Osteoporosis is a common aging-related disease characterized by decreased bone strength and consequent increased fracture risk. BMD, the most clinically relevant risk factor when diagnosing osteoporosis, is highly heritable and is a strong risk factor for fracture. BMD genome-wide association studies (GWASs) have demonstrated that it is a highly polygenic trait, and the known genetic determinants of fracture all act through BMD. Recently, we identified 203 loci associated with eBMD by measuring quantitative heel ultrasound, explaining 12% of its variance, demonstrating this polygenicity.

eBMD is predictive of fracture and is highly heritable (50–80%). While BMD measured from dual-energy X-ray absorptiometry (DXA) scanning is most often used in clinical settings, our recent eBMD GWAS identified 84% of all currently known genome-wide significant loci for DXA-derived BMD, and effect sizes were concordant between the two traits (Pearson’s r = 0.69 for lumbar spine and 0.64 for femoral neck). The largest GWAS to date for DXA-derived BMD measures contained only 66,628 individuals. Both ultrasound and DXA-derived BMD are strongly associated with fracture risk, where a standard deviation decrease in either metric is associated with an approximate 1.5-fold increase in osteoporotic fracture risk.

Little is known about how to reliably map associated loci to their causal genes. However, highly polygenic traits such as bone density allow empirical testing of which methods link associated SNPs to genes enriched for causal proteins. Causal proteins can be identified in human clinical trials when their manipulation by medications leads to changes in BMD. Another source of causal proteins is Mendelian genetic conditions, which may constitute human knockouts and strongly implicate key genes that underlie bone physiology. Given a sufficient number of associated loci, different genomic characteristics that link a SNP to these causal proteins can be tested, including genomic landscape characteristics such as cell-specific 3-dimensional (3D) contact domains, cell-specific open chromatin states, physical proximity, and the presence of associated coding variation. Furthermore, knockout mice generated...
by large-scale studies can be used to identify genes whose deletion results in an abnormal mouse skeletal phenotype. Rapid-throughput phenotyping data can then be used to determine whether outlier bone phenotypes are enriched in mice harboring deletions of genes identified by GWAS in humans.

Here we present a comprehensive investigation of genetic influences on eBMD and fracture in humans and mice. We undertook an eBMD GWAS of 426,824 individuals in the UK Biobank, identifying 301 novel loci, which explain 20% of its variance, and identified genetic determinants of fracture in up to 1.2 million individuals, combining the UK Biobank and 23andMe cohorts.

We then assessed SNP-level and genomic landscape characteristics, mapping associated SNPs to genes enriched for known bone density proteins. Identified target genes were enriched up to 58-fold for known causal genes and for genes differentially expressed in vivo in osteocytes compared with bone marrow cell models. Finally, we asked whether deletion of GWAS-identified genes results in skeletal abnormalities in vivo by undertaking rapid-throughput phenotyping of knockout mice, which included 126 target genes. Mice harboring deletions of these 126 genes were enriched for outlier skeletal phenotypes. A convergence of human and mouse genetics, bone cell expression, and cell culture data pointed to a role for DAAM2 in osteoporosis. We found that mice with a hypomorphic Daam2 allele had marked decreases in bone strength and increases in cortical bone porosity.

Finally, CRISPR–Cas9-mediated edits of DAAM2 in osteoblast cell lines demonstrated a reduction in mineralization compared with that in unedited cells.

These newly identified loci will empower future clinical and pharmacological research on osteoporosis, spanning from a better understanding of its genetic susceptibility to, potentially, biomarker discovery and drug targets.

Results

GWAS for eBMD and fracture. We selected 426,824 UK Biobank full-release white British individuals (55% female) for an eBMD GWAS (Methods, Supplementary Table 1, and Supplementary Fig. 1). We analyzed 13,737,936 autosomal and X-chromosomal SNPs for their association with eBMD. Although there was substantial inflation of the test statistics relative to the null for eBMD (genomic inflation factor \(\hat{\lambda}_{\text{GC}} = 2.26 \), Supplementary Fig. 2), linkage disequilibrium (LD) score regression indicated that most of the inflation was due to polygenicity rather than population stratification (LD score regression intercept \(= 1.06 \) (0.063), ratio = 0.017 (0.018)).

We identified 1,103 conditionally independent signals (423 novel) at genome-wide significance \((P < 6.6 \times 10^{-8}, \text{Methods}) \) mapping to 515 loci (301 novel; Fig. 1 and Supplementary Table 2). Of the conditionally independent lead SNPs per locus, 4.6% were rare, having a minor allele frequency (MAF) \(\leq 1\% \), whereas 9.3% were low frequency (MAF \(\leq 5\% \) but \(> 1\% \)), and 86.1% were common (MAF \(> 5\% \); Supplementary Fig. 3 shows the relationship between MAF and absolute effect size). The average absolute conditional effect sizes for these three categories of SNPs were 0.14, 0.04, and 0.02 standard deviations, respectively. The total variance explained by conditionally independent genome-wide significant eBMD lead SNPs was 20.3%. When partitioning the variance explained by these lead SNPs into three MAF categories, we found that rare variants explained 0.8% of the variance in eBMD, whereas low-frequency and common variants explained 1.7% and 17.8% of the variance, respectively. We found strong correlations between eBMD effect sizes with UK Biobank interim release effect sizes (coefficient of correlation \(r = 0.93 \), Supplementary Fig. 4 and Supplementary Table 3). Additionally, we performed sex heterogeneity analyses to investigate whether the genetic etiology of eBMD differed between the sexes (Supplementary Note, Supplementary Fig. 6, and Supplementary Tables 5–7). The total number of genome-wide significant conditionally independent signals becomes 1,106 (518 loci) when including these analyses; however, we focus on results from the main GWAS for this study.

We identified 416,795 UK Biobank participants (\(n_{\text{cases}} = 53,184 \) (60% female) and \(n_{\text{controls}} = 373,611 \) (54% female)) for a GWAS of fracture risk (Supplementary Table 1). We assessed 13,977,204 autosomal and X-chromosomal SNPs and identified 14 conditionally independent signals associated with fracture mapping to 13 loci (Supplementary Table 4 and Supplementary Fig. 5). Once again, we observed statistic inflation \(\hat{\lambda}_{\text{GC}} = 1.15 \). However, this inflation was also probably due to polygenicity rather than population stratification (LD score regression intercept \(= 1.00 \) (0.008), ratio = 0.017).
Articles

For causality. Conditional independence testing was implemented using linearly on the genome. A fine-mapped SNP was in its gene body; (3) the gene mapped closest to a fine-mapped SNP; (4) the gene mapped closest to a fine-mapped SNP was coding; (5) a fine-mapped SNP resided in an SaOS-2 ATAC-seq peak; (6) a fine-mapped SNP was from 23andMe, Inc., a personal genetics company (n = 426,824 UK Biobank participants), we applied statistical fine mapping to calculate log_{10} Bayes factors (BF) for each SNP as a measure of their posterior probability for causality. Conditional independence testing was implemented using GCTA-COJO21,24 and FINEMAP31. SNPs that were conditionally independent lead SNPs or that had log_{10} Bayes factors >3 were strongly enriched for both missense variants in protein coding regions (Supplementary Note and Supplementary Table 11) and osteoblast open chromatin sites (Fig. 3a). As log_{10} Bayes factor increased, fold enrichment increased as well (Fig. 3b), indicating that fine-mapped SNPs were highly enriched for genomic signatures of function, which can inform the choice of statistical cutoff for SNP selection in follow-up functional studies.

Fig. 2 | Fine-mapping SNPs and target gene selection diagram. a. For each 500-Mbp region around a conditionally independent lead SNP (P < 6.6 \times 10^{-10} after conditional independence testing; n = 426,824 UK Biobank participants), we applied statistical fine mapping to calculate log_{10} Bayes factors (BF) for each SNP as a measure of their posterior probability for causality. Conditional independence testing was implemented using GCTA-COJO21,24 and FINEMAP31. b. Target Genes were identified if: (1) it was the gene closest to a fine-mapped SNP; (2) A fine-mapped SNP was in its gene body; (3) a fine-mapped SNP was coding; (4) the gene mapped closest to a fine-mapped SNP that resided in an SaOS-2 ATAC-seq peak; (5) a fine-mapped SNP was present in a Hi-C osteoblast or osteocyte promoter interaction peak, therefore being closer to a target gene in three dimensions than linearly on the genome.

Fine-mapping associated loci. To map SNPs to potentially causal genes, we first refined associated SNPs at each locus using two statistical fine-mapping methods, GCTA-COJO21,24 and FINEMAP31. These methods identify SNPs based on their conditional independence and posterior probability for causality, respectively. We generated SNP sets for each genome-wide significant autosomal locus by identifying conditionally independent lead SNPs or SNPs having a high posterior probability of causality, as determined by log_{10} Bayes factor >3 (Fig. 2a; we report all SNPs with log_{10} Bayes factor >2 in Supplementary Tables 8–10). Here we refer to the set of ‘fine-mapped SNPs’ as SNPs achieving either conditional independence or a high posterior probability for causality; on average, we observed two conditionally independent SNPs and five SNPs with a log_{10} Bayes factor >3 per locus (Supplementary Note).

Comparing fine-mapped SNPs for biological activity. Given the large number of associated SNPs per locus, downstream analyses should focus on SNPs most likely to be biologically functional. We used accessible chromatin sites surveyed in relevant cellular contexts as a proxy for biological activity. We generated assay for transposable-accessible chromatin using sequencing (ATAC-seq) maps in the human osteosarcoma cell line SaOS-2, which possess osteoblastic features and can be fully differentiated into osteoblast-like cells. We also analyzed DNase I hypersensitive site (DHS) maps from human primary osteoblasts from the ENCODE project39. Both ATAC-seq and DHS data were analyzed using a uniform mapping and peak-calling algorithm (Methods).

We then analyzed fine-mapped SNPs for enrichment of these functional signatures relative to all SNPs within 1 Mbp of each genome-wide significant association locus. Fine-mapped SNPs, including the set of conditionally independent SNPs and SNPs with log_{10} Bayes factors >3, were strongly enriched for both missense variants in protein coding regions (Supplementary Note and Supplementary Table 11) and osteoblast open chromatin sites (Fig. 3a). As log_{10} Bayes factor increased, fold enrichment increased as well (Fig. 3b), indicating that fine-mapped SNPs were highly enriched for genomic signatures of function, which can inform the choice of statistical cutoff for SNP selection in follow-up functional studies.

Mapping fine-mapped SNPs to target genes and enrichment for positive control genes. Human genetic associations have rarely been translated to improved clinical care, primarily because causal genes at associated loci have often not been indisputably identified. We therefore sought to test which genomic features linked associated SNPs to genes known to influence bone biology in humans. We identified proteins whose perturbation through pharmacotherapy2 or Mendelian disease led to changes in bone density or strength. Mendelian disease genes were defined as monogenic disorders characterized with altered bone mass or abnormal skeletal mineralization, osteolysis and/or skeletal fragility, or osteogenesis imperfecta (Supplementary Table 12) and constitute an informative human knockout resource17. We considered such proteins identified through pharmacotherapy or Mendelian disease to be products of ‘positive control’ genes that are probably critical to bone biology.

Next, we investigated which genomic features linked fine-mapped SNPs to positive control genes. We tested whether positive control genes were enriched among six types of genomic characteristics that can link a SNP to a gene: (i) genes most proximal to fine-mapped SNPs; (ii) genes containing fine-mapped SNPs overlapping their gene bodies; (iii) genes containing fine-mapped SNPs coding variants; (iv) genes identified to be in 3D contact with fine-mapped SNPs in human osteoblasts or osteocytes through high-throughput chromatin conformation capture (Hi-C) experiments; (v) the closest gene to fine-mapped SNPs also mapping to ATAC-seq peaks in SaOS-2 cells; and (iv) genes within 100 kbp of fine-mapped SNPs

(0.038)). Conditionally independent genome-wide significant-lead SNPs were tested for replication in a cohort of research participants from 23andMe, Inc., a personal genetics company (n_{\text{cases}} = 367,900 and n_{\text{controls}} = 363,919). All 14 SNPs showed strong evidence of replication (Supplementary Table 4). All genome-wide significant fracture SNPs were also found to be genome-wide significantly associated with eBMD in the expected direction of effect (that is, alleles lowering eBMD increased fracture risk). Furthermore, there was a highly negative correlation between SNP effect sizes on eBMD and fracture (r = −0.77 (−0.79, −0.74); Supplementary Fig. 4).
(Fig. 2b emphasizes the target gene selection; Fig. 4 details this entire pipeline). Coding annotations, ATAC-seq peaks, and Hi-C interaction peaks were not combined but were kept separate to enable different sources of data to provide converging and confirmatory evidence. Distance from a fine-mapped SNP to a gene considered the closer of the 3’ and 5’ ends, not the transcription start site. We named identified genes ‘Target Genes’ and tested which of these six methods most enriched Target Genes for positive control genes.

The set of Target Genes most strongly enriched for positive control genes arose from genes targeted by SNPs that were conditionally independent and by SNPs identified to be plausibly causal with a log10 Bayes factor >3 (Table 1 and Supplementary Table 13).

This set of Target Genes featured 556 genes total, approximately one per locus. All six methods for linking fine-mapped SNPs to Target Genes yielded strong enrichment for positive control genes. The ORs ranged from 5.1 (95% confidence interval (CI): (3.0, 8.6), $P = 1 \times 10^{-11}$) for Target Genes within 100 kbp of the fine-mapped SNPs to an OR of 58.5 (95% CI: (26.4, 129.3), $P = 1 \times 10^{-75}$) for Target Genes closest to fine-mapped SNPs in osteoblast-derived ATAC-seq peaks (Table 1). Additionally, we used FUMA to assess which pathways from the WikiPathways database were identified by the set of Target Genes most strongly enriched for positive control genes. We observed that known pathways such as Wnt signaling, endochondral ossification, and osteoclast and osteoblast signaling as well as novel pathways were highlighted by this approach (Supplementary Fig. 7).

These results suggest that our Target Gene identification method leads to strong enrichment for positive control genes known to be central to bone biology. Such methods may help to prioritize genes at associated loci for functional testing, which are more likely to influence bone biology and therefore have clinical relevance. (full list of mapped Target Genes and the method through which they were identified is presented in Supplementary Table 14).

Fig. 3 | SNPs at genome-wide significant loci are enriched for bone-relevant open chromatin sites. Comparison of eBMD-associated SNPs in terms of enrichment for DHSs from primary osteoblasts, and ATAC-seq peaks from SaOS-2 osteosarcoma cells. Odds ratios were computed relative to all SNPs at genome-wide significant regions. Enrichments for missense protein coding SNPs are shown as baselines. a, Enrichments for conditionally independent (COJO) or \log_{10} Bayes factor >3 (FINEMAP); note the latter set contains nearly twice the number of SNPs. b, Ranking SNPs by \log_{10} Bayes factor (x axis) showed increasing enrichment. 95% confidence interval (shaded region) was calculated by a two-sided Fisher’s exact test.

Fig. 4 | Target Gene identification workflow.
Mapping fine-mapped SNPs to osteocyte signature genes. An alternative method to assess the biological plausibility of Target Genes is to test whether their expression is enriched in bone cells. Osteocytes are the most abundant cell type in bone and are key regulators of bone mass, bone formation, and bone resorption. We therefore assessed the transcriptomes of primary mouse osteocytes derived from three bone types in vivo. Genes enriched for expression in osteocytes and expressed in all bone types defined an osteocyte transcriptomic signature. We then tested which of the methods used to identify eBMD Target Genes resulted in the greatest enrichment for osteocyte-sigature genes.

We found that Target Genes were strongly enriched for osteocyte signature genes, with ORs for enrichment ranging from 2.1 (95% CI: 1.7 - 2.5) for Target Genes within 100 kb of the fine-mapped SNPs, to 7.4 (95% CI: 3.8 - 14.5) for Target Genes mapped through fine-mapped coding SNPs (Table 2 and Supplementary Tables 15 and 16). This finding again suggests that our methods result in enrichment for biologically relevant genes.

Large-scale high-throughput mouse knockout screening. We investigated whether deletion of Target Genes resulted in enrichment of outlier skeletal phenotypes with the Origins of Bone and Cartilage Disease (OBCD) study (URLs, Supplementary Note). Outlier cortical and trabecular bone phenotypes were more frequent in mice with disruptions of 126 Target Genes compared with 526 unselected knockout lines (Supplementary Tables 17 and 18; OR 3.2 (95% CI: 1.9 - 5.6), P < 0.0001)). Therefore, enrichment of abnormal skeletal phenotypes in mice with disruption of Target Genes provides clear functional validation that our fine-mapping approach identifies critical and biologically relevant skeletal genes. Our fine mapping in vivo and in vitro data converged to identify DAAM2 as a highly credible and novel osteoporosis gene; therefore, we undertook detailed analyses of mice with a hypomorphic Daam2 allele to illustrate the potential of this approach.

In-depth characterization of DAAM2. Numerous lines of evidence identified DAAM2 as an important gene for further functional investigation. First, a conditionally independent lead SNP, rs2504101, mapped directly to DAAM2 (P = 4.3 x 10^{-15}). Second, fine mapping identified two coding missense variants with high posterior probabilities for causality, rs201299313 in its 19th exon (log_{10} Bayes factor = 3.7) and rs61748650 in its 21st exon (log_{10} Bayes factor = 2.5). Third, a rare variant, rs772843886, near DAAM2 was suggestively associated with risk of fracture (P = 2.0 x 10^{-3}). Fourth, the Daam2^{tm1a/m1a} mouse was identified as having an outlier skeletal phenotype in our rapid-throughput mouse knockout screening program (Supplementary Table 17). Fifth, although DAAM2 has not previously been implicated in osteoporosis, it has been predicted to have a role in canonical Wnt signaling.

To investigate the role of DAAM2 in bone biology, we first tested its expression in bone cells. We performed RNA-seq and ATAC-seq experiments in four different human osteoblast cell lines and found that it was expressed in all cell lines (Methods and Supplementary Fig. 8). Staining experiments in the SaOS-2 cell line showed that DAAM2 localized specifically in the cell nuclei (Supplementary Figs. 9 and 10). This functional evidence from human bone cells also led us to characterize Daam2 in mouse bone cells. Daam2 was identified as an osteocyte signature gene (Supplementary Table 16) and was expressed in mouse calvarial osteoblasts and bone-marrow-derived osteoclasts (Supplementary Table 19).

Next, using CRISPR–Cas9, we tested the effect of double-stranded breaks (DSBs) in the second exon of DAAM2 in SaOS-2 osteoblast cell lines on bone mineralization (Methods). We found that after 14 days of treatment with osteogenic factors, control cells transfected with the intact plasmid, but not undergoing a DSB of the DAAM2 gene, had a ninelfold increase in mineralization. After the introduction of a DSB in the second exon of DAAM2, induced mineralization was severely impaired (Fig. 5). These CRISPR-Cas9-based findings suggest that DAAM2 increases mineralization capacity in human osteoblasts.

We next analyzed the skeletal phenotypes of Daam2^{tm1a/m1a} and wild-type littermate mice in detail. Adult male Daam2^{tm1a/m1a} mice had reduced femur and vertebral bone mineral content (BMC), and male Daam2^{tm1a/m1a} and female Daam2^{tm1a/m1a} mice also had reduced vertebral BMC. These changes were accompanied by a small reduction in femur length in Daam2^{tm1a/m1a} mice (males = 2.7%, females = 3.5%). Despite otherwise normal trabecular and cortical bone structural parameters, cortical porosity was increased in both male and female Daam2^{tm1a/m1a} mice (Supplementary Fig. 11).

Consistent with their increased cortical porosity, Daam2^{tm1a/m1a} mice had markedly reduced bone strength (Fig. 6) even though all other cortical bone parameters, including BMD, were normal (Supplementary Fig. 11). Bone composition and structure were thus investigated in Daam2^{tm1a/m1a} mice by comparing Daam2^{tm1a/m1a} mineralization and biomechanical parameters with values predicted by linear regression analysis of over 300 wild-type age-, sex-, and genetic background–matched wild-type controls. Measures of bone composition and structure in Daam2^{tm1a/m1a} mice were reduced compared with those of wild-type mice, and vertebral stiffness was >2 standard deviations below that predicted, even after accounting for reduced BMC (Fig. 6c and Supplementary Table 20). In additional experiments we observed (Supplementary Note) that measures of bone resorption (TRAP) and formation (PINP) did not differ between wild-type and Daam2-hypomorphic mice.

Table 1	Target Gene identification methods enrichment for 57 positive control genes	
Target Gene set	Odds ratio (95% CI)	P
SaOS-2 ATAC-seq peak gene	58.5 (26.4 - 129.3)	1.3 x 10^{-29}
Coding SNP gene	41.8 (14.3 - 121.6)	1.0 x 10^{-8}
Osteoblast Hi-C interaction gene	21.1 (6.4 - 69.6)	7.8 x 10^{-13}
Closest gene	12.9 (71 - 234)	1.8 x 10^{-7}
Overlapping gene body	11.2 (5.2 - 23.8)	3.4 x 10^{-5}
All genes within 100 kbp	6.8 (3.9 - 11.7)	2.1 x 10^{-15}
Osteocyte Hi-C interaction gene	-	-

Enrichment was calculated with a chi-square test against 19,455 total protein-coding genes. No positive control genes were identified via osteocyte Hi-C interactions; therefore, we did not calculate its enrichment. Distance to gene was determined using 3' and 5' ends, instead of the transcription start site.

Table 2	Target Gene identification methods enrichment for 1,240 osteocyte signature genes	
Target Gene set	Odds ratio (95% CI)	P
Coding SNP gene	7.4 (3.8 - 14.5)	5.2 x 10^{-12}
SaOS-2 ATAC-seq peak gene	6.1 (3.5 - 10.6)	2.6 x 10^{-13}
Overlapping gene body	5.3 (3.8 - 6.7)	1.1 x 10^{-17}
Closest gene	4.6 (3.7 - 5.6)	4.1 x 10^{-53}
Osteoblast Hi-C interaction gene	3.8 (1.9 - 7.4)	2.5 x 10^{-5}
Osteocyte Hi-C interaction gene	2.9 (1.0 - 8.6)	4.0 x 10^{-2}
All genes within 100 kbp	2.1 (1.7 - 2.5)	1.8 x 10^{-17}

Enrichment was calculated with a chi-square test against 19,455 total protein-coding genes. Distance to gene was determined using 3' and 5' ends, instead of the transcription start site.
In this comprehensive study on the genetic determinants of bone density and fracture in humans and mice, we identified 518 genome-wide significant loci (301 novel) that explain 20% of total eBMD variance. In a meta-analysis of up to 1.2 million individuals, 13 fracture loci were identified, all of which also associated with eBMD. Leveraging the polygenicity of eBMD, we demonstrated strong enrichment for fine-mapped SNPs in bone cell open chromatin. We used fine-mapped SNPs to identify Target Genes strongly enriched for genes with known central roles in bone biology through Mendelian genetics or as targets for clinically validated osteoporosis therapies. High-throughput skeletal phenotyping of mice with deletions of 126 Target Genes found enrichment for outlier skeletal phenotypes compared with 526 unselected lines. Finally, we identified DAAM2 as a protein with critical effects on bone strength, porosity, composition, and mineralization. These findings will enable ongoing and future investigators to better understand genomic characteristics that link fine-mapped SNPs to sets of genes enriched for causal proteins. Furthermore, this comprehensive study of genetic variants associated with osteoporosis will provide opportunities for biomarker and drug development.

The polygenicity of eBMD is striking. Few traits and diseases currently have hundreds of loci associated at genome-wide significance. This has led to a large proportion of total eBMD variance being explained by now-known genetic determinants, which will facilitate bone biology studies and enable osteoporosis drug development. Despite the large number of genetic and biological inputs into eBMD determination, pharmacological perturbation of even only one protein identified in our GWAS can have clinically relevant effects. For example, RANKL inhibition has been shown to increase bone density by up to 21% after ten years of therapy. Interestingly, the genetic variants near RANKL have small effects on eBMD. Thus, despite small effect sizes for most identified variants, these do not necessarily reflect effect sizes of protein pharmacological manipulation, because common genetic variants tend to have small effects on protein function, whereas pharmacotherapies tend to have large effects on protein function. Consequently, dose-response curves describing the effect of small and large genetic perturbations on eBMD are needed to decide which proteins to target for drug development.

Polygenicity improved our statistical power to validate linking of associated loci with potentially causal genes. We found that fine-mapped SNPs were able to identify Target Genes strongly enriched for positive control genes, particularly when the approach implemented relatively simple strategies (for example, nearest gene), or the gene nearest a fine-mapped SNP in cell-relevant open chromatin. We also observed that fine-mapped SNPs were often in 3D contact with Target Genes in human osteoblasts and osteocytes. These data, surveying many genomic landscape features, provide guidance for investigators attempting to identify causal genes from GWAS-associated SNPs.

The marked reduction in bone strength in *Daam2* mice, despite minimal changes in bone morphology and mineral content, indicated that *Daam2* mice have abnormal bone composition and structure. Furthermore, CRISPR-Cas9-mediated knockouts of DAAM2 in osteoblast cells lines resulted in a marked reduction in inducible mineralization. Few such genes have been identified, and further investigations will be required to determine whether DAAM2 represents a tractable drug target. Nevertheless, previous studies have suggested that DAAM2 indirectly regulates canonical Wnt signaling across several developmental processes. Using different sources of data to identify DAAM2 allowed greater confidence in results. Although each type of data has its own biases, these biases are partially orthogonal, and consequently, concordant evidence from different sources of data increases the quality of the evidence, an approach known as triangulation.

Our fracture GWAS identified 13 loci. These loci also associated with BMD and/or eBMD, highlighting the importance of...
BMD as a determinant of fracture risk, at least in the age range assessed within the UK Biobank. Although BMD-independent loci for fracture probably exist, they were not identified, despite this well-powered study, suggesting that screening for fracture drug targets should also include understanding the effect of the protein on BMD.

This study has important limitations. First, we measured eBMD instead of DXA-derived BMD, which is typically measured in the clinic. Nonetheless, beyond their phenotypic correlation, these two traits have high genetic concordances in terms of their genome-wide significant loci, suggesting that underlying biological properties of these two traits are similar. Importantly, eBMD is a strong predictor of fracture risk in its own right and contributes to risk assessment over and above DXA-derived BMD at the hip. While our Target Gene approach identified a set of candidate genes enriched for genes with known effects on bone density, it is important to note that there is no gold-standard set of genes known to influence BMD. Our rapid-throughput mouse knock-out program is ongoing and will investigate many of the Target Genes implicated by our study. Further efforts will be required to functionally validate—or exclude—these genes for effects on bone biology. Our Target Gene approach did not include human gene expression quantitative trait loci (eQTL) data. This is because the largest available eQTL experiments for human osteoblasts involve only 95 individuals, and larger sample sizes with RNA-seq data will be required to link fine-mapped SNPs to genes. Finally, this work was limited to individuals of white British genetic ethnicity, leaving the effect of most genome-wide significant SNPs in other populations to be assessed. It is likely that ongoing studies in non-British populations will address this question.

In summary, we have generated an atlas of genetic influences on osteoblasts. We expect these Target Genes to include new drug targets, which are a priority.
1. World Health Organization. Consensus development conference: Prophylaxis and treatment of osteoporosis. Osteoporis. Int. 1, 114–117 (1991).
2. Richards, J. B., Zheng, H.-F. & Spector, T. D. Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat. Rev. Genet. 13, 576–588 (2012).
3. Johnell, O. et al. Predictive value of BMD for hip and other fractures. J. Bone Miner. Res. 20, 1185–1194 (2005).
4. Kemp, J. P. et al. Identification of 153 new loci associated with heel bone mineral density and functional involvement of GPC5 in osteoporosis. Nat. Genet. 49, 1468–1475 (2017).
5. Arden, N. K., Baker, J., Hogg, C., Baan, K. & Spector, T. D. The heritability of bone mineral density, ultrasound of the calcaneus and hip axial length: a study of postmenopausal twins. J. Bone Miner. Res. 11, 530–534 (1996).
6. Hunter, D. J. et al. Genetic variation in bone mineral density and calcaneal ultrasound: A study of the influence of menopause using female twins. Osteoporis. Int. 12, 406–411 (2001).
7. Bauer, D. C. Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. Arch. Intern. Med. 157, 629 (1997).
8. Bauer, D. C. et al. Quantitative ultrasound predicts hip and non-spine fracture in men: The MrO study. Osteoporis. Int. 18, 771–777 (2007).
9. Karasik, D. et al. Mapping of quantitative ultrasound of the calcaneus bone to chromosome 1 by genome-wide linkage analysis. Osteoporis. Int. 13, 796–802 (2002).
10. Medina-Gomez, C. et al. Life-course genome-wide association study meta-analysis of total body BMD and assessment of age-specific effects. Am. J. Hum. Genet. 102, 88–102 (2018).
11. McCloskey, E. V. et al. Predictive ability of heel quantitative ultrasound for incident fractures: an individual-level meta-analysis. Osteoporis. Int. 26, 1979–1987 (2015).
12. Timpon, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J. & Richards, J. B. Genetic architecture: the shape of the genetic contribution to human traits and disease. Nat. Rev. Genet. 19, 110–124 (2018).
13. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
14. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
15. Benner et al. fineMap: Efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1942–1952 (2016).
16. Thurman, R. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

Acknowledgements

This research has been conducted using the UK Biobank Resource (accession IDs: 24268, 12703 and 4580). J.B.R. was supported by the Canadian Institutes of Health Research, the Canadian Foundation for Innovation and the Fonds de Recherche Santé Québec (FRSQ), and a FRQS Clinical Research Scholarship. TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union, the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility, and Biomedical Research Centre based at Guy’s and St Thomas’s NHS Foundation Trust in partnership with King’s College London. J.A.M. was funded by the Canadian Institutes of Health Research. D.M.E. was funded by a National Health and Medical Research Council Senior Research Fellowship (APP1137741) and a Medical Research Council Programme Grant (MC_UU_12013/4). J.P.K. was funded by a University of Queensland Development Fellowship (UQEEL1718945). C.L.G. was funded by Arthritis Research UK (ref: 20000). G.R.W., J.H.D.B., and P.I.C. were funded from the Wellcome Trust (Strategic Award grant number 101123; project grant 094134), and P.I.C. was also funded by the Mrs. Janice Gibbon and the Ernest Heine Family Foundation. D.K. was supported by Israel Science Foundation grant #12831/14. Y.H.H. was funded by US NIH NIAMS IR01R072199. F.R., C.M.G., and K.T. were funded by the Netherlands Organization for Health Research and Development (ZonMw VIDI 016.136.361 grant). C.L.A.-B. was funded by NIH/NIAMS AR063702 AR060981. D.P.F. was funded by grants from the National Institute of Arthritis Musculoskeletal and Skin Diseases R01 AR043198, R01 AR072199. S.Y. was funded by the Australian Government Research Training Program Scholarship. J.R. and S.K. were funded by the Genetic Factors of Osteoporosis-GEFOS EU FP7 Integrated Project Grant Reference: 201865 2008-12 and 2007-12 UK NIHR Biomedical Research Centre Grant (Musculoskeletal theme) to Cambridge Clinical School. C.O. was supported by the Swedish Research Council, Swedish Foundation for Strategic Research, AUA/LUA research grant from the Sahlgrenska University Hospital, Lundberg Foundation, European Calcified Tissue Society, Torsten and Ragnar Söderbergs Foundation, Novo Nordisk Foundation, and Knut and Alice Wallenberg Foundation. M.T.M. was supported by NIH grant R35 GM119703. We thank M. Schull for assistance with high-performance computing at the University of Queensland Diamantina Institute and T. Winkel for invaluable technical support for the EasyStrata Software used in this study. We thank the Sanger Institute’s Research Support Facility, Mouse Pipelines and Mouse Informatics Group who generated the mice and collected materials for this manuscript. We would like to thank the research participants and employees of 23andMe, Inc. for making this work possible.

Author contributions

J.A.M., J.P.K., A.P., C.L.A.-B., C.L.G., C.O., D.K., D.P.F., E.E., E.G., F.R., G.R.W., J.H.D.B., J.H.T., M.T.M., N.C.H., P.C.G., V.H.H., D.M.E. and J.B.R. conceived of and designed experiments. J.A.M., J.P.K., A.P., C.L.A.-B., C.L.G., C.O., D.K., D.P.F., E.E., E.G., F.R., G.R.W., J.H.D.B., J.H.T., M.T.M., N.C.H., P.C.G., V.H.H., D.M.E. and J.B.R. performed experiments. D.A.H., D.G., D.S.K.K.-E., E.E.N., E.J.G., H.F.D., J.G.L., J.R., K.F.C., K.T.-M., J.-G.B., N.A.V., N.C.B., N.S.M., P.C.S., R.C.C., S.E.Y., S.M.V., S.K., T.A.D.H., V.D.L., A.P., C.L.A.-B., C.L.G., D.M.E., E.G., F.R., G.R.W.,...
J.H.D.B., M.T.M., N.C.H., Y.F., Y.-H.H. and J.B.R. performed data analysis. J.A.M., J.P.K., A.L.L., A.-T.A., C.L.S., C.M.G., C.M.S., D.G., David J. Adams, Douglas J. Adams, E.J.G., H.F.D., J.G.L., J.Q., J.V., K.F.C., L.L., L.N.E., M.-J.G.B., M.M.S., N.S.M., P.B., P.C.S., R.C.C., S.E.Y., S.T.M., S.P., C.L.A.-B., and Y.-H.H. conducted experiments. J.A.M., J.P.K., G.R.W., J.H.D.B., D.M.E. and J.B.R. wrote the manuscript. J.A.M. and J.P.K. were the lead analysts. All authors revised and reviewed the paper.

Competing interests
A.K. and D.A.H. are employees of 23andMe, Inc.

23andMe Research Team

Michelle Agee8, Babak Alipanahi8, Adam Auton8, Robert K. Bell8, Katarzyna Bryc8, Sarah L. Elson8, Pierre Fontanillas8, Nicholas A. Furlotte8, Jennifer C. McCreight8, Karen E. Huber8, Nadia K. Litterman8, Matthew H. McIntyre8, Joanna L. Mountain8, Elizabeth S. Noblin8, Carrie A. M. Northover8, Steven J. Pitts8, J. Fah Sathirapongsasuti8, Olga V. Sazonova8, Janie F. Shelton8, Suyash Shringarpure8, Chao Tian8, Joyce Y. Tung8, Vladimir Vacic8 and Catherine H. Wilson8

1Department of Human Genetics, McGill University, Montréal, Québec, Canada. 2Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada. 3University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia. 4MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK. 5Garvan Institute of Medical Research, Sydney, New South Wales, Australia. 6Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK. 7Institute for Systems Genetics, New York University Langone Medical Center, New York, NY, USA. 8Department of Research, 23andMe, Inc., Mountain View, CA, USA. 9Research Institute of the McGill University Health Centre, Montréal, Québec, Canada. 10McGill University and Genome Quebec Innovation Centre, Montréal, Québec, Canada. 11Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands. 12Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA. 13A list of members appears at the end of the paper. 14Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. 15Department of Medicine, McGill University, Montréal, Québec, Canada. 16Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. 17MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK. 18NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK. 19NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK. 20Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece. 21Center for Evidence Synthesis in Health, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI, USA. 22Department of Epidemiology and Biostatistics, Imperial College London, London, UK. 23Department of Internal Medicine and Clinical Nutrition, University of Gothenburg, Gothenburg, Sweden. 24Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA. 25Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA. 26Department of Medicine, Harvard Medical School, Boston, MA, USA. 27Broad Institute of Harvard and Massachusetts Institute of Technology, Boston, MA, USA. 28Musculoskeletal Research Unit, Department of Translational Health Sciences, University of Bristol, Bristol, UK. 29Children’s Mercy Hospitals and Clinics, Kansas City, MO, USA. 30Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK. 31Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, Rochester, NY, USA. 32Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, Québec, Canada. 33Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK. 34These authors contributed equally: John A. Morris, John P. Kemp. 35These authors jointly supervised this work: David M. Evans, J. Brent Richards. *e-mail: d.evans1@uq.edu.au; brent.richards@mcgill.ca

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41588-018-0302-x.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to D.M.E. or J.B.R.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2018
Curating osteoporosis-associated outcomes in the UK Biobank study. During 2006 to 2010, half a million British adults were recruited by the UK Biobank (URLs)10. Participants provided biological samples, consented to physical measurements, and answered questionnaires relating to general health and lifestyle. Ethical approval was granted by the Northwest Multi-Centre Research Ethics Committee, and informed consent was obtained from all participants prior to participation. Mouse studies were approved by the Garvan Institute/St. Vincent’s Hospital Animal Ethics Committee in accordance with New South Wales (Australia) State Government legislation.

Methods

Ethical compliance. All relevant ethical regulations were complied with for human- and mouse-based research. UK Biobank data were used upon ethical approval from the Northwest Multi-Centre Research Ethics Committee and informed consent was obtained from all participants prior to participation. Mouse studies were approved by the Garvan Institute/St. Vincent’s Hospital Animal Ethics Committee in accordance with New South Wales (Australia) State Government legislation.

Fracture replication meta-analysis. Fourteen genome-wide significant, conditionally independent lead SNPs identified from our fracture GWAS were tested for replication in the 23andMe cohort. Genetic associations were tested against the fracture phenotype on a set of unrelated individuals of European ancestry. Analyses were adjusted for sex, age, race, principal components 1 to 5, and the genotyping platform. There were 367,900 cases and 363,919 controls. Meta-analysis of UK Biobank discovery and 23andMe replication data was performed using METAL11. In order to compare the effect estimates and standard errors of the UK Biobank discovery and 23andMe replication data, we transformed the UK Biobank discovery effect estimates and standard errors as per the manual specifications in the BOLT-LMM4 documentation, specifically:

\[\log OR = \frac{\beta}{\mu} - \frac{1}{\mu(1-\mu)} \]

where \(\mu = \frac{N - case\ fraction}{standard\ errors of\ SNP\ effect\ estimates} \). The quantitative trait was the log odds ratio of fracture for each SNP.

Approximate conditional association analysis. To detect multiple independent association signals at each of the genome-wide significant eBMD and fracture loci, we identified approximate conditional and joint genome-wide association analysis using the software package GCTA v1.91 (ref. 12). Variants with high collinearity (multiple regression R² > 0.9) were ignored, and those situated more than 20 Mb away were assumed to be independent. A reference sample of 50,000 unrelated white British individuals randomly selected from the UK Biobank was used to map patterns of LD between variants. The reference genotyping dataset consisted of the same variants assessed in our GWAS. Conditionally independent variants reaching genome-wide significance were annotated to the physically closest gene using Bedtools v2.26.0 (ref. 13) and the hg19 gene range list (URLs).

Estimation of variance explained by significant variants and SNP heritability. We estimated the proportion of eBMD phenotypic variance tagged by all SNPs on the genotyping array (that is the SNP heritability) using BOLT-REML14 and LD score regression15. To calculate the variance explained by independent genome-wide significant SNPs (that is, all 1,103 genome-wide significant conditionally independent lead SNPs), we summed the variance explained per SNP using the formula: 2P(1 – P)\(\beta^2\), where P is the effect allele frequency, and \(\beta^2\) is the effect of the allele on a standardized phenotype (mean = 0, variance = 1).\(\beta^2\)

Estimating genomic inflation with LD score regression. To estimate the amount of genomic inflation present in the data that was due to residual population stratification, cryptic relatedness, and other latent sources of bias, we used stratified LD score regression16 in conjunction with partitioned LD scores that were calculated for high-quality HM3 SNPs derived from a sample of unrelated 1000G-EUR individuals.

Fine-mapping SNPs. Fine-mapped SNPs were defined as those being conditionally independent, as identified by GCTA-COJO or exceeding our threshold for posterior probability of causality, as defined by FINEMAP. Here we describe the generation of this set of fine-mapped SNPs.

First, SNPs were defined as being conditionally independent using GCTA-COJO17. Next we calculated the posterior probability of causality. To do so, we defined each conditionally independent lead SNP as a signal around which we would undertake posterior probability testing. We used all imputed SNPs within 500 kbp of a conditionally independent lead SNP and treated each signal independently. For details on our application of FINEMAP for statistical fine mapping to calculate log\(\beta\) Bayes factors per SNP, see the Supplementary Note. We used a log\(\beta\) Bayes factor > 3 threshold to only consider SNPs with the strongest posterior probabilities for causality and SNPs identified as genome-wide significant conditionally independent lead SNPs as fine-mapped SNPs.

RNA sequencing for mouse osteocytes. We performed an analysis of whole-transcriptome sequencing data of three distinct bone types from the mouse skeleton to measure osteocyte expression18. The three sites were the tibia, femur and humerus, and in each, the bone marrow was removed (n = 8 per site). The distribution of normalized gene expression for each sample was used to calculate a threshold of gene expression19, with genes above this threshold for 8 out of 8 replicates in any bone type deemed to be expressed. Osteocyte-enriched genes were determined by comparing the distribution of gene expression, one with the marrow removed and the other with the marrow left intact (n = 5 per site). Genes significantly enriched in osteocytes and expressed in all bone types were defined as osteocyte transcriptome signature genes.

Mapping accessible chromatin. ATAC-seq libraries were generated by the McGill University and Genome Quebec Innovation Centre on 100,000 SaOS-2 cells, using a modified protocol of that previously described20. The modifications included: reducing the transposase reaction volume from 50 μl to 25 μl, increasing the
transposase concentration from 1× to 40×, and using 12 cycles of PCR to enrich each library. Libraries were quantified by Q-PCR, Picogreen, and LabChip and were then sequenced on the Illumina HiSeq 4000 (pair-ended 125-bp sequences) using the Nextera sequencing primers. DNA sequencing data from primary osteoblasts or osteocytes through Hi-C experiments; (v) the closest gene to fine-mapped SNPs, which also to be in 3D contact with fine-mapped sets in human osteoblasts or osteocytes by four different methods: (i) genes that were most proximal to the fine-mapped set methods of identifying Target Genes enriched for positive control genes. To do so, we tested whether positive control genes were enriched among targeted genes identified by four different methods: (i) genes that were most proximal to the fine-mapped set; (ii) genes that contained fine-mapped SNPs overlapping their gene bodies; (iii) genes containing fine-mapped SNPs that are coding variants; (iv) genes identified to be in 3D contact with fine-mapped sets in human osteoblasts or osteocytes through Hi-C experiments; (v) the closest gene to fine-mapped SNPs, which also mapped to ATAC-seq peaks in human osteoblast SaOS-2 cell lines; and (vi) genes within 100 kbp of fine-mapped SNPs (Figs. 2 and 4). We then repeated this analysis using the osteocyte signature gene set (n = 1,240) instead of the positive control set, to calculate the odds of Target Genes being active in the osteocyte. For details on the Target Gene pathway analyses using FUMA, see the Supplementary Note.

CRISPR-Cas9 methods. SaOS-2 cells were obtained from ATCC (#ATCC HTB-85) and cultured in McCoy’s5A medium (ATCC) supplemented with 15% of FBS (Wisent Inc) and 1% of penicillin and streptomycin (Wisent Inc.) according to the manufacturer’s instructions. Three different guide RNAs (gRNA) targeting the two exons of Daam2 were cloned in the plasmid pSpCas9(BB)-2A-GFP (PX458), which was a gift from F. Zhang (Broad Institute, Cambridge, MA, USA) (Addgene plasmid #48138). For gRNA sequences, see Supplementary Note. We observed that the cutting frequency determination scores for each gRNA was <0; therefore, we did not consider off-target effects to merit testing. The construct plasmids were purified using the QIAgen filter midi prep kit (QIAGEN #12434) according to manufacturer instructions. SaOS-2 cells were cultured to 80% confluence in a 100-mm² petri dish. Cells were then transfected with one of the three different plasmids generated, or with the intact plasmid as a control, using TransIT LT1 transfection reagent (Mirus #MR13804) with a reagent-to-DNA ratio of 1:3. After 4 h post-transfection, GFP-positive cells were sorted using FACS in a single-cell model. The remaining colonies were expanded and then assessed for the presence of Daam2 protein using immunofluorescence technique (anti-Daam2, Sigma-Aldrich #HPA051300). For PCR primers designed against regions of Daam2 flanking the three gRNA target sequences to generate 355 bp amplicons, see the Supplementary Note. PCR products of the identified clones were sequenced using MiSeq (Genome Quebec). For Daam2 western blots that show Daam2 protein expression reduced to 17.5% and 33.5% in the gRNA1 and gRNA2 edited clones (Supplementary Fig. 23), respectively, see the Supplementary Note. To induce mineralization (Fig. 5), cells were then cultured to 90% confluence in a 6-well plate and then treated, or left untreated for control, with osteogenic factors (ascorbic acid 50 µg/ml and β-glycerophosphate 10 mM). Fresh media containing osteogenic factors was added every 2-3 days. At 14-16 days, cells were fixed and quantified using the osteogenesis assay kit according to manufacturer instructions (Millipore #EMC815). The Alizarin red concentration (µM) was normalized with the protein content assessed in the media in each culture (Pierce BCA Protein assay kit; Thermo Fisher #23227).

Rapid-throughput mouse knockout program. For specifics on the Origins of Bone and Cartilage Disease (OBCD) high-throughput phenotyping, see the Supplementary Note and Supplementary Table 18.

Dna2 knockout mice. Mouse studies undertaken at the Garvan Institute of Medical Research (Darlinghurst, New South Wales, Australia) were approved by the Garvan Institute/St Vincent’s Hospital Animal Ethics Committee in accordance with New South Wales (Australia) State Government legislation. Dna2tm1a/tm1a/mice (designated Dna2tm1a/mice) were obtained from the Wellcome Trust/Sanger Institute (Cambridge, UK), where the mice were generated as part of the International Mouse Phenotyping Consortium (URLs) using ES cells produced by the Knockout Mouse Project (URLs). The Dna22 gene in these mice was disrupted by a cassette containing an insertion with an additional splice acceptor site between exons 5 and 6 (URLs). The success of this strategy was confirmed with an 80% knockdown of Dna2 in Dna2tm1a/mice and 50% knockdown in Dna2tm1a/mice. Age- and sex-matched 16- to 18-week-old mice were used for detailed skeletal phenotyping, as described above. For details on RNA-seq for cauliflowers ossicles, in vitro osteoblast mineralization, in vitro assays of osteoclast formation, the detection of serum markers of bone resorption and formation, and for Fourier-transform infrared spectroscopy analyses, see the Supplementary Note.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Code availability. Analysis scripts are available upon reasonable request to the authors.

Data availability. Human genotype and phenotype data on which the results of this study were based are available upon application from the UK Biobank (http://www.ukbiobank. ac.uk). GWAS summary statistics for eBMI and fracture can be downloaded from the GEFS+ website (http://www.gefs.org/). RNA-seq and ATAC-seq data generated for human osteoblast cell lines, including re-called DHS peaks from human primary osteoblasts, can be downloaded from the Gene Expression Omnibus (accession number GSE120755). Mouse phenotype data are available online from the IMPC (http://www.mousephenotype.org) and OBCD (http://www.boneandcartilage.com).

References
30. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
31. Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. *Nat. Genet.* **47**, 284–290 (2015).

32. Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. *Gigascience* **4**, 7 (2015).

33. Winkler, T. W. et al. EasyStrata: Evaluation and visualization of stratified genome-wide association meta-Analysis data. *Bioinformatics* **31**, 259–261 (2015).

34. Cochran, W. G. The combination of estimates from different experiments. *Biometrics* **10**, 101 (1954).

35. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: Fast and efficient meta-analysis of genomewide association scans. *Bioinformatics* **26**, 2190–2191 (2010).

36. Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. *Bioinformatics* **26**, 841–842 (2010).

37. Bulik-Sullivan, B. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat. Genet.* **47**, 291–295 (2015).

38. Witte, J. S., Visscher, P. M. & Wray, N. R. The contribution of genetic variants to disease depends on the ruler. *Nat. Rev. Genet.* **15**, 765–776 (2014).

39. Chapman, J. M., Cooper, J. D., Todd, J. A. & Clayton, D. G. Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. *Hum. Hered.* **56**, 18–31 (2003).

40. Spencer, C. C. A., Su, Z., Donnelly, P. & Marchini, J. Designing genome-wide association studies: Sample size, power, imputation, and the choice of genotyping chip. *PLoS Genet.* **5**, e1000477 (2009).

41. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. *Nat. Genet.* **47**, 1228–1235 (2015).

42. Hart, T., Komori, H. K., LaMere, S., Podshivalova, K. & Salomon, D. R. Finding the active genes in deep RNA-seq gene expression studies. *BMC Genomics* **14**, 778 (2013).

43. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive genomic profiling of open chromatin, DNA-binding proteins and nucleosome position. *Nat. Methods* **10**, 1213–1218 (2013).

44. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

45. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* **25**, 1754–1760 (2009).

46. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21 (2013).

47. Schmitt, A. D. et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. *Cell Reports* **17**, 2042–2059 (2016).

48. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol. Cell* **38**, 576–589 (2010).

49. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* **44**, D733–D745 (2016).

50. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. *Nat. Protoc.* **8**, 2281–2308 (2013).

51. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. *Nat. Biotechnol.* **34**, 184–191 (2016).

52. Haussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. *Genome. Biol.* **17**, 148 (2016).
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

Item	Status
n/a	Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement	✔
An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly	✔
The statistical test(s) used AND whether they are one- or two-sided	✔
Only common tests should be described solely by name; describe more complex techniques in the Methods section.	✔
A description of all covariates tested	✔
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons	✔
A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)	✔
For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted	✔
Give P values as exact values whenever suitable.	✔
For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings	✔
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes	✔
Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated	✔
Clearly defined error bars	✔
State explicitly what error bars represent (e.g. SD, SE, CI)	✔

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection | Data from the UK Biobank were downloaded via their FTP protocols

Data analysis | BOLT-LMM, BOLT-REML, GCTA, FINEMAP, LDSTORE, BGENIX, R v3.4.2, Plink2, EasyStrata, METAL, Bedtools, LDSC, Trimomatic, BWA, Hotspot2, UCSC liftOver, STAR, HTseq-count, HiC-Pro, Homer, GOTHIC, Juicer, FUMA, VEP, FastPCA, EMCcluster, WikiPathways, Image Lab 5.1, GraphPad Prism, CehmoSpec v4.2.8, MESS v0.3-2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Human genotype and phenotype data on which the results of this study were based are available upon application from the UK Biobank ("URLs"). GWAS summary
statistics for eBMD and fracture can be downloaded from the GEFOS website ("URLs"). RNA-seq and ATAC-seq data generated for human osteoblast cell lines, including re-called DHS peaks from human primary osteoblasts, can be downloaded from the Gene Expression Omnibus (accession number GSE120755). Mouse phenotype data are available online from the IMPC ("URLs") and OBCD ("URLs"). Analysis scripts available by request from the authors.

Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size
Drawing upon data from the UK Biobank full release, we applied stringent quality control criteria to select 424,482 participants for GWAS. Participants were selected if they had high-quality quantitative heel ultrasound data or fracture data and if they were of a White British genetic ethnicity. These sample sizes were sufficient for GWAS and represent the largest sample size to-date for any musculoskeletal trait.

Data exclusions
We excluded participants if they were missing covariates pertinent to the association testing using pre-determined criteria (i.e. if the data were missing, the participants were not included in the GWAS). This is because participants lacking covariates for association testing cannot be fit properly to our mixed-model approach. We also manually filtered for obvious outliers by observing the distributions of the data and removing individuals far exceeding the tail ends of the data.

Replication
We performed fracture GWAS replication with 23andMe, Inc. We took our top findings from our fracture GWAS and all findings replicated successfully.

Randomization
Participants were recruited at various sites through the UK without any selection criteria. We do adjust for genotyping chip in our association studies, as this assignment was not random.

Blinding
Blinding is not relevant to our study as the participants represent the general population of the UK.

Reporting for specific materials, systems and methods

Materials & experimental systems

n/a	Involved in the study
☒	Unique biological materials
☒	Antibodies
☒	Eukaryotic cell lines
☒	Palaeontology
☒	Animals and other organisms
☒	Human research participants

Methods

n/a	Involved in the study
☒	ChIP-seq
☒	Flow cytometry
☒	MRI-based neuroimaging

Antibodies

Antibodies used

- DAAM2 antibody: Sigma life science, catalog #HPA051300, clone #EPR10797(B, lot #61164, dilution: 1/200
- Goat anti-rabbit IgG Alexa Fluor 488: Abcam, catalog #ab150077, clone number: Non Applicable, lot #GR315933-2, dilution 1/1000.

Validation

Anti-DAAM2 antibody from Sigma life science was validated by Human Protein Atlas: "For each antibody, the observed staining in the different cell lines is assigned a validation score based on concordance with available experimental gene/protein characterization data in the UniProtKB/Swiss-Prot database. The validation scores for up to three cell lines are merged into one of the main categories; Supported, Approved, or Uncertain, to represent the overall antibody staining in all analyzed cell lines. Anti-DAAM2 antibody is Approved meaning that one/multiple location(s) with no available experimental gene/protein characterization data and/or one/multiple location(s) where experimental gene/protein characterization data is partly supporting and partly conflicting."

Goat anti-rabbit IgG Alexa Fluor 488 was validated by Abcam using immunofluorescence of HeLa cells stained with Anti-alpha Tubulin antibody [DM1A] and a loading Control (ab7291).
Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) All the cell lines were purchased from ATCC in Feb 2017: SaOS-2 (ATCC HTB-85), MG-63 (ATCC CRL-1427), U-2 OS (ATCC HTB-96) and HOS (ATCC CRL-1543)

Authentication Growth properties and morphology have been checked by visual observation. Species determination have been determined by COI assay and STR analysis. Mycoplasma contamination were evaluated by Hoechest DNA stain, Agar culture and PCR-based assay.

All the certificate of analysis could be find on line with the lot number. SaOS-2 lot number #63360718, MG-63 lot number #63045804, U-2 OS lot number #64048673 and HOS lot number #630887044

Mycoplasma contamination Cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines No commonly misidentified cell lines were used.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals 1) Knockout mice were generated at the Wellcome Trust Sanger Institute for the International Mouse Phenotyping Consortium. Skeletal samples from female 16 week old C57BL/6 wild type and mutant mice in an identical genetic background were analysed. 2) For detailed phenotype analysis Daam2 mice were re-derived at the Garvan Institute, Sydney, Australia. Skeletal samples from male and female 16 week old C57BL/6 wild type and Daam2 heterozygous and homozygous mutant mice in an identical genetic background were analysed. 3) Primary cultures of bone marrow derived osteoclasts and calvarial osteoblasts were obtained from WT (n=10) and Daam2 heterozygous (n=8) and homozygous knockdown (n=20) mice for in vitro studies.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.