Another refinement of the right-hand side of the Hermite–Hadamard inequality for simplices

MONIKA NOWICKA AND ALFRED WITKOWSKI

Abstract. We establish a new refinement of the right-hand side of the Hermite–Hadamard inequality for convex functions of several variables defined on simplices.

Mathematics Subject Classification. Primary 26D150.

Keywords. Convex function, Simplex, Hertmite–Hadamard inequality.

The classical Hermite–Hadamard inequality states that if \(f: I \to \mathbb{R} \) is a convex function then for all \(a < b \in I \) the inequality

\[
 f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(t)dt \leq \frac{f(a) + f(b)}{2}
\]

is valid. This powerful tool has found numerous applications and has been generalized in many directions (see e.g. [1,2]). One of those directions is its multivariate version:

Theorem 1. ([1]) Let \(f: U \to \mathbb{R} \) be a convex function defined on a convex set \(U \subset \mathbb{R}^n \) and \(\Delta \subset U \) be an \(n \)-dimensional simplex with vertices \(x_0, x_1, \ldots, x_n \). Then

\[
 f(b_\Delta) \leq \frac{1}{\text{Vol} \Delta} \int_\Delta f(x)dx \leq \frac{f(x_0) + \cdots + f(x_n)}{n+1},
\]

(1)

where \(b_\Delta = \frac{x_0 + \cdots + x_n}{n+1} \) is the barycenter of \(\Delta \) and the integration is with respect to the \(n \)-dimensional Lebesgue measure.

The aim of this note is to prove a refinement of the right-hand side of (1) stated in Theorem 2.

Let us start with a set of definitions.

A function \(f: I \to \mathbb{R} \) defined on an interval \(I \) is called convex if for any \(x, y \in I \) and \(t \in (0,1) \) the inequality
f(tx + (1 - t)y) ≤ tf(x) + (1 - t)f(y)

holds.

If U is a convex subset of \mathbb{R}^n, then a function $f : U \to \mathbb{R}$ is convex if its restriction to every line segment in U is convex.

For $n + 1$ points $x_0, \ldots, x_n \in \mathbb{R}^n$ in general positions the set $\Delta = \text{conv}\{x_0, \ldots, x_n\}$ is called an n-dimensional simplex. If K is a nonempty subset of the set $N = \{0, \ldots, n\}$ of cardinality k, the set $\Delta_K = \text{conv}\{x_i : i \in K\}$ is called a face (or a $k - 1$-face) of Δ. The point $b_K = \frac{1}{k} \sum_{i \in K} x_i$ is called a barycenter of Δ_K. The barycenter of Δ will be denoted by b. By $\text{card} \, K$ we shall denote the cardinality of the set K.

For each $k - 1$-face Δ_K we calculate the average value of f over Δ_K using the formula

$$\text{Avg}(f, \Delta_K) = \frac{1}{\text{Vol}(\Delta_K)} \int_{\Delta_K} f(x) \, dx,$$

where the integration is with respect to the $k - 1$-dimensional Lebesgue measure (in case $k = 1$ this is the counting measure).

For $k = 1, 2, \ldots, n + 1$ we define

$$A(k) = \frac{1}{\binom{n + 1}{k}} \sum_{K \subset N \atop \text{card} \, K = k} \text{Avg}(f, \Delta_K).$$

Note that the right-hand side of the inequality (1) can be rewritten as $A(n + 1) \leq A(1)$. It turns out, that

Theorem 2. The following chain of inequalities holds:

$$A(n + 1) \leq A(n) \leq \cdots \leq A(2) \leq A(1).$$

In the proof we shall use the following

Lemma 1. ([3, Theorem 4.1]) If $K_i = N \setminus \{i\}$ and b is the barycenter of Δ, then

$$\text{Avg}(f, \Delta) \leq \frac{1}{n + 1} f(b) + \frac{n}{n + 1} \frac{1}{n + 1} \sum_{i=0}^{n} \text{Avg}(f, \Delta_{K_i}).$$

Proof of Theorem 2. We shall prove first the inequality $A(n + 1) \leq A(n)$. Let us use the notation from Lemma 1. For $i = 0, 1, \ldots, n$ we have

$$b_{K_i} = \frac{1}{n} \sum_{j=0}^{n} x_j = \frac{1}{n} \left(\sum_{j=0}^{n} x_j - x_i \right) = \frac{1}{n} ((n + 1)b - x_i). \quad (2)$$

Summing (2) we obtain

$$b = \frac{1}{n + 1} \sum_{j=0}^{n} b_{K_j}. \quad (3)$$
Now using Lemma 1 and the convexity of f applied to (3) we get

\[
\text{Avg}(f, \Delta) \leq \frac{1}{n+1} f(b) + \frac{n}{n+1} \frac{1}{n+1} \sum_{i=0}^{n} \text{Avg}(f, \Delta_{K_i})
\]

\[
\leq \frac{1}{n+1} \frac{1}{n+1} \sum_{i=0}^{n} f(b_{K_i}) + \frac{n}{n+1} \frac{1}{n+1} \sum_{i=0}^{n} \text{Avg}(f, \Delta_{K_i}),
\]

thus, by the left-hand side of (1)

\[
\leq \frac{1}{n+1} \frac{1}{n+1} \sum_{i=0}^{n} \text{Avg}(f, \Delta_{K_i}) + \frac{n}{n+1} \frac{1}{n+1} \sum_{i=0}^{n} \text{Avg}(f, \Delta_{K_i})
\]

\[
= \frac{1}{n+1} \sum_{i=0}^{n} \text{Avg}(f, \Delta_{K_i}).
\]

This shows the inequality $A(n+1) \leq A(n)$.

Let $K \subset N$ be a set of cardinality $k > 1$. Applying the above reasoning to Δ_{K} we obtain

\[
\text{Avg}(f, \Delta_{K}) \leq \frac{1}{k} \sum_{K' \subset K, \text{card } K' = k-1} \text{Avg}(f, \Delta_{K'}).
\]

Summing the above for all k-element subsets we get

\[
\sum_{K \subset N, \text{card } K = k} \text{Avg}(f, \Delta_{K}) \leq \frac{1}{k} \sum_{K \subset N, \text{card } K = k} \sum_{K' \subset K, \text{card } K' = k-1} \text{Avg}(f, \Delta_{K'})
\]

\[
= \frac{n-k+2}{k} \sum_{K' \subset K, \text{card } K' = k-1} \text{Avg}(f, \Delta_{K'}).
\]

The equality follows from the fact that every $k - 2$-face belongs to $n - k + 2$ distinct $k - 1$-faces so every term $\text{Avg}(f, \Delta_{K'})$ appears in the sum exactly $n - k + 2$ times. Dividing both sides by $\binom{n+1}{k}$ we get $A(k) \leq A(k-1)$, which completes the proof. \qed

Just for completeness note that a similar refinement of the left-hand side of (1) can be found in [4, Corollary 2.6]. It reads as follows:

Theorem 3. For a nonempty subset K of N define the simplex Σ_K as follows: let A_K be the affine span of Δ_K and A'_K be the affine space of the same dimension, parallel to A_K and passing through the barycenter of Δ. Then $\Sigma_K = \Delta \cap A'_K$.

For $k = 1, 2, \ldots, n + 1$ let
\[B(k) = \frac{1}{\binom{n+1}{k}} \sum_{K \subset N, \text{card } K = k} \text{Avg}(f, \Sigma_K). \]

Then
\[f(b) = B(1) \leq B(2) \leq \cdots \leq B(n + 1) = \text{Avg}(f, \Delta). \]

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

[1] Bessenyei, M.: The Hermite–Hadamard inequality on simplices. Am. Math. Mon. 115(4), 339–345 (2008)
[2] Dragomir, S.S., Pearce, C.E.M.: Selected topics on Hermite–Hadamard inequalities. RGMIA Monogr. (2000). http://www.rgmia.org/monographs/hermite_hadamard.html
[3] Nowicka, M., Witkowski, A.: A refinement of the right-hand side of the Hermite–Hadamard inequality for simplices. Aequat. Math. 91, 121–128 (2017). https://doi.org/10.1007/s00010-016-0433-z
[4] Nowicka, M., Witkowski, A.: A refinement of the left-hand side of Hermite–Hadamard inequality for simplices. J. Inequal. Appl. 2015, 373 (2015). https://doi.org/10.1186/s13660-015-0904-0

Monika Nowicka and Alfred Witkowski
Institute of Mathematics and Physics
UTP University of Science and Technology
Al. Prof. Kaliskiego 7
85-796 Bydgoszcz
Poland
e-mail: monika.nowicka@utp.edu.pl

Alfred Witkowski
e-mail: alfred.witkowski@utp.edu.pl

Received: January 25, 2018
Revised: June 23, 2018