Effect of ZVAD-fmk on hepatocyte apoptosis after bile duct ligation in rat

Shyr-Ming Sheen-Chen, Hsin-Tsung Ho, Wei-Jen Chen, Hock-Liew Eng

Shyr-Ming Sheen-Chen, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung, College of Medicine, Chang Gung University, Taiwan China
Hsin-Tsung Ho, Department of Laboratory Medicine, Mackay Memorial Hospital, Taiwan China
Wei-Jen Chen, Hock-Liew Eng, Department of Pathology, Chang Gung Memorial Hospital, Kaohsiung, College of Medicine, Chang Gung University, Taiwan China

Supported by the grant NSC 89-2314-B-182A-165 from the National Science Council of Taiwan China.

Correspondence to: Dr. Shyr-Ming Sheen-Chen, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung, 123, Ta-Pei Road, Niao-Sung Hsiang, Kaohsiung Hsien, Taiwan.
China. smsheen@yahoo.com
Telephone: +886-7-7317123
Accepted: 2004-09-30

Abstract

AIM: Retention and accumulation of toxic hydrophobic bile salts within hepatocyte may cause hepatocyte toxicity by inducing apoptosis. Apoptosis is a pathway of cell death orchestrated by a family of proteases called caspases. Z-Val-Ala-Asp (OMe)-fluoromethyl ketone (ZVAD-fmk) is a cell-permeable irreversible inhibitor of caspase. The purpose of this study was to evaluate the possible effect of ZVAD-fmk on hepatocyte apoptosis after bile duct ligation in the rat.

METHODS: Male Sprague-Dawley rats, weighing 250-300 g, were randomized to five groups of five rats each. Group 1 underwent common bile duct ligation and simultaneous treatment with ZVAD-fmk (dissolved in dimethylsulfoxide (DMSO)). Group 2 underwent common bile duct ligation and simultaneous treatment with Z-Phe-Ala-fluoromethyl ketone (ZFA-fmk, dissolved in DMSO). Group 3 underwent sham operation and simultaneous treatment with the same amount of DMSO. Group 4 underwent sham operation and simultaneous treatment with the same amount of ZFA-fmk. Group 5 underwent common bile duct ligation without other manipulation. After three days, liver tissue was harvested for histopathologic analysis and measurements of apoptosis.

RESULTS: When compared with sham operation, common bile duct ligation significantly increased hepatocyte apoptosis ($P = 0.008$) and ductular proliferation ($P = 0.007$). ZVAD-fmk significantly diminished the increased hepatocyte apoptosis and ductular proliferation after common bile duct ligation ($P = 0.008$ and $P = 0.007$, respectively). ZFA-fmk did not show the same effects.

CONCLUSION: Hepatocyte apoptosis and ductular proliferation significantly increased after common bile duct ligation. ZVAD-fmk effectively diminished the increased hepatocyte apoptosis and ductular proliferation after common bile duct ligation, whereas ZFA-fmk did not.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Apoptosis; Obstructive jaundice; ZVAD-fmk; ZFA

Sheen-Chen SM, Ho HT, Chen WJ, Eng HL. Effect of ZVAD-fmk on hepatocyte apoptosis after bile duct ligation in rat. World J Gastroenterol 2005; 11(15): 2330-2333

http://www.wjgnet.com/1007-9327/11/2330.asp

INTRODUCTION

Apoptosis is an important process in a wide variety of biological functions, including normal cell turnover, immune responses, embryonic development, metamorphosis and hormone-dependent atrophy, and in chemical-induced cell death[4,5]. Inappropriate apoptosis is implicated in many human diseases[4,5]. Cholestasis, an impairment in bile formation, occurs in many human liver disease[6]. Although the pathogenic events culminating in cholestasis differ in each disease, hepatocellular injury is a consistent feature of cholestasis that causes liver dysfunction, promoting fibrogenesis, and ultimately leads to liver failure[7].

Retention and accumulation of toxic hydrophobic bile salts within hepatocyte may cause hepatocyte toxicity by inducing apoptosis[8-13]. Apoptosis is a pathway of cell death orchestrated by a family of proteases called caspases[14-17]. Z-Val-Ala-Asp (OMe)-fluoromethyl ketone (ZVAD-fmk) is a cell-permeable irreversible inhibitor of caspase and recent data suggest that it might block the processing of many caspases[3,18-20]. The purpose of our study was to evaluate the possible effect of ZVAD-fmk on hepatocyte apoptosis after bile duct ligation in the rat.

MATERIALS AND METHODS

Animal and experimental design

Male Sprague-Dawley rats, weighing 250-300 g, were housed under controlled temperature, humidity and 12-h dark/light cycles living in stainless-steel cages and were allowed free access to water and rat chow before and after operation. The animals were randomized to five groups of five rats each.

Group 1 underwent common bile duct ligation and simultaneous treatment with ZVAD-fmk (dissolved in dimethylsulfoxide (DMSO)).
dimethylsulfoxide (DMSO), Enzyme Systems Products, Dublin, CA). The first dose of ZVAD-fmk (0.5 mg) was injected into the inferior vena cava immediately after bile duct ligation. Subsequent doses of ZVAD-fmk (0.5 mg twice daily) were given intraperitoneally on the first and second postoperative days. The last dose (0.5 mg) was given on the morning of the third postoperative day.

Group 2 underwent common bile duct ligation and simultaneous treatment with Z-Phe-Ala-fluoromethyl ketone (ZFA-fmk, dissolved in DMSO, Enzyme Systems Products). The first dose of ZFA-fmk (0.5 mg) was injected into the inferior vena cava immediately after sham operation. Subsequent doses of ZFA-fmk (0.5 mg twice daily) were given intraperitoneally on the first and second postoperative days. The last dose (0.5 mg) was given on the morning of the third postoperative day.

Group 3 underwent sham operation and simultaneous treatment with the same amount of DMSO. The first dose of DMSO was injected into the inferior vena cava immediately after sham operation. Subsequent doses of DMSO (the same amount twice daily) were given intraperitoneally on the first and second postoperative days. The last dose was given on the morning of the third postoperative day.

Group 4 underwent sham operation and simultaneous treatment with the same amount of normal saline. The first dose of normal saline was injected into the inferior vena cava immediately after sham operation. Subsequent doses of normal (the same amount twice daily) were given intraperitoneally on the first and second postoperative days. The last dose was given on the morning of the third postoperative day.

Operative procedures
By using sterile techniques, a mid-line incision was made, the common bile duct was identified, double ligated with 5-0 silk and divided between the two ligatures. In sham-operated animals, the common bile duct was freed from the surrounding soft tissue without ligation and transection. The operation was performed by using intraperitoneal anesthesia induced with ketamine 80 mg/kg plus xylazine 10 mg/kg.

Harvest of tissues
After three days, the animals were anesthetized, and laparotomy was repeated. Liver tissue was harvested, embedded in optimal cutting temperature compound (Sakura Finetechnical, Tokyo, Japan) and immediately snap-frozen in liquid nitrogen for histopathologic analysis and measurements of apoptosis.

TUNEL assay
Hepatocyte apoptosis was quantitated by using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. This specific assay uses terminal deoxynucleotidyl transferase to attach biotinylated deoxyuridine triphosphate to free 3'-OH DNA ends. All liver tissue specimens about 5 mm in size were fixed in freshly prepared 4% paraformaldehyde in PBS. The tissue blocks were embedded in Enclosed Processing System (Sakura, Tokyo). Tissue sections (5 µm) were prepared using a microtome and placed on glass slides. The sections were deparaffinized in xylene and dehydrated in ethanol. The sections were incubated with 20 µg/mL proteinase K in PBS for 20 min at room temperature. After rinsing the specimen twice with PBS, the sections were processed following the instruction of a commercial kit (DeadEnd Colorimetric Apoptosis Detection System, Promega, Madison, WI). Sections were stained by streptavidin-horseradish peroxidase conjugate, then counterstained with hematoxylin. The peroxidase-positive cells were identified morphometrically by brown staining nuclei. The number of TUNEL-positive cells was counted in 10 random microscopic fields (400×). Each microscopic field contained approximately 913±59 hepatocytes.

Histopathology
H&E and trichrome-stained liver specimens from the rats undergoing bile duct ligation were evaluated by light microscopy for ductular proliferation. The specimens were scored by an experienced hepatopathologist. Ductal proliferation was scored using the following grading system: 0, <10% of portal areas involved; 1, 10-50% of portal areas involved; 2, >50% of portal areas involved; 3, circumferential involvement of at least 50% of the portal area without significant expansion of portal tract; 4, circumferential involvement of at least 50% of the portal area with significant expansion of portal tract; 5, same as 4 plus bridging of the portal tracts in <20% of instances; and 6, same as 4 plus >20% of the portal tracts showing bridging involvement.

Statistical analysis
All the results were analyzed and given as mean±SD. Differences with a P value of less than 0.05 were considered statistically significant.

RESULTS
Tables 1 and 2 and Figures 1 and 2 show the results of TUNEL-positive cells/field and ductular proliferation (grade). Compared with sham operation groups, common bile duct ligation significantly increased hepatocyte apoptosis (P = 0.008) and ductular proliferation (P = 0.007). After the administration of ZVAD-fmk, the increased hepatocyte apoptosis and ductular proliferation after ligation were significantly diminished (P = 0.008 and P = 0.007

Table 1	TUNEL-positive cells/field			
OBZVAD	OBZFA	SDMSO	SNS	OB
(n = 5)				
2.40±0.55	9.00±1.58	1.40±0.89	1.40±0.89	9.60±1.14

OBZVAD: obstructive jaundice with ZVAD. OBZFA: obstructive jaundice with ZFA. SDMSO: sham operation with DMSO. SNS: sham operation with normal saline. OB: obstructive jaundice. P = 0.008 (OBZVAD vs OBZFA). P = 0.008 (OBZVAD vs OB). P = 0.522 (OBZFA vs OB). P = 1.000 (SDMSO vs SNS). P = 0.008 (SDMSO vs OB). P = 0.008 (SNS vs OB).
of cholestasis causing liver dysfunction, promoting fibrogenesis, and its regulation is not completely understood, it has become clear that a family of cysteine endoproteases called caspases and their processing of many caspases have a toxic effect associated with high morbidity and mortality rates.

Apoptotic cell death has been recently shown to have a central role in many physiologic and pathophysiologic processes. Although the apoptotic cascade is complex and its regulation is not completely understood, it has become clear that a family of cysteine endoproteases called caspases plays a critical role in the execution of apoptotic cell death. ZVAD-fmk is a cell-permeable irreversible inhibitor of caspase and recent data suggest that it might block the processing of many caspases. In this study, ZVAD-fmk effectively diminished hepatocyte apoptosis and ductular proliferation after common bile duct ligation, whereas ZFA-fmk, a structurally similar molecule with no anticaspase activity, did not show the same effect.

DISCUSSION

Cholestasis, an impairment in bile formation, occurs in a wide variety of human liver diseases. Retention and accumulation of toxic hydrophobic bile salts within hepatocyte may cause hepatocyte toxicity by inducing apoptosis. Our study using the bile duct ligation rat as a model of extrahepatic cholestasis demonstrated that increased hepatocyte apoptosis and ductular proliferation were significantly enhanced after bile duct ligation (obstructive jaundice) and the administration of ZVAD-fmk could effectively attenuate this phenomenon. If confirmed in clinical trial, such manipulation may provide a rational adjuvant strategy for the treatment of patients with obstructive jaundice and is expected to reduce the incidence of perioperative mortality and morbidity in obstructive jaundice.

REFERENCES

1. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. *Br J Cancer* 1972; 26: 239-257
2. Allen RT, Hunter WJ, Agrawal DK. Morphological and biochemical characterization and analysis of apoptosis. *J Pharmacol Toxicol Methods* 1997; 37: 215-228
3. Cohen GM. Caspases: the executioners of apoptosis. *Biochem J* 1997; 326 (Pt 1): 1-16
4. Siegers CP. Anthranoid laxatives and colorectal cancer. *Trends Pharmacol Sci* 1992; 13: 229-231
5. Brancionnier RJ, Brancionnier ME, Walshe TM, McCarthy C, Morse PA. Blocking the Ca(2+)-activated cytotoxic mechanisms of cholinergic neuronal death: a novel treatment strategy for Alzheimer’s disease. *Psychopharmacol Bull* 1992; 28: 175-181
6. Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. *N Engl J Med* 1998; 339: 1217-1227
7. Miyoshi H, Rust C, Roberts PJ, Burgart LJ, Gores GJ. Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. *Gastroenterology* 1999; 117: 669-677
8. Patel T, Bronk SF, Gores GJ. Increases of intracellular magnesium promote glycodeoxycholate-induced apoptosis in rat hepatocytes. *J Clin Invest* 1994; 94: 2183-2192
9. Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ. A novel role...
for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 1998; 101: 2790-2799.

10 Webster CR, Anwer MS. Cyclic adenosine monophosphate-mediated protection against bile acid-induced apoptosis in cultured rat hepatocytes. Hepatology 1998; 27: 1324-1331.

11 Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA, Kaufmann SH, Gores GJ. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest 1999; 103: 137-145.

12 Benz C, Angermuller S, Tox U, Kloters-Plachky P, Riedel HD, Sauer P, Stremmel W, Stiehl A. Effect of tauroursodeoxycholic acid on bile-acid-induced apoptosis and cytosis in rat hepatocytes. J Hepatol 1998; 28: 99-106.

13 Rodrigues CM, Fan G, Wong PY, Kren BT, Steer CJ. Ursodeoxycholic acid may inhibit deoxycholic acid-induced apoptosis by modulating mitochondrial transmembrane potential and reactive oxygen species production. Mol Med 1998; 4: 165-178.

14 Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 1997; 91: 443-446.

15 Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998; 391: 43-50.

16 Behrns KE, Schrum LW, Que FG. Apoptosis: cell death by proteolytic scalpel. Surgery 1999; 126: 463-468.

17 Los M, Van de Craen M, Penning LC, Schenk H, Westendorp M, Baueerle PA, Droge W, Krammer PH, Fiers W, Schulze-Osthoff K. Requirement of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. Nature 1995; 375: 81-83.

18 Piguet PF, Vesin C, Donati Y, Barazzzone C. TNF-induced enterocyte apoptosis and detachment in mice: induction of caspasences and prevention by a caspase inhibitor, ZVAD-fmk. Lab Invest 1999; 79: 495-500.

19 Farber A, Connors JP, Friedlander RM, Wagner RJ, Powell RJ, Cronenwett JL. A specific inhibitor of apoptosis decreases tissue injury after intestinal ischemia-reperfusion in mice. J Vasc Surg 1999; 30: 752-760.

20 Daemen MA, van’t Veer C, Denecker G, Heemskerk VH, Wolfs TG, Clauss M, Vandenabeele P, Buurman WA. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest 1999; 104: 541-549.

21 Sheen-Chen SM, Chau P, Harris HW. Obstructive jaundice alters Kupffer cell function independent of bacterial translocation. J Surg Res 1998; 80: 205-209.

22 Sheen-Chen SM, Chen HS, Ho HT, Chen WJ, Sheen CC, Eng HL. Effect of bile acid replacement on endotoxin-induced tumor necrosis factor-alpha production in obstructive jaundice. World J Surg 2002; 26: 448-450.

23 Sheen-Chen SM, Ho HT, Chen WJ, Eng HL, Wu CH. Obstructive jaundice alters CD44 expression in rat small intestine. Digestion 2002; 65: 112-117.

24 Sheen-Chen SM, Chen HS, Ho HT, Sheen CC, Chen WJ, Eng HL. Obstructive jaundice alters LFA-1alpha expression in rat small intestine. Dig Dis Sci 2003; 48: 1165-1170.

25 Sheen-Chen SM, Ho HT, Chen WJ, Eng HL. Obstructive jaundice alters proliferating cell nuclear antigen expression in rat small intestine. World J Surg 2003; 27: 1161-1164.

26 Sheen-Chen SM, Hung KS, Ho HT, Chen WJ, Eng HL. Effect of glutamine and bile acid on hepatocyte apoptosis after bile duct ligation in the rat. World J Surg 2004; 28: 457-460.

27 Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholesterolosis. N Engl J Med 1998; 339: 1217-1227.

28 Benz C, Angermuller S, Tox U, Kloters-Plachky P, Riedel HD, Sauer P, Stremmel W, Stiehl A. Effect of tauroursodeoxycholic acid on bile-acid-induced apoptosis and cytosis in rat hepatocytes. J Hepatol 1998; 28: 99-106.

29 Faubion WA, Guicciardi ME, Miyoshi H. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest 1999; 103: 137-145.

30 Hurle JM. Cell death in developing systems. Methods Achiev Exp Pathol 1988; 13: 55-86.

31 MacDonald HR, Lees RK. Programmed death of autoreactive thymocytes. Nature 1990; 343: 642-644.

32 Behrns KE, Schrum LW, Que FG. Apoptosis: cell death by proteolytic scalpel. Surgery 1999; 126: 463-468.

33 Su CH, Peng FK, Lui WY. Factors affecting morbidity and mortality in biliary tract surgery. World J Surg 1992; 16: 536-540.

Science Editor Guo SY Language Editor Elsevier HK