Sequence Analysis of the Carotenoid Isomerase Gene in Potato (Solanum tuberosum)

Ping Zhou, Xianzhi Wu, Meiling Wu, Chunyan Chen, Rui Wu, Yi Lu, Chaohai Wang and Jie Ma*

Bijie Institute of Agricultural Science, Bijie 551700, China

*Corresponding author e-mail: 115705717@qq.com

Abstract. Carotenoid Isomerase (CRTISO) is an important enzyme in carotenoid biosynthesis. Here, the Solanum tuberosum CRTISO (StCRTISO) gene sequences were obtained from Spud DB database, and preformed for sequence analysis. The StCRTISO gene mapped to chromosomes 10, and contains an open reading frame of 1,848 bp that encodes a 615-amino acid protein with a calculated molecular mass of 67.52 kD and an isoelectric point (pI) of 6.92. Subcellular localization predicted the StCRTISO gene was in the cytoplasm. The conserved domain of the StCRTISO protein is Rossmann-fold NAD(P)H/NAD(P)(+) binding (NADB) domain. The StCRTISO protein is most closely related to Solanum lycopersicum. The findings of the present study provide a molecular basis for the elucidation of CRTISO gene function in potato.

1. Introduction
Potato (Solanum tuberosum) is ranked as the third most important food crop in the world. Potato is not only of importance as a food crop, and also one of the major crops grown for starch production [1]. It yields a high-energy output per hectare, and is a rich source of nutrients, including carbohydrates, and carotenoids [1-2].

The enzymes involved in the carotenoid biosynthetic pathway have been extensively studied in various plants, including Arabidopsis [3], tomato [4], and citrus [5]. The first key step in carotenoid biosynthesis involves the production of a 40-carbon phytoene from two geranylgeranyl pyrophosphate (GGPP) molecules, which is catalyzed by phytoene synthase (PSY) [6-7]. Then, lycopene (colored carotenoid) is converted from phytoene (non-color carotenoid) by desaturases and isomerases, including phytoene desaturases (PDS) [8], ζ-carotene desaturase (ZDS) [9], 15-cis-ζ-carotene isomerase (Z-ISO) [10], and carotenoid isomerase (CRTISO) [3]. Hereafter, bifurcation of the carotenoid biosynthetic pathway occurs, and the production of β-carotene and α-carotene is catalyzed by lycopene β-cyclase (β-LCY) and lycopene ε-cyclase (ε-LCY) [11-12].

CRTISO is an important enzyme in carotenoid biosynthesis, catalyzing the prolycopene into lycopene [13]. The genes encoding the CRTISO protein have been isolated in various plant species, including Arabidopsis [3], tomato [4], tobacco [14], and Brassica rapa [15]. To date, research studies on CRTISO in potato are limited. In the present study, the CRTISO gene sequence of potato was obtained from web database, and then sequence analysis of the CRTISO gene was analyzed. The
The present study aimed to establish the foundation for further studies on the molecular mechanism of CRTISO in potato.

2. Materials and methods

2.1. Sequence Obtain of the StCRTISO Gene
The genomic DNA and mRNA sequences of CRTISO gene of potato were downloaded and obtained from The Spud DB database (http://solanaceae.plantbiology.msu.edu), and then used to subsequent bioinformatic analysis.

2.2. Sequence Analysis of the StCRTISO Gene
The amino acid sequence, protein molecular weight, isoelectric point, stability index, and hydrophobicity of the StCRTISO gene were analyzed and predicted by ExPASy (http://web.expasy.org) and NCBI (https://www.ncbi.nlm.nih.gov/). Subcellular localization was predicted by WoLF PSORT (http://www.genscript.com/wolf-psort.html). The conserved domain were predicted by NCBI (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Homology analysis of the CRTISO proteins was executed in DNAMAN.

3. Results

3.1. Analysis on genomic organization
The Spud DB database was used to analyze the chromosomal localization and genomic organization of StCRTISO. The gene ID in Spud DB database is PGSC0003DMT400072543. The StCRTISO gene was mapped to chromosomes 10 and has 13 exons and 12 introns (Fig. 1).

![Chromosomal location and genomic structure of StCRTISO.](image)

3.2. Protein physical and chemical properties analysis
Sequence analysis indicated that the StCRTISO gene contained a 1,848-bp open reading frame (ORF), which encoded a 615-amino acids protein with a calculated molecular mass of 67.52 kD and an isoelectric point (pI) of 6.92. The amino acid types and proportions of the StCRTISO gene was shown in Figure 2, the highest number of amino acid is Leucine (Leu), whereas the lowest number is Tryptophan (Trp). Its predicted formula was C_{3039}H_{4769}N_{803}O_{891}S_{22}. Its total average hydrophilicity index was -0.094, liposoluble index was 91.14. There is no transmembrane structure in StCRTISO.
3.3. Subcellular localization and conserved domain analysis
Subcellular localization of the StCRTISO gene was predicted by WoLF PSORT to be in the cytoplasm. The analysis using Conserved Domain Database (CDD) demonstrated that the amino acid sequence of the StPCRTISO protein has one NADB Rossmann superfamily that share a Rossmann-fold NAD(P)H/NAD(P)(+) binding (NADB) domain (Fig. 3).

3.4. Homology analysis
Homology analysis demonstrated that the amino acid sequence of the StCRTISO protein shared high homology with those of 17 other higher plant species (Table 1). Table 1 shows that the StCRTISO had the highest identities (> 90%) with several CRTISO proteins of Solanaceae such as Solanum lycopersicum, Capsicum chinense, Lycium barbarum, and all of the levels of identity were > 75% with other species cited in our study, indicating that the CRTISO protein is highly conserved among different species.
Table 1. The homology comparison among amino acid sequences of CRTISO from plant species

Plant species	Protein name	GenBank accession No.	Identity with StCRTISO (%)
Solanum lycopersicum	SlCRTISO	NP_001296161.1	98
Capsicum chinense	CcCRTISO	PHU05741.1	94
Capsicum baccatum	CbCRTISO	PHT36936.1	94
Lycium barbarum	LbCRTISO	AIX87497.1	93
Lycium ruthenicum	LrCRTISO	AIX87521.1	93
Lycium chinense	LcCRTISO	AIZ50714.1	93
Prunus persica	PpCRTISO	XP_020423714.1	85
Hevea brasiliensis	HbCRTISO	XP_021667983.1	85
Citrus maxima	CmCRTISO	AJT59423.1	85
Citrus clementine	CcCRTISO	XP_006430007.1	85
Vitis vinifera	VvCRTISO	XP_002269554.1	84
Citrus unshiu	CuCRTISO	GAY32839.1	84
Theobroma cacao	TcCRTISO	EOY08564.1	83
Prunus avium	PaCRTISO	XP_021804866.1	82
Populus trichocarpa	PtCRTISO	PNS98232.1	79
Populus tomentosa	PtCRTISO	APR64120.1	79
Spinacia oleracea	SoCRTISO	XP_021858982.1	77

4. Conclusion
The present study analyzed the StCRTISO gene of potato. It is reported the identification of a CRTISO as the candidate gene for orange head by high-resolution genetic mapping using F2S4 population [15]. Loss of BrCRTISO function, upregulation of the upstream genes, and downregulation of downstream genes lead to the accumulation of prolycopene and confer an orange color to the inner head leaves in Chinese cabbage [16]. Previous studies have shown that the CRTISO protein is relatively conserved in plants. The CRTISO protein of N. tabacum is similar to the CRTISO protein of tomato and potato, showing 93% and 93% homology [14]. The findings of the present study show that CRTISO from potato is highly conserved in plants, similar to that observed in earlier reports. The findings of the present study may serve as a foundation for future studies on the functions of StCRTISO in carotenoid metabolism in potato.

Acknowledgments
This work was supported by Science and Technology Foundation of Guizhou Province (QianKeHeJiChu[2016]1003; QianKeHeJiChu[2018]1402), The Project of Bijie Experimental Station in National Industry Technical System of Potato (CARS-10-ES19), and Science and Technology Special Fund Project of Central Subsidized Place (QianKeHeTiaoZhongBuDi [2015]4003).

References
[1] M. Andersson, H. Turesson, A. Nicolia, A. Fält, M. Samuelsson, and P. Hofvander, Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts, Plant Cell Rep. 36 (2017) 117-128.
[2] S. Lu, J. Van Eck, X.J. Zhou, A.B. Lopez, D.M. O’Halloran, K.M. Cosman, B.J. Conlin, D.J. Paolillo, D.F. Garvin, J. Vrebalov, L.V. Kochian, H. Kupper, E.D. Earle, J. Cao, L. Li, The cauliflower Or gene encodes a dnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation, Plant Cell 18 (2006) 3594-3605.
[3] H. Park, S.S. Kreunen, A.J. Cuttriss, D. Della Penna, and B.J. Pogson, Identification of carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis, Plant Cell 14 (2002) 321-332.
[4] T. Isaacson, G. Ronen, D. Zamir, and J. Hirschberg, Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of b-carotene and xanthophylls in plants, Plant Cell 14 (2002) 333-342.

[5] M. Kato, Y. Ikoma, H. Matsumoto, M. Sugiura, H. Hyodo, and M. Yano, Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit, Plant Physiol. 134 (2004) 824-837.

[6] P.A. Scolnik, and G.E. Bartley, Nucleotide sequence of an Arabidopsis cDNA for phytoene synthase, Plant Physiol. 104 (1994) 1471-1472.

[7] P.R. Li, S.J. Zhang, S.F. Zhang, F. Li, H. Zhang, F. Cheng, J. Wu, X.W. Wang, and R.F. Sun, Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling, BMC Genomics 16 (2015) 492.

[8] P.A. Scolnik, and G.E. Bartley, Phytoene desaturase from Arabidopsis, Plant Physiol. 103 (1993) 1475.

[9] P.A. Scolnik, and G.E. Bartley, Nucleotide sequence of zeta-carotene desaturase (accession no. U38550) from Arabidopsis, Plant Physiol. 109 (1995) 1499.

[10] Y. Chen, F. Li, and E.T. Wurtzel, Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants, Plant Physiol. 153 (2010) 66-79.

[11] B. Pogson, K.A. McDonald, M. Truong, G. Britton, and D. Della Penna, Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants, Plant Cell 8 (1996) 1627-1639.

[12] Y.M. Shi, R. Wang, Z.P. Luo, L.F. Jin, P.P. Liu, Q.S. Chen, Z.F. Li, F. Li, C. Y. Wei, M.Z. Wu, P. Wei, H. Xie, L.B. Qu, F.C. Lin, and J. Yang, Molecular cloning and functional characterization of the lycopene ε-cyclases gene via virus-induced gene silencing and its expression pattern in Nicotiana tabacum, Int. J. Mol. Sci. 15 (2014) 14766-14785.

[13] J.X. Zhang, H. Yuan, Z.J. Fei, B.J. Pogson, L.G. Zhang, L. Li, Molecular characterization and transcriptome analysis of orange head Chinese cabbage (Brassica rapa L. ssp. pekinensis), Planta 241 (2015) 1381-1394.

[14] Y.M. Shi, R. Wang, J. Yang, Z.P. Luo, F. Li, M.Z. Wu, C.Y. Wei, F.C. Lin, L.B. Qu, P. Wei, Cloning and functional analysis of the CRTISO gene in Nicotiana tabacum, Acta Tabacaria Sinica 20 (2014) 138-143.

[15] J.X. Zhang, H.X. Li, M.K. Zhang, M Hui, Q. Wang, L. Li, L.G. Zhang, Fine mapping and identification of candidate BR-or gene controlling orange head of Chinese cabbage (Brassica rapa L. ssp. pekinensis), Mol Breed 32 (2013) 799-805.

[16] T.B. Su, S.C. Yu, J. Wang, F.L. Zhang, Y.J. Yu, D.S. Zhang, X.Y. Zhao, W.H. Wang, Loss of function of the carotenoid isomerase gene BrCRTISO confers orange color to the inner leaves of Chinese cabbage (Brassica rapa L. ssp. pekinensis), Plant Mol. Biol. Rep. 33 (2015) 648-659.