Incidence of kidney stones in kidney transplant recipients: A systematic review and meta-analysis

Wisit Cheungpasitporn, Charat Thongprayoon, Michael A Mao, Wonngarm Kittanamongkolchai, Insara J Jaffer Sathick, Tsering Dhondup, Stephen B Erickson

Author contributions: Cheungpasitporn W and Thongprayoon C contributed equally to this work; Cheungpasitporn W and Thongprayoon C: Performed the search, analysis and interpretation of data, analysis of data and final approval of the version to be published; Mao MA, Kittanamongkolchai W, Jaffer Sathick IJ and Dhondup T: Critical revising of the intellectual content and final approval of the version to be published; Erickson SB: Concept and design, critical revising of the intellectual content and final approval of the version to be published.

Conflict-of-interest statement: All authors report no conflicts-of-interest.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

First decision: July 27, 2016
Revised: September 8, 2016
Accepted: October 22, 2016
Article in press: October 24, 2016
Published online: December 24, 2016

Abstract

AIM
To evaluate the incidence and characteristics of kidney stones in kidney transplant recipients.

METHODS
A literature search was performed using MEDLINE, EMBASE, and Cochrane Database of Systematic Reviews from the inception of the databases through March 2016. Studies assessing the incidence of kidney stones in kidney transplant recipients were included. We applied a random-effects model to estimate the incidence of kidney stones.

RESULTS
Twenty one studies with 64416 kidney transplant patients were included in the analyses to assess the incidence of kidney stones after kidney transplantation. The estimated incidence of kidney stones was 1.0% (95%CI: 0.6%-1.4%). The mean duration to diagnosis of kidney stones after kidney transplantation was 28 ± 22 mo. The mean age of patients with kidney stones was 42 ± 7 years. Within reported studies, approximately 50% of kidney transplant recipients with kidney stones were males. 67% of kidney stones were calcium-based stones (30% mixed CaOx/CaP, 27%CaOx and 10%CaP), followed by struvite stones (20%) and uric acid stones (13%).

CONCLUSION
The estimated incidence of kidney stones in patients after kidney transplantation is 1.0%. Although calcium based stones are the most common kidney stones after
transplantation, struvite stones (also known as “infection stones”) are not uncommon in kidney transplant recipients. These findings may impact the prevention and clinical management of kidney stones after kidney transplantation.

Key words: Nephrolithiasis; Incidence; Kidney stones; Kidney transplantation; Transplantation

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The authors performed this meta-analysis to assess the incidence and characteristics of kidney stones in kidney transplant recipients. The estimated incidence of kidney stones in patients after kidney transplantation is 1.0%. Calcium based stones (CaOx and CaP) are the most common kidney stones after transplantation following by struvite stones and uric acid stones. The findings from this study may impact the management of kidney stone prevention after kidney transplantation.

Cheungpasitporn W, Thongprayoon C, Mao MA, Kittanamongkolchai W, Jaffer Sathick IJ, Dhondup T, Erickson SB. Incidence of kidney stones in kidney transplant recipients: A systematic review and meta-analysis. *World J Transplant* 2016; 6(4): 790-797 Available from: URL: http://www.wjgnet.com/2220-3230/full/v6/i4/790.htm DOI: http://dx.doi.org/10.5500/wjt.v6.i4.790

INTRODUCTION

Kidney stones are one of the most common metabolic disorders and urological problems with a prevalence of 7.2%-7.7% in the adult population, and a ten-year recurrence rate of ≥ 30%[5-8]. The incidence of kidney stones is increasing especially in industrialized countries with an estimated global prevalence between 10%-15%[5-8]. Approximately 13% of men and 7% women will have a kidney stone during their lifetime[5,8].

Previous studies have shown that stone recurrence rates may be lower, when glomerular filtration rate (GFR) reduced[5,10]. Thus, patients with advanced chronic kidney disease (CKD) or end-stage kidney disease (ESRD) may encounter less stone disease[5,10], reported being as low as 0.68%[11]. After successful kidney transplantation, ESRD patients subsequently have significant improvement in renal function resulting in urinary excretion of metabolites that increases risk of stone disease. Studies have identified kidney stones in allograft kidney as one of the serious problems in kidney transplant recipients[12-40]. However, unlike the general population, the incidence and characteristics of kidney stones in kidney transplant recipients are not well studied. The aim of this meta-analysis was to appraise the incidence and types of kidney stones after kidney transplantation.

MATERIALS AND METHODS

Cheungpasitporn W and Thongprayoon C individually examined published studies and conference abstracts indexed in MEDLINE, EMBASE, and Cochrane Database from the inception of the databases through March 2016. The search strategy used is detailed in the supplementary material (Item 1). Further pertinent studies were retrieved by conducting a manual search using references from the articles that were reclaimed from the search strategy noted above. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews and meta-analyses[41] and previously published guidelines[42,43].

The inclusion criteria were as follows: (1) randomized controlled trials or observational studies (case-control, cross-sectional, cohort studies, or case series); (2) patient population age > 18 years old; and (3) data on kidney stones in kidney transplant recipients were provided. The search was limited to English-language studies. Both published studies and conference abstracts were incorporated. Study eligibility was independently determined by the two investigators mentioned earlier. Differing decisions were settled by joint agreement.

A standardized information collection form was applied to derive the following data: The first author of each study, study design, year of publication, country where the study was conducted, number of kidney transplant recipients studied, number of patients with kidney stone, age and gender of patients with kidney stones, time of diagnosis after kidney transplantation, type of donor (Live or deceased donor), type and location of kidney stones, and period of follow-up.

Statistical analysis

MetaXL software (EpiGear International Pty Ltd)[44] was utilized for data analysis. The incidence rates (IRs) and 95%CIs of adverse effects were reported using a DerSimonian-Laird random-effects model[45]. A random-effects model was implemented due to the high likelihood of inter-study variances. The Cochran Q test was completed to assess statistical heterogeneity. The I^2 statistic was added to evaluate the degree of variation across studies related to heterogeneity instead of chance. An I^2 of 0%-25% represents insignificant heterogeneity, 26%-50% low heterogeneity, 51%-75% moderate heterogeneity and > 75% high heterogeneity[46]. To assess for publication bias funnel plots were used[47].

RESULTS

Our search strategy yielded 1554 articles. Of these, 1397 articles were excluded following the review of their title and abstract based on their relevance and the eligibility criteria. The remaining 157 articles underwent full-length review, and an additional 136 were excluded for failing to meet the criteria. Twenty one articles[12-29,36,38,40] met all inclusion criteria and were identified for the meta-analysis of kidney stones in kidney transplant recipients (Table 1). Supplementary Item 2 outlines our search methodology.

Cheungpasitporn W et al. Kidney stones in kidney transplant recipients
Table 1 Main characteristics of the studies included in this meta-analysis

Ref.	Country	Year	Total number	No. of patients with kidney stone	Time of diagnosis	Sex of patients with stone	Age of patients with stone	Donors	Stone location	Stone composition	Mean follow-up time	
Cho et al[12]	United States	1988	544	9	Mean 14.7 mo, Median 7 mo (range 3-42 mo)	6 male, 3 female	Mean 30 yr (range 8-65 yr)	6 living, 3 cadaveric	4 bladder, 3 kidney, 2 unknown	4 calcium oxalate/calcium phosphate, 2 ammonium magnesium phosphate and carbonate appetite, 1 uric acid, 2 not studied	5 (range 1.5-15.5 yr)	
Hayes et al[13]	United States	1989	892	10	Mean 13 mo (range 4-49 mo)	7 male, 3 female	Mean 29 yr (range 17-53 yr)	3 living, 7 cadaveric	NR	NR	NR	NR
Harper et al[38]	United Kingdom	1994	178	6	NR	4 male, 1 female	NR	4 living, 1 cadaveric	NR	NR	NR	NR
Shoskes et al[39]	United Kingdom	1995	812	2	Mean 3.5 yr (range 2-5 yr)	NR	Mean 40 yr NR	2 ureter	NR	1 uric acid, 2 calcium phosphate, 1 calcium oxalate, 1 Magnesium ammonium phosphate	NR	At least 1 yr NR
Benoit et al[40]	France	1996	1500	12	NR	7 male, 5 female	Mean 36 yr NR	2 living, 10 cadaveric	NR	4 calcium oxalate and phosphate, 2 struvite	NR	NR
Del Pizzo et al[41]	United States	1998	540 (445 renal transplant, 95 pancreas/renal transplant)	4	NR	NR	NR	NR	NR	3 kidney, 1 ureter, 4 bladder	1 uric acid, 1 calcium oxalate, 1 calcium oxalate/calcium phosphate, 1 calcium phosphate, 1 struvite stone, 3 unknown	Mean 68.6 mo (range 27-98 mo)
Rhee et al[42]	United States	1999	1813 (1730 renal transplant, 83 pancreas/renal transplant)	NR	4 male, 4 female	Mean 51 yr (range 34-60 yr)	2 living, 1 cadaveric, 5 pancreas/renal	NR	NR	3 kidney, 4 ureter, 4 bladder	1 uric acid, 1 calcium oxalate, 1 calcium oxalate/calcium phosphate, 1 calcium phosphate, 1 struvite stone, 3 unknown	Mean 68.6 mo (range 27-98 mo)
El-Mekresh et al[43]	Egypt	2001	1200	11	NR	NR	NR	NR	NR	3 kidney, 4 ureter, 4 bladder	5 mixed form of calcium oxalate and calcium phosphate, 1 calcium oxalate, 3 predominant calcium phosphate, 2 struvite, 2 mixed form of struvite and calcium phosphate	Mean 58 mo (range 11-149 mo)
Kim et al[44]	United States	2001	849	15	Mean 17.8 mo (range 3-109 mo)	10 male, 5 female	Mean 41.5 yr (range 28-67 yr)	8 living, 7 cadaveric	11 bladder, 3 kidney, 1 multiple sites	5 mixed form of calcium oxalate and calcium phosphate, 1 calcium oxalate, 3 predominant calcium phosphate, 2 struvite, 2 mixed form of struvite and calcium phosphate, 2 not studied	Mean 58 mo (range 11-149 mo)	
Authors	Country	Year	Sample Size	Sex Distribution	Mean Duration	Year of Kidney Stone Diagnosis	Cause of Kidney Stone	Location	Study Duration	Other Details		
--------------------	---------	------	-------------	------------------	---------------	-------------------------------	-----------------------	----------	----------------	---------------		
Klinker et al.	Austria	2002	1027	8 male, 11 female	Mean 27.7 mo (range 13 to 48 mo)	2002	11 living, 3 cadaveric	11 cadaveric	11 calcium oxalate, 2 uric acid, 1 calcium phosphate, 5 not studied	2002		
Doehn et al.	Germany	2002	1500	NR	5 male, 6 female	Median 50 yr	11 cadaveric	NR	NR	NR		
Streeter et al.	United Kingdom	2002	1535	For renal calculi: Median 150 d (range 56-1280 d); For bladder calculi: Range 8 mo - 4 yr	NR	NR	NR	NR	9 ureter, 3 bladder	NR		
Abbott et al.	United States	2003	42906	NR	NR	NR	NR	NR	35 kidney, 17 ureter	NR		
Lipke et al.	United States	2004	500	9 mo (range 1.5-26 mo)	7 female	Mean 50 yr (range 8-73 yr)	4 living, 3 cadaveric	7 bladder	7 mixed between calcium oxalate and calcium phosphate	1.89 ± 1.15 yr		
Yigit et al.	Turkey	2004	125	5 (2 preoperative, 1 early posttransplant, 2 de novo)	3 male, 2 female	Mean 35.2 yr	NR	NR	2 calcium oxalate, 1 uric acid, 2 infectious	Mean 32.4 mo		
Challacombe et al.	United Kingdom	2005	2085	3.7 (0.17-18) yr	8 male, 13 female	Mean 41 yr (range 15-64 yr)	3 living, 18 cadaveric	13 kidney, 7 ureter, 1 bladder	NR			
Ferreira et al.	Brazil	2012	1313	Range 6 mo to 13 yr	8 males, 9 females	Mean 45.6 yr (range 32-63 yr)	2 living, 15 cadaveric	6 calyces, 3 renal pelvis, 3 ureter	NR			
Cassini et al.	Greece	2012	1525	Mean 3.2 (2.7) yr	NR	NR	NR	5 kidney, 2 ureter	NR			
Stravodimos et al.	Italy	2014	953	NR	4 male, 6 female	Mean 43 yr	7 kidney, 3 ureter	NR	Mean 8 yr	NR		
Cicerello et al.	Greece	2014	2045	Mean 3.1 yr (range 1-7 yr)	NR	NR	NR	6 kidney, 3 ureter	NR			
Manarelis et al.	Iran	2015	574	NR	NR	NR	NR	NR	6.6 yr (range 1-15 yr)	NR		

CaOx: Calcium oxalate; CaP: Calcium phosphate; NR: Not reported.

Incidence of kidney stones in kidney transplant recipients

The incidence of kidney stones after kidney transplantation within the 21 individual study ranged between 0.2% to 4.4% with an overall meta-analytical incidence of 1.0% (95%CI: 0.6%-1.4%) with evidence of a high level of heterogeneity ($I^2 = 93\%$, $P < 0.001$; Figure 1).

We performed a sensitivity analysis limited only to the studies that provided data on time of kidney stone diagnosis after kidney transplantation; the estimated incidence of kidney stones was 0.9% (95%CI: 0.7%-1.2%), and there was evidence of a high level of heterogeneity ($I^2 = 60\%$, $P < 0.001$; Figure 2). The mean duration to diagnosis of kidney stones after kidney transplantation was 28 ± 22 mo.

Subgroup analyses by geographic information were also performed. The estimated incidences of kidney stones were 0.9% (95%CI: 0.3%-1.7%; $I^2 = 94\%$) and 0.7% (95%CI: 0.5%-0.9%; $I^2 = 40\%$) in the United States and Europe, respectively. Data on the incidence of kidney stones in kidney transplant recipients in other geographical area were limited as shown in Table 1.

Characteristics of kidney transplant recipients with kidney stones

The mean age of patients with kidney stones was 42 ± 7
years. Within reported studies (Table 1), approximately 50% of kidney transplant recipients with kidney stones were males.

Types of kidney stones in kidney transplant recipients

Sixty-seven percent of kidney stones were calcium-based stones (30% mixed CaOx/CaP, 27%CaOx and 10%CaP), followed by struvite stones (20%) and uric acid stones (13%) as shown in Table 1.

Risk factors for kidney stones in kidney transplant recipients

Despite limited data on urinary supersaturation and risk factors for kidney stones, studies reported increased risk of kidney stones in kidney transplant recipients with hyperparathyroidism, hypercalciuria, hypocitraturia, hypophosphatemia, and urinary tract infection [28,38]. Harper et al [38] found that urinary excretion of magnesium and phosphate was at the lower range for all kidney transplant recipients with kidney stones. Uncommonly, urinary outflow obstruction and foreign bodies were also found as risk factors for kidney stones in kidney transplant patients [38,48].

Allograft failure in kidney transplant recipients with kidney stones

As in general patient populations, kidney stones can also cause acute kidney injury in kidney transplant recipients [49-52]. Since kidney transplant recipients can have obstructed kidney stones without any symptom of pain [26,28], prompt diagnosis and the removal of obstructed stones are the keys to preventing renal allograft failure [18]. Rezaee-Zavereh et al [29] reported no significant association between kidney stones after transplantation and graft survival (OR = 1.04; CI: 0.71-1.54). With the prompt removal of stones, Kim et al [18] found no significant changes in renal allograft function at diagnosis and after removal of kidney stones.

Evaluation for publication bias

Funnel plot evaluating publication bias for the incidence of kidney stones in kidney transplant populations demonstrated slight asymmetry of the graph and thus suggested the presence of publication for positive studies regarding the incidence of kidney stones.

DISCUSSION

In this study, we demonstrated that an overall incidence of kidney stones in kidney transplant recipients was 1.0%. The mean age of recipients with kidney stones was 42, and half of stone formers were males. Calcium based (CaOx and CaP) stones were the most common types of kidney stones after kidney transplantation,
followed by struvite stones and then uric acid stones.

The incidence of kidney stones after kidney transplantation from our meta-analysis is much lower than reported in the general adult populations [5-8]. Although the mechanisms behind the lower incidence of kidney stones after kidney transplantation, when compared with the general population, are only speculative, there are several plausible explanations. First, with the observation that new kidney stones are usually formed in transplanted allograft kidney but not in native non-functioning kidneys, kidney transplant recipients have significantly improved but still lower GFRs than those in healthy general populations, which may be “protective” for stone disease [9,10]. Second, transplanted kidneys are from healthy donors ideally without tubulointerstitial defects, one not uncommon cause of kidney stones. Third, it is possible that kidney stones after kidney transplantation are underdiagnosed since recipients may spontaneously pass them from the transplanted kidney/ureter without pain or awareness.

Calcium based (CaOx and CaP) stones are the most common types of kidney stones in the general population as well as after kidney transplantation as demonstrated in our meta-analysis. Interestingly, struvite stones (ammonium magnesium phosphate) or “infection stones” is more common in kidney transplant recipients (20%) than in the general population (10%-15%) [53]. Since struvite stones are associated with infection with urea-splitting bacteria and the principles of treating struvite stones are different than other stone types, including removal of all stone fragments and use of antibiotics [53], this information is important for future studies targeting prevention and management of kidney stones after kidney transplantation.

There are several limitations to our study. First, there were statistical heterogeneities in the analysis of the incidence of kidney stones. The potential sources of this heterogeneity included differences in diagnostic methodology of kidney stones and follow-up duration. However, a sensitivity analysis that limited studies to those that only provided data on time of kidney stone diagnosis still showed a similar incidence rate of kidney stones, consistent with the finding of our primary analysis. Second, most included studies were conducted in developed Western countries with the majority of the subjects being Caucasian. Thus, our findings may not represent renal transplant populations from other parts of the world. Lastly, the data on urinary supersaturation and risk factors for kidney stones were limited. Although struvite stones represent an association with urinary tract infection, it is still unclear the risk factors for other stone types after kidney transplantation, and future studies are needed.

Our meta-analysis demonstrates that the estimated incidence of kidney stones in patients after kidney transplantation is 1.0%. Although calcium based stones are the most common kidney stones after transplantation, struvite stones are the second common type. These findings may impact clinical prevention and management of kidney stones in kidney transplant recipients.

COMMENTS

Background

Renal stones are one of the most prevalent metabolic disorders and urological problems. However, with reduced kidney functions, patients with advanced chronic kidney disease (CKD) or end-stage kidney disease (ESRD) may encounter less stone disease. After successful kidney transplantation, ESRD patients have significant improvement in kidney functions and may develop...
REFERENCES

1. Lieske JC, Peña de la Vega LS, Slezkaj JM, Bergstralh EJ, Leibson CL, Ho KL, Gettman MT. Renal stone epidemiology in Rochester, Minnesota: an update. Kidney Int 2006; 69: 760-764 [PMID: 16518332 DOI: 10.1086/skj.2001150]

2. Sakkare K. Nephrolithiasis as a systemic disorder. Curr Opin Nephrol Hypertens 2008; 17: 304-309 [PMID: 18408483 DOI: 10.1097/MNH.0b013e3282f3c1d]

3. Rule AD, Lieske JC, Li X, Melton LJ, Kranbeck AE, Bergstralh EJ. The ROKS nomogram for predicting a second symptomatic stone episode. J Am Soc Nephrol 2014; 25: 2878-2886 [PMID: 25104803 DOI: 10.1016/j.ans.20139011]

4. Cheungpasitporn W, Erickson SB, Rule AD, Enders F, Lieske JC. Short-Term Tolvaaptan Increases Water Intake and Effectively Decreases Urinary Calcium Oxalate, Calcium Phosphate and Uric Acid Acid Saturation. J Urol 2016; 195: 1476-1481 [PMID: 26598423 DOI: 10.1016/j.juro.2016.011027]

5. Goldfarb DS. Increasing prevalence of kidney stones in the United States. Kidney Int 2003; 63: 1951-1952 [PMID: 12678577 DOI: 10.1046/j.1523-1755.2003.00942.x]

6. Long LO. Park S. Update on nephrolithiasis management. Minerva Urol Nefrol 2007; 59: 317-325 [PMID: 17912227]

7. López M, Hoppe B. History, epidemiology and regional diversities of urolithiasis. Pediatr Nephrol 2010; 25: 49-59 [PMID: 21476230 DOI: 10.1007/s00467-008-0960-5]

8. Stamatolou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC. Trends in common duct stones among men and women in England and Wales: prospective derivation and external validation of the QRisk stone index. BMC Fam Pract 2010; 11: 49 [PMID: 20565029 DOI: 10.1186/1711-2296-11-49]

9. Marangell M, Bruno M, Cosseddu D, Manganaro M, Tricieri A, Vitale C, Linari F. Prevalence of chronic renal insufficiency in the course of idiopathic recurrent calcium stone disease: risk factors and patterns of progression. Nephron 1990; 54: 302-306 [PMID: 2325794 DOI: 10.1159/000185884]

10. Rule AD, Kranbeck AE, Lieske JC. Chronic kidney disease in kidney stone formers. Clin J Am Soc Nephrol 2011; 6: 2069-2075 [PMID: 21784825 DOI: 10.2215/cjn.10651110]

11. Hippisley-Cox J, Coupland C. Predicting the risk of chronic kidney disease in men and women in England and Wales: prospective derivation and external validation of the QRisk Stone Scores. BMC Fam Pract 2010; 11: 49 [PMID: 20565029 DOI: 10.1186/1711-2296-11-49]

12. Cho DK, Zackson DA, Cheigh J, Stubenbord WT, Stenzel KH. Urinary calculi in renal transplant recipients. Transplantation 1988; 45: 899-902 [PMID: 3285534 DOI: 10.1097/00007890-198805000-00011]

13. Hayes JM, Streem SB, Granoet D, Hodge EE, Steinmuller DR, Novick AC. Renal transplant calculi. A reevaluation of risks and management. Transplantation 1989; 47: 549-552 [PMID: 2660356 DOI: 10.1097/00007890-198906000-00006]

14. Shoskes DA, Hanbury D, Cranston D, Morris PJ. Urolithiasis complications in 1,000 consecutive renal transplant recipients. J Urol 1995; 153: 18-21 [PMID: 7966766 DOI: 10.1016/s0005392-19950100-00008]

15. Del Pizzo JJ, Jacobs SC, Sklar GN. Uretoscerotic evaluation in renal transplant recipients. J Endourol 1998; 12: 135-138 [PMID: 9607439 DOI: 10.1089/end.1998.12.135]

16. Rhee BK, Brotan PN, Stoller ML. Urolithiasis in renal and combined pancreas/renal transplant recipients. J Urol 1991; 145: 1458-1462 [PMID: 2010372 DOI: 10.1016/s0022-5347(96)819264-9]

17. El-Mekresh M, Osman Y, Ali-El-Dein B, El-Dafty T, Ghoneim MA. Urolithiasis complications in living-donor renal transplantation. BJU Int 2001; 87: 295-306 [PMID: 11251519 DOI: 10.1046/j.1440-241X.2001.01113.x-1]

18. Kim H, Cheigh JS, Ham HW. Urinary stones following renal transplantation. Korean J Intern Med 2001; 16: 116-122 [PMID: 11590898 DOI: 10.3904/kjim.2001.16.2.118]

19. Kingler HC, Kramer G, Lodde M, Marberger M. Urolithiasis in allograft kidneys. Urology 2002; 59: 344-348 [PMID: 11880607 DOI: 10.1001/s0090-4295(01)01575-8]

20. Doehn C, Formara P, Tiemer C, Fricke L, Jochar D. Renal transplant lithiasis. Transplant Proc 2002; 34: 2222-2222 [PMID: 12270373 DOI: 10.1016/s0041-1345(02)03211-6]

21. Streeter EH, Little DM, Cranston DW, Morris PJ. The urolithiasis complications of renal transplantation: a series of 1535 patients. JURO Int 2002; 90: 627-634 [PMID: 12401737 DOI: 10.1046/j.1440-4141.2002.03004.x]

22. Abbott KC, Schenkman N, Swanson SJ, Agodoa LY. Hospitalized nephrolithiasis after renal transplantation in the United States. Am J Transplant 2003; 3: 465-470 [PMID: 12694070 DOI: 10.1034/j.1600-6143.2003.00080.x]

23. Lipke M, Schulisgnger D, Sheynkin Y, Frischer Z, Waltzer W. Endoscopic treatment of bladder calculi in post-transplant patients: a 10-year experience. J Endourol 2004; 18: 787-790 [PMID: 15659904 DOI: 10.1089/end.2004.18.787]

24. Yiğit B, Aydin C, Tütür I, Berber I, Sinanoglu O, Altaca G. Stone disease in kidney transplantation. Transplant Proc 2004; 36: 187-189 [PMID: 15031342 DOI: 10.1016/j.transproceed.2003.11.063]

25. Challacombe B, Dangupta P, Tiptaft R, Glass J, Koffman G, Goldsmith D, Khan MS. Multimodal management of urolithiasis in renal transplantation. J Urol Int 2005; 96: 385-389 [PMID: 16042735 DOI: 10.1111/j.1445-414X.2005.005636.x]

26. Ferreira Cassini M, Cologna AJ, Ferreira Andrade M, Lima GJ, Medeiros Albuquerque U, Pereira Martins AC, Tucci Junior S. Lithiasis in 1,313 kidney transplants: incidence, diagnosis, and management. Transplantation 2012; 44: 2373-2375 [PMID: 23026956 DOI: 10.1097/tp.2012.07.052]

27. Stravodimos KG, Adamsis S, Tzirtzis S, Georgios Z, Constantinides CA. Renal transplant lithiasis: analysis of our series and review of the literature. J Endourol 2012; 26: 38-44 [PMID: 22050494 DOI: 10.1089/end.2011.0049]

28. Mamarelis G, Vernadakis S, Moris D, Altanis N, Perdikouli M, Stravodimos K, Pappas P, Zavos G. Lithiasis of the renal allograft, a rare urolithic complication following renal transplantation: a single-center experience of 2,045 renal transplants. Transplant Proc 2014; 46: 3203-3205 [PMID: 25420859 DOI: 10.1016/j.transproceed.2014.09.166]
Cheungpasitporn W et al. Kidney stones in kidney transplant recipients

29 Rezaee-Zavareh MS, Ajdani R, Ramezani Binab M, Heydari F, Einollahi B. Kidney Allograft Stone after Kidney Transplantation and its Association with Graft Survival. *Int J Organ Transplant Med* 2015; 6: 114-118 [PMID: 26306157]

30 Rattiazi LC, Simmons RL, Markland C, Casali R, Kjellstrand CM, Najarian JS. Calculi complicating renal transplantation into ileal conduits. *Urology* 1975; 5: 29-31 [PMID: 1090046 DOI: 10.1016/0022-4295(75)90296-4]

31 Pena DR, Fennell RS, Iravani A, Neiberger RE, Richard GA. Renal calculi in pediatric renal transplant recipients. *Child Nephrol Urol* 1990; 10: 58-60 [PMID: 2354470]

32 Lancia Martin JA, Garcia Buitrón JM, Díaz Bermúdez J, Alvarez Castelo L, Duarte Novo J, Sánchez Merino JM, Rubial Moldes M, González Martín M. [Urinary lithiasis in transplanted kidney]. *Arch Esp Urol* 1997; 50: 141-150 [PMID: 9206940]

33 Narayana AS, Loening S, Culp DA. Kidney stones and renal transplantation. *Urology* 1978; 12: 61-63 [PMID: 356391 DOI: 10.1016/0003-9987(78)90369-2]

34 Rosenberg JC, Arnstein AR, Ing TS, Pierce JM, Rosenberg B, Silva Y, Walt AJ. Calculi complicating a renal transplant. *BJU Int* 2005; 95: 326-330 [PMID: 1091178 DOI: 10.1111/j.1464-410X.2005.05481.x]

35 Solà R, del Rio G, Villavicencio H. Staghorn renal stone in a transplanted kidney. *Urol Int* 1990; 45: 188-189 [PMID: 2349762 DOI: 10.1159/000327260]

36 Benoit G, Blanchet P, Eschwege P, Jardin A, Charpentier B. Occurrence and treatment of kidney graft lithiasis in a series of 1500 patients. *Clin Transplant* 1996; 10: 176-180 [PMID: 8664514]

37 Crook TJ, Keeghane SR. Renal transplant lithiasis: rare but time-consuming. *BJU Int* 2005; 95: 931-933 [PMID: 15839905 DOI: 10.1111/j.1464-410X.2005.05481.x]

38 Harper JM, Samuel CT, Hallson PC, Wood SM, Mansell MA. Risk factors for calculus formation in patients with renal transplants. *Br J Urol* 1994; 74: 147-150 [PMID: 7921929 DOI: 10.1111/j.1464-410X.1994.tb16576.x]

39 Khoititsch S, Gillingham KJ, Cook ME, Chavers BM. Urolithiasis after kidney transplantation in pediatric recipients: a single center report. *Transplantation* 2004; 78: 1319-1323 [PMID: 15548970 DOI: 10.1097/01.TP.0000139543.56868.DE]

40 Cicccelito E, Merlo F, Mangano M, Cova G, Maccarrone L. Urolithiasis in renal transplantation: diagnosis and management. *Arch Ital Urol Androl* 2014; 86: 257-260 [PMID: 25641446 DOI: 10.4081/aiua.2014.4.257]

41 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.

BMJ 2009; 339:b2535 [PMID: 19622551 DOI: 10.1136/bmj.b2535]

42 Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Remmle D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. *Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA* 2000; 283: 2008-2012 [PMID: 10789670 DOI: 10.1001/jama.283.15.2008]

43 STROBE statement--checklist of items that should be included in reports of observational studies (STROBE initiative). *Int J Public Health* 2008; 53: 3-4 [PMID: 18522360 DOI: 10.1007/s00038-007-0239-9]

44 Barendregt JJ, Doi SA. MetaXL User Guide: Version 1.0. Wilston, Australia: EpiGear International Pty Ltd, 2010

45 DerSimonian R, Kacker R. Random-effects model for meta-analysis of clinical trials: an update. *Contemp Clin Trials* 2007; 28: 105-114 [PMID: 16807131 DOI: 10.1016/j.cct.2006.04.004]

46 Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ* 2003; 327: 557-560 [PMID: 12958120 DOI: 10.1136/bmj.327.7414.557]

47 Easterbrook PJ, Berlin JA, Gopalan R, Matthews DR. Publication bias in clinical research. *Lancet* 1991; 337: 867-872 [PMID: 1672966 DOI: 10.1016/0140-6736(91)90369-2]

48 Verrier C, Bessedes T, Hajj P, Aoubid L, Eschwege P, Benoit G. Decrease in and management of urolithiasis after kidney transplantation. *J Urol* 2012; 187: 1651-1655 [PMID: 22425102 DOI: 10.1016/j.juro.2011.12.060]

49 Lusent T, Fiorini F, Barozzi L. Obstructive uropathy and acute renal failure due to ureteral calculus in renal graft: a case report. *J Ultrasound* 2009; 12: 128-132 [PMID: 23397045 DOI: 10.1016/j.jus.2009.06.003]

50 Gómez García I, Burgos Revilla FJ, Sanz Mayayo E, Rodríguez Patrón R, Arias Fúnez F, Marcon R, Pascual J, Escudero Barrilera A. [Acute obstructive kidney failure after kidney transplantation caused by calculus transfer from donor]. *Arch Esp Urol* 2003; 56: 1047-1050 [PMID: 14674293]

51 Qazi YA, Ali Y, Venuto RC. Donor calculi induced acute renal failure. *Ren Fail* 2003; 25: 315-322 [PMID: 12739839 DOI: 10.1081/RDI-120018733]

52 fabricated F, Catalano C, Rizzioli E, Normanno M, Conz PA. Acute renal failure due to a calculus obstructing a transplanted kidney. *Nephron* 2002; 91: 742-743 [PMID: 12138281]

53 Flannigan R, Choy WH, Chew B, Lange D. Renal struvite stone--pathogenesis, microbiology, and management strategies. *Nat Rev Urol* 2014; 11: 333-341 [PMID: 24818849 DOI: 10.1038/nrurol.2014.99]
