PET imaging for the evaluation of cerebral amyloid angiopathy: a systematic review

Francesco Dondi1 · Mattia Bertoli2 · Silvia Lucchini2 · Elisabetta Cerudelli2 · Domenico Albano1 · Francesco Bertagna1

Received: 24 March 2022 / Accepted: 5 July 2022 / Published online: 20 July 2022 © The Author(s) 2022

Abstract
Purpose In the last years, the role of PET imaging in the assessment of cerebral amyloid angiopathy (CAA) is emerging. In this setting, some tracers have proven their utility for the evaluation of the disease (mainly 11C-Pittsburgh compound B [11C-PIB]), however, the value of other radiotracers has to be clarified. The aim of this systematic review is, therefore, to assess the role of PET imaging in the evaluation of CAA.

Methods A wide literature search of the PubMed/MEDLINE, Scopus, Embase, Web of Science and Cochrane library databases was made to find relevant published articles about the diagnostic performance of PET imaging for the evaluation of CAA. Quality assessment including the risk of bias and applicability concerns was carried out using QUADAS-2 evaluation.

Results The comprehensive computer literature search revealed 651 articles. On reviewing the titles and abstracts, 622 articles were excluded because the reported data were not within the field of interest. Twenty-nine studies were included in the review. In general, PET imaging with amyloid tracers revealed its value for the assessment of CAA, for its differential diagnosis and a correlation with some clinico-pathological features. With less evidence, a role for 18F-fluorodeoxiglucose (18F-FDG) and tau tracers is starting to emerge.

Conclusion PET imaging demonstrated its utility for the assessment of CAA. In particular, amyloid tracers revealed higher retention in CAA patients, correlation with cerebral bleed, the ability to differentiate between CAA and other related conditions (such as Alzheimer's disease) and a correlation with some cerebrospinal fluid biomarkers.

Keywords PET · Positron emission tomography · Cerebral amyloid angiopathy · CAA · 11C-PIB · 11C-Pittsburgh compound B

Introduction
Cerebral amyloid angiopathy (CAA) is a neurological disorder caused by the deposition of β-amyloid in the walls of small and medium vessels of the cerebral cortex and leptomeninges [1, 2]. Its development is associated with multiple risk factors such as aging, the presence of Alzheimer’s disease (AD) and genetic mutations (apolipoprotein E [APOE] and amyloid-β protein precursor genes). In this setting, the prevalence of the disease is particularly evident in elderly patients [1, 3, 4].

The clinical manifestations of CAA can be really heterogeneous and can include a wide range of symptoms such as spontaneous lobar intracerebral hemorrhage (ICH), focal transient neurological episodes and cognitive impairment like dementia [1, 5–7]. In this scenario, ICH has central importance given its high recurrence rate estimated at more than 10% per year [1, 2].

Assessment of CAA is challenging and definitive diagnosis can be made only by postmortem histopathological confirmation by autopsy [1, 8]. In life, the disease is often recognized because of the presence of symptomatic and spontaneous ICH, preferentially affecting cortical-subcortical regions of occipital and posterior temporal lobes [2, 9]. In clinical practice, magnetic resonance (MR) imaging is mandatory for the correct evaluation of the patients, leading
material and methods

search strategy

A wide literature search of the PubMed/MEDLINE, Scopus, Embase, Cochrane Library and Web of Science databases was made to find significant published articles concerning the role of PET and PET/CT in the evaluation of CAA. Search algorithms were the following:

- "cerebral amyloid angiopathy" AND "PET"
- "cerebral amyloid angiopathy" AND "positron emission tomography"
- "cerebral amyloid angiopathy" AND "positron" AND "emission" AND "tomography"
- "cerebral" AND "amyloid" AND "angiopathy" AND "PET"
- "cerebral" AND "amyloid" AND "angiopathy" AND "positron emission tomography"
- "cerebral" AND "amyloid" AND "angiopathy" AND "positron" AND "emission" AND "tomography"
- "CAA" AND "PET"
- "CAA" AND "positron emission tomography"
- "CAA" AND "positron" AND "emission" AND "tomography".

No beginning date limit was applied to the search and it was updated until 31 January 2022. Only articles in the English language were considered. Furthermore, pre-clinical studies, postmortem studies, conference proceedings, reviews, case reports, case series and editorials were excluded from the review. To expand our search, the references of the retrieved articles were also screened for additional papers.

study selection

Two researchers (FD and DA) independently reviewed the titles and the abstracts of the retrieved articles. The full-text version of the remaining articles was then independently reviewed by the same authors, to determine their eligibility for inclusion. In addition to previously presented exclusion criteria, the presence of less than 8 patients affected by CAA was another criteria used to screen the articles, to avoid articles with small samples of patients. The quality assessment, including the risk of bias and applicability concerns was carried out using QUADAS-2 evaluation [16].

data abstraction

For each included study, data concerning the basic study were collected (first author, year of publication, country of origin, type of study) and PET device used, number of patients evaluated, and number of patients affected by CAA. The main findings of the articles included in this review are reported in the Results.

results

literature search

A total of 651 articles were extrapolated with the computer literature search and by reviewing the titles and abstracts, 622 of them were excluded because the reported data were not within the field of interest of this review. Twenty-nine articles were selected and retrieved in full-text version [17–45]; no additional studies were found screening the references of these articles (Fig. 1). Generally speaking, the quality assessment of these articles using QUADAS-2 underlined a low risk of bias (Fig. 2a) and low risks for applicability concerns (Fig. 2b).

Among the 29 studies included in the systematic review, 6 were of retrospective nature [22, 28, 29, 34, 39, 40] while 23 had a prospective design [17–21, 23–27, 30–33, 35–38, 41–45]. Regarding the device used for scan acquisition, 8 studies used PET only [17–24], 17 studies used PET/CT [25–32, 34–37, 39, 40, 42–45] while 3 studies used PET/MR [33, 38, 41]. Speaking about radiotracer, 11C-PIB was used in 13 studies [17–22, 28, 31, 32, 37, 41, 42, 45]. Speaking about radiotracer, 11C-PIB was used in 13 studies [17–22, 28, 31, 32, 37, 41, 42, 45].
one study [38]. Furthermore, some works used more than one tracer and in particular, a study used a combination of
18F-florbetapir and 11C-PIB [24], a study was performed with 11C-PIB and 18F-FBB [29], a study with 11C-PIB and 18F-T807 [43], a study with 11C-PIB and 18F-flortaucipir [44] and lastly a study used a combination of three different tracer (11C-PIB, 18F-FBB and 18F-flutemetamol) [34]. The main characteristics of the studies and their results are briefly presented in Tables 1 and 2.

Role of PET imaging for the assessment of CAA

Many studies have proven the ability of 11C-PIB to concentrate in patients affected by CAA, demonstrating the usefulness of PET imaging for the assessment of the disease [17–22, 28, 31, 32, 37, 41, 42, 45]. Interestingly a single work revealed low specificity [21]. In this setting, a correlation between tracer uptake and the site of cerebral MB (CMB) was reported by some works [17, 19, 28, 40]. Furthermore, the role of PET imaging with 11C-PIB for the differential diagnosis between CAA and other conditions related to cerebral hemorrhage has been proven in some studies [18, 28, 32, 37, 42].

The ability of 11C-PIB PET imaging to differentiate between CAA and AD was investigated by some works [17, 18, 20, 22, 41] in general higher tracer retention was associated with the presence of CAA and occipital regions were characterized by higher uptake compared to AD.

PET imaging with 18F-florbetapir also revealed the ability to assess CAA [25, 30, 33, 35, 36]. In this setting, the correlation between tracer uptake and lobar ICH [25, 30] and with some cerebrospinal fluid (CSF) biomarkers were reported [33]. A single work revealed also a possible trend for 18F-florbetapir imaging to differentiate between AD and CAA-ICH [35]. Similarly, a new pharmacokinetic model has demonstrated the ability to differentiate probable CAA and deep ICH [38].

Three works investigated the role of 18F-FDG imaging in CAA [23, 39, 40], revealing its capability to differentiate between CAA-related and CAA-unrelated CMB [23] and between CAA and AD [40]. Furthermore, the value of 18F-FBB PET imaging was investigated by two works, demonstrating its ability to differentiate CAA-related inflammation (CAA-ri) from CAA and, with less evidences, from normal controls [26, 27].

Some works used mixed radiotracers for the assessment of CAA [24, 29, 34, 43, 44] and in this setting a correlation between 18F-florbetapir and 11C-PIB uptakes was demonstrated [24]. Furthermore, a similar proportion of positive scan between 18F-FBB and 11C-PIB was reported, with a correlation between some clinicopathological features and 18F-FBB positivity [29]. Both amyloid and tau deposition in CAA were evaluated by two different studies with the use of 11C-PIB and 18F-T807 [43] and 11C-PIB and 18F-flortaucipir [44], reporting that PET tau positivity was correlated with some clinicopathological features. Lastly, a single work used three tracer (11C-PIB, 18F-FBB and 18F-flutemetamol) reporting a correlation between PET positivity and the pattern of MB presentation [34].

Discussion

PET imaging with 11C-PIB

As mentioned, several studies have investigated the role of PET imaging with 11C-PIB for the assessment of CAA [17–22, 28, 31, 32, 37, 41, 42, 45] demonstrating in general the capability of this tracer to be retained in patients affected by the disease.
Correlation with CMB and differential diagnosis of ICH

First, Dierksen et al. [17] demonstrated higher \(^{11}\text{C-PIB}\) retention in CAA compared to control subjects and a strong correlation between amyloid deposition and CMB, in particular for patients with high-CMB counts. Similarly, Gurol et al. [19] confirmed this correlation with new bleeds, reporting that increased tracer retention characterized sites of future bleeds and a higher risk of incidental bleeds. Again, Chang et al. [41] reported higher SUV values in CMB area of patients with CAA compared with those of AD or healthy subjects. In this setting Ly et al. [18] reported increased \(^{11}\text{C-PIB}\) uptake in patients with CAA-related hemorrhage (CAAH) and higher binding of tracer in patients with probable CAAH compared to patients with possible CAAH.
Four different studies by the group of Tsai et al. [28, 32, 37, 42] reported higher 11C-PIB retention in CAA-ICH patients compared to non-CAA-ICH patients (hypertensive and mixed ICH) and a correlation between lobar lacune counts and SUV values. Furthermore, higher tracer uptake in patients with high-degree enlarged centrum semiovale perivascular spaces (ECSPVS) compared to low-degree patients was reported.

Interestingly a study by Baron et al. [21] did not report differences in terms 11C-PIB uptake between CAA patients and healthy controls. In this work, 11C-PIB PET imaging revealed low specificity for CAA diagnosis, due to the frequent presence of high tracer uptake in the healthy elderly, reflecting incipient AD. However, a negative 11C-PIB was able to rule out CAA with excellent sensitivity.

Table 1 Characteristics of the studies considered for the review

First author	References	Country	Year	Type of study	Isotope	N. Pts	Gender M:F	CAA pts
Dierksen	[17]	USA	2010	Prospective	11C-PIB	16	10:6	16 (100.0%)
Ly	[18]	Australia	2010	Prospective	11C-PIB	42	ns	20 (47.6%)
Gurol	[19]	USA	2012	Prospective	11C-PIB	11	9:2	11 (100.0%)
Gurol	[20]	USA	2013	Prospective	11C-PIB	135	78:57	42 (31.1%)
Baron	[21]	France, UK	2014	Prospective	11C-PIB	31	24:7	11 (35.5%)
Farid	[22]	France, UK	2015	Retrospective	11C-PIB	31	24:7	11 (35.5%)
Samuraki	[23]	Japan	2015	Prospective	18F-FDG	158	70:88	17 (10.8%)
Gurol	[24]	USA	2016	Prospective	18F-florbetapir, 11C-PIB	19	13:6	10 (52.6%)
Raposo	[25]	France	2017	Prospective	18F-florbetapir	33	22:11	15 (45.5%)
Renard	[26]	France	2018	Prospective	18F-florbetaben	139	70:69	31 (22.3%)
Renard	[27]	France	2018	Prospective	18F-florbetaben	9	5:4	9 (100.0%)
Tsai	[28]	Taiwan, USA	2018	Retrospective	11C-PIB	110	68:42	24 (21.8%)
Jang	[29]	Korea, UK, USA	2019	Retrospective	11C-PIB, 18F-florbetaben	65	30:35	65 (100.0%)
Raposo	[30]	France	2019	Prospective	18F-florbetapir	38	23:15	18 (47.4%)
Schultz	[31]	USA, Netherlands, Australia	2019	Prospective	11C-PIB	36	14:22	19 (52.8%)
Tsai	[32]	Taiwan, USA	2019	Prospective	11C-PIB	80	53:27	13 (16.2%)
Banerjee	[33]	UK, Sweden	2020	Prospective	18F-florbetapir	40	22:18	10 (25.0%)
Jung	[34]	Korea	2020	Retrospective	11C-PIB, 18F-florbetaben, 18F-flutemetamol	71	31:40	71 (100%)
Planton	[35]	France	2020	Prospective	18F-florbetapir	35	21:14	15 (42.9%)
Planton	[36]	France	2020	Prospective	18F-florbetapir	36	22:14	18 (50.0%)
Tsai	[37]	Taiwan, France, USA	2020	Prospective	11C-PIB	257	162:95	36 (14.0%)
Papanastasiou	[38]	UK, Sweden	2020	Prospective	18F-flutemetamol	16	10:6	8 (50.0%)
Bergeret	[39]	France	2021	Retrospective	18F-FDG	35	17:18	14 (40.0%)
Bergeret	[40]	France	2021	Retrospective	18F-FDG	14	8:6	14 (100.0%)
Chang	[41]	China	2021	Prospective	11C-PIB	39	27:12	9 (23.1%)
Tsai	[42]	Taiwan	2021	Prospective	11C-PIB	108	71:37	29 (26.8%)
Tsai	[43]	Taiwan	2021	Prospective	11C-PIB, 18F-T807	76	53:23	20 (26.3%)
Schoemaker	[44]	USA, France	2021	Prospective	11C-PIB, 18F-flortaucipir	46	32:14	46 (100.0%)
Gokcal	[45]	USA	2022	Prospective	11C-PIB	38	33:5	38 (100.0%)

$N.$ number, Pts patients, CAA cerebral amyloid angiopathy, 11C-PIB 11C-Pittsburgh compound B, 18F-FDG 18F-fluorodeoxyglucose

Differential diagnosis between CAA and AD

First Farid et al. [22] in a study with early and late phase imaging reported different 11C-PIB uptake for occipital and posterior cingulate cortex between AD and CAA, with lower whole cortex to occipital ratio and occipital/posterior cingulate ratio in CAA patients. Similarly, Dierksen et al. [17] reported an elevated occipital-to-global ratio for CAA patients compared to AD patients. In this scenario Chang et al. [41] reported lower global cortical 11C-PIB uptake for CAA patients compared to AD, however, tracer uptake in occipital regions was higher in CAA compared to AD patients. In contrast, AD subjects had higher lateral temporal lobe deposition of tracer. Similarly, Ly et al. [18] reported that 11C-PIB uptake in occipital-global neocortical and
First author	References	Device	Activity	Uptake time	PET analysis	Main findings
Dierksen	[17]	PET	ns	ns	Qualitative and semiquantitative	Elevated tracer uptake in CAA and correlation with CMB. Higher occipital/global ratio compared to AD
Ly	[18]	PET	370 MBq	Immediately	Qualitative and semiquantitative	Increased tracer uptake in CAA related hemorrhage
Gurol	[19]	PET	314.5–555 MBq	Immediately	Qualitative and semiquantitative	Correlation between tracer uptake and bleeds
Gurol	[20]	PET	314.5–555 MBq	Immediately	Qualitative and semiquantitative	Similar tracer retention between CAA and AD, correlation with WMH in CAA
Baron	[21]	PET	550 MBq	Immediately	Qualitative and semiquantitative	PET imaging has low specificity for CAA
Farid	[22]	PET	550 MBq	Immediately	Qualitative and semiquantitative	Tracer retention is different between CAA and AD
Samuraki	[23]	PET	370 MBq	40 min	Qualitative and semiquantitative	Patients with CAA related CMB have a typical pattern of hypometabolism
Gurol	[24]	PET	370 MBq for 18F-florbetapir, 314.5–555 MBq for 11C-PIB	50 min for 18F-florbetapir, immediately for 11C-PIB	Qualitative and semiquantitative	Strong correlation between the uptake of the tracers. Higher uptake for CAA compared to hypertensive ICH
Raposo	[25]	PET/CT	3.7 MBq/Kg	50 min	Qualitative and semiquantitative	Higher tracer retention for CAA compared to deo ICH, in particular in occipital lobe
Renard	[26]	PET/CT	300 MBq	90 min	Qualitative and semiquantitative	Higher uptake in the pons for CAA-ri compared to CAA
Renard	[27]	PET/CT	300 MBq	90 min	Qualitative and semiquantitative	High tracer uptake for CAA-ri, in particular in occipital lobe
Tsai	[28]	PET/CT	370 MBq	40 min	Qualitative and semiquantitative	High tracer retention for CAA-ICH and correlation with lobar lacune counts
Jang	[29]	PET/CT	420 MBq for 11C-PIB, 381 MBq for 18F-florbetaben	60 min for 11C-PIB, 90 min for 18F-florbetaben	Qualitative and semiquantitative	Similar frequency of positive scans for the two tracers. Positive patients had worse cognitive tests. Higher occipital/global ratio for CAA compared to AD
Raposo	[30]	PET/CT	3.7 MBq/Kg	50 min	Qualitative and semiquantitative	Higher tracer uptake for lobar ICH patients. Correlation between scan positivity and probability of CAA
Schultz	[31]	PET/CT	314.5–555 MBq	Immediately	Qualitative and semiquantitative	High tracer uptake for APP E693Q mutation carriers
Tsai	[32]	PET/CT	370 MBq	40 min	Qualitative and semiquantitative	Higher tracer uptake for CAA-ICH patients compared to mixed ICH
Table 2 (continued)

First author	References	Device	Activity	Uptake time	PET analysis	Main findings
Banerjee	[33]	PET/MR	370 MBq	Immediately	Qualitative and semiquantitative	Correlation between PET positivity and some CSF markers
Jung	[34]	PET/CT	420 MBq for 11C-PIB, 381 MBq for 18F-florbetaben, 185 MBq for 18F-flutemetamol	60 min for 11C-PIB, 90 min for 18F-florbetaben, 90 min for 18F-flutemetamol	Qualitative and semiquantitative	Frequency of positivity is correlated with pattern of MB
Planton	[35]	PET/CT	3.7 MBq/Kg	50 min	Qualitative and semiquantitative	Global tracer retention is higher in AD than in CAA, however, a trend for increased occipital/global ratio was present in CAA-ICH
Planton	[36]	PET/CT	3.7 MBq/Kg	50 min	Qualitative and semiquantitative	No different tracer uptake between ICH affected and non affected emisphere
Tsai	[37]	PET/CT	314.5–555 MBq	30–40 min	Qualitative and semiquantitative	High cerebral and cerebellar tracer retention for CAA-ICH patients
Papanastasiou	[38]	PET/MR	185 MBq	Immediately	Qualitative and semiquantitative	PET/MR with a new pharmacokinetic model is able to differentiate CAA from deep ICH
Bergeret	[39]	PET/CT	2.5 MBq/Kg	30 min	Qualitative and semiquantitative	Lower occipital/posterior cingulate ratio in CAA compared to AD
Bergeret	[40]	PET/CT	2.5 MBq/Kg	30 min	Qualitative and semiquantitative	Strong glucose hypometabolism in posterior areas for CAA
Chang	[41]	PET/MR	4.44–5.55 MBq/Kg	40–60 min	Qualitative and semiquantitative	High tracer uptake for CAA but lower compared to AD. Nevertheless, higher uptake in occipital regions for CAA
Tsai	[42]	PET/CT	370 MBq	40 min	Qualitative and semiquantitative	High amyloid burden for CAA-ICH and correlation between tracer uptake and ECSPVS
Tsai	[43]	PET/CT	370 MBq for 11C-PIB, 370 MBq for 18F-T807	40 min	Qualitative and semiquantitative	Low 11C-PIB uptake for SVD compared to CAA. Correlation between 18F-T807 uptake and TREM2. A certain quote of CAA has tau PET positivity
Schoemaker	[44]	PET/CT	314.5–370 mCi for 11C-PIB, 333–407 mCi for 18F-flortaucipir	Immediately for 11C-PIB, 80–100 min for 18F-flortaucipir	Qualitative and semiquantitative	Correlation between 18F-flortaucipir uptake in amnestic forms of CAA and memory performances
Gokcal	[45]	PET/CT	314.5–555 MBq	60 min	Qualitative and semiquantitative	Tracer uptake is correlated with vascular reactivity in mediating WMH

PET positron emission tomography, PET/CT positron emission tomography/computed tomography, PET/MR positron emission tomography/magnetic resonance, CAA cerebral amyloid angiopathy, CMB cerebral microbleeds, AD Alzheimer’s disease, MBq megabecquerel, WMH white matter hyperintensities, ICH intracerebral hemorrhage, APP amyloid precursor protein, CSF cerebrospinal fluid, ECSPVS enlarged centrum semiovale perivascular spaces, SVD small vessels disease, 11C-PIB 11C-Pittsburgh compound B, TREM2 triggering receptor expressed on myeloid cell2
frontal-global neocortical regions was somewhat different between CAAH and AD patients.

Interestingly Gurol et al. [20] reported similar high 11C-PIB retention between CAA and AD patients, but a correlation between tracer uptake and white matter hyperintensities (WMH) in CAA patients.

Miscellany

Gokcal et al. [45] reported that 11C-PIB uptake was correlated with vascular reactivity, consistent with their hypothesis of the mediating role of this reactivity between tracer uptake and WMH.

Lastly, a singular work on patients with hereditary autosomal dominant forms of CAA was proposed by Schultz et al. [31], reporting high 11C-PIB uptake in these patients and an inverse correlation between uptake and Aβ40 levels in CSF.

PET imaging with 18F-florbetapir

Correlation between PET imaging and ICH

First, the group by Raposo et al. [25, 26] reported greater cortical 18F-florbetapir retention for CAA patients than deep ICH patients and a higher ratio of positive PET scan for lobar ICH than deep ICH. Furthermore, among CAA patients the highest uptake was present in the occipital lobe and a value of 1.18 for global SUVR (standardized uptake value ratio with cerebellum as reference) was obtained. Interestingly, in patients with lobar ICH the ratio of positive scan decreased in concordance with the probability of CAA diagnosis and PET positivity was independently correlated with ECSPVS.

More recently Planton et al. [36] investigated whether amyloid burden was increased in the ICH-affected emisphere in patients with asymptomatic CAA-ICH, reporting no differences between the two emispheres.

Miscellany

In their analysis of CSF biomarkers in CAA, Banerjee et al. [33] reported that half of CAA patients had a positive 18F-florbetapir PET scan. Furthermore, these patients had lower Aβ42, higher t-tau, higher p-tau, NFL and neogranin. compared to patients with negative PET scans were demonstrated.

Planton et al. [35] reported higher global retention of 18F-florbetapir in mild cognitive impairment (MCI)-AD patients compared to CAA subjects, however, no differences were reported for relative regional uptake. Nevertheless, a trend for increased occipital/global ratio in CAA-ICH patients was reported.

PET imaging with 18F-FDG

First, Samuraki et al. [23] investigated the role of 18F-FDG for the assessment of CAA in patients with probable AD, reporting that patients with CAA-related CMB had hypometabolism mainly in left temporal lobe and in bilateral insular gyri. Conversely, patients with CAA-unrelated CMBs had reduced tracer uptake mainly in the right putamen and right cerebellum. Furthermore, a positive correlation between Mini-Mental State Examination (MMSE) and verbal memory score with 18F-FDG uptake were recognized.

More recently two different works by the group Bergeret et al. [39, 40] investigated the possible role of 18F-FDG PET imaging to differentiate CAA from AD. Lower occipital/posterior cingulate SUVR ratio in CAA patients compared to AD subjects was demonstrated. Furthermore, with the exception of the anterior cingulate and medial prefrontal cortex, patients with CAA had global cortical significant glucose hypometabolism, however, significant only in the posterior areas.

PET imaging with 18F-FBB and 18F-flutemetamol

The role of 18F-FBB in CAA was evaluated in two studies by the group Renard et al. [26, 27]. They reported general higher tracer uptake for CAA-ri patients compared to normal control, in particular in the occipital lobe with a posterior to anterior trend, however, without significant difference between the lobes. Furthermore, higher SUVR of the pons in CAA-ri patients compared to CAA subjects was reported. When considering pons as the reference standard, a correlation between Aβ40 and SUVR was underlined.

More recently, Papanastasiou et al. [38] demonstrated the role of a new pharmacokinetic model with PET/MR able to separately detect impaired haemodynamic and amiloyd load in patients with probable CAA compared to patients with deep ICH. These findings were also reproducible with a reduced time acquisition and underlined an overlapping in perfusion deficits and amyloid burden in patients with CAA-related ICH.

PET imaging with mixed radiotracers

First, the role of 18F-florbetapir and 11C-PIB in the assessment of CAA was evaluated by Gurol et al. [24], demonstrating a strong correlation between the uptake of the two tracers. Furthermore, mean global cortical 18F-florbetapir uptake and mean occipital SUVR were higher for CAA patients compared to patients with deep hypertensive ICH.

Jang et al. [29] used both 18F-FBB and 11C-PIB to evaluate patients with probable CAA with a positive scan percentage of 66.7% for 11C-PIB and 66% for 18F-FBB. Interestingly, patients with positive amyloid PET (Aβ+)
had a higher frequency of APOE ε4 carriers, more CMB, a higher frequency of cortical superficial siderosis and worse performances in cognitive tests. Furthermore, occipital global SUVR was higher for Aβ + CAA patients in comparison to Aβ + AD patients.

An evaluation of patients with cerebral small vessels disease (SVD), including also CAA subjects, was made by Tsai et al. [43] with ¹¹C-PIB and ¹⁸F-T807 to assess both amyloid and tau cortical deposition. They reported that 33.3% of CAA patients had a positive ¹⁸F-T807 scan and patients with a positive tau scan (both AD and CAA) had higher triggering receptor expressed on myeloid cell 2 (TREM2) plasma levels; furthermore, these levels correlated with MMSE score. Both amyloid and tau evaluation was also performed by Schoemaker et al. [44]. General high global retention of ¹¹C-PIB and increased ¹⁸F-flortaucipir retention for amnestic CAA patients compared to non-amnestic forms were reported. Furthermore, patients with positive ¹⁸F-flortaucipir PET scans had lower performances in the memory domain.

Lastly, Jung et al. [34] used three tracers (¹¹C-PIB, ¹⁸F-FBB and ¹⁸F-flutemetamol) to evaluate patients with CAA, revealing that the frequency of PET positivity was correlated with the pattern of MB presentation.

In conclusion, generally speaking PET imaging demonstrated its utility for the assessment of CAA. In particular, β-amiloid tracers revealed higher retention in CAA patients, correlation with CMB, the ability to differentiate between CAA and other related conditions (such as AD) and a correlation with some CSF biomarkers. The role of ¹⁸F-FDG imaging for the differential diagnosis of CAA and its correlation with cognitive performances are arising, however, with initial evidence. Similarly, the use of tau PET imaging in CAA is starting to emerge.

Acknowledgements Francesco Dondi had the idea for the article. Francesco Bertagna, Francesco Dondi and Domenico Albano performed the literature search. Domenico Albano, Elisabetta Cerudelli, Mattia Bertolli and Silvia Lucchini performed data analysis. Francesco Bertagna, Francesco Dondi, Mattia Bertolli, Domenico Albano and Silvia Lucchini drafted and/or critically revised the work.

Funding Open access funding provided by Università degli Studi di Brescia within the CRUI-CARE Agreement.

Declarations
Conflict of interest All The authors declare that they have no conflict of interest.

Ethical approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Given the retrospective nature of the study, no specific ethical approval was required.

Inform consent Informed consent was obtained from all individual participants included in the study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
1. Chen SJ, Tsai HH, Tsai LK, Tang SC, Lee BC, Liu HM, Yen RF, Jeng JS (2019) Advances in cerebral amyloid angiopathy imaging. Ther Adv Neurol Disord 3(12):1756286419844113
2. Charidimou A, Boulouis G, Gurol ME et al. (2017) Emerging concepts in sporadic cerebral amyloid angiopathy. Brain 140:1829–1850
3. Yamada M, Tsukagoshi H, Otomo E et al. (1987) Cerebral amyloid angiopathy in the aged. J Neurol 234:371–376
4. Yamada M (2015) Cerebral amyloid angiopathy: emerging concepts. J Stroke 17:17–30
5. Charidimou A, Farid K, Tsai HH, Tsai LK, Yen RF, Baron JC (2018) Amyloid-PET burden and regional distribution in cerebral amyloid angiopathy: a systematic review and meta-analysis of biomarker performance. J Neurol Neurosurg Psychiatry 89(4):410–417
6. Viswanathan A, Greenberg SM (2011) Cerebral amyloid angiopathy. J Neurol Neurosurg Psychiatry 82(2):87–88
7. Charidimou A, Gang Q, Werring DJ (2012) Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiatry 83:124–137
8. Linn J, Halpin A, Demaere P et al. (2010) Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 74:1346–1350
9. Rosand J, Muzikansky A, Kumar A, Wisco JJ, Smith EE, Beuten RA et al. (2005) Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann Neurol 58:459–462
10. Knudsen KA, Rosand J, Karluk D et al. (2001) Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 56:537–539
11. Martinez-Ramirez S, Romero JR, Shoaianesh A et al. (2015) Diagnostic value of lobar microbleeds in individuals without intracerebral hemorrhage. Alzheimers Dement 11:1480–1488
12. Farid K, Charidimou A, Baron JC (2017) Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: a systematic critical update. Neuroimage Clin 5(15):247–263
13. Knudsen KA, Rosand J, Karluk D, Greenberg SM (2001) Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 56:537–539
14. Linn J, Halpin A, Demaere P, Ruhlman J, Giese AD, Dichgans M, van Buchem MA, Bruckmann H, Greenberg SM (2010) Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 74:1346–1350
15. Farid K, Charidimou A, Baron JC (2017) Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: a systematic critical update. Neuroimage Clin 15:247–263

Springer
16. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Lefebvre C, Sterne JAC, Bossuyt PMM, QUADAS-2 Group (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536

17. Diersken GA, Skehan ME, Khan MA, Jeng J, Nandigam RN, Becker JA, Kumar A, Neal KL, Betensky RA, Frosch MP, Rosand J, Johnson KA, Wiswanathan A, Salat DH, Greenberg SM (2010) Spatial relation between microbleeds and amyloid deposits in amyloid angiopathy. Ann Neurol 68(4):545–548

18. Ly JV, Donnan GA, Villemagne VL, Zavala JA, Ma H, O’Keefe G, Gong SJ, Gunawan RM, Sandner T, Ackerman U, Tochon-Danguy H, Churilov L, Phan TG, Rowe CC (2010) 11C-PIB binding is increased in patients with cerebral amyloid angiopathy-related hemorrhage. Neurology 74(6):487–493

19. Gurol ME, Diersken G, Betensky R, Gidicsin C, Halpin A, Becker A, Carmasin J, Ayres A, Schwab K, Wiswanathan A, Salat D, Rosand J, Johnson KA, Greenberg SM (2012) Predicting sites of new hemorrhage with amyloid imaging in cerebral amyloid angiopathy. Neurology 79(4):320–326

20. Gurol ME, Wiswanathan A, Gidicsin C, Hedden T, Martinez-Ramirez S, Dumas A, Vashkevich A, Ayres AM, Auriel E, van Ettenc E, Becker A, Carmasin J, Schwab K, Rosand J, Johnson KA, Greenberg SM (2013) Cerebral amyloid angiopathy burden associated with leukoaraiosis: a positron emission tomography/magnetic resonance imaging study. Ann Neurol 73(4):529–536

21. Baron JC, Farid K, Dolan E, Turc G, Marrapu ST, O’Brien E, Aigbirhio FI, Fryer TD, Menon DK, Warburton EA, Hong YT (2014) Diagnostic utility of amyloid PET in cerebral amyloid angiopathy-related symptomatic intracerebral hemorrhage. J Cereb Blood Flow Metab 34(5):753–758

22. Farid K, Hong YT, Aigbirhio FI, Fryer TD, Menon DK, Warburton EA, Baron JC (2015) Early-phase 11C-PiB PET in amyloid angiopathy-related symptomatic cerebral hemorrhage: potential diagnostic value? PLoS ONE 10(10):e0139926

23. Samunuki M, Matsunari I, Yoshita M, Shimah Noguchi-Shinohara M, Hamaguchi T, Ono K, Yamada M (2015) Cerebral amyloid angiopathy-related microbleeds correlate with glucose metabolism and brain volume in Alzheimer’s disease. J Alzheimers Dis 48(2):517–528

24. Gurol ME, Becker JA, Fotiadis P, Riley G, Schwab K, Johnson KA, Greenberg SM (2016) Flurbetapir-PET to diagnose cerebral amyloid angiopathy: a prospective study. Neurology 87(19):2043–2049

25. Raposo N, Planton M, Péran P, Payoux P, Bonneville F, Lyoubi A, Albucher JF, Acket B, Salabert AS, Olivert JM, Hitzel A, Chollet F, Pariente J (2017) Flurbetapir imaging in cerebral amyloid angiopathy-related hemorrhages. Neurology 89(7):697–704

26. Renard D, Tatou L, Collombier L, Wacongne A, Ayrignac X, Charif M, Bouchir Berthiric Y, Chipier F, Fourcade G, Azakri S, Gaillard N, Mercier E, Lehmann S, Thounenov E (2018) Cerebral amyloid angiopathy and cerebral amyloid angiopathy-related inflammation: comparison of hemorrhagic and DWI MRI features. J Alzheimers Dis 64(4):1113–1121

27. Renard D, Collombier L, Demattei C, Wacongne A, Charif M, Ayrignac X, Azakri S, Gaillard N, Boudousq V, Lehmann S, Menot de Champfleur N, Thounenov E (2018) Cerebrospinal fluid, MRI, and flurbetaben-PET in cerebral amyloid angiopathy-related inflammation. J Alzheimers Dis 63(1):1107–1117

28. Tsai HH, Pasi M, Tsai LK, Chen YF, Lee BC, Tang SC, Fotiadis P, Huang CY, Yen RF, Jeng JS, Gurol ME (2018) Distribution of lacunar infarcts in patients with intracerebral hemorrhage: a magnetic resonance imaging and amyloid positron emission tomography study. Stroke 49(6):1515–1517

29. Jang H, Jang YK, Kim HJ, Werring DJ, Lee J, Choe YS, Park S, Lee J, Kim KW, Kim Y, Cho SH, Kim SE, Kim SJ, Chariidimou A, Na DL, Seo SW (2019) Clinical significance of amyloid positivity in patients with probable cerebral amyloid angiopathy markers. Eur J Nucl Med Mol Imaging 46(6):1287–1298

30. Raposo N, Planton M, Payoux P, Péran P, Albucher JF, Cavaliere L, Viguier A, Rousseau V, Hitzel A, Chollet F, Olivert JM, Bonneville F, Pariente J (2019) Enlarged perivascular spaces and flurbetapir uptake in patients with intracerebral hemorrhage. Eur J Nucl Mol Imaging 46(11):2339–2347

31. Schultze AP, Kloet RW, Sobrabi HR, van der Weer LD, van Roozend W, Merw JMH, Moursel LG, Yuqub M, van Berkel BMN, Chat terjee P, Gardner SL, Taddei K, Fagan AM, Benzienger TL, Mor ris JC, Sperling R, Johnson K, Bateman RJ, Dominantly Inherited Alzheimer Network, Gurol ME, van Buchem MA, Martins R, Chhatwal JP, Greenberg SM (2019) Amyloid imaging of Dutch-type hereditary cerebral amyloid angiopathy carriers. Ann Neurol 86(4):616–625

32. Tsai HH, Pasi M, Tsai LK, Chen YF, Lee BC, Tang SC, Fotiadis P, Huang CY, Yen RF, Jeng JS, Gurol ME (2019) Microangiopathy underlying mixed-location intracerebral hemorrhages/microbleeds: a PIB-PET study. Neurology 92(8):e774–e781

33. Banerjee G, Ambler G, Keshavan A, Paterson RW, Foami MS, Toombs J, Hesleglass A, Dickson JC, Frazolli F, Groves AM, Lunn MP, Fox NC, Zetterberg H, Schott JM, Werring DJ (2020) Cerebrospinal fluid biomarkers in cerebral amyloid angiopathy. J Alzheimers Dis 74(4):1189–1201

34. Jung YH, Jung H, Park SB, Choe YS, Park Y, Kang SH, Lee JM, Kim JS, Kim J, Kim JP, Kim HJ, Na DL, Seo SW (2020) Strictly lobar microbleeds reflect amyloid angiopathy regardless of cerebral and cerebellar compartments. Stroke 51(12):3600–3607

35. Planton M, Saint-Aubert L, Raposo N, Payoux P, Salabert AS, Albucher JF, Olivert JM, Péran P, Pariente J (2020) Flurbetapir regional distribution in cerebral amyloid angiopathy and Alzheimer’s disease: a PET study. J Alzheimers Dis 73(4):1607–1614

36. Planton M, Pariente J, Nemmi F, Albucher JF, Cavaliere L, Viguier A, Olivert JM, Salabert AS, Payoux P, Péran P, Raposo N (2020) Interhemispheric distribution of amyloid and small vessel disease burden in cerebral amyloid angiopathy-related intracerebral hemorrhage. Eur J Neurol 27(8):1664–1671

37. Tsai HH, Pasi M, Tsai LK, Chen YF, Chen YW, Tang SC, Gurol ME, Yen RF, Jeng JS (2020) Superficial cerebellar microbleeds and cerebral amyloid angiopathy: a magnetic resonance imaging/ positron emission tomography study. Stroke 51(1):202–208

38. Papanastasiou G, Rodrigues MA, Wang C, Heurling K, Lucatelli C, Al-Shahi Salman R, Wardlaw JM, van Beek EJB, Thompson G (2021) Pharmacokinetic modelling for the simultaneous assessment of perfusion and 18F-flutemetamol uptake in cerebral amyloid angiopathy using a reduced PET-MR acquisition time: proof of concept. NeuroImage 15(225):117482

39. Bergeret S, Queuene M, Rodallec M, Curis E, Dumurgier J, Hubert J, Paquet C, Farid K, Baron JC (2021) FFDG PET may differentiate cerebral amyloid angiopathy from Alzheimer’s disease. Eur J Neurol 28(5):1511–1519

40. Bergeret S, Queuene M, Rodallec M, Landeau B, Chetelat G, Hong YT, Dumurgier J, Hubert J, Paquet C, Farid K, Baron JC (2021) Brain glucose metabolism in cerebral amyloid angiopathy: an FDG-PET study. Stroke 52(4):1478–1482

41. Chang Y, Liu J, Wang L, Li X, Wang Z, Lin M, Jin W, Zhu M, Xu B (2021) Diagnostic utility of integrated 11C-pittsburgh compound B positron emission tomography/magnetic resonance for cerebral amyloid angiopathy: a pilot study. Front Aging Neurosci 25(13):721780

42. Tsai HH, Pasi M, Tsai LK, Huang CC, Chen YF, Lee BC, Yen RF, Gurol ME, Jeng JS (2021) Centrum semiovale perivascular space and amyloid deposition in spontaneous intracerebral hemorrhage. Stroke 52(7):2356–2362

43. Tsai HH, Chen YF, Yen RF, Lo YL, Yang KC, Jeng JS, Tsai LK, Chang CF (2021) Plasma soluble TREM2 is associated
with white matter lesions independent of amyloid and tau. Brain 144(11):3371–3380
44. Schoemaker D, Charidimou A, ZanonZotin MC, Raposo N, Johnson KA, Sanchez JS, Greenberg SM, Viswanathan A (2021) Association of memory impairment with concomitant tau pathology in patients with cerebral amyloid angiopathy. Neurology 96(15):e1975–e1986
45. Gokcal E, Horn MJ, Becker JA, Das AS, Schwab K, Bifi A, Rost N, Rosand J, Viswanathan A, Polimeni JR, Johnson KA, Greenberg SM, Gurol ME (2022) Effect of vascular amyloid on white matter disease is mediated by vascular dysfunction in cerebral amyloid angiopathy. J Cereb Blood Flow Metab 28:271678X221076571

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.