Complete subunit architecture of the proteasome regulatory particle

Gabriel C. Lander*, Eric Estrin*, Mary E. Matyskiela*, Charlene Bashore, Eva Nogales, Andreas Martin

The proteasome is the major ATP-dependent protease in eukaryotic cells, but limited structural information restricts a mechanistic understanding of its activities. The proteasome regulatory particle, consisting of the lid and base subcomplexes, recognizes and processes polyubiquitinated substrates. Here we used electron microscopy and a new heterologous expression system for the lid to delineate the complete subunit architecture of the regulatory particle from yeast. Our studies reveal the spatial arrangement of ubiquitin receptors, deubiquitinating enzymes and the protein unfolding machinery at subnanometre resolution, outlining the substrate’s path to degradation. Unexpectedly, the ATPase subunits within the base unfoldase are arranged in a spiral staircase, providing insight into potential mechanisms for substrate translocation through the central pore. Large conformational rearrangements of the lid upon holoenzyme formation suggest allosteric regulation of deubiquitination. We provide a structural basis for the ability of the proteasome to degrade a diverse set of substrates and thus regulate vital cellular processes.

The ubiquitin–proteasome system is the major pathway for selective protein degradation in eukaryotic cells. Covalent modification with a polyubiquitin chain targets damaged, misfolded and short-lived regulatory proteins for ATP-dependent destruction by the 26S proteasome, a massive 1.5 MDa proteolytic machine. The proteasome thus controls a myriad of essential cellular processes, including the cell cycle, transcription and protein quality control. Despite intensive study, however, the structural basis for substrate recognition and processing by the proteasome remains poorly understood.

The proteasome contains at least 32 different subunits that form a barrel-shaped 20S proteolytic core capped on either end by a 19S regulatory particle. The active sites of the peptidase are sequestered in an internal chamber, and access is controlled by the regulatory particle, which functions in substrate recognition, deubiquitination, unfolding and translocation of the unfolded chains into the core.

The regulatory particle is composed of 19 subunits and can be divided into two subcomplexes, the lid and the base. The lid consists of nine non-ATPase proteins (Rpn3, Rpn5–Rpn9, Rpn11, Rpn12 and Sem1 in yeast), including the deubiquitinating enzyme (DUB) Rpn11, whose activity is essential for efficient substrate degradation. The base contains six distinct AAA+ ATPases, Rpt1–Rpt6, that form a hetero-hexameric ring (in the order Rpt1, Rpt2, Rpt6, Rpt3, Rpt4, Rpt5). The ATPases are predicted to use the energy of ATP binding and hydrolysis to exert a pulling force on substrate proteins, unfold them, and translocate the polypeptides through a narrow central pore into the peptidase chamber. In the presence of ATP, the carboxy termini of the ATPases bind dedicated sites on the ß-subunit ring (p1–p7) of the 20S core, triggering the opening of a gated access channel and facilitating substrate entry. The base contains four non-ATPase subunits: Rpn1, Rpn2 and the ubiquitin receptors Rpn10 and Rpn13. Additional ubiquitin shuttle receptors (Rad23, Ddi1 and Dsk2) are recruited to the base through interactions with Rpn1, which also binds a second, non-essential DUB, Ubp6 (refs 12–14).

Whereas the proteolytic core has been well studied, there is limited structural characterization of the regulatory particle. None of the 13 non-ATPase subunits, including the ubiquitin receptors and deubiquitinating enzymes, have been localized within this assembly. Although it has been shown that efficient degradation depends on the length, linkage type and placement of an ubiquitin chain, as well as the presence of an unstructured initiation site on a substrate, we are missing the topological information needed to explain these requirements. Thus, elucidating the architecture of the regulatory particle and the spatial arrangement of individual subunits is crucial to understanding the molecular mechanisms for substrate recognition and processing.

Here, we present the electron microscopy structure of the proteasome holoenzyme and the lid subcomplex. A new heterologous expression system for the lid facilitated the localization of all subunits within the regulatory particle, providing a complete architectural picture of the proteasome. The resulting structural understanding offers novel insight into the mechanisms of ubiquitin binding, deubiquitination, substrate unfolding and translocation by this major eukaryotic proteolytic machine.

Recombinant expression of yeast lid in Escherichia coli

We developed a system for the heterologous coexpression of all nine lid subunits from Saccharomyces cerevisiae in Escherichia coli. This system allowed us to generate truncations, deletions and fusion constructs that were used to localize individual subunits and delineate their boundaries within the lid. The recombinant, purified lid was analysed in its subunit composition and stoichiometry by SDS–polyacrylamide gel electrophoresis (SDS–PAGE, Supplementary Figs 1 and 2) and tandem mass spectrometry. The small, non-essential subunit Sem1 could not be detected, neither for the recombinant nor the endogenous lid that was isolated from yeast. All other subunits were present with the expected stoichiometry, and gel-filtration analyses showed indistinguishable elution profiles for the heterologously expressed lid and its endogenous counterpart (data not shown). Furthermore, atomic emission spectroscopy confirmed that the essential Zn²⁺ ion was incorporated in Rpn11, indicating proper folding in E. coli.
To compare the functionalities of recombinant and endogenous lid, we established complexes from yeast to yield 26S holoenzyme. These reassembled particles were assayed for their activity in ubiquitin-dependent substrate degradation by using a polyubiquitinated green fluorescent protein (GFP)–cyclin fusion protein and following the decrease in GFP fluorescence. Pro tease reconstituted with E. coli-expressed lid supported robust substrate degradation (Supplementary Fig. 3). Importantly, the three-dimensional electron microscopy reconstructions from negative-stained samples of both lid subcomplexes are practically identical (Fig. 1a and Supplementary Fig. 4), establishing this recombinant system as an ideal tool for our structural studies of the regulatory particle.

Localization of regulatory particle subunits
As a first step in elucidating the architecture of the regulatory particle, we compared the single-particle electron microscopy reconstructions of the yeast holoenzyme and the isolated lid subcomplex obtained at 9- and 15-Å resolution, respectively (Fig. 1b, Supplementary Figs 5–7 and Supplementary Movie 1). Docking the five-lobed, hand-shaped structure of the lid into the electron density of the holoenzyme revealed the lid’s position on one side of the regulatory particle, forming extensive interactions with the base subcomplex, but also contacting the 20S core. The lid subunits Rpn3, Rpn5, Rpn6, Rpn7, Rpn9 and Rpn12 contain a C-terminal PCI (Pro tease–CSN–eIF3) domain that is assumed to have scaffolding functions and allow inter-subunit contacts1. Our reconstruction provided sufficient resolution to unambiguously locate the winged-helix fold and the flanking helical segments of individual PCIs (Fig. 1c and Supplementary Movie 1). The C-terminal PCI domains of the six Rpn subunits thus interact laterally to form a horseshoe-shaped anchor from which the amino-terminal domains extend radially. This arrangement demonstrates the scaffolding function of PCI domains in the lid, and we predict that similar interactions underlie the architecture of other PCI-containing complexes.

To determine the subunit topology of the lid, we used our heterologous E. coli expression system, fused maltose-binding protein (MBP) to the N or C terminus of individual subunits (Supplementary Fig. 1), and localized the MBP within the tagged lid particles by negative-stain electron microscopy (Supplementary Fig. 8a). None of the MBP fusions notably affected the lid structure, and we were able to identify the positions of all eight essential lid subunits and the relative orientation of their N and C termini. In combination with the PCI docking, the resolution of secondary structures in the cryoelectron density and known molecular weights, this information allowed us to delineate approximate subunit boundaries (Fig. 2a and Supplementary Movie 1).

Overall, Rpn3, Rpn7, Rpn6, Rpn5 and Rpn9 form the fingers of the hand-shaped lid structure. Rpn8 shows an extended conformation that connects Rpn3 and Rpn9, and thus closes the PCI horseshoe. In addition, it interacts with Rpn11, the only essential DUB of the proteasome, which lies in the palm of the hand and makes extensive contacts with Rpn8, Rpn9 and Rpn5.

Using the topology determined for the isolated lid subcomplex, we delineated the individual lid subunits in the context of the holoenzyme (Fig. 2b). To complete the subunit assignment for the entire regulatory particle, the positions of Rpt1–Rpt6 in the base subcomplex were assigned according to established interactions with the core particle15,20, whose crystal structure could be docked unambiguously into the electron microscopy density (Supplementary Fig. 9). We localized the two large non-ATPases Rpn1 and Rpn2 of the base subcomplex by antibody-labelling of a C-terminal Flag tag and N-terminal fusion of glutathione-S-transferase (GST), respectively (Supplementary Figs 2 and 10a–c). Rpn1 and Rpn2 had been predicted to contain numerous tetratricopeptide repeat (TPR)-like motifs and adopt α-solenoid structures41. Indeed, we found a high structural resemblance between Rpn1 and Rpn2, both consisting of a strongly curved solenoid that transitions into an extended arm towards the C terminus (Fig. 3a). Rpn1 contacts the C-terminal helix of the 20S core subunit 24 and, based on the variability observed in our electron microscopy images, is likely to be flexible or loosely attached to the side of the base. Previous crystallography studies of the archaeal proteasome homologue PAN revealed that the N-terminal domains of the ATPases form a separate hexameric ring (N-ring) that consists of OB domains and three protruding coiled-coil segments17,22. Each coiled coil is formed by the far N-terminal residues of two neighbouring ATPases in the hexamer. Although Rpt1 and Rpt2 do not seem to form an extended coiled coil, we find that the N-terminal helical portion of Rpt1 interacts with the solenoid and the C-terminal arm of Rpn1. Rpn2 is located above the N-ring and mounted atop the longest of the protruding coiled coils, formed by Rpt3 and Rpt6. These interactions strongly resemble those observed between Rpt1 and Rpn1 (Fig. 3a).

Localizing the ubiquitin receptors and DUBs within the regulatory particle is of particular interest. In addition to the DUB Rpn11 in the lid, we identified the positions of both intrinsic ubiquitin receptors, Rpn10 and Rpn13, and of the base-associated DUB Ubp6 by imaging proteasome particles from yeast deletion strains (Fig. 3b and Supplementary Fig. 10d–f). The ubiquitin receptor Rpn13 binds to Rpn2 as expected23,24. The globular VWA domain of the second receptor Rpn10 has been shown previously to stabilize the lid–base interaction25,26; however, we found that it does not contact the base directly. This domain bridges Rpn11 and Rpn9, which might increase the lid–base affinity indirectly by stabilizing Rpn11 in its Rpn2-bound conformation (see below). The flexible attached ubiquitin interacting motif (UIM) of Rpn10 probably contacts the coiled coil formed by Rpt4 and Rpt5, stabilizing its position relative to other subunits and potentially communicating with the AAA+ motor. The DUB Ubp6 seems to be flexible and does not give rise to ordered density. Nonetheless, variance

Figure 1 | The lid subcomplex within the holoenzyme assembly. a, Negative-stain three-dimensional reconstruction at approximately 15-Å resolution shows resemblance between endogenous (left) and recombinant (right) lid. b, Locations of lid (yellow) and base (cyan) within the subnanometre holoenzyme reconstruction. c, Six copies of the crystal structure of a PCI domain (PDB ID: 1RZ4) are docked into the lid electron density, showing a horseshoe-shaped arrangement of the winged-helix domains. Each domain is coloured according to its respective lid subunit (Fig. 2).
maps indicate that it interacts with the C-terminal arm of Rpn1, as suggested by immunoprecipitations.

Inter-subcomplex contacts

The complete localization of subunits within the holoenzyme revealed unexpected contacts between the lid and core subcomplexes. Rpn5 and Rpn6 form fingers that touch the C termini of the core subunits α1 and α2, respectively. We confirmed the interaction between Rpn6 and α2 by in vitro crosslinking, using an engineered cysteine in α2 and a 7-Å heterobifunctional crosslinker (Supplementary Fig. 11). These previously unknown direct interactions between lid and core may stabilize the entire holoenzyme assembly, and/or be part of an allosteric network that modulates the activities of either subcomplex.

Our holoenzyme structure shows that Rpn3, Rpn7, Rpn8 and Rpn11 make extensive contacts with the base. Compared to their positions in the isolated lid, Rpn8 and Rpn11 have undergone significant conformational changes in the holoenzyme (Fig. 4). The C terminus of Rpn8 is detached from Rpn3 to interact with the coiled coil of Rpt3/Rpt6, while the N-terminal MPN domain of Rpn11 extends towards the centre of the regulatory particle to bind the solenoid portion of Rpn2. Similarly, the N-terminal region of Rpn3 is more elongated than in the isolated lid and also contacts the Rpn2 solenoid, but from the opposite side. In turn, the extended C-terminal arm of Rpn2 interacts with Rpn3 and Rpn12, and thus forms a direct connection between the solenoid section of Rpn2, the coiled coil of Rpt3/ Rpt6, and the lid (Fig. 3b).

Figure 2 | Three-dimensional reconstructions of the recombinant lid subcomplex and the yeast 26S proteasome. a, Negative-stain reconstruction of the isolated lid subcomplex at 15-Å resolution, coloured by subunit and shown from the exterior (left), the side (middle) and the interior, base-facing side (right). A dotted line (middle) indicates the highly variable electron density for the flexible N-terminal domains of Rpn5 and Rpn11. b, Subnanometre cryoelectron microscopy reconstruction of the holoenzyme, shown in three views corresponding to the isolated lid and coloured as above, with the core particle in grey.

Figure 3 | Localization of Rpn1 and Rpn2, and ubiquitin-interacting subunits. a, Rpn1 (top) and Rpn2 (bottom) are oriented to emphasize similarities in their domain structure and solenoid attachment to the extended N-terminal helices of Rpt1 and Rpt3/Rpt6, respectively. b, Side and top views of the regulatory particle, showing the locations of the ubiquitin receptors Rpn10 and Rpn13, and the DUB Rpn11 relative to the central pore. Crystal structures for Rpn10 (PDB ID: 2X5N), Rpn13 (PDB ID: 2R2Y), and an MPN domain homologous to Rpn11 (AMSH-LP, PDB ID: 2ZN) are shown docked into the electron microscopy density. The predicted active site of Rpn11 is indicated (red dot).
We speculate that Rpn2 stabilizes a lid conformation in which Rpn3, Rpn8 and the DUB Rpn11 extend towards the base (Fig. 4b). Together, the lid, Rpn2 and the coiled coils of the N-ring seem to function as a scaffold that positions the two intrinsic ubiquitin receptors Rpn10 and Rpn13, and the DUB Rpn11 for substrate binding, deubiquitination and transfer to the subjacent central pore of the AAA+ motor (Fig. 3b). Interestingly, several lid subunits interact directly with AAA+ domains of the Rpt subunits. Rpn7 contacts the AAA+ domains of Rpt2 and Rpt6, while Rpn6 and Rpn5 touch Rpt3. These interactions with contiguous motor domains are surprising, because current models for ATP-dependent unfoldases suggest significant conformational changes of individual subunits in the hexamer during ATP hydrolysis and substrate translocation. The observed contacts between lid and the motor domains might form only transiently; alternatively, the AAA+ ring of the proteasome may be much more static than previously assumed.

Lid conformational changes may regulate DUB activity

Comparing the structures of the lid in isolation and when bound to the holoenzyme revealed major conformational changes that suggest an allosteric mechanism for the regulation of Rpn11 DUB activity (Fig. 4). In the isolated lid, the N-terminal MPN domain of Rpn11 forms extensive interactions with Rpn9 and the curled up Rpn5 finger. Upon lid binding to the holoenzyme, this Rpn5 finger swings down to contact the N terminus of the 20S core and thereby releases Rpn11, which then extends towards the Rpn2 solenoid. Docking the MPN domain of a related DUB (PDB ID: 2ZNR) into the electron density of Rpn11 indicates the approximate location of the active site (Fig. 3b). The interactions of Rpn11 with Rpn9 and Rpn5 in the free lid probably restrict access to this active site, which would prevent futile substrate deubiquitination in the absence of base and 20S core, and explain previous observations that the lid subcomplex has DUB activity only within the holoenzyme and our unpublished data.

Functional asymmetry in the AAA+ unfoldase

Our subnanometre structure of the holoenzyme provides new insights into the architecture and potential mechanisms of the base AAA+ unfoldase. As suggested by previous electron microscopy studies, the ring of the base and the 20S core are slightly offset from a coaxial alignment, with the base shifted by approximately 10 Å towards the lid (Fig. 5a). Despite or perhaps because of this offset, the C-terminal tails of Rpt2, Rpt3 and Rpt5 are docked into their cognate 20S binding pockets at the interfaces of the subunits α3 and α4, α1 and α2, and α5 and α6, respectively. Those three Rpt tails contain the terminal HbYX motif, which is critical for triggering gate opening in the 20S core and, indeed our structure is consistent with an open-gate conformation. The tails of Rpt1, Rpt4 and Rpt6 lack this motif and were not observed to interact statically with 20S in our holoenzyme structure.

Current mechanistic models for AAA+ unfoldases predict that ATPase subunits in the hexamer are in different nucleotide states and undergo significant conformational changes driven by coordinated ATP hydrolysis. Because we determined the structure of wild-type proteasome in the presence of saturating ATP, we expected that different complexes would have any given Rpt subunit in different conformations, leading to reduced electron density or low resolution when averaging thousands of these unsynchronized motors. However, our reconstruction shows highly ordered density throughout the AAA+ domains of all six Rpt subunits. Whereas the C-terminal ‘small AAA+’ subdomains (except for Rpt6) arrange in one plane above the 20S core, the ‘large AAA+’ subdomains of Rpt1–Rpt5 are oriented in a spiral staircase around the hexameric ring, with Rpt3 at the highest and Rpt2 at the lowest position (Fig. 5b and Supplementary Movie 1). The AAA+ domain of Rpt6 adopts a tilted orientation, bridging Rpt2 and Rpt3. Similar staircase arrangements have been observed previously for helicases of the AAA+ and RecA superfamilies. It was suggested that during ATP hydrolysis, individual subunits progress through the different conformational stages of the staircase, thereby translocating substrate through the pore. The particular staircase orientation we observed identically for all proteasome particles may represent a low-energy state of the base, adopted under our experimental conditions. Alternatively, this staircase arrangement of Rpt1–Rpt6 may be static and reflect the functional state of the base, in which substrates are translocated by local motions of the pore loops while the relative positions of the motor subunits remain fixed. Future biochemical and structural studies will be required to distinguish between these two models.

Figure 4 | Conformational rearrangements of the lid subcomplex upon integration into the holoenzyme. a, b, The lid complex in its isolated (left) and integrated (right) state is shown as viewed from the exterior (a) and top (b) of the regulatory particle. Major subunit rearrangements are depicted by arrows. The N terminus of Rpn5 (light yellow) interacts with Rpn11 in the isolated complex, and swings down to contact the core particle upon incorporation into the holoenzyme. The N-terminal domain of Rpn6 swings to the left to interact similarly with the core particle. Rpn3, Rpn8 and Rpn11 undergo notable rearrangements, in which they move towards the centre of the regulatory particle.

Figure 5 | Structural features of the base ATPase subunits. a, Positions of Rpt2 (cyan), Rpt3 (green) and Rpt5 (orange) within the base hexameric ring and relative to the 20S core (grey) are shown using fitted crystal structures of the homologous PAN AAA+ domain (PDB ID: 3H4M). The electron microscopy density contains the molecular envelope of the C-terminal tails (dark blue), docked into their cognate binding sites on the 20S core. Corresponding densities were not found for the tails of Rpt1, Rpt4 and Rpt6 (grey ribbon structure). b, Cutaway side view of the holoenzyme electron microscopy density with Rpt1–Rpt5 visible. Individually docked copies of the PAN crystal structure reveal a spiral staircase arrangement of the Rpt subunits, emphasized by space-filling representations of the PAN pore-1 loop residues (not resolved in the Rpt subunits).
Spatial arrangement of ubiquitin receptors and DUBs

Localizing all subunits of the regulatory particle enabled us to infer the requirements and potential mechanisms for the recognition and degradation of ubiquitin-tagged substrates (Fig. 6). After a substrate binds to an ubiquitin receptor, its polyubiquitin chain must be removed by Rpn11 cleavage at the proximal ubiquitin to permit subsequent fast degradation. To allow cleavage without disengaging from the receptor, an ubiquitin chain must be long enough to span the distance between receptor and DUB. Based on our structure, both Rpn13 and the UIM of Rpn10 are located 70–80 Å from the predicted position of the Rpn11 MPN domain (Fig. 3b). The shuttle receptors Rad23, Ddi1 and Dsk2 are expected to reside ~80–120 Å away from Rpn11, depending on where they bind Rpn1 (ref. 13). For receptor interaction, at least part of the ubiquitin chain has to be in an extended conformation with the hydrophobic patches exposed. Because a single ubiquitin moiety in an extended K48-linked chain contributes approximately 30 Å in length, it would take three ubiquitins to span the distance between Rpn10 or Rpn13 and Rpn11. Moreover, both Rpn10 and Rpn13 bind between two consecutive ubiquitin moieties, such that at least a tetra-ubiquitin chain would be required on a substrate to allow interaction with a receptor and simultaneous deubiquitination by Rpn11 (Fig. 6). This model agrees with in vitro studies that indicate a minimum of four K48-linked ubiquitins is necessary for efficient substrate degradation, although this number may differ for other chain types. Given the arrangement of Rpn10 and Rpn13, an ubiquitin chain would have to be significantly longer to interact with both receptors. However, knockout studies have shown that ubiquitin chains are not required to bind to multiple receptors simultaneously.

In contrast to Rpn11, Ubp6 is known to cleave within polyubiquitin chains or trim them from their distal end. Of all the ubiquitin-interacting subunits in the regulatory particle, we found Ubp6 to be the furthest away from the entrance to the pore, which may allow it to clip extended or unnecessary ubiquitin chains from substrates. Because Ubp6 is located closer to Rad23, Dsk2 or Ddi1 than to Rpn10 or Rpn13, it may act preferentially on substrates delivered by these shuttle receptors. To avoid dissociation upon deubiquitination, a substrate polypeptide must be engaged with the unfolding machinery of the base before or shortly after removal of its ubiquitin chain. Engagement by the base is known to depend on an unstructured initiation site or “tail” on the substrate, which needs to be long enough to reach through the narrow N-ring and into the AAA+ pore (Fig. 6). In addition, this tail would have to be sufficiently spaced from the attachment point of the polyubiquitin chain to allow concurrent substrate engagement by the pore and deubiquitination by Rpn11. The distance between the predicted active site of Rpn11 and the AAA+ pore below the N-ring is approximately 60 Å, which could easily be bridged by 40–45 unstructured residues or a shorter tail combined with a folded structure.

As an alternative to the above model for simultaneous receptor binding and deubiquitination, it has been proposed that commencing substrate translocation by the base might move the proximal ubiquitin from a receptor towards Rpn11 for cleavage. Our structure suggests for this model that efficient substrate processing would only require a mono- or diubiquitin for receptor binding and a 50–60 Å longer spacing between the ubiquitin and the flexible tail to reach the AAA+ pore. This length dependence of engagement is consistent with recent in vitro degradation studies, using model substrates with different lengths and ubiquitin modifications. Future experiments will be required to assess whether substrates get deubiquitinated in a translocation-dependent or -independent manner.

Concluding remarks

The work presented here defines the architecture of the entire proteasome regulatory particle and provides a much-needed structural framework for the mechanistic understanding of ubiquitin-dependent protein degradation. We localized Rpn11 directly above the entrance of the pore, surrounded by the ubiquitin receptors Rpn10 and Rpn13. This insight allows us to visualize the substrate’s path towards degradation and will be critical in elucidating how the characteristics of ubiquitin modifications affect substrate recognition and processing. Moreover, our study significantly furthers the understanding of the heterohexameric AAA+ motor of the proteasome. Individual ATPase subunits were found in a spiral staircase arrangement and may operate with more limited dynamics than previously assumed for AAA+ protein unfoldases.

Unexpectedly, the lid is bound to the side of the holoenzyme and interacts with both the base and core particle. These interactions induce major conformational changes in lid subunits that may allosterically activate the DUB Rpn11, allowing critical removal of ubiquitin chains during substrate degradation in the holoenzyme, while preventing futile deubiquitination by the isolated lid. In addition, contacts between the subcomplexes could have unexplored roles in coordinating individual substrate processing steps, for instance ubiquitin binding, deubiquitination, and the onset of translocation. The intricate architecture of the proteasome highlights the complex requirements for this proteolytic machine, which must accommodate and specifically regulate a highly diverse set of substrates in the eukaryotic cell.

METHODS SUMMARY

Protein expression and purification. Endogenous holoenzyme, core particle and subcomplex were purified from S. cerevisiae essentially as described. The base subcomplex was purified according to protocols for the holoenzyme preparation, but with minor modifications as described in the Methods. Details of yeast strain construction are provided in Supplementary Table 1.

Yeast lid was recombinantly expressed from three plasmids in E. coli BL21-star (DE3), and purified on anti-Flag M2 resin and by size-exclusion chromatography (see Methods).

Electron microscopy and image analysis. All electron microscopy data were collected using the Regineon data collection software and processed in the Appion electron microscopy processing environment. Three-dimensional maps were calculated using libraries from the EMM2 and SPARX software packages. UCSF Chimera was used for volume segmentation, atomic coordinate docking and figure generation.

Figure 6 | Model for the recognition, deubiquitination and engagement of a polyubiquitinated substrate by the 26S proteasome. A K48-linked tetra-ubiquitin chain (magenta, PDB ID: 2KDE) is conjugated to the unstructured initiation region of a substrate (red) and bound to the ubiquitin receptor Rpn13 (orange). The substrate is poised for deubiquitination by Rpn11 (green, active site indicated by star), and its unstructured initiation region is engaged by the translocation machinery of the base (cyan). A polyubiquitin chain could alternatively bind to the UIM of Rpn10 (yellow) or interact with both receptors simultaneously. The DUB Ubp6 is localized further from the central pore, in a position to trim excess ubiquitin chains.
Full Methods and any associated references are available in the online version of the paper at www.nature.com/nature.

Received 25 October; accepted 12 December 2011.

Published online 11 January 2012.

1. Finley, D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477–513 (2009).
2. Glickman, M. H., Rubin, D. M., Fried, V. A. & Finley, D. The regulatory particle of the 26S proteasome. Mol. Cell. Biol. 18, 3149–3162 (1998).
3. Thrower, J. S., Hoffman, L., Rechtsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).
4. Groll, M. et al. A gated channel into the proteasome core particle. Nature Struct. Biol. 12, 527–532 (2005).
5. Smith, D. M. et al. Docking of the proteasomal ATPases’ carboxy termini in the 20S proteasome’s θ ring opens the gate for substrate entry. Mol. Cell 27, 731–744 (2007).
6. Yao, T. & Cohen, R. E. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403–407 (2002).
7. Verma, R. et al. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 296, 611–615 (2002).
8. Tomko, R. J. Jr, Funakoshi, M., Schneider, K., Wang, J. & Hochstrasser, M. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol. Cell 38, 393–403 (2010).
9. Rabj, J. et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30, 360–368 (2008).
10. Gillette, T. G., Kumar, B., Thompson, D., Slaughter, C. A. & DeMartino, G. N. Differential roles of the COOH terminal of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J. Biol. Chem. 283, 31813–31822 (2008).
11. da Fonseca, P. C. & Morris, E. P. Structure of the human 26S proteasome: subunit radial displacements open the gate into the proteolytic core. J. Biol. Chem. 283, 23305–23314 (2008).
12. Eliassaf, S. et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nature Cell Biol. 4, 725–730 (2002).
13. Gonzalez, T. A., Kolawa, N., Gee, M., Sweredoski, M. J. & Deshaies, R. J. Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Rpn10. Mol. Cell 49, 481–488 (2008).
14. Hanna, J. et al. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127, 99–111 (2006).
15. Prakash, S., Tian, L., Ratliff, K. S., Lehotzky, R. E. & Matouschek, A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nature Struct. Mol. Biol. 11, 830–837 (2004).
16. Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Cell 11, 3425–3439 (2000).
17. Leggett, D. S., Glickman, M. H. & Finley, D. Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol. Biol. 301, 57–70 (2005).
18. Suloway, C. et al. Automated molecular microscopy: the new Legion system. J. Struct. Biol. 151, 41–60 (2005).
19. Lander, G. C. et al. Appion: an integrated, database-driven pipeline to facilitate EM image processing. J. Struct. Biol. 166, 95–102 (2009).
20. Zhang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).
21. Hohn, M. et al. SPARX, a new environment for Cryo-EM image processing. J. Struct. Biol. 157, 47–55 (2007).
22. Goddard, T. D., Huang, C. C. & Ferrin, T. E. Visualizing density maps with UCSF Chimera. J. Struct. Biol. 157, 281–287 (2007).

Acknowledgements We thank the members of the Martin and Nagales labs for helpful discussions, and G. Cardone for help with local resolution calculations. G.C.L. acknowledges support from the Dorn Runyon Cancer Research Foundation, M.E.M. acknowledges support by the American Cancer Society grant 212453-PF-11-178-01-TBE, C.B. acknowledges support from the NSF Graduate Research Fellowship. This research was funded in part by the Searle Scholars Program (A.M.), start-up funds from the UC Berkeley MCB Department (A.M.), the NIH grant R01-GM094497-01A1 (A.M.), the Lawrence Berkeley National Laboratory (G.L.C.), and the Howard Hughes Medical Institute (E.N.). Some of the work presented here was conducted at the National Resource for Automated Molecular Microscopy, which is supported by the NIH through the NCRR P41 program (RR017573).

Author contributions E.E., M.E.M. and C.B. designed, expressed and purified proteasome constructs, and performed biochemical experiments. G.C.L. performed the biochemical experiments. A.L. conducted at the National Resource for Automated Molecular Microscopy. A.L. reprinted the reprints. The authors declare no competing financial interests. Correspondence and requests for materials should be addressed to A.M. (a.martin@berkeley.edu).
METHODS

Recombinant lid construction and purification. Yeast Rpn5, Rpn6, Rpn8, Rpn9 and Rpn11–6His were cloned into PETDuet-1 (Novagen), yeast Rpn3, Flag–Rpn7 and Rpn12 were cloned into pCOALDuet-1 (Novagen), and yeast Sem1 and Hsp90 were cloned into pACYC-Duet-1 (Novagen). A T7 promoter preceded each gene and each plasmid contained a T7 terminator following the multiple cloning site. Genes for select rare transfer RNAs were included in the pACYC-Duet-1 plasmid to account for codon-usage differences between yeast and E. coli. To ensure full-length of Rpn6 in lipid particles used for biochemical experiments and the negative stain reconstruction of recombinant lid, we used a construct with the Flag tag moved from Rpn7 to Rpn6. E. coli BL21-star (DE3) cells were co-transformed with the three plasmids mentioned above. Lipid proteins and the chaperone Hsp90 were coexpressed overnight at 18°C after inducing cells with 0.5 mM isopropyl-β-D-thiogalactopyranoside at D600 = 0.7. Cells were collected by centrifugation (4,000g for 30 min), resuspended in Flag buffer (50 mM HEPES, pH 7.6, 100 mM NaCl, 100 mM KCl and 5% glycerol) supplemented with protease inhibitors and 2 mg ml−1 lysozyme, and sonicated on ice for 2 min in 15-s bursts. The lysate was clarified by centrifugation (27,000g for 30 min), and the complex was affinity-purified on anti-Flag M2 resin (Sigma-Aldrich) using an N-terminal Flag-tag on Rpn6 or Rpn7. The protein was a concentrated in a 30,000 MWCO concentrator (Amicon) for further purification on a Superose 6 size-exclusion column (GE Healthcare) equilibrated in Flag buffer. Intact, assembled lid particles eluted at 13.1 ml, similar to lid purified from yeast.

His-tagged yeast Rpn10 was expressed in E. coli and purified by Ni-NTA affinity and size-exclusion chromatography.

Yeast strain construction. Wild-type hololid was purified from the strain YYS40 (MATa ade2-1 his3-11,15 leu2-3,112 trp1-1 can1) RPNN1:RPNN1-3XFLAG (HIP3))40. To generate RPN10, RPN13 and UBPE deletion strains, the kanMX6 sequence was integrated at the respective genomic locus, replacing the gene in YYS40. To generate the strains used to purify GST–Rpn2, GFP–Rpn5 and GFP–Rpn8 hololids, sequences encoding the respective tags under the control of the pGAL1 promoter were integrated 3′ of the respective genes in YYS40. To generate the strain used to purify Rpn1–Flag hololid, a sequence encoding the Flag tag was integrated 3′ to RPN1 in a ΔW303 background strain (MATa ade2-1 his3-11 leu2-3,112 trp1-1 can1-100 leu2-3,112 trp1-1 can1-100). To generate the strain used to purify mutant-containing core particle for the crosslinking experiments shown in Supplementary Fig. 11, pRS305 (LEU2) containing the mutant 2a and the genomic sequences found 500 nucleotides upstream and 100 nucleotides downstream of the gene was integrated at the LEU2 locus of RDJ1144 (MATa, his3A200 leu2-3,112 lys2-s801 trp1 A3 ura3-52 PRE1-FLAG-6xHis:Ypl211 (URA3))41, and the chromosomal copy of the respective genes in YYS40.

Expression and purification of yeast holoenzyme and subcomplexes. Endogenous Rpn5 and Rpn10 were overexpressed in S. cerevisiae essentially as described. Frozen yeast cells were lysed in a 5x SamplePrep 6780 Dryzer/Mill. For hololid purification, lysed cells of a strain containing a C-terminal Flag tag on Rpn2 and including a 500 mM NaCl wash, with 500 μM ATP present throughout the purification. Core particle was purified from a yeast strain containing a Flag–6×His tag on Prc1 and includ-

Protein crosslinking. Sulfo-MBS (Thermo Scientific) is a short (7.3 Å), heterobifunctional crosslinker, whose maleimide moiety reacts primarily with sulphydryls between pH 6.5 and 7.5, and whose NHS ester reactive with primary amines between pH 7 and 9. We purified core particle from yeast strains in which the only copy of the core 2a subunit was either wild type, a D245C mutant, or an A249C mutant. Other intrinsic cysteines of the core were found largely non-reactive towards sulphydryl-modifying agents (not shown). 10 μM reduced core particle purified from strains containing wild type, a249C and D245C a2 were incubated with 150 μM sulfo-MBS for 15 min at pH 6.5, allowing conjugation of the crosslinker to cysteines. Core particle was buffer-exchanged to remove excess crosslinker and increase the pH to 7.5, activating the amine-reactive functional group on sulfo-MBS. This core particle was added at a final concentration of 2 μM to a proteasome reconstitution mixture, containing 2 μM purified base, 10 μM purified Rpn10, 0.5 mM ATP, and 2 μM lid purified from a yeast strain in which Rpn6 was C-terminally tagged with a 3×HA tag. Crosslinking was allowed to proceed for 15 min before reactions were stopped by the addition of 0.5 mM glycine pH 7.5 and divided equally for separation by SDS-PAGE, followed by either Coomassie staining or anti-HA western blotting.

Electron microscopy. Sample preparation: negative stain analysis of both the purified proteasome lid and hololid complexes was performed using 400 mesh continuous carbon grids that had been plasma-cleaned in a 75% argon/25% oxygen atmosphere for 8 s using a Solarus plasma cleaner (Gatan). The purified sample, at a concentration of 5 μM in a buffer containing 5% glycerol, was first diluted 1:5 from 60 mM HEPES, pH 7.6, 50 mM NaCl, 50 mM KCl, 5 mM MgCl2, 0.5 mM EDTA, 10% glycerol, 1 mM DTT, 0.5 mM ATP and in buffer containing 20 μM HEPES, pH 7.6, 50 mM NaCl, 50 mM KCl, 1 mM ATP, 1 mM DTT and 0.05% NP-40. Grids and aliquots were placed on glow-discharged carbon grids. Grids (Gatan) were subsequently floated on four successive 25-μl drops of the uranyl formate solution, waiting 10 s on each drop. The grids were then blotted to dryness.

Preservation of both lid and hololid complexes in vitreous ice was performed in the same manner. 400-mesh C-flats containing 2 μm holes with a spacing of 2 μm (Protochips) were plasma cleaned in a 75% argon/25% oxygen atmosphere for 8 s using a Solarus plasma cleaner (Gatan). The purified sample, at a concentration of 5 μM in a buffer containing 5% glycerol, was first diluted 1:5 from 60 mM HEPES, pH 7.6, 50 mM NaCl, 50 mM KCl, 5 mM MgCl2, 0.5 mM EDTA, 10% glycerol, 1 mM DTT, 0.5 mM ATP to a concentration of 20 μM HEPES, pH 7.6, 50 mM NaCl, 50 mM KCl, 1 mM ATP, 1 mM DTT and 0.05% NP-40. Grids and aliquots were placed on glow-discharged carbon grids. Grids (Gatan) were subsequently floated on four successive 25-μl drops of the uranyl formate solution, waiting 10 s on each drop. The grids were then blotted to dryness.

Data collection: negative-stain analysis of the lid and hololid complexes were performed using a Tecnai T12 Bio-TWIN and a Tecnai F20 TWIN transmission electron microscope operating at 120 keV. Lid samples were imaged at a nominal magnification of ×68,000 (1.57 Å per pixel at the specimen level) on the T12, and ×30,000 (1.45 Å per pixel) on the F20. Hololid complexes were imaged at a magnification of ×49,000 (2.18 Å per pixel) on the T12, and ×50,000 (2.16 Å per pixel) on the F20. T12 data were acquired with a F416 CMOS 4Kx4K camera (FEI company) at 100,000 (1.08 Å per pixel) under white light illumination, and 500 micrographs were collected using an electron dose of 20 e− Å−2 with a random set focus ranging from ~0.5 to ~1.2 μm. The automatic ratering application of the Leginon data collection software was used for data acquisition. Between 300 and 500 micrographs were collected for each of the negatively stained data sets. For cryoelectron microscopy, individual grids were loaded into a 626 single-tilt cryotransfer system (Gatan) and inserted into a Tecnai F20 TWIN transmission electron microscope operating at 120 keV. Data were acquired at a nominal magnification of ×100,000 (1.08 Å per pixel) using an electron dose of 20 e− Å−2 with a randomly set focus ranging from ~1.2 to ~2.5 μm. A total of 9,153 micrographs were collected of the hololid using the MSI-T Application of the Leginon software. While the hololid was remained intact during the freezing process, the isolated lid specimen became completely disassembled during the freezing process. In an attempt to overcome this, the isolated lid was also frozen using grids onto which a thin carbon film was floated. Due to the elevated background noise from the addition of a carbon substrate, the resulting images lacked the sufficient signal-to-noise ratio necessary to solve a cryoelectron
microscopy structure of the isolated lid to a better resolution than the negative-stain structure.

Image processing of negative-stain data. All image pre-processing and two-dimensional classification was performed in the Appion image processing environment. Due to the large number of data sets acquired for both the negatively stained lid and holoenzyme complexes, a generalized schema was used for image analysis. This schema also minimized user bias during comparison of tagged and deletion constructs with their wild-type counterparts. The contrast transfer function (CTF) of each micrograph was estimated concurrently with data collection using the ACE2 and CTFFind programs, providing a quantitative measurement of the imaging quality. Particle selection was also performed automatically concurrent with data collection. Negatively stained lid particles were selected from the micrographs using a difference of Gaussians (DoG) transform-based automated picker, and holoenzyme particles were selected using a template-based particle picker. Micrograph phases were corrected using ACE2, and both lid and holoenzyme particles were extracted using a 288 × 288-pixel box size. The data were then binned by a factor of two for processing. Each particle was normalized to remove pixels whose values were above or below 4.5 × 10^-6 of the mean pixel value using the XMIPP normalization program.

To remove aggregation, contamination or other non-particle selections, particle stacks were decimated by a factor of 2 and subjected to five rounds of iterative multivariate statistical analysis (MSA) and multi-reference alignment (MRA) using the IMAGIC software package. Two-dimensional class averages depicting properly assembled complexes were manually selected, and the non-decimated particles contributing to these class averages were extracted to create a new stack for further processing. To include a larger range of holoenzyme views, particles contributing to doubly capped proteasome averages were removed. This stack of particles went through five rounds of MSA/MRA in IMAGIC, and a final correspondence analysis and classification based on Eigen images using the SPIDER software package was performed to generate two-dimensional class averages of the complexes.

Initial models for reconstructions of both the holoenzyme and lid were determined using the established “C1 startup” routines in IMAGIC. Two-dimensional class averages were manually inspected to select three images representing orthogonal views of the complex, which were in turn used to assign Euler's in a stepwise fashion to the entire data set of reference-free class averages. The resulting low-resolution models of the lid and holoenzyme were low-pass filtered to 60-Å resolution, and these densities were used as starting points for refinement of the three-dimensional structure.

Three-dimensional reconstructions were all performed using an iterative projection-matching and back-projection approach using libraries from the EMAN2 and SPARX software packages. Refinement of the starting models began using an angular increment of 25°, progressing down to 2° for the lid, and 1° for the holoenzyme. The refinement only continued to the subsequent angular increment once greater than 95% of the particles showed a pixel error of less than 1 pixel. The resolution was estimated by splitting the particle stack into two equally sized data sets, calculating the Fourier shell correlation (FSC) between the resulting back-projected volumes. The estimated resolutions for the final endogenous and recombinant lid structures based on their FSC curves at 0.5 were about 15 Å.

Image processing of cryoelectron microscopy holoenzyme. Processing of the holoenzyme cryo data set proceeded in a very similar fashion to that of the negatively stained particle data sets. Only ACE2 was used to estimate CTF of the images and measure image quality, and particles were extracted using a box size of 576 pixels. Reference-free two-dimensional classification was performed to remove particles that did not contribute to averages depicting a doubly capped proteasome. Three rounds of reference-free two-dimensional classification, and particles were removed after each round. From an initial data set of 312,483 automatically selected particles, 93,679 were kept for the three-dimensional reconstruction. C2 symmetry was applied to one of the previously determined asymmetric negative-stained reconstructions to serve as a starting model for structure refinement. The reconstruction began using an angular increment of 25°, and iterated down to 0.6°. C2 symmetry was imposed during the reconstruction.

Low-resolution Fourier amplitudes of the final map were dampered to match those of an experimental GroEL SAXS curve using the SPIDER software package.

The estimated resolution based on the FSC of the half-volumes at 0.5 was approximately 9 Å, although a local resolution calculation using the “blocces” function in the Bsoft package indicated a range of resolutions within the density. The majority of the core particle subunits and the AAA+ ATPases were resolved to between 7- and 8-Å resolution, whereas the non-ATPase subunits in the regulatory particle ranged from 8- to 12-Å resolution (Supplementary Fig. 7). Notably, Rpn1 and the ubiquitin receptors Rpn10 and Rpn13 were the lowest resolution features of the holoenzyme. To filter the low-resolution portions of the map properly, without destroying the details of the better-ordered features, a resolution-driven adaptive localized low-pass filter was applied to the final volume (G. Cardone, personal communication).

The segmentation analysis was manually performed using the “Volume Tracer” tool in the UCSF Chimera visualization software. This software was additionally used to perform all rigid-body fitting of crystal structures into the holoenzyme cryoelectron microscopy density, as well as to generate all renderings for figure images.

48. Sone, T., Saeki, Y., Tah-e, A. & Yokosawa, H. Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J. Biol. Chem. 279, 28807–28816 (2004).
49. Kim, H. C. & Huijbregtse, J. M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell. Biol. 29, 3307–3318 (2009).
50. Mallick, S. P., Carragher, B., Potter, C. S. & Kriegman, D. J. ACE: automated CTF estimation. Ultramicroscopy 104, 8–29 (2005).
51. Mindell, J. A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).
52. Voos, N. R., Yochoka, C. K., Rademacher, M., Potter, C. S. & Carragher, B. DoG Picker and TiltPicker: software tools to facilitate particle selection in single particle electron microscopy. J. Struct. Biol. 166, 205–213 (2009).
53. Sorzano, C. O. et al. XMIPP: a new generation of an open-source image processing package for electron microscopy. J. Struct. Biol. 148, 194–204 (2004).
54. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Scharf, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).
55. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).
56. Heymann, J. B. & Belnap, D. M. Bsoft: image processing and molecular modeling for electron microscopy. J. Struct. Biol. 157, 3–18 (2007).