Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration

Shuo Chen1,2,3,4*, Remco C. Hin2, Timm John5, Richard Brooker2, Ben Bryan2, Yaoling Niu1,3,6 & Tim Elliott2

Fluids liberated from subducting slabs are critical in global geochemical cycles. We investigate the behaviour of Mo during slab dehydration using two suites of exhumed fragments of subducted, oceanic lithosphere. Our samples display a positive correlation of δ98/95MoNIST 3134 with Mo/Ce, from compositions close to typical mantle (−0.2‰ and 0.03, respectively) to very low values of both δ98/95MoNIST 3134 (−1‰) and Mo/Ce (0.002). Together with new, experimental data, we show that molybdenum isotopic fractionation is driven by preference of heavier Mo isotopes for a fluid phase over rutile, the dominant mineral host of Mo in eclogites. Moreover, the strongly perturbed δ98/95MoNIST 3134 and Mo/Ce of our samples requires that they experienced a large flux of oxidised fluid. This is consistent with channelled, reactive fluid flow through the subducted crust, following dehydration of the underlying, serpentinised slab mantle. The high δ98/95MoNIST 3134 of some arc lavas is the complement to this process.

1 Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China. 2 Bristol Isotope Group, School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. 3 Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China. 4 Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China. 5 Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstrasse 74-100, 12249 Berlin, Germany. 6 Department of Earth Sciences, Durham University, Durham DH1 3LE, UK. *email: shuochen@qdio.ac.cn
Subduction zones are major sites of chemical exchange between Earth’s deep interior and surface. The subducting oceanic lithosphere releases fluids through a series of metamorphic, dehydration reactions which induce melting in the mantle wedge and result in arc magmatism. The magnitude and origin of these key fluid fluxes, however, remain uncertain. The primary source of water to subduction zones has traditionally been linked to the breakdown of hydrous minerals contained in the oceanic crust. However, more recent synthesis of high-pressure experiments, geochemical observations and geophysical models argue that dehydration of subducting serpentinite plays a more critical role in elemental transport and arc magma generation (see review in ref. 3).

Whilst the importance for serpentine in bringing water down to sub-arc depths is now widely acknowledged, two contrasting scenarios are envisaged for its involvement. In one endmember, serpentine forms above the slab, trapping fluids released from the crust in the shallow subduction zone, and is down-dragged with the descending plate. This serpentine potentially forms a mechanical melange with the underlying crust and ultimately rises diapirically. This process has been invoked to account for the geology of some exhumed terrains, and aspects of arc magmatism. A second conceptual model instead places the serpentinite layer beneath the subducting crust, as a result of ingress of water along transform faults or during plate bending prior to subduction. Serpentine dehydration beneath the subducting crust facilitates the removal of elements from the whole crustal section during subsequent passage of the fluid into the source of arc magmas and so this scenario has major ramifications for element cycling. Although an increasing number of seismological studies have presented evidence for significant subduction of serpentinite slabs at various destructive plate margins, its importance has also been vigorously questioned. New constraints to distinguish between these different models of serpentine involvement in arc magmatism would therefore be very valuable.

Molybdenum (Mo) systematics show promise for tracing the origin of fluids in subduction zones for two reasons. First, high-pressure experiments have shown that Mo mobility reflects the redox condition of slab-derived fluids. Second, recent studies have shown that arc lavas are generally enriched in Mo and have δ98/95MoNIST 3134 that are higher than values of the primitive mantle, deformed mid-ocean-ridge basalts and most oceanic sediments. The high δ98/95MoNIST 3134 in deformed arc lavas has been inferred to reflect Mo isotopic fractionation caused in its partitioning into fluids traversing the subducting crust from underlying, serpentine dehydration. If correct, then Mo isotope systematics can identify the style of serpentine involvement in arc magmatism, although other interpretations of high δ98/95MoNIST 3134 in arc lavas have been proposed.

Here, by analysing material complementary to arc magmatism, namely exhumed fragments of subducted oceanic lithosphere, we provide a fresh perspective on the cause of Mo isotopic fractionation during subduction. In natural and experimental samples, we show that Mo in rutile, a common accessory phase in the mafic, subducted crust, is isotopically light. We further report low δ98/95MoNIST 3134 and Mo/Ce in bulk eclogite and blueschist samples that reflect the control of residual rutile during fractional loss of Mo caused by a large, oxidised, reactive-fluid flux.

Results

Samples. We have examined samples from two well-characterized metaophiolite complexes (Table 1; Supplementary Table 1). The Raspas Complex, Ecuador, contains metasediments, blueschists, eclogites, and eclogite-facies, serpentinitised peridotite, which all experienced similar peak pressure-temperature conditions of ~ 2 GPa and 600 ± 50 °C. The Cabo Ortegal Complex eclogites record comparable peak metamorphic conditions of 650–670 °C, using Zr-in-rutile data from Schmidt et al. in combination with a temperature calibration from Ferry and Watsor and pressures > 1.7 GPa.

The eclogites from both suites have Nd isotope ratios and key trace-element ratios like those of mid-ocean-ridge basalts (MORB), see Fig. 1a. This indicates a depleted, oceanic crustal protolith, as expected of typical subduction zones and further precludes significant contributions from sediment melts or crustal contamination. Although the Raspas blueschists are more enriched, they still have oceanic geochemical affinities (Fig. 1a) and are inferred to represent subducted seamounts. Elements which show consistent, depleted, MORB-like characteristics in the eclogites (e.g. rare earth elements, high field strength elements and thorium) are empirically inferred to be fluid immobile and this set of elements is consistent with those considered to be fluid immobile from arc lavas systematics. More strictly, these observations suggest that there is residual zoisite and rutile along the pathway of percolating fluids which result in the immobility of these elements.

Fluid mobile elements reflect a more complex history (Fig. 1b). Compared with a MORB protolith, Sr is depleted relative to Nd, a fluid immobile element of similar magmatic incompatibility. Such elemental loss to slab-derived fluids is consistent with arc lava systematics. Barium has also been inferred to be highly fluid mobile during subduction and it has been observed to be specifically enriched in fluid inclusions within the Raspas eclogites. Yet, relative to its fluid immobile analogue Th, Ba is not as ubiquitously depleted as Sr in the eclogites (Fig. 1b). The anomalously high concentrations of Ba (and some other elements such as Pb and K, not shown) can be linked to secondary formation of phengite from late percolating fluid, which can locally re-enrich eclogites in fluid mobile elements compatible in this phase.

Molybdenum systematics of exhumed oceanic crust. As with some of the more traditionally used fluid mobile elements (Fig. 1b), our samples show notable perturbations of their Mo elemental and isotope systematics relative to unaltered, depleted MORB (Fig. 2). Given comparably incompatible behaviour of Mo and Ce in magmatic processes, oceanic basalts have nearly constant Mo/Ce. All the eclogite samples studied here have Mo/Ce considerably lower than this canonical mantle value of ~ 0.031. The majority of eclogites also have significantly isotopically lighter Mo than either altered or unaltered oceanic crust (Fig. 2). There is a general trend from unaltered, depleted MORB towards low Mo/Ce and low δ98/95MoNIST 3134, albeit with two outliers with less negative δ98/95MoNIST 3134 at low Mo/Ce. Notably, the sample array appears to originate from a normal MORB composition rather than a significantly altered oceanic crustal (AOC) protolith (Fig. 2).

For one eclogite sample (SEC46-1) we have analysed the Mo concentrations and isotope compositions of individual phases (Table 1). In keeping with the work of Zack et al., rutile is the dominant host of Mo (~ 5 µg g⁻¹). Rutile is also isotopically lighter (δ98/95MoNIST 3134 = −0.75‰) than co-existing omphacite (δ98/95MoNIST 3134 = −0.16‰) and garnet (δ98/95MoNIST 3134 = −0.29‰). Compositional and modal data from the minerals can be used to reconstruct a bulk eclogite value (δ98/95MoNIST 3134 = −0.58‰) within error of the measured whole rock analysis (Table 1). We further analysed rutile separates from one of the perturbed, higher Ba/Th samples (SEC43-1) which gave...
basalts (OIB) and volcanic arc lavas compiled from PetDB (http://www.earthchem.org/petdb); Trace elements and Nd isotopes of samples from this study compiled from ref.23,27,40 (see Supplementary Table 1), except for Nd isotopes of Cabo Ortegal Complex measured in this study. Elements should be little in arc lavas, including some low values but ranging to higher values reflecting late phengite addition. Data sources: MORB is from compilation in ref.70, ocean island basalts (OIB) and volcanic arc lavas compiled from PetDB (http://www.earthchem.org/petdb); Trace elements and Nd isotopes of samples from this study compiled from ref.23,40 (see Supplementary Table 1), except for Nd isotopes of Cabo Ortegal Complex measured in this study.

Table 1 δ\(^{98/95}\)Mo\(_{\text{NIST} 3134}\) and Mo concentrations in high-pressure mafic and ultra-mafic samples from Raspas Complex and Cabo Ortegal Complex

Sample	Rock/mineral type	[Mo] μg g\(^{-1}\)	δ\(^{98/95}\)Mo\(_{\text{NIST} 3134}\) (‰)	n	Mo/Cea\(^a\)	\(^{143}\)Nd/\(^{144}\)Nd\(^b\)
Raspas Complex (Ecuador)						
SEC15-2	Blueschist	0.383	−0.49 ± 0.03	3	0.011	0.51270(3)
SEC15-2c	Blueschist	0.102	−0.99 ± 0.03	1	0.002	0.51270(3)
SEC42-6	MORB-type eclogite	0.178	−0.38 ± 0.03	3	0.011	0.513072(2)
SEC42-3	MORB-type eclogite	0.052	−0.37 ± 0.05	1	0.004	0.513174(2)
SEC43-1	MORB-type eclogite	0.055	−0.35 ± 0.05	1	0.005	
SEC43-1c	Rutile	2.440	−0.31 ± 0.05	3		
SEC43-3	MORB-type eclogite	0.145	−0.53 ± 0.03	1	0.011	0.513214(3)
SEC44-1	MORB-type eclogite	0.042	−0.20 ± 0.04	1	0.004	0.513182(3)
SEC44-1c	MORB-type eclogite	0.043	−0.13 ± 0.04	1	0.004	
SEC46-1	MORB-type eclogite	0.137	−0.57 ± 0.04	1	0.010	0.513213(2)
Fine rutile	5.330	−0.75 ± 0.08	3			
Coarse rutile	4.418	−1.26 ± 0.02	3			
Garnet	0.064	−0.29 ± 0.05	1			
Omphacite	0.141	−0.16 ± 0.05	3			
Cabo Ortegal Complex (Spain)						
SEC46-2	MORB-type eclogite	0.058	−0.68 ± 0.04	1	0.004	
SEC47-1	MORB-type eclogite	0.102	−0.52 ± 0.03	2	0.009	0.513189(3)
SEC50-1	Retrogressed eclogite	0.130	−0.45 ± 0.01	2	0.011	
SEC26-3	Serpentinitised peridotite	0.017	0.13 ± 0.10	1	0.515	
SEC26-3c	Serpentinitised peridotite	0.016	0.14 ± 0.08	1	0.485	
SEC35-2	Serpentinitised peridotite	0.007	0.00 ± 0.04	1	0.500	
Raspas Complex (Ecuador)						
SCO1-1	MORB-type eclogite	0.149	−0.40 ± 0.01	2	0.016	0.513117(4)
SCO2-1	MORB-type eclogite	0.292	−0.37 ± 0.05	3	0.018	0.512929(3)
SCO9-2	MORB-type eclogite	0.105	−0.43 ± 0.03	1	0.017	0.513233(4)
SCO12-4	MORB-type eclogite	0.102	−0.58 ± 0.04	1	0.012	0.513238(4)
SCO16-1	MORB-type eclogite	0.091	−0.49 ± 0.03	1	0.015	0.513233(4)
SCO18-1	MORB-type eclogite	0.493	−0.33 ± 0.02	3	0.031	0.513151(4)
SCO23-1	MORB-type eclogite	0.089	−0.46 ± 0.04	1	0.013	0.513237(4)

Uncertainties of δ\(^{98/95}\)Mo\(_{\text{NIST} 3134}\) are given as two standard deviation (2SD, \(n > 1\)) or two standard error (2SE, \(n = 1\)), where \(n\) refers to number of isotopic analyses using the same solution.

\(^a\)Ca concentration is from refs.23,40 (labelled fine rutile needles) and another less carefully picked that included larger, more irregular grains (labelled coarse rutile). Although both separates have notably isotopically light Mo, they are different and perhaps reflect different generations of growth from different fluid compositions. We have somewhat arbitrarily assumed equal proportions of the different phases in reconstituting the whole rock Mo isotopic composition of SEC46-1 (−0.58‰, comparing to the measured −0.57 ± 0.04‰).

Uncertainties of δ\(^{143/144}\)Nd are given as two standard error (2SE, \(n = 1\)).

Fig. 1 Protoliths and subduction modification of studied eclogites and blueschists. \(1^{43}\)Nd/\(^{144}\)Nd versus Nb/La (weight ratio). These fluid immobile elements should be little influenced by fluid loss during subduction and so reflect protolith compositions. \(b\) Sr/Nd vs Ba/Th (weight ratios). These two ratios of fluid mobile over fluid immobile elements of similar magmatic incompatibility show the effects of subduction zone processes. Most of the meta-basalts have low Sr/Nd relative to mid-ocean ridge basalts (MORB), complementary to elevated Sr/Nd in arc lavas. Their Ba/Th are more variable, including some low values but ranging to higher values reflecting late phengite addition. Data sources: MORB is from compilation in ref.70, ocean island basalts (OIB) and volcanic arc lavas compiled from PetDB (http://www.earthchem.org/petdb); Trace elements and Nd isotopes of samples from this study compiled from ref.23,27,40 (see Supplementary Table 1), except for Nd isotopes of Cabo Ortegal Complex measured in this study.
Fig. 2 Observed and modelled variations in Mo isotope compositions as a function of Mo/Ce. Grey lines are model $\delta^{98/95}{\text{Mo}}_{\text{NIST} \, 3134}$ in residual oceanic crust following fractional loss of Mo-carrying fluids using different fractionation factors (α) between fluid and eclogite at 2.6 GPa, 660 °C and an oxygen fugacity of FMQ + 4 (see Methods). Tick marks denote 10% increments of fluid loss by mass. We also plot reference values for: depleted mid-ocean ridge basalts (MORB) (ref.21), altered oceanic crust (AOC) using the Super Composite composition from ODP Site 80117 and fluid-rich arc lavas (ref.16-19,61), selected with Ba/Th > 400 to minimise complexity of variable sediment contributions. The representative sample uncertainty is from replicate analyses of W-2a.

$\delta^{98/95}{\text{Mo}}_{\text{NIST} \, 3134} = -0.31\%$, in keeping with its higher bulk $\delta^{98/95}{\text{Mo}}_{\text{NIST} \, 3134}$.

Our analysis of one eclogite that shows petrological signs of prograde processes (SEC50-1), is not noticeably different from the others (Table 1), indicating the Mo systematics are robust to resetting and dominantly reflect prograde processes. Two serpentinites from the Raspas complex have high $\delta^{98/95}{\text{Mo}}_{\text{NIST} \, 3134}$ (>0.1%), presumably reflecting their interaction with isotopically heavy seawater ($\delta^{98/95}{\text{Mo}}_{\text{NIST} \, 3134} \approx 2.3\%$) during serpentinitisation. Although the serpentinites are enriched in Mo relative to Ce (Table 1), their Mo abundances are still very low (<20 ng g$^{-1}$), and markedly lower than even the most Mo-depleted eclogites.

High-pressure experiments. In order to help account for our observations, we conducted experiments on the fractionation of Mo isotopes between rutile and hydrous siliceous melt. The latter is taken to represent subduction zone fluids, and though an imperfect analogue, it provides an experimentally convenient initial means to assess possible isotopic fractionation. It is important to note that Mo is dominantly tetrahedrally coordinated, as Mo(VI)O$_4^{2-}$ species, both in siliceous melts and aqueous fluids. In contrast, Mo occupies a octahedral site in rutile. Given co-ordination changes are a major driver of isotopic fractionation (e.g. ref. 36), siliceous melt should therefore provide an adequate substitute for aqueous fluid for this preliminary investigation.

Experimental procedures are detailed in Methods and the results of the one successful experiment are summarised in Supplementary Table 2. We show that the liquid phase is isotopically heavier than the rutile ($\Delta^{98/95}{\text{Mo}}_{\text{fluid-rutile}} = 0.90 \pm 0.17\%$ at 600 °C, see Methods), consistent with the sense of fractionation predicted by rule of thumb changes in co-ordination of Mo between rutile and fluid/melt.

Discussion

We argue that the marked depletion of Mo recorded by low Mo/Ce (Fig. 2) reflects its loss during extensive reactive fluid flow across the subducted crust, in keeping with low Sr/Nd in the eclogites (Fig. 1b). The coupled decrease in $\delta^{98/95}{\text{Mo}}_{\text{NIST} \, 3134}$ and Mo/Ce (Fig. 2) implicates isotopic fractionation is associated with Mo loss. The nearly two orders of magnitude variation in Mo/Ce indicates a variable degree of interaction with fluid as might be as anticipated from channelised flow during slab dehydration. All samples have Mo/Ce lower than MORB and so Mo does not seem to be significantly affected by the subsequent process that adds some fluid mobile elements such as Ba (Fig. 1b). This addition reflects late fluid percolation that causes secondary growth of phengite. Such a fluid is unlikely to cause further rutile growth to host additional Mo but should be isotopically heavy (see below) such that re-equilibration will increase the $\delta^{98/95}{\text{Mo}}_{\text{NIST} \, 3134}$ of existing rutile, as we observe in one rutile sample (SEC43-1, Table 1), and move the bulk samples above the main array (Fig. 2) as is observed for two samples.

Pre-existing protolith Mo isotope heterogeneity or variable interaction with sediment-derived melts might be invoked to explain the Mo isotopic variability. However, the enriched MORB have higher rather than lower $\delta^{98/95}{\text{Mo}}_{\text{NIST} \, 3134}$ than depleted MORB and although interaction with sediment-derived melts has been used to explain light Mo isotopes in some arc lavas, this scenario can be ruled out as the eclogites have MORB-like rare earth element patterns and Nd isotopic signatures. As an initial quantification of the Mo systematics of the eclogites, we have modelled our data using a Rayleigh fractionation calculation (see Models). This simplistic approach provides a minimum estimate of the relative amount of fluid that has interacted with the residual solid. The slope of the data in Fig. 2 is essentially controlled by the fractionation factor ($\alpha_{\text{fluid-eclogite}}$), which we therefore empirically infer to be 1.0002 – 1.0004 (Fig. 2), corresponding to instantaneous fluid-rutile differences ($\Delta^{98/95}{\text{Mo}}_{\text{fluid-rutile}}$) of 0.9 – 1.1‰. These values are reassuringly similar in sign and magnitude to our experiments (0.9 ± 0.17‰, see above), despite the differences in fluid composition of our experiments and those experienced by the eclogites (see Methods for further discussion).

The magnitude of decrease in Mo/Ce and $\delta^{98/95}{\text{Mo}}_{\text{NIST} \, 3134}$ of a sample depends on its net Mo loss, which is a function of the fraction of fluid loss and Mo solubility in the fluid. Fortunately, the temperature and oxygen fugacity (f_{O_2}) dependence of solubility of Mo in fluids at appropriate sub-arc conditions have been experimentally calibrated. Since the temperature of rutile equilibration is independently monitored by its Zr concentration or other thermobarometry, our data allow us to examine the f_{O_2} of the fluids that transported Mo from the eclogites. Admittedly, we also need to stipulate residual mineralogy and fluid salinity, but these are sufficiently well constrained for the sensitivity of the calculation to these parameters. We assume that the eclogites have garnet/clinoptyroxene = 30:70 and contain 1.5% rutile, as set by the typical depleted MORB Ti contents of the samples. Evidence from experiments and natural rocks indicate that high-pressure fluids liberated by dehydration have low salinities and this has been specifically documented for fluid inclusions trapped in the Raspas eclogites. We use a fluid containing 5 wt% NaCl as an appropriate composition (parameters and models are described in detail in the Methods).

We illustrate the isotopic effects of Mo removal by fluid loss from subducted crust in Fig. 3a. Significant Mo loss and associated isotopic fractionation in the residual eclogite is only achieved as a result of high Mo solubility at oxygen fugacities at least two orders of magnitude above the fayalite-magnetite-quartz buffer (FMQ + 2). Even for a fluid as oxidised as FMQ + 5, a
sizeable relative fluid loss (F > 0.05) is still required to reproduce the low δ⁹⁸/⁹⁵MoNIST 3134 we observe in our samples (Fig. 3a). This fraction of fluid loss is more than the upper bound of ~ 5% for the initial water content of subducting crust that can be estimated from analyses of the most altered, uppermost ~ 500 m of mafic oceanic crust, and much more than typical water contents < 0.6 wt% in unaltered, depleted MORB which appears a more likely protolith of our eclogite samples (Fig. 2). Much larger fractions of fluid loss are required to model the isotopically lightest Mo compositions at lower fO₂ (Fig. 3a, b).

Not only is the amount of fluid that can be released from the subducted AOC limited but it is also unclear if such fluids will be sufficiently oxidising. There are few studies of the oxygen fugacity of prograde conditions recorded by exhumed eclogites that might have been imposed on fluids released, but the typical presence of pyrite inclusions in garnets suggests modest fO₂ estimated to be a little below FMQ for Tian Shan eclogites. Further evidence that an external source of fluid is key for perturbing the Mo systematics is that the most extreme δ⁹⁸/⁹⁵MoNIST 3134 and Mo/Ce are displayed by a blueschist, which must have experienced less loss of its initial water budget than an eclogite in a simple model of prograde fluid loss. Importantly, this low δ⁹⁸/⁹⁵MoNIST 3134 of the blueschist is not related to differences in protolith composition as Bezard et al. showed that enriched MORB (analogous to the Raspas blueschists, Fig. 1) have higher δ⁹⁸/⁹⁵MoNIST 3134 than depleted MORB (analogous to the Raspas eclogites).

An underlying serpentinitised, slab mantle is an appealing potential source of oxidised and abundant fluids. Serpentinites have low Mo abundances (Table 1) and so serpentine derived fluids will have the capacity to dissolve and transport Mo from the overlying crust, through which the fluids must pass as a consequence of subducted slab stratigraphy. Intrinsic, chemical heterogeneities within the serpentinites cause fluid flow channelization, although all eclogites will have experienced some fluid flow, not least to facilitate transformation to an eclogite-facies assemblage either by blueschist dehydration or gabbroro-to-eclogite conversion, the variable Mo isotope systematics of the different samples (Fig. 2) indicates different fluid fluxes as would be anticipated from channelised flow.

Numerical models imply that uniform and pervasive porous flow is too slow to drain all water generated by dehydration of the slab, which requires high porosity, high permeability channels in a developing network. Clear geological evidence for such major conduits is lacking. While there are good examples of smaller scale, vein features, they are not sufficiently numerous to have been the locus of major fluid flow. Additionally, such veins are more fracture-like structures and do not clearly document fluid interaction with a large enough volume to provide the major chemical fluxes to subduction zone magmatism. Meso-scale flow structures (i.e. at a dm to m or 'hand specimen' scale) with high permeability generated by, for example, porosity wave-like mechanisms are thus required, but such permeability transients may leave no obvious record in the field. We suggest that the Mo systematics provide a valuable tracer of such meso-scale channelisation. In order to remove and isotopically fractionate Mo, fluid flow has to be reactive and not fracture dominated. The variability of the Mo depletion from the rock volumes represented by our bulk samples further indicates a decimetre length-scale or more for such channel organisation.

The highly oxidising conditions required for our calculated fluid flow are striking, but in keeping with independent work. Calculations indicate that fluids released from serpentine can be between FMQ + 2 and FMQ + 5, depending on the buffering role of sulphides. Matjuschkin et al. have experimentally demonstrated that the powerful eight-electron transition from sulphate to sulphide is highly pressure dependant and easily shifted to these high fO₂ values above 2 GPa. Recent experiments and observations further point to an important role for oxidised, serpentine derived fluids in the subduction zone.

The isotopically light signature of exhumed depleted MORB eclogites makes an appropriate complement to isotopically heavy island arc lavas (Fig. 2). Although some sediment rich arc lavas also have elevated δ⁹⁸/⁹⁵MoNIST 3134, and some authors have argued for a role of crystal fractionation in increasing δ⁹⁸/⁹⁵MoNIST 3134 (see additional discussion in ref. 58), neither of these processes account for high δ⁹⁸/⁹⁵MoNIST 3134 in sediment poor, relatively mafic arc lavas. The high Mo contents of arc lavas imply a substantial flux of isotopically heavy δ⁹⁸/⁹⁵MoNIST 3134. Freymuth et al. argued that the high δ⁹⁸/⁹⁵MoNIST 3134 from ~500 m of AOC was insufficient to satisfy the Mo isotopic mass balance at the Mariana arc, requiring an additional source of isotopically heavy Mo. The Pb isotope systematics of the Mariana lavas further indicated that Pb, and by inference that of other fluid mobile elements, originated from largely unaltered, mafic crust. Our study here illustrates a mechanism by which this source can supply isotopically heavy Mo (see Fig. 4).

Although we argue that serpentinites are the source of the fluid that results in the notable Mo isotopic fractionations, we stress
that the intrinsic Mo budget of the serpentinites themselves is not significant in the overall mass balance. The isotopically heavy nature of Mo in serpentines can modestly add to the high $\delta^{98/95}$MoNIST 3134 of fluids added to arc lavas, but the total amount of Mo in the serpentinites is an order of magnitude less than the amount of Mo lost by the fluid-fluxed eclogites. The serpentipidated peridotite in the Raspas complex at peak metamorphic conditions (\sim2 GPa and \sim600 °C) must have already lost serpentinised peridotite in the Raspas complex at peak metamorphic conditions (\sim2 GPa and \sim600 °C) which much less obviously requires passage of slab melts through the overlying crust via channelised, reactive fluid flow. As a result, these eclogites and blueschists carry the complementary signature to isotopically heavy and Mo enriched lavas observed in several island arcs.

Methods

Mo isotope measurements. Mineral separates were prepared using a magnetic separator and hand picking. To remove surface contamination, mineral separates were washed for 10 min in methanol, cold 2 M HNO$_3$, and then rinsed with deionised water.

Mo isotope analyses of the samples were performed at the Bristol Isotope Group, School of Earth Sciences, University of Bristol, using a double spike technique, largely following the protocols described in ref. 60. Unlike previous work undertaken in the lab, however, Parr bomb digestions were used to ensure complete dissolution of any rutiles which might be present in the eclogites. About 0.3–0.5 g powder was weighed into 25 ml PTFE beakers depending on the Mo concentration in each sample. For each 50 mg of sample, 1 ml reverse aqua regia (HNO$_3$:HCl = 3:1) and 0.5 ml HF were added. The beaker was then inserted and sealed in a high-pressure Parr bomb before placing in an oven at 200 °C for 15–48 h. Sample solutions were then evaporated to incipient dryness and re-dissolved in 6 M HCl until a clear solution was obtained. The digested sample was finally spiked with an enriched 100Mo-95Mo double-isotope tracer and refluxed in 3 M HCl overnight in order to achieve sample-spike equilibration. We chose the geological reference material (GRM) W-2a to match the bulk-rock compositions and Mo concentrations of the eclogites, which we measured together with all batches of samples. We additionally measured GRM AGV-2 and JB-2, avoiding the heterogeneous, strongly Mo contaminated BHVO-2. We made measurements of GRM using both high-pressure bomb and hotplate digestions, with no significant differences between results for either approach (Supplementary Table 3).

After chemical separation, samples were analysed using a multi-collector inductively coupled plasma mass-spectrometer (MC-ICPMS; Thermo Finnigan Neptune, serial no. 1020) asparted at 50–70 ng g$^{-1}$ Mo solution in 0.4 M HNO$_3$, 0.05 M HF. These Mo concentrations are lower than typically used in previous work from the laboratory and standards were run under the same conditions to provide accurate comparison. Our Ruthenium (Ru) doping experiments show that Ru interferences can be effectively corrected using measurements of either 99Ru or 101Ru (Supplementary Fig. 1). However, we observed occasional, non-systematic, large signals on mass 99. These signals were most likely due to polyatomic ions (e.g., 44Ar7Cl$^{-}$, 46Ar8Cl$^{-}$) rather than Ru itself given an absence of similar intensities for 101Ru, which we also monitored. Assuming such a signal on mass 99 was Ru would lead to an over-correction of the interference.17 In order to avoid such artefacts, potential Ru interferences were corrected by both 99Ru and 101Ru for comparison, and data were rejected when the total ‘Ru correction’ was more than 0.1‰ in $\delta^{98/95}$MoNIST 3134. As previously observed in double spiked isotope analyses, average compositions of the reference standard within a measurement session often deviate slightly from zero. A correction was made for such drift by subtracting the average composition of NIST SRM314 in a measurement session from each sample analysis in the same session. The correction was then applied to the isotope ratio, and relative to NIST SRM314, namely $\delta^{98/95}$MoNIST 3134 = $\left[98^{\text{Mo}}/95^{\text{Mo}}\right]_{\text{sample}}/\left[98^{\text{Mo}}/95^{\text{Mo}}\right]_{\text{NIST 3134}} - 1$. Replicate digestions and measurements of GRM of W-2a ($n = 13$) yielded $\delta^{98/95}$MoNIST 3134 = -0.03 ± 0.04‰ (2 SD), $[\text{Mo}] = 0.41 \pm 0.03$ µg g$^{-1}$, JB-2 ($n = 3$) yielded $\delta^{98/95}$MoNIST 3134 = 0.03 ± 0.04‰ (2 SD), $[\text{Mo}] = 0.97 \pm 0.15$ µg g$^{-1}$, and AGV-2 ($n = 5$) yielded $\delta^{98/95}$MoNIST 3134 = -0.16 ± 0.04‰ (2 SD), $[\text{Mo}] = 1.88 \pm 0.05$ µg g$^{-1}$ (see Supplementary Table 3). The isotopic compositions and concentrations of Mo of these GRM agree within error with previously-published values.17,20,21,60,61 The total procedural blanks ranged from 45 to 217 pg ($n = 6$), which are negligible for the samples.

Nd isotope measurements. Bulk-rock Nd isotope ratios of MORB-type eclogites from Cabo Ortegal Complex were measured using a Nu Plasma MC-ICPMS in the Institute of Oceanology, Chinese Academy of Sciences (IOCAS). About 50 mg of rock powders were dissolved with 1 ml reverse aqua regia (HNO$_3$:HCl = 3:1) and 0.5 ml HF in a high-pressure-jacket equipped Teflon beaker at 190 °C for 15 h, which was then dried and re-dissolved with 2 ml 3 M HNO$_3$ for 2 h. The final
sample solution was first loaded onto Sr-spec resin to separate Sr, with the eluted sample solution collected and then loaded onto Ag2SO4-X8 resin to separate rare earth elements (REEs). The separated REE solution was dried and a 0.6 M HCl solution was added to a final concentration of 0.25 M HCl before being loaded onto Ln-spec resin to collect Nd. The measured 143Nd/144Nd ratios were normalised for instrumental mass fractionation using the exponential law to 146Nd/144Nd = 0.7219. The international standard Nd-1 was used as bracketing standard every four samples to monitor instrumental drift during these experiments. By applying a temperature correction assuming no isotopic fractionation at infinite temperature and an inverse square relationship of the isotopic difference with absolute temperature.

High-pressure experiments. To explore the role of rutile in Mo isotope fractionation during subduction processes, we have performed a preliminary set of experiments. As crystallising rutile in an aqueous fluid is challenging, we have instead examined Mo isotope fractionation between rutile and wet anodesite melts. Starting compositions (see Supplementary Table 4) are based on the SKHDIAN composition of ref. 65, doped with 467 µg/g Mo added as MoO3 powder. This was prepared by mixing dried oxide and carbonate powders with an agate pestle and mortar. Following decarbonation, the powder mixtures were homogenised by melting at 1400 °C for 12 h and then quenched and ground to a fine powder before this melt was air-cooled. A second experiment was conducted at 1175 °C in which titanite appeared in minimal abundance and rutile occurred in a very narrow temperature window (between ~1150 °C and its liquidus temperature of ~15 M HF at 100 °C for 24 h. The USGS rock standards of GSP-2 and BCR-2 run amongst the sample values gave values of 0.511369 ± 0.000003 (2SE) and 0.512629 ± 0.000003 (2SE), respectively, consistent with the reported reference values (0.511369 ± 0.000003 and 0.512634 ± 0.000012, respectively).

Model. The Mo solubility in high-pressure (2.6 GPa) aqueous fluids is given by Balci et al.15 as the following equation:

\[\log([Mo]) = 0.44 + \log([O_2]) + 0.42 \times [NaCl] - 1.8 \times \frac{1000}{T} + 0.48 \]

where [Mo] is in molality, [O2] is oxygen fugacity and T is temperature in Kelvin. Balci et al. also presented Mo solubility in garnet, clinopyroxene and rutile at 2.6 GPa and 1000 °C. Together with the Mo solubility in fluid described above, fluid/mineral partitioning coefficients at 2.6 GPa and 1000 °C can therefore be determined, as presented by Balci et al. in their Table 4. However, Balci et al. did not investigate a temperature dependence for Mo solubility in the minerals, which hinders using Eq. (1) above to determine fluid/mineral partition coefficients at 600 °C, the temperature of interest in our study. As rutile is the dominant Mo host in the eclogites we studied, we have used the temperature dependence of Zr solubility in rutile25 as analogue for the temperature dependence of Mo solubility in rutile to extrapolate the rutile solubility data from Balci et al. at 1000 to 600 °C. The validity of this approximation is supported by our observations by the observation that the temperature dependence of Zr-in-rutile is similar to the temperature dependence of Ti in quartz69 and Ti in zircon21. The parameters used to calculate the fluid/mineral partition coefficients are given in Supplementary Table 5. The depleted MORB-type eclogite is assumed to have a mineral assemblage of garnet/clinoxyroxene = 30:70 containing 1.5% rutile (see the text). Applying these mineral abundance ratios and partition coefficients, the compositions remaining in the rocks (e_r) are calculated by Rayleigh distillation, given by the formula:

\[e_r = e_0 \times (1 - f)^{(1 - s)} \]

(2) Where \(e_r \) and \(e_0 \) are the concentrations (weight fractions) of Mo and Ce in the remaining rock (i.e., residual eclogite) and initial, subducted ocean crust (i.e., fresh MORB), respectively. D is the bulk rock/fluid partition coefficient for the residual eclogite assemblages and \(f \) is the proportion of fluid removed/flushed as mass fraction of the bulk rock. The mass fraction of Mo remaining in the rock is:

\[f_r = (1 - f) \times e_r / e_0 \]

(3) The 98/95Mo in the remaining rock is calculated using an approximate form of the Rayleigh distillation equation:

\[98/95Mo_f = 98/95Mo_0 + (a - 1) \times ln(f) \]

where \(98/95Mo_f \) and \(98/95Mo_0 \) are the 98/95Mo in the residual eclogite and initial subducted ocean crust, respectively, and \(a \) is the Mo isotope fractionation factor between fluid and bulk eclogite.

Data availability

The authors declare that the data generated or analysed during this study are included in this published article and its Supplementary Information files.

Received: 13 December 2018; Accepted: 19 September 2019; Published online: 21 October 2019

References

1. Rüpke, L. H., Morgan, J. P., Horta, M. & Connolly, J. A. Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 31, 1035–1038 (2002).
2. van Keken, P. E., Hacker, M., Christensen, N. U. & Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B01401 (2011).
3. Parai, R. & Mukhopadhayay, S. How large is the subducted water flux? New constraints on mantle regassing rates. Earth Planet. Sci. Lett. 317-318, 396–406 (2012).
4. Peacock, S. A. Fluid processes in subduction zones. Science 248, 329–337 (1990).
5. Spandler, C. & Pirard, C. Element recycling from subducting slabs to arc crust: A review. Lithos 170, 208–223 (2012).
6. Gerya, T. V. & Yuan, D. A. Rayleigh–Taylor instabilities from hydration and melting prop—‘cold plumes’ at subduction zones. Earth Planet. Sci. Lett. 212, 47–62 (2003).
7. Marschall, H. R. & Schumacher, J. C. Arc magmas sourced from mélangé diapirs in subduction zones. Nat. Geosci. 5, 862–867 (2012).
10. John, T., Scherer, E. E., Haase, K. & Schenk, V. Trace element fractionation during fluid-induced eclogitization in a subducting slab: trace element and Lu-Hf-Nd isotope systematics. *Earth Planet. Sci. Lett.* 227, 441–456 (2004).

11. Cai, C., Wiens, D. A., Shen, W. & Eimer, M. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data. *Nature* 563, 389–392 (2018).

12. Bloch, W. et al. Watching dehydration: seismic indication for transient Ca-metasomatism along a major fluid conduit: Ecoligotization of blueschist as a consequence of fluid-rock interaction. *Geochim. Cosmochim. Acta* 74, 1982–1992 (2010).

13. Plümper, O., John, T., Podladchikov, Y. Y., Vrijmoed, J. C. & Scambelluri, M. Fluid escape from subduction zone controlled by channel-forming reactive porosity. *Nat. Geosci.* 10, 150–156 (2017).

14. Newsom, H., White, W., Jochum, K. & Hofmann, A. Siderophile and sulfur isotopic compositions of arc front stratovolcanoes? *Earth Planet. Sci. Lett.* 482, 23–43 (2018).

15. Halama, R., Bebout, G. E., John, T. & Schenk, V. Nitrogen recycling in subducted oceanic lithosphere: The record in high- and ultrahigh-pressure metamafic rocks. *Geochim. Cosmochim. Acta* 74, 1636–1652 (2010).

16. Gao, J. & Klemd, R. Primary fluids entrapped at blueschist to eclogite transition: evidence from the Tianshan meta-subduction complex in northwestern China. *Contrib. Mineral. Petrol.* 192, 1–14 (2011).

17. Staudigel, H., Davies, G., Hart, S. R., Marchant, K. & Smith, B. M. Large scale isotopic Sr, Nd and O isotopic anomaly of altered oceanic crust: DSDP/ODP sites147/418. *Earth Planet. Sci. Lett.* 130, 169–185 (1995).

18. Young, E. D. et al. Water in oceanic basalts: evidence for dehydration of recycled crust. *Earth Planet. Sci. Lett.* 101, 323–331 (1990).

19. Evans, K., Tomkins, A., Clift, J. & Fiorentini, M. Insights into subduction zone sulfur recycling from isotopic analysis of ecoligite-hosted sulfides. *Chem. Geol.* 365, 1–19 (2014).

20. Li, J. L., Gao, J., Klemd, R., John, T. and Wang, X.-S. Redox processes in subducting oceanic crust recorded by sulfide-bearing high-pressure rocks and veins (SW Tianshan, China). *Earth Planet. Sci. Lett.* 171, 72 (2016).

21. Rüpke, L. H., Morgan, J. P., Hort, M. & Connolly, J. A. Serpentines and the subduction zone water cycle. *Earth Planet. Sci. Lett.* 223, 17–34 (2004).

22. Ulmer, P. & Tronmsdorff, V. Serpentine stability to mantle depths and subduction-related magmatism. *Science* 268, 858–861 (1995).

23. Debret, B. & Sverjensky, D. A. Highly oxidising fluids generated during serpentinite breakdown in subduction zones. *Sci. Rep.* 7, 10351 (2017).

24. Spandler, C., Petke, T. & Rubatto, D. Internal and external fluid sources for eclogite-facies veins in the Monviso meta-ophiolite, Western Alps: Implications for fluid flow in subduction zones. *J. Petro.* 52, 267–284 (2010).

25. Evans, K., Reddy, S., Tomkins, A., Crossley, R. & Frost, B. Effects of geodynamic setting on the redox state of fluids released by subducted mantle lithosphere. *Lithos* 278, 26–42 (2017).

26. Wilson, C. R., Spiegelman, M., Van Keken, P. E. & Hacker, B. R. Fluid flow in subduction zones: The role of solid rheology and compaction pressure. *Earth Planet. Sci. Lett.* 401, 261–274 (2014).

27. Malvoisin, B., Podladchikov, Y. Y. & Vrijmoed, J. C. Coupling changes in coupled fluids and the Mo isotopic compositions of arc front stratovolcanoes? *Earth Planet. Sci. Lett.* 192, 1–14 (2011).

28. Debret, B. et al. Fluid-driven metamorphism of the continental crust governed by nanoscale fluid flow. *Nat. Geosci.* 10, 685–690 (2017).

29. Willbold, M. et al. High-precision Mn-dependent molybdenum isotope variations in magmatic rocks determined by double-spark MC-ICP-MS. *Geostand. Geoanal. Res.* 40, 389–403 (2016).
61. Freymuth, H., Elliott, T., van Soest, M. & Skora, S. Tracing subducted black shales in the Lesser Antilles arc using molybdenum isotope ratios. Geology 47, 987–990 (2016).

62. Weis, D. et al. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochim. Geophys. Geosyst. 7, Q08006 (2006).

63. Klemme, S., Prowatke, S., Hametner, K. & Günther, D. Partitioning of trace elements between rutile and silicate melts: Implications for subduction zones. Geochim. Cosmochim. Acta 69, 2361–2371 (2005).

64. Holzheid, A., Borisov, A. & Palme, H. The effect of oxygen fugacity and temperature on solubilities of nickel, cobalt, and molybdenum in silicate melts. Geochim. Cosmochim. Acta 58, 1973–1981 (1994).

65. Hin, R. C., Burnham, A. D., Gianolio, D., Walter, M. J. & Elliott, T. Molybdenum isotope fractionation between Mo4+ and Mo6+ in silicate liquid and metallic Mo. Chem. Geol. 504, 177–189 (2019).

66. O’Neill, H. S. C. & Eggins, S. M. The effect of melt composition on trace element partitioning: an experimental investigation of the activity coefficients of FeO, NiO, CoO, MoO2 and MoO3 in silicate melts. Chem. Geol. 186, 151–181 (2002).

67. Matjuschkin, V., Brooker, R. A., Tattitch, R., Blundy, J. D. & Stamper, C. C. Control and monitoring of oxygen fugacity in piston cylinder experiments. Contrib. Mineral. Petrol. 169, 9 (2015).

68. Wilkinson, D. J. Geochemistry of Eclogites from Western Norway: Implications from High-precision Whole-rock and Rutile Analyses (University of Edinburgh, 2015).

69. Thomas, J. B. et al. TitanIQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contrib. Mineral. Petrol. 160, 743–759 (2010).

70. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J.-G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013).

Acknowledgements
This study was funded by NE/M000419/1 and NE/L007428/1 building on work started in NE/J009024/1. S.C. was supported by Chinese NSF (Grant No. 41630968, 41330314, 41906050), Chinese NSF-Shandong (Grant No. U1606401), and the fellowship from the UCAS Joint Ph.D. Training Program (UCAS[2015]37).

Author contributions
Analyses were made by S.C. and R.H. High-pressure experiments were undertaken by B.B., R.H. and R.B. T.E. designed the project. S.C. and T.E. wrote the paper. All authors contributed to discussions.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-12696-3.

Correspondence and requests for materials should be addressed to S.C.

Peer review information Nature Communications thanks Oliver Nebel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.