Superconductivity in a new layered triangular-lattice system Li$_2$IrSi$_2$

K Horigane1, K Takeuchi2, D Hyakumura3, R Horie4, T Sato5, T Muranaka6, K Kawashima7, H Ishii8, Y Kubozono9, S Orimo10, M Isobe1 and J Akimitsu1

1 Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
2 Graduate School of natural science and technology, Okayama University, Okayama, Japan
3 Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Japan
4 Institute for Materials Research, Tohoku University, Sendai, Japan
5 Department of Engineering Science, University of Electro-Communications, Tokyo, Japan
6 National Synchrotron Radiation Research Center, Hsinchu, Taiwan
7 WPI-Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, Japan
8 National Institute for Materials Science (NIMS), Tsukuba, Japan

Keywords: superconductivity, iridium-silicide, spin–orbit coupling

Abstract

We report on the crystal structure and superconducting properties of a novel iridium-silicide, namely Li$_2$IrSi$_2$. It has a Ag$_2$NiO$_2$-type structure (space group R-3m) with the lattice parameters $a = 4.028$ 30 (6) Å and $c = 13.161$ 80 (15) Å. The crystal structure comprises IrSi$_2$ and double Li layers stacked alternately along the c-axis. The IrSi$_2$ layer includes a two-dimensional Ir equilateral-triangular lattice. Electrical resistivity and static magnetic measurements revealed that Li$_2$IrSi$_2$ is a type-II superconductor with critical temperature (T_c) of 3.3 K. We estimated the following superconducting parameters: lower critical field $H_{c1}(0) \sim 42$ Oe, upper critical field $H_{c2}(0) \sim 1.7$ kOe, penetration depth $\lambda_0 \sim 265$ nm, coherence length $\xi_0 \sim 44$ nm, and Ginzburg–Landau parameter $\kappa_{GL} \sim 6.02$. The specific-heat data suggested that superconductivity in Li$_2$IrSi$_2$ could be attributed to weak-coupling Cooper pairs.

1. Introduction

Owing to their unique physical properties, including charge and spin ordering, colossal magnetoresistance, and high-T_c superconductivity, 3d transition-metal compounds have attracted considerable attention. These physical properties emerge from the interplay between spin, charge, and orbital degrees of freedom. On the contrary, 3d transition-metal compounds are expected to exhibit exotic phenomena, because their spin–orbit coupling (SOC) is significantly stronger than that of 3d transition-metal compounds. The non-centrosymmetric superconductivity discovered in CePt$_3$Si$_3$ [1] and UIr$_2$ [2] is a typical example of effective physical property enhancement by SOC, wherein Cooper pairs develop a spontaneous magnetic moment below the superconducting transition temperature (T_c), breaking the time-reversal symmetry. The superconducting wave function is described as a mixed-parity state of spin-singlet and triplet Cooper pairs. Another typical case is the spin–orbit Mott state in Sr$_x$IrO$_3$ proposed by Kim et al., wherein an effective total angular moment $j_{\text{eff}} = 1/2$ Kramers doublet state is produced by an on-site Coulomb repulsion U associated with strong SOC in a 5d electron system [3]. Watanabe et al. theoretically predicted that the electron-doped SO Mott state would exhibit d-wave superconductivity due to the pseudospin of the $j_{\text{eff}} = 1/2$ Kramers doublet [4]. In recent angle-resolved photoemission spectroscopy experiments, d-wave symmetry in the superconducting gap order parameter was observed in electron-doped Sr$_2$IrO$_4$ [5]. Therefore, 5d electron systems, particularly in Ir compounds, involve superconductivity, which are interesting research subjects for the exploration of novel exotic superconductivity.

Several Ir-based superconductors have been reported till date, which include MIr$_2$As$_3$ ($M = Sr, Ba, Y, La$) [6–9], Ir$_{1-x}$Pt$_x$Te$_2$ [10–12], SrIr$_2$ [13], Bi$_2$Ir$_7$ ($T = Mo, V$) [14], ThIr, MIr$_2$ ($M = Sc, Y, La$), M$_3$Ir$_2$ ($M = La, Th, Ce$), MIr$_5$ ($M = La, Th, Ce$), YIr$_2$ [15], IrGe$_6$ [16], M$_5$Ir$_3$Si$_{10}$ ($M = Sc, Y, Lu$), M$_5$Ir$_3$Ge$_{10}$ ($M = Y, Lu$) [17–20], IrTe$_3$ [21], M$_2$Si$_3$ ($M = Y, La$) [22], and Li$_2$IrSi$_3$ [23, 24]. Among these superconductors, Sc$_5$Ir$_3$Si$_{10}$ has the highest T_c of ~8.5 K, which is ascribed to the large density of states (DOS) at the Fermi level (E_F) with moderate...
electron–phonon coupling [25]. In general, Si often reacts with 4d- or 5d-elements (M) to form a variety of silicide intermetallics because the energy levels of the Si 3p and M 4d or 5d orbitals are close together, resulting in orbital hybridization and unfilled metallic bands near E_F. Orbital hybridization generates M–Si covalent bonding network in the structure. In Sc$_5$Ir$_4$Si$_{10}$, a Co$_5$Sc$_5$Si$_{10}$-type structure, the three-dimensional network comprised an Ir–Si cyclic octagonal lattice. A two-dimensional (2D) network is formed by Ir–Si tetrahedral linkage in LaIr$_2$Si$_2$, a ThCr$_2$Si$_2$-type structure. A metallic state with a large DOS at E_F is expected in iridium silicides. This would be advantageous for the development of new superconductors because large electron densities can lead to Cooper pairing coherency. In fact, several Ir–Si superconductors, such as Sc$_5$Ir$_4$Si$_{10}$ ($T_c \approx 8.5$ K), Lu$_3$Ir$_3$Si$_5$ ($T_c \approx 5.6$ K), CalIrSi$_3$ ($T_c \approx 3.6$ K), and HfIrSi ($T_c \approx 3.5$ K), have been reported [26–29]. These superconductors comprised primarily of rare-earth or alkali-earth compounds. To the best of our knowledge, Li$_2$IrSi$_3$ ($T_c = \approx 3.8$ K) is the only alkali-metal compound reported till date. Therefore, the alkali-metal Ir–Si ternary system is an unexplored subject in new materials research, which motivated us to perform this study.

After numerous attempts to synthesize new alkali-metal iridium silicides, we recently produced a new superconductor, Li$_2$IrSi$_2$, using a high-pressure synthesis technique. Li$_2$IrSi$_2$ has a layered structure composed of planar equilateral triangular Ir lattices and it exhibits a superconducting transition at ≈ 3.3 K. Therefore, Li$_2$IrSi$_2$ is a rare superconductor with a 2D Ir triangular lattice. Its crystal structure, a triangular Ir lattice, is similar to that of IrTe$_2$. However, in contrast to Ir$_{1-x}$Pt$_x$Te$_2$ ($T_c = \approx 3.1$ K), superconductivity in Li$_2$IrSi$_2$ occurs at low temperatures without breaking chemical bonds [10]. Herein, we report the crystal structure and superconducting properties of Li$_2$IrSi$_2$ and present its superconducting parameters estimated from experimental critical field measurements. We also comment briefly on another new superconductor, Li$_3$RhSi$_2$, which is isostructural to Li$_2$IrSi$_2$. Furthermore, we discuss the relation between the SOC and superconductivity in this material.

2. Experimental procedures

Polycrystalline samples of Li$_2$IrSi$_2$ were prepared using a solid-state reaction with a high-pressure synthesis technique. Commercial chemicals, Ir (4N) and Si (4N) powders, and handmade precursor (Li$_2$Si$_2$) were used as starting materials. The precursor Li$_2$Si$_2$ was prepared from a stoichiometric mixture of Li lumps and Si powder in a solid-sate reaction at 800 °C for 30 min, which was post-annealed at 450°C for 16 h in an evacuated quartz tube. The starting materials were mixed in an agate mortar at a molar ratio of Li:Ir:Si = 2:1:2 and then pressed into a disk shape with a diameter and thickness of 6.9 and ~ 3.5 mm, respectively. The chemicals in these procedures were handled in a glove box encapsulated by nonmagnetic material. Electrical resistivity was measured with the standard DC four-probe method using a commercial apparatus (Quantum Design, PPMS). The excitation current was set to either 1.0 or 5.0 mA. The data were collected at temperatures between 1.9 and 200 K under various magnetic fields up to 2 kOe. Specific heat was measured with the PPMS according to the time-relaxation method. The data were collected with a small bulk specimen at temperatures between 2 and 10 K under magnetic fields of 0 and 90 kOe.

3. Results and discussion

3.1. Crystal structure

Figure 1 (a) shows the powder XRD patterns. The top pattern (red) is that of Li$_2$IrSi$_2$ sample. The middle (blue) pattern was a calculated based on the Li$_2$IrSi$_2$ phase with the structural model shown in figure 2 (a) (v.i.). The bottom (green) pattern is that of the known phase, Li$_3$IrSi$_3$ [23, 24]. The observed Li$_2$IrSi$_2$ pattern (top) could be reproduced from the calculated pattern (middle), and they were undoubtly different from that of Li$_3$IrSi$_3$. The
Figure 1 (a) Powder x-ray diffraction (XRD) patterns of Li$_2$IrSi$_2$. The observed pattern is shown at the top (red circles). The middle pattern (blue line) was calculated with the structural model shown in figure 2(a). The bottom pattern (green line) is an XRD pattern of Li$_2$IrSi$_3$ [23]. (b) Synchrotron XRD pattern of Li$_2$IrSi$_2$ and the Rietveld-analysis profile with the structural model in figure 2(a).

Figure 2. Crystal structure models of (a) Li$_2$IrSi$_2$ (space group R-3m) and (b) LiIrSi$_2$ (R3m). The former includes Li bilayers placed at the octahedral position, while the latter includes Li monolayers placed at the prismatic position.
XRD pattern observed for the Li$_2$IrSi$_2$ sample indicates a new phase, which is not in the PDXL (Rigaku) database. Majority of the Bragg reflections can be indexed to a trigonal unit cell with lattice parameters a and c as ~ 4.03 and $c \sim 13.16$ Å, respectively. The extinctions are $-h + k + l = 3n$ for hkl and $l = 3n$ for 00l reflections, where n is an integer. Therefore, the potential space groups are centrosymmetric R-3m (No. 166) and R-3 (148) and non-centrosymmetric R32 (155), R3m (160), and R3 (146). Li$_2$IrSi$_2$ has rhombohedral symmetry. The sample also contains a small amount of a secondary phase, non-superconducting IrSi$_3$.

Herein, we propose a crystal structure model for Li$_2$IrSi$_2$ with the space group R-3m, which is the group with the highest symmetry of those mentioned above, as shown in figure 2(a). This is the Ag$_2$NiO$_2$-type structure. The structure model comprised closed-packed stacking of equilateral-triangle lattice planes of Ir, Si, and Li atoms with rhombohedral symmetry. The atomic layer sequence in a period along the c-axis is ...Ir, Si, Li, Ir, Si, Li, Ir, Si, Li, Ir, ... for the closed-packed positions ...-a, b, -c-a, -b, c, a, b, -c, a, c, b, a, ..., respectively. The structure includes IrSi$_2$ layers interleaved with a Li bilayer, stacked alternately along the c-axis. The IrSi$_2$ layer comprises edge-shared IrSi$_6$ octahedrons. The Li atom has octahedral (six-fold) coordination with the adjacent atoms.

Based on the structural model in figure 2(a), the atomic coordinates were refined by Rietveld analysis of the synchrotron XRD data. Figure 1(b) shows the synchrotron XRD pattern. A multiphase pattern-fitting method was used for the analysis of the primary (Li$_2$IrSi$_2$) and secondary (IrSi$_3$) phases. The resultant reliability factors were $R_{wp} = 3.72\%$, $R_p = 2.46\%$, and $S = R_{wp}/R_e = 1.2559$, which were satisfactorily low. The mass fraction for 00l reflections was $\sim 9.3\%$. We also performed Rietveld refinement of the Li site occupancy, and we could refine ~10% of the Li vacancies in the structure. However, our refinement could not determine the thermal factor B (we fixed $B = 1$) which is strongly correlated with the occupancy of atom and the reliability factor of this defect model was nearly identical to that of the non-defect model. The chemical formula thus needs to be confirmed with another method, such as energy dispersive x-ray spectroscopy. For this reason, we do not address Li vacancy quantitatively in this report. The refined structural parameters for Li$_2$IrSi$_2$ are listed in table 1.

We tested the other space groups R-3, R32, R3m, and R3 to describe the Ag$_2$NiO$_2$-type structural model. These space groups have a lower symmetry than R-3m. Since the space groups R-3 and R32 give the same structural model as R-3m, these space groups can be excluded from the candidates. The non-centrosymmetric space groups R3m and R3 give a structural model similar to that of R-3m. They give additional structural parameters describing the asymmetry of the atomic position. However, it was found that these space groups did not effectively lower the reliability factors. Therefore, it is unlikely that the space groups R3m and R3 actually describe the structure.

Furthermore, we tested other possible cases of the structural model, which were relates to Li defects in the structure because Li is a volatile and light element and is insensitive to detection by XRD measurements. If the structure contains heavy Li defects, the Li atomic layer may be a monolayer rather than a bilayer. In this case, the atomic layer sequence would be ...Ir, Si, Li ...Ir, Si, ...Li ...Si ...Ir ...Si ...Li Therefore, the molecular formula is actually Li$_n$Ir$_2$Si$_2$. Figure 2(b) illustrates a structural model for the CuCrSe$_2$-NaVS$_2$-type structure (space group R3m), where Li has a prismatic (six-fold) coordination with adjacent Si atoms. We analyzed the XRD data with this structural model and found that it gave a rather similar XRD pattern to the observed one. However, it was less satisfactory for reliability factors than the Ag$_2$NiO$_2$-type structure. Therefore, it seemed unlikely that the CuCrSe$_2$-NaVS$_2$-type structural model fully described the actual structure. For LiIrSi$_2$, another

Atom	Site	Occupancy	x	y	z
Li	6c	1	0	0	0.1875(6)
Ir	3a	1	0	0	0
Si	6c	1	0	0	0.5982(1)

Table 1. Crystal structure parameters of Li$_2$IrSi$_2$.

Formula	Li$_2$IrSi$_2$
Molecular weight	262.27
Space group	R3m (no. 166)
Lattice constants	$a = 4.028$ 30(5) Å, $c = 13.161$ 80(15) Å, $V = 184.9650$ 44(4) Å3
Z	3
Density (calculated)	7.063 654 g cm$^{-3}$
Temperature	Room temperature
Wave length	0.685 671 Å
R factor	$R_{wp} = 3.72\%$, $R_p = 2.46\%$, $S = R_{wp}/R_e = 1.2559$
Refinement software	RIETAN-2000

Rietveld analysis of the CuCrSe$_2$-NaVS$_2$-type structure (space group R3m), where Li has a prismatic (six-fold) coordination with adjacent Si atoms. We analyzed the XRD data with this structural model and found that it gave a rather similar XRD pattern to the observed one. However, it was less satisfactory for reliability factors than the Ag$_2$NiO$_2$-type structure. Therefore, it seemed unlikely that the CuCrSe$_2$-NaVS$_2$-type structural model fully described the actual structure. For LiIrSi$_2$, another
possible structural model was delafossite-type NaCrS$_2$ (R-3m), which had a different stacking manner for the IrSi$_2$ layer block than the CuCrSe$_2$-NaVS$_2$ type. We confirmed that the XRD pattern calculated with this structural model was essentially different from the observed pattern. Therefore, delafossite-type NaCrS$_2$ apparently did not represent LiIrSi$_2$.

Resultantly, we concluded that the structural model with the Ag$_2$NiO$_3$ type (space group R-3m) in figure 2(a) was the most suitable for the crystal structure in Li$_2$IrSi$_3$, Li$_3$IrSi$_3$ with quasi-2D layer structure, including Ir equilateral-triangular lattice planes. This structure strongly contrasted with the quasi-1D columnar structure of Li$_3$IrSi$_5$[23, 24]. The Ir–Si bond lengths in Li$_2$IrSi$_3$ (2.495 Å) and Li$_3$IrSi$_3$ (2.463 Å) were nearly the same. The atomic compositions of the compounds were similar; however, their structures were essentially different.

3.2. Superconducting properties

Superconductivity in Li$_2$IrSi$_3$ was observed in magnetic and electrical resistivity measurements. Figure 3(a) shows the temperature (T) dependence of the magnetic susceptibility (χ) taken under a magnetic field (H) of 10 Oe. Diamagnetic Meissner signals were observed below 3.6 K ($\sim T_{c_{onset}}$). The magnitude of the superconducting signal at 2 K was about 47% of the full Meissner volume fraction ($\sim 1/4\pi$) for the field-cooling (FC) condition and $\sim 131\%$ for zero-field-cooling (ZFC). The signal was sufficiently large to indicate that superconductivity was a natural property of the bulk material. The value in excess of 100% suggested that the observed signal was affected by demagnetization and magnetic penetration under the magnetic field.

Figure 3 (b) shows the T-dependence of the electrical resistivity (ρ) of Li$_2$IrSi$_3$. The T-dependence between 4 and 50 K in the normal state followed the T-square law, $\rho = \rho_0 + AT^2$, suggesting Fermi-liquid behavior. The inset in figure 3 shows the low-temperature resistivity data. At ~ 3.6 K, the resistivity started to drop due to the superconducting transition. The observed critical temperature, $T_c^{onset} = 3.6$ K, was consistent with that of the magnetic susceptibility measurements. The bulk T_c defined as the midpoint of resistive transition was 3.3 K.

Figure 4 (a) shows initial magnetization (M–H) curves measured at various temperatures below T_c^{onset} ($=3.6$ K), which exhibited type-II superconductor behavior. The lower critical field $H_{c1}(T)$ at each temperature was defined as the magnetic field at which the magnetization began to deviate from the straight line tangent to the curve at $H = 0$ in figure 4(a). The H_{c1} values are plotted as a function of temperature in figure 4(c). Based on the Ginzburg–Landau (GL) theory, the $H_{c1}(T)$ curve was numerically fitted using the following equation:

$$H_{c1}(T) = H_{c1}(0) \left\{ 1 - \left(\frac{T}{T_c} \right)^2 \right\},$$

where $H_{c1}(0) = 42$ Oe. Figure 4(b) shows the T-dependence of the electrical resistivity below 5 K under various magnetic fields. The onset and midpoint T_c values are plotted as a function of the magnetic field in figure 4(d). $H_{c2}(T)$ monotonically increased with decreasing temperature. The upper critical fields $H_{c2}(0)$ determined from the linear extrapolation of the observed onset and midpoint T_c data were estimated to be ~ 2.6 and 1.28 kOe, respectively. To determine H_{c2} more precisely, we measured the specific-heat–in this system.

Figure 5 shows the specific-heat data for Li$_2$IrSi$_3$, specifically C_p/T versus T^2 plots measured at $H = 0$ and 90 kOe. At $H = 0$, a specific-heat jump was observed around ~ 3.5 K, indicating that the superconductivity is a bulk property. The phase-transition temperature is consistent with the T_c values determined from the electrical
The Debye temperature can be written as
\[\beta = \frac{\gamma}{R} \]
where \(\gamma \) is the resistivity and the magnetic susceptibility measurements. At \(H = 90 \) kOe, the specific-heat jump disappeared completely. The normal-state specific heat (at \(H = 90 \) kOe) can be given by

\[\frac{C_p}{T} = \gamma_N + \beta T^2, \]

where \(\gamma_N \) is the Sommerfeld constant of the normal state, and \(\beta \) is the specific-heat coefficient of the lattice part. The Debye temperature can be written as \(\Theta_D = (12\pi^4 N R / 5 \beta)^{1/3} \), where \(N \) is the number of atoms in a formula unit and \(R \) is the gas constant. By numerically fitting the dataset in equation (2), the initial values, \(\gamma_N \) and \(\beta_0 \), were first determined. Since \(\gamma_N \) and \(\beta_0 \) include the contribution from the secondary phase IrSi3, we corrected the values by subtracting the impurity contribution to estimate intrinsic \(\gamma_N \) and \(\beta \) for \(\text{Li}_2\text{IrSi}_2 \). Herein, we used the parameters reported in [24] for \(\text{IrSi}_3 \), \(\gamma_N \sim 0.73 \) mJ mol\(^{-1} \) K\(^{-2} \) and \(\beta \sim 0.057 \) mJ mol\(^{-1} \) K\(^{-4} \), with a mass fraction of \(\text{IrSi}_3 \) (\(\sim 9.3\% \)) in the sample. The resultant parameters intrinsic to \(\text{Li}_2\text{IrSi}_2 \) are \(\gamma_N = 4.16 \) mJ mol\(^{-1} \) K\(^2 \) and \(\beta = 0.1868 \) mJ mol\(^{-1} \) K\(^4 \), i.e. \(\Theta_D = 373 \) K.

The thermal critical field \(H_T(0) \) was estimated by \(0.236\gamma_N T_c^2 = \mu_0 H_T(0)^2 / 2 \). The thermodynamic critical field \(H_c(0) \) was \(\sim 0.27 \) kOe; therefore, the value of \(H_c(0) \) subsequently calculated by \(H_c(0)^2 = H_T(0)^2 \times H_c(0) \) was 1.7 kOe. The estimated superconducting coherence length \(\xi_D \) was \(\sim 44 \) nm. This is based on the GL equation, \(H_c(0) = \Phi_0 / 2\pi \xi_D^2 \), where \(\Phi_0 \) is the fluxoid quantum (\(= 2.0678 \times 10^{-7} \) Gcm\(^2 \)). The London penetration depth \(\lambda_L \) and GL parameter \(\kappa_{GL} \) were determined to be \(\sim 265 \) nm and \(\sim 6.02 \), respectively. These were obtained the GL equation, \(H_c(0) = \Phi_0 / 4\pi \lambda_L^2 \times \ln(k_{GL}) \), where \(\kappa_{GL} = \lambda_L / \xi_D \). The \(\kappa_{GL} \) value (\(> 1 \)) indicates that \(\text{Li}_2\text{IrSi}_2 \) is a type-II superconductor. The superconducting parameters are listed in table 2.

Figure 4 (a) Initial magnetization curve (\(M-H \) curve) of the superconducting state in \(\text{Li}_2\text{IrSi}_2 \) measured at temperatures below \(T_{c\text{ onset}} \) (\(\sim 3.6 \) K). (b) Temperature dependence of electrical resistivity (\(\rho \)) for the superconducting transition of \(\text{Li}_2\text{IrSi}_2 \), measured under the various magnetic fields. (c) Lower critical field \(H_c \) plotted as a function of normalized temperature \((T/T_c) \). The solid curve indicates numerical fitting of the data points with equation (1) (see text). (d) The upper critical field \(H_c \) plotted as a function of normalized temperature \((T/T_c) \). The solid red and blue lines represent linear extrapolation to \(T = 0 \) K and give \(H_c(0) \sim 2.6 \) kOe (\(T_{c\text{ onset}} \)) and 1.28 kOe (\(T_{c\text{ onset}} \)), respectively.
Assuming that the conventional phonon-mediated Cooper pairing mechanism is realized in Li$_2$IrSi$_2$, we evaluated the strength of the electron–phonon coupling. According to McMillan’s theory [33], the electron–phonon coupling constant λ_{ep} is written as follows:

$$\lambda_{ep} = \frac{1.04 + \mu^* \ln \left(\frac{\Theta_D}{1.45 T_c} \right)}{(1 - 0.62 \mu^*) \ln \left(\frac{\Theta_D}{1.45 T_c} \right) - 1.04},$$

where μ^* is the Coulomb pseudo-potential parameter. By substituting the experimental Θ_D value (\sim373 K) and standard value of μ^* = 0.1 into equation (3), we estimated λ_{ep} \sim 0.5, which suggests that Li$_2$IrSi$_2$ is a weak-coupling superconductor. The electronic DOS at the Fermi level $N(E_F)$ can be given by as follows:

$$N(E_F) = \frac{3 \gamma_N}{\pi^2 k_B^2 (1 + \lambda_{ep})}.$$ (4)

For Li$_2$IrSi$_2$, by substituting the obtained γ_N and λ_{ep} values into equation (4), $N(E_F)$ was estimated to be \sim1.2 states/eV/f.u. This value is close to the DOS value ($N(E_F)$ \sim 1.1 states/cell/f.u.) of the Ir–Si superconductor BaIrSi$_2$ (T_c \sim 6 K) [34].

We are curious how the SOC affects the superconducting properties. From this viewpoint, it is interesting to clarify the relation between the SOC and superconductivity by substituting Rh for Ir in Li$_2$IrSi$_2$. In general, Rh (4d element) provides more moderate SOC than Ir (5d element). Recently, we succeeded in synthesizing a new superconductor.
rhodium silicide superconductor Li$_2$RhSi$_2$ that is isostructural to Li$_2$IrSi$_2$. Its critical temperature T_c^onset is ~3.0 K, which is a little lower than the T_c^onset (~3.6 K) of Li$_2$IrSi$_2$. It is important to clarify whether or not the difference between the T_c values is due to the difference in the SOC of Rh and Ir. Therefore, it is necessary to precisely evaluate the superconducting parameters and gap structure in Li$_2$RhSi$_2$, which is the focus of further studies that are now in progress.

4. Summary

We successfully discovered a new Ir–Si superconductor, Li$_2$IrSi$_2$, with $T_c = 3.3$ K. The crystal structure is a rhombohedral system with the lattice constants a and c of 4.028 30(6) and 13.161 80(15) Å, respectively. We have proposed a structural model with space group R-3m (figure 2 (a)), which comprises edge-shared IrSi$_2$ layers interleaved with a Li bilayer. The IrSi$_2$ layer includes a quasi-2D Ir equilateral triangular lattice as an electron conduction plane. Superconductivity in Li$_2$IrSi$_2$ is type-II and is a bulk property. The superconducting parameters are as follows: lower critical field $H_{c1}(0) \sim 42$ Oe, upper critical field $H_{c2}(0) \sim 1.7$ kOe, penetration depth $\lambda_0 \sim 265$ nm, coherence length $\xi_0 \sim 44$ nm, Ginzburg–Landau parameter $\kappa_{GL} \sim 6.02$, and electron–phonon coupling constant $\lambda_{ep} \sim 0.5$. It seems that Li$_2$IrSi$_2$ is a conventional weak-coupling superconductor. The influence of SOC on its superconductivity is still unclear.

Acknowledgments

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) under Grants No. 2704, and was partially supported by NIMS Joint Research Hub Program, Research Subsidy from Electric Power Development Co., Ltd (Dengenaihatsu), and Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers from Japan Society for the Promotion of Science (R2705).

ORCID iDs

K Horigane https://orcid.org/0000-0003-3338-9115
Y Kubozone https://orcid.org/0000-0002-7910-0308

References

[1] Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Gribanov A, Seropegin H, Noel H, Sigrist M and Roq’ P 2004 Phys. Rev. Lett. 92 027003
[2] Akazawa T, Hidaka H, Fujitawa T, Kobayashi T C, Yamamoto E, Haga Y, Settai R and Onuki Y 2004 J. Phys. Condens. Matter 16 L29
[3] Kim B J et al 2008 Phys. Rev. Lett. 101 076402
[4] Watanabe H, Shirakawa T and Yunoki S 2013 Phys. Rev. Lett. 110 027002
[5] Kim Y K, Sung N H, Denlinger J D and Kim B J 2016 Nat. Phys. 12 37
[6] Wang X C, Ruan B B, Yu J, Pan B J, Mu Q G, Liu T, Chen G F and Ren Z A 2017 Supercond. Sci. Technol. 30 035007
[7] Hirai D, Takayama T, Hashizume D, Higashinaka R, Yamamoto A, Hiroko A K and Takagi H 2010 Physica C 470 S296
[8] Braun H F, Engel N and Parthé E 1983 Phys. Rev. B 28 1589
[9] Hiraj M, Lejay P, Chevalier B, Etourneau J and Hagenmueller P 1985 J. Less-Common Met. 105 139
[10] Pyon S, Kudo K and Nohara M 2012 J. Phys. Soc. Japan 81 033701
[11] Ootsuki D et al 2014 J. Phys. Soc. Japan 83 033704
[12] Ootsuki D et al 2012 Phys. Rev. B 86 014519
[13] Matthias B T and Corenzwit E 1957 Phys. Rev. 107 1558
[14] Vandenbergh J M, Matthias B T, Corenzwit E and Barz H 1975 Mat. Res. Bull. 10 889
[15] Geballe T H, Matthias B T, Compton V B, Corenzwit E, Hull G W and Longinotti I D 1965 Phys. Rev. 137 A119
[16] Matthias B T 1953 Phys. Rev. 92 874
[17] Sun Y, Ding Y, Gu D, Zhuang J, Shi Z and Tamegai T 2013 J. Phys. Soc. Japan 82 074713
[18] Yang H D, Shelton R N and Braun H F 1986 Phys. Rev. B 33 5062
[19] Shelton R N, Hausermann-Berg L S, Klavins P, Yang H D, Anderson M S and Swenson C A 1986 Phys. Rev. B 34 4590
[20] Hausermann-Berg L S and Shelton R N 1987 Phys. Rev. B 35 6659
[21] Raub C J, Compton V B, Geballe T H, Matthias B T, Maita J P and Hull G W 1965 J. Phys. Chem. Solids 26 2051
[22] Valiska M, Pospíšil J, Prokliška J, Diviš M, Rudajevová A and Sechovský V 2012 J. Phys. Soc. Japan 81 104715
[23] Hirai D, Kawakami R, Magdysyuk O V, Dinnebier R E, Yaresko A and Takagi H 2014 J. Phys. Soc. Japan 83 103703
[24] Pyon S et al 2014 J. Phys. Soc. Japan 83 093706
[25] Lue C S, Liu R F, Pu Y F, Cheng C and Yang H D 2008 Phys. Rev. B 77 115130
[26] Singh Y, Pal D, Ramakrishnan S, Awanthi A M and Malik S K 2005 Phys. Rev. B 71 045109
[27] Eguchi G, Wadati H, Sugiyama T, Ikenna E, Yonezawa S and Maeno Y 2012 Phys. Rev. B 86 184510
[28] Xian-Zhong W, Chovaler B, Etourneau J and Hagenmueller P 1985 Mat. Res. Bull. 20 517
[29] NIMS Material Database (Mat Navi) https://mits.nims.go.jp/index_en.html
[30] Isobe M, Yoshida H, Kimoto K, Arai M and Takayama-Muromachi E 2014 Chem. Mater. 26 2155
[31] Werner P-E, Eriksson L and Westdahl M 1985 J. Appl. Crystallogr. 18 367
[32] Izumi F and Ikeda T 2000 Mater. Sci. Forum 321–324 198
[33] McMillan W L 1968 Phys. Rev. 167 331
[34] Isobe M, Kimoto K, Arai M and Takayama-Muromachi E 2019 Phys. Rev. B 99 054514