Public perceptions of how to reduce carbon footprints of consumer food choices

-Supplementary Materials-

Astrid Kause¹,²,³, Wändi Bruine de Bruin¹,³,⁴, Joel Millward-Hopkins⁵, Henrik Olsson⁶

¹ Centre for Decision Research, Leeds University Business School, Maurice Keyworth Building, University of Leeds, Leeds, LS2 9JT, UK

² Harding Center for Risk Literacy, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany

³ Priestley International Centre for Climate, University of Leeds, Leeds LS2 9JT, UK

⁴ Department of Engineering and Public Policy, Carnegie Mellon University, 129 Baker Hall, Pittsburgh, PA 15213, USA

⁵ Sustainability Research Institute, School of Earth and Environment University of Leeds, Leeds LS2 9JT, UK

⁶ Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA

* corresponding author: a.kause@leeds.ac.uk; +44 113 343 2685; https://orcid.org/0000-0002-0121-2406

This file includes:

Tables S1 to S11
Table S1. Questions that asked participants to generate rules for identifying food with a low carbon footprint.

Produce

Imagine that you are shopping for produce with a low carbon footprint.

Those may include:

- 1 kg onions, leek or shallots
- 1 kg of apples
- 1 kg carrots
- 1 kg tomatoes
- Lettuce (1 head)
- 1 kg of bananas
- 1 pack of mushrooms (300 g)
- 1 head of cabbage (800 g)
- 1 kg of potatoes
- 500 g of strawberries
- 1 kg of oranges

What characteristics do you think are typical for produce with a low carbon footprint?

Please list as many characteristics as you can think of. Please use a separate line for each.

________________ [15 lines]
Dairy

Imagine that you are shopping for dairy products (and their plant-based alternatives) with a low carbon footprint.

Those may include:

- 1 l whole milk
- 250 g natural cheese
- 1 kg sweetened yoghurt
- 150 g cream cheese
- 1 kg natural yogurt
- 250 g cream
- 200 ml condensed milk
- 250 g mozzarella
- 1 l semi-skimmed milk
- 1 l of soy milk

What characteristics do you think are typical for dairy products (and plant-based alternatives) with a low carbon footprint? Please list as many characteristics as you can think of. Please use a separate line for each.

________________ [15 lines]
Protein-rich products

Imagine that you are shopping for protein products (like meat, fish and their plant-based alternatives) with a low carbon footprint.

Those may include:

- 250 g lamb
- 200 g tofu
- 1 chicken (1.5 kg)
- 450 g pork steaks
- 350 g diced beef
- 500 g minced pork
- 280 g (2 pieces) salmon filet
- 180 g prawns
- 230 g marinated herring
- 300 g minced quorn

What characteristics do you think are typical for protein products with a low carbon footprint? Please list as many characteristics as you can think of. Please use a separate line for each.

__________________ [15 lines]

Note: The carbon footprint of products in a food group was defined as “all of the greenhouse gases such as CO₂ that are released in producing it and getting it into your shopping basket.”
Each generated rule generated was then evaluated regarding informativeness, on a 7-point Likert scale ranging from (1) “not informative at all” – (7) “very informative” by asking “How informative do you think is each characteristic regarding the carbon footprint of produce [dairy and dairy alternatives/protein products]?”
Table S2. Questions that asked participants to evaluate pre-selected rules about reductions in food-related carbon footprints.

How many grams of greenhouse gases such as CO₂ do you think are SAVED by the following changes?

Please try to make your best guess, even if it is hard.

Please enter whole numbers only. Do not use decimals, ranges, percent signs, or text.

Produce

- growing 1 kg of produce on a field outside instead of in a heated greenhouse?
- producing 1 kg of produce organically instead of conventionally?
- producing 1 kg of produce locally rather than importing it from another European country?
- packing 1 kg of produce into a paper bag instead of into a plastic shell?

Dairy

- producing 1 kg of plant-based margarine instead of 1 kg of butter?
- producing 1 l of soy milk instead of 1 l of conventional milk?
- producing 1 l of organic milk instead of 1 l of conventional milk?
- producing 1 l of milk locally (within, the same county, i.e. approximately a 50 miles radius) instead of importing it from a different region of the UK (400 miles radius)?

Protein-rich products

- producing 1 kg of fresh fish instead of 1 kg of fresh beef
- producing 1 kg of chicken instead of 1 kg of pork?
• producing 1 kg of organic meat instead of 1 kg of conventional meat?

• producing 1 kg of meat in the UK instead of importing it from a European country?

Note: Participants typed their answer into a textbox, preceded by “gram [percent] saved:”. Participants then answered how confident they were about each of their estimates: “How confident are you about your answer above?” on a 7-point Likert scale, ranging from (1) “not confident at all” – (7) “very confident”.
Table S3. Demographic characteristics, environmental worldview, climate change knowledge, numeracy and need for cognition, of participants who completed all relevant questions vs not, as well as the UK population.

Characteristic	Participants who completed all questions (N = 627)	Participants who did not complete all questions (N=106)	UK population
Age Mean (SD)	43.00 (15.00)	38 (19)	Median = 40
	Median = 40		[Q_{25%} = 21.1, Q_{75%} = 58.3]
	[Q_{25%} = 32, Q_{75%} = 55]		
% male	41	42	49
% College degree or higher	57	43	27
Environmental worldview Mean (SD)	4.72 (0.78)	4.35 (0.66)	Not available
Climate change knowledge Mean (SD)	39% (0.92)	0.29 (0.22)	Not available
Numeracy Mean (SD)	1.60 (0.97)	1.42 (0.87)	2.6 (1.13)
Need for cognition Mean (SD)	M = 0.40 (0.92)	0.11 (0.65)	M = 3.40 (.58)

Note. The mean value for climate change knowledge reflects the proportion of correct answers across all scale items for each participant. Age and gender data for the general UK population were derived from https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/overviewoftheukpopulation/february2016; accessed on June 4th 2018.

Education data were obtained from https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/bulletins/2011censuskeystatisticsforenglandandwales/2012-12-11#qualifications; accessed on June 4th 2018. Numeracy values for the UK population were obtained from²⁰. Participants were randomly allocated into 6 experimental groups, following a 3 (food group: Produce vs dairy vs protein-rich products) x 2 (numerical format: grams of GHG emissions vs percentage reduction)-study design. Variables reported in this table were similar across these groups (all p’s > .20).
Table S4. Literature references to life cycle analyses from climate and environmental sciences, estimating GHG emissions reductions associated with each rule generated by participants. See Figure 1 for GHG emission reductions associated with each rule.

Rank	A. Produce	
Rule	Reference	
1	No airfreight transportation (truck)	Stoessel et al. 2012
2	Grown outdoors (no greenhouse)	Clune et al. 2017
3	Buy seasonal	Röös & Karlsson 2013
4	Buy fresh (e.g. not frozen)	Grabolle & Loitz 2007
5	Produce organic	Aguilera et al. 2015
6	Produce local (non-EU, truck)	Stoessel et al. 2012
7	Reduce packaging (paper bag instead of plastic)	Clune et al 2017; Grabolle & Loitz 2007
8	Eat homegrown produce	NA
9	Low processing energy	NA
10	Other	NA
11	Buy high quality	NA
12	Buy healthy food	NA
13	Buy food with good taste	NA
14	Buy low price products	NA

Note. Ranks in the first column reflect the strength of association for food-related carbon footprints in the produce food group. Rules in bold refer to references we used for assessing Mean Absolute Deviations (MADs) for answering Research Question 2b. NA = Not applicable: We were not able to identify life cycle analyses providing precise GHG emission estimates for these rules.
Rank	B. Dairy	Reference
1	Replace dairy by plant-based alternatives (margarine instead of butter)	Nilsson et al. (2010)
1*	Replace dairy by plant-based alternatives (soy milk instead of milk)	Clune et al. 2017
2	Reduce fat content	Clune et al. 2017
3	Produce non-sweetened product	Clune et al. 2017
4	Buy fresh instead of UHT (example for milk)	Clune et al. 2017; Gonzales-Garcia et al 2013
5	Buy organic (example for milk)	Thomassen et al. 2007
6	Buy local (50 instead of 400 miles radius)	Clune et al. 2017; Edward-Jones et al., 2008
7	Reduce packaging (plastic instead of glass)	Grabolle & Loitz 2007; http://foodplastics.com.au/Products/Bottles/1L%20LW%20Bottle.aspx
8	Low processing energy	NA
9	Buy free range	NA
10	Other	NA
11	Buy high quality	NA
12	Buy healthy food	NA
13	Buy food with good taste	NA
14	Buy low price products	NA

Note. Ranks in the first column reflect the strength of association for food-related carbon footprints in the dairy food group. Rules in bold refer to references used for assessing actual numerical estimates for assessing Mean Absolute Deviations (MADs) for answering research Question 2b. **NA** = Not applicable: We were not able to identify life cycle analyses providing precise GHG emission estimates for these rules.
Rank	C. Protein-rich products	
Rule	Reference	
1	Replace animal-based with plant-based protein-rich products (example for beef/quorn)	Clune et al. 2017
2	**Buy fish instead of meat (example for beef)**	Clune et al. 2017
3	Buy white instead of red meat (e.g. chicken instead of beef)	Clune et al. 2017
3*	**Buy chicken instead of pork**	Clune et al. 2017
4	Buy organic	Clune et al. 2017; Grabolle & Loitz 2007
5	Buy fresh (not deep frozen)	Grabolle & Loitz 2007
6	**Buy local (pork, non-EU)**	Clune et al 2017; Edward-Jones et al., 2008
7	Reduce packaging	Grabolle & Loitz 2007
8	Low processing energy	NA
9	Buy free range	NA
10	Other	NA
11	Buy high quality	NA
12	Buy healthy food	NA
13	Buy food with good taste	NA
14	Buy low price products	NA

*Note. Ranks in the first column reflect the strength of association for carbon footprints of protein-rich foods. Rules in bold refer to references used for assessing actual numerical estimates for assessing Mean Absolute Deviations (MADs) for answering Research Question 2b. NA = Not applicable: We were not able to identify life cycle analyses providing precise GHG emission estimates for these rules.
Research Question	Analysis	Results
1a. How many rules did participants generate for identifying produce, dairy, or protein-rich products with a low carbon footprint?	Number of rules per participant was analyzed in a set of linear regression models with different predictors. A simple model included only food group (Produce/ Dairy/ Protein-rich products), and an extended model the four individual-difference variables (environmental worldviews, climate change knowledge, numeracy, need for cognition) as main effects as well as age, gender and education as control variables. Interactions with individual-difference variables were analyzed in a set of four additional models. These separately included 2-way interactions between food group and one of these variables, as well as the variables from the extended model.	Tables S6.A. and S6.B.
1b. What percent of participants generated the most effective rules for identifying produce, dairy, or protein-rich products with a low carbon footprint (as identified in existing life cycle analyses from climate and environmental sciences)?	The percentage of participants successfully identifying each rule was specified in a variable that reflected whether participants identified the most effective rule, for each food group, and subjectively rated it as the most effective (“informative”) rule, compared to other generated rules (1=yes, 0=no). Participants who mentioned the most effective rule were coded as 1. This variable was analyzed in a similar set of logistic regression models. A simple logistic regression model included only food group (Produce/ Dairy/ Protein-rich products), and an extended model the main effects of the four individual-difference variables (environmental worldviews, climate change knowledge, numeracy, need for cognition) as well as age, gender and education as control variables. Interactions with individual-difference variables were analyzed in a set of four additional models. These separately included 2-way interactions between food group and one of these variables, as well as the variables from the extended model.	Tables S7.A. and S7.B. (Auxiliary analysis in Tables S8.A. and S8.B.)
need for cognition) as main effects. The extended model further controlled for age, gender and education. Interactions with individual-difference variables were assessed in a set of four additional models. These separately included 2-way interactions between food group and one of these variables, as well as the variables from the extended model.

In an auxiliary analysis, effectiveness of generated rules was additionally explored by summing up the GHG emissions associated with each generated rule according to life cycle analyses (Table S4), for each participant. These sums were analyzed in a similar set of linear regression models.

In an auxiliary analysis, effectiveness of generated rules was additionally explored by summing up the GHG emissions associated with each generated rule according to life cycle analyses (Table S4), for each participant. These sums were analyzed in a similar set of linear regression models.

In an auxiliary analysis, effectiveness of generated rules was additionally explored by summing up the GHG emissions associated with each generated rule according to life cycle analyses (Table S4), for each participant. These sums were analyzed in a similar set of linear regression models.

In an auxiliary analysis, effectiveness of generated rules was additionally explored by summing up the GHG emissions associated with each generated rule according to life cycle analyses (Table S4), for each participant. These sums were analyzed in a similar set of linear regression models.

In an auxiliary analysis, effectiveness of generated rules was additionally explored by summing up the GHG emissions associated with each generated rule according to life cycle analyses (Table S4), for each participant. These sums were analyzed in a similar set of linear regression models.

In an auxiliary analysis, effectiveness of generated rules was additionally explored by summing up the GHG emissions associated with each generated rule according to life cycle analyses (Table S4), for each participant. These sums were analyzed in a similar set of linear regression models.

2. How accurate were participants when estimating reductions in GHG emissions for pre-selected rules, in grams vs. percentages (as compared to life cycle analyses from climate and environmental sciences)?

Mean absolute deviations of participants’ estimates from estimates in life cycle analyses from climate and environmental sciences (Table S4) were analyzed in several multilevel linear regression models with different predictors. In those models, mean absolute deviations from four estimation questions were nested into each participant. Intercepts were allowed to randomly vary for each participant. A simple model included only numerical format (gram versus percent), and an extended model additionally the main effects of the four variables measuring individual-difference variables (environmental worldview, climate change knowledge, numeracy, need for cognition) as main effects. The extended model further controlled for age, gender and education. Interactions with individual-difference variables was analyzed in a set of four additional models. These

Tables S9.A and S9.B. (Auxiliary analyses in Tables S10.A and S10.B. and Tables S11.A and S11.B.)
separately included 2-way interactions between food group and one of these variables, format and one of these variables, as well as the variables from the extended model. Auxiliary analyses were conducted on participants’ confidence into their estimates and frequency of missing answers (pooled for each participant). These were analyzed with a similar set of simple linear regression models.
Table S6.A. Linear regressions, predicting number of rules generated by each participant (N = 627).

Coefficient	Model 1										
	B (SE)	t	p	95% Confidence Interval	B (SE)	t	p	95% Confidence Interval			
Dairy (vs. Produce)	-0.06 (0.12)	-0.15	.63	-0.29	0.18	-0.11 (0.11)	-1.01	.31	-0.32	0.10	
Protein-rich products (vs. Produce)	-0.23 (0.12)	-1.95	.05	-0.46	0.001	-0.30 (0.11)	-2.71	.01	-0.51	-0.08	
Individual-difference variables											
Environmental worldview											
	0.12 (0.06)	1.96	.05	-0.0003	0.25						
Climate change knowledge											
	1.78 (0.29)	6.22	<.001	1.22	2.34						
Numeracy											
	0.20 (0.05)	4.19	<.001	0.11	0.30						
Need for cognition											
	0.11 (0.05)	2.16	.03	0.01	0.21						
Control variables											
Age	0.002 (0.003)	0.72	.48	-0.004	0.01						
Male	-0.11 (0.09)	-1.16	.25	-0.29	0.008						
Education	0.07 (0.09)	0.77	.25	-0.11	0.26						
Intercept	1.61 (0.08)	19.22	<.001	1.45	1.77						
BIC	2045										
R²	0.003										0.17
Table S6.B. Coefficient estimates for two way-interactions between food group and individual-difference variables in four additional models predicting number of rules generated by each participant. Interactions were included separately into each model.

Model 3		B (SE)	t	p	95% Confidence Interval	BIC	R²
Dairy (vs. Produce) x Environmental worldview		-0.22 (0.14)	-1.56	.12	-0.49 - 0.06	1967	.17
Protein-rich products (vs. Produce) x Environmental worldview		-0.12 (0.14)	-0.83	.41	-0.39 - 0.06		

Model 4							
Dairy (vs. Produce) x Climate change knowledge		-1.04 (0.62)	-1.69	.09	-2.26 - 0.17	1974	.18
Protein-rich products (vs. Produce) x Climate change knowledge		-1.13 (0.60)	-1.89	.06	-2.30 - 0.05		

Model 5							
Dairy (vs. Produce) x Numeracy		-0.16 (0.12)	-1.34	.18	-0.39 - 0.07	1976	.17
Protein-rich products (vs. Produce) x Numeracy		-0.11 (0.11)	-1.04	.30	-0.33 - 0.03		

Model 6							
Dairy (vs. Produce) x Need for cognition		0.02 (0.12)	0.15	.88	-0.22 - 0.25	1978	.17
Protein-rich products (vs. Produce) x Need for cognition		0.04 (0.12)	0.37	.71	-0.19 - 0.27		

Note. All other predictors included in models 3-6 were similar to model 2.
Table S7.A. Logistic regression, predicting if participants successfully identified the most effective rule for each food group (N = 627).

Coefficient	Model 1	Model 2								
	B (SE)	z	p	95% Confidence Interval	B (SE)	z	p	95% Confidence Interval		
Dairy (vs. Produce)	-0.22 (0.48)	-0.46	.65	-1.20	0.73	-0.31 (0.50)	-0.62	.54	-1.31	0.67
Protein-rich products (vs. Produce)	0.57 (0.41)	1.39	.16	-0.22	1.41	0.64 (0.43)	1.50	.13	-0.18	1.50
Individual-difference variables										
Environmental worldview										
Climate change knowledge	0.003 (1.23)	0	.99	-2.36	2.48					
Numeracy	0.02 (0.18)	0.12	.90	-0.36	0.37					
Need for cognition	0.19 (0.20)	0.93	.35	-0.20	0.58					
Control variables										
Age	0.04 (0.01)	2.90	.004	0.01	0.06					
Male	-0.28 (0.39)	-0.72	.47	-1.08	0.47					
Education	1.17 (0.44)	2.63	.09	0.34	2.09					
Intercept	-3.00 (0.32)	-9.25	<.001	-3.70	-2.24	-6.78 (1.38)	-4.92	<.001	-9.58	-4.16
BIC	285					309				
R^2 Nagelkerke	.02					.11				

Note. 1 indicates that participants generated the most effective rule according to life cycle analyses (also if they generated only a single rule), and subjectively rated it as more effective, compared to other generated rules, 0 indicated that it wasn’t generated at all or rated as less effective than other rules.
Table S7.B. Coefficient estimates obtained from four additional logistic regression models, each including the two way-interaction between food group and the individual-difference variables predicting if participants successfully identified the most effective rule for each food group. Interactions were included separately into each model.

Coefficient							
	B (SE)	z	p	95% Confidence Interval	BIC	\(R^2_{\text{Nagelkerke}} \)	
Model 3							
Dairy (vs. Produce) x Environmental worldview	0.52 (0.66)	-0.79	.43	-1.87	0.73	319	.13
Protein-rich products (vs. Produce) x Environmental worldview	0.47 (0.52)	0.91	.63	-0.56	1.48		
Model 4							
Dairy (vs. Produce) x Climate change knowledge	-9.18 (3.27)	-2.81	.01	-15.96	-3.04	313	.15
Protein-rich products (vs. Produce) x Climate change knowledge	-5.79 (3.05)	-1.90	.06	-12.15	-0.10		
Model 5							
Dairy (vs. Produce) x Numeracy	0.25 (0.63)	0.40	.69	-1.06	1.58	318	.13
Protein-rich products (vs. Produce) x Numeracy	0.81 (0.49)	1.66	.10	-0.05	1.96		
Model 6							
Dairy (vs. Produce) x Need for cognition	-0.84 (0.53)	-1.58	.11	-1.90	0.19	319	.13
Protein-rich products (vs. Produce) x Need for cognition	-0.25 (0.42)	-0.60	.55	-1.09	0.58		

Note. All other predictors included in models 3-6 were similar to model 2.
Table S8.A. Linear regressions, predicting reductions of GHG emissions associated with rules generated by each participant (in grams of GHG emissions, according to estimates derived from life cycle analyses from climate and environmental sciences; \(N = 627\)).

Coefficient	Model 1		Model 2						
	\(B\) (SE)	\(t\)	\(p\)	95% Confidence Interval	\(B\) (SE)	\(t\)	\(p\)	95% Confidence Interval	
Dairy (vs. Produce)	171.80 (704.48)	0.24	.81	-1211.63 1555.23	133.21 (701.95)	0.19	.85	-1245.28 1511.70	
Protein-rich products (vs. Produce)	4400.67 (704.46)	6.25	<.001	3018.91 5782.44	4392.97 (705.52)	6.23	<.001	3007.44 5778.49	
Individual-difference variables									
Environmental worldview									
Climate change knowledge									
Numeracy									
Need for cognition									
Control variables									
Age	38.38 (20.40)	1.89	.06	-1.56	78.33				
Male	538.21 (609.65)	0.88	.38	-659.03	1735.45				
Education	820.26 (613.30)	1.34	.18	-384.15	2024.66				
Intercept	940.01 (496.94)	1.89	.06	-36	1915.97	-2.74	.02	-9728.89	-1609.41
BIC	12940				12970				
\(R^2\)	.07				.08				

Note. Effectiveness was operationalized as sum of GHG emissions reductions associated with all rules generated by each participant, reflecting the influence of rules on carbon footprints according to life cycle analyses from climate and environmental sciences (Table 1; Figure 2).
Table S8.B. Coefficient estimates obtained from four additional models, each including the two way-interaction between food group and the individual-difference variables predicting average reductions associated with generated rules. Interactions were included separately into each model.

Model	Interaction	B (SE)	t	p	95% Confidence Interval	BIC	R²	
	Dairy (vs. Produce) x Environmental worldview	-386.04 (895.90)	-0.43	.67	-2145.42	1373.35	12967	.09
	Protein-rich products (vs. Produce) x Environmental worldview	1706.76 (897.26)	1.90	.06	-55.30	3468.82		
	Dairy (vs. Produce) x Climate change knowledge	-5672.26 (3994.08)	-1.42	.16	-13515.96	2171.44	12978	.09
	Protein-rich products (vs. Produce) x Climate change knowledge	3112.33 (3864.53)	0.81	.42	-4476.95	10701.61		
	Dairy (vs. Produce) x Numeracy	-4.32 (763.84)	-0.01	1	-1504.37	1495.73	12980	.08
	Protein-rich products (vs. Produce) x Numeracy	906.04 (709.91)	1.28	.20	-488.10	2300.18		
	Dairy (vs. Produce) x Need for cognition	-332.60 (778.19)	-0.43	.67	-1860.83	1195.63	12981	.08
	Protein-rich products (vs. Produce) x Need for cognition	504.38 (759.71)	0.66	.51	-978.55	1996.31		

Note. All other predictors included in models 3-6 were similar to model 2.
Table S9.A. Multivariate regressions, predicting mean absolute deviations of participants’ numerical estimates from GHG emission values obtained in life cycle analysis associated with four rules for each food group (N = 2508 estimates).

Coefficient	Model 1				Model 2								
	B (SE)	t	p	95% Confidence Interval	B (SE)	t	p	95% Confidence Interval					
Format (gram vs. percent)	-0.87 (0.05)	-18.65	<.001	-0.96	-0.78	-0.86 (0.04)	-22.72	<.001	-0.93	-0.79			
Dairy (vs. Produce)	0.32 (0.05)	6.80	<.001	0.23	0.41								
Protein-rich products (vs. Produce)	1.09 (0.05)	23.42	<.001	1.00	1.18								
Individual-difference variables													
Environmental worldview	0.02 (0.03)	0.89	.37	-0.03	0.08								
Climate change knowledge	0.10 (0.12)	0.78	.44	-0.14	0.33								
Numeracy	0.01 (0.01)	0.59	.56	-0.03	0.05								
Need for cognition	0.03 (0.02)	1.15	.25	-0.02	0.07								
Control variables													
Age	-0.001 (0.001)	-1.06	.29	-0.004	0.001								
Male	0.002 (0.04)	0.04	.97	-0.08	0.08								
Education	0.02 (0.04)	0.43	.67	-0.06	0.10								
Intercept	2.73 (0.03)	81.89	<.001	2.66	2.79	2.12 (0.14)	15.35	<.001	1.85	2.39			

BIC
Model 1: 7216
Model 2: 6818

Note. We predicted mean absolute deviations from life cycle analysis values as a function of Format (coded as gram = 0, percent = 1), food group, individual-difference variables and control variables. Intercepts were allowed to randomly vary for each participant. Base-10 logarithmic transformations were applied to absolute deviations because the distribution was significantly different from 0 (Shapiro Wilk-Test: $p < .001$). Spearman rank correlations indicated no association between participants’ estimates and GHG emission values according to life cycle analyses in the grams condition ($r = -0.04, p = .25$). In the percent condition, correlations between estimates and values from life cycle analyses from climate and environmental sciences were higher ($r = 0.73, p < .001$). Correlations were based on log-10 transformed values.
Table S9.B. Coefficient estimates obtained from four multivariate regression models, each additionally including two way-interactions between format and food group and the individual-difference variables, predicting mean absolute deviations of participants’ numerical estimates from GHG emission values obtained in life cycle analysis associated with four rules for each food group (N = 2508 estimates).

Model 3	B (SE)	t	p	95% Confidence Interval	BIC	
Format (gram vs. percent) x Environmental worldview	0.04 (0.05)	0.82	.41	-0.06	0.14	6850
Dairy (vs. Produce) x Environmental worldview	-0.08 (0.06)	-1.38	.17	-0.20	0.03	
Protein-rich products (vs. Produce) x Environmental worldview	0.01 (0.06)	0.11	.91	-0.11	0.12	

Model 4	B (SE)	t	p	95% Confidence Interval	BIC	
Format (gram vs. percent) x Climate change knowledge	0.16 (0.22)	0.73	.47	-0.27	0.58	6843
Dairy (vs. Produce) x Climate change knowledge	0.16 (0.27)	0.62	.54	-0.36	0.68	
Protein-rich products (vs. Produce) x Climate change knowledge	0.29 (0.26)	1.13	.26	-0.21	0.80	

Model 5	B (SE)	t	p	95% Confidence Interval	BIC	
Format (gram vs. percent) x Numeracy	0.02 (0.04)	0.50	.62	-0.06	0.10	6855
Dairy (vs. Produce) x Numeracy	0.01 (0.05)	0.09	.93	-0.09	0.10	
Protein-rich products (vs. Produce) x Numeracy	-0.01 (0.05)	-0.25	.80	-0.10	0.08	

Model 6	B (SE)	t	p	95% Confidence Interval	BIC	
Format (gram vs. percent) x Need for cognition	0.06 (0.04)	1.30	.19	-0.03	0.14	6852
Dairy (vs. Produce) x Need for cognition	-0.02 (0.05)	-0.40	.69	-0.12	0.08	
Protein-rich products (vs. Produce) x Need for cognition	0.04 (0.05)	0.82	.43	-0.06	0.14	
Table S10.A. Linear regression, predicting participants’ average confidence into estimates, made in two different formats (gram versus percent change of GHG emissions reductions; N = 510).

Coefficient	B (SE)	t	p	95% Confidence Interval	B (SE)	t	p	95% Confidence Interval
Format (gram vs. percent)	0.13 (0.02)	5.22	<.001	0.08 0.18	0.12 (0.03)	4.63	<.001	0.07 0.17
Dairy (vs. Produce)	-0.02 (0.03)	-0.87	.38	-0.07 0.03				
Protein-rich products (vs. Produce)	-0.03 (0.04)	-0.94	.35	-0.10 0.04				
Individual-difference variables								
Environmental worldview	-0.06 (0.02)	-3.54	<.001	-0.09 -0.03				
Climate change knowledge	0.14 (0.07)	1.95	.01	-0.001 0.29				
Numeracy	-0.03 (0.01)	-3.01	.003	-0.06 -0.01				
Need for cognition	-0.005 (0.001)	-1.90	.06	-0.05 0.001				
Control variables								
Age	-0.01 (0.001)	-5.84	<.001	-0.01 -0.003				
Male	0.06 (0.02)	2.52	.001	0.01 0.11				
Education	0.05 (0.02)	2.04	.02	0.002 0.10				
Intercept	0.28 (0.03)	17.02	<.001	0.24 0.31				
BIC	166			134				
R²	.05			.19				
Table S10.B. Coefficient estimates obtained from four additional logistic regression models, each additionally including two way-interactions between format and food group and the individual-difference variables; predicting participants’ average confidence into estimates.

Coefficient	B (SE)	t	p	95% Confidence Interval	BIC	R²	
Model 3							
Format (gram vs. percent) x Environmental worldview	0.04 (0.03)	1.13	.26	-0.03	0.10	151	.18
Dairy (vs. Produce) x Environmental worldview	-0.02 (0.03)	-0.61	.54	-0.09	0.05		
Protein-rich products (vs. Produce) x Environmental worldview	-0.02 (0.05)	-0.34	.73	-0.11	0.07		
Model 4							
Format (gram vs. percent) x Climate change knowledge	0.09 (0.15)	0.62	.53	-0.20	0.39	152	.18
Dairy (vs. Produce) x Climate change knowledge	0.09 (0.15)	0.59	.56	-0.20	0.38		
Protein-rich products (vs. Produce) x Climate change knowledge	0.05 (0.19)	0.27	.79	-0.32	0.42		
Model 5							
Format (gram vs. percent) x Numeracy	0.02 (0.03)	0.63	.53	-0.04	0.07	150	.19
Dairy (vs. Produce) x Numeracy	-0.01 (0.03)	-0.48	.63	-0.07	0.04		
Protein-rich products (vs. Produce) x Numeracy	0.04 (0.04)	1.19	.23	-0.03	0.11		
Model 6							
Format (gram vs. percent) x Need for cognition	0.01 (0.03)	0.21	.83	-0.05	0.06	149	.19
Dairy (vs. Produce) x Need for cognition	-0.03 (0.03)	-1.01	.31	-0.09	0.03		
Protein-rich products (vs. Produce) x Need for cognition	0.03 (0.04)	0.94	.35	-0.04	0.11		
Table S11.A. Linear regression, predicting frequency of missing answers across four estimates by each participant, made in different formats (grams of GHG emissions versus percentage reductions; N = 627).

Coefficient	Model 1			Model 2				
	B (SE)	t	p	95% Confidence Interval	B (SE)	t	p	95% Confidence Interval
Format (gram vs. percent)	-0.06 (0.03)	-2.05	.04	-0.12 0.002	-0.06 (0.03)	-1.94	.05	-0.12 0.001
Dairy (vs. Produce)	-0.02 (0.04)	-0.65	.52	-0.10 0.05				
Protein-rich products (vs. Produce)	-0.04 (0.04)	-1.18	.24	-0.12 0.03				
Individual-difference variables								
Environmental worldview	-0.04 (0.02)	-1.66	.10	-0.08 0.01				
Climate change knowledge	-0.06 (0.10)	-0.58	.56	-0.25 0.14				
Numeracy	-0.01 (0.02)	-0.45	.65	-0.04 0.03				
Need for cognition	-0.002 (0.02)	-0.11	.91	-0.04 0.03				
Control variables								
Age	0.001 (0.001)	0.60	.55	-0.002 0.003				
Male	0.02 (0.03)	0.55	.59	-0.05 0.80				
Education	-0.05 (0.03)	-1.59	.11	-0.05 0.08				
Intercept	0.07 (0.02)	3.31	.001	0.03 0.11	0.29 (0.11)	2.63	.01	-0.12 0.01
BIC	577	624						
R²	.01	.01						

Note. The distribution of confidence values was significantly different from 0 (Shapiro Wilk-Test: p < .001). Values were thus log-transformed in advance to this analysis. Less answers were missing when estimates were made in percent (M = 0.01 [SE = 0.01]), compared to gram (M = 0.08 [SE = .03]; t(400) = 4.00, p < .001, d(Cohen) = .41).
Table S11.B. Coefficient estimates obtained from four additional regression models, each including the two way-interaction between food group and the individual-difference variables; predicting frequency of missing answers across four estimates by each participant, made in different formats (grams of GHG emissions versus percentage reductions; N = 627).

Model 3	Coefficient	B (SE)	t	p	95% Confidence Interval	BIC	R²
Format (gram vs. percent) x Environmental worldview	0.07 (0.04)	1.76	.08	-0.01	0.15	639	.01
Dairy (vs. Produce) x Environmental worldview	0.04 (0.05)	0.78	.43	-0.06	0.13		
Protein-rich products (vs. Produce) x Environmental worldview	0.05 (0.05)	0.96	.34	-0.05	0.14		

Model 4	Coefficient	B (SE)	t	p	95% Confidence Interval	BIC	R²
Format (gram vs. percent) x Climate change knowledge	0.36 (0.17)	2.08	.04	0.02	0.70	632	.02
Dairy (vs. Produce) x Climate change knowledge	0.53 (0.21)	2.52	.01	0.12	0.94		
Protein-rich products (vs. Produce) x Climate change knowledge	0.48 (0.21)	2.35	.02	0.08	0.88		

Model 5	Coefficient	B (SE)	t	p	95% Confidence Interval	BIC	R²
Format (gram vs. percent) x Numeracy	0.03 (0.03)	1.09	.28	-0.03	0.10	641	.01
Dairy (vs. Produce) x Numeracy	-0.02 (0.04)	-0.46	.64	-0.10	0.06		
Protein-rich products (vs. Produce) x Numeracy	-0.003 (0.04)	-0.07	.95	-0.08	0.07		

Model 6	Coefficient	B (SE)	t	p	95% Confidence Interval	BIC	R²
Format (gram vs. percent) x Need for cognition	0.02 (0.03)	0.60	.55	-0.05	0.07	642	.01
Dairy (vs. Produce) x Need for cognition	0.001 (0.04)	0.05	.96	-0.08	0.08		
Protein-rich products (vs. Produce) x Need for cognition	0.02 (0.04)	0.55	.58	-0.06	0.10		
Table S12. Pearson correlations ($r (p)$) of continuous predictors and main dependent variables in this study.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
(1) Number of rules	1								
(2) Effectiveness of rules according to life cycle analyses	.17 (<.001)	1							
(3) Confidence	-.11 (.01)	-.08 (.08)	1						
(4) Number of missing estimates	-.11 (.004)	-.03 (.34)	-	1					
(5) Environmental worldview	.22 (<.001)	.11 (.001)	-.22 (<.001)	-.09 (.03)	1				
(6) Climate change knowledge	.35 (<.001)	.01 (.01)	-.02 (.59)	-.07 (.08)	.32 (<.001)	1			
(7) Numeracy	.26 (<.001)	.06 (.14)	-.17 (<.001)	-.05 (.22)	.19 (<.001)	.28 (<.001)	1		
(8) Need for Cognition	.22 (<.001)	.05 (26)	-.12 (.01)	-.04 (.37)	.18 (<.001)	.27 (<.001)	.23 (<.001)	1	
(9) Age	.09 (.03)	.09 (.03)	-.27 (<.001)	-.03 (.47)	-.28 (.001)	.11 (.005)	.04 (.36)	.01 (.01)	1