THE INDEX WITH RESPECT TO A RIGID SUBCATEGORY OF A TRANGULATED CATEGORY

PETER JØRGENSEN AND AMIT SHAH

Abstract. Palu defined the index with respect to a cluster tilting object in a suitable triangulated category, in order to better understand the Caldero-Chapoton map that exhibits the connection between cluster algebras and representation theory. We push this further by proposing an index with respect to a contravariantly finite, rigid subcategory, and we show this index behaves similarly to the classical index.

Let C be a skeletally small triangulated category with split idempotents, which is thus an extriangulated category (C, E, s). Suppose X is a contravariantly finite, rigid subcategory in C. We define the index $\text{ind}_X(C)$ of an object $C \in C$ with respect to X as the K_0-class $[C]_X$ in Grothendieck group $K_0(C, E_X, s_X)$ of the relative extriangulated category (C, E_X, s_X). By analogy to the classical case, we give an additivity formula with error term for ind_X on triangles in C.

In case X is contained in another suitable subcategory T of C, there is a surjection $Q: K_0(C, E_T, s_T) \to K_0(C, E_X, s_X)$. Thus, in order to describe $K_0(C, E_X, s_X)$, it suffices to determine $K_0(C, E_T, s_T)$ and $\text{Ker} \ Q$. We do this under certain assumptions.

1. Introduction

Cluster algebras were introduced by Fomin–Zelevinsky in [28] and have had an impact not only in mathematical fields, such as combinatorics and geometry, but also in seemingly more distant disciplines, especially particle physics where there is a strong connection to scattering amplitudes. The introduction of the cluster category by Buan–Marsh–Reineke–Reiten–Todorov [15] has established a substantial bond between cluster theory and representation theory. Cluster categories give “categorifications” of cluster algebras via a certain map introduced by Caldero–Chapoton [18]. In suitable contexts, Palu showed in [55] that a version proposed by Caldero–Keller in [20] of the original Caldero-Chapoton map induces a bijection between the indecomposable rigid objects in the cluster category and the cluster variables in the corresponding cluster algebra (see also [17], [19]). Results of this kind have generated vast interest in the Caldero-Chapoton map in various settings; see e.g. [18], [19], [23], [24], [25], [29], [38], [39], [45], [57], [60].

A particularly fruitful aspect of this relationship between cluster theory and representation theory has been the study of cluster tilting objects. In order to better understand the Caldero-Chapoton map, Palu defined the index with respect to a cluster tilting object in a suitable triangulated category. Although initially used as a tool, this index is important and interesting in its own right. For example:
• Dehy–Keller [22] showed that the index induces a bijection between the set of isomorphism classes of rigid indecomposable objects reachable from a cluster tilting subcategory and the corresponding g-vectors (see [47, proof of Thm. 2.10]);
• Grabowski–Pressland [31], [32] used the index to define graded cluster categories; and
• Jørgensen [44] has generalised the index to a higher homological algebra setting, using it to construct higher-dimensional tropical friezes (see also [33]).

Our initial setup is very general. Suppose \mathcal{C} is a skeletally small, idempotent complete, triangulated category with suspension functor Σ. Suppose $\mathcal{T} \subseteq \mathcal{C}$ is a (2-)cluster tilting subcategory (see Definition 4.7) and let $C \in \mathcal{C}$ be an object. Since \mathcal{T} is cluster tilting, there is a triangle of the form $T_1^C \to T_0^C \to C \to \Sigma T_1^C$, with $T_i^C \in \mathcal{T}$. The index of C with respect to \mathcal{T}, in the sense of Palu [55, Sec. 2.1], is the element $[\mathcal{T}]_{C}^{\mathcal{T}} - [\mathcal{T}]_{C}^{\mathcal{T}}$ of the split Grothendieck group $K_0^\mathcal{C}(\mathcal{T})$ of \mathcal{T}. Note that the way in which these T_i^C are found really relies on \mathcal{T} being cluster tilting, so there seems to be no immediate way to extend this theory to the more general rigid subcategory case.

Padrol–Palu–Pilaud–Plamondon recently showed in [54] that $K_0^\mathcal{C}(\mathcal{T})$ shows up in another way using the theory of extriangulated categories of Nakaoka–Palu [53]. Since \mathcal{C} is a triangulated category, we can view it as an extriangulated category $(\mathcal{C}, \mathcal{E}, \mathcal{S})$ (see Example 2.7). In this notation, $\mathcal{E}: \mathcal{C}^{\text{op}} \times \mathcal{C} \to \mathcal{Ab}$ is a biadditive functor to the category \mathcal{Ab} of abelian groups given by $\mathcal{E}(C, A) = \mathcal{C}(C, \Sigma A)$ on objects. Each element $\gamma \in \mathcal{E}(C, A)$ is part of a so-called extriangle in $(\mathcal{C}, \mathcal{E}, \mathcal{S})$ of the form $A \to B \to C \xrightarrow{\gamma} \Sigma A$, where $A \to B \to C \xrightarrow{\gamma} \Sigma A$ is a distinguished triangle in \mathcal{C}.

In order to recover $K_0^\mathcal{C}(\mathcal{T})$ as the Grothendieck group of a certain extriangulated category, we need to tweak this structure just described on \mathcal{C} using \mathcal{T}. The subcategory \mathcal{T} induces a relative extriangulated structure on \mathcal{C} in the sense of [36, Sec. 3.2] (see Subsection 2.4), which yields an extriangulated category $(\mathcal{C}, \mathcal{E}_\mathcal{T}, \mathcal{S}_\mathcal{T})$, where

$$\mathcal{E}_\mathcal{T}(C, A) = \{ \gamma \in \mathcal{E}(C, A) \mid \gamma \circ \xi = 0 \text{ for all } \xi: T \to C \text{ with } T \in \mathcal{T} \}.$$ (1.1)

That is, the extratriangles in $(\mathcal{C}, \mathcal{E}_\mathcal{T}, \mathcal{S}_\mathcal{T})$ are of the form $A \to B \to C \xrightarrow{\gamma} \Sigma A$, where again $A \to B \to C \xrightarrow{\gamma} \Sigma A$ is a triangle in \mathcal{C} but now where we demand that $C(-, \gamma)|_{\mathcal{T}} = 0$. The Grothendieck group of $(\mathcal{C}, \mathcal{E}_\mathcal{T}, \mathcal{S}_\mathcal{T})$ is defined to be

$$K_0(\mathcal{C}, \mathcal{E}_\mathcal{T}, \mathcal{S}_\mathcal{T}) = K_0^\mathcal{C}(\mathcal{T})/\mathcal{I}_\mathcal{T},$$ (1.2)

where

$$\mathcal{I}_\mathcal{T} := \left[\left[A \right]_C^{\text{op}} - \left[B \right]_C^{\text{op}} + \left[C \right]_C^{\text{op}} \middle| A \to B \to C \xrightarrow{\gamma} \Sigma A \text{ is an extriangle in } (\mathcal{C}, \mathcal{E}_\mathcal{T}, \mathcal{S}_\mathcal{T}) \right];$$ (1.3)
see [35], [61], or Definition 3.1 and Remark 3.2. For $C \in \mathcal{C}$, we denote its class in $K_0(C, \mathcal{E}_T, \mathfrak{s}_T)$ by $[C]_T$. It then follows from [54, Prop. 4.11] that there is an isomorphism

$$K_0(C, \mathcal{E}_T, \mathfrak{s}_T) \xrightarrow{\cong} K_0^{sp}(T)$$

induced by the index of Palu. We prove an n-cluster tilting analogue of this isomorphism in Section 4; see Theorem A below.

Since the index is a powerful invariant, the isomorphism of Padrol–Palu–Pilaud–Plamondon is a striking result that demonstrates the significance of extriangulated categories: by transporting along the isomorphism (1.4), we can think of the equivalence class $[C]_T \in K_0(C, \mathcal{E}_T, \mathfrak{s}_T)$ also as an index of C with respect to T. Moreover, rather than needing to pass to the split Grothendieck group $K_0^{sp}(T)$ of T, we can instead adjust the extriangulated structure on C itself. This is something that would be impossible if we were to stay strictly in the realm of triangulated categories.

We push this perspective further, using that any subcategory can induce an extriangulated structure on C. In particular, suppose \mathcal{X} is a suitable contravariantly finite, rigid subcategory (see Setup 3.4), and consider the extriangulated category $(\mathcal{C}, \mathcal{E}_X, \mathfrak{s}_X)$ and its Grothendieck group $K_0(\mathcal{C}, \mathcal{E}_X, \mathfrak{s}_X)$. Note that (1.1), (1.2) and (1.3) above do not use any special properties of T, so $(\mathcal{C}, \mathcal{E}_X, \mathfrak{s}_X)$, \mathcal{I}_X and $K_0(\mathcal{C}, \mathcal{E}_X, \mathfrak{s}_X)$ are all defined similarly. For an object $C \in \mathcal{C}$ consider its equivalence class $[C]_X \in K_0(\mathcal{C}, \mathcal{E}_X, \mathfrak{s}_X)$. We show that this assignment behaves like the classical index with respect to a cluster tilting subcategory. Hence, we may consider $\text{ind}_X(-) := [-]_X$ to be the index with respect to \mathcal{X}; see Definition 3.5. In particular, we show that ind_X is additive on triangles in \mathcal{C} up to an error term; see Theorem A below, or Proposition 3.12 and Theorem 3.14. We denote by $\text{mod}\mathcal{X}$ the category of all finitely presented, additive functors $\mathcal{X}^{\text{op}} \to \text{Ab}$; see Subsection 2.1(iii).

Theorem A. There is a group homomorphism $\theta_X : K_0(\text{mod}\mathcal{X}) \to K_0(\mathcal{C}, \mathcal{E}_X, \mathfrak{s}_X)$, such that if $A \to B \to C \xrightarrow{\gamma} \Sigma A$ is a triangle in \mathcal{C}, then

$$\text{ind}_X(A) - \text{ind}_X(B) + \text{ind}_X(C) = \theta_X([\text{Im}(\mathcal{C}(-, \gamma)|_{\mathcal{X}})])$$

Note that an extriangle $A \to B \to C \xrightarrow{\gamma} \in (\mathcal{C}, \mathcal{E}_X, \mathfrak{s}_X)$ satisfies $\mathcal{C}(-, \gamma)|_{\mathcal{X}} = 0$. Thus, it is a special case of Theorem A that ind_X is additive on extriangles in $(\mathcal{C}, \mathcal{E}_X, \mathfrak{s}_X)$ (see Definition 3.3 and Proposition 3.6).

Suppose now that \mathcal{C} is a skeletally small, k-linear (where k is a field), Hom-finite, idempotent complete, triangulated category. Note that the index with respect to \mathcal{X} induces a homomorphism $K_0^{sp}(\mathcal{C}) \to K_0(\mathcal{C}, \mathcal{E}_X, \mathfrak{s}_X)$ of abelian groups, which we also denote by ind_X. Another benefit of this index is its compatibility with containments of subcategories. Indeed, if $\mathcal{X} \subseteq T$, then it follows that $\mathcal{I}_T \subseteq \mathcal{I}_X$. There is thus an induced
surjective homomorphism $Q: K_0(C, E_T, s_T) \to K_0(C, E_X, s_X)$ of abelian groups, such that $\text{ind}_X = Q \circ \text{ind}_T$ as abelian group homomorphisms $K_0^\text{sp}(C) \to K_0(C, E_X, s_X)$ (see Remark 4.2). In particular,

$$K_0(C, E_X, s_X) \cong K_0(C, E_T, s_T)/\text{Ker} \, Q.$$

(1.5)

Thus, to determine $K_0(C, E_X, s_X)$ reduces to giving a description of $K_0(C, E_T, s_T)$ and $\text{Ker} \, Q$. In Section 4 we give several presentations of $\text{Ker} \, Q$. A general description in terms of θ_T (see Theorem A) is given in Proposition 4.4 assuming only that X and T are additive, contravariantly finite, rigid subcategories closed under isomorphisms and direct summands; and a more explicit presentation using simple modules in $\text{mod} \, T$ is given in Theorem 4.5 if T is also locally bounded and admits right almost split morphisms.

If T is n-cluster tilting (see Definition 4.7) and locally bounded, and C admits a Serre functor, then Theorem 4.11 describes $\text{Ker} \, Q$ in terms of Auslander-Reiten $(n+2)$-angles in T. When $n = 2$, and under some more mild assumptions, $\text{Ker} \, Q$ is isomorphic to the subgroup $N \leq K_0^\text{sp}(T)$ defined in [39, Def. 2.4] via (1.4) above; see Remark 4.13. In particular, the quotient $K_0^\text{sp}(T)/N$ was used by Holm–Jørgensen to define a modified Caldero-Chapoton map in [39], which generalises the original from [18] in different ways. In Remark 4.13 we also recall how

$$K_0(C, E_X, s_X) \cong K_0(C, E_T, s_T)/\text{Ker} \, Q \cong K_0^\text{sp}(T)/N$$

has been used in [46] to define the X-Caldero-Chapoton map (see [46, Def. 5.3]), which recovers the construction of Holm–Jørgensen. These generalised Caldero-Chapoton maps are, under certain conditions, generalised friezes; see [38, Def. 3.4] and [39, Thm. A]. They also recover the combinatorial generalised friezes of [11]; see also [21].

Due to the isomorphism (1.4) for a 2-cluster tilting subcategory, it is natural to ask if there is a similar isomorphism for an n-cluster tilting subcategory T, where $n \geq 2$. We answer this positively in Section 4 (see Theorem B below), using the triangulated index with respect to T (see [44, Def. 3.3], or Definition 4.9), which is a generalisation of Palu’s index seen above. This gives a higher analogue of [54, Prop. 4.11].

Theorem B (=Theorem 4.10). *If T is n-cluster tilting, then the triangulated index index_T of [44] induces an isomorphism $\Psi: K_0^\text{sp}(C, E_T, s_T) \to K_0^\text{sp}(T)$ of abelian groups.*

In the case when T is locally bounded and n-cluster tilting, combining (1.5) and Theorem B shows that $K_0(C, E_X, s_X)$ is isomorphic to a quotient of the split Grothendieck group $K_0^\text{sp}(T)$; see Remark 4.12.

This paper is organised as follows. In Section 2 we lay out any conventions we adopt and collect the main background material. In Section 3 we define the index with respect to a rigid subcategory in a triangulated category and prove Theorem A. In Section 4 we study $K_0(C, E_X, s_X)$ via the canonical surjection $Q: K_0(C, E_T, s_T) \to K_0(C, E_X, s_X)$. In particular, we establish Theorem B in Subsection 4.2.
2. Background

In Subsection 2.1 we detail our general conventions and notation. In Subsections 2.2 and 2.3 we provide a summary of the theory of approximation and localisation in triangulated categories that we will need in our main sections. In Subsection 2.4 we recall the necessary details about (relative) extriangulated categories that we will use later.

2.1. Conventions and notation. For the following, suppose \mathcal{A} is an additive category.

(i) For us, an additive subcategory \mathcal{B} of \mathcal{A} is a full subcategory which is closed under isomorphisms, direct sums and direct summands.

(ii) If $\mathcal{B} \subseteq \mathcal{A}$ is a subcategory closed under finite direct sums, then $[\mathcal{B}]$ denotes the (two-sided) ideal of \mathcal{A} consisting of morphisms factoring through \mathcal{B}. In this case, $\mathcal{A}/[\mathcal{B}]$ denotes the corresponding additive quotient.

Fix a skeleton $\mathcal{A}^{\text{skel}}$ of \mathcal{A}. By $\text{indec} \mathcal{A}$ we mean the class of indecomposable objects of $\mathcal{A}^{\text{skel}}$. Moreover, if $\mathcal{B} \subseteq \mathcal{A}$ is an additive subcategory, we impose that a skeleton $\mathcal{B}^{\text{skel}}$ of \mathcal{B} is chosen inside $\mathcal{A}^{\text{skel}}$. In particular, this forces $\text{indec} \mathcal{B} \subseteq \text{indec} \mathcal{A}$.

(iii) Suppose now that \mathcal{A} is also skeletally small. Let Ab denote the category of all abelian groups. A (covariant) functor $M: \mathcal{A}^{\text{op}} \to \text{Ab}$ is finitely presented if there is an exact sequence $\mathcal{A}(-, A) \to \mathcal{A}(-, B) \to M \to 0$ for some objects $A, B \in \mathcal{A}$; see [7, p. 155]. (Note that these functors have been called ‘coherent’ in e.g. [1] and [42]. There is a more general notion of a coherent functor (see [27, Def. B.5]), but this agrees with what we call finitely presented when, for example, \mathcal{A} is an idempotent complete triangulated category. See [27, App. B] and the references therein for more details.)

Denote by $\text{mod} \mathcal{A}$ the category of finitely presented, additive functors $\mathcal{A}^{\text{op}} \to \text{Ab}$. This category is additive. If \mathcal{A} is also idempotent complete and has weak kernels (e.g. \mathcal{A} is a contravariantly finite, additive subcategory of an idempotent complete, triangulated category), then $\text{mod} \mathcal{A}$ is abelian; see e.g. [42, Def. 2.9]. See [2, Sec. III.2] for more details; see also [1, Sec. 2] and [4].

(iv) Suppose that \mathcal{A} is a skeletally small, idempotent complete, triangulated category and that \mathcal{B} is a contravariantly finite, additive subcategory of \mathcal{A}. Then there is a cohomological, covariant functor

$$
\begin{align*}
\mathcal{A} & \xrightarrow{H_B} \text{mod} \mathcal{B} \\
A & \xleftarrow{} \mathcal{A}(\cdot, A)|_\mathcal{B};
\end{align*}
$$

see [8, p. 846]. Lastly, we set

$$
\mathcal{B}^{\perp_0} := \ker H_B = \{ A \in \mathcal{A} \mid \mathcal{A}(\mathcal{B}, A) = 0 \},
$$

considered as an additive subcategory of \mathcal{A}. Note that \mathcal{B}^{\perp_0} is closed under finite direct sums, so $[\mathcal{B}^{\perp_0}]$ forms an ideal of \mathcal{A}.
We typically assume our categories are skeletally small and idempotent complete in Sections 3–4. See each setup at the beginning of the relevant (sub)section.

2.2. Approximation in triangulated categories. In the general setup for our main sections, there is always an ambient triangulated category. We utilise a collection of results from approximation theory in triangulated categories, especially in Section 3. For the convenience of the reader we recall them here, following Beligiannis [8].

Setup 2.1. Let \mathcal{C} be a skeletally small, idempotent complete, triangulated category. Suppose $X \subseteq \mathcal{C}$ is an additive (see Subsection 2.1(i)), contravariantly finite, rigid subcategory.

The subcategory \mathcal{X} is rigid in \mathcal{C} if $\text{Ext}^1_{\mathcal{C}}(\mathcal{X}, \mathcal{X}) = \text{C}^1(\mathcal{X}, \Sigma \mathcal{X}) = 0$; see [8, Sec. 2.4]. If A is an object in \mathcal{C}, then a right \mathcal{X}-approximation of A is a morphism $\xi: X \to A$ in \mathcal{C}, such that $X \in X$ and for any $X' \in \mathcal{X}$ the induced homomorphism $\text{C}(X', \xi): \text{C}(X', X) \to \text{C}(X', A)$ is surjective. If for each $A \in \mathcal{C}$ there is a right \mathcal{X}-approximation $X \to A$, then \mathcal{X} is said to be contravariantly finite. See [6, pp. 113–114].

Suppose $Y, Z \subseteq \mathcal{C}$ are additive subcategories. Then $\text{add}(Y \ast Z)$ denotes the closure under direct summands of

$$ Y \ast Z := \{ C \in \mathcal{C} \mid \text{there exists a triangle } Y \to C \to Z \to \Sigma Y \text{ with } Y \in Y, Z \in Z \}, $$

considered as a full subcategory of \mathcal{C}.

Remark 2.2. We note that it is frequently the case that $Y \ast Z = \text{add}(Y \ast Z)$ by [42, Prop. 2.1(1)]. In particular, if \mathcal{X} is an additive, rigid subcategory of a Krull–Schmidt triangulated category \mathcal{C}, then $\mathcal{X} \ast \Sigma \mathcal{X}$ is closed under direct summands. Note also that we always have $Y, Z \subseteq \text{add}(Y \ast Z)$.

Now we make several observations related to the subcategory $\mathcal{X} \ast \Sigma \mathcal{X}$ of \mathcal{C}.

(i) Up to isomorphism, each $L \in \text{mod} \mathcal{X}$ has the form $H_{\mathcal{X}}(Z)$, where $Z \in \mathcal{C}$ permits a triangle

$$ X_1 \xrightarrow{\xi_1} X_0 \xrightarrow{} Z \xrightarrow{} \Sigma X_1 $$

in \mathcal{C} with $X_i \in \mathcal{X}$ and, in particular, $Z \in \mathcal{X} \ast \Sigma \mathcal{X}$. Indeed, by definition of $\text{mod} \mathcal{X}$, the functor L fits into an exact sequence

$$ \mathcal{X}(-, X_1) \xrightarrow{\Xi_1} \mathcal{X}(-, X_0) \xrightarrow{} L(-) \xrightarrow{} 0 $$

in $\text{mod} \mathcal{X}$, where $X_i \in \mathcal{X}$; see Subsection 2.1(iii). By Yoneda’s Lemma, we have $\Xi_1 = \mathcal{X}(-, \xi_1)$ for some morphism $\xi_1: X_1 \to X_0$ in \mathcal{C}. Completing ξ to a distinguished triangle (2.1) and applying the cohomological functor $H_{\mathcal{X}}$ (see Subsection 2.1(iv)) yields an exact sequence

$$ \mathcal{X}(-, X_1) \xrightarrow{H_{\mathcal{X}}(-, \xi_1)} \mathcal{X}(-, X_0) \xrightarrow{} \text{C}(-, Z)|_{\mathcal{X}} \xrightarrow{} 0, $$

$$ \text{add}(Y \ast Z).$$
whence $L(-) \cong C(-, Z)\big|_{\mathcal{X}} = H_{\mathcal{X}}(Z)$. This argument is well-known; see, for example, [8, Sec. 4.4], or [14, proof of Lem. 4.3].

(ii) For each $A \in \mathcal{C}$, there is a triangle $\xymatrix{X \ar[r]^-{\xi} & A \ar[r] & Y \ar[r] & \Sigma X}$ in \mathcal{C}, such that $X \in \mathcal{X}$, $Y \in \mathcal{X}^{\perp}0$ and ξ is a right \mathcal{X}-approximation. See [8, Sec. 2.1, Lem. 2.2(i)], also [14, Lem. 1.2].

(iii) Given $A \in \mathcal{C}$, there is a triangle $\xymatrix{Y \ar[r] & Z \ar[r]^-{\zeta} & A \ar[r] & \Sigma Y}$ in \mathcal{C}, such that $Y \in \mathcal{X}^{\perp}0$, and $Z \in \text{add}(\mathcal{X} \ast \Sigma \mathcal{X})$ and ζ is a right $\text{add}(\mathcal{X} \ast \Sigma \mathcal{X})$-approximation. Furthermore, for any $Z' \in \text{add}(\mathcal{X} \ast \Sigma \mathcal{X})$, the homomorphism $C/[\mathcal{X}^{\perp}0](Z', \zeta) : C/[\mathcal{X}^{\perp}0](Z', Z) \rightarrow C/[\mathcal{X}^{\perp}0](Z', A)$ is bijective. See [8, Eq. (4.2), Rem. 4.3, Lem. 4.4 and its proof], also [14, Lem. 3.3].

2.3. Localisation in triangulated categories. We also make use of localisation theory in triangulated categories. Again, we follow Beligiannis [8]. The setup here is the same as for Subsection 2.2.

Setup 2.3. Let \mathcal{C} be a skeletally small, idempotent complete, triangulated category. Suppose $\mathcal{X} \subseteq \mathcal{C}$ is an additive (see Subsection 2.1(i)), contravariantly finite, rigid subcategory.

Following [8], we denote by $(-) : \mathcal{C} \rightarrow \mathcal{C}/[\mathcal{X}^{\perp}0]$ the canonical quotient functor. Since $\mathcal{X}^{\perp}0 = \ker H_{\mathcal{X}}$, there is a commutative diagram as follows.

$$\xymatrix{\mathcal{C} \ar[r]^-{-} \ar[d]_{H_{\mathcal{X}}} & \mathcal{C}/[\mathcal{X}^{\perp}0] \ar[d]^{H_{\mathcal{X}}} \\
\text{mod} \mathcal{X} & \text{mod} \mathcal{X}^{\perp}0} \quad (2.2)$$

Beligiannis proved that the class $\mathcal{R} := \mathcal{R}_{\mathcal{X}}$ of regular morphisms in $\mathcal{C}/[\mathcal{X}^{\perp}0]$ admits a calculus of left and right fractions (in the sense of Gabriel–Zisman [30, Sec. I.2]); see [8, Thm. 4.6]. Recall that a morphism is regular if it is simultaneously a monomorphism and an epimorphism; see [58, p. 163].

Remark 2.4. Generalising work of Buan–Marsh [13], Beligiannis showed that if $\mathcal{X}^{\perp}0$ is contravariantly finite in \mathcal{C}, then the additive category $\mathcal{C}/[\mathcal{X}^{\perp}0]$ has the structure of an integral category; see [8, Prop. 4.12]. Under other assumptions, this quotient category has more structure, e.g. quasi-abelian [59, Thm. 5.5], abelian [16, Thm. 2.2], [51, Thm. 6.4]. An analogue in the context of higher homological algebra has also attracted interest [43, Thm. 0.6].

The next result will often be useful for us; it follows from [8, Lem. 4.1] (see also [13, Lem. 3.3]).

Lemma 2.5. Let $\xymatrix{A \ar[r]^-{\alpha} & B \ar[r]^-{\beta} & C \ar[r]^-{\gamma} & \Sigma C}$ be a triangle in \mathcal{C}. Then the following hold.
(i) $\beta = 0$ in $C/[X^{\perp_0}] \iff H_X(\beta) = H_X(\beta) = 0$ in $\text{mod } X$.

(ii) β is an epimorphism in $C/[X^{\perp_0}] \iff H_X(\beta) = H_X(\beta)$ is an epimorphism in $\text{mod } X \iff \gamma = 0$ in $C/[X^{\perp_0}]$.

(iii) β is a monomorphism in $C/[X^{\perp_0}] \iff H_X(\beta) = H_X(\beta)$ is a monomorphism in $\text{mod } X \iff \alpha = 0 = \gamma$ in $C/[X^{\perp_0}]$.

(iv) $\beta \in \mathcal{R} \iff H_X(\beta) = H_X(\beta)$ is an isomorphism in $\text{mod } X \iff \alpha = 0 = \gamma$ in $C/[X^{\perp_0}]$.

Since \mathcal{R} admits a calculus of left and right fractions, there is a commutative diagram

$\begin{array}{ccc}
C/[X^{\perp_0}] & \xrightarrow{H_X} & \text{mod } X \\
L_{\mathcal{R}} \downarrow & \sim & \downarrow \bar{H}_X \\
(C/[X^{\perp_0}])_{\mathcal{R}} & & \\
\end{array}$

where $L_{\mathcal{R}}$ is the canonical localisation functor and \bar{H}_X is the functor induced from the fact that H_X sends morphisms in \mathcal{R} to isomorphisms in $\text{mod } X$. Moreover, it follows from [8, Thm. 4.6 and its proof] that \bar{H}_X is an equivalence of categories (although this is not the equivalence in the statement of [8, Thm. 4.6] itself).

2.4. Extriangulated categories from triangulated categories. In the pursuit of unifying the theory of exact and triangulated categories, Nakaoka–Palu defined extriangulated categories; see [53, Def. 2.12]. This attempt has been very successful, with many results that hold individually for exact and triangulated categories having been generalised to the extriangulated framework; see e.g. [34], [41], [49], [50], [52], amongst many others.

In this section, we will briefly recall the definition of an extriangulated category. However, since we will not be dealing with the axioms of extriangulated categories, we do not provide all the details here. For more details we refer the reader to [53, Sec. 2]. The extriangulated categories we consider in this article arise from triangulated categories, and we explain this relationship in Example 2.7.

Definition 2.6. An extriangulated category is a triple (\mathcal{C}, E, s), satisfying the following.

(i) \mathcal{C} is an additive category.

(ii) $E: \mathcal{C}^{\text{op}} \times \mathcal{C} \to \text{Ab}$ is a biadditive functor.

(iii) s is an assignment that, for each $A, C \in \mathcal{C}$, assigns to each extension $\delta \in E(C, A)$ an equivalence class $[A \to B \to C]$ of a 3-term complex in \mathcal{C}, where two complexes $A \to B \to C$ and $A \to B' \to C$ are equivalent if there is an isomorphism
b: B → B' and a commutative diagram

\[
\begin{array}{ccc}
A & \to & B \\
\downarrow{b} & & \downarrow{\cong} \\
A & \to & B' \\
\end{array}
\]

(iv) \(s\) is an additive realisation of \(E\) in the sense of [53, Defs. 2.9, 2.10].

(v) \(C, E\) and \(s\) satisfy the axioms in [53, Def. 2.12].

If \((C, E, s)\) is an extriangulated category with \(\delta \in E(C, A)\) and

\[
s(\delta) = [A \to B \to C],
\]

then we call \(X^\bullet: A \to B \to C\) an \(s\)-conflation. Furthermore, in this case, \((X^\bullet, \delta)\) is called an \(E\)-triangle (or simply an extriangle if there is no confusion) and we usually depict this with the diagram \(A \to B \to C \xrightarrow{\delta} \). See [53, Defs. 2.15, 2.19].

Each triangulated category is an example of an extriangulated category. The following explains how.

Example 2.7. Suppose \(C\) is a triangulated category with suspension functor \(\Sigma\). This data allows us to define a biadditive functor \(E: C^{op} \times C \to Ab\) and an additive realisation \(s\) of \(E\) as follows. We define \(E\) on objects by

\[
E(C, A) := C(C, \Sigma A).
\]

For morphisms \(\gamma: C' \to C\) and \(\alpha: A \to A'\), the morphism \(E(\gamma, \alpha): E(C, A) \to E(C', A')\) is given by

\[
E(\gamma, \alpha)(\delta) := (\Sigma \alpha) \circ \delta \circ \gamma.
\]

Now let \(\delta \in E(C, A)\) be an extension, i.e. \(\delta: C \to \Sigma A\) is a morphism in \(C\), and so fits into a triangle of the form

\[
A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\delta} \Sigma A.
\]

(2.4)

In order to define a realisation \(s\) of \(E\), we first need to assign an equivalence class of an 3-term complex to \(\delta\) that has first term \(A\) and last term \(C\). There is a canonical choice given a triangle (2.4): we put

\[
s(\delta) = [A \xrightarrow{\alpha} B \xrightarrow{\beta} C].
\]

Nakaoka–Palu showed that \(s\) defined in this way gives an additive realisation of \(E\) and, moreover, \((C, E, s)\) is an extriangulated category; see [53, Prop. 3.22].

We will need the theory of relative exangulated structures in the sense of [36, Sec. 3.2]. Note that a category is extriangulated if and only if it is 1-exangulated in the sense of
Herschend–Liu–Nakaoka; see [36, Prop. 4.3]. However, since we will need relative exangul-
tated structures solely for extriangulated categories arising from triangulated categories,
we provide a short exposition only in this context.

Suppose \(\mathcal{C} \) is a triangulated category with suspension functor \(\Sigma \), and denote the cor-
responding extriangulated category by \((\mathcal{C}, \mathcal{E}, \mathcal{s}) \); see Example 2.7. Given a full subcategory \(\mathcal{D} \)
of \(\mathcal{C} \), we recall how one obtains a relative extriangulated category \((\mathcal{C}, \mathcal{E}_D, \mathcal{s}_D) \). First, recall
from Subsection 2.1(iv) that the functor \(\mathcal{H}_D : \mathcal{C} \to \text{mod} \mathcal{D} \) is given by \(\mathcal{H}_D(\mathcal{C}) = \mathcal{C}(\cdot, \mathcal{C})|_{\mathcal{D}} \).

Define the subfunctor \(\mathcal{E}_D : \mathcal{C}^{\text{op}} \times \mathcal{C} \to \text{Ab} \) of \(\mathcal{E} \) on objects as follows:

\[
\mathcal{E}_D(\mathcal{C}, A) := \{ \delta \in \mathcal{E}(\mathcal{C}, A) \mid \mathcal{H}_D(\delta) = 0 \}
\]

(2.5)

An additive realisation of \(\mathcal{E}_D \) is given by the restriction \(\mathcal{s}_D \) of \(\mathcal{s} \) to \(\mathcal{E}_D \). Then \((\mathcal{C}, \mathcal{E}_D, \mathcal{s}_D) \)
is an extriangulated category. Furthermore, in this relative extriangulated category, all
objects in \(\mathcal{D} \) become \(\mathcal{E}_D \)-projective in the sense of [9, Exam. 5.9] (see also [53, Def. 3.23]).
See [36, Def. 2.11, Prop. 3.16, Def. 3.18, Prop. 3.19].

As noted in [46, Thm. 2.12], the extriangulated category \((\mathcal{C}, \mathcal{E}_D, \mathcal{s}_D) \) is an extriangulated
subcategory in the sense of [35, Def. 3.7]. In particular, the pair \((\mathbb{I}_{\mathcal{C}}, \Delta) : (\mathcal{C}, \mathcal{E}_D, \mathcal{s}_D) \to (\mathcal{C}, \mathcal{E}, \mathcal{s}) \) is an extriangulated functor in the sense of [10, Def. 2.32], where \(\mathbb{I}_{\mathcal{C}} \) is the identity functor on \(\mathcal{C} \) and \(\Delta : \mathcal{E}_D \Rightarrow \mathcal{E} \) is the canonical natural transformation given by inclusion.

3. THE INDEX WITH RESPECT TO A RIGID SUBCATEGORY

In this section, we prove Theorem A from Section 1. As such, \(K_0 \)-groups of skeletally
small extriangulated categories play a central role here. Before we restrict to Setup 3.4,
we provide some definitions in more generality. The following definition is equivalent to
that of the Grothendieck group of an \(n \)-exangulated category in the sense of Haugland
[35] with \(n = 1 \); see [26, Rem. 2.3], [46, Def. 2.18].

Definition 3.1. Suppose \((\mathcal{C}, \mathcal{E}, \mathcal{s}) \) is a skeletally small extriangulated category. The
Grothendieck group of \((\mathcal{C}, \mathcal{E}, \mathcal{s}) \) is defined to be

\[
K_0(\mathcal{C}, \mathcal{E}, \mathcal{s}) := K_0^{\text{sp}}(\mathcal{C})/\mathcal{I},
\]

where \(\mathcal{I} := \langle [A]^{\text{sp}}_C - [B]^{\text{sp}}_C + [C]^{\text{sp}}_C \mid A \to B \to C \) is an \(\mathcal{s} \)-conflation in \((\mathcal{C}, \mathcal{E}, \mathcal{s}) \rangle.

Remark 3.2. Suppose \((\mathcal{C}, \mathcal{E}, \mathcal{s}) \) is a skeletally small extriangulated category and consider
its Grothendieck group \(K_0(\mathcal{C}, \mathcal{E}, \mathcal{s}) = K_0^{\text{sp}}(\mathcal{C})/\mathcal{I} \), as given in Definition 3.1. Let \(\mathcal{D} \)
be a full subcategory of \(\mathcal{C} \). Then the Grothendieck group of \((\mathcal{C}, \mathcal{E}_D, \mathcal{s}_D) \) is by definition
\(K_0(\mathcal{C}, \mathcal{E}_D, \mathcal{s}_D) = K_0^{\text{sp}}(\mathcal{C})/\mathcal{I}_D \), where

\[
\mathcal{I}_D := \langle [A]^{\text{sp}}_C - [B]^{\text{sp}}_C + [C]^{\text{sp}}_C \mid A \to B \to C \) is an \(\mathcal{s}_D \)-conflation in \((\mathcal{C}, \mathcal{E}_D, \mathcal{s}_D) \rangle.
\]
Thus, the generators of \mathcal{I}_D arise from extriangles $A \to B \to C \xrightarrow{\delta} \to \Sigma A$ in $(\mathcal{C}, \mathcal{E}, \mathcal{s})$ for which $H_D(\delta) = 0$. In particular, \mathcal{I}_D is contained in \mathcal{I}.

Our first result (see Proposition 3.6 below) concerning the index is that it is additive on extriangles in a certain extriangulated category in the following sense.

Definition 3.3. Let $(\mathcal{C}, \mathcal{E}, \mathcal{s})$ be an extriangulated category, and let $\text{obj}(\mathcal{C})$ denote the class of objects in \mathcal{C}. Let G be any abelian group. An assignment $f: \text{obj}(\mathcal{C}) \to G$ is additive on extriangles in $(\mathcal{C}, \mathcal{E}, \mathcal{s})$ if, for each extriangle $A \to B \to C \xrightarrow{\delta}$, we have $f(A) - f(B) + f(C) = 0$.

The prototypical example of an additive assignment on extriangles in an extriangulated category is the length function on short exact sequences in a module category.

Setup 3.4. Let \mathcal{C} be a skeletally small, idempotent complete, triangulated category. Suppose $\mathcal{X} \subseteq \mathcal{C}$ is an additive, contravariantly finite, rigid subcategory. Recall that by an additive subcategory we assume closure under isomorphisms, direct sums and direct summands (see Subsection 2.1(i)).

In particular, Setup 3.4 is the same as Setups 2.1 and 2.3.

Our goal for the remainder of this section is to establish Theorem A. We begin by defining the index on \mathcal{C} with respect to \mathcal{X} (see Definition 3.5). We show this index is additive on extriangles in $(\mathcal{C}, \mathcal{E}_\mathcal{X}, \mathcal{s}_\mathcal{X})$ (see Proposition 3.6), and additive on triangles in \mathcal{C} up to an error term (see Theorem 3.14). In order to prove this, we develop several analogues of results from [44]. We omit the proofs that are entirely similar, but state the needed modifications.

Definition 3.5. If $C \in \mathcal{C}$, then denote by $\text{ind}_\mathcal{X}(C) := [C]_{\mathcal{X}}$ the class of C in the Grothen-dieck group $K_0(\mathcal{C}, \mathcal{E}_\mathcal{X}, \mathcal{s}_\mathcal{X})$. We call $\text{ind}_\mathcal{X}$ the index with respect to \mathcal{X}.

The index with respect to \mathcal{X} also induces a well-defined group homomorphism $K_0^{\text{op}}(\mathcal{C}) \to K_0(\mathcal{C}, \mathcal{E}_\mathcal{X}, \mathcal{s}_\mathcal{X})$, which we also denote by $\text{ind}_\mathcal{X}$ by abuse of notation.

Proposition 3.6. If $A \to B \to C \xrightarrow{\delta} \Sigma A$ is a triangle in \mathcal{C} with $H_\mathcal{X}(\delta) = 0$, then $\text{ind}_\mathcal{X}(B) = \text{ind}_\mathcal{X}(A) + \text{ind}_\mathcal{X}(C)$. In particular, $\text{ind}_\mathcal{X}$ is additive on extriangles in $(\mathcal{C}, \mathcal{E}_\mathcal{X}, \mathcal{s}_\mathcal{X})$.

Proof. Since $H_\mathcal{X}(\delta) = 0$, we have that δ lies in $\mathcal{E}_\mathcal{X}(C, A)$ (see (2.5) in Subsection 2.4), so $\mathcal{s}_\mathcal{X}(\delta) = [A \to B \to C]$. Thus,

$$\text{ind}_\mathcal{X}(A) - \text{ind}_\mathcal{X}(B) + \text{ind}_\mathcal{X}(C) = [A]_{\mathcal{X}} - [B]_{\mathcal{X}} + [C]_{\mathcal{X}} = 0$$

in $K_0(\mathcal{C}, \mathcal{E}_\mathcal{X}, \mathcal{s}_\mathcal{X})$ and the first claim follows.
Recall that the extriangles $A \rightarrow B \rightarrow C \xrightarrow{\delta} \rightarrow$ in $(\mathcal{C}, \mathbb{E}_\mathcal{X}, \mathfrak{s}_\mathcal{X})$ satisfy $H_\mathcal{X}(\delta) = 0$ (see (2.5) in Subsection 2.4). Thus, the equation above shows that $\text{ind}_\mathcal{X}$ is indeed additive on extriangles in $(\mathcal{C}, \mathbb{E}_\mathcal{X}, \mathfrak{s}_\mathcal{X})$ in the sense of Definition 3.3.

We see later that $\text{ind}_\mathcal{X}$ is additive on triangles in \mathcal{C} up to an error term; see Theorem 3.14. How far this index is from being additive is measured by a certain abelian group homomorphism $\theta_\mathcal{X}$; see Proposition 3.12. For this result we need several preliminary lemmas.

Lemma 3.7. For $C, D \in \mathcal{C}$, the following are equivalent.

(i) $H_\mathcal{X}(C) \cong H_\mathcal{X}(D)$ in $\mathbf{mod}\mathcal{X}$.

(ii) There is a diagram $C \xrightarrow{\gamma} A \xrightarrow{\delta} D$ in \mathcal{C} with $\gamma, \delta \in \mathfrak{R}$.

(iii) There is a diagram $C \xrightarrow{\mu} B \xrightarrow{\nu} D$ in \mathcal{C} with $\mu, \nu \in \mathfrak{R}$.

Proof. We only show (i) \iff (ii); the proof of (i) \iff (iii) is similar.

(ii) $=\Rightarrow$ (i): This follows from Lemma 2.5(iv).

(i) $=\Rightarrow$ (ii): First, $H_\mathcal{X}(C) \cong H_\mathcal{X}(D)$ implies $H_\mathcal{X}(C) \cong H_\mathcal{X}(D)$ (see (2.2)). Using that $\tilde{H}_\mathcal{X}: (\mathcal{C}/[\mathcal{X}^{\perp 0}])_{\mathfrak{R}} \to \mathbf{mod}\mathcal{X}$ is an equivalence (see (2.3)), we see there is an isomorphism $\varphi: L_{\mathfrak{R}}(C) \to L_{\mathfrak{R}}(D)$ in the localisation $(\mathcal{C}/[\mathcal{X}^{\perp 0}])_{\mathfrak{R}}$. Since \mathfrak{R} admits a calculus of left fractions in $\mathcal{C}/[\mathcal{X}^{\perp 0}]$, the morphism φ is represented by a roof/left fraction $C \xrightarrow{\gamma} A \xrightarrow{\delta} D$ with $\delta \in \mathfrak{R}$ (see [30, Sec. I.2]). In particular, $H_\mathcal{X}(\delta)$ is an isomorphism in $\mathbf{mod}\mathcal{X}$ by Lemma 2.5(iv). Thus, $\tilde{H}_\mathcal{X}(\varphi) = (H_\mathcal{X}(\delta))^{-1} H_\mathcal{X}(\gamma)$ implies $H_\mathcal{X}(\gamma) = H_\mathcal{X}(\delta) H_\mathcal{X}(\varphi)$ is a composition of isomorphisms, and hence an isomorphism itself. So $\gamma \in \mathfrak{R}$ by Lemma 2.5(iv).

The following result is an analogue of [44, Lem. 4.2].

Lemma 3.8. Suppose $H_\mathcal{X}(C) \cong H_\mathcal{X}(D)$ in $\mathbf{mod}\mathcal{X}$ for some objects $C, D \in \mathcal{C}$. Then $\text{ind}_\mathcal{X}(C) + \text{ind}_\mathcal{X}(\Sigma^{-1} C) = \text{ind}_\mathcal{X}(D) + \text{ind}_\mathcal{X}(\Sigma^{-1} D)$.

Proof. By Lemma 3.7, it is enough to prove this when there is a morphism $\psi: C \to D$ with $\psi \in \mathfrak{R}$, i.e. when $H_\mathcal{X}(\psi)$ is an isomorphism (see Lemma 2.5). Completing ψ to a triangle in \mathcal{C} yields $B \xrightarrow{\chi} C \xrightarrow{\psi} D \xrightarrow{\varphi} \Sigma B$. Rotating this triangle yields another triangle $\Sigma^{-1} C \xrightarrow{-\Sigma^{-1} \psi} \Sigma^{-1} D \xrightarrow{-\Sigma^{-1} \varphi} B \xrightarrow{\chi} C$. Since $H_\mathcal{X}(\psi)$ is an isomorphism, we have $H_\mathcal{X}(\varphi) = H_\mathcal{X}(\chi) = 0$ by Lemma 2.5. Thus, by Proposition 3.6 applied to these triangles, we see that

\[
\text{ind}_\mathcal{X}(B) - \text{ind}_\mathcal{X}(C) + \text{ind}_\mathcal{X}(D) = 0, \\
\text{ind}_\mathcal{X}(\Sigma^{-1} C) - \text{ind}_\mathcal{X}(\Sigma^{-1} D) + \text{ind}_\mathcal{X}(B) = 0.
\]

Combining these gives the desired result. □
The next lemma gives a generalisation of [38, Lem. 1.11(ii)], and it can be checked that the proof given there works for our purposes as well with the addition of the “General Case” we provide. However, the proof we give below is inspired by [14, Lem. 3.6, Prop. 3.7]. Buan–Marsh attribute the proof of [14, Lem. 3.6] to Yann Palu. Recall that the subcategory \(\text{add}(\mathcal{X} \star \Sigma \mathcal{X}) \) of \(\mathcal{C} \) consists of direct summands of objects \(Z \) in \(\mathcal{C} \) that admit a triangle \(X_0 \to Z \to \Sigma X_1 \to \Sigma X_0 \) with \(X_i \in \mathcal{X} \).

Lemma 3.9. If \(Z \in \text{add}(\mathcal{X} \star \Sigma \mathcal{X}) \) and \(C \in \mathcal{C} \), then the mapping

\[
(H_\mathcal{X})_{Z,C} : \mathcal{C}(Z, C) \to (\text{mod } \mathcal{X})(H_\mathcal{X}(Z), H_\mathcal{X}(C))
\]

of Hom-sets induced by \(H_\mathcal{X} \) is surjective.

Proof. We will show that if \(Z \in \text{add}(\mathcal{X} \star \Sigma \mathcal{X}) \) and \(C \in \mathcal{C} \), then

\[
(L_\mathcal{A} \circ (-))_{Z,C} : \mathcal{C}(Z, C) \to (\mathcal{C}/[\mathcal{X}^{\perp_0}])_\mathcal{A}(Z, C)
\]

is surjective. The result then follows from diagrams (2.2) and (2.3), noting that \(\widetilde{H}_\mathcal{X} \) is an equivalence.

Special Case: \(Z \in \mathcal{X} \star \Sigma \mathcal{X} \), i.e. there is a triangle

\[
X_1 \to X_0 \overset{\alpha}{\to} Z \overset{\beta}{\to} \Sigma X_1
\]

in \(\mathcal{C} \) with \(X_i \in \mathcal{X} \).

A morphism in \((\mathcal{C}/[\mathcal{X}^{\perp_0}])_\mathcal{A}(Z, C) \) is given by a left fraction \(Z \xrightarrow{\gamma} A \xrightarrow{\delta} C \) with \(\delta \in \mathcal{A} \). We claim that the morphism \(\gamma \) factors through \(\delta \) (cf. [14, Lem. 3.6]). As \(Z \in \mathcal{X} \star \Sigma \mathcal{X} \), there is a triangle (3.1) in \(\mathcal{C} \) with \(X_i \in \mathcal{X} \). There is also a triangle \(B \xrightarrow{\epsilon} C \xrightarrow{\delta} A \xrightarrow{\zeta} \Sigma B \), where \(\epsilon, \zeta \in [\mathcal{X}^{\perp_0}] \) by Lemma 2.5 as \(\delta \in \mathcal{A} \). Since \(X_0 \) lies in \(\mathcal{X} \) and \(\zeta \) lies in the ideal \([\mathcal{X}^{\perp_0}] \), the composition \(\zeta \gamma \alpha \) is zero. Hence, there is a morphism of triangles (given by the solid arrows in the following diagram)

\[
\begin{array}{c}
X_1 \quad \downarrow \eta \\
X_0 \quad \downarrow \varepsilon_1 \\
B \quad \downarrow \delta \\
C \quad \downarrow \varepsilon_2 \\
A \quad \downarrow \zeta \\
\Sigma X_0 \quad \downarrow \Sigma \eta \\
\Sigma X_1 \quad \downarrow \Sigma \delta \\
\Sigma B
\end{array}
\]

using the axioms of a triangulated category (see [37, (TR4)]). The morphism \(\varepsilon \eta \) also vanishes as \(X_1 \in \mathcal{X} \) and \(\varepsilon \in [\mathcal{X}^{\perp_0}] \). Since \(X_1 \in \mathcal{X} \) and \(\varepsilon \in [\mathcal{X}^{\perp_0}] \), we have that \((\Sigma \varepsilon)(\Sigma \eta) = 0 \) and so there is a morphism \(\varepsilon_2 : \Sigma X_1 \to A \) such that \(\zeta \varepsilon_2 = \Sigma \eta \). Furthermore, the vanishing of \(\zeta(\gamma - \varepsilon_2 \beta) \) implies the existence of a morphism \(\varepsilon_1 : Z \to C \) with \(\delta \varepsilon_1 = \gamma - \varepsilon_2 \beta \), or \(\gamma = \delta \varepsilon_1 + \varepsilon_2 \beta \) (see the diagram just above). Note that \(\beta = 0 \) in \(\mathcal{C}/[\mathcal{X}^{\perp_0}] \) as \(\mathcal{X} \) is rigid. Hence, we have \(\gamma = \delta \varepsilon_1 \) in \(\mathcal{C}/[\mathcal{X}^{\perp_0}] \), as claimed. Lastly, we note this implies \(L_\mathcal{A}(\varepsilon_1) = L_\mathcal{A}(\delta)^{-1} L_\mathcal{A}(\gamma) \), finishing the special case.

General Case: \(Z \in \text{add}(\mathcal{X} \star \Sigma \mathcal{X}) \).
In this case, there is an object \(Z' \in \mathcal{C} \) and a triangle \(X_1 \rightarrow X_0 \rightarrow Z \oplus Z' \rightarrow \Sigma X_1 \) with \(X_i \in \mathcal{X} \). The canonical inclusion \(\iota := \left(\begin{array}{c} id_{X_0} \\ 0 \end{array} \right) : Z \rightarrow Z \oplus Z' \) induces the following commutative diagram

\[
\begin{array}{ccc}
C(Z \oplus Z', C) & \xrightarrow{C(\iota, C)} & C(Z, C) \\
(L_{\mathcal{X}} \circ (\cdot))_{Z \oplus Z'} & & (L_{\mathcal{X}} \circ (\cdot))_{Z, C} \\
(C/\Sigma)_{Z \oplus Z'} & \xrightarrow{(C/\Sigma)_{Z}} & (C/\Sigma)_{Z, C}
\end{array}
\]

The left vertical map is surjective by the Special Case and the lower horizontal map is a split epimorphism, and hence the composition is surjective. It follows from commutativity that the right vertical map is also surjective. \(\blacksquare \)

The next result is a generalisation of [44, Lem. 2.7]. The proof given there works in our setting with minor modifications: use Section 2.2(i) and Lemma 3.9 in place of [44, Lem. 2.4]; and note \(H_\mathcal{X}(\Sigma \mathcal{X}) = 0 \) as \(\mathcal{X} \) is rigid.

Lemma 3.10. Suppose \(0 \rightarrow L \xrightarrow{\iota} M \xrightarrow{\tau} N \rightarrow 0 \) is a short exact sequence in \(\text{mod } \mathcal{X} \). Then, up to isomorphism, it has the form

\[
0 \xrightarrow{\beta} H_\mathcal{X}(A) \xrightarrow{H_\mathcal{X}(\alpha)} H_\mathcal{X}(B) \xrightarrow{H_\mathcal{X}(\gamma)} H_\mathcal{X}(C) \xrightarrow{\beta} 0
\]

for a triangle \(A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} \Sigma A \) in \(\mathcal{C} \), with \(A, B, C \in \mathcal{X} \ast \Sigma \mathcal{X} \).

The next lemma is an analogue of [44, Lem. 4.3] and its proof is similar. Thus, we omit the proof and note that applications of [44, Lem. 2.7], [44, Lem. 4.2], and [44, Lem. 3.7] may be replaced by applications of Lemma 3.10, Lemma 3.8, and Proposition 3.6, respectively.

Lemma 3.11. For a short exact sequence

\[
0 \rightarrow H_\mathcal{X}(X) \rightarrow H_\mathcal{X}(Y) \rightarrow H_\mathcal{X}(Z) \rightarrow 0
\]

in \(\text{mod } \mathcal{X} \), we have

\[
\text{ind}_\mathcal{X}(Y) + \text{ind}_\mathcal{X}(\Sigma^{-1}Y) = \text{ind}_\mathcal{X}(X) + \text{ind}_\mathcal{X}(\Sigma^{-1}X) + \text{ind}_\mathcal{X}(Z) + \text{ind}_\mathcal{X}(\Sigma^{-1}Z).
\]

The failure of the index \(\text{ind}_\mathcal{X} \) to be additive on triangles in \(\mathcal{C} \) can be measured by a homomorphism \(\theta_\mathcal{X} \), which we now define.

Proposition 3.12. There is a well-defined group homomorphism

\[
K_0(\text{mod } \mathcal{X}) \xrightarrow{\theta_\mathcal{X}} K_0(\mathcal{C}, E_\mathcal{X}, s_\mathcal{X})
\]

\[
[H_\mathcal{X}(C)] \rightarrow \text{ind}_\mathcal{X}(C) + \text{ind}_\mathcal{X}(\Sigma^{-1}C).
\]
Proof. Combining Section 2.2(i) and Lemma 3.8 shows that the assignment
\[H_X(C) \mapsto \text{ind}_X(C) + \text{ind}_X(\Sigma^{-1}C), \]
where \(C \in \mathcal{C} \), induces a map \(\text{mod} \mathcal{X} \to K_0(C, E_X, s_X) \) which is constant on isomorphism classes. Furthermore, Lemma 3.11 implies that it factors through \(K_0(\text{mod} \mathcal{X}) \). ■

The following lemma is a corresponding version of [44, Lem. 2.6]. A similar proof can be used. Instead of [44, Lem. 2.4] and [44, Lem. 2.5(i)], use Section 2.2(i) and Lemma 3.9, and Lemma 3.9, respectively. In addition, note that a morphism in \(\mathcal{C} \) vanishes under \(H_X \) if and only if it factors through \(\mathcal{X}^{+0} \) (see Lemma 2.5).

Lemma 3.13. Given \(\zeta: Z \to \Sigma A \) in \(\mathcal{C} \) with \(Z \in \text{add}(\mathcal{X} \ast \Sigma \mathcal{X}) \), there is a commutative diagram
\[
\begin{array}{ccc}
Z & \xrightarrow{\zeta} & \Sigma A \\
\sigma \downarrow & & \downarrow \iota \\
C & & \\
\end{array}
\]
in \(\mathcal{C} \) with \(C \in \mathcal{X} \ast \Sigma \mathcal{X} \), such that \(H_X(\sigma) \) is epic and \(H_X(\iota) \) is monic. Moreover, \(H_X(C) \) is isomorphic to \(\text{Im} H_X(\zeta) \) in \(\text{mod} \mathcal{X} \).

We now present the main result of this subsection: an additivity formula with error term for the index \(\text{ind}_X \) with respect to the rigid subcategory \(\mathcal{X} \) (cf. [44, Thm. 4.4]).

Theorem 3.14. If \(A \to B \to C \xrightarrow{\gamma} \Sigma A \) is a triangle in \(\mathcal{C} \), then
\[\text{ind}_X(A) - \text{ind}_X(B) + \text{ind}_X(C) = \theta_X(\text{Im} H_X(\gamma)). \]

Proof. Special Case: \(C \in \text{add}(\mathcal{X} \ast \Sigma \mathcal{X}) \).

One can argue as in the proof of the “Special case” of [44, Thm. 4.4], using Lemma 3.13, Proposition 3.6 and Proposition 3.12 in place of [44, Lem. 2.6], [44, Lem. 3.7] and [44, Lem. 4.1], respectively.

General Case: \(C \in \mathcal{C} \) arbitrary.
By Section 2.2(iii), there is a triangle \(D \rightarrow Z \overset{\zeta}{\rightarrow} C \overset{\delta}{\rightarrow} \Sigma D \), where \(\zeta \) is a right \(\text{add}(\mathcal{X} \ast \Sigma \mathcal{X}) \)-approximation of \(C \). Applying the octahedral axiom (see [37, (TR5'')]) on the composition \(\gamma \zeta \) produces a commutative diagram

\[
\begin{array}{ccc}
0 & \rightarrow & D & \rightarrow & D & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
A & \rightarrow & Y & \rightarrow & Z & \overset{\eta}{\rightarrow} & \Sigma A \\
\| & & \downarrow{\nu} & & \downarrow{\zeta} & & \| \\
A & \rightarrow & B & \overset{\beta}{\rightarrow} & C & \overset{\gamma}{\rightarrow} & \Sigma A \\
\downarrow & & \downarrow{\epsilon} & & \downarrow{\delta} & & \downarrow \\
0 & \rightarrow & \Sigma D & \rightarrow & \Sigma D & \rightarrow & 0
\end{array}
\]

in which each row and column is a triangle. Since \(\zeta \) is a right \(\text{add}(X \ast \Sigma X) \)-approximation, we have that \(H_X(\zeta) \) is an epimorphism. Hence, \(H_X(\delta)H_X(\zeta) = H_X(\delta \zeta) = 0 \) implies \(H_X(\delta) \) is the zero map. In addition, this also gives \(H_X(\epsilon) = H_X(\delta)H_X(\beta) = 0 \). Thus, by Proposition 3.6, we have

\[
\begin{align*}
\text{ind}_X(D) - \text{ind}_X(Z) + \text{ind}_X(C) &= 0, \quad (3.3) \\
\text{ind}_X(D) - \text{ind}_X(Y) + \text{ind}_X(B) &= 0. \quad (3.4)
\end{align*}
\]

As \(Z \in \text{add}(\mathcal{X} \ast \Sigma \mathcal{X}) \), the Special Case gives

\[
\text{ind}_X(A) - \text{ind}_X(Y) + \text{ind}_X(Z) = \theta_X \left([\text{Im} H_X(\eta)] \right). \quad (3.5)
\]

And the sum \((3.3) - (3.4) + (3.5)\) is \(\text{ind}_X(A) - \text{ind}_X(Y) + \text{ind}_X(C) = \theta_X \left([\text{Im} H_X(\eta)] \right) \). Lastly, we observe that \(H_X(\zeta) \) being epic implies that \(\text{Im} H_X(\gamma) \cong \text{Im} H_X(\eta) \) as \(\gamma \zeta = \eta \), so \(\text{ind}_X(A) - \text{ind}_X(B) + \text{ind}_X(C) = \theta_X \left([\text{Im} H_X(\eta)] \right) = \theta_X \left([\text{Im} H_X(\gamma)] \right) \).

4. Understanding \(K_0(\mathcal{C}, \mathcal{E}_X, s_X) \)

In this section, we study the abelian group \(K_0(\mathcal{C}, \mathcal{E}_X, s_X) \). We work under the following setup, but specialise further in Subsection 4.2 in which we prove Theorem B.

Setup 4.1. Let \(k \) be a field. Suppose \(\mathcal{C} \) is a skeletally small, \(k \)-linear, Hom-finite, idempotent complete, triangulated category. Suppose \(\mathcal{X} \subseteq \mathcal{T} \) are additive (see Subsection 2.1(i)), contravariantly finite subcategories, such that \(\mathcal{T} \) (and hence also \(\mathcal{X} \)) is rigid. Furthermore, we define an additive, rigid subcategory \(\mathcal{Y} \subseteq \mathcal{C} \), which is closed under direct summands, by \(\text{indec} \mathcal{T} = \text{indec} \mathcal{X} \cup \text{indec} \mathcal{Y} \).

Note that this is a special case of Setup 3.4, and the assumptions imply \(\mathcal{C} \) is Krull-Schmidt.

4.1. The canonical surjection \(Q \) between relative Grothendieck groups. In this subsection, we study the kernel of the canonical homomorphism \(Q : K_0(\mathcal{C}, \mathcal{E}_T, s_T) \rightarrow K_0(\mathcal{C}, \mathcal{E}_X, s_X) \) induced by the containment \(\mathcal{X} \subseteq \mathcal{T} \) of rigid subcategories in a triangulated category \(\mathcal{C} \). An abstract description of \(\text{Ker} Q \) is given in (4.2), but we give another in
Proposition 4.4 using the homomorphism θ_T from Proposition 3.12. One can compute $\text{Ker} \, Q$ more explicitly in a special case, as we do in Theorem 4.5.

Recall that since \mathcal{C} is triangulated, it has the structure of an extriangulated category, which we denote by $(\mathcal{C}, \mathcal{E}, s)$, where $\mathcal{E}(C, A) = \mathcal{C}(C, \Sigma A)$ for objects $A, C \in \mathcal{C}$ (see Example 2.7). In addition, the subcategories \mathcal{X} and \mathcal{T} induce relative extriangulated structures on \mathcal{C}, namely there are extriangulated categories $(\mathcal{C}, \mathcal{E}_\mathcal{X}, s_\mathcal{X})$ and $(\mathcal{C}, \mathcal{E}_\mathcal{T}, s_\mathcal{T})$ (see Subsection 2.4). In the notation of Remark 3.2, we obtain the following diagram of subgroups in $K_0^{\text{sp}}(\mathcal{C})$ using that $0 \subseteq \mathcal{X} \subseteq \mathcal{T} \subseteq \mathcal{C}$.

\[
\begin{array}{c}
\begin{array}{c}
K_0^{\text{sp}}(\mathcal{C})
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{I}_0 = \langle [A]^{\text{sp}}_C - [B]^{\text{sp}}_C + [C]^{\text{sp}}_C \mid [A \to B \to C] = s(\delta) \text{ for some } \delta \in \mathcal{E}(C, A) \rangle
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{I}_\mathcal{X} = \langle [A]^{\text{sp}}_C - [B]^{\text{sp}}_C + [C]^{\text{sp}}_C \mid [A \to B \to C] = s(\delta) \text{ for some } \delta \in \mathcal{E}_\mathcal{X}(C, A) \rangle
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{I}_\mathcal{T} = \langle [A]^{\text{sp}}_C - [B]^{\text{sp}}_C + [C]^{\text{sp}}_C \mid [A \to B \to C] = s(\delta) \text{ for some } \delta \in \mathcal{E}_\mathcal{T}(C, A) \rangle
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{I}_0 = \langle [A]_C - [B]_C + [C]_C \mid [A \to B \to C] = s(\delta) \text{ for some } \delta \in \mathcal{E}(C, A) \rangle
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{I}_\mathcal{X} = \langle [A]_C - [B]_C + [C]_C \mid [A \to B \to C] = s(\delta) \text{ for some } \delta \in \mathcal{E}_\mathcal{X}(C, A) \rangle
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{I}_\mathcal{T} = \langle [A]_C - [B]_C + [C]_C \mid [A \to B \to C] = s(\delta) \text{ for some } \delta \in \mathcal{E}_\mathcal{T}(C, A) \rangle
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{I}_0 = \langle [A]_C - [B]_C + [C]_C \mid [A \to B \to C] = s(\delta) \text{ for some } \delta \in \mathcal{E}(C, A) \rangle
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{I}_\mathcal{X} = \langle [A]_C - [B]_C + [C]_C \mid [A \to B \to C] = s(\delta) \text{ for some } \delta \in \mathcal{E}_\mathcal{X}(C, A) \rangle
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\mathcal{I}_\mathcal{T} = \langle [A]_C - [B]_C + [C]_C \mid [A \to B \to C] = s(\delta) \text{ for some } \delta \in \mathcal{E}_\mathcal{T}(C, A) \rangle
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
0
\end{array}
\end{array}
\end{array}
\end{array}
\]

See also [46, p. 16].

In particular, there is a canonical surjection

\[
K_0(\mathcal{C}, \mathcal{E}_\mathcal{T}, s_\mathcal{T}) \xrightarrow{Q := Q^\mathcal{T}_X} K_0(\mathcal{C}, \mathcal{E}_\mathcal{X}, s_\mathcal{X}),
\]

where

\[
\text{Ker} \, Q = \langle [A]_\mathcal{T} - [B]_\mathcal{T} + [C]_\mathcal{T} \mid [A \to B \to C] = s(\delta) \text{ for some } \delta \in \mathcal{E}_\mathcal{X}(C, A) \rangle = \langle [A]_\mathcal{T} - [B]_\mathcal{T} + [C]_\mathcal{T} \mid \text{there is a triangle } A \xrightarrow{\delta} B \xrightarrow{\delta} C \xrightarrow{\delta} \Sigma A \text{ with } H_\mathcal{X}(\delta) = 0 \rangle. \tag{4.2}
\]

Remark 4.2. There is a commutative diagram

\[
\begin{array}{ccc}
K_0(\mathcal{C}, \mathcal{E}_\mathcal{T}, s_\mathcal{T}) & \xrightarrow{Q := Q^\mathcal{T}_X} & K_0(\mathcal{C}, \mathcal{E}_\mathcal{X}, s_\mathcal{X})
\end{array}
\]

because $Q \circ \text{ind}_\mathcal{T}(C) = Q([C]_\mathcal{T}) = [C]_\mathcal{X} = \text{ind}_\mathcal{X}(C)$.

Remark 4.3. In the following proposition, which gives a description of $\text{Ker} \, Q$ in terms of $\theta_\mathcal{T}$, note that $L \in \text{mod} \, \mathcal{T}$ is a functor $\mathcal{T}^{\text{op}} \to \text{Ab}$ and that $\mathcal{X} \subseteq \mathcal{T}$, whence the restriction $L|_\mathcal{X}$ makes sense. Note also that

\[
H_\mathcal{T}(C)|_\mathcal{X} = (\mathcal{C}(\langle - \rangle)|_\mathcal{T})|_\mathcal{X} = \mathcal{C}(\langle - \rangle)|_\mathcal{X} = H_\mathcal{X}(C).
\]
Proposition 4.4. We have $\ker Q = \langle \theta_T([L]) \mid L \in \text{mod} \, T \text{ with } L|_\mathcal{X} = 0 \rangle$.

Proof. (\supseteq) Let $L \in \text{mod} \, T$ satisfy $L|_\mathcal{X} = 0$. By Section 2.2(i), there is a triangle

$$
\Sigma^{-1}A \longrightarrow T_1 \longrightarrow T_0 \longrightarrow \tau_0 A
$$

in \mathcal{C} with $T_i \in \mathcal{T}$ such that $L \cong H_T(A)$. Note that $H_T(\tau_0)$ is epic as $H_T(\Sigma T_1) = 0$, so $\text{Im} \, H_T(\tau_0) \cong H_T(A) \cong L$. (4.4)

We have $H_\mathcal{X}(A) = H_T(A)|_\mathcal{X} \cong L|_\mathcal{X} = 0$ by Remark 4.3 and our assumption on L. In particular, $H_\mathcal{X}(\tau_0) = 0$, so (4.3) is one of the triangles in (4.2). Hence,

$$
\theta_T([L]) = \theta_T(\text{Im} \, H_T(\tau_0)) = [\Sigma^{-1}A]_T - [T_1]_T + [T_0]_T
$$

by Theorem 3.14.

Hence, $\theta_T([L]) \in \ker Q$.

(\subseteq) Conversely, consider a generator of $\ker Q$, that is, an element $[A]_T - [B]_T + [C]_T$ of $K_0(\mathcal{C}, \mathcal{E}_T, s_\mathcal{T})$ for which there is a triangle $A \xrightarrow{i} B \xrightarrow{j} C \xrightarrow{k} \Sigma A$ in \mathcal{C} such that $H_\mathcal{X}(\gamma) = 0$; see (4.2). Consider $\text{Im} \, H_T(\gamma) \in \text{mod} \, T$. Note $\theta_T(\text{Im} \, H_T(\gamma)) = [A]_T - [B]_T + [C]_T$ by Theorem 3.14. Thus, it suffices to show that $\text{Im} \, H_T(\gamma)|_\mathcal{X}$ is trivial. Observe that

$$(\text{Im} \, H_T(\gamma)|_\mathcal{X}) = \text{Im}((H_T(\gamma)|_\mathcal{X}) \quad \text{as } (-)|_\mathcal{X} : \text{mod} \, T \to \text{mod} \, \mathcal{X} \text{ is an exact functor}
$$

$$
= \text{Im} \, H_\mathcal{X}(\gamma) \quad \text{by Remark 4.3}
$$

$$
= 0.
$$

Recall that a k-linear category \mathcal{A} is called locally bounded if \mathcal{A} is Hom-finite and, for each indecomposable object $A \in \mathcal{A}$, there are only finitely many objects $B \in \text{indec} \, \mathcal{A}$ such that $\mathcal{A}(A, B) \neq 0$ or $\mathcal{A}(B, A) \neq 0$; see [48, p. 160]. The category \mathcal{A} has right almost split morphisms if each indecomposable object $A \in \mathcal{A}$ admits a right almost split morphism $C \to A$ in the sense of [5, p. 454]; see [3, p. 285], where right almost split morphisms were called ‘almost splittable’.

Theorem 4.5. If \mathcal{T} is locally bounded and has right almost split morphisms, then

$$
\ker Q = \langle \theta_T([S_\mathcal{Y}]) \mid \mathcal{Y} \in \text{indec} \, \mathcal{Y} \rangle,
$$

where $S_\mathcal{Y} \in \text{mod} \, \mathcal{T}$ is the simple top of $\mathcal{T}(\cdot, Y)$.

Proof. Local boundedness and Hom-finiteness imply each $L \in \text{mod} \, \mathcal{X}$ has finite length in $\text{Mod} \, \mathcal{X}$ (the category of all additive functors $\mathcal{X}^{\text{op}} \to \text{Ab}$), hence a finite composition series. The simple quotients in the series are simple tops S_T of objects $\mathcal{T}(\cdot, T)$ for $T \in \text{indec} \, \mathcal{T}$; see [3, Prop. 2.3(b)]. Since \mathcal{T} has right almost split morphisms, the S_T are in $\text{mod} \, \mathcal{T}$ by [3, Cor. 2.6]. Finally, note that $L|_\mathcal{X} = 0$ if and only if each composition factor S_T satisfies
\[S_T|_{\mathcal{X}} = 0, \] that is, if and only if \(T \in \text{indec} \mathcal{Y} \). Hence,
\[
\left\langle \theta_T([S_Y]) \mid Y \in \text{indec} \mathcal{Y} \right\rangle = \left\langle \theta_T([L]) \mid L \in \text{mod} \mathcal{T} \text{ with } L|_{\mathcal{X}} = 0 \right\rangle = \text{Ker} Q,
\]
where the last equality follows from Proposition 4.4.

4.2. Connection to Auslander-Reiten angles and modified Caldero-Chapoton maps. We specialise further in this subsection in order to produce in Theorem 4.11 a presentation of \(\text{Ker} Q \) in terms of Auslander-Reiten angles. In particular, we assume \(\mathcal{T} \) is a locally bounded, \(n \)-cluster tilting subcategory; see the setup below.

Setup 4.6. Let \(k \) be a field and let \(n \geq 2 \) be an integer. Suppose \(\mathcal{C} \) is a skeletally small, \(k \)-linear, Hom-finite, idempotent complete, triangulated category with a Serre functor \(S \). Suppose \(\mathcal{X} \subseteq \mathcal{T} \) are additive (see Subsection 2.1(i)), contravariantly finite subcategories. In addition, suppose \(\mathcal{T} \) is a locally bounded, \(n \)-cluster tilting subcategory of \(\mathcal{C} \) (see Definition 4.7 below). We still define an additive rigid subcategory \(\mathcal{Y} \subseteq \mathcal{C} \), which is closed under direct summands, by \(\text{indec} \mathcal{T} = \text{indec} \mathcal{X} \cup \text{indec} \mathcal{Y} \).

This is a special case of Setup 4.1. Let us recall the definition of \(n \)-cluster tilting.

Definition 4.7. [40], [42, Sec. 3] Suppose \(\mathcal{C} \) is an idempotent complete, triangulated category with an additive subcategory \(\mathcal{T} \). For an integer \(n \geq 2 \), we call \(\mathcal{T} \) an \(n \)-cluster tilting subcategory of \(\mathcal{C} \) if:

(i) \(\mathcal{T} \) is functorially finite; and

(ii) \[\mathcal{T} = \left\{ X \in \mathcal{C} \mid \text{Ext}^i_{\mathcal{C}}(\mathcal{T}, X) = 0 \text{ for all } 1 \leq i \leq n - 1 \right\} = \left\{ X \in \mathcal{C} \mid \text{Ext}^i_{\mathcal{C}}(X, \mathcal{T}) = 0 \text{ for all } 1 \leq i \leq n - 1 \right\}. \]

Our first aim in this subsection is to prove Theorem B from Section 1. For this, we recall the following preliminary definition and then the triangulated index of [44].

Definition 4.8. [44, Def. 3.1] By a tower of triangles in \(\mathcal{C} \), we mean a diagram

\[
\begin{array}{ccccccc}
A_{m-1} & \longrightarrow & A_{m-2} & \rightarrow & \cdots & \rightarrow & A_2 & \rightarrow & A_1 \\
\downarrow & & \downarrow & & \cdots & & \downarrow & & \downarrow \\
A_m & \longleftarrow & V_{m-1.5} & \longleftarrow & V_{m-2.5} & \cdots & V_{2.5} & \longleftarrow & V_{1.5} & \longleftarrow & A_0,
\end{array}
\]

in \(\mathcal{C} \), where \(m \geq 2 \) is an integer, an arrow \(B \longrightarrow C \) represents a morphism \(B \longrightarrow \Sigma C \), each oriented triangle is a triangle in \(\mathcal{C} \), and each non-oriented triangle commutes.
Definition 4.9. [44, Lem. 3.2, Def. 3.3] Let $C \in \mathcal{C}$ be arbitrary. There is a tower of triangles

\[
\begin{array}{cccccc}
T_{n-2} & \longrightarrow & T_{n-3} & \longrightarrow & \cdots & \longrightarrow & T_1 & \longrightarrow & T_0 \\
\downarrow & & \downarrow & & \cdots & & \downarrow & & \downarrow \\
V_{n-2.5} & \leftarrow & V_{n-3.5} & \cdots & \leftarrow V_{0.5} & \leftarrow & C,
\end{array}
\]

where each τ_i is a minimal right \mathcal{T}-approximation. The \textit{triangulated index} of C with respect to \mathcal{T} is

\[
\text{index}_\mathcal{T}(C) := \sum_{i=0}^{n-1} (-1)^i [T_i]^{\text{sp}}_\mathcal{T},
\]

viewed as an element of the split Grothendieck group $K^{\text{sp}}_0(\mathcal{T})$. This assignment induces a surjective homomorphism $\text{index}_\mathcal{T} : K^{\text{sp}}_0(\mathcal{C}) \rightarrow K^{\text{sp}}_0(\mathcal{T})$; see [26, Rem. 2.14].

We can now prove Theorem B from Section 1, which can be viewed as a higher cluster tilting analogue of [54, Prop. 4.11]. Note that this result requires neither the existence of a Serre functor nor that \mathcal{T} is locally bounded.

Theorem 4.10. There is an isomorphism

\[
K_0(\mathcal{C}, \mathcal{E}_\mathcal{T}, \mathcal{S}_\mathcal{T}) \xrightarrow{\Phi_\mathcal{T}} K^{\text{sp}}_0(\mathcal{T})
\]

of abelian groups, making the following diagram commute.

\[
\begin{array}{ccc}
K^{\text{sp}}_0(\mathcal{C}) & \xrightarrow{\text{index}_\mathcal{T}} & K^{\text{sp}}_0(\mathcal{T}) \\
\downarrow & \cong & \downarrow \\
K_0(\mathcal{C}, \mathcal{E}_\mathcal{T}, \mathcal{S}_\mathcal{T}) & \xrightarrow{\Phi_\mathcal{T}} & K^{\text{sp}}_0(\mathcal{T})
\end{array}
\]

Proof. The assignment $\Phi_\mathcal{T}$ gives a well-defined homomorphism, because it sends relations in $K_0(\mathcal{C}, \mathcal{E}_\mathcal{T}, \mathcal{S}_\mathcal{T}) = K^{\text{sp}}_0(\mathcal{C})/\mathcal{I}_\mathcal{T}$ to 0. Namely, a relation arises from a triangle $A \rightarrow B \rightarrow C \xrightarrow{\gamma} \Sigma A$ with $H_\mathcal{T}(\gamma) = 0$, which satisfies $\text{index}_\mathcal{T}(A) - \text{index}_\mathcal{T}(B) + \text{index}_\mathcal{T}(C) = 0$ by [44, Lem. 3.7].

We claim that

\[
K^{\text{sp}}_0(\mathcal{T}) \xrightarrow{\psi_\mathcal{T}} K_0(\mathcal{C}, \mathcal{E}_\mathcal{T}, \mathcal{S}_\mathcal{T})
\]

\[
[T]^{\text{sp}}_\mathcal{T} \dashv [T]_\mathcal{T}
\]

defines an inverse homomorphism to $\Phi_\mathcal{T}$. This formula clearly defines a homomorphism of groups.
To simplify notation, put $\Phi := \Phi_T$ and $\Psi := \Psi_T$. First, note that $\Phi \circ \Psi = \text{id}_{K_0^T(\mathcal{T})}$. Conversely, let $C \in \mathcal{C}$ be arbitrary. Then there is a tower of triangles (4.5), and we have

$$
\Psi \Phi([C]_T) = \Psi(\text{index}_T(C)) = \Psi\left(\sum_{i=0}^{n-1} (-1)^i[T_i]_T\right) = \sum_{i=0}^{n-1} (-1)^i[T_i]_T
$$

by definition of Φ, Ψ, and $\text{index}_T(C)$.

Thus, it suffices to show $[C]_T = \sum_{i=0}^{n-1} (-1)^i[T_i]_T$. Note that, for $0 \leq i \leq n-2$, each τ_i in (4.5) is a minimal right \mathcal{T}-approximation, so $H_\mathcal{T}(\tau_i)$ is surjective. Hence, $H_\mathcal{T}(\nu_{i-0.5}) = 0$ for each $0 \leq i \leq n-2$. Set $V_{-0.5} := C$ and $V_{n-1.5} := T_n$. Then applying Theorem 3.14 yields $[V_{i+0.5}]_\mathcal{T} - [T_i]_\mathcal{T} + [V_{i-0.5}]_\mathcal{T} = 0$ for each $0 \leq i \leq n-2$. Taking their alternating sum yields $[C]_\mathcal{T} = \sum_{i=0}^{n-1} (-1)^i[T_i]_\mathcal{T} = 0$, and hence we see that $\Psi \Phi([C]_T) = [C]_T$, i.e. $\Psi \Phi$ is the identity on $K_0(\mathcal{C}, \mathcal{E}_\mathcal{T}, \mathcal{s}_\mathcal{T})$.

Our last result of this subsection gives an interpretation of $\text{Ker } Q$ in terms of Auslander-Reiten $(n+2)$-angles in \mathcal{T}. Let us recall what this means. An Auslander-Reiten $(n+2)$-angle $T_{n+1} \longrightarrow T_n \longrightarrow \cdots \longrightarrow T_1 \longrightarrow T_0$ in \mathcal{T} amounts to a tower of triangles

\[
\begin{array}{ccccccccccccc}
\beta_{n+1} & & \beta_n & & \alpha_{n-0.5} & & \beta_{n-1} & & \alpha_{2.5} & & \beta_2 & & \alpha_{1.5} & & \beta_1 \\
T_{n+1} & \xleftarrow{\gamma_{n-0.5}} & X_{n-0.5} & \xleftarrow{\gamma_{n-1.5}} & \gamma_{1.5} & \xleftarrow{\gamma_{1.5}} & X_{1.5} & \xleftarrow{\gamma_{0.5}} & T_0
\end{array}
\]

in \mathcal{C}, where:

- β_1 is minimal right almost split in \mathcal{T};
- β_{n+1} is minimal left almost split in \mathcal{T};
- β_2, \ldots, β_n are minimal right \mathcal{T}-approximations; and
- $\alpha_{1.5}, \ldots, \alpha_{n-0.5}$ are minimal left \mathcal{T}-approximations;

see [42, Def. 3.8]. By [42, Thm. 3.10], each $T_0 \in \text{indec } \mathcal{T}$ permits such an Auslander-Reiten $(n+2)$-angle in \mathcal{T} with $T_{n+1} = \mathfrak{S}\Sigma^{-n}T_0$.

Theorem 4.11. The canonical surjection $Q = Q_\mathcal{X}^\mathcal{T}: K_0(\mathcal{C}, \mathcal{E}_\mathcal{T}, \mathcal{s}_\mathcal{T}) \rightarrow K_0(\mathcal{C}, \mathcal{E}_\mathcal{X}, \mathcal{s}_\mathcal{X})$ from (4.1) satisfies

$$
\text{Ker } Q = \left\langle \sum_{i=0}^{n+1} (-1)^i[T_i]_\mathcal{T} \right\rangle \quad \text{where } \begin{cases} T_0 = Y \in \text{indec } \mathcal{Y} \text{ and } T_{n+1} \longrightarrow T_n \longrightarrow \cdots \longrightarrow T_1 \longrightarrow T_0 \end{cases}
$$

is an Auslander-Reiten $(n+2)$-angle in \mathcal{T}.\]
Proof. The subcategory \mathcal{T} has right almost split morphisms because Auslander-Reiten $(n+2)$-angles exist, or by [42, Props. 2.10, 2.11]. In addition, \mathcal{T} is locally bounded by assumption (see Setup 4.6). Hence, Theorem 4.5 applies.

Thus, it suffices to show
\[\sum_{i=0}^{n+1} (-1)^i [T_i]_T = \theta_T([S_{T_0}]). \]
(4.7)
for $T_0 \in \text{indec} \mathcal{T}$, where $S_{T_0} \in \text{mod} \mathcal{T}$ is the simple top of $\mathcal{T}(-, T_0)$ and

$$ T_{n+1} \longrightarrow T_n \longrightarrow \cdots \longrightarrow T_1 \longrightarrow T_0 $$

is an Auslander-Reiten $(n+2)$-angle with associated tower of triangles (4.6). The triangle

$$ X_{1,5} \xrightarrow{\alpha_{1,5}} T_1 \xrightarrow{\beta_1} T_0 \xrightarrow{\gamma_{0,5}} \Sigma X_{1,5} $$

satisfies $\text{Im} H_T(\gamma_{0,5}) = \text{Coker} H_T(\beta_1) = S_{T_0}$, because β_1 is a right almost split morphism. Thus, by Theorem 3.14, we have that

$$ \text{ind}_T(X_{1,5}) - \text{ind}_T(T_1) + \text{ind}_T(T_0) = \theta_T([S_{T_0}]). \quad (4.8) $$

Set $X_{n+0.5} := T_{n+1}$. For $2 \leq i \leq n$, the triangle

$$ X_{i+0.5} \xrightarrow{\alpha_{i+0.5}} T_i \xrightarrow{\beta_i} X_{i-0.5} \xrightarrow{\gamma_{i-0.5}} \Sigma X_{i+0.5} $$

satisfies $\text{Im} H_T(\gamma_{i-0.5}) = 0$, because β_i is a right \mathcal{T}-approximation. So, by Theorem 3.14, we also have that

$$ \text{ind}_T(X_{i+0.5}) - \text{ind}_T(T_i) + \text{ind}_T(X_{i-0.5}) = 0 \quad (4.9) $$

for each $2 \leq i \leq n$. Hence, the sum

$$ (4.8) + \sum_{i=2}^{n} (-1)^{i-1}(4.9)_i $$

is precisely (4.7), which was to be shown. ■

Remark 4.12. It follows from Theorems 4.10 and 4.11 that the group $K_0(\mathcal{C}, \mathcal{E}_\mathcal{X}, s_\mathcal{X}) \cong K_0(\mathcal{C}, \mathcal{E}_\mathcal{T}, s_\mathcal{T})/\text{Ker} Q$ is isomorphic to

$$ K_0^{sp}(\mathcal{T}) \left/ \left(\sum_{i=0}^{n+1} (-1)^i [T_i]_T \right) \right| \begin{array}{c} T_0 \in \text{indec} \mathcal{Y} \text{ and } T_{n+1} \rightarrow T_n \rightarrow \cdots \rightarrow T_1 \rightarrow T_0 \end{array} $$

We finish this section with a remark on how our considerations here relate to the modified Caldero-Chapoton map of Holm–Jørgensen [38], [39] and the \mathcal{X}-Caldero-Chapoton map from [46].

Remark 4.13. In addition to assuming the conditions of Setup 4.6, in this remark we also suppose the following:

(i) k is algebraically closed;

(ii) $n = 2$;
(iii) \(\mathcal{C} \) is 2-Calabi-Yau;

(iv) \(\mathcal{X} \) is functorially finite; and

(v) \(\mathcal{T} \) is part of a cluster structure in the sense of [12, p. 1039].

Thus, for \(Y \in \text{indec} \mathcal{Y} \), there is a pair of exchange triangles

\[
Y \rightarrow A' \rightarrow Y^* \rightarrow \Sigma Y
\]
and

\[
Y^* \rightarrow A \rightarrow Y \rightarrow \Sigma Y^*
\]

that can be glued to obtain an Auslander-Reiten 4-angle

\[
\begin{array}{ccc}
A' & \rightarrow & A \\
\downarrow & & \downarrow \\
Y & \leftarrow & Y^*
\end{array}
\]

in \(\mathcal{T} \). It follows from Theorem 4.11 that

\[
\text{Ker } Q = \left\{ [A]_T - [A]_T \mid \text{there are exchange triangles } Y \rightarrow A' \rightarrow Y^* \rightarrow \Sigma Y \text{ and } Y^* \rightarrow A \rightarrow Y \rightarrow \Sigma Y^* \text{ for } Y \in \text{indec} \mathcal{Y} \right\}.
\]

In particular, this is isomorphic to the subgroup

\[
N = \left\{ [A]'_T - [A]_T \mid \text{there are exchange triangles } Y \rightarrow A' \rightarrow Y^* \rightarrow \Sigma Y \text{ and } Y^* \rightarrow A \rightarrow Y \rightarrow \Sigma Y^* \text{ for } Y \in \text{indec} \mathcal{Y} \right\}
\]

of \(K^0_0(\mathcal{T}) \), using the isomorphism \(K^0_0(\mathcal{T}) \rightarrow K_0(\mathcal{C}, \mathcal{E}_T, s_T) \) sending \([T]_T^\text{sp} \) to \([T]_T \) (see (1.4) from Section 1 or Theorem 4.10, or [54, Prop. 4.11]). Therefore, we have isomorphisms

\[
K^0_0(\mathcal{T})/N \xrightarrow{\epsilon_q} K_0(\mathcal{C}, \mathcal{E}_X, s_X)/\text{Ker } Q \xrightarrow{Q_T} K_0(\mathcal{C}, \mathcal{E}_X, s_X).
\]

The subgroup \(N \) was defined in [39, Def. 2.4]. Although in general the subgroup \(N \) depends on the choice of complement \(\mathcal{Y} \) to \(\mathcal{X} \), the isomorphisms of (4.10) show that the quotient \(K^0_0(\mathcal{T})/N \) is independent of this choice. This was previously only known in the cases when \(\mathcal{C} \) is the cluster category associated to a Dynkin-type \(\mathbb{A} \) quiver [56, Prop. 3.2.3] or a Dynkin-type \(\mathbb{D} \) quiver [56, Thm. 5.1.7]. The authors thank Yann Palu for asking about the dependency of \(N \) on \(\mathcal{Y} \).

In [38] and [39], Holm–Jørgensen generalised the map of Caldero–Chapoton [18] in two ways, by defining their modified Caldero-Chapoton map. This generalisation depends only on a rigid object and can take values in a general commutative ring \(A \). The modified Caldero-Chapoton map depends on several functions. In particular, it utilises a map \(\alpha: \text{obj}(\mathcal{C}) \rightarrow A \) given by \(\alpha(X) = \varepsilon q([T^X_0]_T^\text{sp} - [T^X_1]_T^\text{sp}) \), where \(\varepsilon: K^0_0(\mathcal{T})/N \rightarrow A \) is a map satisfying some properties, \(q: K^0_0(\mathcal{T}) \rightarrow K^0_0(\mathcal{T})/N \) is the canonical quotient, and \([T_0^X]_T^\text{sp} - [T_1^X]_T^\text{sp} \) is the classical Palu index of \(X \) with respect to \(\mathcal{T} \).

When \(\mathcal{X} = \mathcal{T} \) is cluster tilting, we see that \(N = 0 \) and \(q \) is the identity. Thus, in this special case, we input into \(\varepsilon \) the genuine classical index of \(X \) with respect to \(\mathcal{T} \). In the general case, although \(K^0_0(\mathcal{T})/N \) works as the domain for \(\varepsilon \), it does not explain why it is needed. This is now explained by the isomorphism \(K^0_0(\mathcal{T})/N \rightarrow K_0(\mathcal{C}, \mathcal{E}_X, s_X) \) given in
(4.10) and that the Grothendieck group $K_0(C, \mathcal{E}_\mathcal{X}, \mathcal{X})$ is capturing the indices of objects in C with respect to \mathcal{X}. These observations led to the \mathcal{X}-Caldero-Chapoton map defined in [46, Sec. 5].

ACKNOWLEDGEMENTS. This work was supported by a DNRF Chair from the Danish National Research Foundation (grant DNRF156), by a Research Project 2 from the Independent Research Fund Denmark (grant 1026-00050B), by the Aarhus University Research Foundation (grant AUFF-F-2020-7-16), and by the Engineering and Physical Sciences Research Council (grant EP/P016014/1). The second author is also grateful to the London Mathematical Society for funding through an Early Career Fellowship with support from Heilbronn Institute for Mathematical Research (grant ECF-1920-57).

REFERENCES

[1] M. Auslander. Coherent functors. In Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965), pages 189–231. Springer, New York, 1966.

[2] M. Auslander. Representation dimension of artin algebras. Queen Mary College mathematics notes (republished in [4]), 1971.

[3] M. Auslander. Representation theory of Artin algebras. II. Comm. Algebra, 1:269–310, 1974.

[4] M. Auslander. Selected works of Maurice Auslander. Part 1. American Mathematical Society, Providence, RI, 1999. Edited and with a foreword by Idun Reiten, Sverre O. Smalø, and Øyvind Solberg.

[5] M. Auslander and I. Reiten. Representation theory of Artin algebras. IV. Invariants given by almost split sequences. Comm. Algebra, 5(5):443–518, 1977.

[6] M. Auslander and I. Reiten. Applications of contravariantly finite subcategories. Adv. Math., 86(1):111–152, 1991.

[7] A. Beligiannis. On the Freyd categories of an additive category. Homology Homotopy Appl., 2:147–185, 2000.

[8] A. Beligiannis. Rigid objects, triangulated subfactors and abelian localizations. Math. Z., 274(3-4):841–883, 2013.

[9] R. Bennett-Tennenhaus, J. Haugland, M. H. Sandøy, and A. Shah. The category of extensions and a characterisation of n-exangulated functors. Preprint, 2022. https://arxiv.org/abs/2205.03097.

[10] R. Bennett-Tennenhaus and A. Shah. Transport of structure in higher homological algebra. J. Algebra, 574:514–549, 2021.

[11] C. Bessenrodt, T. Holm, and P. Jørgensen. Generalized frieze pattern determinants and higher angularizations of polygons. J. Combin. Theory Ser. A, 123:30–42, 2014.

[12] A. B. Buan, O. Iyama, I. Reiten, and J. Scott. Cluster structures for 2-Calabi-Yau categories and unipotent groups. Compos. Math., 145(4):1035–1079, 2009.

[13] A. B. Buan and B. R. Marsh. From triangulated categories to module categories via localization II: calculus of fractions. J. Lond. Math. Soc. (2), 86(1):152–170, 2012.

[14] A. B. Buan and B. R. Marsh. From triangulated categories to module categories via localisation. Trans. Amer. Math. Soc., 365(6):2845–2861, 2013.

[15] A. B. Buan, B. R. Marsh, M. Reineke, I. Reiten, and G. Todorov. Tilting theory and cluster combinatorics. Adv. Math., 204(2):572–618, 2006.

[16] A. B. Buan, B. R. Marsh, and I. Reiten. Cluster-tilted algebras. Trans. Amer. Math. Soc., 359(1):323–332, 2007.

[17] A. B. Buan, B. R. Marsh, I. Reiten, and G. Todorov. Clusters and seeds in acyclic cluster algebras. Proc. Amer. Math. Soc., 135(10):3049–3060, 2007. With an appendix coauthored in addition by P. Caldero and B. Keller.
[18] P. Caldero and F. Chapoton. *Cluster algebras as Hall algebras of quiver representations*. Comment. Math. Helv., 81(3):595–616, 2006.

[19] P. Caldero and B. Keller. *From triangulated categories to cluster algebras. II*. Ann. Sci. Éc. Norm. Supér. (4), 39(6):983–1009, 2006.

[20] P. Caldero and B. Keller. *From triangulated categories to cluster algebras*. Invent. Math., 172(1):169–211, 2008.

[21] İ. Çanakçı and P. Jørgensen. *Friezes, weak friezes, and T-paths*. Adv. Appl. Math., 131:102253, 19, 2021.

[22] R. Dehy and B. Keller. *On the combinatorics of rigid objects in 2-Calabi-Yau categories*. Int. Math. Res. Not. IMRN, 11, 2008.

[23] L. Demonet. *Categorification of skew-symmetrizable cluster algebras*. Algebr. Represent. Theory, 14(6):1087–1162, 2011.

[24] H. Derksen, J. Weyman, and A. Zelevinsky. *Quivers with potentials and their representations. I. Mutations*. Selecta Math. (N.S.), 14(1):59–119, 2008.

[25] H. Derksen, J. Weyman, and A. Zelevinsky. *Quivers with potentials and their representations II: applications to cluster algebras*. J. Amer. Math. Soc., 23(3):749–790, 2010.

[26] F. Fedele. *Grothendieck groups of triangulated categories via cluster tilting subcategories*. Nagoya Math. J., 244:204–231, 2021.

[27] L. Fiorot. *N-Quasi-Abelian Categories vs N-Tilting Torsion Pairs With an Application to Flops of Higher Relative Dimension*. Doc. Math., 26:149–198, 2021.

[28] S. Fomin and A. Zelevinsky. *Cluster algebras. I. Foundations*. J. Amer. Math. Soc., 15(2):497–529, 2002.

[29] C. Fu and B. Keller. *On cluster algebras with coefficients and 2-Calabi-Yau categories*. Trans. Amer. Math. Soc., 362(2):859–895, 2010.

[30] P. Gabriel and M. Zisman. *Calculus of fractions and homotopy theory*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc., New York, 1967.

[31] J. E. Grabowski. *Graded cluster algebras*. J. Algebraic Combin., 42(4):1111–1134, 2015.

[32] J. E. Grabowski and M. Pressland. *Graded Frobenius cluster categories*. Doc. Math., 23:49–76, 2018.

[33] L. Guo. *On tropical friezes associated with Dynkin diagrams*. Int. Math. Res. Not. IMRN, 18:4243–4284, 2013.

[34] S. Hassoun and A. Shah. *Integral and quasi-abelian hearts of twin cotorsion pairs on extriangulated categories*. Comm. Algebra, 48(12):5142–5162, 2020.

[35] J. Haugland. *The Grothendieck group of an n-exangulated category*. Appl. Categ. Structures, 29(3):431–446, 2021.

[36] M. Herschend, Y. Liu, and H. Nakaoka. *n-exangulated categories (I): Definitions and fundamental properties*. J. Algebra, 570:531–586, 2021.

[37] T. Holm and P. Jørgensen. *Triangulated categories: definitions, properties, and examples*. In *Triangulated categories*, volume 375 of London Math. Soc. Lecture Note Ser., pages 1–51. Cambridge Univ. Press, Cambridge, 2010.

[38] T. Holm and P. Jørgensen. *Generalized friezes and a modified Caldero-Chapoton map depending on a rigid object*. Nagoya Math. J., 218:101–124, 2015.

[39] T. Holm and P. Jørgensen. *Generalised friezes and a modified Caldero-Chapoton map depending on a rigid object, II*. Bull. Sci. Math., 140(4):112–131, 2016.

[40] O. Iyama. *Maximal orthogonal subcategories of triangulated categories satisfying Serre duality*. In *Representation theory of finite-dimensional algebras*, volume 2 of Oberwolfach Rep., pages 319–406. EMS Publishing House, Berlin, 2005.

[41] O. Iyama, H. Nakaoka, and Y. Pahu. *Auslander–Reiten theory in extriangulated categories*. Preprint, 2018. https://arxiv.org/abs/1805.03776.
[42] O. Iyama and Y. Yoshino. *Mutation in triangulated categories and rigid Cohen-Macaulay modules.* Invent. Math., 172(1):117–168, 2008.

[43] K. M. Jacobsen and P. Jørgensen. *d*-abelian quotients of $(d + 2)$-angulated categories. J. Algebra, 521:114–136, 2019.

[44] P. Jørgensen. *Tropical friezes and the index in higher homological algebra.* Math. Proc. Cambridge Philos. Soc., 171(1):23–49, 2021.

[45] P. Jørgensen and Y. Palu. *A Caldero-Chapoton map for infinite clusters.* Trans. Amer. Math. Soc., 365(3):1125–1147, 2013.

[46] P. Jørgensen and A. Shah. *Grothendieck groups of d-exangulated categories and a modified Caldero-Chapoton map.* Preprint, 2021. https://arxiv.org/abs/2106.02142.

[47] P. Jørgensen and M. Yakimov. *c-vectors of 2-Calabi-Yau categories and Borel subalgebras of \mathfrak{sl}_∞.* Selecta Math. (N.S.), 26:1, 46, 2020.

[48] H. Lenzing and I. Reiten. *Hereditary Noetherian categories of positive Euler characteristic.* Math. Z., 254(1):133–171, 2006.

[49] Y. Liu and H. Nakaoka. *Hearts of twin cotorsion pairs on extriangulated categories.* J. Algebra, 528:96–149, 2019.

[50] D. Msapato. *The Karoubi envelope and weak idempotent completion of an extriangulated category.* Appl. Categ. Structures, 30(3):499–535, 2022.

[51] H. Nakaoka. *General heart construction on a triangulated category (I): Unifying t-structures and cluster tilting subcategories.* Appl. Categ. Structures, 19(6):879–899, 2011.

[52] H. Nakaoka, Y. Ogawa, and A. Sakai. *Localization of extriangulated categories.* J. Algebra, 611:341–398, 2022.

[53] H. Nakaoka and Y. Palu. *Extriangulated categories, Hovey twin cotorsion pairs and model structures.* Cah. Topol. Géom. Différ. Catég., 60(2):117–193, 2019.

[54] A. Padrol, Y. Palu, V. Pilaud, and P.-G. Plamondon. *Associahedra for finite type cluster algebras and minimal relations between g-vectors.* Preprint, 2019. https://arxiv.org/abs/1906.06861.

[55] Y. Palu. *Cluster characters for 2-Calabi-Yau triangulated categories.* Ann. Inst. Fourier (Grenoble), 58(6):2221–2248, 2008.

[56] D. Pescod. *Homological algebra and friezes.* PhD thesis, Newcastle University, 2017. http://theses.ncl.ac.ukjspui/handle/10443/4257.

[57] P.-G. Plamondon. *Cluster characters for cluster categories with infinite-dimensional morphism spaces.* Adv. Math., 227(1):1–39, 2011.

[58] W. Rump. *Almost abelian categories.* Cah. Topol. Géom. Différ. Catég., 42(3):163–225, 2001.

[59] A. Shah. *Quasi-abelian hearts of twin cotorsion pairs on triangulated categories.* J. Algebra, 534:313–338, 2019.

[60] Y. Zhou and B. Zhu. *Cluster algebras arising from cluster tubes.* J. Lond. Math. Soc. (2), 89(3):703–723, 2014.

[61] B. Zhu and X. Zhuang. *Grothendieck groups in extriangulated categories.* J. Algebra, 574:206–232, 2021.