Anderson Localization of cold atomic gases with effective spin-orbit interaction in a quasiperiodic optical lattice

Lu Zhou1,2, Han Pu2 and Weiping Zhang1
1 Quantum Institute for Light and Atoms, Department of Physics, East China Normal University, Shanghai 200062, China and 2 Department of Physics and Astronomy, and Rice Quantum Institute, Rice University, Houston, TX 77251-1892, USA

We theoretically investigate the localization properties of a spin-orbit coupled spin-1/2 particle moving in a one-dimensional quasiperiodic potential, which can be experimentally implemented using cold atoms trapped in a quasiperiodic optical lattice potential and external laser fields. We present the phase diagram in the parameter space of the disorder strength and those related to the spin-orbit coupling. The phase diagram is verified via multifractal analysis of the atomic wavefunctions and the numerical simulation of diffusion dynamics. We found that spin-orbit coupling can lead to the spectra mixing (coexistence of extended and localized states) and the appearance of mobility edges.

PACS numbers: 03.75.Lm, 71.70.Ej, 72.15.Rn, 03.75.Kk

I. INTRODUCTION

Anderson localization (AL) is considered as a fundamental physical phenomenon, which was first studied in the system of noninteracting electrons in a crystal with impurities [1]. AL predicts the absence of diffusion of electronic spin, which stems from the disorder of crystal and is the result of quantum interference. Since disorder is ubiquitous, AL is rather universal and can occur in a variety of other physical systems including light waves [2] and atomic matter-waves [3–5]. Due to its intimate relation with metal-insulator transition, many interesting topics in AL such as the interplay between nonlinearity and disorder [6–9] are still under intense study.

In condensed-matter physics, spin-orbit (SO) coupling originates from the interaction between the intrinsic spin of an electron and the magnetic field induced by its movement. It connects the electronic spin to its orbital motion and thus the electron transport becomes spin-dependent. SO interaction can significantly affect AL and this problem had been addressed by a few works in the electronic gas system [10, 11].

The experimental realization of ultracold quantum gases, together with the technique of optical lattice potential, have provided a powerful playground for the simulation of condensed-matter systems. In this composite system, one can achieve unprecedented control over almost all parameters by optical or magnetic means. Specifically, pseudo-disorder can be generated by superimposing two standing optical waves of incommensurate wavelengths together. As a consequence, AL of atomic matter wave can take place, which had been experimentally observed [5, 6–8] and extensively studied in theory [9, 12].

This work is motivated by the recent experimental realization of SO coupling in ultracold atomic gas [13–15]. We investigate the impact of SO coupling on Anderson localization of a spin-1/2 particle using the system of cold atomic gases trapped in a quasiperiodic one-dimensional (1D) optical lattice potential and simultaneously subject to the laser-induced SO interaction. The similar topic had also been addressed in [17, 18], with the focus on the localization properties of relativistic Dirac particles with cold atoms in a light-induced gauge field. Our model and method are different from theirs and we do not consider the relativistic region.

The paper is organized as follows. Sec. II introduces the theoretical model and tight-binding approximation is applied in Sec. III. In Sec. IV we present the phase diagram and discuss its implications. Sec. V is devoted to the multifractal analysis of the atomic wavefunction, from which the proposed phase diagram is verified. The diffusion dynamics is studied in Sec. VI for a initially localized Gaussian wavepacket. Finally we conclude in Sec. VII.

II. MODEL AND HAMILTONIAN

We consider the following model depicted in Fig. I. cold atomic gas with internal spin states $|\uparrow\rangle$ and $|\downarrow\rangle$ confined in a spin-independent 1D quasiperiodic optical lattice potential $s_1E_{R1}\sin^2(k_1x)+s_2E_{R1}\sin^2(k_2x+\phi)$ along the x-direction, which is formed by combining two incommensurate optical lattice together [5]. Here $k_1=2\pi/\lambda_1$ is the lattice wavenumber, s_i is the height of the lattice in unit of the recoil energy $E_{R1}=h^2/2m\lambda_1^2$ and ϕ is the relative phase between the two standing-wave modes (without loss of generality, we assume $\phi=0$ in the following discussion). It is assumed that the depth of the lattice with wavevector k_1 is deep enough to serve as the tight-binding primary lattice. In the meanwhile, a pair of counter propagating Raman beams couple the atomic states $|\uparrow, k_x=q\rangle$ and $|\downarrow, k_x=q+2k_R\rangle$, which creates the effective SO coupling [13].

In the basis composed of atomic pseudo-spin states...
FIG. 1: (Color online) Schematic diagram showing the system under consideration.

\{ |↑\rangle, |↓\rangle \}, the single-particle Hamiltonian reads

\[
|\hat{h}| = \left[\frac{p_x^2}{2m} + s_1 E_{R1} \sin^2 (k_1 x) + s_2 E_{R1} \sin^2 (k_2 x) \right] \hat{I} \\
+ \frac{\Omega}{2} \left(\begin{array}{cc} 0 & e^{2ik_R x} \\ e^{-2ik_R x} & 0 \end{array} \right),
\]

with \(\Omega \) the effective Raman coupling strength. Here we have assumed that the Raman two-photon detuning is 0. Then introduce the dressed pseudospin states \(\{ |↑'\rangle = |↑\rangle e^{iR_x \hat{\sigma}_z}, |↓'\rangle = |↓\rangle e^{iR_x \hat{\sigma}_z} \} \), which is equivalent to performing a pseudo-spin rotation with the operator \(\hat{R}(R_x) = \exp (-ik_R \hat{\sigma}_z) \), and perform a global pseudo-spin rotation \(\hat{\sigma}_z \rightarrow \hat{\sigma}_y, \hat{\sigma}_y \rightarrow \hat{\sigma}_z \). In the new basis, Hamiltonian \(\hat{h} \) can then be rewritten as

\[
\hat{h} = \hat{h}_{SO} + V = \left(\frac{p_x - \hat{A}}{2m} \right)^2 + \frac{\Omega}{2} \hat{\sigma}_z + s_1 E_{R1} \sin^2 (k_1 x) \\
+ s_2 E_{R1} \sin^2 (k_2 x),
\]

in which \(\hat{h}_{SO} \) describes single-particle motion in the presence of the effective SO coupling, which is embodied in the vector potential \(\hat{A} = -m \lambda \hat{\sigma}_y \) (\(\lambda = \hbar k_R / m \) characterize SOC strength) and the effective Zeeman field \(\Omega / 2 \).

\(\hat{h} \) effectively describes a spin-1/2 particle moving in a 1D quasiperiodic potential and subject to both the Zeeman field and equal Rashba-Dresselhaus SO coupling, which can be used to simulate the corresponding condensed matter system such as the motion of electron in one dimensional semiconductor nanowire with disorder and SO interactions.

III. TIGHT-BINDING APPROXIMATION

In the language of quantum field theory, the total Hamiltonian describing our system reads

\[
\hat{H}(x) = \int dx \hat{\Psi}^\dagger(x) \hat{h}(x) \hat{\Psi}(x),
\]

with \(\hat{\Psi} = (\hat{\psi}_{↑}, \hat{\psi}_{↓})^\dagger \) the atomic field operators.

In the tight-binding limit, the atomic field operator can be expanded as \(\hat{\Psi}(x) = \sum_j \hat{w}_j(x) \hat{c}_j \), where \(\hat{w}_j(x) = w(x - x_j) \) is the Wannier state of the primary lattice at the \(j \)-th site and \(\hat{c}_j = (\hat{c}_{↑,j}, \hat{c}_{↓,j})^\dagger \) are annihilation operators. By considering that the tunneling takes place between nearest neighbour sites and retaining only the onsite contribution of the secondary lattice, one can achieve the following description of \(\hat{\Psi} \) (with the energy measured in units of \(E_{R1} \) and length scaled in units of \(1/k_1^{-1} \))

\[
\hat{H} = \sum_j \left\{ - \left(\hat{c}_{j+1}^\dagger \hat{c}_{j+1} + H.c. \right) - \Delta \cos (2\pi \beta j) \hat{c}_{j+1}^\dagger \hat{c}_j \right\} \\
+ \sum_j \left\{ - J \left[\hat{c}_{j+1}^\dagger (\cos \pi \gamma - i \hat{\sigma}_y \sin \pi \gamma) \hat{c}_{j+1} + H.c. \right] - \Delta \cos (2\pi \beta j) \hat{c}_{j+1}^\dagger \hat{c}_j \right\},
\]

where the tunneling amplitude \(\hat{T} = J \exp (-i/h \int d\ell) \) is obtained through Peierls substitution \[19, 20\], which was also used in recent works to study the impact of SO coupling on two-dimensional Bose-Hubbard model \[21, 22\].

\(\int d\ell = \hat{A}(x_j - x_{j+1}) = \hbar \pi \gamma \hat{\sigma}_y \) is the integral of the vector potential along the hopping path with \(\gamma = k_R / k_1 \). \(J \) is the tunneling amplitude without SO coupling, \(\beta = k_2 / k_1 \). \(J \) and \(\Delta \) can be calculated as

\[
J = - \int dx w_{j+1}(x) \left(- \frac{d^2}{dx^2} + s_1 \sin^2 x \right) w_j(x),
\]

\[
\Delta = \frac{s_2 \beta^2}{2} \int dx \cos (2\beta x) |w(x)|^2.
\]
By writing $|\psi\rangle = \sum_{j,\sigma} \psi_{j,\sigma} c_{j,\sigma}^\dagger |0\rangle$, the stationary Schrödinger equation $\hat{H} |\psi\rangle = E |\psi\rangle$ lead to

\begin{align}
-J \cos(\pi\gamma) (\psi_{j+1,\uparrow} + \psi_{j-1,\uparrow}) - J \sin(\pi\gamma) (\psi_{j+1,\downarrow} - \psi_{j-1,\downarrow}) - \Delta \cos(2\pi\beta j) \psi_{j,\uparrow} + \frac{\Omega}{2} \psi_{j,\uparrow} = E \psi_{j,\uparrow}, \\
-J \cos(\pi\gamma) (\psi_{j+1,\downarrow} + \psi_{j-1,\downarrow}) + J \sin(\pi\gamma) (\psi_{j+1,\uparrow} - \psi_{j-1,\uparrow}) - \Delta \cos(2\pi\beta j) \psi_{j,\downarrow} - \frac{\Omega}{2} \psi_{j,\downarrow} = E \psi_{j,\downarrow}.
\end{align}

The second terms on the left hand side of Eqs. (4), which are proportional to $J \sin(\pi\gamma)$, represent the spin-flipping tunneling which arises from the effective SO interaction. In the absence of SO coupling ($\gamma = 0$, $\Omega = 0$), spin-\uparrow and \downarrow components are decoupled and we have

\begin{align}
-J (\psi_{j+1} + \psi_{j-1}) - \Delta \cos(2\pi\beta j) \psi_j = E \psi_j,
\end{align}

which represents the typical Harper equation [24] or the Aubry-André model [25]. Eq. (4) satisfies Aubry duality, as can be seen by performing the transformation $\psi_j = \sum_m \tilde{\psi}_{m,j} e^{i m (2\pi\beta j)}$, insert it into Eq. (4) will lead to

\begin{align}
-\frac{\Delta}{2} (\tilde{\psi}_{m+1,j} + \tilde{\psi}_{m-1,j}) - 2J \cos(\pi\beta m) \tilde{\psi}_{m,j} = E \tilde{\psi}_{m,j},
\end{align}

Eqs. (5) and (6) are identical at $\Delta/J = 2$. Since the transformation made above represents the typical Fourier transform which transforms localized states to extended states and vice versa, then the critical point $\Delta/J = 2$ is identified as the transition point between the localized states and extended states, i.e., all the single-particle states are extended when $\Delta/J < 2$ and localized when $\Delta/J > 2$.

The properties of the Aubry-André model, as represented by Eq. (4), have been theoretically studied [26, 27] and it can be implemented in systems of Bloch electrons [20] and cold atoms [3]. We have also studied this model with Δ dressed by a cavity field through nonlinear feedback [9].

A similar transformation $\psi_{j,\sigma} = \epsilon_\sigma \sum_m \tilde{\psi}_{m,j,\sigma} e^{i m (2\pi\beta j)}$ ($\epsilon_\uparrow = 1, \epsilon_\downarrow = i$) made to Eqs. (3) will lead to

\begin{align}
-\frac{\Delta}{2} (\tilde{\psi}_{m+1,j,\uparrow} + \tilde{\psi}_{m-1,j,\uparrow}) + 2J \sin(\pi\gamma) \sin(2\pi\beta m) \tilde{\psi}_{m,j,\downarrow} - 2J \cos(\pi\gamma) \cos(2\pi\beta m) \tilde{\psi}_{m,j,\uparrow} + \frac{\Omega}{2} \tilde{\psi}_{m,j,\uparrow} = E \tilde{\psi}_{m,j,\uparrow}, \\
-\frac{\Delta}{2} (\tilde{\psi}_{m+1,j,\downarrow} + \tilde{\psi}_{m-1,j,\downarrow}) + 2J \sin(\pi\gamma) \sin(2\pi\beta m) \tilde{\psi}_{m,j,\uparrow} - 2J \cos(\pi\gamma) \cos(2\pi\beta m) \tilde{\psi}_{m,j,\downarrow} - \frac{\Omega}{2} \tilde{\psi}_{m,j,\downarrow} = E \tilde{\psi}_{m,j,\downarrow}.
\end{align}

IV. PHASE DIAGRAM ANALYSIS

Here we follow the method in [11] to map the phase diagram using a quantity called the total width of all the energy bands B, which had been proved to be useful in investigating phase transition in a quasiperiodic system [11, 24, 27]. In order to observe its property, as people usually do, we first choose the optical lattice wavelength β to be $\beta_n = F_n/F_{n+1} = p/q$, in which F_n is the n-th Fibonacci number defined by the recursion relation $F_{n+1} = F_n + F_{n-1}$ with $F_0 = F_1 = 1$. When $n \to \infty$, $\beta_n \to (\sqrt{5} - 1)/2$, which is the inverse of the golden ratio.

Since p and q are integers prime to each other, the system is periodic with the period q. Under the periodic boundary condition, according to Bloch’s theorem, $\psi_{1+q,\sigma} = e^{ik_0 q} \psi_{1,\sigma}$. Eqs. (3) then reduce to an eigenvalue problem $\mathcal{H} \psi = E \psi$ with $\psi = (\psi_{1,\uparrow}, \psi_{1,\downarrow}, \psi_{2,\uparrow}, \psi_{2,\downarrow}, \cdots, \psi_{q-1,\uparrow}, \psi_{q-1,\downarrow}, \psi_{q,\uparrow}, \psi_{q,\downarrow})$ and the $2q \times 2q$ matrix \mathcal{H} takes the following form.
Localized phase is characterized by purely dense point eigenstates coexist with localized ones. Using the method described above, Δ_0 is determined as a function of Ω, which is indicated in the phase diagram of Fig. 2 by the line separating the regions signaling localized phase and critical phase. Calculation is performed with the parameter of $\gamma = 0.7$, which is used throughout the paper and can be experimentally realized for 87Rb atoms by adjusting the angle between Raman beams [13]. At $\Omega = 0$, AL transition occurs at $\Delta/J = 2$, reminiscent of the situation without SO coupling. This can be understood from Eq. (1) by that SO interaction can be removed from the Hamiltonian through a unitary transformation with the operator $\hat{S} = \exp(-i\pi \sigma_y/2\xi)$ when $\Omega = 0$. Examples of data are shown in Fig. (a). At $\Delta/J = 2.02$, B tends to zero for $\Omega < \Omega_0(\Delta_c)$ and B tends to a finite value for $\Omega > \Omega_0(\Delta_c)$.

Due to that duality is broken by the SO coupling here, the boundary between extended phase and critical phase is not related to that separates localized phase and critical phase, which is different from [11]. The extended phase and critical phase cannot be differentiated by examining the properties of B, since the energy spectrum contain absolutely continuous parts in both these two phases, which leads B to a finite value in the quasiperiodic limit, as shown in Fig. (b).

FIG. 2: (Color online) Phase diagram for Anderson localization of SO coupled BEC in 1D quasiperiodic lattice in the parameter space Δ-Ω. $\gamma = 0.7$, Δ and Ω are estimated in units of J.

Now taking SO coupling into account, we anticipate that the phase diagram is composed of three different phases: (i) Extended phase in which the energy spectrum is purely continuous and all the eigenstates are extended; (ii) Localized phase is characterized by purely dense point and all the wavefunctions are localized; (iii) The energy spectrum is mixed in the critical phase with extended eigenstates coexist with localized ones. Using the method described above, Δ_0 is determined as a function of Ω, which is indicated in the phase diagram of Fig. 2 by the line separating the regions signaling localized phase and critical phase. Calculation is performed with the parameter of $\gamma = 0.7$, which is used throughout the paper and can be experimentally realized for 87Rb atoms by adjusting the angle between Raman beams [13]. At $\Omega = 0$, AL transition occurs at $\Delta/J = 2$, reminiscent of the situation without SO coupling. This can be understood from Eq. (1) by that SO interaction can be removed from the Hamiltonian through a unitary transformation with the operator $\hat{S} = \exp(-i\pi \sigma_y/2\xi)$ when $\Omega = 0$. Examples of data are shown in Fig. 3. At $\Delta/J = 2.02$, B tends to zero for $\Omega < \Omega_0(\Delta_c)$ and B tends to a finite value for $\Omega > \Omega_0(\Delta_c)$.

To due that duality is broken by the SO coupling here, the boundary between extended phase and critical phase is not related to that separates localized phase and critical phase, which is different from [11]. The extended phase and critical phase cannot be differentiated by examining the properties of B, since the energy spectrum contain absolutely continuous parts in both these two phases, which leads B to a finite value in the quasiperiodic limit, as shown in Fig. 3(b).
For extended states, \(P^{-1} \rightarrow 1/N \) and approach 0 for large \(N \). While for localized states, IPR tends to a finite value and a larger value of \(P^{-1} \) means that the atoms are more localized in space.

We use IPR to determine the boundary separating the extended phase and critical phase, which is identified by the turning point of IPR as a function of \(\Delta/J \), as those had been done in many previous works [9, 12, 28, 30]. The calculation is performed with \(\beta = 610/987, N = 987, \gamma = 0.7 \) and (a) \(\Omega = 0.1 \); (b) \(\Omega = 1 \).

![Fig. 4: Eigenenergies obtained from numerical diagonalization of Hamiltonian matrix, as a function of \(\Delta/J \). Calculations are performed under periodic condition with \(\beta = 610/987, N = 987, \gamma = 0.7 \) and (a) \(\Omega = 0.1 \); (b) \(\Omega = 1 \).](image)

V. MULTIFRACTAL ANALYSIS OF WAVEFUNCTIONS

To check the proposed phase diagram, we investigate the scaling property of the wavefunctions using the method of multifractal analysis described in [11]. Take the period of the lattice to be Fibonacci number \(F_n \), from the wavefunctions \(\{\psi_{j,\sigma}\} \) we have the probability \(p_j = |\psi_{j,\uparrow}|^2 + |\psi_{j,\downarrow}|^2 \), which is normalized as \(\sum_{j=1}^{F_n} p_j = 1 \). The scaling index \(\alpha \) for \(p_j \) is defined as \(p_j = F_n^{-\alpha} \). We then assume that the number of sites satisfying the scaling is proportional to \(F_n^{\alpha} \), \(f(\alpha) \) can be calculated as \(f(\alpha) = \lim_{n \to \infty} f_n(\alpha) \).

The localization properties of wavefunctions are characterized by \(f(\alpha) \) in the following manner: For extended wavefunctions, all the lattice satisfy \(p_j \sim F_n^{-1} \), so \(f(\alpha) \) is fixed at \(f(\alpha = 1) = 1 \). On the other hand, a localized wavefunction has a nonvanishing probability only on a finite number of sites. These sites have \(\alpha = 0 \) \(f(0) = 0 \) and other sites with probability zero have \(\alpha = \infty \) \(f(\infty) = 1 \). For critical wavefunctions, \(\alpha \) has a distribution, which means that \(f(\alpha) \) is a smooth function defined on a finite interval \([\alpha_{\min}, \alpha_{\max}] \).

Numerically we calculate \(f_n(\alpha) \) for Fibonacci indices \(n \) and extrapolate them to \(n \to \infty \). One can then discriminate extended, localized and critical wavefunction by examining the minimum value of \(\alpha \) in the following manner

extended wavefunction \(\alpha_{\min} = 1 \),
critical wavefunction \(\alpha_{\min} \neq 0, 1 \),
localized wavefunction \(\alpha_{\min} = 0 \).

![Fig. 5: \(\alpha_{\min} \) versus \(1/n \) for the wavefunctions of the lowest band \(i = 1 \) and the centre band \(i = F_n \). (a) \(\Omega/J = 0.2, \Delta/J = 1.5 \); (b) \(\Omega/J = 0.4, \Delta/J = 1.5 \); (c) \(\Omega/J = 2.5, \Delta/J = 0.1 \) corresponds to extend phase, critical phase and localize phase, respectively. \(\alpha_{\min} \) is calculated for example wavefunctions and the results are shown in Fig. 5. The wavefunction of the lowest band is denoted by \(i = 1 \), while that at the centre](image)
of the energy spectrum is denoted by $i = F_n$. First, for $\Omega/J = 0.2$, $\Delta/J = 1.5$ at which the system is in the extended phase according to the phase diagram Fig. 2, α extraplates to 1 for both $i = 1$ and $i = F_n$, as shown in Fig. 5(a), indicating that the energy spectrum is purely continuous and all the wavefunctions are extended. The point $\Omega/J = 0.4$, $\Delta/J = 1.5$ corresponds to the critical phase in Fig. 2 and in Fig. 5(b) one can find out that α extraplates to 0 for $i = 1$ and α extraplates to 1 for $i = F_n$. This suggests that the wavefunction at the edge of the energy spectrum is localized while that at the centre is extended, which indicates the existence of mobility edges.

The appearance of mobility edges here can be understood as the result of the breaking of original self-duality via SO interaction, which can also be aroused by other effects such as hopping beyond neighbouring lattice sites $[29, 30]$. We would like to note that, even if the duality is preserved, SO coupling can also lead to the appearance of critical phase and mobility edges, as those had been demonstrated in $[11]$.

VI. DIFFUSION DYNAMICS

In realistic experiment, localization properties can be investigated by loading the SO-coupled BEC into the quasiperiodic potential and observing its transportation along the lattice $[3]$. The equations-of-motion associated with Eqns. $[3]$ are

$$\frac{\partial \Psi_j}{\partial t} = -J e^{-i\gamma \sigma_y} (\Psi_{j+1} + \Psi_{j-1}) + \left[-\Delta \cos(2\pi\beta j) + \frac{\Omega}{2} \sigma_z \right] \Psi_j,$$

where $\Psi_j = (\psi_{j,\uparrow}, \psi_{j,\downarrow})^T$. We study the diffusion of ultracold atomic gas in quasiperiodic optical lattice with Eq. $[4]$ by taking the initial atomic wavefunction to be a localized Gaussian wavepacket with width a

$$\Psi_j(t = 0) = (2a\sqrt{\pi})^{-1/2} e^{-j^2/2a^2} \begin{pmatrix} 1 \\ i \end{pmatrix},$$

in which we take $a = 5$ in the following calculation. Here we assume that the atomic wave packets initially lie in the centre at $j = 0$ with the system size of 2000 lattice sites. The numerical simulation is performed with vanishing boundary condition and during the time evolution the atomic wavepacket never reaches the boundaries so that the effect of boundary condition does not appear.

To measure the localization, we use the width of the wave-packet defined as

$$w = \sqrt{\langle (\Delta x)^2 \rangle} = \left\{ \sum_j j^2 \left(|\psi_{j,\uparrow}|^2 + |\psi_{j,\downarrow}|^2 \right) \right\}^{1/2}.$$

In the absence of SO coupling, the time evolution of $w(t)$ can be parametrized as $w(t) \sim t^\eta$ $[6, 31]$, and its property is intimately related to the localization properties of the system:

(i) in the extended phase of $\Delta/J < 2$, the wavepacket will experience ballistic expansion with $\eta = 1$;

(ii) at the critical point of $\Delta/J = 2$ the wavepacket subject to subdiffusion with $\eta \sim 0.5$;

(iii) the wavepacket is localized when $\Delta/J > 2$ and $\eta = 0$.

The above time-evolution properties are demonstrated in Fig. 6(a). In Fig. 6(b) we present the results in the presence of SO interaction. One can find out that, for $\Delta/J = 2.1$, which corresponds to the critical phase shown in Fig. 2, the wavepacket still subdiffuse with time evolution. In addition, the time evolution of wavepacket at sample time are shown in Fig. 7. At $\Delta/J = 1.5$ correspond to the system in the extended phase, the wavepacket rapidly diffuses and almost all the lattice sites become populated. While at $\Delta/J = 2.5$ for the localized phase of the system, there are no diffusion because in this regime the initial Gaussian wavepacket can be decomposed into the superposition of several single-particle localized eigenstates. For the system in the critical phase at $\Delta/J = 2.1$, the wavepacket diffusion is accompanied with solitonlike structures in the centre and spreading sideband, which reflects that extended and localized eigenstates coexist in the system.

Besides that, the nature of localized states can also be extracted from the momentum distribution of the atom stationary states. This is because a more localized atomic wavefunction corresponds to a wider momentum distribution via Fourier transformation. The momentum distribution can be measured by turning off the Raman lasers, releasing the atoms from the lattice and performing time-of-flight imaging. Since our above discussions are for the dressed spin states $\{\uparrow, k\}_d, \downarrow k\}_d$, their momentum distribution can be mapped from that of the bare spins $\{\uparrow, k + k_R\}$ and $\downarrow, k - k_R\}$ in the following
FIG. 7: Time evolution of wavepackets $|\psi_j, t|^2$ correspond to Fig. 6(b) at specific times.

In conclusion, we have studied the system of a SO-coupled spin-1/2 particle moving in a one-dimensional quasiperiodic potential. We mapped out the system phase diagram in the tight-binding regime and accordingly discussed the localization properties. In the absence of SO interaction the system can be mapped into the AA model and self-dual if $\Delta/J = 2$, SO interaction breaks the duality and leads to the appearance of critical phase, in which the extended and localized states coexist in the energy spectra. We also verified the phase diagram via multifractal analysis of the wavefunctions and diffusion dynamics of an initially localized Gaussian wavepacket. Experimental detection of localization properties are discussed. We proposed an experimental realization of the system using cold atomic gas trapped in a quasiperiodic optical lattice potential and external laser fields. Since the two ingredients of our proposed scheme, the quasiperiodic optical lattice potential [5] and SO coupling [13, 15, 16], had already been achieved for cold atoms, it is expected that the localization properties discussed in this work can be readily observed in experiment.

VII. CONCLUSION

In conclusion, we have studied the system of a SO-coupled spin-1/2 particle moving in a one-dimensional quasiperiodic potential. We mapped out the system phase diagram in the tight-binding regime and accordingly discussed the localization properties. In the absence of SO interaction the system can be mapped into the AA model and self-dual if $\Delta/J = 2$, SO interaction breaks the duality and leads to the appearance of critical phase, in which the extended and localized states coexist in the energy spectra. We also verified the phase diagram via multifractal analysis of the wavefunctions and diffusion dynamics of an initially localized Gaussian wavepacket. Experimental detection of localization properties are discussed. We proposed an experimental realization of the system using cold atomic gas trapped in a quasiperiodic optical lattice potential and external laser fields. Since the two ingredients of our proposed scheme, the quasiperiodic optical lattice potential [5] and SO coupling [13, 15, 16], had already been achieved for cold atoms, it is expected that the localization properties discussed in this work can be readily observed in experiment.

Acknowledgments

This work is supported by the National Basic Research Program of China (973 Program) under Grant No. 2011CB921604, the National Natural Science Foundation of China under Grant Nos. 11234003, 11129402, 11004057 and 10828408, the ”Chen Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation under grant No. 10CG24, and sponsored by Shanghai Rising-Star Program under Grant No. 12QA1401000. H.P. is supported by the US NSF, the Welch Foundation (Grant No. C-1669), and the DARPA OLE program.
[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[2] T. Schwartz, G. Bartal, S. Fishman, and M. Segev, Nature 446, 52 (2006); Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, Phys. Rev. Lett. 100, 013006 (2008); I. V. Shadrivov, K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, and Y. S. Kivshar, Phys. Rev. Lett. 104, 123902 (2010); J. Cheng and G. Huang, Phys. Rev. A 83, 053847 (2011).
[3] L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G. V. Shlyapnikov, and A. Aspect, Phys. Rev. Lett. 98, 210401 (2007).
[4] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, Nature (London) 453, 891 (2008).
[5] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature (London) 453, 895 (2008).
[6] M. Larcher, F. Dalfovo, and M. Modugno, Phys. Rev. A 80, 053606 (2009).
[7] B. Deissler, M. Zaccanti, G. Roati, C. D’Errico, M. Fattori, M. Modugno, G. Modugno, and M. Inguscio, Nat. Phys. 6, 354 (2010).
[8] E. Lucioni, B. Deissler, L. Tanzi, G. Roati, M. Zaccanti, M. Modugno, M. Larcher, F. Dalfovo, M. Inguscio, Phys. Rev. Lett. 106, 230403 (2011).
[9] L. Zhou, H. Pu, K. Zhang, X.-D. Zhao, and W. Zhang, Phys. Rev. A 84, 043606 (2011).
[10] S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
[11] M. Kohmoto and D. Tobe, Phys. Rev. B 77, 134204 (2008).
[12] M. Modugno, New J. Phys. 11, 033023 (2009).
[13] Y.-J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Nature (London) 471, 83 (2011).
[14] for a review, see J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011) and references therein.
[15] P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012).
[16] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012).
[17] S.-L. Zhu, D.-W. Zhang, and Z. D. Wang, Phys. Rev. Lett. 102, 210403 (2009).
[18] M. J. Edmonds, J. Otterbach, R. G. Unanyan, M. Fleischhauer, M. Titov, and P. Öhberg, New J. Phys. 14, 073056 (2012).
[19] R. E. Peierls, Z. Phys. 80, 763 (1933).
[20] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[21] K. Osterloh, M. Baig, L. Santos, P. Zoller, and M. Lewenstein, Phys. Rev. Lett. 95, 010403 (2005).
[22] W. S. Cole, S. Zhang, A. Parmeckant, and N. Trivedi, Phys. Rev. Lett. 109, 085302 (2012).
[23] J. Radić, A. Di Ciolo, K. Sun, and V. Galitski, Phys. Rev. Lett. 109, 085303 (2012).
[24] P. G. Harper, Proc. Phys. Soc. Lond. A 68, 874 (1955).
[25] S. Aubry S and G. André, Ann. Isr. Phys. Soc. 3, 33 (1980).
[26] M. Kohmoto, Phys. Rev. Lett. 51, 1198 (1983).
[27] D. J. Thouless, Phys. Rev. B 28, 4272 (1983).
[28] G. Dufour and G. Orso, Phys. Rev. Lett. 109, 155306 (2012).
[29] D. J. Boers, B. Goedeke, D. Hinrichs, and M. Holthaus, Phys. Rev. A 75, 063404 (2007).
[30] J. Biddle and S. Das Sarma, Phys. Rev. Lett. 104, 070601 (2010).
[31] H. Hiramoto and S. Abe, J. Phys. Soc. Jpn. 57, 1365 (1988).