Data Article

Data on conceptual design and simulation of reactive distillation process

Mallaiah Mekala *

Department of Chemical Engineering, BV Raju Institute of Technology, Hyderabad, 502313, India

ARTICLE INFO

Article history:
Received 21 March 2019
Received in revised form 3 July 2019
Accepted 8 July 2019
Available online 23 July 2019

Keywords:
Esterification
Kinetic model
Aspen plus
Simulation
Stage number
Conversion

ABSTRACT

The simulation of the reactive distillation for the esterification of acetic acid with methanol is carried out using the equilibrium stage model. The pseudo-homogeneous kinetic rate equation is used in equilibrium stage model to perform simulation in Aspen plus Version 7.3. The different parameters like the reflux ratio, number of stages, feed location of the acetic acid are used to obtain the data of mixture composition and acetic acid conversion. The non-ideal behavior of the system is accounted by NRTL, Wilson and UNIQUAC methods. All the thermodynamic models are able to generate data of compositions very well. The composition profiles with different activity based models compared and there is little deviation of water and methanol mole fractions. The optimum number of stages for the present system is 30 for achieving the higher conversion as well as the purity of the distillate. The optimum reflux ratio is 1.9, feed flow rate of acetic acid and methanol is 10.2 mol/hr, location of acetic acid above the reactive zone and methanol below the reactive zone gives the 99.5% by mole of the methyl acetate and 99% acetic acid conversion.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.
E-mail address: mmyadav2001@gmail.com.
1. Data

The experimental data on reactive distillation is scarcely available in the literature. The data article presents data on the comparison of experimental and simulation data for the esterification of acetic acid with methanol in the presence of Indion 180 solid catalyst. The data generated for simulations data of reactive distillation by ASPEN PLUS software. The experimental data along with simulation data by accounting the non-ideal behavior of the system is presented for the esterification of acetic acid with methanol. Very few studies have the experimental and simulation data for this system in presence of solid catalysts like Indion 180 [1,2]. Table 1 and Table 2 show the feasibility of the system and azeotropic conditions. The simulations and experimental data for the temperature are given in Table 3. The compositions data of simulations and experimental is shown in Table 4. Fig. 1a and b shows the ternary plot of the reactive distillation for the methyl acetate/methanol/acetic acid and water/acetic acid/methyl acetate. Fig. 2 shows the temperature profile as function of the stage numbers. Whereas Fig. 3 shows the liquid composition profiles as function of the stage numbers for different thermodynamic

Table 1	Mixture investigated for Azeotropes at a pressure of 101325 N/m².		
Comp ID	Component Name	Classification	Temperature
-----	-----------------	----------------	-----------
METHA-01	METHANOL	Stable Node	64.53°C
METHY-01	METHYL-ACETATE	Stable Node	57.05°C

Table 2	Azeotropic composition at a pressure of 101325 N/m².
Number Of Components: 2	Temperature 53.64°C

	Classification: Unstable Node	MOLE BASIS	MASS BASIS
Homogeneous			
Methanol	0.3341	0.1783	
Methyl acetate	0.6659	0.8217	
models for both experimental and simulation data. The presented data is useful to the further esterification reaction process as a basic system.

2. Experimental design, materials, and methods

The kinetic rate equation is obtained by conducting the experiments in a batch reactor under different temperatures and catalyst concentrations [1]. The experimental data for the esterification of acetic acid and methanol in presence of Indion 180 catalyst in a batch reactor under different temperatures, catalyst concentrations and mole ratio of acetic acid to methanol are investigated. From that experimental data the kinetic parameters are obtained by calculating the error between the experimental data and model predictions of pseudo homogeneous kinetic model.

The simulations have been carried out for the reactive distillation column by incorporating the developed kinetic rate equation using Aspen Plus. The parameters used for simulation of reactive distillation column are total height of the column has the 3 m and 50 mm diameter. The total operating pressure is 1 atm. The reactive zone contains 10 equilibrium stages whereas non reactive zone contains 20 equilibrium stages including condenser and reboiler.

All the packing characteristics are assumed as per the Katapak-S commercial packing in the reactive zone and wire mesh packing characteristics in the non reactive zone; that is in rectifying and stripping zones.

Fig. 1a and b shows the conceptual design of the methyl acetate synthesis by the esterification of acetic acid and methanol. The mixture azeotropic temperature at 101325 N/m² is shown in Table 1. The azeotropic composition of the multi-component is shown in Table 2. The methanol/methyl acetate

T_{model}	T_{experimental}	
1	330.07714	328
2	330.121285	
3	330.141982	
4	330.152321	
5	330.158783	333
6	330.165264	
7	330.181987	
8	330.268162	
9	330.789109	
10	333.714044	337
11	344.640483	
12	344.675501	
13	344.724665	338
14	344.803033	
15	344.93169	
16	345.111302	
17	345.18586	339
18	344.486431	
19	344.367541	339
20	344.525245	339
21	346.626655	
22	347.079443	
23	347.222137	
24	347.390824	
25	347.82194	339
26	349.082241	
27	352.634392	
28	360.269712	
29	368.589481	
30	372.593451	358
forms azeotropes of composition 0.3341/0.6659 at a temperature of 53.64°C. The methyl acetate/water forms the azeotropes at composition of 0.92/0.08 and at a temperature of 56.2°C [3].

The variation of the temperature from top of the column (starting stage) to the bottom of the column is shown in Fig. 2. The temperature is increasing stage 1 to stage 3 and then maintains constant till 15th stage. The temperature suddenly rose from stage 15th to 18th stage and then falls. It is because, the reaction is taking place in the reactive zone and heat is liberated due to slightly exothermic reaction. Then the sudden fall of temperature is happening due to supply of the cold methanol at 20th stage. In the stripping zone, 21st to 30th stage there is raise in temperature due to supply heat generates more vapors which are mixed with liquid [8–10]. Hence the overall temperature is decreasing from the reboiler to condenser stage. The temperature data by simulation and experimental data is shown in Table 3.

Fig. 3 shows the composition profiles with respect to stage number for different thermodynamic activity models at a reflux ratio of 1.9 and at equimolar ratio of feed flow rates to the column. The methyl acetate composition is increasing from the bottom to the top of the column due to the high volatility of the methyl acetate where as the composition of the water is increasing from top to bottom of the column [8–10]. The reactants should have the high concentrations in the reactive zone to give high conversion of the acetic acid. Acetic acid has high concentration from stages 10–20 and methanol have high concentration from stages 20–30. The reactants concentrations are almost negligible in distillate and reboiler. Hence the reactive distillation is able to give almost 99.6% of the distillate and bottom products at stoichiometric ratio. Among the activity models UNIQUAC model is able give more water mole fraction in the reboiler and methyl acetate in the distillate almost in greater than 99%. Hence this

Liquid compositions by UNIQUAC model	Liquid compositions by experiment							
Acetic acid	Methanol	Methyl acetate	Water	Acetic acid	Methanol	Methyl acetate	Water	
1	0	0.001535	0.991163	0.007302	0	0.04909	0.95091	0
2	0	0.000742	0.993979	0.005279	0	0.09	0.87	0.04
3	0	0.000498	0.995172	0.004329	0	0.0003546		
4	0	0.000423	0.995688	0.003886	0	0.00356		
5	0	0.0004	0.995905	0.00368	0	0.003773		
6	0	0.000393	0.995928	0.003585	0	0.004998		
7	0.000602	0.000391	0.995462	0.003546	0	0.008498		
8	0.003829	0.000391	0.992221	0.00356	0	0.015551		
9	0.023761	0.000394	0.972073	0.003773	0	0.025645		
10	0.128522	0.000412	0.866069	0.004998	0	0.040785		
11	0.428232	0.000436	0.562833	0.008498	0	0.065055		
12	0.428232	0.000761	0.555456	0.015551	0	0.107868		
13	0.42832	0.001219	0.544817	0.025645	0	0.119153		
14	0.428475	0.001872	0.528868	0.040785	0	0.208892		
15	0.428228	0.002845	0.503872	0.065055	0	0.208892		
16	0.428489	0.004431	0.462811	0.107868	0	0.208892		
17	0.40637	0.007808	0.391021	0.194801	0.09654	0.2806	0.51517	0.1077
18	0.320267	0.021864	0.24375	0.41412	0	0.320267		
19	0.080518	0.101316	0.047474	0.770693	0	0.080518		
20	0.003696	0.457887	0.014882	0.523536	0	0.003696		
21	0.003691	0.468449	0.002736	0.525124	0	0.003691		
22	0.003691	0.469832	0.000492	0.525895	0	0.003691		
23	0.003693	0.468298	0	0.527921	0	0.003693		
24	0.0037	0.462483	0	0.533801	0	0.0037		
25	0.003726	0.444569	0	0.551702	0.06487	0.44458	0.07137	0.41918
26	0.003815	0.393142	0	0.603042	0	0.003815		
27	0.00409	0.2737	0	0.72221	0	0.00409		
28	0.004606	0.118975	0	0.87642	0	0.004606		
29	0.00555	0.033322	0	0.961128	0	0.00555		
30	0.008837	0.007302	0	0.983861	0.10083	0.20889	0.02107	0.66921

M. Mekala / Data in brief 27 (2019) 104262
Fig. 1. a) Ternary plot (Conceptual design) of the reactive distillation for the methyl acetate/methanol/acetic acid and b) water/acetic acid/methyl acetate.
Fig. 2. Temperature profile with respect to stage number.

Fig. 3. Composition profiles with respect to stage number.
model is suggested for the esterification process. The liquid composition of multi-component mixture by simulation and experimental data is shown in Table 4.

Acknowledgement

Financial assistance from DST, India through the grant SR/FST/College/2014 is gratefully acknowledged.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] M. Mekala, V.R. Goli, Comparative kinetics of esterification of methanol-acetic acid in the presence of Liquid and Solid catalysts, Asia Pac. J. Chem. Eng. 9 (2014) 791–799.
[2] A.K. Pathan, M. Mekala, S.K. Thamida, Dynamic simulation of heterogeneous catalysis at particle scale to estimate kinetic parameters for the pore diffusion model, Bull. Chem. React. Eng. Catal. 13 (2018) 420–428.
[3] V.H. Agreda, L.R. Partin, W.H. Heiss, High purity methyl acetate via reactive distillation, Chem. Eng. Prog. 86 (1990) 40–46.
[4] B. Bessling, J. Loning, A. Ohligschlager, G. Schembecker, K. Sundmacher, Investigation on the synthesis of methyl acetate in a heterogeneous reactive distillation process, Chem. Eng. Technol. 21 (1998) 393–400.
[5] A. Gorak, A. Hoffmann, Catalytic distillation in structured packings: methyl acetate synthesis, AIChE J. 47 (2001) 1067–1076.
[6] T. Popken, L. Gotze, J. Gmehling, Reaction kinetics and chemical equilibrium of homogeneously and heterogeneously catalyzed acetic acid esterification with methanol and methyl acetate hydrolysis, Ind. Eng. Chem. Res. 39 (2000) 2601–2611.
[7] T. Popken, S. Steinigeweg, J. Gmehling, Synthesis and hydrolysis of methyl acetate by reactive distillation using structured catalytic packings: experiments and simulation, Ind. Eng. Chem. Res. 40 (2001) 1566–1574.
[8] M. Mekala, V.R. Goli, Data on acetic acid–methanol–methyl acetate–water mixture analysis by dual packed column gas chromatography, Data in Brief 18 (2018) 947–960.
[9] M. Mekala, V.R. Goli, Optimization studies on a continuous catalytic reactive distillation column for methyl acetate production with response surface methodologies, J Taiwan Inst. Chem. Eng. 69 (2016) 25–40.
[10] M. Mekala, A.K. Kola, V.R. Goli, Catalytic reactive distillation for esterification process: experimental and simulation, Chem. Biochem. Eng. Q. 69 (2017) 25–40.