Review

The Metabolic Bone Disease X-Linked Hypophosphatemia: Case Presentation, Pathophysiology and Pharmacology

Jon Vincze 1,2, Brian W Skinner 3, Katherine A Tucker 4, Jonathan W Lowery 1,2,* and Julia M Hum 1,2,*

1 Marian University, College of Osteopathic Medicine Division of Biomedical Science, 3200 Cold Spring Rd. Indianapolis, IN 46222, USA
2 Marian University, Bone & Muscle Research Group, 3200 Cold Spring Rd. Indianapolis, IN 46222, USA
3 Marian University, College of Osteopathic Medicine Division of Clinical Sciences
4 Marian University, Leighton School of Nursing
* Correspondence: jlowery@marian.edu; Tel.: 317-955-6621 (J.W.L.); jmhum@marian.edu; Tel. 317-955-6265 (J.M.H.)

Abstract: The authors present a stereotypical case presentation of x-linked hypophosphatemia (XLH) and provide a review of the pathophysiology and related pharmacology of this condition, primarily focusing on the FDA-approved medication burosumab. XLH is a renal phosphate wasting disorder caused by loss of function mutations in the PHEX gene (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). Typical biochemical findings include elevated serum levels of bioactive/intact Fibroblast Growth Factor 23 (FGF23) which lead to i) low serum phosphate levels, ii) increased fractional excretion of phosphorus, and iii) inappropriately low or normal 1,25-dihydroxyvitamin D (1,25-vitD). XLH is the most common form of heritable rickets and short stature in XLH patients is due to chronic hypophosphatemia. Additionally, XLH patients experience joint pain and osteoarthritis from skeletal deformities, fractures, enthesopathy, spinal stenosis, and hearing loss. Historically, treatment for XLH was limited to oral phosphate supplementation, active vitamin D supplementation, and surgical intervention for cases of severe bowed legs. In 2018, the United States Food and Drug Administration’s (FDA) approved burosumab for the treatment of XLH and this medication has demonstrated substantial benefit compared with conventional therapy. Burosumab binds circulating intact FGF23 and blocks its biological effects in target tissues, resulting in increased serum inorganic phosphate (Pi) concentrations and increased conversion of inactive vitamin D to active 1,25-vitD.

Keywords: metabolic bone disease; burosumab; KRN23; X-linked hypophosphatemia; Crysvita

Case Presentation

A twenty-month-old male presents to his pediatrician’s office with chief complaint of delayed walking milestone. The child was born vaginally following an uncomplicated pregnancy and breastfed until twelve months of age when transitioned to whole cow’s milk and continued solids. Postnatal screening was unremarkable. The child is twentieth percentile for length, thirtieth percentile for weight, fortieth percentile for occipital-frontal circumference, appears pleasant while seated, and vitals are within normal ranges. Physical exam reveals bilateral valgus knees and a pain response while standing. The abdomen is soft, round, free of masses and the child soils four to five diapers per day and has a daily bowel movement. Family history is unremarkable. Laboratory studies indicate elevated serum levels of Fibroblast Growth Factor 23 (FGF23), hypophosphatemia, normocalcemia, and low serum levels of 1,25-dihydroxyvitamin D (1,25-vitD) and hyperphosphaturia is noted via urinalysis. Genetic testing reveals a loss-of-function mutation in PHEX (phosphate-regulating gene with homologies to endopeptidases on
the X chromosome) leading to a diagnosis of the metabolic bone disease x-linked hypophosphatemia (XLH).

X-linked hypophosphatemia

XLH is the most common form of heritable rickets and its diagnosis is generally based on physical exam, biochemical analyses of serum and/or plasma, imaging tests, and family history. XLH is a renal phosphate wasting disorder caused by loss of function mutations in the PHEX gene. PHEX is a member of the M13 family of membrane-bound metalloproteases, and its expression is highest in bone cells, specifically osteoblasts and osteocytes. Mutation in the PHEX gene product leads to increased serum levels of Fibroblast Growth Factor 23 (FGF23). FGF23 is a potent phosphaturic agent, and tubular phosphate reabsorption is disrupted in XLH patients via downregulation of sodium-phosphate cotransporters in the proximal renal tubule. As shown in Table 1, other biochemical findings typically include elevated low serum phosphate levels, increased fractional excretion of phosphorus, normocalcemia and inappropriately low or normal 1,25-dihydroxyvitamin D (1,25-vitD). Serum levels of parathyroid hormone (PTH) vary. Short stature in XLH patients is due to chronic hypophosphatemia and, as adults, XLH patients often experience joint pain and osteoarthritis from childhood skeletal deformities, fractures, enthesopathy, spinal stenosis, and hearing loss.

XLH is a debilitating lifelong burden, which until recently did not have therapies to directly address the underlying cause – elevated bioactive FGF23. FGF23 was initially identified through gain-of-function mutations in different form of rickets, the rare heritable disorder autosomal dominant hypophosphatemia rickets (ADHR). Prior to this discovery, phosphorous homeostasis was thought to be maintained through PTH and 1,25-vitD. Under normal physiological conditions, elevations in serum phosphorus or active 1,25-vitD stimulate upregulation of FGF23 and promote the release of the full-length intact FGF23 protein that targets downstream tissues. FGF23 acts directly on the kidneys to promote phosphate excretion and indirectly through its effects on 1,25-vitD. Additionally, FGF23 suppresses the transcription of the genes encoding sodium-phosphate cotransporters.

Table 1. Stereotypical laboratory findings in x-linked hypophosphatemia (XLH) in pediatric (ped) and adult populations. Values and normal ranges are for illustrative purposes only and may vary among patients and by reference laboratory.

	Ped Pt	Ped normal range	Adult Pt	Adult normal range
Bicarbonate	22	17-25 mmol/L	25	22-30 mmol/L
Calcium	10.1	9.3-10.6 mg/dL	9.5	8.5-10.2
Chloride	108	102-112 mmol/L	100	96-106 mmol/L
Glucose	89	70-140 mg/dL	81	70-100 mg/dL
Phosphate	2.8	4.0-7.0 mg/dL	2.1	2.8-4.5 mg/dL
Potassium	3.9	3.6-5.2 mmol/L	4.4	3.7-5.2
Sodium	136	135-145 mmol/L	141	135-145 mmol/L
CO2	26	23-29 mmol/L	23	23-29 mmol/L
BUN	15	7-20 mg/dL	8	6-20 mg/dL
Creatinine	0.6	0.19-0.49 mg/dL	1.1	0.6-1.3 mg/dL
ALT	20	10-40 U/L	31	4-36 U/L
AST	23	10-40 U/L	30	8-33 U/L
Alk Phosphatase	109	<350 U/L	78	20-130 U/L
25(OH)D	23	20-40 ng/mL	24	20-40 ng/mL
1,25(OH)D	72	16-42 pg/mL	60	16-42 pg/mL
PTH	20	14-65 pg/mL	31	14-65 pg/mL

Pharmacological management of XLH
Historically, treatment for XLH was limited to oral phosphate supplementation, 1,25-vitD supplementation, and surgical intervention for cases of severely bowed legs. However, in April 2018, the United States FDA approved burosumab, which is a human monoclonal IgG1 antibody against FGF23, for treatment of adults and children with XLH. Burosumab was granted both breakthrough therapy designation and orphan drug designation by the FDA. Burosumab binds circulating intact FGF23 and blocks its biologic effects in target tissues, resulting in increased serum inorganic phosphate (Pi) concentrations and increased conversion of inactive vitamin D to active 1,25-vitD.

The efficacy of burosumab in both pediatric and adult patients with hypophosphatemia have been compared to placebo and conventional care in clinical trials, the results of which are summarized in Table 2. All adult and pediatric trials found burosumab significantly increased Pi to within normal levels and sustain that increase across the length of the study with 94.1% of adults achieving a Pi above the lower limit of normal (LLN) in one study (compared with 7.6% of those receiving placebo, p<0.001). Furthermore, pediatric patients experienced a mean increase in Pi ranging from 0.84-0.92mg/dL across various trials. Many clinical trials examined secondary markers of bone health – including 1,25-vitD levels, radiographic assessments using the Thacher’s radiographic severity score (TRSS) along with the Radiographic Global Impression of Change (RGI-C) and found significant improvements.

A histomorphometric study including 14 adult subjects with XLH found significant improvement in bone formation and reduced bone resorption with burosumab leading to lower osteoid thickness (-32%), osteoid surface/bone surface (-26%), and mineralization lag time (-83%) after 48 weeks of therapy. Additionally, burosumab significantly improved several parameters on the Brief Pain Inventory (BPI) including mean pain severity score (5.1 at baseline vs 3.4, p=0.0013), mean worst pain score (6.6 vs 4.9, p=0.0054), and mean pain interference score (5.2 vs 4.0, p=0.0060) along with a reduction in the BPI mean fatigue score (6.8 vs 5.5, p=0.0156). This study also identified four patients with active pseudo fractures at the beginning of the study. At week 12, two demonstrated complete healing and the other two healed partially. At the conclusion of the study, 75% had healed completely, but the other pseudo fracture was unable to be assessed due to lack of radiographic imaging.

A larger double-blind, placebo-controlled trial of 134 adults also examined objective markers related to the quality of life of subjects with XLH along with fracture healing as secondary markers of efficacy. Utilizing the Western Ontario and McMaster Universities Arthritis (WOMAC) index, an 8% reduction of stiffness reached statistical significance when compared to placebo (mean difference of -8.1, p=0.012), though the WOMAC physical function subscale and the BPI worst pain indices failed to achieve significance after Hochberg multiplicity adjustments. However, both these measurements reached significance in Ruppe et al., albeit with a smaller sample size. Notably, 43.1% of active fractures were fully-healed in the burosumab group compared with only 7.7% in patients receiving conventional placebo (odds ratio 16.8, p<0.001). An open label 24 week extension of this trial was completed and all study participants received burosumab. The authors noted increased fully-healed fractures and pseudo fractures from baseline continued in subjects in the burosumab–burosumab arm (63% healed). Subjects enrolled in the placebo–burosumab arm experienced fracture healing that was comparable to those who initially started on burosumab at 24 weeks (35% healed).

Pediatric clinical trials also demonstrated improvement in both laboratory and radiographic parameters. Carpenter et al. compared the efficacy of a 2-week and 4-week dosing schedule in children aged 5–12yrs using a 1mg/kg dose. Both dosing schedules led to significant improvement in Pi, 1,25-vitD, TRSS, and RGI-C; they also demonstrated an increase in walking distance utilizing the 6-minute walk test (2-week 12% increase vs 4-week: 10%) and an increased standing height physical ability (0.19 increase in z-score vs 0.12). The authors did note that the 2-week dosing schedule provided a more sustained response with regards to maintaining Pi. Pi levels remained within or near normal limits at the end of the dosing interval, whereas children on the
4-week dosing schedule fell below the LLN. Conversely, 1,25-vitD responses were similarly maintained regardless of the dosing schedule utilized.18 Another trial was completed in children aged 1–4yrs using a dose of 0.8mg/kg administered SC every 2 weeks. The dose was increased to 1.2mg/kg if two consecutive Pi trough concentrations were below the LLN. Similar to previous studies, significant improvement was noted in both laboratory markers as well as radiographic findings.17

An open-label, phase 3 pediatric clinical trial was conducted in patients aged 1–12yrs. Subjects were randomized to receive either burosumab 0.8mg/kg SC every 2 weeks or conventional therapy consisting of oral phosphate and active vitamin D replacement supplementation.10 Dosage adjustments of burosumab were identical to those previously described above.10, 17 Oral phosphate and active vitamin D were also adjusted based on published recommendations.5, 19, 21 Similar to previous studies, burosumab significantly improved both laboratory and radiographic markers of disease. Furthermore, improvements were noted in length and height Z scores (mean change 0.17 vs 0.02, p=0.049) and 6-minute walking distance (mean change 9% vs 2%, p=0.0496). This was the first trial demonstrating superiority of burosumab compared with conventional therapy.17

Table 2. Summary of clinical trials for burosumab.

Reference (Registry Number)	Design	Population	Efficacy Results	Safety Results					
Cheong, 2019 (NCT02181764)14	Phase 1, O, SC, single dose, dose 0.6 mg/kg, N=5 escalation 1.0mg/kg, N=7	Mean increase in serum Pi8 0.3, 0.6, 1.0mg/kg (all increased) Mean TmP/GFR3 0.3, 0.6, 1.0mg/kg (all increased) Mean serum 1,25(OH)\textsubscript{2}D8 0.3, 0.6, 1.0mg/kg (all increased)	All AEs: 14 (78%) 0.3 mg/kg: 4 (67%) 0.6 mg/kg: 4 (80%) 1.0 mg/kg: 6 (86%) AEs related to burosumab: 5 (28%) 0.3 mg/kg: 3 (50%) 0.6 mg/kg: 0 1.0 mg/kg: 2 (29%) AE leading to discontinuation or death: 0 Most common AEs (≥10%): nasopharyngitis, upper respiratory tract infection, contusion, headache, back pain Most common drug-related AEs (≥10%): 0						
Carpenter, 2014 (NCT00830674)13	Phase 1, R, DB, P, SC or IV, single dose	Serum Pi8 IV: 0.003\textbullet\textbullet\textbullet\textbullet, 0.01* 0.03* 0.1*** 0.3mg/dl\textbullet\textbullet\textbullet\textbullet 1.0mg/kg*** Serum 1,25(OH)\textsubscript{2}D8 IV: 0.003, 0.01* 0.03*** 0.1*** 0.3mg/dl\textbullet\textbullet\textbullet\textbullet 1.0mg/kg*** Serum calcium8 IV: 0.003, 0.01* 0.03, 0.1* 0.3mg/dl SC: 0.1, 0.3, 0.6, 1.0mg/kg 24-hr urine calcium8	All AEs: IV Burosumab: 14 (82%) Placebo: 2 (40%) SC Burosumab: 10 (83%) Placebo: 2 (50%) AEs related to burosumab: 6 (21%) IV: 4 (24%) SC: 2 (17%) AE leading to discontinuation or death: 0 Most common AEs, IV (≥10%): nausea and...						
Study	Design	Dosing	Duration	1,25(OH)₂D³	TmP/GFR §	Pi §	BALP §	Osteocalcin §	Safety
-------	--------	--------	----------	-------------	--------	------	------	-------------	--------
Imel, 2015 (NCT01340482 and NCT01571596)²⁵	Phase 1/2, O, SC, 16 wks, dose escalation with sequential 12 month extension	Adult, N=28	Serum Pi § §, TmP/GFR § §, Serum 1,25(OH)₂D³ § §, Serum procollagen type 1 § §, Osteocalcin § §	All AEs: 27 (96%); AEs related to burosumab: 18 (64%); AE leading to discontinuation or death: 2	Moderate urticaria, severe restless leg syndrome Most common AEs (≥20%): arthralgia, nasopharyngitis, back pain, extremity pain, diarrhea, sinusitis, upper respiratory tract infection, dizziness and headache Most common drug-related AEs (≥20%): 0				
Zhang, 2016 (NCT01340482)²⁵	Phase 1/2, O, SA, SC, 16 wks, dose escalation	Adult, N=28	Serum Pi § §, TmP/GFR § §, Serum 1,25(OH)₂D³ § §, BALP § §, P1NP § §, Osteocalcin **	All AEs: Not reported AEs related to burosumab: Not reported AE leading to discontinuation or death: 1	Urticaria				
Ruppe, 2016 (NCT01340482)²⁰	Phase 1/2, O, SA, SC, 16 wks, dose escalation	Adults, N=28	SF36v2 mean: 1.77*, WOMAC mean: -3.8*	All AEs: Not reported AEs related to Burosumab: Not reported AE leading to discontinuation or death: 1	Urticaria				
Portale, 2019 (NCT02526160)²¹	Phase 3, R, DB, P, SC, 24 wks with O, 24 wk extension	Adult, N=134 Burosumab, N=68 Placebo, N=66	% achieved mean Pi above LLN DB Burosumab: 94.1% **** Placebo: 7.6% Extension Burosumab for 48 weeks: 84% Placebo: 61% Burosumab last 24 weeks: 89% Placebo: 61% Burosumab last 48 weeks: 68% ** Placebo: 61% Burosumab last 48 weeks: 63% (95%)	All AEs DB: 125 (93%) Burosumab: 64 (94%) Placebo: 61 (92%) Extension: 131 (97%) Burosumab for 48 weeks: 68 (100%) Placebo: 61 (92%) Burosumab last 48 weeks: 63 (95%)					
Insogna, 2018 (NCT02526160)[1]	Phase 3, O, SA, SC, 48 wks	Adult, N=14	pseudo fracture fully healing						
DB Burosumab: 16.8****									
Placebo: 16.8****									
WOMAC: physical function & stiffness									
DB Burosumab: -3.11* & -7.85*									
Placebo: +1.79 & +0.46									
Extension Burosumab for 48 weeks: -7.76**** & -16.03****									
Burosumab last 24 weeks: -8.18**** & -15.82****									
Worst pain (BPI)									
DB Burosumab: -0.79 NS									
Placebo: -0.32									
Extension Burosumab for 48 weeks: -1.09****									
Burosumab last 24 weeks: -1.18****									
AEs related to burosumab									
DB Burosumab: 30 (44%)									
Placebo: 26 (39%)									
Extension Burosumab for 48 weeks: 42 (62%)									
Burosumab last 24 weeks: 32 (48%)									
AE leading to discontinuation or death: 0									
Most common AEs									
DB Burosumab: 0									
Extension Burosumab for 48 wks: nasopharyngitis, headache, arthralgia, tooth abscess									
Burosumab for last 24 wks: arthralgia									
Most common drug-related AEs: Not reported									
Insogna, 2019 (NCT02526160)[9]	Phase 3, R, DB, P, SC, 24 wks	Adults, N=134							
Burosumab, N=68									
Placebo, N=66	Mean % change osteoid volume/bone volume: -54%****								
Bone turnover									
Osteoid thickness: -32%****									
Osteoid surface/bone surface: -26%***									
Median mineralization lag time: -83%									
Fracture or pseudofracture healing									
P1NP: +77%****									
CTX: +36%****									
% achieved mean Pi above LLN									
Burosumab: 94.1%									
Placebo: 7.6%***									
% maintaining Pi above LLN before next dose									
Burosumab: 67.6%									
Placebo: 6.1% (significance not reported)									
Mean increase of 1,25(OH)2D3									
Burosumab: 25.5pg/mL									
Placebo: 2.7pg/mL***									
All AEs: 14 (100%)									
AE related to Burosumab: 10 (71%)									
AE leading to discontinuation or death: 0									
Most common AEs: Not reported									
Most common drug-related AEs (≥10%): urticaria, abdominal pain, asthenia, injection site pain, injection site reaction									
Study	Phase	Dosing	Duration	Age	N	Primary Outcome	Secondary Outcome	Drug-Related AEs	
------------------	-------	--------	----------	-----	-----	----------------	-------------------	---	
Whyte, 2019	Phase 2, O, SA, SC	64 wks	Children (1-4yrs), N=13			Change in WOMAC stiffness	Burosumab: -7.87		
Placebo: +0.25*									
% of fractures healed									
Burosumab: 43.1%									
Placebo: 7.7%***	All AEs: 13 (100%)								
AEs related to burosumab: 5 (38%)									
AEs leading to discontinuation or death: 0									
Most common AEs (≥30%): Cough, pyrexia, upper respiratory tract infection, tooth abscess, rhinorrhea, vomiting, nasal congestion, diarrhea, pain in extremity, streptococcal pharyngitis, injection site reaction, hypersensitivity									
Most common drug-related AE (≥20%): injection site erythema and extremity pain									
Carpenter, 2018	Phase 2, R, O, SC	16 wk escalation with 48 wk treatment	Children (5-12 yrs), N=52						
Every 2 wks, N=26									
Every 4 wks, N=26			Mean increase of Pi: 0.89 mg/dL****						
Mean increase of 1,25(OH)2D: 13pg/mL****									
Mean change of TRSS: -2.0****									
Mean change in RGI-C: +2.2****	Mean change of TRSS from baseline†								
2-wk: -1.06***									
4-wk: -0.73***									
Mean change of RGI-C from baseline†									
2-wk: +1.66									
4-wk: +1.47									
Mean increase of Pi All patients: 0.84mg/dL									
Mean increase of 1,25(OH)2D All patients: 18pg/mL	All AEs: 26 patients (100%)								
AEs leading to discontinuation or death: 0									
Most common AEs, 2 wk dose schedule (≥30%): Injection-site reaction, headache, cough, nasopharyngitis, pain in extremity, upper respiratory tract infection, vomiting and pyrexia									
Most common AEs, 4 wk dose schedule (≥30%): Injection-site reaction, headache, cough, nasopharyngitis, pain in extremity, upper respiratory tract infection, vomiting, arthralgia, pyrexia, seasonal allergy									
Most common drug-related AEs: Not reported									
Imel, 2019	Phase 3, R, O, AC, SC	64 wks	Children (1-12yrs), N=61			Mean change of RGI-C†			
Burosumab: +1.9
Conventional: +0.8****
Burosumab, Mean change of TRSS† | All AEs:
Burosumab: 29 patients (100%)
Conventional: 27 |
Table 1: Study Outcomes

	Burosumab	Conventional
Pi increase	0.92mg/dL	0.20mg/dL
1,25(OH)_{2}D	30pg/mL	18pg/mL

*Mean increase in Pi and 1,25(OH)_{2}D between baseline and 22 weeks.

Patients (%)	AE leading to discontinuation or death	Most common AEs
(84%)	0	Pyrexia, injection site reaction, cough, arthralgia, vomiting, nasopharyngitis, hypersensitivity, pain in extremity, headache, injection site erythema, dental caries

Pharmacology of Burosumab

Burosumab is available in three strengths: 10mg/ml, 20mg/ml, and 30mg/ml with an average wholesale price of $408 per milligram. Utilizing the recommended dose of 1mg/kg for an adult patient weighing 70kg, the anticipated average wholesale cost per dose is $28,560.24 While costly, burosumab is the only drug currently available on the market that is FDA approved to treat XLH.11 Prior to the approval of burosumab, management options for XLH focused on treatment of electrolyte abnormalities with oral phosphate replacement and 1,25-vitD supplementation, whereas burosumab is able to target and block the pathway that is overexpressed in patients with XLH directly treating the underlying condition.26, 27 Based on the results reported in the phase 3 trial by Imel and colleagues, burosumab is superior to conventional therapy.10

Dosage Recommendations

Burosumab is delivered via subcutaneous (SC) injection by a licensed healthcare provider. Prior to initiation of therapy, Pi levels should be drawn and evaluated, ensuring the level is lower than normal range based on the patient’s age.11 Dosage recommendations for patients less than 1 year are not known as these patients were excluded from the clinical trials.10 For children and adolescents 1-18 years of age, the dosage recommendation is 0.8mg/kg of body weight, rounded to the nearest 10 mg given every 2 weeks via SC injection.12 Adjustments may be increased if Pi remains below the LLN up to a max dose of approximately 2mg/kg. If Pi increases to 5mg/dL or greater, the next dose should be held and Pi reassessed in 4 weeks. Once Pi falls below the LLN, burosumab may be re-initiated at a reduced dose. The manufacturer provides recommended dose adjustment tables within the package insert.12 The recommended dose for adults is 1mg/kg SC, rounded to the nearest 10 mg, every 4 weeks. For both pediatric and adult patients, the maximum dose is 90mg and the maximum volume for each injection is 1.5 mL.11, 12

The goal of therapy is to maintain Pi near the LLN based on the patient’s age to prevent hyperphosphatemia.23 Pi should be drawn every 4 weeks with corresponding dose adjustments based on those levels. In adults, the first measurement of Pi should

Abbreviations: AC, active-controlled; AEs, adverse events; BALP, bone alkaline phosphatase; CTx, C-terminal telopeptide; DB, double-blind; IV, intravenous; LLN, lower-limit of normal; NS, not significant; O, open-label; P, placebo-controlled; P1NP, N-terminal propeptide type 1 collagen; Pi, inorganic phosphorous; R, randomized; RGI-C, Radiographic Global Impression of Change score; SA, single arm; SC, subcutaneous; SF36v2, self-perceived limitations due to physical health; TRSS, Thacher rickets severity score; WOMAC, Western Ontario and McMaster Universities Arthritis Index.

*Comparison reported at 22 weeks; †comparison reported at 40 weeks
§exact values not reported
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; note: p-values not reported for all comparisons by study authors.
begin 2 weeks after initiation or dose changes, and in pediatrics the first measurement should begin 4 weeks after initiation or dose changes. If doses are missed, resume burosumab as soon as possible at the prescribed dose. Burosumab is contraindicated in patients with severe renal impairment or end stage liver disease as both are associated with metabolic mineral disturbances, although no clinical trials occurred in these patients.

Pharmacokinetics

Following SC administration, burosumab follows linear pharmacokinetic modeling and reaches peak concentrations after 8 to 11 days (Table 3). Given burosumab is a monoclonal antibody, it is unlikely to be excreted intact into the urine. Metabolism of burosumab is not well defined, but it is hypothesized that it follows a similar pathway as other peptides and is catabolized into smaller peptides. A phase I clinical trial examined the effects of burosumab administered intravenously (IV) and SC across a variety of doses ranging from 0.003-0.3mg/kg for IV administration and 0.1-1mg/kg for SC administration. SC administration had essentially complete bioavailability, and it increased the half-life from 8-11 days for the 0.1-0.3mg/kg IV dosing range to 13-19 days for the 0.1-1mg/kg SC dosing range. The authors note the extended half-life and bioavailability “support the practicality of a once-monthly” dosing regimen administered SC.

Table 3. Pharmacokinetic properties for burosumab.

Property	Value
T_{max}	8 to 11 days
Vd	8 L (based on a 70kg adult)
Steady-State Trough	15.8 ± 9.4mcg/mL (adult)
	11.2 ± 4.6mcg/mL (pediatrics 1-4 years old)
Metabolism	Not characterized.
Clearence	0.290L/day
Special Populations	Unknown whether renal or hepatic dysfunction affects pharmacokinetic properties
	Increased body weight results in increased clearance and Vd
Excretion into Breastmilk	No information is available at this time. Because it is a large peptide, it is likely only present in very small amounts and poorly orally absorbed due to degradation in the infant’s GI tract
Drug interactions	No studies conducted to date, though unlikely to be affected by CYP inhibitors or inducers

Abbreviations: CYP, Cytochrome P450; GI, Gastrointestinal; T_{max}, time to maximum concentration; Vd, Volume of Distribution.

Pharmacodynamics

Two phase 1 adult studies concluded that a single injection of burosumab is sufficient to significantly increase the tubular reabsorption rate of phosphate regardless of SC or IV administration. There were no recorded increases of nephrocalcinosis, serum parathyroid hormone, or creatinine. Additionally, hypercalciuria, hypercalcemia, nor burosumab antibody formation occurred after the administration of a single dose. Peak Pi occurred seven days post injection and was maintained across a four-week injection schedule. Serum levels of burosumab and Pi are linearly correlated (R=0.812) which allow dosing adjustments of burosumab to be made based on pre-dose Pi concentrations.

Drug Interactions and Adverse Effects

Burosumab and its interaction with other drugs is unknown, however, it is not recommended to take oral phosphate or vitamin D analogs during treatment due to the risk of hyperphosphatemia and subsequent nephrocalcinosis.
Similar types and quantity of drug related adverse effects (AEs) were found between the IV and SC groups in the phase 1 trial, albeit both with small sample sizes, 12 and 17 respectively. Additionally, this study measured for nephrocalcinosis, hypercalcemia, serum immature parathyroid hormone, and creatinine in both IV and SC groups and found no increases. The type, quantity, and severity of drug-related AEs between control and burosumab groups in phase 2 and 3 clinical trials were largely similar, with the exception of injection site irritation being almost twice as common in pediatric patients as adults when compared to control. Hypersensitivity was also reported at a higher rate in pediatric patients than in adults but neither age group differed significantly compared to control. Nearly all drug-related AEs were rated as mild to moderate in severity. No AEs led to withdrawal of adults or children in the reported phase 2 and 3 clinical studies (Table 2), however 3 adults withdrew in two of the phase 1/2 studies due to urticaria (2 patients) and restless leg syndrome (RLS) in the Imel et al. extension.

Injection site reaction, hypersensitivity, hyperphosphatemia, ectopic mineralization, and RLS were predefined as AEs of interest across the phase 2 and 3 clinical trials. While injection site reactions and hypersensitivity were common in pediatric trials (31–57.7% and 31–38%, respectively), there were no incidences of hyperphosphatemia or RLS. As noted previously, incidence of injection site reactions and hypersensitivity were less frequent in the adult population (11.8% and 5.9%, respectively); however, the incidence of hyperphosphatemia and RLS was greater than that seen in the pediatric studies (5.9% and 11.8%, respectively). Ectopic mineralization was not noted in any of the phase 2 or 3 clinical trials, regardless of age.

Conclusions

XLH is a chronic condition primarily characterized by elevated FGF23 levels, causing hypophosphatemia and inappropriately low or normal levels of 1,25-vitD. Burosumab is a human monoclonal antibody against FGF23 and the first therapy targeted to the specific management of XLH. Its novel mechanism of action directly combats the hypophosphatemia in both pediatric and adult patients. The adverse effects of burosumab were rated mild to moderately severe, however, the occurrence of hyperphosphatemia was low. While burosumab therapy is costly, it is the only drug on the market to directly mitigate XLH’s clinical manifestations. Pending the results of ongoing clinical trials, future uses of burosumab may include other diseases that manifest due to elevated levels of intact FGF23.

Data Sources and Study Selection

An English-language search of PubMed, MEDLINE, and clinicaltrials.gov was performed using the terms burosumab, KRN23, X-linked hypophosphatemia, and FGF23 from January 2013 to February 2020 in March 2020. Articles including clinical trials of burosumab for the treatment of XLH and review articles were evaluated for inclusion in both adult and pediatric populations. References of articles were reviewed for additional data sources. Additional information was gathered from the manufacturer’s product labeling.

Funding: This work (research, review, or writing) required no funding of any type from any agency in the public, commercial, or not-for-profit sectors.

Conflicts of Interest: The authors have no potential or perceived conflicts of interest to disclose.

References

1. Tenenhouse HS, Beck L. Renal Na(+)–phosphate cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int. 1996;49:1027-32. Epub 1996/04/01. doi 10.1038/ki.1996.149
2. Econo MJ, Rowe PS, Francis F, et al. Fine structure mapping of the human X-linked hypophosphatemic rickets gene locus. J Clin Endocrinol Metab. 1994;79:1351-4. Epub 1994/11/01. doi 10.1210/jcem.79.5.7962329
3. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet. 1995;11:130-6. Epub 1995/10/01. doi 10.1038/ng1095-130
4. Ruchon AF, Marcinkiewicz M, Siegfried G, et al. Pex mRNA is localized in developing mouse osteoblasts and odontoblasts. J Histochem Cytochem. 1998;46:459-68. Epub 1998/05/09. doi:10.1177/002215549804604005

5. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL. A clinician's guide to X-linked hypophosphatemia. J Bone Miner Res. 2011;26:1381-8. Epub 2011/05/04. doi:10.1002/jbmr.340

6. Pettitfor JM. What's new in hypophosphataemic rickets? Eur J Pediatr. 2008;167:493-9. Epub 2008/01/25. doi:10.1007/s00431-007-0662-1

7. Consortium A. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26:345-8. Epub 2000/11/04. doi:10.1038/81664

8. Gutiérrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584-96. doi:10.1056/NEJMoa0706130

9. Isakova T, Xie H, Yang W, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305(23):2432-9. doi:10.1001/jama.2011.826

10. Imel EA, Glorieux FH, Whyte MP, et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet. 2019;393:2416-27. Epub 2019/05/21. doi:10.1016/S0140-6736(19)30654-3

11. Choy M. Pharmaceutical Approval Update. P T. 2018;43:326-7. Epub 2018/06/14.

12. Crysvita (burosumab) [product information]. Bedminster, NJ: Kyowa Kirin, Inc.; 09/2019.

13. Carpenter TO, Imel EA, Ruppe MD, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014;124:1587-97. doi:10.1172/JCI72829

14. Cheong HI, Yoo HW, Adachi M, et al. First-in-Asian Phase I Study of the Anti-Fibroblast Growth Factor 23 Monoclonal Antibody, Burosumab: Safety and Pharmacodynamics in Adults With X-linked Hypophosphataemia. JBMFR Plus. 2019;3:e10074. doi:10.1002/jbmr.10074

15. Zhang X, Imel EA, Ruppe MD, et al. Pharmacokinetics and pharmacodynamics of a human monoclonal anti-FGF23 antibody (KRN23) in the first multiple ascending-dose trial treating adults with X-linked hypophosphatemia. J Clin Pharmacol. 2016;56:176-85. doi:10.1002/jcph.570

16. Insogna KL, Briot K, Imel EA, et al. A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial Evaluating the Efficacy of Burosumab, an Anti-FGF23 Antibody, in Adults With X-Linked Hypophosphatemia: Week 24 Primary Analysis. J Bone Miner Res. 2018;33:1383-93. doi:10.1002/jbmr.3475

17. Whyte MP, Carpenter TO, Gottesman GS, et al. Efficacy and safety of burosumab in children aged 1-4 years with X-linked hypophosphatemiaa: a multicentre, open-label, phase 2 trial. Lancet Diabetes Endocrinol. 2019;7:189-99. doi:10.1016/S2213-8587(18)30338-3

18. Carpenter TO, Whyte MP, Imel EA, et al. Burosumab Therapy in Children with X-Linked Hypophosphatemia. N Engl J Med. 2018;378:1987-93. doi:10.1056/NEJMoa1714641

19. Insogna KL, Rauh F, Kamenicky P, et al. Burosumab Improved Histomorphometric Measures of Osteomalacia in Adults with X-Linked Hypophosphatemia: A Phase 3, Single-Arm, International Trial. J Bone Miner Res. 2019;34(12):2183-91. doi:10.1002/jbmr.3843

20. Ruppe MD, Zhang X, Imel EA, Weber TJ, Klausner MA, Ito T, Verveire M, Humphrey JS, Glorieux FH, Portale AA et al: Effect of four monthly doses of a human monoclonal anti-FGF23 antibody (KRN23) on quality of life in X-linked hypophosphatemia. Bone Rep. 2016;5:158-162.

21. Portale AA, Carpenter TO, Brandi ML, et al. Continued Beneficial Effects of Burosumab in Adults with X-Linked Hypophosphatemia: Results from a 24-Week Treatment Continuation Period After a 24-Week Double-Blind Placebo-Controlled Period. Calcif Tissue Int. 2019;105:271-84. doi:10.1007/s00223-019-00568-3

22. Linglart A, Biosse-Duplan M, Briot K, et al. Therapeutic management of hypophosphatemic rickets from infancy to adulthood. Endocr Connect. 2014;3;R13-30. Epub 2014/02/20. doi:10.1530/EC-13-0103

23. Emma F, Haffner D. FGF23 blockade coming to clinical practice. Kidney Int. 2018;94:846-8. Epub 2018/10/24. doi:10.1016/j.kint.2018.08.022

24. Imel EA, Zhang X, Ruppe MD, et al. Prolonged Correction of Serum Phosphorus in Adults With X-Linked Hypophosphatemia Using Monthly Doses of KRN23. J Clin Endocrinol Metab. 2015;100:2565-73. doi:10.1210/jc.2015-1551

25. Burosumab. In: REDBOOK® (electronic version). IBM Watson Health, Greenwood Village, Colorado, USA. Available at: https://www.micromedexsolutions.com. Accessed October 10, 2019.

26. Ruppe MD. X-Linked Hypophosphatemia. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews®. Seattle (WA), 1993.

27. Beck-Nielsen SS, Mughal Z, Haffner D, et al. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis. 2019;14:58. Epub 2019/02/28. doi:10.1186/s13023-019-1014-8

28. Day AL, Gutierrez OM, Guthrie BL, Saag KG. Burosumab in tumor-induced osteomalacia: A case report. Joint Bone Spine. 2019. Epub 2019/08/06. doi:10.1016/j.jbspin.2019.07.012

29. NIH U.S. National Library of Medicine. Study of KRN23 in Adult Subjects With Tumor-Induced Osteomalacia (TIO) or Epi- dermal Nevus Syndrome (ENS). ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02304367. November 22, 2019. Accessed: December 12, 2019.

30. Drugs and Lactation Database (LactMed) [Internet]. Bethesda, MD: National Library of Medicine (US); 2006-present. Burosumab. [Updated 2018 Dec 3].