Ensuring the Reliability of Food Nutrition Labeling in Japan: Regulation and Laboratory Analysis

Jun Takebayashi*1, Ippei Suzuki*1, Tsuyoshi Chiba*1, Keizo Umegaki*1,*2 and Yoshiko Ishimi*1,*3

*1Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition
*2Current address: Department of Food Safety and Management, Showa Women’s University
*3Current address: Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture
doi:10.5264/eiyogakuzashi.78.S91

ABSTRACT

Objective: To review the regulatory system for nutrition labeling, especially for nutrient declaration, in Japan, and to highlight the contributions made by the National Institute of Health and Nutrition (NIHN) with regard to the reliability of nutrition labeling of food in recent years.

Methods: We investigated the laws and official documents related to nutrition labeling of food in Japan, as well as relevant academic papers published by the NIHN from 1996 to 2020.

Results: In Japan, under the Food Labeling Act, nutrient declaration of the five nutritional components, namely energy, protein, fat, carbohydrates, and salt equivalent, has been mandatory for all prepackaged processed foods since 2015. Declared nutritional values should be consistent with the values obtained by laboratory analysis in principle, but “the value obtained by reasonable estimate” is permitted under certain conditions. Laboratory analysis is indispensable for verifying the accuracy of label values of foods with nutrient content or health claims. The NIHN has contributed to the regulatory system of nutrition labeling from the following three standpoints: 1) legal inspection body for the Foods for Special Dietary Uses, including the Foods for Special Health Uses, (approval testing) and other prepackaged foods bearing nutrient declaration (compliance testing); 2) proficiency testing provision for organizations performing food nutrition analysis; and 3) research institute to develop and improve analytical methods for nutritional and functional components in foods.

Conclusions: The NIHN has played pivotal roles in ensuring the reliability of nutrition labeling for more than half a century and will continue to do so in the future.

Jpn. J. Nutr. Diet., Vol.78 Supplement S91–S100 (2020)

Key words: regulatory system for nutrition labeling in Japan, legal inspection for nutrient declaration, proficiency testing provider, development and improvement of analytical methods

I. Introduction

Adequate nutrient intake is essential for the maintenance of health and prevention of disease. However, it is often difficult to judge the nutrient content of processed foods from appearance alone. Therefore, consumers require nutrition labels to select foods that meet their nutritional requirements. The Codex Alimentarius Commission published a guideline on nutrition labeling (CAC/GL 2-1985)3. This guideline provides a means for transmitting information on the nutrient content of a food on the label and emphasizes that nutrient declaration should not describe false, misleading, deceptive, or insignificant information. Nowadays, nutrient declaration of key nutrients on the package of prepackaged foods is mandatory in many countries5. In Japan, from May 1996 to March 2015, nutrient declaration for foods without nutrition or health claims was voluntary under the Nutrition Labeling Standards, based on the Health Promotion Act. However, from April 2015, new regulations under the Food Labeling Standards5, based on the Food Labeling Act5, require mandatory nutrient declaration for all prepackaged foods.
in principle.

The National Institute of Health and Nutrition (NIHN) has contributed to the regulatory frameworks on nutrition labeling in Japan since 1952, when the regulatory system to approve foods with nutrition or health claims was launched under the Nutrition Improvement Act. Thereafter, several systems for nutrition labeling have been established, such as nutrient declaration of the foods mentioned above, Foods for Specified Health Uses (FOSHU, in 1991)5, and Foods with Function Claims (FFC, in 2015)6. The NIHN has engaged in legal inspection of these food products by measuring the nutritional and functional components, such as active ingredients of FOSHU, by laboratory testing5, 7.

This article aims to review the regulatory system for nutrition labeling, especially for nutrient declaration, in Japan, and to highlight the contributions made by the NIHN to ensure the reliability of nutrition labeling of foods in the last 25 years.

II. Method

We investigated the acts4, orders3, notices8, and official documents9 related to food nutrition labeling in Japan. Furthermore, we conducted a literature search to clarify the contributions made by the NIHN, using the annual reports of the NIHN (from 1996 to 2014) and the publication database (monthly reports) on the NIHN website (https://www.nibiohn.go.jp/eiken/) from 2015 to present.

III. Results

1. Review of the regulatory system for nutrition labeling of food in Japan

1) Regulatory system for nutrient declaration

In Japan, under the Food Labeling Standards3, based on the Food Labeling Act4, nutrient declaration has been principally mandatory for all prepackaged processed foods and food additives since 2015. The exceptions to this rule are as follows:

- Food packages are too small (less than around 30 cm2 surface area for labeling).
- Alcoholic beverages
- Products of low nutritional contribution
- Products of which the ingredients change very quickly
- Products manufactured by very small companies

In addition, nutrient declaration of fresh foods is voluntary. The Food Labeling Standards were fully enforced on April 1, 2020.

The amounts of the five key nutritional components, namely energy, protein, fat, carbohydrate, and salt equivalent, are mandatory to provide in the format shown in Figure 1A. Figure 1B indicates the format used to declare mandatory and voluntary nutrients, such as dietary fiber, minerals, and vitamins. The first column of Table 1 shows the mandatory and voluntary nutrients under regulation in Japan. The second column of Table 1 indicates the units of nutrients to be expressed. The other features related to nutrient declaration formats are annotated in the legend of Figure 1.

![Figure 1 Nutrient declaration format in Japan](https://www.nibiohn.go.jp/eiken/)

Figure 1 Nutrient declaration format in Japan

Created based on Appended Forms 2 and 3 of the Food Labeling Standard5. The left panel (A) is the declaration format for mandatory nutrients only. The right panel (B) is the declaration format for voluntary nutrients as well as mandatory nutrients.

a) Reference amount, such as per 100 g, 100 ml, serving (indicate the amount for one serving), package, or other standard sizes, is shown as food units.

b) Sodium content should be declared in salt equivalent (sodium (mg) \times 2.54/1,000).

c) A nutrient declaration based on a reasonable estimate is acceptable in certain situations.

d) Specific types of fat and carbohydrates can be broken down and displayed.

e) Saturated fat and dietary fiber are voluntary but recommended declarations.

f) Available carbohydrates and dietary fiber should be shown together.

g) Voluntary nutrients that are not declared are omitted from this format.
Nutrient	Unit	Official methods	Tolerance limit	Zero declaration		
Protein	g	Nitrogen determination and conversion method	± 20% (± 0.5 g in the case of < 2.5 g/100 g)	0.5 g		
Fat	g	Ether extraction method, chloroform/methanol extraction method, Gerber method, acid hydrolysis method, Roese-Gottlieb method	± 20% (± 0.5 g in the case of < 2.5 g/100 g)	0.5 g		
Saturated fatty acid	g	GC	± 20% (± 0.1 g in the case of < 0.5 g/100 g)	0.1 g		
n-3 Fatty acid	g	GC	± 20%	–		
n-6 Fatty acid	mg	GC	± 20%	–		
Cholesterol	mg	GC	± 20% (± 5 mg in the case of < 25 mg/100 g)	5 mg		
Carbohydrate	g	By-difference method (subtract total weight of protein, fat, ash§, and water		from food weight)	± 20% (± 0.5 g in the case of < 2.5 g/100 g)	0.5 g
Available carbohydrate	g	By-difference method (subtract total weight of protein, fat, dietary fiber, ash§, and water		from food weight)	± 20% (± 0.5 g in the case of < 2.5 g/100 g)	0.5 g
Sugars	g	GC, HPLC	± 20% (± 0.5 g in the case of < 2.5 g/100 g)	0.5 g		
Dietary fiber	g	Prosky method, HPLC	± 20%	–		
Zinc	mg	AAS, ICP-OES	+ 50% and – 20%	–		
Potassium	mg	AAS, ICP-OES	+ 50% and – 20%	–		
Calcium	mg	Potassium permanganate method, AAS, ICP-OES	+ 50% and – 20%	–		
Chromium	µg	AAS, ICP-OES	+ 50% and – 20%	–		
Selenium	µg	Fluorometric determination method, AAS	+ 50% and – 20%	–		
Iron	mg	AAS, ICP-OES	+ 50% and – 20%	–		
Copper	mg	AAS, ICP-OES	+ 50% and – 20%	–		
Sodium§	mg¹¹	AAS, ICP-OES	± 20% (± 5 mg in the case of < 25 mg/100 g)	5 mg		
Magnesium	mg	AAS, ICP-OES	+ 50% and – 20%	–		
Manganese	mg	AAS, ICP-OES	+ 50% and – 20%	–		
Molybdenum	µg	ICP-MS, ICP-OES	+ 50% and – 20%	–		
Iodine	µg	Titration method, GC	+ 50% and – 20%	–		
Phosphorus	mg	Vanadomolybdate absorption photometry, spectrophotometric molybdenum blue method, ICP-OES	+ 50% and – 20%	–		
Niacin	mg	HPLC, microbiological assay	+ 80% and – 20%	–		
Pantothenic acid	mg	Microbiological assay	+ 80% and – 20%	–		
Biotin	µg	Microbiological assay	+ 80% and – 20%	–		
Vitamin A	µg	HPLC, absorption spectrum method	+ 50% and – 20%	–		
Vitamin B₁	mg	HPLC, biochrome method	+ 80% and – 20%	–		
Vitamin B₂	mg	HPLC, lumiflavin method	+ 80% and – 20%	–		
Vitamin B₆	mg	Microbiological assay	+ 80% and – 20%	–		
Vitamin B₁₂	µg	Microbiological assay	+ 80% and – 20%	–		
Vitamin C	mg	2, 4-Dinitrophenylhydrazine method, indophenol-xylene extraction method, HPLC, redox titration method	+ 80% and – 20%	–		
Vitamin D	µg	HPLC	+ 50% and – 20%	–		
Vitamin E	mg	HPLC	+ 50% and – 20%	–		
Vitamin K	µg	HPLC	+ 50% and – 20%	–		
Folate	µg	Microbiological assay	+ 80% and – 20%	–		
Energy	kcal	Modified Atwater method	± 20% (± 5 kcal in the case of < 25 kcal/100 g)	5 kcal		

Created based on Appended Table 9 of the Food Labeling Standard. AAS: Atomic absorption spectroscopy, GC: Gas chromatography, HPLC: High-performance liquid chromatography, ICP-MS: Inductively coupled plasma-mass spectrometry, ICP-OES: Inductively coupled plasma-optical emission spectrometry.

† Detailed protocols of the official methods are shown in the notice entitled “Notification regarding food labeling standards.”

‡ Amounts less than the indicated value per 100 g (ml) may be expressed as zero.

§ Ash is determined by the magnesium acetate addition ashing method, direct ashing method, or sulfate addition method.

|| Water is determined by the Karl-Fischer method, drying aid method, vacuum drying method, air drying method, or plastic film method.

¶ The amount of sodium can be declared in addition to the amount of salt equivalent when no sodium salt is added.

†† If the amount of sodium is > 1,000 mg, the unit can be changed from “mg” to “g.”
Numerical declarations of nutrient contents can be provided in two ways: a “single value” or “ranged values (lower value-upper value).” The compliance of food declaration with the Food Labeling Standards is assessed by comparing the analytical value with the presented value. The third column of Table 1 shows the official methods authorized by the Food Labeling Standards to obtain analytical values. In the case that a single value is presented, the analytical value as a percentage of the presented value should be within the tolerance limit designated to each nutrient. Generally, the tolerance limits are ± 20% for energy, macronutrients, and sodium; −20% to +50% for other minerals and fat-soluble vitamins; and −20% to +80% for water-soluble vitamins. However, the tolerance limits for several nutrients may be extended to lower concentrations (see the fourth column of Table 1 for more details). Furthermore, very low concentrations may be expressed as zero (see the fifth column of Table 1 for more details). However, in the case that ranged values are presented, the analytical value should be between the lower and upper values.

When nutrient contents are not under sufficient control, “the value obtained by reasonable estimate” (estimated value) is permitted in cases where all of the following conditions are satisfied:

- The fact that the value may be outside the tolerance limit is explicitly declared using fixed terms, namely “Estimated value” or “This nutrient declaration is a rough indication.”
- Data on which the presented value is based are properly preserved.
- The product has no nutrition claim, including nutrition content and health claims.

2) Regulatory system for nutrient content claims

The nutrition content claim explains the levels of nutrients (e.g., “high in calcium” or “low in fat”). In the case of the nutrients that are recommended to be increased (i.e., protein, dietary fiber, 6 minerals [zinc, potassium, calcium, iron, copper, and magnesium], and 13 vitamins [niacin, pantothenic acid, biotin, vitamin A, vitamin B1, vitamin B2, vitamin B6, vitamin B12, vitamin C, vitamin D, vitamin E, vitamin K, and folate]), the conditions applied are as follows:

- Nutrient content claims are made in comparison with nutrient reference values (NRVs) for food labeling10.
- “Source of (name of the nutrient)” can be labeled when the product contains ≥10% of the NRV per 100 g (protein), ≥15% of the NRV per 100 g (vitamins and minerals), or ≥3 g per 100 g.
- “High in (naming the nutrient)” can be labeled when the product contains two or more times the nutrients for “source.”
- “Increased in (naming the nutrient)” can be labeled when the increase is ≥15% of the NRV per 100 g and the rate of increase is ≥25% between the compared foods (protein and dietary fiber), or when the increase is ≥10% of the NRV per 100 g between the compared foods (vitamins and minerals). Full details of the comparison, such as the food being compared and the amount of difference, should be given along with the nutrition content claim.

In the case of nutrients recommended to be reduced (i.e., energy, fat, saturated fatty acid, cholesterol, sugars, and sodium), the conditions applied are as follows:

- “Low in (naming the nutrient)” can be labeled when the product contains ≤40 kcal per 100 g (energy), ≤3 g per 100 g (fat), ≤1.5 g per 100 g (saturated fatty acid), ≤20 mg per 100 g (cholesterol), ≤5 g per 100 g (sugars), or ≤120 mg per 100 g (sodium).
- “Free of (naming the nutrient)” can be labeled when the product contains ≤5 kcal per 100 g (energy), ≤0.5 g per 100 g (fat), ≤0.1 g per 100 g (saturated fatty acid), ≤5 mg per 100 g (cholesterol), ≤0.5 g per 100 g (sugars), or ≤5 mg per 100 g (sodium).
- “Reduced in (naming the nutrient)” can be labeled when the reduction is not less than the figure defined as “low” and the rate of reduction is ≥25% between the compared foods. Full details of the comparison, such as the food being compared and the amount of difference, should be given along with the nutrition content claim.

3) Regulatory system for health claims

Health claims refer to statements on food labels concerning the relationship between nutritional/functional components and health. In Japan, as in many countries around the world, health claims are not permitted on regular food. The exceptions are as follows:

- “Foods for Special Health Uses (FOSHU)” can be labeled a functional claim for an active ingredient such as “This product contains indigestible dextrin,
which suppresses the elevation of postprandial blood glucose levels." The government reviews the claimed effects and safety, and the Consumer Affairs Agency (CAA) approves the labeling of each product. The content of an active ingredient in a FOSHU product should be confirmed by laboratory analysis by third-party organizations before and after the sale.

• “Foods with nutrient function claim (FNFC)” can be labeled as a functional claim for a specific nutrient such as “Vitamin C is a nutrient that helps keep your skin and mucous membranes healthy and has an antioxidizing effect.” These claims should be provided by using fixed sentences for individual nutrients determined by the CAA. The unsaturated n-3 fatty acids, 6 minerals (zinc, potassium, calcium, iron, copper, and magnesium), and 13 vitamins (niacin, pantothenic acid, biotin, vitamins A, B₁, B₂, B₉, B₁₂, C, D, E, K, and folic acid) are permitted FNFC. Unlike FOSHU, FNFC does not require individual permission from the CAA. The amount of nutrients claimed in the FNFC should be between the maximum and minimum daily intakes designated for individual nutrients.

• “Foods with Function Claim (FFC)” can be labeled as a functional claim for an active ingredient, similar to FOSHU. The evidence for safety and efficacy is submitted to the CAA before the sale. However, unlike FOSHU, FFC is not individually approved by the CAA. The content of an active ingredient in an FFC product should be confirmed by laboratory analysis by third-party organizations after the sale.

2. Contributions made by the NIHN to ensure the reliability of food nutrition labeling

1) Approval testing for FOSDU, including FOSHU, and compliance testing for foods with nutrition labeling

As described in the Introduction, the NIHN has played a public role in confirming the values on food nutrition labels. FOSDU, including FOSHU products, need to undergo pre-marketing legal inspection (approval testing) to determine whether they contain nutritional or functional components in accordance with the information provided by the food labels. Other prepackaged foods bear nutrient declaration, as well as nutritional content claims and/or health claims, under the responsibility of food companies. National and local governments perform compliance testing to verify their compliance with the regulations. Originally, laboratory analyses for approval testing and compliance testing in Japan were solely assigned to the NIHN, but they later expanded to other third-party organizations, namely “registered test and inspection bodies” under the Health Promotion Act with respect to approval testing, and “registered conformity assessment bodies” under the Food Sanitation Act with respect to compliance testing. In response to these changing situations, the NIHN has shifted its main role from an inspection organization to a supervising organization.

2) Proficiency testing schemes for organizations that perform food nutrition analysis

Laboratory analysis is essential to obtain correct values for the nutrients contained in foods; however, considerable errors remain a possibility. Thus, the NIHN developed a protocol for proficiency testing schemes for analytical organizations that perform food nutrition analysis. The NIHN has provided a proficiency testing scheme based on this protocol once per year in cooperation with the Food and Drug Safety Center since 2017. There were 65 and 73 participating organizations in 2017 and 2018, respectively, and more than 70% of them were registered conformity assessment bodies. Energy, protein, fat, carbohydrate, salt equivalent, calcium (2018 only), and iron (2018 only) in pork and chicken sausages were target analytes in these years (Table 2). Approximately 10% of the organizations reported inadequate values for one or more nutrients subject to mandatory declaration. In particular, the reported values for carbohydrate or salt equivalent tended to be inappropriate. Therefore, the
Table 2 Summary of the suitable or unsuitable values reported from proficiency testing schemes for food nutrition analysis in Japan

Subjects	2017, n = 65 (54)	2018, n = 73 (54)		
	Suitable	Unsuitable	Suitable	Unsuitable
Energy	61 (53)	3 (1)	69 (52)	3 (2)
Protein	65 (54)	0 (0)	69 (52)	4 (2)
Fat	62 (53)	3 (1)	71 (53)	2 (1)
Carbohydrate	61 (53)	3 (1)	66 (50)	6 (4)
Salt equivalent	60 (51)	4 (3)	67 (51)	4 (3)
Above-listed nutrients	58 (49)	7 (5)	62 (47)	11 (7)
Calcium	Not applicable		44 (33)	6 (6)
Iron	47 (36)	3 (3)		

Created based on reference[13]. Numbers in parentheses indicate the number of public organizations, such as registered conformity assessment bodies, and prefectural and municipal public health institutes.

Table 3 Overview of the scientific contributions made by the NIHN to the reliability of food nutrition labeling in the last 25 years (1996-2020)

Nutrients	Approach	Description	Reference(s)
Macronutrients			
Dietary fiber	HPLC	A simple solid-phase extraction method of desalting test solutions to determine the level of soluble dietary fiber in food by HPLC was developed and validated in inter-laboratory validations.	14
Minerals			
Selenium	HG-AAS	The conditions to measure selenium in food samples by HG-AAS were optimized.	15
Selenium	ICP-MS	A simple method to determine the level of selenium in liquid infant formula by ICP-MS was developed and validated in single- and cross-laboratory validations. This method can be used for an approval inspection of infant formulas for the inclusion in Foods for Special Dietary Uses (FOSDU).	16
Molybdenum	ICP-MS, ICP-OES	Quantitative determination methods of molybdenum in foods by ICP-MS and ICP-OES after dry ashing were studied and validated in a single laboratory validation. These methods can be used for an approval inspection of comprehensive nutrition food products for inclusion in FOSDU.	17, 18
Vitamins			
Biotin, niacin, pantothenic acid, vitamin B6	Microbiological assay	The efficacy of microbiological assays for biotin, niacin, pantothenic acid, vitamin B6, and inositol was improved by using lyophilized cells.	19, 20
Vitamin B12	Microbiological assay	Various models for calibration curve construction were compared to determine the levels of vitamin B12 and niacin in infant formula using microbiological assays.	21
Vitamin B12	Microbiological assay	The factors affecting the interlaboratory analytical accuracy of vitamin B12 contents in fortified food measured by microbiological assay were clarified.	22
Vitamin B12	HPLC	An HPLC method to determine cyanocobalamin (vitamin B12) in multivitamin tablets was developed and validated in a single laboratory validation.	23
Vitamin C	HPLC	The determination of vitamin C in plasma and food samples using HPLC with an electrochemical detector was studied.	24, 25
Vitamin C	Method comparison	The vitamin C contents in selected vegetables obtained by the three analytical methods used to establish present and past versions of the Standard Tables of Food Composition in Japan were compared.	26
Vitamin D	HPLC	Two-step HPLC methods for the determining vitamin D content in foods were improved and validated in single- or inter-laboratory validations.	27, 28
Folate	Microbiological assay	Tea catechins have no practical impact on the results of a microbiological assay for folate in green tea.	29
Active ingredients for Foods for Specified Health Uses (FOSHU) and/or Foods with Function Claims (FFC)			
Isoflavone, soy protein	Survey	Contents of isoflavone and/or soy protein in soy foods and/or health foods, including FOSHU, marketed in Japan were evaluated.	30-32
Isoflavone	HPLC	The analytical methods for isoflavones based on the Official Method of AOAC International (OMA) 2001.10 and OMA 2008.03 were improved and validated in single- and inter-laboratory validations.	33
Catechin	HPLC	Methods for the determination of the levels of tea catechins in plasma and foods by HPLC with an electrochemical detector were developed.	34, 35
1,4-Dihydroxy-2-naphthoic acid	HPLC	Analytical precision of 1,4-dihydroxy-2-naphthoic acid, one of the active components of FOSHU, was improved by adding dithiothreitol to the mobile phase of HPLC.	36
Quercetin	HPLC	Applicability of OMA 2008.07 for quercetin in ginkgo dietary supplements to onion samples was verified in single- and inter-laboratory validations.	37
Glabridin	Survey	Contents of glabridin, one of the functional ingredients of FFC, in health foods containing licorice were evaluated.	38
Others			
Hardness, Adhesiveness	Food texture analysis	A measurement method using a small-scale dish was developed to determine food texture profiles (hardness, adhesiveness, and cohesiveness) of FOSDU for people with difficulty swallowing.	39

HG-AAS: Hydride generation - atomic absorption spectrometry, HPLC: High-performance liquid chromatography, ICP-MS: Inductively coupled plasma-mass spectrometry, ICP-OES: Inductively coupled plasma-optical emission spectrometry.
NIHN continues to provide proficiency testing for the purposes of quality assurance and continuous improvement of organizations performing food nutrition analysis.

3) Scientific contributions made by the NIHN to ensure the reliability of food nutrition labeling

Through the works related to inspection and supervision, the NIHN has provided 26 relevant publications in the last 25 years (Table 3). The breakdown by nutrients shows that one of the publications dealt with macronutrients, four dealt with minerals, eleven dealt with vitamins, nine dealt with active ingredients, and one dealt with others. These studies have contributed not only to the verification of food nutrition labels, but also to scientific improvement in nutritional and functional components analysis.

IV. Discussion

In Japan, the regulatory system for nutrition labeling has dramatically changed since the Food Labeling Act was enforced in 2015. Essential information on nutrient contents in almost all prepackaged foods is available to everyone by the nutrient declaration. Food nutrition labeling has the potential to be a strong tool to promote public health. Therefore, one of the specific goals of “Health Japan 21”, the Japanese health promotion plan from 2000 to 2012, was to “increase the proportion of persons who read nutrition labels when dining out or purchasing food”. This goal was premised on a tacit agreement that nutrient labeling was accurate and reliable. There seem to be three essential factors for ensuring the reliability of food nutrition labels, as follows:

- The enforcement of appropriate regulations. Currently, the regulatory system for nutrition labeling in Japan is more complicated than before. A science-based system for verifying compliance with standards by laboratory analysis is increasingly important.
- Good performance of individual laboratories for food component analysis. For reliable food nutrition labeling, whole laboratory analysis processes should be properly managed in all laboratories engaged in food nutrition labeling.
- A proper analytical method. The methods for the analysis of nutritional components should be updated with advances in science. Continued efforts to develop and improve analytical methods are required to provide more reliable nutrition labeling.

The NIHN has played pivotal roles in these areas for more than half a century, and will continue to contribute to ensure the reliability of nutrition labeling of foods; the ultimate goal of which is to help extend the healthy life expectancy in Japan.

Conflict of Interest

There are no conflicts of interest to declare.

References

1) Codex Alimentarius Commission: Guidelines on nutrition labelling CAC/GL 2-1985 as last modified 2017, http://www.fao.org/who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252Fstandards%252FCXG%2B2-1985%252FCXG_002e.pdf (Accessed January, 23, 2020)
2) European Food Information Council: Global update on nutrition labelling, the 2018 edition, executive summary, https://www.eufic.org/images/uploads/healthy-living/Executive-Summary-GUNL-2018-V2.pdf (Accessed January, 23, 2020)
3) Cabinet Office of Japan: Food Labeling Standards, Cabinet Office Ordinance No. 10 of 2015 (in Japanese), https://www.caa.go.jp/policies/policy/food_labeling/food_labeling_act/pdf/food_labeling_cms101_200327_06.pdf (Accessed June, 16, 2020)
4) Government of Japan: Food Labeling Act, Act No. 70 of 2013, http://www.japaneselawtranslation.go.jp/law/detail/?id=2601&vm=04&rc=02 (Accessed January, 23, 2020)
5) Yamada, K., Sato-Mito, N., Nagata, J., et al.: Health claim evidence requirements in Japan, J. Nutr., 138, 11928–1198S (2008)
6) Maeda-Yamamoto, M.: Development of functional agricultural products and use of a new health claim system in Japan, Trends Food Sci. Technol., 69, 324–332 (2017)
7) Ichikawa, T., Hagiwara, K., Tsuda, A., et al.: Dynamic state of dietary life in a view, point of analytical results of Special Nutritional Foods, Jpn. J. Nutr. Diet., 46, 337–342 (1982) (in Japanese)
8) Consumer Affairs Agency: Notification regarding food labeling standards, Shou-Shoku-Hyou No. 139, March 30, 2015, as last modified March 27, 2020 (in Japanese), https://www.caa.go.jp/policies/policy/food_labeling/food_labeling_act/pdf/food_labeling_cms101_200327_12.pdf (Accessed June, 16, 2020)
9) Consumer Affairs Agency: Guidelines for the nutrition labeling based on the Food Labeling Act. (in Japanese), https://www.caa.go.jp/policies/policy/food_labeling/d
food_labeling_act/pdf/food_labeling_act_180518_0001.pdf (Accessed January, 27, 2020)

10 Tsuwayama-Kasaoa, N., Takimoto, H., Ishimi, Y.: Comparison of Nutrient Reference Values for food labeling in Japan with CODEX recommendations, based on DRIs and nutrient intake in Japan. J. Nutr. Sci. Vitaminol., 65, 102–105 (2019)

11 Takebayashi, J., Matsumoto, T., Ishimi, Y.: Ensuring the reliability of nutrition labeling values: a preliminary study on the establishment of a methodology for proficiency testing of laboratories for nutritional analysis, Jpn. J. Nutr. Diet., 73, 8–15 (2015) (in Japanese)

12 Takebayashi, J., Matsumoto, T., Ishimi, Y.: Ensuring the reliability of nutrition labeling values: an attempt at proficiency testing of major nutrients analysis, Jpn. J. Nutr. Diet., 75, 3–18 (2017) (in Japanese)

13 Takebayashi, J., Takasaka, N., Suzuki, I.: Proficiency testing schemes for food nutrition analysis in Japan (2017–2018), Food Hyg. Saf. Sci., 61, 63–71 (2020) (in Japanese)

14 Suzuki, I., Kumai, Y., Kitagawa, M., et al: Tandem cation/anion exchange SPE cartridge method for sample desalting for HPLC analysis of soluble dietary fiber: development and inter-laboratory validation, Anal. Sci., 35, 1269–1274 (2019)

15 Tamari, Y., Nishimuta, M.: Determination of selenium in food by hydride generation atomic absorption spectrometry: optimum conditions for the measurement of selenium and effects of the freeze-drying of food samples, Biomed. Res. Trace Elements, 14, 40–46 (2003) (in Japanese)

16 Suzuki, I., Kumai, Y., Zama, S., et al: A dilute-and-shoot ICP-MS method for analysis of selenium in liquid infant formula, Food Anal. Methods, 12, 2685–2689 (2019)

17 Matsumoto, T., Takebayashi, J., Ichida, N., et al: Determination of molybdenum content for nutrition labeling by ICP-MS: single laboratory validation, Jpn. J. Food Chem. Saf., 21, 72–76 (2014) (in Japanese)

18 Matsumoto, T., Ichida, N., Takebayashi, J., et al: Single laboratory validation of a method for the determination of molybdenum content for nutrition labeling by ICP-AES, Jpn. J. Food Chem. Saf., 23, 49–54 (2016) (in Japanese)

19 Tsuda, H., Matsumoto, T., Ishimi, Y.: Biotin, niacin, and pantothenic acid assay using lyophilized Lactobacillus plantarum ATCC 8014, J. Nutr. Sci. Vitaminol., 57, 437–440 (2011)

20 Tsuda, H., Matsumoto, T., Ishimi, Y.: Time reduction of vitamin B₂ and inositol assay by using lyophilized Saccharomyces cerevisiae ATCC 9080, J. Nutr. Sci. Vitaminol., 58, 149–151 (2012)

21 Suzuki, I., Takebayashi, J., Umegaki, K.: Improved reliability of vitamin analysis in foodstuffs using a microbiological assay method: construction of calibration curves using logistic modeling, Food Hyg. Saf. Sci., 59, 141–145 (2018) (in Japanese)

22 Matsumoto, T., Suzuki, H., Takebayashi, J., et al: Interlaboratory study for determination of vitamin B₁₂ in fortified food measured by microbiological assay, BUNSEKI KAGAKU, 61, 347–351 (2012) (in Japanese)

23 Matsumoto, T., Takebayashi, J., Ishimi, Y., et al: Evaluation of cyanocobalamin in multivitamin tablets and their Standard Reference Material 3280 by HPLC with visible detection, J. AOAC Int., 95, 1609–1613 (2012)

24 Umegaki, K., Yoshimura, M., Nishimuta, M., et al: A practical method for determination of vitamin C in plasma by high-performance liquid chromatography with an electrochemical detector, Nippon Eiyo Shokuryo Gakkaishi, 52, 107–111 (1999) (in Japanese)

25 Sato, Y., Nakanishi, T., Taki, Y., et al: Analysis of vitamin C in vegetables and fruits by HPLC with electrochemical detection, Jpn. J. Nutr. Diet., 67, 318–322 (2009) (in Japanese)

26 Kojima, A., Sato, Y., Hashimoto, Y., et al: Influence of analytical method on the fluctuation of vitamin C value for vegetables listed in the revised Standard Table of Food Composition in Japan, Jpn. J. Nutr. Diet., 68, 141–145 (2010) (in Japanese)

27 Takebayashi, J., Yanaka, K., Matsumoto, T., et al: Determination of vitamin D in foods by the official method in Japan and its modified method: interlaboratory studies, Vitamins, 85, 415–450 (2011) (in Japanese)

28 Suzuki, I., Kumai, Y., Tada, A., et al: Method verification for vitamin D analysis in processed foods based on the analytical manual for the Standard Tables of Food Composition in Japan 2015 (seventh revised edition), Food Hyg. Saf. Sci., 61, 53–57 (2020) (in Japanese)

29 Umegaki, K., Sekine, Y., Sato, Y., et al: Effect of tea catechins on folate analysis in green tea by microbiological assay, J. Nutr. Sci. Vitaminol., 62, 134–138 (2016)

30 Ishimi, Y., Takano, F., Yamauchi, J., et al: Study on food labeling and the content of soybean isoflavones in health foods, Jpn. J. Nutr. Diet., 67, 49–57 (2009) (in Japanese)

31 Yanaka, K., Tousen, Y., Matsumoto, T., et al: Food labeling and actual contents of soy protein and soybean isoflavones in health foods, Jpn. J. Nutr. Diet., 68, 234–241 (2010) (in Japanese)

32 Yanaka, K., Takebayashi, J., Matsumoto, T., et al: Determination of 15 isoflavone isomers in soy foods and supplements by high-performance liquid chromatography, J. Agric. Food Chem., 60, 4012–4016 (2012)

33 Ogita, T., Watanabe, J., Wakagi, M., et al: Evaluation of a method to quantify isoflavones in soybean by single and multi-laboratory validation studies, Food Sci. Technol. Res., 21, 473–477 (2015)

34 Umegaki, K., Esashi, T., Tezuka, M., et al: Determination of tea catechins in food by HPLC with an electrochemical detector, Food Hyg. Saf. Sci., 37, 77–82 (1996) (in Japanese)

35 Umegaki, K., Sugisawa, A., Yamada, K., et al: Analytical method of measuring tea catechins in human plasma by solid-phase extraction and HPLC with electrochemical detection, J. Nutr. Sci. Vitaminol., 47, 402–408 (2001)

36 Takebayashi, J., Nagata, J., Yamada, K: Improved analytical precision of 1, 4-dihydroxy-2-naphthoic acid by high
performance liquid chromatography using dithiothreitol as mobile phase additive, Food Sci. Technol. Res., 14, 509–512 (2008)

37) Watanabe, J., Takebayashi, J., Takano-Ishikawa, Y., et al.: Evaluation of a method to quantify quercetin aglycone in onion (Allium cepa) by single- and multi-laboratory validation studies, Anal. Sci., 28, 1179–1182 (2012)

38) Ishimi, Y., Takebayashi, J., Tousen, Y., et al.: Quality evaluation of health foods containing licorice in the Japanese market, Toxicol. Rep., 6, 904–913 (2019)

39) Takebayashi, J., Yamauchi, J., Tousen, Y., et al.: The development of a method for measurement of the texture of Food for Special Dietary Uses (for people with difficulty swallowing) by means of a small-scale petri dish, Jpn. J. Nutr. Diet., 75, 104–112 (2017) (in Japanese)

40) Udagawa, K., Miyoshi, M., Yoshiike, N.: Mid-term evaluation of “Health Japan 21”: focus area for the nutrition and diet, Asia Pac. J. Clin. Nutr., 17(S2), 445–452 (2008).

(Received February 19, 2020; Accepted June 16, 2020)
日本における食品栄養表示の信頼性確保：規制および試験室分析

竹林 純*1，鈴木 一平*1，千葉 剛*1
梅垣 敬三*1,2，石見 佳子*1,3

*1国立研究開発法人医薬品基盤・健康・栄養研究所国立健康・栄養研究所
食品保健機能研究部
*2現所属：昭和女子大学生活科学部食安全マネジメント学科
*3現所属：東京農業大学農生命科学研究所

【目的】日本における食品の栄養表示（特に栄養成分表示）に関する規制の枠組みについて概説し、栄養表示の信頼性を確保するために国立健康・栄養研究所（健栄研）が近年果たしてきた役割を明らかにした。

【方法】日本における食品の栄養表示に関連した法令や公文書、1996年から2020年の間に健栄研から発表された学術論文を調査した。

【結果】2015年以降、日本では食品表示法に基づき、全ての加工食品について熱量、たんぱく質、脂質、炭水化物および食塩相当量の5成分の栄養成分表示が義務付けられている。栄養成分表示値は、原則的に試験室分析の結果と一致する必要があるが、「合理的な推定により得られた値」を表示することが許されている場合もある。しかし、栄養強調表示や健康強調表示がなされた食品については、必ず試験室分析で表示値を検証する必要がある。健栄研は、1）特別用途食品（特定保健用食品を含む）の許可試験および栄養成分表示がなされた全食品の養試験の実施、2）栄養成分解析を行っている機関への技能試験の提供、3）栄養成分や機能性成分に関する適切な分析方法の開発および改良を行うことにより、栄養表示の規制の枠組みに寄与している。

【結論】健栄研は、50年以上の長きにわたり、栄養表示の信頼性確保において中心的な役割を担っており、今後も引き続きその役割を果たすことが望まれる。

栄養学雑誌，78（Suppl）S91～S100（2020）

キーワード：日本における栄養表示の規制の枠組み、栄養成分表示の法定検査、技能試験の提供者、分析方法の開発および改良