Mutations in gfpt1 and skiv2l2 cause distinct stage-specific defects in larval melanocyte regeneration in zebrafish

Chao-Tsung Yang
Washington University School of Medicine in St. Louis

Anna E. Hindes
Washington University School of Medicine in St. Louis

Keith A. Hultman
Washington University School of Medicine in St. Louis

Stephen L. Johnson
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Part of the Medicine and Health Sciences Commons

Recommended Citation

Yang, Chao-Tsung; Hindes, Anna E.; Hultman, Keith A.; and Johnson, Stephen L., "Mutations in gfpt1 and skiv2l2 cause distinct stage-specific defects in larval melanocyte regeneration in zebrafish." *PLoS Genetics*. 3,6. e88. (2007).
https://digitalcommons.wustl.edu/open_access_pubs/873

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Mutations in gfpt1 and skiv2l2 Cause Distinct Stage-Specific Defects in Larval Melanocyte Regeneration in Zebrafish

Chao-Tsung Yang, Anna E. Hindes, Keith A. Hultman, Stephen L. Johnson*

Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States

The establishment of a single cell type regeneration paradigm in the zebrafish provides an opportunity to investigate the genetic mechanisms specific to regeneration processes. We previously demonstrated that regeneration melanocytes arise from cell division of the otherwise quiescent melanocyte precursors following larval melanocyte ablation with a small molecule, MoTP. The ease of ablating melanocytes by MoTP allows us to conduct a forward genetic screen for mechanisms specific to regeneration from such precursors or stem cells. Here, we report the identification of two mutants, eartha23e1a and julie24e1a, from a melanocyte ablation screen. Both mutants develop normal larval melanocytes, but upon melanocyte ablation, each mutation results in a distinct stage-specific defect in melanocyte regeneration. Positional cloning reveals that the eartha23e1a mutation is a nonsense mutation in gfpt1 (glutamine:fructose-6-phosphate aminotransferase 1), the rate-limiting enzyme in glucosamine-6-phosphate biosynthesis. Our analyses reveal that a mutation in gfpt1 specifically affects melanocyte differentiation (marked by melanin production) at a late stage during regeneration and that gfpt1 acts cell autonomously in melanocytes to promote ontogenetic melanocyte darkening. We identified that the julie24e1a mutation is a splice-site mutation in skiv2l2 (superkiller viralicidic activity 2-like 2), a predicted DEAD-box RNA helicase. Our in situ analysis reveals that the mutation in skiv2l2 causes defects in cell proliferation, suggesting that skiv2l2 plays a role in regulating melanoblast proliferation during early stages of melanocyte regeneration. This finding is consistent with previously described role for cell division during larval melanocyte regeneration. The analyses of these mutants reveal their stage-specific roles in melanocyte regeneration. Interestingly, these mutants identify regeneration-specific functions not only in early stages of the regeneration process, but also in late stages of differentiation of the regenerating melanocyte. We suggest that mechanisms of regeneration identified in this mutant screen may reveal fundamental differences between the mechanisms that establish differentiated cells during embryogenesis, and those involved in larval or adult growth.

Introduction

Regeneration and turnover of cells and tissues are essential in many vertebrates, including humans. Tissue homeostasis and regeneration have often been demonstrated to act through recruiting quiescent undifferentiated precursors or stem cells to re-enter developmental programs reminiscent of embryonic mechanisms. The mechanisms regulating these processes are critical for maintaining normal physiology. For instance, uncontrolled growth of undifferentiated precursors or stem cells has been suggested to cause many types of cancers, including leukemia and skin cancer [1–5]. However, little is known about the genes and pathways that specifically regulate these precursors or stem cells. The fact that the differentiation and physiological states of adult animals are very distinct from embryos raises the possible existence of pathways or mechanisms specific to regeneration or to those mechanisms that regulate the development of these undifferentiated cells. Such mechanisms may play roles in establishing the precursors or stem cells during embryogenesis, maintaining them throughout development, or recruiting them at the adult stages for growth, regeneration, or tissue homeostasis. Understanding the mechanisms specific to regeneration or homeostasis will provide insight into the regulation of stem cells, which may lead to the development of therapies for many human diseases.

Regeneration studies are classically performed by amputating a mass of continuous tissues, such as a limb or a portion of an organ, and investigating how organisms coordinate multiple types of cells or tissues [6,7]. Recently, mutations in gfpt1 and skiv2l2 cause distinct stage-specific defects in larval melanocyte regeneration in zebrafish.
Author Summary

Programs of ontogenetic development and regeneration share many components. Differences in genetic requirements between regeneration and development may identify mechanisms specific to the stem cells that maintain cell populations in postembryonic stages, or identify other regeneration-specific functions. Here, we utilize a forward genetic approach that takes advantage of single cell type ablation and regeneration to isolate mechanisms specific to regeneration of the zebrafish melanocyte. Upon chemical ablation of melanocytes, zebrafish larvae reconstitute their larval pigment pattern from undifferentiated precursors or stem cells. We isolated two zebrafish mutants that develop embryonic melanocytes normally but fail to regenerate their melanocytes upon ablation. This phenotype suggests the regeneration-specific roles of the mutated genes. We further identified the mutations in gfp1 and skiv2l2 and show their stage-specific roles in melanocyte regeneration. Interestingly, these mutants identify regeneration-specific functions not only in early stages of the regeneration process (skiv2l2), but also in late stages of differentiation of the regenerating melanocyte (gfp1). We suggest that mechanisms of regeneration identified in this mutant screen may reveal fundamental differences between the mechanisms that establish differentiated cells during embryogenesis and those involved in larval or adult growth.

Results

Mutations Specific to Larval Melanocyte Regeneration

To understand the genetic mechanisms underlying larval melanocyte regeneration, we conducted a parthenogenesis or early-pressure (EP) screen for mutations that specifically block larval melanocyte regeneration, but allow ontogenetic melanocyte development during embryogenesis. We ablated larval melanocytes by incubating embryos in MoTP from 14 to 72 hours postfertilization (hpf) and scored their melanocyte regeneration at 5–8 days postfertilization (dpf) when wild-type larvae have regenerated many melanocytes (Figure 1A and 1B) [9]. Among the 648 EP clutches generated, 421 clutches had more than ten individuals survive through the early pressure and MoTP incubation procedure for melanocyte regeneration analysis. A total of 29 of these clutches and their F1 mothers were kept as putative mutants, because each of these EP clutches had at least one individual lacking melanocytes after MoTP washout. In addition to these 421 clutches, seven small clutches (fewer than ten surviving presumably to convert MoTP into cytotoxic quinone species. Following melanocyte ablation by MoTP, regeneration melanocytes arise from cell division of the otherwise quiescent melanocyte precursors that we suggest are equivalent to adult stem cells [9]. The ease of ablating larval melanocytes by MoTP allows us to conduct a forward genetic screen for mechanisms specific to regeneration from such precursors or stem cells.

Here, we report a melanocyte ablation screen in zebrafish aimed at isolating mutants that fail to regenerate melanocytes. In this mutant screen, we identified two mutants, eartha23e1 and julie24e1. These mutants have normal larval melanocyte development, but upon subsequent melanocyte ablation by MoTP, each mutant largely fails to regenerate their melanocytes. Our analyses revealed that eartha23e1 specifically affects melanocyte differentiation (marked by melanin production) at a late stage during regeneration. Positional cloning reveals that the eartha23e1 mutation is a nonsense mutation in gfp1 (glutaminedecarboxylase-6-phosphate aminotransferase 1), the rate-limiting enzyme that catalyzes the formation of glucosamine-6-phosphate in the hexosamine biosynthesis pathway [21–23]. The major end product of this pathway is UDP-N-acetylglucosamine (UDP-GlcNAc), which is one of the building blocks for glycosyl side chains for many glycoproteins and proteoglycans. Although our analyses on chondrocyte development in eartha23e1 mutants indicate that mutation in gfp1 affects the extracellular matrix (ECM) formation of cartilage, our chimera analysis reveals that gfp1 acts cell autonomously in melanocytes to promote melanocyte differentiation from dopachrome tautomerase1 (dct1); melanin to melanin stage during melanocyte regeneration.

We identified the julie24e1 mutation as a splice-site mutation in superkiller viralicidic activity 2-like 2 (skiv2l2), which is predicted as a DEAD-box RNA helicase and is proposed to function in regulating various aspects of RNA metabolism in the cells [24]. Our in situ analysis reveals that skiv2l2 plays an important role in cell proliferation at postembryonic stages, consistent with the role for cell division during melanocyte regeneration we previously described [9].
Melanocyte Regeneration Mutants

(A–F) eartha\(^{23c1}\) (C) and julie\(^{24e1}\) mutants (E) both develop larval melanocyte patterns nearly identical to wild-type larvae (A), although melanocytes in eartha\(^{23c1}\) mutants appear to have lighter pigmentation than that in the wild-type larvae. Upon larval melanocyte ablation by MoTP (14–72 hpf), wild-type larvae (B) regenerate many melanocytes at 5 dpf (arrowhead in [B]), while eartha\(^{23c1}\) (arrowhead in [D]) and julie\(^{24e1}\) (arrowhead in [F]) mutants largely fail to regenerate melanocytes. Additional phenotypes are indicated by an arrow in (C) marking a shortened pharyngeal skeleton in eartha\(^{23c1}\) mutants and by an arrow in (E) indicating small eyes and head in julie\(^{24e1}\) mutants.

(G–H) The numbers of melanocytes in the untreated (G) and MoTP-treated (H) wild-type and mutant larvae at 5 dpf.

Figure 1. Mutations Specific to Melanocyte Regeneration

individuals) were also kept since at least one of the surviving individuals showed defects in melanocyte regeneration. In total, we found 36 clutches with possible defects in melanocyte regeneration. We then excluded 12 of these 36 clutches from further characterization because additional phenotypes in onogenetic melanocyte development were observed in their haploid siblings. Among the remaining 24 possible melanocyte regeneration-specific mutants, we successfully rescreened 15 (62%) of them, either by a second EP outcross, indicating that we effectively screened approximately 263 (421 × 0.62) haploid genomes. Among these 15 possible mutant lines, only two repeated their melanocyte regeneration phenotypes. This high false positive noise could be due to the frequent developmental defects that were caused by the early pressure procedure. Because these mutagenesis protocols typically identify mutations in targeted loci at frequencies of approximately one per 1,000 haploid genomes [25, 26], our result suggests that there may be many more genes that could be found by the further exploitation of this melanocyte ablation screen. We followed our laboratory’s cat theme for naming pigment mutants. Because the Catwoman character is regenerated with each new actress that plays the role, we chose to name our two regeneration mutations, eartha\(^{23c1}\) and julie\(^{24e1}\) after Catwoman actresses Eartha Kitt and Julie Newmar.

Both eartha\(^{23c1}\) and julie\(^{24e1}\) mutants develop onogenetic melanocytes normally (Figure 1C, 1E, and 1G), but following melanocyte ablation by MoTP, eartha\(^{23c1}\) and julie\(^{24e1}\) mutants only regenerate 11.8% and 10.0%, respectively, of the normal complement of regeneration melanocytes at 5 dpf (Figure 1D, 1F, and 1H). Both eartha\(^{23c1}\) and julie\(^{24e1}\) mutations are recessive lethal, with most eartha\(^{23c1}\) mutants dying at approximately 12 dpf, and julie\(^{24e1}\) mutants dying at approximately 7–8 dpf. This raises the possibility that the larval melanocyte regeneration defects observed in eartha\(^{23c1}\) and julie\(^{24e1}\) mutants are the consequences of nonspecific larval-stage lethality rather than specific effects on melanocyte regeneration. To help rule out this possibility, we examined melanocyte regeneration in homozygous mutants for an early larval lethal mutation, rapunzel\(^{14}\) [27]. Although homozygous rapunzel\(^{14}\) larvae show many developmental defects including defects in jaw and fin-fold development (unpublished data), the number of melanocytes in rapunzel\(^{14}\) larvae is indistinguishable from that in wild-type larvae at 3 dpf (Figure 1G). By 5 dpf, almost all rapunzel\(^{14}\) larvae have severe edema and then die at approximately 6 dpf. Upon melanocyte ablation by MoTP (14–72 hpf), we found that rapunzel\(^{14}\) mutants regenerate approximately 70% of the number of the melanocytes that regenerate in wild-type larvae, 7-fold more melanocytes than those that regenerate in eartha\(^{23c1}\) and julie\(^{24e1}\) mutants (Figure 1H). This result rules out a strict correlation between larval-stage lethality and defects in melanocyte regeneration, and also suggests that the regeneration defects observed in eartha\(^{23c1}\) and julie\(^{24e1}\) larvae result from defects specific to regeneration mechanisms.

eartha Mutation Specifically Affects Larval Melanocyte Regeneration after dct\(^{+}\) Stage

The development of eartha\(^{23c1}\) embryos is indistinguishable from wild-type embryos until 3–4 dpf at which stage their melanocytes appear lighter than wild-type larvae (Figure 1C). This observation suggests that eartha plays a role in onogenetic melanocyte darkening (Figure 2A). Additional defects appear after 5 dpf in eartha\(^{23c1}\) larvae, including a defect in jaw development, where the jaw fails to grow anterior beyond the eyes, typically described as the hammerhead phenotype (Figure 1C) [28]. eartha\(^{23c1}\) mutants develop swim bladders normally, but most die by 12 dpf, presumably a consequence of the pharyngeal skeleton defect leading to an inability to feed. Upon melanocyte ablation by MoTP treatment, only 11.8% of melanocytes regenerate at 5 dpf in
eartha23e1 animals, as compared to wild-type larvae (animals examined 2 d postMoTP treatment) (Figure 1B and 1D).

To further understand how the eartha23e1 mutation affects melanocyte regeneration, we examined melanocyte differentiation in eartha23e1 larvae during melanocyte regeneration after MoTP washout. Larval melanocytes in eartha23e1 larvae were ablated by MoTP treatment from 14 to 72 hpf, and regenerated melanocytes were analyzed at 7 dpf by in situ hybridization (ISH) analysis, a time when many melanocytes regenerate in wild-type larvae (Figure 2B). Although eartha23e1 larvae had only very few regenerated melanocytes (melanin+), we detected many dct+ melanoblasts (melanin+/C\textsubscript{0}, stained purple) in the eartha23e1 larvae (Figure 2C).

While eartha23e1 mutants (30.5 ± 9.2) is virtually identical to that in the wild-type larvae (31.0 ± 7.2), this result suggests that regenerated melanocytes in eartha23e1 larvae develop to late-stage (dct+) but fail to produce melanin, and that eartha acts after the dct+ stage in melanocyte differentiation during melanocyte regeneration (Figure 2A).

To test the specificity of eartha’s role in melanocyte regeneration, we asked if the eartha23e1 mutation affects other regeneration process, such as larval tail regeneration. When wild-type larval tails were amputated at 3 dpf, the wound healed in the ensuing two days by closing the injured tip of the notochord and neural tube, followed by the outgrowth of fin fold. By 9 dpf (6 d postamputation), the missing larval tails are largely reconstituted, including complete regeneration of fin-fold tissues and melanocytes.

The eartha23e1 mutation specifically affects melanocyte regeneration during larval tail regeneration. Arrowheads show amputation planes at 3 dpf prior to amputation (D) and (H) and after regeneration (E–G) and (I). Wild-type larval tails (D) were amputated at 3 dpf. The wound healed in the ensuing two days by closing the injured tip of the notochord and neural tube, followed by the outgrowth of fin fold. By 9 dpf (6 d postamputation), the missing larval tails were reconstituted, including fin-fold tissues (outlined with white-dashed lines) and melanocytes (arrow in [E]). The origins of the re-established tail melanocytes were investigated by incubating larvae in PTU immediately after larval tail amputations (F). PTU prevents melanin synthesis in newly differentiated melanocytes, and thus the pigmented melanocytes that appear in regenerated tails of the PTU-treated larvae pre-existed prior to the tail amputation. At 9 dpf, few melanocytes (arrow in [F]) appear in the newly regenerated tail immediately distal to the amputation plane in the PTU-treated larvae, suggesting that these melanocytes arise from the migration of proximately differentiated melanocytes from the stump (F). Additional lightly pigmented melanocytes appear after PTU washout (arrow in [G]), indicating that these melanocytes are newly differentiated. When similar tail amputations were conducted in eartha23e1 larvae (H and I), the larval tails regenerated identically to wild-type larvae, except that few melanocytes appear in the regenerated tail in the region immediately distal to the amputation plane (arrow in [I]). The white-dashed lines outline the fin folds. Timeline (grey) below (C) indicates the period of MoTP treatment (red) and analysis time (vertical line above the timeline). Scale bars: 250 \mu m.

doi:10.1371/journal.pgen.0030088.g002
revealed by Alcian Blue staining, where the staining in eartha (arrowhead in [E]) in wild-type larvae. This organization of chondrocytes in the hyosymplectic cartilage are arranged into a single cell wide stack (B) is significantly weaker than that in wild-type larvae (A). At 10 dpf, the chondrocytes in the symplectic (SY) region (arrowhead in [C] and [E]) of the hyosymplectic cartilage are arranged into a single cell wide stack (arrowhead in [E]) in wild-type larvae. This organization of chondrocytes is disarranged in the eartha larva (arrowheads in [D] and [F]). Arrows in (A) and (B) indicate the hyosymplectic cartilages that are shown in (C) and (D). Arrowheads in (C) and (D) mark the SY region of hyosymplectic cartilage. (E) and (F) are enlarged images of the SY region of eartha larva. Scale bars: 100 μm.

Figure 3. The eartha Mutation Affects Cartilage Maturation
(A–F) The pharyngeal skeleton of wild-type and eartha larve are revealed by Alcian Blue staining, where the staining in eartha larve (B) is significantly weaker than that in wild-type larve (A). At 10 dpf, the chondrocytes in the symplectic (SY) region (arrowhead in [C] and [E]) of the hyosymplectic cartilage are arranged into a single cell wide stack, like a stack of coins (Figure 3C and 3E) [30,31]. eartha larvae develop shortened pharyngeal skeleton (Figures 1C and 3B). To assess the differentiation of the pharyngeal arches in eartha larvae, we use ISH with a variety of riboprobes, including dlx2 [32] for migrating craniofacial neural crest and sox9a [33] and type II collagen (col2a1) [34] for differentiated chondrocytes. We found no differences in expression levels and patterns between the eartha and wild-type larvae for any of these markers above (unpublished data), indicating that chondrocytes for pharyngeal skeleton in eartha mutants are specified and then differentiate normally. In contrast, Alcian Blue staining, which marks cartilage, is significantly weaker in eartha larve than in wild-type larve (Figure 3A and 3B), suggesting a defect in cartilage maturation. In addition, we found eartha larve develop all their pharyngeal cartilages, however the organization of chondrocytes is disarranged. For example, the chondrocytes in the SY cartilage fail to become arranged into the ordered cell stacks that are observed in wild-type larve (Figure 3D and 3F). This disarrangement of chondrocytes causes the failure of pharyngeal skeleton extension into positions anterior to the eyes, accounting for the shortened head length (or hammerhead) phenotype. This observation that eartha mutants are defective in late-stage cartilage differentiation together with our analyses that indicate eartha mutation affects late-stage melanocyte differentiation during regeneration, may suggest that eartha plays a role in regulating late-stage cell differentiation.

The eartha Phenotype Is Caused by a Nonsense Mutation in gpt1
To further understand how eartha regulates melanocyte regeneration, we took a positional cloning approach to identify the eartha mutation. We first mapped the eartha mutation to zebrafish Chromosome 8 by half-tetrad centromere linkage [35,36]. The eartha mutation was next mapped with a panel of 114 meioses to a 15 cM region between simple sequence repeat (SSR) markers z15786 and z51584 (Figure 4A). To further identify candidate genes, we built a physical map based on the sequences from the zebrafish genome assembly version 5 (Zv5, The Sanger Institute) by comparing sequence of the flanking markers phenotype is not a consequence of unanticipated interactions between MoTP and the mutated gene.
z15786 and z51584 and several ESTs that were mapped within the region by radiation hybrid mapping (http://134.174.23.167/zonrhmapper/Maps.htm) [37]. Various assembly contigs were obtained and then bridged by additional fingerprinted BAC information (http://www.sanger.ac.uk/Projects/D_rerio/WebFPC/zebrafish/small.shtml). Finally, the accuracy of our physical map was tested and confirmed by mapping new SSR or single nucleotide polymorphism markers that were developed from each of the assembly sequences to a selected recombinant panel derived from 1,514 meioses (Figure 4B). By this fine mapping approach, a region containing the eartha\(^{22e1}\) mutation, flanked by seven recombinants at the proximal end and three recombinants at the distal end, was determined across approximately 189 kb comprising four genes: \(ntrk2\), \(agtpbp1\), \(mak10\), and \(gfpt1\) (Figure 4B). A minimal critical region for the eartha\(^{22e1}\) mutation was further determined by a single proximal recombinant with a marker in \(mak10\) and two distal recombinants with a marker in the fourth exon of \(gfpt1\). Sequencing of the cDNAs from the eartha\(^{22e1}\) mutants for candidate genes \(agtpbp1\) and \(mak10\), which lie immediately outside the critical region, revealed no nucleotide difference from those cDNA derived from the originating nonmutagenized background (sjD strain). In contrast, we found a nonsense mutation in the third exon of \(gfpt1\) cDNA from eartha\(^{22e1}\) mutants (Figure 4C and 4D). This mutation is predicted to result in an unstable RNA transcript and a truncated protein. Consistent with this prediction, we seldom detected \(gfpt1\) RNA transcripts in the eartha\(^{22e1}\) mutants by ISH (Figure 5B). To further test that eartha phenotypes result from loss of \(gfpt1\) function, we attempted to rescue eartha phenotypes by injecting \(gfpt1\) mRNA into larvae from eartha\(^{22e1}+/+\) intercrosses. We observed that seven out of 134 larvae injected with \(gfpt1\) mRNA (J) have some distinctly darker melanocytes (blue arrows in [G]) and more extended pharyngeal skeletons (black arrow in [H] and [I]) than those in the noninjected eartha\(^{22e1}\) larvae (black and blue arrows in [F]). Scale bars: 100 \(\mu\)m.

Figure 4. The eartha\(^{22e1}\) Mutation Is a Nonsense Mutation in \(gfpt1\)

(A–E) The eartha\(^{22e1}\) mutation was mapped to Chromosome 8 between z15786 and z51584 (A). The physical map of the eartha locus was built from the zebrafish genome assembly version 5 (Zv5) with the support of recombination observed in 1,514 meioses. Shown here is a portion of this physical map delimited by seven recombinants at the proximal end and three recombinants at the distal end, containing approximately 189 kb comprising four genes: \(ntrk2\), \(agtpbp1\), \(mak10\), and \(gfpt1\) (B). Sequencing of the eartha\(^{22e1}\) cDNA for \(gfpt1\) revealed a nonsense mutation in the third exon, where a CAA to TAA substitution resulting in Gln to stop codon change (C) and (D). The phylogenetic tree of \(gfpt\) genes was constructed by using the neighbor-joining method with \(E. coli\) glmS as the out-group (E).

(F–J) \(gfpt1\) mRNAs partially rescue the eartha phenotypes. \(gfpt1\) mRNAs were in vitro synthesized and injected into one to four cell stage embryos. At 5–7 dpf, 22% of the eartha\(^{22e1}\) larvae injected with \(gfpt1\) mRNA (J) have some distinctly darker melanocytes (blue arrows in [G]) and more extended pharyngeal skeletons (black arrow in [H] and [I]) than those in the noninjected eartha\(^{22e1}\) larvae (black and blue arrows in [F]). SIS: sugar isomerase domain.

doi:10.1371/journal.pgen.0030088.g004
eartha mutants. Taken together, with 24 unrescued eartha larvae, this result suggests that we partially rescued 22% (7/31) of the eartha mutants by injection with gfpt1 mRNA. We note that, however, the mRNA injection experiments failed to rescue the much later melanocyte regeneration phenotype, presumably because the mRNA injected at cell stage 1–4 was no longer available at the late larval stages when melanocytes were challenged to regenerate. Taken together, the high-resolution mapping, cDNA sequencing, and mRNA rescue indicate that the eartha phenotype is caused by a null mutation in gfpt1.

gfpt1 catalyzes the formation of glucosamine 6-phosphate and is the first and rate-limiting enzyme in this hexosamine biosynthesis pathway. In human, two related GFT genes, GFPT1 and GFPT2, have been described [38,39]. In the zebrafish Zv5 genome assembly, besides gfpt1/eartha, we identified a single additional gfpt-related gene. Phylogenetic analysis (Figure 4E) revealed that this additional gene is more closely related to the mammalian glutamine:fructose-6-phosphate aminotransferase 2 (gfpt2) gene than to zebrafish and mammalian gfpt1; therefore, we defined it as the zebrafish orthologue of gfpt2. The zebrafish gfpt2 locus is located on Chromosome 21 (LG 21) near marker z28262 by our analysis of the zebrafish Zv5 genome assembly.

Expression of gfpt1 during Embryogenesis and Early Larval Development

To further explore how gfpt1 expression and function may promote larval melanocyte regeneration following melanocyte ablation by MoTP, we examined the expression of gfpt1 during early development. gfpt1 transcripts were detected as early as the four-cell stage by reverse transcription-PCR and ISH and are distributed throughout the early embryo (unpublished data). ISH analysis demonstrated the restriction of gfpt1 expression by 13 hpf, including intense expression in the notochord and the pillow (polster or future hatching gland) [40] at 13 hpf, otic vesicle and pharynx at 36 hpf, and lateral line neuromasts and pharyngeal arches at 96 hpf (Figure 5A–5H). We did not detect gfpt1 transcripts in ontogenetic melanocytes or in regenerating melanocytes following MoTP washout. This failure to detect expression in melanocytes at these late stages could indicate that the relevant mRNA is transcribed at earlier embryonic stages when gfpt1 expression in specific cells cannot be detected or that the abundance of gfpt1 transcripts in melanocytes is below the threshold for detection. The alternative to the possibility that gfpt1 acts autonomously in melanocytes is that gfpt1 acts nonautonomously to the melanocytes to promote melanocyte differentiation, which is explored next.
Melanocyte Regeneration Mutants

Figure 6. *julie*

(A and B) Larval melanocytes in *julie*

and wild-type larvae were ablated by MoTP treatment from 14 to 72 hpf, and melanocyte regeneration was analyzed at 5 dpf by ISH with dct riboprobes for late-stage melanoblasts. At this stage, many dct- melanoblasts (melanin-, blue arrow in [A]) and melanocytes (melanin-, black arrow in [A]) appear in wild-type larvae (A). While few melanocytes (melanin-, black arrow in [B]) appear in the *julie*

larvae, no dct- melanoblast was detected by ISH (B).

(C–F) *julie*

mutants fail to regenerate larval tails following amputation. Larval tails were amputated at 60 hpf (C and D) and tail regeneration in wild-type and *julie*

larvae were examined at 5.5 dpf (E and F). At this stage, wild-type larval tails (E) were mostly reconstituted, including fin-fold tissues (outlined with white-dashed line) and melanocytes (arrow in [E]). In the *julie*

larvae, the amputation wound healed but the *julie*

mutant tail failed to regenerate (F). Arrowheads indicate the amputation planes in (C–F). The white-dashed lines outline the fin folds. Timeline (grey) above (A) indicates the period of MoTP treatment (red) and analysis time (vertical line below the timeline).

Scale bars: 250 µm.

doi:10.1371/journal.pgen.0030088.g006

gfpt1 Acts Cell Autonomously in Melanocytes to Promote Melanocyte Darkening

To test the cell autonomy of *gfpt1* for late-stage melanocyte differentiation, we took advantage of the ontogenetic defect of *eartha* mutants in melanocyte darkening, a late process in melanocyte differentiation. We generated chimeric larvae mosaic for *gfpt1* mutation by transplanting wild-type *tg(β-actin:GFP)* donor cells into *eartha*

embryos at blastula stage (Figure 5I and 5J) [41]. We identified four *eartha* host larvae with a total of six GFP+ (donor-derived) melanocytes. In each case, the GFP+ melanocytes were also darkly pigmented, in contrast to the neighboring lightly pigmented melanocytes (GFP+) that are derived from host. Because the donor melanocytes show the wild-type phenotype (dark pigmentation) corresponding to their genotypes in the otherwise *eartha*

mutation hosts, we conclude that *gfpt1* acts cell autonomously to promote melanocyte darkening.

We conclude that loss of *gfpt1* function results in a defect in melanocyte regeneration and that *gfpt1* acts at a late stage (after dct stage) during melanocyte regeneration. Furthermore, chimera analysis shows that *gfpt1* acts cell autonomously to promote ontogenetic melanocyte darkening. These results lead to our inference that *gfpt1* acts cell autonomously in melanocytes to promote melanocyte differentiation from dct- melanin- to melanin+ stage during melanocyte regeneration as well.

julie Acts prior to dct Stage during Larval Melanocyte Regeneration

julie

is the second mutation identified from our melanocyte ablation screen for defects specific to melanocyte regeneration. The development of *julie*

embryos is indistinguishable from wild-type embryos until 3.5 dpf, at which time the size of their eyes and brain appears smaller than that of the wild-type larvae, although they have normal body length. We did not observed opaque or grainy cells that are typically reliable indicators of significant levels of cell death in zebrafish embryos, in the brains of *julie*

larvae, suggesting that this small brain and eyes phenotype may result from growth retardation (Figures 1E and S1C and S1B). The notion that *julie*

mutants have defects in growth rather than differentiation is further supported by our histological examination of eye structure in *julie*

mutants that reveals normal retinal cell differentiation and lamination at 4 dpf despite the smaller size of their eyes (see Figure S1C and S1D). Most *julie*

mutants die at approximately 7–8 dpf. Upon melanocyte ablation by MoTP, *julie*

larvae regenerate 10.0% of the normal number of melanocytes compared to wild-type larvae at 5 dpf (Figure 1F and 1H). We also note that the few regenerated melanocytes in the dorsum of the *julie*

mutants are distributed haphazardly throughout the length of the dorsum.

To understand how the *julie*

mutation affects larval melanocyte regeneration, we examined melanocyte differentiation with the late-stage melanoblast marker dct in *julie*

larvae after MoTP washout. We detected almost no dct- melanoblasts in *julie*

larvae (Figure 6A and 6B), suggesting that *julie*

mutation affects melanocyte regeneration prior to dct stage.

To test whether *julie* has a specific role in melanocyte regeneration or whether it is also required for other types of
postembryonic regeneration, such as larval tail regeneration (described above), we performed larval tail amputation on julie\(^{j24e1}\) larvae. We found that the amputation wound heals in the ensuing few days after tail amputation, but that julie\(^{j24e1}\) tails fail to regenerate (Figure 6C–6F). This defect together with the growth-deficient defect of the brain and eye suggests that julie may have a general role in postembryonic cell division or tissue growth.

The julie\(^{j24e1}\) Mutation Is a Splice-Site Mutation in skiv2l2

To further understand how julie regulates melanocyte regeneration, we sought to molecularly identify the julie\(^{j24e1}\) mutation by a positional cloning method similar to the approach described above for the cloning of eartha\(^{j25e1}\) mutation. We first mapped the julie\(^{j24e1}\) mutation close to a marker z3825 on Chromosome 10. In contrast, by reverse transcription-PCR and sequencing analysis, we found a 57 bp in-frame deletion at the 3' end of exon 11 in skiv2l2 cDNA from sjD embryos. This deletion removes part of the conserved RNA helicase domain of skiv2l2 (Figure 7D). This finding suggests a possible splicing-site mutation. Genomic sequencing of the skiv2l2 locus further revealed a splice donor site mutation (GT to AT change) at the 11th exon-intron boundary. By our approach described above, we performed larval tail amputation on julie\(^{j24e1}\) larvae. We found that the amputation wound heals in the ensuing few days after tail amputation, but that julie\(^{j24e1}\) tails fail to regenerate (Figure 6C–6F). This defect together with the growth-deficient defect of the brain and eye suggests that julie may have a general role in postembryonic cell division or tissue growth.

![Figure 7. The julie\(^{j24e1}\) Mutation Is a Splice-Site Mutation in skiv2l2](image)

(A) The julie\(^{j24e1}\) mutation was mapped close to a marker z3825 on Chromosome 10.
(B) The approximately 226.8 kb physical map of the julie locus was built from the zebrafish genome assembly version 5 (Zv5), flanked by three recombinants at the distal end and two recombinants at the proximal end from analyzing 438 meioses. A minimal critical region for the julie\(^{j24e1}\) mutation was determined by a single recombinant with a distal marker in dhx29 and one proximal recombinant with a marker in skiv2l2.
(C) The genomic sequencing for skiv2l2 locus in the julie\(^{j24e1}\) mutants revealed a splicing site mutation (GT to AT change) at the 11th exon-intron boundary. (D) Sequencing of julie\(^{j24e1}\) mutant cDNA for skiv2l2 revealed a 57 bp in-frame deletion at the 3' end of exon 11 resulting in a partial deletion in the highly conserved DEAD-box domain in Skiv2l2 protein. (E) The phylogenetree of skiv2l2 genes was constructed using the neighbor-joining method with S. cerevisiae MTR4 as the out-group.

doi:10.1371/journal.pgen.0030088.g007

skiv2l2 was thought to be closely related to Saccharomyces cerevisiae SKI2 [24], a DEAD-box RNA helicase in a multi-protein nuclease complex, the exosome, which mediates 3' to 5' mRNA degradation in the cytoplasm [36,42]. By our phylogenetic analysis, we found that vertebrate skiv2l2 genes are more closely related to yeast mRNA transport defective 4 (MTR4) gene (Figure 7E), an ATP-dependent DEAD-box RNA helicase.
helicase that is thought to be involved in tRNA or rRNA degradation mediated by exosome in the nucleus [43]. Besides skiv2l2, we identified another two superkiller viralicidic activity 2-like (skiv2l)-related genes in the zebrafish Zv5 genome assembly. We defined a zebrafish skiv2l orthologue and a skiv2l related gene, skiv2l3. Our phylogenetic tree analysis shows that zebrafish skiv2l3 is more closely related to vertebrate Skiv2l genes than to the Skiv2l2. This tree topology, together with our failure to find additional skiv homologues by BLAST analysis of the human or mouse genomes, suggests that the mammalian Skiv2l3 gene was lost in the human lineage, but retained in that of zebrafish (Figure 7E).

Expression of skiv2l2 during Embryogenesis and Larval Development

To understand how skiv2l2 expression may regulate melanocyte regeneration, we examined the expression of skiv2l2 during development by ISH. skiv2l2 transcripts were detected as early as the four-cell stage (Figure 8A) and remained ubiquitously distributed in embryos throughout early embryogenesis (Figure 8B). The expression of skiv2l2 becomes stronger in the central nervous system (arrowhead in [C]) (22 hpf) and is then restricted to pectoral fins, cranial neural crest (white arrow in [D]), the medial and posterior parts of the tectum, and cerebellum (black arrow in [D]), and ciliary marginal zone of the retina (arrowhead in [D]) at larval stages (D) (74 hpf).

This larval-stage expression pattern of skiv2l2 is nearly identical to the expression of pcna (68 hpf).

Expression pattern of skiv2l2 is nearly identical to the expression of proliferating cell nuclear antigen (pcna), which marks proliferating cells and tissues at this larval stage (Figure 8E) [45]. To explore the possibility that skiv2l2 promotes cell proliferation, we examined pcna expression in julie24el mutants and found that the expression of pcna is drastically reduced in these animals (Figure 8F), suggesting that skiv2l2 is required for cell proliferation in these regions. This result is consistent with the phenotype of small eyes and brain observed in the julie24el animals, as well as the failure to regenerate melanocytes following melanocyte ablation by MoTP.

We sought to examine the expression of skiv2l2 in regenerating melanocytes following MoTP washout. We were unable to detect any skiv2l2 expression in possible melanoblasts or regenerating melanocytes at two to three days postMoTP washout (5–6 dpf) despite the strong detection of skiv2l2 expression in various tissues described above. This failure could suggest the low abundance of skiv2l2 transcripts, below our ability to detect by ISH, in regenerating melanocyte lineages.

Taken together, we suggest that loss of skiv2l2 function causes the julie phenotype, and skiv2l2 regulates cell division prior to the dct stage during larval melanocyte regeneration.

Discussion

We report a forward genetic screen aimed at identifying regulatory mechanisms specific to regeneration. We sought to isolate mutations specific to melanocyte regeneration by conducting a F2 parthenogenesis screen in zebrafish larvae employing a small molecule, MoTP, to ablate larval melanoc-
cytes. We specifically identified two inheritable mutations, earthaj23e1 and juliej24c1, which cause defects in larval melanocyte regeneration from our screen. Because this screen was far from saturation, these results indicate that many more mutant loci might be identified by further exploitation of this melanocyte ablation screen. Notably, these two mutants are also larval lethal with other defects in jaw development (eartha) or general larval growth (julie). Thus, our findings suggest that many of the genes involved in regeneration processes are also parts of other developmental programs and that the number of genes required solely for regeneration may be small.

Because the mutations described here are late larval lethal, one possibility was that the melanocyte regeneration defects observed were a consequence of the impending death of the larvae. The finding that melanocyte regeneration occurs normally in rapunzel14 homozygous mutants, which die between 5 and 6 dpf, indicates that larval lethality is not a sufficient cause to the defects in melanocyte regeneration and instead indicates that the genes identified here contribute specific roles in regeneration. We also note that one of the mutations, eartha, blocks regeneration at a late stage of differentiation, suggesting that the regeneration process may differ from ontogenetic process not only in the as yet hypothetical mechanisms that keep stem cells in check or act to recruit them back into developmental pathways, but also in those later stages in differentiation that superficially seem to be held in common between ontogenetic and regeneration processes.

gfpt1 Promotes Melanocyte Differentiation from dct+; melanin− to melanin+ Stage during Larval Melanocyte Regeneration

earthaj23e1 mutation allows normal development of ontogenetic melanocytes (melanin−) but blocks larval melanocyte regeneration following MoTP treatment. We demonstrated that the phenotype of earthaj23e1 mutants is caused by loss of gfpt1 function. This conclusion is supported by several lines of evidence, including the high-resolution mapping of the earthaj23e1 mutation, the identification of a nonsense mutation in the gfpt1 locus, very few or no gfpt1 transcripts detected in earthaj23e1 mutants, and the partial rescue of the earthaj23e1 phenotype by the injection of gfpt1 mRNA. Our analysis of melanocyte differentiation during regeneration with the late-stage melanoblast marker dct reveals that a mutation in gfpt1 blocks melanocyte differentiation after the dct+ stage, but before they reach the melanin-positive stage. In addition, the finding that following larval tail amputation, earthaj23e1 mutant larvae regenerate tails normally but fail to regenerate melanocytes in the tail indicates that gfpt1 is not generally required for regeneration but instead identifies a mechanism specific to melanocyte regeneration.

gfpt1 is the first and rate-limiting enzyme in the hexosamine biosynthesis pathway (glucosamine synthesis). The major end product of the hexosamine biosynthesis mediated by gfpt1 is a sugar nucleotide UDP-GlcNAc, which is one of the building blocks for glycosyl side chains for glycoproteins, glycolipids, and proteoglycans [46]. Among these molecules, N-acetylgalactosamine (GlcNAc) is found most frequently in the polysaccharide side chains of glycosaminoglycans (GAGs), a type of linear polysaccharide composed of repeated disaccharides [47]. For instance, hyaluronan, the simplest GAG, is made up of a repeated disaccharide unit, GlcNAc and glucuronic acid, and is part of the ECM in cartilages [48,49]. In addition to GAGs, GlcNAc is also found enriched in the N-linked or O-linked oligosaccharides (N-glycans or O-glycans), which attach to various intracellular glycoproteins, and serves as crucial modification in various developmental processes [50,51]. We note that in addition to contributing to polysaccharides, UDP-GlcNAc serves as an obligatory substrate for monosaccharide modification on serine or threonine residues of various proteins [52,53], and this monosaccharide modification, also referred to as O-linked GlcNAcylation, modifies proteins in a manner analogous to phosphorylation, and consequently regulates the cellular and developmental functions of these proteins [54]. Although in vitro biochemical studies showed that gfpt1 regulates UDP-GlcNAc synthesis, whether gfpt1 is the only enzyme for UDP-GlcNAc synthesis in vivo and whether other enzymes, such as gfpt2, also play roles in this process are unknown. Furthermore, the developmental role of gfpt1 in vertebrates is unexplored.

The isolation and analyses of earthaj25e1 mutants may provide insight into the roles of gfpt1 in vertebrate development. Alcian Blue is a cationic dye that binds negatively charged sites on the GAGs, such as hyaluronan [55,56]. Since cartilage is largely composed of GAGs, Alcian Blue staining reveals the presence of these long chain sugar molecules. Our findings that chondrocytes in earthaj25e1 mutants commit to their cell fates and develop to col2a1+ stage, but display weaker Alcian Blue staining, suggest defects in formation of GAGs in the ECM of the cartilages. These results indicate possible defects in the ECM of the connective tissues and raise the possibility that the lightly pigmented phenotype of the ontogenetic melanocytes and the melanocyte regeneration defect we observed in the earthaj25e1 mutants was also the consequence of defects in the ECM. Our finding by chimera analysis that wild-type or donor-derived melanocytes have normal pigmentation in the earthaj25e1 mutant hosts indicates that this particular function is not mediated through ECM, but instead reflects a cell autonomous, presumably intracellular, function for gfpt1 in melanocyte development. Although we have not yet explored the autonomy for eartha in melanocyte regeneration, it now seems likely that the role for gfpt1 in melanocyte regeneration is autonomous as well.

Although the in vitro biochemical studies suggest a general role for gfpt1 in the UDP-GlcNAc production, our analyses suggest that this pathway has only a handful of easily discerned and diverse consequences when disrupted in zebrafish embryos. Thus, the defect in jaw morphogenesis may indicate a role in regulating the proper formation of the ECM in chondrocyte development, while different roles in modulating intracellular targets may be revealed by the defects in melanocyte darkening during ontogeny or defects in progression from the dct+; melanin− to melanin+ stage during melanocyte regeneration.

One question remaining is how a mutation in gfpt1 specifically affects the progression from dct+; melanin− stage to melanin+ stage in the regenerating melanocytes but has no similar effects on this stage of ontogenetic melanocyte development. One possibility is that the gfpt1 mutation reveals a function specific to melanocyte regeneration that is not shared by embryonic melanocyte development.
However, our observation that ontogenetic melanocytes in eartha23c1 mutants at 4–5 dpf have lighter pigmentation than those in wild-type larvae suggests that \textit{gfpt1} also plays a role in embryonic melanocyte darkening. These findings may indicate that the two different phenotypes are due to the contribution of \textit{gfpt1} from two distinct mechanisms, for instance that two distinct GlcNAc modified factors are responsible, respectively, for the two different stage-types of melanocyte development. The alternative possibility is that defects in a shared mechanism cause distinct phenotypes in ontogenetic and regeneration melanocytes. Differences between the roles in ontogenetic melanocyte development and larval melanocyte regeneration have been described for the kit receptor tyrosine kinase. Ontogenetic melanocytes differentiate in the absence of kit receptor tyrosine kinase function, but melanocytes in kit receptor tyrosine kinase mutants largely fail to differentiate when challenged to regenerate [9,17,57]. Therefore, the difference between mutants largely fail to differentiate when challenged to regenerate [9,17,57]. Therefore, the difference between ontogenetic and regeneration stages of melanocyte development in the eartha23c1 mutants may either reflect the effect of \textit{gfpt1} on modification of a common substrate that in turn has important roles at different stages of melanocyte development or instead reflect two distinct pathways that are modulated by \textit{gfpt1}’s role in UDP-GlcNAc production. Either of these models suggests some distinct mechanisms involved in regeneration that are not involved in ontogeny.

A less likely explanation that we cannot yet formally exclude is that the ability of ontogenetic melanocytes to reach melanin+ stage (light melanocytes) in the eartha23c1 mutants reflects the perdurance of \textit{gfpt1} maternal message or protein. Such a model would suggest a maternal role in melanocyte differentiation at approximately 22–24 hpf when ontogenetic melanocytes begin to melanize. This stage of melanocyte development is far beyond the midblastula transition (4 hpf) [58,59], when zygotic transcription begins, and many maternal transcripts are degraded to 60s ribosomal unit biogenesis and also for yeast to grow [69]. However, the cellular function of \textit{skiv2l2}, a vertebrate orthologue of MTR4, is unexplored.

The isolation of the \textit{julie}24c1 mutation from our melanocyte ablation screen and our following characterization reported here may now shed light on the functional roles of \textit{skiv2l2} in vertebrate development. Our finding of reduced \textit{pena} expression in the proliferation zones of the eye and brain in the \textit{julie}24c1 larvae suggests that \textit{skiv2l2} plays a role in cell division. Furthermore, the finding of virtually no \textit{det}+ melanoblasts in the \textit{julie}24c1 mutants after MoTP washout suggests that \textit{skiv2l2} may regulate melanocyte cell division at a relatively early stage (prior to \textit{det}+ stage) during melanocyte regeneration. If the zebrafish \textit{skiv2l2} has an equivalent biochemical function as that proposed for yeast MTR4 in transporting mRNA from the nucleus, it is possible that certain as yet unidentified mRNAs regulating cell proliferation may fail to be transported out of the nucleus in the \textit{julie}24c1 mutants. This, consequently, would deplete their activities, thereby reducing cell proliferation in \textit{julie}24c1 mutants. Alternatively, \textit{skiv2l2} could function in the surveillance mechanism postulated in yeast to control the quality and quantity of various nuclear RNA species. This surveillance mechanism could be essential for proper ribosome assembly for protein translation, which is usually active in dividing cells. The defect in this surveillance mechanism could consequently lead to deficits in cell division in \textit{julie}24c1 mutants. Finally, several DEAD-box RNA helicases in the exosome complex have been implicated in microRNA processing of transcripts for genes that subsequently regulate cell division, differentiation, and apoptosis during various aspects of organismal development including brain morphogenesis in zebrafish [70–73]. Whether \textit{skiv2l2} plays a role in any of these aspects of RNA metabolism is an intriguing question for further investigation.

A remaining question is how a mutation in \textit{skiv2l2} specifically affects melanocyte regeneration but not ontogenetic melanocyte development. One possible model is that

\textbf{skiv2l2 Regulates Cell Division during Larval Melanocyte Regeneration}

We identified a second mutant, julie24c1, which develops normal ontogenetic melanocytes but fails to regenerate melanocytes upon ablation by MoTP. The high-resolution mapping of the julie24c1 mutation reveals that \textit{skiv2l2} is the best candidate in the julie24c1 critical region and excludes the possibility that the julie24c1 mutation is in the coding sequence of immediately flanking genes \textit{dhx29} and \textit{ppap2a} (Figure 6B). Furthermore, the identification of a splice-donor site mutation in the \textit{skiv2l2} locus further supports the assertion that \textit{skiv2l2} is the mutated gene in julie24c1 mutants. This splice-site mutation causes a 57 bp in-frame deletion in the helicase domain, which presumably leads to the disruption of the \textit{skiv2l2} function [61].

Mammalian \textit{skiv2l2} was originally thought to be closely related to yeast RNA helicase \textit{SKI2}, which is known to be part of the cytoplasmic exosome complex mediating 3′ to 5′ mRNA degradation of selective mRNAs [62]. Our phylogenetic analysis (Figure 7E), however, reveals that vertebrate \textit{skiv2l2}s are the orthologues for a different yeast RNA helicase MTR4. Yeast MTR4 was originally suggested to function as RNA chaperones to unwind RNA duplexes and pack RNAs into stable structures for mRNA transport out of the nucleus [63,64]. More recently, MTR4 was found to be part of a nuclear complex TRAMP that polyadenylates noncoding RNAs to trigger their 3′ to 5′ degradation by the nuclear exosome complexes [65,66]. This exosome-mediated nuclear RNA degradation was proposed as a surveillance mechanism to control the quality and quantity of various nuclear RNAs, including rRNA, sn/snoRNA, and tRNA, and Mtr4p is a crucial factor for this degradation [43,65,67,68]. This mechanism is essential for 60S ribosomal unit biogenesis and also for yeast to grow [69]. However, the cellular function of \textit{skiv2l2}, a vertebrate orthologue of MTR4, is unexplored.
Melanocyte Regeneration Mutants

Materials and Methods

Fish stocks and rearing. Wild-type fish stocks used for this manuscript were the sjC (C52) or AB inbred strain. The sjD inbred strain for mutagenesis was previously described by Rawls et al. [77]. All zebrafish were reared according to standard protocols at 28.5 °C [78], and their developmental stage in hpf and dpf, respectively, correspond to stages at the standard temperature of 28.5 °C [79]. All *rapsa* mutants described here are homozygous and have been previously described [27]. We use two SSR markers to identify our mutation carriers from intercrosses: NA157952–1 (5’-TTGCCCTGAC-CAGCCTGTTGCTCTA-3’; 5’-ACGACCCCTCAGAGATTCTG-3’) for *eartha* (s1) mutation and CR257257 (5’-CTGGCCTATCAATGTTCTG-3’) for *julie* (s2) mutant.

Parthenogenesis screen. Adult sjD inbred strain males were mutagenized by incubating them in 3 mM N-ethyl-N-nitrosourea (ENU), a chemical mutagen, for four one-hour periods over the course of six weeks [25,26]. The mutagenized sjD males were mated with sjC females to create a pool of F1 carriers with random mutations. Clutches of eggs from individual F1 females were collected and fertilized with UV-inactivated sperm. To exclude mutations that cause defects in ontogenetic melanocyte development observed in *julie* mutants (unpublished data). As we discussed for *eartha*, this does not rule out a role for maternally deposited Skiv2l2 proteins. A more interesting model is that the *julie* regeneration defect during the transition to larval growth may instead reflect the use of different types of precursors, which have different stem cell qualities of self-renewal or multipotency than precursors for cells that differentiate during embryonic stages. Support for this notion of different types of precursors for embryogenesis and larval growth development may best come from the analysis of melanocyte development. Our previous work and that of others suggest that larval regeneration melanocytes and adult melanocytes are derived from self-renewal of precursors or stem cell [9,74,75]. In contrast, lineage analysis of zebrafish neural crest cells reveals little or no role for undifferentiated cells in the lineages that give rise to the embryonic melanocytes [76]. The requirement for *skiv2l2* at an early stage (prior to *dct* stage) of melanocyte regeneration might then reflect a specific role in expanding the stem cell populations, or early steps in generating committed daughters from adult stem cells.

In summary, we isolated two mutations from our forward genetic screen and demonstrated their stage-specific roles for melanocyte regeneration. These mutations identify two mechanisms with specific roles in regeneration: *julie* (skiv2l2), which acts at an early stage and may promote postembryonic cell division and *eartha* (gfpt1), which acts at a late stage and promotes melanocyte differentiation specifically from *dct*1-melanin to melanin+ stage.

Larval tail regeneration. Tail amputations were performed on 3 dpf larvae with razor blades under a dissecting microscope. The tails were cut immediately posterior to the turn of caudal vessel, and amputated tissues included parts of caudal tail, eye, neural tube, and melanocytes. The tail regeneration was then assessed at 7–10 dpf (4–7 d postamputation).

Alcan Blue staining. To visualize the skeletal structures of the wild-type and *eartha* larvae, we stained the larval tails with Alcan Blue (Sigma, http://www.sigmaaldrich.com), a dye that binds to the ECM associated with chondrocytes. Larvae at various stages were fixed at 4% PFA at room temperature for 24–48 h and then transferred into a solution of 0.1% Alcan Blue dissolved in 7:3 ethanol:glacial acetic acid. After 22 h staining, the larvae were rinsed with 7:3 ethanogallic acid and subjected to a series of dehydration to distilled water. Tissues were cleared by incubating the larvae in prewarmed 0.05% trypsin dissolved in a saturated solution of sodium tetraborate for 1 h. The pigmentation of the larvae was bleached in a solution of 3% H2O2/1% KOH for one-hour incubation. The skeletal preparations were finally mounted in glycerol [28].

Mapping. The *eartha* and *julie* mutations were localized on LG 8 and LG 10, respectively, by half-tetrad centromere-linkage analysis [35,36]. Using SSR markers by early pressure treatment during generation, we searched the larval tails with Alcan Blue. Larvae were transferred into a solution of 0.1% Alcan Blue dissolved in 7:3 ethanogallic acid. After 22 h staining, the larvae were rinsed with 7:3 ethanogallic acid and subjected to a series of dehydration to distilled water. Tissues were cleared by incubating the larval tails in prewarmed 0.05% trypsin dissolved in a saturated solution of sodium tetraborate for 1 h. The pigmentation of the larvae was bleached in a solution of 3% H2O2/1% KOH for one-hour incubation. The skeletal preparations were finally mounted in glycerol [28].

Phylogenetic analysis. The orthologous sequences to *gfpt* and *skiv2l2* genes were identified by BLAST search in the organism-specific
Melanocyte Regeneration Mutants

Melanocyte regeneration mutants in zebrafish embryos, are observed in the brains of julie[^2][^4][^1] larvae (arrowheads in [A and B]). (C and D) Paraffin sections stained with hematoxylin (H) and eosin (E) show the normal retinal cell differentiation and lamination in the julie[^2][^4][^1] larvae (D) despite the smaller size of the eyes than that of wild-type (C). Scale bars: in (A), 250 µm for (A and B); in (C), 20 µm for (C and D).

Found at doi:10.1371/journal.pgen.0030088.sg001 (23 MB TIF).

Acknowledgments

We thank Meera T. Saxena for critical reading of this manuscript. We would also like to thank Erin Marcus and Kaavya Narasimhalu for helping us with the parthenogenesis screen. We are very grateful to Adam S. Wei for providing the pOX vector. Myron Ignatiu in Paul Henion's lab for distributing the sox9a and col2a1 constructs, and Thomas Schilling for providing the dlx2 construct. The tgf(β-actingGF) fish was provided by Kenneth D. Poss. We would also like to acknowledge Scott Higdon and Steven Jacob for fish husbandry.

Author contributions. CTY and SLJ conceived and designed the experiments, CTY, AEH, and KAH performed the experiments. CTY and SLJ analyzed the data and wrote the paper.

Funding. This work was supported by National Institutes of Health Grant R01-GM 56988 to SLJ.

Competing interests. The authors have declared that no competing interests exist.

References

1. Blair A, Hoage DE, Ailles LE, Landsorp DM, Sutherland HJ (1997) Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89: 3104–3112.
2. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737.
3. Passegue E, Jamieson CH, Ailles LE, Weissman IL (2003) Normal and leukemic hematopoiesis: Are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci U S A 100 Suppl 1: 11842–11849.
4. Owens DM, Watt FM (2003) Contribution of stem cells and differentiated cells to epidermal tumours. Nat Rev Cancer 3: 444–451.
5. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.
6. Morgan TH (1901) Regeneration. New York: The Macmillan Company. 316 p.
7. Lenhoff HM, Lenhoff SG (1991) Abraham Tsembly and the origins of research on regeneration in animals. In, Dinsmore CE, editor. Cambridge: Cambridge University Press. pp. 47–66.
8. Curado S, Anderson RM, Junghut B, Mumm J, Schroeter E, et al. (2007) Conditional targeted cell ablation in transgenic mice: Hair cell lineage and macrophage behavior revealed by time-lapse video microscopy. J Neurosci 16: 649–662.
9. Clark AJ, Iwobi M, Cai W, Crompton M, Harold G, et al. (1997) Selective cell ablation in transgenic mice in expression mE. coli nitroreductase: Gene Ther 4: 101–110.
10. Mallet VO, Mitchell C, Guidotti JE, Jaffray F, Fabre M, et al. (2002) Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice. Nat Biotechnol 20: 1234–1239.
11. Yang CT, Sengelmann RD, Johnson SL (2004) Larval melanocyte regeneration following laser ablation in zebrafish. J Invest Dermatol 123: 924–929.
12. Johnson SL, Africa D, Walker C, Weston JA (1995) Genetic control of adult pigment stripe development in zebrafish. Dev Biol 167: 27–33.
13. Rawls JF, Melgiren EM, Johnson SL (2001) How the zebrafish gets its stripes. Dev Biol 240: 301–314.
14. Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, et al. (1996) Zebrafish members of the krox family and localization of Ins2 expression in the brain. Transgenic Res 13: 463–475.
15. Kornfeld S, Kornfeld R, Neufeld EF, O'Brien PJ (1964) The feedback inhibition of glucosamine 6-phosphate synthetase in Escherichia coli. J Biol Chem 242: 3135–3141.
16. Jones JE, Corwin JT (1996) Regeneration of sensory cells after laser ablation in the lateral line system: Hair cell lineage and macrophage behavior revealed by time-lapse video microscopy. J Neurosci 16: 649–662.
17. Kornfeld S, Iwobi M, Cai W, Crompton M, Harold G, et al. (1997) Selective ablation in transgenic mice expression mE. coli nitroreductase: Gene Ther 4: 101–110.
18. Mallet VO, Mitchell C, Guidotti JE, Jaffray F, Fabre M, et al. (2002) Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice. Nat Biotechnol 20: 1234–1239.
19. Yang CT, Sengelmann RD, Johnson SL (2004) Larval melanocyte regeneration following laser ablation in zebrafish. J Invest Dermatol 123: 924–929.
20. Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, et al. (1996) Zebrafish members of the krox family and localization of Ins2 expression in the brain. Transgenic Res 13: 463–475.
21. Kornfeld S, Iwobi M, Cai W, Crompton M, Harold G, et al. (1997) Selective ablation in transgenic mice expression mE. coli nitroreductase: Gene Ther 4: 101–110.
22. Mallet VO, Mitchell C, Guidotti JE, Jaffray F, Fabre M, et al. (2002) Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice. Nat Biotechnol 20: 1234–1239.
23. Yang CT, Sengelmann RD, Johnson SL (2004) Larval melanocyte regeneration following laser ablation in zebrafish. J Invest Dermatol 123: 924–929.
24. Johnson SL, Africa D, Walker C, Weston JA (1995) Genetic control of adult pigment stripe development in zebrafish. Dev Biol 167: 27–33.
25. Rawls JF, Melgiren EM, Johnson SL (2001) How the zebrafish gets its stripes. Dev Biol 240: 301–314.
26. Kelsh RN, Brand M, Jiang YJ, Heisenberg CP, Lin S, et al. (1996) Zebrafish members of the krox family and localization of Ins2 expression in the brain. Transgenic Res 13: 463–475.
27. Kornfeld S, Iwobi M, Cai W, Crompton M, Harold G, et al. (1997) Selective ablation in transgenic mice expression mE. coli nitroreductase: Gene Ther 4: 101–110.
28. Mallet VO, Mitchell C, Guidotti JE, Jaffray F, Fabre M, et al. (2002) Conditional cell ablation by tight control of caspase-3 dimerization in transgenic mice. Nat Biotechnol 20: 1234–1239.
29. Yang CT, Sengelmann RD, Johnson SL (2004) Larval melanocyte regeneration following laser ablation in zebrafish. J Invest Dermatol 123: 924–929.
