Abstract

The assumption of normality needs to be checked for many statistical procedures, namely parametric tests, because their validity depends on it. Given the importance of this subject and the widespread development of normality tests, comprehensive descriptions and power comparisons of such tests are of considerable interest. Since recent comparison studies do not include several interesting and more recently developed tests, a further comparison of normality tests is considered to be of foremost interest. This study addresses the performance of 50 normality tests available in literature, from 1900 until 2018. Because a theoretical comparison is not possible, Monte Carlo simulation were used from various symmetric and asymmetric distributions for different sample sizes ranging from 10 to 100. The simulations results show that for symmetric distributions with support on \((-\infty, \infty)\) the tests Robust Jarque–Bera and Gel–Miao–Gastwirth have generally the most power. For asymmetric distributions with support on \((-\infty, \infty)\) the tests 1st Cabana-Cabana and 2nd Zhang-Wu have the most power. For distributions with support on \((0, \infty)\), and distributions with support on \((0, 1)\) the test 2nd Zhang-Wu has generally the most power.

Keywords: assumption of normality, normality tests, Monte Carlo simulation, power of test, normal distribution, goodness-of-fit test.

1. Introduction

The problem of testing for normality is fundamental in both theoretical and empirical statistical research. Parametric statistical methods assume that the data has a known and specific distribution, often a normal distribution. Therefore, testing normality is one of the most studied goodness-of-fit problems. There are many tests that can be used to check if your data sample deviates from a normal distribution.

Given the importance of this subject and the widespread development of normality tests over the years, comprehensive descriptions and power comparisons of such tests have also been the focus of attention, thus helping the analyst in the choice of suitable tests for his/her particular needs. An extensive simulation study is presented herein to estimate the power of 50 tests for normality, from 1900 until 2018, for several alternative distributions: Beta, Gamma, Gumbel, Laplace, Skew-Normal, Student’s \(t\), Uniform, and Weibull. Since a theoretical comparison is not possible, Monte Carlo simulation were used from these alternative distributions for different sample sizes ranging from 10 to 100.
A short description of the 50 normality tests are given in Section 2. The alternative statistical distributions used for the tests are explained in Section 3. The Monte Carlo simulation is explained in Section 4. Results and Recommendations of the power comparisons of the 50 normality tests are discussed in Section 5.

Comparison of the normality tests has received attention in the literature. The goodness-of-fit tests have been discussed by many authors including Shapiro, Wilk, and Mrs Chen (1968), Farrell and Rogers-Stewart (2006), Yazici and Yolacan (2007), Xavier, Raimundo, and Aníbal (2010) Yap and Sim (2011), Noughabi and Arghami (2011), and Torabi, Montazeri, and Grané (2016). Since recent comparison studies do not include several interesting and more recently developed tests, a further comparison of normality tests is considered to be of foremost interest.

2. Tests for normality

Tests for Normality can be classified into tests based on Chi-square, a test of goodness of fit establishes whether an observed frequency distribution differs from a theoretical distribution (Pearson’s chi-square test), Empirical distribution function, these tests are based on a comparison of the empirical and hypothetical distribution functions (Cramer-von Mises, Kolmogorov-Smirnov, Lilliefors, Anderson-Darling, HegazyGreen-1, HegazyGreen-2, Frosini, Glen-Leemis-Barr, 1st Zhang-Wu, 2nd Zhang-Wu), Measures of the moments, these tests are derived from the recognition that the departure of normality may be detected based on the sample moments (Geary, Kurtosis test, Skewness test, D’Agostino-skewness, Spiegelhalter, Martinez-Iglewicz, Anscombe-Glynn, Jarque–Bera, 1st Hosking, 2nd Hosking, 3rd Hosking, 4th Hosking, 1st Cabana-Cabana, 2nd Cabana-Cabana, Adjusted Jarque–Bera, Bonett and Seier, Brys–Hubert–Struyf MC–LR, Brys-Hubert-Struyf-Bonett-Seier, 1st Bontemps and Meddahi, 2nd Bontemps-Meddahi, Gel-Miao-Gastwirth, Doornik-Hansen, Gel-Gastwirth Robust Jarque-Bera, Desgagne-LafayeDeMicheaux X_{APD}, Desgagne-LafayeDeMicheaux Z_{EPD}), Regression and correlation, these tests are based on the ratio of two weighted least-squares estimates of scale obtained from order statistics (Shapiro-Wilk, Shapiro–Francia, D’Agostino-Pearson, Filliben, Weisberg-Bingham, Chen-Shapiro, Rahman-Govindarajulu, 1st Zhang Q, 2nd Zhang Q, Barrio-Cuesta-Matran-Rodriguez, Coin), Maximum entropy, this test are based on the property that the normal distribution has the highest entropy of any distribution for a given standard deviation (Vasicek-Song), Empirical characteristic function, the test uses the difference between the characteristic functions of the sample and of the normal distribution (Epps and Pulley), Lagrange Multiplier, this test is maximizing the log-likelihood subject to the constraint (Desgagne-LafayeDeMicheaux-Leblanc test).

We give a short description of the 50 methods of testing for univariate normality. The presentation is in chronological order, from 1900 until 2018. It also contains references to definitions of these tests.

1. Pearson’s chi-square test (Pearson (1900), see also Moore (1986), Hogg, McKean, and Craig (2018)):

$$P = \frac{(O_i - E_i)^2}{E_i},$$

where O_i is the observed counts and E_i is the number of expected observations (under H_0) in class i. The classes are build in such a way that they are equiprobable under the null hypothesis of normality.

2. Cramer-von Mises test (Cramér (1928) and Mises (1931), see also Thode Jr. (2002)):

$$W = \frac{1}{12n} + \sum_{i=1}^{n} \left(p_{(i)} - \frac{2i-1}{2n} \right)^2,$$
Austrian Journal of Statistics

where \(p(i) = \Phi \left(\frac{\bar{x} - x(i)}{s} \right) \). Here, \(\Phi \) is the cumulative distribution function of the standard normal distribution, and \(\bar{x} \) and \(s \) are mean and standard deviation of the data values. The p-value is computed from the modified statistic \(Z = W (1.0 + 0.5/n) \) according to the Table 4.9 in Stephens (1986).

3. Geary test (Geary (1935)) for normality is based on the ratio of the mean deviation to standard deviation,

\[
d = \frac{1}{ns} \sum_{i=1}^{n} |X_i - \bar{X}|,
\]

where

\[
s^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2.
\]

Geary’s test of normality is a simple compact but sensitive test of normality. If the null hypothesis of normality is true, the expected value of \(d \) is approximately \(\sqrt{2/\pi} \approx 0.7979 \). Thus one rejects the null hypothesis for very large \((d > 0.7979) \) or very small \((d < 0.7979) \) values of \(d \) (D’Agostino (1970)).

Geary’s test never gained widespread usage, possibly because \(0 < d \leq \sqrt{2/\pi} \) in lep- tokurtic distributions so that large increases in leptokurtosis have small numerical effects on \(d \) (Bonett and Seier (2002)).

4. Kolmogorov-Smirnov test (Kolmogorov (1933), Smirnov (1948), see also Thode Jr. (2002), Hollander, Wolfe, and Chicken (2014)) for a given cumulative distribution function \(F(x) \) is

\[
D_n = \sup_x |F_{1,n}(x) - F_{2,m}(x)|,
\]

where \(F_{1,n}(x) \) is the empirical distribution of the data and \(F_{2,m}(x) \) is empirical distribution function of the normal distribution. Kolmogorov–Smirnov test is not very powerful because it is devised to be sensitive against all possible types of differences between two distribution functions.

5. Shapiro-Wilk test (Shapiro et al. (1968), see also Thode Jr. (2002)) is

\[
W = \left(\frac{\sum_{i=1}^{n} a_i x(i)}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \right)^2,
\]

(1)

where \(x(i) \) is the \(i \)th order statistic and \(\bar{x} \) is the sample mean.

The coefficients \(a_i \) are given by:

\[
(a_1, \cdots, a_m) = \frac{m^T V^{-1}}{(m^T V^{-1} m)^{1/2}}
\]

and the vector \(m \),

\[
m = (m_1, \cdots, m_n)^T
\]

is made of the expected values of the order statistics of independent and identically distributed random variables sampled from the standard normal distribution; \(V \) is the covariance matrix of those normal order statistics.
6. Lilliefors test (Lilliefors (1967), see also Thode Jr. (2002)) is a modification of the Kolmogorov-Smirnov test for normality when the mean and the variance are unknown, and must be estimated from the data. The test statistic is the maximal absolute difference between empirical and hypothetical cumulative distribution function. It may be computed as

\[D = \max \{ D^+, D^- \} \]

with \(D^+ = \max_{i=1,\ldots,n} \{ i/n - p(i) \} \), \(D^- = \max_{i=1,\ldots,n} \{ p(i) - (i - 1)/n \} \) where \(p(i) = \Phi \left(\frac{x(i) - \bar{x}}{s} \right) \).

Here, \(\Phi \) is the cumulative distribution function of the standard normal distribution, \(x(i) \) is the \(i \)th order statistic and \(\bar{x} \) and \(s \) are mean and standard deviation of the data values.

7. Kurtosis test (Shapiro et al. (1968), see also Thode Jr. (2002)) for normality is based on the following statistic

\[b_2 = \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \bar{X} \right)^4 \left(\frac{1}{n} \sum_{i=1}^{n} \left(X_i - \bar{X} \right)^2 \right)^2. \]

\(b_2 \) is asymptotically normal with mean 3 and variance \(24/n \).

8. Skewness test (Shapiro et al. (1968), see also Thode Jr. (2002)) for normality is based on the following statistic

\[\sqrt{b_1} = \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \bar{X} \right)^3 \left(\frac{1}{n} \sum_{i=1}^{n} \left(X_i - \bar{X} \right)^2 \right)^{3/2}. \]

Under the null hypothesis of normality, \(\sqrt{b_1} \) is asymptotically normal with mean 0 and variance \(6/n \).

9. D’Agostino-skewness test (D’Agostino (1970), see also Thode Jr. (2002)) based on a transformation of the distribution of Equation (3) to normality which works well for small sample sizes, \(n \geq 8 \). Let

\[Y = \sqrt{b_1} \left\{ \frac{(n + 1)(n + 3)}{6(n - 2)} \right\}^{1/2} \]

and

\[B_2 = \frac{3 \left(n^2 + 27n - 70 \right) (n + 1)(n + 3)}{(n - 2)(n + 5)(n + 7)(n + 9)}, \]

\[W^2 = \sqrt{2(B_2 - 1)} - 1, \]

\[\delta = \frac{1}{\sqrt{\log(W)}}, \]

\[\alpha = \frac{\sqrt{2}}{(W^2 - 1)}, \]

then \(Z \left(\sqrt{b_1} \right) \) is distributed \(N(0, 1) \), where

\[Z \left(\sqrt{b_1} \right) = \delta \log \left(Y/\alpha + \sqrt{(Y/\alpha)^2 + 1} \right). \]
10. Shapiro-Francia test (Shapiro and Francia (1972)) is a modification of Shapiro-Wilk test Equation (1). It is defined as

\[W' = \frac{\text{cov}(x, m)}{\sigma_x \sigma_m} = \frac{\sum_{i=1}^{n} (x(i) - \bar{x})(m_i - \bar{m})}{\sqrt{\left(\sum_{i=1}^{n} (x(i) - \bar{x})^2\right) \left(\sum_{i=1}^{n} (m_i - \bar{m})^2\right)}}. \]

Under the null hypothesis that the data is drawn from a normal distribution, this correlation will be strong, so \(W' \) values will cluster just under 1, with the peak becoming narrower and closer to 1 as \(n \) increases. If the data deviate strongly from a normal distribution, \(W' \) will be smaller. Monte Carlo simulations have shown that the transformed statistic \(\ln(1 - W') \) is nearly normally distributed.

11. D’Agostino-Pearson test (D’Agostino and Pearson (1973)) proposed the test statistic \(K^2 \) that combines normalizing transformations of skewness and kurtosis, \(Z \left(\sqrt{b_1} \right) \) and \(Z \left(b_2 \right) \), respectively. The test statistic \(K^2 \) is given by

\[K = \left[Z \left(\sqrt{b_1} \right) \right]^2 + \left[Z \left(b_2 \right) \right]^2 \]

in which the transformed skewness \(Z \left(\sqrt{b_1} \right) \) is obtained by Equation (4) and the transformed kurtosis

\[Z \left(b_2 \right) = \left[\left(1 - \frac{2}{9A} \right) - \sqrt{\frac{1 - 2/A}{1 + y \sqrt{2/(A - 4)}}} \right] \sqrt{\frac{9A}{2}} \]

with \(A \) and \(y \) obtained by

\[A = 6 + \frac{8}{\gamma_1} \left(\frac{2}{\gamma_1} + \sqrt{1 + \frac{4}{\gamma_1^2}} \right), \]

\[\gamma_1 = \frac{6(n^2 - 5n + 2)}{(n + 7)(n + 9)} \sqrt{\frac{6(n + 3)(n + 5)}{n(n - 2)(n - 3)}}, \]

\[y = \frac{b_2 - 3(n - 1)/(n + 1)}{24n(n - 2)(n - 3) / \left((n + 1)^2(n + 3)(n + 5) \right)}. \]

The normality hypothesis of the data is rejected for large values of the test statistic \(K^2 \). The test statistic \(K^2 \) is approximately chi-squared distributed with two degrees of freedom.

12. Filliben test (Filliben (1975)) use the correlation between the sample order statistics and estimated median values of the theoretical order statistics. For a sample of size \(n \), Filliben used

\[m(i) = \begin{cases}
1 - 0.5^{(1/n)} & i = 1 \\
(i - 0.3175)/(n + 0.365) & 1 < i < n \\
0.5^{(1/n)} & i = n,
\end{cases} \]

where the \(m(i) \) were estimated order statistic medians from a uniform distribution. He then used the transformation \(M(i) = \Phi^{-1}(m(i)) \) to obtain an estimate of the median value of the \(i \)th normal order statistic. The correlation coefficient \(r \) is then defined as

\[r = \frac{\sum_{i=1}^{n} x(i) \cdot M(i)}{\sqrt{\sum_{i=1}^{n} M_i^2 \cdot (n - 1) \cdot s^2}}, \]

leading to the rejection of the normality hypothesis of the data for small values of \(r \).
13. The Hegazy–Green-1 (Hegazy and Green (1975)) test for normality is based on the following statistic:

\[T_1 = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \Phi^{-1}\left(\frac{i}{n+1}\right)|, \]

where \(Y_i = \frac{X_i - \bar{X}}{s} \), \(s^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \).

14. The Hegazy–Green-2 (Hegazy and Green (1975)) test for normality is based on the following statistic:

\[T_2 = \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \Phi^{-1}\left(\frac{i}{n+1}\right)\right)^2, \]

where \(Y_i = \frac{X_i - \bar{X}}{s} \), \(s^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \).

15. The Weisberg–Bingham (Weisberg and Bingham (1975)) test for normality is based on the following statistic:

\[WB = \left(\sum_{i=1}^{n} m_i X_i \right)^2 / \left(\sum_{i=1}^{n} m_i^2 \right) / \left(\sum_{i=1}^{n} (X_i - \bar{X})^2 \right), \]

where

\[m_i = \Phi^{-1}\left(\frac{i - 3/8}{n + 1/4}\right). \]

16. Vasicek-Song (Vasicek (1976), Kai-Sheng Song (2002)) developed a test for normality using an estimate of the sample entropy for \(n > 3 \). The entropy of a density \(f(x) \) is

\[H(f) = -\int_{-\infty}^{\infty} f(x) \log(f(x)) \, dx. \]

An estimate of \(H(f) \) can be calculated as

\[H_{m,n} = \frac{1}{n} \sum_{i=1}^{n} \log\left(\frac{n}{2m} (x_{(i+m)} - x_{(i-m)}) \right), \]

where \(m \) is a positive integer, \(m < n/2 \) and \(x_{(k)} = x_{(1)} \) for \(k < 1 \) and \(x_{(k)} = x_{(n)} \) for \(k > n \). Among all densities with a given variance \(\sigma^2 \), \(H(f) \) is maximized by the normal density, with entropy

\[H(f) = \log\left(\sigma \sqrt{2\pi e}\right) \]

so that \(\exp[H(f)]/\sigma \leq \sqrt{2\pi e} \) for all \(f(x) \), equality being attained under normality. Therefore, an omnibus test for a sample of size \(n \) is defined by rejecting the null hypothesis if

\[K_{mn} \leq K^*, \]

where \(K^* \) is the appropriate critical value for the test and

\[K_{mn} = \frac{n}{2m\hat{\sigma}} \left\{ \Pi_{i=1}^{n} (x_{(i+m)} - x_{(i-m)}) \right\}^{1/n}, \]

where \(\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2} \).
17. The Spiegelhalter (Spiegelhalter (1977)) test for normality is based on the following statistic:

\[T = \left((c_n u)^{-(n-1)} + g^{-(n-1)} \right)^{1/(n-1)}, \]

where

\[u = \frac{X_{(n)} - X_{(1)}}{s}, \quad g = \frac{\sum_{i=1}^{n} |X_i - \bar{X}|}{s \sqrt{n(n-1)}}, \]

\[c_n = \frac{(n!)^{1/(n-1)}}{2n}, \quad s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2. \]

18. Martinez and Iglewicz (Martinez and Iglewicz (1981)) have proposed a normality test based on the ratio of two estimators of variance, where one of the estimators is the robust biweight scale estimator \(S_b^2 \)

\[S_b^2 = n \cdot \frac{\sum_{|\tilde{z}_i| < 1} (x_i - M)^2 (1 - \tilde{z}_i^2)^4}{\left[\sum_{|\tilde{z}_i| < 1} (1 - \tilde{z}_i^2) (1 - 5\tilde{z}_i^2) \right]^2}, \]

where \(M \) is the sample median, \(\tilde{z}_i = (x_i - M) / (9A) \), with \(A \) being the median of \(|x_i - M| \), and when \(|\tilde{z}_i| > 1, \tilde{z}_i \) is set to 0. The Martinez and Iglewicz test statistic \(I_n \) is then given by

\[I_n = \frac{\sum_{i=1}^{n} (x_i - M)^2}{(n - 1) \cdot S_b^2} \]

for which the normality hypothesis of the data is rejected for large values of \(I_n \). Martinez and Iglewicz (1981) have shown that this test is very powerful for heavy-tailed symmetric distributions.

19. Epps and Pulley (Epps and Pulley (1983)) test statistic \(T_{EP} \) is based on the following weighted integral

\[T_{EP} = \int_{-\infty}^{\infty} |\varphi_n(t) - \tilde{\varphi}_0(t)|^2 dG(t), \]

where \(\varphi_n(t) \) is the empirical characteristic function given by \(n^{-1} \sum_{j=1}^{n} \exp(itx_j) \), \(\tilde{\varphi}_0(t) \) is the sample estimate of the characteristic function of the normal distribution given by \(\exp(i t \pi - 0.5 m_2 t^2) \) and \(G(t) \) is an adequate function chosen according to several considerations Epps and Pulley (1983). By setting \(dG(t) = g(t) dt \) and selecting \(g(t) = \sqrt{m_2/2\pi} \cdot \exp(-0.5m_2t^2) \) the following statistic can be obtained by

\[T_{EP} = 1 + \frac{n}{\sqrt{3}} + \frac{2}{n} \sum_{k=2}^{n} \sum_{j=1}^{k-1} \exp \left(-\frac{(x_j - x_k)^2}{2m_2} \right) - \sqrt{2} \sum_{j=1}^{n} \exp \left(-\frac{(x_j - \pi)^2}{4m_2} \right) \]

for which the normality hypothesis of the data is rejected when large values of TEP are obtained.

20. Anscombe-Glynn (Anscombe and Glynn (1983)) test of kurtosis for normal samples is based on the transformed kurtosis Equation (5):

\[Z(b_2) = \left(1 - \frac{2}{9A} \right) - \sqrt{\frac{1 - 2/A}{1 + y \sqrt{2/(A - 4)}}} \cdot \sqrt{\frac{9A}{2}}. \]

Under the hypothesis of normality, data should have kurtosis equal to 3.
21. Anderson-Darling test (Stephens (1986)) is an empirical distribution function omnibus test for the composite hypothesis of normality. The test statistic is

\[A = -n - \frac{1}{n} \sum_{i=1}^{n} [2i - 1] \left[\ln \left(\frac{p_i + 1}{n} \right) + \ln \left(1 - \frac{p_{n-i+1}}{n} \right) \right], \]

where \(p_i = \Phi \left(\frac{x_i - \bar{x}}{s} \right) \). Here, \(\Phi \) is the cumulative distribution function of the standard normal distribution, and \(\bar{x} \) and \(s \) are mean and standard deviation of the data values.

22. Frosini test (Frosini (1987)) for normality is based on the following statistic:

\[B_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left| \Phi \left(\frac{Y_i}{s} \right) - i - 0.5 \right|, \]

where \(Y_i = \frac{X_i - \bar{X}}{s} \), \(s^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \).

23. Jarque–Bera (Jarque and Bera (1987)) test for normality is based on the following statistic:

\[JB = \frac{n}{6} \left(\sqrt{b_1}^2 + \frac{(b_2 - 3)^2}{4} \right), \]

where \(\sqrt{b_1} \) and \(b_2 \) are the sample skewness in equation (3) and sample kurtosis in equation (2), respectively. \(H_0 \) is rejected for large values of \(JB \). Jarque–Bera test is a large sample test and may not be appropriate in small samples.

24. The 1st Hosking test (Hosking (1990)). Hosking has shown the \(r \)th order sample \(L \)-moment can be estimated by

\[l_r = \sum_{k=0}^{r-1} p_{r-1,k} \cdot b_k, \]

where

\[p_{r-1,k} = (-1)^{r-k} \binom{r}{k} \binom{r+k}{k} \]

and

\[b_k = \frac{1}{n} \sum_{i=1}^{n} \frac{(i-1)(i-2)\cdots(i-k)}{(n-1)(n-2)\cdots(n-k)} \xi(i). \]

Based on the second, third and fourth sample \(L \)-moments, which have similarities with the corresponding central moments, Hosking (Hosking (1990)) also defines new measures of skewness and kurtosis, termed \(L \)-skewness \(\tau_3 \) and \(L \)-kurtosis \(\tau_4 \) as follows

\[\tau_3 = \frac{l_3}{l_2}, \quad \tau_4 = \frac{l_4}{l_2}. \]

The value of \(\tau_3 \) is bounded between \(-1\) and \(1 \) for all distributions and is close to zero for the normal distribution, while the value of \(\tau_4 \) is \(\leq 1 \) for all distributions and is close to 0.1226 for the normal distribution. Hosking has suggested that normality could be tested based on \(\tau_3 \) and \(\tau_4 \) according to the following statistic \(T_{Lmom} \)

\[T_{Lmom} = \frac{\tau_3 - \mu_{\tau_3}}{\text{var}(\tau_3)} + \frac{\tau_4 - \mu_{\tau_4}}{\text{var}(\tau_4)}, \] (6)

where \(\mu_{\tau_3} \) and \(\mu_{\tau_4} \) are the mean of \(\tau_3 \) and \(\tau_4 \), and \(\text{var}(\tau_3) \) and \(\text{var}(\tau_4) \) are their corresponding variances. Nonetheless, \(\mu_{\tau_3} \) and \(\mu_{\tau_4} \) are expected to be close to 0 and 0.1226. The normality hypothesis of the data is rejected for large values of \(T_{Lmom} \).
25. The 2nd Hosking test (Hosking (1990)). Although L-moments exhibit some robustness towards outliers in the data, as previously referred, they may still be affected by extreme observations (Elamir and Seheult (2003)). A robust generalization of the sample L-moments has, therefore, been formulated by Elamir and Seheult (Elamir and Seheult (2003)) leading to the development of trimmed L-moments. The proposed formulation for the trimmed L-moments allows for both symmetric and asymmetric trimming of the smallest and largest sample observations. For the case of normality testing suggested herein, only symmetric trimming is considered.

Considering an integer symmetric trimming level t, Elamir and Seheult (Elamir and Seheult (2003)) have shown the rth order sample trimmed L-moment $l_r^{(t)}$ can be estimated by

$$ l_r^{(t)} = \frac{1}{r} \sum_{i=t+1}^{n-t} \left\{ \sum_{k=0}^{r-1} \left(\frac{(-1)^k}{k!} \left(\frac{r-1}{k} \right) \left(\begin{array}{c} i-1 \\ r+t-1-k \end{array} \right) \left(\begin{array}{c} n-i \\ t+k \end{array} \right) \right) \right\} x(i). $$

Based on the second, third and fourth sample trimmed L-moments, Elamir and Seheult (Elamir and Seheult (2003)) also define new measures of skewness and kurtosis, termed TL-skewness $\tau_3^{(t)}$ and TL-kurtosis $\tau_4^{(t)}$, given by

$$ \tau_3^{(t)} = \frac{l_3^{(t)}}{l_2^{(t)}}, \quad \tau_4^{(t)} = \frac{l_4^{(t)}}{l_2^{(t)}}. $$

Based on these new measures, the following test, similar to that given by Equation (6), is as follows

$$ T_{Lmom}^{(t)} = \frac{\tau_3^{(t)} - \mu_{L3}^{(t)}}{\text{var}(\tau_3^{(t)})} + \frac{\tau_4^{(t)} - \mu_{L4}^{(t)}}{\text{var}(\tau_4^{(t)})}, $$

where for a selected trimming level t, $\mu_{L3}^{(t)}$ and $\mu_{L4}^{(t)}$ are the mean of $\tau_3^{(t)}$ and $\tau_4^{(t)}$, and $\text{var}(\tau_3^{(t)})$ and $\text{var}(\tau_4^{(t)})$ are their corresponding variances.

Three versions of this test are considered, which correspond to symmetric trimming levels t of 1, 2 and 3. For each test, the normality hypothesis of the data is rejected for large values of the statistic $T_{Lmom}^{(t)}$.

The 2nd Hosking test, which correspond to symmetric trimming levels $t = 1$,

$$ T_{Lmom}^{(1)} = \frac{\tau_3^{(1)} - \mu_{L3}^{(1)}}{\text{var}(\tau_3^{(1)})} + \frac{\tau_4^{(1)} - \mu_{L4}^{(1)}}{\text{var}(\tau_4^{(1)})}, $$

the normality hypothesis of the data is rejected for large values of the statistic $T_{Lmom}^{(1)}$.

26. The 3rd Hosking test (Hosking (1990)), which correspond to symmetric trimming levels $t = 2$, is as follows,

$$ T_{Lmom}^{(2)} = \frac{\tau_3^{(2)} - \mu_{L3}^{(2)}}{\text{var}(\tau_3^{(2)})} + \frac{\tau_4^{(2)} - \mu_{L4}^{(2)}}{\text{var}(\tau_4^{(2)})}, $$

the normality hypothesis of the data is rejected for large values of the statistic $T_{Lmom}^{(2)}$.

27. The 4th Hosking test (Hosking (1990)), which correspond to symmetric trimming levels $t = 3$, is as follows,

$$ T_{Lmom}^{(3)} = \frac{\tau_3^{(3)} - \mu_{L3}^{(3)}}{\text{var}(\tau_3^{(3)})} + \frac{\tau_4^{(3)} - \mu_{L4}^{(3)}}{\text{var}(\tau_4^{(3)})}, $$

the normality hypothesis of the data is rejected for large values of the statistic $T_{Lmom}^{(3)}$.
the normality hypothesis of the data is rejected for large values of the statistic $T_{Lmom}^{(t)}$.

28. The 1st Cabana-Cabana test (Cabana and Cabana (1994)). The Cabana-Cabana test statistics are based on the definition of approximate transformed estimated empirical processes (ATEEP) sensitive to changes in skewness or kurtosis. The proposed ATEEP sensitive to changes in skewness is defined as:

$$W_{S,L}(x) = \Phi(x) \cdot \overline{H}_3 - \phi(x) \sum_{j=1}^{L} \frac{1}{\sqrt{j}} H_{j-1}(x) \cdot \overline{H}_{j+3},$$

where L is a dimensionality parameter, $\phi(x)$ is the probability density function of the standard normal distribution, $H_j(\cdot)$ represents the jth order normalized Hermite polynomial given by

$$\forall i > 1, \quad H_i(u) = \frac{1}{\sqrt{i}} \left[u \cdot H_{i-1}(u) - \sqrt{i-1} \cdot H_{i-2}(u) \right], \quad H_0(u) = 1, \quad H_1(u) = u,$$

(7)

and \overline{H}_j is the jth order normalized mean of the Hermite polynomial defined as

$$\overline{H}_j = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} H_j(x_i).$$

The proposed ATEEP sensitive to changes in kurtosis is defined as

$$w_{K,L}(x) = -\phi(x) \cdot \overline{H}_3 + [\Phi(x) - x \cdot \phi(x)] \cdot \overline{H}_4 - \phi(x) \sum_{j=2}^{L} \left(\sqrt{\frac{j}{j-1}} H_{j-2}(x) \cdot H_j(x) \right) \cdot \overline{H}_{j+3}.$$

According to (Cabana and Cabana (1994)), the dimensionality parameter L ensures that the test is consistent against alternative distributions differing from the normal distribution having the same mean and variance in at least one moment of order not greater than $L + 3$. The Kolmogorov–Smirnov type test statistics sensitive to changes in skewness and in kurtosis, $T_{S,L}$ and $T_{K,L}$ respectively, are defined as

$$T_{S,L} = \max |w_{S,L}(x)| \quad (8)$$

and

$$T_{K,L} = \max |w_{K,L}(x)|. \quad (9)$$

Based on results presented in (Cabana and Cabana (1994)), parameter L was considered to be five.

The 1st Cabana-Cabana test for normality is based on equation (8):

$$T_{S,L} = \max |w_{S,L}(x)|.$$

The normality hypothesis of the data is rejected for large values of the test statistic.

29. The 2nd Cabana-Cabana (Cabana and Cabana (1994)) is based on equation (9):

$$T_{K,L} = \max |w_{K,L}(x)|.$$

The normality hypothesis of the data is rejected for large values of the test statistic.

30. Chen-Shapiro test (Chen and Shapiro (1995)) is based on normalized spacings and defined as

$$CS = \frac{1}{(n-1) \cdot s} \sum_{i=1}^{n-1} \frac{X_{(i+1)} - X_{(i)}}{M_{(i+1)} - M_{(i)}},$$

in which M_i is the ith quantile of a standard normal distribution obtained by $\Phi^{-1}[(i - 0.375) / (n + 0.25)]$. The normality hypothesis of the data is rejected for small values of CS.
31. Adjusted Jarque–Bera test (Urzua (1996)) for normality is based on the following statistic:

\[AJB = \frac{(\sqrt{b_1})^2}{\text{Var}(\sqrt{b_1})} + \frac{(b_2 - E(b_2))^2}{\text{Var}(b_2)}, \]

where \(\sqrt{b_1} \) and \(b_2 \) are the sample skewness in equation (3) and sample kurtosis in equation (2), respectively.

\[\text{Var}(\sqrt{b_1}) = \frac{6(n-2)}{(n+1)(n+3)}, \quad E(b_2) = \frac{3(n-1)}{n+1}, \quad \text{Var}(b_2) = \frac{24n(n-2)(n-3)}{(n+1)^2(n+3)(n+5)}. \]

32. Rahman-Govindarajulu (Rahman and Govindarajulu (1997)) have proposed a modification to the Shapiro-Wilk test, hereon termed \(W_{RG} \), which relies on a new definition of the weights \(a \) as follows,

\[a_i = -(n+1)(n+2)\phi(m_i)[m_{i-1}\phi(m_{i-1})-2m_i\phi(m_i)+m_{i+1}\phi(m_{i+1})], \]

where it is assumed that \(m_0\phi(m_0) = m_{n+1}\phi(m_{n+1}) = 0 \). With this modification, the new test statistic \(W_{RG} \) assigns larger weights to the extreme order statistics than the original \(W \) test, which has been seen to result in higher power against short tailed alternative distributions. As for the original \(W \) test, the normality hypothesis of the data is rejected for small values of \(W_{RG} \).

33. The 1st Zhang Q test (Zhang (1999)) is based on the ratio of two unbiased estimators of standard deviation, \(q_1 \) and \(q_2 \), and given by

\[Q = \ln(q_1/q_2). \]

The estimators \(q_1 \) and \(q_2 \) are obtained by

\[q_1 = \sum_{i=1}^{n} a_i x_{(i)} \quad \text{(10)} \]

and

\[q_2 = \sum_{i=1}^{n} b_i x_{(i)}, \quad \text{(11)} \]

where the \(i \)th order linear coefficients \(a_i \) and \(b_i \) result from

\[a_i = \left[(u_i - u_1) (n-1) \right]^{-1}, \quad \text{for } i \neq 1; \quad a_1 = \sum_{i=2}^{n} a_i; \]

\[b_i = \begin{cases} \frac{-b_{n-i+1}}{(n-4)^{-1}} \cdot \left[(u_i - u_{i+4}) (n-4) \right]^{-1} \cdot \left[(u_i - u_{i+4})^{-1} - (u_{i-4} - u_i)^{-1} \right], & i = 1, \ldots, 4, \\ \frac{-b_{n-i+1}}{(n-4)^{-1}} & i = 5, \ldots, n-4. \end{cases} \]

The \(i \)th expected value of the order statistics of a standard normal distribution, \(u_i \), is defined by \(\Phi^{-1}((i-0.375)/(n+0.25)) \). According to Zhang (Zhang (1999)), \(Q \) is less powerful against negatively skewed distributions. \(Q \) approximately follows normal distribution.

Based on the definition of \(Q \), the normality hypothesis of the data is rejected for both small and large values of the statistic using a two-sided test.

34. The 2nd Zhang Q test (Zhang (1999)) is based on the alternative statistic \(Q^* \) by switching the \(i \)th order statistics \(x_{(i)} \) in Equation (10) and Equation (11) by \(x_{(i)}^* = -x_{(n-i+1)} \), and obtain

\[Q^* = \ln(q_1^*/q_2^*). \]

\(Q^* \) approximately follows normal distribution.
35. The Barrio-Cuesta-Matran-Rodriguez test (del Barrio, Cuesta-Albertos, Matrán, and Rodríguez-Rodríguez (1999)) for normality is based on the L^2-Wasserstein distance between a sample distribution and the set of normal distributions as a measure of nonnormality,

$$BCMR = \frac{m_2 - \left[\sum_{i=1}^{n} x_{(i)} \cdot \int_{(i-1)/n}^{i/n} \Phi^{-1}(t) \, dt \right]^2}{m_2},$$

where the numerator represents the squared L^2-Wasserstein distance, m_2 is the sample standardized second moment. The normality hypothesis of the data is rejected for large values of the test statistic.

36. Glen-Leemis-Barr test (Glen, Leemis, and Barr (2001)) for normality is based on the quantiles of the order statistics. Given the relation between the order statistics and the empirical distribution function. The Glen-Leemis-Barr test statistic is given by

$$P_S = -n - \frac{1}{n} \sum_{i=1}^{n} \left[(2n + 1 - 2i) \ln (p_{(i)}) + (2i - 1) \ln (1 - p_{(i)}) \right],$$

where $p_{(i)}$ are the elements of the vector p containing the quantiles of the order statistics sorted in ascending order. The elements of p can be obtained by defining vector u, with elements sorted in ascending order and given by $u_{(i)} = \Phi(z_{(i)})$. Considering that $u_{(1)}, u_{(2)}, \ldots, u_{(n)}$ represent the order statistics of a sample taken from a uniform distribution $U(0,1)$, their quantiles, which correspond to the elements of p, can be determined knowing that $u_{(i)}$ follows a Beta distribution $B(i; n - i + 1)$. The normality hypothesis of the data is rejected for large values of the test statistic.

37. Bonett and Seier (Bonett and Seier (2002)) test is based on a modification of Geary’s measure of kurtosis (Geary (1935)), Z_w,

$$Z_w = \sqrt{n + 2} \left(\hat{w} - 3 \right),$$

where $\hat{w} = 13.29 \left(\ln \left(\sqrt{m_2} - \log \left(n^{-1} \sum_{i=1}^{n} |x_i - \bar{x}| \right) \right) \right)$. Z_w approximately follows a standard normal distribution. The normality hypothesis H_0 is rejected for both small and large values of Z_w using a two-sided test.

38. The Brys–Hubert–Struyf MC–LR test (Brys, Hubert, and Struyf (2008)) is based on robust measures of skewness and tail weight. The considered robust measure of skewness is the medcouple MC defined as

$$MC = \text{med}_{x_{(i)} \leq m_F \leq x_{(j)}} h \left(x_{(i)}, x_{(j)} \right),$$

where med stands for median, m_F is the sample median and the kernel function h is given by

$$h \left(x_{(i)}, x_{(j)} \right) = \frac{(x_{(j)} - m_F) - (m_F - x_{(i)})}{x_{(i)} - x_{(j)}}.$$

For the case where $x_{(i)} = x_{(j)} = m_F$, h is then set by

$$h \left(x_{(i)}, x_{(j)} \right) = \begin{cases} 1 & i > j \\ 0 & i = j \\ -1 & i < j. \end{cases}$$
The left medcouple (LMC) and the right medcouple (RMC) are the considered robust measures of left and right tail weight, respectively, and are defined by
\[
LMC = -MC(x < m_F), \quad RMC = MC(x > m_F).
\]
The test statistic \(T_{MC-LR}\) is then defined by
\[
T_{MC-LR} = n(w - \omega)^t \cdot V^{-1} \cdot (w - \omega)
\]
in which \(w\) is set as \([MC, LMC, RMC]^t\), and \(\omega\) and \(V\) are obtained based on the influence function of the estimators in \(w\). For the case of a normal distribution, \(\omega\) and \(V\) are defined as
\[
\omega = \begin{bmatrix} 0, & 0.199, & 0.199 \end{bmatrix}^t, \quad V = \begin{bmatrix} 1.25 & 0.323 & -0.323 \\ 0.323 & 2.62 & -0.0123 \\ -0.323 & -0.0123 & 2.62 \end{bmatrix}.
\]
The normality hypothesis of the data is rejected for large values of \(T_{MC-LR}\). Note that \(T_{MC-LR}\) approximately follows the chi-square distribution with three degrees of freedom.

39. The Brys–Hubert–Struyf–Bonett–Seier joint test. The Brys–Hubert–Struyf MC–LR test (Brys et al. (2008)) is a skewness associated test and that the Bonett and Seier test (Bonett and Seier (2002)) is a kurtosis based test, a joint test, termed \(T_{MC-LR - Z_w}\), considering both these measures is proposed herein for testing normality. This joint test attempts to make use of the two referred focused tests in order to increase the power to detect different kinds of departure from normality. This joint test is proposed herein based on the assumption that the individual tests can be considered independent. The normality hypothesis of the data is rejected for the joint test when rejection is obtained for either one of the two individual tests for a significance level of \(\alpha/2\).

40. The 1st Zhang-Wu test (Zhang and Wu (2005)) for normality is
\[
Z_C = \sum_{i=1}^{n} \left[\ln \left(\frac{1/\Phi(z_{(i)}) - 1}{(n - 0.5)/i - 0.75 - 1} \right) \right]^2,
\]
the normality hypothesis of the data is rejected for large values of the test statistic.

41. The 2nd Zhang-Wu test (Zhang and Wu (2005)) for normality is
\[
Z_A = -\sum_{i=1}^{n} \left[\ln \frac{\Phi(z_{(i)})}{n - i + 0.5} + \ln \frac{1 - \Phi(z_{(i)})}{i - 0.5} \right]
\]
the normality hypothesis of the data is rejected for large values of the test statistic.

42. The 1st Bontemps and Meddahi (Bontemps and Meddahi (2005)) proposed a family of normality tests based on moment conditions known as Stein equations and their relation with Hermite polynomials. The test statistics are developed using the generalized method of moments approach associated with Hermite polynomials, which leads to test statistics that are robust against parameter uncertainty. The general expression of the test family is thus given by
\[
BM_{3-p} = \sum_{k=3}^{p} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} H_k(z_i) \right)^2, \quad (12)
\]
where \(z_i = (x_i - \overline{x}) / s \) and \(H_k(\cdot) \) represents the \(k \)th order normalized Hermite polynomial having the general expression given by Equation (7). The general \(BM_{3-p} \) family of tests asymptotically follows the chi-square distribution with \(p - 2 \) degrees of freedom.

It can be seen from Equation (12) that a number of different tests can be obtained by assigning different values to \(p \), which represents the maximum order of the considered normalized Hermite polynomials. Two different tests are considered in Bontemps-Meddahi (Bontemps and Meddahi (2005)), these tests are termed \(BM_{3-4} \) and \(BM_{3-6} \). Thus, The 1st Bontemps-Meddahi test for normality (Bontemps and Meddahi (2005)) is given by

\[
BM_{3-4} = \sum_{k=3}^{4} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} H_k (z_i) \right)^2 ,
\]

the normality hypothesis of the data is rejected for large values of the test statistic.

43. The 2nd Bontemps-Meddahi test for normality (Bontemps and Meddahi (2005)) is given by

\[
BM_{3-6} = \sum_{k=3}^{6} \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} H_k (z_i) \right)^2 ,
\]

the normality hypothesis of the data is rejected for large values of the test statistic.

44. The Gel-Miao-Gastwirth test for normality (Gel, Miao, and Gastwirth (2007)) is based on the ratio of the standard deviation \(s \) and on the robust measure of dispersion \(J_n \),

\[
J_n = \frac{\sqrt{\pi/2}}{n} \sum_{i=1}^{n} |x_i - M| \tag{13}
\]

in which \(M \) is the sample median. The normality test statistic \(R_{sJ} \) is therefore given by

\[
R_{sJ} = s/J_n
\]

which should tend to one under a normal distribution. The normality hypothesis of the data is rejected for large values of \(R_{sJ} \) and the statistic \(\sqrt{n}(R_{sJ} - 1) \) asymptotically follows the normal distribution \(N(0, \pi/2 - 1.5) \). The Gel-Miao-Gastwirth test has higher power against heavy-tailed observations.

45. The Doornik-Hansen test for normality (Doornik and Hansen (2008)) is based on the transformed skewness in Equation (4) and the use of a transformed kurtosis \(z_2 \). The statistic of the Doornik–Hansen test \(DH \) is thus given by

\[
DH = \left[Z \left(\sqrt{b_1} \right) \right]^2 + [z_2]^2
\]

and the transformed kurtosis \(z_2 \) is given by

\[
z_2 = \left[\left(\frac{\xi}{2a} \right)^{1/3} - 1 + \frac{1}{9a} \right] \sqrt{9a},
\]

and

\[
\xi = (b_2 - 1 - b_1) 2k,
\]

\[
k = \frac{(n + 5)(n + 7)(n^3 + 37n^2 + 11n - 313)}{12(n - 3)(n + 1)(n^2 + 15n - 4)}.
\]
\[a = \frac{(n+5)(n+7)\left[(n-2)\left(n^2 + 27n - 70 \right) + b_1(n-7)\left(n^2 + 2n - 5 \right) \right]}{6(n-3)(n+1)(n^2 + 15n - 4)}. \]

The null hypothesis \(H_0 \) is rejected for large values of \(DH \).

46. Coin test (Coin (2008)) for normality is based on a polynomial regression focused on detecting symmetric non-normal alternative distributions. According to Coin (Coin (2008)), the analysis of standard normal \(Q-Q \) plots of different symmetric non-normal distributions suggests that fitting a model of the type

\[z_{(i)} = \beta_1 \cdot \alpha_i + \beta_3 \cdot \alpha_i^3, \]

where \(\beta_1 \) and \(\beta_3 \) are fitting parameters and \(\alpha_i \) represent the expected values of standard normal order statistics, leads to values \(\beta_3 \) different from zero when in presence of symmetric non-normal distributions. Therefore, Coin (Coin (2008)) suggests the use of \(\beta_3^2 \) as a statistic for testing normality, thus rejecting the normality hypothesis of the data for large values of \(\beta_3^2 \). The values of \(\alpha_i \) are obtained using the approximations provided in Royston (1982).

47. The Gel-Gastwirth Robust Jarque-Bera test. Gel and Gastwirth (Gel and Gastwirth (2008)) proposed a modification of Jarque-Bera test that uses a robust estimate of the dispersion in the skewness and kurtosis instead of the second order central moment \(m_2 \). The selected robust dispersion measure is the average absolute deviation from the median and leads to the following statistic of the Robust Jarque–Bera test \(RJB \) given by

\[RJB = \frac{n}{6} \left(\frac{m_3}{J_n^3} \right)^2 + \frac{n}{64} \left(\frac{m_4}{J_n^4} \right)^2 \]

with \(J_n \) obtained from Equation (13). The normality hypothesis of the data is rejected for large values of the test statistic. \(RJB \) asymptotically follows the chi-square distribution with two degrees of freedom. \(RJB \) test is more powerful in detecting moderately heavy-tailed departures from normality, especially in small and moderate samples.

48. The Desgagne-LafayeDeMicheaux-Leblanc (Desgagné, de Micheaux, and Leblanc (2013)) test for normality is tailored to detect departures from normality in the tails of the distribution. The proposed test for normality is given by

\[R_n = n^2 r_n \left(X_n, S_n \right)^T \left(J_0 - \frac{1}{2} \nu_0 \nu_0^T \right)^{-1} r_n \left(X_n, S_n \right) \]

when \(X \sim N (\mu, \sigma^2) \),

\[r_n \left(X_n, S_n \right) = r_n (\mu, \sigma) - \frac{1}{2} \left(1 - T_n \right) \nu_0 + o_P \left(n^{-\frac{1}{2}} \right) 1_3, \]

\[T_n = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{X_i - \mu}{\sigma} \right)^2, \]

and where \(1_3 = (1\ 1\ 1) \) and \(J_0 \) is

\[J_0 = \begin{pmatrix}
0.42423099 & 0.13285410 & 0.05401580 \\
0.13285410 & 0.10080860 & 0.04056528 \\
0.05401580 & 0.04056528 & 0.01632673
\end{pmatrix}, \]

and the vector \(\nu_0 \) is

\[\nu_0 = \begin{pmatrix}
0.086481850 & 0.038512925 & 0.015594892
\end{pmatrix}^T, \]
An Extensive Comparisons of 50 Tests for Normality

$$J_0 - \frac{1}{2} \nu_0 \nu_0^T = \begin{pmatrix} 0.0502754623 & -0.0336793487 & -0.0134179540 \\ -0.0336793487 & 0.0266463308 & 0.0105350321 \\ -0.0134179540 & 0.0105350321 & 0.00416669944 \end{pmatrix}.$$

Under the null hypothesis R_n approximately follows the chi-square distribution with three degrees of freedom.

49. The Desgagne-LafayeDeMicheaux X_{APD} test for normality (Desgagné and de Micheaux (2018)) for finite sample sizes $n \geq 10$ is given by

$$X_{APD} = \frac{nB_2^2}{(3 - 8/\pi)(1 - 1.9/n)} + \frac{n}{72 - 1} \left(\left((2 - \log 2 - \gamma)/2 \right)^{1/3} \right)^2 \left(1 - 1.026/n \right)^2,$$

the ‘2nd-power skewness’ and ‘2nd-power kurtosis’ are, respectively, denoted by B_2 and K_2, and defined by (Desgagné and de Micheaux (2018)) as

$$B_2 = \frac{1}{n} \sum_{i=1}^{n} Z_i^2 \text{sign}(Z_i),$$

$$K_2 = \frac{1}{n} \sum_{i=1}^{n} Z_i^2 \log |Z_i|,$$

$$Z_i = S_n^{-1} (X_i - \bar{X}_n),$$

$$\bar{X}_n = \frac{1}{n} \sum X_i,$$

$$S_n = \left[\frac{1}{n} \sum (X_i - \bar{X}_n)^2 \right]^{1/2},$$

$$\gamma = 0.577215665...,$$

where K_2 is given in Equation (14) and γ in Equation (15) and

$$\alpha_n = -0.06 + 2.1/n^{0.67}.$$

X_{APD} approximately follows the chi-square distribution with two degrees of freedom for all $n \geq 10$.

50. The Desgagne-LafayeDeMicheaux Z_{EPD} test for normality (Desgagné and de Micheaux (2018)) for finite sample sizes $n \geq 10$, is given by

$$Z_{EPD} = \frac{n^{1/2} \left[\left((2K_2)^{\alpha_n} - 1 \right) / \alpha_n + \left((2 - \log 2 - \gamma)^{-0.06} - 1 \right) / 0.06 + 1.32/n^{0.95} \right]}{\left[(2 - \log 2 - \gamma)^{-2.12} (3\pi^2 - 28) / 2 - 3.78/n^{0.733} \right]^{1/2}},$$

where K_2 is given in Equation (14) and γ in Equation (15) and

$$\alpha_n = -0.06 + 2.1/n^{0.67}.$$

Z_{EPD} approximately follows the standard normal distribution $N(0, 1)$ for all $n \geq 10$.

3. Statistical distributions used in the simulation study

The simulation study uses a number of alternative statistical distributions over which the performance of the presented normality tests is to be assessed. The selected alternative distributions were chosen in order to be a representative set exhibiting different values of important properties such as skewness and kurtosis. Following Esteban, Castellanos, Morales, and Vajda (2001), these alternative distributions are categorized into four groups, depending on the support and shape of their densities as follows:
1. Group I: Symmetric distributions with support on \((-\infty, \infty)\):
 - Student’s \(t\)-distribution with 3 degrees of freedom.
 - Laplace distribution with parameters location = 0 and scale = 1.
 - Logistic distribution with parameters location = 0 and scale = 4.

2. Group II: Asymmetric distributions with support on \((-\infty, \infty)\):
 - Gumbel distribution with parameters location = 0 and scale = 3.
 - Skew-Normal with parameters location = 0, scale = 1 and slant = 7.

3. Group III: Distributions with support on \((0, \infty)\):
 - Gamma distribution with parameters shape = 2 and scale = 1.
 - Weibull distribution with parameters shape = 1.5 and scale = 1.

4. Group IV: Distributions with support on \((0, 1)\):
 - Beta distribution with parameters shape1 = 2 and shape2 = 5.
 - Uniform distribution with parameters (0,1).

4. Simulation study

 Since a theoretical comparison is not possible, power comparisons of tests for normality are made by using Monte Carlo simulation. To compare the power of the tests we generate samples of sizes \(n = 10, 30, 50, 70\) and \(100\) from the alternative distributions in Section 3. The number of simulation is 10000 and the level of significance \(\alpha = 0.05\). We compute the power of the test as the proportion of times we correctly reject the null hypothesis in 10000 replications at \(\alpha = 0.05\) level of significance. For doing the simulation and computing the estimated powers of the tests for normality, R language (R Core Team (2021)) and the R packages are used. The followings R packages are used to test the normality: DescTools (Signorell (2020)), evd (Stephenson (2002)), fBasics (Wuertz, Setz, and Chalabi (2020)), lawstat (Gastwirth, Gel, Hui, Lyubchich, Miao, and Noguchi (2020)), moments (Komsta and Novomestky (2015)), normtest (Gavrilov and Pusev (2014)), nortest (Gross and Ligges (2015)), PoweR (Lafaye de Micheaux and Tran (2016)), rmutil (Swihart and Lindsey (2020)), sn (Azzalini (2021)), and vsgofest (Lequesne and Regnault (2020)).

 Table 1 through 9 respectively report the estimates of the power of the 50 tests for normality, in order of increasing power, under the alternative distributions in Section 3.

 The difference of the power of the tests becomes more apparent when the comparison is carried out graphically. Figures 1 through 17 respectively present the simulated power curves for 50 normality tests under the alternative distributions in Section 3 for sample \(n = 10, 30, 50, 70\) and 100 based on the results of Table 1 through 9 respectively. The vertical axis of the figures measure the simulated power of the tests for normality and the horizontal axis represents the sample sizes \(n\).
Table 1: Power comparisons of normality tests under alternative Student’s t-distribution with 3 degrees of freedom for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)

Sample Size (n)	Tests for Normality (in order of increasing power)	10	30	50	70	100
10	Geary	0.0230	0.0042	0.0010	0.0002	0.0000
20	Brys-Hubert-Struyf	0.0024	0.0332	0.0478	0.0612	0.0694
30	Kolmogorov-Smirnov	0.0084	0.0500	0.1024	0.1624	0.2366
40	4th Hosking	0.0536	0.0840	0.0984	0.1220	0.1448
50	3rd Hosking	0.0572	0.1112	0.1444	0.1898	0.2230
60	Vasicek-Song	0.0396	0.1612	0.3066	0.4342	0.7196
70	2nd Hosking	0.0878	0.2034	0.2728	0.3814	0.4792
80	Pearson Chi-Square	0.1510	0.2330	0.3300	0.4216	0.5206
90	1st Zhang	0.1462	0.2932	0.3886	0.4702	0.5534
100	Rahman-Govindarajulu	0.1540	0.2968	0.4336	0.5502	0.6854
110	2nd Zhang	0.1480	0.2988	0.3870	0.4676	0.5520
120	Barrio-Cuesta-Matran-Rodriguez	0.1452	0.3008	0.3866	0.4690	0.5496
130	Lilliefors	0.1628	0.3348	0.4722	0.5974	0.7314
140	Frossini	0.1712	0.3896	0.5498	0.6904	0.8188
150	Cramer-von Mises	0.1818	0.4056	0.5634	0.6988	0.8204
160	Skewness	0.2168	0.4186	0.5200	0.5856	0.6376
170	D’Agostino-skewness	0.2172	0.4196	0.5198	0.5852	0.6394
180	Anderson-Dalning	0.1898	0.4356	0.5948	0.7252	0.8480
190	Hegazy–Green 1	0.1820	0.4360	0.6030	0.7430	0.8674
200	1st Bontempe-Meddahi	0.0666	0.4378	0.6384	0.7860	0.8936
210	Chen-Shapiro	0.1930	0.4396	0.6048	0.7585	0.8552
220	Glen-Leemis-Barr	0.1956	0.4408	0.5996	0.7312	0.8536
230	Epps-Pulley	0.2032	0.4454	0.5984	0.7364	0.8576
240	1st Cabana-Cabana	0.2164	0.4474	0.5744	0.6766	0.7692
250	1st Zhang-Wu	0.1882	0.4490	0.6100	0.7398	0.8520
260	2nd Zhang-Wu	0.2024	0.4524	0.5968	0.7206	0.8350
270	Shapiro-Wilk	0.1914	0.4548	0.6256	0.7628	0.8740
280	Ancombe-Glynn	0.1758	0.4592	0.6322	0.7784	0.8866
290	Bonett-Seier	0.1426	0.4610	0.6508	0.7956	0.9026
300	Desgagné-LafayeDeMicheaux-Leblanc	0.1296	0.4614	0.6494	0.7912	0.8942
310	Spiegelhalter	0.1580	0.4772	0.6926	0.8382	0.9282
320	Desgagné-LafayeDeMicheaux-Leblanc-ZEPD	0.1778	0.4820	0.6778	0.8186	0.9170
330	Brys-Hubert-Struyf & Bonett-Seier	0.2388	0.4842	0.6652	0.7974	0.8970
340	Coin	0.1786	0.4918	0.6852	0.8136	0.9190
350	1st Hosking	0.2184	0.4932	0.6438	0.7800	0.8802
360	D’Agostino-Pearson	0.2318	0.5018	0.6518	0.7772	0.8746
370	Desgagné-LafayeDeMicheaux-Leblanc-X_APD	0.1976	0.5108	0.6838	0.8202	0.9114
380	2nd Cabana-Cabana	0.1498	0.5120	0.6978	0.8306	0.9168
390	Weisberg-Bingham	0.2092	0.5124	0.6816	0.8098	0.9038
400	Doornik-Hansen	0.2054	0.5158	0.6858	0.8142	0.9036
410	Jarque–Bera	0.2192	0.5168	0.6812	0.8136	0.9052
420	Shapiro-Francia	0.2166	0.5180	0.6866	0.8140	0.9064
430	Filliben	0.2140	0.5198	0.6912	0.8174	0.9094
440	Kurtosis	0.1612	0.5200	0.6978	0.8286	0.9174
450	Adjusted Jarque–Bera	0.2196	0.5202	0.6946	0.8210	0.9100
460	2nd Bontempe-Meddahi	0.1422	0.5304	0.7276	0.8576	0.9380
470	Hegazy–Green 2	0.2184	0.5330	0.7054	0.8326	0.9196
480	Martinez-Iglewicz	0.2178	0.5618	0.7416	0.8602	0.9422
490	Gel–Miao–Gastewich	0.2576	0.5676	0.7310	0.8544	0.9356
500	Robust Jarque–Bera	0.2376	0.5726	0.7468	0.8516	0.9346
Figure 1: Simulated power curves for 50 normality tests under alternative Student’s t-distribution with 3 degrees of freedom for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)
Figure 2: Simulated power curves for normality tests based on Empirical distribution function, Measures of the moments, and Regression and correlation tests under alternative Student’s t-distribution with 3 degrees of freedom for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)
Table 2: Power comparisons of normality tests under alternative Laplace distribution \((0, 1)\) for sample sizes \(n = 10, 30, 50, 70\) and 100 \((\alpha = 0.05)\)

Tests for Normality (in order of increasing power)	Sample Size (n)				
	10	30	50	70	100
1 Geary	0.0204	0.0022	0.0004	0.0002	0.0000
2 Kolmogorov-Smirnov	0.0002	0.0120	0.0278	0.0470	0.0840
3 Brys-Hubert-Struyf	0.0008	0.0322	0.0512	0.0782	0.0978
4 Vasicek-Song	0.0170	0.0854	0.1880	0.2734	0.6148
5 4th Hosking	0.0488	0.1434	0.2240	0.3094	0.4058
6 Rahman-Govindarajulu	0.1184	0.1852	0.2732	0.3564	0.4864
7 Pearson Chi-Square	0.1282	0.1932	0.2704	0.3604	0.4710
8 3rd Hosking	0.0650	0.1942	0.2954	0.4056	0.5248
9 1st Zhang	0.1204	0.2216	0.2648	0.3100	0.3766
10 Barrio-Cuesta-Matran-Rodriguez	0.1196	0.2220	0.2696	0.3146	0.3728
11 2nd Zhang	0.1214	0.2246	0.2740	0.3190	0.3722
12 2nd Hosking	0.1082	0.2810	0.4308	0.5610	0.7080
13 Lilliefors	0.1356	0.2856	0.4350	0.5486	0.7072
14 D’Agostino-skewness	0.1726	0.3048	0.3596	0.3886	0.4164
15 Skewness	0.1706	0.3054	0.3618	0.3874	0.4150
16 1st Bontemps-Meddahi	0.0316	0.3060	0.4940	0.6292	0.7758
17 1st Zhang-Wu	0.1494	0.3234	0.4598	0.5658	0.7000
18 1st Cabana-Cabana	0.1742	0.3270	0.4266	0.4844	0.5708
19 2nd Zhang-Wu	0.1644	0.3298	0.4566	0.5590	0.6874
20 Chen-Shapiro	0.1510	0.3316	0.4902	0.6078	0.7626
21 Anscombe-Glynn	0.1366	0.3340	0.4870	0.6262	0.7694
22 Frosini	0.1412	0.3356	0.5220	0.6650	0.8176
23 Eppe-Pulley	0.1628	0.3506	0.5258	0.6538	0.8070
24 Shapiro-Wilk	0.1496	0.3538	0.5260	0.6524	0.7932
25 Cramer-von Mises	0.1520	0.3632	0.5436	0.6794	0.8236
26 Anderson-Darling	0.1556	0.3640	0.5518	0.6908	0.8276
27 Hegazy–Green 1	0.1454	0.3706	0.5586	0.7032	0.8402
28 Glen-Leemis-Barr	0.1574	0.3724	0.5588	0.6968	0.8298
29 D’Agostino-Pearson	0.1926	0.3862	0.5104	0.6164	0.7378
30 Desgagné-LalayeDeMicheaux-Leblanc	0.1086	0.3802	0.5722	0.7182	0.8542
31 Desgagné-LalayeDeMicheaux-Leblanc-ZEPD	0.1434	0.3972	0.6058	0.7518	0.8882
32 Doornik-Hansen	0.1720	0.4084	0.5558	0.6840	0.8030
33 Jarque-Bera	0.1774	0.4090	0.5580	0.6734	0.8020
34 2nd Cabana-Cabana	0.1126	0.4106	0.5922	0.7234	0.8468
35 Kurtosis	0.1258	0.4130	0.5820	0.7176	0.8388
36 Bonett-Seier	0.1132	0.4156	0.6336	0.7790	0.9098
37 Coin	0.1580	0.4194	0.5976	0.7416	0.8662
38 Adjusted Jarque–Bera	0.1806	0.4224	0.5756	0.6920	0.8112
39 Weisberg-Bingham	0.1730	0.4226	0.5962	0.7210	0.8454
40 Shapiro-Francia	0.1822	0.4276	0.6014	0.7230	0.8492
41 Desgagné-LalayeDeMicheaux-Leblanc-X_APD	0.1642	0.4278	0.6138	0.7476	0.8766
42 Filliben	0.1772	0.4310	0.6038	0.7250	0.8484
43 2nd Bontemps-Meddahi	0.1010	0.4354	0.6390	0.7772	0.8944
44 Spiegelhalter	0.1300	0.4366	0.6870	0.8342	0.9420
45 1st Hosking	0.1882	0.4378	0.6168	0.7500	0.8738
46 Brys-Hubert-Struyf & Bonett-Seier	0.2200	0.4404	0.6316	0.7736	0.9046
47 Hegazy–Green 2	0.1788	0.4500	0.6260	0.7466	0.8664
48 Martinez-Iglewicz	0.1862	0.4934	0.6802	0.8010	0.9078
49 Robust Jarque–Bera	0.1990	0.5018	0.6786	0.7982	0.8978
50 Gel–Miao–Gastwirth	0.2488	0.5528	0.7474	0.8610	0.9500
An Extensive Comparisons of 50 Tests for Normality

Test	Sample size	Simulated power
Geary	10	0.1
Kolmogorov−Smirnov	30	0.3
Brys−Hubert−Struyf	50	0.5
Vasicek−Song	70	0.7
4th Hosking	100	0.9
Rahman−Vladimirova	10	0.05
Pearson Chi-square	30	0.15
3rd Hosking	50	0.4
2nd Zhang	70	0.6
3rd Zhang	100	0.8
Geary−Shapiro	10	0.05
Brys−Hubert−Struyf	30	0.1
Vasicek−Song	50	0.3
4th Hosking	70	0.5
Rahman−Vladimirova	100	0.7
Pearson Chi-square	30	0.9
3rd Hosking	50	0.1
2nd Zhang	70	0.3
3rd Zhang	100	0.5
Geary−Shapiro	10	0.05
Brys−Hubert−Struyf	30	0.1
Vasicek−Song	50	0.3
4th Hosking	70	0.5
Rahman−Vladimirova	100	0.7
Pearson Chi-square	30	0.9
3rd Hosking	50	0.1
2nd Zhang	70	0.3
3rd Zhang	100	0.5
Geary−Shapiro	10	0.05
Brys−Hubert−Struyf	30	0.1
Vasicek−Song	50	0.3
4th Hosking	70	0.5
Rahman−Vladimirova	100	0.7
Pearson Chi-square	30	0.9
3rd Hosking	50	0.1
2nd Zhang	70	0.3
3rd Zhang	100	0.5
Geary−Shapiro	10	0.05
Brys−Hubert−Struyf	30	0.1
Vasicek−Song	50	0.3
4th Hosking	70	0.5
Rahman−Vladimirova	100	0.7
Pearson Chi-square	30	0.9
3rd Hosking	50	0.1
2nd Zhang	70	0.3
3rd Zhang	100	0.5
Geary−Shapiro	10	0.05
Brys−Hubert−Struyf	30	0.1
Vasicek−Song	50	0.3
4th Hosking	70	0.5
Rahman−Vladimirova	100	0.7
Pearson Chi-square	30	0.9
3rd Hosking	50	0.1
2nd Zhang	70	0.3
3rd Zhang	100	0.5
Geary−Shapiro	10	0.05
Brys−Hubert−Struyf	30	0.1
Vasicek−Song	50	0.3
4th Hosking	70	0.5
Rahman−Vladimirova	100	0.7
Pearson Chi-square	30	0.9
3rd Hosking	50	0.1
2nd Zhang	70	0.3
3rd Zhang	100	0.5

Figure 3: Simulated power curves for 50 normality tests under alternative Laplace distribution \((0,1)\) for sample sizes \(n = 10, 30, 50, 70\) and 100 \((\alpha = 0.05)\)
Figure 4: Simulated power curves for normality tests based on Empirical distribution function, Measures of the moments, and Regression and correlation tests under alternative Laplace distribution (0, 1) for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)
Table 3: Power comparisons of normality tests under alternative Logistic distribution \((\text{location} = 0, \text{scale} = 4)\) for sample sizes \(n = 10, 30, 50, 70\) and \(100\) \((\alpha = 0.05)\)

Sample Size \((n)\)	Tests for Normality (in order of increasing power)				
	10	30	50	70	100
1 Kolmogorov-Smirnov	0.0000	0.0008	0.0014	0.0012	0.0012
2 Geary	0.0402	0.0156	0.0144	0.0062	0.0034
3 Vasicek-Song	0.0136	0.0224	0.0364	0.0460	0.1572
4 Brys-Hubert-Struyf	0.0008	0.0302	0.0396	0.0422	0.0358
5 4th Hosking	0.0492	0.0578	0.0690	0.0730	0.0660
6 3rd Hosking	0.0508	0.0642	0.0768	0.0822	0.0820
7 Pearson Chi-Square	0.0784	0.0668	0.0816	0.0834	0.0858
8 Rahman-Govindaraju	0.0640	0.0764	0.0926	0.0904	0.1040
9 2nd Hosking	0.0632	0.0832	0.1030	0.1142	0.1216
10 Lilliefors	0.0700	0.0884	0.1146	0.1296	0.1502
11 Frossini	0.0702	0.0990	0.1382	0.1604	0.1972
12 Cramer-von Mises	0.0732	0.1070	0.1464	0.1676	0.2016
13 1st Zhang	0.0764	0.1154	0.1418	0.1598	0.1870
14 2nd Zhang	0.0752	0.1216	0.1420	0.1536	0.1938
15 Barrio-Cuesta-Matran-Rodriguez	0.0738	0.1216	0.1440	0.1556	0.1940
16 Anderson-Darling	0.0776	0.1228	0.1624	0.1846	0.2310
17 Hegazy–Green 1	0.0720	0.1238	0.1746	0.1994	0.2580
18 Eppe-Pulley	0.0848	0.1262	0.1750	0.1976	0.2520
19 Glen-Leemis-Barr	0.0798	0.1276	0.1644	0.1904	0.2380
20 1st Bontemps-Meddahi	0.0996	0.1322	0.2164	0.2730	0.3716
21 Chen-Shapiro	0.0820	0.1358	0.1824	0.2148	0.2816
22 Bonett-Seier	0.0600	0.1388	0.1990	0.2436	0.3260
23 Desgagné-LafayeDeMicheaux-Leblanc	0.0574	0.1428	0.2144	0.2602	0.3414
24 Shapiro-Wilk	0.0812	0.1434	0.1988	0.2374	0.3114
25 2nd Zhang-Wu	0.0900	0.1444	0.1862	0.2050	0.2554
26 Anscombe-Glynn	0.0744	0.1452	0.2028	0.2462	0.3416
27 1st Zhang-Wu	0.0856	0.1470	0.2020	0.2368	0.3016
28 Spiegelhalter	0.0720	0.1484	0.2378	0.3096	0.4160
29 Desgagné-LafayeDeMicheaux-Leblanc-ZEPD	0.0796	0.1486	0.2160	0.2698	0.3678
30 1st Hosking	0.0920	0.1522	0.2060	0.2386	0.2926
31 Skewness	0.0980	0.1540	0.1932	0.2068	0.2262
32 D’Agostino-skewness	0.0980	0.1550	0.1936	0.2062	0.2276
33 1st Cabana-Cabana	0.0992	0.1588	0.2048	0.2258	0.2576
34 Coin	0.0776	0.1644	0.2344	0.2904	0.3874
35 Desgagné-LafayeDeMicheaux-Leblanc-X_APD	0.0822	0.1684	0.2394	0.2864	0.3682
36 Weisberg-Bingham	0.0934	0.1742	0.2422	0.2920	0.3726
37 Shapiro-Francia	0.0986	0.1776	0.2446	0.2976	0.3754
38 Doornik-Hansen	0.0824	0.1780	0.2514	0.2970	0.3880
39 Filliben	0.0958	0.1790	0.2488	0.2976	0.3780
40 2nd Cabana-Cabana	0.0716	0.1828	0.2596	0.3154	0.4198
41 2nd Bontemps-Meddahi	0.0456	0.1828	0.2912	0.3716	0.4778
42 D’Agostino-Pearson	0.1132	0.1842	0.2444	0.2816	0.3510
43 Hegazy–Green 2	0.0966	0.1858	0.2608	0.3146	0.4012
44 Kurtosis	0.0772	0.1886	0.2648	0.3212	0.4176
45 Jarque–Bera	0.1032	0.1908	0.2608	0.3106	0.4014
46 Adjusted Jarque–Bera	0.1030	0.1958	0.2670	0.3188	0.4126
47 Martinez-Iglewicz	0.0940	0.2022	0.2876	0.3602	0.4616
48 Brys-Hubert-Struyf & Bonett-Seier	0.1832	0.2098	0.2586	0.2988	0.3630
49 Gel–Miao–Gastwirth	0.1240	0.2110	0.2832	0.3362	0.4332
50 Robust Jarque–Bera	0.1076	0.2292	0.3086	0.3700	0.4346
Figure 5: Simulated power curves for 50 normality tests under alternative Logistic distribution (location = 0, scale = 4) for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)
Figure 6: Simulated power curves for normality tests based on empirical distribution function, measures of the moments, and regression and correlation tests under alternative Logistic distribution (location = 0, scale = 4) for sample sizes n = 10, 30, 50, 70 and 100 (α = 0.05)
Table 4: Power comparisons of normality tests under alternative Gumbel distribution \((0, 3)\) for sample sizes \(n = 10, 30, 50, 70\) and 100 \((\alpha = 0.05)\)

Tests for Normality (in order of increasing power)	Sample Size \((n)\)				
	10	30	50	70	100
1 Kolmogorov-Smirnov	0.0006	0.0100	0.0294	0.0602	0.1002
2 Geary	0.0500	0.0342	0.0268	0.0178	0.0128
3 Brys-Hubert-Struyf	0.0028	0.0658	0.1160	0.1772	0.2516
4 4th Hosking	0.0548	0.0918	0.1468	0.1992	0.2858
5 3rd Hosking	0.0538	0.1268	0.2184	0.2884	0.4152
6 Coin	0.0706	0.1290	0.1580	0.1906	0.2212
7 Bonett-Seier	0.0650	0.1530	0.2034	0.2438	0.2964
8 Vasicek-Song	0.0342	0.1554	0.2782	0.4006	0.7846
9 Spiegelhalter	0.0780	0.1662	0.2350	0.2956	0.3664
10 Pearson Chi-Square	0.1248	0.1888	0.2740	0.3622	0.4904
11 Desgagné-LafayeDeMicheaux-Leblanc-ZEPD	0.0958	0.2042	0.2810	0.3538	0.4420
12 2nd Hosking	0.0748	0.2080	0.3548	0.4830	0.6494
13 Desgagné-LafayeDeMicheaux-Leblanc	0.0666	0.2234	0.3280	0.4326	0.5504
14 Brys-Hubert-Struyf & Bonett-Seier	0.1724	0.2344	0.3078	0.3770	0.4648
15 Anscombe-Glynn	0.1048	0.2388	0.3292	0.4188	0.5290
16 Gel–Miao–Gastwirth	0.1398	0.2662	0.3530	0.4260	0.5134
17 1st Zhang	0.0896	0.2088	0.4220	0.5594	0.6906
18 2nd Cabana-Cabana	0.0996	0.2704	0.3732	0.4740	0.5852
19 Kurtosis	0.1068	0.2768	0.3842	0.4844	0.5946
20 Lilliefors	0.1136	0.2794	0.4366	0.5784	0.7276
21 2nd Zhang	0.1328	0.2814	0.3766	0.4566	0.5472
22 Barrio-Cuesta-Matran-Rodriguez	0.1322	0.2820	0.3750	0.4552	0.5452
23 1st Bontemps-Meddahi	0.0252	0.3120	0.5332	0.7134	0.8800
24 Martinez-Iglewicz	0.1288	0.3512	0.4934	0.6062	0.7308
25 Cramer-von Mises	0.1294	0.3598	0.5418	0.6998	0.8416
26 Frosini	0.1320	0.3600	0.5484	0.7126	0.8482
27 Adjusted Jarque–Bera	0.1472	0.3874	0.5750	0.7394	0.8902
28 Glen-Leemis-Barr	0.1398	0.3948	0.5866	0.7424	0.8766
29 Anderson-Darling	0.1390	0.3970	0.5948	0.7552	0.8842
30 Doornik-Hansen	0.1198	0.4062	0.6384	0.8072	0.9306
31 1st Hosking	0.1228	0.4064	0.6310	0.7868	0.9168
32 Hegazy–Green 1	0.1326	0.4066	0.6162	0.7814	0.9078
33 Desgagné-LafayeDeMicheaux-Leblanc-X_APD	0.1228	0.4072	0.6362	0.7972	0.9238
34 D’Agostino-Pearson	0.1652	0.4120	0.5940	0.7526	0.8962
35 Robust Jarque–Bera	0.1472	0.4138	0.5948	0.7542	0.8860
36 Jarque–Bera	0.1554	0.4158	0.6108	0.7690	0.9052
37 Rahman-Govindarajulu	0.1350	0.4162	0.6200	0.7876	0.9130
38 Hegazy–Green 2	0.1500	0.4306	0.6282	0.7796	0.9108
39 2nd Bontemps-Meddahi	0.0790	0.4324	0.6674	0.8290	0.9406
40 Eppe-Pulley	0.1534	0.4466	0.6462	0.7992	0.9172
41 Filliben	0.1550	0.4496	0.6524	0.8072	0.9222
42 Weisberg–Bingham	0.1510	0.4508	0.6576	0.8108	0.9258
43 Shapiro-Francia	0.1614	0.4584	0.6632	0.8152	0.9276
44 Chen-Shapiro	0.1520	0.4640	0.6778	0.8338	0.9432
45 1st Zhang-Wu	0.1560	0.4664	0.6626	0.8178	0.9318
46 Shapiro-Wilk	0.1516	0.4676	0.6802	0.8314	0.9396
47 Skewness	0.1584	0.4720	0.6930	0.8428	0.9452
48 D’Agostino-skewness	0.1616	0.4736	0.6914	0.8412	0.9474
49 2nd Zhang-Wu	0.1564	0.4822	0.6888	0.8458	0.9458
50 1st Cabana-Cabana	0.1568	0.4908	0.7130	0.8556	0.9532
Figure 7: Simulated power curves for 50 normality tests under alternative Gumbel distribution (0,3) for sample sizes \(n = 10, 30, 50, 70 \) and 100 (\(\alpha = 0.05 \)).
Figure 8: Simulated power curves for normality tests based on Empirical distribution function, Measures of the moments, and Regression and correlation tests under alternative Gumbel distribution (0, 3) for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)
An Extensive Comparisons of 50 Tests for Normality

Table 5: Power comparisons of normality tests under alternative Skew-Normal distribution (location = 0, scale = 3, shape = 7) for sample sizes n = 10, 30, 50, 70 and 100 (α = 0.05)

Tests for Normality (in order of increasing power)	Sample Size (n)
1 Kolmogorov-Smirnov	10 30 50 70 100
2 Coin	0.0006 0.0054 0.0246 0.0442 0.1098
3 Bonett-Seier	0.0584 0.0718 0.0722 0.0860 0.0798
4 Geary	0.0616 0.0876 0.0924 0.0956 0.1044
5 4th Hosking	0.0696 0.0900 0.0866 0.0880 0.0838
6 Brys-Hubert-Struyf	0.0524 0.0970 0.1792 0.2512 0.3702
7 Spiegelhalter	0.0036 0.1074 0.2096 0.3022 0.4220
8 Desgagné-LafayeDeMicheaux-Leblanc-ZEPD	0.0786 0.1096 0.1152 0.1060 0.0992
9 3rd Hosking	0.0524 0.1306 0.2592 0.3820 0.5362
10 Gel–Miao–Gastwirth	0.1140 0.1428 0.1696 0.1778 0.2166
11 Desgagné-LafayeDeMicheaux-Leblanc	0.0614 0.1410 0.2218 0.2912 0.3912
12 Anscombe-Glynn	0.0920 0.1626 0.1936 0.2274 0.2700
13 2nd Cabana-Cabana	0.0896 0.1650 0.2102 0.2512 0.3110
14 Kurtosis	0.1002 0.1748 0.2204 0.2650 0.3244
15 2nd Zhang	0.1076 0.1766 0.2310 0.2728 0.3234
16 Barrio-Cuesta-Matran-Rodriguez	0.1100 0.1822 0.2296 0.2720 0.3188
17 Vasicek-Song	0.0376 0.1944 0.3884 0.5326 0.9154
18 Brys-Hubert-Struyf & Bonett-Seier	0.1480 0.2052 0.2798 0.3596 0.4530
19 1st Bontemps-Meddahi	0.0166 0.2122 0.4364 0.6586 0.8898
20 2nd Hosking	0.0644 0.2226 0.4164 0.6046 0.7736
21 Pearson Chi-Square	0.1338 0.2252 0.4066 0.5548 0.7254
22 Martinez-Iglewicz	0.1072 0.2462 0.3516 0.4412 0.5434
23 Lilliefors	0.1164 0.2854 0.4648 0.6518 0.8036
24 Adjusted Jarque–Bera	0.1146 0.2866 0.4870 0.6908 0.8950
25 Robust Jarque–Bera	0.1184 0.3108 0.4820 0.6504 0.8524
26 Jarque–Bera	0.1270 0.3272 0.5500 0.7576 0.9328
27 D’Agostino-Pearson	0.1320 0.3290 0.5260 0.7318 0.9216
28 Cramer-von Mises	0.1330 0.3850 0.6144 0.8036 0.9198
29 2nd Bontemps-Meddahi	0.0622 0.2908 0.6982 0.8828 0.9784
30 Frozini	0.1400 0.4062 0.6382 0.8196 0.9318
31 Hegazy–Green 2	0.1362 0.4124 0.6608 0.8410 0.9622
32 Doornik-Hansen	0.1152 0.4144 0.7136 0.8912 0.9812
33 Desgagné-LafayeDeMicheaux-Leblanc-X_APD	0.1266 0.4190 0.7014 0.8766 0.9706
34 Skewness	0.1332 0.4258 0.6824 0.8452 0.9562
35 D’Agostino-skewness	0.1350 0.4264 0.6822 0.8438 0.9558
36 Glen-Leemis-Barr	0.1432 0.4318 0.6738 0.8530 0.9516
37 1st Hosking	0.1060 0.4322 0.7264 0.8906 0.9762
38 Anderson-Darling	0.1432 0.4394 0.6860 0.8628 0.9580
39 Filliben	0.1434 0.4452 0.7138 0.8804 0.9780
40 Weisberg–Bingham	0.1426 0.4564 0.7228 0.8914 0.9790
41 Hegazy–Green 1	0.1414 0.4600 0.7264 0.8856 0.9710
42 1st Cabana-Cabana	0.1334 0.4634 0.7302 0.8856 0.9756
43 Shapiro-Francia	0.1500 0.4646 0.7298 0.8940 0.9812
44 Eppe-Pulley	0.1508 0.4778 0.7284 0.8878 0.9670
45 1st Zhang	0.1228 0.4798 0.7352 0.8610 0.9398
46 1st Zhang-Wu	0.1560 0.5054 0.7764 0.9158 0.9886
47 Rahman-Govindarajuulu	0.1472 0.5128 0.7878 0.9216 0.9864
48 Shapiro-Wilk	0.1518 0.5198 0.7894 0.9220 0.9898
49 Chen-Shapiro	0.1540 0.5278 0.8010 0.9304 0.9904
50 2nd Zhang-Wu	0.1530 0.5476 0.8340 0.9494 0.9942
Figure 9: Simulated power curves for 50 normality tests under alternative Skew-Normal distribution (location = 0, scale = 3, shape = 7) for sample sizes n = 10, 30, 50, 70 and 100 (α = 0.05)
Figure 10: Simulated power curves for normality tests based on Empirical distribution function, Measures of the moments, and Regression and correlation tests under alternative Skew-Normal distribution ($\text{location} = 0$, $\text{scale} = 3$, $\text{shape} = 7$) for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)
Table 6: Power comparisons of normality tests under alternative Gamma distribution (shape = 2, rate = 1) for sample sizes $n = 10$, 30, 50, 70 and 100 ($\alpha = 0.05$)

Tests for Normality (in order of increasing power)	Sample Size (n)				
	10	30	50	70	100
1 Kolmogorov-Smirnov	0.0006	0.0232	0.0830	0.1708	0.3444
2 Geary	0.0586	0.0440	0.0356	0.0254	0.0208
3 Coin	0.0778	0.1216	0.1444	0.1584	0.1884
4 4th Hosking	0.0580	0.1290	0.2592	0.3622	0.5304
5 Bys-Hubert-Struyf	0.0040	0.1340	0.2796	0.4148	0.5792
6 Bonett-Seier	0.0774	0.1688	0.2140	0.2612	0.3238
7 3rd Hosking	0.0610	0.2000	0.3836	0.5324	0.7156
8 Spiegelhalter	0.0996	0.2012	0.2630	0.3218	0.3888
9 Desgagné-LafayeDeMicheaux-Leblanc-ZEPD	0.1148	0.2498	0.3358	0.4200	0.5138
10 Bys-Hubert-Struyf & Bonett-Seier	0.1488	0.2890	0.4318	0.5598	0.6962
11 Desgagné-LafayeDeMicheaux-Leblanc	0.0840	0.3060	0.4616	0.5842	0.7310
12 Ancombe-Glynn	0.1340	0.3092	0.4218	0.5258	0.6470
13 Gel–Miao–Gastwirth	0.1742	0.3358	0.4408	0.5344	0.6242
14 2nd Cabana-Cabana	0.1254	0.3408	0.4754	0.5876	0.7014
15 Kurtosis	0.1344	0.3512	0.4842	0.5934	0.7086
16 2nd Hosking	0.0816	0.3534	0.6158	0.7862	0.9210
17 2nd Zhang	0.1608	0.3556	0.4704	0.5536	0.6560
18 Barrio-Cuesta-Matran-Rodriguez	0.1608	0.3576	0.4676	0.5552	0.6550
19 Vasicek-Song	0.0594	0.3996	0.6988	0.8720	0.9976
20 Pearson Chi-Square	0.1944	0.4094	0.6488	0.8184	0.9474
21 1st Bontemps-Meddahi	0.0436	0.4414	0.7386	0.9106	0.9902
22 Lilliefors	0.1708	0.4604	0.6958	0.8470	0.9542
23 Martinez-Iglewicz	0.1806	0.4810	0.6628	0.7892	0.8870
24 Adjusted Jarque–Bera	0.1810	0.5244	0.7774	0.9212	0.9912
25 Robust Jarque–Bera	0.1894	0.5388	0.7610	0.9112	0.9830
26 D’Agostino-Pearson	0.2092	0.5566	0.7936	0.9288	0.9934
27 Jarque–Bera	0.2042	0.5754	0.8222	0.9482	0.9954
28 Cramer-von Mises	0.1958	0.5986	0.8366	0.9444	0.9886
29 Vefosini	0.2014	0.6168	0.8524	0.9506	0.9920
30 2nd Bontemps-Meddahi	0.1110	0.6354	0.9034	0.9816	0.9992
31 Desgagné-LafayeDeMicheaux-Leblanc-X_APD	0.1842	0.6498	0.8996	0.9768	0.9974
32 Glen-Leemis-Barr	0.2102	0.6534	0.8810	0.9688	0.9966
33 Anderson-Darling	0.2096	0.6566	0.8904	0.9748	0.9968
34 Hegazy–Green 2	0.2140	0.6584	0.8944	0.9774	0.9982
35 Doornik-Hansen	0.1726	0.6598	0.9154	0.9852	0.9998
36 1st Hosking	0.1736	0.6674	0.9134	0.9836	0.9982
37 D’Agostino-skewness	0.2188	0.6738	0.8918	0.9734	0.9964
38 Skewness	0.2178	0.6738	0.8918	0.9738	0.9966
39 Hegazy–Green 1	0.2090	0.6896	0.9128	0.9804	0.9974
40 Filliben	0.2242	0.6942	0.9170	0.9858	0.9992
41 Epps-Pulley	0.2278	0.7010	0.9064	0.9784	0.9970
42 1st Cabana-Cabana	0.2190	0.7072	0.9216	0.9836	0.9998
43 Weisberg–Bingham	0.2206	0.7072	0.9236	0.9884	0.9990
44 Shapiro-Francia	0.2308	0.7106	0.9270	0.9896	0.9992
45 1st Zhang	0.1650	0.7198	0.9578	0.9960	1.0000
46 Rahman-Govindarajulu	0.2132	0.7364	0.9494	0.9952	1.0000
47 1st Zhang-Wu	0.2306	0.7474	0.9494	0.9928	0.9998
48 Shapiro-Wilk	0.2254	0.7522	0.9498	0.9934	0.9998
49 Chen-Shapiro	0.2272	0.7578	0.9554	0.9938	1.0000
50 2nd Zhang-Wu	0.2376	0.7918	0.9720	0.9976	1.0000
Figure 11: Simulated power curves for 50 normality tests under alternative Gamma distribution ($shape = 2$, $rate = 1$) for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)
Figure 12: Simulated power curves for normality tests based on Empirical distribution function, Measures of the moments, and Regression and correlation tests under alternative Gamma distribution (shape = 2, rate = 1) for sample sizes n = 10, 30, 50, 70 and 100 (α = 0.05)
Table 7: Power comparisons of normality tests under alternative Weibull distribution (shape = 1.5, scale = 1) for sample sizes n = 10, 30, 50, 70 and 100 (α = 0.05)

Tests for Normality (in order of increasing power)	Sample Size (n)				
	10	30	50	70	100
1 Kolmogorov-Smirnov	0.0000	0.0076	0.0300	0.0638	0.1328
2 Geary	0.0664	0.0706	0.0756	0.0666	0.0570
3 Coin	0.0656	0.0792	0.1002	0.0998	0.0974
4th Hosking	0.0502	0.0976	0.1878	0.2544	0.3682
5 Brys-Hubert-Struyf	0.0024	0.1010	0.2142	0.3048	0.4328
6 Bonett-Seier	0.0668	0.1046	0.1310	0.1318	0.1450
7 3rd Hosking	0.0552	0.1400	0.2794	0.3836	0.5414
8 Spiegelhalter	0.0912	0.1402	0.1670	0.1642	0.1744
9 Desgagné-LafayeDeMicheaux-Leblanc-ZEPD	0.1040	0.1526	0.1996	0.2146	0.2714
10 Desgagné-LafayeDeMicheaux-Leblanc	0.0708	0.1862	0.3030	0.3964	0.5154
11 Gel-Miao-Gastwirth	0.1322	0.1926	0.2506	0.2818	0.3304
12 Anscombe-Glynn	0.1124	0.2036	0.2624	0.3176	0.4040
13 Brys-Hubert-Struyf & Bonett-Seier	0.1516	0.2094	0.3200	0.3880	0.4970
14 2nd Cabana-Cabana	0.1092	0.2162	0.2930	0.3650	0.4546
15 Kurtosis	0.1214	0.2242	0.3082	0.3818	0.4654
16 2nd Zhang	0.1264	0.2306	0.3098	0.3698	0.4478
17 Barrio-Cuesta-Matran-Rodriguez	0.1278	0.2322	0.3094	0.3666	0.4454
18 2nd Hosking	0.0668	0.2352	0.4606	0.6226	0.8076
19 Pearson Chi-Square	0.1518	0.2668	0.4938	0.6534	0.8534
20 Vasichek-Song	0.0434	0.2740	0.5544	0.7476	0.9890
21 1st Bontemps-Meddahi	0.0274	0.2894	0.5544	0.7634	0.9480
22 Martinez-Iglewicz	0.1292	0.3138	0.4508	0.5644	0.6904
23 Lilliefors	0.1268	0.3224	0.5362	0.7002	0.8564
24 Adjusted Jarque-Bera	0.1386	0.3662	0.6014	0.7866	0.9520
25 Robust Jarque-Bera	0.1434	0.3820	0.5910	0.7614	0.9232
26 D'Agostino-Pearson	0.1556	0.4076	0.6362	0.8134	0.9634
27 Jarque-Bera	0.1516	0.4228	0.6624	0.8364	0.9704
28 Cramer-von Mises	0.1544	0.4304	0.6860	0.8444	0.9548
29 Frosini	0.1646	0.4532	0.7136	0.8608	0.9616
30 2nd Bontemps-Meddahi	0.0840	0.4698	0.7874	0.9314	0.9934
31 Hegazy-Green 2	0.1630	0.4886	0.7706	0.9186	0.9898
32 Desgagné-LafayeDeMicheaux-Leblanc-X_APD	0.1504	0.4900	0.7842	0.9218	0.9892
33 Glen-Leemis-Barr	0.1656	0.4918	0.7558	0.9016	0.9780
34 Doornik-Hansen	0.1354	0.4958	0.8050	0.9406	0.9944
35 Anderson-Darling	0.1668	0.4972	0.7700	0.9106	0.9838
36 1st Hosking	0.1276	0.5062	0.8104	0.9358	0.9916
37 D'Agostino-skewness	0.1608	0.5122	0.7640	0.9106	0.9830
38 Skewness	0.1612	0.5150	0.7630	0.9106	0.9826
39 Filliben	0.1714	0.5294	0.8146	0.9424	0.9954
40 Hegazy-Green 1	0.1692	0.5304	0.7978	0.9290	0.9896
41 Epp-Pulley	0.1772	0.5380	0.7956	0.9234	0.9866
42 Weisberg-Bingham	0.1698	0.5398	0.8240	0.9492	0.9968
43 1st Cabana-Cabana	0.1636	0.5472	0.8096	0.9316	0.9922
44 Shapiro-Francia	0.1780	0.5482	0.8300	0.9528	0.9970
45 1st Zhang-Wu	0.1830	0.5990	0.8784	0.9736	0.9988
46 Rahman-Govindarajulu	0.1750	0.6024	0.8838	0.9768	0.9994
47 Shapiro-Wilk	0.1812	0.6080	0.8762	0.9718	0.9982
48 Chen-Shapiro	0.1856	0.6124	0.8858	0.9758	0.9988
49 1st Zhang	0.1476	0.6312	0.9322	0.9914	0.9996
50 2nd Zhang-Wu	0.1834	0.6678	0.9276	0.9900	0.9996
Figure 13: Simulated power curves for 50 normality tests under alternative Weibull distribution ($shape = 1.5$, $scale = 1$) for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)
Figure 14: Simulated power curves for normality tests based on Empirical distribution function, Measures of the moments, and Regression and correlation tests under alternative Weibull distribution (shape = 1.5, scale = 1) for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)
Table 8: Power comparisons of normality tests under alternative Beta(2.5) distribution for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)

Tests for Normality (in order of increasing power)	Sample Size (n)				
	10	30	50	70	100
1 Kolmogorov-Smirnov	0.0000	0.0006	0.0044	0.0110	0.0164
2 Gel-Miao-Gastwirth	0.0694	0.0484	0.0466	0.0328	0.0332
3 Barrio-Cuesta-Matran-Rodriguez	0.0646	0.0612	0.0612	0.0606	0.0568
4 2nd Zhang	0.0632	0.0616	0.0592	0.0606	0.0560
5 4th Hosking	0.0546	0.0624	0.1050	0.1324	0.1874
6 1st Bontemps-Meddahi	0.0040	0.0626	0.1414	0.2450	0.4826
7 Coin	0.0454	0.0634	0.0940	0.1352	0.1876
8 2nd Cabana-Cabana	0.0670	0.0636	0.0680	0.0542	0.0562
9 Brys-Hubert-Struyf	0.0016	0.0656	0.1066	0.1590	0.2038
10 Bonett-Seier	0.0486	0.0660	0.0846	0.0984	0.1226
11 Desgagné-LafayeDeMicheaux-Leblanc	0.0496	0.0680	0.0852	0.0964	0.1228
12 Kurtosis	0.0718	0.0706	0.0800	0.0690	0.0712
13 3rd Hosking	0.0530	0.0750	0.1394	0.1834	0.2754
14 Martinez-Iglewicz	0.0640	0.0794	0.1036	0.1046	0.1194
15 Desgagné-LafayeDeMicheaux-Leblanc-ZEPD	0.0632	0.0824	0.1016	0.1090	0.1166
16 Spiegelhalter	0.0640	0.0872	0.0860	0.0692	0.0494
17 Ancombe-Glynn	0.0534	0.0904	0.1110	0.1044	0.1072
18 Vasicek-Song	0.0260	0.0968	0.1962	0.3032	0.7692
19 Adjusted Jarque-Bera	0.0624	0.1016	0.1768	0.2844	0.5020
20 2nd Hosking	0.0550	0.1124	0.2158	0.2956	0.4508
21 Geary	0.0726	0.1130	0.1440	0.1660	0.1942
22 Pearson Chi-Square	0.1004	0.1152	0.1878	0.2592	0.3940
23 Robust Jarque-Bera	0.0684	0.1222	0.1902	0.2548	0.4302
24 Jarque-Bera	0.0712	0.1268	0.2248	0.3496	0.5900
25 D'Agostino-Pearson	0.0732	0.1428	0.2456	0.3658	0.6046
26 Lilliefors	0.0772	0.1512	0.2672	0.3540	0.5030
27 2nd Bontemps-Meddahi	0.0272	0.1640	0.3930	0.5944	0.8136
28 Hegazy-Green 2	0.0814	0.1648	0.3120	0.4714	0.7072
29 Brys-Hubert-Struyf & Bonett-Seier	0.1382	0.1684	0.1982	0.2442	0.2956
30 Doornik-Hansen	0.0622	0.1744	0.3936	0.6092	0.8276
31 Skewness	0.0750	0.1870	0.3568	0.5050	0.7088
32 D'Agostino-skewness	0.0748	0.1898	0.3574	0.5052	0.7082
33 Cramer-von Mises	0.0820	0.1936	0.3414	0.4700	0.6460
34 Filliben	0.0852	0.1948	0.3838	0.5464	0.7904
35 Desgagné-LafayeDeMicheaux-Leblanc-X_APD	0.0754	0.2038	0.4042	0.5868	0.7896
36 Frohsini	0.0888	0.2072	0.3676	0.4978	0.6786
37 Weisberg-Bingham	0.0852	0.2074	0.4006	0.5908	0.8080
38 1st Hosking	0.0592	0.2124	0.4324	0.6188	0.8124
39 Shapiro-Francia	0.0900	0.2128	0.4058	0.5980	0.8124
40 1st Cabana-Cabana	0.0780	0.2144	0.4084	0.5824	0.7896
41 Glen-Leeannis-Barr	0.0854	0.2180	0.3886	0.5454	0.7358
42 Anderson-Darling	0.0850	0.2210	0.3972	0.5570	0.7480
43 Hegazy-Green 1	0.0910	0.2364	0.4272	0.5950	0.7864
44 Epps-Pulley	0.0924	0.2500	0.4522	0.6178	0.7970
45 1st Zhang-Wu	0.0892	0.2598	0.5000	0.7078	0.8970
46 Shapiro-Wilk	0.0866	0.2680	0.5006	0.7020	0.8876
47 Chen-Shapiro	0.0886	0.2764	0.5290	0.7352	0.9100
48 2nd Zhang-Wu	0.0910	0.2952	0.5936	0.8130	0.9640
49 Rahman-Govindarajulu	0.0996	0.3008	0.5630	0.7582	0.9276
50 1st Zhang	0.0860	0.3202	0.6288	0.8396	0.9682
Figure 15: Simulated power curves for 50 normality tests under alternative Beta(2,5) distribution for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)
Figure 16: Simulated power curves for normality tests based on Empirical distribution function, Measures of the moments, and Regression and correlation tests under alternative Beta(2,5) distribution for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)
Table 9: Power comparisons of normality tests under the alternative Uniform distribution $(0,1)$ for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)

Tests for Normality (in order of increasing power)	Sample Size (n)				
	10	30	50	70	100
1 Robust Jarque–Bera	0.0172	0.0014	0.0004	0.0000	0.0436
2 Kolmogorov-Smirnov	0.0006	0.0232	0.0830	0.1708	0.3444
3 Geary	0.0586	0.0440	0.0356	0.0254	0.0928
4 Coin	0.0778	0.1216	0.1444	0.1584	0.1884
5 4th Hosking	0.0580	0.1290	0.2592	0.3622	0.5304
6 Brys-Hubert-Struyf	0.0040	0.1340	0.2796	0.4148	0.5792
7 Bonett-Seier	0.0774	0.1688	0.2140	0.2612	0.3238
8 3rd Hosking	0.0610	0.2000	0.3836	0.5324	0.7156
9 Spiegelhalter	0.0996	0.2012	0.2630	0.3218	0.3888
10 Desgagné-LafayeDeMicheaux-Leblanc-ZEPD	0.1148	0.2498	0.3358	0.4200	0.5138
11 Brys-Hubert-Struyf & Bonett-Seier	0.1488	0.2890	0.4318	0.5598	0.6962
12 Desgagné-LafayeDeMicheaux-Leblanc	0.0840	0.3060	0.4616	0.5842	0.7310
13 Anscombe-Glynn	0.1340	0.3092	0.4218	0.5258	0.6470
14 Gel–Miao–Gastwirth	0.1742	0.3358	0.5408	0.7344	0.8242
15 2nd Cabana-Cabana	0.1254	0.3408	0.4754	0.5876	0.7014
16 Kurtosis	0.1344	0.3512	0.4842	0.5934	0.7086
17 2nd Hosking	0.0816	0.3534	0.6158	0.7862	0.9210
18 2nd Zhang	0.1608	0.3556	0.4704	0.5536	0.6560
19 Barrio-Cuesta-Matran-Rodriguez	0.1608	0.3576	0.4676	0.5552	0.6550
20 Vasiczek-Song	0.0594	0.3996	0.6988	0.8720	0.9976
21 Pearson Chi-Square	0.1944	0.4094	0.6488	0.8184	0.9474
22 1st Bontemps-Meddahi	0.0436	0.4414	0.7386	0.9106	0.9902
23 Lilliefors	0.1708	0.4604	0.6958	0.8470	0.9542
24 Martinez-Iglewicz	0.1806	0.4810	0.6628	0.7892	0.8870
25 Adjusted Jarque–Bera	0.1810	0.5244	0.7774	0.9212	0.9912
26 D’Agostino-Pearson	0.2092	0.5566	0.7936	0.9288	0.9934
27 Jarque–Bera	0.2042	0.5754	0.8222	0.9482	0.9954
28 Cramer-von Mises	0.1958	0.5986	0.8366	0.9444	0.9886
29 Frosini	0.2014	0.6168	0.8524	0.9506	0.9920
30 2nd Bontemps-Meddahi	0.1110	0.6354	0.9034	0.9816	0.9992
31 Desgagné-LafayeDeMicheaux-Leblanc-X_APD	0.1842	0.6498	0.8996	0.9768	0.9974
32 Glen-Leemis-Barr	0.2102	0.6534	0.8810	0.9688	0.9966
33 Anderson-Darling	0.2096	0.6566	0.8904	0.9748	0.9968
34 Hegazy–Green 2	0.2140	0.6584	0.8944	0.9774	0.9982
35 Doornik-Hansen	0.1726	0.6598	0.9154	0.9852	0.9998
36 1st Hosking	0.1736	0.6674	0.9134	0.9836	0.9982
37 D’Agostino-skewness	0.2188	0.6738	0.8918	0.9734	0.9964
38 Skewness	0.2178	0.6738	0.8918	0.9738	0.9966
39 Hegazy–Green 1	0.2090	0.6896	0.9128	0.9804	0.9974
40 Filliben	0.2242	0.6942	0.9170	0.9858	0.9992
41 Epps-Pulley	0.2278	0.7010	0.9064	0.9784	0.9970
42 1st Cabana-Cabana	0.2190	0.7072	0.9216	0.9836	0.9992
43 Weisberg-Bingham	0.2206	0.7072	0.9236	0.9884	0.9992
44 Shapiro-Francia	0.2308	0.7106	0.9270	0.9896	0.9992
45 1st Zhang	0.1650	0.7198	0.9578	0.9960	1.0000
46 Rahman-Govindarajulu	0.2132	0.7364	0.9494	0.9952	1.0000
47 1st Zhang-Wu	0.2306	0.7474	0.9494	0.9928	0.9998
48 Shapiro-Wilk	0.2254	0.7522	0.9498	0.9934	0.9998
49 Chen-Shapiro	0.2272	0.7578	0.9554	0.9938	1.0000
50 2nd Zhang-Wu	0.2376	0.7918	0.9720	0.9976	1.0000
Figure 17: Simulated power curves for 50 normality tests under alternative Uniform distribution $(0,1)$ for sample sizes $n = 10, 30, 50, 70$ and 100 ($\alpha = 0.05$)
Figure 18: Simulated power curves for normality tests based on Empirical distribution function, Measures of the moments, and Regression and correlation tests under alternative Uniform distribution (0,1) for sample sizes n = 10, 30, 50, 70 and 100 (\(\alpha = 0.05\))
5. Results and recommendations

Table 10 contains the ranking from the first to the tenth of normality tests that have the most power obtained from Table 1 - 9 for the four groups of the alternative distributions, respectively.

Table 11 contains the ranking from the first to the tenth of normality tests that have the least power obtained from Table 1 - 9 for the four groups of the alternative distributions, respectively.

For Group I: Symmetric distributions with support on \((-\infty, \infty)\), as shown in Table 1 - 3 and Table 10 - 11 and Figure 1 - 5, we can see that the tests Geary and Kolmogorov-Smirnov have the least power and the tests Robust Jarque–Bera and Gel–Miao–Gastwirth have the most power.

For Group II: Asymmetric distributions with support on \((-\infty, \infty)\), as shown in Table 4 - 5 and Table 10 - 11 and Figure 7 - 9, we can see that the test Kolmogorov-Smirnov has the least power and the test 2nd Zhang-Wu has the most power.

For Group III: Distributions with support on \((0, \infty)\), as shown in Table 6 - 7 and Table 10 - 11 and Figure 11 - 13, we can see that the tests Kolmogorov-Smirnov and Geary have the least power and the test 2nd Zhang-Wu has the most power.

For Group IV: Distributions with support on \((0, 1)\), as shown in Table 8 - 9 and Table 10 - 11 and Figures 15 - 17, we can see that the test Kolmogorov-Smirnov has the least power and the tests 1st Zhang and the test 2nd Zhang-Wu have the most power.

In terms of the selected normality tests based on the empirical distribution function, for the case of the symmetric distributions, the test Hegazy–Green-2 has the most power and the tests Kolmogorov-Smirnov and Lilliefors have the least power (see Figure 2, 4, and 6). For the asymmetric distributions, the tests 1st Zhang-Wu and 2nd Zhang-Wu have the most power and the tests Kolmogorov-Smirnov and Lilliefors have the least power (see Figure 8 and 10). For distributions with support on \((0, \infty)\) and distributions with support on \((0, 1)\), the tests 1st Zhang-Wu and 2nd Zhang-Wu have the most power and the tests Kolmogorov-Smirnov and Lilliefors have the least power (see Figure 12, 14, 16 and 18).

In terms of the selected normality tests based on measures of the moments, the tests Robust Jarque–Bera and Gel–Miao–Gastwirth generally have the most power and the tests Geary and Brys-Hubert-Struyf have the least power for the symmetric distributions (see Figure 2, 4, and 6). For the case of asymmetric distributions, the test 1st Cabana-Cabana has the most power and the test Geary has the least power (see Figure 8 and 10). For distributions with support on \((0, \infty)\) the test 1st Cabana-Cabana and Skewness have the most power and the tests Geary and 4th Hosking have the least power (see Figure 12 and 14). For distributions with support on \((0, 1)\) the test 1st Cabana-Cabana has the most power and the test 4th Hosking has the least power (see Figure 16 and 18).

In terms of regression and correlation tests, for the case of the symmetric distributions, the tests Filliben and Shapiro–Francia have the most power and the tests Geary and Rahman–Govindaraju have the least power (see Figure 2, 4, and 6). For the asymmetric distributions, the tests Shapiro-Wilk and Chen-Shapiro have the most power and the test Coin has the least power (see Figure 8 and 10). For distributions with support on \((0, \infty)\) and distributions with support on \((0, 1)\), the tests Shapiro-Wilk and Chen-Shapiro have the most power and the tests Coin and 2nd Zhang Q have the least power (see Figure 12, 14, 16 and 18).
Kolmogorov-Smirnov test is one of the most famous tests of normality among practitioners, mostly because it is available in any statistical software. However, it has the least power against all alternatives, this agrees with the conclusions of Fortiana and Grané (2003), Grané (2012), and Grané and Tchirina (2013).

Geary’s test has the least power, this agrees with the conclusion of D’Agostino and Rosman (1974).

General recommendations based on the analysis of the power of the selected tests indicate the best choices for normality testing are the tests Robust Jarque–Bera and Gel–Miao–Gastwirth for symmetric distributions, the tests 1st Cabana-Cabana and 2nd Zhang-Wu for asymmetric distributions, and the test 2nd Zhang-Wu for distributions with support on $(0, \infty)$ and distributions with support on $(0, 1)$.
Table 10: Ranking from the first to the tenth of normality tests that have the most power for the four groups of the alternative distributions

Rank	Group I Symmetric distributions	Group II Asymmetric distributions	Group III Distributions on (0, ∞)	Group IV Distributions on (0, 1)
	Student's t-distribution df=3	Laplace (0,1) distribution	Logistic (0,4) distribution	Gambel (0,3) distribution
1	Robust Jarque–Bera	Gel-Miao-Gastwirth	Robust Jarque–Bera	Skew-Normal (location = 0, scale = 3, shape = 7) distribution
2	Gel-Miao-Gastwirth	Robust Jarque–Bera	1st Cabana-Cabana	2nd Zhang-Wu
3	Martinez-Iglewicz	Martinez-Iglewicz	2nd Zhang-Wu	2nd Zhang-Wu
4	Hegazy-Green 2	Hegazy-Green 2	1st Zhang-Wu	1st Zhang
5	2nd Bontemps-Meddahi	Hegazy-Green 2	Skewness	Rahman-Govindarajuju
6	Adjusted Jarque–Bera	Brys-Hubert-Struyf & Bonett-Seier	Adjusted Jarque–Bera	1st Zhang-Wu
7	Kurtosis	1st Hosking	1st Zhang-Wu	Rahman-Govindarajuju
8	Filliben	Spiegelhalter	1st Zhang-Wu	Rahman-Govindarajuju
9	Shapiro-Francia	Hegazy-Green 2	Epps-Pulley	1st Zhang
10	Hart–Bera	D’Agostino-Pearson	Shapiro-Francia	Epps-Pulley

Austrian Journal of Statistics
Table 11: Ranking from the first to the tenth of normality tests that have the least power for the four groups of the alternative distributions

Rank	Group I Symmetric distributions	Group II Asymmetric distributions	Group III Distributions on (0,∞)	Group IV Distributions on (0,1)
	Student's t-distribution df=3	Laplace (0,1) distribution	Gumbel (0,3) distribution	Skew-Normal (location = 0, rate = 1) distribution
1	Geary	Kolmogorov-Smirnov	Kolmogorov-Smirnov	Kolmogorov-Smirnov
2	Brys-Hubert-Struyf	Kolmogorov-Smirnov	Kolmogorov-Smirnov	Kolmogorov-Smirnov
3	Kolmogorov-Smirnov	Vaseck-Song	Brys-Hubert-Struyf	Geary
4	4th Hosking	Vaseck-Song	Brys-Hubert-Struyf	Geary
5	3rd Hosking	Vaseck-Song	Brys-Hubert-Struyf	Geary
6	Vaseck-Song	Rahaman-Govinda Rajulu	Coin	Coin
7	2nd Hosking	Pearson Chi-Square	Coin	Coin
8	Pearson Chi-Square	Rahaman-Govinda Rajulu	Coin	Coin
9	1st Zhang	Rahaman-Govinda Rajulu	Coin	Coin
10	Rahman-Govinda Rajulu	Barrio-Cuesta-Matran-Rodriguez	Pearson Chi-Square	Pearson Chi-Square

Note: The table continues with the ranking and distribution details for the remaining groups.
 References

Anscombe FJ, Glynn WJ (1983). “Distribution of the Kurtosis Statistic b2 for Normal Samples.” *Biometrika*, 70(1), 227–234.

Azzalini A (2021). *The R Package sn: The Skew-Normal and Related Distributions such as the Skew-t and the SUN* (version 2.0.0). Università di Padova, Italia. URL http://azzalini.stat.unipd.it/SN/.

Bonett DG, Seier E (2002). “A Test of Normality with High Uniform Power.” *Computational Statistics and Data Analysis*, 40(3), 435–445.

Bontemps C, Meddahi N (2005). “Testing Normality: A GMM Approach.” *Journal of Econometrics*, 124(1), 149 – 186.

Brys G, Hubert M, Struyf A (2008). “Goodness-of-fit Tests Based on a Robust Measure of Skewness.” *Computational Statistics*, 23(3), 429–442.

Cabana A, Cabana EM (1994). “Goodness-of-Fit and Comparison Tests of the Kolmogorov-Smirnov Type for Bivariate Populations.” *The Annals of Statistics*, 22(3), 1447–1459.

Chen L, Shapiro SS (1995). “An Alternative Test for Normality Based on Normalized Spacings.” *Journal of Statistical Computation and Simulation*, 53(3-4), 269–287.

Coin D (2008). “A Goodness-of-fit Test for Normality Based on Polynomial Regression.” *Computational Statistics & Data Analysis*, 52(4), 2185–2198.

Cramér H (1928). “On the Composition of Elementary Errors.” *Scandinavian Actuarial Journal*, 1928(1), 141–180.

D’Agostino R (1970). “Simple Compact Portable Test of Normality: Geary’s Test Revisited.” *Psychological Bulletin*, 74, 138–140.

D’Agostino R, Pearson ES (1973). “Tests for Departure from Normality Empirical Results for the Distributions of b2 and Vb1.” *Biometrika*, 60(3), 613–622.

D’Agostino RB (1970). “Transformation to Normality of the Null Distribution of g1.” *Biometrika*, 57(3), 679–681.

D’Agostino RB, Rosman B (1974). “The Power of Geary’s Test of Normality.” *Biometrika*, 61(1), 181–184.

del Barrio E, Cuesta-Albertos JA, Matrán C, Rodríguez-Rodríguez JM (1999). “Tests of Goodness of Fit Based on the L2-Wasserstein Distance.” *The Annals of Statistics*, 27(4), 1230–1239.

Desgagné A, de Micheaux PL (2018). “A Powerful and Interpretable Alternative to the Jarque–Bera Test of Normality Based on 2nd-power Skewness and Kurtosis, Using the Rao’s Score Test on the APD Family.” *Journal of Applied Statistics*, 45(13), 2307–2327.

Desgagné A, de Micheaux PL, Leblanc A (2013). “Test of Normality Against Generalized Exponential Power Alternatives.” *Communications in Statistics - Theory and Methods*, 42(1), 164–190.

Doornik J, Hansen H (2008). “An Omnibus Test for Univariate and Multivariate Normality*.” *Oxford Bulletin of Economics and Statistics*, 70(s1), 927–939.

Elamir EAH, Schuelt AH (2003). “Trimmed L-moments.” *Computational Statistics & Data Analysis*, 43(3), 299 – 314.
Epps TW, Pulley LB (1983). “A Test for Normality Based on the Empirical Characteristic Function.” *Biometrika*, **70**(3), 723–726.

Esteban MD, Castellanos ME, Morales D, Vajda I (2001). “Monte Carlo Comparison of Four Normality Tests Using Different Entropy Estimates.” *Communications in Statistics-Simulation and Computation*, **30**(4), 761–785.

Farrell PJ, Rogers-Stewart K (2006). “Comprehensive Study of Tests for Normality and Symmetry: Extending the Spiegelhalter Test.” *Journal of Statistical Computation and Simulation*, **76**(9), 803–816.

Filliben JJ (1975). “The Probability Plot Correlation Coefficient Test for Normality.” *Technometrics*, **17**(1), 111–117.

Fortiana J, Grané A (2003). “Goodness-of-Fit Tests Based on Maximum Correlations and Their Orthogonal Decompositions.” *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, **65**(1), 115–126.

Gavrilov I, Pusev R (2014). *normtest: Tests for Normality*. R package version 1.1, URL https://CRAN.R-project.org/package=normtest.

Gastwirth JL, Gel YR, Hui WLW, Lyubchich V, Miao W, Noguchi K (2020). *lawstat: Tools for Biostatistics, Public Policy, and Law*. R package version 3.4, URL https://CRAN.R-project.org/package=lawstat.

Glen AG, Leemis LM, Barr DR (2001). “Order Statistics in Goodness-of-fit Testing.” *IEEE Transactions on Reliability*, **50**(2), 209–213.

Grané A (2012). “Exact Goodness-of-fit Tests for Censored Data.” *Annals of the Institute of Statistical Mathematics*, **64**(6), 1187–1203.

Grané A, Tchirina AV (2013). “Asymptotic Properties of a Goodness-of-fit Test Based on Maximum Correlations.” *Statistics*, **47**(1), 202–215.

Gross J, Ligges U (2015). *nortest: Tests for Normality*. R package version 1.0-4, URL https://CRAN.R-project.org/package=nortest.

Hegazy YAS, Green JR (1975). “Some New Goodness-of-Fit Tests Using Order Statistics.” *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, **24**(3), 299–308.

Hogg RV, McKean JW, Craig AT (2018). *Introduction to Mathematical Statistics*. 8th edition. Pearson Education, Inc., New York, N.Y. ISBN 978-0134686998.

Hollander M, Wolfe DA, Chicken E (2014). *Nonparametric Statistical Methods*. John Wiley & Sons, Inc, Hoboken, New Jersey.
Hosking JRM (1990). “L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics.” *Journal of the Royal Statistical Society. Series B (Methodological)*, 52(1), 105–124.

Jarque CM, Bera AK (1987). “A Test for Normality of Observations and Regression Residuals.” *International Statistical Review*, 55(2), 163–172.

Kai-Sheng Song (2002). “Goodness-of-fit Tests Based on Kullback-Leibler Discrimination Information.” *IEEE Transactions on Information Theory*, 48(5), 1103–1117.

Kolmogorov AN (1933). “Sulla Determinazione Empirica di Una Legge di Distribuzione [On the Empirical Determination of a Distribution Law].” *Giornale dell’ Instituto Italiano degli Attuari [Journal of the Italian Institute of Actuaries]*, 4, 83–91.

Komsta L, Novomestky F (2015). *moments: Moments, Cumulants, Skewness, Kurtosis and Related Tests*. R package version 0.14, URL https://CRAN.R-project.org/package=moments.

Lafaye de Micheaux P, Tran VA (2016). “PoweR: A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R.” *Journal of Statistical Software*, 69(3), 1–42. doi:10.18637/jss.v069.i03.

Lequesne J, Regnault P (2020). “vsgoftest: An R Package for Goodness-of-Fit Testing Based on Kullback-Leibler Divergence.” *Journal of Statistical Software, Code Snippets*, 96(1), 1–26. doi:10.18637/jss.v096.c01.

Lilliefors HW (1967). “On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown.” *Journal of the American Statistical Association*, 62(318), 399–402.

Martinez J, Iglewicz B (1981). “A Test for Departure from Normality Based on a Biweight Estimator of Scale.” *Biometrika*, 68(1), 331–333.

Mises Rv (1931). *Wahrscheinlichkeitsrechnung und ihre Anwendung in der Statistik und theoretischen Physik [Probability Calculus and Its Application in Statistics and Theoretical Physics]*. F. Deuticke, Leipzig.

Moore DS (1986). “Tests of the Chi-squared Type.” In RB D’Agostino, MA Stephens (eds.), *Goodness-of-Fit Techniques*, volume 68 of *Statistics: a Series of Textbooks and Monographs*, 1 edition, chapter 3, pp. 63–93. Marcel Dekker.

Noughabi HA, Arghami NR (2011). “Monte Carlo Comparison of Seven Normality Tests.” *Journal of Statistical Computation and Simulation*, 81(8), 965–972.

Pearson K (1900). “On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables Is such that It Can Be Reasonably Supposed to Have Arisen from Random Sampling.” *Philosophical Magazine, Series 5*, 50(302), 157–175.

R Core Team (2021). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rahman MM, Govindarajulu Z (1997). “A Modification of the Test of Shapiro and Wilk for Normality.” *Journal of Applied Statistics*, 24(2), 219–236.

Royston JP (1982). “Algorithm AS 177: Expected Normal Order Statistics (Exact and Approximate).” *Journal of the Royal Statistical Society. Series C (Applied Statistics)*, 31(2), 161–165.

Shapiro SS, Francia RS (1972). “An Approximate Analysis of Variance Test for Normality.” *Journal of the American Statistical Association*, 67(337), 215–216.
Shapiro SS, Wilk MB, Mrs Chen HJ (1968). “A Comparative Study of Various Tests for Normality.” *Journal of the American Statistical Association*, **63**(324), 1343–1372.

Signorell A (2020). *DescTools: Tools for Descriptive Statistics*. R package version 0.99.36, URL https://cran.r-project.org/package=DescTools.

Smirnov N (1948). “Table for Estimating the Goodness of Fit of Empirical Distributions.” *Annals of Mathematical Statistics*, **2**, 279–281.

Spiegelhalter DJ (1977). “A Test for Normality against Symmetric Alternatives.” *Biometrika*, **64**(2), 415–418.

Stephens MA (1986). “Tests Based on EDF Statistics.” In RB D’Agostino, MA Stephens (eds.), *Goodness-of-Fit Techniques*, volume 68 of *Statistics: a Series of Textbooks and Monographs*, 1 edition, chapter 3, pp. 97–185. Marcel Dekker.

Stephenson AG (2002). “evd: Extreme Value Distributions.” *R News*, **2**(2), 0. URL https://CRAN.R-project.org/doc/Rnews/.

Swihart B, Lindsey J (2020). *rmutil: Utilities for Nonlinear Regression and Repeated Measurements Models*. R package version 1.1.5, URL https://CRAN.R-project.org/package=rmutil.

Thode Jr HC (2002). *Testing for Normality*. Marcel Dekker Inc, New York, N.Y.

Torabi H, Montazeri NH, Grané A (2016). “A Test for Normality Based on the Empirical Distribution Function.” *SORT- Statistics and Operations Research Transactions*, **40**(1), 55–88.

Urzua CM (1996). “On the Correct Use of Omnibus Tests for Normality.” *Economics Letters*, **53**(3), 247–251.

Vasicek O (1976). “A Test for Normality Based on Sample Entropy.” *Journal of the Royal Statistical Society. Series B (Methodological)*, **38**(1), 54–59.

Weisberg S, Bingham C (1975). “An Approximate Analysis of Variance Test for Non-Normality Suitable for Machine Calculation.” *Technometrics*, **17**(1), 133–134.

Wuertz D, Setz T, Chalabi Y (2020). *fBasics: Rmetrics - Markets and Basic Statistics*. R package version 3042.89.1, URL https://CRAN.R-project.org/package=fBasics.

Xavier R, Raimundo D, Aníbal C (2010). “An Empirical Power Comparison of Univariate Goodness-of-fit Tests for Normality.” *Journal of Statistical Computation and Simulation*, **80**(5), 545–591.

Yap BW, Sim CH (2011). “Comparisons of Various Types of Normality Tests.” *Journal of Statistical Computation and Simulation*, **81**(12), 2141–2155.

Yazici B, Yolacan S (2007). “A Comparison of Various Tests of Normality.” *Journal of Statistical Computation and Simulation*, **77**(2), 175–183.

Zhang J, Wu Y (2005). “Likelihood-ratio Tests for Normality.” *Computational Statistics and Data Analysis*, **49**(3), 709–721.

Zhang P (1999). “Omnibus Test of Normality Using the Q Statistic.” *Journal of Applied Statistics*, **26**(4), 519–528.
