On Pólya–Szegö and Čebyšev type inequalities via generalized k-fractional integrals

Saima Rashid, Fahd Jarad, Humaira Kalsoom and Yu-Ming Chu

Abstract

In this paper, we introduce the generalized k-fractional integral in terms of a new parameter $k > 0$, present some new important inequalities of Pólya–Szegö and Čebyšev types by use of the generalized k-fractional integral. Our consequences with this new integral operator have the abilities to implement the evaluation of many mathematical problems related to real world applications.

MSC: 26D15; 26D10; 26A33

Keywords: Pólya–Szegö inequality; Čebyšev inequality; Generalized fractional integral

1 Introduction

There are numerous problems wherein fractional derivatives (non-integer order derivatives and integrals) attain a valuable position [1–25]. It must be emphasized that fractional derivatives exist in many technologies, especially they can be described in three different approaches, and any of these approaches can be used to solve many important problems in the real world. Every classical fractional operator is typically described in terms of a particular significance. There are many well-recognized definitions of fractional operators, we can also point out the Riemann–Liouville, Caputo, Grunwald–Letnikov, and Hadamard operators [26], whose formulations include integrals with singular kernels and which may be used to check, for example, issues involving the reminiscence effect [27]. However, within the year 2010, specific formulations of fractional operators appeared in the literature [28]. The new formulations diverge from the classical ones in numerous components. As an example, classical fractional derivatives are described in such a manner that in the limit wherein the order of the derivative is an integer, one recovers the classical derivatives in the sense of Newton and Leibniz. In addition, new fractional operators [29–31] with a corresponding integral whose kernel may be a non-singular mapping have been currently proposed; for instance, a Mittag-Leffler function [32]. In such instances, integer-order derivatives are rediscovered by supposing suitable limits for the values of their parameters.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
On the other hand, there are numerous approaches to acquire a generalization of classical fractional integrals. Many authors introduce parameters in classical definitions or in some unique specific function [4], as we shall do in what follows. Moreover, in the present paper, we introduce a parameter and enunciate a generalization for fractional integrals on a selected space, which we call generalized \(k \)-fractional integral, and further advocate a Pólya–Szegö and Čebyšev type inequalities modification of this generalization.

Inequalities and their potential applications are of great significance in pure mathematics and applied mathematics, many remarkable inequalities and their applications can be found in the literature [33–46]. In view of the broader applications, integral inequalities have received large interest [47–60]. Presently, many authors have provided the unique versions of such inequalities which may be beneficial within the study of diverse classes of differential and integral equations. Those inequalities act as far-reaching tools to look at the classes of differential and integral equations [61–70].

Čebyšev [71] introduced the well-known celebrated functional as follows:

\[
\mathcal{I}(\mathcal{U}, \mathcal{V}) = \frac{1}{\sigma_2 - \sigma_1} \int_{\sigma_1}^{\sigma_2} \mathcal{U}(\lambda) \mathcal{V}(\lambda) \, d\lambda - \left(\frac{1}{\sigma_2 - \sigma_1} \int_{\sigma_1}^{\sigma_2} \mathcal{U}(\lambda) \, d\lambda \right) \left(\frac{1}{\sigma_2 - \sigma_1} \int_{\sigma_1}^{\sigma_2} \mathcal{V}(\lambda) \, d\lambda \right),
\]

(1.1)

where \(\mathcal{U} \) and \(\mathcal{V} \) are two integrable functions on \([\sigma_1, \sigma_2]\). If \(\mathcal{U} \) and \(\mathcal{V} \) are synchronous, that is,

\[
(\mathcal{U}(\lambda) - \mathcal{U}(\omega))(\mathcal{V}(\lambda) - \mathcal{V}(\omega)) \geq 0
\]

for any \(\lambda, \omega \in [\sigma_1, \sigma_2] \), then \(\mathcal{I}(\mathcal{U}, \mathcal{V}) \geq 0 \).

Functional (1.1) has attracted the attention of many researchers due to its demonstrated applications in probability, numerical analysis, quantum theory, statistical and transform theory. Alongside facet with numerous applications, functional (1.1) has gained plenty of interest to yield a variety of fundamental inequalities [72–76].

Another interesting and fascinating aspect of the theory of inequalities is the Grüss type inequality [66] which states

\[
|\mathcal{I}(\mathcal{U}, \mathcal{V})| \leq \frac{(Q - q)(R - r)}{4},
\]

where the integrable functions \(\mathcal{U} \) and \(\mathcal{V} \) satisfy

\[
q \leq \mathcal{U}(\lambda) \leq Q
\]

and

\[
r \leq \mathcal{V}(\lambda) \leq R
\]

for all \(\lambda \in [\sigma_1, \sigma_2] \) and for some \(q, Q, r, R \in \mathbb{R} \).

Many famous versions mentioned in the literature are direct effects of the numerous applications in optimizations and transform theory. In this regard Pólya–Szegö integral
inequality is one of the most intensively studied inequalities. This inequality was introduced by Pólya and Szegö [76]:

\[
\frac{\int_{\sigma_1}^{\sigma_2} u^2(\lambda) d\lambda \cdot \int_{\sigma_1}^{\sigma_2} v^2(\lambda) d\lambda}{(\int_{\sigma_1}^{\sigma_2} u(\lambda) v(\lambda) d\lambda)^2} \leq \frac{1}{4} \left(\sqrt{\frac{QR}{qr}} + \sqrt{\frac{qr}{QR}} \right)^2.
\] (1.2)

The constant \(\frac{1}{4}\) is a best possible constant such that inequality (1.2) holds, that is, it can’t be replaced by a smaller constant.

By using the Pólya–Szegö inequality, Dragomir and Diamond [75] proved that the inequality

\[|\Sigma(\mathcal{U}, \mathcal{V})| \leq \frac{(Q - q)(R - r)}{4(\sigma_2 - \sigma_1)\sqrt{qrQR}} \int_{\sigma_1}^{\sigma_2} u(\lambda) d\lambda \int_{\sigma_1}^{\sigma_2} v(\lambda) d\lambda \]

holds for all \(\lambda \in [\sigma_1, \sigma_2]\) if the functions \(\mathcal{U}\) and \(\mathcal{V}\) defined on \([\sigma_1, \sigma_2]\) satisfy

\[0 < q \leq \mathcal{U}(\lambda) \leq Q < \infty, \quad 0 < r \leq \mathcal{V}(\lambda) \leq R < \infty. \]

It has been extensively discussed that Pólya–Szegö and Čebyšev type inequalities in continuous and discrete cases play a considerable role in examining the qualitative conduct of differential and difference equations. As a result of these studies, many new branches of mathematics have been opened up. Inspired by Pólya, Szegö, and Čebyšev [71, 76], we intend to show more general versions of Pólya–Szegö and Čebyšev type inequalities.

Our present paper has been inspired by the resource of the above-defined work. The principal aim of the present paper is to set up new Pólya–Szegö and Čebyšev types integral inequalities associated with generalized \(k\)-fractional integrals. We introduce parameter \(k > 0\) and generalize the results in such a way that the existing results can be explored too. Thus, the results provided in this research paper are more generalized as compared to the existing results.

2 Preliminaries

In this section, we demonstrate some important concepts from fractional calculus that will play a major role in proving the results of the present paper. The essential points of interest are exhibited in the monograph by Kilbas et al. [27].

Definition 2.1 (see [27, 77]) Let \(p \geq 1\) and \(r \in \mathbb{R}\). Then the function \(\mathcal{U}(\xi)\) is said to be in \(L_{pr}^{[\nu_1, \nu_2]}\) space if

\[
\|\mathcal{U}\|_{L_{pr}^{[\nu_1, \nu_2]}} = \left(\int_{\nu_1}^{\nu_2} |\mathcal{U}(\xi)|^p \xi^r d\xi \right)^{\frac{1}{p}} < \infty.
\]

In particular,

\[
L_{p,0}^{[\nu_1, \nu_2]} = L_p^{[\nu_1, \nu_2]} = \left\{ \mathcal{U} : \|\mathcal{U}\|_{L_{p}^{[\nu_1, \nu_2]}} = \left(\int_{\nu_1}^{\nu_2} |\mathcal{U}(\xi)|^p d\xi \right)^{\frac{1}{p}} < \infty \right\}.
\]
Definition 2.2 (see [78]) Let $p \geq 1$, $U \in L^1(0, \infty)$ and Ψ be an increasing and positive monotone function defined on $[0, \infty)$ such that Ψ' is continuous on $[0, \infty)$ and $\Psi(0) = 0$. Then U is said to be in $\chi^p_\Psi[0, \infty)$ space if $\|U\|_{\chi^p_\Psi} < \infty$, where $\|U\|_{\chi^p_\Psi}$ is defined by

$$\|U\|_{\chi^p_\Psi} = \left(\int_0^\infty |U(\xi)|^p \Psi'(\xi) d\xi \right)^{\frac{1}{p}}$$

for $1 \leq p < \infty$ and

$$\|U\|_{\chi^\infty_\Psi} = \text{ess sup}_{0 \leq \xi < \infty} [\Psi'(\xi)|U(\xi)|].$$

In particular, if $\Psi(\lambda) = \lambda$, then $\chi^p_\Psi[0, \infty)$ coincides with $L^p[0, \infty)$; if $\Psi(\lambda) = \log \lambda$, then $\chi^p_\Psi[0, \infty)$ becomes $L^p_{-1}[0, \infty)$.

Definition 2.3 (see [27, 77]) Let $\sigma_1 < \sigma_2$ and $U \in L^1([\sigma_1, \sigma_2])$. Then the left and right Riemann–Liouville fractional integrals of order $\varrho > 0$ are defined by

$$J^{\varrho}_{\sigma_1+1}U(\lambda) = \frac{1}{\Gamma(\varrho)} \int_{\sigma_1}^{\lambda} (\lambda - \xi)^{\varrho-1}U(\xi) d\xi \quad (\lambda > \sigma_1)$$

and

$$J^{\varrho}_{\sigma_2-2}U(\lambda) = \frac{1}{\Gamma(\varrho)} \int_{\lambda}^{\sigma_2} (\xi - \lambda)^{\varrho-1}U(\xi) d\xi \quad (\lambda < \sigma_2),$$

respectively, where $\Gamma(\varrho) = \int_0^\infty t^{\varrho-1} e^{-t} dt$ is the gamma function [79–87].

Now, we recall the definition of k-fractional integral [88].

Definition 2.4 (see [88]) Let $\sigma_1 < \sigma_2$, $k > 0$, and $U \in L^1([\sigma_1, \sigma_2])$. Then the left and right k-fractional integrals of order $\varrho > 0$ are defined by

$$J^{\varrho k}_{\sigma_1+1}U(\lambda) = \frac{1}{k \Gamma_k(\varrho)} \int_{\sigma_1}^{\lambda} (\lambda - \xi)^{\varrho-1}U(\xi) d\xi \quad (\lambda > \sigma_1)$$

and

$$J^{\varrho k}_{\sigma_2-2}U(\lambda) = \frac{1}{k \Gamma_k(\varrho)} \int_{\lambda}^{\sigma_2} (\xi - \lambda)^{\varrho-1}U(\xi) d\xi \quad (\lambda < \sigma_2),$$

respectively, where $\Gamma_k(\varrho) = \int_0^\infty t^{\varrho-1} e^{-t^k} dt$ is the k-gamma function [89].

A generalization of the Riemann–Liouville fractional integrals with respect to another function is given in [27] as follows.

Definition 2.5 (see [27]) Let $\sigma_1 < \sigma_2$, $\varrho > 0$, and $\Psi(\xi)$ be an increasing and positive monotone function defined on $(\sigma_1, \sigma_2]$. Then the left and right generalized Riemann–Liouville...
fractional integrals of the function \(U \) with respect the function \(\Psi \) of order \(\varrho \) are defined by

\[
J_{\Psi, \sigma_1}^{\varrho} U(\lambda) = \frac{1}{\Gamma(\varrho)} \int_{\sigma_1}^{\lambda} \psi'(\xi) \left(\psi(\lambda) - \psi(\xi) \right)^{\varrho - 1} U(\xi) \, d\xi
\]

(2.1)

and

\[
J_{\Psi, \sigma_2}^{\varrho} U(\lambda) = \frac{1}{\Gamma(\varrho)} \int_{\sigma_2}^{\lambda} \psi'(\xi) \left(\psi(\lambda) - \psi(\xi) \right)^{\varrho - 1} U(\xi) \, d\xi,
\]

(2.2)

respectively.

Next, we present a new fractional integral operator which is known as the generalized \(k \)-fractional integral operator of a function with respect to another function.

Definition 2.6 Let \(\sigma_1 < \sigma_2 \), \(\varrho, k > 0 \), and \(\Psi(\xi) \) be an increasing and positive monotone function defined on \((\sigma_1, \sigma_2) \). Then the left and right generalized \(k \)-fractional integrals of the function \(U \) with respect to the function \(\Psi \) of order \(\varrho \) are defined by

\[
J_{\Psi, \sigma_1}^{\varrho, k} U(\lambda) = \frac{1}{k \Gamma_k(\varrho)} \int_{\sigma_1}^{\lambda} \psi'(\xi) \left(\psi(\lambda) - \psi(\xi) \right)^{\varrho - 1} U(\xi) \, d\xi
\]

(2.3)

and

\[
J_{\Psi, \sigma_2}^{\varrho, k} U(\lambda) = \frac{1}{k \Gamma_k(\varrho)} \int_{\sigma_2}^{\lambda} \psi'(\xi) \left(\psi(\lambda) - \psi(\xi) \right)^{\varrho - 1} U(\xi) \, d\xi,
\]

(2.4)

respectively.

Remark 2.7 Several existing fractional operators are the special cases of Definition 2.6. For example:

1. Let \(k = 1 \). Then Definition 2.6 reduces to Definition 2.5.
2. Let \(\Psi(\lambda) = \lambda \). Then Definition 2.6 reduces to Definition 2.4.
3. Let \(\Psi(\lambda) = \lambda \) and \(k = 1 \). Then Definition 2.6 reduces to 2.3.
4. Let \(\Psi(\lambda) = \log \lambda \) and \(k = 1 \). Then Definition 2.6 leads to the Hadamard fractional integral operators given in [27, 77].
5. Let \(\beta > 0 \), \(\Psi(\lambda) = \frac{\lambda^\beta}{\beta} \), and \(k = 1 \). Then Definition 2.6 leads to the Katugampola fractional integral operators in the literature [90].
6. Let \(\beta > 0 \), \(\Psi(\lambda) = \left(\frac{\lambda - a}{b} \right)^\beta \), and \(k = 1 \). Then Definition 2.6 becomes the conformable fractional integral operators defined by Jarad et al. in [91].
7. Let \(\Psi(\lambda) = \frac{\lambda^{\alpha \varphi}}{\alpha \varphi} \) and \(k = 1 \). Then Definition 2.6 becomes the generalized conformable fractional integrals defined by Khan et al. in [92].

Throughout this paper, we suppose that \(\Psi(\xi) \) is a strictly increasing function on \((0, \infty)\) and \(\psi'(\xi) \) is continuous, \(0 \leq \sigma_1 < \sigma_2 \) with the condition that at any point \(\sigma_3 \in [\sigma_1, \sigma_2] \), we have \(\Psi(\sigma_3) = 0 \).
3 Pólya–Szegö type inequalities involving the generalized \mathcal{K}-fractional integrals

In this section, we derive certain Pólya–Szegö type integral inequalities for real-valued integrable functions via generalized Riemann–Liouville k-fractional integral defined in (2.3) and (2.4). Throughout this paper, we assume that $\Psi(\zeta)$ is an increasing, positive, and monotone function defined on $[0, \infty)$ such that $\Psi(0) = 0$, and $\Psi'(\zeta)$ is continuous on $[0, \infty)$.

Lemma 3.1 Let $k, \lambda, \varrho > 0$, U and V, ρ_1, ρ_2, χ_1, and χ_2 be six positive integrable functions defined on $[0, \infty)$ such that

\begin{align*}
0 < \rho_1(\zeta) &\leq U(\zeta) \leq \rho_2(\zeta), & 0 < \chi_1(\zeta) &\leq V(\zeta) \leq \chi_2(\zeta) \tag{3.1}
\end{align*}

for all $\zeta \in [0, \lambda]$. Then one has

\begin{align*}
\frac{1}{4} \left(\mathcal{I}_\Psi^{\alpha, k} \left[(\rho_1 \chi_1 + \rho_2 \chi_2) U V \right](\lambda) \right)^2 &\geq \mathcal{I}_\Psi^{\alpha, k} \left[\chi_1 \chi_2 U^2 \right](\lambda) \mathcal{I}_\Psi^{\alpha, k} \left[\rho_1 \rho_2 V^2 \right](\lambda). \tag{3.2}
\end{align*}

Proof It follows from (3.1) that

\begin{align*}
\rho_2(\zeta) &\geq \frac{U(\zeta)}{\chi_1(\zeta)} \rho_1(\zeta), & \chi_1(\zeta) &\geq \frac{V(\zeta)}{\chi_2(\zeta)} \rho_2(\zeta) \tag{3.3}
\end{align*}

and

\begin{align*}
\rho_1(\zeta) &\geq \frac{U(\zeta)}{\chi_2(\zeta)} \rho_2(\zeta), & \chi_2(\zeta) &\geq \frac{V(\zeta)}{\chi_1(\zeta)} \rho_1(\zeta) \tag{3.4}
\end{align*}

for all $\zeta \in [0, \lambda]$.

Multiplying (3.3) and (3.4), we obtain

\begin{align*}
\left[\rho_1(\zeta) \chi_1(\zeta) + \rho_2(\zeta) \chi_2(\zeta) \right] U(\zeta) V(\zeta) &\geq \chi_1(\zeta) \chi_2(\zeta) U^2(\zeta) + \rho_1(\zeta) \rho_2(\zeta) V^2(\zeta). \tag{3.5}
\end{align*}

Multiplying both sides of inequality (3.5) by

\begin{align*}
\frac{1}{k \Gamma_k(\varrho)} \Psi'(\zeta) (\Psi(\lambda) - \Psi(\zeta))^{{\frac{1}{2}}} - 1
\end{align*}

and integrating the obtained result with respect to ζ to $(0, \lambda)$, we get

\begin{align*}
\mathcal{I}_\Psi^{\alpha, k} \left[(\rho_1 \chi_1 + \rho_2 \chi_2) U V \right](\lambda) &\geq \mathcal{I}_\Psi^{\alpha, k} \left[\chi_1 \chi_2 U^2 \right](\lambda) + \mathcal{I}_\Psi^{\alpha, k} \left[\rho_1 \rho_2 V^2 \right](\lambda).
\end{align*}

Applying the arithmetic-geometric inequality, we have

\begin{align*}
\mathcal{I}_\Psi^{\alpha, k} \left[(\rho_1 \chi_1 + \rho_2 \chi_2) U V \right](\lambda) &\geq 2 \sqrt{\mathcal{I}_\Psi^{\alpha, k} \left[\chi_1 \chi_2 U^2 \right](\lambda) \mathcal{I}_\Psi^{\alpha, k} \left[\rho_1 \rho_2 V^2 \right](\lambda)},
\end{align*}

which leads to

\begin{align*}
\frac{1}{4} \left(\mathcal{I}_\Psi^{\alpha, k} \left[(\rho_1 \chi_1 + \rho_2 \chi_2) U V \right](\lambda) \right)^2 &\geq \mathcal{I}_\Psi^{\alpha, k} \left[\chi_1 \chi_2 U^2 \right](\lambda) \mathcal{I}_\Psi^{\alpha, k} \left[\rho_1 \rho_2 V^2 \right](\lambda).
\end{align*}

Therefore, we obtain the desired inequality (3.1). □
Corollary 3.2 Let \(k, \lambda, q, r, \rho, Q, R > 0 \) with \(q \leq Q \) and \(r \leq R \), and \(U \) and \(V \) be two positive integrable functions defined on \([0, \infty)\) such that

\[
0 < q \leq U(\xi) \leq Q < \infty, \quad 0 < r \leq V(\xi) \leq R < \infty
\] (3.6)

for all \(\xi \in [0, \lambda] \). Then one has

\[
\frac{J_\psi^{0,k}U^2(\lambda)J_\psi^{0,k}V^2(\lambda)}{(J_\psi^{0,k}U(\lambda))^2} \leq \frac{1}{4} \left(\sqrt{qR} + \sqrt{QR} \right)^2.
\]

Corollary 3.3 Let \(k = 1 \). Then Lemma 3.1 reduces to the inequality for generalized Riemann–Liouville fractional integrals as follows:

\[
\frac{1}{4} \left(J_\psi^0 [(\rho_1 \chi_1 + \rho_2 \chi_2)U(\lambda)](\lambda) \right)^2 \geq J_\psi^0 [\chi_1 \chi_2 U^2](\lambda)J_\psi^0 [\rho_1 \rho_2 V^2](\lambda).
\] (3.7)

Corollary 3.4 Let \(\Psi(\lambda) = \lambda \). Then Lemma 3.1 leads to the inequality for \(k \)-fractional integral as follows:

\[
\frac{1}{4} \left(J^{0,k}_\psi [(\rho_1 \chi_1 + \rho_2 \chi_2)U(\lambda)](\lambda) \right)^2 \geq J^{0,k}_\psi [\chi_1 \chi_2 U^2](\lambda)J^{0,k}_\psi [\rho_1 \rho_2 V^2](\lambda).
\]

Remark 3.5 Let \(\Psi(\lambda) = \lambda \) and \(k = 1 \). Then Lemma 3.1 becomes Lemma 3.1 of [67].

Lemma 3.6 Let \(k, \lambda, \rho, \delta > 0 \) and \(U, V, \rho_1, \rho_2, \chi_1, \chi_2 \) be six positive integrable functions defined on \([0, \infty)\) such that \((3.1) \) holds for all \(\lambda \in [0, \lambda] \). Then we have

\[
\frac{J_\psi^{0,k} \rho_1 \rho_2 \chi_1 \chi_2 U^2 (\lambda) J_\psi^{0,k} V^2 (\lambda) \left(J_\psi^{0,k} \rho_1 U(\lambda) J_\psi^{0,k} \chi_1 V(\lambda) + J_\psi^{0,k} \rho_2 U(\lambda) J_\psi^{0,k} \chi_2 V(\lambda) \right)^2}{(J_\psi^{0,k} \rho_1 U(\lambda) J_\psi^{0,k} \chi_1 V(\lambda))^2 (J_\psi^{0,k} \rho_2 U(\lambda) J_\psi^{0,k} \chi_2 V(\lambda))^2} \leq \frac{1}{4}.
\] (3.8)

Proof From (3.1) we clearly see that

\[
\frac{\rho_2 (\xi)}{\chi_1 (\eta)} - \frac{U(\xi)}{V(\eta)} \geq 0
\]

and

\[
\frac{U(\xi)}{V(\eta)} - \frac{\rho_1 (\xi)}{\chi_2 (\eta)} \geq 0,
\]

which imply that

\[
\left(\frac{\rho_1 (\xi)}{\chi_2 (\eta)} + \frac{\rho_2 (\xi)}{\chi_1 (\eta)} \right) \frac{U(\xi)}{V(\eta)} \geq \frac{U^2 (\xi)}{V^2 (\eta)} + \frac{\rho_1 (\xi) \rho_2 (\xi)}{\chi_1 (\eta) \chi_2 (\eta)}.
\] (3.9)

Multiplying both sides of inequality (3.9) by \(\chi_1 (\eta) \chi_2 (\eta) V^2 (\eta) \), we have

\[
\rho_1 (\xi) U(\xi) \chi_1 (\eta) V(\eta) + \rho_2 (\xi) U(\xi) \chi_2 (\eta) V(\eta) \geq \chi_1 (\eta) \chi_2 (\eta) U^2 (\xi) + \rho_1 (\xi) \rho_2 (\xi) V^2 (\eta).
\] (3.10)

Multiplying both sides of inequality (3.10) by
\[
\frac{1}{k I^k(\rho_1) k I^k(\delta)} \psi'(\zeta)(\psi(\lambda) - \psi(\zeta))^{\frac{d}{2} - 1} \psi'(\eta)(\psi(\lambda) - \psi(\eta))^{\frac{d}{2} - 1}
\]
and then integrating the obtained inequality with respect to \(\zeta\) and \(\eta\) from 0 to \(\lambda\), one has
\[
(J^k_\psi \rho_1 U)(\lambda)(J^{\delta k}_\psi \chi_1 V)(\lambda) + (J^k_\psi \rho_2 U)(\lambda)(J^{\delta k}_\psi \chi_2 V)(\lambda)
\geq (J^{\delta k}_\psi U^2)(\lambda)(J^{\delta k}_\psi \chi_1 \chi_2)(\lambda) + (J^{\delta k}_\psi V^2)(\lambda)(J^{\delta k}_\psi \rho_1 \rho_2)(\lambda).
\]
Making use of the arithmetic-geometric mean inequality, we obtain
\[
(J^k_\psi \rho_1 U)(\lambda)(J^{\delta k}_\psi \chi_1 V)(\lambda) + (J^k_\psi \rho_2 U)(\lambda)(J^{\delta k}_\psi \chi_2 V)(\lambda)
\geq 2\sqrt{(J^{\delta k}_\psi U^2)(\lambda)(J^{\delta k}_\psi \chi_1 \chi_2)(\lambda)(J^{\delta k}_\psi \rho_1 \rho_2)(\lambda)},
\]
which leads to the desired inequality (3.8).

Corollary 3.7 For \(k, \lambda, \rho, \delta > 0\), and \(U\) and \(V\) being two positive integrable functions defined on \([0, \infty)\) such that inequality (3.6) holds for \(\xi \in [0, \lambda]\), we have
\[
\frac{J^{\delta k}_\psi U^2(\lambda) J^{\delta k}_\psi V^2(\lambda)}{(J^{\delta k}_\psi U(\lambda) J^{\delta k}_\psi V(\lambda))^2} \leq \frac{\Gamma(k+1) \Gamma(k+\delta)}{4(\psi(\lambda))^{\frac{2k}{2}} + \frac{\sqrt{\frac{q^r}{QR} + \sqrt{\frac{QR}{q^r}}}^2}{}.\]

Corollary 3.8 Let \(k = 1\). Then Lemma 3.6 leads to a new inequality for generalized Riemann–Liouville fractional integral as follows:
\[
\frac{J^k_\psi \rho_1 \rho_2(\lambda)J^{\delta k}_\psi \chi_1 \chi_2(\lambda)J^k_\psi U^2(\lambda) J^{\delta k}_\psi V^2(\lambda)}{(J^k_\psi \rho_1 \rho_2(\lambda) J^{\delta k}_\psi \chi_1 \chi_2(\lambda) + J^k_\psi \rho_1 U(\lambda) J^{\delta k}_\psi \rho_2 V(\lambda))^2} \leq \frac{1}{4}. \tag{3.11}
\]

Corollary 3.9 Let \(\psi(\lambda) = \lambda\). Then Lemma 3.6 leads to a new inequality for \(k\)-fractional integral as follows:
\[
\frac{J^k_\psi \rho_1 \rho_2(\lambda)J^{\delta k}_\psi \chi_1 \chi_2(\lambda)J^k_\psi U^2(\lambda) J^{\delta k}_\psi V^2(\lambda)}{(J^k_\psi \rho_1 \rho_2(\lambda) J^{\delta k}_\psi \chi_1 \chi_2(\lambda) + J^k_\psi \rho_1 U(\lambda) J^{\delta k}_\psi \rho_2 V(\lambda))^2} \leq \frac{1}{4}. \tag{3.12}
\]

Remark 3.10 If \(\psi(\lambda) = \lambda\) and \(k = 1\), then Lemma 3.6 reduces to Lemma 3.3 of [67].

Theorem 3.11 Let \(k, \lambda, \rho, \delta > 0\), and \(U\), \(V\), \(\rho_1\), \(\rho_2\), \(\chi_1\), and \(\chi_2\) be six positive integrable functions defined on \([0, \infty)\) such that (3.1) holds for all \(\xi \in [0, \lambda]\). Then we have
\[
(J^k_\psi \rho_2 U)(\lambda)(J^{\delta k}_\psi \chi_1 V)(\lambda) \geq (J^k_\psi \rho_1 U^2(\lambda) J^{\delta k}_\psi V^2(\lambda). \tag{3.13}
\]

Proof It follows from (3.1) that
\[
\frac{1}{k I^k(\zeta)} \int_0^\lambda \psi'(\zeta)(\psi(\lambda) - \psi(\zeta))^{\frac{d}{2} - 1} \rho_2(\zeta) \chi_1(\zeta) U(\xi) V(\xi) d\zeta
\]
\[
\geq \frac{1}{k \Gamma(k)} \int_0^\lambda \Psi'(|\Psi(\lambda) - \Psi(\zeta)|)^{\frac{k}{\rho}} U^2(\zeta) d\zeta,
\]
which implies
\[
\mathcal{J}_\Psi^{\rho \lambda}(\frac{\rho U\mathcal{V}}{\chi_1})(\lambda) \geq \mathcal{J}_\Psi^{\rho \lambda} V^2(\lambda). \tag{3.14}
\]
Analogously, we obtain
\[
\geq \frac{1}{k \Gamma(k)} \int_0^\lambda \Psi'(\eta)(\Psi(\eta) - \Psi(\eta))^\frac{k}{\rho_1} \frac{\chi_2(\eta) U V d\eta}{\rho_1(\eta)}
\]
from which one has
\[
\mathcal{J}_\Psi^{\rho \lambda}(\frac{\rho_2 U\mathcal{V}}{\rho_1})(\lambda) \geq \mathcal{J}_\Psi^{\rho \lambda} V^2(\lambda). \tag{3.15}
\]
Multiplying (3.14) and (3.15), we get the desired inequality (3.13).

\[\square\]

Corollary 3.12 For \(k, \lambda, \varrho, \delta > 0\), and \(U\) and \(V\) being two positive integrable functions defined on \([0, \infty)\) such that (3.6) holds for all \(\zeta \in [0, \lambda]\), we have
\[
\frac{\mathcal{J}_\Psi^{\rho \lambda} U^2(\lambda) \mathcal{J}_\Psi^{\rho \lambda} V^2(\lambda)}{\mathcal{J}_\Psi^{\rho \lambda} U V(\lambda) \mathcal{J}_\Psi^{\rho \lambda} V^2(\lambda)} \leq \frac{QR}{qr}.
\]

Corollary 3.13 If \(k = 1\), then Theorem 3.11 gives the following new result for generalized Riemann–Liouville fractional integral:
\[
\mathcal{J}_\Psi^\rho(\frac{\rho U\mathcal{V}}{\chi_1})(\lambda) \mathcal{J}_\Psi^{\rho \lambda}(\frac{\rho_2 U\mathcal{V}}{\rho_1})(\lambda) \geq \mathcal{J}_\Psi^\rho U^2(\lambda) \mathcal{J}_\Psi^{\rho \lambda} V^2(\lambda).
\]

Corollary 3.14 Let \(\Psi(\lambda) = \lambda\). Then Theorem 3.11 leads to the following new result for Riemann–Liouville \(k\)-fractional integral:
\[
\mathcal{J}_\Psi^{\rho \lambda}(\frac{\rho U\mathcal{V}}{\chi_1})(\lambda) \mathcal{J}_\Psi^{\rho \lambda}(\frac{\rho_2 U\mathcal{V}}{\rho_1})(\lambda) \geq \mathcal{J}_\Psi^{\rho \lambda} U^2(\lambda) \mathcal{J}_\Psi^{\rho \lambda} V^2(\lambda).
\]

Remark 3.15 If \(\Psi(\lambda) = \lambda\) and \(K = 1\), then Theorem 3.11 reduces to Lemma 3.4 of [67].

4 **Pólya–Szegö type inequalities involving the generalized \(k\)-fractional integrals**

In this section, we present several Čebyšev type inequalities for generalized \(k\)-fractional integrals defined in (2.3) and (2.4).

Theorem 4.1 Let \(k, \lambda, \varrho > 0\), and \(U\) and \(V\) be two integrable and synchronous functions on \([0, \infty)\). Then one has
\[
(\mathcal{J}_\Psi^{\rho \lambda} U V(\lambda)) \geq \frac{\Gamma_k(\varrho + K)}{(\Psi(\lambda))^{\frac{k}{K}}} (\mathcal{J}_\Psi^{\rho \lambda} U)(\mathcal{J}_\Psi^{\rho \lambda} V)(\lambda).
\]
Proof. It follows from the synchronism of the functions \mathcal{U} and \mathcal{V} on the interval $[0, \infty)$ that

$$\mathcal{U}(r)\mathcal{V}(r) + \mathcal{U}(s)\mathcal{V}(s) \geq \mathcal{U}(r)\mathcal{V}(s) + \mathcal{U}(s)\mathcal{V}(r). \quad (4.1)$$

Multiplying both sides of inequality (4.1) by

$$\frac{1}{k \Gamma_k(q)} \Psi'(r)(\Psi(\lambda) - \Psi(r))^\frac{q}{k-1}$$

for $\lambda \in \mathbb{R}$ gives

$$\frac{1}{k \Gamma_k(q)} \Psi'(r)(\Psi(\lambda) - \Psi(r))^\frac{q}{k-1} \mathcal{U}(r)\mathcal{V}(r) + \mathcal{U}(s)\mathcal{V}(s) \frac{1}{k \Gamma_k(q)} \Psi'(r)(\Psi(\lambda) - \Psi(r))^\frac{q}{k-1}$$

$$\geq \mathcal{V}(s) \frac{1}{k \Gamma_k(q)} \Psi'(r)(\Psi(\lambda) - \Psi(r))^\frac{q}{k-1} \mathcal{U}(r)\mathcal{V}(r) + \mathcal{U}(s) \frac{1}{k \Gamma_k(q)} \Psi'(r)(\Psi(\lambda) - \Psi(r))^\frac{q}{k-1} \mathcal{V}(r).$$

Integrating the above inequality with respect to r over $(0, \lambda)$ leads to

$$\frac{1}{k \Gamma_k(q)} \int_0^\lambda \Psi'(r)(\Psi(\lambda) - \Psi(r))^\frac{q}{k-1} \mathcal{U}(r)\mathcal{V}(r) \, dr$$

$$+ \mathcal{U}(s)\mathcal{V}(s) \frac{1}{k \Gamma_k(q)} \int_0^\lambda \Psi'(r)(\Psi(\lambda) - \Psi(r))^\frac{q}{k-1} \, dr$$

$$\geq \mathcal{V}(s) \frac{1}{k \Gamma_k(q)} \int_0^\lambda \Psi'(r)(\Psi(\lambda) - \Psi(r))^\frac{q}{k-1} \mathcal{U}(r) \, dr$$

$$+ \mathcal{U}(s) \frac{1}{k \Gamma_k(q)} \int_0^\lambda \Psi'(r)(\Psi(\lambda) - \Psi(r))^\frac{q}{k-1} \mathcal{V}(r) \, dr.$$

Therefore, we get

$$(\mathcal{J}_\psi^\alpha \mathcal{U}\mathcal{V})(\lambda) + \mathcal{U}(s)\mathcal{V}(s) \frac{1}{k \Gamma_k(q)} \int_0^\lambda \Psi'(r)(\Psi(\lambda) - \Psi(r))^\frac{q}{k-1} \, dr$$

$$\geq \mathcal{V}(s)(\mathcal{J}_\psi^\alpha \mathcal{U})(\lambda) + \mathcal{U}(s)(\mathcal{J}_\psi^\alpha \mathcal{V})(\lambda)$$

and

$$(\mathcal{J}_\psi^\alpha \mathcal{U}\mathcal{V})(\lambda) + \mathcal{U}(s)\mathcal{V}(s) \frac{(\Psi(\lambda))^\frac{q}{k}}{\Gamma_k(q + k)}$$

$$\geq \mathcal{V}(s)(\mathcal{J}_\psi^\alpha \mathcal{U})(\lambda) + \mathcal{U}(s)(\mathcal{J}_\psi^\alpha \mathcal{V})(\lambda), \quad (4.2)$$

where

$$\frac{1}{k \Gamma_k(q)} \int_0^\lambda \Psi'(r)(\Psi(\lambda) - \Psi(r))^\frac{q}{k-1} \, dr = \frac{(\Psi(\lambda))^\frac{q}{k}}{\Gamma_k(q + k)}.$$

Multiplying both sides of inequality (4.2) by

$$\frac{1}{k \Gamma_k(q)} \Psi'(s)(\Psi(\lambda) - \Psi(s))^\frac{q}{k-1} \quad (\lambda \in \mathbb{R})$$
leads to the conclusion that
\[
(J^0 \mathcal{U}) (\lambda) \frac{1}{k \Gamma_k (q)} \Psi' (s) (\Psi (\lambda) - \Psi (s))^{\frac{q}{q-1}} \\
+ \frac{1}{k \Gamma_k (q)} \Psi' (s) (\Psi (\lambda) - \Psi (s))^{\frac{q}{q-1}} \mathcal{U} (s) \frac{(\Psi (\lambda))^{\frac{q}{q-1}}}{\Gamma_k (q + k)} \\
\geq (J^{q,k} \mathcal{U}) (\lambda) \frac{1}{k \Gamma_k (q)} \Psi' (s) (\Psi (\lambda) - \Psi (s))^{\frac{q}{q-1}} \mathcal{V} (s) \\
+ (J^{q,k} \mathcal{V}) (\lambda) \frac{1}{k \Gamma_k (q)} \Psi' (s) (\Psi (\lambda) - \Psi (s))^{\frac{q}{q-1}} \mathcal{U} (s).
\]

Integrating the above inequality over \((0, \lambda)\) reveals
\[
(J^{q,k} \mathcal{U}) (\lambda) \frac{1}{k \Gamma_k (q)} \int_0^\lambda \Psi' (s) (\Psi (\lambda) - \Psi (s))^{\frac{q}{q-1}} ds \\
+ \frac{1}{k \Gamma_k (q)} \int_0^\lambda \Psi' (s) (\Psi (\lambda) - \Psi (s))^{\frac{q}{q-1}} \mathcal{U} (s) ds \frac{(\Psi (\lambda))^{\frac{q}{q-1}}}{\Gamma_k (q + k)} \\
\geq (J^{q,k} \mathcal{U}) (\lambda) \frac{1}{k \Gamma_k (q)} \int_0^\lambda \Psi' (s) (\Psi (\lambda) - \Psi (s))^{\frac{q}{q-1}} \mathcal{V} (s) ds \\
+ (J^{q,k} \mathcal{V}) (\lambda) \frac{1}{k \Gamma_k (q)} \int_0^\lambda \Psi' (s) (\Psi (\lambda) - \Psi (s))^{\frac{q}{q-1}} \mathcal{U} (s) ds.
\]

Therefore,
\[
\frac{(\Psi (\lambda))^{\frac{q}{q-1}}}{\Gamma_k (q + k)} (J^{q,k} \mathcal{U}) (\lambda) + (J^{q,k} \mathcal{U}) (\lambda) \frac{(\Psi (\lambda))^{\frac{q}{q-1}}}{\Gamma_k (q + k)} \\
\geq (J^{q,k} \mathcal{U}) (\lambda) (J^{q,k} \mathcal{V}) (\lambda) + (J^{q,k} \mathcal{V}) (\lambda) (J^{q,k} \mathcal{U}) (\lambda).
\]

This completes the proof of Theorem 4.1.

\[\square\]

Corollary 4.2 Let \(k = 1 \). Then Theorem 4.1 leads to a new result for generalized Riemann–Liouville fractional integrals as follows:
\[
(J^0 \mathcal{U}) (\lambda) \geq \frac{\Gamma (q + 1)}{(\Psi (\lambda))^q} (J^q \mathcal{U}) (\lambda) (J^0 \mathcal{V}) (\lambda).
\]

Corollary 4.3 If \(\Psi (\lambda) = \lambda \), then Theorem 4.1 provides a new inequality for \(k \)-fractional integral as follows:
\[
(J^{q,k} \mathcal{U}) (\lambda) \geq \frac{\Gamma_k (q + k)}{\lambda^{\frac{q}{q-1}}} (J^{q,k} \mathcal{U}) (\lambda) (J^{q,k} \mathcal{V}) (\lambda).
\]

Corollary 4.4 Let \(\Psi (\lambda) = \lambda \) and \(k = 1 \). Then Theorem 4.1 leads to a new result for Riemann–Liouville fractional integral as follows:
\[
(J^0 \mathcal{U}) (\lambda) \geq \frac{\Gamma (q + 1)}{\lambda^{q}} (J^q \mathcal{U}) (\lambda) (J^0 \mathcal{V}) (\lambda).
\]
Theorem 4.5 Let $k, \lambda, \varrho, \delta > 0$, and U and V be two integrable and synchronous functions on $[0, \infty)$. Then

\[
\frac{(J^\alpha_U U V)(\lambda)}{\Gamma_k(\delta + k)} + \frac{(\Psi(\lambda))^{\frac{1}{\alpha}}(J^\alpha_U U V)(\lambda)}{\Gamma_k(\varrho + k)} \\
\geq (J^\alpha_U U)(\lambda)(J^\alpha_U V)(\lambda) + (J^\alpha_U V)(\lambda)(J^\alpha_U U)(\lambda).
\]

Proof Multiplying both sides of inequality (4.2) by

\[
\frac{1}{k \Gamma_k(\delta)} \Psi'(s)(\Psi(\lambda) - \Psi(s))^{\frac{1}{\alpha} - 1} (\lambda \in \mathbb{R})
\]

gives

\[
(J^\alpha_U U V)(\lambda) \frac{1}{k \Gamma_k(\delta)} \Psi'(s)(\Psi(\lambda) - \Psi(s))^{\frac{1}{\alpha} - 1} \\
+ \frac{1}{k \Gamma_k(\delta)} \Psi'(s)(\Psi(\lambda) - \Psi(s))^{\frac{1}{\alpha} - 1} U(s)V(s) \frac{(\Psi(\lambda))^{\frac{1}{\alpha}}}{\Gamma_k(\varrho + k)} \\
\geq (J^\alpha_U U)(\lambda) \frac{1}{k \Gamma_k(\delta)} \Psi'(s)(\Psi(\lambda) - \Psi(s))^{\frac{1}{\alpha} - 1} V(s) \\
+ (J^\alpha_U V)(\lambda) \frac{1}{k \Gamma_k(\delta)} \Psi'(s)(\Psi(\lambda) - \Psi(s))^{\frac{1}{\alpha} - 1} U(s).
\]

Integrating both sides of the above inequality with respect to s over $(0, \lambda)$ leads to

\[
\frac{(J^\alpha_U U V)(\lambda)}{\Gamma_k(\delta + k)} \int_0^\lambda \Psi'(s)(\Psi(\lambda) - \Psi(s))^{\frac{1}{\alpha} - 1} ds \\
+ \frac{(\Psi(\lambda))^{\frac{1}{\alpha}}}{\Gamma_k(\varrho + k)} \int_0^\lambda \Psi'(s)(\Psi(\lambda) - \Psi(s))^{\frac{1}{\alpha} - 1} U(s)V(s) ds \\
\geq \frac{(J^\alpha_U U)(\lambda)}{k \Gamma_k(\delta)} \int_0^\lambda \Psi'(s)(\Psi(\lambda) - \Psi(s))^{\frac{1}{\alpha} - 1} V(s) ds \\
+ \frac{(J^\alpha_U V)(\lambda)}{k \Gamma_k(\delta)} \int_0^\lambda \Psi'(s)(\Psi(\lambda) - \Psi(s))^{\frac{1}{\alpha} - 1} U(s) ds.
\]

Therefore,

\[
\frac{(J^\alpha_U U V)(\lambda)(\Psi(\lambda))^{\frac{1}{\alpha}}}{\Gamma_k(\delta + k)} + \frac{(\Psi(\lambda))^{\frac{1}{\alpha}}(J^\alpha_U U V)(\lambda)}{\Gamma_k(\varrho + k)} \\
\geq (J^\alpha_U U)(\lambda)(J^\alpha_U V)(\lambda) + (J^\alpha_U V)(\lambda)(J^\alpha_U U)(\lambda),
\]

which is the proof of Theorem 4.5. □

Remark 4.6 Let $\varrho = \delta$. Then Theorem 4.5 becomes Theorem 4.1.
Corollary 4.7 Let $k = 1$. Then Theorem 4.5 provides a new result for generalized Riemann–Liouville fractional integrals as follows:

\[
\frac{(J_\psi^0 U)(\lambda)(\Psi(\lambda))^\delta}{\Gamma(\delta + 1)} + \frac{(\Psi(\lambda))^\theta (J_\psi^2 U)(\lambda)}{\Gamma(\theta + 1)} \\
\geq (J_\psi^0 U)(\lambda)(J_\psi^2 V)(\lambda) + (J_\psi^0 V)(\lambda)(J_\psi^2 U)(\lambda).
\]

Corollary 4.8 If $\Psi(\lambda) = \lambda$ and $k = 1$, then Theorem 4.5 gives a new result for Riemann–Liouville fractional integral as follows:

\[
\frac{\lambda^\delta (J_\psi^0 U)(\lambda)}{\Gamma(\delta + 1)} + \frac{\lambda^\theta (J_\psi^2 U)(\lambda)}{\Gamma(\theta + 1)} \\
\geq (J_\psi^0 U)(\lambda)(J_\psi^2 V)(\lambda) + (J_\psi^0 V)(\lambda)(J_\psi^2 U)(\lambda).
\]

Theorem 4.9 Let $k, \lambda, \sigma > 0$, $\sigma_1, \sigma_2 \in \mathbb{R}$ with $\sigma_1 < \sigma_2$, and $U_j (1 \leq j \leq \sigma)$ be a real-valued increasing function on $[\sigma_1, \sigma_2]$. Then

\[
\left(J_\psi^0 \prod_{j=1}^\sigma U_j \right)(\lambda) \geq \left[\frac{\Gamma_{k}(\rho + k)}{\Gamma(\lambda)^{\frac{k}{\rho}}} \right] \prod_{j=1}^{\gamma} (J_\psi^0 U_j)(\lambda). \tag{4.3}
\]

Proof We use mathematical induction on $\gamma \in \mathbb{N}$ to prove Theorem 4.9. We clearly see that inequality (4.3) holds for $\gamma = 1$.

For $\gamma = 2$, since U_1, U_2 are increasing, we have

\[
|U_1(\lambda) - U_1(\omega), U_2(\lambda) - U_2(\omega)| \geq 0.
\]

Note that the left-hand side of inequality (4.3) for $\gamma = 2$ is the same as that of Theorem 4.1. Therefore, inequality (4.3) also holds for $\gamma = 2$.

Suppose that inequality (4.3) holds for some $\gamma \geq 2$. We observe that $U = \prod_{j=1}^{\gamma} U_j$ is increasing due to U_j is increasing. Let $V = U_{\gamma+1}$. Then applying the case $\gamma = 2$ to the functions U and V produces

\[
\left(J_\psi^0 \prod_{j=1}^\gamma U_j U_{\gamma+1} \right)(\lambda) \geq \left[\frac{\Gamma_{k}(\rho + k)}{\Gamma(\lambda)^{\frac{k}{\rho}}} \right] \left(J_\psi^0 \prod_{j=1}^\gamma U_j \right) (J_\psi^0 U_{\gamma+1})(\lambda)
\geq \left[\frac{\Gamma_{k}(\rho + k)}{\Gamma(\lambda)^{\frac{k}{\rho}}} \right] \prod_{j=1}^{\gamma+1} (J_\psi^0 U_j)(\lambda),
\]

in which the induction hypothesis for γ is used inside the deduction of second inequality. The proof of Theorem 4.9 is completed. \hfill \Box

Corollary 4.10 Let $k = 1$. Then Theorem 4.9 leads to the following new result for generalized Riemann–Liouville fractional integral:

\[
\left(J_\psi^0 \prod_{j=1}^\gamma U_j \right)(\lambda) \geq \left[\frac{\Gamma(\rho + 1)}{\Gamma(\lambda)^{\frac{1}{\rho}}} \right] \prod_{j=1}^{\gamma} (J_\psi^0 U_j)(\lambda).
\]
Corollary 4.11 If $\Psi(\lambda) = \lambda$, then Theorem 4.9 leads to a new result for k-fractional integral as follows:

$$
\left(\mathcal{J}^\alpha \prod_{j=1}^{\gamma} \mathcal{U}_j\right)(\lambda) \geq \left[\frac{\Gamma(\alpha + k)}{\lambda^\alpha}\right]^{\gamma-1} \prod_{j=1}^{\gamma} \left(\mathcal{J}^\alpha \mathcal{U}_j\right)(\lambda).
$$

(4.4)

Corollary 4.12 Let $\Psi(\lambda) = \lambda$ and $k = 1$. Then Theorem 4.9 provides a new result for Riemann–Liouville fractional integral as follows:

$$
\left(\mathcal{J}^\alpha \prod_{j=1}^{\gamma} \mathcal{U}_j\right)(\lambda) \geq \left[\frac{\Gamma(\alpha + 1)}{\lambda^\alpha}\right]^{\gamma-1} \prod_{j=1}^{\gamma} \left(\mathcal{J}^\alpha \mathcal{U}_j\right)(\lambda).
$$

(4.5)

Theorem 4.13 Let $k, \lambda, \varrho > 0$, \mathcal{U} and \mathcal{V} be two positive functions defined on $[0, \infty)$ such that \mathcal{U} is increasing and \mathcal{V} is differentiable, and $\vartheta = \inf_{\mu \in [0, \infty)} \mathcal{V}'(\mu)$. Then one has

$$
\left(\mathcal{J}^\alpha \mathcal{U}\mathcal{V}\right)(\lambda) \geq \frac{\Gamma(\alpha + k)}{(\Psi(\lambda))^{\varphi}} \left(\mathcal{J}^\alpha \mathcal{U}\right)(\lambda)\left(\mathcal{J}^\alpha \mathcal{V}\right)(\lambda)
$$

$$
- \frac{\vartheta \lambda(\Psi(\lambda))^{\varphi}}{\Gamma(\alpha + k)} \left(\mathcal{J}^\alpha \mathcal{U}\right)(\lambda) + \vartheta \left(\mathcal{J}^\alpha \mathcal{U}\right)(\lambda),
$$

where $I(\lambda)$ is the identity mapping.

Proof Let $\mathcal{U}\mathcal{V} = \mathcal{V} - \vartheta \lambda$ and $\mathcal{I}(\lambda) = \vartheta \lambda$. Then we clearly see that $\mathcal{U}\mathcal{V}$ is differentiable and increasing on $[0, \infty)$, and from the proof of Theorem 4.9 we know that

$$
\left(\mathcal{J}^\alpha \mathcal{U}\mathcal{V}\right)(\lambda) = \frac{\Gamma(\alpha + k)}{(\Psi(\lambda))^{\varphi}} \left(\mathcal{J}^\alpha \mathcal{U}\right)(\lambda)\left(\mathcal{J}^\alpha \mathcal{V}\right)(\lambda)
$$

$$
- \frac{\vartheta \lambda(\Psi(\lambda))^{\varphi}}{\Gamma(\alpha + k)} \left(\mathcal{J}^\alpha \mathcal{U}\right)(\lambda) + \vartheta \left(\mathcal{J}^\alpha \mathcal{U}\right)(\lambda),
$$

(4.6)

where

$$
\left(\mathcal{J}^\alpha \mathcal{U}\mathcal{V}\right)(\lambda) = \left(\mathcal{J}^\alpha \mathcal{U}\mathcal{V}\right)(\lambda) - \vartheta \left(\mathcal{J}^\alpha \mathcal{U}\right)(\lambda)
$$

(4.7)

and

$$
\left(\mathcal{J}^\alpha \mathcal{V}\right)(\lambda) = \frac{\vartheta \lambda(\Psi(\lambda))^{\varphi}}{\Gamma(\alpha + k)} .
$$

(4.8)

Substituting (4.7) and (4.8) into (4.6) leads to the desired result. \hfill \Box

Corollary 4.14 Let $k = 1$. Then Theorem 4.13 leads to a new result for generalized Riemann–Liouville fractional integral as follows:

$$
\left(\mathcal{J}^\alpha \mathcal{U}\mathcal{V}\right)(\lambda) \geq \frac{\Gamma(\alpha + 1)}{(\Psi(\lambda))^{\varphi}} \left(\mathcal{J}^\alpha \mathcal{U}\right)(\lambda)\left(\mathcal{J}^\alpha \mathcal{V}\right)(\lambda)
$$

(4.9)
Corollary 4.15 If $\Psi(\lambda) = \lambda$, Theorem 4.13 provides the following new result for k-fractional integral:

$$
\left(J_k^\varphi U V \right)(\lambda) \geq \frac{\Gamma'\left(\varphi + k\right)}{\lambda^k}\cdot \left(J_k^\varphi U \right)(\lambda)\cdot \left(J_k^\varphi V \right)(\lambda) - \frac{\varphi(\lambda)^{k+1}}{\Gamma'\left(\varphi + k\right)}\cdot \left(J_k^\varphi U \right)(\lambda) + \varphi \left(J_k^\varphi U \right)(\lambda).
$$

Corollary 4.16 Let $\Psi(\lambda) = \lambda$ and $k = 1$. Then Theorem 4.13 leads to a new inequality for Riemann–Liouville fractional integral as follows:

$$
\left(J^\varphi U V \right)(\lambda) \geq \frac{\Gamma'(\varphi + 1)}{\lambda^\varphi}\cdot \left(J^\varphi U \right)(\lambda)\cdot \left(J^\varphi V \right)(\lambda) - \frac{\varphi(\lambda)^{\varphi+1}}{\Gamma'(\varphi + 1)}\cdot \left(J^\varphi U \right)(\lambda) + \varphi \left(J^\varphi U \right)(\lambda).
$$

5 Conclusion

In the article, we have established some new Pólya–Szegö and Čebyšev-type inequalities for two synchronous functions via generalized k-fractional integrals. Our obtained results are very general and can be specialized to discover numerous interesting fractional integral inequalities, and our approach may lead to a lot of follow-up research. Furthermore, they are expected to find some applications for establishing the uniqueness of solutions in fractional boundary value problems of the fractional partial differential equations.

Acknowledgements

The authors would like to express their sincere thanks to the anonymous reviewers for their helpful comments and suggestions.

Funding

The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

1Department of Mathematics, COMSATS University Islamabad, Islamabad, Pakistan. 2Department of Mathematics, Çankaya University, Ankara, Turkey. 3School of Mathematical Sciences, Zhejiang University, Hangzhou, China. 4Department of Mathematics, Huzhou University, Huzhou, China. 5School of Mathematics and Statistic, Changsha University of Science & Technology, Changsha, China.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 21 October 2019 Accepted: 10 March 2020 Published online: 18 March 2020
37. Cai, Z-W., Huang, J-H., Huang, L-H.: Generalized Lapunov–Razumikhin method for retarded differential inclusions: applications to discontinuous neural networks. Discrete Contin. Dyn. Syst. 228(9), 3591–3614 (2017)

38. Duan, L., Huang, L-H., Guo, Z-Y., Fang, X-W.: Periodic attractor for reaction-diffusion high-order Hopfield neural networks with time-varying delays. Comput. Math. Appl. 73(2), 233–245 (2017)

39. Tan, Y-X., Liu, L-Z.: Weighted boundedness of multilinear operator associated to singular integral operator with variable Calderon–Zygmund kernel. Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat. 111(4), 931–946 (2017)

40. Cai, Z-W., Huang, J-H., Huang, L-H.: Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 146(1), 4667–4682 (2018)

41. Chen, T., Huang, L-H., Yu, P., Huang, W-T.: Bifurcation of limit cycles at infinity in piecewise polynomial systems. Nonlinear Anal., Real World Appl. 41, 82–106 (2018)

42. Duan, L., Fang, X-W., Huang, C-X.: Global exponential convergence in a delayed almost periodic Nicholson's blowflies model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018)

43. Tan, Y-X., Huang, C-X., Sun, B., Wang, T.: Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018)

44. Wang, J-F., Chen, X-Y., Huang, L-H.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019)

45. Wang, J-F., Huang, C-X., Huang, L-H.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019)

46. Huang, C-X., Zhang, H., Huang, L-H.: Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term. Commun. Pure Appl. Anal. 18(6), 3337–3349 (2019)

47. Huang, C-X., Yang, Z-C., Yi, T-S., Zou, X-F.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256(7), 2101–2114 (2014)

48. Xie, Y-Q., Li, Q-S., Zhu, K-X.: Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity. Nonlinear Anal., Real World Appl. 31, 23–37 (2016)

49. Huang, C-X., Liu, L-Z.: Boundness of multilinear singular integral operator with a non-smooth kernel and mean oscillation. Quaest. Math. 40(3), 295–312 (2017)

50. Duan, L., Huang, C-X.: Existence and global attractivity of almost periodic solutions for a delayed differential equation of classical growth model. Math. Methods Appl. Sci. 40(3), 814–822 (2017)

51. Hu, H-J., Liu, L-Z.: Weighted inequalities for a general commutator associated to a singular integral operator satisfying a variant of Hörmander's condition. J. Math. Notes 101(5–6), 830–840 (2017)

52. Hu, H-J., Zou, X-F.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145(11), 4763–4771 (2017)

53. Tang, W-S., Sun, Y-J.: Construction of Runge–Kutta type methods for solving ordinary differential equations. Appl. Math. Comput. 234, 179–191 (2014)

54. Xie, D-X., Li, J.: A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein ion in organic solvent. Nonlinear Anal., Real World Appl. 21, 185–196 (2015)

55. Dai, Z-F., Chen, X-H., Wen, F-H.: A modified Perry's conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270, 378–386 (2015)

56. Feng, L-B., Zhuang, P., Liu, F., Turner, J., Anh, V., Li, J.: A fast second-order accurate method for a two-sided space-fractional diffusion equation with variable coefficients. Comput. Math. Appl. 73(6), 1155–1171 (2017)

57. Li, J-J., Liu, F., Fang, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput. Math. Appl. 74(4), 772–783 (2017)

58. Wang, W-S.: Fully-geometric mesh one-leg methods for the generalized pantograph equation: approximating Lapunov functional and asymptotic contractivity. Appl. Numer. Math. 117, 50–68 (2017)

59. Liu, Z-Y., Wu, N-C., Qin, X-R., Zhang, Y-L.: Trigonometric transform splitting methods for real symmetric Toeplitz systems. Comput. Math. Appl. 75(8), 2782–2794 (2018)

60. Li, J-J., Ying, J-Y., Xie, D-X.: On the analysis and application of an ion size-modified Poisson–Boltzmann equation. Nonlinear Anal., Real World Appl. 47, 188–203 (2019)

61. Agarwal, P.: Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. 40(11), 3882–3891 (2017)

62. Agarwal, P.: Certain properties of the generalized Gauss hypergeometric functions. Appl. Math. Inf. Sci. 8(5), 2313–2320 (2014)

63. Agarwal, P., Chou, J.: Certain fractional integral inequalities associated with pathway fractional integral operators. Bull. Korean Math. Soc. 53(1), 181–193 (2016)

64. Agarwal, P., Jain, S., Mansour, T.: Further extended Caputo fractional derivative operator and its applications. Russ. J. Math. Phys. 24(4), 415–425 (2017)

65. Agarwal, P., Jile, M., Tomar, M.: Certain Hermite–Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, Article ID 55 (2017)

66. Grüss, G.: Über das Maximum des absoluten Betrages von $\int_a^b f(x)g(x)dx - \frac{1}{b-a} \int_a^b f(x)dx \int_a^b g(x)dx$. Math. Z. 39(1), 215–226 (1935)

67. Ntouyas, S., Agarwal, P., Tariboon, J.: On Pólya–Szegö and Chebyshev type inequalities involving the Riemann–Liouville fractional integral operators. J. Math. Inequal. 10(2), 491–504 (2016)

68. Ozdemir, ME., Set, E., Akdemir, AO., Sarıkaya, M.Z.: Some new Chebyshev type inequalities for functions whose derivatives belongs to L^p spaces. Math. Inequal. 26(7–8), 1609–1619 (2015)

69. Set, E., Akdemir, AO., Mumcu, I.: Hadamard's inequality and its extensions for conformable fractional integrals of any order $\alpha > 0$. Creative Math. Inform. 27(2), 197–206 (2018)

70. Agarwal, P.: Fractional integration of the product of two multivariabes H-function and a general class of polynomials. In: Advances in Applied Mathematics and Approximation Theory. Springer Proc. Math. Stat., vol. 41, pp. 359–374. Springer, New York (2013)

71. Chebyshev, P.L.: Sur les expressions approximatives des integrales definies par les autres preises entre les memes limites. Proc. Math. Soc. Charkov 2, 93–98 (1862)
72. Belarbi, S., Dahmani, Z.: On some new fractional integral inequalities. JIPAM. J. Inequal. Appl. Math. 10(3), Article ID 86 (2009)
73. Dahmani, Z.: New inequalities in fractional integrals. Int. J. Nonlinear Sci. 9(4), 493–497 (2010)
74. Dahmani, Z., Mechouar, O., Brahmi, S.: Certain inequalities related to the Chebyshev’s functional involving a Riemann–Liouville operator. Bull. Math. Anal. Appl. 3(4), 38–44 (2011)
75. Dragomir, S.S., Diamond, N.T.: Integral inequalities of Grüss type via Pólya–Szegö and Shisha–Mond results. East Asian Math. J. 19(1), 27–39 (2003)
76. Pólya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis I. Springer, New York (1964)
77. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)
78. Kacar, E., Kacar, Z., Yıldırım, H.: Integral inequalities for Riemann–Liouville fractional integrals of a function with respect to another function. Iran. J. Math. Sci. Inform. 13(1), 1–13 (2018)
79. Zhao, T.-H., Chu, Y.-M., Wang, H.: Logarithmically complete monotonicity properties relating to the gamma function. Abstr. Appl. Anal. 2011, Article ID 696483 (2011)
80. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017)
81. Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler–Mascheroni constant. J. Inequal. Appl. 2018, Article ID 118 (2018)
82. Wang, M.-K., Chu, Y.-M., Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function. Math. Inequal. Appl. 22(2), 601–617 (2019)
83. Wang, M.-K., Zhang, W., Chu, Y.-M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math. Sci. 39B(3), 1440–1450 (2019)
84. Wang, M.-K., Hong, M.-Y., Xu, Y.-F., Shen, Z.-H., Chu, Y.-M.: Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 14(1), 1–21 (2020)
85. Yang, Z.-H., Qian, W.-M., Zhang, W., Chu, Y.-M.: Notes on the complete elliptic integral of the first kind. Math. Inequal. Appl. 23(1), 77–93 (2020)
86. Wang, M.-K., Chu, H.-H., Chu, Y.-M.: Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals. J. Math. Anal. Appl. 480(2), Article ID 123388 (2020)
87. Mubeen, S., Habibullah, G.M.: k-fractional integrals and application. Int. J. Contemp. Math. Sci. 7(1–4), 89–94 (2012)
88. Diaz, R., Pariguan, E.: On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 15(2), 179–192 (2007)
89. Katugampola, U.N.: New fractional integral unifying six existing fractional integrals. arXiv:1612.08596 [math.CA]
90. Jarad, F., Uğurlu, E., Abdeljawad, T., Baleanu, D.: On a new class of fractional operators. Adv. Differ. Equ. 2017, Article ID 247 (2017)
91. Khan, T.U., Adil Khan, M.: Generalized conformable fractional operators. J. Comput. Appl. Math. 346, 378–389 (2019)