Outflows from ellipticals: the role of supernovae

Francesca Matteucci
Department of Astronomy, University of Trieste, Via G.B. Tiepolo 11, 34100 Trieste, Italy

Antonio Pipino
Department of Astronomy, University of Trieste, Via G.B. Tiepolo 11, 34100 Trieste, Italy

Abstract. Models of SN driven galactic winds for ellipticals are presented. We assume that ellipticals formed at high redshift and suffered an intense burst of star formation. The role of supernovae of type II and Ia in the chemical enrichment and in triggering galactic winds is studied. In particular, several recipes for SN feed-back together with detailed nucleosynthesis prescriptions are considered. It is shown that SNe of type II have a dominant role in enriching the interstellar medium of elliptical galaxies whereas type Ia SNe dominate the enrichment and the energetics of the intracluster medium.

1. Introduction

Several mechanisms have been suggested so far for the formation and evolution of elliptical galaxies. One scenario is based on an early monolithic collapse of a gas cloud or early merging of lumps of gas where dissipation plays a fundamental role (Larson 1974; Arimoto & Yoshii 1987; Matteucci & Tornambè 1987). In this scenario the star formation stops soon after a galactic wind develops and the galaxy evolves passively since then. Bursts of star formation in merging subsystems made of gas had been also suggested (Tinsley & Larson 1979); in this picture star formation stops after the last burst and gas is lost via stripping or wind. The alternative and more recent scenario is the so-called hierarchical clustering scenario, where merging of early formed stellar systems in a wide redshift range and preferentially at late epochs, is expected (Kauffmann et al. 1993). The main difference between the monolithic collapse and the hierarchical merging relies in the time of galaxy formation, occurring quite early in the former scenario (at reshifts $z > 3$) and continuously in the latter scenario. There are arguments either in favour of the monolithic or the hierarchical scenario, but the former one gives a more likely picture since it can reproduce the majority of the properties of stellar populations in ellipticals, in particular some fundamental facts such as that the ellipticals are dominated by old stars (K-giants) and that the $\alpha/\text{Fe} > 0$ in the dominant stellar population (Worthey et al. 1992; Weiss et al. 1995; Kuntschner et al. 2001). This high α/Fe ratio is the clear signature
of the pollution from massive stars. The same occurs in the most metal poor stars in our Galaxy and is due to the fact that SNe II are the main producers of α-elements (O, Ne, Mg, Si, S and Ca) whereas SNe Ia, which explode with a delay relative to type II SNe, are thought to be responsible for the production of Fe. Therefore, the high [α/Fe] ratio in ellipticals argues strongly in favor of a short period of star formation during which type Ia SNe did not have time to substantially pollute the interstellar medium (ISM).

In this paper we will discuss a monolithic model (Pipino et al. 2002) for the formation and evolution of ellipticals, where these objects suffer a short (\leq 1Gyr) but intense star formation period halted by a SN driven galactic wind. After the onset of the wind, which deoids the galaxy of all the gas present, star formation is assumed to stop. This is because the galaxy, after the wind, contains hot and rarified gas, a situation which is unfavorable to star formation. The time for the occurrence of the wind, t_{GW}, is therefore crucial in determining the evolution of the galaxy and the intrachuster/intergalactic medium. Therefore, the assumptions about the energy transferred from SNe into the ISM are very important. Unfortunately, very little is known about this feedback and one has to choose the assumptions which produce a realistic model for ellipticals. In section 2 we will discuss the condition for the occurrence of a galactic wind and the chemical evolution model. In section 3 we will present the results and draw a few conclusions.

2. The model for ellipticals

The model we are adopting here is described in detail in Pipino et al. (2002). The main feature of the model is that it assumes a strong star formation rate for ellipticals (roughly 20 times stronger than adopted in the solar vicinity) and takes into account in detail the contributions from SN II and Ia.

2.1. SN rates

It is very important to compute detailed SN rates, taking into account the stellar lifetimes (τ_m), in order to study the different roles played by SNII and SN Ia in galaxy evolution.

Type II SNe originates from the explosion of massive stars ($M > 10M_\odot$), the SNII rate is:

$$R_{SNII} = \int_{M_m}^{M_M} \psi(t - \tau_m)\phi(m)dm$$

(1)

with $M_m = 10$ and $M_M = 100M_\odot$ and $\phi(m)$ being the IMF. Type Ia SNe originate from the thermonuclear explosion of a CO-white dwarf (WD) in a binary system. The binary system can be made of a CO WD plus a red giant star or by two CO WDs. The type Ia SN rate in the single degenerate case can be written as:

$$R_{SNIa} = A \int_{M_B}^{M_B}\phi(m) \cdot \left[\int_{\mu_{min}}^{0.5} f(\mu)\psi(t - \tau_m)\mu d\mu\right]dm$$

(2)
where $\mu = \frac{M_2}{M_B}$ (with M_2 mass of the secondary star) and M_B, the total mass of the binary system, is defined in the range 3-16 M_\odot (see Matteucci & Greggio, 1986).

2.2. Stellar nucleosynthesis

Type II SNe produce mainly α-elements (O, Ne, Mg, Si, S, Ca) and part of Fe. The adopted yields are from Woosley & Weaver (1995). Type Ia SNe produce mainly Fe-peak elements ($\sim 0.6 - 0.7 M_\odot$ of Fe). The adopted yields are from Thielemann et al. (1993) The yields from low and intermediate mass stars ($0.8 \leq M/M_\odot \leq 8$) are from Renzini & Voli (1981)

3. The development of a galactic wind

The condition for the occurrence of a wind, where for wind we intend an outflow which carries the gas out of the potential well of the galaxy, is:

$$(E_{th})_{ISM} \geq E_{Bgas}$$

where $(E_{th})_{ISM}$ is the thermal energy of the gas and E_{Bgas} is the potential energy of the gas.

3.1. The thermal energy of gas

The thermal energy of gas due to SN and stellar wind heating is:

$$(E_{th})_{ISM} = E_{thSN} + E_{thw}$$

with:

$$E_{thSN} = \int_0^t \epsilon_{SN} R_{SN}(t')dt'$$

and

$$E_{thw} = \int_0^t \int_{12}^{100} \varphi(m)\psi(t') \epsilon_w dm dt'$$

for the contribution from SNe and stellar winds, respectively. The efficiencies of energy transfer from SNe into the ISM is $\epsilon_{SN} = \eta_{SN}\epsilon_o$ with $\epsilon_o = 10^{51}$erg (typical SN energy) and that typical of stellar wind is: $\epsilon_w = \eta_w E_w$ with $E_w = 10^{49}$erg (typical energy injected by a 20M_\odot star).

The simplest approach is to consider the η_{SN} and η_w efficiencies as constant. Bradamante et al. (1998) estimated such efficiencies by computing the ratio between the energy in the shell of the supernova remnant and in the initial blast wave, at the time of the merging of the shell with the ISM, by taking into account results from hydrodynamical calculations. They found that under typical conditions, namely $\epsilon_o = 10^{51}$ erg, $n_o = 1cm^{-3}$ (density of the ISM) and $C_o = 10^6 cmsec^{-1}$ (sound speed), $\eta_{SN} = 0.007-0.13$ and $\eta_w \sim 0.03$. Therefore, the majority of the initial blast wave energy of SNe and stellar winds is radiated away. However, this hypothesis is strictly valid for an isolated object and multiple SN explosions can radically change the situation. In addition, the
contributions from different SN types can be different. For example, SNe Ia exploding after type II should provide more energy into the ISM since they explode in a hot cavity.

In the present model we adopt a more complex formulation which assumes that the ϵ_{SN} is varying in time. In particular, we assume the formulation of Cox (1972) for the efficiency of energy injection from SNe:

$$\epsilon_{SN} = 0.72 \epsilon_o \text{ erg}$$

(7)

for $t_{SN} \leq t_c$, where t_c is the cooling time of a supernova remnant, $\epsilon_o = 10^{51} \text{ erg}$ is the explosion energy and t_{SN} is the time elapsed from the SN explosion.

For $t_{SN} > t_c$ holds:

$$\epsilon_{SN} = 2.2 \epsilon_o (t_{SN}/t_c)^{-0.62} \text{ erg}$$

(8)

For the cooling time we adopt the formulation of Cioffi et al. (1988) as a function of metallicity:

$$t_c = 1.49 \cdot 10^4 \frac{3^{1/14}}{\epsilon_o^{-4/7}} (Z/Z_\odot)^{-5/14} \text{ yrs}$$

(9)

It is worth noting that also with these prescriptions $\eta_{SN} = 0.01 - 0.02$. Recchi et al. (2001) assumed that $\eta_{SNII} = 0.03$ and $\eta_{SNIa} = 1$ in successful chemodynamical models of dwarf irregular galaxies, in order to account for the fact that type Ia SNe occur with a delay and in an already hot cavity produced by type II SNe. Pipino et al. (2002) tried several assumptions for SN feedback in ellipticals including this one and concluded that no more than 35-40% of the initial blast wave energy of SNe II+ Ia should heat the ISM in order to have realistic models for ellipticals and the intracluster medium (ICM).

3.2. The potential energy of the gas

The total mass of the galaxy is expressed as $M_{tot}(t) = M_*(t) + M_{gas}(t) + M_{dark}(t)$ with $M_L(t) = M_*(t) + M_{gas}(t)$ being the luminous mass. The binding energy of the gas is computed as in Matteucci (1992 and references therein). For all galaxies here we assumed $M_{dark}/M_L = 10$ and $r_L/r_D = 0.1$, being the ratio between the effective radius and the radius of the dark matter core.

4. Model results

The galactic winds in the models for ellipticals in the mass range $10^9 - 10^{11} M_\odot$ occur on a timescale less than 1 Gyr (Pipino et al. 2002). Therefore, due to the short star formation period assumed for ellipticals, the abundance ratios in their stars show the signature of type II SN nucleosynthesis, namely $[\alpha/Fe] > 0$, as it is evident in figure 1 where we show the predictions of the model for the chemical composition of the gas in a galaxy with initial luminous mass $10^{11} M_\odot$, Salpeter (1955) IMF and feedback prescriptions as in Recchi et al. (2001). In the figure is marked the age for the occurrence of a galactic wind ($t_{GW} \sim 0.25$ Gyr). After the wind no more star formation is taking place, so it is evident from the figure that the majority of the stars in this galaxy will show $[\alpha/Fe] > 0$, whereas the gas that goes into the ICM will show $[\alpha/Fe] \leq 0$. This is due to the occurrence of type Ia SNe which have a maximum at 0.3-0.5 Gyr (Matteucci & Recchi, 2001),
Figure 1. Left figure: the predicted evolution of the [O/Fe] ratio as a function of time in the ISM of an elliptical galaxy. The model assumptions (mass and feedback) are indicated in the figure. In particular CMB88 refers to Cioffi et al. (1988). The time for the occurrence of the galactic wind is marked. Right figure: predicted total thermal energy of the gas for the same galaxy of figure 1. The different contributions from SNII and Ia are indicated. SNeIa are favored energetically since we assumed $\eta_{\text{SNIa}} = 1$. If $\eta_{\text{SNII}} = \eta_{\text{SNIa}}$, then SNII predominate in the energetics inside the galaxy.

namely after star formation has stopped. The same is true for the energetics of type II and Ia SNe if we assume $\eta_{\text{SNII}} = \eta_{\text{SNIa}}$. On the other hand, if SNe Ia are assumed to inject all of their initial blast wave energy, the situation is reverted, as shown in figure 1 (right side); SNe Ia dominate the energetics even before the onset of the wind. This also implies that both the energetics and the chemistry of the ICM are dominated by type Ia SNe (see Pipino et al. 2002). Finally, in figure 2 we show the predicted [X/Fe] vs. [Fe/H] relations for ellipticals of different initial luminous mass. Overimposed are the data for a Lyman-break galaxy MS 1512-cB58 at redshift $z = 2.7276$ obtained by Pettini et al. (2002).

The good agreement between the predictions for ellipticals and the observations strongly suggest that Lyman-break galaxies at high redshift could be ellipticals in formation, thus supporting the monolithic scenario.

References

Arimoto, N., Yoshii, Y. 1987, A&A
Bradamante, F., Matteucci, F., D’Ercole, A. 1998, A&A337, 338
Cioffi, D.F., McKee, C.F., Bertschinger, E. 1998, ApJ334, 252
Cox, D.P. 1972, ApJ178, 159
Kauffmann, G., White, S.D.M., Guiderdoni, B., 1993, MNRAS264, 201
Kuntschner, H., Lucey, J.R., Smith, R.J., Hudson, M.J., Davies, R.L., 2001 MNRAS323, 615
Larson, B.R. 1974, MNRAS166, 585
Matteucci, F. 1992, ApJ397, 32
Figure 2. Predicted [X/F] vs. [Fe/H] for models with different initial luminous masses, as indicated in the figure. The data point refers to the Lyman-break galaxy MS1512-cB58 from Pettini et al. (2002). The figure is from Matteucci and Pipino (2002).
Matteucci, F. Pipino, A. 2002, ApJ569, L69
Matteucci, F. Recchi, S. 2001, ApJ558, 351
Matteucci & Tornambè 1987, A&A185, 51
Pettini, M., Rix, S.A., Steidel, C.C., Adelberger, K.L., Hunt, M.P., Shapley, A.E., 2002, ApJ569, 742
Pipino, A., Matteucci, F., Borgani, S., Biviano, A., 2002, New Astronomy7, 227
Recchi, S., Matteucci, F., D’Ercole, A. 2001, MNRAS322, 800
Renzini, A., Voli, M. 1981, A&A94, 175
Salpeter, E.E. 1955, ApJ121, 161
Thielemann, F.K., Nomoto, K., Hashimoto, M. A. 1993, in “Origin and Evolution of the Elements”, eds. N. Prantzos et al. , Cambridge Univ. Press p. 297
Tinsley, B.M. Larson, R.B. 1979, MNRAS186, 503
Weiss, A., Peletier, R.F., Matteucci, F., 1995 A&A296, 73W
Woosley, S.E., Weaver, T.A., 1995, ApJS101, 181
Worthey, G, Faber, S.M., Gonzalez, J.J., 1992, ApJ398, 69