Sleep in thyrotoxicosis

G. R. Sridhar, Venkata Putcha¹, G. Lakshmi²
Endocrine and Diabetes Centre, 15-12-15 Krishnanagar, Visakhapatnam-530 002, India, ¹Accostats Solution UK Ltd, 53 Charlwood Road, Luton LU4 0BT, UK, ²Kasturba Medical College, Manipal, India

Abstract

Objective: Pattern of sleep in hyperthyroid state / thyrotoxicosis has not been systematically studied. It is being characterized as poor without further elaboration. We analyzed the pattern of sleep in a large sample of individuals with thyrotoxicosis who came to our endocrine center in southern India. Materials and Methods: We identified individuals with the diagnosis of ‘thyrotoxicosis’ from our electronic medical record database, and evaluated clinical parameters and pattern of their sleep: difficulty in falling asleep (DFA), difficulty in maintaining sleep (DMS), excess daytime sleepiness (EDS). In the first phase, univariate analysis with logistic regression was performed. Multivariate logistic regression was performed in the next phase on variables with a P-value < 0.1: these were considered as potential categories/variables. Results: In model response variable with DFA, multivariate logistic regression predicted that subjects with abnormal appetite (more 1.7 or less 2.2), change in bowel motion (loose 1.5 or constipation 2.8), in mood (easy loss of temper 3.4), change of voice -- hoarse 7.4 or moderately hoarse 3.1), tended to have higher chances of difficulty in falling asleep (DFA). Patients with tremor (yes = 5.4) had greater likelihood of difficulty in maintaining sleep (DMS). Conclusions: Individuals with hyperthyroidism/thyrotoxicosis principally had difficulty in falling asleep DFA, which was related to hyperkinetic features.

Key words: Difficulty in falling asleep, hypothyroidism, logistic regression

Introduction

Thyrotoxicosis is the second most frequent functional thyroid disorder at our center.¹,² Generally individuals with thyrotoxicosis present with hypermetabolic features, but pattern of sleep is not as well studied as in those with hypothyroidism.³⁻⁴ Abnormalities in sleep regulation are often present in thyrotoxicosis⁵ even in the neonatal period,⁶ which can adversely affect the course of the disease.⁷ Owing to the paucity of published information we performed a retrospective analysis of sleep patterns in subjects who presented with thyrotoxicosis to our Center.

Materials and Methods

We have a live electronic medical database of subjects who present with endocrine disorders at our Center.⁸ We identified individuals with the diagnosis of ‘thyrotoxicosis’ from our electronic medical record database, and evaluated clinical parameters and the pattern of their sleep (difficulty in falling asleep [DFA], difficulty in maintaining sleep [DMS], excess daytime sleepiness [EDS]) as described previously⁹ [Table 1]. Those who did not complain of sleep disturbances were taken as having normal sleep. The aim of this study was to identify factors affecting sleep in this group of subjects at the time of presentation. A list continuous variables is presented in Table 1a and of categorical/dichotomous variables in Table 1b.

Statistical analysis

Descriptive statistics are presented in Table 1a for continuous variables and in Table 1b for categorical variables. The basic univariate analyses with logistic regression and results are shown in Table 2. From the univariate logistic regression analysis, the variables that had a P-value < 0.1
(90% statistical significance) were considered as potential variables in the multivariate logistic regression done as a second phase analysis. These results are presented in Table 3. The same exercise was adopted for all three models defined earlier namely DFA, DMS and EDS. To minimize the non-identifiably or co-linearity problems, stepwise logistic regression was performed.

In the stepwise logistic regression, a hierarchical forward selection and a backward elimination approach, P-value criteria for data inclusion and exclusion were set at 0.05 and 0.09, respectively. The model automatically selected the variable if one of the categories was statistically significant at 95% level.

Odds ratios (OR), values and 95% confidence intervals of variables associated with the presence of DFA, DMS and EDS were estimated in a final logistic regression model that contained all variables that had entered or had been retained in the stepwise procedures [Table 2]. All analyses were done using SAS v9.2 software.

RESULTS

Out of twenty one variables considered [Tables 1a and b], seventeen were found to be statistically significant either partially or fully attaining at least 90% level of significance with DFA. But only three and ten variables, respectively, were found to be statistically significant at least for 90% significance level when the model response was performed for DMS and EDS, respectively. All models with the statistical significant variables were selected for multivariate logistic regression analysis.

In model response with variable DFA, multivariate logistic regression predicted that patients with abnormal appetite (more 1.7 or less 2.2), bowel movement abnormality (loose 1.5 or constipation 2.8), change in mood (easy loss of temper 3.4), changes in voice (hoarse 7.4 or moderately hoarse 3.1), had greater chances of difficulty in falling asleep (DFA) when compared to patients with normal

Table 1a: Descriptive statistics for continuous variable

Variable	DFA Mean (SD)	DMS Mean (SD)	EDS Mean (SD)
Age	36.18 (11.04)	35.65 (11.46)	34.96 (11.32)
Dyspnea	0.67 (0.47)	0.61 (0.49)	0.61 (0.49)
Pulse	99.08 (19.22)	98.10 (19.09)	97.48 (18.64)
BMI (Kgs/m2)	19.73 (4.24)	19.64 (3.99)	19.86 (4.15)

DFA: Difficulty in falling asleep, DMS: Difficulty in maintaining sleep, EDS: Excessive daytime sleeping

Table 1b: Frequencies and percentages of categorical variables

Variable	DFA N (%)	DMS N (%)	EDS N (%)	Variable	Category	DFA N (%)	DMS N (%)	EDS N (%)	Variable	Category	DFA N (%)	DMS N (%)	EDS N (%)	
Anxiety	Normal	194 (65.54)	191 (62.01)	92 (31.08)	Palpnt	Yes	368 (74.19)	202 (68.71)	206 (67.10)	Sex	Female	152 (30.46)	92 (31.08)	88 (28.12)
	Normal	101 (32.90)	206 (67.10)	375 (75.15)	Skin Sweating	Yes	102 (20.86)	48 (16.55)	46 (15.03)	Normal	Normal	300 (60.12)	194 (65.54)	207 (66.13)
	Normal	88 (29.93)	92 (29.97)	194 (65.54)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	88 (29.93)	92 (29.97)	194 (65.54)	Temperature	Normal	300 (60.12)	194 (65.54)	207 (66.13)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	101 (32.90)	206 (67.10)	375 (75.15)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	88 (29.93)	92 (29.97)	194 (65.54)	Temperature	Normal	300 (60.12)	194 (65.54)	207 (66.13)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	101 (32.90)	206 (67.10)	375 (75.15)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	88 (29.93)	92 (29.97)	194 (65.54)	Temperature	Normal	300 (60.12)	194 (65.54)	207 (66.13)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	101 (32.90)	206 (67.10)	375 (75.15)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	88 (29.93)	92 (29.97)	194 (65.54)	Temperature	Normal	300 (60.12)	194 (65.54)	207 (66.13)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	101 (32.90)	206 (67.10)	375 (75.15)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	88 (29.93)	92 (29.97)	194 (65.54)	Temperature	Normal	300 (60.12)	194 (65.54)	207 (66.13)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	101 (32.90)	206 (67.10)	375 (75.15)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	88 (29.93)	92 (29.97)	194 (65.54)	Temperature	Normal	300 (60.12)	194 (65.54)	207 (66.13)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	101 (32.90)	206 (67.10)	375 (75.15)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)
	Normal	88 (29.93)	92 (29.97)	194 (65.54)	Temperature	Normal	300 (60.12)	194 (65.54)	207 (66.13)	Temperature	Normal	295 (60.33)	167 (57.39)	167 (54.22)

DFA: Difficulty in falling asleep, DMS: Difficulty in maintaining sleep, DMS: Difficulty in maintaining sleep, EDS: Excessive daytime sleeping
appetite, normal bowel movements, normal affect or normal voice, respectively. Patients with tremor (yes = 5.4) are likely having the difficulty in maintaining sleep (DMS). Patients with hand tremors were as expected, less likely to have excessive daytime sleeping (EDS).

Discussion

Sleep disorders have been described in a variety of endocrine disorders and span across entire age spectrum.\[^{5,6}\] Earlier studies focused on sleep disturbances in thyrotoxicosis in relation to organic movement disorders\[^{5,9}\] and periodic paralysis\[^{11}\] but did not address sleep in general. A rare association of somnambulism was reported with hyperthyroidism.\[^{18}\] Studies of patterns of sleep disturbances per se other than sleep apnea are lacking

In the current study, we found an association of hyperkinetic features (tremor, appetite change, bowel disturbances) with difficulty in falling asleep DFA and with difficulty in maintaining sleep DMS.

The sleep disturbances can potentially add to poor physical health of those with thyrotoxicosis,\[^{12}\] which could be associated with increased percentage of sleep time spent in stages 3 and 4 (non-REM sleep).\[^{13}\] A modification of sleep behavior has potential to improve overall wellness of patients with hyperthyroidism. Disturbances of sleep may directly or indirectly contribute to glucose dys-metabolism often reported in patients with hyperthyroidism. Thus understanding of patterns of sleep in hyperthyroid state begs attention. Our study is a step in that direction.

Table 2: Univariate logistic regression, odd ratios and P-values by each model: Patients diagnosed as Thyrotoxicosis disorder between 1992 and 2004 in EDC

Variable (Effect)	DFA OR	DFA P-value	DMS OR	DMS P-value	EDS OR	EDS P-value
BMI	1.003	0.8999	0.939	0.2907	1.071	0.0096
AGE	1.016	0.0599	1.031	0.1072	0.976	0.1219
Anxiety (Yes vs No)	2.326	0.0003	4.021	0.0049	0.680	0.3037
Appetite (More vs Normal)	1.902	0.0010	1.767	0.2121	0.688	0.3735
Body pain (Yes vs No)	1.833	0.0481	1.404	0.5942	3.706	0.0100
Dyspnea in grades	1.902	0.0013	0.927	0.8672	0.942	0.8663
Eyes (Abnormal vs Normal)	0.587	0.0142	0.602	0.3471	0.690	0.3762
Eyes (Equivocal vs Normal)	0.807	0.3843	0.612	0.4556	0.519	0.2492
Hair loss (Yes vs No)	1.435	0.0581	1.360	0.5168	1.385	0.3975
HIF (Easy loss of temper vs Normal)	3.269	<0.0001	1.424	0.4561	1.208	0.6323
Bowel Movement (Loose vs Normal)	1.850	0.0013	1.636	0.2685	0.711	0.3944
Palpitation (Yes vs No)	2.099	0.0006	1.599	0.3714	0.705	0.3437
Pulse rate	1.008	0.0042	1.012	0.2876	0.993	0.4751
Sex (Female vs Male)	0.982	0.9279	0.628	0.3041	2.954	0.0292
Skin (Increased sweating vs Normal)	2.108	0.0010	2.515	0.0089	0.963	0.9408
SKN (Abnormal vs Normal)	1.361	0.1033	0.875	0.7642	0.350	0.0048
Temp in tolerate (Hot vs Normal)	0.589	0.0056	0.922	0.8665	2.075	0.1208
TREMORS (Yes vs No)	2.192	0.0002	5.511	0.0033	0.735	0.3975
TREMORS (Yes vs No)	1.226	0.3079	0.800	0.6286	0.305	0.0013
Weight (Gained vs No change)	1.444	0.3964	0.800	0.8439	2.000	0.2298
Weight (Loss vs No change)	1.474	0.0985	0.965	0.9464	0.528	0.1018

The underline shows 90%, bold one shows at 95% level, and underline and bold shows at 99% statistical significance, DFA: Difficulty in falling asleep, DMS: Difficulty in maintaining sleep, EDS: Excessive daytime sleeping.

Table 3: Multivariate logistic regression, odd ratios, P-values and 95% CI by each model: Patients diagnosed as Thyrotoxicosis disorder between 1992 and 2004 in EDC

Model / Variable (Effect)	OR	P-value	95% CI
Difficulty in falling asleep (DFA)			
Appetite (More vs Normal)	1.7	0.0259	1.062
Bowel Movement (Loose vs Normal)	1.5	0.0649	0.976
HIF (Easy loss of temper vs Normal)	3.4	<0.0001	2.096
Eyes (Abnormal vs Normal)	0.5	0.0017	0.279
Eyes (Equivocal vs Normal)	0.8	0.3751	0.443
Age in years	1.0	0.0057	1.008
Difficulty in maintaining sleep (DMS)			
Tremor (Yes vs No)	5.4	0.0253	1.232
Excessive daytime sleeping (EDS)			
HIF (Easy loss of temper vs Normal)	1.2	0.6617	0.514
Tremors (Termors+ vs No hand termor)	0.4	0.0119	0.162
Sex (Female vs Male)	3.8	0.0381	1.075

The bold one shows at 95% level, underline shows 90% statistical significance.
In conclusion, we have shown that thyrotoxicosis is associated principally with difficulty in falling asleep (DFA). Rather than merely affecting the quality of life in untreated thyrotoxicosis, there are potential adverse consequences for behavioral and cardiovascular performance as well. It would be instructive to study the latter association in future in larger well-designed prospective studies.

References

1. Sridhar GR. Pattern of thyroid diseases seen at an endocrine centre in Andhra Pradesh. In: Shah DH, Noronha OP, editors. Mumbai: Proc 4th Annual Conf Thyroid Assoc India; 1991. p 15-9.

2. Sridhar GR. Management of hyperthyroidism. J Assoc Physicians India 2000;48:45-52.

3. Ajlouni KM, Ahmad AT, Al-Zahiri MM, Ammari FL, Jaraah NS, Abulbama MA, et al. Sleepwalking associated with hyperthyroidism. Endocr Pract 2005;11:5-10.

4. Sridhar GR, Madhu K. Sleep in young untreated hypothyroid subjects. J Sleep Res 1996;5:198-9.

5. Murakami Y, Kato Y. Sleep disorders in several pathologic states-endocrine diseases. Nippon Rinsho 1998;56:457-60.

6. Watkins MG, Dejkhamron P, Huo J, Vazquez DM, Menon RK. Persistent neonatal thyrotoxicosis in a neonate secondary to a rare thyroid-stimulating hormone receptor activating mutation: Case report and literature review. Endocr Pract 2008;14:479-83.

7. LaDou J. Health effects of shift work. West J Med 1982;137:525-30.

8. Sridhar GR, Venkat YV. Information technology and endocrine sciences in the new millennium. Indian J Endocrinol Metab 2000;4:70-80.

9. Amed MA, Martinez A, Yee A, Cahill D, Besag FM. Psychogenic and organic movement disorders children. Dev Med Child Neurol 2008;50:300-4.

10. Loh LM, Hum AY, Teoh HL, Lim EC. Graves disease associated with spasmodic truncal flexion. Parkinsonism Relat Disord 2005;11:117-9.

11. Correa-Luna LD, Reyes-Ortia LM, Ramírez-Riveria J. Periodic paralysis: Rare presenting symptom of thyrotoxicosis. Bol Assoc Med PR 2006;98:124-7.

12. Karges B, Krause G, Homoki J, Debak K, deRouxi N, Karges W. TSH receptor mutations U509A causes familial hyperthyroidism by release of interhelical constraints between transmembrane helices TMH3 and TMH5. J Endocrinol 2005;186:377-85.

13. Ringkananont U, VanDurme J, Montanelli L, Ugrasbul F, Yu YM, Weiss RE, et al. Repulsive separation of the cytoplasmic ends of transmembrane helix 6 of the thyrotropin receptor as cause of hereditary nonautoimmune hyperthyroidism. Mol Endocrinol 2006;20:893-903.

14. Joffe RT, Szuba MP, Stephen TH, Sokolov, Levitt AJ. The thyroid, sleep and depression. Biol Psychiatry 1995;37:196-7.

15. Sridhar GR, Lalshmi G. Sleep and obesity. J Gen Med 2009;21:54-6.

Cite this article as: Sridhar GR, Putcha V, Lakshmi G. Sleep in thyrotoxicosis. Indian J Endocr Metab 2011;15:23-6.

Source of Support: Nil, Conflict of Interest: None declared.