Research Article

Reliability of Force-Velocity Tests in Cycling and Cranking Exercises in Men and Women

Hamdi Jaafar, Elvis Attiogbé, Majdi Rouis, Henry Vandewalle, and Tarak Driss

1Laboratoire CeRSM (EA 2931), Equipe de Physiologie, Biomécanique et Imagerie du Mouvement, UFR STAPS, Université Paris Ouest Nanterre La Défense, 200 avenue de la République, 92000 Nanterre, France
2Laboratoire de Physiologie, UFR de Santé, Médecine et Biologie Humaine, Université Paris XIII, 74 rue Marcel Cachin, 93017 Bobigny, France

Correspondence should be addressed to Tarak Driss; tarak.driss@u-paris10.fr

Received 16 December 2014; Accepted 2 March 2015

Academic Editor: Paulo R. Lucareli

Copyright © 2015 Hamdi Jaafar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The present study examined the reliability of the force-velocity relationship during cycling and arm cranking exercises in active males and females. Twenty male and seventeen female physical education students performed three-session tests with legs and three-session tests with arms on a friction-loaded ergometer on six different sessions in a randomized order. The reliability of maximal power (P_{max}), maximal pedal rate (V_{0}), and maximal force (F_{0}) were studied using the coefficient of variation (CV), the intraclass correlation coefficient (ICC) and the test-retest correlation coefficient (r). Reliability indices were better for men ($1.74 \leq \text{CV} \leq 4.36$, $0.82 \leq \text{ICC} \leq 0.97$, and $0.81 \leq r \leq 0.97$) compared with women ($2.34 \leq \text{CV} \leq 7.04$, $0.44 \leq \text{ICC} \leq 0.98$, and $0.44 \leq r \leq 0.98$) and in cycling exercise ($1.74 \leq \text{CV} \leq 3.85$, $0.88 \leq \text{ICC} \leq 0.98$, and $0.90 \leq r \leq 0.98$) compared with arm exercise ($2.37 \leq \text{CV} \leq 7.04$, $0.44 \leq \text{ICC} \leq 0.95$, and $0.44 \leq r \leq 0.95$). Furthermore, the reliability indices were high for P_{max} and F_{0} whatever the expression of the results (raw data or data related to body dimensions). P_{max} and F_{0} could be used in longitudinal physical fitness investigations. However, further studies are needed to judge V_{0} reliability.

1. Introduction

Maximal anaerobic power can be measured on friction-loaded cycle ergometers or isokinetic ergometers. Many protocols have been proposed for maximal power measurement: all-out tests against a single load (e.g., the Wingate test) [1, 2], relationship between torque and pedal rate on an isokinetic ergometer [3, 4], relationship between load and peak velocity [5], and force-velocity relationship during a single all-out test against a pure inertial load [6] or inertial + braking load [7–9].

On friction-loaded ergometer, maximal power corresponds to power at peak velocity or is computed during the acceleration phase taking into account the power necessary to increase the flywheel kinetic energy [10]. The relationship between pedal rate (V) and braking force (F) or torque (T) can be described by a linear relationship [3, 5–9, 11]. Linear force-velocity relationships have been described for all-out exercises performed on a cycle ergometer not only with the legs (i.e., cycling exercise) but also with the arms (i.e., cranking exercise). The individual characteristics of the force-velocity or torque-velocity relationship can be defined by two parameters: V_{0} (the intercept with the pedal rate axis which has the dimension of a maximal pedal rate) and F_{0} or T_{0} (the intercepts with the force or torque axis, which have the dimension of a maximal force or a maximal torque). Maximal power (P_{max}) corresponds to an optimal pedal rate (V_{opt}) equal to $0.5V_{0}$ and an optimal load or torque equal to $0.5F_{0}$ or $0.5T_{0}$.

Previous studies reported that P_{max} [8] or peak power during a Wingate test [12–15] are significantly correlated with the percentage of the fast muscle fibers in the vastus lateralis. Furthermore, a significant positive correlation was observed between P_{max} and triceps surae musculotendinous stiffness at relative peak torque corresponding to the optimal cycling rate [16]. On the other hand, the value of V_{opt} during sprint cycling was significantly correlated with vastus lateralis myosin heavy chain II composition in a study comparing old
and young participants [17]. The proportion of fast twitch fibres expressed in terms of cross-sectional area was highly correlated with V_{opt} ($r = 0.88, P < 0.001$) [18], and the authors of this latter study suggested that V_{opt} would be the most accurate parameter to describe the fibre composition of the knee extensor muscle from cycling tests. The value of F_0 in cycling depends on the strength and the rate of force development of muscle knee extensors [19]. The Wingate optimal braking force can also be determined from the result of a cycling force-velocity test as this braking force is close to $0.5F_0$ [5, 20].

Therefore, it could be interesting to determine the parameters of the force-velocity relationships (V_0, F_0, or T_0) in addition to P_{max} on a cycle ergometer. Furthermore, the study of the changes in power-velocity relationship during an annual training cycle has been proposed in volleyball players [21], which assumes that the results of the force-velocity test-retest correlation coefficients ($r_{\text{test-retest}}$) or the intraclass correlation coefficient (ICC) or the standard errors of estimations (SEE) or the coefficients of variation (CV) for the indices of maximal power (Wingate peak power or P_{max}) with the different protocols [1–4, 6, 9, 22–27]. In contrast, the reliability of the parameters of the force-velocity relationship (slope, T_0, F_0, and V_0) has been investigated in a few studies, only [4, 6, 26]. Moreover, the validity of the statistical tests in these studies on reliability was probably questionable [28].

In a review on the reliability of power in physical performance tests, Hopkins et al. [29] suggested that nonathletic females might be less reliable than nonathletic males, probably because the nonathletic females may be less physically active than the nonathletic males. Similarly, cranking exercises are probably less familiar than cycling exercises and the effect of familiarisation sessions might be more important for force-velocity tests with the arms.

Thus, the aim of the present study was to examine the reliability of P_{max}, V_0, and F_0 during force-velocity tests. In light of the literature observations, we hypothesized that reliability is lower in women than in men and for cranking force-velocity tests than for cycling tests.

2. Materials and Methods

2.1. Participants. Twenty healthy males (24.20 ± 2.69 years, 1.80 ± 0.06 m, and 76.48 ± 8.93 kg) and seventeen healthy females (23.53 ± 2.12 years, 1.68 ± 0.06 m, and 61.18 ± 9.58 kg) volunteered to participate in this study. The participants were all active physical education students but none of them were familiarized with sprint cycling or arm cranking before participation in the study. Before any data collection, all participants were fully informed of the possible risk and discomfort associated with the experimental procedures and gave written informed consent. The experimental protocol was approved by the Institutional Review Board of the University and carried out according to the guidelines of the Declaration of Helsinki.
The above relationship was transformed as follows [33]:

\[V = V_0 \left(1 - \frac{F}{F_0} \right). \]

(2)

In this equation, \(V_0 \) and \(F_0 \) corresponded to the intercepts with the velocity axis and force axis, respectively (\(V_0 = a \) and \(F_0 = a/b \)). Since a linear relationship between \(F \) and \(V \) was assumed, \(P_{\text{max}} \) corresponded to an optimal velocity and an optimal braking force equal to 0.5\(V_0 \) and 0.5\(F_0 \), respectively. Hence, \(P_{\text{max}} \) was calculated as follows [5, 33]:

\[P_{\text{max}} = 0.5V_0 \times 0.5F_0 = 0.25V_0F_0. \]

(3)

The performance variables were expressed in absolute units and according to dimensional scaling. \(V_0 \) was expressed in absolute unit (rpm) and relative to body height (rpm \(\cdot \) BH\(^{-1} \)). \(F_0 \) was expressed in absolute unit (kg) and relative to body mass raised to the power of 0.67 (kg \(\cdot \) BM\(^{-0.67} \)). \(P_{\text{max}} \) was expressed in absolute unit (W) and relative to body mass (W \(\cdot \) BM\(^{-1} \)).

2.3. Relation between the Variabilities of \(F_0 \) and \(V_0 \). The variability of \(F_0 \) and \(V_0 \) between the second and first sessions (\(\Delta F_{0.2.1} \) and \(\Delta V_{0.2.1} \)) and between the third and second sessions (\(\Delta F_{0.3.2} \) and \(\Delta V_{0.3.2} \)) was calculated according to the following formulas:

\[\Delta F_{0.2.1} = 100 \frac{F_{0.2} - F_{0.1}}{F_{0.1}}, \]

\[\Delta F_{0.3.2} = 100 \frac{F_{0.3} - F_{0.2}}{F_{0.2}}, \]

(4)

\[\Delta V_{0.2.1} = 100 \frac{V_{0.2} - V_{0.1}}{V_{0.1}}, \]

\[\Delta V_{0.3.2} = 100 \frac{V_{0.3} - V_{0.2}}{V_{0.2}}. \]

2.4. Statistical Analyses. Statistical procedures were carried out using Statistica 7.1 Software (StatSoft, France). Data of \(V_0 \), \(F_0 \), and \(P_{\text{max}} \) are presented as mean and standard deviation (mean \(\pm \) SD). Before statistical analysis, each performance variable was tested for normality with the Shapiro-Wilk test. With the assumption of normality confirmed, systematic change in performance from trials 1 to 3 was examined using one-way ANOVA with repeated measures and a Tukey’s post hoc test. All significance thresholds were set at \(P < 0.05 \).

Absolute reliability, which concerns the consistency of individual’s scores [36], was determined using the standard error of measurement SEM and the coefficient of variation (CV) using the following formulas [37]:

\[\text{SEM} = \frac{\text{SD}_{\text{diff}}}{\sqrt{2}}, \]

(5)

\[\text{CV} \% = \frac{\text{SEM}}{\text{Mean}} \times 100, \]

where SD\(_{\text{diff}} \) was the standard deviation of the differences between consecutive session tests (i.e., sessions 1 and 2 and sessions 2 and 3).

Relative reliability, which concerns the consistency of individual’s position in the group relative to others [36], was assessed using the intraclass correlation coefficient of twoway random effects model with single measure for each pair of consecutive session tests (i.e., sessions 1 and 2 and sessions 2 and 3) as follows:

\[\text{ICC}(2,1) = \frac{\text{MS}_p - \text{MS}_E}{\text{MS}_p + \text{MS}_E + 2(\text{MS}_p - \text{MS}_E)/n}. \]

(6)

In this formula \(\text{MS}_p \) represents the participant mean square, \(\text{MS}_E \) represents the error mean square, \(k \) is the number of trials, \(\text{MS}_F \) represents the trials mean square, and \(n \) is the number of participants. The ICC is considered as high for values above 0.90, moderate for values between 0.80 and 0.90, and low for values below 0.80 [38].

In addition, the test-retest correlation coefficient (\(r_{\text{test-retest}} \)) was calculated for each pair of consecutive session tests in order to compare the results of the present study to the data in the literature [29]. The Bland-Altman plots were used to check for heteroscedasticity [28].

3. Results

3.1. Variations in Body Mass (BM). For the arm tests, the differences in BM between the sessions were equal to \(-0.08 \pm 0.754 \) kg (\(\Delta S_2 - S_1 \)), \(0.305 \pm 0.669 \) kg (\(\Delta S_3 - S_2 \)), and \(0.225 \pm 0.916 \) kg (\(\Delta S_3 - S_1 \)) in men and \(0.129 \pm 0.512 \) kg (\(\Delta S_2 - S_1 \)), \(0.006 \pm 0.553 \) kg (\(\Delta S_3 - S_2 \)), and \(0.124 \pm 0.529 \) kg (\(\Delta S_3 - S_1 \)) in women.

For the leg tests, the differences in BM between the sessions were equal to \(0.090 \pm 0.704 \) kg (\(\Delta S_2 - S_1 \)), \(0.255 \pm 0.737 \) kg (\(\Delta S_3 - S_2 \)), and \(0.345 \pm 0.944 \) kg (\(\Delta S_3 - S_1 \)) in men and \(0.288 \pm 0.499 \) kg (\(\Delta S_2 - S_1 \)), \(-0.206 \pm 0.536 \) kg (\(\Delta S_3 - S_2 \)), and \(0.08 \pm 0.591 \) kg (\(\Delta S_3 - S_1 \)) in women.

3.2. \(V_0 \), \(F_0 \), and \(P_{\text{max}} \) in the Three Sessions. The individual values of \(F_0 \) and \(V_0 \) measured in the three sessions are presented in Table 1. The branches of hyperbola (i.e., continuous and dashed curves) in Figure 1 correspond to the participants with different combinations of \(F_0 \) and \(V_0 \) but the same value of \(P_{\text{max}} \). The means \(\pm \) SD and ranges of \(P_{\text{max}}, F_0, V_0, P_{\text{max}} \cdot \text{BM}^{-1}, F_0 \cdot \text{BM}^{-1}, F_0 \cdot \text{BM}^{-0.67}, V_0 \cdot \text{BH}^{-1} \) measured in the different sessions are presented in Tables 1 and 2 and Figures 1 and 2. In Table 1 and Figure 1, BM corresponded to the body mass measured during each session whereas BM was equal to the average of the three measures of BM in Figure 2.

All the differences between men and women were highly significant (\(P < 0.001 \)) even when the data were related to body mass (\(P_{\text{max}} \cdot \text{BM}^{-1}, F_0 \cdot \text{BM}^{-1}, \) and \(F_0 \cdot \text{BM}^{-0.67} \)). The significance level of the difference in \(V_0 \cdot \text{BH}^{-1} \) between men and women was equal to \(P < 0.05 \), only.

3.3. Reliability. The one-way ANOVA with repeated measure showed a significant main effect of trial on \(V_0 \) in men (\(F_{(2,36)} = 11.48, P < 0.001 \) and \(F_{(2,36)} = 6.93, P < 0.01 \), for cycling
and cranking, resp.) and women ($F_{(2,32)} = 4.55, P < 0.05$ and $F_{(2,32)} = 6.10, P < 0.01$, for cycling and cranking, resp.). Tukey's post hoc tests revealed that V_0 at session 1 was significantly lower by comparison to sessions 2 and 3. In contrast, there was no significant main effect of sessions on F_0 and P_{max} for arms and legs in men and women ($P > 0.05$).

The CV (%) of V_0, F_0, and P_{max} are presented in Tables 3 and 4. The highest CV values were obtained for F_0 by comparison with V_0 and P_{max}. The greatest CV values were observed for cranking exercises in female participants.

The values of $r_{\text{test-retest}}$ are presented in Tables 3 and 4. The values of $r_{\text{test-retest}}$ increased for the correlations between sessions 2 and 3 when compared with the correlations between sessions 1 and 2. Except F_0 with the arms in women, the lowest $r_{\text{test-retest}}$ were observed for V_0.

For the correlations between the results of the first and second sessions, the values of $r_{\text{test-retest}}$ for F_0 were significantly different between cycling and cranking but in the female group, only ($P = 0.030$ for F_0; $P = 0.036$ for F_0 related to BM$^{-0.67}$). Similarly, the values of $r_{\text{test-retest}}$ between the first and second sessions were significantly different between male and female groups for F_0 and P_{max} ($P = 0.007$ for F_0, $P = 0.005$ for F_0 related to BM$^{-0.67}$, and $P = 0.047$ for P_{max} in watts). For the correlations between the results of the second and third sessions, the values of $r_{\text{test-retest}}$ for F_0 and P_{max} were significantly different between cycling and cranking but in the female group, only ($P = 0.01$ for F_0; $P = 0.006$ for F_0 related to BM$^{-0.67}$ and $P = 0.023$ for P_{max} in watts). All the other comparisons of $r_{\text{test-retest}}$ between men and women or cycling and cranking were not significantly different.
Table 2: Parameters P_{max}, F_0, and V_0 (means, SD, and range) computed from the force-velocity tests performed with legs or arms by women in sessions 1, 2, and 3.

	Session 1	Session 2	Session 3
V_0 rpm	200 ± 12 (179–215)	203 ± 15 (171–223)	203 ± 13 (176–221)
rpm-BH$^{-1}$	1.19 ± 0.09 (1.00–1.35)	1.21 ± 0.10 (1.04–1.36)	1.21 ± 0.09 (1.00–1.32)
F_0 kg	13.3 ± 2.6 (9.8–17.9)	12.9 ± 2.4 (9.2–18.1)	13.2 ± 2.3 (9.5–17.5)
kg-BM$^{-1}$	0.22 ± 0.02 (0.19–0.25)	0.21 ± 0.02 (0.16–0.26)	0.21 ± 0.02 (0.19–0.25)
kg-BM$^{-0.67}$	0.84 ± 0.09 (0.69–1.01)	0.82 ± 0.10 (0.69–1.01)	0.83 ± 0.09 (0.69–0.99)
P_{max} W	662 ± 130 (430–907)	655 ± 136 (428–914)	668 ± 131 (443–893)
W-BM$^{-1}$	10.8 ± 1.1 (8.3–12.4)	10.7 ± 1.4 (7.5–12.9)	10.9 ± 1.3 (8.4–13.3)

	Session 1	Session 2	Session 3
V_0 rpm	203 ± 17 (170–237)	210 ± 16 (174–242)	209 ± 16 (183–244)
rpm-BH$^{-1}$	1.21 ± 0.11 (1.03–1.37)	1.25 ± 0.10 (1.07–1.41)	1.25 ± 0.10 (1.41–1.10)
F_0 kg	7.4 ± 1.0 (5.6–9.0)	7.3 ± 0.8 (6.0–8.5)	7.3 ± 1.0 (5.4–8.7)
kg-BM$^{-1}$	0.12 ± 0.01 (0.10–0.14)	0.12 ± 0.01 (0.09–0.15)	0.12 ± 0.01 (0.09–0.14)
kg-BM$^{-0.67}$	0.47 ± 0.04 (0.39–0.54)	0.47 ± 0.04 (0.38–0.55)	0.46 ± 0.05 (0.38–0.54)
P_{max} W	375 ± 61 (237–466)	386 ± 59 (276–491)	380 ± 63 (257–482)
W-BM$^{-1}$	6.2 ± 0.8 (4.6–7.7)	6.4 ± 0.8 (5.1–7.6)	6.3 ± 0.9 (4.9–7.7)

Figure 2: Results of the force-velocity tests (means ± SD) in the three sessions related to body dimensions (F_0 related to BM and BM$^{-0.67}$, V_0 related to BH, and P_{max} related to BM). Black points, exercises performed with the legs; empty circle, exercises performed with the arms.
Table 3: Differences between sessions 1 and 2; coefficients of variation (CV), intraclass correlation coefficients (ICC), and test-retest correlation coefficients ($r_{\text{test-retest}}$) for V_0, F_0, and P_{max} for the leg or arm force-velocity tests in men and women.

	Men	Arms	Legs	Women	Arms
V_0 rpm	4.28	5.30	5.80	6.67	5.30
F_0 rpm BH^{-1}	0.02	0.03	0.03	0.04	0.04
P_{max} W	0.59	0.48	0.73	0.58	0.58
CV (%)	1.89	2.21	2.88	3.23	2.23
F_0 kg	3.01	3.69	5.60	7.84	5.69
P_{max} W	2.63	3.19	3.71	5.69	3.83
ICC	0.79	0.78	0.85	0.80	0.80
$r_{\text{test-retest}}$	0.79	0.78	0.85	0.80	0.80

The ICC of each performance variable across sessions 1 and 2 and sessions 2 and 3 in male and female participants are presented in Tables 3 and 4. The values of ICC improved for sessions 2 and 3 by comparison with sessions 1 and 2. Excepting F_0 with the arms in female participants, the lowest ICC values were observed for V_0.

3.4. Relation between the Variabilities of F_0 and V_0. The variability of F_0 ($\Delta F_0^{2.1}$ or $\Delta F_0^{3.2}$) was significantly correlated with the variability of V_0 ($\Delta V_0^{2.1}$ or $\Delta V_0^{3.2}$) as shown in Figure 3:

in men:

$\Delta F_0^{\text{legs}}_{2.2} = 215 - 1.12 \Delta V_0^{\text{legs}}_{2.2}$, $r = 0.644; P = 0.005,$ (7)

in women:

$\Delta F_0^{\text{arms}}_{2.1} = 184 - 0.83 \Delta V_0^{\text{arms}}_{2.1}$, $r = 0.503; P = 0.024,$ (8)

4. Discussion

In the present investigation, we studied the reliability of P_{max}, V_0, and F_0 during cycling and arm cranking exercises in active men and women. In order to study the reliability
Table 4: Differences between sessions 2 and 3; coefficients of variation (CV), intraclass correlation coefficients (ICC), and test-retest correlation coefficients ($r_{test-retest}$) for V_0, F_0, and P\textsubscript{max} for the leg or arm force-velocity tests in men and women.

	Men		Women		
	Legs	Arms	Legs	Arms	
SEM					
V_0	rpm	3.97	5.74	4.76	6.01
	rpm•BH$^{-1}$	0.02	0.03	0.03	0.04
F_0	kg	0.65	0.56	0.50	0.51
	kg•BM$^{-0.67}$	0.01	0.03	0.03	0.03
P_{max}	W	29.8	26.3	19.1	20.6
	W•BM$^{-1}$	0.38	0.32	0.27	0.33
CV					
V_0	rpm	1.74	2.37	2.35	2.87
	rpm•BH$^{-1}$	1.74	2.37	2.34	2.91
F_0	kg	3.34	4.36	3.85	7.01
	kg•BM$^{-0.67}$	3.26	4.21	3.56	7.04
P_{max}	W	2.67	3.35	2.88	5.37
	W•BM$^{-1}$	2.63	3.16	2.50	5.17
ICC					
V_0	rpm	0.90	0.87	0.88	0.86
	rpm•BH$^{-1}$	0.93	0.87	0.91	0.87
F_0	kg	0.95	0.89	0.95	0.69
	kg•BM$^{-0.67}$	0.92	0.82	0.90	0.44
P_{max}	W	0.97	0.95	0.98	0.89
	W•BM$^{-1}$	0.94	0.92	0.95	0.85
$r_{test-retest}$					
V_0	rpm	0.90	0.88	0.89	0.86
	rpm•BH$^{-1}$	0.93	0.88	0.91	0.86
F_0	kg	0.96	0.89	0.96	0.70
	kg•BM$^{-0.67}$	0.92	0.81	0.92	0.44
P_{max}	W	0.97	0.95	0.98	0.89
	W•BM$^{-1}$	0.94	0.92	0.97	0.85

of these parameters, force-velocity tests on cycle ergometer were separately repeated three times in different sessions for each exercise. It was assumed that reliability was lower (1) in women than in men and (2) for cranking force-velocity tests than for cycling tests. The results of the present study were in agreement with this hypothesis: the reliability indices were better for the men and the leg indices when compared with the women and arm indices (Tables 3 and 4). Whatever the force-velocity parameter (V_0, F_0, and P_{max}), familiarisation sessions might be more important for women and arm tests as indicated by the lower values of CV in men and leg tests when the results of the first and second sessions were compared (Table 3).

The reliability of P_{max} was similar to the reliability of the different indices of maximal power in previous studies. For example, the reliability of the results of the Wingate is good for the peak power ($r_{test-retest}$ > 0.90) and the mean power ($r_{test-retest}$ between 0.91 and 0.93) [1, 2, 22], in contrast with the reliability of the fatigue index ($r_{test-retest}$ = 0.43). Similarly, the reliability of the power indices measured with the different force-velocity protocols was high when measured with isokinetic cycle ergometers [3, 4, 9], friction-loaded ergometers [23, 24, 26], or the inertial load method [6, 25]. In a study by Winter et al. [23], the maximal power computed during the acceleration phase (P_{corr}) estimated according to Lakomy [10] was 10% higher than P_{max} but the reliability of P_{corr} was lower ($r_{test-retest}$: 0.530 for P_{corr} versus 0.972 for P_{max} in men, and 0.922 for P_{corr} versus 0.952 for P_{max} in women). In the same study of Winter et al. [23], the CV values of P_{corr} were higher in men (6.9% for P_{corr} versus 2.7% for P_{max}) but not in women (3.7% for P_{corr} versus 4.2% for P_{max}). Furthermore, according to Winter et al. [23], these results of optimization procedures (i.e., the method of Vandewalle et al. [5]) add further support and have secure foundations than those enjoyed by correction procedures [10]. For arm exercises, Smith et al. [39] reported CV values of 4.5% for P_{corr} and 2.8% for P_{max}. It is likely that the lower reliability of P_{corr} is explained by oscillations of P_{corr} (product of V and F_{corr} that takes into account not only the braking force but also the force necessary for the flywheel acceleration). On isokinetic cycle ergometers, the coefficients of variation of the slope and intercept of
the regression between torque and pedal rate were 13.7 and 10.5%, respectively [4].

The values of CV of V_0, F_0, and P_{max} in the present study were similar to the values of CV for the different parameters measured with the inertial method (4 trials on the same day): 3.3% for PP_{corr}, 2.7% for V_0, and 4.4% for T_0 [6]. For friction-loaded ergometers, the reliability of the force-velocity parameters in cycling has been tested in male physical education students [26]. For F_0 and P_{max}, SEE was lower than 5% and $r_{\text{test-retest}}$ or ICC were higher than 0.90 as in the present study for the cycling force-velocity test in the male participants. However, the comparison and the validity of the reliability indices must take into account the characteristics of the data [28, 37]. The data are said to be homoscedastic when the random error does not depend on the size of the measured value. Homoscedastic errors are generally expressed in the same units as those of their measurements and they can be analysed with conventional parametric analyses. SEM is valid when the data are homoscedastic. The data are said to be heteroscedastic when the random error increases as the measured values increase. Heteroscedastic data should be measured on a ratio scale (e.g., percentage) and be investigated with an analysis based on nonparametric analyses (i.e., rank tests). CV is valid even when the data are heteroscedastic. The heterogeneity of values between participants influences the results of the reliability tests.

1. The coefficient of correlation of test-retest ($r_{\text{test-retest}}$) is sensitive to the heterogeneity of data between participants.

2. The effect of heteroscedasticity on the observed “errors” in a test-retest is low when the data range is narrow.

The spread of the data between participants is different for V_0, F_0, and P_{max} expressed in percentage of the group averages even when they are related to body dimension (Table 5). Heteroscedasticity was expected for V_0, F_0, and P_{max} raw data. However, this expectation was not confirmed with Bland-Altman plots of these data, especially in men (Figure 4). The data ranges of parameters V_0, F_0, and P_{max} were lower than 62% in men (Table 5), which could partly explain that heteroscedasticity was not suggested by the Bland-Altman plots of V_0, F_0, and P_{max} raw data (Figure 4).
women, the data ranges were larger than in men when the
ranges were expressed as percentages of the means (Table 5)
but the correlations of the absolute values of the differences
versus the means of the results in the first and second
sessions (Figure 5) were not significant. All other things
being equal, the differences between sessions are probably
lower in well-motivated individuals and experts in cycling
and the average of their performances in sessions 1 and 2
should be higher (and inversely for the nonexperts and
not motivated individuals). Therefore, the effects of motivation
and expertise can alter the results of the Bland-Altman plot
in this kind of physical tests.

As in the study by Attiogbé et al. [26], the values of
r\text{test-retest} and ICC were lower for \(V_0 \) than for \(F_0 \) and \(P_{max} \),
which can be partly explained by the smaller variance of this
parameter. Indeed, the range of \(V_0 \) is smaller (Table 5) than
the range of \(F_0 \) and \(P_{max} \). The small variance of \(V_0 \) in the
present study is probably an expression of the small variance
of \(V_0 \) when compared with the variances of \(F_0 \) and \(P_{max} \) in a
general athletic population [35]. The small range of \(V_0 \) also
probably explains that the values of CV in men and women
were lower for \(V_0 \) than for \(F_0 \) and \(P_{max} \) in the cycling as well as
the cranking force-velocity tests. Excepting the study by
Busko [21], there is no data about the changes in \(V_0 \) during
an annual training cycle and, therefore, it is difficult to know
whether its reliability is good enough for the estimation of the
training effect on this parameter.

The ranges of \(F_0 \) and \(P_{max} \) were similar but the values of
r\text{test-retest} or ICC were higher for \(P_{max} \) than for \(F_0 \) (and \(V_0 \)). It is
likely that the variations in \(V_0 \) and \(F_0 \) between sessions are not
totally independent (Figure 3). Indeed, the values of \(V_0 \) and
\(F_0 \) are extrapolated from the relationship between braking
force and peak velocity. An underestimation of the peak
velocity corresponding to the highest braking force induces a
less negative slope of the F-V regression line and, consequently,
and overestimation of \(F_0 \) in addition to
an underestimation of \(V_0 \). The value of \(P_{max} \) depends on \(F_0 \)
and \(V_0 \) and the effect of an underestimation of \(V_0 \) on \(P_{max} \)
should be compensated by the effect of an overestimation of
\(F_0 \), and vice versa. This could partly explain why the values of
r\text{test-retest}, ICC, or CV were better for \(P_{max} \) than for \(F_0 \).

The values of \(V_0 \), \(F_0 \), and \(P_{max} \) were lower in women than in
men. The differences in BH and BM were not the only
explanations of the lower values of \(V_0 \), \(F_0 \), and \(P_{max} \) in women.
Indeed, these differences were still significant when force-
velocity parameters were related to BH or BM (\(V_0 \cdot BH^{-1} \),
\(F_0 \cdot BM^{-0.67} \), and \(P_{max} \cdot BM^{-1} \)). This gender effect could partly
be explained by a difference in muscle fiber composition as,
for example, the higher percentage of the cross-sectional area
that corresponds to the slow fibers in women [40–42]. The
lower values of \(F_0 \cdot BM^{-0.67} \), \(F_0 \cdot BM^{-1} \), and \(P_{max} \cdot BM^{-1} \) might
partly be explained by a lower percentage of lean body mass
in women. The lower values of r\text{test-retest} in women cannot be
explained by a lower range of the individual data (Table 5).
The lower reliability in women might partly be explained by
the effect of menstrual cycle, but it is possible that this effect
is less important in trained women because training might
reduce the cyclical hormonal fluctuations [29].

The variability of \(F_0 \) and \(P_{max} \) depends on the variability
of BM when these data are related to body mass \((F_0 \cdot BM^{-1} \),
\(F_0 \cdot BM^{-0.67} \), and \(P_{max} \cdot BM^{-1} \)). In spite of the instructions about
diet, hydration, and training, the standard deviations of the
differences in BM between the sessions were not negligible
(<1.25% of BM).

5. Methodological Considerations

To the best of our knowledge, this is the first study examining
the reliability of force-velocity tests on cycle ergometer during
sprint cycling and arm cranking exercises in active men and
women. One of the limitations inherent to the experimental

Table 5: Ranges of parameters \(V_0, F_0, \) and \(P_{max} \) **expressed in percentage of the means of the male or female groups.**

	Men	Women
	Session 1	Session 2
	Session 3	Session 1
	Session 2	Session 3
	Session 1	Session 2
	Session 3	Session 3
\(V_0 \)	20.5	18.9
\(V_0 \cdot BH^{-1} \)	24.7	25.2
\(F_0 \)	51.5	54.0
\(F_0 \cdot BM^{-0.67} \)	38.1	38.6
\(P_{max} \)	50.0	49.0
\(P_{max} \cdot BM^{-1} \)	43.5	44.2
\(V_0 \)	19.4	20.6
\(V_0 \cdot BH^{-1} \)	19.5	18.0
\(F_0 \)	57.6	54.3
\(F_0 \cdot BM^{-0.67} \)	40.9	37.0
\(P_{max} \)	58.8	54.4
\(P_{max} \cdot BM^{-1} \)	37.7	40.1
 protocol in the present study is that the crank length was the same for all participants. The usual crank length is probably higher than the optimal length in small participants, which could partially explain the lower reliability in women. Therefore, familiarization sessions are required in small participants.

6. Conclusion

The present study showed high reliability of P_{max} and F_0, allowing the use of these parameters in longitudinal evaluations. Furthermore, the reliability of P_{max} was better than that of F_0 whatever the expression of the results (expressed...
Figure 5: Plot of the absolute differences between the results of sessions 1 and 2 (ordinates) and the individual means (abscissae) for P_{max} (a) and F_0 (b) in women.

in absolute unit or data related to body dimension). The reliability indices were also better in men and cycling force-velocity tests than in women and cranking force-velocity tests. Further studies are needed to judge the reliability of V_0.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] A. Ayalon, O. Inbar, and O. Bar-Or, “Relationships among measurements of explosive strength and anaerobic power,” in Biomechanics IV, R. C. Nelson and C. A. Morehouse, Eds., International Series on Sports Sciences, pp. 527–532, University Park Press, Baltimore, Md, USA, 1974.

[2] O. Bar-Or, “The Wingate anaerobic test: an update on methodology, reliability and validity,” *Sports Medicine*, vol. 4, no. 6, pp. 381–394, 1987.

[3] A. J. Sargeant, E. Hoinville, and A. Young, “Maximum leg force and power output during short-term dynamic exercise,” *Journal of Applied Physiology Respiratory Environmental and Exercise Physiology*, vol. 51, no. 5, pp. 1175–1182, 1981.

[4] N. McCartney, G. J. F. Heigenhauser, A. J. Sargeant, and N. L. Jones, “A constant-velocity cycle ergometer for the study of dynamic muscle function,” *Journal of Applied Physiology Respiratory Environmental and Exercise Physiology*, vol. 55, no. 1, pp. 212–217, 1983.

[5] H. Vandewalle, G. Péreès, J. Heller, and H. Monod, “All out anaerobic capacity tests on cycle ergometers. A comparative study on men and women,” *European Journal of Applied Physiology and Occupational Physiology*, vol. 54, no. 2, pp. 222–229, 1985.

[6] J. C. Martin, B. M. Wagner, and E. F. Coyle, “Inertial-load method determines maximal cycling power in a single exercise bout,” *Medicine & Science in Sports & Exercise*, vol. 29, no. 11, pp. 1505–1512, 1997.

[7] D. Seck, H. Vandewalle, N. Decrops, and H. Monod, “Maximal power and torque velocity relationship on a cycle ergometer during the acceleration phase of a single all-out exercise,” *European Journal of Applied Physiology and Occupational Physiology*, vol. 70, no. 2, pp. 161–168, 1995.

[8] L. M. Arsac, A. Belli, and J.-R. Lacour, “Muscle function during brief maximal exercise: accurate measurements on a friction loaded cycle ergometer,” *European Journal of Applied Physiology and Occupational Physiology*, vol. 74, no. 1-2, pp. 100–106, 1996.

[9] R. Baron, N. Bachl, R. Petschnig, H. Tschan, G. Smekal, and R. Pokan, “Measurement of maximal power output in isokinetic and non-isokinetic cycling. A comparison of two methods,” *International Journal of Sports Medicine*, vol. 20, no. 8, pp. 532–537, 1999.

[10] H. K. A. Lakomy, “Measurement of work and power output using friction-loaded cycle ergometers,” *Ergonomics*, vol. 29, no. 4, pp. 509–517, 1986.

[11] S. Dickinson, “The dynamics of bicycle pedalling,” *Proceedings of the Royal Society of London—Series B, Containing Papers of a Biological Character*, vol. 103, no. 724, pp. 225–233, 1928.

[12] O. Inbar, P. Kaiser, and P. Tesch, “Relationships between leg muscle fibre type distribution and leg exercise performance,” *International Journal of Sports Medicine*, vol. 2, no. 3, pp. 154–159, 1981.

[13] W. Kaczkowski, D. L. Montgomery, A. W. Taylor, and V. Klissouras, “The relationship between muscle fiber composition and maximal anaerobic power and capacity,” *The Journal of Sports Medicine and Physical Fitness*, vol. 22, no. 4, pp. 407–413, 1982.

[14] E. A. Froese and M. E. Houston, “Performance during the Wingate anaerobic test and muscle morphology in males and females,” *International Journal of Sports Medicine*, vol. 8, no. 1, pp. 35–39, 1987.

[15] M. Esjornsson, C. Sylvén, I. Holm, and E. Jansson, “Fast twitch fibres may predict anaerobic performance in both females and males,” *International Journal of Sports Medicine*, vol. 14, no. 5, pp. 257–263, 1993.

[16] T. Driss, D. Lambertz, M. Rouis, and H. Vandewalle, “Influence of musculo-tendinous stiffness of the plantar ankle flexor muscles upon maximal power output on a cycle ergometer,” *European Journal of Applied Physiology*, vol. 112, no. 11, pp. 3721–3728, 2012.
power output of legs and arms: effects of ethnicity and sport,” Scandinavian Journal of Medicine and Science in Sports, 2014.

[33] H. Vandewalle, G. Peres, J. Heller, J. Panel, and H. Monod, “Force-velocity relationship and maximal power on a cycle ergometer. Correlation with the height of a vertical jump;” European Journal of Applied Physiology and Occupational Physiology, vol. 56, no. 6, pp. 650–656, 1987.

[34] J. R. McLester, J. M. Green, and J. L. Chouinard, “Effects of standing vs. seated posture on repeated wingate performance,” Journal of Strength and Conditioning Research, vol. 18, no. 4, pp. 816–820, 2004.

[35] T. Driss and H. Vandewalle, “The measurement of maximal (Anaerobic) power output on a cycle ergometer: a critical review,” BioMed Research International, vol. 2013, Article ID 589361, 40 pages, 2013.

[36] J. P. Weir, “Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM,” Journal of Strength and Conditioning Research, vol. 19, no. 1, pp. 231–240, 2005.

[37] W. G. Hopkins, “Measures of reliability in sports medicine and science,” Sports Medicine, vol. 30, no. 1, pp. 1–15, 2000.

[38] W. Vincent, Statistics in Kinesiology, Human Kinetics, 2004.

[39] P. M. Smith, M. J. Price, R. C. R. Davison, D. Scott, and J. Balmer, “ reproducibility of power production during sprint arm ergometry,” Journal of Strength and Conditioning Research, vol. 21, no. 4, pp. 1315–1319, 2007.

[40] G. Oertel, “Morphometric analysis of normal skeletal muscles in infancy, childhood and adolescence. An autopsy study,” Journal of the Neurological Sciences, vol. 88, no. 1–3, pp. 303–313, 1988.

[41] R. S. Staron, F. C. Hagerman, R. S. Hikida et al., “Fiber type composition of the vastus lateralis muscle of young men and women,” Journal of Histochemistry and Cytochemistry, vol. 48, no. 5, pp. 623–629, 2000.

[42] G. R. Chalmers and B. S. Row, “Common errors in textbook descriptions of muscle fiber size in nontrained humans,” Sports Biomechanics, vol. 10, no. 3, pp. 254–268, 2011.