Two New Species of *Laccaria* (Agaricales, Basidiomycota) from Korea

Hae Jin Cho, Hyun Lee, Myung Soo Park, Ki Hyeong Park, Ji Hyun Park, Yoonhee Cho, Changmu Kim and Young Woon Lim

ABSTRACT

Species of *Laccaria* (Hydnangiaceae, Agaricales, and Basidiomycota) are well-known ectomycorrhizal symbionts of a broad range of hosts. *Laccaria* species are characterized by brown, orange, or purple colored basidiocarps, and globose or oblong, echinulate and multinucleate basidiospores. While some *Laccaria* species are easily identified at the species level due to only the morphological characteristics, others are hard to distinguish at the species level due to small differences in morphology. Heretofore, ten *Laccaria* species have been reported in Korea. While studying the fungal diversity in the National Parks of Korea, two new *Laccaria* species were discovered. Species identification was done based on molecular analyses (ITS, 28S rDNA, rpb2, and tef1), then were confirmed by their corresponding morphological characters. The two newly discovered *Laccaria* species are proposed here as *Laccaria macrobasidia* and *Laccaria griseolilacina*. The unique morphological characters of *L. macrobasidia* that distinguish it from its closely related species are orange-brown colored basidiocarp, long basidia and the absence of cheilocystidia. *L. griseolilacina* is characterized by a light grayish lavender-colored pileus and the absence of cheilocystidia. Two new species are described and illustrated in the present paper.

1. Introduction

The genus *Laccaria* (Hydnangiaceae, Agaricales, and Basidiomycota) is a well-known ectomycorrhizal symbiont with a broad range of conifer and angiosperm hosts [1–4]. *Laccaria* is characterized by a brown, orange, or purple basidiocarp, and globose to oblong, echinulate, and multinucleate basidiospores [5–7]. *Laccaria* has a substantial number of species. Over 80 species have been recognized in the Index Fungorum website (www.indexfungorum.org, accessed on 25 March 2020). *Laccaria* species are observed in temperate and tropical areas, and they play an imperative role in alpine ecosystems [2,4,8–10].

While identification of some species of *Laccaria* is possible by their distinct morphological characters [2], accurate identification of most species using morphological traits alone is difficult because of insignificant morphological differences between them [2,11]. Molecular analysis has increased the accuracy of fungal identification [12–14]. Identification of *Laccaria* species based on molecular analysis has become possible as a result of the accumulation of sequence data in GenBank through active phylogenetic studies of *Laccaria* using the internal transcribed spacer (ITS) region, nuclear 28S rDNA (28S), RNA polymerase II subunit 2 (*rpb2*), and translation elongation factor 1-α (*tef1*) [4,10,11,15,16]. The accumulated sequence data also provide an advantage of promptly discovering new or rare species.

Previously we reported the presence of 10 *Laccaria* species in Korea based on sequence data [17]. During the survey of macrofungi in Korea National Parks, two unknown *Laccaria* species were newly discovered. Based on their morphological features and multigene analyses (ITS, 28S, *rpb2*, and *tef1*), we confirmed that the two species have yet been reported. Therefore, we propose names *Laccaria macrobasidia* sp. nov. and *Laccaria griseolilacina* sp. nov., and present detailed descriptions and illustrations of these two new species.

2. Materials and methods

2.1. Sampling and morphological observations

The two new *Laccaria* basidiocarps were both collected in temperate forests. One (SFC20170822-59)
was collected at Gayasan National Park, predominately composed of *Pinus* and *Abies* species, and the other (SFC20190919-48) was collected at Taebaek National Park, in a *Larix* tree. The mushroom collection took place upon the permission of the Ministry of Environment.

Gross morphological features of fresh basidiocarps were compared with previous studies [7,17,18] and photographic illustrations (http://archive.field-museum.org). The color names and alphanumeric codes follow the Methuen Handbook of Color [19]. Sections of dried basidiocarps were rehydrated in 3% KOH, subsequently stained in Congo red solution and Melzer’s reagent [20], and then were observed under an 80i compound light microscope (Nikon, Tokyo, Japan) at either 400× or 1000× magnification. At least 40 basidiospores, 40 basidia, and 10 cystidia were measured per specimen. Measurements, rounded to the nearest integer or half a micrometer, indicate minimum to maximum length or width, excluding individual extremes or outliers, with the mean values provided in italics between the range sizes. For scanning electron microscope (SEM) imaging of basidiospores, dried pieces of lamellae with basidiospores were attached to aluminum stubs using double-sided adhesive tape, coated with platinum in a sputter coater (BalTec/SCD 005; Leica Microsystems, Wetzlar, Germany), and then were examined with SEM at 10000× magnification (SUPRA 55VP; Carl Zeiss, Oberkochen, Germany). Basidiospore size and echinulae were measured using SEM to the nearest 0.1 μm. “Q” refers to the length/width ratio of an individual basidiospore.

2.2. DNA extraction, PCR, and sequencing

A small piece of fungal tissue from each dried specimen was placed in a 1.5-mL tube containing cetyl trimethyl ammonium bromide (CTAB) buffer, and was grounded with a plastic pestle. Genomic DNA extraction protocol [21] was grounded with a plastic pestle. Genomic DNA was extracted according to the modified CTAB extraction protocol [21].

The ITS region was amplified using primers ITS1F and ITS4B [13], the 28S region using LROR [22] and LR5 [23], rpb2 using fRPB2-5f [24] and fRPB2-8.2R [25], and tef1 using EF1-983F or EF1-alternative-3F and EF1-1567R or EF1-alternative-3r [26,27]. PCR amplifications were performed on a thermal cycler (C1000TM; Bio-Rad, Richmond, CA) using the AccuPower PCR premix (Bioneer, Daejeon, South Korea), following the instructions outlined in Park et al. [28]. PCR products were visualized on a 1% agarose gel and were purified using the Expin PCR purification kit (GeneAll Biotechnology, Seoul, South Korea). Sanger sequencing was performed at Macrogen (Seoul) on an automated DNA sequencer (ABI Prism 3730XL analyzer; Applied Biosystems, Foster City, CA) using the aforementioned PCR primers.

DNA sequences were proofread using MEGA version 5 [29] and then were deposited in GenBank. All sequences of four gene loci were individually aligned with *Laccaria* reference sequences from GenBank and UNITE using MAFFT [30]. Because *Laccaria* species in Southern Hemisphere form a grade and are clearly separate from the Northern Hemisphere lineages [16], we used *Laccaria* reference sequences only from the Northern Hemisphere lineages. Alignments were also checked thoroughly, and ambiguous positions were adjusted manually. Gaps were inserted in some sequences due to missing data.

Both ITS and multigene analyses were performed based on a maximum likelihood (ML) analysis in RAxML version 8.0.2 [31] implemented on the CIPRES Web portal [32], using a GTR-GAMMA model with 1000 bootstrap replicates [33]. In the multigene analysis, alignments of four genes were concatenated and then were partitioned by gene regions, codon positions, and intron regions. *Laccaria acanthospora*, a basal taxon of the Northern Hemisphere [16], was chosen as the outgroup in both ITS and multigene analyses.

3. Results

In total, eight new sequences of the ITS, 28S, *rpb2*, and *tef1* were generated from the two specimens (SFC20170822-59 and SFC20190919-48) and were deposited in GenBank under accession numbers MT322981–MT322984 and MT333266–MT333269 (see Taxonomy for a detailed information). We compared ITS sequences of the two species with 96 ITS sequences of 40 other *Laccaria* species reported in the Northern Hemisphere. For multigene analysis, 59 multigene sequences of 20 *Laccaria* species were downloaded and used. The adjusted alignments consisted of 662 bases for ITS, 902 for 28S, 589 for *rpb2*, and 604 for *tef1*. Phylogenetic analysis based on ITS and multigene showed similar results (Figures 1 and 2). One of the newly discovered *Laccaria* species (SFC20170822-59) formed a sister clade with *Laccaria laccata* (from Portugal, USA, and Russia), but was clearly demarcated from the *L. laccata* clade. The other *Laccaria* species (SFC20190919-48) was grouped with *Laccaria* sp. (KU685613, Japan) and *Laccaria* sp. (KM067827, USA) with high sequence similarities (<0.02% dissimilarity). These two references sequences of *Laccaria* sp. were indicated as *Laccaria* sp. JP4 by Wilson et al. [16] but have not been given a legitimate name.
When comparing the size of basidia and basidiospore with other previously reported *Laccaria* species in Korea, the basidia of *Laccaria* sp. (SFC20170822-59) was the longest (mean value of 66 μm) but the size of the basidiospores was smaller than those of *L. tortilis*. In the case of *Laccaria* sp. (SFC20170822-48), the size of both basidia and basidiospore did not differ considerably from those of other species and had medium-sized basidia and basidiospore (Figure 3).

4. Taxonomy

L. macrobasidia H.J. Cho & Y.W. Lim, sp. nov. (Figure 4(A–D)).

MycoBank: MB835319

Figure 1. Phylogeny of *Laccaria* species based on ML analysis of ITS sequences. Bootstrap values >70% are stated at the nodes. The scale bar represents the number of expected nucleotide substitutions per site. *Laccaria* species reported in Korea are represented in bold and new species from this study are accented in gray shades.

Figure 2. Phylogeny of *Laccaria* species based on ML analysis of a concatenated data set of ITS, 28S, rpb2, and tef1 sequences. Bootstrap values >70% are stated at the nodes. The scale bar represents the number of expected nucleotide substitutions per site. *Laccaria* species reported in Korea are represented in bold and new species from this study are accented in gray shades.

Typification: **REPUBLIC OF KOREA.**

GYEONGSANGNAM-DO: Hapcheon-gun, Gayasan National Park, N 35°48′01″ E 128°05′47″, 626 m, 22 Aug 2017, H.J. Cho & K.H. Park (holotype SFC20170822-59). GenBank: ITS = MT322982; 28S = MT322984; rpb2 = MT333267; tef1 = MT333268.

Etymology: macro (Latin) means long. It is specified to the large size of the basidia.

Diagnosis: *L. macrobasidia* is characterized by an orange-brown colored pileus, long basidia, and the absence of cheilocystidia.

Description: Basidiocarps small. Pileus 15–45 mm diam., convex to plane, with a slight central depression, sometimes with papillae; orange-brown (SB5–7) or light-brown (5A5), hygrophanous, fading to pale orange buff (5C5); peltate-striate inwards from the edge; margin involute to decurved, entire, finely crenate or wavy. Lamellae adnate to subdecurrent, thick, distant, light-brown (5A5), number
of complete lamellae (L) 20–28, number of lamellae (l) 1–2. Stipe 10–50 × 0.5–1.0 mm, tapering toward the apex, solid, becoming hollow with age, minutely fibrillose the entire length; concolorous with pileus, sometimes darker. Context thin, concolorous with stipe.

Basidiospores 8.7–10.4–11.4 × 7.9–9.2–10.3 μm, Q = 1.00–1.13–1.3, globose to subglobose with spines (1.5–2.0 μm in length, 0.6–0.8 μm wide at base), hyaline. Basidia 52.0–66.2–80.4 × 11.2–12.8–14.6 μm, 4-spored, clavate, mature sterigmata up to 8–12 μm long, hyaline. Cheilocystidia absent. Pleurocystidia 19.1–27.4–40.1 × 4.3–5.2–6.8 μm, filamentous, hyaline. Stiplitipellis composed of parallel, cylindrical, repent, hyaline hyphae. Caulocystidia absent. Pileipellis composed of interwoven, cylindrical, mostly repent, hyaline hyphae. Lamellar trama of subparallel to interwoven, cylindrical, repent, hyaline hyphae; subhymenium undifferentiated. All tissues inamyloid, clamp connections present.

Habitat and phenology: Scattered on ground in temperate forests dominated by Pinus densiflora and Abies holophylla, August.

Notes: L. macrobasidia is morphologically similar to L. parva and L. torosa in basidiocarp color and size. However, L. macrobasidia has longer basidia (52–80 μm) than those of L. parva (44–56 μm) and L. torosa (39–47 μm) [17]. L. macrobasidia lacks cheilocystidia while L. parva and L. torosa have filamentous to slenderly clavate cheilocystidia [17].

L. griseolilacina. H.J. Cho & Y.W. Lim, sp. nov. (Figure 4(E–G)).

MycoBank: MB835320

Typification: REPUBLIC OF KOREA. GANGLONDO: Taebaek-si, Taebaeksan National Park, N 37°07’11” E 128°54’30”, 907 m, 19 Sep 2019, M.S. Park & J.H. Park & S.N. Yoo (holotype SFC20190919-48). GenBank: ITS = MT322981; 28S = MT322983; rpb2 = MT333266; tef1 = MT333269.

Etymology: griseolilacina means grayish lilac or lavender (Latin), which refers to the color of the basidiocarp.

Diagnosis: L. griseolilacina is characterized by a light grayish lavender-colored pileus and the absence of cheilocystidia.

Description: Basidiocarps small. Pileus 20–35 mm diam., broadly convex to flat; light grayish lavender (15D3, 15C3) or orange-brown (6C5–7), hygrophanous, fading to pale orange buff (5A3); slightly pectinate-striate inwards from the edge when dried; margin involute to decurved, entire, sometimes crenate. Lamellae sinuate, thick, distant, concolorous with pileus, powdery, light grayish lavender (15D3) when fresh, orange-brown (5B5–7, 6C5–7) when dried, L = 20–28, l = 1–2. Stipe 40–60 × 0.3–0.8 mm, slightly tapering toward the apex, solid, becoming hollow in age, minutely fibrillose over entire length; concolorous with pileus, sometimes darker. Context thin, concolorous with stipe.
Basidiospores 8.0–9.2–10.8 × 8.2–9.5–10.9 μm, Q = 0.94–0.97–1.03, globose to subglobose with spines (1.3–1.5 μm in length, 0.7–0.9 μm wide at base), hyaline. Basidia 36.6–42.4–48.7 × 10.8–13.4–15.5 μm, 4-spored, clavate, mature sterigmata up to 6–10 μm long, hyaline. Cheilocystidia absent. Pleurocystidia 20.3–24.4–31.0 × 3.5–5.2–8.0 μm, filamentous, hyaline. Stipitipellis composed of parallel, cylindrical, repent, hyaline hyphae. Caulocystidia absent. Pileipellis composed of interwoven, cylindrical, repent, hyaline hyphae. Caulocystidia absent. Pileipellis composed of interwoven, cylindrical, repent, hyaline hyphae. Caulocystidia absent. Pileipellis composed of interwoven, cylindrical, repent, hyaline hyphae. Subhymenium undifferentiated. All tissues inamyloid, clamp connections present.

Habitat and phenology: Scattered on ground in temperate forests dominated by Larix kaempferi, September.

Notes: L. griseolilacina is morphologically similar to species with lavender-purple colored basidiocarps such as L. japonica and L. vinaceoavellanea, in which all of them are found in Korea. They can be differentiated by the color of basidiocarps and the presence of cheilocystidia. L. griseolilacina has a grayish lavender colored basidiocarp, and has no cheilocystidia while L. japonica and L. vinaceoavellanea have light purple to deep purple colored basidiocarps and cheilocystidia.

Key to Korean Laccaria species
1. Basidiocarps gray or purple2
1’ Basidiocarps buff or orange-brown5
2. Basidiocarps light gray to dark gray, basidia with 2-sporedL. murina
2’. Basidiocarps lavender-purple, basidia with 4-spored ..L. griseolilacina
3. Basidiocarps light grayish lavender, basidia with 4-spored ..L. griseolilacina
3’. Basidiocarps lavender to deep purple, basidia with 4-spored4

Figure 4. Images of Laccaria macrobasidia (A–D) and Laccaria griseolilacina (E–H). A & E, basidiocarps in their natural habitats; B & F, scanning electron micrograph (SEM) of basidiospores; C & G, basidia; D & H, pleurocystidia; Scale bars: A, E = 10 mm; B, F = 2 μm; C–D, G–H = 2 μm.
4. Pileus large at maturity (40–60 mm wide), basidiocarps lavender purple when fresh, grayish buff in age or dry; basidiospores globose (Q = 1) ..L. vinaceoavellanea

4’. Pileus small at maturity (10–30 mm wide), basidiocarps deep purple when fresh, grayish brown in age or when dry; basidiospores sub-globose (Q > 1) ..L. japonica

5. Basidia with 2-spored ..L. tortilis

5’. Basidia with 4-spored ..6

6. Lamellae pinkish or light vinaceous7

6’. Lamellae orange-brown8

7. Basidium 32–42 μm long; basidiospores on average 7.5 × 7.4 μmL. bicolor

7’. Basidium 41–56 μm long; basidiospores on average 8.2 × 8.3 μmL. versiforma

8. Caulocystidia present9

8’. Caulocystidia absent10

9. Cheilocystidia present, pleurocystidia present ..L. torosa

9’. Cheilocystidia present, pleurocystidia lacking ..L. alba

10. Cheilocystidia present, pleurocystidia present ..L. parva

10’. Cheilocystidia absent11

11. Pleurocystidia present, basidium 52–80 μm long; basidiospores on average 10.4 × 9.2 μm ..L. macrobasidia

11’. Pleurocystidia absent, basidium 42–52 μm long; basidiospores on average 8.4 × 8.2 μmL. araneosa

Korea [17]. However, multi-gene phylogenetic analysis supported that L. macrobasidia forms a clearly distinct clade from them. A clear difference between species can be seen by comparing their microscopic characters. While L. parva and L. torosa have both pleurocystidia and cheilocystidia, L. macrobasidia only has pleurocystidia. Also, L. macrobasidia has a slightly bigger basidiospore (8.7–10.4 × 7.9–9.2–10.3 μm) than L. parva (8.0–9.0–10.0 × 8.5–9.2–10.0 μm) and L. torosa (8.0–8.3–9.0 × 8.0–6.9–9.5 μm) [17]. L. tortilis has by far been recognized to have the largest basidia and basidiospores in Korea. However, L. macrobasidia has larger basidia than L. tortilis, although the size of its basidiospore is still smaller (Figure 3).

Both the ITS and multi-gene analyses showed that L. macrobasidia forms a sister clade to “L. laccata”, which originated from USA (KM067828), Russia (KU685652), and Portugal (IXS40172) (Figure 2). L. laccata (Scopoli: Fries) Cooke var. laccata was originally distributed in Europe and USA, and its basidia are reported to be 27–55.5 × 6–13.5 μm in size [7,36]. L. macrobasidia appears to be phylogenetically close to the “L. laccata” clade in the phylogenetic tree, but the size of basidia makes these two species distinct.

L. griseolilacina is characterized by a grayish lavender-colored basidiocarp with slightly peckinate-striate pattern starting from the edge, thick and light grayish lavender lamellae concolorous with pileus, fibrillose stipe, globose to subglobose and echinate basidiospore, and basidia (36–48 μm). Macroscopic features of L. griseolilacina are similar to those of Laccaria species with lavender colored basidiocarps, namely L. amethystina, L. japonica, L. moshuijum, and L. vinaceoavellanea. L. griseolilacina has a light grayish lavender colored basidiocarp while L. amethystina and L. japonica have deep purple colored basidiocarps when fresh [37]. L. griseolilacina and L. vinaceoavellanea have similar colors of basidiocarps when they are young. However, L. griseolilacina has a smaller size of basidiocarp than L. vinaceoavellanea (30–90 mm wide) [38]. L. amethystina is only distributed in Europe and not in Asia [37], so it is regionally distinct from L. griseolilacina. L. griseolilacina can be differentiated from L. moshuijum, which has a variable shape of cheilocystidia (clavate, flexuose dichotomy, or trichotomy), by the lack of cheilocystidia [37]. L. moshuijum has been reported from China but has not been reported from Korea. The fact that L. griseolilacina is a new species is well supported by molecular analysis (Figure 2).

Species in Laccaria are very similar in morphology, so ecological information such as host plant species and habitat can provide important clues for identification. Several species of Laccaria are known
as generalists with a broad host range \cite{1,39–41}, while other \textit{Laccaria} species associate with a single or a limited group of hosts \cite{2}. For example, \textit{Laccaria amethystina} was reported to interact with a wide variety of hosts in forests \cite{3} and in the \textit{in vitro} test \cite{42}. In contrast, some of the Southern Hemisphere \textit{Laccaria} species were only found in \textit{Nothofagus cunninghamii} forests \cite{43}, and the habitat of \textit{Laccaria maritima} was restricted to sand dunes in Northern Europe \cite{2,44}. Both \textit{L. macrobasisdia} and \textit{L. griseolilacina} were collected from conifer forests. Since there is only one specimen of each species, however, it is too early to determine their host. Further studies are needed to document their fungal-host associations.

We found two new species based on a molecular-based approach, confirming that there are a total of 12 \textit{Laccaria} species in Korea. Many previously collected specimens of the 12 \textit{Laccaria} species have no associated information regarding their host plants and their distribution in Korea. Therefore, further studies on host specificity and distribution are required to elucidate the ecological role of \textit{Laccaria} species in Korean forests.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This research was supported by a project on the survey and the excavation of Korean indigenous species of the National Institute of Biological Resources [NIBR 201701104] and the Korean government [NRF-2015M3A9B8029237].

ORCID

Young Woon Lim \(\text{http://orcid.org/0000-0003-2864-3449}\)

References

\cite{1} Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. New York (NY): Academic Press; 2008. p. 815.

\cite{2} Mueller GM. Systematics of \textit{Laccaria} (Agaricales) in the continental United States and Canada, with discussions on extralimital taxa and descriptions of extant types. Fieldiana: Botany, New Series no. 30. Chicago (IL): Field Museum of Natural History; 1992. p. 158.

\cite{3} Vincenot L, Nara K, Stulz G, et al. Extensive gene flow over Europe and possible speciation over Eurasia in the ectomycorrhizal basidiomycete \textit{Laccaria amethystina} complex. Mol Ecol. 2012; 21(2):281–299.

\cite{4} Popa F, Rexer KH, Donges K, et al. Three new \textit{Laccaria} species from Southwest China (Yunnan). Mycol Progress. 2014;13(4):1105–1117.

\cite{5} Berger KE, Broome CE. Notices of British fungi (1989–2027). Ann Mag Nat Hist. 1883;12(72): 370–374.

\cite{6} Singer R. The Agaricales in modern taxonomy. 4th ed. Koenigstein, Germany: Koeltz Scientific Books; 1986. p. 981.

\cite{7} Mueller GM. The Swedish taxa of \textit{Laccaria} (Tricholomataceae) with notes on their distribution. Nord J Bot. 1991;10(6):665–680.

\cite{8} Kropp BR, Mueller GM. \textit{Laccaria}. In: Cairney JWG, Chambers SM, editors. Ectomycorrhizal fungi key genera in profile. Heidelberg, Germany: Springer; 1999. p. 65–88.

\cite{9} Osmundson TW, Cripps CL, Mueller GM. Morphological and molecular systematics of Rocky Mountain alpine \textit{Laccaria}. Mycologia. 2005;97(5): 949–972.

\cite{10} Wilson AW, Hosaka K, Perry BA, et al. \textit{Laccaria} (Agaricomycetes, Basidiomycota) from Tibet (Xizang Autonomous Region, China). Mycoscience. 2013;34(6):406–419.

\cite{11} Sheedy EM, Van de Wouw AP, Howlett BJ, et al. Multigene sequence data reveal morphologically cryptic phylogenetic species within the genus \textit{Laccaria} in southern Australia. Mycologia. 2013; 105(3):547–563.

\cite{12} Bruns TD, White TJ, Taylor JW. Fungal molecular systematics. Annu Rev Ecol Syst. 1991;22(1): 525–564.

\cite{13} Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113–118.

\cite{14} Taylor JW, Jacobson DJ, Kroken S, et al. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol. 2000;31(1): 21–32.

\cite{15} Popa F, Jimenéz SYC, Weisenhorn J, et al. A new \textit{Laccaria} species from cloud forest of Fortuna. Mycol Progress. 2016;15(2):12–19.

\cite{16} Wilson AW, Hosaka K, Mueller GM. Evolution of ectomycorrhizas as a driver of diversification and biogeographic patterns in the model mycorrhizal mushroom genus \textit{Laccaria}. New Phytol. 2017; 213(4):1862–1873.

\cite{17} Cho HJ, Park MS, Lee H, et al. A systematic revision of the ectomycorrhizal genus \textit{Laccaria} from Korea. Mycologia. 2018;110(5):948–961.

\cite{18} Breitenbach J, Kränzlin F. Fungi of Switzerland. Vol. 3. Luzern, Switzerland: Verlag Mykologia; 1991. p. 361.

\cite{19} Körnerup A, Wanscher JH. Methuen handbook of colour. London: Eyre Methuen & Co. Ltd.; 1963. p. 252.

\cite{20} Largent D, Johnson D, Watling R. How to identify fungi to genus III: microscopic features. Arcata (CA): Mad River Press; 1977. p. 148.

\cite{21} Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin SB, Schilperoort RA, editors. Plant molecular biology manual. Boston (MA): Kluwer Academic Publishers; 1994. p. 183–190.

\cite{22} Moncalvo JM, Lutzoni FM, Rehner SA, et al. Phylogenetic relationships of agaric fungi based on
nuclear large subunit ribosomal DNA sequences. Syst Biol. 2000;49(2):278–305.

[23] Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172(8):4238–4246.

[24] Liu YJ, Whelen S, Hall BD. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol. 1999;16(12):1799–1808.

[25] Matheny PB, Wang Z, Binder M, et al. Contributions of rpb2 and tef1 to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol Phylogenet Evol. 2007;43(2):430–451.

[26] Rehner SA, Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 2005;97(1):84–98.

[27] Stielow JB, Levesque CA, Seifert KA, et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia. 2015;35:242–263.

[28] Park MS, Fong JJ, Lee H, et al. Delimitation of Russula subgenus Amoenula in Korea using three molecular markers. Mycobiology. 2013;41(4):191–201.

[29] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–2739.

[30] Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780.

[31] Stamatakis A. RAXML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313.

[32] Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. SC10 workshop on gateway computing environments (GCE10); Nov 13–19. ; New Orleans (LA): IEEE Computer Society; 2010. p. 1–8.

[33] Stamatakis A. Phylogenetic models of rate heterogeneity: a high performance computing perspective. Proceedings 20th IEEE international parallel & distributed processing symposium. Rhodes Island, Greece: IEEE; 2006. p. 278.

[34] Montoya L, Bandala VM, Baroni TJ, et al. A new species of Laccaria in montane cloud forest from eastern Mexico. Mycoscience. 2015;56(6):597–605.

[35] Latha KD, Raj KA, Manimohan P. Laccaria violaceoconta: a new species from tropical India based on morphology and molecular phylogeny. Phytotaxa. 2019;392(2):140–146.

[36] Mueller GM, Vellanga EC. Taxonomic and nomenclatural notes on Laccaria B. & Br. Laccaria amethystea, L. fraterna, L. laccata, L. pumila, and their synonyms. Persoonia. 1986;13:27–43.

[37] Vincenot L, Popa F, Laso F, et al. Out of Asia: biogeography of fungal populations reveals Asian origin of diversification of the Laccaria amethystina complex, and two new species of violet Laccaria. Fungal Biol. 2017;121(11):939–955.

[38] Hongo T. Notulae mycologicae (10). Memoirs Shiga Univ. 1971;21:62–68.

[39] Wang B, Qiu YL. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16(5):299–363.

[40] Ishida TA, Nara K, Hogetsu T. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol. 2007;174(2):430–440.

[41] Wilson AW, May TW, Mueller GM, et al. 2017b. Biogeography of the ectomycorrhizal mushroom genus Laccaria. In: Tedersoo L, editor. Biogeography of mycorrhizal symbiosis. Cham, Switzerland: Springer; p. 273–297.

[42] Molina R, Massicotte H, Trappe JM. Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF, editor. Mycorrhizal functioning: an integrative plant-fungal process. New York (NY): Chapman and Hall; 1992. p. 357–423.

[43] Sheedy EM, Van de Wouw AP, Howlett BJ, et al. Population genetic structure of the ectomycorrhizal fungus Laccaria sp. A resembles that of its host tree Nothofagus cunninghamii. Fungal Ecol. 2015;13:23–32.

[44] Høiland K. Sand dune fungi on Lista (Vest-Agder, SW Norway) revisited after 33 years. Agarica. 2006;26:39–54.