Weighted Maximum Independent Set of Geometric Objects in Turnstile Streams

Ainesh Bakshi*
Carnegie Mellon University
abakshi@cs.cmu.edu

Nadiia Chepurko
MIT
nadiia@mit.edu

David P. Woodruff*
Carnegie Mellon University
dwoodruf@cs.cmu.edu

Abstract

We study the Maximum Independent Set problem for geometric objects given in the data stream model. A set of geometric objects is said to be independent if the objects are pairwise disjoint. We consider geometric objects in one and two dimensions, i.e., intervals and disks. Let α be the cardinality of the largest independent set. Our goal is to estimate α in a small amount of space, given that the input is received as a one-pass stream. We also consider a generalization of this problem by assigning weights to each object and estimating β, the largest value of a weighted independent set. We initialize the study of this problem in the turnstile streaming model (insertions and deletions) and provide the first algorithms for estimating α and β.

For unit-length intervals, we obtain a $(2 + \epsilon)$-approximation to α and β in $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$ space. We also show a matching lower bound. Combined with the $3/2$-approximation for insertion-only streams by Cabello and Perez-Lanterno [CPL17], our result implies a separation between the insertion-only and turnstile model. For unit-radius disks, we obtain a $\left(\frac{8\sqrt{3}}{\pi}\right)$-approximation to α and β in $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$ space, which is closely related to the hexagonal circle packing constant.

We provide algorithms for estimating α for arbitrary-length intervals under a bounded intersection assumption and study the parameterized space complexity of estimating α and β, where the parameter is the ratio of maximum to minimum interval length.

*Part of this work was done while Ainesh Bakshi and David Woodruff were visiting the Simons Institute for the Theorem of Computing. Ainesh Bakshi and David Woodruff acknowledge support in part from NSF No. CCF-1815840.
1 Introduction

Maximum Independent Set (MIS) is a fundamental combinatorial problem and in general, is NP-Hard to approximate within a $n^{1-\epsilon}$ factor, for any constant $\epsilon > 0$ [Hås96]. We focus on the MIS problem for geometric objects: we are given as input n intervals on the real line or disks in the plane and our goal is to output the largest set of non-overlapping intervals or disks. Computing the Maximum Independent Set of intervals and disks has numerous applications in scheduling, resource allocation, cellular networks, map labellings, clustering, wireless ad-hoc networks and coding theory, where it has been extensively studied [Gav72] [ABFR94], [Woe94], [CI98], [BHS10], [AG15], [AVKS98], [Hal80], [Mal97].

In the one dimensional setting, the MIS problem, also known as the Interval Scheduling problem, has a simple greedy algorithm that picks intervals in increasing order of their right endpoint to obtain an optimal solution. The variant with weighted intervals can also be solved in polynomial time using dynamic programming, which is shown in a number of modern algorithms textbooks [CLRS09], [KT06]. These algorithms have considerable applications in resource allocation and scheduling, where offline and online variants have been extensively studied and we refer the reader to [KLPS07] for a survey.

In the two dimensional setting, MIS of geometric objects, such as line segments [Hli01], rectangles [FPT81], [IA83] and disks [CCJ90], is NP-Hard. However, in the offline setting (polynomial space), a PTAS is known for fat objects (squares, disks) and pseudo-disks [CH12] (who also provide a recent survey). The MIS problem for arbitrary rectangles has also received considerable attention: [CC09] show a log log(n) approximation in polynomial time and [CE16] obtain a $(1 + \epsilon)$-approximation in $n^{\text{poly}(\log(n))}\epsilon^{-1}$ time for axis-aligned rectangles.

Streaming Model. The increase in modern computational power has led to massive amounts of available data. Therefore, it is unrealistic to assume that our data fits in RAM. Instead, working with the assumption that data can be efficiently accessed in a sequential manner has led to streaming algorithms for a number of problems. Several classical problems such as heavy-hitters and l_p sampling [JST11], l_p estimation [KNW10a], entropy estimation [LZ11], [CC13], maximum matching [Kon15] etc. have been studied in the turnstile model and recent work has led to interesting connections with linear sketches [AHLW16].

In this paper, we study the streaming complexity of the geometric MIS problem, where the input is a sequence of n updates, either inserting a new object or deleting a previously inserted object. We assume that the algorithm has poly-logarithmic bounded memory and at the end of the stream, the algorithm should output an estimate of the (weighted) cardinality of the MIS. Since most real world scheduling applications are dynamic, and scheduling constraints expire, it is crucial to allow for both insertions and deletions, while operating in the low-space setting. Consider the following concrete application: automatic point-label conflict resolution on interactive maps [Mot07]. In this problem, the goal is to label features (geometric objects such as points, lines and polygons) on a map such that no two features with the same label overlap. Labelling maps in visual analytic software requires such labelling to be fast and dynamic, since features can be added and removed.

1 See https://en.wikipedia.org/wiki/Interval_scheduling
Problem	Insertion-Only Streams	Turnstile Streams		
	upper bound	lower bound	upper bound	lower bound
Unit Intervals	\(3/2 + \epsilon\)	\(3/2 - \epsilon\)	Thm A.1	Thm A.9
	\[CP15\]	\[CP15\]		
Unit Weight			Thm A.1	Thm A.9
Unit Intervals	\(3/2 + \epsilon\)	\(3/2 - \epsilon\)	Thm A.1	Thm A.9
Arbitrary Weight				
Unit Disks	\(8\sqrt{3}/\pi + \epsilon\)	\(2 - \epsilon\)	Thm C.1	Thm C.1
Arbitrary Weight	Thm D.1	Thm D.7		

Table 1: The best known upper and lower bounds for estimating \(\alpha\) and \(\beta\) in insertion-only and turnstile streams (defined below). Note, the weight and length above are still polynomially bounded in \(n\). The folklore result follows from partitioning the input into \(O(\log(n))\) weight classes, estimating \(\alpha\) on each one in parallel and taking the maximum estimate.

1.1 Our Contributions

We provide the first algorithmic and hardness results for the Weighted Maximum Independent Set (WMIS) problem for geometric objects in *turnstile streams* (where previously inserted objects may also be deleted). The aim of our work is to understand the MIS and WMIS problems in this common data stream model and we summarize the state of the art in Table 1. Our contributions are as follows:

1. **Unit-length Intervals.** Our main algorithmic contribution is a turnstile streaming algorithm achieving a \((2 + \epsilon)\)-approximation to \(\alpha\) and \(\beta\) in \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right)\) space. We also show a matching lower bound, i.e., any (possibly randomized) algorithm approximating \(\alpha\) up to a \((2 - \epsilon)\) factor requires \(\Omega(n)\) space. Interestingly, this shows a strict separation between insertion-only and turnstile models since [CP15] show that a 3/2 approximation is tight in the insertion-only model.

 An unintuitive yet crucial message here is that attaching polynomially bounded weights to intervals does not affect the approximation factor. Along the way, we also obtain new algorithms for estimating \(\beta\) in insertion-only streams which are presented in Section D.

 We study this problem in the two player one-way communication model and show that an algorithm for estimating \(\alpha\) implies a protocol for APD. We show an \(\Omega(n^{1/s}/2^s)\) communication lower bound for this problem, where \(\Theta(s)\) is the desired approximation ratio for the streaming algorithm. We note that this also implies a lower bound for estimating \(\beta\) for arbitrary-length intervals.

2. **Arbitrary Length Intervals.** For arbitrary length intervals, we give a one-pass turnstile streaming algorithm that achieves a \((1 + \epsilon)\)-approximation to \(\alpha\) under the assumption that the degree of the interval intersection graph is bounded by \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right)\). Our algorithm achieves \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right)\) space.

 We also study the problem for arbitrary lengths by parameterizing the ratio of the longest to the shortest interval. We give a one-pass turnstile streaming algorithm that achieves a \((2 + \epsilon)\)-approximation to \(\alpha\), where the space complexity is parameterized by \(W_{max}\), which is
an upper bound on the length of an interval assuming the minimum interval length is 1. Here, the space complexity of our algorithm is \(\text{poly}\left(W_{\max} \frac{\log(n)}{\epsilon}\right)\) and this algorithm gives sublinear space whenever \(W_{\max}\) is sublinear.

3. Unit-radius Disks. We show that we can extend the ideas developed for unit-length intervals in turnstile streams to unit disks in the 2-d plane. We describe an algorithm achieving an \(\left(\frac{8\sqrt{3}}{\pi} + \epsilon\right)\)-approximation to \(\alpha\) and \(\beta\) in \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right)\) space. One key idea in the algorithm is to use the hexagonal circle packing for the plane, where the fraction of area covered is \(\frac{\pi}{\sqrt{12}}\) and our approximation constant turns out to be \(4 \cdot \frac{\sqrt{3}}{\pi}\).

We also show a lower bound that any (possibly randomized) algorithm approximating \(\alpha\) or \(\beta\) for disks in insertion-only streams, up to a \((2 - \epsilon)\) factor requires \(\Omega(n)\) space. This shows a strict separation between estimating intervals and disks in insertion-only streams.

2 Related Work

There has been considerable work on streaming algorithms for graph problems. Well-studied problems include finding sparsifiers, identifying connectivity structure, building spanning trees, and matchings; see the survey by McGregor [McG14]. Recently, Cormode et. al. [CDK17] provide guarantees for estimating the cardinality of a maximum independent set of general graphs via the Caro-Wei bound. Emek, Halldorsson and Rosen [EHR12] studied estimating the cardinality of the maximum independent set for interval intersection graphs in insertion-only streams. They output an independent set that is a \(\frac{3}{2}\)-approximation to the optimal (OPT) for unit-length intervals and a 2-approximation for arbitrary-length intervals in \(O(\|\text{OPT}\|)\) space. Note that \(\|\text{OPT}\|\) could be \(\Theta(n)\) which is a prohibitive amount of space.

Subsequently, Cabello and Perez-Lantero [CP15] studied the problem of estimating the cardinality of OPT, which we denote by \(\alpha\), for unit-length and arbitrary length intervals in one-pass insertion-only streams. For unit-length intervals in insertion-only streams, Cabello and Perez-Lantero [CP15] give a \(\left(\frac{3}{2} + \epsilon\right)\) approximation to \(\alpha\) in \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right)\) space. Additionally, they show that this approximation factor is tight, since any algorithm achieving a \(\left(\frac{3}{2} - \epsilon\right)\)-approximation to \(\alpha\) requires \(\Omega(n)\) space. For arbitrary-length intervals they give a \((2 + \epsilon)\)-approximation to \(\alpha\) in \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right)\) space. Additionally, they show that the approximation factor is tight, since any algorithm achieving a \((2 - \epsilon)\)-approximation to \(\alpha\) requires \(\Omega(n)\) space. Recently, [CDK18] studied MIS of intersection graphs in insertion-only streams. They show achieving a \((5/2 - \epsilon)\)-approximation to MIS of squares requires \(\Omega(n)\) space.

To the best of our knowledge there is no prior work on the problem of Maximum Independent Set of unit disks in turnstile streams. In the offline setting, the first PTAS for MIS of disks was developed by [EJS05] and later improved in running time by Chan [Cha03], while [HM85] shows a PTAS for MIS of \(k \times k\) squares. We note that these algorithms require space linear in the number of disks and use a dynamic programming approach that is not suitable for streaming scenarios.

We note that MIS can also be viewed as a natural generalization of the distinct elements problem that has received considerable attention in the streaming model. This problem was first studied in the seminal work of [FM85] and a long sequence of work has addressed its space complexity in both insertion-only and turnstile streams [AMS96], [BYJK+02], [GT01], [EVF03], [FFGM07],
3 Notation and Problem Definitions

We let $D(d_j, r_j, w_j)$ be a disk in \mathbb{R}^d, where $d \in \{1, 2\}$, such that it is centered at a point $d_j \in \mathbb{R}^d$ with radius $r_j \in \mathbb{N}$ and weight w_j. We represent $D(d_j, r_j, w_j)$ using the short form D_j when d_j, r_j and w_j are clear from context. Note, we use the same notation to denote intervals in $d = 1$. For a set $\mathcal{P} \subseteq \mathbb{R}^d$ of n disks (unweighted or weighted), let G be the induced graph formed by assigning a vertex to each disk and adding an edge between two vertices if the corresponding disks intersect. We call G an intersection graph. The Maximum Independent Set (MIS) and Weighted Maximum Independent Set (WMIS) problems in the context of intersection graphs are defined as follows:

Definition 3.1 (Maximum Independent Set). Let $\mathcal{P} = \{D_1, D_2, \ldots, D_n\} \subseteq \mathbb{R}$ be a set of n disks such that each weight $w_j = 1$ for $j \in [n]$. The MIS problem is to find the largest disjoint subset S of \mathcal{P} (i.e., no two objects in S intersect). We denote the cardinality of this set by α.

Definition 3.2 (Weighted Maximum Independent Set). Let $\mathcal{P} = \{D_1, D_2, \ldots, D_n\} \subseteq \mathbb{R}^d$ be a set of n weighted disks. We let the weight w_S of a subset $S \subseteq \mathcal{P}$ be $w_S = \sum_{D_j \in S} w_j$. The WMIS Problem is to find a disjoint (i.e., non overlapping) subset S of \mathcal{P} whose weight w_S is maximum. We denote the weight of the WMIS by β.

For a set \mathcal{P} of disks, let $\text{OPT}_\mathcal{P}$ denote MIS or WMIS of \mathcal{P}. We use $|\text{OPT}_\mathcal{P}|$ to denote the cardinality of MIS as well as the weight of WMIS for \mathcal{P}. When the set \mathcal{P} is clear from context, we omit it. Next, we define the two streaming models we consider. In our context, an insertion-only stream provides sequential access to the input, which is an ordered set of objects such that at any given time step a new interval arrives. Turnstile streams are an extension of this model such that at any time step, previously inserted objects can be deleted. An algorithm in the streaming model has access to space sublinear in the size of the input and is restricted to making one pass over the input.

For proving our lower bounds, we work in the two player one-way randomized communication complexity model, where the players are denoted by Alice and Bob, who have private randomness. The input of Alice is denoted by X and the input for Bob is denoted by Y. The objective is for Alice to communicate a message to Bob and compute a function $f : X \times Y \rightarrow \{0, 1\}$ on the joint inputs of the players. The communication is one-way and w.l.o.g. Alice sends one message to Bob and Bob outputs a bit denoting the answer to the communication problem. Let $\Pi(X, Y)$ be the random variable that denotes the transcript between sent from Alice to Bob when they execute a protocol Π.

A protocol Π is called a δ-error protocol for function f if there exists a function Π_{out} such that for every input $Pr[\Pi_{out}(\Pi(X, Y)) = f(X, Y)] \geq 1 - \delta$. The communication cost of a protocol, denoted by $|\Pi|$, is the maximum length of $\Pi(X, Y)$ over all possible inputs and random coin flips of the two players. The randomized communication complexity of a function f, $R_\delta(f)$, is the communication cost of the best δ-error protocol for computing f.

4 Technical Overview

In this section, we summarize our results and briefly describe the main technical ideas in our algorithms and lower bounds. We note that our results hold in the recently introduced Sketching
Model [SWYZ19]. This model captures applications of sketches in turnstile streams, distributed computing, communication complexity and property testing. While Sun et. al. study graph problems such as dynamic connectivity and triangle detection, we initiate the study of dynamic Maximum Independent Set in this model. While we state our results in for turnstile streams, they immediately extend to the sketching model.

4.1 Unit-length Intervals

Our main algorithmic contribution is to provide an estimate that obtains a \((2 + \epsilon)\)-approximation to \(\text{WMIS}\) of unit-length intervals in turnstile streams:

Theorem 4.1 (Theorem A.1, informal). For any \(\epsilon > 0\), there exists a turnstile streaming algorithm that outputs an estimate such that with probability at least \(99/100\), it is a \((2 + \epsilon)\)-approximation to \(\text{WMIS}\) of unit intervals (polynomially bounded weights) and the algorithm requires \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right)\) space.

Algorithm 1 : Naïve Approximation.
Input: Given a turnstile stream \(\mathcal{P}\) with weighted unit intervals, where the weights are polynomially bounded, \(\epsilon\) and \(\delta > 0\), Naïve Approximation outputs a \((9 + \epsilon)\)-approximation to \(\beta\) with probability \(1 - \delta\).
1. Randomly shift a grid \(\Delta\) of side length 1. Partition the cells into even and odd, denoted by \(C_e\) and \(C_o\).
2. Consider a partition of cells in \(C_e\) into \(b = \text{poly}(\log(n))\) weight classes \(W_i = \{c \in C_e
3. For each new interval \(D(d_j, 1, w_j)\), feed it to substream \(W'_i\) if \(w_j \in [(1+1/2)^i, (1+1/2)^{i+1})\). For each substream \(W'_i\), maintain a \((1 \pm \epsilon)\)-approximate \(\ell_0\)-estimator (described below).
4. Let \(t_i\) be the \(\ell_0\) estimate corresponding to \(W'_i\). Let \(X_e = \frac{2}{g(1+\epsilon)} \sum_{i \in [b]} (1 + 1/2)^{i+1} t_i\).
5. Repeat Steps 2-6 for the odd cells \(C_o\) to obtain the corresponding estimator \(X_o\).
Output: \(\max(X_e, X_o)\)

A naïve approximation. We start by describing a simple approach (Algorithm 1) to obtain a 9-approximation. The algorithm proceeds by imposing a grid of side length 1 and shifts it by a random integer. This is a standard technique used in geometric algorithms. We then snap each interval to the cell containing the center of the interval and partition the real line into odd and even cells. This partitions the input space such that intervals landing in distinct odd (even) cells are pairwise independent. Let \(C_e\) be the set of all even cells and \(C_o\) be the set of all odd cells.

By averaging, either \(|\text{OPT}_{C_e}|\) or \(|\text{OPT}_{C_o}|\) is at least \(\frac{\text{OPT}}{2}\), where \(|\text{OPT}|\) is the max weight independent set of intervals. We develop an estimator that gives a \((1 + \epsilon)\)-approximation to \(|\text{OPT}_{C_e}|\)
as well as \(|\text{OPT}_{C_e}|\). Therefore, taking the max of the two estimators, we obtain a \((2+\epsilon)\)-approximation to \(|\text{OPT}|\).

Having reduced the problem to estimating \(|\text{OPT}_{C_e}|\), we observe that for each even cell only the max weight interval landing in the cell contributes to \(\text{OPT}_{C_e}\). Then, partitioning the cells in \(C_e\) into \(\text{poly}(\log(n))\) geometrically increasing weight classes based on the max weight interval in each cell and approximately counting the number of cells in each weight class suffices to estimate \(|\text{OPT}_{C_e}|\) up to a \((1+\epsilon)\)-factor.

Given such a partition, we can approximate the number of cells in each weight class by running an \(\ell_0\) norm estimator. Estimating the \(\ell_0\) norm of a vector in turnstile streams is a well studied problem and a result of Kane, Nelson and Woodruff [KNW10b] obtains a \((1\pm\epsilon)\)-approximation in \(\text{poly}(\frac{\log(n)}{\epsilon})\) space. However, we do not know the partition of the cells into the weight classes a priori and this partition can vary drastically over the course of a stream given that intervals can be deleted. Therefore, the main technical challenge is to simulate this partition in turnstile streams.

As a first attempt, consider a partition of cells in \(C_e\) into \(b = \text{poly}(\log(n))\) weight classes \(W_i = \{c \in C_e | (1 + 1/2)^i \leq m(c) < (1 + 1/2)^{i+1}\},\) where \(m(c)\) is the maximum weight of an interval in \(c\). Create a substream for each weight class \(W_i\) and feed an input interval into this substream if its weight lies in the range \([(1 + 1/2)^i, (1 + 1/2)^{i+1})\). Let \(t_i\) be the corresponding \(\ell_0\) estimate for this substream. Approximate the contribution of \(W_i\) by \((1 + 1/2)^{i+1} \cdot t_i\). Sum up the estimates for all \(i \in [b]\) to obtain an estimate for \(|\text{OPT}_{C_e}|\).

We note that there are two issues with our algorithm. First, we overestimate the weight of intervals in class \(W_i\) by a factor of \(3/2\) and second, for a given cell we sum up the weights of all intervals landing in it, instead of taking the maximum weight for the cell. In the worst case, we approximate the true weight of a contributing interval, \((3/2)^{i+1}\), with \(\sum_{i=1}^{i} (3/2)^{i+1} \leq 3((3/2)^{i+1} - 1)\). Note, we again overestimate the weight, this time by a factor of \(3\). Combined with the approximation for the \(\ell_0\) norm, we obtain a weaker \((9 + \epsilon)\)-approximation to \(|\text{OPT}_{C_e}|\) in the desired space. From our discussion above, this implies a \((9 + \epsilon)\)-approximation to \(|\text{OPT}|\). We also note that this attempt is not futile as we use the above algorithm as a subroutine subsequently.

A refined attempt. Next, we describe an algorithm that estimates \(|\text{OPT}_{C_e}|\) up to a \((1+\epsilon)\)-factor. Here, we use more sophisticated techniques to simulate a finer partition of the cells in \(C_e\) into geometrically increasing weight classes in turnstile streams. One key algorithmic tool we use here is a streaming algorithm for \(k\)-Sparse Recovery: given an input vector \(x\) such that \(x\) receives coordinate-wise updates in the turnstile streaming model and has at most \(k\) non-zero entries at the end of the stream of updates, there exist data structures that exactly recover \(x\) at the end of the stream. As mentioned in Berinde et al. [BCIS09], the \(k\)-tail guarantee is a sufficient condition for \(k\)-Sparse Recovery, since in a \(k\)-sparse vector, the elements of the tail are 0. We note that the Count-Sketch Algorithm [CCF02] has a \(k\)-tail guarantee in turnstile streams.

This time around, we consider partitioning cells in \(C_e\) into \(\text{poly}(\epsilon^{-1}\log(n))\) weight classes, creating a substream for each one and computing the corresponding \(\ell_0\) norm. We also assume we know \(|\text{OPT}_{C_e}|\) up to a constant (this can be simulated in turnstile streams). Formally, given \(b = \text{poly}(\log(n), \epsilon^{-1})\) weight classes, for all \(i \in [b]\), let \(W_i\) denote the set of even cells with maximum weight sandwiched in the range \([(1 + \epsilon)^i, (1 + \epsilon)^{i+1})\). We then simulate sampling from the partition by subsampling cells in each \(W_i\) at the start of the stream, agnostic to the input. We do this at different sampling rates, i.e. for all \(i \in [b]\), we subsample the cells in \(W_i\) with probability roughly \((1 + \epsilon)^i/|\text{OPT}_{C_e}|\).

This presents several issues, as we cannot subsample non-empty cells in turnstile streams a
priori. Further, if a weight class has a small number of non-empty cells, we cannot recover accurate estimates for the contribution of this weight class to $|OPT_{C_e}|$ at any level of the subsampling. To address the first issue, we agnostically sample cells from C_e according to a carefully chosen range of sampling rates and create a substream for each one. We then run a sparse recovery algorithm on the resulting substreams. At the right subsampling rate, we note that the resulting substream is sparse since we can filter out cells that belong to smaller weight classes. Further, we can ensure that the number of cells that survive from the relevant weight class (and larger classes) is small. Therefore, we recover all such cells using the sparse recovery algorithm.

To address the second issue, we threshold the weight classes that we consider in the algorithm based on the relative fraction of non-empty cells in them. This threshold can be computed in the streaming algorithm using the ℓ_0-norm estimates for each weight class. All the weight classes below the threshold together contribute at most an ϵ-fraction of $|OPT_{C_e}|$ and though we cannot achieve concentration for such weight classes, we show that we do not overestimate their contribution. Further, for all the weight classes above the threshold, we can show that sampling at the right rate can recover enough cells to achieve concentration.

We complement the above algorithmic result with a matching lower bound, i.e., a $(2 - \epsilon)$-approximation to MIS, for any $\epsilon > 0$, requires $\Omega(n)$ space. This follows from an easy application of the Augmented Indexing problem. We note that our result combined with the 3/2-approximation by [CPL17] implies an unexpected separation between insertion-only and turnstile streams.

4.2 Parametrized Algorithms for Arbitrary Length Intervals

In light of the lower bound discussed above, we identify two sources contributing to the streaming hardness of MIS for arbitrary length intervals: the number of pair-wise intersections (max-degree) and the ratio of the longest to shortest interval (scale). We show that when either of these quantities is poly-logarithmically bounded, we can approximate MIS for arbitrary length intervals.

Instead of assuming the max-degree or scale is bounded, we instead provide algorithms parameterized by these quantities. First, let the number of pair-wise intersections be bounded by κ_{max}. Then,

Theorem 4.2 (Theorem B.1, informal.). For $\epsilon > 0$, there exists a turnstile streaming algorithm that takes as input a set of unit-weight arbitrary-length intervals, with at most κ_{max} pair-wise intersections and with probability $99/100$, outputs a $(1 + \epsilon)$-approximation to MIS in $\text{poly}(\log(n), \epsilon^{-1}, \kappa_{\text{max}})$ space.

This result requires several new algorithmic ideas. Observe, placing a unit grid no longer suffices since the intervals now span different lengths. Therefore, we impose a nested grid on our input, where the grid size is geometrically increasing, and randomly shift it. Further, observe that the natural strategy that partition the interval into geometrically increasing length classes and estimates each partition up to $1 + \epsilon$ does not work since the intervals overlap.

We therefore define the following object that uniquely determines intervals of a particular length class contributing to the MIS:

Definition 4.3. (r_i-Structure.) We define an r_i-Structure to be a subset of the Nested Grid, such that there exists an interval at the i^{th} grid level, there exist no intervals in the grid at any level $i' > i$ and all the intervals in the grid at levels $i' < i$ intersect the interval at the i^{th} level.

It is easy to see any interval that contributes to MIS corresponds to an r_i-Structure for some i. Therefore, it suffices to estimate the number of r_i-Structures for all i. Following our approach
for unit intervals, we again use \(k \)-Sparse Recovery as our main tool. At a high level, we sub-sample \(\text{poly}(\log(n), \epsilon^{-1}) \) \(r_i \)-Structures from the set of all such structures at level \(i \), and create a new substream for each \(i \). We then run a \(\kappa_{\text{max}} \)-Sparse Recovery Algorithm on each substream. We show that at the end of the stream, we obtain an estimate of the number of \(r_i \)-Structures at level \(i \) that concentrates. Since the structures form a partition, our overall estimate is simply the sum of the estimates obtained for each \(i \).

The main algorithmic challenge here is to show that we can indeed detect and subsample the \(r_i \)-structures. These structures are defined in a way that takes into account how many intervals appear in the nested grid both above and below a given interval. Therefore, it is unclear how to track such updates as they constantly change over the stream. However, observe that since our space is parameterized by the max-degree, we can afford to store an \(r_i \)-Structure completely in memory.

Given a randomly sampled cell from the \(i \)-th level of the nested grid, we assume this cell contributes an \(r_i \)-structure. We then run \(\kappa_{\text{max}} \)-Sparse Recovery on this cell. Our main insight is that at the end of the stream we can verify whether this cell indeed contributed an \(r_i \)-structure since we recover the nested intervals exactly. The final remaining challenge is to ensure that our sub-sample contains a sufficient number of non-empty structures for each level and the resulting estimate concentrates. We describe these details in Section B.1.

Finally, we show that similar algorithmic ideas also result in a turnstile streaming algorithm, if parametrize the input by the \(W_{\text{max}} \), the ratio of the largest to smallest interval :

Theorem 4.4 (Theorem B.6, informal.) For \(\epsilon > 0 \), there exists a turnstile streaming algorithm that takes as input a set of unit-weight arbitrary-length intervals, with \(W_{\text{max}} \) being an upper bound on the ratio of the largest to smallest interval, and with probability \(99/100 \), outputs a \((2 + \epsilon)\)-approximation to MIS in \(\text{poly}(\log(n), \epsilon^{-1}, W_{\text{max}}) \) space.

4.3 Unit-Radius Disks

We generalize the WMIS turnstile streaming algorithm for unit length intervals to unit radius disks in \(\mathbb{R}^2 \). The approximation ratio for disks is closely related to the optimal circle packing constant.

We leverage the hexagonal packing of circles in the 2-D plane to obtain the following result:

Theorem 4.5 (Theorem C.1, informal.) There exists a turnstile streaming algorithm achieving a \((8\sqrt{3}/\pi + \epsilon)\)-approximation to estimate WMIS of unit disks with constant probability and in \(\text{poly}(\frac{\log(n)}{\epsilon}) \) space.

We note that a greedy algorithm for unweighted disks obtains a 5-approximation to \(\alpha \) [EF03] and the space required is \(O(\alpha) \). The greedy algorithm can be extended to obtain a \((5 + \epsilon)\)-approximation in \(\text{poly}(\frac{\log^n}{\epsilon}) \) space using the sampling approach we presented in Section A. However, beating the approximation ratio achieved by the greedy algorithm requires geometric insight. Critically, we use the hexagonal packing of unit circles in a plane introduced by Lagrange \(^2\), which was shown to be optimal by Toth [CW10].

The hexagonal packing covers a \(\frac{\pi}{\sqrt{12}} \) fraction of the area in two dimensions. We then partition the unit circles in the hexagonal packing into equivalence classes such that two circles in the same equivalence class are at least a unit distance apart. Formally, let \(c_1, c_2 \) be two unit circles in the hexagonal packing of the plane lying in the same equivalence class. Then, for all points \(p_1 \in c_1, \)

\(^2\)See https://en.wikipedia.org/wiki/Circle_packing
Hexagonal Packing of Circles in the Plane

Figure 4.1: We illustrate the hexagonal circle packing in the Euclidean Plane. Each color represents an equivalence class. Observe that input disks that are centered in distinct circles of the same equivalence class are independent, since the circles are at least 2 units apart.

\[p_i \in c_2, \|p_1 - p_2\|_2 \geq 1. \]

Therefore, if two input disks of unit radius have centers lying in distinct circles belong to the same equivalence class, the disks must be independent, as long as the disk are not centered on the boundary of the circles.

Randomly shifting the underlying hexagonal packing ensures this happens with probability 1. We then show that we can partition the hexagonal packing into four equivalence classes such that their union covers all the circles in the packing and disks lying in distinct circles of the same equivalence class are independent.

Algorithmically, we first impose a grid \(\Delta \) of the hexagonal packing of circles with radius 1 and shift it by a random integer. We discard all disks that do not have centers lying inside the grid \(\Delta \). Given that a hexagonal packing covers a \(\frac{\pi}{\sqrt{12}} \) fraction of the area, in expectation, we discard a \((1 - \frac{\pi}{\sqrt{12}}) \) fraction of \(|\text{OPT}| \). We note that if we could accurately estimate the remaining WMIS, and scale the estimator by \(\sqrt{12}/\pi \), we would obtain a \((\sqrt{12}/\pi) \)-approximation to \(|\text{OPT}| \). Let \(||\text{OPT}_{hp}|| \) denote the remaining WMIS. By Theorem A.9 such an approximation requires \(\Omega(n) \) space.

We then observe that the hexagonal circle packing grid can be partitioned into four equivalence classes. We use \(C_1, C_2, C_3 \) and \(C_4 \) to denote these equivalence classes. Since the equivalence classes form a partition of the hexagonal packing, at least one of them must contain a \(1/4 \)-fraction of the remaining maximum independent set. W.l.o.g, let \(C_1 \) be the partition that contributes the most to \(|\text{OPT}| \). Then, \(|\text{OPT}_{C_1}| \geq \frac{1}{4}|\text{OPT}_{hp}|. \) Therefore, we focus on designing an estimator for \(C_1 \). We show a \((1 + \epsilon) \)-approximation to \(C_1 \) in poly \((\log(n), \epsilon^{-1}) \) space generalizing the algorithmic ideas we introduced for Theorem A.1. This implies an overall \((\frac{4\sqrt{12}}{\pi} + \epsilon) = \left(\frac{8\sqrt{3}}{\pi} + \epsilon \right) \) approximation for \(|\text{OPT}| \).
References

[ABFR94] Baruch Awerbuch, Yair Bartal, Amos Fiat, and Adi Rosén. Competitive non-preemptive call control. In SODA, volume 94, pages 312–320, 1994.

[AG15] Yossi Azar and Oren Gilon. Buffer management for packets with processing times. In Algorithms-ESA 2015, pages 47–58. Springer, 2015.

[AHLW16] Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. New characterizations in turnstile streams with applications. In 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 20:1–20:22, 2016.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 20–29. ACM, 1996.

[AVKS98] Pankaj K Agarwal, Marc Van Kreveld, and Subhash Suri. Label placement by maximum independent set in rectangles. Computational Geometry, 11(3-4):209–218, 1998.

[BCIS09] Radu Berinde, Graham Cormode, Piotr Indyk, and Martin J. Strauss. Space-optimal heavy hitters with strong error bounds. In Proceedings of the Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2009, June 19 - July 1, 2009, Providence, Rhode Island, USA, pages 157–166, 2009.

[BHS10] Unnar Th Bachmann, Magnús M Halldórsson, and Hadas Shachnai. Online scheduling intervals and t-intervals. Full version, 2010.

[Bla18] Jarosław Błasiok. Optimal streaming and tracking distinct elements with high probability. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2432–2448. SIAM, 2018.

[BYJK+02] Ziv Bar-Yossef, TS Jayram, Ravi Kumar, D Sivakumar, and Luca Trevisan. Counting distinct elements in a data stream. In International Workshop on Randomization and Approximation Techniques in Computer Science, pages 1–10. Springer, 2002.

[CC09] Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms, pages 892–901. Society for Industrial and Applied Mathematics, 2009.

[CC13] Peter Clifford and Ioana Cosma. A simple sketching algorithm for entropy estimation over streaming data. In Artificial Intelligence and Statistics, pages 196–206, 2013.

[CCF02] Moses Charikar, Kevin C. Chen, and Martin Farach-Colton. Finding frequent items in data streams. In Automata, Languages and Programming, 29th International Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002, Proceedings, pages 693–703, 2002.

[CCJ90] Brent N Clark, Charles J Colbourn, and David S Johnson. Unit disk graphs. Discrete mathematics, 86(1-3):165–177, 1990.
[CDK17] Graham Cormode, Jacques Dark, and Christian Konrad. Independent set size approximation in graph streams. CoRR, abs/1702.08299, 2017.

[CDK18] Graham Cormode, Jacques Dark, and Christian Konrad. Independent sets in vertex-arrival streams. arXiv preprint arXiv:1807.08331, 2018.

[CE16] Julia Chuzhoy and Alina Ene. On approximating maximum independent set of rectangles. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 820–829. IEEE, 2016.

[CH12] Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum independent set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012.

[Cha03] Timothy M Chan. Polynomial-time approximation schemes for packing and piercing fat objects. Journal of Algorithms, 46(2):178–189, 2003.

[CI98] Ran Canetti and Sandy Irani. Bounding the power of preemption in randomized scheduling. SIAM Journal on Computing, 27(4):993–1015, 1998.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to algorithms. MIT press, 2009.

[CP15] Sergio Cabello and Pablo Pérez-Lantero. Interval selection in the streaming model. In Algorithms and Data Structures - 14th International Symposium, WADS 2015, Victoria, BC, Canada, August 5-7, 2015. Proceedings, pages 127–139, 2015.

[CPL17] Sergio Cabello and Pablo Pérez-Lantero. Interval selection in the streaming model. Theoretical Computer Science, 702:77–96, 2017.

[CW10] Hai-Chau Chang and Lih-Chung Wang. A simple proof of Thue’s theorem on circle packing. arXiv preprint arXiv:1009.4322, 2010.

[EF03] Thomas Erlebach and Jirí Fiala. The maximum independent set problem in unit disk graphs. 2003.

[EHR12] Yuval Emek, Magnús M. Halldórsson, and Adi Rosén. Space-constrained interval selection. In Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, pages 302–313, 2012.

[EJS05] Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes for geometric intersection graphs. SIAM Journal on Computing, 34(6):1302–1323, 2005.

[EVF03] Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting active flows on high speed links. In Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, pages 153–166. ACM, 2003.

[FFGM07] Philippe Flajolet, Éric Fusy, Olivier Gaudouet, and Frédéric Meunier. Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm. In Discrete Mathematics and Theoretical Computer Science, pages 137–156. Discrete Mathematics and Theoretical Computer Science, 2007.
[FM85] Philippe Flajolet and G Nigel Martin. Probabilistic counting algorithms for data base applications. *Journal of computer and system sciences*, 31(2):182–209, 1985.

[FPT81] Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing and covering in the plane are np-complete. *Information processing letters*, 12(3):133–137, 1981.

[Gav72] Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. *SIAM Journal on Computing*, 1(2):180–187, 1972.

[GT01] Phillip B Gibbons and Srikanta Tirthapura. Estimating simple functions on the union of data streams. In *Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures*, pages 281–291. ACM, 2001.

[Hal80] William K Hale. Frequency assignment: Theory and applications. *Proceedings of the IEEE*, 68(12):1497–1514, 1980.

[Häs96] Johan Håstad. Clique is hard to approximate within n^{1-epsilon}. In *37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996*, pages 627–636, 1996.

[Hli01] Petr Hliněný. Contact graphs of line segments are np-complete. *Discrete Mathematics*, 235(1-3):95–106, 2001.

[HM85] Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing problems in image processing and vlsi. *Journal of the ACM (JACM)*, 32(1):130–136, 1985.

[IA83] Hiroshi Imai and Takao Asano. Finding the connected components and a maximum clique of an intersection graph of rectangles in the plane. *Journal of algorithms*, 4(4):310–323, 1983.

[JST11] Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers, finding duplicates in streams, and related problems. In *Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems*, pages 49–58. ACM, 2011.

[KLPS07] Antoon WJ Kolen, Jan Karel Lenstra, Christos H Papadimitriou, and Frits CR Spieksma. Interval scheduling: A survey. *Naval Research Logistics (NRL)*, 54(5):530–543, 2007.

[KNW10a] Daniel M. Kane, Jelani Nelson, and David P Woodruff. On the exact space complexity of sketching and streaming small norms. In *Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms*, pages 1161–1178. Society for Industrial and Applied Mathematics, 2010.

[KNW10b] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct elements problem. In *Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2010, June 6-11, 2010, Indianapolis, Indiana, USA*, pages 41–52, 2010.
[Kon15] Christian Konrad. Maximum matching in turnstile streams. In *Algorithms-ESA 2015*, pages 840–852. Springer, 2015.

[KT06] Jon Kleinberg and Eva Tardos. *Algorithm design*. Pearson Education India, 2006.

[LZ11] Ping Li and Cun-Hui Zhang. A new algorithm for compressed counting with applications in shannon entropy estimation in dynamic data. In *Proceedings of the 24th Annual Conference on Learning Theory*, pages 477–496, 2011.

[Mal97] Ewa Malesinska. *Graph theoretical models for frequency assignment problems*. Shaker, 1997.

[McG14] Andrew McGregor. Graph stream algorithms: a survey. *ACM SIGMOD Record*, 43(1):9–20, 2014.

[MNSW98] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and asymmetric communication complexity. *J. Comput. Syst. Sci.*, 57(1):37–49, 1998.

[Mot07] Kevin Mote. Fast point-feature label placement for dynamic visualizations. *Information Visualization*, 6(4):249–260, 2007.

[SWYZ19] Xiaoming Sun, David P Woodruff, Guang Yang, and Jialin Zhang. Querying a matrix through matrix-vector products. *arXiv preprint arXiv:1906.05736*, 2019.

[Woe94] Gerhard J Woeginger. On-line scheduling of jobs with fixed start and end times. *Theoretical Computer Science*, 130(1):5–16, 1994.
Appendix

A Weighted Interval Selection for Unit Intervals

In this section, we present an algorithm to approximate the weight of the maximum independent set, β, for unit-length intervals in turnstile streams. Interestingly, we note that estimating β has the same complexity as approximating α for unit-length intervals. That is, we obtain a $(2 + \epsilon)$-approximation to β in the turnstile model, which immediately implies $(2 + \epsilon)$-approximation for α, where the weights are identical. We complement this result with a lower bound that shows any $(2 - \epsilon)$-approximation to α requires $\Omega(n)$ space. The main algorithmic guarantee we achieve is as follows:

Theorem A.1. Let P be a turnstile stream of weighted unit intervals such that the weights are polynomially bounded in n and let $\epsilon \in (0, 1/2)$. There exists an algorithm that outputs an estimator Y such that with probability at least $9/10$ the following guarantees hold:

1. $\frac{\beta}{2(1 + \epsilon)} \leq Y \leq \beta$.

2. The total space used is $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$.

We first impose a grid Δ of side length 1 and shift it by a random integer. We then snap each interval to the cell containing the center of the interval and partition the real line into odd and even cells. Let C_e be the set of all even cells and C_o be the set of all odd cells. By averaging, either $|\text{OPT}_{C_e}|$ or $|\text{OPT}_{C_o}|$ is at least $\frac{\beta}{2}$. We describe an estimator that gives a $(1 + \epsilon)$-approximation to $|\text{OPT}_{C_e}|$ and $|\text{OPT}_{C_o}|$. W.l.o.g let $|\text{OPT}_{C_e}| \geq |\text{OPT}_{C_o}|$. Therefore, taking the max of the two estimators, we obtain a $(2 + \epsilon)$-approximation to β.

Having reduced the problem to estimating $|\text{OPT}_{C_e}|$, we observe that each even cell has at most 1 interval, namely the max weight interval landing in the cell, contributing to OPT_{C_e}. Then, partitioning the cells in C_e into $b = \text{poly}(\log(n))$ weight classes $W_i = \{c \in C_e | (1 + 1/2)^i \leq m(c) < (1 + 1/2)^{i+1}\}$, where $m(c)$ is the maximum weight of an interval in c. Create a substream for each weight class W_i, denoted by W_i', and feed an input interval into this substream if it’s weight lies in the range

Theorem A.2. (\text{ℓ_0-Norm Estimation} [KNW10b].) In the turnstile model, there is an algorithm for $(1 \pm \epsilon)$-approximating the ℓ_0-norm (number of non-zero coordinates) of a vector using space $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$ with success probability 2/3.
Let t_i be the corresponding ℓ_0 estimate for substream W'_i. Then, we can approximate the contribution of W_i by $(1 + 1/2)^{i+1} \cdot t_i$. Summing over the b weight classes gives an estimate for $|OPT_{C_e}|$.

Given access to an algorithm for estimating the ℓ_0-norm, the Naïve Approximation Algorithm (1) satisfies the following guarantee:

Lemma A.3. The Naïve Approximation Algorithm (1) outputs an estimate X such that with probability $99/100$, $\frac{\beta}{9(1+\epsilon)} \leq X \leq \beta$ and runs in space $\text{poly}(\frac{\log(n)}{\epsilon})$.

Proof. We observe that for each non-empty cell $c \in C_e$, there is exactly 1 interval that can contribute to $|OPT_{C_e}|$ since each cell of the grid has side length 1 and all intervals falling in a given cell pairwise intersect. This contributing interval lies in some weight class W_i and our estimator approximates its weight as $(1 + 1/2)^{i+1}$. Here, the weights of the intervals are sandwiched between $(1 + 1/2)^i$ and $(1 + 1/2)^{i+1}$. Therefore, we overestimate the weight by a factor of at most 3/2.

Further, instead of taking the maximum over each cell c, we may have inserted intervals that lie in c into all substreams W'_i. Therefore, we take the sum of our geometrically increasing weight classes over that cell. In the worst case, we approximate the true weight of a contributing interval, $(3/2)^{i+1}$, with $\sum_{i'=1}^i (3/2)^{i'+1} = 3((3/2)^{i+1} - 1)$. Note, we again overestimate the weight, this time by a factor of 3.

Finally, Theorem A.2 overestimates the ℓ_0-norm of W_i by at most $1 + \epsilon$ with probability at least $2/3$. We boost this probability by running $O(\log(n))$ estimators and taking the median. Union bounding over all $i \in [b]$, we simultaneously overestimate the ℓ_0-norm of all W_i by at most $1 + \epsilon$ with probability at least $99/100$. Therefore, the overall estimator is a $(9/2 + \epsilon)$-approximation to $|OPT_{C_e}|$. Rescaling our estimator by the above constant underestimates $|OPT_{C_e}|$. Finally, $|OPT_{C_e}| \geq \beta/2$ and $\frac{\beta}{9(1+\epsilon)} \leq X \leq \beta$.

Since our weights are polynomially bounded, we create $\text{poly}(\log_{1+\epsilon}(n))$ substreams and run an ℓ_0 estimator from Theorem A.2 on each substream. Therefore, the total space used by Algorithm 1 is $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$.

We can thus assume we know β and $|OPT_{C_e}|$ up to a constant by initially making $O(\log(n))$ guesses and running the Naïve Approximation Algorithm for each guess in parallel. At the end of the stream, we know the correct guess up to a constant factor, and thus can output the estimator corresponding to that branch of computation. A key tool we use in this algorithm is k-Sparse Recovery. As mentioned in Berinde et al. [BCIS09], the k-tail guarantee is a sufficient condition for k-Sparse Recovery, since in a k-sparse vector, the elements of the tail are 0. We note that the Count-Sketch Algorithm [CCF02] has a k-tail guarantee in turnstile streams.

Definition A.4. (k-Sparse Recovery.) Let x be the input vector such that x is updated coordinate-wise in the turnstile streaming model. Then, x is k-sparse if x has at most k non-zero entries at the end of the stream of updates. Given that x is k-sparse, a data structure that exactly recovers x at the end of the stream is referred to as a k-Sparse Recovery data structure.

Intuitively, we again simulate partitioning cells in C_e into $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$ weight classes according to the maximum weight occurring in each cell. Since we do not know this partition a priori, we initially create $b = O\left(\frac{\log(n)}{\epsilon}\right)$ substreams, one for each weight class and run the ℓ_0-estimator on each one. We then make $O\left(\frac{\log(n)}{\epsilon}\right)$ guesses for $|OPT_{C_e}|$ and run the rest of the algorithm for each branch.
in parallel. Additionally, we run the Naïve Approximation Algorithm to compute the right value of \(|\optCAC|\) up to a constant factor, which runs in space \(\poly\left(\frac{\log(n)}{\epsilon}\right)\). Then, we create \(b = \poly\left(\frac{\log(n)}{\epsilon}\right)\) substreams by agnostically sampling cells with probability \(p_i = \Theta\left(\frac{(1+\epsilon)^i\log(n)}{\epsilon^i X}\right)\), where \(X\) is the right guess for \(|\optCAC|\). Sampling at this rate preserves a sufficient number of cells from weight class \(\mathcal{W}_i\). We then run a sparse recovery algorithm on the resulting substreams.

We note that the resulting substreams are sparse. To see this, note we can filter out cells that belong weight classes \(\mathcal{W}_{i'}\) for \(i' < i\) by simply checking if the maximum interval seen so far lies in weight classes \(\mathcal{W}_i\) and higher. Further, sampling with probability proportional to \(\Theta\left(\frac{(1+\epsilon)^i\log(n)}{\epsilon^i |\optCAC|}\right)\) ensures that the number of cells that survive from weight classes \(\mathcal{W}_i\) and above are small. Therefore, we recover all such cells using the sparse recovery algorithm. Note, we limit the algorithm to considering weight classes that have a non-trivial contribution to \(|\optCAC|\).

Using the \(\ell_0\) norm estimates computed above, we can determine the number of non-empty cells in each of the weight classes. Thus, we create a threshold for weight classes that contribute, such that all the weight classes below the threshold together contribute at most an \(\epsilon\)-fraction of \(|\optCAC|\) and we can set their corresponding estimators to 0. Further, for all the weight classes above the threshold, we can show that sampling at the right rate leads to recovering enough cells to achieve concentration in estimating their contribution.

Next, we show that the total space used by Algorithm 2 is \(\poly\left(\frac{\log(n)}{\epsilon}\right)\). We initially create \(b = O\left(\frac{\log(n)}{\epsilon}\right)\) substreams, one for each weight class and run an \(\ell_0\)-estimator on each one. Recall, this requires \(\poly\left(\frac{\log(n)}{\epsilon}\right)\). We then make \(O\left(\frac{\log(n)}{\epsilon}\right)\) guesses for \(|\optCAC|\) and run the rest of the algorithm for each branch in parallel. Additionally, we run Algorithm 1 to compute the right value of \(|\optCAC|\) up to a constant factor, which runs in space \(\poly\left(\frac{\log(n)}{\epsilon}\right)\). Then, we create \(b\) substreams by sampling cells with probability \(p_i = \Theta\left(\frac{(1+\epsilon)^i\log(n)}{\epsilon^i X}\right)\), for \(i \in [b]\). Subsequently, we run a \(\poly\left(\frac{\log(n)}{\epsilon}\right)\)-sparse recovery algorithm on each one. Note, if each sample is not too large, this can be done in \(\poly\left(\frac{\log(n)}{\epsilon}\right)\) space. Therefore, it remains to show that each sample \(\mathcal{S}_i\) is small.

Lemma A.5. Given a turnstile stream \(\mathcal{P}\), with probability at least \(99/100\), the Weighted Unit Interval Turnstile Sampling procedure (Algorithm 2) samples \(\poly\left(\frac{\log(n)}{\epsilon}\right)\) cells from the grid \(\Delta\).

Proof. For \(i \in [b]\), let \(\mathcal{S}_i\) be a substream of cells in \(\mathcal{C}_e\), sampled with probability \(p_i\) and having an interval with weight at least \((1+\epsilon)^i\) since we filter out cells with smaller weight. Then, by an averaging argument, the total number of cells with an interval of weight at least \((1+\epsilon)^i\) is at most \(\frac{\beta}{(1+\epsilon)^i}\). Sampling with probability \(p_i = \Theta\left(\frac{(1+\epsilon)^i\log(n)}{\epsilon^i X}\right)\), the expected number of cells from \(\mathcal{W}_i\) that survive in \(\mathcal{S}_i\) is at most \(p_i \frac{\beta}{(1+\epsilon)^i} = \poly\left(\frac{\log(n)}{\epsilon}\right)\) in expectation. Next, we show that they are never much larger than their expectation. Let \(X_c\) be the indicator random variable for cell \(c \in \mathcal{W}_i\) to be sampled in \(\mathcal{S}_i\) and let \(\mu\) be the expected number of cells in \(\mathcal{S}_i\). By Chernoff bounds,

\[
\Pr\left[\sum_c X_c \geq (1+\epsilon)\mu\right] \leq \exp\left(-\frac{2\epsilon^2 \poly(\log(n))}{\poly(\epsilon)}\right) \leq 1/n^k
\]

for some large constant \(k\). A similar argument holds for the number of cells from weight class \(\mathcal{W}_{i'}\), for \(i' > i\), surviving in substream \(\mathcal{S}_j\). Note, for all \(i' < i\), we never include such a cell from weight
class \mathcal{W}_i in our sample \mathcal{S}_i, since the filtering step rejects all cells that do not contain an interval of weight at least $(1 + \epsilon)^i$. Union bounding over the events that cells $c \in \mathcal{W}_i$ get sampled in \mathcal{S}_i, for $i' \geq i$, the cardinality of \mathcal{S}_i is at most $\log(n) / \epsilon$ with probability at least $1 - 1/n^{k'}$ for an appropriate constant k'. Since we create b such substreams for \mathcal{C}_e, we can union bound over such events in each of them and thus $\bigcup_{i \in [b]} |\mathcal{S}_i|$ is at most $\log(n) / \epsilon$ with probability at least 99/100. Since $|\mathcal{C}_e| = |\Delta|/2$, the same result holds for the total cells sampled from Δ. Therefore, the overall space used by Algorithm 2 is poly $\left(\log(n) / \epsilon \right)$.

Next, we show that the estimate returned by our sampling procedure is indeed a $(2 + \epsilon)$-approximation. We observe that the union of the \mathcal{W}_i’s form a partition of \mathcal{C}_e. Therefore, it suffices to show that we obtain a $(1 + \epsilon)$-approximation to the WIS for each \mathcal{W}_i with good probability. Let c denote a cell in \mathcal{W}_i and OPT_c denote the WIS in cell c. We create a substream for each weight class \mathcal{W}_i denoted by \mathcal{W}'_i and let $X_{\mathcal{W}_i}$ be the corresponding estimate returned by the ℓ_0 norm of \mathcal{W}_i. Let $X_{\mathcal{W}'} = \sum_{i \in [b]} X_{\mathcal{W}_i}$ denote the sum of the estimates across the b substreams.

We say that weight class \mathcal{W}_i contributes if $X_{\mathcal{W}_i} \geq \frac{\epsilon X_{\mathcal{W}_i}}{(1 + \epsilon) b}$. Note, if we discard all the weight classes that do not contribute we lose at most an ϵ-fraction of β (as shown below). Therefore, setting the estimators corresponding to classes that do not contribute to 0 suffices. The main technical hurdle remaining is to show that if a weight class contributes we can accurately estimate $|\text{OPT}_{\mathcal{W}_i}|$.

Lemma A.6. Let $Y_i = \sum_{c \in \mathcal{C}_e} Y_i$ be the estimator returned by Algorithm 2 for the set \mathcal{C}_e. Then, $Y_e = (1 \pm \epsilon)|\text{OPT}_{\mathcal{C}_e}|$ with probability at least 99/100.

Proof. We first consider the case when \mathcal{W}_i contributes, i.e., $X_{\mathcal{W}_i'} \geq \frac{\epsilon X_{\mathcal{W}_i}}{(1 + \epsilon) b}$. Note, $X_{\mathcal{W}_i'} = \sum_{i \in [b]} X_{\mathcal{W}_i}$ is a $(1 + \epsilon)$-approximation to the number of non-empty cells in \mathcal{W} with probability at least $1 - n^{-k}$, where $\mathcal{W} = \bigcup_{i \in [b]} \mathcal{W}_i$, since the ℓ_0-estimator is a $(1 + \epsilon)$-approximation to the number of non-empty cells in \mathcal{W}_i simultaneously for all i with high probability and the \mathcal{W}_i’s are disjoint. Recall, X is the correct guess for $|\text{OPT}_{\mathcal{C}_e}|$. Therefore,

$$(1 + \epsilon)^i X_{\mathcal{W}_i} = \Omega \left(\frac{\epsilon X}{(1 + \epsilon) b} \right) = \Omega \left(\frac{\epsilon X}{(1 + \epsilon) \beta} \right)$$

Then, sampling at a rate $p_i = \Theta \left(\frac{b(1 + \epsilon)^i \log(n)}{\epsilon^2 X} \right)$ implies at least $\Omega \left(\frac{\epsilon X}{(1 + \epsilon)^{i+1} b} \right) \cdot \Omega \left(\frac{b(1 + \epsilon)^i \log(n)}{\epsilon^2 X} \right) = \Omega \left(\frac{\log(n)}{(1 + \epsilon)^2} \right)$ cells from \mathcal{W}_i survive in expectation. Let X_c denote an indicator random variable for cell $c \in \mathcal{W}_i$ being in substream \mathcal{S}_i. Then, by a Chernoff bound,

$$\Pr \left[\sum_{c \in \mathcal{W}_i} X_c \leq (1 - \epsilon) \left(\frac{\log(n-c)}{2\epsilon^2} \right) \right] \leq \exp \left(\frac{-2\epsilon^2 \log(n-c)}{2\epsilon^2} \right) \leq n^{-c}$$

for some constant c. Union bounding over all the random events similar to the one above for $i \in [b]$, simultaneously for all i, the number of cells from \mathcal{W}_i in \mathcal{S}_i is at least $\Omega \left(\frac{\log(n)}{\epsilon^2} \right)$ with probability at least $1 - 1/n^k$ for some constant k. Note, for $i' > i$, no cell $c \in \mathcal{W}_{i'}$ exists in \mathcal{S}_i since the filter step removes all cells c such that $m(c) < (1 + \epsilon)^i$.

Next, consider a weight class $\mathcal{W}_{i'}$ for $i' > i$ such that it contributes. We upper bound the number of cells from $\mathcal{W}_{i'}$ that survive in substream \mathcal{S}_i. Note, weight class $\mathcal{W}_{i'}$ contains at most $\frac{\beta}{(1 + \epsilon)^{i'} \epsilon}$ non
We first show we obtain a good estimator for \(|-\) with probability at least \(1 - \epsilon\) all weight classes that do not contribute discards at most \(X\) for some constant \(k\)

Now, we observe that the total number of cells that survive the sampling process in substream \(S_i\) is \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right)\) and therefore, they can be recovered exactly by the \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right)\)-sparse recovery algorithm. Let the resulting set be denoted by \(S'_{i,\mathcal{W}_i}\). We can also compute the number of cells that belong to weight class \(\mathcal{W}_i\) that are recovered in the set \(S'_{i,\mathcal{W}_i}\) and we denote this by \(|S'_{i,\mathcal{W}_i}|\). Recall, the corresponding estimator is

\[
Y_i = \frac{X_{\mathcal{W}_i}Z_c}{|S'_{i,\mathcal{W}_i}|},
\]

where \(Z_c = \frac{(1+\epsilon)i+1}{p_i}\) if \(c \in S'_{i,\mathcal{W}_i}\) and 0 otherwise. We first show we obtain a good estimator for \(|\mathcal{O}_{\mathcal{W}_i}|\) in expectation.

\[
\mathbb{E}[Y_i] = \mathbb{E} \left[\sum_{c \in S'_{i,\mathcal{W}_i}} \frac{X_{\mathcal{W}_i}Z_c}{|S'_{i,\mathcal{W}_i}|} \right] = (1 + \epsilon)^{i+1}X_{\mathcal{W}_i}
\]

\[
= (1 \pm 4\epsilon)|\mathcal{O}_{\mathcal{W}_i}|
\]

Since we know that \(|S'_{i,\mathcal{W}_i}| = \Omega\left(\frac{\log(n)}{(1+\epsilon)^2}\right)\), we show that our estimator concentrates. Note,

\[
\mathbb{E}[Y_i] = (1 + \epsilon)^{i+1}X_{\mathcal{W}_i} = \Omega\left(\frac{cX_{\mathcal{W}_i}}{\log(n)}\right).
\]

Further, \(0 \leq Z_c \leq \frac{(1+\epsilon)^{i+1}}{p_i} = O\left(\frac{(1+\epsilon)^{i+1}X}{b(1+\epsilon)^i\log(n)}\right)\). Therefore,

\[
\sum_{c \in S'_{i,\mathcal{W}_i}} \left(\frac{X_{\mathcal{W}_i}Z_c}{|S'_{i,\mathcal{W}_i}|} \right)^2 = O\left(\left(\frac{(1+\epsilon)^{i+1}}{b(1+\epsilon)^i\log(n)}\right)^2 \frac{1}{|S'_{i,\mathcal{W}_i}|} \right)
\]

and \(X_{\mathcal{W}_i} = \text{poly}\left(\frac{\log(n)}{\epsilon}\right)\) By a Hoeffding bound,

\[
\Pr \left[|Y_i - \mathbb{E}[Y_i]| \geq \epsilon\mathbb{E}[Y_i] \right] \leq 2\exp \left(\frac{-2\epsilon^2\mathbb{E}[Y_i]^2}{\sum_{c \in S'_{i,\mathcal{W}_i}} \left(\frac{X_{\mathcal{W}_i}Z_c}{|S'_{i,\mathcal{W}_i}|} \right)^2} \right) \leq 2\exp \left(\frac{\Omega(\log(n))}{1 + \epsilon} \right) \leq 1/n^k
\]

for some constant \(k\). Therefore, union bounding over all \(i\), \(Y_i\) is a \((1 \pm \epsilon)^2\)-approximation to \(|\mathcal{O}_{\mathcal{W}_i}|\) with probability at least \(1 - 1/n\). Therefore, if \(\mathcal{W}_i\) contributes we obtain a \((1 \pm \epsilon)\)-approximation to \(|\mathcal{O}_{\mathcal{W}_i}|\).

In the case where \(\mathcal{W}_i\) does not contribute, we set the corresponding estimator to 0. Note,

\[
X_{\mathcal{W}_i} < \frac{cX_{\mathcal{W}_i}}{(1+\epsilon)^{i+1}} = \frac{c(1+\epsilon)|\mathcal{O}_{\mathcal{W}_i}|}{b} = O\left(\frac{\epsilon\beta}{b}\right).
\]

Note, since there are at most \(b\) weight classes, discarding all weight classes that do not contribute discards at most \(O(\epsilon\beta)\). We therefore lose at most an \(\epsilon\)-fraction of \(\beta\) by setting the \(Y_i\) corresponding to non-contributing weight classes to 0.

\(\square\)
Combining Lemmas A.3 and A.6 finishes the proof for Theorem A.1.

Algorithm 2: Weighted Unit Interval Turnstile Sampling.

Input: Given a turnstile stream \mathcal{P} with weighted unit intervals, where the weights are polynomially bounded, ϵ and $\delta > 0$, the sampling procedure outputs a $(2 + \epsilon)$-approximation to β.

1. Randomly shift a grid Δ of side length 1. Partition the cells into C_e and C_o.

2. For cells in C_e, snap each interval in the input to a cell c that contains its center. Consider a partitioning of the cells in C_e into $b = \text{poly}\left(\frac{\log(n)}{\epsilon}\right)$ weight classes $\mathcal{W}_i = \{c \in C_e | (1 + \epsilon)^i \leq m(c) \leq (1 + \epsilon)^{i+1}\}$, where $m(c)$ is the maximum weight of an interval in c (we do not know this partition a priori.) Create a substream for each weight class \mathcal{W}_i denoted by \mathcal{W}_i'.

3. Feed interval $D(d_j, 1, w_j)$ along substream \mathcal{W}_i' such that $w_j \in [(1 + \epsilon)^i, (1 + \epsilon)^{i+1})$. Maintain a $(1 \pm \epsilon)$-approximate ℓ_0-estimator for each substream. Let $|\mathcal{W}_i'|$ denote the number of non-empty cells in substream \mathcal{W}_i' and $X_{\mathcal{W}_i'}$ be the corresponding estimate returned by the ℓ_0-estimator.

4. Create $O(\log(n))$ substreams, one for each guess of $|\text{OPT}_{C_e}|$. Let X be the guess for the current branch of the computation. In parallel, run Algorithm 1 estimates $|\text{OPT}_{C_e}|$ up to a constant factor. Therefore, at the end of the stream, we know a constant factor approximation to the correct value of $|\text{OPT}_{C_e}|$ and use the estimator from the corresponding branch of the computation.

5. In parallel, for $i \in [b]$, create substream S_i by subsampling cells in C_e with probability $p_i = \Theta\left(\frac{b(1 + \epsilon)^i \log(n)}{\epsilon^3 X}\right)$. Note, this sampling is done agnostically at the start of the stream.

6. Run a poly-$\left(\frac{\log(n)}{\epsilon}\right)$-sparse recovery algorithm on each substream S_i. For substream S_i, filter out cells c such that $m(c) < (1 + \epsilon)^i$. Let S_i' be the set of cells recovered by the sparse recovery algorithm. Let $S_i'|\mathcal{W}_i$ be the cells in S_i' that belong to weight class \mathcal{W}_i.

7. Let $X_{\mathcal{W}_i'} = \sum_{i \in [b]} X_{\mathcal{W}_i'}$. Let Z_c be a random variable such that $Z_c = \frac{(1 + \epsilon)^{i+1}}{p_i}$ if $c \in S_i'|\mathcal{W}_i$ and 0 otherwise. If $X_{\mathcal{W}_i'} \geq \frac{c X_{\mathcal{W}_i'}}{(1 + \epsilon)^{i+1} p_i}$, set the estimator for the i^{th} subsample,

$$Y_i = \sum_{c \in S_i'|\mathcal{W}_i} \frac{X_{\mathcal{W}_i'} Z_c}{|S_i'|_{\mathcal{W}_i}}$$

Otherwise, set $Y_i = 0$. Let $Y_e = \sum_i Y_i$.

8. Repeat Steps 2-7 for the set C_o and let Y_o be the corresponding estimator.

Output: $Y = \max(Y_e, Y_o)$.

20
A.1 Lower bound for Unit Intervals

Here, we describe a communication complexity lower bound for estimating α for unit-length interval in turnstile streams and thus show the optimality of Theorem A.1. Our starting point is the Augmented Index problem and its communication complexity is well understood in the two-player one-way communication model. In this model, we have two players Alice and Bob who are required to compute a function based on their joint input and Alice is allowed to send messages to Bob that are a function of her input and finally Bob announces the answer. Note, Bob isn’t allowed to send messages to Alice.

Definition A.7. (Augmented Indexing.) Let $AI_{n,j}$ denote the communication problem where Alice receives as input $x \in \{0, 1\}^n$ and Bob receives an index $j \in [n]$, along with the $x_{j'}$ for $j' > j$. The objective is for Bob to output x_j in the one-way communication model.

Theorem A.8. (Communication Complexity of $AI_{n,j}$, [MNSW98].) The randomized one-way communication complexity of $AI_{n,j}$ with error probability at most $1/3$ is $\Omega(n)$.

Let Alg be a one-pass turnstile streaming algorithm that estimates α. We show that Alg can be used as a subroutine to solve $AI_{n,j}$, in turn implying a lower bound on the space complexity of Alg.

We formalize this idea in the following theorem:

Theorem A.9. Any randomized one-pass turnstile streaming algorithm Alg which approximates α to within a $(2 - \epsilon)$-factor, for any $\epsilon > 0$, for unit intervals, with at least constant probability, requires $\Omega(n)$ space.

Proof. Given her input x, Alice constructs a stream of unit-length intervals and runs Alg on the stream. For $i \in [n]$, Alice inserts the interval $[\frac{2i-x_i}{n^2}, (\frac{2i-x_i}{n^2}) + 1]$. She then communicates the state of Alg to Bob. Bob uses the message received from Alice as the initial state of the algorithm and continues the stream. Since Bob’s input includes an index j and x_i for all $i > j$, Bob deletes all intervals corresponding to such i. Bob then inserts $[\left(\frac{2j-0.5}{n}\right) - 1, \frac{2j-0.5}{n}]$.

Let us consider the case where $x_j = 1$. We first note that Bob’s interval is the leftmost interval in the remaining set. The right endpoint of this interval is $\frac{2j-0.5}{n^2}$. Next, the rightmost interval corresponds to the j^{th} interval inserted by Alice. The left endpoint of this interval is $\frac{2j-1}{n^2}$. Clearly, these intervals intersect each other and intersect all the intervals between them. Therefore, $\alpha = 1$.

Let us now consider the case where $x_j = 0$. Again, Bob’s interval is the leftmost with its right endpoint at $\frac{2j-0.5}{n}$. However, the left endpoint of Alice’s rightmost interval is $\frac{2j}{n}$ and thus these two intervals are independent. Therefore, $\alpha \geq 2$. Observe, any $(2 - \epsilon)$-approximate algorithm can distinguish between these two cases and solve $AI_{n,j}$. By Theorem A.8, any such algorithm requires $\Omega(n)$ communication and in turn $\Omega(n)$ space.

B Arbitrary Length Intervals in Turnstile Streams

We now focus on estimating α and β for arbitrary-length intervals in turnstile streams. While we cannot obtain streaming algorithms in general, we show it is possible to estimate α and β when the maximum degree of the interval intersection graph or the maximum length of an interval are bounded. In particular, we show an algorithm that achieves a $(1 + \epsilon)$-approximation to α given that the maximum degree is upper bounded by poly$\left(\frac{\log(n)}{\epsilon}\right)$. We also parameterize the problem with...
B.1 Algorithms under Bounded Degree Assumptions

In light of the lower bound, we study the problem of estimating \(\alpha \) for arbitrary-length intervals assuming the number of pair-wise intersections are bounded by \(\kappa_{\text{max}} = \text{poly}\left(\frac{\log(n)}{\epsilon}\right) \). In this section we show the following theorem:

Theorem B.1. Let \(P \) be an turnstile stream of unit-weight arbitrary-length intervals with lengths polynomially bounded in \(n \) and let \(\epsilon \in (0, 1/2) \). Let \(\kappa_{\text{max}} = \text{poly}\left(\frac{\log(n)}{\epsilon}\right) \) be the maximum number of pairwise intersections in \(P \). Then, there exists an algorithm that outputs an estimator \(Y \) such that the following guarantees hold:

1. \(\frac{\alpha}{(1+\epsilon)} \leq Y \leq \alpha \) with probability at least \(2/3 \).
2. The total space used is \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right) \).

Algorithm 3 : Level Estimator.

Input: Given a turnstile stream \(P \) with unit weight arbitrary length intervals, where the length is polynomially bounded, \(\epsilon > 0 \) and \(\delta > 0 \), the algorithm outputs a \((1 + \epsilon)\)-approximation to \(\alpha \), assuming that \(\kappa_{\text{max}} = \text{poly}\left(\frac{\log(n)}{\epsilon}\right) \).

1. Let \(t = O\left(\frac{\log(n)}{\epsilon}\right) \) be the number of level-classes. Let \(\Delta = \bigcup_{i \in [t]} \Delta_i \) be a randomly shifted Nested Grid, where \(\Delta_i \) is a grid of side length \(\frac{(1+\epsilon)^i+1}{\epsilon} \).
2. For \(i \in [t] \), let \(R_i \) be the set of all \(r_i \)-Structures at level \(i \), where a \(r_i \)-Structure is a subset of the Nested Grid, \(\Delta \), such that there exists an interval at the \(i \)th level of the structure, there exist no intervals in the structure at any level \(i' > i \) and all the intervals in the structure at levels \(i' < i \) intersect the interval at the \(i \)th level.
3. For all \(i \in [t] \), using Algorithm 4, sample \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right) \) \(r_i \)-Structures from the set \(R_i \) to create a substream \(R_i^s \). Note, this sampling is carried out with probability \(p_i \) defined below.
4. At the end of the stream, we recover \(R_i^s \), for all \(i \in [t] \). Let \(Y_i = \frac{|\text{OPT}_{R_i^s}|}{p_i} \) (where \(p_i \) is the sampling probability for the \(i \)th level), where \(|\text{OPT}_{R_i^s}| \) can be computed using an offline algorithm.

Output: \(Y = \sum_{i \in [t]} Y_i \).

Let \(W \) be the maximum length of the intervals in our input. We split our input into \(t = O\left(\frac{\log(n)}{\epsilon}\right) \) length classes \(W_i \) such that for all \(i \in [t] \), \(W_i = \{ D_j \in P | (1+\epsilon)^i \leq r_j \leq (1+\epsilon)^{i+1} \} \). Let \(W \) denote \(\bigcup_{i \in [t]} W_i \). We note that the partition here is over the input to the problem.
We can estimate the number of non-empty cells in each weight class up to a \((1 \pm \epsilon)\)-factor by creating a substream for each one and running an \(\ell_0\) estimator on them. At the end of the stream, we can discard classes that are not within \(\log(W)\) non-empty cells of each other. Therefore, we can assume the remaining classes have the same number of non-empty cells up to a \(\log(W)\) factor.

We then make \(O(\log(n))\) guesses for the number of non-empty cells for any fixed level and run our algorithm in parallel for each guess. Since there are \(t\) levels, this gives rise to an \(O(t \log(n))\) factor blowup in space. At the end of the stream we know the correct value for each level via the \(\ell_0\) estimates. Let the number of non-empty cells at every level be denoted by \(X_i\).

In contrast with our previous algorithm, we note that placing a grid on the input with side length 1 no longer suffices since our intervals may now lie in multiple cells. Therefore, we impose a nested grid over the input space:

Definition B.2. (Nested Grid.) Given a partition \(\mathcal{W}\), let grid \(\Delta_i\), corresponding to \(\mathcal{W}_i \in \mathcal{W}\), be a set of cells over the input space with length \(\frac{(1+\epsilon)^{i+1}}{\epsilon}\). Then a Nested Grid, denoted by \(\Delta\), is defined to be \(\bigcup_{i \in [t]} \Delta_i\).

We then randomly shift the nested grid such that at most an \(\epsilon\)-fraction of intervals in the \(i\)th length class lie within a distance \((1+\epsilon)^{i+1}\) of the \(i\)th grid. Since this holds for all \(\mathcal{W}_i\), and \(\mathcal{W}_i\) are a partition of our input, we lose at most an \(\epsilon\)-fraction of \(\alpha\). We then define the following object that enables us to obtain accurate estimates for each length class.

Definition B.3. (r_i-Structure.) We define an \(r_i\)-Structure to be a subset of the Nested Grid, \(\Delta_i\), such that there exists an interval at the \(i\)th level of the structure, there exist no intervals in the structure at any level \(i' > i\) and all the intervals in the structure at levels \(i' < i\) intersect the interval at the \(i\)th level.

Let \(\mathcal{R}_i\) denote the set of all \(r_i\)-Structures at level \(i\). Observe that, taking the union over \(i \in [t]\) of \(\mathcal{R}_i\) gives a partition of the input. Therefore, estimating \(|\text{OPT}_{\mathcal{R}_i}|\) separately and summing up the estimates is a good estimator for \(\alpha\).

Similar to the algorithm in Section A a key tool we use is \(k\)-Sparse Recovery. Intuitively, we subsample \(\log(n)\) \(r_i\)-Structures from the set \(\mathcal{R}_i\) to create a substream \(\mathcal{R}_i^s\) and run a \(\kappa_{\max}\)-Sparse Recovery Algorithm on each substream. At the end of the stream, we get an estimate of \(|\text{OPT}_{\mathcal{R}_i}|\) that concentrates. We then add up the estimates across all the levels to form our overall estimate. We formally describe the Level Estimator Algorithm in Algorithm 3, assuming we are given access to a black-box sampling algorithm for sampling an \(r_i\)-Structure.

Next, we describe the algorithm for sampling \(r_i\)-Structures in turnstile streams. We assume \(X_i\) is a 2-approximation to the number of non-empty cells in \(\mathcal{W}_i\). Intuitively, at each level we sample with probability \(p_i = \text{poly}\left(\frac{\log(n)}{\epsilon}\right) \frac{1}{X_i}\) and hash each sampled structure such that the structures from \(\mathcal{R}_i\) get hashed into different bins. Simultaneously, the number of structures not in \(\mathcal{W}_i\) that get sampled are not too large. Then, given enough bins, we hash each structure into separate bins. Finally, running a sparse recovery on each bin suffices to recover a structure exactly. We show that we can recover enough structures from each set \(\mathcal{R}_i\) to get an estimator that concentrates around \(\text{OPT}_{\mathcal{R}_i}\). We say that set \(\mathcal{R}_i\) contributes if \(|\mathcal{R}_i| \geq \frac{\alpha \log(n)}{\epsilon}\). Note, if we discard all the sets that do not contribute we lose at most an \(\epsilon\)-fraction of \(\alpha\). We formally describe the sampling algorithm in Algorithm 4.

Lemma B.4. If the estimator \(X_i\) corresponding to the set \(\mathcal{R}_i\) passes the threshold, i.e. \(X_i > \frac{\epsilon \sum_{i \in [t]} X_i}{t}\), we obtain an estimate \(Y_i\) such that \(Y_i = (1 \pm \epsilon)|\text{OPT}_{\mathcal{R}_i}|\). If class \(\mathcal{R}_i\) does not contribute, we obtain an estimate \(Y_i\) such that \(Y_i \leq (1 + \epsilon)|\text{OPT}_{\mathcal{R}_i}|\).
Proof. We first consider the case where R_i contributes, i.e., $|R_i| \geq \frac{\epsilon \alpha}{\log(n)}$. Then, sampling at a rate p_i implies at least $\frac{\log(n)}{\epsilon^2} r_i$-Structures from R_i survive. We note that since the number of non-empty cells across levels are within an $O(\log(n))$ factor of each other, at most $O\left(\frac{\log^2(n)}{\epsilon^3}\right) r_i$-Structures from R_i survive. Note, overall the number of structures that survive is $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$. Therefore, we can run κ_{\max}-Sparse Recovery on each cell and stay within our space bounds. At the end of the stream, we can exactly recover the set R_s^i for all $i \in [t]$. For each structure in R_s^i, we recover the exact intervals inside them and run an offline algorithm to compute $|\text{OPT}_R^i|$ exactly. Since the size of our sample R_s^i is at least $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$ and an r_i-Structure has at most κ_{\max} independent intervals, we obtain a $(1 \pm \epsilon)$-approximation to $|\text{OPT}_R^i|$ using a simple application of a Chernoff bound. In the case where R_i does not contribute, the number of samples we get is smaller than $\frac{\epsilon \alpha}{\log(n)}$. Therefore, we can set the estimate Y_i for R_i to be 0. Note, for such i we do not obtain a concentrated estimate, but we also do not overcount.

Algorithm 4: Sampling r_i-Structures from R_i.

Input: Given a turnstile stream \mathcal{P} with unit weight arbitrary length intervals, with the length being polynomially bounded, $\epsilon > 0$ and $\delta > 0$, the sampling procedure creates a $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$ size sample of the set R_i.

1. Let Δ_i be the i^{th} level of a randomly shifted Nested Grid Δ. Let R_i be the set of r_i-Structures where the topmost cells lie in Δ_i. Let X_i be the correct guess for the number of non-empty cells in Δ_i up to a constant.

2. Agnostically sample cells from Δ_i with probability $p_i = \max\left(\text{poly}\left(\frac{\log(n)}{\epsilon}\right) \frac{1}{X_i}, 1\right)$. Let S_i be the corresponding substream created.

3. For each cell $c \in S_i$, let r_i^c be a structure (as defined in B.3) with c at the topmost level. Run κ_{\max}-Sparse Recovery on substream S_i.

4. At the end of the stream, verify that r_i^c is a valid r_i-Structure. Let R_s^i be the set of all such structures.

5. If $X_i > \frac{\epsilon \sum_{i \in [t]} X_i}{t}$, keep R_s^i, else discard it.

Output: $\bigcup_{i \in [t]} R_s^i$.

Lemma B.5. The space used by Unit Weight Arbitrary Length Interval turnstile Algorithm is $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$.

Proof. First, we note that we make $O(t \log(n)) = \text{poly}\left(\frac{\log(n)}{\epsilon}\right)$ guesses for the X_i’s and run our algorithm for each guess in parallel. There are $O\left(\frac{\log(n)}{\epsilon}\right)$ length classes and as seen in Lemma B.4 for each class we sample $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$ cells. We run κ_{\max}-Sparse Recovery on each sampled cell which
requires an additional poly \(\frac{\log(n)}{\epsilon}\) space. Therefore, the total space we use is poly \(\frac{\log(n)}{\epsilon}\).

The proof of Theorem B.1 follows directly from Lemma B.5 and Lemma B.4.

B.2 Algorithms with Parametrized Space Complexity

In this section we consider the problem of estimating \(\alpha\) for arbitrary-length intervals assuming that the space available is at most poly \(\frac{W_{\text{max}} \log(n)}{\epsilon}\), where \(W_{\text{max}}\) is an upper bound on the ratio of the max to the min length of an interval. We note that this regime is interesting when \(W_{\text{max}}\) is sublinear in \(n\).

We begin by modifying the Nested Grid \(\Delta\), changing the length of a cell at level \(i\) to \((1+\epsilon)^i + \frac{1}{2}\). Therefore, randomly shifting the grid, in expectation half the intervals from length class \(W_i\) exactly fit in grid cells \(\Delta_i\). Therefore, discarding all the intervals that intersect the cell boundary, we lose at most 1/2 of the MIS.

We use the Level Estimators and the Sampling \(r_i\)-Structures algorithms as described in the previous section and mention the minor modifications that are required. Since we are constrained to \(\kappa = \text{poly}\left(\frac{W_{\text{max}} \log(n)}{\epsilon}\right)\) space, for each \(r_i\)-Structure we sample, we run a \(\kappa\)-Sparse Recovery algorithm on it. Observe, a structure can now have \(O(n)\) intervals fall in it. Therefore, we maintain an \(\ell_0\)-estimator that counts the number of non-empty cells in each \(r_i\)-Structure. If at the end of the stream, the \(\ell_0\) estimate is greater than \(\kappa\) we discard the \(r_i\)-Structure.

Additionally, for each \(r_i\)-Structure we keep track of the cells in \(\Delta_{i'}\) for \(i' > i\), s.t they lie vertically above the structure. Note this is an additional \(O(W_{\text{max}} \log(W_{\text{max}}))\) factor. The rest of the algorithm is identical to the bounded degree case. Given that we lose a factor of 2 during the random shift, repeating the previous analysis, we can estimate \(\sum_i \sum_{c \in \Delta_i} |\text{OPT}_c|\) to a \((1 \pm \epsilon)\) factor. Therefore, we obtain an overall \((2 + \epsilon)\)-approximation to \(\alpha\). Further, poly \(\left(\frac{W_{\text{max}} \log(n)}{\epsilon}\right)\) space suffices and we obtain the following theorem:

Theorem B.6. Let \(\mathcal{P}\) be an turnstile stream of unit-weight arbitrary-length intervals s.t. the length is polynomially bounded in \(n\) and let \(\epsilon \in (0,1/2)\). Let \(W_{\text{max}}\) be an upper bound on the ratio of the max to the min length of intervals in \(\mathcal{P}\). Then, there exists an algorithm that outputs an estimator \(Y\) s.t. the following guarantees hold:

1. \(\frac{\alpha}{(2+\epsilon)} \leq Y \leq \alpha\) with probability at least 2/3.

2. The total space used is poly \(\left(\frac{W_{\text{max}} \log(n)}{\epsilon}\right)\).

C Unit Radius Disks in Turnstile Streams

In this section, we present an algorithm to approximate \(\alpha\) and \(\beta\) for unit-radius disks in \(\mathbb{R}^2\) that are received in a turnstile stream. We begin with describing an algorithm that achieves a \(\left(\frac{8\sqrt{3}}{\pi} + \epsilon\right)\)-approximation to \(\alpha\) for unit-radius disks in poly \(\left(\frac{\log(n)}{\epsilon}\right)\) space. The main algorithmic result we prove is the following:
Theorem C.1. Let \mathcal{P} be a sequence of unit-radius disks that are received as a turnstile stream and let $\epsilon \in (0, 1/2)$. Then, there exists an algorithm that outputs an estimator Y such that with probability at least $9/10$

$$\left(\frac{\pi}{8\sqrt{3}} + \epsilon\right) \beta \leq Y \leq \beta$$

where α is the cardinality of the largest independent set in \mathcal{P}. Further, the total space used is $O\left(\text{poly}\left(\frac{\log n}{\epsilon}\right)\right)$.

Critically, we use the hexagonal packing of unit circles in a plane introduced by Lagrange, which was shown to be optimal by Toth [CW10]. The hexagonal packing covers a $\frac{\pi}{\sqrt{12}}$ fraction of the area in two dimensions. We then partition the unit circles in the hexagonal packing into equivalence classes such that two circles in the same equivalence class are at least a unit distance apart. Formally, let c_1, c_2 be two unit circles in the hexagonal packing of the plane lying in the same equivalence class. Then, for all points $p_1 \in c_1, p_1 \in c_2$, $\|p_1 - p_2\| \geq 1$. Therefore, if input two disks of unit radius have centers lying in distinct circles belong to the same equivalence class, the disks must be independent, as long as the centers do not lie on the boundary. Randomly shifting the underlying hexagonal packing ensures this happens with probability 1. We then show that we can partition the hexagonal packing into four equivalence classes such that their union covers all the circles in the packing.

Algorithmically, we first impose a hexagonal grid of circles, Δ, corresponding with side length 1 and shift it by a random integer. We discard all disks that do not have centers lying inside the grid Δ. Given that a hexagonal packing covers a $\frac{\pi}{\sqrt{12}}$ fraction of the area, in expectation, we discard a $\left(1 - \frac{\pi}{\sqrt{12}}\right)$ fraction of β. We note that if we could accurately estimate the remaining WMIS, and scale the estimator by $\frac{\sqrt{12}}{\pi}$, we would obtain a $\left(\frac{\sqrt{12}}{\pi}\right)$-approximation to β. Let $|\text{OPT}_{hp}|$ denote the remaining WMIS. However, by Theorem A.9 such an approximation requires $\Omega(n)$ space.

We then observe that the hexagonal circle packing grid can be partitioned in to four equivalence classes. We use C_1, C_2, C_3 and C_4 to denote these equivalence classes. Since the equivalence classes form a partition of the 2-d plane, at least one of them must contain $1/4$-fraction of the remaining maximum independent set. W.l.o.g, let C_1 be the partition that contributes the most to β. Then, $|\text{OPT}_{C_1}| \geq \frac{1}{4}|\text{OPT}_{hp}|$. Therefore, w.l.o.g. we focus on designing an estimator for C_1. We show a $(1 + \epsilon)$-approximation to C_1 in $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$ space. This implies an overall $\left(\frac{4\sqrt{12}}{\pi} + \epsilon\right) = \left(\frac{8\sqrt{3}}{\pi} + \epsilon\right)$ approximation for β.

3See https://en.wikipedia.org/wiki/Circle_packing
Algorithm 5: Naïve Approximation for Disks.

Input: Given an turnstile stream \mathcal{P} with weighted unit disks, where the weights are polynomially bounded, ϵ, output a $\left(\frac{36\sqrt{3}}{\pi} + \epsilon\right)$-approximation to β with probability $99/100$.

1. Let Δ be a grid of unit radius circles in \mathbb{R}^2 arranged as the optimal hexagonal packing. Randomly shift Δ by (α, β), where $\alpha, \beta \in U((0, \text{poly}(n)))$. Partition the cells into equivalence classes, C_1, C_2, C_3 and C_4 such that disks lying in distinct cells belonging to the same equivalence class do not intersect. (Note, this can be done for the hexagonal packing of circles.)

2. Consider a partition of cells in C_1 into $b = \text{poly}(\log(n))$ weight classes $W_i = \{c \in C_1 | (1 + 1/2)^i \leq m(c) < (1 + 1/2)^{i+1}\}$, where $m(c)$ is the maximum weight of an disk in c (this is not an algorithmic step since we do not know this partition a priori).

3. Create a substream for each weight class W_i denoted by W'_i.

4. Feed disk $D(d_j, 1/2, w_j)$ along substream W'_i if $w_j \in [(1 + 1/2)^i, (1 + 1/2)^{i+1})$.

5. For each substream W'_i, maintain a $(1 \pm \epsilon)$-approximate ℓ_0-estimator.

6. Let t_i be the ℓ_0 estimate corresponding to W'_i. Let $X_1 = \frac{2}{\pi(1+\epsilon)} \sum_{i \in [b]} (1 + 1/2)^{i+1} t_i$.

7. Repeat Steps 2-6 for the remaining equivalence classes, C_2, C_3 and C_4 to obtain the corresponding estimator X_2, X_3, X_4.

Output: $\max(X_1, X_2, X_3, X_4)$

Lemma C.2. Let Δ be the hexagonal packing of circles in the plane. Then, Δ there exists a partitioning of Δ in to four equivalence classes such that the distance between distinct circles in the same equivalence class is at least 1.

Let $c \in C_1$ denote a square cell that belongs to the first equivalence class. Since we randomly shifted out grid, with probability 1, no disk has a center that lies on the boundary. We observe that all disks that lie within cell c must intersect and thus only one disk contributes the maximum independent set. We then swap each disk to the cell containing the center of the disk. We then describe an estimator that gives a $(1 + \epsilon)$-approximation to $|\text{OPT}_{C_1}|$ for all $k \in [4]$. Therefore, taking the max of the four estimators, we obtain a $(4 + \epsilon)$-approximation to β.

Having reduced the problem to estimating $|\text{OPT}_{C_1}|$, we observe that each even cell has at most 1 disk that contributed to OPT_{C_1}, namely the max weight disk landing in the cell. Then, partitioning the cells in C_1 into $\text{poly}(\log(n))$ weight classes based on the max weight disk in each cell and approximately counting the number of cells in each weight class suffices to estimate $|\text{OPT}_{C_1}|$ up to a $(1 + \epsilon)$-factor. Given such a partition, we can create a substream for each weight class in the partition and compute the ℓ_0 norm of each substream. However, we do not know the partition of the cells into the weight classes a priori and this partition can vary drastically over the course of stream given that disks can be deleted. As before, the main technical challenge is to simulate this partition.

We begin by describing a simple algorithm which obtains a $(9/2 + \epsilon)$-approximation to $|\text{OPT}_{C_1}|$ and in turn a $\left(\frac{36\sqrt{3}}{\pi} + \epsilon\right)$-approximation to β. This estimator is the one introduced in Algorithm 27.
1. Formally, consider a partition of cells in C_1 into $b = \text{poly}(\log(n))$ weight classes $W_i = \{c \in C_1 | (1 + 1/2)^i \leq m(c) < (1 + 1/2)^{i+1}\}$, where $m(c)$ is the maximum weight of an disk in c. Create a substream for each weight class W_i, denoted by W'_i, and feed a disk into this substream if its weight lies in the range $[(1 + 1/2)^i, (1 + 1/2)^{i+1})$. Let t_i be the corresponding ℓ_0 estimate for substream W'_i. Then, we can approximate the contribution of W_i by $(1 + 1/2)^{i+1} \cdot t_i$. Summing over the b weight classes gives an estimate for $|\text{OPT}_{C_1}|$. Given access to an algorithm for estimating the ℓ_0-norm, Algorithm 5 satisfies the following guarantee:

Lemma C.3. Algorithm 5 outputs an estimate X such that with probability $99/100$, $\left(\frac{3\sqrt{\pi}}{\pi} + \epsilon\right)\beta \leq X \leq \beta$ and runs in space $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$.

Proof. We observe that for each non-empty cell $c \in C_1$, there is exactly 1 disk that can contribute to $|\text{OPT}_{C_1}|$ since each cell of the grid has side length 1 and all disks falling in a given cell pairwise intersect. This contributing disk lies in some weight class W_i and our estimator approximates its weight as $(1 + 1/2)^i$. Here, the weights of the disks are sandwiched between $(1 + 1/2)^i$ and $(1 + 1/2)^{i+1}$. Therefore, we overestimate the weight by a factor of at most $3/2$.

Further, instead of taking the maximum over each cell c, in the worst case, we may have inserted disks that lie in c into all substreams W'_i, as opposed to only the maximum one. Therefore, we take the sum of our geometrically increasing weight classes over that cell, instead of the maximum weight. In the worst case, we approximate the true weight of a contributing disk, $(3/2)^i$, with $\sum_{i'=1}^{i}(3/2)^{i'+1} = 3((3/2)^{i+1} - 1)$. Note, we again overestimate the weight, this time by a factor of 3.

Next, Theorem A.2 overestimates the ℓ_0-norm of W_i by at most $1 + \epsilon$ with probability at least $2/3$. We boost this probability by running $O(\log(n))$ estimators and taking the median. Union bounding over all $i \in [b]$, we simultaneously overestimate the ℓ_0-norm of all W_i by at most $1 + \epsilon$ with probability at least $99/100$. Therefore, the overall estimator is a $(9/2 + \epsilon)$-approximation to $|\text{OPT}_{C_1}|$. Rescaling our estimator by the above constant underestimates $|\text{OPT}_{C_1}|$.

For $i \in [n]$ let Z_i be an indicator random variable that is 1 if $D(r_i, d_i, w_i)$ is centered at a point that lies in the hexagonal circle packing. Let $Z = \sum_{i:D_i \in \text{OPT}_p} Z_i$. Since $\Pr[Z_i = 1] = \frac{\pi \ell^2}{\sqrt{12}}$, $\mathbb{E}[Z] = \frac{\pi \ell^2}{\sqrt{12}} \beta$. Then, by Chernoff

$$\Pr\left[Z \leq (1 - \epsilon) \frac{\pi \ell^2}{\sqrt{12}} \beta\right] \leq \exp\left(-\frac{\pi \ell^2 \beta}{3\sqrt{12}}\right)$$

For $\beta = \Omega(\frac{\log(n)}{\epsilon^2})$, we know that $Z \geq (1 - \epsilon) \frac{\pi \ell^2}{\sqrt{12}} \beta$ with probability $1 - \frac{1}{\text{poly}(n)}$ and therefore $(1 - \epsilon) \frac{\pi \ell^2}{\sqrt{12}} \beta$. Finally, w.l.o.g, $|\text{OPT}_{C_1}| \geq \frac{\pi \ell^2}{4\sqrt{12}} \beta$ and thus $\left(\frac{3\sqrt{\pi}}{\pi} + \epsilon\right)\beta \leq X \leq \beta$. Since our weights are polynomially bounded, we create $\text{poly}(\log(1 + \epsilon)(n))$ substreams and run a ℓ_0 estimator from Theorem A.2 on each substream. Therefore, the total space used by Algorithm 5 is $\text{poly}(\log(n), \epsilon^{-1})$. □
Algorithm 6: Weighted Unit Disk Turnstile Sampling.

Input: Given a turnstile stream P with weighted unit disks, where the weights are polynomially bounded, ϵ, the sampling procedure outputs a $(2+\epsilon)$-approximation to β with probability $99/100$.

1. Let Δ be a grid of unit radius circles in \mathbb{R}^2 arranged as the optimal hexagonal packing. Randomly shift Δ by (α, β), where $\alpha, \beta \in \mathbb{U}(0, \text{poly}(n))$. Partition the cells into equivalence classes, C_1, C_2, C_3 and C_4, such that disks lying in distinct cells belonging to the same equivalence class do not intersect.

2. For cells in C_1, snap each disk in the input to a cell c that contains its center.

3. Consider a partitioning of the cells in C_1 into $b = \text{poly}\left(\frac{\log(n)}{\epsilon}\right)$ weight classes $W_i = \{ c \in C_1 \mid (1 + \epsilon)^i \leq m(c) \leq (1 + \epsilon)^{i+1}\}$, where $m(c)$ is the maximum weight of a disk in c (we do not know this partition a priori.) Create a substream for each weight class W_i denoted by W'_i.

4. Feed disk $D(d_j, 1, w_j)$ along substream W'_i such that $w_j \in [(1 + \epsilon)^i, (1 + \epsilon)^{i+1})$. Maintain a $(1 + \epsilon)$-approximate ℓ_0-estimator for each substream. Let $|W'_i|$ denote the number of non-empty cells in substream W'_i and $X_{W'_i}$ be the corresponding estimate returned by the ℓ_0-estimator.

5. Create $O(\log(n))$ substreams, one for each guess of $|\text{OPT}_{C_1}|$. Let X be the guess for the current branch of the computation. In parallel, run Algorithm 1 estimates $|\text{OPT}_{C_1}|$ up to a constant factor. Therefore, at the end of the stream, we know a constant factor approximation to the correct value of $|\text{OPT}_{C_1}|$ and use the estimator from corresponding branch of the computation.

6. In parallel, for $i \in [b]$, create substream S_i by subsampling cells in C_1 with probability $p_i = \Theta\left(\frac{\log(n)}{(1 + \epsilon)^i}\right)$. Note, this sampling is done agnostically at the start of the stream.

7. Run a poly $\left(\frac{\log(n)}{\epsilon}\right)$-sparse recovery algorithm on each substream S_i. For substream S_i, filter out cells c such that $m(c) < (1 + \epsilon)^i$. Let S'_i be the set of cells recovered by the sparse recovery algorithm. Let $S'_i|_{W_i}$ be the cells in S'_i that belong to weight class W_i.

8. Let $X_{W'_i} = \sum_{i \in [b]} X_{W'_i}$. Let Z_c be a random variable such that $Z_c = \frac{(1+\epsilon)^i}{p_i}$ if $c \in S'_i|_{W_i}$ and 0 otherwise. If $X_{W'_i} \geq \frac{\epsilon X_{W'_i}}{(1+\epsilon)^i+1}$, set the estimator for the i^{th} subsample, $Y_i = \sum_{c \in S'_i|_{W_i}} \frac{X_{W'_i} Z_c}{|S'_i|_{W_i}}$. Otherwise, set $Y_i = 0$. Let $Y_c = \sum_i Y_i$.

9. Repeat Steps 2-7 for the sets C_2, C_3, C_4 and let Y_2, Y_3, Y_4 be the corresponding estimators.

Output: $Y = \max(Y_1, Y_2, Y_3, Y_4)$.

We can thus assume we know β and $|\text{OPT}_{C_1}|$ up to a constant by initially making $O(\log(n))$ guesses and running Algorithm 5 for each guess in parallel. Intuitively, similar to the disk case,
we simulate partitioning cells in C_1 into poly $\left(\frac{\log(n)}{\epsilon}\right)$ weight classes according to the maximum weight occurring in each cell. Since we do not know this partition a priori, we initially create $b = O\left(\frac{\log(n)}{\epsilon}\right)$ substreams, one for each weight class and run the ℓ_0-estimator on each one. We then make $O\left(\frac{\log(n)}{\epsilon}\right)$ guesses for $|OPT_{C_1}|$ and run the rest of the algorithm for each branch in parallel.

Additionally, we run the Algorithm 5 to compute the right value of $|OPT_{C_1}|$ up to a constant factor, which runs in space $\text{poly}\left(\frac{\log(n)}{\epsilon}\right)$. Then, we create $b = \text{poly}\left(\frac{\log(n)}{\epsilon}\right)$ substreams by agnostically sampling cells with probability $p_i = \Theta\left(\frac{b(1+\epsilon)^i\log(n)}{\epsilon^3X}\right)$. Sampling at this rate preserves a sufficient number of cells from weight class W_i. We then run a sparse recovery algorithm on the resulting substreams.

The analysis for estimating the contribution of each substream is the same as in the case of disks. We sketch an outline of the proof here. Observe, the resulting substreams are sparse since we can filter out cells that belong weight classes W_i' for $i' < i$ by simply checking if the maximum disk seen so far lies in weight classes W_i and higher. Further, sampling with probability proportional to $\Theta\left(\frac{b(1+\epsilon)^i\log(n)}{\epsilon^3|OPT_{C_1}|}\right)$ ensures that the number of cells that survive from weight classes W_i and above are small. Therefore, we recover all such cells using the sparse recovery algorithm. Note, we limit the algorithm to considering weight classes that have a non-trivial contribution to OPT_{C_1}.

Using the ℓ_0 norm estimates computed above, we can determine number on non-empty cells in each of the weight classes. Thus, we create a threshold for weight classes that contribute, such that all the weight classes below the threshold together contribute at most an ϵ-fraction of $|OPT_{C_1}|$ and we can set their corresponding estimators to 0. Further, for all the weight classes above the threshold, we can show that sampling at the right rate leads to recovering enough cells to achieve concentration in estimating their contribution.

We observe that the space and correctness analysis for each equivalence class is identical to the 1-d case in Section A since it does not depend on the geometry of the objects that are inserted into substeam S_i. Theorem C.1 follows.

D Insertion-Only Streams

In this section, we describe an algorithm that obtains a $\left(\frac{3}{2} + \epsilon\right)$-approximation for estimating the maximum weighted independent set of intervals in poly $\left(\frac{\log(n)}{\epsilon}\right)$ space, given that we are not allowed to delete any intervals. Recall, [CP15] show that $\left(\frac{3}{2} + \epsilon\right)$ is tight for the unweighted case in insertion-only streams. We also show a lower bound for estimating the maximum independent set of disks in insertion-only streams. The lower bound for intervals in [CP15] shows that $\left(\frac{3}{2} - \epsilon\right)$-approximation requires $\Omega(n)$ space and this naturally extends to disks. We improve this to $2 - \epsilon$, implying a strict separation between intervals and disks for insertion-only streams. Note, this is not yet known to be the case for turnstile streams.

D.1 Intervals

We present a single-pass insertion-only streaming algorithm that approximates β for unit-length intervals. We begin with describing an algorithm that achieves a $\left(\frac{3}{2} + \epsilon\right)$-approximation to β in $O(\beta)$ space. Then, we describe a sampling procedure that creates a sketch of the data structure used by
the previous algorithm and show an estimator that outputs a \((\frac{3}{2} + \epsilon)\)-approximation to \(\beta\). Further, the space used by the sketch is \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right)\).

Theorem D.1. Let \(P\) be an insertion-only stream of weighted unit intervals s.t. the weights are polynomially bounded in \(n\) and let \(\epsilon \in (0, 1/2)\). Then, there exists an algorithm that outputs an estimator \(Y\) s.t. with probability at least 9/10 the following guarantees hold:

1. \(\frac{2\beta}{3 + \epsilon} \leq Y \leq \beta\).
2. The total space used is \(\text{poly}\left(\frac{\log(n)}{\epsilon}\right)\) bits.

We use an algorithm with the following guarantee as a subroutine:

Lemma D.2. Let \(P\) be an insertion-only stream of \(n\) weighted unit intervals. Then, the Weighted Unit Interval Selection Algorithm outputs an estimator \(Y\) and the following guarantees hold:

1. \(\frac{2\beta}{3 + \epsilon} \leq Y \leq \beta\).
2. The total space used is \(\tilde{O}\left(\frac{\beta}{\epsilon}\right)\) bits.

Algorithm 7 : Weighted Unit Interval Insertion-Only Sampling.

Input: Given an insertion-only stream \(P\) of weighted unit intervals and \(\epsilon > 0\), the sampling procedure outputs an estimate \(Y\) s.t. it satisfies the guarantees of Theorem D.1.

1. Make \(O(\log(n))\) guesses for \(\beta\). Let \(X\) be the right guess.
2. Consider a partitioning \(C_i\), where \(C_i\) is the set of all cells \(c\) s.t. the maximum weight of an interval in \(c\) is in the range \(W_i\). (we do not explicitly know this partitioning.)
3. Create sample \(S_i\), corresponding to partition \(C_i\), by sampling non-empty cells in \(\Delta\) with probability \(p_i = \text{poly}\left(\frac{\epsilon X}{(1+\epsilon)^i \log(n)}\right)\).
4. If \(c \in S_i\), discard all intervals in \(c\) s.t. their weight is less that \(\epsilon^2(1 + \epsilon)^i\).
5. Let \(Y^c_i\) be the output of running Weighted Unit Interval Selection on \(c \in S_i\).
6. Then, for all \(i\), \(Y_i = \sum_{c \in S_i} Y^c_i \frac{Y_c}{p_i}\). If \(Y_i < \text{poly}\left(\frac{\epsilon}{\log(n)}\right) X\), set \(Y_i = 0\).

Output: \(\sum_i Y_i\).

Proof. We first show that the space bound holds. Note, the number of non-empty cells in \(\Delta\) are at most \(\beta\). For each non-empty cell \(c\) we store at most 2 intervals per weight class. The total number of weight classes is \(O\left(\frac{\log(n)}{\epsilon}\right)\) and thus we store at most \(O(\log(n))\) information for each non-empty cell. Overall, this gives a space bound of \(\tilde{O}\left(\frac{\beta}{\epsilon}\right)\).

The argument for is very similar to the one for the unweighted case by Emek et. al. [EHR12] Consider any cell \(c\) of size \(r = O(1/\epsilon)\). Let \(D_1, D_2 \ldots D_r\) be \(\text{OPT}_c\). For any three intervals above,
we have stored at least two intervals contained in their union. Then, in expectation we have stored \(\frac{2}{3} \text{OPT}_c \), therefore, there exists a set of disjoint intervals that a combined contribution of \(\frac{2}{3} |\text{OPT}_c| \). Note, this part of the algorithm is deterministic.

Next, we show a sampling procedure that samples \(\text{poly}\left(\frac{\log(n)}{\epsilon} \right) \) non-empty cells and maintains the same data structure as the Weighted Unit Interval Selection Algorithm. Then, our overall estimator is sum of the MWIS in the sampled cells, scaled up by the probability of sampling. We place a grid \(\Delta \) on the input space of side length \(\frac{1}{\epsilon} \). We then randomly shift each input interval and discard any interval that intersects the grid. Note, we therefore lose at most an \(\epsilon \)-fraction of \(\beta \).

We first focus on the space used by our sampling process. Intuitively, we sample \(\text{poly}\left(\frac{\log(n)}{\epsilon} \right) \) cells from the grid \(\Delta \) and for each cell run Algorithm 3 on it. Since each cell has at most \(O\left(\frac{1}{\epsilon} \right) \) independent intervals, the size of the optimal solution in a cell is at most \(O\left(\frac{1}{\epsilon} \log(n) \right) \). Therefore the overall space used is \(\text{poly}\left(\frac{\log(n)}{\epsilon} \right) \). To finish the proof for the space complexity of our algorithm it remains to show the following lemma:

Lemma D.3. Given an insertion only stream \(P \), the Weighted Unit Interval Insertion-Only Sampling procedure samples \(\text{poly}\left(\frac{\log(n)}{\epsilon} \right) \) cells from the grid \(\Delta \) with high probability.

Proof. For every cell \(c \in C_i \), we sample it with probability \(p_i = \text{poly}\left(\frac{\epsilon X}{(1+\epsilon)^i \log(n)} \right) \). Note, the cardinality of the set \(C_i \) is at most \(\frac{\beta}{(1+\epsilon)^i} = (1 \pm 1/2)\frac{X}{(1+\epsilon)^i} \). Therefore, in expectation we sample \(\text{poly}\left(\frac{\log(n)}{\epsilon} \right) \) from \(C_i \). By Chernoff, the sample isn’t larger than a constant factor with high probability. Since the number of weight classes is at most \(O\left(\frac{\log(n)}{\epsilon} \right) \), the total space used by our algorithm is \(O\left(\frac{\log(n)}{\epsilon} \right) \). \(\square \)

Algorithm 8 : Weighted Unit Interval Selection.

Input: Given a one-pass insertion-only stream \(P \) with weighted unit-intervals, where the weights are polynomially bounded and \(\epsilon > 0 \), the Weighted Unit Interval Selection Algorithm outputs a \(\left(\frac{3}{2} + \epsilon \right) \)-approximation to \(\beta \) in \(O(\beta) \) space.

1. Randomly shift grid \(\Delta \) with cells of side length \(\frac{1}{\epsilon} \).
2. Consider \(O\left(\frac{\log(n)}{\epsilon} \right) \) weight classes \(W_i = \{ D_j | (1+\epsilon)^i \leq w_j < (1+\epsilon)^{i+1} \} \).
3. Given a cell \(c \) and weight class \(W_i \), let \(l_{wi}^c \) and \(r_{wi}^c \) be the left-most left endpoint and right-most right endpoint intervals in \(c \) and in weight class \(W_i \).
4. For each non-empty cell \(c \) in \(\Delta \), for each weight class \(W_i \), maintain \(l_{wi}^c \) and \(r_{wi}^c \).

Output: \(\text{WIS} \) of the remaining intervals.

It remains to show that the estimate returned by our sampling procedure is indeed a \(\left(\frac{3}{2} + \epsilon \right) \)-approximation. We first observe that the union of the \(C_i \)’s form a partition of our input space. Therefore, it suffices to show that we obtain a \(\left(\frac{3}{2} + \epsilon \right) \)-approximation to the MWIS for each \(C_i \). Let
c denote a cell in C_i and OPT_c denote the MWIS in cell c. Further, we say class C_i contributes if
\[(1 + \epsilon)^i |C_i| \geq \text{poly} \left(\frac{\epsilon}{\log(n)} \right) X. \]

Lemma D.4. If class C_i contributes, we obtain an estimate Y_i s.t. $Y_i = (1 + \epsilon) \sum_{c \in C_i} |\text{OPT}_c|$ with high probability. If class C_i does not contribute, we obtain an estimate Y_i s.t. $Y_i \leq (1 + \epsilon) \sum_{c \in C_i} |\text{OPT}_c|$ with high probability. Overall, $\sum_i Y_i = (1 + \epsilon) \sum_{c \in \Delta} |\text{OPT}_c|$ with probability at least $1 - 1/n$.

Proof. Let the max weight for $c \in C_i$ be w. Then, $w \geq (1 + \epsilon)^i$ and $w \leq |\text{OPT}_c| \leq \frac{(1+\epsilon)^{i+1}}{\epsilon}$. Note, the algorithm ignores all intervals of weight at most $\epsilon^2 w$, we lose at most $\epsilon |\text{OPT}_c|$ since the dropped intervals can contribute at most $\frac{\epsilon^2 w}{\epsilon} \leq \epsilon |\text{OPT}_c|$.

We first consider the case where C_i contributes. Then, sampling at a rate p_i implies at least $p_i |C_i|$ cells survive in expectation. By Chernoff,

\[
\Pr \left[|S_i| \leq (1 - \epsilon) \left(\frac{\log(1/\delta)}{2\epsilon^2} \right) \right] \leq \exp \left(\frac{-2\epsilon^2 \log(1/\delta)}{2\epsilon^2} \right) \leq \delta
\]

Setting $1/\delta = \exp \left(\text{poly} \left(\frac{\log(n)}{\epsilon} \right) \right)$ and union bounding over all $i \in O \left(\frac{\log(n)}{\epsilon} \right)$, $|S_i| = \Omega(\text{poly} \left(\frac{\log(n)}{\epsilon} \right))$ with probability at least $1 - 1/n^c$. We then compute $|\text{OPT}_c|$ and scale it up by p_i. Then, our estimator is $r = \sum_{c \in C_i} \frac{|\text{OPT}_c|}{p_i}$. Then, $E[r] = \sum_{c \in C_i} |\text{OPT}_c|$. Since for each cell $c \in C_i$, $(1 + \epsilon)^i \leq |\text{OPT}_c| \leq \frac{(1+\epsilon)^{i+1}}{\epsilon}$ and the number of samples are $\text{poly} \left(\frac{\log(n)}{\epsilon} \right)$, therefore, by Chernoff bounds, our estimate is $(1 + \epsilon) \sum_{c \in C_i} |\text{OPT}_c|$ with probability at least $1 - 1/n^c$. Therefore, for cells that contribute, our estimator concentrates with probability at least $1 - 1/2n$.

In the case where C_i does not contribute, the number of samples we get is smaller than $\text{poly} \left(\frac{\epsilon}{\log(n)} \left(\frac{X}{(1+\epsilon)^i} \right) \right)$. Since each $|\text{OPT}_c| \leq \frac{(1+\epsilon)^{i+1}}{\epsilon}$, the total contribution of the sample is at most $\text{poly} \left(\frac{\epsilon}{\log(n)} \right) X$ in expectation. By a Chernoff bound similar to the one above, the sample size $|S_i|$, for all C_i that do not contribute, is $\text{poly} \left(\frac{\epsilon}{\log(n)} \left(\frac{X}{(1+\epsilon)^i} \right) \right)$ with probability at least $1 - 1/2n$. Therefore, our estimate $Y_i < \text{poly} \left(\frac{\epsilon}{\log(n)} \right) X$ and is set to 0. Note, in this case we do not obtain a concentration, but we also do not over count. Union bounding over the two cases for C_i, the lemma holds with $1 - 1/n$ probability.

Proof of Theorem D.1. We observe that for $c \in C_i$, we cannot exactly compute $|\text{OPT}_c|$ in a stream. However, we can run Algorithm 3 on each cell to obtain a $\frac{3}{2}$-approximation to $|\text{OPT}_c|$ with at least constant probability. Therefore, overall we obtain an estimate that gives a $\frac{3(1+\epsilon)}{2}$-approximation.

Note, Lemma D.2 guarantees that Algorithm 3 runs in space $|\text{OPT}_c|$ and since each cell c has length $\frac{1}{\epsilon}$, $|\text{OPT}_c| \leq O(\frac{1}{\epsilon})$. Therefore, the total space used by the sampling procedure is $\text{poly} \left(\frac{\log(n)}{\epsilon} \right)$.

D.2 Disks

We describe a lower bound for estimating α for unit disks in insertion-only streams via a reduction from the communication complexity of the Indexing problem, which we use as the starting point. We consider the one-way communication model between two players Alice and Bob and each player has access to private randomness. The randomized communication complexity of Indexing is well understood in the two-player one-way communication model.
Definition D.5. (Indexing) Let $I_{n,j}$ denote the communication problem where Alice receives as input a bit vector $x \in \{0,1\}^n$ and Bob receives an index $j \in [n]$. The objective is for Bob to output x_j under the one-round one-way communication model with error probability at most $1/3$.

Theorem D.6. (Communication Complexity of $I_{n,j}$) The randomized one-round one-way communication complexity of $I_{n,j}$ with error probability at most $1/3$ is $\Omega(n)$.

We begin with considering the stream of disks \mathcal{P}. Let Alg be a one-pass insertion-only streaming algorithm that estimates the cardinality of the maximum independent set denoted by α. We then show that Alg can be used as a subroutine to solve the communication problem $I_{n,j}$. Therefore, a lower bound on the communication complexity in turn implies a lower bound on the space complexity of Alg. Formally,

Theorem D.7. Given a stream of disks \mathcal{P}, any randomized one-pass insertion-only streaming algorithm Alg which approximates α to within a $(2-\epsilon)$-factor, for any $\epsilon > 0$, with error at most $1/3$, requires $\Omega(n)$ space.

Proof. We show that any such insertion-only streaming algorithm Alg can be used to construct a randomized protocol Π to solve the communication problem. Given her input x, Alice constructs a stream of unit disks and runs Alg on the stream. Consider the unit circle around the origin. Divide the half-circle above the x-axis into n equally spaced points, denoted by vectors p_1, p_2, \ldots, p_n. For $i \in [n]$, if $x_i = 0$, Alice streams a unit disk centered at p_i. If $x_i = 1$, Alice streams a unit disk centered at $-p_i$. After streaming n disks, Alice communicates the memory state of Alg to Bob. Bob uses the message received from Alice as the initial state of the algorithm and continues the stream. Recall, Bob’s input only consists of a single index j. Therefore, Bob inserts a unit disk centered at $(1 + 1/n^2)p_j$.

We first observe that all disks inserted by Alice pairwise intersect. Since all her unit radius disks are centered on the unit circle around the origin, the distance between their center and the origin is 1. Since all the disks contain the origin, they pairwise intersect. Now, let us consider the case where $x_j = 0$. Recall, in this case, Alice inserts the disk centered p_j and Bob inserts the disk centered at $(1 + 1/n^2)p_j$. The distance between their centers is $1/n^2$ and they clearly intersect. Let us now consider the other disks inserted by Alice, centered at points p_i for $i \neq j$. The distance between their centers is

$$||p_i - (1 + 1/n^2)p_j||_2^2 = ||p_i||_2^2 + (1 + 1/n^2)^2||p_j||_2^2 \pm 2(1 + 1/n^2)\langle p_i, p_j \rangle$$

where the last inequality follows from $(1 + 1/n^2)^2 = 1 + 1/n^4 + 2/n^2 \leq 1 + 3/n^2$ for sufficiently large n. Since $i \neq j$, $\langle p_i, p_j \rangle \leq 1 - \Theta(1/n)$. Note, $(1 + 1/n^2)(1 - \Theta(1/n)) \leq 1 - \Theta(n)$ for sufficiently large n. Substituting this above, we get

$$||p_i - (1 + 1/n^2)p_j||_2^2 \leq 1 + (1 + 3/n^2) \pm 2(1 + 1/n^2)(1 - \Theta(1/n))$$

$$\leq 2 + 3/n^2 \pm 2(1 - \Theta(1/n))$$

$$\leq 4 - \Theta(1/n)$$

where the last inequality follows from $\Theta(1/n) \geq 3/n^2$ for sufficiently large n. Therefore, the squared distance between the centers is strictly less 4 and the disks do intersect. As a consequence, all disks pairwise intersect and $\alpha = 1$.

34
Let us now consider the case where $x_j = 1$. Recall Alice inserts a disk centered at $-p_j$ and Bob inserts a disk centered at $(1 + 1/n^2)p_j$. The distance between the centers is $(2 + 1/n^2)$, therefore the two disks do not intersect. Then, α is at least 2. We observe that any $(2 - \epsilon)$-approximate algorithm Alg can distinguish between these two cases because in the first case Alg outputs at most 1 and in the second case Alg outputs at least $1 + \epsilon$. Therefore it is a valid protocol for solving $I_{n,j}$. If Alg has error at most $1/3$, the protocol has error at most $1/3$. By Theorem D.6, any such protocol requires $\Omega(n)$ communication and in turn Alg requires $\Omega(n)$ space. \qed