Mean-field heat capacity of dilute magnetic alloys

J. Maćkowiak*

*Email address: ferm92@fizyka.umk.pl

Abstract

Using an asymptotic solution of the \(M \)-impurity thermodynamics of a dilute s-d system, the impurity energy and impurity heat capacity \(\Delta C(T) \) are derived for dilute magnetic alloys with spin 1/2 and spin 3/2 impurities. The parameters which enter \(\Delta C \) are adjusted to fit experimental data on impurity heat capacity of CuCr and \((La_{1-x}Ce_x)Al_2\). Agreement is satisfactory for CuCr, at temperatures below 1K, and good for \((La_{1-x}Ce_x)Al_2\). The magnitude of theoretical \(\Delta C(T) \) agrees with experiment and does not require scaling as in previous s-d theories. Nonlinear dependence of \(\Delta C(T) \) on impurity concentration has been accounted for the first time.

1 Introduction

Existing theories of anomalous thermal behaviour of dilute magnetic alloys (DMA) (e.g. Refs. [1, 2, 3, 4, 5, 6, 7, 8, 9]) have provided only partial quantitative explanation of these anomalies. Most of these investigations were restricted to an s-d system consisting of a single magnetic impurity interacting with the electron gas.

Significant progress was made by Andrei et al. [4, 5], who solved the s-d thermodynamics for an s-d system with impurities treated as indistinguishable particles. Their heat capacity and magnetization curves, after scaling by an adjusted factor, provide a good fit to experimental data on \((La_{1-x}Ce_x)Al_2\).

The disadvantage of almost all existing theories of DMA is linear dependence of resulting thermodynamic functions on impurity concentration \(c \). The dependence of DMA experimental data on \(c \) is more complex, e.g. the temperature at which DMA resistivity minimum occurs is proportional to \(c^{1/5} \) [1] and normalized DMA impurity heat capacity \(\Delta C/c \) is not constant in \(c \) [10].
A different approach to the thermodynamics of DMA, in which the thermodynamic functions do not require rescaling and depend on \(c \) nonlinearly, was proposed by the author in Ref. [11]. The starting point in this approach is the first quantization s-d Hamiltonian \(H_1^{(n,M)} \) describing \(n \) electrons and \(M \) distinguishable, arbitrarily positioned impurities with single-component spins interacting via a locally smeared s-d interaction \(U(\vec{R}_\alpha - \vec{r}_i)S_{\alpha \sigma z_i} \):

\[
H_1^{(n,M)} = A^{(n)} \left(H_0^{(n)} + g^2 \sum_{\alpha=1}^{M} \sum_{i=1}^{n} U(\vec{R}_\alpha - \vec{r}_i)S_{\alpha \sigma z_i} \right),
\]

where \(A^{(n)} \) denotes the antisymmetrizer with respect to electron variables with indices \(i = 1, \ldots, n \),

\[
H_0^{(n)} = -\frac{\hbar^2}{2m} \sum_{i=1}^{n} \Delta_i.
\]

\(\vec{R}_\alpha \) denotes the position of \(\alpha \)th impurity, \(S_{\alpha \sigma z} \) its spin operator and \(\vec{r}_i, \sigma z_i \) the corresponding quantities of the \(i \)th electron. The considerations of Ref. [11] remain valid for any sufficiently regular function \(U \) depending on \(|\vec{R}_\alpha - \vec{r}_i| \).

It was shown in Ref. [11], that in the dilute limit of small \(c \) (d-lim) the s-d interaction is separable and the system’s free energy per electron \(f(H_1^{(n,M)}, \beta) \) is equal asymptotically to that of \(n \) noninteracting electrons with the 1-electron Hamiltonian

\[
h_{0}^{(1,M)}(\xi, \eta) = h_{0}^{(1,M)}(\xi, \eta) + \frac{1}{2}M(\xi^2 - \eta^2)\mathbb{I},
\]

where

\[
h_{0}^{(1,M)}(\xi, \eta) = h_{0}^{(1)}(\xi) - g\sqrt{n}(\xi - \eta) \sum_{\alpha=1}^{M} U_{\alpha}^{(1)} \sigma_{z}^{(1)}
\]

(3b)

and \(M \) impurities described by the Hamiltonian

\[
h_{\text{imp}}^{(M)}(\xi) = g\sqrt{n} \sum_{\alpha=1}^{M} S_{z\alpha} + \frac{1}{2}g^2 \sum_{\alpha=1}^{M} S_{z\alpha}^2.
\]

(4)

\(U_{\alpha}^{(1)} \) in Eq. (3b) is the multiplication operator by \(U(\vec{R}_\alpha - \vec{r}_i) \) and \(\eta(\xi) = \xi - f_2(\xi), \) with

\[
f_2(\xi) = -\frac{g}{\sqrt{n}} \langle S_z \rangle_{h_{\text{imp}}^{(1)}}, \quad \langle B \rangle_h := \frac{\text{Tr}(B e^{-\beta h})}{\text{Tr} e^{-\beta h}},
\]

(5)

whereas \(\xi \) is the solution of the equation

\[
\xi = f_1(f_2(\xi)) + f_2(\xi)
\]

(6)

with

\[
f_1(\xi) = g\sqrt{n} \langle \Gamma_1 U_{\alpha}^{(1)} \sigma_{z}^{(1)} \rangle_{\alpha} \Gamma_1^{\alpha} \langle \tilde{K}_{\text{imp}}^{(1,M)}(\xi,0) \rangle,
\]

(7)

\[
\Gamma_1^{n} B^{(1)} := A^{(n)} \left(B^{(1)} \otimes \mathbb{I}^{(n-1)} \right) A^{(n)},
\]

(8)
which minimizes the mean-field free energy per electron $f(h^{(n,M)}, \beta)$, where

$$h^{(n,M)}(\xi, \eta) = h^{(n,M)}_c(\xi, \eta) + h^{(M)}_{\text{imp}}(\xi).$$ \hfill (8)

Asymptotic equivalence of $H^{(n,M)}_1$ and $h^{(n,M)}$ is expressed by the equality

$$\lim_{n \to \infty} d\lim f(H^{(n,M)}_1, \beta) = \lim_{n \to \infty} d\lim f(h^{(n,M)}, \beta) = \lim_{n \to \infty} f(A^{(n)}H_0^{(n)}, \beta).$$ \hfill (9)

The question arises, to what extent is the mean-field s-d Hamiltonian $h^{(n,M)}$ capable of providing a reliable theory of DMA thermal behaviour. Here a partial answer to this question is found by showing that impurity heat capacity curves of two CuCr alloys [10] with $c = 21.7$ ppm, 51 ppm and (La$_{1-x}$Ce$_x$)Al$_2$ [12] with $x = 0.0064$ can be satisfactorily explained in terms of $h^{(n,M)}$ thermodynamics.

To this end, the 1-particle equilibrium density operator $\rho^{(1)}$ of a quantum gas, in a field of randomly positioned wells, is first analysed in Section 2. Such operator appears, e.g. in the equation for the fugacity z:

$$\text{Tr} z^\rho^{(1)} \left(\mathbb{1} + z^\rho^{(1)} \right)^{-1} = n$$ \hfill (10)

where

$$\rho^{(1)} := \exp \left[-\beta h^{(1,M)}_c(\xi, 0) \right]$$

It is shown that, in the low-temperature régime, such a gas behaves effectively like a system of free particles at a temperature higher than that of the real system.

In Section 3 the mean-field impurity energy ΔU_{s-d} of the s-d system, relative to that of the free electron gas, is derived for impurity spins 1/2, 3/2. Here the crucial question is the form of f_1. An approximate Sommerfeld-type expansion of $f_1(\xi)$ is found, which is subsequently applied in the simplest truncated form, viz., $f_1(\xi) = b_0 + b_1\xi$, with $b_0, b_1 \in \mathbb{R}^1$. As a consequence, ΔU_{s-d} depends on five parameters: $b_0, b_1, g, M, \Delta T$, M denoting the number of impurities in the considered s-d subsystem of the molar s-d system and $\Delta T > 0$ the shift in temperature scale due to random interactions unaccounted for by the s-d Hamiltonian [11].

The expression for the mean-field heat capacity

$$\Delta C(T) = \frac{d\Delta U_{s-d}}{dT}$$ \hfill (11)

was calculated analytically and the parameters $b_0, b_1, g, M, \Delta T$ adjusted to obtain directly the best possible fit of mean-field $\Delta C(T)/c$ with experimental data, without additional rescaling procedures.

Variation of $\Delta C/c$ with c [10] requires different values of $b_0, b_1, g, M, \Delta T$ for different impurity concentrations. In this manner, for the first time, nonlinearity of $\Delta C(T)/c$ with respect to c has been accounted for.
2 1-particle density operator of a quantum gas in a field of randomly positioned wells

The Hamiltonian $H^{(n,M)}_1$ gives only a simplified account of the interactions present in an s-d system. It does not contain terms representing the Coulomb interactions between electrons and the screened Coulomb pseudo-potential $\sum_\alpha U_C(\alpha)$ of each electron in the field of impurities. In order to investigate the effect of such potential on the electron gas in a DMA, let us examine the 1-particle density operator of a gas of negatively charged particles interacting with randomly positioned positively charged ions in a region Λ.

Let

$$h^{(1)} = -\frac{\hbar^2}{2m} \Delta + \sum_\alpha U^{(1)}_C$$

(12)

denote the 1-particle Hamiltonian. Suppose U_C is a sufficiently regular function of $|\hat{R}_\alpha - \vec{r}|$, so that the integral kernel of $\rho^{(1)} = \exp[\beta h^{(1)}]$ admits the Feynman-Kac representation [13, 14], viz.,

$$\rho(\vec{r},\vec{r}') = \int_{\Omega^0} d\mu_{\vec{r},\vec{r}'}(\omega) \exp \left[-\sum_\alpha \beta \int_0^\beta U_C(\omega(s)) ds \right]$$

(13)

where $U_C(\vec{r}) = U_C(\hat{R}_\alpha - \vec{r})$. Due to randomness of ion positions \hat{R}_α, $\rho(\vec{r},\vec{r}')$ is equal to its space average $\langle \rho(\vec{r},\vec{r}') \rangle_\Lambda$ over these positions [15, 16]. In order to evaluate $\langle \rho(\vec{r},\vec{r}') \rangle_\Lambda$, let us note that $U_C(\vec{r})$ is negative-valued and has a finite minimum [17]. Suppose it admits a Taylor expansion in the neighbourhood of this minimum at $\vec{r}_0\alpha$ and that β is sufficiently large. Then

$$\langle \rho(\vec{r},\vec{r}') \rangle_\Lambda = |\Lambda|^{-M} \prod_{\alpha = 1}^M \int_\Lambda d^3R_\alpha \rho(\vec{r},\vec{r}')$$

(14)

can be evaluated by expanding $U_C(\hat{R}_\alpha - \vec{r})$ up to second order and applying the method of steepest descent. Evaluation of the average (14) thus amounts to calculating the integral

$$\prod_\alpha \int_\Lambda d^3R_\alpha \exp \left[-\beta u_0 - \frac{1}{2} u_2 \int_0^\beta \sum_{q=1}^3 (R_{\alpha q} - r_{0\alpha q} - \omega_q(s))^2 ds + \ldots \right]$$

(15)

where $u_0 = U_C(\hat{R}_\alpha - \vec{r}_0\alpha)$, $u_2 = U''_C(\hat{R}_\alpha - \vec{r}_0\alpha)$. This is done in Appendix A.

4
One obtains for sufficiently large β

$$
\left\langle \rho \left(\vec{r}, \vec{r}' \right) \right\rangle \Lambda = Z_1 \int \frac{d\mu_{\vec{r},\vec{r}'}}{\Omega_0} \int \frac{d^3 \vec{r}}{\mathbb{R}^3} \exp \left[-\beta M u_0 - \frac{1}{2} M u_2 \sum_{q=1}^{3} \int_{0}^{\omega_q(s)} \frac{1}{2} \left(\omega_q(s) - \lambda_q \right)^2 ds \right] d\lambda_1 d\lambda_2 d\lambda_3
$$

where

$$
Z_1 = |\Lambda|^{-M} \left(\frac{2\pi}{\beta u_2} \right)^{\frac{1}{2} (M-1)} M^{3/2}
$$

The integral kernel (16) thus represents, up to a constant factor, the kernel of the canonical density operator of a particle oscillating around a point $\vec{\lambda}$, integrated over all positions $\vec{\lambda} \in \mathbb{R}^3$. In other words,

$$
|\Lambda|^{-M} \prod_{\alpha} \int d^3 R_\alpha \rho \left(\vec{r}, \vec{r}' \right) = Z_1 \int d^3 \lambda \exp \left[-\beta h^{(1)}_{\text{osc}} (\vec{\lambda}) \right]
$$

where

$$
h^{(1)}_{\text{osc}} (\vec{\lambda}) = -\frac{\hbar^2}{2m} \Delta + \frac{1}{2} M u_2 \left(\vec{r} - \vec{\lambda} \right)^2.
$$

The integral kernel of $\exp \left[-\beta h^{(1)}_{\text{osc}} (\vec{\lambda}) \right]$ is \[13, 14, 18\]

$$
\rho^{(1)}_{\text{osc}} (\vec{r}, \vec{r}') = \xi^3 \exp \left[-\frac{1}{2} a \left(\left(\vec{r} - \vec{\lambda} \right)^2 + \left(\vec{r}' - \vec{\lambda} \right)^2 \right) + b \left(\vec{r} - \vec{\lambda} \right) \left(\vec{r}' - \vec{\lambda} \right) \right]
$$

with

$$
\xi = \frac{\alpha \left(\tanh \frac{\Omega}{2} \right)^{1/2}}{2\sqrt{\pi} \sinh \frac{\Omega}{2}} , \quad a = \frac{\alpha^2 \coth \Omega}{\sinh \Omega} , \quad b = \frac{\alpha^2}{\sinh \Omega},
$$

$$
\alpha^2 = \frac{\hbar^2 \alpha^2}{2m} , \quad \Omega = \frac{\hbar^2 \alpha^2}{m} \beta.
$$

The integral over \mathbb{R}^3 on the rhs of Eq. (16) is thus a product of three 1-dimensional integrals

$$
\int_{-\infty}^{\infty} d\lambda \exp \left[-\frac{1}{2} a \left(x - \lambda \right)^2 + b \left(x - \lambda \right) \left(x' - \lambda \right) \right] = \sqrt{\frac{\pi}{a - b}} \exp \left[-\frac{1}{4} (a + b) (x - x')^2 \right]
$$

each of which is equal to the integral kernel of the operator \[13, 14\]

$$
\sqrt{\frac{\pi}{a - b}} \sqrt{2\pi t_0} \exp \left[-t_0 T_0 \right] = \frac{2\pi}{\sqrt{a^2 - b^2}} \exp \left[-t_0 T_0 \right],
$$

(21)
where
\[t_0 = \frac{2}{a + b} = 2\alpha^{-2} \tanh \frac{1}{2}\Omega, \quad T_0 = -\frac{1}{2} \frac{d^2}{dx^2}. \]

One finds
\[t_0 T_0 = t(u_2, \beta) \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \right) = t(u_2, \beta) H_{0x}^{(1)} \tag{22} \]
with
\[t(u_2, \beta) = \delta^{-1} \tanh(\delta\beta), \quad \delta = \frac{\hbar^2}{2m} \alpha^2. \]

Combining Eqs. (16), (20), (21), (22), one obtains for large \(\beta \) the asymptotic equality
\[\langle \rho(\vec{r}, \vec{r'}) \rangle_{\Lambda} = Z_0(u_0, u_2)(2\pi t_0)^{-3/2} \exp \left[-\frac{1}{2t_0} \left(\vec{r} - \vec{r'} \right)^2 \right], \tag{23} \]
where
\[Z_0(u_0, u_2) = |\Lambda|^{-M} \left(\frac{2\pi}{\beta u_2} \right)^{\frac{1}{2}(M-1)} M^{3/2} \xi^3 \left(\frac{2\pi}{\alpha^2} \right)^3 \exp \left[-\beta Mu_0 \right]. \]

Thus
\[\langle \rho^{(1)} \rangle_{\Lambda} = Z_0 \exp \left[-tH_0^{(1)} \right] \tag{24} \]
In the low-temperature régime, \(\langle \rho^{(1)} \rangle_{\Lambda} \) is thus equal, up to a normalization factor, to the canonical density operator of a free particle at an effective temperature \((k_B t)^{-1} = (k_B\beta)^{-1} = T \).

3 Mean-field impurity heat capacity

Formulae for s-d system’s mean-field energy \(\Delta U_{s-d} \) and heat capacity \(\Delta C \), relative to that of free electrons, will be now derived, using the Hamiltonian \(h^{(n,M)} \), and compared with experimental data on impurity heat capacity of CuCr [10] and LaCeAl$_2$ [12].

3.1 CuCr alloys

According to Monod et al. [19] the spin of the Cr$^{3+}$ ions in CuCr alloys equals 3/2. The impurity expectation energy in these alloys therefore equals
\[U_{imp} = \left\langle \frac{h^{(M)}}{h^{(M)}} \right\rangle_{\Lambda} \]
\[= -M n^2 f_2(\xi) + \frac{1}{2} Mg^2 + 4Mg^2 \frac{e^{-\beta g^2}}{e^{-\beta g^2} \cosh (3\beta g\xi \sqrt{n})} \cos (3\beta g\xi \sqrt{n} + \cosh (\beta g\xi \sqrt{n})) \tag{25} \]
f_1, defined by Eq. \(7\) is a linear function in the simplest approximation \(45\):

$$f_1(\xi) = b_0 + b_1 \xi$$ (Appendix \[B\]). Then according to Eqs. \(22\), \(44\), the interaction energy of electrons with the Hamiltonian $\tilde{\mathcal{H}}^{(n,M)}(\xi, \eta)$ equals

$$\Delta U_e = \left\langle \tilde{\mathcal{H}}^{(n,M)}(\xi, \eta) \right\rangle - \left\langle A^{(n)} H_0^{(n)} \right\rangle / A^{(n)} H_0^{(n)}$$ (26)

$$= - Mnf_2(\xi) (b_0 + b_1 f_2(\xi) + \ldots).$$

From Eqs. \(8, 25, 26\) one obtains the following expression for ΔU_{s-d} of a system of n electrons and M impurities with spin $3/2$:

$$\Delta U_{s-d} = U_{\text{imp}} - Mnf_2(\xi) (b_0 + b_1 f_2(\xi) + \ldots) + Mnf_2(\xi) - \frac{1}{2} Mn^2 f_2(\xi)$$ (27)

where ξ is the minimizing solution of Eq. \(6\) with f_1 given by Eq. 145.

The number of conduction electrons per host atom in CuCr equals one, and hence the number of these electrons per impurity $n_1 = c^{-1}$.

The n-electron, M-impurity s-d system will be now treated as a subsystem of a sample S containing one mole of impurities. Then $n = Mn_1$. In terms of n_1, \(\gamma = \sqrt{M}g\), the energy $\Delta U_m = 6.022 \cdot 10^{23} M^{-1} \Delta U_{s-d}$ of such sample with spin $3/2$ impurities, divided by c and expressed in joules, equals

$$c^{-1} \Delta U_m = \left(\frac{1}{2} \gamma^2 + 4 \gamma^2 \frac{e^{-4\beta\gamma^2 M^{-1}} \cosh (3\beta\gamma \sqrt{m_1})}{e^{-4\beta\gamma^2 M^{-1}} \cosh (3\beta\gamma \sqrt{m_1}) + \cosh (\beta\gamma \sqrt{m_1})} \right) 602.2 \cdot 160.2 M^{-1} n_1$$ (28)

with

$$f_2(\xi) = \frac{\gamma}{M \sqrt{m_1}} \frac{3e^{-4\beta\gamma^2 M^{-1}} \sinh (3\beta\gamma \sqrt{m_1}) + \sinh (\beta\gamma \sqrt{m_1})}{e^{-4\beta\gamma^2 M^{-1}} \cosh (3\beta\gamma \sqrt{m_1}) + \cosh (\beta\gamma \sqrt{m_1})}$$

if γ, b_0 are given in \sqrt{eV}.

Eq. \(6\) takes the form

$$f_3(\xi) = \xi$$ (29)

with $f_3 = b_0 + (b_1 + 1) f_2$.

The excess heat capacity of S, relative to that of pure Cu, equals

$$\Delta C(T) = \frac{\partial \Delta U_m}{\partial T} + \frac{\partial \Delta U_m}{\partial \xi} \frac{\partial \xi}{\partial T},$$ (30)

where

$$\frac{\partial \xi}{\partial T} = - \frac{\partial f_3}{\partial T} \left(\frac{\partial f_3}{\partial \xi} - 1 \right)^{-1}.$$ (31)

$\Delta C(T)$ depends on the solution ξ of Eq. \(29\) and on the parameters b_0, b_1, γ, M. An additional parameter $\Delta T > 0$, equal to the shift of the temperature variable of ΔC, proves necessary. The origins of this shift are explained in Section 2.
Table 1:

Alloy	x	c	n_1	b_0 $[\sqrt{eV}]$	b_1	γ $[\sqrt{eV}]$	M	ΔT [K]
CuCr		$\frac{51}{66}$	$\frac{10^7}{24}$	-461	$1.09 \cdot 10^{-3}$	0.091	248500	1.05
CuCr		$\frac{212}{66}$	$\frac{10^7}{24}$	-631	$1.01 \cdot 10^{-3}$	0.086	$36 \cdot 10^4$	0.78
(LaCe) Al$_2$	$\frac{n_1}{1871}$	$\frac{2142}{24}$	-13101	$\frac{12}{66}$	$\frac{21}{66}$	58	0.39	

The best fitting graphs of $c^{-1} \Delta C(T + \Delta T)$ vary with M. Moreover, the graphs obtained for $M \gg 1$ provide much better agreement with experiment than those for $M = 1, 2$. The graphs of $c^{-1} \Delta C(T + \Delta T)$ for CuCr with $c = 51$ ppm ($M = 24850$) and $c = 21.2$ ppm ($M = 360000$), plotted in the same units as in Ref. [10], are depicted in Figs. 1, 2. The corresponding values of the remaining parameters $b_0, b_1, \gamma, \Delta T$ are given in Table 1.

The solution $\xi(T)$ of Eq. (29) is unique in both cases and minimizes $f(h^{(n,M)}, \beta)$. The graphs of $\xi(T)$ are plotted in Fig. 3.

It appears that higher order terms of the expansions (42), (45) should be included in order to improve the quality of mean-field $\Delta C/c$.

It is worth noting that since the best fitting values M_f of M are much smaller than $A = 6.022 \cdot 10^{23}$, the sample S can be viewed as consisting of magnetic domains, each containing M_f impurities with a definite favoured impurity-spin orientation, which differs, in general, from one domain to another. Existence of such domains in some magnetic materials has been established experimentally (e.g. Ref. [20]).

3.2 (La$_{1-x}$Ce$_x$) Al$_2$

Experimental data on $\Delta C/c$ of (La$_{1-x}$Ce$_x$) Al$_2$ alloys are presented in Ref. [12]. According to Refs. [12] [21], a typical Kondo effect, without any superconducting side-effects, is observed in (La$_{1-x}$Ce$_x$) Al$_2$ samples with Ce content above $x = 0.0067$. However, according to Bader et al. [12], for $x = 0.0064$ the expected normal-state and measured superconducting-state heat capacities do not differ significantly. Thus a mean-field normal-state theory of $\Delta C/c$ for (La$_{1-x}$Ce$_x$) Al$_2$ with $x = 0.0064$ can be reliable.

The number of valence electrons per host atom in LaAl$_2$ equals $8/3$. For a $x = 0.0064$,

$$c = \frac{0.0064}{2.9936} = \frac{4}{1871}, \quad n_1 = \frac{8}{3} c^{-1} = \frac{3742}{3}.$$

Since the spin of Ce ions equals $1/2$ [12], therefore

$$f_2(\xi) = \frac{\gamma}{M \sqrt{n_1}} \tanh (\beta \gamma \xi \sqrt{n_1})$$ (32)
The mean-field impurity heat capacity of CuCr with $c = 51$ ppm and values of $b_0, b_1, \gamma, M, \Delta T$ given in Table 1. The points are experimental results from Ref. [10].
Figure 2: The mean-field impurity heat capacity of CuCr with $c = 21.2$ ppm and values of b_0, b_1, γ, M, ΔT given in Table 1. The points are experimental results from Ref. [10].
Figure 3: The solution ξ(T) of Eq. (29) for CuCr with values of \(\theta_0, b_1, \gamma, M, \Delta T \) given in Table I.
Figure 4: The mean-field impurity heat capacity of $(\text{La}_{1-x}\text{Ce}_x)\text{Al}_2$ with $x = 0.0064$ and values of $b_0, b_1, \gamma, M, \Delta T$ given in Table 1. The points are experimental results from Ref. [12].

and $\Delta U_m/c$ for a sample S of $(\text{La}_{1-x}\text{Ce}_x)\text{Al}_2$, expressed in joules, equals

$$e^{-1}\Delta U_m = \left(\frac{1}{2} \gamma^2 - \frac{1}{2} M^2 n_1 f_2^2(\xi) - M^2 n_1 f_2(\xi) [b_0 + b_1 f_2(\xi) + \ldots] \right) \frac{1}{4} \cdot 602.2 \cdot 160.2 \cdot 1871 M^{-1}$$

(33)

if Eq. (44) is used and b_0, γ, β, ξ are given in powers of eV.

The mean-field $\Delta C/c$ curve best fitting to experimental $\Delta C/c$ of Ref. [12] was obtained for $M = 40$ and is depicted in Fig. 4. The corresponding values of other parameters are given in Table 1. Since the error of experimental $\Delta C/c$ values is relatively high above 5 K [12], the mean-field $\Delta C/c$ curve in Fig. 4 provides a good fit to experiment.

The equation $f_3(\xi) = \xi$ for $\xi(T)$ has a unique minimising solution with $\xi(T) \in (11 \cdot 10^{-5} \sqrt{\text{eV}}, 19 \cdot 10^{-5} \sqrt{\text{eV}})$ for $T \in (0.015 \text{ K}, 10 \text{ K})$. The graph of $\xi(T)$ is, similar as those for CuCr in Fig. 3, increasing in T.

12
4 Concluding remarks

Progress has been made in improving the quality of theoretical impurity heat capacity graphs $\Delta C(T)$ of DMA. Scaling procedures, used in previous s-d theories to adjust thermodynamic functions to experimental data, were unnecessary and nonlinear dependence of $\Delta C(T)$ on impurity concentration c in CuCr has been accounted for the first time.

The mean-field theory of a dilute s-d system established in Ref. [11] has also proved capable of explaining the temperature dependence of impurity heat capacity ΔC of $(La_{1-x}Ce_x)Al_2$ with $x = 0.0064$. Partial quantitative agreement between theory and experiment has been achieved for CuCr alloys, especially for the smaller value of impurity concentration considered.

Higher order terms of the expansion of f_1 should be included in order to improve these results.

A

The integral (15) is an M-fold product of 3-dimensional integrals

$$ I = \int_{\Lambda} d^3R \exp \left[-\frac{1}{2} u_2 \int_0^\beta \sum_{q=1}^3 (R_q - r_{0q} - \omega_q(s))^2 \, ds \right] $$

and $\exp \left[-\beta M u_0 \right]$. The representation (16) of $\left< \rho(\vec{r}, \vec{r}') \right>_{\Lambda}$, for large β, obtains by applying to the I the dominated convergence theorem (in order to express the integral in the exponent as a limit of partial sums) and the method of steepest descent:

$$ I = \lim_{m \to \infty} \int_{\Lambda} d^3R \exp \left[-\frac{\beta}{2m} u_2 \sum_{k=1}^m \sum_{q} (R_q - r_{0q} - x_{kq})^2 \right] $$

$$ \approx \lim_{m \to \infty} \int_{R^3} d^3R \exp \left[-\frac{\beta}{2m} u_2 \sum_{kq} x_{kq}^2 \right. $$

$$ -\frac{\beta}{2m} u_2 \sum_{q} \left(\frac{1}{\sqrt{m}} \sum_{k} x_{kq} - \sqrt{m} (R_q - r_{0q}) \right)^2 + \frac{\beta}{2m^2} u_2 \sum_{q} \left(\sum_{k} x_{kq} \right)^2 \right] $$

$$ = \lim_{m \to \infty} \left(\frac{2\pi}{\beta u_2} \right)^{3/2} \exp \left[-\frac{\beta}{2m} u_2 \sum_{kq} x_{kq}^2 + \frac{\beta}{2m^2} u_2 \sum_{q} \left(\sum_{k} x_{kq} \right)^2 \right] $$

$$ = \left(\frac{2\pi}{\beta u_2} \right)^{3/2} \exp \left[-\frac{1}{2} u_2 \beta \int_0^\beta \omega^2(s) \, ds + \frac{1}{2} \beta^{-1} u_2 \sum_{q} \left(\int_0^\beta w_q(s) \, ds \right)^2 \right], \quad (35) \]
where \(x_kq = \omega_q \left(\frac{kq}{m} \right) \). The squared integral in the exponent can be linearized, using the identity

\[
\exp(a^2) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} \exp \left[-\frac{1}{2} \xi^2 + \sqrt{2}a\xi \right] d\xi
\]

which yields

\[
I^M = \left(\frac{2\pi}{\beta u_2} \right)^{3M/2} \exp \left[-\frac{1}{2} Mu_2 \omega^2(s) ds + \frac{1}{2} \beta^{-1} Mu_2 \sum_q \left(\int_0^\beta w_q(s) ds \right)^2 \right] \]

\[
= (2\pi)^{-3/2} \left(\frac{2\pi}{\beta u_2} \right)^{3M/2} \int_{\mathbb{R}^3} d\xi_1 d\xi_2 d\xi_3 \exp \left[-\frac{1}{2} \sum_s \xi_s^2 \right. \\
\left. - \frac{1}{2} Mu_2 \int_0^\beta \omega^2(s) ds + \sqrt{\beta^{-1} Mu_2} \sum_q \xi_q \int_0^\beta \omega_q(s) ds \right] \]

\[
= \left(\frac{2\pi}{\beta u_2} \right)^{3(M-1)/2} M^{3/2} \int_{\mathbb{R}^3} d\lambda_1 d\lambda_2 d\lambda_3 \exp \left[-\frac{1}{2} Mu_2 \sum_q \int_0^\beta (\omega_q(s) - \lambda_q)^2 ds \right]
\]

in accord with Eq. (16).

\[\text{B} \]

The form of \(f_1 \) defined by Eq. (7) is crucial in the mean-field theory of the s-d system. Here \(f_1 \) is derived under the assumption that \(\tilde{h}_{e_1}^{(1, M)}(\xi, \eta) \) is defined in terms of a function \(-g \sqrt{n} U \left(\vec{R}_e - \vec{r} \right) \), which has absolute maximum equal \(v_0 \) and absolute minimum equal \(u_0 \), and that the expansion in (15) is terminated on the first term. The space average of \(\exp \left[-\beta \tilde{h}_{e_1}^{(1, M)}(\xi, 0) \right] \) over impurity positions then equals

\[
\langle \exp \left[-\beta \tilde{h}_{e_1}^{(1, M)}(\xi, 0) \right] \rangle_A = \begin{cases}
\exp \left[-\beta H_0^{(1)} - \beta Mu_0 \xi \right] & \text{for } \sigma_z = 1 \\
\exp \left[-\beta H_0^{(1)} + \beta Mu_0 \xi \right] & \text{for } \sigma_z = -1
\end{cases}
\]

and Eq. (10) for \(z \) takes the form

\[
\frac{4\pi v}{\hbar^3} \int_0^\infty dp \ p^2 \left\{ \left(z^{-1} \exp \left[\beta \left(Mu_0 \xi + \frac{p^2}{2m} \right) \right] + 1 \right)^{-1} \right. \\
\left. + \left(z^{-1} \exp \left[\beta \left(-Mu_0 \xi + \frac{p^2}{2m} \right) \right] + 1 \right)^{-1} \right\} = 1.
\]
where \(v = |\Lambda|\mu^{-1} \). Following Huang [22], one transforms Eq. (37) to
\[
v\lambda_0^{-3} \left(f_{3/2} \left(ze^{-\beta M_u \xi} \right) + f_{3/2} \left(ze^{\beta M_v \xi} \right) \right) = 1, \tag{38}
\]
where
\[
v\lambda_0^{-3} = \frac{1}{8} 3\sqrt{\pi} (\beta\varepsilon_F)^{-3/2}.
\]
For large \(z \), \(f_{3/2}(z) \) is given by Sommerfeld’s expansion:
\[
f_{3/2}(z) = \frac{4}{3\sqrt{\pi}} \left((\ln z)^{3/2} + \frac{\pi^2}{8} (\ln z)^{-1/2} + \ldots \right). \tag{39}
\]
Let \(Mu_0\xi^{1-1} = \mu \), \(Mv_0\xi^{1-1} = \nu \). Then \(z \) satisfying Eq. (38) is given by the expansion
\[
\ln z = a_1\beta\varepsilon_F + a_0 + a_{-1} (\beta\varepsilon_F)^{-1} + \ldots \tag{40}
\]
with
\[
a_1(\xi) = 1 + \frac{1}{2} (\mu - \nu) - \frac{1}{16} (\mu + \nu)^2 + \ldots
\]
\[
a_0 = 0
\]
\[
a_{-1}(\xi) = \frac{\pi^2}{12} \left(1 - \frac{1}{4} (\mu + \nu)^2 \right)^{-1/2} = -\frac{\pi^2}{12} \left(1 + \frac{1}{8} (\mu + \nu)^2 + \ldots \right),
\]
From Eq. (7) one finds (cf. Ref. [11])
\[
f_1(\xi) = (Mn\beta)^{-1} \frac{\partial}{\partial \xi} \text{Tr} \ln \left(1 + z\rho^{(1)} \right).
\]
Hence
\[
f_1(\xi) = v\lambda_0^{-3} \left(-u_0 f_{3/2} \left(ze^{-\beta M_u \xi} \right) + v_0 f_{3/2} \left(ze^{\beta M_v \xi} \right) \right)
= b_0 + b_1\xi - \frac{\pi^2}{8} b_0 (\beta\varepsilon_F)^{-2} + \ldots \tag{41}
\]
with
\[
b_0 = \frac{1}{2} (v_0 - u_0) , \quad b_1 = \frac{3M}{8\varepsilon_F} (u_0 + v_0)^2.
\]
The energy of the electrons’ subsystem also expresses in terms of \(f_1 \). According to Eqs. (38), (7)
\[
\left< n\Gamma_1^n h_{e^1(1,M)}^{(1)}(\xi,\eta) \right>_{n\Gamma_1^n h_{e}^{1(M)}(\xi,\eta)}
= \left< n\Gamma_1^n H_0^{(1)} \right>_{n\Gamma_1^n h_{e}^{1(M)}(\xi,\eta)} - nM f_2(\xi) (b_0 + b_1 f_2(\xi) + \ldots) \tag{42}
\]
The first term on the rhs of Eq. (42) can be evaluated in a similar manner as the energy of a free Fermi gas, viz.,

\[
\left\langle n\Gamma_{f}^{0} H_{0}^{(1)} \right\rangle_{n\Gamma_{f}^{0} \tilde{h}_{e}^{(1),M}(\xi, \eta)} = \frac{3n}{10} \varepsilon_{f}^{-3/2} \beta^{-5/2} \left\{ \left(\ln z - \beta M u_{0} (\xi - \eta) \right)^{5/2} + \frac{5}{8} \pi^{2} \left(\ln z - \beta M u_{0} (\xi - \eta) \right)^{1/2} + \ldots \right\} \\
+ \left(\ln z + \beta M v_{0} (\xi - \eta) \right)^{5/2} + \frac{5}{8} \pi^{2} \left(\ln z + \beta M v_{0} (\xi - \eta) \right)^{1/2} + \ldots \right\} \\
= \frac{3n}{10} \varepsilon_{f}^{-3/2} \left\{ 2 + 5a_{-1} (\xi - \eta) (\beta \varepsilon_{F})^{-2} + \frac{5}{4} \pi^{2} (\beta \varepsilon_{F})^{-2} + \frac{5}{8} M^{2} (u_{0} + v_{0})^{2} \varepsilon_{F}^{-2} (\xi - \eta)^{2} + \ldots \right\} \\
= \left\langle n\Gamma_{f}^{0} H_{0}^{(1)} \right\rangle_{n\Gamma_{f}^{0} H_{0}^{(1)}} - \frac{\pi^{2}}{24} nM b_{1} (\xi - \eta)^{2} (\beta \varepsilon_{F})^{-2} + \frac{1}{2} nM b_{1} (\xi - \eta)^{2} + \ldots \right\} \\
(43)
\]

If the Taylor expansions of \(U_{\alpha}(\vec{r}) \) around the absolute maximum and absolute minimum are cut off on the second derivatives, the structure of \(f_{1} \), as well as that of the expectation values (42), (43), changes, e.g. under the approximations of Section 2. \(f_{1} \) is no longer regular at \(\xi = 0 \):

\[
f_{1}(\xi) = v \left\{ \lambda_{0} (t (u_{2}, \beta))^{-3} \frac{\partial Z_{0} (u_{0} \xi, u_{2} \xi)}{\partial \xi} f_{3/2} (z Z_{0} (u_{0} \xi, u_{2} \xi)) + \lambda_{0} (t (-v_{2}, \beta))^{-3} \frac{\partial Z_{0} (-v_{0} \xi, -v_{2} \xi)}{\partial \xi} f_{3/2} (z Z_{0} (-v_{0} \xi, -v_{2} \xi)) \right\},
\]

with

\[
v \lambda_{0}^{-3}(t) = \frac{1}{8} 3 \sqrt{\pi} (t \varepsilon_{F})^{-3/2}
\]

\((u_{2} (v_{2})\) denoting the second derivative of \(-g \sqrt{nU} (\vec{R}_{\alpha} - \vec{r})\) at the absolute minimum (maximum) and the corresponding coefficient \(b_{1}' \), in the new expansion of \(f_{1} \) around \(\xi_{0} \neq 0 \), will differ from \(b_{1}' \) resulting in the modified Eq. (43).

In view of the presumable smallness of

\[
\Delta U_{0} = \left\langle n\Gamma_{f}^{0} H_{0}^{(1)} \right\rangle_{n\Gamma_{f}^{0} \tilde{h}_{e}^{(1),M}(\xi, \eta)} - \left\langle n\Gamma_{f}^{0} H_{0}^{(1)} \right\rangle_{n\Gamma_{f}^{0} H_{0}^{(1)}}
\]

where \(\tilde{h}_{e}^{(1),M} = n\Gamma_{f}^{0} \tilde{h}_{e}^{(1),M} \), these modifications can be exploited in the simplest manner by restricting \(u_{0}, \ v_{0}, \ u_{2}, \ v_{2} \) to values for which \(b_{1}' \) vanishes. As a consequence,

\[
\Delta U_{0} \approx 0 \quad (44)
\]

whereas the range of \(b_{1}' \) can be expected to include also negative values. Thus, in general,

\[
f_{1}(\xi) = b_{0}' + b_{1}' \xi + \ldots \quad , \quad b_{0}', b_{1}' \in \mathbb{R}^{1}
\]
References

[1] J. Kondo. Prog. Theor. Phys., 32:37, 1964.
[2] P. E. Bloomfield and D. R. Hamann. Phys. Rev., 164:856, 1967.
[3] K. G. Wilson. Rev. Mod. Phys., 47:773, 1975.
[4] V. T. Rajan, J. H. Lowenstein, and N. Andrei. Phys. Rev. Lett., 49:497, 1982.
[5] N. Andrei, K. Furuya, and J. H. Lowenstein. Rev. Mod. Phys., 55:331, 1983.
[6] V. M. Filyov, A. M. Tsvelik, and P. B. Wiegmann. Phys. Lett. A, 81:115, 1981.
[7] P. B. Wiegmann. An exact solution of the Kondo problem. In I. M. Lifshits, editor, Quantum Theory of Solids. MIR Publishers, Moscow, 1982.
[8] A. C. Hewson. The Kondo Problem to Heavy Fermions. Cambridge University Press, Cambridge, 1993.
[9] J. Maćkowiak. Phys. Rep., 308:235, 1999.
[10] B. B. Triplett and N. E. Philips. Phys. Rev. Lett., 27:1001, 1971.
[11] J. Maćkowiak. Physica A, 336:461, 2004.
[12] S. D. Bader, N. E. Philips, M. B. Maple, and C. A. Luengo. Solid State Commun., 16:1263, 1975.
[13] B. Simon. Functional Integration and Quantum Physics. Academic Press, New York, San Francisco, London, 1979.
[14] J. Glimm and A. Jaffe. Quantum Physics, A Functional Integral Point of View. Springer, New York, Heidelberg, Berlin, 1981.
[15] S. F. Edwards. Phil. Mag., 3:1020, 1958.
[16] V. Ambegaokar. The Green’s Function Method. In R. D. Parks, editor, Superconductivity. Marcel Dekker, Inc., New York, 1969.
[17] J. M. Ziman. Principles of the Theory of Solids. Cambridge University Press, Cambridge, 1972.
[18] S. Pruski and J. Maćkowiak. Rep. Math. Phys., 1:309, 1971.
[19] P. Monod and S. Schultz. Phys. Rev., 173:645, 1968.
[20] A. Aharoni. Introduction to the Theory of Ferromagnetism. Oxford University Press, 2000.
[21] W. Felsch, K. Winzer, and G. V. Minnigerode. Z. Physik B, 21:151, 1975.
[22] K. Huang. Statistical Mechanics. Wiley Inc., New York, London, 1963.