The John Theorem for Simplex

Si Lin1,2, Xiong Ge2 and Leng Gangsong2

1. Department of Mathematics, Beijing Forestry University, Beijing, 100083, China
2. Department of Mathematics, Shanghai University, Shanghai, 200444, China

Abstract. In this paper, we give a description of the John contact points of a regular simplex. We prove that the John ellipsoid of any simplex is ball if and only if this simplex is regular and that the John ellipsoid of a regular simplex is its inscribed ball.

Keywords. Simplex, John theorem, John ellipsoid, Barycentric coordinates.

2000 Mathematics Subject Classification: 52A40.

1. Introduction

In 1948, F. John proved that every convex body (i.e., a compact, convex subset with nonempty interior) in \mathbb{R}^n contains only one maximal (in volume) ellipsoid, which is known as the John ellipsoid. When the John ellipsoid is the unit ball B_n^2, F. John has proved the following theorem.

Theorem 1. [John] Let C be a convex body in \mathbb{R}^n. The ellipsoid of maximal volume in C is B_n^2, if and only if C contains B_n^2 and there are some points $(u_i)_{i=1}^m$ on the boundary of C and positive numbers $(c_i)_{i=1}^m$ so that

\[
a) \quad \sum_{i=1}^m c_i u_i \otimes u_i = I_n, \quad \text{and} \\
b) \quad \sum_{i=1}^m c_i u_i = 0.
\]

Here, I_n is the identity map on \mathbb{R}^n and, for any unit vector u, $u \otimes u$ is the rank-one orthogonal projection onto the span of u, i.e., the map $x \rightarrow \langle x, u \rangle u$. The u_i's of the theorem are the intersection points of the unit sphere S^{n-1} with the boundary of C.

Condition a) shows that the $(u_i)_{i=1}^m$ behave rather like an orthonormal basis in that we can resolve the Euclidean norm as a (weighted) sum of square of inner products. This condition is equivalent to the statement that, for all x in \mathbb{R}^n,

*Supported by National Natural Sciences Foundation of China (No.10271071) and the Youth Science Foundation of Shanghai (No.214511)
\[|x|^2 = \sum_{i=1}^{m} c_i \langle x, u_i \rangle^2, \]
\[(1) \]

where \(\langle \cdot, \cdot \rangle \) is the usual Euclidean inner product and \(|\cdot| \) is the induced norm by this inner product.

By a simple computation, we know that equality (1) is equivalent to
\[x = \sum_{i=1}^{m} c_i \langle x, u_i \rangle u_i. \]

(2)

For detail, see \([Ba1]\) and in \([Ba3]\), one can find a modern proof of Theorem 1.

Definition 1 Suppose that \(A_1, \ldots, A_{n+1} \in \mathbb{R}^n \) be affinely independent then the convex hull, denoted by \(A \), of these points is called a simplex, i.e.,
\[A = \{ x \mid x = \sum_{i=1}^{n+1} \lambda_i A_i, \ \sum_{i=1}^{n+1} \lambda_i = 1, \ \lambda_i \geq 0 \}, \]
and if all \(|A_i A_j|, \ i \neq j \) are equal, then we call \(A \) a regular simplex.

In Theorem 1., \((u_i)_{1}^{m} \) is usually called the contact points. For the unit cube \([-1,1]^{n} \) in \(\mathbb{R}^n \), the maximal ellipsoid is \(B_2^n \) as one would expect, so the contact points are the standard basis vectors \((e_1, \ldots, e_n)\) of \(\mathbb{R}^n \) and their negatives. However, even for the simplest nonsymmetric convex body-simplex, there is no nature description of the contact points.

In this paper, we give a description of the contact points for a regular simplex and the main results are the following theorems.

Theorem 2. The John ellipsoid of a regular simplex is its inscribed ball.

Theorem 3. For any simplex in \(\mathbb{R}^n \), the John ellipsoid of this simplex is ball if and only if the simplex is regular.

2. The Proof of Main Results

First we introduce the following definition[C].

Definition 2[C] Suppose that \(A \) is an \(n \)-dimensional simplex with vertexes \(\{A_1, \ldots, A_{n+1}\} \), \(M \) is a point in \(\mathbb{R}^n \). Denote by \(V_i, i = 1, \ldots, n+1 \), the volume of the simplex with vertexes \(\{A_1, \ldots, A_{i-1}, M, A_{i+1}, \ldots, A_{n+1}\} \), and if the dimensions of
\[\text{con}\{A_1, \ldots, A_{i-1}, M, A_{i+1}, \ldots, A_{n+1}\} \quad \text{and} \quad \text{con}\{A_1, \ldots, A_{i-1}, M, A_{i+1}, \ldots, A_{n+1}\} \cap A \]
are both \(n \), then the following ratio is called the barycentric coordinates of \(M \),
\[V_1 : V_2 : \ldots : V_{n+1}. \]

Suppose that \(\{A_1, \ldots, A_{n+1}\} \) are the vertexes of a regular simplex \(A \) and \(B_2^n \) is its inscribed ball. Denote by \(\{B_i, i = 1, \ldots, n+1\} \), the tangent points of \(B_2^n \) with the face generated by the
convex hull of \(\{A_1, ..., A_{i-1}, A_i, ..., A_n \} \) and denote by \(\{u_i, i = 1, ..., n+1\} \) the outer normal unit vectors of these facet respectively. According to the Definition 2, we have the barycentric coordinates of \(B_i \) as follows

\[
\left(\frac{1}{n}, ..., \frac{1}{n}, 0, \frac{1}{n}, ..., \frac{1}{n} \right),
\]

where 0 is in the \(i \)-th \((i = 1, ..., n+1) \) position.

Proof of Theorem 2.

According to the Theorem 1., it suffices to prove that the tangent points of a regular simplex with its inscribed ball satisfied the condition a) and b).

Now suppose that \(A \) is a regular simplex with vertexes \(\{A_1, A_2, ..., A_{n+1}\} \) and \(B_2^n \) is its inscribed ball. Denote by \(\{B_i, i = 1, ..., n+1\} \) the tangent points which is opposite to \(\{A_i, i = 1, ..., n+1\} \) respectively. From the above discussion, the barycentric coordinates of \(B_i \) is

\[
\left(\frac{1}{n}, ..., \frac{1}{n}, 0, \frac{1}{n}, ..., \frac{1}{n} \right),
\]

where 0 is in the \(i \)-th \((i = 1, ..., n+1) \) position.

Obviously, the barycentric coordinates of the origin is \((1, ..., 1) \).

Let \(c_i = \frac{n}{n+1}, i = 1, ..., n+1, \) then

\[
\sum_{i=1}^{n+1} c_i B_i = (1, ..., 1).
\]

Thus the condition b) is satisfied.

Next, we will prove that \(u_i \) satisfied the condition a) of Theorem 1., that is, for any \(x \in \mathbb{R}^n \), the following equality holds,

\[
x = \sum_{i=1}^{n+1} c_i \langle x, u_i \rangle u_i,
\]

where \(c_i = \frac{n}{n+1}, i = 1, ..., n+1. \)

Because \(A \) is a \(n \)-dimensional simplex, the space spaned by the \(n+1 \) vectors \(\{u_i, i = 1, ..., n+1\} \) must be \(\mathbb{R}^n \), i.e.,

\[
\text{Span}\{u_1, u_2, ..., u_{n+1}\} = \mathbb{R}^n.
\]

So for any \(x \in \mathbb{R}^n \), there must exist \(n+1 \) real numbers \(\alpha_1, ..., \alpha_{n+1} \) such that

\[
x = \alpha_1 u_1 + ... + \alpha_{n+1} u_{n+1}.
\]
Thus, we can get
\[
\begin{align*}
\langle u_1, x \rangle &= \alpha_1 \langle u_1, u_1 \rangle + \alpha_2 \langle u_1, u_2 \rangle + \ldots + \alpha_{n+1} \langle u_1, u_{n+1} \rangle, \\
\langle u_2, x \rangle &= \alpha_1 \langle u_2, u_1 \rangle + \alpha_2 \langle u_2, u_2 \rangle + \ldots + \alpha_{n+1} \langle u_2, u_{n+1} \rangle, \\
& \vdots \\
\langle u_{n+1}, x \rangle &= \alpha_1 \langle u_{n+1}, u_1 \rangle + \alpha_2 \langle u_{n+1}, u_2 \rangle + \ldots + \alpha_{n+1} \langle u_{n+1}, u_{n+1} \rangle.
\end{align*}
\]

Denote \(\alpha = (\alpha_1, \ldots, \alpha_{n+1}) \), \(\beta = (\langle u_1, x \rangle, \ldots, \langle u_{n+1}, x \rangle) \), and

\[
D = \begin{pmatrix}
\langle u_1, u_1 \rangle & \langle u_1, u_2 \rangle & \cdots & \langle u_1, u_{n+1} \rangle \\
\langle u_2, u_1 \rangle & \langle u_2, u_2 \rangle & \cdots & \langle u_2, u_{n+1} \rangle \\
\vdots & \vdots & \ddots & \vdots \\
\langle u_{n+1}, u_1 \rangle & \langle u_{n+1}, u_2 \rangle & \cdots & \langle u_{n+1}, u_{n+1} \rangle
\end{pmatrix},
\]

then the above equation system can be written as

\[
D \alpha^T = \beta^T, \tag{4}
\]

where \(\alpha^T, \beta^T \) represent respectively the transform of \(\alpha \) and \(\beta \).

Observe that every element of \(D \), \(\langle u_i, u_j \rangle \), is the cosine of angle of two outer normal unit vectors. Denote by \(F_i, F_j \) the faces whose outer normal unit vectors are \(u_i, u_j \) respectively. Obviously, the angle of \(u_i, u_j \) is mutually complementary with the angle of \(F_i, F_j \), i.e.,

\[
\langle u_i, u_j \rangle = - \cos \angle(F_i, F_j),
\]

where \(\angle(F_i, F_j) \) represents the dihedral angle of \(F_i, F_j \).

For \(\cos \angle(F_i, F_j) \), we have the following equality,

\[
\cos \angle(F_i, F_j) = \frac{S_{ji}}{S_j},
\]

where \(S_j \) is the \((n-1)\)-dimensional volume of face \(F_j \), and \(S_{ji} \) is the volume of the projection \(F_j \) to \(F_i \) along \(u_i \).

For \(A \) is regular simplex, the \(n \) \((n-1)\)-dimensional volumes of all the projections \(F_j, j \neq i \) to \(F_i \) along \(u_i \) are equal. So \(\frac{S_{ji}}{S_j} = \frac{1}{n} \). Thus we get the \(D \), i.e.

\[
D = \begin{pmatrix}
1 & -\frac{1}{n} & \cdots & -\frac{1}{n} \\
-\frac{1}{n} & 1 & \cdots & -\frac{1}{n} \\
\vdots & \vdots & \ddots & \vdots \\
-\frac{1}{n} & -\frac{1}{n} & \cdots & 1
\end{pmatrix} \quad \text{\((n+1)\times(n+1)\)}
\]

It follows from condition b) and (4) that

\[
\begin{align*}
D \alpha^T &= \beta^T \\
\sum_{i=1}^{n+1} \langle u_i, x \rangle &= 0.
\end{align*}
\]
Let \(\alpha = \left(\frac{n}{n+1} \langle u_1, x \rangle, ..., \frac{n}{n+1} \langle u_{n+1}, x \rangle \right) \) in the above equation system, we know that \(\alpha \) is a solution of this equation system. So every point \(x \in \mathbb{R}^n \) can be represented as the form of (2). The proof of Theorem 2. is completed.

To prove Theorem 3., we need the following Brascamp-Lieb inequality, which is the generalization of convolution inequality.

Theorem 4.[BL] Suppose that \((u_i)_1^m \) is a sequence of unit vector in \(\mathbb{R}^n \), \((c_i)_1^m \) is a sequence of positive real numbers and they satisfied the following equality
\[
\sum_{i=1}^{m} c_i u_i \otimes u_i = I_n.
\]

If \(f_i : R \rightarrow [0, \infty) \), \(i = 1, ..., m \) is a sequence of integrable functions, then
\[
\int_{\mathbb{R}^n} \prod_{i=1}^{m} f_i(\langle u_i, x \rangle)^{c_i} dx \leq \prod_{i=1}^{m} \left(\int_{R} f_i \right)^{c_i}. \tag{5}
\]

F.Barthe get a necessary condition for the equality holds in Theorem 4.

Theorem 5.[Bar] Suppose that \((u_i)_1^m \) is a sequence of unit vector in \(\mathbb{R}^n \), \((c_i)_1^m \) a sequence of positive real numbers, and they satisfied the following equality
\[
\sum_{i=1}^{m} c_i u_i \otimes u_i = I_n.
\]

If \((f_i)_1^m \) is a sequence functions, not all zero in \(L_1(R) \), and all \((f_i)_1^m \) are not the density function of Gauss distribution, then the necessary condition for the equality hold in (5) is
\[
m = n,
\]
and
\[
(u_i)_1^m
\]
is a orthonormal basis of \(\mathbb{R}^n \).

Proof of Theorem 3.

The "if" part of Theorem 3. can be obtained from Theorem 2. directly. So it is sufficient to prove that if the John ball of the simplex \(C \) is \(B^n_2 \) then \(C \) is regular.

Firstly, we observe that if the John ball of the simplex \(C \) is \(B^n_2 \), then \(B^n_2 \) is the inscribed ball of \(C \). If not, without lost of generalization, suppose that \(B^n_2 \) is not tangent with face \(F_i \). Let \(u_i \) be the outer normal unit vector of \(F_i \), then there must exist a positive number \(\varepsilon \), such that \(B^n_2 \) is not tangent with any faces of \(C \) when \(B^n_2 \) move \(\varepsilon \) along \(u_i \). At this time, there must exist another positive number \(r > 1 \) such that \(rB^n_2 \) be the John ball of \(C \). This contradicts with the fact that \(B^n_2 \) is the John ball of the simplex \(C \).
Because the inscribed ball of C is its John ball, by Theorem 1., there exist a sequence positive real numbers $(c_i)_{1}^{n+1}$ and a sequence of unite vectors $(u_i)_{1}^{n+1}$ on the boundary of C such that

$$\sum_{i=1}^{n+1} c_i u_i \otimes u_i = I_n,$$ \hspace{1cm} (6)$$

and

$$\sum_{i=1}^{n+1} c_i u_i = 0.$$ \hspace{1cm} (7)

Denote by $K = \{x \in R^n : \langle x, u_i \rangle \leq 1, 1 \leq i \leq n+1\}$, then K is also the simplex in R^n. Because $(u_i)_{1}^{n+1}$ are the contact points of C and B^n_2,

$$C \subset \{x \in R^n : \langle x, u_i \rangle \leq 1, 1 \leq i \leq m\} = K.$$

Observe that B^n_2 is also the inscribed ball of C and that K, C have the same tangent points $(u_i)_{1}^{n+1}$ with B^n_2, so

$$C = K.$$

Next, we will show that K is regular simplex.

In the following discussion, R^{n+1} will be regarded as $R^n \times R$. For each i let

$$v_i = \sqrt{\frac{n}{n+1}} (-u_i, \frac{1}{\sqrt{n}}) \in R^{n+1}, \hspace{0.5cm} i = 1, ..., n+1,$$

$$d_i = \frac{n+1}{n} c_i, \hspace{0.5cm} i = 1, ..., n+1,$$

then v_i is a unit vector and the identities (6) and (7), together yield that

$$\sum_{i=1}^{n+1} d_i v_i \otimes v_i = I_{n+1}.$$

Define a sequence functions $(f_i)_{1}^{n+1}$ as follows,

$$f_i(t) = \begin{cases} e^{-t}, & \text{if } t \geq 0, \\ 0, & \text{if } t < 0. \end{cases}$$

For any $x \in R^{n+1}$, let

$$F(x) = \prod_{i=1}^{n+1} f_i(\langle v_i, x \rangle)^{d_i},$$

by Theorem 4., we have

$$\int_{R^n} F(x) dx \leq \prod_{i=1}^{n+1} (\int_{R} f_i)^{d_i} = 1.$$ \hspace{1cm} (8)
Some of the above technique are from Ball. Using the similar discussion in [Ba2], we get the integration of F in the hyperplane $\{x : x_{n+1} = r \geq 0\}$

$$e^{-\frac{r}{\sqrt{n}}}Vol(\frac{r}{\sqrt{n}}K) = e^{-\frac{r}{\sqrt{n}}}r^nVol(K).$$

So by (8)

$$1 \geq Vol(K) \int_0^\infty e^{-\frac{r}{\sqrt{n}}}r^n dr = \frac{Vol(K)n!}{\sqrt{n}(n+1)^{n+1}},$$

i.e.,

$$Vol(K) \leq \frac{n^n(n+1)^{n+1}}{n!}. \tag{9}$$

Observe that the right hand of (9) is exactly the volume of the regular simplex whose inscribed ball is B_2^n.

Observe the construction of $(fi)_{1}^{n+1}$, and the Theorem 5. for (8), thus we can get the condition for the equality holds in (9) and that is $(vi)_{1}^{n+1}$ is a sequence of orthonormal basis of R^{n+1}. For any two vectors of this basis

$$v_i = \sqrt{\frac{n}{n+1}}(-u_i, \frac{1}{\sqrt{n}}),$$

and

$$v_j = \sqrt{\frac{n}{n+1}}(-u_j, \frac{1}{\sqrt{n}}),$$

we have

$$0 = \langle v_i, v_j \rangle = \frac{n}{n+1}(u_i, u_j) + \frac{1}{n}. \tag{10}$$

So

$$\langle u_i, u_j \rangle = -\frac{n+1}{n^2}, i \neq j,$$

is a constant. Because that $(u_i)_{1}^{n+1}$ are the normal vectors of the $n + 1$ faces of the simplex K, K is a regular simplex.

This completes the proof of the theorems.

Acknowledgment The authors thank Dr. He Binwu for his valuable advice for this paper.

References

[Ba1] K.M.Ball, *An elementary introduction to modern convex geometry*, Flavors of Geometry, Math.Sci.Res.Inst.Publ.31, Cambridge University Press(1997), 1-58.

[Ba2] K.M.Ball, *Volume ratios and a reverse isoperimetric inequality*, J.London Math. Soc., 44(1991), 351-359.

[Ba3] K.M.Ball, *Ellipsoids of maximal volume in convex bodies*, Geom.Dedicata, 41(1992), 241-250.
[Bar] F. Barthe, *On a reverse form of the Brascamp-Lieb inequality*, *Invent. Math.*, 134 (1998), 335-361.

[BL] H.J. Brascamp and E.H. Lieb, *Best constants in Young’s Inequality, its converse, and its generalization to more than three functions*, *Adv. in Math.*, 20 (1976), 151-173.

[C] H.S.M. Coxeter, *Barycentric Coordinates*, §13.7 in *Introduction to Geometry*, 2nd ed. New York: Wiley, pp. 216-221, 1969.

[J] F. John, *Extremum problems with inequalities as subsidiary conditions*, Courant Anniversary Volume, Interscience, New York (1948), 187-204.