High-Energy LHC design

J.L. Abelleira1, D. Amorim2, S.A. Antipov2, A. Apyan3, S. Arsenyev2, J. Barranco4, M. Benedikt2, R. Bruce2, F. Burkart5, Y. Cai6, M. Crouch2, E. Cruz-Alaniz1, S. Fartoukh2, M. Giovannozzi2, B. Goddard2, G. Guillermo Cantón7, M. Hofer2, R. Kersevan2, P. Martinez Mirave1, V. Mertens2, L. Mether4, Y. Muttoni2, Y. Nosochkov6, K. Ohmi8, K. Oide8, J. Osborne9, V. Parma2, T. Pieiloni1, V. Raginel2, S. Redaelli2, T. Risselada2, L. Rivkin1, I. Ruehl2, B. Salvant2, D. Schoerling2, A. Seryi1, E. Shaposhnikova2, C. Tambasco4, L. Tavian2, E. Todesco2, R. Tomas2, D. Tommasini2, F. Valchkova-Georgieva2, L. van Riesen-Haupt1, V. Venturi2, D. Wollmann2, D. Zhou8, and F. Zimmermann2

1 John Adams Institute for Accelerator Science, University of Oxford, United Kingdom
2 European Organization for Nuclear Research (CERN), Geneva, Switzerland
3 Alikhanyan National Laboratory (AANL), Yerevan, Armenia
4 \text{É}cole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
5 Deutsches Elektronensynchrotron (DESY), Hamburg, Germany
6 Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mérida, Mexico
7 High Energy Accelerator Research Organization (KEK), Ibaraki, Japan

E-mail: frank.zimmermann@cern.ch

Abstract. In the frame of the FCC study we are designing a 27 TeV hadron collider in the LHC tunnel, called the High Energy LHC (HE-LHC). The HE-LHC can be realized by replacing the LHC’s 8.33 T niobium-titanium dipole magnets with 16 T niobium-tin magnets developed for FCC-hh. A high-quality beam available from the upgraded LHC injector complex and significant radiation damping allow achieving the challenging target values for both peak and integrated luminosity required by particle physics. Tunnel integration determines the maximum outer size of the magnet cryostat. The HE-LHC arc optics maximizes the dipole filling factor and optimizes the dynamic aperture, while limiting the field strengths of quadrupoles and sextupoles. The low-beta optics for the experimental insertions features a shielded quadrupole triplet even longer than the HL-LHC’s, which can support an interaction-point beta function of 25 cm, and survive an integrated luminosity above 10\(\text{ab}^{-1}\). Other challenges include collimation and extraction. The choice of injection energy and injector is another important element, and so are various collective effects. We here report the HE-LHC design status.

1. Parameter choices

The HE-LHC shall provide proton-proton collisions at an energy of about 27 TeV in the centre of mass. Its integrated luminosity should exceed 10\(\text{ab}^{-1}\) over 20 years of operation. The HE-LHC will employ FCC dipole magnets with a field of 16 T [1, 2]. The expected photon flux and synchrotron radiation power are 5–20 times higher than for the LHC. The FCC-hh beam screen...
design [3] offers an adequate solution, with high pumping capacity, low impedance, and a good Carnot efficiency. The HE-LHC also incorporates novel elements from the HL-LHC [4, 5], such as crab cavities and low-impedance collimators.

The HE-LHC could accommodate two high-luminosity interaction-points (IPs) 1 and 5, at the locations of the present ATLAS and CMS experiments. IPs 2 and 8 might host secondary experiments (or a lepton-hadron collision point) combined with injection, as for the LHC.

Following the LHC injector upgrade (LIU) [6], in 2020, a brighter proton beam will be available. Injection into the HE-LHC could be accomplished from the present SPS at 450 GeV, from a new fast ramping single-layer coil superconducting (SC) synchrotron in the SPS tunnel at 900 GeV [7], or from a double-layer coil SC synchrotron at 1.3 TeV [7, 8].

The HE-LHC itself must fit into the existing LHC tunnel with a typical diameter of 3.8 m. Therefore, the outer diameter of its dipole magnets is restricted to 1.2 m, while half sector cooling reduces the size of the cryogenics lines. Overall, the HE-LHC will need up to eight new cryoplants, each with 1.5 times the capacity of one of the existing eight LHC plants, and additional plants at 1.8 K. Two new underground cubes (10 m sides) are required at IPs 3 and 7.

The HE-LHC baseline design parameters are summarized in table 1, which also presents a comparison with the corresponding values for LHC, HL-LHC and FCC-hh [9].

| Table 1. Key parameters of HE-LHC compared with FCC-hh, HL-LHC [12] and LHC [13], for operation with proton beams. All values, except for the injection energy, refer to collision energy. HE-LHC entries shown in parentheses refer to a larger crossing angle; LHC entries in parentheses to the HL-LHC. The bunch spacing is 25 ns for all colliders. |
parameter	unit	FCC-hh	HE-LHC	(HL-)LHC
——	——	——	——	——
centre-of-mass energy	TeV	100	27	14
injection energy	TeV	3.3	0.45/0.9/1.3	0.45
arc dipole field	T	16	16	8.33
circumference	km	97.8	26.7	26.7
beam current	A	0.5	1.12 (1.12)	0.58
bunch population N_b	10^{11}	1.0	2.2 (2.2)	1.15
longitudinal emittance ($\sim 4\pi\sigma_z\sigma_E$)	eVs	5	4.2	2.5
norm. transv. rms emittance $\gamma\varepsilon$	μm	2.2	2.5 (2.5)	3.75
IP beta function β^*_x,y	m	1.1	0.3	0.25 (0.15) 0.55
peak luminosity per IP 10^{34} cm$^{-2}$s$^{-1}$	5	30	28 (5, leveled)	1
peak no. of events / crossing	—	170	1000	800 (132) 27
SR power / beam	kW	2400	100	(7.3) 3.6
transv. emittance damping time τ	h	1.1	3.6	25.8
initial proton burn-off time τ_{bo}	h	17	3.4	2.5 (15) 40
luminosity per year (160 days) fb^{-1}	≥ 250	≥ 1000	730	(250) 55

2. Luminosity performance

Radiation damping is significant. The longitudinal emittance needs to be kept constant during the physics store, through longitudinal noise excitation, in order to maintain longitudinal Landau damping [10]. At the same time, the transverse emittance shrinks due to radiation damping, while the proton intensity decreases as the result of the high luminosity. The initial proton
The burn-off time is
\[\tau_{bo} = \frac{N_b n_b}{L_0 \sigma_{tot} n_{IP}}, \tag{1} \]
where \(N_b \) denotes the bunch population, \(L_0 \) the initial luminosity, \(\sigma_{tot} \) the total proton-proton cross section, \(n_b \) the number of bunches per beam, and \(n_{IP} (= 2) \) the number of high-luminosity interaction points (IPs). The HE-LHC proton burn-off time is comparable to the transverse emittance damping time \(\tau \), yielding a natural luminosity leveling, while the beam-beam tune shift decreases during the store.

Following [9, 11], the integrated luminosity per interaction point (IP) at time \(t \) during the fill is
\[\int_0^t L(t) dt = \frac{f_{rev} N_{b,0}^2 n_b}{4 \pi \varepsilon_0 \beta_y} \frac{\tau}{B} \left(1 - \frac{1}{1 - B + B \exp(t/\tau)} \right), \tag{2} \]
from which the optimum fill length can be determined, with
\[B \equiv \frac{\sigma_{tot} n_{IP} f_{rev} N_{b,0} \tau}{4 \pi \beta_y^2 \varepsilon_0}, \tag{3} \]
where \(\varepsilon_0 \) denotes the initial rms emittance, \(N_{b,0} \) the initial bunch population, and \(f_{rev} \) the revolution frequency.

Figure 1 shows the time evolution of key parameters over 24 hours at 100% availability. The typical optimum fill length of HE-LHC is about 3 hours. The turnaround time determines the integrated luminosity, as illustrated in figure 2.

3. Optics
The choice of the HE-LHC arc optics will be a compromise between maximizing the energy reach (favouring fewer and longer cells) and allowing injection from the existing SPS (calling for a larger number of shorter cells). Exploring the parameter space, we are considering two alternative arc optics: The first one, denoted “18 × 90”, features 18 FODO cells per arc and 90 degree phase advance per cell. The second optics, referred to as “23 × 90”, consists of 23 cells per arc, similar to the present LHC optics. Both optics follow the footprints of LEP and LHC, to within a few centimetres. Table 2 compiles key parameters. At 450 GeV, for the 23 × 90 optics the minimum physical aperture in every regular arc cell is about 9.5 \(\sigma \), for the 18 × 90 optics only 7.2 \(\sigma \) [14], using the parameters of [15] and a mechanical tolerance of 1 mm. These numbers are smaller than the minimum aperture of 12.6 \(\sigma \) for the HL-LHC [15]. They might become acceptable with a stricter control of injection oscillations, adequate machine protection measures, and tighter primary collimator settings. For example, above the primary collimators set at 5 \(\sigma \) another 4.5 \(\sigma \) (23 × 90) or 2.2 \(\sigma \) (18 × 90) [present LHC: ∼9 \(\sigma \)] would be available for preserving the collimator hierarchy between primary, secondary, and dump-protection collimators, and the arc aperture.

The calculated multipole field errors for the Nb3Sn magnets of the HE-LHC are shown in table 3, which assumes a SC wire filament size of 20 \(\mu \)m. For the 18 × 90 optics, including \(b_3 \), \(b_4 \) and \(b_5 \) correctors, the simulated dynamic aperture (10^5 turns, 60 seeds, \(\Delta p/p = 0.075\% \)) is 4.8 \(\sigma \) at 1.3 TeV, and significantly less at lower energies. For the 23 × 90 optics, it is 2.8 \(\sigma \) at 450 GeV, 1.0 \(\sigma \) (!) at 900 GeV, and 11.9 \(\sigma \) at 1.3 TeV [14]. At present only this last case looks viable. However, adding artificial pinning centers (APC) and either magnetic iron shims [17] or HTS persistent-current shims [18] could further reduce the field errors [19]. Improved correction schemes may also help.

More details on the arc optics can be found in Ref. [20]. An integrated overall HE-LHC optics exists at injection and collision energies [14]. It includes the experimental insertions [21, 22], betatron collimation straight [23], injection and extraction straights [24], and rf straight [25].
Figure 1. Instantaneous luminosity, pile-up, bunch population, normalized transverse emittance, total beam-beam tune shift, and integrated luminosity as a function of time during 24 hours, for the HE-LHC at 100% machine availability.
Figure 2. Average annual luminosity versus average turnaround time (nominal value 3 hours) for the HE-LHC, assuming 160 calendar days scheduled for physics operation per year and 70% machine availability.

Table 2. Arc optics parameters for LHC (scaled to a beam energy of 13.5 TeV) and the two HE-LHC optics designs.

parameter	unit	23 × 90	18 × 90
cell length	m	106.9	137.2
quadrupole length	m	3.5	2.8
max., min. beta	m	177, 32	230, 40
max., min. dispersion	m	2.2, 1.1	3.6, 1.8
dipole field for 13.5 TeV	T	16.59	15.83
c.m. energy for 16 T dip	TeV	26.01	27.28

Table 3. Systematic, uncertainty and random normal sextupole component b_3 in the main arc dipoles, in units of 10^{-4} at a reference radius of 16.7 mm, for three different injection energies, considering a wire with 20 μm filament size and $\pm 5\%$ critical current variation [16].

energy	syst. uncertainty	random	
450 GeV	-35	10	10
900 GeV	-55	4	4
1.3 TeV	-40	3	3

4. Collective effects
Beam-beam effects in HE-LHC are discussed in [26]. Extrapolating from LHC studies and HL-LHC simulations [27], a 180 μrad half crossing angle will ensure adequate dynamic aperture. The
crossing angle could also be reduced, e.g. to 130 μrad, by adding a beam-beam compensation scheme.

The beam screen and the collimators are the major sources of HE-LHC impedance [28, 29]. The beam-screen impedance is increased compared with the present LHC due to the smaller half aperture (12 versus \sim18 mm in the vertical plane) and higher beam-screen temperature (50 K for HE-LHC versus 5–20 K for LHC). The collimators are a major contributor to the transverse impedance since they are operated with small gaps. It is assumed that the physical gaps of the collimators become tighter as the beam energy increases, so that the collimation system becomes the main impedance source already at 1.3 TeV. The impedance for warm beam pipes and other components can be taken from the LHC [30]. The complete transverse impedance [31] is illustrated in figure 3 for two different injection energies. For comparison the HL-LHC impedance is also shown. At 450 GeV the HE-LHC impedance is about a factor 2–3 higher than the HL-LHC impedance, due to the changes in the beam screen. At 1.3 TeV the HE-LHC impedance is even larger because of the tighter collimator gaps.

![Figure 3. Real (solid curves) and imaginary part (dashed curves) of the HE-LHC transverse impedance at two different injection energies compared with the HL-LHC transverse impedance, as a function of frequency [31].](image)

Using the impedance model, the stability limits can be explored with a Vlasov solver, such as NHT [32] or DELPHI [33]; the results of the two codes are consistent for single bunches [34]. The coupled-bunch instability modes will be cured by the transverse feedback, while single-bunch instabilities can be suppressed by Landau damping provided either through octupole magnets [26] or electron lenses [35].

Electron cloud is important at the present LHC [36] and a concern for HL-LHC. For HE-LHC, build-up simulations were performed for two different beam-screen designs [37], namely the FCC-hh type beam screen, adapted as baseline, and a scaled LHC beam screen of larger aperture [38]. At top energy, up to maximum SEY values of 1.7, or higher, the simulated electron density stays below the instability threshold [39], for both chamber options. However, the FCC beam screen gives rise to a ten times lower density, reflecting the smaller amount of photoelectron seeding. Also the heat load produced by the electron cloud is lower for the FCC beam screen. If the maximum secondary emission yield is below 1.5 the heat load from electron cloud amounts to less than 10% of the synchrotron-radiation power [37].
5. Summary
An HE-LHC optics solution with 1.3 TeV injection and 13.5 TeV top energy is (nearly) at hand. This would require a new superconducting SPS as injector. We are also investigating an alternative optics for injection at 450 (or 900) GeV with 13 TeV top energy. Related magnet design improvements are under study (e.g., active pinning centres and shimming). Challenges for the lower injection energy include physical and dynamic aperture, machine protection and collimation. Collective effects appear under control.

The HE-LHC 16 T Nb$_3$Sn magnets (compact and curved), cryogenics system, and tunnel integration are not trivial.

Acknowledgements
This work was supported by the European Commission under the HORIZON 2020 projects EuroCirCol, grant agreement no. 654305; EASITrain no. 764879; and ARIES no. 730871.

References
[1] Benedikt M and Zimmermann F 2016 Journal Korean Physical Society 69 893
[2] Benedikt M and Zimmermann F 2018 FCC: Colliders at the Energy Frontier Proc. IPAC’18 (Vancouver) THYGBD1
[3] Kersevan R 2016 International Conference on High Energy Physics 2016. (Chicago)
[4] Apollinari G et al. 2017 High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report V. 0.1 CERN Yellow Report CERN-2017-007-M
[5] Medina Medrano L et al. 2018 New HL-LHC Baseline and Performance at Ultimate Energy Proc. IPAC’18 (Vancouver) MOPML009
[6] Damerau H et al. 2014 LHC Injectors Upgrade, Technical Design Report, Vol. I: Protons, CERN-ACC-2014-0337
[7] Goddard B et al. 2018 FCC Conceptual Design Report vol. 6 High Energy LHC Summary
[8] Burkart F et al. 2017 Conceptual Design Considerations for a 1.3 TeV superconducting SPS (scSPS) Proc. IPAC’17 (Copenhagen)
[9] Benedikt M, Schulte D and Zimmermann F 2015 Optimizing Integrated Luminosity of Future Hadron Colliders Phys. Rev. ST Accel. Beams 8 101002
[10] Zimmermann F 2001 Luminosity Limitations at Hadron Colliders Proc. 18th International Conference on High-Energy Accelerators (HEACC’01) (Tsukuba) Preprint CERN-SL-2001-009-AP
[11] Benedikt M and Zimmermann F 2018 Proton Colliders at the Energy Frontier, submitted to NIM A Siegbahn issue, Preprint arXiv 1803.09723
[12] HiLumi LHC Technical Coordination Committee, http://espace.cern.ch/Hilumi/TCC, Parameters
[13] Brüning O et al. 2004 LHC Design Report, Volume v.1: The LHC Main Ring, CERN-2004-003-V-1
[14] van Riesen-Haupt L et al. 2018 Integrated Full HE-LHC Optics and Its Performance Proc. IPAC’18 (Vancouver) MOPMK002
[15] Bruce R et al. 2016 Parameters for aperture calculations at injection for HL-LHC, CERN-ACC-2016-0328
[16] Izquierdo Bermúdez S et al. 2018 Multipole field errors for HE-LHC with an effective filament size of 20 µm and ±5% critical-current variation, private communication, to be published in the FCC Conceptual Design Report
[17] Kashikhin V V and Zlobin A V 2016 Persistent Current Effect in 15-16 T Nb$_3$Sn Accelerator Dipoles and its Correction Proc. NAPAC2016 (Chicago)
[18] van Nugteren J et al. 2014 Persistent Current Shim Coils for Accelerator Magnets, CERN TE-MSC Internal Note 2014-03, EDMS Nr. 1574002
[19] Schoerling D 2018 b_0/b_1 Shimming Recipe and Prospects, HE-LHC Design Meeting no. 26, 8 March 2018, to be published in the FCC Conceptual Design Report
[20] Nosochkov Y et al. 2018 Optimized Arc Optics for the HE-LHC, Proc. IPAC’18 (Vancouver) MOPMF067
[21] van Riesen-Haupt L et al. 2018 Experimental Interaction Region Optics for the HE-LHC Proc. IPAC’18 (Vancouver) MOPMK006
[22] Abelleira J et al. 2018 HE-LHC Final Focus: Flat Beam Parameters and Energy Deposition Studies Proc. IPAC’18 (Vancouver) MOPMK005
[23] Crouch M et al. 2018 A First Design of the Proton Collimation System for the HE-LHC, unpublished
[24] Bartmann W et al. 2018 Injection and Dump Systems for a 13.5 TeV Hadron Synchrotron HE-LHC Proc. IPAC’18 (Vancouver) TUPAF060
[25] van Riesen-Haupt L et al. 2018 Optics for RF Acceleration Section in IR4 for the High Energy LHC
Proc. IPAC’18 (Vancouver) MOPMK001
[26] Pieloni T et al. 2018 The High-Energy LHC Beam-Beam Effects Studies Proc. IPAC’18 (Vancouver)
MOPMF069
[27] Pieloni T et al. 2015 Beam-Beam Effects Long-Range and Head-On Proc. 6th Evian Workshop CERN-ACC-
2015-376
[28] Arsenyev S 2017 Impedance Aspects of the Beamscreen, HE-LHC Design Review, CERN, 11-12 December
2017, to be published in the FCC Conceptual Design Report
[29] Arsenyev S and Schulte D 2018 Geometrical Impedance of Pumping Holes and Tapers in the FCC-hh
Beamscreen Proc. IPAC’18 (Vancouver) MOPMF030
[30] Salvant B et al. HL-LHC impedance, in preparation
[31] Amorim D et al. (2017) Impedance Model for HE-LHC, HE-LHC Design Review, CERN, 11-12 December
2017, to be published in the FCC Conceptual Design Report
[32] Burov A 2014 Phys. Rev. Accel. Beams 17 021007
[33] Mounet N 2014 DELPHI: an analytic Vlasov solver for impedance-driven modes, talk presented at HSC
meeting, CERN, 09 April 2014, https://espace.cern.ch/be-dep-workspace/abp/HSC/Meetings/DELPHI-
expanded.pdf
[34] Antipov S et al. 2017 HE-LHC Instability Growth Rates, HE-LHC Design Review, CERN, 11-12 December
2017, to be published in the FCC Conceptual Design Report
[35] Shiltsev V, Alexahin Y, Burov A and Valishev A 2017 Phys. Rev. Lett.119 134802
[36] Tavian L 2018 Report from the task force on beam-induced heat load, presented at LHC Performance
Workshop 2018, Chamonix
[37] Mether L, in Amorin D et al., Single-Beam Transverse Collective Effects for HE-LHC, ICFA Beam Dynamics
Newsletter no. 72, Dec. 2017, http://icfa-bd.kek.jp/news.html
[38] Guillermo G, Sagan D, and Zimmermann F 2018 Phys. Rev. Accel. Beams 21 021001
[39] Ohmi K, Zimmermann F and Perevedentsev E 2001 Phys. Rev. E 65 016502