Asymptotics of some generalised sine-integrals

R. B. Paris
Division of Computing and Mathematics, Abertay University, Dundee DD1 1HG, UK

Abstract

We obtain the asymptotic expansion for large integer \(n \) of a generalised sine-integral

\[
\int_0^\infty \left(\frac{\sin x}{x} \right)^n \, dx
\]

by utilising the saddle-point method. This expansion is shown to agree with recent results of J. Schlage-Puchta in *Commun. Korean Math. Soc.* 35 (2020) 1193–1202 who used a different approach.

An asymptotic estimate is obtained for another related sine-integral also involving a large power \(n \). Numerical results are given to illustrate the accuracy of this approximation.

We also revisit the asymptotics of Ball’s integral involving the Bessel function \(J_{\nu}(x) \), which reduces to the above integral when \(\nu = 1/2 \).

Mathematics subject classification (2010): 33E20, 34E05, 41A60

Keywords: Sine integrals, asymptotic expansions, saddle-point approximation

1. Introduction

The expansion of the generalised sine-integral

\[
I_n = \int_0^\infty \left(\frac{\sin x}{x} \right)^n \, dx
\]

for integer \(n \to \infty \) has recently been considered by Schlage-Puchta [7]. However the method used seems to be unnecessarily involved and our aim here is to present a more direct computation using the well-known saddle-point method for Laplace-type integrals. The interest in the integral \(I_n \) stems from the fact that the intersection of the unit cube with a plane orthogonal to a diagonal and passing through the midpoint has \((n-1)\)-measure equal to \(2\sqrt{n} I_n/\pi\). These intersections arise naturally in certain probabilistic problems; see the references cited in [7].

The second related sine-integral we consider is given by

\[
K_n = \int_0^\infty e^{-ax} \left(1 - \frac{\sin^2 x}{x^2} \right)^n \, dx \quad (a > 0)
\]
for \(n \to \infty \) when the parameter \(a = O(1) \). An integral of this type was communicated to the author by H. Kaiser [3]. We employ a two-term saddle-point approximation to estimate the growth of \(K_n \) for large \(n \) and present numerical calculations to verify the accuracy of the resulting formula. In the final section we revisit the expansion for large \(n \) of Ball’s integral involving the Bessel function \(J_\nu(x) \), which reduces to (1.1) when \(\nu = \frac{1}{2} \).

2. The asymptotic expansion of \(I_n \)

We begin by writing the integral in (1.1) as

\[
I_n = \int_0^{\pi} \left(\frac{\sin x}{x} \right)^n dx + R_n(x), \quad R_n(x) = \int_{\pi}^{\infty} \left(\frac{\sin x}{x} \right)^n dx.
\]

It is easily seen that

\[
|R_n(x)| < \int_{\pi}^{\infty} \frac{dx}{x^n} \frac{\pi^{1-n}}{n-1}.
\]

The remainder term \(R_n(x) \) is therefore bounded by \(O(n^{-1} \pi^{-n}) = O(n^{-1} e^{-n(\pi/e)^{-n}}) \) and so is exponentially small as \(n \to \infty \).

Let \(\psi(x) = \log \left(\frac{x}{\sin x} \right) \), where \(\psi(0) = 0 \) and \(\psi(\pi) = \infty \). Then the integral over \([0, \pi]\) becomes

\[
I_n = \int_{0}^{\pi} \left(\frac{\sin x}{x} \right)^n dx = \int_{0}^{\pi} e^{-n \psi(x)} dx.
\]

This integral has a saddle point at \(x = 0 \) and the integration path \([0, \pi]\) is the path of steepest descent through the saddle. If we now make the standard change of variable \(\psi(x) = \tau^2 \) discussed, for example, in [2, p. 66] we obtain

\[
I_n = \int_{0}^{\infty} e^{-n \tau^2} \frac{dx}{d\tau} d\tau.
\]

From the expansion

\[
\tau^2 = \log \left(\frac{x}{\sin x} \right) = \frac{1}{6} x^2 + \frac{1}{180} x^6 + \frac{1}{2835} x^6 + \frac{1}{3780} x^8 + \frac{1}{467775} x^{10} + \ldots
\]

valid for \(|x| < \pi \), we find by inversion of this series using Mathematica that

\[
x = \sqrt{6} \left\{ \tau - \frac{1}{10} \tau^3 - \frac{13}{4200} \tau^5 - \frac{9}{14000} \tau^7 + \frac{17597}{77616000} \tau^9 + \frac{4873}{218400000} \tau^{11} + \ldots \right\}
\]

whence

\[
\frac{dx}{d\tau} = \sqrt{6} \sum_{k=0}^{\infty} b_k \tau^{2k} \quad (|\tau| < \tau_0).
\]

(2.1)

The first few coefficients \(b_k \) are

\[
b_0 = 1, \quad b_1 = -\frac{3}{10}, \quad b_2 = -\frac{13}{840}, \quad b_3 = \frac{9}{2000}, \quad b_4 = \frac{17597}{862400},
\]

\[
b_5 = \frac{53603}{218400000}, \quad b_6 = -\frac{124996631}{1629936000000}, \quad b_7 = -\frac{159706933}{4366252800000}, \ldots
\]
The circle of convergence of the series (2.1) is determined by the nearest point in the mapping \(x \mapsto \tau \) where \(dx/d\tau \) is singular; that is, when \(x = 3\pi/2 \) (since the point \(x = \pi \) maps to \(\infty \) in the \(\tau \)-plane). This yields the value \(\tau_0 = |\log \frac{3}{2} + \pi i|^{1/2} \approx 1.8717 \). Then we have

\[
\hat{I}_n \sim \sqrt{6} \int_0^\infty e^{-n\tau^2} \sum_{k=0}^\infty b_k \tau^{2k} d\tau = \sqrt{\frac{3}{2n}} \sum_{k=0}^\infty \frac{b_k}{n^k} \int_0^\infty e^{-w^{1/2}} dw
\]

where the coefficients \(c_k \) are defined by

\[
c_k := b_k \frac{\Gamma(k + \frac{1}{2})}{\Gamma(k + \frac{1}{2})}.
\]

It follows that since we have extended the integration path in (2.2) beyond the circle of convergence of (2.1) the resulting asymptotic series is divergent.

\(k \)	\(c_k \)	\(c_k \)	
1	\(-\frac{3}{8} \)	2	\(-\frac{13}{12} \)
3	\(+\frac{27}{3200} \)	4	\(+\frac{527}{9921} \)
5	\(+\frac{482427}{66560000} \)	6	\(-\frac{124996631}{1003520000} \)
7	\(-\frac{5270328789}{13647820000} \)	8	\(-\frac{2479963506161}{26846167040000} \)
9	\(+\frac{599710579537974189}{2655720414020400000000} \)	10	\(+\frac{10703530420192887741}{2385853794390000000000} \)
11	\(+\frac{599710579537974189}{2655720414020400000000} \)	12	\(-\frac{1338797420743736055939}{462978493749060000000000} \)

Thus, neglecting exponentially small terms, we have the asymptotic expansion

\[
I_n \sim \sqrt{\frac{3\pi}{2n}} \sum_{k=0}^\infty \frac{c_k}{n^k} \quad (n \to \infty),
\]

where the coefficients \(c_k \) are listed in Table 1 for \(0 \leq k \leq 12 \). This expansion agrees with that obtained in [7] by less direct means, except for the value of the coefficient \(c_{10} \).

An integral of a similar nature is

\[
J_n = \int_0^\infty \left(1 - \frac{\cos x}{\frac{1}{2}x^2} \right)^n dx = \int_0^\infty \left(\frac{\sin \frac{1}{2}x}{\frac{1}{2}x} \right)^{2n} dx = 2I_{2n}.
\]

From (2.3) its asymptotic expansion is therefore (to within exponentially small terms)

\[
J_n \sim \sqrt{\frac{3\pi}{2n}} \sum_{k=0}^\infty \frac{c_k}{(2n)^k} \quad (n \to \infty).
\]
3. An asymptotic estimate of another sine-integral

In this section we consider the following integral

\[K_n = \int_0^\infty e^{-ax} \left(1 - \frac{\sin^2 x}{x^2}\right)^n \, dx \quad (a > 0) \quad (3.1) \]

for \(n \to \infty \) (not necessarily an integer) when the parameter \(a = O(1) \). We express \(K_n \) as a Laplace-type integral in the form

\[K_n = \int_0^\infty e^{-n\psi(x)} f(x) \, dx, \]

where

\[\psi(x) = -\log \left(1 - \frac{\sin^2 x}{x^2}\right), \quad f(x) = e^{-ax}. \]

For large \(n \) the exponential factor in the integrand consists of a series of peaks situated at \(x = k\pi, \ (k = 1, 2, \ldots) \) of decreasing height controlled by the decay of \(f(x) \); see Fig. 1 for a typical example. This is in marked contrast to the situation pertaining to the integral \(I_n \) in (1.1), where the second and successive peaks are of height \(O((k\pi)^{-n}) \) \((k \geq 1)\) and so are exponentially smaller than the (half) peak in \([0, \pi]\). Routine calculations show that

\[\psi''(k\pi) = \frac{2}{(k\pi)^2}, \quad \psi'''(k\pi) = -\frac{12}{(k\pi)^3}, \quad \psi^{iv}(k\pi) = \frac{82}{(k\pi)^4} - \frac{8}{(k\pi)^2}. \]

Application of the two-term saddle-point approximation to the \(k \)th peak then yields the approximate contribution [5, p. 48], [6, §1.2.3]

\[2 \sqrt{\frac{\pi}{2n\psi''(k\pi)}} \left\{ 1 + \frac{c_2}{n} \right\} e^{-k\pi a} = k\pi \sqrt{\frac{\pi}{n}} \left\{ 1 + \frac{c_2}{n} \right\} e^{-k\pi a}, \]

Figure 1: Plot of the integrand in (3.1) when \(n = 5000 \) and \(a = 1/6 \) with horizontal scale \(\pi x \). The dashed curve represents \(e^{-\pi ax} \).
Asymptotic expansion of an integral

where

\[c_2 = \frac{1}{2\psi''} \left(\frac{2f''}{f} - 2\psi'' f' \left(f'' - \frac{5\psi''^2}{6\psi'^2} - \frac{\psi'^3}{2\psi'} \right) \right) \]

with all derivatives being evaluated at \(x = k\pi \). This yields

\[c_2 = \frac{1}{4} \left\{ 2(1 + a^2)(k\pi)^2 - 12ak\pi + 9 \right\} \]

Summing over all the peaks we then obtain

\[K_n \sim \pi \sqrt{\frac{\pi}{n}} \left\{ \sigma_1 + \frac{1}{8n} \left(2\pi^2(1 + a^2)\sigma_3 - 12\pi a\sigma_2 + 9\sigma_1 \right) \right\} \]

where

\[\sigma_m := \sum_{k=1}^{\infty} k^m e^{-k\pi a}. \]

We have

\[\sigma_1 = \frac{1}{4\sinh^2 \frac{1}{2}\pi a}, \quad \sigma_2 = \frac{\cosh \frac{1}{2}\pi a}{4\sinh^3 \frac{1}{2}\pi a}, \quad \sigma_3 = \frac{2 + \cosh \frac{1}{2}\pi a}{8\sinh^4 \frac{1}{2}\pi a}. \]

Hence we obtain our final estimate in the form

\[K_n \sim \pi^{3/2} \frac{3}{4n^{1/2}} \left(1 + \frac{T_1}{8n} \right) \coth^2 \frac{1}{2}\pi a \quad (n \to \infty), \quad (3.2) \]

where

\[T_1 = 9 - 12\pi a \coth \frac{1}{2}\pi a + \pi^2(1 + a^2) \left(\frac{2 + \cosh \frac{1}{2}\pi a}{\sinh^2 \frac{1}{2}\pi a} \right) \]

with \(a > 0 \) fixed and of \(O(1) \).

In Table 2 we show computed values of \(K_n \) compared with the asymptotic estimate \((3.2) \) for different values of \(n \) and the parameter \(a \). It is seen that the agreement is quite good and improves with increasing \(n \). However, since \(\psi''(k\pi) \) scales like \(k^{-2} \), the peaks progressively broaden as \(k \) increases with the consequence that the saddle-point approximation eventually breaks down. In addition, the parameter \(a \) cannot be too small on account of the fact that the envelope of the minima of the integrand, given by \(e^{-ax}(1 - \cos^2 x/x^2)^n \), presents a maximum value at \(x \simeq (2n/a)^{1/3} \) equal to approximately \(\exp \left[-\frac{1}{3}(2na^2)^{1/3} \right] \). We require this last quantity to be small for the satisfactory estimation of each peak. This results in the condition \(a \gg (2n)^{-1/2} \).

A closely related integral is

\[K_n = \int_1^{\infty} e^{-ax} \left(1 - \frac{\cos^2 x}{x^2} \right)^n \, dx. \]

The peaks in the graph of the integrand are similar to those indicated in Fig. 1 but now occur at \(x = (k + \frac{1}{2})\pi, \, k = 0, 1, 2, \ldots \). The lower limit of integration is chosen and to lie in the interval \((\delta, \frac{1}{2}\pi - \delta) \) (with \(\delta > 0 \)) so as to avoid the origin and \(\frac{1}{2}\pi \). With \(\psi(x) = -\log(1 - \cos^2 x/x^2) \) we find

\[\psi''((k + \frac{1}{2})\pi) = \frac{2}{(k + \frac{1}{2})^2 \pi^2}. \]
Table 2: Values of K_n compared with asymptotic estimate (3.2).

n	K_n	Asymptotic	K_n	Asymptotic
100	0.02707847	0.02689533	0.00523230	0.00521489
200	0.01884203	0.01880232	0.00364706	0.00364449
500	0.01181371	0.01180983	0.00228888	0.00228866
1000	0.00588457	0.00588447	0.00114026	0.00114025
4000	0.002921970	0.002921838	0.00080580	0.00080580

Then by similar arguments we obtain the leading asymptotic approximation

$$\tilde{K}_n \sim \pi e^{-\pi a/2} \sqrt{n} \sum_{k=0}^{\infty} (k + 1/2) e^{-k \pi a} = \frac{\pi^{3/2} \cosh \frac{1}{2} \pi a}{4n^{1/2} \sinh \frac{1}{2} \pi a} \quad (n \to \infty).$$

4. An asymptotic expansion for Ball’s integral

Ball’s integral is given by [1]

$$L(\nu; n) = \int_0^\infty \left(\frac{\Gamma(1 + \nu) J_\nu(x)}{x^{\nu}} \right)^n x^{2\nu - 1} dx, \quad n \geq 2, \ \nu \geq \frac{1}{2}, \quad (4.1)$$

where $J_\nu(x)$ is the Bessel function of the first kind and n is not necessarily an integer. In the case $\nu = \frac{1}{2}$ and integer values of n the integral (4.1) (without the modulus signs) reduces to that in [1], since $\sqrt{\pi/(2x)} J_{1/2}(x) = \sin x/x$. The expansion of $L(\nu; n)$ for $n \to \infty$ has been derived in [1]; here we revisit this result by means of the transformation used in Section 1.

We divide the integration path into the intervals $[0, j_{\nu,1}]$ and $[j_{\nu,1}, \infty)$, where $j_{\nu,1}$ denotes the first zero of $J_\nu(x)$. In $[0, j_{\nu,1}]$, we have $J_\nu(x) \geq 0$ and the modulus signs may be dropped in this interval, where

$$\sigma(x) := \frac{\Gamma(1 + \nu) J_\nu(x)}{(x/2)^\nu} = \sum_{k=0}^{\infty} \frac{(-x^2/4)^k}{k!(\nu + 1)_k}$$
Asymptotic expansion of an integral

with \((a)_k = \Gamma(a + k)/\Gamma(a)\) being Pochhammer’s symbol. We set \(\psi(x) = -\log \sigma(x)\) in the interval \([0, j_{\nu,1}]\), so that the integral \((4.1)\) becomes

\[
L(\nu; n) = \int_0^{j_{\nu,1}} e^{-n\psi(x)} x^{2\nu - 1} dx + R_n(x),
\]

where

\[
R_n(x) = \int_{j_{\nu,1}}^{\infty} \left(\frac{\Gamma(1 + \nu)|J_\nu(x)|}{(x/2)^\nu} \right)^n x^{2\nu - 1} dx.
\]

The tail of the integral \(R_n(x)\) satisfies the bound

\[
|R_n(x)| < (2\nu\Gamma(1 + \nu))^n \int_{j_{\nu,1}}^{\infty} \frac{dx}{x^{(n-2)\nu + 1}} = \left(\frac{2\nu\Gamma(1 + \nu)}{j_{\nu,1}'} \right)^n \frac{j_{\nu,1}^2}{(n - 2)\nu}
\]

since \(|J_\nu(x)| \leq |J_\nu(j_{\nu,2}')| < 1\) in \([j_{\nu,1}, \infty)\), where \(j_{\nu,2}'\) is the second zero of \(J_\nu'(x)\). Defining the quantity

\[
\xi(\nu) := \frac{2\nu\Gamma(1 + \nu)}{j_{\nu,1}'},
\]

and noting that \(j_{\nu,1} = \pi\) when \(\nu = \frac{1}{2}\), we see that \(\xi(\frac{1}{2}) = 2^{-1/2}\). Use of Stirling’s approximation for the gamma function and the fact that [8, p. 485] \(j_{\nu,1} > \nu\), shows that \(\xi(\nu) \sim (2/\pi)^\nu \sqrt{2\pi\nu} \to 0\) as \(\nu \to \infty\). A plot of \(\xi(\nu)\) for \(\nu \geq \frac{1}{2}\) is shown in Fig. 2 where it is seen that \(\xi(\nu)\) decreases monotonically with increasing \(\nu\). Thus as \(n \to \infty\), the bound on \(R_n(x)\) when \(\nu \geq \frac{1}{2}\) is of \(O(n^{-1/2})\) and so is exponentially small.

![Figure 2: Plot of \(\xi(\nu)\) against \(\nu \geq \frac{1}{2}\).](image)

We now deal with the integral in \((4.2)\), where we note that \(\psi(0) = 0\) and \(\psi(j_{\nu,1}) = \infty\). Making the substitution \(\tau^2 = \psi(x)\), we obtain

\[
L(\nu; n) = \int_0^{\infty} e^{-n\tau^2} x^{2\nu - 1} \frac{dx}{d\tau} d\tau + R_n(x).
\]

\(^1\)It is found that \(\xi(\nu)\) is monotonically decreasing on \([0, \infty)\) with \(\xi(\nu) < 1\) for \(\nu > 0\).
From the expansion
\[\tau^2 = \psi(x) = \frac{x^2}{4(1 + \nu)} + \frac{x^4}{32(1 + \nu)^2(2 + \nu)} + \frac{x^6}{96(1 + \nu)^3(2 + \nu)(3 + \nu)} + \cdots \]
valid for \(x < j_{\nu,1} \), we find upon inversion
\[x = 2(1 + \nu)^{1/2} \left\{ \tau - \frac{\tau^3}{4(2 + \nu)} - \frac{(1 + 11\nu)\tau^5}{96(2 + \nu)^2(3 + \nu)} - \frac{(17\nu^2 - 9\nu - 20)\tau^7}{128(2 + \nu)^3(3 + \nu)(4 + \nu)} + \cdots \right\}. \]

The last expansion holds in \(\tau < \tau_0 \), where \(\tau_0^2 = \log 1/\sigma(j_{\nu,2}) \), since \(x = j_{\nu,2} \) is the nearest point in the mapping \(x \mapsto t \) where \(dx/d\tau \) is singular (the point \(x = j_{\nu,1} \) maps to \(\infty \) in the \(\tau \)-plane). This then yields the expansions
\[
x^{2\nu - 1} = (2(1 + \nu)^{1/2}\tau)^{2\nu - 1} \left\{ 1 - \frac{(2\nu - 1)\tau^2}{4(2 + \nu)} + \frac{(2\nu - 1)(6\nu^2 + \nu - 19)\tau^4}{96(2 + \nu)^2(3 + \nu)} - \frac{(2\nu - 1)^2(2\nu^2 - \nu^2 - 17\nu - 20)\tau^6}{384(2 + \nu)^3(3 + \nu)(4 + \nu)} + \cdots \right\}
\]
and
\[
\frac{dx}{d\tau} = 2(1 + \nu)^{1/2} \left\{ 1 - \frac{3\tau^2}{2(2 + \nu)} - \frac{5(1 + 11\nu)\tau^4}{48(2 + \nu)^2(3 + \nu)} - \frac{7(17\nu^2 - 9\nu - 20)\tau^6}{128(2 + \nu)^3(3 + \nu)(4 + \nu)} + \cdots \right\}.
\]

Combination of these last two expansions then produces
\[
x^{2\nu - 1} \frac{dx}{d\tau} = 2^{2\nu}(1 + \nu)^{\nu} x^{2\nu - 1} \sum_{k=0}^{\infty} \left(\frac{-1}{k} b_k \tau^{2k} \right) \quad (\tau < \tau_0), \quad (4.4)
\]
where
\[
b_0 = 1, \quad b_1 = \frac{1 + \nu}{2(2 + \nu)}, \quad b_2 = \frac{3\nu^2 + 2\nu - 5}{24(2 + \nu)(3 + \nu)}, \quad b_3 = \frac{(1 + \nu)(\nu^3 - \nu^2 - 4\nu - 8)}{48(2 + \nu)^3(4 + \nu)},
\]
\[
b_4 = \frac{15\nu^7 + 15\nu^6 - 220\nu^5 - 918\nu^4 + 763\nu^3 + 15055\nu^2 + 26898\nu + 13688}{5760(2 + \nu)^3(3 + \nu)^2(5 + \nu)}, \ldots.
\]

Insertion of the expansion (4.4) into the integral in (4.3) yields
\[
2^{2\nu}(1 + \nu)^{\nu} \int_0^\infty e^{-\nu^2 \tau^{2\nu - 1}} \sum_{k=0}^{\infty} \left(\frac{-1}{k} b_k \tau^{2k} \right) d\tau \sim 2^{2\nu - 1}(1 + \nu)^{\nu} \Gamma(\nu) \sum_{k=0}^{\infty} \left(\frac{-1}{k} b_k \right)_k \frac{(-1)^k}{n^{k+\nu}}.
\]
As in Section 1, this will be a divergent expansion as we have integrated beyond the circle of convergence of \(x^{2\nu - 1} dx/d\tau \).

Thus, neglecting exponentially small terms we finally obtain the expansion
\[
L(\nu; n) \sim 2^{2\nu - 1}(1 + \nu)^{\nu} \Gamma(\nu) \sum_{k=0}^{\infty} \left(\frac{-1}{k} c_k \right)_k \frac{(-1)^k}{n^{k+\nu}} \quad (n \to \infty), \quad (4.5)
\]
where the first few coefficients \(c_k := b_k(n)\) are

\[
c_0 = 1, \quad c_1 = \frac{\nu(1 + \nu)\nu_1(\nu)}{2(2 + \nu)} , \quad c_2 = \frac{\nu(1 + \nu)\nu_2(\nu)}{24(2 + \nu)(3 + \nu)} , \quad c_3 = \frac{\nu(1 + \nu)\nu_3(\nu)}{48(2 + \nu)^2(4 + \nu)} ,
\]

\[
c_4 = \frac{\nu(1 + \nu)\nu_4(\nu)}{5760(2 + \nu)^3(3 + \nu)(5 + \nu)} , \quad c_5 = \frac{\nu(1 + \nu)\nu_5(\nu)}{11520(2 + \nu)^4(3 + \nu)(6 + \nu)} , \quad c_6 = \frac{\nu(1 + \nu)\nu_6(\nu)}{2903040(2 + \nu)^5(3 + \nu)^2(4 + \nu)(7 + \nu)} ,
\]

with the polynomials \(\nu_k(\nu)\) given by

\[
\begin{align*}
\nu_1(\nu) &= 1, \quad \nu_2(\nu) = 3\nu^2 + 2\nu - 5, \quad \nu_3(\nu) = (1 + \nu)(\nu^3 - \nu^2 - 4\nu - 8), \\
\nu_4(\nu) &= 15\nu^7 + 15\nu^6 - 220\nu^5 - 918\nu^4 + 763\nu^3 + 15055\nu^2 + 26898\nu + 13688, \\
\nu_5(\nu) &= 3\nu^9 - 7\nu^8 - 60\nu^7 - 246\nu^6 + 2307\nu^5 + 6825\nu^4 - 43668\nu^3 - 118508\nu^2 - 89904\nu - 19392, \\
\nu_6(\nu) &= 63\nu^{13} - 3276\nu^{11} + 16856\nu^{10} - 131726\nu^9 + 781856\nu^8 - 4685840\nu^7 - 14835768\nu^6 \\
&\quad + 104879595\nu^5 + 322760624\nu^4 - 328990364\nu^3 - 1748824256\nu^2 - 1801386304\nu - 590749440.
\end{align*}
\]

The first coefficients (with \(k \leq 3\)) agree with those found by Kerman et al. [4]. It is easily verified that when \(\nu = \frac{1}{2}\) the above coefficients agree with those listed in Table 1.

The estimate for the tail of the integral over the interval \([2^{\nu}T(1 + \nu), \infty)\) in [4], however, is only \(O(n^{-1})\), which is not sufficiently sharp to justify the expansion of the main integral beyond its leading term. We have demonstrated that the tail of the integral [4] is exponentially small as \(n \to \infty\).

An obvious extension of [4] is the integral

\[
\mathcal{L}(\nu, a; n) = \int_0^\infty \left(\frac{\Gamma(1 + \nu)(J_{\nu}(x))}{(x/2)^{\nu}} \right)^n x^{a-1} dx, \quad a > 0,
\]

where \(a\) is fixed and it is assumed that \(n\) satisfies the condition \(n(\nu + \frac{1}{2}) > a\) to secure convergence at infinity. The procedure described above then produces the expansion (when exponentially small terms are neglected)

\[
\mathcal{L}(\nu, a; n) \sim 2^{a-1}(1 + \nu)^{a/2} \Gamma\left(\frac{1}{2}a\right) \sum_{k=0}^\infty \frac{(-1)^k d_k}{\eta^{k+a/2}} \quad (n \to \infty), \quad (4.6)
\]

where the first few coefficients \(d_k\) are given by

\[
d_0 = 1, \quad d_1 = \frac{\left(\frac{1}{2}a\right)}{2(2 + \nu)}, \quad d_2 = \frac{\left(\frac{1}{2}a\right)}{48(2 + \nu)^2(3 + \nu)}((3a - 14)\nu + 9a - 10),
\]

\[
d_3 = \frac{\left(\frac{1}{2}a\right)}{192(2 + \nu)^3(3 + \nu)(4 + \nu)} \left((a^2 - 14a + 64)\nu^2 + (7a^2 - 66a + 32)\nu + 4(a - 4)(3a + 2) \right),
\]

\[
d_4 = \frac{\left(\frac{1}{2}a\right)}{46080(2 + \nu)^4(3 + \nu)^2(4 + \nu)(5 + \nu)} \left(15a^3 - 420a^2 + 4820a - 23824\nu^4 \\
+ (225a^3 - 5340a^2 + 42860a - 65776)\nu^3 + (1245a^3 - 23340a^2 + 103740a + 100560)\nu^2 \right)
\]
Table 3: Values of the absolute relative error in the computation of $\mathcal{L}(\nu, a; n)$ against truncation index k when $\nu = 4/3$ and $n = 100$.

k	$a = 8/3$	$a = 2/3$	$a = 10/3$
0	4.664×10^{-03}	6.676×10^{-04}	6.565×10^{-03}
1	2.738×10^{-06}	8.987×10^{-07}	1.047×10^{-05}
2	3.307×10^{-08}	6.661×10^{-10}	6.041×10^{-08}
3	4.006×10^{-10}	2.405×10^{-11}	5.961×10^{-10}
4	2.914×10^{-12}	3.655×10^{-13}	2.743×10^{-12}

$$+(3015a^3 - 39300a^2 + 45940a + 252784)\nu + 2700a^3 - 18000a^2 - 18800a + 109504 \right)$$

When $a = 2\nu$, it is seen that the d_k reduce to the coefficients c_k ($k \leq 4$) appearing in the expansion (4.6).

In Table 2 we present the values of the absolute relative error in the evaluation of $\mathcal{L}(\nu, a; n)$ using the expansion (4.6) for different truncation index k. The first column shows the values $\nu = 4/3$, $a = 8/3$, which corresponds to the integral (4.1).

References

[1] K. Ball, Cube slicing in \mathbb{R}^n, Proc. Amer. Math. Soc. 87 (1986) 465–473.
[2] E.T. Copson, *Asymptotic Expansions*, Cambridge University Press, Cambridge, 1965.
[3] H. Kaiser, Private communication, 2020.
[4] R. Kerman, R. Ol’Hava and S. Spektor, An asymptotically sharp form of Ball’s integral inequality, Proc. Amer. Math. Soc. 143 (2015) 3839–3846.
[5] F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark (eds.), *NIST Handbook of Mathematical Functions*, Cambridge University Press, Cambridge, 2010.
[6] R.B. Paris, *Hadamard Expansions and Hyperasymptotic Evaluation*, Cambridge University Press, Cambridge, 2011.
[7] J-C. Schlage-Puchta, Asymptotic evaluation of $\int_0^\infty (\sin x/x)^n dx$, Commun. Korean Math. Soc. 35 (2020) 1193–1202.
[8] G.N. Watson, *A Treatise on Bessel Functions*, Cambridge University Press, Cambridge, 1952.