Slug enhances invasion ability of pancreatic cancer cells through upregulation of matrix metalloproteinase-9 and actin cytoskeleton remodeling

Kejun Zhang1,5, Dong Chen1,5, Xuelong Jiao1,5, Shaoyan Zhang2,5, Xiangping Liu3, Jingyu Cao4, Liqun Wu4 and Dongsheng Wang1

Slug, a member of the Snail family of transcription factors, has a crucial role in the regulation of epithelial-mesenchymal transition (EMT) by suppressing several epithelial markers and adhesion molecules, including E-cadherin. A recent study demonstrated that no relationship exists between Slug and E-cadherin in pancreatic cancer. Another study showed that in malignant mesothelioma effusions Slug was associated with matrix metalloproteinase (MMP) expression, but that there was no association with E-cadherin. F-ascin is an actin-bundling protein involved in filopodia assembly and cancer invasion and metastasis of multiple epithelial cancer types. In this study, we investigated Slug, E-cadherin, and MMP-9 expression using immunohistochemistry in 60 patients with pancreatic cancer and their correlation with carcinoma invasion and metastasis. Additionally, we observed the effects of Slug on invasion and metastasis in the pancreatic cancer cell line PANC-1. Alterations in Slug, MMP-9, and E-cadherin were determined by RT-PCR, western blot, and immunohistochemistry. Alterations in MMP-9 and F-actin cytoskeleton were determined by immunofluorescence staining, flow cytometry (FCM), or gelatin zymography. Slug, E-cadherin, and MMP-9 expression in pancreatic cancer was significantly associated with lymph node metastases, and we found a significant correlation between Slug and MMP-9 expression; however, no significant correlation was observed between Slug and E-cadherin expression. Slug transfection significantly increased invasion and metastasis in PANC-1 cells and orthotopic tumor of mouse in vivo, and significantly upregulated and activated MMP-9; however, there was no effect on E-cadherin expression. Slug promoted the formation of lamellipodia or filopodia in PANC-1 cells. The intracellular F-actin and MMP-9 was increased and relocated to the front of the extending pseudopodia from the perinuclear pool in Slug-transfected PANC-1 cells. These results suggest that Slug promotes migration and invasion of PANC-1 cells, which may correlate with the reorganization of MMP-9 and remodeling of the F-actin cytoskeleton, but not with E-cadherin expression.

Laboratory Investigation (2011) 91, 426–438; doi:10.1038/labinvest.2010.201; published online 31 January 2011

KEYWORDS: E-cadherin; epithelial-mesenchymal transition; F-actin cytoskeleton; matrix metalloproteinase; metastasis; pancreatic carcinoma; Slug

Epithelial tissues are separated from the stroma by a basement membrane and are highly organized by lateral belts of cell-to-cell adhesion complexes. During the progression from a tumor in situ to invasive carcinoma, epithelial tumor cells are released from their neighbors and breach the basement membrane barrier.1 It has frequently been suggested that the process underlying this phenomenon involves epithelial-mesenchymal transition (EMT).2 During EMT, initially polarized epithelial cells acquire attributes reminiscent of mesenchymal cells, thereby inducing cellular invasion into neighboring tissues. Similar processes have been observed in embryogenesis, eg, during gastrulation or during migration of neural crest cells.3 EMT can promote metastasis principally, and several master gene regulatory programs known to promote EMT
during development have recently been discovered to have key roles in cancer progression. Recent work in hepatocellular carcinoma, breast cancer, and esophageal squamous cell carcinoma suggests that the transcriptional factors Snail and Slug are important effectors of the process of invasiveness and tumorigenicity through regulation of the expression of E-cadherin. Two zinc finger proteins repress E-cadherin transcription in vitro and in vivo through interaction of the C-terminal region with E-box in the E-cadherin promoter.

The genetic aberration of E-cadherin is a rare event in sporadic carcinomas, and transcription repressors are considered to take a central role in E-cadherin loss. However, the relationship between Slug transcription, Snail transcription, and E-cadherin is largely dependent on tissue and cell type. In pancreatic cancer, the expression of Snail and Slug showed that pancreatic cancer cells with high Snail expression had no or only low E-cadherin expression. In contrast, cells with low Snail expression had high expression levels of E-cadherin, however, Slug expression exhibited no systematic relationship to the expression levels of E-cadherin. In malignant mesothelial cells, Snail, Slug and Sip1 levels did not exhibit an inverse association with E-cadherin levels. However, Victoria Bolós et al reported that stable expression of Slug in MDCK cells leads to the repression of E-cadherin at the transcriptional level and triggers a complete epithelial to mesenchymal transition.

In addition to E-cadherin, Snail and Slug can induce the expression of genes associated with a mesenchymal and invasive phenotype, such as fibronectin and matrix metalloproteinase (MMP). Joseph et al have reported that induction of Slug in UMSCC1 cells did not repress E-cadherin levels or regulate individual movement of UMCC1 cells. Instead, Slug enhanced cohort migration and Matrigel invasion by UMSCC1 cells, and additionally, Slug increased MMP-9 levels, and MMP-9-specific siRNA blocked Slug-induced Matrigel invasion.

Pancreatic ductal adenocarcinoma (PDAC) is known for its aggressive growth, characterised by early tissue invasion and metastasis. Statistical analysis has revealed a relationship between tumor MMP-9 expression with lymph node involvement and occurrence of distant metastases in PDAC. Koorstra et al found that invasion and migration in pancreatic cancer was highly related to the transcript level of the EMT-associated transcription factors Slug, Snail, Twist, and MMP-9 mRNA levels. Slug expression showed no systematic relationship to the expression levels of E-cadherin in pancreatic cancer tissue, but in mouse skin carcinoma cell lines, Slug and Snail collaborate on tumor growth and metastasis properties by E-cadherin repression, Slug or Snail alone can decrease these properties. In this study, we aimed to examine the expression of Slug, E-cadherin, and MMP-9 in pancreatic cancer and to obtain further insight into the question of whether Slug promotes E-cadherin or MMP-9-induced EMT in pancreatic cancer.

Materials and Methods

Patients and Tissue Samples

Between 1999 and 2009, 60 consecutive pancreatic adenocarcinoma (ordinary ductal carcinoma) specimens for which tissue was available for immunohistochemical staining were identified from the files of General Surgery, the affiliated hospital of medical college, Qingdao University. The principally clinical information, such as pathology, was collected from the hospital charts. All research involving human participants was approved in written form by the patients studied and the ethics committee at the affiliated hospital of medical college, Qingdao University.

Immunohistochemistry

Four-micron thick paraffin-embedded sections were cut, removed from paraffin with xylene, and rehydrated in descending dilutions of ethanol. Endogenous peroxidase activity was blocked by 30 min of incubation with 0.3% hydrogen peroxide in absolute methanol. Tissue slides were immunohistochemically stained for Slug (dilution at 1:100; Santa Cruz Biotechnology), or E-cadherin (dilution at 1:100; Santa Cruz Biotechnology), or MMP-9 (dilution at 1:100, Santa Cruz Biotechnology). The samples were digested with 0.01% saponin before incubation with the primary MMP-9 antibody or Slug antibody or E-cadherin antibody for 30 min. Background staining was minimized by pre-incubation with 1% normal goat serum for 10 min. The sections were incubated with the primary MMP-9 antibody (Slug antibody or E-cadherin antibody) at 4°C overnight. This was followed by the avidin-biotin procedure with a streptavidin-biotin-peroxidase kit (Nichirei, Tokyo, Japan).

For Slug expression in PANC-1 cells, Slug-transfected or mock-transfected or untreated PANC-1 cells were plated at a density of 5 × 10^4/mm^2 in culture dishes for 24 h. After incubation, dishes were washed twice with cold saline. Subsequently, the cells in the dishes were fixed in 3 mol/l NaCl in 70% ethanol for 30 min. The fixed cells were lyzed in 0.12 N HCl in 70% ethanol for 10 min and washed with PBS for 5 min three times. The cells were incubated with 1% normal horse serum in PBS for 30 min at room temperature. After washes with PBS for 5 min, Slug antibody (Santa Cruz Biotechnology) was used as the primary antibody, followed by the rabbit ABC staining system. Slug-positive cells were counted by light microscopy at ×200 magnification and expressed as the number of positive cells per 1000 cancer cells.

Evaluation of Immunohistochemistry Results

The results of the immunohistochemical stainings were evaluated by the percentage of positively stained carcinoma cells. Expression of Slug or MMP-9 was determined as positive when cytoplasmic and/or perinuclear staining was seen in more than 10% of the tumor cells. Expression of Slug was considered negative when no cells or less than 10% of the tumor cells were stained. Expression of E-cadherin was...
determined as described in a previous study. Briefly, the tumor cells that stained as strongly as normal epithelial cells were considered to be 'preserved expression' (positive), and those which exhibited weaker staining than normal epithelial cells or showed completely negative staining were considered to be 'reduced expression' (negative).

Cell Culture and Stable Transfection of PANC-1 Cells

The source of pancreatic cancer PANC-1 cell lines used in this study has been described recently. The PANC-1 cell line used in present study was obtained from ATCC, and maintained in a 5% CO₂ atmosphere at 37°C in RPMI 1640/Ham's F-12 mixed (1:1) medium containing 10% fetal bovine serum. Human full-long Slug cDNA was prepared by PCR amplification of reverse-transcribed products of total RNA from PANC-1 cells, using the specific primers (5'-GGATT CCTCCATTTCCTAAACCTGGTAGTC-3' and 5'-GGATTCG TACTTGCCAGCGGGTCTGGC-3') and LA Taq DNA polymerase (Takara). The human slug cDNA was then inserted into the pcDNA3 vector as recently described and used in present study was obtained from ATCC, and main-

RNA Extraction and RT-PCR Analysis

The mRNA extraction and RT reaction for synthesizing the first-strand cDNA was carried out according to the manufacturer's instructions. Primer sequences were as follows: Slug: sense: 5'-CCTCCAAAAGCCAAAAACTACTA-3', antisense: 3'-TGTGTGTCTACACAGCCAGCC-5'; E-cadherin: sense: 5'-TTGAGGTCTAGAAGGACCAAAACG-5'; antisense: 3'-TTGAGGTCTAGAAGGACCAAAACG-5'; GAPDH: sense: 5'-TGATGGGTAGACGAGCAGACAG-3', antisense: 3'-TGGAATGGCAGAGACCAAAACG-5'. Fluorescent bands were visualized using a UV-CCD video system (Epi-LightUVFA1100; AISIN COSMOS, Tokyo, Japan) and were analyzed using Quantity One image-analysis software (PDI, NY). The intensity of each band relative to the GAPDH band was represented as the mean ± s.d. The significance of differences found between the control group and Slug cDNA-treated group was evaluated with Student's t-test. The mean ± s.d. values are shown in the figures. P<0.05 was considered to be statistically significant.

Quantitative Real-Time PCR

The total cellular RNA from various PANC-1 samples was extracted and purified from the samples above using Trizol Reagent (Life Technologies Inc.) according to the manufacturer’s instructions. Quantitative real-time PCR was performed using the ABI Prism 7500 Sequence Detection System (Perkin-Elmer Applied Biosystems). Q-PCR assays were performed in triplicate and the mean values were used for calculations of mRNA expression. Relative levels were determined using the 2(−ΔΔCt) method.

Western Blotting

Whole-cell proteins in various PANC-1 samples were isolated, the lysates centrifuged, and the supernatant collected and stored at −70°C according to the manufacturer’s instructions. Protein concentration was measured at OD595 with the use of the Bradford assay reagent. In all, 30 μg of total protein was loaded per well, separated by 7.5–12% SDS-PAGE, and transferred to polyvinylidene difluoride membranes at 150 mA for 16 h at 4°C. The membranes were blocked and incubated with primary antibodies. The membranes were rinsed twice with 0.1% Tween 20 PBS for 15 min. The secondary antibodies were used with horseradish peroxidase-conjugated goat anti-mouse IgG antibody (1:5000) and horseradish peroxidase-conjugated donkey anti-rabbit IgG antibody (1:5000) for 1 h at room temperature. The blotted membranes were washed three times with 0.1% Tween 20 PBS for 15 min. The immunoblots were detected by using an electrochemiluminescence kit (Amasham, Piscataway, NJ) and exposed to X-OMAT AR film.

Gelatin Zymography

Gelatin zymography was performed using a Gelatinzymo electrophoresis kit (Yagai Research Center, Yamagata, Japan) according to the manufacturer’s protocol.

ELISA Assay

A commercial ELISA kit (Calbiochem) was used to analyze the cellular level of MMP-9. Briefly, an anti-MMP-9 monoclonal antibody was pre-coated onto the 96-well microtitre plate. The second anti-MMP-9 antibody was added to each well. The standard or unknown sample (100 μl) was then added to the well. The plate was then incubated at room
temperature for 2 h and the wash was repeated. A substrate solution was then added to all wells and incubated for 30 min. At this point, a stop solution was added to all wells. Color development and intensity of the color were measured using an ELISA plate reader. A standard curve was prepared, plotting the absorbance vs the concentration of the cytokine expressed as picogram per milliliter in the original samples.

Flow Cytometry for F-actin

Cells (1 × 10⁶) were harvested and the pellets were washed twice with PBS. Cells were then fixed in 18% formaldehyde with 1.65 μmol/l rhodamine-labeled phalloidin. Fixed cells were kept overnight at 4°C. Samples were analyzed by flow cytometry using a FACSCalibur flow cytometer (BD Biosciences).

Confocal Laser Scan Microscopy and Flow Cytometry Microscopy

For F-actin location, PANC-1 cells were fixed for 20 min in paraformaldehyde in PBS, put on ice, permeabilized for 5 min in 0.2% Triton X-100, incubated with 5 μU/ml FITC-phalloidin (Molecular Probes) for 30 min, washed three times with PBS, and mounted with Antifade (Molecular Probes). Fixed cells were analyzed by confocal microscopy.²⁷ Flow cytometry was used to analyze the total amount of fluorescence in 1 × 10⁵ PANC-1 cells mentioned above.

Double-labeled Immunofluorescent Staining

PANC-1 cells grown on Lab-Tek 8-well permanent chamber slides and were fixed with 4% paraformaldehyde in PBS for 20 min and then permeabilized with 0.1% Triton X-100 in PBS for 5 min at room temperature. Cells were incubated with a blocking solution (1% bovine serum albumin in PBS) for 30 min and then with primary antibodies of affinity-purified mouse monoclonal antibody for F-actin and MMP-9 (Tyr³⁹⁷; BD Biosciences), diluted in 1% bovine serum albumin in PBS, and maintained at 4°C in humidified air for 18 h. After three washes with PBS, the cells were incubated in the presence of secondary antibodies of rabbit anti-mouse IgG antibody labeled with FITC for 1 h. For actin and MMP-9 staining, fixed cells were incubated with rhodamine-conjugated phalloidin (Chemicon) for 15 min at room temperature, followed by confocal laser scan microscopy after being washed twice with PBS as previously described.²⁷

Cell Invasion Assays

Cell invasion assays were performed using 8-μm pore size Transwell Biocoat Control inserts (Becton Dickinson). Briefly, 5 × 10⁴ PANC-1 cells were seeded on a transwell containing 8-μm pores for the invasion assay. The chamers were put into the incubator at 37°C, 5% CO₂. Cells on the top surface of the transwell were removed by scrubbing 48 h after incubation. The cells were fixed for 45 s with 95% ethanol, and stained for 20 min with 0.1% (0.1 ml) crystal violet (C6158-50G; Sigma Aldrich). We counted the number of transmembrane cells under an optical microscope, chose five high-power fields randomly, and checked each field of vision to evaluate the invasion and metastasis of tumor cells in vitro. The identified cells were counted and compared among groups. Individual experiments were done in duplicate and repeated four times.

Animal Studies

Female C57BL/6 mice at 6–8 weeks old were obtained from Qingdao Medical college, Qingdao University for tumor implantation. All animals were maintained in a sterile environment and cared for within the laboratory animal regulations of the Ministry of Science and Technology of the People’s Republic of China (http://www.most.gov.cn/kytj/kytjzcwj/200411). Full details of the study approval by the ethics committee at the affiliated hospital of medical college, Qingdao University.

We inoculated the nude mice with cell samples as described previously.²⁸ Briefly, PANC-1 cells (5 × 10⁵ cells plus 50 μl PBS per mouse) were orthotopically injected into the pancreas under the envelope near spleen of nude mice (n = 12 for each variant). After 28 days, the mice were killed following the operation. The number of tumors seeded in the liver is used for assessment of metastases. The tumors from the pancreas were removed for H&E staining and immunohistochemistry analysis as described above. Orthotopic tumor induction was successful in 100% of the animals.

Statistical Assessment

All statistical analyses were performed using SPSS13.0 software. The results were presented as mean ± s.d. of three replicate assays. Differences between various groups were assessed using ANOVA or Dunnett’s t-test. A P-value of < 0.05 was considered to indicate statistical significance.

RESULTS

Slug, MMP-9, or E-cadherin Expression in Pancreatic Adenocarcinoma Tissue

Figure 1 shows the representative expression patterns of Slug, MMP-9, and E-cadherin in ductal adenocarcinomas tissue. Positive staining of Slug was seen in the cytoplasm as well as in the nucleus of tumor cells in 41 (68.3%) of 60 cases of adenocarcinoma (Figure 1a and b). MMP-9 was expressed in the cytoplasm in 25 (41%) cases and E-cadherin was expressed in the membrane in 24 (40%) cases (Figure 1c and d).

The Relationship Between Slug, MMP-9, and E-Cadherin Expression and Pathological Data

Slug, MMP-9, and E-cadherin expression was significantly associated with nodal metastases (P < 0.01, respectively, Table 1). Only MMP-9 was significantly associated with nervous invasion (P < 0.05, Table 1). Statistically significant correlations were found between Slug and MMP-9 expression (P < 0.05). There was no significant relationship...
between the expression of Slug and the expression of E-cadherin \((P>0.05, \text{ Table 2})\). No significant relationship between E-cadherin and MMP-9 expression was found \((P>0.05, \text{ data not shown})\).

Figure 1 Expression of Slug, MMP-9, and E-cadherin in human pancreatic adenocarcinomas as determined by immunohistochemistry. Staining of Slug was found in the cytoplasm as well as in the nucleus of tumor cells (a, b). Staining of MMP-9 was found in the cytoplasm of tumor cells (c, d). E-cadherin expression was identified in the cell membrane and, to a lesser degree, in the cytoplasm (e–f). (a, c, e) Magnification, \(\times 100\). (b, d, f) Magnification, \(\times 400\).

Slug promotes MMP-9 Expression In vitro in PANC-1 Cells

Normally, PANC-1 expresses Slug only at low levels, as analyzed by RT-PCR and western blot.\(^{15}\) In the present study,
Nervous invasion 2.64 >0.05 4.43 <0.05 0.02 >0.05
Negative (n = 32) 21 11 7.25 13 19
Positive (n = 28) 20 8 18.10 11.17

PANC-1 cells transfected with Slug cDNA expressed higher levels of Slug protein than the mock-transfected cells and untransfected PANC-1 cells as analyzed by western blot and immunohistology (P<0.05, respectively) (Figure 2a and b). Moreover, the cellular localization of overexpressed Slug was in the cytoplasm.

We analyzed the effect of Slug on MMP-9 expression in PANC-1 cells, one of the most aggressive pancreatic cancer cell lines. RT-PCR, Q-PCR, and western blot analysis showed that Slug overexpression upregulated MMP-9 at the mRNA and protein level when compared with control or PANC-1 cells infected with empty vector (Figure 2b–d).

The ELISA assay of supernatant medium confirmed that overexpression of Slug in PANC-1 cells exhibited a higher level of MMP-9 protein compared with mock or untransfected PANC-1 (Figure 2b). However, MMP-9 upregulation was significantly lower in Slug-transfected clones (Figure 2g and h).

We then analyzed the effect of Slug overexpression on MMP-9 expression in PANC-1 cells and no significant change was found in PANC-1 cells (Figure 2f).

We then analyzed the effect of Slug overexpression on E-cadherin expression in PANC-1 cells and no significant change was found in PANC-1 cells (Figure 3a and b). PANC-1 cells showed obvious filopodia (Figure 3c and d) when transfected with Slug. Vector-transfected clones did not have any effect on the morphology of Slug and E-cadherin (data not shown).

Slug Promotes the Formation of Pseudopodia in PANC-1 Cells

The morphology of non-treated PANC-1 appears as shown in Figure 3a and b. PANC-1 cells showed obvious filopodia (Figure 3c and d) when transfected with Slug. Vector-transfected clones did not have any effect on the morphology of PANC-1 (data not shown).

Slug Promotes the F-actin Polymerization of PANC-1 Cells

FCM showed that the intracellular F-actin in Slug-transfected clones increased 2.1-fold (P<0.01, vs control) with no significant increase in vector-transfected clones (P>0.05, vs control) (Figure 4a). Confocal laser scan microscopy showed that in PANC-1 and mock-transfected PANC-1 cells, F-actin was external, and there was a lower intracellular F-actin density; the intracellular F-actin was polymerized in Slug-transfected clones (Figure 4d), moreover, in contrast to non-treated PANC-1 cells (Figure 4b) and vector-transfected cells (Figure 4c), hyperchromic F-actin outside the cells exhibited redistribution (Figure 4d). But in vector-transfected clones, no obvious intracellular F-actin polymerized was found (data not shown).

Immunofluorescence Staining of MMP-9 and F-actin

In non-treated PANC-1 cells, MMP-9 and F-actin are primarily located in the perinuclear cisterna (Figure 5a–c), but in Slug-transfected clones, MMP-9 and F-actin are primarily located in the anterior extremity of the filopodia (Figure 5c–e). There is no obvious location change for F-actin and MMP-9 in vector-transfected clones (data not shown).
 Slug Promotes Invasion in PANC-1 Cells In-vitro

To investigate whether Slug promotes metastasis, we carried out in vitro invasion assays. The number of transmembrane PANC-1 cells was 68.74 ± 7.34 (Figure 6a), overexpression of Slug in PANC-1 cells was 117.16 ± 8.45 (Figure 6a), and Slug overexpression combined with 0.1 μmol/l BB94 for 24 h was...
Therefore, overexpression of Slug enhanced invasion in PANC-1 cells. The difference was statistically significant (Figure 6b).

Slug Promotes Metastasis In vivo

Four weeks after the graft, the animals were killed and autopsy was conducted to remove organs. Liver metastasis and lung metastasis occurred in four mice and one mouse, respectively, in PANC-1 cells, and three liver metastases in control vector-transfected mice. Slug-transfected cells exhibited a highly invasive behavior, 2 skin metastases, 6 lung metastases, and 10 liver metastases occurred in Slug-transfected cells. Differences of metastasized nodes in lung and liver reached statistical significance in Slug-transfected mice compared with vector-transfected mice (Table 3).

Slug promotes MMP-9 Expression In vivo

To verify the Slug-dependent upregulation of MMP-9 expression under in vivo conditions, the MMP-9 expression

63.14 ± 6.49 (Figure 6b). Therefore, overexpression of Slug enhanced invasion in PANC-1 cells. The difference was statistically significant (Figure 6b).

Figure 3 The formation of pseudopodia in PANC-1 cells mediated by Slug. (a, b) The morphology of non-treated PANC-1 cells. (c, d) The morphology of Slug-transfected clones showed obvious filopodia (Rhodamine-labeled phalloidin staining, ×400).
profile of Slug and control vector-transfected cells was examined by immunohistochemistry using monoclonal antibodies directed against human MMP-9 on xenograft paraffin sections. The Slug-transfected cells implanted in vivo were more intensely stained by MMP-9 antibodies compared with that of empty vector-transfected cells (Figure 7). As demonstrated in vitro, no change of staining was observed for E-cadherin in the Slug-transfected and vector-transfected cells in the in vivo xenograft model.

DISCUSSION

The importance of Slug, a transcription factor and E-cadherin repressor, to allow cancer cells to downregulate epithelial markers and upregulate mesenchymal markers in order to become motile and invasive has recently been reported. Moreover, Slug has been shown to modulate expression of a variety of adhesion structures, including desmosomes and adherens junctions. Recent studies have shown that Slug is upregulated in many types of epithelial cancers, including breast, gastric carcinomas, esophageal squamous cell, ovarian carcinoma, and cholangiocarcinoma. Slug seems to have an important role in tumor progression and invasion as well as in the downregulation of the adhesion molecule E-cadherin.

In our study, we reported that immunohistochemical analysis using clinical samples revealed the expression of Slug in pancreatic cancer, suggesting that Slug might have a critical role regarding tumor node metastasis in pancreatic cancer, as Slug reportedly does in other types of malignancies. A significant relationship was observed between Slug upregulation and tumor node metastasis status; Slug expression was increased in node-positive tumors. Slug may serve as a marker for the prediction of the malignancy of pancreatic cancer after operation. However, in a previous study a correlation between the expression level of Slug and tumor node metastasis status was not obvious in human pancreatic cancer specimens. The difference may be because of the limited number of patients or the evaluation the immunohistochemistry results.

E-cadherin is an important mediator of epithelial adhesion and signaling transduction. Loss of E-cadherin expression has been described in invasion and metastasis of many cancers, including pancreatic cancer. In the present study, we found that reduced E-cadherin was significantly associated with histological grade, TNM stage and tumor-node-metastasis, but expression of Slug in pancreatic cancer cells showed no significant relation to a decreased expression of E-cadherin. These results are consistent with recent data indicating that Slug was not associated with E-cadherin in hepatocellular carcinoma.
A previous study found that there was no relationship between the expression of E-cadherin or MMP-9 with stage, histology stage, or perineural invasion, but a significant relationship was found between the expression of E-cadherin/MMP-9 ratio and perineural invasion. In this study, we found that expression of MMP-9 was significantly associated with nodal metastasis and nervous metastasis in pancreatic cancer tissue; results were consistent with previous study. We also found that the pancreatic cancer tissue with high Slug expression had strong MMP-9 expression, and moreover the expression of Slug was significantly associated with E-cadherin expression. This suggests that Slug promotes migration and invasion, and may correlate with the upregulation of matrix metalloproteinase-9, but not with E-cadherin expression.

To test the significance of Slug expression in pancreatic cancer, we transfected the Slug cDNA into pancreatic cancer cells PANC-1. After transfection, the invasive ability of PANC-1 cells increased dramatically. Slug-transfected cells implanted into nude mice metastasized widely compared with parental untransfected cells. This corroborated the role of Slug in pancreatic cancer progression, and indicates that Slug has an important role in pancreatic cancer invasion and metastasis.

We also found that Slug cDNA promoted metastasis in pancreatic cancer, but it did not inhibit the expression of E-cadherin in pancreatic cancer cells. We suggested that Slug accelerates pancreatic cancer progression, but not through E-cadherin repression; results that are consistent with a previous study. Thus, it would be unlikely that E-cadherin would be the only target gene for Slug proteins, and similarly unlikely that it drives the whole process. These apparent discrepancies in relation to E-cadherin regulation could be a reflection of the specific contribution of various cellular contexts.

It is reasonable to theorize that Slug is largely involved in migration, ie, cell motility of tumor cells. However, it has been largely unclear how Slug proteins exhibit the invasive activity, and the exact mechanism of Slug-dependent invasion is almost unknown. The present study for the first time has explored the relationship between Slug and MMP-9 in pancreatic cancer and clarified the novel mechanism.

In the present study, we found that MMP-9 is mainly located in the perinuclear cisterna in PANC-1 cells, but in Slug-transfected clones, MMP-9 is mainly located in the anterior extremity of the filopodia, allowing MMP-9 to digest the extracellular matrix (ECM). In vitro and in vivo studies showed that Slug apparently upregulated both the expression levels and activities of MMP-9, leading to enhancement of the invasive activity. MMP-9-specific BB94 blocked Slug-induced Matrigel invasion in the malignant PANC-1 cells. These
findings indicate that Slug may regulate the metastatic nature of PANC-1 by directly upregulating MMP-9, through enhancement of the invasive activity, ie, the degradation of the ECM. Such Slug-dependent transcriptional change in MMP-9 genes is a new and interesting finding, and the detailed mechanisms, especially the transcriptional factors linking to Slug, may be clarified in future studies.

A key cellular process associated with the invasive or metastatic program in many cancers is the transformation of epithelial cells toward a mesenchymal state, a process called EMT. Actin-dependent protrusion of cell pseudopodia is a critical element of mesenchymal cell migration and, therefore, of cancer metastasis. However, whether EMT occurs in human cancers and, in particular, whether it is a prerequisite for tumor cell invasion and metastasis, remains a subject of debate.

F-ascin is an actin-bundling protein involved in filopodia assembly and cancer invasion and metastasis of multiple epithelial cancer types. Fascin forms stable actin bundles with slow dissociation kinetics in vitro and is regulated by phosphorylation of serine 39 by protein kinase C (PKC). Cancer cells use invasive finger-like protrusions termed invadopodia to invade into and degrade the ECM. In the present study, we initially analyzed the intracellular F-actin in Slug-transfected clones and FCM showed that the intracellular F-actin in Slug-transfected clones increased 2.1-fold. We then studied the expression of F-actin using immunofluorescence staining and determined that, in non-treated PANC-1 cells, F-actin is mainly located in the perinuclear cisterna; however, in Slug-transfected clones, F-actin is principally located in the anterior extremity of the filopodia. The results suggested the invadopodia in PANC-1 cells was formed by intracellular F-actin polymerization induced by Slug. We also found that MMP-9 and F-actin together were mainly located in the anterior extremity of the filopodia in Slug-transfected clones, suggesting Slug might transport MMP-9 via F-actin.

Figure 6 In vitro invasion activities. The number of PANC-1 cells (a), Slug-transfected cells (b), and Slug-transfected PANC-1 treated with BB94 (c) on the bottom surface of transwell containing 8-μm pores were counted as invasion activities 24 h after incubation. Data represent mean and s.d. of three independent experiments (n = 6/group in each experiment) (d).

Table 3 Slug promoted in vivo tumor hepatic metastasis and lymph node invasion (n = 10)

Groups (n = 12)	Hepatic metastasis	Lung metastasis		
	Negative	Positive	Negative	Positive
PANC-1	8	4	11	1
Mock-transfected	9	3	12	0
Slug-transfected	2	10*	6	6**

Contrast to control or mock, *P < 0.05; **P < 0.01.
networks. These findings indicate that Slug may regulate the metastatic nature of PANC-1 by stimulating cell motility (probably by modulation of the cytoskeletal structure that is well established).

Taken together, there is a possibility that Slug may not only transcriptionally increase MMP-9 expression, but is also responsible for the remodeling of the cytoskeleton network. Acting in concert, they may together mediate invasion and

Figure 7 Expression of Slug, MMP-9, and E-cadherin in the in vivo xenograft model (SP × 200). Immunohistochemistry with monoclonal antibodies directed against human Slug, MMP-9, and E-cadherin was performed to compare the Slug, MMP-9, and E-cadherin expression profile of Slug- and vector-transfected clones in the in vivo human xenograft model. Bars, 21 μm. (a) Slug is weakly expressed in mock-transfected group, (b) Slug is intensely expressed in Slug-transfected group, (c) MMP-9 is weakly expressed in mock-transfected group, (d) MMP-9 is intensely expressed in Slug-transfected group, (e) E-cadherin is moderately expressed in mock-transfected group, and (f) MMP-9 is moderately expressed in Slug-transfected group.
metastasis in PANC-1 cells; further study is warranted to elucidate the exact mechanisms involved, and also to evaluate the potential scope of application in additional human carcinoma cell types.

DISCLOSURE/CONFLICT OF INTEREST
The authors declare no conflict of interest.