Percentile Queries in Multi-Dimensional Markov Decision Processes

Mickael Randour1, Jean-François Raskin2, and Ocan Sankur2

1 Computer Science Department, Université de Mons (UMONS), Belgium
2 Département d’Informatique, Université Libre de Bruxelles (U.L.B.), Belgium

Abstract. Multi-dimensional weighted Markov decision processes (MDPs) are useful to analyze systems with multiple objectives that are potentially conflicting and make necessary the analysis of trade-offs. In this paper, we study the complexity of percentile queries in such MDPs and provide algorithms to synthesize strategies that enforce such constraints. Given a multi-dimensional weighted MDP and a quantitative payoff function f, quantitative thresholds v_i (one per dimension), and probability thresholds α_i, we show how to compute a single strategy that enforces that for all dimension i, the probability that an outcome ρ satisfies $f_i(\rho) \geq v_i$ is at least α_i. We study this problem for the classical quantitative payoffs studied in the literature (sup, inf, lim sup, lim inf, mean-payoff, truncated sum, discounted sum). So our work can be seen as an extension to the quantitative case of the multi-objective model checking problem on MDPs studied by Etessami et al. in unweighted MDPs [19].

1 Introduction

Markov decision processes (MDPs) are central mathematical models for reasoning about (optimal) strategies in uncertain environments. For example, if rewards (given as numerical values) are assigned to actions in an MDP, we can search for a strategy (policy) that resolves the nondeterminism in a way that the expected mean reward of the actions taken by the strategy along time is maximized. See for example [32] for a solution to this problem. If we are risk-averse, we may want to search instead for strategies that ensure that the mean reward along time is larger than a given value with a high probability, i.e., a probability that exceeds a given threshold. See for example [22] for a solution.

Recent works on MDPs are exploring several natural extensions of those problems. First, there is a series of works that investigate MDPs with multi-dimensional weights [14,5] and not only single-dimensional as it is traditionally the case. Multi-dimensional MDPs are useful to analyze systems with multiple objectives that are potentially conflicting and make necessary the analysis of trade-offs. For instance, we may want to build a control strategy that both ensures some good quality of service and, at the same time, minimizes the energy consumption of the system. Second, there are works that aim at synthesizing strategies which enforce richer properties. For example, we may want to construct a strategy that both ensures some minimal threshold with certainty (or probability one) together with a good expectation. See [7] for results in that direction.

Our paper participates to this general effort by providing algorithms and complexity results on the synthesis of strategies that enforce multiple percentile constraints. A multi-percentile query and the associated synthesis problem is as follows: given a multi-dimensionally weighted MDP M, an initial state s_{init}, synthesize a unique strategy σ such that it satisfies the conjunction of q constraints:

$$Q := \bigwedge_{i=1}^{q} \mathbb{P}_{M,s_{\text{init}}}^{\sigma} \left[f_i \geq v_i \right] \geq \alpha_i,$$

where each l_i refers to a dimension of the weight vectors, each v_i is a value threshold, and α_i is a probability threshold, and f is a payoff function. In this paper, we consider seven classical payoff functions: sup, inf, limsup, liminf, mean-payoff, truncated sum and discounted sum.

Let us consider some examples. In an MDP that models a stochastic shortest path problem, we may want to obtain a strategy that ensures that the probability to reach the target within d time units exceeds 50

Percentile Queries in Multi-Dimensional Markov Decision Processes

Mickael Randour1, Jean-François Raskin2, and Ocan Sankur2

1 Computer Science Department, Université de Mons (UMONS), Belgium
2 Département d’Informatique, Université Libre de Bruxelles (U.L.B.), Belgium

Abstract. Multi-dimensional weighted Markov decision processes (MDPs) are useful to analyze systems with multiple objectives that are potentially conflicting and make necessary the analysis of trade-offs. In this paper, we study the complexity of percentile queries in such MDPs and provide algorithms to synthesize strategies that enforce such constraints. Given a multi-dimensional weighted MDP and a quantitative payoff function f, quantitative thresholds v_i (one per dimension), and probability thresholds α_i, we show how to compute a single strategy that enforces that for all dimension i, the probability that an outcome ρ satisfies $f_i(\rho) \geq v_i$ is at least α_i. We study this problem for the classical quantitative payoffs studied in the literature (sup, inf, lim sup, lim inf, mean-payoff, truncated sum, discounted sum). So our work can be seen as an extension to the quantitative case of the multi-objective model checking problem on MDPs studied by Etessami et al. in unweighted MDPs [19].

1 Introduction

Markov decision processes (MDPs) are central mathematical models for reasoning about (optimal) strategies in uncertain environments. For example, if rewards (given as numerical values) are assigned to actions in an MDP, we can search for a strategy (policy) that resolves the nondeterminism in a way that the expected mean reward of the actions taken by the strategy along time is maximized. See for example [32] for a solution to this problem. If we are risk-averse, we may want to search instead for strategies that ensure that the mean reward along time is larger than a given value with a high probability, i.e., a probability that exceeds a given threshold. See for example [22] for a solution.

Recent works on MDPs are exploring several natural extensions of those problems. First, there is a series of works that investigate MDPs with multi-dimensional weights [14,5] and not only single-dimensional as it is traditionally the case. Multi-dimensional MDPs are useful to analyze systems with multiple objectives that are potentially conflicting and make necessary the analysis of trade-offs. For instance, we may want to build a control strategy that both ensures some good quality of service and, at the same time, minimizes the energy consumption of the system. Second, there are works that aim at synthesizing strategies which enforce richer properties. For example, we may want to construct a strategy that both ensures some minimal threshold with certainty (or probability one) together with a good expectation. See [7] for results in that direction.

Our paper participates to this general effort by providing algorithms and complexity results on the synthesis of strategies that enforce multiple percentile constraints. A multi-percentile query and the associated synthesis problem is as follows: given a multi-dimensionally weighted MDP M, an initial state s_{init}, synthesize a unique strategy σ such that it satisfies the conjunction of q constraints:

$$Q := \bigwedge_{i=1}^{q} \mathbb{P}_{M,s_{\text{init}}}^{\sigma} \left[f_i \geq v_i \right] \geq \alpha_i,$$

where each l_i refers to a dimension of the weight vectors, each v_i is a value threshold, and α_i is a probability threshold, and f is a payoff function. In this paper, we consider seven classical payoff functions: sup, inf, limsup, liminf, mean-payoff, truncated sum and discounted sum.

Let us consider some examples. In an MDP that models a stochastic shortest path problem, we may want to obtain a strategy that ensures that the probability to reach the target within d time units exceeds 50
This is a single-constraint percentile query. With a multi-constraint percentile query, we can impose richer properties on strategies, for instance, enforcing that the duration is less than d_1 in at least 50 percent of the cases, and less than d_2 in 95 percent of the cases, with $d_1 < d_2$. We may also consider percentile queries in multi-dimensional systems. If in the model, we add information about fuel consumption, we may also enforce that we arrive within d time units in 95 percent of the cases, and that in half of the cases the fuel consumption is below some threshold c.

Contributions. We study percentile problems for a range of classical payoff functions: we establish algorithms and prove complexity and memory bounds. Our algorithms can handle multi-constraint multi-dimensional queries, but we also study interesting subclasses, namely, multi-constraint single-dimensional queries, single-constraint queries, and other classes depending on the payoff functions. We present an overview of our results in Table 1. For all payoff functions but the discounted sum, they only require polynomial time in the size of the model when the query size is fixed. In most applications, the query size can be reasonably bounded while the model can be very large, which suggests that percentile problems could be solved efficiently in practice.

Reachability	$f \in \mathcal{F}$	\mathbf{MP}	\mathbf{SP}	ε-gap DS
Single-constraint	\mathbf{P} [32]	\mathbf{P} [32]	\mathbf{P} [32]	$\mathbf{P}_{ps}(M, Q, \varepsilon)$ [25] PSPACE-h. NP-h.
Single-dim.	$\mathbf{P}(M) \cdot \mathbf{E}(Q)$ [19] PSPACE-h.	\mathbf{P}	$\mathbf{P}(M) \cdot \mathbf{P}_{ps}(Q)$ (one target) PSPACE-h. [25]	$\mathbf{P}_{ps}(M, \varepsilon) \cdot \mathbf{E}(Q)$ NP-h.
Multi-constraint	$\mathbf{P}(M) \cdot \mathbf{E}(Q)$ PSPACE-h.	\mathbf{P}	$\mathbf{P}(M) \cdot \mathbf{E}(Q)$ PSPACE-h. [25]	$\mathbf{P}_{ps}(M, \varepsilon) \cdot \mathbf{E}(Q)$ PSPACE-h.
Multi-dim.	$\mathbf{P}(M) \cdot \mathbf{E}(Q)$ PSPACE-h.	\mathbf{P}	$\mathbf{P}(M) \cdot \mathbf{E}(Q)$ PSPACE-h. [25]	$\mathbf{P}_{ps}(M, \varepsilon) \cdot \mathbf{E}(Q)$ PSPACE-h.

Table 1: Overview of some of our results for percentile queries. Here $\mathcal{F} = \{\inf, \sup, \liminf, \limsup\}$, \mathbf{MP} (resp. $\overline{\mathbf{MP}}$) stands for sup. (resp. inf.) mean-payoff, \mathbf{SP} for shortest path, and DS for discounted sum. Parameters M and Q resp. represent the size of the model and the size of the query; $P(x)$, $E(x)$ and $P_{ps}(x)$ resp. denote polynomial, exponential and pseudo-polynomial time in parameter x. All results without reference are new.

We give a non-exhaustive list of contributions and highlight some links with related problems.

A) We show the PSPACE-hardness of the multiple reachability problem with exponential dependency on the query size (Theorem 2), and the PSPACE-completeness of the almost-sure case, refining the results of [19]. We also prove that in the case of nested target sets, the problem admits polynomial-time solution (Theorem 3), and we use it to solve some of the multi-constraint percentile problems.

B) For payoff functions inf, sup, lim inf and lim sup, we establish a polynomial-time algorithm for the single-dimension case (Theorem 5), and an algorithm that is only exponential in the size of the query for the general case (Theorem 6). We prove the PSPACE-hardness of the problem for sup (Theorem 7), and derive a polynomial time algorithm for lim sup.

C) In the mean-payoff case, we distinguish $\overline{\mathbf{MP}}$ defined by the limsup of the average weights, and \mathbf{MP} by their liminf. For the former, we give a polynomial-time algorithm for the general case (Theorem 10). For the latter, our algorithm is polynomial in the model size and exponential in the query size (Theorem 11).

D) The truncated sum function computes the sum of weights until a target is reached. It models shortest path problems. We prove the multi-dimensional percentile problem to be undecidable when both negative and positive weights are allowed (Theorem 12). Therefore, we concentrate on the case of non-negative weights, and establish an algorithm that is polynomial in the model size and exponential in the query size (Theorem 13). We derive from recent results that even the single-constraint percentile problem is PSPACE-hard [25].
E) The discounted sum case turns out to be difficult, and linked to a long-standing open problem, not known to be decidable (Lemma 16). Nevertheless, we give algorithms for an approximation of the problem, called ε-gap percentile problem. Our algorithm guarantees correct answers up to an arbitrarily small zone of uncertainty (Theorem 14). We also prove that this ε-gap problem is PSPACE-hard in general, and already NP-hard for single-constraint queries (Lemma 19 and Lemma 20).

In all cases, we also study the memory requirement for strategies satisfying percentile queries.

We build our algorithms using different techniques. Here are a few tools we exploit. For inf and sup payoff functions, we reduce percentile queries to multiple reachability queries, and rely on the algorithm of [19]. For lim inf, lim sup and \(MP\), we additionally need to resort to maximal end-component decomposition of MDPs. For \(MP\), we use linear programming techniques to characterize winning strategies, borrowing ideas from [19,5]. For shortest path and discounted sum, we consider unfoldings of the MDP, with particular care to bound their sizes, and for the latter, to analyze the cumulative error due to necessary roundings.

Related work. There are several works in the literature that study multi-dimensional MDPs: for discounted sum, see [14], and for mean-payoff, see [5,22]. In the latter papers, the following threshold problem is studied in multi-dimensional MDPs: given a threshold vector \(v\) and a probability threshold \(ν\), does there exist a strategy \(σ\) such that \(Pr^σ_r[\nu ≥ ν] ≥ ν\). The work [22] solves this problem for the single dimensional case, and the multi-dimensional for the non-degenerate case (referring to the solutions of a linear program). A general algorithm was later given in [5]. This problem asks for a bound on the joint probability of the thresholds, that is, the probability of satisfying all constraints simultaneously. In contrast, in our problem we bound the marginal probabilities separately, which may allow for more modeling flexibility. The problem of maximizing the expectation vector was also solved in [5].

Multiple reachability objectives in MDPs were considered in [19]: given an MDP and multiple targets \(T_1\), thresholds \(α_i\), decide if there exists a strategy that forces each \(T_i\) with a probability larger than \(α_i\). This work is the closest to our work and we show here that their problem is inter-reducible with our problem for the sup measure. In [19] the complexity results are given only for the size of the model and not for the size of the query: we refine those results here and answer questions that were left open in that paper.

Several works consider percentile queries but only for one dimension and one constraint (while we consider multiple constraints and possibly multiple dimensions) and particular payoff functions. Single-constraint queries for lim sup and lim inf were studied in [13]. The threshold probability problem for truncated sum was studied in MDPs with either all non-negative or all non-positive weights in [31,33]. The related notion of quantile queries for the shortest path over non-negatively weighted MDPs was studied in [36] in the single-constraint case. It has been recently extended to cost problems [25], in a direction orthogonal to ours. For fixed finite horizon, [40] considers the problem of ensuring a single-constraint percentile query for the discounted sum, and that of maximizing the expected value subject to a single percentile constraint. Still for the discounted case, there is a series of works studying threshold problems [38,39] and value-at-risk problems [4]. All can be related to single-constraint percentiles queries. We discuss those related works in more details within the corresponding sections of our paper.

2 Preliminaries

Markov decision processes. A finite Markov decision process (MDP) is a tuple \((S, A, δ)\) where \(S\) is the set of states, \(A\) is the set actions and \(δ: S × A → D(S)\) is a partial function called the probabilistic transition function, where \(D(S)\) denotes the set of rational probability distributions over \(S\). The set of actions that are available in a state \(s ∈ S\) is denoted by \(A(s)\). We use \(δ(s, a, s')\) as a shorthand for \(δ(s, a)(s')\). An absorbing state \(s\) is such that for all \(a ∈ A(s)\), \(δ(s, a, s) = 1\). An MDP where for all \(s ∈ S\), \(|A(s)| = 1\) is a fully-stochastic process called a Markov chain.

We often consider weighted MDPs, denoted by tuples \((S, A, δ, w)\), where \(w\) denotes a \(d\)-dimension weight function \(w: A → Z^d\). For any dimension \(l ∈ \{1, . . . , d\}\), we denote by \(w_l: A → Z\) the projection of \(w\) to the \(l\)-th dimension. We define a run of \(M\) as a finite or infinite sequence \(s_1a_1 . . . s_{n−1}a_n . . .\) of states and actions such that \(δ(s_i, a_i, s_{i+1}) > 0\) for all \(i ≥ 1\). Finite runs are also called histories and denoted \(H(M)\).
Sub-MDPs and end-components. For the following definitions, we fix an MDP \(M = (S, A, \delta)\). A sub-MDP \(M'\) of \(M\) is an MDP \((S', A', \delta')\) with \(S' \subseteq S\), \(\emptyset \neq A'(s) \subseteq A(s)\) for all \(s \in S'\), and \(\text{Supp}(\delta(s,a)) \subseteq S'\) for all \(s \in S', a \in A'(s)\) (here \(\text{Supp}(\cdot)\) denotes the support), and \(\delta' = \delta|_{S' \times A'}\). By an abuse of notation, we may omit \(\delta'\), and refer to the sub-MDP by \((S', A')\).

For any subset \(S' \subseteq S\) for which there exists a sub-MDP \((S', A', \delta')\), let us denote by \(M|_{S'}\) the sub-MDP of \(M\) induced by \(S'\), which is the sub-MDP with the largest set of actions. In other terms, the sub-MDP induced by \(S'\) contains all actions of \(S'\) whose supports are inside \(S'\). An MDP is strongly connected if between any pair of states \(s, t\), there is a run. An end-component of \(M = (S, A, \delta)\) is a sub-MDP \(M' = (S', A', \delta')\) that is strongly connected. It is known that the union of two end-components with non-empty intersection is an end-component; one can thus define maximal end-components. We let \(\text{MEC}(M)\) denote the set of maximal end-components of \(M\), computable in polynomial time [17, 12].

Strategies. A strategy \(\sigma\) is a function \((SA)^* S \rightarrow \mathcal{D}(A)\) such that for all \(h \in (SA)^* S\) ending in \(s\), we have \(\text{Supp}(\sigma(h)) \subseteq A(s)\). The set of all possible strategies is denoted by \(\Sigma\). A strategy is pure if all histories are mapped to Dirac distributions. A strategy \(\sigma\) can be encoded by a stochastic Moore machine, \((\mathcal{M}, \sigma_a, \sigma_u, \alpha)\) where \(\mathcal{M}\) is a finite or infinite set of memory elements, \(\alpha\) the initial distribution on \(\mathcal{M}\), \(\sigma_a\) the memory update function \(\sigma_a : A \times S \times \mathcal{M} \rightarrow \mathcal{D}(\mathcal{M})\), and \(\sigma_u : S \times \mathcal{M} \rightarrow \mathcal{D}(A)\) the next action function where \(\text{Supp}(\sigma(s, m)) \subseteq A(s)\) for any \(s \in S\) and \(m \in \mathcal{M}\). We say that \(\sigma\) is finite-memory if \(|\mathcal{M}| < \infty\), and \(K\)-memory if \(|\mathcal{M}| = K\); it is memoryless if \(K = 1\), thus only depends on the last state of the history. We define such strategies as functions \(s \mapsto \mathcal{D}(A(s))\) for all \(s \in S\). A strategy is infinite-memory if \(|\mathcal{M}|\) is infinite. For a class of problems, we say that the memory used by strategies are linear (resp. polynomial, exponential) if there exist strategies in which \(K\) is linear (resp. polynomial, exponential) in the size of \(\mathcal{M}\).

An MDP \(M\), a strategy \(\sigma\) encoded by \((\mathcal{M}, \sigma_a, \sigma_u, \alpha)\), and a state \(s\) determine a finite Markov chain \(M^\sigma_s\) defined on the state space \(S \times \mathcal{M}\) as follows. The initial distribution is such that for any \(m \in \mathcal{M}\), state \((s, m)\) has probability \(\alpha(m)\), and 0 for other states. For any pair of states \((s, m)\) and \((s', m')\), the probability of the transition \((s, m), a, (s', m')\) is equal to \(\sigma_a(s, m)(a) \cdot \delta(s, a, s') \cdot \sigma_u(s, m, a)(m')\). A run of \(M^\sigma_s\) is a finite or infinite sequence of the form \((s_1, m_1), a_1, (s_2, m_2), a_2, \ldots\), where each \((s_i, m_i), a_i, (s_{i+1}, m_{i+1})\) is a transition with nonzero probability in \(M^\sigma_s\), and \(s_1 = s\). In this case, the run \(s_1a_1s_2a_2\ldots\), obtained by projection to \(M\), is said to be compatible with \(\sigma\). When considering the probabilities of events in \(M^\sigma_s\), we will often consider sets of runs of \(M\). Thus, given \(E \subseteq (SA)^*\), we denote by \(\mathbb{P}_{M,s}[E]\) the probability of the runs of \(M^\sigma_s\) whose projection to \(M\) is in \(E\). Note that every event has a uniquely defined probability [37] (Carathéodory's extension theorem induces a unique probability measure on the Borel \(\sigma\)-algebra over \((SA)^*\)).

For any strategy \(\sigma\) in an MDP \(M\), and a sub-MDP \(M' = (S', A', \delta')\), we say that \(\sigma\) is compatible with \(M'\) if for any \(h \in (SA)^* S'\), \(\text{Supp}(\sigma(h)) \subseteq A'(\text{last}(h))\), where \(\text{last}(h)\) is the last state of \(h\).

The entity choosing the strategy in order to achieve some objective is often called the controller.

MECs. Let \(\text{Inf}(w)\) denote the disjoint union of states and actions that occur infinitely often in the run \(w\); \(\text{Inf}\) is thus seen as a random variable. By an abuse of notation, we say that \(\text{Inf}(w)\) is equal to a sub-MDP \(D\) whenever it contains exactly the states and actions of \(D\). It was shown that for any MDP \(M\), state \(s\), strategy \(\sigma\), \(\mathbb{P}^\sigma_{M,s}[\text{Inf}] = 1\) [17].

Multiple reachability. Given a subset \(T\) of states, let \(\emptyset T\) denote the reachability objective w.r.t. \(T\), defined as the set of runs that visit a state of \(T\) at least once.

The multiple reachability problem consists, given MDP \(M\), state \(s_{\text{init}}\), pairs target sets \(T_1, \ldots, T_q\), and probabilities \(\alpha_1, \ldots, \alpha_q \in [0, 1] \cap \mathbb{Q}\), in deciding whether there exists a strategy \(\sigma \in \Sigma\) such that
\[
\bigwedge_{i=1}^q \mathbb{P}^\sigma_{M,s_{\text{init}}}[\emptyset T_i] \geq \alpha_i. \tag{1}
\]

The particular case of almost-sure multiple reachability problem restricts to \(\alpha_1 = \ldots = \alpha_q = 1\).

Percentile problems. We are interested in quantitative evaluation of runs in weighted MDPs according to payoff functions among \(\inf\), \(\sup\), \(\lim\inf\), \(\lim\sup\), mean-payoff, truncated sum (shortest path) and discounted sum. For any infinite run \(\rho = s_1a_1s_2a_2\ldots\) and dimension \(l \in \{1, \ldots, d\}\), we define these functions as follows.
Individual constraints are indexed by a query. Note that here the threshold value \(v \) needs for all payoff functions.

For any of the above functions \(f \), \(f_i \geq v \) defines an event which denotes the set of runs \(\rho \) that satisfy \(f_i(\rho) \geq v \). A percentile constraint is of the form \(\mathbb{P}_{M,s_{\text{init}}}^{\sigma}[f_i \geq v] \geq \alpha \), where \(\sigma \) is to be synthesized given threshold value \(v \) and probability \(\alpha \). Note that the percentile constraint asks whether the property \(f_i \geq v \) is satisfied at percentile \(\alpha \) (i.e., does the \(\alpha \)-th percentile has payoff at least \(v \)?)

Our goal is to study multi-constraint percentile queries where we require to simultaneously satisfy \(q \) percentile constraints each referring to a possibly different dimension. Formally, given a \(d \)-dimensional weighted MDP \(M \), an initial state \(s_{\text{init}} \in S \), a payoff function \(f \), dimensions \(l_1, \ldots, l_q \in \{1, \ldots, d\} \), value thresholds \(v_1, \ldots, v_q \in \mathbb{Q} \) and probability thresholds \(\alpha_1, \ldots, \alpha_q \in [0,1] \cap \mathbb{Q} \), the multi-constraint percentile problem asks whether there exists a strategy \(\sigma \) in \(\Sigma \) such that query

\[
Q := \bigwedge_{i=1}^{q} \mathbb{P}_{M,s_{\text{init}}}^{\sigma}[f_i \geq v_i] \geq \alpha_i
\]

Individual constraints are indexed by \(i \in \{1, \ldots, q\} \).

Our results can actually solve general problems of the form \(\exists \sigma \bigwedge_{i=1}^{q} \mathbb{P}_{M,s_{\text{init}}}^{\sigma}[f_{i,j} \geq v_{i,j}] \geq \alpha_{i,j} \). We present our results for conjunctions of percentile constraints only since the latter is equivalent to verifying the disjuncts independently from each other: in other terms, to \(\bigvee_{i=1}^{m} \exists \sigma \bigwedge_{j=1}^{n_i} \mathbb{P}_{M,s_{\text{init}}}^{\sigma}[f_{i,j} \geq v_{i,j}] \geq \alpha_{i,j} \).

We distinguish the single-dimensional percentile problems as the case \(d = 1 \), and the multi-dimensional percentile problems as \(d > 1 \). We can always assume w.l.o.g. that \(q \geq d \) otherwise one can simply forget about the unused dimensions.

For some payoff functions, we will consider the \(\varepsilon \)-relaxation of the percentile problem, which consists in ensuring the value thresholds up to \(\varepsilon \), that is, \(\mathbb{P}_{M,s_{\text{init}}}^{\sigma}[f_i \geq v_i - \varepsilon] \geq \alpha_i \).

The complexity of the problems we study depends both on the given MDP and the size of the query. We define the model size as \(|M| \), a polynomial in \(|S| \) and the size of the encoding of weights and probabilities (e.g., \(\log_2 W \) with \(W \) the largest absolute weight). We define the query size as \(|Q| \), a polynomial in the number of constraints \(q \) and the encoding of thresholds. The problem size will refer to the size of the whole input, that is, the sum of the model size and the query size. For instance, we will see that some algorithms take time polynomial in the model size and exponential in the query size; while others only require simply polynomial time, i.e., time polynomial in both parameters.

Memory and randomness. Throughout the paper, we will study the memory requirements for strategies w.r.t. different classes of percentile queries. Here, we show, by a simple example, that randomness is always needed for all payoff functions.

Lemma 1. Randomized strategies are necessary for multi-dimensional percentile queries for any payoff function.

Proof. Let \(M \) be a 2-dim. deterministic MDP with \(S = \{s_0, s_1, s_2\} \) and \(\delta = \{(s_0, s_1), (s_0, s_2), (s_1, s_1), (s_2, s_2)\} \).

Essentially there are only two possible runs in this MDP: \(\rho_1 = s_0(s_1)\omega \) and \(\rho_2 = s_0(s_2)\omega \). Assume that the weight and the payoff functions are chosen such that \(f(\rho_1) = (1, 0) \) and \(f(\rho_2) = (0, 1) \); they are incomparable. Consider the query \(Q := \text{Prob}_{M,s_{\text{init}}}^{\sigma}[f_1 \geq \frac{1}{2}] \geq \frac{1}{2} \land \text{Prob}_{M,s_{\text{init}}}^{\sigma}[f_2 \geq \frac{1}{2}] \geq \frac{1}{2} \). It is easy to see that \(Q \) can only be satisfied by a strategy that chooses between \(s_1 \) and \(s_2 \) with equal probability, hence no pure strategy satisfies the query. Note that here \(f \) can be chosen anything among \(\text{sup, lim sup, MP, MP, MP, MP, DS}^{\omega} \) with appropriate \(\lambda_i \), and \(\text{TS}^{T_l} \) with target sets \(T_1 = \{s_1\} \) and \(T_2 = \{s_2\} \) respectively for each query. For inf, and \(\text{lim inf, we may switch the weight vectors to obtain the same result.} \)
3 Multiple Reachability

The multiple reachability problem was studied [19] where the given algorithm runs in time polynomial in the model size and exponential in the query size. As a particular case, it was proven that the algorithm takes polynomial time when all target states are absorbing, but the exact complexity of the general problem was not addressed. Let us first recall these results.

Theorem 1 ([19]). Memoryless strategies suffice for multiple reachability with absorbing target states, and can be decided and computed in polynomial time. With arbitrary targets, exponential-memory strategies (in query size) can be decided and computed in time polynomial in the model and exponential in the query.

In this section, we first derive lower bounds on the multiple reachability problem on MDPs, both on the computational complexity and on the required memory by the strategies, then identify subclasses where efficient solutions exist.

We first show that even the almost sure reachability problem is \text{PSPACE}-complete, showing that the exponential blow-up is most likely inevitable.

Theorem 2. The almost-sure multiple reachability problem is \text{PSPACE}-complete.

Proof. We start by showing \text{PSPACE}-membership. Let \(M \) be an MDP, \(s_0 \) a state, and \(T_1, \ldots, T_q \) target sets. We write \(T = T_1 \cup \cdots \cup T_q \). Note first that we know how to solve the problem in polynomial time for \(q = 1 \). Let \(M' \) be the MDP obtained by \(M \) by making all states in \(T \) absorbing. The procedure works as follows. For each state \(x \in T \), let us define \(I = \{ 1 \leq i \leq q \mid x \notin T_i \} \); we clearly have \(|I| < n \). We recursively verify whether there is a strategy almost surely satisfying the multiple reachability objective \((T_i)_{i \in I}\). Let \(\mathcal{T} \) denote all states of \(T \) for which the recursive call returned positively. We now check in polynomial time whether the set \(\mathcal{T} \) can be reached almost surely from \(s_0 \). Note that the recursive call depth is linear, so the whole procedure uses polynomial space.

We now prove the equivalence between \(M \) and \(M' \). Assume that there is a strategy \(\sigma \) almost surely reaching \(\mathcal{T} \) in \(M' \). This strategy can be followed in \(M \) until some state \(x \) of \(\mathcal{T} \) is reached, which happens almost surely. But we know, by the recursive call of our procedure, that from any such state \(x \in \mathcal{T} \) there exists a strategy almost surely satisfying the rest of the reachability objectives. Thus, by extending \(\sigma \) at each state \(x \in \mathcal{T} \) by these strategies, we construct a solution to the multiple reachability problem in \(M \). Notice that the constructed strategy uses linear memory since it is “memoryless” between each switch.

Conversely, assume that there is a strategy \(\sigma \) satisfying the multiple reachability query in \(M \) from \(s_0 \). Towards a contradiction, assume that some state \(x \in T \setminus \mathcal{T} \) is reached with positive probability in \(M \) under \(\sigma \), thus also in \(M' \) under the same strategy. We know by the recursive call of our procedure that the remaining targets cannot be satisfied almost surely by any strategy from state \(x \) in \(M \). It follows that strategy \(\sigma \) fails to satisfy all targets almost surely from \(s_0 \), a contradiction.

To show \text{PSPACE}-hardness, we reduce the truth value of a quantified Boolean formula (QBF) to our problem. An instance of QBF is a quantified Boolean formula over \(X = \{ x_1, x_2, \ldots, x_n \} \)

\[\Psi \equiv \exists x_1 \forall x_2 \exists x_2 \cdots \forall x_{n-1} \exists x_n \cdot C_1 \land C_2 \land \cdots C_m \]

where each clause \(C_i \) is the disjunction of 3 literals taken in \(\{ x, \neg x \mid x \in X \} \). From \(\Psi \), we construct an (acyclic) MDP as shown in Fig. 1. For each variable \(x_i \), there are three states called \(x_i, f_i \) and \(t_i \) in the MDP. In a state \(x_i \) that corresponds to an existentially quantified variable, there are two actions that are available: \(\top \) and \(\bot \). The action \(\top \) visits (deterministically) the state \(t_i \) while the action \(\bot \) visits the state \(f_i \), and then in the two cases, the run proceeds to the state for the next variable. Intuitively, choosing \(\top \) in \(x_i \) corresponds to the choice of truth value \text{true} for \(x_i \), and \(\bot \) to truth value \text{false}. In a state \(x_i \) that corresponds to an universally quantified variable, there is only the action \(* \) available and the successor is chosen uniformly at random between \(f_i \) and \(t_i \). The targets are defined as follows: for each clause \(C_j \), the target set \(T_j = \{ t_i \mid x_i \in C_j \} \cup \{ f_i \mid \neg x_i \in C_j \} \) must be visited with probability one. Clearly, given the value assigned to a variable \(x_i \), we visit exactly the set of target sets \(T_j \) that correspond to the clauses that are
made true by the valuation of x_i. It should be clear now that the histories in the MDP are in bijection with the valuation of the Boolean variables in Ψ and that the set of valuations that satisfies Ψ correspond exactly to the histories that visits all the sets T_j, $1 \leq j \leq n$ with probability one.

Now, we claim that there is a strategy to reach each set T_j, $1 \leq j \leq n$, with probability one if and only if the formula Ψ is true. Indeed, if Ψ is true, we know that there exists for each existentially quantified variable x_i a choice function g_{x_i} which assigns a truth value to x_i given the truth values chosen for the variables that appear before x_i in the quantification block. These choice functions naturally translate into a (deterministic memoryful) strategy that mimics the choices of truth values by choosing between \bot and \top accordingly. We get that if the formula is true (all closed are made true) then the associated strategy visits all the target sets with probability one.

For the other direction, we first note that it is not useful for the scheduler to play a randomised strategy. As the graph of the MDP is acyclic (except for the two states t_n and f_n that have a self loop), all the target sets are visited with probability one if and only if all the outcomes of the strategy visits all the target sets. So, if the scheduler plays randomly say in state s_i then all the resulting outcomes for action \bot and all the resulting outcomes for action \top must visit all the target sets, so both choices need to be good and so there is no need for randomisation and the scheduler can safely choose one of the two arbitrarily. So, pure strategies are sufficient and but we have seen that pure strategies corresponds exactly to the choice functions in the QBF problem. So is clear that from a winning strategy for the scheduler, we can construct a choice function that makes the formula true.

We establish an exponential lower bound on the memory requirements for multiple reachability problems. The proof is based on a family of MDPs depicted in Fig. 2 and inspired from [15, Lemma 8].

Lemma 2. Exponential-memory in the query size is necessary for almost-sure multiple reachability.

Proof. Consider the unweighted MDP M depicted in Fig. 2. The MDP is composed of k gadgets where a state between $s_{i,L}$ and $s_{i,R}$ is stochastically chosen (they are equiprobable), followed by k gadgets where the controller can decide to visit either $s'_{i,L}$ or $s'_{i,R}$. We define an almost-sure multiple reachability problem for target sets

$$T_i = \{s_{1,L}, s'_{1,L}\}, \{s_{1,R}, s'_{1,R}\}, \{s_{2,L}, s'_{2,L}\}, \ldots, \{s_{k,L}, s'_{k,L}\}, \{s_{k,R}, s'_{k,R}\}.$$

Hence, this problem requires $q = 2 \cdot k$ constraints to be defined. We claim that a strategy satisfying this problem cannot be expressed by a Moore machine containing less than $2^k = 2^2$ memory states.

![Fig. 1: Reduction for the QBF formula $\exists x_1 \forall x_2 \ldots \exists x_n C_1 \land \ldots \land C_m$. The objectives are $T_j = \{t_i \mid x_i \in C_j\} \cup \{f_i \mid \neg x_i \in C_i\}$ for all $1 \leq j \leq m$.](image1)

![Fig. 2: Family of multiple reachability problems requiring exponential memory.](image2)
Indeed, it is clear that to ensure almost-sure reachability of all sets T_i, the controller has to choose in state s_i the exact opposite action of the one stochastically chosen in s_i. Remembering the k choices made in states s_i requires k bits of encoding. Hence, a satisfying strategy requires a Moore machine with 2^k memory states to encode those choices.

It is easy to see that if the controller uses a - possibly randomized - strategy σ with less than 2^k memory states, then there exists $i \in \{1, \ldots, k\}$ such that $\sigma(s_1 \ldots s_i s_{i+1} \ldots s_k) = \sigma(s_1 \ldots s_{i-1} s_i, s_{i+1} \ldots s_k)$, i.e., the controller chooses to go to $s_1' \in L$ (resp. $s_i' \in R$) with identical probability against both stochastic choices in s_i. Assume that the controller chooses to go toward $s_1' \in L$ with probability $p \in [0, 1]$ and toward $s_i' \in R$ with probability $1 - p$: this implies that the probability that the target set $\{s_1, s_2, \ldots, s_k\}$ (resp. $\{s_{i+1}, s_{i+2}, \ldots, s_k\}$) is never visited is equal to $\frac{1}{2} \cdot (1 - p)$ (resp. $\frac{1}{2} \cdot p$). Clearly, it is impossible to have both those probabilities equal to zero simultaneously, which proves that such a strategy cannot satisfy the almost-sure multiple reachability problem defined above, and concludes our proof. □

Despite the above lower bounds, it turns out that the polynomial time algorithm for the case of absorbing targets can be extended; we identify a subclass of the multiple reachability problem that admits an efficient solution: we derive a polynomial-time algorithm for the case where the target sets are nested, that is, $T_1 \subseteq T_2 \subseteq \ldots \subseteq T_q$, called the nested multiple reachability problem.

Theorem 3. The nested multiple reachability problem can be solved in polynomial time. Computed strategies have memory linear in the query size, which is optimal.

Proof. Assume an MDP M, s_0 and the target sets $T_1 \subseteq \ldots \subseteq T_q$ are given. We make $q + 1$ copies of the MDP M, namely, $M_1, \ldots, M_q, M_{q+1}$. We start M_{q+1} at state s_{q+1}. We redirect some of the edges as follows. For any M_i, state s, action a, and $t \in \text{Supp}(\delta(s, a))$, if $t \in T_j$ for some $j < i$, then we direct this edge to state t in M_j where j' is the smallest index with $t \in T_{j'}$. Hence, along any run, we are in copy M_j if, and only if we have already satisfied all targets T_j, \ldots, T_q. Now, we add a fresh absorbing state \bot_i to each copy. From all states of M, a fresh action a^\bot leads to \bot_i. Let us call this new MDP M'. Note that the size of M' is $O(q|M|).

For each $i = 1 \ldots q$, we define $T_i = \{\bot_i, \bot_{i-1}, \ldots, \bot_1\}$. We claim that the multiple reachability problem query $(T_i, \alpha_i)_{1 \leq i \leq q}$ for M' is equivalent to $(T_i, \alpha_i)_{1 \leq i \leq q}$ for M', the latter query has absorbing target states, thus the problem can be solved in polynomial time by [19].

Consider a strategy σ for M achieving the objectives $(T_i, \alpha_i)_{1 \leq i \leq q}$. We can assume w.l.o.g. that σ is finite-memory by [19]. Let S_i denote the set of states of M_i. We define strategy σ' for M' as follows. Let us define a mapping $p(\cdot)$ from the histories of M' to those of M, where a state of any copy is projected to the original state in M. The mapping is actually a bijection from histories of M' that do not use the action a^\bot to histories of M. Now, for all histories h of M' that end in copy M_i, if $p^i_{M',p(h)}[\bigcup_{j<i} T_j] = 0$, we set $\sigma'(h) = a^\bot$. Otherwise, we let $\sigma'(h) = \sigma(p(h))$.

We prove that for all $i = 1 \ldots q$, $p^i_{M, s_0}[\bigcup_{j<i} T_j] \leq p^i_{M', s_0}[\bigcup_{j<i} T_j]$. Let $\nu(h)$ denote the copy in which h ends in M'. For all histories h of M from which the probability of satisfying $\bigcup_{j<i} (p^{i-1}(h)) T_j$ is nonzero, we have $p^i_{M, s_0}[h] = p^i_{M', s_0}[p^{-1}(h)]$ by definition. Define $H_i = \{h \mid \forall i = 1 \ldots |h| - 1, h_i \notin T_i, h_i[h_i] \in T_i, p^i_{M, s_0}[h] > 0\}$, that is, the histories that visit T_i for the first time at their last state. Clearly $p^i_{M, s_0}[H_i] = p^i_{M', s_0}[\bigcup_{j<i} T_j]$. But the probability of reaching T_i is always nonzero along these histories, so we also have $H_i = H_i' := \{h \in H_i \mid \forall i = 1 \ldots |h|, p^i_{M, h_i[h_i]}[\bigcup_{j<i} T_j] > 0\}$, and we get $p^i_{M', s_0}[H_i'] = p^i_{M, s_0}[H_i]$. In other words, $p^i_{M, s_0}[\bigcup_{j<i} S_j] \geq p^i_{M', s_0}[\bigcup_{j<i} T_j]$, that is, the target sets T_1, \ldots, T_q are reached in M' with at least the same probabilities as in M. We now need to show that from any history ending in copy M_i, some state \bot_j with $j \leq i$ is reached almost surely in M' under σ'. It will follow that $p^i_{M', s_0}[\bigcup_{j<i} T_j] \geq p^i_{M, s_0}[\bigcup_{j<i} T_j]$. To see this, notice that strategy σ is finite-memory, and so is σ'. So there exists $\nu > 0$ such that for any state s, and memory element m if the probability of satisfying $\bigcup_{j<i} S_j$ is nonzero from s and m, then it is at least ν. Note that the probability of never satisfying $\bigcup_{j<i} S_j$ while staying in such states is 0. So, whenever the run reaches copy M_i, almost surely, either some copy $M_{i'}$ with $j < i$ is reached, or we reach a history h such that $p^i_{M', p(h)}[\bigcup_{j<i} T_j] = 0$, in which case we end in \bot_i. The inequality follows.
Conversely, consider any strategy σ' for M' achieving the reachability objectives $(T_i', \alpha_i)_{1 \leq i \leq q}$. We assume σ' to be memoryless by [19]. We define $\sigma(h) = \sigma'(p^{-1}(h))$ whenever the action σ' prescribes is different than a^h, and otherwise σ' switches to an arbitrary memoryless strategy. Since all histories of M' that end in \bot satisfy the objectives $T_i' \cup \ldots \cup T_{1}'$, strategy σ achieves the objectives $(T_i, \alpha_i)_{1 \leq i \leq q}$. The memory of σ is $O(q)$ since σ' is memoryless in M' which is made of q copies of M.

We now show that linear memory is necessary. Consider an MDP M with states $s, t_1, \ldots, t_n, \bot$. State s has n actions a_1, \ldots, a_n. For each $1 \leq i \leq n$, action a_i leads from s to t_i with probability $1 - \frac{1}{n+i}$, and with probability $\frac{1}{n+i}$ leads to absorbing state \bot. From all states t_i with $i > 1$, s is reachable by a deterministic action, but from t_1 one can only reach \bot. The MDP is depicted below (\bot is not shown).

We consider the nested multiple reachability targets T_1, \ldots, T_n with $T_i = \{t_i, \ldots, t_1\}$ for each i, and consider threshold probabilities $\alpha_1, \ldots, \alpha_n$ defined by $\alpha_n = 1 - \frac{1}{n+1}$, and $\alpha_i = \alpha_{i+1}(1 - \frac{1}{i+1})$ for $1 \leq i \leq n-1$.

Let us first describe a strategy that satisfies these constraints. Define a strategy that deterministically chooses, at each visit to state s, the following actions: $a_n, a_{n-1}, \ldots, a_1$. A simple calculation shows that the constraints are satisfied: the probability of satisfying T_n is at least $1 - \frac{1}{n+1}$ by the first action, that of T_{n-1} is $\frac{1}{n+1}(1 - \frac{1}{n})$ by the sequence a_na_n-1 of actions, and so on. We argue that this is the only strategy that satisfies these reachability queries showing that $O(n)$ memory is necessary.

Consider any strategy σ satisfying the multiple reachability queries. We show that σ must deterministically choose a_n in the first step. In fact, assume that some action a_i with $i \neq n$ is chosen with probability $\eta > 0$. The probability of moving to \bot under any such action is at least $\frac{1}{n+i}$. Thus the probability of going to \bot in the first step (without seeing any t_i) is at least $\eta\frac{1}{n} + (1 - \eta)\frac{1}{n+1} > \frac{1}{n+1}$, which is a contradiction. Now, assume that σ deterministically chooses $a_na_n-1 \ldots a_{i+1}$ in the first i steps. The probability of reaching T_{n-i} in the first i steps is thus 0, while the probability of being in s (and not in \bot) after i steps is $\gamma = (1 - \frac{1}{n+1}) \cdots (1 - \frac{1}{n-i+1})$. Assume that σ does not deterministically choose a_{n+i}. Target T_{n-i} is reached by histories that eventually choose some action a_{n-i}, \ldots, a_1. Let H denote the set of histories stopping at the first action from this set, i.e., $H = \{a_n + \ldots + a_{n-i+1} s \}^* \{a_{n-i} + \ldots + a_1\}$. Note that at these histories, either we satisfy T_{n-i} or we end in \bot, so the probability of satisfying T_{n-i} under σ can be written as $\gamma \sum_{h \in H} \alpha_hp_h$, where α_h is the probability of σ choosing the actions of h from the current history, and p_h is the probability of the resulting run. We have, for all $h \in H$, $p_h \leq (1 - \frac{1}{n+1}) \frac{\frac{1}{n+1}}{\frac{1}{n+i+1}}$, since h contains $\frac{|h|-1}{2}$ actions outside a_1, \ldots, a_{n-i} and after each such action we must come back to s. For all $h \in H$ with $\frac{|h|-1}{2} > 1$, we must have $\alpha_h = 0$ since otherwise we would get $\gamma \sum_{h \in H} \alpha_hp_h < \gamma(1 - \frac{1}{n+i+1})$. Furthermore, if σ chooses an action some action a_j with $1 \leq j \leq n-i$ in the first step, the probability of going to \bot is $\gamma_{j+1} > 1 - \frac{1}{n-i+1}$. It follows that $\alpha_h = 1$ for the unique history that chooses action a_{n-i}.

Contraction of MECs. When studying multiple percentile queries, for some payoff functions, we will often reduce our problems to multiple reachability by first contracting the MECs of a given MDP. The contraction of MECs is a known and useful technique [17]. We present a transformation of MDP M where the events $\text{Inf}(w) \subseteq C$ for $C \in \text{MEC}(M)$ are represented by fresh states. Given any MDP M, we consider its MECs C_1, \ldots, C_m. We define MDP M' from M as follows. For each MEC C_i, we add a state named s_{C_i}, and add a deterministic edge with a fresh action a^* from each state $s \in C_i$ to s_{C_i}. All states s_{C_i} are absorbing, and have the single action a^*. The following lemma shows that the probabilities of the maximal end-components that appear in the long run in M can be captured by the reachability of these new states in M'.

![Diagram](image-url)
Lemma 3. For any MDP M, let C_1, \ldots, C_m denote the MECs of M. For any strategy σ and state s, there exists strategy τ for M' such that for all $i \in \{1, \ldots, m\}$, $\mathbb{P}^\sigma_{M,s} [\Box C_i] = \mathbb{P}^\tau_{M',s} [\Box s_{C_i}]$. Conversely, for any strategy τ for M' such that $\sum_{i=1}^m \mathbb{P}^\tau_{M',s} [\Box s_{C_i}] = 1$, there exists σ such that for all $i \in \{1, \ldots, m\}$, $\mathbb{P}^\sigma_{M,s} [\Box C_i] = \mathbb{P}^\tau_{M',s} [\Box s_{C_i}]$.

Proof. Consider any strategy τ in M' with $\sum_{i=1}^m \mathbb{P}^\tau_{M',s} [\Box s_{C_i}] = 1$. We define strategy σ for M by imitating τ except that whenever it chooses action a^* from some state $s \in C_i$, we switch to a memoryless strategy that surely stays inside C_i. The desired equality follows.

The other direction was proven in [5, Lemma 4.6]. □

We now show that under some hypotheses, solving the multi-constraint percentile problem on end-components yield the result for general MDPs, thanks to the transformation of Lemma 3. We prove a general theorem and then derive particular results that will follow as corollaries. Informally, the theorem tells us that for prefix-independent payoff functions, if for any end-component, there is a strategy that is optimal in each dimension, and if these optimal values are moreover computable in polynomial time, then the multi-constraint percentile problem can be solved in polynomial time for general MDPs.

Theorem 4. Consider all prefix-independent payoff function f such that for all strongly connected MDPs M, and all $(l, v_1)_{1 \leq i \leq q} \in \{1, \ldots, d\} \times \mathbb{Q}$, there exists a strategy σ such that

$$\forall i \in \{1, \ldots, d\}, \mathbb{P}^\sigma_{M,s_{\text{init}}}[f_i \geq v_i] \geq \sup_\tau \mathbb{P}^\tau_{M,s_{\text{init}}}[f_i \geq v_i].$$

(2)

and, if the value \sup_τ is computable in polynomial time for strongly connected MDPs, then the multi-constraint percentile problem for f is decidable in polynomial time. Moreover, if strategies achieving \sup_τ for strongly connected MDPs use $O(g(M, q))$ memory, then the computed strategies for the multi-constraint percentile problem use $O(g(M, q))$ memory.

Proof. Consider an MDP M, state s_{init}, and instance of the multi-constraint percentile problem $(l, v_i, \alpha_i)_{1 \leq i \leq q}$ for payoff function f.

Let C_1, \ldots, C_m denote the MECs of M. Consider the MDP M' of Lemma 3. For each $1 \leq j \leq m$, let $u(j)$ denote the component-wise optimal value vector achievable inside C_j and σ_j a witness strategy, which can be computed by hypothesis in polynomial time. Note that because f is prefix-independent and each C_j strongly connected, it follows by [8] that $\sup_\tau \mathbb{P}^\tau_{M,s_{\text{init}}}[f_i \geq v_i] \in \{0,1\}$. In fact, for strongly connected MDPs, if a prefix-independent measure can be satisfied with nonzero probability, then there exists a state from which the threshold can be satisfied with probability 1. Moreover, because the MDP is strongly connected, such a state is reachable almost surely from any other state.

Now, for each $1 \leq i \leq q$, we define $T_i = \{s_{C_j} \mid 1 \leq j \leq m, \sup_\tau \mathbb{P}^\tau_{M,s_{\text{init}}}[f_i \geq u(j)] = 1\}$, where states s_{C_j} were defined in Lemma 3. We solve the multiple reachability with absorbing targets T_1, \ldots, T_m in M', with probabilities $\alpha_1, \ldots, \alpha_q$, by Theorem 1. All computations are in polynomial time. We now establish the connection with the multi-constraint percentile problem.

Assume there is a strategy τ in M' witnessing the multiple reachability problem. Recall that the strategy σ for M of Lemma 3 derived from τ consists in following τ until an action a^* is taken, upon which one switches to an arbitrary strategy inside the current MEC. Let us define strategy σ' in this manner, by switching to the optimal strategy σ_j, where C_j is the current MEC. It follows that, for each $1 \leq i \leq q$, the probability of switching to σ_j for j such that $s_{C_j} \in T_i$ is at least α_i. But such σ_j satisfy $f_i \geq v_i$ almost surely in C_j. Because f is prefix-independent, we get $\mathbb{P}^\sigma_{M,s_{\text{init}}}[f_i \geq v_i] \geq \alpha_i$. Strategy σ' thus just needs one additional bit compared to σ to remember whether it has switched to a strategy inside a MEC.

Conversely, consider any strategy σ satisfying the multi-constraint percentile problem for f. Let τ be the strategy for M' given by Lemma 3. We have,

$$\mathbb{P}^\sigma_{M,s_{\text{init}}}[f_i \geq v_i] = \sum_{j=1}^m \mathbb{P}^\tau_{M',s}[f_i \geq v_i] | \Diamond C_j] \mathbb{P}^\sigma_{M,s_{\text{init}}} [\Diamond C_j]$$

$$= \sum_{j=1}^m \mathbb{P}^\tau_{M',s}[f_i \geq v_i] | \Diamond C_j] \mathbb{P}^\tau_{M',s_{\text{init}}} [\Diamond s_{C_j}]$$

10
Furthermore, we \(\mathbb{P}_{M,s}^\sigma[f(w_i) \geq v_i \mid \lozenge \Box C_j] > 0 \) implies that \(\sup_{\sigma'} \mathbb{P}_{C_j,s}^{\sigma'}[f(w_i) \geq v_i] = 1 \) as observed above. It follows that, \(\mathbb{P}_{M,s}^\sigma[f(w_i) \geq v_i \mid \lozenge \Box C_j] \leq \sup_{\sigma'} \mathbb{P}_{C_j,s}^{\sigma'}[f(w_i) \geq v_i] \). We obtain

\[
\alpha_i \leq \mathbb{P}_{M,s_{\text{init}}}^{\sigma}[f(w_i) \geq v_i] \leq \sum_{j : C_j \in T_i} \mathbb{P}_{M',s_{\text{init}}}^\tau[\lozenge s_{C_j}],
\]

which concludes the proof. \(\square \)

4 Inf, Sup, LimInf, LimSup Payoff Functions

Single-dimensional queries. The single-dimensional multi-constraint percentile problems for for inf, sup objectives are solvable in polynomial time by a reduction to the nested multiple reachability, while lim inf and lim sup can be solved using Theorem 4:

Theorem 5. The single-dimensional multi-constraint percentile problems can be solved in polynomial time in the problem size. for inf, sup, lim inf, and lim sup functions. Computed strategies use memory linear in the query size for inf and sup, and constant memory for lim inf and lim sup.

Proof. Let us fix MDP \(M \), and a starting state \(s_{\text{init}} \). We start with sup. The result will be derived by Theorem 3. Consider an instance \((v_i, \alpha_i)_{1 \leq i \leq q}\) of the problem, where we assume w.l.o.g. that \(v_1 \leq \ldots \leq v_q \).

To simplify the argument, let us assume that weights are assigned to states rather than edges; one can always transform the given MDP (in polynomial time) to ensure this. We define \(T_i \) as the set of states whose weights are at least \(v_i \). The problem of ensuring that \(\mathbb{P}_{M,s_{\text{init}}}^{\sigma}[\sup \geq v_i] \geq \alpha_i \) by some strategy \(\sigma \) is then equivalent to the nested reachability problem with targets \(T_1 \supseteq T_2 \supseteq \ldots \supseteq T_q \). The problem can thus be solved in polynomial time by Theorem 3. The resulting strategies use linear memory by this theorem.

For Inf, consider an instance \((v_i, \alpha_i)_{1 \leq i \leq q}\) of the problem with \(v_1 \leq \ldots \leq v_q \). We make \(q+1 \) copies of \(M \), each named \(M_i \), for any state \(s \) of \(M \), we refer as \(s(i) \) to the corresponding copy in \(M_i \). The starting state is \(s_{\text{init}}(q+1) \). In each \(M_i \), any edge from \(s(i) \) to \(t(i) \) of weight \(w < v_i \) is redirected to \(t(j) \), where \(j \leq i \) is the least index such that \(w \geq v_j \). Intuitively, if the run is in \(M_i \), this means that the current history \(h \) violates all constraints \(\inf \geq v_j \) for all \(j = i \ldots q \). For each \(1 \leq i \leq q \), let \(\text{Safe}_{M_i}^1 \) denote the set of states of \(M_{i+1} \) from which \(\inf \geq v_i \) can be surely satisfied. These sets can be computed in polynomial time. Now, we add an absorbing state \(\top_i \) for each copy \(M_i \), and a fresh action \(a^\top \) deterministically leads to \(\top_i \) from all states \(\text{Safe}_{M_i}^1 \). Note that \(M' \) has size \(O(q|M|) \). Define \(T_i = \{ \top_1, \ldots, \top_q \} \). Now the multiple reachability instance \((T_i, \alpha_i)_{1 \leq i \leq q}\) on \(M' \) (with absorbing target states) is equivalent to the multi-constraint percentile problem for \(\inf \).

In fact, from any strategy \(\sigma \) satisfying the reachability probabilities in \(M' \), one can clearly construct a strategy for \(M \) by following \(\sigma \) until some state \(\top_i \) is reached, and then switching to a strategy that is surely safe for the objective \(\inf \geq v_i \). Conversely, given a strategy \(\sigma \) for \(M \) satisfying the multi-constraint percentile query, we define strategy \(\sigma' \) for \(M' \) by following \(\sigma \), and as soon as some state \(\text{Safe}_{M_i}^1 \) is reached, going to \(\top_i \). We argue that for each \(1 \leq i \leq q \), the probability of reaching \(\cup_{j=1}^i \text{Safe}_{M_j}^1 \) is at least \(\alpha_i \) in \(M \) under \(\sigma \). In fact, otherwise, with probability more than \(1 - \alpha_i \), the play always stays outside this set. Because \(\inf \geq v_i \) is a safety property, this means that the property is violated with probability more than \(1 - \alpha_i \), which is a contradiction. The resulting strategy uses linear memory since \(M' \) is made of \(q + 1 \) copies of \(M \).

For liminf and limsup, consider an instance \((v_i, \alpha_i)_{1 \leq i \leq q}\) of the problem, where we assume \(v_1 \leq \ldots \leq v_q \). We are going to use Theorem 4.

The problem is easy to solve for an end-component \(C \); for each \(i = 1 \ldots q \), one removes all edges with weight smaller than \(v_i \), and checks if there is an end-component \(C' \) included in \(C \). Consider the largest \(i \) with this property. We know that from any state of \(C, C' \) can be reached almost surely, and one can stay inside \(C' \) surely. Then by such a strategy, all constraints \(\lim \inf \geq v_j \) for \(j = 1 \ldots i \) are satisfied almost surely, while other constraints are violated almost surely by any strategy that stays inside \(C \). Optimal strategies inside strongly connected MDPs are thus memoryless. We satisfy the hypotheses of Theorem 4, which yields a polynomial-time algorithm.
The limsup case is solved similarly: In each end-component C, if i_0 denotes the largest v_{i_0} such that some edge of C has weight $\geq v_{i_0}$, then all constraints $\limsup \geq v_j$ for $j = 1 \ldots i_0$ can be satisfied almost surely, and no other constraint is satisfied by any strategy.

The memory usage follows from Theorem 4.

Multi-dimensional queries. We show that all cases can be solved in time polynomial in the model size and exponential in the query size by a reduction to multiple reachability with LTL objectives [19]. We actually show that this holds for a more general class of queries, where the payoff function can be different for each exponential in the query size by a reduction to multiple reachability with LTL objectives [19].

We actually show that all cases can be solved in time polynomial in the model size and exponential in the query size by a reduction to multiple reachability with LTL objectives [19]. We actually show that this holds for a more general class of queries, where the payoff function can be different for each query. We also show that the exponential time dependency on the size of the query can not be avoided unless $P = \text{PSPACE}$.

Given an MDP M, for all $i \in \{1 \ldots q\}$ and value v_i, we define note A^v_i the set of actions of M whose rewards are at least v_i. Let us fix an MDP M and a state s_0. For any constraint $\phi_i \equiv f(w_i) \geq v_i$, we define an LTL formula denoted ϕ_i as follows. For $f_i = \text{inf}$, $\phi_i = \Box A^\geq_v_i$, for $f_i = \text{sup}$, $\phi_i = \Diamond A^\leq_v_i$, for $f_i = \liminf$, $\phi_i = \Diamond \Box A^\geq_v_i$, and for $f_i = \limsup$, $\phi_i = \Box \Diamond A^\leq_v_i$. We relate the multi-constraint percentile queries and multi-LTL objectives in the following lemma.

Lemma 4. For all constraints ϕ_1, \ldots, ϕ_q, and probabilities $\alpha_1, \ldots, \alpha_q$, there exists a strategy σ such that $\bigwedge_{1 \leq i \leq q} \mathbb{P}^M_{\sigma, si} [\phi_i] \geq \alpha_i$ if, and only if, there exists a strategy τ such that $\bigwedge_{1 \leq i \leq q} \mathbb{P}^M_{\tau, si} [\phi_i] \geq \alpha_i$. This can be decided in time polynomial in the model and exponential in the query, and computed strategies use exponential memory in the query.

Proof. The correspondance between LTL formulae and weighted objectives are clear by construction. The complexity follows from [19]. In fact, if D_i denotes the subset construction applied to Büchi automata recognizing ϕ_i, then the multi-objective LTL problem can be solved in time polynomial in the size of the product of M with D_1, \ldots, D_q. But for each formula, a Büchi automaton of size 2 can be constructed; it follows that the algorithm of [19] has complexity polynomial in $|M|$ and exponential in q. The computed strategy is memoryless on the product of M and D_1, \ldots, D_q, thus the corresponding strategy for M has memory $D_1 \times \ldots \times D_q$ which is a single exponential in q.

Theorem 6. The multi-dimensional multi-constraint percentile problems for sup, inf, lim sup and lim inf can be solved in time polynomial in the size of the model and exponential in the size of the query, yielding strategies with memory exponential in the query.

The exponential dependency on the size of the query cannot be avoided in general unless $P = \text{PSPACE}$.

Theorem 7. The multi-dimensional multi-constraint percentile problem is PSPACE-hard for sup objectives.

Proof. Multiple reachability with arbitrary target sets can be encoded as the multi-dimensional multi-constraint percentile problem for sup with weights from $\{0, 1\}$, as we show now. Given MDP M and targets T_1, \ldots, T_q, we define M' by duplicating states as follows. For each state s, we create a new state s^{bs}. All actions leaving s now leave from s^{bs}, and a single action a^s deterministically leads from s to s^{bs}. It is clear that there is a bijection between the strategies of M and those of M' and that they induce the same reachability probabilities for any subset of states of M. We define a q-dimensional weight function on M' that takes values in $\{0, 1\}$. At any state s, $w_i(a^s) = 1$ if, and only if $s \in T_i$. All other actions have value 0. In other terms, the weight function assigns 1 to dimension i if the target set T_i is seen. Since the payoff function is sup, along any history the dimensions that have the value 1 are exactly the target sets that have been satisfied. For any probabilities $\alpha_1, \ldots, \alpha_q$, $\exists \sigma, \forall i = 1 \ldots q, \mathbb{P}^M_{\sigma, si} [\sup_i \geq 1] \geq \alpha_i$, if, and only if $\exists \sigma, \mathbb{P}^M_{\sigma, si} [\sup_i \geq 1] \geq \alpha_i$. PSPACE-hardness allows from Theorem 2.

For the particular case of linsup, the exponential dependency to the size of the query can be avoided.

Theorem 8. The multi-dimensional multi-constraint percentile problem for lim sup is solvable in polynomial time. Computed strategies use constant-memory.
The problem is easy to solve if \(M \) is strongly connected. In fact, if for some \(i \), \(M \) contains no action whose weight at dimension \(l_i \) is at least \(v_i \), then no strategy satisfies \(\limsup \geq v_i \) with positive probability. Conversely, let \(I \subseteq \{1, \ldots, q\} \) such that for each \(i \in I \), \(M \) contains an edge \(e \) with \(w(i, e) \geq v_i \). Then, there is a strategy \(\sigma \) satisfying \(\sup_{e \in I} P_{M,s}^\sigma \left[\limsup \geq v_i \right] = 1 \). In fact, because \(M \) is strongly connected each state and action can be eventually reached almost surely from any state. In particular, the strategy which assigns uniform probabilities to all available actions visits all states infinitely often almost surely.

Thus, we satisfy the hypotheses of Theorem 4, and a polynomial-time algorithm follows. \(\square \)

The exact query complexity of the \(\liminf \) and \(\inf \) cases are left open.

5 Mean-payoff

In this section, we consider the multi-constraint percentile problem for mean-payoff payoff functions, both for \(\mathbb{MP} \) and \(\overline{\mathbb{MP}} \). The single-constraint percentile problem, that is, finding a strategy to ensure \(\mathbb{P}_{M,s} \left[\mathbb{MP} \geq v \right] \geq \alpha \) was first solved in [22]. The case of multiple dimensions was mentioned as a challenging problem but left open. Our goal here is to solve this open problem, thus generalizing the previous work to multiple dimensions and multi-constraint percentiles queries.

5.1 The Single-Dimensional Case

We start with a polynomial-time algorithm for the single-dimensional case, thus extending the results of [22] to multi-constraint percentile queries.

Theorem 9. The single dimensional multi-constraint percentile problems for \(\mathbb{MP} \) and \(\overline{\mathbb{MP}} \) are equivalent and solvable in polynomial time. Computed strategies use constant memory.

Proof. We use Theorem 4 to derive our algorithm.

Let \(C_1, \ldots, C_m \) denote the MECs of a given MDP \(M \). If we define \(v^*(C_i) = \sup_{\sigma \in \Sigma} \mathbb{E}^\sigma_{C_i,s} \left[\mathbb{MP} \right] = \sup_{\sigma \in \Sigma} \mathbb{E}^\sigma_{C_i,s} \left[\overline{\mathbb{MP}} \right] \), then for each \(1 \leq i \leq m \), there exists a strategy \(\sigma_i \), computable in polynomial time, with the property \(\mathbb{P}_{M,s}^{\sigma_i} \left[\mathbb{MP} = v^*(C_i) \right] = 1 \) [32]. In other terms, optimal strategies exist for single dimensional mean-payoff, and the optimal value can be achieved almost surely inside strongly connected MDPs. In contrast, no value greater than the optimal value can be achieved with positive probability. The polynomial-time algorithm then follows from Theorem 4.

The equivalence between \(\mathbb{MP} \) and \(\overline{\mathbb{MP}} \) follows from the fact that they are equivalent inside MECs since memoryless strategies exist, and that the strategy of Theorem 4 almost surely eventually switches to an optimal strategy for a MEC. \(\square \)

5.2 Percentiles on Multi-Dimensional \(\overline{\mathbb{MP}} \)

We now consider the multi-dimensional case and the \(\overline{\mathbb{MP}} \) payoff function. Let \(\mathbb{E}^\sigma_{M,s_{\text{ini}}} \left[\overline{\mathbb{MP}} \right] \) the expectation of \(\overline{\mathbb{MP}} \) under strategy \(\sigma \), and \(\text{Val}^*_{M,s_{\text{ini}}} \left(\overline{\mathbb{MP}} \right) = \sup_{\sigma \in \Sigma} \mathbb{E}^\sigma_{M,s_{\text{ini}}} \left[\overline{\mathbb{MP}} \right] \), which can be computed in polynomial time [32]. We are going to show how to solve the problem inside end-components, then apply Theorem 4. It is known that for strongly connected MDPs, for each \(i \), some strategy \(\sigma \) satisfies \(\mathbb{P}_{M,s_{\text{ini}}}^{\sigma} \left[\text{Val}^*_{M,s_{\text{ini}}} \left(\overline{\mathbb{MP}} \right) = 1 \right] = 1 \), and that for all strategies \(\tau \), \(\mathbb{P}_{M,s_{\text{ini}}}^{\tau} \left[\overline{\mathbb{MP}} > v \right] = 0 \) for all \(v > \text{Val}^*_{M,s_{\text{ini}}} \left(\overline{\mathbb{MP}} \right) \). The following lemma refines this result by describing the convergence speed of the \(\overline{\mathbb{MP}} \) value under an optimal strategy.

Lemma 5 ([34]). Let \(M \) be any single-dimensional weighted MDP, \(v^* = \sup_{\sigma \in \Sigma} \mathbb{E}^\sigma_{M,s_{\text{ini}}} \left[\overline{\mathbb{MP}} \right] \), and \(\sigma \) an optimal strategy with \(v^* = \mathbb{E}^\sigma_{M,s_{\text{ini}}} \left[\overline{\mathbb{MP}} \right] \). For all \(\varepsilon > 0 \) and \(\eta > 0 \), there exists \(K_0 > 0 \) such that for all \(K \geq K_0 \),

\[
\mathbb{P}^{\sigma}_{M,s_{\text{ini}}} \left[\{s_1\{a_1\}s_2a_2\cdots [1 - \frac{1}{K} \sum_{i=1}^{K} w(a_i) \geq v^* - \varepsilon] \} \geq \eta \right].
\]

We now show that for strongly connected multi-dimensional MDPs, a single strategy can simultaneously optimize \(\overline{\mathbb{MP}} \) on all dimensions.
Lemma 6. For any strongly connected d-dimensional MDP M, there exists an infinite-memory strategy σ such that $\forall i \in \{1, \ldots, d\}, P_{M,\text{init}}^\sigma(\overline{MP}_i \geq \text{Val}_{M,\text{init}}^*(\overline{MP}_i)) = 1$.

Proof. Let us write $v_i^\sigma = \text{Val}_{M,\text{init}}^*(\overline{MP}_i)$, and let σ_i be a memoryless optimal strategy for this dimension. We define a strategy that switches between these strategies σ_i with growing time intervals. We fix $\eta \in (0,1)$, and define the sequence $\varepsilon_i = \frac{1}{i}$. Let $t_1 = 1$. For $i \geq 2$, if K_0 the bound given by Lemma 5 for ε_i and η, we choose $t_i \geq K_0$ such that $t_i \geq i^2 \sum_{j=1}^{i-1} t_j$. Strategy σ is defined by running σ_j during t_i steps where $j = (i \mod d) + 1$. Let us define $\alpha_i = \sum_{j=1}^{i} t_j$.

We now prove that σ achieves the optimal value at each dimension with probability 1. Let A_i denote the random variable of the i-th action of an execution for a given MDP, initial state, and strategy. Fix any set of threshold values v_1, \ldots, v_d. We can now apply Theorem 4. In fact, for any set of threshold values v_1, \ldots, v_d, we have $\sup_{\sigma} P_{M,\text{init}}^\sigma(\overline{MP}_i \geq v_i^\sigma) = 1$ if $v_i \leq \text{Val}_{M,\text{init}}^*(\overline{MP}_i)$ and 0 otherwise, and these optimal probabilities are achieved simultaneously inside end-components thanks to the above lemma. The next theorem follows.

Theorem 10. The multi-dimensional multi-constraint percentile problem for \overline{MP} can be solved in polynomial time. Computed strategies use infinite-memory, which is optimal.

To see that infinite-memory strategies are necessary, consider the MDP of Fig. 3 where thresholds $v_1 = v_2 = 1$ can be achieved almost surely by the above theorem, but not by any finite-memory strategy. The proof is identical to the case of maximizing the expectation in [9, Lemma 7] where it is proven for the case of deterministic MDPs (i.e., automata).

\[
\begin{align*}
(1,0) & \quad (0,1) \\
\circ & \quad \circ \\
\circ & \quad \circ \\
\circ & \quad \circ \\
\circ & \quad \circ
\end{align*}
\]

Fig. 3: Infinite-memory strategies are necessary for \overline{MP}.

14
5.3 Percentiles on Multi-Dimensional MP

In this section, we consider the multi-dimensional multi-constraint percentile problem for MP. Our algorithm requires new techniques and is more involved than in previous sections. We will again study first the case of end-components, but in this case the problem does not satisfy the hypotheses of Theorem 4; in particular, there is no common optimal strategy for all dimensions in general. We will rather solve the case of end-components by looking for a linear combination of maximal strategies, namely, those strategies almost surely satisfying maximal subsets of constraints. The overall algorithm is then obtained by linear programming, by combining the techniques of [19,5], and the complexity is polynomial in the model, and exponential in the query size.

Single end-component. Let us fix an instance MDP \(M \) which is strongly connected and with \(d \)-dimensional weights and pairs of thresholds and probabilities \((v_i, \alpha_i)_{1 \leq i \leq q}\). Let us denote each event by \(A_i \equiv \text{MP}_i \geq v_i \).

In [5], the problem of maximizing the joint probability of the events \(A_i \) was solved in polynomial time. In particular, we have the following result for strongly connected MDPs.

Lemma 7 ([5]). If \(M \) is strongly connected, then there exists \(\sigma \) such that \(\mathbb{P}_{M,s}^\sigma [\bigwedge_{1 \leq i \leq q} A_i] > 0 \) if, and only if there exists \(\sigma' \) such that \(\mathbb{P}_{M,s}^{\sigma'} [\bigwedge_{1 \leq i \leq q} A_i] = 1 \). Moreover, this can be decided in polynomial time, and for positive instances, for any \(\varepsilon > 0 \), a memoryless strategy \(\tau \) can be computed in polynomial time in \(M \), \(\log(v_i) \) and \(\log(\frac{1}{\varepsilon}) \), such that \(\mathbb{P}_{M,s}^{\tau} [\bigwedge_{1 \leq i \leq q} \text{MP}_i \geq v_i - \varepsilon] = 1 \).

We now give an overview of our algorithm. Using Lemma 7, we will define strategy \(\sigma_I \) achieving \(\mathbb{P}_{M,s}^{\sigma_I} [\bigwedge_{i \in I} A_i] = 1 \) for any maximal subset \(I \subseteq \{1, \ldots, q\} \) for which such a strategy exists. Then, to build a strategy for the multi-constraint percentile problem, we will look for a linear combination of these \(\sigma_I \); given \(\sigma_{I_1}, \ldots, \sigma_{I_m} \), we choose each \(i_0 \in \{1, \ldots, m\} \) following a probability distribution to be computed, and we run \(\sigma_{I_{i_0}} \). We will now prove that such a procedure is sound and complete.

Let \(I \) be the set of maximal \(I \) such that there exists \(\sigma_I \) satisfying \(\mathbb{P}_{M,s}^{\sigma_I} [\bigwedge_{i \in I} A_i] = 1 \). We note that for all \(I \in \mathcal{I} \), and \(j \not\in I \), \(\mathbb{P}_{M,s}^{\sigma_I} [\bigwedge_{i \in I} A_i \wedge A_j] = 0 \). In fact, assuming otherwise would contradict the maximality of \(I \), by Lemma 7. We consider the events \(A_I = \bigwedge_{i \in I} A_i \wedge \bigwedge_{i \not\in I} \neg A_i \) for maximal \(I \).

We are looking for a nonnegative family \((\lambda_I)_{I \in \mathcal{I}}\) whose sum equals 1 with
\[
\forall i \in \{1, \ldots, q\}, \quad \sum_{I \in \mathcal{I} \text{ s.t. } i \in I} \lambda_I \geq \alpha_i.
\]
This will ensure that if each \(\sigma_I \) is chosen with probability \(\lambda_I \), then with probability at least \(\alpha_i \), some strategy satisfying \(A_i \) with probability 1 will be chosen. It follows that each \(A_i \) will be satisfied with probability at least \(\alpha_i \). This can be written in the matrix notation as
\[
\mathcal{M} \lambda \geq \alpha \\
0 \leq \lambda, \\
1 \cdot \lambda = 1,
\]
where \(\mathcal{M} \) is a \(q \times |\mathcal{I}| \) matrix with \(\mathcal{M}_{i,I} = 1 \) if \(i \in I \), and 0 otherwise.

Lemma 8. Consider any strongly connected MDP \(M \), state \(s_{\text{init}} \), and an instance \((v_i, \alpha_i)_{1 \leq i \leq q}\) of the multi-constraint percentile problem for MP. Then, (3) has a solution if, and only if there exists a strategy \(\sigma \) satisfying the multi-constraint percentile problem.

Proof. Assume (3) and consider the strategy \(\sum_{I \in \mathcal{I}} \lambda_I \sigma_I \), which means that at the beginning of the run, we choose each set \(I \) with probability \(\lambda_I \), and run \(\sigma_I \). Clearly, the probability of satisfying \(A_i \) is at least the probability of running a strategy \(\sigma_I \) such that \(i \in I \), which is \(\sum_{I \in \mathcal{I} \text{ s.t. } i \in I} \lambda_I \). The result follows.

Conversely, let \(\sigma \) denote a strategy satisfying \(\mathbb{P}_{M,s_{\text{init}}}^{\sigma} [A_i] \geq \alpha_i \) for all \(i \). Let us consider all events \(A_I \) including non-maximal \(I \). The events \(A_I \) are disjoint and we have \(A_i = \bigcup_{I \in \mathcal{I} \text{ s.t. } i \in I} A_I \). It follows that \(\mathbb{P}_{M,s_{\text{init}}}^{\sigma} [A_i] = \sum_{I \text{ s.t. } i \in I} \mathbb{P}_{M,s_{\text{init}}}^{\sigma} [A_I] \geq \sum_{I \text{ s.t. } i \in I} \alpha_i \geq \alpha_i \).
\[\sum_{I \in \mathcal{I}} \mathbb{P}_{M,s_{\text{init}}}[A_I] = \sum_{I \in \mathcal{I}} \mathbb{P}_{M,s_{\text{init}}}[A_I] \cdot \mathbb{P}_{M,s_{\text{init}}}[A_I] \] since \(\mathbb{P}_{M,s_{\text{init}}}[A_I] = 1 \) by definition. In order to derive a probability distribution on maximal subsets only, we define a partition of \(2^{\{1, \ldots, q\}} \) by assigning each non-maximal \(J \) to a maximal \(I \in \mathcal{I} \) with \(J \subseteq I \). Formally, we consider sets \(\alpha(I) \subseteq 2^{\{1, \ldots, q\}} \) with \(I \in \alpha(I) \), such that for all \(J \in \alpha(I), J \subseteq I, \) and \(\{\alpha(I)\}_{I \in \mathcal{I}} \) defines a partition of \(2^{\{1, \ldots, q\}} \). For any \(I \in \mathcal{I} \), we set \(\lambda_I = \sum_{J \in \alpha(I)} \mathbb{P}_{M,s_{\text{init}}}[A_J] \). This yields a solution of (3).

Now (3) has size \(\mathcal{O}(q \cdot 2^q) \), and each subset \(I \) can be checked in time polynomial in the model size. The computation of \(\mathcal{I} \), the set of maximal subsets, can be carried out in a top-down fashion; in practice, one might thus avoid enumerating all subsets in some cases.

Lemma 9. For strongly connected MDPs, the multi-dimensional multi-constraint percentile problem for \(MP \) can be solved in time polynomial in \(M \) and exponential in \(q \). Strategies require infinite-memory in general. On positive instances, \(2^q \)-memory randomized strategies can be computed for the \(\varepsilon \)-relaxation of the problem in time polynomial in \(|M|, 2^q, \log(v_1), \log(\frac{1}{\varepsilon}) \).

Proof. The first statement is clear from the two previous lemmas, since (3) can be solved in time polynomial in \(M \) and exponential in \(q \). For the \(\varepsilon \)-relaxation problem, notice that once we compute the set \(\mathcal{I} \) and solve (3), for any set \(I \in \mathcal{I} \), we compute in polynomial time a randomized strategy \(\sigma_I \) ensuring \(A'_I = \bigwedge_{I \in \mathcal{I}} MP_I \geq v_i - \varepsilon \). This can be done as in [5]. Then the strategy choosing randomly each \(\sigma_I \) with probability \(\sigma_I \) ensures all bounds up to \(\varepsilon \) (i.e., \(v_i - \varepsilon \)).

The infinite-memory requirement was proven in [5, Section 5] for the problem of ensuring thresholds
\[\mathbb{P}_{M,s_{\text{init}}}[MP_1 \geq v_1 \land \ldots \land MP_q \geq v_q] \geq \alpha \] for thresholds \(v_1, v_2 \) and probability \(\alpha \). It was proven that on the MDP of Fig. 3, \(v_1 = v_2 = 0.5 \) and \(\alpha = 1 \) can be ensured by an infinite-memory strategy and that finite-memory strategies can only achieve these thresholds with probability 0. Now, if the multi-constraint percentile query
\[\mathbb{P}_{M,s_{\text{init}}}[MP_1 \geq v_1] \geq 0.6 \land \mathbb{P}_{M,s_{\text{init}}}[MP_2 \geq v_2] \geq 0.6 \] has a solution by a strategy \(\sigma \), then we must have
\[\mathbb{P}_{M,s_{\text{init}}}[MP_1 \geq v_1 \land MP_2 \geq v_2] \geq 0.2 \] (this simply follows from the fact that 0.6 + 0.6 = 1.2). Therefore \(\sigma \) must use infinite-memory.

General MDPs. We now describe the algorithm for general MDPs. Given MDP \(M \), let us consider \(M' \) given by Lemma 3. We start by analyzing each maximal end-component \(C \) of \(M \) as above, and compute the sets \(\mathcal{I}^C \) of maximal subsets. We define a variable \(\lambda_I^C \) for each \(I \in \mathcal{I}^C \), and also \(y_{s,a} \) for each state \(s \) and action \(a \in A'(s) \). Recall that \(A'(s) = A(s) \cup \{a^*\} \) for states \(s \) that are inside a MEC, and \(A'(s) = A(s) \) otherwise. Let \(S_{\text{MEC}} \) denote the set of the states of \(M \) that belong to a MEC. We consider the linear program (L) of Figure 4.

\[1_{s_{\text{init}}}(s) + \sum_{s' \in S, a \in A(s')} y_{s', a} \delta(s', a, s) = \sum_{a \in A'(s)} y_{s, a}, \quad \forall s \in S, \quad \ldots \quad (4) \]

\[\sum_{a \in A'(s)} y_{s, a} = 1, \quad \forall s \in S_{\text{MEC}}, \quad \ldots \quad (5) \]

\[\sum_{s \in C} y_{s, a^*} = \sum_{I \in \mathcal{I}^C} \lambda_I^C, \quad \forall C \in \text{MEC}(M), \quad \ldots \quad (6) \]

\[\lambda_I^C \geq 0, \quad \forall C \in \text{MEC}(M), \forall I \in \mathcal{I}^C, \quad \ldots \quad (7) \]

\[\sum_{C \in \text{MEC}(M)} \lambda_I^C \geq \alpha_i, \quad \forall i = 1 \ldots d. \quad \ldots \quad (8) \]

Fig. 4: Linear program (L) for the multi-constraint percentiles for \(MP \).

We prove the following main lemma in this section.

16
Lemma 10 (Main Lemma). The LP \((L)\) has a solution if, and only if the multi-constraint percentiles problem for \(\text{MP}\) has a solution. Moreover, the equation has size polynomial in \(M\) and exponential in \(q\). From any solution of \((L)\) randomized finite memory strategies can be computed for the \(\varepsilon\)-relaxation problem.

The linear program follows the ideas of [19,5]. The equations encode strategies that work in two phases. Variables \(y_{s,a}\) correspond to the expected number of visits of state-action \(s,a\) in the first phase. Variable \(y_{s,a^*}\) describes the probability of switching to the second phase at state \(s\). The second phase consists in staying in the current MEC, so we require \(\sum_{s \in S_{\text{MEC}}} y_{s,a^*} = 1\) (and we will have \(y_{s,a^*} = 0\) if \(s\) does not belong to a MEC). In the second phase, we immediately switch to some strategy \(\sigma^*_C\) where \(C\) denotes the current MEC. Thus, variable \(\lambda^*_C\) corresponds to the probability with which we enter the second phase in \(C\) and switch to strategy \(\sigma^*_C\) (see (6)). Intuitively, given a solution \((\lambda_I)_I\) computed for one end-component by (3), we have the correspondence \(\lambda^*_C = \sum_{s \in C} y_{s,a^*} = \lambda_I\). The interpretation of (8) is that each event \(A_i\) is satisfied with probability at least \(\alpha_i\).

Note that the first two lines of \((L)\) correspond to the multiple reachability LP of [19] for absorbing target states.

Lemma 11. If \((L)\) has a solution then there exists a strategy for the multi-constraint percentile problem. Moreover, from any solution of \((L)\) one can derive in time polynomial in \(M, \log(\frac{1}{\varepsilon})\), and exponential in \(q\), a \(O(2^q)\)-memory randomized strategy solving the \(\varepsilon\)-relaxation of the multi-constraint percentile problem.

Proof. Let \(y_{s,a}, y_{s,a^*}, \lambda^*_I\) be a solution of \((L)\). By [19, Theorem 3.2], there exists a memoryless strategy \(\rho\) for \(M'\) such that \(\mathbb{P}^\rho_{M',\text{init}} [\diamond s_C] = \sum_{s \in C} y_{s,a^*}\) for each MEC \(C\), and \(\sum_{C \in \text{MEC}(M)} \mathbb{P}^\rho_{M',\text{init}} [\diamond s_C] = 1\) by the second line. In this strategy, \(y_{s,a^*}\) is the probability of going to \(s_C\) from \(s\).

For each MEC \(C\), we define the strategy \(\sigma^C\) for \(M\) which, from the states of \(C\), executes each strategy \(\sigma_I\) for \(I \in \mathcal{C}\) with probability \(\frac{\lambda^*_I}{\sum_{s \in C} y_{s,a^*}}\), if the denominators are positive, and with an arbitrary distribution otherwise. We combine these in a strategy \(\sigma\) for \(M\) which starts by simulating \(\rho\) until \(\rho\) chooses the action \(a^*\), at which point \(\sigma\) switches to \(\sigma^C\).

By construction the probability of \(\sigma\) of switching to \(\sigma^C\) is \(\sum_{s \in C} y_{s,a^*} \cdot \frac{\lambda^*_I}{\sum_{s \in C} y_{s,a^*}} = \lambda^*_I\), for any \(C\) and \(I \in \mathcal{C}\). Moreover, thanks to the fact that \(\sum_{s \in S_{\text{MEC}}} y_{s,a^*} = 1\), we know that \(\sigma\) will eventually switch to some \(\sigma^C\) almost surely. Because for all \(I\) and \(C\) such that \(i \notin I\), the probability of \(\sigma^C\) of satisfying \(A_i\) inside \(C\) is 0 (see above), we get that the probability of satisfying \(A_i\) under \(\sigma\) is equal to the probability of switching to some \(\lambda^*_I\). But thanks to the last line of the program, this quantity is at least \(\alpha_i\). Hence, \(\sigma\) satisfies the multi-constraint percentile problem.

We obtain a strategy for the relaxed problem as follows. Each strategy \(\sigma^C\) may be infinite-memory a priori but for any \(\varepsilon > 0\), we can compute by Lemma 7, memoryless randomized strategies \(\tau^*_C\) ensuring \(A_i^*\) with probability 1. Now, since \(\rho\) is also memoryless, the combined strategy only needs \(2^q + 1\) memory elements (to store the phase, and which \(I\) it has chosen once in a MEC). The result follows.

Lemma 12. If strategy \(\sigma\) solves the multi-constraint percentile problem for \(\text{MP}\), then \((L)\) has a solution.

Proof. Let \(C_1, \ldots, C_m\) denote the MECs, and define \(y_C = \mathbb{P}_M^\sigma_{\text{init}}[\text{Inf}(w) = C]\) for each \(i\). Clearly, we have \(\sum_i y_C = 1\). Let \(\rho\) denote the strategy on \(M'\) of Lemma 3 given for \(\sigma\). For any action \(a \in C_i\), let \(y_{s,a}\) denote the expected number of times action \(a\) is taken at \(s\) under \(\rho\) in \(M'\) starting at \(s_{\text{init}}\). Now, [19, Lemma 3.3] ensures that these variables have finite values and satisfy the first two lines of \((L)\).

We define strategy \(\rho'\) for \(M\) which follows \(\rho\) until action \(a^*\) is taken, at which point it switches to each strategy \(\sigma^*_C\) with probability \(\mathbb{P}_M^\rho_{\text{init}}[A_i | \text{Inf}(w) = C]\) (these include non-maximal sets \(I\)). We have that

\[
\mathbb{P}_M^\rho_{\text{init}}[A_i] = \sum_{C \in \text{MEC}(M)} \mathbb{P}_M^\rho_{\text{init}}[A_i | \text{Inf}(w) = C] \mathbb{P}_M^\rho_{\text{init}}[\text{Inf}(w) = C] = \sum_{C \in \text{MEC}(M)} \mathbb{P}_M^\rho_{\text{init}}[A_i | \text{Inf}(w) = C].
\]

By definition of \(\sigma',\) the first term in the sum equals \(\mathbb{P}_M^\sigma_{\text{init}}[A_i | \text{Inf}(w) = C].\) The second term in the sum is equal to \(\mathbb{P}_M'_{\text{init}}[\diamond s_C] = \mathbb{P}_M^\sigma_{\text{init}}[\text{Inf}(w) = C].\) It follows that \(\mathbb{P}_M^\rho_{\text{init}}[A_i] = \mathbb{P}_M^\sigma_{\text{init}}[A_i].\)
Now, to obtain a solution of (L), it remains to get rid of the strategies \(\sigma_l \) for non-maximal subsets \(I \) for each MEC. We thus modify once more \(\sigma' \) to obtain \(\sigma'' \) as follows. Whenever \(\sigma' \) switches to some strategy \(\sigma''_I \), where \(I \) is not maximal, we rather switch to some \(\sigma''_{J} \) for some -arbitrarily chosen- maximal \(J \supseteq I \). It is clear that \(\mathbb{P}_{M,s_{\text{init}}}^{\sigma}[\inf(w) = C] = \mathbb{P}_{M,s_{\text{init}}}^{\sigma''}[\inf(w) = C] \) and \(\mathbb{P}_{M,s_{\text{init}}}^{\sigma''}[A_I \mid \inf(w) = C] \geq \mathbb{P}_{M,s_{\text{init}}}^{\sigma}[A_I \mid \inf(w) = C] \) for all \(I \in \mathcal{J}' \).

Now, for each \(C \) and \(I \in \mathcal{J}' \), we define \(\lambda^C_I = \mathbb{P}_{M,s_{\text{init}}}^{\sigma''}[A_I \land \inf(w) = C] \). It is easy to verify that \(0 \leq \lambda^C_I \) and \(\sum_{I \in \mathcal{J}'} \lambda^C_I = \sum_{s \in C} y_{s,a} \), so (6) and (7) are satisfied. We have \(\sum_{I \in \mathcal{J}'} \lambda^C_i = \mathbb{P}_{M,s_{\text{init}}}^{\sigma''}[\inf(w) = C_i] = \mathbb{P}_{M,s_{\text{init}}}^{\sigma}[\inf(w) = C_i] = y_{C_i} \) for all \(i = 1 \ldots d \). Moreover, \(\mathbb{P}_{M,s_{\text{init}}}^{\sigma''}[A_i] = \sum C \in \text{MEC}(M) \sum_{I \in \mathcal{J}'} \mathbb{P}_{M,s_{\text{init}}}^{\sigma''}[A_I \land \inf(w) = C] \). This is at least equal to \(\mathbb{P}_{M,s_{\text{init}}}^{\sigma}[A_i] \) as we saw above, which is at least \(\alpha_i \) by assumption; hence (8) is also satisfied. \(\square \)

Theorem 11. The multi-dimensional multi-constraint percentile problem for MP can be solved in time polynomial in the model, and exponential in the query. Infinite-memory strategies are necessary, but exponential-memory (in the query) suffices for the \(\varepsilon \)-relaxation and can be computed with the same complexity.

6 Shortest Path

We now study a setting inspired by the shortest path problem in graphs (see for example [16]). The classical formulation asks to reach a target set of vertices at a minimum cost in a (usually positively) weighted graph. This problem has also been studied in the context of games [28,7,6] and MDPs [1,18,30]. We express this problem through the truncated sum payoff function. Recall that given a target set of states \(T \) and a dimension, this function sums up all encountered weights up to the first visit of \(T \) and assigns value \(\infty \) to runs that never reach \(T \).

The natural inequalities to consider in percentile constraints are respectively \(\leq \) and \(\geq \), as one tries to maximize the probability that the truncated sum lies under a given threshold. While it is possible to modify any weight function to have both \(\geq \) inequalities as presented in Sect. 2, we here use the natural form of the problem for the sake of readability. Hence we consider percentile queries of the form

\[
Q := \bigwedge_{i=1}^g \mathbb{P}_{M,s_{\text{init}}}^{\sigma}[\text{TS}_{T_i} \leq v_i] \geq \alpha_i.
\]

Observe that each constraint \(i \) may relate to a different target set of states \(T_i \subseteq S \).

6.1 General Case

We first prove that without further restriction on the setting, the multi-dimensional percentile problem is undecidable for this payoff function, even for a fixed number of dimensions. Our proof is inspired by the approach of Chatterjee et al. to show the undecidability of two-player total-payoff games with multi-dimensional weights [10]. However, we need to adapt the technique and introduce some additional gadgets as stochastic transitions are not fully able to simulate a true adversary.

Theorem 12. The multi-dimensional percentile problem is undecidable for the truncated sum payoff function, for MDPs with both negative and positive weights and four dimensions, even with a unique target set.

Proof. We reduce the halting problem for two-counter machines (2CMs) to a multi-dimensional percentile problem for the truncated sum payoff function over an MDP with weights in \(\mathbb{Z}^4 \), with a unique target set.

Counters of a 2CM take values \((v_1,v_2) \in \mathbb{N}^2 \) along an execution, and can be incremented or decremented (if positive). A counter can be tested for equality to zero, and the machine can branch accordingly. The halting problem for 2CMs is well-known to be undecidable [29].
Consider a 2CM \mathcal{M}. From this 2CM, we construct an MDP $M = (S, A, \delta, w)$ and a target set of states $T \subset S$, with an initial state $s_{\text{init}} \in S$ such that there exists a strategy $\sigma \in \Sigma$ satisfying the four-dimensional percentile query
\[
Q = \bigwedge_{i=1}^{4} P_{M, s_{\text{init}}}^{\sigma} [TS_i^T \leq 0] = 1.
\]
if and only if the machine does not halt.

Intuitively, this MDP is built such that strategies that do not faithfully simulate the 2CM \mathcal{M} cannot satisfy the percentile query. To ensure that this is the case, we will implement checks through probabilistic transitions that will produce bad runs with positive probability against unfaithful strategies.

The MDP M is built as follows. The states of M are copies of the control states of \mathcal{M} (plus some special states discussed in the following). Actions in the MDP represent transitions between these control states. The weight function maps actions to 4-dimensional vectors of the form $(c_1, -c_1, c_2, -c_2)$, that is, two dimensions for the first counter C_1 and two for the second counter C_2. Each increment of counter C_1 (resp. C_2) in \mathcal{M} is implemented in M as an action of weight $(1, -1, 0, 0)$ (resp. $(0, 0, 1, -1)$). For decrements, we have weights respectively $(-1, 1, 0, 0)$ and $(0, 0, -1, 1)$ for C_1 and C_2. Therefore, the current value of counters (v_1, v_2) along an execution of the 2CM \mathcal{M} is represented in the MDP as the current sum of weights, $(v_1, -v_1, v_2, -v_2)$. Hence, along a faithful execution, the 1st and 3rd dimensions are always non-negative, while the 2nd and 4th are always non-positive. The two dimensions per counter are used to enforce faithful simulation of non-negativeness of counters and zero test.

\begin{itemize}
 \item \text{(a)} Increment C_1. \hspace{1cm} \text{(b)} Decrement C_1. \hspace{1cm} \text{(c)} Halting. \hspace{1cm} \text{(d)} Checking a zero test on C_1. \hspace{1cm} \text{(e)} Escape gadget reachable by every action of the MDP.
\end{itemize}

Fig. 5: Gadgets encoding 2CM halting problem in a multi-dimensional percentile problem for truncated sum payoff function.
We now discuss how this MDP M ensures faithful simulation of the 2CM M by the controller through the use of the gadgets represented in Fig. 5. Small filled circles represent equiprobable stochastic transitions, double circles depict states of the target set T.

- **An escape gadget** has a positive probability to be reached whenever an instruction of the 2CM is simulated. When in this gadget, the controller can decrease the sum on all dimensions below zero by cycling long enough before deciding to reach the target, hence making the run acceptable for the considered percentile query.

- **Increment and decrement** of counter values are easily simulated using the first four dimensions.

- **Values of counters may never go below zero.** To ensure this, we make every decrement action probabilistic with three equiprobable outcomes. Consider the decrement of C_1 as depicted in Fig. 5b. Either the simulation continues (dashed control state), or it branches to the escape gadget, or it branches to the bottom right part of the decrement gadget. In that case, the controller can cycle long enough in the first state to ensure a negative sum of weights in all dimensions except for the second one, before reaching the target (runs have to reach the target or their truncated sum will be ∞). If the controller is not faithful and a negative value is reached on counter C_1 when decrementing, this branching will induce a run which is losing because the second dimension will be strictly positive (recall it has value $-c_1$).

 Notice that the controller can never cheat, otherwise this branching will happen with strictly positive probability (i.e., after a finite prefix). On the contrary, if the controller never cheats, this branching is harmless and induces acceptable runs w.r.t. the percentile query. The gadget is similar for decrements of C_2 using the fourth dimension.

- **Zero tests are correctly executed.** In the same spirit, we allow a probabilistic branching after the controller claims a counter is equal to zero. Consider Fig. 5d for counter C_1. If a zero test is passed while $c_1 > 0$, the sum on the first dimension will stay strictly positive and the run will not be acceptable. On the contrary, if the controller is faithful, this branching is again harmless as it is possible to make all sums negative except for the first dimension for which it would already be equal to zero. We use a similar gadget for C_2 based on the third dimension.

- **Halting.** The end of a 2CM execution is modeled in the MDP by an halting state. This state does not belong to the target set T: any run corresponding to an halting execution will have its truncated sum equal to ∞ on all dimensions, which makes it bad for the percentile query.

Now, we have argued that if the simulation is not faithful, bad runs will be produced with strictly positive probability, and the percentile query will not be satisfied. Furthermore, if the machine halts, then with a strictly positive probability, the halting state will be reached (because the machine halts after a finite number of operations), which also results in bad runs. Hence if the percentile query is satisfied by a strategy $\sigma \in \Sigma$, then this strategy describes a faithful infinite execution of M.

It remains to show that if the 2CM does not halt, the percentile query is satisfiable. Clearly, the halting state will never be reached, and gadgets cannot produce bad runs as the simulation is faithful. However, runs that never reach any target state (i.e., runs that never branch away from the simulation) are still bad runs as they yield an infinite truncated sum. Nonetheless, observe that each action taken in the MDP yields a strictly positive probability to branch to the escape gadget or to branch inside decrement and zero-test gadgets. Hence, if the 2CM does not halt, such actions are taken infinitely often and with probability one, the simulation eventually branches toward the target states (with a good truncated sum as argued before). We conclude that the strategy that simulates a never-halting machine does yield good runs with probability one.

Consequently, we have that the studied multi-dimensional percentile problem is equivalent to the 2CM halting problem, and thus, undecidable.

\[\square\]

6.2 MDPs with Non-negative Weights

In the light of this undecidability result, we restrict our study to MDPs where all weights are non-negative, a setting closer to the original interpretation of the shortest path problem. We start by comparing this setting with recent related work and discuss which results carry over.
Comparison with quantiles and cost problems. In [36], Ummels and Baier study the computation of quantile queries over non-negatively weighted MDPs. Such queries are essentially equivalent to minimizing the value $v \in \mathbb{N}$ in a single-constraint percentile query $P^\alpha_{M,s_{\text{init}}}[TS^T \leq v] \geq \alpha$ such that there still exists a satisfying strategy, for some fixed $\alpha \in [0, 1] \cap \mathbb{Q}$. The study of quantiles is limited to the truncated sum payoff function.

Very recently, Haase and Kiefer have slightly extended the setting of quantile queries by introducing cost problems over non-negatively weighted MDPs [25]. Cost problems can be seen as single-constraint percentile queries where the inequality $TS^T \leq v$ is replaced by an arbitrary Boolean combination of inequalities φ. Hence, it can be written as $P^\alpha_{M,s_{\text{init}}}[TS^T \models \varphi] \geq \alpha$. Note that cost problems are studied on single-dimensional MDPs and that all the inequalities relate to the same target set T, in contrast to our setting which allows both for multiple dimensions and multiple target sets. The single probability threshold bounds the probability of the whole event φ, whereas we consider potentially different probability thresholds for each constraint.

Furthermore, both settings are incomparable in general. Cost problems consist in a unique query that checks that with probability α, paths satisfy the Boolean combination φ. In percentile queries, we have several constraints and we check that each inequality is satisfied with the corresponding probability α_i: paths do not need to satisfy all inequalities at the same time. In full generality, for a fixed probability threshold α, it is easier to satisfy a unique constraint over a conjunction of inequalities than to satisfy a disjunction of constraints over single inequalities: in the second case, α percent of the paths must satisfy the same unique inequality, not in the first one. Similarly, it is harder to satisfy a unique constraint over a conjunction of inequalities than to satisfy a conjunction of constraints over single inequalities: in the first case, α percent of the paths must satisfy all inequalities, not in the second one.

Despite this incomparability in general, our percentile queries share common subclasses with cost problems. In particular, the case of atomic formulae φ exactly correspond to our single-constraint queries. Moreover, it was shown in [25, Proposition 2] that cost problems for such formulae are polynomial-time inter-reducible with quantile queries. The results of [25] establish lower bounds on the complexity of cost problems in several settings: cost problems with atomic formulae are PSPACE-hard, so this also holds for single-constraint percentile queries.

Finally, the best known algorithm for the single-constraint percentile problem, from inter-reductions with cost problems and quantile queries, is in EXPTIME. In the following, we establish an algorithm that still only requires exponential time while allowing for multi-constraint multi-dimensional multi-target percentile queries.

Overview. Our main results are summarized in Theorem 13. In the following, we detail each of them and discuss some subclasses of queries with interesting complexities. We refer to shortest path: we always assume that all weights are non-negative.

Theorem 13. The percentile problem for the shortest path can be solved in time polynomial in the size of the model $|M|$ and exponential in the size of the query $|Q|$ (exponential in the number of constraints q and pseudo-polynomial in the largest value threshold). This problem is PSPACE-hard even for single-constraint queries. Exponential-memory strategies are both sufficient and in general necessary to satisfy percentile queries.

Algorithm. We now establish an EXPTIME algorithm for the percentile problem. The two key steps are: first, building an appropriate unfolding of the original MDP (with extra care to ensure its size is only single-exponential in the worst-case); second, solving a multiple reachability problem over this unfolding (which takes time polynomial in the size of the unfolding but exponential in the number of constraints).

Lemma 13. The percentile problem for the shortest path can be solved in time polynomial in the size of the MDP and the thresholds values, and exponential in the number of dimensions of the weight function and the number of constraints of the problem.

Proof. Let $M = (S, A, \delta, w)$ be the considered MDP, with $w: A \rightarrow \mathbb{N}^d$ its d-dimensional non-negative weight function, $s_{\text{init}} \in S$ the initial state. We consider a q-constraint query: we are looking for a strategy $\sigma \in \Sigma$ such that $Q = \bigwedge_{i=1}^q P^\alpha_{M,s_{\text{init}}}[TS^T_i \leq v_i] \geq \alpha_i$ for the given thresholds $v_i \in \mathbb{N}$, $\alpha_i \in [0, 1] \cap \mathbb{Q}$ and target sets $T_i \subseteq S$. The algorithm is as follows.
Let v_{max} be the maximum of the thresholds v_i, $i \in \{1, \ldots, q\}$. Observe that given any prefix of a run, extending it can never decrease the sum of weights (as all weights are non-negative) and that any run for which the truncated sum exceeds v_{max} in all dimensions is not interesting for the controller.

Based on those observations, we unfold the MDP M, creating a tree-like structure in the nodes of which we integrate the current sum of weights. That is, nodes are labeled by elements of $S \times \mathbb{N}^d$. We stop a branch as soon as the sum reaches $v_{\text{max}} + 1$ in all dimensions (we do not care about what happens after the sum hits this value as it is now a bad outcome for all the percentile constraints). Now, this unfolding is not exactly a tree because we allow actions of weight zero in the original MDPs. Hence we may have to introduce cycles in the unfolding: whenever a branch visits a node with a label identical to one of its ancestors, we stop this branch and introduce a cycle to the corresponding ancestor. Those two cutting criteria guarantee an unfolding which is finite and of maximum height $h = \mathcal{O}(|S| \cdot (v_{\text{max}} + 2) \cdot d)$. That is because every cycle (in the original MDP) that does not result in a cycle in the unfolding has to increase at least one dimension, by at least one, and has at most length $|S|$.

Now consider the overall size of this unfolding. Recall that we want to build an unfolding which is at most exponential. If no special care is taken, the size of the unfolding could be as high as $\mathcal{O}(b^h)$, where b denotes the branching degree of M, defined as

$$b = \max_{s \in S} \{(a, s') \mid a \in A(s), s' \in S, \delta(s, a, s') > 0\}.$$

In particular, the overall size could be exponential in v_{max}, that is, doubly-exponential in its encoding. To avoid that, we reduce the size of the unfolding by merging equivalent nodes.

What are equivalent nodes? First, we declare two nodes to be equivalent if they relate to the same state and describe identical sums on all dimensions. Second, observe that for any node of the unfolding, the sum on any dimension can theoretically grow up to $h \cdot W$, with W the largest weight appearing on any action of M. That is, it can grow larger than $(v_{\text{max}} + 1)$ as we stop only when all dimensions are larger than this bound. Nonetheless, w.r.t. satisfaction of the percentile query, we do not need to recall exactly what is the value reached after exceeding v_{max} as in any case, such a sum in a given dimension is not acceptable for any related constraint. Hence, we can also merge nodes by replacing any label larger than $(v_{\text{max}} + 1)$ by label $(v_{\text{max}} + 1)$.

By merging nodes equivalent according to this definition, we ensure that the overall size of the unfolding is at most $u = \mathcal{O}(|S| \cdot (v_{\text{max}} + 2)^d)$. Indeed, the possible values for sums on any dimension in the unfolding run from 0 to $(v_{\text{max}} + 1)$. Observe that this overall size u is, as desired, polynomial in the number of states $|S|$ and in the largest threshold v_{max}, and exponential in the number of dimensions d.

Interestingly, this merging process can be executed on the fly while building the unfolding hence does not hinder the total execution time of the algorithm (i.e., one does not have to fully build the doubly-exponential unfolding to construct the single-exponential merged one).

Now notice that this unfolding is itself an MDP, denoted M'. For each constraint $i \in \{1, \ldots, q\}$, we can compute the set R_i of nodes that are labeled by a state in the corresponding target set T_i and have a label less than or equal to v_i on the corresponding sum dimension l_i. Hence, such a set R_i actually captures all branches satisfying the inequality of constraint i (a branch is captured if it possesses a node of R_i). Observe that we only consider dimensions related to constraint i when computing the set R_i (e.g., it is not a problem to exceed v_{max} in other dimensions). This computation takes time $\mathcal{O}(u \cdot q)$ in the worst case.

Now we are left with a multiple reachability problem on M': we have to decide the existence of a strategy σ' satisfying the query

$$Q' := \bigwedge_{i=1}^{q} \mathbb{P}_{M',\sigma'}^{s_{\text{init}}} [\Diamond R_i] \geq \alpha_i.$$

If such a strategy σ' exists in M', it is easy to see that the equivalent strategy σ in the original MDP M satisfies the shortest path percentile query Q. Indeed, the probability of reaching set R_i in M' following strategy σ' is exactly the probability of satisfying constraint i in M following the equivalent strategy σ. On the contrary, if no strategy satisfies the multiple reachability query Q', it implies that the original percentile query Q cannot be satisfied either.
Solving this multiple reachability query \(Q' \) can be done in polynomial time in the size of the unfolding MDP \(M' \) but exponential in the number of sets \(R_i \), i.e., in the number of constraints (Theorem 1). Hence, the overall time required by the algorithm is polynomial in \(|S|\) and in the maximum threshold \(v_{\text{max}} \), and exponential in the number of dimensions \(d \) and in the number of constraints \(q \).

It is worthwhile to mention that the exponential dependency on the number of constraints can be lifted when they all share the same target set.

Remark 1. **Percentile problems with a unique target set are solvable in time that is polynomial in the number of constraints (but still exponential in the number of dimensions).**

Proof. Consider the unfolding algorithm described in the proof of Lemma 13. Assume that all constraints of the percentile query relate to the same target set \(T \subseteq S \). In that case, all branches can be stopped as soon as they reach a state of \(T \). Thus, when computing the sets \(R_i \) for the multiple reachability problem on the unfolding \(M' \), all nodes that belong to these sets are actually leaves of the unfolding. Hence they are absorbing states of \(M' \). From Theorem 1, it follows that the multiple reachability problem can be solved in polynomial time, which eliminates the exponential dependency on the number of constraints for solving the shortest path percentile problem with a single target set.

Finally let us note that for single-dimensional percentile queries with a unique target set (but still potentially multi-constraint), our algorithm remains pseudo-polynomial as it requires polynomial time in the thresholds values (i.e., exponential time in the encoding of those values).

Corollary 1. The multi-dimensional percentile problem for the shortest path can be solved in exponential time. The single-dimensional percentile problem with a unique target set can be solved in pseudo-polynomial time.

Lower bound. By [25, Theorem 7] and the equivalence between the cost problem for atomic cost formulae and the single-constraint percentile problem for the shortest path, it follows that a truly-polynomial-time algorithm is impossible unless \(P = \text{PSPACE} \).

Lemma 14. The single-constraint percentile problem for the shortest path is \(\text{PSPACE}-hard \).

Proof. This is a straightforward implication of [25, Theorem 7] since a cost problem with atomic cost formula \(\varphi = T S^T \leq v \) in the sense of [25] is exactly a single-constraint percentile query \(\mathbb{P}_{M,\text{max}}[TS^T \leq v] = \alpha \).

Memory. We now argue that strategies with exponential-size memory are both sufficient and in general necessary to satisfy percentile queries for the shortest path (provided a satisfying strategy exists). The upper bound follows from the algorithm while the lower bound is shown via a straightforward reduction from the multiple reachability problem.

Lemma 15. Exponential-memory strategies are both sufficient and, in general, necessary to satisfy percentile queries for the shortest path.

Proof. First, the algorithm given in Lemma 13 solves the percentile problem by answering a multiple reachability problem over an unfolded MDP of exponential size. As stated in Theorem 1, memory of size polynomial in the MDP (here, the unfolded one) and exponential in the number of constraints (which is untouched by our algorithm) is sufficient to satisfy such queries. Hence, it follows that exponential-memory strategies suffice for shortest path percentile queries.

Second, let us show that multiple reachability problems over an MDP \(M \) can be reduced to shortest path percentile problems over the very same MDP, enriched with a trivial weight function. Consider an unweighted MDP \(M = (S, A, \delta) \) and a multiple reachability query for sets \(T_i \subseteq S \) and thresholds \(\alpha_i \in [0, 1] \cap \mathbb{Q} \), with \(i \in \{1, \ldots, q\} \). Let \(M' = (S, A, \delta, w) \) be a single-dimensional weighted version of the MDP \(M \), where all actions are assigned weight zero. Then we trivially have that a strategy \(\sigma \) satisfies the multiple reachability
query on M if and only if it satisfies the percentile query $\bigwedge_{i=1}^{q} \mathbb{P}_{M',s_{\text{init}}}^{T_i}[TS_i \leq 0] \geq \alpha_i$ on M'. Indeed, runs that are bad for this percentile query are exactly the ones that are assigned truncated sum ∞ because they do not reach the considered target sets. This concludes the reduction.

Finally, we know by Lemma 2 that exponential memory is needed in general for multiple reachability queries. This lower bound thus straightforwardly carries over to shortest path percentile queries.

7 Discounted Sum

The last payoff function that we consider is called the discounted sum. This function accumulates encountered weights using a discount factor to model the fact that short-term rewards or costs are more important than long-term ones. It is well-studied, for example in automata [2] and MDPs [32,14,11]. Nonetheless, many important questions are still open as we discuss in the following.

In full generality, we consider percentile queries of the form

$$Q := \bigwedge_{i=1}^{q} \mathbb{P}_{M,s_{\text{init}}}^{T_i} [DS_i^\lambda \geq v_i] \geq \alpha_i,$$

for discount factors $\lambda_i \in [0,1] \cap \mathbb{Q}$ and the usual rational value and probability thresholds. That is, we consider multi-dimensional MDPs and possibly distinct discount factors for each constraint.

Unfortunately, our setting encompasses a much simpler question which is still not known to be decidable. We discuss this question and its reduction to our percentile problem in Sect. 7.1. We also argue why solving this open problem would require an important breakthrough. Then, in Sect. 7.2, we establish a conservative algorithm that, in some sense, can approximate the answer to the percentile problem. Such approximations schemes are common when dealing with discounted sums, due to the mentioned open question. We make the link with related work following similar approaches.

7.1 Precise Discounted Sum is Hard

Consider the following problem, as stated by Boker and Otop [3]: given a rational value t, and a rational discount factor $\lambda \in [0,1]$, does there exist an infinite binary sequence $\tau = \tau_1\tau_2\tau_3\ldots \in \{0,1\}^\omega$ such that $\sum_{j=1}^{\infty} \lambda^j \cdot \tau_j = t$? We name it the precise discounted sum problem (as we are looking for a sequence giving precisely t). This problem is not known to be decidable without further restriction. In [3], the authors have related this problem to several long-standing open questions, such as decidability of the universality problem for discounted-sum automata [2]: undecidability of the precise discounted sum problem would carry over to the latter.

A slight generalization of the precise discounted sum problem to paths in graphs is also mentioned by Chatterjee et al. as a key open problem in [11]. The best lower bound that we know of for this generalization is \textbf{PSPACE}, given by [26]. Several subclasses of the problem are known to be decidable, such as the case where $\lambda = 1/n$ for some $n \in \mathbb{N}_0$ [11].

It is easy to see that the precise discounted sum question can be reduced to a simple percentile problem. This implies that establishing an algorithm answering percentile problems for the discounted sum would also solve this long-standing open question.

Lemma 16. The precise discounted sum problem can be reduced to an almost-sure percentile problem over a two-dimensional MDP with only one state.

Proof. Assume we have a precise discounted sum problem with discount factor $\lambda \in [0,1] \cap \mathbb{Q}$ and target value $t \in \mathbb{Q}$. Let M be an MDP with only one state s and two actions, a and b (that both cycle on s with probability one, obviously). Consider the two-dimensional weight function $w: A \rightarrow \mathbb{Z}^2$ such that $w(a) = (0,0)$ and $w(b) = (1,-1)$. The role of action a (resp. b) is to represent the choice of 0 (resp. 1) in the binary sequence.
We define the percentile problem asking for the existence of a strategy $\sigma \in \Sigma$ such that
\[
\mathbb{P}^\sigma_{M,s}[\text{DS}^\lambda_1 \geq t] = 1 \quad \& \quad \mathbb{P}^\sigma_{M,s}[\text{DS}^\lambda_2 \geq -t] = 1.
\]
By definition of the weight function, the second term of the conjunction is equivalent to $\mathbb{P}^\sigma_{M,s}[\text{DS}^\lambda_1 \leq t] = 1$. Hence, if a satisfying strategy σ exists, it does satisfy $\mathbb{P}^\sigma_{M,s}[\text{DS}^\lambda_1 = t] = 1$. We claim that the answer to the precise discounted sum problem is Yes if and only if the answer to the percentile problem is Yes.

First, assume a satisfying strategy σ exists. In general, our percentile problems do not require strategies to be pure. However, even if σ is randomized, we can extract a run ρ induced by this strategy and such that $\text{DS}^\lambda_2(\rho) = t$ (such a run exists otherwise the strategy would not satisfy the percentile query). This run can be seen as a sequence of actions $\rho_\lambda \in \{a,b\}^\omega$, which we translate in a corresponding sequence $\tau \in \{0,1\}^\omega$ satisfying the precise discounted sum problem.

Conversely, assume there exists a sequence $\tau \in \{0,1\}^\omega$ satisfying the precise discounted sum problem. Then this sequence defines a (possibly infinite-memory) pure strategy σ that ensures a discounted sum equal to t, and thus the percentile query is satisfied.

\section{Approximation Algorithm}

\subsection{Approaching an answer.}

As shown in Sect. 7.1, an exact algorithm for the percentile problem is currently out of reach. Fortunately, we are still able to establish an algorithm that can “approximate” a solution. Since we consider decision problems, the notion of approximation should not be understood sensu stricto. We will formalize the output of the algorithm in the following but let us first give an intuitive sketch.

Our algorithm takes as input a discounted sum percentile query and an arbitrarily small precision factor $\varepsilon > 0$ and has three possible outputs: Yes, No and Unknown. If it answers Yes, then a satisfying strategy exists and can be synthesized. If it answers No, then no such strategy exists. Finally, the algorithm may output Unknown for a specified “zone” close to the threshold values involved in the problem and of width which depends on ε. Intuitively, the algorithm is not precise enough to give a definitive answer while in this zone. However, if the answer is Unknown, it is possible to reduce the uncertainty zone by executing the algorithm with a smaller value of ε. Hence, one can incrementally reduce the uncertainty zone while no definitive answer is found.

While this uncertainty zone can be taken as small as we want, it cannot be totally eliminated, hence we cannot guarantee that such an incremental scheme will terminate in all cases. Indeed, taking $\varepsilon = 0$ would essentially grant us the infinite precision needed to answer the precise discounted sum problem defined in Sect. 7.1, which is not known to be decidable.

\subsection{Gap and promise problems.}

This notion of approximation for decision problems has been formalized in the literature through the concept of ε-gap problem. It is a particular case of promise problem [20,24]. In promise problems, the set of all possible inputs of an algorithm is partitioned in three subsets: yes-inputs, no-inputs and the rest of them. The promise problem then asks to answer Yes for all yes-inputs and No for all no-inputs, while the answer may be arbitrary for the remaining inputs. In classical decision problems, yes-inputs and no-inputs form a partition of the set of inputs: the algorithm must answer correctly for all inputs. In our setting, the set of inputs for which no guarantee is given can be taken arbitrarily small, parametrized by value $\varepsilon > 0$: this is an ε-gap problem.

\subsection{Related work: single-constraint case.}

Before continuing with our algorithm, we mention some related work. All of these papers consider models related to single-constraint percentile queries. Consider a single-dimensional MDP and such a single-constraint percentile query (hence with a unique discount factor λ), with values v and α for value and probability thresholds respectively. Two types of optimization problems were considered in the literature. The threshold problem fixes v and tries to find a strategy maximizing the probability α that the threshold v is satisfied [38,39]. The value-at-risk problem fixes the probability α and tries to maximize the threshold v such that the query remains satisfied with probability at least α [4]. This last problem follows essentially the same goal as quantiles in the shortest path setting [36].
Paper [4] is the first to provide an exponential-time algorithm to approximate the optimal value v^* under a fixed α in the general setting. It is worth noting the following. First, the authors also rely on approximation. Second, they actually study a model named solvency MDPs with interest, but prove its equivalence with the value-at-risk problem over discounted-sum MDPs. Third, while we do not consider optimization, we do extend the setting to multi-constraint, multi-dimensional, multi-discount problems, and we are able to remain in the same complexity class, namely EXPTIME.

Overview. Our main results are summarized in Theorem 14. In the following, we provide a thorough discussion for each of them, and prove several intermediate results of interest.

Theorem 14. The ε-gap percentile problem for the discounted sum can be solved in time pseudo-polynomial in the size of the model $|M|$ and the precision factor, and exponential in the size of the query $|Q|$: polynomial in the number of states, the weights, the discount factors and the precision factor, and exponential in the number of constraints. This problem is PSPACE-hard for two-dimensional MDPs and already NP-hard for single-constraint queries. Exponential-memory strategies are both sufficient and in general necessary to satisfy ε-gap percentile queries.

Cornerstones of the algorithm. Intuitively, our approach is similar to what we have done for the shortest path (Lemma 13): we want to build some unfolding of the original MDP such that nodes of the unfolding capture the needed information w.r.t. the current discounted sums, and then reduce the percentile problem to a multiple reachability problem over this unfolding. However, several challenges have to be overcome.

First, we need a finite unfolding. This was easy to achieve in the shortest path due to non-decreasing sums and corresponding upper bounds. Here, it is not the case as we put no restriction on weights. Nonetheless, we devise a way to truncate branches of the unfolding without losing too much information based on the idea that for any finite branch, it is possible to bound the space of discounted sums that can be induced by any prolonging run, and this space decreases as branches get longer thanks to geometric series involving the discount. We show that pseudo-polynomial height is sufficient to guarantee a value off by at most $\varepsilon/2$.

Second, we want to reduce the overall size of the unfolding to maintain an overall exponential complexity (and not pseudo-exponential). Again, in the shortest path case we could take advantage of the integer labels to define an equivalence relation between nodes. Here, the space of possible values taken by the discounted sums is too large for a straightforward implementation of such an equivalence relation. To reduce this space, we introduce a rounding scheme of the numbers involved, which, when adequately defined, grants us the exponential upper bound on the overall size. The idea of rounding is inspired by [4] where they use a similar trick. We bound the error due to cumulated roundings by $\varepsilon/2$.

Third and finally, we have to make sure that the information lost by truncating the branches and rounding the values can be controlled in order to guarantee exact Yes - No answers from the algorithm except inside an arbitrarily small zone parametrized by ε. That way, one can ensure that the algorithm is conservative (i.e., its answers are always correct) and that taking smaller values of ε permits to answer a narrower ε-gap problem.

Before discussing the algorithm formally, let us introduce a useful notion. Given a q-constraint percentile query Q for thresholds v_i, α_i, dimensions l_i and discount factors λ_i, $i \in \{1, \ldots, q\}$, we define the x-shifted percentile query Q_x, for $x \in \mathbb{Q}$, as the exact same problem for thresholds $v_i + x$, α_i, dimensions l_i and discount factors λ_i, $i \in \{1, \ldots, q\}$.

We now state our result and proceed with the technical discussion of the algorithm in the following paragraphs.

Theorem 15. There is an algorithm satisfying the following properties.

1. It takes as input an MDP, a percentile query Q for the discounted sum and a precision factor $\varepsilon > 0$.
2. If it outputs Yes, then there exists a strategy satisfying the percentile query Q.
3. If it outputs No, then there exists no such strategy.

3 Quantified w.r.t. the precision factor ε.

26
4. If it outputs Unknown, then there exists a strategy satisfying at least the \((-2 \cdot \varepsilon)\)-shifted percentile query \(Q_{-2\varepsilon}\) and there exists no strategy satisfying the \((2 \cdot \varepsilon)\)-shifted percentile query \(Q_{2\varepsilon}\).

5. It runs in time polynomial in the size of the MDP, the weights, the discount factors and the precision factor, and exponential in the number of constraints.

We obtain an immediate corollary for the \(\varepsilon\)-gap formulation of the problem.

Corollary 2. There is an algorithm that, given an MDP, a percentile query \(Q\) for the discounted sum and a precision factor \(\varepsilon > 0\), solves the following \(\varepsilon\)-gap problem in exponential time. It answers

- **Yes** if there exists a strategy satisfying the \((2 \cdot \varepsilon)\)-shifted percentile query \(Q_{2\varepsilon}\);
- **No** if there exists no strategy satisfying the \((-2 \cdot \varepsilon)\)-shifted percentile query \(Q_{-2\varepsilon}\);
- and arbitrarily otherwise.

Technical discussion. Let \(M = (S, A, \delta, w)\) be a \(d\)-dimensional MDP. We consider the \(q\)-constraint percentile query \(Q := \bigwedge_{i=1}^{q} \mathbb{P}_{M, w_{\pi}}[DS_{\lambda_{i}}^{h} \geq v_{i}] \geq \alpha_{i}\), where for \(i \in \{1, \ldots, q\}\), we have \(v_{i} \in \mathbb{Q}, \alpha_{i} \in [0, 1] \cap \mathbb{Q}, \lambda_{i} \in]0, 1[\cap \mathbb{Q}\) and \(l_{i} \in \{1, \ldots, d\}\). Let \(\varepsilon\) be an arbitrarily small precision factor. We assume w.l.o.g. that \(\varepsilon \in \mathbb{Q}_{0}\), i.e., we always use rational precision factors.

We now describe the algorithm and establish intermediate results related to the construction operated by the algorithm. We conclude by proving that all properties stated in Theorem 15 are satisfied.

Our first step is building an unfolding of \(M\), in the classical way. We denote it by \(U\). Each node of \(U\) is labeled by the corresponding state of \(M\) and the discounted sum related to each query, computed over the descending path from the root to the node. Observe that we have \(q\) numerical dimensions in \(U\) and not \(d\) as in the shortest path. This will prove useful because we may have different discount factors for each constraint, hence the same dimension may induce different discounted sums depending on the considered constraint. This building scheme induces an infinite tree \(U\) with nodes labeled by elements of \(S \times \mathbb{Q}^{q}\).

In order to obtain a finite tree, we compute a bound \(h\) on the height such that we do not lose too much information by cutting all branches at level \(h\) (assuming the root node is at level 1). Let \(U_{h}\) denote the cut of \(U\) at level \(h\).

Lemma 17. There exists a pseudo-polynomial height \(h\) such that for any infinite branch of \(U\), its discounted sum on any dimension and w.r.t. any of the discount factors is at most \(\varepsilon/2\) far from the discounted sum of its prefix branch in \(U_{h}\).

Proof. Consider any branch of \(U_{h}\), for some \(h \in \mathbb{N}_{0}\). We denote the corresponding prefix of a run by \(\pi = s_{1}a_{1}s_{2}a_{2} \ldots a_{h-1}s_{h}\). Its discounted sum w.r.t. discount factor \(\lambda_{i}\) and dimension \(l_{i}\) is \(DS_{\lambda_{i}}^{h}(\pi) = \sum_{j=1}^{h-1} \lambda_{i}^{j} \cdot w_{l_{i}}(a_{j})\). This branch could be extended in \(U\) to any infinite branch that represents a prolonging run \(\rho = s_{1}a_{1}a_{2} \ldots a_{h-1}s_{h}a_{h+1}s_{h+1} \ldots\) of which \(\pi\) is a prefix. We have that \(DS_{\lambda_{i}}^{h}(\rho) = \sum_{j=h}^{\infty} \lambda_{i}^{j} \cdot w_{l_{i}}(a_{j})\) and we want to pick \(h\) such that

\[
\left| DS_{\lambda_{i}}^{h}(\rho) - DS_{\lambda_{i}}^{h}(\pi) \right| \leq \frac{\varepsilon}{2},
\]

for any prolonging run \(\rho\). That is, we want

\[
\left| \sum_{j=h}^{\infty} \lambda_{i}^{j} \cdot w_{l_{i}}(a_{j}) \right| \leq \frac{\varepsilon}{2}.
\]

Let \(\lambda = \max_{i} \lambda_{i}\) be the largest discount factor (i.e., the one for which the discounting effect if the slowest) and let \(W\) be the largest absolute weight appearing in the MDP \(M\). We obtain that

\[
\left| \sum_{j=h}^{\infty} \lambda_{i}^{j} \cdot w_{l_{i}}(a_{j}) \right| \leq W \cdot \sum_{j=h}^{\infty} \lambda_{i}^{j} = W \cdot \left(\sum_{j=0}^{\infty} \lambda_{i}^{j} - \sum_{j=0}^{h-1} \lambda_{i}^{j} \right) = W \cdot \frac{\lambda^{h}}{1 - \lambda}.
\]
It thus suffices to take \(h \) large enough to have that \(W \cdot \epsilon^h \leq \frac{\epsilon}{2} \). We assume that \(W > 0 \) otherwise the discounted sum is always zero and the percentile problem is trivial. We also recall that \(0 < \lambda < 1 \). Hence the inequality becomes \(\lambda^h \leq \frac{\epsilon(1-\lambda)}{2W} \). Applying the binary logarithm, we get the following inequality:

\[
h \cdot \log_2(\lambda) \leq \log_2(\epsilon) + \log_2(1 - \lambda) - \log_2(W) - 1.
\]

Since \(\lambda < 1 \), we have that \(\log_2(\lambda) < 0 \) and we finally obtain that

\[
h \geq \frac{\log_2(\epsilon) + \log_2(1 - \lambda) - \log_2(W) - 1}{\log_2(\lambda)}.
\]

Observe that this expression is always positive as \(\epsilon < 1, \lambda < 1 \) and \(W \geq 1 \). In the following, let us assume we take the ceiling of this expression as the value \(h \). What is the size of \(h \) w.r.t. the input of the algorithm? Since we are taking the binary logarithm of all involved values, it may seem that \(h \) only needs to be polynomial in the encoding of the values. However, when \(\lambda \sim 1 \), we have that \(\log_2\lambda \sim 1 - \lambda \). Therefore, \(h \) can be polynomial in the value of \(\lambda \), that is, exponential in its encoding. \(\square \)

We now have a finite tree \(U_h \), of pseudo-polynomial height, and such that all discounted sums labeled in its leaves are at most \(\epsilon/2 \) far from the one of any prolonging run. In other words, once such a leaf has been reached, the controller may use any arbitrary strategy and its discounted sum will not vary by more than \(\epsilon/2 \). This implies that we only care about devising a strategy for the \(h \) first steps, as we will use later.

Consider the overall size of the tree \(U_h \). As discussed for the shortest path, this size can be as high as \(O(b^h) \), where \(b \) denotes the branching degree of \(M \), defined as \(b = \max_{s \in S} |\{(a, s') | a \in A(s), s' \in S, \delta(s, a, s') > 0\}| \). Thus, the overall size could be pseudo-exponential. Again, we want to reduce this tree \(U_h \) to a compressed tree of truly-exponential size by merging equivalent nodes.

However, in this case it does not suffice to look for nodes with the exact same labels. Indeed, the range of possible labels is in general pseudo-exponential. Observe that the set of labels of any tree \(U_h \) is finite subset of \(S \times [-W \cdot h, W \cdot h]^q \) (this characterization can be narrowed but it suffices for our needs). We introduce a value \(\gamma \in \mathbb{Q} \) and maps the set of possible labels to \(S \times \{-W \cdot h, -W \cdot h + \gamma, \ldots, W \cdot h - \gamma, W \cdot h\}^q \) by rounding the values appearing in \(U_h \) to multiples of \(\gamma \) (we assume w.l.o.g. that \(W \cdot h \) is such a multiple). To that end, we define the function \(\text{Round}_\gamma : \mathbb{Q} \to \mathbb{Q} \) that rounds any rational \(x \in \mathbb{Q} \) to the closest multiple of \(\gamma \), i.e., the closest value in the new set of labels. The idea of rounding numbers to reduce the complexity is inspired by [4], but the technique differs.

Assume we apply this label mapping on \(U_h \), for some fixed \(\gamma \). Then, we define \(U_{h,\sim} \) as the MDP obtained by merging nodes having identical labels after the mapping. This is the unfolded MDP we are looking for if \(\gamma \) is chosen adequately, and it can be built on the fly by rounding each node (and potentially merging) at the moment it is created. Intuitively, \(\gamma \) should not be too large to be able to keep the resulting rounding error low, but it should be large enough to induce a range of labels which is at most of exponential size. The following lemma states the existence of such a value \(\gamma \in \mathbb{Q} \).

Lemma 18. There exists a value \(\gamma \in \mathbb{Q} \) such that

1. \(|S \times \{-W \cdot h, -W \cdot h + \gamma, \ldots, W \cdot h - \gamma, W \cdot h\}^q| \) is at most exponential;
2. for all branch \(\pi \) in \(U_h \), for all \(\lambda_i, l_i, i \in \{1, \ldots, q\} \), we have that
 \[
 |\text{DS}^\lambda_{l_i}(\pi) - \text{RDS}^\lambda_{l_i}(\pi)| \leq \frac{\epsilon}{2},
 \]

where \(\text{RDS}^\lambda_{l_i}(\pi) \) denotes the rounded discounted sum of the corresponding branch \(\pi' \) in \(U_{h,\sim} \) (i.e., the label of the corresponding leaf in \(U_{h,\sim} \)).

Proof. We choose \(\gamma = \frac{\epsilon}{h - 1} \) and prove the two assumptions. Observe that we assume \(h > 1 \) otherwise \(U_h \) contains only the root node with all discounted sums equal to zero and no rounding is needed.
First, consider assumption 1. The size of the set is $|S| \cdot \left(\frac{2 \cdot W \cdot h + 1}{\gamma}\right)^q$. Hence it suffices to prove that
$(2 \cdot W \cdot h + 1) \cdot \gamma^{-1}$ is at most exponential. Since both h and W are at most exponential (in the encoding of values), this boils down to proving that $\gamma^{-1} = \frac{h - 1}{\epsilon}$ is at most exponential, which is the case.

Second, let us prove assumption 2. Recall that our rounding scheme maps each value to the closest multiple of γ whenever the label of a node is computed. It is important to understand that this rounding is executed on the fly, and not after building the tree U_h fully (otherwise we would require pseudo-exponential time). Consequently, when a discounted sum for a node of level 2 $\leq n \leq h$ is computed, we have to take into account that the label of its father of level $n - 1$ has already been rounded: the rounding errors add up along a branch.

We claim that the total error over a branch of height h is bounded by the expression $(h - 1) \cdot \frac{\gamma}{2}$. That is, for all height-h branch π of U_h, for all λ_i, μ_i,

$$\left| DS^\lambda_{\mu_i}(\pi) - RDS^\lambda_{\mu_i}(\pi) \right| \leq (h - 1) \cdot \frac{\gamma}{2}.$$

We prove it by induction. Let $\pi = s_1 a_1 s_2 \ldots s_h$ in the following.

The base case is $h = 2$. We ask whether

$$\left| \lambda_i \cdot w_{a_i}(a_1) - \text{Round}_\gamma(\lambda_i \cdot w_{a_i}(a_1)) \right| \leq \frac{\gamma}{2}.$$

This is clearly true by definition of Round_γ, which maps any rational to the closest multiple of γ.

Now assume our claim is true up to level $2 \leq h - 1$. We prove it is still satisfied for level h. Let us rewrite

$$\left| DS^\lambda_{\mu_i}(\pi) - RDS^\lambda_{\mu_i}(\pi) \right|$$

as follows:

$$\left| DS^\lambda_{\mu_i}(s_1 \ldots s_{h-1}) + \lambda_i^{h-1} \cdot w_{a_i}(a_{h-1}) - \text{Round}_\gamma \left(RDS^\lambda_{\mu_i}(s_1 \ldots s_{h-1}) + \lambda_i^{h-1} \cdot w_{a_i}(a_{h-1}) \right) \right|.$$

Using the equality $\text{Round}_\gamma(n \cdot \gamma + x) = n \cdot \gamma + \text{Round}_\gamma(x)$ for $n \in \mathbb{N}$ and $x \in \mathbb{Q}$, along with the fact that $RDS^\lambda_{\mu_i}(s_1 \ldots s_{h-1})$ is already rounded by construction, we rewrite this as:

$$\left| DS^\lambda_{\mu_i}(s_1 \ldots s_{h-1}) + \lambda_i^{h-1} \cdot w_{a_i}(a_{h-1}) - RDS^\lambda_{\mu_i}(s_1 \ldots s_{h-1}) - \text{Round}_\gamma \left(\lambda_i^{h-1} \cdot w_{a_i}(a_{h-1}) \right) \right|.$$

By the subadditivity of $| \cdot |$, we bound this expression by

$$\left| DS^\lambda_{\mu_i}(s_1 \ldots s_{h-1}) - RDS^\lambda_{\mu_i}(s_1 \ldots s_{h-1}) \right| + \left| \lambda_i^{h-1} \cdot w_{a_i}(a_{h-1}) - \text{Round}_\gamma \left(\lambda_i^{h-1} \cdot w_{a_i}(a_{h-1}) \right) \right|.$$

Finally, using the induction hypothesis for the first term and the definition of Round_γ for the second one, we can bound this sum by

$$(h - 2) \cdot \frac{\gamma}{2} + \frac{\gamma}{2} = (h - 1) \cdot \frac{\gamma}{2},$$

which proves our initial claim.

Now, by our choice of γ, this implies that the total rounding error over any branch is at most $\frac{\epsilon}{2}$, which proves the correctness of assumption 2. \qed

Let us sum up the situation: given an MDP, a percentile query and a precision factor $\epsilon > 0$, we are able to construct an unfolded MDP U_{h, \sim_γ} of at most exponential size such that all leaves have labels in $S \times \{ -W \cdot h, -W \cdot h + \gamma, \ldots, W \cdot h - \gamma, W \cdot h \}^q$, where each of the q numerical dimensions approximate the discounted sum of corresponding infinite branches within an error bounded by $\epsilon (\epsilon/2$ due to truncating the branches and $\epsilon/2$ due to the rounding of values).

The last step of our algorithm is as follows. Consider the $2 \cdot q$ following target sets of nodes in U_{h, \sim_γ}.
\(-\forall i \in \{1, \ldots, q\}, \text{Sure}_i\) is the set of leaves for which the label on numerical dimension \(i\) is greater than or equal to \(v_i + \varepsilon\). Essentially, we have that \(\text{RDS}_{s_i}^\lambda(\pi) \geq v_i + \varepsilon\), where \(\pi\) denotes a corresponding descending branch.

\(\forall i \in \{1, \ldots, q\}, \text{Maybe}_i\) is the set of leaves for which the label on numerical dimension \(i\) is greater than or equal to \(v_i - \varepsilon\). Essentially, we have that \(\text{RDS}_{s_i}^\lambda(\pi) \geq v_i - \varepsilon\), where \(\pi\) denotes a corresponding descending branch.

Observe that \(\text{Sure}_i \subseteq \text{Maybe}_i\) for all query \(i\). Our algorithm proceeds as follows.

\(A)\) We execute the multiple reachability problem checking the existence of a strategy \(\sigma'\) such that

\[
\bigwedge_{i=1}^{q} \mathbb{P}_{U_{h_i, \sim}, s_{\text{init}}'}^\sigma [\Diamond \text{Sure}_i] \geq \alpha_i,
\]

with \(s_{\text{init}}'\) the root node of the unfolded MDP. If the answer is \text{Yes}, then we answer \text{Yes} to the percentile problem. Otherwise, we proceed to the next step.

\(B)\) We execute the multiple reachability problem checking the existence of a strategy \(\sigma'\) such that

\[
\bigwedge_{i=1}^{q} \mathbb{P}_{U_{h_i, \sim}, s_{\text{init}}'}^\sigma [\Diamond \text{Maybe}_i] \geq \alpha_i,
\]

with \(s_{\text{init}}'\) the root node of the unfolded MDP. If the answer is \text{Yes}, then we answer \text{Unknown} to the percentile problem. Otherwise, we answer \text{No}.

The intuition is threefold. First, if a leaf of \(\text{Sure}_i\) is reached, then whatever the strategy that is played afterwards, any prolonging run will have a discounted sum at least equal to \(v_i\) w.r.t. the corresponding discount factor \(\lambda_i\) and dimension \(l_i\). Hence, all prolonging runs are acceptable for constraint \(i\). Second, if a leaf of \(\text{Maybe}_i\) is reached, then some prolonging runs may satisfy the constraint while other do not: we need to compute the unfolding for a smaller precision factor \(\varepsilon\) in order to obtain useful information from nodes that are currently in \(\text{Maybe}_i \setminus \text{Sure}_i\). Third, if a leaf does not belong to \(\text{Maybe}_i\), then any prolonging run is guaranteed to falsify constraint \(i\) as adding error \(\varepsilon\) does not suffice to make the discounted sum at least equal to \(v_i\). We are finally able to prove Theorem 15.

Proof (Proof of Theorem 15). We consider each of properties 2-5 separately.

Property 2. Our algorithm answers \text{Yes} if and only if there exists a strategy \(\sigma'\) satisfying the multiple reachability query \(\bigwedge_{i=1}^{q} \mathbb{P}_{U_{h_i, \sim}, s_{\text{init}}'}^\sigma [\Diamond \text{Sure}_i] \geq \alpha_i\). We define the strategy \(\sigma\) on the original MDP \(M\) that plays as follows: it chooses the \((h-1)\) first actions according to \(\sigma'\) and then plays an arbitrary memoryless strategy. By Lemma 17, Lemma 18, and by definition of \(\text{Sure}_i\), this strategy guarantees that for all \(i \in \{1, \ldots, q\}\), a discounted sum (w.r.t. \(\lambda_i\) and \(l_i\)) at least equal to \(v_i\) is achieved with probability at least equal to \(\alpha_i\). Hence this finite-memory strategy \(\sigma\) satisfies the discounted sum percentile query on the original MDP \(M\).

Property 3. Our algorithm answers \text{No} if and only if there exists no strategy \(\sigma'\) satisfying the multiple reachability query \(\bigwedge_{i=1}^{q} \mathbb{P}_{U_{h_i, \sim}, s_{\text{init}}'}^\sigma [\Diamond \text{Maybe}_i] \geq \alpha_i\). By contradiction, assume the multiple reachability query cannot be satisfied, yet there exists a strategy \(\sigma\) in the original MDP \(M\) that satisfies the percentile query for the discounted sum. That is, for all \(i\) and associated \(\lambda_i, l_i\), this strategy achieves discounted sum at least \(v_i\) with probability at least \(\alpha_i\). By Lemma 17 and Lemma 18, we know that such a strategy reaches with probability at least \(\alpha_i\) leaves in \(U_{h_i, \sim}\) that are labeled with a value at least equal to \(v_i - \varepsilon\) in numerical dimension \(i\). That is, \(\sigma\) reaches each set \(\text{Maybe}_i\) with probability at least \(\alpha_i\), which contradicts the hypothesis and proves the property.

Property 4. Applying the same argument as for property 1, if there exists a strategy \(\sigma'\) for the multiple reachability query \(\bigwedge_{i=1}^{q} \mathbb{P}_{U_{h_i, \sim}, s_{\text{init}}'}^\sigma [\Diamond \text{Maybe}_i] \geq \alpha_i\), then this strategy can be translated into a strategy \(\sigma\) over \(M\) that ensures the percentile query where all value thresholds \(v_i\) are replaced by their shifted version \(v_i - 2 \cdot \varepsilon\). Indeed, observe that the threshold gap between sets \(\text{Maybe}_i\) and \(\text{Sure}_i\) is exactly \(2 \cdot \varepsilon\). Conversely,
we apply the argument of property 2 to deduce that if there exists no strategy for the multiple reachability query $\bigwedge_{i=1}^n \mathbb{P}_{U_h, \sim \gamma}^\omega Q_i \geq \alpha_i$ (which is the case otherwise the answer of the algorithm would have been Yes), then there is no strategy for the percentile query shifted by $2 \cdot \varepsilon$.

Property 5. It remains to study the complexity of our algorithm. Recall that the unfolded MDP $U_{h, \sim \gamma}$ can be constructed in time

$$O \left(|S| \cdot \left(\frac{2 \cdot W \cdot h + 1}{\gamma} \right)^q \right),$$

while h is polynomial in $\lambda = \max_i \lambda_i$, $\log_2(\varepsilon)$ and $\log_2(W)$ and γ is polynomial in both ε and h. Moreover, multiple reachability queries executed by the algorithm only require polynomial time in $|U_{h, \sim \gamma}|$ as all target states are absorbing (they are leaves in the unfolding). Overall, this shows that our algorithm requires time that is polynomial in $|S|$, W, λ and ε, and exponential in q. This proves the property and finally concludes our proof of correctness for the algorithm.

Lower bounds. Our algorithm gives a correct answer to the percentile problem except for an arbitrarily small zone of uncertainty in exponential time. We show that the ε-gap problem solved by our algorithm (Corollary 2) is \textsc{PSPACE}-hard.

To that end, we prove that any algorithm answering the ε-gap percentile problem can also solve subset-sum games. Subset-sum games are two-player games defined by a finite list of pairs of natural numbers $(a_1, b_1), (a_2, b_2), (a_3, b_3), \ldots, (a_n, b_n)$, and a target natural number $t \in \mathbb{N}$. A subset-sum game is played in n rounds as follows: whenever the round number j is odd, player 1 chooses between a_j and b_j, whenever this number is even, player 2 makes the choice. After n rounds, the sum of all the chosen numbers is compared to the target t. If the sum is equal to t, then player 1 wins the game, otherwise player 2 wins the game. Deciding if player 1 has a winning strategy in a subset-sum game is \textsc{PSPACE}-complete [35,21].

Two tricks are important in the reduction. First, we have to counterbalance the effect of the discount factor by using adequately chosen weights for the actions of the MDP. Second, we cannot directly simulate the equality because it would require to answer the problem for $\varepsilon = 0$. Still, if the weights are carefully chosen we can restrict the possible discounted sums to integer values only, and choose the percentile query thresholds and precision factor such that no run can take a value within the uncertainty zone of the algorithm. This permits to circumvent the limitation due to uncertainty.

Lemma 19. The ε-gap problem defined in Corollary 2 is \textsc{PSPACE}-hard, already for two-dimensional MDPs and fixed values of discount and precision factors.

Proof. Consider a subset-sum game defined by pairs $(a_1, b_1), \ldots, (a_n, b_n) \in \mathbb{N}^2$, and target $t \in \mathbb{N}$. Assume that we have an algorithm, called \textsc{Alg}_\varepsilon, that solves the ε-gap problem of Corollary 2. We claim that this algorithm can also decide if player 1 has a winning strategy in the subset-sum game, through a polynomial-time reduction of the subset-sum game to a discounted sum percentile problem.

Fig. 6: Encoding of subset-sum game into 2-dimensional percentile problem for the discounted sum.

We construct a 2-dimensional MDP $M = (S, A, \delta, w)$. Our construction is illustrated in Fig. 6. Filled circles represent equiprobable stochastic transitions. Controllable states simulate choices of player 1 in the game: the controller can choose between a_j and b_j when j is odd. Conversely, stochastic transitions simulate
choices of player 2: when \(j \) is even, \(a_j \) and \(b_j \) are chosen with the same probability \(1/2 \). Each action corresponding to choosing \(a_j \) (resp. \(b_j \)) has a 2-dimensional weight \((\lambda^{-j} \cdot a_j, -\lambda^{-j} \cdot a_j)\) (resp. \((\lambda^{-j} \cdot b_j, -\lambda^{-j} \cdot b_j)\)).

The discount factor can be fixed arbitrarily, say \(\lambda = 1/2 \) for the sake of concreteness. Note that those weights only require an encoding which is polynomial in the size of the input. We add a self-loop with weight \((0, 0)\) on the terminal state.

Observe that any run in this MDP has a discounted sum which is exactly equal to the sum of the chosen elements \(a_j, b_j \), thanks to the countereffect of \(\lambda^{-j} \) in the weights definition. Hence we also have that all runs have integer discounted sums.

Our goal is to find a 2-dimensional percentile query that can express the winning condition of the subset-sum game, taking into account that algorithm \(\text{Algo}_\varepsilon \) can only solve the \(\varepsilon \)-gap problem.

Intuitively, we would like to express that the discounted sum must be exactly equal to \(t \), in all possible runs. First observe that given the structure of the MDP, the terminal state and its zero loop is guaranteed to be reached in \(n \) steps. Therefore, any strategy ensuring the required property almost-surely (i.e., with probability one) also ensures it surely (i.e., over all possible runs). Ideally, we would like to execute the 2-constraint percentile query asking for the existence of a strategy that satisfies query

\[
Q^A := \mathbb{P}_{M,s}^\sigma[DS_1^\lambda \geq t] = 1 \quad \land \quad \mathbb{P}_{M,s}^\sigma[DS_2^\lambda \geq -t] = 1.
\]

Let us call it Problem A. Any strategy satisfying \(Q^A \) would be a winning strategy for player-1, and conversely. Still, this would only be useful if we could take \(\varepsilon = 0 \), which we cannot.

Instead, consider Problem B, asking for the existence of a strategy satisfying

\[
Q^B := \mathbb{P}_{M,s}^\sigma[DS_1^\lambda \geq t - 1/2] = 1 \quad \land \quad \mathbb{P}_{M,s}^\sigma[DS_2^\lambda \geq -t + 1/2] = 1.
\]

Furthermore, let us choose the precision factor \(\varepsilon = 1/6 \). Recall we assume that \(\text{Algo}_\varepsilon \) solves the \(\varepsilon \)-gap problem. Consider the execution of \(\text{Algo}_\varepsilon \) over query \(Q^B \).

By definition of the \(\varepsilon \)-gap problem (Corollary 2), we have that:

1. if there exists a strategy \(\sigma \) satisfying

\[
Q^B_{2\varepsilon} := \mathbb{P}_{M,s}^\sigma[DS_1^\lambda \geq t - 1/6] = 1 \quad \land \quad \mathbb{P}_{M,s}^\sigma[DS_2^\lambda \geq -t + 1/6] = 1,
\]

then the answer of \(\text{Algo}_\varepsilon \) is Yes;

2. if there exists no strategy \(\sigma \) satisfying

\[
Q^B_{2\varepsilon} := \mathbb{P}_{M,s}^\sigma[DS_1^\lambda \geq t - 5/6] = 1 \quad \land \quad \mathbb{P}_{M,s}^\sigma[DS_2^\lambda \geq -t + 5/6] = 1,
\]

then the answer of \(\text{Algo}_\varepsilon \) is No;

3. otherwise the answer can be either Yes or No.

Now let us review the possible answers of \(\text{Algo}_\varepsilon \).

Assume the answer is Yes. By (2), we have that there exists a strategy \(\sigma \) that satisfies \(Q^B_{2\varepsilon} \) otherwise the answer would have been No. Since all runs have integer discounted sums, this necessarily implies that \(\sigma \) also satisfies \(Q^A \). Indeed, we have that \(t = \lceil t - 5/6 \rceil \) and \(-t = \lceil -t + 5/6 \rceil \). Hence player-1 has a winning strategy in the subset-sum game.

Assume the answer is No. By (1), we have that there exists no strategy \(\sigma \) that satisfies \(Q^B_{2\varepsilon} \) otherwise the answer would have been Yes. Obviously, there exists no more strategy satisfying \(Q^A \) since it is harder to satisfy (its thresholds are higher). Hence player-1 has no winning strategy in the subset-sum game.

Finally, we see that the answer of \(\text{Algo}_\varepsilon \) is Yes if and only if the answer to Problem A is also Yes. Since algorithm \(\text{Algo}_\varepsilon \) can decide Problem A, we also have that it can decide if player-1 has a winning strategy in the subset-sum game, which concludes our proof.

For the simpler case of \(\varepsilon \)-gap problems for a single-constraint query, we are still able to prove \(\text{NP} \)-hardness, even for Markov chains (MDPs) where for all \(s \in S \), we have that \(|A(s)| = 1 \). Recall that in this case, our algorithm requires pseudo-polynomial time (Theorem 15). Our proof is by reduction from the \(K \)-th largest subset problem. The exact complexity class of this problem is open but it is commonly thought to be outside \(\text{NP} \) as natural certificates are larger than polynomial [23]. Our reduction is inspired by [7, Theorem 11].
Lemma 20. The \(\varepsilon \)-gap problem defined in Corollary 2 is NP-hard for single-constraint queries. This holds even for Markov chains, i.e., MDPs with only one available action in every state.

Proof. The \(K \)-th largest subset problem is as follows. Given a finite set \(X = \{ x_1, \ldots, x_n \} \) (hence \(n = |X| \)), a size function \(h: X \to \mathbb{N} \) assigning non-negative integer values to elements of \(X \), and two naturals \(K, L \in \mathbb{N} \), decide if there exist \(K \) distinct subsets \(Y_i \subseteq X, 1 \leq i \leq K \), such that \(h(Y_i) = \sum_{x \in Y_i} h(x) \leq L \) for all \(K \) subsets. The NP-hardness of this problem was proved in [27].

We assume w.l.o.g. that \(K \leq 2^n \) otherwise the answer to the problem is trivially No since we cannot find a sufficient number of distinct subsets.

![Fig. 7: Reduction from \(K \)-th largest subset problem to \(\varepsilon \)-gap problem for a single-constraint discounted sum percentile problem over a Markov chain.](image)

Given an instance of the \(K \)-th largest subset problem, we build a Markov chain as depicted in Fig. 7. Observe that this is indeed a Markov chain as there is a unique action available in all states. As usual, the filled circles represent equiprobable transitions. In the first step, element \(x_1 \) is either selected (upper transition) or not selected (lower one), with equal probability. This is repeated for every element up to reaching the terminal state with a zero loop. Hence, there is a bijection between runs in this Markov chain and subsets of \(X \). Moreover, all subsets are equiprobable: they have probability 1/2 of being selected.

The discount factor can be chosen arbitrarily. For the sake of concreteness, assume it is \(\lambda = 1/2 \). Now, observe that the weight function is defined such that the discounted sum over a run representing a subset \(Y \subseteq X \) is exactly equal to \(-h(Y) = -\sum_{x \in Y} h(x) \). To achieve this, we again use the trick of multiplying values \(-h(x_i) \) by \(\lambda^{-(i+1)} \) (the shift is due to the first transition). By definition of our weight function, it is clear that all runs take integer values. Also, the size of the Markov chain is polynomial in the size of the original problem.

Consider the single-constraint percentile query asking if

\[
\mathbb{P}_{M,s}[DS^\lambda \geq -L - 1/2] \geq \frac{K}{2^n},
\]

with \(s \) the initial state of the Markov chain. Note that we drop the existential quantification on strategies since there exists a unique - and trivial - strategy in a Markov chain. Recall that we only have access to an algorithm, say Algo\(_\varepsilon\), that solves the \(\varepsilon \)-gap problem, not the exact one. Consider \(\varepsilon = 1/6 \) and let us review the possible answers given by the execution of Algo\(_\varepsilon\) on this query.

Assume Algo\(_\varepsilon\) answers Yes. By definition of the \(\varepsilon \)-gap problem (Corollary 2), we have that

\[
\mathbb{P}_{M,s}[DS^\lambda \geq -L - 5/6] \geq \frac{K}{2^n} \implies \mathbb{P}_{M,s}[DS^\lambda \geq -L] \geq \frac{K}{2^n}.
\]

The implication follows from the fact that all runs take integer values and by equality \([-L - 5/6] = -L\) since \(L \in \mathbb{N} \). This implies that there are at least \(K \) distinct runs representing subsets \(Y_i \subseteq X \) for which \(-h(Y_i) \geq -L \Leftrightarrow h(Y_i) \leq L \). Hence the answer to the \(K \)-th largest subset problem is also Yes.

Now assume Algo\(_\varepsilon\) answers No. By definition of the \(\varepsilon \)-gap problem, we have that

\[
\mathbb{P}_{M,s}[DS^\lambda \geq -L - 1/6] < \frac{K}{2^n} \implies \mathbb{P}_{M,s}[DS^\lambda \geq -L] < \frac{K}{2^n},
\]

\[
\mathbb{P}_{M,s}[DS^\lambda \geq -L - 1/6] < \frac{K}{2^n} \implies \mathbb{P}_{M,s}[DS^\lambda \geq -L] < \frac{K}{2^n},
\]
using the fact that the second inequality is harder to satisfy. This implies that there are strictly less than K distinct runs representing subsets $Y_i \subseteq X$ for which $-h(Y_i) \geq -L \Leftrightarrow h(Y_i) \leq L$. Hence the answer to the K-th largest subset problem is also No.

In summary, we have that Alg_2 answers Yes if and only if the answer to the K-th largest subset problem is also Yes. This concludes our proof. \hfill \square

Memory. We conclude our study of the discounted sum case by considering memory requirements. Note that we focus on the ε-gap problem, the one solved by our algorithm. For the precise discounted sum problem and generalizations (as discussed in Sect. 7.1), it can be shown that infinite memory is needed in general [11].

We prove that strategies with exponential-size memory are both sufficient and in general necessary to satisfy ε-gap problems for the discounted sum. The upper bound follows from the algorithm of Theorem 15 while the lower bound is shown via a well-chosen family of MDPs and associated percentile queries that emulate the family used in the multiple reachability case (Lemma 2).

Lemma 21. Exponential-memory strategies are both sufficient and, in general, necessary to satisfy ε-gap percentile problems for the discounted sum.

Proof. First, the algorithm of Theorem 15 solves the ε-gap percentile problem by answering a multiple reachability problem over an unfolded MDP of exponential size. As stated in Theorem 1, memory of size polynomial in the MDP (here, the unfolded one) and exponential in the number of constraints (which is untouched by our algorithm) is sufficient to satisfy such queries. Moreover, once the first h steps have been played according to such a strategy, any arbitrary strategy may be used, in particular a memoryless one suffices. Hence, it follows that exponential-memory strategies suffice for the discounted sum ε-gap percentile problem.

Second, for the lower bound we use a family of MDPs based on the one defined to prove the exponential memory requirements of multiple reachability problems (Lemma 2). Consider the unweighted MDP depicted in Fig. 2. Recall it is composed of k stochastic gadgets followed by k controllable gadgets. We transform this MDP into a $2 \cdot k$-dimensional MDP M as follows. First, we remove the self-loops on states $s'_{k,L}$ and $s'_{k,R}$ and replace them by actions going to a terminal state s_t with probability one; this is for technical convenience. Second, we associate actions to $2 \cdot k$-dimensional weight vectors:

- the action leaving s_1 has weight $-\lambda^{-1}$ in all $2 \cdot k$ dimensions,
- actions leaving a state $s_{i,L}$ have weight λ^{-2i} in dimension i and weight zero in all other dimensions,
- actions leaving a state $s_{i,R}$ have weight λ^{-2i} in dimension $k+i$ and weight zero in all other dimensions,
- actions leaving a state $s'_{i,L}$ have weight $\lambda^{-(k+2i)}$ in dimension i and weight zero in all other dimensions,
- actions leaving a state $s'_{i,R}$ have weight $\lambda^{-(k+2i)}$ in dimension $k+i$ and weight zero in all other dimensions,
- all remaining actions have weight zero in all dimensions.

As usual, the discount factor can be taken equal to $1/2$. While this may seem technical, the goal is simple: emulating the multiple reachability problem used in Lemma 2. Each dimension $l \in \{1, \ldots, 2 \cdot k\}$ will get a -1 by the first action. Then, a dimension $l \in \{1, \ldots, k\}$ (resp. $l \in \{k+1, \ldots, 2 \cdot k\}$) will get a 1 when $s_{i,L}$ or $s'_{i,L}$ (resp. when $s_{k-i,R}$ or $s'_{k-i,R}$) is visited. All other actions have no impact on the discounted sum over dimension l. Therefore, one can easily check if a run ρ has visited a set $\{s_{i,L}, s'_{i,L}\}$ (resp. $\{s_{i,R}, s'_{i,R}\}$): it suffices to check if the discounted sum on dimension i (resp. $k+i$) is at least zero.

Now consider the percentile query

$$Q := \bigwedge_{l=1}^{2 \cdot k} \mathbb{P}_{M,s_1}^\lambda [\text{DS}^l_t \geq -1/2] = 1,$$

and in particular, its ε-gap version, with $\varepsilon = 1/6$. Applying the same reasoning as for proofs of Lemma 19 and Lemma 20, we can prove that the answer to this ε-gap problem is Yes if and only if all target sets

$$T_l = \{s_{1,L}, s'_{1,L}\}, \{s_{1,R}, s'_{1,R}\}, \{s_{2,L}, s'_{2,L}\}, \ldots, \{s_{k,L}, s'_{k,L}\}, \{s_{k,R}, s'_{k,R}\}$$
are reached almost-surely. By Lemma 2, we know that this requires a strategy encoded as a Moore machine with no less than 2^k memory states. This shows the exponential lower bound for the ε-gap problem and concludes our proof.

\[\square\]

References

1. Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path problems. *Mathematics of Operations Research*, 16:580–595, 1991.
2. Udi Boker and Thomas A. Henzinger. Exact and approximate determinization of discounted-sum automata. *Logical Methods in Computer Science*, 10(1), 2014.
3. Udi Boker and Jan Otop. The target discounted-sum problem. Personal communication, 2014.
4. Tomáš Brázdil, Taolue Chen, Vojtech Forejt, Petr Novotný, and Aistis Simaitis. Solvency Markov decision processes with interest. In Anil Seth and Nisheeth K. Vishnoi, editors, *IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2015, December 15-17, 2015, Chennai, India*, volume 45 of *LIPIcs*, pages 487–499. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.
5. Tomáš Brázdil, Václav Brozek, Krishnendu Chatterjee, Vojtech Forejt, and Antonín Kucera. Markov decision processes with multiple long-run average objectives. *Logical Methods in Computer Science*, 10(1):1–29, 2014.
6. Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. To reach or not to reach? Efficient algorithms for total-payoff games. *CoRR*, abs/1407.5030, 2014.
7. Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games. In Ernst W. Mayr and Natacha Portier, editors, *31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)*, STACS 2014, March 5-8, 2014, Lyon, France, volume 25 of *LIPIcs*, pages 199–213. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.
8. Krishnendu Chatterjee. Concurrent games with tail objectives. *Theoretical Computer Science*, 388(1-3):181 – 198, 2007.
9. Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Generalized mean-payoff and energy games. In *IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010)*, volume 8 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pages 505–516, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
10. Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Looking at mean-payoff and total-payoff through windows. In Dang Van Hung and Mizuho Oghawa, editors, *Automated Technology for Verification and Analysis - 11th International Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18, 2013, Proceedings*, volume 8172 of *Lecture Notes in Computer Science*, pages 118–132. Springer, 2013.
11. Krishnendu Chatterjee, Vojtech Forejt, and Dominik Wojtczak. Multi-objective discounted reward verification in graphs and MDPs. In Kenneth L. McMillan, Aart Middendorp, and Andrei Voronkov, editors, *Logic for Programming, Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013. Proceedings*, volume 8312 of *Lecture Notes in Computer Science*, pages 228–242. Springer, 2013.
12. Krishnendu Chatterjee and Monika Henzinger. Efficient and dynamic algorithms for alternating Büchi games and maximal end-component decomposition. *J. ACM*, 61(3):15, 2014.
13. Krishnendu Chatterjee and Thomas A. Henzinger. Probabilistic systems with limsup and liminf objectives. In Margaret Archibald, Vasco Brattka, Valentin Goranko, and Benedikt Lwe, editors, *Infinity in Logic and Computation*, volume 5489 of *Lecture Notes in Computer Science*, pages 32–45. Springer Berlin Heidelberg, 2009.
14. Krishnendu Chatterjee, Rupak Majumdar, and Thomas A. Henzinger. Markov decision processes with multiple objectives. In Bruno Durand and Wolfgang Thomas, editors, *STACS 2006*, volume 3884 of *Lecture Notes in Computer Science*, pages 325–336. Springer Berlin Heidelberg, 2006.
15. Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy synthesis for multi-dimensional quantitative objectives. *Acta Inf.*, 51(3-4):129–163, 2014.
16. Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest paths algorithms: Theory and experimental evaluation. *Mathematical Programming*, 73(2):129–174, 1996.
17. Luca de Alfaro. *Formal verification of probabilistic systems*. Ph.D. thesis, Stanford University, 1997.
18. Luca de Alfaro. Computing minimum and maximum reachability times in probabilistic systems. In Jos C. M. Baeten and Sjouke Mauw, editors, *CONCUR*, volume 1664 of *Lecture Notes in Computer Science*, pages 66–81. Springer, 1999.
19. Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis. Multi-objective model checking of Markov decision processes. *Logical Methods in Computer Science*, 4(4), 2008.

20. Shimon Even, Alan L. Selman, and Yacov Yacobi. The complexity of promise problems with applications to public-key cryptography. *Information and Control*, 61(2):159–173, 1984.

21. John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata is PSPACE-complete. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, *Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II*, volume 7966 of *Lecture Notes in Computer Science*, pages 212–223. Springer, 2013.

22. Jerzy A. Filar, Dmitry Krass, and Kirsten W. Ross. Percentile performance criteria for limiting average Markov decision processes. *Automatic Control, IEEE Transactions on*, 40(1):2–10, Jan 1995.

23. Michael R. Garey and David S. Johnson. *Computers and intractability: a guide to the Theory of NP-Completeness*. Freeman New York, 1979.

24. Oded Goldreich. On promise problems: A survey. In Oded Goldreich, Arnold L. Rosenberg, and Alan L. Selman, editors, *Theoretical Computer Science, Essays in Memory of Shimon Even*, volume 3895 of *Lecture Notes in Computer Science*, pages 254–290. Springer, 2006.

25. Christoph Haase and Stefan Kiefer. The odds of staying on budget. *CoRR*, abs/1409.8228, 2014.

26. Paul Hunter and Jean-François Raskin. Quantitative games with interval objectives. In *Proc. of FSTTCS*, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

27. Donald B. Johnson and Samuel D. Kashdan. Lower bounds for selection in X + Y and other multisets. *Journal of the ACM*, 25(4):556–570, 1978.

28. Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled M. Elbassioni, Vladimir Gurvich, Gábor Rudolf, and Jihui Zhao. On short paths interdiction problems: Total and node-wise limited interdiction. *Theory Comput. Syst.*, 43(2):204–233, 2008.

29. Marvin L. Minsky. Recursive unsolvability of Post’s problem of “tag” and other topics in theory of Turing machines. *The Annals of Mathematics*, 74(3):437–455, 1961.

30. Yoshio Ohtsubo. Minimizing risk models in stochastic shortest path problems. *Mathematical Methods of Operations Research*, 57(1):79–88, 2003.

31. Yoshio Ohtsubo. Optimal threshold probability in undiscounted Markov decision processes with a target set. *Applied Mathematics and Computation*, 149(2):519 – 532, 2004.

32. Martin L. Puterman. *Markov Decision Processes: Discrete Stochastic Dynamic Programming*. John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

33. Masahiko Sakaguchi and Yoshio Ohtsubo. Markov decision processes associated with two threshold probability criteria. *Journal of Control Theory and Applications*, 11(4):548–557, 2013.

34. Mathieu Tracol. Fast convergence to state-action frequency polytopes for MDPs. *Oper. Res. Lett.*, 37(2):123–126, 2009.

35. Stephen D. Travers. The complexity of membership problems for circuits over sets of integers. *Theor. Comput. Sci.*, 369(1-3):211–229, 2006.

36. Michael Ummels and Christel Baier. Computing quantiles in Markov reward models. In Frank Pfenning, editor, *Foundations of Software Science and Computation Structures - 16th International Conference, FOSSACS’13*, volume 7794 of *Lecture Notes in Computer Science*, pages 353–368. Springer, 2013.

37. Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In *FOCS*, pages 327–338. IEEE Computer Society, 1985.

38. Douglas J. White. Minimizing a threshold probability in discounted Markov decision processes. *Journal of Mathematical Analysis and Applications*, 173(2):634 – 646, 1993.

39. Congbin Wu and Yuanlie Lin. Minimizing risk models in Markov decision processes with policies depending on target values. *Journal of Mathematical Analysis and Applications*, 231(1):47–67, 1999.

40. Huan Xu and Shie Mannor. Probabilistic goal Markov decision processes. In *IJCAI*, pages 2046–2052, 2011.