Letter to the Editor

Evidence of Steroids in Patients With Acute Respiratory Distress Syndrome in Coronavirus Disease 2019

To the Editor:

We have read with exceptional interest the article by Villar et al (1) published in the recent issue of *Critical Care Explorations*.

The use of corticosteroids in the critically ill patient should be under a precise indication and not, in response to a question, that we cannot yet perform. The scenarios contemplated in the article by Villar et al (1) are acute respiratory distress syndrome (ARDS) from coronavirus disease 2019, ARDS nonviral and dysregulated systemic inflammation (cytokine storm), in which the World Health Organization does not recommend the use of corticosteroids routinely in viral pneumonia, understanding the pros and cons of the administration of corticosteroids (2, 3) (Table 1).

When all available evidence is included, systematic reviews and meta-analyses are considered as the best quality evidence available (4). In the application of some statistical analyses such as meta-analyses, as additional results accumulate (update of studies), increases the probability of observing false positive results (error type 1) or false negative results (error type 2) causing a phenomenon called multiplicity secondary to repeated significance tests (5). The trial sequential analysis (TSA) it is a methodology that combines an information size calculation (cumulative number of patients, number of observations of the event of interest in the included studies or impact of the multiplicity), with an adjusted statistical significance threshold (monitoring limits or test penalty) of a meta-analysis, in order to avoid multiplicity secondary to repeated significance tests (6).

Thirty-two clinical trials included with a total of 2,749 patients with the naked eye it could be inferred that if there is a possible association in the reduction of mortality with the use of steroids (risk ratio, 0.93; 95% CI, 0.78–1.11), however, when analyzing the CI it is observed that it is short and touches the null value, which translates into an inconclusive association and despite the fact that more studies are carried out, it was not possible to improve the clinical significance. In terms of heterogeneity, there is a high proportion of variability observed in steroid use that is impossible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

TABLE 1. Potential Aspects for and Against the Use of Corticosteroids in Pneumonia

Pros	Cons
Genetic immunomodulation:	Hyperglycemia
Decreased inflammatory mediators:	Muscular weakness
Cytokines (IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-11, IL-13) and chemokines:	
TNF-α, monocyte chemotactic protein	Gastrointestinal bleeding
IL-1 receptor, nuclear factor-κB inhibitor, phospholipase A2 inhibitor	Neuropsychiatric disorders
Adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1)	Risk of secondary infections and superinfections
Enzymes (nitric oxide synthetase, cyclooxygenase 2, phospholipase A2) increase in anti-inflammatory cytokines:	
Lipocortin 1, B2 IL-10 receptor, IL-1 receptor, nuclear factor-κB inhibitor, phospholipase A2 inhibitor	60 yr of study without solid evidence in favor of its use in pneumonia
Attenuated pulmonary inflammatory response	Decreased duration of bacterial life
Decrease in bacterial reproduction	

Copyright © 2020 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of the Society of Critical Care Medicine. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
due to heterogeneity and not random ($I^2 = 57\%$) and little variability in effect size between studies (Tau$^2 = 0.11$) (Fig. 1). For better evidence, a TSA was constructed with the TSA Viewer software Version 0.9.5.10 Beta from the Copenhagen Trial Unit with an adjusted information size of 17,027 patients based on the result of I2Events, the cumulative curve Z does not cross statistical limits of significance (Fig. 2) creating false positive results. Therefore, with all the available evidence, it is concluded that there is no reason that justifies the use of steroids in ARDS.

Dr. Escarramán-Martínez designed the article. Dr. Guerrero Gutiérrez redacted the article. All the authors read and approved the final version of the article.

The authors have disclosed that they do not have any potential conflicts of interest.

Study or Subgroup	Corticosteroid	Placebo	Risk Ratio	Risk Ratio				
	Events	Total	Events	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% Cl
McHardy 1972	3	40	9	86	1.5%	0.72 [0.20, 2.51]	1972	
Weigelt 1985	18	39	13	42	4.2%	1.49 [0.85, 2.62]	1985	
Fowler 1985	39	53	18	34	5.7%	1.39 [0.97, 1.98]	1985	
Bone 1987	26	50	8	38	3.6%	2.47 [1.26, 4.83]	1987	
Lagrue 1987	4	8	4	8	2.2%	1.00 [0.38, 2.66]	1987	
Bernard 1987	30	50	31	49	6.0%	0.95 [0.69, 1.29]	1987	
Luque 1988	9	13	12	14	5.2%	0.81 [0.53, 1.23]	1988	
Headley 1997	4	9	17	34	2.9%	0.89 [0.40, 1.99]	1997	
Keel 1998	5	13	12	18	3.1%	0.58 [0.27, 1.24]	1998	
Meduri 1998	0	18	2	8	0.3%	0.09 [0.01, 1.78]	1998	
Varpula 2000	3	16	3	15	1.2%	0.94 [0.22, 3.94]	2000	
Huh 2002	6	14	25	34	3.7%	0.58 [0.31, 1.10]	2002	
Gu 2003	50	67	31	49	6.4%	1.18 [0.91, 1.52]	2003	
Song 2003	43	60	9	17	4.8%	1.35 [0.84, 2.18]	2003	
Lee 2005	1	12	7	8	0.8%	0.10 [0.01, 0.63]	2005	
Confalonieri 2005	0	23	7	23	0.4%	0.07 [0.00, 1.10]	2005	
Annane 2006	45	85	62	92	6.5%	0.79 [0.61, 1.00]	2006	
Steinberg 2006	18	89	24	91	4.4%	0.77 [0.45, 1.31]	2006	
Meduri 2007	15	63	12	28	3.9%	0.56 [0.30, 1.03]	2007	
Mikami 2007	1	15	0	16	0.3%	3.19 [0.14, 72.69]	2007	
Bajwa 2009	16	30	54	147	5.4%	1.45 [0.98, 2.16]	2009	
Foster 2010	13	39	13	42	3.8%	1.08 [0.57, 2.03]	2010	
Linko 2011	7	46	0	12	0.4%	4.15 [0.25, 67.96]	2011	
Brun-Buisson 2011	28	83	21	125	4.7%	2.01 [1.23, 3.29]	2011	
Wan 2011	5	38	3	43	1.3%	1.89 [0.48, 7.37]	2011	
Schillongowski 2011	6	14	1	3	0.9%	1.29 [0.23, 7.11]	2011	
Sabry 2011	2	40	6	40	1.1%	0.33 [0.07, 1.55]	2011	
Seam 2012	11	55	10	24	3.3%	0.48 [0.24, 0.98]	2012	
Liu 2012	2	12	7	14	1.3%	0.33 [0.08, 1.31]	2012	
Rezk 2013	0	18	3	9	0.4%	0.08 [0.00, 1.32]	2013	
Tongyoo 2016	22	98	27	99	4.7%	0.82 [0.50, 1.34]	2016	
Villar 2020	33	139	50	138	5.6%	0.66 [0.45, 0.96]	2020	
Total (95% CI)	1349	1400	100.0%		0.93 [0.78, 1.11]	2020		
Total events	465	501					2020	

Figure 1. Forest plot. Meta-analysis of the effect of corticosteroids on mortality in patients with acute respiratory distress syndrome. Random-effects model of 32 studies with 2,749 patients with a risk ratio (RR), 0.93; 95% CI, 0.78–1.11. df = degrees of freedom.

Eder Iván Zamarrón López, MD, Department of Critical Care, Hospital General Regional #6, Madero City, Mexico

REFERENCES
1. Villar J, Confalonieri M, Pastores SM, et al: Rationale for Prolonged Corticosteroid Treatment in the Acute Respiratory Distress Syndrome Caused by Coronavirus Disease 2019. Crit Care Expl 2020; 2:e0111
2. Sibila O, Ferrer M, Agustí C, et al: Corticosteroids as adjunctive treatment in community-acquired pneumonia. Minerva Anestesiol 2014; 80:1336–1344
3. Tirapegui F, Díaz O, Saldías F: Clinical efficacy of corticoids treatment in hospitalized adult patients with community-acquired pneumonia. Rev Chil Enferm Respir 2018; 34:236–248
4. Centro Cochrane Iberoamericano: ¿Está justificado el uso de corticoesteroides en el manejo de pacientes con COVID-19? 2020. Manual Cochrane de Revisiones Sistemáticas de Intervenciones, Barcelona, versión 5.1.0. Available at: https://es.cochrane.org/es/¿está-justificado-el-uso-de-corticoesteroides-en-el-manejo-de-pacientes-con-covid-19?. Accessed May 6, 2020
5. Borm GF, Donders AR: Updating meta-analyses leads to larger type I errors than publication bias. J Clin Epidemiol 2009; 62:825–830.e10
6. Thorlund K, Engstrom J, Wetterslev J, et al: User Manual for Trial Sequential Analysis (TSA). Copenhagen, Denmark, Copenhagen Trial
Critical Care Explorations

Letter to the Editor

Unit, Centre for Clinical Intervention Research, 2017, pp 1–115. Available at: http://www.ctu.dk/tsa/files/tsa_manual.pdf. Accessed May 6, 2020

7. Peter JV, John P, Graham PL, et al: Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: Meta-analysis. BMJ 2008; 336:1006–1009

8. Ruan SY, Lin HH, Huang CT, et al: Exploring the heterogeneity of effects of corticosteroids on acute respiratory distress syndrome: A systematic review and meta-analysis. Crit Care 2014; 18:R63

9. Tang BM, Craig JC, Eslick GD, et al: Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: A systematic review and meta-analysis. Crit Care Med 2009; 37:1594–1603

10. Lamontagne F, Briel M, Guyatt GH, et al: Corticosteroid therapy for acute lung injury, acute respiratory distress syndrome, and severe pneumonia: A meta-analysis of randomized controlled trials. J Crit Care 2010; 25:420–435

DOI: 10.1097/CCE.0000000000000124

Figure 2. Trial sequential analysis of the meta-analysis. The Z value is the test statistic and $|Z| = 1.96$ corresponds to $p = 0.05$; the higher the Z value, the lower the p value. The size of the information required to accept or reject the reduction in the relative risk of mortality with the use of corticosteroids found in the meta-analysis of the random-effects model was calculated for 17,027 patients using the diversity (D2) of 64% found, significance 95% statistic and 80% power. IS = information size in each group.