Updated values of running quark and lepton masses at GUT scale in SM, 2HDM and MSSM

Kalpana Bora

Physics Department, Gauhati University, Assam, India

Updated values of running quark and lepton masses at GUT (Grand unified theories) scales are important for fermion mass model building, and to calculate neutrino masses, in GUTs. We present their values at GUT scales, in SM, MSSM and 2HDM theories, using the latest values of running quark and lepton masses.

I. INTRODUCTION

Gauge theories are very attractive theories to explain the origin of all interactions among the fundamental particles. Standard model (SM) is a gauge theory based on group $SU(2)_L \times U(1)_Y \times SU(3)_C (G_{213})$. In SM, all fundamental particles get their masses via the celebrated Higgs mechanism. One of the major goals of current research in experimental and theoretical high energy physics is to understand the origin of all fermion masses and mixings, including those of neutrinos. Although SM has been very successful in explaining many of the observed experimental results, some questions remain unanswered in it. Gauge hierarchy problem, unification of gauge couplings, neutrino masses, origin of baryon asymmetry of the Universe (BAU), being the most important ones. Some of these problems can be circumvented if we consider two higgs doublet model (2HDM), minimal supersymmetric standard model (MSSM) [1], and GUTs. Although problem of gauge hierarchy is not solved by 2HDM, unification of gauge couplings is possible at GUT scales, in MSSM, and also after embedding them in non-SUSY GUTs like SO(10) [2]. Very recently [3], we have shown unification of the three gauge couplings α_{1Y} (for $U(1)_Y$), α_{2L} (for $SU(2)_L$), and α_{2C} (for $SU(3)_C$) in non-SUSY SM with additional flavor symmetries, and also estimated limits on proton life time.

It is now a well established fact that neutrinos have mass, and mix with each other and oscillate to other flavors. We know that in SM, neutrinos masses can not be explained, and hence we need to go to theories beyond standard model (BSM). One of the most promising theories, to explain small neutrino masses, is the grand unified theory (GUT), like SO(10), in which all the fermions, including the right handed (RH) neutrino, are present in a single 16-dimensional representation. These theories require running masses and mixings of quarks and charged leptons at GUT scales, for calculating neutrino masses. In theories based upon quark-lepton unification, like L-R symmetric $SU(2)_L \times SU(2)_R \times SU(4)_C$ group, these values are also required at intermediate scales. Unification of fundamental forces is based upon gauge symmetries which contain the standard model with fermions in the fundamental representations. Thus, the explanation of fermion masses and mixings must emerge from a successful unified gauge theory. And hence, the running fermion masses are required to build underlying textures and models for existence of appropriate unified theory.

Values of running masses of quarks and charged leptons at higher scales in SM, 2HDM and MSSM are available in literature [4]. They have been used quite extensively, by many researchers, e.g. in

- [5], [6], for constructing neutrino masses
- [7], for studying structures of unified theories
- [8], to study type II seesaw dominance in Non-SUSY and split SUSY SO(10) theory
- [9], for study of SO(10) models, to explain fermion masses and mixing angles, including neutrino masses.
- [10], for study of inverse seesaw in NonSUSY SO(10) theories

But, in all these works, older values from [4] have been used, and new data for fermion masses are available, for using as input at lower scales. The aim of present work is, to update these values, and fill the gap. We have used latest data for masses and couplings from PDG [11]. Conversion of $\bar{\text{MS}}$ to DR scheme is done using formulas given in [12], and top quark mass is taken from [13]. Following the analysis of [4], we use RGEs for Yukawa couplings, gauge

*Electronic address: kalpana@gauhati.ac.in
couplings and VEVs separately, and calculate running values of fermion masses at GUT scale. These values at other intermediate scales, calculation of neutrino masses using them, will be presented elsewhere \[14\].

The paper has been organized as follows. In Section 2, we give a pedagogical discussion on fermion masses. Section 3 contains methodology of, how to run fermion masses from one energy scale to another. In Section 3, our new results, on updated values of running fermion masses, at GUT scale 2×10^{16} GeV, have been presented. Discussions and conclusions have been given in Section 5.

II. A PEDAGOGICAL DISCUSSION ON FERMION MASSES

Now, we will have a pedagogical discussion on fermion masses. According to quantum field theory (QFT), the "bare" masses in the Lagrangian are infinite for all particles, but divergent loop contributions to the propagator cancel them out to give finite "dressed" masses. This is called renormalization. These dressed particle masses are actually measured in experiments. So in the case of an electron, for example, the experimentally measured electron mass is an input parameter to the theory, and according to QFT, the bare electron mass must be infinite, but the mass "runs" from infinity at very small length scales, to a constant at very large length scales ("IR fixed point"). So this IR-limit value is the same as the experimentally measured value.

We know that quarks are confined, and free quarks cannot be observed experimentally. This short distance confinement is believed to be because of nonperturbative effects, and is associated with the scale $\Lambda_{QCD} \sim 2 \text{ GeV}^2$. At energies greater than Λ_{QCD}, the QCD is perturbative. Since free quarks do not exist at energy scales less than Λ_{QCD} (also called infrared (IR) limit), mass for them is not well defined. Hence quark masses are scale dependent, and they are often defined at a energy scale. The scale dependent quark masses are called 'current' or 'running' quark mass, and they are renormalization scheme dependent. But equivalence of these renormalization scheme-dependent quark masses can be established with renormalization group equations (RGEs). The 'constituent' quark mass is believed to be roughly the mass that contributes to observed mass of hadron, for example. Nonrelativistic quark models use constituent quark masses, the constituent mass of up and down quarks are $\sim 350 \text{ MeV}$.

For quarks masses also 'running' takes place, but instead of converging to a constant, they diverge at the energy scale Λ_{QCD}. They become infinite at a much smaller length scale. This makes perfect sense because quarks are confined into hadrons and can’t be observed macroscopically. The masses given in PDG \[11\] are the values of the 'running' masses at some energy scale greater than (length scale smaller than) Λ_{QCD}, defined in some specific renormalization scheme.

III. RUNNING OF MASSES AND COUPLINGS USING RGES

In the renormalization theories, where the Yukawa couplings and the VEVs run separately \[15\]-\[23\], the Dirac mass of a fermion can be defined as

$$M_i(\mu) = Y_i(\mu)v_i(\mu).$$

Here, $M_i(\mu)$ is the Dirac mass of the i-type fermion, $Y_i(\mu)$ is corresponding Yukawa coupling, and $v_i(\mu)$ is the running VEV (Vacuum expectation value), at the scale μ. In these scenarios, the Yukawa couplings and VEVs run separately, independent of each other. Many authors have used these \[15\]-\[23\], see \[4\] (Das, Parida) for a complete discussion.

The relevant terms of the Lagrangian, for masses of fermions, in SM, can be written as:

$$L = \bar{q}_L Y_U \phi u_R + \bar{q}_L Y_D \phi d_R + \bar{l}_L \Phi e_R + h.c.$$ \hspace{1cm} (2)

Here, ϕ is the higgs particle, $v(\mu)$ its running VEV at scale μ, q_L is the left handed quark doublet, u_R is the right handed quark, d_R is the right handed quark, l_L is the left handed lepton doublet, and e_R is the right handed electron. Since in SM, no right handed neutrinos are present, there is no term in the Lagrangian for the neutrino mass. Similarly, for 2HDM and MSSM, this can be written as:

$$L = \bar{q}_L Y_U \phi_U u_R + \bar{q}_L Y_D \phi_D d_R + \bar{l}_L \Phi e_R + h.c.$$ \hspace{1cm} (3)

Here,

$$< \phi_U^0 > = v_U(\mu) = v(\mu)sin\beta, < \phi_D^0 > = v_D(\mu) = v(\mu)cos\beta$$ \hspace{1cm} (4)
Now, we write the RGEs for running of Yukawa and gauge couplings, for the SM, 2HDM, and MSSM, along with their RG coefficients. They have been given in [4], but we present them here for the sake of completeness only. The one-loop RGEs for Yukawa couplings, for SM, MSSM and 2HDM, can be written as [15]-[18], [24]-[26].

\[
16\pi^2 \frac{dY_U}{dt} = \left[TR(3Y_U Y_U^\dagger + 3aY_D Y_D^\dagger + aY_E Y_E^\dagger) \right. \\
+ \left. \frac{3}{2} (bY_U Y_U^\dagger + cY_D Y_D^\dagger) - \sum_i C_i^{(u)} g_i^2 Y_U \right] v
\]

(6)

\[
16\pi^2 \frac{dY_D}{dt} = \left[TR(3aY_U Y_U^\dagger + 3Y_D Y_D^\dagger + \nu E Y_E^\dagger) \right. \\
+ \left. \frac{3}{2} (bY_D Y_D^\dagger + cY_U Y_U^\dagger) - \sum_i C_i^{(d)} g_i^2 Y_D \right] v
\]

(7)

\[
16\pi^2 \frac{dY_E}{dt} = \left[TR(3aY_U Y_U^\dagger + 3Y_D Y_D^\dagger + \nu E Y_E^\dagger) \right. \\
+ \left. \frac{3}{2} bY_E Y_E^\dagger - \sum_i C_i^{(e)} g_i^2 Y_E \right] v
\]

(8)

The RGEs for the VEV in SM, up to 2-loop have been derived using wave-function renormalisation of the scalar field [15-16, 18-19, 21-22], and the 1-loop equation is

\[
16\pi^2 \frac{dv}{dt} = \left[\sum_i C_i^{(v)} g_i^2 - TR(3Y_U Y_U^\dagger + 3Y_D Y_D^\dagger + \nu E Y_E^\dagger) \right] v
\]

(9)

Here, \(t = \ln \mu \). The RGEs for \(v_a (a = u, d) \) in the 2HDM up to 1-loop and MSSM up to 2-loops are available in [15-18, 20]. The 1-loop equations in both theories are

\[
16\pi^2 \frac{dv_a}{dt} = \left[\sum_i C_i^{(v)} g_i^2 - TR(3Y_U Y_U^\dagger + 3Y_D Y_D^\dagger + \nu E Y_E^\dagger) \right] v_u
\]

(10)

\[
16\pi^2 \frac{dv_a}{dt} = \left[\sum_i C_i^{(v)} g_i^2 - TR(3Y_D Y_D^\dagger + \nu E Y_E^\dagger) \right] v_d
\]

(11)

The RGE for the gauge couplings for the three models are

\[
16\pi^2 \frac{dg_i}{dt} = b_i g_i^3
\]

(12)

2-loop contributions are available in literature [15-18, 21-26], and we use them from Das, Parida [4].

Using above RGEs, we run the values of fermion masses, from low scale \(M_Z \) to higher scale \(2 \times 10^{16} \) GeV. The input values of running fermion masses at \(M_Z \) have been taken from PDG [11], and [12]. Our results have been presented in next section.

IV. RESULTS

The new results of our computations have been presented in Tables (I-VI). We have presented comparisons of all our results with older values (Das, Parida, EPCJ 2001). We have used mass of the Higgs to be 125 GeV. It can be noted that from a recent global analysis [27], mass of the Higgs boson has been expected to be around this value. The scale of supersymmetry breaking, \(M_S = 1 \) Tev has been used. It is worth mentioning here that some signatures
of SUSY have been detected at LHC in third family of fermions \[28\]. The pole mass of top quark is used from PDG \[11\], to be \(m_t = 172.9 \pm 0.6 \pm 0.9 \) GeV. This is first converted to running mass \(m_t(M_Z) = 172.1 \pm 0.6 \pm 0.9\), as described in Xing et al \[12\]. This value is used for SM and 2HDM. Then, for MSSM only, we convert this running value \(m_t(M_Z)\) to DR(dimensional regularization) scheme value, by using Eq. (22) of Xing et. al \[12\], and find this to be \(m_t(M_Z)_{DR} = 169.9 \pm 0.6 \pm 0.9\). The latest PDG value \(1/\alpha(M_Z) = 128.91\) and \(\alpha_s(M_Z) = 0.1189 \pm 0.0020\) are used in our analysis.

A. Running fermion masses in SM at GUT scale = \(2 \times 10^{16}\) GeV

TABLE-II COMPARISON OF FERMION MASSES IN SM, 2-LOOP

Fermion	Mass (This work) \[MeV\]	Mass (Das, Parida) \[MeV\]
\(m_u\)	\(0.4565^{+0.1492}_{-0.1485}\)	\(0.8351^{+0.1696}_{-0.1700}\)
\(m_c\)	\(0.2225^{+0.0586}_{-0.0580}\)	\(0.2426^{+0.0235}_{-0.0234}\)
\(m_t\)	\(70.5188^{+0.9585}_{-0.9479}\)	\(75.4348^{+9.9643}_{-8.5401}\)
\(m_d\)	\(1.0773^{+0.4474}_{-0.4561}\)	\(1.7372^{+0.4846}_{-0.5266}\)
\(m_s\)	\(20.4323^{+5.7159}_{-5.4912}\)	\(34.5971^{+4.8857}_{-5.1071}\)
\(m_b\)	\(0.9321^{+0.0166}_{-0.0172}\)	\(0.9574^{+0.0037}_{-0.0045}\)
\(m_e\)	\(0.4413 \pm 0.0003\)	\(0.4413 \pm 0.0001\)
\(m_\mu\)	\(93.116 \mp 0.017\)	\(93.1431^{+0.0136}_{-0.0010}\)
\(m_\tau\)	\(1.6109 \mp 0.0003\)	\(1.583^{+0.0009}_{-0.0005}\)

B. Running fermion masses in MSSM at GUT scale = \(2 \times 10^{16}\) GeV

TABLE-III COMPARISON OF MASSES IN MSSM, 2-LOOP, T\(\tan\beta = 10\)

fermion	mass(this work) \[MeV\]	mass (Das, Parida) \[MeV\]
\(m_u\)	\(0.3961^{+0.1505}_{-0.1281}\)	\(0.7238^{+0.1365}_{-0.1467}\)
\(m_c\)	\(0.1930^{+0.0245}_{-0.0245}\)	\(0.2103^{+0.0190}_{-0.0212}\)
\(m_t\)	\(71.8083^{+1.2940}_{-1.0349}\)	\(82.4333^{+2.5067}_{-2.6761}\)
\(m_d\)	\(0.9316^{+0.3859}_{-0.3798}\)	\(1.5036^{+0.4235}_{-0.3204}\)
\(m_s\)	\(17.6702^{+8.9233}_{-1.9506}\)	\(29.9454^{+3.9001}_{-1.5444}\)
\(m_b\)	\(0.9898^{+0.0259}_{-0.0250}\)	\(1.0630^{+0.1414}_{-0.0865}\)
\(m_e\)	\(0.3585^{+0.0001}_{-0.0001}\)	\(0.3585 \pm 0.0003\)
\(m_\mu\)	\(75.639 \mp 0.0003\)	\(75.6712^{+0.0078}_{-0.0001}\)
\(m_\tau\)	\(1.3146^{+0.0004}_{-0.0004}\)	\(1.2922^{+0.0012}_{-0.0012}\)
TABLE-IV COMPARISON OF MASSES IN MSSM, 2-LOOP, TANβ=55

fermion	mass (this work)	mass (Das, Parida)
m_u	0.3963±0.1506 MeV	0.7244±0.1219 MeV
m_c	0.1932±0.0240 GeV	0.2105±0.0151 GeV
m_t	80.447±2.9128 GeV	95.1486±69.2836 GeV
m_d	0.9284±0.3836 MeV	1.4967±0.4157 MeV
m_s	17.6097±4.8972 MeV	29.8135±4.4967 MeV
m_b	1.2424±0.0626 GeV	1.4167±0.4803 GeV
m_e	0.3569±0.0001 MeV	0.3565±0.0001 MeV
m_μ	75.3570±0.0034 MeV	75.2938±0.0110 MeV
m_τ	1.6459±0.0112 GeV	1.6292±0.0143 GeV

C. Running fermion masses in 2HDM at GUT scale = 2 × 10^16 GeV

TABLE-V COMPARISON OF MASSES IN 2HDM, 1-LOOP, TANβ=10

fermion	mass (this work)	mass (Das, Parida)
m_u	0.4776±0.0290 MeV	0.8749±0.1701 MeV
m_c	0.2328±0.0290 MeV	0.2542±0.0295 MeV
m_t	74.1053±1.1944 MeV	79.6373±1.124 MeV
m_d	1.1274±0.4572 MeV	1.8204±0.505 MeV
m_s	21.3821±0.9000 MeV	36.2544±5.083 MeV
m_b	1.1615±0.0929 GeV	1.2309±0.0826 GeV
m_e	0.4407±0.0001 MeV	0.4407±0.0001 MeV
m_μ	92.9898±0.0119 MeV	93.0197±0.0122 MeV
m_τ	1.61277±0.0003 GeV	1.5851±0.0005 GeV

TABLE-VI COMPARISON OF MASSES IN 2HDM, 1-LOOP, TANβ=55

fermion	mass (this work)	mass (Das, Parida)
m_u	0.4776±0.0246 MeV	0.8749±0.1701 MeV
m_c	0.2328±0.0290 MeV	0.2542±0.0295 MeV
m_t	77.3752±1.4741 MeV	83.9317±10.326 GeV
m_d	1.1274±0.4572 MeV	1.8204±0.505 MeV
m_s	21.3836±0.9000 MeV	36.2584±5.083 MeV
m_b	1.3053±0.0409 GeV	1.4128±0.1162 GeV
m_e	0.4407±0.0001 MeV	0.4407±0.0001 MeV
m_μ	93.0222±0.011 MeV	93.0536±0.0116 MeV
m_τ	1.8138±0.0053 GeV	1.7851±0.0107 GeV

V. DISCUSSIONS AND CONCLUSIONS

We have presented updated values of running fermion masses in SM, 2HDM and MSSM at GUT scale, at tan β = 10 and 55, using 2-loop RGEs for SM and MSSM, and 1-loop RGEs for the 2HDM. It can be seen from our results (Tables I-VI) that these new values of fermion masses are quiet different from their older counterparts (Das, Parida [4]). They can be used for calculation of neutrino masses in GUTs at higher scales, as well as for building of theories for fermion mass models. Here, we would like to mention that we have verified our calculations, by reproducing the values reported in Das, Parida [4]. Also, our values are different from values reported in Xing. et. al. [12]. This is because we have used a different scheme for running fermion masses from low scale to GUT scale. We have used RGEs for
Yukawa couplings and VEVs separately. As discussed in text, fermion masses using this scheme have been used extensively in literature. Hence the results presented in this paper are very important. The values of running fermion masses at other intermediate scales, and calculation of neutrino masses using them will be presented elsewhere.

VI. ACKNOWLEDGEMENTS

The author would like to thank M.K. Parida for fruitful discussions and C. R. Das for e-discussion. She also thanks UGC-SAP programme of Physics Department, Gauhati University, India and Neutrino Project of HRI, Allahabad, India, for providing financial assistance to visit HRI, where some parts of the work were carried out.

[1] J. Ellis, S. Kelly, D. V. Nanopoulos, Phys. Lett. B 260, 131 (1991); U. Ahmadi, W. de Boer, H. Furstenau, Phys. Lett B 260, 447 (1991); P. Langacker, M. Luo, Phys. Rev D 44, 817 (1991).
[2] D. G. Lee, R. N. Mohapatra, M. K. Parida, M. Rani, Phys. Rev D 49, 3704 (1995); N. G. Deshpande, E. Keith, P. Pal, Phys. Rev D46, 2261 (1992).
[3] Mina K. Parida, Pradip K. Sahu, Kalpana Bora, Phys. Rev D83, 093004 (2011).
[4] C. R. Das and M.K. Parida, Eur. Phys. J. C20, 121 (2001).
[5] H. S. Goh, R. N. Mohapatra, S-P Ng, hep-ph/0303055.
[6] H. S. Goh, R. N. Mohapatra, S-P Ng, Phys. Rev D68, 115008 (2003).
[7] Graham Ross and Mario Serna, Phys. Lett B664, 97, 2008; hep-ph/0704.1248.
[8] R. N. Mohapatra, Mina K. Parida, Phys. Rev D84, 095021, 2011; hep-ph/1109.2188.
[9] Anjan S. Joshipura and Ketan M. Patel, Phys. Rev D83, 095002, 2011; hep-ph/1102.5148.
[10] Ram Lal Awashti and Mina K. Parida, hep-ph/1112.1826
[11] PDG 2010 & 2011, N. Nakamura et. al., J. Phys. G37, 075021, 2010.
[12] Zhi-zhong Xing, He Zhang, Shun Zhou, Phys. Rev. D77, 113016, 2008; hep-ph/0712.1419
[13] Andre H. Hoang and Iain W. Stewart, Nucl. Phys. Proc. Suppl., 185, 220, 2008; hep-ph/0808.0222.
[14] Kalpana Bora and Gayatri Ghosh, in preparation.
[15] H. Arason, D.J. Castano B. Keszhelyi, S. Milkaelin, E.J. Pirad, P. Ramond, B.D. Right, Phys. Rev. Lett. 67, 2933 (1991).
[16] H. Arason et. al., Phys. Rev. D47, 232 (1993).
[17] D.J. Castano, E.J. Pirad, P. Ramond, Phys. Rev. D49, 4882 (1994).
[18] M.E. Machaek, M.T. Vaughn, Nucl. Phys. B 222, 83 (1983); Nucl.Phys. B 236, 221 (1984); Nucl. Phys B 249, 70 (1985).
[19] C. Balzleit et. al., Eur. Phys. J. C9, 197 (1999), hep-ph/9810350.
[20] G. Cvetic, S.S. Hwang, C.S. Kim, Phys. Rev. D58, 116003 (1998); Acta Phys. Pol B28, 2515 (1997), hep-ph/9706323.
[21] W. Grimus, Lett. Nuovo Cim 27, 169 (1979).
[22] B. Grzadkowski, M.G. Ross, Phys. Lett. B298, 296 (1981).
[23] K.S. Babu, C.N. Leung, J. Pendleton, Phys. Lett. B319, 191 (1993).
[24] V. Barger, M.S. Barger, P. Ohmann, Phys. Rev. D47, 333 (1993).
[25] B. Grzadkowski, M. Lindner, Phys. Lett. B 193, 71 (1987), B. Grzadkowski, M. Lindner, S. Theisen, Phys. Lett. B, 198, 64(1987); M. Olechowski, S. Pokorski, Phys. Lett. B, 257, 388 (1991).
[26] N.K. Falk, Z. Phys. C 30, 247 (1986).
[27] John Ellis and Tevong You, hep-ex/1204.0464.
[28] ATLAS collaboration 2012, arXiv:1112.3832 v1, accepted by Phys. Rev. Lett.