Type of the Paper (Review)

ADP-ribosylation as post-translational modification of proteins: use of inhibitors in cancer control

Palmiro Poltronieri 1,*, Masanao Miwa 2 and Mitsuko Masutani 3,*

1 Institute of Sciences of Food Productions, National Research Council of Italy, CNR-ISPA, via Monteroni, Lecce; email: palmiro.poltronieri@ispa.cnr.it
2 Nagahama Institute of Bio-Science and Technology, Japan. Email: m_miwa@nagahama-i-bio.ac.jp
3 Department of Molecular and Genomic Biomedicine, CBMM, Nagasaki University Graduate School of Biomedical Sciences, Japan; email: mmasutan@nagasaki-u.ac.jp
* Correspondence: palmiro.poltronieri@ispa.cnr.it; tel. +393929705443. mmasutan@nagasaki-u.ac.jp

Abstract:
Among post-translational modifications of proteins, ADP-ribosylation has been studied for over fifty years, assigning to this PTM a large set of functions, including DNA repair, transcription and cell signaling. This review presents an update on the function of a large set of enzyme writers, the readers that are recruited by the modified targets, and the erasers that reverse the modification to the original amino acid residue, removing the covalent bonds formed. In particular, the review provides details on the involvement of the enzymes performing MAR/PAR cycling in cancers. Of note, there is potential for application of the inhibitors developed for cancer also in the therapy of non-oncological diseases such as the protection against oxidative stress, suppression of inflammatory responses, and the treatment of neurodegenerative diseases. This field of studies is not concluded, since novel enzymes are being discovered at a rapid pace.

Keywords: ADP-ribosyl transferase (ART); Poly ADP-ribose polymerase (PARP); ADP-ribose (ADPR); Sirtuin (SIRT); poly ADP-ribose glycohydrolase (PARG); ADP-ribose hydrolase (ARH); Macro-domain (MACRO).

1. Introduction
Post-translational modifications (PTM) of proteins require the activity of enzyme writers and erasers, and their presence is recognized by readers, protein modules or structures that bind to specific chemical structures and organize protein-protein interactions. In PTM reactions, the amino acids that are modified may be available or may be already involved in other modifications, therefore different types of PTM may interfere for the same amino acids.

The purpose of this review is an update on the current knowledge on ADP-ribosylation reactions. There are several types of enzymes, broadly defined as polyADP-ribosylating (PARylating) and monoADP-ribosylating (MARylating) enzymes. In the following paragraph are introduced the polymer forming writers, the poly(ADP-ribose) polymerases. Then, a short presentation introduces the diphtheria-toxin-like ADP-ribose transferases (ARTDs), the cholera-toxin-like ARTCs, and the MARylating sirtuins. Several ADP-ribosylating enzymes are linked to cancer development, and the review discusses the proposed applications of specific ART inhibitors for the containment of cancers and their therapeutic potential.

2. ADP-ribosylation
Two main groups of enzyme writers of protein ADP-ribosylation are described. MARylating enzymes attach one unit of ADPR, while PARylating enzymes synthesize and attach long PAR polymers. Scaffolding functions are ascribed to certain mono(ADP-ribose) (MAR) and poly(ADP-ribose) (PAR) structures. Several types of proteins may read these domains and are recruited to MAR and PAR sites. Enzymes that erase in part or
completely the modification are described in detail. ADP-ribosylation of phosphorylated ends of RNA and DNA will not be discussed in the review.

2.1. Enzymes involved in ADP-ribosylation of proteins: the writers

The writers use NAD$^+$ as substrate to transfer the ADP-ribose (ADPR) moiety to target amino acids and release nicotinamide (NAM): when one unit of ADPR is attached, they are named mono-ADP-ribosyl-transferases (mARTs) and the reaction is called MARylation [1,2] (see Figure 1); when a polymer of various, numerous units of ADPR is formed, linear or branched, they are named poly(ADP-ribose) polymerases (PARPs) and this modification of proteins is called PARylation [1,2] (Figure 2).

ADP-ribosylation reactions are present in all domains of life, such as invertebrates, fungi, bacteria and viruses [3,4]. The main group of ART genes coding for MAR and PAR writers is clustered into seven clades [4]. Many bacterial pathogens possess enzymes performing this modification to deregulate cellular functions [5]. For instance, cholera toxin MARYlates arginine on Gs alpha subunit, to render GTPase activity constitutive. Diphteria toxin MARylates diphthamide (a modified histidine) on elongation factor 2 (EF-2) to inhibit protein synthesis. In humans, there are seventeen transcribed proteins belonging to diphteria-toxin-like group, named ADP-ribosyl transferases D-type (ARTDs), involved in MAR/PAR modifications [6]. Biological functions of PARylation have been reviewed extensively [7,8]. PARP1, PARP2 and tankyrases (PARP5a/ARTD5, PARP5b/ARTD6, TNKS) perform PARylation, and particularly PARP1 and PARP2 can synthesize long, branched polymers. PARP3 and Vault-PARP4 attach mainly one unit of ADPR. The PARylylating PARPs are recognized by the histidine-tyrosine-glutamate (H-Y-E) triad in which glutamate has a catalytic role in PAR synthesis [6]. PARP1 and PARP2 can heterodimerize: the DNA binding domain and BRCA1 C-terminal (BRCT) domain of PARP1 are responsible for this interaction [8]. The dimer partners ADP-ribosylate each other, which may be relevant for efficient DNA repair of single strand- and double strand-breaks [7,8]. PARP3 binds to PARP1, and by MARylation activates PARP1 even in the absence of DNA damage [9-11].

Nomenclature of enzymes has changed over time [12], so that certain enzymes, when named as ARTD or as PARP, maintained the same number, while for others, when using the name PARP or the name ARTD, the number has changed. Therefore, when discussing the enzymes in which the numbering is different, this review will use both names to avoid confusion.

As for the human MARylyating ARTs, their members are characterized by the presence in the triad motif of isoleucine (I), leucine (L), threonine (T), valine (V), or tyrosine (Y) instead of glutamate [6]; all these ARTs have enzymatic activity [1,13] except ARTD13, in which the catalytic domain is mutated, but has evolved new antiviral properties. As for ARTD9, considered to be inactive, it forms a complex with Deltex (DTX3L) protein, a ubiquitylating enzyme, and the complex MARylates glycine76 on ubiquitin: this reaction is called PARylation-dependent ubiquitylation (PARdU) [1,14].

Among cholera-toxin-like mono(ADP-ribosyl) transferases (ARTCs) four genes are expressed in humans, but only ARTC1 and ARTC5 are active [15].

In addition to these PARP-domain containing enzymes, there are few sirtuins with MARylating activity. SIRT4, SIRT6 and SIRT7 perform specific MARylation of selected targets and in this way regulate cell metabolism and transcription [15]. Sirtuins are members of histone deacetylases. Sirtuins use NAD$^+$ to remove acyl and acetyl groups from lysine forming 2′-O-acyl-ADP-ribose [1,16]. Among MARylating sirtuins, SIRT4 MARylates glutamate dehydrogenase (GDH) [17] in mitochondria, while SIRT6 and SIRT7 are localized in the nuclei and MARylate a large set of target proteins.

2.2 Amino acids modified by MAR/PAR

In the pioneering years, PARP1 was principally thought to be involved in modification of acidic amino acids, with glutamate and aspartate as acceptors for automodification. Recently it was shown that serine residues of target proteins such as histones are the most abundant acceptor sites for PARylation, especially after DNA damage. This is made possible by the interaction of PARP1 with histone PARylation factor 1 (HPF-1), that changes the tertiary structure of PARP1 and PARP2, conferring them specificity for serines. In the absence of HPF1, PARP1 preferentially automodifies itself,
becoming unavailable for HPF1 interaction [18,19]. During the DNA damage repair, PARP1 and PARP2 modify serine residues [1], but also to a lesser extent tyrosine, lysine, and acidic residues [20]. Amino acid targets that can be modified include lysine (by PARP1, PARP3, ARTD10, ARTD11, and ARTD15/PARP16), aspartate and glutamate (by PARP1/2/3, ARTD8/PARP14, ARTD10, ARTD11, ARTD12, ARTD15/PARP16, ARTD17/PARP6), serine (PARP1/2), and cysteine (by ARTD11, ARTD12, ARTD17/PARP6); additional amino acids that can be modified are arginine and histidine [21–24]. However, the contribution of enzymatic ADP-ribosylation versus non-enzymatic conjugation reactions needs further studies [25,26]. Concerning sirtuin-dependent MARylation of amino acids, they transfer ADP-ribose to arginine, serine, threonine and cysteine residues of proteins.

3. Readers

There are several motifs for readers to recognize in MARylation and PARylation. PAR-binding motif (PBM) is present in proteins involved in the DNA damage response (DDR), chromatin remodeling or RNA processing. PAR-binding zinc finger (PBZ) motif is present in proteins involved in DDR, such as aprataxin PNK-like factor (APLF), and in the regulation of DNA damage-activated checkpoints, i.e. checkpoint with FHA and RING domains (CHFR). WWE domain is present in two groups of proteins: E3 ubiquitin ligases such as RNF146 and in a few cases in ARTDs (PARP1, tankyrases, ARTD8/PARP14, ARTD11). RNF146/Ilduna ubiquitin ligase associates with tankyrase, involved in PARylation-dependent ubiquitylation (PARDU) reactions: tankyrases PARYlate their substrate proteins and then RNF146 recognizes PAR portion of PARYlated proteins by its WWE domain and is allosterically activated to ubiquitylate them for proteasomal degradation [27-30]. Several tankyrase binding motifs (TBM) act in concert to allow interaction between RNF146 and the ankyrin repeat clusters (ARC) of tankyrases [31]. Oligonucleotide/oligosaccharide-binding (OB) fold is present in single strand-DNA binding protein 1 (hSSB1), which relocates to sites of DNA damage by recognition of PAR polymers, promoting the DDR [32]. The exonuclease EXO1 contains a domain named “protein incorporated later into tight junctions (PiT) N terminus” (PiN). The PiN domain that binds to PAR facilitates EXO1 recruitment to DNA and supports repair of double strand breaks of DNA [33]. Other domains may contain the RNA recognition Motif (RRM), the serine arginine repeats and lysine arginine repeats (SR/KR) motifs, or the Forkhead-associated (FHA) domain (binding to iso-ADP-ribose), or the BRCA1 C-Termal (BRCT) in the Breast Cancer 1 (BRCA1) antioncogene, binding to (ADPR)n units [32,34]. ADPR-binding macrodomains can behave as readers, as in the case of AF1521 from Archeglobus fulgidus, that has been applied to proteomic studies for enrichment of ADP-riboseylated proteins [35-37]. PAR recognizing macrodomain is present in a histone H2A variant named H2A1.1 (mH2A1.1). This macrodomain interacts with PAR, and may support repair of DNA by stabilizing the chromatin. MacroH2A1.1 is recruited to DNA regions rich in PAR, stabilizing their negative charges, slowing down PAR degradation, NAD+ consumption and cell death, allowing efficient DNA repair after DNA damage [38]. MARylying sirtuins such as SIR17 attract the ADP-ribose-binding macrodomain of histone H2A1.1, and promote H2A1.1 accumulation in loci containing metabolic genes [39]. ALC1/CHD1L is a macrodomain protein, a PAR-binding Snf2-like ATPase, that has oncogenic activity and is frequently overexpressed in hepatocellular carcinoma (HCC) and other types of cancers. ALC1 is also a chromatin remodeler, and a helicase that supports nucleosomal sliding. In homologous recombination deficient cells such as in BRCA mutated phenotypes, ALC1 loss sensitises cells to PARP inhibitor, in spite of various resistance mechanisms, and reduces chromatin accessibility to DNA repair proteins [32,40]. Other Macrodomain proteins behave either as readers as well as erasers.

4. Erasers

PAR glycohydrolase (PARG) cleaves ADPR/ADPR bonds. PARG is a macrodomain-containing enzyme that efficiently cleaves PAR chains through exo- and endo-glycosyl hydrolytic activity. However, PARG cannot remove the terminal ADP linked to protein substrates. PARG has an important role in SSB and DSB DNA repair, which was shown using a cell-permeable PARG inhibitor [41] and functional approaches [42]. The deletion or inhibition of eraser enzymes such as PARG may be used to potentiate synthetic lethality
drugs in cancers with mutant phenotypes, and for PARP inhibitor-resistant cancers [43-45] or to sensitize cancer chemo-and radiotherapy [46]. PARG interacts with the synaptonemal complex proteins, REC-8/Rec8 and the MRN/X complex [47]. Several macromolecular proteins possess hydrolase activity to cleave the ADPR bound to proteins [48]. Among the PAR cleaving enzymes, are the ADPR hydrolase 3 (ARH3) which can cleave ADPR-ADPR bonds through exoglycosidic and endoglycosidic activities. ARH3 can cleave the ADPR from serine residues [48,49]. MacroD1, MacroD2, and terminal ADP-ribose protein glycohydrolase (TARG) specifically revert MARylation by hydrolysing the bond between the terminal ADPR bound to acidic residues (Glu, Asp) [50,51].

TARG1 possesses hydrolase activity towards MAR/PAR as well as O-acetyl ADPR (OAcADPr) deacetylase activity. Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) transforms the last ADPR group into phosphoribose bound to the proteins leaving 5’AMP. Similarly, nucleoside diphosphates linked to some moiety X (NUDX/NUDT) hydrolases cleave ADP-ribose to produce 5’ AMP and ribose-5-phosphate (R5P) [52,53,16]. Various NUDX/NUDT enzymes are overexpressed in cancers, in particular NUDT2 and NUDT5 are linked to aggressive adenocarcinomas and homologous recombination (HR)-positive breast cancers, respectively [52] linking them to ADPR catabolism and NAD+ salvage pathway [54,55]. PAR and MAR processing enzymes are often deregulated in cancers. MacroD1 is also named leukemia-related protein 16 (LRP16). Aberrant MacroD1 expression has been associated with leukemia, breast, colorectal, gastric, lung and liver cancers [53, 54]. MacroD2 when overexpressed is associated with estrogen independent growth and tamoxifen resistance in breast cancer [50, 56]. The overexpression of erase protein may disrupt the physiology of the signaling role of ADP-ribo-sylation reactions: following the activity of MARylating enzymes, a pathological accumulation of erasers will reverse the modification rapidly and will subvert the requirement of this PTM in a determined timing and cellular localisation, impeding the downstream signaling to be transduced.

5. Various types of post-translational modification of PARP1 and competition on amino acid substrates

Concerning PARP1, several post-translational modifications regulate its activity. SUMOylation on K486 renders this lysine unavailable for acetylation, determining a competition between SUMOylation and acetylation modifications of PARP1 [57]. Sirtein 6 (SIRT6) directly associates with PARP1 and MARYlates PARP1 at lysine 521, stimulating PARylation activity and DNA repair [58]. A similar role is ascribed to PARP3, that MARYlates PARP1 on a different amino acid. In PARP1, lysine 508 (K508) can be either acetylated by p300/CBP acetylase or methylated by SET7/9. Thus, when K508 is methylated, PARP1 cannot be recruited to PARylate p50 subunit of transcription factor NF-kB during the inflammatory response. K508 methylation by SET7/9 can be blocked by PARP1 automodification, probably due to steric hindrance and charge effects, making this PTM alternative. Histone methylase SMYD2 modifies lysine 528 on PARP1, enhancing PARylation activity in response to oxidative stress [59,60]. Histones are displaced from nucleosomes and chromatin by PTMs. PARP1 ADP-ribosylates lysine residues of the core histone tails. Histone H3 ADP-ribosylation is a PTM competing with H3 methylation by SET7/9. Thus, SET7/9 methylates H1 and H3 in the absence of PARP1. However, PARylation of H3 stimulates H1 methylation by SET1/9 [61].

The extracellular signal-regulated kinases 1/2 (ERK1/2) promotes PARP1 activation through direct phosphorylation of PARP1 at serine 372 and threonine 373 [62]. The phosphorylation sites are located near the beginning of the BRCT portion of the automodification domain, which has been proposed to modulate PARP1 activity [57]. PARP1 and CDK2 specifically interact following hormone treatment via the BRCA1 C-terminal domain (BRCT) of PARP1 and the cyclin-binding domain (CBD) of CDK2, which facilitates the phosphorylation of PARP1 at S785/S786. Phosphorylation of the serines on PARP1 results in an opening of the NAD-binding pocket within the catalytic domain, increasing PARP1 activity that leads to auto-PARylation. Furthermore, PARP1 and CDK2/cyclin E are recruited to chromatin, resulting in PARylated proteins and opening of chromatin through the displacement of histone H1. The receptor tyrosine kinase c-Met associates with and phosphorylates PARP1 at Tyr907 (pTyr907 or pY907) [63]. The enzyme activity of c-Met is required for the PARP1 and c-Met interaction, following H2O2 treatment. C-Met-dependent PARP1 phosphorylation at Tyr907 increases PARP1 activity, and results in reduced affinity to PARP inhibitors, thereby rendering cancer cells resistant to PARP
inhibitors. On the other side, cancer cells treated with c-Met inhibitors become more sensitive to PARP inhibitors. EGFR is another kinase that phosphorylates PARP1 [63], and the inhibition of both EGFR and PARP1 results in synthetic lethality in highly aggressive triple negative breast cancers (TNBCs).

6. Cancer proliferation, metastasis, angiogenesis: role of ADP-ribosylating enzymes according to deregulated expression or use of ART specific inhibitors

Various cellular functions are disrupted by altered expression of ADPR writers, readers, erasers. Several enzymes involved in ADP-ribosylation are linked to some form of cancer. Specific enzymes may cooperate in one or several forms of intrinsic hallmarks of cancer: uncontrolled proliferation, evasion of growth suppressors, cell death resistance, genome instability, reprogrammed energy metabolism, and escape from replicative senescence [64-67]. PARPs generating PAR modifications include PARP1/2 and the tankyrase, both of which are targets for cancer therapy. Finally, a paragraph will be focused on MARylating enzymes with specific involvement in certain types of cancer.

6.1. PARP1/2/3 inhibitors in cancer treatment

Various cancers showed to respond well to PARP1/2/3 inhibitors (PARPi). Olaparib, rucaparib, niraparib, veliparib (ABT-888), pamiparib, simmparib and talazoparib, can be applied for treatment of breast and ovarian cancers showing BRCA1/2 mutations, in which lower-fidelity non-homologous end-joining (NHEJ) occurs, in chromosomal aberration and in cell death [64,68]. However, there is continuous research to develop more efficient PARP1 inhibitors. ZINC67913374, is more stable than olaparib when interacting with PARP1 [69]. A novel PARP1 inhibitor, OL-1, was found to induce cell death and to inhibit cell migration in BRCA1 mutant MDA-MB-436 breast cancer cells [70]. PARP1/2 inhibitors block DNA repair, block PARP catalytic activity, and trap PARP1 and PARP2 proteins on DNA, interfering with replication and leading to cell death. Tumors displaying molecular features of BRCA-mutant tumors have been indicated with the \textquoteleft BRCAness\textquoteright phenotype [71]. BRCAness allows to expand the lethal pathway approach to tumors carrying deficiencies in tumor suppressor genes involved in homologous recombination (HR) defective cancers, possessing BRCA1, BRCA2, ATM, ATR, FANC, RAD51, BRI1 or PALB2 mutations. Cancers with defective ATM protein or aberrations of the MRE11A-RAD50-NBN complex, are included in BRCAness. ATR, RAD51, RAD54, DSS1, RPA1, NBN, CHK1, CHK2, FANCD2, FANCA, FANCC, FANCM, BARD1 mutated tumors also respond to PARP inhibitors [72,73].

PARP inhibitors were tested also in RNASEH2b deleted cancers, in HER negative cancers, in few cases as pretreatment with adjuvant taxanes, or antracycline [73]. Cancers defective in PTEN as prostate cancers can be sensitive to PARP inhibitors, due to down-regulation of RAD51. Since lysine methylase SMYD3, often overexpressed in tumors, regulates BRCA1/2 and DNA Repair, inhibition of SMYD3 with BCI-121 promotes cancer inhibition by PARP inhibitors such as olaparib [70]. Olaparib, as well as similar inhibitors, may induce cancer resistance in patients due to extrusion by multidrug resistance proteins and ATP-binding cassette pumps. PARPi inhibitor AZD2281 was more effective when co-administered with the P-glycoprotein inhibitor tarixigard [71-73]. Use of PARP inhibitors has been approved for treatment in BRCA1 and BRCA2 mutated breast and ovarian cancers, and for therapy in platinum sensitive ovarian cancer patients with defective BRCA1/2 genes [74]. Olaparib resistance may occur in cancers with homologous recombination defects [73]. Resistance due to reversion of mutated BRCA1/2 and other mechanisms is common; among these mechanisms are: PARP1 loss of function, silencing of DNA damage response (DDR) proteins such as 53BP1 and REV7, that reactivate the HR pathway [72-74]; selective loss of PARG [75-77]; loss of function of proteins involved in destabilization of the replication fork (EZH2, MUS81) [78]; high expression of CCAAT enhancer-binding protein β (C/EBPβ), upregulating HR pathway (BRCA1, RAD51) [79]. Ribonucleotide excision repair requires topoisomerase 1 and PARP1 activities: RNASEH2B mutant prostate cancers were found hypersensitive to PARP inhibitors [73,80]. In RAD51C-silenced high-grade serous ovarian cancers, RAD51 re-expression was associated with an acquired loss
of RAD51 promoter methylation during PARP inhibitors therapy [81]. The deletion or inhibition of eraser enzymes such as PARG may potentiate synthetic lethality drugs in cancers with mutant phenotypes [42,43,75]. The synthetic lethal interaction between ARH3 and PARG may set the basis for new therapeutic approaches [82]. Loss of ARH3 was shown as a mechanism to develop PARP1/2 inhibitor resistance [82]. The application of DNA methyltransferase inhibitor (DNMTi) may re-sensitize tumors to primary therapies [83]. In cells deficient in PTEN, overexpressing SAMHD1 with 53BP1 loss, PARP inhibitors were ineffective [84]. E2F7 is a member of the E2F transcription factor family. E2F7 and E2F8 are atypical E2F family members and mediate transcription repression, in particular of homologous recombination proteins. E2F7 in BRCA2-deficient cells confers sensitivity to PARP inhibitors, while its depletion counterbalances chemosensitivity of BRCA2-deficient cells, by promoting both HR and fork stability [85].

PARP3 deficiency or inhibition leads to growth suppression of BRCA1-deficient TNBC cells [86,87]. Genetic PARP3 knock-down led to decreased survival and in vivo tumorigenicity, results dependent on a defective Rictor/mTORC2 signaling complex and to ubiquitination and degradation of Rictor. Accordingly, PARP3 MARYlates GSK3β, a positive regulator of Rictor ubiquitylation [86]. PARP3 selective inhibitor ME0328 displays higher selectivity over ARTD1 and its nearest homologs [11]. Non-NAD+-like PARP1 inhibitors, binding to sites different from the NAD+ binding site, have been studied for prostate cancer treatment [88]. Several conjugates of ADP and morpholino nucleosides target PARP1/2/3 with high specificity [89], while ABT-888 showed high specificity toward PARP2 [90]. A different approach to reverse PARP inhibitors resistance, has been proposed through targeting autophagy and the enzymes controlling autophagy in HR repair proficient breast cancers [91]. Topoisomerase 1 inhibitors have been shown effective in cancer therapy of HR-deficient, Schlafen 11-positive cells in association with Olaparib, for the treatment of BRCA1−, BRCA2−, and PALB2-deficient cells [92]. Researchers are continuously developing new scaffolds for the setup of PARP inhibitors [93]. Furthermore, PARP inhibitors association with HDAC inhibitors such as SAHA or belinostat have shown benefits in prostate cancer [94]. A list of PARP1/2/3 inhibitors applied to cancer treatment is presented in Table 1.

6.2. Tankyrases: cell functions and TNKS inhibitors in cancer treatment

High levels of TNKS1 and/or TNKS2 expression have been observed mainly in colon, lung, brain, breast, ovarian and liver cancers [31]. Several mutations may occur altering PARylation activity, depending on large deletions or to point mutations. The stability of many proteins is regulated via PARdU: Axin1/2, PTEN, 3BP2, TRF1, are processed and degraded by PARdU, as well as the actors of this activity, TNKS1/2 and RNF146 [31]. Tankyrases modify the tumor suppressors phosphatase and tensin homolog (PTEN), and axin 1/2, which regulate the levels of phosphatidylinositol 3,4,5 triphosphate and β-catenin, negatively regulating Akt/PI3K pathway (PTEN) and Wnt signaling (axin). After PTEN or axin1/2 are PARylated by TNKS1/2 on acidic residues, RNF146 ubiquitylates on lysines destining them to proteasomal degradation.

Wnt-driven cancers such as CRC, HCC and lung cancers may benefit from Tankyrase inhibitors [31,95,96]. In lung cancer, most often showing TNKS overexpression, tumors possess abnormal Wnt activity, due to APC and β-catenin mutations, as well as to deregulation of upstream Wnt signaling effectors, such as Dishevelled 3 (Dvl-3), or downregulation of Wnt antagonists as Wnt-inhibitory factor 1 (WIF 1). Among substrates of Tankyrases, AXIN is a key regulator of the canonical Wnt signaling pathway. Wnt activation regulates the level and subcellular localization of the β-catenin transcription factor. Glycogen synthase kinase 3β (GSK3β), in collaboration with axin and APC (adenomatous polyposis coli) and other proteins, phosphorylates β-catenin, that is then degraded by the proteasome [96-98]. Activated Wnt complex inhibits the AXIN/GSK3β complex and stabilizes β-catenin, which can translocate into the nucleus. β-catenin protein levels are kept low by phosphorylation, so that β-catenin is ubiquitylated by a complex containing a β-transducin repeat-containing protein (BTrCP). Tankyrases PARylate AXIN, and recruit the E3 ubiquitin ligase RNF146 containing the PAR-binding WWE domain, which ubiquitylates AXIN, destining it for proteasomal degradation. In this optic, tankyrase promotes
Wnt signaling, while TNKS inhibitors are useful in treatment of Wnt-driven cancers [31,98]. G007-LK is a selective tankyrase inhibitor [99]: the treatment with this inhibitor induced loss of expression of MYC and impaired cell growth, with accumulation of β-catenin degradasomes. IWR1 and AZ-6102 are also selective for tankyrase [100]. TNKS1/2 PARylate PTEN. PTEN contains a Tankyrase Binding Motif (TBM) at the N-terminal region, in proximity to the phosphatase domain. RNF146 recognises PARylated PTEN and performs its ubiquitylation, destining it to degradation by the proteasome. Endometrial cancer presents the highest rate of TNKS1 and TNKS2 mutations [31], followed by colorectal cancer, bladder, melanoma, esophagogastric and prostate cancers. High levels of TNKS1 and/or TNKS2 expression have been found in colon, lung, brain, breast, ovarian and liver cancers. In the first attempts to develop ART inhibitors, few chemical structures were shown to target PARPs and tankyrase: XAV939 is a promiscuous inhibitor of PARP1 and tankyrase, while PJ34 and UPF1069 are broad PARP/tankyrase inhibitors. In recent years, inhibitors were developed specifically for tankyrase: some of them bind to the nicotinamide subsite (NS) (such as XAV939, RR-582, LZZ-02, AZ1366), or to the adenosine subsite (AS) (IWR-1, OM-1700, OD366, G007-LK and K-756) [101-110]. Dual binders (DB), recognizing both nicotinamide and adenosine subsites, have been found among PARP1 inhibitors (olaparib); for TNKS, several inhibitors showed potential therapeutic use (CMP4, WIK4, TNK5656) [31]. K-756 and RR-287107 block cell growth in COLO-320DM and SW403 cancer cells, carrying a truncated form of APC lacking a short stretch of 20 amino acids involved in β-catenin binding. RKO, DLD-1 and HCC2998 cells, possessing a different, long truncated form of APC, that preserves the binding to β-catenin, do not respond to K-756, but are sensitive to LZZ-02. The proposed approach to treat APC mutated cancers is the use of G007-LK, LZZ-02 or RR-582 at low dosage in association with the PI3K (BKMI20) and the epidermal growth factor receptor (EGFR) (erlotinib) inhibitors for colon cancer treatment [31,107]. Among the proteins targeted by TNKS, are vinculins, that anchor F-actin to adherens junctions (AJ), structures involved in cancer development, while TNKS inhibitors prevent the assembling of AJ [111].

Tankyrase recruit specific motifs (RxxPDG "hexapeptides") in their binding partners via an N-terminal region of ankyrin repeats. These ankyrin repeats form five domains termed ankyrin repeat clusters (ARCs), that bind the substrates [112]. Tankyrase partners bind to ARCs by means of RxxPDG hexapeptide motifs, and include Disc1, RAD54, Fat4, Striatin, SH3BP1, MERIT40 and BCR [112]. C44 was developed as TNKS blocker, acting as a protein-protein interaction (PPi) inhibitor. These inhibitors induce the degradation of TNKS1/2. New peptidomimetics that bind to ankyrin domain of tankyrase have been studied by fragment–based screening, and structures are available [113,114]. A list of tankyrase inhibitors applied to cancer treatment is presented in Table 2.

6.3. Inhibitors specific for MARyalating enzymes with a role in cancer development

6.3.1. Macro-PARPs: ARTD7, ARTD8, ARTD9

ARTD9 (PARP9/BAL1) ARTD7 (PARP15/BAL3) and ARTD8 (PARP14/BAL2) were originally identified as highly expressed in B-aggressive lymphomas (BAL) [115]. The macro-PARPs are characterized by the presence of N-terminal macrodomains; ARTD9 and ARTD7/PARP15 possess two macrodomains, while ARTD8/PARP14 contains three macrodomains. These macrodomains are mono-ADP-ribosylation reader modules. ARTD8/PARP14 MARylates histone deacetylases HDAC2 and HDAC3, as well as Tbk1, TANK (TRAF-associated NF-κB activator) binding kinase 1, involved in IRF3 activation and interferon signaling [116]. ARTD8 MARylates STAT1, leading to reduced STAT1 phosphorylation levels: this leads in macrophages to suppression of the IFNγ-STAT1 signaling and of the TNF-α/IL-1β proinflammatory pathway [1]. New, potent ARTD8 inhibitors have been developed, such as H10, possessing more than 20-fold higher selectivity on ARTD8 in respect to PARP1 [117-119]. Furthermore, several (Z)-4-(3-carboxamidophenylamino)-4-oxobut-2-enyl amides were developed: among these, compound 4t displays >10-fold selectivity over ARTD5/PARP5a (TNKS) and >5-fold selectivity over closely related ARTD10, but is recognised also by PARP1 [117-119]. In addition, various diaryl ethers are specific for one of two closely related mARTDs, either for ARTD10 or for ARTD8. Structure-based
activity studies showed that compound 8b inhibits ARTD10 at nanomolar concentration, with about 15-fold selectivity over ARTD8. On the other side, compounds 8k and 8m inhibit ARTD8/PARP14 at nanomolar level, with considerable selectivity over ARTD10 [120]. ARTD8 macrodomain 2 inhibitor may be applied in cancer therapy. While there is no inhibitor specific for a specific macrodomain, the compound GeA-69, interacting with ARTD8 macrodomain2, has been studied in lymphoma and myeloma, as well as for asthma treatment [121]. Ribon Therapeutics is studying the effects of their ARTD8 inhibitors: in vitro data showed that ARTD8 plays an immune-suppressive role in the tumor microenvironment, suggesting that ARTD8 targeting could generate an anti-cancer inflammatory response, similarly to results obtained by means of checkpoint inhibition [117-123]. A list of Macro-PARP inhibitors and application prospects to cancer treatment is presented in Table 3.

6.3.2. Other MARylating ART enzymes linked to cancer and potential enzyme inhibitors

The relationship between ART enzymes and cancer has been observed through the finding of overexpressed genes in cell lines or tissues, and by the use of ART inhibitors. In the beginning years, the developed inhibitors were designed targeting a group of ART enzymes; in recent years, novel compounds have been developed specific for a single ART enzyme, with effects at nanomolar concentration. For instance, there are new inhibitors targeting just ARTD10 [120,127-130], ARTD11 [122,131-144], or ARTD14/PARP7 [142-144].

ARTD10 has tumor suppressor activity by inhibiting myc, and by MARylation of Aurora A kinase, inhibiting its phosphorylation on the same residue: The MARylation is exerted after interaction with the ubiquitin ligase RNF114, that ubiquitylates ARTD10, activating it; a loss of RNF114 in cancers (mutation, deletion, downregulation) may lead to loss in ARTD10 activity [1,130]. ARTD10 may have also oncogenic activity, being involved in some cancers, promoting proliferation and restart of stalled replication forks, alleviating cell survival during replication stress [1, 145].

However, to complete a MARylation cycle, writers and eraser should be expressed at similar levels. MAR hydrolases cleave the modifications promoted by ARTD10. MacroD2, expressed in neuroblastomas, and MacroD1, overexpressed in various cancers, can counteract the tumor suppressive role of ARTD10 [1,49]. MARylation of ARTD10 is recognized by ARTD8/PARP14, that is docked to the MAR structure to form a protein complex. Several molecules have shown the potential to selectively inhibit ARTD10 [127-130,14], such as the cell-permeable OU135, a 3,4-dihydroisoquinolin-1(2H)-one that contains a methyl group at the C-5 position and a substituted pyridine at the C-6 position [128], and 4-benzylxybenzimide derivatives [127]. The targets of ARTD10 that could require a fine tuning of MARylation are glycogen synthase kinase GSK3β, NEMO/IKK-γ, a subunit of NF-κB transcription factor, histone H3 and the polo-like kinase PLK1 [1]. Targeting ARTD10 could decrease proliferation of certain types of cancer, and in HCC cells overexpressing ARTD10.

ARTD11 MARylates ubiquitin E3 ligase β-TrCP, regulating IFN-I dependent antiviral activity [132]. ARTD11 inhibitors showed ARTD11 release from nuclear envelope complexes, where it associates with NUP153 [133] (Figure 3). In addition, ARTD11 was shown to interact with ARTD12 and to inactivate Zika virus replication through degradation of NS1 and NS3 viral proteins [134].

ARTD14/PARP7 is amplified and highly expressed in squamous cell carcinomas, in ovarian and lung tumors, and is associated with poor survival [135-137]. Protein substrates MARylation, such as α-tubulin, by ARTD14/PARP7, has a role in microtubule control in ovarian cancer [138,143,144]. The enzymes are also involved in maintenance of stemness and pluripotency [139]. PARP-7 MARylates immune-relevant protein targets and modulates cancer-directed host immune responses [140]. RBN-2397 specific inhibition of ARTD14 suppresses cell proliferation and activates type-I IFN pathway in cancer cells [141-144]. RBN-2397 is in a phase 1 clinical trial for patients with advanced solid tumors (Identifier: NCT04053673). ARTD14/PARP7 dependency for proliferation of cancer cells (i.e. lung cancer), and cells with high baseline expression of interferon (IFN)-stimulated
genes. Interestingly, RBN-2397 enhanced IFN signaling and induced both cancer cell-autonomous and immune-stimulatory effects [142-144].

ARTD15/PARP16 associates with the endoplasmic reticulum (ER) [146-149]. It is a single-pass transmembrane protein with the N-terminal region (amino acids 1–280) facing the cytoplasm, and a C-terminal tail facing the ER lumen. ARTD15 interacts with the nuclear transport factor karyopherin-1/importin-1 (Kap-1β), MARylating it [147]. ARTD15 auto-modifies itself and MARylates the double-stranded RNA-dependent protein kinase (PKR)-like ER kinase (PERK) and the inositol-requiring enzyme 1α (IRE1α) [147,148]. By this modification, ARTD15 activates PERK and IRE1α, two proteins relevant for the ER stress response and for the unfolded protein response (UPR). During ER stress, ADP-ribosylated PERK and IRE1α increase their kinase activities as well as IRE1α endoribonuclease activity. ARTD15 inhibitors based on latonduine analogs have been validated, and tested to correct mutated CFTR by blocking IRE1α modification [150,151]. ARTD15 is associated with UPR-dependent inflammation, involved in inflammatory diseases [6]. Through Kapβ1 MARylation, ARTD15 regulates and controls nucleo-cytoplasmic trafficking. Inhibitors targeting the site of ADP ribosylation on Kapβ1 and the ARTD15 catalytic site are potential drugs for innovative therapeutic strategies.

ARTD17/PARP6 is an enzyme involved in some cancers. It has been identified as a negative regulator of cell-cycle progression in HeLa cells: ARTD17 overexpression was reported to arrest cells in S-phase; this activity is dependent on a functional catalytic domain. In colorectal cancer, ARTD17 promotes cancer growth [133]. In addition, ARTD17 exerts proliferative effects, while its inhibition induces formation of multipolar spindles in breast cancer [152-155]. By screening a library of compounds for the ability to induce mitotic defects, researchers identified AZ0108 as a potent ARTD17 inhibitor, showing antitumor effects in vivo and inducing cell death in breast cancer cells in vitro [154,141].

Concerning cholera-toxin-like ARTs, **ARTC1** MARylates Grp78/BiP chaperone, required for protein quality control in endoplasmic reticulum ([156]; this modification is relevant for the ER stress response system. Either alterations in UPR or in ER stress response can have consequences in normal cells and in cancer development. ARTC1 regulates the RhoA/ROCK/AKT/β-catenin pathway in colon carcinoma, possibly through regulation of kinase signaling pathways by direct ADP-ribosylation of key kinases [157-160].

A list of MARylating enzymes and their potential inhibitors applied to cancer treatment is presented in Table 4.

6.4. Sirtuin inhibitors addressing roles of MARylating sirtuins in cancer.

SIRT1, SIRT2, SIRT3 and SIRT6 are blocked by sirtuin inhibitor selisistat (Ex527) targeting the NAD⁺ binding pocket; the sirtuins are not inhibited by PARP inhibitors such as niraparib, olaparib, rucaparib, talazoparib, veliparib, PJ34 and XAV939, due to differences in their NAD⁺ binding site ([161,162].

SIRT6 is found overexpressed in skin cancer and non-small cell lung cancer (NSCLC) [163,164], osteosarcoma, colon carcinoma, serous ovarian cancer and in clear cell renal cell carcinomas (ccRCC) [164-168], showing poor prognostic value. However, in certain types of cancer SIRT6 is classified as a tumor suppressor. Since SIRT6 deacetylase activity has important effects in cells and in cancers. Since NAD⁺ binding inhibitors block either deacetylation as well as MARylation reactions, it is not possible to discriminate between the two activities in SIRT6 studies [169]. SIRT6 silenced melanoma cells showed considerable anti-proliferative effect either in vitro as well as in vivo [170]. SIRT6 has been involved in genome integrity, DNA repair, energy metabolism and inflammation. SIRT6 levels decrease during aging and cell senescence [171].

SIRT6 MARylates itself, as well as PARP1 [172-181], enhancing DNA repair, especially when phosphorylated by JNK on Ser10. SIRT6 ADP-ribosylates lysine demethylase JHDM1A/KDM2A, with a role in epigenetic modification of histones [176]; SIRT6 MARylates chromatin silencing factor KAP1 (nuclear co-repressor protein KRAB associated protein 1), fine-tuning the interaction of KAP1 with the heterochromatin protein HP1α: this leads to the silencing of LINE1 retrotransposons [174]. SIRT6 MARylates BAF170, that
activates the transcription of Nrf2 target genes: this activation regulates the boost of mitochondrial function dependent on Nrf2 [177].

SIRT6-mediated functions upon DNA damage, activates two DNA repair pathways, nonhomologous end joining (NHEJ) and base excision repair (BER). SIRT6 induces by protein-protein interaction the formation of a multiprotein complex (SIRT6, RPA, Ku70, Ku80, DNA-PKcs, ISWI/SNF2H) [182-185]: the complex recruits BRCA1, 53BP1, CDH4, and PARP1. SIRT6 MARylating activity induces the induction of the p53- and p73-dependent apoptotic pathways in cancer cells [173]. SIRT6 associates in a phosphorylation-dependent form with Ras-GTPase activating protein 1 (G3BP1) [172], with transcription factors BCLAF1, NKRF and THRAP3, the telomerase regulator YLPM1, and the RNA polymerase complex factors COIL and XRN2. The development of small molecules inhibiting specifically either deacetylation or MARylation may provide new clues on SIRT6 functions [178,179,163].

A study on the structure of bacterial Sirt bound to the acetylated +2 arginine peptide showed that the arginine entered in the active site and reacted through a deacetylation reaction intermediate, yielding an ADP-riboseylated peptide [162]. New compounds, such as diketopiperazine-containing 2-anilinobenzamides, simultaneously targeting the “selectivity pocket” substrate-binding site and the NAD- binding site [175], effective in Sirt2 inhibition, have been set up as the basis to develop new specific inhibitors [186,187].

SIRT7 has been involved in genome integrity and non-homologous end-joining (NHEJ) DNA repair [188]. SIRT7 has auto-MARylation activity [39]. SIRT7 auto-MARYlation occurs on several sites: proteomic studies identified 7–8 MARylated peptides. Auto-MARYlation modifies SIRT7 chromatin distribution. Considering the ELHGN catalytic motif that is conserved among sirtuins, H187, is involved in deacetylation, and faces the NAD- binding pocket and the catalytic site, together with the flanking residues E185 and N189. In SIRT6 and SIRT7, E185 and N189 are in the opposite direction, facing the surface of the cavity, and the two residues interact forming a loop. These residues are important for their role in the ADP-riboseylation reaction: E185 is the catalytic residue that starts the reaction, while N189 is the first acceptor of the ADP-riboseyl moiety [39]. In Table 5 a list of few candidate sirtuin inhibitors is presented.

8. Discussion and Conclusions

In this review the most studied players of MARylation and PARylation have been reviewed. The main objective was to relate the proteins targeted by these post-translational modifications and their interactions with specific proteins towards disruption of their roles in maintenance of cell functions through MARylation/PARylation inhibitors. These disfunctions lead to cell proliferation, anomalies in growth control, loss of cell-to-cell contacts, and tumor development. Furthermore, worthy data have been produced through clinical trials on several types of PARP1/2/3 inhibitors, on tankyrase/PARP5a/b inhibitors, and on MARylation inhibitors targeting ARTD14/PARP7. Deregulated cell functions may derive from MAR/PAR cycling control, deriving from overexpression of erasers enzymes, that have been associated with various cancers. Approaches using PARP1/2 inhibitors or broad PARP inhibitors have been proposed and tested in the protection against oxidative stress, suppression of inflammatory responses, in treatment of ALS and neurodegenerative diseases, and in TDP-43 dependent neurological disorders [189-191]. Similarly to MAR erasers, several RNA viruses express nsp3, a macrodomain protein with eraser activity that subverts stress granule structure and re-establish translation and function of stalled mRNAs [192].

Thus, PARP inhibitors see a new wave of medical exploitation both in cancer as well as in inflammatory diseases, since can be applied for the therapy of non-oncological diseases; approaches in the treatment of cancers such as myeloproliferative neoplasms and medulloblastoma, have been tested though association of PARP inhibitors and adjuvant therapies [193-195].

Recently, new data have been produced on MacroD1, MacroD2 and TARG, discovering their interactomes, as well as their cell specificity [196]. Among these findings are the specific cellular localization for the three eraser proteins, mitochondria for MacroD1, nuclei, nucleoli and stress granules for TARG1, and nuclei and cytoplasm for MacroD2, found expressed mainly in tissues of neural origin.
Furthermore, compounds have been developed, able to inhibit and discriminate between ARH3 and ARH1, and could be tested to protect cells from deregulated MAR/PAR hydrolytic activity or in the inhibition of nsp3 macrodomain of SARS-CoV2 [197,198].

Finally, a new enzyme with supposed PARylating activity has been associated with mitochondria: Neuralized-like protein 4 (NEURL4) possesses an H-Y-E like ART domain in the C-terminal domain, in addition to six Neuralized Homology Repeat (NHR) domains, functioning as protein-protein interaction scaffolds [199-201]. PARylating activity associated with mitochondria is lost in cells lacking NEURL4. One main protein target for PARylation is mitochondrial Ligase III (mtLIG3), required for mtDNA stability. Furthermore, LRRC9-ART has been characterized at expression level, and is predicted to interact with ZFP36L2, an RNA binding protein that controls cell cycle and is involved in pancreatic cancer [200,201]. Also new macrodomain proteins have been identified, such as C12orf4, a cytoplasmic protein predicted to have eraser activity, involved in mast cell degranulation [201]. C12orf4 is highly expressed in glioblastoma, adenocarcinomas of ovary and pancreas, and lymphomas. To the aim of circulating more quickly the new findings within the PARP/ART community, it is important to update the databases on the enzymes involved in this PTM, such as ADPriboDB 2.0 [202].

Further studies analyzing 3D structures of MARylation/PARylation enzymes should help develop new inhibitors. It is envisaged that in the next year new therapies will be tested by exploitation of PARylation and MARylation inhibition, safety of administration of new drugs, and recovery to a healthy state.
Figure 1. Writers, readers and erasers of MARylation of proteins.

Figure 2. PARylation cycle: writers, readers and erasers.

Figure 3. Intracellular localization and shuttling of major players of MARylation/PARylation cycles.
Table 1. Selective inhibitors of PARPs (PARP1/2/3) and therapeutic potential.

Drug	Target molecules	Therapeutic applications	References
Olaparib, rucaparib, niraparib, veliparib, talazoparib, often associated with alkylating agents or platinum	PARP1/PARP2 inhibition and trapping on DNA	BRCA1, BRCA2, ATM, ATR, FANC, PALB2 mutated, CCDC6 inactivated, HR defective cancers; RNASEH2B deleted cancers; HER negative cancers, prostate cancer, 53BP1 deficient cancers	[14,67]
Non-NAD+-like PARP-1 inhibitor, 5F02	PARP1	Prostate cancers (hormone dependent and independent); PARG mutated cancers	[88]
Veliparib + SAHA or belinostat	PARP1 and HDAC	Prostate cancer	[94]
Guadecitabine + talazoparib	PARP1 and DNMT1	Breast and ovarian cancers	[83]
SMYD2 inhibitor LLY-507 or BCI-121 + olaparib	PARP1 and SMYD2	Serous ovarian cancer, high grade (HGSOC)	[57,58]
PARPi + EZH2 inhibitors	BRCA1-mutant cell sensitisation to PARPi	Inhibition of PARP by PARPi attenuates alkylating DNA damage-induced EZH2 downregulation, promoting EZH2-mediated gene silencing and cancer stem cell control	[78]
PARPi as chemosensitizer in combination with temozolomide, DNA crosslinkers (cisplatin) or bleomycin	PARP1/2	BRCAAness in various cancers	[71,73]
PJ34 ((N-(6-oxo-5, 6-dihydrophenanthridin-2-yl)-N, N-dimethylacetamide), veliparib	Broad inhibitors	Protection against oxidative stress; suppression of inflammatory responses, ALS, TDP-43 degenerative processes	[126,188,189]
ME0328	ARTD3/PARP3	Exploits vulnerabilities in DNA repair in cancers	[87]
5-Amino-7-(aldehyde)-2[(napthalene-2- yloxy)methyl]-[1,3,4]thiadiazolo-[3,2-α]- pyrimidine-6-carbonitrile scaffolds	PARP1		[11,93]
Conjugates of ADP and morpholino nucleosides	PARP1/2/3	Cancers	[89]
ABT-888	PARP2	Epithelial ovarian cancer	[90]
Azaquinolones	PARP1	Cancers	[193]
Veliparib + busulfan	PARP1	Myeloproliferative neoplasms	[194]
Olaparib + radiotherapy	PARP1	Medulloblastoma	[195]

Table 2. Tankyrase inhibitors applied to cancer treatment: inhibitors stabilize and increase Axin levels and decrease nuclear β-catenin levels.

Drug	Target	Therapeutic applications	References
IWR-1, AZ-6102	ARTD5, ARTD6 (TNKS)	Wnt-driven cancers Colon, lung, brain, breast, ovarian, liver cancers.	[100,101]
N-((1,2,4)triazolo[4,3-a]pyridin-3-yl)-1-(2-cyanophenyl)piperidine-4-carboxamide (TI-12403)	TNKS	Combined 5-FU / TI-12403 treatment synergistically	[102]
Drug	Target	Therapeutic applications	References
---	----------------------	---	-------------
H10 and 8b, in a group of -4-(3- carbamoylphenylamino) 4 oxobut-2-enyl amides	ARTD8/PARP14	Multiple myeloma, HCC, prostate cancer	[117-119]
N-(2-[(9H-carbazol-1-yl)phenyl]acetamide/ sulfonamide, GeA-69,	ARTD8/PARP14 macrodomain	Lymphoma (DLBCL), HCC	[119,121]
8k and 8m diaryl ethers	ARTD8/PARP14	In vitro	[117-119]
RBN012759, RBN011980, RBN012759, RBN012811, RBN012042, RBN010860, AZ12629495, RBN0120420, RBN013527 similar to RBN012811, but does not cause the degradation of PARP14	ARTD8/PARP14	In vitro	[122,123]

Table 3. Macromolecular interacting ARTDs: ARTD8 inhibitors for cancer treatment.### Table 3. Macromolecular interacting ARTDs: ARTD8 inhibitors for cancer treatment.

Drug	Target	Therapeutic applications	References
M2912	TNKS	block proliferation of colorectal cancer (CRC)	[103]
Spiroindoline derivative 40c (RK-287107)	TNKS	CRC	[104]
MSC2504877 + CDC4/6 inhibitors	TNKS	CRC with APC mutations, Lung cancers	[105]
NAM binders	TNKS	CRC with APC mutations	[106]
XAV939, LZZ-02, AZ1366, RK-582, RK-287107	TNKS	CRC with APC mutations	[107]
In association with PI3K (BKM120) and epidermal growth factor receptor (EGFR) (erlotinib) inhibitors	TNKS	CRC with APC mutations	
Adenosine binders	TNKS : restoration of β-catenin degradation	CRC	[97]
IWR-1, G007-LK, OD366, OM-1700, K-756	TNKS	Prostate cancer, increase of Axin-1 levels	[114]

Macrodomain containing ARTDs: ARTD8 inhibitors for cancer treatment.

Drug	Target	Therapeutic applications	References
H10 and 8b, in a group of -4-(3- carbamoylphenylamino) 4 oxobut-2-enyl amides	ARTD8/PARP14	Multiple myeloma, HCC, prostate cancer	[117-119]
N-(2-[(9H-carbazol-1-yl)phenyl]acetamide/ sulfonamide, GeA-69,	ARTD8/PARP14 macrodomain	Lymphoma (DLBCL), HCC	[119,121]
8k and 8m diaryl ethers	ARTD8/PARP14	In vitro	[117-119]
RBN012759, RBN011980, RBN012759, RBN012811, RBN012042, RBN010860, AZ12629495, RBN0120420, RBN013527 similar to RBN012811, but does not cause the degradation of PARP14	ARTD8/PARP14	In vitro	[122,123]
Table 4. Other MARyrating ART enzymes: potential inhibitors applied to cancer treatment.

Drug	Target	Therapeutic applications	References
4-Benzzyloxybenzimide derivatives, 4-4-cyanophenoxybenzamide, 3-4-carbamoylphenoxybenzamide, OU135	ARTD10	Neurodegenerative disorders, Gene amplification in breast and ovarian cancer	[120-129,14]
ITK7	ARTD11	Causes PARP11 to dissociate from the nuclear envelope	[122,131,140]
RBN-2397 RBN011147 (FRET), RBN11198 (BRET), RBN010860	ARTD14/	Metastatic solid tumors, lung cancer, anti-proliferative, macrophage polarization, immune signaling	[130-135]
RBN010860, AZ0108	PARP16		
EGC0 RBN010860, RBN012148	ARTD15/	ER stress, intracellular trafficking	[6,66,127,136,137]
RBN010860, AZ0108	PARP16		
Cholera-like ARTs	ARTC1	Various cancers (CRC, glioma), angiogenesis, block of epithelial-to-mesenchymal transition (EMT)	[15,66,112,141,156-160]

Table 5. MARyating sirtuins: inhibitors and activators.

Drug	Target	Therapeutic applications	References
Acetylated lysine-ADP-ribose conjugates	Sirt7	NSCLC, control of ERK1 activity	[178]
EX527 (selisistat), OSS_128167	Sirt6	Chemosensitising effects	[161,169]
Quinazolinedione derivatives 1-phenylpiperazine derivative	Sirt6, target the NAD+ binding pocket	Increase in DNA damage/cell death induced by olaparib in Capan-1 cells, silencing blocks proliferation and induces apoptosis in melanoma	[163,170]
Quinazolinediones, salicylate-like structure OSS_128167	Sirt6	Sensitivity of cancer to gencitabine, pancreatic ductal adenocarcinoma	[186,187]
MDL-800, CL5D, MDL-801	Sirt6	Several cancer cells, antiproliferative	[167,184]

Acknowledgements

In June 2021, Maria Di Girolamo passed away, she was 61 years old. She was a kind person and a smart researcher on intracellular signalling in health and disease. The work by Mariella and her team has lightened up as a beacon all the PARP community. She worked at the Pharmacological Institute “Mario Negri South”, under the leadership of Daniela Corda; in 2012 Mariella became team leader, until the closure of the laboratory in 2016. In 2017, after the PARP meeting in Budapest, she was among the guest editors for a special issue on “Poly ADP ribose polymerases (PARP) and post-translational modifications”, published in Challenges (MDPI), and among the guest editors for a special issue on PARylation in 2019, for Biochemical Pharmacology. This review intends to acknowledge Mariella and her contribution to ARTs/PARP's world.
References

1. Poltronieri, P., Celetti, A., Palazzo, L. Mono(ADP-ribosyl)ation Enzymes and NAD+ Metabolism: A Focus on Diseases and Therapeutic Perspectives. *Cells (Basel)*, 2021, 10(1):128. doi: 10.3390/cells10010128.

2. Poltronieri, P., and Miwa, M. Overview on ADP Ribosylation and PARP Superfamily of Proteins. Editorial. *Curr. Prot. Peptide Sci.*, 2016, 17(7), 630-632.

3. Perina, D., Mikoč, A., Ahel, J., Četković, H., Žaja, R., Ahel, I. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. *DNA Repair (Amst)*, 2014, 23:4-16. doi: 10.1016/j.dnarep.2014.05.003

4. Citarelli, M., Teotia, S., Lamb, R.S. Evolutionary history of the poly(ADP-ribose) polymerase gene family in eukaryotes. *BMC Evol. Biol.*, 2010, 10:308. doi: 10.1186/1471-2148-10-308

5. Deng, Q., & Barbieri, J. Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. *Annu. Rev. Microbiol.*, 2008, 62, 271–288.

6. Di Girolamo, M.; and Fabrizio, G. The ADP-Ribosyl-Transferases Diphtheria Toxin-Like (ARTDs) Family: An Overview. *Challenges (Basel)*, 2018, 9:24. doi: 10.3390/challe9010024

7. Kraus, W.L. PARPs and ADP-ribosylation: 50 years and counting. *Mol. Cell*, 2015, 58(6), 902-10. doi: 10.1016/j.molcel.2015.06.006.

8. Miwa, M., and Masutani, P. PolyADP-ribosylation and cancer. *Cancer Sci.*, 2007, 98(10), 1528-35. doi: 10.1111/j.1437-0918.2007.02156.x

9. Loseva, O., Jemth, A.S., Bryant, H.E., Schüler, H., Lehtiö, L., Karlberg, T., Helleday, T. PARP-3 is a mono-ADP-ribosylase that activates PARP-1 in the absence of DNA. *J. Biol. Chem.*, 2010, 285(11):8054-60. doi: 10.1074/jbc.M109.077834

10. van Beek, L., McClay, É., Patel, S., Schimpl, M., Spagnolo, L., Maia de Oliveira, T. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. *Int. J. Mol. Sci. (Basel)*, 2021, 22(10):5112. doi: 10.3390/ijms22105112.

11. Beck, C.; Robert, I.; Reina-San-Martin, B.; Schreiber, V.; Dantzer, F. Poly(ADP-ribosyl) polymerases in double-strand break repair: Focus on PARP1, PARP2 and PARP3. *Exp. Cell Res.*, 2014, 329, 18–25. doi:10.1016/j.yexcr.2014.07.003.

12. Lüscher, B., Ahel, I., Altmeyer, M., Ashworth, A., Bai, P., Chang, P., Cohen, M., Corda, D., Dantzer, F., Daugherty, J.M., Dawson, T.M., Dawson, V.L., Deindl, S., Fehr, A.R., Feijis, K.L.H., Filippov, D.V., Gagné, J.P., Grimaldi, G., Guettler, S., Hoch, N.C., Hottiger, M.O., Korn, P., Kraus, W.L., Ladurner, A., Lehtiö, L., Leung, A.K.L., Lord, C.J., Mangerich, A., Matic, I., Matthews, J., Moldovan, G.L., Moss, J., Natoli, G., Nielsen, M.L., Niepel, M., Nolte, F., Pascal, J., Pasch, B.M., Pawlowski, K., Poirier, G.G., Smith, S., Timinszky, G., Wang, Z.Q., Yelamos, J., Yu, X., Zaja, R., Ziegler, M. ADP-ribosyltransferases: a new update on function and nomenclature. *FEBS J.*, 2021 Jul 29. doi: 10.1111/febs.16142

13. Chatrin, C., Gabrielsen, M., Buetow, L., Nakasone, M.A., Ahmed, S.F., Sumpton, D., Sibbet, G.J., Smith, B.O., Huang, D.T. Structural insights into ADP-ribosylation of ubiquitin by Deltex family E3 ubiquitin ligases. *Sci. Adv.*, 2020, 6:eabc0418. DOI: 10.1126/sciadv.abc0418

14. Challa, S., Stokes, M.S., Kraus, W.L. MARTs and MARYlation in the Cytosol: Biological Functions, Mechanisms of Action, and Therapeutic Potential. *Cells (Basel)*, 2021, 10(2):313. doi: 10.3390/cells10020313

15. Di Girolamo, M, and Fabrizio, G. Overview of the mammalian ADP-ribosyl-transferases clostridia toxin-like (ARTCs) family. *Biochem. Pharmacol.*, 2019, 167:86-96. doi: 10.1016/j.bcp.2019.07.004

16. Poltronieri, P., Mezzolla, V., Farooqi, A.A., Di Girolamo, M. NAD precursors, mitochondria targeting compounds and ADP-ribosylation inhibitors in treatment of inflammatory diseases and cancer. *Curr. Med. Chem.* 2021 Jan 18, Epub advanced online. doi: 10.2174/0929867328666610118152563

17. Haigis, M.C.; Mostoslavsky, R.; Haigis, K.M.; Fahie, K.; Christodoulou, D.C.; Murphy, A.J.; Valenzuela, D.M.; Yancopoulos, G.D.; Karow, M.; Blander, G.; Wolberger, C.; Prolla, T.A.; Weinreich, R.; Alt, F.W.; Guarente, L. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. *Cell*, 2006, 126(5), 941-954. doi:10.1016/j.cell.2006.06.057
18) Bonfiglio, J.J.; Fontana, P.; Zhang, Q.; Colby, T.; Gibbs-Seymour, I.; Atanassov, I.; Bartlett, E.; Zaja, R.; Ahel, I.; Matic, I. Serine ADP-Ribosylation Depends on HPF1. Mol. Cell, 2017, 65, 932–940.e6. doi:10.1016/j.molcel.2017.01.003.

19) Suskiewicz, M.J.; Zobel, F.; Ogden, T.E.H.; Fontana, P.; Ariza, A.; Yang, J.-C.; Zhu, K.; Bracken, L.; Hawthorne, W.J.; Ahel, D.; Neuhaus, D.; Ahel, I. HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature, 2020, 579, 598–602, doi:10.1038/s41586-020-2013-6.

20) Larsen, S.C.; Hendriks, I.A.; Lodge, J.M.; Rykær, M.; Furtwängler, B.; Shishkova, E.; Westphall, M.S.; Coon, J.J.; Nielsen, M.L. Mapping Physiological ADP-Ribosylation Using Activated Ion Electron Transfer Dissociation. Cell Rep., 2020, 32:108176, doi:10.1016/j.celrep.2020.108176.

21) Larsen, S.C.; Hendriks, I.A.; Lyon, D.; Jensen, L.J.; Nielsen, M.L. Systems-wide Analysis of Serine ADP-Ribosylation Reveals Widespread Occurrence and Site-Specific Overlap with Phosphorylation. Cell Rep., 2018, 24, 2493–2505.e4, doi:10.1016/j.celrep.2018.07.083.

22) Bilan, V.; Leutert, M.; Nanni, P.; Panse, C.; Hottiger, M.O. Combining Higher-Energy Collision Dissociation and Electron-Transfer/Higher-Energy Collision Dissociation Fragmentation in a Product-Dependent Manner Confidently Assigns Proteowide ADP-Ribose Acceptor Sites. Anal. Chem., 2017, 89, 1523–1530.

23) Crawford, K.; Bonfiglio, J.J.; Mikoč, A.; Matic, I.; Ahel, I. Specificity of reversible ADP-ribosylation and regulation of cellular processes. Crit. Rev. Biochem. Mol. Biol., 2018, 53, 64–82, doi:10.1080/10409238.2017.1394265.

24) Laing, S.; Unger, M.; Koch-Nolte, F.; Haag, F. ADP-ribosylation of arginine. Amino Acids, 2011, 41, 257–269, doi:10.1007/s00726-010-0676-2.

25) McDonald, L.J.; and Moss, J. Enzymatic and nonenzymatic ADP-ribosylation of cysteine. Mol. Cell. Biochem., 1994, 138, 221–226, doi:10.1007/bf00928465.

26) Jacobson, E.L.; Cervantes-Laurean, D.; Jacobson, M.K. ADP-ribose in glycation and glycoxidation reactions. Adv. Exp. Med. Biol., 1997, 419, 371–379, doi:10.1007/978-1-4419-8632-0_49.

27) Lüscher, B.; Bütepage, M.; Eckei, L.; Krieg, S.; Verheugd, P.; Shilton, B.H. ADP-Ribosylation, a Multifaceted Posttranslational Modification Involving in the Control of Cell Physiology in Health and Disease. Chem. Rev., 2018, 118, 1092–1136, doi:10.1021/acs.chemrev.7b00122.

28) DaRosa, P.A., Wang, Z., Jiang, X., Prunedă, J.N., Cong, F., Klevit, R.E., Xu, W. AllostERIC activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosylation) signal. Nature, 2015, 517(7533):223-6. doi: 10.1038/nature13826

29) DaRosa, P.A., Klevit, R.E., Xu, W. Structural basis for tankyrase-RNF146 interaction reveals noncanonical tankyrase-binding motifs. Protein Sci., 2018, 27(6):1057-1067. doi: 10.1002/pro.3413.

30) Chandrakumar, A.A., Coyaud, É., Marshall, C.B., Ikura, M., Raught, B., Rottapel, R. Tankyrase regulates epithelial lumen formation via suppression of Rab11 GEFs. J. Cell Biol., 2021, 220(7):e202008037. doi: 10.1083/jcb.202008037.

31) Zamudio-Martínez, E., Herrera-Campos, A.B., Muñoz, A., Rodríguez-Vargas, J.M., Oliver, F.J. Tankyrases as modulators of pro-tumoral functions: molecular insights and therapeutic opportunities. J. Exp. Clin. Cancer Res., 2021, 40(1):144. doi: 10.1186/s13046-021-01950-6.

32) Verheugd, P., Bütepage, M., Eckei, L., Lüscher, B. Players in ADP-ribosylation: Readers and Erasers. Curr. Protein Pept. Sci., 2016; 17:654-667. doi:10.2174/13892037166616041914486

33) Zhang, F., Shi, J., Chen, S.H., Bian, C., Yu, X. The PIN domain of EXO1 recognizes poly(ADP-ribose) in DNA damage response. Nucleic Acids Res. 2015, 43:10782-94. doi: 10.1093/nar/gkv939

34) Poltronieri, P., and Čerkevick, N. Roles of Nicotinamide Adenine Dinucleotide (NAD+) in Biological Systems. Challenges (Basel), 2018, 9, 3. Doi:10.3390/challe9010003

35) Dani, N., Stillà, A., Marchegiani, A., Tamburro, A., Till, S., Ladurner, A.G., Corda, D., Di Girolamo, M. Combining affinity purification by ADP-ribose-binding macro domains with mass spectrometry to define the mammalian ADP-riboseyl proteome. Proc. Natl. Acad. Sci. U.S.A., 2009, 106(11):4243-8. doi: 10.1073/pnas.090066106
36) Nowak, K., Rosenthal, F., Karlberg, T., Bütepage, M., Thorsell, A.G., Dreier, B., Grossmann, J., Sobek, J., Imhof, R., Lüscher, B., Schüler, H., Plückthun, A., Leslie Pedrioli, D.M., Hottiger, M.O. Engineering Afi1521 improves ADP-ribose binding and identification of ADP-riboseylated proteins. *Nat. Commun.*, 2020, 11:5199. doi: 10.1038/s41467-020-18981-w

37) García-Saura, A.G., Herzog, L.K., Dantuma, N.P., Schüler, H. Macrogreen, a simple tool for detection of ADP-riboseylated proteins. *Commun. Biol.*, 2021; 4(1):919. doi: 10.1038/s42003-021-02439-w

38) Ruiz, P.D., Hamilton, G.A., Park, J.W., Gamble, M.J. MacroH2A1 Regulation of Poly(ADP-Ribose) Synthesis and Stability Prevents Necrosis and Promotes DNA Repair. *Mol. Cell. Biol.*, 2019, 40(1):e00230-19. doi: 10.1128/MCB.00230-19

39) Simonet, N.G.; Thackray, J.K.; Vazquez, B.N.; Ianni, A.; Espinosa-Alcantud, M.; Morales-Sanfrutos, J.; Hurtado-Bagés, S.; Sabidó, E.; Buschbeck, M.; Tischfield, J.; De La Torre, C., Esteller, M., Braun, T., Olivella, M., Serrano, L., Vaquero, A. Sir17 auto-ADP-riboseylation regulates glucose starvation response through mH2A1. *Sci. Adv.*, 2020, 6:eaa2590. doi:10.1126/sciadv.aaz2590

40) Verma, P., Zhou, Y., Cao, Z., Deraska, P.V., Deb, M., Araî, E., Li, W., Shao, Y., Puentes, L., Li, Y., Patankar, S., Mach, R.H., Faryabi, R.B., Shi, J., Greenberg, R.A. ALC1 links chromatin accessibility to PARP inhibitor response in homologous recombination-deficient cells. *Nat. Cell Biol.*, 2021, 23, 160-171.

41) Chen, S.H., and Yu, X. Targeting dePARylation selectively suppresses DNA repair-defective and PARP inhibitor-resistant malignancies. *Sci. Adv.*, 2019; 5(4):eaaav4340. doi: 10.1126/sciadv.aav4340.

42) Wei, L., Nakajima, S., Hsieh, C.L., Kanno, S., Masutani, M., Levine, A.S., Yasui, A., Lan, L. Damage response of XRCC1 at sites of DNA single strand breaks is regulated by phosphorylation and ubiquitylation after degradation of poly(ADP-ribose). *J. Cell Sci.*, 2013, 126:4414-23.

43) Sasaki, Y., Fujimori, H., Hozumi, M., Onodera, T., Nozaki, T., Murakami, Y., Ashizawa, K., Inoue, K., Koizumi, F., Masutani, M. Dysfunction of Poly (ADP-Ribose) Glycohydrolase Induces a Synthetic Lethal Effect in Dual Specificity Phosphatase 22-Deficient Lung Cancer Cells. *Cancer Res.*, 2019, 79(15):3851-3861.

44) Houl, J.H., Ye, Z., Brosey, C.A., Balapiti, A., Namjoshi, S., Bacolla, A., Laverty, D., Walker, B.L., Pourfarjam, Y., Warden, L.S., Babu Chinnam, N., Moiani, D., Stegeman, R.A., Chen, M.K., Hung, M.C., Nagel, Z.D., Ellenberger, T., Kim, I.K., Jones, D.E., Ahmed, Z., Tainer, J.A. Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death. *Nat. Commun.*, 2019, 10(1):5654. doi: 10.1038/s41467-019-13508-4.

45) Pillay, N., Tighe, A., Nelson, L., Littler, S., Coulson-Gilmer, C., Bah, N., Golder, A., Bakker, B., Spierings, D.C.J., James, D.I., Smith, K.M., Jordan, A.M., Morgan, R.D., Ogilvie, D.J., Foijer, F., Jackson, D.A., Taylor, S.S. DNA Replication Vulnerabilities Render Ovarian Cancer Cells Sensitive to Poly(ADP-Ribose) Glycohydrolase Inhibitors. *Cancer Cell*, 2019, 35(3):519-533.e8. doi: 10.1016/j.ccell.2019.02.004.

46) Sonoda, Y., Sasaki, Y., Gunji, A., Shirai, H., Araki, T., Imamichi, S., Onodera, T., Rydén, A.M., Watanabe, M., Itami, J., Honda, T., Ashizawa, K., Nakao, K., Masutani, M. Reduced Tumorigenicity of Mouse ES Cells and the Augmented Anti-Tumor Therapeutic Effects under Parg Deficiency. *Cancers (Basel)*, 2020, 12:1056. doi: 10.3390/cancers12041056.

47) Janisiew, E., Raices, M., Balmir, F., Paulin, L.F., Baudrimont, A., von Haezeler, A., Yanowitz, J.L., Jantsch, V., Silva, N. Poly(ADP-ribose) glycohydrolase coordinates meiotic DNA double-strand break induction and repair independent of its catalytic activity. *Nat. Commun.*, 2020, 11(1):4869. doi: 10.1038/s41467-020-18693-1.

48) Fontana, P., Bonfiglio, J.J., Palazzo, L., Bartlett, E., Matic, I., Ahel, I. Serine ADP-ribosylation reversal by the hydrolase ARH3. *Elife*, 2017, 6:e28533. doi: 10.7554/eLife.28533

49) Feis, K.L.H., Cooper, C.D.O., Žaja, R. The Controversial Roles of ADP-Ribosyl Hydrolases MACROD1, MACROD2 and TARG1 in Carcinogenesis. *Cancers (Basel)*, 2020; 12(3):604. doi: 10.3390/cancers12030604
50) Rack, J.G.M., Liu, Q., Zorzini, V., Voorneveld, J., Ariza, A., Honarmand Ebrahimi, K., Reber, J.M., Krassnig, S.C., Ahel, D., van der Mare, G.A., Mangerich, A., McCullagh, J.S.O., Filippov, D.V., Ahel, I. Mechanistic insights into the three steps of poly(ADP-ribosylation) reversal. *Nat. Commun.*, 2021; 12(1):4581. doi: 10.1038/s41467-021-24723-3

51) Barkauskaite, E., Jankevičius, G., Ladurner, A., Ahel, I. & Timinszky, G. The recognition and removal of cellular poly(ADP-ribose) signals. *FEBS J.*, 2013, 280, 3491–3507.

52) Palazzo, L., Daniels, C.M., Netteship, J.E., Rahman, N., McPherson, R.L., Ong, S.E., Kato, K., Nureki, O., Leung, A.K., Ahel, I. ENPP1 processes protein ADP-ribosylation in vitro. *FEBS J.*, 2016, 283(18):3371-88. doi: 10.1111/febs.13811

53) Wright, R.H.G., and Beato, M. Role of the NUDT Enzymes in Breast Cancer. *Int. J. Mol. Sci. (Basel)*, 2021, 22(5):2267. doi: 10.3390/ijms22052267

54) Bu, X., Kato, J., Moss, J. Emerging roles of ADP-ribosyl-acceptor hydrolases (ARHs) in tumorigenesis and cell death pathways. *Biochem. Pharmacol.*, 2019, 167:44-49. doi: 10.1016/j.bcp.2018.09.028.

55) Maruta, H.; Matsumura, N.; Tanuma, S. Role of (ADP-ribose)n catabolism in DNA repair. *Biochem. Biophys. Res. Commun.*, 1997, 236, 265–269.

56) Mohseni, M.; Cidado, J.; Croessmann, S.; Cravero, K.; Cimino-Mathews, A.; Wong, H. Y.; Scharpf, R.; Zabransky, D. J.; Abuhenkein, A. M.; Garay, J. P.; Wang, G.M.; Beaver, J. A.; Cochran, R. L.; Blair, B. G.; Rosen, D. M.; Erlanger, B.; Argani, P.; Hurley, P. J.; Louring, J.; Park, B. H., MACROD2 overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers. *Proc. Natl. Acad. Sci. U.S.A.*, 2014, 111, 17606–11.

57) Piao, L., Fujioka, K., Nakakido, M., Hamamoto, R. Regulation of poly(ADP-Ribose) polymerase 1 functions by post-translational modifications. *Front. Biosci. (Landmark Ed)*, 2018, 23:13-26. doi: 10.2741/4578.

58) Mao, Z., Hine, C., Tian, X., Van Meter, M., Au, M., Vaidya, A., Seluanov, A., Gorbunova, V. SIRT6 promotes DNA repair under stress by activating PARP1. *Science*, 2011; 332(6036):1443-6. doi: 10.1126/science.1202723

59) Kukita, A., Sone, K., Oda, K., Hamamoto, R., Kaneko, S., Komatsu, M., Wada, M., Honjoh, H., Kawata, Y., Kojima, M., Oki, S., Sato, M., Asada, K., Taguchi, A., Miyasaka, A., Tanikawa, M., Nagasaka, K., Matsumoto, Y., Wada-Hiraike, O., Osuga, Y., Fujii, T. Histone methyltransferase SMYD2 selective inhibitor LLY-507 in combination with poly ADP ribose polymerase inhibitor has therapeutic potential against high-grade serous ovarian carcinomas. *Biochem. Biophys. Res. Commun.*, 2019, 513:340-346. doi: 10.1016/j.bbrc.2019.03.155.

60) Piao, L., Kang, D., Suzuki, T., Masuda, A., Dohmae, N., Nakamura, Y., Hamamoto, R. The histone methyltransferase SMYD2 methylates PARP1 and promotes poly(ADP-ribosyl)ation activity in cancer cells. *Neoplasia*, 2014, 16(3):257-64, 264.e2. doi: 10.1016/j.neo.2014.03.002

61) Kassner, I., Barandun, M., Fey, M., Rosenthal, F., Hottiger, M.O. Crosstalk between SET7/9-dependent methylation and ARTD1-mediated ADP-ribosylation of histone H1.4. *Epigenetics Chromatin*, 2013, 6(1):1. doi: 10.1186/1756-8935-6-1

62) Kauppinen, T.M., Chan, W.Y., Suh, S.W., Wiggins, A.K., Huang, E.J., Swanson, R.A. Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. *Proc. Natl. Acad. Sci. U.S.A.*, 2006; 103:7136-41. doi: 10.1073/pnas.0508606103

63) Du, Y., Yamaguchi, H., Wei, Y., Hsu, J.L., Wang, H.L., Hsu, Y.H., Lin, W.C., Yu, W.H., Leonard, P.G., Lee, G.R-4th, Chen, M.K., Nakai, K., Hsu, M.C., Chen, C.T., Sun, Y., Wu, Y., Chang, W.C., Huang, W.C., Liu, C.L., Chang, Y.C., Chen, C.H., Park, M., Jones, P., Hoftobagy, G.N., Hung, M.C. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors. *Nat. Med.*, 2016, 22(2):194-201. doi: 10.1038/nm.4032

64) Demény, M.A., and Virág, L. The PARP Enzyme Family and the Hallmarks of Cancer Part 1. Cell Intrinsic Hallmarks. *Cancers (Basel)*, 2021, 13(9):2042. doi: 10.3390/cancers13092042

65) Bai, P., Poltronieri, P., Di Girolamo, M. ADP-ribosylation inhibitors in treatment of diseases. *Biochem. Pharmacol.*, 2019, 167:1-2. doi: 10.1016/j.bcp.2019.06.026.

66) Scarpa, E.S., Fabrizio, G., Di Girolamo, M. A role of intracellular mono-ADP-ribosylation in cancer biology. *FEBS J.*, 2013, 280(15):3551-62. doi: 10.1111/febs.12290
67) Vyas, S., and Chang, P. New PARP targets for cancer therapy. *Nat. Rev. Cancer*, 2014, 14, 502–509. doi:10.1038/nrc3748

68) Curtin, N.J., and Szabo, C. Poly(ADP-ribose) polymerase inhibition: past, present and future. *Nat. Rev. Drug Discov.*, 2020, 19(10):711-736. doi: 10.1038/s41573-020-0076-6

69) Wang, L., Liang, C., Li, F., Guan, D., Wu, X., Fu, X., Lu, A., Zhang, G. PARP1 in Carcinomas and PARP1 Inhibitors as Antineoplastic Drugs. *Int. J. Mol. Sci. (Basel)*, 2017, 18:2111. doi: 10.3390/ijms18102111

70) Fu, L., Wang, S., Wang, X., Wang, P., Zheng, Y., Yao, D., Guo, M., Zhang, L., Ouyang, L. Crystal structure-based discovery of a novel synthesized PARP1 inhibitor (OL-1) with apoptosis-inducing mechanisms in triple-negative breast cancer. *Sci. Rep.*, 2016, 6(1):3. doi: 10.1038/s41598-016-0007-2

71) Lord, C.J., and Ashworth, A. PARP inhibitors: Synthetic lethality in the clinic. *Science*, 2017, 355(6330):1152-1158. doi: 10.1126/science.aam7344.

72) Palazzo, L.; and Ahel, I. PARPs in genome stability and signal transduction: Implications for cancer therapy. *Biochem. Soc. Trans.*, 2018, 46, 1681–1695, doi:10.1042/bst20180418.

73) Cerrato, A., Morra, F., Celetti, A. Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic. *J. Exp. Clin. Cancer Res.*, 2016, 35(1):179. doi: 10.1186/s13046-016-0456-2

74) Janysek, D.C., Kim, J., Duijf, P.H.G., Dray, E. Clinical use and mechanisms of resistance for PARP inhibitors in homologous recombination-deficient cancers. *Transl. Oncol.*, 2021, 14(3):101012. doi: 10.1016/j.tranon.2021.101012

75) Houli JH, Ye Z, Brosey CA, Balapiti-Modarage LFP, Namjoshi S, Bacolla A, Laverty D, Walker BL, Pourfarjam Y, Warden LS, Babu Chinnam N, Moiani D, Stegeman RA, Chen MK, Hung MC, Nagel ZD, Ellenberger T, Kim IK, Jones DE, Ahmed Z, Tainer JA. Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death. Nat. Commun., 2019, 10:5654. doi:10.1038/s41467-019-13508-4

76) Pillay N, Tighe A, Nelson L, Littler S, Coulson-Gilmer C, Bah N, Goldar A, Bakker B, Spierings DCJ, James DJ, Smith KM, Jordan AM, Morgan RD, Ogilvie DJ, Foijer F, Jackson DA, Taylor SS. DNA Replication Vulnerabilities Render Ovarian Cancer Cells Sensitive to Poly(ADP-Ribose) Glycohydrolase Inhibitors. *Cancer Cell*, 2019, 35(3):519-533.e8. doi: 10.1016/j.ccell.2019.02.004

77) Lindgren AE, Karlberg T, Thorsell AG, Hesse M, Spjut S, Ekblad T, Andersson CD, Pinto AF, Weigelt J, Hottiger MO, Linusson A, Elofsson M, Schüler H. PARP inhibitor with selectivity toward ADP-ribosyltransferase ARTD3/PARP3. *ACS Chem Biol*. 2013 Aug 16;8(8):1698-703. doi: 10.1021/cb4002014

78) Yamaguchi, H., Du, Y., Nakai, K., Ding, M., Chang, S.S., Hsu, J.L., Yao, J., Wei, Y., Nie, L., Jiao, S., Chang, W.C., Chen, C.H., Yu, Y., Hortobagyi, G.N., Hung, M.C. EZH2 contributes to the response to PARP inhibitors through its PARP-mediated poly-ADP ribosylation in breast cancer. *Oncogene*, 2018, 37(2):208-217. doi: 10.1038/onc.2017.311

79) Tan, J., Zheng, X., Li, M., Ye, F., Song, C., Xu, C., Zhang, X., Li, W., Wang, Y., Zeng, S., Li, H., Chen, G., Huang, X., Ma, D., Liu, D., Gao, Q. C/EBPβ promotes poly(ADP-ribose) polymerase inhibitor resistance by enhancing homologous recombination repair in high-grade serous ovarian cancer. *Oncogene*, 2021, 40(22):3845-3858. doi: 10.1038/s41388-021-01788-4

80) Zimmermann, M., Murina, O., Reijns, M.A.M., Agathanggelou, A., Challis, R., Tarnauskaitė, Ž., Muir, M., Fluteau, A., Aregger, M., McEwan, A., Yuan, W., Clarke, M., Lambros, M.B., Paneesha, S., Moss, P., Chandrashekar, M., Angers, S., Moffat, J., Brunton, V.G., Hart, T., de Bono, J., Stankovic, T., Jackson, A.P., Durocher, D. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. *Nature*, 2018, 559(7713):285-289. doi: 10.1038/s41586-018-0291-z

81) Hurley, R.M., McGehee, C.D., Nesic, K., Correia, C., Weiskittel, T.M., Kelly, R.L., Venkatachalam, A., Hou, X., Pathoulas, N.M., Meng, X.W., Kondrashova, O., Radke, M.R., Schneider, P.A., Flattan, K.S., Peterson, K.L., Becker, M.A., Wong, E.M., Southey, M.S., Dobrovic, A., Lin, K.K., Harding, T.C., McNeeish, L., Ross, C.A., Wagner, J.M., Wakefield, M.J., Scott, C.L., Haluska, P., Wahner Hendrickson, A.E., Karnitz, L.M., Swisher, E.M., Li, H., Weroha, S.J., Kaufmann, S.H. Characterization of a RAD51C-silenced high-grade serous
ovarian cancer model during development of PARP inhibitor resistance. *NAR Cancer, 2021*, 3(3):zcab028. doi: 10.1093/narcan/zcab028.

82) Prokhorova, E., Agnew, T., Wondisford, A.R., Tellier, M., Kaminski, N., Beijer, D., Holder, J., Groslambert, J., Suskiewicz, M.J., Zhu, K., Reber, J.M., Krassig, S.C., Palazzo, L., Murphy, S., Nielsen, M.L., Mangerich, A., Ahel, D., Baets, J., O'Sullivan, R.J., Ahel, I. Unrestrained poly-ADP-riboseylation provides insights into chromatin regulation and human disease. *Mol. Cell, 2021*, 81(12):2640-2655.e8. doi: 10.1016/j.molcel.2021.04.028

83) Pulliam, N., Fang, F., Ozes, A.R., Tang, J., Adewuyi, A., Keer, H., Lyons, J., Baylin, S.B., Matei, D., Nakshatri, H., Rasool, F.V., Miller, K.D., Nephew, K.P. An Effective Epigenetic-PARP Inhibitor Combination Therapy for Breast and Ovarian Cancers Independent of BRCA1 Mutations. *Clin. Cancer Res., 2018*, 24(13):3163-3175. doi: 10.1158/1078-0432.CCR-18-0204

84) Wang, Y.T., Yuan, B., Chen, H.D., Xu, L., Tian, Y.N., Zhang, A., He, J.X., Miao, Z.H. Acquired resistance of phosphatase and tensin homolog-deficient cells to poly(ADP-ribose) polymerase inhibitor and Ara-C mediated by 53BP1 loss and SAMHD1 overexpression. *Cancer Sci., 2018*, 109(3):821-831. doi: 10.1111/cas.13477

85) Clements, K.E., Thakar, T., Nicolae, C.M., Liang, X., Wang, H.G., Moldovan, G.L. Loss of E2F7 confers resistance to poly-ADP-ribose polymerase (PARP) inhibitors in BRCA2-deficient cells. *Nucleic Acids Res., 2018*, 46(17):8898-8907. doi: 10.1093/nar/gky657

86) Beck, C., Rodriguez-Vargas, J.M., Boehler, C., Robert, I., Heyer, V., Hanini, N., Gauthier, L.R., Tissier, A., Schreiber, V., Elofsson, M., Reina San Martin, B., Dantzer, F. PARP3, a new therapeutic target to alter Rictor/mTORC2 signaling and tumor progression in BRCA1-associated cancers. *Cell Death Differ., 2019*, 26(9):1615-1630. doi: 10.1038/s41418-018-0233-1

87) Lindgren, A.E., Karlberg, T., Thorsell, A.G., Hesse, M., Spjut, S., Ekblad, T., Andersson, C.D., Pinto, A.F., Weigelt, J., Hottiger, M.O., Linusson, A., Elofsson, M., Schuler, H. PARP inhibitor with selectivity toward ADP-riboyltransferase ARTD3/PARP3. *ACS Chem. Biol., 2013*, 8(8):1698-703. doi: 10.1021/cb4002014

88) Karpova, Y., Wu, C., Divan, A., McDonnell, M.E., Hewlett, E., Makhoff, P., Gordon, J., Ye, M., Reitz, A.B., Childers, W.E., Skorski, T., Kolenko, V., Tulin, A.V. Non-NAD-like PARP-1 inhibitors in prostate cancer treatment. *Biochem. Pharmacol., 2019*, 167:149-162. doi: 10.1016/j.bcp.2019.03.021

89) Sherstyuk, Y.V.; Ivanisenko, N.V.; Zakharenko, A.L.; Sukhanova, M.V.; Peshkov, R.Y.; Eltsov, I.V.; Kutuzov, M.M.; Kurgina, T.A.; Belousova, E.A.; Ivanisenko, V.A.; Lavrik, O.I.; Silnikov, V.N.; Abramova, T.V. Design, Synthesis and Molecular Modeling Study of Conjugates of ADP and Morpholino Nucleosides as A Novel Class of Inhibitors of PARP-1, PARP-2 and PARP-3. *Int. J. Mol. Sci. (Basel), 2019*, 21(1), 214. doi:10.3390/ijms21010214

90) Karlberg, T.; Hammarström, M.; Schütz, P.; Svensson, L.; Schüler, H. Crystal structure of the catalytic domain of human PARP2 in complex with PARP inhibitor ABT-887. *Biochemistry, 2010*, 49(6), 1056-1058. doi:10.1021/bi902079y

91) Pai Bellare, G., Saha, B., Patro, B.S. Targeting autophagy reverses de novo resistance in homologous recombination repair proficient breast cancers to PARP inhibition. *Br. J. Cancer, 2021*, 124(7):1260-1274. doi: 10.1038/s41416-020-01238-0

92) Marzi, L., Szabova, L., Gordon, M., Weaver Ohler, Z., Sharan, S.K., Beshiri, M.L., Etemadi, M., Murai, J., Kelly, K., Pommier, Y. The Indenoisoquinoline TOP1 Inhibitors Selectively Target Homologous Recombination-Deficient and Slafen 11-Positive Cancer Cells and Synergize with Olaparib. *Clin. Cancer Res., 2019*, 25(20):6206-6216. doi: 10.1158/1078-0432.CCR-19-0419

93) Eldhose, E., Lakshmanan, K., Krishnamurthy, P.T., Rajagopal, K., Mohammed, M., Prudviraj, P., Byran, G. 1,3,4-Thiadiazolo (3,2-A) Pyrimidine-6-Carbonitrile Scaffold as PARPi Inhibitors. *Anticancer Agents Med Chem. 2020* Dec 15. doi: 10.2174/1871520621666201216095018

94) Yin, L., Liu, Y., Peng, Y., Peng, Y., Yu, X., Gao, Y., Yuan, B., Zhu, Q., Cao, T., He, L., Gong, Z., Sun, L., Fan, X., Li, X. PARPi inhibitor veliparib and HDAC inhibitor SAHA synergistically co-target the UHRF1/BRCAl DNA damage repair complex in prostate cancer cells. *J. Exp. Clin. Cancer Res., 2018*, 37(1):153. doi: 10.1186/s13046-018-0810-7

95) Lau, T., Chan, E., Callow, M., Waaler, J., Boggs, J., Blake, R.A., Magnuson, S., Sambrone, A., Schutten, M., Firestein, R., Machon, O., Korinek, V., Choo, E., Diaz, D., Merchant, M., Polakis,
P. Holsworth, D.D., Krauss, S., Costa, M. A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. *Cancer Res.*, 2013; 73(10):3132-44. doi: 10.1158/0008-5472.CAN-12-4562

96) Ma, L., Wang, X., Jia, T., Wei, W., Chua, M.S., So, S. Tankyrase inhibitors attenuate WNT/β-catenin signaling and inhibit growth of hepatocellular carcinoma cells. *Oncotarget*, 2015; 6(28):25590-401. doi:10.18632/oncotarget.4455.

97) Huang, S.-M., Mishina YM, Liu S, Cheung A, Stegemeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. *Nature*, 2009, 461(7264):614-20. doi: 10.1038/nature08356.

98) Callow, M.G., Tran, H., Phu, L., Lau, T., Lee, J., Sandoval, W.N., Liu, P.S., Bheddah, S., Tao, J., Lill, J.R., Hongo, J.A., Davis, D., Kirkpatrick, D.S., Polakis, P., Costa, M. Ubiquitin ligase RNF146 regulates tankyrase and Axin to promote Wnt signaling. *PLoS One*, 2011; 6(7):e22595. doi: 10.1371/journal.pone.0022595.

99) Mygland, L, Brinch, S.A., Strand, M.F., Olsen, P.A., Aizenshtadt, A., Lund, K., Solberg, N.T., Lycke, M., Thorvaldsen, T.E., Espada, S., Misaghian, D., Page, C.M., Agafonov, O., Nygård, S., Chi, N.W., Lin, E., Tan, J., Yu, Y., Costa, M., Krauss, S., Waaler, J. Identification of response signatures for tankyrase inhibitor treatment in tumor cell lines. *iScience*, 2021, 24(7):102807. doi: 10.1016/j.isci.2021.102807.

100) Ferri, M., Liscio, P., Carotti, A., Asciutti, S., Sardella, R., Macchiariulo, A., Camaioni, E. Targeting Wnt-driven cancers: Discovery of novel tankyrase inhibitors. *Eur. J. Med. Chem.*, 2017, 142:506-522. doi: 10.1016/j.ejmech.2017.09.030.

101) Martins-Neves, S.R., Paiva-Oliveira, D.I., Fontes-Ribeiro, C., Bovée, J.V.M.G., Clemons-Jansen, A.M., Gomes, C.M.F. IWR-1, a tankyrase inhibitor, attenuates Wnt/β-catenin signaling in cancer stem-like cells and inhibits in vivo the growth of a subcutaneous human osteosarcoma xenograft. *Cancer Lett.*, 2018, 414:1-15. doi: 10.1016/j.canlet.2017.11.004.

102) Ryu, H., Nam, K.Y., Kim, H.J., Song, J.Y., Hwang, S.G., Kim, J.S., Kim, J., Ahn, J. Discovery of a Novel Triazolopyridine Derivative as a Tankyrase Inhibitor. *Int. J. Mol. Sci. (Basel)*, 2021, 22(14):7330. doi: 10.3390/ijms22147330.

103) Buchstaller, H.P., Anlauf, U., Dorsch, D., Kögerl, S., Kuhn, D., Lehmann, M., Leuthner, B., Lodholz, S., Musil, D., Radtke, D., Rettig, C., Ritzert, C., Rohdich, F., Schneider, R., Wegener, A, Weigt S, Wilkinson K, Esdar C. Optimization of a Screening Hit toward M2912, an Oral Tankyrase Inhibitor with Antitumor Activity in Colorectal Cancer Models. *J. Med. Chem.*, 2021, 64(14):10371-10392. doi: 10.1021/acs.jmedchem.1c00800.

104) Shirai, F., Tsumura, T., Yashiroya, Y., Yuki, H., Niwa, H., Sato, S., Chikada, T., Koda, Y., Washizuka, K., Yoshimoto, N., Abe, M., Onuki, T., Mazaki, Y., Hirama, C., Fukami, T., Watanabe, H., Honma, T., Umehara, T., Shirouzu, M., Okue, M., Kano, Y., Watanabe, T., Kitamura, K., Shiura, E., Muramatsu, Y., Yoshida, H., Mizutani, A., Seimiya, H., Yoshida, M., Koyama, H. Discovery of Novel Spiroindoline Derivatives as Selective Tankyrase Inhibitors. *J. Med. Chem.*, 2019, 62(7):3407-3427. doi: 10.1021/acs.jmedchem.8b01888.

105) Menon, M., Elliott, R., Bowers, L., Balan, N., Rafiq, R., Costa-Cabral, S., Munkonge, F., Trinidad, I., Porter, R., Campbell, A.D., Johnson, E.R., Esdar, C., Buchstaller, H.P., Leuthner, B., Rohdich, F., Schneider, R., Sansom, O., Wienie, D., Ashworth, A., Lord, C.J. A novel tankyrase inhibitor, M5C2504877, enhances the effects of clinical CDK4/6 inhibitors. *Sci. Rep.*, 2019, 9(1):201. doi: 10.1038/s41598-018-36447-4.

106) Li, B., Liang, J., Lu, F., Zeng, G., Zhang, J., Ma, Y., Liu, P., Wang, Q., Zhou, Q., Chen, L. Discovery of Novel Inhibitor for WNT/β-Catenin Pathway by Tankyrase 1/2 Structure-Based Virtual Screening. *Molecules (Basel)*, 2020, 25(7):1680. doi: 10.3390/molecules25071680.

107) Solberg, N.T., Waaler, J., Lund, K., Mygland, L., Olsen, P.A., Krauss, S. TANKYRASE Inhibition Enhances the Anti-proliferative Effect of PI3K and EGFR Inhibition, Mutually Affecting β-CATENIN and AKT Signaling in Colorectal Cancer. *Mol. Cancer Res.*, 2018, 16(3):543-553. doi: 10.1158/1541-7786.MCR-17-0362.

108) Haikarainen, T., Narwal, M., Joensuu, P., Lehtiö, L. Evaluation and Structural Basis for the Inhibition of Tankyrase by PARP Inhibitors. *ACS Med. Chem. Lett.*, 2013; 5(1):18-22. doi: 10.1021/ml400292s.
109) Brengman, H., Chakka, N., Guzman-Perez, A., Gunaydin, H., Gu, Y., Huang, X., Berry, V., Liu, J., Teffera, Y., Huang, L., Egbe, B., Mullady, E.L., Schneider, S., Andrews, P.S., Mishra, A., Newcomb, J., Serafini, R., Stratdhee, C.A., Turci, S.M., Wilson, C., DiMauro, E.F. Discovery of novel, induced-pocket oxazolidinones as potent, selective, and orally bioavailable tankyrase inhibitors. J. Med. Chem., 2013, 56(11):4320-42. doi: 10.1021/jm4000038

110) Shultz MD, Cheung AK, Kirby CA, Firestone B, Fan J, Chen CHT, Chen Z, Chin DN, Dipietro L, Fazal A, Feng Y, Fortin PD, Gould T, Lagu B, Lei H, Lenoir F, Majumdar D, Ochala E, Palermo MG, Pham L, Pu M, Smith T, Stams T, Tomlinson RC, Touré BB, Visser M, Wang RM, Waters NJ, Shao W. Identification of NVP-TNKS656: the use of structure-efficiency relationships to generate a highly potent, selective, and orally active tankyrase inhibitor. J. Med. Chem. 2013; 56(16):6495–511. doi: 10.1021/jm400807n.

111) Vilchez Larrea S, Valsecchi WM, Fernández Villamil SH, Lafon Hughes LI. First body of evidence suggesting a role of a tankyrase-binding motif (TBM) of vinculin (VCL) in epithelial cells. PeerJ., 2021, 9:e11442. doi: 10.7717/peerj.11442

112) Guettler, S., LaRose, J., Petsalaki, E., Gish, G., Scotter, A., Pawson, T., Rottapel, R., Sicheri, F. Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. Cell, 2011, 147(6):1340-54. doi: 10.1016/j.cell.2011.10.046.

113) Pollock, K., Liu, M., Zaleska, M., Meniconi, M., Pfuhl, M., Collins, I., Guettler, S. Fragment-based screening identifies molecules targeting the substrate-binding ankyrin repeat domains of tankyrase. Sci. Rep., 2019, 9(1):19130. doi: 10.1038/s41598-019-55240-5

114) Cheng, H., Li, X., Wang, C., Chen, Y., Li, S., Tan, J., Tan, B., He, Y. Inhibition of tankyrase by a novel small molecule significantly attenuates prostate cancer cell proliferation. Cancer Lett., 2019, 443:80-90. doi: 10.1016/j.canlet.2018.11.013

115) Barbarulo, A., Iansante, V., Chaidos, A., Naresh, K., Rahemtulla, A., Franzoso, G., Karadimitris, A., Haskard, D.O., Papa, S., Bubici, C. Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene, 2013, 32(36):4231-42. doi: 10.1038/onc.2012.448

116) Dhoonmoon, A., Schleicher, E.M., Clements, K.E., Nicolae, C.M., Moldovan, G.L. Genome-wide CRISPR synthetic lethality screen identifies a role for the ADP-riboseyltransferase PARP14 in DNA replication dynamics controlled by ATR. Nucleic Acids Res., 2020, 48(13):7252-7264. doi: 10.1093/nar/gkaa508

117) Peng, B.; Thorsell, A.-G.; Karlberg, T.; Schüler, H.; Yao, S.Q. Small Molecule Microarray Based Discovery of PARP14 Inhibitors. Angew. Chem. Int. Ed. Engl. 2017, 56, 248–253, doi:10.1002/anie.201609655.

118) Upton, K.; Meyers, M.; Thorsell, A.-G.; Karlberg, T.; Holechek, J.; Lease, R.; Schey, G.; Wolf, E.; Lucente, A.; Schüler, H.; Ferraris, D. Design and synthesis of potent inhibitors of the mono(ADP-riboseyl)transferase, PARP14. Bioorg. Med. Chem. Lett. 2017, 27, 2907–2911, doi:10.1016/j.bmcl.2017.04.089

119) Qin, W.; Wu, H.-J.; Cao, L.-Q.; Li, H.-J.; He, C.-X.; Zhao, D.; Xing, L.; Li, P.-Q.; Jin, X.; Cao, H.-L. Research Progress on PARP14 as a Drug Target. Front. Pharmacol., 2019, 10, 172, doi:10.3389/fphar.2019.00172.

120) Holechek, J., Lease, R., Thorsell, A.G., Karlberg, T., McCadden, C., Grant, R., Keen, A., Callahan, E., Schüler, H., Ferraris, D. Design, synthesis and evaluation of potent and selective inhibitors of mono-(ADP-riboseyl)transferases PARP10 and PARP14. Bioorg. Med. Chem. Lett., 2018, 28(11):2050-2054. doi:10.1016/j.bmcl.2018.04.056

121) Moustakim, M.; Riedel, K.; Schuller, M.; Gehring, A.P.; Monteiro, O.P.; Martin, S.P.; Fedorov, O.; Heer, J.; Dixon, D.J.; Elkins, J.M.; Knapp, S.; Bracher, F.; Brennan, P.E. Discovery of a novel allosteric inhibitor scaffold for polyadenosine-diphosphate-ribose polymerase 14 (PARP14) macrodomain 2. Bioorg. Med. Chem., 2018, 26(11), 2965-2972.

122) Wigle, T.J., Ren, Y., Molina, J.R., Blackwell, D.J., Schenkel, L.B., Swinger, K.K., Kuplast-Barr, K., Major, C.R., Church, W.D., Lu, A.Z., Mo, J., Abo, R., Cheung, A., Dorsey, B.W., Niepel, M., Perl, N.R., Vasbinder, M.M., Keilhack, H., Kuntz, K.W. Targeted Degradation of PARP14 Using a Heterobifunctional Small Molecule. ChemBiochem., 2021, 22(12):2107-2110. doi:10.1002/cbic.202100047

123) Schenkel, L.B., Molina, J.R., Swinger, K.K., Abo, R., Blackwell, D.J., Lu, A.Z., Cheung, A.E., Church, W.D., Kunii, K., Kuplast-Barr, K.G., Major, C.R., Minissale, E., Mo, J.R., Niepel, M.,
Reik, C., Ren, Y., Vasbinder, M.M., Wigle, T.J., Richon, V.M., Keilhack, H., Kuntz, K.W. A potent and selective PARP14 inhibitor decreases protumor macrophage gene expression and elicits inflammatory responses in tumor explants. *Cell. Chem. Biol.*, 2021, 28(8):1158-1168.e13. doi: 10.1016/j.chembiol.2021.02.010

124) Büterpage, M., Ecke, L., Verheugd, P., Lüscher, B. Intracellular Mono-ADP-Ribosylation in Signaling and Disease. *Cells (Basel)*, 2015, 4(4):569-95. doi: 10.3390/cells4040569.

125) Hoch, N.C.; and Polo, L.M. ADP-ribosylation: from molecular mechanisms to human disease. *Genet. Mol. Biol.*, 2019, 43(1)(Suppl. 1), e20190075.

126) Kirby, I.T.; and Cohen, M.S. Small-Molecule Inhibitors of PARPs: From Tools for Investigating ADP-Ribosylation to Therapeutics. *Curr. Top. Microbiol. Immunol.*, 2019; 420:211-231. doi: 10.1007/82_2018_137

127) Murthy, S.; Desantis, J.; Verheugd, P.; Maksimainen, M.M.; Venkannagari, H.; Massari, S.; Ashok, Y.; Obaji, E.; Nkizinkinko, Y.; Lüscher, B.; Tabarrini, O.; Lehtiö, L. 4-(Phenoxy) and 4-(benzoyl)benzamides as potent and selective inhibitors of mono-ADP-ribosyltransferase PARP10/ARTD10. *Eur. J. Med. Chem.*, 2018, 156, 93-102.

128) Morgan, R.K.; Kirby, I.T.; Schmaedick, A.V.; Rodriguez, K.; Cohen, M.S. Rational Design of Cell-Active Inhibitors of PARP10. *ACS Med. Chem. Lett.*, 2018, 10, 74-79. doi:10.1021/acsmedchemlett.8b00429

129) Venkannagari, H.; Verheugd, P.; Koivunen, J.; Haikarainen, T.; Obaji, E.; Ashok, Y.; Narwal, M.; Pihlajaniemi, T.; Lüscher, B.; Lehtiö, L. Small-Molecule Chemical Probe Rescues Cells from Mono-ADP-Ribosyltransferase ARTD10/PARP10-Induced Apoptosis and Sensitizes Cancer Cells to DNA Damage. *Cell Chem. Biol.*, 2016, 23, 1251-1260, doi:10.1016/j.chembiol.2016.08.012

130) Zhao, Y., Liang, X.; Wei, L.; Liu, Y.; Liu, J.; Feng, H.; Zheng, F.; Wang, Y.; Ma, H.; Wu, J. RNFI14 suppresses metastasis through regulation of PARP10 in cervical cancer cells. *Cancer Commun.* (Lond), 2021, 41:187-191. doi: 10.1002/cac2.12132.

131) Kirby, I.T.; Kojic, A.; Arnold, M.R.; Thorsell, A.G.; Karlberg, T.; Vermehren, Schmaedick, A.; Sreenivasan, R.; Schultz, C.; Schürer, H.; Cohen, M.S. A Potent and Selective PARP11 Inhibitor Suggests Coupling between Cellular Localization and Catalytic Activity. *Cell Chem. Biol.*, 2018, 25(12), 1547-1553.e12. doi:10.1016/j.chembiol.2018.09.011

132) Guo, T., Guo, Y., Qian, L., Liu, J., Yuan, Y., Xu, K., Miao, Y., Feng, Q., Chen, X., Jin, L., Zhang, L., Dong, C., Xiong, S., Zheng, H. ADP-ribosyltransferase PARP11 modulates the interferon antiviral response by mono-ADP-ribosylating the ubiquitin E3 ligase β-TrCP. *Nat. Microbiol.*, 2019; 4(11):1872-1884.

133) Meyer-Ficca, M.L., Ilhara, M., Bader, J.J., Leu, N.A., Beneke, S., Meyer, R.G. Spermatid head elongation with normal nuclear shaping requires ADP-ribosyltransferase PARP11 (ARTD11) in mice. *Biol. Reprod.* 2015, 92(3):80.

134) Li, L., Shi, Y., Li, S., Liu, J., Zu, S., Xu, X., Gao, M., Sun, N., Pan, C., Peng, L., Yang, H., Cheng, G. ADP-ribosyltransferase PARP11 suppresses Zika virus in synergy with PARP12. *Cell Biostat.* 2021, 11(1):116. doi: 10.1186/s13578-021-00628-y

135) Lu, A.Z., Abo, R., Ren, Y., Gai, B., Mo, J.R., Blackwell, D., Wigle, T., Keilhack, H., Niepel, M. Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation. *Biochem. Pharmacol.*, 2019; 167:97-106. doi: 10.1016/j.bcp.2019.05.007

136) Wigle, T.J., Church, W.D., Majer, C.R., Swinger, K.K., Aybar, D., Schenkel, L.B., Vasbinder, M.M., Brendes, A., Beck, C., Prahm, M., Wegener, D., Chang, P., Kuntz, K.W. Forced Self-Modification Assays as a Strategy to Screen MonoPARP Enzymes. *SLAS Discov.*, 2020, 25(3):241-252. doi: 10.1177/2472555219883623

137) Wigle, T.J., Blackwell, D.J., Schenkel, L.B., Ren, Y., Church, W.D., Desai, H., Swinger, K.K., Santospago, A.G., Majer, C.R., Lu, A.Z., Niepel, M., Perl, N.R., Vasbinder, M.M., Keilhack, H., Kuntz, K.W. In Vitro and Cellular Probes to Study PARP Enzyme Target Engagement. *Cell. Chem. Biol.*, 2020, 27(7):877-887.e14. doi: 10.1016/j.chembiol.2020.06.009

138) Palavalli Parsons, L.H., Challa, S., Gibson, B.A., Nandu, T., Stokes, M.S., Huang, D., Lea, J.S., Kraus, W.L. Identification of PARP-7 substrates reveals a role for MARylation in microtubule control in ovarian cancer cells. *Elife*, 2021; 10:e60481. doi: 10.7554/eLife.60481
regulator of cell proliferation, is involved in colorectal cancer development. Tatsuka Rendoplasmic reticulum. 14 for the PERK activity.

antitumor immunity. pathways. PARP7 inhibitor targeting a newly Swinger J. Combination of Selective PARP3 and PARP16 Inhibitory Analogues of Latonduine A (11):1223 Vermehren Rodriguez Roper Centko Carlile Wang Schleicher Gozgit Vasbinder, M.M., Schenkel, L.B., Swinger, K.K., Kuntz, K.W. (2019). Pyridazinones as of ES cells. D. PARP6, a mono(ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells. Nucleic Acids Res. 2018; 46:8908-8916. doi: 10.1093/nar/gky658 147 Schleicher, E.M., Galvan, A.M., Imamura-Kawasawa, Y., Moldovan, G.L., Nicolae, C.M. PARP10 promotes cellular proliferation and tumorigenesis by alleviating replication stress. Nucleic Acids Res. 2018; 46:8908-8916. doi: 10.1093/nar/gky658 148 Wang, J., Zhu, C., Song, D., Xia, R., Yu, W., Dang, Y., Fei, Y., Yu, L., Wu, J. Epigallocatechin-3-gallate enhances ER stress-induced cancer cell apoptosis by directly targeting PARP16 activity. Cell Death Discov. 2017; 3:17034. doi: 10.1038/cddiscovery.2017.34 149 Di Paola, S.; Micaroni, M.; Di Tullio, G.; Bucconic, R.; Di Girolamo, M. PARP16/ARTD15 is a novel endoplasmic-reticulum-associated mono-ADP-ribosyltransferase that interacts with, and modifies karyopherin-81. PLoS One, 2012, 7(6), e37352. doi:10.1371/journal.pone.0037352 150 Jwa, M., and Chang, P. PARP16 is a tail-anchored endoplasmic reticulum protein required for the PERK- and IRE1alpha-mediated unfolded protein response. Nat. Cell Biol., 2012; 14(11):1223-30. doi: 10.1038/ncb2593 151 Di Girolamo, M.; Fabrizio, G.; Scarpa, E.S.; Di Paola, S. NAD+-dependent enzymes at the endoplasmic reticulum. Curr. Top. Med. Chem., 2013, 13(23), 3001-3010. doi:10.2174/1568026613136660214 152 Carlile, G.W., Robert, R., Matthes, E., Yang, Q., Solari, R., Hatley, R., Edge, C.M., Hanrahan, J.W., Andersen, R., Thomas, D.Y., Birault, V. Latonduine Analogs Restore F508del-Cystic Fibrosis Transmembrane Conductance Regulator Trafficking through the Modulation of Poly-ADP Ribose Polymerase 3 and Poly-ADP Ribose Polymerase 16 Activity. Mol. Pharmaco., 2016; 90(2):65-79. doi: 10.1124/mol.115.102418 153 Centko, R.M., Carlile, G.W., Barne, I., Patrick, B.O., Blagojevic, P., Thomas, D.Y., Andersen, R.J. Combination of Selective PARP3 and PARP16 Inhibitory Analogues of Latonduine A Corrects F508del-CFTR Trafficking. ACS Omega, 2020, 5(40):25593-25604. doi: 10.1021/acsomega.0c02467 154 Tuncel, H., Tanaka, S., Oka, S., Nakai, S., Fukutomi, R., Okamoto, M., Ota, T., Kaneko, H., Tatsuka, M., Shimamoto, F. PARP6, a monoadenosine-ribosyl transferase and a negative regulator of cell proliferation, is involved in colorectal cancer development. Int. J. Oncol., 2012, 41, 2079–2086. 155 Vermehren-Schmaedick, A., Huang, J.Y., Levinson, M., Pomaville, M.B., Reed, S., Bellus, G.A., Gilbert, F., Keren, B., Heron, D., Haye, D., Janello, C., Makowski, C., Danhauser, K., Fedorov, L.M., Haack, T.B., Wright, K.M., Cohen, M.S. Characterization of PARP6 Function
in Knockout Mice and Patients with Developmental Delay. *Cells, 2021,* 10(6):1289. doi: 10.3390/cells10061289

154) Wang, Z., Grosskurth, S.E., Cheung, T., Petteruti, P., Zhang, J., Wang, X., Wang, W., Gharaheidghi, F., Wu, J., Su, N., Howard, R.T., Mayo, M., Widzowski, D., Scott, D.A., Johannes, J.W., Lamb, M.L., Lawson, D., Dry, J.R., Lyne, P.D., Tate, E.W., Zinda, M., Mikule, K., Fawell, S.E., Reimer, C., Chen, H. Pharmacological Inhibition of PARP6 Triggers Multipolar Spindle Formation and Elicits Therapeutic Effects in Breast Cancer. *Cancer Res. 2018,* 78(23):6691-6702. doi: 10.1158/0008-5472.CAN-18-1362

155) Tang, B., Zhang, Y., Wang, W., Qi, G., Shimamoto, F. PARP6 suppresses the proliferation and metastasis of hepatocellular carcinoma by degrading XRCC6 to regulate the Wnt/β-catenin pathway. *Am. J. Cancer Res. 2020,* 10(7):2100-2113

156) Fabrizio, G., Di Paola, S., Stilla, A., Giannoni, M., Ruggiero, C., Menzel, S., Koch-Nolte, F., Sallesse, M., Di Girolamo, M. ARTC1-mediated ADP-ribosylation of GRP78/BiP: a new player in endoplasmic-reticulum stress responses. *Cell. Mol. Life Sci., 2015,* 72(6):1209-25. doi: 10.1007/s00018-014-1745-6

157) Yang, L., Xiao, M., Li, X., Tang, Y., Wang, Y.L. Arginine ADP-ribosyltransferase 1 promotes angiogenesis in colorectal cancer via the PI3K/Akt pathway. *Int. J. Mol. Med., 2016,* 37(3):734-42. doi: 10.3892/ijmm.2016.2473.

158) Tang, Y., Wang, Y.L., Yang, L., Xu, J.X., Xiong, W., Xiao, M., Li, M. Inhibition of arginine ADP-ribosyltransferase 1 reduces the expression of poly(ADP-ribose) polymerase-1 in colon carcinoma. *Int. J. Mol. Med., 2013,* 32(1):130-6. doi: 10.3892/ijmm.2013.1370

159) Wei, X., Tang, Y., Wang, Y., Xu, J-X. Effects of ART1 gene silencing on the ability of CT26 cellular matrix adhesion and migration. *Fudan Univ. J. Med. Sci. 2013,* 40:328-334.

160) Song, G.L., Jin, C.C., Zhao, W., Tang, Y., Wang, Y.L., Li, M., Xiao, M., Li, X., Li, Q.S., Lin, X., Chen, W.W., Kuang. J. Regulation of the RhoA/ROCK/AKT/β-catenin pathway by arginine-specific ADP-ribosyltransferases 1 promotes migration and epithelial-mesenchymal transition in colon carcinoma. *Int. J. Oncol., 2016,* 49(2):646-56. doi: 10.3892/ijo.2016.3539

161) Ekblad, T., and Schüler, H. Sirtuins are Unaffected by PARP Inhibitors Containing Planar Nicotinamide Biososteres. *Chem. Biol. Drug Des., 2016,* 87:478-82. doi: 10.1111/cbdd.12680.

162) Hawse, W.F., and Wolberger, C. Structure-based mechanism of ADP-ribosylation by sirtuins. *J. Biol. Chem. 2009,* 284, 33654–33661. doi:10.1074/jbc.m109.024521

163) Fiorentino, F., Carafa, V., Favale, G., Altucci, L., Mai, A., Rotili, D. The Two-Faced Role of SIRT6 in Cancer. *Cancers (Basel), 2021,* 13(5):1156. doi: 10.3390/cancers13051156

164) Bai, L., Lin, G., Sun, L., Liu, Y., Huang, X., Cao, C., Guo, Y., Xie, C. Upregulation of SIRT6 predicts poor prognosis and promotes metastasis of non-small cell lung cancer via the ERK1/2/MMP9 pathway. *Oncotarget, 2016,* 7(26):40377-40386. doi: 10.18632/oncotarget.9750

165) Lin, H., Hao, Y., Zhao, Z., Tong, Y. Sirtuin 6 contributes to migration and invasion of osteosarcoma cells via the ERK1/2/MMP9 pathway. *FEBS Open Bio, 2017,* 7(9):1291-1301. doi: 10.1002/2211-5463.12265

166) Geng, C.H., Zhang, C.L., Zhang, J.Y., Gao, P., He, M., Li, Y.L. Overexpression of Sirt6 is a novel biomarker of malignant human colon carcinoma. *J. Cell Biochem., 2018,* 119(3):3957-3967. doi: 10.1002/jcb.26539.

167) Wang, H., Li, J., Huang, R., Fang, L., Yu, S. SIRT4 and SIRT6 Serve as Novel Prognostic Biomarkers With Competitive Functions in Serous Ovarian Cancer. *Front. Genet., 2021,* 12:666630. doi: 10.3389/fgene.2021.66630

168) Tan, Y., Li, B., Peng, F., Gong, G., Li, N. Integrative Analysis of Sirtuins and Their Prognostic Significance in Clear Cell Renal Cell Carcinoma. *Front. Oncol., 2020,* 10:218. doi: 10.3389/fonc.2020.00218.

169) Klein, M.A.; and Denu, J.M. Biological and catalytic functions of sirtuin 6 as targets for smal-molecule modulators. *J. Biol. Chem., 2020,* 295:11021-41, doi:10.1074/jbc.re120.011438

170) Garcia-Peterson, L.M., Ndiaye, M.A., Chhabra, G., Singh, C.K., Guzmán-Pérez, G., Iczkowski, K.A., Ahmad, N. CRISPR/Cas9-mediated Knockout of SIRT6 Imparts Remarkable Antiproliferative Response in Human Melanoma Cells in vitro and in vivo. *Photochem. Photobiol. 2020,* 96(6):1314-1320. doi:10.1111/php.13305
SIRT6 overexpression induces massive apoptosis in cancer cells but not in normal cells. Cell Cycle, 2011, 10(18), 3153-3158.

Van Meter, M.; Kashyap, M.; Rezazadeh, S.; Geneva, A.J.; Morello, T.D.; Seluanov, A.; Gorbunova, V. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun., 2014, 5, 5011. Doi:10.1038/ncomms6011

Mellini, P.; Itoh, Y.; Elboray, E.E.; Tsumoto, H.; Li, Y.; Suzuki, M.; Takahashi, Y.; Tojo, T.; Kurohara, T.; Miyake, Y; Miura, Y.; Kitao, Y.; Kotoku, M.; Iida, T.; Suzuki, T. Identification of Diketopiperazine-Containing 2-Anilinobenzamides as Potent Sirtuin 2 (SIRT2)-Selective Inhibitors Targeting the “Selectivity Pocket”, Substrate-Binding Site, and NAD+-Binding Site. J. Med. Chem, 2019, 62(12), 5844-5862. Doi:10.1021/acs.jmedchem.9b00255

Rezazadeh, S.; Yang, D.; Biashad, S.A.; Firsanov, D.; Takasugi, M.; Gilbert, M.; Tombline, G.; Bhanu, N.V.; Garcia, B.A.; Seluanov, A.; Gorbunova, V. SIRT6 mono-ADP ribosylates KDM2A to locally increase H3K36me2 at DNA damage sites to inhibit transcription and promote repair. Aging (Albany NY), 2020, 12(12), 11165-11184. Doi:10.18632/aging.103567

Rezazadeh, S.; Yang, D.; Tombline, G.; Simon, M.; Regan, S.P.; Seluanov, A.; Gorbunova, V. SIRT6 promotes transcription of a subset of NFR2 targets by mono-ADP-ribosylating BAF170. Nucleic Acids Res., 2019, 47(15), 7914-7928. Doi:10.1093/nar/gkz528

Asaba, T.; Suzuki, T.; Ueda, R.; Tsumoto, H.; Nakagawa, H.; Miyata, N. Inhibition of human sirtuins by in situ generation of an acetylated lysine-ADP-ribose conjugate. J. Am. Chem. Soc., 2009, 131(20), 6989-6996. Doi:10.1021/ja807083y

Hu, J.; Jing, H.; Lin, H. Sirtuin inhibitors as anticancer agents. Future Med. Chem., 2014, 6(8), 945-966. Doi:10.4155/fmc.14.44

Xu, Z.; Zhang, L.; Zhang, W.; Meng, D.; Zhang, H.; Jiang, Y.; Xu, X.; Van Meter, M.; Seluanov, A.; Gorbunova, V.; Mao, Z. SIRT6 rescues the age-related decline in base excision repair in a PARP1-dependent manner. Cell Cycle, 2015; 14:269–276. doi:10.4161/15384101.2014.980641

Khan, R.I., Nizhbor, S.S.R., Akter, R. A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets. Biomolecules (Basel), 2018, 8(3):44. doi: 10.3390/biom8030044

McCord, R.A., Michishita, E., Hong, T., Berber, E., Boxer, L.D., Kusumoto, R., Guan, S., Shi, X., Gozani, O., Burlingame, A.L., Bohr, V.A., Chua, K.F. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging (Albany NY), 2009, 1(1):109-21. doi: 10.18632/aging.100011

Chen, W., Liu, N., Zhang, H., Zhang, H., Qiao, J., Jia, W., Zhu, S., Mao, Z., Kang, J. Sirt6 Promotes DNA End Joining in iPSCs Derived from Old Mice. Cell Rep., 2017, 18(12):2880-2892. doi:10.1016/j.celrep.2017.02.082.

Chen, Y., Chen, J., Sun, X., Yu, J., Qian, Z., Wu, L., Xu, X., Van, J., Jiang, Y., Zhang, J., Gao, S., Mao, Z. The SIRT6 activator MDL-800 improves genomic stability and pluripotency of old murine-derived iPSC cells. Aging Cell, 2020, 19(8):e13185. doi: 10.1111/ace13185

Toiber, D., Erdel, F., Bouazoune, K., Silberman, D.M., Zhong, L., Mulligan, P., Sebastian, C., Cosentino, C., Martinez-Pastor, B., Giacosa, S., D’Urso, A., Nääär, A.M., Kingston, R., Ripke, K., Mostoslavsky, R. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol. Cell, 2013, 51(4):454-68. doi: 10.1016/j.molcel.2013.06.018

Damonte, P., Sociali, G., Parenti, M.D., Soncini, D., Bauer, I., Boero, S., Grozio, A., Holty, M.V., Piacente, F., Becherini, P., Sanguineti, R., Salis, A., Damonte, G., Cea, M., Murone, M., Poggi, A., Nencioni, A., Del Rio, A., Bruzzone, S. SIRT6 inhibitors with salicylate-like structure show immunosuppressive and chemosensitizing effects. Bioorg. Med. Chem. 2017; 25(20):5849-5858. doi: 10.1016/j.bmc.2017.09.023

Sociali, G., Magnone, M., Ravaera, S., Damonte, P., Vigliarolo, T., Von Holty, M., Vellone, V.G., Millo, E., Caffa, I., Cea, M., Parenti, M.D., Del Rio, A., Murone, M., Mostoslavsky, R.,
Grozio, A., Nencioni, A., Bruzzone, S. Pharmacological Sirt6 inhibition improves glucose tolerance in a type 2 diabetes mouse model. *FASEB J.*, 2017, 31(7):3138-3149. doi: 10.1096/fj.201601294R

188) Vazquez, B.N.; Thackray, J.K.; Simonet, N.G.; Kane-Goldsmith, N.; Martinez-Redondo, P.; Nguyen, T.; Bunting, S.; Vaquero, A.; A Tischfield, J.; Serrano, L. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. *EMBO J.*, 2016, 35, 1488–1503. doi:10.15252/embj.201593499.

189) Brown, D.G., Shorter, J., Wobst, H.J. Emerging small-molecule therapeutic approaches for amyotrophic lateral sclerosis and frontotemporal dementia. *Bioorg. Med. Chem. Lett.*, 2020, 30:126942. doi: 10.1016/j.bmcl.2019.126942.

190) Berger, N.A.; Besson, V.C.; Boulares, A.H.; Bürkle, A.; Chiarugi, A.; Clark, R.S.; Curtin, N.J.; Cuzzocrea, S.; Dawson, T.M.; Dawson, V.L.; Forsberg, G.; Haskó, G.; Liaudet, L.; Moroni, F.; Pacher, P.; Radermacher, P.; Salzman, A.L.; Snyder, S.H.; Soriano, F.G.; Strosovnik, R.P.; Sümmegi, B.; Swanson, R.A.; Szabo, C. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases. *Br. J. Pharmacol.*, 2018, 175(2), 192-222.

191) Jayabalai, A.K., Adivarahan, S., Koppula, A., Abraham, R., Batish, M., Zenkluens, D., Griffin, D.E., Leung, A.K.L. Stress granule formation, disassembly, and composition are regulated by alphavirus ADP-ribosylhydrolase activity. *Proc. Natl. Acad. Sci. U.S.A.*, 2021, 118:e202179118. doi: 10.1073/pnas.202179118

192) Žaja, R., Aydin, G., Lippok, B.E., Feederle, R., Lüscher, B., Feisj, K.L.H. Comparative analysis of MACROD1, MACROD2 and TARG1 expression, localisation and interactome. *Sci. Rep.*, 2020, 10:8286. doi: 10.1038/s41598-020-64623-y

193) Sabnis, R.W. Novel Azaquinolones as PARP1 Inhibitors for Treating Cancer. *ACS Med. Chem. Lett.*, 2021, 12(4):524-525. doi: 10.1021/acsmedchemlett.1c00122.

194) Patel, P.R., Senyuk, V., Rodriguez, N.S., Oh, A.L., Bonetti, E., Mahmoud, D., Barosi, G., Mahmoud, N., Rondelli, D. Synergistic Cytotoxic Effect of Busulfan and the PARP Inhibitor Veliparib in Myeloproliferative Neoplasms. *Biol. Blood Marrow Transplant*. 2019, 25(5):855-860. doi: 10.1016/j.bbmt.2018.12.014

195) Boussios, S., Karihtala, P., Moschetta, M., Abson, C., Karathanasis, A., Zakythininakis-Kyriakou, N., Ryan, J.E., Sheriff, M., Rassy, E., Pavlidis, N. Veliparib in ovarian cancer: a new synthetically lethal therapeutic approach. *Invest. New Drugs*, 2020, 38(1):181-193. doi: 10.1007/s10637-019-00867-4.

196) McGurk, L., Mojsilovic-Petrovic, J., Van Deerlin, V.M., Shorter, J., Kalb, R.G., Lee, V.M., Trojanowski, J.Q., Lee, E.B., Bonini, N.M. Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis. *Acta Neuropathol. Commun.*, 2018, 6:84. doi: 10.1186/s40478-018-0586-1

197) Rack, J.G.M., Ariza, A., Drown, B.S., Henfrey, C., Bartlett, E., Shirai, T., Hergenrother, P.J., Ahel, I. (ADP-ribosyl)hydrolases: Structural Basis for Differential Substrate Recognition and Inhibition. *Cell. Chem. Biol.*, 2018, 25:1533-1546.e12. doi: 10.1016/j.chembiol.2018.11.001

198) Drown, B.S.; Shirai, T.; Rack, J.G.M.; Ahel, I.; Hergenrother, P.J. Monitoring Poly (ADP-ribose) glycohydrolase Activity with a Continuous Fluorescent Substrate. *Cell Chem. Biol.*, 2018, 25, 1562–1570.

199) Wyżewski, Z., Gradowski, M., Krysińska, M., Dudkiewicz, M., Pawłowski, K. A novel predicted ADP-ribosyltransferase-like family conserved in eukaryotic evolution. *PeerJ.*, 2021, 9:e11051. doi: 10.7717/peerj.11051

200) Cardamone, M.D., Gao, Y., Kwan, J., Hayashi, V., Sheeran, M., Xu, J., English, J., Orofino, J., Emili, A., Perissi, V. ADP-ribosylation of mitochondrial proteins is mediated by Neuralized-like protein 4 (NEURL4). bioRxiv. 2021 doi: 10.1101/2020.12.28.424513.

201) Dudkiewicz, M., and Pawłowski, K. A novel conserved family of Macro-like domains putative new players in ADP-ribosylation signaling. *PeerJ.*, 2019, 7:e6863. doi: 10.7717/peerj.6863

202) Ayyappan, V., Wat, R., Barber, C., Vivelo, C.A., Gauch, K., Visanpattanasin, P., Cook, G., Saizdees, C., Leung A.K.L. ADPRibosDB 2.0: an updated database of ADP-ribosylated proteins. *Nucleic Acids Res.* 2021, 49(D1):D261-D265. doi: 10.1093/nar/gkaa941