迈向可持续自监督学习：基于目标增强的条件掩码重建自监督学习

高尚华1，周攀2，程明明1*，颜水成3

1. 南开大学计算机学院，天津 300350，中国
2. School of Computing and Information Systems, Singapore Management University, Singapore 178902, Singapore
3. Skywork AI, Singapore 178902, Singapore
* 通信作者. E-mail: cmm@nankai.edu.cn

摘要 自监督学习 (self-supervised learning, SSL) 训练成本日益攀升，而仅有少数最先进的模型会被应用于下游任务。为了降低自监督学习的训练成本，本文探索了一个旨在实现可持续 SSL 训练的框架。该框架通过高效重复利用现有的 SSL 模型（即基模型），以低成本的方式训练出性能更优的新 SSL 模型，从而有效应对了高昂训练成本的挑战。该框架设计了兼容机制，确保新 SSL 模型的训练过程能够与具有不同特性的现有 SSL 模型相适配，实现了对现有 SSL 模型的最大化重复利用。为实现上述目标，我们提出了目标增强的条件掩码重建 (target-enhanced conditional, TEC) 方案，该方案在基于掩码重建的 SSL 算法中引入了两个新组件。首先，我们提出了区域间关系增强策略，以增强基模型提供的重建目标中的区域间关系信息，并使新模型利用不完整的输入来预测基模型提供的目标，从而学习基模型中的语义关系知识。由于该策略使新模型能够处理不完整的输入，有效地提升了新模型在区域间关系建模方面的性能，并有助于新模型实现对基模型的性能超越。其次，我们引入了一个条件适配器，通过调整新模型的预测方式以匹配不同基模型提供的重建目标。大量的实验结果表明，本文的 TEC 方案不仅可以加快学习速度，还可以提升如 MAE 和 iBOT 等现有最优的 SSL 基模型的性能。该方案朝着可持续的自监督学习迈出了探索性的一步。本文工作代码在 https://github.com/sail-sg/tec 开源。

关键词 可持续，自监督学习，预训练，图像掩码建模

1 介绍

自监督学习 (self-supervised learning, SSL) 在无监督表征学习领域取得了显著的成功，在分类[1,2]、目标检测和分割[3,4]等许多下游任务中展现出了惊人的性能提升。在 SSL 训练过程中，首先需要构建一个代理任务，如实例判别任务[5,6]或掩码图像建模 (masked image modeling, MIM)[3,4]，然后通过该
代理任务生成伪标签替代人工标注，以此训练网络模型。尽管取得一些成功，但随着训练数据的增加和模型复杂度的提升，SSL 正朝着需要更高训练成本的方向发展。例如，MoCo [5] 需要 200 个迭代轮次，而 MAE (masked autoencoder) [4] 则需要 1600 个迭代轮次才能充分释放其潜力。不幸的是，大多数研究人员面临有限的计算预算，往往难以承担训练大型 SSL 模型所需的巨额成本。此外，由于非 SOTA (state-of-the-art) 的预训练 SSL 模型在实践中很少被使用，并且由于 SOTA 性能频繁更新，之前的 SSL 模型很快便失去价值，导致大量训练资源的浪费。因此，构建一个可持续的 SSL 框架显得尤为重要。

就像人类社会中的知识在代代相传中逐渐扩充一样，本文试图让新的 SSL 模型在继承先前预训练的 SSL 基模型的知识的同时，增强其相较于基模型的表示学习能力。以此实现的“可持续”SSL 相比从头开始训练一个新的 SSL 模型，在提高学习效率的同时增强了表征能力。图 1 给出了可持续 SSL 的示意图，其中本文将待训练的新 SSL 模型简称为新模型，将预训练的 SSL 模型称为基模型。为了超越基模型，在可持续 SSL 中，新模型不仅要利用基模型隐含的知识，而且要补充基模型中缺乏的知识。不同于有监督学习需要标签来实现自我训练 [7, 8]，本文的可持续 SSL 学习过程遵循完全自监督的范式。该过程也可以被视为在自监督学习范式下，要求新模型比基模型更强大的一种知识蒸馏 [9, 10] 的特例。

在这项工作中，我们通过构建一种能够高效地学习并超越现有预训练 SSL 模型的目标增强的条件掩码重建 (target-enhanced conditional mask reconstruction, TEC) 训练策略，向可持续 SSL 迈出了探索性的一步。为了实现这一具有挑战性的目标，该策略激励新模型不仅学习基模型的知识，还学习更多与语义相关的知识。因此，本文选择了一种基于掩码重建 [4] 的 SSL 方案来训练新模型，其中基模型从完整的输入图像中生成重建目标，而新模型则尝试从随机掩码图像输入中预测该重建目标。通过这一训练任务，新模型必须学习输入图像的完整语义及区域间的关系，以便能够从不完整的输入中推理得到重建目标所需的信息。如图 2 所示，在 iBOT [1] 预训练策略下的 ViT [11] 模型的注意力图中遗漏了一些语义区域，例如耳朵。而以 iBOT 预训练模型为基础模型，经过 TEC 训练后的 ViT 模型捕获了所有区域的语义信息，且有效地区分了图像的不同组成部分的语义差异。由于 TEC 具有更强大地捕获综合语义的能力，因此它有助于实现具有挑战性的可持续 SSL，并且能够为下游任务提供丰富而灵活的语义表征。

然而，不同的 SSL 基模型由于其不同的训练目标和策略，可能展现出各异的属性。例如，iBOT 预训练模型倾向于具有更多的类例语义特征，而 MAE [4] 预训练模型则可能保留更多的图像细节特征。
图 2 自注意力模块的可视化图。该图中每种颜色代表一个自注意力头的注意力。黑色区域则表明在该区域内，没有任何一个自注意力头给予显著的关注。

Figure 2 Self-attention visualization. Different colors denote the attention of different heads. The black regions indicate areas where no attention is given by any of the attention heads.

因此，从基模型中构建高质量且兼容的重建目标显得尤为重要。这样新模型才能高效地学习到更全面的信息。一个合理的重建目标应当能够揭示特征的空间语义关系，比如清晰地展现车轮与车身之间的关联，从而有利于新模型学习出能够广泛适用于各种下游任务的通用关系特征。为此，本文提出采用两种互补的重建目标来提升基模型生成目标的质量：

(a) 空间维度归一化的重建目标。该目标通过对基模型输出特征沿空间维度进行归一化处理，从而强化特征区域之间的关系属性；

(b) 利用基模型中具有丰富语义信息的 token 注意力图作为重建目标，以此过滤掉噪声并建立整个图像与语义丰富区域之间的紧密联系。为了兼容来自不同基模型的重建目标，本文新模型中引入了条件适配器。这些适配器使得新模型的预测结构能够灵活地适应具有不同属性的各种基模型。在给定基模型重建目标的情况下，适配器能够有条件地激活并调整新模型的中间层特征，从而更有效地预测重建目标。这些适配器在预训练阶段完成后通常会被丢弃，但如果保留下来，则可用于实现轻量级的微调 [12,13]。

本文将上述实现可持续 SSL 的方法称为目标增强的条件掩码重建 (TEC)。如图 3 所示，在 ImageNet 数据集上，无需任何额外训练数据的 TEC 相比 MAE [4] 和 iBOT [1] 等 SSL 基模的性能有显著改善。例如，以 1600 迭代轮次的 iBOT 为基模型，TEC 在仅 800 个迭代轮次下就提高了 1.0% 的分类准确率。此外，本文还发现 TEC 可以显著加快 SSL 模型的学习过程，从而节省训练成本。例如，随机初始化的 TEC 在仅训练 100 个批次和 300 个迭代轮次的情况下，其性能就优于训练了 1600 个批次的 MAE 基模型。该方法迈出了探索可持续 SSL 的第一步，希望其能在未来激发更多的工作，以绿色的方式可持续地改进自监督学习。

2 相关工作

自监督学习。自监督学习通过利用代理任务进行训练，而无需人工标注，来实现表征的预训练。例如，实例识别任务 (instance discrimination, ID) 和掩码图像建模任务 (MIM)。ID 通过学习拉近一个图像的多个视图中提取的表示，来学习强类别的表示 [14~18]。从多视图中提取特征相比有监督训练，通常需要更大的训练成本。MIM 则通过从未掩码部分重建掩码区域 token 的信息来学习语义，这种方式比 ID 能学习到更多的空间语义细节。由于需要处理不完整的输入，MIM 通常需要比 ID 更长的
图 3 (网络版彩图) ImageNet-1k 上的 Top1 精度。TEC 预训练的新模型与其对应的基模型采用相同的颜色表示。三角形代表基模型，星形代表 TEC 模型。TEC 模型的颜色与其基模型的颜色保持一致。预训练 1600 个迭代轮次的 iBOT 模型以及预训练 300/1600 个迭代轮次的 MAE 模型被用作此次实验的基模型。

Figure 3 (Color online) Top1 accuracy on ImageNet-1k. The TEC models maintain the same color as their corresponding base models. The triangles represent base models and the stars represent TEC models. TEC models have the same color as their base models. In this experiment, iBOT pretrained with 1600 epochs and MAE pretrained with 300/1600 epochs are used as base models.

训练轮次才能达到收敛。文献 [19, 20] 探索了结合 MIM 和 ID 的优势，以进一步提高性能。最近，文献 [21] 揭示了 MIM 和 ID 都在学习遮挡不变性特征。我们观察到一个趋势，即这些 SSL 方法需要越来越大的计算成本来实现 SOTA 性能，这阻碍了新的 SSL 方法的发展。为了解决这个问题，我们探索了通过从预先训练好的 SSL 模型中学习知识来实现可持续的 SSL。

各种目标上的掩码图像建模。重建目标指导 MIM 在不同语义空间上进行学习。MIM 已经探索了各种重建目标，例如，RGB 图像像素和分词器 (tokenizers)。为了使图像的处理方式更接近于自然语言处理 (natural language processing, NLP) 中的离散化语言处理方式 [22]，BEIT [5] 采用了 DALLE 预训练的分词器作为预测目标 [23]。CAE [24] 进一步将这种代理任务预测与编码器解构、MAE 和 SimMIM [25] 的研究表明，使用 RGB 图像作为重建目标可以实现具有竞争力的完全微调性能。MaskFeat [26] 揭示了手工设计的 HOG 特征 [27] 是一种有效的目标形式。Ge2-AE [28] 和 MFM [29] 发现图像频域信息可以与 RGB 图像目标形成互补。在 PeCo [30] 中，感知编码本帮助企业学习语义信息。iBOT 和 data2vec [31] 则利用在线动量网络 [5] 来提供在线更新的预测目标。BootMAE [32] 同时利用了 RGB 图像和在线更新的目标进行训练。文献 [33] 通过掩码方案增强了从大型教师模型到紧凑学生模型的蒸馏过程。MVP [34] 以 CLIP 预训练模型 [23] 为目标，引入了从视觉语言预训练中学习到的丰富语义。与这些强调特定重建目标独特属性的工作不同，我们的研究表明，在 TEC 的帮助下，所有 SSL 预训练模型都可以作为良好的基模型。TEC 中的适配器和目标增强方案使其能够灵活地适应各种基模型产生的目标。

自监督知识蒸馏。可持续的 SSL 可以被视为自监督知识蒸馏的特殊情况，因为它们都从 SSL 预训练的模型中学习。Reversed KD [35] 表明在有监督设置下，一个弱教师模型可以作为学生模型受益。ClusterFit [36] 对聚类伪标签进行训练，以减少对代理任务的过拟合。SEED [37] 使用对比损失将大型 SSL 模型中的知识蒸馏到小型模型中。文献 [38] 使用 MLP (multilayer perceptron) 头进行特征回归，将大型 SSL 教师模型蒸馏为紧凑的学生模型。文献 [39] 使用教师模型对实例进行分组，并将实例关系知识传递给学生模型。作为例外，文献 [40] 表明特征蒸馏改善了基于对比的 SSL 模型，但在 SOTA 的 MAE [4] 模型带来的增益有限。本文可持续的 SSL 以一种自监督的方式使新模型优于基模型。我们将在 4.2 小节中表明，本文的 TEC 方法比几种 SOTA 自监督蒸馏方法更有优势。
3.1 总体框架

本文所提出的目标增强的条件掩码重建方法的总体框架如图 4 所示。TEC 依照文献 [3, 4] 采用 vision transformer (ViT) [11] 来实现算法。在掩模重建框架 [4] 下，TEC 由待预训练的新 ViT 编码器，用于条件预训练的条件适配器，用于重建目标预测的多目标解码器，作为基模型的 SSL 预训练 ViT 编码器，以及一个用于从基模型构建特征关系以增强重建目标的目标增强模块组成。具体来说，基模型是 SSL 预训练的 ViT 编码器 (例如 MAE [4])，并用于生成完整图像的隐式语义特征。然后，目标增强模块对隐式语义进行增强，构建两个互补的重建目标作为新模型的监督信号。配备适配器的新 ViT 编码器接收掩码图像输入并生成适配后的隐式语义特征，随后将这些特征输入多目标解码器以预测由基模型提供的重建目标。在预训练之后，新 ViT 编码器被保留用于下游任务，而其他部分则被移除。我们将在 3.2 节中介绍通过适配器辅助的条件预训练，以帮助新模型有效地预测基模型目标，并在 3.3 节中详细介绍用于生成高质量基模型重建目标的目标增强模块。

3.2 条件预训练

如前所述，基模型通常具有不同的属性，例如，iBOT 中含有更多全局类别语义，而 MAE 中更多的是局部细节。因此，新模型的重建预测应该与任意给定的基模型兼容。为了解决图像像素重建的类似问题，文献 [20, 32, 41] 通过尝试以固定特征层进行选择的方法，以便更好地与图像像素目标对齐。然而，从某些固定层中手动选择与不同基模型兼容的特征几乎是不可能的，因此，为了更好地预测基模型目标，对于给定的 SSL 基模型，新模型必须具有条件适应能力。给定一个固定的预训练模型，轻量化微调方案将具有少量参数的可训练额外模块引入预训练模型，使其适应视觉 [12, 13] 和自然语言处理 [42-44] 域的下游任务。例如，提示 (prompt) 方案 [12, 43, 44] 将可学习的输入 token (例如，类别 token) 与特征 token 连接起来，以激活固定的 ViT 模型的某些适用于特定的下游任务的语义特征。此外，将轻量级适配器模块 (例如，MLP [13, 42] 和残差 token [45]) 整合到固定模型中，可以对模型的中间层特征进行调整，从而预测下游任务所需的特征。受这些轻量化微调方案的启发，我们将调整方案引入到预训练阶段，通过为新模型配备条件适配器来处理基模型的多样性。由于我们的适配器仅用于预训练，并将在微调期间删除，因此它们不会增加额外的推理成本。此外，将这些适配器保留在推理阶段可以进一步增强模型的轻量化微调能力。下面将介绍如何将适配器，即输入适配器和编码器适配器，应用于新模型的 ViT 编码器中。
Figure 5 (Color online) Details of input adapter and encoder adapters for conditional pretraining.

Input adapter. For ViT networks, class token is typically connected to input tokens, allowing the network to learn the whole input's semantics. Since the prefix scheme proved the ability of class tokens to adjust the network, we propose to further enhance the adjustment ability of class tokens through an input adapter. As shown in Figure 5, an input adapter consisting of a two-layer MLP layer enhances the representation of class tokens, allowing them to better adapt to the new model's features.

Specifically, we use an MLP layer to process the class token $T \in \mathbb{R}^{C}$ from ViT before adding it to the feature tokens. The enhanced class token T' is obtained using $T' = \text{MLP}(T)$, where C is the feature vector dimension. During pre-training, T' is added to the feature tokens, and the MLP layer enhances the representation of T', allowing the new model to better predict the base model's target.

Encoding adapter. To adjust the intermediate layer features of the new model so that they can adapt to the base model's target, we apply a simple MLP with residual connection [13] as the encoding adapter for ViT. Since we want to remove the adapter after pre-training to achieve higher inference efficiency, we need to keep the encoder network topology unchanged after removing the adapter. So we place the adapter's input in the middle of the encoder and merge all adapter outputs at the encoder's output position. As shown in Figure 5, the feature set $X = \{X_i; i = 1, \ldots, D\}$, where D is the number of encoder intermediate layers, is first divided into N groups, each group containing 3 intermediate layers by default. In the nth group, all the intermediate layers in the group are merged: $Z_n = \text{FC}(\text{Concat}(X_i, \ldots, X_j))$. Then, the adapted feature Z_n is input into the adapter, and the overall feature Z_e is obtained: $Z'_e = Z_n + \text{MLP}(Z_n), \quad Z_e = \sum_{n=1}^{N} Z'_n$. (1)

Among them, MLP is a two-layer fully connected network. After adjusting the feature input, the multi-target decoder is used to predict the base model's target, which will be introduced in Section 3.3 in detail.

3.3 Area Relationship Enhanced Reconstruction Target

To better utilize the knowledge of the base model to achieve sustainable SSL, our goal enhancement module designs two complementary target enhancement strategies: one is a normalized pixel-level target, which aims to enhance the relationship between image tokens, and the other is a semantic-related attention map, used to learn the semantic relationship between image tokens and other image tokens. The pixel-level target aims to reveal the semantic characteristics of specific tokens, while the attention map is more focused on the relationship between image tokens.

Spatial Dimension Normalized Pixel-Level Target. Given a target feature output from the base model, we propose to normalize this feature along the spatial dimension to enhance the feature's spatial relationship. Specifically, for an input with base model target $Y \in \mathbb{R}^{L \times C}$, where L and C represent the number of tokens and channel dimensions, respectively, we normalize the feature Y along the token dimension as $Y_f = (Y - \mu_L)/\sigma_L$. (2)
Figure 6 (Color online) Distribution of token similarity in the MAE model.

其中，μ_L 和 σ_L 分别为沿 token 维度的均值和方差。对于 MIM，这种空间维度归一化比广泛使用的在通道维度上的特征归一化 [26,31,40] 能更好地增强 token 之间的空间关系。这是因为，从图 6 中可以看出，在使用 MAE 预训练得到的模型中，由于所有 token 可能更多地反映了图像的全局语义，因此不同 token 的基模型特征值较为相似，即相似度值很高。这并不能很好地揭示这些 token 之间的空间关系。因此，由于 MIM 的特征与可见 token 的特征具有较高的相似性，模型可以很容易地重建掩码 token 的特征。通道维度归一化仅考虑了 token 内的均值和方差，难以增强 token 之间的关系。实际上，如图 6 所示，通道维度归一化甚至扩大了 token 之间的相似性。而空间维度归一化则确保了每个通道内的值有明显的差异，通过显著降低 token 之间的相似性，增强了 token 之间可能存在的空间关系。此外，从后文的实验可以看出，本文提出的归一化方法可以显著提高新模型的性能。在归一化之后，依照文献 [4]，新模型在解码器生成后使用一个全连接层生成 Z_f，用于预测掩码区域的基模型特征 Y_f，实现了在解码器生成后使用一个全连接层生成 Z_f，用于预测掩码区域的基模型特征 Y_f。
图 7（网络版彩图）语义注意力图选择模块的细节图。
Figure 7 (Color online) Details of the semantic attention map selection.

可训练参数的数量，从而减慢训练速度。为了解决这个问题，我们采用了一个简单的解码器适应方案，即构造特定于目标的输入特征，然后将它们馈送到共享解码器中。具体来说，将新模型编码器的输出特征 Z_e (见式 (1)) 输入到一个全连接层中，然后用一个可学习的掩码 token 填充掩码 token 以获得 Z_f'。类似地，给定 Z_e，也使用一个全连接层和一个可学习的掩码 token 来获得 Z_m'. 接下来，将 Z_f' 和 Z_m' 分别输入到一个共享的基于 transformer 的解码器中，用于预测基模型的特征和注意力映射目标。与 MAE 中编码器输出和普通图像之间的巨大语义差距不同，基模型目标与新模型预测具有相似的语义。因此，一个浅的两层解码器就足够了，并且其效果比 MAE 中使用的 8 层解码效果器更好。这种设计也大大降低了训练成本。

4 实验

在 ImageNet-1k 上，通过预训练随机初始化的 ViT 模型来评估本文的 TEC 方案。训练过程中，使用了 16×16 的 token 尺寸和 224×224 的图像分辨率，并通过 AdamW 优化器，以 4096 的批次大小训练 300/800 个迭代轮次。为了确保性能的改进完全来自于 TEC，我们没有使用任何显式或隐式的额外训练数据，也没有使用比新模型更强的基模型。实际上，我们使用了在 ImageNet-1k 上由 iBOT 和 MAE 预训练的 ViT 模型作为基模型，这些基模型都是从它们的官方公开发布版本中获取的。此外，我们采用了与 MAE 相同的掩码策略，例如使用了 75% 的随机掩码比。

4.1 性能对比

4.1.1 在 ImageNet 数据集分类任务的性能对比

ImageNet-1k 数据集分类任务微调结果。表 1 总结了在 ImageNet-1k 上的分类任务微调性能。可以观察到，以 iBOT 为基模型，从随机初始化开始训练 300 个轮次后，TEC 超出了基模型 0.7%，经过 800 个训练轮次 TEC 提高了 1.0%. 同样，在 300/800 训练轮次下，TEC 相对 MAE 基模型分别带来了 1.1% 和 1.2% 的提升。这些结果表明，我们提出的目标增强的条件掩码重建方案（TEC）实际上可以进一步优化基于 MIM 的强大方法，例如本文使用的 MAE 和 iBOT. 此外，表 1 还显示，在训练成本相似甚至更低的情况下，TEC 优于其他先进的 SSL 方法，包括使用显式额外数据进行训练的方法，如 MVP 和 FD-CLIP. 更令人惊讶的是，仅使用 ImageNet-1k
表 1 在使用 ViT 进行 ImageNet-1k 微调下与现有 SSL 方法的比较。† 和下划线分别表示使用了隐式/显式额外数据。TEC 的预训练 epoch 数是指在基模型的指导下，随机初始化权重模型进行训练的迭代轮次，该数字并不包括基模型的迭代轮次。我们用于比较的结果均来源于各方法官方报告的数据。

Model	Method	Epoch	Guidance	Top1 acc. (%)	
Deit III	[54]	800	Supervised	83.8	
DINO	[46]	300	NA	82.8	
MoCov3	[6]	300	NA	83.2	
MixMIM	[34]	300	RGB	83.2	
MFM	[29]	300	Frequency	83.1	
BEiT	[3]	800	DALLE†	83.2	
SplitMask	[55]	300	NA	83.6	
ConMIM	[56]	800	Momentum	83.7	
SimMIM	[25]	800	RGB	83.8	
SIM	[57]	1600	Momentum	83.8	
CAE	[24]	1600	DALLE†	83.9	
MaskFeat	[26]	1600	HOG	84.0	
LoMaR	[58]	1600	RGB	84.1	
BootMAE	[42]	800	RGB+Momentum	84.2	
data2vec	[31]	800	Momentum	84.2	
Mugs	[2]	1600	NA	84.3	
MVP	[34]	300	CLIP†	84.4	
PeCo	[30]	800	Perceptual codebook	84.5	
Ge2-AE	[28]	800	RGB+Frequency	84.8	
FD-CLIP	[40]	300	CLIP†	84.9	
MAE	[4]	300	RGB	82.9	
TEC	100	MAE300ep	83.9+1.0		
TEC	300	MAE300ep	84.3+1.4		
MAE	[4]	1600	RGB	83.6	
FD-MAE	[40]	300	MAE	83.8+0.2	
TEC	300	MAE	84.7+1.1		
TEC	800	MAE	84.8+1.2		
iBOT-ImageNet-22K	-	Momentum	84.4		
iBOT	[1]	1600	Momentum	84.1	
SemMAE	[59]	800	iBOT	84.5+0.4	
TEC	300	iBOT	84.8+0.7		
TEC	800	iBOT	85.1+1.0		
ViT-Large	MAE	[4]	1600	RGB	85.9
TEC	300	MAE	86.5+0.6		

数据的 TEC 比使用 ImageNet-22k 训练的 iBOT 提高了 0.7%，这表明 TEC 的预训练效果比单纯依赖更多训练数据还要有效。据我们所知，仅使用 ImageNet-1k 时，TEC 配合 ViT-B 模型达到的 85.1% 性
表 2 在轻量化微调下，ImageNet-1k 数据集的分类前 1 精度。

Table 2 Top1 accuracy on the ImageNet-1k dataset under parameter-efficient finetuning.

Method	Epoch	Setting	Top 1 acc. (%)
MAE	1600	Linear probing	68.0
TECMAE	800	+Input adapter FT	72.6
		+Encoder adapter FT	79.9

表 3 在 ImageNet-S 数据集上的半监督语义分割任务结果。

Table 3 Semi-supervised semantic segmentation on the ImageNet-S dataset.

Pretrain	Method	Epoch	mIoU_val (%)
SSL	MAE	1600	38.3
TECMAE	800		42.9
SSL+FT	MAE	1600+100	61.0
TECMAE	800+100		62.0

能创下了新的 SOTA 记录，显示了可持续 SSL 学习的巨大潜力。我们还使用 ViT-Large 研究了 TEC 的扩展能力。我们观察到，从随机初始化开始训练 300 个迭代轮次后，TEC 比基于 MAE 预训练的基模型性能高出 0.6%。

ImageNet-1k 数据集分类任务轻量化微调结果。例如线性预测 (linear probing) 等轻量化微调方法旨在通过微调少量参数来适应下游任务。我们在线性预测设置下测试了 TEC，该设置冻结预训练模块中的参数，仅对输出线性分类器进行微调。表 2 展示了在线性预测下，VIT-B 在 ImageNet-1k 上的分类精度。与 MAE 基模型相比，TEC 的分类精度提高了 1.8%，这表明新学习到的模型中包含更多与类别相关的语义信息。事实上，我们用于预训练的输入适配器和编码器适配器同样适用于轻量化微调。通过对输入适配器进行微调，可以显著提高 4.6% 的精度。同时微调输入适配器和编码器适配器，与 MAE 基模型相比，可以提高 11.9% 的精度。这也进一步凸显了本文所提出的适配器的优势。

ImageNet-S 数据集的语义分割任务微调结果。为了测试 TEC 预训练模型的像素级表示能力，我们在拥有像素级训练标签的 ImageNet 子数据集 ImageNet-S[60] 上进行了语义分割微调。由于预训练和微调数据间不存在域偏移，我们采用了不带额外分割头的 ViT-B 作为分割模型。从表 3 可以看出，TECMAE 在 mIoU 上相较于 MAE 基模型提高了 4.6%。当使用经过有监督 ImageNet 完全微调的预训练模型时，TECMAE 相比 MAE 有 1.0% 的性能提升。

4.1.2 下游任务的迁移学习性能

本小节研究了 TEC 模型在下游任务中的迁移学习能力。

语义分割。在 ADE20k 数据集[61] 上进行语义分割时，我们采用了配备 ViT-B 的 Upernet[62] 作为分割模型。从表 4 可以看出，TEC iBOT 相较于 iBOT 基模型，mIoU 提高了 1.0% 而 TECMAE 则比其 MAE 基模型提高了 1.8%。因此，与它们的基模型相比，TEC 预训练模型在语义分割任务中展示出了更强的迁移学习能力。此外，在预训练轮次较少的情况下，TEC 相较于竞争对手，如 MAE，CAE[24] 和 CMAE[19]，分别高出了 2.9%，0.8% 和 0.9%，实现了新的 SOTA 性能。

实例分割。对于 COCO 数据集上的实例分割任务[63]，为了确保公平性，将 iBOT[1] 和 ViTDet[45] 所实现的 Cascade MaskRCNN[64] 应用于基于 iBOT/MAE 基模型的 TEC 之上。根据表 5 的数据展示，当使用 iBOT 的实现时，TEC 在 box AP 上相较于 iBOT 基模型提升了 1.5%，在 mask AP 上则提升了 1.2%；而当采用 ViTDet 的实现时，TEC 在 box AP 上也获得了 0.6% 的提升。
表 4 使用 Upernet 和 ViT-B 在 ADE20k 数据集上语义分割任务的性能对比。
Table 4 Performance comparison of semantic segmentation on ADE20k using Upernet and ViT-B.

Method	Epoch	mIoU (%)
BEiT	800	47.1
PeCo	800	48.5
GE2-AE	800	48.9
CAE	1600	50.2
CMAE	1600	50.1
MAE	1600	48.1
TECMAE	800	49.9
iBOT	1600	50.0
TECiBOT	800	51.0

表 5 使用 Cascade MaskRCNN 和 ViT-B 在 COCO 数据集上实例分割任务的性能对比。
Table 5 Performance comparison of instance segmentation on COCO using Cascade MaskRCNN and ViT-B.

Method	APbox (%)	APmask (%)
iBOT	51.2	44.2
TECiBOT	52.7	45.4
MAE	54.0	46.7
TECMAE	54.6	47.2

提升了 0.5%。这些结果均表明，TEC 能够稳定地提升模型在实例分割任务的性能。4.2 消融实验和分析

本小节对 TEC 进行了消融实验和分析。在默认情况下，模型会进行 300 个轮次的预训练，随后在 ImageNet-1k 数据集上进行微调和评估。

条件预训练。条件适配器有助于基于不同基模型进行 SSL 预训练。表 6(a) 显示，当使用 MAE 和 iBOT 作为基模型时，适配器分别稳定地提高了 0.4% 和 0.2% 的性能。为了观察对不同基模型的适应差异，我们在图 8 中展示了编码器适配器在编码器输出中所占的平均比例，即式 (1) 中的 Z_e/Z_e'. iBOT 适配器需要适配器从更深的层提取更多特征，而 MAE 适配器则使适配器更关注浅层特征。该结果与基模型的特性相吻合，即 iBOT 基模型含有更多的高级分类语义，而 MAE 模型则保留了更多的低级图像细节。

不同维度上的特征归一化对比。我们在空间维度上对目标特征进行归一化，以凸显 token 之间的相对关系，这与现有的在通道维度上进行特征归一化的方法不同。在表 6(c) 中，对空间维度进行归一化相较于通道维度归一化，性能提升了 0.3%。相反，通道维度归一化与无归一化相比，并未带来任何性能提升。通道维度归一化强调通道间的特征差异。而我们的空间维度归一化则强调 token 之间的关系，这与 MIM 方案中的 token 预测相匹配。表 6(a) 显示，相较于 MAE/iBOT 基模型，使用空间维度归一化特征进行训练分别带来了 0.6%/0.4% 的性能提升，显示了其相对于基模型的优越性。

语义相关注意力图。KQ 注意力图通常揭示了 token 之间的语义关系，因此被用作强化基模型中区域间关系的目标。表 6(a) 显示，引入注意力图进一步提升了使用空间维度归一化训练的模型性能，表 6(f) 比较了不同类型注意力图的效果。仅使用类别 token 的注意力图并没有改善，而使用语义相关 token 的注意力比基线提高了 0.2%。因此，token 之间的关系有助于 MIM 训练。与使用所有的注意力图相比，选择语义相关的注意力图可以降低噪声，从而获得更大的性能提升。

TEC 加快基模型的训练进程。默认情况下，我们使用完全预训练的 SSL 模型作为基模型。为了
表 6 使用 ViT-B 在 ImageNet-1K 数据集分类任务上进行微调的消融分析。

(a) Ablation study of proposed modules.	(b) Effect of adapters.	(c) Patch-norm features.	(d) Initialization with base model pretraining.	(f) Effect of semantic-related patch attention.
Patch-norm. Attention Adapters	MAE base (%)	Setting	Top1 acc. (%)	Setting
Base model performance	MAE base	iBOT base	Top1 acc. (%)	Top1 acc. (%)
√	84.2	84.5	No adapter	83.6
√	84.3	84.7	+ Input adapter	
√	84.6	84.7	+ Encoder adapter	
(a) Ablation study of proposed modules.	(b) Effect of adapters.	(c) Patch-norm features.	(d) Initialization with base model pretraining.	(f) Effect of semantic-related patch attention.
Setting	Top1 acc. (%)	Setting	Top1 acc. (%)	Setting
MAE base	83.6	iBOT base	84.1	iBOT base
NA	83.9	Feature dim.	84.4	No attention
Feature dim.	83.9	Patch dim.	84.8	Cls token only
Patch dim.	84.2	(e) TEC accelerates MAE training.	84.6	All attention
(e) TEC accelerates MAE training.			84.7	Attention select
Setting	Epoch	Top1 acc. (%)		
MAE	1600	83.6	iBOT base	83.6
TECMAE1600ep	300	84.7 + 1.1	No adapter	84.5
MAE	300	82.9	+ Input adapter	84.5
TECMAE300ep	100	83.9 + 1.0	+ Encoder adapter	84.6
TECMAE300ep	300	84.3 + 1.4	iBOT base	84.7
(e) TEC accelerates MAE training.				
Setting	Epoch	Top1 acc. (%)		
MAE	1600	83.6	iBOT base	83.6
TECMAE1600ep	300	84.7 + 1.1	No adapter	84.5
MAE	300	82.9	+ Input adapter	84.5
TECMAE300ep	100	83.9 + 1.0	+ Encoder adapter	84.6
TECMAE300ep	300	84.3 + 1.4	iBOT base	84.7

验证 TEC 是否可以改善未收敛的 SSL 模型，采用经过 300 个迭代轮次 MAE 预训练的 ViT-B 作为基模型，并从随机初始化开始，对 TEC 进行 100/300 个迭代轮次的训练。如表 6(e) 所示，300 轮次预训练的 MAE 的 Top1 准确率为 82.9%。相比之下，TECMAE300ep 在 300/100 轮次时达到 84.3%/83.9%，超过了经过 300 个轮次预训练的 MAE 基模型 1.4%/1.0%。值得注意的是，TECMAE300ep 预训练的 TEC 在仅进行 100 个轮次训练的情况下，甚至比经过 1600 个训练轮次预训练的 MAE 还要高出 0.3%，这表明 TEC 可以显著加速基模型的训练过程。并且，使用训练了 1600 个轮次的 MAE 模型作为基模型的 TECMAE1600ep，进一步提高了 0.4% 的性能，表明本文所使用的学习策略可以依靠好的基模型来取得更好的表现。

是否使用基模型的权重初始化新模型。在 TEC 框架中，新模型是通过随机初始化来开始训练的。表 6(d) 对比了加载与不加载预训练的基模型权重时，新模型的性能差异。结果显示，随机初始化的新模型性能比使用基模型权重进行初始化的新模型要好 0.4%。我们推测，随机初始化的新模型能够避免陷入基模型的局部极小值，同时新模型能够从基模型中学习到不同的权重分布。

迈向通用的可持续 SSL。这项工作旨在以现有的预训练 SSL 模型为基础，向可持续 SSL 迈出第一步。为了向可持续的 SSL 方向更进一步，我们采用 TEC 预训练模型作为新一轮 TEC 预训练的
表 7 使用 TEC 作为新的基模型迈向一般的可持续 SSL.

Model	Base	Epoch	Top1 acc. (%)
iBOT	–	1600	84.1
TEC_iBOT	iBOT	800	85.1
TEC	TEC_iBOT	800	85.2

表 8 TEC 与现有 SSL 方法的预训练成本的对比。我们使用了配置有 8x1A00 的服务器来配置评估训练所需的时间。FLOPs (带梯度) 表示需要反向传播的训练 FLOPs，而 FLOPs (无梯度) 指的是不需要反向传播的 FLOPs.

Method	Epoch	Time (8xA100) (h)	FLOPs (with grad) (G)	FLOPs (no grad) (G)	Parameters (M)	Top1 acc. (%)
VIT-B	–	–	17.6	–	–	–
iBOT	1600	361	8.3	17.6	96.3	84.1
TEC_iBOT	300	25	8.3	17.6	118.6	84.8
MAE	1600	125	9.8	0	111.9	83.6
TEC_MAE	300	25	8.3	17.6	118.6	84.7
表 9 线性预测 (LP)、适配器微调 (adapter FT) 和完全微调 (fully FT) 设定下，ImageNet-1k 数据集上的分类 Top1 精度。

Table 9 Top1 accuracy on the ImageNet-1k dataset under linear probing (LP), adapter finetuning (adapter FT), and fully finetuning (fully FT).

Method	Epoch	Settings	Top1 acc. (%)	Fully FT	Top1 acc. (%)
BET	800	LP	56.7	83.2	
SimMIM	800	LP	56.7	83.8	
BootMAE	800	LP	66.1	84.2	
CAE	800	LP	68.6	83.8	
SemMAE	800	LP	68.7	84.5	
CMAE	800	LP	73.9	84.7	
Ge2-AE	800	LP	75.3	84.8	
MAE	1600	LP	68.0	83.6	
TEC_{MAE}	800	LP	69.8	84.7	
TEC_{MAE}	800	Adapter FT	79.9	84.7	
iBOT	1600	LP	79.8	84.1	
TEC_{iBOT}	800	LP	78.0	84.8	
TEC_{iBOT}	800	Adapter FT	81.9	85.1	

表 10 与自监督蒸馏方法的对比。

Table 10 Comparison with self-supervised distillation methods.

Method	Base	Arch	Epoch	Top 1 acc. (%)
MAE	–	ViT-B	1600	83.6
FDMAR	MAE-ViT-B	ViT-B	300	83.8
TEC_{MAR}	MAE-ViT-B	ViT-B	300	84.7
MoCov3	–	ViT-B	300	83.2
MaskFeat_{MoCov3}	MoCov3-ViT-B	ViT-B	300	83.9
TEC_{MoCov3}	MoCov3-ViT-B	ViT-B	300	84.5

用 MoCov3 ViT-B 作为基模型时，性能提升了 0.6%。

5 总结

本文通过向预训练的 SSL 模型学习，探索了可持续的自监督学习路径。我们提出了一种目标增强的条件掩码重建学习方案，旨在学习和超越现有的自监督学习模型。适配器不仅可以在预训练期间帮助新模型适应各种基模型，还能作为轻量化的微调模块使用。我们将掩模重建方案作为基础，构建具有增强空间关系的预测目标，来辅助 MIM 预训练，并以此超越基模型。本文方法对已有的强大 MIM 预训练方法，如 MAE 和 iBOT，进行了进一步的改进，从而证明了可持续学习的可行性。本文工作标志着向可持续自监督学习迈出的第一步，未来我们将继续探索更为通用的多回合可持续自监督学习框架。

补充材料 本文的补充材料见网络版 infocn.scichina.com。补充材料为作者提供的原始数据，作者对其学术质量和内容负责。
参考文献

1. Zhou J, Wei C, Wang H, et al. iBOT: image BERT pre-training with online tokenizer. In: Proceedings of International Conference on Learning Representations, 2022.
2. Zhou P, Zhou Y, Si C, et al. Mugs: a multi-granular self-supervised learning framework. 2022. ArXiv:2203.14415
3. Bao H, Dong L, Wei F. BEIT: BERT pre-training of image transformers. 2021. ArXiv:2106.08254
4. He K, Chen X, Xie S, et al. Masked autoencoders are scalable vision learners. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2022. 16000–16009
5. He K, Fan H, Wu Y, et al. Momentum contrast for unsupervised visual representation learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2020.
6. Chen X, Xie S, He K. An empirical study of training self-supervised vision transformers. 2021. ArXiv:2104.02057
7. Xie Q, Luong M T, Hovy E, et al. Self-training with noisy student improves imagenet classification. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2020. 10687–10698
8. Yalniz I Z, Jégou H, Chen K, et al. Billion-scale semi-supervised learning for image classification. 2019. ArXiv:1905.00546
9. Hinton G, Vinyals O, Dean J, et al. Distilling the knowledge in a neural network. 2015. ArXiv:1503.02531
10. Gou J, Yu B, Maybank S J, et al. Knowledge distillation: a survey. Int J Comput Vis, 2021, 129: 1789–1819
11. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: transformers for image recognition at scale. 2020. ArXiv:2010.11929
12. Jia M, Tang L, Chen B C, et al. Visual prompt tuning. 2022. ArXiv:2203.12119
13. Chen S, Ge C, Tong Z, et al. Adaptformer: adapting vision transformers for scalable visual recognition. 2022. ArXiv:2205.13535
14. Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations. In: Proceedings of International Conference on Machine Learning (ICML), 2020. 1597–1607
15. Grill J B, Strub F, Altché F, et al. Bootstrap your own latent — a new approach to self-supervised learning. In: Proceedings of Advances in Neural Information Processing Systems, 2020.
16. Chen X, He K. Exploring simple siamese representation learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2021.
17. Zbontar J, Jing L, Misra I, et al. Barlow twins: self-supervised learning via redundancy reduction. 2021. ArXiv:2103.03230
18. Caron M, Misra I, Mairal J, et al. Unsupervised learning of visual features by contrasting cluster assignments. In: Proceedings of Advances in Neural Information Processing Systems, 2020.
19. Huang Z, Jin X, Lu C, et al. Contrastive masked autoencoders are stronger vision learners. 2022. ArXiv:2207.13532
20. Wang L, Liang F, Li Y, et al. RePre: improving self-supervised vision transformer with reconstructive pre-training. 2022. ArXiv:2201.06857
21. Kong X, Zhang X. Understanding masked image modeling via learning occlusion invariant feature. 2022. ArXiv:2208.04164
22. Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding. 2018. ArXiv:1810.04805
23. Ramesh A, Pavlov M, Goh G, et al. Zero-shot text-to-image generation. In: Proceedings of International Conference on Machine Learning (ICML), 2021. 8821–8831
24. Chen X, Ding M, Wang X, et al. Context autoencoder for self-supervised representation learning. 2022. ArXiv:2202.03026
25. Xie Z, Zhang Z, Cao Y, et al. SimMIM: a simple framework for masked image modeling. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2022. 9655–9663
26. Wei C, Fan H, Xie S, et al. Masked feature prediction for self-supervised visual pre-training. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2022. 14668–14678
27. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005. 886–893
28. Liu H, Jiang X, Li X, et al. The devil is in the frequency: gerniated gestalt autoencoder for self-supervised visual pre-training. 2022. ArXiv:2204.08227
29. Xie J, Li W, Zhan X, et al. Masked frequency modeling for self-supervised visual pre-training. 2022. ArXiv:2206.07706
30. Dong X, Bao J, Zhang T, et al. PeCo: perceptual codebook for bert pre-training of vision transformers. 2021. ArXiv:2111.12710
31. Baevski A, Hsu W N, Xu Q, et al. Data2vec: a general framework for self-supervised learning in speech, vision and
language. 2022. ArXiv:2202.03555
32 Dong X, Bao J, Zhang T, et al. Bootstrapped masked autoencoders for vision bert pretraining. In: Proceedings of European Conference on Computer Vision, 2022
33 Yang Z, Li Z, Shao M, et al. Masked generative distillation. 2022. ArXiv:2205.01529
34 Wei L, Xie L, Zhou W, et al. MVP: multimodality-guided visual pre-training. 2022. ArXiv:2203.05175
35 Yuan L, Tay F E, Li G, et al. Revisiting knowledge distillation via label smoothing regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020. 3903–3911
36 Yan X, Misra I, Gupta A, et al. ClusterFit: improving generalization of visual representations. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2020. 6509–6518
37 Fang Z, Wang J, Wang L, et al. SEED: self-supervised distillation for visual representation. 2021. ArXiv:2101.04731
38 Navaneet K, Koohpayegani S A, Tejankar A, et al. SimReg: regression as a simple yet effective tool for self-supervised knowledge distillation. 2022. ArXiv:2201.05131
39 Xu H, Fang J, Zhang X, et al. Bag of instances aggregation boosts self-supervised distillation. In: Proceedings of International Conference on Learning Representations, 2021
40 Wei Y, Hu H, Xie Z, et al. Contrastive learning rivals masked image modeling in fine-tuning via feature distillation. 2022. ArXiv:2205.14141
41 Gao P, Ma T, Li H, et al. ConvMAE: masked convolution meets masked autoencoders. 2022. ArXiv:2205.03892
42 Houlsby N, Giurgiu A, Jastrzebski S, et al. Parameter-efficient transfer learning for NLP. In: Proceedings of International Conference on Machine Learning (ICML), 2019. 2790–2799
43 Li X, Liang P. Prefix-tuning: optimizing continuous prompts for generation. 2021. ArXiv:2101.00190
44 Liu X, Zheng Y, Du Z, et al. GPT understands, too. 2021. ArXiv:2103.10385
45 Li Y, Mao H, Girshick R, et al. Exploring plain vision transformer backbones for object detection. 2022. ArXiv:2203.16527
46 Caron M, Touvron H, Misra I, et al. Emerging properties in self-supervised vision transformers. In: Proceedings of IEEE International Conference on Computer Vision, 2021
47 Li Z, Gao S, Cheng M M. Exploring feature self-relation for self-supervised transformer. 2022. ArXiv:2206.05184
48 Ziegler A, Asano Y M. Self-supervised learning of object parts for semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2022. 14502–14511
49 Wu H, Gao Y, Zhang Y, et al. Self-supervised models are good teaching assistants for vision transformers. In: Proceedings of International Conference on Machine Learning (ICML), 2022. 24031–24042
50 Wang S, Gao J, Li Z, et al. A closer look at self-supervised lightweight vision transformers. 2022. ArXiv:2205.14443
51 Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2009. 248–255
52 Loshchilov I, Hutter F. Decoupled weight decay regularization. 2017. ArXiv:1711.05101
53 Touvron H, Cord M, Jegou H. DeiT III: revenge of the ViT. In: Proceedings of European Conference on Computer Vision, 2022
54 Liu J, Huang X, Liu Y, et al. MixMIM: mixed and masked image modeling for efficient visual representation learning. 2022. ArXiv:2205.13137
55 El-Nouby A, Izacard G, Touvron H, et al. Are large-scale datasets necessary for self-supervised pre-training? 2021. ArXiv:2112.10740
56 Yi K, Ge Y, Li X, et al. Masked image modeling with denoising contrast. 2022. ArXiv:2205.09616
57 Tao C, Zhu X, Huang G, et al. Siamese image modeling for self-supervised vision representation learning. 2022. ArXiv:2206.01204
58 Chen J, Hu M, Li B, et al. Efficient self-supervised vision pretraining with local masked reconstruction. 2022. ArXiv:2206.00790
59 Li G, Zheng H, Liu D, et al. SemMAE: semantic-guided masking for learning masked autoencoders. 2022. ArXiv:2206.10207
60 Gao S, Li Z Y, Yang M H, et al. Large-scale unsupervised semantic segmentation. IEEE Trans Pattern Anal Mach Intell, 2023, 45: 7457–7476
61 Zhou B, Zhao H, Puig X, et al. Semantic understanding of scenes through the ADE20K dataset. Int J Comput Vis, 2019, 127: 302–321
62 Xiao T, Liu Y, Zhou B, et al. Unified perceptual parsing for scene understanding. In: Proceedings of European Conference on Computer Vision, 2018. 418–434
63 Lin T Y, Maire M, Belongie S, et al. Microsoft COCO: common objects in context. In: Proceedings of European
Towards sustainable self-supervised learning: target-enhanced conditional mask-reconstruction for self-supervised learning

Shanghua GAO¹, Pan ZHOU², Ming-Ming CHENG¹* & Shuicheng YAN³

1. College of Computer Science, Nankai University, Tianjin 300350, China
2. School of Computing and Information Systems, Singapore Management University, Singapore 178902, Singapore
3. Skywork AI, Singapore 178902, Singapore
* Corresponding author. E-mail: cmm@nankai.edu.cn

Abstract Although increasingly training expensive, most self-supervised learning (SSL) models have repeatedly been trained from scratch but not fully utilized since only a few SOTAs are employed for downstream tasks. To mitigate the high training costs of SSL, this work explores a framework aimed at sustainable SSL training. This framework efficiently reuses existing SSL models (referred to as “base” models) to train new SSL models with improved performance at a reduced cost. Additionally, it incorporates an adaptation mechanism that ensures the training of new SSL models is compatible with various base models, maximizing their reuse. To achieve this, we propose a target-enhanced conditional (TEC) scheme, which introduces two components to the existing mask-reconstruction based SSL. Firstly, we propose patch-relation enhanced targets that enhance the target given by the base model and encourage the new model to learn semantic relation knowledge from the base model by using incomplete inputs. This hardening and target-enhancing help the new model surpass the base model, since they enforce additional patch relation modeling to handle incomplete input. Secondly, we introduce a conditional adapter that adaptively adjusts new model prediction to align with the target of different base models. Extensive experimental results show that our TEC scheme can accelerate the learning speed and improve SOTA SSL base models, e.g., MAE and iBOT, taking an explorative step towards sustainable SSL. The source code is publicly available at https://github.com/sail-sg/tec.

Keywords sustainable, self-supervised learning, pretraining, mask image modeling