Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

Supplement 4. eResults

Table of Contents

1. Flow diagram ... 3
2. Characteristics of included studies ... 4
 2.1 Comments in assessing Risk of Bias .. 6
3. Assessment of transitivity: distribution of effect modifiers ... 7
4. All-cause mortality from 90 days to 1 year ... 9
 4.1 Heterogeneity: Between-study variance within a comparison and the network 9
 4.2 Inconsistency .. 9
 4.3 Risk of bias within studies of each comparison ... 10
 4.4 Funnel plot ... 10
 4.5 P-scores of treatment ... 11
5. Severity of organ dysfunction over 72 hours .. 12
 5.1 Network graph ... 12
 5.2 Heterogeneity: Between-study variance within a comparison and the network 12
 5.3 Inconsistency .. 14
6. League table for comparisons of all-cause mortality at the longest follow-up in studies published in 2010 or after and severity of organ dysfunction over 72 hours .. 15
7. Duration of vasopressor therapy .. 16
 7.1 Network graph ... 16
 7.2 Heterogeneity: Between-study variance within a comparison and the network 16
 7.3 Inconsistency .. 18
8. League table for comparisons of time to cessation of vasopressor therapy and ICU length of stay ... 19
9. ICU length of stay .. 20
 9.1 Network graph ... 20
 9.2 Heterogeneity: Between-study variance within a comparison and the network 20
 9.3 Inconsistency .. 22
10. All-cause mortality at the longest follow-up ... 23
 10.1 Heterogeneity: Between-study variance within a comparison and the network 23
 10.2 Inconsistency .. 25
 10.3 Risk of bias within studies of each comparison ... 26
 10.4 Funnel plot ... 27
 10.5 Summary of confidence in network estimates .. 28
 10.6 P-scores of treatment .. 30
11. All-cause mortality from 90 days to 1 year: only studies with low risk of bias 31
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

11.1. Network graph ... 31
11.2. Heterogeneity: Between-study variance within a comparison and the network............. 31
11.3. League table of NMA results.. 32
11.4. Component network meta-analysis... 32

12. All-cause mortality at the longest follow-up: Only studies published in 2010 or after 33
12.1. Network graph ... 33
12.2. Heterogeneity: Between-study variance within a comparison and the network............. 33
12.3. Inconsistency... 35

13. References .. 36
1. Flow diagram

Records identified through database searching
MEDLINE n = 287
Embase n = 5,435
CENTRAL n = 394
Clinicaltrials.gov n = 95
WHO ICTRP n = 1,467

Update
MEDLINE n = 629
Embase n = 5,725
CENTRAL n = 882

Additional records identified through other sources (n = 2)

Records after duplicates removed (n = 13,416)

Records screened (n = 13,416)

Records excluded (n = 13,233)

Full-text articles assessed for eligibility (n = 183)

Full-text articles excluded with reasons (n = 140)

Eligible trials (n = 43)
2. Characteristics of included studies

Where age or severity score was reported for each group, the reported values were combined. Where a mean value with standard deviation was unavailable, but a median with interquartile range was available, the mean and SD were calculated using formulae\(^1,2\). If neither of the measures mentioned above was available, the mean value of known SDs was calculated from included studies\(^3\). GC denotes glucocorticoid; vitC, vitamin C; VHD-vitC, very high dose vitamin C; HD-vitC, high dose vitamin C; vitB1, vitamin B1; N/A, not available; SAPS, Simplified Acute Physiology Score; APACHE, Acute Physiology And Chronic Health Evaluation.

Study Author year	Age, mean (SD)	Shock	Severity score, mean	Industry-funded	Country	Comparison
Bennett Jr 1963\(^4\)	N/A	Yes	N/A	Unclear	US	GC vs placebo or usual care
Bollaert 1998\(^5\)	58 (14.6)	Yes	SAPS 2, 14	No	France	GC vs placebo or usual care
Annane 2002\(^6\)	61 (16)	Yes	SAPS 2, 58.5	No	France	GC vs placebo or usual care
Yildiz 2002\(^7\)	57.1 (16.9)	No	APACHE II, 16.6	Unclear	Turkey	GC vs placebo or usual care
Oppert 2005\(^8\)	N/A	Yes	N/A	Unclear	Germany	GC vs placebo or usual care
Rinaldi 2006\(^9\)	N/A	No	N/A	Unclear	Italy	GC vs placebo or usual care
Kaufmann 2008\(^10\)	62.3 (17.9)	Yes	APACHE III, 55.2	Unclear	Germany	GC vs placebo or usual care
Sprung 2008\(^11\) (CORTICUS)	63 (14.5)	Yes	SAPS 2, 49.1	Yes	France, Germany, et al.	GC vs placebo or usual care
Ferron-Celma 2009\(^12\)	66.5 (4.2)	No	N/A	No	Spain	vitC vs placebo or usual care
Hu 2009\(^13\)	55.3 (36.6)	Yes	APACHE II, 19.1	Unclear	China	GC vs placebo or usual care
Meduri 2009\(^14\)	N/A	No	APACHE III, 71.4	Unclear	US	GC vs placebo or usual care
Arabi 2010\(^15\)	60 (12.3)	Yes	APACHE II, 29.7	No	Saudi Arabia	GC vs placebo or usual care
Deng 2011\(^16\)	N/A	No	N/A	Unclear	China	GC vs placebo or usual care
Yildiz 2011\(^17\)	62.8 (15.6)	No	APACHE II, 20.7	Unclear	Turkey	GC vs placebo or usual care
Rahardjo 2013\(^18\)	N/A	No	N/A	Unclear	Indonesia	vitC vs placebo or usual care
Fowler 2014\(^19\)	N/A	No	N/A	No	US	VHD-vitC vs vitC vs placebo or usual care
Gordon 2014\(^20\)	61.2 (17)	Yes	N/A	No	UK	GC vs placebo or usual care
Mirea 2014\(^21\)	N/A	No	N/A	Unclear	Romania	GC (intermittent vs continuous) vs placebo or usual care
Donnino 2016\(^22\)	67.4 (15.7)	Yes	APACHE II, 26.1	No	US	vitB1 vs placebo or usual care
Gordon 2016\(^23\) (VANISH)	65.6 (17.1)	Yes	APACHE II, 24.4	No	UK	GC vs placebo or usual care
Keh 2016\(^24\) (HYPRESS)	65 (14.4)	No	APACHE II, 19	No	Germany	GC vs placebo or usual care
Li 2016\(^25\)	66.1 (10.1)	No	N/A	No	China	GC vs placebo or usual care
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

Study	Mortality Rate (SD)	Randomization	APACHE	Study Country	Intervention	Comparator
Tongyoo 2016	64.4 (16.6)	No	II, 21.8	Thailand	GC vs placebo or usual care	
Zabet 2016	63.9 (14.7)	Yes	II, 21	Iran	GC vs placebo or usual care	
Lv 2017	66.8 (14.9)	No	II, 23.4	China	GC vs placebo or usual care	
Annane 2018	66 (14)	Yes	SAPS 2, 56	France	GC vs placebo or usual care	
Balakrishnan 2018	54.4 (12.3)	Yes	III, 56.4	India	HD-vitC + GC + vitB1 vs placebo or usual care	
Rosini 2018	N/A	No	N/A	US	VHD-vitC vs placebo or usual care	
Venkatesh 2018	62.5 (15)	Yes	N/A	Australia, UK, et al.	GC vs placebo or usual care	
Fowler 2019	55.1 (20.4)	No	N/A	USA	VHD-vitC vs placebo or usual care	
Jiang 2019	59.2 (10.3)	Yes	II, 30.5	China	GC (early vs late) vs placebo or usual care	
Harun 2019	63.7 (17.7)	Yes	N/A	Malaysia	vitB1 vs placebo or usual care	
Chang 2020	61.6 (14)	No	II, 23	China	HD-vitC + GC + vitB1 vs placebo or usual care	
Fuji & Luethi 2020	61.7 (15)	Yes	III, 80.3	Australia, New Zealand, et al.	HD-vitC + GC + vitB1 vs GC	
Hwang 2020	48.4 (9.9)	Yes	N/A	South Korea	HD-vitC + vitB1 vs placebo or usual care	
Iglesias 2020	69 (13)	No	II, 24.5	US	HD-vitC + GC + vitB1 vs placebo or usual care	
Lv 2020	59.4 (14.2)	No	N/A	Unlcer China	HD-vitC vs placebo or usual care	
Mohamed 2020	59 (14.9)	Yes	N/A	India	HD-vitC + GC + vitB1 vs placebo or usual care	
Moskowitz 2020	68.3 (14.4)	Yes	N/A	US	HD-vitC + GC + vitB1 vs placebo or usual care	
Petsakul 2020	65 (17.8)	Yes	II, 27.5	Thailand	vitB1 vs placebo or usual care	
Wani 2020	54.1 (35.7)	No	N/A	India	HD-vitC + GC + vitB1 vs placebo or usual care	
Sevransky 2021	60.8 (15)	No	II, 26.9	US	HD-vitC + GC + vitB1 vs placebo or usual care	
Hussain 2021	63.9 (16.3)	Yes	II, 20.6	Egypt	HD-vitC + GC + vitB1 vs GC	
2.1 Comments in assessing Risk of Bias

Study	Comments
Bennett Jr 1963⁴	year 1963 study, No protocol, About 15 patients < 18 years old
	(Selective reporting: Unclear, General comment)
Rinaldi 2006⁹	Too many dropouts. (Incomplete outcome data on the all-cause mortality within 1 year but later than 90 days: Unclear, Fraud or concern that might be a source of risk of bias, other bias)
Sprung 2008¹¹ (CORTICUS)	Based on the number of missingness and outcomes, incomplete outcome or 21 open label HC infusion are considered to be at low risk of bias. (Incomplete outcome data on the all-cause mortality within 1 year but later than 90 days: Low) Early termination, but without positive results. (Fraud or concern that might be a source of risk of bias, other bias)
Arabi 2010¹⁵	Study interrupted for futility after enrolment of 50% sample size
	(Fraud or concern that might be a source of risk of bias, reported in free text, other bias)
Balakrishnan 2018³⁰	Very poor information on baseline characteristics and poor outcome reporting (Selective reporting: High, Baseline imbalance: Unclear)
Harun 2019³⁵	Protocol or trial registry is not available. (Selective reporting: Unclear) Baseline APAHCE2 was higher in the Thiamine group (Baseline imbalance: High) Lack of ITT analysis. 7 patients died after randomization and were excluded. (General comment)
Chang 2020³⁶ (HYVCTTSSS)	Placebo was not administered in 70% patients in the control group (Inappropriate study deviation: High)
Iglesias 2020³⁹ (ORANGES)	https://clinicaltrials.gov/ct2/show/NCT03422159 See history. (Selective reporting: High) Baseline: patients requiring vasopressors were unbalanced (Baseline imbalance: High)
Wani 2020⁴⁴	requirement for renal replacement therapy, which was planned to measure in the protocol, was not reported in the publication. (Selective reporting: High)
Sevransky 2021⁴⁵ (VICTAS)	Sponsor: Nova and some companies seem to be involved? (providing drugs) (Industrial sponsorship) Deviation: the number of patients who did not receive assigned treatment was not balanced in the 2 groups. But I could not tell whether it was by chance or not and its consequence. If it was perfectly blinded, I would say it was may be due to chance and may not be cause big bias. Thirty-three percent of patients in the intervention group and 32% of control patients received clinician-prescribed corticosteroids at a dose of at least 200 mg of hydrocortisone daily equivalent. If corticosteroids have a beneficial effect on VVFD, this would bias the trial results toward the null, although a post hoc sensitivity analysis demonstrated similar findings in patients not receiving open-label corticosteroids. (Inappropriate study deviation: Unclear)
Hussain 2021⁴⁶	significant drop-out (Incomplete outcome data: Unclear) Lack ITT analysis (General comment)
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

3. Assessment of transitivity: distribution of effect modifiers

We assessed whether the eligible trials were similar in terms of characteristics that might modify the treatment effect on average so that the transitivity assumption was plausible. The following characteristics were assessed as possible effect modifiers: industrial sponsorship, blinding of the personnel, and vasopressor dependency of the study population. The plausibility of the transitivity assumption was evaluated by comparing the distribution of the effect modifiers across studies grouped by intervention arms through visual inspection. GC denotes glucocorticoid; vitC, vitamin C; VHD-vitC, very high dose vitamin C; HD-vitC, high dose vitamin C; vitB1, vitamin B1.

Comparison	Study	Industry-funded	Shock	Study personnel blinded
HD-vitC + GC + vitB1 vs GC	Fujii & Luethi 2020	No or Unclear	Yes	No or Unclear
HD-vitC + GC + vitB1 vs GC	Hussein 2021	No or Unclear	Yes	No or Unclear
HD-vitC + GC + vitB1 vs placebo or usual care	Balakrishnan 2018	No or Unclear	Yes	Yes
HD-vitC + GC + vitB1 vs placebo or usual care	Chang 2020	No or Unclear	No	No or Unclear
HD-vitC + GC + vitB1 vs placebo or usual care	Iglesias 2020	No or Unclear	No	Yes
HD-vitC + GC + vitB1 vs placebo or usual care	Mohamed 2020	No or Unclear	Yes	No or Unclear
HD-vitC + GC + vitB1 vs placebo or usual care	Moskowitz 2020	No or Unclear	Yes	Yes
HD-vitC + GC + vitB1 vs placebo or usual care	Wani 2020	No or Unclear	No	No or Unclear
HD-vitC + GC + vitB1 vs placebo or usual care	Sevransky 2021	No or Unclear	No	Yes
VHD-vitC vs vitC vs placebo or usual care	Fowler 2014	No or Unclear	No	Yes
HD-vitC + vitB1 vs placebo or usual care	Hwang 2020	No or Unclear	Yes	Yes
VHD-vitC vs placebo or usual care	Rosini 2018	No or Unclear	No	Yes
VHD-vitC vs placebo or usual care	Fowler 2019	Yes	No	Yes
HD-vitC vs placebo or usual care	Zabet 2016	No or Unclear	Yes	Yes
HD-vitC vs placebo or usual care	Lv 2020	No or Unclear	No	No or Unclear
vitC vs placebo or usual care	Ferron-Celma 2009	No or Unclear	No	Yes
vitC vs placebo or usual care	Rahardjo 2013	No or Unclear	No	Yes
GC vs placebo or usual care	Bennett Jr 1963	No or Unclear	Yes	Yes
GC vs placebo or usual care	Bollaert 1998	No or Unclear	Yes	Yes
GC vs placebo or usual care	Annane 2002	No or Unclear	Yes	Yes
GC vs placebo or usual care	Yildiz 2002	No or Unclear	No	Yes
GC vs placebo or usual care	Oppert 2005	No or Unclear	Yes	Yes
GC vs placebo or usual care	Rinaldi 2006	No or Unclear	No	No or Unclear
GC vs placebo or usual care	Kaufmann 2008	No or Unclear	Yes	Yes
GC vs placebo or usual care	Sprung 2008	Yes	Yes	Yes
GC vs placebo or usual care	Hu 2009	No or Unclear	Yes	No or Unclear
GC vs placebo or usual care	Meduri 2009	No or Unclear	No	Yes
GC vs placebo or usual care	Arabi 2010	No or Unclear	Yes	Yes
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

Intervention	Study Year	Risk of Bias	Mort. Rate	Direct Evidence
GC vs placebo or usual care	Deng 2011	No or Unclear	No	No
GC vs placebo or usual care	Yildiz 2011	No or Unclear	No	Yes
GC vs placebo or usual care	Gordon 2014	No or Unclear	Yes	No
GC vs placebo or usual care	Mirea 2014	No or Unclear	No	No
GC vs placebo or usual care	Gordon 2016	No or Unclear	Yes	Yes
GC vs placebo or usual care	Keh 2016	No or Unclear	No	Yes
GC vs placebo or usual care	Li 2016	No or Unclear	No	No
GC vs placebo or usual care	Gordon 2016	No or Unclear	Yes	Yes
GC vs placebo or usual care	Tongyoo 2016	No or Unclear	No	Yes
GC vs placebo or usual care	Lv 2017	No or Unclear	No	Yes
GC vs placebo or usual care	Annane 2018	No or Unclear	Yes	Yes
GC vs placebo or usual care	Venkatesh 2018	Yes	Yes	Yes
GC vs placebo or usual care	Jiang 2019	No or Unclear	Yes	No
vitB1 vs placebo or usual care	Donnino 2016	No or Unclear	Yes	Yes
vitB1 vs placebo or usual care	Petsakul 2020	No or Unclear	Yes	Yes
vitB1 vs placebo or usual care	Harun 2019	No or Unclear	Yes	No
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

4. All-cause mortality from 90 days to 1 year

4.1. Heterogeneity: Between-study variance within a comparison and the network

OR denotes odds ratio; GC, glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1; N/A, not available.

Comparisons	Number of studies	Expected variance for ORs from empirical distribution [95% range]	Estimated variance	Forest plot
HD-vitC+GC+vitB1 vs GC	1	0.014 [0.0008 to 0.25]	N/A	0.0018 N/A
HD-vitC+GC+vitB1 vs placebo or usual care	1	0.017 [0.001 to 0.30]	N/A	0.0018 N/A
HD-vitC+vitB1 vs placebo or usual care	1	0.017 [0.001 to 0.30]	N/A	0.0018 N/A
GC vs placebo or usual care	7	0.017 [0.001 to 0.30]	0.0065	0.0018 No heterogeneity

Forest plot of pairwise comparison

GC vs placebo or usual care

Study	Experimental Events	Control Events	Odds Ratio	OR	95%-CI	Weight
Vennis 2010	571 1512	547 1803	1.23	1.18	1.04	0.9138
Annan 2019	285 311	328 629	1.23	1.18	1.04	0.9138
Spang 2010	137 21	200 323	1.13	1.17	0.96	0.9138
Wang 2015	65 187	87 267	1.09	1.09	0.96	0.9138
Annan 2002	100 150	112 200	1.01	1.01	0.96	0.9138
Tongyl 2016	35 9	38 90	0.95	0.95	0.91	1.04 0.9138

4.2. Inconsistency

4.2.1. side-split

Number of loops = 1. OR denotes odds ratio; RoR, Ratio of Ratios (direct versus indirect); GC, glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1.

comparison	Number of studies	OR from NMA	OR from direct comparison	OR from indirect comparison	RoR	p-value
HD-vitC+GC+vitB1:GC	1	1.2	1.23	1.18	1.04	0.9138
HD-vitC+GC+vitB1:placebo or usual care	1	1.13	1.12	1.17	0.96	0.9138
HD-vitC+vitB1:GC	0	1.31		1.31	.	.
HD-vitC+vitB1:HD-vitC+GC+vitB1	0	1.09		1.09	.	.
HD-vitC+vitB1:placebo or usual care	1	1.24		.	.	.
GC:placebo or usual care	7	0.95	0.95	0.91	1.04	0.9138
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

4.2.2. global
Q statistic to assess consistency under the assumption of a full design-by-treatment interaction random effects model = 0.01 (df=1, p=0.9159)

4.3. Risk of bias within studies of each comparison
green bar = low, yellow bar = moderate, red bar = high. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1.

![Risk of bias within studies of each comparison](image)

4.4. Funnel plot
The treatments were in order of combination therapies first, monotherapies, and placebo or usual care, as the combination therapies have recently been investigated in small trials. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1; PBO, placebo or usual care.

![Funnel plot](image)
4.5. P-scores of treatment

P-scores are calculated from the point estimates and standard errors of the network estimates. The P-score of treatment can be interpreted as the mean extent of certainty that the treatment is better than any other treatment. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1.

Treatment	P-score
1. GC	0.8072
2. placebo or usual care	0.5497
3. HD-vitC+vB1	0.3286
4. HD-vitC+GC+vB1	0.3146
5. Severity of organ dysfunction over 72 hours

5.1. Network graph

Network graph of all available pairwise comparisons between the eligible interventions. The size of the nodes shows the total number of patients accumulated for each treatment. The breadth of the edges was weighted according to the inverse of the variance of the direct summary effect. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1; VHD-vitC, very high dose vitamin C; vitC, vitamin C.

5.2. Heterogeneity: Between-study variance within a comparison and the network

GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1; VHD-vitC, very high dose vitamin C; vitC, vitamin C; SMD, standardised mean difference; N/A, not available.

Comparisons	Number of studies	Expected variance of SMD from empirical distribution [95% range]	Estimated variance of SMD in comparison	Estimated variance of SMD in network	Forest plot
HD-vitC + GC + vitB1 vs GC	2	0.027 [0.00001 to 4.95]	0	0.0759	No evidence
HD-vitC + GC + vitB1 vs placebo or usual care	6	0.033 [0.0001 to 10.2]	0	0.0759	No heterogeneity
HD-vitC + vitB1 vs placebo or usual care	1	0.033 [0.0001 to 10.2]	N/A	0.0759	N/A
VHD-vitC vs placebo or usual care	1	0.033 [0.0001 to 10.2]	N/A	0.0759	N/A
HD-vitC vs placebo or usual care	1	0.033 [0.0001 to 10.2]	N/A	0.0759	N/A
vitC vs placebo or usual care	1	0.033 [0.0001 to 10.2]	N/A	0.0759	N/A
GC vs placebo or usual care	5	0.033 [0.0001 to 10.2]	0.1740	0.0759	Suspected Heterogeneity
vitB1 vs placebo or usual care	1	0.033 [0.0001 to 10.2]	N/A	0.0759	N/A
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

Forest plots

HD-vitC + GC + vitB1 vs GC

Study	Experimental Total Mean	SD	Control Total Mean	SD	Standardised Mean Difference	SMD	95% CI	Weight
Fujii & Lucetti 2020 (VITAMINS)	2.10	0.80	2.9000	0.90	-0.82	-0.32	[-0.64; 0.00]	65.3%
Husson 2021	4.72	2.4950	3.72	2.7250	0.27	0.27	[0.07; 0.47]	26.7%

Random effects model

122	118	
0.30	[-0.50; -0.05]	100.0%

| Heterogeneity: $I^2 = 0\%$, $\hat{Q} = 0$, $p = 0.85$ |

HD-vitC + GC + vitB1 vs placebo or usual care

Study	Experimental Total Mean	SD	Control Total Mean	SD	Standardised Mean Difference	SMD	95% CI	Weight
Savadi 2021 (VICTAS)	2.65	2.9824	2.6573	3.7283	-0.10	-0.10	[-0.28; 0.07]	48.9%
Medkowtitz 2020 (VICTAS)	4.10	4.1200	8.10	4.3000	0.17	0.17	[0.04; 0.31]	16.6%
Greb et al. 2020 (ORANGE)	4.93	3.1410	6.93	3.3400	0.19	0.19	[0.04; 0.34]	11.7%
Wani 2020	5.64	3.5500	3.62	3.9400	0.17	0.17	[0.06; 0.28]	9.6%
Mohamed 2020 (VICTOR)	2.60	2.6000	2.60	2.6000	-0.11	-0.11	[-0.23; 0.01]	8.2%
Chang 2020 (YYCITAS)	3.50	3.3000	1.50	3.0000	0.23	0.23	[0.08; 0.39]	7.2%

Random effects model

539	533	
-0.17	[-0.20; 0.05]	100.0%

| Heterogeneity: $I^2 = 0\%$, $\hat{Q} = 0$ [0.0000; 0.1028], $p = 0.64$ |

GC vs placebo or usual care

Study	Experimental Total Mean	SD	Control Total Mean	SD	Standardised Mean Difference	SMD	95% CI	Weight
Spring 2008 (CORTICUS)	10.12	1.5260	10.12	1.5260	-0.09	-0.09	[-0.17; 0.00]	24.6%
Tongyoo 2016	9.00	2.9000	9.00	2.9000	0.00	0.00	[-0.02; 0.02]	22.1%
Arabi 2010	2.7500	1.9500	1.9500	1.9500	-0.23	-0.23	[-0.46; -0.01]	19.8%
Opset 2005	8.08	8.6312	23.12	7.1738	0.53	0.53	[0.20; 0.85]	16.2%
Rinaldi 2006	7.00	2.1411	6.00	1.0700	0.22	0.22	[0.15; 0.35]	16.2%

Random effects model

414	411	
0.22	[-0.64; 0.20]	100.0%

| Heterogeneity: $I^2 = 84\%$, $\hat{Q} = 0.1740$ [0.0340; 1.9773], $p < 0.01$ |
5.3. Inconsistency

5.3.1. side-split
Number of loops = 1. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1: VHD-vitC, very high dose vitamin C; vitC, vitamin C; SMD, standardised mean difference.

comparison	Number of studies	SMD from NMA	SMD from direct comparison	SMD from indirect comparison	Difference	p-value
HD-vitC+GC+vitB1 vs HD-vitC+vitB1	0	-0.27	.	-0.27	.	.
HD-vitC+GC+vitB1 vs placebo/usual care	6	-0.27	-0.21	-0.54	0.33	0.2913
HD-vitC+GC+vitB1 vs VHD-vitC	0	-0.55	.	-0.55	.	.
HD-vitC+GC+vitB1 vs vitB1	0	-0.42	.	-0.42	.	.
HD-vitC+GC+vitB1 vs vitC	0	-0.11	.	-0.11	.	.
HD-vitC+vitB1 vs placebo/usual care	1	0	0	.	.	.
HD-vitC+vitB1 vs VHD-vitC	0	-0.27	.	-0.27	.	.
HD-vitC+vitB1 vs vitB1	0	-0.15	.	-0.15	.	.
HD-vitC+vitB1 vs vitC	0	0.17	.	0.17	.	.
VHD-vitC vs placebo/usual care	1	0.27	0.27	.	.	.
VHD-vitC vs vitB1	0	0.12	.	0.12	.	.
VHD-vitC vs vitC	0	0.44	.	0.44	.	.
HD-vitC vs HD-vitC+GC+vitB1	0	-0.15	.	-0.15	.	.
HD-vitC vs HD-vitC+vitB1	0	-0.43	.	-0.43	.	.
HD-vitC vs placebo/usual care	1	-0.43	-0.43	.	.	.
HD-vitC vs VHD-vitC	0	-0.70	.	-0.70	.	.
HD-vitC vs vitB1	0	-0.58	.	-0.58	.	.
HD-vitC vs vitC	0	-0.26	.	-0.26	.	.
vitC vs placebo/usual care	1	-0.17	-0.17	.	.	.
GC vs HD-vitC+GC+vitB1	2	0.11	0.30	-0.03	0.33	0.2913
GC vs HD-vitC+vitB1	0	-0.17	.	-0.17	.	.
GC vs placebo/usual care	5	-0.17	-0.25	0.08	-0.33	0.2913
GC vs VHD-vitC	0	-0.44	.	-0.44	.	.
GC vs HD-vitC	0	0.26	.	0.26	.	.
GC vs vitB1	0	-0.31	.	-0.31	.	.
GC vs vitC	0	0	.	0	.	.
vitB1 vs vitC	0	0.31	.	0.31	.	.
vitB1 vs placebo/usual care	1	0.15	0.15	.	.	.

5.3.2. global
Q statistic to assess consistency under the assumption of a full design-by-treatment interaction random effects model = 1.55 (df=1, p=0.2129)
6. League table for comparisons of all-cause mortality at the longest follow-up in studies published in 2010 or after and severity of organ dysfunction over 72 hours.

Odds ratios in orange cells denote comparisons of all-cause mortality from 90 days to one year post randomization in studies published in 2010 or after with a treatment in the column versus a treatment in the row. Standardized mean differences in blue cells denote comparisons of severity of organ dysfunction over 72 hours with a treatment in the row versus a treatment in the column. 95% confidence intervals and 95% prediction intervals are presented below the odds ratios. Bold text denotes comparisons where 95% confidence intervals or 95% prediction intervals do not cross null effect (1 for ORs, 0 for SMDs). OR denotes odds ratio; SMD, standardized mean difference; CI, confidence interval; Prl, prediction interval; VHD-vitC, very high-dose vitamin C (≥ 12g per day); HD-vitC, high-dose vitamin C (≥ 6g per day); vitC, vitamin C (< 6g per day); GC, low-dose glucocorticoid (< 400 mg/day); vitB1, vitamin B1 (any dose).
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

7. Duration of vasopressor therapy

7.1. Network graph

Network graph of all available pairwise comparisons between the eligible interventions. The size of the nodes shows the total number of patients accumulated for each treatment. The breadth of the edges was weighted according to the inverse of the variance of the direct summary effect. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1: VHD-vitC, very high dose vitamin C; vitC, vitamin C.

7.2. Heterogeneity: Between-study variance within a comparison and the network

The expected variance from empirical distribution is not available for differences in means of the duration of vasopressor therapy. Standardised mean difference was calculated to compare the estimated variance with the expected variance from empirical distribution. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1: VHD-vitC, very high dose vitamin C; vitC, vitamin C; SMD, standardised mean difference; N/A, not available.

Comparisons	Number of studies	Expected variance for SMD from empirical distribution\(^{4^*}\) median [95\% range]	Estimated variance for SMD in comparison	Estimated variance for SMD in network
HD-vitC + GC + vitB1 vs GC	2	0.027 [0.00001 to 4.95]	N/A	0.5013
HD-vitC + GC + vitB1 vs placebo or usual care	4	0.033 [0.0001 to 10.2]	0.0299	0.5013
VHD-vitC vs vitC	1	0.027 [0.00001 to 4.95]	N/A	0.5013
VHD-vitC vs placebo or usual care	1	0.033 [0.0001 to 10.2]	N/A	0.5013
HD-vitC vs placebo or usual care	2	0.033 [0.0001 to 10.2]	0	0.5013
vitC vs placebo or usual care	1	0.033 [0.0001 to 10.2]	N/A	0.5013
vitB1 vs placebo/usual care	1	0.033 [0.0001 to 10.2]	N/A	0.5013
GC vs placebo or usual care	10	0.033 [0.0001 to 10.2]	0.6336	0.5013
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

Forest plots

HD-vitC + GC + vitB1 vs GC

Study	Experimental Total Mean	Experimental SD	Control Total Mean	Control SD	Mean Difference	MD	95% CI	Weight
Fujii & Luettel 2020 (VITAMINS)	90 46.40	43.3000	90 48.00	41.4000	-1.60	-1.80	[-3.36; 0.16]	69.9%
Hussain 2021	47 112.00	73.4100	47 136.00	73.4100	-24.00	-25.30	[-26.98; 5.68]	31.1%

Random effects model: 137
Heterogeneity: $I^2 = 45\%$, $t^2 = 116.2518$, $p = 0.17$

HD-vitC + GC + vitB1 vs placebo or usual care

Study	Experimental Total Mean	Experimental SD	Control Total Mean	Control SD	Mean Difference	MD	95% CI	Weight
Mohamed 2020 (VICTOR)	45 24.50	22.6000	43 35.12	24.2000	-10.60	-12.40	[-12.74; 0.54]	37.6%
generalized 2020 (ORANGES)	60 27.00	22.0000	57 35.00	18.0000	-26.00	-32.80	[-37.32; 14.57]	32.3%
Wani 2020	50 75.72	20.2000	59 96.13	40.0000	-20.11	-24.43	[-24.43; -6.39]	24.8%
Chang 2020 (HYVCTTSSS)	22 56.71	62.2688	24 63.87	59.9024	-0.86	-4.097	[-29.84]	5.4%

Random effects model: 177
Heterogeneity: $I^2 = 34\%$, $t^2 = 24.0567$ [0.000; 100.0000], $p = 0.21$

HD-vitC vs placebo or usual care

Study	Experimental Total Mean	Experimental SD	Control Total Mean	Control SD	Mean Difference	MD	95% CI	Weight
Lv 2020	61 28.00	16.5233	56 45.18	32.0343	-17.68	-26.04	[-26.04; -7.32]	67.4%
Zabel 2016	14 49.64	28.6700	14 71.97	1.6000	-18.93	-26.08	[-10.76]	100.0%

Random effects model: 75
Heterogeneity: $I^2 = 0\%$, $t^2 = 0$, $p = 0.53$

GC vs placebo or usual care

Study	Experimental Total Mean	Experimental SD	Control SD	Mean Difference	MD	95% CI	Weight
Sprung 2008 (CORTIVIGUS)	251 80.58	17.5949	246 143.41	30.4255	-62.53	[-65.51; -59.56]	12.9%
Li 2016	29 13.64	6.4700	29 20.34	12.5600	-6.70	[-19.94; 6.56]	12.9%
Verkate 2019 (ADRENAL)	1983 60.80	82.1197	1980 121.21	121.2623	-40.91	[-46.97; -34.86]	12.8%
He 2009	34 68.70	10.5200	30 128.21	17.0000	-60.99	[-63.57; -58.42]	12.8%
Gordon 2019 (VANISH)	201 52.56	41.0698	207 56.77	54.9378	-4.21	[-13.86; 5.44]	12.8%
Lv 2017	68 94.00	87.0000	60 91.20	96.0000	-7.20	[-25.66; 21.25]	9.0%
Tongyao 2016	96 118.20	72.0000	99 163.20	136.8000	-48.00	[-78.49; -17.10]	9.1%
Minna 2014	117 130.48	101.0400	94 163.20	146.0000	-43.72	[-85.85; 0.41]	7.0%
Oppel 2005	18 62.02	49.0719	23 121.79	117.7357	-59.77	[-112.96; -6.58]	5.6%
Arabi 2010	38 182.40	117.8400	38 228.00	143.0400	-45.60	[105.19; 13.99]	4.9%

Random effects model: 2698
Heterogeneity: $I^2 = 56\%$, $t^2 = 255.7718$ [157.1574; 369.1543], $p = 0.01$

17
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

7.3. Inconsistency

7.3.1. Side-split

Number of loops = 2. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1; VHD-vitC, very high dose vitamin C; vitC, vitamin C; MD, mean difference; N/A, not available.

comparison	Number of studies	MD from NMA	MD from direct comparison	MD from indirect comparison	Difference	p-value
GC vs HD-vitC	0	-11.71	-11.71	N/A		
GC vs HD-vitC+GC+vitB1	2	-6.16	11.02	-17.95	28.97	0.1904
GC vs placebo/usual care	10	-30.95	-34.63	-5.66	-28.97	0.1904
GC vs VHD-vitC	0	-23.75	N/A	-23.75		
GC vs vitB1	0	-21.55	N/A	-21.55		
GC vs vitC	0	12.25	12.25	N/A		
HD-vitC vs HD-vitC+GC+vitB1	0	5.55	5.55	N/A		
HD-vitC vs placebo/usual care	2	-19.24	-19.24	N/A		
HD-vitC vs VHD-vitC	0	-12.04	N/A	-12.04		
HD-vitC vs vitB1	0	-9.84	N/A	-9.84		
HD-vitC vs vitC	0	23.96	23.96	N/A		
HD-vitC+GC+vitB1 vs placebo/usual care	4	-24.79	-16.68	-45.65	28.97	0.1904
HD-vitC+GC+vitB1 vs VHD-vitC	0	-17.59	N/A	-17.59		
HD-vitC+GC+vitB1 vs vitB1	0	-15.39	N/A	-15.39		
HD-vitC+GC+vitB1 vs vitC	0	18.41	18.41	N/A		

7.3.2. global

Q statistic to assess consistency under the assumption of a full design-by-treatment interaction random effects model = 1.72 (df=1, p=0.1899)
8. League table for comparisons of time to cessation of vasopressor therapy and ICU length of stay.

MD	95%CI	95%PrI
placebo or usual care	-24.8 (-44.3 to -5.3)	(-2.3 to 1.0)
HD-vitC+GC +vitB1	-7.2 (-74.9 to 60.5)	(-2.5 to 2.3)
No data available	No data available	No data available
HD-vitC+vitB1	-19.2 (-50.1 to 11.6)	(-2.8 to 1.0)
No data available	No data available	No data available
VHD-vitC	-43.2 (-110.9 to 24.5)	(-3.2 to 1.7)
No data available	No data available	No data available
HD-vitC	-31.0 (-45.4 to -16.5)	(-2.4 to 0.8)
No data available	No data available	No data available
HD-vitC	-9.4 (-63.8 to 45.0)	(-2.3 to 2.1)
No data available	No data available	No data available

Mean differences in orange cells denote comparisons of time to cessation of vasopressor therapy with a treatment in the column versus a treatment in the row. Mean differences in blue cells denote comparisons of ICU length of stay with a treatment in the row versus a treatment in the column. 95% confidence intervals and 95% prediction intervals are presented below the odds ratios. Bold text denotes comparisons where 95% confidence intervals or 95% prediction intervals do not cross 0. MD denotes mean difference; CI, confidence interval; PrI, predictive interval; VHD-vitC, very high-dose vitamin C (≥ 12g per day); HD-vitC, high-dose vitamin C (≥ 6g per day); vitC, vitamin C (< 6g per day); GC, low-dose glucocorticoid (< 400 mg/day); vitB1, vitamin B1 (any dose).
9. ICU length of stay

9.1. Network graph

Network graph of all available pairwise comparisons between the eligible interventions. The size of the nodes shows the total number of patients accumulated for each treatment. The breadth of the edges was weighted according to the inverse of the variance of the direct summary effect. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1; VHD-vitC, very high dose vitamin C; vitC, vitamin C.

![Network graph of ICU length of stay](image)

9.2. Heterogeneity: Between-study variance within a comparison and the network

The expected variance from empirical distribution is not available for differences in means of the length of ICU stay. Standardised mean difference was calculated to compare the estimated variance with the expected variance from empirical distribution. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1; VHD-vitC, very high dose vitamin C; vitC, vitamin C; SMD, standardised mean difference; N/A, not available.

Comparisons	Number of studies	Expected variance of SMD from empirical distribution\[\text{median [95% range]}\]	Estimated variance of SMD in comparison	Estimated variance of SMD in network
HD-vitC + GC + vitB1 vs GC	2	0.027 [0.00001 to 4.95]	0	1.2155
HD-vitC + GC + vitB1 vs placebo or usual care	5	0.033 [0.0001 to 10.2]	0	1.2155
VHD-vitC vs placebo or usual care	1	0.033 [0.0001 to 10.2]	N/A	1.2155
HD-vitC vs placebo or usual care	2	0.033 [0.0001 to 10.2]	0	1.2155
vitC vs placebo or usual care	1	0.033 [0.0001 to 10.2]	N/A	1.2155
GC vs placebo or usual care	11	0.033 [0.0001 to 10.2]	0.0071	1.2155
vitB1 vs placebo or usual care	2	0.033 [0.0001 to 10.2]	0	1.2155
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

Forest plots

HD-vitC + GC + vitB1 vs GC

Study	Experimental Total	Standard Deviation	Control Total	Standard Deviation	Mean Difference	MD	95%-CI	Weight
Hussain 2021	47 9.79 4.069	47 8.32 4.9710	1.47 [-2.1; 4.14]	63.0%				
Fuji & Luethi 2020 (VITAMINN)	107 8.45 18.0000	104 8.62 7.5300	1.63 [-2.06; 5.32]	17.0%				

Random effects model

Weight	154	151
Heterogeneity: $I^2 = 0$, $t^2 = 0$, $p = 0.94$		

HD-vitC + GC + vitB1 vs placebo or usual care

Study	Experimental Total	Standard Deviation	Control Total	Standard Deviation	Mean Difference	MD	95%-CI	Weight
Savariansky 2021 (VICTAS)	250 4.70 4.4738	245 4.70 4.4744	-0.00 [-0.79; 0.78]	66.6%				
Iglesias 2020 (ORANGE)	68 4.76 4.5000	65 4.68 3.4500	0.10 [-1.21; 1.41]	24.5%				
Cheng 2020 (HYVOTTSSS)	40 9.14 6.7666	40 7.78 5.9977	0.35 [-2.46; 3.16]	5.3%				
Mackowiak 2020 (ACTS)	101 11.63 16.5461	95 11.58 15.7956	0.06 [-4.45; 4.54]	2.1%				
Mohamed 2020 (VICTOR)	48 12.44 14.2000	43 8.44 8.1600	4.00 [8.91; 8.81]	1.6%				

Random effects model

Weight	504	496
Heterogeneity: $I^2 = 0$, $t^2 = 0.000000; 12.2699$, $p = 0.62$		

HD-vitC vs placebo or usual care

Study	Experimental Total	Standard Deviation	Control Total	Standard Deviation	Mean Difference	MD	95%-CI	Weight
LV 2020	61 5.27 3.8723	56 4.89 3.3490	0.38 [0.93; 1.68]	87.8%				
Zabdi 2016	14 21.45 10.2300	14 20.97 13.0400	0.88 [7.80; 9.86]	2.2%				

Random effects model

Weight	75	70
Heterogeneity: $I^2 = 0$, $t^2 = 0.000000; 0.91$		

GC vs placebo or usual care

Study	Experimental Total	Standard Deviation	Control Total	Standard Deviation	Mean Difference	MD	95%-CI	Weight
Gordon 2016 (VANISH)	201 6.70 5.9736	207 7.09 6.7189	-0.28 [-1.58; 0.98]	14.4%				
Hu 2009	34 4.19 2.8600	32 8.36 2.4800	-1.18 [-2.46; 0.10]	14.2%				
Venkatesh 2018 (ADRENAL)	1893 10.25 18.9471	1890 10.00 26.7078	-5.18 [-6.63; 3.67]	13.6%				
Khan 2016 (HYPRESS)	177 9.40 7.4744	176 10.76 8.2222	-1.28 [-2.99; 0.49]	13.1%				
Merz 2014	117 11.53 5.6900	54 11.87 5.4800	-0.14 [-1.12; 0.83]	12.6%				
Arit 2010	39 9.20 6.4000	36 9.60 6.0000	-0.40 [-3.21; 2.41]	9.5%				
Rinaldi 2006	20 18.25 6.6908	20 20.75 6.6908	-1.50 [-5.65; 2.65]	6.2%				
Spang 2008 (CORTICUS)	250 18.00 31.0000	247 18.00 17.0000	1.00 [-3.35; 5.35]	5.9%				
LV 2017	56 10.80 17.5000	60 10.20 13.1000	0.70 [-1.49; 3.89]	4.2%				
Medcalf 2009	48 8.00 6.0000	52 12.00 18.0000	-4.60 [-12.48; 0.48]	3.4%				
Gordon 2014	51 14.50 14.6000	50 19.50 14.5000	-5.50 [-12.11; 2.11]	2.7%				

Random effects model

Weight	2028	2755
Heterogeneity: $I^2 = 71%, t^2 = 2.8307[0.0000; 12.6394], p = 0.01$		

vitB1 vs placebo or usual care

Study	Experimental Total	Standard Deviation	Control Total	Standard Deviation	Mean Difference	MD	95%-CI	Weight
Henripin 2015	32 6.67 5.4320	33 7.00 6.9746	-0.33 [-3.37; 2.70]	62.8%				
Dzien 2016	43 8.35 6.5027	45 9.48 11.4870	-1.13 [-6.07; 3.81]	37.2%				

Random effects model

Weight	75	78
Heterogeneity: $I^2 = 0$, $t^2 = 0.75$		
9.3. Inconsistency

9.3.1. side-split

Number of loops = 2. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1: VHD-vitC, very high dose vitamin C; vitC, vitamin C; MD, mean difference.

comparison	Number of studies	MD from NMA	MD from direct comparison	MD from indirect comparison	Difference	p-value
GC vs HD-vitC	0	-1.88	-1.88			
GC vs HD-vitC+GC+vB1	2	-1.75	-1.51	-1.89	0.37	0.8003
GC vs HD-vitC+vB1	0	-0.43	-0.43			
GC vs placebo/usual care	11	-1.46	-1.51	-1.14	-0.37	0.8003
GC vs VHD-vitC	0	0.44	0.44			
GC vs vitB1	0	-0.81	-0.81			
GC vs vitC	0	1.44	1.44			
HD-vitC vs HD-vitC+GC+vB1	0	0.12		0.12		
HD-vitC vs HD-vitC+vB1	0	1.44		1.44		
HD-vitC vs placebo/usual care	2	0.41	0.41			
HD-vitC vs VHD-vitC	0	2.31		2.31		
HD-vitC vs vitB1	0	1.07		1.07		
HD-vitC vs vitC	0	3.31		3.31		
HD-vitC+GC+vB1 vs HD-vitC+vB1	0	1.32		1.32		
HD-vitC+GC+vB1 vs placebo/usual care	5	0.29	0.38	0.01	0.37	0.8003
HD-vitC+GC+vB1 vs VHD-vitC	0	2.19		2.19		
HD-vitC+GC+vB1 vs vitB1	0	0.95		0.95		
HD-vitC+GC+vB1 vs vitC	0	3.19		3.19		
HD-vitC+vB1 vs placebo/usual care	1	-1.03	-1.03			
HD-vitC+vB1 vs VHD-vitC	0	0.87		0.87		
HD-vitC+vB1 vs vitB1	0	-0.37	-0.37			
HD-vitC+vB1 vs vitC	0	1.87		1.87		
VHD-vitC vs placebo/usual care	1	-1.9	-1.9			
vitB1 vs placebo/usual care	2	-0.66	-0.66			
vitC vs placebo/usual care	1	-2.9	-2.9			
VHD-vitC vs vitB1	0	-1.24	-1.24			
VHD-vitC vs vitC	1	1	1			
vitB1 vs vitC	0	2.24	2.24			

9.3.2. global

Q statistic to assess consistency under the assumption of a full design-by-treatment interaction random effects model = 0.06 (df=1, p=0.7989)
10. All-cause mortality at the longest follow-up

10.1. Heterogeneity: Between-study variance within a comparison and the network

GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1; VHD-vitC, very high dose vitamin C; vitC, vitamin C; OR, odds ratio; N/A, not available.

Comparisons	Number of studies	Expected variance for ORs from empirical distribution	Estimated variance in comparison	Estimated variance in network	Forest plot
HD-vitC + GC + vitB1 vs GC	2	0.014 [0.0008 to 0.25]	0.0196	0.0018	No evidence
HD-vitC + GC + vitB1 vs placebo or usual care	6	0.017 [0.001 to 0.30]	0	0.0018	No heterogeneity
HD-vitC + vitB1 vs placebo or usual care	1	0.017 [0.001 to 0.30]	N/A	0.0018	N/A
VHD-vitC vs vitC	1	0.014 [0.0008 to 0.25]	N/A	0.0018	N/A
VHD-vitC vs placebo or usual care	2	0.017 [0.001 to 0.30]	0	0.0018	No evidence
HD-vitC vs placebo or usual care	2	0.017 [0.001 to 0.30]	0.6702	0.0018	No evidence
vitC vs placebo or usual care	2	0.017 [0.001 to 0.30]	0.7293	0.0018	No evidence
GC vs placebo or usual care	17	0.017 [0.001 to 0.30]	0.0239	0.0018	No heterogeneity
vitB1 vs placebo or usual care	3	0.017 [0.001 to 0.30]	0	0.0018	No evidence

Forest plot

HD-vitC + GC + vitB1 vs GC

HD-vitC + GC + vitB1 vs placebo or usual care

Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

VHD-vitC vs placebo or usual care

Study	Experimental Events	Control Events	Odds Ratio	OR	95% CI Weight
Fowler 2019 (CITRIS-AL8)	25	38	0.49	0.20	0.94
Fowler 2014	4	8	0.60	0.00	0.40
Random effects model	**92**	**90**			

HD-vitC vs placebo or usual care

Study	Experimental Events	Control Events	Odds Ratio	OR	95% CI Weight
LV 2020	15	24	0.43	0.20	0.56
Zitter 2016	2	9	0.09	0.01	0.89
Random effects model	**75**	**70**			

vitC vs placebo or usual care

Study	Experimental Events	Control Events	Odds Ratio	OR	95% CI Weight
Fontaine-Calza 2009	5	4	2.26	0.38	13.17
Fowler 2014	3	6	0.36	0.05	2.12
Random effects model	**18**	**18**			

GC vs placebo or usual care

Study	Experimental Events	Control Events	Odds Ratio	OR	95% CI Weight
Venkatesh 2018 (ADRENAL)	571	574	0.99	0.86	1.13
Annane 2018 (APROCHSS)	285	326	0.79	0.63	0.99
Springer 2006 (CORTICUS)	137	127	1.11	0.77	1.59
Gordon 2016 (VANSM)	62	57	1.17	0.77	1.80
Keh 2016 (HIFRESS)	45	37	1.29	0.76	2.12
Annane 2002	102	112	0.70	0.42	1.16
Tangaroa 2016	37	40	0.89	0.50	1.59
Mira 2014	44	40	0.88	0.45	1.69
LV 2017	23	19	1.42	0.67	3.02
Modell 2009	23	48	3.99	1.39	11.43
Vidal 2011	16	27	2.16	0.43	3.67
Arabi 2010	33	12	2.12	0.68	6.08
Gordon 2014	7	31	0.96	0.09	3.16
Opavc 2005	7	11	0.89	0.20	2.43
Vidal 2002	8	20	0.44	0.13	1.57
Ballard 1998	7	22	0.27	0.07	0.99
LV 2016	3	29	1.00	0.18	5.42
Random effects model	**3691**	**3816**			

vitB1 vs placebo or usual care

Study	Experimental Events	Control Events	Odds Ratio	OR	95% CI Weight
Domino 2016	19	18	1.19	0.51	2.77
Hanun 2016	14	12	1.36	0.50	3.68
Piette and 2002	5	7	0.64	0.17	2.39
Random effects model	**100**	**103**			
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

10.2. Inconsistency

10.2.1. side-split

Number of loops = 2. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1; VHD-vitC, very high dose vitamin C; vitC, vitamin C; OR, odds ratio; RoR, Ratio of Ratios (direct versus indirect).

comparison	Number of studies	OR from NMA	OR from direct comparison	OR from indirect comparison	Ratio of ratios	p-value
HD-vitC+GC+vitB1 vs HD-vitC+vitB1	0	0.84		0.84		
HD-vitC+GC+vitB1 vs placebo or usual care	6	1.04	1.06	0.98	1.09	0.7772
HD-vitC+GC+vitB1 vs VHD-vitC	0	1.96		1.96		
HD-vitC+GC+vitB1 vs vitB1	0	0.95		0.95		
HD-vitC+GC+vitB1 vs vitC	0	1.23		1.23		
HD-vitC vs HD-vitC+GC+vitB1	0	0.33		0.33		
HD-vitC vs HD-vitC+vitB1	0	0.27		0.27		
HD-vitC vs VHD-vitC	0	0.64		0.64		
HD-vitC vs vitB1	0	0.31		0.31		
HD-vitC vs vitC	0	0.40		0.40		
HD-vitC+vitB1 vs placebo or usual care	1	1.24	1.24			
HD-vitC+vitB1 vs VHD-vitC	0	2.33		2.33		
HD-vitC+vitB1 vs vitB1	0	1.13		1.13		
HD-vitC+vitB1 vs vitC	0	1.46		1.46		
VHD-vitC vs vitB1	0	0.48		0.48		
VHD-vitC vs vitC	1	0.63	1.67	0.28	5.86	0.1973
VHD-vitC vs placebo or usual care	2	0.53	0.50	20.92	0.02	0.1358
HD-vitC vs placebo or usual care	2	0.34	0.34			
vitC vs placebo or usual care	2	0.85	1.01	0.24	4.18	0.4759
GC vs HD-vitC+GC+vitB1	2	0.94	1.00	0.92	1.09	0.7772
GC vs HD-vitC+vitB1	0	0.79		0.79		
GC vs VHD-vitC	0	1.84		1.84		
GC vs HD-vitC	0	2.87		2.87		
GC vs placebo or usual care	17	0.98	0.97	1.06	0.92	0.7772
GC vs vitB1	0	0.89		0.89		
GC vs vitC	0	1.15		1.15		
vitB1 vs vitC	0	1.29		1.29		
vitB1 vs placebo or usual care	3	1.1	1.1			

10.2.2. global

Q statistic to assess consistency under the assumption of a full design-by-treatment interaction random effects model = 2.37 (df=3, p=0.5000)
10.3. Risk of bias within studies of each comparison
vitC denotes vitamin C; vitB1, vitamin B1.
10.4. Funnel plot

The treatments were in order of combination therapies first, monotherapies, and placebo or usual care, as the combination therapies have recently been investigated in small trials. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1; VHD-vitC, very high dose vitamin C; vitC, vitamin C.
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

10.5. Summary of confidence in network estimates

Clinically important threshold for odds ratio was defined at 1.2 to judge imprecision of the effect estimates. Incoherence in the summary table refers to inconsistency assessment in 5.2. vitC denotes vitamin C; vitB1, vitamin B1.

Comparison	Number of studies	Within-study bias	Reporting bias	Indirectness	Imprecision	Heterogeneity	Incoherence	Confidence rating
MIXED EVIDENCE								
glucocorticoid vs placebo/usual care	17	Some concerns	Low risk	No concerns	No concerns	No concerns	No concerns	Moderate
placebo/usual care vs vitC (high dose) + glucocorticoid + vitB1	6	Some concerns	Low risk	No concerns	Major concerns	No concerns	No concerns	Very low
placebo/usual care vs vitB1	3	Major concerns	Low risk	No concerns	Major concerns	No concerns	No concerns	Very low
placebo/usual care vs vitC (high dose)	2	Major concerns	Low risk	No concerns	No concerns	No concerns	No concerns	Low
placebo/usual care vs vitC (very high dose)	2	Some concerns	Low risk	No concerns	No concerns	No concerns	Some concerns	Low
glucocorticoid vs vitC (high dose) + glucocorticoid + vitB1	2	Some concerns	Low risk	No concerns	Major concerns	No concerns	No concerns	Very low
placebo/usual care vs vitC	2	Some concerns	Low risk	No concerns	Major concerns	No concerns	Some concerns	Very low
placebo/usual care vs vitC (high dose) + vitB1	1	No concerns	Low risk	No concerns	Major concerns	No concerns	No concerns	Low
vitC vs vitC (very high dose)	1	Some concerns	Low risk	No concerns	Major concerns	No concerns	Some concerns	Very low
INDIRECT EVIDENCE								
glucocorticoid vs vitC (high dose) + vitB1	0	No concerns	Low risk	No concerns	Major concerns	No concerns	No concerns	Low
vitC (high dose) + vitB1 vs vitC (very high dose)	0	No concerns	Low risk	No concerns	Major concerns	No concerns	No concerns	Low
vitB1 vs vitC (high dose)	0	Major concerns	Low risk	No concerns	No concerns	No concerns	No concerns	Low
vitC (high dose) vs vitC (high dose) + glucocorticoid + vitB1	0	Major concerns	Low risk	No concerns	No concerns	No concerns	No concerns	Low
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

Comparison	Some concerns	Low risk	No concerns	Some concerns	No concerns	No concerns	Risk
glucocorticoid vs vitC (very high dose)	0						Low
vitB1 vs vitC (very high dose)	0						Low
glucocorticoid vs vitC (high dose)	0						Moderate
vitC (high dose) vs vitC (high dose)+vitB1	0						Moderate
vitC (high dose)+glucocorticoid+vitB1 vs vitC (very high dose)	0						Moderate
glucocorticoid vs vitB1	0						Very low
glucocorticoid vs vitC	0						Very low
vitB1 vs vitC	0						Very low
vitB1 vs vitC (high dose)+glucocorticoid+vitB1	0						Very low
vitB1 vs vitC (high dose)+vitB1	0						Very low
vitC vs vitC (high dose)	0						Very low
vitC vs vitC (high dose)+glucocorticoid+vitB1	0						Very low
vitC vs vitC (high dose)+vitB1	0						Very low
vitC (high dose) vs vitC (very high dose)	0						Very low
vitC (high dose)+glucocorticoid+vitB1 vs vitC (high dose)+vitB1	0						Very low

29
10.6. P-scores of treatment

P-scores are calculated from the point estimates and standard errors of the network estimates. The P-score of treatment can be interpreted as the mean extent of certainty that the treatment is better than any other treatment. HD-vitC denotes high dose vitamin C; VHD-vitC, very high dose vitamin C; vitC, vitamin C; GC, glucocorticoid; vitB1, vitamin B1.

Treatment	P-score
1. HD-vitC	0.9543
2. VHD-vitC	0.8219
3. vitC	0.4987
4. GC	0.4482
5. placebo or usual care	0.3927
6. HD-vitC+GC+vitB1	0.3266
7. vitB1	0.3089
8. HD-vitC+vitB1	0.2485
11. All-cause mortality from 90 days to 1 year: only studies with low risk of bias

11.1. Network graph

Network graph of all available pairwise comparisons between the eligible interventions. The size of the nodes shows the total number of patients accumulated for each treatment. The breadth of the edges was weighted according to the inverse of the variance of the direct summary effect. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1; VHD-vitC, very high dose vitamin C; vitC, vitamin C.

![Network graph image]

11.2. Heterogeneity: Between-study variance within a comparison and the network

Comparisons	Number of studies	Expected variance for ORs from empirical distribution \[95% range\]	Estimated variance	Forest plot	
HD-vitC+vitB1 vs placebo or usual care	1	0.017 \[0.001 to 0.30\]	N/A	0.0320	N/A
GC vs placebo or usual care	3	0.017 \[0.001 to 0.30\]	0.0320	0.0320	Suspected heterogeneity

Forest plot

GC vs placebo or usual care

Study	Experimental Events	Control Total	Odds Ratio	OR	95%-CI	Weight
Annane 2018	265	611	0.79	[0.63; 0.99]	52.1%	
Khan 2016	45	168	1.29	[0.78; 2.12]	24.1%	
Annane 2002	102	100	0.70	[0.42; 1.16]	23.6%	

Random effects model

Heterogeneity: $I^2 = 43\%$, $t^2 = 0.0320$, $p = 0.17$
11.3. League table of NMA results
Odds ratios denote comparisons of all-cause mortality from 90 days to one year in low risk of bias studies with a treatment in the row versus a treatment in the column. 95% confidence intervals and 95% prediction intervals are presented below the odds ratios. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1.

OR (95% CI) (95% PrI)	placebo or usual care	HD-vitC + vitB1
HD-vitC + vitB1	1.24 (0.51 to 3.01) (0.003 to 601.3)	0.70 (0.27 to 1.78) (0.001 to 456.22)
GC	0.86 (0.64 to 1.17) (0.04 to 17.22)	0.70 (0.27 to 1.78) (0.001 to 456.22)

11.4. Component network meta-analysis
Component network meta-analysis was not performed due to the scarcity of available data.
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

12. All-cause mortality at the longest follow-up: Only studies published in 2010 or after

12.1. Network graph

Network graph of all available pairwise comparisons between the eligible interventions. The size of the nodes shows the total number of patients accumulated for each treatment. The breadth of the edges was weighted according to the inverse of the variance of the direct summary effect. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1: VHD-vitC, very high dose vitamin C; vitC, vitamin C.

12.2. Heterogeneity: Between-study variance within a comparison and the network

Comparisons	Number of studies	Expected variance for ORs from empirical distribution on median [95% range]	Estimated variance in comparison	Forest plot
HD-vitC + GC + vitB1 vs GC	2	0.014 [0.0008 to 0.25]	0.0196	No evidence
HD-vitC + GC + vitB1 vs placebo or usual care	6	0.017 [0.001 to 0.30]	0	No heterogeneity
HD-vitC + vitB1 vs placebo or usual care	1	0.017 [0.001 to 0.30]	N/A	N/A
VHD-vitC vs vitC	1	0.014 [0.0008 to 0.25]	N/A	N/A
VHD-vitC vs placebo or usual care	2	0.017 [0.001 to 0.30]	0	No evidence
HD-vitC vs placebo or usual care	2	0.017 [0.001 to 0.30]	0.6702	No evidence
vitC vs placebo or usual care	1	0.017 [0.001 to 0.30]	N/A	N/A
GC vs placebo or usual care	11	0.017 [0.001 to 0.30]	0	No heterogeneity
vitB1 vs placebo or usual care	3	0.017 [0.001 to 0.30]	0	No evidence
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

Forest plots

HD-vitC + GC + vitB1 vs GC

Study	Experimental Events	Control Events	Odds Ratio	OR	95% CI	Weight	
Fuji & Lucent 2020 (VITAMINS)	30	105	25	102	1.23	[0.66; 2.30]	62.4%
Hesdari 2021	17	47	21	47	0.70	[0.31; 1.60]	37.6%

Random effects model

Heterogeneity: $I^2 = 12\%$, $Q = 0.0196$, $p = 0.29$

```
OR  95% CI  Weight
1.00 [0.58; 1.70] 100.0%
```

HD-vitC + GC + vitB1 vs placebo or usual care

Study	Experimental Events	Control Events	Odds Ratio	OR	95% CI	Weight	
Sarratt et al 2021 (VICTAIS)	102	252	94	249	1.12	[0.78; 1.61]	49.7%
Modarresi 2020 (ACTS)	38	101	39	99	1.20	[0.74; 2.01]	17.7%
Wani 2020	20	51	21	50	0.90	[0.41; 2.04]	9.5%
Mohammadi 2020 (VICTOR)	26	45	23	43	1.11	[0.51; 2.39]	8.8%
Ngouamba 2010 (ORANGE)	11	63	13	69	0.83	[0.34; 2.10]	8.0%
Chang 2020 (PROCTSSS)	11	40	14	40	0.70	[0.27; 1.82]	6.9%

Random effects model

Heterogeneity: $I^2 = 0\%$, $Q = 0$, $p = 0.99$

```
OR  95% CI  Weight
1.07 [0.83; 1.37] 100.0%
```

VHD-vitC vs placebo or usual care

Study	Experimental Events	Control Events	Odds Ratio	OR	95% CI	Weight	
Fouhe 2019 (OCTIS-AL)	25	94	39	62	0.49	[0.26; 0.93]	90.7%
Fouhe 2014	4	8	5	8	0.60	[0.08; 4.40]	5.3%

Random effects model

Heterogeneity: $I^2 = 0\%$, $Q = 0$, $p = 0.99$

```
OR  95% CI  Weight
0.50 [0.27; 0.92] 100.0%
```

HD-vitC vs placebo or usual care

Study	Experimental Events	Control Events	Odds Ratio	OR	95% CI	Weight	
Lima 2020	15	61	24	56	0.43	[0.20; 0.94]	65.3%
Zabet 2016	2	14	9	14	0.09	[0.01; 0.99]	24.7%

Random effects model

Heterogeneity: $I^2 = 50\%$, $Q = 0.6702$, $p = 0.13$

```
OR  95% CI  Weight
0.25 [0.06; 1.08] 100.0%
```

GC vs placebo or usual care

Study	Experimental Events	Control Events	Odds Ratio	OR	95% CI	Weight	
Vankadawala 2018 (ADRENAL)	571	1812	574	1803	0.99	[0.86; 1.13]	21.9%
Armoire 2018 (APROCCOR)	286	611	328	625	0.79	[0.63; 0.99]	17.5%
Sprung 2008 (CORTICUS)	137	242	127	235	1.11	[0.77; 1.59]	11.0%
Gordon 2016 (VANGAL)	62	291	57	267	1.17	[0.77; 1.70]	6.9%
Kuh 2016 (vPRESS)	48	168	37	167	1.25	[0.78; 2.02]	7.2%
Armoire 2002	102	150	112	149	0.70	[0.42; 1.16]	7.0%
Tongue 2016	37	98	40	99	0.89	[0.50; 1.56]	5.8%
Mohe 2014	44	117	22	54	0.68	[0.46; 1.00]	4.0%
Lu 2017	23	58	19	60	1.42	[0.67; 3.02]	3.7%
Makkai 2005	20	48	6	32	3.55	[1.15; 11.43]	2.0%
Yildiz 2011	16	27	12	28	1.26	[0.43; 3.67]	2.0%
Arab 2010	23	35	26	36	2.12	[0.68; 6.69]	1.8%
Gordon 2014	7	31	7	30	0.96	[0.39; 2.56]	1.6%
Opper 2005	7	18	11	23	0.69	[0.20; 2.43]	1.5%
Yildiz 2002	9	20	12	20	0.44	[0.20; 1.63]	1.4%
Boffa 1988	7	22	12	19	0.37	[0.07; 0.98]	1.4%
Li 2016	3	29	3	29	1.00	[0.18; 6.42]	0.6%

Random effects model

Heterogeneity: $I^2 = 30\%$, $Q = 0.0239$, $p = 0.12$

```
OR  95% CI  Weight
0.99 [0.84; 1.15] 100.0%
```
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

12.3. Inconsistency

12.3.1. side-split

Number of loops = 2. GC denotes glucocorticoid; HD-vitC, high dose vitamin C; vitB1, vitamin B1; VHD-vitC, very high dose vitamin C; vitC, vitamin C; OR, odds ratio.

comparison	Number of studies	OR from NMA	OR from direct comparison	OR from indirect comparison	Ratio of ratios	p-value
HD-vitC+GC+vitB1 vs HD-vitC+vitB1	0	0.85	0.85	0.85	0.85	0.85
HD-vitC+GC+vitB1 vs placebo or usual care	6	1.05	1.07	0.98	1.1	0.7494
HD-vitC+GC+vitB1 vs VHD-vitC	0	2.1	2.1	2.1	2.1	2.1
HD-vitC+GC+vitB1 vs vitB1	0	0.95	0.95	0.95	0.95	0.95
HD-vitC+GC+vitB1 vs vitC	0	3.21	3.21	3.21	3.21	3.21
HD-vitC+vitB1 vs placebo or usual care	1	1.24	1.24	1.24	1.24	1.24
HD-vitC+vitB1 vs VHD-vitC	0	2.48	2.48	2.48	2.48	2.48
HD-vitC+vitB1 vs vitB1	0	1.12	1.12	1.12	1.12	1.12
HD-vitC+vitB1 vs vitC	0	3.78	3.78	3.78	3.78	3.78
VHD-vitC vs vitB1	0	0.45	0.45	0.45	0.45	0.45
VHD-vitC vs vitC	1	1.53	1.67	1.1	1.52	0.8505
VHD-vitC vs placebo/usual	2	0.5	0.5	0.5	0.5	0.5
HD-vitC vs HD-vitC+GC+vitB1	0	0.33	0.33	0.33	0.33	0.33
HD-vitC vs HD-vitC+vitB1	0	0.28	0.28	0.28	0.28	0.28
HD-vitC vs VHD-vitC	0	0.69	0.69	0.69	0.69	0.69
HD-vitC vs vitB1	0	0.31	0.31	0.31	0.31	0.31
HD-vitC vs vitC	0	1.05	1.05	1.05	1.05	1.05
HD-vitC vs placebo or usual care	2	0.34	0.34	0.34	0.34	0.34
vitC vs placebo or usual care	1	0.33	0.36	0.24	1.50	0.8505
GC vs HD-vitC	0	2.83	2.83	2.83	2.83	2.83
GC vs HD-vitC+GC+vitB1	2	0.93	0.99	0.91	1.1	0.7494
GC vs HD-vitC+vitB1	0	0.78	0.78	0.78	0.78	0.78
GC vs placebo or usual care	11	0.97	0.97	1.06	0.91	0.7494
GC vs VHD-vitC	0	1.94	1.94	1.94	1.94	1.94
GC vs vitB1	0	0.88	0.88	0.88	0.88	0.88
GC vs vitC	0	2.97	2.97	2.97	2.97	2.97
vitB1 vs vitC	0	3.37	3.37	3.37	3.37	3.37
vitB1 vs placebo or usual care	3	1.1	1.1	1.1	1.1	1.1

12.3.2. global

Q statistic to assess consistency under the assumption of a full design-by-treatment interaction random effects model = 0.14 (df=2, p=0.9338)
13. References
1. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135.
2. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2018;27(6):1785-1805.
3. Furukawa TA, Barbuli C, Cipriani A, Brambilla P, Watanabe N. Imputing missing standard deviations in meta-analyses can provide accurate results. J Clin Epidemiol. 2006;59(1):7-10.
4. Bennett Jr. I, Finland M, Hamburger M, Kass E, Lepper M, Waisbren B. The Effectiveness of Hydrocortisone in the Management of Severe Infections. JAMA. 1963;183(6):462-465.
5. Bollaert PE, Charpentier C, Levy B, Debouverie M, Audibert G, Larcan A. Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med. 1998;26(4):645-650.
6. Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288(7):862-871.
7. Yildiz O, Doganay M, Aygen B, Guven M, Kelestimur F, Tutuu A. Physiological-dose steroid therapy in sepsis [ISRCTN36253388]. Crit Care. 2002;6(3):251-259.
8. Oppert M, Schindler R, Husung C, et al. Low-dose hydrocortisone improves shock reversal and reduces cytokine levels in early hyperdynamic septic shock. Crit Care Med. 2005;33(11):2457-2464.
9. Rinaldi S, Adembru C, Grechi S, De Gaudio AR. Low-dose hydrocortisone during severe sepsis: effects on microalbuminuria. Crit Care Med. 2006;34(9):2334-2339.
10. Kaufmann I, Briegel J, Schliephake F, et al. Stress doses of hydrocortisone in septic shock: beneficial effects on opsonization-neutrophil neutrophil functions. Intensive Care Med. 2008;34(2):344-349.
11. Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358(2):111-124.
12. Ferron-Celma I, Mansilla A, Hassan L, et al. Effect of vitamin C administration on neutrophil apoptosis in septic patients after abdominal surgery. J Surg Res. 2009;153(2):224-230.
13. Hu B, Li JG, Liang H, et al. [The effect of low-dose hydrocortisone on requirement of norepinephrine and lactate clearance in patients with refractory septic shock]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2009;21(9):529-531.
14. Meduri GU, Golden E, Umerberger R. Prospective Double-Blind Randomized Clinical Trial on the Effects of Low-Dose Hydrocortisone Infusion in Patients with Severe Sepsis. Chest. 2009;136(4).
15. Arabi YM, Aljunah A, Dabbagh O, et al. Low-dose hydrocortisone in patients with cirrhosis and septic shock: a randomized controlled trial. CMAJ. 2010;182(18):1971-1977.
16. 邓秋明, 尚东, 万献尧. 小剂量激素对感染性休克患者凝血功能的影响. 中国危重病急救医学. 2011;23(3):183-184.
17. Yildiz O, Tanriverdi F, Simon S, Aygen B, Kelestimur F. The effects of moderate-dose steroid therapy in sepsis: A placebo-controlled, randomized study. J Res Med Sci. 2011;16(11):1410-1421.
18. Rahardjo TM, Redjeki I, Maskoen I. Effect of vitamin C 1000 mg IV therapy to lactate level, base deficit and Svo2 in septic patient. Crit Care Med. 2013;41.
19. Fowler AA, 3rd, Syed AA, Knowlson S, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 2014;12:32.
20. Gordon AC, Mason AJ, Perkins GD, et al. The interaction of vasopressin and corticosteroids in septic shock: a pilot randomized controlled trial. Crit Care Med. 2014;42(6):1325-1333.
21. Mirea L, Ungureanu R, Pavelscu D, et al. PP007-MON: Discontinuous Corticosteroids Administration Increase the Risk of Hyperglycaemia in Septic Shock. Clinical Nutrition. 2014;33.
22. Donnino MW, Andersen LW, Chase M, et al. Randomized, Double-Blind, Placebo-Controlled Trial of Thiamine as a Metabolic Resuscitator in Septic Shock: A Pilot Study. Crit Care Med. 2016;44(2):360-367.
23. Gordon AC, Mason AJ, Thirunavukkarasu N, et al. Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock: The VANISH Randomized Clinical Trial. JAMA. 2016;316(5):509-518.
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

24. Keh D, Trips E, Marx G, et al. Effect of Hydrocortisone on Development of Shock Among Patients With Severe Sepsis: The HYPRESS Randomized Clinical Trial. *JAMA*. 2016;316(17):1775-1785.
25. Li G, Gu C, Zhang S, Lian R, Zhang G. Value of glucocorticoid steroids in the treatment of patients with severe community-acquired pneumonia complicated with septic shock. *Chin Crit Care Med.* 2016;28(9):780-784.
26. Tongyoo S, Permpikul C, Mongkolpun W, et al. Hydrocortisone treatment in early sepsis-associated acute respiratory distress syndrome: results of a randomized controlled trial. *Crit Care*. 2016;20(1):329.
27. Zabet MH, Mohammadi M, Ramezani M, Khalili H. Effect of high-dose Ascorbic acid on vasopressor's requirement in septic shock. *J Res Pharm Pract*. 2016;5(2):94-100.
28. Lv QQ, Gu XH, Chen QH, Yu JQ, Zheng RQ. Early initiation of low-dose hydrocortisone treatment for septic shock in adults: A randomized clinical trial. *Am J Emerg Med*. 2017;35(12):1810-1814.
29. Annane D, Renault A, Brun-Buisson C, et al. Hydrocortisone plus Fludrocortisone for Adults with Septic Shock. *N Engl J Med*. 2018;378(9):809-818.
30. Balakrishnan M, Gandhi H, Shah K, et al. Hydrocortisone, Vitamin C and thiamine for the treatment of sepsis and septic shock following cardiac surgery. *Indian J Anaesth*. 2018;62(12):934-939.
31. Rosini JM, Arnold R, Schuchardt BJ, Gissendaner J, Kowalski R, Capan M. High Dose Intravenous Ascorbic Acid in Severe Sepsis. *Acad Emerg Med*. 2018;25 Suppl 1:S108-S109.
32. Venkatesh B, Finfer S, Cohen J, et al. Adjunctive Glucocorticoid Therapy in Patients with Septic Shock. *N Engl J Med*. 2018;378(9):797-808.
33. Fowler AA, 3rd, Truwit JD, Hite RD, et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure: The CITRIS-ALI Randomized Clinical Trial. *JAMA*. 2019;322(13):1261-1270.
34. Jiang X YD, Zhao H, Yang F, Yuan Z, Lu P, Tian H. Early low-dose glucocorticoid therapy effectively suppresses serum pro-inflammatory factors such as IL-6 and inhibits apoptosis of CD4+ cells in septic shock patients. *Int J Clin Exp Med*. 2019;12(1):718-723.
35. Harun NF, Cheah SK, Yusof AM, et al. Intravenous thiamine as an adjuvant therapy for hyperlactatemia in septic shock patients. *Crit Care Shock*. 2019;22(6):288-298.
36. Chang P, Liao Y, Guan J, et al. Combined Treatment With Hydrocortisone, Vitamin C, and Thiamine for Sepsis and Septic Shock: A Randomized Controlled Trial. *Chest*. 2020;158(1):174-182.
37. Fujii T, Lueithi N, Young PJ, et al. Effect of Vitamin C, Hydrocortisone, and Thiamine vs Hydrocortisone Alone on Time Alive and Free of Vasopressor Support Among Patients With Septic Shock: The VITAMINS Randomized Clinical Trial. *JAMA*. 2020;323(5):423-431.
38. Hwang SY, Ryoo SM, Park JE, et al. Combination therapy of vitamin C and thiamine for septic shock: a multi-centre, double-blinded randomized, controlled study. *Intensive Care Med*. 2020;46(11):2015-2025.
39. Iglesias J, Vassallo AV, Patel VV, Sullivan JB, Cavanaugh J, Elbaga Y. Outcomes of Metabolic Resuscitation Using Ascorbic Acid, Thiamine, and Glucocorticoids in the Early Treatment of Sepsis: The ORANGES Trial. *Chest*. 2020;158(1):164-173.
40. Lv SJ, Zhang GH, Xia JM, Yu H, Zhao F. Early use of high-dose vitamin C is beneficial in treatment of sepsis. *Ir J Med Sci*. 2020.
41. Mohamed ZU, Prasannan P, Moni M, et al. Vitamin C Therapy for Routine Care in Septic Shock (ViCTOR) Trial: Effect of Intravenous Vitamin C, Thiamine, and Hydrocortisone Administration on Inpatient Mortality among Patients with Septic Shock. *Indian J Crit Care Med*. 2020;24(8):653-661.
42. Moskowitz A, Huang DT, Hou PC, et al. Effect of Ascorbic Acid, Corticosteroids, and Thiamine on Organ Injury in Septic Shock: The ACTS Randomized Clinical Trial. *JAMA*. 2020;324(5):423-431.
43. Petsakul S, Morakul S, Tangsujaritvijit V, Kunawut P, Singhathas P, Sanguanwit P. Effects of thiamine on vasopressor requirements in patients with septic shock: a prospective randomized controlled trial. *BMC Anesthesiol*. 2020;20(1):280.
44. Wani SJ, Mufii SA, Jan RA, et al. Combination of vitamin C, thiamine and hydrocortisone added to standard treatment in the management of sepsis: results from an open label randomised controlled clinical trial and a review of the literature. *Infect Dis (Lond)*. 2020;52(4):271-278.
Supplement to: Fujii T, Salanti G, Belletti A, et al. Effect of adjunctive vitamin C, glucocorticoids, and vitamin B1 on longer term mortality in adults with sepsis or septic shock: a systematic review and a component network meta-analysis.

45. Sevransky JE, Rothman RE, Hager DN, et al. Effect of Vitamin C, Thiamine, and Hydrocortisone on Ventilator- and Vasopressor-Free Days in Patients With Sepsis: The VICTAS Randomized Clinical Trial. *JAMA*. 2021;325(8):742-750.

46. Hussein AA, Sabry NA, Abdalla MS, Farid SF. A prospective, randomised clinical study comparing triple therapy regimen to hydrocortisone monotherapy in reducing mortality in septic shock patients. *Int J Clin Pract*. 2021;75(9):e14376.

47. Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP. Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. *Int J Epidemiol*. 2012;41(3):818-827.

48. Rhodes KM, Turner RM, Higgins JP. Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data. *J Clin Epidemiol*. 2015;68(1):52-60.