To Treat or Not to Treat? Effect of Urate-Lowering Therapy on Renal Function, Blood Pressure and Safety in Patients with Asymptomatic Hyperuricemia: A Systematic Review and Network Meta-Analysis

Yu-Yu Tien, MD, MS, Ming-Chieh Shih, MD, PhD, Chiao-Pang Tien, MD, Huei-Kai Huang, MD, and Yu-Kang Tu, DDS, PhD

Purpose: Hyperuricemia is associated with increased cardiovascular risk. Because patients with asymptomatic hyperuricemia (AH) experience no immediate discomfort and there are possible side effects of urate-lowering drugs, treatment for AH is controversial. We aimed to perform a network meta-analysis (NMA) to investigate the effects of different urate-lowering therapies (ULTs) on serum uric acid level, renal function, blood pressure (BP), and safety in AH patients.

Methods: This NMA focused on AH patients. The intervention group (patients receiving urate-lowering drugs) was compared with others using other types of drugs, placebo, or usual care. We undertook a NMA under the frequentist framework by R.

Results: Thirteen eligible trials were identified. The interventions included allopurinol, febuxostat, and benzbromarone, which are not approved in the United States. Benzbromarone and allopurinol had the best efficacy on lowering serum uric acid level in short-term and long-term follow-up (mean difference [MD] = −3.05; 95% CI, −5.19 to −0.91 vs MD = −3.17; 95% CI, −5.19 to −1.15). Patients using allopurinol had significantly higher eGFR than using placebo in both short-term and long-term follow-up (MD = 3.07; 95% CI, 0.18 to 5.95 vs MD = 4.10; 95% CI, 2.66 to 5.54). No difference in BP was found between groups, except for febuxostat to diastolic BP after long-term treatment (MD = −1.47; 95% CI, −2.91 to −0.04). No statistically increased odds of safety events were found with the use of ULT.

Conclusions: Our result showed that in AH patients, allopurinol has a renoprotective effect. Febuxostat has a significant impact in lowering diastolic BP. ULT does not result in a higher risk of safety events. (J Am Board Fam Med 2022;35:140–151.)

Keywords: Asymptomatic Hyperuricemia, Blood Pressure, Disease Management, Family Medicine, Network Meta-Analysis, Serum Uric Acid, Systematic Review, Renal Function

Introduction

Vascular endothelium, a monolayer of endothelial cells, controls vascular tone and maintains vascular homeostasis, allowing it to maintain normal physiologic mechanisms. Endothelial dysfunction means endothelial cells lose their normal function and is found to be associated with hypertension and chronic kidney disease (CKD). Hyperuricemia is 1 of its causes, and urate-lowering therapy (ULT) is proved to improve endothelial function. Therefore, many trials investigated whether patients under ULT attained better blood pressure (BP) control and renal function. ULT is commonly prescribed for patients if any symptom or sign of hyperuricemia develops.
However, more than half of hyperuricemic individuals remain asymptomatic.11 Asymptomatic hyperuricemia (AH) is defined as hyperuricemic patients without either symptoms or signs of gout, tophi, hyperuricemic nephropathy, or uric acid nephrolithiasis.12 Because there are possible side effects of urate-lowering drugs, treatment for AH is controversial.13,14 Urate-lowering drugs include xanthine oxidase inhibitors, such as allopurinol and febuxostat, and uricosuric agents, such as benzbromarone and probenecid. Severe skin reaction, higher cardiovascular (CV) risk or impaired liver function related to those drugs have been reported.15–19 Benzbromarone was, therefore, withdrawn from the market in 2003 and has never been approved in the United States due to its reports of hepatotoxicity.20,21 Japanese guidelines for managing hyperuricemia and gout recommend initiating ULT for AH when serum urate levels increase to > 8.0 mg/dL.22 However, this approach is not recommended in the United States and Europe owing to the side effects of these drugs.14

Xanthine oxidase inhibitors are thought to have the potency to decrease oxidative stress causing endothelial dysfunction.10,23 The metabolite of allopurinol is excreted predominantly by the kidney, and febuxostat is believed to be safe for patients with CKD owing to its hepatic elimination.24 The comparative effects of these drugs have not been investigated.

Network meta-analysis (NMA) is, therefore, a useful tool because it can use both direct and indirect evidence to compare the effects of all ULT. In contrast, previous meta-analyses either considered ULT as a single group or compared each drug to the control separately. Therefore, we conducted a systematic review and NMA to investigate the effects of different urate-lowering drugs on serum uric acid level, renal function, BP, and adverse events. We registered our systematic review on PROSPERO website. This NMA followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) extension guideline, which incorporated NMA for health care interventions and was registered in PROSPERO (registration number: CRD42021256528).

Literature Search

Two investigators (YYT and CPT) independently searched PubMed and Embase from their inception through October 8, 2020. We had also searched at ClinicalTrials.gov and hand-searched reference lists of relevant publications. The population of included trials was AH patients. Given that there are some controversies over the definition of hyperuricemia, we respected authors’ definition of hyperuricemia in each study.12 If “asymptomatic” was not used to describe its population, a trial was still considered eligible if it enrolled patients without a history of gout or other related symptoms. Chronic hyperuricemic nephropathy is usually asymptomatic and is not easy to diagnose. If a trial described its patients as AH and with CKD, this was interpreted as that CKD in those patients was not caused by their hyperuricemia. Therefore, those studies would still be included. We used the keywords “hyperuricemia,” “asymptomatic,” “urate-lowering therapy,” and classification or name of the drugs for searching. The search details are shown in Appendix 1. The bibliographies of recent review articles and previous meta-analyses were also manually searched for relevant studies.

Study Outcome

The primary outcomes were serum uric acid level, measured in units of mg/dL, renal function, assessed by estimated glomerular filtration rate (eGFR), and BP, measured in units of mmHg and divided to systolic and diastolic BP. The eGFR was calculated with 1 of the following methods: Cockcroft-Gault formula, the 4-variable modification of diet in renal disease study equation, or CKD epidemiology collaboration equation. The secondary outcome was adverse events, including the occurrence of impaired liver function, gastrointestinal event, CV event, skin reaction, and musculoskeletal event in patients within the trials identified by our search strategy.

Methods

We conducted a systematic review and NMA of randomized controlled trials on patients with AH. The intervention group (patients receiving urate-lowering drugs) was compared with groups of other types of urate-lowering drugs, placebo, or usual care. The outcomes were serum uric acid level, renal function, BP, and adverse events. We registered our systematic review on PROSPERO website. This NMA followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA) extension guideline, which incorporated NMA for health care interventions and was registered in PROSPERO (registration number: CRD42021256528).
Study Selection
All titles and abstracts retrieved from the literature search were screened by 2 reviewers to determine the eligibility of a study. We included clinical trials where patients were randomly allocated to receive different treatments or placebo/usual care groups. We excluded conference proceedings without full text, nonrandomized controlled trials, the intervention group not receiving approved medicine, and studies not specific to asymptomatic adults.

Data Extraction
The outcomes were extracted independently from the included studies by 2 investigators mentioned above. For the primary outcomes, we evaluated the treatment effect by dividing the duration of treatment into short-term (≤ 6 months) and long-term follow-up (> 6 months). We assumed that it takes at least 6 months for a drug to show a robust effect, so we used 6-month to separate the short and long-term effects.

For the secondary outcomes, we analyzed events of impaired liver function, gastrointestinal events, CV events, skin reaction, and musculoskeletal events. Details are shown in Appendix 2.

Quality Assessment of Methods
We used Cochrane Risk of Bias Tool to assess the quality and risk of bias for the included studies (Appendix 3). We defined the risk of bias as adequate, unclear, or inadequate for assessing 6 aspects of the trials: sequence generation, allocation concealment, blinding of participants and personnel, blinding of outcome assessment, incomplete outcome data, and selective reporting. The assessment was conducted by 2 independent reviewers, with a third consulted for resolution of any disagreements.

Statistical Analysis
We used “meta,” “netmeta” and “dmetar” packages for the free statistical software R (version 4.0.3, Vienna, Austria) to undertake a frequentist pairwise meta-analysis and NMA.

NMA uses both direct and indirect evidence to compare multiple interventions within a statistical model. If 2 interventions have never been compared head-to-head, but both have been compared with a common comparator (such as placebo), an indirect comparison can be evaluated via the common comparator. An estimate of mean difference (MD) in treatment effect between 2 interventions is a weighted average of direct and indirect comparisons, with confidence intervals (CI).

For each primary outcome, we created network plots which show the overall structure of comparisons in the NMA. The size of the circles is proportional to the number of patients randomized to each intervention, and the width of the edges is proportional to the number of studies making each comparison.

We had also performed pairwise meta-analyses of all head-to-head comparisons to evaluate the heterogeneity within each comparison.25

For continuous outcomes, such as serum uric acid level, eGFR, and BP, we estimated the difference in mean changes between the treatment and control groups. If a trial did not report such a result, we would calculate the difference in the follow-up measurements between 2 groups at a specific time point. We used the recommended methods by the Cochrane Handbook to impute missing values.26 League tables were created to summarize the results of pairwise comparisons from NMA. If a trial reported 2 or more results within the period, we used data of the shortest follow-up for short-term analysis and the longest follow-up for long-term analysis to distinguish the short-term and long-term effects better. For dichotomous outcomes, such as safety outcomes, we used the Peto odds ratio model because the event numbers were small or even zero in some studies.26 The study effect sizes were then synthesized using a random-effects NMA model.

To rank the treatments for each outcome, we used P-score, which measures how likely a treatment is better than the other competing treatments. P-scores are derived from the P values of pairwise comparisons for a treatment is compared with the other treatments in the network. P-scores reflect the differences between the point estimates of treatment effects but also take the precision into account. The range of P-scores is from 0 to 1, and a large P-score (eg, >0.90) suggests a high certainty of a treatment being more effective or safer than others.27 However, P-scores are descriptive, and a large difference between 2 P-scores does not necessarily mean the difference between the 2 treatments is statistically significant. There is no formal method to test the difference in P-scores either.

If both direct and indirect evidence is available for a comparison between 2 treatments, we use the
design-by-treatment interaction model and node-splitting model to evaluate the consistency between direct and indirect evidence. We evaluated the assumption of transitivity for indirect comparisons by examining the distribution of confounding variables, such as baseline kidney function, or undertook subgroup analyses if the number of included studies is sufficient to conduct such analyses.

Results

Our literature search identified 777 potentially eligible studies. Thirteen randomized controlled trials were finally included in our systematic review, totaling 2842 people. Figure 1 shows the study selection process in detail. Table 1 outlines the basic characteristics of the included studies. The intervention included allopurinol, benzbromarone, and febuxostat. The results of a pairwise meta-analysis on direct comparisons are shown in Appendix 6. Most comparisons show no substantial heterogeneity between studies.

Primary Outcome

Short-Term Urate-Lowering Effect

Eight studies were included in the analysis of the urate-lowering effect for short-term (≤ 6 months) follow-up. The network plot and results of our NMA are summarized in Appendix 4 and Table 2. Patients used allopurinol, benzbromarone, and febuxostat showed significantly lower serum uric acid level compared with placebo (MD = −2.16 mg/dL; 95% CI, 3.2 to −1.13 vs MD = −3.05 mg/dL; 95% CI, −5.19 to −0.91 vs MD = −2.71 mg/dL; 95% CI, −3.9 to −1.52), but there were no significant differences between drugs. Benzbromarone had the highest P-score of being ranked first for better urate-lowering efficacy (Table 3).

Long-Term Urate-Lowering Effect

Three studies reported a long-term (> 6 months) urate-lowering effect. The network plot and results of our NMA are summarized in Appendix 4 and Table 2. Patients using allopurinol had significantly lower serum uric acid level compared with placebo (MD = −3.17 mg/dL; 95% CI, −5.19 to −1.15). Patients using febuxostat had lower blood uric acid levels (but not significantly different) compared with placebo. The serum uric acid level showed no significant difference between drugs. Allopurinol had the highest P-score of being ranked first for better urate-lowering efficacy (Table 3).

Renal Function: Short-Term Follow-up

Five studies were included in this analysis. The intervention included allopurinol group and febuxostat group, and the network plot and results of our NMA are summarized in Appendix 4 and Table 2. Patients used allopurinol had significantly higher eGFR compared with placebo (MD = 3.07 mL/min/1.73m²; 95% CI, 0.18 to 5.95). Patients who used febuxostat had a higher eGFR (but not significantly different) compared with placebo. Besides, allopurinol group also had higher eGFR compared with febuxostat group, but no statistical significance was found. Allopurinol had the highest P-score of being ranked first for better renal function (Table 3).

Renal Function: Long-Term Follow-up

Three studies were included in this analysis. The intervention included allopurinol group and febuxostat group. Appendix 4 and Table 2 showed the network plot and results of our NMA. Patients used allopurinol had significantly higher eGFR than using febuxostat or placebo (MD = 3.70 mL/min/1.73m²; 95% CI, 1.94 to 5.46 vs MD = 4.10 mL/min/1.73m²; 95% CI, 2.66 to 5.54). Patients used febuxostat had higher eGFR than using placebo but without statistical significance. Allopurinol had the highest P-score (Table 3).

Blood Pressure: Short-Term Follow-up

Three eligible studies were included, and the network plot and results of our NMA for systolic/diastolic BP are summarized in Appendix 4 and Table 2. No significant difference in systolic/diastolic BP between groups was found. P-score was summarized in Table 3.

Blood Pressure: Long-Term Follow-up

Four studies were included, and Appendix 4 and Table 2 showed the network plot and results of our NMA. No significant difference of systolic/diastolic BP was found between groups, except patients in febuxostat group had 1.47 mmHg statistically lower diastolic BP than patients in placebo group (MD = −1.47 mmHg; 95% CI, −2.91 to −0.04). P-score was summarized in Table 3.
Figure 1. Flowchart of the process to identify eligible studies with reasons for inclusion or exclusion.
Author/Country	Population	Study Design	No. of Patients	Baseline Characteristic*	Treatment	Comparison	Period (weeks)	Primary Outcome		
Siu, 2005 China	patients with chronic kidney disease	randomized controlled trial	25/26	uric acid (mg/dL): 9.75/5.88 Cr (mg/dL): 1.62/1.86 SBP (mm Hg): 138/135 DBP (mm Hg): 79/71	allopurinol, 100 to 300 mg/day	no urate-lowering medical therapy	48	– stable kidney function with less than 40% increase in serum creatinine level		
Ogino, 2010 Japan	patients with stable compensated CHF	double-blind, placebo-controlled, randomized crossover study	14/14	uric acid (mg/dL): 10.2/10.2	Benzbromarone 50 mg/day	placebo	8	– the change of BNP levels	– change in echocardiographic parameters of left ventricle dimensions and LVEF	
Kanbay, 2011 Turkey	patients with normal renal function	randomized, controlled trial	30/57	uric acid (mg/dL): 8.3/7.0 eGFR: 86.3/84.3 SBP (mm Hg): 127.6/123.2 DBP (mm Hg): 73.1/73.6	allopurinol 300 mg/day	no urate-lowering medical therapy	16	– endothelial dysfunction – BP – eGFR		
Liu, 2015 China	patients with type 2 diabetes	randomized open parallel-controlled study	88/88	uric acid (μmol/L): 433/432 eGFR: 90.1/90.1SBP (mm Hg): 121/121 DBP (mm Hg): 74/74	febuxostat 40 mg/day	placebo	24	≥10% decline in eGFR from baseline		
Sircar, 2015 India	eastern India aged 18 to 65 years with CKD stages 3 and 4	double-blind, randomized, parallel-group, placebo-controlled study	45/48	uric acid (mg/dL): 9.0/8.2 eGFR: 31.5/32.6	febuxostat 40 mg/day	placebo	12	improvement in insulin resistance defined by homeostatic model assessment of insulin resistance		
Takir, 2015 Turkey	patients without a history of diabetes mellins, kidney and liver disease	randomized, controlled trial	40/33	uric acid (mg/dL): 7.86/7.45 Cr (mg/dL): 0.9/1.07	allopurinol 300 mg/day	no urate-lowering medical therapy	12	– adipose tissue TBARS and adiponectin concentrations – urinary transforming growth factor-β – change in brachial artery flow-mediated Dilation		
Beddhu, 2016 USA	overweight or obese adults with type 2 diabetic nephropathy	double-blind randomized controlled trial	37/39	uric acid (μmol/L): 426/422 eGFR: 52.2/54.8SBP (mm Hg): 125.2/128.3 DBP (mm Hg): 68.1/72.0	febuxostat 80 mg/day	placebo	24	– adipose tissue TBARS and adiponectin concentrations	– urinary transforming growth factor-β	– change in brachial artery flow-mediated Dilation
Jalal, 2017 USA	≥ 18 years of age with stage 3 CKD	double-blind, randomized, controlled trial	39/41	uric acid (mg/dL): 8.3/8.7 eGFR: 41.3/42.4 SBP (mm Hg): 127/130 DBP (mm Hg): 77.4/77.7	allopurinol 300 mg/day	no urate-lowering medical therapy	12	– change in brachial artery flow-mediated Dilation		
Kimura, 2018 Japan	patients with CKD stage 3	randomized double-blind, parallel controlled trial	219/222	uric acid (mg/dL): 7.8/7.8 eGFR: 45.2/44.9 SBP (mm Hg): 127/130 DBP (mm Hg): 77.4/77.7	febuxostat (10 mg, 20 mg, 40 mg)	placebo	108	eGFR slope		

Continued
Author/Country	Population	Study Design	No. of Patients (Treatment/Control)	Baseline Characteristic* (Treatment/Control)	Treatment	Comparison	Period (weeks)	Primary Outcome
Mukri, 2018 Malaysia	CKD stage 3 and 4 patients with diabetic nephropathy	group, placebo-controlled trial	132.5/129.6 DBP (mm Hg): 77.9/77.3	uric acid (μmol/L): 539.5/537.3	febuxostat 40 mg/day	no urate-lowering medical therapy	24	slowing the eGFR decline
Kojima, 2019 Japan	elderly patients who had one or more risks for cerebral, cardiovascular, or renal disease	randomized open-label, blinded endpoint study	47/46	eGFR: 26.2/28.2 SBP (mm Hg): 73.7/71.7	febuxostat (10-40 mg/day)	non-febuxostat groupno treatment or allopurinol 100 mg (27.2% patients)	144	fatal and non-fatal cerebral, cardiovascular and renal death other than cerebral or cardiorenal vascular disease
Perrenoud, 2020 USA	patients with CKD stage 3	double-blind randomized placebo-controlled study	39/41	eGFR: 41.4/41.7 SBP (mm Hg): 77/77	allopurinol 300 mg/day	placebo	12	change of albumin-creatinine ratio - neutrophil gelatinase-associated lipocalin - kidney injury molecule 1 transforming growth factor β1
Tanaka, 2020 Japan	adults with maximum IMT of the CCA ≥ 1.1 mm at screening	randomized, open-label, blinded-endpoint clinical trial	257/257	uric acid (mg/dL): 7.76/7.73	febuxostat (10-60 mg/day)	no urate-lowering medical therapy	96	percentage change from baseline to 24 months in mean IMT of the CCA

Abbreviations: BNP, brain natriuretic peptide; BP, blood pressure; CCA, common carotid artery; CHF, chronic heart failure; CKD, chronic kidney disease; CRP, C-reactive protein; CV, cardiovascular; DBP, diastolic blood pressure; DN, diabetic nephropathy; eGFR, estimated Glomerular filtration rate; FMD, Flow-mediated dilation; IMT, intima-media thickness; IL-6, interleukin-6; LVEF, left ventricular ejection fraction; MCP-1, monocyte chemotactic protein-1; Ox-LDL, oxidized low-density lipoprotein; NF-kB, nuclear factor-kappa B; SBP, systemic blood pressure; TBARS, thiobarbituric acid-reducing substances; UAER, urinary albumin excretion rate.

* Values are expressed as mean.
† The unit of eGFR is mL/min/1.73 m².
‡ Values are expressed as median.
Table 2. League Table of Random-Effects Network Meta-Analysis for Effect of Urate-Lowering Therapy*

Serum Uric Acid Level (Short-Term Follow-Up, mg/dL)	Allopurinol	Benzbromarone	Febuxostat	Placebo
0.89 (−1.49 to 3.26)	−2.16 (−3.20 to −1.13)	−3.05 (−5.19 to −0.91)	−2.71 (−3.90 to −1.52)	
0.55 (−1.03 to 2.13)	−0.34 (−2.79 to 2.11)	−3.05* (−5.19 to −0.91)	−2.71† (−3.90 to −1.52)	
−2.16† (−3.20 to −1.13)	−3.05 (−5.19 to −0.91)	−2.71† (−3.90 to −1.52)	Placebo	

Serum Uric Acid Level (Long-Term Follow-Up, mg/dL)	Allopurinol	Febuxostat	Placebo
−0.55 (−3.97 to 2.88)	−3.17 (−5.19 to −1.15)	−2.62 (−5.39 to 0.15)	
−3.17† (−5.19 to −1.15)	−2.62 (−5.39 to 0.15)	Placebo	

Renal Function (Short-Term Follow-Up, mL/min/1.73 m²)	Allopurinol	Febuxostat	Placebo
2.00 (−2.54 to 6.53)	3.07 (0.18 to 5.95)	1.07 (−2.43 to 4.57)	
3.07† (0.18 to 5.95)	1.07 (−2.43 to 4.57)	Placebo	

Renal Function (Long-Term Follow-Up, mL/min/1.73 m²)	Allopurinol	Febuxostat	Placebo
3.70† (1.94 to 5.46)	4.10 (2.66 to 5.54)	0.40 (−0.60 to 1.40)	
4.10† (2.66 to 5.54)	0.40 (−0.60 to 1.40)	Placebo	

Systolic Blood Pressure (Short-Term Follow-Up, mm Hg)	Allopurinol	Febuxostat	Placebo
4.54 (−4.29 to 13.37)	0.04 (−4.22 to 4.30)	−4.50 (−12.23 to 3.23)	
0.04 (−4.22 to 4.30)	−4.50 (−12.23 to 3.23)	Placebo	

Systolic Blood Pressure (Long-Term Follow-Up, mm Hg)	Allopurinol	Febuxostat	Placebo
−3.96 (−10.58 to 2.66)	−4.74 (−11.12 to 1.63)	−0.78 (−2.57 to 1.01)	
−4.74 (−11.12 to 1.63)	−0.78 (−2.57 to 1.01)	Placebo	

Diastolic Blood Pressure (Short-Term Follow-Up, mm Hg)	Allopurinol	Febuxostat	Placebo
1.48 (−4.06 to 7.03)	1.58 (−2.31 to 5.48)	0.10 (−3.85 to 4.05)	
1.58 (−2.31 to 5.48)	0.10 (−3.85 to 4.05)	Placebo	

Diastolic Blood Pressure (Long-Term Follow-Up, mm Hg)	Allopurinol	Febuxostat	Placebo
2.34 (−2.62 to 7.29)	0.86 (−3.88 to 5.61)	−1.47 (−2.90 to −0.04)	
0.86 (−3.88 to 5.61)	−1.47 (−2.90 to −0.04)	Placebo	

*Data are shown as mean difference (95% confidence interval).
†Difference in treatment effect is statistically significant.
Secondary Outcome: Adverse Events

Six trials, 1269 patients, were included in the analysis of impaired liver function.29,31,34–36,40 Six trials, 986 patients, were included in the analysis of gastrointestinal events.31,32,34,35,37,40 Five trials, 1195 patients, were included in the analysis of cardiovascular events.32,34,36,37,40 Four trials, 1102 patients, were included in the analysis of musculoskeletal events.34,36,37,40 Three trials, 1009 patients, were included in the analysis of skin reaction.35,36,40

Compared with placebo via NMA, ULT did not significantly increase the odds of any secondary outcome (Appendix 5).

As no treatment groups formed a loop in any outcomes, we could not evaluate inconsistency between direct and indirect evidence. No subgroup analysis was undertaken because the number of the low number of included studies. Baseline eGFR of patients showed quite a wide variation across the included trials, but the assumption of transitivity was not considered seriously violated due to the hepatic metabolism of febuxostat, and both similar and typical dose was used in most trials of allopurinol.28,30,31,33,35,39

Discussion

Our NMA showed that benzbromarone and allopurinol have the best efficacy on lowering serum uric acid levels in short-term and long-term follow-up within AH patients. Patients using allopurinol have better eGFR than using placebo. ULT seems to have no significant effect on BP, except for febuxostat on diastolic BP after long-term treatment. ULT does not significantly increase the risk of safety outcomes. Asymptomatic patients are often neglected for treatment, and our results provide much-needed evidence for treating those patients to attain better renal function.

Uric Acid

Previous meta-analysis or NMA included patients who were mostly symptomatic, so the doses of their drugs were relatively larger than those we recruited. Li et al reported a NMA for comparing efficacy of ULT in patients with or without gout.41 Their results showed benzbromarone (100 to 200 mg/day) had better urate-lowering effect than allopurinol (100 to 600 mg/day), and allopurinol (100 to 600 mg/day) had better urate-lowering effect than febuxostat (20 mg/day). In our NMA, only 1 trial reported the result of benzbromarone with a dose of 50 mg/day, but we still found a similarly strong effect of benzbromarone in the short-term follow-up. However, no trial on benzbromarone reported results with more than 6 months of follow-up, so its long-term efficacy is uncertain. Our result showed that allopurinol (starting from 100 mg/day) had better effect on lowering serum uric acid levels than febuxostat (10 to 60 mg/day) in the long term. This result partly agrees with what Li et al found that allopurinol had a better effect than a low dose of febuxostat.41 Nevertheless, the effect on uric acid is related to the dose of drugs. The selection of drugs and their doses also depends on patients’ kidney function, responses to the treatment, and other factors.

Renal Function

Meta-analysis by Kanji et al showed patients with CKD using ULT had significantly better eGFR with a mean difference of 3.2 mL/min/1.73 m² than using placebo.42 Slower eGFR decline rate by 4.1 mL/min/1.73 m² per year compared with control group was found in the study of Su et al.43 Those meta-analyses focused on patients with CKD and were not limited to asymptomatic patients. Our NMA included more diverse population, not only patients with CKD, but the result still showed that patients using allopurinol had 3.07/

Table 3. P-Score of Different Rankings of Each Treatment Strategy

SHORT-TERM	LONG-TERM		
Serum Uric Acid	Serum Uric Acid		
Benzbromarone	0.7908	Allopurinol	0.8108
Febuxostat	0.7146	Febuostat	0.6728
Allopurinol	0.4937	Placebo	0.0164
Placebo	0.0009	Renal Function	
Allopurinol	0.8937	Febuostat	0.3912
Febuxostat	0.4598	Placebo	0.1088
Placebo	0.1465	Systolic Blood Pressure	
Allopurinol	0.8581	Febuostat	0.4626
Allopurinol	0.3246	Placebo	0.1340
Placebo	0.3173	Diastolic Blood Pressure	
Diastolic Blood Pressure	0.3173	Febuxostat	0.9000
Placebo	0.6534	Placebo	0.3307
Febuxostat	0.5900	Allopurinol	0.2693
Allopurinol	0.2567		

*Large value of P-score (e.g., >0.90) may reflect that treatment is quite certain to be the most efficacious or safest.
4.1 mL/min/1.73m² significantly higher eGFR than using placebo in short-term/long-term follow-up. Although the differences are small, they may be of great significance for patients who already have kidney disease. In addition, the results were similar to previous research.42,43

Our result showed that febuxostat yielded a non-significant increase in eGFR compared with placebo. This was similar to a meta-analysis by Li et al which included symptomatic and asymptomatic CKD patients.44 As only 3 trials were included in their meta-analysis and 5 trials included in ours; these nonsignificant benefits may become significant if the number of subjects increases.

We did not find any trial of uricosuric agents reporting renal function of asymptomatic patients, so we cannot distinguish the possibly different effect between xanthin oxidase inhibitors and uricosuric agents.

Blood Pressure
The meta-analysis by Qu et al found allopurinol found a greater reduction in systolic BP and diastolic BP.45 They included patients with hyperuricemia or without symptoms, so the dose of allopurinol (100 mg/day to 900 mg/day) was relatively larger than our studies. This may explain why allopurinol showed smaller effects on BP in our analysis. We found a decreasing trend of systolic BP under treatment of allopurinol and febuxostat in the long-term follow-up, but the effect of ULT on BP needs more research.

Safety
White et al found that in patients with gout and major CV coexisting conditions, using febuxostat showed higher all-cause mortality and CV mortality than using allopurinol in a median of 32 months in 6190 patients.17 Five trials, totaling 1195 patients, were recruited in our NMA reporting CV events.32,34,36,37,40 The result showed patients using febuxostat did not have a higher risk than those using placebo. However, no allopurinol-related trial was included in our analysis, so we could not compare the effects of these 2 drugs on CV events. The longest follow-up period in these trials was 27 months, but CV events may require more time and more patients to observe.

Allopurinol is frequently associated with Stevens-Johnson syndrome (SJS) or toxic epidermal necrolysis (TEN).15 Three trials in our NMA, totaling 1009 patients, reported skin reaction and did not show a higher risk of skin reaction in patients using allopurinol.35,36,40 Previous reports showed that the incidence rates of SJS/TEN range from 1.4 to 12.7 cases per million person-years.46,47 Therefore, such serious skin reaction is rare if the patient number is not large enough.

Strengths and Limitations
The strength of our NMA was that we focused on patients with AH and compared the efficacy of individual drugs. We also divided the treatment duration into short-term and long-term. However, this study has some limitations. First, only 3 drugs, allopurinol, febuxostat, and benzbramaron, were included in our analyses, while probenecid, lesinurad, and other urate-lowering drugs were not because these drugs had not been studied among AH patients. Second, no head-to-head trials that compared allopurinol and febuxostat were included in our analysis. Although it is the advantage of NMA that an indirect comparison can still be undertaken for these 2 treatments as both have been compared with placebo, we cannot verify the results because we do not have data from a direct comparison.48 Thirdly, the number of the included studies was too few to undertake subgroup analysis. For instance, only 1 trial focusing on CKD population was included in the analysis of long-term renal function, so we could not compare the efficacy of those drugs on renal function among CKD patients. In our NMA, the included trials recruited patients of different comorbidities. However, considering the kidney plays a major role in uric acid homeostasis, we felt that renal function was the most important factor, and we noted that the average eGFR of each trial in our analysis was different. Febuxostat undergoes hepatic metabolism, and its dose adjustment and effects are less affected by patients’ renal function.49 Trials on allopurinol used similar doses, 200 to 300 mg/day,50 and this range of dose is considered suitable for CKD patients included in our NMA.51 Although the heterogeneous populations should be considered in the interpretation of our results, we felt that the assumption of transitivity was not seriously violated. Fourthly, our results showed Allopurinol has a renoprotective effect, and this finding seems quite robust in Asian population as our results were mainly derived from Asian studies. More randomized controlled trials from non-Asian countries are required to verify the protective effect.
Conclusions
Our result showed that in AH patients, benzbro-
marone and allopurinol have the best urate-lower-
ing effect in the short-term and long-term follow-
up. Allopurinol has a significant renoprotective
effect. Febuxostat has a significant effect on lowering
diastolic BP in long-term follow-up. ULT does
not result in a higher risk of impaired liver function,
gastrointestinal event, CV event, skin reaction, and
musculoskeletal event. According to the above
results, patients with AH may be treated with ULT
to benefit from renal protection, and the use of
allopurinol should be considered a priority.

To see this article online, please go to: http://jabfm.org/content/
35/1/140.full.

References
1. Jelani Q-U-A, Norcliffe-Kaufmann L, Kaufmann
H, Katz SD. Vascular endothelial function and
blood pressure regulation in afferent autonomic
failure. Am J Hypertens 2015;28:166–72.
2. Rajendran P, Rengarajan T, Thangavel J, et al. The
vascular endothelium and human diseases. Int J Biol
Sci 2013;9:1057–69.
3. Zhou Y, Zhao M, Pu Z, Xu G, Li X. Relationship
between oxidative stress and inflammation in hyperuri-
cemia: analysis based on asymptomatic young patients
with primary hyperuricemia. Medicine 2018;97:e13108.
4. Hadi HAR, Carr CS, Al Suwaidi J, Al Suwaidi J.
Endothelial dysfunction: cardiovascular risk factors,
therapy, and outcome. Vasc Health Risk Manag
2005;1:183–98.
5. Zhen H, Gui F. The role of hyperuricemia on vas-
cular endothelium dysfunction. Biomed Rep 2017;
7:325–30.
6. Khosa UM, Zharkov S, Finch JL, et al. Hyperuricemia induces endothelial dysfunction.
Kidney Int 2005;67:1739–42.
7. Terkeltaub R. Update on gout: new therapeutic
strategies and options. Nat Rev Rheumatol 2010;
6:30–8.
8. Liang WY, Zhu XY, Zhang JW, Feng XR, Wang
YC, Liu ML. Uric acid promotes chemokine and
adhesion molecule production in vascular endo-
thelium via nuclear factor-kappa B signaling. Nutr
Metab Cardiovasc Dis 2015;25:187–94.
9. Xin W, Mi S, Lin Z. Allopurinol therapy improves
vascular endothelial function in subjects at risk for cardio-
vascular diseases: a meta-analysis of randomized
controlled trials. Cardiovasc Ther 2016;34:441–9.
10. Tsuruta Y, Kikuchi K, Tsuruta Y, et al. Febuxostat
improves endothelial function in hemodialysis
patients with hyperuricemia: a randomized con-
trolled study. Hemodial Int 2015;19:514–20.
11. Cha R-H, Kim SH, Bae EH, et al. Physicians’ per-
ceptions of asymptomatic hyperuricemia in patients
with chronic kidney disease: a questionnaire survey.
Kidney Res Clin Pract 2019;38:373–81.
12. Mount DB. Asymptomatic hyperuricemia. Updated
Jun 29, 2020. Accessed Jun 2, 2021.
13. Shin DH. To treat or not to treat asymptomatic
hyperuricemia in chronic kidney disease. Kidney
Res Clin Pract 2019;38:257–59.
14. Chalès G. How should we manage asymptomatic
hyperuricemia? Joint Bone Spine 2019;86:437–43.
15. Haley S, Ghislain PD, Mockenhaupt M, et al.
Allopurinol is the most common cause of Stevens-
Johnson syndrome and toxic epidermal necrolysis
in Europe and Israel. J Am Acad Dermatol 2008;
58:25–32.
16. Becker MA, Schumacher HR, Jr., Wortmann RL,
et al. Febuxostat compared with allopurinol in patients
with hyperuricemia and gout. N Engl J Med
2005;353:2450–61.
17. White WB, Saag KG, Becker MA, CARES
Investigators, et al. Cardiovascular safety of febuxo-
stat or allopurinol in patients with gout. N Engl J
Med 2018;378:1200–10.
18. Zhang W, Doherty M, Bardin T, EULAR Standing
Committee for International Clinical Studies
Including Therapeutics, et al. EULAR evidence
based recommendations for gout. Part II: Man-
agement. Report of a task force of the EULAR
Standing Committee for International Clinical
Studies Including Therapeutics (ESCISIT). Ann
Rheum Dis 2006;65:1312–24.
19. Love BL, Barrons R, Veverka A, Snider KM.
Urate-lowering therapy for gout: focus on febuxo-
stat. Pharmacotherapy 2010;30:594–608.
20. Azevedo VF, Kos IA, Vargas-Santos AB, da
Rocha Castelar Pinheiro G, dos Santos Paiva E.
Benzbromarone in the treatment of gout. Adv
Rheumatol 2019;59:37.
21. Lee MH, Graham GG, Williams KM, Day RO. A
benefit-risk assessment of benzbromarone in the
treatment of gout. Was its withdrawal from the market in the best interest of patients? Drug Saf
2008;31:643–56.
22. Yamanaka H, Metabolism TG. Essence of the
revised guideline for the management of hyper-
uricemia and gout. Japan Med Assoc J 2012;
55:324–9.
23. George J, Carr E, Davies J, Belch J, Struthers A.
High-dose allopurinol improves endothelial function
by profoundly reducing vascular oxidative
stress and not by lowering uric acid. Circulation
2006;114:2508–16.
24. Kim S, Kim H-J, Ahn H-S, et al. Renoprotective effects of febuxostat compared with allopurinol in patients with
hyperuricemia: a systematic review and meta-analysis.
Kidney Res Clin Pract 2017;36:274–81.
25. Rouse B, Chaimani A, Li T. Network meta-analysis: an introduction for clinicians. Intern Emerg Med 2017;12:103–11.
26. Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA. Cochrane Handbook for Systematic Reviews of Interventions. Available at: https://handbook.cochrane.org. Accessed May 11, 2021.
27. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. Int J Cardiol 2016;213:8–14.
28. Siu Y-P, Leung K-T, Tong MK-H, Kwan T-H. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid levels. Am J Kidney Dis 2006;47:51–9.
29. Ogino K, Kato M, Furuse Y, et al. Uric acid-lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled crossover preliminary study. Circ Heart Fail 2010;3:73–81.
30. Kanbay M, Huddam B, Azak A, et al. A randomized study of allopurinol on endothelial function and estimated glomular filtration rate in asymptomatic hyperuricemic subjects with normal renal function. Clin J Am Soc Nephrol 2011;6:1887–94.
31. Liu P, Wang H, Zhang F, Chen Y, Wang D, Wang Y. The effects of allopurinol on the carotid intima-media thickness in patients with type 2 diabetes and asymptomatic hyperuricemia: a three-year randomized parallel-controlled study. Intern Med 2015;54:2129–37.
32. Sirca D, Chatterjee S, Wakhom R, et al. Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. Article. American Journal of Kidney Diseases 2015;66:945–50.
33. Takir M, Kostek O, Ozkok A, et al. Lowering uric acid with allopurinol improves insulin resistance and systemic inflammation in asymptomatic hyperuricemia. J Invest Med 2015;63:924–9.
34. Beddu S, Filipowicz R, Wang B, et al. A randomized controlled trial of the effects of febuxostat therapy on adipokines and markers of kidney fibrosis in asymptomatic hyperuricemic patients with diabetic nephropathy. Can J Kidney Health Dis 2016;3:205435811667534.
35. Jalal DI, Decker E, Perrenoud L, et al. Vascular function and uric acid-lowering in stage 3 CKD. J Am Soc Nephrol 2017;28:943–52.
36. Kimura K, Hosoya T, Uchida S, FEATHER Study Investigators, et al. Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis 2018;72:798–810.
37. Mukri MNA, Kong WY, Mustafar R, et al. Role of febuxostat in retarding progression of diabetic kidney disease with asymptomatic hyperuricemia: a 6-months open-label, randomized controlled trial. Excli J 2018;17:563–75.
38. Kojima S, Matsui K, Hiramitsu S, et al. Febuxostat for Cerebral and CarDiorenovascular Events PrEvEntion StuDy. Eur Heart J 2019;40:1778–86.
39. Perrenoud L, Kruse NT, Andrews E, et al. Uric acid lowering and biomarkers of kidney damage in CKD stage 3: a post hoc analysis of a randomized clinical trial. Kidney Med 2020;2:155–61.
40. Tanaka A, Taguchi I, Teragawa H, on behalf of the PRIZE study investigators, et al. Febuxostat does not delay progression of carotid atherosclerosis in patients with asymptomatic hyperuricemia: a randomized, controlled trial. PLoS Med 2020;17:e1003095.
41. Li S, Yang H, Guo Y, et al. Comparative efficacy and safety of urate-lowering therapy for the treatment of hyperuricemia: a systematic review and network meta-analysis. Sci Rep 2016;6:33082.
42. Kanji T, Gandhi M, Clase CM, Yang R. Urate lowering therapy to improve renal outcomes in patients with chronic kidney disease: systematic review and meta-analysis. BMC Nephrol 2015;16:58.
43. Su X, Xu B, Yan B, Qiao X, Wang L. Effects of uric acid-lowering therapy in patients with chronic kidney disease: a meta-analysis. PLOS ONE 2017;12: e0187550.
44. Lin T-C, Hung LY, Chen Y-C, et al. Effects of febuxostat on renal function in patients with chronic kidney disease: a systematic review and meta-analysis. Medicine 2019;98:e16311.
45. Qu LH, Jiang H, Chen JH. Effect of uric acid-lowering therapy on blood pressure: systematic review and meta-analysis. Ann Med 2017;49:142–56.
46. Hsu DY, Brieva J, Silverberg NB, Silverberg JI. Morbidity and mortality of Stevens-Johnson syndrome and toxic epidermal necrolysis in United States adults. J Invest Dermatol 2016;136:1887–97.
47. Diphooorn J, Cazzaniga S, Gamba C, REACT-Lombardia study group, et al. Incidence, causative factors and mortality rates of Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) in northern Italy: data from the REACT registry. Pharmacoepidemiol Drug Saf 2016;25:196–203.
48. Jansen JP, Trikalinos T, Cappelleri JC, et al. Indirect treatment comparison/network meta-analysis study questionnaire to assess relevance and credibility to inform health care decision making: an ISPOR-AMCP-NPC Good Practice Task Force report. Value Health 2014;17:157–73.
49. Akimoto T, Morishita Y, Ito C, et al. Febuxostat for hyperuricemia in patients with advanced chronic kidney disease. Drug Target Insights 2014;8:39–43.
50. Harris MD, Siegel LB, Alloway JA. Gout and hyperuricemia. Am Fam Physician 1999;59:925–34.
51. Jodoin K. The renal drug handbook: the ultimate prescribing guide for renal practitioners, 4th edition. Eur J Hosp Pharm 2016;23:248.
Appendices
Appendix 1. Literature search strategy
Appendix 2. Data extraction from included trials-
Details of secondary outcomes
Appendix 3. Summary of the risks of bias in every included trial
Appendix 4. Network plot for effect of urate lowering therapy
Appendix 5. League table of the network meta-analysis comparing the events of secondary outcomes of all drugs
Appendix 6. Result of pairwise meta-analyses of all directly compared interventions
1. Embase

No	Query	Results
#10	#6 AND #9	493
#9	#3 OR #4 OR #5 OR #6 OR #7	47551
#8	#1 AND #2	1574
#7	urate lowering therapy/ME AND ‘urate lowering therapy’ OR ((urate/ME OR urate) AND lowering AND (therapy/ME OR therapy))	1079
#6	urate oxidase/ME OR urate oxidase OR (urate/ME OR urate) AND (urate/ME OR urate) AND (urate/ME OR urate) OR (urate/ME OR urate) OR (urate/ME OR urate)	5573
#5	selective uric acid reabsorption inhibitor/ME OR (selective AND uric AND (acid/ME OR acid)) AND reabsorption AND (inhibitor/ME OR inhibitor) OR reabsorption/ME OR reabsorption	364
#4	uricosuric agent/ME OR uricosuric agent OR (uricosuric/ME OR uricosuric) AND (agent/ME OR agent) OR (urate/ME OR urate) OR (urate/ME OR urate) OR (urate/ME OR urate)	18237
#3	xanthine oxidase inhibitor/ME OR ‘xanthine oxidase inhibitor’ OR allopurinol/ME OR allopurinol OR febuxostat/ME OR febuxostat OR februric	27777
#2	asymptomatic	24644
#1	hyperuricemia/ME OR hyperuricemia OR ‘uric acid’ OR ‘uric acid’ OR (urate AND (acid/ME OR acid))	72582

2. Pubmed

Search	Actions	Details	Query	Results	Time
#10	---	>	Search: (((hyperuricemia OR (urate acid)) AND (asymptomatic)) AND (((xanthine oxidase inhibitor) OR (allopurinol)) OR (febuxostat OR februric)) OR (((uricosuric agent) OR (probenecid)) OR (benzbramorane) OR (sulfinpyrazone))) OR ((selective uric acid reabsorption inhibitor) OR (lesinurad)) OR ((urate oxidase enzyme) OR (pegloticase)) OR (rasburicase)) OR urate lowering therapy	281	20:40:22
#9	---	>	Search: (((xanthine oxidase inhibitor) OR (allopurinol)) OR (febuxostat OR februric)) OR (((uricosuric agent) OR (probenecid)) OR (benzbramorane) OR (sulfinpyrazone))) OR ((selective uric acid reabsorption inhibitor) OR (lesinurad)) OR ((urate oxidase enzyme) OR (pegloticase)) OR (rasburicase)) OR (urate lowering therapy)	25,899	20:40:09
#8	---	>	Search: ((hyperuricemia) OR (urate acid)) AND (asymptomatic)	819	20:39:45
#7	---	>	Search: urate lowering therapy	3,314	20:39:30
#6	---	>	Search: ((urate oxidase enzyme) OR (pegloticase)) OR (rasburicase)	2,347	20:38:37
#5	---	>	Search: (urate oxidase enzyme) OR (pegploticase) OR (rasburicase)	171	20:37:56
#4	---	>	Search: ((urate oxidase enzyme) OR (probenecid) OR (benzbramorane) OR (sulfinpyrazone))	8,810	20:37:17
#3	---	>	Search: (urate oxidase enzyme) OR (allopurinol) OR (febuxostat OR februric)	13,911	20:36:31
#2	---	>	Search: asymptomatic	167,625	20:35:45
#1	---	>	Search: hyperuricemia OR (urate acid)	43,504	20:35:13

Urate-Lowering Therapy in Patients with Asymptomatic Hyperuricemia
Appendix 1. Literature search strategy

Impaired liver function
Liver dysfunction
Abnormal liver function test results
Gastrointestinal events
Vomiting
Diarrhea
Gastroenteritis
Loss of appetite
Melena
Nausea
Other gastrointestinal symptom or sign
CV events
Arrhythmia
Angina
Aortic aneurysm
Myocardial infarction
Heart failure
Other events related to CV system
Skin reactions
Skin eruption
Rash
Hypersensitivity
Dermatologic events
Musculoskeletal events
Joint pain
Fracture
Pain in back
Any musculoskeletal events
Appendix 2. Data extraction from included trials: Details of secondary outcomes

Study	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)
Siu, 2005	Low	Unclear	Unclear	Low	Low	Low
Ogin, 2010	Low	Unclear	Low	Low	Low	Low
Kanbay, 2011	Low	Unclear	Low	Low	Low	Low
Liu, 2015b	Low	High	Low	Low	Low	Low
Sircar, 2015	Low	Unclear	Low	Low	Low	Low
Takir, 2015	Unclear	Unclear	Unclear	Low	Low	Low
Beddu, 2016	Low	Low	Low	Low	Low	Low
Jalal, 2017	Low	Low	Low	Low	Low	Low
Kimura, 2018	Low	Unclear	Low	Unclear	Low	Low
Mukri, 2018	Low	High	Low	Low	Low	Low
Kojima, 2019	Low	High	Low	Low	Low	Low
Perrenoud, 2020	Low	Unclear	Low	Unclear	Low	Low
Tanaka, 2020	Low	High	Low	Low	Low	Low
Appendix 3. Summary of the risks of bias in every included trial

Serum uric acid analysis (short-term follow-up)	Serum uric acid analysis (long-term follow-up)
Renal function analysis (short-term follow-up)	Renal function analysis (short-term follow-up)
Systolic blood pressure (short-term follow-up)	Systolic blood pressure (long-term follow-up)
Diastolic blood pressure (short-term follow-up)	Diastolic blood pressure (long-term follow-up)

[Diagram of trials and outcomes]
Appendix 4. Network plot for effect of urate-lowering therapy. Each node represents a treatment group, and an edge indicates at least 1 trial comparing the 2 treatments on the ends of the edge. The node size in the network plot is proportional to the number of patients randomized to the treatment group, and the width of an edge is proportional to the number of studies making the pairwise comparison.

Impaired liver function
Allopurinol 0.75 (0.03; 18.30)
Febuxostat 1.14 (0.09; 15.25)

Gastrointestinal events
Allopurinol 0.87 (0.10; 7.66)
Febuxostat 2.65 (0.53; 13.25)

Cardiovascular events
Febuxostat 0.78 (0.29; 2.07)

Skin reaction
Allopurinol 0.06 (0.00; 4.94)
Febuxostat 0.14 (0.00; 6.55)

Musculoskeletal events
Febuxostat 2.08 (0.69; 6.25)

Appendix 5. League table of the network meta-analysis comparing the events of secondary outcomes of all drugs, including odds ratios and 95% confidence intervals.

Event	Benz.-Control	P Value	Allop.-Control	P Value	Febux.-Control	P Value
Urea	-3.05 ± 1.09	*-	-2.16 ± 0.53	<0.001	-2.71 ± 0.61	0.0300
GFR	-	-	3.07 ± 1.47	0.5065	1.07 ± 1.79	0.4527
SBP	-	-	0.04 ± 2.71	0.9704	-4.50 ± 3.94	*-
DBP	-	-	1.58 ± 1.99	0.8183	0.10 ± 2.02	*-

DBP: diastolic blood pressure; GFR: glomerular filtration rate; SBP: systemic blood pressure.
Result of pairwise meta-analyses of all directly compared interventions

Appendix 6.1 Results of pairwise meta-analyses of all directly compared interventions of short-term results. *P value is obtained from the Cochrane Q test for heterogeneity.*

	Allop-Control	P Value	Febux-Control	P Value
Ur-Ac	-3.17 ± 1.03	0.0001	-2.62 ± 1.41	*
GFR	4.10 ± 0.73	*	0.40 ± 0.51	0.3547
SBP	-4.74 ± 3.25	0.6326	-0.78 ± 0.91	0.5233
DBP	0.86 ± 2.42	0.1484	-1.47 ± 0.73	0.8174

*Only 1 trial included in the analysis so heterogeneity could not be evaluated.
†High heterogeneity is defined by P value<0.1.

Appendix 6.2 Results of pairwise meta-analyses of all directly compared interventions of long-term results. *P value is obtained from the Cochrane Q test for heterogeneity.*

PRISMA NMA Checklist of Items to Include When Reporting A Systematic Review Involving a Network Meta-analysis

Section/Topic	Item	Checklist Item	Reported on Page
TITLE		Title	1
		Identify the report as a systematic review incorporating a network meta-analysis	File of JABFM_abstract
ABSTRACT		Structured summary	2
		Provide a structured summary including, as applicable:	
		Background; main objectives	
		Methods; data sources; study eligibility criteria, participants, and interventions; study appraisal; and synthesis methods, such as network meta-analysis	
		Results; number of studies and participants identified; summary estimates with corresponding confidence/credible intervals; treatment rankings may also be discussed. Authors may choose to summarize pairwise comparisons against a chosen treatment included in their analyses for brevity.	
		Discussion/Conclusions; limitations; conclusions and implications of findings.	
		Other; primary source of funding: systematic review registration number with registry name.	
INTRODUCTION		Rationale	2
		Describe the rationale for the review in the context of what is already known, including mention of why a network meta-analysis has been conducted.	
		Objectives	3
		Provide an explicit statement of questions being addressed, with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	
METHODS		Protocol and registration	CRD42021256528
		Indicate whether a review protocol exists and if and where it can be accessed (e.g., Web address); and, if available, provide registration information, including registration number.	
		Eligibility criteria	3
		Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. Clearly describe eligible treatments included in the treatment network, and note whether any have been clustered or merged into the same node (with justification).	
- Meta-regression analyses;
- Alternative formulations of the treatment network; and
- Use of alternative prior distributions for Bayesian analyses (if applicable).

RESULTS†

Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	7
Presentation of network structure	53	Provide a network graph of the included studies to enable visualization of the geometry of the treatment network.	Appendix 4
Summary of network geometry	S4	Provide a brief overview of characteristics of the treatment network. This may include commentary on the abundance of trials and randomized patients for the different interventions and pairwise comparisons in the network, gaps of evidence in the treatment network, and potential biases reflected by the network structure.	6-10
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment.	Appendix 3
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: 1) simple summary data for each intervention group, and 2) effect estimates and confidence intervals. Modified approaches may be needed to deal with information from larger networks.	7-10
Synthesis of results	21	Present results of each meta-analysis done, including confidence/credible intervals. In larger networks, authors may focus on comparisons versus a particular comparator (e.g., placebo or standard care), with full findings presented in an appendix.	Table 2, 3 Appendix 3
Exploration for inconsistency	S5	Describe results from investigations of inconsistency. This may include such information as measures of model fit to compare consistency and inconsistency models, P values from statistical tests, or summary of inconsistency estimates from different parts of the treatment network.	NA/10
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies for the evidence base being studied.	Appendix 3
Results of additional analyses	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression analyses, alternative network geometries studied, alternative choice of prior distributions for Bayesian analyses, and so forth).	NA/10

DISCUSSION

Summary of evidence	24	Summarize the main findings, including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, insurers, and policy-makers).	11
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias). Comment on the validity of the assumptions, such as transitivity and consistency. Comment on any concerns regarding network geometry (e.g., avoidance of certain comparisons).	14
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	15

FUNDING

| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. This should also include information regarding whether funding has been received from manufacturers of treatments in the network and/or whether some of the authors are content experts with professional conflicts of interest that could affect use of treatments in the network. | File of JABFM title page |

PICOS = population, intervention, comparators, outcomes, study design.

* Text in italics indicates wording specific to reporting of network meta-analyses that has been added to guidance from the PRISMA statement.
† Authors may wish to plan for use of appendices to present all relevant information in full detail for items in this section.