Evidence-based assessment of proton-pump inhibitors in Helicobacter pylori eradication: A systematic review

Vinayak Nagaraja, Guy D Eslick

Vinayak Nagaraja, Guy D Eslick, The Whiteley-Martin Research Centre, Discipline of Surgery, The University of Sydney, Nepean Hospital, Penrith, NSW 2751, Australia

Author contributions: All authors contributed to this work.

Correspondence to: Guy D Eslick, Associate Professor, The Whiteley-Martin Research Centre, Discipline of Surgery, The University of Sydney, Nepean Hospital, Level 5, South Block, PO Box 63, Penrith, NSW 2751, Australia. guy.eslick@sydney.edu.au

Telephone: +61-2-47341373 Fax: +61-2-47343432

Received: October 11, 2013 Revised: May 15, 2014 Accepted: May 23, 2014 Published online: October 28, 2014

Abstract

Peptic ulcer disease continues to be issue especially due to its high prevalence in the developing world. Helicobacter pylori (H. pylori) infection associated duodenal ulcers should undergo eradication therapy. There are many regimens offered for H. pylori eradication which include triple, quadruple, or sequential therapy regimens. The central aim of this systematic review is to evaluate the evidence for H. pylori therapy from a meta-analytical outlook. The consequence of the dose, type of proton-pump inhibitor, and the length of the treatment will be debated. The most important risk factor for eradication failure is resistance to clarithromycin and metronidazole.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Helicobacter pylori; Peptic ulcer disease; Systematic review; Proton-pump inhibitors

Core tip: This review will discuss the different traits of treatment regimens for Helicobacter pylori (H. pylori) and will also give an insight about some unconventional and novel treatment strategies from a meta-analytic viewpoint. This review summarizes the recommendations and level of evidence regarding the role of the dose, type of proton-pump inhibitor, and the length of the treatment. The review also discusses the various regimes for second line therapy, sequential therapy and new alternate/adjuvant therapies for H. pylori therapy.

Nagaraja V, Eslick GD. Evidence-based assessment of proton-pump inhibitors in Helicobacter pylori eradication: A systematic review. World J Gastroenterol 2014; 20(40): 14527-14536 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i40/14527.htm DOI: http://dx.doi.org/10.3748/wjg.v20.i40.14527

INTRODUCTION

Marshall and Warren[11] identified and subsequently cultured the Helicobacter pylori (H. pylori) in 1982. This organism is associated with chronic gastritis[5], most peptic ulcers[1], and gastric adenocarcinoma[6] and lymphoma[5]. A meta-analysis that included seven controlled trials (all in areas with a high incidence of gastric cancer) found significantly lower rates of gastric cancer (1.1% vs 1.7%) in patients randomized to eradication (OR = 0.65, 95%CI: 0.43-0.98)[6].

There are numerous regimens recommended for H. pylori eradication which include triple, quadruple, or sequential therapy regimens. Currently regimens that use proton-pump inhibitors (PPIs) in combination with several antibiotics such as clarithromycin, amoxicillin and metronidazole have been highly successful for H. pylori eradication[5-11]. Numerous treatments have been evaluated for H. pylori therapy in randomized controlled trials[11-11]. In spite of the numerous studies, the ideal schedule is still controversial. This review will discuss the different traits of treatment regimens for H. pylori and will also give an insight about some unconventional and novel treatment
strategies from a meta-analytic viewpoint.

LITERATURE SEARCH

We followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines where possible in performing our systematic review. We performed a systematic search through MEDLINE (from 1950), PubMed (from 1946), EMBASE (from 1949), Current Contents Connect (from 1998), Cochrane library, Google scholar, Science Direct, and Web of Science to July 2013. The search terms included “Helicobacter pylori”, gastric cancer, intestinal metaplasia, gastric atrophy, dysplasia, prevention, treatment, and eradication”. In addition, we identified relevant trials from the reference list of each selected article. Selection criteria were established. To be eligible, the studies have to be systematic reviews or meta-analyses about various eradication regimes and alternate remedies. No language restrictions were used in either the search or study selection. The reference lists of relevant articles were also searched for appropriate studies. A search for unpublished literature was not performed.

WHAT IS THE ROLE OF THE DIFFERENT PPI DOSES IN H. PYLORI ERADICATION THERAPY?

A combination of a double dose of proton pump inhibitor plus two antibiotics is the standard regimen for H. pylori infection. A report also suggests that the use of single dose of proton pump inhibitor is similarly efficacious. Unitat de Malalties Digestives conducted a MEDLINE search for their meta-analysis comparing single and double dose of a proton pump inhibitor head to head in triple therapy for H. pylori eradication. As a result thirteen studies were included (double dose of proton pump inhibitor: 1211 patients, single dose of proton pump inhibitor: 1180 patients). Eradication rates with double doses of proton pump inhibitor (80 mg of pantaprazole, 60 mg of lansoprazole, 40 mg of omeprazole) were greater in both the intention-to-treat analysis and per protocol analysis. To summarize, the use of high-dose (twice a day) PPI increases the effectiveness of triple therapy compared to a single dose PPI (level of evidence 1b, grade of recommendation A). Different PPIs in H. pylori eradication therapy

In a systematic review published by Gisbert et al low doses of rabeprazole (10 mg bid), reached similar H. pylori eradication rates to omeprazole and lansoprazole (Figure 1). A systematic review regarding lansoprazole demonstrates a greater efficacy in eradicating H. pylori. 1076 patients were prescribed rabeprazole and 1150 with other PPIs. This efficacy is comparable to that of other PPIs. Twelve studies equating pantoprazole and other PPIs were included in a meta-analysis by Gisbert et al. The average H. pylori eradication rate for using pantoprazole plus antibiotics was similar in the two cohorts. A sub-analysis was no different statistically which included only studies comparing pantoprazole with omeprazole, or pantoprazole with lansoprazole. The subgroup analysis of six studies administering equivalent doses of all PPIs established statistically homogeneous results with pantoprazole.

Shanghai Institute of Digestive Disease screened 75 articles and included 11 RCTs (2159 subjects) in their meta-analysis of esomeprazole-based triple therapy. The mean H. pylori eradication rates (intention-to-treat, ITT) with esomeprazole + antibiotics were 6% higher than other PPI therapies with a statistically significant odd ratio of 1.38. A subgroup analysis of six selected high-quality studies produced statistically homogeneous results. In 2004, Gisbert et al performed a meta-analysis and published analogous results. Vergara et al performed a MEDLINE search for their meta-analysis of fourteen studies that compared the efficacy of different proton-pump inhibitors in triple therapy showed similar results. The effectiveness of different proton-pump inhibitors is comparable in standard triple therapy.

DURATION OF PPI-BASED TRIPLE THERAPIES

An extended period of therapy (2 wk against 1 wk) could be more efficacious in eradicating infection but this is contentious. Fuccio et al performed a meta-analysis with 21 studies. Diarrhea and dysgeusia were the most commonly described side effects (5%). They concluded that prolonging the period of PPI-clarithromycin-containing triple treatment from 7 to 10-14 d increases the eradication rate by about 5%. This is currently equates to level of evidence 1b and grade of recommendation A.

PPI-BASED TRIPLE REGIMENS AS OPPOSED TO QUADRUPLE THERAPY

The University of North Texas Health Science Center performed a meta-analysis with 93 studies (10178 participants). For triple therapies, clarithromycin resistance had a larger effect on treatment effectiveness than nitroimidazole resistance. Metronidazole resistance reduced effectiveness by a quarter in triple therapies containing a nitroimidazole, tetracycline and bismuth, while effectiveness was reduced by only 14% when a proton pump inhibitor was added to the regimen. The occurrence of nitroimidazole and clarithromycin resistance has increased considerably; standard triple therapies are inadequate to eradicate H. pylori. Quadruple regimens are usually used as second line; they should be considered as first-line, essentially in areas of high drug resistance however, it may not be effective in context of concomitant clarithromycin
and metronidazole resistance. In regions of low clarithromycin resistance, clarithromycin-containing treatments are recommended for first-line empirical treatment. However, Bismuth-containing quadruple treatment is also an alternative. (level of evidence 1a, grade of recommendation A)\cite{14}. In areas of high clarithromycin resistance, bismuth-containing quadruple treatments are recommended for first-line empirical treatment. If this regimen is not available a non-bismuth quadruple treatment is recommended (level of evidence 1a, grade of recommendation A)\cite{14}.

**SEQUENTIAL THERAPY FOR **

HELCOBACTER PYLORI INFECTION

Multiple randomized trials have demonstrated that sequential therapy and concomitant quadruple therapy are equally effective for eradication of *H. pylori* in treatment-naive patients. Sequential therapy for 14 d may be more effective in eradicating *H. pylori* as compared with triple therapy in regions where clarithromycin resistance is high and metronidazole resistance is low\cite{24-27}. This difference in antimicrobial resistance patterns may explain the seemingly contradictory results in two randomized controlled trials conducted in Taiwan and Latin America\cite{28,29}. In a randomized controlled trial in Taiwan, 900 adults with *H. pylori* were assigned to 14-d triple therapy (lansoprazole, amoxicillin, and clarithromycin) or 14-d sequential therapy (lansoprazole and amoxicillin for seven days followed by lansoprazole, clarithromycin, and metronidazole for seven days) or 10-d sequential therapy (lansoprazole and amoxicillin for five days followed by lansoprazole, clarithromycin, and metronidazole for five days)\cite{30}. In this study, 14-d sequential therapy was significantly more likely to eradicate *H. pylori* as compared with the 14-d triple therapy. In contrast, in a randomized trial of 1463 *H. pylori* infected patients in Latin America, 14-d triple therapy (lansoprazole, amoxicillin, and clarithromycin) had higher eradication rates than five-day concomitant quadruple therapy (lansoprazole, amoxicillin, clarithromycin, and metronidazole) and 10-d clarithromycin containing sequential therapy (82%, 74% and 77%, respectively)\cite{30}. However, among 1091 patients in whom *H. pylori* had been successfully eradicated, one-year recurrence rates were not significantly different based on the antibiotic regimen\cite{31}.

Horvath et al\cite{33} ten RCTs involving a total of 857 children. This resulted in a statistically significant relative risk of 1.14 and with a number needed to treat of 15 for the eradication rate for sequential therapy. Sequential therapy had greater efficacy to 7-d standard triple therapy, however failed to statistical significant better results than 10-d or 14-d triple therapy. The risks of adverse effects were similar in the different groups.

In 2008 University of Louisville\cite{32} concluded that sequential therapy is better than standard triple therapy for eradication of *H. pylori* infection. However, there was clear evidence of publication bias.

Gatta et al\cite{32} included ten RCTs with 3006 adults. The eradication rate for *H. pylori* with sequential therapy (ST) compared with triple therapy (TT) produced a number needed to treat of 6. In patients with clarithromycin resistance, eradication with ST was clearly 10 times more superior to TT. However, the number of studies was small (Figure 2). In regions of high clarithromycin resistance, bismuth-containing quadruple treatments are suggested for first-line empirical treatment if this is unavailable, sequential treatment is the level of evidence 1a and with a grade A recommendation\cite{14}.

PPIS AS OPPOSED TO RANITIDINE

BISMUTH CITRATE-BASED REGIMENS

Gisbert et al\cite{33} performed a meta-analysis using randomized controlled trials that compared PPI vs ranitidine bismuth citrate (RBC) plus two antibiotics for 1 wk. The mean *H. pylori* eradication with 7-d RBC-clarithromycin-amoxicillin, RBC-clarithromycin-nitroimidazole, and RBC-amoxicillin-nitroimidazole were 83%, 86%, and 71%, respectively. They concluded the effectiveness of ranitidine bismuth citrate and PPI-based triple regimens were similar. Nonetheless, equating PPI vs RBC plus clarithromycin and a nitroimidazole demonstrated superior cure rates with RBC than with PPI.
Two other meta-analyses published in Alimentary Pharmacology and Therapeutics by the University Medical Centre St[34] and University Hospital of “La Princesa”[35] proposed similar conclusions. The effectiveness of RBC and PPI-based triple regimens are similar to the clarithromycin-amoxicillin or the amoxicillin-metronidazole combination. Nevertheless, RBC seems to have a greater effectiveness than PPI when clarithromycin and a nitroimidazole are the antibiotics administered.

H. PYLORI ERADICATION WHEN FIRST-LINE THERAPY FAILS: QUINOLONE-BASED RESCUE REGIMENS

Fluoroquinolones are inhibitors of bacterial DNA synthesis by inhibiting DNA gyrase and topoisomerase IV[36]. The First Affiliated Hospital of Nanjing Medical University[37] in 2010 conducted a meta-analysis compare the efficacy and safety of clarithromycin and second-generation fluoroquinolone-based triple therapy vs bismuth-based quadruple therapy for the treatment of persistent H. pylori infection. Thirteen RCTs equated levofloxacin-based triple therapy to bismuth-based quadruple therapy; the eradication rates of the two regimens were similar. However, the eradication rates established greater efficacy for the 10-d levofloxacin-based triple therapy over 7-d bismuth-based quadruple therapy and was better accepted than bismuth-based quadruple therapy with lower incidence of adverse events and lower rates of cessation of therapy due to side effects.

Similar meta-analyses performed by University of Michigan Medical Center[38] and University Hospital of “La Princesa”[39] concluded that 10-d course Quinolone triple therapy has superior efficacy than 7-d bismuth-based quadruple therapy in the treatment of stubborn H. pylori infection. Evidence-Based Medicine Center of Lanzhou University[40] proved that moxifloxacin-based triple therapy is superior and does not rise the frequency of adverse events equated to clarithromycin-based triple therapy. Fluoroquinolone-based triple therapy is more active and does not increase the incidence of overall side effects compared to clarithromycin-based triple therapy in the treatment of H. pylori infection. H. pylori resistant to a PPI-clarithromycin containing therapy, either a bismuth containing quadruple therapy or levofloxacin containing triple therapy is suggested (level of evidence 1b, grade of recommendation A)[41]. The first-line regimens for H. pylori eradication have been summarized in Table 1.

ADVERSE EFFECTS

The incidence of side effects is up to half of the individuals taking one of the triple therapies[41,42]. These are typically minor; fewer than 10 percent of individuals halt treatment due to side effects[42].

The most common adverse effect reported due to metronidazole or clarithromycin is a metallic taste[43]. Metronidazole can lead to a disulfiram-like reaction, peripheral neuropathy, and seizures[43]. Clarithromycin can cause taste alteration, nausea, vomiting, abdominal pain, and rarely QT prolongation[43]. Doxycycline and tetracycline can lead to a photosensitivity reaction and it is contraindicated in pregnant women and young children. Amoxicillin can cause diarrhea or skin rash[43].

Levofloxacin has been linked with anorexia, nausea, vomiting, and abdominal discomfort[43]. In institutional settings with outbreaks of the epidemic fluoroquinolone-resistant strain of Clostridium difficile (C. difficile), use of fluoroquinolones has been a risk factor for development of C. difficile-associated diarrhea[43]. Central nervous system toxicities of levofloxacin including mild headache and dizziness have predominated, followed by insomnia and alterations in mood. Other adverse effects comprise of rashes and other allergic reactions, tendinitis and tendon rupture, QT prolongation, hypoglycemia and hyperglycemia, and hematologic toxicity[44].

Common side effects of Bismuth subcitrate are blackening of faeces, darkening of teeth and tongue. The infrequent adverse effects are nausea, vomiting, dryness, headache and diarrhea[45].

The primary concern with bismuth compounds is bismuth intoxication; this was a problem primarily when bismuth subgallate was used for prolonged periods at high doses. Bismuth absorption varies with the specific form of bismuth; absorption is much greater with colloidal bismuth subcitrate than with bismuth subsalicylate[45]. Concurrent administration of H2 receptor antagonists increases bismuth absorption from CBS, but not from bismuth subsalicylate[46]. Nevertheless, significant clinical
therapy and might be useful for patients with eradication rates
i was given along with triple therapy a
Consider in nonpenicillin
Given along with triple therapy.
October 28, 2014
Probiotics
ALTERNATIVE THERAPIES
site fracture (RR = 1.16, 95%CI: 1.02-1.32)
of spine fracture (RR = 1.56, 95%CI: 1.31-1.85) and any-
creased among PPI users compared with nonusers (RR =
313000 patients found that PPI use was
linked with an increased risk of both incident and recurrent C. difficile infection (OR = 1.7, 95%CI: 1.5-2.9, respectively)\[54\]. A meta-analysis of 31 studies found that patients taking PPIs or H2 receptor antagonists were at increased risk for pneumonia, with an odds ratio of 1.27 (95%CI: 1.11-1.46) with PPIs and 1.22 (95%CI: 1.09-1.36) with H2 receptor antagonists\[55\]. Hypomagnesemia due to reduced intestinal absorption has been described\[44\]. Yu et al\[56\] included 11 studies to evaluate the relationship between proton pump inhibitor or H2 receptor antagonist use and fractures (1084560 patients with 62210 PPI users, 71339 patients with hip fractures, 161179 patients with any-site fractures, and 5728 patients with spine fractures). The risk of hip fracture was increased among PPI users compared with nonusers (RR = 1.30, 95%CI: 1.19-1.43). There was also an increased risk of spine fracture (RR = 1.56, 95%CI: 1.31-1.85) and any-site fracture (RR = 1.16, 95%CI: 1.02-1.32)\[55\].

Table 1 First-line regimens for Helicobacter pylori eradication\[48\]
Regimen
Note

PPI: Proton-pump inhibitors.

Toxicity has not been reported in clinical trials with colloidial bismuth subcitrate or bismuth subsalicylate\[47,48\]. Bismuth should be avoided or serum bismuth concentrations monitored in patients with renal failure\[49\].

The subsalicylate moiety in bismuth subsalicylate is converted to salicylic acid and absorbed; however, salicylate in the absence of the acetyl group does not inhibit platelet function or appear to share the same high risk of aspirin for gastrointestinal bleeding\[50,51\]. However, the salicylate from bismuth subsalicylate will contribute to serum salicylate levels and cause salicylate toxicity, and combination with other salicylate products should therefore be avoided.

Proton pump inhibitors are usually well accepted. Common side effects include headache, nausea, vomiting, diarrhea, abdominal pain, constipation and flatulence. Uncommon adverse effects are rash, itch, dizziness, fatigue, drowsiness, insomnia and dry mouth\[48\]. There have been some concerns regarding long term use of proton pump inhibitors.

Recently, a meta-analysis of 42 observational studies that included 313000 patients found that PPI use was linked with an increased risk of both incident and recurrent C. difficile infection (OR = 1.7, 95%CI: 1.5-2.9 and 2.5, 95%CI: 1.2-5.4, respectively)\[54\]. A meta-analysis of 31 studies found that patients taking PPIs or H2 receptor antagonists were at increased risk for pneumonia, with an odds ratio of 1.27 (95%CI: 1.11-1.46) with PPIs and 1.22 (95%CI: 1.09-1.36) with H2 receptor antagonists\[55\]. Hypomagnesemia due to reduced intestinal absorption has been described\[44\]. Yu et al\[56\] included 11 studies to evaluate the relationship between proton pump inhibitor or H2 receptor antagonist use and fractures (1084560 patients with 62210 PPI users, 71339 patients with hip fractures, 161179 patients with any-site fractures, and 5728 patients with spine fractures). The risk of hip fracture was increased among PPI users compared with nonusers (RR = 1.30, 95%CI: 1.19-1.43). There was also an increased risk of spine fracture (RR = 1.56, 95%CI: 1.31-1.85) and any-site fracture (RR = 1.16, 95%CI: 1.02-1.32)\[55\].

ALTERNATIVE THERAPIES

Probiotics
The intestinal tract is host to a vast ecology of microbes, which are necessary for health, but also have the potential to contribute to the development of diseases by a variety of mechanisms. Perturbations in intestinal epithelial barrier function or innate immune bacterial killing, for example, can lead to an inflammatory response caused by increased uptake of bacterial and food antigens that stimulate the mucosal immune system\[60,61\]. The maximum understanding has been in the inflammatory bowel diseases, ulcerative colitis\[62\], Crohn’s disease\[63\], and pouchitis\[64,65\], although clinical trials are emerging in several other conditions.

Wang et al\[66\] proposed that regular consumption of yogurt containing *Lactobacillus acidophilus* or *Bifidobacterium lactis* successfully curbed *H. pylori* infection in human beings. The Medical University of Warsaw\[67\] identified five RCTs that compared with placebo or no intervention, *Saccharomyces boulardii* given along with triple therapy, When *S. boulardii* was given along with triple therapy a significant increase in eradication rates was observed and lowered the rate of side effects principally of diarrhea.

The Shanghai Institute of Digestive Disease\[68\] performed a meta-analysis using 14 randomized trials with 1671 subjects. The pooled *H. pylori* eradication rates improved significantly with an odds ratio of 1.84 the incidence of total side effects was reduced by almost 14% and reduced diarrhea significantly (Figure 3).

Zou et al\[69\] identified nine randomized trials (n = 1343) in their meta-analysis that investigated the role of lactoferrin. The pooled *H. pylori* eradication rates improved significantly with an odds ratio of 2.26 and the rate of total side-effects reduced by half, particularly nausea.

Probiotics have reduced the incidence of total side effect *H. pylori* therapy-related side effects and could be an efficacious strategy in amplifying eradication rates of anti-*H. pylori* therapy and might be useful for patients with eradication failure. (level of evidence 5, grade of recommendation D)\[70,71\].

Chinese herbal therapy
Herbs have been used conventionally for the management of a extensive variety of ailments, including gastrointestinal ailments\[62\]. Department of Gastroenterology at Shuguang Hospital\[72\] assessed the efficacy of traditional Chinese medicine by performing a systematic review with the help of sixteen trials. Large statistical heterogeneity
Nagaraja V et al. Proton-pump inhibitors in H. pylori eradication

Figure 3 The effect of probiotics supplementation vs without probiotics on eradication rates by intention-to-treat analysis[64]. n: Number of successful eradication; N: Number of participants; ITT: Intention-to-treat.

Review: Systemic review: randomized and controlled clinical trials of treating H. pylori with TCM
Comparison: 01 efficacy comparison between TCM and triple therapies
Outcome: 01 H. pylori eradication rate

Figure 4 Clinical trials treating Helicobacter pylori with traditional Chinese medicine[65]. H. pylori: Helicobacter pylori; TCM: Traditional Chinese medicine.

Many Brazilian medicinal plants like Davilla elliptica and Davilla nitida[71], Alchornea glandulosa[78], Mouririelliptica[73], Calophyllum brasiliense Camb[77], Hancornia speciosa[73], Strychnos species[73] and many more have been evaluated for their anti-H. pylori effect in vitro.

Honey

Honey is frequently utilized by numerous individuals with the trust due to its antimicrobial properties, cost effectiveness and accessibility. It is utilized as a wound antiseptic and cough syrup. University of Buea[79] assessed the antimicrobial potential of honeys (Manuka™, Capillano®, Eco- and Mountain) at diverse concentrations against H. pylori, no statistically significant difference was eminent among the honeys at diverse concentrations. The antimicrobial properties of these honeys at diverse concentrations were highly analogous to clarithromycin. A prospective randomized trial would help in deciding its efficacy.

Green tea

Tea extracts for instance catechins deter the growth of Staphylococcus aureus (S. aureus), Staphylococcus epidermidis, Vibrio cholerae (V. cholerae) O1, V. cholerae non-O1, Vibrio parahaemolyticus, V. mimicus, Campylobacter jejuni and Pleisomonas shigelloides in vitro[80,81] and have antimicrobial activity against meticillin-resistant S. aureus in vitro[80,81].

University of Massachusetts Medical School[82] assessed the antimicrobial activity of green tea against Helicobacter felis and H. pylori in vitro and assessed the consequence of green tea on the pathogenesis of Helicobacter-induced gastritis in an animal experimental model. This resulted in significant inhibition of Helicobacter and averts gastric mucosal inflammation if consumed before being infected with Helicobacter.

Similarly an Italian study[83] proposed that in H.
pylori-infected mice, Ethanol-free red wine and green tea mixture considerably reduced gastritis, restricted the localization of bacteria and VacA to the gastric mucosa. Another study from Japan concluded that H. pylori was significantly decreased by Green tea catechins-sulphate in Mongolian gerbils. Recently, Yonsei University performed a meta-analysis regarding green tea consumption and stomach cancer risk. A total of 18 studies were incorporated in the publication which demonstrated a statistically significant of 14% reduction in the risk of stomach cancer with high green tea consumption. Some studies have suggested that Green tea has antimicrobial activity(18), which can extend to H. pylori. Natural remedies could be used in the future for inhibition and management of Helicobacter-induced gastritis in Homo sapiens however, further studies are required in this field.

CONCLUSION

The advancement of H. pylori treatment over the years has been admirable. Bismuth-containing quadruple regimens for 7-14 d are alternative first-line treatment option. Sequential therapy for 10 d has revealed potential. Bismuth quadruple therapy is the most commonly used rescue regimen in patients with persistent H. pylori. The first-line regimens for H. pylori eradication are listed in Table 1. Current facts propose that a PPI, levofloxacin, and amoxicillin for 10 d is superior to bismuth quadruple therapy for persistent H. pylori infection(33). The current literature suggests that probiotics(46) and Chinese herbal therapy(58) might be beneficial in eradicating H. pylori. Further research in the area of alternative medicine might help us achieve higher rates of eradication and reduce side effects.

REFERENCES

1 Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984; 1: 1311-1315 [PMID: 6145023 DOI: 10.1016/ S0140-6736(84)91816-6]

2 Dixon MF, Genta RM, Yardley JH, Correa P. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol 1996; 20: 1161-1181 [PMID: 8827022 DOI: 10.1097/00000478-199610000-00001]

3 Ciocola AA, McSorley DJ, Turner K, Sykes D, Palmer JB. Helicobacter pylori infection rates in duodenal ulcer patients in the United States may be lower than previously estimated. Am J Gastroenterol 1999; 94: 1834-1840 [PMID: 10406244 DOI: 10.1111/j.1572-0241.1999.01214.x]

4 Eslick GD, Lim LL, Byles JE, Xia HH, Talley NJ. Association of Helicobacter pylori infection with gastric carcinoma: a meta-analysis. Am J Gastroenterol 1999; 94: 2373-2379 [PMID: 10483994]

5 Zucca E, Bertoni F, Roggero E, Bossard G, Cazzaniga G, Pedrinis E, Biondi A, Cavalli F. Molecular analysis of the progression from Helicobacter pylori-associated chronic gastritis to mucosa-associated lymphoid-tissue lymphoma of the stomach. N Engl J Med 1998; 338: 804-810 [PMID: 9504941 DOI: 10.1056/NEJM199803193381205]

6 Fuccio L, Zagarri RM, Eusebi LH, Laterza L, Cennamo V, Cerolini L, Grilli D, Bazolli F. Meta-analysis: can Helicobacter pylori eradication treatment reduce the risk for gastric cancer? Ann Intern Med 2009; 151: 121-128 [PMID: 19620164 DOI: 10.7326/0003-4819-151-1-200907201-00009]

7 Gisbert JP, Gonzalez L, Calvet X, Garcia N, Lopez T, Roqué M, Gabriel R, Pajares JM. Proton pump inhibitor, clarithromycin and either amoxycillin or nitroimidazole: a meta-analysis of eradication of Helicobacter pylori. Aliment Pharmacol Ther 2000; 14: 1319-1328 [PMID: 1104277 DOI: 10.1046/j.1365-2036.2000.00844.x]

8 Laine L, Fennerty MB, Osato M, Sugg J, Suchower L, Probst P, Levine JC. Esomeprazole-based Helicobacter pylori eradication therapy and the effect of antibiotic resistance: results of three US multicenter, double-blind trials. Am J Gastroenterol 2000, 95: 3393-3398 [PMID: 11151867 DOI: 10.1111/j.1527-0241.2000.03349.x]

9 Gisbert JP, Gonzalez L, Calvet X. Systematic review and meta-analysis: proton pump inhibitor vs. ranitidine bismuth citrate plus two antibiotics in Helicobacter pylori eradication. Helicobacter 2005; 10: 157-171 [PMID: 15904473 DOI: 10.1111/j.1522-5378.2005.00307.x]

10 Qasim A, Sebastian S, Thornton O, Dobson M, McLoughlin R, Buckley M, O’Connor H, O’Morain C. Rifabutin and furazolidone-based Helicobacter pylori eradication therapies after failure of standard first- and second-line eradication attempts in dyspepsia patients. Aliment Pharmacol Ther 2005; 21: 91-96 [PMID: 15644050 DOI: 10.1111/j.1365-2036.2004.02210.x]

11 Gatta L, Zullo A, Perma F, Ricci C, De Francesco V, Tampieri A, Bernabucci V, Cavina M, Hassan C, Jerardi E, Morini S, Vaira D. A 10-day levofloxacin-based triple therapy in patients who have failed two eradication courses. Aliment Pharmacol Ther 2005; 22: 45-49 [PMID: 15963079 DOI: 10.1111/j.1365-2036.2005.02252.x]

12 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62: 1006-1012 [PMID: 19631508 DOI: 10.1016/j.jclinepi.2009.06.005]

13 Vallee M, Vergara M, Gisbert JP, Calvet X. Single vs. double dose of a proton pump inhibitor in triple therapy for Helicobacter pylori eradication: a meta-analysis. Aliment Pharmacol Ther 2002; 16: 1149-1156 [PMID: 12030958 DOI: 10.1046/j.1365-2036.2002.01270.x]

14 Malfertheiner P, Megraud F, O’Morain CA, Atherton J, Axon AT, Bazolli F, Gensini GF, Gisbert JP, Graham DY, Rokkas T, El-Omar EM, Kuipers EJ. Management of Helicobacter pylori infection--the Maastricht IV/Florence Consensus Report. Gut 2012; 61: 646-664 [PMID: 22491499 DOI: 10.1136/gutjnl-2012-302884]

15 Gisbert JP, Khorrami S, Calvet X, Pajares JM. Systematic review: Rabeprazole-based therapies in Helicobacter pylori eradication. Aliment Pharmacol Ther 2003; 17: 751-764 [PMID: 12641497 DOI: 10.1046/j.1365-2036.2003.01450.x]

16 Bazolli F, Pozzato F, Zagarri M, Fossi S, Ricciardello L, Nicolini G, Berrett D, De Luca L. Efficacy of lansoprazole in eradicating Helicobacter pylori: a meta-analysis. Helicobacter 1998; 3: 195-201 [PMID: 9731991 DOI: 10.1046/j.1572-5378.1998.00029.x]

17 Gisbert JP, Khorrami S, Calvet X, Pajares JM. Pantoprazole based therapies in Helicobacter pylori eradication: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2004; 16: 89-99 [PMID: 15095858 DOI: 10.1097/00002737-200401000-00004]

18 Wang X, Fang JY, Lu R, Sun DF. A meta-analysis: comparison of esomeprazole and other proton pump inhibitors in eradicating Helicobacter pylori. Digestion 2006; 73: 178-186 [PMID: 16837803 DOI: 10.1159/000045262]

19 Gisbert JP, Pajares JM. Esomeprazole-based therapy in Helicobacter pylori eradication: a meta-analysis. Dig Liver J
Nagaraja V et al. Proton-pump inhibitors in H. pylori eradication

Dis 2004; 36: 253-259 [PMID: 15115337 DOI: 10.1016/j.dld.2002.12.010]

20 Vergara M, Vallve M, Gisbert JP, Calvet X. Meta-analysis: comparative efficacy of different proton pump inhibitors in triple therapy for Helicobacter pylori eradication. *Aliment Pharmacol Ther* 2003; 18: 647-654 [PMID: 12969092 DOI: 10.1046/j.1365-2036.2003.01746.x]

21 Fuccio L, Minardi ME, Zagara RM, Grilli D, Magrini N, Bazzoli F. Meta-analysis: duration of first-line proton-pump inhibitor based triple therapy for Helicobacter pylori eradication. *Ann Intern Med* 2007; 147: 553-562 [PMID: 17938394 DOI: 10.7326/0003-4819-147-8-200710160-00008]

22 Vakil N, Connor J. Helicobacter pylori eradication: equivalence trials and the optimal duration of therapy. *Am J Gastroenterol* 2005; 100: 1702-1703 [PMID: 16144122 DOI: 10.1111/j.1572-0241.2005.50615.x]

23 Fischbach L, Evans EL. Meta-analysis: the effect of antibiotic resistance status on the efficacy of triple and quadruple first-line therapies for Helicobacter pylori. *Aliment Pharmacol Ther* 2007; 26: 343-357 [PMID: 17653369 DOI: 10.1111/j.1572-0241.2007.02752.x]

24 Moayyedi P, Malfertheiner P. Editorial: Sequential therapy for eradication of Helicobacter pylori: a new guiding light or a false dawn? *Am J Gastroenterol* 2009; 104: 3081-3083 [PMID: 19956122 DOI: 10.1038/ajg.2009.563]

25 Zullo D. A. De Francesco V, Hassan C, Morini S, Vaira D. The sequential therapy regimen for Helicobacter pylori eradication: a pooled-data analysis. *Cul* 2007; 56: 1535-1537 [PMID: 17566020 DOI: 10.1136/gut.2007.126568]

26 Vaira D, Zullo A, Vakil N, Gatta L, Ricci C, Perna F, Hassan C, Bernabucci V, Tampieri A, Morini S. Sequential therapy versus standard triple-drug therapy for Helicobacter pylori eradication: a randomized trial. *Ann Intern Med* 2007; 146: 556-563 [PMID: 17438314 DOI: 10.7326/0003-4819-146-8-200704070-00006]

27 Kim YS, Kim SJ, Yoon JH, Suk KT, Kim JB, Kim DJ, Kim DY, Min HJ, Park SH, Shin WG, Kim KH, Kim HY, Baul GH. Randomised clinical trial: the efficacy of a 10-day sequential therapy vs. a 14-day standard proton pump inhibitor-based triple therapy for Helicobacter pylori in Korea. *Aliment Pharmacol Ther* 2011; 34: 1098-1105 [PMID: 21923713 DOI: 10.1111/j.1365-2036.2011.04843.x]

28 Greenberg ER, Anderson GL, Morgan DR, Torres J, Chey WD, Bravo LE, Dominguez RL, Ferreccio C, Herrero R, Lazcano-Ponce EC, Meza-Montenegro MM, Peña R, Peña EM, Salazar-Martinez E, Correa P, Martinez ME, Valdivieso M, Goodman GE, Crowley JJ, Baker LH. 14-day triple therapy for Helicobacter pylori in Korea. *Ann Intern Med* 2009; 148: 507-514 [PMID: 21777974 DOI: 10.7326/0003-4819-149-10-200810060-00007]

29 Li Y, Huang X, Yao L, Shi R, Zhang G. Advantages of Moxi-floxacin and Levofloxacin-based triple therapy for second-line treatments of persistent Helicobacter pylori infection: a meta-analysis. *Wien Klin Wochenschr* 2010; 122: 413-422 [PMID: 20628905 DOI: 10.1007/s00058-010-1404-3]

30 Saad RJ, Schoenfeld P, Kim HM, Chey WD. Levofloxacin-based triple therapy versus bismuth-based quadruple therapy for persistent Helicobacter pylori infection: a meta-analysis. *Am J Gastroenterol* 2006; 101: 488-496 [PMID: 16542284 DOI: 10.1111/j.1572-0241.2006.00637.x]

31 Gisbert JP, Morena F. Systematic review and meta-analysis: levofloxacin-based rescue regimens after Helicobacter pylori treatment failure. *Aliment Pharmacol Ther* 2006; 23: 35-44 [PMID: 16399278 DOI: 10.1111/j.1365-2036.2006.02273.x]

32 Wenzhen Y, Kehu Y, Bin M, Yunlin L, Quanlin G, Donghai W, Lijuan Y. Moxiclacin-based triple therapy versus clarithromycin-based triple therapy for first-line treatment of Helicobacter pylori infection: a meta-analysis of randomized controlled trials. *Am J Gastroenterol* 2009; 104: 2069-2076 [PMID: 20099394 DOI: 10.1111/j.1572-0241.2009.06379.x]

33 Fischbach LA, van Zanten S, Dickson J. Meta-analysis: the efficacy, adverse events, and adherence related to first-line anti-Helicobacter pylori quadruple therapies. *Aliment Pharmacol Ther* 2004; 20: 1071-1082 [PMID: 15569109 DOI: 10.1111/j.1365-2036.2004.02248.x]

34 de Boer WA, Tytgat GN. The best therapy for Helicobacter pylori infection: should efficacy or side-effect profile determine our choice? *Scand J Gastroenterol* 1995; 30: 401-407 [PMID: 7638563 DOI: 10.3109/030525990093928]

35 Australian Medicines Handbook 2014 (online). Adelaide: Australian Medicines Handbook Pty Ltd, 2014. Available from: URL: http://www.amh.net.au

36 McCusker ME, Harris AD, Perencevich E, Roghmann MC. Fluoroquinolone use and Clostridioides difficile-associated disease. *Emerg Infect Dis* 2003; 9: 730-733 [PMID: 12781017 DOI: 10.3201/eid0906.020385]

37 Nwokolo CU, Gavey CJ, Smith JT, Pounder RE. The absorption of bismuth from oral doses of tripotassium dicitrato bismuthate. *Aliment Pharmacol Ther* 1989; 3: 29-39 [PMID: 2491456 DOI: 10.1111/j.1365-2036.1989.tb00188.x]

38 Nwokolo CU, Prevett E, Sawyerr AM, Hudson M, Pounder RE. The effect of histamine H2-receptor blockade on bismuth absorption from three ulcer-healing compounds. *Gastroenterol*-
Nishijima CM, Rodrigues CM, Rinaldo D, Dong J, Yu XF. Meta-analysis: the effect of supplementation with probiotics on eradication rates and adverse events during Helicobacter pylori eradication therapy. *Aliment Pharmacol Ther* 2009; 30: 1069-1079 [PMID: 21039671 DOI: 10.1111/j.1365-2036.2010.04457.x]

Wang KY, Li SN, Liu CS, Pereng DS, Wu DC, Jian CM, Lai CH, Wang TN, Wang WM. Effects of ingesting Lactobacillus- and Bifidobacterium-containing yogurt in subjects with colonized Helicobacter pylori. *Am J Clin Nutr* 2004; 80: 737-741 [PMID: 15521816]

Szajewska H, Horvath A, Piszowarczyk A. Meta-analysis: the effect of Saccharomyces boulardii supplementation on Helicobacter pylori eradication rates and side effects during treatment. *Aliment Pharmacol Ther* 2010; 32: 1069-1079 [PMID: 21039671 DOI: 10.1111/j.1365-2036.2010.04457.x]

Tong JL, Ran ZH, Shen J, Zhang CX, Xiao SD. Meta-analysis: the effect of supplementation with probiotics on eradication rates and adverse events during Helicobacter pylori eradication therapy. *Aliment Pharmacol Ther* 2007; 25: 155-168 [PMID: 17229240 DOI: 10.1111/j.1365-2036.2006.03179.x]

Zou J, Dong J, Yu XF. Meta-analysis: the effect of supplementation with lactoferrin on eradication rates and adverse events during Helicobacter pylori eradication therapy. *Helicobacter* 2009; 14: 119-127 [PMID: 19298339 DOI: 10.1111/j.1532-5378.2009.00666.x]

Borrelli F, Izzo AA. The plant kingdom as a source of anti-ulcer remedies. *Phytother Res* 2000; 14: 581-591 [PMID: 11115992]

Lin J, Huang WW. A systematic review of treating Helicobacter pylori infection with Traditional Chinese Medicine. *World J Gastroenterol* 2009; 15: 4715-4719 [PMID: 19787835 DOI: 10.3748/wjg.v15.i47]

Xie JH, Chen YL, Wu QH, Wu J, Su JY, Cao HY, Li YC, Li YS, Liao JB, Lai XF, Huang P, Su ZR. Gastroprotective and anti-Helicobacter pylori potential of herbal formula HZJW: safety and efficacy assessment. *BMJ Complement Altern Med* 2013; 13: 119 [PMID: 23721522 DOI: 10.1186/1472-6882-13-119]

Liu W, Liu Y, Zhang XZ, Li N, Cheng H. In vitro bactericidal activity of Jinghua Weikang Capsule and its individual herb Chenopodium ambrosioides L. against antibiotic-resistant Helicobacter pylori. *Chin J Integr Med* 2013; 19: 54-57 [PMID: 23275015 DOI: 10.1007/s11550-012-1428-y]

Kushima H, Nishijima CM, Rodrigues CM, Rinaldo D, Sassa MF, Baubau TM, Stasi LC, Carlos IZ, Brito AR, Vilegas W, Hiruma-Lima CA. Davilla elliptica and Davilla nitida: gastroprotective, anti-inflammatory immunomodulatory and anti-Helicobacter pylori action. *J Ethnopharmacol* 2009; 123: 430-438 [PMID: 19501275 DOI: 10.1016/j.jep.2009.03.031]

Calvo TR, Lima ZP, Silva JS, Ballesteros KV, Pellizzon CH, Hiruma-Lima CA, Tamashiro J, Brito AR, Takahira RK, Vilegas W. Constituents and antiulcer effect of Alchornea glandulosa: activation of cell proliferation in gastric mucosa during the healing process. *Biol Pharm Bull* 2007; 30: 451-459 [PMID: 17329857 DOI: 10.1248/bpb.30.451]

Moleiro FC, Andreo MA, Santos Rde C, Moraes Tde M, Rodrigues CM, Carli CB, Lopes FC, Pellizzon CH, Carlos IZ, Baubau TM, Vilegas W, Hiruma-Lima CA. Murrielliptica: validation of gastroprotective, healing and anti-Helicobacter pylori effects. *J Ethnopharmacol* 2009; 123: 359-368 [PMID: 19501267 DOI: 10.1016/j.jep.2009.03.040]

Lemos LM, Martins TB, Tanajura GH, Gazoni VF, Baldonado J, Strada CL, Silva MG, Dall’oglio EL, de Sousa Junior PT, Martins DT. Evaluation of antiulcer activity of chromanone fraction from Calophyllum brasiliense Camb. *J Ethnopharmacol* 2012; 141: 432-439 [PMID: 22425905 DOI: 10.1016/j.jep.2012.03.006]

Sartori NT, Canepelle D, de Sousa PT, Martins DT. Gastroprotective effect from Calophyllum brasiliense Camb. bark on experimental gastric lesions in rats and mice. *J Ethnopharmacol* 1999; 67: 149-156 [PMID: 10619578 DOI: 10.1016/s0378-
8741(98)00244-X

76 **Souza Mdo C**, Beserra AM, Martins DC, Real VV, Santos RA, Rao VS, Silva RM, Martins DT. *In vitro* and *in vivo* anti-Helicobacter pylori activity of Calophyllum brasiliense Camb. *J Ethnopharmacol* 2009; 123: 452-458 [PMID: 19501278 DOI: 10.1016/j.jep.2009.03.030]

77 **Moraes Tde M**, Rodrigues CM, Kushima H, Bauab TM, Villegas W, Pellizzon CH, Brito AR, Hiruma-Lima CA. Han-cornia speciosa: indications of gastroprotective, healing and anti-Helicobacter pylori actions. *J Ethnopharmacol* 2008; 120: 161-168 [PMID: 18761076 DOI: 10.1016/j.jep.2008.08.001]

78 **Bonamin F**, Moraes TM, Kushima H, Silva MA, Rozza AL, Pellizzon CH, Bauab TM, Rocha LR, Villegas W, Hiruma-Lima CA. Can a Strychnos species be used as antiulcer agent? Ulcer healing action from alkaloid fraction of Strychnos pseudoquina St. Hil. (Loganiaceae). *J Ethnopharmacol* 2011; 138: 47-52 [PMID: 21959182 DOI: 10.1016/j.jep.2011.08.020]

79 **Ndip RN**, Malange Takang AE, Echakachi CM, Malongue A, Akoachere JF, Ndip LM, Luma HN. In-vitro antimicrobial activity of selected honeys on clinical isolates of Helicobacter pylori. *Afr Health Sci* 2007; 7: 228-232 [PMID: 17819387 DOI: 10.1080/14748240701318204]

80 **Toda M**, Okubo S, Ohashi R, Shimamura T. [Antibacterial and bactericidal activities of Japanese green tea]. *Nihon Saikyoukaku Zasshi* 1989; 44: 669-672 [PMID: 2677434 DOI: 10.3412/jsb.44.669]

81 **Toda M**, Okubo S, Hara Y, Shimamura T. [Antibacterial and bactericidal activities of tea extracts and catechins against methicillin resistant Staphylococcus aureus]. *Nihon Saikyoukaku Zasshi* 1991; 46: 839-845 [PMID: 1762174 DOI: 10.3412/jsb.46.839]

82 **Stoicov C**, Safdari R, Houghton J. Green tea inhibits Helicobacter growth in vivo and *in vitro*. *Int J Antimicrob Agents* 2009; 33: 473-478 [PMID: 19157800 DOI: 10.1016/j.ijantimicrobagent.2008.10.032]

83 **Ruggiero P**, Rossi G, Tombola F, Pancotto L, Lauretti L, Del Giudice G, Zoratti M. Red wine and green tea reduce H pylori- or VacA-induced gastritis in a mouse model. *World J Gastroenterol* 2007; 13: 349-354 [PMID: 17230601 DOI: 10.3748/wjg.v13.i3.349]

84 **Takabayashi F**, Harada N, Yamada M, Murohisa B, Oguni I. Inhibitory effect of green tea catechins in combination with sucralfate on Helicobacter pylori infection in Mongolian gerbils. *J Gastroenterol* 2004; 39: 61-63 [PMID: 14767736 DOI: 10.1007/s00535-003-1246-0]

85 **Kang H**, Rha SY, Oh KW, Nam CM. Green tea consumption and stomach cancer risk: a meta-analysis. *Epidemiol Health* 2010; 32: e2010001 [PMID: 2191454]

86 **Yam TS**, Shah S, Hamilton-Miller JM. Microbiological activity of whole and fractionated crude extracts of tea (Camellia sinensis), and of tea components. *FEMS Microbiol Lett* 1997; 152: 169-174 [PMID: 9228784 DOI: 10.1111/j.1574-6968.1997.tb10424.x]

87 **Horiba N**, Maekawa Y, Ito M, Matsumoto T, Nakamura H. A pilot study of Japanese green tea as a medicament: antibacterial and bactericidal effects. *J Endod* 1991; 17: 122-124 [PMID: 1940726 DOI: 10.1016/S0099-2399(06)81743-7]

88 **Chey WD**, Wong BC. American College of Gastroenterology guideline on the management of Helicobacter pylori infection. *Am J Gastroenterol* 2007; 102: 1808-1825 [PMID: 17608775 DOI: 10.1111/j.1572-0241.2007.01393.x]

P- Reviewer: Alsolaiman MM, Figura N, Sugimoto M, Vyas D
S- Editor: Wen LL
L- Editor: A
E- Editor: Zhang DN
