ORIGINAL ARTICLE

Change in PSA velocity is a predictor of overall survival in men with biochemically-recurrent prostate cancer treated with nonhormonal agents: combined analysis of four phase-2 trials

DL Suzman¹, XC Zhou¹, ML Zahurak¹, J Lin² and ES Antonarakis¹

BACKGROUND: Multiple phase-2 trials in men with biochemically-recurrent prostate cancer (BRPC) have assessed the impact of nonhormonal agents on PSA kinetics. We have previously demonstrated that changes in PSA kinetics correlate with metastasis-free survival; however, it is unknown whether these changes also correlate with overall survival (OS).

METHODS: We performed a combined retrospective analysis of 146 men with BRPC treated on phase-2 trials using one of four investigational drugs: lenalidomide (n = 60), marimastat (n = 39), ATN-224 (n = 22) and imatinib (n = 25). We examined factors influencing OS, including within-subject changes in PSA kinetics (PSA slope, PSA doubling time and PSA velocity), before and after 6 months treatment.

RESULTS: After a median follow-up of 83.1 months, 49 of 146 men had died. In multivariate Cox regression analysis, factors associated with OS: baseline PSA velocity and change in PSA velocity on therapy. In a landmark multivariable model, stratified by study (which controlled for age, Gleason score, type of local therapy and use of androgen-deprivation therapy prior to metastases), baseline PSA velocity and increase in PSA velocity on therapy remained independent predictors of OS. Median OS for men with an increase in PSA velocity on treatment was 115.4 months and was not reached for men with a decrease in PSA velocity (hazard ratio = 0.47, 95% confidence interval 0.25–0.88; P = 0.02).

CONCLUSIONS: This hypothesis-generating study suggests that within-subject changes in PSA velocity after initiation of nonhormonal therapy may correlate with OS in men with BRPC. If validated in prospective trials, change in PSA velocity may represent a reasonable intermediate end point for screening new agents in these patients.

Prostate Cancer and Prostatic Disease (2015) 18, 49–55; doi:10.1038/pcan.2014.44; published online 11 November 2014

INTRODUCTION

In men with biochemically-recurrent prostate cancer (BRPC) following definitive local therapy, there is currently no consensus on optimal management.¹ ² Although there are multiple potential treatment options, none has yet demonstrated an overall survival (OS) benefit, with a meta-analysis demonstrating decreased prostate cancer-specific survival but no increase in OS in men treated with early compared with deferred androgen-deprivation therapy (ADT).³ Nevertheless, given the large proportion of men in this clinical state, there remains great interest in developing therapeutic strategies for BRPC that may provide a survival benefit.

Hormone-sparing therapies have been developed for BCPC with the intention of avoiding the harms of prolonged ADT. To this end, a large number of biological and immunological agents have been evaluated in phase-2 clinical trials in these patients.⁴ ¹⁰ However, the lack of optimal study end points has hampered the development of such agents, as the long interval between biochemical recurrence and death (or metastatic progression) leads to difficulty in demonstrating an OS benefit. In addition, even metastasis-free survival (MFS) is not a validated end point in this setting.¹¹

Because of the inability to follow radiographic or clinical parameters in this setting, the majority of such studies have utilized changes in PSA kinetics (PSA doubling time, PSA slope and PSA velocity) as their primary end point. Change in PSA kinetics (specifically PSA decline ≥ 30%) has been demonstrated to meet Prentice surrogacy criteria for OS in the first-line chemotherapy setting in metastatic castration-resistant prostate cancer.¹² ¹³ However, it is unclear whether changes in PSA kinetics may predict OS in the setting of BRPC following treatment with nonhormonal agents and whether these may serve as effective intermediate end points.

We have previously conducted four phase-2 trials investigating experimental nonhormonal agents in men with PSA-recurrent prostate cancer after local therapy.⁵ ⁶ ⁸ ¹⁴ All of these studies examined changes in PSA kinetics following study drug initiation. In an initial combined analysis of these four trials, we demonstrated that changes in PSA kinetics resulting after treatment initiation predicted MFS intervals.¹⁵ The present study is an update of the prior analysis of these four trials (n = 146), aiming to investigate the potential relationship between intra-subject changes in PSA kinetics and OS. We hypothesized that improvements in PSA kinetics after initiation of nonhormonal treatments would correlate with prolonged OS.

MATERIALS AND METHODS

Study design

The designs of the four phase-2 studies included in this combined analysis have been described previously.⁵ ⁶ ⁸ ¹⁴ The first study was a randomized phase I/II trial evaluating three doses of an oral matrix metalloproteinase...

¹Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA and ²Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, PA, USA.

Correspondence: Dr ES Antonarakis, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, CRB-1, Rm 1M45, 1650 Orleans St, Baltimore 21287, MD, USA.

E-mail: eantona1@jhmi.edu

Received 26 June 2014; revised 28 August 2014; accepted 23 September 2014; published online 11 November 2014
inhibitor, marimastat (5, 20 or 40 mg daily). A total of 39 patients were enrolled and the primary efficacy end point was change in median PSA slope after 6 months of the study drug. The second trial was a single-arm phase II study of the oral tyrosine kinase inhibitor, imatinib (800 mg daily). A total of 25 men participated and the primary end point was PSA response rate, defined as a 50% decrease in PSA from baseline. The third study was a randomized phase-2 trial of two doses of an oral copper/zinc-superoxide dismutase inhibitor, ATN-224 (30 or 300 mg daily). A total of 47 patients were accrued, and the primary end point was change in mean PSA slope and mean PSA doubling time (PSADT) on study. The fourth trial was a randomized phase-1/2 study, evaluating the oral immunomodulatory drug, lenalidomide (5 or 25 mg daily). A total of 60 men were enrolled and the primary end point was change in median PSA slope after 6 months. None of these trials was designed a priori to capture data on OS.

All four studies were conducted at the Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD. Three trials were single-center experiences while the ATN-224 study was also performed at five other centers. In all studies, eligible patients were required to have PSA-recurrent prostate cancer after local therapy, non-castrate levels of serum testosterone, nonmetastatic disease as determined by computed tomography and/or bone scan and rising PSA levels. All trials used experimental agents that were not expected to mediate their effects through the endocrine axis. While on study, patients were required to have PSA assessments either every month (marimastat, ATN-224) or every 2 months (imatinib, lenalidomide). Patients were treated with study drug for either 6 months (marimastat, ATN-224, lenalidomide) or 12 months (imatinib). In all trials, patients came off study upon PSA progression, clinical/radiographic progression, unmanageable toxicity or death (whichever occurred first).

The present study was a post hoc analysis of OS, using combined data from these four phase-2 studies. We retrospectively examined patient records and/or death certificates for information on date and cause of death. None of the patients had died at the time of the last follow-up.

Table 1. Patient baseline characteristics

Characteristic	Marimastat (n = 39)	Imatinib (n = 25)	ATN-224 (n = 22)	Lenalidomide (n = 60)
Minimum PSA requirement for trial entry				
PSA	PSA \(\geq 1.0 \) ng ml\(^{-1} \)	PSA \(\geq 1.0 \) ng ml\(^{-1} \)	PSA \(\geq 2.0 \) ng ml\(^{-1} \)	PSA \(\geq 1.0 \) ng ml\(^{-1} \)
PSADT requirement for trial entry				
PSADT	Any PSADT	Any PSADT	PSADT \(\leq \) 12 months	Any PSADT
Age, years				
Mean (range)	61 (48–77)	65 (50–77)	62 (53–75)	63 (50–81)
Median	58	67	63	64
Local therapy				
Prostatectomy only	19 (49%)	5 (20%)	10 (45%)	24 (40%)
Radiotherapy only	4 (10%)	9 (36%)	3 (14%)	11 (18%)
Both	16 (41%)	11 (44%)	9 (41%)	25 (42%)
Gleason score				
\(\leq 6 \)	0 (0%)	8 (32%)	5 (23%)	13 (22%)
7	24 (62%)	12 (48%)	7 (32%)	31 (51%)
\(\geq 8 \)	15 (38%)	5 (20%)	10 (45%)	16 (27%)
T stage				
T1	0 (0%)	5 (20%)	0 (0%)	7 (12%)
T2	7 (18%)	10 (40%)	12 (55%)	18 (30%)
T3	32 (82%)	10 (40%)	10 (45%)	35 (58%)
N stage				
N0	34 (87%)	25 (100%)	18 (82%)	53 (88%)
N1	5 (13%)	0 (0%)	4 (18%)	7 (12%)
Use of ADT before metastases				
No	27 (69%)	13 (52%)	17 (77%)	53 (88%)
Yes	12 (31%)	12 (48%)	5 (23%)	7 (12%)
Baseline PSA, ng/ml				
Median (range)	9.6 (1.2–59.7)	8 (2.1–221)	4.4 (0.7–33.5)	7.5 (0.9–77.4)
Baseline PSADT, month				
Median (range)	4.7 (1.4–12.8)	9.2 (1.1–30.4)	3.9 (1.2–12.2)	4.6 (1–58.9)
Baseline PSA slope				
Median (range)	0.15 (0.05–0.49)	0.08 (0.02–0.62)	0.18 (0.06–0.56)	0.15 (0.01–0.71)
Baseline PSA velocity, ng/ml per month				
Median (range)	0.4 (0–3.9)	0.6 (0.1–2.7)	0.7 (0.1–16.3)	0.6 (0–9.4)
Follow-up duration, month				
Median (range)	157.0 (154.2–164.4)	126.7 (118.7–NA)	73.7 (68.9–78.8)	83.1 (78.8–114.3)
Deaths	18 (46%)	11 (44%)	5 (23%)	15 (25%)

Abbreviations: ADT, androgen-deprivation therapy; PSADT, PSA doubling time.
death. OS was defined as the time interval from study entry until death from any cause. Patients were captured at the time of their death or censored at the time of the last known date on which they were alive. The data cutoff date was set as 31 October 2013. This study was approved by the Johns Hopkins University Institutional Review Board.

Statistical analysis

The primary objective was to determine the independent contribution of changes in PSA kinetics on OS. PSADT was calculated as the slope of the simple linear regression of log (base 2) PSA vs time.17 PSA velocity was calculated as the slope of the simple linear regression of PSA (natural scale) vs time.17 PSA slope was calculated as the slope of the simple linear regression of the natural log of PSA vs time.18 Event-time distributions for OS were estimated using the Kaplan–Meier method19 and 95% confidence intervals (CIs) were calculated using the Brookmeyer–Crowley method.19 Landmark stratified Cox proportional hazards regressions were used to assess the effects of PSA kinetics on OS. Models were stratified by study and the landmark time was set at 6 months, because all PSA values during the first 6 months after study entry were used to calculate on-study PSA kinetics. Such a landmark analysis prevents death events that might occur during the first 6 months on-study to be included in the analysis. Our multivariable models were stratified by study to avoid assuming proportional hazards across the four different protocols.

In the univariate analysis, factors that entered the model included age (continuous variable), Gleason score (< 7 vs ≥ 7), tumor stage (T1/2 vs T3/4), lymph node involvement (N0 vs N1), modality of primary therapy (surgery ± radiotherapy vs radiotherapy alone), ADT use prior to metastasis (yes vs no), baseline PSA values, baseline PSADT (≥ 6 vs < 6 months), baseline PSA velocity (dichotomous [below vs above median] and continuous), baseline PSA slope (dichotomous [below vs above median] and continuous), change in PSADT before and after study initiation (dichotomous [decrease in PSADT vs no decrease]), change in PSA velocity (dichotomous [increase in velocity vs no increase] and continuous) and change in PSA slope (dichotomous [decrease in slope vs no decrease] and continuous). Negative PSADT values were assigned an arbitrarily large constant value, and thus PSADT could not be analyzed as a continuous variable. In multivariable analysis, covariates with P-values from the univariate model of ≤ 0.10 as well as variables felt to be of potential clinical importance (including age, Gleason score and pre-metastatic use of ADT) were included. Notably, because all three PSA kinetic measures are a function of changes in PSA against time and are all strongly interrelated, three separate multivariable models (each evaluating one kinetic measure at a time) were created.

All P-values are two-sided, and the significance level was set at ≤ 0.05. Statistical analyses were performed using SAS version 9.2 (SAS Institute, Cary, NC, USA) and R version 3.1.0 (National Cancer Institute, Bethesda, MD, USA).

RESULTS

Patient characteristics

Table 1 describes the clinical characteristics of men in each of the four trials. Twenty-five of 47 patients in the ATN-224 study (those enrolled at the other sites), did not have available data on survival status and were thus excluded from the analysis. All 39 patients in the maritax and study, all 25 patients in the imatinib study and all 60 patients in the lenalidomide study had full information available to determine OS. With a median follow-up in the combined evaluable cohort of 83.1 months (95% CI, 78.8–114.3), 49 of 146 (33.6%) men had died.

Overall (n = 146), median age at study entry was 63 years; 58 men (40%) had primary prostatectomy, 27 (18%) had primary radiotherapy and 61 (42%) had prostatectomy and salvage radiotherapy; 26 men (18%) had Gleason score ≤ 6, 74 (51%) had Gleason score 7 and 46 (31%) had Gleason score ≥ 8; 12 men (8%) had T1 disease, 47 (32%) had T2 disease, and 87 (60%) had T3 disease; 16 men (11%) had node-positive disease at diagnosis; and 36 men (25%) received ADT prior to metastatic progression. Median PSA at baseline was 7.7 ng/ml; median PSADT at baseline was 5.0 months; median PSA slope at baseline was 0.14; and median PSA velocity at baseline was 0.59 ng/ml per month.

Table 2. Stratified univariate Cox regression analyses for predicting overall survival in men with PSA-recurrent prostate cancer enrolled in all four trials

Variable	Univariate analysis
	HR (95% CI) P-value
Age, year (continuous)	0.98 (0.94–1.02) 0.36
Local therapy	0.65 (0.33, 1.3) 0.23
Surgery (±radiotherapy)	1 (reference)
Radiotherapy only	1 (reference)
Gleason score	0.97 (0.41–2.27) 0.94
<7	1 (reference)
≥7	
T stage	0.75 (0.4–1.4) 0.37
T1–2	1 (reference)
T3	
N stage	0.94 (0.36–2.42) 0.90
N0	1 (reference)
N1	
Use of ADT prior to metastases	0.55 (0.27–1.12) 0.10
Yes	1 (reference)
No	
Baseline PSA (continuous)	1.00 (0.98–1.01) 0.57
Continuous	1.54 (0.18–12.91) 0.69
Below median	0.88 (0.59–ng/ml per month)
Above median	1 (reference)
Continuous	0.99 (0.81–1.2) 0.90
Δ in PSA velocity	0.47 (0.25–0.88) 0.02
Decrease	1 (reference)
No decrease	
Continuous	1.06 (1.02–1.1) < 0.01
Baseline PSADT (month)	0.63 (0.33–1.18) 0.147
≥ 6	1 (reference)
< 6	
Δ in PSADT	0.75 (0.39–1.44) 0.39
Increase	1 (reference)
No increase	
Continuous	5.33 (0.94–30.09) 0.06

Correlation of changes in PSA kinetics with OS

In univariate proportional hazards regression analyses (stratified by study), significant associations with OS were observed for the following: baseline PSA velocity (dichotomized) and change in PSA velocity (dichotomized and continuous). (Table 2).

Figure 1 demonstrates the effect of changes in PSADT (increase in PSADT after study entry vs no increase), changes in (log) PSA velocity (dichotomized and continuous). (Table 2).
slope (decrease in PSA slope vs no decrease) and changes in PSA velocity (decrease in PSA velocity vs no decrease) on OS using Kaplan–Meier analysis, when these factors were considered as dichotomous variables. Although there were trends between slowing of PSA kinetics and improved OS, only the change in PSA velocity was significantly prognostic for OS.

In landmark multivariable analyses, when these factors were considered as dichotomous variables (Table 3), change in PSA velocity emerged as a significant independent predictor of OS. The hazard ratio was 0.52 (95% CI 0.27–1.00; $P = 0.05$), indicating a 48% decrease in risk of death, if PSA velocity decreased following treatment. Sensitivity analyses for the chosen cutpoints are reported in the supplementary appendix (Supplementary Tables 1-6). However, baseline PSADT, baseline (log) PSA slope, change in PSADT and change in (log) PSA slope, which were independent predictors of MFS in the prior analysis, did not retain statistical significance as predictors of OS, either in the univariate or multivariate analyses (Table 3).

In landmark multivariable analyses when these factors were considered as continuous variables (Table 4), both change in PSA velocity (hazard ratio $= 1.07$; 95% CI 1.03–1.11; $P < 0.01$) and change in (log) PSA slope (hazard ratio 9.91, 95% CI 1.54–63.93; $P = 0.02$) were independent predictors of OS.

DISCUSSION

In men with hormone-naive BRPC after local therapy, there is a need for surrogate end points of clinical benefit given the long natural history of this disease state.\(^{20,21}\) Changes in PSA kinetics offer an attractive intermediate end point given the evidence that changes in kinetics following nonhormonal therapy may predict MFS based on our prior analysis of this data set.\(^{20,21}\)

This study represents an update to the prior analysis based on extended follow-up for OS. Here, we demonstrate that men whose PSA velocity decreased after study entry had improved OS, a correlation that remained significant after accounting for relevant clinical factors and pre-treatment PSA velocity. In other settings, PSA velocity > 2.0 ng/ml prior to either radical prostatectomy or radiation therapy has been demonstrated to predict inferior OS,\(^{17,22}\) whereas high PSA velocity post relapse predicts the failure of salvage radiotherapy.\(^{23}\) However, to our knowledge, this study is the first to document a correlation between on-study changes in PSA velocity and OS in men with BRPC receiving nonhormonal therapies.

Interestingly, although dichotomized changes in PSA slope and PSADT were significant independent predictors of MFS in our prior analysis, these only demonstrated a nonsignificant trend towards predicting OS in the current analysis. Owing to the relatively small number of death events observed to date, minor changes in patient classification between the different PSA kinetic schemes may have resulted in significant effects on the statistical analysis. However, continuous change in PSA slope was significantly associated with OS, suggesting that an optimal cutpoint may be able to be identified in a larger cohort.

These results corroborate data from prior studies that demonstrated associations between changes in PSA in response to hormonal therapy. In one study, a PSA of ≤ 4 ng/ml after 7 months of ADT in men with metastatic hormone-sensitive prostate cancer predicted OS, as did PSA progression within that time frame.\(^{13}\) In a second study, PSA changes in men undergoing either mitoxantrone or docetaxel chemotherapy met Prentice surrogacy criteria for prediction of OS.\(^{12}\) Specifically, PSA declines of $\geq 30\%$ in response to chemotherapy predicted OS, although interestingly a decline of $\geq 50\%$ failed the ‘proportion-of-treatment-effect-explained’ test. Of note, PSA velocity at either 2 or 3 months post therapy also satisfied Prentice criteria. Surrogacy of changes in PSA kinetics was subsequently demonstrated in the TAX327 study evaluating, first-line docetaxel chemotherapy,\(^{24}\) although a recent
analysis of the TROPIC trial of cabazitaxel failed to demonstrate that early changes in PSA fully captured changes in survival, suggesting that PSA is not an appropriate surrogate end point in the second-line chemotherapy setting. The present study adds to this body of evidence, and suggests that changes in PSA velocity in men with BRPC receiving nonhormonal therapies may correlate with OS.

This study has several limitations. First, this was a retrospective study and none of the four trials included in the combined analysis were designed to capture data on survival. In addition, because the majority of death events occurred after patients had been taken off-study, a significant proportion of patients were lost to follow-up. Further, as a consequence of a retrospective analysis, it is generally difficult to determine whether the variable of interest (that is, change in PSA kinetics, in this case) actually influences survival or if it simply acts as a marker of a more favorable prognosis. This is also true of the other baseline factors in the multivariable analysis, including baseline velocity. Second, we had no control over additional therapies (including hormonal therapy, chemotherapy or other novel therapies) administered to patients after they came off-study in each of the four trials; such subsequent therapies may have influenced OS.

Finally, the causal relationship between the study drugs and PSA kinetics changes cannot be proven in the absence of placebo-control trials. Changes in PSA kinetics after study entry, for example, may have been caused by more frequent PSA assessments on-study compared with pre-study PSA evaluations (that would not have been regulated). To this end, in a placebo-controlled trial evaluating the effect of celecoxib on PSADT in a similar patient population, a recent analysis confirmed the natural variability of PSA kinetic parameters even in the absence of therapy. Phrased alternatively, there is no direct evidence that on-study PSA kinetics were induced by the study drugs tested. Furthermore, these agents have not individually demonstrated improvements in survival, neither as a primary end point nor in pre-defined subset analyses. Ultimately, the findings of this study will require confirmation in prospective trials using more effective agents as well as longer and more regimented follow-up.

Table 3. Stratified landmark multivariable Cox regression analyses for predicting overall survival considering the effect of dichotomous changes in (A) PSADT, (B) (log) PSA slope and (C) PSA velocity

Variable	(A) PSADT	(B) (log) PSA slope	(C) PSA velocity			
	HR (95% CI)	P-value	HR (95% CI)	P-value	HR (95% CI)	P-value
Age, year (continuous)	0.99 (0.94–1.03)	0.57	0.98 (0.94–1.03)	0.48	0.97 (0.93–1.02)	0.25
Gleason score						
< 7	1.04 (0.42–2.59)	0.93	0.99 (0.4–2.46)	0.98	0.99 (0.4–2.46)	0.98
≥ 7	1 (reference)		1 (reference)			
Local therapy						
Surgery (± radiotherapy)	0.55 (0.25–1.20)	0.13	0.58 (0.27–1.25)	0.16	0.50 (0.24–1.07)	0.07
Local therapy	1 (reference)		1 (reference)			
Use of ADT prior to metastases						
Yes	0.63 (0.3–1.32)	0.22	0.60 (0.29–1.27)	0.18	0.67 (0.31–1.43)	0.30
No	1 (reference)		1 (reference)			
Baseline PSADT (month)						
≥ 6	0.52 (0.27–1.07)	0.08				
< 6	1 (reference)					
Δ in PSADT						
Increase	0.71 (0.32–1.40)	0.33				
No increase	1 (reference)					
Baseline (log) PSA slope						
Below median (= 0.14 log(ng/ml) per month)						
Above median	0.60 (0.32–1.12)	0.11				
Δ in (log) PSA slope						
Decrease	0.79 (0.41–1.54)	0.49				
No decrease	1 (reference)					
Baseline PSA velocity						
Below median (= 0.59 ng/ml per month)						
Above median	0.43 (0.23–0.78)	0.01				
Δ in PSA velocity						
Decrease	0.52 (0.27–1.00)	0.05				
No decrease	1 (reference)					

Abbreviations: ADT, androgen-deprivation therapy; CI, confidence interval; HR, hazard ratio; PSADT, PSA doubling time.
In conclusion, this hypothesis-generating analysis suggests that within-subject changes in PSA velocity and PSA slope (but not PSADT) after initiation of nonhormonal experimental therapies may correlate with survival in men with PSA-recurrent prostate cancer. In addition, an intuitive cutpoint of increase vs decrease in PSA velocity after therapy was found to correlate with OS. If these findings are validated in prospective trials using survival as the primary end point, changes in PSA velocity may represent a reasonable intermediate end point for screening new nonhormonal agents in this patient population moving forward. This may facilitate more rapid advancement of promising nonhormonal agents into larger randomized trials with a primary survival end point. Given the long natural history of PSA-recurrent prostate cancer, a robust intermediate end point is critical. Ultimately, corroboration of these findings will require satisfaction of the Prentice criteria in the setting of randomized, placebo-controlled trials, demonstrating a survival benefit in men with BRPC.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was partially supported by NIH grants P30 CA006973 (ESA) and T32CA009071 (DLS).

REFERENCES

1. Paller CJ, Antonarakis ES. Management of biochemically recurrent prostate cancer after local therapy: evolving standards of care and new directions. *Clin Adv Hematol Oncol* 2013; 11: 14.

2. Boccon-Gibod L, Djavan B, Hammerer P, Hoeltl W, Kattan M, Prayer G, et al. Management of prostate-specific antigen relapse in prostate cancer: a European consensus. *Int J Clin Pract* 2004; 58: 382–390.

3. Moul JW, Wu H, Sun L, McLeod DG, Amling C, Donahue T, et al. Early versus delayed hormonal therapy for prostate specific antigen only recurrence of prostate cancer after radical prostatectomy. *J Urol* 2004; 171: 1141–1147.

4. Smith MR, Manola J, Kaufman DS, George D, Oh WK, Mueller E, et al. Rosiglitazone versus placebo for men with prostate carcinoma and a rising serum prostate-specific antigen level after radical prostatectomy and/or radiation therapy. *Cancer* 2004; 101: 1569–1574.

5. Rosenbaum E, Zahrakar M, Sinibaldi V, Carducci MA, Pili R, Laufer M, et al. Marimastat in the treatment of patients with biochemically relapsed prostate cancer: a prospective randomized, double-blind, phase III trial. *Clin Cancer Res* 2005; 11: 4437–4444.

6. Bajaj GK, Zhang Z, Garrett-Mayer E, Drew R, Sinibaldi V, Pili R, et al. Phase II study of imatinib mesylate in patients with prostate cancer with evidence of biochemical failure after definitive radical retropubic prostatectomy or radiotherapy. *Urology* 2007; 69: 526–531.

7. Smith MR, Manola J, Kaufman DS, Oh WK, Bubley GJ, Kantoff PW. Celecoxib versus placebo for men with prostate cancer and a rising serum prostate-specific antigen after radical prostatectomy and/or radiation therapy. *J Clin Oncol* 2006; 24: 2723–2728.

8. Lin J, Zahrakar M, Beer TM, Ryan CJ, Wilding G, Mathew P, et al. A non-comparative randomized phase II study of 2 doses of ATN-224, a copper/zinc superoxide dismutase inhibitor, in patients with biochemically recurrent hormone-naive prostate cancer. *Urol Oncol* 2013; 31: 581–588.

9. Urba WJ, Nemunaitis J, Marshall F, Smith DC, Hege KM, Ma J, et al. Treatment of biochemical recurrence of prostate cancer with granulocyte-macrophage colony-stimulating factor secreting, allogeneic, cellular immunotherapy. *J Urol* 2008; 180: 2011–2018.

10. McNeel DG, Dunphy EJ, Davies JG, Frye TP, Johnson LE, Staab MJ, et al. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. *J Clin Oncol* 2009; 27: 4047–4054.

11. Schweizer M, Zhou X, Wang H, Yang T, Shaukat F, Mar- tin B, et al. Metastasis-free survival is associated with overall survival in men with PSA-recurrent prostate cancer treated with deferred androgen deprivation therapy. *Ann Oncol* 2013; 24: 2881–2886.

12. Petrylak DP, Ankerst DP, Jiang CS, Tangen CM, Hussain MH, Delahanty J, et al. Evaluation of prostate-specific antigen declines for surrogacy in patients treated on SWOG 99-16. *J Natl Cancer Inst* 2006; 98: 516–521.

13. Hussain M, Tangen CM, Higano CS, Schellhammer P, Furtado M, Crawford ED, et al. Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from the Southwest Oncology Group Trail 9346 (INT-0162). *J Clin Oncol* 2006; 24: 3984–3990.

14. Keizman D, Zahrakar M, Sinibaldi V, Carducci M, Denmeade S, Drake C, et al. Lenalidomide in nonmetastatic biochemically relapsed prostate cancer: results of a phase I/II double-blinded, randomized study. *Clin Cancer Res* 2010; 16: 5269–5276.

15. Antonarakis ES, Zahrakar ML, Lin J, Keizman D, Carducci MA, Eisenberger MA. Changes in PSA kinetics predict metastasis-free survival in men with PSA-recurrent prostate cancer. *Clin Adv Hematol Oncol* 2013; 11: 14.
recurrent prostate cancer treated with nonhormonal agents. Cancer 2012; 118: 1533–1542.

16 Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999; 281: 1591–1597.

17 D'Amico AV, Chen M, Roehl KA, Catalona WJ. Preoperative PSA velocity and the risk of death from prostate cancer after radical prostatectomy. N Engl J Med 2004; 351: 125–135.

18 Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Statist Assoc 1958; 53: 457–481.

19 Brookmeyer R, Crowley J. A confidence interval for the median survival time. Biometrics 1982; 38: 29–41.

20 Antonarakis ES, Feng Z, Trock BJ, Humphreys EB, Carducci MA, Partin AW et al. The natural history of metastatic progression in men with prostate-specific antigen recurrence after radical prostatectomy: long-term follow-up. BJU Int 2012; 109: 32–39.

21 Antonarakis ES, Chen Y, Elsamanoudi SI, Brassell SA, Da Rocha MV, Eisenberger MA et al. Long-term overall survival and metastasis-free survival for men with prostate-specific antigen-recurrent prostate cancer after prostatectomy: analysis of the Center for Prostate Disease Research National Database. BJU Int 2011; 108: 378–385.

22 D’Amico AV, Renshaw AA, Sussman B, Chen M. Pretreatment PSA velocity and risk of death from prostate cancer following external beam radiation therapy. JAMA 2005; 294: 440–447.

23 King CR, Presti JC, Brooks JD, Gill H, Spitzot MT. Postoperative prostate-specific antigen velocity independently predicts for failure of salvage radiotherapy after prostatectomy. Int J Radiat Oncol Biol Phys 2008; 70: 1472–1477.

24 Armstrong AJ, Garrett-Mayer E, Yang YQ, Carducci MA, Tannock I, de Wit R et al. Prostate-specific antigen and pain surrogacy analysis in metastatic hormone-refractory prostate cancer. J Clin Oncol 2007; 25: 3965–3970.

25 Halabi S, Armstrong AJ, Sartor O, de Bono J, Kaplan E, Lin C et al. Prostate-specific antigen changes as surrogate for overall survival in men with metastatic castration-resistant prostate cancer treated with second-line chemotherapy. J Clin Oncol 2013; 31: 3944–3950.

26 Paller C, Olatoye D, Xie S, Zhou X, Denmeade S, Eisenberger M et al. The effect of the frequency and duration of PSA measurement on PSA doubling time calculations in men with biochemically recurrent prostate cancer. Prostate Cancer Prostatic Dis 2013; 17: 28–33.

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website (http://www.nature.com/pcan)