Introduction

Optimal diabetes management requires glucose monitoring at regular intervals or continuously. In the 1970s, the commercial sector responded by developing analytical systems that provided accurate readings of glucose concentrations in capillary blood samples. This technology is commonly referred to as either self-monitoring of blood glucose (SMBG) or assisted monitoring of blood glucose (AMBG) and is recognized as a major advance in managing diabetes. This technology permitted, for the first time, the ability for people with diabetes to monitor their individual glycemia on a daily basis. This technology also enabled the clinical studies that established the benefits of tight glycemic control in delaying the onset of diabetes complications.

Despite improvements in sample volume requirements, analysis times, and measurement accuracy, the pain, cost, and inconvenience of SMBG technologies are driving the

Abstract

Background: Conventional home blood glucose measurements require a sample of blood that is obtained by puncturing the skin at the fingertip. To avoid the pain associated with this procedure, there is high demand for medical products that allow glucose monitoring without blood sampling. In this review article, all such products are presented.

Methods: In order to identify such products, four different sources were used: (1) PubMed, (2) Google Patents, (3) Diabetes Technology Meeting Startup Showcase participants, and (4) experts in the field of glucose monitoring. The information obtained were filtered by using two inclusion criteria: (1) regulatory clearance, and/or (2) significant coverage in Google News starting in the year 2016, unless the article indicated that the product had been discontinued. The identified bloodless monitoring products were classified into three categories: (1) noninvasive optical, (2) noninvasive fluid sampling, and (3) minimally invasive devices.

Results: In total, 28 noninvasive optical, 6 noninvasive fluid sampling, and 31 minimally invasive glucose monitoring products were identified. Subsequently, these products were characterized according to their regulatory, technological, and consumer features. Products with regulatory clearance are described in greater detail according to their advantages and disadvantages, and with design images.

Conclusions: Based on favorable technological features, consumer features, and other advantages, several bloodless products are commercially available and promise to enhance diabetes management. Paths for future products are discussed with an emphasis on understanding existing barriers related to both technical and non-technical issues.

Keywords

invasive, noninvasive, glucose, fluid sampling, minimally invasive, optical
commercial sector to develop new analytical devices that are not based on individual blood measurements, but rather on continuous, or near continuous, glucose measurements in non-blood samples. Non-blood glucose sensing technologies have been under development since the mid-1980s, yet relatively few have realized commercialization and received regulatory approval.

This review reports the results of a literature search to uncover a listing of established and nascent commercial products that are based on non-blood glucose sensing technologies. Each product is classified as either of the following:

1. Noninvasive optical glucose monitor (NIO-GM),
2. Noninvasive fluid sampling glucose monitor (NIFS-GM), and
3. Minimally invasive glucose monitor (MI-GM).

These technologies are generally characterized as providing continuous or intermittent glucose measurements with minimal or no pain.

Definitions of Glucose Monitoring Devices

The discovered products are classified according to the following set of definitions.

Invasive glucose monitors. The most recent published definition of an invasive procedure, based on an analysis of almost 400 articles from the medical literature, is “Where purposeful/deliberate access to the body is gained via an incision, percutaneous puncture, where instrumentation is used in addition to the puncture needle, or instrumentation.”

By this definition, when a product requires puncturing of the skin with a lancing device, this product is defined as an invasive glucose monitor (IGM) device.

Home IGM devices involve collecting a sample of capillary blood by breaking the skin barrier at the subject’s finger with a sharp lancing device. Such IGM systems have been marketed for almost half a century and have undergone continual improvements to require less blood volume and shorter measurement times. Unfortunately, the cost, pain, blood waste, and finger calluses related to this method reduce patient enthusiasm for frequent glucose testing.

Noninvasive optical glucose monitors. Using the above definition of an invasive procedure, a technology where the concentration of glucose is measured without inserting a device into the body is considered noninvasive. When a noninvasive measurement involves passing a type of radiation into a vascular region of the body, then the instrumentation is defined as a noninvasive optical glucose monitor (NIO-GM). Typically, the analytical information associated with such measurements is derived from the chemical composition of the interstitial fluid (ISF) contained within the skin matrix. Additional tissue components, such as vascular and intracellular compartments, can also contribute to the spectroscopic response. Most often, measurement sites correspond to accessible body compartments, such as fingers, extremities, the abdominal wall, or earlobes. Such devices are painless and free of medical waste.

Noninvasive fluid sampling glucose monitoring. A second type of noninvasive measurement involves analysis of a fluid sample that is collected without an invasive procedure. In this case, the body fluid, such as tears, sweat, saliva, and urine, is available without puncturing skin and the analytical information is determined ex vivo. Once the processes involved in collecting and analyzing a sample are packaged into an integrated product, the system is defined as a noninvasive fluid sampling glucose monitor (NIFS-GM).

The above definition differs from those used in previous reviews that categorize glucose sensing technologies. In other reviews, analysis of fluids other than blood are grouped under either the terms minimally invasive or noninvasive, as illustrated in Figure 1A and 1B. The rationale for treating these methods as minimally invasive is based on the fact that these NIFS-GM methods require collection of a body fluid and the analytical measurement does not involve passing
radiation through the body. On the other hand, other reviews place an emphasis on the lack of puncturing skin for NIFS-GM systems, thereby categorizing these devices as noninvasive. Developers of such products prefer the term noninvasive over minimally invasive because of marketing advantages.

In our assessment, NIFS-GM systems are distinctive and require a separate designation, as illustrated in Figure 1C. These technologies are uniquely characterized by a lack of puncturing skin, instrumentation applied to the body, a potential for skin trauma, and the need for an established clinically valid correlation between the concentrations of glucose in the fluid and in blood.

Minimally invasive glucose monitoring. The insertion of a sensor into the subcutaneous tissue is an *invasive procedure*, but this procedure is characterized as involving minimal pain and providing glucose concentrations over an extended period with a single insertion. For these reasons, such an approach is defined as a *minimally invasive glucose monitor (MI-GM)*. These technologies are capable of staying in place for periods of days, weeks, or even months while performing glucose measurements repeatedly.

MI-GM devices have been marketed worldwide for the past two decades and serve as the basis for state-of-the-art wearable continuous glucose monitor (CGM) systems. The commercial success of these devices is illustrated by the data presented in Figure 2. For the industry, total revenues exceeded $1.5 billion USD as of the fourth quarter of 2020.12

Technological Approaches for Glucose Monitoring Products

The various glucose monitoring products rely on different technological approaches, as described below.

Technology for noninvasive optical glucose monitoring. NIO-GM involves sending harmless, low-energy radiation through a vascular body site and extracting information about the glucose concentration from the collected signal. In many cases, a selected band of electromagnetic radiation is applied to skin and the diffusely scattered photons are collected. Glucose concentrations are estimated by a multivariate analysis of the resulting spectrum. Several recent review articles provide detailed descriptions of the different NIO-GM technologies currently under development.5,13-15 These technologies include near-infrared spectroscopy, mid-infrared spectroscopy, Raman scattering spectroscopy, optical polarimetry, approaches based on microwave and radio wave sensing, and others.5,13-15

Technical hurdles for success of NIO-GM products include issues related to detection limits and selectivity of glucose measurements. Glucose concentrations in blood and ISF are at milli-molar concentrations, which places them at an intermediate level – meaning they are lower than the principal components of skin and higher than many clinical biomarkers. Still, spectroscopic signals originating from glucose molecules are weak, which challenges the signal-to-noise ratio (SNR) of the instrumentation.16-19 Fundamentally, the SNR for the instrumentation must be sufficient to enable measurement of the weak signals from glucose over background noise and other sources of instrumental variation. In addition, the measurement signal must be selective relative to all other components of skin, including membranes, glycosylated structures, and soluble compounds within the ISF matrix, such as albumin, urea, amino acids, and ascorbic acid. Ideally, such a selectivity is derived from the chemical structure of glucose, thereby providing a robust basis for measurement accuracy. Depending on the radiation used, a viable NIO-GM has to take into account skin pigmentation, surface roughness, skin thickness, breathing artifacts, blood flow, body movements, and ambient temperature.20 Individual calibration can reduce the impact of the skin’s contribution to the results of measurement.

NIO-GM devices have been proposed based on primary or direct glucose sensing as well as secondary, or indirect glucose sensing. Primary measurements involve collecting a signal derived directly from the glucose molecule, while secondary measurements involve measuring a parameter impacted by the concentration of glucose, such as (1) heart rate changes with electrocardiography,21 (2) rate of red blood cell aggregation with ultrasound,22 (3) blood volume dynamics with photoplethysmographic measurement of blood,23,24 (4) dielectric properties of the skin matrix with diffuse scattering or temperature-modulated localized reflectance,25 or (5) sudomotor dysfunction with electrochemical skin conductance and sweating asymmetry.26

No NIO-GM product has received clearance by the United States Food and Drug Administration (FDA). Although both direct and indirect noninvasive glucose measurements bear the burden of establishing measurement accuracy, this burden can be greater for indirect methods owing to the lack of a selective signature originating from the glucose molecule.
Indirect methods are based on correlations of physiological signals that may be impacted by parameters other than glucose, thereby confounding selectivity and measurement accuracy to a considerable extent. However, machine learning and neural network approaches might provide a successful path for selective indirect glucose measurements. Successful approaches might require a combination of direct and indirect sources of analytical information. It is possible to quantify glucose in standard solutions and tissue phantoms under idealized conditions by such approaches; however, in the real world, the accuracy and precision of glucose measurements could be inadequate for clinical use. Measurement accuracy over time represents the major analytical challenge of all NIO-GM technologies.

The FDA recently distributed a warning concerning the impact of skin pigmentation on the accuracy of clinical pulse oximetry measurements. NIO-GM are potentially subject to the same concerns depending on the wavelength of the probing radiation. Absorption of the incident radiation by melanin, or other skin pigments, will certainly impact signal measurements. Substances that may affect skin pigmentation, skin structure, and reflectance properties of the probing radiation include topical medications, cosmetics, cosmeceuticals, and estrogens, as well as tobacco, and alcohol. Radio waves and microwaves are not expected to be impacted and infrared wavelengths are also unlikely to be affected, although visible and near infrared wavelengths near the visible spectrum (ie, less than 1 micron can be impacted). The impact of skin pigmentation must be experimentally assessed for each system.

The only approach to developing an NIO-GM product that does not involve measurements in skin, involves direct measurements in the aqueous humor of the eye. This approach eliminates the confounding effects presented by the skin barrier; however, none of the products covered in this review is based on this approach.

Although no NIO-GM device has been approved by the FDA, interest in noninvasive measurements is high. In 2020, 343 articles were referenced in PubMed with the search term “noninvasive glucose.” Also, the number of such articles in PubMed has increased progressively over the past 45 years. Initially, interest in this field was mostly academic, but since the 1990s, a number of companies have been attempting to develop NIO-GM products.

Technology for noninvasive fluid sampling glucose monitoring. NIFS-GM products center on technologies capable of collecting and analyzing samples of ISF, tears, sweat, or saliva. Electrochemical glucose oxidase biosensors are available to determine the concentration of glucose in the collected fluid. Sample collection technologies are specific for the measurement fluid. Reverse iontophoresis enables the collection of a representative sample of ISF without puncturing the skin. Other technologies are reported for measurements in lacrimal and tear fluids.

Two NIFS-GM technologies have either received clearance from the FDA or have been granted a Conformité Européenne (CE) Mark. The first is the measurement of glucose in ISF samples extracted through the skin surface by reverse iontophoresis. This is an active transport system stimulated by an electrical current applied to the skin. The concentration of glucose in the resulting fluid is measured with a sensor patch placed on the skin surface. Glucose concentrations in such samples are two to three orders of magnitude below those in the original ISF, which presents an analytical challenge. The SugarBEAT from Nemaura (Loughborough, England) is a NIFS-GM device that uses this method and has received a CE Mark. A comparable approach received FDA clearance in 2001 and was marketed as the GlucoWatch Biographer by Cygnus, Inc. (Redwood City, California). The resulting glucose concentration measurements lacked sufficient clinical accuracy and the device suffered from poor user experience. A skin permeation process using ultrasound was briefly used more than ten years ago to collect ISF with a sensor placed over the site of skin permeation for an investigational needle-free product, and this type of product is still under development.

Technically, urine test strips fall under the definition of a NIFS-GM device. These test strips are ineffective in estimating real-time blood glucose concentrations and are rarely used for making treatment decisions. Urine glucose testing is characterized by the following three characteristics:

1. a long and unpredictable lag time between dynamic blood glucose concentrations and urine glucose concentrations,
2. a high blood glucose concentration threshold for urine glucose excretion, below which glucose does not appear in the urine, and
3. a wide person-to-person variability in this blood glucose threshold concentration where glucose spills into the urine.

For NIFS-GM technologies designed to measure glucose in samples of sweat, saliva, and tears, the actual analytical measurements might be accurate; however, the correlation is poor for glucose levels in these fluids compared to those in blood, and this correlation might be influenced by regionalized physiological stressors or stimuli. Such correlations have proven difficult to control, thereby raising the possibility that physiology will render such an approach to be impractical for commercialization.

Technology for minimally invasive glucose monitoring. The majority of MI-GM products currently on the market are devices that require the user to insert the sensing element in the subcutaneous space. The sensing element is an electrochemical glucose biosensor which reports a glucose concentration every 1-15 minutes to a receiver located outside the body. The sensor is limited to 10-14 days of operation.
Three generations of biosensor technology are reported for MI-GM devices. Each generation differs by the internal path of elements associated with the enzyme-catalyzed reaction and the electrochemical detection. In all generations, the enzyme catalyzes the oxidation of glucose to form gluconic acid, thereby producing the reduced form of the enzyme cofactor. The electron generated from the oxidation of glucose is ultimately transferred to either oxygen (first generation), an electron mediator (second generation), or the electrode directly (third generation).\(^{50}\) Accuracy of glucose measurements and their resistance to interferences by drugs or other substances have improved with each successive generation of glucose sensors. Third generation sensors are not yet commercially available.\(^{51}\)

As an alternative to electrochemical MI-GM devices, the principles of reversible affinity sensing are available. For this purpose, two molecules, one of which is a glucose binding protein (GBP), are brought together with a dextran derivative. At low glucose concentrations, the GBP forms a macromolecular complex with the dextran-derivative. As the concentration of glucose increases, the GBP will prefer glucose, thereby dissociating the macromolecular complex. The measurement of the glucose concentration is carried out by determining the change in a physical parameter related to this dissociation of the macromolecular complex. Examples of measurements include a change in viscosity,\(^{55}\) osmotic pressure against a membrane,\(^{52}\) or fluorescence.\(^{53,54}\) Depending on the measuring principle, the change in the measured quantity is detected with either pressure or optical transducers and the signal is correlated to a change in glucose concentration by a calibration curve.

The Eversense CGM, offered by Senseonics (Germantown, Maryland) is an FDA approved MI-GM device that measures the concentration of glucose by a fluorescence signal generated from a reversible affinity sensing mechanism involving a selective glucose binding protein.\(^{55}\) This device has demonstrated clinical sufficient glucose measurement accuracy for 180 days,\(^{55,56}\) although it was initially cleared by the FDA for 90 days of use.\(^{57,58}\) This device must be implanted under the skin and removed by a healthcare professional and requires twice daily calibration.

Technological Challenges across Platforms

Regardless of the sensing technology, NIO-GM, NIFS-GM, or MI-GM, the following technical challenges must be considered for each clinically viable product.

Time delays in glucose concentrations between blood and measurement fluids

When blood glucose concentrations change, glucose levels in other physiological fluids, such as ISF, do not show similar changes instantaneously. As a result, differences in glucose concentrations reported from NIO-GM, NIFS-GM and MI-GM devices compared to blood measurements may not reflect inaccuracy in the measurement technology but may have a physiological basis. The rate of transporting glucose between the different fluids is not instantaneous and time is required for glucose to diffuse between compartments during periods of disequilibrium. Relevant body fluids include ISF within the subcutaneous matrix,\(^{59,61}\) extracted samples of sweat,\(^{62}\) saliva,\(^{63}\) tears,\(^{64}\) or ISF harvested using reverse iontophoresis,\(^{10}\) and aqueous humor measured from outside the body.\(^{65}\)

Time lags for glucose concentration measurements have three components: First, a physiological lag occurs as glucose equilibrates by diffusion (a passive transport to or from blood and the body fluid). The impact of this source of time delay depends on the rate of change in blood glucose levels. This physiological lag time can vary between individuals; but tends to be consistent over time for a specific individual for a given fluctuation in the blood glucose pattern. Second, a measurement lag can occur if the sensor’s response is slow. Third, a delay can occur owing to the data-smoothing algorithm. Such algorithms can introduce a time delay between the current glucose sensor reading and previous readings to smooth fluctuations, which leads to a delay in the measurement output. This third element of lag time is only relevant for CGM technology and not for spot glucose measurements.\(^{66,67}\)

Reported total lag times vary depending on the measurement conditions; however, they generally range between 5 and 20 minutes. Lag times tend to be shorter with NIO-GM and MI-GM sensor methods and tend to be longer with NIFS-GM. In the latter case external glucose sensors measure fluids that must be extracted before the analytical measurement. If a manufacturer provides a single number to represent the lag time in minutes for ISF glucose compared to blood glucose for a glucose sensor, then this number cannot necessarily be relied upon because much of the lag time is dependent on the individual whose lag is being measured.\(^{59}\) Furthermore, the lag time can vary depending on activities being performed\(^{68}\) or whether the blood glucose concentration is rising or falling.\(^{69}\)

Skin irritation

SMBG and AMBG capillary blood measurements can lead to calluses and scarring on the punctured finger tips.\(^{70}\) MI-GMs and the two categories of noninvasive monitors (of the skin only), NIO-GMs and NIFSGMs, have shown varying levels of skin irritation that could cause discomfort, scarring, or local skin infections. These skin reactions can be induced by the adhesives used to affix the glucose sensing element to the skin. Such adhesives have been reported to cause skin irritation and even allergic reactions.\(^{71}\) Stronger adhesives used to facilitate longer wear times can lead to even more pronounced skin problems.\(^{72}\) Acrylates being in the adhesives (and also in the plastic material of the sensor housing) are known to induce skin reactions.\(^{73,74}\)

Short term studies with MI-GMs that use transcutaneous microneedles to sample ISF have demonstrated minor edema and erythema skin irritation that resolve without treatment.\(^{75,76}\)
The use of a powerful laser for NIO-GM measurements poses a risk of pronounced skin damage. NIFS-GM methods sampling from the skin using no needles may cause dermatitis after prolonged collection (e.g., by reverse iontophoresis, skin permeation, or sweat collection). NIFS-GMs that collect fluids from sites other than the skin as well as optical noninvasive glucose monitors have not been reported to cause skin irritation.

Toxicity. The issue of toxicity is more of an issue for MI-GM technologies compared to the other less invasive approaches. For IGM, NIFS-GM, and MI-GM products, there is direct contact between the sensing element and a physiological fluid containing glucose. However, operation of MI-GM devices calls for the sensing element to be inserted into the body for periods of multiple days, which demands safety assurance. For IGM and NIFS-GM devices, the glucose measurements occur outside the body, thereby permitting the use of materials that would be unsuitable for indwelling MI-GM sensors. NIO-GM devices might involve direct contact between the physical glucose sensing element and skin. If so, then toxicity effects of the sensing materials must be evaluated. Manufacturers of NIO-GM systems must also be concerned with adverse effects caused by the energy and power of the probing radiation applied to the skin.

User involvement. Glucose monitoring methods that rely on user action are not well suited for automatic and continuous glucose monitoring. User involvement can be extensive for IGM and NIO-GM devices, as well as for any bulky NIO-GM devices. Either a minimally invasive implanted sensor or a wearable noninvasive sensor would be suitable for measuring continuous and automatic glucose measurements. In comparison to intermittent measurements, CGM devices can provide the following important information and functions with minimal user inputs or adjustments:

1. Real-time glucose concentrations including the timing and magnitude of peak responses to food intake, physical activities, and medications.
2. A 24-hour recording of changes of glucose levels over time.
3. Short-term and long-term glycemic trends.
4. Warnings of impending or surpassed clinically relevant low or high glucose concentrations.
5. Control of an automated insulin delivery (AID) system.
6. Interface with advanced digital systems for diabetes management.

Methods

Overview

We conducted a database review to survey products for monitoring glucose that did not use invasive blood glucose sampling. We searched for products using optical noninvasive, fluid sampling noninvasive, and minimally invasive glucose monitoring technologies. We performed four types of searches to find candidate NIO-GM, NIFS-GM, and MI-GM products and their manufacturing companies to be included in our list for this article, and these searches are updated as of December 17, 2020. We listed an NIO-GM, NIFS-GM, or MI-GM product if the product met at least one of two inclusion criteria: (1) clearance or approval by FDA or CE, and/or (2) significant coverage in a news story or press release from a search of the product (or, if the product did not turn up, then a search of the manufacturer) on Google News, indicating the product was reported as viable since 2016. When we discovered a product that would possibly qualify for our list from one of our four sources of information and designated these as “candidate products.” We then performed two types of, what we called, “Inclusion Searches.” The product was defined to meet our first criterion if its manufacturer’s website or a Google search indicated that the product was cleared by FDA or had a CE Mark. The product was defined to meet our second criterion if a search of Google News for an article published since 2016 provided significant coverage, which we defined as at least one paragraph of this product. In summary, we searched for information about candidate products for NIO-GM, NIFS-GM and MI-GM technologies through four information sources. For each discovered candidate product, we applied the two inclusion criteria to determine whether the product would be included on our “identified products” list. Figure 3 presents a PRISMA diagram of how we performed our database reviews to create a list of identified NIO-GM, NIFS-GM, and MI-GM products.

Information Sources for Finding Candidate Products

PubMed. Our first source of information for finding candidate products came from two types of searches in PubMed-referenced journals for articles describing technologies for measuring glucose noninvasively (either optically or via fluid sampling) and minimally invasively. We selected 16 technologies that have been reported to be used for NIO-GM, NIFS-GM, or MI-GM products in review articles about bloodless glucose monitors. These 16 technologies included: (1) spectroscopy, (2) Raman scattering spectroscopy, (3) fluorescence, (4) iontophoresis, (5) polarimetry (optical rotation of polarized light), (6) impedance, (7) osmotic pressure, (8) electrochemistry, (9) absorption, (10) scattering, (11) photoacoustics, (12) quantum cascade laser, (13) photothermal detection, (14) photoplethysmography, (15) quartz crystal microbalance, and (16) DNAzyme. We performed a set of 16 PubMed searches of technologies with two search terms: one of these 16 technologies and “glucose monitor.” From the articles that we found, we searched each article for a glucose monitoring product and its manufacturer. We also searched for glucose monitoring products...
that measured any of five body fluids that we selected from review articles about bloodless glucose monitors.5,13-15,37 These body fluids included: (1) ISF, (2) sweat, (3) tears, (4) saliva, and (5) breath vapor. We performed a set of five PubMed searches of body fluids with two search terms: one of these five body fluids \textit{+} “glucose monitor.” We sorted searches by “best match” and terminated each search after finding no additional relevant articles about glucose monitoring after ten consecutive additional articles. From the articles that we found, we searched each article for a glucose monitoring product and its manufacturer. We upgraded a candidate product to our identified products list if it met at least one of the two inclusion criteria.

Google Patents. Our second source of information for finding candidate products came from a series of 42 searches in the Google Patents database, each using one of the same 16 key technology terms and five body fluid terms we used in our PubMed search plus either the phrase “diabetes minimally invasive glucose monitor” or the phrase “diabetes noninvasive glucose monitor.” We limited this search to active or pending patents published starting from January 1, 2010.
using the Google Patents “Date” filter. The Google Patents search engine automatically generated the most relevant patents first and progressively less relevant patents afterward. Each page contained ten patent applications. We elevated a patent to the stage of assessing whether it met our two inclusion criteria for our list of identified products if it turned up in one of our 38 searches and also met three criteria for a candidate patent that we established for our patent search. These criteria specified that a candidate patent had: (1) a manufacturer named in the English language as an assignee, (2) a main focus on measuring glucose in blood or a body fluid, and (3) a manufacturer’s website with an NIO-GM, NIFS-GM, or MI-GM listed as a product. For each of our 42 searches, we reviewed successive pages for candidate patents. We continued reviewing page after page as long as we found at least one new candidate patent per page. If a page contained no such patents, then we reviewed one subsequent page and if that page also contained no candidate patents, then this search was terminated. If a candidate patent was found on one of those two pages, then we resumed searching page after page. For the purpose of termination, if a manufacturer generated more than one patent application during a search, then each subsequent patent after the first candidate patent was not counted as a new candidate patent. However, subsequent patents to a first patent were counted for the total number of candidate patents found, and they were later deduplicated if they were the same product. We upgraded a candidate product to our identified products list if it met at least one of the two inclusion criteria.

Diabetes technology meeting startup showcase. Our third source of information for finding candidate products came from a review of any NIO-GM, NIFS-GM, or MI-GM product presented by startup companies that participated in Diabetes Technology Society’s three Startup Showcases during the 2018, 2019, and 2020 Diabetes Technology Meetings. We used a proprietary database provided by Diabetes Technology Society to find the companies. We upgraded a candidate product to our identified products list if it met at least one of the two inclusion criteria.

Experts in glucose monitoring. Our fourth source of information for finding candidate products came from seven experts in glucose monitoring: (1) Guido Freckmann, MD (Institute for Diabetes Technology GmbH, Ulm, Germany), (2) Avner Gal, MBA, MSCE, MSc (Iridium Consultancy and Technologies, Ltd., Herzliya, Israel), (3) H. Michael Heise, PhD (South-Westphalia University of Applied Science, Iserlohn, Germany), (4) Jeffrey La Belle, PhD, MS (Grand Canyon University, Phoenix, Arizona, United States), (5) Jeffrey Joseph, DO (Thomas Jefferson University, Philadelphia, Pennsylvania, United States), (6) John Pickup, MD, PhD (King’s College of London), and (7) Mark Prausnitz, PhD (Georgia Institute of Technology, Atlanta, Georgia, United States) and asked them to name a product and/or a manufacturer developing novel NIO-GM, NIFS-GM and MI-GM technology. We also used information provided by five of the authors (AT, MA, BV, LH, DK) to name similar products and/or manufacturers. We searched every named manufacturer’s website for a product name. We upgraded a candidate product to our identified products list if it met at least one of the two inclusion criteria.

Inclusion Criteria for Upgrading a Candidate Product to an Identified Product

FDA clearance or CE Mark. Our first inclusion criterion for upgrading a candidate product to an identified product was regulatory clearance of a candidate product. We searched the product name in the “Device Name” search box, or the manufacturer’s name in the “Applicant Name” search box of the 510(k) Pre-Market Notification Database of the FDA to determine FDA clearance. If we were unable to find information on this database, then we also searched the manufacturer’s website for a claim of FDA clearance and/or a CE mark. If a manufacturer’s website did not indicate regulatory clearance, then we also searched the first page on Google using the search terms of the product name or manufacturer’s name + “glucose monitor” + “FDA” and the product name or manufacturer’s name + “glucose monitor” + “CE Mark.” If a product had FDA clearance and/or a CE mark, then we included this information in Table 1 in a column entitled “Which Inclusion Criteria Were Met.”

Google News. Our second inclusion criterion for upgrading a candidate product to an identified product was a mention in a news article from a search on Google News of a candidate product. Such a search followed a termination process similar to the Google Patents search under the “Information Sources for Finding Candidate Products” section. The Google News search generated the most relevant articles first and progressively less relevant articles afterward. In the Google search box, we searched for the product name + “glucose monitor,” then clicked the “News” tab on Google to find news articles. Each page contained ten articles. For each candidate product we discovered from our four sources, we reviewed Google News pages for candidate articles that were published any time on or after January 1, 2016. If the first Google News page did not contain any articles that described the product in at least one paragraph, then we would continue searching the next four pages for an article containing at least one paragraph of information. If the product name + “glucose monitor” did not show any candidate articles, then we would also search the manufacturer’s name + “glucose monitor.” If a news article was found about a product, then we included the reference in Table 1 in a column entitled “Which Inclusion Criteria Were Met.” We included no more than one news article per product in this column as an example, even if more than one article was found on Google News. If no article was found about a product that lacked regulatory
clearance, then we did not include this candidate product on our identified product list.

If an article found on Google News described the product we were searching for within a longer list of products, then we read through the article to see if any of the other products mentioned were already included in our list of candidate products. If any products were not included in the list of candidate products, then we added them to our candidate products. We then passed these incidentally discovered products (not originally found within our four original sources) through our inclusion criteria.

An Additional Scenario for Finding a Candidate Product and Upgrading it to an Identified Product

We upgraded one candidate product to an identified product using different inclusion criteria than the other identified products. An expert suggested the EyeSense (Basel, Switzerland) MI-GM called “FiberSense CGM,” so we then passed the product name + “glucose monitor” and manufacturer’s name + “glucose monitor” through Google News to determine if it fit one of our inclusion criteria. We found an article on Google News describing an NIFS-GM using tears being developed by EyeSense,\(^22\) but we were unable to find specific mention of the MI-GM “FiberSense CGM.” The manufacturer’s website did not mention the NIFS-GM product using tears; however, the manufacturer’s website did mention the MI-GM “FiberSense CGM.” We decided to include this MI-GM “FiberSense CGM” in our identified products list because of the article we found in Google News mentioning the manufacturer.

Product Classification

We classified every product on our identified product list of glucose monitors, that did not use invasive sampling, into one of three categories: (1) noninvasive optical (measuring glucose with electromagnetic radiation from a blend of tissue sources including blood, ISF, and cells); (2) noninvasive fluid sampling (measuring a body fluid other than blood or urine extracted without the use of an implanted needle employing a technology requiring contact of the sensor with the fluid, including sweat, and ISF); and (3) minimally invasive (measuring ISF with a sensor inserted or implanted into the skin requiring contact of the sensor with the ISF). All three of these methods are distinct from traditional invasive blood glucose testing, which refers to measuring glucose with a needle that is inserted into the body to puncture a blood vessel so that blood can be in contact with a sensor.

Product Features

We considered 11 features for each NIO-GM, NIFS-GM, or MI-GM product, which were: (1) which inclusion criteria were met, (2) PubMed article, (3) regulatory status, (4) adjunctive/non-adjunctive status (if cleared by FDA), (5) mechanism of glucose sensing, (6) matrix of glucose sensing, (7) degree of accuracy, (8) interferences, (9) measurement cycle, that is, continuous or intermittent, (10) pricing model, and (11) size/shape. We divided these features into regulatory features (Feature 1-4), technological features (Features 5-8), and consumer features (Features 9-11). We then summarized the glucose sensing technologies and the products that belonged to each category of glucose sensing.

Finding information for product features. Information about product features was obtained from: (1) manufacturer websites, (2) articles found in a PubMed search for identified products, (3) patents found in a Google Patents search, (4) new stories found in a Google News search, (5) results from a Google search. Not every product was described on all five of these outlets (ie, a manufacturer’s website, PubMed, Google Patents, Google News, the first page of results on Google) and in many cases, no information was available about specific features of the listed glucose monitors. For products that have been cleared by the FDA or have a CE Mark, we asked an official from the manufacturer about what were their interfering substances. While we considered lag time between fluctuations in concentrations of blood glucose and NIO-GM, NIFS-GM, or MI-GM system glucose measurements, as well as the presence of skin irritation from contact by the sensor or adhesive around the sensor with the body, to be important technological features, there was not enough reliable published data on the lag times or the status of the skin problems of chronic users for a high percentage of the various products to include more than general statements for all of these products.

Manufacturer websites. To fill information about product features, we first looked through manufacturer websites. In order to find a manufacturer’s website, we performed a search on Google using the search terms: (product name OR manufacturer’s name) + “glucose monitor.” We would look through the first page of Google results to find the manufacturer’s website, which featured details about the product.

PubMed articles. When we discovered a product using the second (Google Patents), third (Startup Showcase), or fourth (experts in the field) initial information sources and the product met our inclusion criteria, we then conducted a PubMed search for articles mentioning identified products. We used the search terms product name + “glucose.” If we found no relevant product-related articles, then we conducted a second PubMed search of the manufacturer’s name + “glucose.” If a PubMed article was found about a product, then we included the reference in Table 1 in a column entitled “PubMed Article.” We included no more than one article per product in this column as an example, even if more than one article was found on PubMed. This search was not an inclusion search, but rather was conducted to find published
references to be used if the product met at least one of our two inclusion criteria. Any PubMed article we found through both the information source search and this search may also have been used to provide information for columns in other tables.

Patents on Google Patents. We searched Google Patents by putting the manufacturer’s name under the “Assignee” and using the term “glucose monitor” in the search, which was a different type of search than we initially conducted using Google Patents as a source of candidate products (as described in the third paragraph of the “Methods” section). We used the information found on these patents to fill out information about product features.

News stories found in Google News. We used the same method, as was used under the “Google News” subsection of the “Inclusion Criteria” section, to find news stories in Google News to fill out details regarding product features. We summarized the most important product features in tables.

Results from a Google Search. We performed a Google Search with the (product name OR manufacturer’s name) + “glucose monitor” + “the product feature we are looking for (e.g., matrix)” on Google and looked through the first page of results for mention of a patent. We looked through each result to find details about the product feature.

Detailed Explanation for Specific Columns in Tables 1 and 2

Patents under the “Regulatory Status” column in Table 1. The Table 1 column on “Regulatory Status” specifies either clearance by the FDA, clearance by CE, or (if there was no clearance) whether we found a patent or any mention of having a patent. If a product was cleared by a regulatory agency, then we assumed that the product had a patent and we did not specifically search for one. If a product was not cleared by a regulatory agency, then we attempted to identify whether the product had a patent by using the five methods described under the “Finding Information for Product Features” section to identify a patent or mention of a patent. For the “First Page of Google Results” method, we used “patent” as our term for “the product feature we were looking for.” If we did not identify a patent through these five methods, then we stated “No patent identified.” If a manufacturer reported only patent(s) that could pertain to both a cleared product and a non-cleared product, then for the non-cleared product, we stated “No patent identified.”

“Mechanism of glucose sensing” column in Table 2. Just as with the other product features, the mechanism of glucose sensing presented in Table 2 was found using the five methods described under the “Finding Information for Product Features” section. Some manufacturers have developed both cleared and non-cleared products intended for bloodless glucose monitoring, but we were unable to find details about the mechanism of glucose sensing for their non-cleared products in manufacturer websites, articles on PubMed, articles on Google News, or results on the first page of a Google search. In this case, our source of information would theoretically be the patent if it was available. However, if the patents we reviewed did not call out the product by name, then it was unclear which product the patent was associated with. Therefore, we stated “No information available.”

Product Designs

We included examples of product design if the product website included an image and if a manufacturer’s official approved our request to publish an image of their product design. We reached out to every manufacturer that had a product design on their website if contact information was available. Representatives from manufacturers of the following products provided a separate image, that was not on the manufacturer’s website, for us to use for this article: Dexcom G6, Freestyle Libre 14-day, Freestyle Libre 2, Freestyle Libre 3, GlucoBeam, Gluco Quantum, LifeLeaf, SynerG, and UBAND. Every other product image came from the product website.

Advantages and Disadvantages

From the manufacturer’s website and the first page of Google results (as per the search method defined in the “Overview”), we determined which identified product had FDA and/or CE clearance. For each cleared product, we evaluated its features and created a list of advantages and disadvantages based on our experience with glucose monitoring technologies and treating people with diabetes. Advantages and disadvantages were not presented for any product which has not received regulatory clearance, because that product might eventually contain different features than what we are currently able to determine.

Results

Summary of Identified Products

We listed 65 identified products based on three categories for the degrees of invasiveness of the sensor relative to the body: (1) NIO-GM, (2) NIFS-GM, and (3) MI-GM technology. The products included 28 NIO-GMs, 6 NIFS-GMs, and 31 MI-GMs. We recorded available information on 12 different features for each glucose monitoring product. We classified these identified products according to (1) headquarter country, (2) which inclusion criteria were met, (3) PubMed article, (4) regulatory status, (5) adjunctive/non-adjunctive status (if cleared by FDA), (6) mechanism of glucose sensing, (7) matrix, (8) degree of accuracy, (9) interferences, (10)
Entry number	Product and manufacturer	Degree of invasiveness	Headquarter country	Which inclusion criteria were met	PubMed article	Regulatory status	Adjunctive or non-adjunctive (if cleared by the FDA)
1	No product name; Afon Technology	NIO-GM Wales	Google News	None	Not cleared by FDA and has not received CE Mark of approval. Patented technology.		
2	Alertgy NI-GM; Alertgy	NIO-GM USA	Google News	None	Not cleared by FDA and has not received CE Mark of approval. Patented technology.		
3	No product name; AnnNIGM	NIO-GM Russia	Google News	None	Not cleared by FDA and has not received CE Mark of approval. No patent identified.		
4	Add on to the Apple Watch; Apple	NIO-GM USA	Google News	None	Not cleared by FDA and has not received CE Mark of approval. Patented technology.		
5	BioMKR; Prediktor Medical	NIO-GM Norway	Google News	None	Not cleared by FDA and has not received CE Mark of approval. Patent pending.		
6	Blood Analysis Sensor; Brolis Sensor Technology	NIO-GM Lithuania	Google News	None	Not cleared by FDA and has not received CE Mark of approval. Patent pending.		
7	CompanionCM; Socrates Health Solutions	NIO-GM USA	Google News	None	Not cleared by FDA and has not received CE Mark of approval. Patented technology.		
8	CompanionSR; Socrates Health Solutions	NIO-GM USA	Google News	None	Not cleared by FDA and has not received CE Mark of approval. Patented technology.		
9	D-Band; DiaMonTech	NIO-GM Germany	Google News	Lubinski	Not cleared by FDA but the manufacturer has submitted a pre-submission to the FDA for the D-Base to the FDA. Has not received CE Mark of approval. Patented technology.		
10	D-Base; DiaMonTech	NIO-GM Germany	Google News	Lubinski	Not cleared by FDA and has not received CE Mark of approval. Patented technology.		
11	D-Pocket; DiaMonTech	NIO-GM Germany	Google News	Lubinski	Not cleared by FDA and has not received CE Mark of approval. Patented technology.		
12	GlucoBeam; RSP Systems	NIO-GM Denmark	Google News	Pleus	Not cleared by FDA and has not received CE Mark of approval. Patented technology.		
13	GlucoFit; GlucoActive	NIO-GM Poland	Google News	None	Not cleared by FDA and has not received CE Mark of approval. No patent identified.		
14	Gluco Quantum; Genki Vantage Ltd	NIO-GM China	Google News	None	Not cleared by FDA and has not received CE Mark of approval. Has not received CE Mark of approval but has initiated ISO 13485 certification process. Patented technology.		
15	Glucosense; Glucosense Diagnostics Ltd	NIO-GM England	Google News	None	Not cleared by FDA and has not received CE Mark of approval. Patented technology.		
16	GlucoStation; GlucoActive	NIO-GM Poland	Google News	None	Not cleared by FDA and has not received CE Mark of approval. No patent identified.		
17	GlucoTrack; Integrity Applications Ltd	NIO-GM Israel	Google News	Lin	Not cleared by FDA. Received the CE Mark of approval June 2013 for DF-F model. Received final CE Mark of approval in March 2014.		
18	GlucoWear; GlucoActive	NIO-GM Poland	Google News	None	Not cleared by FDA and has not received CE Mark of approval. No patent identified.		

(continued)
Table 1. (continued)

Entry number	Product and manufacturer	Degree of invasiveness	Headquarters country	Which inclusion criteria were met	PubMedarticle	Regulatory status	Adjunctive or non-adjunctive (if cleared by the FDA)
19	GlucoWise; MediWiSe	NIO-GM	England	Google News[^11^] Gonzales[^5^]	N/A	Not cleared by FDA and has not received CE Mark of approval. Patented technology.	N/A
20	Glutrac; Add Care Ltd	NIO-GM	China	Google News[^11^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. Patented technology.	N/A
21	HELO Extense; Wor[l]d Master Distributors	NIO-GM	USA	Google News[^12^] Gonzales[^5^]	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
22	HELO LX PRO; Wor[l]d Master Distributors	NIO-GM	USA	Google News[^12^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
23	LIFELEAF; LifePlus	NIO-GM	USA	Google News[^12^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
24	Movano Wearable CGM; Movano	NIO-GM	USA	Google News[^12^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
25	No product name; Omni Sciences, Inc.	NIO-GM	USA	Google News[^12^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
26	Sanmina; Sanmina Corporation	NIO-GM	USA	Google News[^12^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
27	TensorTip Combo Glucometer; Grga Medical Ltd	NIO-GM	Israel	Google News[^131^] CE Mark[^132^] Pfützner[^133^]	N/A	Not cleared by FDA. Received the CE Mark of Approval.	N/A
28	Uband; Know Labs, Inc.	NIO-GM	USA	Google News[^134^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
29	Bios; GraphWear Technologies Inc.	NIFS-GM	USA	Google News[^135^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
30	gSense; Nutrix	NIFS-GM	Switzerland	Google News[^136^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. No patent identified.	N/A
31	NextGen CGM; Echo Therapeutics	NIFS-GM	USA	Google News[^137^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
32	Saliva Glucose Biosensor; Gbs Inc.	NIFS-GM	USA	Google News[^138^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
33	sugarBEAT; Nemaura Medical	NIFS-GM	USA	Google News[^141^] CE Mark[^142^] Gonzales[^5^]	N/A	Has received CE Mark of Approval. Submitted a premarket approval medical device application to the FDA for its SugarBEAT glucose monitor.	N/A
34	Tear Glucose Sensor; NovoSense	NIFS-GM	Netherlands	Google News[^144^] Geelhoed-Duijvestijn[^145^]	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
35	AiDex CGM; GlucoRx (Rebranding of MicroTech Medical)	MI-GM	England	Google News[^139^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. No patent identified.	N/A
36	Biolinq CGM; Biolinq	MI-GM	USA	Google News[^148^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
37	Care Sense Air; i-SENS	MI-GM	South Korea	Google News[^149^] None	N/A	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A

(continued)
Table 1. (continued)

Entry number	Product and manufacturer	Degree of invasiveness	Headquarter country	Which inclusion criteria were met	PubMed/article	Regulatory status	Adjunctive or non-adjunctive (if cleared by the FDA)
38	Cascade CGM system; Waveform	MI-GM USA	Google News, CE Mark151	Rebec152	Not cleared by FDA. Received CE Mark of approval in 2019 and usable for people who are over 2 years of age.153	N/A	
39	CT-100; POCTech X Ascensia	MI-GM USA POCTech: China Ascensia; Switzerland	Google News, CE Mark154	None	Not cleared by FDA. Received CE Mark of approval.152	N/A	
40	Dexcom G6; Dexcom	MI-GM USA	Google News, FDA cleared,156 CE Mark157	Isaacson158	Cleared by the FDA in October, 2019 for use in adults and children over 2 years of age.154 Received CE Mark of approval in 2020.157	Non-adjunctive159	
41	Dexcom G7; Dexcom	MI-GM USA	Google News160	None	Not cleared by FDA and has not received CE Mark of approval. No patent identified.	N/A	
42	Eclipse 3; iCGM GlySens	Implanted MI-GM USA	Google News161	None	Not cleared by FDA and has not received CE Mark of approval. Patent pending.162	N/A	
43	Eversense; Senseonics	Implanted MI-GM USA	Google News, FDA cleared,163 CE Mark164	Fokkert166	Cleared by the FDA for people who are over 18 years of age.164 Received CE Mark of approval in 2016.165	Non-adjunctive167	
44	FiberSense Technology CGM; EyeSense	MI-GM Switzerland	Google News90 (manufacturer is mentioned)	None	Not cleared by FDA and has not received CE Mark of approval. Patented technology.168	N/A	
45	FreeStyle Libre 14 day; Abbott Diabetes Care	MI-GM USA	Google News, FDA cleared,169 CE Mark170	Kudva172	Cleared by the FDA.170 Received CE Mark of approval in 2014.171	Non-adjunctive173	
46	FreeStyle Libre 2; Abbott Diabetes Care	MI-GM USA	Google News, FDA cleared,174 CE Mark175	Denham176	Cleared by the FDA for adults and children with diabetes ages 4 years and above.174 Received CE Mark of approval in 2018.175	Non-adjunctive176	
47	FreeStyle Libre 3; Abbott Diabetes Care	MI-GM USA	Google News, CE Mark179	O’Neill180	Not cleared by the FDA. Has received CE Mark of approval for adults and children with diabetes ages 4 years and above.179	N/A	
48	Glucomen Day CGM; A Menarini Diagnostics	MI-GM Italy	Google News, CE Mark181	O’Neill180	Not cleared by the FDA. Waveform partner received CE Mark of approval to release Glucomen day.182	N/A	
49	Glunovo i3 CGM; Infinovo Medical Co Ltd.	MI-GM China	Google News, CE Mark183	None	No news articles about Infinovo CE Mark. However, LinkedIn page of Infinovo indicates CE Mark has been received as of June 2019.184	N/A	
50	Glyde CGM; GluSense	Implanted MI-GM Israel	Google News185	None	Not cleared by FDA and has not received CE Mark of approval. Patent pending.186	N/A	
51	Indigo CGM; Indigo	Implanted MI-GM Belgium	Google News187	None	Not cleared by FDA and has not received CE Mark of approval. Patent pending.188	N/A	
52	No product name; Integrated Medical Sensors	Implanted MI-GM USA	Google News189 Mujeeb-U-Rahman190	None	Not cleared by FDA and has not received CE Mark of approval. Patent pending.191	N/A	
Entry number	Product and manufacturer	Degree of invasiveness	Headquarter country	Which inclusion criteria were met	PubMed article	Regulatory status	Adjunctive or non-adjunctive (if cleared by the FDA)
--------------	--------------------------	------------------------	---------------------	-----------------------------------	----------------	------------------	--
53	No product name; One Drop (acquired Sana Intelligence, Inc., which was developing patch biosensor glucose monitor)	MI-GM	USA	Google News¹⁹³	None	Not cleared by FDA and has not received CE Mark of approval. Patented technology.	N/A
54	K’Watch; PKvitality	MI-GM	France	Google News¹⁹⁵	Gonzales⁵	Not cleared by FDA and has not received CE Mark of approval. Patented technology.	N/A
55	Lumee; Profisa	Implanted MI-GM	USA	Google News⁸⁹	None	Not cleared by FDA and has not received CE Mark of approval. Patented technology.	N/A
56	Medtronic Guardian Connect (Powered by Medtronic Guardian Sensor 3); Medtronic MiniMed	MI-GM	USA	Google News²⁰⁰; FDA cleared²⁰¹; CE Mark²⁰²	Sadhu²⁰³	FDA has approved the Android version of its guardian connect system; Received CE Mark of approval in 2016.	Adjunctive²⁰⁴
57	Medtronic Synergy; Medtronic MiniMed	MI-GM	USA	Google News²⁰⁵	None	Not cleared by FDA and has not received CE Mark of approval. No patents identified.	N/A
58	Medtronic Zeus; Medtronic MiniMed	MI-GM	USA	Google News²⁰⁵	None	Not cleared by FDA and has not received CE Mark of approval. No patents identified.	N/A
59	No product name; Metranom Health	MI-GM	USA and Belgium	Google News⁸⁹	None	Not cleared by FDA and has not received CE Mark of approval. Patented technology.	N/A
60	PercuSense CGM; PercuSense	MI-GM	USA	Google News²⁰⁸	None	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
61	Sanvita CGM; Sanvita Medical, LLC and LifeScan	MI-GM	Sanvita Medical, USA and LifeScan: USA	Google News²¹⁰	None	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
62	Sencell; Lifecare AS	MI-GM	Norway	Google News²¹²	None	Not cleared by FDA and has not received CE Mark of approval. Patented technology.	N/A
63	SugarSenz; Glucovation	MI-GM	USA	Google News²¹⁴	None	Not cleared by FDA and has not received CE Mark of approval. Patent pending.	N/A
64	SynerG; Pacific Diabetes Technologies	MI-GM	USA	Google News²¹⁶	Jacobs²¹⁷	Not cleared by FDA and has not received CE Mark of approval. Patented technology.	N/A
65	TouchCare System A6; Medtrum	MI-GM	China	Google News⁸⁹	Zhou²¹⁹	Not cleared by FDA and has not received CE Mark of approval. Patented technology.	N/A

PubMed article refers to the first author of an article indexed in the PubMed database. Abbreviations: CE, Conformité Européenne; FDA, United States Food and Drug Administration; MI-GM, minimally invasive glucose monitor; NIFS-GM, noninvasive fluid sampling glucose monitor; NIO-GM, noninvasive optical glucose monitor; USA, United States of America.
measurement cycle, that is, continuous or intermittent, (11) pricing model, and (12) size/form factor. We divided these features of the 65 identified products along with their manufacturer and degree of invasiveness into (1) regulatory features (Feature 1-5, Table 1), (2) technological features (Features 6-9, Table 2), and (3) consumer features (Features 10-12, Table 3). We presented a summary of the underlying technologies used by each identified product in Table 4. We presented images of product designs for selected identified products in Table 5A (FDA cleared and/or CE marked) and Table 5B (not FDA cleared or CE marked). We presented advantages and disadvantages of regulatory cleared products in Table 6.

Regulatory Features

Table 1 presents five regulatory features of the 65 identified products, including whether they received FDA clearance or a CE mark. Obtaining a CE mark requires proof of safety of the device, however, obtaining FDA clearance, requires proof of both the safety and efficacy of the device. Although FDA clearance is more difficult to obtain, it is a more powerful certification.

Technological Features

Table 2 presents four technological features of the 65 identified products. The next four paragraphs discuss these features.

The first technological feature we considered is the mechanism of glucose sensing, which is the process through which the sensor detects and interacts with glucose. These processes were based on a variety of chemical and physical properties of glucose.

The second technological feature we considered is the matrix where sensing occurs. For each glucose monitor, the sensing of glucose is carried out within a specific matrix. The matrix can be ISF with MI-GMs, ISF, sweat, tears, or saliva with NIFS-GMs, or a combination of ISF, cells, and blood with NIO-GMs.

The third technological feature we considered is accuracy. The accuracy of glucose monitors that are not invasive is typically reported in one of two ways. First, accuracy can be reported as the percentage of data pairs of glucose monitor values compared to reference values falling within various accuracy ranges, such as within 5%, 10%, 15%, 20%, 30%, and 40%. Second, accuracy can be presented as the mean absolute relative difference (MARD) or median absolute relative difference (medARD) of the measured glucose value compared to the reference glucose value. The two values for normally distributed datasets are linked by an approximate conversion factor of 2.5. For example, if a glucose monitor has a MARD of 10% and a set of glucose values is distributed normally, then approximately 95% of its measurements will fall within +/-25% of the reference glucose value because 2.5 x 10% equals 25%. Clinical accuracy is typically reported using an error grid analysis which presents the risk to a user based on actions taken from a measured glucose value compared to the correct action that would have been based on a reference glucose value. Three widely used error grids for blood glucose have been proposed, and over time they have reflected increasingly more modern expectations of analytical accuracy, understanding of risks of hypoglycemia, and prescribing patterns for modern insulins. The most recent error grid and that which reflects input from the greatest number of diabetes clinicians (compared to earlier iterations of error grids known as the Clarke Error Grid and the Parkes or Consensus Error Grid) is the Surveillance Error Grid. Each grid presents data pairs in five zones of risk, although the Surveillance Error Grid is constructed so that it is possible to also generate more than five risk zones. Neither analytical accuracy data nor clinical accuracy data was available for every product because not every product has conducted clinical trials or published performance data.

The fourth technological feature we considered was the device’s possible interferences or interfering substances that might affect the glucose monitor’s accuracy. The accuracy of a glucose monitoring device might be affected by interferences or interfering substances, which are molecules that can interfere with sensing, often because of a similar structure as glucose. These substances are important to identify and characterize to ensure that users understand why or when their readings might be inaccurate.

Consumer Features

Table 3 presents three consumer features of the 65 identified products. The first consumer feature we considered is the measurement cycle, or whether the device makes automatic continuous or intermittent measurements. Any automatic measurement device must be engineered to be small enough to be a wearable device, but an intermittent measurement device does not necessarily need to be built small. The second consumer feature we considered is the pricing model. There are two main models that are used. In the first model, the user purchases the sensor and can make as many measurements as desired during the lifetime of the sensor. In the second model, the patient is charged for each measurement. Combinations of these two models are also possible. One device might require a single large payment for a device that could last for years, while another device might require periodic purchases of consumable parts or else payment of a toll charge each time the monitor is used. The third consumer feature we considered is the size/form factor of the product. A small sized sensor, compared to a large sized sensor, is usually more convenient and preferred by most users. However, a small minimally invasive implanted sensor could break off from its transmitter and be lost under the skin. A small, wearable noninvasive sensor with a streamlined form factor, compared to a large, bulky, free-standing noninvasive sensor, will usually be more costly because component miniaturization and assembly are expensive.
Entry number	Product and manufacturer	Degree of invasiveness	Mechanism of glucose sensing	Matrix	Degree of accuracy	Interferences
1	No product name; Afon Technology	NIO-GM	Uses microwave spectroscopy. Sensor analyzes resonance shifts based on microwave signal to detect changes in glucose. Results reported for a clinical trial.	Blood/ISF	MARD: 21 ± 9% surveillance error grid: 48.9% in “no risk” zone, 47.1% in “slight risk” zone, 4% in “moderate risk” zone	No information available.
2	Alertgy NI-GM; Alertgy	NIO-GM	Uses dielectric spectroscopy. Wristband with integrated Microchip (dielectric sensor). The apparatus senses the electrical membrane permeability of cells and detects if the permeability varies from the norm. It then uses the difference between the measured permeability with the known permeability to sense glucose levels. Frequency range: 100 kilohertz–220 megahertz. Radiowave frequencies.	Blood/ISF	No information available.	No information available.
3	No product name; AnnNIGM	NIO-GM	Measuring principle not reported so far. Earlobe clip sensor. No description of their technology provided on their website.	No information available.	No information available.	No information available.
4	Add on to the Apple Watch; Apple	NIO-GM	Uses absorption spectroscopy with light of certain wavelength to determine the concentration of glucose	Blood/ISF	No information available.	No information available.
5	BioMKR; Prediktor Medical	NIO-GM	Uses absorption spectroscopy. An near infrared laser is used to generate an absorption spectrum for a certain measurement location of the user. A calibration model is then used to estimate blood glucose values from the infrared spectrum.	Blood/ISF	No information available.	None specified so far, but the device is intended for use in people age 18 or older. It is also only appropriate for use in certain cases.
6	Blood Analysis Sensor; Brolis Sensor Technology	NIO-GM	Based on integrated photonic package designed to measure glucose, lactate and ethanol. Wavelengths included at 1.7–2.5 microns. Uses laser-based sources.	Blood/ISF	MARD: 5.7% Clarke error grid: greater than 97% in zone A	No specific information – claims that ethanol and lactate are not significant.
7	CompanionCM; Socrates Health Solutions	NIO-GM	Rotation of plane polarized radiation at a non-defined wavelength through a tissue phantom (mimics ear tissue). Preliminary data presented for several human subject experiments. Technology similar to CompanionSR.	Tissue	Resolution for the measurement of micro-radians: ≥ 10mg/dl	No information available.
8	CompanionSR; Socrates Health Solutions	NIO-GM	Rotation of plane polarized radiation at a non-defined wavelength through a tissue phantom (mimics ear tissue). Preliminary data presented for several human subject experiments. Technology similar to CompanionCM.	Tissue	Resolution for the measurement of micro-radians: ≥ 10mg/dl	No information available.
9	D-Band; DiaMonTech	NIO-GM	Use of photothermal detection of the molecules after excitation with a mid-infrared laser (quantum cascade laser). A mid-infrared laser is used to detect glucose molecules in the ISF. The reflected wavelength is analyzed to gather data on the amount of glucose molecules. Data analysis involves a leave-one data set-out machine learning system. Technology similar to D-Band and D-Pocket.	ISF	No information available.	No information available.
10	D-Base; DiaMonTech	NIO-GM	Use of photothermal detection of the molecules after excitation with a mid-infrared laser (quantum cascade laser). A mid-infrared laser is used to detect glucose molecules in the ISF. The reflected wavelength is analyzed to gather data on the amount of glucose molecules. Data analysis involves a leave-one data set-out machine learning system. Technology similar to D-Band and D-Pocket.	ISF	MARD: 11.3%–12.1% medARD: 6.4%–6.5% Consensus error grid: 98.8%–99.1% in zones A + B	Temperatures outside of the range of 10-30°C may cause inaccurate readings. Temperatures on skin can interfere with accuracy.
Entry number	Product and manufacturer	Degree of invasiveness	Mechanism of glucose sensing	Matrix	Degree of accuracy	Interferences
-------------	--------------------------	------------------------	-------------------------------	--------	-------------------	---------------
11	D-Pocket; DiaMonTech	NIO-GM	Use of photothermal detection of the molecules after excitation with a mid-infrared laser (quantum cascade laser). A mid-infrared laser is used to detect glucose molecules in the ISF. The reflected wavelength is analyzed to gather data on the amount of glucose molecules. Data analysis involves a leave-one data set-out machine learning system. Technology similar to D-Band and D-Base.	ISF¹⁰⁶	No information available.	No information available.
12	GlucoBeam; RSP Systems	NIO-GM	This device uses Raman scattering spectroscopy to detect the amount of glucose in ISF. An excitation laser is shined into the finger and the Raman scatter from glucose molecules is analyzed. This technology used confocal methods to focus on a specific depth into the skin matrix.	ISF¹⁰⁶	medARD: 18.9%. consensus error grid: 93.1% in zones A+B.	Substances that have similar structures to glucose (such as ethanol) could interfere with the accuracy of the results.
13	GlucoFit; GlucoActive	NIO-GM	Using spectrophotometry to measure the scattering of light by molecules such as glucose. Irradiates the skin with wavelength of light to determine glucose concentration. Technology similar to D-Band and D-Base.	Skin¹⁰⁶	No information available.	No information available.
14	Gluco Quantum; Genki Vantage Ltd	NIO-GM	Uses metabolic heat (in the form of radiation, convection, and evaporation) from the finger’s skin to detect blood flow velocity and make an extrapolation of glucose levels. Infrared light is shone onto the skin to measure the skin’s temperature.	Skin¹⁰⁹	MARD: 13.12%²³¹	No information available.
15	Glucosense; Glucosense Diagnostics Ltd.	NIO-GM	Application of fluorescence measurement after excitation with a low-energy laser. Photonic chip with fluorescent ions. Uses infrared light and measures level of ion fluorescence to determine glucose concentration. The fluorescence ions are embedded with a silica glass photonic chip. These ions fluoresce in the infrared region of the spectrum (this could be near infrared close to the visible spectral range).	Skin¹³²	No information available.	No information available.
16	GlucoStation; GlucoActive	NIO-GM	Using spectrophotometry to measure the scattering of light by molecules such as glucose. Irradiates the skin with wavelength of light to determine glucose concentration. Technology similar to D-Band and D-Base.	Skin¹³³	No information available.	No information available.
17	GlucoTrack; Integrity Applications Ltd	NIO-GM	Ultrasonic, electromagnetic, and thermal parameters in earlobe tissue are measured to estimate blood glucose levels.	Skin¹²⁴	MARD: 17.5%-19.7% consensus error grid: 62.4% in zone A, 37.6% in zone B³⁵	Device can operate in an environmental temperature of +15°C to +35°C/ +59°F to +95°F. However, if the ambient sensor detects an environmental temperature that is beyond these temperatures, the device will present an error message²³⁸.
18	GlucoWear; GlucoActive	NIO-GM	Using spectrophotometry to measure the scattering of light by molecules such as glucose. Irradiates the skin with wavelength of light to determine glucose concentration. Technology similar to GlucoFit and GlucoStation.	Skin¹³⁷	No information available.	No information available.

(continued)
Entry number	Product and manufacturer	Degree of invasiveness	Mechanism of glucose sensing	Matrix	Degree of accuracy	Interferences
19	GlucoWise; MediWiSe	NIO-GM	Using low-power radio waves scattering. Radio waves (40 GHz) are transmitted through a thin layer of skin with adequate blood supply. Radiation passes through the skin layer (transfectance experiment). Uses a film technology that makes the skin transparent to the incident radiation, thereby giving consistent readings across different types of skin.	Blood	No information available.	No information available.
20	Glucare; Add Care Ltd.	NIO-GM	Employs absorption spectroscopy, electrocardiography, photoplethysmography, and dynamic metabolic heat monitoring to collect data. Machine learning and artificial intelligence is then used to estimate the user's blood glucose.	Blood	No information available.	No information available.
21	HELO Extense; World Master Distributors	NIO-GM	Photoplethysmography to measure glucose concentrations.	Blood	Instead of blood glucose numbers, the device provides a color coded scale for glucose.	No information available.
22	HELO LX PRO; World Master Distributors	NIO-GM	Photoplethysmography to measure glucose concentrations.	Blood	No information available.	No information available.
23	LIFELEAF; LifePlus	NIO-GM	Optical Sensor using photoplethysmography (detection of the reflection of infrared light) to detect glucose.	Blood	No information available.	No information available.
24	Movano Wearable; CGM Movano	NIO-GM	Scattering of high-frequency radio waves (in mm range). One antenna transmits a radio frequency below the skin surface. The amplitude and phase data (impedance) of the reflected waves are then processed by processing circuits and outputs a relevant value for blood glucose levels in the wrist. The sensor uses a frequency of around 60 GHz to penetrate deeper past the skin and illuminate a wider range. Uses a 122-126 GHz spectral range for measurement of glucose, blood pressure, and heart rate. Also uses Doppler measurements to isolate signals corresponding to relative movements.	Blood	No information available.	No information available.
25	No product name; Omni Sciences, Inc.	NIO-GM	Near infrared spectroscopy after excitation with fiber lasers.	Blood	No information available.	No information available.
26	Sanmina; Sanmina Corporation	NIO-GM	Optical measurement: detect several photoplethysmography signals (detection of the reflection of infrared light) in interstitial tissue.	Blood volume and vascular wall	MARD: 8%. Consensus error grid: 98% in zone A and 1.9% in zone B	No information available.
27	TensorTip Combo Glucometer; Cnoga Medical Ltd	NIO-GM	Measurement of infra-red light (600-1000 nm) passing through the fingertip (after partial absorption in the finger). Real-time color images related to the blood glucose level in the capillaries are translated into a vector that can be used to identify patterns of glucose concentration.	Blood/ISF	MARD: 14-18.1%. Consensus error grid: 91.1% in zone A and 7.8% in zone B	The finger would have to be adequately warmed up to ensure blood flow to the capillaries. Results might also be affected if the skin or device screen is dirty.
28	Uband; Know Labs, Inc.	NIO-GM	Spectroscopy techniques combined with radio waves are used to detect glucose concentrations in the body.	Blood	No information available.	No information available.
29	Bios; GraphWear Technologies Inc	NIFS-GM	Detection of biomolecules from the surface of skin: Nanotechnology to measure glucose that comes out of the skin surface through sweat.	Sweat	No information available.	Tattoos or other skin alterations.
Entry number	Product and manufacturer	Degree of invasiveness	Mechanism of glucose sensing	Matrix	Degree of accuracy	Interferences
--------------	--------------------------	------------------------	-------------------------------	--------	-------------------	---------------
30	gSense; Nutrix	NIFS-GM	Detection of biomolecules. Uses nanotechnology to detect glucose changes (concentration of molecules) in saliva.	Saliva	No information available.	No information available.
31	NextGen CGM; Echo Therapeutics	NIFS-GM	Uses technology that enhances skin permeation (using ultrasound) to measure analytes. Sensor includes a hydrogel component and electrodes. The hydrogel contains glucose oxidase to measure glucose.	ISF	MARD: 12.4%-20.4% Clarke error grid: 70.7%-89.6% in zone A, 9.6%-26.2% in zone B	No information available.
32	Saliva Glucose Biosensor; Gbs Inc	NIFS-GM	Glucose oxidase is used to detect glucose in a saliva sample through an electrochemical method.	Saliva	No information available.	No information available.
33	sugarBEAT; Nemaura Medical	NIFS-GM	Reverse iontophoresis for sampling and electrochemical sensing with glucose oxidase. Adhesive skin patch. Electrochemical signal of ISF glucose via glucose oxidase reaction using reverse iontophoresis by stimulating the migration of glucose from the ISF through an electrical current.	ISF	MARD: 11.92%-12.4%	No information available.
34	Tear Glucose Sensor; NovoSense	NIFS-GM	Electrochemical sensing with glucose oxidase as a receptor for the biomarker, glucose. The amount of H₂O₂ generated is an indicator for the amount of glucose in the lacrimal fluid.	Lactimal Fluid	medARD: 12.5% Consensus error grid: 90% in zones A+B	Ascorbic acid, acetaminophen, citric acid, lactic acid, pyruvic acid, and urea are all interfering substances.
35	AiDex CGM; GlucoRx (Rebranding of MicroTech Medical)	MI-GM	Electrochemical sensing with glucose oxidase.	ISF	Consensus error grid: 89.96% in zone A	No information available.
36	Biolinq CGM; Biolinq	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase reaction. Using patch with microneedles	ISF	No information available.	No information available.
37	Care Sense Air; iSENS	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase reaction.	ISF	No information available.	No information available.
38	Cascade CGM System; Waveform	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase reaction.	ISF	MARD: 9.9%, MAD: 14.5mg/dL Consensus error grid: 86.5% of the data pairs in zone A, greater than 98.6% in zones A+B	Limited interference concerns. Does not interfere with acetaminophen.
39	CT-100; POCtech X Ascensia	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase reaction.	ISF	MARD: 8.6%-10.22% Clarke error grid: 86.7%-91.6% in zone A, 8.4%-12.7% in zone B	No information available.
40	Dexcom G6; Dexcom	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase reaction. GO +Perm-selective membrane coating	ISF	MARD: 9%	Hydroxyurea
41	Dexcom G7; Dexcom	MI-GM	No information available.	No information available.	No information available.	No information available.
42	Eclipse 3 iCGM; GlySens	Implanted MI-GM	Glucose oxidase and a potentiostatic oxygen sensor work together in the sensor to sense glucose and allow for long-term implanting of the sensor.	ISF	MARD: 8.2%-28.1% Consensus error grid: 75.2% in zone A, 23.7% in zone B, 1.1% in zone C	No information available.

(continued)
Entry number	Product and manufacturer	Degree of invasiveness	Mechanism of glucose sensing	Matrix	Degree of accuracy	Interferences
43	Eversense; Senseonics	Implanted MI-GM	Nonenzymatic electrochemical fluorescent-based polymer²⁶³	ISF²⁶³	MARD: 8.5%-9.6%²⁴³	Mannitol, Tetracycline²⁶⁴
44	FiberSense Technology CGM; EyeSense	MI-GM	Optical fiber fluorescence photometer measures concentration of glucose. Uses a receptor molecule that binds glucose and also binds a competitor molecule²⁶⁰	ISF²⁶⁵	MARD: 8%-9%²⁴⁵	No information available.
45	FreeStyle Libre 14 day; Abbott Diabetes Care	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase. GO + Redox sensing, use of a mediator of osmium oxide²⁶⁴	ISF²⁶⁶	MARD: 9.4%²⁶⁷	Ascorbic acid, salicylic acid^{267,268}
46	FreeStyle Libre 2; Abbott Diabetes Care	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase. GO + Redox sensing, use of a mediator of osmium oxide²⁶⁵	ISF²⁶⁹	Adult MARD: 9.2%, pediatric MARD: 9.7%²⁶⁹	Ascorbic acid²⁶⁹
47	FreeStyle Libre 3; Abbott Diabetes Care	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase. GO + Redox sensing, use of a mediator of osmium oxide²⁷⁰	ISF²⁷⁰	Adult MARD: 9.2%²⁷⁰	No information available.
48	Glucomen Day CGM; Menarini Diagnostics	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase. Electrochemical enzymatic sensor²⁷¹	ISF²⁷¹	MARD: 9.7%. Consensus error grid: 84.9% in zone A, 12.9% in zone B²⁷²	No information available.
49	Gluonova i3 CGM; Infinova Medical Co Ltd.	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase electrochemical sensor²⁷³	ISF²⁷³	No information available.	No information available.
50	Glyde CGM; GluSense	Implanted MI-GM	Glucose detection is performed using a proprietary fluorescent. Biosensor protein. Biosensor uses the fluorescent resonant energy transfer effect¹⁸⁶. When glucose is bound to the biosensor, it changes its fluorescence emission.	ISF¹⁸⁶	No information available.	No information available.
51	Indigo CGM; Indigo	Implanted MI-GM	Glucose measurement with near infrared spectroscopy in a small subcutaneously implanted spectrometer, measure glucose and ketones up to 2 years²⁷⁴	ISF²⁷⁴	(Measured in swine model) MARD: 6.4%-6.5%. Consensus error grid 99.3%-99.4% in zone A, 0.6% in zone B, 0%-0.1% in zone C²⁷⁵	No information available.
52	No product name; Integrated Medical Sensors	Implanted MI-GM	Electrochemical signal of ISF glucose via glucose oxidase reaction⁹⁰	ISF⁹⁰	(Measured in swine model) MARD: Better than 12%. Clarke error grid: 96% in Zones A+B⁹⁰	No information available.
53	No product name; One Drop (acquired Sano Intelligence, Inc., which was developing patch biosensor glucose monitor)⁹²	MI-GM	Biosensor patch with microneedles that measures ISF for glucose concentration.^{192,194,276} Glucose forecast by using artificial intelligence.	ISF¹⁹⁴	No information available.	No information available.
54	K’Watch; PKvitality	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase reaction. Measured through microneedles^{277,278}	ISF^{277,278}	No information available.	No information available.
55	Lumeed; Profusa	Implanted MI-GM	Biosensor inserted into the body will have porous smart gel and will emit fluorescent signal in response to certain analytes like glucose²⁷⁹	ISF²⁷⁹	No information available.	No information available.
Entry number	Product and manufacturer	Degree of invasiveness	Mechanism of glucose sensing	Matrix	Degree of accuracy	Interferences
--------------	--	------------------------	--	---------------------------------	--------------------	------------------------------------
56	Medtronic Guardian Connect (Powered by Medtronic Guardian Sensor 3); Medtronic MiniMed	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase reaction[^80]	ISF[^80]	MARD: 8.7%[^81]	Acetaminophen hydroxyurea[^80]
57	Medtronic Synergy; Medtronic MiniMed	MI-GM	No information available.	ISF[^82]	No information available.	No information available.
58	Medtronic Zeus; Medtronic MiniMed	MI-GM	No information available.	ISF[^82]	Pivotal results indicate possibility of iCGM standard[^12]	No information available.
59	No product name; Metronom Health	MI-GM	Electrochemical opto-enzymatic sensor[^83]	ISF[^83]	No information available.	No interferences with commonly taken substances[^83]
60	PercuSense CGM; PercuSense	MI-GM	Electrochemical enzymatic sensor combining measurement of glucose and ketone on a single sensor. Multi-analyte function[^84]	ISF[^84]	No information available.	No information available.
61	Sanvita; Sanvita Medical, LLC and LifeScan	MI-GM	No information available.	ISF[^85]	No information available.	No information available.
62	Sencell; LifeCare AS	Implanted MI-GM	Implantable 3D printed nano-sensor with an osmotic pressure sensing core. Cantilever based glucose sensing. Utilization of the reversible affinity sensing principle of ConA and dextran with glucose (change of binding in the presence of glucose and therefore change of osmotic pressure at a membrane).	ISF[^86]	No information available.	No information available.
63	SugarSenz; Glucovation	MI-GM	Electrochemical non-enzymatic sensor[^87]	ISF[^87]	No information available.	No information available.
64	SynerG; Pacific Diabetes Technologies	MI-GM	Insulin infusion set and CGM sensor combined into one integrated device. CGM sensor is hollow. Uses redox mediator technology[^16]	ISF[^16]	MARD: 10-14%[^16,17]	No information available.
65	TouchCare System A6; Medtrum	MI-GM	Electrochemical signal of ISF glucose via glucose oxidase reaction[^19]	ISF[^19]	MARD: 9%^[^28]	May be affected by strong radiation, such as MRI, X-ray, or CT scans[^18]

Abbreviations: CGM, continuous glucose monitor; ConA, Concanavalin A; CT, computed tomography; ISF, interstitial fluid; MAD, mean absolute difference; MARD, mean absolute relative difference, medARD, median absolute relative difference; MI-GM, minimally invasive glucose monitor; MRI, magnetic resonance imaging; NIFS-GM, noninvasive fluid sensing glucose monitor; NIO-GM, noninvasive glucose monitor.
Table 3. Consumer features of NIO-GM, NIFS-GM, or MI-GM Identified Products (in Alphabetical Order Within Each Category of Invasiveness).

Entry number	Product and manufacturer	Degree of invasiveness	Measurement cycle	Pricing model	Size/Form factor
1	No product name; Afon Technology	NIO-GM	Continuous⁸⁶	One purchase of a wristwatch⁸⁶	Wearable wristwatch⁸⁶
2	Alertgy-NI-GM; Alertgy	NIO-GM	Continuous⁸⁹	One purchase of a wristwatch – no disposables announced⁸⁹	Wearable wristwatch⁸⁹
3	No product name; AnNI Gm	NIO-GMk	Continuous²²³	One purchase of an earlobe clip. No disposables announced²²³	Earlobe clip with a wraparound wire²²³
4	Add on to the Apple Watch; Apple	NIO-GM	Continuous	Add on to the Apple Watch⁹⁰	Wearable wristwatch⁹⁰
5	BioMKR; Prediktor Medical	NIO-GM	Continuous²⁵	One purchase of a device – no disposables announced²⁵	Wearable wristwatch²⁵
6	Blood Analysis Sensor; Bral Sensor Technology	NIO-GM	Continuous (based on sensor description that measurements are real-time and gathered in a fraction of a second)²²⁷	No information available.	Working on a wearable on-the-chip system²²⁷
7	CompanionCM; Socrates Health Solutions	NIO-GM	Continuous²⁹⁰	Purchase of earpiece sensor as indicated in image on product website.²⁹⁰ No other information available.	Earpiece²⁹⁰
8	CompanionSR; Socrates Health Solutions	NIO-GM	Intermittent²⁹⁰	Purchase of a glucose monitor as indicated in image on product website.²⁹⁰ No other information available.	Device image can be found on product website.²⁹⁰ No other information available.
9	D-Band; DiaMonTech	NIO-GM	Continuous¹⁹²	One purchase of a device – no disposables announced¹⁹²	Wearable wristwatch¹⁹²
10	D-Base; DiaMonTech	NIO-GM	Intermittent¹⁹²	One purchase of a device – no disposables announced¹⁹²	The D-Base is the size of a shoebox¹⁹²
11	D-Pocket; DiaMonTech	NIO-GM	Intermittent¹⁹²	One purchase of a device – no disposables announced¹⁹²	Handheld pocket-sized device¹⁹²
12	GlucoBeam; RSP Systems	NIO-GM	Intermittent²⁰⁴	One purchase of a device – no disposables announced²⁰⁴	Portable, handheld device²⁰⁴
13	GlucoFit; GlucoActive	NIO-GM	Intermittent²⁹¹	One purchase of a device²⁹¹	Wearable armband²⁹¹
14	Gluco Quantum; Genki Vantage Ltd	NIO-GM	Intermittent²⁹⁹	One purchase of device- no disposables announced²⁹⁹	Portable, handheld device²⁹⁹
15	Glucosense; Glucosense Diagnostics Ltd	NIO-GM	Intermittent but working to make continuous wearable forms²⁹²	One purchase of device- no disposables announced²⁹²	Portable, handheld device²⁹²
16	GlucoStation; GlucoActive	NIO-GM	Intermittent²⁹¹	One purchase of a device²⁹¹	Stationary device, around the size of a lunchbox²⁹¹
17	GlucoTrack; Integrity Applications Ltd	NIO-GM	Intermittent²⁹³	One purchase of a device. Each personal ear cuff must be replaced every 6 months²⁹⁴	Portable, handheld device, with cuff that clips onto earlobe²⁹⁴
18	GlucoWear; GlucoActive	NIO-GM	Intermittent²⁹¹	One purchase of a device²⁹¹	Wearable wristwatch²⁹¹
19	GlucoWise; MediWise	NIO-GM	Intermittent²⁹⁸	One purchase of a device – no disposables announced²⁹⁸	Small, portable device that fits between the thumb and forefinger²⁹⁸
20	Glutarac; Add Care Ltd	NIO-GM	Continuous¹⁹	One purchase of a device – no disposables announced¹⁹	Wearable wristwatch¹⁹

(continued)
Entry	Product and manufacturer	Pricing model	Form factor	Degree of invasiveness	Measurement cycle	Size/Form factor
21	HELO Extense; Wor(l)d Master Distributors	NIO-GM	Continuous	Intermittent	No disposables announced	42.8 mm × 48 mm × 82 mm
22	HELO LX PRO; Wor(l)d Master Distributors	NIO-GM	Continuous	Intermittent	No disposables announced	42.8 mm × 48 mm × 82 mm
23	LFLEAE; Lifgus	NIO-GM	Continuous	Intermittent	No disposables announced	42.8 mm × 48 mm × 82 mm
24	Movano; Wearable CGM;	NIO-GM	Continuous	Intermittent	No disposables announced	42.8 mm × 48 mm × 82 mm
25	Omni; Sanmina	NIO-GM	Continuous	Intermittent	No disposables announced	42.8 mm × 48 mm × 82 mm
26	TensorTip Combo; Cnoga Medical Ltd	NIO-GM	Continuous	Intermittent	No disposables announced	42.8 mm × 48 mm × 82 mm
27	Touch Glucose Sensor; NovioSense	NIFS-GM	Continuous	Intermittent	No disposables announced	42.8 mm × 48 mm × 82 mm
28	sugarBEAT; Nemaura Medical	NIFS-GM	Continuous	Intermittent	No disposables announced	42.8 mm × 48 mm × 82 mm
29	Tria Glucose Sensor; Nevio	NIFS-GM	Continuous	Intermittent	No disposables announced	42.8 mm × 48 mm × 82 mm
30	ADEX; Glucosx Medical (Rebranding of MicroTech Medical)	MI-GM	Continuous	Intermittent	No disposables announced	42.8 mm × 48 mm × 82 mm
31	Bioline CGM; Boling	MI-GM	Continuous	Intermittent	No disposables announced	42.8 mm × 48 mm × 82 mm
32	Carisense Air; SEINS	MI-GM	Continuous	Intermittent	No disposables announced	42.8 mm × 48 mm × 82 mm

Note: The table continues on the next page.
Entry number	Product and manufacturer	Degree of invasiveness	Measurement cycle	Pricing model	Size/Form factor	
38	Cascade CGM System; Waveform	MI-GM	Continuous	Purchase of disposable sensors	Size of United States nickel,\(^{202}\) which is 21.21 mm in diameter.\(^{203}\)	
39	CT-100; POCTech X Ascensia	MI-GM	Continuous	Purchase of disposable sensors	10 mm × 0.3 mm (L × W, approximate) \(^{208}\)	
40	Dexcom G6; Dexcom	MI-GM	Continuous	Transmitter: $237 G6 receiver: $365 Box of G6 sensors (3 pack): $349 \(^{204}\)	Transmitter/sensor size: 1.8 in × 1.2 in × 0.6 in. 0.42 oz. with sensor. Receiver size: 4.02 in × 2.44 in × 0.46 in. 3.3 oz. \(^{205}\)	
41	Dexcom G7; Dexcom	MI-GM	Continuous	No information available.	Sensor size smaller than Dexcom G6 \(^{206}\)	
42	Eclipse 3 iCGM; GlySens	Implant MI-GM	Continuous	Sensor has expected 2-year life \(^{207}\)	3.4 cm diameter, 1.5 cm thick for previous prototype but making the implant smaller \(^{202}\)	
43	Eversense; Senseonics	MI-GM	Continuous	$99 \(^{208}\)	Transmitter/sensor size: 1.48 in × 1.89 in × 0.35 in. 0.39 oz. \(^{205}\)	
44	FiberSense Technology CGM; EyeSense	MI-GM	Continuous	Disposable sensors. No pricing information. \(^{246}\)	No information available.	
45	FreeStyle Libre 14 day; Abbott Diabetes Care	MI-GM	Continuous	Most commercially insured patients pay between $10 and $75 per month for FreeStyle Libre 14 day sensors. One purchase of reader. \(^{209}\)	Transmitter/sensor size: 5 mm height 35 mm diameter \(^{206}\)	
46	FreeStyle Libre 2; Abbott Diabetes Care	MI-GM	Continuous	Covered by Medicare in the USA. Considered to be 70% lower cost than most CGMs depending on insurance coverage \(^{110}\)	Transmitter/sensor size: 5 mm height, 35 mm diameter \(^{209}\)	
47	FreeStyle Libre 3; Abbott Diabetes Care	MI-GM	Continuous	The FreeStyle Libre 3 will be the same price as previous FreeStyle Libre CGM systems, at $109 per month. \(^{312}\)	About the size of 2 United States pennies stacked. \(^{215}\)	
48	Glucomen Day CGM; Menarini Diagnostics	MI-GM	Continuous	£139 per month if you subscribe. Rechargeable transmitter, disposable sensors. \(^{180}\)	Sensor + transmitter size: 3.5 cm × 2.5 cm × 0.9 cm \(^{271}\)	
49	Glunovo i3 CGM; Infinovo	MI-GM	Continuous	- Starter Kit: 1 Glunovo Transmitter and 2 Glunovo Sensors. - Monthly Package: 2 Glunovo Sensors. - Annual Package: 25 Glunovo Sensors and 6 sensors shipped every 3 months. \(^{214}\)	Transmitter size: 33 mm × 19 mm × 4 mm \(^{273}\)	
50	Glyde CGM; GluSense	Implant MI-GM	Continuous	The sensor has to be replaced every year. \(^{186}\)	No information available.	
51	Indigo CGM; Indigo	Implant MI-GM	Continuous	No information available.	No information available.	
52	No product name; Integrated Medical Sensors	Implant MI-GM	Continuous	It is estimated that the sensor must be replaced every 6 months. \(^{188}\)	Smaller than a sesame seed. \(^{190}\)	

(continued)
Table 3. (continued)

Entry number	Product and manufacturer	Degree of invasiveness	Measurement cycle	Pricing model	Size/Form factor
53	No product name; One Drop (acquired Sano Intelligence, Inc., which was developing patch biosensor glucose monitor)	MI-GM	Continuous192	Biosensor patch192,194,276	No information available.
54	K'Watch; PKvitality	MI-GM	Continuous277	Expected to be set at $199 for the K'Watch. K'apsul Sensor that is replaceable on the watch expected to be set at $99 per month.216	Watch size.277
55	Lumee; Prafusa	Implanted MI-GM	Continuous279	Will have a transmitter and sensor that is inserted under the skin.279	Approx 5 mm in length and 500 microns in diameter.279
56	Medtronic Guardian Connect (Powered by Medtronic Guardian Sensor 3); Medtronic MiniMed	MI-GM	Continuous317	Starts at $50/month based on typical 20% copay with insurance318	1.41 in × 1.13 in × 0.38 in. 0.04 oz. with sensor305
57	Medtronic Synergy; Medtronic MiniMed	MI-GM	Continuous282	No information available.	Sensor 50% smaller than Guardian Sensor 3.319
58	Medtronic Zeus; Medtronic MiniMed	MI-GM	Continuous282	No information available.	Same size and shape as Guardian Sensor 3.320
59	No product name; Metronom Health	MI-GM	Continuous283	Transmitter with sensor.283	As thin as 2 human hairs in width.283
60	PercuSense CGM; PercuSense	MI-GM	Continuous284	Transmitter with disposable sensor.284	No information available.
61	Sanvita; Sanvita Medical, LLC and LifeScan	MI-GM	Continuous310	No information available.	No information available.
62	Sencell; LifeCare AS	Implanted MI-GM	Continuous322	Implant sensor and wristwatch. No disposables announced.322	Sensor size: 2 mm × 3 mm × 6 mm323
63	SugarSenz; Glucovation	MI-GM	Continuous397	The sensor must be replaced every 7-10 days. The transmitter is designed to last longer than a year.214	The sensor is a thin adhesive that sticks to the skin. The transmitter is the size of a smartphone.214
64	SynerG; Pacific Diabetes Technologies	MI-GM	Continuous324	One purchase of a transmitter. Disposable sensors.324	Dimensions unavailable. Sensor worn on the abdomen as indicated by manufacturer’s website picture.214
65	TouchCare System A6; Medtrum	MI-GM	Continuous325	One purchase of a transmitter. Disposable sensors.325	76.2 mm × 48.4 mm × 9.375 mm325

Abbreviations: CGM, continuous glucose monitor; MI-GM, minimally invasive glucose monitor; NIFS-GM, noninvasive fluid sensing glucose monitor; NIO-GM, noninvasive glucose monitor.
Table 4. Classification of Underlying Technologies of NIO-GM, NIFS-GM and MI-GM Identified Products.

Technology	Table entry
Noninvasive optical	
Short wavelength near infrared	27
Near infrared spectroscopy	4, 5, 6
Mid infrared spectroscopy	9, 10, 11, 14, 25
Raman scattering spectroscopy	12
Radio or microwave	1, 2, 19, 24, 28
Polarimetry	7, 8
Fluorescence	15
Scattering	13, 16, 18
Multiplex signals	17, 20
Photoplethysmography	21, 22, 23, 26
No information available	3
Noninvasive fluid sampling	
ISF extraction	31, 33
Tear fluid	34
Sweat	29
Saliva	30, 32
Minimally invasive	
Electrochemical glucose oxidase biosensor	35-40, 42, 45-49, 52
Non-enzymatic fluorescence	43, 44, 50, 55
Other	51, 59, 62, 63
No information available	41, 57, 58, 61

Table entry refers to the “Entry number” of the product specified in Tables 1–3. Abbreviation: ISF, interstitial fluid.

Underlying Glucose Sensing Technologies used in NIO-GM, NIFS-GM, or MI-GM Identified Products

Table 4 classifies the underlying glucose sensing technologies of the 65 identified products. Under NIO-GM, the glucose sensing technologies included: short wavelength near infrared, near infrared spectroscopy, mid infrared spectroscopy, Raman spectroscopy, radio or microwave devices, polarimetry, fluorescence, scattering, multiplex signals, and photoplethysmography. A few products were NIO-GM, but their exact glucose sensing technologies were not specified because this information was not available. Under NIFS-GM, the glucose sensing technologies included: saliva, tear fluid, sweat, and ISF extraction. Finally, under MI-GM, the glucose sensing technologies included: electrochemical glucose oxidase biosensor and non-enzymatic fluorescence sensors. Some MI-GM did not belong to either of these technologies, and some do not have publicly available information on what technology they use.

Images of Product Designs of Selected Identified Products

Table 5 presents images of product designs of identified products. We included images only if we were able to receive permission from manufacturer representatives. Images are not to scale relative to each other. Table 5A is for products that are FDA cleared and/or CE marked, and Table 5B is for products that are neither FDA cleared nor CE marked.

Advantages and Disadvantages of Identified Products

Table 6 presents advantages and disadvantages of the identified products that were cleared by the FDA or CE marked. The features that we present in Table 6 for specific products are important highlights of each product, rather than a comprehensive list of advantages and disadvantages. In general, there are advantages and disadvantages for each of the three categories of glucose monitors employing bloodless sampling. All three categories of glucose monitors are less accurate than IGMs. (1) As a class, NIO-GM products are painless and do not generate biological waste, but they are less accurate than NIFS-GM, MI-GM, and IGM products. (2) As a class, NIFS-GM products require the sensor to be in direct contact with a body fluid that is not blood, and these systems generally produce less pain and less biological waste than IGMs. However, there can be a significant lag-time in their measurements, thereby rendering them less accurate than IGMs or MI-GMs. (3) As a class, MI-GM products have been studied the most of the three types of bloodless glucose monitors. More products in this category, compared to the other two categories, have received regulatory clearance. Currently, many MI-GMs are more accurate, more robust, and more conveniently calibrated than most NIO-GM and NIFS-GM products. The Abbott (Chicago, Illinois) and Dexcom (San Diego, California) MI-GMs are factory calibrated. All MI-GMs, however, require insertion or implantation of the glucose sensor and must be worn, which in rare cases creates an unpleasant sense of being tethered to a machine. Many MI-GMs and some NIO-GMs and NIFS-GMs require adhesives for stabilization and allergic dermatitis has been reported with some adhesives. The convenience, performance, and connectivity of MI-GMs have been advancing rapidly over the past few years and product manufacturers have predicted further advances in these areas. The worldwide market for CGMs was valued at $1.8 billion in 2019 and with a projected compound annual growth rate of 22%, the market is expected to reach $8.8 billion by 2027. This market has likely already surpassed four million CGM users.

Discussion

Evolution of Bloodless Glucose Monitoring Products

In the past, one NIFS-GM and one NIO-GM were introduced to the market but were eventually discontinued, and two NIO-GMs were cleared but never introduced to the market. These products were all highly anticipated before their release but failed to live up to expectations. A particular problem was that such devices were touted in the lay press,
Table 5A. Designs of NIO-GM, NIFS-GM, and MI-GM Identified Products with Regulatory Clearance (in Alphabetical Order Within Each Category of Invasiveness).

Product and manufacturer	Degree of invasiveness	Product design
GlucoTrack; Integrity Applications Ltd	NIO-GM	
sugarBEAT; Nemaura Medical	NIFS-GM	
Cascade CGM System; Waveform	MI-GM	
Dexcom G6; Dexcom	MI-GM	
Eversense; Senseonics	Implanted MI-GM	
FreeStyle Libre 14 day; Abbott Diabetes Care	MI-GM	
FreeStyle Libre 2; Abbott Diabetes Care	MI-GM	
FreeStyle Libre 3; Abbott Diabetes Care	MI-GM	
Medtronic Guardian Connect (Powered by Medtronic Guardian Sensor 3); Medtronic MiniMed	MI-GM	
PercuSense CGM; PercuSense	MI-GM	
Sencell; Lifecare AS	MI-GM	

Abbreviations: MI-GM, minimally invasive glucose monitor; NIFS-GM, noninvasive fluid sensing glucose monitor; NIO-GM, noninvasive glucose monitor.
Product; manufacturer	Degree of invasiveness	Product design
No product name; Afon Technology	NIO-GM	
D-Band; DiaMonTech	NIO-GM	
D-Base; DiaMonTech	NIO-GM	
D-Pocket; DiaMonTech	NIO-GM	
GlucoBeam; RSP Systems	NIO-GM	
GlucoFit; GlucoActive	ONI-GM	
Gluco Quantum; Genki Vantage Ltd	NIO-GM	
GlucoStation; GlucoActive	NIO-GM	
GlucoWear; GlucoActive	NIO-GM	
LifeLeaf; LifePlus	NIO-GM	
Movano Wearable; CGM Movano	NIO-GM	
Sanmina; Sanmina Corporation	NIO-GM	
Uband; Know Labs, Inc.	NIO-GM	
Tear Glucose; Sensor NovioSense	NIFS-GM	
K’Watch; PKvitality	MI-GM	
SynerG; Pacific Diabetes Technologies	MI-GM	

Abbreviations: MI-GM, minimally invasive glucose monitor; NIFS-GM, noninvasive fluid sensing glucose monitor; NIO-GM, noninvasive glucose monitor.
Table 6. Advantages and Disadvantages of NIO-GM, NIFS-GM, or MI-GM Identified Products that were Cleared by the FDA or CE Marked (in Alphabetical Order Within Each Category of Invasiveness).

Product and manufacturer	Degree of invasiveness	Advantages	Disadvantages
GlucoTrack; Integrity Applications Ltd	NIO-GM	- Uses a blend of 3 optical technologies.	- Ear measurement site can be inconvenient
TensorTip Combo Glucometer; Cnoga Medical Ltd	NIO-GM	- Portable	- Not wearable
sugarBEAT; Nemaura Medical	NIFS-GM	- Uses a well-tolerated adhesive - Skin ISF is measured without puncturing the skin. - You can wear the device on any single day and not have to wear it on multiple consecutive days. - There should be good correlation between glucose level in the ISF and in the blood under stable conditions. - Glucose measurement is based on the well-known enzymatic method.	- No PubMed published data. - Reverse iontophoresis irritated the skin in a similar product from a different manufacturer: GlucoWatch - The accuracy has not been established if a patient is sweating, or if there are rapid changes in the blood glucose concentration.
Cascade CGM System; Waveform	MI-GM	- Accurate12 - 14-day duration - Automatic data uploading - Inserts without a needle - Audible glucose alarms - Software identifies glucose patterns	- Point accuracy of MI-GMs that measure ISF is less than point accuracy of blood glucose monitors that use capillary blood as a comparator matrix. - Some patients do not want to carry an inserted or implanted device on their body at all times. - No CGM is labeled to allow for exposure to radiation. - Sometimes allergic dermatitis due to adhesive
CT-100; POCTech X Ascensia	MI-GM	- CT-100 features a 4-electrode system. In addition to a glucose sensing electrode, it features a dedicated blank electrode that monitors background and electrochemical interferences. It enables real-time correction of any background drift and interference. - CT-100 sensor is built on a flexible polyimide matrix. It is one of the most flexible sensors available. This provides higher level comfort for 24/7 wearing. - CT-100 sensor features an all-planar design and align electrodes on both sides of the matrix. It can fully utilize currently available industrial manufacturing techniques for mass production, and therefore provides a potential for a favorable cost effectiveness and easier quality control.	- Point accuracy of MI-GMs that measure ISF is less than point accuracy of blood glucose monitors that use capillary blood as a comparator matrix. - Some patients do not want to carry an inserted or implanted device on their body at all times. - No CGM is labeled to allow for exposure to radiation.

(continued)
Product and manufacturer	Degree of invasiveness	Advantages	Disadvantages
Dexcom G6; Dexcom MI-GM	Accurate\(^{159}\) 10-day duration Automatic data uploading with sharing feature Factory calibration Audible glucose alarms Software identifies glucose patterns	Point accuracy of MI-GMs that measure ISF is less than point accuracy of blood glucose monitors that use capillary blood as a comparator matrix. Some patients do not want to carry an inserted or implanted device on their body at all times. No CGM is labeled to allow for exposure to radiation. Sometimes allergic dermatitis due to adhesive.	
Eversense; Senseonics Implanted (MI-GM)	Accurate\(^{303}\) 90-180 day duration Automatic data uploading with sharing feature Removable transmitter Audible and vibratory glucose alarms Software identifies glucose patterns	Point accuracy of MI-GMs that measure ISF is less than point accuracy of blood glucose monitors that use capillary blood as a comparator matrix. Some patients do not want to carry an inserted or implanted device on their body at all times. No CGM is labeled to allow for exposure to radiation. Possible difficulty removing a chronically implanted sensor.	
FreeStyle Libre 14 day; Abbott Diabetes Care MI-GM	Accurate\(^{7,34,344}\) 14-day duration No separate transmitter; on demand data with sharing feature Factory calibration Software identifies glucose patterns	Point accuracy of MI-GMs that measure ISF is less than point accuracy of blood glucose monitors that use capillary blood as a comparator matrix. Some patients do not want to carry an inserted or implanted device on their body at all times. No CGM is labeled to allow for exposure to radiation. Patient must actively perform an action to determine glucose levels System cannot be calibrated - no optional user calibration in cases of sensor inaccuracy Sometimes allergic dermatitis due to adhesive. No hypoglycemia alarm	
FreeStyle Libre 2; Abbott Diabetes Care MI-GM	Accurate\(^{35,9}\) 14-day duration No separate transmitter; on demand data with sharing feature Factory calibration Audible glucose alarms Software identifies glucose patterns	Point accuracy of MI-GMs that measure ISF is less than point accuracy of blood glucose monitors that use capillary blood as a comparator matrix. Some patients do not want to carry an inserted or implanted device on their body at all times. No CGM is labeled to allow for exposure to radiation. Patient must actively perform an action to determine glucose levels System cannot be calibrated - no optional user calibration in cases of sensor inaccuracy Sometimes allergic dermatitis due to adhesive.	

(continued)
Product and manufacturer	Degree of invasiveness	Advantages	Disadvantages
FreeStyle Libre 3; Abbott Diabetes Care	MI-GM	- The FreeStyle Libre 3 system is designed to automatically deliver accurate real-time, up-to-the-minute glucose readings, and optional glucose alarms directly to smartphones	
- Designed to be the smallest and thinnest wearable glucose sensor.
- Users can view their glucose levels anytime
- Designed to have the same performance as the FreeStyle Libre 2 sensor, but with a new sensor design and at the same price as previous versions | - Point accuracy of MI-GMs that measure ISF is less than point accuracy of blood glucose monitors that use capillary blood as a comparator matrix.
- Some patients do not want to carry an inserted or implanted device on their body at all times.
- No CGM is labeled to allow for exposure to radiation
- System cannot be calibrated - no optional user calibration in cases of sensor inaccuracy | |
| Glucomen Day CGM; Menarini Diagnostics | MI-GM | - Does not require any needles for insertion
- Promoted as eco-friendly\(^{30}\)
- Transmitter can last 3 years\(^{36}\) | - Point accuracy of MI-GMs that measure ISF is less than point accuracy of blood glucose monitors that use capillary blood as a comparator matrix.
- Some patients do not want to carry an inserted or implanted device on their body at all times.
- No CGM is labeled to allow for exposure to radiation
- Point accuracy of MI-GMs that measure ISF is less than point accuracy of blood glucose monitors that use capillary blood as a comparator matrix.
- Some patients do not want to carry an inserted or implanted device on their body at all times.
- No CGM is labeled to allow for exposure to radiation | |
| Glunovo i3 CGM; Infinovo | MI-GM | | |
| Medtronic Guardian Connect (Powered by Medtronic Guardian Sensor 3); Medtronic MiniMed | MI-GM | - Accurate\(^{39,1}\)
- 7-day duration
- Automatic data uploading
- Audible glucose alarms
- Software developed with IBM identifies glucose patterns | - Point accuracy of MI-GMs that measure ISF is less than point accuracy of blood glucose monitors that use capillary blood as a comparator matrix.
- Some patients do not want to carry an inserted or implanted device on their body at all times.
- No CGM is labeled to allow for exposure to radiation
- Sometimes allergic dermatitis due to adhesive | |

Abbreviations: AID, automated insulin delivery; CGM, continuous glucose monitor; IBM, International Business Machines Corporation; iCGM, integrated continuous glucose monitor; ISF, interstitial fluid; MI-GM, minimally invasive glucose monitor; NIFS-GM, noninvasive fluid sensing glucose monitor; NIO-GM, noninvasive glucose monitor.
raising expectations among people with diabetes and their families. Unfortunately, their performance repeatedly failed to meet these expectations. The NIFS-GM GlucoWatch Biographer from Cygnus Inc. was cleared by the FDA, marketed, and then discontinued.\(^{360}\) Three NIO-GM products were cleared with a CE Mark and then discontinued either soon after entering the market (Pendra Device from Pendragon Medical, Zürich, Switzerland), or without entering the market (NBM-200G from OrSense, Tel Aviv-Yafo, Israel and Optical Glucose Monitor from C8 MediSensors, San Jose, California). Two NIO-GM products that were cleared with a CE mark are currently on the market. They are the GlucoTrack (Integrity Applications Ltd, Ashdod, Israel) and TensorTip Combo Glucometer (Cnoga Medical Ltd, Caesarea, Israel).

The original GlucoWatch Biographer\(^{41}\) was an NIFS-GM device. This device was cleared by the FDA in 2001 and marketed.\(^{40}\) An updated version (the GlucoWatch G2 Biographer\(^{42}\)) was also cleared in 2002 for use by individuals under 18 years of age.\(^{356}\) Because these devices used reverse iontophoresis, a low-level current was passed through the skin as part of the glucose sensing method. These products were discontinued after users complained of a burning sensation while using the device.\(^{360}\)

The Pendra Device, which measured the change in the frequency-dependent resistance (impedance spectroscopy) in the interstitial flow when the glucose concentration changed,\(^{361}\) was initially cleared with a CE Mark of Approval in 2003. However, this device was discontinued because it had readings that were considered dangerously inaccurate and it was incompatible with 30% of people considered for using the device. In 2005, Pendragon Medical went out of business.\(^{357}\)

The NBM-200G, which used occlusion spectroscopy, received the CE Mark of Approval in 2007\(^{358}\) but was discontinued by OrSense for unspecified reasons. The C8 Optical Glucose Monitor received the CE Mark of Approval in 2012,\(^{359}\) but is no longer on the market officially because of a lack of funding.\(^{362}\) Other NIO-GM products have been announced to be in development and then have subsequently disappeared from the public eye. These products include the ALIRA Infrared Biosensing sensor (Princeton University, Princeton, New Jersey), Glucoband (Calisto Medical, Plano, Texas), and a Glucose-Sensing Contact Lens (Novartis, Basel, Switzerland working with Verily, South San Francisco, California).

These shortcomings are discussed to emphasize the importance of recognizing, addressing, and avoiding past mistakes. These previous failures to create a usable product also highlight the barriers that must be overcome before a viable NIO-GM can be widely distributed, including (1) large device size, (2) potential skin reactions, (3) poor accuracy, (4) high power requirements, (5) interfering substances, and (6) the lack of a clear regulatory pathway. Although the majority of the NIO-GM products discovered in the search presented in the article are neither cleared nor publicly available, these products have potential, but one must guard against being overly optimistic for the sake of potential users.

Trends in Technology – A Path for Better Products

Many technologies are now being pursued to achieve the objective of noninvasive glucose measurements in people with diabetes. At this time, few NIO-GM or NIFS-GM systems are sufficiently mature for commercialization. The MI-GM market, however, is strong in many countries and growing worldwide. Many of these technologies not using IGM that are in development appear to have poor accuracy. Still, noninvasive approaches are attracting more attention by both researchers and investors owing to the tremendous need for managing diabetes optimally in an ever-growing number of patients and also because of commercial applications beyond medicine.

The commercial potential differs for the products identified in this article. The NIO-GMs are becoming more of a priority for medical device researchers. NIFS-GM sensors seem to be the least likely to satisfy user needs because of the requirement to harvest a representative fluid. Such approaches are prone to issues related to skin irritation as well as to the complexities of collecting, handling, and disposing of a representative clinical fluid. These issues render the noninvasive fluid sampling approach inconvenient in comparison to both the noninvasive optical and minimally invasive approaches. The former eliminates fluid handling and the later provides continuous measurements. The commercial attractiveness of NIO-GM technologies is driven by the potential to achieve either continuous glucose measurements or repeated spot-measurements, both with minimal user interactions. Commercial success has already been realized for MI-GM technologies and will likely grow as future innovations lead to longer periods of operation and the quantitation of multiple analytes.

Success of NIO-GM, NIFS-GM, and MI-GM devices has started to decrease the market size of invasive blood glucose measurement systems considerably. Just as urine glucose testing was replaced by blood glucose testing, eventually these three bloodless technologies will replace blood glucose monitoring. This trend will continue within the next 10-20 years as new sensing strategies that do not require blood become increasingly accurate, practical, and affordable. Today many of the leading blood glucose monitor manufacturers are developing NIO-GM, NIFS-GM, or MI-GM technologies or partnering with companies with these types of products. The need for invasive blood glucose measurements will also decrease as factory-calibrated MI-GM devices become more accepted by people with type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). A CE marked MI-GM was recently introduced for athletes without diabetes.\(^{363}\) As the accuracy and reliability of factory-calibrated MI-GM devices improve, the need to check an IGM reading will decrease.

Commercial success of any CGM system, regardless of whether it is noninvasive or minimally invasive, must recognize the demands placed on the user. Proper training is
paramount for CGM users, particularly as it relates to the continuous information provided by these devices. The users must gain confidence in viewing the large amount of data, interpreting the recorded glucose profiles, and using the data to guide therapeutic decisions. Trained users value the added analytical information provided by CGM and find that it benefits their therapy. However, improved data management software will be helpful for the users who are overwhelmed by the data output.

Noninvasive Technology for Diagnosing Diabetes

The current standard for diagnosing diabetes specifies invasive blood sampling, followed by measuring either plasma glucose concentration or hemoglobin A1c concentration. While several noninvasive and minimally invasive methods have been developed for monitoring glucose levels, as outlined throughout this paper, there have been few attempts to validate the use of such devices for making a diagnosis of diabetes. There is, however, an incipient technology using photoplethysmography that is intended to make this diagnosis.

Photoplethysmography measures the interaction of light with the vascular bed to determine the changes in blood volume with each heartbeat. This technique is currently used in four NIO-GM products under development, including Wor(l)d Global Network’s (Miami, Florida) HELO Extense and HELO LX Pro, LifePlus’ (San Jose, California) LifeLeaf, and Sanmina’s (San Jose, California) NIO-GM. Furthermore, Avram et al. have reported using a smartphone-based photoplethysmography technology with a deep neural network scoring system to prospectively evaluate people with diabetes, by correlating the score with plasma glucose levels. This study’s results suggest that this technique is currently used in four NIO-GM products under development, including Wor(l)d Global Network’s (Miami, Florida) HELO Extense and HELO LX Pro, LifePlus’ (San Jose, California) LifeLeaf, and Sanmina’s (San Jose, California) NIO-GM.

Overcoming Technical Barriers to Widespread Adoption

Adoption of any bloodless glucose sensing technology will depend on a host of technical and nontechnical issues. First, and foremost, the technology must be accurate and robust in operation while adding value to the quality of life for the user. Advances in engineering, physics, clinical chemistry, and medicine will also be required to overcome the technical barriers that impede widespread adoption of NIO-GM, NIFS-GM, and MI-GM products.

From the engineering perspective, more sensitive sensing technologies are needed, particularly for ex-vivo NIO-GM and NIFS-GM devices. The ability to identify and detect a robust selective signature for glucose is paramount along with instrumentation able to collect such a signature reliably under non-laboratory conditions. Measurement accuracy in the low glucose range is critical to achieve tight glycemic control while avoiding potentially dangerous hypoglycemic episodes.

From the physics perspective, algorithms are needed to convert raw sensor signals into correct glucose concentration values. For NIO-GM technologies, a principal challenge is to effectively filter out variations in the measured signal, both the noise of the instrumentation as well as uncontrolled changes in the background matrix against which the glucose signature is determined. Success calls for understanding the source of such background variances and developing multivariate data analysis methods to overcome the adverse impact of the background variance. For NIFS-GM devices, the major barrier is to find a correlation between the concentration of glucose in blood and the sampled fluid. For MI-GM systems, reliable analytical measurements are needed for periods longer than 14 days.

From the clinical chemistry perspective, a better understanding is needed about how to assure the accuracy of phenomena, altered reactivity, and charge carrier and quantum mechanical effects. Such nanoscale properties can advance miniaturization and sensor operation through higher surface areas, thereby yielding larger sensitivity, quicker responses, and higher catalytic loadings. These enhancements promise superior overall analytical performance.

Nanofabrication techniques can also generate glucose sensors with small dimensions. Such small dimensions can facilitate implantation or injection of glucose sensing “tattoos.” Nanofabricated devices could potentially diminish or avoid troubling foreign body responses, resulting in simpler calibration processes and longer operational lifetimes. Solid-state photonic systems hold promise for miniaturizing spectroscopic sensors for application as NIO-GM devices. The system under development by Brolis (Vilnius, Lithuania), for example, uses a novel integrated photonic package for solid-state measurements of multiple analytes, including glucose, lactate, and ethanol. Finally, micro- and nano-electronic technologies offer the possibility of low-cost mass production, which can drive down user’s costs and expand adoption.
bloodless measurements by establishing traceability of their readings to a reference standard. This challenge is currently unresolved because of the difficulty of obtaining comparator ISF samples for testing against blood. Also, the controversy about whether capillary blood or venous blood is the best comparator matrix for ISF measurements must be resolved. Overall, a convenient and reliable method for collecting representative samples of ISF would have a large positive impact on the advancements of these and future NIO-GM, NIFS-GM, and MI-GM products.

From the medicine perspective, physicians need a better understanding of the clinical values of glucose measurements in fluids other than blood, that is, how to adjust the insulin dose of a patient in case of exercise, is the glucose signal from blood the more reliable signal or that from ISF? The utility of ISF glucose concentrations must be established and might actually be preferable over blood glucose concentrations for treatment decisions because the glucose concentration in ISF compared to that in blood might more closely track the glucose concentration in the brain. Others have suggested that ISF glucose concentrations can be superior to blood glucose concentrations during periods of rapidly fluctuating glucose concentrations or hypoglycemia. Another clinical dimension for physicians to determine is the level of accuracy needed for various types of patients, such as those with: T1DM on multiple dose insulin therapy, T1DM on sensor augmented pump therapy, T1DM on AID therapy, T2DM using insulin, T2DM using other diabetes drugs known to cause hypoglycemia, T2DM using diabetes drugs not known to cause hypoglycemia, and T2DM using only diet and exercise for control.

Overcoming Non-Technical Barriers to Widespread Adoption

Overcoming nontechnical barriers will be required for the widespread adoption of bloodless glucose sensing technologies:

1. The cost of these products must be reduced to make adoption possible for large populations, especially in resource-poor regions of the world.
2. The interface between the user and instrumentation and the way in which the user interacts with the instrumentation must translate into an easily deployed wearable device that does not cause embarrassment or inconvenience, particularly in social settings.
3. Patients must accept the concept of wearing a continuously functioning device without concern that they are losing their humanity by being dependent on a mechanical device.
4. A motivational factor for many potential users can be an understanding of the present and future environmental risks caused by the large amounts of medical and plastic waste generated by today’s invasive blood glucose monitoring technologies.

The overall strategy is to provide a bloodless glucose sensing technology that simultaneously reduces waste, increases convenience, and saves money.

Regulatory agencies guided by solid clinical evidence will play an important role in determining the level of accuracy that each of these new bloodless devices must provide to achieve non-adjunctive status. This is the level of clearance whereby manufacturers can indicate on the product label that their glucose monitoring product can be used to make a treatment decision without the need for an accompanying blood glucose reading as a confirmatory test. Accuracy and robustness of the sensing product are required for non-adjunctive clearance, which will undoubtedly boost the appeal of these products. As shown in Table 3, four MI-GM products have a non-adjunctive indication per the FDA and it is likely that many future bloodless products will demonstrate adequate accuracy to also gain this distinction.

Conclusions

Commercial products for bloodless monitoring of glucose were identified and reviewed. These products are based on three categories of emerging technologies: (1) NIO-GM, (2) NIFS-GM, and (3) MI-GM. Many of these products are based on spectroscopic, electrochemical, and affinity sensing strategies for quantifying glucose molecules in ISF. A multiple database search was used to identify a total of 65 bloodless glucose monitoring products, of which 13 have received regulatory clearance and are currently on the market. The remaining products are under development. Further refinement of these technologies is anticipated over the upcoming decade to enhance both analytical performance and adoption of these products by people with diabetes. Future developments in bloodless glucose monitoring will require technical and nontechnical advances related to (1) superior analytical performance, (2) robust algorithm development, (3) traceability testing for glucose-containing matrices besides blood, such as ISF, and (4) appreciation of the clinical value of ISF glucose measurements. Bloodless glucose monitoring products, such as the ones discussed in this article, are expected to become key components of novel wearable digital health tools for monitoring glucose concentrations in the diabetes market and the fitness market.

Addendum

In May 2021, after this article was in press, Rockley Photonics disclosed a program to develop a chip size laser-based technology suitable for implementation in a smartwatch format. Health monitoring is its principal application and Apple is featured as a major partner in the development of this technology. Rockley stated that Apple is the largest of six customers with which it has entered into contracts with or engaged with, developing health and wellness devices. These companies are developing smartwatches and medical devices for biomarker detection. Rockley’s sensors are designed to quantify glucose, alcohol, and oxygen levels non-invasively with infrared spectroscopy. Rockley will deliver its chipsets in 2022.
References

1. American Diabetes Association. 7. Diabetes technology: standards of medical care in diabetes—2021. *Diabetes Care*. 2021;44(suppl 1):S85-S99. https://care.diabetesjournals.org/content/44/Supplement_1/S85

2. Fullerton B, Jeitler K, Seitz M, Horvath K, Berghold A, Siebenhofer A. Intensive glucose control versus conventional glucose control for type 1 diabetes mellitus. *Cochrane Database Syst Rev*. 2014;2:CD009122. doi:10.1002/14651858.CD009122.pub2

3. Rodriguez-Gutierrez R, Gonzalez-Gonzalez JG, Zuhiga-Hernandez JA, McCoy RG. Benefits and harms of intensive glycemic control in patients with type 2 diabetes. *BMJ*. 2019;367:l5887. doi:10.1136/bmj.l5887

4. Cousins S, Blencowe NS, Blazey JM. What is an invasive procedure? A definition to inform study design, evidence synthesis and research tracking. *BMJ Open*. 2019;9(7):e028576. doi:10.1136/bmjopen-2018-028576

5. Villena Gonzales W, Mobashsher AT, Abbosh A. The progress of glucose monitoring—a review of invasive to minimally and non-invasive techniques, devices and sensors. *Sensors*. 2019;19(4):800. doi:10.3390/s19040800

6. Klonoff DC, Perz JF. Assisted monitoring of blood glucose: special safety needs for a new paradigm in testing glucose. *J Diabetes Sci Technol*. 2010;4(5):1027-1031. doi:10.1177/19322968100400501

7. Mostrom P, Ahlén E, Imberg H, Hansson P-O, Lind M. Adherence of self-monitoring of blood glucose in persons with type 1 diabetes in Sweden. *BMJ Open Diabetes Res Care*. 2017;5(1):e000342. doi:10.1136/bmjdrc-2016-000342

8. Heise HM, Delbeck S, Marbach R. Noninvasive monitoring of glucose using near-infrared reflection spectroscopy of skin—constraints and effective novel strategy in multivariate calibration. *Biosensors*. 2021;11(3):64. doi:10.3390/bios11030064

9. Wang H-C, Lee A-R. Recent developments in blood glucose sensors. *J Food Drug Anal*. 2015;23(2):191-200. doi:10.1016/j.jfda.2014.12.001

10. Tamada JA, Garg S, Jovanovic L, Pitzer KR, Fermi S, Potts RO. Noninvasive glucose monitoring: comprehensive clinical results. *Cygnus Research Team. JAMA*. 1999;282(19):1839-1844. doi:10.1001/jama.282.19.1839

11. Nemaura Medical. Nemaura Medical. Accessed December 14, 2020. https://nemauramedical.com/

12. Cai A, Güttow H, Mahoney K, et al. CGM 4Q20 industry roundup – record CGM sales of $1.6 billion, rising 26% YoY – March 9, 2021. Close Concerns Knowledgebase. March 9, 2021. Accessed March 15, 2021. https://www.closeconcerns.com/knowledgebase/r/be9b1ac7

13. Shokrehkordaei M, Quinones S. Review of non-invasive glucose sensing techniques: optical, electrical and breath acetone. *Sensors*. 2020;20(5):1251. doi:10.3390/s20051251

14. Tang L, Chang SJ, Chen C-J, Liu J-T. Non-invasive blood glucose monitoring technology: a review. *Sensors*. 2020;20(23):6925. doi:10.3390/s20236925

15. Lee I, Probst D, Klonoff D, Sode K. Continuous glucose monitoring systems - current status and future perspectives of the flagship technologies in biosensor research. In press.

16. Valsling T, Delbeck S, Leonhardt S, Heise HM. Noninvasive monitoring of blood glucose using color-coded photoplethysmographic images of the illuminated fingertip within the visible and near-infrared range: opportunities and questions. *J Diabetes Sci Technol*. 2018;12(6):1169-1177. doi:10.1177/1932296818798347

17. Jernelv IL, Milenko K, Fuglerud SS, Hjelme DR, Ellingsen R, Aksnes A. A review of optical methods for continuous glucose monitoring. *Appl Spectrosc Rev*. 2019;54(7):543-572. doi:10.1080/05704928.2018.1486324

18. Delbeck S, Valsling T, Leonhardt S, Steiner G, Heise HM. Non-invasive monitoring of blood glucose using...
optical methods for skin spectroscopy-opportunities and recent advances. *Anal Bioanal Chem*. 2019;411(1):63-77. doi:10.1007/s00216-018-1395-x

19. Delbeck S, Heise HM. Evaluation of opportunities and limitations of mid-infrared skin spectroscopy for noninvasive blood glucose monitoring. *J Diabetes Sci Technol*. 2021;15(1):19-27. doi:10.1172/193296820936224

20. Ferrante do Amaral CE, Wolf B. Current development in non-invasive glucose monitoring. *Med Eng Phys*. 2008;30(5):541-549. doi:10.1016/j.medengphy.2007.06.003

21. Gusev M, Poposka L, Spasevski G, et al. Noninvasive glucose measurement using machine learning and neural network methods and correlation with heart rate variability. *J Sens*. Published online January 6, 2020. doi:10.1155/2020/9628281

22. Sakaki H, Arakawa M, Yashiro S, Todate Y, Ishigaki Y, Kanai H. Ultrasound scattering by aggregated red blood cells in patients with diabetes. *J Med Ultrason*. 2001;46(1):3-14. doi:10.1007/s10396-018-0892-z

23. Habbu S, Dale M, Ghongade R. Estimation of blood glucose by non-invasive method using photoplethysmography. *Sādhanā*. 2019;44(6):135. doi:10.1007/s12046-019-1118-9

24. Gupta SS, Hossain S, Haque CA, Kim K-D. In-vivo estimation of glucose level using PPG signal. In: *10th 2020 International Conference on Information and Communication Technology Convergence* (ICTC), Jeju Island, Korea, 21-23 October, 2020. ICTC; 2020:733-736. doi:10.1109/ICTC49870.2020.9288629

25. Yeh S-J, Hanna CF, Khalil OS. Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements. *Clin Chem*. 2003;49(6):924-934. doi:10.1373/49.6.924

26. Guo Q-Y, Lu B, Guo Z-H, et al. Continuous glucose monitoring defined time-in-range is associated with sudomotor dysfunction in type 2 diabetes. *World J Diabetes*. 2020;11(11):489-500. doi:10.4239/wjd.v11.i11.489

27. U.S. Food and Drug Administration. Pulse oximeter accuracy and limitations: FDA safety communication. *FDA*. February 19, 2021. Accessed February 26, 2021. https://www.accessdata.fda.gov/cdrh_docs/pdf/P990026A.pdf

28. Wassenaa EB, Van den Brand JGH. Reliability of near-infrared spectroscopy in people with dark skin pigmentation. *J Clin Monit Comput*. 2005;19(3):170-176. doi:10.1007/s10396-005-1655-0

29. Tsai J, Chien AL, Kang JU, Leung S, Kang S, Garza LA. Hyperspectral measurement of skin reflectance detects differences in the visible and near-infrared regions according to race, gender and body site. *J Eur Acad Dermatol Venereol*. Published online December 8, 2020. doi:10.1111/jdv.17076

30. Malik BH, Pirtstill CW, Coté GL. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms. *J Biomed Opt*. 2013;18(1):17007. doi:10.1117/1.JBO.18.1.017007

31. PubMed. PubMed “Noninvasive Glucose” search. Accessed February 10, 2021. https://pubmed.ncbi.nlm.nih.gov/?term=noninvasive%20glucose&sort=date&size=200

32. Heise HM. Non-invasive monitoring of metabolites using near infrared spectroscopy: state of the art. *Horm Metab Res Hormstoffwechselforschung Horm Metab*. 1996;28(10):527-534. doi:10.1055/s-2007-979846

33. Coté GL. Noninvasive optical glucose sensing — an overview. *J Clin Eng*. 1997;22(4):253-259.

34. Klonoff DC. Noninvasive blood glucose monitoring. *Diabetes Care*. 1997;20(3):433-437. doi:10.2337/diabcare.20.3.433

35. Khalil OS. Spectroscopic and clinical aspects of noninvasive glucose measurements. *Clin Chem*. 1999;45(2):165-177.

36. Hansen JH, Tweehuysen R. Biosensor. Published online April 28, 2020. Accessed December 14, 2020. https://patents.google.com/patent/US10631769B2/en?assignee=noviosense

37. Bruen D, Delaney C, Florea L, Diamond D. Glucose sensing for diabetes monitoring: recent developments. *Sensors*. 2017;17(8):1886. doi:10.3390/s17081866

38. Adams C. FDA approves device to help diabetics measure sugar levels. *Wall Street Journal*. March 23, 2001. Accessed February 9, 2021. https://www.wsj.com/articles/SB98528816651518746

39. Tierney MJ, Tamada JA, Potts RO, et al. The GlucoWatch biographer: a frequent automatic and noninvasive glucose monitor. *Ann Med*. 2000;32(9):632-641. doi:10.1016/S07853900(00)002034

40. Statland BE. Glucowatch automatic glucose biographer approval order statement. March 22, 2001. Accessed March 1, 2021. https://www.accessdata.fda.gov/cdrh_docs/pdf/P990026A.pdf

41. Potts RO, Tamada JA, Tierney MJ. Glucose monitoring by reverse iontophoresis. *Diabetes Metab Res Rev*. 2002;18(suppl 1):S49-S53. doi:10.1002/dmr.210

42. Diabetes Research in Children Network (DirecNet) Study Group. Youth and parent satisfaction with clinical use of the GlucoWatch G2 Biographer in the management of pediatric type 1 diabetes. *Diabetes Care*. 2005;28(8):1929-1935. doi:10.2323/diabcare.28.8.1929

43. Saur NM, England MR, Menzie W, et al. Accuracy of a novel noninvasive transdermal continuous glucose monitor in critically ill patients. *J Diabetes Sci Technol*. 2014;8(5):945-950. doi:10.1177/1932296814536138

44. Echo Therapeutics, Inc. Echo Therapeutics Begins Testing of NexGen CGM System Components. Cision PR Newswire. June 29, 2016. Accessed December 17, 2020. https://www.prnewswire.com/news-releases/echo-therapeutics-begins-testing-of-nexgen-cgm-system-components-300291837.html

45. Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. *Diabet Med J Br Diabet Assoc*. 2010;27(2):136-142. doi:10.1111/j.1464-5491.2009.02894.x

46. Soares M-S, Batista-Filho M-M-V, Pimentel M-J, Passos I-A, Chimenos-Küstner E. Determination of salivary glucose in healthy adults. *Med Oral Patol Oral Cirugia Bucal*. 2009;14(10):e510-e513. doi:10.4317/medoral.14.e510

47. Jurysta C, Bulur N, Ouguzhan B, et al. Salivary glucose concentration and excretion in normal and diabetic subjects. *J Biomed Biotechnol*. 2009;2009:430426. doi:10.1155/2009/430426

48. March WF, Mueller A, Herbrechtsmeier P. Clinical trial of a noninvasive contact lens glucose sensor. *Diabetes Technol Ther*. 2004;6(6):782-789. doi:10.1089/dia.2004.6.782

49. Leblanc JM, Haas CE, Vicente G, Colon LA. Evaluation of lacrimal fluid as an alternative for monitoring glucose in critically ill patients. *Intensive Care Med*. 2005;31(10):1442-1445. doi:10.1007/s00134-005-2747-5

50. Ferri S, Kojima K, Sode K. Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose
sensing enzymes. *J Diabetes Sci Technol.* 2011;5(5):1068-1076. doi:10.1177/193229681100505010

51. Teymourian H, Barfidiokht A, Wang J. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020). *Chem Soc Rev.* 2020;49(21):7671-7709. doi:10.1039/d0cs00304b

52. Johannessen E, Krushinitskaya O, Sokolov A, et al. Toward an injectable continuous osmotic glucose sensor. *J Diabetes Sci Technol.* 2010;4(4):882-892. doi:10.1177/19322968100040147

53. Klonoff DC. Overview of fluorescence glucose sensing: a technology with a bright future. *J Diabetes Sci Technol.* 2012;6(6):1242-1250. doi:10.1177/19322968120600602

54. Nielsen JK, Christiansen JS, Kristensen JS, et al. Clinical evaluation of a transcutaneous interrogated fluorescence lifetime-based microsensor for continuous glucose reading. *J Diabetes Sci Technol.* 2009;3(1):98-109. doi:10.1177/193229680900301111

55. Kropff J, Choudhary P, Neupane S, et al. Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: a 180-day, prospective, multicenter, pivotal trial. *Diabetes Care.* 2017;40(1):63-68. doi:10.2337/dc16-1525

56. Eversense XL user guide: a guide for using the Eversense XL continuous glucose monitoring system. Accessed February 9, 2021. https://global.eversensediabetes.com/sites/default/files/2019-09/LBL-1402-28-001_Rev_B_Eversense_User_Guide_mgdL_UAE_Web.pdf

57. Senseonics submits PMA application for 180-day Eversense system to the FDA. *BioSpace.* October 5, 2020. Accessed February 9, 2021. https://www.biospace.com/article/senseonics-submits-pma-application-for-180-day-eversense-system-to-the-fda/

58. Eversense Continuous Glucose Monitoring. Long-term continuous glucose monitor. 2019. Accessed July 15, 2020. https://www.eversensediabetes.com/

59. Basu A, Dube S, Veettil S, et al. Time lag of glucose from intravascular to interstitial compartment in type 1 diabetes. *J Diabetes Sci Technol.* 2015;9(1):63-68. doi:10.1177/1932296814554797

60. Schmelzeisen-Redeker G, Schoemaker M, Kirchsteiger H, Freckmann G, Heinemann L, Del Re L. Time delay of CGM sensors: relevance, causes, and countermeasures. *J Diabetes Sci Technol.* 2015;9(5):1006-1015. doi:10.1177/1932296815590154

61. Cobelli C, Schiavon M, Dalla Man C, Basu A, Basu R. Interstitial fluid glucose is not just a shifted-in-time but a distorted mirror of blood glucose: insight from an in silico study. *Diabetes Technol Ther.* 2016;18(8):505-511. doi:10.1089/dia.2016.0112

62. Moyer J, Wilson D, Finkelstein I, Wong B, Potts R. Correlation between sweat glucose and blood glucose in subjects with diabetes. *Diabetes Technol Ther.* 2012;14(5):398-402. doi:10.1089/dia.2011.0262

63. Yamaguchi M, Mitsumori M, Kano Y. Noninvasively measuring blood glucose using saliva. *IEEE Eng Med Biol Mag* Q Mag Eng Med Biol Soc. 1998;17(3):59-63. doi:10.1109/51.677170

64. La Belle JT, Adams A, Lin C-E, Engelschall E, Pratt B, Cook CB. Self-monitoring of tear glucose: the development of a tear based glucose sensor as an alternative to self-monitoring of blood glucose. *Chem Commun Camb Engl.* 2016;52(59):9197-9204. doi:10.1039/c6cc03609k

65. Cameron BD, Baba JS, Coté GL. Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor. *Diabetes Technol Ther.* 2001;3(2):201-207. doi:10.1089/1520915010300209552

66. POCT05Ed2. Performance Metrics for Continuous Interstitial Glucose Monitoring. 2nd ed. Clinical & Laboratory Standards Institute. Accessed February 9, 2021. https://clsi.org/standards/products/point-of-care-testing/documents/poct05/

67. Sinha M, McKeon KM, Parker S, et al. A comparison of time delay in three continuous glucose monitors for adolescents and adults. *J Diabetes Sci Technol.* 2017;11(6):1132-1137. doi:10.1177/1932296817704443

68. Zaharieva DP, Turksoy K, McCaughey SM, et al. Lag time remains with newer real-time continuous glucose monitoring technology during aerobic exercise in adults living with type 1 diabetes. *Diabetes Technol Ther.* 2019;21(6):313-321. doi:10.1089/dia.2018.0364

69. Kulcu E, Tamada JA, Reach G, Potts RO, Lesho MJ. Physiological differences between interstitial glucose and blood glucose measured in human subjects. *Diabetes Care.* 2003;26(8):2405-2409. doi:10.2337/diacare.26.8.2405

70. Heinemann L. Finger pricking and pain: a never ending story. *J Diabetes Sci Technol.* 2008;2(5):919-921. doi:10.1177/193229680800200526

71. Paret M, Barash G, Rachmied M. “Out of the box” solution for skin problems due to glucose-monitoring technology in youth with type 1 diabetes: real-life experience with fluticasone spray. *Acta Diabetol.* 2020;57(4):419-424. doi:10.1007/s00592-019-01446-y

72. Pleus S, Ulbrich S, Zschornewk E, Kamann S, Haug C, Freckmann G. Documentation of skin-related issues associated with continuous glucose monitoring use in the scientific literature. *Diabetes Technol Ther.* 2019;21(10):538-545. doi:10.1089/dia.2019.0171

73. Kamann S, Aerts O, Heinemann L. Further evidence of severe allergic contact dermatitis from isobornyl acrylate while using a continuous glucose monitoring system. *J Diabetes Sci Technol.* 2018;12(3):630-633. doi:10.1177/1932296817862946

74. Svedman C, Ulriksdotter J, Lejding T, Bruze M, Mowitz M. Changes in adhesive ingredients in continuous glucose monitoring systems may induce new contact allergy patterns. *Contact Dermatitis.* Published online January 9, 2021. doi:10.1111/cod.13781

75. Jina A, Tierney MJ, Tamada JA, et al. Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. *J Diabetes Sci Technol.* 2014;8(3):483-487. doi:10.1177/1932296814526191

76. Wermeling DP, Banks SL, Hudson DA, et al. Microneedles permit transdermal delivery of a skin-impervious medication to humans. *Proc Natl Acad Sci U S A.* 2008;105(6):2058-2063. doi:10.1073/pnas.0710355105

77. Murota H, Yamaga K, Ono E, Murayama N, Yokozeki H, Katayama I. Why does sweat lead to the development of itch in atopic dermatitis? *Exp Dermatol.* 2019;28(12):1416-1421. doi:10.1111/exd.13981
79. Gomez AM, Umpierrez GE. Continuous glucose monitoring in insulin-treated patients in non-ICU settings. *J Diabetes Sci Technol.* 2014;8(5):930-936. doi:10.1177/1932296814546025

80. Klonoff DC, Kerr D. A simplified approach using rate of change arrows to adjust insulin with real-time continuous glucose monitoring. *J Diabetes Sci Technol.* 2011;11(6):1063-1069. doi:10.1177/1932296811723260

81. Lin YK, Groat D, Chan O, et al. Alarm settings of continuous glucose monitoring systems and associations to glucose outcomes in type 1 diabetes. *J Endocr Soc.* 2020;4(1):bzx2005. doi:10.1210/jendo/bzx2005

82. Klonoff DC, Shang T, Zhang J. Automated insulin dosing systems or automated insulin delivery systems? It is time for consistency. *J Diabetes Sci Technol.* 2021;15(2):211-213.

83. Galindo RJ, Umpierrez GE, Rushakoff RJ, et al. Continuous glucose monitors and automated insulin dosing systems in the hospital consensus guideline. *J Diabetes Sci Technol.* 2020;14(6):1035-1064. doi:10.1177/1932296820954163

84. 510(k) Premarket Notification. Accessed March 5, 2021. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm

85. Welsh Company Makes Breakthrough in Diabetes Management. *Business News Wales.* March 8, 2020. Accessed December 14, 2020. https://businessnewswales.com/welsh-company-makes-breakthrough-in-diabetes-management/

86. Afon Technology. Glucose monitoring. Accessed December 14, 2020. https://afontechnology.com/

87. Neale R. No more “prick and stick": Alertgy working on noninvasive glucometer for diabetes patients. *Florida Today.* Accessed December 14, 2020. https://www.floridatoday.com/story/news/2018/12/18/melbourne-diabetes-startup-alertgy-named-one-30-fastest-growing-companies-watch/2312300002/

88. Technology. Alertgy™. Accessed December 14, 2020. https://www.alertgy.com/technology/

89. 39 Potential Continuous Glucose Monitors Coming Soon. *Healthline.* February 20, 2020. Accessed December 15, 2020. https://www.healthline.com/diabetessmine/39-new-egms-for-diabetes

90. Apple patent hints at non-invasive glucose monitoring tech for Apple Watch. *AppleInsider.* Accessed December 14, 2020. https://appleinsider.com/articles/18/08/23/apple-patent-suggests-work-on-non-invasive-glucose-monitoring-tech

91. Kangas MM, Arbore MA, Simon DI, Bishop MJ, Hillendahl JW, Chen R. Reference switch architectures for non-contact sensing of substances. August 23, 2018. Accessed February 5, 2021. https://patents.google.com/patent/US20180238794A1/en?oq=20180238794

92. Non-Invasive Blood Glucose Monitoring Devices Market: New Study Offers Insights for 2017-2027. *PharmiWeb.com.* Accessed December 14, 2020. https://www.pharmiweb.com/press-release/2019-03-20/non-invasive-blood-glucose-monitoring-devices-market-new-study-offers-insights-for-2017-2027

93. Karstang T, Schoenfelder S. Wearable blood glucose sensor. April 15, 2020. Accessed February 5, 2021. https://patents.google.com/patent/EP3636141A1/en?q=glucose+monitor&assignee=prediktor+medical

94. Brolis develops laser sensor for non-invasive blood analysis - news. Compound Semiconductor. Accessed December 14, 2020. /article/109183/Brolis_develops_laser_sensor_for_non-invasive_blood_analysis

95. Vizbaras A, Vizbaras K, Simonyte leva, Roelkens G. Tunable hybrid II-V IV laser sensor system-on-a chip for real-time monitoring of a blood constituent concentration level. March 5, 2020. Accessed February 5, 2021. https://patents.google.com/patent/US20200069225A1/en?q=glucose(assignee=brolis)&oq=brolis+glucose

96. 15 Healthcare Companies in Dallas Pioneering Innovations Across the Industry. Built In. Accessed January 4, 2021. https://builtin.com/dallas/healthcare-companies-in-dallas

97. Socrates Announces Patent for New Technique for Their Noninvasive Blood Glucose Monitor – Socrates Health Solutions. Accessed February 5, 2021. https://socrateshealthsolutions.com/socrates-announces-patent-for-new-technique-for-their-noninvasive-blood-glucose-monitor/

98. Bordelon M. Methods and apparatus for optical non-invasive blood glucose change indication. July 21, 2016. Accessed January 4, 2021. https://patents.google.com/patent/US20160206232A1/en?q=socrates+health+glucose+monitoror&q=socrates+health+glucose+monitor

99. Watch: This device uses light to help diabetics test glucose levels. *BusinessInsider.* Accessed December 14, 2020. https://www.businessinsider.co.za/this-company-has-developed-a-non-invasive-glucose-monitoring-watch-2018-12

100. Lubinski T, Plotka B, Janik S, Canini L, Mantele W. Evaluation of a novel noninvasive blood glucose monitor based on mid-infrared quantum cascade laser technology and photothermal detection. *J Diabetes Sci Technol.* Published online July 5. doi:10.1177/1932296820936634

101. DiamonTech submits to FDA pre-submission application for non-invasive blood glucose meter D-base. *DiaMonTech.* September 9, 2020. Accessed January 20, 2021. https://www.diamontech.de/Pressemeldungen-en/diamontech-submits-to-fda-pre-submission-application-for-non-invasive-blood-glucose-meter-d-base

102. DiaMonTech: non-invasive glucose measurement. Accessed December 15, 2020. https://www.diamontech.de/home

103. Mantele W, Rafael MAP, Lieblein T, et al. Nicht-invasive stoffanalyse. October 30, 2019. Accessed February 5, 2021. https://patents.google.com/patent/EP3155401B1/en?q=socrates(assignee=diamontech)&oq=diamontech+glucose

104. Danish RSP systems raises $5m series A for GlucoBeam light-based glucometer. *MassDevice.* July 8, 2016. Accessed December 14, 2020. https://www.massdevice.com/danish-rsp-systems-raises-5m-series-glucobeam-light-based-glucometer/

105. Pleus S, Schauer S, Jendrike N, et al. Proof of concept for a new Raman-based prototype for noninvasive glucose monitoring. *J Diabetes Sci Technol.* 2021;15(1):11-18. doi:10.1177/1932296820947112

106. Patented Raman Spectroscopy. Accessed December 15, 2020. https://www.rspsystems.com/technology/

107. Ferreira R. Glucose monitoring startup GlucoActive from Poland wins pitch competition at Collision from Home. *EU-Startups.* June 26, 2020. Accessed December 14, 2020. https://www.eu-startups.com/2020/06/glucose-monitoring-startup-glucoactive-from-poland-wins-pitch-competition-at-collision-from-home/

108. Start-up Genki Vantage takes the sting out of blood glucose testing. *PRUnderground.* Accessed December 14, 2020.
206

Journal of Diabetes Science and Technology 16(1)

https://www.prunderground.com/start-up-genki-vantage-takes-the-sting-out-of-blood-glucose-testing/00182194/ 109. About Gluco Quantum. Accessed December 14, 2020. https://www.glucoquantum.com/about

110. Quantum® G Certification. Gluco Quantum. June 13, 2020. Accessed December 14, 2020. https://www.glucoquantum. com/post/certification

111. Diabetes CRF-20/11/2019 5 mins-Tops. Needle-free diabetes care: 8 devices that painlessly measure blood glucose. Labiotech.eu. November 20, 2019. Accessed December 14, 2020. https://www.labiotech.eu/diabetes/needle-free-glucose-monitoring-for-diabetes-medtech/

112. Key patent granted for Glucosense’s technology. NetScientific. July 15, 2015. Accessed February 8, 2021. https://netscientific.net/2015/07/15/key-patent-granted-for-glucosense-technology/

113. Device that uses forearm to measure glucose developed. Latest news for the medical device company. Med-Tech Innovation. December 3, 2019. Accessed December 14, 2020. https://www.med-technews.com/api/content/ce2b8e6f-15c5-11ea-aed5-1244d5f7c7c6/

114. Inc IA. Integrity applications names Shalom Shushan as chief technology officer. GloseNewswire News Room. November 5, 2020. Accessed December 14, 2020. http://www.globenewswire.com/news-release/2020/11/05/2121139/0/en/ Integrity-Applications-Names-Shalom-Shushan-as-Chief-Technology-Officer.html

115. Integrity applications receives CE mark approval for multiple improvements to GlucoTrack® model DF-F. Integrity Applications. Accessed December 14, 2020. http://www.integrity-app.com/pressreleases/integrity-applications-receives-ce-mark-approval-for-multiple-improvements-to-glucotrack-model-df-f/

116. Lin T, Mayzel Y, Bahartan K. The accuracy of a non-invasive glucose monitoring device as clinical characteristics of people with type 2 diabetes mellitus. J Drug Assess. 2018;7(1):1-7. doi:10.1080/21556600.2018.1423987

117. 乔治帕利卡洛斯·塞莫斯卡洛斯，西姆钱德拉萨哈，付德才，钱德。一种无创血糖检测装置及方法. September 7, 2016. Accessed February 8, 2021. https://patents.google.com/patent/CN105919601A/en?q=glucose+sensor&assignee=me diwise&oq=mediwise+&eq=mediwise+&eq=glucose+sensor

118. Two Innovative Wearables Took Diabetes Control to the Next Level at CES 2020. Accessed December 14, 2020. https://www.healthtechzone.com/topics/healthcare/articles/2020/01/24/444307-two-innovative-wearables-took-diabetes-control-the-next.htm

119. Glutrac. December 15, 2020. https://add-care.net/

120. Corp WM&T. Launch of world’s first wearable, non-invasive, continuous, blood glucose estimation technology using WRMT’s smart wristband, Helo, will generate recurring revenues for WRMT. Accessed January 25, 2021. https://www.prnewswire.com/news-releases/launch-of-worlds-first-wearable-non-invasive-continuous-blood-glucose-estimation-technology-using-wrmts-smart-wristband-helo-will-generate-recurring-revenues-for-wrmt-300388644.html

121. HELO Extense FAQ. Accessed February 8, 2021. https://website.worldgn.com/wp-content/uploads/2019/02/Extense-FAQ-v1.1.pdf

122. Balajadia LF, Galdi F. Personal healthcare device. December 13, 2018. Accessed February 8, 2021. https://patents.google.com/patent/US20180353137A1/en?assignee=helowmcorp

123. LifePlus announces world’s first non-invasive continuous blood glucose monitoring wearable. May 16, 2018. Accessed December 14, 2020. https://www.businesswire.com/news/home/20180516005422/en/LifePlus-Announces-World%E2%80%99s-First-Non-Invasive-Continuous-Blood-Glucose-Monitoring-Wearable

124. Startup LifePlus announces noninvasive CGM wearable currently in testing. MobiHealthNews. May 17, 2018. Accessed February 8, 2021. https://www.mobihalthnews.com/content/startup-lifeplus-announces-noninvasive-cgm-wearable-currently-testing

125. Inc M. UPDATE: Movano Inc. exits stealth mode and secures $10M in additional funding to transform glucose monitoring with non-invasive technology. GlobeNewswire News Room. July 14, 2020. Accessed December 14, 2020. http://www.globenewswire.com/news-release/2020/07/14/2062224/0/en/UPDATE-Movano-Inc-Exits-Stealth-Mode-and-Secures-10M-in-Additional-Funding-to-Transform-Glucose-Monitoring-with-Non-Invasive-Technology.html

126. Movano Inc. Accessed December 15, 2020. https://movano.com/solution

127. One of the patents that the “Secret Apple Team” was working on for diabetes testing for Apple Watch surfaces. Patently Apple. Accessed January 4, 2021. https://www.patentlyapple.com/patently-apple/2018/08/one-of-the-patents-that-the-secret-apple-team-was-working-on-for-diabetes-testing-for-apple-watch-surfaces.html

128. Islam MN. Near-infrared lasers for non-invasive monitoring of glucose, ketones, HBA1C, and other blood constituents. October 29, 2015. Accessed February 8, 2021. https://patents.google.com/patent/US20150305658A1/en?q=glucose+monitor&assignee=omnimedsci&oq=omnimedsci+&eq=omnimedsci+glucose+monitor

129. A closer look at biosensor technology at sensors USA 2019. IDTechEx. November 1, 2019. Accessed January 4, 2021. https://www.idtechex.com/en/research-article/a-closer-look-at-biosensor-technology-at-sensors-usa-2019/18604

130. Newberry RS. System and method for health monitoring using a non-invasive, multi-band biosensor. May 9, 2017. Accessed February 8, 2021. https://patents.google.com/patent/US9642578B2/en?q=glucose+monitor&assignee=sanmina&oq=sanmina+&eq=sanmina+glucose+monitor

131. Lid CM. CNOGA medical appointed ARTECH to distribute their non-invasive medical devices in Italy. Accessed December 14, 2020. http://www.globenewswire.com/news-releases/cnogamedical-appointed-artechno-to-distribute-their-non-invasive-medical-devices-in-italy-581493111.html

132. CNOGA medical appointed ARTECH to distribute their non-invasive medical devices in Italy - Cnoga medical. Accessed December 14, 2020. https://cnogacare.co/artech-distribute-their-non-invasive-medical-devices-in-italy-581493111.html

133. Pfützner A, Demircik F, Pfützner J, et al. System accuracy assessment of a combined invasive and noninvasive glucometer. J Diabetes Sci Technol. 2020;14(3):575-581. doi:10.1177/1932296819883306
134. Know Labs signs research agreement with Mayo Clinic. *MassDevice*. July 21, 2020. Accessed December 15, 2020. https://www.massdevice.com/know-labs-signs-research-agreement-with-mayo-clinic/

135. Know Labs Granted Patent for its Bio-RFID™ Technology. April 7, 2020. Accessed December 15, 2020. https://www.businesswire.com/news/home/20200407005221/en/Know-Labs-Granted-Patent-for-its-Bio-RFID%E2%84%A2-Technology

136. Gudibande RR, Radhakrishnan S. Replaceable sensor systems and methods. September 26, 2019. Accessed February 8, 2021. https://patents.google.com/patent/WO2019183279A1/en?q=glucose+monitor&assignee=graphwear

137. Health care innovators strive to make a difference. *MIT News*. Massachusetts Institute of Technology. Accessed December 15, 2020. https://news.mit.edu/2020/health-care-innovators-strive-to-make-difference-0123

138. Inc ET. Echo therapeutics announces new patent for its non-invasive sensing technology. Accessed February 8, 2021. https://www.prnewswire.com/news-releases/echo-therapeutics-announces-new-patent-for-its-non-invasive-sensing-technology-300288439.html

139. Gbs looking to raise $20M in Nasdaq IPO to develop non-invasive SARS-CoV-2 diagnostic. Accessed December 15, 2020. https://www.bioworld.com/articles/499955-gbs-looking-to-raise-20m-in-nasdaq-ipo-to-develop-noninvasive-sars-cov-2-diagnostic

140. FAQs. GBS Inc. Accessed December 15, 2020. https://gsbinc.com/faqs/

141. Nemaura Medical expands painless sugarBEAT glucose monitor footprint in Europe, and eyes entry into US market. *Proactiveinvestors N.A.* August 4, 2020. Accessed December 15, 2020. https://www.proactiveinvestors.com/companies/news/925727/nemaura-medical-expands-painless-sugarbeat-glucose-monitor-footprint-in-europe-and-eyes-entry-into-us-market-925727.html

142. Nemaura announces CE mark approval of SugarBEAT®. *Nemaura Medical*. May 29, 2019. Accessed December 15, 2020. https://nemauromedical.com/nemaura-announces-ce-mark-approval-of-sugarbeat/

143. Nemaura medical submits PMA application for sugarBEAT® to U.S. FDA. *BioSpace*. Published July 7, 2020. Accessed January 12, 2021. https://www.biospace.com/article/nemaura-medical-submits-pma-application-for-sugarbeat-to-u-s-fda/

144. NovioSense announces positive clinical trial results of tear glucose measurement technology. *Medgadget*. Accessed December 15, 2020. https://www.medgadget.com/2018/10/noviosense-announces-positive-clinical-trial-results-of-tear-glucose-measurement-technology.html

145. Geelhoed-Duijvestijn P, Vegelde T, Kownacka A, Anton N, Joosse M, Wilson C. Performance of the prototype noviosense noninvasive biosensor for tear glucose in type 1 diabetes. *J Diabetes Sci Technol*. Published online October 23, 2020. doi:10.1177/1932968620964844

146. admin. CGM for 2020 – will new entrants reduce costs? *Diabetetech - Diabetes and Technology*. Published December 10, 2019. Accessed December 16, 2020. https://www.diabetetech.com/cgm/cgm-for-2020-will-new-entrants-reduce-costs/

147. Continuous Glucose Monitoring System-MicroTech Medical Inc. Accessed December 16, 2020. http://www.microtechmd.com/en/Products/CGMS

148. Inc B. Biolinq announces results from first-in-man clinical studies showing feasibility of a novel, minimally invasive approach to continuous glucose monitoring in the dermis. Accessed December 15, 2020. https://www.prnewswire.com/news-releases/biolinq-announces-results-from-first-in-man-clinical-studies-showing-feasibility-of-a-novel-minimally-invasive-approach-to-continuous-glucose-monitoring-in-the-dermis-301076992.html

149. Biolinq. Intelligent continuous glucose monitoring system. Accessed December 15, 2020. https://www.biolinq.me/

150. Lee MH, Kim MH, Lee UK, et al. Electrochemical biosensor with improved accuracy. September 5, 2017. Accessed February 8, 2021. https://patents.google.com/patent/US9753004B2/en?q=glucose+monitor&assignee=i-sens

151. Inc WT. WaveForm Technologies Inc. Awarded CE mark approval for their continuous glucose monitoring system. Accessed December 15, 2020. https://www.prnewswire.com/news-releases/waveform-technologies-inc-awarded-ce-mark-approval-for-their-continuous-glucose-monitoring-system-300952002.html

152. Rebec M, Cai K, Dutt-Ballerstadt R, Anderson E. A prospective multicenter clinical performance evaluation of the C-CGM system. *J Diabetes Sci Technol*. Published online October 21, 2020. doi:10.1177/1932296820964574

153. Ascensia diabetes care announces partnership; new CGM products. *dLife*. January 24, 2019. Accessed December 15, 2020. https://dlife.com/ascensia-diabetes-care-announces-partnership-new-cgm-products/

154. Chinese CGM maker POCTech raises $15m in Series B. *MassDevice*. April 17, 2017. Accessed December 15, 2020. https://www.massdevice.com/chinese-cgm-maker-poctech-raises-15m-series-b

155. Why Dexcom diabetes CGM technology is so hot. *Healthline*. September 16, 2020. Accessed December 14, 2020. https://www.healthline.com/diabetessm/dexcom-technology-overview

156. U.S. Food and Drug Administration. FDA authorizes first fully interoperable continuous glucose monitoring system. *FDA*. March 24, 2020. Accessed December 15, 2020. https://www.fda.gov/news-events/press-announcements/fda-authorizes-first-fully-interoperable-continuous-glucose-monitoring-system-streamlines-review

157. Dexcom lands CE Mark for G6 glucose monitor. *MassDevice*. Published June 9, 2020. Accessed December 15, 2020. https://www.massdevice.com/dexcom-lands-ce-mark-for-g6-glucose-monitor

158. Isaacsen B, Kaufusi S, Sorensen J, et al. Demonstrating the clinical impact of continuous glucose monitoring within an integrated healthcare delivery system. *J Diabetes Sci Technol*. Published online September 16, 2020. doi:10.1177/1932968620955228

159. Discover Dexcom continuous glucose monitoring (CGM) technology. *Dexcom Provider*. Accessed December 15, 2020. https://provider.dexcom.com/dexcom-cgm

160. Crumly J. DexCom has a lot to prove in 2021. *The Motley Fool*. December 9, 2020. Accessed January 4, 2021. https://
161. Incorporated G. GlySens incorporated closes incremental $15 million financing supporting on-going clinical evaluations and first-in-man study of the third generation Eclipse® 3 ICGM® system. Accessed January 4, 2021. https://www.prnewswire.com/news-releases/glySENS-incorporated-closes-incremental-15-million-financing-supporting-on-going-clinical-evaluations-and-first-in-man-study-of-the-third-generation-eclipse-3-ICGM-system-301074892.html

162. Routh T, Luciano J, Markle W, Perkins M. Analyte sensor receiver apparatus and methods. June 7, 2018. Accessed February 8, 2021. https://patents.google.com/patent/US20180153450A1/en?q=glucose+monitor&assignee=glysens&oq=glysens+glucose+monitor

163. Struggling Senseonics allies with blood glucose monitoring giant Ascensia, taps much-needed $80M. MedTech Dive. Accessed December 15, 2020. https://www.medtechdive.com/news/struggling-senseonics-allies-with-blood-glucose-monitoring-giant-ascensia-583270/

164. Premarket Approval (PMA). Accessed February 9, 2021. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P160048

165. Senseonics announces CE mark approval of the Eversense® Premarket Approval (PMA). Accessed February 9, 2021. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P160048

166. Fokkert M, van Dijk PR, Edens MA, et al. Performance of the Senseonics announces CE mark approval of the Eversense® Premarket Approval (PMA). Accessed February 9, 2021. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P160048

167. Struggling Senseonics allies with blood glucose monitoring giant Ascensia, taps much-needed $80M. MedTech Dive. Accessed December 15, 2020. https://www.medtechdive.com/news/struggling-senseonics-allies-with-blood-glucose-monitoring-giant-ascensia-583270/

168. Premarket Approval (PMA). Accessed February 9, 2021. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P160048

169. Abbott’s Freestyle® Libre 14 day system now available in U.S. for hospitalized patients with diabetes during COVID-19 pandemic. Accessed December 15, 2020. https://www.prnewswire.com/news-releases/abbotts-freestyle-libre-14-day-system-now-available-in-us-for-hospitalized-patients-with-diabetes-during-covid-19-pandemic-301037529.html

170. Health C for D and R. Freestyle Libre 14 day flash glucose monitoring system - P160030/S017. FDA. March 29, 2019. Accessed December 15, 2020. https://www.fda.gov/medical-devices/recently-approved-devices/freestyle-libre-14-day-flash-glucose-monitoring-system-p160030s017

171. Abbott receives CE mark for FreeStyle® Libre, a revolutionary glucose monitoring system for people with diabetes. Abbott MediaRoom. Accessed December 15, 2020. https://abbott.mediaroom.com/2014-09-03-Abbott-Receives-CE-Mark-for-FreeStyle-Libre-a-revolutionary-Glucose-Monitoring-System-for-People-with-Diabetes

172. Kudva YC, Ahmann AJ, Bergenstal RM, et al. Approach to using trend arrows in the Freestyle Libre flash glucose monitoring systems in adults. J Endocr Soc. 2018;2(12):1320-1337. doi:10.1210/js.2018-00294

173. Abbott’s Freestyle Libre system becomes first CGM to be FDA cleared for use without fingersticks. MobiHealthNews. September 27, 2017. Accessed December 15, 2020. https://www.mobihealthnews.com/content/abbotts-freestyle-libre-system-becomes-first-cgm-be-fda-cleared-use-without-fingersticks

174. Writer PS. FreeStyle Libre 2 sensors added to drug tariff and DND list. Latest Pharmacy News. Business Magazine - Pharmacy Business. October 28, 2020. Accessed December 15, 2020. https://www.pharmacy.biz/freestyle-libre-2-sensors-added-to-drug-tariff-and-dnd-list/

175. 510(k) Premarket notification FreeStyle Libre 2 flash glucose monitoring system. Accessed December 15, 2020. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?ID=K193371

176. Abbott’s Freestyle Libre 2, with optional real-time alarms, secures CE mark for use in Europe. Abbott MediaRoom. Accessed December 15, 2020. https://abbott.mediaroom.com/2018-10-01-Abbott-s-Freestyle-R-Libre-2-with-Optional-Real-Time-Alarms-Secures-CE-Mark-for-Use-in-Europe

177. Denham D. A head-to-head comparison study of the first-day performance of two factory-calibrated CGM systems. J Diabetes Sci Technol. 2020;14(2):493-495. doi:10.1177/1932296819895505

178. NEWS: FDA OKs FreeStyle Libre 2 with real-time glucose alerts. Healthline. June 16, 2020. Accessed December 15, 2020. https://www.healthline.com/diabetesmine/news-freestyle-libre-2-gets-approved

179. Abbott scores European CE mark for its Freestyle Libre 3. MobiHealthNews. September 28, 2020. Accessed December 15, 2020. https://www.mobihealthnews.com/news/abbotts-score-european-ce-mark-its-freestyle-libre-3

180. O’Neill S. News and views: update on technologies, medicines and treatments including Libre 3, Minimed 780G and Glucomen Day continuous glucose monitoring. Diabet Med. 2021;38(1):e14451. doi:10.1111/dme.14451

181. Menarini IFR. Continuous blood glucose monitoring: the Menarini diagnostics digital “patch” now available. PRNewswire. June 25, 2020. Accessed December 15, 2020. https://www.prnewswire.co.uk/news-releases/continuous-blood-glucose-monitoring-the-menarini-diagnostics-digital-patch-now-available-880146146.html

182. WaveForm Diabetes (formerly Agamatrix) and Bayer CGM. Desang Diabetes Services. June 16, 2020. Accessed December 15, 2020. https://www.desang.net/2020/06/waveform-diabetes-formerly-agamatrix-and-bayer-cgm/

183. China Money AI. Vertex Ventures Leads Series B Round In Chinese Glucose Monitoring Device Developer Infino. China Money Network. July 29, 2020. Accessed December 15, 2020. https://www.chinamoneynetwork.com/2020/07/29/vertex-ventures-leads-series-b-round-in-chinese-glucose-monitoring-device-developer-infino

184. (1)Infinovo Medical Co Limited: overview. Accessed December 15, 2020. https://www.linkedin.com/company/infinovo-medical-co-limited/

185. GluSense gets funding for implantable biosensor it says could be a year-long CGM. MobiHealthNews. February 15, 2017. Accessed December 16, 2020. https://www.mobihealthnews.com/content/gluSense-gets-funding-implantable-biosensor-it-says-could-be-year-long-cgm
213. Lifecare - about. Accessed February 8, 2021. https://www.lifecare.no/about-lifecare

214. Glucovation: A CGM sensor for the non-diabetes mainstream? Healthline. May 21, 2014. Accessed December 15, 2020. https://www.healthline.com/diabetesmine/glucovation-cgm

215. Our Technology. Glucovation. Accessed February 8, 2021. http://glucovation/index.php/our-technology/

216. New for diabetes: combined insulin infusion & CGM sensor! Healthline. December 12, 2019. Accessed December 15, 2020. https://www.healthline.com/diabetesmine/combined-infusion-set-and-cgm-sensor

217. Jacobs PG, Tyler NS, Vanderwerf SM, et al. Measuring glucose at the site of insulin delivery with a redox-mediated sensor. Biosens Bioelectron. 2020;165:112221. doi:10.1016/j.bios.2020.112221

218. Patents. Pacific diabetes technologies. Accessed February 8, 2021. https://www.pacificdt.com/patents

219. Zhou J, Zhang S, Li L, et al. Performance of a new real-time continuous glucose monitoring system: A multicenter pilot study. J Diabetes Invest. 2018;9(2):286-293. doi:10.1111/mdi.12699

220. Yang C. Analyte sensing system. September 17, 2019. https://www.patents.google.com/patent/US10413224B2/en?q=glucose+monitor&assignee=medtrum

221. Apple is testing a noninvasive blood glucose monitor: CNBC. FierceBiotech. Accessed December 15, 2020. https://www.fiercebiotech.com/medical-devices/apple-testing-a-noninvasive-blood-glucose-monitor-cnbc

222. Quereshi MRA, Shillingford J, Handy CM, Chaudhry MS. Novel microwave based non-invasive glucose device. Unified Citation Journals. April 12, 2015. Accessed December 15, 2020. https://www.ucjournals.com/diabetes/novel-microwave-based-non-invasive-glucose-device/

223. AnnNIGM en. Accessed December 16, 2020. https://annnigm.com/en

224. United States Patent Application: 0180238794. Accessed December 15, 2020. https://appftr.uspto.gov/netacgi/nph-PatentParser?Section=PTO2&Sequence=HITOFF&Assignee=%27O%27GR&Inventor=APPLE&Inventor=appl
datesFrom=20180823&datesTo=20180823&Category=1&PatentApplicationNumber=US20200187793A1&RS=A1-A250&assignee=medtrum

225. Prediktor Medical. BioMKR: Non Invasive CGM, a glucose smartwatch. prediktormedical. Accessed December 15, 2020. https://www.prediktormedical.com

226. FAQ. prediktormedical. Accessed December 15, 2020. https://www.prediktormedical.com/faq

227. BROLIS. Blood analysis sensor. Accessed December 15, 2020. https://brolis-sensor.com/

228. Science & Tech – Socrates Health Solutions. Accessed January 4, 2021. https://socrateshealthsolutions.com/science-and-tech/

229. Pleus S, Wintergerst P, Waldenmaier D, et al. Measurement accuracy of a newly developed prototype system for noninvasive glucose monitoring. DTM 2019 Abstracts. J Diabetes Sci Technol. 2020;14(2):361-492, A90.

230. GlucoFit. GlucoActive. Accessed December 15, 2020. https://gluco-active.com/glucofit/

231. Shenzhen Carelife Health Technology Co., Ltd. Clinical data study report of a non-invasive glucose monitor. March 10, 2020. Accessed December 15, 2020. https://ce65b0d7-4a22-48ec-98d6-1ba1faa1dead/filesur.uspto.gov/udg/5f45ff_2df728a6e1f3499aaf8ced2b0989fa51.pdf?fbclid=IwAR1Zat_kgNFPew8waQqaniCGBsWkzpmZHu9ovM4w_Npe1EsPCudCIswU1

232. University of Leeds. Glucosense. Accessed December 15, 2020. https://www.leeds.ac.uk/site/custom_scripts/profile-single.php?profileTypeID=&categoryID=200&profileID=116

233. GlucoStation. GlucoActive. Accessed December 15, 2020. https://gluco-active.com/glucostation/

234. Bahartan K, Horman K, Gal A, Drexler A, Mayzel Y, Lin T. Assessing the performance of a noninvasive glucose monitor in people with type 2 diabetes with different demographic profiles. J Diabetes Res. 2017;2017:4393497. doi:10.1155/2017/4393497

235. Pfützner A, Strobl S, Sachsenheimer D, Lier A, Ramljik S, Demircik F. Evaluation of the non invasive glucose monitoring device Glucotrack in patients with type 2 diabetes and subjects with prediabetes. J Diabetes Treat. December 8, 2019. Accessed January 27, 2021. https://www.gavinpublishers.com/articles/research-article/Journal-of-Diabetes-and-Treatment/evaluation-of-the-non-invasive-glucose-monitoring-device-glucotrack-in-patients-with-type-2-diabetes-and-subjects-with-prediabetes

236. GlucoTrack product benefits leaflet. Accessed January 27, 2021. http://glucotrack.com.au/development/images/content/GlucoTrackApp-Leaflet.pdf

237. GlucoWear. GlucoActive. Accessed December 15, 2020. https://gluco-active.com/glucowear/

238. Get involved. Accessed December 15, 2020. https://gluco-wise.com/

239. HELO Extense Brochure. Accessed February 9, 2021. https://www.lifeonextendedhealth.com/wp-content/uploads/2018/10/HELO-EXTENSE-BROCHURE-EN-web.pdf

240. How LifeLeaf works. LifePlus. Accessed December 15, 2020. https://www.lifeplus.ai/how-lifelifeleaf-works/

241. Leabman MA. Systems for radio wave based health monitoring that utilize data derived from amplitude and/or phase data. June 18, 2020. Accessed December 15, 2020. https://www.patents.google.com/patent/US20200187793A1/en?assignee=movano&oq=movano

242. Omni MedSci Inc.: Tech innovator likes to “play where the puck is going to be.” Crain’s Detroit Business. July 11, 2015. Accessed December 15, 2020. https://www.crainsdetroit.com/article/20150711/AWARDS1315/150719987/omni-medsci-tech-innovator-likes-to-play-where-the-puck-is

243. The Official Journal of ATTD Advanced Technologies & Treatments for Diabetes Conference Madrid, Spain—February 19–22, 2020. Diabetes Technol Ther. 2020;22(suppl 1):A1-A250. doi:10.1089/dia.2020.2525.abstracts

244. Pfützner A, Strobl S, Demircik F, et al. Evaluation of a new noninvasive glucose monitoring device by means of standardized meal experiments. J Diabetes Sci Technol. 2018;12(6):1178-1183. doi:10.1177/1932296818785769

245. CoG - Hybrid Glucometer. Cnoga Medical. Accessed December 15, 2020. https://cnogacare.co/hybridglucometer/
246. Christiansen MP, Klaff LJ, Bailey TS, Brazg R, Carlson G, U.S. Food and Drug Administration. Evaluation of auto-
247. Cai L, Ge W, Zhu Z, Zhao X, Li Z. Data Analysis and accuracy and safety of an implanted continuous glucose sensor: the PRECISION study. Diabetes Technol Ther. 2019;21(5):231-237. doi:10.1089/dia.2019.0020
248. About Us, Zhejiang POCTech Co., Ltd. Accessed December 15, 2020. https://www.poctechcorp.com/upload/files/CT100B%20user-guide.pdf
249. gSense. Nutrix. Accessed December 15, 2020. https://nutrix.tech/gsense/
250. Chuang H, Hurley JP, Kost J. Transdermal analyte monitoring systems and methods for analyte detection. September 12, 2008. Accessed December 17, 2020. https://ct2/show/NCT04226846
251. The biosensor platform. GBS Inc. Accessed December 15, 2020. https://gbsinc/the-biosensor-platform/
252. SugarBEAT: first non-needle glucose monitor. Healthline. October 25, 2019. Accessed December 15, 2020. https://www.healthline.com/diabetesmine/non-invasive-sugarbeat-cgm-diabetes
253. Kownacka AE, Vegelyte D, Joosse M, et al. Clinical evidence for use of a noninvasive biosensor for glucose as an alternative to painful finger-prick for diabetes management utilizing a biopolymer coating. Biomacromolecules. 2018;19(11):4504-4511. doi:10.1021/acs.biomac.8b01429
254. ID F. 005 Transmitter User Manual Microtech Medical (Hangzhou). FCC ID. Accessed December 16, 2020. https://fccid.io/2ATOV-005/User-Manual/UM-4349146
255. CGM. GlucoRx. Accessed December 16, 2020. https://www.gluicrox.co/cgm/
256. i-sens. i-SENS Company Presentation_Q3 2019. November 6, 2019. Accessed January 4, 2021. https://i-sens.com/?kboard_content_redirect=60
257. Rebec M, Anderson EM, Dutt-Ballerstadt R, Haidar A, Janez A. Accuracy evaluation of the waveform cascade CGM system vs. Dexcom G5 Sensors. Diabetes. 2018;67(suppl 1). doi:10.2337/db18-81-LB
258. User manual- POC Tech. Accessed December 15, 2020. http://www.poctechcorp.com/upload/files/CT100B%20System%202%20Manual.pdf
259. About Us, Zhejiang POCTech Co., Ltd. Accessed December 15, 2020. http://www.poctechcorp.com/en/channels/273.html
260. Cai L, Ge W, Zhu Z, Zhao X, Li Z. Data Analysis and accuracy evaluation of a continuous glucose-monitoring device. J Sens. 2019;2019:1-8. doi:10.1155/2019/4896862
261. U.S. Food and Drug Administration. Evaluation of automatic class III designation for Dexcom G6 continuous glucose monitoring system: Decision Summary DEN170088. Accessed December 15, 2020. https://www.accessdata.fda.gov/cdrh_docs/reviews/DEN170088.pdf
262. Lucisano JY, Routh TL, Lin JT, Gough DA. Glucose monitoring in individuals with diabetes using a long-term implanted sensor/telemetry system and model. IEEE Trans Biomed Eng. 2017;64(9):1982-1993. doi:10.1109/TBME.2016.2619333
263. Christiansen MP, Klaff LJ, Bailey TS, Brazg R, Carlson G, Tweden KS. A prospective multicenter evaluation of the accuracy and safety of an implanted continuous glucose sensor: the PRECISION study. Diabetes Technol Ther. 2019;21(5):231-237. doi:10.1089/dia.2019.0020
264. Lorenz C, Sandoval W, Mortellaro M. Interference assessment of various endogenous and exogenous substances on the performance of the eversense long-term implantable continuous glucose monitoring system. Diabetes Technol Ther. 2018;20(5):344-352. doi:10.1089/dia.2018.0028
265. FiberSense technology: continuous glucose monitoring • EyeSenSe GmbH [EN]. EyeSenSe GmbH [EN]. Accessed December 15, 2020. https://en.eyesense.com/fibersense-techno
266. Hoss U, Budiman ES. Factory-calibrated continuous glucose sensors: the science behind the technology. Diabetes Technol Ther. 2017;19(suppl 2):S44-S50. doi:10.1089/dia.2017.0025
267. Abbott Diabetes Care. Freestyle Libre 14 Day user manual. 2018. Accessed January 28, 2021. https://freestyleserver.com/Payloads/IFU/2018/ART39764-001_rev-A-Web.pdf
268. Abbott Laboratories. FreeStyle Libre Safety Information. FreeStyle. Accessed April 12, 2021. https://provider.myfree
269. FreeStyle Libre 2 user manual. Accessed January 4, 2021. https://www.manuallib.com/manual/19761099/Abbott-FreeStyle-Libre-2.html
270. FreeStyle Libre 3: world’s smallest sensor is here. Abbott Newsroom. Accessed January 4, 2021. https://www.abbott.com/corpnewsroom/strategy-and-strength/FreeStyle-libre-3-worlds-smallest-sensor-is-here.html
271. Continuous Glucose Monitoring system. GlucoMen Day. Menarini Diagnostics. Accessed December 15, 2020. https://glucomenday.com/continuous-glucose-monitoring-system/
272. Simic A, Taucher M, Hochfellner DA, et al. Accuracy assessment of the new GlucoMen® DayCGM system in individuals with type 1 diabetes. DTM 2020 Abstracts. J Diabetes Sci Technol. 2021;15(2):A67.
273. Glunovo i3. Infinovo CGM. Accessed December 17, 2020. https://en.infinovo.com/glunovo-i3/
274. Indigo. ATTD 2020 – Video. Indigo. March 10, 2020. Accessed December 15, 2020. https://indigomed.com/attd-2020-video/
275. Accuracy of a subcutaneously inserted NIR spectrometer sensor for continuous glucose, ketone and lactate measurement in interstitial fluid: proof-of-concept in pig model - Virtual Meeting. EASD. Accessed December 15, 2020. https://www.easd.org/virtualmeeting/home.html#resources/accuracy-of-a-subcutaneously-inserted-nir-spectrometer-sensor-for-continuous-glucose-ketone-and-lactate-measurement-in-interstitial-fluid-proof-of-concept-in-pig-model
276. Best J. Blood, sweat, tears and big data: The new wave of innovation in managing diabetes. ZDNet. Accessed December 16, 2020. https://www.zdnet.com/article/blood-sweat-tears-and-big-data-the-new-wave-of-innovation-in-managing-diabetes/
277. K’Watch Glucose. PKvitality. Accessed December 15, 2020. https://www.pkvitality.com/Payloads/IFU/2018/11/PKVITALITY-KWatch-CGM-21112018-EN.pdf
278. Our Vision. Profusa, Inc. Accessed December 17, 2020. https://profusa.com/our-vision/
279. Our Vision. Nutrix. Accessed January 4, 2021. https://www.nutrix.tech/gsense/
280. Guardian Sensor 3 user guide. 2018. Accessed July 16, 2020. https://www.medtronicdiabetes.com/sites/default/files/library/download-library/user-guides/Guardian-Sensor-3-user-guide.pdf
281. Christiansen MP, Garg SK, Brazg R, et al. Accuracy of a fourth-generation subcutaneous continuous glucose sensor. *Diabetes Technol Ther.* 2017;19(8):446-456. doi:10.1089/dia.2017.0087

282. Medtronic Synergy and Zeus. Accessed January 4, 2021. https://investorrelations.medtronic.com/static-files/f579d35e-220f-40e1-bf5d-49a268c091bb

283. Peanut for diabetes. Alertgy TM. Accessed December 17, 2020.

284. Health M. Cutting edge CGM. Our technology. Metronom Health. December 16, 2020. Accessed December 16, 2020. http://metronomhealth.com/our-technology

285. Sanvita Medical, LLC. Pilot Clinical Evaluation: Accuracy and Precision of the Sanvita OneTouch Real Time Continuous Glucose Monitoring System. clinicaltrials.gov; 2021. Accessed January 11, 2021. https://clinicaltrials.gov/ct2/show/NCT04205084

286. Pfützner A, Ramljak S, Kloppstech K, et al. Miniaturization of an osmotic pressure-based glucose sensor by means of nanosensing technology. 1.

287. Suri JT. Non-enzymatic electrochemical sensor for measuring analytes. August 3, 2017. Accessed December 15, 2020. https://patents.google.com/patent/US20170219521A1/en?assigne=glucovation&og=glucovation

288. Pрактический. Medtrum. Accessed December 15, 2020. https://www.medtrum.com/A6.html

289. For diabetics. Alertgy TM. Accessed December 17, 2020. https://www.alertgy.com/for-diabetics/

290. Meet companion – Socrates health solutions. Accessed January 4, 2021. https://socrateshealthsolutions.com/meet-companion/

291. Home. GlucoActive. Accessed December 17, 2020. https://gluco-active.com/

292. GlucoSense Team. GlucoSense Presentation. Accessed December 17, 2020. https://netscientific.net/wp-content/uploads/2017/03/NetScientific-CMD-Glucosense-May2015.pdf

293. GlucoTrack. GlucoTrack. Accessed December 17, 2020. http://www.gluco-track.com/about-glucotrack/

294. Glucose testing via earlobe, not stressful fingersticks. *Healthline.* April 15, 2014. Accessed December 17, 2020. https://www.healthline.com/diabetesmine/glucose-testing-via-earlobe

295. HELO LX: most advanced health tracking wearable by wor(l)d. Accessed February 9, 2021. https://www.worldglobalnetwork/helo/

296. HELO LX: the story of multi-level marketing and one over-priced health band. *Wareable.* July 27, 2017. Accessed January 5, 2021. https://www.wareable.com/fitness-trackers/ helo-lx-band-multi-level-marketing-9876

297. Home. LifePlus. Accessed December 17, 2020. https://www.lifeplus.ai/

298. Sanmina Image. Provided by Robert Newberry of Sanmina Corporation. Accessed January 15, 2021.

299. GBS Inc. Replacing Finger-Pricks. *GBS Inc.* Accessed December 17, 2020. https://gbsinc.com

300. Waveform Technologies. Continuous glucose monitoring solutions. Accessed December 17, 2020. https://waveform-diabetes.com/

301. How It Works. *Waveform.* Accessed December 17, 2020. https://waveformdiabetes.com/how-it-works/

302. New Continuous Glucose Monitors in the Works: Ascensia and AgaMatrix. *Healthline.* January 16, 2019. Accessed December 17, 2020. https://www.healthline.com/diabetesmine/new-cgms-ascensia-agamatrix

303. Coin Specifications. U.S. Mint. Accessed December 17, 2020. https://www.usmint.gov/learn/coin-and-medal-programs/coin-specifications

304. Can You Buy CGM Supplies at the Pharmacy? *Healthline.* February 19, 2020. Accessed December 17, 2020. https://www.healthline.com/diabetesmine/cgm-access-pharmacies

305. Diabetes forecast consumer guide continuous glucose monitors. Accessed December 17, 2020. http://main.diabetes.org/diabetes/content/diabetes-forecast-consumer-guide-continuous-glucose-monitors.pdf?utm_source=Offline&utm_medium=Print&utm_content=cgms&utm_campaign=DF&s_src=vanity&subrc=cgms

306. The Dex Factor – coming in 2021, Dexcom’s G7 CGM sensor. *Desang Diabetes Services.* July 8, 2020. Accessed January 4, 2021. https://www.desang.net/2020/07/the-dex-factor-coming-in-2021-dexcoms-g7-cgm-sensor/

307. Technology - GlySens Incorporated. Accessed December 17, 2020. http://glysens.com/?page_id=40

308. Senseonics launches program for low-cost Eversense CGM systems. *MobiHealthNews.* March 25, 2019. Accessed December 17, 2020. https://www.mobihealthnews.com/content/senseonics-launches-program-low-cost-eversense-cgm-systems

309. Continuous Glucose Monitoring System- Freestyle Libre 14 Day. Accessed December 17, 2020. https://www.freestyle.abbott/us-en/

310. Freestyle Libre 2: now available in U.S. *Abbott Newsroom.* Accessed December 17, 2020. https://www.abbott.com/corpnewsroom/diabetes-care/freestyle-libre-2-now-available-in-us.html

311. Freestyle Libre 3 sets new peak in diabetes care. *https://www.abbott.com/corpnewsroom/diabetes-care/freestyle-libre-3-sets-new-peak-in-diabetes-care.html*

312. Freestyle Libre 3 cleared in Europe – smaller, thinner, and no more scanning! *DiaTribe.* September 29, 2020. Accessed December 17, 2020. https://diatribe.org/freestyle-libre-3-cleared-europe-smaller-thinner-and-no-more-scanning

313. Abbott’s FreeStyle® Libre 3 system receives CE mark - features world’s smallest, thinnest sensor with best-in-class performance at the same low cost for people with diabetes. *Abbott MediaRoom.* Accessed January 28, 2021. https://abbott.mediaroom.com/2020-09-28-Abbotts-FreeStyle-R-Libre-3-System-Receives-CE-Mark-Features-Worlds-Smallest-Thinnest-Sensor-with-Best-In-Class-Performance-at-the-Same-Low-Cost-for-People-with-Diabetes

314. Pricing. *Infinovo CGM.* Accessed January 5, 2021. https://en.infinovo.com/pricing/

315. Hassle-free glucose monitoring with our next-gen sensor - Indigo. Accessed December 17, 2020. https://indigomed.com/

316. K’Watch Glucose Review smart health review. *AB Smart Health Promo.* April 8, 2020. Accessed December 17, 2020. https://www.absmarthealth.com/kwatch-glucose/
317. Guardian Connect CGM System. World’s First Smart CGM - Medtronic. Accessed December 17, 2020. https://www.medtronicdiabetes.com/products/guardian-connect-continuous-glucose-monitoring-system

318. Medtronic Launches Stand-Alone CGM: Guardian Connect. Healthline. March 13, 2018. Accessed December 17, 2020. https://www.healthline.com/diabetesmine/new-medtronic-stand-alone-cgm-guardian-connect

319. NEWS: medtronic embraces interoperable diabetes devices. Healthline. June 10, 2019. Accessed January 4, 2021. https://www.healthline.com/diabetesmine/news-tidepool-loop-medtronic-and-dexcom

320. What’s coming and what’s delayed in continuous glucose monitoring? diaTribe. May 20, 2020. Accessed February 10, 2021. https://diatribe.org/whats-coming-and-whats-delayed-continuous-glucose-monitoring

321. Metronom: building a better continuous glucose monitor. Healthline. March 27, 2018. Accessed December 17, 2020. https://www.healthline.com/diabetesmine/metronom-health-cgm

322. Lifecare. Sencell - continuous glucose monitoring. Accessed December 17, 2020. https://www.lifecare.no/about-sencell

323. Sencell - driven by nature. Accessed December 17, 2020. https://www.lifecare.no/

324. Learn more. 19OCT2020. Accessed December 17, 2020. https://www.pacificdt.com/learn-more

325. A6 Touchcare user manual. Accessed December 15, 2020. https://www.medtrum.com/pdf/0911/UG882111GB%C2%A0C2%20A06%C2%A0TouchCare%C2%AE%C2%A0System%C2%A0Touchscreen%C2%A0User%C2%A0Guide%C2%A0V2.23-20190513.pdf

326. Meet sugarBEAT - sugarBEAT. Accessed January 4, 2021. https://sugarbeat.com/

327. Continuous Glucose Monitoring System - Waveform Technologies. Waveform. Accessed January 4, 2021. https://waveformdiabetes.com/continuous-glucose-monitoring/

328. Dexcom G6 Set Image. Provided by David Price of Dexcom. Accessed January 5, 2021.

329. Eversense Products - Senseonics. Accessed January 4, 2021. https://www.technologies.co.uk/blog/ce-mark-or-fda-approval/

330. About Us – Infinovo CCM. Accessed February 9, 2021. https://www.infinovo.co.uk/about-us/

331. Conley D. Two paths for medical device approval: FDA vs. CE. HealthManagement. 2015;15(2). Accessed February 12, 2021. https://healthmanagement.org/ce/healthmanagement-issuearticle/two-paths-for-medical-device-approval-fda-vs-ce

332. CE Mark or FDA Approval? Guided Solutions. November 5, 2018. Accessed February 12, 2021. https://www.guidedsolutions.co.uk/blog/ce-mark-or-fda-approval/

333. Clarke WL. The original Clarke Error Grid Analysis (EGA). Diabetes Technol Ther. 2005;7(5):776-779. doi: 10.1089/dia.2005.7.776

334. Pfützner A, Klonoff DC, Pardo S, Parkes JL. Technical aspects of the Parkes Error Grid. J Diabetes Sci Technol. 2013;7(5):1275-1281.

335. Klonoff DC, Lias C, Vigersky R, et al. The surveillance error grid. J Diabetes Sci Technol. 2014;8(4):658-672. doi:10.1177/1932296814539589

336. Messer LH, Tanenbaum ML, Cook PF, et al. Cost, hassle, and on-body experience: barriers to diabetes device use in adolescents and potential intervention targets. Diabetes Technol Ther. 2020;22(10):760-767. doi:10.1089/dia.2019.0509

337. Advanced diabetes technology poised to play larger role in care, management. Accessed February 12, 2021. https://www.healthio.com/news/endocrinology/20201210/advanced-diabetes-technology-poised-to-play-larger-role-in-care-management

338. Continuous Glucose Monitoring Systems (CGMS) Market 2020-2027 - ResearchAndMarkets.com. July 22, 2020. Accessed February 12, 2021. https://www.businesswire.com/news/home/20200722005453/en/Continuous-Glucose-Monitoring-Systems-CGMS-Market-2020-2027---ResearchAndMarkets.com

339. LifeLeaf Image. Provided by Sweta Moitra of LifePlus. Accessed January 5, 2021.

340. Movano Inc. Accessed January 4, 2021. https://movano.com/

341. About. Know LABS. Accessed January 5, 2021. https://www.knowlabs.com/about

342. SynerG Image. Provided by Thomas Seidl of Pacific Diabetes Technologies. Accessed January 5, 2021.

343. Bolinder J, Antuna R, Geelhoo-Duijvestijn P, Kröger J, Weitgasser R. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial. Lancet. 2016;388(10057):2254-2263. doi:10.1016/S0140-6736(16)31535-5

344. Haak T, Hainaire H, Aijan R, Hermanns N, Riveline J-P, Rayman G. Flash glucose-sensing technology as a replacement for blood glucose monitoring for the management of insulin-treated type 2 diabetes: a multicenter, open-label randomized controlled trial. Diabetes Ther. 2017;8(1):55-73. doi:10.1007/s13300-016-0223-6

345. Alva S, Bailey T, Brazg R, et al. Accuracy of a 14-day factory-calibrated continuous glucose monitoring system with advanced algorithm in pediatric and adult population with diabetes. J Diabetes Sci Technol. Published online September 19, 2020. doi:10.1177/1932296820958754

346. About Us – Infinovo CCM. Accessed February 9, 2021. https://www.infinovo.co.uk/about-us/

347. SynerG Image. Provided by Thomas Seidl of Pacific Diabetes Technologies. Accessed January 5, 2021.

348. CE Mark or FDA Approval? Guided Solutions. November 5, 2018. Accessed February 12, 2021. https://www.guidedsolutions.co.uk/blog/ce-mark-or-fda-approval/

349. Clarke WL. The original Clarke Error Grid Analysis (EGA). Diabetes Technol Ther. 2005;7(5):776-779. doi:10.1089/dia.2005.7.776

350. Pfützner A, Klonoff DC, Pardo S, Parkes JL. Technical aspects of the Parkes Error Grid. J Diabetes Sci Technol. 2013;7(5):1275-1281.

351. Klonoff DC, Lias C, Vigersky R, et al. The surveillance error grid. J Diabetes Sci Technol. 2014;8(4):658-672. doi:10.1177/1932296814539589

352. Messer LH, Tanenbaum ML, Cook PF, et al. Cost, hassle, and on-body experience: barriers to diabetes device use in adolescents and potential intervention targets. Diabetes Technol Ther. 2020;22(10):760-767. doi:10.1089/dia.2019.0509

353. Advanced diabetes technology poised to play larger role in care, management. Accessed February 12, 2021. https://www.healthio.com/news/endocrinology/20201210/advanced-diabetes-technology-poised-to-play-larger-role-in-care-management

354. Continuous Glucose Monitoring Systems (CGMS) Market 2020-2027 - ResearchAndMarkets.com. July 22, 2020. Accessed February 12, 2021. https://www.businesswire.com/news/home/20200722005453/en/Continuous-Glucose-Monitoring-Systems-CGMS-Market-2020-2027---ResearchAndMarkets.com

355. Close K. Dexcom 4Q20 – Record FY20 revenue of $1.93 billion (+31% YOY); “greater than 900,000” Dexcom users
globally; G7 ready for CE submission, but more data needed for FDA; newly launched Dexcom Ventures fund. Close Concerns Knowledgebase. February 11, 2021. Accessed February 12, 2021. https://www.closeconcerns.com/knowledgebase/r/61dae87?utm_source=Close+Look+Subscribers+2018&dtid=100026&r=0&c55d94bf1-b5ab6397b2-412261953

356. U.S. Food and Drug Administration. GlucoWatch G2 Biographer. August 26, 2002. Accessed December 17, 2020. https://www.accessdata.fda.gov/cdrh_docs/pdf/P990026S008b.pdf

357. Wenthold IME, Hoekstra JBL, Zwart A, DeVries JH. Pendraf goes Dutch: lessons for the CE mark in Europe. Diabetologia. 2005;48(6):1055-1058. doi:10.1007/s00125-005-1754-y

358. OrSense Receives European CE Mark Approval for Continuous Non-Invasive Glucose Monitoring System. June 20, 2007. Accessed December 17, 2020. https://www.businesswire.com/news/home/20070620005465/en/OrSense-Receives-European-CE-Mark-Approval-for-Continuous-Non-Invasive-Glucose-Monitoring-System

359. C8 MediSensors. C8 MediSensors gains CE mark approval for the C8 MediSensors optical glucose monitor(TM) system for people with diabetes. Accessed December 17, 2020. https://www.prnewswire.com/news-releases/c8-medisensors-gains-ce-mark-approval-for-the-c8-medisensors-optical-glucose-monitor-tm-system-for-people-with-diabetes-175821951.html

360. Dolan B. The promise of wireless, non-invasive CGM. MobiHealthNews. Published April 7, 2010. Accessed December 17, 2020. https://www.mobihealthnews.com/7184/the-promise-of-wireless-non-invasive-cgm

361. Forst T, Pflitzner A, Forst S, et al. Accuracy of the non-invasive glucose monitoring device Pendra® compared to alternate site glucose measurements at the lower forearm during dynamic blood glucose changes in type 1 diabetic patients. Diabetes. 2004;53(suppl 2):A102.

362. Lin T, Gal A, Mayzel Y, Horman K, Bahartan K. Non-invasive glucose monitoring: a review of challenges and recent advances. Curr Trends Biomed Eng Biosci. 2017;6(5):1-8. doi:10.19080/CTBEB.2017.06.555969

363. Abbots launches first glucose sport biosensor for athletes. Abbott. Accessed February 26, 2021. https://www.abbott.com/corpnewsroom/strategy-and-strength/abott-launches-first-glucose-sport-biosensor-for-athletes.html

364. Gehr B, Holder M, Kalzer B, et al. Spectrum. J Diabetes Sci Technol. 2017;11(2):284-289. doi:10.1177/1932296816662135

365. Schlüter S, Freckmann G, Heinemann L, Wintergerst P, Lange K. Evaluation of the SPECTRUM training programme for real-time continuous glucose monitoring: A real-world multicentre prospective study in 120 adults with type 1 diabetes. Diabetes Med J Br Diabet Assoc. 2021;38(2):e14467. doi:10.1111/dme.14467

366. American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(suppl 1):S15-S33. doi:10.2337/dc21-S002

367. Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas. 2007;28(3):R1-39. doi:10.1088/0967-3334/28/3/R01

368. Avram R, Olgin JE, Kuhar P, et al. A digital biomarker of diabetes from smartphone-based vascular signals. Nat Med. 2020;26(10):1576-1582. doi:10.1038/s41591-020-1010-5

369. Klonoff DC. Diagnosing diabetes mellitus from smartphone-based vascular signals. Nat Rev Endocrinol. 2020;16(12):681-682. doi:10.1038/s41574-020-00433-6

370. Thomas A, Heinemann L, Ramirez A, Zehe A. Options for the development of noninvasive glucose monitoring: is nanotechnology an option to break the boundaries? J Diabetes Sci Technol. 2016;10(3):782-789. doi:10.1177/1932296816516133

371. The Basics of Nanotechnology. What Is Nanotechnology and Why Does It Matter? John Wiley & Sons, Ltd; 2010:1-19. Published May 11, 2021. https://www.elsevier.com/robot/herbert-1186772

372. Thomas A, Torres Tapia E, Ramirez A, Zehe A. Las nanopartículas – Nanomateriales de tantas aplicaciones asombrosas en nanomedicina y nanotecnología biomédica. Internet Electron J Nanociencia Moletrónica. 2015;13:2315-2326.

373. Brown JQ, McShane MJ. Modeling of spherical fluorescent glucose microsensor systems: design of enzymatic smart tattoos. Biosens Bioelectron. 2006;21(9):1760-1769. doi:10.1016/j.bios.2005.08.013

374. Stein EW, Grant PS, Zhu H, McShane MJ. Microscale enzymatic optical biosensors using mass transport limiting nanopics. 1. Fabrication and characterization using glucose as a model analyte. Anal Chem. 2007;79(4):1339-1348. doi:10.1021/ac061414z

375. Freckmann G, Nichols JH, Hinzmann R, et al. Standardization process of continuous glucose monitoring: traceability and performance. Clin Chim Acta Int J Clin Chem. 2021;515:5-12. doi:10.1016/j.cca.2020.12.025

376. Schermer M. The mind and the machine. On the conceptual and moral implications of brain-machine interaction. Nanoethics. doi:10.1007/s11569-009-0076-9

377. Dahad N. Rockley Photonics to Deliver Glucose Monitoring for Apple Smartwatches. EETimes. Published May 4, 2021. Accessed May 11, 2021. https://www.eetimes.com/rockley-photonics-to-deliver-glucose-monitoring-for-apple-smartwatches/

378. Avery D. Apple may be adding blood-sugar monitor to upcoming Apple Watch. Daily Mail Science and Tech. Published May 3, 2021. Accessed May 11, 2021. https://www.dailymail.co.uk/sciencetech/article-9539021/Apple-add-sensors-monitor-blood-sugar-alcohol-levels-upcoming-Apple-Watch.html