Review Article

Review on Characterization, Properties, and Analytical Methods of Cefepime

Omkulthom Al kamaly

Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Correspondence should be addressed to Omkulthom Al kamaly; omalkmali@pnu.edu.sa

Received 26 January 2022; Accepted 24 May 2022; Published 29 June 2022

Academic Editor: Victoria F. Samanidou

Copyright © 2022 Omkulthom Al kamaly. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Infection is one of the most important reasons for the increase in the number of deaths worldwide; it can be a bacterial or viral infection. As a result, there are many effective drugs against this infection, especially bacterial ones. Cefepime (CP) is one of the fourth generation of cephalosporins and is distinguished from others in that it can kill both positive and negative bacteria. Therefore, this study focused on the chemical properties of the drug, its uses, and its stability against bacteria. All analysis methods for this drug in pharmaceutical preparations, blood, or plasma were also presented. One of the important problems in these methods is using toxic solvents, which poses a danger to society and the environment. The presentation of these solvents will allow companies to manufacture and use more effective and less toxic solvents.

1. Introduction

Cefepime (CP) is one of the commonly used fourth-generation cephalosporins. Cepirome and cefaclidine are other fourth-generation antibiotics. CP has adequate β-lactamase stability but with a low affinity for extended spectrum. The broad spectrum of CP is imposed to cover a wide range of positively and negatively pathogens [1–4]. Compared with ceftazidime from the fourth generation in vitro, CP has intensified activity against Gram (+) bacteria, excluding the species sensitive to methicillin, such as Streptococcus pneumoniae and Staphylococcus aureus [5, 6]. CP is more effective against extended-spectrum β-lactamase Gram (−) bacteria than other oxyimino-cephalosporins commercially available [7–9].

The cefepime’s chemical structure is displayed in Figure 1. The basic cephem ring at position 7 is modified chemically to increase the cephalosporins’ stability against β-lactamase enzymes. Similarly, other antibiotics CP such as ceftazidime, cefoperazone, cefotizoxime, and ceftriaxone from the third-generation contain a 2-amino thiazolyl acetamido group substituted with an oxyimino in the same position. However, unlike other third-generation cephalosporins, CP possesses a cephem nucleus substituted with a positively charged NMR, making it a zwitterion [2]. This zwitterionic property permits penetration of CP to Gram (+) bacteria’s porin channels rapidly [10, 11]. CP is used effectively to treat severe urinary and respiratory tract infections, as well as infections of the skin, soft tissues, and the women’s reproductive tract among patients with febrile neutropenia. Treatment of pneumonia in cystic fibrosis patients with this medication is superior to that with ceftazidime.

CP is considered an empirical monotherapy for pneumonia; it is widely used currently in hospitals for this approved indication and given to the patient with abdominal, urinary tract, febrile neutropenia, and skin or soft tissue infections. An earlier systematic published review of empirical monotherapy for the treatment of febrile neutropenia found CP to be associated with a higher mortality rate than other β-lactam antibiotics. It was unclear how the higher mortality rate was explained. CP was associated with more superinfections than other β-lactams, though the difference was not significant statistically [12]. The authors in [1] established that the overall death rate was significantly lower.
an alkoxylimino substituent. Therefore, CP has a similar gram (−) spectrum and better antistaphylococcal activity than ceftazidime [14].

4. Mechanism of Action
The E. coli porin channel penetration by CP, cefaclid, and cefpirome is at least 5–10 times faster than ceftazidime and cefotaxime. CP has stability against plasmid-mediated β-lactamase SHV-1 and SHV-2, OXA-1 and OXA-3, PSE-1, and PSE-2, and TEM-1 and TEM-2 [2]. The relative hydrolysis rates correspond to that of cefpirome [15,16], cefotaxime, latamoxef, and ceftazidime but are lesser than cepofrapone. Testing CP against 326 members of the Enterobacteriaceae found that it is more active than moxalacatam, cepofrapone, cefotaxime, cefpirome, and cepazidime. Because CP has a low empathy for the major chromosomally mediated 13-lactamase, it is probably less influenced by the nonhydrolytic barrier mechanism of bacterial resistance. CP may demonstrate to be a powerful therapy for microbial infections that are unaffected by other antimicrobials. For instance, in a new study, CP resistance rarely appeared among cefotaxime and ceftazidime-resistant Pseudomonas aeruginosa mutants [17].

5. Indications and Side Effects
The use of cefepime for treating UTIs in children has been perceived as safe and effective with the least adverse effects. Considering its broad spectrum of antimicrobial activity, it is a convenient candidate for early empiric curing of critically ill children, especially those who suffer from anatomical abnormalities of the urinary tract in which antibiotic-resistant microbes may be present less commonly [18–20] as well as infections of the skin and skin structure can be treated with CP. Besides treating bacterial infections, CP is used to cure gynecologic and intraabdominal infections, febrile neutropenia, bacteremia, meningitis, and long-term bronchopulmonary infections associated with cystic fibrosis in pediatric patients [8]. The effect of the combination of nacubactam as a β-lactamase inhibitor and CP against Escherichia coli and Klebsiella pneumonia, which are carbapenem-resistant, was reported in [21] by the authors in [22]. Cefepime is highly effective in treating COVID-19 patients with moderate and severe symptoms. Cefepime has a highly antiviral effect and is effective against large-scale viruses, including SARS and MERS. When combined with antibiotics or steroids, cefepime is considered more effective than when taken alone.

There should be a consideration for CP neurotoxicity in older patients with myoclonus who are suffering recently from alterations in mental status and renal impairment [23–26]. Seizures are the most common adverse reaction of cefepime on the central nervous system. It can also cause encephalopathy [27, 28]. Several drugs are known to cause nephrotoxicity, notably beta-lactamase inhibitors, and cephalosporins. Despite a few severe side effects, cefepime is a widely prescribed fourth-generation cephalosporin. Numerous reports suggested that cefepime may produce
Column (C)	Mobile phase	Flow rate (ml/min)	Wavelength (nm)	Matrices	Reference
Supelcosil ABZ+ (5 μm; 150 × 4.6 mm)	20 mM PDPB pH 2: ACN (94:6, v/v, v/v).	1	263	Human serum	[30]
Hypersil BDS C18	Acetate buffer pH 4: ACN (97.2:2.8 v/v)	1	254	Human plasma	[31]
Hypersil BDS C18	MeOH: 25 mM SDPM pH 3 (87:13 v/v)	1	270	Plasma and vitreous fluid	[32]
RP-C18	Acetate buffer pH 3.5: MeOH/triethylamine (82:18 v/v)	20 mM AA pH 4:7% ACN	1	Goat plasma and milk	[33]
RP Ultrasphere XL-ODS C (75 × 4.6 mm I.D.)	MeOH: 10 mM DHP pH 7 (gradient)	1	263	Human serum	[34]
Onyx Monolithic C18 (20 cm–4.6 mm) coupled to Phenomenex C18 GC (5 cm 4.6 mm)	NaOH buffer pH 3:1 M phosphoric acid: 0.01 M n-octylamine pH 3:0:ACN	1.3	259	Human plasma and dialysate	[35]
C18 with pre-C	ACN: acetate buffer (5:95 v/v)	2	280		[36]
μBondapak C18 (30 cm × 3.9 mm × 10 μm)	MeOH: 40 mM phosphate buffer pH 3.2	1	260		[37]
Supelcosil™ LC-18 (25 cm × 4.6 mm × 5 μm), with a C18 GC	MeOH: 10 mM phosphate buffer pH 7 (25:75 v/v)	1	256	Human plasma, cerebrospinal fluid, and urine	[38]
100 × 4.6 mm i.d. Perkin Elmer phenyl C (5 μm)	ACN (including 0.015 M pantene sulfonic acid sodium pH 3.4: glacial acetic acid and 4 with 45% KOH): water (5.5:94 v/v)	1.5	280	Aqueous solution	[39]
XTerra C18 (250 × 4.6 mm, 5 μm) supported by Phenomenex C18 GC (4 × 3.0 mm)	MeOH: sodium acetate buffer pH 6 (11:89 v/v)	1.8	256		[40]
LiChrospher 100 RP C18 (250 mm × 4 mm, 5 μm particles)	MeOH: water (45:55 v/vv)	0.5	258	Pure and pharmaceutical dosage forms	[41]
C18	Acetate buffer pH 5.1: ACN: MeOH (5:20:75 v/v)	1	212		[42]
Phenomenex ODS (4.6 × 250 mm, 5 μ)	ACN: AA pH 4.9: (8:92)	1.5	256	Pharmaceutical formulations	[43]
Acclaim 120 C18 (250 × 4.6 mm, 5 μm particle size)	MeOH: sodium acetate buffer pH 6 (11:89 v/v)	1.8	220	Injections	[44]
Luna C18 (250 × 4.6 mm; 5 μm)	MeOH: water (45:55 v/vv)	0.5	258	Pharmaceutical dosage Form	[45]
C18	Water: ACN (90:10 v/v)	1	212	CP in injections	[46]
Princeton-100 C18 (4.6 mm i.d × 250 mm., 5 μm)	ACN: 25 mM PDPB pH 6.2 (6:9 4 v/v)	1	210	Bulk and pharmaceuticals	[47]
Hypersil Gold pentfluorophenyl (PFP) 6 (2.1 by 100 mm, 1.9 μm)	10 mM phosphoric acid	0.5	260	Human plasma	[48]
C18	(ACN/0.1 M phosphoric acid/NaOH buffer pH 3): 0.01 M n-octylamine pH 3 (gradient)	1	256	Human urine	[49]
neurotoxicity, but there is no evidence that it causes acute interstitial nephritis. [29].

6. Analytical Methods for Determining CP

It is extremely imperative to quantify CP to manage bioequivalence and bioavailability studies besides pharmacokinetic parameters for curing observation. There are about 58 methods proposed for its analysis, either in pharmaceutical dosage forms, serum, or in plasma. These methods were collected from Google Scholar, PubMed, Web of Science, Scopus, and Science Direct. In this work, determination of CP by reverse phase-HPLC and HPLC, as shown in Table 1, was prevalent. With HPLC techniques, quantitative studies are characterized by the efficiency, specificity, speed, and accuracy with tracking capabilities. Table 2 contains micellar electrokinetic chromatographic methods. Some potentiometric and electrochemical methods are mentioned in Table 3, while the chromatographic technique is combined with other techniques such as LC, and HPLC. UPLC, MS, and MEKC are cited in Table 4. One of the commonly used techniques was UV absorption spectroscopy, which is used alone or with other techniques and based on colorimetry, fluorometry, and other spectrophotometric methods. All these methods are stated in Table 5. Table 6 includes gas chromatographic methods. Most of the summarized methods utilized different chemically toxic solvents as shown in all tables. Consequently, it is awfully significant for development and verification to select the analytical methods to be applied to reduce the number of toxic products. This is because it may destroy the environment, the instruments used, and the operators. To minimize such issues, it is imperative to pick an apparatus that is more specific and sensible as other, which has low costs of analysis and therefore reduces power depletion (a factor that directly affects the last price of an outcome). It needs smaller quantities of solvents or that can recognize lower concentrations, it can retrieve dangerous solvents (in order to reduce the risk of pollution in the surroundings), and it can guide pharmaceutical companies and researchers to consume nontoxic solvents and enhance the habit to decrease the risk of contamination. Hence, the analysis

Table 2: Micellar electrokinetic chromatographic methods for determination of CP.

Technique	Column (C)	Mobile phase or eluent	Conditions	Matrices	Reference
MEKC	Uncoated FSC of 50 μm	6 mM Na₂B₄O₇, 10 mM Na₂HPO₄, 75 mM SDS pH 9.1	257**, V of 15 kV	Human serum and plasma	[50]
MEKC	Uncoated FSC of 40.2 cm × 50 μm	Tris with SDS: MeOH	214**, V of 15 kV	Plasma and cerebrospinal fluid	[51]
MEKC	Uncoated FSC of 31.2 cm (21 cm × 675 mm ID)	10 mM tris buffer pH 8.0 + 150 mM SDS and 20 mM tris buffer pH 9.0 + 200 mM SDS	254**, V was 8 kV	Plasma and cerebrospinal fluid	[52]
MEKC	Bare FSC of 50 μm, 5 mmol with length 56 cm	Imidazole buffer pH 5.1	240**, V of 25 kV	NMP in CP for injection	[53]
MEKC	Uncoated FSC length 31.2 cm	Tris buffer + SDS as an electrolyte solution	214**, V of 15 kV	Commercial injections	[54]
MEKC + indirect UV	MEKC [A 50 lm i.d. 64.5 cm (56 cm detection length) bare FSC]	MEKC (10 mM creatinine pH 3.8)	225**	NMP in CP for injection	[55]
CZE	FSC (48.6 cm × 50 μm i.d.) with 40.2 cm as a detection length 40.2 cm	15 mm sodium borate buffer pH 9.3	215**, V was 20 kV	Pharmaceutical formulations and human plasma	[56]

* (ml/min); ** (nm).

Table 3: Potentiometric and electrochemical methods for assay of CP.

Technique’s name	Solvents/Conditions	Matrices	Reference		
PH potentiometry	Dilution with UB (0.1M CH₃COOH + 0.1M H₂PO₄ + 0.1M H₃BO₃)	Pharmaceutical preparation	[57]		
Electrochemical reduction and oxidation	WE (glassy carbon electrode), RE (AgCl), AE (platinum wire)	Pharmaceutical preparation	[58]		
Electrochemical Reduction	A saturated AgCl (RE), WE (dropping mercury electrode), AE (glassy carbon) PB pH 2.7 (adjusted by 1M H₂PO₄ + 1 M NaOH)	Pharmaceutical formulations and human urine samples	[59]		
ASV + DPP	AE (platinum wire) For urine or plasma (PB pH 5.8), for serum (1M H₂PO₄ and 1M KOH pH 2.7)	Human urine, cerebrospinal fluid, and Serum	[60]		
Technique	Column (C)	Mobile phase or eluent	Conditions	Matrices	Reference
--------------------	-----------------------------	--	------------	---------------------------	-----------
R-HPLC-UV + (SPE)	C18	MeOH: ACN : AA	257**	Nutrient admixtures	[61]
LC	LiChrosorb RP-C18 (250×4.6 mm I.D., 5μm particle size)	MeOH : mM monosodium phosphoric acid pH 3 (13:87 v/v) (a) 0.1% Formic acid:10 mM AA (b) 0.1% Formic acid:10 mM AA : MeOH (1:1 v/v)	270** 1*	The bile duct microdialysis probes	[62]
HILIC LC-MS/MS	HPLC Hypersil GOLD C (150×4.6 mm, 5 μm)	(c) 2-Propanol:acetone :ACN (1:1:1 v/v/v)	Gas flow 6.5* Auxiliary gas flow 0.8*	Plasma and cerebrospinal fluid	[63]
UPLC-MS/MS	RP Acquity BEH HILIC column (50mm x 2.1 mm, 1.7 μm, Waters)	(a) (ACN) (b) 20 mM AFB (Gradient)	0.5*	Human plasma	[64]
(LC-GC-FID)	Extraction solvent (chloroform), SGE capillary C (30m x 0.25 mm)	Water : MeOH (12 : 88 v/v) : NaCl : carbonate/bicarbonate buffer pH 5.12	Flow rate 30* Hydrogen gas was used for the FID rate of air which was 300*	NMP in CP (pharmaceutical preparation)	[65]
IC-SPE	Metrosep C4 4 mm x 250 mm cation exchange at 30°C	5% ACN:0.01 mM L⁻¹ nitric acid (a) ACN :25 mM AFB pH 2.79 (5:95 v/v) (b) ACN :500 mM AFB pH 2.79 +25 mM AFB (30 : 70 v/v)	265**	NMP in CP, HCl	[66]
SCX-LC/MS/MS	Zorbax300-SCX (2.1 mm x 50 mm, 5 μm)	(a) (ACN) (b) 20 mM AFB (Gradient)	0.5*	NMP in CP, HCl	[66]
LC-MS/MS	Luna HILIC 200A, 100 x 2.0 mm, 3 μm (Phenomenex) with a GC HPLC (Fortis reverse phase C8 (100 mm x 2.1 mm, 3 μm))	ACN :10 mM AFB pH 3.5 (72 : 28 v/v)	0.3*	Plasma	[68]
HPLC-MS/MS	Phenomenex (2.6μm, 100 Å, 50 x 4.6 mm)	(a) Water-formic acid:10 mM AFB (0.1 :99.9 v/v), B, MeOH	Gas flow rate, 600 l/h	Human serum	[69]
VAMS-LC/MS	Phenomenex (2.6μm, 100 Å, 50 x 4.6 mm)	(a) Water : 5 mM AA pH 5 (b) 5 mM AA in water : ACN (10 : 90 v/v)	0.5*	Human whole blood	[70]
MEKC + UV + LC/MS	PFP Nucleodur HPLC column	Na₂HPO₄ + 75 mM pH 9.1, HPLC ((a) 5 mM AFB pH 3, (b) 100% CAN)	254** 0.5*	Urine	[71]
HPLC + MS	RP-C18	ACN :10 mmol.L⁻¹ ammonium acetate (5:95)	0.8*	Raw drug	[72]
should take the contribution of universities and research centers into consideration to verify the quality of drugs and their safety in application to the public.

7. Conclusions

Cefepime is one of the important drugs from the cephalosporin group as it is distinguished from the rest of the group by its resistance to bacteria, which allows it to work on many positive and negative bacterial pathogens. The drug’s stability is due to the chemical modification of its structure in the 7-position of the cephem ring, and the cephem nucleus substituted with a positively charged N-methyl-pyrrolidine, making it a zwitterion. This zwitterionic property permits penetration of the drug to Gram (+) bacteria’s porin channels rapidly, so it is used effectively to treat severe urinary and respiratory tract infections. Furthermore, many recent studies have proven its worth in treating cases of skin.

| Table 5: Spectrophotometric methods for the analysis of CP. |
|----------------|----------------|----------------|----------------|
| Technique’s name | Solvent for dissolving and dilution | Conditions | Matrices | Reference |
| DRIR + XRD | 8 ml of acetone was added as an eluent | Spectral limits 3587, 3557 cm⁻¹ | Different hydrated forms of CP.2HCl | [73] |
| FTIR | The samples were diluted to 1000 mg with KBr | 4000–400 cm⁻¹ | Pharmaceutical formulations | [74] |
| Savitzky–Golay differentiation filters and Fourier functions | Solutions prepared in concentration 100 μg ml⁻¹ in water | 266** | Human plasma | [75] |
| Complexation with Hg | Solutions were prepared in concentration 20–400 μg ml⁻¹ in water | 257** | Pharmaceutical dosage forms | [76] |
| Spectrophotometry with ammonium molybdate | Solutions were prepared in concentration 1000 μg ml⁻¹ in water | 695** | Pharmaceutical dosage forms | [77] |
| Spectrofluorometry | Solutions were prepared in concentration EXW (307), EMW (297), 435**, Dosage forms | | [78] |
| Spectrophotometry using a tetrazolium Salt | Solutions were prepared in concentration 20 μg ml⁻¹ with MeOH | 483** | Pharmaceutical dosage forms | [79] |
| UV spectrometry | Solutions were prepared in concentration Diluted with UB (0.1 M CH₃COOH + 0.1 M H₃PO₄ + 0.1 M H₃BO₃) | 264**, 230** | Pharmaceutical preparation | [57] |
| Fluorescence spectroscopy | Solutions were prepared with doubly distilled water | The fluorescent intensity set at 341** | Lysosome | [80] |
| UV + FTIR | Solutions were prepared in water; fluorescence intensity was measured in Tris/HCl solution pH 7.4 | EW was 280**, 295** | Pharmaceutical ingredient | [81] |
| Spectrophotometry | Solutions were prepared and diluted with 0.1 N NaOH | 232** | Pharmaceutical dosage forms | [82] |
| Spectrophotometry | Solutions were prepared and diluted with water | 570** | Pure and pharmaceutical dosage forms | [83] |
| Derivative spectrophotometry | Solutions were prepared and diluted with water | 239, 254 | Injections | [84] |
| Direct-infusion electrospray ionization | The solutions of NMP (N-methyl pyrrolidine) were prepared and diluted with water-MeOH (50 : 50) | ESI (V of 2000 V) flow of 71 min⁻¹, GOT of 250°C | NMP in CP | [85] |
| Microbiological assay | Powders were dissolved and diluted in water to give concentrations of 8.0, 16.0, and 32.0 μg m⁻³ | 580** | Injectable preparations | [86] |

| Table 6: Gas chromatographic methods for detection of CP. |
|----------------|----------------|----------------|----------------|
| Technique | Column (C) | Conditions | Matrices | Reference |
| GC | Wide-bore C (60m × 0.53 mm) coated with 100% polydimethylsiloxane (5 mm film) | Flow rate for CG 40, hydrogen 4 and air 100 ml/min | NMP in CP | [86] |
| | | The sample was dissolved and diluted with chloroform COT was 100°C, and the detector and the injector were 250°C | | |
soft tissues, and the women's reproductive tract among patients with febrile neutropenia either it is found to be superior in the treatment of pneumonia in cystic fibrosis patients, which drew the attention of many researchers to analyse this drug in several methods in its dosage forms or in plasma or serum, and the most common analysis methods for this drug are HPLC.

Abbreviations

CP: Cefepime
ACN: Acetonitrile
NaOH: Sodium hydroxide
KOH: Potassium hydroxide
MeOH: Methanol
PB: Phosphate buffer
PDP: Potassium dihydrogen phosphate buffer
SDPM: Sodium dihydrogen phosphate monohydrate
C₄H₈BrN: Tetradecyl ammonium bromide
GC: Guard column
DHP: Dibasic potassium hydrogen phosphate
AA: Ammonium acetate
SDS: Sodium dodecyl sulfate
MEKC: Micellar electrokinetic chromatography
CZE: Capillary zone electrophoresis
Na₂HPO₄: Disodium hydrogen phosphate
FSC: Fused-silica capillary
V: Voltage
ASV: Adsorptive stripping voltammetry
VAMS: Volumetric absorptive microsampling
DPP: Differential pulse polarography
AE: Auxiliary electrode
WE: Working electrode
RE: Reference electrode
SPEC: Solid-phase extraction
LC/MS/MS: Liquid chromatography-tandem mass spectrometry
GC FID: Gas chromatography-flame ionization detection
UHPLC: Ultra-high-performance liquid chromatography
UPLC-MS/MS: Ultraperformance liquid chromatography-tandem mass spectrometry
SCX: High-performance hydrophilic strong cation exchange
HILIC LC-MS/MS: Interaction chromatography
IC-CD: Ion chromatography-conductivity detection
AFB: Ammonium formate buffer
AA: Ammonium acetate
GC: Gas Chromatography
CG: Carrier gas
COT: Column oven temperature
NMP: N-methylpyrrolidone
FTIR: Fourier transform infrared spectroscopy
EXW: Excitation wavelength
EMW: Emission wavelength.

Conflicts of Interest

The author declares that there are no conflicts of interest regarding the publication of this paper.

References

[1] K. A. Bauer, J. E. West, J. M. O’Brien, and D. A. Goff, “Extended-infusion cefepime reduces mortality in patients with *Pseudomonas aeruginosa* infections,” *Antimicrobial Agents and Chemotherapy*, vol. 57, no. 7, pp. 2907–2912, 2013.

[2] B. Isler, P. Harris, A. G. Stewart, and D. L. Paterson, “An update on cefepime and its future role in combination with novel β-lactamase inhibitors for MDR Enterobacteriaceae and *Pseudomonas aeruginosa*,” *Journal of Antimicrobial Chemotherapy*, vol. 76, no. 3, pp. 550–560, 2020.

[3] S.-S. Jean, W.-C. Ko, M.-C. Lu, W.-S. Lee, and P.-R. Hsueh, “Multicenter surveillance of in vitro activities of cefepime-zidebactam, cefepime-enmetazobactam, omadacycline, eradycycline, and comparator antibiotics against Enterobacteriaceae, *Pseudomonas aeruginosa*, and Acinetobacter baumannii complex causing bloodstream infection in Taiwan, 2020.” *Expert Review of Anti-infective Therapy*, vol. 20, pp. 1–13, 2021.

[4] H. Mahjibipoor, M. Sajadi, A. Honarman et al., “A Comparison of Disk Diffusion Method and E-Test in Determining the Susceptibility and Resistance of Klebsiella and Acinetobacter Strains to Cefepime in Patients with Ventilator-Associated Pneumonia Admitted to the Intensive Care Unit,” *Immunopathol Persa*, vol. 8, 2022.

[5] A. Kodym, M. Pawłowska, J. K. Rumiński, A. Bartosińska, and A. Kieliba, “Stability of cefepime in aqueous eye drops,” *Die Pharmazie*, vol. 66, no. 1, pp. 17–23, 2011.

[6] A. O’Connor, M. J. Lopez, and A. P. Eranki, *Cefepime*, StatPearls, Tampa, FL, USA, 2020.

[7] J. T. Stewart, F. W. Warren, and F. C. Maddox, “Stability of cefepime hydrochloride injection in propylene glycol syringes at -20°C, 4°C, and 22-24°C,” *American Journal of Health-System Pharmacy*, vol. 56, no. 5, pp. 457–459, 1999.

[8] M. A. Wynd and J. A. Paladino, “Cefepime: a fourth-generation parenteral cephalosporin,” *The Annals of Pharmacotherapy*, vol. 30, no. 12, pp. 1414–1424, 1996.

[9] P. E. Akpaka, A. Vaillant, C. Wilson, and P. Jayaratne, “Extended spectrum beta-lactamase (ESBL) produced by *Enterobacter aerogenes*,” *Antimicrobial Agents and Chemotherapy*, vol. 57, no. 7, pp. 331–336, 2001.

[10] A. K. Vasai, N. Haloi, R. J. Ulrich et al., “Role of internal loop dynamics in antibiotic permeability of outer membrane porins,” *Proceedings of the National Academy of Sciences*, vol. 119, no. 8, Article ID e2117009119, 2022.

[11] D. Yahav, M. Paul, A. Fraser, N. Sarid, and L. Leibovici, “Efficacy and safety of cefepime: an overview from a medicinal chemistry perspective,” *European Journal of Medicinal Chemistry*, vol. 208, Article ID 11282755, 2021.

[12] L. M. Lima, B. N. M. D. Silva, G. Barbosa, and E. J. Barreiro, “β-lactam antibiotics: an overview from a medicinal chemistry perspective,” *European Journal of Medicinal Chemistry*, vol. 208, Article ID 11282755, 2020.

[13] T. Naito, S. Aburaki, H. Kamachi, Y. Narita, J. Okumura, and H. Kawaguchi, “Synthesis and structure-activity relationships
of a new series of cephalosporins, BMY-28142 and related compounds,” *Journal of Antibiotics*, vol. 39, no. 8, pp. 1092–1107, 1986.

[15] G. G. Grassi and C. Grassi, “Cefepime: overview of activity in vitro and in vivo,” *Journal of Antimicrobial Chemotherapy*, vol. 32, pp. 87–94, 1993.

[16] E. J. Roach, T. Uehara, D. M. Daigle, D. A. Six, and C. M. Khursigara, “The next-generation β-lactamase inhibitor tanoboractam restores the morphological effects of cefepime in KPC-producing *Escherichia coli*,” *Microbiology Spectrum*, vol. 9, no. 2, Article ID e00918, 2021.

[17] R. H. Barbhaiya, S. T. Forgue, C. R. Gleason et al., “Pharmacokinetics of cefepime after single and multiple intravenous administrations in healthy subjects,” *Antimicrobial Agents and Chemotherapy*, vol. 36, no. 3, pp. 552–557, 1992.

[18] A. C. Arrieta and J. S. Bradley, “Empiric use of cefepime in the treatment of serious urinary tract infections in children,” *The Pediatric Infectious Disease Journal*, vol. 20, no. 3, pp. 350–355, 2001.

[19] Y.-H. Tang, P.-L. Lu, H.-Y. Huang, and Y.-C. Lin, “Clinical effectiveness of beta-lactams versus fluoroquinolones as empirical therapy in patients with diabetes mellitus hospitalized for urinary tract infections: a retrospective cohort study,” *PLoS One*, vol. 17, no. 3, Article ID e0266416, 2022.

[20] M. W. Dunne, S. Puttagunta, S. I. Aronin, S. Brossette, J. Murray, and V. Gupta, "Impact of empirical antibiotic therapy on outcomes of outpatient urinary tract infection due to non-susceptible enterobacteria," *Microbiology Spectrum*, vol. 10, no. 1, Article ID e02359, 2022.

[21] M. Hagiwara, H. Kato, T. Sugano et al., "Pharmacodynamic evaluation of meropenem, cefepime, or aztreonam combined with a novel β-lactamase inhibitor, nacubactam, against carbapenem-resistant and/or carbapenemase-producing *Klebsiella pneumoniae* and *Escherichia coli* using a murine thigh-infection model," *International Journal of Antimicrobial Agents*, vol. 57, no. 5, Article ID 106330, 2021.

[22] R. A. Eid, M. O. Elgendy, A. O. El-Gendy et al., "Efficacy of ceftazidime and cefepime in the management of COVID-19 patients: single center report from Egypt," *Antibiotics*, vol. 10, no. 11, pp. 1278, 2021.

[23] M. L. Behal, J. K. Thomas, M. L. Thompson Bastin, and B. M. Mefford, "Cefepime Induced Neurotoxicity Following A Regimen Dose-Adjusted for Renal Function: Case Report and Review of the Literature," Hospital Pharmacy, Lexington, KY, USA, 2021.

[24] L. E. Payne, D. J Gagnon, R. R Riker et al., "Cefepime-induced neurotoxicity: a systematic review," *Critical Care*, vol. 21, no. 1, pp. 276–278, 2017.

[25] A. A. Appa, R. Jain, R. M. Rakita, S. Hakimian, and P. S. Pottinger, *Open forum infectious diseases*Oxford University Press US, Oxford, UK, 2017.

[26] J. E. Fugate, E. A Kalimullah, S. E Hocker, S. L Clark, E. F Wijdicks, and A. A Rabinstein, "Cefepime neurotoxicity in the intensive care unit: a cause of severe, underappreciated encephalopathy," *Critical Care*, vol. 17, no. 6, pp. R264–R266, 2013.

[27] D. Keerty, N. A. Shareef, A. Ramsakal, E. Haynes, and M. Syed, "Cefepime-Induced encephalopathy," *Cureus*, vol. 13, no. 2, 2021.

[28] G. K. Dakdouki and G. N. Al-Awar, “Cefepime-induced encephalopathy,” *International Journal of Infectious Diseases*, vol. 8, no. 1, pp. 59–61, 2004.

[29] K. Mac, R. Chavada, S. Paull, K. Howlin, and J. Wong, “Cefepime induced acute interstitial nephritis—a case report,” *BMC Nephrology*, vol. 16, no. 1, pp. 1–6, 2015.

[30] D. Breilh, C. Lavallée, A. Fratta, D. Ducint, P. Cony-Makhoul, and M. C. Saux, “Determination of cefepime and ceftiraxone in human serum by high-performance liquid chromatography using an ultrafiltration for antibiotics serum extraction,” *Journal of Chromatography B: Biomedical Sciences and Applications*, vol. 734, no. 1, pp. 121–127, 1999.

[31] B. Calahorra, M. A. Camanero, B. Sádaba, and J. R. Azanza, "Rapid high-performance liquid chromatographic determination of cefepime in human plasma," *Biomedical Chromatography*, vol. 13, no. 4, pp. 272–275, 1999.

[32] I. N. Valassis, M. Parissi-Poulou, and P. Macheras, “Quantitative determination of cefepime in plasma and vitreous fluid by high-performance liquid chromatography,” *Journal of Chromatography B: Biomedical Sciences and Applications*, vol. 721, no. 2, pp. 249–255, 1999.

[33] N. A. El-Rabbat, H. M. Abdel-Wadood, M. Sayed, and H. S. Mosa, "High-performance liquid chromatographic determination and pharmacokinetic study of cefepime in goat plasma and milk after pre-column derivatization with Hg(I)," *Journal of Separation Science*, vol. 33, pp. 2599–2609, 2010.

[34] H. Elkhailil, L. Linger, H. Montell, and F. Jehl, "High-performance liquid chromatographic assay for cefepime in serum," *Journal of Chromatography B: Biomedical Sciences and Applications*, vol. 690, no. 1-2, pp. 181–188, 1997.

[35] C. Farthing, D. Farthing, D. F. Brophy et al., "High-performance liquid chromatographic determination of cefepime and cefazolin in human plasma and dialysate," *Chromatographia*, vol. 67, no. 5, pp. 365–368, 2008.

[36] J. O. González, F. J. Palacios, M. C. Mochón, and F. B. de la Rosa, "Simultaneous determination of cefepime and grepafloxacin in human urine by high-performance liquid chromatography," *Journal of Pharmaceutical and Biomedical Analysis*, vol. 36, no. 1, pp. 117–123, 2004.

[37] A. Isla, A. Arzuaga, J. Maynar et al., "Determination of cefazidime and cefepime in plasma and dialysate-ultrafiltrate from patients undergoing continuous veno-venous hemodiafiltration by HPLC," *Journal of Pharmaceutical and Biomedical Analysis*, vol. 39, no. 5, pp. 996–1005, 2005.

[38] K. J. López, D. E. Bertolucci, K. M. Vicente, A. M. Dell’Aquila, and S. R. Santos, "Simultaneous determination of cefepime, vancomycin and imipenem in human plasma of burn patients by high-performance liquid chromatography," *Journal of Chromatography B*, Analytical technologies in the biomedical and life sciences, vol. 860, no. 2, pp. 241–245, 2007.

[39] F. C. Maddox and J. T. Stewart, "HPLC determination of an aqueous cefepime and metronidazole mixture," *Journal of Liquid Chromatography & Related Technologies*, vol. 22, no. 18, pp. 2807–2813, 1999.

[40] E. Nemrutlu, S. Kir, D. Katlan, and M. S. Bekşan, "Simultaneous multisresponse optimization of an HPLC method to separate seven cephalosporins in plasma and amniotic fluid: application to validation and quantification of cefepime, cefixime and cefoperazone," *Talanta*, vol. 80, no. 1, pp. 117–126, 2009.

[41] F. J. Palacios, M. C. Mochon, J. J. Sánchez, M. B. López, and A. G. Pérez, "Validation of an HPLC method for determination of cefepime (a fourth-generation cephalosporin). Determination in human serum, cerebrospinal fluid, and urine. Pharmacokinetic profiles," *Chromatographia*, vol. 62, no. 7, pp. 355–361, 2005.
International Journal of Analytical Chemistry

[42] L. Kalyani and C. V. N. Rao, “Stability indicating RP-HPLC method development and validation of cefepime and amikacin in pure and pharmaceutical dosage forms,” Brazilian Journal of Pharmaceutical Sciences, vol. 54, 2018.

[43] S. Behin, I. Punitha, and S. Krishnan, “Stability studies of cefepime hydrochloride by stability indicating RP-HPLC method,” Int J Pharm Sci Nanotech, vol. 6, no. 3, pp. 2181–2186, 2013.

[44] B. Shrestha, N. R. Bhuayan, and B. N. Sinha, “Simultaneous determination of cefepime and tazobactam in injectables by ultra-high performance liquid chromatography method,” Pharmaceutical Methods, vol. 5, no. 1, pp. 20–26, 2014.

[45] D. Rodrigues and H. Salgado, “Development and validation of a green analytical method of RP-HPLC for quantification of Cefepime hydrochloride in pharmaceutical dosage form: simple, sensitive and economic,” Current Pharmaceutical Analysis, vol. 12, no. 4, pp. 306–314, 2016.

[46] S. R. Tamboli and D. D. Patil, “RP-HPLC method for simultaneous estimation of cefepime hydrochloride and tazobactam sodium in bulk and pharmaceuticals,” Journal of Chemistry, vol. 2013, Article ID 208057, 6 pages, 2013.

[47] T. Legrand, D. Vodovan, N. Tournier, N. Khoudour, and A. Hulin, “Simultaneous determination of eight β-lactam antibiotics, amoxicillin, cefazolin, cefepime, cefotaxime, ceftriaxone, cloxacillin, oxacillin, and piperacillin, in human plasma by using ultra-high-performance liquid chromatography with ultraviolet detection,” Antimicrobial Agents and Chemotherapy, vol. 60, no. 8, pp. 4734–4742, 2016.

[48] J. O. González, M. C. Mochón, and F. B. de la Rosa, “Simultaneous determination of cefepime and the quinolones garenoxacin, moxifloxacin and levofloxacin in human urine by HPLC-UV,” Microchimica Acta, vol. 151, no. 1–2, pp. 39–45, 2005.

[49] R. Theurillat, P. Sendi, and W. Thomann, “An MEKC assay for the therapeutic drug monitoring of cefepime,” Journal of Separation Science, vol. 36, no. 17, pp. 2915–2921, 2013.

[50] Y.-H. Yang, W.-Y. Wu, H.-H. Yeh, and S.-H. Chen, “Simultaneous determination of cefepime and vancomycin in plasma and cerebrospinal fluid by MEKC with direct sample injection and application for bacterial meningitis,” Electrophoresis, vol. 28, no. 11, pp. 1788–1797, 2007.

[51] S. H. Tseng, Y. H. Yang, Y. R. Chen, and S. H. Chen, “Determination of cefepime in plasma and cerebrospinal fluid by micellar electrokinetic chromatography with direct sample injection,” Electrophoresis, vol. 25, pp. 1641–1647, 2004.

[52] S. J. Prasanna, H. K. Sharma, K. Mukkanti, V. J. Kumar, G. Raja, and M. Sivakumar, “Validation of capillary electrophoresis method for determination of N-methylpyrrolidine in cefepime for injection,” Journal of Chromatographic Science, vol. 48, no. 10, pp. 830–834, 2010.

[53] Y.-R. Chen, S.-J. Lin, Y.-W. Chou, H.-L. Wu, and S.-H. Chen, “Simultaneous determination of cefepime and L-arginine by micellar electrokinetic chromatography and applications to commercial injections,” Journal of Separation Science, vol. 28, no. 16, pp. 2173–2179, 2005.

[54] H. Liu and V. Sunderland, “Determination of N-methylpyrrolidine in cefepime for injection by capillary electrophoresis with indirect UV detection,” Chromatographia, vol. 59, no. 9, pp. 653–657, 2004.

[55] A. Al-Attas, J. J. Nasr, N. El-Enany, and F. Belal, “A green capillary zone electrophoresis method for the simultaneous determination of piperacillin, tazobactam and cefepime in pharmaceutical formulations and human plasma,” Biomedical Chromatography, vol. 29, no. 12, pp. 1811–1818, 2015.

[56] V. Evagelou, A. Tsantili-Kakoulidou, and M. Koupparis, “Determination of the dissociation constants of the cephalosporins cefepime and ceftiraxone using UV spectrometry and pH potentiometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 31, no. 6, pp. 1119–1128, 2003.

[57] S. A. Özkan, B. Uslu, and P. Zaman, “Electrochemical reduction and oxidation of the antibiotic cefepime at a carbon electrode,” Analytica Chimica Acta, vol. 457, no. 2, pp. 265–274, 2002.

[58] F. J. J. Palacios, M. C. Mochón, J. C. J. Sánchez, and J. H. Carranza, “Electrochemical reduction of cefepime at the mercury electrode,” Electroanalysis, vol. 12, no. 4, pp. 296–300, 2000.

[59] F. J. J. Palacios, M. C. Mochón, J. C. J. Sánchez, and J. H. Carranza, “Adsorptive stripping voltammetric determination of cefepime at the mercury electrode in human urine and cerebrospinal fluid, and differential pulse polarographic determination in serum,” Journal of Pharmaceutical Sciences, vol. 92, no. 9, pp. 1854–1859, 2003.

[60] M. Iqbal, M. Bahari, Y. Darwis et al., “A RP-HPLC-UV method with solid phase extraction for determination of cefepime in total nutrient admixtures: application to stability studies,” Current Pharmaceutical Analysis, vol. 8, no. 1, pp. 68–74, 2012.

[61] Y. L. Chang, M. H. Chou, M. F. Lin, C. F. Chen, and T. H. Tsai, “Determination and pharmacokinetic study of unbound cefepime in rat bile by liquid chromatography with on-line microdialysis,” Journal of Chromatography, A, vol. 914, no. 1-2, pp. 77–82, 2001.

[62] S. Rehm and K. M. Rentsch, “HILIC LC-MS/MS method for the quantification of cefepime, imipenem and meropenem,” Journal of Pharmaceutical and Biomedical Analysis, vol. 186, Article ID 113289, 2020.

[63] M. Mameli, A. Vezzelli, S. Verze’ et al., “Liquid chromatography-tandem mass spectrometry for the simultaneous quantitation of enmetazobactam and cefepime in human plasma,” Journal of Pharmaceutical and Biomedical Analysis, vol. 174, pp. 655–662, 2019.

[64] M. A. Farajzadeh, L. Goushjui, and Y. Bashour, “A simple and rapid dispersive liquid–liquid microextraction method followed by GC-FID for determination of N-methylpyrrolidine in cefepime,” Journal of Separation Science, vol. 33, pp. 3767–3773, 2010.

[65] N. Page, R. Stevenson, and M. Powell, “Analysis of N-methylpyrrolidine in cefepime hydrochloride by ion chromatography using suppressed conductivity detection with solid-phase extraction pre-treatment,” Analytical Methods, vol. 6, no. 4, pp. 1248–1253, 2014.

[66] W. Bu, H. Sexton, X. Fan et al., “The novel sensitive and high throughput determination of cefepime in mouse plasma by SCX-LC/MS/MS method following off-line µElution 96-well solid-phase extraction to support systemic antibiotic programs,” Journal of Chromatography B, vol. 878, no. 19, pp. 1623–1628, 2010.

[67] K. Patil, H. Tambe, V. Zope, R. Chavan, R. Yeole, and M. Patel, “Simultaneous determination of zidebactam and cefepime in dog plasma by LC-MS/MS and its application to pre-clinical pharmacokinetic study,” Biomedical Chromatography, vol. 32, no. 8, p. e4249, 2018.

[68] M. Paal, M. Zoller, C. Schuster, M. Vogeser, and G. Schütze, “Simultaneous quantification of cefepime, meropenem, ciprofloxacin, moxifloxacin, linezolid and piperacillin in human serum using an isotope-dilution HPLC–MS/MS method,” Journal of Chromatography A, vol. 151, no. 1-2, pp. 671–676, 2015.
method,” *Journal of Pharmaceutical and Biomedical Analysis*, vol. 152, pp. 102–110, 2018.

[69] G. S. Moorthy, C. Vedar, N. R. Zane et al., “Development and validation of a volumetric absorbive microsampling- liquid chromatography mass spectrometry method for the analysis of cefepime in human whole blood: application to pediatric pharmacokinetic study,” *Journal of Pharmaceutical and Biomedical Analysis*, vol. 179, Article ID 113002, 2020.

[70] M. Kummer, N. Šestáková, R. Theurillat et al., “Monitoring of cefepime in urine by micellar electrokinetic capillary chromatography with ultraviolet detection and liquid chromatography coupled to mass spectrometry,” *Journal of Separation Science*, vol. 41, no. 21, pp. 4067–4074, 2018.

[71] L. Zhao, J.-F. Guo, A.-J. Zhang, and Y.-M. Zhao, “Rapid identification of the isomeric impurity in raw drug of cefepime dihydrochloride by liquid chromatography-tandem mass spectrometry,” *Yao xue xue bao - Acta pharmaceutica Sinica*, vol. 40, no. 4, pp. 361–364, 2005.

[72] D. E. Bugay, A. W. Newman, and W. P. Findlay, “Quantitation of cefepime 2HCl dihydrate in cefepime 2HCl monohydrate by diffuse reflectance IR and powder X-ray diffraction techniques,” *Journal of Pharmaceutical and Biomedical Analysis*, vol. 15, no. 1, pp. 49–61, 1996.

[73] H. R. H. Ali, R. Ali, H. A. Batakoushy, and S. M. Derayea, “Solid-state FTIR spectroscopic study of two binary mixtures: cefepime-metronidazole and cefoperazone-sulbactam,” *Journal of Spectroscopy*, vol. 2017, Article ID 5673214, 6 pages, 2017.

[74] O. Abdel-Aziz, M. F. Abdel-Ghany, N. Nagi, and L. Abdel-Fattah, “Application of Savitzky-Golay differentiation filters and Fourier functions to simultaneous determination of cefepime and the co-administered drug, levofloxacin, in spiked human plasma,” *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, vol. 139, pp. 449–455, 2015.

[75] N. El-Rabbat, H. Abdel-Wadood, M. Sayed, and H. Mousa, “Spectrophotometric analysis of cefepime through its hg(i) complex,” *Bulletin of Pharmaceutical Sciences*, vol. 35, no. 1, pp. 55–65, 2012.

[76] M. Elazazy, A. Shalaby, M. Elbolkiny, and H. Khalil, “Spectrophotometric determination of cefepime hydrochloride, cefoperazone sodium, ceftazidime pentahydrate, cefuroxime sodium and etamsylate using ammonium molybdate,” *Scien tia Pharmacuetica*, vol. 71, no. 3, pp. 211–228, 2003.

[77] N. M. Mostafa, L. Abdel-Fattah, S. A. Weshahy, N. Y. Hassan, and S. A. Bolitia, “Stability-indicating spectrophluorometric method for the determination of some cephalosporin drugs via their degradation products,” *Journal of AOAC International*, vol. 98, no. 2, pp. 361–370, 2015.

[78] M. S. Elazazy and A. A. Shalaby, “Validated spectrophotometric assay of cefepime hydrochloride and cefuroxime sodium using a tetrazolium salt,” *E-Journal of Chemistry*, vol. 9, no. 4, pp. 2261–2267, 2012.

[79] R. Han, B.-S. Liu, G. Li, and Q. Zhang, “Investigation on the interaction between lysozyme and cefepime hydrochloride by synchronous fluorescence and fluorescence quenching spectroscopy,” *Spectroscopy Letters*, vol. 49, no. 3, pp. 225–230, 2016.

[80] Y. Huang, Y. Zhang, Z. Yan, and S. Liao, “Assay of ceftazidime and cefepime based on fluorescence quenching of carbon quantum dots,” *Luminescence*, vol. 30, no. 7, pp. 1133–1138, 2015.

[81] R. K. Nanda, D. A. Navathar, A. A. Kulkarni, and S. S. Patil, “Simultaneous spectrophotometric estimation of cefepime and tazobactam in pharmaceutical dosage form,” *International Journal of Chemistry Research*, vol. 4, no. 1, pp. 152–156, 2012.

[82] R. K. Pappanna, J. B. Krishnegowda, and P. Nagaraja, “Spectrophotometric method for the determination of cefepime, cefazolin sodium and cefalothin sodium in pure and pharmaceutical dosage forms by using ninhydrin,” *International Journal of Pharmacy and Pharmaceutical Sciences*, vol. 7, no. 5, pp. 194–199, 2015.

[83] V. Ródenas, A. Parra, J. García-Villanova, and M. D. Gómez, “Simultaneous determination of cefepime and L-arginine in injections by second-derivative spectrophotometry,” *Journal of Pharmaceutical and Biomedical Analysis*, vol. 13, no. 9, pp. 1095–1099, 1995.

[84] R. W. Smith, L. B. Cox, A. Yudin, J. C. Reynolds, M. Powell, and C. S. Creaser, “Rapid determination of N-methylpyrrolidine in cefepime by combining direct infusion electrospray ionisation-time-of-flight mass spectrometry with field asymmetric waveform ion mobility spectrometry,” *Analytical Methods*, vol. 7, no. 1, pp. 34–39, 2015.

[85] M. J. Souza, R. R. Kulmann, L. M. Silva, D. R. Nogueira, E. S. Zimmermann, and C. A. Schmidt, “Development and in-house validation of a microbiological assay for determination of cefepime in injectable preparations,” *Journal of AOAC International*, vol. 89, no. 5, pp. 1367–1372, 2006.

[86] G. Chen, G. Liu, F. Qin, and Y. Wang, “A simple and sensitive GC method for determination of N-methylpyrrolidine in cefepime and its preparation,” *Journal of Pharmaceutical and Biomedical Analysis*, vol. 33, no. 4, pp. 797–801, 2003.