Monochromatic and Heterochromatic
Subgraph Problems
in a Randomly Colored Graph

Xueliang Li and Jie Zheng
Center for Combinatorics, LPMC-TJKLC
Nankai University
Tianjin 300071, P.R. China
Email: x.li@eyou.com, jzheng@eyou.com

Abstract. Let K_n be the complete graph with n vertices and c_1, c_2, \ldots, c_r be r different colors. Suppose we randomly and uniformly color the edges of K_n in c_1, c_2, \ldots, c_r. Then we get a random graph, denoted by K_n^c. In the paper, we investigate the asymptotic properties of several kinds of monochromatic and heterochromatic subgraphs in K_n^c. Accurate threshold functions in some cases are also obtained.

Keywords: monochromatic, heterochromatic, threshold function

AMS Classification: 05C80, 05C15

1 Introduction

The study of random graphs was begun by P. Erdős and A. Rényi in the 1960s [7–9] and now has a comprehensive literature [3,6].

The most frequently encountered probabilistic model of random graph is $G_{n,p(n)}$, where $0 \leq p(n) \leq 1$. It consists of all graphs with vertex set $V = \{1, 2, \ldots, n\}$ in which the edges are chosen independently and with probability $p(n)$. As $p(n)$ goes from zero to one the random graph $G_{n,p(n)}$ evolves from empty to full.

\footnote{Supported by NSFC, PCSIRT and the “973” program.}
P. Erdős and A. Rényi discovered that for many natural properties A of graphs there was a narrow range in which $\Pr[\mathcal{G}_{n,p(n)} \text{ has property } A]$ moves from near zero to near one. So we introduce the following important definition ([5], page 14).

Definition 1.1 A function $p(n)$ is a threshold function for property A if the following two conditions are satisfied:

1. If $p'(n) \ll p(n)$, then $\lim_{n \to \infty} \Pr[\mathcal{G}_{n,p'(n)} \text{ has property } A] = 0$.

2. If $p'(n) \gg p(n)$, then $\lim_{n \to \infty} \Pr[\mathcal{G}_{n,p'(n)} \text{ has property } A] = 1$.

In general, if $\Pr[\mathcal{G}_{n,p(n)} \text{ has property } A] \to 0$, we say almost no $\mathcal{G}_{n,p(n)}$ has property A. Conversely, if $\Pr[\mathcal{G}_{n,p(n)} \text{ has property } A] \to 1$, we say almost every $\mathcal{G}_{n,p(n)}$ has property A.

In this article, we introduce the following probabilistic model of random graphs. Let K_n be the complete graph with vertex set $V = \{1, 2, \ldots, n\}$ and c_1, c_2, \ldots, c_r be $r = r(n)$ different colors. We now send c_1, c_2, \ldots, c_r to the edges of K_n randomly and equiprobably, which means each edge is colored in $c_i (1 \leq i \leq r)$ with probability $\frac{1}{r}$. Thus we get a random graph \mathcal{K}_n. The probability space $(\Omega, \mathcal{F}, \Pr)$ of \mathcal{K}_n has a simple form: Ω has $r^{(n)}$ elements and each one has probability $\frac{1}{r^{(n)}}$ to appear.

The subgraph of \mathcal{K}_n with vertices $1, 2, \ldots, n$ and the edges that have color c_i is denote by \mathcal{G}_i. Obviously, it is just the random graph $\mathcal{G}_{n,p(n)}$ ([3], page 34), where $p(n) = \frac{1}{r}$.

Matching, clique and tree are three kinds of important subgraphs. As to their definitions, please refer to [2]. A k-matching is a matching of k independent edges. A k-clique is a clique of k vertices. Similar, a k-tree is a tree of k vertices. In a k-matching (k-clique, k-tree), if all of the edges are in a same color, we call it a monochromatic k-matching (k-clique, k-tree); On the other hand, if any two of edges are of different colors, we call it a heterochromatic k-matching (k-clique, k-tree).

Having a monochromatic k-matching, k-clique or k-tree or a heterochromatic k-matching, k-clique or k-tree are all properties of \mathcal{K}_n. We want to investigate these properties and obtain the threshold functions for them.
Two properties will be especially demonstrated: monochromatic k-matching and heterochromatic k-matching. For the others, the methods are similar and we list the results in Section 4.

2 Monochromatic k-Matchings in K^r_n

Let k be an integer. Obviously, in K^r_n, there are altogether

$$q = \frac{\binom{n}{2} \binom{n-2}{2} \cdots \binom{n-2k+2}{2}}{k!}$$

sets of k independent edges. Arrange them in an order and the i-th one is denoted by M_i.

Let A_i be the event that the edges in M_i are monochromatic and X_i be the indicator variable for A_i. That is,

$$X_i = \begin{cases} 1 & \text{if } A_i \text{ happens} \\ 0 & \text{otherwise.} \end{cases} \quad (2.1)$$

Then the random variable

$$X = X_1 + X_2 + \cdots + X_q$$

denotes the number of monochromatic k-matchings in K^r_n.

For each $1 \leq i \leq q$,

$$E(X_i) = Pr[X_i = 1] = \frac{r}{r^k}.$$

From the linear of the expectation [1],

$$E(X) = E(X_1 + X_2 + \cdots + X_q)$$

$$= \frac{r}{r^k} q$$

$$= \frac{n!}{(n - 2k)!(2k)!r^{k-1}}. \quad (2.2)$$

By careful calculation, the following assertions (*) for (2.2) are true, which will be used later:
1. If \(r \) is fixed, then for every \(1 \leq k \leq \frac{n}{2} \), \(E(X) \to \infty \).

2. If \(k \) is fixed and \(r \ll (\frac{n!}{(n-2k)!2^k k!})^{\frac{1}{k-1}} \), then \(E(X) \to \infty \);

3. If \(k \) is fixed and \(r \gg (\frac{n!}{(n-2k)!2^k k!})^{\frac{1}{k-1}} \), then \(E(X) \to 0 \);

4. If \(k \) is fixed and \(r = c^{(0)} (\frac{n!}{(n-2k)!2^k k!})^{\frac{1}{k-1}} \), where \(c^{(0)} > 0 \) is a constant, then \(E(X) \to \frac{1}{(c^{(0)})^{k-1}} \).

Though \(k \) and \(r \) can be both functions of \(n \), if they are both variables, the situation becomes very complicated. So we illustrate monochromatic \(k \)-matching problem from three aspects: \(r \) is fixed, \(k \) is fixed and \(k = \left\lfloor \frac{n}{2} \right\rfloor \). The last case is the perfect matching case or the nearly perfect matching case. Since we focus on the asymptotic properties, we will not distinguish \(\left\lfloor \frac{n}{2} \right\rfloor \) from \(\frac{n}{2} \). That is, we always suppose \(n \) is an even.

2.1 \(r \) is fixed

Assertion (*) 1 says that \(E(X) \to \infty \) for every \(1 \leq k \leq \frac{n}{2} \) if \(r \) is fixed. We certainly expect that \(Pr[X > 0] \to 1 \) holds. In fact, it does.

Theorem 2.1 If \(r \geq 1 \) is fixed, then almost every \(K^r_n \) has a monochromatic \(k \)-matching for any \(1 \leq k \leq \frac{n}{2} \).

Proof. We have mentioned in Section 1 that the subgraph \(G_t \) of \(K^r_n \) is actually the random graph \(G_{n,p(n)} \), where \(p(n) = \frac{1}{r} \). There is a result saying that the threshold function for \(G_{n,p} \) has a perfect matching is \(\frac{\log n}{n} \) ([6], page 85). If \(r \) is fixed, then \(\frac{1}{r} \gg \frac{\log n}{n} \), which implies that almost every \(G_t \) has a perfect matching. Then almost every \(K^r_n \) has a monochromatic \(k \)-matching for every \(1 \leq k \leq \frac{n}{2} \).

2.2 \(k \) is fixed

In this case, we prove the following theorem.
Theorem 2.2 If k is fixed ($k = 1$ is a trivial case so suppose $k \geq 2$), then

$$\lim_{n \to \infty} Pr[X > 0] = \begin{cases} 0 & \text{if } r \gg \left(\frac{n!}{(n-2k)!2^k k!}\right)^{\frac{1}{k-1}}, \\ 1 & \text{if } r \ll \left(\frac{n!}{(n-2k)!2^k k!}\right)^{\frac{1}{k-1}}. \end{cases}$$ (2.3)

That is to say, \(\left(\frac{n!}{(n-2k)!2^k k!}\right)^{\frac{1}{k-1}} \) is the threshold function for the property that \(K^r_n \) has a monochromatic \(k \)-matching.

Proof. From Markov’s inequality \([4]\)

$$Pr[X > 0] \leq E(X)$$

and assertion (*) 3, we have

$$Pr[X > 0] \to 0 \text{ if } r \gg \left(\frac{n!}{(n-2k)!2^k k!}\right)^{\frac{1}{k-1}}.$$

For the other half, we estimate \(\frac{\Delta}{(E(X))^2} \), where \(\Delta = \sum_{i \sim j} Pr[A_i \cap A_j] \). \(A_i(A_j) \) denotes the event that the edges in \(M_i(M_j) \) are monochromatic and \(i \sim j \) means the ordered pair of \(A_i \) and \(A_j \) that are not independent from each other.

Our goal is to prove that if \(r \ll \left(\frac{n!}{(n-2k)!2^k k!}\right)^{\frac{1}{k-1}} \), then \(\frac{\Delta}{(E(X))^2} \to 0 \).

Because

\[
\Delta = \sum_{i \sim j} Pr[A_i \cap A_j]
\]

\[
= \sum_{s=1}^{k-1} \sum_{(i,j)_s} \frac{r^{2k-s}}{s!(k-s)!} \left(\frac{n!}{(n-2s)!}\right)^{\frac{1}{k-1}}
\]

(\((i,j)_s \) means the ordered pair of \(M_i \) and \(M_j \) that have \(s \) common edges)

\[
\leq \sum_{s=1}^{k-1} \frac{\left(\frac{n!}{(n-2s)!}\right)^{\frac{1}{k-1}}}{s!(k-s)!} \sum_{s=1}^{k-1} \frac{(n-2s)!2^s r^s}{s!(k-s)!}
\]

\[
= \frac{n!}{2^{2k}(n-2k)!(n-2k)!} \sum_{s=1}^{k-1} \frac{(n-2s)!2^s r^s}{s!(k-s)!}
\]

then we have

$$\frac{\Delta}{(E(X))^2} \leq \frac{k!}{n!} \sum_{s=1}^{k-1} \frac{(n-2s)!2^s r^s}{s!(k-s)!}(k-s)!.$$ (2.4)
If \(r \ll \left(\frac{n!}{(n-2k)!2^k k!} \right)^{\frac{1}{k-1}} \sim \left(\frac{1}{2^k k!} \right)^{\frac{1}{k-1}} n^{\frac{2k}{k-1}} \), then there are 3 possible cases: (i) \(r \ll n^2 \), (ii) \(r = c^{(1)} n^2 \), where \(c^{(1)} > 0 \) is a constant and (iii) \(n^2 \ll r \ll \left(\frac{n!}{(n-2k)!2^k k!} \right)^{\frac{1}{k-1}} \).

In case (i),
\[
\sum_{s=1}^{k-1} \frac{(n - 2s)!2^s r^s}{s!(k - s)!(k - s)!} = (1 + o(1)) \frac{2(n - 2)!}{(k - 1)!(k - 1)!} \tag{2.5}
\]

Then submit (2.5) to (2.4), we get
\[
\frac{\Delta}{(E(X))^2} \leq 2(1 + o(1)) \frac{k^2}{n(n - 1)} \to 0. \tag{2.6}
\]

In case (ii)
\[
\sum_{s=1}^{k-1} \frac{(n - 2s)!2^s r^s}{s!(k - s)!(k - s)!} = c^{(2)} \frac{2(n - 2)!}{(k - 1)!(k - 1)!}, \tag{2.7}
\]
where \(c^{(2)} \) is a sufficiently large constant.

Then submit (2.7) to (2.4), we get
\[
\frac{\Delta}{(E(X))^2} \leq 2c^{(2)} \frac{k^2}{n(n - 1)} \to 0. \tag{2.8}
\]

In case (iii)
\[
\sum_{s=1}^{k-1} \frac{(n - 2s)!2^s r^s}{s!(k - s)!(k - s)!} = (1 + o(1)) \frac{(n - 2k + 2)!2^{k-1} r^{k-2}}{(k - 1)!}. \tag{2.9}
\]

Then submit (2.9) to (2.4), we get
\[
\frac{\Delta}{(E(X))^2} \leq c^{(3)} \frac{n^{2k(k-2)}}{n^{2k-2}} \to 0, \tag{2.10}
\]
where \(c^{(3)} \) is a sufficiently large constant.

Summarizing (2.6) (2.8) and (2.10), we end the proof of \(\frac{\Delta}{(E(X))^2} \to 0 \) with the condition \(r \ll \left(\frac{n!}{(n-2k)!2^k k!} \right)^{\frac{1}{k-1}} \).
A corollary of the Chebyshev’s inequality [4] asserts that if \(E(X) \to \infty \) and \(\Delta = \sigma((E(X))^2) \), then almost surely \(X > 0([1], \text{page 46}) \). So from assertion (*) 2 and the above discuss, we obtain

\[
Pr[X > 0] \to 1 \text{ if } r \ll \left(\frac{n!}{(n - 2k)!2^k r!} \right)^{\frac{1}{k - 1}}.
\]

From the definition of the threshold function (Definition [1,1]), we can say that \(\left(\frac{n!}{(n - 2k)!2^k r!} \right)^{\frac{1}{k - 1}} \) is the threshold function for the property that \(K_n^r \) has a monochromatic \(k \)-matching.

2.3 \(k = \frac{n}{2} \)

When \(k = \frac{n}{2} \), a monochromatic \(k \)-matching is a monochromatic perfect matching.

Replace \(k \) with \(\frac{n}{2} \) in (2.2), we have

\[
E(X) = \frac{n!}{(\frac{n}{2})!\frac{n}{2} r^{\frac{n}{2} - 1}}.
\] (2.11)

By calculation of (2.11), we get \(E(X) \to 0 \) if \(r \geq \frac{n}{c(4)r} \), where \(c(4) < e \) is a constant; \(E(X) \to \infty \) if \(r \leq \frac{n}{e} \).

The following assertion is true as a direct corollary of Markov’s inequality and the threshold function for the property that \(G_n,p \) having a perfect matching ([6], page 85). Here we omit its proof.

Theorem 2.3 If \(r \geq \frac{n}{c(4)r} \), where \(c(4) < e \) is a constant, then almost no \(K_n^r \) has a monochromatic perfect matching. On the other hand, if \(r \leq \frac{n}{\log n + c(5)(n)} \), where \(c(5)(n) \to \infty \), then almost every \(K_n^r \) has a monochromatic perfect matching.

3 Heterochromatic \(k \)-Matchings in \(K_n^r \)

Following the symbols in the previous section, let \(B_i \) be the event that the edges in \(M_i \) are heterochromatic and \(Y_i \) be the indicator variable for the
event B_i. That is,
\[Y_i = \begin{cases}
1 & \text{if } B_i \text{ happens}, \\
0 & \text{otherwise}.
\end{cases} \] (3.1)

Then for each $1 \leq i \leq q$,
\[\Pr[Y_i = 1] = \frac{(r)^k}{r^k}. \]

Then the random variable
\[Y = Y_1 + Y_2 + \cdots + Y_q \]
denotes the number of heterochromatic k-matchings in K_n^r.

From the linear of the expectation [1],
\[
E(Y) = E(Y_1 + Y_2 + \cdots + Y_q) \\
= \frac{r}{r^k q} \\
= \frac{n!}{(n-2k)!2^k k! (r-k)!r^k}. \] (3.2)

Since $r \geq k$ is a necessary condition in the heterochromatic k-matching problem, we have the following assertion for $E(Y)$ by calculation of (3.2).

Lemma 3.1 For every $1 \leq k \leq n^{1-\epsilon}$ and $r \geq k$, $E(Y) \to \infty$, where $0 < \epsilon < 1$ is a constant that can be arbitrarily small.

The main result of this section is the following theorem:

Theorem 3.2 If $1 \leq k \leq n^{1-\epsilon}$ and $r \geq k$, where $0 < \epsilon < 1$ is a constant that can be arbitrarily small, then almost every K_n^r contains a heterochromatic k-matching.

Proof. Similar to Theorem 2.2 for heterochromatic k-matchings, the following estimate is for $\Delta' = \sum_{i \neq j} \Pr[B_i \cap B_j]$.

8
\[\Delta' = \sum_{i \sim j} \Pr[B_i \cap B_j] \]
\[= \sum_{s=1}^{k-1} \sum_{(i,j)} \frac{(r)_k! (r-s)_{k-s} (k-s)!}{r^{2k-s}} \]
(where \((i,j)\) means the ordered pair of \(M_i\) and \(M_j\) that have \(s\) common edges)
\[\leq \sum_{s=1}^{k-1} \frac{\binom{n}{s} \binom{n-2}{s} \ldots \binom{n-2(s-1)}{2}}{s!} \frac{\binom{n-2s}{2} \binom{n-2(s+1)}{2} \ldots \binom{n-2(k-1)}{2}}{(k-s)!} \frac{(r)_k! (r-s)_{k-s} (k-s)!}{r^{2k-s}} \]
\[= \frac{n!r!}{2^{2k} (n-2k)! (n-2k)! (r-k)! (r-k)! r^{2k}} \sum_{s=1}^{k-1} \frac{(n-2s)! (r-s)! 2^s r^s}{s! (k-s)! (k-s)!} . \]

Then
\[\frac{\Delta'}{(E(Y))^2} \leq \frac{k! k!}{n! r!} \sum_{s=1}^{k-1} \frac{(n-2s)! (r-s)! (2r)^s}{s! (k-s)! (k-s)!} . \] (3.3)

By careful calculation of (3.3), we get if \(k \ll n\), then
\[\frac{\Delta'}{(E(Y))^2} \leq \frac{k! k!}{n! r!} (1 + o(1)) \frac{2r! (n-2)!}{(k-1)! (k-1)!} \]
\[= (1 + o(1)) \frac{k^2}{n (n-1)} \to 0. \] (3.4)

From (3.4), Lemma 3.1 and the assertion that if \(E(Y) \to \infty\) and \(\Delta' = o((E(Y))^2)\), then almost surely \(Y > 0\) ([1], page 46), we have
\[\Pr[Y > 0] \to 1, \]
which finishes the proof. \(\blacksquare\)

Remark 3.3 As a corollary of Theorem 3.2, if one of \(k\) and \(r(\geq k)\) is fixed, then almost every \(K_n^r\) has a heterochromatic \(k\)-matching. The only left case that we can not deal with is that \(k = c^{(6)} n\), where \(0 < c^{(6)} \leq 1/2\) is a constant.
4 Results on Other Subgraphs

Completely similar to Section 2 and Section 3, we can study monochromatic k-clique, k-tree and heterochromatic k-clique, k-tree in K^r_n. We list our results here.

Theorem 4.1 If r is fixed, then

$$\lim_{n \to \infty} Pr[K^r_n \text{ contains a monochromatic } k\text{-clique}] = \begin{cases} 0 & \text{if } k \geq 2\log_r n, \\ 1 & \text{if } k \leq \frac{\log_r n}{1.704 \times 10^9}. \end{cases}$$

Theorem 4.2 If k is fixed, then

$$\lim_{n \to \infty} Pr[K^r_n \text{ contains a monochromatic } k\text{-clique}] = \begin{cases} 0 & \text{if } r \gg n^{\binom{k}{2}^{-1}}, \\ 1 & \text{if } r \leq n^{\frac{1}{2k!}} n^{\binom{k}{2}^{-1}}. \end{cases}$$

That is to say, $n^{\binom{k}{2}^{-1}}$ is the threshold function for the property that K^r_n has a monochromatic k-clique.

Theorem 4.3 If $r \geq n^{4+\epsilon}$, where $\epsilon > 0$ is a constant that can be arbitrarily small, then for every $k \leq n$, there almost surely exists a heterochromatic k-clique in K^r_n.

Theorem 4.4 If k is fixed, then

$$\lim_{n \to \infty} Pr[K^r_n \text{ contains a monochromatic } k\text{-tree}] = \begin{cases} 0 & \text{if } r \gg k^{\binom{n}{k}^{-1}}, \\ 1 & \text{if } r \leq \frac{k}{n} \binom{n}{k}^{1/2}. \end{cases}$$

Theorem 4.5 If $r \geq c^{(7)} n$, where $c^{(7)} > 1$ is a constant, then almost no K^r_n contains a monochromatic spanning tree.

Theorem 4.6 If r is fixed, then almost every K^r_n contains a monochromatic k-tree for any $2 \leq k \leq n$.

Theorem 4.7 If $2 \leq k \leq \log n$ and $r \geq k-1$, then almost every K^r_n contains a heterochromatic k-tree.
References

[1] N. Alon and J. Spencer, *The Probabilistic Method, 2nd ed.*, John Wiley & Sons, Inc. 2000.

[2] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, The Macmillan Press LTD., 1976.

[3] B. Bollobás, *Random Graphs, 2nd ed.*, Cambridge University Press, 2001.

[4] P. Erdős and J. Spencer, *Probabilistic Methods in Combinatorics*, Academic Press, 1974.

[5] J. Spencer, *The Strange Logic of Random Graphs*, Springer, 2001.

[6] S. Janson, T. Łuczak and A. Rucinski, *Random Graphs*, John Wiley & Sons, Inc., 2000.

[7] P. Erdős and A. Rényi, On random graphs I, *Publ. Math. Debrecen* 6, 290-297.

[8] P. Erdős and A. Rényi, On the evolution of random graphs, *Publ. Math. Inst. Hungar. Acad. Sci.* 5, 17-61.

[9] P. Erdős and A. Rényi, On the evolution of random graphs, *Bull. Inst. Int. Statist. Tokyo* 38, 343-347.