Analysis of milling cutter working part displacements during milling of steel

PAWEŁ TWARDOWSKI
ADAM HAMROL
NATALIA ZNOJKIEWICZ
SZYMON WOJCIECHOWSKI*

Badania miały na celu analizę przemieszczeń części robocej frezu kulistego w trakcie obróbki zahartowanej stali z różnymi wartościami wysunięcia narzędzia z oprawki. Pomiary przeprowadzono dla przemieszczeń narzędzia w dwóch kierunkach: normalnym oraz posuwowym. Znierzano siły i drgania oraz parametry chropowatości obrobionej powierzchni.

SŁOWA KLUCZOWE: frezowanie, dynamika, chropowatość powierzchni

The aim of research was focused on analysis of tool displacements during milling of hardened steel, conducted with various overhangs. The measurements of displacements were carried out in feed and normal directions. Moreover, the measurements of forces, vibrations and surface roughness' parameters were also conducted.

KEYWORDS: milling, dynamics, surface roughness

We wszystkich próbach przyjęto te same parametry frezowania: prędkość obrotową \(n = 1400 \) obr/min, średnią efektywną \(d_p = 8,83 \) mm, prędkość efektywną \(v_e = 39 \) m/min, posuw na ostrze \(f_w = 0,03 \) mm/ostre, dosuw osiowy \(a_0 = 0,3 \) mm, dosuw promieniowy \(a_1 = 0,3 \) mm, grubość warstwy skrawanej \(h_w = 0,22 \) mm, a zmienny był jedynie wymiar narzędzia z oprawki \(L \). Wykonyano dziewięć prób – po trzy próby dla każdego wysunięcia.

Efektywną średnią skrawania oraz grubość warstwy skrawanej przedstawiono na rys. 2. Materiał obrabiany zamocowano w taki sposób, aby jego powierzchnia znajdowała się pod kątem 45° do osi narzędzia.

Tor pomiarowy przemieszczeń narzędzia składał się z dwóch czujników optoNCDT ILD1700-10 LL firmy Micro-Epsilon, mierzących przemieszczenia w kierunkach posuwowym i prostopadłym do kierunku posuwowego (rys. 3). Zastosowano czujniki do zakresu pomiarowego \(10 \) mm, które pozwalały na pomiary z dokładnością do \(0,5 \) \(\mu \)m.

Przyspieszenia drgań oraz składowe siły całkowite mierzone w trzech kierunkach za pomocą standardowych torów pomiarowych, z wykorzystaniem czujników piezoelektrycznych.

Do pomiaru chropowatości obrobionej powierzchni zastosowano profilografometr firmy Hommel. Pomiary tego dokonano na odcinku o długości \(l = 4,8 \) mm. Powtarzano go pięć razy dla każdej próbby.

* Dr hab. inż. Paweł Twardowski (paweł.twardowski@put.poznan.pl), prof. dr hab. inż. Adam Hamrol (adam.hamrol@put.poznan.pl), mgr inż. Natalia Znojkiewicz (natalia.znojkiewicz@doctorate.put.poznan.pl), dr inż. Szymon Wojciechowski (szymon.wojciechowski@put.poznan.pl) – Politechnika Poznańska

DOI: https://doi.org/10.17814/mechanik.2018.10.151
Analiza wyników

Na rys. 4 przedstawiono wykres zmian sztywności statycznej w zależności od średnicy frezu \(D \) i wysunięcia frezu \(f \) z obrabki \(L \). Przy najmniejszym wysunięciu \(f_1 = 32 \text{ mm} \) sztywność narzędzia jest największa – ok. \(j = 17 \text{ N/mm} \). Natomiast dla maksymalnego wysunięcia \(L_3 = 95 \text{ mm} \) sztywność statyczna jest siedemnastokrotnie mniejsza. Oznacza to, że wpływ wysunięcia frezu z obrabki na sztywność statyczną jest bardzo duży, a to z kolei ma decydujące znaczenie dla wartości przemieszczeń roboczej części frezu.

Na rys. 5 i 6 zaprezentowano zmianę przemieszczeń \(X_f \) (w kierunku posuwowym) w funkcji czasu skrawania \(t \) dla wysunięcia \(L_3 = 95 \text{ mm} \), przy czym na rys. 6 pokazano wycinek czasu z rys. 5.

Z przebiegów wynika, że zmiany przemieszczeń w czasie dla kierunku posuwowego mają charakter impulsowy. Jest to widoczne zwłaszcza na rys. 6, na którym zaznaczone jest czas trwania jednego obrotu frezu i opisano po szczególne ostrza. Podobne zależności zaobserwowano dla drugiego kierunku – posuwowego normalnego \(Y_f \). Impulsowy charakter zmian pochodzi również od przebiegu drgań, przykładowo pokazane na rys. 7.

Zastosowany frez kulisty miał dwa ostrza, czyli kąt podziałki międzyostrzowej wynosi \(\Psi = 1800 \). Po uwzględnieniu długości skrawania łatwo wyznaczyć kąt pracy narzędzia, który w tym przypadku wynosi \(\Psi = 1,20 \).

Oznacza to, że przez większość czasu ostrza nie pracują. Skoro jeden obrót frezu trwa \(t = 0,0428 \text{ s} \), to czas pracy dwóch ostrzy dla jednego obrotu wynosi \(t = 0,00028 \text{ s} \), co stanowi 0,67% czasu jednego obrotu. Taki sam charakter przebiegu mają składowe siły całkowite. W przypadku przyspieszeń drgań wymuszenie, czyli wejście ostrza w materiał obrabiany i wyjście z niego, trwa bardzo krótko

i przez 99,33% czasu potrzebnego na wykonanie jednego obrotu dominują drgania swobodne. Można to odnieść do całego procesu – tzn. dla frezowania powierzchni na drodze skrawania \(L_3 \) dominują drgania swobodne i tylko chwilowo dominują drgania wymuszone.

Ten mechanizm determinuje impulsowy charakter przemieszczeń roboczej części frezu, co jest wyraźnie widoczne na charakterystykach amplitudowo-częstotliwościowych (rys. 8). Wniesione są dwie częstotliwości. Pierwsza to częstotliwość podstawowa, pochodząca od prędkości obrotowej \(n = 1400 \text{ obr/min} \) (częstotliwość podstawowa \(f_0 = n/60 = 23,33 \text{ Hz} \). Druga, o dominującej amplitudzie, to częstotliwość procesu frezowania, czyli częstotliwość podstawowa pomnożona przez liczbę ostrzy \(z \cdot f_0 = 46,44 \text{ Hz} \). Kolejne prątki to harmoniczne tych dwóch częstotliwości.

Nieco inaczej prezentują się charakterystyki amplitudowo-częstotliwościowe w przypadku sil (rys. 9) i drgań. Częstotliwościami dominującymi z punktu widzenia wartości amplitud są składowe harmoniczne. Nie oznacza to jednak, że zmianie uległy impulsowy charakter wymuszeń dynamicznych, który niekorzystnie wpływa na trwałość ostrza i chropowatość powierzchni obrabionej.

W celu przedstawienia wykresów fazowych przemieszczeń dla badanych przypadków wszystkie sygnały poddano filtracji cyfrowej – w ten sposób pozbyto się wysoko-częstotliwościowych składowych zakłócających przebieg przemieszczeń. Zastosowano filtr dolnoprzepustowy o nastawie \(f_0 = 200 \text{ Hz} \), aby otrzymać przebieg tylko od procesu frezowania. W pierwszej kolejności przeanalizowano przemieszczenia na biegu luzem – wyniki pokazano na rys. 10.
Największe wartości przemieszczeń osiągnął frez o wysięgu \(L_3 = 95 \text{ mm} \) i dla kierunku posuwowego była to wartość \(X_f = 27 \mu \text{m} \), a dla kierunku posuwowego normalnego \(Y_{fn} = 29 \mu \text{m} \). Podobne wnioski można wysunąć z analizy przemieszczenia podczas frezowania (rys. 11). Potwierdza się zależność, że im bardziej sztywne narzędzie tym mniejsze ugięcie frezu i przemieszczenia oraz – co za tym idzie – mniejsze błędy kształtu i parametry chropowatości (rys. 12). Różnice w parametrach chropowatości są bardzo duże pomiędzy frezem pracującym przy wysięgu \(L_1 = 32 \text{ mm} \) a frezem o wysięgu \(L_3 = 95 \text{ mm} \) – dla parametru \(R_{max} \) różnice w parametrach chropowatości są aż siedmiokrotnie.

Wysunięcie frezu nie zmienia natomiast znacząco wartości badanych amplitud sił (rys. 13), ale ma istotny wpływ na poziom drgań w badanych kierunkach (ry. 14).

Podsumowanie

Zmiana sztywności frezów kulistych poprzez zmianę długości wysunięcia z oprawki ma istotny wpływ na przemieszczenia roboczej części frezu. Przekładca to się bezpośrednio na wartości amplitud drgań, a przez to – na parametry chropowatości obrabowanej powierzchni. Nie ma to z kolei wpływu na wartości amplitud sił. Głębsze kieszenie należy obrabiać frezami o największej możliwej średnicy w celu zapewnienia jak największej sztywności narzędzia.

LITERATURA

1. Costes J.P., Moreau V. „Surface roughness prediction in milling based on tool displacements”. Journal of Manufacturing Processes. 13 (2011): s. 133–140.
2. Fontaine M., Devillez A., Moufki A., Dudzinski D. „Predictive force model for ball-end milling”. International Journal of Machine Tools & Manufacture. 46 (2006): s. 367–380.
3. Kim G., Kim B., Chu C. „Estimation of cutter deflection and form error in ball-end milling processes”. International Journal of Machine Tools & Manufacture. 43 (2003): s. 917–924.
4. Lamikiz A., Lo Péz De Lacalle L., Sa ñchez J., Salgado M. „Cutting force estimation in sculptured surface milling”. International Journal of Machine Tools & Manufacture. 44 (2004): s. 1511–1526.
5. Omar O., El-Wardany T., Ng E., Elbestawi M. „An improved cutting force and surface topography”. International Journal of Machine Tools & Manufacture. 47 (2007): s. 1283–1275.