UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE

Année 2008

THESE

pour obtenir le grade de

DOCTEUR DE L’UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE

Discipline : Biologie-Santé

ROLE DU CANAL CALCIQUE DE TYPE T CaV3.2
DANS LES CELLULES CANCEREUSES PROSTATIQUES HUMAINES

dirigée par le Docteur Pascal MARIOT

présentée et soutenue publiquement par

Florian GACKIERE

le 21 novembre 2008

devant le jury composé de :

Président :
Pr. N. Prevarskaya, Professeur d’Université, Lille

Rapporteurs :
Dr. M. Rossier, Privat-Docent, Genève
Dr. C. Arnoult, Chargé de recherche CNRS, Grenoble

Examinateurs :
Dr. P. Lory, Directeur de recherche CNRS, Montpellier
Dr. J-M. Israel, Directeur de recherche CNRS, Bordeaux
Dr. P. Mariot, Maître de conférence, Lille

Thèse réalisée au sein du Laboratoire INSERM U800
Villeneuve d’Ascq - Lille

© 2010 Tous droits réservés. http://doc.univ-lille1.fr
ROLE DU CANAL CALCIQUE DE TYPE T CaV3.2
DANS LES CELLULES CANCEREUSES PROSTATIQUES HUMAINES

Le cancer de la prostate évolue progressivement vers l’androgéno-indépendance, stade incurable pour lequel la recherche biomédicale tente de déterminer de nouvelles cibles thérapeutiques. Cette évolution est marquée par une différenciation neuroendocrine des cellules prostatiques qui s’accompagne d’une surexpression de canaux calciques voltage-dépendants de type T (CaV3.2) responsable d’une altération de l’homéostasie calcique intracellulaire.

L’objectif de cette thèse était donc de déterminer l’implication des CaV3.2 dans les cellules cancéreuses prostatiques humaines, et notamment dans les cellules neuroendocrines. Nos résultats montrent que, dans ces cellules non-excitables, les CaV3.2 participent à l’homéostasie calcique en permettant une entrée basale de calcium au potentiel de repos sans contribuer à une entrée capacitive de calcium provoquée par la vidange des réserves intracellulaires de calcium. De plus, ces canaux interviennent dans la sécrétion de la Phosphatase Acide Prostatique, un marqueur des cellules épithéliales prostatiques, dans les cellules neuroendocrines. Par ailleurs, nous montrons l’existence d’un couplage fonctionnel entre les CaV3.2 et les canaux de type BK qui constituent les principales conductances potassiques voltage-dépendantes des cellules prostatiques. Enfin, nos travaux mettent en évidence que ce couplage entre ces deux canaux participe à la prolifération des cellules cancéreuses prostatiques.

En conclusion, ce travail de thèse contribue à élargir les connaissances sur les canaux calciques de type T, CaV3.2 en particulier, et leur rôle au sein des cellules prostatiques cancéreuses humaines.

Mots-clés : canaux calciques voltage-dépendants de type T (CaV3.2) – canaux potassiques BK – cellules neuroendocrines – sécrétion – prolifération – cancer de la prostate.
FUNCTION OF CaV3.2-T-TYPE CALCIUM CHANNELS IN HUMAN PROSTATIC CANCER CELLS

Prostate cancer inevitably evolves towards an incurable androgen-independent stage for which biomedical research attempts to identify new therapeutic targets. This progression is characterized by a neuroendocrine differentiation of prostate cells accompanied by an overexpression of voltage-dependent T-type calcium channels (CaV3.2), responsible for an alteration of intracellular calcium homeostasis.

The aim of this PhD thesis was to determine the involvement of CaV3.2 in human prostate cancer cells, mainly in neuroendocrine cells. Our results show that, in these non-excitable cells, CaV3.2 channels participate to basal calcium homeostasis by promoting calcium entry at resting membrane potential without contributing to the capacitative calcium entry triggered by calcium depletion from endoplasmic reticulum stores. In addition, these channels are involved in the secretion of Prostatic Acid Phosphatase, a marker of prostatic epithelial cells, in neuroendocrine cells. Furthermore, we show that CaV3.2 channels are functionally coupled to BK channels which constitute the main voltage-dependent potassium conductances in prostate cells. Finally, our work demonstrates that this coupling between both channels regulates prostate cancer cell proliferation.

As a conclusion, this work contributes to the understanding of the role of CaV3.2-T-type calcium channels in human prostate cancer cells.

Keywords: voltage-dependent T-type calcium channels (CaV3.2) – BK channels – neuroendocrine cells – secretion – proliferation – prostate cancer.
Les recherches présentées dans cette thèse ont été menées au Laboratoire de Physiologie Cellulaire - INSERM U800 dirigé par le Professeur Natalia Prevarskaya, sous la direction scientifique du Docteur Pascal Mariot.

Je tiens tout d’abord à remercier les membres du jury pour le temps qu’ils ont consacrés à la lecture critique de ce manuscrit et pour leur présence lors de ma soutenance :

je remercie sincèrement le Professeur Natalia Prevarskaya pour la confiance qu’elle m’a accordée en m’accueillant au sein de son laboratoire. Je lui suis également reconnaissant d’avoir mis tous les moyens nécessaires à la réalisation et l’aboutissement de ce travail et d’avoir accepté de présider le jury de cette thèse,

ma reconnaissance s’adresse tout autant aux Docteurs Christophe Arnoult et Michel Rossier qui ont bien voulu être les rapporteurs de ce manuscrit ainsi qu’aux Docteurs Jean-Marc Israel et Philippe Lory d’avoir gentiment accepté de l’examiner.

Ensuite, je tiens à remercier les personnes extérieures au laboratoire sans qui certains aspects des travaux n’auraient pas été abordés :

le Professeur Brigitte Mauroy et le Docteur Jean-Louis Bonnal du Service d’Urologie de l’Hôpital (CHR) Saint-Philibert (Lille) grâce à qui j’ai eu la possibilité de travailler sur des cellules primaires issues de prélèvements prostatiques humains,

le Docteur Albin Pourtier (UMR 8161, Institut de Biologie de Lille/Institut Pasteur de Lille) qui a réalisé les expériences d’invasion,

et Nathalie Jouy (Institut Fédératif de Recherche 114, Lille) pour son aide et avec qui j’ai eu beaucoup de plaisir à discuter à chacun de mes déplacements pour les expériences de cycle cellulaire.

Enfin, je renouvelle mes remerciements à tous les membres du laboratoire (je suis sûr de les avoir remerciés à chaque occasion mais ils méritent encore un grand merci) qui m’ont apporté leur aide, leurs conseils et leurs encouragements et aux côtés de qui j’ai eu beaucoup de plaisir à travailler. Je ne peux m’empêcher de donner une mention spéciale à Pascal (pour ses qualités humaines, scientifiques et sportives), Charbel, Etienne, Christian, Philippe, Morad, Michaël, Fabien, Thierry, Gabriel, Michèle, Evelyne et Maria.
A ma famille, Maria et mes amis,
« La vérité que je vénère, c’est la modeste vérité de la Science, la vérité relative, fragmentaire, provisoire, toujours sujette à retouches, à corrections, à repentirs, la vérité à notre échelle. Car, tout au contraire, je redoute la vérité absolue, la vérité totale et définitive, la vérité avec un grand V, qui est la base de tout sectarisme, de tous les fanatismes, de tous les crimes. »

Jean ROSTAND, « Le Droit d’être naturaliste », 1963

« La théorie, c’est quand on sait tout et que rien ne fonctionne. La pratique, c’est quand tout fonctionne et que personne ne sait pourquoi. Ici, nous avons réuni théorie et pratique : rien ne fonctionne... et personne ne sait pourquoi ! »

Albert EINSTEIN

« - Comment voyez-vous votre avenir ?
- Je vais continuer à faire mon métier, de préférence dans de bonnes conditions. Sur la plage, par exemple. »

Jean YANNE, « Pensées, répliques, textes et anecdotes »
TABLE DES MATIERES

GLOSSAIRE ET ABBREVIATIONS p 15

INTRODUCTION p 17

I. PHYSIOLOGIE ET PHYSIOPATHOLOGIE DE LA PROSTATE HUMAINE p 19
A. PHYSIOLOGIE DE LA PROSTATE p 19
 A.1) ANATOMIE ET FONCTIONS DE LA PROSTATE p 19
 A.2) CROISSANCE ET DEVELOPPEMENT DE LA PROSTATE p 21
 A.3) HISTOLOGIE DE LA PROSTATE p 22
 A.3.a) stroma fibromusculaire p 22
 A.3.b) tissu glandulaire p 23
B. PHYSIOPATHOLOGIE DE LA PROSTATE p 26
 B.1) CANCER DE LA PROSTATE p 26
 B.2) DEPISTAGE ET PRONOSTIC DU CANCER DE LA PROSTATE p 27
 B.2.a) dépistage et diagnostic p 27
 B.2.b) détermination du grade ou du stade de la tumeur et pronostic p 28
C. TRAITEMENTS DU CANCER DE LA PROSTATE ET ECHAPPEMENT THERAPEUTIQUE p 30
 C.1) TRAITEMENTS DU CANCER DE LA PROSTATE p 30
 C.2) ECHAPPEMENT THERAPEUTIQUE p 31
 C.2.a) récepteur aux androgènes p 31
 C.2.b) résistance à l’apoptose p 34
 C.2.c) différenciation neuroendocrine p 36

II. ROLE DU CALCIUM DANS LA CELLULE p 42
A. HOMEOSTASIE CALCIQUE ET SIGNAL CALCIQUE p 43
 A.1) HOMEOSTASIE CALCIQUE p 43
 A.2) CODAGE DU SIGNAL CALCIQUE p 45
B. TRANSPORT DU CALCIUM AU SEIN DE LA CELLULE p 48
 B.1) CANAUX CALCIQUES DE LA MEMBRANE DU RETICULUM ENDOPLASMIQUE p 48
 B.1.a) R-IP3 p 49
 B.1.b) RyR p 51
 B.2) CANAUX CALCIQUES DE LA MEMBRANE PLASMIQUE p 52
 B.2.a) canaux calciques non voltage-dépendants p 52
 i) canaux SOC p 53
 ii) canaux chimio-dépendants (ROC et SMOC) p 54
 B.2.b) canaux calciques voltage-dépendants : classification et structure p 55
 i) canaux calciques voltage-dépendants HVA p 59
 ii) canaux calciques voltage-dépendants LVA p 60
C. ROLE DU CALCIUM DANS LA PHYSIOLOGIE CELLULAIRE : IMPLICATION DES CANAUX CALCIQUES DE TYPE T p 66
 C.1) COUPLAGE STIMULATION-SECRETION/EXOCYTOSE p 66
 C.1.a) généralités et secrétion/exocytose régulée calcium-dépendante p 66
 C.1.b) sécrétion/exocytose et canaux calciques de type T p 69
 C.2) Ca2+, REGULATION GENIQUE, PROLIFERATION ET APOPTOSE p 71
 C.2.a) Ca2+ et expression génique p 72
 C.2.b) Ca2+ et prolifération cellulaire p 73
 C.2.c) Ca2+ et apoptose p 75
C.3) CANAUX CALCIQUES DE TYPE T ET PROCESSUS CELLULAIRES ASSOCIES AU CANCER p 77
 C.3.a) canaux calciques de type T, développement et prolifération p 77
 C.3.b) canaux calciques de type T et apoptose p 80
 C.3.c) canaux calciques de type T et invasion p 82
C.4) COUPLAGE CANAUX CALCIQUES DE TYPE T ET CANAUX POTASSIQUES CALCIUM-ACTIVES p 82

PROBLEMATIQUE ET OBJECTIFS p 87
MATERIELS ET METHODES

I. CULTURE CELLULAIRE
 I.1 / LIGNEE CANCEREUSES PROSTATIQUES HUMAINES
 I.2 / CELLULES PRIMAIRE PROSTATIQUES HUMAINES
 I.3 / CONDITIONS DE CULTURE

II. TRANSFECTION
 II.1/ TRANSFECTION TRANSITOIRE
 II.1.a / Nucléofection
 II.1.b / Lipofection
 II.2 / OBTENTION D'UNE LIGNEE STABLE

III. ENREGISTREMENTS ELECTROPHYSIOLOGIQUES : LE PATCH-CLAMP

IV. MICROSCOPIE
 IV.1 / MICROSCOPIE A LUMIERE TRANSMISE
 IV.2 / IMAGERIE DE FLUORESCENCE QUANTITATIVE DU CALCIUM LIBRE
 INTRACELLULAIRE
 IV.2.a / Caractéristiques de la sonde calcique fura-2/AM
 IV.2.b / Charge des cellules en fura-2/AM
 IV.2.c / Système de mesure
 IV.3 / MICROSCOPIE CONFocale

V. ETUDE DE L'EXOCYTOSE A L'AIDE DE MARQUEURS DU TRAFIC MEMBRANAIRE

VI. MESURE DE LA SECRETION DE PHOSPHATASE ACIDE PROSTATIQUE

VII. IMMUNODETECTION
 VII.1 / EXTRACTION DES PROTEINES TOTALES
 VII.2 / WESTERN-BLOT
 VII.3 / IMMUNOFLORESCENCE INDIRECTE
 VII.4 / BIOTINYLATION DES PROTEINES DE SURFACE CELLULAIRE

VIII. MESURE DE VIABILITE CELLULAIRE ET D'APOPTOSE
 VIII.1 / TEST DE VIABILITE
 VIII.2 / COLORATION A L'HÖESCHT

IX. CYCLE CELLULAIRE

X. ANALYSE DES DONNEES

RESULTATS
 Article 1
 Article 2
 Article 3

DISCUSSION ET PERSPECTIVES
 CaV3.2 ET ENTREE CAPACITIVE DE CALCIUM (ECC)
 CaV3.2 ET SECRETION
 CaV3.2 ET DIFFERENCIATION
 CaV3.2 ET PROLIFERATION
 CaV3.2 ET APOPTOSE
 CaV3.2 ET MIGRATION ET/OU INVASION
 COUPLAGE DES CaV3.2 AVEC DES CANAUX POTASSIQUES CALIUM-DEPENDANTS
 STRUCTURE ET REGULATION DES CaV3.2

CONCLUSION GENERALE

PUBLICATIONS ET COMMUNICATIONS PERSONNELLES

BIBLIOGRAPHIE
GLOSSAIRE ET ABREVIATIONS

5-HT : 5-hydroxytryptamine ou sérotonine
8-br-AMPc : 8-bromo-adénosine monophosphate cyclique
ADN : acide désoxyribonucléique
AID : Alpha Interaction Domain
AMPc : adénosine monophosphate cyclique
ANF : Atrial Natriuretic Factor
APUD : Amine Precursor Uptake and Decarboxylation
ARN : acide ribonucléique
ATCC : American Type Culture Collection
ATP : adénosine triphosphate
Bcl-2 : B-cell lymphoma-2
[Ba2+]cyt : concentration calcique cytosolique
[Ba2+]RE : concentration calcique réticulaire
CaM : calmoduline
CaMK : calmoduline kinase
CBP : Ca2+-Binding Protein
CDK : cycline-dependent kinase
CICR : Calcium-Induced Calcium Release
CK : cytokératine
CPA : acide cyclopiazonique
CT : calcitonine
CREB : Cyclic AMP Response Element-Binding protein
DAG : diacylglycérol
db-AMPc : dibutyryl-adénosine monophosphate cyclique
DHT : dihydrotestostérone
DMSO : diméthylsulfoxide
DREAM : Downstream Regulatory Element-Antagonist Modulator
ECC : Entrée Capacitive de Calcium
EGF : Epidermal Growth Factor
EGTA : ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid
FGFb : Fibroblast Growth Factor basic
FITC : fluoresceine isothiocyanate
FSH : Follicle Stimulating Hormone
GFP : Green Fluorescent Protein
GRP : Gastrin-Releasing Peptide (ou bombésine)
HBP : Hypertrophie Bénigne de la Prostate
HBSS : Hank’s Balanced Salt Solution
HIF-1 : Hypoxia Inducible Factor-1
HVA : High Voltage-Activated
IAP : Inhibitor of Apoptosis Protein
IBMX : isobutylméthylxanthine
IGF : Insulin Growth Factor
IL : interleukine
IP3 : inositol-1,4,5-trisphosphate
IP4 : inositol-1,3,4,5-tetrakisphosphate
IP3-R : IP3-Receptor
LH : Luteinizing Hormone
LHRH : Luteinizing Hormone Releasing Hormone ou gonadolibérine
LNCaP : Lymph Node Carcinoma of the Prostate
LVA : Low Voltage-Activated
MAP-K : Mitogenic Activated Protein-Kinase
MCP : mort cellulaire programmée
MIF : Macrophage Migration Inhibition Factor
NE : neuroendocrine
NFAT : Nuclear Factor of Activated T-cell
NFκB : Nuclear Factor Kappa B
NSE : Neuron Specific Enolase
NSF : N-ethyl-maleimide-Sensitive Factor
NT : neuroensine
PAP : Prostatic Acid Phosphatase
PBS : Phosphate Buffered Saline
PC : Prohormone Convertase
PFA : paraformaldehyde
P1-3-K : phosphatidylinositol-3-kinase
PIP2 : phosphatidylinositol-4,5-bisphosphate
PKA : Protéine Kinase A
PKC : Protéine Kinase C
PLC : phospholipase C
PMCA : Plasma Membrane Calcium ATPase
PSA : Prostate Specific Antigen
PTThrP : Parathyroid Hormone related-Protein
RA : récepteur aux androgènes
RE : réticulum endoplasmique
ROC : Receptor-Operated Channel
RT-PCR : Reverse Transcription-Polymerase Chain Reaction
RyR : Ryanodine Receptor
SCR : Single-Channel Recording
SDS : Sodium Dodecyl Sulfate
PAGE : polyacrylamide gel electrophoresis
SERCA : Sarco/Endoplasmic Reticulum Calcium ATPase
SMOC : Second Messenger-Operated Channel
SOC : Store-Operated Channel
SOCE : Store-Operated Channel Entry
SNAP : Soluble NSF Attachment Protein
SNARE : SNAP receptor
synprint : synaptic protein interaction
tBHQ : 2,5-di-(tert-butyl)-1,4-benzhydroquinone
TG : thapsigargine
TGFβ : Transforming Growth Factor beta
TNF : Tumor Necrosis Factor
TNM : Tumor Node Metastasis
TRAIL : Tumor necrosis factor-Related Apoptosis Inducing Ligand
TRP : Transient Receptor Potentiel
VIP : Vasoactive Intestinal Peptide
VDCC : Voltage-Dependent Calcium Channel
VOC : Voltage-Operated Channel
WCR : Whole-Cell Recording
INTRODUCTION
Le cancer de la prostate est le cancer le plus fréquent chez l’homme de plus de 50 ans, touchant entre 40 000 et 50 000 individus chaque année en France. Véritable problème de santé publique, cette pathologie est due à la croissance anormale du tissu prostatique dont les cellules sont initialement androgéno-dépendantes. Les traitements actuels visent donc à empêcher l’action des androgènes sur cet organe dans le but de provoquer la mort des cellules cancéreuses prostatiques. Néanmoins, de tels traitements s’avèrent souvent inefficaces car il apparaît une récidive, à plus ou moins long terme, en raison d’un échappement thérapeutique lors de l’évolution du cancer prostatique vers des stades tardifs plus agressifs androgéno-indépendants. Les chercheurs concentrent donc leurs efforts afin d’élucider les raisons pour lesquelles les tumeurs prostatiques deviennent androgéno-indépendantes et tout l’intérêt réside dans la découverte de nouvelles cibles thérapeutiques potentielles pour lutter contre ce cancer. Les données cliniques apportent comme élément de réponse que les tumeurs de la prostate sont souvent associées à une augmentation du nombre et à un développement de foyers de cellules neuroendocrines lors de leur progression vers les stades tardifs incurables.

Les cellules neuroendocrines constituent le contingent cellulaire le moins représenté de l’épithélium prostatique. Cependant, leur présence dans la prostate est décrite selon certains auteurs comme un facteur d’évolution péjorative de la tumeur. C’est pourquoi l’étude des cellules neuroendocrines prostatiques représente une voie de recherche importante dans la compréhension des processus de cancérisation de la prostate. Prévenir cette évolution, grâce à la découverte de nouveaux marqueurs précoces et de nouveaux traitements, constitue un enjeu de santé publique considérable, d’autant que la fréquence de ce cancer prostatique augmente parallèlement à l’espérance de vie de la population.

I. PHYSIOLOGIE ET PHYSIOPATHOLOGIE DE LA PROSTATE HUMAINE

A. PHYSIOLOGIE DE LA PROSTATE

A.1) ANATOMIE ET FONCTIONS DE LA PROSTATE

La prostate est une petite structure musculo-glandulaire, annexée à l’appareil génital masculin, qui a la forme et la taille d’une châtaigne (environ 20 cm³, soit de 10 à 20 grammes chez l’adulte jeune). Située immédiatement sous la vessie et en avant des vésicules séminales, cette glande à la fois exocrine et endocrine entoure le canal éjaculateur et la partie supérieure...
de l’urètre (figure 1A). Elle assure une certaine stabilité des organes de la zone et elle est un acteur majeur des systèmes urinaire et génital, ce qui explique les divers symptômes lors de son atteinte. La prostate, de par sa nature musculaire, joue un rôle important dans la miction ainsi que dans la continence et intervient dans le processus ejaculatoire (les sphincters intraprostatiques fermant l’urètre). De par sa nature glandulaire, la prostate prend part à la sécrétion du liquide prostatique. Elle sécrète assurément beaucoup d’enzymes et de molécules qui, avec les sécrétions des vésicules séminales, constituent le liquide séminal (légèrement alcalin neutralisant les sécrétions acides de l’urètre et du vagin) qui entre dans la composition du sperme et qui comprend : des ions (citrate principalement, magnésium, zinc jouant probablement un rôle anti-infectieux, sodium et chlorure), du cholestérol, des phospholipides, des enzymes (phosphatases acides, protéases, neutral α-glucosidase, fibrinolysine et fibrinogénase), des amines biogènes (spermine et spermidine) ou encore l’antigène glycoprotéique spécifique de la prostate (PSA pour Prostate Specific Antigen) [Arver et al., 1982; Elzanaty et al., 2002; Mann, 1963]. Certains de ces produits, dont le PSA (de plus en plus remis en cause en raison de sa corrélation positive avec l’âge et du fait qu’il peut augmenter lors de diverses pathologies, je reviendrai sur ce point dans la partie B.2.a), la spermine ou encore le citrate, sont des produits de sécrétion considérés comme des marqueurs du cancer de la prostate ou sont susceptibles de le devenir [Serkova et al., 2008].

Limitée par une capsule fibreuse, la prostate adulte est macroscopiquement homogène mais, depuis les travaux de Mc Neal en 1968, elle peut être schématiquement découpée en 4 zones, ce qui remplace ainsi la conception classique de prostate crâniale et de prostate caudale proposée par Gil Vernet en 1953. Ainsi, une zone fibromusculaire (ZFM) antérieure formée de tissu musculaire lisse précède 3 régions glandulaires fonctionnelles [McNeal, 1968] (figure 1) : a) une zone périphérique (ZP) qui est le siège privilégié du développement des cancers prostatiques et des prostatites [McNeal, 1969], b) une zone centrale (ZC) formant la base de la prostate et qui entoure l’urètre et c) une zone de transition (ZT) formée de 2 lobes situés de part et d’autre de la partie centrale, qui est plutôt le siège de l’hypertrophie bénigne de la prostate (HBP) extrêmement fréquente chez le sujet âgé [McNeal, 1968].
A.2) CROISSANCE ET DEVELOPPEMENT DE LA PROSTATE

À la naissance, le tissu prostatique est formé d’un réseau de canaux dispersés dans un abondant stroma fibromusculaire. Durant l’enfance, le nombre de structures glandulaires augmente très peu et c’est à partir de la puberté que la croissance simultanée de ces structures et du stroma aboutit à l’aspect de la prostate adulte décrite ci-dessus. Depuis la découverte de Huggins et Hodges en 1941, établissant que le cancer de la prostate répond cliniquement au sevrage androgénique, est apparue la notion d’hormono-sensibilité [Huggins et al., 2002]. La prostate est en effet considérée comme un organe androgène-dépendant dans un environnement toutefois multi-hormonal encore mal connu. La croissance, le développement normal et pathologique ainsi que les fonctions de cet organe sont sous contrôle androgénique : une baisse du taux d’androgènes avant la puberté empêche la prostate de se développer et d’atteindre sa maturité fonctionnelle alors que plus tard, elle provoque une atrophie de la glande et un arrêt de son activité sécrétoire (pour revue, [Arnold et al., 2002]). Les androgènes agissent sur les cellules épithéliales prostatiques en se fixant au récepteur aux androgènes (RA) qui est un membre de la superfamille des récepteurs nucléaires aux stéroïdes, rétinoïdes, vitamine D3 et hormones thyroïdiennes [Zilliacus et al., 1995]. Cette liaison permet ainsi la transcription de gènes spécifiques de la prostate qui peuvent être

Figure 1: anatomie et localisation de la prostate.
A : représentation de la prostate dans son environnement immédiat, en coupe sagittale, modifiée d’après www.njurology.com.
B : représentation d’une coupe axiale prostatique, d’après www.etudiantinfirmier.com. En arrière de la zone fibromusculaire (ZFM) antérieure (en pointillé) sont localisées les zones : de transition (ZT), centrale (ZC) et périphérique (ZP) qui représentent respectivement 20, 5 et 75% du volume total de la prostate. C’est pourquoi il est parfois fait référence d’anatomie zonale de la prostate [McNeal, 1981].
impliqués dans la croissance et le maintien du phénotype épithélial différencié de cet organe
[Prins, 2000].

La production d’androgènes est finement régulée par l’axe hypothalamo-hypophyso-gonadique (*figure 2*). L’androgène circulant le plus important est la testostérone dont la production se fait à 95% par les cellules de Leydig des testicules, sous l’influence de la LH (*Luteinizing Hormone*) hypophysaire libérée en réponse à la gonadolibérine (ou LHRH pour *Luteinizing Hormone Releasing Hormone*) produite par l’hypothalamus et à 5% par les glandes surrénales [Feldman *et al.*, 2001]. La testostérone plasmatique libre est la forme biologiquement active car c’est la seule forme qui soit convertie en 5α-dihydrotestostérone (5α-DHT) par la 5α-réductase exprimée dans le cytoplasme des cellules prostatiques.

figure 2 : représentation schématique de l’axe hypothalamo-hypophyso-gonadique responsable de la production d’androgènes et de la régulation hormonale de la prostate, d’après www.sanofi-aventis.com. LHRH=gonadolibérine, LH=Luteinizing Hormone, FSH=Follicle Stimulating Hormone, DHT=dihydrotestostérone. La LHRH libérée par l’hypothalamus stimule l’hypophyse avec pour conséquence directe l’augmentation de la sécrétion de LH et de FSH et donc, par la suite, augmentation de production de testostérone d’origine testiculaire par les cellules de Leydig.

A.3) HISTOLOGIE DE LA PROSTATE

La prostate est composée essentiellement de 2 couches histologiques séparées par une lame basale : le stroma fibromusculaire et le tissu glandulaire (pour revue, [Arnold *et al.*, 2002]).

A.3.a) stroma fibromusculaire

Le stroma est un mélange de fibroblastes associés à des cellules musculaires lisses entouré de fibres de collagène, formant ainsi une matrice permettant le maintien des
différentes cellules prostatiques (pour revue, [van Leenders et al., 2003b]) (figure 3A). Outre leur rôle de soutien du tissu glandulaire, les cellules stromales participent au contrôle de la prolifération et de l’état de différenciation des cellules épithéliales adjacentes par la sécrétion de facteurs de croissance tels que l’EGF (Epidermal Growth Factor), le FGFb (Fibroblast Growth Factor basic) [Marengo et al., 1994] et d’hormones comme la prolactine [Untergasser et al., 2001], la PTHrP (ParaThyroid Hormone related-Protein) [Blomme et al., 1998] et l’adrénaline [Smith et al., 2000]. Les cellules musculaires lisses interviennent également dans la contraction des zones glandulaires entrainant la sécrétion du liquide prostatique lors de l’éjaculation et dans la régulation du débit sanguin dans la prostate lorsqu’elles entourent l’endothélium.

A.3.b) tissu glandulaire

Le tissu glandulaire prostatique est formé d’un épithélium stratifié composé d’une couche jointive de cellules sécrétrices luminales (ou apicales) et d’îlots sous-jacents de cellules basales. Il est constitué d’un système de canaux ramifiés, terminés par des acini, qui sont séparés du stroma fibromusculaire par une fine membrane basale. L’épithélium prostatique comprend 3 types cellulaires principaux (figure 3B) :
- les cellules luminales constituent le type cellulaire majoritaire qui borde la lumière des acini. Il s’agit de cellules sécrétrices matures qui synthétisent et sécrètent les produits constitutifs du plasma séminal : le PSA, des phosphatases spécifiques de la prostate comme la Phosphatase Acide Prostatique (PAP) [Mori et al., 1985], des polyamines mais aussi du citrate et des ions [Murphy et al., 1992]. Elles sont androgéno-dépendantes car les androgènes contrôlent leur prolifération, leur survie aussi bien que leur capacité sécrétoire via le RA [Isaacs, 1999]. Ces cellules expriment les cytokératines (CK) 8 et 18 [van Leenders et al., 2003a].
- les cellules basales représentent moins de 10% de l’épithélium prostatique et sont considérées comme le compartiment de réserve de cet épithélium. Elles constituent le stock de cellules souches et de cellules peu différenciées androgéno-indépendantes qui permettent la régénération, par différenciation, des cellules spécialisées (luminales et neuroendocrines abordées ci-après) et ce même en l’absence d’androgènes [Isaacs et al., 1989; Zenzmaier et al., 2008]. Les cellules basales expriment quant à elles les CK 5 et 14 [van Leenders et al., 2003a]. La différenciation cellulaire, contrôlée en partie par les cellules stromales (pour revue, [van Leenders et al., 2003b]), est dite séquentielle car l’acquisition du RA se fait progressivement pour donner naissance à un phénotype particulier de cellules épithéliales
intermédiaires (TAI pour Transit Amplifying Cells) [van Leenders et al., 2003a]. Cette population cellulaire est caractérisée par l’expression de la CK 19 mais elle conserve les CK basales 5/14 et acquière les CK luminales 8/18 [Hudson et al., 2001].

Figure 3 : structure cellulaire de l'épithélium prostatique. A : photographie d'une prostate saine montrant le stroma et un acinus, d'après www.prostatitis.org. B : schéma de l'épithélium prostatique exposant les différents types cellulaire composant le tissu épithélial glandulaire (cellules luminales en bleu clair, basales en bleu foncé et neuroendocrines de type fermé = * et de type ouvert = ** en vert), modifié d'après [Hansson et al., 2001].

- les cellules neuroendocrines (NE) ont été décrites pour la première fois dans la prostate par Pretl en 1944 grâce à une méthode de coloration argentique, appelée coloration de Grimélius, qui révèle les granules neuroendocrines en brun foncé. Initialement, les cellules NE étaient détectées en raison de leurs propriétés argentaffines/argyrophiles [Kazzaz, 1974]. Les cellules NE prostatiques sont dispersées dans l’épithélium sain à hauteur de 0,5 à 2% des cellules pour y représenter le troisième phénotype (figure 4A) [Aumuller et al., 2001]. Les cellules NE prostatiques sont non-prolifératives [Huang et al., 2006] et dépourvues du RA d’où leur androgéno-indépendance [Krijnen et al., 1993]. Des terminaisons nerveuses afférentes et efférentes innervent ces cellules qui peuvent être soit de type fermé, soit de type ouvert (respectivement * et ** sur la figure 3B et figure 4B), ces dernières ayant des prolongements cytoplasmiques apicaux qui s’étendent vers la lumière de l’acinus [Abrahamsson, 1996]. Les cellules NE présentent des prolongements de type neuritique qui s’enchevêtrent entre les autres cellules épithéliales qu’elles soient NE ou non. De cette manière, elles forment un système de régulation intra-épithelial de cellules hybrides épithéliales/neuronales/endocrines qui cumulent certains critères structuraux, fonctionnels et métaboliques similaires à ceux du neurone [Pearse, 1969]. En effet, les cellules NE prostatiques possèdent des granules de sécrétion à cœur dense qui renferment des substances semblables aux neurohormones : calcitonine (CT) [Chien et al., 2001], neurotensine (NT) [Amorino et al., 2007], VIP (Vasoactive Intestinal Peptide), bombésine ou GRP (Gastrin-Releasing Peptide) mais aussi des monoamines (sérotonine ou 5-HT pour 5-hydroxytryptamine) [Amorino et al., 2004; di
Sant'Agnese, 1992; Rojas-Corona et al., 1987]. De plus, elles possèdent les caractéristiques du système APUD (Amine Precursor Uptake and Decarboxylation) spécifiques aux cellules NE [Di Sant'agnese, 1991; Pearse, 1969] et elles expriment des marqueurs neuroendocriniens couramment utilisés pour caractériser les cellules NE tels que la synaptophysine, la NSE (Neuron Specific Enolase) [Bang et al., 1994; Schmechel et al., 1980], des protéines de type granine telles que la chromogranine A ou B [Karlsson, 2001; Schmid et al., 1994], les sécrétogranines III ou V et des Prohormones Convertases (PC-1 et 2) [Jongsma et al., 2002].

Figure 4: observation de cellules neuroendocrines (NE) prostatiques, d’après www.urmc.rochester.edu. **A** : photographie d’une coupe de prostate montrant de nombreuses cellules NE marquées par un anticorps anti-chromogranine A. **B** : photographie, obtenue en microscopie électronique, d’une cellule NE de type ouvert qui présente un long processus cytoplasmique apical jusqu’à la lumière de l’acinus.

L’origine des cellules NE prostatiques saines est encore débattue aujourd’hui car certains auteurs envisagent une origine épithéliale alors que d’autres proposent une origine neurectodermique. Les auteurs en faveur de la première hypothèse suggèrent qu’une petite population de cellules souches ou basales donnerait naissance aux différents types de cellules épithéliales rencontrés dans la prostate [Bonkhoff, 1996]. Cette théorie est appuyée par le fait qu’une différenciation neuroendocrine peut avoir lieu *in vitro* à partir de cellules primaires de prostates adultes ou de cellules épithéliales basales [Rumpold et al., 2002; Untergasser et al., 2005]. Les cellules NE seraient donc issues de cellules souches présentes dans la couche basale. Par contre, d’autres résultats, en faveur de la seconde hypothèse, indiquent que les cellules NE prostatiques humaines proviendraient de la crête neurale [Aumuller et al., 1999; Aumuller et al., 2001]. Elles posséderaient par conséquent une origine différente des cellules luminales et basales issues d’un précurseur épithélial commun.

Il est à noter que la présence de cellules NE a été décelée dans la prostate d’autres espèces comme le cobaye ou le chien [Acosta et al., 2001; Ismail et al., 2002]. Chez
l’homme, par analogie avec ce qui est connu dans d’autres organes à cellules NE, tels que le poumon, le pancréas ou le tractus gastro-intestinal, il est envisagé que dans la prostate les cellules NE participent au maintien des autres phénotypes, régulent la différenciation, la croissance ainsi que la sécrétion de la glande saine mature par des mécanismes paracrine, endocrine et neurocrine [Cutz, 1982; Grube, 1986; Speirs et al., 1993]. Les cellules NE de type ouvert pourraient « goûter » le contenu de la lumière de l’acinus et ainsi ajuster les sécrétions épithéliales via des signaux paracrines destinés aux cellules épithéliales adjacentes, des boucles neuronales réflexes et des signaux endocrines vers des sites distants tels que l’axe hypothalamique et les testicules [Xue et al., 2000]. Certains produits de sécrétion des cellules NE (chromogranine A et VIP par exemple) sont retrouvés dans le fluide séminal, ce qui suggère qu’ils y soient activement sécrétés pour réguler, par exemple, la fonction des spermatozoïdes ou agir au niveau des voies de l’appareil reproducteur féminin [Stridsberg et al., 1996].

B. PHYSIOPATHOLOGIE DE LA PROSTATE

Les pathologies prostatiques les plus fréquentes sont d’une part, les maladies bénignes, prostatites et adénomes (pouvant toucher l’homme jeune) et d’autre part, les maladies malignes, adénocarcinomes (touchant l’homme vers 40-50 ans). Les prostatites, qu’elles soient aiguës ou chroniques, sont des infections le plus souvent d’origine bactérienne. L’adénome prostatique est une affection d’évolution lente, aussi appelée hypertrophie bénigne de la prostate car liée à l’hypertrophie progressive des structures glandulaires, souvent au sein de la zone de transition [McNeal, 1968]. L’hypertrophie est d’abord microscopique puis elle s’accentue pour devenir macroscopique, entraînant le grossissement et/ou la rigidité de la prostate (laquelle peut alors peser jusqu’à une centaine de grammes).

B.1) CANCER DE LA PROSTATE

Le cancer de la prostate est un adénocarcinome qui apparaît lorsque des cellules anormales, stimulées par les hormones masculines comme la testostérone, se développent de manière incontrôlée et anarchique pour former des tumeurs malignes. Avec plus de 40 000 cas déclarés et environ 10 000 décès par an en France, cette pathologie représente la seconde cause de mortalité par cancer chez l’homme ce qui en fait un véritable problème de santé publique [Hill et al., 2004 ; Remontet et al., 2003]. Dans les pays développés, son incidence augmente parallèlement à l’espérance de vie, faisant de ce cancer la 2ème forme la plus
fréquente chez l’homme avec environ 12% des nouveaux cas diagnostiqués chaque année dans la Communauté Européenne et 10% de tous les décès par cancer. Selon toute vraisemblance, le cancer de la prostate dépassera, au cours des prochaines années, le cancer broncho-pulmonaire comme principale cause de décès chez l’homme.

Aujourd’hui, les facteurs de risque pour un type de cancer donné peuvent être connus et pour celui de la prostate les principaux sont :
- **l’origine ethnique** : une forte incidence est retrouvée aux États-Unis, notamment dans la population noire américaine. Elle est par contre beaucoup plus faible en Asie et dans l’Europe de l’Est [Richard, 1994].
- **les antécédents familiaux** : le cancer prostatique survient, le plus souvent, de manière sporadique mais un facteur génétique familial est tout de même retrouvé chez 20% des malades. Le risque double lorsqu’un parent proche est atteint et il augmente proportionnellement à l’augmentation du nombre de parents proches affectés [Fournier et al., 2004].
- **l’âge** : 95% des cancers prostatiques apparaissent entre 57 et 88 ans et l’âge médian pour le diagnostic comme pour la mortalité est d’environ 73 ans [Richard, 1994].
- **les facteurs alimentaires** : 80% des cas de cancer de la prostate seraient liés à des régimes particuliers contenant, par exemple, trop de matières grasses dont les graisses animales seraient les plus dangereuses [Bingham, 1999; Giovannucci et al., 1993]. Des études suggèrent qu’un régime riche en calcium augmenterait le risque mais ces données restent encore controversées [Chan et al., 2001; Giovannucci et al., 2006].

L’adénocarcinome prostatique se développe très lentement : au début de la maladie, il est très souvent localisé dans la zone périphérique, parfois dans celle de transition et rarement dans la zone centrale de l’organe. Lors de son évolution, il peut s’étendre hors de la prostate en envahissant des tissus et organes proches, voire plus distants, formant ainsi des métastases (voir la partie B.2.b).

B.2) DEPISTAGE ET PRONOSTIC DU CANCER DE LA PROSTATE

B.2.a) dépistage et diagnostic

Lors de l’évolution du cancer prostatique, des symptômes peuvent apparaître assez rapidement en raison de la pression exercée par la tumeur sur l’urètre, devenir permanents et s’aggraver en quelques mois. Les symptômes qui doivent amener à consulter sont : des envies d’uriner trop fréquentes, obligant à se lever la nuit ; une difficulté, voire un véritable
blocage, pour uriner ; et des douleurs osseuses. La détection précoce d’un cancer permet de mettre en œuvre un traitement curatif le plus tôt possible. Dès les années 1980, l’avènement de nouvelles techniques diagnostiques (qui serait en grande partie responsable de l’augmentation du nombre de cas recensés) a permis de détecter les cancers prostatiques à un stade très localisé, alors qu’aucun symptôme ne les signalait.

Le diagnostic initial se base principalement sur **a) le toucher rectal** qui permet d’apprécier la régularité des contours et la consistance de la glande et **b) le taux de PSA** (pour revue, [Rao *et al.*, 2008]), correspondant au taux sanguin d’antigène spécifique de la prostate, qui évalue le risque de cancer de la prostate mais qui permet également son suivi. La concentration de PSA considérée comme normale est inférieure à 4 ng/ml. Certaines précautions sont à prendre quant à l’interprétation du résultat du dosage de PSA en cas de suspicion de cancer car il ne permet pas de faire un diagnostic à lui seul. Il est vrai que le taux de PSA est soumis à une grande variabilité due au fait qu’il fluctue avec l’âge, augmente en cas d’adénome ou de prostatite et qu’il est retrouvé dans d’autres tissus (sein ou vessie par exemple) [Hannoun-Levi *et al.*, 2008; Rao *et al.*, 2008]. Des cas de cancer de la prostate ont été détectés même chez des patients ayant un faible taux de PSA et il semblerait que 15% des hommes ayant un taux normal de PSA en soient atteints [Thompson *et al.*, 2004].

Bien que ces simples tests puissent révéler la présence d’un cancer prostatique, il est préférable de pratiquer une biopsie afin, pour le médecin, d’établir un diagnostic définitif en effectuant une étude histologique et/ou immunohistochimique du tissu.

B.2.b) détermination du grade ou du stade de la tumeur et pronostic

Le pronostic clinique dépend très largement du grade et du stade oncologique de la tumeur évalués à l’aide des classifications suivantes :

- **le score de Gleason**, méthode de gradation histologique de l’agressivité tumorale largement utilisée pour définir le statut du cancer de la prostate, est basé sur l’état de différenciation du tissu cancéreux. Les biopsies prostatiques sont examinées au microscope par un pathologiste qui cherchera les changements cellulaires et tissulaires associés à la maladie. Un grade (1-5, du moins au plus agressif) est attribué à chacune des 2 plus grandes zones de cancer repérées, leur somme déterminant le score de Gleason (2-10, des tumeurs bien différenciées aux plus indifférenciées de mauvais pronostic). Le pronostic devient significativement moins favorable à partir d’un score de 7 pour lequel la survie globale à 10 ans est de 46% et le taux de mortalité de 4,9% par an [Hannoun-Levi *et al.*, 2008]. Un cancer ayant obtenu un faible score
croît normalement si lentement qu’il ne met pas la vie du patient en danger alors qu’un score élevé, combiné à un taux de PSA élevé (> 10 ng/ml), rend probable la présence de métastases, ce qui a d’importantes répercussions sur le traitement et le pronostic.

- **le système TNM** (Tumour Node Metastasis ; stadification clinique proposée par Ammon en 1977) évalue la taille de la tumeur et sa propagation extra-capsulaire (T) dans les ganglions lymphatiques (N) et dans les métastases lointaines (M) (*figure 5*). Les tumeurs cliniquement invisibles, impalpables et non détectables par imagerie médicale sont caractérisées par le stade T1. Le stade T2 correspond à des tumeurs plus étendues, détectables par palpation, mais toujours confinées à la capsule épithéliale. La survie globale à 10 ans étant de 83% pour ces premiers stades avec un taux de mortalité inférieur à 2% par an. Par contre, à partir du stade T3, qui représente des tumeurs ayant franchi la capsule prostatique vers les vésicules séminales, le pourcentage chute à 29 pour la survie à 10 ans et monte à 14,2 pour la mortalité annuelle [Hannoun-Levi *et al.*, 2008]. Enfin, le stade T4 définit les métastases loco-régionales ayant gagné les organes périphériques autres que les vésicules séminales, la vessie par exemple. En complément, la propagation des métastases aux ganglions lymphatiques est définie par le statut N alors que le statut M représente les métastases lointaines dans des organes comme le foie, les os ou le cerveau.

figure 5 : illustration du système TNM dans la prostate (stades T1-T4), modifiée d’après http://www.meb.uni-bonn.de/cancer.gov/Media. **T1** : tumeur (représentée en jaune) impalpable et non déetectable en imagerie ; **T2** : tumeur intraprostatique, palpable et déetectable en imagerie ; **T3** : tumeur ayant franchi la capsule prostatique et se propagant aux vésicules séminales ; **T4** : métastases au niveau des tissus périphériques, parfois jusqu’aux noeuds lymphatiques (flèche verte).
Le meilleur gage de guérison est donc de détecter le cancer à un stade précoce, quand il est encore confiné à la prostate, sans extension en dehors d’elle. Le grade tumoral obtenu selon le score de Gleason possède une meilleure valeur pronostique quant à l’évolution attendue d’un cancer par rapport au stade obtenu selon le système TNM, et influence donc de façon prépondérante les traitements qui seront choisis.

C. TRAITEMENTS DU CANCER DE LA PROSTATE ET ECHAPPEMENT THERAPEUTIQUE

C.1) TRAITEMENTS DU CANCER DE LA PROSTATE

Pour le traitement de l’adénocarcinome, l’objectif est d’enlever la tumeur et de supprimer toutes les cellules cancéreuses, ou à défaut, de freiner l’évolution tumorale. Parmi les options thérapeutiques, il existe des traitements curatifs (radiothérapie, curiethérapie ou ultrasons par Ablatherm®) parmi lesquels la prostatectomie radicale reste la plus fréquemment pratiquée, uniquement lorsque la tumeur n’a pas encore envahi les tissus environnants car elle ne permet pas l’exérèse des cellules cancéreuses qui se seraient propagées hors du tissu prostatique. Dans d’autres circonstances, il peut s’avérer plus judicieux de choisir un traitement palliatif comme l’hormonothérapie qui a pour but de contrôler la croissance de la tumeur en régulant les hormones [McLeod, 2003]. La croissance de la prostate se faisant sous contrôle androgénique, différents traitements visent à réduire les taux sériques d’androgènes par privation androgénique. Par exemple, l’administration continue d’analogues de la LHRH provoque une désensibilisation hypophysaire avec diminution de la production de gonadotrophines, FSH (Follicle Stimulating Hormone) et LH, aboutissant à un effondrement du taux d’hormones sexuelles circulantes [Schally, 2005; Tolis et al., 1982] comme le ferait une castration chirurgicale (ou orchidectomie). Par ailleurs, des médicaments comme le finastéride inhibant la 5α-réductase sont utilisés afin de bloquer la transformation de testostérone en 5α-DHT [Andriole et al., 2004 ; Thorpe et al., 2007]. Des antagonistes α adrénergiques, tamsulosine ou doxazosine en tête [Hedlund et al., 1999], sont administrés pour induire la relaxation des cellules musculaires lisses en inhibant l’effet des catécholamines sécrétées par le système nerveux sympathique [Schwinn et al., 1999]. Il est aussi envisageable d’utiliser des antagonistes des androgènes, de type stéroïdiens (acétate de cyprotéronne et médroxyprogésterone) ou non (bicalutamide et flutamide), pour bloquer la liaison androgènes-récepteurs [Baltogiannis et al., 2004 ; McLeod et al., 1993]. L’expression blocage androgénique est aussi parfois utilisée pour ces traitements qui visent à réduire les
taux d’androgènes circulants. Bien qu’ils ne soient pas curatifs, ces traitements permettent de ralentir de manière spectaculaire la croissance tumorale en induisant l’apoptose des cellules prostatiques androgéno-dépendantes [Colombel et al., 1996]. Il s’agit de la seule thérapie efficace contre les cancers prostatiques avancés car elle permet une réponse objective dans plus de 80% des cas [McLeod, 2003]. Cependant, malgré son efficacité transitoire, elle n’empêche pas la progression androgéno-indépendante de la maladie qui survient après un certain temps de traitement. Cette récidive apparaît car les cellules prostatiques acquièrent notamment, par de multiples mécanismes d’adaptation, la capacité de croître en l’absence d’androgènes et de résister à l’apoptose.

C.2) ECHAPPEMENT THERAPEUTIQUE

La récidive aux traitements anti-androgéniques correspond à un échappement thérapeutique dû à une reprise évolution de la maladie sur un mode très agressif androgéno-indépendant pour lequel il n’existe actuellement aucun traitement efficace. En effet, malgré une sensibilité initiale des cellules cancéreuses prostatiques au blocage androgénique, elles s’adaptent plus ou moins rapidement (de quelques mois à quelques années) à la privation hormonale et à la chimiothérapie et se remettent à proliférer [Feldman et al., 2001]. La moitié des patients subissant un traitement hormonal voit son chiffre de PSA remonter dans les 2 ans qui suivent le début du traitement. L’hormono-résistance tient au fait que les cellules prostatiques empruntent alors des voies alternatives permettant leur survie et leur croissance en l’absence d’androgènes. La compréhension de ces différentes voies est la clé du développement de thérapies plus efficaces dans le but d’améliorer la survie à ce cancer. Cependant, les mécanismes moléculaires sous-jacents ne sont pas entièrement connus [Devlin et al., 2008].

Il est raisonnable de penser qu’il existe des processus concomitants d’adaptation et de sélection prenant place dans les tumeurs prostatiques et les métastases afin de favoriser l’émergence lente mais progressive de cellules tumorales réfractaires aux androgènes et ce aux dépens des cellules androgéno-dépendantes.

C.2.a) récepteur aux androgènes

Les cancers prostatiques précoces sont hormono-dépendants mais ils deviennent hormono-indépendants lors de l’évolution normale du cancer ou sous l’action d’un traitement anti-androgénique. L’échappement thérapeutique consiste en une perte de la régulation du RA par les androgènes et à la prévalence des régulations dites ligand-indépendantes. Néanmoins,
il n’est pas connu si les cellules androgéno-dépendantes acquièrent la capacité de proliférer en présence d’un très faible taux d’androgènes ou si c’est ce faible taux d’androgènes qui provoque une pression de sélection favorisant la croissance d’une petite population de cellules tumorales androgéno-indépendantes. Des analyses immunohistologiques ont montré que la plupart des tumeurs androgéno-indépendantes expriment toujours le RA ainsi que le PSA, dont le gène est le mieux caractérisé des gènes androgéno-dépendants dans la prostate [Ruizeveld de Winter et al., 1991]. Ceci suggère que la voie de signalisation du RA demeure intacte même si sa régulation peut être altérée. Du point de vue moléculaire, l’échappement hormonal peut s’expliquer par différents mécanismes affectant le RA qui lui permettent surtout d’utiliser plus efficacement les taux d’androgènes résiduels [Devlin et al., 2008] :
- **surexpression/amplification du RA.** Une étude a rapporté qu’une augmentation de l’expression du RA, consécutive à une amplification génique, se retrouve dans 25 à 30% des tumeurs prostatiques androgéno-indépendantes se développant après une thérapie hormonale [Linja et al., 2001 ; Visakorpi et al., 1995]. L’augmentation du nombre de récepteurs permet ainsi de maintenir une signalisation même en présence de très faibles taux d’androgènes. Une équipe a obtenu, à partir de la lignée tumorale androgéno-dépendante de cellules prostatiques LNCaP (pour plus de détails sur cette lignée, voir partie I.1 du Matériaux et Méthodes), des cellules qui expriment 3 fois plus de RA que les cellules sauvages [Chen et al., 2004a]. Cette différence mime les niveaux d’expression du RA retrouvés dans les cancers androgéno-dépendants par rapport aux cancers androgéno-indépendants. Dans ce travail, un traitement anti-androgénique a montré que, *in vitro*, les cellules ayant plus de RA croissent plus facilement et résistent plus à l’apoptose que les cellules sauvages. De plus, des tests menés *in vivo* chez la souris castrée ont confirmé que la surexpression du RA augmente la vitesse de formation de la tumeur [Chen et al., 2004a]. Une autre étude estime que les protéines de sécrétion des cellules NE (telles que la GRP) activeraient le facteur de transcription NFκB des cellules LNCaP résultant en une augmentation d’expression du RA [Jin et al., 2008]. Je reviendrai sur l’importance des neuropeptides dans la signalisation androgéno-indépendante plus loin dans cette partie.
- **mutations du RA.** Les mutations du gène du RA, codant alors un récepteur plus sensible ou de moindre spécificité, plus fréquentes dans les tumeurs tardives ou récurrentes que dans les tumeurs précoces, peuvent conférer des propriétés androgéno-indépendantes [Taplin et al., 1995]. Le RA des cellules LNCaP possède une mutation faux sens (une thréonine est substituée par une alanine au niveau du codon 877) qui lui permet d’être activé par diverses hormones stéroïdiennes mais surtout par les anti-androgènes [Veldscholte et al., 1992]. Une
étude a montré que cette mutation permet aux cellules de croître et de survivre plus efficacement par rapport aux cellules possédant la forme normale [Sun et al., 2006a]. Cette mutation faux sens a été très souvent répertoriée dans les cas de cancers traités par des anti-androgènes supposant que la thérapie anti-androgénique agit comme une pression de sélection poussant les cellules en prolifération à acquérir de telles mutations [Marcelli et al., 2000; Taplin et al., 1999].

- augmentation locale de la production en androgènes. Une analyse des tumeurs androgéno-indépendantes a indiqué que l’expression de gènes importants pour la biosynthèse des stéroïdes (codant des enzymes dont la squalène monoxygénase et la lanostérol synthétase) étaient parfois augmentée [Holzbeierlein et al., 2004], ce qui suppose une production endogène plus élevée d’androgènes.

- activation du RA par des ligands non-stéroïdiens comme des facteurs de croissance ou des cytokines. La régulation de la croissance normale de la prostate est maintenue par une sécrétion paracrine androgéno-dépendante de facteurs de croissance, mais ce contrôle peut être perturbé lors de l’échappement thérapeutique par l’acquisition d’une sécrétion autocrine [Djakiew, 2000] (pour revue, [Arnold et al., 2002]). Des travaux ont montré que l’augmentation de la sécrétion de facteurs de croissance, à commencer par l’EGF et l’IGF (Insulin Growth Factor), ou du nombre de récepteurs tyrosine kinase participe à la croissance de l’organe en stimulant le RA de manière ligand-indépendante [Culig et al., 1994; Montano et al., 2004] (pour revue, [Zhu et al., 2008]). De plus, les interleukines (IL), notamment les IL4, 6 et 8, produites soit par les cellules immunitaires en réponse à une inflammation soit par les cellules basales de la prostate [Hobisch et al., 1998 ; Lee et al., 2004 ; Lee et al., 2003], ainsi que les neuropeptides (GRP et NT) [Lee et al., 2001] sont capables d’initier des voies de signalisation qui mènent à l’activation du RA en l’absence de ligand.

- clivage protéolytique du RA en une isoforme androgéno-indépendante. Récemment, un nouveau mécanisme susceptible de provoquer l’androgéno-indépendance de la tumeur a été suggéré [Libertini et al., 2007]. Les calpaïnes, qui sont des protéases calcium-activées (pour revues, [Croall et al., 2007; Goll et al., 2003]), clivent le RA en une petite isoforme constitutivement active qui se transloque dans le noyau pour y agir de manière androgéno-indépendante [Jenster et al., 1991].

Cette voie du RA ne peut pas être la seule voie expliquant l’échappement thérapeutique. Effectivement, une très forte diminution voire une perte d’expression du RA, retrouvée dans 20-30% des tumeurs prostatiques androgéno-indépendantes, peut avoir lieu suite à la méthylation du gène du RA [Kinoshita et al., 2000]. Il existe donc d’autres voies,
dont certaines sont rapportées ci-dessous, plus ou moins indépendantes du RA, qui peuvent mener à l’échappement thérapeutique.

C.2.b) résistance à l’apoptose

Les cellules de la prostate adulte saine ont un taux de prolifération qui est contrepoincé par un taux d’apoptose aboutissant à un équilibre de la croissance nette de l’organe [Berges et al., 1995]. La plupart des cancers prostatiques répondent initialement à la privation androgénique par une régression tumorale due à l’inhibition de la prolifération et à l’augmentation de l’apoptose [Westin et al., 1995]. Une explication possible en faveur de l’échappement thérapeutique est le développement d’une résistance à l’apoptose qui est l’une des caractéristiques les plus marquantes lors de l’évolution des cancers prostatiques [Denmeade et al., 1996].

L’apoptose est un mécanisme physiologique très conservé, tenant un rôle clé dans l’homéostasie tissulaire qu’elle soit saine ou pathologique, sur lequel je reviendrai dans une prochaine partie. Toutefois, je peux dès à présent préciser que l’apoptose intervient lors de l’embryogenèse afin d’éliminer les cellules surmunéraires (neurones, ovocytes ou tissu interdigital) [Naruse et al., 1995] (pour revue, [Lockshin et al., 2007]) et qu’elle empêche aussi les tissus à forte régénération, comme les épithélia, de devenir hyper-prolifératifs. Cette **mort cellulaire programmée** (MCP), qui est contrôlée génétiquement à la différence de la mort cellulaire accidentelle et de la nécrose, peut être activée par des stimuli physiologiques intracellulaires ou extracellulaires ainsi que par des stimuli pathologiques portant atteinte au bon fonctionnement de la cellule (infection virale, stress oxydatif et dommages causés à l’ADN). Elle aboutit à des changements cellulaires importants [Kerr et al., 1994 ; Wyllie et al., 1984]. Morphologiquement, elle s’accompagne d’une condensation de la chromatine, d’un rétrécissement cellulaire et finalement de la formation de corps apoptotiques. Biochimiquement, les principales conséquences de l’apoptose sont la localisation de la phosphatidylsérine du feuillet interne vers le feuillet externe de la membrane plasmique et la dégradation du double brin d’ADN. Les enzymes effecrices et régulatrices de l’apoptose sont : 1) les protéines de la famille Bcl-2 (B-cell lymphoma-2) qui comprennent la fois des protéines pro-apoptotiques (Bad, Bax, Bak) et anti-apoptotiques (Bcl-2 et Bcl-xL), 2) les caspases (cystéines protéases) qui sont produites dans les cellules sous forme inactive de procaspases et qui doivent subir un clivage protéolytique pour devenir fonctionnelles (pour revue, [Nicholson, 1999]), et 3) les calpâines, des protéases calcium-dépendantes (pour revues, [Croall et al., 2007; Goll et al., 2003]). L’apoptose a été initialement décrite comme
pouvant être activée par une augmentation importante et soutenue du taux de Ca$^{2+}$ dans le cytosol [McConkey et al., 1997]. Néanmoins, il a été constaté que la concentration calcique de la lumière du réticularium endoplasmique (RE) ([Ca$^{2+}$]$_{RE}$) affectait la sensibilité des cellules à l’apoptose dans les cellules de lymphomes chez la souris [Foyouzi-Youssefi et al., 2000; Lam et al., 1994] et que la surexpression de Bcl-2 était accompagnée d’une plus faible [Ca$^{2+}$]$_{RE}$ qui pourrait être due à une fuite plus importante de Ca$^{2+}$ de la lumière du RE vers le cytosol (pour revue, [Pinton et al., 2006]).

La résistance à l’apoptose des cellules cancéreuses prostatiques peut s’expliquer par une dérégulation des différents acteurs mis en jeu. En réalité, un dysfonctionnement général du mécanisme apoptotique peut immortaliser les cellules et générer un tissu hyper-prolifératif par défaut d’apoptose, comme cela a été décrit pour le cancer de la prostate dans lequel la surexpression de Bcl-2 entraîne une protection excessive des cellules cancéreuses face à la MCP (pour revue, [Chaudhary et al., 1999]). Dans l’épithélium prostatique sain ou hyperplasique, l’expression de Bcl-2 est limitée aux cellules basales androgéno-indépendantes alors que les cellules luminales androgéno-dépendantes ne l’expriment pas ou très peu [Colombel et al., 1996; McDonnell et al., 1992]. Des travaux ont rapporté que l’expression des protéines anti-apoptotiques, Bcl-2 et Bcl-xL, s’avère plus élevée dans les tumeurs prostatiques de haut grade et les métastases que dans les tumeurs de faible grade [Krajewska et al., 2003]. Ces données corroborent des études antérieures témoignant, d’une part, de la forte corrélation qui existe entre l’expression de Bcl-2 et le développement de l’androgénono-indépendance dans les cancers de la prostate et d’autre part, des forts taux de Bcl-2 mesurés dans les tumeurs androgéno-indépendantes obtenues à partir de métastases chez l’homme ou chez le rat ayant subi une privation androgénique [Colombel et al., 1996; McDonnell et al., 1992]. La principale conséquence de cette augmentation d’expression de Bcl-2 serait de conférer une résistance à l’apoptose dans la population cellulaire maligne. Parallèlement, des travaux du laboratoire ont démontré que la vidange du Ca$^{2+}$ réticulaire dans les cellules cancéreuses LNCaP était, à elle seule, suffisante pour y induire l’apoptose [Skryma et al., 2000]. De plus, la surexpression de Bcl-2 dans ces cellules entraîne de profonds changements de l’homéostasie calcique : réduction de l’expression d’une protéine chaperonne du Ca$^{2+}$ dans le RE (la calréticuline) et des pompes SERCA (Sarco/Endoplasmic Reticulum Ca$^{2+}$-ATPases), 2 protéines indispensables au maintien de la [Ca$^{2+}$]$_{RE}$ [Vanden Abeele et al., 2002]. Dans ce cas, la vidange calcique réticulaire dans les cellules surexprimant Bcl-2, plus faible que la normale, ne permet plus l’induction de l’apoptose. Toujours est-il que Bcl-2 n’est pas la seule protéine pro- ou anti-apoptotique à être dérégulée dans le cancer de la prostate car 4 membres
de la famille des protéines IAP (Inhibitor of Apoptosis Proteins), des inhibiteurs endogènes des caspases, présentent une expression fortement augmentée lors de cette pathologie : les cIAP1 et 2 (cellular IAP), l’xIAP (X chromosome-linked IAP) et la survivine [Deveraux et al., 1997; Krajewska et al., 2003]. Des travaux sur des souris transgéniques indiquent que les IAP sont des cibles potentielles pour améliorer les traitements actuels contre le cancer de la prostate [Krajewska et al., 2003]. Ceci présume que ces protéines anti-apoptotiques puissent contribuer à la progression du cancer prostatique et à sa résistance aux traitements. En ce qui concerne les cellules NE, il a été montré qu’elles résistent à l’apoptose [Fixemer et al., 2002] et même s’il reste quelques points obscurs sur les mécanismes responsables de cette résistance, il existe certaines évidences suggérant qu’elle soit liée à la survivine [Xing et al., 2001]. Des études menées au laboratoire ont souligné que la différenciation neuroendocrine des cellules épithéliales prostatiques humaines causait des modifications de l’homéostasie calcique qui, pour les principales caractéristiques (diminution de la $[\text{Ca}^{2+}]_{RE}$ ainsi que de l’expression des pompes SERCA), rappelaient celles associées à la surexpression de l’oncogène Bcl-2 vues quelques lignes plus haut [vanoverbergh et al., 2004]. Hormis les protéines de la famille IAP, la clusterine (aussi appelée TRPM-2 pour Testosterone-Repressed Prostate Message-2) est, elle aussi, une protéine anti-apoptotique dont l’expression est augmentée dans les cas avancés de cancers de la prostate [July et al., 2002]. Depuis peu, il est connu que la clusterine active la survie cellulaire par la voie PI3-K (phosphatidylinositol-3-kinase)/Akt [Ammar et al., 2008]. Contrairement à toutes les protéines anti-apoptotiques surexpprimées dans les cancers de la prostate par rapport à leur expression dans l’organe sain, certaines protéines pro-apoptotiques (comme Bad et Bax) voient leur taux diminuer lors de l’évolution des cancers prostatiques vers des stades androgéno-indépendants [Teo et al., 2007]. Une surexpression de Bad dans les cellules LNCaP, normalement résistantes à l’apoptose induite par TRAIL (Tumor Necrosis Factor (TNF)-Related Apoptosis Inducing Ligand), les rend sensibles à ce facteur pro-apoptotique [Taghiyev et al., 2003].

Sous des conditions de stress telles que celles imposées par un traitement anti-androgénique, les cellules cancéreuses de la prostate détourment donc les protéines pro- ou anti-apoptotiques au profit de leur survie.

C.2.c) différenciation neuroendocrine

Au sein de la prostate, la zone de transition et la zone périphérique renferment plus de cellules NE que la zone centrale, suggérant l’implication potentielle de ces cellules dans l’HBP et le cancer [Santamaria et al., 2002]. Les cellules NE sont présentes dans tous les...
cancers de la prostate mais sont retrouvées en très grand nombre dans seulement 5 à 10% d’entre eux, parfois même au niveau des métastases [Liu, 2008]. La différenciation NE dans le cancer prostatique peut se manifester sous formes relativement rares de carcinomes à petites cellules et de tumeurs carcinoides alors que les adénocarcinomes conventionnels présentant des cellules NE éparse ou en foyer constituent la forme la plus répandue [di Sant'Agnese, 1992]. Une étude a montré que la transformation spéciﬁque des cellules NE de la prostate saine provoquait l’apparition d’un cancer neuroendocrin pur, cas très rare (< 5%) qui touche alors des sujets plus jeunes que la forme classique de type adénocarcinome [Freschi et al., 2004; Garabedian et al., 1998]. Par ailleurs, la population NE augmente en corrélation avec la progression tumorale et son mauvais pronostic clinique car les traitements anti-androgéniques sont sans effet ce qui explique les efforts déployés pour tenter de comprendre les causes de la transformation NE [Abrahamsson, 1996] (pour revue, [Abrahamsson, 1999]). Même si la différenciation NE est retrouvée au sein d’autres organes (pancréas, thyroïde, sein ou poumon par exemple), elle n’y est pas toujours décrite comme ayant un mauvais pronostic clinique, au contraire, elle serait parfois associée à un bon pronostic [Garcia-Yuste et al., 2008 ; Tezel et al., 2000 ; van Krimpen et al., 2004] (pour revue, [Kaltsas et al., 2004]). Les 2 axes majeurs de recherche que sont les mécanismes moléculaires permettant l’enrichissement en cellules NE au cours du développement des cancers prostatiques androgéno-indépendants ainsi que le rôle exact que peuvent jouer ces cellules dans l’oncogénèse prostatique ne sont pas encore totalement éclaircis [Bostwick et al., 2002].

Certains travaux ont signalé que l’acquisition des caractéristiques NE pouvait être réversible présumant que ce phénomène soit dynamique et déterminé, en partie, par la balance des facteurs différenciateurs et mitogènes présents dans l’environnement local de la tumeur [Cox et al., 1999; Ismail et al., 2002]. Les cellules cancéreuses prostatiques humaines en culture sont capables de se « transdifférencier » en cellules ayant un phénomène NE et ce par différentes voies dont les plus connues sont [Zelivianski et al., 2001] :

1) la déplétion en androgènes : la privation androgénique s’accompagne, dans la prostate, d’une augmentation du nombre de cellules NE sous-entendant que le processus de transdifférenciation peut avoir lieu lorsque la voie de signalisation du RA n’est plus active. En effet, l’utilisation d’outils moléculaires menant à la destruction du RA dans les cellules LNCaP entraîne une différenciation NE démontrant que ce récepteur réprime activement ce processus intrinsèque de différenciation dans les cellules cancéreuses prostatiques androgéno-dépendantes [Wright et al., 2003]. Il est donc possible qu’il y ait un lien entre l’inactivation
ou la perte du RA et l’augmentation de la fréquence des cellules NE dans les tumeurs androgéno-indépendantes. Une étude sur des coupes de prostates humaines a dévoilé qu’une différenciation NE survenait suite à l’ablation androgénique [Ismail et al., 2002]. Des expériences de xénogreffes sur des souris suggèrent que les cellules NE des tumeurs prostatiques humaines de stade avancé ont pour origine des cellules prostatiques cancéreuses subissant un processus de transdifférenciation [Huss et al., 2004]. Une étude sur les cellules LNCaP a décelé que l’expression de nombreux gènes était altérée par 12 mois de privation androgénique [D’Antonio et al., 2008]. Parmi ceux-ci ont été dégagés des gènes importants dans les voies de signalisation menant à la croissance cellulaire, l’apoptose ou la survie : augmentation de l’expression du RA, du récepteur au TGFβ, de la NT et du facteur de transcription NFκB et à l’inverse, diminution de Bax et de certaines CDK (Cycline Dependent Kinases) [D’Antonio et al., 2008].

2) la voie de signalisation de la PKA (cyclic AMP-dependent Protein Kinase A) : l’incubation des cellules LNCaP en présence d’analogues de l’AMPc (un des plus utilisés étant le db-AMPc pour dibutyryl-AMPc), à des inhibiteurs de la phosphodiestérase (comme l’IBMX pour isobutylméthylxanthine), ou à des activateurs de l’adénylate cyclase (forskoline par exemple), augmente le taux intracellulaire d’AMPc qui résulte en l’induction de la différenciation NE. Les facteurs qui agissent en amont, tels que les agonistes du récepteur β-adrénnergique (épinéphrine et isoprotérénol), ou en aval de l’activation de la PKA sont suffisants pour l’acquisition des propriétés NE toujours au sein des cellules LNCaP [Bang et al., 1994; Cox et al., 2000; Deeble et al., 2001; Goodin et al., 2002; Mariot et al., 2002]. Il y a peu, une étude menée sur des clones de cellules LNCaP exprimant de façon inductible une forme de PKA constitutivement active a donné des résultats intéressants [Deeble et al., 2007]. Des expériences de co-cultures, in vitro ou in vivo avec des xénogreffes, ont mis en évidence que les clones exprimant la PKA constitutivement active stimulent plus la croissance des cellules tumorales que ne le font les cellules sauvages, avec l’effet le plus marqué lors d’une privation androgénique. Il est à noter qu’une très forte augmentation de la production d’AMPc par les cellules LNCaP a été mise en évidence lors d’une privation androgénique [Burchardt et al., 1999 ; Yuan et al., 2006].

A côté de ces 2 voies de différenciation, différentes études sur des cellules épithéliales prostatiques ont mis en avant :
- l’implication des IL1, 6 et 8 dont les voies de signalisation passent par la P1,-K, fortement inhibée en présence d’androgènes, et par la tyrosine kinase Ekt/Bmx dans les LNCaP [Diaz et al., 1998; Qiu et al., 1998; Wang et al., 2004; Xie et al., 2004].
- l’activation du récepteur protéine tyrosine phosphatase-α [Yuan et al., 2006; Zhang et al., 2003] et de la p38 MAP kinase [Kim et al., 2002] toujours au sein des cellules LNCaP.
- les facteurs mitogéniques comme l’EGF qui provoque une différenciation NE des cellules androgéno-indépendantes DU-145 [Humez et al., 2006]. Dans les cellules LNCaP, ce facteur de croissance stimule la prolifération cellulaire et l’utilisation d’inhibiteurs contre son récepteur, les MAP-kinases (MAP-K pour Mitogenic Activated Protein-Kinase) ou la PI3-K provoque une différenciation NE de ces cellules [Martin-Orozco et al., 2007]. Un autre facteur de croissance, l’adrénomédulline, présente une expression plus importante dans les adénocarcinomes prostatiques ayant un score de Gleason élevé [Rocchi et al., 2001]. Cette étude montre que les cellules androgéno-indépendantes, PC-3 et DU-145 (voir la partie I.1 du Matériels et Méthodes), produisent et sécrètent abondamment de l’adrénomédulline qui agirait comme facteur de croissance autocrine sur les DU-145. Un travail très récent a mis en évidence que l’adrénomédulline peut aussi être sécrétée par les cellules LNCaP après privation androgénique et qu’elle leur permet d’acquérir des propriétés NE aussi bien in vitro qu’in vivo dans des xénogreffes [Berenguer et al., 2008].

Bien que les cellules NE prostatiques aient été découvertes il y a de nombreuses années, leur rôle dans la progression du cancer prostatique a reçu une attention particulière depuis peu. Des travaux ont révélé que les cellules NE, n’étant pas directement impliquées dans la prolifération tumorale car bloquées en phase G0/G1 [Bonkhoff, 1998], pourraient considérablement accroître la prolifération androgéno-indépendante des cellules voisines par le biais des substances mitogènes qu’elles sécrètent de façon autocrine ou paracrine [di Sant'Agnese, 1998; Grobholz et al., 2005; Huang et al., 2006; May et al., 2007]. Il a effectivement été détecté dans des tissus cancéreux de prostate une prolifération des cellules épithéliales aux abords des foyers de cellules NE [Bonkhoff et al., 1991] ainsi qu’une activité pro-mitogénique de la plupart des neuropeptides/monoamines (5-HT, NT et CT par exemple) exprimés par ces dernières [Amorino et al., 2007; Chien et al., 2001; Jongsma et al., 2000]. D’autres résultats, basés à la fois sur des xénogreffes chez la souris et des tests in vitro, suggèrent que les cellules NE, par l’intermédiaire de la NT ou de la GRP, peuvent directement activer le RA stimulant alors la prolifération des cellules LNCaP et ce en l’absence d’androgènes [Jin et al., 2004; Lee et al., 2001]. Par ailleurs, il a été prouvé que les cellules NE cancéreuses produisent de l’IL8 tandis que les cellules tumorales non-NE expriment des niveaux importants de son récepteur ce qui laisse entrevoir l’hypothèse selon laquelle les cellules NE pourraient contribuer à la prolifération androgéno-indépendante par un mécanisme paracrine impliquant l’IL8 [Huang et al., 2005]. Les cellules NE prostatiques
possèdent aussi la propriété d’être résistantes à l’apoptose [Fixemer et al., 2002] même si elles sont négatives pour Bcl-2 [Xue et al., 1997] et des travaux du laboratoire montrent que cette résistance serait associée à une altération de l’homéostasie calcique intracellulaire comme nous l’avons vu plus haut [Vanoverberghe et al., 2004]. Les cellules NE expriment la protéine anti-apoptotique survivine [Xing et al., 2001], fournissant une base moléculaire pour appuyer l’idée que les cellules NE peuvent endurer des conditions de stress et toutefois échapper à l’apoptose pendant les thérapies anticancéreuses. Récemment, une étude a révélé que la chromogranine A augmente l’expression de la survivine avec pour conséquence une atténuation de l’apoptose des cellules cancéreuses prostatiques LNCaP [Gong et al., 2007]. Par ailleurs, une étude mettant en évidence une relation proportionnelle entre le taux d’expression de Bcl-2 et celui de divers marqueurs NE suggère que des facteurs NE sécrétés puissent induire une augmentation d’expression de Bcl-2 dans les cellules non-NE voisines [Segal et al., 1994]. Les cellules NE conféreraient ainsi une résistance à l’apoptose aux cellules avoisinantes. En outre, l’équipe de Jichlinski s’intéresse actuellement au fait que des cellules prostatiques androgéno-dépendantes différenciées en cellules NE sécrètent plus de MIF (Macrophage Migration Inhibition Factor) que les cellules non-différenciées et ce facteur peut à la fois stimuler la prolifération et diminuer l’apoptose des cellules avoisinantes [Tawadros et al., 2008]. Un précédent travail avait déjà décrit que l’inhibition du MIF réprimait la croissance et l’invasion des cellules androgéno-indépendantes prostatiques DU-145 [Meyer-Siegler et al., 2006]. Enfin, d’autres facteurs semblent avoir un rôle important dans les mécanismes d’invasion et d’angiogenèse (CT, EGF, VEGF pour Vascular Endothelial Growth Factor) [Chevalier et al., 2002; Festuccia et al., 2005; Grobholz et al., 2000; Hoosein et al., 1993; Sabbisetti et al., 2005]. Le VIP stimulerait la différenciation NE ainsi que la production de VEGF par les cellules LNCaP [Collado et al., 2004]. Parallèlement, certaines enzymes de dégradation de ces facteurs NE sont diminuées dans les cas avancés de cancer, c’est le cas de la zinc-métallo-endopeptidase EP 24.15 [Swanson et al., 2004], favorisant ainsi l’action des peptides neuroendocrines (figure 6). Les traitements anti-androgéniques, augmentant le nombre de cellules NE dans les tumeurs prostatiques [Hirano et al., 2004; Jiborn et al., 1998; Noordzij et al., 1996], ne feraient donc que sélectionner des cellules androgéno-indépendantes, dont les NE, aux dépens des cellules androgéno-dépendantes (figure 6).
Par ailleurs, pour expliquer la progression des cellules cancéreuses vers l’androgénoindépendance certains soupçonnent que les cellules cancéreuses puissent être reprogrammées pour synthétiser et sécréter leurs propres facteurs de croissance, en l’absence d’androgènes ou de cellules stromales. Cette reprogrammation pourrait avoir lieu par des mécanismes génétiques ou épigénétiques (pour revue, [Arnold et al., 2002]). De plus, les cellules NE tumorales présenteraient un dysfonctionnement de sécrétion (défaut ou excès) qui, par une stimulation paracrine anormale des cellules saines, les rendraient ainsi tumorales [Nakada et al., 1993]. L’acquisition des caractéristiques NE s’effectuerait au cours de la progression tumorale. Ainsi, suite à une transformation maligne, une cellule épithéliale développerait des propriétés NE et serait alors régulée par des mécanismes androgénoindépendants.

L’étude des cellules neuroendocrines prostatiques, dont la présence est potentiellement le signe d’un mauvais pronostic clinique de la tumeur, reste donc une voie de recherche très importante dans la compréhension des processus de cancérisation de la prostate et reste aussi une cible thérapeutique potentielle pour tenter de soigner le cancer de la prostate (pour revue, [Vashchenko et al., 2005]).

CONCLUSION

Bien qu’étant une glande annexe de l’appareil reproducteur masculin, la prostate n’en demeure pas moins un organe complexe. Assurément, la synergie fonctionnelle des différents
types cellulaires conduit, en partie, au bon déroulement de la reproduction et de la miction. Pour lutter contre le cancer de la prostate, les recherches doivent se concentrer sur les mécanismes moléculaires, extrêmement complexes et étroitement liés entre eux, qui interviennent dans le phénomène d’échappement thérapeutique consécutif aux traitements anti-androgéniques. Chacun des mécanismes mis en jeu est une voie thérapeutique potentielle qui pourrait être mise en place pour retarder l’évolution du cancer vers l’hormono-résistance. Ainsi, l’amélioration de la compréhension de l’apparition et du fonctionnement des cellules neuroendocrines laisse entrevoir la possibilité de développer de nouvelles thérapies fondées, par exemple, sur des agonistes ou des antagonistes des neuropeptides sécrétés par ces cellules.

De récentes études menées par notre laboratoire et d’autres indiquent incontestablement que les altérations de l’homéostasie calcique et la modulation du fonctionnement des canaux ioniques joueraient un rôle important dans la régulation des grandes fonctions cellulaires telles que la prolifération et l’apoptose [Bolanz et al., 2008; Lehen’kyi et al., 2007; Vanoverberghe et al., 2004]. Ces 2 paramètres, comme nous avons pu le voir dans les paragraphes précédents, sont très fortement impliqués dans l’oncogenèse prostatique. Je vais donc poursuivre ce manuscrit en introduisant les notions de calcium, d’homéostasie calcique et de canal ionique avant de faire le lien avec la différenciation neuroendocrine et l’importance que tous ces éléments peuvent avoir dans l’évolution du cancer prostatique.

II. ROLE DU CALCIUM DANS LA CELLULE

Depuis les travaux fondateurs de Ringer [Ringer, 1882; Ringer, 1883] sur la contraction cardiaque et de Locke [Locke, 1894] sur la transmission nerf-muscle, le rôle des ions calcium (Ca2+) dans la physiologie de la cellule est reconnu. Aujourd’hui, il est admis que les variations du taux de Ca2+ dans la cellule fournissent des signaux dynamiques et hautement polyvalents qui contrôlent de nombreuses autres fonctions cellulaires telles que la sécrétion, la fécondation, la prolifération, la transcription génique ou encore l’apoptose (pour revues, [Berridge et al., 1998; Berridge et al., 2000]). En conséquence, le Ca2+ doit être utilisé de manière appropriée pour déterminer le destin de la cellule ; si l’équilibre entre les différents processus est compromis, des pathologies telles que le cancer peuvent apparaître. Dans cette partie, je commencerai par décrire les mécanismes de régulation de la
concentration calcique dans les cellules avant d’aborder les structures particulières, à savoir les canaux ioniques, qui permettent le passage des ions à travers les membranes biologiques, qu’elles soient réticulaire ou plasmique. Une analyse génomique, datant de 2001, a recensé l’existence de 406 gènes (1,6% du génome humain) codant des canaux calciques, parmi lesquels 10 à 20% seraient considérés comme des canaux calciques [Venter et al., 2001]. Je m’attarderai particulièrement sur les canaux calciques voltage-dépendants de type T, qui ont été mon principal sujet d’étude au cours de ma thèse. Je préciserais ensuite le rôle du Ca²⁺ dans la sécrétion, la régulation de la prolifération cellulaire et l’apoptose pour poursuivre par l’implication des canaux calciques de type T dans les fonctions biologiques associées au cancer et leur rôle dans la régulation de canaux potassiques Ca²⁺-dépendants.

A. HOMEOSTASIE CALCIQUE ET SIGNAL CALCIQUE

Parmi les éléments constitutifs du corps humain, le Ca²⁺ occupe la cinquième place après l’oxygène, le carbone, l’hydrogène et l’azote pour représenter près de 1,5% du poids total (soit environ 1 kg) [Endo, 2006]. La plus grande partie du Ca²⁺ est concentrée dans les os et les dents mais le restant est réparti dans tout le corps pour y jouer d’importants rôles physiologiques (pour revues, [Berridge et al., 1998; Berridge et al., 2000]).

A.1) HOMEOSTASIE CALCIQUE

Les cellules vivantes sont entourées par une membrane imperméable contenant des protéines spécialisées dans l’échange de différentes molécules et atomes entre les espaces extracellulaire et intracellulaire. La concentration calcique du milieu extracellulaire est très élevée, de l’ordre de 10⁻³ M. La concentration cytosolique en Ca²⁺ libre ([Ca²⁺]cyt), paramètre important car sous cette forme l’ion est directement disponible et utilisable par les multiples protéines Ca²⁺-dépendantes, est quant à elle normalement maintenue à un niveau très faible d’environ 10⁻⁷ M. Pourtant, certains organites intracellulaires tels que les mitochondries et surtout le réticulum endoplasmique (RE) ou sarcoplasmique (RS) constituent des sites de stockage préférentiels du Ca²⁺, certes plus limités que le milieu environnant, mais qui l’accumulent de sorte que sa concentration luminal puisse atteindre plusieurs millimolaires. Il existe donc un énorme gradient calcique (d’un facteur 10 à 20 000, le plus élevé des différents ions) de part et d’autre des membranes plasmique et réticulaire. La [Ca²⁺]cyt est fonction de la concentration en Ca²⁺ total, des tampons calciques cellulaires et des mécanismes de transport mis en jeu.
La plupart des stimulations cellulaires vont déclencher un flux de \(\text{Ca}^{2+} \) responsable d’une augmentation de la [\(\text{Ca}^{2+}\)]_{cyt}, de quelques centaines de nanomolaires dans l’ensemble du cytosol à plusieurs centaines de micromolaires très localement. Ce flux est réalisé par l’intermédiaire de structures particulières de transport présentes soit sur la membrane plasmique, produisant alors un influx de \(\text{Ca}^{2+} \) à partir du milieu environnant, soit sur la membrane du RE, occasionnant cette fois une libération de \(\text{Ca}^{2+} \) à partir de cet important stock intracellulaire. Ces structures, appelées canaux ioniques (une partie leur est consacrée plus loin dans le texte), permettent le mouvement passif de \(\text{Ca}^{2+} \) selon son gradient électrochimique. Le \(\text{Ca}^{2+} \) joue un rôle de second messager car, en réponse à un stimulus délivré par un premier messager extérieur à la cellule, il transmet le message à des systèmes intracellulaires qui vont adapter la réponse au stimulus initial. Contrairement aux autres messagers secondaires, le \(\text{Ca}^{2+} \) n’est pas métabolisé par la cellule au repos et pour exercer un contrôle efficace sur cet ion, la cellule doit le compartimenter, le chélater ou l’expulser. En réalité, le \(\text{Ca}^{2+} \) est l’ion le mieux compartimenté dans la cellule et cette compartimentation semble stable si la [\(\text{Ca}^{2+}\)]_{cyt} est mesurée avec de longs intervalles (> à la minute), mais une observation plus fine avec des intervalles plus courts (< à la seconde) révèle une très grande dynamique, conférant à cet ion un rôle de messager primordial [Berridge et al., 1998].

La répartition du \(\text{Ca}^{2+} \) dans un compartiment donné n’est jamais homogène car il est présent à la fois sous forme libre et sous forme complexée par des protéines chélatrices (\(\text{Ca}^{2+}\)-Binding Proteins ou CBP) présentes aussi bien dans le cytosol (parvalbumine, calrétinine, calmoduline ou CaM et calcineurine) [Chard et al., 1993; Edmonds et al., 2000] (pour revue, [Ikura et al., 2002]) que dans le RE (calréticuline, calséquestrine, GRP-78 et calnexine) [Arnaudeau et al., 2002; Michalak et al., 2002] et possédant des degrés d’affinité pour le \(\text{Ca}^{2+} \) qui leurs sont propres (du nanomolaire au micromolaire). Ces CBP régulent ainsi l’interaction du \(\text{Ca}^{2+} \) avec d’autres acteurs sensibles à ce cation. La concentration calcique au sein de chaque compartiment est indiscutablement inégaute car elle est fonction de la répartition des CBP définissant des zones particulières qui peuvent affecter différemment la ou les réponse(s) \(\text{Ca}^{2+}\)-dépendante(s) et de la répartition spécifique de transporteurs calciques (canaux ou pompes) au sein des membranes délimitant ces organites. La CaM, une des protéines ubiquitaires les mieux décrites parmi l’ensemble des CBP, fait le lien entre l’ion et la protéine. Suite à sa liaison avec le \(\text{Ca}^{2+} \), qui induit un changement de conformation de la protéine, la CaM poursuit effectivement la cascade de signalisation en activant des CaMK (Calmoduline Kinases) [Clapham, 2007; Hoeflich et al., 2002].
La régulation de la concentration de Ca$^{2+}$ dans le cytosol, notamment à l’arrêt d’une stimulation, est assurée par l’expulsion du Ca$^{2+}$ vers le milieu environnant et son maintien dans les organites intracellulaires de stockage, permettant de mettre fin aux voies de signalisation mises en jeu. Un transport actif, couplé à une consommation d’énergie, est nécessaire pour diriger le Ca$^{2+}$ contre son gradient électrochimique grâce à des transporteurs présents au sein des membranes plasmique et réticulaire. D’une part, les échangeurs Na$^+$/Ca$^{2+}$ et Na$^+$/Ca$^{2+}$-K$^+$ échangent un ion Ca$^{2+}$ pour 3 ions Na$^+$ ou cotransportent un ion K$^+$ et un ion Ca$^{2+}$ en échange de 4 ions Na$^+$ au niveau de la membrane plasmique. Ces structures peuvent effectuer de rapides ajustements de la concentration calcique comme pendant la génération du potentiel d’action au niveau cardiaque ou neuronal (pour revues, [Altimimi et al., 2007; Sher et al., 2008]). D’autre part, les pompes Ca$^{2+}$-ATPases transfèrent le Ca$^{2+}$, que ce soit hors de la cellule via les PMCA (Plasma Membrane Ca$^{2+}$-ATPase) ou dans le RE via les SERCA (Sarco/Endoplasmic Reticulum Ca$^{2+}$-ATPase) (pour revue, [Brini, 2008]). Ces pompes sont ainsi responsables du maintien de la [Ca$^{2+}$]$_{cyt}$ à des valeurs faibles de repos sur de très longues périodes. Pharmacologiquement, les SERCA, dont il existe 3 isoformes (pour revue, [Lipskaia et al., 2008]), peuvent être sélectivement inhibées par l’acide cyclopiazonique (CPA, dont l’action est réversible), le 2,5-di-(tert-butyl)-1,4-benzoquinone (tBHQ, également réversible) et la thapsigargine (TG, alcaloïde de plante dont l’action est irréversible). Des travaux du laboratoire ont montré que l’inhibition, par la TG, de l’isoforme SERCA-2b réduit la prolifération des cellules prostatiques LNCaP [Legrand et al., 2001]. De plus, les cellules LNCaP neuroendocrines ont un taux de Ca$^{2+}$ réticulaire inférieur aux cellules non-différenciées en raison notamment d’une expression moindre en SERCA-2b [Vanoverbergh et al., 2004].

L’homéostasie calcique, résultante entre influx, efflux et stockage des ions Ca$^{2+}$, est responsable du maintien de la compartimentation de cet ion dans la cellule et par conséquent du maintien de la potentialité de créer un signal calcique.

A.2) CODAGE DU SIGNAL CALCIQUE

Pour s’adapter aux différents changements environnementaux, les cellules doivent être capables de produire des signaux spécifiques. Cette signalisation nécessite des messagers dont la concentration doit pouvoir varier aisément et rapidement. Le Ca$^{2+}$ remplit parfaitement ces conditions de par l’existence de gradients de concentrations très importants pour cet ion entre les différents compartiments cellulaires et extracellulaires, la présence de nombreux transporteurs calciques et grâce à sa très forte réactivité biochimique avec les protéines (pour
revue, [Berridge et al., 1998]. L’intérêt de l’étude de la signalisation calcique réside dans la compréhension du mode de fonctionnement de cet ion. En effet, à première vue, il est difficile d’imaginer comment l’augmentation du taux de Ca$^{2+}$ au sein de la cellule est capable d’intervenir sur un processus cellulaire particulier plutôt que sur un autre [Berridge et al., 2000; Clapham, 2007].

Un des mécanismes auquel il est le plus souvent fait référence afin d’expliquer cette pluripotentialité du Ca$^{2+}$ est le codage spatiotemporel des signaux qu’il engendre. Ce codage est rendu possible par l’impressionnant répertoire de protéines de signalisation qui peuvent créer des signaux ayant des profils d’amplitude, de temps et d’espace très variés et très précis au sein de la cellule. Il existe véritablement des nanodomains ou des microdomaines calciques au sein desquels se trouvent les mécanismes d’homéostasie (canaux, pompes, CBP) et les cibles calciques. Ces domaines seront de nature différente selon l’espace sub-cellulaire concerné et seront mis en jeu lors de variation de Ca$^{2+}$ dans un espace bien précis de la cellule. Les mitochondries, le RE et la membrane plasmique possèdent évidemment leurs propres mécanismes d’homéostasie calcique et les variations de Ca$^{2+}$ dans ces espaces, ou même dans des régions plus localisées de ces espaces, vont avoir un retentissement bien spécifique sur la physiologie de la cellule. La signature calcique, porteuse d’un message « moléculaire » entrainant l’activation ou la modulation d’une fonction cellulaire spécifique, telle que la prolifération, la transcription ou l’apoptose, est alors définie par la cinétique, la fréquence, l’amplitude et la localisation du ou des signaux calciques [Berridge et al., 1998]:

- **Localisation.** Outre sa provenance, milieu extracellulaire ou stocks intracellulaires, l’étendue du signal calcique définit directement le nombre et la spécificité des mécanismes induits [Berridge, 1993; Clapham et al., 1995]. Manifestement, lors de l’ouverture d’un canal calcique, une petite zone va se créer dans laquelle la concentration de Ca$^{2+}$ sera de plus en plus faible à mesure que la distance avec le canal augmente. Un tel signal représente un événement élémentaire, confiné à une petite région sous-membranaire, pouvant avoir essentiellement 2 fonctions [Berridge et al., 1998]. Premièrement, cet événement peut intervenir directement dans l’activation de processus fins et hautement localisés à proximité immédiate du canal comme la sécrétion de neurotransmetteurs au niveau présynaptique [Burgoyne et al., 2003], la régulation de la sécrétion des cellules épithéliales polarisées de pancréas chez la souris [Cancela et al., 2002] ou encore l’activation de canaux potassiques entrainant la relaxation du muscle lisse [Nelson et al., 1995]. Deuxièmement, l’événement élémentaire peut participer à l’activation de processus globaux en recrutant d’autres canaux qui vont former des vagues calciques successives ou en agissant à un autre endroit de la
cellule comme c’est le cas dans la contraction du muscle lisse du colon chez l’homme [Kovac et al., 2008]. Il est à noter que si les cellules sont connectées entre elles, par l’intermédiaire de protéines telles que les connexines [Toma et al., 2008], les vagues intracellulaires peuvent se propager aux cellules voisines et devenir ainsi intercellulaires afin de coordonner une réponse cellulaire au sein d’un tissu. L’exemple du muscle lisse reflète comment l’organisation spatiale du Ca^{2+} est capable d’activer 2 réponses cellulaires opposées au sein d’une même cellule.

- Cinétique/Fréquence. Un des paradoxes concernant le signal calcique est qu’il peut être à la fois vital et léthal, car bien qu’une élévation du taux de Ca^{2+} cytosolique soit nécessaire pour induire toute signalisation, une augmentation prolongée peut être toxique pour la cellule (pour revue, [Berridge et al., 1998]). Le plus souvent, les cellules évitent la surcharge de Ca^{2+} en délivrant des signaux brefs ou transitoires et cette régulation temporelle est essentielle et vaut aussi bien pour des signaux élémentaires que pour des signaux globaux. Des signaux transitoires unitaires sont utilisés pour activer certains processus cellulaires tels que la sécrétion ou la contraction musculaire [Burgoyne et al., 2003]. Cependant, lorsque l’information doit être relayée sur de plus longues périodes, les cellules initient des signaux répétitifs sous forme d’oscillations calciques qui peuvent avoir des périodes très différentes. Par exemple, la période pour les événements élémentaires dans le muscle lisse artériel est de 0,1-0,5 seconde, de 10-60 secondes pour une vague globale dans les cellules hépatiques, de 1-35 minutes pour la vague calcique dans l’ovule humain après fécondation et de 10-20 heures pour les transitoires spontanés qui contrôlent la division cellulaire (pour revue, [Berridge et al., 2000]). Par ailleurs, une entrée de Ca^{2+} dans la cellule à partir du milieu extracellulaire, pouvant durer plus d’une heure, est activée par une vidange réticulaire qui ne dure pas plus de 10 minutes [Lewis, 2001]. Les cellules modulent également la fréquence des événements afin de varier l’intensité et la nature de la réponse physiologique. Les artères peuvent se dilater en augmentant la fréquence des événements élémentaires [Porter et al., 1998] alors qu’en variant la fréquence de certains signaux globaux, différents gènes peuvent être activés [Dolmetsch et al., 1998]. Afin de répondre à ces variations de fréquence ou de cinétique, les cellules ont développé des « décodeurs » tels que la CaMK-II, composée de plusieurs sous-unités identiques qui sont activées à des degrés différents selon la fréquence des oscillations calciques et qui régule d’autres enzymes Ca^{2+}-dépendantes [De Koninck et al., 1998].

- Amplitude. Cette autre caractéristique, qui introduit la notion d’intensité du signal calcique, peut également encoder l’information. Cette modulation est généralement considérée comme moins fiable que celle basée sur la fréquence en raison des difficultés rencontrées par les
senseurs de Ca^{2+} à détecter de très petites modifications de concentration calcique en dehors du bruit de fond. Toutefois, il a été montré que les cellules peuvent interpréter des changements minimes du taux de Ca^{2+} en activant sélectivement la transcriptions de certains gènes [Dolmetsch et al., 1997]. Les phénomènes calciques élémentaires sont souvent tributaires de leur nombre et de leur cinétique et c’est l’intégration globale de leur activité en un signal d’amplitude supérieure au seuil d’activation des protéines effectrices qui promulgue la fonction biologique. Chaque protéine senseur de Ca^{2+} possède une affinité pour cet ion qui lui est propre et qui détermine un seuil de concentration à partir duquel suffisamment de protéines senseurs pourront être activées.

B. TRANSPORT DU CALCIUM AU SEIN DE LA CELLULE

Il existe 2 systèmes de mobilisation du Ca^{2+} au sein de la cellule avec, en premier lieu, la libération réalisée par les canaux calciques de la membrane du RE et, en second lieu, l’influx effectué par les canaux calciques de la membrane plasmique. Les canaux ioniques sont des protéines entièrement intégrées dans une membrane qui permettent un transport passif, c’est-à-dire le passage des ions selon leur gradient électrochimique. En fonction des concentrations ioniques et de la différence de potentiel de part et d’autre de la membrane plasmique, le passage peut se faire de l’extérieur vers l’intérieur de la cellule ou inversement. Les canaux ioniques peuvent donc être comparés à des portes à travers la membrane pour contrôler finement les flux ioniques. L’ouverture d’un canal ionique peut se faire soit par la liaison d’un ligand spécifique directement sur le canal ou sur une protéine couplée au canal, soit par un changement du potentiel membranaire. Les canaux ioniques sont caractérisés par leur sélectivité qui est notamment fonction de la structure du pore, qui correspond à l’endroit par lequel transitent les ions. Il existe des sous-familles de canaux pour chacun des ions : potassium (K^+), chlorure (Cl^-), sodium (Na^+) et bien sûr Ca^{2+}. Dans chacune de ces sous-familles, les canaux possèdent des propriétés fonctionnelles, cinétiques et régulatrices qui leur sont propres.

B.1) CANAUX CALCIQUES DE LA MEMBRANE DU RETICULUM ENDOPLASMIQUE OU SARCOPLASMIQUE

Un des mécanismes universels de la signalisation calcique est la libération de Ca^{2+} par les compartiments intracellulaires, dont le plus important et le plus dynamique est le RE (ou le RS). La $[\text{Ca}^{2+}]_{\text{RE}}$ est essentielle pour certaines fonctions importantes comme la maturation protéique [Hebert et al., 2007] ou l’apoptose [Breckenridge et al., 2003]. Par conséquent, la
cellule doit réguler la [Ca\(^{2+}\)] au sein de cet organite. De nombreux canaux et pompes calciques sont exprimés sur la membrane du RE afin de contrôler les flux de Ca\(^{2+}\) entre le cytosol et le milieu intra-réticulaire. Le Ca\(^{2+}\) est libéré de la lumière du RE vers le cytosol grâce, notamment, à 2 familles de protéines qui peuvent être considérées comme des canaux calciques bien qu’elles ne fonctionnent pas tout à fait comme les canaux conventionnels que je détaillerai par la suite. Il s’agit des récepteurs-canaux à l’IP\(_3\) (R-IP\(_3\)) (pour revue, [Foskett et al., 2007]) et à la ryanodine (RyR) (pour revue, [Petrovic et al., 2008]) qui possèdent une forte homologie structurale. Ils sont constitués de 4 sous-unités, d’un domaine C-terminal où se situent les segments transmembranaires et d’une boucle cytoplasmique N-terminale de grande taille qui forme un vestibule permettant entre autre la fixation des drogues et les effets régulateurs du Ca\(^{2+}\) [Mignery et al., 1989; Shah et al., 2001]. Un aspect essentiel que partagent les R-IP\(_3\) et les RyR est assurément leur sensibilité au Ca\(^{2+}\) cytosolique qui leur confère la possibilité de participer au mécanisme de CICR (Ca\(^{2+}\)-Induced Ca\(^{2+}\) Release) permettant une amplification des petits événements calciques déclencheurs [Bootman et al., 2002; Endo et al., 1970; Fabiato, 1983; Stern, 1992]. De ce fait, l’activation des IP\(_3\)-R ou des RyR lors d’une augmentation de la [Ca\(^{2+}\)]\(_{cyt}\) déclenche la libération du Ca\(^{2+}\) réticulaire [Nagarkatti et al., 2008].

D’autres canaux participent à une libération de Ca\(^{2+}\) réticulaire de manière similaire à ces récepteurs-canaux, comme TRPV1 [Turner et al., 2003], TRPP2 [Koulen et al., 2002] et TRPM8 [Bidaux et al., 2007; Mahieu et al., 2007]. Ces canaux appartiennent à l’importante famille des canaux TRP (Transient Receptor Potential), qui forment des structures perméables au Ca\(^{2+}\), présentes aussi bien sur la membrane plasmique que réticulaire [Ramsey et al., 2006] (voir partie B.2.a).

B.1.a) R-IP\(_3\)

L’inositol-1,4,5-trisphosphate (IP\(_3\)) est un second messager produit, en même temps que le diacylglycérol (DAG), par l’hydrolyse du PIP\(_2\) (phosphatidylinositol-4,5-bisphosphate) membranaire réalisée par les phospholipases C (PLC) [Berridge, 1993; Ferris et al., 1989]. Ces PLC peuvent être activées par des récepteurs couplés aux protéines G, des récepteurs à activité tyrosine kinase, le PIP\(_2\) ou encore le Ca\(^{2+}\). De ce fait, de nombreux stimuli (hormones, facteurs de croissance ou neurotransmetteurs) peuvent augmenter la concentration d’IP\(_3\) et ainsi activer différents processus cellulaires Ca\(^{2+}\)-dépendants en libérant le Ca\(^{2+}\) réticulaire [Berridge, 1993]. En effet, parmi la multitude d’inositol phosphates et de phospholipides, l’IP\(_3\) est unique car il est le seul à avoir comme cible un canal [Ferris et al., 1989], qui s’avère
être un canal cationique non-sélectif perméable au Ca2+ (pour revues, [Foskett et al., 2007; Kockskamper et al., 2008]).

Chez l’homme, 3 gènes codent les 3 isoformes connues des R-IP\textsubscript{3}, qui sont des glycoprotéines avoisinant 310 kDa (pour revue, [Patel et al., 1999b]). Structuralement, ce récepteur possède 3 domaines fonctionnels : une extrémité N-terminale cytoplasmique représentant près de 85% de la protéine possédant le site de fixation à l’IP\textsubscript{3}, une région hydrophobe formée de 6 hélices transmembranaires délimitant le pore du canal et une partie C-terminale cytoplasmique relativement petite. Ce récepteur, en fait formé d’un tétramère [Yoshida et al., 1997], est sans doute exprimé de façon ubiquitaire dans tous les types cellulaires chez l’homme [Taylor et al., 1999]. Il est majoritairement localisé dans la membrane du RE (ou RS) mais aussi, de façon minoritaire, dans l’enveloppe nucléaire, le golgi et la membrane plasmique [Bush et al., 1994; Dellis et al., 2006; Ferreri-Jacobia et al., 2005; Pozzan et al., 1994; Tanimura et al., 2000]. Les isoformes varient essentiellement par leur affinité particulière pour l’IP\textsubscript{3}, leur activation/inactivation par le Ca2+ [Iwai et al., 2005], ce qui se traduit par des propriétés biophysiques différentes. Suite à la fixation d’un agoniste, le R-IP\textsubscript{3} s’ouvre et permet ainsi au Ca2+ de diffuser en suivant son gradient électrochimique de la lumière du RE vers le cytoplasme. Pour des valeurs proches de la [Ca2+]\textsubscript{cyt}, entre 10 et 300 nM, le Ca2+ est un coactivateur alors qu’au-delà, il devient un inhibiteur. La diversité d’expression est impressionnante mais les diverses implications fonctionnelles qui en résultent sont encore peu explorées et il est supposé que la cellule nécessite des R-IP\textsubscript{3} particuliers pour réguler des fonctions spécifiques. Les cellules de Purkinje expriment majoritairement l’isoforme 1, les cardiomyocytes l’isoforme 2 et les cellules sécrétrices d’insuline plutôt l’isoforme 3 [Lipp et al., 2000; Taylor et al., 1999].

De surcroît, les R-IP\textsubscript{3} jouent le rôle de protéines d’échafaudage pour différentes protéines telles que Bcl-2 [Chen et al., 2004c; Oakes et al., 2005; Rong et al., 2008b], Bcl-xL [White et al., 2005] ou encore le cytochrome C lors de l’apoptose [Boehning et al., 2003]. Des travaux biochimiques et fonctionnels ont également mis en évidence un couplage étroit entre certains TRP et les R-IP\textsubscript{3} [Tang et al., 2001], parfois au sein d’un large complexe protéique [Lockwich et al., 2000; Yuan et al., 2003]. Il a effectivement été montré, dans les plaquettes sanguines humaines, que l’isoforme 2 du R-IP\textsubscript{3} faisait partie d’un complexe multi-protéique comprenant des canaux TRP et les pompes SERCA [Redondo et al., 2008]. Enfin, une étude menée dans les cellules gliales a montré que l’activité des canaux potassiques BK était régulée par les R-IP\textsubscript{3} au sein de domaines spécialisés de la membrane plasmique appelés « rafts » lipidiques [Weaver et al., 2007]. La découverte de ces nombreuses protéines
partenaires suggère que les R-IP_3 se trouvent au cœur d’un complexe de signalisation important.

Peu de données concernent les R-IP_3 dans les cellules prostatiques mais il a été montré que les isoformes 1 et 3 participent à un couplage conformationnel avec des canaux TRP dans les cellules LNCaP [Vanden Abeele et al., 2004].

B.1.b) RyR

Ces récepteurs-canaux sont appelés ainsi en raison de leur haute affinité pour la ryanodine, une substance dérivée d’une plante qui fut initialement utilisée comme insecticide. Malheureusement, cette substance s’est révélée toxique pour l’homme et les animaux, provoquant une paralysie des muscles squelettiques et cardiaques.

Chez l’homme, 3 gènes différents codent d’énormes protéines d’environ 600 kDa : RyR1-3, (pour revue, [Rossi et al., 2002]). Il existe bien entendu de plus grands récepteurs et de plus grandes protéines mais les RyR constituent les plus grands canaux ioniques connus à ce jour. Leur structure est inégalement divisée en une grande partie cytoplasmique, contenant des sites de fixation de haute et de faible affinité pour le Ca^{2+} [Meissner et al., 1997], représentant 80% de la protéine et une partie transmembranaire [Grunwald et al., 1995]. La liaison du Ca^{2+} sur le site de haute affinité ouvre le canal alors que la liaison sur ceux de faible affinité le ferme, il est donc ouvert pour de faibles concentrations calciques. Les RyR sont formés d’un tétramère visible en microscopie électronique [Serysheva et al., 2005] et un ensemble de données relate leur expression dans divers types de cellules excitable telles que les neurones [Giannini et al., 1995; Hakamata et al., 1992], les cellules neuroendocrines [Clementi et al., 1996; Islam et al., 1992] et les cellules musculaires lisses [Giannini et al., 1995; Hakamata et al., 1992]. Leur distribution dans l’organisme est presque tissus-spicifique : RyR1 est particulièrement exprimée dans le muscle squelettique, RyR2 dans le muscle cardiaque alors que RyR3 présente une distribution plus hétérogène mais prépondérante dans le cerveau (pour revue, [Petrovic et al., 2008]).

Les RyR ne doivent pas être considérés comme des structures isolées car, comme les R-IP_3, ils sont connectés à de nombreuses protéines [Zhang et al., 1997]. Les principales interactions se font avec les sous-unités des canaux calciques voltage-dépendants de type L sensibles aux dihydropyridines (DHP) (décrits dans la partie B.2.a) participant au mécanisme d’excitation-contraction. En raison de leurs différences structurales, les isoformes possèdent des mécanismes de couplage excitation-contraction différents. Dans le muscle squelettique, RyR1 est activée directement, en réponse à la dépolarisation de la membrane plasmique, par
un mécanisme de couplage conformationnel avec la sous-unité α_{1S} qui joue le rôle de senseur de voltage [Bannister et al., 2008; Leong et al., 1998; Lu et al., 1994; Nakai et al., 1997]. Par contre, dans le muscle cardiaque, RyR2 est activée par l’entrée de Ca^{2+} via la sous-unité α_{1C} lors du potentiel d’action [Goonasekera et al., 2005; Sun et al., 1995]. Concernant RyR3, une étude a montré sa participation à un mécanisme autre que le couplage excitation-contraction, la prolifération des lymphocytes T humains [Hakamata et al., 1994]. En outre, plusieurs études ont mis en évidence un couplage avec des TRP, qui peuvent interagir physiquement au niveau d’une région située dans la partie cytoplasmique du récepteur [Kiselyov et al., 2000; Lee et al., 2006a].

Notre laboratoire a montré que les cellules LNCaP expriment l’ARN messager des isoformes RyR1 et 2 [Mariot et al., 2000]. Ces canaux, une fois activés par des agonistes tels que la cafféine ou le 4-chloro-m-crésol, interviennent dans l’apoptose en contrôlant probablement le taux de Ca^{2+} dans le cytosol ou dans le RE. Par ailleurs, un travail effectué sur les cellules androgéno-indépendantes DU-145 a révélé que la GnRH induisait une augmentation de la $[\text{Ca}^{2+}]_{\text{cyt}}$ due à la libération de Ca^{2+} contenu dans le RE et ce exclusivement par l’intermédiaire des RyR [Maiti et al., 2005].

B.2) CANAUX CALCIQUES DE LA MEMBRANE PLASMIQUE

Dans les conditions normales, les canaux calciques de la membrane plasmatique permettent à la cellule de puiser dans la réserve de Ca^{2+} extracellulaire. Ils sont essentiellement classés à partir de données électrophysiologiques sur des principes biophysiques et pharmacologiques. L’ouverture du canal peut se faire suite à la variation du potentiel membranaire, à la liaison d’un ligand ou encore à une stimulation mécanique ou thermique. Depuis une vingtaine d’années, les progrès de la biologie moléculaire ont permis de cloner, d’exprimer et de caractériser de nombreuses sous-familles de canaux calciques appartenant soit aux canaux calciques non voltage-dépendants, soit aux canaux calciques voltage-dépendants.

B.2.a) canaux calciques non voltage-dépendants

Cette très large catégorie regroupe des canaux activés par des stimuli autre que des variations du potentiel membranaire avec i) les canaux SOC (Store-Operated Channels, activés par la vidange des stocks calciques intracellulaires) et ii) les canaux chimio-dépendants rassemblant les ROC (Receptor-Operated Channels, activés par la liaison d’un ligand) et les SMOC (Second Messenger-Operated Channels, activés par un second messager).
i) canaux SOC

L’Entrée Capacitive de Calcium (ECC) (ou SOCE pour SOC Entry), dont l’existence fut proposée par Putney en 1986, est un mécanisme d’influx calcique observé dans la quasi-totalité des cellules non-excitables et, dans une moindre mesure, dans certaines cellules excitéables [Putney et al., 1986]. Elle permet une entrée massive de Ca$^{2+}$ dans la cellule (jusqu’à quelques µM) suite à la vidange de la réserve calcique contenue dans le RE qui peut être induite par différents mécanismes : l’activation des R-IP$_3$ ou des RyR [Bennett et al., 1998; Putney et al., 1986; Putney et al., 2001], le blocage pharmacologique des SERCA, ou encore la perfusion intracellulaire de chélateurs calciques (BAPTA ou EGTA). Cette vidange a pour conséquence l’activation d’un courant calcique membranaire, mesuré pour la première fois dans les mastocytes [Hoth et al., 1992].

La nature moléculaire des canaux SOC, participant à cette ECC, reste l’objet de vifs débats dans la communauté scientifique. Il a longtemps été suggéré que les canaux SOC soient constitués de canaux TRP (Transient Receptor Potentiel). Le premier gène codant un TRP fut caractérisé chez la drosophile comme un gène impliqué dans la transduction du message visuel (pour revue, [Montell et al., 2002]). Les drosophiles mutantes pour TRP montraient une altération de l’entrée calcique induite par la lumière. Les différents TRP clonés par la suite chez les mammifères et caractérisés par des sélectivités ioniques et des mécanismes d’activation différents, furent répartis en plusieurs sous-familles dont les principales sont les : TRPV (vanilloid), C (canonical), M (melastatin), N (ayant des domaines ankyrine en N-ter) et P (PDK pour Polycystin Kidney Disease) (pour revues, [Birnbaumer et al., 2003; Montell, 2003]). Les principaux enjeux à l’heure actuelle sont de déterminer quel TRP, s’il s’agit bien d’un TRP, est responsable de l’ECC et d’élucider le mécanisme d’activation de cette entrée calcique. Plusieurs hypothèses semblent plausibles mais toutes sont encore incertaines [Barritt, 1998; Putney et al., 1994; Scott et al., 2003; Vanden Abeele et al., 2004; Yao et al., 1999]. Il est probable que les mécanismes d’activation des canaux SOC soient différents d’un type cellulaire à un autre et qu’ils intègrent plusieurs de ces voies de transduction [Xie et al., 2002].

Récemment, de nouveaux candidats ont attiré l’attention des spécialistes de l’ECC. En 2005, la protéine STIM (Stromal Interaction Molecule) a été identifiée et considérée comme le senseur calcique du RE [Liou et al., 2005; Roos et al., 2005]. Cette protéine transmembranaire est principalement localisée dans le RE [Liou et al., 2005] et des études ont montré une réorganisation des protéines STIM sous forme d’agrégats lors de la vidange du...
stock calcique réticulaire [Soboloff et al., 2006; Zhang et al., 2005]. D’autres travaux suggèrent que les protéines STIM soient transloquées à la membrane plasmique pour activer directement les canaux SOC [Soboloff et al., 2006; Zhang et al., 2005]. Une nouvelle protéine, Orai1 (chez la drosophile)/CRAMC1 (homologue chez l’homme), a été proposée en 2006 comme nouveau candidat moléculaire potentiel du canal SOC [Feske et al., 2006; Prakriya et al., 2006; Vig et al., 2006; Yeromin et al., 2006]. Orai1 est une protéine ubiquitaire exprimée au niveau de la membrane plasmique des cellules qui jouerait le rôle de canal ionique. Une surexpression des 2 protéines STIM et Orai, dans les cellules HEK-293, permet d’augmenter l’ECC [Liao et al., 2007] (pour revue, [Potier et al., 2008]).

Dans les cellules cancéreuses prostatiques androgéno-dépendantes, les travaux du laboratoire ont montré que la libération du Ca$^{2+}$ réticulaire entraîne un influx de Ca$^{2+}$ grâce à des canaux SOC formés par TRPC1, C4 et TRPV6 [Vanden Abeele et al., 2004]. Actuellement, des travaux s’intéressent à l’implication de STIM et Orai dans l’ECC dans les cellules épithéliales prostatiques.

\textit{ii) canaux chimio-dépendants (ROC et SMOC)}

Certains canaux calciques et les récepteurs qui les activent forment une seule et même entité moléculaire. La liaison du ligand sur son récepteur-canal induit des changements conformationnels internes qui permettent l’ouverture du canal et par conséquent l’entrée d’ions Ca$^{2+}$. Selon la nature du ligand mis en jeu, sont distingués :

1) les ROC qui sont des canaux activés par un ligand extracellulaire et par conséquent, leur ouverture ne nécessite pas de signalisation intracellulaire. Depuis ces 10 dernières années, certains canaux TRP ont émergé comme étant des ROC potentiels, tels que TRPC3 et C6 dans les cellules musculaires lisses de prostate de rat [Thebault et al., 2005] ou encore TRPC4 et C5 (pour revue, [Plant et al., 2005]).

2) les SMOC qui sont tributaires d’un ligand intracellulaire tels que les différents seconds messagers (IP$_3$, IP$_4$ (inositol-1,3,4,5-tétrakisphosphate), GMP cyclique et Ca$^{2+}$) générés par l’activation d’un récepteur membranaire couplé à une protéine G, recruté lors de l’action d’un agoniste (pour revue, [Clementi et al., 1996]). De nombreux auteurs considèrent que certains TRP, comme TRPC1, C4 et C5 [Schaefer et al., 2000; Strubing et al., 2001], TRPC3 et C6 [Hofmann et al., 1999b] peuvent être activés de cette manière, indépendamment de la dépletion des stocks calciques intracellulaires.
B.2.b) canaux calciques voltage-dépendants : classification et structure

La superfamille des canaux ioniques voltage-dépendants (VOC pour Voltage-Operated Channels), classifiée en fonction des ions qui les traversent, comprend notamment les familles des canaux sodiques, potassiques et calciques. Les canaux calciques voltage-dépendants (VDCC pour Voltage-Dependent Calcium Channels) s’ouvrent suite à des variations locales du potentiel membranaire et les influx calciques qu’ils génèrent régulent des processus intracellulaires comme la contraction, la sécrétion, la neurotransmission et l’expression génique [Luebke et al., 1993; McCobb et al., 1991; Murphy et al., 1991]. Les VDCC sont aussi impliqués dans la régulation de la mort neuronale, la neuritogenèse et la synaptogenèse [Mattson et al., 1993; Spitzer, 1994]. Ils peuvent initier des variations du taux de Ca²⁺ dans toute la cellule car chaque canal conduit, selon le gradient électrochimique, approximativement un million d’ions Ca²⁺ par seconde. Quelques milliers de canaux par cellule peuvent provoquer, en quelques millisecondes, des augmentations très importantes (>10 fois) de la [Ca²⁺]cyt (pour revue, [Clapham, 2007]). Certains des VDCC peuvent s’associer à d’autres protéines telles que les protéines G [Walker et al., 1998], les protéines appartenant à la machinerie de sécrétion (syntaxine 1 par exemple) [Yang et al., 1999] ou encore, comme nous l’avons vu précédemment, les RyR [Bannister et al., 2008; Leong et al., 1998; Lu et al., 1994; Nakai et al., 1997] et ainsi créer des microdomaines ou nanodomaines calciques au sein desquels le Ca²⁺ peut augmenter de manière très importante et très localisée. Cette disposition permettrait l’activation de certains mécanismes dans des compartiments précis de la cellule comme j’ai déjà eu l’occasion de l’évoquer.

Dans les années 1980, la purification du canal calcique voltage-dépendant a montré qu’il forme un complexe associant plusieurs sous-unités : la principale fut nommée α₁ et les 4 autres constituées de β, α₂, δ et γ sont des sous-unités accessoires [Borsotto et al., 1985; Flockerzi et al., 1986; Vaghy et al., 1987]. Jusqu’à maintenant, 10 gènes codant la sous-unité α₁, 4 codant β, 4 codant α₂δ, et 8 codant γ ont été clonés (pour revue, [Hofmann et al., 1999a]) [Burgess et al., 2001; Qin et al., 2002], sans compter les différentes isoformes résultant des produits d’épissage [Arikkath et al., 2003; Bourinet et al., 1999].

Classifications. La toute première classification des VDCC était basée sur les propriétés électrophysiologiques et pharmacologiques des canaux. En effet, certains d’entre eux sont activés par une faible dépolarisation membranaire alors que d’autres le sont par une dépolarisation plus importante [Hagiwara et al., 1975; Linas et al., 1981]. Dès lors, les
VDCC ont été séparés, respectivement, en LVA (Low Voltage-Activated) et en HVA (High Voltage-Activated). Les canaux LVA s’activent pour des potentiels membranaires positifs à -70 mV. En raison de leur faible conductance élémentaire et de leur activité transitoire, ils ont aussi été appelés canaux calciques de type T (pour « tiny » et « transient ») [Armstrong et al., 1985; Carbone et al., 1984a; Carbone et al., 1984b] (pour revue, [Randall et al., 1999]).

Pendant la dépolarisation, le courant présente un décours transitoire rapide en raison d’une constante d’activation rapide et d’une inactivation dépendante uniquement du potentiel (et non du Ca²⁺). Les canaux HVA ont plutôt un seuil d’activation qui se situe à des potentiels de membrane supérieurs à -30 mV. En raison de leur plus grande conductance élémentaire et de leur activité qui ne décroît que lentement au cours de la dépolarisation, les canaux HVA ont d’abord été appelés canaux calciques de type L (pour « large » et « long-lasting ») par opposition aux canaux de type T. Les canaux calciques de type L sont sensibles aux dihydropyridines (DHP), une large classe de drogues qui peuvent avoir un effet inhibiteur (nifédipine, nisoldipine, isradipine) ou activateur (Bay K 8644). Par la suite, des travaux sur des cellules neuronales ont révélé de nouveaux canaux calciques, nommés canaux calciques de type N (pour « neuronal » ou pour « neither », ni L ni T), ayant comme caractéristiques d’être insensibles aux DHP et de posséder des conductances élémentaires intermédiaires, entre celles des canaux L et T [Fox et al., 1987; Nowycky et al., 1985]. Plus tard, il a été montré que les canaux neuronaux de type non-L pouvaient être différenciés selon leur sensibilité à diverses toxines. Les canaux sensibles à l’ω-conotoxine GVIA gardent le nom de canaux de type N alors que ceux sensibles à l’ω-agatoxine IVA ont été appelés canaux de type P/Q (P pour cellules de Purkinje) [Llinas et al., 1989] alors que les canaux résistants à ces toxines furent appelés canaux de type R (pour « resistant ») [Randall et al., 1995; Schneider et al., 1994].

Une seconde classification fut mise en place plus tard sur la base du clonage de chaque type de VDCC. La sous-unité α₁, responsable des principales propriétés électrophysiologiques et pharmacologiques du canal, fut la base de la première classification. Par conséquent, les études ont tenté d’établir un lien entre les sous-unités α₁ nouvellement clonées et les types de canaux précédemment identifiés. Plusieurs sous-unités α₁ représentant des canaux calciques de type L furent identifiées : α₁S à partir du muscle squelettique [Curtis et al., 1984; Tanabe et al., 1987], α₁C à partir du tissu cardiaque ou du muscle lisse [Biel et al., 1990; Mikami et al., 1989]. Les sous-unités α₁D [Seino et al., 1992; Williams et al., 1992b] et α₁F [Bech-Hansen et al., 1998; Strom et al., 1998] furent identifiées plus tard. De plus, 3 sous-unités correspondant
aux 3 canaux calciques de type neuronal furent clonées : α_{1A} pour les canaux de type P/Q [Mori et al., 1991; Starr et al., 1991], α_{1B} pour ceux de type N [Dubel et al., 1992; Williams et al., 1992a] et α_{1E}, initialement caractérisée comme étant responsable d’un courant calcique de type T, fut par la suite rapprochée aux canaux de type R [Niidome et al., 1992; Soong et al., 1993]. Enfin, 3 membres des canaux calciques de type T furent identifiés : α_{1G} [Perez-Reyes, 1998], α_{1H} [Cribbs et al., 1998] et α_{1I} [Lee et al., 1999a].

En 2000, une nouvelle nomenclature, sous la forme $Ca_{V}x.y$, a été établie pour faciliter la dénomination des différents canaux calciques voltage-dépendants [Ertel et al., 2000]. Dans celle-ci, Ca_{V} fait référence aux canaux calciques voltage-dépendants, x est un nombre désignant la sous-famille et y est un nombre désignant le membre au sein de la sous-famille (voir tableau figure 7).

Canaux HVA	nomenclature selon 1	nomenclature selon 2	nomenclature selon 3	nom du gène
Canaux HVA	α_{1S} $Ca_{V}1.1$	α_{1C} $Ca_{V}1.2$	α_{1D} $Ca_{V}1.3$	CACNA1S
Canaux HVA	α_{1F} $Ca_{V}1.4$	α_{1A} $Ca_{V}2.1$	α_{1B} $Ca_{V}2.2$	CACNA1A
Canaux HVA	α_{1E} $Ca_{V}2.3$	α_{1G} $Ca_{V}3.1$	α_{1H} $Ca_{V}3.2$	CACNA1G
Canaux HVA	α_{1I} $Ca_{V}3.3$	α_{1I} $Ca_{V}3.3$	α_{1I} $Ca_{V}3.3$	CACNA1H

Structure. Même si le mode de régulation de l’activité des canaux HVA dans des systèmes d’expression ou grâce aux souris mutantes commence à être perçu, leur composition dans les divers tissus est en revanche assez mal connue. Les canaux HVA sont des complexes hétéro-oligomériques constitués d’au moins 5 protéines. La sous-unité α_1 est la sous-unité principale, localisée dans la membrane plasmique de la cellule, qui forme le pore du canal [Tanabe et al., 1987]. β, α_2, δ et γ sont les différentes sous-unités accessoires [Ellis et al., 1988; Jay et al., 1990; Ruth et al., 1989] et toutes ne sont pas nécessairement présentes dans
chaque complexe formant un canal fonctionnel. Une représentation schématique d’un CaV a été établie à partir du canal sensible aux DHP (figure 8).

Les sous-unités α₁ des CaV sont de grosses protéines hydrophobes (212-273 kDa) possédant 4 domaines transmembranaires homologues (I-IV), reliés entre eux par 3 boucles intracellulaires. Chaque domaine comprend 6 segments transmembranaires (S1-S6) avec une boucle P délimitant la « bouche » interne du canal, autrement dit le pore, entre les segments S5 et S6 de chaque domaine. La région du pore contient un filtre de sélectivité assurant une haute spécificité pour les ions Ca²⁺ (pour revue, [Varadi et al., 1999]). Le segment S4 contient 5 à 6 résidus chargés positivement, arginines ou lysines, alternés avec des acides aminés hydrophobes qui forment ainsi le site de sensibilité au voltage contrôlant l’activité de ces CaV [Garcia et al., 1997; Yamaguchi et al., 1999]. De plus, la séquence contient des sites d’interaction avec les sous-unités accessoires, des sites de liaison pour divers activateurs ou inhibiteurs, ainsi que plusieurs sites putatifs de phosphorylation. Les propriétés principales de canal perméant au Ca²⁺, de sensibilité au voltage, d’activation/inactivation et de dépendance pharmacologique (notamment aux DHP, benzodiazépines et phénylalkylamines), sont donc en grande partie dépendantes de cette sous-unité α₁ (pour revue, [Shorofsky et al., 2001]).

Figure 8 : représentation schématique de la structure du canal calcique de type HVA qui se compose de la sous-unité pore α₁ et des différentes sous-unités accessoires β, α₂, δ et γ. D’après http://www.procrastin.fr/blog/images/cafe/canaux-calciques.jpg.

Concernant les sous-unités accessoires du canal, seule β (55 kDa) est totalement cytosolique. Elle est coexprimée avec toutes les sous-unités α₁ des canaux HVA, s’y associant grâce à des segments peptidiques particuliers : AID (Alpha Interaction Domain) et BID (Beta
Interaction Domain) respectivement au niveau des sous-unités β et α₁ [Pragnell et al., 1994]. La sous-unité α₂δ est une protéine hautement glycosylée, dont les protéines α₂ (30 kDa) et δ (28 kDa) sont liées par des ponts disulfures, qui résulte d’un clivage post-traductionnel à partir d’un seul gène [De Jongh et al., 1990; Jay et al., 1991]. La sous-unité γ (30 kDa) [Bosse et al., 1990; Jay et al., 1990] comprend 4 hélices transmembranaires et les extrémités N et C-terminales sont intracellulaires. Les différentes sous-unités accessoires peuvent intervenir dans le trafic membranaire et l’adressage correct de la sous-unité α₁ (pour α₂δ-1, β₁-4), augmenter l’amplitude du courant calcique (α₂δ-1-4, β₁-4) [Lacerda et al., 1991], moduler les propriétés d’activation et d’inactivation (α₂δ-1, β₁-4, γ-1-3), ou jouer un rôle inhibiteur sur le canal (γ-1, 2, 6, 7) [Arikkath et al., 2003].

i) canaux calciques voltage-dépendants HVA

Les canaux de type HVA renferment 4 familles qui sont les canaux calciques de type L, N, P/Q et R (voir tableau figure 7). Tous possèdent un double mécanisme d’inactivation (pour revue, [Cens et al., 2006]) qui se traduit par la présence de 2 constantes de temps au niveau du décours de leur courant : une rapide, correspondant à une inactivation Ca²⁺-dépendante (le Ca²⁺ régulant donc sa propre entrée) et une lente, correspondant à une inactivation voltage-dépendante [Ganitkevich et al., 1986; Masaki et al., 1997; Richard et al., 1993].

Les canaux calciques de type L renferment 4 membres connus dont le mieux décrit est le premier cloné à partir du muscle squelettique : CaV1.1 (α₁S) [Curtis et al., 1984; Tanabe et al., 1987]. La purification biochimique de ce canal montre qu’il est composé de 4 sous-unités (5 protéines au total) réparties de façon égale : une sous-unité pore α₁S et 3 sous-unités accessoires, β₁, α₂δ-1 et γ-1 [Curtis et al., 1984; Kang et al., 2001; Sharp et al., 2001] (figure 8) qui peuvent moduler le trafic intracellulaire, l’assemblage et l’incorporation de canaux fonctionnels à la membrane plasminiue [Brice et al., 1997; Chien et al., 1996] (pour revue, [McEnery et al., 1998]) ainsi que les propriétés électrophysiologiques (pour revues, [Jones, 1998; Qin et al., 1998]). La constitution hétéromultimérique des autres canaux de type L, CaV1.2 (α₁C), 1.3 (α₁D) et 1.4 (α₁E), est en revanche moins certaine.

La famille de canaux CaV2.x est également appelée canaux calciques présynaptiques car ils sont fortement exprimés au niveau présynaptique où ils participent à la neurotransmission [Kisilevsky et al., 2008]. Les VDCC de type P/Q, ou CaV2.1 (α₁A), sont codés par un unique gène. Les canaux de type P sont retrouvés dans les cellules de Purkinje.
[Linas et al., 1989] alors que ceux de type Q le sont plutôt dans les cellules granulaires du cervelet [Zhang et al., 1993] (pour revue, [Fox et al., 2008]). Les canaux calciques de type N, ou Cav2.2 (α1B), sont exprimés essentiellement au niveau synaptique où ils sont impliqués dans la libération de neurotransmetteurs et dans la migration neuronale [Komuro et al., 1992] (pour revue, [Fox et al., 2008]). Les VDCC de type R, ou Cav2.3 (α1E), sont les canaux HVA les moins bien caractérisés. Ils ont été prouvés comme induisant un courant de type R [Piedras-Renteria et al., 1998] même si la cinétique diffère des autres HVA et se rapproche plus des LVA. Ces canaux sont exprimés dans les neurones granulaires du cervelet.

Grâce aux mesures de capacité membranaire et ampérométriques, les canaux HVA de type L, N et P/Q sont connus comme des acteurs de la sécrétion (neuro)hormonale dans des modèles sécrétoires très étudiés comme les cellules β du pancréas et les cellules chromaffines de la médullosurrénale [Fox et al., 2008; Marcantoni et al., 2008; Yang et al., 2006]. De plus, les VDCC de type L interviennent dans le couplage excitation-contraction du muscle où ils permettent la libération de Ca²⁺ du RS via les RyR [Meissner et al., 1995].

Des courants calciques HVA ont été mis en évidence dans les cellules neuroendocrines prostatiques de rat fraîchement isolées [Kim et al., 2003]. Par l’utilisation de nifédipine et d’ω-conotoxine GVIA, les auteurs ont conclu à l’expression des canaux calciques de type L et N dans ces cellules. Par ailleurs, le prétraitement par des inhibiteurs des Cav de type L (nifédipine, verapamil et diltiazem) bloque l’augmentation de la [Ca²⁺]cyt provoquée par l’application de DHT dans la lignée cancéreuse prostatique humaine androgénodépendante LNCaP ce qui suppose l’existence de canaux calciques de type L [Sun et al., 2006b]. Néanmoins, les résultats obtenus dans notre laboratoire montrent, par des études d’expression et de fonctionnalité, que les cellules LNCaP n’expriment comme canaux calciques voltage-dépendants fonctionnels que ceux de type T Cav3.2 (α1H) [Mariot et al., 2002].

ii) canaux calciques voltage-dépendants LVA

Historique. L’étude des canaux calciques voltage-dépendants de type T (que je noterai souvent Cav3 dans la suite du manuscrit) a abouti à des découvertes importantes dans de nombreux domaines, en neuroscience et en pharmacologie. Leur existence a été révélée, au milieu des années 1980, lors d’études sur des neurones ganglionnaires de la racine dorsale [Carbone et al., 1984a; Fedulova et al., 1985; Nowycky et al., 1985] et des myocytes cardiaques [Bean, 1985; Nilius et al., 1985]. Ces cellules ont servi de modèles pour caractériser les propriétés biophysiques de ces nouveaux courants calciques qui sont inactivés...
par de fortes dépolarisations membranaires. Différentes études ont établi les propriétés permettant de distinguer les canaux calciques LVA des HVA. Les canaux calciques voltage-dépendants de type T : 1) s’activent et s’inactivent à des voltages inhabituellement négatifs (vers -65 mV) et proches du potentiel de repos des cellules [Carbone et al., 1984a; Carbone et al., 1984b] (pour revue, [Huguenard, 1996]), 2) présentent des cinétiques transitoires avec une inactivation rapide [Nowycky et al., 1985], 3) affichent une déactivation plus lente (10 à 100 fois) que les HVA ce qui donne lieu à des courants de queue après repolarisation [Matteson et al., 1986], 4) sont plus résistants au « rundown » (voir partie III.1 du Matériels et Méthodes) [Carbone et al., 1984a; Hagiwara et al., 1975], 5) possèdent une conductance plus petite (5-10 pS en présence de 10 mM de cation divalent) que celle des HVA (10-30 pS dans les mêmes conditions) et 6) sont moins sensibles aux bloquants classiques des canaux calciques tels que les DHP [Carbone et al., 1984a; Fedulova et al., 1985; Nowycky et al., 1985; Swandulla et al., 1988]. Les courants de type T possèdent une voltage-dépendance distincte dans l’activation et l’inactivation, occasionnant un profil particulier en réponse à des dépolarisations de plus en plus importantes [Randall et al., 1997] (pour revue, [Perez-Reyes, 1998]). En effet, l’enregistrement électrophysiologique des canaux calciques de type T, par la technique de patch-clamp (détailée dans la partie III.1 du Matériels et Méthodes), montre des tracés de courants qui se croisent les uns avec les autres d’où le nom de « criss-crossing » (figure 9A). Il existe une gamme de potentiels de membrane auxquels ces canaux sont activés, même partiellement et auxquels l’inactivation est incomplète. Cette propriété originale permet un influx de Ca$^{2+}$ basal pour une fenêtre de potentiels relativement étroite, même en absence de potentiels d’action. Ainsi, les CaV3 ont-ils été décrits comme responsables d’un courant de fenêtre permettant une entrée de Ca$^{2+}$ dans la cellule pour des potentiels de membrane proches du potentiel de repos [Bijlenga et al., 2000], y compris dans les cellules prostatiques LNCaP où ce potentiel se situe autour de -40/-30 mV [Mariot et al., 2002] (figure 9B). L’existence de ce courant de fenêtre permet donc une entrée de calcium dans la cellule de façon basale même en l’absence d’activité électrique.

Chez l’homme, les gènes CACNA1G, CACNA1H et CACNA1I codant respectivement les sous-unités pores α_{1G}, α_{1H} et α_{1I}, sont localisés respectivement sur les chromosomes 17q22 [Perez-Reyes, 1998], 16p13.3 [Cribbs et al., 1998] et 22q12.3-13.2 [Mittman et al., 1999]. Le gène codant la sous-unité α_{1G}, correspondant au CaV3.1, est le premier à avoir été cloné chez le rat [Perez-Reyes, 1998], la souris [Klugbauer et al., 1999] et chez l’homme à partir de tissus neuronaux [Monteil et al., 2000a]. Le gène codant α_{1H},
correspondant au CaV3.2, a ensuite été cloné à partir du tissu cardiaque humain [Cribbs et al., 1998] avant que celui codant α1I, correspondant au CaV3.3, soit identifié chez le rat [Lee et al., 1999a] puis chez l’homme [Monteil et al., 2000b].

Figure 9 : caractéristiques des courants calciques de type T dans les cellules prostatiques LNCaP différenciées neuroendocrines, d’après [Mariot et al., 2002].

A : profil de « criss-crossing » obtenu lors de l’enregistrement des CaV3. Le potentiel de membrane est dépolarisé pendant 100 msec, à partir de -80 mV jusqu’aux différentes valeurs de potentiel indiquées sur le tracé. **B** : courant de fenêtre (Ifenêtre) théorique calculé en multipliant la conductance (G) d’inactivation normalisée par la conductance d’activation non-normalisée du courant calcique de type T.

Structure. L’analyse des séquences protéiques et de la structure des sous-unités α1 des canaux calciques de type T révèle des similarités avec les sous-unités α1 des canaux HVA : elles sont formées de 4 domaines homologues (I–IV) composés eux-mêmes de 6 segments transmembranaires (S1–S6). Les extrémités N et C-terminales sont localisées à l’intérieur de la cellule et 3 domaines de liaison intracellulaires (I–II, II–III et III–IV) relient les 4 domaines. Commune à tous les CaV, la région S4 contient des acides aminés chargés positivement tous les 3 à 4 résidus qui sont supposés pivoter en réponse à une modification électrique. Ceci initie un changement conformationnel permettant l’ouverture du pore calcique (pour revue, [Jones, 1998]). Le pore des CaV3 est entouré, dans sa partie extracellulaire, par les segments S5 et S6 (« P loop ») de chacun des 4 domaines et dans sa partie intracellulaire, par les segments S6. Le filtre de sélectivité des canaux calciques voltage-dépendants de type T est formé par l’arrangement de 2 glutamates, dans les domaines I et II, suivis de 2 aspartates, dans les domaines II et IV : constituant la séquence EEDD ; séquence différente de celle des canaux HVA comprenant 4 glutamates (EEEE) (pour revue,
Les régions les plus variables, entre les différentes sous-unités α_1 des canaux HVA et LVA, correspondent aux séquences qui lient les segments transmembranaires avec un domaine et notamment les boucles intracellulaires qui relient les domaines [Cribbs et al., 1998; Lee et al., 1999a; Perez-Reyes, 1998]. Ces régions sont intéressantes car de nombreuses molécules intracellulaires peuvent s’y lier afin de moduler l’activité du canal (pour revue, [Catterall, 2000]). Il est à noter que les canaux LVA ne possèdent pas, dans leur boucle intracellulaire I–II, la séquence AID qui permet la liaison de la sous-unité auxiliaire β à la sous-unité α_1 des canaux HVA [Walker et al., 1998]. De plus, l’analyse de la séquence de la boucle II-III n’a pas révélé de site « synprint » (séquence d’interactions avec les protéines du complexe SNARE impliquée dans l’exocytose, voir partie C.1.b pour plus de détail) [Rettig et al., 1996], alors que de tels sites ont été identifiés dans les séquences des sous-unités α_1 de certains canaux de type HVA CaV2.1 et CaV2.2 (pour revue, [Catterall, 2000]).

La comparaison des 3 isoformes recombinantes des CaV3, exprimées stablement dans les HEK-293, indique que chacune possède des caractéristiques propres (cinétique et voltage-dépendance par exemple) [Klockner et al., 1999; Kozlov et al., 1999]. Les isoformes diffèrent dans leur localisation spatiale et temporelle ainsi que dans leurs propriétés moléculaires, biophysiques et biochimiques mais toutes les 3 permettent une entrée transitoire de Ca^{2+} dans divers types cellulaires. Par ailleurs, elles subissent des épissages particuliers (pour revue, [Swayne et al., 2008]) et chaque variant pourrait, en conséquence, avoir une localisation spatiale ou temporelle, une modulation, de même que des propriétés électrophysiologiques particulières, distinctes des autres formes. Les études se sont d’abord focalisées sur les isoformes CaV3.1 et 3.3 [Chemin et al., 2001; Latour et al., 2004; Mittman et al., 1999; Murbartian et al., 2004]. Ensuite, différentes équipes ont cherché s’il pouvait y avoir des épissages alternatifs pouvant générer des transcrits de CaV3.2 [Jagannathan et al., 2002; McRory et al., 2001; Zhong et al., 2006]. L’analyse de l’ARN messager de CaV3.2 dans les cellules testiculaires humaines a révélé 2 produits différents, résultant de la perte de l’exon 26. Cette délétion de 18 pb a également été retrouvée dans le cerveau, supposant que cet épissage puisse avoir lieu dans d’autres tissus. De plus, il a été mis en évidence l’expression d’un variant de CaV3.2, δ25B, retrouvé dans plusieurs lignées cancéreuses de sein, de prostate et de neuroblastome [Gray et al., 2004]. Ce variant comprend un intron non-épissé qui contient un codon stop qui pourrait résulter en une protéine tronquée comme pour CaV1 et CaV2.1 [Arikkath et al., 2002; Malouf et al., 1992].
Il est souvent admis que natifs, les CaV3 ne seraient constitués que de la sous-unité α_1 [Randall et al., 1999]. Tandis que les courants de type N ou L sont inhibés à la suite d’un traitement antisens menant à la destruction de la sous-unité β, les courants induits par les canaux calciques de type T ne sont pas affectés par un tel traitement [Leuranguer et al., 1998]. La surexpression de cette sous-unité accessoire n’influence pas les propriétés électrophysiologiques des CaV3 dans les cellules de neuroblastomes NG108-15 [Wyatt et al., 1998]. Ces données suggèrent que β n’est nécessaire ni pour l’expression ni pour la fonction des CaV3. En revanche, une autre étude montre que la sous-unité β peut moduler l’expression à la membrane des canaux calciques de type T [Dubel et al., 2004]. Ces travaux, et d’autres, ont donc fourni des preuves contradictoires qui suggèrent que la sous-unité β puisse ou non moduler les sous-unités α_1 des CaV3 [Dolphin et al., 1999; Dubel et al., 2004; Lacerda et al., 1994; Wyatt et al., 1998]. Une autre étude montre qu’à la fois β_1 et $\alpha_2\delta$ augmentent la densité du courant calcique portée par les Cav3.1 [Dolphin et al., 1999], sans doute en facilitant l’incorporation de l’expression de la sous-unité pore α_{1G} dans la membrane. Ceci est confirmé par d’autres travaux qui montrent que la sous-unité $\alpha_2\delta$ peut moduler l’activité des sous-unités α_1 des CaV3 ainsi que leur localisation à la membrane plasmique [Dubel et al., 2004; Gao et al., 2000; Klugbauer et al., 2000; Wyatt et al., 1998]. Enfin, certaines isoformes de la sous-unité γ peuvent altérer les propriétés biophysiques de la sous-unité pore α_{1G} [Klugbauer et al., 2000]. Néanmoins, d’autres auteurs montrent que certaines isoformes de cette sous-unité accessoire sont sans effet [Strube, 2008]. Finalement, à la différence d’une expression hétérologue de sous-unité α_1 de HVA qui nécessite une cotransfection avec des sous-unités accessoires pour être fonctionnelle, la transfection seule de la sous-unité pore α_{1G}, α_{1H} ou α_{1I} est suffisante pour obtenir un courant calcique de type T dans les ovocytes de Xénopes [Cribbs et al., 1998; Lee et al., 1999a; Perez-Reyes, 1998]. Cependant, il faut noter que beaucoup de types cellulaires, dont les ovocytes de Xénopes, expriment des sous-unités accessoires de façon endogène qui peuvent être suffisantes pour permettre l’expression fonctionnelle hétérologue de la sous-unité α_1 des canaux LVA [Dolphin et al., 1999]. Cette hypothèse est étayée par l’étude fonctionnelle de la sous-unité α_{11} recombinante qui montre que le canal affiche des propriétés biophysiques très différentes quand elle est exprimée dans les ovocytes ou dans les HEK-293 [Lee et al., 1999a].

Distribution. Chez l’homme, l’ARN messager des CaV3.1 a été détecté dans le cerveau et dans le cœur [Perez-Reyes, 1998], celui des CaV3.2 de manière plus ubiquitaire dans le rein, le foie, le cœur mais aussi dans le cerveau, le poumon, le muscle squelettique et
le pancréas [Cribbs et al., 1998; Williams et al., 1999]. Quant à l’ARN messager des CaV3.3, il est majoritairement exprimé dans le cerveau mais aussi dans les reins, le thymus et le foie [Lee et al., 1999a].

Rôles. Des rôles physiologiques ont été proposés dans les tissus périphériques et neuronaux. En effet, au niveau du tissu neuronal, les canaux calciques de type T sont supposés participer à l’activité « pacemaker » et aux oscillations du potentiel membranaire (pour revue, [Huguenard, 1996]. D’autres études ont démontré qu’ils sont responsables de la génération des potentiels à bas seuils (LTS pour Low Threshold Spikes) [Coulter et al., 1989; Hernandez-Cruz et al., 1989; Suzuki et al., 1989]. Il a été prouvé récemment que l’expression des CaV3.3 et 3.1 permet, grâce à l’entrée de Ca$^{2+}$ via le courant de fenêtre, une dépolarisation de la membrane plasmique capable de déclencher des oscillations du potentiel de membrane [Chevalier et al., 2006; Chevalier et al., 2008]. Au niveau des tissus périphériques, les CaV3 sont impliqués dans la stimulation cardiaque [Hagiwara et al., 1988], la contraction du muscle lisse [Akaike et al., 1989], la sécrétion hormonale de la glande surrénale [Cohen et al., 1988; Enyeart et al., 1993] et la fécondation [Arnoult et al., 1996]. Dans le cœur, les CaV3 sont fortement exprimés dans le sinus atrial, le tissu nodal atrio-ventriculaire et les cellules de Purkinje [Shorofsky et al., 2001]. En revanche, ils sont presque absents des cellules atriales et ventriculaires adultes. Cette distribution est en adéquation avec leur rôle putatif de promoteur de l’influx « pacemaker » où ils auraient un rôle dans la génération du potentiel d’action [Hagiwara et al., 1988]. Ils participent aussi au mécanisme de CICR dans le cœur en développement [Kitchens et al., 2003].

Pharmacologie. La pharmacologie des CaV3 est assez peu développée mais quelques drogues et toxines les affectent : l’amiloride et son dérivé le 3,4-dichlorobenzamil [Suarez-Kurtz et al., 1988], le vérapamil [Freeze et al., 2006], la kurtoxine [Chuang et al., 1998] et la flunarizine (Sibelium™) qui fut initialement décrite comme un bloquant des canaux calciques de type T [Tytgat et al., 1988; Wang et al., 1990]. Il a ensuite été montré que la flunarizine touchait d’autres cibles dont les canaux sodiques [Pauwels et al., 1991]. Cliniquement, cette molécule a été largement utilisée pour traiter vertiges [Olesen, 1988], migraines [Spierings, 1988], épilepsies [Greenberg et al., 1987] et acouphènes [Murai et al., 1992]. Au début des années 90, le mibebradil (ou Posicor™, initialement commercialisé comme antihypertensif) a été découvert et il montrait une sélectivité plus marquée pour les canaux de type T par rapport à ceux de type L. C’est l’une des premières molécules affectant les CaV3 à des concentrations inférieures à 1µM [Clozel et al., 1997]. Malheureusement elle interagit avec d’autres canaux ioniques comme certains canaux chlorures ou potassiques [Liu et al., 1999], mais aussi avec
le cytochrome P450 [Welker et al., 1998]. De ce fait, et en raison d’interaction avec d’autres drogues anti-hypertensives, le mibefradil a été retiré du marché. En plus de ces antagonistes, la sensibilité des canaux calciques de type T à certains cations divalents peut servir à les différencier : CaV3.2 est bloqué par le nickel (Ni²⁺) avec un IC₅₀ d’environ 5 µM, alors que pour les 2 autres isoformes il est d’environ 150 µM [Lee et al., 1999b; Monteil et al., 2000a] (pour revue, [Huguenard, 1996]).

C. ROLE DU CALCIUM DANS LA PHYSIOLOGIE CELLULAIRE : IMPLICATION DES CANAUX CALCIQUES DE TYPE T

Il est désormais bien établi que le Ca²⁺ est un second messager universel et un facteur clé de la signalisation intracellulaire. Afin d’illustrer son rôle central dans la physiologie cellulaire et bien qu’il soit impliqué dans le contrôle de nombreuses fonctions spécifiques telles que la contraction musculaire, la fécondation ou encore la différenciation cellulaire, je me limiterai à préciser son intervention dans le couplage stimulation-sécrétion, dans la régulation génique ainsi que dans les phénomènes liés à la croissance cellulaire.

C.1) LE COUPLAGE STIMULATION-SECRETION

C.1.a) généralités et sécrétion/exocytose régulée calcium-dépendante

La sécrétion exocytique, correspondant à l’export dans le milieu extracellulaire de protéines ou de substances biologiques synthétisées par la cellule et contenues dans des vésicules ou granules de sécrétion, peut s’effectuer selon 2 voies. La première voie, constitutive, est continue et commune à toutes les cellules de l’organisme permettant, par exemple, le renouvellement des protéines membranaires nouvellement synthétisées ou la libération des anticorps par les lymphocytes (pour revues, [Burgess et al., 1987; Kelly, 1985]). Elle possède des mécanismes de signalisation communs, impliquant notamment les protéines SNARE (Soluble NSF (N-ethyl-maleimide-Sensitive Factor) Attachment protein Receptor), avec la seconde voie de sécrétion qui est dite régulée [Bennett et al., 1993]. Cette seconde voie de sécrétion permet à certaines cellules différenciées de sécréter, à la demande, suite à un stimulus extracellulaire [Burgoyne et al., 2003]. Elle est caractéristique des cellules exocrines (enzymes digestives) (pour revue, [Thevenod, 2002]), neuronales (vésicules claires pour la transmission synaptique) (pour revue, [Wojcik et al., 2007]) et endocrines (libération hormonale par des vésicules à cœur dense) (pour revue, [Lang, 1999]), qui déversent le
contenu de leurs vésicules ou granules de sécrétion selon certaines exigences temporelles et spatiales (les constantes de temps variant selon le type de vésicule) [Kasai, 1999].

L’exemple type de la sécrétion régulée est la libération de neurotransmetteurs au niveau des synapses neuronales. Il s’agit probablement de la fusion membranaire la plus rapide, la plus finement régulée et la plus précise au sein des cellules de mammifères (pour revue, [Wojcik et al., 2007]). La transduction du stimulus électrique jusqu’à la fusion de la vésicule synaptique avec la membrane plasmique, ou exocytose, nécessite moins d’une milliseconde [Borst et al., 1996; Sabatini et al., 1996]. Dans ce cas, la sécrétion est dépendante de la [Ca²⁺]cyt [Schneggenburger et al., 2005], régulée par de multiples processus cellulaires et spatialement limitée à des sites de libération appelés zones actives [Rosenmund et al., 2003]. Conceptuellement, le processus de libération du contenu vésiculaire au niveau de la zone active synaptique peut être divisé en 4 étapes : a) l’ancrage (« docking ») au cours duquel vont se créer des interactions moléculaires entre les vésicules les plus proches de la membrane plasmique, qui sont les plus facilement mobilisables lors de la stimulation [Tsuboi, 2008], b) l’amorçage (« priming ») pendant lequel ces vésicules subiront des modifications biochimiques les rendant compétentes [Klenchin et al., 2000], c) l’arrivée du signal calcique qui doit être détecté et transmis à la machinerie de sécrétion et enfin d) la réaction de fusion ou exocytose, dernière étape qui procède par fusion lipidique membranaire, autrement dit par un accolement des membranes plasmatique et vésiculaire [Rosenmund et al., 2003]. Il faut savoir que les membranes ne fusionnent pas spontanément entre elles car il existe une énergie répulsive importante entre 2 membranes lipidiques séparées par une très faible distance dans un environnement aqueux (pour revue, [Jahn et al., 1999]). Cette force doit être contrecarrée pour aboutir à un état de transition menant à la fusion des membranes permettant ainsi aux cellules de conserver leur intégrité membranaire, indispensable à leur survie, même lorsqu’elles doivent déverser leur contenu vésiculaire dans le milieu environnant. Pour y parvenir, les membranes biologiques utilisent des protéines d’échafaudage spécialisées telles que les SNARE dont les mieux caractérisées sont : les synaptobrévines ou VAMP (Vesicle Associated Membrane Proteins) de la membrane vésiculaire (nommées v-SNARE, v pour « vesicle ») tandis que les syntaxine 1 et SNAP-25 sont insérées dans la membrane plasmique (appelées t-SNARE, t pour « target ») [Atlas et al., 2001] (pour revues, [Jahn et al., 1999; Martens et al., 2008]). Dans les synapses, les protéines du complexe fusionnel SNARE sont associées avec des canaux calciques voltage-dépendants, notamment de type N et P/Q, qui permettent, via une entrée de Ca²⁺, la libération du neurotransmetteur. Ce couplage entre Caᵥ et protéines SNARE, qualifié de nanodomaine s’il ne fait intervenir qu’un seul canal calcique
ou de microdomaine si plusieurs canaux calciques sont impliqués, permet une stimulation extrêmement rapide de l’exocytose [Augustine, 2001; Bucurenciu et al., 2008]. Un des enjeux majeurs de ces dernières années fut de déterminer les protéines Ca²⁺-dépendantes qui pourraient être les Ca²⁺-senseurs responsables de ce mécanisme. Actuellement, le plus probable est la synaptotagmine, une protéine intégrée à la membrane vésiculaire, qui possède des domaines de liaison à la fois vis-à-vis du Ca²⁺ et des phospholipides, afin d’interagir avec les membranes de manière Ca²⁺-dépendante [Augustine, 2001; Brose et al., 1992; Jahn et al., 2003] (pour revue, [Chapman, 2008]). Des mutations touchant la synaptotagmine-1 réduisent la libération de neurotransmetteur parallèlement à une diminution de sa liaison Ca²⁺-dépendante aux lipides membranaires [Fernandez-Chacon et al., 2001].

La libération du contenu des vésicules à cœur dense des cellules neuroendocrines affiche une Ca²⁺-dépendance similaire à celle retrouvée dans les synapses. Néanmoins, l’organisation des canaux et des vésicules y est différente (pour revue, [Mansvelder et al., 2000]). Dans les cellules NE, les canaux calciques impliqués dans le couplage stimulation-sécrétion ne sont pas nécessairement associés physiquement au complexe moléculaire SNARE comme le montrent les caractéristiques biophysiques de cette libération (sécrétion lente, délai > 10 msec, et impact des chélateurs calciques supposant une distance canaux/vésicules de 100 à 300 nm) [Chow et al., 1994]. Toutefois, les canaux calciques sont parfois concentrés et colocalisés avec des t-SNARE dans des domaines similaires, sur le plan fonctionnel, à la zone active de la synapse (appelés «points chauds de sécrétion»). Effectivement, il a été mis en évidence, dans les cellules chromaffines bovines, une colocalisation étroite des syntaxine 1 et SNAP-25 avec les Caᵥ de type L, N et P/Q au sein de microdomaines [Lopez et al., 2007].

Comme je l’ai mentionné au début de ce manuscrit, la prostate sécrète différents produits (PAP et PSA notamment) [Arver et al., 1982; Elzanaty et al., 2002; Mann, 1963]. De plus, les cellules NE prostatiques sont supposées sécréter de nombreux neuropeptides (bombésine, PTHrP ou 5-HT par exemple) qui réguleraient la croissance, l’invasivité ou encore l’angiogenèse liés au cancer de la prostate [Hansson et al., 2001; Jongsma et al., 2000]. Certains des produits de sécrétion des cellules NE (chromogranine A et VIP en tête de liste) peuvent d’ailleurs être dosés dans le fluide séminal [Stridsberg et al., 1996]. La première mesure directe du processus d’exocytose, provoquée par une augmentation de la [Ca²⁺]ᵽᵦ, dans les cellules NE prostatiques, fut réalisée chez le rat grâce à la technique ampérométrique et à la mesure de la capacité cellulaire [Kim et al., 2004]. Les mécanismes de régulation ainsi que
les acteurs impliqués dans la sécrétion des cellules prostatiques ne sont pas connus mais il s’avère important de les étudier car ils sont très sûrement liés à la cancérisation de la prostate.

C.1.b) sécrétion/exocytose et canaux calciques de type T

L’expression, la distribution spatiale ainsi que les rôles spécifiques des différents canaux calciques dans le couplage stimulation-sécrétion sont très étudiés. La plupart des résultats, dont certains sont évoqués ci-dessus, montrent le rôle des canaux de type HVA (L, N, P/Q et R) dans le contrôle de l’exocytose comme par exemple dans la libération d’insuline par les cellules β-pancrétiques [Taylor et al., 2005; Trus et al., 2007] ou dans la libération de catécholamines par les cellules chromaffines de la médullosurrénale [Lukyanetz et al., 1999]. Ces travaux suggèrent un couplage entre des sous-unités spécifiques des CaV et l’appareil de sécrétion.

Jusqu’à aujourd’hui, seules quelques données suggèrent l’implication des canaux calciques de type T dans le processus de sécrétion. Ils ont par exemple été décrits comme étant des acteurs importants dans le contrôle de la libération d’insuline par les cellules β INS-1 [Bhattacharjee et al., 1997], dans l’exocytose rapide des cellules mélanotropes [Mansvelder et al., 2002], des cellules bipolaires de la rétine [Pan et al., 2001] ou des lignées cellulaires de phéochromocytomes de souris [Harkins et al., 2003]. Une étude sur les cellules chromaffines de rats adultes a apporté de nouvelles informations étayant l’hypothèse selon laquelle les CaV3 seraient impliqués dans le contrôle de l’exocytose rapide pour des potentiels proches du potentiel de repos de ces cellules. En effet, les CaV3.2 contrôlent l’exocytose avec la même efficacité que les canaux de type L qui sont majoritairement exprimés dans ces cellules [Carabelli et al., 2007a; Giancippoli et al., 2006] (pour revue, [Marcantoni et al., 2008]). L’ensemble de ces résultats est en contraste avec ce qui a été rapporté dans les cellules chromaffines de rats embryonnaires où les CaV3 ne participeraient pas à la sécrétion [Bournaud et al., 2001]. Cette différence pourrait être due au manque, dans les cellules immatures, de certains facteurs associés à la sécrétion. A ce propos, il est à noter qu’une région de la sous-unité pore des canaux calciques de type N et P/Q, appelée « synprint » (synaptic protein interaction), permet leur couplage avec les protéines SNARE (pour revue, [Catterall, 2000]). Cette région est absente des sous-unités des CaV3 [Cribbs et al., 1998] mais ce manque ne peut expliquer leur non-couplage avec le complexe fusionnel car les canaux de type L, ne possédant pas non plus de « synprint », peuvent néanmoins être couplés à la sécrétion [Baldelli et al., 2004; Kim et al., 1995]. Dans les myocytes cardiaques, les canaux calciques de type L jouent un rôle central dans le couplage stimulation-contraction alors que
les CaV3 ont un rôle qui reste encore mal perçu, mais il est souvent proposé qu’ils soient impliqués dans l’activité « pacemaker » au niveau du nœud sinoatrial [Hagiwara et al., 1988]. Le tissu cardiaque est connu pour être la principale source de libération de l’ANF (Atrial Natriuretic Factor), un régulateur important dans l’homéostasie du sel et de l’eau ainsi que dans le maintien de la pression sanguine. Des travaux montrent que la sécrétion de ce facteur est sensible aux DHP, confirmant que les canaux de type L participent à cette libération, mais elle serait plus sensible encore au mibefradil, notamment pendant une faible dépolarisation activant préférentiellement les CaV3 [Leuranguer et al., 2000]. Cette étude indique donc la contribution des CaV3 dans la libération d’ANF. Des travaux récents se sont par ailleurs intéressés à l’implication potentielle des canaux calciques de type T dans l’exocytose des cellules endothéliales microvasculaires du poumon [Zhou et al., 2007]. Les auteurs montrent qu’une entrée de Ca\(^{2+}\) via CaV3.1 jouerait un rôle crucial dans le déclenchement de l’exocytose du facteur de Von Willebrand. Ce résultat donne une importance physiologique aux canaux calciques de type T dans les cellules non-excitables. Il s’avère d’autre part que différents antagonistes des CaV3 inhibent significativement la libération du neuropeptide CGRP (Calcitonin Gene-Related Peptide) par les neurones peptidergiques en réponse à une stimulation chimique ou électrique [Spitzer et al., 2008]. En outre, il a été montré que la libération de l’hormone de croissance, par les cellules somatotropes de rat, est sous l’influence des CaV3 [Chen et al., 1990a; Chen et al., 1990b]. En effet, la somatostatine, connue pour inhiber la sécrétion de cette hormone, diminue les courants calciques de type T ce qui contribuerait à la diminution de la [Ca\(^{2+}\)]\(_{\text{cyt}}\) ayant pour conséquence une sécrétion moindre. Une dernière étude propose que les CaV3 favorisent la sécrétion de facteurs autcrines qui induiraient la différenciation morphologique des cellules de neuroblastomes NG108-15 en cellules neuronales [Chemin et al., 2004].

L’exocytose Ca\(^{2+}\)-dépendante est le mécanisme moléculaire déclenchant la libération neurohormonale mais également la réaction acrosomique déclenchée par l’adhésion du spermatozoïde à une glycoprotéine particulière de la zone pellucide de l’ovule. Des études ont montré que la signalisation calcique responsable du mécanisme exocytique de fusion acrosomique des spermatozoïdes implique l’activation et la régulation des canaux calciques voltage-dépendants de type T [Arnoult et al., 1996]. Un récent travail a indiqué que la réaction acrosomique est provoquée par une cascade de signalisation impliquant au moins 3 types différents de canaux calciques. L’étape initiale de cette cascade correspondant à l’activation des canaux calciques de type T [Stamboulian et al., 2004]. Par l’utilisation de souris déficientes en CaV3.1 ou 3.2, il a été mis en évidence le rôle important de l’isoforme
CaV3.2, sans exclure le rôle d’autres canaux tels que CaV3.3 ou les canaux de type HVA, dans le processus de fécondation [Escoffier et al., 2007; Stamboulian et al., 2004].

Il me reste à préciser le rôle des canaux calciques de type T dans les mécanismes de sécrétion non-exocytique. L’aldostérone, synthétisée dans la zone glomérulaire des glandes surrenales, est sécrétée de façon Ca²⁺-dépendante en réponse à divers stimuli. Les cellules glomérulaires bovines ou humaines expriment les canaux calciques de type L et T [Cohen et al., 1988; Schrier et al., 2001]. De récentes études montrent que les CaV3 seraient en grande partie responsables de la production d’aldostérone, comme l’isoforme CaV3.2 dans la lignée humaine adrénergocorticale NCI-H295R [Akizuki et al., 2008; Rossier et al., 1996]. Un travail in vitro a mis en évidence que l’éfonidipine, un inhibiteur ayant la même affinité envers les canaux de type L ou T, supprime la libération d’aldostérone par les cellules glomérulaires humaines [Imagawa et al., 2006]. Des travaux similaires menés in vivo suggèrent que les CaV3 jouent un rôle essentiel dans la libération plasmatique d’aldostérone chez l’homme [Okayama et al., 2006]. Ces résultats concordent avec des études précédentes indiquant que d’autres antagonistes des CaV3, le mibebradil et la tétrandrine, suprime la sécrétion d’aldostérone au niveau des cellules glomérulaires bovines [Rossier et al., 1998].

Une étude menée au laboratoire a décrit la surexpression des CaV3.2 lors de la différenciation neuroendocrine des cellules LNCaP [Mariot et al., 2002]. En raison de l’activité transitoire de ces canaux et sachant que les cellules NE se retrouvent souvent au sein de foyers de cellules en prolifération [Bonkhoff et al., 1991], il a été proposé que les CaV3.2 puissent participer, dans le tissu prostatique humain, à la sécrétion régulée Ca²⁺-dépendante de neuropeptides à activité mitogénique [Mariot et al., 2002].

C.2) Ca²⁺, REGULATION GENIQUE, PROLIFERATION ET APOPTOSE

Il est connu depuis de nombreuses années, qu’une augmentation du taux de Ca²⁺ cytosolique, par des stimuli calciques tels que des ionophores, est capable de stimuler la synthèse protéique via une augmentation de la production d’ARN messager [Wu et al., 1981]. Par ailleurs, des travaux ont montré que les cellules tumorales peuvent proliférer de manière optimale en présence d’un milieu extracellulaire plus pauvre en Ca²⁺ que celui nécessaire à la croissance des cellules normales [Boynton et al., 1977]. De plus, des stimuli calciques sont capables d’augmenter la prolifération cellulaire [Jensen et al., 1977] ou l’apoptose [Schanne et al., 1979].
C.2.a) Ca²⁺ et expression génique

La transcription génique étend l’impact de la signalisation calcique à des changements sur long terme de la vie de la cellule. Le Ca²⁺ permet une régulation de l’expression des gènes, le plus souvent, par l’intermédiaire de protéines senseurs de Ca²⁺ présentes dans le cytoplasme. La CaM, qui est une des principales « Ca²⁺ Binding Protein » (CBP), est capable, suite à son activation par une augmentation de la [Ca²⁺]cyt, de stimuler différentes kinases telles que la CaMK ainsi que de nombreuses autres cibles (pour revue, [Bhattacharya et al., 2004]). Ces enzymes peuvent à leur tour phosphoryler des facteurs de transcription nucléaires comme CREB (cAMP-Response Element Binding) qui, en se fixant sur des séquences spécifiques (CRE pour CREB Response Element), induit une augmentation de la transcription de ses gènes cibles par la stabilisation de l’ARN polymérase II (pour revue, [West et al., 2001]). La signature calcique activant cette voie définit le niveau de transcription des gènes cibles avec une extrême finesse [van Haasteren et al., 1999]. Une autre voie médiee par la CaM est celle de la calcineurine, une phosphatase Ca²⁺-dépendante qui déphosphoryle les facteurs de transcription cytoplasmiques, NFAT (Nuclear Factor of Activated T-cell) et NFκB (Nuclear Factor Kappa B), permettant leur translocation nucléaire [Shibasaki et al., 1996; Timmerman et al., 1996]. Ces facteurs participent alors à l’augmentation du taux de transcription des gènes cibles dont certains codent des protéines participant au cycle cellulaire [Crabtree, 2001]. Dès que la [Ca²⁺]cyt retrouve un niveau faible de repos, les facteurs de transcription sont rephosphorylés par des kinases nucléaires pour être renvoyés dans le cytosol, interrompant ainsi la transcription des gènes cibles [Berridge et al., 2000]. La signalisation calcique doit donc être très précise pour coordonner l’ensemble de ces événements, cependant, toute la complexité du système vient de la nature oscillatoire des signaux calciques. En effet, une étude a montré que des oscillations de Ca²⁺ étaient plus efficaces pour stimuler l’expression génique qu’une augmentation soutenue [Dolmetsch et al., 1998].

La concentration en Ca²⁺ libre dans le noyau jouerait aussi un rôle important dans les mécanismes d’expression génique et ce, de façon différente de sa concentration cytosolique. Le Ca²⁺ est en effet capable d’agir directement sur un effecteur nucléaire appelé DREAM (Downstream Regulatory Element-Antagonist Modulator), une protéine possédant 4 domaines de liaison au Ca²⁺. Ce répresseur transcriptionnel joue le rôle de gène « silencer » et l’inhibition de la transcription est levée seulement lorsqu’il est activé par le Ca²⁺ [Carrion et al., 1999]. Ainsi, l’élucidation des mécanismes d’homéostasie calcique dans le noyau revêt
une importance considérable. A l’heure actuelle, la régulation du taux de Ca2+ dans le noyau est toujours débattue : certaines études montrent que la concentration calcique nucléaire suit passivement la [Ca2+]_{cyt}, comme d’autres molécules, le Ca2+ diffuse librement par les pores nucléaires [Lipp et al., 1997] ; d’autres études montrent que le noyau possède ses propres moyens de régulation, grâce notamment aux réserves contenues dans l’enveloppe nucléaire et mobilisables entre autre par l’IP\textsubscript{3} [Echevarria et al., 2003; Gerasimenko et al., 1995; Leite et al., 2003].

Au sein de la prostate, la CaM est essentielle au bon fonctionnement de la voie du récepteur aux androgènes (RA). Effectivement, il a été décrit que ces 2 protéines interagissent l’une avec l’autre et que la suppression de cette interaction bloquait la translocation du RA [Cifuentes et al., 2004; Reddy et al., 2006]. D’autres résultats, obtenus sur la lignée LNCaP, ont révélé que l’expression de certains TRP augmente après une incubation prolongée en présence de TG, qui vide le stock calcique réticulaire. Il a été montré que l’augmentation de la transcription peut dépendre de la [Ca2+]_{RE} et impliquer la voie Ca2+/CaM/calcineurine/NFAT [Pigozzi et al., 2006]. Cet effet stimulateur sur l’expression génique est tout de même étonnant sachant que la TG induit un stress réticulaire qui aboutit souvent à une suppression de l’expression protéique (pour revue, [Rutkowski et al., 2004]). De façon intéressante, dans les cellules musculaires lisses, des traitements similaires induisent une augmentation de l’expression des SERCA, suggérant que la vidange prolongée du stock calcique réticulaire déclenche l’expression de protéines qui permettent une entrée de Ca2+ dans la cellule et le remplissage du stock calcique réticulaire [Wu et al., 2001].

C.2.b) Ca2+ et prolifération cellulaire

Le Ca2+ joue un rôle très important au cours du cycle cellulaire chez l’homme, que ce soit lors de la phase G1 ou lors des transitions entre les phases G1/S et G2/M (pour revue, [Roderick et al., 2008]). La nécessité des signaux calciques est illustrée par le fait que les cellules cessent de proliférer quand le milieu extracellulaire passe de 1 mM de Ca2+ à 0,1 mM [Kahl et al., 2003]. Effectivement, des variations de la [Ca2+]_{cyt} ont été observées, dans des fibroblastes de rat, lorsque les cellules passent en G1, de G1 vers S et lors de la mitose [Pande et al., 1996; Santella, 1998]. En réponse à des stimuli mitogéniques tels que des anticorps étrangers, les lymphocytes T génèrent des signaux calciques oscillants, par production d’IP\textsubscript{3} et donc libération de Ca2+ réticulaire, ayant une action directe sur la prolifération cellulaire [Berry et al., 1990; Partiseti et al., 1994]. Des oscillations calciques ont également été observées lors des transitions G1/S (duplication du centrosome) et G2/M (séparation du
centrosome) dans les œufs de Xénopes [Matsumoto et al., 2002]. Il a également été montré que la vidange du Ca$^{2+}$ intracellulaire arrête le cycle dans les interphases entre G0/G1 et S [Clapham, 1995]. Il est ainsi évident que le Ca$^{2+}$ est nécessaire pour la progression du cycle cellulaire à travers la phase G1 et son entrée dans la phase S. Il est aussi clairement établi que le Ca$^{2+}$ augmente la transcription de gènes codant des facteurs de transcription (c-myc, c-fos et c-jun) impliqués dans le contrôle de la synthèse de protéines clés du cycle cellulaire comme la cycline D1 [See et al., 2004]. Le Ca$^{2+}$ intervient également directement sur les cyclines et les CDK (Cyclin Dependent Kinase) pour réguler l’assemblage et l’activation des complexes permettant le passage des différentes étapes du cycle cellulaire. Le contrôle de la prolifération nécessite que l’augmentation de la [Ca$^{2+}$]cyt soit transitoire et répétitive afin de stimuler, de manière optimale et spécifique, l’activité du facteur de transcription NFAT [Lewis, 2003]. Ce contrôle peut s’effectuer via une phosphatase calcium-dépendante, la calcineurine qui régule les facteurs de transcription impliqués dans la transition G1/S, incluant CREB et le NFAT [Gaffer-Gvili et al., 2003; Kingsbury et al., 2007]. Il a été également mis en évidence que l’activation de la CaMK-II par une augmentation de Ca$^{2+}$ aboutit à la phosphorylation de protéines impliquées dans le cycle cellulaire. En effet, cette kinase peut activer une phosphatase p54-cdc25-c qui va à son tour déphosphoryler et activer la kinase p34-cdc2 qui, associée à la cycline B, est nécessaire au passage de G2 vers M [Patel et al., 1999a]. La CaMK-II peut également phosphoryler pRb (Retinoblastoma protein, le produit du gène suppresseur de tumeur Rb1) qui contrôle, au point de restriction, le passage de G1 vers S [Takuwa et al., 1993].

Les protéases de type calpâine sont d’autres cibles pour le Ca$^{2+}$ dans un rôle régulateur de la prolifération et du cycle cellulaire [Goll et al., 2003]. Ces protéases Ca$^{2+}$-dépendantes permettent la progression dans le cycle et leur inhibition bloque le cycle cellulaire [Schollmeyer, 1988]. Les calpâines seraient aussi impliquées dans l’assemblage et le désassemblage des microtubules et la dégradation de la cycline D1 [Santella, 1998].

Dans le cas des cellules prostatiques, une diminution du taux de Ca$^{2+}$ réticulaire favorise leur prolifération alors qu’une augmentation de ce taux les sensibilise à un arrêt de croissance [Humez et al., 2004; Legrand et al., 2001; Vanoverberghe et al., 2003]. Des études ont caractérisé le rôle de certains canaux TRP dans la prolifération de modèles hétérologues [Schwarz et al., 2006], ou dans des modèles endogènes comme les cellules épithéliales prostatiques humaines où TRPV6 et TRPC6 stimulent une transcription génique NFAT-dépendante [Lehen'kyi et al., 2007; Thebault et al., 2006; Thebault et al., 2003].
C.2.c) Ca$^{2+}$ et apoptose

Des taux très élevés de Ca$^{2+}$ dans la cellule peuvent mener à sa désintégration par nécrose via la stimulation d’enzymes Ca$^{2+}$-dépendantes (pour revue, [Vanlangenakker et al., 2008]). Le Ca$^{2+}$ est également impliqué dans un programme de mort cellulaire plus ordonné connu sous le nom d’apoptose (ou MCP pour mort cellulaire programmée). Il est connu, depuis presque 30 ans, qu’une augmentation soutenue de Ca$^{2+}$ dans les cellules est létale [Schanne et al., 1979] et qu’une augmentation de Ca$^{2+}$ stimulée par un ionophore provoque une condensation de la chromatine accompagnée par une fragmentation de l’ADN [Wyllie et al., 1981], des phénomènes considérés de nos jours comme des marqueurs de l’apoptose. Comme je l’ai indiqué plus haut, l’apoptose est impliquée dans le maintien de l’équilibre tissulaire au même titre que la division et la différenciation cellulaire, que ce soit lors du développement embryonnaire d’un organe (tissu nerveux par exemple), de son remaniement permanent au cours de la vie de l’individu ou lors de certaines pathologies (comme le cancer et la maladie d’Alzheimer). Contrairement à la nécrose, le mécanisme d’apoptose n’est ni accidentel ni passif, car en réponse à ces stimuli spécifiques, la cellule permet la synthèse ou l’activation des nombreuses enzymes effectrices nécessaires à sa propre mort. Les voies inductrices de l’apoptose les mieux connues sont celles des récepteurs à domaine de mort activés par leur ligand spécifique (TGF-β pour Transforming Growth Factor-beta, Fas ligand), la voie mitochondriale impliquant les protéines de la famille Bcl-2 et la voie réticulaire qui lui est particulièrement associée (pour revue, [Movassagh et al., 2008]). Une fois activées, ces différentes voies font intervenir des effecteurs de mort présents dans le cytoplasme des cellules, caspases (cysteinyl-aspartate-cleaving protease) et calpâines, tous les 2 capables de cliver d’autres protéines au niveau de séquences consensus spécifiques, orchestrant ainsi la mort de la cellule (pour revues, [Cohen, 1997; Kass et al., 1999]. Caspases et calpâines existent normalement à l’état inactif de pro-enzymes, pouvant être activées suite à un recrutement au sein d’un complexe moléculaire ou suite à un clivage direct par une autre caspase.

Puisque l’apoptose possède une composante Ca$^{2+}$-dépendante, les différents flux calciques (vidange des stocks calciques réticulaires et ECC notamment) et les compartiments cellulaires impliqués dans ce processus sont très étudiés [Mariot et al., 2000; Pinton et al., 2001; Skryma et al., 2000; Tombal et al., 2000; Vanoverberghe et al., 2004; Wang et al., 1999a]. Les mitochondries et le RE, organites dans lesquels les signaux calciques ont une importance capitale, sont les principaux compartiments ayant le choix de vie ou de mort pour
les cellules (pour revue, [Roderick et al., 2008]). En effet, malgré le fait qu’il contrôle une multitude de processus cellulaires essentiels à la vie, le Ca\(^{2+}\) réticulaire peut être un inducteur de l’apoptose [Mariot et al., 2000; Pinton et al., 2001; Rong et al., 2008a; Scorrano et al., 2003; Vanoverberghe et al., 2004]. Comme j’ai déjà eu l’occasion de l’évoquer, un stress réticulaire, résultant de la déplétion chronique du Ca\(^{2+}\) contenu dans le RE, induit un signal menant à la mort cellulaire [Breckenridge et al., 2003; Moenner et al., 2007]. Des études ont aussi indiqué que les cellules dans lesquelles l’expression des R-IP\(_3\) a été supprimée ou réduite montrent significativement moins d’apoptose [Jayaraman et al., 1997; Sugawara et al., 1997]. Les RyR affichent une capacité d’induire des signaux calciques apoptotiques de manière similaire [Hajnoczky et al., 2000]. Une cible proche des signaux calciques issus du RE est le réseau mitochondrial [Csordas et al., 2006; Rizzuto et al., 2004]. Plusieurs observations soulignent le rôle significatif de ce flux calcique, entre RE et mitochondries, dans la stimulation de l’apoptose [Scorrano et al., 2003; Szalai et al., 1999]. Lors d’une augmentation de la [Ca\(^{2+}\)]\(_{\text{cyt}}\), par exemple lors de transitoires calciques, les mitochondries vont sèquestrer une partie du Ca\(^{2+}\) qui retournera plus tard dans le RE. Il y a donc, au cours de la signalisation calcique normale, un échange continu de Ca\(^{2+}\) entre le RE et les mitochondries. Sous certaines conditions, ces dernières peuvent être surchargées en Ca\(^{2+}\) et elles vont dès lors libérer certains facteurs pro-apoptotiques dans le cytosol tels que le cytochrome C [Duchen, 2000; Hanson et al., 2004; Pinton et al., 2006; Rizzuto et al., 2004].

Des protéines importantes dans la régulation de la perméabilité membranaire des mitochondries, initiant ou empêchant ainsi la libération de facteurs apoptotiques à partir de l’espace intermembranaire, sont les protéines de la famille Bcl-2 [Gross et al., 1999; Hajnoczky et al., 2000; Leber et al., 2007]. Celles-ci, comprenant plus de 20 membres, jouent soit un rôle pro-apoptotique (Bax, Bad et Bcl-xS) soit un rôle anti-apoptotique (Bcl-2 et Bcl-xL) (pour revue, [Rong et al., 2008a]). Des résultats récents suggèrent que le mécanisme clé par lequel Bcl-2 exerce son effet anti-apoptotique se fait par la régulation des flux calciques intracellulaires et en particulier par l’intervention sur la mobilisation du Ca\(^{2+}\) à partir du RE [Hanson et al., 2004]. L’augmentation de la [Ca\(^{2+}\)]\(_{\text{cyt}}\) peut activer les calpaïnes [Gomez-Vicente et al., 2005; Nakagawa et al., 2000; Nicotera et al., 2003] et il a été montré que la protéolyse calpainique-dépendante de Bcl-2 diminue la capacité de cette protéine à protéger les cellules face à l’apoptose et peut provoquer une perméabilisation mitochondriale et la libération du cytochrome C [Gil-Parrado et al., 2002].

Pour finir, des travaux du laboratoire ont démontré que la surexpression de la protéine Bcl-2 diminuait la capacité d’induction de l’apoptose par la vidange du RE dans les cellules
prostatiques LNCaP [Vanden Abeele et al., 2002]. Ce phénomène est dû à la diminution de la quantité du stock calcique réticulaire mobilisable qui serait d’amplitude inférieure au seuil de déclenchement de l’apoptose et serait associé à une diminution d’expression des SERCA-2b, de la calréticuline et une diminution des courants SOC.

C.3) CANAUX CALQUIES DE TYPE T ET PROCESSUS CELLULAIRES ASSOCIES AU CANCER

Au vu de la littérature, une association semble exister entre les canaux calciques de type T et le cancer. Effectivement, les cellules de neuroblastomes ont initialement servi de modèles d’étude pour caractériser les propriétés électrophysiologiques de ces canaux [Carbone et al., 1990; Tang et al., 1988]. De plus, leur expression semble être impliquée dans la prolifération et le développement (voir ci-dessous). Des courants calciques de type T sont enregistrés dans de nombreuses lignées tumorales et parfois, ce sont les seuls courants calciques exprimés au sein de ces cellules, comme dans les cellules du carcinome thyroïdien humain [Biagi et al., 1992; deBustros et al., 1986]. Finalement, des travaux du laboratoire montrent que l’expression des Cav3 est à mettre en relation avec le cancer de la prostate [Mariot et al., 2002].

C.3.a) canaux calciques de type T, développement et prolifération

Depuis quelques années, de plus en plus d’évidences soutiennent que les canaux calciques voltage-dépendants de type T interviennent au cours du développement. Tout d’abord, un courant calcique de type T est mesuré lors des premiers jours du développement embryonnaire des myocytes ventriculaires chez la souris ou chez le rat mais il n’est plus détectable dans les myocytes adultes [Cribbs et al., 2001; Ferron et al., 2002; Larsen et al., 2002; Niwa et al., 2004]. Les auteurs ont montré dans ces études que les isoformes Cav3.1 et/ou 3.2 étaient exprimées pendant la période embryonnaire et qu’elles pouvaient varier au cours du temps. Concernant le muscle squelettique de rat, les Cav3 décrits dans les cultures primaires [Cognard et al., 1986] ainsi que dans les fibres embryonnaires fraîchement isolées [Shimahara et al., 1991; Strube et al., 2000] disparaissent 3 à 4 semaines après la naissance [Beam et al., 1988], ce qui suppose que les canaux calciques de type T jouent un rôle au cours du développement musculaire. De même, une autre étude a mis en évidence une augmentation transitoire de la densité de courant calcique de type T lors de la myogenèse prénatale chez la souris, précédemment à une forte diminution avant la naissance [Berthier et al., 2002]. La caractérisation de ce courant a mené à la conclusion que les Cav3.2 sont fonctionnels pendant...
le développement des fibres musculaires squelettiques. De plus, des données similaires ont été acquises lors d’études sur le développement de certains motoneurones chez la souris où il a été montré que l’expression des Cav3 est importante au début du développement, diminue progressivement jusqu’à devenir indétectable en période périnatale [Russier et al., 2003]. Enfin, une étude s’intéressant à l’expression des canaux calciques de type T dans les cellules chromaffines embryonnaires de rat a montré que le courant calcique de type T est progressivement remplacé par un courant de type HVA pendant le développement pré- et post-natal de ces cellules [Bournaud et al., 2001].

L’ensemble de ces résultats laissent donc entrevoir la possibilité que les canaux calciques de type T puissent être impliqués dans la différenciation cellulaire (pour revue, [Lory et al., 2006]). Il est désormais connu que les Cav3 interviennent dans le processus de différenciation terminale, appelée fusion, des myoblastes squelettiques humains pour former des myotubes multinucléés [Arnaudeau et al., 2006; Bijlenga et al., 2000; Luin et al., 2008]. Les Cav3.2, exprimés par les myoblastes juste avant leur fusion, permettent, grâce au « courant de fenêtre », l’augmentation du taux de Ca$^{2+}$ cytosolique nécessaire à ce processus. De plus, dans la plupart des neurones périphériques ou centraux en développement ainsi que dans les lignées cellulaires de neuroblastomes, les Cav3 sont les premiers canaux calciques voltage-dépendants fonctionnellement exprimés, tandis que les canaux HVA apparaissent plus tard lors de l’extension neuritique [Frischknecht et al., 1998; Lukyanetz, 1998; Yaari et al., 1987]. Il a été décrit que l’inhibition des courants dus aux Cav3.2 diminuait à la fois la neuritogenèse et l’expression des canaux HVA, laissant supposé que les canaux calciques de type T contribuent à la différenciation morphologique et électrique des cellules de neuroblastomes NG108-15 [Chemin et al., 2002b; Chemin et al., 2004]. Dans les rétinoblastomes humains, il a été mis en évidence une diminution d’expression des Cav3.1 et 3.2 au cours de la différenciation, suggérant qu’ils aient un rôle dans les cellules non-différenciées, potentiellement dans le processus de prolifération cellulaire [Hirooka et al., 2002]. Concernant les cellules épithéliales cancéreuses prostatiques, leur différenciation neuroendocrine est associée à la fois à une augmentation de la densité du courant calcique de type T et du nombre de cellules qui exprime les Cav3.2 [Mariot et al., 2002]. Il reste à savoir si la surexpression des canaux induite par la différenciation contribue à l’invasivité des cellules et/ou à la sécrétion de facteurs mitogéniques qui pourraient favoriser la prolifération des cellules présentes à proximité des cellules neuroendocrines.

Les propriétés biophysiques particulières des canaux calciques de type T, c’est-à-dire l’activation pour de faibles dépolarisations, l’activité transitoire et l’entrée continue de Ca$^{2+}$
via le courant de fenêtre, leur confèrent un rôle dans le contrôle temporal et spatial de la \([\text{Ca}^{2+}]_{\text{cyt}}\) qui peut être important pour la progression du cycle cellulaire. En effet, de nombreux types de cellules en prolifération affichent des courants calciques de type T comme ceux transitant par \(\text{CaV}3.1\) qui seraient responsables de la prolifération des myocytes de l’artère pulmonaire chez l’homme [Rodman et al., 2005]. Une expression des \(\text{CaV}3\), dépendante du cycle cellulaire, a été observée dans les cellules musculaires aortiques chez le rat : le courant n’étant pas mesurable lors de la phase G0, apparaissant en G1 et augmentant en S [Kuga et al., 1996]. Dans les cellules du muscle lisse vasculaire, les principaux canaux calciques sont les canaux calciques voltage-dépendants de type L et T [Cribbs, 2006]. Alors que les premiers sont majoritairement impliqués dans la vasoconstriction artérielle, il est généralement accepté que les \(\text{CaV}3\) sont plutôt associés à la transition G1/S dans les myocytes de l’aorte de rat [Neveu et al., 1994]. Ces résultats ont été confirmés dans les cellules exprimant des courants de type T qui étaient en phase G1/S du cycle cellulaire donc dans un état prolifératif [Kuga et al., 1996]. Les cellules épithéliales de la lentille chez l’homme expriment à la fois les canaux calciques de type L et T et l’application de mibefradil réduit la phosphorylation de ERK1/2 (Extracellular Activated Kinase), voie importante menant à la prolifération ou à l’arrêt du cycle cellulaire, mais aussi de la CaMK-II et Raf-1, 2 régulateurs qui se trouvent en amont de ERK1/2 [Meissner et al., 2008]. Les auteurs ont également constaté que les \(\text{CaV}3.1\) et 3.3 étaient exprimés seulement par les cellules ayant un pouvoir prolifératif fort alors que les \(\text{CaV}1.2\) étaient exprimés par les cellules proliférant lentement. Par ailleurs, une équipe a montré que des cellules HEK-293 surexprimant stablement les \(\text{CaV}3.1\) ou 3.2 présentent un avantage de croissance par rapport aux cellules contrôles, avec une augmentation du nombre de cellules en phase S du cycle cellulaire, un temps de doublement plus rapide et l’expression des CDK2, cyclines A et E augmentée [Wang et al., 2002a; Wang et al., 2002b]. Par contre, une autre étude rapporte que la surexpression des \(\text{CaV}3.1\) ou 3.2 dans les HEK-293 s’avère insuffisante pour moduler la prolifération cellulaire bien qu’elle puisse augmenter la \([\text{Ca}^{2+}]_{\text{cyt}}\) ce qui suggère, dans ce cas, que l’expression des canaux calciques de type T ne peut déclencher un signal de transduction permettant la progression dans le cycle cellulaire [Chemin et al., 2000]. Ces différences, quant à la participation ou non des \(\text{CaV}3\) dans la prolifération cellulaire, peuvent être dues à des variations du taux d’expression de ces canaux, à des variations dans les voies de signalisation ou à des compartimentations calciques particulières.

Il a longtemps été suggéré l’existence d’un lien entre les canaux calciques voltage-dépendants de type T et le cancer car de nombreuses études pharmacologiques montrent qu’ils
sont impliqués dans la prolifération tumorale (pour revues, [Lory et al., 2006; Panner et al., 2006; Taylor et al., 2008b]). Effectivement, des composés sélectionnés comme étant de bons inhibiteurs des Cav3 réduisent la prolifération de plusieurs lignées cellulaires cancéreuses humaines issues du poumon, du colon ou bien encore de la peau [Lee et al., 2006b]. D’autres composés, testés sur différentes lignées cancéreuses humaines dont une prostatique, ont confirmé que les bloquants des Cav3 freinaient la croissance tumorale de manière similaire à la doxorubicine, qui sert de référence pour l’activité anti-cancer [Heo et al., 2008]. Par conséquent, ces données supposent que les canaux calciques de type T sont importants dans la régulation de la prolifération cellulaire, processus primordial dérégulé lors de la cancérisation. Il y a peu, un travail a rapporté que les 3 isoformes des Cav3 étaient très souvent exprimées dans les lignées cancéreuses œsophagiennes et qu’elles jouaient un rôle important dans la prolifération des cellules dans lesquelles elles étaient fonctionnelles [Lu et al., 2008]. Par ailleurs, dans le cas du cancer du sein, grâce à une approche moléculaire utilisant des si-ARN, il a été démontré que les Cav3.1 et 3.2 participent à la prolifération cellulaire [Taylor et al., 2008a]. Par ailleurs, récemment, le gène codant la sous-unité α1H des Cav3.2 (CACNA1H) a été identifié comme « marqueur » potentiel dans le cancer du sein [Asaga et al., 2006]. Enfin, il faut signaler qu’un travail a montré que le gène codant la sous-unité α1G, CACNA1G, est inactivé par hyperméthylation dans de nombreux types de cancer (estomac, pancréas et colorectal par exemple) [Toyota et al., 1999]. Dans ce cas, c’est la perte de fonction des canaux calciques de type T qui est à mettre en relation avec un état prolifératif dans le cancer.

Ces différents exemples, rendant compte de l’avancée et de l’accumulation des données sur la participation des Cav3 dans la prolifération cellulaire (pour revue, [Taylor et al., 2008b]), laissent entrevoir de nouvelles perspectives à propos des inhibiteurs sélectifs des canaux calciques de type T pour le traitement du cancer où le cycle cellulaire est devenu aberrant. Néanmoins, sachant que les Cav3 sont normalement exprimés dans le cerveau, le coeur ou encore répartis dans différents tissus endocrines du corps humains, il faut se méfier des possibles effets secondaires des inhibiteurs de ces canaux (pour revue, [Tanaka et al., 2005]).

C.3.b) canaux calciques de type T et apoptose

Très peu de données font référence au rôle que pourraient avoir les canaux calciques de type T dans l’apoptose. Le plus souvent, les articles traitent de l’effet que peuvent avoir certains inhibiteurs des Cav3 sur l’apoptose. Tout d’abord, le traitement chronique des
cellules β pancréatiques de souris par des cytokines induit l’expression d’un courant calcique de type T qui permet par conséquent d’augmenter la $[\text{Ca}^{2+}]_{\text{cyt}}$ basale responsable de la fragmentation de l’ADN donc de l’apoptose [Wang et al., 1999b]. En effet, les auteurs ont montré que l’application d’antagonistes des Cav3 prévoit cette augmentation du taux de Ca$^{2+}$ et réduit le pourcentage de mort cellulaire. Une autre étude s’est intéressée à la relation entre la modulation de la concentration calcique intracellulaire et les altérations des protéines pro- et anti-apoptotiques lors de l’apoptose induite par une toxine dans les cellules spermatogéniques [Mishra et al., 2006]. Dans ce cas, la toxine induit une hausse de la $[\text{Ca}^{2+}]_{\text{cyt}}$ qui s’accompagne d’une augmentation du taux de Bcl-xS (protéine pro-apoptotique) et d’une diminution du taux de Bcl-xL (anti-apoptotique) qui mène donc à la mort cellulaire. L’utilisation d’un bloquant des Cav3 empêche cette cascade d’événements et prévoit donc la cytotoxicité Ca$^{2+}$-dépendante induite par la toxine. Enfin, différentes études indiquent que la flunarizine protège les cellules hépatiques de rat contre l’ischémie [Konrad et al., 1995] et les neurones contre l’apoptose induite par la privation en sérum [Schierle et al., 1999]. En effet, dans cette dernière étude, cet antagoniste calcique augmente significativement le nombre de neurones viables après le retrait du sérum du milieu de culture renforçant l’idée qu’une augmentation du taux de Ca$^{2+}$ cytosolique est un des mécanismes clés de la mort neuronale provoquée par le retrait du sérum du milieu de culture. Il faut être prudent quant à l’interprétation des résultats car d’autres études ont examiné l’effet de divers antagonistes des canaux calciques sur l’apoptose des cellules auditives ou du DRG (Dorsal Root Ganglion) [Eichler et al., 1994; So et al., 2005]. La flunarizine joue dans ce modèle un rôle protecteur face à l’apoptose induite par le cisplatine mais, cette fois, de manière Ca$^{2+}$-indépendante. Donc, même si les cellules auditives expriment les Cav3.1, les données suggèrent que, dans ces cas précis, un mécanisme autre que le blocage des canaux calciques voltage-dépendants de type T serait responsable de l’effet protecteur de la flunarizine contre l’apoptose. Une étude très récente a levé le voile sur l’action Ca$^{2+}$-indépendante de la flunarizine permettant d’augmenter la viabilité des cellules auditives traitées par le cisplatine : la flunarizine diminue l’activation des MAPK et bloque la translocation nucléaire du NFκB résultant en une baisse de la production de cytokines pro-inflammatoires [So et al., 2008]. Pour expliquer les effets aspécifiques que pourraient avoir la flunarizine, outre son action sur les canaux calciques de type T, d’autres études entretiennent aussi la possibilité que cette molécule puisse agir directement sur les mitochondries ou la peroxydation lipidique [Elimadi et al., 1998] ou sur d’autres cibles dont les canaux sodiques [Pauwels et al., 1991].
C.3.c) canaux calciques de type T et invasion

Une prolifération accrue, une différenciation altérée et/ou une moindre capacité à mourir sont les principales caractéristiques de la croissance anormale d’un tissu (pour revue, [Roderick et al., 2008]). Ces modifications peuvent éventuellement occasionner des mécanismes d’invasion et d’expansion incontrôlés comme ceux rencontrés dans le cancer. Une telle transformation est souvent accompagnée par des modifications de l’expression de certains canaux et, en conséquence, par une altération des processus cellulaires dans lesquels ils sont impliqués [Kunzelmann, 2005]. À l’heure actuelle, de nombreux travaux montrent l’implication des canaux calciques de type T dans la prolifération, quelques uns dans l’apoptose, alors qu’un seul travail fait état d’un possible lien entre les Cav3 et le phénomène d’invasion [Huang et al., 2004]. Les mécanismes impliqués dans les processus d’invasion et de métastase des cellules tumorales passent surtout par des modifications de morphologie et d’adhérence [Entschladen et al., 2000; Mareel et al., 2003] qui s’accompagnent de signaux calciques répétitifs sous forme d’oscillations [Brundage et al., 1991; Dittmar et al., 2002; Giannone et al., 2002; Hahn et al., 1992; Komuro et al., 1996; Lang et al., 2002; Mandeville et al., 1995; Ronde et al., 2000]. Un travail récent a mis en évidence que des chélateurs calciques, au même titre que le mibefradil, bloquent de façon dose-dépendante à la fois les signaux calciques et le pouvoir invasif des cellules de fibrosarcomes, alors que des inhibiteurs visant les canaux de type L n’avaient aucun effet [Huang et al., 2004].

C.4) COUPLAGE CANAUX CALCIQUES DE TYPE T ET CANAUX POTASSIQUES CALCIUM-ACTIVES

Le Ca$^{2+}$, en plus d’interagir avec une multitude de protéines et de participer à la régulation d’un très grand nombre de voies de signalisation, peut moduler directement l’activité d’autres canaux ioniques. Effectivement, différents travaux montrent que l’entrée de Ca$^{2+}$ par les canaux de la membrane plasique ou la libération du contenu calcique réticulaire peut agir directement sur les canaux potassiques calcium-dépendants eux-mêmes impliqués dans le cancer [Ouadid-Ahidouch et al., 2008]. L’augmentation de la [Ca$^{2+}$]cyt peut donc mettre en œuvre un rétrocontrôle négatif, par l’activation des canaux K$^+$ calcium-dépendants, qui sert à arrêter ou à freiner les mécanismes induits par l’ouverture des canaux calciques voltage-dépendants. L’activation de canaux K$^+$ calcium-dépendants hyperpolarise le potentiel de membrane et ajuste différentes fonctions cellulaires selon le modèle étudié : transport d’électrolytes, régulation du volume cellulaire, réduction de l’excitabilité dans les cellules.
neuronales et musculaires, augmentation du gradient électrochimique du Ca$^{2+}$ dans les cellules non-excitables [Cotton, 2000; Pasantes-Morales et al., 2000] (pour revue, [Vergara et al., 1998]). Les canaux potassiques jouent ainsi un rôle primordial dans le maintien du potentiel de repos membranaire des cellules et, par la même occasion, contrôlent précisément le taux de Ca$^{2+}$ qui entre dans la cellule. Les voies d’entrée du Ca$^{2+}$ et les canaux K$^+$ calcium-dépendants forment une unité fonctionnelle dans différents types cellulaires, cependant, leur couplage n’est pas toujours entièrement éclairci.

Il existe 3 catégories de canaux K$^+$ stimulés par une augmentation de la [Ca$^{2+}$]_cyt, qui diffèrent au niveau de leur séquence en acides aminés, de leur conductance ainsi que de leur profil pharmacologique : 1) les canaux SK (« small conductance »), de faible conductance (2 à 25 pS) [Blatz et al., 1986] sont inhibés notamment par la d-tubocurarine et l’apamine [Park, 1994]. Parmi les différentes isoformes connues, le tissu prostatique humain exprime SK2 et 3 [Chen et al., 2004b] ; 2) les canaux IK (« intermediate conductance »), de conductance intermédiaire (12 à 100 pS) [Ishii et al., 1997; Logsdon et al., 1997] sont inhibés par la charybdotoxine, le clotrimazole [Syme et al., 2000] ou le TRAM-34 [Wulff et al., 2000]. Différentes études ont détecté l’expression du canal IK dans la prostate [Chen et al., 2004b; Ishii et al., 1997; Logsdon et al., 1997], qui participe à la prolifération cellulaire [Parihar et al., 2003] ; 3) les canaux BK (« big conductance »), de large conductance (100 à 300 pS) [Marty, 1981] (pour revue, [Salkoff et al., 2006]) sont inhibés par la charybdotoxine, la paxilline ou encore l’ibériotoxine [Dworetzky et al., 1996; Galvez et al., 1990; Ghatta et al., 2006]. Les canaux BK peuvent être activés par une dépolarisation membranaire, par le Ca$^{2+}$ intracellulaire ou de façon synergique par une dépolarisation et le Ca$^{2+}$ intracellulaire (pour revue, [Magleby, 2003]). Les canaux potassiques BK sont retrouvés dans de nombreux types cellulaires ainsi que dans certains cancers tels que les gliomes humains [Liu et al., 2002] ou les astrocytomes [Basrai et al., 2002] où ils peuvent jouer des rôles primordiaux dans le contrôle de la prolifération cellulaire et du grade de malignité. De même, un travail du laboratoire montre que les canaux potassiques sont impliqués dans la prolifération des cellules cancèreuses prostatiques [Van Coppenolle et al., 2004]. Une autre équipe a démontré que le gène codant BK (KCNMA1) est amplifié dans des cas de cancers prostatiques avancés et que l’inhibition de ces canaux K$^+$ altère la croissance des cellules cancèreuses prostatiques androgéno-indépendantes PC-3 [Bloch et al., 2007].

Dans le paragraphe suivant, je limiterai mon propos au couplage qu’il peut exister entre les canaux K$^+$ calcium-dépendants et les CaV, sans aborder les couplages entre les K$^+$...
calcium-dépendants avec d’autres sources de Ca\(^{2+}\) tels que le couplage entre TRPV4 et les canaux BK récemment mis en évidence [Fernandez-Fernandez et al., 2008].

Les canaux SK peuvent être activés par le flux de Ca\(^{2+}\) induit par les canaux calciques voltage-dépendants de type L, P, N et R au niveau du système nerveux central [Cloues et al., 2003; Edgerton et al., 2003; Hallworth et al., 2003; Marrion et al., 1998; Pineda et al., 1998] (pour revues, [Latorre et al., 2006; Sah, 1995]). Le couplage fonctionnel des canaux SK peut se faire grâce à une localisation subcellulaire commune avec les CaV, mais pas nécessairement très étroite, en raison de leur très forte sensibilité au Ca\(^{2+}\) [Hirschberg et al., 1998; Xia et al., 1998]. Ils peuvent donc être activés même s’ils sont situés à une certaine distance, estimée à 50-150 nm, par rapport à la source de Ca\(^{2+}\), distance suffisante pour que l’utilisation de BAPTA (un chélateur calcique) puisse abroger l’activation des canaux SK suite à celle des CaV de type L [Marrion et al., 1998]. En revanche, les canaux BK sont moins sensibles au Ca\(^{2+}\) que les canaux SK (pour revue, [Vergara et al., 1998]). La cellule doit être capable d’augmenter suffisamment la [Ca\(^{2+}\)]\(_{cyt}\) pour activer les canaux BK sans compromettre les autres processus Ca\(^{2+}\)-dépendants. Pour cette raison, les canaux BK doivent être localisés à proximité de leur source de Ca\(^{2+}\), un canal calcique particulier ou un récepteur perméable au Ca\(^{2+}\) de la membrane plasmique ou réticulaire (pour revue, [Berkefeld et al., 2008]). Une association directe entre les 2 partenaires peut être observée quand le courant potassique Ca\(^{2+}\)-dépendant coïncide avec le courant calcique, ce qui est le cas pour la colocalisation spécifique des canaux BK avec les CaV de type N dans le cerveau de rat [Loane et al., 2007; Marrion et al., 1998]. Ici, l’utilisation de BAPTA n’affecte pas le couplage (la distance estimée entre les 2 canaux étant estimée à moins de 30 nm) et les 2 protéines peuvent co-immunoprécipiter. Il en est de même entre les canaux BK et les CaV de type L et/ou N [Grunnet et al., 2004; Sun et al., 2003] dans différents types de neurones chez le rat. Une étude a décrit l’existence d’un large complexe de signalisation dans lequel une isoforme du récepteur adrénnergique sert de protéine d’échafaudage mettant en relation les canaux BK et les CaV de type L [Liu et al., 2004]. Une autre possibilité permettant l’association privilégiée entre 2 canaux est leur localisation au sein de microdomaines membranaires tels que les fragments membranaires enrichis en cholestérol et en sphingolipides appelés « rafts » lipidiques [Simons et al., 1997]. L’association de canaux BK avec les R-IP\(_3\) qui permettent leur activation dans les cellules de gliomes se fait au sein de telles structures membranaires [Weaver et al., 2007] et il est possible qu’il en soit de même avec certains canaux calciques voltage-dépendants.

Très peu de données montrent un couplage spécifique entre des canaux potassiques Ca\(^{2+}\)-activés et les canaux calciques voltage-dépendants de type T. Dans les neurones
dopaminergiques du mésencéphale, dans lesquels les principales classes de canaux calciques voltage-dépendants sont présentes [Ertel et al., 2000; Llinas et al., 1989; Nowycky et al., 1985], il a été prouvé un couplage fonctionnel entre les canaux SK3 et les Cav3 [Wolfart et al., 2002]. Les auteurs ont montré dans ce travail que la quasi-totalité du courant K⁺ activé par l’influx voltage-dépendant de Ca²⁺ est bloqué de manière sélective et dose dépendante par le nickel et le mibefradil à des concentrations susceptibles de bloquer spécifiquement les canaux calciques de type T. Un travail très récent montre que la colocalisation spatiale entre l’isoforme SK2 et les canaux calciques de type T permet un couplage sélectif dans les neurones du noyau réticulaire du thalamus [Cueni et al., 2008]. De plus, une étude a mis en évidence, par co-immunoprécipitation, le couplage entre les canaux calciques de type T Cav3.2 et les canaux BK dans des extraits de cerveaux chez la souris [Chen et al., 2003].

CONCLUSION

Les canaux calciques voltage-dépendants de type T sont exprimés, à différents niveaux, dans tout l’organisme et semblent avoir des rôles importants dans de nombreux processus neuronaux et non-neuronaux. Les études à venir sur la relation qu’il peut y avoir entre l’expression des canaux calciques de type T et les cellules normales ou cancéreuses continueront sans doute à donner des résultats intéressants et surprenants. Ces résultats permettront d’en connaître plus sur leur composition moléculaire, les mécanismes qui coordonnent leur expression spatiale et temporelle avec les autres canaux ioniques, ainsi que sur leur rôle dans les tissus non-excitables. Finalement, il est probable que la découverte de nouveaux antagonistes spécifiques des canaux calciques de type T d’une part, et la connaissance des complexes que peuvent formés ces canaux d’autre part, puissent faire avancer l’étude endogène de ces canaux mais aussi le développement de pistes thérapeutiques pour tenter de guérir les troubles neurologiques, cardiovasculaires et endocriniens.
PROBLEMATIQUE
ET OBJECTIFS
La progression du cancer de la prostate, d’un état initialement androgéno-dépendant vers un état plus agressif androgéno-indépendant, est marquée par une différenciation neuroendocrine. En effet, les études montrent une augmentation du nombre et des foyers de cellules neuroendocrines (NE) lors de la cancérogenèse prostatique (pour revue, [Abrahamsson, 1999]). Les cellules neuroendocrines sont alors supposées contribuer au mauvais pronostic clinique du cancer de la prostate et jouer un rôle non négligeable dans la physiopathologie de cet organe. La différenciation NE participerait à l’acquisition du phénotype androgéno-indépendant du cancer de la prostate, stade auquel les thérapies anti-androgéniques actuelles sont sans effet. Étant donné que les cellules NE prostatiques sont souvent retrouvées à proximité de cellules en prolifération [Bonkhoff et al., 1991], l’hypothèse la plus probable est qu’elles sécrètent des facteurs autocrines ou paracrines à activité mitogénique [Amorino et al., 2007; Chien et al., 2001; Jongsma et al., 2000]. Connaissant l’importance physiologique et physiopathologique potentielle des cellules NE prostatiques, il est intéressant de déterminer la nature des canaux ioniques qui y sont exprimés afin de mieux comprendre leur fonction.

Il est connu que les canaux calciques de type T entretiennent une activité rythmique neuronale et cardiaque (pour revue, [Perez-Reyes, 2003]) et qu’ils interviennent dans certains processus physiopathologiques (tels que l’épilepsie) (pour revues, [Shin, 2006; Weiergraber et al., 2008]. Néanmoins, le rôle des canaux calciques de type T dans les tissus périphériques non-excitables comme la prostate est peu connu. Des travaux du laboratoire ont montré en 2002 que la différenciation neuroendocrine de la lignée cancéreuse androgéno-dépendante de la prostate humaine (LNCaP) s’accompagne de la surexpression des canaux calciques voltage-dépendants de type T CaV3.2 [Mariot et al., 2002].

Le principal objectif de mon travail de thèse était de déterminer si les cellules neuroendocrines prostatiques possèdent une voie de sécrétion régulée calcium-dépendante dans laquelle les canaux calciques voltage-dépendants de type T (CaV3.2 en particulier) seraient impliqués. Il est connu que les cellules neuroendocrines prostatiques expriment des marqueurs de cellules sécrétrices (chromogranines A et B, neuropeptides) [Schmid et al., 1994] mais il n’a jamais été mis en évidence une voie de sécrétion régulée calcium-dépendante. Les cellules NE prostatiques possèdent-elles une telle voie de sécrétion régulée calcium-dépendante ? Si oui, les canaux calciques de type T CaV3.2 participent-ils, notamment en raison de leur activité transitoire, à cette sécrétion calcium-dépendante et/ou participent-ils à la sécrétion basale des cellules neuroendocrines prostatiques ? Me basant sur l’étude précédemment effectuée sur la lignée LNCaP [Mariot et al., 2002], je me suis
également intéressé à étudier les canaux calciques de type T dans les tissus prostatiques humains. Les CaV3.2 y sont-ils fonctionnels ? L’expression de ces canaux est-elle corrélée avec la progression androgéno-indépendante du cancer de la prostate et à l’expression de marqueurs de sécrétion ?

Un second objectif de mon projet de thèse était de déterminer comment les CaV3.2 participent à l’homéostasie calcique. Une étude publiée en 2004 a suggéré leur participation à l’entrée capacitive de calcium (ECC) dans des cellules cancéreuses de prostate et de sein [Gray et al., 2004]. Les canaux calciques de type T CaV3.2 sont-ils véritablement impliqués dans l’ECC dans les lignées cancéreuses androgéno-dépendantes et androgéno-indépendantes de la prostate ? Nous avons testé cette hypothèse qui se trouvait être intéressante dans la mesure où nous savions que les canaux calciques de type T pouvaient être ouverts au potentiel de repos, donc de manière basale.

Enfin, un troisième objectif consistait à déterminer le rôle potentiel des canaux calciques voltage-dépendants de type T dans les mécanismes de croissance et/ou d’apoptose. En effet, leur implication dans les processus cancéreux reste controversée (pour revues, [Lory et al., 2006; Panner et al., 2006]). Nous avons notamment étudié comment les CaV3.2 contrôlent la prolifération à travers un couplage fonctionnel avec les canaux potassiques calcium-activés (pour revues, [Berkefeld et al., 2008; Latorre et al., 2006]).

Mon travail de thèse a donc consisté à étudier le rôle des canaux calciques de type T CaV3.2 aussi bien dans l’homéostasie calcique que dans les phénomènes de sécrétion et de croissance des cellules prostatiques humaines et notamment des cellules neuroendocrines. En résumé, les études que j’ai menées contribuent à une meilleure appréciation du rôle des canaux calciques de type T CaV3.2 dans la physiopathologie prostatique humaine.

La présentation des résultats obtenus au cours de mes 4 années de thèse se fera sous forme de 3 articles scientifiques (publiés ou soumis à la publication).
MATERIELS
ET METHODES
Mes compétences en culture cellulaire, électrophysiologie, imagerie calcique ainsi qu’en biologie cellulaire et biochimie m’ont permis de réaliser la plupart des travaux illustrés dans ce manuscrit. Je n’aborderai dans ce chapitre que les techniques que j’ai moi-même utilisées. Il est bon de préciser d’ores et déjà que l’électrophysiologie et l’imagerie calcique permettent une analyse fonctionnelle des canaux ioniques alors que la biologie moléculaire et la biochimie sont essentielles pour l’étude de leur structure et de leur expression.

I. CULTURE CELLULAIRE

I.1 / LIGNEES CANCEREUSES PROSTATIQUES HUMAINES

J’ai travaillé sur 3 lignées cellulaires épithéliales prostatiques humaines provenant toutes de l’ATCC (American Type Culture Collection, USA) :
- l’essentiel des mes travaux a porté sur la lignée cancéreuse androgéno-dépendante LNCaP (Lymph Node Carcinoma of the Prostate) qui exprime le RA et des marqueurs de cellules prostatiques tels que le PSA et la PAP [Horoszewicz et al., 1983]. Cette lignée a été isolée à partir de nodules lymphatiques métastasés chez un homme de 50 ans atteint d’un carcinome prostatique. Les cellules LNCaP semblent n’exprimer qu’un seul type de canal calcique voltage-dépendant, celui de type T formé de la sous-unité α1H [Mariot et al., 2002], même si une étude propose la fonctionnalité des canaux calciques de type L sans montrer d’expression ni de la protéine ni de l’ARN messager [Sun et al., 2006b]. Une étude menée au laboratoire par la technique de la RT-PCR montre l’expression dans ces cellules de 2 amplicons dont un ayant une taille correspondant à l’ARN messager qui code la sous-unité α1H et l’autre une taille avoisinant celle de l’ARN messager qui code l’isoforme δ25B décrite en 2004 [Gray et al., 2004] (figure 10).

J’ai aussi sélectionné des clones de cellules LNCaP transfectés de façon stable par le gène codant la sous-unité α1H (LNCaP-α1H) ([Cribbs et al., 1998], n° accession: AF051946, vecteur utilisé : pcdna3) ou la protéine de fusion α1H-GFP (Green Fluorescent Protein ; LNCaP-α1H-peGFP) (voir partie II.2 pour plus de détails). Ces clones de surexpression m’ont facilité notamment les études pharmacologiques du canal CaV3.2.
- j’ai également travaillé sur les lignées cancéreuses androgéno-indépendantes : DU-145 et PC-3. La première a été établie à partir d’une métastase cérébrale et la seconde à partir d’une métastase osseuse, respectivement chez des patients âgés de 65 et 62 ans atteints d’un cancer prostatique. Ces types cellulaires n’expriment pas le RA et ils ont la capacité de survivre et de

© 2010 Tous droits réservés.
http://doc.univ-lille1.fr
proliférer dans un milieu dépourvu d’androgènes [Tilley et al., 1990]. Comme les cellules LNCaP, ces cellules expriment la sous-unité α_{1H} et l’isoforme δ_{25B} (figure 10) mais le courant calcique de type T α_{1H} n’a pu être enregistré (observation personnelle).

Figure 10 : étude par RT-PCR de l’expression de l’ARN messager de la sous-unité α_{1H} et de l’isoforme δ_{25B} du canal calcique de type T dans les lignées androgéno-dépendante (LNCaP) et androgéno-indépendantes (DU-145 et PC-3). Le couple d’oligonucléotides utilisé est : sens (5’-TGAGGAGGACTTCCACAAG-3’, numéro d’accession : NM_001005407.1, nucléotides 3363-3380) et antisens (5’-ATCCAGGAATGGTGAG-3’ , numéro d’accession : NM_001005407.1, nucléotides 3533-3518). Ces oligonucléotides permettent d’amplifier un fragment de 171 pb (α_{1H}) et de 320 pb (δ_{25B}).

I.2 / CELLULES PRIMAIRES PROSTATIQUES HUMAINES

Etant conscient qu’il n’y a pas de bons modèles d’étude mais qu’il n’y a que des modèles et souhaitant travailler au plus près de la physiologie, j’ai fort heureusement eu l’occasion d’obtenir des cellules primaires issues de prélèvements prostatiques humains grâce au Prof. Brigitte Mauroy et au Dr. Jean-Louis Bonnal du service d’urologie de l’hôpital Saint-Philibert (CHR de Lille, France). Ces prélèvements sains, hyperplasiques ou cancéreux m’ont permis de valider certains résultats acquis sur les lignées cellulaires.

N’ayant pas participé aux protocoles de mise en culture des cellules primaires, mais ayant assuré leur entretien, je n’en ferai qu’une brève description. Les biopsies de prostate humaine sont traitées le plus rapidement possible après l’intervention chirurgicale en commençant par couper les nodules épithéliaux au scalpel après avoir enlevé le tissu conjonctif. Ensuite, 2 méthodes sont possibles : premièrement, la dissociation trypsique consiste à dissocier les fragments de prostate pour obtenir des cellules en suspension qui seront déposées en petites gouttes, afin d’optimiser l’adhésion, dans des boîtes de Pétri de type « Primaria » (Nunc) ; deuxièmement, la mise en culture d’explants consiste à déposer directement les fragments de prostate obtenus comme précédemment dans les boîtes pour que, peu de temps après leur adhésion, des cellules épithéliales commencent à proliférer et à envahir la boîte.
1.3 / CONDITIONS DE CULTURE

La culture des différentes lignées s’effectue dans des flacons en plastique de 75 cm² (Nunc), au sein d’une étuve à 37°C, saturée en humidité et en atmosphère enrichie en CO₂ (air 95%, CO₂ 5%). Le milieu de culture, changé tous les 2 à 3 jours, est du RPMI-1640 (Gibco, Life Technologies, France) complet contenant : 10% de Sérum de Veau Fœtal (SVF) décomplémenté (Seromed, Polylabo, Strasbourg), 2 mM de L-glutamine et 100 µg/ml de kanamycine (Sigma, L’Isle d’Abeau, France). Quand nécessaire, les cellules sont décollées du support plastique par une brève trypsinisation (trypsine-EDTA, 0,25%, ICN, USA) dont l’effet est inhibé par l’ajout de milieu complet. Les cellules sont alors dissociées par une succession d’aspirations/rejets à l’aide d’une pipette avant d’être réparties dans les différents supports selon les expériences envisagées : ceci correspond à un passage et, pour éviter une dérive génétique, nous effectuons au plus une dizaine de passages successifs avant de décongeler une nouvelle ampoule de cellules « fraîches ». Pour leur utilisation en imagerie ou en électrophysiologie, les cellules sont cultivées en boîtes de Pétri (Nunc, ∅ 35 mm) contenant ou non des lamelles de verre (∅ 22 mm et 0,13-0,16 mm d’épaisseur ; CML France) alors que pour l’imunohistochimie les lamelles sont plus petites (∅ 14 mm et 0,13-0,16 mm d’épaisseur ; CML France). Les flacons de 75 cm² voire de 25 cm² sont utilisés pour les études de western-blot, RT-PCR ou cycle cellulaire. Enfin, les plaques multi-puits (24 ou 96) (Nunc) sont choisies pour les expériences de prolifération et de sécrétion.

L’induction de la différenciation neuroendocrine des cellules LNCaP (LNCaP-NE) est réalisée par un traitement augmentant le taux d’adénosine monophosphate cyclique (AMPc) dans la cellule. Ce traitement associe le dibutyryl-AMPc (db-AMPc, 1 mM) ou le 8-bromo-AMPc (8-br-AMPc, 1 mM), des analogues perméants de l’AMPc [Bang et al., 1994] et l’isobutylnéthylxanthine (IBMX, 100 µM), un inhibiteur des phosphodiésterases [Goodin et al., 2002]. Cette différenciation s’accompagne de l’apparition de prolongements cellulaires neuritiques, de la multiplication des granules de sécrétion à cœur dense, de la surexpression de la NSE [Bang et al., 1994] mais aussi de la surexpression de Ca₃.2 [Mariot et al., 2002].

Les cellules primaires épithéliales prostatiques nécessitent un milieu particulier : KSF-SFM (Keratinocyte-Serum Free Medium, Gibco, Life Technologies, France) contenant 2% de SVF, 100 µg/ml de kanamycine et de gentamicine, 2 mM de L-glutamine, 0,2 ng/ml d’EGF, 25 µg/ml d’extrait pituitaire bovin et 1 nM de 5α-DHT.

Pour leur stockage, les cellules sont trypsinisées puis réparties dans des ampoules de congélation (Nunc) à hauteur de 1 à 2 million(s) de cellules par ml de milieu de congélation.
dont la composition est la suivante : 45% du milieu de culture des cellules à congeler filtré, 45% de milieu de culture frais et 10% de diméthylsulfoxide (DMSO). La congélation devant s’effectuer le plus lentement possible, les ampoules sont placées dans un récipient contenant de l’isopropanol dans un congélateur à -80°C (ce qui permet de descendre la température de 1°C par minute) ou placées successivement à 4, -20 et -80°C. Pour une utilisation régulière à court terme, les cellules peuvent y être conservées mais pour un stockage à plus long terme, il est préférable de les conserver dans l’azote liquide. Pour mettre en culture des cellules à partir d’une ampoule congelée, il est conseillé d’agir rapidement en la plongeant directement dans un bain-marie à 37°C jusqu’à la décongélation totale de la suspension cellulaire. Celle-ci est alors transférée dans un tube contenant du milieu de culture puis, après une centrifugation de 5 minutes à 1 000 g, le culot cellulaire est remis en suspension dans du milieu de culture dans un flacon de 75 cm².

II. TRANSFECTION

La transfection est un processus permettant l’introduction d’une molécule d’ADN/ARN dans des cellules en culture. L’étude d’une protéine d’intérêt peut en effet nécessiter qu’elle soit surexprimée ou au contraire réprimée dans les cellules. Dans le cas d’une surexpression, un plasmide contenant le gène codant cette protéine, appelé plasmide d’expression ou transgène, sera alors transféré dans la cellule. Il est estimé que seule une cellule sur 10⁵ ou 10⁶ incorpore l’ADN de façon stable au niveau de ses chromosomes alors que les autres cellules peuvent ou non l’incorporer de façon transitoire. Dans d’autres cas, il est possible de sous-exprimer voire de supprimer la protéine d’intérêt par le mécanisme d’ARN interférence (ARNi) qui est un mécanisme post-transcriptionnel naturel mis en évidence chez les plantes. Mais, de façon artificielle, nous pouvons introduire un ARNi ciblant l’ARN messager d’un marqueur d’intérêt afin de dégrader l’ARN messager correspondant et par conséquent de diminuer ou de supprimer l’expression de ce marqueur.

Dans le but d’introduire les plasmides d’expression ou des ARNi dans les cellules étudiées, l’électroporation et la lipofection sont 2 techniques particulières que nous avons utilisées dans nos études.
II.1 / TRANSFECTION TRANSITOIRE

II.1.a / Nucléofection

Il s’agit d’une technique d’électroporation récemment mise au point par la société Amaza, permettant de transfécter du matériel nucléique dans les cellules. L’électroporation consiste en une application d’une brève mais forte impulsion électrique grâce à un électroporateur (AMAXA) permettant d’augmenter la perméabilité membranaire à la molécule d’ADN/ARN d’intérêt. L’électroporation est plus appropriée que la lipofection (que je détaille ci-après) pour la transfection par les plasmides pour les cellules cancéreuses prostatiques et c’est pour cela que j’ai utilisé la nucléofection pour obtenir des cellules surexprimant de façon stable la sous-unité α_{1H} ([Cribbs et al., 1998], n° accession : AF051946) ou la protéine de fusion α_{1H}-GFP, c’est-à-dire ayant intégré dans leur génome le plasmide (ici pcdna3) contenant ces gènes d’intérêt. Pour y parvenir, les cellules sont tout d’abord trypsinisées car l’électroporation ne se fait que sur des cellules en suspension. Elles sont alors comptées et 2 millions de cellules sont utilisées par condition d’expérimentation. Elles sont ensuite reprises dans une cuve d’électroporation par 100 µl de tampon de nucléofection (tampon R et programme T-009 pour les cellules LNCaP, selon les recommandations du fournisseur) contenant le plasmide à la concentration souhaitée. La cuve est alors introduite dans l’appareil pour que les cellules soient électroporées avant qu’elles soient incubées dans leur milieu de culture. Outre l’efficacité de transfection sur différents modèles cellulaires du laboratoire, un des avantages de cette technique est l’expression du plasmide dès 4 heures après la nucléofection. Cependant, cette technique engendre très souvent un taux non-négligeable de mortalité cellulaire.

II.1.b / Lipofection

L’ARNi, qui provoque l’inactivation de l’ARN messager par inhibition de sa traduction ou par sa dégradation, existe notamment sous formes de si-ARN (« short interfering »). Pour mener à bien l’étude fonctionnelle des canaux calciques de type T (CaV3.2) dans les lignées cancéreuses prostatiques, j’ai utilisé 2 si-ARN dirigés contre la séquence de la sous-unité α_{1H} afin de réduire l’expression de la protéine dans ces cellules (validation de l’effet de ces si-ARN-α_{1H} figure 11). Les si-ARN peuvent être administrés par électroporation (méthode décrite plus haut) mais aussi par lipofection, plus adaptée à la transfection de petites molécules d’ARN et qui provoque moins de mort cellulaire.
La lipofection est une transfection à base de lipides-cations (agents perméabilisants), méthode fréquemment utilisée car elle limite la cytotoxicité. Quand la molécule d’ARN arrive au contact de la membrane plasmique des cellules, elle forme un complexe avec les lipides. Ce complexe, maintenu par des forces électrostatiques entre les charges positives des lipides et les charges négatives de l’ARN, traversera alors facilement la bicouche de phospholipides membranaires. Cette technique est transposable aussi bien sur des cellules en suspension que sur des cellules adhérentes.

Figure 11 : effet des si-ARN-α1H sur l’expression du canal calcique de type T CaV3.2 dans des cellules de surexpression LNCaP-α1H. Immunofluorescence indirecte (décrite dans la partie VII.3) utilisant l’anticorps anti-CaV3.2 (1/500ème, Alomone) sur des cellules ayant été lipofectées 2 jours auparavant par un si-CTL ou par un si-α1H (20 nM). Barre = 20 µM.

Différents produits de lipofection, basés sur des agents perméabilisants, permettent l’introduction de si-ARN. J’en ai testé plusieurs, sur la lignée LNCaP, afin de déterminer lequel offrait le meilleur rendement de transfection d’un ARN interférant contrôle couplé à la fluorescéine (si-ARN-FITC). L’HiPerFect (Qiagen) a donné le meilleur résultat et je l’ai logiquement choisi pour lipofecter les différents si-ARN utilisés au cours de ma thèse (voir tableau récapitulatif figure 12) d’autant plus qu’il permet de les utiliser à de très faibles concentrations (de l’ordre du nanomolaire). Travaillant sur des canaux présents au niveau de la membrane plasmique, il faut être prudent car ils sont susceptibles d’être affectés par l’action de la trypsine. Pour cette raison et pour des raisons pratiques, j’ai lipofecté des cellules adhérentes. Le protocole nécessite, pour un volume final de 1 ml, la préparation de 100 µl d’un mélange comprenant : 8 µl de lipofectant HiPerFect, le volume nécessaire de si-ARN pour avoir la concentration finale désirée et le tout complété par du milieu dépourvu en sérum. Ce mélange est vortexé vigoureusement puis laissé 10 minutes le temps que se
Tableau récapitulatif des séquences de différents si-ARN. Les si-ARN-contrôles (si-CTL-Luciférase et si-CTL, non-spécifique car contenant au moins 4 « mismatches » avec chacun des gènes humains), si-ARN contre les canaux calciques de type T CaV3.2 (si-α1H-1 et 2) et si-ARN contre les canaux potassiques BK (si-hBK) ou IK (si-hIK) sont synthétisés par la société Dharmacon (France).

II.2 / OBTENTION D'UNE LIGNEE STABLE

Afin d’obtenir des clones surexprimant de façon stable la sous-unité α1H ([Cribbs et al., 1998], n° accession: AF051946) ou la protéine de fusion α1H-GFP, c’est-à-dire ayant intégré dans leur génome le plasmide codant ces gènes d’intérêt (ici pcdna3 qui porte un gène de résistance à un antibiotique), j’ai procédé de la manière suivante. Les cellules sont d’abord nucléofectées (voir partie II.1.A) puis incubées avec l’antibiotique de sélection pendant quelques jours et seules les cellules ayant incorporé le plasmide continuent de croître. Dès lors, l’antibiotique est arrêté et des clones de cellules « positives » se forment. Ceux-ci sont ensuite récupérés pour être validés en western-blot, RT-PCR, patch-clamp (**figure 13**) voire en microscopie confocale. Ce travail a permis, parmi des dizaines de clones testés, l’obtention de différents clones de surexpression LNCaP-α1H (présentant différents niveaux d’expression) et d’un clone LNCaP-α1H-peGFP.
Figure 13: Représentations de la densité de courant, I (pA/pF : courant rapporté à la surface membranaire), en fonction du voltage Vm imposé à la membrane : courbes IV. Courbes IV moyennes, obtenues dans la configuration cellule-entièrre de la technique de patch-clamp, des cellules LNCaP (en noir), LNCaP-NE (en rouge) et de différents clones de cellules LNCaP surexprimant de façon stable : la sous-unité α_{1H} (clones 1 et 2, en vert et en bleu foncé dont respectivement >95% et 60% des cellules présentent un courant calcique de type T), ou la protéine de fusion α_{1H}-GFP (clone B, en bleu clair, dont >95% des cellules présentent un courant calcique de type T). n = nombre de cellules enregistrées par condition.

III. ENREGISTREMENTS ELECTROPHYSIOLOGIQUES : LE PATCH-CLAMP

Les variations du potentiel membranaire (quand le courant est imposé) ou les courants ioniques transmembranaires (quand le voltage est imposé) d’une cellule vivante sont mesurés par patch-clamp [Neher et al., 1976]. Le principe de cette technique électrophysiologique est basé sur la propriété des pipettes de verre, munie de l’électrode de stimulation/enregistrement, de coller aux membranes biologiques formant ainsi un scellement (« seal ») de forte résistance qui isole électriquement la portion de membrane (« patch ») sous la pipette. Les pipettes, de résistance comprise entre 3 et 5 MΩ (\varnothing interne de 1 μM), sont obtenues par une étireuse horizontale (P-97, Sutter Instrument Compagny, USA) à partir de tubes de verre en borosilicate à paroi fine sans microcapillaire (1B150F-3, World Precision Instruments, USA). Elles sont polies avant leur utilisation par une microforge (MF-900, Narishige, World Precision Instruments, USA) afin d’en émousser l’extrémité. Il existe 4 configurations de patch-clamp ayant chacune des avantages et/ou inconvénients propres (figure 14) [Hamill et al., 1981] :

- Pour parvenir à la configuration cellule-attachée (« cell-attached »), une faible aspiration après avoir posé la pipette de patch sur la membrane plasmique de la cellule conduit à une jonction pipette-membrane de haute résistance électrique (plusieurs GΩ : le « gigaseal ») qui
augmente le rapport signal/bruit. Dans ce cas, l’intégrité du milieu intracellulaire ainsi que la valeur du potentiel de membrane sont conservées. Cette configuration permet d’enregistrer l’activité électrique d’un petit nombre de canaux ioniques (au mieux un seul canal) présent(s) dans le patch. Pour maintenir (« clamper ») correctement le potentiel de membrane du patch dans ces conditions, il faut incuber les cellules dans un milieu riche en potassium (150 mM KCl) pour imposer des créneaux de potentiel d’amplitude connue à partir d’un potentiel de membrane maintenu à 0 mV.

- A partir de cette étape, une aspiration brève provoque la rupture du patch mettant en relation le milieu intracellulaire avec la solution contenue dans la pipette. Dans cette configuration cellule-entière (« whole-cell »), il est tout à fait possible de contrôler la composition ionique intracellulaire et d’enregistrer l’activité électrique de tous les canaux ioniques de la membrane plasmique en potentiel-imposé (« voltage-clamp ») ou le potentiel de membrane en courant-imposé (« current-clamp »). Un des inconvénients majeurs tient au fait que certains éléments cytoplasmatiques sont susceptibles de diffuser dans le milieu intrapipette ayant pour conséquence la perturbation de la régulation du canal étudié : phénomènes de « run-down » ou de « run-up » (respectivement, diminution ou augmentation de l’amplitude du courant pendant l’enregistrement).

- Dans les configurations de patch-excisé, un fragment de membrane est arraché avec la pipette ce qui permet l’enregistrement d’un petit nombre de canaux ioniques. Selon la procédure choisie, il est possible d’exposer soit la face interne (« inside-out ») soit la face externe (« outside-out ») de la membrane plasmique à la solution extracellulaire qui peut être aisément manipulée.

Les configurations cellule-attachée et patch-excisé mesurent des activités de canaux unitaires (SCR : Single-Channel Recording) qui nécessitent que l’extrémité des pipettes soient préalablement recouvertes de Sylgard® et polies alors que les configurations cellule-entière s’intéressent aux courants globaux (WCR : Whole-Cell Recording).

Les mesures se font à l’aide d’un amplificateur RK-300 (Biologic, Grenoble, France) connecté à un système d’acquisition informatique (Pulse 9.1, Heka) via un convertisseur Analogique/Digital (ITC16, Instrutech Corp, USA). La résistance d’entrée de l’amplificateur est réglée sur 0,1 GΩ pour le WCR ou 10 GΩ pour le SCR. L’analyse est faite par les programmes PulseFit 9.1 (Heka) et Origin 5.0 (Microcal, Northampton, MA) pour les signaux obtenus en WCR ou par WinEDR (programme gratuit) pour ceux obtenus en SCR. Les expériences de patch-clamp ont été réalisées à température ambiante.
Figure 14 : Les différentes configurations de la technique électrophysiologique de patch-clamp.

A : schéma permettant leur obtention, adapté d'après [Hamill et al., 1981]. **B** : schéma permettant de visualiser les éléments principaux que sont : la pipette, l'électrode, la membrane plasmique et le canal ionique.

La composition exacte des différents milieux utilisés est détaillée dans la partie « Matériels et Méthodes » des différents articles (dans le chapitre « Résultats »). La base des solutions extracellulaires est l’HBSS (*H*ank’s *B*alanced *S*alt *S*olution ; contenant 142,6 mM NaCl / 5,6 mM KCl / 0,34 mM Na₂HPO₄ / 0,44 mM KH₂PO₄ / 5,6 mM Glucose / 4,2 mM NaHCO₃ / 10 mM HEPES / 2 mM CaCl₂ et 1 mM MgCl₂, dont le pH et l’osmolarité sont respectivement ajustés à 7,4 et 310 mOsm/l) qui sert également de milieu extracellulaire pour la technique d’imagerie calcique que je détaille dans la partie suivante.
IV. MICROSCOPIE

IV.1 / MICROSCOPIE A LUMIERE TRANSMISE

Les images réalisées en lumière transmise ont été prises par un appareil photographique numérique monté sur un microscope inversé (Nikon TS100) doté d’objectifs de 10, 20 et 40x.

IV.2 / IMAGERIE DE FLUORESCENCE QUANTITATIVE DU CALCIUM LIBRE INTRACELLULAIRE

L’imagerie calcique par fluorescence permet de mesurer et d’enregistrer précisément les variations de la [Ca$^{2+}$]$_{cyt}$ de plusieurs cellules simultanément dans un champ déterminé.

IV.2.a) Caractéristiques de la sonde calcique fura-2/AM

Le fura-2 est une sonde calcique dérivée du fluorophore stilbène possédant 4 fonctions carboxylliques dont l’arrangement spatial octocoordonné est caractéristique des chélateurs calciques tels que l’EGTA et le BAPTA. C’est une sonde ratiométrique, synthétisée par Grynkiewicz et al (1985), à double longueur d’onde d’excitation et simple longueur d’onde d’émission, utilisée pour mesurer \textit{in vivo} la [Ca$^{2+}$]$_{cyt}$. Le fura-2, dont l’affinité pour le Ca$^{2+}$ est élevée (Kd avoisinant les 220 nM), existe sous 2 formes :
- il est utilisé sous forme estérifiée, perméante d’acétoxyméthylester lipophile non-chargée (fura-2/AM) qui lui permet de traverser la membrane plasmique,
- une fois dans la cellule, des estérasases cytoplasmiques endogènes libèrent par hydrolyse le fura-2 hydrophile sous sa forme acide. Cette forme libre (non-liée au Ca$^{2+}$), chargée sous forme d’anion, possède une fluorescence dépendante de la concentration en Ca$^{2+}$ libre.

La liaison du Ca$^{2+}$ sur la molécule de fura-2 entraîne un déplacement du spectre d’excitation sans modification de celui d’émission (\textit{figure 15A}). En effet, le fura-2 libre présente un pic d’excitation maximale à 380 nm (F380) alors que complexé au Ca$^{2+}$ il est de 340 nm (F340). Le pic de fluorescence émise par la sonde est toujours mesuré à 510 nm. Ainsi, après calibration, l’équation de Grynkiewicz permet de calculer le rapport de la fluorescence mesurée pour ces 2 longueurs d’onde d’excitation (R = F340/F380) comme une mesure proportionnelle de la [Ca$^{2+}$]$_{cyt}$, qui est le paramètre important car c’est le Ca$^{2+}$ libre qui est immédiatement disponible pour les protéines Ca$^{2+}$-dépendantes.
IV.2.b) Charge des cellules en fura-2/AM

Avant l’enregistrement, le milieu de culture est remplacé par une solution de charge composée d’HBSS contenant 2 μM de fura-2/AM (Calbiochem, France) pendant 45 minutes à température ambiante et à l’obscurité. Les cellules, cultivées sur des lamelles de verre (Ø 22 mm et 0,13-0,16 mm d’épaisseur ; CML France) pour éviter l’autofluorescence du plastique, sont ensuite lavées avec une solution d’HBSS seule pour éliminer toute trace de sonde non incorporée. Le protocole diffère légèrement pour des expériences réalisées en combiné, c’est-à-dire quand l’imagerie calcique est associée au patch-clamp, ce qui permet d’approfondir le travail car l’homéostasie calcique est la résultante de l’activité de très nombreuses protéines dont les canaux ioniques font partie. Dans ce cas, la pipette de patch contient 50 μM de fura-2 libre dans le but de charger directement la cellule en configuration cellule entière par simple diffusion jusqu’à l’équilibre.

IV.2.c) Système de mesure

L’équipement optique comprend un microscope à épifluorescence (Olympus IX 70) et un système d’excitation lumineuse muni d’une lampe à ultraviolets au xénon couplée à un monochromateur (Till Photonics) permettant de sélectionner la longueur d’onde d’excitation (figure 15B). Le signal lumineux d’excitation est envoyé vers la préparation via une fibre optique, des filtres neutres et un miroir dichroïque (450 nm) permettant d’exciter alternativement la sonde à 340 et 380 nm. La lumière émise passe successivement à travers le miroir dichroïque, un filtre passe-haut (510 nm) avant d’être réfléchie par un prisme puis
envoyée vers une caméra digitale CCD 12 bits (MicroMax 5MHz, Princeton Instruments). L’intensité lumineuse obtenue pour chaque longueur d’onde d’excitation est convertie au niveau du capteur CCD en signal numérique et quantifiée par un programme spécialisé (Metaflour 5.0, Universal Imaging).

IV.3 / MICROSCOPIE CONFOCALE

Cette technique offre de nombreux avantages par rapport à la microscopie de fluorescence classique : contrôle de la profondeur de champ, réduction (voire élimination) du bruit de fond, très haute résolution spatio-temporelle. Ces performances sont dues à l’utilisation de filtres spatio (« pinhole ») qui éliminent les rayons lumineux émis en dehors du plan focal (*figure 16*).

figure 16 : Principaux composants d’un microscope confocal et représentation schématique du trajet optique depuis l’excitation par le laser jusqu’à l’émission captée par le photomultiplicateur. Modifiée d’après http://projects.santec.lu/bioinfo/imaging/tutorial/figure4.jpg.

© 2010 Tous droits réservés. http://doc.univ-lille1.fr
Les images des cellules vivantes ou fixées observées en fluorescence ont été prises par un microscope confocal inversé Zeiss LSM 510 doté d’un objectif à immersion 40x (ouverture numérique : 1,3 ; résolution max à 488 nm : 229 nm) et 60x (ouverture numérique : 1,4 ; résolution max à 488 nm : 212 nm) associé à une unité contrôlant les lasers. Les fluorochromes verts sont excités par un laser argon (488 nm) alors que les rouges le sont par un laser hélicium-néon (546 nm) dont la lumière est transmise à l’échantillon via une fibre optique et un miroir dichroïque. La fluorescence émise est ensuite reçue au niveau de photomultiplicateurs et les signaux sont alors traités par un logiciel spécifique (AIM 3.2). Les paramètres d’acquisition doivent bien entendu être identiques entre les différentes prises de vue et de mesure au sein d’une même expérience pour permettre les comparaisons d’intensité de marquage.

V. ÉTUDE DE L’EXOCYTOSE À L’AIDE DE MARQUEURS DU TRAFIC MEMBRANAIRE

Dans cette optique, 2 sondes lipophiles ont été utilisées dont le FM1-43 (N-(3-triethylammoniumpropyl)-4-(p-dibutylaminostyryl)pyridinium dibromide, Calbiochem) (4 µM) qui est une sonde styryl, soluble dans l’eau où elle n’est pas fluorescente. Elle est très souvent utilisée pour suivre le trafic membranaire intracellulaire [Angleson et al., 1999] car en s’insérant dans le feuillet externe de la membrane plasmique cette sonde devient fluorescente jusqu’à atteindre un équilibre de concentration entre la membrane et le milieu externe. Ses longueurs d’onde d’excitation et d’émission sont respectivement 488 et 622 nm. Les spectres d’excitation du FM1-43 et du fura-2 étant très différents, des mesures combinées du taux de Ca²⁺ intracellulaire et de la fluorescence du FM1-43 ont été effectuées sur les mêmes cellules.

La seconde sonde est le TMA-DPH (T-204, 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate, Molecular Probes) (1 µM) qui s’intègre également dans la membrane plasmique des cellules et qui possède des caractéristiques similaires à celles du FM1-43 [Reid et al., 2000]. Ses longueurs d’onde sont 356 nm pour l’excitation (rendant impossible l’utilisation simultanée avec le fura-2 en raison de la proximité des longueurs d’ondes) et 431 nm pour l’émission.
VI. MESURE DE LA SECRÉTION DE PHOSPHATASE ACIDE PROSTATIQUE

Pour le dosage de la PAP (Phosphatase Acide Prostatique), marqueur sécrété des cellules épithéliales prostatiques dont le rôle reste encore très flou dans la prostate [Horoszewicz et al., 1983], j’ai disposé de 2 méthodes. La première, utilisée au tout début de ma thèse, est basée sur la transformation par les phosphatases, à pH acide (tampon citrate, pH=4,8), du pNPP (4-para-nitrophénylphosphate) en para-nitrophénol. L’ajout de soude stoppe la réaction et permet la formation de para-nitrophénolate dont le dosage colorimétrique à 405 nm est proportionnel à la quantité d’enzyme sécrétée (Unité Sigma/ml). La seconde méthode (activité PAP en mUI/ml) consiste en un dosage fluorimétrique toujours réalisé à pH acide (tampon citrate, pH = 4,8) mais plus sensible d’où ma préférence pour cette méthode pour la suite de ma thèse. Il s’agit du kit DIFMUP (6,8-difluoro-4- méthylumbelliferyl phosphate, Molecular Probes) basé sur le clivage par des phosphatases du DIFMUP en DIFMU dont la fluorescence est mesurée à 450 nm après excitation à 360 nm [Lin et al., 2001]. Un tampon tartrate, inhibant spécifiquement l’activité prostatique, permet de la différencier des autres activités phosphatases acides. Dans le cas du DIFMUP, la mesure est faite par un lecteur de plaque (FLX 800, Bio-tek Instruments ; associé au logiciel KC Junior). L’activité phosphatase acide prostatique spécifique correspond donc à la différence entre l’activité totale obtenue en tampon citrate moins celle obtenue en tampon tartrate. J’ai réalisé la plupart des expériences de sécrétion en plaques 24 puits (Nunc), à raison de 6 puits par condition.

VII. IMMUNODETECTION

VII.1 / EXTRACTION DES PROTEINES TOTALES

Après un lavage au PBS (Phosphate Buffered Saline), les cellules sont grattées dans ce même tampon puis centrifugées 10 minutes à 1 000 g. Le culot cellulaire obtenu est lysé avec du tampon RIPA (PO₄Na₂/K, pH 7,2 à 20 mM ; Triton X-100 1% ; déoxycholate de sodium 1% ; NaCl 150 mM ; 5 mM EDTA) en présence d’un cocktail d’anti-protéases (Sigma, P 8340) et de 5 mM d’orthovanadate de sodium pendant 1 heure sur glace. Une centrifugation à 4°C pendant 10 minutes à 14 000 g est effectuée pour finalement doser le contenu protéique du surnageant à 562 nm par la méthode BCA (Pierce, Chemical Co., Rockford, IL).
VII.2 / WESTERN-BLOT

Après avoir déposé la même quantité de protéines pour chaque échantillon, une électrophorèse monodimensionnelle est réalisée dans un système Bio-Rad selon la technique SDS-PAGE (Sodium Dodecyl Sulphate-PolyAcrylamide Gel Electrophoresis). La densité du gel de polyacrylamide, de 7 à 16% pour mes travaux, est choisie en fonction du poids moléculaire des protéines à séparer. À la fin de l’électrophorèse, les protéines sont transférées par électrotransfert sur une membrane de nitrocellulose si elles sont petites et/ou hydrophiles ou sur une membrane de PVDF (Polyvinylidine Fluoride) si au contraire elles sont grosses et/ou hydrophobes ce qui est le cas pour la sous-unité pore α_{1H} qui avoisine 260 kilodaltons (kDa).

Une fois le transfert effectué, la membrane est saturée par du TNT-lait 5% (15 mM de tampon Tris pH=8 ; 140 mM NaCl ; 0,05% de Tween et 5% de lait en poudre écrémé) sous agitation pendant 30 minutes à température ambiante afin de réduire les fixations aspécifiques de l’anticorps primaire. Celui-ci est dilué dans du TNT-lait 5% et mis en présence de la membrane soit 1 heure à température ambiante, soit la nuit à 4°C en fonction de l’anticorps (liste de ceux que j’ai utilisés figure 17). Après 3 lavages au TNT, la membrane est incubée 1 heure à température ambiante dans du TNT-lait 5% en présence de l’anticorps secondaire (anti-IGg de lapin, de souris ou de chèvre en fonction de l’espèce chez laquelle a été produit l’anticorps primaire) lié à la peroxydase du radis noir dilué au 1/20 000ème (Laboratoires Zymed Inc, San Francisco, CA). Après des lavages au TNT, les protéines sont révélées par chimioluminescence grâce à un substrat approprié, le « Supersignal West Dura Chemiluminescent » (Pierce, Rockford Company, IL) en suivant les instructions du fournisseur. La membrane est enfin exposée à des films BioMax Light (Kodak, Rochester, NY) et l’intensité des signaux obtenus est mesurée par densitométrie sur une station d’acquisition Chemidoc (Biorad, France) puis semi-quantifiée grâce au rapport protéine d’intérêt/protéine rapporteuse (actine ou calnexine).

Au début de ma thèse, j’ai testé 2 anticorps anti-CaV3.2 (T-type Ca$^{2+}$ CP α_{1H} (N-18) et T-type Ca$^{2+}$ CP α_{1H} (C-20), Santa Cruz Biotechnology) qui se sont avérés inefficaces dans nos lignées cancéreuses prostatiques et il m’était donc impossible d’étudier l’expression de cette protéine. C’est dans l’optique de pouvoir travailler de manière indirecte sur la régulation du canal CaV3.2 que j’ai établi le clone LNCaP-α_{1H}-peGFP (comme je l’ai décrit partie II.2) où il est possible de détecter α_{1H} par un anticorps primaire anti-GFP (figure 18A).
nom	monoclonal ou polyclonal	espèce	dilution	fournisseur
anti-Ca,3.2	polyclonal T-type Ca²⁺ CP α₁H (N-18)	chèvre	1/100ème (WB)	Santa Cruz Biotechnology
	polyclonal T-type Ca²⁺ CP α₁H (C-20)	chèvre	1/100ème (WB)	Santa Cruz Biotechnology
	polyclonal	lapin	1/500ème (IF)	Alomone
			1/250ème (WB)	
anti-calnexine	monoclonal	souris	1/1 000ème (WB)	Chemicon Biotechnology
anti-β-actine	monoclonal	souris	1/200ème (IF)	Sigma
anti-chromogranine A	monoclonal	souris	1/50ème (IF)	DAKO
anti-GFP	polyclonal	lapin	1/1 000ème (WB)	Abcam
anti-PAP	polyclonal	lapin	1/100ème (WB)	Neomarkers
anti-Ki-67	polyclonal	lapin	1/100ème (IF)	Abcam
anti-cytokératine 18	monoclonal	souris	1/1 000ème (IF)	Neomarkers

figure 17 : liste des différents anticorps primaires utilisés. WB = western-blot, IF = immunofluorescence.

Par la suite, la compagnie Alomone a commercialisé un anticorps anti-Ca₃.2 grâce auquel j’ai pu détecter une bande à la taille souhaitée dans les cellules LNCaP-α₁H (figure 18B). Cet anticorps a également été validé en immunofluorescence (figure 11), technique qui permet de détecter la protéine dans des cellules fixées comme je le détaille ci-dessous.

figure 18 : western-blot effectués sur les cellules LNCaP, LNCaP-α₁H ou LNCaP-α₁H-GFP à l’aide de différents anticorps. A : 2 anticorps primaires dirigés contre α₁H (Ac anti-α₁H C20 et Ac anti-α₁H N18) et un dirigé contre la GFP (Ac anti-GFP). B : anticorps anti-Ca₃.2 distribué par Alomone (1/250ème).
VII.3 / IMMUNOFLUORESCENCE INDIRECTE

L’immunofluorescence indirecte consiste à détecter une protéine spécifique par l’intermédiaire de 2 anticorps dont le second est couplé à un fluorophore. Les cellules, cultivées pour l’occasion sur des lamelles de verre (∅ 14 mm et 0,13-0,16 mm d’épaisseur ; CML France), sont tout d’abord fixées. Pour se faire, les lamelles sont lavées au PBS avant d’être incubées 15 minutes dans du paraformaldéhyde (PFA) 4% sur glace ou dans de l’acétone à -20°C. Elles sont lavées 3 fois au PBS puis recouvertes de PBS-gélatine (gélatine de poisson 1,2%, tween 0,02% et glycine 0,2 M) pour être saturées pendant 30 minutes dans une chambre humide, à température ambiante. La mise en contact avec l’anticorps primaire d’intérêt dilué dans le PBS-gélatine se fait ensuite pendant 1 heure à 37°C avant de faire des lavages au PBS-gélatine. S’ensuit une incubation d’1 heure à 37°C avec l’anticorps secondaire couplé à l’Alexa fluor 488 ou à l’Alexa fluor 546, respectivement dilués au 1/2 000ème et 1/4 000ème dans le PBS-gélatine. Après lavages avec du PBS-gélatine puis, si nécessaire, avec du PBS dans lequel a été dilué du DAPI (Diaminido Phenyl Indol) au 1/200ème pour marquer les noyaux des cellules, les lamelles sont montées avec du Mowiol® avant d’être finalement observées en microscopie à épifluorescence (Zeiss Axiophot) ou en microscopie confocale (Zeiss LSM 510).

VII.4 / BIOTINYLATION DES PROTEINES DE SURFACE

Cette technique permet, suite au marquage des protéines membranaires par la biotine suivi d’une extraction totale, de purifier et de détecter les protéines d’intérêt présentes uniquement au niveau de la membrane plasmique des cellules. En effet, la biotine peut se conjuguer par l’intermédiaire de plusieurs réactions chimiques à différentes cibles, les protéines notamment.

Les cellules, cultivées dans les flacons de 75 cm², sont tout d’abord placées sur glace pour y être lavées à 2 reprises avec du PBS-B (PBS contenant 1 mM MgCl₂, 0,5 mM CaCl₂ et dont le pH est ajusté à 8 avec NaOH). Elles sont ensuite incubées en présence de 0,5 mg/ml de biotine (EZ-link Sulfo-NHS-LC-biotin : dans ce cas la biotine ne traverse pas la membrane plasmique et le groupement NHS interagit avec les amines (lysines) présentes dans les protéines ; Pierce, Rockford Company, IL) dans le PBS-B, sur glace pendant 1 heure. Les cellules sont alors lavées 2 fois avec du PBS-B contenant 100 mM de glycine pour fixer la biotine non-liée aux protéines membranaires. Les protéines de la surface cellulaire sont désormais considérées comme biotinylées et les cellules peuvent subir un dernier lavage avec
du PBS seul avant d’être lysées comme précédemment puis centrifugées à 4°C pendant 10 minutes à 14 000 g. Le surnageant est dosé par la méthode BCA et une petite quantité de protéines est mise de côté comme contrôle d’expression des protéines totales. En parallèle, entre 0,5 et 1 mg de protéines sont mises en contact, sur la nuit à 4°C, avec 40 µl de billes streptavidine (ou neutravidine) par échantillon dans le but de purifier les protéines marquées par la biotine étant donné qu’elle possède une affinité très élevée pour l’avidine. Finalement, les billes sont rincées plusieurs fois par du tampon de lyse puis les échantillons sont déposés comme précédemment.

VIII. MESURE DE VIABILITE CELLULAIRE ET D’APOPTOSE

VIII.1 / TEST DE VIABILITE

La méthode colorimétrique utilisée (CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay, Promega, France), qui détermine le nombre de cellules viables, se compose de MTS (sel de tétrazolium) et de PMS (phénazine méthosulfate). Des déshydrogénases présentes dans les cellules métaboliquement actives réduisent le MTS en formazan qui est soluble dans le milieu de culture. Cette production de formazan, mesurée par son absorbance à 490 nm, est donc directement proportionnelle au nombre de cellules viables en culture. Pour des cellules cultivées dans une plaque 24 puits, il convient d’enlever le milieu de culture avant de déposer dans chacun des puits 400 µl du réactif préparé de la façon suivante : ajouter 1,9 ml de MTS à 2 mg/ml et 100 µl de PMS à 0,92 mg/ml pour 10 ml de PBS. La réaction s’effectue pendant 2 heures à l’obscurité dans l’étuve avant de mesurer l’absorbance par un lecteur de plaque (Dinex Technologies MR*422, Thermolabsystems, France).

Lorsque l’apoptose est stable entre les différentes conditions, ce kit permet d’estimer la prolifération cellulaire.

VIII.2 / COLORATION AU HOESCHT

Une des méthodes permettant de mesurer l’apoptose est la technique de coloration au Hœscht. Le bisbenzimide (Hœscht 33528, Sigma, L’Isle d’Abeau, France) est un agent intercalant de l’ADN qui permet la visualisation de la chromatine en microscopie à fluorescence.

Après avoir pris soin de préserver les surnageants, afin de prendre en considération les cellules « flottantes » (apoptose provoquée ou provoquant le décollement), les cellules encore
adhérentes sont trypsinisées. L’ensemble est homogénéisé puis centrifugé afin d’être déposé sur une lame par force centrifuge (Cytospin3, Shambon, France). Les cellules sont alors fixées par un bain de méthanol à -20°C pendant 15 minutes puis elles sont incubées 20 minutes à l’obscurité et à température ambiante dans du PBS contenant 4 µg/ml de Hœsch. Après lavage au PBS, les lames sont surmontées d’une lamelle avant d’être observées au microscope à épifluorescence (Olympus) à la longueur d’onde d’excitation de 435 nm. Il est ainsi possible de distinguer les différentes figures apoptotiques (condensation périnucléaire, hypercondensation chromatinienne, vésicules apoptotiques) et toutes sont prises en compte pour le comptage. Celui-ci nécessite plus de 500 cellules et doit être répété au moins 3 fois par condition. Les résultats sont exprimés en pourcentage du nombre de cellules présentant une figure apoptotique sur le nombre total de cellules comptées.

IX. CYCLE CELLULAIRE

Il est également possible de quantifier l’apoptose des cellules par la technique de cytométrie de flux en se référant à la proportion des cellules se trouvant sous la phase G0/G1 c’est-à-dire en « pic sub-G1 ».

La cytométrie de flux permet la mesure de paramètres cellulaires (taille, granularité par exemple) suite au passage des cellules devant un faisceau laser. L’étude du cycle cellulaire est possible grâce à l’incorporation, au niveau de l’ADN des cellules, de fluorochromes qui émettront une fluorescence suite à l’excitation par le laser. Les mesures sont effectuées très rapidement, en général, plusieurs milliers de cellules à la seconde. Cette technique offre une méthodologie rapide et simple à mettre en œuvre pour suivre la distribution des cellules dans les différentes phases du cycle en fonction de divers stimuli ou de l’ajout de certaines drogues.

Les cellules, à raison de 3 flacons de 25 cm² par condition, sont d’abord trypsinisées, homogénisées avec leur surnageant puis centrifugées 5 minutes à 1 000 g. Elles sont ensuite comptées, pour ne conserver qu’un million de cellules par échantillon, lavées 3 fois au PBS puis fixées à l’éthanol 70% glacié pendant 10 minutes à 4°C. Un lavage au PBS précède alors une incubation de 15 minutes en présence de 2 µg/ml de RNase dans du PBS. L’étape suivante consiste en un marquage par 25 µg/ml d’iodure de propidium (IP, fluorochrome qui s’intercale entre les bases de la double hélice de la molécule d’ADN) dans du PBS-Triton X-100 0,1%, pendant 30 minutes minimum à température ambiante et à l’obscurité. La distribution du cycle cellulaire (entre les différentes phases : sub-G1 correspondant à
l’apoptose, G0/G1, S et G2/M) est mesurée à 520 nm après excitation à 488 nm par un cytomètre de flux (Beckman coulter Epics XL4-MCL) couplé à un logiciel d’acquisition Expo32. La réinterprétation des données est réalisée sur Multicycle for Windows (Phoenix Flow system). Ce travail est effectué en collaboration externe avec Nathalie Jouy de l’IFR 114 (Lille, France).

X. ANALYSE DES DONNEES

Les tests statistiques ont été réalisés par le t-test (pour comparer 2 groupes indépendants) ou par une analyse de variance (ANOVA=Analysis Of Variance) suivie d’un post-test de Student-Newman-Keuls (pour des comparaisons par paires) ou de Dunnet (pour comparer un contrôle avec plusieurs autres conditions) grâce au logiciel GraphPad Instat™ (GraphPad Software, V2.04). Les différences sont considérées comme significatives avec des seuils de : p<0,05 : * ; p<0,01 : ** ; p<0,001 : ***. Les résultats sont exprimés par les moyennes représentées avec les écarts standards à la moyenne (sem).
RESULTATS
Article 1

“A role for voltage gated T-type calcium channels in mediating “capacitative” calcium entry?”

Florian Gackière†, Gabriel Bidaux†, Philippe Lory, Natalia Prevarskaya, Pascal Mariot.
Cell Calcium. 2006 Apr;39(4):357-66.
†: Les auteurs ont contribué à part égale dans ce travail.

Nous avons entrepris ce travail suite à l’étude publiée en 2004 qui concluait à un rôle probable des canaux calciques voltage-dépendants de type T dans l’Entrée Capacitive de Calcium (ECC) dans des lignées cancéreuses prostatiques humaines [Gray et al., 2004]. Les auteurs de cet article ont principalement utilisé, comme inhibiteur des canaux calciques de type T, le mibefradil qui est un dérivé tétralol chimiquement distinct des autres antagonistes des canaux calciques que sont les dihydropyridines (nifédipine), les phénylalkylamines (verapamil) et les benzothiazépines (diltiazem). Le mibefradil est un agent antihypertenseur très efficace car, contrairement aux autres antagonistes qui agissent principalement par blocage des canaux calciques de type L abondants au niveau du tissu contractile cardiaque, il bloque préférentiellement les Cav3, abondants au niveau des muscles lisses vasculaires et du tissu nodal. Les premiers travaux sur l’action du mibefradil utilisaient son nom de développement, Ro 40-5967, puis il a été utilisé quelques temps en clinique sous le nom Posicort™. Il a cependant dû être retiré du marché par Hoffmann-La Roche notamment en raison d’interaction avec certaines enzymes hépatiques telles que le cytochrome P450, dont il est à la fois un substrat et un inhibiteur [Welker et al., 1998]. Il est connu que le mibefradil bloque les courants calciques de type T à des concentrations environ 10 fois plus faibles que celles touchant les autres courants calciques [Bezprozvanny et al., 1995; Martin et al., 2000]. La gamme de concentration efficace du mibefradil pour bloquer les courants calciques de type T est tout de même assez étendue car l’IC₅₀ est de 150 nM dans le muscle lisse vasculaire [Clozel et al., 1997] alors qu’il est de 4,7 µM dans les cellules spermatogéniques de souris [Arnoult et al., 1998].

L’évidente efficacité thérapeutique du mibefradil est en opposition avec le manque d’informations concernant son mécanisme d’action. Les canaux calciques de type T pourraient être la principale cible du mibefradil mais compte tenu de la multiplicité de ses effets, il est vraisemblable que son action soit plus large. Il a en effet été montré qu’il inhibe efficacement différents types de canaux chlorure-Ca²⁺ et -volume-dépendants [Nilius et al.,
1997; Ziegelhoeffer et al., 2003], potassiques [Liu et al., 1999] ou encore sodiques [McNulty et al., 2004; Strege et al., 2005].

De plus, des études ont montré que le mibefradil diminuait l’ECC induite par la déplétion des stocks calciques réticulaires provoquée par la TG ou le t-BHQ dans les cellules musculaires lisses de lapin [Cheglakov et al., 1997], dans les cellules endothéliales pulmonaires de bœuf ou encore dans les cellules endothéliales aortiques humaines [Nilius et al., 1997; Yazawa et al., 2002].

Dans la mesure où les acteurs moléculaires responsables de l’ECC n’étaient pas complètement identifiés, bien que les canaux TRP étaient en 2004 les candidats les plus probables (remplacés aujourd’hui par l’association Orai-STIM), il nous semblait fondamental de tester l’hypothèse selon laquelle les canaux calciques de type T (CaV3.2 en particulier) pourraient participer à l’ECC.

Dans notre étude (article 1), nous avons tout d’abord montré que le mibefradil diminue l’ECC dans les lignées cancéreuses de prostate humaine (LNCaP, DU-145 et PC-3). Ensuite, par l’utilisation de la flunarizine et du nickel à des concentrations micromolaires, d’autres inhibiteurs connus des canaux calciques de type T, et d’un clone de cellules LNCaP surexprimant les CaV3.2, nous avons mis en évidence que l’action du mibefradil sur l’entrée capacitée de calcium (ECC) devait passer par une autre voie que celle des canaux calciques de type T. Les CaV3 ne participeraient donc pas à l’ECC comme cela avait été fortement supposé dans les cellules cancéreuses de prostate et de sein [Gray et al., 2004]. Nous avons finalement mis en évidence que le mibefradil agissait sur des canaux activés par la déplétion des stocks calciques intracellulaires (SOC), indépendamment de son action sur les canaux calciques de type T.

Les effets thérapeutiques et pharmacologiques du mibefradil peuvent donc être dus à son action sur des canaux calciques autres que ceux de type T, mais aussi sur d’autres types de canaux ioniques tels que les canaux SOC. Il faut donc être prudent quant à l’interprétation des effets de cet antagoniste calcique quand plusieurs classes de canaux ioniques sont exprimées dans le modèle cellulaire étudié, ce qui est presque toujours le cas. Cette action non-spécifique du mibefradil a également interdit par la suite son emploi dans des expériences fonctionnelles (prolifération, apoptose ou sécrétion) où d’autres inhibiteurs, non sans défauts eux-aussi mais finalement plus spécifiques (Ni2+, flunarizine et kurtoxine), furent utilisés.
A role for voltage gated T-type calcium channels in mediating "capacitative" calcium entry?

Florian Gackière a,1, Gabriel Bidaux a,1, Philippe Lory b, Natalia Prevarskaya a, Pascal Mariot a,∗

a Laboratoire de Physiologie Cellulaire, INSERM U802, Bâtiment SN3, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cédex, France
b Institut de Génomique Fonctionnelle, CNRS UMR 5203 141, rue de la Condonnelle 34094 Montpellier Cédex 05, France

Received 12 October 2005; received in revised form 5 December 2005; accepted 8 December 2005

Available online 26 January 2006

Abstract

Calcium entry through plasma membrane calcium channels is one of the most important cell signaling mechanism involved in such diverse functions as secretion, contraction and cell growth by regulating gene expression, proliferation and apoptosis. The identity of plasma membrane calcium channels, the main regulators of calcium entry, involved in cell proliferation has been thus extensively sought. Among these, a calcium entry pathway called capacitative calcium entry (CCE), activated by calcium store depletion, is particularly important in non-excitable cells. Though this capacitative calcium entry is generally supposed to occur through TRP channels there is some evidence that voltage-dependent T-type calcium channels may contribute to calcium entry after store depletion. Here we show that though mibefradil, a T-type calcium channel blocker, is able to reduce capacitative calcium entry induced by either thapsigargin or ATP, this was not mimicked by any other T-type calcium channel inhibitors even in cells overexpressing hH9251T-type calcium channels, leading us to conclude that T-type calcium channels are not responsible for the capacitative calcium entry observed in different cancer cell lines. On the contrary, we show that the action of mibefradil on capacitative calcium entry is due to an action on store-operated calcium channels.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Calcium entry through plasma membrane calcium channels is one of the most important cell signaling mechanism involved in such diverse functions as secretion, contraction and cell growth by regulating gene expression, proliferation and apoptosis [1]. Since the original work of Bovet et al. [2] which showed that tumor cell growth is dependent on extracellular calcium entry, some of the calcium-dependent molecular pathways controlling cell growth have been unravelled. For example, it has been demonstrated that a number of transcription factors, NF-AT, NF-kB, Oct/OAP may be implicated in the calcium-calmodulin dependent activation of gene transcription [3,4] or that calcium-dependent kinases like CamKII are involved in cell cycle control through the phosphorylation of targets such as p54cdk25 or pRB [5,6].

The identity of plasma membrane calcium channels, the main regulators of calcium entry, involved in cell proliferation has been thus extensively sought. A wide variety of calcium entry pathways have been characterized at biophysical, pharmacological and molecular levels. Among these, a calcium influx called capacitative calcium entry (CCE) has been described 20 years ago by Putney [7]. This mechanism is triggered by calcium store depletion induced either passively by inhibitors of endoplasmic reticulum Ca2+-ATPases (SERCA) and by calcium chelators, or actively by using IP3 receptor agonists. The molecular basis of this capacitative calcium influx is still under close examination and theTransient Receptor Potential (TRP) family of membrane channels

∗Corresponding author. Tel.: +33 3 20 43 40 77; fax: +33 3 20 43 40 66. E-mail address: Pascal.Mariot@univ-lille1.fr (P. Mariot).

1These authors contributed equally to this work.

doi:10.1016/j.ceca.2005.12.003
has recently provided the largest number of putative molecular candidates for carrying CCE [8].

Capacitative calcium entry has been demonstrated to be involved in cell proliferation [9,10] or apoptosis particularly in prostate cancer cells [11–14]. Though this capacitative calcium entry is generally supposed to occur through non-voltage-dependent calcium channels, a recent study has shown that voltage-dependent T-type calcium channels may also be responsible for calcium entry induced by store depletion [15]. Indeed, in addition to their role in pacemaker activity in the heart, action potential firing in central neurons of the hippocampus, these channels have been shown to carry a calcium influx at resting potential due to the overlap between their voltage-dependent activation and inactivation [16,17]. Therefore, the hypothesis of the involvement of T-type calcium channels in the regulation of both basal calcium concentration [16,17] and calcium increase after store depletion [15] was proposed. Three different isoforms, α1G (CaV3.1), α1H (CaV3.2) and α1I (CaV3.3) are responsible for a T-type calcium current when expressed in HEK293 cells or Xenopus oocytes (see [18] for review).

The role of T-type calcium channels in capacitative calcium entry was mainly supported by the inhibition of the calcium increase during CCE using a T-type calcium channel antagonist, mibefradil. This was shown in endothelial cells [19,20] and in prostate cancer cells [15] where mibefradil reduced calcium entry induced by thapsigargin, strongly suggesting that T-type calcium channels (CaV3.2) were responsible for agonist or store-operated calcium entry.

Here, we show that mibefradil is able to reduce capacitative calcium entry, this was not mimicked by any other T-type calcium channel inhibitors even in cells overexpressing α1H T-type calcium channels, leading us to conclude that T-type calcium channels are not responsible for the capacitative calcium entry observed in different prostate cancer cell lines. On the contrary, we show that the inhibitory effect of mibefradil on capacitative calcium entry is due to its action on store-operated calcium channels.

2. Material and methods

2.1. Cell culture and treatments

LNCaP, DU 145 and PC3 prostate cancer cells were purchased from the American Type Culture Collection and grown as recommended in RPMI 1640 (Biowhittaker, Finsena sous Bois, France) supplemented with 10% fetal bovine serum (Seromed, Polyclabo, Strauburg, France), and 5 mM l-glutamine (Sigma, Etoile d’Abeau, France). Cells were routinely grown in 50 ml flasks (Nunc, Polyclabo) in a humidified atmosphere at 37 °C (95% air–5% CO2). For electrophysiological and imaging studies, cells were subcultured on glass coverslips in petri dishes (Nunc) using trypsin. The culture medium was then changed every 3 days. In order to induce neuroendocrine differentiation, LNCaP cells were cultured with 1 mM dibutyryl cAMP for 6 days.

2.2. Establishment of stable LNCaP cell lines overexpressing either α1H-pcDNA3 or an empty pcDNA3 vector

Stable cell lines expressing α1H protein (LNCaP-α1H1) or control cell lines transfected with an empty pcDNA3 vector (LNCaP-Neo) were constructed by transfection with 2 μg of either α1H-pcDNA3 [21,22] or pcDNA3 plasmids in a 6 well plate for 8 h using a Gene Porter reagent (Gene Therapy Systems, Inc. (GTS) San Diego) according to the manufacturer’s recommended protocol. Then cells were cultured under selective pressure with G418 (700 μg/ml). G418 resistant colonies were subcloned before checking α1H T-type calcium currents with patch-clamp techniques as well as mRNA expression with RT-PCR analysis. At least three LNCaP-α1H1 clones and two LNCaP-Neo clones were confirmed and then used for patch-clamp experiments and fluorescence imaging.

2.3. Fluorescence imaging

Fluorescence imaging was carried out in HBSS solution (Hank’s Balanced Salt Solution) containing 142 mM NaCl, 5.6 mM KCl, 1 mM MgCl2, 0–10 mM CaCl2, 0.34 mM Na2HPO4, 0.44 mM KH2PO4, 10 mM HEPES and 5.6 mM glucose. The osmolarity and pH of external solutions were adjusted to 310 mOsm l−1 and 7.4, respectively.

Cytosolic calcium concentration was measured using Fura-2 loaded cells. LNCaP cells were loaded for 45 min at room temperature with 2 μM Fura-2/AM prepared in HBSS (see “recording solutions”) and subsequently washed three times with the same dye-free solution. The coverslip was then transferred into a perfusion chamber on a Olympus IX70 microscope equipped for fluorescence. Fluorescence was alternatively excited at 340 and 380 nm with a monochromator (Polychrome IV, TILL Photonics Gmbh, Planegg, Germany) and was captured after filtration through a long-pass filter (510 nm) by a MicroMax 5 MHz CCD camera (Princeton Instruments, Eevry, France). Acquisition and analysis were performed with the Metafluor 4.5 software (Universal Imaging Corp., West Chester, PA, USA). The intracellular calcium concentration was derived from the ratio of the fluorescence intensities for each of the excitation wavelengths (F340/F380) and from the equation of Grynkiewicz et al. [23]. All recordings were carried out at room temperature. The cells were continuously perfused with the HBSS solution and chemicals were added via the perfusion system. The flow rate of the whole-chamber perfusion system was set to 1 ml/min and the chamber volume was 500 μl.

2.4. Electrophysiological recordings

Patch-clamp recordings were performed in the whole-cell configuration [24] using a RK-300 patch-clamp amplifier
were adjusted to 290 mOsm l\(^{-1}\) and 7.4, respectively. Recording pipettes were filled with a solution containing 140 mM \(\text{Na}^+\), 1 mM MgCl\(_2\), 10 mM HEPES, 5.6 mM glucose, 10 mM TEA-Cl (teta-ethyl ammonium chloride), and 10 mM CaCl\(_2\). The osmolarity and pH of external buffers were adjusted to 310 mOsm l\(^{-1}\) and 7.4, respectively. Recording pipettes were filled with a solution containing 140 mM \(\text{Na}^+\), 10 mM HEPES, 1 mM MgCl\(_2\), and 1 mM EGTA. Osmolarity and pH were adjusted to 280 mOsm l\(^{-1}\) and 7.2, respectively.

When measuring store-operated calcium currents, bath medium contained 140 mM \(\text{Na}^+\), 1 mM MgCl\(_2\), 10 mM HEPES, and 1 mM EGTA. Patch-pipettes were filled with a solution containing 145 mM Cs Methane Sulfonate, 10 mM HEPES, 6 mM MgCl\(_2\), 10 mM EGTA, 5 mM BAPTA, and 1 \(\mu\)M ionomycin.

2.5. Combined electrophysiological and fluorescence measurements

To measure membrane potential concomitantly to intracellular free calcium concentration, the perforated configuration of the patch-clamp technique was used. Cells were loaded with 2 \(\mu\)M Fura-2-AM for 45 min as previously described. Briefly, amphotericin B (200 \(\mu\)g/ml final concentration) was diluted in a pipette medium containing 70 mM K2SO4, 10 mM NaCl, 10 mM KCl, 5 mM HEPES and 1 mM MgCl2 and mannitol to adjust the osmolarity to 290 mOsm l\(^{-1}\). The bath-recording medium was essentially similar to that of used in fluorescence imaging experiments.

2.6. Analysis of the \(\alpha_{1H}\) subunit gene expression of a voltage-dependent T-type calcium channel (RT-PCR)

Total RNA was isolated using the guanidium thiocyanate–phenol–chloroform extraction procedure [25]. After a DNAse I (Life Technologies) treatment to eliminate genomic DNA, 2 \(\mu\)g total RNA was reverse transcribed into cDNA at 42 \(\circ\)C using random hexamer primers (Perkin Elmer) and MuLV reverse transcriptase transcribed into cDNA at 42 \(\circ\)C. DNA amplification conditions included an initial 5 min denaturation step at 95 \(\circ\)C (which also activated the Gold variant of Taq Polymerase), and 40 cycles of 30 s at 95 \(\circ\)C, 30 s at 58 \(\circ\)C, 25 s at 72 \(\circ\)C, and finally 5 min at 72 \(\circ\)C.

2.7. Chemicals

All chemicals were purchased from SIGMA except for Fura-2 which was bought from Calbiochem (France Biochem, Meudon, France). Mibefradil was kindly provided by Dr. E.-M. Gutknecht and Dr. P. Weber (F. Hoffmann-La Roche, Basel, Switzerland).

2.8. Statistical analysis

Plots were produced using Origin 5.0 (Microcal Software, Inc., Northampton, MA). Results are expressed as mean ± S.E.M. Statistical analyses were performed using unpaired t-tests or ANOVA tests followed by either Dunnett (for multiple control versus test comparisons) or Student–Newman–Keuls post-tests (for multiple comparisons).

3. Results

Fig. 1 describes that, in different prostate cell lines (LNCaP, DU 145 or PC3 cells), mibefradil (10–20 \(\mu\)M) reduced the intracellular calcium concentration increase observed in response to TG by about 100–200 nM (Fig. 1A–D). In addition, mibefradil was able to significantly reduce the ATP-induced calcium increase in DU 145 cells where P2Y2 purinergic receptors are present [26] (Fig. 1E).

Since the decrease in capacitative calcium entry by mibefradil could be attributed to the inhibition of voltagedependent T-type calcium channels, most likely \(\alpha_{1H}\), we tested in various cell lines with different T-type calcium current (\(\text{Ca}^{2+}\text{V}_{\text{Ca}}\)) densities, whether the TG-induced capacitative calcium entry was correlated to the level of expression of the \(\alpha_{1H}\) subunit. To this end, we used the DU 145 and the PC3 cell lines as cell models having a low density of T-type calcium currents. Indeed, though an \(\alpha_{1H}\) transcript was shown to be present by RT-PCR in these cells (Fig. 2A), no voltage-dependent calcium currents could be observed in patch-clamp experiments (\(n = 24\)). LNCaP cells express \(\alpha_{1H}\) T-type calcium channels, the expression of which is enhanced by neuroendocrine differentiation (LNCaP-NE) [17]. In addition, we used two clones of LNCaP stably transfected with \(\alpha_{1H}\) (LNCaP-\(\alpha_{1H}\)) and two clones of control cells LNCaP-Neo (Fig. 2B). As previously shown [17], LNCaP and LNCaP-NE have an average T-type calcium current density of 0.2 and 1 pA/pF, respectively. Each \(\alpha_{1H}\) clone (LNCaP-\(\alpha_{1H}\)) had, respectively, an average T-type calcium current density of 8 ± 1.4 (\(n = 15\)) and 12.5 ± 1.5 pA/pF at −20 mV (\(n = 27\)).
Fig. 1. Mibefradil reduces capacitative calcium entry in various prostate cancer cell lines. For each calcium imaging experiment, the mean ± S.E.M. of at least 40 cells is shown, each experiment being carried out at least four times. A classical protocol was used to promote capacitative calcium entry; at the beginning of the experiment, the cells were bathed in a calcium-containing medium (2 mM), then calcium was removed for 5 min, and TG (0.1 μM) was eventually added for 5 min. Cells were washed from TG in a calcium-free solution for another 5 min and calcium chloride (2 mM) was readmitted. In (A) LNCaP, (B) LNCaP/H9251, (C) DU 145 and (D) PC3 calcium entry was promoted by TG. In (E) calcium entry was stimulated by ATP (100 μM) in DU 145 cells.

whereas LNCaP-Neo did not display T-type calcium currents significantly different from those observed in control LNCaP cells (Fig. 2C–D). As shown in Fig. 3A, all cell lines displayed a similar calcium increase during CCE whereas basal cytosolic calcium level was increased in LNCaP-Neo and LNCaP-α1H. Therefore, the magnitude of TG-induced calcium increase did not correlate with the level of expression of α1H. The elevated basal cytosolic calcium concentration observed in LNCaP-Neo and LNCaP-α1H was reduced by inhibitors of T-type calcium channels like NiCl2 (20 μM).

Fig. 2.Expression of T-type calcium current and α1H subunits in prostate cancer cells. (A) α1H mRNAs are detected in both LNCaP and DU145 cell lines. Agarose gel showing the expression of the α1H amplicon (expected size: 170bp) as well as the β2.5 isoform (expected size: 320bp) in three different prostate cell lines (LNCaP, DU 145 and PC3). A no-template control (H2O) was also run with the PCR samples, where the cDNA was replaced with water. A 1 kb DNA ladder (50 bp) was used as a DNA size marker. Each experiment was repeated two times and representative experiments are shown. (B) The overexpression of α1H subunit is confirmed in the LNCaP-α1H cell line. Representative RT-PCR displaying specific overexpression of α1H amplicon in the LNCaP-α1H cell line compared to the LNCaP-Neo control cells. β-Actin RNA expression (220 bp) was used as an internal standard to semi-quantify α1H overexpression. (C) Average T-type calcium current density in different prostate cancer cell lines. (D) Illustration of a typical T-type current in a LNCaP-α1H cell as compared to the absence of current in a LNCaP-Neo cell.
Fig. 3. The magnitude of capacitative calcium entry is not correlated to the level of expression of α₁H. (A) Representation of CCE and cytosolic basal calcium concentration in different prostate cell lines. (B) Dose-dependent inhibition of CCE by NiCl₂. The percentage of inhibition has been calculated according to the maximal calcium level reached during the CCE. (C) The inhibition of CCE by mibefradil (MIB 20 μM) is not mimicked by the T-type calcium channel inhibitor flunarizine (FLU, 10 μM) in different prostate cell lines (a: LNCaP, b: LNCaP-α₁H, c: DU145).

kurtoxin (200 nM) (not shown), showing the implication of T-type calcium channel in basal calcium homeostasis.

We thus carried out experiments to assess whether T-type calcium channels inhibitors other than mibefradil such as NiCl₂ or flunarizine were able to reduce TG-induced calcium increase. First, since T-type calcium channels, and particularly the α₁H subunit are more sensitive to NiCl₂ (IC₅₀: 5–100 μM), than any other calcium channels (HVA types and non-voltage dependent; IC₅₀: 100 μM to 5 mM), we performed a NiCl₂ dose–response on the plateau of the capacitative calcium entry. As shown on Fig. 3B, low concentrations of NiCl₂ (10–100 μM), that are known to inhibit CaV₃.2 current, did not significantly affect capacitative calcium entry. NiCl₂ had to be increased up to 1–5 mM to reduce by about 50% the calcium increase, independently on the level of expression of α₁H. Second, in some experiments, we subsequently tested flunarizine (10 μM), a blocker of T-type calcium channel at this concentration (Fig. 3C) and mibefradil (20 μM) on TG-induced calcium increase. Whereas flunarizine had no action at all, mibefradil significantly reduced capacitative calcium entry in both LNCaP and DU145 cells.

An implication of T-type calcium channels in capacitative calcium entry would rely on the ability of T-type calcium channels to be partially activated but not totally inactivated at resting potential, thereby allowing calcium to enter the cells. The optimum window for this calcium entry through T-type calcium channels is around −40 mV [16], which is close to the resting membrane potential of LNCaP cells [17]. We have investigated the action of thapsigargin on the resting membrane potential of LNCaP cells to assess whether such resting membrane potential figures are still recorded during capacitative calcium entry, which would be consistent with an involvement of a “window” T-type calcium entry. We show in combined current-clamp and calcium imaging experiments that TG induces an increase in cytosolic calcium which precedes a large hyperpolarization (Fig. 4A). On average, the resting membrane potential of LNCaP cells before the application of thapsigargin was −41 ± 3.5 mV which decreased to −70 ± 2.7 mV after the application of 0.1 μM TG (n = 7). When [Ca²⁺], or its time-derivative is plotted as a function of V_m (Fig. 4B), we can observe that both the absolute cytosolic calcium concentration and its rate of increase during the rising phase are both maximal at membrane potential ranging between −50 and −65 mV. We therefore show here that such a hyperpolarized membrane potential, for which T-type calcium channels are not activated, is incompatible with a maintained calcium entry through T-type calcium channels.

We finally attempted to elucidate the mechanism of action of mibefradil on capacitative calcium entry. Different hypotheses were tested such as an inhibitory action on calcium-dependent potassium channels like previously reported by others [27–29], which could lead to a depolarized membrane potential, and therefore to inactivated voltage-dependent calcium-channels impeding calcium entry. We have not been able to prove this to be correct in our cell models since our experiments showed that after full blockade of most potassium channels with 20 mM TEA, even though this provoked a decrease in capacitative calcium entry (through a reduction of the electrochemical gradient for calcium), mibefradil was still able to additively reduce the capacitative calcium entry (not shown) in LNCaP and DU 145 cells. The second possibility we investigated was the potential direct inhibition of store-operated calcium channels by
mibefradil. Store-operated calcium channels are classically activated by a depletion of internal calcium stores using either TG, ionomycin or strong calcium buffers in the patch-pipette. We show here on Fig. 5A that rapidly after establishing the whole-cell recording configuration in LNCaP cells an inward current (measured at -100 mV) develops due to the calcium store depletion generated by the diffusion of ionomycin and calcium buffers in the patch-pipette (see Section 2). As displayed in Fig. 5B, this current displays a voltage-dependency completely different from that of voltage-dependent T-type calcium currents. Indeed, our experiments and previous ones [13,30] show that the current activated by calcium store depletion exhibits a strong inward rectification. We then applied mibefradil (20 μM) on the plateau phase of the response and observed that the inwardly rectifying current was reduced by about 30% after two
significant change in the amplitude of the voltage-dependent operated inward current measured at buffers in the patch-pipette induced a slow increase of a store-pulse protocols. Whereas the infusion of ionomycin/calcium was about 2 pA/pF instead of 12 pA/pF with voltage-activation of T-type calcium channel, the full magnitude of result-cium currents which peaked at on Fig. 6 that such protocols allowed us to record T-type cal-

In order to delineate the action of mibefradil on SOC and T-type currents, we carried out voltage-ramp experiments in LNCaP cells overexpressing α1H-T-type channels. We show on Fig. 6 that such protocols allowed us to record T-type cal-
cium currents which peaked at −20 mV. Due to rapid inacti-
vation of T-type calcium channel, the full magnitude of resulting currents was underestimated with such a ramp protocol and was about 2 pA/pF instead of 12 pA/pF with voltage-pulse protocols. Whereas the infusion of ionomycin/calcium buffers in the patch-pipette induced a slow increase of a store-operated inward current measured at −100 mV, there was no significant change in the amplitude of the voltage-dependent T-type calcium current measured at −20 mV preceded the partial inhibition of the SOC current measured at −20 mV preceded the partial inhibition of the SOC current measured at −100 mV.

4. Discussion

T-type calcium channels have been shown to be expressed in many non-excitable cells in peripheral tissues such as kid-

necy cells, or prostate cells where their role is still unclear. One hypothesis is that they could participate to the regulation of calcium homeostasis by setting the resting basal calcium concentration [16,17]. Another possibility is that they could participate in capacitative calcium entry induced by intracell-

ular calcium store depletion [15].

We have shown in this work that mibefradil, a character-
ized T-type calcium channel inhibitor, induces a decrease in capacitative calcium entry in different prostate cancer cell lines. We show that this action of mibefradil occurs through the inhibition of calcium channels unrelated to T-type calcium channels. We therefore conclude that T-type calcium channels are not responsible for capacitative calcium entry by mibefradil is due to a direct inhibition of SOC channels.

Different studies previously showed that mibefradil par-
tially inhibited capacitative calcium entry in endothelial cells [19,20] and prostate cancer cells [15]. Since it was shown that mibefradil has the highest affinity for T-type calcium channels (IC50 = 0.3 μM) over L-type calcium channels (IC50 = 3 μM) [31,32], it was assumed in a recent work that T-type calcium channels are responsible for capacitative calcium entry [15].

In our experiments, the following reasons for which T-type calcium channels are not responsible for capacitative calcium entry are: (1) the inhibition of capacitative calcium entry by mibefradil is not mimicked by other blockers of T-type calcium channels (flunarizine, NiCl2 at micromolar concen-

trations). Indeed, the IC50 for the inhibition of capacitative calcium entry by NiCl2 was between 1.5 and 3 mM for the different cell lines we tested, far above the IC50 reported for T-type calcium channels (between 1 and 100 μM depending on the α1 subunit (α1E, α1I, α1L)) [33]. It should be added that though the inhibition of capacitative entry by NiCl2 was not consistent with an involvement of T-type calcium channels in a recent study [15]. Table 1, IC50 around 500 μM it was con-

cluded that T-type calcium channels were responsible for TG-induced capacitative calcium entry; (2) the capacitative cal-
dium entry is not correlated to the level of expression of α1H.

Fig. 6. Mibefradil inhibited both T-type and SOC currents in LNCaP-α1H cells. (A) Development of both currents measured, respectively, at −100 mV (I1G and −20 mV (I2G) during ramp protocols. While I1G developed slowly with time during patch clamp recording, no such increase was observed for I2G. (B) Examples of current measured during ramp protocols (from −100 to 100 mV) 1 and 5 min after breaking into whole-cell. (C) Time course action of mibefradil on both I1G and I2G. Both currents were inhibited by mibefradil (10 μM) though with different time constant.
T-type calcium channels; (3) the resting membrane potential (around −70 mV) during the calcium increase induced by thapsigargin is not compatible with a calcium entry through open T-type calcium channels; (4) depletion of intracellular stores activates a mibebradil-sensitive current sharing no similarity in terms of voltage-dependency with T-type calcium channels but resembling classical SOC channels; (5) the magnitude of store-depletion-induced current was not correlated with the absence or the presence of a T-type calcium current; (6) in cells overexpressing α1q channels, mibebradil blocked more rapidly T-type calcium currents than SOC currents.

The specificity of mibebradil towards voltage-gated T-type calcium channels may be reasonably questioned. Indeed, a large number of targets other than voltage-gated calcium channels have been identified. For example, mibebradil is able to bind to and inhibit NaV voltage-gated sodium channels with a very high affinity [32,34,35]. Also, mibebradil blocks the activity of KV1.5 delayed rectifier channels [27], ATP-activated (IAC) potassium channels [28], EAG channels and inward potassium rectifier (Kir) in myoblasts [29], and of calcium-, volume- and histamine-activated chloride channels in endothelial cells [19,20]. It must be noted that IC50 for the inhibition of these channels are very similar (0.8 μM for KV1.5, 0.5 μM for IAC channels, 0.7 μM for EAG, 5 μM for Kir, around 0.3–1 μM for NaV channels, 5 μM for chloride channels). Here, the decrease in capacitative calcium entry by mibebradil was confirmed by its action on store depletion-induced inwardly rectifying current. Besides plasma membrane channels, mibebradil is reported to be a potent cytochrome P450 inhibitor [36–38]. Furthermore, a study [36] shows that the affinity of mibebradil for cytochrome P450 CYP3A (0.8 μM) is similar to that of for T-type calcium channels. In addition to these different targets, we show here that mibebradil is a potent inhibitor of store-operated channels.

The identity of channels responsible for capacitative calcium entry is still a matter of debate. The involvement of T-type calcium channels in capacitative calcium entry would have been a possible interesting hypothesis. Since these channels are open at resting membrane potential, they are likely involved in setting the intracellular calcium concentration in many cell types even non-excitable cells [16,17]. Therefore, it was proposed by Gray et al. [15] that a putative diffuse second messenger such as calcmodulin generated by calcium store depletion and regulating T-type calcium channels could be responsible for capacitative calcium entry. However, though attractive, this hypothesis, as exemplified by our results, is certainly not correct. In fact, the most likely candidates are members of the transient receptor potential (TRP) channel family. This channel family includes more than 20 members in three different major subfamilies: the canonical TRPC, the vanilloid TRPV, and the melanostatin TRPM channels [39]. Among these channel subtypes, it seems that TRPC and TRPV may be responsible for SOC channel activity recorded in various cell types [8]. Three members of the TRP family, TRPC1, TRPC4 and TRPV6 have been implicated in the endogenous SOC channel of prostate cancer cells [30,40,41]. It was shown in these studies that SOC induced by different stimuli, thapsigargin or inositol 1,4,5 trisphosphate (IP3), were carried mostly by TRPC4 (SOCIP3) or by both TRPC4 and TRPC1 (SOCIP3). Though not directly demonstrated in our study, this is likely that mibebradil inhibits the activity of TRP channels thereby reducing the capacitative calcium entry.

However, we do not know at the present time the direct target of mibebradil. Could it be a member of TRP related channels? Is it a protein involved in the signal transduction between calcium-store depletion and calcium channels? Though we do not have the answer to these questions which are beyond the scope of this paper, according to the relatively quick action of mibebradil on both membrane current and calcium increase, we feel that plasma membrane calcium channels like TRP may be the targets to mibebradil. Another reliable possibility is that through its inhibitory action on cytochrome P450 metabolism [36], mibebradil could block capacitative calcium entry. Indeed, it was recently proposed that metabolites of cytochrome P450 such as 5,6-Epoxycyclosporin A are responsible, through a CIF (calcium influx factor)-related action, of the activation of SOC channels [42,43]. We cannot exclude that other proteins, such as hypothesized partners of SOC ion channels such as STIM1 [44] could be the target of mibebradil.

In summary, we demonstrate in this paper that T-type calcium channels are not responsible of capacitative calcium entry as stated by others [15] and that reduction of capacitative calcium entry by mibebradil is due to the inhibition of SOC channels may be directly or through the inhibition of cytochrome P450.

Acknowledgments

This work was supported by the French Ministry of Research, the University of Lille 1, the INSERM, the Ligue Nationale Contre le Cancer (comité du Nord), ARC (Association pour la Recherche contre le Cancer), FRM (Fondation pour la Recherche Medicale), and the Région Nord-Pas de Calais.

References

[1] M.J. Bridger, M.D. Bootman, P. Lipp, Calcium—a life and death signal, Nature 395 (1998) 645–648.
[2] A.L. Boyton, J.F. Whittall, R.J. Isaacs, R.G. Tremblay, Different extracellular calcium requirements for proliferation of nonmalignant, preneoplastic, and neoplastic mouse cells, Cancer Res. 37 (1977) 2657–2661.
[3] W.H. Li, J. Llopis, M. Whitney, G. Zlokarnik, R.Y. Tsien, Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression, Nature 392 (1998) 936–941.
[4] R.E. Doherty, K. Xu, R.S. Lewis, Calcium oscillations increase the efficiency and specificity of gene expression, Nature 392 (1998) 933–936.
The role of mibefradil in the modulation of

Calcium channels and their role in cell death and differentiation.

F. Gacki\'ere et al. / Cell Calcium 39 (2006) 357–366

[5] R. Patel, M. Holt, R. Philipova, M. Kuhl, H. Schulman, H. Hidaka, M. Whitaker, Calcium/calmodulin-dependent phosphorylation and activation of human Ca\(^{2+}\)C2 at the G2/M phase transition in HeLa cells. J. Biol. Chem. 274 (1999) 7958–7964.

[6] N. Takevi, W. Zhou, M. Kastlia, Y. Takami Ca\(^{2+}\)-dependent stimulation of rink-induced gene product phosphorylation and p38mediated kinase activation in serum-stimulated human fibroblasts. J. Biol. Chem. 268 (1993) 1192–1197.

[7] J.W. Putney Jr., A model for receptor-regulated calcium entry. Cell Calcium 5 (1986) 1–12.

[8] A.B. Parekh, J.W. Putney Jr., Store-operated calcium channels. Physiol. Rev. 85 (2005) 757–810.

[9] V.A. Golovina, Cell calcium modulation is associated with enhanced capacitive Ca\(^{2+}\) entry in human arterial myocytes. Am. J. Physiol. 277 (1999) C433–C439.

[10] A. Enfors, S. Prigent, P. Cossotti, T. Capio, The blocking of capacitive calcium entry by 2-aminoethyl diphenylborate (2-APB) and capacitative calcium (CIC) inflated proliferation in HePt6 and Huh-7 human hepatoma cells, Cell Calcium 36 (2004) 459–467.

[11] Y. Funaya, P. Lundmo, A.D. Short, D.L. Gill, J.T. Isaacs, The role of calcium, pHi, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin. Cancer Res. 54 (1994) 6167–6175.

[12] R. Skyna, P. Mariot, X.L. Bourhis, F.V. Coppenolle, Y. Shuba, F. Van den Abeele, Store depletion and store-operated Ca\(^{2+}\) current in human prostate cancer LNCaP cells: involvement in apoptosis. J. Physiol. 527 (2000) 71–83.

[13] F. Van den Abeele, R. Skyna, Y. Shuba, F. Van Coppenolle, C. Slochiou, M. Roudbaraki, B. Mauroy, N. Prevarskaya, Bi2-dependent modulation of Ca\(^{2+}\) homeostasis and store-operated channels in prostate cancer cells, Cancer Cell 1 (2002) 169–179.

[14] K. Vanoverbeke, F. Van den Abeele, P. Mariot, G. Lepraga, M. Roudbaraki, J.L. Bonnal, M. Muoy, Y. Shuba, R. Skyna, N. Prevarskaya, Ca\(^{2+}\) homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells, Cell Death Differ. 11 (2004) 321–330.

[15] L.S. Gray, E. Perez-Reyes, J.C. Gomora, D.M. Haverstick, J.C. Gamorra, D.M. Haverstick, M. Shat-Riser, P. Mariot, X.L. Bourhis, F.V. Coppenolle, Y. Shuba, F. Van Coppenolle, C. Slochiou, M. Roudbaraki, B. Mauroy, N. Prevarskaya, Two types of store-operated calcium channels in the T-type Ca\(^{2+}\) channel gene family, Cine. Res. 83 (1998) 103–109.

[16] J. Chen, J. Liu, P. Mariot, X.L. Bourhis, F.V. Coppenolle, Y. Shuba, F. Van Coppenolle, C. Slochiou, M. Roudbaraki, B. Mauroy, N. Prevarskaya, Store-operated Ca\(^{2+}\) current in prostate cancer epithelial cells: function, regulation, and role in carcinogenesis, Cell Calcium 33 (2003) 357–371.

[17] R.L. Martin, J.H. Lee, L.L. Cribbs, E. Perez-Reyes, D.A. Hanck, Mibefradil block of cloned T-type calcium channels, J. Pharmacol. Exp. Ther. 295 (2000) 302–308.

[18] F. Van den Abeele, Y. Shuba, M. Roudbaraki, L. Lemark, K. Vanoverbeke, P. Mariot, R. Skyna, N. Prevarskaya, Store-operated Ca\(^{2+}\) channels in prostate cancer epithelial cells: function, regulation, and role in carcinogenesis, Cell Calcium 33 (2003) 357–371.

[19] S. Lleonart, J. Lee, L.L. Cribbs, E. Perez-Reyes, Nick block of three cloned T-type calcium channels: low concentrations selectively block alpha1H, Biochem. J. 377 (1999) 303–304.

[20] P. Elion, S. Byrjarok, S. Wagner, I. Huber, S. Herzig, H.G. Knaus, G. Toth, S.D. Kimball, J. Stroscio, High affinity interaction of mibefradil with voltage-gated calcium and sodium channels, Br. J. Pharmacol. 130 (2000) 669–677.

[21] M.M. McNaught, D.A. Hanck, State-dependent mibefradil block of Na\(^{+}\) channels, Mol. Pharmacol. 66 (2000) 1652–1661.

[22] C. Wandel, R.B. Kim, F.P. Grangerich, A.J. Wood, Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro, Drug Metab. Dispos. 28 (2000) 895–898.

[23] L. Bacq, C. Funk-Brencano, P. Jaillon, Mibefradil, a potent CYP3A inhibitor, does not alter pravastatin pharmacokinetics. Fund. Clin. Pharmacol. 13 (1999) 252–256.

[24] M.G. Shechter, H.E. Greenberg, Effect of mibefradil on CYP3A4 in vivo, J. Clin. Pharmacol. 35 (1995) 1091–1100.

[25] M.L. Veronese, L.P. Gillen, E.P. Dorval, W.W. Hauck, S.A. Waldman, H.E. Greenberg, Effect of mibefradil on CYP3A4 and CYP3A in vitro, Drug Metab. Dispos. 28 (2000) 895–898.

[26] C. Wandel, R.B. Kim, F.P. Geringich, A.J. Wood, Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro, Drug Metab. Dispos. 28 (2000) 895–898.

[27] L. Bacq, C. Funk-Brencano, P. Jaillon, Mibefradil, a potent CYP3A inhibitor, does not alter pravastatin pharmacokinetics. Fund. Clin. Pharmacol. 13 (1999) 252–256.

[28] M.G. Shechter, H.E. Greenberg, Effect of mibefradil on CYP3A4 in vivo, J. Clin. Pharmacol. 35 (1995) 1091–1100.

[29] M.L. Veronese, L.P. Gillen, E.P. Dorval, W.W. Hauck, S.A. Waldman, H.E. Greenberg, Effect of mibefradil on CYP3A4 and CYP3A in vitro, Drug Metab. Dispos. 28 (2000) 895–898.
in LNCaP human prostate cancer epithelial cells, J. Biol. Chem. 279 (2004) 30326–303237.

[42] B.A. Rzigalinski, K.A. Willoughby, S.W. Hoffman, J.R. Falck, E.F. Ellis, Calcium influx factor, further evidence it is 5,6-
epoxyeicosatrienoic acil, J. Biol. Chem. 274 (1999) 175–182.

[43] Q. Xie, Y. Zhang, C. Zhai, J.A. Bonanno, Calcium influx factor from
cytochrome P-450 metabolism and secretion-like coupling mecha-
nisms for capacitative calcium entry in corneal endothelial cells, J. Biol. Chem. 277 (2002) 16559–16566.

[44] J. Roos, P.J. DiGregorio, A.V. Yeromin, K. Ohlsen, M. Lisaphato, S. Zhang, O. Safrina, J.A. Kozak, S.L. Wagner, M.D. Cahalan, G.
Velicelebi, K.A. Stauderman, STIM1, an essential and conserved component of store-operated Ca\(^{2+}\) channel function, J. Cell Biol. 169 (2005) 435–445.
Article 2

“CaV3.2 T-type Calcium Channels Are Involved in Calcium-dependent Secretion of Neuroendocrine Prostate Cancer Cells”

Florian Gackière, Gabriel Bidaux, Philippe Delcourt, Fabien Van Coppenolle, Maria Katsogiannou, Etienne Dewailly, Alexis Bavencoffe, Myriam Tran Van Chuoï-Mariot, Brigitte Mauroy, Natalia Prevarskaya, and Pascal Mariot.

J Biol Chem. 2008 Apr 11;283(15):10162-73.

Les cellules neuroendocrines (NE) ont été découvertes et caractérisées depuis de nombreuses années [Kazzaz, 1974; Pearse, 1969] et elles sont distribuées au sein de divers organes tels que le poumon, le sein ou le pancréas [Garcia-Yuste et al., 2008 ; Tezel et al., 2000 ; van Krimpen et al., 2004]. Elles sont également présentes dans la prostate où leur mise en évidence remonte à 1944. Néanmoins, depuis toutes ces années, le rôle des cellules NE dans le tissu prostatique n’est pas encore connu avec certitude. Beaucoup pensent que les cellules NE prostatiques sont impliquées dans la cancérisation de la prostate ainsi que dans son évolution, leur présence étant donc de pronostic clinique défavorable pour ce type de cancer [Cohen et al., 1990] (pour revue, [Bonkhoff, 1998]). De plus, le(s) mécanisme(s) responsable(s) de la différenciation NE dans le tissu prostatique cancéreux sont encore à l’étude [Zelivianski et al., 2001].

L’hypothèse la plus souvent formulée concernant le rôle potentiel des cellules NE prostatiques est qu’elles sécrèteraient des facteurs ayant notamment une activité sur la prolifération des cellules avoisinantes. En effet, les cellules NE prostatiques renferment une multitude de neuropeptides et de marqueurs de cellules sécrétrices [Schmid et al., 1994] et sont souvent retrouvées, au sein de foyers, entourées de cellules en prolifération [Bonkhoff et al., 1991]. Les mécanismes de régulation ainsi que les acteurs impliqués dans la sécrétion des cellules prostatiques ne sont malheureusement pas connus mais il s’avère important de les étudier car ils sont très sûrement liés à la cancérisation de la prostate. Actuellement, il semble n’y avoir qu’une seule référence décrivant la sécrétion des cellules neuroendocrines prostatiques [Kim et al., 2004]. Les auteurs de cette étude furent donc les premiers à montrer, grâce à des mesures ampérométriques et de la capacité cellulaire, que les cellules NE prostatiques de rat étaient capables d’une exocytose Ca^{2+}-dépendante.
L’objectif de notre travail était donc de déterminer si : 1) les cellules prostatiques cancéreuses possèdent une voie de sécrétion régulée calcium-dépendante, 2) cette sécrétion est augmentée lors de la différenciation, 3) les canaux calciques de type T sont impliqués dans cette sécrétion, 4) cette sécrétion permet la libération de facteurs mitogéniques.

Dans notre étude (article 2), nous avons mis en évidence, grâce à l’utilisation de marqueurs du trafic membranaire, que les cellules neuroendocrines prostatiques humaines LNCaP possèdent une voie de sécrétion régulée calcium-dépendante. Une étude précédente du laboratoire a montré que les canaux calciques voltage-dépendants de type T CaV3.2 sont exprimés de manière endogène dans les cellules prostatiques LNCaP mais surexprimés lors de leur différenciation NE [Mariot et al., 2002]. En raison de l’entrée transitoire de calcium qu’ils génèrent, nous nous sommes intéressés à l’implication potentielle des CaV3.2 dans la sécrétion basale ou stimulée des cellules prostatiques. Des mesures de sécrétion de la PAP (Phosphatase Acide Prostatique), un marqueur des cellules épithéliales prostatiques, ont mis en évidence que les CaV3.2 participent à la sécrétion basale de cette enzyme dans les cellules NE prostatiques, grâce à l’entrée de calcium qu’ils génèrent par le courant de fenêtre au potentiel de repos de ces cellules. Par ailleurs, nous sommes parvenus à enregistrer des courants calciques dus aux CaV3.2 dans des cellules primaires humaines issues de biopsies de prostates cancéreuses et nous avons montré que l’expression de ces canaux est plus importante dans les tissus cancéreux que dans les tissus hyperplasiques. De plus, nous avons démontré que les CaV3.2 colocalisent avec des marqueurs neuroendocriniens, sérotonine et chromogranine A, ainsi qu’avec la cytokératine 18 qui montre la nature épithéliale des cellules NE qui expriment ces canaux.

Les résultats de cette étude renforcent l’hypothèse selon laquelle les cellules NE sécrètent des facteurs paracrines à activité mitogénique. Il est envisageable que les canaux calciques voltage-dépendants de type T CaV3.2 permettent aux cellules neuroendocrines prostatiques humaines, via une entrée de calcium, la sécrétion de divers neuropeptides. L’utilisation potentielle des canaux calciques voltage-dépendants de type T CaV3.2 comme marqueur des stades les plus agressifs à différenciation neuroendocrine pour le cancer de la prostate nécessite de plus amples études.
CaV3.2 T-type Calcium Channels Are Involved in Calcium-dependent Secretion of Neuroendocrine Prostate Cancer Cells*

Florian Gackiére, Gabriel Bidaux, Philippe Delcourt, Fabien Van Coppenolle, Maria Katsogianniou, Etienne Dewailly, Alexis Bavencoiffe, Myriam Tran Van Chouï-Mariot, Brigitte Mauroy, Natalia Prevartskaya, and Pascal Mariot†

From the INSERM, U800, Laboratoire de Physiologie Cellulaire, Equipe Labellisée par la Ligue contre le Cancer and Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, 59650, France

Because prostate cancer is, in its early stages, an androgen-dependent pathology, treatments aiming at decreasing testosterone plasma concentration have been developed for many years now. However, a significant proportion of patients suffer a relapse after a few years of hormone therapy. The androgen-independent stage of prostate cancer has been shown to be associated with the development of neuroendocrine differentiation. We previously demonstrated that neuroendocrine prostate cancer cells derived from LNCaP cells overexpress CaV3.2 T-type voltage-dependent calcium channels. We demonstrate here using prostatic acid phosphatase as a marker of prostate secretion and FM1-43 fluorescence imaging of membrane trafficking that neuroendocrine differentiation is associated with an increase in calcium-dependent secretion which critically relies on CaV3.2 T-type channel activity. In addition, we show that these channels are expressed by neuroendocrine cells in prostate cancer tissues obtained from patients after surgery. We propose that CaV3.2 T-type calcium channel up-regulation may account for the alteration of secretion during prostate cancer development and that these channels, by promoting the secretion of potential mitogenic factors, could participate in the progression of the disease toward an androgen-independent stage.

Prostate cancer is, in its early stages, an androgen-dependent pathology, meaning that its progression relies on the presence of active steroid male hormones. Treatments developed for many years have been based on this characteristic feature of prostate cancer and, thus, aimed at decreasing the plasma concentration of testosterone or dihydrotestosterone, the prostate active androgen. Although these treatments are particularly valuable in the early development of the disease, leading to the regression of cancers, about a third of the patients suffer a relapse after a few years of hormone therapy. At this stage of hormone refractory disease, deprivation of androgens has no further incidence on the growth of the prostate cancer, and no curative therapy is currently effective (for review, see Ref. 1).

The androgen-independent stage of prostate cancer has been shown to be associated with, among others, the development of neuroendocrine differentiation (2). These neuroendocrine features include the appearance of neuroendocrine cell foci surrounded by proliferating epithelial cells (3). Because neuroendocrine prostate cells in normal, hyperplastic, or cancerous tissue secrete many neuropeptides with mitogenic activities like parathyroid hormone-related peptide, calcitonin, or gastrin-related peptides, it has been proposed that paracrine secretion of neurosecretory products released by neuroendocrine cells could be responsible for the progression of cancer toward an androgen-independent stage (for review, see Ref. 4). Indeed, it has been shown for instance that the expression of neuroendocrine markers like chromogranin A is correlated with tumor dedifferentiation (5) and that the presence of neuroendocrine cells in prostate cancer is correlated to a negative prognosis (6). Furthermore, it has been shown that neuroendocrine cells lack the androgen receptor (4, 7), thereby constituting an androgen-independent compartment of prostate tumors.

A neuroendocrine differentiation model has been developed using LNCaP cells whose differentiation can be induced by various means, e.g. activation of the protein kinase A pathway, interleukin-6 receptor activation, or steroid depletion (8–10). Neuroendocrine differentiation of LNCaP cells is associated with modifications of the morphological phenotype such as neuritic extensions, secretory granules, and the over- (or neo-) expression of molecular markers (neuron-specific enolase, chromogranin, neurotensin, parathyroid hormone-related peptide). In a previous study (11), we have demonstrated that neuroendocrine prostate LNCaP cells (LNCaP-NE) overexpress a voltage-dependent calcium current of the T-type family. The channel subunit involved in this calcium current was shown to be the CaV3.2 (α1d) pore subunit. The role of this calcium channel in allegedly non-excitable cells remains elusive. We supposed from morphological evidence that the T-type calcium channel was involved in the extension of neurites during the neuroendocrine differentiation process. In other cell models, the T-type calcium channel function has been attributed to pacemaker activity, gene expression, or development. In recent studies T-type calcium currents have been shown to be responsible for exocytosis in acrosomal reaction (12) or synaptic transmis-

* This work was supported by INSERM, the Ligue Nationale contre le Cancer (Comité du Nord), and the Université of Sciences et Technologies de Lille. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Laboratoire de Physiologie Cellulaire, INSERM U800, Bâtiment SN3, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cédex, France. Tel.: 33-03-20-43-40-77; Fax: 33-03-20-43-40-66; E-mail: Pascal.Mariot@univ-lille1.fr.

Received for publication, August 27, 2007, and in revised form, January 10, 2008. Published, JBC Papers in Press, January 29, 2008, DOI 10.1074/jbc.M707159200

© 2008 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A.
sion in neurons or chromaffin cells (13–15). Because neuroendocrine LNCaP cells have been shown to secrete more neuropeptides than non-differentiated LNCaP cells, we investigated both whether a calcium-dependent-regulated pathway was present in these cells and the putative role of T-type calcium channels in the secretion of LNCaP cells. We show in this article that LNCaP cells display a calcium-dependent pathway of regulated secretion and that neuroendocrine differentiation is associated with an increase in prostaglandin-F2 alpha (PGE2) secretion. We also show that T-type calcium channels could promote secretion upon membrane depolarization and that PAP secretion by LNCaP cells is dependent on T-type calcium channel activity. In addition, we show that prostate cancer cells obtained after surgical removal of prostate biopsies express functional alpha_T and T-type calcium channels. Furthermore, we demonstrate for the first time that these channels colocalize with serotonin and chromogranin A neuroendocrine markers and cytokeratin 18, which shows the epithelial neuroendocrine nature of CaV3.2-expressing cells and are more abundant in human prostate cancer tissue samples than in hyperplasia.

EXPERIMENTAL PROCEDURES

Cell Culture and Treatments—LNCaP cells were cultured as previously described (11). To induce neuroendocrine differentiation, LNCaP cells were cultured with 1 mM dibutyryl cyclic AMP and 100 μM isobutylmethylxanthine for 3–6 days. Stable cell lines expressing alpha_1H protein (LNCaP-alpha_1H) or alpha_1GFP fusion protein (LNCaP-alpha_1GFP) or control LNCaP cell lines transfected with an empty pcDNA3 vector (LNCaP-Neo) were produced as previously reported (16). Epithelial cells from benign prostate hyperplasia (BHP cells) and from prostate carcinomas (hpCE cells) in primary culture were obtained and maintained in culture as previously described (17, 18). Human prostate tissue specimens were obtained from resection surgeries performed on patients who gave informed consent and on clinical indications in the Urology Department at the Hôtel-Dieu St. Philibert. All experiments on human tissues were approved by the Comité Consultatif de Protection des Personnes dans la Recherche Biomédicale de Lille, Lille, France.

Fluorescence Imaging—Fluorescence imaging was carried out in Hank’s balanced salt solution (HBSS) containing 142 mM NaCl, 5.6 mM KCl, 1 mM MgCl_2, 2 mM CaCl_2, 0.34 mM Na_2HPO_4, 0.44 mM KH_2PO_4, 10 mM HEPES, and 5.6 mM glucose. The osmolarity and pH of external solutions were adjusted to 310 mosmol.liter^-1 and 7.4, respectively.

Cytosolic calcium concentration was measured using Fura2-loaded cells (2 μM) as described elsewhere (11). The intracellular calcium concentration was derived from the ratio of the fluorescence intensities for each of the excitation wavelengths (F340/F380) and from the Grynkiewicz et al. (19) equation. The cells were continuously perfused with the HBSS solution, and chemicals were added via a perfusion system.

FM1-43 fluorescence was used as indicative of membrane traffic (20, 21). When cells are bathed in FM1-43 solution (5 μM), the dye (non-fluorescent in aqueous solution) is incorporated into the plasma membrane until equilibrium has been reached. The dye then becomes fluorescent in the lipid membrane environment. Fluorescence was excited at 480 nm and measured at 510 nm. TMA-DPH (1 μM) was also used as an indicator of membrane traffic as previously reported (22). Fluorescence protocols were essentially the same as with FM1-43.

Because Fura2 and FM1-43 spectra do not cross over, combined Fura2 and FM1-43 measurements were performed as done by others (23). Fluorescence was alternately excited at 340, 380, and 480 nm and measured at 510 nm. All recordings were carried out at 35 °C.

Electrophysiological Recordings—Patch clamp recordings were performed in the whole-cell configuration as previously described (24) using a RK-300 patch clamp amplifier (Biologic, Grenoble, France).

Bath medium used for voltage clamp experiments contained 142 mM NaCl, 1 mM MgCl_2, 10 mM HEPES, 5.6 mM glucose, 10 mM tetrathyl ammonium chloride, and 2 mM CaCl_2. The osmolarity and pH of external buffers were adjusted to 310 mosmol.liter^-1 and 7.4, respectively. Recording pipettes were filled with a solution containing 140 mM N-methyl glucamine, 110 mM l-glutamic acid, 30 mM HCl, 5 mM HEPES, 1 mM MgCl_2, with 0.1 or 1 mM EGTA. Osmolarity and pH were adjusted to 290 mosmol.liter^-1 and 7.2, respectively.

In some experiments voltage clamp experiments were combined on the same cell to calcium or FM1-43 imaging. Patch clamp experiments were carried out at room temperature except combined experiments which were performed at 35 °C.

Confocal Microscopy—Confocal fluorescence analysis was performed using a Zeiss LSM 510 confocal microscope (Carl Zeiss, Le Pecq, France) connected to a Zeiss Axiom 200M with a ×63 oil-immersion objective lens (numerical aperture 1.4). For quantification analysis, the image acquisition characteristics (i.e. pinhole aperture, laser intensity, scan speed) were the same throughout the experiments to ensure the comparability of the results. AIM 3.2 confocal microscope software (Carl Zeiss) was used for data acquisition and analysis. Changes in FM1-43 fluorescence were monitored by excitation with a 477 nm line of a 20-milliwatt argon ion laser, and emission from the dye was collected through a 505-nm long-pass filter.

Confocal immunofluorescence experiments were performed with an ×40 oil-immersion objective lens (numerical aperture 1.2) and illuminated separately with an argon ion laser and an helium/neon ion laser. 0.7-μm confocal slides were scanned to determine the localization of the targeting proteins.

Immunofluorescence—1) LNCaP cells were fixed with 4% formaldehyde, 1× phosphate-buffered saline (PBS) for 15 min, washed 3 times, then permeabilized in PBS, 1.2% gelatin complemented with 0.01% Tween 20 and 100 μM glycine for 30 min at 37 °C. 2) Resection specimens from human prostate were frozen in liquid nitrogen-cooled isopentane and kept in “Tissue-Tek®” at −80 °C before 10-μm sections were prepared at −20 °C with a cryostat and mounted on glass slides. The sec-
tions were blocked with PBS, 1.2% gelatin complemented with 0.01% Tween 20 for 30 min at 37 °C.

Samples were then incubated with primary antibodies: (1:500) rabbit polyclonal anti-Cav3.2 antibody (Alomone Labs), (1:200) mouse monoclonal anti-Serotonin antibody (Dako), (1:50) mouse monoclonal anti-chromogranin A antibody (Dako), (1:1000) mouse monoclonal anti-cytokeratin 18 antibody (Neomarkers), in PBS-gelatin completed with 5% donkey serum and 0.5% Triton X-100 at 37 °C for 1.5 h. After thorough washes, the slides were treated with the corresponding anti-rabbit or anti-mouse IgG coupled with either Alexa fluor 546-labeled (Molecular Probes, dilution 1:4000) or Alexa fluor 488-labeled (dilution 1:2000) diluted in PBS-gelatin for 1 h at room temperature. After 2 washes in PBS and a last wash in PBS + 1:200 4',6-diamidino-2-phenylindole for 15 min, the slides were mounted with Mowiol®.

Prostatic Acid Phosphatase Secretion—For the PAP assay, we used two methods. The first is a Sigma colorimetric procedure (Sigma, unit/ml) in which p-nitrophenol phosphate was used as the substrate to quantify the acid phosphatase activity at pH 4.8 by measuring the absorbance of released p-nitrophenol at 405 nm (25). Sigma units were transformed in IU/ml accounting to the Sigma protocol (1 sigma unit/ml equals 16.7 mL/mg). Sigma protocol sheet. The second method is a sensitive fluorimetric assay (Molecular Probes, mL/mg) based on the cleavage of 6,8-difluoro-4-methylumbellyferyl phosphate (DIFMUP) by phosphatases (26), generating DIFMU, whose fluorescence was excited at 360 nm and measured at 450 nm. In prostate cells the L(+)-tartrate-sensitive acid phosphatase activity has conventionally been used to represent PAP activity (25).

Viability Tests—Cell viability was assessed by a colorimetric method (CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay, Promega).

siRNA Design and Cell Preparation—Small interfering RNAs against the human coding sequence of CaV3.2 calcium channels (GenBank™ accession number NM-021098.2) were designed, and two selective sequences, referred to as si-α11+1 and si-α11+2, were selected to knock down T-type α1H1 calcium channel expression. siRNAs used in this study included a nonspecific siRNA (si-Ctl) control with at least four mismatches with any human genes. Sense sequences of siRNAs were 5'-UAGCGACU-AAAACACAUCAA-3' (si-Ctl), 5'-ACGUGAGCGCAUGCGU-GUAUdTdT-3' (si-α11+1, position 311–329 from ATG), and 5'-AGAGUAGGGCUGCUGCUA UdTdT-3' (si-α11+2, position 2166–2184 from ATG). siRNAs were purchased from Dharmacon (France).

LNCaP-CTL, LNCaP-α1H1, or LNCaP-α1H4/GFP cells were transfected with either 5, 25, or 50 nM siRNA anti-α11+1, anti-α11+2, or siRNA-Ctl using HiPerFect Transfection Reagent (Qiagen). siRNAs were incubated in culture medium without serum for 5–10 min at room temperature to form the transfection complexes and were then added droppwise onto the cells. The medium was then changed as required, and gene silencing could be studied after an appropriate time depending on experimental set-up.

Analysis of the α1H1 Subunit Gene Expression of a Voltage-dependent T-type Calcium Channel (Reverse Transcription-PCR)—Reverse transcription-PCR was carried out as previously described (16). The PCR primers used to amplify the 177-bp α1H1 amplicon were 5'-TCGAGGAGGACTTTCCACAAG (forward) and 5'-TGCAATCAGAAAGGTTGAG (reverse), and those used to amplify the 220-bp β-actin amplicon were 5'-CAGAGCAAGAGGGCCTCT-3' (forward) and 5'-ACGT-ACATGGCTGGGTGTTGAA-3' (reverse).

Western Blot Assay—Western blot analysis of protein expression in LNCaP-NE or LNCaP-α1H4/GFP cells (control or siRNA-transfected) were designed as described elsewhere (11). Primary antibodies used in this study were anti-GFP (1:1000, rabbit, Abcam), anti-PAP (1:100, rabbit, Interchima), anti-β-actin (1:400, mouse, Sigma), or anti-calnexin (1:1000, mouse, Chemicon International, Inc.).

Chemicals—All chemicals were purchased from Sigma except for Fura-2-AM which was bought from Calbiochem.

Statistical Analysis—Results are expressed as the mean ± S.E. Statistical analysis was performed using unpaired t tests (for comparing two groups) or analysis of variance tests followed by either Dunnett (for multiple control versus test comparisons) or Student-Newman-Keuls post-tests (for multiple comparisons). Differences were considered significant where p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***)

RESULTS

Calcium-dependent secretion was first investigated on LNCaP cell populations, and the concentration of prostatic-specific PAP in the incubation medium was used as an index of exocytotic secretion because PAP was shown to be distributed in secretory granules (8). To assess whether PAP secretion could be stimulated by a calcium rise, we incubated the cells with various agents raising cytosolic calcium like thapsigargin (TG, an inhibitor of endoplasmic reticulum Ca²⁺ ATPases) or ionomycin (a calcium ionophore) and with different external calcium concentrations (0.075, or 1.5 mM CaCl₂). As shown in Fig. 1A, the amount of PAP measured with a colorimetric assay increased in both cell lysates and culture media when stimulated by either TG or ionomycin. In addition, TG- or ionomycin-induced secretion was blocked by removing calcium from the culture medium (Fig. 1A) or was potentiated by increasing the calcium concentration from 0.75 to 1.5 mM (not shown). Using DIFMUP as a PAP substrate, we were able to detect PAP secretion within 30 min of incubation. As shown in Fig. 1B, a 30-min incubation period in a culture medium containing 0.75 mM CaCl₂ with TG and ionomycin almost doubled the amount of PAP secreted in the culture medium (control 3.1 ± 0.7, ionomycin 5.6 ± 0.6, TG 4.7 ± 0.4, 10⁻³ IU/ml). To clamp external calcium concentrations more efficiently (0–5 mM), we carried out some experiments in HBSS. Basal PAP secretion increased in the presence of 5 mM calcium (3.4 ± 0.2 10⁻³ IU/ml) in calcium-free conditions versus 6.2 ± 0.3 10⁻³ IU/ml in 5 mM external calcium, Fig. 1C). Furthermore, ionomycin-stimulated PAP secretion required the presence of calcium in the external medium. In addition, when LNCaP cells were treated with protein synthesis inhibitors (cycloheximide (200 μM) and anisomycin (300 μM)), the amount of PAP released in the incubation medium after 1 h was not altered in either basal or stimulated conditions (2 μM ionomycin). In contrast, PAP secreted in the culture medium after 24 h of incubation was abrogated by protein synthesis inhibition (Fig. 1D) in
both basal and stimulated conditions. Ionomycin and thapsigargin at the concentrations used in this study (1–2 μM for ionomycin and 10–20 nM for thapsigargin) did not induce any significant cell death nor any increase in cell proliferation (not shown) within 48 h, which could have been responsible for any apparent variations in PAP concentrations.

To further investigate the calcium-dependent secretion of LNCaP cells, we carried out fluorescence imaging of FM1-43 and TMA-DPH, fluorescent lipophilic dyes used for tracking membrane traffic (for review, see Refs. 20 and 21). When FM1-43 was admittance into the perfusion chamber, cell fluorescence progressively reached a stable level. At this stage, as observed in both conventional imaging and confocal microscopy (Fig. 2A), FM1-43 fluorescence was preferentially localized at the cell periphery, indicating plasma membrane location. When admitted into the

bath, ionomycin (2 μM) rapidly increased FM1-43 or TMA-DPH fluorescence (see Fig. 2). On average, ionomycin increased FM1-43 fluorescence by 106 ± 7% (n = 150) and 38 ± 2% (n = 97) in the presence and absence of extracellular calcium, respectively. Similarly, thapsigargin (20 nM) induced a rise in FM1-43 fluorescence of 31 ± 2% (n = 106) and 15 ± 6% (n = 32) in the presence and absence of extracellular calcium, respectively. Combined Fura2 and FM1-43 fluorescence measurements (Fig. 2B) show that ionomycin and thapsigargin induced cytosolic calcium peaks that were rapidly followed by increases in FM1-43 fluorescence. In some cases, ionomycin-induced calcium peaks were biphasic, and the increase in FM1-43 fluorescence correlated with either of the calcium transients. In any cases, as emphasized on Fig. 2B, the sharpest rise in FM1-43 fluorescence occurred during the rising phase of the calcium peaks.

Because FM1-43 is able to be progressively incorporated in intracellular membrane organelles such as secretory granules through endocytosis (20, 21), we incubated LNCaP cells overnight in 5 μM FM1-43 diluted in culture medium. Then, cells were washed with FM1-43 free HBSS to remove FM1-43 from the plasma membrane. The dye was incorporated into intracellular membrane compartments as shown by confocal microscopy by a punctuated fluorescence inside the cell (Fig. 2E). When submitted to 1 μM ionomycin, the FM1-43 fluorescence inside the cell decreased after a 1-min time lag (% of decrease (ΔF/F₀) = 8.7 ± 2.2, n = 68). This probably reflects the release by exocytosis of FM1-43 previously incorporated by membrane retrieval in intracellular organelle membranes such as secretory granules. This demonstrates that FM1-43 incorporates at least partially into immediately releasable secretory pools and, thus, confirms that FM1-43 is a good LNCaP cell membrane traffic marker.

Neuroendocrine differentiation of LNCaP prostate cancer cells, induced by treatments increasing cytosolic cAMP, was shown to be associated with an increase in neuropeptide secretion (27). In the present study PAP secreted in the incubation medium for 1 h increased in both basal (by 36 ± 1.2%) and ionomycin-stimulated (by 48 ± 3.5%) conditions in neuroendocrine LNCaP cells (LNCaP-NE as compared with undifferentiated LNCaP cells (LNCaP-CTL), confirming an increase in secretory potency after neuroendocrine differentiation. Furthermore, we show by immunofluorescence confocal detection (Fig. 3) that LNCaP-NE cells express chromogranin A, a marker of regulated secretion, and serotonin (5-HT), a neurotransmitter.

We then carried out experiments to assess whether α1H (CaV3.2) T-type calcium channels could be involved in PAP secretion. Indeed, as previously published (11, 16) and as displayed on Fig. 3, LNCaP-NE cells have an increased expression of T-type calcium currents. We show here using a CaV3.2 antibody that LNCaP-NE cells indeed overexpress CaV3.2 calcium channels (Fig. 3). We conducted experiments using T-type calcium channel inhibitors and small interfering RNAs raised against α1H1 channels (two different sets of siRNA: si-α1H1.1 and si-α1H1.2). CaV3.2 T-type calcium channels overexpressed in LNCaP cells could be inhibited by flunarizine (89.5% inhibition at 10 μM, n = 10), nickel chloride (45% inhibition at 20 μM, n = 10), and kurtoxin (92.3% inhibition at 500 nM, n = 10) (data not shown). To validate the siRNAs used in this study, we have shown using patch clamp experiments in LNCaP stably trans-
In addition, onset of siRNAs treatment for siRNAs at 5 nM for secretion assays because at this concentration none of the siRNAs used in our study had any effect on cell viability (see Fig. 5A). In the experiment shown in Fig. 5A, basal secretion of PAP was inhibited by about 25 and 50% by si-α1H1 and si-α1H2, respectively. On average, si-α1H1 and si-α1H2, but not si-Ctl, inhibited basal PAP secretion by 28 ± 3.5 and 27.4 ± 6.4% (n = 5 independent experiments), respectively. To discriminate between a role for α1H1, T-type calcium channels in PAP synthesis and PAP release, we assayed PAP in both supernatants and cell lysates of LNCaP cells. A 72-h pretreatment with si-α1H2 reduced the basal release of PAP in the incubation buffer by 25% (1 h incubation in HBSS containing 5 mM CaCl2) and the concentration of PAP contained in the cell lysates by 41% (Fig. 5B). In contrast, the ionomycin-induced PAP secretion was not altered by the si-α1H2 pretreatment. Indeed, a 1 h treatment with ionomycin induced a release of PAP corresponding to about 3.4% of the total PAP contained in si-Ctl cell lysates, this figure being unchanged by si-α1H2.

As shown in Fig. 5C, T-type calcium channel inhibitors (20 μM NiCl2, 10 μM flunarizine, 500 nM kurtoxin) had no effect on LNCaP-
an increase in FM1-43 fluorescence, a train of voltage pulses to 0 mV at a frequency of 0.5 Hz was seen to produce an increase in FM1-43 fluorescence (6.5 ± 3.1% of increase, n = 5, Fig. 6A). This increase in FM1-43 fluorescence was inhibited by NiCl₂ (10 μM) and did not occur when the depolarization was set at 80 mV, which is close to the equilibrium potential for calcium (Fig. 6B). Because it has previously been shown that stimulation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) activates T-type calcium channels in human embryonic kidney cells transfected with the α₁H subunit (28), we tested whether PMA could activate T-type calcium channels in LNCaP-NE cells and whether it could induce a calcium rise. As shown in Fig. 6C, 100 nM PMA increased the magnitude of the calcium current measured at −20 mV by 100%. IV curve analysis shows that PMA had a stimulatory action mainly at negative potentials between −60 and −10 mV (Fig. 6C) with a 4-fold stimulation at −40 mV (−25 ± 3 pA versus −99 ± 20 pA, n = 6). In Fura2 imaging experiments, PMA slowly increased intracellular calcium ([Ca²⁺]i) = 20.5 ± 1.3 nm) in 47% of LNCaP-NE cells (n = 158 of 341). This increase in intracellular calcium was antagonized by NiCl₂ (10 μM, Fig. 6D) or by flunarizine (10 μM, not shown) in 90% of the cells tested (110 of 121). We carried out combined imaging experiments with FM1-43 and Fura2 to assess whether this calcium increase could promote secretion. As shown on Fig. 6D, when PMA was applied, the increase in intracellular free calcium concentration was followed by an increase in FM1-43 fluorescence in 60.7% of the LNCaP cells showing an increase in [Ca²⁺]i, (ΔF510 nm = 31.5 ± 3%, n = 96 of 158). Furthermore, in 57.5% of FM1-43-responsive LNCaP cells, NiCl₂ (10 μM) antagonized the calcium increase and impeded further increase in FM1-43 fluorescence.

We then carried out a set of experiments to assess whether
T-type calcium channels (29). Reverse transcription-PCR experiments carried out on prostatic tissues obtained after surgery show that tissues from most patients (here, three patients with BHP and 3 patients with prostate carcinoma (PC) expressed the transcript for CaV3.2 channel (Fig. 7C). In addition, reverse transcription-PCR experiments performed on epithelial cells obtained from human prostatic tissue samples and maintained in culture for several days showed the expression of the transcript for CaV3.2 in two batches of epithelial cells from BHP (PrPE1 and PrPE2) and two from PC (PrPC1 and PrPC2). In our experiments 16.2 ± 2.9% of prostate cancer epithelial cells (n = 12 of 74 cells, three different patients) displayed functional T-type calcium currents. None of the cells from BHP tissues expressed a functional T-type current (n = 0 of 54 cells, two patients). An immunofluorescence study of CaV3.2 calcium channels and cytokeratine 18 (CK18) was carried out in hyperplastic or cancerous prostate tissues. We show here (Fig. 7D) that there was no CaV3.2 immunostaining detectable above background in hyperplastic acini, whereas there were epithelial cells strongly labeled with the anti-CaV3.2 antibody in cancer acini. Moreover, there was a partial colocalization of CaV3.2 and CK18 (Fig. 8). Furthermore, because prostate cancers usually display multiple cancer foci in a same gland, we were able to compare in a same surgical sample glandular areas showing no sign of cancer foci (tissue well differentiated, grade 1) and prostate areas displaying obvious signs of cancer development (dedifferentiation and disorganization of the epithelium, grades 2–4). We then observed that CaV3.2-positive neuroendocrine cells were consistently
localized in cancerous areas but not in hyperplastic or healthy zones.

DISCUSSION

We have previously shown that a prostate cancer cell line model, namely LNCaP cells, displays functional T-type calcium currents due to the presence of an α_{1H} calcium channel subunit (11, 16). Furthermore, we have shown that their expression is increased by neuroendocrine differentiation, which is allegedly associated with a poor prognosis (6, 30). Voltage-dependent calcium channels are also expressed in normal rat prostate cells (31), and it has been shown that other T-type calcium channels (α_{1G}) are underexpressed in prostate cancer because of CACNA1G gene hypermethylation (32). In addition, we show here that α_{1H} T-type calcium channels are expressed in human prostate tissues biopsies. Furthermore, we were only able to detect T-type calcium currents in hPCE cells, yet not in BHP cells. In the latter, although the amplicon for CaV3.2 is present, the density of T-type calcium channels may be too low to be detectable. Immunofluorescence experiments show that there is no significant CaV3.2 signal in hyperplastic acini, whereas there are epithelial cells intensely labeled with the anti-CaV3.2 antibody in cancer acini. This shows that the expression of CaV3.2 is certainly higher in prostate cancer than in hyperplasia. In addition, we show that these CaV3.2-positive cells are chromogranin A- and 5HT-positive and present neurite extensions toward the epithelium, which shows their neuroendocrine nature and probably their role in paracrine secretion. The fact that CaV3.2-positive cells are also positive for CK18 reveals that these cells certainly constitute a cell phenotype derived from epithelial cells by transdifferentiation. We cannot exclude that the absence of detectable T-type calcium currents in BHP cells could be due to a difference in the expression of regulatory subunits like γ_4 and α_2δ_2 that we have detected in all prostate cell lines between cancer and hyperplastic tissues.

The role of T-type calcium channels in peripheral tissues and specifically in the prostate is still elusive. We have investigated here whether α_{1H} T-type calcium channels could be involved in regulated secretion. We show in this article that LNCaP cells display a calcium-dependent path-

3 F. Gackiè, G. Bidaux, P. Delcourt, F. Van Coppenolle, M. Katsogiannou, E. Dewailly, A. Bavencoffe, M. Tran Van Chuoi-Mariot, B. Mauroy, N. Prevarskaya, and P. Mariot, personal observations.
way of regulated secretion and that neuroendocrine differentiation is associated with an increase in T-type calcium channel-dependent PAP secretion.

To assay secretion in prostate cancer cells, we chose to monitor PAP released in the culture medium. We initially attempted to measure the secretion of neuropeptides (neurotensin and parathyroid hormone-related peptide) by LNCaP-NE cells as performed by others (27). Although we used essentially the same enzyme-linked immunosorbent assay kits (Peninsula) and the same culture conditions, we were unable to detect any secretion of either neurotensin or parathyroid hormone-related peptide even under stimulated conditions. PAP is one of the main secretory products released by prostate cells with prostate-specific antigen (PSA) and was shown to exist in two forms, an intracellular (cPAP) and a secreted one (sPAP), the latter being localized in secretory granules of prostate cells (for review, see Ref. 33) and released upon stimuli like protein kinase C activation in LNCaP cells (25). Until now, it was yet to be shown that its secretion is finely regulated by calcium. Here, we show that various pharmacological agents (thapsigargin, ionomycin) raising cytosolic free calcium concentration to several micromolar are able to promote PAP release within periods short enough (30 min) to stimulate intracellular trafficking and exocytosis. In addition, short-term enhancement of PAP secretion by ionomycin was not abolished by protein synthesis inhibitors, showing that early PAP secretion was mostly dependent on exocytosis stimulation. We also show here that long-lasting calcium stimulations (24 h) promote PAP synthesis and its release into the extracellular milieu. Calcium-dependent secretion was confirmed in LNCaP cells using FM1-43 and TMA-DPH imaging assays. These lipophilic dyes have been widely used to measure exocytotic release in neurons, endocrine, or exocrine

FIGURE 7. T-type calcium channel expression in human prostate cells. A, examples of membrane currents in a human prostate carcinoma cell (PrPC, right panel). Membrane potential was depolarized for 100 ms from -80 mV to -20/-40/-60 mV. The current/voltage (I/V) relationship for this cell is shown on the left panel; pF, picofarads. B, membrane currents before and after the addition of NiCl₂ (10 μM) in the recording medium (right panel) and time course of the inhibition of T-type calcium currents by NiCl₂ (10 μM) in a PrPC cell (left panel). C, left panel, agarose gel showing the expression of the α₁� amplicon (expected size, 177 bp) in a prostate cell line (LNCaP) treated or not with dibutyryl cAMP for 3 days, three different prostate benign hyperplasia tissues (BHP), and three different human prostatic carcinoma tissues (PC). MW, molecular weight. Right panel, expression of the α₁� amplicon in human prostate epithelial cells (PrPE) and human prostate cancer cells (PrPc) obtained from surgery samples in primary culture. A no-template control (H2O) was also run with the PCR samples, where the cDNA was replaced with water. A 1-kilobase DNA ladder (MW (bp)) was used as a DNA size marker. GAPDH, glyceraldehyde-3-phosphate dehydrogenase. D, left panel, immunohistofluorescence of prostate benign hyperplasia showing the presence of the apical epithelial marker cytokeratine 18 (red) but no significant α₁� fluorescence (green) in an acinus. Right panel, confocal slide of a representative cancerous acinus (objective ×40). Cancerous apical epithelial cells invading the lumen are detected with cytokeratine 18 (red). An islet of α₁�-positive apical epithelial cells (green) is detected in the epithelium near the center of the lumen (left panel). Interestingly, these apical epithelial neuroendocrine-like cells emit neurite lengthenings toward cancerous apical epithelial cells (right panel, magnification). Bar, 10 μm.
T-type Calcium Channels and Prostate Cancer Secretion

cells (21, 22, 34). As noticed from our experiments, FM1-43 fluorescence increased after ionomycin or thapsigargin stimulation in the absence or presence of extracellular calcium, although more efficiently in the latter condition. This reflects that both ionomycin and thapsigargin are able to promote calcium release from internal stores, which in turn was sufficient to trigger exocytosis. This could be followed in the presence of external calcium by a calcium entry through plasma membrane calcium channels which was more potent to stimulate exocytosis.

We then investigated whether calcium-dependent secretion could be stimulated by calcium entry through T-type calcium channels in LNCaP-NE cells. We first showed that LNCaP-NE cells secrete more PAP than non-differentiated cells. Basal PAP secretion by LNCaP-NE cells depends on calcium entry through α_{114} T-type calcium since PAP secretion was inhibited by nickel chloride at micromolar concentrations and by flunarizine. In addition, PAP secretion decreased in LNCaP-NE cells that had been transfected with siRNA raised against α_{114} subunits. We also show that both basal release and PAP synthesis were diminished by siRNA treatments. On the other hand, the secretion capacity in response to another stimulus (i.e., ionomycin) was not altered by siRNA incubations, which shows that knocking down the expression of α_{114} calcium channels does not probably induce any down-regulation of other proteins involved in exocytosis. It, therefore, seems that part of the PAP secreted by LNCaP-NE cells may be due to calcium entry through α_{114} T-type calcium channels. As can be observed from our experiments, inhibition of CaV3.2 channels by either siRNAs or inhibitors does not totally abolish PAP secretion. This may reflect the participation of other calcium channels in secretion such as TRPV6 channels, which have been shown to be expressed in prostate LNCaP cells and to participate to basal calcium entry (35). In addition, we confirm that T-type calcium channels can be activated by phorbol esters (PMA) as previously shown by others (28). More importantly, we show that this activation could promote exocytosis as measured by FM1-43 fluorescence increase. This response was antagonized by nickel chloride and flunarizine in a significant portion of cells, showing the involvement of T-type calcium channels in PMA-induced exocytosis. We also show, using combined electrophysiological and imaging experiments, that depolarization trains leading to the activation of T-type voltage-dependent calcium channels were able to increase FM1-43 fluorescence. Because the α_{114} (CaV3.2) subunit is the only voltage-dependent calcium channel expressed in prostate cancer LNCaP cells (11), we assume that this calcium channel subunit is responsible for exocytosis. Such a role for T-type calcium channels is beginning to emerge since their activation stimulates exocytosis as measured with capacitance measurements in various excitable cellular systems (36) such as retinal bipolar neurons (15). In neuroendocrine cells, it seems that T-type calcium channels are also functionally coupled to dense core granules containing neurohormones with similar efficiency to HVA calcium channels (37). In addition, because we have observed that chromogranin A, a marker of regulated secretion and serotonin, is expressed by LNCaP-NE and neuroendocrine cells in prostate cancerous acini, we may speculate that there is a regulated secretion of serotonin by these neuroendocrine prostate cancer cells and that CaV3.2 T-type calcium channels could participate in its secretion.

T-type calcium channels may play their part in secretion when activated by transient membrane depolarizations or when they are open at resting membrane potentials, thereby promoting a steady-state calcium entry. As previously shown, LNCaP-NE cells have an average calcium concentration increased by about 20 nM as compared with LNCaP-CTL (11). This difference in calcium concentration is probably locally underestimated since calcium entry through T-type calcium channels almost definitely increases calcium concentration in restricted areas nearby the plasma membrane. This sustained calcium entry through T-type calcium channels may certainly be responsible for the increased PAP secretion observed in LNCaP-NE cells. It is likely that basal calcium entry at resting membrane potential is the main function of T-type calcium channels in prostate cancer cells since we have never observed any action potentials or calcium spikes in LNCaP-NE cells. However, we cannot exclude that action potential firing may not be of physiological relevance in normal epithelial prostate cells since others have published that rat neuroendocrine epithelial prostate cells display membrane excitability (31) and that there is a spontaneous electrical activity in the prostate gland probably due to pacemaker interstitial cells similar to that of intestinal interstitial cells of Cajal (38). Spontaneous electrical activity initiated in the interstitial cells could, therefore,
spread to epithelial cells. If this was true, T-type calcium channels could serve in this context for triggering secretion during action potentials.

In LNCaP neuroendocrine prostate cancer cells, the α_{1H} calcium channel subunit is, therefore, able to promote PAP synthesis and release. It has been shown that neuroendocrine cells in human prostate cancer tissues, positive for neuroendocrine markers like chromogranin A, expressed and could secrete PAP but were negative for PSA (39) and Ki-67, a marker of proliferation (40). As also illustrated by our data, neuroendocrine cells in human prostate cancer, therefore, share some properties with epithelial cells (expression of CK18 for instance) and could secrete both PAP and neuropeptides. In our experiments, neuroendocrine cells could secrete PAP and probably serotonin, which has been characterized to be a mitogenic factor and the expression of which is correlated with a poor prognosis (41). The situation seems to be somehow quite different in normal human prostate tissues where neuroendocrine cells do not express any of the PAP and PSA epithelial markers (42). The role of PAP during the pathological development of the prostate cancer is not clear due to the presence of two different forms of PAP, with different physicochemical properties (cPAP and sPAP). Indeed, during the development of prostate cancer, the concentration of sPAP, whose role remains elusive, rises in the serum. This led to the utilization of cPAP as a molecular marker of prostate cancer for many years before the discovery of PSA as a more reliable, if not perfect, marker. However, it has been recently suggested that the contribution of PAP screening should be reevaluated in the light of recent results showing that secretion of PAP in the serum may constitute a prognostic factor for patients with high risk cancer (43). On the contrary, the expression of cPAP seems to be inversely correlated with prostate carcinogenesis (for review, see Ref. 33). In addition, it has been shown that cPAP reduces cell proliferation by decreasing tyrosine phosphorylation of HER2, a member of the Erb receptor-protein-tyrosine kinase family (44). Furthermore, it has been suggested that PAP secreted in the serum could participate through a stimulation of collagen and alkaline phosphatase in the bone to the sclerosis of bone tissue in the vicinity of cancerous prostatic metastases (45).

Alterations in secretory pathways have been suggested, and proteins involved in the exocytotic machinery responsible for PAP and PSA secretion are beginning to be described. For instance, JFC1, a synaptotagmin-like protein highly expressed in prostate tissue, is involved in PAP and PSA secretion and is activated by NF-κB and phosphatidylinositol 3-kinase, which are both frequently up-regulated in prostate cancer (46). This strengthens the role of CaV3.2 T-type calcium channels in secretion by prostate neuroendocrine cells since synaptotagmin-like proteins are known to be calcium sensors involved in regulated secretion through a functional coupling with voltage-gated calcium channels.

In our experiments, because α_{1H} T-type calcium channels promote both PAP synthesis and secretion, we speculate that these channels may participate in the perturbation of PAP secretion during prostate cancer development. In a more general sense, α_{1H} T-type calcium channels may enhance autocrine/paracrine secretion in neuroendocrine prostate cancer cells in which they are overexpressed (47). We suggest that these channels, by promoting the secretion of potentially mitogenic factors such as neuropeptides or serotonin by neuroendocrine cells, could be responsible for the progression of prostate cancer toward an androgen-independent stage. In this context, it is noteworthy that these channels are suspected of promoting proliferation of gliona (48) or esophageal carcinoma cells (49) and that they have been shown to be potential markers of breast cancer (50).

REFERENCES
1. Feldman, B. J., and Feldman, D. (2001) Nat. Rev. Cancer 1, 34–45
2. Weinstein, M. H., Partin, A. W., Veltris, R. W., and Epstein, J. I. (1996) Hum. Pathol. 27, 683–687
3. Bonkhoft, H., Wernert, N., Dhom, G., and Remmberger, K. (1991) Prostate 19, 91–98
4. Bonkhoft, H. (1998) Prostate (suppl. 8) 18–22
5. Theodoropoulos, V. E., Tsagka, A., Mihalopoulou, A., Tsoukala, V., Lazzaris, A. C., Patsouris, E., and Ghiokonti, I. (2005) Urology 66, 897–902
6. Cohen, R. J., Glezerson, G., Haffejee, Z., and Afrika, D. (1999) Br. J. Urol. 66, 405–410
7. Yuan, T. C., Veeramani, S., Lin, F. F., Kondrikov, D., Zelivianski, S., Igawa, T., Karon, D., Batra, S. K., and Lin, M. F. (2006) Endocr. Relat. Cancer 13, 151–167
8. Bang, Y. J., Pirnia, F., Fang, W. G., Kang, W. K., Sartor, O., Whitesell, L., Ha, M. J., Tsokos, M., Sheahan, M. D., Nguyen, P., Niklinski, W. T., Myers, C. E., and Trepel, J. B. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 5330–5334
9. Cox, M. E., Deebel, P. D., Bissonette, E. A., and Parsons, S. J. (2000) J. Biol. Chem. 275, 13812–13818
10. Zelivianski, S., Verni, M., Moore, C., Kondrikov, D., Taylor, R., and Lin, M. F. (2001) Biochim. Biophys. Acta 1539, 28–43
11. Mariot, P., Vanoverbergh, K., Lalevee, N., Rossier, M. F., and Prevarskaya, N. (2002) J. Biol. Chem. 277, 10824–10833
12. Darszon, A., Lopez-Martinez, P., Acevedo, J. I., Hernandez-Cruz, A., and Trevino, C. L. (2006) Cell Calcium 40, 241–252
13. Carbone, E., Giancippoli, A., Marcantoni, A., Guido, D., and Carabelli, V. (2006) Cell Calcium 40, 147–154
14. Giancippoli, A., Novara, M., de Luca, A., Baldeilli, P., Marcantoni, A., Carbone, E., and Carabelli, V. (2006) Biophys. J. 90, 1830–1841
15. Pan, Z. H., Hu, J. H., Perring, P., and Andrade, R. (2001) Neuron 32, 89–98
16. Gackiere, F., Bidaux, G., Lory, P., Prevarskaya, N., and Mariot, P. (2006) Cell Calcium 39, 357–366
17. Thebault, S., Roudbaraki, M., Sydorenko, V., Shuba, Y., Lemmonnier, L., Slomianny, C., Dewailly, E., Bonnaill, J. L., Mauroy, B., Skryma, R., and Prevarskaya, N. (2003) J. Clin. Investig. 111, 1691–1701
18. Bidaux, G., Roudbaraki, M., Merle, C., Crepin, A., Delcourt, P., Slomianny, C., Thebault, S., Bonnaill, J. L., Benahmed, M., Cabon, F., Mauroy, B., and Prevarskaya, N. (2005) Endocr. Relat. Cancer 12, 367–382
19. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) J. Biol. Chem. 260, 3440–3450
20. Brumback, A. C., Lieber, J. L., Angleson, J. K., and Betz, W. J. (2004) Methods 33, 287–294
21. Cochilla, A. J., Angleson, J. K., and Betz, W. J. (1999) Annu. Rev. Neurosci. 22, 1–10
22. Masumoto, N., Tasaka, K., Mizuki, J., Fukami, K., Ikebuchi, Y., and Miyake, A. (1995) Cell Calcium 18, 223–231
23. Nunez, L., Villalobos, C., Boockfor, F. R., and Frawley, L. S. (2000) Endocrinology 141, 223–231
24. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Pfluegers Arch. 391, 85–100
25. Lin, M. F., Zhang, X. Q., Dean, J., and Lin, F. (2001) Cell Biol. Int. 25, 1139–1148
26. Gey, K. R., Sun, W. C., Bhaghat, M. K., Upson, R. H., Klaubert, D. H., Latham, K. A., and Haugland, R. P. (1999) Anal. Biochem. 273, 41–48
27. Cox, M. E., Deebel, P. D., Lakhani, S., and Parsons, S. J. (1999) Cancer Res. 59, 3821–3830
28. Park, J. Y., Jeong, S. W., Perez-Reyes, E., and Lee, J. H. (2003) FEBS Lett. 547, 37–42
29. Lee, J. H., Gomora, J. C., Cribbs, L. L., and Perez-Reyes, E. (1999) Biophys. J. 77, 3034–3042
30. Cohen, R. J., Glezerson, G., and Haffejee, Z. (1991) Br. J. Urol. 68, 258–262
31. Kim, J. H., Shin, S. Y., Yun, S. S., Kim, T. J., Oh, S. J., Kim, K. M., Chung, Y. S., Hong, E. K., Uhm, D. Y., and Kim, S. J. (2003) Pfluegers Arch. Eur. J. Physiol. 446, 88–99
32. Toyota, M., Ho, C., Ohe-Toyota, M., Baylin, S. B., and Issa, J. P. (1999) Cancer Res. 59, 4535–4541
33. Veeramani, S., Yuan, T. C., Chen, S. J., Lin, F. F., Petersen, J. E., Shakeduzzaman, S., Srivastava, S., MacDonald, R. G., and Lin, M. F. (2005) Endocr. Relat. Cancer 12, 805–822
34. Shorte, S. L., Stafford, S. J., Bamford, M., Collett, V. J., and Schofield, J. G. (1993) J. Physiol. (Lond.) 470, 191–210
35. Lehen’kyi, V., Flourakis, M., Skryma, R., and Prevarskaya, N. (2007) Oncogene 26, 7380–7385
36. Carbone, E., Marcantoni, A., Giancippoli, A., Guido, D., and Carabelli, V. (2006) Pfluegers Arch. Eur. J. Physiol. 453, 373–383
37. Mансвелдер, Х. Д., и Китс, К. С. (2000) J. Physiol. (Lond.) 526, 327–339
38. Exintaris, B., Nguyen, D. T., Dey, A., and Lang, R. J. (2006) Auton. Neurosci. 126–127, 371–379
39. Cohen, R. J., Glezerson, G., and Haffejee, Z. (1992) Arch. Pathol. Lab. Med. 116, 65–66
40. Huang, J., Yao, J. L., di Sant’Agnese, P. A., Yang, Q., Bourne, P. A., and Na, Y. (2006) Prostate 66, 1399–1406
41. Dizeyi, N., Bjartell, A., Nilsson, E., Hansson, J., Gadaleanu, V., Cross, N., and Abrahamsson, P. A. (2004) Prostate 59, 328–336
42. Aumuller, G., Leonhardt, M., Janssen, M., Konrad, L., Bjartell, A., and Abrahamsson, P. A. (1999) Urology 53, 1041–1048
43. Taira, A., Merrick, G., Wallner, K., and Dattoli, M. (2007) Oncology (Williston Park) 21, 1003–1010
44. Meng, T. C., and Lin, M. F. (1998) J. Biol. Chem. 273, 22096–22104
45. Ishibe, M., Rosier, R. N., and Puza, J. E. (1991) J. Clin. Endocrinol. Metab. 73, 785–792
46. Johnson, J. L., Ellis, B. A., Noack, D., Seabra, M. C., and Catz, S. D. (2005) Biochem. J. 391, 699–710
47. Chemin, J., Nargeot, J., and Lory, P. (2004) Neuroreport 15, 671–675
48. Panner, A., Cribbs, L. L., Zainelli, G. M., Origitano, T. C., Singh, S., and Wurster, R. D. (2005) Cell Calcium 37, 105–119
49. Lu, F., Chen, H., Xie, D., Chen, P., Zhuang, H., Xie, D., and Wu, S. (2007) Cell Calcium 43, 49–58
50. Asaga, S., Ueda, M., Jinno, H., Kikuchi, K., Itano, O., Ikeda, T., and Kitajima, M. (2006) Anticancer Res. 26, 35–42
VOLUME 283 (2008) PAGES 10162–10173

CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells.

Florian Gackière, Gabriel Bidaux, Philippe Delcourt, Fabien Van Coppenolle, Maria Katsogiannou, Etienne Dewailly, Alexis Bavencoffe, Myriam Tran Van Chuoï-Mariot, Brigitte Mauroy, Natalia Prevarskaya, and Pascal Mariot

On Page 10164, the first siRNA sequence should read as follows:

5'-ACGUGAGCAUGCUAAUdTdT-3' (si-α11A, positions 311–329 from ATG).
Article 3

“Functional coupling between large-conductance potassium channels and CaV3.2 voltage-dependent calcium channels participates in prostate cancer cell proliferation”

Florian Gackière, Philippe Delcourt, Maria Katsogiannou, Etienne Dewailly, Christian Slommiany, Nathalie Jouy, Morad Roudbaraki, Sandrine Humez, Natalia Prevarsakaya and Pascal Mariot.
Soumis à J Biol Chem.

La nature et le rôle des canaux potassiques voltage-dépendants reste controversée dans les cellules prostatiques LNCaP. En effet, si des travaux ont montré que des canaux potassiques voltage-dépendants Ca\(^{2+}\)-inhibés étaient responsables pour une grande partie du courant global des LNCaP et de la prolifération cellulaire [Skryma et al., 1999], d’autres publications ont proposé les canaux potassiques Ca\(^{2+}\)-activés BK comme responsables de l’hyperpolarisation induite par des inducteurs apoptotiques [Gutierrez et al., 1999] dans ces mêmes cellules. Une étude menée en 2005 a caractérisé un nouveau type de canaux BK, appelés BKL, possédant une dépendance particulière vis-à-vis du voltage et de la [Ca\(^{2+}\)]\(_{cyt}\) [Gessner et al., 2005] : activation pour des voltages physiologiques même en absence de Ca\(^{2+}\), en plus des propriétés classiques de sélectivité au K\(^+\), de large conductance et son inhibition par la paxilline [Ghatta et al., 2006]. De tels canaux sont aussi exprimés par des cellules (T47D) du cancer du sein.

Dans notre étude (article 3), nous avons dans un premier temps caractérisé le courant potassique voltage-dépendant des cellules prostatiques humaines androgéno-dépendantes LNCaP. L’utilisation d’agents pharmacologiques contre les différents types de canaux potassiques (ibéritoxine, paxilline, TRAM-34, clotrimazole et apamine notamment) et de si-ARN dirigés contre BK a permis d’identifier les canaux BK comme étant responsables de la de la quasi-totalité de ce courant. Nous avons voulu déterminer, par la suite, si l’entrée de calcium par les canaux calciques de type T Ca\(_{v}\)3.2, exprimés dans les cellules LNCaP [Mariot et al., 2002], était capable d’activer les canaux BK. Nous montrons l’existence d’un couplage spécifique et fonctionnel entre les Ca\(_{v}\)3.2 et les canaux BK dans les cellules LNCaP, essentiellement au moyen de la technique de patch-clamp qui a permis l’enregistrement des 2 types de courants dans un même fragment membranaire en configuration canal unitaire. Ce couplage n’est pas inhibé par l’utilisation d’agents désorganisateurs des « rafts » lipidiques.
(méthyl-β-cyclodextrine et filipine), ceci n’excluant pas la possibilité d’une colocalisation dans d’autres types de microdomaines membranaires. Toutefois, nous n’avons pas réussi à mettre en évidence par co-immunoprécipitation un couplage moléculaire entre ces 2 canaux. Finalement, nous sommes intéressés au(x) rôle(s) physiologique(s) que peut avoir un tel couplage. Nous avons montré, grâce à la technique de patch-clamp en courant imposé et à différentes techniques de mesure de la prolifération (kit MTS, cycle cellulaire, marquage au Ki-67) que ce couplage participe respectivement au maintien du potentiel membranaire et de la prolifération des cellules LNCaP.

Ce travail met en évidence, pour la première fois, un couplage spécifique entre l’isoforme CaV3.2 des canaux calciques de type T et les canaux potassiques BK dans les cellules cancéreuses prostatiques humaines androgéno-dépendantes LNCaP. De plus, ce travail montre l’implication des CaV3.2 et confirme celle des canaux BK, montrée dans les cellules androgéno-indépendante PC-3 [Bloch et al., 2007], dans la prolifération des cellules LNCaP.
Summary
Prostate cancer has become the most common cancer and the second leading cause of death by cancer in men of European countries. The molecular mechanisms underlying prostate cancer development and its progression towards an androgen-independent stage are still under scrutiny. Ion channels have been suspected to be implicated in various aspects of prostate cancer development, such as cell invasion and migration, proliferation or apoptosis. We show in this study that the main voltage-dependent current in prostate cancer LNCaP cells is carried by a large-conductance potassium channel. This conductance is regulated by cytosolic calcium, although it is able to be fully activated in total absence of calcium. We show that stimulation of CaV3.2 T-type calcium channels activates BK potassium channels. In addition, we show that CaV3.2 and BK potassium channels co-localize in the same patches of membrane areas. Finally, we show that BK potassium channels constitute the main channel family involved in resting membrane potential setting and can regulate the proliferation of prostate cancer cells by allowing calcium entry through T-type calcium channels.

Introduction
The early development of prostate cancer relies on the presence of active steroid male hormones (see (1) for review). Therefore, most medications commonly used to treat this androgen-dependent disease aim at reducing blood testosterone or dihydrotestosterone, the prostate active androgen (2). Though particularly efficient in the early beginning of the disease, these treatments do not avoid cancer relapse in about a third of the patients for whom there is no effective curative therapy (see (1) for review).

The molecular mechanisms underlying prostate cancer development and its progression towards an androgen-independent stage are still unknown. In this curse of cancer understanding, many molecular targets, besides known oncogens and tumor suppressors, have been proposed to participate in the process of cancer development and among them, different ion channels (3). In addition, various types of ion channels have been shown to be up or down-regulated in cancer cells. Ion channels have been shown to be implicated in various aspects of prostate cancer development, such as sodium channels in cell invasion and migration (4), voltage-dependent calcium channels in neuroendocrine differentiation (5) or potassium channels in cell proliferation (6,7). For example, it has been shown in prostate cancer LNCaP cells that blocking potassium ion channel activity with inhibitors such as tetraethyl ammonium (TEA) reduced cell growth (8). Therefore, there have been various studies attempting to identify the nature of voltage-dependent potassium channels in LNCaP cells. Indeed, voltage-dependent potassium currents in LNCaP cells have been attributed to either calcium activated channels of the BK (Slo1) family (9) or to calcium-inhibited dendrotoxin sensitive voltage-dependent channels (6). In addition, gene amplification of BK potassium channel alpha1 subunit has been described in prostate cancer cells (10). In the present study, we wished to reassess the nature of the voltage-dependent potassium channels, their regulation by...
Running title: BK channels and T-type calcium channels in prostate cancer cells

cytosolic calcium and their possible coupling to calcium channels expressed in LNCaP cells such as CaV3.2 T-type calcium channels (5) and finally their role in prostate cancer cells proliferation. Our experiments show that most of the voltage-dependent current in LNCaP cells is carried by BK potassium channels which are open at resting membrane potential even in the absence of intracellular calcium. However, these BK channels are sensitive to calcium since they may be activated by increases in cytosolic calcium due to intracellular perfusion of high concentrations of calcium or by activating calcium entry. We show that membrane depolarizations in LNCaP cells expressing CaV3.2 T-type calcium channels increased BK potassium currents and potassium channel activity and that a transient calcium entry through CaV3.2 calcium channels is able to induce a persistent activation of BK channels. We show using single channel experiments that T-type calcium channels and BK potassium channels are located in the same patches of membranes. Finally, using specific inhibitors and SiRNA, we show that BK channels set the resting membrane potential in prostate cancer cells and thereby participate to cell proliferation and secretion. These results show that there is a functional coupling in LNCaP cells between voltage-dependent potassium and calcium channels and that this coupling participates in the proliferation of prostate cancer cells.

Experimental procedures

Cell culture and treatments

LNCaP cells were purchased from the American Type Culture Collection and grown as recommended in RPMI 1640 (Biowhittaker, Fontenay sous Bois, France) supplemented with 10% fetal bovine serum (FBS, Seromed, Poly-Labo, Strasbourg, France), and 2 mM L-glutamine (Sigma, L’Isle d’Abeau, France). Cells were routinely grown in 50 ml flasks (Nunc, Poly-Labo, France) in a humidified atmosphere at 37°C (95 % air - 5 % CO2). For electrophysiological and imaging studies, cells were subcultured using trypsin in petri dishes (Nunc) and on glass coverslips for imaging studies only. The culture medium was then changed every three days. In order to induce neuroendocrine differentiation, LNCaP cells were cultured with 1 mM dibutyryl cyclic AMP (Bt2cAMP) and 100 µM isobutylmethylxanthine (IBMX) for 3-6 days.

Stable cell lines expressing α1H protein (LNCaP-α1H), or α1H-GFP fusion protein (LNCaP-α1H-GFP), or control LNCaP cell lines transfected with an empty pcDNA3 vector (LNCaP-Neo) were designed as previously reported (11).

Fluorescence imaging

Fluorescence imaging was carried out in HBSS solution (Hank’s Balanced Salt Solution) containing 142 mM NaCl, 5.6 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 0.34 mM Na2HPO4, 0.44 mM KH2PO4, 10 mM HEPES and 5.6 mM glucose. The osmolarity and pH of external solutions were adjusted to 310 mOsm.l⁻¹ and 7.4, respectively. Cytosolic calcium concentration was measured using Fura2-loaded cells (2 µM) as described elsewhere (11). The intracellular calcium concentration was derived from the ratio of the fluorescence intensities for each of the excitation wavelengths (F340/F380) and from the Grynkiewicz et al equation (12). The cells were continuously perfused with the HBSS solution and chemicals were added via a perfusion system.

Electrophysiological recordings

Whole-cell patch-clamp recordings (13) were performed using a RK-300 patch-clamp amplifier (Biologic, Grenoble, France) as previously described (14). Unless otherwise specified, bath medium used for whole-cell and outside-out experiments consisted in HBSS. For cell-attached single-channel recordings, bath medium contained 100 mM KCl, 45 mM NaCl, 1 mM MgCl2, 10 mM HEPES, 5.6 mM glucose and 2 mM CaCl2. Osmolarity and pH of external buffers were adjusted to 310 mOsm.l⁻¹ and 7.4, respectively. For whole-cell or outside-out single channel experiments, recording pipettes were filled with a solution containing 130 mM KGlucenate, 10 mM NaCl, 10 mM HEPES, 1 mM MgCl2, with 0.1 to 10 mM EGTA. For cell-attached single-channel experiments, pipette solution contained standard HBSS or 100 mM CaCl2 and 10 mM HEPES. Osmolarity and pH were adjusted to 290 mOsm.l⁻¹ and 7.2, respectively.

Tests of viability

Cell viability was assessed by a colorimetric method (CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay, Promega, USA) according to manufacturer’s instructions.

© 2010 Tous droits réservés. http://doc.univ-lille1.fr
SiRNAs design and cell preparation
Small interfering RNAs against the human coding sequence of CaV3.2 calcium channels (Genebank accession # NM-021098.2) were designed and two selective sequences, referred to as Si-α1H1 and Si-α1H2, were selected to knockdown the expression of T-type α1H calcium channels. These SiRNAs have been validated elsewhere (14). SiRNAs used in this study included a non-specific control SiRNA (Si-Ctl) with at least 4 mismatches to any human genes. Sense sequences of SiRNAs were 5'-UAGCGACUAAACACAUCAA-3' (Si-Ctl), 5'-ACGUGAGCAUGCUGUAUdTdT-3' (Si-α1H1, position 311-329 from ATG), 5'-AGAUGGCCGUGGCGUCUAUdTdT-3' (Si-α1H2, position 2166-2184 from ATG), 5'-GAGTCCTGGTTGTCTTAGT-3' (Si-hBK, Accession number HSU11717 position 485-503 from ATG), and 5'-CAAGCACCGGTTCGAAATGT-3' (Si-hIK1, Accession number NM_002250 position 975-994 from ATG). Si-hIK1 has been validated elsewhere (Lallet et al, under revision in Oncogene).

SiRNAs were purchased from Dharmacon (France). LNCaP-CTL, LNCaP-α1H cells were transfected with either 5 or 20 nM SiRNA Si-α1H1, Si-α1H2, Si-hBK, Si-hIK1 or Si-Ctl using HiPerFect Transfection Reagent (Qiagen) in 35-mm dishes for electrophysiological purpose, in 24 well plates for secretion, in 60-mm dishes for cell cycle or in 100-mm dishes for protein extraction. SiRNAs were incubated in culture medium without serum for 5-10 minutes at room temperature to form the transfection complexes and were further added drop-wise onto the cells. The medium was then changed as required and gene silencing could be studied after an appropriate time depending on experimental setup.

Analysis of the α1 subunit gene expression of BK potassium channel (RT-PCR)
RT-PCR was carried out as previously described (14). The PCR primers used to amplify the 794 bp α1 amplicon (accession number: NM_001014797.1) were 5'-CAGACACTGACTGGCAGAGT-3' (forward) and 5'-TGACGTCATCCCGGTCTTGCA-3' (reverse), and those used to amplify the 234 bp GAPDH amplicon (accession number: NM_002046.3) were 5'-TTCCACCACCATGGAGAGGC-3' (forward) and 5'-GGCATGGACTGTTGTCATGA-3' (reverse).

Cell Cycle Analysis
Cells were grown in three 60-mm dishes per condition and drugs or SiRNA were applied as described above. After treatments, cells were trypsinized, harvested and resuspended in 0.2 ml sterile PBS. 1 ml of cold 70% ethanol was added onto cell suspensions while vortexing. Samples were centrifuged, washed in sterile PBS and then incubated with ribonuclease (2 µg/ml) for 15 min. Propidium iodide (25 µg/ml final in PBS-triton X-100 0.1%) was then added and allowed to incubate for an additional 30 min. DNA content was measured by exciting propidium iodide at 488 nm and measuring the emission at 520 nm using a flow cytometer (Beckman coulter Epics XL4-MCL with Expo32 acquisition). The reinterpretation of data was made by Multicycle for Windows (Phoenix Flow system).

Immunostaining
Immunostaining and confocal observations were realized as previously described using a Zeiss LSM 510 confocal microscope (Carl Zeiss, Le Pecq, France) connected to a Zeiss Axiovert 200 M with a x63 oil-immersion objective lens (numerical aperture 1.4) (14). Anti-Ki67 antibody was used to evaluate the percentage of proliferating cells (1:100, rabbit, Abcam). At least 500 cells per slide and three slides per condition were double-blind counted.

Chemicals
All chemicals were purchased from Sigma except for Fura2-AM which was bought from Calbiochem (France Biochem, Meudon, France).

Statistical analysis
Each average current/voltage relationship shown in this article corresponds to the mean of at least 10 cells and is representative of at least 3 independent experiments. Plots were produced using Origin 5.0 (Microcal Software, Inc., Northampton, MA). Results are expressed as mean ± sem. Statistical analysis were performed using unpaired t-tests (for comparing two groups) or ANOVA tests followed by either Dunnett (for multiple control vs. test comparisons) or Student-Newman-Keuls post-tests (for multiple comparisons). Differences were considered
significant with p<0.05 : *, p<0.01 : **, p<0.001 : ***.

Results

LNCaP cells display a large voltage-dependent potassium current which activates around -10 mV when calcium is strongly buffered in the patch-pipette using 1-10 mM EGTA (Figure 1). In order to characterize voltage-dependent potassium channels in LNCaP cells, we carried out a pharmacological study. As shown in Figure 1, TEA (10 mM) almost totally inhibited voltage-dependent K⁺ currents (n=20). Paxillin (1 µM), an inhibitor of BK potassium channels (15,16), completely abrogated membrane currents (n=19). Iberiotoxin (1 µM), another specific BK potassium channel inhibitor (16), decreased voltage-dependent potassium currents by 60% (n=10). Inhibitors of IK potassium channels TRAM-34 (1-10 µM, n=25) and clotrimazole (1-10 µM, n=25) did not have any effect on their own. Similarly, inhibitors of SK potassium channels d-tubocurarin (100 µM, n=8) and apamin (500 nM, n=8) did not reduce voltage-dependent potassium currents. Using SiRNAs, we observed that the whole-cell voltage dependent potassium currents were strongly inhibited by knocking down the expression of BK potassium channels but not the expression of IK potassium channels (Figure 1).

Single-channel experiments carried out in cell-attached or outside-out patch configurations showed that channel openings in LNCaP cells had an average conductance of 146 ± 4.7 pS and 186 ± 2.7 pS in asymmetrical (cell-attached 5 mM K⁺ in the pipette vs 150 mM inside the cell) or symmetrical potassium conditions (150 K⁺), respectively. BK channel density was not different between different LNCaP cell lines (2 ± 0.3 BK channels per patch, n=55 for LNCaP-CTL cells, 2.6 ± 0.3 channel per patch, n=32 for LNCaP-NE cells, 2.8 ± 0.5, n=50 for LNCaP-α₁H cells, not significantly different, p>0.05). Altogether, we observed that 31% of the patches were devoid of any BK channels and 21% of the patches displayed only one level of opening. The number of openings in our experiments was therefore not normally distributed, with two major peaks (0 opening/patch and 4 opening levels/patch). When displaying the percentage of BK channels as a function of patch channel density (the number of BK channels in each patch), we observed (Figure 2E) that most of the channels were present in clusters of BK channels (70% of BK channels being expressed in clusters larger than 4 channels, these representing only 30% of the patches). This shows that BK channels are clustered in specific areas on LNCaP cell surface. With an average figure of 2 ± 0.3 BK channels per patch (n=137 patches, 311 channels), we estimated that the density of BK channels on the plasma membrane was around 1 per µm², which means about 6500 for an average LNCaP cell (mean capacitance 65 ± 3 pF) (Figure 2). As shown on Figure 3, voltage-dependent potassium channels are partially responsible of resting membrane potential of LNCaP cells. Indeed, RMP was depolarized as a function of the extracellular potassium concentration and TEA, paxillin and iberiotoxin, as well as SiRNAs directed against BK channels (Si-hBK) strongly depolarized LNCaP cells. On the contrary, inhibition of IK or SK potassium channels by SiRNAs, apamin or d-tubocurarin did not alter the membrane potential. This makes BK channels responsible for setting the resting membrane potential of LNCaP cells.

In order to investigate BK potassium channels regulation by cytosolic calcium we first reduced EGTA from 10 or 0.1 mM. As illustrated on Figure 4, this did not have any influence on K⁺ current magnitudes at any membrane potential. As shown on Figure 4, though BK potassium currents may be activated in the absence of calcium in the patch-pipette (10 mM EGTA), perfusing high concentration of calcium into the cells (400 nM) shifts the IV curve towards negative membrane potentials (Figure 4C). Applying ionomycin (1 µM), a calcium ionophore, on LNCaP cells, induced a similar enhancement of voltage-dependent potassium currents (Figure 4C). Higher concentrations of calcium (900 nM) or thapsigargin (0.1 µM) were able to activate calcium-dependent potassium current sensitive to clotrimazole or TRAM-34 which have been shown to inhibit the intermediate conductance potassium channel family (not shown and Lallet et al, 2008, under revision in Oncogen).

We then investigated whether the activation of T-type calcium channels in LNCaP cells could lead to the activation of BK channels. As previously shown, T-type calcium currents are expressed in
about 30% of LNCaP-CTL cells and 80% of LNCaP-NE cells (5). In LNCaP cells overexpressing CaV3.2 channels (LNCaP-NE cells or LNCaP-α1H cells), paxillin (n=34) and Si-hBK (n=54) inhibited, as in LNCaP-CTL cells, the voltage-dependent potassium currents almost totally. Depolarization protocols led to inward calcium currents followed by outward currents at membrane potentials positive to -50 mV (LNCaP-α1H cells, in 100% of the cells, n=363) and -40 mV (LNCaP-NE cells, in 84% of the cells, n=224; LNCaP-CTL cells, in 32% of the cells, n=81) in the presence of 0.1 mM EGTA in the patch-pipette. When T-type calcium currents were absent, depolarization protocols led to outward currents at membrane potentials positive to -10 mV (Figure 5). These outward currents had slow inactivating kinetics (t=167±35 msec in LNCaP-NE cells and 5.09±0.9 sec in LNCaP-α1H cells) which were not altered by treatments with ruthenium red (10-100 µM, n=10-19), heparine (5 mg/ml, n=19) and Xestospongin C (5 µM, n=11) in the patch-pipette, or by ryanodin (10-100 µM, n=17) in the external medium. Using tail currents protocols, we show that these outward currents reversed at -81 ± 2 mV in LNCaP-CTL, LNCaP-NE and LNCaP-α1H cells (not shown). Outward currents were inhibited by concentrations of 10 mM EGTA few minutes after breaking into whole cell in both LNCaP-NE (n=12) and LNCaP-α1H cells (n=10) (Figure 5).

In addition, a conditioning prepulse at -40 mV which induces full inactivation of T-type calcium channels completely inhibited this potassium current (Figure 6), showing that calcium entry through T-type calcium channels can activate calcium-dependent potassium currents. Subtraction of voltage-dependent K⁺ currents obtained at a HP of -40 mV from the total K⁺ currents obtained at an HP of -80 mV gave I/V curves with an inverted bell shape similar to that of I/V curves for T-type calcium currents (Figure 6). In addition, inhibitors of T-type calcium channels (NiCl₂ (10-100 µM, n=16-14), mibebradil (5 µM, n=3), flunarizine (5 µM, n=3) or kurtoxin (100 nM, n=3)) inhibited both the inward T-type currents and the calcium-dependent component of K⁺ currents in LNCaP-CTL, LNCaP-NE and LNCaP-α1H (Figure 7A and B) without inhibiting the purely voltage-dependent component of the potassium current (not shown).

In order to discriminate between the different calcium-dependent potassium channels involved in the T-type-activated K⁺ current and to assess the involvement of BK potassium channels, we carried out pharmacological experiments. Since the major classes of calcium-dependent potassium current have different sensitivities towards TEA, different concentrations of TEA were used. Dose-response relationships for each type of cell show that T-activated K⁺ currents are inhibited at 50% for a concentration of about 1-2 mM TEA (IC₅₀ = 1.9 ± 0.7 mM and 1.14 ± 0.2 mM, for LNCaP-NE and LNCaP-α1H cells, respectively, not shown). Apamin (500 nM) and d-tubocurarin (100 µM) were used to inhibit small conductances SK potassium channels. These toxins did not induce any significant blockade of T-type-activated K⁺ currents in neither LNCaP-NE nor in LNCaP-α1H cells (apamin, n=4; d-tubocurarin, n=4). Inhibitors of intermediate conductance IK potassium channels (clotrimazole 10 µM) were unable to antagonize T-type-activated K⁺ currents in neither LNCaP-NE nor LNCaP-α1H cells (n=7). Since all pharmacological evidences pointed out to a large-conductance potassium channel, we carried out experiments to specifically knock down the expression of BK potassium channels using specific SiRNAs.

As shown on Figure 7, downregulation of Slo1 decreased the magnitude of the T-type-activated K⁺ currents in both LNCaP-NE and LNCaP-α1H though with a greater efficacy in LNCaP-NE cells (% of inhibition). In addition, knocking down the expression of CaV3.2 calcium channels (α1H T-type calcium channels) with SiRNAs considerably reduced T-type-activated K⁺ currents. On the opposite, Si-hIK1 and Si-Ctl did not have any significant influence on neither T-type calcium currents nor on T-type-activated K⁺ currents while Si-hIK1 completely inhibited EBIO-induced K⁺ currents and the expression of hIK1 amplicons in RT-PCR (not shown).

We investigated whether there could be a functional coupling between CaV3.2 and BK channels in close areas of the plasma membrane. In order to study the colocalization of T-type calcium channels and BK potassium channels, we carried out single-channel experiments in cell-attached configuration of the patch-clamp technique. Cells
were depolarized with 100 mM KCl in the bath in order to clamp the membrane potential at around 0 mV. The patch pipette contained 140 mM NaCl, 5 mM KCl to measure potassium outward currents. As measured from their unitary conductance, these channels were identified as BK potassium channels (conductance = 190 pS). The activation of smaller potassium conductances like IK that we have previously demonstrated to be present and activated by cytosolic calcium increases in LNCaP cells (Lallet et al, under revision in Oncogene) was never observed in our experiments. Channel opening was transiently stimulated immediately after the depolarization. As shown on Figure 8, when T-type calcium channels were inactivated by a 10 sec conditioning potential pulse at -40 mV, transient BK channel opening probability was significantly reduced in LNCaP-NE cells. Functional channel coupling in the same patch was observed in almost half of LNCaP-NE cells (46 %, n=39 cells). From the average channel density in LNCaP-NE cells displaying a functional coupling (4 ± 0.2 BK channel per patch), we could compute the open probability in both cell types. We can observe that the maximum average Po is reached after only 30 msec, showing a very fast coupling between both CaV3.2 and BK channels. When increasing calcium in the patch-pipette to 100 mM, a small inward current, corresponding to T-type calcium channel opening could be observed just before BK channel openings (Figure 8).

We investigated the ability of CaV3.2 channels to increase cytosolic free calcium concentrations. In Fura2 calcium imaging experiments, though basal calcium was slightly higher in LNCaP-NE cells than in LNCaP-CTL cells (84 ± 5.3 nM vs 62 ± 1.2 nM), there were no detectable calcium oscillations in these cells. In addition, in both cell types, there was no cytosolic calcium increase upon KCl depolarizations (25 mM). In LNCaP-α1H cells, cytosolic calcium was even slightly higher (109 ± 3 nM, n=358) than in LNCaP-NE cells with very few cells showing small calcium oscillations (6.5 % out of 358 cells, average amplitude 12.7 ± 2 nM). These calcium oscillations could be attributed to CaV3.2 activity since they were inhibited by kurtoxin (100 nM), NiCl2 (20 µM) and Si-α1H1 and Si-α1H2 (5 nM). However, KCl (25 mM) depolarizations only induced slight cytosolic calcium increases (20 ± 2 nM, n=77) in a minority of the cells (23%, n=335), showing that depolarizations-induced CaV3.2 activity was not able to promote generalized cytosolic calcium increases. In addition, basal calcium concentration in LNCaP-NE and LNCaP-α1H cells was reduced by NiCl2 (20 µM) and Si-α1H1 and Si-α1H2 (not shown). Therefore, even in cells overexpressing large amounts of CaV3.2 calcium channels, these are mostly involved in basal calcium entry at resting membrane potential and not in calcium oscillations. We thus carried out current-clamp recordings to study the functional implication of such coupling. In such experiments, though some small off-action potentials could be observed in LNCaP-NE cells and LNCaP-α1H cells, spontaneous action potentials were never observed in LNCaP-NE cells and only scarcely in LNCaP-α1H cells. Resting membrane potentials were measured in LNCaP cells either undifferentiated or overexpressing CaV3.2 channels. LNCaP-NE cells were hyperpolarized (-40 ± 0.8 mV) as compared to undifferentiated cells (-32 ± 2 mV), with 0.1 mM EGTA in the patch-pipette. In addition, LNCaP-α1H cells were even more hyperpolarized (-54.2 ± 1 mV). When EGTA was increased in the patch-pipette to 10 mM, resting membrane potential of both LNCaP-NE and LNCaP-α1H cells were depolarized to values similar to the one measured on LNCaP-CTL cells.

We then investigated whether such a coupling could participate in prostate cancer cell growth. As shown on Figure 9A using MTS survival assays, inhibition of BK potassium channels by paxillin or by Si-hBK decreased LNCaP cell growth. Similarly, we show that T-type calcium channel antagonists (flunarizine 10 µM, NiCl2 IC50 = 43 µM) reduced cell growth as measured by MTS assay. In addition, we show (Figure 9B) that T-type calcium channel inhibition (NiCl2 50 µM, Si-α1H1 and Si-α1H2 5 nM) and BK channel inhibition (paxillin 10 µM, Si-hBK 20 nM) decreased cell proliferation by increasing the percentage of cell number in G1 phase and decreasing the proportion of cells in S phase. Paxillin was used in cell proliferation assays at higher concentrations (10 µM) than in patch-clamp experiments (1 µM). Low
paxillin concentrations (1 µM) were inefficient to reduce cell growth. We believe that paxillin is chelated by serum contained in the cell culture medium. Indeed, when reducing the serum concentration (from 10 to 2%), the inhibitory action of paxillin on proliferation was enhanced (not shown). Furthermore, there was no additive action of NiCl₂ (50µM) and paxillin (10 µM), showing that both antagonists decrease cell proliferation via common pathways (Figure 9B). Reduction in cell growth by inhibiting T-type calcium channels and BK channels was therefore due to an inhibition of cell proliferation and not to cell apoptosis since no SubG1 peak and no Hoescht staining was observed with any of the inhibitors or SiRNAs used in this study (not shown). In addition, proliferation was measured using Ki67 immunostaining. The number of proliferating cells was determined as the proportion of cells positive to Ki67 antibody. As shown on Figure 9C, the percentage of Ki67 positive cells was reduced by T-type calcium channels, BK channels inhibitors and SiRNAs against BK and CaV3.2 channels.

Discussion
The nature of voltage-dependent potassium channels expressed in LNCaP cells has been the centre of a controversy these last ten years and has been attributed to several classes of potassium channel families. A dendrotoxin and verapamil sensitive channel (6,17) has been suggested to be responsible for the voltage-dependent potassium current in LNCaP cells. These dendrotoxin-sensitive potassium currents have been shown to be inhibited by cytosolic calcium (6), to promote prostate cancer cell proliferation (8) and to be activated by prolactin (18). Other studies have proposed from their voltage-dependency that these potassium currents belong to the Kv1 family (19). Large conductance calcium-activated potassium channels of the BK (Slo1) family have been described in LNCaP cells (9,20). These studies demonstrated that BK channels in LNCaP cells possessed a high sensitivity to calcium being able to open at few nM of cytosolic calcium.

Our results show that BK potassium channels are expressed in LNCaP cells as previously shown by others (9,20). In addition, we demonstrate in whole-cell and single-channel experiments using pharmacological (paxillin inhibition) and molecular evidences (Si-hBK) that most of the voltage-dependent potassium current is carried by BK channels in LNCaP cells. These BK potassium currents have classical single-channel conductances (about 200 pS in symmetrical potassium conditions) but display non classical calcium dependency as previously shown by Gessner et al (9). Indeed, voltage-dependent potassium currents can be fully activated in the absence of cytosolic calcium. In whole-cell configuration with 10 mM EGTA in the recording pipette, voltage-dependent BK potassium currents activate around -10 mV in LNCaP cells. In outside-out patches with 10 mM EGTA in the pipette, BK channel openings can be observed even at negative potentials. As expected from these results, and as shown by blockade with paxillin, iberiotoxin and Si-hBK, BK potassium channels maintain the resting membrane potential to negatives values. These values (around -30 mV) are very close to those described elsewhere (5,20). Estimation from single-channel experiments gives a figure of about 6500 BK channels on LNCaP cells plasma membrane (1 per µm²). From the uneven distribution of channel opening, we feel that BK channels may be clustered on the plasma membrane.

We show that, in addition to an activity even in the total absence of calcium at physiological membrane potential, an increase in cytosolic calcium concentration is able to activate BK channels. Though BK channels carry most of the voltage-dependent component of the current, other calcium-dependent channels may be activated by increases in cytosolic calcium concentration in prostate cancer cells as observed in our experiments and by others (21). Indeed, applications of thapsigargin on prostate LNCaP cells or intracellular perfusion of high calcium concentration (> 200 nM) through the patch-pipette could induce the activation of intermediate conductance potassium channels as shown by the inhibition with IK channels antagonists like clotrimazole or TRAM-34 and SiRNAs (personal observations and Lallet et al, 2008, under revision in Oncogen). However, an activation of IK channels was never observed following the activation of T-type calcium channels. On the contrary, despite the low density of CaV3.2 channels on the plasma membrane, BK channels
were consistently activated by calcium entry through CaV3.2 calcium channels which shows that there is a functional coupling between both channels in LNCaP cells. Indeed, since the magnitude of T-type calcium currents is usually about 0.8-1 pA/pF, the density of CaV3.2 T-type calcium (in 2 mM extracellular calcium, estimated conductance 2 pS (22)) should be about only 500-600 CaV3.2 calcium channels in LNCaP-NE cells. This gives one CaV3.2 channel per 10 µm² of plasma membrane surface area (mean membrane capacitance of 65 ± 3 pF), therefore about 1 CaV3.2 channel for 10 BK channels.

There are a number of evidences showing colocalization and coupling between voltage-dependent calcium channels and calcium-dependent potassium channels. L-type calcium channels have been shown using single-channel experiments to be specifically coupled to SK potassium channels (23). T-type calcium channels have been shown to be coupled to small conductance SK potassium channels in dopaminergic neurons (24). Such functional coupling between BK and other voltage-dependent calcium channels has been demonstrated in different cell types, such as L- and Q-type channels in adrenal chromaffin cells (25), L-type and N-type channels in neocortical pyramidal neurons (26) or in hair cells active zones (27,28). Colocalization and physical interaction were demonstrated between BK channels and L-type CaV1.2 channels in rat brain and adrenal chromaffin cells (24,29,30). In our experiments, functional coupling was abolished by 10 mM EGTA which could mean that both T-type and BK channels are not coassembled in a same molecular complex but may be separated by at least more than 10 nm. Our co-immunoprecipitation experiments did not allow to conclude on a possible association between CaV3.2 and BK channels (not shown). However, because functional coupling was frequently observed in cell-attached patch single channel experiments (in half of the cell-attached patches in neuroendocrine LNCaP cells), we suggest that there is a colocalization of both channels in close areas of the plasma membrane. Furthermore, coupling was observed essentially in patches displaying 3 or more single BK channel opening levels, which means that CaV3.2 are probably localized in clusters of BK channels.

The activation of BK channels by CaV3.2 was observed not only with a CaV3.2 overexpressing cell model (LNCaP-α1H) but also in cells expressing endogenous CaV3.2 at moderate levels (about 1 pA/pF, which gives about 1 channel/10µm² of membrane in LNCaP-NE cells) and at lower levels (0.3 pA/pF, 1 channel/30µm² in LNCaP-CTL). Indeed, we previously showed (5) that CaV3.2 density is increased by at least two fold in LNCaP-NE as compared to LNCaP-CTL cells. Despite this low CaV3.2 density, BK channels were activated in all LNCaP-CTL cells expressing CaV3.2 with an efficacy similar to that of in LNCaP-NE cells. One hypothesis was that CaV3.2 channels are able to produce calcium increases spreading in the cytosol which may activate BK channels. Our data on the influence of T-type calcium channel activity on calcium homeostasis seem to show that these channels are not able to promote neither spontaneous calcium oscillations nor voltage-stimulated calcium increases in both LNCaP-CTL and LNCaP-NE cells. Such data are in agreement to previously published results in other cell types such as adrenal glomerulosa cells (31) where T-type calcium channels are unable to produce cytosolic calcium increases. We show that LNCaP-α1H cells which overexpress large amounts of CaV3.2 channels may display to a small extent calcium oscillations which may be stimulated by KCl depolarizations as shown in CaV3.1 and CaV3.3 overexpressing cells (32,33). However, these results are marginal since only 6% of these cells were able to produce spontaneous calcium oscillations. It is therefore more likely that CaV3.2 channel activity allows calcium increases restricted to small areas underneath the plasma membrane which may eventually activate nearby BK channels without involving the development of a calcium wave spreading throughout the whole cytosol. In prostate cancer cells, such calcium entry would occur at a window resting membrane potential (RMP) as shown previously for CaV3.2 channels in LNCaP cells (5), in other endogenously expressing cell models (34) and in overexpressing cell models (35). In prostate cancer cells, this window RMP is probably set by BK and CaV3.2 coupling. Indeed, inhibiting BK channels nullified RMP, showing that this is the main ion channel involved in this
function. In addition, overexpressing CaV3.2 channels surprisingly led to more hyperpolarized RMP whereas blocking CaV3.2 expression or function produced depolarized RMP. Therefore, CaV3.2 channel are able, through BK channel activation, to shift the RMP towards negative values.

In neuronal cells, functional coupling between voltage-dependent calcium channels and calcium-dependent potassium channels has been shown to participate to action potential repolarization (26) or burst firing (24,36). We investigated the potential role of this coupling in non excitable prostate cancer cells proliferation. The role of BK channels in proliferation was previously studied in different cell models and noticeably in prostate cancer cells where they were suggested to be either stimulatory or inhibitory or negligible according to the cell type or the cell line. For example, in osteosarcoma, BK silencing using SiRNA strategy induced in vivo tumorigenesis (37). In breast cancer cells, whereas their expression is correlated to the different phases of the cell cycle, their inhibition by iberiotoxin was not correlated with any changes in proliferation (38,39). In addition, to add even more complexity, their stimulation by tamoxifen could promote cell proliferation (40), an action which was inhibited by BK channels blockade. In gliomas, BK channels have been shown to be up-regulated in high grade of the diseases (41) and their inhibition leads to reduced proliferation in glioma cell lines (42). In the prostate, it was shown recently that BK channels are overexpressed in cancer and that their inhibition reduced cell proliferation (10). Similarly, the role of T-type calcium channels in proliferation and cancer progression has been suggested in different cell types (for review see (43) and (44)) such as breast cancer cell lines (45), esophageal cancer (46) or gliomas (47). Our results obtained using FACS analysis of the cell cycle, cell survival and Ki67 expression point to a joint role of both BK and CaV3.2 channels in cell proliferation. Indeed, their pharmacological inhibition or their down-regulation by specific SiRNAs decreased the proportion of cells in the S-phase of the cell cycle, cell growth and the proportion of cells expressing Ki-67, which is a known marker of proliferative cells. Besides, no additive inhibition was observed when T-type calcium channels and BK channels were simultaneously inhibited, showing that they are involved in a common pathway implicated in cell proliferation. In addition, we have observed that BK channels (not shown), as previously demonstrated for CaV3.2 channels (11), are involved in PAP secretion. This allows us to speculate that the role of BK and CaV3.2 channels in proliferation may be either direct by activating transcription factors relying on calcium signalling as previously demonstrated for TRPC6 channels (48) or indirect by promoting the secretion of mitogenic factors which in turn could activate cell proliferation.

As above mentioned, the role for BK and CaV3 channels in proliferation is not always clear and controversial data have been published (for reviews see (43,44)). Such a role of coupling between BK channels and CaV3.2 channels that we have demonstrated for prostate cancer cell proliferation exemplifies that one possible reason for these discrepancies is that these channels may not be able by themselves to regulate cell proliferation. Their role may require a concerted action and may therefore depend on the cell equipment in various ion channels.

Acknowledgments

This work was supported by the INSERM, The Ligue Nationale contre le Cancer (comité du Nord), ARC (Association pour la Recherche sur le Cancer), FRM (Fondation pour la Recherche Médicale) and the University of Lille 1 (USTL).
Running title: BK channels and T-type calcium channels in prostate cancer cells

Figure 1: Blocking BK channels inhibits voltage-dependent potassium currents in LNCaP cells. A-F) Current-voltage (I/V) relationships in the presence of different potassium channels inhibitors. Concentrations used were: 4 mM TEA, 1 µM paxillin (Pax), 1 µM iberiotoxin (Iberio), 500 nM apamin (Apa), 1 or 10 µM clotrimazole (Clo), 1 or 10 µM TRAM-34 (TRAM). Treatments with different SiRNAs (Si-hBK, Si-Ctl, Si-hIK1) were carried out for 3-4 days with 20 nM of respective SiRNA. G) RT-PCR showing a decrease in the expression of the BK channel amplicon following a 3 days treatment with Si-hBK (20 nM).
Figure 2: Outside-out patch characterization of voltage-dependent K^+ channels in LNCaP cells. A) Outside-out recording of BK channels openings at different membrane potentials in symmetrical K^+ concentration (150 mM). B) Average I/V curve of single-channel BK current in symmetrical K^+ concentration (150 mM). C) I/V curve of single-channel BK current in asymmetrical K^+ concentration (150 mM K^+ in the patch-pipette, 5 mM K^+ in the bath). D) Proportion of outside-out patches displaying BK channel activity in the absence of SiRNAs, in the presence of ctl SiRNA (Si-Ctl) or in the presence of Si-hBK. E) Patches were classified according to their BK channel density (i.e. the number of channels per patch). The proportion of all BK channels recorded in our experiments ($n=331$) was plotted as a function of channel density on this histogram (for example, 20 % of all BK channels were observed in patches containing 4 levels of opening). 31 % of the patches were devoid of any channel activity.
Figure 3: Resting membrane potential dependency of BK channels. A) a) Serial application of different potassium concentration on an LNCaP cell depolarized RMP. b) Representation of average resting membrane potential and Nernst potential for K^+ as a function of potassium concentration. B) Typical online recording of membrane resting potential in an LNCaP cell. Paxillin (1 µM) depolarized RMP towards 0 mV. C) Average RMP in LNCaP cells in control condition (Ctl) and in the presence of various potassium channels inhibitors (Iberio: iberiotoxin (1 µM), Pax: paxillin (100 nM and 1 µM), SiRNAs (5 or 20 nM), dTC: d-tubocurarin (100 µM), Apa: apamin (500 nM)) or stimulator (NS1619: 20 µM).
Figure 4: Calcium dependency of voltage-dependent potassium currents in LNCaP cells. A) Typical membrane currents at -30 and +100 mV in the presence of either 10 or 0.1 mM EGTA in the patch-pipette. B) Average I/V curves obtained in the presence of either 10 or 0.1 mM EGTA in the patch-pipette. C) Typical I/V curves obtained using ramp protocols show that increasing intracellular calcium concentration using a) intracellular perfusion of 400 nM [Ca$^{2+}$] or b) bath perfusion with ionomycin (1 µM) results in an increased potassium current and its shift to more negative membrane potentials.
Figure 5: Comparison of voltage-dependent potassium currents in LNCaP cells with different expression levels of T-type calcium currents. A) In LNCaP cells that do not display any T-type calcium current, no potassium current was observed for membrane potential less than 0 mV. Top panel: membrane current, middle panel: pulse protocol, bottom panel: I/V curve. B) In LNCaP cells that express T-type calcium currents, here a LNCaP-NE cell, this transient calcium current was followed by potassium current that could be observed for membrane potential ranging from -40 to 0 mV. C) Similar results were observed for LNCaP cells stably overexpressing CaV3.2 channels (LNCaP-α1H). D) In LNCaP-α1H cells, potassium currents were larger when EGTA was reduced in the patch-pipette (0.1 vs 10 mM EGTA). E) Representation of relative membrane conductance (G/Gmax) in LNCaP-CTL and LNCaP-NE cells with 0.1 and 10 mM EGTA in the patch-pipette. F) Representation of relative membrane conductance (G/Gmax) in LNCaP-α1H cells with 0.1 and 10 mM EGTA in the patch-pipette.
Figure 6: The transient component of voltage-dependent potassium currents is inhibited by depolarizing the holding potential to -40 mV in A) LNCaP-NE and B) LNCaP-α1H cells. a) Examples of membrane currents triggered by voltage steps to various membrane potentials from two different holding potentials (-80 and -40 mV). b) I/V curves obtained from holding potentials of -80 and -40 mV. c) I/V curves displaying the difference between the current measured at HP -80mV and that of measured at HP -40mV.
Figure 7: Pharmacological study of the transient voltage-dependent potassium currents in LNCaP-NE cells (panels A, B, C) and LNCaP-α1H cells (panel D). A) On-line recording of transient voltage-dependent potassium currents inhibition by NiCl₂ (10 µM) and TEA-Cl (20 mM). Inset: representative membrane currents measured at -20 mV from HP -80mV. B) Inhibition of membrane currents (measured at -20 mV from HP -80mV) by TEA and iberiotoxin and not by apamin. C) Inhibition of voltage-dependent potassium currents by Si-hBK. I/V curves shown here represent the average difference between currents obtained at HP-80 mV and those obtained at HP-40 mV. Inset: representative membrane currents measured at -20 mV from HP-80mV. D) Representative inhibition of membrane currents (measured at -20 mV from HP -80mV) by Si-hBK and not by Si-Ctl or Si-hIK1. Treatments for three days with Si-hBK (20 nM) inhibit about 80% of the calcium-dependent potassium current in both LNCaP-NE cells (C) and LNCaP-α1H cells (D).
Figure 8: Cell-attached single-channel study of coupling between BK and CaV3.2 channels. A) Example of recording of BK channel opening following a voltage step to -10 mV. B) Example of recording of BK channel opening following a voltage step to -20 mV. As seen, channel opening occurs at the beginning of the depolarization. C) Example of channel opening following stimulation to -20 mV at two different holding potentials: -80 mV (left panel) and -40 mV (right panel). As seen, BK channel opening at HP -80 mV occurs immediately after the inward calcium current (arrow). This is impeded at HP -40 mV. D) Average BK channel open probability after the beginning of depolarization to -20 mV in LNCaP-NE cells. This value is computed by averaging (20-50 different voltage pulses from 15 cells) and subtracting single-channel currents obtained at HP -40 mV from those obtained at HP -80 mV. In these experiments, there was an average number of 4 BK channels in each patch.
Figure 9: Role of BK and CaV3.2 channels in LNCaP cell proliferation. **A)** a) Cell growth measured with MTS after 4 days in various channel inhibitors (Pax: paxilllin (10 µM), Flu: flunarizine (10 µM), Si-Ctl and Si-hBK (20 nM)). b) Dose-dependent inhibition of cell growth by NiCl₂. **B)** a) % of cells in each phase of the cell cycle (G1, S and G2/M) depends on the inhibition of T-type and BK channel. Inhibition of both channels increases the proportion of cells in G1 and decreases the proportion of cells in S phase without additive action. b) Relative % of cells in S phase (Ctl normalized to 100 %) as measured by FACS in the presence of SiRNAs against BK and CaV3.2 channels. **C)** Immunodetection of Ki67 after 4 days incubation in various channel inhibitors (a) and relative % of cells immunostained with Ki67 antibody in the presence of channel inhibitors (b) and SiRNAs (c).
Running title: BK channels and T-type calcium channels in prostate cancer cells

References

1. Feldman, B. J., and Feldman, D. (2001) Nat Rev Cancer 1(1), 34-45
2. Huggins, C. (1967) Cancer Res 27(11), 1925-1930
3. Kunzelmann, K. (2005) J Membr Biol 205(3), 159-173
4. Bennett, E. S., Smith, B. A., and Harper, J. M. (2004) Pflugers Arch 447(6), 908-914
5. Mariot, P., Vanoverbergh, K., Lalevee, N., Rossier, M. F., and Prevarskaya, N. (2002) J Biol Chem 277(13), 10824-10833
6. Skryma, R., Van Coppenolle, F., Dufy-Barbe, L., Dufy, B., and Prevarskaya, N. (1999) Receptors Channels 6(4), 241-253
7. Spitzner, M., Ousingsawat, J., Scheidt, K., Kunzelmann, K., and Schreiber, R. (2007) Faseb J 21(1), 35-44
8. Skryma, R. N., Prevarskaya, N. B., Dufy-Barbe, L., Odessa, M. F., Audin, J., and Dufy, B. (1997) Prostate 33(2), 112-122
9. Gessner, G., Schonherr, K., Soom, M., Hansel, A., Asim, M., Baniahmad, A., Derst, C., Hoshi, T., and Heinemann, S. H. (2005) J Membr Biol 208(3), 229-240
10. Bloch, M., Ousingsawat, J., Simon, R., Schraml, P., Gasser, T. C., Mihatsch, M. J., Kunzelmann, K., and Bubendorf, L. (2007) Oncogene 26(17), 2525-2534
11. Gackiere, F., Bidaux, G., Lory, P., Prevarskaya, N., and Mariot, P. (2006) Cell Calcium 39(4), 357-366
12. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) J Biol Chem 260(6), 3440-3450.
13. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Pflugers Arch 391(2), 85-100.
14. Gackiere, F., Bidaux, G., Delcourt, P., Van Coppenolle, F., Katsogiannou, M., Dewailly, E., Bavencoffe, A., Van Chuoi-Mariot, M. T., Mauroy, B., Prevarskaya, N., and Mariot, P. (2008) J Biol Chem 283(15), 10162-10173
15. Sanchez, M., and McManus, O. B. (1996) Neuropharmacology 35(7), 963-968
16. Ghatta, S., Nimmagadda, D., Xu, X., and O'Rourke, S. T. (2006) Pharmacol Ther 110(1), 103-116
17. Rybalchenko, V., Prevarskaya, N., Van Coppenolle, F., Legrand, F., Lemonnier, L., Le Bourhis, X., and Skryma, R. (2001) Mol Pharmacol 59(6), 1376-1387
18. Van Coppenolle, F., Skryma, R., Ouadid-Ahidouch, H., Slomianny, C., Roudbaraki, M., Delcourt, P., Dewailly, E., Humez, S., Crepin, A., Gourdou, I., Djiane, J., Bonnal, J. L., Mauroy, B., and Prevarskaya, N. (2004) Biochem J 377(Pt 3), 569-578
19. Laniado, M. E., Fraser, S. P., and Djamgoz, M. B. (2001) Prostate 46(4), 262-274
20. Gutierrez, A. A., Arias, J. M., Garcia, L., Mas-Oliva, J., and Guerrero-Hernandez, A. (1999) J Physiol 517 (Pt 1), 95-107
21. Parihar, A. S., Coghlan, M. J., Gopalakrishnan, M., and Shieh, C. C. (2003) Eur J Pharmacol 471(3), 157-164
22. Carbone, E., and Lux, H. D. (1987) J Physiol 386, 571-601
23. Marrion, N. V., and Tavalin, S. J. (1998) Nature 395(6705), 900-905
24. Wolfart, J., and Roeper, J. (2002) J Neurosci 22(9), 3404-3413
25. Prakriya, M., and Lingle, C. J. (1999) J Neurophysiol 81(5), 2267-2278
26. Sun, X., Gu, X. Q., and Haddad, G. G. (2003) J Neurosci 23(9), 3639-3648
27. Issa, N. P., and Hudspeth, A. J. (1994) Proc Natl Acad Sci USA 91(16), 7578-7582
28. Samaranayake, H., Saunders, J. C., Greene, M. I., and Navaratnам, D. S. (2004) J Physiol 560(Pt 1), 13-20
29. Berkefeld, H., Sailer, C. A., Bildl, W., Rohde, V., Thumfart, J. O., Eble, S., Klugbauer, N., Reisinger, E., Bischofberger, J., Oliver, D., Knaus, H. G., Schulte, U., and Fäkle, B. (2006) Science 314(5799), 615-620
Running title: BK channels and T-type calcium channels in prostate cancer cells

30. Grunnet, M., and Kaufmann, W. A. (2004) *J Biol Chem* **279**(35), 36445-36453
31. Rossier, M. F., Burnay, M. M., Vallotton, M. B., and Capponi, A. M. (1996) *Endocrinology* **137**(11), 4817-4826
32. Chevalier, M., Lory, P., Mironneau, C., Macrez, N., and Quignard, J. F. (2006) *Eur J Neurosci* **23**(9), 2321-2329
33. Chevalier, M., Mironneau, C., Macrez, N., and Quignard, J. F. (2008) *Cell Calcium*
34. Bijlenga, P., Liu, J. H., Espinos, E., Haenggeli, C. A., Fischer-Lougheed, J., Bader, C. R., and Bernheim, L. (2000) *Proc Natl Acad Sci U S A* **97**(13), 7627-7632.
35. Xie, X., Van Deusen, A. L., Vitko, I., Babu, D. A., Davies, L. A., Huynh, N., Cheng, H., Yang, N., Barrett, P. Q., and Perez-Reyes, E. (2007) *Assay Drug Dev Technol* **5**(2), 191-203
36. Swensen, A. M., and Bean, B. P. (2003) *J Neurosci* **23**(29), 9650-9663
37. Cambien, B., Rezzonico, R., Vitale, S., Rouzaire-Dubois, B., Dubois, J. M., Barthel, R., Soilghi, B. K., Mograbi, B., Schmid-Alliana, A., and Schmid-Antomarchi, H. (2008) *Int J Cancer* **123**(2), 365-371
38. Ouadid-Ahidouch, H., Roudbaraki, M., Ahidouch, A., Delcourt, P., and Prevarskaya, N. (2004) *Biochem Biophys Res Commun* **316**(1), 244-251
39. Roger, S., Potier, M., Vandier, C., Le Guennec, J. Y., and Besson, P. (2004) *Biochim Biophys Acta* **1667**(2), 190-199
40. Coiret, G., Borowiec, A. S., Mariot, P., Ouadid-Ahidouch, H., and Matifat, F. (2007) *Mol Pharmacol* **71**(3), 843-851
41. Liu, X., Chang, Y., Reinhart, P. H., Sontheimer, H., and Chang, Y. (2002) *J Neurosci* **22**(5), 1840-1849
42. Weaver, A. K., Liu, X., and Sontheimer, H. (2004) *J Neurosci Res* **78**(2), 224-234
43. Lory, P., Bidaud, I., and Chemin, J. (2006) *Cell Calcium* **40**(2), 135-146
44. Panner, A., and Wurster, R. D. (2006) *Cell Calcium* **40**(2), 253-259
45. Taylor, J. T., Huang, L., Pottle, J. E., Liu, K., Yang, Y., Zeng, X., Keyser, B. M., Agrawal, K. C., Hansen, J. B., and Li, M. (2008) *Cancer Lett* **267**(1), 116-124
46. Lu, F., Chen, H., Zhou, C., Liu, S., Guo, M., Chen, P., Zhuang, H., Xie, D., and Wu, S. (2008) *Cell Calcium* **43**(1), 49-58
47. Panner, A., Cribbs, L. L., Zainelli, G. M., Origitano, T. C., Singh, S., and Wurster, R. D. (2005) *Cell Calcium* **37**(2), 105-119
48. Thebault, S., Flourakis, M., Vanoverberghe, K., Vandermoere, F., Roudbaraki, M., Lehen'kyi, V., Slomianny, C., Beck, B., Mariot, P., Bonnal, J. L., Mauroy, B., Shuba, Y., Capiod, T., Skryma, R., and Prevarskaya, N. (2006) *Cancer Res* **66**(4), 2038-2047

Thèse de Florian Gackière, Lille 1, 2008
annexe 1 : implication des canaux calciques de type T Ca_{v}3.2 dans l'homéostasie calcique étudiée par la technique d'imagerie calcique.

A : représentation de la concentration calcique cytosolique moyenne ([Ca^{2+}]_{ cyt}) en nM avec le chiffre correspondant au nombre de cellules enregistrées par condition) des cellules LNCaP surexprimant de façon stable la sous-unité α_{1H} (LNCaP-α_{1H}) traitées par des si-ARN (contrôle = Si-Ctl, ou dirigés contre les Ca_{v}3.2 = Si-α_{1H}1 ou 2), ou du pourcentage des cellules présentant des oscillations calciques spontanées (voir C) ou du pourcentage de cellules présentant une augmentation de la [Ca^{2+}]_{ cyt} en réponse aux dépolarisations induites par 25 mM KCl (cette concentration a été choisie afin de créer une dépolarisation suffisante pour activer les canaux calciques de type T sans les inactiver complètement).

B : effet du nickel (NiCl_{2}, 20 µM) sur la [Ca^{2+}]_{ cyt} des cellules LNCaP, LNCaP différenciées neuroendocrines (LNCaP-NE) ou LNCaP-α_{1H}.

C : tracé type d'oscillations calciques spontanées.

annexe 2 : représentation du pourcentage de PAP sécrétée en 1 heure, lors d’un traitement par la paxilline (Pax 10µM) par rapport à la condition contrôle (CTL), ou 2 jours après la lipofection par un si-ARN dirigé contre les canaux BK (Si-BK, 5 nM) par rapport au si-ARN contrôle (Si-CTL, 5 nM).
DISCUSSION

ET PERSPECTIVES
Différentes études montrent que les canaux calciques voltage-dépendants de type T sont impliqués dans le processus de différenciation cellulaire et ce dans divers modèles [Bijlenga et al., 2000; Chemin et al., 2004]. Ainsi, la différenciation neuroendocrine (NE) des cellules prostatiques est marquée par une surexpression des CaV3.2 [Mariot et al., 2002] qui, via un influx constant de calcium au potentiel de repos des cellules, sont susceptibles de participer à l’acquisition du phénotype neuroendocrine (c’est-à-dire à la croissance des neurites) et à la sécrétion des cellules NE prostatiques.

CaV3.2 et entrée capacitive de calcium (ECC)

Une des hypothèses concernant la participation des canaux calciques de type T à l’homéostasie calcique des cellules prostatiques est qu’ils pourraient participer à l’ECC induite par la déplétion des stocks calciques intracellulaires. Une étude antérieure sur des lignées cancéreuses humaines de prostate et de sein a en effet proposé, après avoir mis en évidence l’inhibition de l’ECC par le mibefradil, que les CaV3 constituent des canaux SOC (Store-Operated Channels) responsables d’une telle entrée de calcium [Gray et al., 2004]. Les auteurs ont alors supposé l’existence d’un second messager diffusible potentiel qui serait généré lors de la déplétion du calcium réticulaire et qui, à l’image du CIF (Calcium Influx Factor) dont la nature et l’existence restent encore controversées (pour revue, [Bolotina et al., 2005]), pourrait réguler l’activité des canaux calciques de type T participant à l’ECC.

Nous avons montré, grâce à d’autres inhibiteurs des canaux calciques de type T en plus du mibefradil (flunarizine, nickel (Ni²⁺), kurtoxine) et à des cellules surexprimant de façon stable la sous-unité α₁₁₁ (LNCaP-α₁₁₁), que les CaV3.2 ne constituent pas des canaux SOC dans les cellules prostatiques humaines androgéno-dépendantes LNCaP et androgéno-indépendantes DU-145 et PC-3 (article 1). Au moment de ce travail, la communauté scientifique s’accordait sur le fait que les membres de la famille des canaux TRP étaient les principaux candidats susceptibles de constituer des canaux SOC et, dans les cellules cancéreuses prostatiques, les plus probables étaient TRPC1, C4 et V6 [Vanden Abeele et al., 2004]. Nous ne connaissons pas la cible exacte du mibefradil dans son action sur l’ECC mais il est possible que ce soit un membre des canaux TRP, ou une protéine impliquée dans la transduction du signal entre la déplétion des stocks calciques intracellulaires et les canaux calciques, ou encore le cytochrome P450 dont un métabolite a été décrit comme activateur des canaux SOC [Rzigalinski et al., 1999; Xie et al., 2002]. Aujourd’hui, la liste des cibles potentielles s’allonge avec la découverte des nouvelles protéines Orai [Feske et al., 2006; Prakriya et al., 2006; Vig et al., 2006; Yeromin et al., 2006] et STIM [Liou et al., 2005; Roos...
et al., 2005] impliquées dans l’ECC. L’utilisation de si-ARN contre ces différentes protéines supposées, suivie d’études en patch-clamp et/ou en imagerie calcique, peut s’avérer prometteuse pour déterminer la cible du mibefradil dans son action inhibitrice sur l’entrée capacitive de calcium.

CaV3.2 et sécrétion

La différenciation neuroendocrine semble associée avec l’état androgéno-indépendant du cancer de la prostate [Weinstein et al., 1996] et son mauvais pronostic clinique [Cohen et al., 1990]. Par ailleurs, il a été montré que l’expression de marqueurs neuroendocriniens, NSE (Neuron Specific Enolase), chromogranine A et synaptophysine, est corrélée avec des stades tumoraux avancés du cancer de la prostate [Theodoropoulos et al., 2005]. De plus, les cellules NE prostatiques sont souvent regroupées sous forme de foyers entourés de cellules épithéliales en prolifération [Bonkhoff et al., 1991] et il est connu qu’elles possèdent des granules de sécrétion renfermant de nombreux neuropeptides à activité mitogénique tels que la PTHrP (ParaThyroïd Hormone related-Protein), la calcitonine ou le GRP (Gastrin-Releasing Peptide) [Hansson et al., 2001; Jongsma et al., 2000]. Par conséquent, il a été proposé que les cellules NE prostatiques puissent sécréter de façon paracrine de nombreux neuropeptides ou amines biogènes (ceux précédemment cités mais aussi sérotonine et VIP (Vasoactive Intestinal Peptide) par exemple) qui réguleraient la croissance, l’invasivité ou encore l’angiogenèse liés au cancer de la prostate [Hansson et al., 2001; Jongsma et al., 2000] et qui pourraient expliquer la progression du cancer prostatique vers des stades androgéno-indépendants (pour revue, [Bonkhoff, 1998]).

Nous avons montré, par l’utilisation de marqueurs du trafic membranaire et par des dosages de la PAP (Phosphatase Acide Prostatique) sécrétée, que les canaux calciques voltage-dépendants de type T CaV3.2 permettent une exocytose lors de dépolarisations membranaires dans les cellules prostatiques LNCaP. De plus, les CaV3.2 sont impliqués dans la sécrétion basale de PAP dans les cellules LNCaP neuroendocrines. En effet, par l’intermédiaire du courant de fenêtre qu’ils génèrent au potentiel de repos des cellules prostatiques, les CaV3.2 permettent une entrée constitutive de calcium qui active la voie de sécrétion régulée calcium-dépendante. Dans ce cas, la libération de cette enzyme a lieu sans qu’il y ait d’activité électrique (article 2). Lors de la progression du cancer de la prostate, la concentration de PAP sécrétée augmente dans le sérum ce qui explique l’utilisation de cette enzyme comme marqueur moléculaire du cancer de la prostate avant la découverte du PSA (Prostate Specific Antigen) et il est supposé qu’elle participe à l’atteinte du tissu osseux lors
des métastases [Ishibe et al., 1991]. Il y a peu, d’intéressants travaux ont montré que la PAP sécrétée constitue un facteur pronostic pour les patients ayant un risque élevé de cancer de la prostate [Ozu et al., 2008; Saito et al., 2007; Taira et al., 2007] et qu’une immunothérapie ciblant la PAP induit une rémission dans le cas de cancers prostatiques androgéno-indépendants [Burch et al., 2004]. Quant à la PTHrP, elle est suspectée jouer un rôle non négligeable dans l’hypercalcémie associée au cancer et être impliquée dans l’altération pathologique de l’os pendant le développement des métastases [Arima et al., 2005]. Les canaux calciques de type T CaV3.2, en permettant la sécrétion de PAP et de PTHrP, pourraient donc être de bonnes cibles impliquées dans les métastases osseuses.

Comme il a été montré pour les canaux calciques voltage-dépendants HVA [Yang et al., 1999], il est possible que les CaV3.2 soient couplés à des protéines de la machinerie de sécrétion telles que les protéines du complexe SNARE (synaptotagmine ou syntaxine par exemple). Il a été démontré que JFC1, une protéine de type synaptotagmine fortement exprimée dans le tissu prostatique, est impliquée dans la sécrétion de PAP et de PSA par les cellules LNCaP et activée par le NFκB et la PI3-K qui se trouvent être fréquemment surexprimés dans les cancers prostatiques [Catz et al., 2002; Johnson et al., 2005]. Cette protéine semble donc être un candidat privilégié pour un couplage éventuel entre les canaux calciques de type T et la machinerie de sécrétion dans les cellules neuroendocrines prostatiques.

CaV3.2 et différenciation

Si nous avons établi que les canaux calciques de type T CaV3.2, surexprimés au cours de la différenciation neuroendocrine, ont un rôle central dans la sécrétion (de PAP notamment), une question importante relative au rôle de ces canaux dans la différenciation reste pour l’instant partiellement sans réponse. Ces canaux participent-ils à l’acquisition du phénotype neuroendocrine ? Il a été montré préalablement que le blocage des Cav3.2 par du Ni2+ ralentit le processus d’élargissement des neurites sans l’inhiber [Mariot et al., 2002]. Néanmoins, il reste possible, d’une part, que l’inhibition des canaux par le Ni2+ n’ait pas été complète à cause d’un effet tampon du sérum contenu dans le milieu de culture et, d’autre part, que les CaV3.2 puissent jouer un rôle dans le contrôle de la différenciation indépendamment de leur activité de canal. Effectivement, il existe des exemples de canaux dits « bifonctionnels » qui agissent de manière indépendante du flux ionique qu’ils engendrent, comme cela a pu être démontré pour les canaux potassiques EAG [Hegle et al., 2006] ou calciques Cav1.2 [Dolmetsch et al., 2001]. Les résultats obtenus sur l’implication
des CaV3.2 dans la différenciation NE nécessitent donc d’être revisités à l’aide des outils dont nous disposons aujourd’hui pour bloquer l’activité (flunarizine ou kurtoxine) ou l’expression (si-ARN) de ces canaux. Il sera alors possible d’étudier les répercussions des traitements induisant la différenciation des cellules LNCaP non seulement au niveau morphologique mais également au niveau de l’expression de marqueurs neuroendocriniens tels que la NSE, la chromogranine A et la sérotonine. Dans cette optique, il serait intéressant de bloquer les CaV3.2 avant ou pendant l’induction de la différenciation NE afin de montrer leur importance potentielle dans l’initiation ou le maintien du phénotype différencié neuroendocrine. Cette étude permettrait donc de déterminer si la surexpression des canaux calciques de type T CaV3.2 observée lors des traitements de différenciation neuroendocrine est une cause ou uniquement une conséquence de cette différenciation.

Les CaV3.2 ne sont pas les seuls canaux calciques surexprimés lors de la différenciation neuroendocrine des cellules prostatiques. Une récente étude du laboratoire montre que le canal TRPV2, un membre de la famille des canaux ioniques TRP sensibles à la chaleur initialement décrits dans les neurones sensoriels et le tractus digestif (pour revue, [Benham et al., 2003]), est fortement exprimé dans les cellules cancéreuses prostatiques les plus agressives (DU-145 et PC-3) mais pas dans les cellules LNCaP (Monet et al., soumis à Endocrine-Related Cancer). En revanche, des traitements induisant la différenciation NE des cellules LNCaP provoque une apparition de l’expression du canal TRPV2. Cette étude démontre également que le phénotype NE est dépendant de la présence de ce canal puisque son inhibition entraîne une diminution du taux d’expression de la NSE. Il serait intéressant de déterminer si les canaux TRPV2 et les CaV3.2 agissent de concert dans le processus de différenciation, par exemple en étant colocalisés dans les mêmes domaines membranaires des cellules LNCaP différenciées neuroendocrines. Pour tenter de mettre en évidence l’existence d’un couplage fonctionnel et/ou moléculaire entre ces 2 canaux calciques, les techniques d’analyse de leur localisation subcellulaire par microscopie confocale et de co-immunoprécipitation pourront être mises en œuvre.

CaV3.2 et prolifération

De nombreux travaux traitent de l’implication des canaux calciques de type T dans la prolifération cellulaire et dans le développement (pour revue, [Lory et al., 2006]). En général, les canaux calciques de type T semblent augmenter la prolifération cellulaire et être exprimés tôt dans le développement mais peu de données révèlent leur expression dans les tissus cancéreux. Néanmoins, les CaV3 sont retrouvés dans les gliomes [Panner et al., 2005] ou les
carcinomes [Lu et al., 2008] dans lesquels ils sont supposés promouvoir la prolifération cellulaire (pour revue, [Panner et al., 2006]). Par ailleurs, une étude propose que le gène CACNA1H, codant les CaV3.2, soit considéré comme un marqueur potentiel dans le cancer du sein [Asaga et al., 2006] et le gène CACNA1G, codant les CaV3.1, s’avère inactivé par hyperméthylation dans de nombreux cancers humains comme celui du pancréas ou de l’estomac [Toyota et al., 1999].

Par des études immunohistochimiques en microscopie confocale sur des coupes de prostates humaines saines, hyperplasiques ou cancéreuses, nous avons mis en évidence que : 1) l’expression des CaV3.2 semble plus importante dans les tissus cancéreux que dans les tissus non-cancéreux, et 2) que la chromogranine A et la sérotonine sont souvent co-exprimées avec ces canaux dans les échantillons cancéreux (article 2). De plus, par la technique de patch-clamp, nous avons enregistré un courant calcique de type T, sensible à des concentrations micromolaires de Ni²⁺, uniquement dans les cellules issues des prélèvements prostatiques cancéreux. Sachant que la sérotonine a été caractérisée comme un facteur mitogénique dont l’expression est corrélée avec un mauvais pronostic clinique de la tumeur [Dizeyi et al., 2004], nos résultats nous amènent donc à penser que les canaux calciques voltage-dépendants de type T CaV3.2 puissent être un marqueur de la progression du cancer de la prostate, pouvant être majoritairement exprimés dans les stades tardifs androgénoindépendants. Ces résultats nécessitent néanmoins de plus amples investigations afin d’être confirmés.

Nous avons également montré la participation des canaux calciques de type T dans la prolifération des cellules cancéreuses prostatiques androgénodépendantes LNCaP (article 3). En effet, l’inhibition de l’expression ou de l’activité endogène des CaV3.2, par l’utilisation de si-ARN ou d’inhibiteurs spécifiques, diminue le nombre de cellules en phase S du cycle cellulaire et le nombre de cellules positives à Ki-67, un marqueur des cellules en prolifération. Nous supposons que l’implication de ces canaux dans la prolifération puisse se faire soit directement par l’activation de facteurs de transcription, tels que NFAT comme il a été montré pour TRPC6 ou TRPV6 dans les cellules prostatiques [Lehen'kyi et al., 2007; Thebault et al., 2006], soit indirectement en favorisant la sécrétion de facteurs mitogéniques. Il est à noter que les cellules LNCaP-α₁H ne possèdent pas de supplément de croissance par rapport aux cellules contrôles LNCaP et LNCaP exprimant de façon stable le plasmide vide ayant servi pour la surexpression de la sous-unité α₁H (LNCaP-NEO), bien que possédant une concentration de calcium cytosolique plus élevée (figure 19). Ces résultats confirment ceux d’une étude antérieure montrant que la surexpression des CaV3.1 et 3.2 dans les cellules HEK-293

© 2010 Tous droits réservés. http://doc.univ-lille1.fr
n’augmente pas leur prolifération même si elle est suffisante pour induire une augmentation du taux de calcium cytosolique [Chemin et al., 2000]. Pour expliquer cette différence entre le modèle endogène et le modèle de surexpression, il est possible de spéculer que lors de la surexpression d’un canal, des protéines accessoires importantes pour sa régulation et/ou des partenaires importants pour sa fonction physiologique se retrouvent en quantité insuffisante qui ne leur permet plus de maintenir l’activité et/ou le fonctionnement normal du canal.

Figure 19 : comparaison des courbes de prolifération des cellules LNCaP (en noir), LNCaP-α1H (3 clones différents : alpha1H-1, 2 et 3 ; en rouge) et LNCaP-NEO (2 clones : NEO1 et 2 ; en vert) obtenues grâce au kit MTS. La densité optique (DO en unité arbitraire UA), proportionnelle au nombre de cellules, est représentée en fonction du temps (en jours). En insert, histogramme des temps de doublement moyen calculés pour chacun des types cellulaires.

Il est très probable que l’implication des canaux calciques de type T dans le cancer ne se limite pas à un rôle dans la prolifération cellulaire et dans la sécrétion. Effectivement, en raison des différentes voies de signalisation qu’ils peuvent initier, les CaV3 pourraient également jouer un rôle dans l’apoptose, la migration et l’invasion des cellules cancéreuses prostatiques.

CaV3.2 et apoptose

Le cancer de la prostate est caractérisé par un faible taux de prolifération associé à une résistance à l’apoptose élevée et les cellules neuroendocrines prostatiques sont décrites comme résistantes à l’apoptose [Fixemer et al., 2002; Vanoverberghe et al., 2004]. Nous
avons alors entrepris des études dans le but de déterminer si les canaux calciques voltage-dépendants de type T CaV3.2 participent à cette résistance à l’apoptose des cellules NE prostatiques. Pour quantifier l’apoptose, différentes techniques ont été utilisées : tests de survie (kit MTS), comptage des cellules présentant une figure apoptotique lors du marquage au Hœscht, quantification du pic sub-G1 du cycle cellulaire. L’utilisation de kits dosant l’activité des caspases dans les cellules est envisagée pour finaliser ces travaux. Nos résultats montrent que les cellules LNCaP-α1H sont plus résistantes que les cellules contrôles (LNCaP ou LNCaP-NEO) à l’apoptose induite par des agents qui augmentent la [Ca²⁺]cyt en favorisant une libération du calcium réticulaire tels que la thapsigargine (TG) et l’acide cyclopiazonique (CPA) (figure 20).

Figure 20 : comparaison de l’apoptose induite par la thapsigargine (TG, 0,1 μM) dans les cellules LNCaP contrôles ou LNCaP-α1H. A : pourcentages d’apoptose obtenus par comptage en Hœscht des cellules LNCaP, LNCaP-α1H (alpha1H-1, 2 et 3) ou LNCaP-NEO (NEO1 et 2) suite à un traitement par la TG (pendant 24 ou 48 heures). B : pourcentages de cellules en phase sub-G1, par analyse du cycle cellulaire, en condition contrôle (CTL) ou après traitement à la TG dans les cellules LNCaP-NEO2 et LNCaP-alpha1H-1.
Nous avons par la suite étudié, par la technique de patch-clamp, l’action de ces stimuli apoptotiques sur le courant calcique de type T et nous montrons qu’ils provoquent une importante diminution de la densité de courant portée par les Cav3.2 aussi bien en endogène qu’en surexpression (figure 21A). En revanche, le courant potassique BK, courant voltage-dépendant majoritaire des cellules LNCaP, n’est pas affecté par ces traitements. Différentes hypothèses ont été envisagées pour comprendre le mécanisme d’action de ces molécules. Les voies de transduction passant par la calcineurine et la calmoduline ont tout d’abord été écartées par une première série d’expériences. Ensuite, nous nous sommes demandés si une dégradation de ces canaux calciques ne pouvait pas expliquer cette diminution de la densité de courant. Grâce aux approches d’électrophysiologie (figure 21A) et de biologie cellulaire (figure 21B), nos travaux montrent que les Cav3.2 subissent, lors d’un traitement par la TG ou le CPA, une dégradation impliquant des protéases calcium-dépendantes de type calpain. Ces mécanismes d’inhibition n’impliquent pas un blocage direct des canaux calciques de type T par les inhibiteurs des pompes SERCA comme cela a pu être montré dans d’autres modèles cellulaires [Rossier et al., 1993] mais ils sont très probablement dus à la déplétion des réserves calciques du réticulum endoplasmique comme cela a pu être proposé dans les cellules spermatogéniques [Stamboulian et al., 2002]. La dégradation protéique, résultant en une diminution de l’expression de la protéine à la membrane et donc en une diminution de la densité de courant calcique, est inhibée par un cotraitement avec un inhibiteur des calpains (figure 21). Des études ont déjà établi le lien entre les calpains et des canaux calciques voltage-dépendants tels que les Cav1.2 (α1C) [Kepplinger et al., 2000; Saud et al., 2007]. Nos résultats suggèrent également qu’il y ait une dégradation « basale » des Cav3.2 car l’utilisation de l’inhibiteur des calpains seul, sans traitement par le CPA, potentialise le courant calcique de type T ainsi que le taux d’expression de la protéine (figure 21). Comme il existe différentes classes de calpains stimulées par des niveaux différents de calcium (pour revues, [Croall et al., 2007; Goll et al., 2003]), il est possible que certaines calpains soient activées par le taux de calcium cytosolique basal des cellules LNCaP. Pour mener à bien cette étude, nous devons tout d’abord identifier les différents types de calpains exprimées dans les cellules cancéreuses prostatiques (par RT-PCR notamment) et mener une étude fonctionnelle par l’utilisation de si-ARN dirigés contre les calpains identifiées. Nous n’écartons pas non plus l’hypothèse d’une ubiquitinylation des canaux calciques de type T, comme il a été montré pour des canaux sodiques ou potassiques [Abriel et al., 2005]. Ces phénomènes de dégradation protéique (calpain- ou ubiquitine-dépendante) constituent donc une voie émergente de régulation de l’activité des canaux ioniques membranaires.
figure 21 : implication des calpaines dans la dégradation des canaux calciques de type T CaV3.2 dans les cellules LNCAp surexprimant de façon stable la protéine de fusion α1H-GFP. A : courbes IV moyennes (n = nombre de cellules enregistrées par condition) en condition contrôle (CTL, en noir), après 24 heures de traitement par l’acide cyclopiazonique (CPA, en rouge), ou par un inhibiteur des calpaines (calp.Inh.I, en vert) ou encore par un cotraitement associant le CPA et un inhibiteur des calpaines (Calp.Inh.I + CPA, en bleu). B : western-blot sur extraits totaux obtenus après les différents traitements réalisés en A avec les anticorps suivant : anti-GFP (1/1 000ème, lapin) pour révéler la protéine de fusion α1H-GFP et anti-calnexine (1/1 000ème, souris) comme témoins de charge des protéines (pour plus de détails, voir partie VII du Matériels et Méthodes).

CaV3.2 et migration et/ou invasion

Comme toutes cellules cancéreuses, les cellules cancéreuses prostatiques sont capables d’entrer dans la circulation sanguine, d’y survivre et d’envahir les tissus voisins ou plus distants, formant ainsi des métastases. L’invasion et la métastase sont des mécanismes hautement régulés nécessitant le processus de migration cellulaire qui est un processus cyclique comprenant différents événements tels que des extensions répétitives d’invadopodes/lamellipodes, l’assemblage du cytosquelette d’actine et la régulation des intégrines pour la formation des sites d’adhéision, la contraction du corps cellulaire et le décollement des sites d’adhéision [Entschladen et al., 2000; Mareel et al., 2003]. Ces modifications de morphologie et d’adhérence sont accompagnées de signaux calciques répétitifs, sous forme de transitotères et d’oscillations, qui ont été observés lors de la migration de nombreux types cellulaires tels que les neurones, les éosinophiles, les fibroblastes et les cellules tumorales [Brundage et al., 1991; Dittmar et al., 2002; Giannone et al., 2002; Hahn et al., 1992; Komuro et al., 1996; Lang et al., 2002; Ronde et al., 2000]. Les signaux calciques peuvent être dus à une libération de Ca^{2+} à partir des stocks intracellulaires ou à une entrée de Ca^{2+} à partir du milieu extracellulaire qui peut se faire via les canaux calciques voltage-dépendants par exemple. Un travail récent a montré que des chélateurs calciques, mais aussi
le mibefradil, bloquent à la fois les signaux calciques ainsi que la motilité et le pouvoir invasif des cellules de fibrosarcomes, alors que des inhibiteurs visant les canaux de type L n’ont aucun effet [Huang et al., 2004]. C’est la seule référence qui fasse état d’un rôle probable des canaux calciques de type T dans le processus d’invasion. Le signal calcique créé par les CAV3 participerait à la régulation des processus de migration et/ou d’invasion cellulaire à travers ses effets sur les intégrines, le cytosquelette et le trafic cellulaire.

Ces données nous amènent à considérer l’implication des CAV3.2 dans les mécanismes de migration et/ou d’invasion des cellules cancéreuses prostatiques. La migration cellulaire peut être étudiée in vitro par vidéo-microscopie, en mesurant la distance parcourue par les cellules en un temps déterminé ou grâce au test de blessure. Il est possible d’enregistrer simultanément le taux de calcium intracellulaire (par la technique d’imagerie calcique) afin d’étudier le rôle des canaux calciques pendant ce processus cellulaire. Pour les mesures d’invasion, les principales techniques consistent à quantifier le nombre de cellules qui traversent une membrane poreuse pour rejoindre un autre compartiment (Transwell®) ou à analyser la formation de kystes cellulaires au sein d’une matrice (Matrigel®) qui doit être digérée par des protéases, comme les MMP (Matrix MetalloProteinases) 2 ou 9 exprimées dans les cellules LNCaP [Engl et al., 2006; Hu et al., 2008], sécrétées par les cellules pour ainsi envahir l’espace. Cette dernière méthode a donné un résultat prometteur montrant que les cellules LNCaP-α1H affichent une aptitude invasive plus importante que les cellules contrôles (figure 22). Il est indispensable d’étudier l’effet des inhibiteurs ou des si-ARN envers les CAV3.2 sur l’invasion de ces cellules mais aussi et surtout sur les cellules LNCaP et LNCaP différenciées neuroendocrines. Par ailleurs, les chimioïnes sont connues pour stimuler la migration et/ou l’invasion cellulaire [Engl et al., 2006; Hu et al., 2008]. De plus, le signal de motilité/invasion déclenché par une d’entre elles, CXCL12, implique une augmentation de la concentration en calcium cytosolique dans différents types cellulaires y compris les lignées cancéreuses prostatiques [Henschler et al., 2003; Vaday et al., 2004]. L’étude du rôle des CAV3.2 dans l’invasion induite par la chimioïne CXCL12 sera ainsi entreprise. En outre, il est aussi envisageable de tester l’effet de la surexpression de la sous-unité α1H dans d’autres types cellulaires plus agressifs issus de la lignée LNCaP, les cellules C4-2 (qui expriment encore le récepteur aux androgènes mais dont la croissance n’est inhibée ni par des antagonistes androgèniques ni par la castration) et C4-2b (sous-population isolée à partir de la précédente grâce à sa capacité à créer des métastases dans l’os).
figure 22 : étude de l’implication des canaux calciques de type T Cav3.2 dans l’invasion cellulaire grâce à la culture en Matrigel®. A : observation du nombre de kystes formés par les cellules LNCaP-NEO et LNCaP-α1H (respectivement NEO2 et alpha1H-1 dans la partie supérieure gauche et droite) et des cellules qui migrent en périphérie du kyste (respectivement dans la partie inférieure gauche et droite). B : comparaison du nombre de kystes par puit formés par les cellules LNCaP, LNCaP-NEO (NEO1 et 2) et LNCaP-α1H (alpha1H-1, 2 et 3).

De plus, il a été montré que les phospholipides, tels que l’acide lysophosphatidique (LPA), peuvent stimuler la migration, la prolifération, l’adhésion cellulaire et l’invasion des cellules cancéreuses par la voie des Rho Kinases (ROCK) [Lee et al., 2008; Yin et al., 2008]. De manière tout à fait intéressante, l’activité des Cav3.2 est régulée par le LPA de façon ROCK-dépendante [Iftinca et al., 2007]. Nous pourrons donc déterminer d’une part, s’il y a un effet du LPA sur la migration et/ou l’invasion des cellules cancéreuses prostatiques et d’autre part, si tel est le cas, si cet effet est dépendant des canaux calciques de type T Cav3.2.

Couplage des Cav3.2 avec des canaux potassiques calcium-dépendants

De plus en plus de données mettent en évidence un couplage fonctionnel et/ou moléculaire entre les canaux calciques voltage-dépendants de type T et des canaux potassiques calcium-activés [Chen et al., 2003; Cueni et al., 2008; Wolfart et al., 2002]. Les 3 familles de canaux potassiques calcium-activés, SK, IK et BK, sont exprimées dans les cellules LNCaP et nous nous sommes donc intéressés au couplage potentiel qu’il pouvait y avoir entre ces canaux et les Cav3.2 dans les cellules cancéreuses prostatiques.

Nous avons montré, grâce à l’enregistrement des courants globaux ou unitaires par la technique de patch-clamp et des approches pharmacologiques (inhibiteurs) et moléculaires (si-ARN) spécifiques des différents canaux potassiques calcium-activés, que les canaux BK 1)
sont responsables du courant potassique voltage-dépendant des cellules LNCaP et 2) sont fonctionnellement couplés avec les canaux calciques de type T CaV3.2 (article 3). Néanmoins, bien que nous ayons montré une colocalisation de ces canaux dans des zones membranaires relativement limitées (patch de membrane en configuration cellule-attachée), nous ne sommes pas parvenus à conclure à l’existence ou non d’un couplage moléculaire par co-immunoprécipitation. De plus, l’utilisation d’un chélateur calcique (EGTA) inhibe l’activation des canaux BK suite à l’activation des canaux calciques de type T. Ce dernier résultat laisse présager qu’il n’existe pas d’interaction directe entre ces canaux. Par ailleurs, nous avons montré la participation des canaux BK, au même titre que les CaV3.2, dans le maintien du potentiel membranaire, la prolifération et la sécrétion de PAP des cellules LNCaP. Pour poursuivre cette étude, les techniques de microscopie confocale (immunolocalisation indirecte) voire de microscopie électronique (grâce à la technique d’immunolocalisation ultrastructurale sur « membranes arrachées » permettant un marquage des protéines exclusivement membranaires, à condition que les anticorps utilisés reconnaissent une séquence cytoplasmique de la protéine [Sanan *et al.*, 1991]) sont envisageables pour étudier la (co)localisation des canaux BK et CaV3.2 et l’altération éventuelle de leur localisation lors de la progression du cancer de la prostate. Ces travaux apportent une explication potentielle à la controverse qui subsiste encore concernant le rôle des canaux calciques de type T dans la prolifération (pour revues, [Lory *et al.*, 2006; Panner *et al.*, 2006]). En effet, il est possible que l’action conjointe des canaux potassiques BK avec les CaV3.2 dans les cellules cancéreuses prostatiques soit responsable de leur rôle dans la prolifération cellulaire ou dans la sécrétion. Nous pouvons supposer qu’il en soit différemment dans d’autres modèles cellulaires ne possédant pas de couplage fonctionnel entre ces canaux.

Structure et régulation des CaV3.2

La structure des canaux calciques de type T ainsi que leurs mécanismes de régulation ne sont pas clairs à l’heure actuelle. Il fut initialement proposé que les CaV3 soient constitués uniquement de la sous-unité pore α₁ [Cribbs *et al.*, 1998; Lee *et al.*, 1999a; Perez-Reyes, 1998], à la différence des canaux calciques HVA qui comprennent également les sous-unités accessoires β, α₂δ, et γ. Désormais, les avis divergent concernant la régulation des canaux calciques de type T par certaines sous-unités accessoires des canaux HVA. Selon certains auteurs, la sous-unité β n’affecte ni l’expression ni la fonction des CaV3 [Leuranguer *et al.*, 1998; Wyatt *et al.*, 1998], alors que pour d’autres, elle peut en moduler l’expression à la
membrane plasmique [Dubel et al., 2004; Dolphin et al., 1999]. Parallèlement, d’autres études montrent que les sous-unités α₂δ [Dolphin et al., 1999; Dubel et al., 2004; Gao et al., 2000; Klugbauer et al., 2000; Wyatt et al., 1998] et γ [Klugbauer et al., 2000] peuvent aussi moduler l’activité des sous-unités pores des Ca₃.2 ainsi que leur localisation à la membrane plasmique.

Il faut préciser que le courant calcique de type T présent dans les cellules LNCaP possède des caractéristiques différentes des Ca₃.2 étudiés dans des modèles (ovocytes, cellules HEK-293) de surexpression [Chemin et al., 2002a; Cribbs et al., 1998; Perez-Reyes et al., 1998], avec notamment des courbes d’activation et d’inactivation déplacées vers des potentiels dépolarisés. Par conséquent, le courant de fenêtre des cellules LNCaP différenciées neuroendocrines se trouve dans la gamme de potentiels compris entre -30 et -40 mV au lieu d’avoisiner -60 mV dans les modèles de surexpression. Nous avons pu confirmer dans les cellules LNCaP-α₁H que le courant de fenêtre de ces cellules transfectées de façon stable est observé pour des potentiels de membrane bien plus hyperpolarisés que dans les cellules exprimant de manière endogène ce courant (figure 23). Ceci laisse présager que les canaux calciques de type T endogènes sont régulés par des sous-unités accessoires ou des modifications post-traductionnelles. Il est également possible que les courants de type T endogènes des cellules LNCaP soient générés par des isoformes différentes des Ca₃.2.

Nous avons tout d'abord cherché à déterminer la présence de sous-unités potentiellement régulatrices des canaux calciques de type T dans les cellules prostatiques LNCaP et nous y avons détecté, par RT-PCR, l’expression de l’ARN messager des sous-unités α₂δ-2 et γ-4 (figure 24A). Il est à noter que le gène codant la sous-unité α₂δ-2
(CACNA2D2) a été identifié comme gène suppresseur de tumeur qui est sous-exprimé dans certains cas de cancers [Lerman et al., 2000]. Des résultats préliminaires nous permettent de postuler un rôle fonctionnel de la sous-unité α2δ-2 dans la régulation de la sous-unité pore α1H car un inhibiteur pharmacologique de α2δ, la gabapentine (utilisée comme thérapie anticonvulsivante dans les épilepsies) [Sills, 2006], inhibe l’activité des CaV3.2 dans les cellules LNCaP (figure 24B). Pour confirmer ces résultats, il est nécessaire d’effectuer d’autres expériences comme l’utilisation de si-ARN dirigés contre chacune de ces sous-unités et de comparer, grâce à la technique de patch-clamp, les propriétés biophysiques des courants calciques de type T par rapport aux conditions contrôles. Il est aussi possible de réaliser des expériences de biotinylation pour déterminer si ces protéines accessoires potentielles favorisent l’expression des CaV3.2 à la membrane plasmique.

En outre, plusieurs études ont mis en évidence différentes isoformes des canaux calciques de type T CaV3.2 [Gray et al., 2004; Jagannathan et al., 2002; McRory et al., 2001; Zhong et al., 2006]. Jusqu’à ce jour, la fonctionnalité, les mécanismes de régulation et d’activation ainsi que le rôle des différentes isoformes des CaV3.2 restent à déterminer. L’une d’elles, δ25B, a été décrite dans diverses lignées cellulaires cancéreuses dont les lignées prostatiques androgénio-indépendantes DU-145 et PC-3 [Gray et al., 2004]. Nous avons détecté, par RT-PCR sur « cellule unique », l’expression de δ25B dans des cellules en culture primaire obtenues à partir des échantillons de prostates humaines (figure 25). Le rôle de cette isoforme dans la progression du cancer (prolifération, résistance à l’apoptose, migration et
invasion) et dans la différenciation neuroendocrine pourra être étudié, notamment par l’utilisation de si-ARN.

figure 25 : étude par RT-PCR sur « cellule unique » de l’expression de la sous-unité α_{1H} et de l’isoforme δ_{25B} des CaV3.2 dans les cellules primitives issues de biopsies prostatiques humaines hyperplasiques (HBP) ou cancéreuses. Le couple d’oligonucléotides utilisé est celui décrit pour la figure 10 (voir Matériels et Méthodes).

Très peu d’informations sont disponibles concernant la régulation génique des canaux calciques de type T. Dans le but de déterminer des acteurs pouvant induire ou, au contraire, réprimer l’expression des CaV3.2, une analyse du promoteur du gène de la sous-unité α_{1H} humaine a été réalisée grâce au logiciel de recherche des sites de fixation des facteurs de transcription MatInspector® (Genomatix) [Cartharius et al., 2005; Quandt et al., 1995]. L’analyse de près de 5 000 pb dans le promoteur de ce gène montre de nombreuses séquences ayant une forte homologie avec les séquences consensus connues de fixation des différents facteurs de transcription (figure 26). En effet, des sites de fixation potentiels aux facteurs de transcription DREAM, CREB, NFAT et NFκB ont été identifiés. Nous pouvons ainsi supposer que ces facteurs de transcription, ayant notamment un rôle dans la prolifération cellulaire sous l’action directe du calcium ou de facteurs de croissance, se lient sur la région promotrice du gène pour réguler l’expression des CaV3.2.

De plus, plusieurs sites de fixation potentiels au facteur de transcription HIF-1 (Hypoxia Inducible Factor-1), un des principaux facteurs régulés par l’hypoxie, ont été observés dans la séquence promotrice des CaV3.2 (figure 26). Il est connu que l’hypoxie est une caractéristique des tumeurs solides qui mène à des altérations phénotypiques provoquant la croissance et la progression tumorale (pour revue, [Harris, 2002]). L’hypoxie est préjudiciable lors des traitements contre le cancer notamment en raison de la résistance qu’elle provoque envers les radiations ionisantes et l’effet cytotoxique des drogues utilisées en chimiothérapie (pour revue, [Marignol et al., 2008]). En revanche, elle augmente les
capacités d’angiogenèse et d’invasion rendant les tumeurs plus résistantes aux traitements [Bindra et al., 2004; Vaupel et al., 2007]. HIF-1 est un hétérodimère composé des sous-unités α, soumises à une régulation très fine par l’oxygène, et β, constitutivement exprimée. En condition normoxique, HIF-1α est hydroxylée et subi une ubiquitinylation qui mène à sa destruction alors que dans les tissus hypoxiques, cette sous- unité se fixe sur les éléments de réponse à l’hypoxie (HRE pour Hypoxia Response Element) et active la transcription de plusieurs gènes cibles impliqués dans l’angiogenèse, l’invasion et la métastase des tumeurs.

Par exemple, la surexpression de HIF-1α dans les cellules LNCaP est associée avec une augmentation de VEGF (Vascular Endothelial Growth Factor), un facteur de croissance induisant l’angiogenèse de façon paracrine et la croissance tumorale de façon autocrine, qui permet donc d’engager une réponse cellulaire face à l’hypoxie [Han et al., 2007]. D’autres études ont montré que l’hypoxie est corrélée avec le stade tumoral du cancer de la prostate [Movsas et al., 2000] et l’expression du VEGF [Movsas et al., 2002; Vergis et al., 2008]. Une sous- lignée de LNCaP, isolée après une exposition prolongée à l’hypoxie, présente des caractéristiques particulières vis-à-vis des cellules cultivées en condition normoxique : croissance androgéné-indépendante, résistance accrue à l’apoptose, caractère plus invasif et profil d’expression génique différent [Butterworth et al., 2008]. Les canaux ioniques sensibles à l’oxygène sont les principaux effecteurs des réponses cellulaires engagées suite à l’hypoxie. Une étude réalisée sur des modèles de surexpression dans les cellules HEK-293 montre qu’un faible taux d’oxygène (PO$_2$ < 110 mm de mercure) inhibe les courants calciques dus aux Cav3.2 et 3.3, de manière directe et réversible avec une efficacité plus marquée envers les Cav3.2 [Fearon et al., 2000]. Les mécanismes responsables de cette inhibition ne sont pas connus mais les auteurs proposent que l’hypoxie agisse directement en inhibant la sous-unité pore du canal ou en inhibant un sensor très étroitement associé au canal plutôt que par une altération du métabolisme cellulaire. En plus de leur participation dans les réponses aiguës face à l’hypoxie, les canaux ioniques peuvent également participer à une réponse cellulaire suite à une baisse chronique du taux d’oxygène. Différentes études se sont alors intéressées aux conséquences à long terme de l’hypoxie sur l’expression de la sous-unité α_{11} et elles ont mis en évidence une augmentation de la densité de courant calcique due aux Cav3 dans les cellules chromaffines de rat [Carabelli et al., 2007b], augmentation qui est dépendante du facteur de transcription HIF-1 dans les cellules PC-12 [Del Toro et al., 2003] (pour revue, [Lopez-Barneo et al., 2004]).
NFAT : Nuclear Factor of Activated T-cell.

NFκB : Nuclear Factor Kappa B.

DREAM : Downstream Regulatory Element-Antagonist Modulator.

CREB : Cyclic AMP Response Element-Binding protein.

HIF-1 : Hypoxia Inducible Factor-1.

Les valeurs indiquées entre crochets correspondent à la localisation des sites potentiels dans le promoteur. Les pourcentages indiqués correspondent à l’homologie de séquence avec les séquences concensus connues de ces facteurs de transcription.

TSS : « Transcription Starting Site » (site d’initiation de la transcription).

Dans un premier temps, il serait donc intéressant d’étudier les répercussions de traitements hypoxiques (au sein d’une étuve) ou mimants l’hypoxie (déferrioxamine ou chlorure de cobalt [Wang et al., 1993]) sur l’activité et sur l’expression des canaux calciques de type T CaV3.2 dans les cellules prostatiques cancéreuses humaines. Si l’hypoxie provoque une augmentation de l’expression génique des CaV3.2, comme il a été montré dans d’autres modèles [Carabelli et al., 2007b; Del Toro et al., 2003], nous serons amenés à étudier l’implication potentielle du facteur de transcription HIF-1 dans cette régulation. Ensuite, nous étudierons le rôle joué par ces canaux dans les processus tumoraux induits par l’hypoxie. En effet, nous pouvons imaginer que l’entrée de calcium par les canaux calciques de type T contribuent aux changements cellulaires adaptatifs à plus ou moins long terme, tels que la prolifération, la résistance à l’apoptose ou la sécrétion, provoqués par un faible taux d’oxygène.
Comme la plupart des projets, quelque soit leur nature, celui entrepris au début de ma thèse de doctorat a dû faire face à certains problèmes ou à certaines limites techniques qui n’avaient pas pu être anticipés. Mon projet s’est donc naturellement façonné en fonction des résultats obtenus au jour le jour ainsi qu’en fonction des nouvelles données bibliographiques. Mes 4 années de thèse sont passées très vite, sans doute trop vite pour répondre à toutes les questions que nous nous sommes posées initialement d’autant plus que l’évolution du sujet a soulevé un grand nombre de nouvelles questions.

Néanmoins, les travaux que j’ai réalisés au cours de cette thèse contribuent à élargir les connaissances sur les canaux calciques de type T, CaV3.2 en particulier, et leur rôle au sein des cellules prostatiques cancéreuses humaines et notamment neuroendocrines. Dans ces modèles cellulaires prostatiques, les canaux calciques de type T CaV3.2 : 1) ne participent pas à l’entrée capacitive de calcium mais, 2) sont capables, lors de leur activation par des dépolarisations membranaires, de stimuler l’exocytose, 3) sont impliqués dans la sécrétion basale de PAP (Phosphatase Acide Prostatique) en l’absence d’activité électrique, grâce au courant de fenêtre qu’ils génèrent au potentiel de repos, 4) sont exprimés dans les cellules primaires prostatiques issues de prélèvements humains et de manière plus importante dans les tissus cancéreux que normaux ou hyperplasiques, 5) sont spécifiquement et fonctionnellement couplés avec les canaux potassiques BK et 6) ce couplage participe au maintien du potentiel de repos membranaire et à la prolifération cellulaire.

Nos résultats renforcent l’hypothèse selon laquelle les cellules neuroendocrines sécrètent des neuropeptides à activité mitogénique. Il nous reste cependant à montrer que ces canaux participent à stimuler la sécrétion de facteurs mitogéniques tels que la sérotonine ou le GRP (Gastrin-Releasing Peptide).

Finalement, l’ensemble de ce travail ouvre des perspectives thérapeutiques sachant que les possibilités d’intervention pharmacologique sur les canaux calciques de type T existent et que différents médicaments ayant comme cible ces canaux ont été (mibefradil, utilisé comme antihypertenseur, dont la commercialisation s’est arrêtée en 1998) ou sont sur le marché (gabapentine).
PUBLICATIONS
ET COMMUNICATIONS
PERSONNELLES
Publications:

Florian Gackière†, Gabriel Bidaux†, Philippe Lory, Natalia Prevarskaya, Pascal Mariot. “A role for voltage gated T-type calcium channels in mediating “capacitative” calcium entry?” Cell Calcium. 2006 Apr;39(4):357-66. †:Les auteurs ont contribué à part égale dans ce travail.

Florian Gackière, Gabriel Bidaux, Philippe Delcourt, Fabien Van Coppenolle, Maria Katsogiannou, Etienne Dewailly, Alexis Bavencoffe, Myriam Tran Van Chuoï-Mariot, Brigitte Mauroy, Natalia Prevarsakaya, and Pascal Mariot. “CaV3.2 T-type Calcium Channels Are Involved in Calcium-dependent Secretion of Neuroendocrine Prostate Cancer Cells”. J Biol Chem. 2008 Apr 11;283(15):10162-73.

Florian Gackière, Maria Katsogiannou, Philippe Delcourt, Etienne Dewailly, Christian Slommiany, Nathalie Jouy, Morad Roudbaraki, Sandrine Humez, Natalia Prevarsakaya and Pascal Mariot. “Functional coupling between large-conductance potassium channels and CaV3.2 voltage-dependent calcium channels participates in prostate cancer cell proliferation”. soumis à J Biol Chem.

H. Lallet-Daher†, M. Roudbaraki†, A. Bavencoffe, P. Mariot, F. Gackière, G. Bidaux, R. Urbain, P. Gosset, P. Delcourt, L. Fleurisse, C. Slomianny, E. Dewailly, B. Mauroy, JL Bonnal, R. Skryma and N. Prevarskaya. “Intermediate-conductance Ca²⁺-activated K⁺ channels (IKCa1) regulate human prostate cancer cells proliferation via a close control of calcium entry”. accepté à Oncogen. †:Les auteurs ont contribué à part égale dans ce travail.

Michaël Monet, V’yacheslav Lehen’kyi, Florian Gackière, Gabriel Bidaux, Morad Roudbaraki, Albin Pourtier, Christian Slomianny, Philippe Delcourt, François Rassendren, Sandrine Humez, Natalia Prevarskaya. “TRPV2 Channel Expression Is A Distinguished Feature Of An Androgen Independent Prostate Cancer Cell Phenotype”. soumis à Endocrine-Related Cancer.

KATSOGIANNO Maria, EL BOUSTANY Charbel, GACKIERE Florian, DELCOURT Philippe, ATHIAS Anne, DEWAILLY Etienne, MARIOT Pascal, JOUY Nathalie, MONIER Marie-Noëlle, MAUROY Brigitte, PREVARSKAYA Natalia and SLOMIANNY Christian. “Role of the α1A-adrenoceptor in the apoptosis resistance of androgen-independent prostate cancer cells: implication of caveolae”. soumis à Biochemical Journal.

Communications:

Functional coupling between α1H-T-type calcium channels and calcium-activated potassium channels in human prostate cancer cells. Gackière Florian, Bidaux Gabriel, Prevarskaia Natalia and Mariot Pascal. 17th Ion Channel Meeting. Presqu’île de Giens-France. September 2006.

Functional coupling between large-conductance potassium channels and CaV3.2 voltage-dependant calcium channels participates in LNCaP cell proliferation. Gackière Florian, Prevarskaia Natalia and Mariot Pascal. T-type Calcium Channels : from Discovery to Channelopathies, 25 Years of Research. Kiev-Ukraine. June 2008.

Role of CaV3.2 T-type calcium channels in prostate cancer cells. Gackière Florian, Prevarskaia Natalia and Mariot Pascal. T-type Calcium Channels : from Discovery to Channelopathies, 25 Years of Research. Kiev-Ukraine. June 2008.
BIBLIOGRAPHIE
Abrahamsson P. A. (1996). *Neuroendocrine differentiation and hormone-refractory prostate cancer*. Prostate Suppl. 6, 3-8
Abrahamsson P. A. (1999). *Neuroendocrine differentiation in prostatic carcinoma*. Prostate. 39(2), 135-48
Abriel H. and O. Staub. (2005). *Ubiquitylation of ion channels*. Physiology (Bethesda). 20, 398-407
Acosta S., N. Dizeyi, et al. (2001). *Neuroendocrine cells and nerves in the prostate of the guinea pig: effects of peripheral denervation and castration*. Prostate. 46(3), 191-9
Akaike N., H. Kanaide, et al. (1989). *Low-voltage-activated calcium current in rat aorta smooth muscle cells in primary culture*. J Physiol. 416, 141-60
Akizuki O., A. Inayoshi, et al. (2008). *Blockade of T-type voltage-dependent Ca2+ channels by benidipine, a dihydropyridine calcium channel blocker, inhibits aldosterone production in human adrenocortical cell line NCI-H295R*. Eur J Pharmacol. 584(2-3), 424-34
Altimimi H. F. and P. P. Schnetkamp. (2007). *Na+/Ca2+-K+ exchangers (NCKX): functional properties and physiological roles*. Channels (Austin). 1(2), 62-9
Ammar H. and J. L. Closset. (2008). *Clusterin activates survival through the phosphatidylinositol 3-kinase/Akt pathway*. J Biol Chem. 283(19), 12851-61
Amorino G. P., P. D. Deeble, et al. (2007). *Neurotensin stimulates mitogenesis of prostate cancer cells through a novel c-Src/Stat5b pathway*. Oncogene. 26(5), 745-56
Amorino G. P. and S. J. Parsons. (2004). *Neuroendocrine cells in prostate cancer*. Crit Rev Eukaryot Gene Expr. 14(4), 287-300
Andriole G., N. Bruchovsky, et al. (2004). *Dihydrotestosterone and the prostate: the scientific rationale for 5alpha-reductase inhibitors in the treatment of benign prostatic hyperplasia*. J Urol. 172(4 Pt 1), 1399-403
Angleson J. K., A. J. Cochilla, et al. (1999). *Regulation of dense core release from neuroendocrine cells revealed by imaging single exocytic events*. Nat Neurosci. 2(5), 440-6
Arikkath J. and K. P. Campbell. (2003). *Auxiliary subunits: essential components of the voltage-gated calcium channel complex*. Curr Opin Neurobiol. 13(3), 298-307
Arikkath J., R. Felix, et al. (2002). *Molecular characterization of a two-domain form of the neuronal voltage-gated P/Q-type calcium channel alpha(1)2.1 subunit*. FEBS Lett. 532(3), 300-8
Arima Y., S. Matsueda, et al. (2005). *Parathyroid hormone-related protein as a common target molecule in specific immunotherapy for a wide variety of tumor types*. Int J Oncol. 27(4), 981-8
Armstrong C. M. and D. R. Matteson. (1985). *Two distinct populations of calcium channels in a clonal line of pituitary cells*. Science. 227(4682), 65-7
Arnaudeau S., M. Frieden, et al. (2002). *Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria*. J Biol Chem. 277(48), 46696-705
Arnaudeau S., N. Holzer, et al. (2006). *Calcium sources used by post-natal human myoblasts during initial differentiation*. J Cell Physiol. 208(2), 435-45
Arnold J. T. and J. T. Isaacs. (2002). *Mechanisms involved in the progression of androgen-independent prostate cancers: it is not only the cancer cell's fault*. Endocr Relat Cancer. 9(1), 61-73
Arnoult C., R. A. Cardullo, et al. (1996). *Activation of mouse sperm T-type Ca2+ channels by adhesion to the egg zona pellucida*. Proc Natl Acad Sci U S A. 93(23), 13004-9
Arnoult C., M. Villaz, et al. (1998). *Pharmacological properties of the T-type Ca2+ current of mouse spermatogenic cells*. Mol Pharmacol. 53(6), 1104-11
Arver S. and R. Eliasson. (1982). Zinc and zinc ligands in human seminal plasma. II. Contribution by ligands of different origin to the zinc binding properties of human seminal plasma. Acta Physiol Scand. 115(2), 217-24

Asaga S., M. Ueda, et al. (2006). Identification of a new breast cancer-related gene by restriction landmark genomic scanning. Anticancer Res. 26(1A), 35-42

Atlas D., O. Wiser, et al. (2001). The voltage-gated Ca2+ channel is the Ca2+ sensor of fast neurotransmitter release. Cell Mol Neurobiol. 21(6), 717-31

Augustine G. J. (2001). How does calcium trigger neurotransmitter release? Curr Opin Neurobiol. 11(3), 320-6

Aumuller G., M. Leonhardt, et al. (1999). Neurogenic origin of human prostate endocrine cells. Urology. 53(5), 1041-8

Aumuller G., M. Leonhardt, et al. (2001). Semiquantitative morphology of human prostatic development and regional distribution of prostatic neuroendocrine cells. Prostate. 46(2), 108-15

Baldelli P., J. M. Hernandez-Guijo, et al. (2004). Direct and remote modulation of L-channels in chromaffin cells: distinct actions on alpha1C and alpha1D subunits? Mol Neurobiol. 29(1), 73-96

Baltogiannis D., X. Giannakopoulos, et al. (2004). Monotherapy in advanced prostate cancer: an overview. Exp Oncol. 26(3), 185-91

Bang Y. J., F. Pirnia, et al. (1994). Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP. Proc Natl Acad Sci U S A. 91(12), 5330-4

Bannister R. A., M. Grabner, et al. (2008). The alpha1s III-IV loop influences DHPR gating but is not directly involved in EC coupling interactions with RyR1. J Biol Chem.

Barritt G. J. (1998). Does a decrease in subplasmalemmal Ca2+ explain how store-operated Ca2+ channels are opened? Cell Calcium. 23(1), 65-75

Basrai D., R. Kraft, et al. (2002). BK channel blockers inhibit potassium-induced proliferation of human astrocytoma cells. Neuroreport. 13(4), 403-7

Beam K. G. and C. M. Knudson. (1988). Effect of postnatal development on calcium currents and slow charge movement in mammalian skeletal muscle. J Gen Physiol. 91(6), 799-815

Bean B. P. (1985). Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol. 86(1), 1-30

Bech-Hansen N. T., M. J. Naylor, et al. (1998). Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet. 19(3), 264-7

Benham C. D., M. J. Gunthorpe, et al. (2003). TRPV channels as temperature sensors. Cell Calcium. 33(5-6), 479-87

Bennett D. L., M. D. Bootman, et al. (1998). Ca2+ entry into PC12 cells initiated by ryanodine receptors or inositol 1,4,5-trisphosphate receptors. Biochem J. 329 (Pt 2), 349-57

Bennett M. K. and R. H. Scheller. (1993). The molecular machinery for secretion is conserved from yeast to neurons. Proc Natl Acad Sci U S A. 90(7), 2559-63

Berenguer C., F. Boudouresque, et al. (2008). Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates 'neuroendocrine phenotype' in LNCaP prostate tumor cells. Oncogene. 27(4), 506-18

Berges R. R., J. Vukanovic, et al. (1995). Implication of cell kinetic changes during the progression of human prostatic cancer. Clin Cancer Res. 1(5), 473-80

Berkefeld H. and B. Fakler. (2008). Repolarizing responses of BKCa-Cav complexes are distinctly shaped by their Cav subunits. J Neurosci. 28(33), 8238-45
Berridge M. J. (1993). *Inositol trisphosphate and calcium signalling*. Nature. **361**(6410), 315-25

Berridge M. J., M. D. Bootman, *et al.* (1998). *Calcium--a life and death signal*. Nature. **395**(6703), 645-8

Berridge M. J., P. Lipp, *et al.* (2000). *The versatility and universality of calcium signalling*. Nat Rev Mol Cell Biol. **1**(1), 11-21

Berry N. and Y. Nishizuka. (1990). *Protein kinase C and T cell activation*. Eur J Biochem. **189**(2), 205-14

Berthier C., A. Monteil, *et al.* (2002). *Alpha(1H) mRNA in single skeletal muscle fibres accounts for T-type calcium current transient expression during fetal development in mice*. J Physiol. **539**(Pt 3), 681-91

Bezprozvanny I. and R. W. Tsien. (1995). *Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967)*. Mol Pharmacol. **48**(3), 540-9

Bhattcharjee A., R. M. Whitehurst, Jr., *et al.* (1997). *T-type calcium channels facilitate insulin secretion by enhancing general excitability in the insulin-secreting beta-cell line, INS-1*. Endocrinology. **138**(9), 3735-40

Bhattacharya S., C. G. Bunick, *et al.* (2004). *Target selectivity in EF-hand calcium binding proteins*. Biochim Biophys Acta. **1742**(1-3), 69-79

Biagi B. A., B. Mlinar, *et al.* (1992). *Membrane currents in a calcitonin-secreting human C cell line*. Am J Physiol. **263**(5 Pt 1), C986-94

Bidaux G., M. Flourakis, *et al.* (2007). *Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function*. J Clin Invest. **117**(6), 1647-57

Biel M., P. Ruth, *et al.* (1990). *Primary structure and functional expression of a high voltage activated calcium channel from rabbit lung*. FEBS Lett. **269**(2), 409-12

Bijlenga P., J. H. Liu, *et al.* (2000). *T-type alpha 1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts*. Proc Natl Acad Sci U S A. **97**(13), 7627-32

Bindra R. S., P. J. Schaffer, *et al.* (2004). *Down-regulation of Rad51 and decreased homologous recombination in hypoxic cancer cells*. Mol Cell Biol. **24**(19), 8504-18

Bingham S. A. (1999). *High-meat diets and cancer risk*. Proc Nutr Soc. **58**(2), 243-8

Birnbaumer L., K. P. Campbell, *et al.* (1994). *The naming of voltage-gated calcium channels*. Neuron. **13**(3), 505-6

Birnbaumer L., E. Yildirim, *et al.* (2003). *A comparison of the genes coding for canonical TRP channels and their M, V and P relatives*. Cell Calcium. **33**(5-6), 419-32

Blat A. L. and K. L. Magleby. (1986). *Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle*. Nature. **323**(6090), 718-20

Bloch M., J. Ousingsawat, *et al.* (2007). *KCNMA1 gene amplification promotes tumor cell proliferation in cultured rat skeletal muscle*. Oncogene. **26**(17), 2525-34

Blomme E. A., Y. Sugimoto, *et al.* (1998). *Stromal and epithelial cells of the canine prostate express parathyroid hormone-related protein, but not the PTH/PTHrP receptor*. Prostate. **36**(2), 110-20

Boehning D., R. L. Patterson, *et al.* (2003). *Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis*. Nat Cell Biol. **5**(12), 1051-61

Bolanz K. A., M. A. Hediger, *et al.* (2008). *The role of TRPV6 in breast carcinogenesis*. Mol Cancer Ther. **7**(2), 271-9

Bolotina V. M. and P. Csutora. (2005). *CIF and other mysteries of the store-operated Ca2+-entry pathway*. Trends Biochem Sci. **30**(7), 378-87
Bonkhoff H. (1996). Role of the basal cells in premalignant changes of the human prostate: a stem cell concept for the development of prostate cancer. Eur Urol. 30(2), 201-5

Bonkhoff H. (1998). Neuroendocrine cells in benign and malignant prostate tissue: morphogenesis, proliferation, and androgen receptor status. Prostate Suppl. 8, 18-22

Bonkhoff H., N. Wernert, et al. (1991). Relation of endocrine-paracrine cells to cell proliferation in normal, hyperplastic, and neoplastic human prostate. Prostate. 19(2), 91-8

Bootman M. D., M. J. Berridge, et al. (2002). Calcium signalling: more messengers, more channels, more complexity. Curr Biol. 12(16), R563-5

Borsotto M., J. Barhanin, et al. (1985). The 1,4-dihydropyridine receptor associated with the skeletal muscle voltage-dependent Ca2+ channel. Purification and subunit composition. J Biol Chem. 260(26), 14255-63

Borst J. G. and B. Sakmann. (1996). Calcium influx and transmitter release in a fast CNS synapse. Nature. 383(6599), 431-4

Bourscheidt T., M. Burchardt, et al. (1999). Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. J Urol. 162(5), 1800-5

Burgess D. L., L. A. Gefrdes, et al. (2001). A cluster of three novel Ca2+ channel gamma subunit genes on chromosome 19q13.4: evolution and expression profile of the gamma subunit gene family. Genomics. 71(3), 339-50

Burgess T. L. and R. B. Kelly. (1987). Constitutive and regulated secretion of proteins. Annu Rev Cell Biol. 3, 243-93

Bosse E., S. Regulla, et al. (1990). The cDNA and deduced amino acid sequence of the gamma subunit of the L-type calcium channel from rabbit skeletal muscle. FEBS Lett. 267(1), 153-6

Bostwick D. G., J. Qian, et al. (2002). Neuroendocrine expression in node positive prostate cancer: correlation with systemic progression and patient survival. J Urol. 168(3), 1204-11

Bourinet E., T. W. Soong, et al. (1999). Splicing of alpha 1A subunit gene generates phenotypic variants of P- and Q-type calcium channels. Nat Neurosci. 2(5), 407-15

Bourama D., J. Hidalgo, et al. (2001). Low threshold T-type calcium current in rat embryonic chromaffin cells. J Physiol. 537(Pt 1), 35-44

Boynton A. L., J. F. Whitfield, et al. (1977). Different extracellular calcium requirements for proliferation of nonneoplastic, preneoplastic, and neoplastic mouse cells. Cancer Res. 37(8 Pt 1), 2657-61

Breckenridge D. G., M. Germain, et al. (2003). Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene. 22(53), 8608-18

Brice N. L., N. S. Berrow, et al. (1997). Importance of the different beta subunits in the membrane expression of the alpha1A and alpha2 calcium channel subunits: studies using a depolarization-sensitive alpha1A antibody. Eur J Neurosci. 9(4), 749-59

Briini M. (2008). Plasma membrane Ca(2+)-ATPase: from a housekeeping function to a versatile signaling role. Pflugers Arch.

Brose N., A. G. Petrenko, et al. (1992). Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science. 256(5059), 1021-5

Brundage R. A., K. E. Fogarty, et al. (1991). Calcium gradients underlying polarization and chemotaxis of eosinophils. Science. 254(5032), 703-6

Bucurenciu I., A. Kulik, et al. (2008). Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron. 57(4), 536-45

Burch P. A., G. A. Croghan, et al. (2004). Immunotherapy (APC8015, Provenge) targeting prostatic acid phosphatase can induce durable remission of metastatic androgen-independent prostate cancer: a Phase 2 trial. Prostate. 60(3), 197-204

Burchard T., M. Burchardt, et al. (1999). Transdifferentiation of prostate cancer cells to a neuroendocrine cell phenotype in vitro and in vivo. J Urol. 162(5), 1800-5
Burgoyne R. D. and A. Morgan. (2003). Secretory granule exocytosis. Physiol Rev. 83(2), 581-632

Bush K. T., R. O. Stuart, et al. (1994). Epithelial inositol 1,4,5-trisphosphate receptors. Multiplicity of localization, solubility, and isoforms. J Biol Chem. 269(38), 23694-9

Butterworth K. T., H. O. McCarthy, et al. (2008). Hypoxia selects for androgen independent LNCaP cells with a more malignant geno- and phenotype. Int J Cancer. 123(4), 760-8

Cancela J. M., F. Van Coppenolle, et al. (2002). Transformation of local Ca2+ spikes to global Ca2+ transients: the combinatorial roles of multiple Ca2+ releasing messengers. Embo J. 21(5), 909-19

Carabelli V., A. Marcantoni, et al. (2007a). Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+-dependence. Eur Biophys J. 36(7), 753-62

Carabelli V., A. Marcantoni, et al. (2007b). Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol. 584(Pt 1), 149-65

Carbone E. and H. D. Lux. (1984a). A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J. 46(3), 413-8

Carbone E. and H. D. Lux. (1984b). A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature. 310(5977), 501-2

Carbone E., E. Sher, et al. (1990). Ca currents in human neuroblastoma IMR32 cells: kinetics, permeability and pharmacology. Pflugers Arch. 416(1-2), 170-9

Carrion A. M., W. A. Link, et al. (1999). DREAM is a Ca2+-regulated transcriptional repressor. Nature. 398(6722), 80-4

Cartharius K., K. Frech, et al. (2005). MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics. 21(13), 2933-42

Catterall W. A. (2000). Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol. 16, 521-55

Catz S. D., B. M. Babior, et al. (2002). JFC1 is transcriptionally activated by nuclear factor-kappaB and up-regulated by tumour necrosis factor alpha in prostate carcinoma cells. Biochem J. 367(Pt 3), 791-9

Cens T., M. Rousset, et al. (2006). Voltage- and calcium-dependent inactivation in high voltage-gated Ca(2+) channels. Prog Biophys Mol Biol. 90(1-3), 104-17

Chan J. M., M. J. Stampfer, et al. (2001). Dairy products, calcium, and prostate cancer risk in the Physicians' Health Study. Am J Clin Nutr. 74(4), 549-54

Chapman E. R. (2008). How does synaptotagmin trigger neurotransmitter release? Annu Rev Biochem. 77, 615-41

Chard P. S., D. Bleakman, et al. (1993). Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol. 472, 341-57

Chaudhary K. S., P. D. Abel, et al. (1999). Role of the Bcl-2 gene family in prostate cancer progression and its implications for therapeutic intervention. Environ Health Perspect. 107 Suppl 1, 49-57

Cheglakov I. B., V. N. Bochkov, et al. (1997). Influence of mibefradil on Ca2+ influx induced by vasoactive hormones or depletion of intracellular calcium stores. Arzneimittelforschung. 47(3), 244-7

Chemin J., A. Monteil, et al. (2001). Alternatively spliced alpha1G (Ca(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys J. 80(3), 1238-50

Chemin J., A. Monteil, et al. (2000). Overexpression of T-type calcium channels in HEK-293 cells increases intracellular calcium without affecting cellular proliferation. FEBS Lett. 478(1-2), 166-72
Chemin J., A. Monteil, et al. (2002a). Specific contribution of human T-type calcium channel isoforms (alpha(1G), alpha(1H) and alpha(1I)) to neuronal excitability. J Physiol. 540(Pt 1), 3-14
Chemin J., J. Nargeot, et al. (2002b). Neuronal T-type alpha 1H calcium channels induce neuritogenesis and expression of high-voltage-activated calcium channels in the NG108-15 cell line. J Neurosci. 22(16), 6856-62
Chemin J., J. Nargeot, et al. (2004). Ca(v)3.2 calcium channels control an autocrine mechanism that promotes neuroblastoma cell differentiation. Neuroreport. 15(4), 671-5
Chen C., J. Zhang, et al. (1990a). Sodium and calcium currents in action potentials of rat somatotrophs: their possible functions in growth hormone secretion. Life Sci. 46(14), 983-9
Chen C., J. Zhang, et al. (1990b). Two types of voltage-dependent calcium current in rat somatotrophs are reduced by somatostatin. J Physiol. 425, 29-42
Chen C. C., K. G. Lamping, et al. (2003). Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science. 302(5649), 1416-8
Chen C. D., D. S. Welsbie, et al. (2004a). Molecular determinants of resistance to antiandrogen therapy. Nat Med. 10(1), 33-9
Chen M. X., S. A. Gorman, et al. (2004b). Small and intermediate conductance Ca(2+)-activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum. Naunyn Schmiedebergs Arch Pharmacol. 369(6), 602-15
Chen R., I. Valencia, et al. (2004c). Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol. 166(2), 193-203
Chevalier M., P. Lory, et al. (2006). T-type CaV3.3 calcium channels produce spontaneous low-threshold action potentials and intracellular calcium oscillations. Eur J Neurosci. 23(9), 2321-9
Chevalier M., C. Mironneau, et al. (2008). Intracellular Ca(2+) oscillations induced by over-expressed Ca(V)3.1 T-type Ca(2+) channels in NG108-15 cells. Cell Calcium.
Chevalier S., I. Defoy, et al. (2002). Vascular endothelial growth factor and signaling in the prostate: more than angiogenesis. Mol Cell Endocrinol. 189(1-2), 169-79
Chien A. J., K. M. Carr, et al. (1996). Identification of palmitoylation sites within the L-type calcium channel beta2a subunit and effects on channel function. J Biol Chem. 271(43), 26465-8
Chien J., Y. Ren, et al. (2001). Calcitonin is a prostate epithelium-derived growth stimulatory peptide. Mol Cell Endocrinol. 181(1-2), 69-79
Chow R. H., J. Klingauf, et al. (1994). Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells. Proc Natl Acad Sci U S A. 91(26), 12765-9
Chuang R. S., H. Jaffe, et al. (1998). Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin. Nat Neurosci. 1(8), 668-74
Cifuentes E., J. M. Mataraza, et al. (2004). Physical and functional interaction of androgen receptor with calmodulin in prostate cancer cells. Proc Natl Acad Sci U S A. 101(2), 464-9
Clapham D. E. (1995). Calcium signaling. Cell. 80(2), 259-68
Clapham D. E. (2007). Calcium signaling. Cell. 131(6), 1047-58
Clapham D. E. and J. Sneyd. (1995). Intracellular calcium waves. Adv Second Messenger Phosphoprotein Res. 30, 1-24
Clémenti E., M. Riccio, et al. (1996). The type 2 ryanodine receptor of neurosecretory PC12 cells is activated by cyclic ADP-ribose. Role of the nitric oxide/cGMP pathway. J Biol Chem. 271(30), 17739-45
Cloues R. K. and W. A. Sather. (2003). Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus. J Neurosci. 23(5), 1593-604
Clozel J. P., E. A. Ertel, et al. (1997). Discovery and main pharmacological properties of mibefradil (Ro 40-5967), the first selective T-type calcium channel blocker. J Hypertens Suppl. 15(5), S17-25

Cognard C., M. Lazdunski, et al. (1986). Different types of Ca2+ channels in mammalian skeletal muscle cells in culture. Proc Natl Acad Sci U S A. 83(2), 517-21

Cohen C. J., R. T. McCarthy, et al. (1988). Ca channels in adrenal glomerulosa cells: K+ and angiotensin II increase T-type Ca channel current. Proc Natl Acad Sci U S A. 85(7), 2412-6

Cohen G. M. (1997). Caspases: the executioners of apoptosis. Biochem J. 326 (Pt 1), 1-16

Cohen R. J., G. Glezerson, et al. (1990). Prostatic carcinoma: histological and immunohistological factors affecting prognosis. Br J Urol. 66(4), 405-10

Collado B., I. Gutierrez-Canas, et al. (2004). Vasoactive intestinal peptide increases vascular endothelial growth factor expression and neuroendocrine differentiation in human prostate cancer LNCaP cells. Regul Pept. 119(1-2), 69-75

Colombel M., S. Gil Diez, et al. (1996). Apoptosis in prostate cancer. Molecular basis to study hormone refractory mechanisms. Ann N Y Acad Sci. 784, 63-9

Cotton C. U. (2000). Basolateral potassium channels and epithelial ion transport. Am J Respir Cell Mol Biol. 23(3), 270-2

Coulter D. A., J. R. Huguenard, et al. (1989). Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol. 414, 587-604

Cox M. E., P. D. Deeble, et al. (2000). Activated 3',5'-cyclic AMP-dependent protein kinase is sufficient to induce neuroendocrine-like differentiation of the LNCaP prostate tumor cell line. J Biol Chem. 275(18), 13812-8

Cox M. E., P. D. Deeble, et al. (1999). Acquisition of neuroendocrine characteristics by prostate tumor cells is reversible: implications for prostate cancer progression. Cancer Res. 59(15), 3821-30

Crabtree G. R. (2001). Calcium, calcineurin, and the control of transcription. J Biol Chem. 276(4), 2313-6

Cribbs L. L. (2006). T-type Ca2+ channels in vascular smooth muscle: multiple functions. Cell Calcium. 40(2), 221-30

Cribbs L. L., J. H. Lee, et al. (1998). Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res. 83(1), 103-9

Cribbs L. L., B. L. Martin, et al. (2001). Identification of the t-type calcium channel (Ca(v)3.1d) in developing mouse heart. Circ Res. 88(4), 403-7

Croall D. E. and K. Ernsfeld. (2007). The calpains: modular designs and functional diversity. Genome Biol. 8(6), 218

Csordas G., C. Renken, et al. (2006). Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol. 174(7), 915-21

Cueni L., M. Canepari, et al. (2008). T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci. 11(6), 683-92

Culig Z., A. Hobisch, et al. (1994). Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 54(20), 5474-8

Curtis B. M. and W. A. Catterall. (1984). Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry. 23(10), 2113-8

Cutz E. (1982). Neuroendocrine cells of the lung. An overview of morphologic characteristics and development. Exp Lung Res. 3(3-4), 185-208

D'Antonio J. M., C. Ma, et al. (2008). Longitudinal analysis of androgen deprivation of prostate cancer cells identifies pathways to androgen independence. Prostate. 68(7), 698-714
De Jongh K. S., C. Warner, et al. (1990). Subunits of purified calcium channels. Alpha 2 and delta are encoded by the same gene. J Biol Chem. 265(25), 14738-41

De Koninck P. and H. Schulman. (1998). Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science. 279(5348), 227-30

deBustros A., S. B. Baylin, et al. (1986). Cyclic AMP and phorbol esters separately induce growth inhibition, calcitonin secretion, and calcitonin gene transcription in cultured human medullary thyroid carcinoma. J Biol Chem. 261(17), 8036-41

Deeble P. D., M. E. Cox, et al. (2007). Androgen-independent growth and tumorigenesis of prostate cancer cells are enhanced by the presence of PKA-differentiated neuroendocrine cells. Cancer Res. 67(8), 3663-72

Deeble P. D., D. J. Murphy, et al. (2001). Interleukin-6- and cyclic AMP-mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells. Mol Cell Biol. 21(24), 8471-82

Del Toro R., K. L. Levitsky, et al. (2003). Induction of T-type calcium channel gene expression by chronic hypoxia. J Biol Chem. 278(25), 22316-24

Dellis O., S. G. Dedos, et al. (2006). Ca2+ entry through plasma membrane IP3 receptors. Science. 313(5784), 229-33

Denmeade S. R., X. S. Lin, et al. (1996). Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate. 28(4), 251-65

Deveraux Q. L., R. Takahashi, et al. (1997). X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 388(6639), 300-4

Devlin H. L. and M. Mudryj. (2008). Progression of prostate cancer: Multiple pathways to androgen independence. Cancer Lett. 241(2), 121-4

Diaz M., M. Abdul, et al. (1998). Modulation of neuroendocrine differentiation in prostate cancer by interleukin-1 and -2. Prostate Suppl. 8, 32-6

Dittmar T., A. Husemann, et al. (2002). Induction of cancer cell migration by epidermal growth factor is initiated by specific phosphorylation of tyrosine 1248 of c-erbB-2 receptor via EGFR. Faseb J. 16(13), 1823-5

Dizeyi N., A. Bjartell, et al. (2004). Expression of serotonin receptors and role of serotonin in human prostate cancer tissue and cell lines. Prostate. 59(3), 328-36

Djakiew D. (2000). Dysregulated expression of growth factors and their receptors in the development of prostate cancer. Prostate. 42(2), 150-60

Dolmetsch R. E., R. S. Lewis, et al. (1997). Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature. 386(6627), 855-8

Dolmetsch R. E., U. Pajvani, et al. (2001). Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science. 294(5541), 333-9

Dolmetsch R. E., K. Xu, et al. (1998). Calcium oscillations increase the efficiency and specificity of gene expression. Nature. 392(6679), 933-6

Dolphin A. C., C. N. Wyatt, et al. (1999). The effect of alpha2-delta and other accessory subunits on expression and properties of the calcium channel alpha1G. J Physiol. 519Pt1, 35-45
Dubel S. J., C. Altier, et al. (2004). *Plasma membrane expression of T-type calcium channel alpha(1) subunits is modulated by high voltage-activated auxiliary subunits.* J Biol Chem. 279(28), 29263-9

Dubel S. J., T. V. Starr, et al. (1992). *Molecular cloning of the alpha-1 subunit of an omega-conotoxin-sensitive calcium channel.* Proc Natl Acad Sci U S A. 89(11), 5058-62

Duchen M. R. (2000). *Mitochondria and calcium: from cell signalling to cell death.* J Physiol. 529 Pt 1, 57-68

Dworetzky S. I., C. G. Boissard, et al. (1996). *Phenotypic alteration of a human BK (hSlo) channel by hSlobeta subunit coexpression: changes in blocker sensitivity, activation/relaxation kinetics, and protein kinase A modulation.* J Neurosci. 16(15), 4543-50

Echevarria W., M. F. Leite, et al. (2003). *Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum.* Nat Cell Biol. 5(5), 440-6

Edgerton J. R. and P. H. Reinhart. (2003). *Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function.* J Physiol. 548(Pt 1), 53-69

Edmonds B., R. Reyes, et al. (2000). *Calretinin modifies presynaptic calcium signaling in frog saccular hair cells.* Nat Neurosci. 3(8), 786-90

Eichler M. E., J. M. Dubinsky, et al. (1994). *The ability of diphenylpiperazines to prevent neuronal death in dorsal root ganglion neurons in vitro after nerve growth factor deprivation and in vivo after axotomy.* J Neurochem. 62(6), 2148-57

Elinadi A., L. Bouillot, et al. (1998). *Dose-related inversion of cinnarizine and flunarizine effects on mitochondrial permeability transition.* Eur J Pharmacol. 348(1), 115-21

Ellis S. B., M. E. Williams, et al. (1988). *Sequence and expression of mRNAs encoding the alpha 1 and alpha 2 subunits of a DHP-sensitive calcium channel.* Science. 241(4873), 1661-4

Elzanaty S., J. Richthoff, et al. (2002). *The impact of epididymal and accessory sex gland function on sperm motility.* Hum Reprod. 17(11), 2904-11

Endo M. (2006). *Calcium ion as a second messenger with special reference to excitation-contraction coupling.* J Pharmacol Sci. 100(5), 519-24

Endo M., M. Tanaka, et al. (1970). *Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres.* Nature. 228(5266), 34-6

Engl T., B. Relja, et al. (2006). *CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins.* Neoplasia. 8(4), 290-301

Entschladen F. and K. S. Zanker. (2000). *Locomotion of tumor cells: a molecular comparison to migrating pre- and postmitotic leukocytes.* J Cancer Res Clin Oncol. 126(12), 671-81

Enyeart J. J., B. Mlinar, et al. (1993). *T-type Ca2+ channels are required for adrenocorticotropic-stimulated cortisol production by bovine adrenal zona fasciculata cells.* Mol Endocrinol. 7(8), 1031-40

Ertel E. A., K. P. Campbell, et al. (2000). *Nomenclature of voltage-gated calcium channels.* Neuron. 25(3), 533-5

Escoffier J., S. Boisseau, et al. (2007). *Expression, localization and functions in acrosome reaction and sperm motility of Ca(V)3.1 and Ca(V)3.2 channels in sperm cells: an evaluation from Ca(V)3.1 and Ca(V)3.2 deficient mice.* J Cell Physiol. 212(3), 753-63

Fabio A. (1983). *Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum.* Am J Physiol. 245(1), C1-14

Fearn I. M., A. D. Randall, et al. (2000). *Modulation of recombinant T-type Ca2+ channels by hypoxia and glutathione.* Pflugers Arch. 441(2-3), 181-8
Fedulova S. A., P. G. Kostyuk, et al. (1985). Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J Physiol. 359, 431-46

Feldman B. J. and D. Feldman. (2001). The development of androgen-independent prostate cancer. Nat Rev Cancer. 1(1), 34-45

Fernandez-Chacon R., A. Konigstorfer, et al. (2001). Synaptotagmin I functions as a calcium regulator of release probability. Nature. 410(6824), 41-9

Fernandez-Fernandez J. M., Y. N. Andrade, et al. (2008). Functional coupling of TRPV4 cationic channel and large conductance, calcium-dependent potassium channel in human bronchial epithelial cell lines. Pflugers Arch.

Ferreri-Jacobia M., D. O. Mak, et al. (2005). Translational mobility of the type 3 inositol 1,4,5-trisphosphate receptor Ca2+ release channel in endoplasmic reticulum membrane. J Biol Chem. 280(5), 3824-31

Fixemer T., K. Remberger, et al. (2002). Apoptosis resistance of neuroendocrine phenotypes in prostatic adenocarcinoma. Prostate. 53(2), 118-23

Freschi M., R. Colombo, et al. (2004). Primary and pure neuroendocrine tumor of the prostate. Eur Urol. 45(2), 166-69; discussion 169-70

Frisk F. and A. D. Randall. (1998). Voltage- and ligand-gated ion channels in floor plate neuroepithelia of the rat. Neuroscience. 85(4), 1135-49

Gafter-Gvili A., B. Sredni, et al. (2003). Cyclosporin A-induced hair growth in mice is associated with inhibition of calcineurin-dependent activation of NFAT in follicular keratinocytes. Am J Physiol Cell Physiol. 284(6), C1593-603

Galvez A., G. Gimenez-Gallego, et al. (1990). Purification and characterization of a unique, potent, peptidyl probe for the high conductance calcium-activated potassium channel from venom of the scorpion Buthus tamulus. J Biol Chem. 265(19), 11083-90
Ganitkevich V., M. F. Shuba, et al. (1986). Potential-dependent calcium inward current in a single isolated smooth muscle cell of the guinea-pig taenia caeci. J Physiol. 380, 1-16

Gao B., Y. Sekido, et al. (2000). Functional properties of a new voltage-dependent calcium channel alpha(2)delta auxiliary subunit gene (CACNA2D2). J Biol Chem. 275(16), 12237-42

Garabedian E. M., P. A. Humphrey, et al. (1998). A transgenic mouse model of metastatic prostate cancer originating from neuroendocrine cells. Proc Natl Acad Sci U S A. 95(26), 15382-7

Garcia-Yuste M., J. M. Matilla, et al. (2008). Neuroendocrine tumors of the lung. Curr Opin Oncol. 20(2), 148-54

Garcia J., J. Nakai, et al. (1997). Role of S4 segments and the leucine heptad motif in the activation of an L-type calcium channel. Biophys J. 72(6), 2515-23

Gerasimenko O. V., J. V. Gerasimenko, et al. (1995). ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope. Cell. 80(3), 439-44

Gessner G., K. Schonherr, et al. (2005). BKCa channels activating at resting potential without calcium in LNCaP prostate cancer cells. J Membr Biol. 208(3), 229-40

Ghata S., D. Nimmagadda, et al. (2006). Large-conductance, calcium-activated potassium channels: structural and functional implications. Pharmacol Ther. 110(1), 103-16

Giancippoli A., M. Novara, et al. (2006). Low-threshold exocytosis induced by cAMP-rerecruited CaV3.2 (alpha1H) channels in rat chromaffin cells. Biophys J. 90(5), 1830-41

Giannini G., A. Conti, et al. (1995). The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 128(5), 893-904

Giannone G., P. Ronde, et al. (2002). Calcium oscillations trigger focal adhesion disassembly in human U87 astrocytoma cells. J Biol Chem. 277(29), 26364-71

Gil-Parrado S., A. Fernandez-Montalvan, et al. (2002). Ionomycin-activated calpain triggers apoptosis. A probable role for Bcl-2 family members. J Biol Chem. 277(30), 27217-26

Giovannucci E., Y. Liu, et al. (2006). A prospective study of calcium intake and incident and fatal prostate cancer. Cancer Epidemiol Biomarkers Prev. 15(2), 203-10

Giovannucci E., E. B. Rimm, et al. (1993). A prospective study of dietary fat and risk of prostate cancer. J Natl Cancer Inst. 85(19), 1571-9

Goll D. E., V. F. Thompson, et al. (2003). The calpain system. Physiol Rev. 83(3), 731-801

Gomez-Vicente V., M. Donovan, et al. (2005). Multiple death pathways in retina-derived 661W cells following growth factor deprivation: crosstalk between caspases and calpains. Cell Death Differ. 12(7), 796-804

Gong J., J. Lee, et al. (2007). Attenuation of apoptosis by chromogranin A-induced Akt and survivin pathways in prostate cancer cells. Endocrinology. 148(9), 4489-99

Goodin J. L. and C. L. Rutherford. (2002). Identification of differentially expressed genes during cyclic adenosine monophosphate-induced neuroendocrine differentiation in the human prostatic adenocarcinoma cell line LNCaP. Mol Carcinog. 33(2), 88-98

Goonasekera S. A., S. R. Chen, et al. (2005). Reconstitution of local Ca2+ signaling between cardiac L-type Ca2+ channels and ryanodine receptors: insights into regulation by FKBPI2.6. Am J Physiol Cell Physiol. 289(6), C1476-84

Gray L. S., E. Perez-Reyes, et al. (2004). The role of voltage gated T-type Ca2+ channel isoforms in mediating "capacitative" Ca2+ entry in cancer cells. Cell Calcium. 36(6), 489-97

Greenberg D. A., C. L. Carpenter, et al. (1987). Ethanol-induced component of 45Ca2+ uptake in PC12 cells is sensitive to Ca2+ channel modulating drugs. Brain Res. 410(1), 143-6

Grobholz R., M. H. Bohrer, et al. (2000). Correlation between neovascularisation and neuroendocrine differentiation in prostatic carcinoma. Pathol Res Pract. 196(5), 277-84
Grobholz R., M. Griebe, et al. (2005). Influence of neuroendocrine tumor cells on proliferation in prostatic carcinoma. Hum Pathol. 36(5), 562-70

Gross A., J. M. McDonnell, et al. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13(15), 1899-911

Grube D. (1986). The endocrine cells of the digestive system: amines, peptides, and modes of action. Anat Embryol (Berl). 175(2), 151-62

Grunnet M. and W. A. Kaufmann. (2004). Coassembly of big conductance Ca2+-activated K+ channels and L-type voltage-gated Ca2+ channels in rat brain. J Biol Chem. 279(35), 36445-53

Grunwald R. and G. Meissner. (1995). Lumenal sites and C terminus accessibility of the skeletal muscle calcium release channel (ryanodine receptor). J Biol Chem. 270(19), 11338-47

Gutierrez A. A., J. M. Arias, et al. (1999). Activation of a Ca2+-permeable cation channel by two different inducers of apoptosis in a human prostatic cancer cell line. J Physiol. 517 (Pt 1), 95-107

Hagiwara N., H. Irisawa, et al. (1988). Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol. 395, 233-53

Hagiwara S., S. Ozawa, et al. (1975). Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J Gen Physiol. 65(5), 617-44

Hahn K., R. DeBiasio, et al. (1992). Patterns of elevated free calcium and calmodulin activation in living cells. Nature. 359(6397), 736-8

Hajnoczky G., G. Csordas, et al. (2000). Control of apoptosis by IP(3) and ryanodine receptor driven calcium signals. Cell Calcium. 28(5-6), 349-63

Hakamata Y., J. Nakai, et al. (1992). Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett. 312(2-3), 229-35

Hakamata Y., S. Nishimura, et al. (1994). Involvement of the brain type of ryanodine receptor in T-cell proliferation. FEBS Lett. 352(2), 206-10

Hallworth N. E., C. J. Wilson, et al. (2003). Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. J Neurosci. 23(20), 7525-42

Hamill O. P., A. Marty, et al. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391(2), 85-100

Han Y. L., D. L. He, et al. (2007). [Over-expression of hypoxia-inducible factor-1 alpha increases angiogenesis of LNCaP cells]. Zhonghua Nan Ke Xue. 13(11), 988-91

Hannoun-Levi J. M., A. Ginot, et al. (2008). [Prostate specific antigen: Utilization modalities and interpretation]. Cancer Radiother.

Hanson C. J., M. D. Bootman, et al. (2004). Cell signalling: IP3 receptors channel calcium into cell death. Curr Biol. 14(21), R933-5

Hansson J. and P. A. Abrahamsson. (2001). Neuroendocrine pathogenesis in adenocarcinoma of the prostate. Ann Oncol. 12 Suppl 2, S145-52

Harkins A. B., A. L. Cahill, et al. (2003). Expression of recombinant calcium channels support secretion in a mouse pheochromocytoma cell line. J Neurophysiol. 90(4), 2325-33

Harris A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer. 2(1), 38-47

Hebert D. N. and M. Molinari. (2007). In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol Rev. 87(4), 1377-408

Hedlund H. and P. Hedlund. (1999). Treatment of benign prostatic enlargement with alpha-blockers: an updated review. Scand J Urol Nephrol Suppl. 203, 9-13
Hegle A. P., D. D. Marble, et al. (2006). A voltage-driven switch for ion-independent signaling by ether-a-go-go K+ channels. Proc Natl Acad Sci U S A. 103(8), 2886-91

Henschler R., A. Piiper, et al. (2003). SDF-1alpha-induced intracellular calcium transient involves Rho GTPase signalling and is required for migration of hematopoietic progenitor cells. Biochem Biophys Res Commun. 311(4), 1067-71

Heo J. H., H. N. Seo, et al. (2008). T-type Ca2+ channel blockers suppress the growth of human cancer cells. Bioorg Med Chem Lett. 18(14), 3899-901

Hernandez-Cruz A. and H. C. Pape. (1989). Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus. J Neurophysiol. 61(6), 1270-83

Hill C. and F. Doyon. (2004). [Frequency of cancer in France: 2004 update]. Bull Cancer. 91(1), 9-14

Hirano D., Y. Okada, et al. (2004). Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol. 45(5), 586-92; discussion 592

Hirooka K., G. E. Bertolesi, et al. (2002). T-Type calcium channel alpha1G and alpha1H subunits in human retinoblastoma cells and their loss after differentiation. J Neurophysiol. 88(1), 196-205

Hirschberg B., J. Maylie, et al. (1998). Gating of recombinant small-conductance Ca-activated K+ channels by calcium. J Gen Physiol. 111(4), 565-81

Hobisch A., I. E. Eder, et al. (1998). Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 58(20), 4640-5

Hoeflich K. P. and M. Ikura. (2002). Calmodulin in action: diversity in target recognition and activation mechanisms. Cell. 108(6), 739-42

Hofmann F., L. Lacinova, et al. (1999a). Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol. 139, 33-87

Hofmann T., A. G. Obukhov, et al. (1999b). Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature. 397(6716), 259-63

Holzbierlein J., P. Lal, et al. (2004). Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol. 164(1), 217-27

Hoosein N. M., C. J. Logothetis, et al. (1993). Differential effects of peptide hormones bombesin, vasoactive intestinal polypeptide and somatostatin analog RC-160 on the invasive capacity of human prostatic carcinoma cells. J Urol. 149(5), 1209-13

Horoszewicz J. S., S. S. Leong, et al. (1983). LNCaP model of human prostatic carcinoma. Cancer Res. 43(4), 1809-18

Hoth M. and R. Penner. (1992). Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 355(6358), 353-6

Hu W., X. Zhen, et al. (2008). CXCR6 is expressed in human prostate cancer in vivo and is involved in the in vitro invasion of PC3 and LNCap cells. Cancer Sci. 99(7), 1362-9

Huang J., J. L. Yao, et al. (2006). Immunohistochemical characterization of neuroendocrine cells in prostate cancer. Prostate. 66(13), 1399-406

Huang J., J. L. Yao, et al. (2005). Differential expression of interleukin-8 and its receptors in the neuroendocrine and non-neuroendocrine compartments of prostate cancer. Am J Pathol. 166(6), 1807-15

Huang J. B., A. L. Kindzelskii, et al. (2004). Identification of channels promoting calcium spikes and waves in HT1080 tumor cells: their apparent roles in cell motility and invasion. Cancer Res. 64(7), 2482-9
Hudson D. L., A. T. Guy, et al. (2001). Epithelial cell differentiation pathways in the human prostate: identification of intermediate phenotypes by keratin expression. J Histochem Cytochem. 49(2), 271-8

Huggins C. and C. V. Hodges. (2002). Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol. 168(1), 9-12

Huguenard J. R. (1996). Low-threshold calcium currents in central nervous system neurons. Annu Rev Physiol. 58, 329-48

Humez S., G. Legrand, et al. (2004). Role of endoplasmic reticulum calcium content in prostate cancer cell growth regulation by JGF and TNFalpha. J Cell Physiol. 201(2), 201-13

Humez S., M. Monet, et al. (2006). Epidermal growth factor-induced neuroendocrine differentiation and apoptotic resistance of androgen-independent human prostate cancer cells. Endocr Relat Cancer. 13(1), 181-95

Huss W. J., C. W. Gregory, et al. (2004). Neuroendocrine cell differentiation in the CWR22 human prostate cancer xenograft: association with tumor cell proliferation prior to recurrence. Prostate. 60(2), 91-7

Iftinca M., J. Hamid, et al. (2007). Regulation of T-type calcium channels by Rho-associated kinase. Nat Neurosci. 10(7), 854-60

Ikura M., M. Osawa, et al. (2002). The role of calcium-binding proteins in the control of transcription: structure to function. Bioessays. 24(7), 625-36

Imagawa K., S. Okayama, et al. (2006). Inhibitory effect of ef onidipine on aldosterone synthesis and secretion in human adrenocarcinoma (H295R) cells. J Cardiovasc Pharmacol. 47(1), 133-8

Isaacs J. T. (1999). The biology of hormone refractory prostate cancer. Why does it develop? Urol Clin North Am. 26(2), 263-73

Isaacs J. T. and D. S. Coffey. (1989). Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl. 2, 33-50

Ishibe M., R. N. Rosier, et al. (1991). Human prostatic acid phosphatase directly stimulates collagen synthesis and alkaline phosphatase content of isolated bone cells. J Clin Endocrinol Metab. 73(4), 785-92

Ishii T. M., C. Silvia, et al. (1997). A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci U S A. 94(21), 11651-6

Islam M. S., P. Rorsman, et al. (1992). Ca(2+)-induced Ca2+ release in insulin-secreting cells. FEBS Lett. 296(3), 287-91

Ismail A. H., F. Landry, et al. (2002). Androgen ablation promotes neuroendocrine cell differentiation in dog and human prostate. Prostate. 51(2), 117-25

Iwai M., Y. Tateishi, et al. (2005). Molecular cloning of mouse type 2 and type 3 inositol 1,4,5-trisphosphate receptors and identification of a novel type 2 receptor splice variant. J Biol Chem. 280(11), 10305-17

Jagannathan S., E. L. Punt, et al. (2002). Identification and localization of T-type voltage-operated calcium channel subunits in human male germ cells. Expression of multiple isoforms. J Biol Chem. 277(10), 8449-56

Jahn R., T. Lang, et al. (2003). Membrane fusion. Cell. 112(4), 519-33

Jahn R. and T. C. Sudhof. (1999). Membrane fusion and exocytosis. Annu Rev Biochem. 68, 863-911

Jay S. D., S. B. Ellis, et al. (1990). Primary structure of the gamma subunit of the DHP-sensitive calcium channel from skeletal muscle. Science. 248(4954), 490-2

Jay S. D., A. H. Sharp, et al. (1991). Structural characterization of the dihydropyridine-sensitive calcium channel alpha 2-subunit and the associated delta peptides. J Biol Chem. 266(5), 3287-93
Jayaraman T. and A. R. Marks. (1997). T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol. 17(6), 3005-12
Jensen P., L. Winger, et al. (1977). The mitogenic effect of A23187 in human peripheral lymphocytes. Biochim Biophys Acta. 496(2), 374-83
Jenster G., H. A. van der Korput, et al. (1991). Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol Endocrinol. 5(10), 1396-404
Jiborn T., A. Bjartell, et al. (1998). Neuroendocrine differentiation in prostatic carcinoma during hormonal treatment. Urology. 51(4), 585-9
Jin R. J., Y. Lho, et al. (2008). The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res. 68(16), 6762-9
Jin R. J., Y. Wang, et al. (2004). NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Cancer Res. 64(15), 5489-95
Johnson J. L., B. A. Ellis, et al. (2005). The Rab27a-binding protein, JFC1, regulates androgen-dependent secretion of prostate-specific antigen and prostatic-specific acid phosphatase. Biochem J. 391(Pt 3), 699-710
Jones S. W. (1998). Overview of voltage-dependent calcium channels. J Bioenerg Biomembr. 30(4), 299-312
Jongsma J., M. H. Oomen, et al. (2000). Androgen-independent growth is induced by neuropeptides in human prostate cancer cell lines. Prostate. 42(1), 34-44
Jongsma J., M. H. Oomen, et al. (2002). Different profiles of neuroendocrine cell differentiation evolve in the PC-310 human prostate cancer model during long-term androgen deprivation. Prostate. 50(4), 203-15
July L. V., M. Akbari, et al. (2002). Clusterin expression is significantly enhanced in prostate cancer cells following androgen withdrawal therapy. Prostate. 50(3), 179-88
Kahl C. R. and A. R. Means. (2003). Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev. 24(6), 719-36
Kaltsas G. A., G. M. Besser, et al. (2004). The diagnosis and medical management of advanced neuroendocrine tumors. Endocr Rev. 25(3), 458-511
Kang M. G., C. C. Chen, et al. (2001). Biochemical and biophysical evidence for gamma 2 subunit association with neuronal voltage-activated Ca2+ channels. J Biol Chem. 276(35), 32917-24
Karlsson E. (2001). The role of pancreatic chromogranins in islet physiology. Curr Mol Med. 1(6), 727-32
Kasai H. (1999). Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci. 22(2), 88-93
Kass G. E. and S. Orrenius. (1999). Calcium signaling and cytotoxicity. Environ Health Perspect. 107 Suppl 1, 25-35
Kazzaz B. A. (1974). Argentaffin and argyrophil cells in the prostate. J Pathol. 112(3), 189-93
Kelly R. B. (1985). Pathways of protein secretion in eukaryotes. Science. 230(4721), 25-32
Kepplinger K. J., G. Forstner, et al. (2000). Molecular determinant for run-down of L-type Ca2+ channels localized in the carboxyl terminus of the 1C subunit. J Physiol. 529 Pt 1, 119-30
Kerr J. F., C. M. Winterford, et al. (1994). Apoptosis. Its significance in cancer and cancer therapy. Cancer. 73(8), 2013-26
Kim J., R. M. Adam, et al. (2002). Activation of the Erk mitogen-activated protein kinase pathway stimulates neuroendocrine differentiation in LNCaP cells independently of cell cycle withdrawal and STAT3 phosphorylation. Cancer Res. 62(5), 1549-54
Kim J. H., J. H. Nam, et al. (2004). Purinergic receptors coupled to intracellular Ca2+ signals and exocytosis in rat prostate neuroendocrine cells. J Biol Chem. 279(26), 27345-56

Kim J. H., S. Y. Shin, et al. (2003). Voltage-dependent ion channel currents in putative neuroendocrine cells dissociated from the ventral prostate of rat. Pflugers Arch. 446(1), 88-99

Kim S. J., W. Lim, et al. (1995). Contribution of L- and N-type calcium currents to exocytosis in rat adrenal medullary chromaffin cells. Brain Res. 675(1-2), 289-96

Kingsbury T. J., L. L. Bambrick, et al. (2007). Calcineurin activity is required for depolarization-induced, CREB-dependent gene transcription in cortical neurons. J Neurochem. 103(2), 761-71

Kinoshita H., Y. Shi, et al. (2000). Methylation of the androgen receptor minimal promoter silences transcription in human prostate cancer. Cancer Res. 60(13), 3623-30

Kiselyov K. I., D. M. Shin, et al. (2000). Gating of store-operated channels by conformational coupling to ryanodine receptors. Mol Cell. 6(2), 421-31

Kislevsky A. E. and G. W. Zamponi. (2008). Presynaptic calcium channels: structure, regulators, and blockers. Handb Exp Pharmacol. (184), 45-75

Kitchens S. A., J. Burch, et al. (2003). T-type Ca2+ current contribution to Ca2+-induced Ca2+ release in developing myocardium. J Mol Cell Cardiol. 35(5), 515-23

Klenchin V. A. and T. F. Martin. (2000). Priming in exocytosis: attaining fusion-competence after vesicle docking. Biochimie. 82(5), 399-407

Klockner U., J. H. Lee, et al. (1999). Comparison of the Ca2+ currents induced by expression of three cloned alpha1 subunits, alpha1G, alpha1H and alpha1I, of low-voltage-activated T-type Ca2+ channels. Eur J Neurosci. 11(12), 4171-8

Klugbauer N., S. Dai, et al. (2000). A family of gamma-like calcium channel subunits. FEBS Lett. 470(2), 189-97

Klugbauer N., L. Lacinova, et al. (1999). Molecular diversity of the calcium channel alpha2delta subunit. J Neurosci. 19(2), 684-91

Kockskamper J., A. V. Zima, et al. (2008). Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol.

Komuro H. and P. Rakic. (1992). Selective role of N-type calcium channels in neuronal migration. Science. 257(5071), 806-9

Komuro H. and P. Rakic. (1996). Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron. 17(2), 275-85

Konrad T., C. Bloechle, et al. (1995). Verapamil and flunarizine protect the isolated perfused rat liver against warm ischemia and reperfusion injury. Res Exp Med (Berl). 195(2), 61-8

Koulen P., Y. Cai, et al. (2002). Polycystin-2 is an intracellular calcium release channel. Nat Cell Biol. 4(3), 191-7

Kovac J. R., T. Chrones, et al. (2008). Temporal and spatial dynamics underlying capacitative calcium entry in human colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol. 294(1), G88-98

Kozlov A. S., F. McKenna, et al. (1999). Distinct kinetics of cloned T-type Ca2+ channels lead to differential Ca2+ entry and frequency-dependence during mock action potentials. Eur J Neurosci. 11(12), 4149-58

Krajewska M., S. Krajewski, et al. (2003). Elevated expression of inhibitor of apoptosis proteins in prostate cancer. Clin Cancer Res. 9(13), 4914-25

Krijnen J. L., P. J. Janssen, et al. (1993). Do neuroendocrine cells in human prostate cancer express androgen receptor? Histochemistry. 100(5), 393-8

Kuga T., S. Kobayashi, et al. (1996). Cell cycle--dependent expression of L- and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture. Circ Res. 79(1), 14-9
Kunzelmann K. (2005). *Ion channels and cancer.* J Membr Biol. **205**(3), 159-73

Lacerda A. E., H. S. Kim, et al. (1991). *Normalization of current kinetics by interaction between the alpha 1 and beta subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel.* Nature. **352**(6335), 527-30

Lacerda A. E., E. Perez-Reyes, et al. (1994). *T-type and N-type calcium channels of Xenopus oocytes: evidence for specific interactions with beta subunits.* Biophys J. **66**(6), 1833-43

Lam M., G. Dubyak, et al. (1994). *Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+ fluxes.* Proc Natl Acad Sci U S A. **91**(14), 6569-73

Lang J. (1999). *Molecular mechanisms and regulation of insulin exocytosis as a paradigm of endocrine secretion.* Eur J Biochem. **259**(1-2), 3-17

Lang K., B. Niggemann, et al. (2002). *Signal processing in migrating T24 human bladder carcinoma cells: role of the autocrine interleukin-8 loop.* Int J Cancer. **99**(5), 673-80

Larsen J. K., J. W. Mitchell, et al. (2002). *Quantitative analysis of the expression and distribution of calcium channel alpha 1 subunit mRNA in the atria and ventricles of the rat heart.* J Mol Cell Cardiol. **34**(5), 519-32

Latorre R. and S. Brauchi. (2006). *Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage.* Biol Res. **39**(3), 385-401

Latour I., D. F. Louw, et al. (2004). *Expression of T-type calcium channel splice variants in human glioma.* Glia. **48**(2), 112-9

Leber B., J. Lin, et al. (2007). *Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes.* Apoptosis. **12**(5), 897-911

Lee E. H., G. Cherednichenko, et al. (2006a). *Functional coupling between TRPC3 and RyR1 regulates the expressions of key triadic proteins.* J Biol Chem. **281**(15), 10042-8

Lee J. H., A. N. Daud, et al. (1999a). *Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family.* J Neurosci. **19**(6), 1912-21

Lee J. H., J. C. Gomora, et al. (1999b). *Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H.* Biophys J. **77**(6), 3034-42

Lee J. Y., S. J. Park, et al. (2006b). *Growth inhibition of human cancer cells in vitro by T-type calcium channel blockers.* Bioorg Med Chem Lett. **16**(19), 5014-7

Lee L. F., J. Guan, et al. (2008). *Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells.* J Cell Biochem. **104**(2), 499-510

Lee M. J., E. S. Jeon, et al. (2008). *Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells.* J Cell Biochem. **104**(2), 499-510

Lee S. O., W. Lou, et al. (2003). *Interleukin-4 enhances prostate-specific antigen expression by activation of the androgen receptor and Akt pathway.* Oncogene. **22**(39), 7981-8

Legrand G., S. Humez, et al. (2001). *Ca2+ pools and cell growth. Evidence for sarcoplasmic Ca2+-ATPases 2B involvement in human prostate cancer cell growth control.* J Biol Chem. **276**(50), 47608-14

Lehen'kyi V., M. Flourakis, et al. (2007). *TRPV6 channel controls prostate cancer cell proliferation via Ca2+/NFAT-dependent pathways.* Oncogene. **26**(52), 7380-5

Leite M. F., E. C. Thrower, et al. (2003). *Nuclear and cytosolic calcium are regulated independently.* Proc Natl Acad Sci U S A. **100**(5), 2975-80

Lee P. and D. H. MacLennan. (1998). *Complex interactions between skeletal muscle ryanodine receptor and dihydropyridine receptor proteins.* Biochem Cell Biol. **76**(5), 681-94
Lerman M. I. and J. D. Minna. (2000). The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: identification and evaluation of the resident candidate tumor suppressor genes. The International Lung Cancer Chromosome 3p21.3 Tumor Suppressor Gene Consortium. Cancer Res. 60(21), 6116-33
Leuranguer V., E. Bourinet, et al. (1998). Antisense depletion of beta-subunits fails to affect T-type calcium channels properties in a neuroblastoma cell line. Neuropharmacology. 37(6), 701-8
Leuranguer V., A. Monteil, et al. (2000). T-type calcium currents in rat cardiomyocytes during postnatal development: contribution to hormone secretion. Am J Physiol Heart Circ Physiol. 279(5), H2540-8
Lewis R. S. (2001). Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol. 19, 497-521
Lewis R. S. (2003). Calcium oscillations in T-cells: mechanisms and consequences for gene expression. Biochem Soc Trans. 31(Pt 5), 925-9
Liao Y., C. Erxleben, et al. (2007). Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci U S A. 104(11), 4682-7
Liberti S. J., C. G. Tepper, et al. (2007). Evidence for calpain-mediated androgen receptor cleavage as a mechanism for androgen independence. Cancer Res. 67(19), 9001-5
Lin M. F., X. Q. Zhang, et al. (2001). Protein kinase C pathway is involved in regulating the secretion of prostatic acid phosphatase in human prostate cancer cells. Cell Biol Int. 25(11), 1139-48
Linja M. J., K. J. Savinainen, et al. (2001). Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res. 61(9), 3550-5
Liou J., M. L. Kim, et al. (2005). STIM is a Ca\(^{2+}\) sensor essential for Ca\(^{2+}\)-store-depletion-triggered Ca\(^{2+}\) influx. Curr Biol. 15(13), 1235-41
Lipp P., M. Laine, et al. (2000). Functional InsP3 receptors that may modulate excitation-contraction coupling in the heart. Curr Biol. 10(15), 939-42
Lipp P., D. Thomas, et al. (1997). Nuclear calcium signalling by individual cytoplasmic calcium puffs. Embo J. 16(23), 7166-73
Lipskaia L., J. S. Hulot, et al. (2008). Role of sarco/endoplasmic reticulum calcium content and calcium ATPase activity in the control of cell growth and proliferation. Pflugers Arch.
Liu G., J. Shi, et al. (2004). Assembly of a Ca\(^{2+}\)-dependent BK channel signaling complex by binding to beta2 adrenergic receptor. Embo J. 23(11), 2196-205
Liu J. H., P. Bijlenga, et al. (1999). Mibebradil (Ro 40-5967) inhibits several Ca\(^{2+}\) and K\(^{+}\) currents in human fusion-competent myoblasts. Br J Pharmacol. 126(1), 245-50
Liu X., Y. Chang, et al. (2002). Cloning and characterization of glioma BK, a novel BK channel isoform highly expressed in human glioma cells. J Neurosci. 22(5), 1840-9
Liu Y. (2008). FDG PET-CT demonstration of metastatic neuroendocrine tumor of prostate. World J Surg Oncol. 6, 64
Llinas R., M. Sugimori, et al. (1989). Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc Natl Acad Sci U S A. 86(5), 1689-93
Llinas R. and Y. Yarom. (1981). Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol. 315, 549-67
Loane D. J., P. A. Lima, et al. (2007). Co-assembly of N-type Ca\(^{2+}\) and BK channels underlies functional coupling in rat brain. J Cell Sci. 120(Pt 6), 985-95
Locke F. S. (1894). Notiz uber den Einfluss, physiologisger Kochsalzlosung auf die Eregbarkeit von Muscel and Nerve. Zentralbl. Physiol. 8, 166–167
Lockshin R. A. and Z. Zakeri. (2007). Cell death in health and disease. J Cell Mol Med. 11(6), 1214-24
Lockwich T. P., X. Liu, et al. (2000). Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem. 275(16), 11934-42

Logsdon N. J., J. Kang, et al. (1997). A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem. 272(52), 32723-6

Lopez-Barneo J., R. del Toro, et al. (2004). Regulation of oxygen sensing by ion channels. J Appl Physiol. 96(3), 1187-95; discussion 1170-2

Lopez I., D. Giner, et al. (2007). Tight coupling of the t-SNARE and calcium channel microdomains in adrenomedullary slices and not in cultured chromaffin cells. Cell Calcium. 41(6), 547-58

Lory P., I. Bidaud, et al. (2006). T-type calcium channels in differentiation and proliferation. Cell Calcium. 40(2), 135-46

Lu F., H. Chen, et al. (2008). T-type Ca2+ channel expression in human esophageal carcinomas: a functional role in proliferation. Cell Calcium. 43(1), 49-58

Lu X., L. Xu, et al. (1994). Activation of the skeletal muscle calcium release channel by a cytoplasmic loop of the dihydropyridine receptor. J Biol Chem. 269(9), 6511-6

Luebke J. I., K. Dunlap, et al. (1993). Multiple calcium channel types control glutamatergic synaptic transmission in the hippocampus. Neuron. 11(5), 895-902

Luin E., P. Lorenzon, et al. (2008). Calcium current kinetics in young and aged human cultured myotubes. Cell Calcium.

Lukyanetz E. A. (1998). Diversity and properties of calcium channel types in NG108-15 hybrid cells. Neuroscience. 87(1), 265-74

Lukyanetz E. A. and E. Neher. (1999). Different types of calcium channels and secretion from bovine chromaffin cells. Eur J Neurosci. 11(8), 2865-73

Maglby K. L. (2003). Gating mechanism of BK (Slo1) channels: so near, yet so far. J Gen Physiol. 121(2), 81-96

Mahieu F., G. Owsianik, et al. (2007). TRPM8-independent menthol-induced Ca2+ release from endoplasmic reticulum and Golgi. J Biol Chem. 282(5), 3325-36

Maiti K., D. Y. Oh, et al. (2005). Differential effects of gonadotropin-releasing hormone (GnRH)-I and GnRH-II on prostate cancer cell signaling and death. J Clin Endocrinol Metab. 90(7), 4287-98

Malouf N. N., D. K. McMahon, et al. (1992). A two-motif isoform of the major calcium channel subunit in skeletal muscle. Neuron. 8(5), 899-906

Mandeville J. T., R. N. Ghosh, et al. (1995). Intracellular calcium levels correlate with speed and persistent forward motion in migrating neutrophils. Biophys J. 68(4), 1207-17

Mann T. (1963). Biochemistry of the Prostate Gland and Its Secretion. Natl Cancer Inst Monogr. 12, 235-46

Mansvelder H. D. and K. S. Kits. (2000). Calcium channels and the release of large dense core vesicles from neuroendocrine cells: spatial organization and functional coupling. Prog Neurobiol. 62(4), 427-41

Mansvelder H. D., J. C. Lodder, et al. (2002). Dopamine modulates exocytosis independent of Ca(2+) entry in melanotrophic cells. J Neurophysiol. 87(2), 793-801

Marcantoni A., V. Carabelli, et al. (2008). Calcium channels in chromaffin cells: focus on L and T types. Acta Physiol (Oxf). 192(2), 233-46

Marcelli M., M. Ittmann, et al. (2000). Androgen receptor mutations in prostate cancer. Cancer Res. 60(4), 944-9

Marcel M. and A. Leroy. (2003). Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev. 83(2), 337-76

Marengo S. R. and L. W. Chung. (1994). An orthotopic model for the study of growth factors in the ventral prostate of the rat: effects of epidermal growth factor and basic fibroblast growth factor. J Androl. 15(4), 277-86
Marignol L., M. Coffey, et al. (2008). Hypoxia in prostate cancer: a powerful shield against tumour destruction? Cancer Treat Rev. 34(4), 313-27

Mariot P., N. Prevarskaya, et al. (2000). Evidence of functional ryanodine receptor involved in apoptosis of prostate cancer (LNCaP) cells. Prostate. 43(3), 205-14

Mariot P., K. Vanoverberghe, et al. (2002). Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J Biol Chem. 277(13), 10824-33

Marrion N. V. and S. J. Tavalin. (1998). Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature. 395(6705), 900-5

Martens S. and H. T. McMahon. (2008). Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol. 9(7), 543-56

Martin-Orozco R. M., C. Almaraz-Pro, et al. (2007). EGF prevents the neuroendocrine differentiation of LNCaP cells induced by serum deprivation: the modulator role of PI3K/Akt. Neoplasia. 9(8), 614-24

Martin R. L., J. H. Lee, et al. (2000). Mibebradil block of cloned T-type calcium channels. J Pharmacol Exp Ther. 295(1), 302-8

Marty A. (1981). Ca-dependent K channels with large unitary conductance in chromaffin cell membranes. Nature. 291(5815), 497-500

Masaki H., Y. Sato, et al. (1997). Phospholamban deficiency alters inactivation kinetics of L-type Ca2+ channels in mouse ventricular myocytes. Am J Physiol. 272(2 Pt 2), H606-12

Matsumoto Y. and J. L. Maller. (2002). Calcium, calmodulin, and CaMKII requirement for initiation of centrosome duplication in Xenopus egg extracts. Science. 295(5554), 499-502

Mateson D. R. and C. M. Armstrong. (1986). Properties of two types of calcium channels in clonal pituitary cells. J Gen Physiol. 87(1), 161-82

Mattson M. P. and S. W. Barger. (1993). Roles for calcium signaling in structural plasticity and pathology in the hippocampal system. Hippocampus. 3 Spec No, 73-87

May M., M. Sieghmund, et al. (2007). Prognostic significance of proliferation activity and neuroendocrine differentiation to predict treatment failure after radical prostatectomy. Scand J Urol Nephrol. 41(5), 375-81

McCobb D. P. and K. G. Beam. (1991). Action potential waveform voltage-clamp commands reveal striking differences in calcium entry via low and high voltage-activated calcium channels. Neuron. 7(1), 119-27

McConkey D. J. and S. Orrenius. (1997). The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun. 239(2), 357-66

McDonnell T. J., P. Troncoso, et al. (1992). Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res. 52(24), 6940-4

McEnery M. W., C. L. Vance, et al. (1998). Differential expression and association of calcium channel subunits in development and disease. J Bioenerg Biomembr. 30(4), 409-18

McLeod D. G. (2003). Hormonal therapy: historical perspective to future directions. Urology. 61(2 Suppl 1), 3-7

McLeod D. G., R. C. Benson, Jr., et al. (1993). The use of flutamide in hormone-refractory metastatic prostate cancer. Cancer. 72(12 Suppl), 3870-3

McNeal J. E. (1968). Regional morphology and pathology of the prostate. Am J Clin Pathol. 49(3), 347-57

McNeal J. E. (1969). Origin and development of carcinoma in the prostate. Cancer. 23(1), 24-34

McNeal J. E. (1981). The zonal anatomy of the prostate. Prostate. 2(1), 35-49

McNulty M. M. and D. A. Hanck. (2004). State-dependent mibebradil block of Na+ channels. Mol Pharmacol. 66(6), 1652-61
McRory J. E., C. M. Santi, *et al.* (2001). Molecular and functional characterization of a family of rat brain T-type calcium channels. J Biol Chem. **276**(6), 3999-4011

Meissner A. and T. Noack. (2008). Proliferation of human lens epithelial cells (HLE-B3) is inhibited by blocking of voltage-gated calcium channels. Pflugers Arch.

Meissner G. and X. Lu. (1995). Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling. Biosci Rep. **15**(5), 399-408

Meissner G., E. Rios, *et al.* (1997). Regulation of skeletal muscle Ca2+ release channel (ryanodine receptor) by Ca2+ and monovalent cations and anions. J Biol Chem. **272**(3), 1628-38

Meyer-Siegler K. L., K. A. Iczkowski, *et al.* (2006). Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells. J Immunol. **177**(12), 8730-9

Michalak M., J. M. Robert Parker, *et al.* (2002). Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium. **32**(5-6), 269-78

Mignery G. A., T. C. Sudhof, *et al.* (1989). Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature. **342**(6246), 192-5

Mikami A., K. Imoto, *et al.* (1989). Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature. **340**(6230), 230-3

Mishra D. P., R. Pal, *et al.* (2006). Changes in cytosolic Ca2+ levels regulate Bcl-xS and Bcl-xL expression in spermatogenic cells during apoptotic death. J Biol Chem. **281**(4), 2133-43

Mittman S., J. Guo, *et al.* (1999). Structure and alternative splicing of the gene encoding alphaII, a human brain T calcium channel alpha1 subunit. Neurosci Lett. **269**(3), 121-4

Moenner M., O. Pluquet, *et al.* (2007). Integrated endoplasmic reticulum stress responses in cancer. Cancer Res. **67**(22), 10631-4

Montano X. and M. B. Djamgoz. (2004). Epidermal growth factor, neurotrophins and the metastatic cascade in prostate cancer. FEBS Lett. **571**(1-3), 1-8

Monteil A., J. Chemin, *et al.* (2000a). Molecular and functional properties of the human alpha(1G) subunit that forms T-type calcium channels. J Biol Chem. **275**(9), 6090-100

Monteil A., J. Chemin, *et al.* (2000b). Specific properties of T-type calcium channels generated by the human alpha II subunit. J Biol Chem. **275**(22), 16530-5

Montell C. (2003). Thermosensation: hot findings make TRPNs very cool. Curr Biol. **13**(12), R476-8

Montell C., L. Birnbaumer, *et al.* (2002). The TRP channels, a remarkably functional family. Cell. **108**(5), 595-8

Mori K. and C. Wakasugi. (1985). Immunocytochemical demonstration of prostatic acid phosphatase: different secretion kinetics between normal, hyperplastic and neoplastic prostates. J Urol. **133**(5), 877-83

Mori Y., T. Friedrich, *et al.* (1991). Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature. **350**(6317), 398-402

Movassagh M. and R. S. Foo. (2008). Simplified apoptotic cascades. Heart Fail Rev. **13**(2), 111-9

Movsas B., J. D. Chapman, *et al.* (2000). Increasing levels of hypoxia in prostate carcinoma correlate significantly with increasing clinical stage and patient age: an Eppendorf pO2 study. Cancer. **89**(9), 2018-24

Movsas B., J. D. Chapman, *et al.* (2002). Hypoxic prostate/muscle pO2 ratio predicts for biochemical failure in patients with prostate cancer: preliminary findings. Urology. **60**(4), 634-9

Murai K., R. S. Tyler, *et al.* (1992). Review of pharmacologic treatment of tinnitus. Am J Otol. **13**(5), 454-64
Murbartian J., J. M. Arias, et al. (2004). Functional impact of alternative splicing of human T-type Cav3.3 calcium channels. J Neurophysiol. 92(6), 3399-407

Murphy B. C., K. J. Pienta, et al. (1992). Effects of extracellular matrix components and dihydrotestosterone on the structure and function of human prostate cancer cells. Prostate. 20(1), 29-41

Murphy T. H., P. F. Worley, et al. (1991). L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron. 7(4), 625-35

Nagarkatti N., L. S. Deshpande, et al. (2008). Leviracetam inhibits both ryanodine and IP3 receptor activated calcium induced calcium release in hippocampal neurons in culture. Neurosci Lett. 436(3), 289-93

Nakada S. Y., P. A. di Sant'Agnese, et al. (1993). The androgen receptor status of neuroendocrine cells in human benign and malignant prostatic tissue. Cancer Res. 53(9), 1967-70

Nakagawa T. and J. Yuan. (2000). Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol. 150(4), 887-94

Nakai J., T. Ogura, et al. (1997). Functional nonequality of the cardiac and skeletal ryanodine receptors. Proc Natl Acad Sci U S A. 94(3), 1019-22

Neher E. and B. Sakmann. (1976). Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 260(5554), 799-802

Nelson M. T., H. Cheng, et al. (1995). Relaxation of arterial smooth muscle by calcium sparks. Science. 270(5236), 633-7

Neveu D., J. F. Quignard, et al. (1994). Differential beta-adrenergic regulation and phenotypic modulation of voltage-gated calcium currents in rat aortic myocytes. J Physiol. 479 (Pt 2), 171-82

Nicholson D. W. (1999). Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6(11), 1028-42

Nicotera P. and D. Bano. (2003). The enemy at the gates. Ca2+ entry through TRPM7 channels and anoxic neuronal death. Cell. 115(7), 768-70

Niidome T., M. S. Kim, et al. (1992). Molecular cloning and characterization of a novel calcium channel from rabbit brain. FEBS Lett. 308(1), 7-13

Nilius B., P. Hess, et al. (1985). A novel type of cardiac calcium channel in ventricular cells. Nature. 316(6027), 443-6

Nilius B., J. Prenen, et al. (1997). Inhibition by mibefradil, a novel calcium channel antagonist, of Ca(2+)- and volume-activated Cl- channels in macrovascular endothelial cells. Br J Pharmacol. 121(3), 547-55

Niwa N., K. Yasui, et al. (2004). Cav3.2 subunit underlies the functional T-type Ca2+ channel in murine hearts during the embryonic period. Am J Physiol Heart Circ Physiol. 286(6), H2257-63

Noordzij M. A., W. M. van Weerden, et al. (1996). Neuroendocrine differentiation in human prostatic tumor models. Am J Pathol. 149(3), 859-71

Nowycky M. C., A. P. Fox, et al. (1985). Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 316(6027), 440-3

Oakes S. A., L. Scorrano, et al. (2005). Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci U S A. 102(1), 105-10

Okayama S., K. Imagawa, et al. (2006). Blocking T-type Ca2+ channels with efonidipine decreased plasma aldosterone concentration in healthy volunteers. Hypertens Res. 29(7), 493-7
Olesen J. (1988). *Calcium entry blockers in the treatment of vertigo*. Ann N Y Acad Sci. **522**, 690-7

Ouadid-Ahidouch H. and A. Ahidouch. (2008). *K+ channel expression in human breast cancer cells: involvement in cell cycle regulation and carcinogenesis*. J Membr Biol. **221**(1), 1-6

Ozu C., J. Nakashima, et al. (2008). *Prediction of bone metastases by combination of tartrate-resistant acid phosphatase, alkaline phosphatase and prostate specific antigen in patients with prostate cancer*. Int J Urol. **15**(5), 419-22

Pan Z. H., H. J. Hu, et al. (2001). *T-type Ca(2+) channels mediate neurotransmitter release in retinal bipolar cells*. Neuron. **32**(1), 89-98

Pande G., N. A. Kumar, et al. (1996). *Flow cytometric study of changes in the intracellular free calcium during the cell cycle*. Cytometry. **24**(1), 55-63

Panner A., L. L. Cribbs, et al. (2005). *Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells*. Cell Calcium. **37**(2), 105-19

Panner A. and R. D. Wurster. (2006). *T-type calcium channels and tumor proliferation*. Cell Calcium. **40**(2), 253-9

Parihar A. S., M. J. Coghlan, et al. (2003). *Effects of intermediate-conductance Ca2+-activated K+ channel modulators on human prostate cancer cell proliferation*. Eur J Pharmacol. **471**(3), 157-64

Park Y. B. (1994). *Ion selectivity and gating of small conductance Ca(2+)-activated K+ channels in cultured rat adrenal chromaffin cells*. J Physiol. **481**(Pt 3), 555-70

Partiseti M., F. Le Deist, et al. (1994). *The calcium current activated by T cell receptor and store depletion in human lymphocytes is absent in a primary immunodeficiency*. J Biol Chem. **269**(51), 32327-35

Pasantes-Morales H. and S. Morales Mulia. (2000). *Influence of calcium on regulatory volume decrease: role of potassium channels*. Nephron. **86**(4), 414-27

Patel R., M. Holt, et al. (1999a). *Calcium/calmodulin-dependent phosphorylation and activation of human Cdc25-C at the G2/M phase transition in HeLa cells*. J Biol Chem. **274**(12), 7958-68

Patel S., S. K. Joseph, et al. (1999b). *Molecular properties of inositol 1,4,5-trisphosphate receptors*. Cell Calcium. **25**(3), 247-64

Pauwels P. J., J. E. Leysen, et al. (1991). *Ca++ and Na+ channels involved in neuronal cell death*. Protection by flunarizine. Life Sci. **48**(20), 1881-93

Pearse A. G. (1969). *The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept*. J Histochem Cytochem. **17**(5), 303-13

Perez-Reyes E. (1998). *Molecular characterization of a novel family of low voltage-activated, T-type, calcium channels*. J Bioenerg Biomembr. **30**(4), 313-8

Perez-Reyes E. (2003). *Molecular physiology of low-voltage-activated t-type calcium channels*. Physiol Rev. **83**(1), 117-61

Perez-Reyes E., L. L. Cribbs, et al. (1998). *Molecular characterization of a neuronal low-voltage-activated T-type calcium channel*. Nature. **391**(6670), 896-900

Petrovic M. M., K. Vales, et al. (2008). *Ryanodine receptors, voltage-gated calcium channels and their relationship with protein kinase A in the myocardium*. Physiol Res. **57**(2), 141-9

Piedras-Renteria E. S. and R. W. Tsien. (1998). *Antisense oligonucleotides against alpha1E reduce R-type calcium currents in cerebellar granule cells*. Proc Natl Acad Sci U S A. **95**(13), 7760-5
Pigozzi D., T. Ducret, et al. (2006). Calcium store contents control the expression of TRPC1, TRPC3 and TRPV6 proteins in LNCaP prostate cancer cell line. Cell Calcium. 39(5), 401-15

Pineda J. C., R. S. Waters, et al. (1998). Specificity in the interaction of HVA Ca2+ channel types with Ca2+-dependent AHPs and firing behavior in neocortical pyramidal neurons. J Neurophysiol. 79(5), 2522-34

Pinton P., D. Ferrari, et al. (2001). The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. Embo J. 20(11), 2690-701

Pinton P. and R. Rizzuto. (2006). Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ. 13(8), 1409-18

Plant T. D. and M. Schaefer. (2005). Receptor-operated cation channels formed by TRPC4 and TRPC5. Naunyn Schmiedebergs Arch Pharmacol. 371(4), 266-76

Porter V. A., A. D. Bonev, et al. (1998). Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides. Am J Physiol. 274(5 Pt 1), C1346-55

Potier M. and M. Trebak. (2008). New developments in the signaling mechanisms of the store-operated calcium entry pathway. Pflugers Arch.

Pozzan T., R. Rizzuto, et al. (1994). Molecular and cellular physiology of intracellular calcium stores. Physiol Rev. 74(3), 595-636

Pragnell M., M. De Waard, et al. (1994). Calcium channel beta-subunit binds to a conserved motif in the I-II cytoplasmic linker of the alpha 1-subunit. Nature. 368(6466), 67-70

Prakriya M., S. Feske, et al. (2006). Orai1 is an essential pore subunit of the CRAC channel. Nature. 443(7108), 230-3

Prins G. S. (2000). Molecular biology of the androgen receptor. Mayo Clin Proc. 75 Suppl, S32-5

Putney J. W., Jr., D. L. Aub, et al. (1986). Formation and biological action of inositol 1,4,5-trisphosphate. Fed Proc. 45(11), 2634-8

Putney J. W., Jr. and G. S. Bird. (1994). Calcium mobilization by inositol phosphates and other intracellular messengers. Trends Endocrinol Metab. 5(6), 256-60

Putney J. W., Jr., L. M. Broad, et al. (2001). Mechanisms of capacitative calcium entry. J Cell Sci. 114(Pt 12), 2223-9

Qin N., D. Platano, et al. (1998). Unique regulatory properties of the type 2a Ca2+ channel beta subunit caused by palmitoylation. Proc Natl Acad Sci U S A. 95(8), 4690-5

Qin N., S. Yang, et al. (2002). Molecular cloning and characterization of the human voltage-gated calcium channel alpha(2)delta-4 subunit. Mol Pharmacol. 62(3), 485-96

Qiu Y., D. Robinson, et al. (1998). Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3’-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc Natl Acad Sci U S A. 95(7), 3644-9

Quandt K., K. Frech, et al. (1995). MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23(23), 4878-84

Ramsey I. S., M. Delling, et al. (2006). An introduction to TRP channels. Annu Rev Physiol. 68, 619-47

Randall A. and C. D. Benham. (1999). Recent advances in the molecular understanding of voltage-gated Ca2+ channels. Mol Cell Neurosci. 14(4-5), 255-72

Randall A. and R. W. Tsien. (1995). Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci. 15(4), 2995-3012
Randall A. D. and R. W. Tsien. (1997). *Contrasting biophysical and pharmacological properties of T-type and R-type calcium channels.* Neuropharmacology. 36(7), 879-93

Rao A. R., H. G. Motiwala, et al. (2008). *The discovery of prostate-specific antigen.* BJU Int. 101(1), 5-10

Reddy G. P., E. R. Barrack, et al. (2006). *Regulatory processes affecting androgen receptor expression, stability, and function: potential targets to treat hormone-refractory prostate cancer.* J Cell Biochem. 98(6), 1408-23

Redondo P. C., I. Jardin, et al. (2008). *Intracellular Ca2+ store depletion induces the formation of macromolecular complexes involving hTRPC1, hTRPC6, the type II IP3 receptor and SERCA3 in human platelets.* Biochim Biophys Acta. 1783(6), 1163-76

Reid J. M. and R. G. O'Neil. (2000). *Osmomechanical regulation of membrane trafficking in polarized cells.* Biochem Biophys Res Commun. 271(2), 429-34

Remontet L., J. Esteve, et al. (2003). *Cancer incidence and mortality in France over the period 1978-2000.* Rev Epidemiol Sante Publique. 51(1 Pt 1), 3-30

Rettig J., Z. H. Sheng, et al. (1996). *Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25.* Proc Natl Acad Sci U S A. 93(14), 7363-8

Richard F. (1994). [Epidemiology of prostate cancer and its implications in public health]. Rev Prat. 44(5), 575-9

Richard S., P. Charnet, et al. (1993). *Interconversion between distinct gating pathways of the high threshold calcium channel in rat ventricular myocytes.* J Physiol. 462, 197-228

Ringer S. (1882). *Concerning the Influence exerted by each of the Constituents of the Blood on the Contraction of the Ventricle.* J Physiol. 3(5-6), 380-93

Ringer S. (1883). *A further Contribution regarding the influence of the different Constituents of the Blood on the Contraction of the Heart.* J Physiol. 4(1), 29-42

Rizzuto R., M. R. Duchen, et al. (2004). *Flirting in little space: the ER/mitochondria Ca2+ liaison.* Sci STKE. 2004(215), re1

Rocchi P., F. Boudouresque, et al. (2001). *Expression of adrenomedullin and peptide amidation activity in human prostate cancer and in human prostate cancer cell lines.* Cancer Res. 61(3), 1196-206

Roderick H. L. and S. J. Cook. (2008). *Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival.* Nat Rev Cancer. 8(5), 361-75

Rodman D. M., J. Harral, et al. (2005). *The low-voltage-activated calcium channel CAV3.1 controls proliferation of human pulmonary artery myocytes.* Chest. 128(6 Suppl), S81S-S82S

Rojas-Corona R. R., L. Z. Chen, et al. (1987). *Prostatic carcinoma with endocrine features. A report of a neoplasm containing multiple immunoreactive hormonal substances.* Am J Clin Pathol. 88(6), 759-62

Ronde P., G. Giannone, et al. (2000). *Mechanism of calcium oscillations in migrating human astrocytoma cells.* Biochim Biophys Acta. 1498(2-3), 273-80

Rong Y. and C. W. Distelhorst. (2008a). *Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis.* Annu Rev Physiol. 70, 73-91

Rong Y. P., A. S. Aromolaran, et al. (2008b). *Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2's inhibition of apoptotic calcium signals.* Mol Cell. 31(2), 255-65

Rosenspum C., J. Rettig, et al. (2003). *Molecular mechanisms of active zone function.* Curr Opin Neurobiol. 13(5), 509-19

Rossi D. and V. Sorrentino. (2002). *Molecular genetics of ryanodine receptors Ca2+-release channels.* Cell Calcium. 32(5-6), 307-19
Rossier M. F., M. M. Burnay, et al. (1996). Distinct functions of T- and L-type calcium channels during activation of bovine adrenal glomerulosa cells. Endocrinology. 137(11), 4817-26

Rossier M. F., E. A. Ertel, et al. (1998). Inhibitory action of mibefradil on calcium signaling and aldosterone synthesis in bovine adrenal glomerulosa cells. J Pharmacol Exp Ther. 287(3), 824-31

Rossier M. F., C. P. Python, et al. (1993). Thapsigargin inhibits voltage-activated calcium channels in adrenal glomerulosa cells. Biochem J. 296 (Pt 2), 309-12

Ruizeveld de Winter J. A., J. Trapman, et al. (1991). Androgen receptor expression in human tissues: an immunohistochemical study. J Histochem Cytochem. 39(7), 927-36

Rumpold H., E. Heinrich, et al. (2002). Neuroendocrine differentiation of human prostatic primary epithelial cells in vitro. Prostate. 53(2), 101-8

Russier M., E. Carlier, et al. (2003). A-, T-, and H-type currents shape intrinsic firing of developing rat abducens motoneurons. J Physiol. 549(Pt 1), 21-36

Ruth P., A. Rohrkasten, et al. (1989). Primary structure of the beta subunit of the DHP-sensitive calcium channel from skeletal muscle. Science. 245(4922), 1115-8

Rutkowski D. T. and R. J. Kaufman. (2004). A trip to the ER: coping with stress. Trends Cell Biol. 14(1), 20-8

Rzigalinski B. A., K. A. Willoughby, et al. (1999). Calcium influx factor, further evidence it is 5, 6-epoxyeicosatrienoic acid. J Biol Chem. 274(1), 175-82

Sabatini B. L. and W. G. Regehr. (1996). Timing of neurotransmission at fast synapses in the mammalian brain. Nature. 384(6605), 170-2

Sabbisetti V. S., S. Chirugupati, et al. (2005). Calcitonin increases invasiveness of prostate cancer cells: role for cyclic AMP-dependent protein kinase A in calcitonin action. Int J Cancer. 117(4), 551-60

Sah P. (1995). Different calcium channels are coupled to potassium channels with distinct physiological roles in vagal neurons. Proc Biol Sci. 260(1357), 105-11

Saito T., N. Hara, et al. (2007). Prostate-specific antigen/prostatic acid phosphatase ratio is significant prognostic factor in patients with stage IV prostate cancer. Urology. 70(4), 702-5

Salkoff L., A. Butler, et al. (2006). High-conductance potassium channels of the SLO family. Nat Rev Neurosci. 7(12), 921-31

Sanan D. A. and R. G. Anderson. (1991). Simultaneous visualization of LDL receptor distribution and clathrin lattices on membranes torn from the upper surface of cultured cells. J Histochem Cytochem. 39(8), 1017-24

Santamaria L., R. Martin, et al. (2002). Stereologic estimation of the number of neuroendocrine cells in normal human prostate detected by immunohistochemistry. Appl Immunohistochem Mol Morphol. 10(3), 275-81

Santella L. (1998). The role of calcium in the cell cycle: facts and hypotheses. Biochim Biophys Res Commun. 244(2), 317-24

Saud Z. A., E. Minobe, et al. (2007). Calpastatin binds to a calmodulin-binding site of cardiac Cav1.2 Ca2+ channels. Biochem Biophys Res Commun. 364(2), 372-7

Schaefer M., T. D. Plant, et al. (2000). Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem. 275(23), 17517-26

Schally A. V. (2005). [The discovery of hypothalamic hormones and the development of antitumor analogs]. Ann Urol (Paris). 39 Suppl 3, S46-50

Schanne F. A., A. B. Kane, et al. (1979). Calcium dependence of toxic cell death: a final common pathway. Science. 206(4419), 700-2

Schierle G. S. and P. Brundin. (1999). Excitotoxicity plays a role in the death of tyrosine hydroxylase-immunopositive nigral neurons cultured in serum-free medium. Exp Neurol. 157(2), 338-48
Schmechel D. E., M. W. Brightman, et al. (1980). Neurons switch from non-neuronal enolase to neuron-specific enolase during differentiation. Brain Res. 190(1), 195-214

Schmid K. W., B. Helpap, et al. (1994). Immunohistochemical localization of chromogranins A and B and secretogranin II in normal, hyperplastic and neoplastic prostate. Histopathology. 24(3), 233-9

Schneggenburger R. and E. Neher. (2005). Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol. 15(3), 266-74

Schneider T., X. Wei, et al. (1994). Molecular analysis and functional expression of the human type E neuronal Ca2+ channel alpha 1 subunit. Receptors Channels. 2(4), 255-70

Schollmeyer J. E. (1988). Calpain II involvement in mitosis. Science. 240(4854), 911-3

Schrier A. D., H. Wang, et al. (2001). alpha1H T-type Ca2+ channel is the predominant subtype expressed in bovine and rat zona glomerulosa. Am J Physiol Cell Physiol. 280(2), C265-72

Schwarz E. C., U. Wissenbach, et al. (2006). TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium. 39(2), 163-73

Schwinn D. A. and R. R. Price. (1999). Molecular pharmacology of human alpha1-adrenergic receptors: unique features of the alpha 1a-subtype. Eur Urol. 36 Suppl 1, 7-10

Scher A. A., P. J. Noble, et al. (2008). The metabolites citrate, myo-inositol, and spermine are potential age-independent markers of prostate cancer in human expressed prostatic secretions. Prostate. 68(6), 620-8

Shah P. K. and R. Sowdhamini. (2001). Structural understanding of the transmembrane domains of inositol triphosphate receptors and ryanodine receptors towards calcium channeling. Protein Eng. 14(11), 867-74

Sher A. A., P. J. Noble, et al. (2008). The role of the Na+/Ca2+ exchangers in Ca2+ dynamics in ventricular myocytes. Prog Biophys Mol Biol. 96(1-3), 377-98

Sharp A. H., J. L. Black, 3rd, et al. (2001). Biochemical and anatomical evidence for specialized voltage-dependent calcium channel gamma isoform expression in the epileptic and ataxic mouse, stargazer. Neuroscience. 105(3), 599-617

Shimahara T. and R. Bournaud. (1991). Barium currents in developing skeletal muscle cells of normal and mutant mice foetuses with 'muscular dysgenesis'. Cell Calcium. 12(10), 727-33

Shin H. S. (2006). T-type Ca2+ channels and absence epilepsy. Cell Calcium. 40(2), 191-6

Schorofsky S. R. and C. W. Balke. (2001). Calcium currents and arrhythmias: insights from molecular biology. Am J Med. 110(2), 127-40

Sills G. J. (2006). The mechanisms of action of gabapentin and pregabalin. Curr Opin Pharmacol. 6(1), 108-13
Simons K. and E. Ikonen. (1997). Functional rafts in cell membranes. Nature. **387**(6633), 569-72

Skryma R., P. Mariot, et al. (2000). Store depletion and store-operated Ca2+ current in human prostate cancer LNCaP cells: involvement in apoptosis. J Physiol. **527 Pt 1**, 71-83

Skryma R., F. Van Coppenolle, et al. (1999). Characterization of Ca(2+)-inhibited potassium channels in the LNCaP human prostate cancer cell line. Receptors Channels. **6**(4), 241-53

Smith P., N. P. Rhodes, et al. (2000). Modulating effect of estrogen and testosterone on prostatic stromal cell phenotype differentiation induced by noradrenaline and doxazosin. Prostate. **44**(2), 111-7

Snutch T. P., J. P. Leonard, et al. (1990). Rat brain expresses a heterogeneous family of calcium channels. Proc Natl Acad Sci U S A. **87**(9), 3391-5

So H., H. Kim, et al. (2008). Evidence that Cisplatin-induced Auditory Damage is Attenuated by Downregulation of Pro-inflammatory Cytokines Via Nrf2/HO-1. J Assoc Res Otolaryngol. **9**(3), 290-306

So H. S., C. Park, et al. (2005). Protective effect of T-type calcium channel blocker flunarizine on cisplatin-induced death of auditory cells. Hear Res. **204**(1-2), 127-39

Soboloff J., M. A. Spassova, et al. (2006). Orai1 and STIM reconstitute store-operated calcium channel function. J Biol Chem. **281**(30), 20661-5

Soong T. W., A. Stea, et al. (1993). Structure and functional expression of a member of the low voltage-activated calcium channel family. Science. **260**(5111), 1133-6

Speirs V. and E. Cutz. (1993). An overview of culture and isolation methods suitable for in vitro studies on pulmonary neuroendocrine cells. Anat Rec. **236**(1), 35-40

Spierings E. L. (1988). Clinical and experimental evidence for a role of calcium entry blockers in the treatment of migraine. Ann N Y Acad Sci. **522**, 676-89

Spitzer M. J., P. W. Reeh, et al. (2008). Mechanisms of potassium- and capsaicin-induced axonal calcitonin gene-related peptide release: involvement of L- and T-type calcium channels and TRPV1 but not sodium channels. Neuroscience. **151**(3), 836-42

Spitzer N. C. (1994). Development of voltage-dependent and ligand-gated channels in excitable membranes. Prog Brain Res. **102**, 169-79

Stamboulian S., M. De Waard, et al. (2002). Functional interaction between mouse spermatogenic LVA and thapsigargin-modulated calcium channels. Dev Biol. **252**(1), 72-83

Stamboulian S., D. Kim, et al. (2004). Biophysical and pharmacological characterization of spermatogenic T-type calcium current in mice lacking the CaV3.1 (alpha1G) calcium channel: CaV3.2 (alpha1H) is the main functional calcium channel in wild-type spermatogenic cells. J Cell Physiol. **200**(1), 116-24

Starr T. V., W. Prystay, et al. (1991). Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci U S A. **88**(13), 5621-5

Stern M. D. (1992). Theory of excitation-contraction coupling in cardiac muscle. Biophys J. **63**(2), 497-517

Strege P. R., C. E. Bernard, et al. (2005). Effect of mibebradil on sodium and calcium currents. Am J Physiol Gastrointest Liver Physiol. **289**(2), G249-53

Stridsberg M., R. Fabiani, et al. (1996). Prostasomes are neuroendocrine-like vesicles in human semen. Prostate. **29**(5), 287-95

Strom T. M., G. Nyakatura, et al. (1998). An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet. **19**(3), 260-3

Strube C. (2008). Absence of regulation of the T-type calcium current by Cav1.1, beta1a and gamma1 dihydropyridine receptor subunits in skeletal muscle cells. Pflugers Arch. **455**(5), 921-7
Strube C., Y. Tourneur, et al. (2000). Functional expression of the L-type calcium channel in mice skeletal muscle during prenatal myogenesis. Biophys J. 78(3), 1282-92

Strubing C., G. Krapivinsky, et al. (2001). TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron. 29(3), 645-55

Suarez-Kurtz G. and G. J. Kaczorowski. (1988). Effects of dichlorobenzamil on calcium currents in clonal GH3 pituitary cells. J Pharmacol Exp Ther. 247(1), 248-53

Sun C., Y. Shi, et al. (2006a). Androgen receptor mutation (T877A) promotes prostate cancer cell growth and cell survival. Oncogene. 25(28), 3905-13

Sun X., X. Q. Gu, et al. (2003). Calcium influx via L- and N-type calcium channels activates a transient large-conductance Ca2+-activated K+ current in mouse neocortical pyramidal neurons. J Neurosci. 23(9), 3639-48

Sun X. H., F. Protasi, et al. (1995). Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. J Cell Biol. 129(3), 659-71

Sun Y. H., X. Gao, et al. (2006b). Androgens induce increases in intracellular calcium via a G protein-coupled receptor in LNCaP prostate cancer cells. J Androl. 27(5), 671-8

Suzuki S. and M. A. Rogawski. (1989). T-type calcium channels mediate the transition between tonic and phasic firing in thalamic neurons. Proc Natl Acad Sci U S A. 86(18), 7228-32

Swandulla D. and C. M. Armstrong. (1988). Fast-deactivating calcium channels in chick sensory neurons. J Gen Physiol. 92(2), 197-218

Swanson T. A., S. I. Kim, et al. (2004). The role of neuropeptide processing enzymes in endocrine (prostate) cancer: EC 3.4.24.15 (EP24.15). Protein Pept Lett. 11(5), 471-8

Swayne L. A. and E. Bourinet. (2008). Voltage-gated calcium channels in chronic pain: emerging role of alternative splicing. Pflugers Arch. 456(3), 459-66

Syme C. A., A. C. Gerlach, et al. (2000). Pharmacological activation of cloned intermediate- and small-conductance Ca(2+)-activated K(+) channels. Am J Physiol Cell Physiol. 278(3), C570-81

Szalai G., R. Krishnamurthy, et al. (1999). Apoptosis driven by IP(3)-linked mitochondrial calcium signals. Embo J. 18(22), 6349-61

Taghiyev A. F., N. V. Guseva, et al. (2003). Overexpression of BAD potentiates sensitivity to tumor necrosis factor-related apoptosis-inducing ligand treatment in the prostatic carcinoma cell line LNCaP. Mol Cancer Res. 1(7), 500-7

Taira A., G. Merrick, et al. (2007). Reviving the acid phosphatase test for prostate cancer. Oncology (Williston Park). 21(8), 1003-10

Takuwa N., W. Zhou, et al. (1993). Ca(2+)-dependent stimulation of retinoblastoma gene product phosphorylation and p34cdc2 kinase activation in serum-stimulated human fibroblasts. J Biol Chem. 268(1), 138-45

Tanabe T., H. Takeshima, et al. (1987). Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature. 328(6128), 313-8

Tanaka H. and K. Shigenobu. (2005). Pathophysiological significance of T-type Ca2+ channels: T-type Ca2+ channels and drug development. J Pharmacol Sci. 99(3), 214-20

Tang C. M., F. Presser, et al. (1988). Amiloride selectively blocks the low threshold (T) calcium channel. Science. 240(4849), 213-5

Tang J., Y. Lin, et al. (2001). Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxy termini of trp channels. J Biol Chem. 276(24), 21303-10
Tanimura A., Y. Tojyo, et al. (2000). Evidence that type I, II, and III inositol 1,4,5-trisphosphate receptors can occur as integral plasma membrane proteins. J Biol Chem. 275(35), 27488-93

Taplin M. E., G. J. Bubley, et al. (1999). Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res. 59(11), 2511-5

Taplin M. E., G. J. Bubley, et al. (1995). Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N Engl J Med. 332(21), 1393-8

Tawadros T., Y. Zarkik, et al. (2008). Increased MIF secretion by neuroendocrine differentiated LNCAP cells induces proliferation and survival of prostate cancer cells. The Journal of Urology. 179(4), 423

Taylor C. W., A. A. Genazzani, et al. (1999). Expression of inositol trisphosphate receptors. Cell Calcium. 26(6), 237-51

Taylor J. T., L. Huang, et al. (2005). Role of high-voltage-activated calcium channels in glucose-regulated beta-cell calcium homeostasis and insulin release. Am J Physiol Endocrinol Metab. 289(5), E900-8

Taylor J. T., L. Huang, et al. (2008a). Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation. Cancer Lett. 267(1), 116-24

Taylor J. T., X. B. Zeng, et al. (2008b). Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol. 14(32), 4984-91

Teo K., L. Gemmell, et al. (2007). Bad expression influences time to androgen escape in prostate cancer. BJU Int. 100(3), 691-6

Tezel E., T. Nagasaka, et al. (2000). Neuroendocrine-like differentiation in patients with pancreatic carcinoma. Cancer. 89(11), 2230-6

Thebault S., M. Flourakis, et al. (2006). Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res. 66(4), 2038-47

Thebault S., M. Roudbaraki, et al. (2003). Alpha1-adrenergic receptors activate Ca(2+)-permeable cationic channels in prostate cancer epithelial cells. J Clin Invest. 111(11), 1691-701

Thebault S., A. Zholos, et al. (2005). Receptor-operated Ca2+ entry mediated by TRPC3/TRPC6 proteins in rat prostate smooth muscle (PS1) cell line. J Cell Physiol. 204(1), 320-8

Theodoropoulos V. E., A. Tsigka, et al. (2005). Evaluation of neuroendocrine staining and androgen receptor expression in incidental prostatic adenocarcinoma: prognostic implications. Urology. 66(4), 897-902

Thevenod F. (2002). Ion channels in secretory granules of the pancreas and their role in exocytosis and release of secretory proteins. Am J Physiol Cell Physiol. 283(3), C651-72

Thompson I. M., D. K. Pauier, et al. (2004). Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter. N Engl J Med. 350(22), 2239-46

Thorpe J. F., S. Jain, et al. (2007). A review of phase III clinical trials of prostate cancer chemoprevention. Ann R Coll Surg Engl. 89(3), 207-11

Tilley W. D., C. M. Wilson, et al. (1990). Androgen receptor gene expression in human prostate carcinoma cell lines. Cancer Res. 50(17), 5382-6

Timmerman L. A., N. A. Clipstone, et al. (1996). Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature. 383(6603), 837-40

Tolis G., D. Ackman, et al. (1982). Tumor growth inhibition in patients with prostatic carcinoma treated with luteinizing hormone-releasing hormone agonists. Proc Natl Acad Sci U S A. 79(5), 1658-62
Toma I., E. Bansal, et al. (2008). Connexin 40 and ATP-dependent intercellular calcium wave in renal glomerular endothelial cells. Am J Physiol Regul Integr Comp Physiol. 294(6), R1769-76

Tombal B., A. T. Weeraratna, et al. (2000). Thapsigargin induces a calmodulin/calcineurin-dependent apoptotic cascade responsible for the death of prostatic cancer cells. Prostate. 43(4), 303-17

Toyota M., C. Ho, et al. (1999). Inactivation of CACNA1G, a T-type calcium channel gene, by aberrant methylation of its 5′ CpG island in human tumors. Cancer Res. 59(18), 4535-41

Trus M., R. F. Corkey, et al. (2007). The L-type voltage-gated Ca2+ channel is the Ca2+ sensor protein of stimulus-secretion coupling in pancreatic beta cells. Biochemistry. 46(50), 14461-7

Tsien R. W., D. Lipscombe, et al. (1988). Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11(10), 431-8

Tsuboi T. (2008). Molecular mechanism of docking of dense-core vesicles to the plasma membrane in neuroendocrine cells. Med Mol Morphol. 41(2), 68-75

Turner H., A. Fleig, et al. (2003). Discrimination of intracellular calcium store subcompartments using TRPV1 (transient receptor potential channel, vanilloid subfamily member 1) release channel activity. Biochem J. 371(Pt 2), 341-50

Tytgat J., J. Vereecke, et al. (1988). Differential effects of verapamil and flunarizine on cardiac L-type and T-type Ca channels. Naunyn Schmiedebergs Arch Pharmacol. 337(6), 690-2

Untergasser G., E. Plas, et al. (2005). Interferon-gamma induces neuroendocrine-like differentiation of human prostate basal-epithelial cells. Prostate. 64(4), 419-29

Untergasser G., H. Rumpold, et al. (2001). Seminal plasma factors induce in vitro PRL secretion in smooth muscle cells of the human prostate. J Clin Endocrinol Metab. 86(11), 5577-84

Vaday G. G., S. B. Hua, et al. (2004). CXCR4 and CXCL12 (SDF-1) in prostate cancer: inhibitory effects of human single chain Fv antibodies. Clin Cancer Res. 10(16), 5630-9

Vaghy P. L., J. Striessnig, et al. (1987). Identification of a novel 1,4-dihydropyridine- and phenylalkylamine-binding polypeptide in calcium channel preparations. J Biol Chem. 262(29), 14337-42

Van Coppenolle F., R. Skryma, et al. (2004). Prolactin stimulates cell proliferation through a long form of prolactin receptor and K+ channel activation. Biochem J. 377(Pt 3), 569-78

van Haasteren G., S. Li, et al. (1999). Calcium signalling and gene expression. J Recept Signal Transduct Res. 19(1-4), 481-92

van Krimpen C., A. Elferink, et al. (2004). The prognostic influence of neuroendocrine differentiation in breast cancer: results of a long-term follow-up study. Breast. 13(4), 329-33

van Leenders G. J., W. R. Gage, et al. (2003a). Intermediate cells in human prostate epithelium are enriched in proliferative inflammatory atrophy. Am J Pathol. 162(5), 1529-37

van Leenders G. J. and J. A. Schalken. (2003b). Epithelial cell differentiation in the human prostate epithelium: implications for the pathogenesis and therapy of prostate cancer. Crit Rev Oncol Hematol. 46 Suppl, S3-10

Vanden Abeele F., L. Lemonnier, et al. (2004). Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells. J Biol Chem. 279(29), 30326-37

Vanden Abeele F., R. Skryma, et al. (2002). Bcl-2-dependent modulation of Ca(2+) homeostasis and store-operated channels in prostate cancer cells. Cancer Cell. 1(2), 169-79

Vanlangenakker N., T. V. Berghe, et al. (2008). Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med. 8(3), 207-20
Vanoverberghe K., P. Mariot, et al. (2003). Mechanisms of ATP-induced calcium signaling and growth arrest in human prostate cancer cells. Cell Calcium. 34(1), 75-85

Vanoverberghe K., F. Vanden Abeele, et al. (2004). Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells. Cell Death Differ. 11(3), 321-30

Varadi G., M. Strobeck, et al. (1999). Molecular elements of ion permeation and selectivity within calcium channels. Crit Rev Biochem Mol Biol. 34(3), 181-214

Vashchenko N. and P. A. Abrahamsson. (2005). Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol. 47(2), 147-55

Vaupel P. and A. Mayer. (2007). Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 26(2), 225-39

Veldscholte J., C. A. Berrevoets, et al. (1992). The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J Steroid Biochem Mol Biol. 41(3-8), 665-9

Venter J. C., M. D. Adams, et al. (2001). The sequence of the human genome. Science. 291(5507), 1304-51

Vergara C., R. Latorre, et al. (1998). Calcium-activated potassium channels. Curr Opin Neurobiol. 8(3), 321-9

Vergis R., C. M. Corbishley, et al. (2008). Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol. 9(4), 342-51

Vig M., C. Peinelt, et al. (2006). CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science. 312(5777), 1220-3

Visakorpi T., E. Hyytinen, et al. (1995). In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet. 9(4), 401-6

Walker D. and M. De Waard. (1998). Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci. 21(4), 148-54

Wang G. L. and G. L. Semenza. (1993). Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood. 82(12), 3610-5

Wang H. G., N. Pathan, et al. (1999a). Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science. 284(5412), 339-43

Wang L., A. Bhattacharjee, et al. (1999b). A low voltage-activated Ca2+ current mediates cytokine-induced pancreatic beta-cell death. Endocrinology. 140(3), 1200-4

Wang Q., D. Horiatis, et al. (2004). Interleukin-6 inhibits the growth of prostate cancer xenografts in mice by the process of neuroendocrine differentiation. Int J Cancer. 111(4), 508-13

Wang R., E. Karpinski, et al. (1990). Flunarizine selectively blocks transient calcium channel currents in N1E-115 cells. J Pharmacol Exp Ther. 254(3), 1006-11

Wang Y. Q., G. Brooks, et al. (2002a). [Functional analysis of the alpha1G subunit of the T-type calcium channel in cellular proliferation]. Shi Yan Sheng Wu Xue Bao. 35(3), 229-35

Wang Y. Q., G. Brooks, et al. (2002b). [Functional analysis of the human T-type calcium channel alpha 1H subunit gene in cellular proliferation]. Yi Chuan Xue Bao. 29(8), 659-65

Weaver A. K., M. L. Olsen, et al. (2007). BK channels are linked to inositol 1,4,5-triphosphate receptors via lipid rafts: a novel mechanism for coupling [Ca(2+)](i) to ion channel activation. J Biol Chem. 282(43), 31558-68

Weiergraber M., J. Hescheler, et al. (2008). [Human calcium channelopathies. Voltage-gated Ca(2+) channels in etiology, pathogenesis, and pharmacotherapy of neurologic disorders]. Nervenarzt. 79(4), 426-36
Weinstein M. H., A. W. Partin, et al. (1996). Neuroendocrine differentiation in prostate cancer: enhanced prediction of progression after radical prostatectomy. Hum Pathol. 27(7), 683-7

Welker H. A., H. Wiltshire, et al. (1998). Clinical pharmacokinetics of mibefradil. Clin Pharmacokinet. 35(6), 405-23

West A. E., W. G. Chen, et al. (2001). Calcium regulation of neuronal gene expression. Proc Natl Acad Sci U S A. 98(20), 11024-31

Westin P., P. Stattin, et al. (1995). Castration therapy rapidly induces apoptosis in a minority and decreases cell proliferation in a majority of human prostatic tumors. Am J Pathol. 146(6), 1368-75

White C., C. Li, et al. (2005). The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol. 7(10), 1021-8

Williams M. E., P. F. Brust, et al. (1992a). Structure and functional expression of an omega-conotoxin-sensitive human N-type calcium channel. Science. 257(5068), 389-95

Williams M. E., D. H. Feldman, et al. (1992b). Structure and functional expression of alpha 1, alpha 2, and beta subunits of a novel human neuronal calcium channel subtype. Neuron. 8(1), 71-84

Williams M. E., M. S. Washburn, et al. (1999). Structure and functional characterization of a novel human low-voltage activated calcium channel. J Neurochem. 72(2), 791-9

Wojcik S. M. and N. Brose. (2007). Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron. 55(1), 11-24

Wolfart J. and J. Roeper. (2002). Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J Neurosci. 22(9), 3404-13

Wright M. E., M. J. Tsai, et al. (2003). Androgen receptor represses the neuroendocrine transdifferentiation process in prostate cancer cells. Mol Endocrinol. 17(9), 1726-37

Wu F. S., Y. C. Park, et al. (1981). Selective stimulation of the synthesis of an 80,000-dalton protein by calcium ionophores. J Biol Chem. 256(11), 5309-12

Wu K. D., D. Bungard, et al. (2001). Regulation of SERCA Ca2+ pump expression by cytoplasmic Ca2+ in vascular smooth muscle cells. Am J Physiol Cell Physiol. 280(4), C843-51

Wulff H., M. J. Miller, et al. (2000). Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A. 97(14), 8151-6

Wyatt C. N., K. M. Page, et al. (1998). The effect of overexpression of auxiliary Ca2+ channel subunits on native Ca2+ channel currents in undifferentiated mammalian NG108-15 cells. J Physiol. 510 (Pt 2), 347-60

Wyllie A. H., G. J. Beattie, et al. (1981). Chromatin changes in apoptosis. Histochem J. 13(4), 681-92

Wyllie A. H., R. G. Morris, et al. (1984). Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol. 142(1), 67-77

Xia X. M., B. Fakler, et al. (1998). Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature. 395(6701), 503-7

Xie Q., Y. Zhang, et al. (2002). Calcium influx factor from cytochrome P-450 metabolism and secretion-like coupling mechanisms for capacitative calcium entry in corneal endothelial cells. J Biol Chem. 277(19), 16559-66

Xie S., H. K. Lin, et al. (2004). Regulation of interleukin-6-mediated PI3K activation and neuroendocrine differentiation by androgen signaling in prostate cancer LNCaP cells. Prostate. 60(1), 61-7
Xing N., J. Qian, et al. (2001). Neuroendocrine cells in human prostate over-express the anti-apoptosis protein survivin. Prostate. 48(1), 7-15
Xue Y., J. van der Laak, et al. (2000). Neuroendocrine cells during human prostate development: does neuroendocrine cell density remain constant during fetal as well as postnatal life? Prostate. 42(2), 116-23
Xue Y., A. Verhofstad, et al. (1997). Prostatic neuroendocrine cells have a unique keratin expression pattern and do not express Bcl-2: cell kinetic features of neuroendocrine cells in the human prostate. Am J Pathol. 151(6), 1759-65
Yaari Y., B. Hamon, et al. (1987). Development of two types of calcium channels in cultured mammalian hippocampal neurons. Science. 235(4789), 680-2
Yamaguchi H., J. N. Muth, et al. (1999). Critical role of conserved proline residues in the transmembrane segment 4 voltage sensor function and in the gating of L-type calcium channels. Proc Natl Acad Sci U S A. 96(4), 1357-62
Yang S. N. and P. O. Berggren. (2006). The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev. 27(6), 621-76
Yang S. N., O. Larsson, et al. (1999). Syntaxin 1 interacts with the L(D) subtype of voltage-gated Ca(2+) channels in pancreatic beta cells. Proc Natl Acad Sci U S A. 96(18), 10164-9
Yao Y., A. V. Ferrer-Montiel, et al. (1999). Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell. 98(4), 475-85
Yazawa K., K. Ono, et al. (2002). Modulation by mibebradil of the histamine-induced Ca2+ entry in human aortic endothelial cells. Jpn J Pharmacol. 90(2), 125-30
Yeromin A. V., S. L. Zhang, et al. (2006). Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature. 443(7108), 226-9
Yin J. and F. S. Yu. (2008). Rho kinases regulate corneal epithelial wound healing. Am J Physiol Cell Physiol. 295(2), C378-87
Yoshida Y. and S. Imai. (1997). Structure and function of inositol 1,4,5-trisphosphate receptor. Jpn J Pharmacol. 74(2), 125-37
Yuan J. P., K. Kiselyov, et al. (2003). Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell. 114(6), 777-89
Yuan T. C., S. Veeramani, et al. (2006). Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Endocr Relat Cancer. 13(1), 151-67
Zelivianski S., M. Vermi, et al. (2001). Multipathways for transdifferentiation of human prostate cancer cells into neuroendocrine-like phenotype. Biochim Biophys Acta. 1539(1-2), 28-43
Zenzmaier C., G. Untergasser, et al. (2008). Aging of the prostate epithelial stem/progenitor cell. Exp Gerontol.
Zhang J. F., A. D. Randall, et al. (1993). Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology. 32(11), 1075-88
Zhang L., J. Kelley, et al. (1997). Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem. 272(37), 23389-97
Zhang S. L., Y. Yu, et al. (2005). STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 437(7060), 902-5
Zhang X. Q., D. Kondrikov, et al. (2003). Receptor protein tyrosine phosphatase alpha signaling is involved in androgen depletion-induced neuroendocrine differentiation of androgen-sensitive LNCaP human prostate cancer cells. Oncogene. 22(43), 6704-16
Zhong X., J. R. Liu, et al. (2006). *A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies.* Hum Mol Genet. **15**(9), 1497-512

Zhou C., H. Chen, et al. (2007). *Cav3.1 (alpha1G) controls von Willebrand factor secretion in rat pulmonary microvascular endothelial cells.* Am J Physiol Lung Cell Mol Physiol. **292**(4), L833-44

Zhu M. L. and N. Kyprianou. (2008). *Androgen receptor and growth factor signaling partnerships in prostate cancer cells.* Endocr Relat Cancer.

Ziegelhoeffer T., D. Scholz, et al. (2003). *Inhibition of collateral artery growth by mibefradil: possible role of volume-regulated chloride channels.* Endothelium. **10**(4-5), 237-46

Zilliacus J., A. P. Wright, et al. (1995). *Structural determinants of DNA-binding specificity by steroid receptors.* Mol Endocrinol. **9**(4), 389-400