Dark matter relic density from observations of supersymmetry at the ILC

Suvi-Leena Lehtinen

DESY

3.11.2015
Dark matter experiments

Indirect detection

Production at colliders

Direct detection

DM

SM

DM

SM
Measurements at the ILC

Production at the ILC

$\tilde{\chi}_1^0$ $\tilde{\chi}_1^0$ e^- e^+

SUSY

Production at the ILC
Cosmological vs. collider precision

\[\Omega_{CDM} h^2 = 0.1197 \pm 0.0022 \]

\[\Rightarrow \Delta = 2\% \]

\[\Omega_{CDM} h^2 = ? \pm ? \]

\[\Rightarrow \Delta = ?\% \]
How is DM relic density determined

- relic density \propto present day abundance $Y(T_0)$
- $\frac{dY}{ds} \propto \langle \sigma v \rangle (Y^2 - Y_{eq}(T)^2)$
- Full model \Rightarrow prediction for relic density
- micrOMEGAs a code to calculate relic density
 arXiv:1305.0237
Dark matter mechanisms in SUSY

Stau coannihilation is one of the preferred mechanisms to explain dark matter in SUSY

Mastercode arXiv:1508.01173v1
Processes in stau coannihilation

- Pair annihilation depends on LSP mixing and sfermion mass

- Coannihilation depends strongly on the stau-LSP mass difference
Variation of dark matter with masses

- Typical variations in a scenario with many light sparticles

Observable	\pm variation	\pm change in Ω
$m_{\tilde{\chi}^0_1}$	1%	5%
$m_{\tilde{\tau}_1}$	1%	5%
$m_{\tilde{l}_R}$	1%	< 0.5%
$m_{\tilde{l}_L}$	1%	< 0.01%
$m_{\tilde{\nu}}$	10%	< 0.1%
m_{H,A_0}	10%	< 0.1%
$m_{\tilde{\chi}_i}$	10%	< 0.1%
$m_{\tilde{q}}$	10%	< 0.01%

- LSP and stau1 mass crucial, others much less important

Suvi-Leena Lehtinen | LCWS 2015 | 3.11.2015 | 8
Variation of dark matter with mixings

- Typical variations in a scenario with many light sparticles

"observable"	± variation	± change in Ω
stau mixing angle θ_τ	1%	1%
binoness of LSP N_{11}	1%	3.5%
other neutralino mixings	100%	$\sim 1 - 4\%$
Higgs mixing	50%	2%
other mixings	50%	$< 0.1\%$

- Stau and LSP mixing also crucial, Higgs and other neutralino mixings needed to $\sim 10\%$

- What can the ILC give? Study a concrete example
Stau coannihilation observable at the ILC

- pMSSM point with 12 parameters ”STC8” (arXiv:1307.0782)
- $m_{\tilde{\chi}_1^0} = 96$ GeV (bino), $m_{\tilde{\tau}_1} = 107$ GeV (RH)
- True relic density value 0.113
Stau coannihilation observable at the ILC

- pMSSM point with 12 parameters "STC8" (arXiv:1307.0782)
- \(m_{\tilde{\chi}_1^0} = 96 \text{ GeV (bino)},\ m_{\tilde{\tau}_1} = 107 \text{ GeV (RH)} \)
- True relic density value 0.113
SGV analysis of STC8 done by Berggren (arXiv:1508.04383v1)

More details tomorrow early afternoon BSM

$\tilde{\tau}_1 \rightarrow \tilde{\chi}_1^0 \tau$ endpoint $\Rightarrow \Delta m_{\tilde{\tau}_1} = 0.15\%$
500GeV measurements

- Can discover all sleptons, sneutrinos, $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$ and $\tilde{\chi}_1^\pm$
- Precisions on masses and mixings:

Parameter	Value 1	Value 2
$m_{\tilde{\chi}_1^0}$	0.15%	0.5%
$m_{\tilde{\tau}_1}$	0.16%	2.5%
$m_{\tilde{\nu}_{eR}}$	0.17%	0.40%
$m_{\tilde{e}_L}$	1%	1%
$m_{\tilde{\nu}_{e,\mu,\tau}}$	1%	1%
θ_{τ}	1%	20%
$N_{11,12,13,14}$	1% each	U_{mix}, V_{mix} 20% each
Stau1 and LSP mass vs mixings

- **Red**: LSP mass and stau1 mass varied 0.15%
- **Blue**: LSP mixings and stau1 mixing varied 1%
- With these assumptions, mixings dominate uncertainty on relic density Ω

The graph shows the distribution of relic density Ω with and without mass variations. The blue line represents the case where mixings and stau1 mixing are varied by 1%, while the red line shows the case with mass variations for LSP and stau1. The table below provides summary statistics for the relic density distribution:

Distribution	Entries	Mean	RMS
Ω	10000	1	0.002928
Ω_2	10000	1.001	0.0334

- Precisions of stau mixing and LSP mixings need to be studied.
Important to measure: binoness of LSP

- **Blue**: LSP and stau1 mass 0.15%, LSP, stau1 mixings 1%
- **Red**: same but N11 (binoness) fixed

![Histogram of Omega and Omega2](image)

- Omega
 - Entries: 10000
 - Mean: 1
 - RMS: 0.008752

- Omega2
 - Entries: 10000
 - Mean: 1.001
 - RMS: 0.03355

Note:
- N11 fixed
- N11 varied
500 GeV measurements

- **Red**: all sleptons, sneutrinos, $\tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_1^\pm$ varied, rest fixed.
 $\Delta \Omega = 3.5\%$ (fix $N11 \implies \Delta \Omega = 2\%$)

- **Blue**: same but squarks uniformly varied 1 - 50 TeV,
higgses 0.4 - 2 TeV and $\tilde{\chi}_3^0, \tilde{\chi}_4^0, \tilde{\chi}_2^\pm$ 0.25 TeV - 2 TeV

- Unobserved sector causes $\sim 1\sigma$ shift of the mean

![Histogram of Omega](image)
Assumptions for 1TeV measurements

- Assume no further improvement on light sparticle measurements (over-conservative)
- Extended Higgs masses: $\Delta = 1\%$
- $\tilde{\chi}_3^0, \tilde{\chi}_4^0, \tilde{\chi}_2^\pm$: $\Delta = 1\%$

- Red: unobservables fixed
- Blue: unobservables free
- No shift from unobservables, width is similar
Not considered

- MicrOMEGAs \rightarrow tree-level SUSY cross-sections
- SUSY loop corrections can give $\sim 10\%$ (e.g. arXiv:0710.1821v3)
- This probably just a shift of the mean predicted Ω (for other coannihilation scenarios arXiv:1510.0629v1)
MicrOMEGAs → tree-level SUSY cross-sections
SUSY loop corrections can give ≈ 10%
(e.g. arXiv:0710.1821v3)
This probably just a shift of the mean predicted Ω
(for other coannihilation scenarios arXiv:1510.0629v1)

$h_0 - H_0$ mixing angle ignored
Related to couplings of light Higgs
In stau-coannihilation: if sleptons, sneutrinos and light gauginos discovered and if mixings measured to 1%

⇒ ILC precision on relic density $\sim 2 \times$ Planck precision

With current assumptions, uncertainties on mixing properties dominate over mass uncertainties

Need a more reliable estimate of the ILC capabilities e.g. from tau polarisation and polarised cross sections

With real discoveries would need to consider loop corrections
Backup: 500 GeV assumptions

500 GeV discoveries
black=estimate, blue=analysis
(arXiv:1508.04383v1)

	0.15%	0.5%
$m_{\chi_1^0}$		
m_{τ_1}	0.16%	2.5%
m_{e_R}	0.17%	0.40%
$m_{\tilde{e}_L}$	1%	
$m_{\tilde{\nu}_e,\tilde{\nu}_\mu,\tilde{\nu}_\tau}$	1%	
θ_{τ}	1%	20%

$N_{11,12,13,14}$ 1% each U_{mix}, V_{mix} 20% each

Unobservables at 500 GeV - uniform variations

	0.25 – 2 TeV	0.25 – 2 TeV
$m_{\chi_3^0,\chi_4^0}$		
m_{H_0,A_0,H^\pm}	0.4 – 2 TeV	
$m_{\tilde{d}_L,\tilde{u}_L,\tilde{s}_L,\tilde{c}_L}$ all equal	1 – 50 TeV	$m_{\tilde{d}_R,\tilde{u}_R,\tilde{s}_R,\tilde{c}_R} = m_{\tilde{d}_L} - 100$ GeV
$m_{\tilde{t}_1,\tilde{t}_2,\tilde{b}_1,\tilde{b}_2}$ independent	0.6 – 50 TeV	$m_{\tilde{g}}$ 1 – 50 TeV
$\theta_{t,b}$	$-\pi/2 \rightarrow \pi/2$	$A_{t,b}$ $-5000 \rightarrow 5000$
Backup: 1 TeV assumptions

1 TeV observations

Particle	0.17%	0.40%
$m_{\tilde{e}_R}$		
$m_{\tilde{e}_L}$	1%	
$m_{\tilde{\tau}_1}$	0.16%	
$m_{\tilde{\tau}_2}$		2.5%
θ_T	1%	
A_T		20%
$m_{\tilde{\nu}_e,\tilde{\nu}_\mu,\tilde{\nu}_\tau}$	1%	
$m_{\chi_{1,2}^0}$	0.15%	0.5%
$N_{12,13,14}$	1% each	
$m_{\chi_{3,4}^0}$	1%	
$m_{\tilde{H}_0,A_0,H^\pm}$	1%	

Unobserved at 1 TeV

Parameter	Mass
$m_{\tilde{d}_L,\tilde{u}_L,\tilde{s}_L,\tilde{c}_L}$	all equal 1 – 50 TeV
$m_{\tilde{t}_1,\tilde{t}_2,\tilde{b}_1,\tilde{b}_2}$	independent 0.6 – 50 TeV
$\theta_{t,b}$	0 → $\pi/2$
$m_{\tilde{g}}$	1 – 50 TeV
$A_{t,b}$	0 → −5000