Photocatalytic activity enhancement for removal of dye molecules based on plasmonic Ag grafted TiO$_2$ nanocubes under visible light driven

Ton Nu Quynh Trang1, Le Thi Ngoc Tu2, Tran Van Man3, Vu Thi Hanh Thu1,*

ABSTRACT
Introduction: Finding a novel photocatalyst for photocatalytic degradation operating in the wavelength range from UV to visible light has been considered a great potential for environmental remediation. Herein, TiO$_2$ nanocubics (NCs) decorated Ag nanoparticles (NPs) with various concentrations were developed. Methods: The crystal structure, morphological and chemical characteristics of prepared photocatalysts were thoroughly analyzed by a series of main analyses (X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), and UV-Vis spectra). Results: The results revealed that a significantly promoting visible-light photocatalytic behavior of TiO$_2$NCs@Ag photocatalyst was observed. The photocatalytic methyl orange (MO) degradation of the as-synthesized Ag anchored TiO$_2$NCs photocatalyst (85% and 62% under UV light and visible light, respectively) exhibited outstanding photocatalytic efficacy compared with pristine TiO$_2$ NCs. The achieved results could be assigned to the synergistic effects between TiO$_2$NCs and AgNPs, leading to enhanced charge carrier separation and improved absorption ability in visible-light response. Conclusion: This work facilitates designing and developing high-efficiency heterostructure photocatalysts for practical works related to environmental purification.

Key words: Metal-induced plasmonic resonance, charge transfer process, photocatalytic performance, TiO$_2$ nanocubes, Ag nanoparticles

INTRODUCTION
The polluted environment caused by aromatic sulfur-containing compounds and organic dyes has become one of the most urgent issues in recent years$^{1–3}$. Therefore, the disintegration of poisonous organic for environmental purification based on green technologies and energy-efficient has attracted enormous attention. Recently, photocatalysis regarded as one of the advanced green technologies for environmental purification with zero harmful emissions and without additional pollutant emission has become one of the hot topics in the field of environmental remediation practice with the aid of light$^{4–6}$. Among these various semiconductor materials, TiO$_2$ has been proved to be a promising candidate because of its chemical and biological inertness, high photo corrosion resistance, low cost, and environmentally friendly7,8. However, the photocatalytic performance of TiO$_2$ has faced with two main obstacles: i) TiO$_2$ with a large bandgap of 3.2 eV can only harvest under ultraviolet (UV) light photons, which constitutes a small fraction of total solar energy; ii) the high recombination rate of photo-generated electron-hole pairs resulting in decrease the photocatalytic productivity9,10. Hence, to address the above problems, many attempts have been proceeded to enhance the TiO$_2$ photocatalytic performance, including cocatalyst decoration, doping bandgap engineering, the combination with other semiconductors and morphology control nanostructure construction, and morphology control$^{11–13}$. Among these approaches, sensitizing the surface through combining TiO$_2$ with plasmonic metal nanoparticles to create heterostructure engineering has been a prominent area of scientific interest in recent years as the presence of plasmonic nanoparticles on the surface of these metal oxides that could provide several advantages. First, the noble metal incorporated with TiO$_2$ may extend the absorption efficiency toward the visible light region through localized surface plasmon resonance (LSPR)14,15. A second outstanding advantage of functionalizing TiO$_2$ with plasmonic nanoparticles was the improvement of photoinduced electron-hole pairs separation based on the formation of heterojunction related to the Schottky barrier at the metal—semiconductor interface, contributing efficient spatial charge separation16,17. For example, as reported by Gong et al., the combination of plasmonic
noble metals (such as Au and Ag) with semiconduc-
tor would be a more promising option for photocat-
alytic activity due to the enhancement of absorbance
in the visible regime and trapping the photogener-
ated charge carriers. As reported by Jafari et al.,
loading silver nanoparticles on the surface of TiO$_2$
nanoparticles exhibited a higher RhB photocatalytic
degradation compared with pristine TiO$_2$ under UV
light irradiation. Yin et al. reported that meso-
porous TiO$_2$ hollow shells exhibited a good photoca-
talytic behavior for the degradation of organic dye
molecules. Yang et al. showcased that hollow TiO$_2$
hierarchical boxes with appropriate anatase and rutile
ratios showed a high light conversion ability. The
plasmonic materials less than 10 nm could enable hot
carrier formation. An optimal sizes in the range of 40-
50 nm, they could harvest light efficiently. As a mat-
ter of fact, the morphology of noble metal-TiO$_2$ could
vitally affect the plasmonic resonance and their pho-
tocatalytic activity. Hence, based on the above discus-
sion, a design of TiO$_2$ nanomaterials with cubic struc-
ture with an enhancement light absorption capacity
based on their high specific area was proposed. More-
over, the enhancement of TiO$_2$ photocatalytic behav-
ior in the visible regime by decorating the surface of TiO$_2$
with spherical Ag nanoparticles was evaluated. The Ag-anchored onto TiO$_2$ photocatalysts were
characterized by X-ray diffraction (XRD), scanning
electron microscopy (SEM), ultraviolet-visible (UV-
Vis) diffuse reflectance spectroscopy, and energy-
dispersive X-ray (EDX). The improved performance of TiO$_2$NCs@Ag was also proven in the photodegra-
dation of methyl orange (MO) under visible light ir-
radiation. A possible photocatalytic mechanism was
projected based on the evaluation of photogenerated
electron-hole pairs separation in photocatalytic activ-
ity.

EXPERIMENT

Materials

Titanium butoxide (Ti(C$_4$H$_9$O)$_4$, Aldrich Chem-
ical, <99%), tetramethylammonium hydroxide
(C$_4$H$_9$NO, Merck), hydrochloric acid (HCl, Merck,
<37%), and methanol (CH$_3$OH, Merck, <99.9%)
ag nitrate (AgNO$_3$, > 99%, Merck), methyl orange
(Merck, MO) and polyvinylpyrrolidone (PVP) were
received and utilized for experiments without further
purification. Double-distilled water was used during
the experiments to prepare the required solutions.

Fabrication of TiO$_2$ nanocubes (NCs)

The TiO$_2$NCs were fabricated via the hydrothermal
method. In a typical experiment, titanium butoxide
(0.05 mol) was dissolved in double-distilled wa-
ter (30 mL) and stirred at 50 °C for 1 h, followed by
adding the tetramethylammonium hydroxide (0.017
mol) into the above solution at 0 °C. The resulting
mixture was heated at 135 °C for five h. Then the
mixed solution was transferred to a Teflon lined au-
toclave and heated at 230 °C for five h. The obtained
precipitate was centrifuged and washed several times
with water and ethanol aqueous solution, followed by
drying under vacuum.

Preparation of Ag modified onto TiO$_2$NCs (TiO$_2$NCs@Ag)

Ag modified onto TiO$_2$ using the photo-reduction
method under UV light irradiation. Ag was also
deposited on the surface of TiO$_2$NCs via a 0.5 M
AgNO$_3$ salt solution as the Ag precursor. Firstly, 0.1
g TiO$_2$NCs was added to 100 ml of an aqueous solu-
tion of AgNO$_3$ with various concentrations of pow-
der (the wt.% of Ag in the solution was 0.5, 1.0, and
1.5). Then, the suspension was vigorously stirred for
2 hours under UV light irradiation. Finally, the as-
obtained black-colored products were centrifuged to
separate the powder and washed with double-distilled
water several times, and dried for 6h at 60 °C under
vacuum.

Characterization

The characteristic crystallinity and the morphologi-
c topography of as-prepared products were char-
acterized using X-ray diffraction analysis using Cu
Kα radiation (λ=1.5406 Å) and field-emission scan-
ing electron microscopy (FESEM, Hitachi S-4800)
equipped with an energy dispersive Xray spectrom-
eter (EDX) to determine the constituent elements.
The UV-Visible absorbance spectra were measured on
a UVVis-NIR Spectrophotometer (SHIMADZU UV-
3600) from 200 to 800 nm at a scan rate of nm/min.
Raman scattering spectra of the photocatalysts were
evaluated by a Horiba XploRA PLUS Raman System
using a 532 nm laser with a power 25W as the excita-
tion source.

The photocatalytic activity of as-synthesized samples
was monitored by photodisintegration of methylene
orange (MO) dyes under the illumination of UV light
and visible light over the time period of 150 min. Prior
to light irradiation, a mixture of organic dye and pho-
tocatalyst were placed in dark for 30 min to establish
RESULTS

Figure 1 show the characteristic morphology of the as-synthesized TiO\(_2\) NCs and TiO\(_2\) NCs@Ag. It indicated that the cubic TiO\(_2\) particles had well-shaped nanocubes and uniform size distribution with sizes of ca. 800 nm. Almost mono-dispersed structures of TiO\(_2\) NCs could be observed in Figure 1(a). The SEM image (Figure 1(b)) revealed the uniform morphology of the as-prepared Ag NPs decorated onto TiO\(_2\) NCs. As can be seen in Figure 1(b), the Ag NPs had spherical in shape on the surface of the TiO\(_2\) NCs with an average diameter of ~30 nm. The dispersive energy X-ray (EDX) spectra were used to collect the compositions of the photocatalyst, as depicted in Figure 1. It could be seen clearly that the EDX analysis (Figure 1(c-e)) proved the existence of Ti, O, and Ag, and no other impurities in the EDX analysis were observed. Moreover, Figure 1(f) provided evidence related to the corresponding elemental mapping for Ti, O, and Ag, indicating Ag was successfully attached to the surface of TiO\(_2\) NCs.

The crystal structure and phase confirmation of the as-synthesized TiO\(_2\) and TiO\(_2\) NCs@Ag specimens were characterized by XRD patterns, as shown in Figure 2. The diffraction peaks of TiO\(_2\) located at 2\(\theta\) = 25\(^\circ\), 36\(^\circ\), 41\(^\circ\), 48\(^\circ\), 54.5\(^\circ\), and 57\(^\circ\) corresponding to the reflection planes of (101), (103), (210), (200), (105), and (201) (JCPDS No. 21-1272), respectively, and could be attributed to the tetragonal anatase phase of TiO\(_2\). No obvious peaks related to AgNPs were observed in the XRD patterns of TiO\(_2\) NCs@Ag, which may be due to the low loading content of the metal on the surface of TiO\(_2\) NCs. Moreover, the addition of AgNPs did not change the characteristic diffraction peaks of tetragonal anatase TiO\(_2\) NCs. This demonstrated that the AgNPs only deposited on the surface of TiO\(_2\) without inserting into host structure.

To further ascertain the optical properties and the band gaps of as-prepared photocatalysts, UV–vis diffusion reflectance spectra of TiO\(_2\) NCs and TiO\(_2\) NCs@Ag was characterized as shown in Figure 3. It showed that the plurality absorption of pristine anatase TiO\(_2\) possessing a wavelength region less than 400 nm (Figure 3a) with a bandgap of 3.3 eV was observed due to its large bandgap associated with a charge transfer from the valence band (VB) to the conduction band (CB), whereas, compared to pure TiO\(_2\), Ag decorated TiO\(_2\) specimens exhibited a strong visible light absorption toward longer wavelengths corresponding to the bandgap of 3.1 eV (Figure 3b) which was derived from the localized surface plasmon resonance (LSPR) between the Ag nanoparticles anchored on the TiO\(_2\) NCs surfaces. As the LSPR of Ag nanoparticles on the surface of TiO\(_2\) NCs was excited by visible light related to the collective oscillation of electrons in the noble metal nanoparticles. Therefore, the photocatalytic performance of TiO\(_2\) could be significantly enhanced in the visible light.

Raman spectra were conducted to investigate the vibration modes, phase purity, and crystallinity of pristine TiO\(_2\) NCs and Ag-modified TiO\(_2\) NCs as shown in Figure 4. It was observed that The Raman spectrum of TiO\(_2\) NCs located at 143.32, 202.61, 397.92, 514.89, and 635.22 cm\(^{-1}\) was due to the presence of anatase phase TiO\(_2\), indicating that anatase nanoparticles were the dominant species. No signals associated to metal particles were recorded for the samples owing to the relatively low concentration of Ag grafted onto TiO\(_2\). Moreover, the intensities of Raman peaks boosted with the decoration Ag NPs, and the position of the characteristic Raman peak of TiO\(_2\) has remained. This result showed that the modification of AgNPs onto TiO\(_2\) NCs surface did not significantly change any phase transition and vibrational modes; however, it could cause a fluctuation of the electronic environment in the surroundings at the interface between TiO\(_2\) and Ag NPs.

In order to elucidate the photocatalytic performance of pristine TiO\(_2\) NCs and TiO\(_2\) NCs@Ag photocatalyst, all as-prepared samples in this work were assessed under photodegradation of methyl orange (MO) as a model pollutant in the presence of UV light and visible after 150 min irradiation as shown in Figure 5. It could then be clearly observed that no MO aqueous solution photodegradation without the presence of any photocatalyst was recorded when irradiated under UV light and visible light illumination, whereas the degradation efficiencies for MO of TiO\(_2\) NCs and TiO\(_2\) NCs@Ag was remarkably changed, thereby confirming the efficiency of the photocatalyst. This could be explained by the
higher charge separation depend on the generation of junctions between TiO$_2$NCs, AgNPs, and LSPR effect that efficiently promoted the absorption and generation of the photoinduced electrons and holes. It demonstrated that the existence of photocatalyst played an important role in improving the disintegration efficacy. Interestingly, in comparison with pristine TiO$_2$NCs, TiO$_2$NCs grafted with AgNPs exhibited a higher decomposition of organic dyes under both UV light and visible light illumination. As depicted in Figure 5(a,b), it was noteworthy to mention that among various composite photocatalysts, TiO$_2$NCs@Ag-1.0 photocatalysts the highest MO decomposition efficiency of 85% and 62% under UV and visible light illumination, respectively. With increasing Ag concentration caused a decrease in the photocatalytic performance due to the shielding effect and preventing the interaction of light to the photocatalyst that could be assigned to the reduction in the photocatalytic performance of TiO$_2$NCs@Ag-1.5 under both UV and visible lights. These results exhibited that the combination of Ag and TiO$_2$NCs was accountable for enhancing the photocatalytic efficacy under UV and visible light irradiation. The kinetic curves for the decomposition of organic dye were determined through the linearized first-order decay model $ln\left(\frac{C}{C_0}\right)$=kt, where C_0 and C were corresponding to the absorbance of MO at the beginning time and reacting for a certain time t, respectively, and k was pseudo-first rate kinetic constant. The achieved data exhibited that there was a linear correlation between $ln\left(\frac{C}{C_0}\right)$ and the illumination time, indicating that the disintegration of MO dye followed the first-order rate law under UV light and vis-

Figure 1: The morphological characteristics and chemical elements of the prepared photocatalyst. (a,b) SEM images of TiO$_2$NCs and Ag grafted TiO$_2$NCs, respectively. (c-e) elemental mapping of O, Ti, and Ag, respectively. (f) EDX spectrum of TiO$_2$NCs@Ag heterostructures.
Figure 2: The crystal structures using XRD patterns of TiO2NCs and TiO2NCs@Ag photocatalyst.

Figure 3: The optical properties of photocatalyst through the UV-Vis absorption spectra (a), and plot of $(\alpha h\nu)^{1/2}$ vs. bandgap energy (b) of pristine TiO2 NCs and as-synthesized TiO2 NCs@Ag-0.5.
Figure 4: The vibration modes through Raman spectra of TiO$_2$ NCs and TiO$_2$ NCs@Ag specimens.

Figure 5: Visible light as depicted in Figure 5(c,d). The reaction rate constants for the degradation of MO were found to be 0.0068 min$^{-1}$, 0.0090 min$^{-1}$, 0.0139 min$^{-1}$, 0.0109 min$^{-1}$, and for pure TiO$_2$ NCs, TiO$_2$ NCs@Ag-0.5, TiO$_2$ NCs@Ag-1.0, and TiO$_2$ NCs@Ag-1.5, respectively, under UV light. The estimated reaction rate constants were 0.0006, 0.0060, 0.0093, and 0.0069 min$^{-1}$, respectively, under the visible light. The reaction rate constant value of TiO$_2$ NCs@Ag photocatalyst showed outstanding degradation of organic dye compared with pristine TiO$_2$ NCs, which was governed by i) the increase in the surface area based on TiO$_2$ cubic structure and enhancement of absorption ability under irradiated condition based on the plasmonic effect of AgNPs; iii) improvement of charge transport phenomenon and prevention of charge recombination due to the establishment of a Schottky barrier between the Ag and TiO$_2$, leading to a superior performance of Ag decorated TiO$_2$ NCs.

DISCUSSION

In recent years, the anatase TiO$_2$ cubic shapes exhibited an outstanding performance compared with nanotubes, nanoparticles because of their larger specific surface$^{27-29}$. Therefore, being grafted with AgNPs was favorable for the transportation and adsorption of organic substrates, leading to excellent photocatalytic performance of TiO$_2$ NCs@Ag structure. Based on above results, to further understand the photocatalytic performance, a photocatalytic reaction decomposition mechanism was proposed (Figure 6). Upon exposure to UV light (Figure 6(a)), TiO$_2$ was excited and generated the charge carriers. The photogenerated electrons jumped to the CB and transferred to Ag NPs. These electrons did reduction reactions to form \cdotO$_2$- radical anions. Meanwhile, the photoinduced holes left behind at the VB and directly oxidized the absorbed H$_2$O to generate •OH radicals. Regarding visible light irradiation (Figure 6(b)), TiO$_2$ did not excite due to the wide forbidden energy gap. Only the Ag NPs could strongly absorb the visible light depending on the LSPR effect to generate hot electrons. These photo-excited electrons transferred to CB of TiO$_2$ and participated in redox reactions to form reactive species reduced to form \cdotO$_2$- radical anions. These generated reactive species with highly oxidative capability participated in the oxidative deterioration of organic dye. Based on the above results, the presence of Ag NPs improved the photocatalytic performance of TiO$_2$ NCs under both UV light and
visible light irradiation. This experiment showcased that the coupling of TiO$_2$ NCs and Ag could provide a new insight into the decomposition of pollutants.

CONCLUSION

In summary, a remarkable photocatalytic performance of solid-phase heterojunction photocatalysts for degradation of MO dye on TiO$_2$ NCs@Ag as a model reaction system based on the hydrothermal procedure and photo-reduction AgNO$_3$ in the presence of UV light. The TiO$_2$ NCs@Ag specimens exhibited an effective degradation process of MO dye in both UV light and visible light irradiation with respect to that of the bare TiO$_2$. These results were obtained in the presence of AgNPs and the unique properties of TiO$_2$ nanocubes. This excellent behavior was designated to the efficient creating interaction at junctions between TiO$_2$ and AgNPs, leading to enhanced photocatalytic and effective charge carrier generation. The as-prepared TiO$_2$ NCs@Ag heterojunction provided not only a possible pathway to improve the photocatalytic efficiency under visible-light but also opened new prospects for designing 3-dimensional photocatalysts.

COMPETING INTERESTS

The authors declare that there is no conflict of interest regarding the publication of this article.

AUTHORS’ CONTRIBUTIONS

Ton Nu Quynh Trang has constructed the present idea, carried out, and written the manuscript with support from Vu Thi Hanh Thu. Le Thi Ngoc Tu conducted the experiments. Tran Van Man has supported analytical techniques. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

This research is funded by the University of Science, VNU-HCM under grant number T2020-07.

REFERENCES

1. Liu S, Liu Y, et al. Stable visible-light photocatalytic degradation of organic pollutant by silver salt of Ti-substituted Keggin-type polyoxotungstate. Journal of environmental chemical engineering. 2016;4(1):908–914. Available from: https://doi.org/10.1016/j.jece.2015.12.027.

2. Zhou C, et al. Rational design of carbon-doped carbon nitride/Bi2O17Cl2 composites: a promising candidate photocatalyst for boosting visible-light-driven photocatalytic degradation of tetracycline. ACS Sustainable Chemistry & Engineering. 2018;6(5):6941–6949. Available from: https://doi.org/10.1021/acssuschemeng.8b00782.
Figure 6: Schematic illustration of the charge transfer process in the TiO₂:NCs@Ag photocatalyst (a) under UV light irradiation; (b) under visible light irradiation.

3. E, V, et al. Photo-activated degradation of tartrazine by H2O2 as catalyzed by both bare and Fe-doped methyl-imogolite nanotubes. Catalysis Today. 2018;304:199–207. Available from: https://doi.org/10.1016/j.cattod.2017.08.003.

4. Trang TNQ, Tuyen CLT, Man TV, Thu VTH. Surface modification of titanium dioxide nanotubes with sulfur for highly efficient photocatalytic performance under visible light irradiation. Science and Technology Development Journal. 2018;21(3-4):98–105. Available from: https://doi.org/10.32508/stdj.v21i3.694.

5. Weon S, He F, Choi W. Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: visible light utilization and catalyst deactivation. Environmental Science: Nano. 2019;6(11):3185–3214. Available from: https://doi.org/10.1039/C9EN00891H.

6. Trang TNQ, Doanh TT, Thu VTH. SrTiO₃ nanocubes doped with Ir as photocatalytic system for enhancing H₂ generation from water splitting. Science and Technology Development Journal. 2020;23(3):602–609. Available from: https://doi.org/10.32508/stdj.v23i3.2403.

7. Trang TNQ, et al. In Situ Spatial Charge Separation of Ir@TiO₂ Multi-Phase Photosystem Toward Highly Efficient Photocatalytic Performance of Hydrogen Production. J Phys Chem C. 2020;124(31):16961–16974. Available from: https://doi.org/10.1021/acs.jpcc.0c03590.

8. Kim K, et al. Solid-Phase Photocatalysts: Physical Vapor Deposition of Au Nanoislands on Porous TiO₂ Films for Millimolar H₂O₂ Production within a Few Minutes. ACS Catalysis. 2019;9(10):9206–9211. Available from: https://doi.org/10.1021/acscatal.9b02269.

11. Sreekanth TVM, Nam ND, Kim J, Yoo K. SnO₂ QDs@CoFe₂O₄ NPs as an efficient electrocatalyst for methanol oxidation and oxygen evolution reactions in alkaline media. Journal of Electroanalytical Chemistry. 2020;873:114363. Available from: https://doi.org/10.1016/j.jelechem.2020.114363.

12. Xing M, et al. Modulation of the reduction potential of TiO₂-x by fluorination for efficient and selective CH₄ generation from CO₂ photoreduction. Nano letters. 2018;18(6):3384–3390. PMID: 29701060. Available from: https://doi.org/10.1021/acs.nanolett.8b00197.

13. Chiu YH, et al. Yolk-shell nanostructures as an emerging photocatalyst paradigm for solar hydrogen generation. Nano Energy. 2019;62:289–296. Available from: https://doi.org/10.1016/j.nanoen.2019.05.008.

14. Wu N. Plasmonic metal-semiconductor photocatalysts and photoelectrochemical cells: a review. Nanoscale. 2018;10(6):2679–2986. Available from: https://doi.org/10.1039/C7NR08487K.

15. Kim K. Solid-Phase Photocatalysts: Physical Vapor Deposition of Au Nanoparticles on Porous TiO₂ Films for Millimolar H₂O₂ Production within a Few Minutes. ACS Catalysis. 2019;9(10):9206–9211. Available from: https://doi.org/10.1021/acscatal.9b02269.

16. Kim M, et al. Hot-Electron-Mediated Photochemical Reactions: Principles, Recent Advances, and Challenges. Advanced Optical Materials. 2017;5(15):1700004. Available from: https://doi.org/10.1002/adom.201700004.

17. Le TNT, et al. TiO₂ nanotubes with different Ag loading to enhance visible-light photocatalytic activity. Journal of Nano-Biotechnology. 2017;Available from: https://doi.org/10.1155/2017/6092195.

18. Zhang P, Wang T, Gong J. Mechanistic understanding of the plasmonic enhancement for solar water splitting. Advanced Materials. 2015;27(36):5328–5342. PMID: 26265309. Available from: https://doi.org/10.1002/adma.201500888.

19. Jafari Z, et al. Ag/TiO₂/freeze-dried graphene nanocomposite as a high performance photocatalyst under visible light irradiation. Journal of Energy Chemistry. 2016;25(3):393–402.
Available from: https://doi.org/10.1016/j.jecchem.2016.01.013.

20. Joo JB, et al. Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Advanced Functional Materials. 2013;23(34):4246–4254. Available from: https://doi.org/10.1002/adfm.201300255.

21. Jia C, Zhang X, Yang P. Construction of anatase/rutile TiO2 hollow boxes for highly efficient photocatalytic performance. Applied Surface Science. 2018;430:457–465. Available from: https://doi.org/10.1016/j.apsusc.2017.06.163.

22. Lin ZW, et al. Seed-Mediated Growth of Silver Nanocubes in Aqueous Solution with Tunable Size and Their Conversion to Au Nanocubes with Efficient Photothermal Property. Chemistry-A European Journal. 2016;22(7):2326–2332. PMID: 26756437. Available from: https://doi.org/10.1002/chem.201504303.

23. Lim SP, et al. Gold-silver@TiO2 nanocomposite-modified plasmonic photoanodes for higher efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics. 2017;19(2):1395–1407. PMID: 27976767. Available from: https://doi.org/10.1039/C6CP08550C.

24. Chong X, et al. Photocatalytic degradation of rhodamine 6G on Ag modified TiO2 nanotubes: surface-enhanced Raman scattering study on catalytic kinetics and substrate recyclability. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015;481:7–12. Available from: https://doi.org/10.1016/j.colsurfa.2015.04.021.

25. Alsharaeh EH, et al. Sol-gel-assisted microwave-derived synthesis of anatase Ag/TiO2/GO nanohybrids toward efficient visible light phenol degradation. Catalysts. 2017;7(5):133. Available from: https://doi.org/10.3390/catal7050133.

26. Nayak S, Swain G, Panda K. Enhanced photocatalytic activities of RhB degradation and H2 evolution from in situ formation of the electrostatic heterostructure MoS2/NiFe LDH nanocomposite through the Z-Scheme mechanism via p-n heterojunctions. ACS applied materials & interfaces. 2019;11(23):20923–20942. PMID: 31145580. Available from: https://doi.org/10.1021/acsami.9b06611.

27. Mukhopadhyay S, Maiti D, Saha A, Devi PS. Shape transition of TiO2 nanocube to nanospindle embedded on reduced graphene oxide with enhanced photocatalytic activity. Crystal Growth & Design. 2016;16(12):6922–6932. Available from: https://doi.org/10.1021/acs.cgd.6b01096.

28. Yang X, et al. Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes. Journal of Materials Chemistry A. 2015;3(16):8800–8807. Available from: https://doi.org/10.1039/C5TA00614G.

29. Zhao X, et al. Shape-and size-controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active (100) and (001) facets. Advanced Functional Materials. 2011;21(18):3554–3563. Available from: https://doi.org/10.1002/adfm.201100629.