2.2 of that paper for details; see also Sicilia-Aguilar et al. 2005).

The first set of spectra was taken in 2004 December, when a total of 866 stars in four fields were observed (see Table 1). Initially we chose not to bin in the resolution direction, which resulted in

Date	ID	Field Center	Exposures	Binning Mode	Number of Targets
2004 Dec 01	F11	5h35m19s, -04°49'27"	3 × 20 minutes	1 × 1	224
2004 Dec 01	F21	5h35m13s, -05°21'14"	3 × 20 minutes	1 × 1	210
2004 Dec 01	F22	5h35m13s, -05°21'14"	3 × 20 minutes	1 × 1	219
2004 Dec 01	F31	5h35m26s, -06°07'30"	3 × 20 minutes	1 × 1	213
2005 Nov 15	S3	5h35m13s, -05°33'10"	3 × 15 minutes	2 × 2	161
2005 Nov 15	S2	5h35m11s, -05°07'28"	3 × 15 minutes	2 × 2	154
2005 Nov 15	S1	5h35m21s, -05°18'50"	3 × 15 minutes	2 × 2	170
low S/N values for the faintest targets. Therefore, we used a 2 × 2 binning in 2005 November in order to decrease the readout noise in the data and thus go fainter. Because Hectochelle oversamples the resolution element (the PSF of a resolved spectral feature has \~3.5 pixel FWHM), this binning does not result in a serious loss of resolution. Accordingly, the accuracy of RVs derived for the 485 stars observed in 2005 are comparable to the 2004 values.

During the two observing runs we collected a total of 1351 spectra of 1215 stars within seven Hectochelle fields. The locations of these objects are shown in Figure 1, overplotted on a color IRAC mosaic image covering most of the 1° × 2.5° region explored by spectroscopy.

Sky subtraction would have been very difficult in the vicinity of the ONC, as the nebular emission is so strong and can vary rapidly on small spatial scales. Consequently, placing a few sky-sampling fibers over a field is not adequate. The best approach would be to take an offset sky exposure, where all the fibers remain at the target locations and the telescope is moved by a few arcseconds to set targets off the fibers, resulting in sampling the background right next to each target. However, this procedure would double the exposure time; due to time constraints we did not take such exposures. We simply excluded the emission features as not important for RV measurements, which did not result in an appreciable loss of absorption features used in the cross-correlations.

4. DATA REDUCTION

The spectra were extracted, calibrated, and normalized by an automated, IRAF-based pipeline, utilizing the standard spectral reduction packages and tools. Some of the Hα emission was so strong that a given aperture became partially saturated, and this affected the Hα profile of neighboring apertures. As the RV determination is based on absorption lines outside of the Hα region, it usually did not cause problems in measuring the RV, as we excluded any emission portion of the spectrum from the cross-correlation. Sky subtraction was not performed due to a lack of proper background sampling, as mentioned above, so the stellar Hα and profiles contain nebular emission ([N ii]) is basically all nebular.

The velocities were derived by cross-correlating (CC) each observed spectrum with a set of templates, using the rvtoaio package within the IRAF environment. As we found in Fűrész et al. (2006), finding the template most similar to a given object in such a “multitemplate method” yields a more accurate RV. Instead of using observed templates, for this present work we adopted synthetic spectra from the library of Munari et al. (2005). Even though the unbinned observations of 2004 yield higher resolution (R ~ 38,000) than the R = 30,000 for the synthetic ones, downgrading the resolution of the data for the CC was found to be unnecessary. Comparisons between the cross-correlation functions (CCF) of the original and smoothed (resolution downgraded to match R ~ 30,000) data against the same templates showed no differences in the measured RV value larger than the estimated error in fitting the peak of the CCF. For the spectra recorded in 2005, there was an even better match between the resolutions of the data and the templates, due to the 2 × 2 binning.

The set of templates was a three-dimensional grid in effective temperature (3500 < T_eff < 6000, with 250 K steps), surface gravity (1.0 < log g < 5.0, with steps of 0.5) and rotational velocity (0, 2, 5, 10, 15, 20, 30, 40, 50, 75 and 100 km s\(^{-1}\)). The metallicity was chosen to be [M/H] = +0.5, as a possible value for young stars in the solar neighborhood, and its value was fixed due to the common origin of our targets. (Other variables of the full original library were set to have microturbulence \(K = 2\) km s\(^{-1}\), no [\alpha/Fe] enhancement, and use the new ODF models). A total of 1089 templates were compared to each spectrum, and the following values were determined: S, the height of the CCF; R, the S/N of the CC (for details see Fűrész et al. 2006, Kurtz & Mink 1998, and Tonry & Davis 1979); \(V_{\text{rad}}\), the heliocentric-corrected radial velocity; and \(V_{\text{err}}\), the error of radial velocity determination. These values are given in Table 2 and 3 along with other result of spectroscopy and photometry.

For each observed spectrum, the CCF values of \(S\), \(R \text{ and } V_{\text{rad}}\) were plotted, and the global peak was localized for \(S\). The parameters of this best-fitting template were adopted as the astrophysical parameters of the given star, but only if \(S\), \(R\), and \(V_{\text{rad}}\) were changing smoothly within a small range with varying template parameters (as expected for a robust result). We found the variation of these CCF parameters (\(S\), \(R\), and \(V_{\text{rad}}\)) to be a good indicator of noise, as low S/N and/or a featureless spectrum yield very different CCFs for different templates, and exhibit no global (outstanding) CCF peak, but several local peaks of the same height (0.1–0.2). Significant CCFs yield global peaks at least 30%–50% higher than any other noise peak.

We plotted the CCF for the best matching template for each star, and examined the result by eye to make sure the global peak identified did not exhibit any sign of binarity (sidelobes or a secondary peak with comparable peak height). If a companion was found (or a high probability of a possible companion was suggested by the CCF), we marked the star as a binary (possible binary; see Table 2 and 3).

As a result there were 1049 stars out of 1215 yielding an \(R > 4\) (only these were used in the later analysis), with a mean \(R\) value of 13.7. As a comparison, using 10 actually observed templates (the ones from Fűrész et al. 2006), we obtained only 547 stars with \(R > 4\), and a mean \(R\) value of only 7.8. Thus, increasing the number of templates led to a significant increase in the number of objects with accurate RV values.

We found a 0.8 km s\(^{-1}\) offset between the mean heliocentric velocities of the 2004 and 2005 observations. This is likely due to the different (improved) calibration system used in 2005. The shift was determined by comparing velocities of 35 stars observed in both runs with \(R\) values larger than 8. The values are listed in Table 2 and 3 are corrected for this zero-point offset, by shifting the 2004 values to the 2005 scale.

As discussed by Tonry & Davis (1979), the RV error (\(\Delta V_{\text{rad}}\) in Table 2) is expected to vary as

\[\Delta V_{\text{rad}} \sim W/(1 + R), \]

where \(W\) is a constant related to the velocity width of the CCF. We estimated that \(W \sim 10\) km s\(^{-1}\), and found this to be in good agreement with multiple observations of program objects after correcting for the above zero-point offset and eliminating possible binaries.

5. RESULTS

5.1. Velocity Distribution and Correlations between Stellar and Gaseous Components

The distribution of measured heliocentric radial velocities is shown in Figure 2. The histogram of the entire sample is displayed for three different S/N values of the cross correlation, and
we also show the distribution of a spatially selected subsample. The $R > 2$ group includes the faintest spectra, on which scattered Moonlight causes the cross-correlation to fix on the solar spectrum rather than the stellar lines; this leads to a false peak near the heliocentric correction value (≈ 14 km s$^{-1}$). However, most of the faint spectra follow the distribution drawn by the higher S/N selections. In any event, we did not use any spectra with R values less than 4 in the following analysis.

The distribution of the entire $R > 4$ sample peaks at a heliocentric velocity of 26.1 km s$^{-1}$ (see Gaussian fit on Fig. 2, in good agreement with our initial study of the ONC (Sicilia-Aguilar et al. 2005). The dispersion we found, $\sigma = 3.1$ km s$^{-1}$ (with 10 and 40 km s$^{-1}$ cutoff values), is somewhat higher than the 2.3 km s$^{-1}$ value of the previous Hectochelle study, or the 2.5 km s$^{-1}$ derived from proper motions (Jones & Walker 1988), but the present sample includes a larger region (see Fig. 1). Nevertheless, spatially selecting a subsample in the close vicinity of the ONC, within a 15$'$ radius of Trapezium (292 stars with $R > 4$), we still found a mean velocity of 25.6 km s$^{-1}$ and a dispersion of $\sigma = 3.1$ km s$^{-1}$. These numbers are very close to values calculated using the entire sample, but the distribution is different for these two spatial selections, as it is obvious in Figure 2. While the observed stars can be fitted by a $\sigma = 3.1$ km s$^{-1}$ Gaussian, the velocity distribution of ONC stars does not seem sufficiently peaked at the mean velocity.

We computed the cross-correlation between -500 and $+500$ km s$^{-1}$ heliocentric velocities, but found only a small number of stars farther from the peak than ± 4 km s$^{-1}$. Between 4 and 15 σ there are stars with high R values, but outside of this region there are only a few, usually very faint, outliers. The inset in the upper left of Figure 2 shows how clean the distribution is over the explored RV range, even including the $R > 2$ spectra. The γ-axis is log scaled, to better show the wings of the peak. (A horizontal line is also drawn at $N = 1$.) Based on the morphology of the histogram, we define RV membership for stars with velocities in the 26.1 ± 4 km s$^{-1}$ range, or between 13.7 and 38.5 km s$^{-1}$. Even if the RV was out of this range, or was very uncertain due to a low R value, we still considered a star as a member if its spectra exhibited molecular gas (\equiv 0.01 km s$^{-1}$), is somewhat higher than the 0.03 km s$^{-1}$ value of the previous Hectochelle study, or the 0.05 km s$^{-1}$ derived from proper motions (Jones & Walker 1988), but the present sample includes a larger region (see Fig. 1). Nevertheless, spatially selecting a subsample in the close vicinity of the ONC, within a 15$'$ radius of Trapezium (292 stars with $R > 4$), we still found a mean velocity of 25.6 km s$^{-1}$ and a dispersion of $\sigma = 3.1$ km s$^{-1}$. These numbers are very close to values calculated using the entire sample, but the distribution is different for these two spatial selections, as it is obvious in Figure 2. While the observed stars can be fitted by a $\sigma = 3.1$ km s$^{-1}$ Gaussian, the velocity distribution of ONC stars does not seem sufficiently peaked at the mean velocity.
Table 3

2MASS ID	ID	\((J-H)\)	\((H-K)\)	\([3.6-4.5]\)	\([5.8-8.0]\)	\(V_{rad}\)	\(\Delta V_{rad}\)	\(R\)	\(S\)	\(E_{W}\)	\(FW_{10}\)	\(H\)	CCF	NOB
0533283-	F11	0.89	0.24	0.04	0.03	-22.07	0.94	8.9	0.46	0.0	0	AE	c	1
0533289-	F22	0.78	0.31	0.01	0.02	-27.05	0.87	11.5	0.35	0.0	0	AE	c	1
0532989-	F21	0.92	0.27	0.00	0.00	-6.00	0.62	11.5	0.49	0.0	0	AE	c	1
0533390-	F31	0.88	0.25	0.02	0.03	-21.78	0.87	11.5	0.35	0.0	0	AE	c	1
0533397-	F11	0.97	0.25	0.00	0.00	-6.00	0.62	11.5	0.49	0.0	0	AE	c	1
0533514-	F11	0.25	0.34	0.00	0.00	-6.00	0.62	11.5	0.49	0.0	0	AE	d	1
0533520-	F11	0.92	0.27	0.02	0.00	-6.00	0.62	11.5	0.49	0.0	0	AE	c	2
0533524-	F11	1.20	0.30	-0.01	0.17	-5.25	0.34	21.6	0.72	0.0	0	AE	c	1
0533570-	F22	1.66	0.44	-0.08	0.16	112.78	0.46	15.2	0.68	0.0	0	AE	c	1
0533579-	F31	0.80	0.24	0.06	0.04	38.64	0.76	10.1	0.60	0.0	0	AE	c	1
0534018-	F31	1.24	0.32	0.00	0.12	70.32	0.37	19.2	0.70	0.0	0	AE	c	1
0534040-	F31	0.80	0.20	0.00	0.17	4.17	0.57	15.1	0.75	0.0	0	AE	c	1
0534057-	F31	1.31	0.38	0.00	0.12	113.63	0.41	18.0	0.68	0.0	0	AE	c	1
0534071-	F31	0.12	0.35	0.00	0.11	38.22	0.75	10.3	0.49	0.0	0	AE	c	1
0534080-	F31	0.12	0.30	0.01	0.10	1.20	0.45	18.9	0.74	0.0	0	AE	c	1

Notes.—Table 3 is published in its entirety in the electronic edition of the Astrophysical Journal. A portion is shown here for guidance regarding its form and content. Hectochelle targets in ONC found to be nonmembers based on measured RV value or lack of detected H\(\alpha\) emission. Stars are listed regardless of \(R\) value, but no velocity is displayed in case of very low \(R\) or undefined CCF. Col. (1): 2MASS identification number (truncated R.A. and decl. coordinates as: HHMMSSS+DDMSSS). Col. (2) Internal identification number, specifying the field (see Table 1) and aperture of observation. Col. (3): 2MASS \((J-H)\) and \((H-K)\) color index. Cols. (4)–(9): Measured heliocentric radial velocity, in km s\(^{-1}\), and \(\chi^2\) error estimate for \(V_{rad}\). Col. (10): \(R\) value of cross correlation (see text for details). Col. (11): S, height of the CCF peak. Col. (12): Absolute value of equivalent width, measured on the corrected \(H\alpha\) profile (see text for details). Col. (13): Full width of \(H\alpha\) profile at 10% of the corrected maximum (see text for details). Col. (14): Notes on the \(H\alpha\) emission profile: (D) resolved or unresolved double Gaussian profile, no excess \(H\alpha\) emission (likely non-TTS); (R) obviously shifted \(H\alpha\) absorption, high RV stars; (X) very wide \(H\alpha\) absorption with nebular emissions; (AE) stellar absorption and nebular emission together; (NS) very strong nebular component component, no wings, no asymmetry. Col. (15): Notes on the cross-correlation function: (W) wide peak, resulting in large errors in \(RV\); (I) very low peak, but a peak sticks out from surroundings; (U) almost undefined, very low wide peak; (V) very noisy (several local peaks, almost as high as the one picked); (S) side lobed, could be a spectroscopic binary; (D) double peak, spectroscopic binary; (H) RV measured more than once, found different velocities, could be binary; (T) template spectra with highest peak in cross-correlation resulted unrealistic velocity, so the template resulting in the highest \(R\) value was used instead to determine velocity; (C) clear, well-isolated peak; (?) uncertainty in assigning the given note. Col. (16): Number of observations.
Fig. 3.— Velocity channel maps of the ONC region. The dots represent stars with one (red) or more (black) RV measurements, while blue is the molecular gas observed in 13CO, both displayed in 1 km s$^{-1}$ channels. LSR velocities of the gas is converted to heliocentric ($V_{\text{helio}} = V_{\text{LSR}} + 17.5$). The size of the dots correspond to the R value; larger dots mean more accurate velocity. The north-south velocity gradient is obvious, and the correlation between the spatial and density distribution of stars and molecular gas is very significant. This suggests that the stars are still comoving with the gas clouds in which they formed.

Fig. 4.— Channel maps of the ONC region, in right ascension. Symbols are the same as for Fig. 3. The approximately 30 s wide R.A. ranges are noted in each channel. The correlation between the gaseous and stellar component is most prominent in the upper right corner, in the channel containing Trapezium. In the lower right panel a full projection is shown with stellar density contours overplotted on the gas distribution.
emission can be so strong that the stellar signature is barely visible as asymmetries in the wings, at very low intensity levels. This means that neither the canonical 10^8 limit in equivalent width nor the 270 km s^{-1} limit in full-width at 10% peak (White & Basri 2003) methods can be applied to the raw spectra to distinguish between accreting T Tauri stars (classical T Tauri stars, CTTSs) and nonaccreting, weak-emission T Tauri stars (WTTSs).

To help identify the broad wings of Hα, we used a simple algorithm to identify narrow (FWHM < 10 km s^{-1}) emission peaks close ($\pm 25 \text{ km s}^{-1}$) to the main 13CO velocity, and fit a Gaussian component to this peak. If such local peak was found, then it was replaced with a linear segment, connecting the points where the wider stellar profile started to deviate from the narrow Gaussian component. While this helped us to visually inspect the line profiles and make a judgments as to the presence of broad emission wings, it is obviously not a robust method of eliminating nebular emission, especially given the complex velocity structure seen in the densest regions.

In cases of strong nebular emission, only the low-level wings contain usable information for classification. We therefore examined the linear and log-scaled plots of each Hα profile. A sample of these plots is presented in Figure 6. The linearly scaled, corrected profile is displayed as a bold line, with a linear segment replacing the supposed and eliminated nebular component. The logarithmically scaled version of the uncorrected spectra is shown as a thin line, and other than emphasizing the wings, it also makes it possible to check whether the automated identification and subtraction of nebular emission was correct. (The intensity values does not apply to this representation, as it was scaled to fit the linear-scaled range described above.) Black triangles mark the full width at 10%, which was measured together with the EW on the corrected profile. Those values are listed in Table 2.

We found some contradiction between the two spectroscopy-based classification schemes of TTSs. For some stars, even though the nebular-corrected EW (and sometimes the uncorrected EW as well) was significantly smaller than 10^8, the full-width at 10% reached or exceeded 250 km s^{-1}, broadening strongly indicative of accretion (e.g., 0535495–042438 = F11_ap128, 0534257–045655 = F21_ap115, 0536197–051438 = S1_ap175). With IRAC photometry in hand for several of these stars, we were able to confirm the CTTS status. At the same time, in other cases we encountered some disagreement between very clear CTTS profiles and IRAC photometry not suggesting a disk (see § 5.3). In addition, further uncertainties were caused by the artificial subtraction of the nebular emission component.

Therefore, the final notes (classes) on Hα profiles listed in Table 2 and 3 are based on a somewhat more complicated classification scheme than CTTS/WTTS or no-emission. In cases of very strong nebular emission with apparently broad but uncertain wings in Hα, to note the possible nebular bias in classification of these stars, we distinguish them with an "NS" prefix in the Hα note. A full description of our classification scheme is given in the notes for Tables 2 and 3.

In terms of statistics, in our particular sample the total number of CTTSs (including C, CD, CW, NSC; see Hα note in Table 2) is 581, or 53.6%. The total WTTS count is 439 (including W, WC, WD, W+, W−, NSW), or 40.5%, for a ratio of CTTS WTTS = 1.35. If only the most confidently classified groups are considered, we have 276 CTTS (including only C), and 230 WTTS (including 160 W and 70 W+), which gives a ratio of CTTS WTTS = 1.20. However, we caution that these numbers cannot be used to estimate a true ratio of accreting to nonaccreting stars in the region, because our sample is biased by the selection of infrared-excess stars, as well as being limited in the sampling of stars in the inner ONC due to crowding. In addition, our non-IRAC selection of
stars (F-fields) tended to omit stars with large infrared excess in H/C_0.5.3. Spectroscopic vs. Photometric Disc/Accretion Indicators

The IRAC color-color diagram $[3.6] - [4.5]$ vs. $[5.8] - [8.0]$ (Allen et al. 2004) can be used to distinguish between young stars with and without inner disk emission (and protostars with circumstellar envelopes, but these were not within the scope of our survey). In the case of a star having both short- and long-wavelength infrared excess due to a circumstellar disk, accretion onto the star is likely taking place, and therefore we expect a broad Hα profile (the signature of material falling in at high velocity), and thus a CTTS (e.g., White & Basri 2003). If the short-wavelength excess is not present, presumably there is either no disk to accrete or no inner disk; in most cases, such systems are not accreting and thus are WTTSs.

Figure 7 shows that, as expected, many weak-emission stars have no infrared excesses and many wide-emission stars have infrared excesses, but there are a significant number of counterexamples. We suspect that many, if not all, of the stars with significant $[3.6] - [4.5]$ excesses are in fact accreting, based on the strong correlation previously seen in $K-L$ in Taurus (Hartigan et al. 1990), but the strong nebular contamination prevents us from detecting the Hα wings. Other objects with only long-wavelength excesses may indeed not be accreting. In addition, there are systems without any excesses which clearly are accreting. In the cases of 0534254 Y045655 Y0534299 Y052517, the IRAC colors are $[3.6] - [4.5] = 0.06/0.07$, $[5.8] - [8.0] = 0.41/0.13$, respectively; both stars have high-S/N spectra with very prominent, wide Hα emission containing only negligible, easily identified nebular components. In contrast, 0535513 Y061353 (F31_ap208) and 0536222 Y05547
we included some stars of our first observing run in the second
intrinsic kinematic structure. To ensure a consistent zero point
small, identifying spectroscopic binaries is important to explore
occurs.
expanding the range of ages where transitional disk behavior
ONC must be among the very youngest such systems known,
any event, the accreting transition disks we identify here in the
the optically thick outer disk, moving particles of sizes respon-
sible (S3_ap217) IRAC colors show clear excess, [3.6 – 4.5] =
0.39/0.34, [5.8 – 8.0] = 0.87/0.75, but the well-defined spec-
trum shows only a weak nebular component with slight asymmetry
or very low-level wings.
F11_ap43 and F31_ap158 appear to be examples of a small
class of objects termed “transitional disks” (Calvet et al., 2002,
2005). We have found ~35 such stars in our ONC sample. These
systems tend to have their inner disks partially or almost totally
cleared of small dust, as inferred by the weakness of the near-
infrared excess, yet have substantial outer disks. TW Hya (Calvet
et al., 2002, 2005) and DM Tau (Calvet et al. 2005) are examples of
systems which have essentially zero measurable excesses shortward of ~5 μm, but strong excesses at longer wavelengths,
and in addition are still accreting gas onto the central star, pro-
buding a broad Hα emission profile. (For example, the 10 Myr old
accreting T Tauri star TW Hya has IRAC colors of [3.6] – [4.5] = 0,
[5.6] – [8] = 0.95; Hartmann et al. 2005.) S. T. Megeath (2007,
private communication) has confirmed the transitional disk status
of these objects, as his Spitzer photometric survey extended into
the 24 μm band, and some of these peculiar stars had usable (ac-
ceptable S/N) measurements exhibiting long-wavelength excess.
How small dust “disappears” while gas still accretes in the
inner disk is not entirely clear. One possibility is that grains grow
to such large sizes that the near-infrared opacity is reduced; an-
other possibility is that “filtration” occurs at the inner edge of the
optically thick outer disk, moving particles of sizes responsible
for the near-infrared emission outward (Rice et al. 2006). In
any event, the accreting transition disks we identify here in the
ONC must be among the very youngest such systems known,
expanding the range of ages where transitional disk behavior
occurs.

5.4. Binary Stars
As the velocity dispersion in the ONC region is relatively
small, identifying spectroscopic binaries is important to explore
intrinsic kinematic structure. To ensure a consistent zero point
(see § 4) between the multiepoch observations discussed here,
we included some stars of our first observing run in the second
set. Also, to make sure that different fields of a given run have a
common zero point, we had some overlap between fields, so that
some stars were observed multiple times within an observing
run. Out of the 1215 targeted stars, 1086 were observed only once,
122 twice, and 7 three times. For the 129 stars observed multiple
times, we compared RV values and evaluated the difference (Δ)
against the internal RV error (σ) of the correlation, identifying
possible (Δ > 1.5σ) and likely (Δ > 3σ) binary stars. The CCF
column of Table 2 and 3 lists “dv?” and “dv” notes for these
stars, respectively.

For a single RV measurement, the cross-correlation function
still can be used to identify double-lined spectroscopic binary stars.
By looking at each individual CCF, we found several sidelonges, secondary peaks blended with the main peak (CCF note “s”),
and resolved double peaks (“d”). Where the main/secondary CCF peak
heights were not at least 50% higher than any other local peaks due
noise, or the sidelong did not rise 25% higher than local peaks and
therefore the detection probability was not high, we add a “?” sign in the notes to express the uncertainty.
The locations of these binary stars are shown in Figure 8, dis-
played as a full projection in R.A., onto a RV-declination plane.
The possible (more uncertain) stars are shown with open trian-
gles, the more likely candidates with open diamonds. The vel-
ocity used for plotting is the average of all measured RV values
when we had more than one measurement. A wider velocity
range is applied to this plot to accommodate all the binary stars,
rendering the mainstream cluster members and molecular gas
into a narrow vertical feature. Counting all the possible (18) and
more likely ones (34), the total number of binaries is 52, or ~4% of
the entire sample.

Based on these single-epoch observations we cannot make an
estimate of the spectroscopic binary fraction of the ONC. How-
ever, our results may be consistent with the low frequency of
resolved multiple systems suggested for the ONC (see Köhler
2006 and references therein). In any event, our observation of position-velocity structure in the stellar distribution, which strongly correlates with the molecular gas, indicates that the overall dynamics are not strongly biased by binary motion, although our velocity dispersions may be slightly inflated due to orbital motion. Of course, there may be spectroscopic binaries present in our sample with much smaller velocity shifts that are difficult to separate from the main population (see § 6.3).

5.5. High Radial Velocity Stars

In § 5.1 we showed that the RV distribution is relatively clean, with very few outliers from the main peak (see insert of Fig. 2). Although most of these high velocities are just false detections (the CCF peak found to be global is just marginally higher than any other local peak due to noise), some are real (a global CCF peak more than 50% higher than other local peaks); these stars have a note “R” in the H0 column of Table 3. What makes these stars interesting is the possibility that they originated from a cluster by a decay of a triple or multiple young stellar system, or by the interaction of multiple systems (Gualandris et al. 2004), and then were ejected at high velocities. The very high stellar density of the ONC makes it a favorable place to look for such stars (one example may be the BN object, just northwest to the Trapezium; Rodriguez et al. 2005). Three members of ONC were recently suggested by Poveda et al. (2005) to be possible runaway stars based on proper motion measurements performed on photographic plates, but O’Dell et al. (2005) did not confirm these motions using proper motion measurements from Hubble Space Telescope images. Only one of these three stars (JW 355) can be found in our sample, as 0535109—052246 (S2...ap220). Unfortunately, the spectrum is very noisy, so we have no additional radial velocity measurement.

Among our targets we have 21 stars with the “R” note, out of which 5 stars have velocities smaller than ~40 km s\(^{-1}\) (more than ~20 σ off the mean cloud velocity), while 15 have RV values larger than 80 km s\(^{-1}\). Each of these stars were observed only once, so the only hint for companions, as another possible reason for deviant RV, would be the CCF. However, for all of them it only has a single, well defined peak.

A relation to the cluster is apparent only in one case, as star 0535503—044208 (F11...ap146) shows H\(\alpha\) emission (and is therefore listed in Table 2). All the others exhibit only a nebular emission component superimposed on the H\(\alpha\) absorption line. According to the stellar parameters derived from the multi-template fitting, more than half of these stars are K–M dwarfs. Assuming main-sequence colors (Kenyon & Hartmann 1995), based on the derived temperature, and comparing it to the observed (J–H) value, we got extinction values of \(A_V \approx 3–4\) by assuming a \(E(J–H) = 0.19E(B–V)\) relation (Bessell & Brett 1988). This is a plausible value in the areas where these stars are located, farther from dense regions.

The three most deviant RV stars are worth mentioning. One object is blueshifted at \(RV = -147\) km s\(^{-1}\), and exhibits only \(A_V = 1.3\). The low extinction is not surprising, as this star (0537111—055946 or F31...ap162) is located at the very edge of our field, which also means just off to the side of the Orion A molecular cloud. The surface gravity suggests a giant, so it is likely a background object, based on its brightness. This is in agreement with its location, as we could have not observed it behind the denser parts of the cloud.

The two highly redshifted stars (0536592—050029 or F11...ap183 at \(RV = 232.5\) km s\(^{-1}\); and 0537005—050931 or F22...ap138 at \(RV = 438.7\) km s\(^{-1}\)) have almost the same R.A. value as F31...ap162, so those are also just off the cloud. The former star seems to have a low surface gravity, and therefore it is likely a background object as well, at a brightness of \(J = 11.87\). However, there seems to be a contradiction with its J magnitude, as the \((J–H) = 1.09\) color suggests a very high extinction, adopting the intrinsic colors of \((J–H)_0 = 0.66\) from Alonso et al. (1999) based on the stellar parameters derived from template fitting. Another problem with the interpretation as a background object is that the [Fe/H] = ±0.5 templates used for the analysis might not be adequate. Renumbering the cross-correlation on a grid of metallicities (with a fixed rotational velocity of 0), it turns out that [Fe/H] = −0.5 gives a better match (with \(T_{\text{eff}} = 4500\) and \(log g = 1.5\)), but the observed and intrinsic colors are still in contradiction to the expected low extinction. Thus, additional spectroscopy is required to say more about this object.

Exploring metallicity by further template matching turned out to be crucial for the highest radial velocity star, F22...ap138, as for the temperature we hit the edge of parameter space while performing cross-correlation of the original grid. Fixing the rotational velocity at 0 and exploring a metallicity–temperature–gravity grid, we found the best match to be a [Fe/H] = −1.5 spectrum with \(T_{\text{eff}} = 4250\) and \(log g = 4.0\). This results in a plausible extinction of \(A_V = 1.1\). The low-metallicity template suggests that this is not a young star; therefore, very likely we are witnessing a fast-moving background member of an older population.

6. DISCUSSION

6.1. Cluster in Formation

The significant position-velocity substructure seen in both the stars and the molecular gas clearly demonstrates that the ONC is not dynamically relaxed; qualitatively, it appears to be more consistent with dynamical models of cluster formation, such as those of Hartmann & Burkert (2007) and Bate et al. (2003). The curvature of the \(^{13}\)CO emission seen in the northern region of the position-velocity plot (Fig. 4), with a possible corresponding southern feature, is suggestive of gravitational acceleration of material toward the cluster center, where the gravitational potential well should be deepest. Gravitational acceleration is also consistent with the evidence for the largest velocity distribution in the gas, located near the center. Many stars exhibit the same position-velocity distribution as the \(^{13}\)CO, which suggests that these stars are mostly following the motion of the dense gas within which they formed. If these motions were primarily the result of stellar energy input through winds or photoionization, it is not clear that the gas and many stars should show the same kinematics, as such energy input could easily blow the gas away from the stars; some possible examples of this are discussed in the following section.

The observed correlation of stars and dense gas in space and in velocity indicates that the inner regions cannot have experienced more than about one crossing or collapse time; otherwise the velocity structure would be erased as the infalling gas shocks and dissipates its kinetic energy, with the stars passing through the shocked gas. Overall, the spatial coherence in the \(^{13}\)CO gas kinematics, the evidence that many younger stars follow this motion, and the strongly filamentary structure of the stellar distribution outside the main core of the ONC suggest that the ONC still exhibits features traceable to its initial conditions of formation.

6.2. Subgroups and Stellar Energy Input

While there is a strong general spatial and kinematic correlation between stars and dense gas, there are exceptions. One especially
clear case can be seen in the bottom left panel of Figure 4, at decl. $\simeq -5^\circ 27'$: a tight, linear string of stars sticking out of the main cloud as a “nose” extending between RV $= 21$ and 25 km s$^{-1}$. The left panel of Figure 9 shows a declination-velocity plot zoomed into this region, in an R.A. range shifted slightly westward of the Trapezium region (vertical lines in the right, R.A.-decl. panel of Fig. 9). Clearly there is a small group of stars blueshifted by about 1–2 km s$^{-1}$ from the gas in the declination range $-5^\circ 20' >$ decl. $> -5^\circ 30'$.

Selecting “off-cloud” stars by means of an velocity envelope for the gas (thin curve in left panel) results in demonstrating that these stars are spatially concentrated in a region southwest of the Trapezium that is relatively evacuated, as indicated by the weak 8μm emission seen in the IRAC map (right panel, gray scale). This region is also known for a large number of Herbig-Haro objects, shaped like bow shocks pointing back toward the Trapezium region (see description in O’Dell (2001), consistent with the idea that outflows from the region of most current star formation is blowing out material.

We therefore suggest that the molecular gas in this region originally extended to more negative velocities, but that outflows have cleared away the gas, making an “indentation” in the position-velocity plot at $\sim -5^\circ 26'$, RV ~ 24 km s$^{-1}$, and leaving the recently formed stars behind.

There are other interesting small-scale structures, like the tight, dense subcluster group seen in the middle of the second panel of Figure 5 (top row, second panel from left; also somewhat apparent on Fig. 4 top row, rightmost panel). These could be remnants of small building blocks, traces of density variations in the primordial cloud.

6.3. Other Populations?

Based on Figure 7, we divided our sample into IR-excess sources, with $(3.6 - [4.5]) > 0.2$ and $(5.8 - [8.0]) > 0.5$; and non-IR-excess sources, with $(3.6 - [4.5]) < 0.2$ and $(5.8 - [8.0]) < 0.5$. This division of sources is shown on the velocity-declination map with full projection along R.A. in Figure 10, where the left panel shows excess and the middle panel non-excess stars.

Looking at the left panel of Figure 10, southward of -6° there are very few CTTSs. This abrupt change is an unfortunate selection effect. The targets selected for our second observing run (S fields) had a southern declination limit of -6°, exactly where the sudden change of excess/non-excess ratio happens. And since targets for the first observing run (F fields) were selected from the 2MASS color-magnitude diagram, our selection was biased against stars with IR excesses because of the $(H - K) < 0.5$ criterion.

While many of the non-excess stars (Fig. 10, middle panel) follow the general distribution of gas and excess stars, a modest number clearly exhibit a broader distribution in radial velocity, with more blue- than redshifted stars. This can be seen on the right panel, where we present RV histograms of excess (solid bars) and non-excess (gray-shaded boxes) stars, for three declination ranges (north, with decl. > -5.2; mid, with $-5.2 >$ decl. > -6.0; and south, decl. < -6.0, as represented by the location of the histograms as well). We divided the plots in this way because the RV behavior of the gas is very different in these regions: the northern velocity is significantly higher than the mean velocity in the south, and the middle section exhibits a strong RV gradient. Regardless, the velocity distribution of non-excess stars is wider because of a secondary peak at lower velocities.
One possibility is that the lower velocity stars have been ejected from the main cluster. Close encounters in multiple-star systems might result in ejecting stars while stripping their disks; the redshifted stars might then eventually plunge into the dense, opaque regions behind, leaving more optically visible stars with blueshifts. However, this seems unlikely, because it requires a surprisingly large fraction of stars to be ejected; we do not detect a larger density of such objects nearer the center of the ONC, where the high stellar density would be more favorable to ejection. In addition, south of -6° the velocity distribution is clearly bimodal, with a very tight velocity spread for the on-cloud stars; it is not clear why ejection would lead to such distinct structures.

Another possibility is that we are detecting a foreground, older population. Stars in the foreground Orion 1a association (Brown et al. 1994) may have a heliocentric radial velocity near $\sim 20 \text{ km s}^{-1}$, as suggested by measurements of the 25 Ori group (Briceno et al. 2007). If this is the case, it would mean that the Orion 1a association is much more spread spatially toward the ONC (in the foreground) than has previously been realized.

A third possibility is that stellar energy input blew out material, forming a small proportion of stars in a bubble wall moving toward us. To explore this idea further, we plot only the stars with RV values less than 22 km s^{-1} in the R.A.-decl. plot of Figure 11. Since there is no gas here, we display the most blueshifted 1 km s^{-1} wide channel of the gas at 23 km s^{-1} heliocentric velocity. The northern foreground stars seem to be separated from the older southern group, by an almost empty gap running east-west at $-6^\circ 00'$. However, this might be the result of a combination of our bias against selecting infrared-excess stars mentioned above and accidental fiber coverage. Still, there is some structural similarity between the distribution of these southern foreground stars and the gas "behind," redshifted with regard to it. Note how these southern stars are spread on top of 2–3 denser gas clumps. If this structure is interpreted as a local "bubble," this could have been created at the very beginning of star formation by the early emergence of some OB stars in the region. These stars than could have blown away most of the gas from us, some smaller amount toward us, and so other stars could have formed at this early stage in this perturbed southern region.

This picture would require some OB stars in the questioned region, and the list of Brown et al. (1994) contains six of them interestingly close to -6° declination (see Fig. 11). However, obviously none of these is in close vicinity of the gas now, as there are no apparent H ii regions in this part of the molecular cloud. An additional problem is that one would expect such a
population to be somewhat older than the main cloud, which is not obvious in the \(J \) versus \(J—H \) diagram. This is not a particular problem for the foreground population hypothesis, as the Orion 1a stars will appear higher in the color-magnitude diagram at a given age than the ONC.

In conclusion, the reasons for the additional velocity spread of the non-excess stars are not clear. Further monitoring for radial velocity variations, as well as more detailed studies of the stellar properties, are needed to determine which of the above possibilities are correct.

6.4. Comparison with Other Observations and Models

X-ray studies by Feigelson et al. (2005) found that ONC stars 0.5–2 pc from the center show a strong spatial asymmetry. They attributed this to a temporary period of violent relaxation in the dynamical evolution of the cluster, but our observations do not show violent or any other relaxation. The detected spatial structure, extending over the entire observed region, is not the signature of a relaxed configuration.

If the ONC is not dynamically relaxed, why did HH98 find a fairly good fit to a King cluster model? (Note that Scally et al. [2005] point out difficulties with physically interpreting the ONC in this way.) The central region of radius \(\sim 0.5 \) pc does appear to exhibit a smooth distribution, and thus may be closer to having relaxed, although it is somewhat elongated. On larger scales, the elongation is sufficiently large that the plane of the sky with uniform surface density and width \(W \). Azimuthal averaging of this distribution results in an average surface density \(\Sigma \sim \text{constant} \) for \(r < W \) and \(\Sigma \sim r^{-1} \) for \(r > W \). Interpreting this surface density in terms of a spherically symmetric density distribution results in \(\rho \sim \text{constant} \) for \(r < W \) and \(\rho \sim r^{-2} \) for \(r > W \), which is roughly consistent with a King model. The ONC is not as extreme in structure as this simple example, but it illustrates the potentially misleading nature of azimuthal averaging of an intrinsically highly elongated structure.

Comparing azimuthally averaged stellar densities and global velocity dispersions to \(N \)-body calculations, Kroupa (2000) was unable to distinguish whether the ONC is in equilibrium, or is collapsing, or is expanding; a similar result was obtained Scally et al. (2005). This demonstrates the importance of avoiding azimuthal averaging and obtaining detailed kinematic observations of gas and stars in developing an understanding of the dynamical state of the region.

Tan et al. (2006; hereafter TKM06) have argued for a picture in which rich star clusters take several dynamical times to form and are quasi-equilibrium structures during formation, and thus initial conditions are not very important. In particular, TKM06 discuss the ONC and argue that it is several crossing times old, of order 3 Myr, larger than assumed here. Here we discuss why we arrive at different conclusions.

Following Scally & Clarke (2002), TKM06 argue that the smoothness of the spatial distribution of the stars in the ONC argues for long formation times, which allow clumps of stars to disperse. As pointed out above, the azimuthal averaging done by Hillenbrand & Hartmann (1998) was somewhat misleading, helping to smooth out filamentary structure. In addition, the gas kinematics, and to a lesser extent the stellar kinematics, show substructure that is less evident in the spatial distribution alone.

TKM06 also use the analysis of stellar ages in the 0.4–6 \(M_\odot \) mass range by Palla & Stahler (1999) to argue for a large age spread in the ONC. Although they note that Hartmann (2003) pointed out problems of contamination by nonmembers, TKM06 do not take sufficient note of the mass dependence of isochrones. As was clear from the original work by Hillenbrand (1997) and is evident in Figure 4 of Palla & Stahler (2000), standard isochrones imply that stars of 1–5 \(M_\odot \) in the ONC have systematically older ages by 1 to a few Myr than both the lower mass stars and the higher mass stars. This effect is seen in virtually every star-forming region, at least comparing the intermediate-mass stars to the lower mass <1 \(M_\odot \) stars (see HR diagrams in Palla & Stahler 2000). In other words, the “tail” of older stars in the distribution of stellar ages found by Palla & Stahler (1999, 2000) is strongly populated by a different mass range (intermediate-mass stars) than the peak of the age distribution (low-mass stars).

As pointed out by Hartmann (2003), if one takes these age determinations at face value, it means that the ONC existed for a few Myr as a cluster forming mostly intermediate-mass stars, with very few low-mass stars (or high-mass stars). In other words, the ONC (and other regions) begin their first few Myr of existence with extremely nonstandard stellar initial mass functions (IMFs). There is no observational evidence for any young clusters dominated by intermediate-mass stars by number. Therefore, there must be something wrong with the isochrones.

Pre–main-sequence ages are contraction ages; one must know the starting radius of the star to determine the age. TKM06 argue that corrections for starting radii (the “birthline” position) are only important for stars with ages <1 Myr. However, Hartmann (2003) showed that this is not necessarily true for intermediate-mass stars; changing the accretion rates at which stars form over plausible ranges can have very large effects on the birthline for \(\geq 1 M_\odot \) stars. Thus, the apparent ages of the intermediate-mass stars can be systematically overestimated due to incorrect birthline assumptions; this allows the ONC to maintain a roughly typical IMF over its formation. With this correction, the fraction of stars older than 2 Myr decreases dramatically.

7. SUMMARY

We have carried out a spectroscopic survey of 1215 stars located in the northern end of the Orion A molecular cloud, covering the ONC and its vicinity. The obtained radial velocities show a well-defined spatial and kinematical structure of the stellar component, which is very similar to the one seen in the molecular gas. Comparing our observational results to the model of Hartmann & Burkert (2007), we draw the following picture of the ONC region.

On large scales the gas (and stars) exhibit a velocity gradient due to rotation or shear running north–south. The curvature seen most clearly in the northern arm of the gas in the position–velocity diagrams suggests gravitational acceleration toward the cluster center. We further conjecture that the concentration of gas (and stars) south of the Trapezium region is somewhat in front and is also falling in toward the center, explaining its higher radial velocities; the Orion bar photodissociation region appears to reside just above, or perhaps at the upper edge, of this moving clump. The southern part of the filament may also be falling in, although the motions are much less organized than is apparent in the northern arm. Finally, it may be possible that the process of blowing out the near side of the cloud, in the south, resulted in accelerating and compressing gas which formed a small population of stars with velocities blueshifted by a few km s\(^{-1}\); or these stars may be foreground objects in a different kinematic system, possibly associated with Orion OB 1a.

The high degree of agreement between the structure of the gaseous and stellar component suggests that the region is very young, only \(\sim 1 \) crossing time old; otherwise, gravitational interaction should have smoothed the fine structure still clearly visible.
in our data. Note that the observational errors for the stellar radial velocities (ranging from 0.5 to 1.5 km s\(^{-1}\)) are larger than the observational errors in the radio measurements. In addition, with only two epochs (at most), we cannot correct for the effects of even small binary motion. For these reasons, it is not yet possible to make fine distinctions between stellar and gas kinematics.

The spectra in the H\(\alpha\) order not only provide RV measurements but also allow the possibility of classifying many stars according to their H\(\alpha\) emission. With the aid of IRAC photometry we were able to confirm the presence of disks around many CTTs, and the opening/loss of a disk around most WTTSs. To the south we see another older but foreground population, which still might be not completely independent but connected to the region, as suggested by the continuous streams of stars to the south and north of this group and by the similarity in the spatial structure of the “background” gas and these blueshifted stars.

In a future paper we will provide further improvements in the detection of spectroscopic binaries and additional checks on membership using the 6708 Å Li line.

We would like to thank for the MMT observers and instrument support team for all their efforts to make Hectochelle work and for providing continuous help in the preparation of the observations and in data acquisition: Perry Berlind, Mike Calkins, Maureen Conroy, Dan Fabricant, and John Roll. Lori Allen’s comments were very useful in making the text comprehensive. This work was supported in part by NASA grant NNG06GJ32G.

REFERENCES

Ali, B., & Depoy, D. L. 1995, AJ, 109, 709
Allen, L. E., et al. 2004, ApJS, 154, 363
Alonso, A., Arribas, S., & Martínez-Roger, C. 1999, A&AS, 140, 261
Bally, J., Stark, A. A., Wilson, R. W., & Langer, W. D. 1987, ApJ, 312, L45
Bate, M. R., Bonnell, I. A., & Bromm, V. 2003, MNRAS, 339, 577
Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134
Briceno, C., Hartmann, L., Hernandez, J., Calvet, N., Katherina Vivas, A., Furesz, G., & Szentgyorgyi, A. 2007, ApJ, 661, 1119
Brown, A. G. A., de Geus, E. J., & de Zeeuw, P. T. 1994, A&A, 289, 101
Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134
Burkert, A., & Hartmann, L. 2004, ApJ, 616, 288
Calvet, N., D'Alessio, P., Hartmann, L., Wilner, D., Walsh, A., & Sitko, M. 2002, ApJ, 568, 1008
Calvet, N., et al. 2005, ApJ, 630, L185
Carpenter, J. M., Hillenbrand, L. A., & Skrutskie, M. F. 2001, AJ, 121, 3160
Feigelson, E. D., Getman, K., Townsley, L., Garmire, G., Preibisch, T., Grosso, N., Montmerle, T., Muench, A., & McCaughrean, M. 2005, ApJS, 160, 379
Furész, G., et al. 2006, ApJ, 648, 1090
Gualandris, A., Portegies Zwart, S., & Eggleton, P. P. 2004, MNRAS, 350, 615
Hartigan, P., Hartmann, L., Strom, S. E., & Skrutskie, M. F. 1990, ApJ, 354, L25
Hartmann, L. 2003, ApJ, 585, 398
Hartmann, L., & Burkert, A. 2007, ApJ, 654, 988
Hartmann, L., Megeath, S. T., Allen, L., Luhman, K., Calvet, N., D'Alessio, P., Franco-Hernandez, R., & Fazio, G. 2005, ApJ, 629, 881
Hillenbrand, L. A. 1997, AJ, 113, 1733
Hillenbrand, L. A., & Hartmann, L. W. 1998, ApJ, 492, 540 (HH98)
Jones, B. F., & Walker, M. F. 1988, AJ, 95, 1755
Kenyon, S. J., & Hartmann, L. 1995, ApJS, 101, 117
Kühler, R., Petri-Gotzens, M. G., McCaughrean, M. J., Bouvier, J., Duchene, G., Quirrenbach, A., & Zinneker, H. 2006, A&A, 458, 461
Kroupa, P. 2000, NewA, 4, 615
Kurtz, M. J., & Mink, D. J. 1998, PASP, 110, 934
Lada, C. J., & Lada, E. A. 2003, ARA&A, 41, 57
McCaughrean, M. J., & Stauffer, J. R. 1994, AJ, 108, 1382
McCaughrean, M. J., Zinnecker, H., Andersen, M., Meeus, G., & Lodieu, N. 2002, ESO Messenger, 109, 28
Munari, U., Sordo, R., Castelli, F., & Zwitter, T. 2005, A&A, 442, 1127
O'Dell, C. R. 2001, ARA&A, 39, 99
O'Dell, C. R., Poveda, A., Allen, C., & Robberto, M. 2005, ApJ, 633, 45
Palla, F., & Stahler, S. W. 1999, ApJ, 525, 772
———. 2000, ApJ, 540, 255
Poveda, A., Allen, C., & Hernández-Alcántara, A. 2005, ApJ, 627, L61
Rice, W. K. M., Armitage, P. J., Wood, K., & Lodato, G. 2006, MNRAS, 373, 1619
Rodríguez, L. F., Poveda, A., Lizano, S., & Allen, C. 2005, ApJ, 627, L65
Scally, A., & Clarke, C. 2002, MNRAS, 334, 156
Scally, A., Clarke, C., & McCaughrean, M. J. 2005, MNRAS, 358, 742
Sicilia-Aguilar, S., Hartmann, L. W., Szentgyorgyi, A. H., Fabricant, D. G., Fűrész, G., Roll, J. B., Conroy, M. A., Calvet, N., Tokarz, S., & Hernández, J. 2005, AJ, 129, 363
Szentgyorgyi, A. H., Cheimets, P., Eng, R., Fabricant, D. G., Geary, J. C., Hartmann, L., Pieri, M. R., & Roll, J. B. 1998, Proc. SPIE, 3355, 242
Tan, J. C., Krumholz, M. R., & McKee, C. F. 2006, ApJ, 641, L121 (TKM06)
Teixeira, P. S., et al. 2006, ApJ, 636, L45
Tonry, J., & Davis, M. 1979, AJ, 84, 1511
White, R. J., & Basri, G. 2003, ApJ, 582, 1109