INTRODUCTION

Bacopa monnieri (L.) Pennell belongs to the family Scrophulariaceae, in India it is popularly known as ‘Brahmi’ and is used in Ayurveda for the preparation of medhyarasayan (rasayana). Leaf explants of field grown young plants of *B. monnieri* was used to establish an efficient regeneration protocol with cytokinin (BAP) and auxin (IAA). The highest multiplication, i.e. (220 shoots/leaf, a cumulative of 2200 shoots from 10 explants) were noticed after 45 days of culture in MS medium supplemented with BAP (1.5mg/L) and IAA (0.5mg/L). The optimum concentration of growth regulator for shoot elongation and rooting was recorded in MS + GA$_3$ (0.25mg/L) and MS + IBA (1.5mg/L) respectively. The rooted plantlets were successfully established in greenhouse conditions.

ABSTRACT

Bacopa monnieri (L.) Pennell is an important medicinal plant used for the preparation of medhyarasayan (rasayana). Leaf explants of field grown young plants of *B. monnieri* was used to establish an efficient regeneration protocol with cytokinin (BAP) and auxin (IAA). The highest multiplication, i.e. (220 shoots/leaf, a cumulative of 2200 shoots from 10 explants) were noticed after 45 days of culture in MS medium supplemented with BAP (1.5mg/L) and IAA (0.5mg/L). The optimum concentration of growth regulator for shoot elongation and rooting was recorded in MS + GA$_3$ (0.25mg/L) and MS + IBA (1.5mg/L) respectively. The rooted plantlets were successfully established in greenhouse conditions.

KEYWORDS: Brahmi, Leaf, Medhyarasayan, Multiple shoots

MATERIALS AND METHODS

Explant Preparation

The leaf explants of *B. monnieri* were collected from the Botany Experimental Farm, Andhra University, Visakhapatnam, Andhra Pradesh, India. Then was surface sterilized with 0.1% HgCl$_2$, and repeatedly washed in sterile distilled water and were transferred on to the various culture media for *in vitro* response.
Micropropagation

The basal MS medium [17] was used with different concentrations of cytokinin BAP (6-benzyl aminopurine) and auxin IAA (indole-3-acetic acid) and subculture at every 15 days on the same media. The number of shoot buds were recorded after third subculture, then the shoot buds was elongated on MS media with various levels of GA_3 (0.10-0.30mg/L) after two weeks of culture. To test their rooting capacity, the in vitro elongated shoots were excised and transferred on to MS media supplemented with various concentrations of IBA(0.5-2.5mg/L). The efficiency of rhizogenesis i.e., frequency of rooting (%), root length (cm) per shoot and number of roots per shoot were recorded after two weeks of culture. Each experiment consisted of 10 replicates.

In vitro Conditions

All media were supplemented with 3%(W/V) sucrose and 0.8% agar, the pH of the media was adjusted to 5.8 with 1N NaOH or 1N HCl prior to autoclaving. The cultures were maintained at temperature 25 ± 2°C in the culture room with a 16 hours photoperiod under an illumination of 20 m mol m^{-2}-s^{-1} photosynthetic photon flux density, provided by cool-white fluorescent light.

Acclimatization

The rooted plants were removed from the culture medium, washed in running tap water to remove the remains of agar and transferred to plastic pots containing sterilized vermiculate. They were hardened for four weeks at temperature 25 ± 2°C under low humidity and transplanted to clay pot containing sand and soil (1:1) and were maintained in green house conditions.

RESULTS AND DISCUSSION

In vitro propagation has been advocated as one of the most viable biotechnological tools for ex-situ conservation of rare, endangered and medicinally important plant species for future perspectives [18-20]. In the present study, we established an efficient regeneration system in leaf explants of B. monnieri. The leaf explants has started growth and producing multiple shoot initiation directly from the cut ends after two weeks of culture on MS medium supplemented with various levels of cytokinin BAP(0.5-3.0mg/L) in combination with auxin IAA(0.5mg/L or 1.0mg/L). The results revealed that all the tested media were effective in inducing direct regeneration. Hence, all the respondent leaf cultures were maintained in the same media for three consecutive subcultures. Produced a total of 2200 shoots per ten leaf explants and a mean of 220.16±0.18 shoots per leaf explant with 100 per cent shooting was recorded in the medium MS+BAP (1.5mg/L)+IAA(0.5mg/L) while, 200 shoots per ten explants and an average of 28.12±0.15 shoots per explant was noticed in the medium MS+BAP (3.0mg/L)+IAA(1.0mg/L) after 45 days of culture (Table 1 and Fig. 1). To my knowledge, i have established the protocol for rapid and superior production of multiple shoots to reproduce B. monnieri using leaf explants over the earlier reports on Bacopa leaf explants, they reported the shoot number ranging from 3.4 to 138.9 per explant [21-32]. An overview of all the results in the present study, noticed that maximum induction of multiple shoots took place on MS medium fortified with various concentrations of BAP with low concentration of IAA. Similar findings also observed by a few researchers [33-36]. This may be due to the synergistic effect of cytokinin (BAP) and auxin (IAA) has been demonstrated in many medicinal plants, for example Santolina canescens [37], Bupleurum fruticosum [38] and turmeric [39] who noticed that the low concentrations of an auxin in combination with a cytokinin influence the frequency of shoot induction and growth effectively on the other hand the high concentration of cytokinin induced the formation of stunted shoots has been observed [40,41]. The microshoots with an average length at 1.0-1.5cm were excised from the multiple shoot cluster

Table 1: Multiple shoot induction from leaf explants of Bacopa monnieri on different levels of BAP and IAA with MS medium

S. No.	BAP(mg/L)	IAA(mg/L)	% of Shooting*	Shoot no./Leaf*
1.	0.0	0.0	00.00±0.00	00.00±0.00
2.	0.5	0.5	76.80±0.19	98.00±0.14
3.	1.0	0.5	88.50±0.12	148.12±0.20
4.	1.5	0.5	100.00±0.00	220.16±0.18
5.	2.0	0.5	80.30±0.20	165.13±0.11
6.	2.5	0.5	75.80±0.20	85.18±0.09
7.	3.0	0.5	66.50±0.10	48.20±0.16
8.	0.5	1.0	28.20±0.22	30.14±0.23
9.	1.0	1.0	52.50±0.15	48.19±0.17
10.	1.5	1.0	68.10±0.23	75.14±0.10
11.	2.0	1.0	62.40±0.38	92.21±0.22
12.	2.5	1.0	55.30±0.25	86.12±0.18
13.	3.0	1.0	38.80±0.24	28.12±0.15

*Mean±SE of 10 replicates
and transferred individually on MS medium fortifying with different levels of \(GA_3 \) (0.1 to 0.3mg/L) for elongation (Table 2). The higher shoot elongation (i.e., 8.3±0.15cm per shoot) was noticed on MS medium containing \(GA_3 \) (0.25mg/L). This may be due to the cell elongation roll of \(GA_3 \) [42].

The higher shoot elongation (i.e., 8.3±0.15cm per shoot) was noticed on MS medium containing \(GA_3 \) (0.25mg/L). This may be due to the cell elongation roll of \(GA_3 \) [42].

Conclusions

The output of the research meets the objectives of the present study and reports a rapid and efficient multiple shoot regeneration of leaf explants of \(B. monnieri \) with cytokinin (BAP) and auxin (IAA). Further, the results of the study can be helpful in future production of true to the type clonally multiplied plants for pilot scale pharmacological use.

Acknowledgements

The author Subba Tata is grateful to Prof. O. Aniel Kumar and UGC-SAP-CAS-I, Department of Botany, Andhra University for providing financial assistance.

REFERENCES

1. Anonymous (1997). Indian medicinal plants: A sector study. Occasional paper No. 54, Export-Import Bank of India, Quest publications, Bombay, India.
2. Satyavati GV, Raina MK, Sharma M (1976). Indian medicinal plants. Vol. 1, Indian Council of Medical Research, New Delhi, pp.20-35.
3. Jain P, Kulshreshtha DK (1993). Bacoside A1, a minor saponin from \(B. monnieri \). Phytochemistry 33:449-451.
4. Sinha S, Saxena R (2006). Effect of iron on lipid peroxidation and enzymatic and non enzymatic antioxidant and bacosides - a content in medicinal plant \(B. monnieri \). Chemosphere 62:1340-1350.
5. Rastogi S, Pal R, Kulshreshtha DK (1994). Bacoside A3 - a triterpenoid saponin from \(B. monnieri \). Phytochemistry 36(1):133-137.
6. Sivaramakrishna C, Rao CV, Trimmeru G, Vanisree M, Subbaraju GV (2005). Triterpenoid glycosides from \(B. monnieri \). Phytochem 66(23):2717-2728.
7. Ved DK, Goraya GS (2007). Demand and Supply of Medicinal Plants in India. NMMP, New Delhi and FRLHT, Bangalore, India.
8. Cesar SA, Maxwell SL, Prasad KB, Karthigian M, Ignacimuthu S (2010). Highly efficient shoot regeneration of \(B. monnieri \) (L.) using a two-stage culture procedure and assessment of genetic integrity of micropropagated plants by RAPD. Acta Physiol Plant 32:443-452.
9. Tiwari V, Tiwari KN, Singh BD (2001) Comparative studies of cytokinins on \(in vitro \) propagation of \(B. monnieri \). Plant Cell, Tissue and Organ Culture 66(1):9-16.
10. Rathore S, Singh N (2013). In vitro conservation of \(B. monnieri \) - an endangered medicinal plant. Global J Bio Sci Biotechn 2(2):187-192.
11. Shah JD (1965). Studies in growth and ecology of \(B. monnieri \) (L.) Pennell - a medicinal herb. Ph.D. Thesis, Banaras Hindu University, Varanasi, India.
12. Sharma N (2005). Micropropagation of \(B. monnieri \) L., Penn.- an important medicinal plant. M.Phil. Thesis. Thapar Institute of Engineering and Technology Patiala, India.
13. Arora R, Bhujwani SS (1989). \(in vitro \) propagation and low temperature storage of \(Saussurea lappa \) C.B. Clarke – an endangered, medicinal plant. Plant Cell Reports 8:44-47.
14. Purohit SD, Dave A, Kukda G (1994). Micropropagation of safed musli (Chlorophytum borivilianum), a rare Indian medicinal plant. Plant Cell Tissue and Organ Culture 39:93-96.
15. Kasagana VN, Swathi SK (2011). Conservation Of Medicinal Plants (Past, Present & Future Trends). Journal of Pharmaceutical Sciences and Research, 3(8):1378-1386.
16. Attia OA, Dessoky SE, Yassin MA, Ismail AI (2018). Ex situ preservation for some endemic and rare medicinal plants in Taif, KSA. Biotechnology & Biotechnological Equipment. 31(5):912-920.
17. Murashige T, Skoog K (1962). A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plant 15:473-497.
18. Latto SK, Bamorta S, Dhar RS, Khan S, Dhar AK (2006). Rapid plant regeneration and analysis of genetic fidelity of \(in vitro \) derived plants of \(Chlorophytum arundinaceum \) Baker-an endangered medicinal herb. Plant Cell Rep 25:499-506.
19. Joshi P, Dhawan V (2007). AXillary multiplication of \(Swertia chirayita \) (Roxb. Ex Fleming) H. Karst., a critically endangered medicinal herb of temperate Himalayas. In Vitro Cell Dev Biol Plant 43:631-638.
20. Sivanesan I (2007). Direct regeneration from apical bud explants of \(Withania somnifera \) Dunal. Indian J Biotechnol 16:125-127.
21. Binita B, Ashok, DM, Yogesh JT (2005). \(B. monnieri \) (L.) Pennell: A rapid, efficient and Cost effective micropropagation; Plant Tissue Cult Biotechnol 19(2):167-175.
22. Mohapatra HP, Rath SP (2005). \(In vitro \) studies of \(B. monnieri \) : An important medicinal plant with reference to its biochemical variations. Indian J Exp Biol 43(4):373-376.
23. Sharath R, Krishna V, Sathyanarayana BN, Maruthi Prasad BN, Harish BG (2007). High Frequency regeneration through somatic embryogenesis in \(B. monnieri \) (L.) Wettest. Medicinal and Aromatic Plant Science and Biotechnology 11(1):138-141.
24. Praveen N, Naik PM, Manohar SH, Nayeeam A, Murthy HN (2009). \(In vitro \) regeneration of Brahmi shoots using semi solid and liquid cultures and quantitative analysis of Bacoside-A. Acta Physiol Plantarum 31(4):723-728.
25. Joshi AG, Pathak AR, Sharma AM, Singh S (2010). High frequency
of shoot regeneration on leaf explants of *Bacopa monnieri*. Environmental and Experimental Biology 8: 81-84.

26. Vijayakumar M, Vijayakumar R, Stephen R (2010). In vitro propagation of *Bacopa monnieri* L. - a multipurpose medicinal plant. Indian Journal of Science and Technology, 3(7): 781-786.

27. Tanveer A, Khan M, Shah F (2010). *In vitro* Micropropagation of Brahmi - *Bacopa monnieri* (L.) Pennell – A Step for Conservation. Nanobiotechnica Universale 1(2): 139-150.

28. Srinath Rao, Rajkumar P, Kaviraj C, Asra Parveen P (2012). Efficient plant regeneration from leaf explants of *Bacopa monnieri* (L.) Wettst.: A threatened medicinal herb. Annals of Phytomedicine 1(1): 110-117.

29. Anuja K, Arti S, Sofia G, Sharada M (2014). Cost effective protocol for micropropagation of *Bacopa monnieri* using leaf explants. International Journal of Science and Research 3(4): 210-212.

30. Sheikh SS, Dakhane VP, Chaudhary AD (2015). Callus Induction in *Bacopa monnieri* (L.) Pennell by Nodal, Internodal, Young and Mature Leaf Explants. Int Journal of Res. In Biosciences, Agriculture & Technology 1: 101-108.

31. Priya Dhanarshini M, Krishna moorthy M, Balasubramanian K (2015). Effects of Plant Growth Regulators and Activated Charcoal on Regeneration and Plantlet Development in Neer Brahmi (*Bacopa monnieri*). Journal of Academia Industrial Research 4(2): 337-345.

32. Joshi A, Kothari SL (2007). High copper levels in the medium improves shoot bud differentiation and elongation from the cultured cotyledons of *Capsicum annuum* L. Plant Cell, Tissue Organ Culture 88: 127-133.

33. Rahman MT, Hossain MJ, Khalekuzzaman M (2008). *In vitro* indirect plantlet regeneration from hypocotyl segments and cotyledonary explant derived calli in lady’s finger (*Abelmoschus esculentus* Monech). J Bio Sci 16: 49-57.

34. Ashrafuzzaman M, Hossain M, Razi IM, Shahidul M, Haque M, Shahidullah SM, Shahin UZ (2009). Regeneration potential of seeding explants of chilli (*Capsicum annuum*). Afr J Biotechnol 8: 591-596.

35. Otroschy M, Moradi K, Nekouei MK, Srouj PC (2011). Micropropagation of pepper (*Capsicum annuum* L.) through *in vitro* direct organogenesis. Asian J Biotechnol 3: 38-45.

36. Casado JP, Navarro MC, Utrilla MP, Martinez A, Jimenez J (2002). Micropropagation of *Santolina canecens* Lagasca and *in vitro* volatiles production by shoot explants. Plant Cell, Tissue Organ Culture 69: 147-153.

37. Fraternali D, Giamperi L, Ricci D, Rocchi MBL (2002). Micropropagation of *Bupleurum fruticosum* : the effect of triacontanol. Plant Cell, Tissue Organ Culture 69: 135-140.

38. Salvi ND, George L, Eapen S (2002). Micropropagation and field evaluation of micropropagated plants of turmeric. Plant Cell, Tissue Organ Culture 68: 143-151.

39. Tavarea AC, Pimenta MC, Goncalves MT (1996). Micropropagation of *Melissa officinalis* L. through proliferation of axillary shoots. Plant Cell Rep 115: 441-444.

40. Koroch AR, Hector RJ, Victorio ST (1997). Micropropagation and acclimatization of *Hedeoma multiflorum*. Plant Cell, Tissue Organ Culture 48: 213-217.

41. Qin C, Dong Z, Liu W, Deng Z, Tang L (2005). Effects of exogenous plant growth regulator on *in vitro* regeneration of cotyledon explants in pepper. Not Bot Hort Agrobot Cluj 13: 25-32.

42. Jain R, Prasad B, Jain M (2013). *In vitro* regeneration of *Bacopa monnieri* (L.): A highly valuable medicinal plant. Int J Curr Microbiol App Sci 2(12): 198-205.