Cloning and expression analysis of alcohol dehydrogenase (Adh) hybrid promoter isolated from Zea mays

Ammara Masood1*, Nadia Iqbal1, Hira Mubeen1, Rubab Zahra Naqvi1, Asia Khatoon1 and Aftab Bashir2

1National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
2Department of Biological Sciences, F. C. College University, Lahore, Pakistan.

Received 28 March, 2016; Accepted 21 September, 2016

Hybrid promoters are created by shuffling of DNA fragments while keeping intact regulatory regions crucial of promoter activity. Two fragments of alcohol dehydrogenase (Adh) promoter from Zea mays were selected to generate hybrid promoter. Sequence analysis of both alcohol dehydrogenase promoter fragments through bioinformatics tools identified several crucial cis regulatory elements and transcription factors binding sites. Both fragments were separately cloned in the TA vector (pTZ57R/T) and fused to get the complete hybrid promoter (Adh-H). Alcohol dehydrogenase hybrid promoter was further cloned in expression vector pGR1 through adaptor ligation. Transient β-glucuronidase (GUS) assay revealed that hybrid promoter exhibited high expression under anaerobic conditions in wheat tissues. From the study it is concluded that hybrid promoter (Adh-H) may be used to derive gene expression in monocots during anaerobic conditions. The present work also provides an important insight in the designing of hybrid monocot promoters to improve multiple traits in crops without facing intellectual property rights (IPRs) issues.

Key words: Hybrid promoter, histochemical β-glucuronidase (GUS) assay staining, cis regulatory elements, alcohol dehydrogenase, Zea mays.

INTRODUCTION

Promoters are regulatory elements that control transcription and the level of gene expression (Hernandez-Garcia et al., 2014). Several promoters isolated from viral, bacterial and plant origin have been characterized and used extensively in transgene expression system (Yoshida and Shinmyo, 2000; Muller and Wassenerger, 2004). A variety of plant promoters are being used in different genetic engineering strategies for gene expression studies as well as introduction of transgene for crop improvement and bio-pharmaceutical applications. The strength and expression behavior of promoter depends upon interaction promoter cis
regulatory elements with transcription factors (Atchison, 1988). Analyzing promoter sequence through available databases like plantCARE and plantPAN, we can predict promoter expression and strength (Lescot et al., 2001). Complete understanding of the regulatory regions and transcription factors in the regulatory regions would help in designing new synthetic/ hybrid promoters for tissue specific or constitutive expression of transgenes. These promoters may be used to generate transgenic plants transformed with multi genes where single promoter may lead to gene silencing due to post transcriptional gene silencing (Mol et al., 1989). There have several hybrid promoters been synthesized including E4/E8 promoter (De Boer et al., 1983) and tacl/tacll promoter (Bestwick and Kellogg, 2000). The expression analysis of these promoters was conducted in monocots and dicots (Lee et al., 2007). In the present study, we have generated a hybrid alcohol dehydrogenase promoter and analyzed its cis regulatory elements and expression behavior in monocot system.

Alcohol dehydrogenase (Adh, EC 1.1.1.1) is an enzyme that catalyzes interconversion of aldehydes and alcohols (Arnold et al., 2013) and detoxification of acetaldehydes (Garabagi et al., 2005). It maintains cellular level of NAD+ which is constantly required in several crucial biochemical reactions. Its activity has been detected in a vast number of higher plants including Arabidopsis, maize, wheat, rice, tomato, potato and pea (Batut et al., 2013; Mordanova et al., 2007). Adh is essential for the survival of plants during prolonged anaerobic conditions, fruit ripening and seedling development (Thompson et al., 2010). Two Adh genes have been reported in maize, named Adh1 and Adh2, which are located on distinct chromosomes. Adh1 is located on chromosome 1 and Adh2 on chromosome 4 (Calo et al., 2013). The 5′ untranslated region of the Adh mRNAs showed a conserved sequence (G-TCNNGAGTG) at about 45 base pairs upstream from the translation start site. This conserved sequence was located in both Adh1 and Adh2 genes and supposed to be important in an-aerobiosis. Several regulatory elements associated with anaerobic induction have been identified in Adh1 promoter. These anaerobic response elements (AREs) of Adh1 have two copies of GC-element (59-GCC[G/C]C-39) and two copies of GT-elements (59-[T/C]GGTTT-39). GC-regulatory elements are required for the expression of Adh1 while GT motif is involved in general anaerobic induction (Petolino and Davies, 2013). The 5′UTR region of the tobacco Adh gene was reported to be an efficient translational enhancer in Arabidopsis and tobacco (Satoh et al., 2004). Adh promoter also showed expression in aerobic conditions. However, the expression level is very low in aerobic conditions as compared to in anaerobic conditions. Hundreds of polypeptides are synthesized in roots under aerobic conditions including Adh, but the expression level of Adh increases several folds during anaerobic conditions (Chung and Ferl, 1999).

The present work was designed to construct a hybrid promoter and to evaluate the efficiency of this promoter by transient expression using GUS reporter gene. The main objectives of the study aimed at identification of promoter regions of Adh gene variants from HTGS database available at NCBI. These promoter fragments were separately cloned in TA vector and fused to generate hybrid promoter. Finally, transient expression analysis of hybrid promoter was analyzed in monocot plant wheat. The novel hybrid promoter may be part of expression cassette to improve cereals crops without facing IPR issues.

MATERIALS AND METHODS

For generation of alcohol dehydrogenase promoter, two fragments located on distinct chromosomes were picked from High through put Genomic Sequences (HTGS). Fragment-I (AdhI) of 1.1 Kb was retrieved from HTGS sequence of Zea mays chromosome 1 (AC190915.3). The second fragment (Adh-II) of 390 pb was isolated from HTGS sequence of Z. mays chromosome 4 (AC213880.3). Various bioinformatics tools were used to predict regulatory regions in both fragments. Fragment-I was to be ligated upstream of fragment-II in TA cloning vector though directional cloning. For amplification of alcohol dehydrogenase promoter fragments, multiple sets of primer pairs were designed with specific restriction sites to facilitate cloning. The fragment-I contained SacI restriction site in forward primers and Apal site the reverse primers. The forward primers for fragment-II contained Apal and reverse primers had HindIII site (Table 1).

Cloning of alcohol dehydrogenase promoter in TA cloning vector

The alcohol dehydrogenase hybrid promoter was generated by joining the two fragments from each variant. Both Adh promoter fragments were amplified using Zeamays DNA as template. Both promoter fragments were PCR amplified using selected primers and cloned independently in TA cloning vector. Annealing temperatures, genomic DNA and Mg2+ concentrations were optimized prior to cloning.

Generation of alcohol dehydrogenase hybrid promoter

PTZ vector having promoter fragment-II was digested with Apal and HindIII to generate sticky ends complementary to fragment-I. Promoter fragment-I was also digested with SacI and Apal to join upstream of promoter fragment II cloned in TA vector. Both fragments-I and II were ligated at Apal site and transformed. Hybrid promoter clone was confirmed through restriction with SacI and HindIII. Alcohol dehydrogenase hybrid promoter clone (Adh-H) was then used for further cloning in the plant expression vector pGR1.

Cloning of alcohol dehydrogenase hybrid promoter in pGR1

A Plant expression vector pGR1 (provided by gene isolation group, NIBGE) had 35S promoter fused to GUS gene followed by CaMV terminator. From pGR1 vector, 35S promoter was excised using SacI and HindIII enzymes. Hybrid alcohol dehydrogenase promoter was picked from TA vector and cloned into pGR1 by replacing 35S promoter. The resultant clone containing hybrid promoter was
RESULTS

A maize alcohol dehydrogenase gene was selected for generation of hybrid promoter. Two upstream regions of alcohol dehydrogenase gene located at distinct chromosomes were retrieved and analyzed through bioinformatics tools. Fragment-I was retrieved from HTGS sequence of *Zea mays* chromosome 1 of clone CH201-528P20 at position 9934-8810 (Accession No. AC190915.3). The *Adh-II* fragment was isolated from HTGS sequence of *Zea mays* chromosome 4; clone CH201-465N3 at position 70445-70056 under Accession No. AC213880.3. BLASTp results of both upstream sequences confirmed there was no coding region. Patern BLAST results revealed that novel promoter is 26% dissimilar to already patented sequence (Accession No. 220526.1). Sequence analysis of both fragments revealed several cis acting motifs and transcription factor binding sites as identified through PlantCARE. Nucleotide sequence and motifs of complete hybrid are shown (Table 1 and Figure 1). Core promoter elements including TATA box and CAAT box were present in hybrid promoter. There were several light responsive motifs including ACE motif, Sp1 motif and TCT motifs were detected in Adh-H promoter. An anaerobic response element ARE (TGGTTT) was also observed in Adh-H promoter. Several other crucial motifs including LTR, MBS, TC-rich stretch and AuxRR-core were located in hybrid promoter.

Both promoter fragments were cloned separately in TA vector and ligated directionally to synthesize hybrid promoter. For functional characterization alcohol dehydrogenase hybrid promoter was cloned in an expression vector and analyzed through transient GUS assay in wheat. For amplification of Adh promoter fragments I and II selected annealing temperature through gradient PCR were 53.7 and 53.1°C respectively (Figure 2A and B). Adh promoter fragment-I was amplified using forward primer HAdhZmzV1F-2 having SacI restriction site, and reverse primer HAdhZmzV1R-2 having ApaI restriction site. Adh promoter fragment-II was amplified at 53.1°C with forward primer HAdhZmzV2F-1 having ApaI restriction site and reverse primer HAdhZmzV2R-1 having HindIII restriction site (Table 1). Clones of both promoter fragments in TA vector were confirmed through digestion with *SacI* and *ApaI* (Figure 3A and B). Clones were also confirmed by DNA sequencing on an ABI 3100 Genetic Analyzer. Promoter fragment II cloned in TA vector was ligated with fragment I using *ApaI* and *HindIII*. Hybrid 1.5 kb promoter clone

Table 1. Primers used for cloning of alcohol dehydrogenase hybrid promoter.

Primer	Name of primer	Sequence
Forward primers for *Adh*-fragment I	HAdhZmzV1F-1	5`AGTGAGCTCGATCCTAGGAGCTAAA 3`
	HAdhZmzV1F2	5`AGTGAGCTCGATCCTAGGAGCTAAA 3`
	HAdhZmzV1F-3	5`AGCGAGCTCCACTTAGCAAACCATTGT 3`
Reverse primers for *Adh*-fragment I	HAdhZmzV1R-1	5`TAAGGGCCCTCGAGATGCACGCGC 3`
	HAdhZmzV1R2	5`TAAGGGCCCTCGAGATGCACGCGC 3`
	HAdhZmzV1R-3	5`TAAGGGCCCTCGAGATGCACGCGC 3`
Forward primers for *Adh*-fragment II	HAdhZmzV2F-1	5`GCAGGGCCCGGAAAAAGGTAAACAGAA 3`
	HAdhZmzV2F-2	5`GCAGGGCCCGGAAAAAGGTAAACAGAA 3`
	HAdhZmzV2R1	5`ATCAAGGTT TGCTTGCCTCTCTCTCTC 3`
Reverse primers for *Adh*-fragment II	HAdhZmzV2R2	5`ATCAAGGTT TGCTTGCCTCTCTCTCTC 3`

Transient GUS assay

Transient expression studies were carried out to evaluate the activity of the alcohol dehydrogenase hybrid promoter using reporter gene (GUS) expression in the monocot plant like wheat. Biolistic Particle Delivery System (PDS1000 He) was used for the bombardment of vector constructs in wheat explants. For comparative analysis, a promoterless construct was used as negative control. Vector pGR1 with GUS gene downstream of 35S promoter was used as positive control. To monitor any false positive result, gold particles without any coating were also bombarded. Wheat leaf, spike, root and endospem were used as explants for the bombardment experiments.

A 1 µg/µl of plasmid DNA of each construct was used for coating of 1 µm diameter sterile gold particles. Leaves, roots and spikes were taken from wheat plants grown in pots from green house. Wheat seeds were soaked for 2 to 3 days in Petri plates containing sterile distilled water and cut with sterile blade longitudinally to expose endospem. All tissues were placed on Petri plates containing ½ MS medium (Murashige and Skoog, 1962) in a way to expose maximum surface area for bombardment. All wheat explants were bombarded at 27 mmHg vacuum using 1100-psi rupture disks and 9 cm target distance. Same conditions were used to bombard plasmids having 35S promoter coated and negative control coated gold particles. Petri plates were placed at 25±2°C for 24 h and then submerged in GUS staining buffer containing 0.1M X-Gluc. All tissues were incubated in dark at 37°C for overnight till appearance of blue color and washed with 70% ethanol to stop reaction as well as to bleach chlorophyll from green tissues. A digital camera attached with microscope was used to photograph all tissues.

pGRAdh-H.
Table 2. Cis-regulatory elements in alcohol dehydrogenase hybrid promoter.

Motif	Sequence	Function
5’ UTR Py-Rich Stretch	TTTCTCTCTCTCTC	Cis-acting element conferring high transcription level.
ABRE	TAGTG	Cis-acting element involved in abscisic acid responsiveness.
ACE	C/GT/CA/GACGTATT/C	Cis-acting element involved in light responsiveness.
ARE	TGTTT	Cis-acting element essential for the anaerobic induction.
ATGCAAAAT Motif	ATACAAAT	Cis regulatory element associated to TGAGTCA motif.
AuxRR-core	GGTGCGT	Cis-acting element involved in auxin responsiveness.
CAAT-box	TCTAAACGG	Common cis-acting element in promoter and enhancer region.
CAT-box	GCCACT	Cis-acting element related to meristem expression.
ELI BOX-3	AAACCAATT	Elicitor responsive elements
GARE motif	AAACAGA	Gibberelin responsive element
LTR	CCGAAA	Cis-acting element involved in low temperature response
MBS	TAACTG	MYB binding site involved in drought inducibility.
Sp1	CCC/A	Light responsive element
TATA-box	TATAT/CATAT	Core promoter element around -30 of transcription start site.
TC-rich repeats	ATTTCTCTCA	Cis-acting element involved in stress and defense responsiveness
TCT-motif	TCTTAC	Part of light responsive element
Circadian	CAAGATATC	Cis-acting element involved in circadian control

Figure 1. Complete nucleotide sequence of alcohol dehydrogenase hybrid promoter (Adh-H) showing cis acting regulatory motifs (PlantCARE analysis). Arrow indicates joining region of promoter fragment I and promoter fragment II.
was confirmed through restriction with *SacI* and *HindIII* (Figure 4A). *Adh* hybrid (*Adh-H*) cloned in TA vector was subcloned in the plant expression vector pGR1. The resultant vector construct having alcohol dehydrogenase hybrid promoter was named pGRAdhH and confirmed through digestion of resultant vector with *SacI* and *HindIII* (Figure 4B). PCR also confirmed the cloning of 1.5 Kb complete hybrids in pGR1 (Figure 4C). The pGRAdh, therefore, represents a transient expression vector having *Adh* promoter instead of 35S promoter to control expression of *GUS* reporter gene (Figure 5).

To evaluate activity of hybrid promoter, transient *GUS* assay was performed in wheat tissues. Wheat leaves were bombarded with pGR1 under both 35S and *Adh-H* showed *GUS* expression (Figure 6). Wheat spikes bombarded with 35s and *Adh-H* promoters showed *GUS* expression in pedicel attachment region (Figure 7). The roots bombarded with *Adh-H* promoter exhibited high *GUS* expression. The microscopic view revealed that instead of blue spots a diffused kind of blue staining was observed in roots (Figure 8). The results revealed that *Adh* promoter expressed *GUS* in leave tissues and the staining intensity was comparable to the control plasmid (pGR1). In wheat seeds, the *GUS* activity was not observed under *Adh-H* promoter as detected under 35S promoter. However, the aleurone cells indicated the *GUS* expression (Figure 9). No *GUS* stain was detected in tissues bombarded with promoter-less constructs and unbombarded negative controls.

DISCUSSION

The object of present study is to synthesize hybrid
promoter to develop novel regulatory sequence in order to control gene expression. A variety of promoters are available for introduction and expression of transgenes in plants. However, these promoters cannot be used freely due to IPR policy. Along with isolation of novel promoters, synthesis of hybrid promoter is also carried out for gene expression. In the present study, two fragments of Adh promoter located on different chromosomes of maize were fused to generate hybrid promoter. Although, nucleotide sequences of both fragment-1 and fragment-2 were already patented but hybrid promoter had only 74% similarity with patented sequences. In hybrid Adh promoter, along with core promoter elements most of the crucial regulatory motif were remained intact and functional. Essential cis-acting regulatory elements of Adh-H promoter (TATA box and CAAT box) are often conserved in many species and localized at 50 to 100 bp upstream of the transcription start site (TSS), while the other cis-regulatory motifs around them are variably placed. The most common cis-regulatory element in
Figure 6. Transient GUS expression wheat leaves. (A) Positive control (35S promoter); (B) Adh-H promoter showing the localized GUS activity as blue spots; (C) Negative control; (D) Un-bombarded GUS stained tissues.

Figure 7. Transient expression in wheat spikes. (A) Positive control (35S promoter); (B) Adh-H promoter; (C) Negative control; (D) Un-bombarded GUS stained tissues.
Figure 8. Transient GUS expression in wheat roots. (A) Positive control (2X35S promoter); (B) Adh-H promoter; (C) Negative control; (D) Un-bombarded GUS stained root tissues.

Figure 9. Transient GUS expression in wheat seeds. (A) 2X35S promoter Positive control; (B) Adh-H promoter Showing the localized GUS activity in the form of blue spots confined to the aleurone layer; (C): Negative control; (D) Negative control; Un-bombarded GUS stained tissues.
hybrid Adh promoter is anaerobic responsive element (ARE), that was first identified in maize and Arabidopsis Adh1 promoters (Park et al., 2012). ARE motif was present in both fragments of Adh promoter. Anaerobic response element (ARE) consists of GT- and GC-motifs, which are both crucial for gene expression especially under anaerobic conditions. These GC- and GT-rich motifs are able to activate transcription in response to hypoxia in wheat protoplasts, maize protoplasts and hypoxic tobacco plants (Deal and Henikoff, 2011). There are different binding sites for all the cis-regulatory motifs that specifically bind and activate the particular regulatory element. GCBP-1 is the binding sites of GC motif and it is important in the hypoxic activation of gene expression mediated by the ARE sequence. A conserved sequence (G-TCNGGAGTGG) is located at about 45 bp upstream from the translation start site and has been proposed to be important in anaerobiosis (Hou et al., 2012). Similarly, a drought and ABA induced transcription factor AtMYB2 binds to the GT-motif as GT-motif site resembling to Myb-transcription factor-binding site.

Analysis of the regulatory sequences in Adh-H promoter also showed the presence of some important motifs that may serve as essential regulatory elements in promoter activity. Regulatory motifs within the second fragment of Adh-H hybrid showed much variation with that of already reported promoter, although some common motifs were also identified. A 5´ UTR Py rich stretch present at -369 and -373 position of Adh-II confers high transcriptional level in Adh-II, while this stretch was absent in the reported promoter. The 5´ UTR Py rich stretch was first reported in the HMG2 stretch of tomato promoter, where it helps in advanced transcription (Peremarti et al., 2010). There are three motifs which were found associated with the selected Adh-II fragment but have not been reported in the previously characterized Adh promoter. The first one named AuxRR-motif is present within the promoter region of Adh-II and absent in the reported Adh promoter. AuxRR-motif is essential cis-element involved in auxin responsiveness (Yang et al., 2013). Abscisic acid regulatory element such as ABRE is the second motif absent in published promoter but found in Adh-H at position 179 bp upstream of TSS. This motif is involved in abscisic acid responsiveness (Narusaka et al., 2003). The last identified motifs, CATT and P-box, were not reported in the patented Adh promoter but present in the second fragment (Adh-II) of the promoter characterized in this studies.

To evaluate the potential strength of Adh-H promoter, GUS expression level was determined in various wheat tissues, that is, roots, endosperm, leaves and spike. Adh hybrid is a constitutive promoter and is expressed at a moderate level in all wheat tissues. However, expression was raised many folds in roots under normal condition. This shows that expression may be increased under hypoxic or anoxic conditions. It is reported that expression in the roots under aerobic conditions also requires all the same GC and GT-rich motifs that are activated in hypoxic conditions. However, the expression under aerobic conditions is several folds less than that of anaerobic conditions (Arnold et al., 2013). On the other hand, expression of Adh-H the sectioned germinating wheat seed revealed the expression in aleurone layer but not in the endosperm indicating that Adh promoter does not express in wheat endosperm. Although hybrid Adh-H promoter exhibited expression in most of wheat tissues but roots showed significantly high expression. The hybrid Adh-H promoter may be used to derive specific expression in roots or anaerobic conditions.

Conclusion

Along with exploration of novel promoters, hybrid promoters are synthesized for gene transformation. In the current study, two fragments of maize Adh promoter from distinct chromosomes were ligated to synthesize. Along with crucial regulatory elements, Adh-H promoter contained a number of anaerobic response elements. Through transient GUS assay, hybrid Adh-H promoter showed expression in wheat plants especially in roots. This may be related to presence of anaerobic response elements in Adh-H promoter. From the study, it is concluded that hybrid Adh-H promoter may be used to expression transgenes in monocots especially root related expression.

Conflict of Interests

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The financial support for current study was provided by the Ministry of Food and Agriculture (Min. FA), Government of Pakistan and Higher Education Commission (HEC), Pakistan.

REFERENCES

Arnold CD, Gerlach D, Stelzer C, Boryň LM, Rath M, Stark A (2013). Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339(6123):1074-1077.

Atchison M (1988). Enhancers: Mechanism of action and cell specificity. Ann. Rev. Cell Biol. 4:53-71.

Batut P, Dobin A, Plessy C, Carninci P, Gingeras TR (2013). High-fidelity promoter profiling reveals widespread alternative 23promoter usage and transposon-driven developmental gene expression. Genome Res. 23(1):169-180.

Bestwick RK, Kellogg JA (2000). Synthetic hybrid tomato E4/E8 plant promoter – Patent 18049.

Chung HJ, Ferl RJ (1999). Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment. Plant Physiol. 121(2):429-436.
De Boer HA, Comstock LJ, Vasser M (1983). The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA 80(1):21-25.

Deal RB, Henikoff S (2011). Histone variants and modifications in plant gene regulation. Curr. Opin. Plant Biol. 14(2):116-122.

Garabaghi F, Duns G, Strommer J (2005). Selective recruitment of Adh genes for distinct enzymatic functions in Petunia hybrid. Plant Mol. Biol. 58(2):283-294.

Hernandez-Garcia CM, Finer JJ (2014). Identification and validation of promoters and cis-acting regulatory elements. Plant Sci. 217:109-119.

Hou L, Chen L, Wang J, Xu D, Dai L, Zhang H, Zhao Y (2012). Construction of stress responsive synthetic promoters and analysis of their activity in transgenic Arabidopsis thaliana. Plant Mol. Biol. Rep. 30(6):1496-506.

Lee LY, Kononov ME, Bassuner B, Frame BR, Wang K (2007). Novel plant transformation vectors containing the super promoter. Plant Physiol. 145:1294-1300.

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombaerts S (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30(1):325-327.

Mardanova ES, Zamchuk LA, Ravin NV (2007). The 5′-untranslated region of the maize alcohol dehydrogenase gene provides efficient translation of mRNA in plants under stress conditions. Mol. Biol. 41(6):914-919.

Mol JNM, Stuitje AR, van der Krol A (1989). Genetic manipulation of floral pigmentation genes. Plant Mol. Biol. 13:287-295.

Muller AE, Wasseneeger A (2004). Control and silencing of transgene expression. Hand book of Plant Biotech., John Wiley & Sons, Ltd. pp. 291-330.

Murashige T, Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15(3):473-497.

Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003). Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 34(2):137-148.

Park SH, Bang SW, Jeong JS, Jung H, Redillas MC, Kim HI, Lee KH, Kim YS, Kim JK (2012). Analysis of the APX, PGD1 and R1G1B constitutive gene promoters in various organs over three homozygous generations of transgenic rice plants. Planta 235(6):1397-1408.

Petolino JF, Davies JP (2013). Designed transcriptional regulators for trait development. Plant Sci. 201:128-136.

Satoh J, Kato K, Shinmyo A (2004). The 5′-untranslated region of the tobacco alcohol dehydrogenase gene functions as an effective translational enhancer in plant. J. Biosci. Bioeng. 98(1):1-8.

Thompson CE, Fernandes CL, de Souza ON, de Freitas LB, Salzano FM (2010). Evaluation of the impact of functional diversification on Poaceae, Brassicaceae, Fabaceae, and Pinaceae alcohol dehydrogenase enzymes. J. Mol. Model. 16(5):919-928.

Yang Z, Patra B, Li R, Pattanaik S, Yuan L (2013). Promoter analysis reveals cis-regulatory motifs associated with the expression of the WRKY transcription factor CWRKY1 in Catharanthus roseus. Planta 238(6):1039-1049.

Yoshida K, Shinmyo A (2000). Transgene expression systems in plant, a natural bioreactor. J. Biosci. Bioeng. 90(4):353-562.