RELATIONS BETWEEN TOPOLOGICAL AND METRICAL PROPERTIES OF SELF-AFFINE SIERPİŃSKI SPONGES

YUAN ZHANG AND LIANG-YI HUANG*

Abstract. We investigate two Lipschitz invariants of metric spaces defined by δ-connected components, called the maximal power law property and the perfectly disconnectedness. The first property has been studied in literature for some self-similar sets and Bedford-McMullen carpets, while the second property seems to be new. For a self-affine Sierpiński sponge E, we first show that E satisfies the maximal power law if and only if E and all its major projections contain trivial connected components; secondly, we show that E is perfectly disconnected if and only if E and all its major projections are totally disconnected.

1. Introduction

Let $d \geq 2$ and let $2 \leq n_1 < n_2 < \cdots < n_d$ be a sequence of integers. Let $\Lambda = \text{diag}(n_1, \ldots, n_d)$ be the $d \times d$ diagonal matrix. Let $D = \{i_1, \ldots, i_N\} \subset \prod_{j=1}^{d} \{0, 1, \ldots, n_j - 1\}$. For any $i \in D$ and $z \in \mathbb{R}^d$, we define $S_i(z) = \Lambda^{-1}(z + i)$, then $\{S_i\}_{i \in D}$ is an iterated function system (IFS). The unique non-empty compact set $E = K(\{n_j\}_{j=1}^{d}, D)$ satisfying

\begin{equation}
E = \bigcup_{i \in D} S_i(E)
\end{equation}

is called a d-dimensional self-affine Sierpiński sponge, see Kenyon and Peres [10] and Olsen [18]. In particular, if $d = 2$, then E is called a Bedford-McMullen carpet.

There are a lot of works on dimensions, multifractal analysis and other topics of self-affine Sierpiński sponges, see for instance, McMullen [16], Bedford [2], King [11], Kenyon and Peres [10], Olsen [18], Barral and Mensi [1], Jordan and Rams [9], Mackay [15], Fraser and Howroyd [6]. Recently there are some works devoted to the Lipschitz classification of Bedford-McMullen carpets ([13, 17, 21, 23]). The goal of the present paper is to search new Lipschitz invariants of self-affine Sierpiński sponges, and investigate their relations with the topological properties of the major projections of such sponges.

Let (E, ρ) be a metric space. Let $\delta > 0$. Two points $x, y \in E$ are said to be δ-equivalent if there exists a sequence $\{x_1 = x, x_2, \ldots, x_{k-1}, x_k = y\} \subset E$ such that $\rho(x_i, x_{i+1}) \leq \delta$ for $1 \leq i \leq k - 1$. A δ-equivalent class of E is called a δ-connected
component of E. We denote by $h_E(\delta)$ the cardinality of the set of δ-connected components of E.

Two positive sequences $\{a_i\}_{i \geq 1}$ and $\{b_i\}_{i \geq 1}$ are said to be comparable, and denoted by $a_i \asymp b_i$, if there exists a constant $c > 1$ such that $c^{-1} \leq b_i/a_i \leq c$ for all $i \geq 1$. We define the maximal power law property as following.

Definition 1.1 (Maximal power law). Let (E, ρ) be a compact metric space. Let $\gamma > 0$. We say E satisfies the power law with index γ if $h_E(\delta) \asymp \delta^{-\gamma}$; if $\gamma = \dim_B E$ in addition, we say E satisfies the maximal power law.

The above definition is motivated by the notion of gap sequence. Gap sequence of a set on \mathbb{R} was widely used by many mathematicians, for instance, [3, 5, 12]. Using the function $h_E(\delta)$, Rao, Ruan and Yang [20] generalized the notion of gap sequence to $E \subset \mathbb{R}^d$, denoted by $\{g_i(E)\}_{i \geq 1}$. It is shown in [20] that if two compact subsets $E, E' \subset \mathbb{R}^d$ are Lipschitz equivalent, then $g_i(E) \asymp g_i(E')$. Actually, the definition and result in [20] are also valid for metric spaces, see Section 2.

Miao, Xi and Xiong [17] observed that E satisfies the power law with index γ if and only if $g_i(E) \asymp i^{-1/\gamma}$ (see Lemma 2.2). Consequently, the (maximal) power law property is invariant under bi-Lipschitz maps.

Deng, Wang and Xi [4] proved that if $E \subset \mathbb{R}^d$ is a $C^{1+\alpha}$ conformal set satisfying the strong separation condition, then E satisfies the maximal power law. Miao et al. [17] proved that a totally disconnected Bedford-McMullen carpet satisfies the maximal power law if and only if it possesses vacant rows. Liang, Miao and Ruan [14] completely characterized the gap sequences of Bedford-McMullen carpets. For higher dimensional fractal cubes (see Section 3 for the definition), we show that

Theorem 1.1. A fractal cube satisfies the maximal power law if and only if it has trivial points.

Let E be a self-affine Sierpiński sponge defined in (1.1). A point $z \in E$ is called a trivial point of E if $\{z\}$ is a connected component of E. For $x = (x_1, \ldots, x_d) \in E$ and $1 \leq j \leq d - 1$, we set

$$\pi_j(x) = (x_1, \ldots, x_j).$$

We call $\pi_j(E)$ the j-th major projection of E. We say E is degenerated if E is contained in a face of $[0,1]^d$ with dimension $d - 1$.

Theorem 1.2. Let E be a non-degenerated self-affine Sierpiński sponge defined in (1.1). Then E satisfies the maximal power law if and only if E and all $\pi_j(E)(1 \leq j \leq d - 1)$ possess trivial points.

The following definition characterizes a class of fractals that all δ-connected components are small. Let $\text{diam } U$ denote the diameter of a set U.

Definition 1.2 (Perfectly disconnectedness). Let (E, ρ) be a compact metric space. We say E is perfectly disconnected, if there is a constant $M_0 > 0$ such that for any δ-connected component U of E with $0 < \delta < \text{diam}(E)$, $\text{diam } U \leq M_0 \delta$.

It is clear that perfectly disconnectedness implies totally disconnectedness, and the perfectly disconnectedness property is invariant under bi-Lipschitz maps.
Remark 1.1. It is essentially shown in Xi and Xiong [22] that a fractal cube is perfectly disconnected if and only if it is totally disconnected. We guess this may be true for a large class of self-similar sets.

Theorem 1.3. Let E be a non-degenerated self-affine Sierpiński sponge defined in (1.1). Then E is perfectly disconnected if and only if E and all $\pi_j(E)(1 \leq j \leq d-1)$ are totally disconnected.

As a consequence of Theorem 1.2 and Theorem 1.3, we obtain

Corollary 1.3. Suppose E and E' are two non-degenerated self-affine Sierpiński sponges in \mathbb{R}^d. If E and E' are Lipschitz equivalent, then

(i) if E and all $\pi_j(E)$, $1 \leq j \leq d-1$ possess trivial points, then so do E' and $\pi_j(E')$, $1 \leq j \leq d-1$;

(ii) if E and all $\pi_j(E)$, $1 \leq j \leq d-1$ are totally disconnected, so are E' and $\pi_j(E')$, $1 \leq j \leq d-1$.

This paper is organized as follows: In Section 2, we give some basic facts about gap sequences of metric spaces. Then we prove Theorem 1.1, Theorem 1.2 and Theorem 1.3 in Section 3, 4, 5 respectively.

2. Gap sequences of metric spaces

Let (E, ρ) be a metric space. Recall that $h_E(\delta)$ is the cardinality of the set of δ-connected components of E. It is clear that $h_E : (0, +\infty) \to \mathbb{Z}_{\geq 1}$ is non-increasing. Let $\{\delta_k\}_{k \geq 1}$ be the set of discontinuous points of h_E in decreasing order. Then $h_E(\delta) = 1$ on $[\delta_1, \infty)$, and is constant on $[\delta_{k+1}, \delta_k)$ for $k \geq 1$. We call $m_k = h_E(\delta_{k+1}) - h_E(\delta_k)$ the multiplicity of δ_k and define the gap sequence of E, denoted by $\{g_i(E)\}_{i \geq 1}$, to be the sequence

$$\delta_1, \ldots, \underbrace{\delta_1, \ldots, \delta_1}_{m_1}, \underbrace{\delta_2, \ldots, \delta_2}_{m_2}, \ldots, \underbrace{\delta_k, \ldots, \delta_k}_{m_k}, \ldots$$

In other words,

$$(2.1) \quad g_i(E) = \delta_k, \quad \text{if} \ h_E(\delta_k) \leq i < h_E(\delta_{k+1}).$$

Lemma 2.1. If two compact metric spaces (E, ρ) and (E', ρ') are Lipschitz equivalent, then $g_i(E) \sim g_i(E')$.

Proof. The lemma is proved in [20] in the case that both E and E' are subsets of $(\mathbb{R}^d, | \cdot |)$. Their proof works for metric spaces without any change. \hfill \Box

Miao et al. [17] gave the following criterion for power law property in the case that $E \subset \mathbb{R}^d$, but the conclusion and proof work for metric spaces. Here we give an alternative proof for the reader’s sake.

Lemma 2.2 (17). Let (E, ρ) be a compact metric space and let $\gamma > 0$. Then

$$g_i(E) \sim i^{-1/\gamma} \iff h_E(\delta) \sim \delta^{-\gamma}.$$

Remark 2.1. Let \(\{\delta_k\}_{k \geq 1} \) be the set of discontinuous points of \(h_E \) in decreasing order. First, we show that either \(g_i(E) \approx i^{-1/\gamma}, i \geq 1 \) or \(h_E(\delta) \approx \delta^{-\gamma}, \delta \in (0, 1) \) will imply that

\[
M = \sup_{k \geq 1} \frac{\delta_k}{\delta_{k+1}} < \infty.
\]

If \(g_i(E) \approx i^{-1/\gamma}, i \geq 1 \), holds, then for any \(k \geq 1 \), there exists \(i \) such that \(g_i(E) = \delta_k \) and \(g_{i+1}(E) = \delta_{k+1} \), so \((2.2)\) holds in this case. If \(h_E(\delta) \approx \delta^{-\gamma}, \delta \in (0, 1) \), holds, then this together with \(\lim_{\delta \to (\delta_{k+1})^+} h_E(\delta) = h_E(\delta_k) \) imply \((2.2)\) again.

Finally, using \((2.1)\) and \((2.2)\), we obtain the lemma by a routine estimation. \(\square \)

Remark 2.1. Let \(m > 1 \) be an integer and \(\gamma > 0 \). Since \(h_E(\delta) \) is non-increasing, we see that \(h_E(m^{-k}) \approx m^{-k\gamma}(k \geq 0) \), implies that \(E \) satisfies the power law property.

3. Proof of Theorem 1.1

Let \(m \geq 2 \) be an integer. Let \(D_F = \{j_1, \ldots, j_r\} \subset \{0, 1, \ldots, m-1\}^d \). For \(j \in D_F \) and \(y \in \mathbb{R}^d \), we define \(\varphi_j(y) = \frac{1}{m}(y + j) \), then \(\{\varphi_j\}_{j \in D_F} \) is an IFS. The unique non-empty compact set \(F = F(m, D_F) \) satisfying

\[
F = \bigcup_{j \in D_F} \varphi_j(F)
\]

is called a \(d \)-dimensional fractal cube, see [22].

For \(\sigma = \sigma_1 \ldots \sigma_k \in D_F^k \), we define \(\varphi_\sigma(z) = \varphi_{\sigma_1} \circ \cdots \circ \varphi_{\sigma_k}(z) \). We call

\[
F_k = \bigcup_{\sigma \in D_F^k} \varphi_\sigma([0, 1]^d)
\]

the \(k \)-th approximation of \(F \). We call \(\varphi_\sigma([0, 1]^d) \) a \(k \)-th basic cube, and call it a \(k \)-th boundary cube if in addition \(\varphi_\sigma([0, 1]^d) \cap \partial[0, 1]^d \neq \emptyset \). Clearly, \(F_k \subset F_{k-1} \) for all \(k \geq 1 \) and \(F = \bigcap_{k=0}^{\infty} F_k \).

Recall that \(F \) is degenerated if \(F \) is contained in a face of \([0, 1]^d\) with dimension \(d-1 \). A connected component \(C \) of \(F_k \) is called a \(k \)-th island of \(F_k \) if \(C \cap \partial[0, 1]^d = \emptyset \), see [7]. Huang and Rao ([7],Theorem 3.1) proved that

Proposition 3.1 ([7]). Let \(F \) be a \(d \)-dimensional fractal cube which is non-degenerated. Then \(F \) has trivial points if and only if there is an integer \(p \geq 1 \) such that \(F_p \) contains an island.

For \(A \subset \mathbb{R}^d \), we denote by \(N_c(A) \) the number of connected components of \(A \).

Lemma 3.2. Let \(F \) be a \(d \)-dimensional fractal cube defined in \((3.1)\). If \(F \) has no trivial point, then for any \(\delta \in (0, 1) \) we have

\[
h_F(\delta) \leq c_1 \delta^{-\log_m(r-1)},
\]

where \(c_1 > 0 \) is a constant.
Proof. Since a degenerated fractal cube \(F = F(m, \mathcal{D}_F) \) is always isometric to a non-degenerated fractal cube \(F' = F(m, \mathcal{D}_{F'}) \) such that \(#\mathcal{D}_F = #\mathcal{D}_{F'}\), so we only need to consider the case that \(F \) is non-degenerated.

Let \(q = \lfloor \log_m \sqrt{d} \rfloor + 1 \), where \([a]\) denotes the greatest integer no larger than \(a\). We will prove
\[
(3.3) \quad h_F(m^{-k}) \leq 2d(r-1)^{k+q}, \quad \text{for all } k \geq 1
\]
by induction on \(d\). Notice that \(r \geq m \) since \(F \) has no trivial point.

If \(d = 1 \), then \(r = m, \, F = [0,1] \) and \(h_F(m^{-k}) = 1 \) for all \(k \geq 1 \), so \((3.3)\) holds in this case.

Assume that \((3.3)\) holds for all \(d'\)-dimensional fractal cubes which have no trivial point, where \(d' < d\). Now let \(F \) be a \(d\)-dimensional fractal cube which has no trivial point. Denote the \((d-1)\)-faces of \([0,1]^d\) by \(\Omega_1, \ldots, \Omega_{2d} \). Let
\[
r_i = \# \{ j \in \Sigma; \, \varphi_j([0,1]^d) \cap \Omega_i \neq \emptyset \},
\]
be the number of 1-th boundary cube intersecting the face \(\Omega_i \). Since \(F \) is non-degenerated, we have \(r_i \leq r-1 \) for all \(1 \leq i \leq 2d \). Clearly, the number of \(k\)-th boundary cubes which intersect \(\Omega_i \) is \(r_i^k \); so the number of \(k\)-th boundary cubes of \(F_k \) are at most \(2d(r-1)^k \). Notice that \(F \) has no trivial point, then \(F_k \) has no island by Proposition 3.1. Thus each connected component of \(F_k \) contains at least one \(k\)-th boundary cube. By the choice of \(q \) we see that the diameter of a \((k+q)\)-th basic cube is less than \(m^{-k} \), then the points of \(F \) in a connected component of \(F_{k+q} \) are contained in a \(m^{-k}\)-connected component of \(F \). Therefore, we have
\[
h_F(m^{-k}) \leq N_c(F_{k+q}) \leq 2d(r-1)^{k+q},
\]
This completes the proof of \((3.3)\). Finally, by an argument similar to Lemma 3.2 we obtain \((3.2)\).

Proof of Theorem 1.1. Let \(F \) be a fractal cube defined by \((3.1)\). Notice that \(\dim_B F = \log_m r \). The necessity of the theorem is guaranteed by Lemma 3.2.

Now we prove the sufficiency. Suppose that \(F \) has trivial points. By Remark 2.1 it is sufficient to show
\[
(3.4) \quad h_F(m^{-k}) \propto m^{k \dim_B F}, \quad k \geq 0.
\]
As before, we only need to consider the case that \(F \) is non-degenerated.

By Proposition 3.1 \(F_p \) contains a \(p\)-th island \(C \) for some \(p \geq 1 \). Fix \(k > p \). Clearly any \(m^{-k}\)-connected component of \(F \) is contained in a connected component of \(F_{k-1} \). It is easy to see that \(\varphi_{\sigma}(C) \) is a \((k-1)\)-th island of \(F_{k-1} \) for any \(\sigma \in \mathcal{D}_F^{k-p-1} \), and the distance of any two distinct \((k-1)\)-th islands of the form \(\varphi_{\sigma}(C) \) is no less than \(m^{1-k} \), so
\[
(3.5) \quad h_F(m^{-k}) \geq N_c(F_{k-1}) \geq (\#\mathcal{D}_F)^{k-p-1} = r^{k-p-1}.
\]
Let \(q = \lfloor \log_m \sqrt{d} \rfloor + 1 \). Then the points of \(F \) in a \((k+q)\)-th basic cube is contained in a \(m^{-k}\)-connected component of \(F \), which implies that \(h_F(m^{-k}) \leq r^{k+q} \). This together with \((3.5)\) imply \(h_F(m^{-k}) \propto r^k = m^{k \dim_B F} \). The theorem is proved.
Remark 3.1. It is shown in [7] that if a fractal cube \(F \) has a trivial point, then the Hausdorff dimension of the collection of its non-trivial points is strictly less than \(\dim_H F \).

4. Proof of Theorem 1.2

In this section, we always assume that \(E \) is a self-affine Sierpiński sponge defined in (1.1). We call

\[
E_k = \bigcup_{\omega \in D^k} S_\omega([0,1]^d)
\]

the \(k \)-th approximation of \(E \), and call each \(S_\omega([0,1]^d) \) a \(k \)-th basic pillar of \(E_k \).

Recall that \(\pi_j(x_1, \ldots, x_d) = (x_1, \ldots, x_j) \), \(1 \leq j \leq d-1 \) and by convention we set \(\#\pi_0(D) = 1 \) and \(\pi_d = \text{id} \). Note that \(\pi_j(E) \) is a self-affine Sierpiński sponge which determined by \(\{n_\ell\}_{\ell=1}^j \) and \(\pi_j(D) \). By [10], the box-counting dimension of \(E \) is

\[
\dim_B E = \sum_{j=1}^d \frac{1}{\log n_j} \log \frac{\#\pi_j(D)}{\#\pi_{j-1}(D)},
\]

Recall that \(\Lambda = \text{diag}(n_1, \ldots, n_d) \). A \(k \)-th basic pillar of \(E \) can be represented by

\[
S_{\omega_1 \ldots \omega_k}([0,1]^d) = \sum_{l=1}^k \Lambda^{-\ell_l} \omega_l + \prod_{j=1}^d [0, n_j^{-\ell_j(k)}],
\]

where \(\omega_1 \ldots \omega_k \in D^k \). For \(1 \leq j \leq d \), denote \(\ell_j(k) = \lfloor k \log n_d / \log n_j \rfloor \). Clearly \(n_j^{-\ell_j(k)} \approx n_d^{-k} \) and \(\ell_1(k) \geq \ell_2(k) \geq \cdots \geq \ell_d(k) = k \). We call

\[
Q_k := \left(\sum_{l=1}^{\ell_1(k)} \frac{i_1(\omega_l)}{n_1^{\ell_1(k)}}, \ldots, \sum_{l=1}^{\ell_d(k)} \frac{i_d(\omega_l)}{n_d^{\ell_d(k)}} \right) + \prod_{j=1}^d [0, n_j^{-\ell_j(k)}],
\]

a \(k \)-th approximate box of \(E \), if \(\omega_l = (i_1(\omega_l), \ldots, i_d(\omega_l)) \in D \) for \(1 \leq l \leq \ell_1(k) \). Let \(\tilde{E}_k \) be the union of all \(k \)-th approximate boxes. It is clear that \(\tilde{E}_k \subset E_k \).

Let \(\mu \) be the uniform Bernoulli measure on \(E \), that is, every \(k \)-th basic pillar has measure \(1/N^k \) in \(\mu \). The following lemma illustrates a nice covering property of self-affine Sierpiński sponges; it is contained implicitly in [10] and it is a special case of a result in [8].

Lemma 4.1 ([8,10]). Let \(E \) be a self-affine Sierpiński sponge. Let \(R \) be a \(k \)-th basic pillar of \(E \). Then the number of \((k+p) \)-th approximate boxes contained in \(R \) is comparable to

\[
\frac{n_d^{(k+p)\dim_B E}}{N^k}, \quad p \geq 1.
\]

Corollary 4.2. Let \(V \) be a union of some \(k \)-th cylinders of \(E \). Then there exists a constant \(M_1 > 0 \) such that

\[
h_V(\delta) \leq M_1 \mu(V)\delta^{-\dim_B E}, \quad \delta \in (0, n_d^{-k}).
\]
Proof. Let \(p \geq 1 \) and \(\delta = n_d^{-k-p} \). By Lemma 4.1, the number of \((k+p)\)-th approximate boxes contained in the union of the corresponding \(k\)-th basic pillars of \(V \) is comparable to \(\mu(V)n_d^{(k+p)\dim_{B}E} \). Since every \((k+p)\)-th approximate box can intersect a bounded number of \(\delta \)-connected component of \(E \), we obtain the lemma. \(\square \)

Similar as Section 3, a connected component \(C \) of \(E_k \) (resp. \(\tilde{E}_k \)) is called a \(k \)-th island of \(E_k \) (resp. \(\tilde{E}_k \)) if \(C \cap \partial[0,1]^d = \emptyset \). It is easy to see that \(E_k \) has islands if and only if \(\tilde{E}_k \) has islands. Recall that \(E \) is said to be degenerated if \(E \) is contained in a face of \([0,1]^d\) with dimension \(d-1 \). Zhang and Xu [24] Theorem 4.1] proved that

Proposition 4.3. Let \(E \) be a non-degenerated self-affine Sierpiński sponge. Then \(E \) has trivial points if and only if there is an integer \(q \geq 1 \) such that \(E_q \) has islands.

Let \(Q_k \in \tilde{E}_k \), we call \(Q_k \) a \(k \)-th boundary approximate box of \(E \) if \(Q_k \cap \partial[0,1]^d \neq \emptyset \).

Let \(W \) be a \(k \)-th cylinder of \(E \). Write \(W = f(E) \), then \(f([0,1]^d) \) is the corresponding \(k \)-th basic pillar of \(W \). A \(\delta \)-connected component \(U \) of \(W \) is called an inner \(\delta \)-connected component, if

\[
\text{dist} \left(U, \partial(f([0,1]^d)) \right) > \delta,
\]

otherwise, we call \(U \) a boundary \(\delta \)-connected component. We denote by \(h_W^b(\delta) \) the number of boundary \(\delta \)-connected components of \(W \), and by \(h_W^i(\delta) \) the number of inner \(\delta \)-connected components of \(W \).

Lemma 4.4. Let \(E \) be a non-degenerated self-affine Sierpiński sponge.

(i) Let \(W \) be a \(k \)-th cylinder of \(E \). Then

\[
h_W^b(\delta) = o(\mu(W)\delta^{-\dim_{B}E}), \quad \delta \to 0.
\]

(ii) If \(E \) satisfies the maximal power law, then \(E \) possesses trivial points; moreover, there exists an integer \(p_0 \geq 1 \) and a constant \(c' > 0 \) such that for any \(k \geq 1 \), any \(k \)-th cylinder \(W \) of \(E \) and any \(\delta \leq n_d^{-(k+p_0)} \),

\[
h_W^i(\delta) \geq c' h_W(\delta).
\]

Proof. (i) Write \(W = f(E) \). Let \(W_p^* \) be the union of \((k+p)\)-th cylinders of \(W \) whose corresponding basic pillars intersecting the boundary of \(f([0,1]^d) \). Since \(E \) is non-degenerated, we have

\[
\mu(W_p^*) = o(\mu(W)), \quad p \to \infty.
\]

Set \(\delta = n_d^{-(k+p)} \). If \(U \) is a boundary \(\delta \)-connected component of \(W \), then \(U \cap W_p^* \neq \emptyset \). Therefore,

\[
h_W^b(\delta) \leq h_{W_p^*}(\delta) \leq M_1\mu(W_p^*)\delta^{-\dim_{B}E},
\]

where the last inequality is due to Corollary 4.2. This together with (4.7) imply (4.6).

(ii) The assumption that \(E \) satisfies the maximal power law implies that there exists \(M_2 > 0 \) such that

\[
h_E(\delta) \geq M_2 \cdot \delta^{-\dim_{B}E}, \quad \text{for any } \delta \in (0,1).
\]
If E does not possess trivial points, then for all $k \geq 1$, E_k does not contain any k-th island by Proposition 4.3 furthermore, E_k does not contain any k-th island. Thus each δ-connected component of E contains points of $E \cap \partial([0, 1]^d)$, so $h_E(\delta) = h_E^b(\delta)$. On the other hand, by (i) we have $h_E^b(\delta) = o(\delta^{-\dim_B E})$ as $\delta \to 0$, which contradicts (1.8). This proves that E possesses trivial points.

Let W be a k-th cylinder of E. Since $h_{A \cup B}(\delta) \leq h_A(\delta) + h_B(\delta)$, by (4.8) we have

\begin{equation}
(4.9) \quad h_W(\delta) \geq N^{-k}h_E(\delta) \geq M_2\mu(W)\delta^{-\dim_B E}, \quad \text{for any } \delta \in (0, 1).
\end{equation}

Take $\varepsilon \leq M_2/2$. By (4.6), there exists an integer $p_0 \geq 1$ such that

\begin{equation}
(4.10) \quad h_W^b(\delta) \leq \varepsilon\mu(W)\delta^{-\dim_B E} \quad \text{for } \delta \leq n_d^{-(k+p_0)}.
\end{equation}

This together with (4.9) and (4.10) imply that for $\delta \leq n_d^{-(k+p_0)},$

\begin{equation}
(4.11) \quad h_W^i(\delta) = h_W(\delta) - h_W^b(\delta) \geq \frac{M_2}{2}\mu(W)\delta^{-\dim_B E} \geq c'h_W(\delta),
\end{equation}

where $c' = M_2/(2M_1)$ and M_1 is the constant in Corollary 4.2. The lemma is proved. \hfill \Box

Proof of Theorem 1.2. We will prove this theorem by induction on d. Notice that E is a 1-dimensional fractal cube if $d = 1$, and in this case the theorem holds by Theorem 1.1. Assume that the theorem holds for all d'-dimensional self-affine Sierpiński sponge with $d' \leq d - 1$.

Now we consider the d-dimensional self-affine Sierpiński sponge E. Denote $G := \pi_{d-1}(E)$. First, G is non-degenerated since E is. Secondly, by (1.2) we have

\begin{equation}
(4.12) \quad \log \frac{N}{\# \pi_{d-1}(D)} + \dim_B G = \dim_B E.
\end{equation}

"\Rightarrow": Suppose E and all $\pi_j(E)$ ($1 \leq j \leq d - 1$) possess trivial points, then $G = \pi_{d-1}(E)$ satisfies the maximal power law by induction hypothesis. We will show that E satisfies the maximal power law.

Firstly, by Corollary 4.2

\begin{equation}
(4.13) \quad h_E(\delta) \leq M_1\delta^{-\dim_B E} \quad \text{for all } \delta \in (0, 1).
\end{equation}

Now we consider the lower bound of $h_E(\delta)$.

Since E possesses trivial points, by Proposition 4.3 there exists an integer $q_0 \geq 1$ such that E_{q_0} has a q_0-th island, which we denote by I. Let p_0 be the constant in Lemma 4.3 (ii). Let $k \geq q_0$ and $\delta = n_d^{-(k+p_0)}$. Since G satisfies the maximal power law, there exists a constant $c > 0$ such that

\begin{equation}
(4.14) \quad c^{-1}\delta^{-\dim_B G} \leq h_G(\delta) \leq c\delta^{-\dim_B G}.
\end{equation}

It is easy to see that $S_\tau(I)$ is a k-th island of E for any $\tau \in \mathcal{D}^{k-q_0}$. So E_k has N^{k-q_0} number of k-th islands like $I' := S_\omega(I)$ for some $\omega \in \mathcal{D}^{k-q_0}$. Since the distance of any two k-th islands of E_k is at least n_d^{-k}, we have

\begin{equation}
(4.15) \quad h_E(\delta) \geq N^{k-q_0} \cdot h_{E \cap I'}(\delta).
\end{equation}
Let W be any k-th cylinder of E contained in I'. Since π_{d-1} is contractive, we obtain
\begin{equation}
 h_{E\cap I'}(\delta) \geq h_{G\cap \pi_{d-1}(I')}((\delta) \geq c' h_{\pi_{d-1}(W)}(\delta),
\end{equation}
where the last inequality is due to Lemma 4.4(ii) with the constant c' depends on G. Furthermore, from $h_{A\cup B}(\delta) \leq h_A(\delta) + h_B(\delta)$ we infer that
\begin{equation}
(\# \pi_{d-1}(D))^k \cdot h_{\pi_{d-1}(W)}(\delta) \geq h_G(\delta).
\end{equation}
By (4.12), we have
\begin{align*}
h_E(\delta) & \geq N^{k-\eta_0} \cdot \frac{c'h_G(\delta)}{(\# \pi_{d-1}(D))^k} \geq c'c^{-1}N^{-\eta_0} \cdot \left(\frac{N}{\# \pi_{d-1}(D)} \right)^k \cdot \delta^{-\dim B}
\end{align*}
where the last equality holds by (4.10). This together with (4.11) imply that G satisfies the maximal power law.

\implies: Suppose E satisfies the maximal power law. Then E possesses trivial points by Lemma 4.4(ii). So it is sufficient to show that $G = \pi_{d-1}(E)$ satisfies the maximal power law by induction hypothesis.

Suppose on the contrary this is false. Then given $\epsilon > 0$, there exists δ as small as we want, such that
\begin{equation}
 h_G(\delta) \leq \epsilon \delta^{-\dim B}. \tag{4.16}
\end{equation}

Let W be a k-th cylinder of E, then $V := \pi_{d-1}(W)$ is a k-th cylinder of G. Let μ' be the uniform Bernoulli measure on G. By Lemma 4.4 (i), there exists an integer $p_1 \geq 1$ such that
\begin{equation}
 h_{\pi_{d-1}}^b(\eta) \leq \epsilon \mu'(V) \eta^{-\dim B} \text{ for } \eta \leq \pi_{d-1}^{-(k+p_1)}.
\end{equation}
We choose δ small and thus k large so that $n^{-(k+1)} \leq \delta < n^{-k} < n^{-(k+p_1)}$, then
\begin{equation}
 h_{\pi_{d-1}}^b(\delta) \leq \epsilon \delta^{-\dim B} \left(\frac{1}{(N')^k} \right),
\end{equation}
where $N' = \# \pi_{d-1}(D)$. On the other hand, by (4.16),
\begin{equation}
(N')^k h_{\pi_{d-1}}^b(\delta) \leq h_G(\delta) \leq \epsilon \delta^{-\dim B} \tag{4.16'}
\end{equation}
So we obtain
\begin{equation}
 h_{\pi_{d-1}}^b(\delta) = h_{\pi_{d-1}}^i(\delta) + h_{\pi_{d-1}}^i(\delta) \leq \frac{2\epsilon \delta^{-\dim B}}{(N')^k}. \tag{4.17}
\end{equation}

Now we estimate $h_W(\delta')$, where $\delta' = \sqrt{n^{-k}} > \sqrt{\delta^2 + (n^{-k})^2}$. Since W is contained in $\pi_{d-1}(W) \times [b, b + n^{-k}]$ for some $b \in [0, 1]$, we deduce that if two points $\pi_{d-1}(x)$ and $\pi_{d-1}(y)$ belong to a same δ-connected component of G, then x and y belong to a same δ'-connected component of E. Therefore,
\begin{equation}
 h_W(\delta') \leq h_{\pi_{d-1}}^i(\delta), \tag{4.18}
\end{equation}
and consequently,

$$h_E(\delta') \leq N^k \cdot h_W(\delta') \leq N^k \cdot \frac{2\varepsilon \delta^{-\dim B} G}{(N')^k} \leq M' \varepsilon (\delta')^{-\dim B E}$$

for $M' = 2(\sqrt{2})^{\dim B E} n_d^{\dim B G}$. This is a contradiction since E satisfies the maximal power law. The theorem is proved.

\[\square\]

5. Proof of Theorem 1.3

Before proving Theorem 1.3 we prove a finite type property of totally disconnected self-affine Sierpiński sponge. The proof is similar to [22] and [17], which dealt with fractal cubes and Bedford-McMullen carpets, respectively.

Theorem 5.1. Let E be a totally disconnected self-affine Sierpiński sponge, then there is an integer $M_3 > 0$ such that for every integer $k \geq 1$, each connected component of E_k contains at most M_3 k-th basic pillars.

Denote $d_H(A, B)$ the Hausdorff metric between two subsets A and B of \mathbb{R}^d. The following lemma is obvious, see for instance [22].

Lemma 5.1. Suppose $\{X_k\}_{k \geq 1}$ is a collection of connected compact subsets of $[0, 1]^d$. Then there exist a subsequence $\{k_i\}_{i \geq 1}$ and a connected compact set X such that $X_{k_i} \rightarrow E \times i \rightarrow \infty$.

Proof of Theorem 5.1. Let E be a totally disconnected self-affine Sierpiński sponge. We set

$$\Xi_k = \bigcup_{h \in \{-1,0,1\}^d} (E_k + h).$$

First, we claim that there exists an integer k_0 such that for any connected component X of Ξ_{k_0} with $X \cap [0, 1]^d \neq \emptyset$, X is contained in $(-1, 2)^d$.

Suppose on the contrary that for any k there are connected components $X_k \subset \Xi_k$ and points $x_k \in [0, 1]^d \cap X_k$ and $y_k \in \partial [-1, 2]^d \cap X_k$. By Lemma 5.1, we can take a subsequence $\{k_i\}_i$ such that $x_{k_i} \rightarrow x^* \in [0, 1]^d$; $y_{k_i} \rightarrow y^* \in \partial [-1, 2]^d$ and $X_{k_i} \rightarrow E \times i \rightarrow \infty$ for some connected compact set X with

$$X \subset \bigcup_{h \in \{-1,0,1\}^d} (E + h), \ x^* \in X \cap [0, 1]^d, \text{ and } y^* \in X \cap \partial [-1, 2]^d.$$

Clearly $\bigcup_{h \in \{-1,0,1\}^d} (E + h)$ is totally disconnected since it is a finite union of totally disconnected compact sets. (A carefully proof of this fact can be found in [22]). This contradiction proves our claim.

For any $k \geq 1$, let U be a connected component of E_{k+k_0} such that $U \cap S_\omega([0, 1]^d) \neq \emptyset$ for some $\omega \in D^k$. Notice that $S_\omega([1, -2]^d) \cap E_{k+k_0} \subset S_\omega(\Xi_{k_0})$, then $[-1, 2]^d \cap S_\omega^{-1}(U) \subset \Xi_{k_0}$. By the claim above, every connected component of $[-1, 2]^d \cap S_\omega^{-1}(U)$ which intersects $[0, 1]^d$ is contained in $(-1, 2)^d$. This implies that

$$S_\omega^{-1}(U) \subset (-1, 2)^d$$
since U is connected. It follows that $U \subset S_\omega((-1,2)^d)$, so U contains at most $3^dN^{k_0}$ $(k + k_0)$-th basic pillars of E. Thus E is of finite type. □

Recall that $\pi_j(x_1, \ldots, x_d) = (x_1, \ldots, x_j)$ for $1 \leq j \leq d-1$. Denote $\hat{\pi}_d(x_1, \ldots, x_d) = x_d$. Let $z_1, \ldots, z_p \in E$. For $0 < \delta < 1$, we call z_1, \ldots, z_p a δ-chain of E if $|z_{i+1} - z_i| \leq \delta$ for $1 \leq i \leq p-1$, and define the size of the chain as

$$L = \frac{\text{diam}\{z_1, \ldots, z_p\}}{\delta}.$$

Proof of Theorem 1.3. We will prove the theorem by induction on d. If $d = 1$, E is a 1-dimensional fractal cube, and the theorem holds by Remark 1.1.

Totally disconnected \Rightarrow perfectly disconnected: Suppose that E and $\pi_j(E)$, $j = 1, \ldots, d-1$, are totally disconnected. By induction hypothesis, $\pi_{d-1}(E)$ is perfectly disconnected. We will show that E is perfectly disconnected.

Take $\delta \in (0, 1)$. Let U be a δ-connected component of E. Let k be the integer such that $n_d^{-(k+1)} \leq \delta < n_d^{-k}$. Then U is contained in a connected component V of E_k. Let M_3 be a constant such that Theorem 5.1 holds for E and $\pi_{d-1}(E)$ simultaneously, then V contains at most M_3 k-th basic pillars. Denote $L = \text{diam}(U)/\delta$.

Let z_1, \ldots, z_p be a δ-chain in U such that $|z_1 - z_p| \geq L\delta/2$. Then $\pi_{d-1}(z_1), \ldots, \pi_{d-1}(z_p)$ is also a δ-chain in $\pi_{d-1}(E)$. Since $|\hat{\pi}_d(x) - \hat{\pi}_d(y)| \leq M_3n_d^{-k}$ for any $x, y \in V$, we have

$$|\pi_{d-1}(z_1) - \pi_{d-1}(z_p)| \geq \sqrt{L^2\delta^2/4 - M_3^2n_d^{-2k}} \geq n_d^{-k}\sqrt{\frac{L^2}{4n_d^2} - M_3^2},$$

so

$$L' = \frac{|\pi_{d-1}(z_1) - \pi_{d-1}(z_p)|}{\delta} \geq \sqrt{\frac{L^2}{4n_d^2} - M_3^2}.$$

If E is not perfectly disconnected, then we can choose U such that L is arbitrarily large, so $\text{diam}(\pi_{d-1}(U))/\delta \geq L'$ can be arbitrarily large, which contradicts the fact that $\pi_{d-1}(E)$ is perfectly disconnected.

Perfectly disconnected \Rightarrow totally disconnected: Assume that E is perfectly disconnected. Clearly E is totally disconnected. Hence, by induction hypothesis, we only need to show that $G := \pi_{d-1}(E)$ is perfectly disconnected.

Firstly, we claim that G must be totally disconnected.

Suppose on the contrary that the claim is false. Let Γ be a connected subset of $(0,1)^{d-1} \cap G$. Fix two points $a, b \in \Gamma$. Take any $\omega \in (\pi_{d-1}(\mathcal{D}))^k$, then $S'_{\omega}(\Gamma)$ is contained in the interior of the k-th basic pillar $V = S'_{\omega}([0,1]^{d-1})$, where $\{S'_{\omega}\}_{i \in \pi_{d-1}(\mathcal{D})}$ is the IFS of G. Denote $a' = S'_{\omega}(a)$, $b' = S'_{\omega}(b)$. Then $|b' - a'| \geq |b - a|/n_{d-1}^k$.

Let $\delta = n_d^{-k}$. Let $z_1 = a', \ldots, z_p = b'$ be a δ-chain in $S'_{\omega}(\Gamma) \subset V$. Let W be a k-th cylinder of E such that $\pi_{d-1}(W) = V \cap G$. Let y_1, \ldots, y_p be a sequence in W such that $\pi_{d-1}(y_j) = z_j$, $1 \leq j \leq p$, then it is a $(\sqrt{2}\delta)$-chain. Since

$$L = \frac{|y_1 - y_p|}{\sqrt{2}\delta} \geq \frac{|z_1 - z_p|}{\sqrt{2}\delta} \geq \frac{|b - a|}{\sqrt{2}} \cdot \left(\frac{n_d}{n_{d-1}}\right)^k$$

Proof of Theorem 1.3.
can be arbitrarily large when \(k \) tends to \(\infty \), we conclude that \(E \) is not perfectly disconnected, which is a contradiction. The claim is proved.

Secondly, suppose on the contrary that \(G \) is not perfectly disconnected. Take \(\delta \in (0, 1) \). Let \(U \) be a \(\delta \)-connected component of \(G \). Denote \(L = \text{diam}(U)/\delta \). Let \(k \) be the integer such that \(n_d^{-k-1} \leq \delta < n_d^{-k} \). Then \(U \) is contained in a connected component \(V \) of \(G_k \). Since \(G \) is totally disconnected, by Theorem 5.1 \(V \) contains at most \(M_3 \) \(k \)-th basic pillars of \(G \), and we denote the corresponding \(k \)-th cylinders by \(V_1, \ldots, V_h \) where \(h \leq M_3 \).

Let \(z_1, \ldots, z_p \) be a \(\delta \)-chain of \(U \) such that \(|z_1 - z_p| = L\delta \). Without loss of generality, we may assume that the diameter of \(\{z_1, \ldots, z_p\} \cap V_j \) attains the maximality when \(j = 1 \). Let \(\{x_j\}_{j=1}^\ell \) be the subsequence of \(\{z_j\}_{j=1}^p \) located in \(V_1 \), then \(|x_1 - x_\ell| \geq L\delta/h \).

Let \(\Delta = \max_{1 \leq j \leq \ell} |x_j - x_{j+1}| \), then \(x_1, \ldots, x_\ell \) is a \(\Delta \)-chain in \(V_1 \).

Let \(W \) be a \(k \)-th cylinder of \(E \) such that \(\pi_{d-1}(W) = V_1 \). Then the pre-image of \(x_j \) in \(W \), which we denote by \(y_1, \ldots, y_\ell \), is a \(\sqrt{\Delta^2 + (n_d\delta)^2} \)-chain. The size of this chain is

\[
\tilde{L} \geq \frac{|y_1 - y_\ell|}{\sqrt{\Delta^2 + (n_d\delta)^2}} \geq \frac{|x_1 - x_\ell|}{\sqrt{\Delta^2 + (n_d\delta)^2}} \geq \frac{L\delta}{h\sqrt{\Delta^2 + (n_d\delta)^2}}.
\]

Case 1. \(\Delta \leq \sqrt{L}\delta \).

In this case we have \(\tilde{L} \geq \frac{L}{M_3\sqrt{L+n_d^2}} \). Since \(G \) is not perfectly disconnected, \(\tilde{L} \) can be arbitrarily large when \(L \to \infty \), we deduce that \(E \) is not perfectly disconnected, which is a contradiction.

Case 2. \(\Delta > \sqrt{L}\delta \).

Let \(1 \leq j^* + 1 \leq \ell - 1 \) be the index such that \(|x_{j^*+1} - x_{j^*}| = \Delta \). Denote the sub-chain of \(z_1, \ldots, z_p \) between \(x_{j^*} \) and \(x_{j^*+1} \) by

\[
z'_1 = z_{m+1}, \ldots, z'_s = z_{m+s}.
\]

Then \((z'_j)_{j=1}^s \) belong to \(V_2 \cup \cdots \cup V_h \) and \(|z'_1 - z'_s| \geq (\sqrt{L} - 2)\delta \).

Now we repeat the above argument by considering the \(\delta \)-chain \((z'_j)_{j=1}^s \) in \(V_2 \cup \cdots \cup V_h \). In at most \(M_3 - 1 \) steps, we will obtain a \(\Delta' \)-chain in \(E \) with arbitrarily large size when \(L \to \infty \). This finishes the proof of Case 2 and the theorem is proved. \(\square \)

References

[1] J. Barral, M. Mensi, *Gibbs measures on self-affine Sierpiński carpets and their singularity spectrum*, Ergod. Th. & Dynam. Sys., 27(5) (2007), 1419-1443.

[2] T. Bedford, *Crinkly curves, Markov partitions and dimensions*, PhD Thesis, University of Warwick, 1984.

[3] A.S. Besicovitch and S.J. Taylor, *On the complementary intervals of a linear closed set of zero Lebesgue measure*, J. London Math. Soc. 29 (1954), 449-459.

[4] J. Deng, Q. Wang and L.F. Xi, *Gap sequences of self-conformal sets*, Arch. Math. (Basel) 104 (2015), 391-400.

[5] K.J. Falconer, *On the Minkowski measurability of fractals*, Proc. Amer. Math. Soc, 123 (1995), 1115-1124.

[6] J.M. Fraser, D.C. Howroyd, *Assouad type dimensions for self-affine sponges*, Ann. Acad. Sci. Fenn. Math. 42 (2017), no. 1, 149-174.
[7] L.Y. Huang and H. Rao, A dimension drop phenomenon of fractal cubes, J. Math. Anal. Appl., 497 (2021), 11pp.
[8] L.Y. Huang, H. Rao, Z.Y. Wen and Y.L. Xu, On Minkowski measures of metric spaces, Preprint, 2021 [arXiv:2111.00752 [math.MG]].
[9] T. Jordan, M. Rams, Multifractal analysis for Bedford-McMullen carpets, Math. Proc. Cambridge Philos. Soc. 150 (2011), 147-156.
[10] R. Kenyon and Y. Peres, Measures of full dimension on affine-invariant sets, Ergodic Theory Dynam. Systems, 16 (1996), 307-323.
[11] J.F. King, The Singularity Spectrum for General Sierpiński Carpets, Adv. Math. 116 (1995), 1-11.
[12] M.L. Lapidus and C. Pomerance, The Riemann zeta-function and the one-dimensional Weyl-Berry conjecture for fractal drums, Proc. Lond. Math. Soc, 66 (1993) 41-69.
[13] B.M. Li, W.X. Li and J.J. Miao, Lipschitz equivalence of McMullen sets, Fractals, 21 (3 & 4) (2013), 1350022, 11 pages.
[14] Z. Liang, J.J. Miao, H. J. Ruan, Gap sequences and Topological properties of Bedford-McMullen sets, Preprint 2021 [arXiv:2003.08262 [math.Ph]].
[15] J.M. Mackay, Assouad dimension of self-affine carpets, Conform. Geom. Dyn. 15 (2011), 177-187.
[16] C. McMullen, The Hausdorff dimension of Sierpiński carpets, Nagoya Math. J., 966 (1984), 1-9.
[17] J.J. Miao, L.F. Xi and Y. Xiong, Gap sequences of McMullen sets, Proc. Amer. Math. Soc., 145 (2017), 1629-1637.
[18] L. Olsen, Symbolic and geometrical local dimensions of self-affine multifractal Sierpinski sponges in \mathbb{R}^d, Stoch. Dyn., 7 (2007), 37-51.
[19] Y. Peres, The self-affine carpets of McMullen and Bedford have infinite Hausdorff measure, Math. Proc. Camb. Phil. Soc., 116 (1994), 513-526.
[20] H. Rao, H.J. Ruan and Y.M. Yang, Gap sequence, Lipschitz equivalence and box dimension of fractal sets, Nonlinearity, 21 (2008), 1339-1347.
[21] H. Rao, Y.M. Yang and Y. Zhang, Invariance of multifractal spectrum of uniform self-affine measures and its applications, Preprint 2021 [arXiv:2005.07451 [math.DS]].
[22] L.F. Xi and Y. Xiong, Self-similar sets with initial cubic patterns, C. R. Acad. Sci. Paris, Ser.I, 348 (2010), 15-20.
[23] Y.M. Yang and Y. Zhang, Lipschitz classification of Bedford-McMullen carpets with uniform horizontal fibers, J. Math. Anal. Appl., 495 (2021), 12pp.
[24] Y.F. Zhang and Y.L. Xu, Dimension drop of connected part of slicing self-affine sponges, Preprint 2021 [arXiv:2110.09711 [math.DS]].