GLOBAL EXISTENCE FOR ENERGY CRITICAL WAVES
IN 3-D DOMAINS

NICOLAS BURQ, GILLES LEBEAU, AND FABRICE PLANCHON

1. Introduction

Let $\Omega \subset \mathbb{R}^3$ be a smooth bounded domain with boundary $\partial \Omega$ and Δ the Laplacian acting on functions with Dirichlet boundary conditions. We are interested in describing the relationship between certain L^p estimates for the associated spectral projector, obtained recently by H. Smith and C. Sogge [14], and Strichartz inequalities for solutions to the wave equation in Ω. This relationship turns out to be very simple, natural and optimal (at least in some range of indexes) and is closely related to an earlier remark of Mockenhaupt, Seeger and Sogge regarding Fourier integral operators ([3, Corollary 3.3]). As an application we consider the critical semi-linear wave equation (with real initial data) in Ω,

\begin{equation}
(\partial_t^2 - \Delta)u + u^5 = 0, \quad \text{in } \mathbb{R}_t \times \Omega,
\end{equation}

which enjoys the conservation of energy

\begin{equation}
E(u)(t) = \int_{\Omega} \left(\frac{|\nabla u(t,x)|^2}{2} + \frac{|\partial_t u(t,x)|^2}{2} + \frac{|u(t,x)|^6}{6} \right) dx = E(u)(0).
\end{equation}

Our main result reads

Theorem 1.1. For any $(u_0, u_1) \in H_0^1(\Omega) \times L^2(\Omega)$ there exists a unique (global in time) solution u to (1.1) in the space

\[X = C^0(\mathbb{R}_t; H_0^1(\Omega)) \cap C^1(\mathbb{R}_t; L^2(\Omega)) \cap L^5_{\text{loc}}(\mathbb{R}; L^{10}(\Omega)). \]

Remark 1.2. To our knowledge, the fact that weakened dispersion estimates can still imply optimal (and scale invariant) Strichartz estimates for the solution to the wave equation was first noticed by the second author [8]. Observe that the results obtained in [8], though restricted only to the interior of strictly convex domains, are far more precise than the results presented here and apply to the critical nonlinear wave equation in higher dimensions as well.

Remark 1.3. The difficulty in proving Theorem 1.1 is that we cannot afford any loss in the Strichartz estimates we prove: Strichartz estimates obtained by Tataru [17] for Lipschitz metrics (see also the results by Anton [1] in the Schrödinger context).
would certainly improve the classical result (well-posedness for the cubic nonlinear wave equation) but it would not be enough to deal with the quintic nonlinearity.

Remark 1.4. In other dimensions, we can still apply Smith and Sogge’s spectral projector results, leading to other Strichartz-type estimates. The strategy also works for obtaining semi-classical Strichartz-type estimates for the Schrödinger equation (see Burq, Gérard and Tzvetkov [2]). These questions will be addressed elsewhere.

Remark 1.5. Using the material in this paper, it is rather standard to prove existence of global smooth solutions, for smooth initial data satisfying compatibility conditions (see [13]). Furthermore, the arguments developed in this paper apply equally well to more general defocusing nonlinearities \(f(u) = V'(u) \) satisfying

\[
|f(u)| \leq C(1 + |u|^5), \quad |f'(u)| \leq C(1 + |u|)^4.
\]

Finally, let us remark that our results can be localized (in space) and consequently hold also in the exterior of any obstacle, and we extend in this framework previous results obtained by Smith and Sogge [13] for convex obstacles.

In the remainder of this paper, for \(s \geq 0 \), we shall denote by \(H^s_{D} (\Omega) \) the domain of \((-\Delta D)^{s/2} \) \((H^0_D = H^0_0(\Omega) \) for \(0 \leq s < 3/2 \)).

2. LOCAL EXISTENCE

The local (in time) existence result for (1.1) is in fact an easy consequence of some recent work by Smith and Sogge [14] on the spectral projector defined by

\[
\Pi_\lambda = \frac{1}{\sqrt{-\Delta_D}} \mathbf{1}_{[\lambda, \lambda + 1]}.
\]

Theorem A (Smith and Sogge [14 Theorem 7.1]). Let \(\Omega \in \mathbb{R}^3 \) be a smooth bounded domain. Then

\[
\| \Pi_\lambda u \|_{L^5(\Omega)} \leq \lambda^{\frac{3}{5}} \| u \|_{L^2(\Omega)}.
\]

We now derive from this result some Strichartz estimates, which are optimal w.r.t. scaling.

Theorem 2.1. Assume that for some \(2 \leq q < +\infty \), the spectral projector \(\Pi_\lambda \) satisfies

\[
\| \Pi_\lambda u \|_{L^q(\Omega)} \leq \lambda^{\frac{3}{4}} \| u \|_{L^2(\Omega)}.
\]

Then the solution to the wave equation \(v(t, x) = e^{it\sqrt{-\Delta_D}} u_0 \) satisfies

\[
\| v \|_{L^q((0,2\pi) \times \Omega, s)} \leq C \| u_0 \|_{H^s_D}^{1 + \frac{1}{4} - \frac{1}{q}}.
\]

Proof. The proof is rather simple. In fact, one can recast the spectral projector estimate as a square function (in time) estimate for the wave equation and use Sobolev in time, as was already observed in [9] in the context of variable coefficient wave equations (note that such square function estimates are useful in their own right in a nonlinear context; see e.g. [7, Appendix B], [16]).

Let \((e_\lambda(x)) \) be the eigenbasis of \(L^2(\Omega) \) consisting in eigenfunctions of \(-\Delta_D \) associated to the eigenvalues \((\lambda^2) \). Let us define on this basis an abstract self-adjoint operator

\[
A(e_\lambda) = [\lambda]e_\lambda
\]
(where $|\lambda|$ is the integer part of λ). Now we prove the estimate with v replaced by $\tilde{v} = e^{itA}u_0$. We decompose $\tilde{v}(t, x) = \sum_{k \in \mathbb{N}} v_k(t, x)$ with

$$\tilde{v}_k(t, x) = \sum_{\lambda \in \sigma(-\Delta_D^{1/2}(k, k+1)} e^{it\lambda} u_{X\lambda}(x), \quad u_0 = \sum_{\lambda} u_{X\lambda}(x).$$

Using Plancherel’s formula (for x fixed),

$$\|\tilde{v}(\cdot, x)\|_{L^q(0, 2\pi)}^2 = \sum_{k \in \mathbb{N}} (1 + k)^{2s} \|\tilde{v}_k(\cdot, x)\|_{L^2(0, 2\pi)}^2 ;$$

and consequently, using Sobolev injection in the time variable for the first inequality, (2.3) in the last inequality, with $s = \frac{1}{2} - \frac{1}{q}$, and the fact that $q \geq 2$ from line 3 to line 4,

$$\|\tilde{v}\|_{L^q(\Omega; L^q(0, 2\pi))} \leq C\|\tilde{v}\|_{L^q(\Omega; H^s(0, 2\pi))} = \|\|\tilde{v}(\cdot, x)\|_{H^s(0, 2\pi)}\|_{L^q(\Omega)}^2 \leq C \sum_k (1 + k)^{1-s} \|\tilde{v}_k(\cdot, x)\|_{L^2(0, 2\pi)}^2 \|L^{q/2}(\Omega)} \leq C \sum_k (1 + |k|)^{1-s} \|\tilde{v}_k\|_{L^2(\Omega; L^2(0, 2\pi))}^2 \leq C \sum_k (1 + |k|)^{1-s} \|\tilde{v}_k\|_{L^2(0, 2\pi)}^2 L^2(\Omega) \leq C \sum_k \sum_{\lambda \in \sigma(-\Delta_D^{1/2}(k, k+1)} (1 + |k|)^{2s+1-\frac{2}{q}} |u_{X\lambda}|^2 \sim \|u_0\|_{H_D^{s+\frac{1}{2}-\frac{1}{q}}}^2 \Omega .$$

Consequently, e^{itA} is continuous from $H_D^{s+\frac{1}{2}-\frac{1}{q}}(\Omega)$ to $L^q((0, 2\pi); L^q(\Omega))$. Coming back to $v = e^{it\sqrt{-\Delta_D}}u_0$, it satisfies

$$(i\partial_t + A)v = (A - \sqrt{-\Delta_D})v, v|_{t=0} = u_0;$$

therefore, using the Duhamel formula, Minkowski inequality and the fact that both $e^{it\sqrt{-\Delta_D}}$ and $(A - \sqrt{-\Delta_D})$ are bounded on $H_D^{s+\frac{1}{2}-\frac{1}{q}}(\Omega)$,

$$\|v\|_{L^q(\Omega; L^q(0, 2\pi))} \leq C\|u_0\|_{H_D^{s+\frac{1}{2}-\frac{1}{q}}(\Omega)} + C\|(A - \sqrt{-\Delta_D})v\|_{L^1((0, 2\pi); L^2(0, 2\pi))} \leq C\|u_0\|_{H_D^{s+\frac{1}{2}-\frac{1}{q}}(\Omega)}. \quad \Box$$

Corollary 2.1. Consider a solution u to

$$(\partial_t^2 - \Delta)u = 0, \quad u|_{\partial\Omega} = 0, \quad u|_{t=0} = u_0, \quad \partial_t u|_{t=0} = u_1.$$

Then

$$\|u\|_{L^\infty((0, 1); L^2(\Omega))} \leq C \left(\|u_0\|_{H^1(\Omega)} + \|u_1\|_{L^2(\Omega)} \right).$$

As a consequence, for any initial data $(u_0, u_1) \in H^1_0(\Omega) \times L^2(\Omega)$, the critical non-linear wave equation (1.1) is locally well posed in

$$X_T = C^0([0, T]; H^1_0(\Omega)) \cap L^3((0, T); L^2(\Omega)) \times C^0([0, T]; L^2(\Omega))$$

(globally for small norm initial data).

Remark 2.2. This corollary proves the uniqueness part in Theorem [1].
To prove Corollary 2.1 we observe that according to Theorems A and 2.1, the operator $T = e^{-it\sqrt{-\Delta_D}}$ satisfies

$$\|Tu_0\|_{L^5((0,1)\times\Omega)} \leq C\|u_0\|_{H^{10}_D(\Omega)}.$$ \hspace{1cm} (2.4)

Applying the previous inequality to Δu_0 and using the L^p elliptic regularity result

$$-\Delta u = u = f \in L^p(\Omega), \quad u|_{\partial\Omega}=0 \Rightarrow u \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$$

and $\|u\|_{W^{2,p}(\Omega)} \leq C\|f\|_{L^p(\Omega)}, \quad 1 < p < +\infty,$

we get

$$\|Tu_0\|_{L^5((0,1);W^{2,5}(\Omega)\cap W^{1,5}_0(\Omega))} \leq C\|u_0\|_{H^{10}_D(\Omega)}$$ \hspace{1cm} (2.5)

and consequently by (complex) interpolation between (2.4) and (2.6),

$$\|Tu_0\|_{L^5((0,1);W^{3,5}_0(\Omega))} \leq C\|u_0\|_{H^{10}_D(\Omega)};$$

finally, by Sobolev embedding

$$\|Tu_0\|_{L^5((0,1);L^3(\Omega))} \leq C\|u_0\|_{H^{10}_D(\Omega)}.$$ \hspace{1cm} (2.7)

To conclude, we simply observe that

$$u = \cos(t\sqrt{-\Delta_D})u_0 + \frac{\sin(t\sqrt{-\Delta_D})}{\sqrt{-\Delta_D}}u_1$$

and $1/\sqrt{-\Delta_D}$ is an isometry from $L^2(\Omega)$ to $H^1_0(\Omega)$, leading to (2.3). The remainder of Corollary 2.1 follows by a standard fixed point argument with $(u, \partial_t u)$ in place of X_T with a sufficiently small T (depending on the initial data (u_0, u_1)). Note that this local in time result holds irrespective of the sign of the nonlinearity.

Finally, to obtain the global well-posedness result for small initial data, it is sufficient to remark that if the norm of the initial data is small enough, then the fixed point can be performed in $X_T = 1$. Then the control of the H^1 norm by the energy (which is conserved along the evolution) allows us to iterate this argument indefinitely leading to global existence. Note that this result also holds irrespective of the sign of the nonlinearity because for small H^1 norms the energy always controls the H^1 norm.

3. Global existence

It turns out that our Strichartz estimates are strong enough to extend local to global existence for arbitrary (finite energy) data, when combined with a trace estimate and nonconcentration arguments.

Before going into detail, let us sketch the proof. We first need to refine the $L^5_t; L^{10}_x$ estimate obtained above. We shall use (2.7) instead.

The usual TT^* argument and the Christ-Kiselev lemma [5] prove the following:

Proposition 3.1. If u, f satisfy

$$(\partial_t^2 - \Delta)u = f, \quad u|_{\partial\Omega} = 0, \quad u|_{t=0} = u_0, \quad \partial_t u|_{t=0} = u_1,$$

then

$$\|u\|_{L^5((0,1);W^{3,5}_0(\Omega))} + \|u\|_{C^0((0,1);H^1_0(\Omega))} + \|\partial_t u\|_{C^0((0,1);L^2(\Omega))} \leq C \left(\|u_0\|_{H^1_0(\Omega)} + \|u_1\|_{L^2(\Omega)} + \|f\|_{L^5((0,1);W^{4,5}_0(\Omega))}\right).$$ \hspace{1cm} (3.1)
Furthermore, (3.1) holds (with the same constant C) if one replaces the time interval (0, 1) by any interval of length smaller than 1.

Remark 3.1. An immediate consequence of (3.1) with \(f = 0 \) (and Minkowski inequality) is

\[
\|u\|_{L^8((0,1); W^5_0(\Omega))} + \|u\|_{L^\infty((0,1); H^1_0(\Omega))} + \|\partial_t u\|_{L^\infty((0,1); L^2(\Omega))} \leq C \left(\|u_0\|_{H^1_0(\Omega)} + \|u_1\|_{L^2(\Omega)} + \|f\|_{L^1((0,1); L^2(\Omega))} \right),
\]

but we will need the \(L^p \) with \(p > 1 \) on the right-hand side of (3.1) later on.

Proof. We have

\[
u(t, \cdot) = \cos(t \sqrt{-\Delta_D}) u_0 + \sin(t \sqrt{-\Delta_D}) u_1 + \int_0^t \frac{\sin((t-s) \sqrt{-\Delta_D})}{\sqrt{-\Delta_D}} f(s, \cdot) ds.
\]

The contributions of \((u_0, u_1)\) are easily dealt with, as previously. Let us focus on the contribution of

\[
i \int_0^t e^{i(t-s) \sqrt{-\Delta_D}} f(s, \cdot) ds.
\]

Let \(T = e^{it \sqrt{-\Delta_D}} \); interpolating between (2.4) and (2.6),

\[
\|T f\|_{L^8((0,1); W^{2, 5}_0(\Omega) \cap W^{1, 5}_0(\Omega))} \leq C \|f\|_{H^2_0(\Omega)}.
\]

Let \(u_0 \in L^2 \). Then there exist \(v_0 \in H^2_0(\Omega) \) such that

\[-\Delta v_0 = u_0, \quad \|u_0\|_{L^2} \sim \|v_0\|_{H^2};
\]

as a consequence, from \(T u_0 = \Delta T v_0 \),

\[
\|T u_0\|_{L^8((0,1); W^{2, 5}_0(\Omega) \cap W^{1, 5}_0(\Omega))} \leq C \|T v_0\|_{L^8((0,1); W^{2, 5}_0(\Omega) \cap W^{1, 5}_0(\Omega))} \leq C \|v_0\|_{H^2_0(\Omega)} \sim \|u_0\|_{L^2(\Omega)}.
\]

By duality we deduce that the operator \(T^* \) defined by

\[
T^* f = \int_0^1 e^{-is \sqrt{-\Delta}} f(s, \cdot) ds
\]

is bounded from \(L^\frac{4}{3}((0,1); W^{2, 5}_0(\Omega)) \) to \(L^2(\Omega) \) (observe that \(W^{2, 5}_0(\Omega) \) is nothing but \(W^{1, 5}_0(\Omega) \)); using (2.7) and boundedness of \(\sqrt{-\Delta_D}^{-1} \) from \(L^2 \) to \(H^2_D \), we obtain

\[
\|T(\sqrt{-\Delta_D})^{-1} T^* f\|_{L^8((0,1); W^{2, 5}_0(\Omega) \cap L^\infty((0,1); H^2_0(\Omega)))} \leq C \|f\|_{L^{\frac{4}{3}}((0,1); W^{2, 5}_0(\Omega))}
\]

and

\[
\|\partial_t T(\sqrt{-\Delta_D})^{-1} T^* f\|_{L^\infty((0,1); L^2(\Omega))} \leq C \|f\|_{L^{\frac{4}{3}}((0,1); W^{2, 5}_0(\Omega))}.
\]

But

\[
T(\sqrt{-\Delta_D})^{-1} T^* f(s, \cdot) = \int_0^1 e^{i(t-s) \sqrt{-\Delta_D}} f(s, \cdot) ds
\]

and an application of the Christ-Kiselev lemma [5] allows us to transfer this property to the operator

\[
f \mapsto \int_0^t e^{i(t-s) \sqrt{-\Delta_D}} f(s, \cdot) ds.
\]

\[\square\]
Now we remark that if \(f = u^5 \), we can estimate
\[
\|u^5\|_{L^\frac{5}{2}((0,1);L^\infty(\Omega))} \leq \|u\|_{L^2((0,1);L^{10}(\Omega))} \|u\|_{L^\infty((0,1);L^6(\Omega))},
\]
(3.3)
\[
\|\nabla_x(u^5)\|_{L^\frac{5}{2}((0,1);L^\infty(\Omega))} = 5\|u^4\nabla_x u\|_{L^\frac{5}{2}((0,1);L^\infty(\Omega))} \\
\leq 5\|u\|_{L^2((0,1);L^{10}(\Omega))}\|u\|_{L^\infty((0,1);H^1(\Omega))}.
\]
Interpolating between these two inequalities yields
(3.4)
\[
\|u^5\|_{L^\frac{5}{2}((0,1);W^{\frac{7}{4},\frac{9}{4}}(\Omega))} \leq C\|u\|_{L^2((0,1);L^{10}(\Omega))}\|u\|_{L^\infty((0,1);L^6(\Omega))}\|u\|_{L^\infty((0,1);H^1(\Omega))}.
\]
Following ideas of Struwe [14], Grillakis [8] and Shatah and Struwe [11][12], we will localize these estimates on small light cones and use the fact that the \(L^6 \); \(L^5 \) norm is small in such small cones.

Remark 3.2. In the argument above, we need (3.1) whereas (3.2) would not be sufficient.

3.1. **The \(L^6 \) estimate.** In this section we shall always consider solutions in
(3.5)
\[
X_{t_0} = C^0([0, t_0); H^1(\Omega)) \cap L^6_{loc}([0, t_0); L^{10}(\Omega)) \times C^0([0, t_0); L^2(\Omega))
\]
of (1.1) having bounded energy and obtained as limits in this space of smooth solutions to the analog of (1.1) where the nonlinearity and the initial data have been smoothed out (which we shall denote by weak solutions). Consequently all the integrations by parts we will perform will be licit by a limiting argument.

3.1.1. **A priori estimate for the normal derivative.** We start with an a priori estimate on finite energy solutions of (1.1), which is related to the uniform Lopatinski condition (let us recall that the wave equation with Dirichlet boundary conditions satisfies the uniform Lopatinski condition; see [3, 44 Example 7.3.10]).

Proposition 3.2. Assume that \(u \) is a weak solution to (1.1). Then we have
(3.6)
\[
\left\| \frac{\partial u}{\partial \nu} \right\|_{L^2((0, t_0) \times \partial \Omega)} \leq CE(u)^{1/2}
\]
where \(\frac{\partial u}{\partial \nu} \) is the trace to the boundary of the exterior normal derivative of \(u \).

Proof. Take \(Z \in C^\infty(\Omega, \partial \Omega) \) a vector field whose restriction to \(\partial \Omega \) is equal to \(\frac{\partial}{\partial \nu} \) and compute for \(0 < T < t_0 \)
\[
\int_0^T \int_\Omega [\left(\frac{\partial^2}{\partial t^2} - \Delta \right) Z |u(t, x) \cdot u(t, x)] \, dx \, dt
\]
\[
= \int_0^T \int_\Omega ([\partial_t^2 - \Delta] Z u(t, x) - Z (\partial_t^2 - \Delta) u(t, x)) u(t, x) \, dx \, dt.
\]
Integrating by parts, we obtain
(3.7)
\[
\int_0^T \int_\Omega \left(\frac{\partial^2}{\partial t^2} - \Delta \right) Z |u(t, x) \cdot u(t, x) \, dx \, dt = \int_0^T \int_{\partial \Omega} \left(\frac{\partial u}{\partial \nu} \right)^2 \, d\sigma \, dt
\]
\[
+ \int_0^T \int_\Omega (Z u) u^5(t, x) + Z (u^5) u(t, x) \, dx \, dt
\]
\[
+ \left[\int_\Omega (Z u) \cdot u \, dx \right]^T_0 - \left[\int_\Omega (Z u) \cdot \partial_t u \, dx \right]^T_0.
\]
Note now that if $Z = \sum_j a_j(x) \frac{\partial}{\partial x_j}$, then integration by parts yields (using the Dirichlet boundary condition)

\[
\int_\Omega -(Zu)\frac{\partial u}{\partial t}(t, x) + Z(u^5)u(t, x)dxdt = \frac{4}{6} \int_0^T \int_\Omega Z(u^6)(t, x)dxdt
\]

\[
= \frac{4}{6} \int_0^T \int_\Omega \sum_j \frac{\partial a_j}{\partial x_j} u^6 dx \leq CE(u)
\]

while

\[
\left| \int_\Omega \partial_t(Zu)udx \right|_0^T - \left| \int_\Omega (Zu)\partial_t udx \right|_0^T \leq CE(u),
\]

and $[(\partial^2_t - \Delta), Z] = -[\Delta, Z]$ as a second order differential operator in the x variable is continuous from $H^1(\Omega)$ to $H^{-1}(\Omega)$ and consequently

\[
\int_{t=0}^T \int_\Omega \left| (\partial^2_t - \Delta), Z \right| u(t, x)\mathbf{\pi}(t, x)dxdt \leq CE(u).
\]

As the constants are uniform with respect to $0 < T < t_0$, collecting (3.5), (3.9), (3.10) and (3.7) yields (3.6).

3.1.2. The flux identity. By time translation, we shall assume later that $t_0 = 0$.

Let us first define

\[
Q = \frac{\partial_t u^2 + |\nabla_x u|^2}{2} + \frac{|u|^6}{6} + \partial_t u \left(\frac{x}{t} \cdot \nabla_x \right) u,
\]

\[
P = \frac{x}{t} \left(\frac{\partial_t u^2 - |\nabla_x u|^2}{2} + \frac{|u|^6}{6} \right) + \nabla_x u \left(\partial_t u + \left(\frac{x}{t} \cdot \nabla_x \right) u + \frac{u}{t} \right),
\]

\[
D_T = \{ x; |x| < -T \},
\]

\[
K^T_S = \{ (x, t); |x| < -t, S < t < T \} \cap \Omega,
\]

\[
M^T_S = \{ x; |x| = -t, S < t < T \},
\]

\[
\partial K^T_S = (\{ [S, T] \times \partial \Omega \} \cap K^T_S) \cup D_T \cup D_S \cup M^T_S,
\]

\[
e(u) = \left(\frac{\partial_t u^2 + |\nabla_x u|^2}{2} + \frac{|u|^6}{6} \right), -\partial_t u \nabla_x u,
\]

and the flux across M^T_S

\[
\text{Flux } (u, M^T_S) = \int_{M^T_S} (e(u), \nu) d\sigma(x, t)
\]

where

\[
\nu = \frac{1}{\sqrt{2|x|}} (-t, -\frac{x}{t}) = \frac{1}{\sqrt{2|x|}} (|x|, \frac{x}{|x|})
\]

is the outward normal to M^T_S and $d\sigma(x, t)$ the induced measure on M^T_S. Note that

\[
\text{Flux } (u, M^T_S) = \int_{M^T_S} \frac{|\partial_t u^2 + |\nabla_x u|^2}{2} + \frac{|u|^6}{6} - \partial_t u \frac{x}{|x|} \cdot \nabla_x u d\sigma(x, t)
\]

\[
= \int_{M^T_S} \frac{1}{2} \frac{x}{|x|} \partial_t u - \nabla_x u |^2 + \frac{|u|^6}{6} d\sigma(x, t) \geq 0.
\]
An integration by parts gives (see Rauch [10] or [13, (3.3)’])

\[(3.13) \int_{x \in \Omega, |x| < T} \left(\frac{1}{2} |\partial_t u|^2 + |\nabla_x u|^2 \right) (x, T) dx + \text{Flux} (u, M^T_S) = \int_{x \in \Omega, |x| < S} \left(\frac{1}{2} |\partial_t u|^2 + |\nabla_x u|^2 \right) (x, S) dx = E_{loc}(S).\]

This proves that \(u \big|_{M^0_S} \) is bounded in \(H^1(M^T_S) \cap L^6(M^T_S) \) (uniformly with respect to \(T < 0 \)) and, since \(E_{loc}(S) \), a nonnegative nonincreasing function, has a limit when \(S \to 0^- \),

\[(3.14) \text{Flux}(u, M^0_S) = \lim_{T \to 0^-} \text{Flux}(u, M^T_S) = \lim_{T \to 0^-} (E_{loc}(S) - E_{loc}(T)) \]

exists and satisfies

\[(3.15) \lim_{S \to 0^-} \text{Flux} (u, M^0_S) = 0. \]

3.1.3. The \(L^6 \) estimate. We are now in a position to prove the classical nonconcentration effect:

Proposition 3.3. Assume that \(x_0 \in \overline{\Omega} \). Then for any solution \(u \) to (1.1) in the space \(X_{< t_0} \), we have

\[(3.16) \lim_{t \to t_0^-} \int_{x \in \Omega \cap \{|x-x_0| < t_0-t\}} u^6(t, x) dx = 0. \]

Proof. We follow [15], [9], [11], [12] and simply have to take care of the boundary terms. We can assume that \(x_0 \in \partial \Omega \) as otherwise these boundary terms disappear in the calculations below (which in this case are standard). Contrary to [13] we cannot use any convexity assumption to obtain that these terms have the right sign, but we shall use Proposition 3.2 to control them. Performing a space-time translation, we can assume \(x_0 = 0, t_0 = 0 \). Integrating over \(K^T_S \) the identity

\[0 = \text{div}_{t,x} (tQ + u \partial_t u, -tP) + \frac{|u|^6}{3},\]

we get (see [13, (3.9) - (3.12)]),

\[0 = \int_{D_T} (TQ + u \partial_t u)(T, x) dx - \int_{D_S} (SQ + u \partial_t u)(S, x) dx + \frac{1}{\sqrt{2}} \int_{M^T_S} (tQ + u \partial_t u + x \cdot P) d\sigma(x, t)\]

\[= - \int_{((S,T) \times \partial \Omega) \cap K^T_S} \nu(x) \cdot (tP) d\sigma(x, t) + \frac{1}{3} \int_{K^T_S} u^6 dx dt.\]

Let \(T \to 0^- \). Using Hölder’s inequality and the conservation of energy, we get that the first term in the left tends to 0, whereas the last term is nonnegative. This yields

\[(3.17) \int_{D_S} (SQ + u \partial_t u)(S, x) dx + \frac{1}{\sqrt{2}} \int_{M^T_S} (tQ + u \partial_t u + x \cdot P) d\sigma(x, t)\]

\[\leq \int_{((S,0) \times \partial \Omega) \cap K^T_S} \nu(x) \cdot (tP) d\sigma(x, t).\]
On the other hand, by direct calculation (see \[13\] (3.11)),

\[
\frac{1}{\sqrt{2}} \int_{M^g} (tQ + u \partial_t u + x \cdot P) d\sigma(x, t) = \frac{1}{\sqrt{2}} \int_{M^g} \frac{1}{t} |t \partial_t u + x \cdot \nabla_x u + u|^2 d\sigma(x, t) + \frac{1}{2} \int_{\partial D_S} u^2(S, x) d\sigma(x)
\]

and (see \[13\] (3.12))

\[
- \int_{D_S} (SQ + u \partial_t u)(S, x) dx \geq -\frac{1}{2} \int_{\partial D_S} u^2 d\sigma(x) - S \int_{D_S} \frac{|u|^6(S, x)}{6} dx.
\]

As a consequence, we obtain

\[
- \int_{D_S} (SQ + u \partial_t u)(S, x) dx \leq -\frac{1}{2} \int_{\partial D_S} u^2 d\sigma(x) - S \int_{D_S} \frac{|u|^6(S, x)}{6} dx.
\]

Hence,

\[
\nu(x) = \nu(0) + O(x)
\]

where \(\nu(x) \) is the exterior normal to \(\Omega \) at point \(x \) and \(d\sigma \) is the surface measure on \(\partial \Omega \). Taking \[11\] into account (and the Dirichlet boundary condition), we obtain

\[
\nu(x) \cdot tPd\sigma(x)dt \leq \int_{((S,0)\times \partial \Omega) \cap K^g_3} \nu(x) \cdot tPd\sigma(x)dt
\]

However, for \(x \in \partial \Omega \), given that \(x_0 = 0 \in \partial \Omega \), we have

\[
x = t + O(x), \quad \nu(x) = \nu(0) + O(x)
\]

where \(t \) is a unit vector tangent to \(\partial \Omega \) at \(x_0 = 0 \). Consequently, as \(\nu(0) \cdot t = 0 \),

\[
\nu(x) \cdot x = O(|x|^2), \quad \text{for } x \in \partial \Omega
\]

and the right-hand side in \[20\] is bounded (using Proposition \[2\] by

\[
\sup_{x \in K^g_3} |x|^2 \times \int_{(1,0) \times \partial \Omega} \left(\frac{\partial u}{\partial \nu} \right)^2 d\sigma(x)dt \leq C|\Omega|^2 E(u).
\]

Therefore,

\[
\int_{D_S} \frac{|u|^6(S, x)}{6} dx \leq |\Omega| E(u) + |\Omega| \frac{1}{\sqrt{2}|\Omega|} \int_{M^g_3} \frac{1}{|t|} |t \partial_x u + x \cdot \nabla_x u + u|^2 d\sigma(x, t);
\]

finally, by Hölder's inequality and \[12\], we obtain

\[
\frac{1}{\sqrt{2}|\Omega|} \int_{M^g_3} \frac{1}{|t|} |t \partial_x u + x \cdot \nabla_x u + u|^2 d\sigma(x, t) \leq \sqrt{2} \int_{M^g_3} \frac{|x|}{|\Omega|} \frac{x}{|x|} \partial_x u - \nabla_x u|^2 d\sigma(x, t)
\]

\[
+ \sqrt{2} \int_{M^g_3} \frac{|u|^2}{|\Omega|} d\sigma(x, t)
\]

\[
\leq C \text{ Flux } (u, M^g_3) + C \text{ Flux } (u, M^g_0) \frac{1}{3};
\]

hence,

\[
\int_{D_S} \frac{|u|^6(S, x)}{6} dx \leq |\Omega| E(u) + C \text{ Flux } (u, M^g_3) + C \text{ Flux } (u, M^g_0) \frac{1}{3}
\]

for which the right-hand side goes to 0 as \(S \to 0^- \) by \[15\]. Note that in the calculations above all integrals on \(K^0_3 \) and \(M^g_0 \) have to be understood as the limits
as $T \to 0^-$ of the respective integrals on K_T^S and M_T^F (which exist according to (3.12), (3.14)).

3.2. **Global existence.** In this section we consider u the unique forward maximal solution to the Cauchy problem (1.1) in the space $X_{<t_0}$. Assume that $t_0 < +\infty$ and consider a point $x_0 \in \Omega$; our aim is to prove that u can be extended in a neighborhood of (x_0, t_0), which will imply a contradiction. We perform a space time translation and assume that $(x_0, t_0) = (0, 0)$.

3.2.1. **Localizing space-time estimates.** For $t < t' \leq 0$, let us denote by

$$
\|u\|_{(L^p; L^q)(K_{t'}^i)} = \left(\int_{s = t}^{t'} \left(\int_{|x| < r} |u|^q(s, x) \, dx \right)^{\frac{p}{q}} \, ds \right)^{\frac{1}{p}}
$$

the $L^p_t L^q_x$ norm on $K_{t'}^i$ (with the usual modification if p or q is infinite). Our main result in this section reads

Proposition 3.4. For any $\varepsilon > 0$, there exists $t < 0$ such that

$$
\|u\|_{(L^p; L^q)(K_{t}^i)} < \varepsilon.
$$

Proof. We start with an extension result:

Lemma 3.3. For any $x_0 \in \Omega$ there exist $r_0, C > 0$ such that for any $0 < r < r_0$ and any $v \in H^1_0(\Omega) \cap L^p(\Omega)$, there exists a function $\bar{v}_r \in H^1_0(\Omega)$ (independent of the choice of $1 \leq p \leq +\infty$) satisfying

$$
(\bar{v}_r - v) \big|_{|x-x_0|<r^{\cdot}\Omega=0},
$$

$$
\int_{\Omega} |\nabla \bar{v}|^2 \leq C \int_{\Omega} |\nabla v|^2, \quad \|\bar{v}_r\|_{L^p(\Omega)} \leq C \|v\|_{L^p(|x-x_0|<r)}. \tag{3.25}
$$

In other words, we can extend functions in $H^1_0(\Omega) \cap L^p(\Omega)$ on the ball $\{|x-x_0|<r\}$ to functions in $H^1_0(\Omega) \cap L^p(\Omega)$ with uniform bounds with respect to (small) $r > 0$, for the H^1 and the L^p norms, respectively.

Furthermore, for any $u \in L^\infty((-1,0); H^1_0(\Omega)) \cap L^1_{loc}((-1,0); L^p(\Omega))$, there exists a function $\bar{u} \in L^\infty((-1,0); H^1_0(\Omega)) \cap L^1_{loc}((-1,0); L^p(\Omega))$ satisfying (uniformly with respect to t)

$$
(\bar{u} - u) \big|_{|x-x_0|<r^{\cdot}\Omega=0},
$$

$$
\int_{\Omega} |\nabla \bar{u}|^2(t, x) + |\partial_t \bar{u}|^2(t, x) \, dx \leq C \int_{\Omega} |\nabla u|^2(t, x) + |\partial_t u|^2(t, x),
$$

$$
\|\bar{u}(t, \cdot)\|_{L^p(\Omega)} \leq C \|u(t, \cdot)\|_{L^p(\Omega \cap \{|x-x_0|<r\})} \text{ t-a.s.} \tag{3.26}
$$

Proof. Let us first prove the first part of the lemma. Let us first assume $x_0 \in \Omega$. We use the usual reflection extension (suitably cut off). Fix a function $\phi \in C_c^\infty(\frac{9}{10}, \frac{11}{10})$ equal to 1 near 1. Let us define \bar{v}_r (in polar coordinates $(\rho, \theta) \in (\mathbb{R}^+ \times S^2)$ centered at x_0) by

$$
\bar{v}_r(\rho, \theta) = \begin{cases}
 v_r(\rho, \theta) & \text{if } \rho < r, \\
 \phi\left(\frac{x}{\rho}\right) v(2r - \rho, \theta) & \text{if } \rho > r.
\end{cases}
$$

An elementary calculation shows that (uniformly with respect to r)

$$
\|\bar{v}_r(x)\|_{L^p(\mathbb{R}^3)} \leq C \|u\|_{L^p(|x|<r)},
$$

where C may depend on p and ρ. This completes the proof of the first part of the lemma. The proof of the second part is similar.
and (using the Hardy inequality to control \(\partial_x \left(\phi \left(\frac{x}{r} \right) \right) \times v(2r - \rho, \theta) \)),

\[
\int_{\Omega} |\nabla \bar{v}|^2 \leq C \int_{\Omega} |\nabla v|^2.
\]

Since \(x_0 \in \Omega \), the function \(\bar{v}_r \) is in \(H^1_0(\Omega) \) if \(r > 0 \) is sufficiently small. If \(x_0 \in \partial \Omega \), this is no longer true and we have to take care of the boundary condition \(v|_{\partial \Omega} = 0 \).

To do so, the idea is to take a foliation by hypersurfaces tangent to the boundary and to perform a reflection extension \textit{tangential} to this foliation.

We consider a change of variables \(\Psi \) such that (near \(x_0 \))

\[
\Omega = \Psi(\{ y = (y',y_3); y_3 > 0 \}), \quad \Psi(0) = x_0, \quad \Psi'(0) = \text{Id}.
\]

Writing \(y = (rz', rz_3) \) and working in polar coordinates \(z' = (\rho, \theta) \in (\mathbb{R}^+ \times \mathbb{S}) \), the implicit function theorem (and the assumption \(\Psi'(0) = \text{Id} \)) implies that there exists a smooth function \(\zeta(z_3, \theta, r) \) such that for \(z_3 \in [-\frac{1}{10}, \frac{1}{10}] \),

\[
\| \Psi(\rho \theta, rz_3) \| = r \Leftrightarrow \rho = \zeta(\theta, z_3, r).
\]

We can now define an extension in a polar coordinate for \(y' \) (for \(\frac{y_3}{r} = z_3 < \frac{1}{10} \)) by

(3.28) \[\bar{v}_r(\rho, \theta, y_3) = \begin{cases} v(\rho, \theta, y_3) & \text{if } \rho < r \zeta(\theta, \frac{y_3}{r}, r), \\ \phi \left(\frac{y_3}{r} \right) v(2r \zeta(\theta, \frac{y_3}{r}, r) - \rho, \theta, y_3) & \text{if } \rho > r \zeta(\theta, \frac{y_3}{r}, r). \end{cases} \]

Let \(\phi \in C_0^\infty(-\frac{1}{10}, \frac{1}{10}) \) be equal to 1 near 0. Then the extension we consider is

\[
(1 - \phi \frac{y_3}{r}) \bar{v}_{r,1} + \phi \frac{y_3}{r} \bar{v}_{r,2}
\]

where \(\bar{v}_{r,1} \) is the extension we built in the interior case and \(\bar{v}_{r,2} \) is the extension we just built (with the foliation).

![Figure 1. The foliation](image)

To obtain the second part of the lemma, we just define

\[
\tilde{u}(t, \cdot) = \bar{u}_{-t}(t, \cdot)
\]

and we can check that according to (3.27) and (3.28), it satisfies (3.26). \(\square \)

Let us come back to the proof of Proposition 3.4. Let \(\tilde{u} \) be the function given by the second part of Lemma 3.3. Then \(\tilde{u}^5 \) is equal to \(\bar{w}^5 \) on \(K_0^\circ \) and

\[
\| \tilde{u}^5 \|_{L^\infty((t,t'); L^6(\Omega))} \leq \| \bar{u}^5 \|_{L^6((t',t); L^6(\Omega))} \| \bar{u} \|_{L^\infty((t,t'); L^6(\Omega))} \leq C \| u \|_{L^6((t',t); L^6(K_0^\circ))} \| u \|_{L^\infty(\Omega)}.
\]
On the other hand, \(\nabla_x(\tilde{u})^5 = 5(\tilde{u})^4 \nabla_x \tilde{u} \) and
\[
\|\nabla_x(\tilde{u})^5\|_{L^2((t,t');L^\infty(\Omega))} \leq 5\|\tilde{u}\|_{L^5((t,t');L^\infty(\Omega))}^4 \|\nabla_x \tilde{u}\|_{L^\infty((t,0);L^2(\Omega))} \\
\leq C\|u\|_{(L^5;L^10)(K_t')}^4 \|u\|_{L^\infty;H^1(\Omega)}.
\]
By (complex) interpolation, as in (3.4),
\[
\|\tilde{u}\|_{L^5((t,t');W^{1,\infty}(\Omega))} \leq C\|u\|_{(L^5;L^10)(K_t')} \|u\|_{L^\infty;H^1(\Omega)} \|u\|_{(L^\infty;L^5)(K_t')}.
\]
Let \(w \) be the solution (which, by finite speed of propagation, coincides with \(u \) on \(K_t^0 \)) of
\[
(\partial_s^2 - \Delta)w = -(\tilde{u})^5, \quad w|_{\partial\Omega} = 0, \quad (w - u)|_{s=t} = \partial_s(w - u)|_{s=t} = 0;
\]
applying (3.1) and the Sobolev embedding \(W^{1,\infty}(\Omega) \to L^{10}(\Omega) \), we get
\[
\|w\|_{(L^5;L^10)(K_t')} \leq \|w\|_{L^5((t,t');W^{1,\infty}(\Omega))} \leq C\|w\|_{(L^5;L^10)(K_t')} \|u\|_{L^\infty;H^1(\Omega)} \|u\|_{(L^\infty;L^5)(K_t')}.
\]
Finally, from Proposition 3.3 (3.31) and the continuity of the mapping \(t' \in [t,0) \to \|u\|_{(L^5;L^10)(K_t')} \) (which takes value 0 for \(t' = t \)), there exists \(t' \) (close to 0) such that
\[
\forall t < t' < 0; \|u\|_{(L^5;L^10)(K_t')} \leq 2CE(u)
\]
and passing to the limit \(t' \to 0 \),
\[
\|u\|_{(L^5;L^10)(K_t')} \leq 2CE(u).
\]
As a consequence, taking \(t < 0 \) even smaller if necessary, we obtain
\[
\|u\|_{(L^5;L^10)(K_t')} \leq \varepsilon.
\]
3.2.2. **Global existence.** We are now ready to prove the global existence result. Let \(t < t_0 = 0 \) be close to 0 and let \(v \) be the solution to the linear equation
\[
(\partial_s^2 - \Delta)v = 0, \quad v|_{\partial\Omega} = 0, \quad (v - u)|_{s=t} = 0, \quad \partial_s(v - u)|_{s=t} = 0.
\]
Then the difference \(w = u - v \) satisfies
\[
(\partial_s^2 - \Delta)w = -u^5, \quad w|_{\partial\Omega} = 0, \quad w|_{s=t} = 0, \quad \partial_s w|_{s=t} = 0.
\]
Let \(\tilde{u} \) be the function given by Lemma 3.3 from \(u \). We have
\[
\|\tilde{u}\|_{L^5((t,0);L^10(\Omega))} \leq C\varepsilon, \quad \|\tilde{u}\|_{L^\infty;H^1} \leq CE(u).
\]
Let \(\tilde{w} \) be the solution to
\[
(\partial_s^2 - \Delta)\tilde{w} = -\tilde{u}^5, \quad \tilde{w}|_{\partial\Omega} = 0, \quad \tilde{w}|_{s=t} = 0, \quad \partial_s \tilde{w}|_{s=t} = 0.
\]
By finite speed of propagation, \(w \) and \(\tilde{w} \) coincide in \(K_t^0 \). On the other hand, using (3.2) yields
\[
\|\tilde{w}\|_{L^\infty((t,0);H^1)} + \|\partial_s \tilde{w}\|_{L^\infty((t,0);L^2(\Omega))} + \|\tilde{w}\|_{L^5((t,0);W^{1,\infty}(\Omega))} \\
\leq C\|\tilde{u}\|_{L^1((t,0);L^2(\Omega))} + \|\tilde{u}\|_{L^5((t,0);W^{1,\infty}(\Omega))} \leq C\varepsilon^5.
\]
Finally, for any ball D, let

$$E(f(s, \cdot), D) = \int_{D \cap \Omega} \left(|\nabla_x f|^2 + |\partial_s f|^2 + \frac{|f|^6}{3} \right)(s, x) dx;$$

since v is a solution to the linear equation, we have

(3.34) $$E(v(s, \cdot), D(x_0 = 0, -s)) \to 0, \quad s \to 0^-.$$

Recalling that $u = v + \tilde{w}$ inside K^0, we obtain from (3.34) and (3.33) (and the Sobolev injection $H^1_0(\Omega) \to L^6(\Omega)$) that there exists a small $s < 0$ such that

$$E(u(s, \cdot), D(x_0 = 0, -s)) < \varepsilon;$$

but, since $(u, \partial_s u)(s, \cdot) \in H^1_0(\Omega) \times L^2(\Omega)$, we have, by dominated convergence,

$$E(u(s, \cdot), D(x_0 = 0, -s)) = \int_{\Omega} 1_{\{x - x_0 < -s\}}(x)(|\nabla u(s, x)|^2 + |\partial_s u(s, x)|^2 + \frac{|u|^6(s, x)}{3}) dx$$

and

$$\lim_{\alpha \to 0} \int_{\Omega} 1_{\{x - x_0 < -\alpha - s\}}(x)(|\nabla u(s, x)|^2 + |\partial_s u(s, x)|^2 + \frac{|u|^6(s, x)}{3}) dx = \lim_{\alpha \to 0} E(u(s, \cdot), D(x_0 = 0, -s + \alpha));$$

consequently, there exists $\alpha > 0$ such that

$$E(u(s, \cdot), D(x_0 = 0, -s + \alpha)) \leq 2\varepsilon.$$

Now, according to (3.13), the L^6 norm of u remains smaller than 2ε on $\{x - x_0| < \alpha - s'|, s \leq s' < 0$. As a consequence, the same proof as for Proposition 3.4 shows that the $L^5; L^{10}$ norm of the solution on the truncated cone

$$K = \{(x, s'); |x - x_0| < \alpha - s', s < s' < 0\}$$

is bounded. Since this is true for all $x_0 \in \Omega$, a compactness argument shows that

$$\|u\|_{L^5((s,0);L^{10}(\Omega))} < +\infty$$

which, by the Duhamel formula, shows that

$$\lim_{s' \to 0^-}(u, \partial_s u)(s', \cdot)$$

exists in $(H^1_0(\Omega) \times L^2(\Omega))$ and consequently u can be extended for $s' > 0 = t_0$ small enough, using Corollary 2.1.
Figure 2. The truncated cone

ACKNOWLEDGMENT

We thank P. Gérard for various enlightenments about the critical wave equation.

REFERENCES

[1] Ramona Anton. Strichartz inequalities for lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains, 2005. Preprint, arXiv:math.AP/0512639.

[2] Nicolas Burq, Patrick Gérard, and Nikolay Tzvetkov. Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds. Amer. J. Math., 126(3):569–605, 2004. MR2058383 (2005h:58036)

[3] Jacques Chazarain and Alain Piriou. Introduction à la théorie des équations aux dérivées partielles linéaires. Gauthier Víars, 1970. MR0598447 (82i:35001)

[4] Jacques Chazarain and Alain Piriou. Introduction to the theory of linear partial differential equations. Studies in Mathematics and its Applications 14, Amsterdam, 1982. MR678035 (83i:35001)

[5] Michael Christ and Alexander Kiselev. Maximal functions associated to filtrations. J. Funct. Anal., 179(2):409–425, 2001. MR1809116 (2001i:47054)

[6] Manoussos G. Grillakis. Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity. Ann. of Math. (2), 132(3):485–509, 1990. MR1078267 (92c:35080)

[7] Sergiu Klainerman and Matei Machedon. Remark on Strichartz-type inequalities. Internat. Math. Res. Notices, (5):201–220, 1996. With appendices by Jean Bourgain and Daniel Tataru. MR1383755 (97g:46037)

[8] Gilles Lebeau. Estimation de dispersion pour les ondes dans un convexe. In Journées “Équations aux Dérivées Partielles” (Evian, 2006), 2006

[9] Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge. Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Amer. Math. Soc., 6(1):65–130, 1993. MR1168960 (93h:58150)

[10] Jeffrey Rauch. I. The n” Klein-Gordon equation. II. Anomalous singularities for semilinear wave equations. In Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. I (Paris, 1978/1979), volume 53 of Res. Notes in Math., pages 335–364. Pitman, Boston, Mass., 1981. MR631403 (83a:35066)

[11] Jalal Shatah and Michael Struwe. Regularity results for nonlinear wave equations. Ann. of Math. (2), 138(3):503–518, 1993. MR1217991 (95f:35164)

[12] Jalal Shatah and Michael Struwe. Well-posedness in the energy space for semilinear wave equations with critical growth. Internat. Math. Res. Notices, (7):303ff., approx. 7 pp. (electronic), 1994. MR1283026 (95e:35132)

[13] Hart F. Smith and Christopher D. Sogge. On the critical semilinear wave equation outside convex obstacles. J. Amer. Math. Soc., 8(4):879–916, 1995. MR1308407 (95m:35128)

[14] Hart F. Smith and Christopher D. Sogge. On the L^p norm of spectral clusters for compact manifolds with boundary. Acta Math., 198(1):107–153, 2007. MR2316270

[15] Michael Struwe. Globally regular solutions to the u^3 Klein-Gordon equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 15(3):495–513 (1988), 1988. MR1015805 (90m:35142)
[16] Terence Tao. Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm. J. Differential Equations, 189(2):366–382, 2003. MR1964470 (2003m:58016)

[17] Daniel Tataru. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III. J. Amer. Math. Soc., 15(2):419–442 (electronic), 2002. MR1887639 (2003a:35120)

Laboratoire de Mathématiques, Université Paris Sud, UMR 8628 du C.N.R.S., Bât 425, 91405 Orsay Cedex, France and Institut Universitaire de France
E-mail address: Nicolas.burq@math.u-psud.fr

Laboratoire J.-A. Dieudonné, UMR 6621 du C.N.R.S, Université de Nice - Sophia Antipolis, Parc Valrose 06108 Nice Cedex 02, France and Institut Universitaire de France
E-mail address: lebeau@math.unice.fr

Laboratoire Analyse, Géométrie & Applications, UMR 7539 du C.N.R.S, Institut Galilée, Université Paris 13, 99 avenue J.B. Clément, F-93430 Villetaneuse, France
E-mail address: fab@math.univ-paris13.fr