Influence of fabrication conditions on giant magnetocaloric effect of Ni–Mn–Sn ribbons

Huy Dan Nguyen1, Tran Huu Do2, Hai Yen Nguyen1, Thi Thanh Pham1, Huu Duc Nguyen1, Thi Nguyet Nga Nguyen3, Dang Thanh Tran1,4, The Long Phan1 and Seong Cho Yu4

1 Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Vietnam
2 Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
3 Hanoi University of Education 2, Xuan Hoa, Vinh Phuc, Vietnam
4 BK-21 Physics Program and Department of Physics, Chungbuk National University, Cheongju 361-763, Korea

E-mail: dannh@ims.vast.ac.vn

Received 3 December 2012
Accepted for publication 4 April 2013
Published 30 April 2013
Online at stacks.iop.org/ANSN/4/025011

Abstract
The magnetocaloric effect of Ni50Mn50−xSnx ribbons (x = 11–15) prepared by using melt-spinning and subsequent annealing has been investigated. The x-ray diffraction data of specimens show that all the samples are partially crystallized with Ni2MnSn phase. The magnetic transitions of these ribbons strongly depend on Sn-concentration and annealing process. Particularly, the antiferromagnetic–ferromagnetic transition is just observed at a narrow range of the Sn-concentration (x = 12–14). The positive magnetic entropy changes occurring at the transition temperature of the antiferromagnetic phase are quite large, |ΔS_m|_{max} = 5.7 J kg⁻¹ K⁻¹ (for x = 13) with external magnetic field change ΔH = 12 kOe. Besides that, the negative magnetic entropy changes take place near Curie temperature and their magnitude is also large, |ΔS_m|_{max} = 1.9 J kg⁻¹ K⁻¹ (for x = 13). The obtained results indicate that Ni50Mn50−xSnx ribbons are good candidates for magnetic refrigeration application at room temperature.

Keywords: giant magnetocaloric effect, rapidly quenched alloys, magnetic refrigeration

Classification number: 5.02

1. Introduction

Giant magnetocaloric effect (GMCE) of materials is of interest in research by virtue of its application potential in the field of magnetic refrigeration. Magnetic refrigeration is based on the magnetic entropy change principle of materials under variation of magnetic field. The application of magnetocaloric materials in refrigerators has the advantage of avoiding environmental pollution (unlike refrigerators using compression gases), improving the cooling efficiency (saving energy), reducing noise and fitting to some special cases. The main problems to be addressed to improve the practical applications of magnetocaloric materials are: (i) creating GMCE in low field, because it is very difficult to create large magnetic field in civil engineering devices; (ii) performing the magnetic phase transition of materials with GMCE at room temperature; and (iii) extending the working temperature range (range with GMCE) for materials to be cooled in a large temperature range. In addition, some other properties of materials such as heat capacity, electrical conductivity, thermal conductivity, durability and price should be improved for the application of GMCE materials. There are two kinds
of GMCE, positive and negative. Both the two effects can be applied in practice and can take place in the same material. The GMCE in Heusler alloys has been attracting the interest of many scientists [1–9]. Magnetic entropy change (ΔS_m) in this kind of magnetocaloric materials is quite large and has both the positive and negative sign. Besides that, the GMCE in the Heusler alloys can be controlled to occur in the room temperature region. The magnetocaloric materials in amorphous or nanocrystalline structure have also been investigated recently [9–12]. The main advantages of amorphous or nanocrystalline materials are capabilities for GMCE, low coercivity, high resistivity, room temperature magnetic phase transition and low cost, which are necessary requirements for practical application. One of the useful methods to fabricate alloys with amorphous or nanocrystalline structure is the rapid quenching technique. In this work, we investigate the magnetocaloric effect of Ni$_{50}$Mn$_{50-x}$Sn$_x$ ribbons ($x = 11–15$) prepared by means of melt-spinning and subsequently annealing. The goal of this research is to combine the advantages of both the Heusler alloy and rapidly quenched materials for application in magnetic refrigeration.

2. Experimental

The alloys with nominal compositions of Ni$_{50}$Mn$_{50-x}$Sn$_x$ ribbons ($x = 11, 12, 13, 14$ and 15) were prepared from pure metals (99.9%) of Fe, Ni and Sn. Arc-melting method was first used to ensure the homogeneity of the alloys. Melt-spinning method was then used to fabricate the ribbon samples. Thickness of the ribbons is about 30 μm. Some of the ribbons were annealed at various annealing temperatures (T_a) and time (t_a) in vacuum. The structure of the samples was examined by powder x-ray diffraction (XRD) method. The magnetic and magnetocaloric properties of the samples were characterized by magnetization measurements.

3. Results and discussion

Figure 1 shows typical XRD patterns of Ni$_{50}$Mn$_{50-x}$Sn$_x$ alloy ribbons before and after annealing at 1123 K for 5 h. XRD patterns of the as-quenched ribbons reveal two main diffraction peaks corresponding to Ni$_2$MnSn phase (austenitic L_2_1-cubic structure) and look very similar as the Sn-concentration (x) varies. However, the diffraction peaks of the main crystalline phase (Ni$_2$MnSn) slightly shift to higher values of the 20 when Sn-concentration is increased (see the inset of figure 1(a)). That means lattice constants of the crystal are changed by Sn-concentration. The change of the lattice constants probably leads to a variation of magnetic orders in the alloys as presented below. After annealing at 1123 K for 5 h, the structure of all the ribbons is clearly different from that of the as-quenched ones. Other crystalline phases such as Ni$_3$Sn$_2$ and Mn$_{1.77}$Sn are formed. The number and intensity of the diffraction peaks of these annealed ribbons is dependent on Sn-concentration.

Magnetic properties of the alloys were investigated by magnetization measurements. Magnetic hysteresis measurement indicates that all the as-quenched and annealed ribbons are soft magnetic. The thermomagnetization measurement reveals the magnetic phase transitions in the ribbons. Figure 2 presents thermomagnetization curves in an applied magnetic field of 12 kOe of Ni$_{50}$Mn$_{50-x}$Sn$_x$ alloy ribbons before and after annealing at 1123 K for 5 h. In as-quenched state, the alloy has an antiferromagnetic–ferromagnetic (AFM–FM) transition. The temperature (T_P) and magnitude of the AFM–FM transition strongly depends on Sn-concentration. The T_P of the alloy is fast decreased from 302 to 182 K by an increase of 2 at.% of the Sn-concentration (from 12 to 14 at.%). The AFM–FM transition of the samples with Sn-concentrations of 11 and 15 at.% is not observed in the temperature range of 100–350 K. Thus, the AFM order, which relates to a martensite 10 M-orthorhombic structure, is very sensitive to the Sn-concentration in the alloy. The AFM–FM transition greatly affects on magnetocaloric effect of the alloy as shown later. After annealing at 1123 K for 5 h, no AFM–FM transition is observed in the ribbons with all the Sn-concentrations, while the ferromagnetic–paramagnetic (FM–PM) transition (T_C) occurring near 330 K is almost unchanged by this annealing process (figure 2(b)). Nevertheless, the AFM–FM transition...
still exists in the samples annealed at 1273 K for 15 and 30 min (figure 3(a)). By increasing the annealing time, the \(T_p \) is shifted to higher temperatures, the \(T_c \) is nearly unchanged and the magnetization is decreased.

Figure 3(b) shows thermomagnetization (\(M-T \)) curves in various magnetic field of \(\text{Ni}_{50}\text{Mn}_{50-x}\text{Sn}_x \) (\(x = 13 \)) alloy ribbons annealed at 1273 K for 15 min. From these \(M-T \) curves, the magnetization versus magnetic field (\(M-H \)) curves (figure 4(a)) can be deduced. Based on \(M-H \) curves, magnetic entropy change (\(\Delta S_m \)) can be calculated by using Maxwell’s relation

\[
\Delta S_m = \int_{H_1}^{H_2} \left(\frac{\partial M}{\partial T} \right)_H dH.
\]

Temperature dependence of the magnetic entropy change (\(\Delta S_m-T \)) in a 12 kOe-magnetic field variation of the \(\text{Ni}_{50}\text{Mn}_{50-x}\text{Sn}_x \) sample before and after annealing at 1273 K for 15 min is presented in figure 4(b). The \(\Delta S_m-T \) curves of both the two samples have two extrema with opposite signs. One extremum corresponds to the maximum of the magnitude of the positive GMCE and the other is of the negative GMCE. The positive GMCE is due to the AFM–FM transition and the negative GMCE is related to the FM–PM transition in the materials. The maximum positive and negative magnetic entropy changes are quite large: \(|\Delta S_m|_{\text{max}} = 5.7 \text{ J kg}^{-1} \text{ K}^{-1}\) and \(|\Delta S_m|_{\text{max}} = 1.4 \text{ J kg}^{-1} \text{ K}^{-1}\) for the as-quenched sample, \(|\Delta S_m|_{\text{max}} = 5.2 \text{ J kg}^{-1} \text{ K}^{-1}\) and \(|\Delta S_m|_{\text{max}} = 1.9 \text{ J kg}^{-1} \text{ K}^{-1}\) for the annealed sample.

It should be noted that by appropriate annealing processes, both the maximum magnetic entropy change and full-width at half-maximum of the magnetic entropy change of the ribbons can be regulated in room temperature region. One can see in figure 4(b) that by annealing at 1273 K for 15 min, the maximum positive magnetic entropy change of the \(\text{Ni}_{50}\text{Mn}_{50-x}\text{Sn}_x \) alloy ribbon is shifted from \(\sim 265 \) to \(\sim 285 \) K and the maximum negative magnetic entropy change of this sample, which occurs at \(\sim 310 \) K, increases from 1.4 to 1.9 J kg\(^{-1}\) K\(^{-1}\). The full-width at half-maximum of the negative magnetic entropy change of the ribbons is quite large (\(> 20 \text{ K} \)). Both the positive and negative magnetocaloric effects of the ribbons take place quite closely in room
The magnetic and magnetocaloric properties of the Ni$_{50}$Mn$_{50-x}$Sn$_x$ ribbons strongly depend on Sn-concentration and annealing process. The AFM–FM transition of the alloy is just observed at a narrow range of the Sn-concentration ($x = 12–14$) and can be controlled by the annealing process. Both the positive and negative magnetic entropy changes are quite large, $|\Delta S_m|_{\text{max}} > 5.2 \text{ J kg}^{-1} \text{ K}^{-1}$ and $|\Delta S_m|_{\text{max}} > 1.4 \text{ J kg}^{-1} \text{ K}^{-1}$ with external magnetic field change $\Delta H = 12 \text{ kOe}$. The full-width at half-maximum of the magnetic entropy change is also large making Ni$_{50}$Mn$_{50-x}$Sn$_x$ ribbons possible for application in magnetic refrigeration.

Acknowledgments

This work was supported by the National Foundation for Science and Technology Development (NAFOSTED) of Vietnam under grant number of 103.02-2011.23 and the Converging Research Center Program funded by the Ministry of Education, Science and Technology (2012K001431), South Korea. A part of the work was done in the Key Laboratory for Electronic Materials and Devices, and Laboratory of Magnetism and Superconductivity, Institute of Materials Science, VAST.

References

[1] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L and Planes A 2005 Nature 450
[2] Zhou X, Li W, Kunel H P and Williams G 2004 J. Phys.: Condens. Matter 16 L39
[3] Basso V, Sasso C P, Skokov K P, Gutfleisch O and Khovaylo V V 2012 Phys. Rev. B 85 014430
[4] Sharma V K, Chattopadhyay M K and Roy S B 2010 J. Phys. D: Appl. Phys. 43 225001
[5] Zhang Y, Zhang P, Kim K, Yu S C, Dan N H and Hou X 2010 J. Korean Phys. Soc. 57 1983
[6] Duc N H, Thanh T D, Tam L T T, Tuan B M, Thanh P T, Yen N H, Long P T and Dan N H 2010 Study on synthesis, structure and magnetocaloric properties of CoMn$_{1-x}$Fe$_x$Si alloys Proc. 5th Int. Workshop on Advanced Materials Science and Nanotechnology (Hanoi, 9–12 November 2010) p 197
[7] Duc N H, Thanh T D, Yen N H, Thanh P T, Dan N H and Phan T L 2012 J. Korean Phys. Soc. 60 454
[8] Phan T L, Duc N H, Yen N H, Thanh P T, Dan N H, Zhang P and Yu S C 2012 IEEE Trans. Magn. 48 1381
[9] Franco V, Conde C F, Conde A and Kiss L F 2007 Appl. Phys. Lett. 90 052509
[10] Kovac J, Svec P and Skorvanek I 2008 Rev. Adv. Mater. Sci. 18 533
[11] Wua D, Xue S, Frenzel J, Eggelerc G, Zhai Q and Zheng H 2012 Mater. Sci. Eng. A 534 568
[12] Zeng R, Wang S Q, Du G D, Wang J L, Deb Nath J C, Shamba P, Fang Z Y and Dou S X 2012 J. Appl. Phys. 111 07E144