M macroscopic glassy relaxations and microscopic motions in a Frustrated Lattice Gas

Mario Nicodemi and Antonio Coniglio
Dipartimento di Scienze Fisiche, Università di Napoli "Federico II", Sezione INFN e INFN di Napoli
Pad. 19 (Mostra d’O), 80125 (Napoli) (ITALY)

(1) January 7, 1997

We study microscopic and macroscopic dynamical properties of a frustrated lattice gas showing the violation of Stokes-Einstein law. The glassy behaviors are analyzed and related with experimental results in glass form er systems.

In simple liquids the connections between the times of macroscopic relaxations and the properties of microscopic particle motions are elucidated by the Stokes-Einstein relation which links shear viscosity and particle diffusion. Recent experimental evidence shows how such a relation is violated in supercooled glass forming liquids. In these systems complex dynamical behaviors, which are distributed on many time scales, are supposed to be linked in a non-trivial way to atom ic motions of the liquid components.[1]

We face these questions in the context of a microscopic model recently introduced to describe some general features of classes [3]. This model, which bridges Spin Glasses (SG) [1] and site Frustrated Percolation [3], consists in a lattice gas model in which each site contains an internal degree of freedom characterized by a spin variables. The spins interact via quenched ferromagnetic and antiferromagnetic interactions randomly distributed like in the SG model. Then, models are described by the following Hamiltonian:

\[ H = \sum_{ij} J_{ij} S_i S_j + \sum_{i} X_{i} n_i \]

where \( n_i = 0,1 \) are occupancy variables which have an internal Ising degree of freedom \( S_i \), i.e., if \( n_i = 1 \), this model is the standard J Ising Spin Glass. In the limit \( J \to 1 \), it describes a frustrated lattice gas where two nearest neighbor particles can be occupied only if their internal variables satisfy the constraint \( S_i S_j = 1 \). Since in a frustrated interaction loop the spins cannot satisfy all the couplings, in this model particle conservation in which a frustrated loop is fully occupied are not allowed.

In a liquid the internal degrees of freedom \( S_i \) may be associated for example to the internal orientation of particles, but, more generally, they represent microscopic quantities which probe local effects of frustration. Geometric hindrance in the liquid implies the existence of loops which cannot be fully occupied, in correspondence with the frustrated loops in the model (see [3]).

In mean values the static properties of the model show two transitions: one at a value \( c \) which signals the appearance of metastable states and a second one at a dynamical transition at a higher value \( 0 \) (corresponding to a lower temperature). These properties recall those of the p-Spin Glass models [3]. These models have received renewed attention, as their dynamical behavior in mean values is described by the same equation as those of the models coupling theory for simple liquids [1]. Moreover the dynamical transition coincides with the first transition from the stable to the metastable state. The similarity in the static properties of the two models suggests that also the dynamical state may be the same. Therefore we expect for the lattice gas model [3]. In mean values, a dynamical transition at \( c \) with a diffusion coefficient vanishing with a power law.

We have studied the model [3] in 3 dimensions in the limit \( J \to 1 \) by means of Monte Carlo methods. We have used a standard Monte Carlo Dynamical Ising, in which particles are updated with M Metropolis spin flips. Some results on the static and dynamical properties of the model have been previously reported [3]. Here we focus on the relation between the diffusion coefficient and the characteristic relaxation time.

Our data are consistent with the following picture: we find a region \( p > p_0 \) (high temperature) where the model behaves as a normal liquid characterized by simple exponential relaxation and normal diffusion. The value of \( p_0 \) is numerically consistent with the percolation threshold for the particles system. For values \( p < p_0 \) the density, diffusion time dependent autocorrelation function exhibits a two step relaxation, corresponding to the particle system. The value \( p_0 \) corresponds to the spin glass transition characterized by the divergence of the non-linear susceptibility and where moreover the diffusion coefficient, \( D(\tau) \), vanishes [3]. In this region \( D(\tau) \) exhibits a net gap at \( (p < p_0) \). Both the diffusion coefficient and the relaxation time exhibit a power law behavior for \( p \) with a sharp crossover to an Arrhenius or Vogel-Fulcher law for \( p < p_0 \). This crossover can be interpreted in the following way [3]. In mean values the dynamical transition occurs at the same temperature where the static exhibits a transition from a stable to a metastable state. Once in the metastable state the system is trapped forever due to the finite lifetime of the mean value of the metastable state. In the metastable state the system does not reach a full arrest.

The value of \( p_0 \) is located roughly where the relax
ation and the relaxation time starts to separate and where the relation between the relaxation time and the diffusion coefficient violates the Stokes-Einstein law, as observed in real structural glasses [4].

We have considered a cubic lattice of linear sizes \( L = 8;12;16 \) with periodical boundary conditions, setting \( J = 10 \) and using as a variable. Our results do not change for \( J = 10000 \), showing that we are effectively close to the value of \( J = 1 \). As stated, the dynamic in our model is a standard Monte Carlo (MC) dynamics, in which particle diffusion and spins are updated with Metropolis spin. The system is equilibrated after successive themalization at higher and higher values of \( J \) for about \( 10^7 \) MC steps at each fixed value of external parameters. The measures are then taken up to about \( 10^8 \) MC steps, for a given random configuration of the couplings \( \epsilon_{ij} \). We are aware that in the deep glassy regime (above 5) our numerical results may be only indicative due to the required very long simulation times, but this does not change the overall picture described above.

We have calculated the density-density time-dependent autocorrelation functions:

\[
C_k(t) = h_k(t) \quad k(0) = h_k k^i (2)
\]

Here \( k \) is the Fourier transform on the lattice of the density \( h_k(t) = \frac{1}{N} \sum_{i=0}^{L-1} (r_i(t) \cos q_i) \), where \( r_i(t) \) is the particle density, at time \( t \) and at a distance \( r \) from a median plane in our cubic lattice of size \( L \), and \( q_k = \frac{\pi k}{L} \), with \( k = \frac{2}{L} f_1; 2; \ldots; L = 2g \). Times are measured in such a way that \( t = 1 \) corresponds on average to the time to update once all the degree of freedom in the system. We have also calculated the sphere magnetization time-dependent autocorrelation function and found that the same behavior.

As anticipated above, the system at low (i.e., low density) behaves as a normal liquid, with an exponential decaying time correlation functions (see Fig.2): \( C_k(t) \). The characteristic time \( \tau_0(k) \) of the exponential decay (see eq.5) is inversely proportional to \( k \), \( \tau_0(k) \sim \frac{1}{k} \).

For larger values of \( k \), the density even if the short time decay \( (t > 1) \) is still exponential, the long time relaxation \( (t > 1) \) may be reasonably fitted by the Kohlrausch-Williams-Watts stretched exponential form (see Fig.3):

\[
C_k(t) \sim B \exp \left( -A \left( \frac{t}{\tau_0(k)} \right)^{\alpha_k} \right) \quad (3)
\]

with \( \alpha_k \) (see Fig.3), as typically occurs in SG [13]. This implies that, the MC prediction of the electron-penetrable superposition relation (3) is verified only in very narrow density intervals.

Close to \( p = 0.75 \) (p = 0.8), we observe the separation of short times (\( -\)process) and long times (\( +\)process) relaxation. For an estimate of the long time relaxation, the \( +\)relaxation, in principle we could use \( k \) from the \( t \) of eq. (3). However, due to the sensitivity of \( k \) on the details of the \( t \), such as the example region chosen for the \( t \), following Ref. [13] we denote the relaxation \( (k; \tau) \) as the time such that \( C_k(\tau) = 10^{-1} \). For \( k < 2 \), \( (k; \tau) \) is well fitted with a power law behavior (see Fig.3): \( (k; \tau) = A_k(c = \frac{\tau}{\tau_0(k)}) + B_k \)

\[
(4)
\]

\( \tau = \frac{1}{0.3} \) and \( c = 5 \) almost independent of \( k \), \( A_k = 7000 \) and \( B_k = 0.5 \) for \( k = L=4 \). Also the time \( 0(k) \), of the initial exponential decay, follows the same power law dependence up to \( p \), and then saturates to a lower value exponentially with \( k \).

For \( k > 2 \), \( 0(k) \) satisfies the logarithmic behavior with a power law saturation, \( (k; \tau) \) is reasonably fitted by an Arrhenius behavior (see Fig.4):

\[
(k; \tau) = a_k \exp \left( -\frac{1}{b_k} \right) \quad (5)
\]

with \( a_k = 0.7 \) and \( b_k = 0.3 \) for \( k = L=4 \).

The crossover from a power law behavior forecasted by MCT or SpIn Glass can easily be described by an Arrhenius (or Vogel-Tamman-Fulcher) behavior for relaxation times, typically observed in real structural glasses too [13].

It is interesting to compare the anomalous behavior of the autocorrelation functions described above, to microscopic particle diffusion. Here, the central limit theorem may have a strong effect on particles. We have calculated the particle mean square displacement (MSD), \( R_2(t) = \frac{1}{N} \sum_{i=1}^{N} (r_i(t) - r_i(0))^2 i \), \( R_2(t) = \frac{1}{N} \sum_{i=1}^{N} (r_i(t) - r_i(0))^2 i \).

For \( p = 0.5 \), we find a Brownian typical linear time behavior. For \( p > 0.5 \), in the intermediate regime, we observe a subdiffusive region with an intermediate diffusion coefficient, as expected (see Fig.3).

The linear asymptotic behavior of \( R_2(t) \), of the density diffusion \( D \). This shows an apparent crossover at \( 2 \) (0.3) and an abrupt change in behavior, as shown in Fig.1. It is possible that this is due to the power law given in eq.2 of the same and \( c \) (see Fig.2) found studying density relaxation times.

The value \( c \) of the power law \( c \) corresponds to the characteristic tem penature \( T_c \) of M cT coupling T h eory [13], or to the "dynam ic transition" of the mean- field theory of p-Spin Glasses [13]. Above the best \( c \) for \( D \) is obtained using a Vogel-Tamman-Fulcher behavior (see Fig.4):

\[
D_1(\tau) = A_0 \exp \left( -\frac{1}{b_0} \right) \quad (6)
\]

with \( A_0 = 17, b_0 = 11.4 \) and \( a_0 = 0.3, \) for the system of size \( 10^7 \). However an Arrhenius \( t \) (i.e., \( \alpha = 1 \)), as that found for of relaxation, is just slightly worse:

\[
D_1(\tau) = A_0 \exp \left( -\frac{1}{b_0} \right) \quad (7)
\]

where \( A_0 = 2.72 \) and \( b_0 = 11.4 \). A crossover from power law to Arrhenius (or Vogel-Tamman-Fulcher) behavior is also observed in real experiments [13].

In our model, the density corresponding to \( c \) in the Arrhenius transition region, is signaled by a local minimum in the static structure factor (k, \( \tau \)), as a function of
Our observations indicate that the diffusion coefficient $D$ goes to zero in the region where the static SG transition, $\phi_c$, should be located as signaled by the divergent nonlinear susceptibility $\chi_3$. However it is difficult to numerically establish where exactly $\phi_c$ is located ($\phi = 0.55$). As in real glasses, however there is no evidence of density fluctuations.

We compute now the diffusion coefficient $D$ and the relaxation time $\tau$. In a normal liquid, the diffusion coefficient is related to the viscosity, $\eta$, by the Stokes-Einstein relation (SE): $D = \frac{kT}{\eta}$ where $T$ is the temperature in Kelvin and $k$ a constant. In our system it is not possible to directly determine a viscosity, but due to the Maxwell relation, it is proportional to the time scale of the asymptotic relaxation. We end that the product $\tau D$ is a constant varying the potential, as shown in Fig. 3. Studying $\tau D$, three regions emerge, separated by the values of $\tau$ and $D$. A similar separation in three distinct regions is found in real experiments on colloidal suspensions, where plotting the product $\tau D$ as a function of the volume fraction, a behaviour is found close to that depicted in the inset of our Fig. 4.

It has been suggested that the departure from the Stokes-Einstein relation, in glass forming liquids, could be described by the following relation: $D = K \tau$. To check if such relation holds in our model, we have plotted $\tau D$ as a function of $K$ in Fig. 5. By assuming $\tau_D = K$, we end for $p = 1$ (as in usual SE), and for $p = 0.3$. This last value of $p$ is consistent with eq. (3) and eq. (4) and $\phi = \phi_c$.

Experiments in glass forming liquids indicate that the exponent is $\tau$, ranging in a broad interval depending on the system (for instance in o-terphenyl, using the rotational diffusion coefficient is found $\tau = 0.28$). In PMMA $\tau = 0.69$. It is striking that the data on o-terphenyl, not only exhibit the same exponent found here, but the rotational diffusion coefficient also shows a cusp as a function of $T$ and the appearance of several regions, analogous to those depicted respectively in Fig. 2 and Fig. 4.

In conclusion, we have studied the macroscopic relaxation and microscopic diffusion properties of the frustrated Ising lattice gas introduced in (4). Many connections have appeared with the physics of real glass forming liquids ranging from the anomalously in the density relaxations, to those of diffusion, to violation of Stokes-Einstein law.

The authors are grateful to Dino Leporini for useful discussions. This research has been partially supported by a grant of CNR.

1. W. Gostze and L. Spjogren, Rep. Prog. Phys. 55 241 (1992).
2. C. A. Angell, Science, 267, 1924 (1995). M. D. Ediger, C. A. Angell, S. A. Nagel, J. Phys. Chem. 100, 13200 (1996).
3. M. N. Iacoboni and A. Coniglio, J. Phys. A 30, L187 (1997).
4. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
5. T. Kirkpatrick and D. Thirumalai, Phys. Rev. B 36, 5388 (1987). L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 51, 173 (1993).
6. G. Parisi, in the proc. of the International School of Physics "E. Fermi", 1996, eds. F.M.amm and H. G. Stanley.
7. L. Andricioaei, A. Di Silvio, M. G. Zirpoli and D. Leporini, J. Phys.: Condens. Matter 8, 9605 (1996).
8. E. Rossler, J. Tauchert and P. E. Eisen, J. Chem. Phys. 98, 8173 (1995).
9. G. Tarjus and D. Kivelson, J. Chem. Phys. 103, 3071 (1995).
10. L. Andricioaei, A. Di Silvio, M. G. Zirpoli and D. Leporini, J. Phys.: Condens. Matter 8, 9605 (1996).
11. P. N. Segre, S. P. Meeker, P. N. Pusey and W. C. K. Poon, Phys. Rev. Lett. 75, 958 (1995). P. N. Segre and P. N. Pusey Phys. Rev. Lett. 77, 771 (1996).
12. W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994); Phys. Rev. E 51, 4626 (1995); Phys. Rev. E 47, 3281 (1993). P. G. Wol and J. Phys. Rev. Lett. 76, 2730 (1996).
13. A. T. Ogilski, Phys. Rev. B 32, 7384 (1985).
14. J. C. Slater, Phys. Rev. 94, 1840 (1954).
15. W. Gostze and L. Spjogren, Rep. Prog. Phys. 55 241 (1992).
16. C. A. Angell, Science, 267, 1924 (1995). M. D. Ediger, C. A. Angell, S. A. Nagel, J. Phys. Chem. 100, 13200 (1996).
17. M. N. Iacoboni and A. Coniglio, J. Phys. A 30, L187 (1997).
18. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986). G. Parisi, M. M. ezard and M. V. Lomon Spin Glass Theory and Beyond, World Scientific (1988).
19. A. Coniglio J. de Physique IV Colloque C1, suppl. J. de Physique II 3, 1 (1993).
FIG. 1. Fourier transformed density correlation function, $C_k(t)$, for $k = L = 4$, as a function of time for several values of the chemical potential ($= 2.0; 3.0; 5.0$), in a system of linear size $L = 16$ and coupling constant $J = 10$. Superimposed are the short time exponential and the long time stretched exponential $\tau_s$ (see text). Inset: The exponent of the stretched exponentials of the long times of density correlation functions reported in the main frame, as a function of $\tau_s$.

FIG. 2. The short time exponential $\tau_s$-relaxation time $\tau_s(k)$ (circle), and the $\tau_s$-relaxation $\tau_s = \ln(10)$ (square), of density correlation function (for $k = L = 4$), as a function of, for a system of linear size $L = 16$ and $J = 10$. Continuous curves are power law and Arrhenius $\tau_s$ described in the text. The point where the low behaviors fails is located around $\rho \\ \\
$. Inset: The inverse of diffusivity, $D(\tau)$, as a function of $\tau_s$ for the same system. Superimposed are the power law and Vogel-Tamman-Fulcher $\tau_s$ described in the text. The cusp in $D(\tau)$ indicates a characteristic value $2.0$ ($< \theta$, where $\theta$ is the SG transition).

FIG. 3. Particles mean square displacement, $R(t)$, as a function of time in a system of linear size $L = 16$, for $J = 10$, and for $= 0.088; 0.271; 0.440; 0.581; 0.674$ (higher curves correspond to lower densities).

FIG. 4. The diffusivity, $D$, as a function of the $\tau_s$-relaxation time $\tau_s$. As in real experiments three different regions appear. The superimposed curves are with the generalized fractional Stokes-Einstein law $D^{1/3}$. Inset: The product of diffusivity, $D(\tau)$, and of $\tau_s$-relaxation time, $\tau_s(\tau)$, as a function of density.
Macroscopic glassy relaxations and microscopic motions in a Frustrated Lattice Gas

Mario Nicodemi and Antonio Coniglio

Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Sezione INFM e INFN di Napoli
Pad. 19 – Mostra d’Oltremare, 80125 – Napoli – ITALY

(May 28, 1997)

We study microscopic and macroscopic dynamical properties of a frustrated lattice gas showing the violation of Stokes-Einstein law. The glassy behaviors are analyzed and related with experimental results in glass former systems.

In simple liquids the connections between the times of macroscopic relaxations and the properties of microscopic particles motion are elucidated by the Stokes-Einstein relation which links shear viscosity and particle diffusivity. Recent experimental evidence shows how such a relation is violated in supercooled glass forming liquids. In these systems complex dynamical behaviors, which are distributed on many time scales, are supposed to be linked in a non trivial way to atomic motions of the liquid components.

We face these questions in the context of a microscopic model recently introduced to describe some general features of glasses [3]. This model, which bridges Spin Glasses (SG) [4] and site Frustrated Percolation [5], consists in a lattice gas model in which each particle contains an internal degree of freedom characterized by a spin variable. The spins interact via quenched ferromagnetic and antiferromagnetic interactions randomly distributed like in the SG model. The model is described by the following dilute SG Hamiltonian:

\[ \beta H = -J \sum_{\langle ij \rangle} (\epsilon_{ij} S_i S_j - 1)n_i n_j - \mu \sum_{i} n_i \]

where \( n_i = 0, 1 \) are occupancy variables which have an internal Ising degree of freedom \( S_i \pm 1 \), the \( \epsilon_{ij} = \pm 1 \) are quenched random lattice interactions and \( \mu \) is an dimensional chemical potential, which plays the role of the inverse of the temperature \( 1/T \).

When all the sites are occupied (\( n_i = 1 \)), i.e. if \( \mu \to \infty \), this model is the standard ±J Ising Spin Glass. In the limit, \( J \to \infty \), it describes a frustrated lattice gas where two nearest neighbor particles can be occupied only if their internal variables satisfy the constraint \( \epsilon_{ij} S_i S_j = 1 \). Since in a frustrated interaction loop the spins cannot satisfy all the couplings, in this model particle configurations in which a frustrated loop [4] is fully occupied are not allowed.

In a liquid the internal degrees of freedom \( S_i \) may be associated for example to the internal orientation of particles, but, more generally, they represent microscopic quantities which probe local effects of “frustration”. Geometrical hindrance in the liquid implies the existence of loops which cannot be fully occupied, in correspondence with the frustrated loops in the model (see [6]).

In mean field [7] the static properties of the model show two transitions: one at a value \( \mu_c \) which signals the appearance of metastable states and a second thermodynamic transition at a higher value \( \mu_0 \) (corresponding to a lower temperature). These properties recall those of the \( p \)-Spin Glass models [8]. These models have received renewed attention, as their dynamical behaviour in mean field is described by the same equation as those of the mode coupling theory for simple liquids [1]. Moreover the dynamical transition coincide with the first transition from the stable to the metastable state. The similarity in the static properties of the two models suggest that also the dynamics may be the same. Therefore we expect for the lattice gas model (1) in mean field a dynamical transition at \( \mu_c \) with a diffusion coefficient vanishing with a power law.

We have studied the model (1) in \( d = 3 \) dimensions in the limit \( J \to \infty \) by means of Monte Carlo methods. We use a standard Monte Carlo Dynamics, in which particles diffuse and spins are updated with Metropolis spin flip. Some results on the static and dynamic properties of the model have been previously reported [3]. Here we focus mainly on the relation between the diffusion coefficient and the characteristic relaxation time.

Our data are consistent with the following picture: we find a region \( \mu < \mu_p \) (high temperature) where the model behaves as a normal fluid characterized by single exponential relaxation and normal diffusion. The value of \( \mu_p \) is numerically consistent with the percolation threshold for the particles system. For values \( \mu_p < \mu < \mu_\alpha \) the density density time dependent autocorrelation function exhibits a two step relaxation, corresponding to the \( \alpha \) and \( \beta \) relaxation times. The value \( \mu_\alpha \) corresponds to the spin glass transition characterized by the divergence of the non linear susceptibility and where moreover the diffusion coefficient, \( D(\mu) \), vanishes [3]. In this region \( D(\mu) \) exhibits a net cusp at \( \mu^* \) (\( \mu_p < \mu^* < \mu_\alpha \)). Both the diffusion coefficient and the \( \alpha \) relaxation time exhibit a power law behavior for \( \mu < \mu^* \) with a sharp crossover to an Arrhenius or Vogel-Fulcher law for \( \mu > \mu^* \). This crossover can be interpreted in the following way [9]. In mean field the dynamical transition occurs at the same temperature where the static exhibits a transition from a stable to a metastable state. Once in the metastable state the system is trapped forever due to the infinite lifetime of the mean field metastable state. In finite dimension the metastable state has a finite lifetime, and the system does not reach a full arrest.

The value of \( \mu_p \) is located roughly where the \( \beta \) relax-
ation and the $\alpha$ relaxation time starts to separate and where the relation between the $\alpha$ relaxation time and the diffusion coefficient violates the Stokes-Einstein law, as observed in real structural glasses [10-14].

We have considered a cubic lattice of linear sizes $L = 8, 12, 16$ with periodical boundary conditions, fixing $J = 10$ and using $\mu$ as a variable. Our results do not change for $J = 10000$, showing that we are effectively close to the value of $J = \infty$. As stated, the dynamic in our model is a standard Monte Carlo (MC) dynamics, in which particles diffuse and spins are updated with Metropolis spin flip. The system is equilibrated after successive thermalization at higher and higher values of $\mu$ for about $10^6$ MC steps at each fixed value of external parameters. The measures are then taken up to about $10^8$ MC steps, for a given random configuration of the couplings $e_{ij}$. We are aware that in the deep glassy region (above $\mu \sim 5$) our numerical results may be only indicative due to the required very long simulation times, but this does not change the overall picture described above.

We have calculated the density-density time dependent autocorrelation functions:

$$C_k(t) = \langle \rho_k(t) \rho_{-k}(0) \rangle / \langle \rho_k \rho_{-k} \rangle$$

(2)

Here $\rho_k$ is the Fourier transform on the lattice of the density $\rho_k(t) = \frac{1}{N} \sum_{r=0}^{L-1} \rho(r,t) \cos(k r) / \sqrt{N}$, where $\rho(r,t)$ is the particle density, at time $t$ and at a distance $r$ from a median plane in our cubic lattice of size $L$, and $q_k = \frac{2\pi}{L} k$, with $k \in \{1, 2, ..., L/2\}$. Times are measured in such a way that $t = 1$ corresponds on average to the time to update once all the degree of freedom in the system. We have also calculated the the square magnetization time dependent autocorrelation function and found that behaves in a similar way.

As anticipated above, the system at low $\mu$ (i.e. low density) behaves as normal liquid, with exponentially decaying time correlation functions (see Fig. 1): $C_k(t) \sim \exp(-t/\tau_0(k))$. The characteristic time $\tau_0(k)$, excluding finite size effects, is inversely proportional to $k^2$, $\tau_0(k) \sim 1/D_0 k^2 + \tau_\infty$.

For larger values of $\mu$ (larger density) even if the short time decay ($t \leq 1$) is still exponential, the long time relaxation ($t >> 1$) may be reasonably fitted by the Kohlrausch-Williams-Watt stretched exponential form (see Fig. 1):

$$C_k(t) \sim B \exp(-(t/\tau(k))^\beta)$$

(3)

with $\beta$ function of $\mu$ (see Fig. 1), as typically occurs in SG [16]. This implies that, the MCT prediction of time-temperature superposition relation [1] is verified only in very narrow density intervals.

Close to $\mu_p \sim 0.75$ ($\rho_p \sim 0.38$), we observe the separation of short times ($\beta$-process) and long times ($\alpha$-process) relaxation. For an estimate of the long time relaxation, the $\alpha$-relaxation, in principle we could use $\tau(k)$ from the fit of eq. (3). However, due to the sensitivity of $\tau(k)$ on the details of the fit, such as for example the region chosen for the fit, following Ref. [15] we define the $\alpha$ relaxation $\tau_\alpha(k; \mu)$ as the time such that $C_k(\tau_\alpha) = 10^{-1}$. For $\mu < \mu^* \sim 2$, $\tau_\alpha(k)$ is well fitted with a power law behavior (see Fig. 2) [17]:

$$\tau_\alpha(k; \mu) = A_k (\mu_c - \mu)^{-\gamma} + B_k$$

(4)

with $\gamma = 6.8$ and $\mu_c = 5.6$ almost independent of $k$, $(A_k = 7000$ and $B_k = 0.5$ for $k = L/4)$. Also the time $\tau_\alpha(k)$, of the initial exponential like decay, follows the same power law dependence up to $\mu_p$ and then saturates to a finite value exponentially with $\mu$.

For $\mu > \mu^*$, while $\tau_\alpha(k)$ saturates, $\tau_\alpha(k; \mu)$ is reasonable fitted by an Arrhenius behavior divergence (see Fig. 2):

$$\tau_\alpha(k; \mu) = a_k \exp(\mu/\mu_a)$$

(5)

with $a_k = 0.7$ and $\mu_a = 0.4$ for $k = L/4$.

The crossover from a power law behavior forecasted by MCT or Spin Glass mean field theory to an Arrhenius (or Vogel-Tamman-Fulcher in fragile liquids) behavior for $\alpha$ relaxation times, is typically observed in real structural glasses too [2].

It is interesting to compare the anomalies of the autocorrelation functions described above, to microscopic particle diffusion. Here frustration may have a strong effect on particles. We have calculated the particle mean square displacement [3], $R^2(t) = \langle \sum_i (r_i(t) - r_i(0))^2 \rangle$. For $\mu < \mu_p$ we find a Brownian typical linear time behavior. For $\mu > \mu_p$, in the intermediate time region, we observe a subdiffusive region with an inflection which becomes more evident as $\mu$ increases (see Fig. 3).

The linear asymptotic behavior of $R^2(t)$, defines the diffusivity $D$. This shows an apparent cusp at $\mu^* \sim 2$ ($\rho^* \sim 0.5$) and an abrupt change in behavior, as shown in Fig. 2. Below $\mu^*$, it is possible to fit $D(\mu)$ with the power law given in eq.(4) with the same $\gamma$ and $\mu_c$ (see Fig. 2) found studying density relaxation times.

The value $\mu_c$ from the power law fit corresponds to the characteristic temperature $T_c$ of Mode Coupling Theory [1], or to the “dynamic transition” of the mean-field theory of $p$-Spin Glasses [4,8]. Above $\mu^*$ the best fit for $D$ is obtained using a Vogel-Tamman-Fulcher (see Fig. 2):

$$D^{-1}(\mu) = A_D \exp(d/(\mu^{-1} - \mu_c^{-1}))$$

(6)

with $A_D = 17$, $\mu_1 = 11.4$ and $d = 0.3$, for the system of size $16^3$. However an Arrhenius fit (i.e. $\mu_1 \to \infty$), as that found for $\tau_\alpha$ of $\alpha$ relaxation, is just slightly worse:

$$D^{-1}(\mu) = A_D' \exp(\mu/\mu_D)$$

(7)

where $A_D' = 2.72$ and $\mu_D = 1.1$. A crossover from power law to Arrhenius (or Vogel-Tamman-Fulcher) behavior is also observed in real experiments [2].

In our model the density $\rho^*$ corresponding to $\mu^*$, where the Arrhenius region sets in, is signaled by a local minimum in the static structure factor $S(k; \rho)$, as a function of
Our observations indicate that the diffusivity $D$ goes to zero in the region where the static SG transition, $\mu_0$, should be located as signaled by the divergent non linear susceptibility $\chi_{SG}$. However it is difficult to numerically establish where exactly $\mu_0$ is located ($\mu_0 \geq 5.5$) [3]. As in real glasses, however there is no divergence of density fluctuations.

We compare now the diffusion coefficient $D$ and the $\alpha$ relaxation time $\tau_\alpha$. In a normal liquid the diffusion coefficient and the viscosity, $\eta$, are related by the Stokes-Einstein relation (SE): $\eta D = CT$ where $T$ is the temperature in Kelvin and $C$ a constant [19]. In our system it is not possible to directly define a viscosity, but due to the Maxwell relation $\eta$ is proportional to the time scale of the asymptotic relaxation $\tau_\alpha$. We find that the product $\tau_\alpha D$ is not a constant varying the potential $\mu$, as shown in the inset of our Fig. 4. Studying $\tau_\alpha(\mu)D(\mu)$, three regions emerge, separated by the values of $\mu_p$ and $\mu^*$. A similar separation in three different regions is found in real experiments on colloidal suspensions [14], where, plotting the product $\eta D$ as a function of the volume fraction, a behaviour is found close to that depicted in the inset of our Fig. 4.

It has been suggested that the departure from the Stokes Einstein relation, in glass forming liquids [10], could be described by the following relation: $D^{-1} = K\eta^\xi$. To check if such relation holds in our model we have plot (see Fig. 4) $1/D$ as a function of $\tau_\alpha(k = L/4)$. By assuming

$$D^{-1} = K\tau_\alpha^\xi$$  \hspace{1cm} (8)$$

we find for $\mu < \mu_p$, $\xi$ = 1 (as in usual SE), and for $\mu > \mu^*$, $\xi$ = 0.3. This last value of $\xi$ for $\mu > \mu^*$ is consistent with eq. (5) and eq. (7) and $\xi = \mu_0/\mu D$.

Experiments in glass forming liquids [10-13] indicates that the exponent is $\xi \leq 1$, ranging in a broad interval depending on the system (for instance in $\sigma$-terphenyl using the rotational diffusion coefficient is found $\xi = 0.28$ [10], in PMMA $\xi = 0.69$ [13]). It is striking that the data on $\sigma$-terphenyl [10], not only exhibit the same exponent $\xi$ found here, but the rotational diffusion coefficient also shows a cusp as function of $1/T$ and the appearance of several regions, analogous to those depicted respectively in Fig. 2 and Fig. 4.

In conclusion we have studied the macroscopic relaxation and microscopic diffusive properties of the frustrated Ising lattice gas introduced in [3]. Many connections have appeared with the physics of real glass forming liquids ranging from the anomalies in the density relaxations, to those of diffusivity, to violation of Stokes-Einstein law [1,2].

The authors are grateful to Dino Leporini for useful discussions. This research has been partially supported by a grant of CNR.

[1] W. Gotze and L. Sjogren, Rep. Prog. Phys. 55, 241 (1992).
[2] C.A. Angell, Science. 267, 1924 (1995). M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996).
[3] M. Nicodemi and A. Coniglio, J. Phys. A 30, L187 (1997).
[4] K. Binder and A.P. Young, Rev. Mod. Phys. 58, 801 (1986). G. Parisi, M. Mezard and M. Virasoro Spin Glass Theory and Beyond. World Scientific (1988).
[5] A. Coniglio J. de Physique IV Colloque C1, suppl. J. de Physique II 3, 1 (1993).
[6] Rivier, Philosophical Magazine A, 40, 859 (1979).
[7] J. Arenzon, M. Nicodemi and M. Sellitto, Jour. Physique 6, 1143 (1996).
[8] T.R. Kirkpatrick and D. Thirumalai, Phys. Rev. B 36, 5388 (1987). L.F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 51, 173 (1993).
[9] G. Parisi, in the proc. of the “International School of Physics “E. Fermi”, 1996. eds. F. Mallamace and H. G. Stanley.
[10] L. Andreozzi, A. Di Schino, M. Giordano and D. Leporini, J. Phys.: Condens. Matter 8, 9665 (1996).
[11] E. Rossler, J. Tauchert and P. Eiermann, J. Chem. Phys. 98, 8173 (1995).
[12] G. Tarjus and D. Kivelson, J. Chem. Phys. 103, 3071 (1995).
[13] D. Ehlich and H. Sillescu, Macromolecules 23, 1600 (1990).
[14] P.N. Segrè, S.P. Meeker, P.N. Pusey and W.C.K. Poon, Phys. Rev. Lett. 75, 958 (1995). P.N. Segrè and P.N. Pusey Phys. Rev. Lett. 77, 771 (1996).
[15] W. Kob and H. C. Andersen, Phys. Rev. Lett. 73, 1376 (1994); Phys. Rev. E 51, 4626 (1995); Phys. Rev. E 47, 3281 (1993). P. Gallo et al., Phys. Rev. Lett 76, 2730 (1996).
[16] A.T. Ogielski, Phys. Rev. B 32, 7384 (1985).
[17] Actually other fit functions may be used. We reported the power law fit because it is slightly better than other fit such as exponential or Vogel-Fulcher [18]. Moreover the power law fit is consistent with the mean field picture of a power law behaviour at a dynamical transition above the static transition.
[18] M. Nicodemi and A. Coniglio, to be published.
[19] Note that the Stokes-Einstein law has a general validity only in the hydrodynamical limit, namely the size of the diffusive particle must be very large compared with the molecular size of the liquid. Experimentally in normal liquids the SE law is verified even for particle sizes of the order of the molecular size. For this range of particle sizes the SE law must be considered a phenomenological law, which seems to break down near the glass transition. This is also the case for our model where the diffusive particle coincides with the particle fluid.
FIG. 1. Fourier transformed density correlation function, $C_k(t)$, for $k = L/4$, as a function of time $t$ for several values of the chemical potential $\mu$ ($\mu = -2, 0, 3.0, 5.0$), in a system of linear size $L = 16$ and coupling constant $J = 10$. Superimposed are the short time exponential and the long time stretched exponential fits (see text). Inset: The exponent $\beta$ of the stretched exponentials of the long time fits of density correlation functions reported in the main frame, as a function of $\mu$.

FIG. 2. The short time exponential $\beta$-relaxation time $\tau_0(k)$ (circle), and the $\alpha$-relaxation $\tau^*_\alpha \equiv \tau_\alpha / \ln(10)$ (square), of density correlation function (for $k = L/4$), as a function of $\mu$, for a system of linear size $L = 16$ and $J = 10$. Continuous curves are power law and Arrhenius fit described in the text. The point where the low $\mu$ behaviors fail is located around $\mu_p \sim 0.75$. Inset: The inverse of diffusivity, $D(\mu)$, as a function of $\mu$ for the same system. Superimposed are the power law and Vogel-Tamman-Fulcher fits described in the text. The cusp in $D(\mu)$ individuates a characteristic value $\mu^* \sim 2.0$ ($\mu^* < \mu_0$, where $\mu_0$ is the SG transition).

FIG. 3. Particles mean square displacement, $R(t)^2$, as a function of time in a system of linear size $L = 16$, for $J = 10$, and for $\rho = 0.088, 0.271, 0.440, 0.581, 0.674$ (higher curves correspond to lower densities).

FIG. 4. The diffusivity, $D$, as a function of the $\alpha$-relaxation time, $\tau_\alpha$. As in real experiments three different regions appear. The superimposed curves are fit with the generalized fractional Stokes-Einstein law $D^{-1} \sim \tau^*_\alpha$. Inset: The product of diffusivity, $D(\rho)$, and of $\alpha$-relaxation time, $\tau_\alpha(\rho)$, as a function of density $\rho$. 