Predictors for readmission following primary total hip and total knee arthroplasty

Ong-art Phruetthiphat1, Jesse E Otero2, Biagio Zampogna3, Sebastiano Vasta3, Yubo Gao2 and John J Callaghan2

Abstract

Background: Readmission following total joint arthroplasty has become a closely watched metric for many hospitals in the United States due to financial penalties imposed by Centers for Medicare and Medicaid Services. The purpose of this study was to identify both preoperative and postoperative reasons for readmission within 30 days following primary total hip and total knee arthroplasty (TKA).

Methods: Retrospective data were collected for patients who underwent elective primary total hip arthroplasty (THA; CPT code 27130) and TKA (27447) from 2008 to 2013 at our institution. The sample was separated into readmitted and nonreadmitted cohorts. Demography, comorbidities, Charlson comorbidity index (CCI), operative parameters, readmission rates, and causes of readmission were compared between the groups using univariate and multivariate regression analysis. Results: There were 42 (3.4%) and 28 (2.2%) readmissions within 30 days for THA and TKA, respectively. The most common cause of readmission within 30 days following total joint arthroplasty was infection. Trauma was the second most common reason for readmission of a THA while wound dehiscence was the second most common cause for readmission following TKA. With univariate regression, there were multiple associated factors for readmission among THA and TKA patients, including body mass index, metabolic equivalent (MET), and CCI. Multivariate regression revealed that hospital length of stay was significantly associated with 30-day readmission after THA and TKA. Conclusion: Patient comorbidities and preoperative functional capacity significantly affect 30-day readmission rate following total joint arthroplasty. Adjustments for these parameters should be considered and we recommend the use of CCI and METs in risk adjustment models that use 30-day readmission as a marker for quality of patient care.

Level of Evidence: Level III/Retrospective cohort study

Keywords
comorbidities, predictors, preoperative functional capacity, readmission, total hip arthroplasty, total knee arthroplasty

Introduction

Lower extremity total joint arthroplasty ranks among the most common and effective surgical procedures, with nearly one million cases performed in the United States annually.1-3 However, surgical delay in patients undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA) may cause undue disruption in surgeon and hospital resource utilization.4,5 In addition, readmission after elective total joint arthroplasty negatively impacts quality of treatment and hospital expense. Recently, several articles have identified the short-term readmission rates (ranging from 2.9% to 15.6%) after elective

1 Department of Orthopaedics, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
2 Department of Orthopaedic Surgery and Rehabilitation, University of Iowa Hospital and Clinics, Iowa City, IA, USA
3 Department of Orthopaedics and Trauma Surgery, University Campus Bio-Medico of Rome, Rome, Italy

Corresponding author:
Ong-art Phruetthiphat, Department of Orthopaedics, Phramongkutklao Hospital and College of Medicine, 315 Rachwidi Road, Rachathewi, Bangkok 10400, Thailand.
Email: ongart-phr1@hotmail.com, ophruetthiphat@gmail.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
primary TKA and THA within 30 and 90 days. To our knowledge, most analyses utilized the dataset from American College of Surgeons-National Surgical Quality Improvement Program (ACS-NSQIP), which did not link readmissions with the primary diagnosis for readmission nor did the studies identify the correlation between comorbidities and readmission using the Charlson comorbidity index (CCI). The aim of our study is to use our internal electronic database to (1) identify the incidence and risk factors for 30-day readmission in THA and TKA; (2) to identify any correlation of CCI in lower extremity total joint arthroplasty patients with readmission; and (3) to determine the primary cause of readmission in THA and TKA.

Methods

Data

After institutional review board approval, retrospective data were collected for patients who underwent elective primary THA and TKA between January 1, 2008, and December 31, 2013. Each author certifies that his institution has approved the human protocol for this investigation and that all investigations were conducted in conformity with ethical principles of research.

A total of 2518 patients underwent total joint arthroplasty between 2008 and 2013 with ICD-9 procedure code 81.51 (THA) and 81.54 (TKA). Patients were excluded if (1) they were transferred to another hospital during their initial admission and (2) patients had an indisputably planned readmission (e.g. readmission for the second stage of a staged bilateral arthroplasty or another joint arthroplasty). After exclusion, there were 2481 patients (1225 THA and 1256 TKA) available for statistical analysis. All patients underwent THA or TKA by four adult hip and knee specialist surgeons in our institute.

We collected demographic and clinical data, including age, gender, body mass index (BMI), hospital length of stay (LOS), and the presence of medical comorbidities.

Preoperative comorbidities included obesity, smoking, alcohol use, use of an anticoagulant, corticosteroid use for a chronic condition, diabetes mellitus with or without end-stage organ failure, asthma, chronic obstructive pulmonary disease, hypertension, congestive heart failure, previous myocardial infarction, previous cardiac surgery, peripheral vascular disease, chronic kidney disease, malignancy, and connective tissue disease (SLE; Systemic lupus erythematosus, rheumatoid arthritis). CCI was applied to identify the correlation of preoperative comorbidities and readmissions. Metabolic equivalents (METs) were utilized as an indicator for preoperative burden of comorbidities. The American Society of Anesthesiologists (ASA) class was used as an indicator for preoperative burden of comorbidities. ASA class 1 defines as healthy patients; ASA class 2 is mild-to-moderate systemic disease caused by a surgical mechanism—not including traumatic cause; ASA class 4 is a severe incapacitating disease that is a constant threat to life; ASA class 5 defines as moribund patients; and ASA class 6 is declared as a brain-dead patient. Operative variables included total operative time, operative blood loss, and days from operation to discharge (hospital LOS).

All patients readmitted within 30 days of discharge following a primary total joint arthroplasty were identified. Unplanned readmission was divided into two etiological categories: (1) Surgical factor associated with readmission and (2) medical factor associated with readmission. The proportion of readmission due to each cause was reported with a focus on the top 10 causes, as defined by Centers for Medicare and Medicaid Services (CMS).

Statistical analysis

We stratified patient data into readmitted and nonreadmitted cohorts and compared demographic variables, preoperative comorbidities, including CCI, preoperative activity level measured by METs, etiology of OA (primary, secondary, and posttraumatic), operative characteristics, and hospital LOS. The Pearson’s χ^2 test and the Fisher’s exact test, when appropriate, were applied to compare differences in categorical variables. Differences in continuous variables were evaluated with the Student’s t-test.

Univariate logistic regression was used to identify predictors of THA (Table 1) and TKA (Table 2) readmission, which were analyzed separately. To assess the simultaneous effects of the predictors of readmission, we further applied a multivariate logistic regression model (Table 4). Variables with chart completion rates of less than 80% were excluded to avoid model skewing. Results were reported as odds ratios (ORs) and its 95% confidence intervals (CIs). Model performance was evaluated through the c-statistic and Hosmer–Lemeshow model calibration statistic. Statistical analysis was performed using SAS 9.3 (SAS Institute, Cary, NC, USA) with statistical significance set to $p <0.05$.

Results

Demographic characteristics, specific characteristics, and preoperative comorbidities

This study identified 2481 patients who underwent THA and TKA from our hospital database. There were 42 patients...
Table 1. Preoperative characteristics for total hip arthroplasty.

Demographic data	Not readmitted (N = 1183)	Readmitted (N = 42)	p Value^a
Age^b (year) ± SD	59.4 ± 13.3	63.7 ± 15.5	0.094
Sex^c			0.684
Male	610 (51.6%)	23 (54.8%)	
Female	573 (48.4%)	19 (45.2%)	
BMI category^c			0.019
Normal (18 to <25 kg/m²)	224 (18.9%)	6 (14.3%)	
Overweight (25 to <30 kg/m²)	355 (30.0%)	18 (42.9%)	
Obese (30 to <35 kg/m²)	273 (23.1%)	4 (9.5%)	
Very obese (35 to <40 kg/m²)	178 (15.1%)	4 (9.5%)	
Morbidly obese (40 to <45 kg/m²)	107 (9.0%)	5 (11.9%)	
Super obese (≥45 kg/m²)	46 (3.9%)	5 (11.9%)	
Specific characteristics			
Metabolic equivalents (METs)^c			0.007
Low (1–4)	483 (44.9%)	29 (69.0%)	
Moderate (5–7)	503 (46.8%)	12 (28.6%)	
High (>8)	89 (8.3%)	1 (2.4%)	
Charlson comorbidity index^b	3.1 (0.0–12.0)	4.1 (0.0–8.0)	<0.001
Causes of osteoarthritis^c			0.002
Primary	848 (71.9%)	23 (54.8%)	
Secondary	215 (18.2%)	8 (19.0%)	
Posttraumatic	116 (9.9%)	11 (26.2%)	
Preoperative comorbidities^c			
General			
Smoking	183 (15.5%)	4 (9.5%)	0.385
Alcohol use	478 (40.7%)	16 (38.1%)	0.737
Endocrine			0.375
Diabetes mellitus			
Diabetes without complications	940 (79.5%)	31 (73.8%)	
Diabetes with complications	243 (20.5%)	11 (26.2%)	
Respiratory			
Asthma	90 (7.6%)	4 (9.5%)	0.557
COPD	50 (4.2%)	2 (4.8%)	0.698
Cardiovascular			
Hypertension	633 (53.5%)	24 (57.1%)	0.643
Congestive heart failure	25 (2.1%)	3 (7.1%)	0.068
Previous myocardial infarction	140 (11.8%)	12 (28.6%)	0.001
Previous cardiac surgery	43 (3.6%)	4 (6.5%)	0.073
Peripheral vascular disease	33 (2.8%)	0 (0.0%)	0.625
Renal			0.073
Chronic kidney disease	43 (3.6%)	4 (9.5%)	
Hematologic			
Anticoagulant use	422 (35.7%)	22 (52.4%)	0.028
Malignancy	58 (4.9%)	4 (9.5%)	0.159
Connective tissue disease	11 (0.9%)	0 (0.0%)	1.000
Prior medical therapy			
Corticosteroid use	330 (27.9%)	14 (33.3%)	0.443
Operative variables			
ASA class^c			<0.0001
1	50 (4.2%)	2 (4.8%)	
2	762 (64.8%)	14 (33.3%)	
≥3	364 (31.0%)	26 (61.9%)	
Operative time^b (min)	110.5 (48.0–480.0)	111.4 (66.0–188.0)	0.884
Hospital length of stay^b (day)	3.1 (1.0–23.0)	4.0 (2.0–21.0)	0.007

BMI: body mass index; SD: standard deviation; ASA: American Society of Anesthesiologists; COPD: chronic obstructive pulmonary disease.

^aSignificance was set at p ≤ 0.05.

^bThe values are given as the mean.

^cThe values are given as the number of patients, with the percentage in parentheses.
Table 2. Preoperative characteristics for total knee arthroplasty.

Demographic data	Not readmitted (N = 1228)	Readmitted (N = 28)	p Value^a
Age^b (year) ± SD	62.2 ± 10.2	64.0 ± 11.1	0.346
Sex^c			0.029
Male	467 (38.0%)	5 (17.9%)	
Female	761 (62.0%)	23 (82.1%)	
BMI category^c			0.040
Normal (18 to <25 kg/m²)	109 (8.9%)	2 (7.1%)	
Overweight (25 to <30 kg/m²)	238 (19.4%)	1 (3.6%)	
Obese (30 to <35 kg/m²)	342 (27.8%)	6 (21.4%)	
Very obese (35 to <40 kg/m²)	261 (21.2%)	10 (35.7%)	
Morbidly obese (40 to <45 kg/m²)	169 (13.8%)	3 (10.7%)	
Super obese (>45 kg/m²)	109 (8.9%)	6 (21.4%)	
Specific characteristics			
Metabolic equivalents (METs)^c			0.026
Low (1–4)	479 (41.9%)	18 (66.7%)	
Moderate (5–7)	582 (51.0%)	9 (33.3%)	
High (≥8)	81 (7.1%)	0 (0.0%)	
Charlson comorbidity index^b	3.4 (0.0–11.0)	4.0 (1.0–10.0)	0.042
Causes of osteoarthritis^c			0.002
Primary	1100 (89.7%)	28 (100.0%)	
Secondary	31 (2.5%)	0 (0.0%)	
Posttraumatic	96 (7.8%)	0 (0.0%)	
Preoperative comorbidities^c			
General			
Smoking	63 (5.1%)	2 (7.1%)	0.653
Alcohol use	482 (39.4%)	6 (21.4%)	0.054
Endocrine			
Diabetes mellitus			0.012
Diabetes without complications	845 (68.8%)	13 (46.4%)	
Diabetes with complications	383 (31.2%)	15 (53.6%)	
Respiratory			
Asthma	128 (10.4%)	6 (21.4%)	0.062
COPD	58 (4.7%)	1 (3.6%)	1.000
Cardiovascular			
Hypertension	794 (64.7%)	25 (89.3%)	0.008
Congestive heart failure	21 (1.7%)	1 (3.6%)	0.394
Previous myocardial infarction	139 (11.3%)	3 (10.7%)	1.000
Previous cardiac surgery	53 (4.3%)	2 (7.1%)	0.349
Peripheral vascular disease	29 (2.4%)	1 (3.6%)	0.496
Renal			
Chronic kidney disease	45 (3.7%)	2 (7.1%)	0.282
Hematologic			
Anticoagulant use	506 (41.2%)	13 (46.4%)	0.581
Malignancy	63 (5.1%)	1 (3.6%)	1.000
Connective tissue disease	7 (0.6%)	0 (0.0%)	1.000
Prior medical therapy			
Corticosteroid use	442 (36.0%)	9 (32.1%)	0.672
Operative variables			
ASA class^c			0.008
1	25 (2.1%)	2 (7.1%)	
2	753 (61.9%)	10 (35.7%)	
≥3	438 (36.0%)	16 (57.1%)	
Operative time^b (min)	100.5 (48.0–303.0)	101.1 (74.0–145.0)	0.851
Hospital length of stay^b (day)	2.9 (1.0–18.0)	4.2 (2.0–12.0)	0.015

BMI: body mass index; SD: standard deviation; ASA: American Society of Anesthesiologists; COPD: chronic obstructive pulmonary disease.

^aSignificance was set at p < 0.05.

^bThe values are given as the mean.

^cThe values are given as the number of patients, with the percentage in parentheses.
(3.4%) after THA and 28 patients (2.2%) after TKA who were unexpectedly readmitted within 30 days of their initial discharge. Demographic characteristics, specific characteristics (cause of OA, MET, and CCI), preoperative comorbidities, and operative characteristics of THA and TKA are listed in Tables 1 and 2, respectively. Univariate analysis of demographics demonstrated that a higher BMI was significantly associated with readmission in THA \((p = 0.019) \) and TKA \((p = 0.04) \). Female sex was significantly associated with readmission only for TKA \((p = 0.029) \).

Specific characteristics were identified between the readmitted and nonreadmitted cohorts. Those who were readmitted in THA \((69\% \text{ vs. } 44.9\%; p = 0.007) \) and TKA \((66.7\% \text{ vs. } 41.9\%; p = 0.026) \) had lower preoperative physical activity (METs 1–4). Higher CCI was significantly correlated with readmissions within 30 days after both THA \((4.1 \text{ vs. } 3.1; p < 0.001) \) and TKA \((4.0 \text{ vs. } 3.4; p = 0.042) \). Post-traumatic OA was significantly associated with readmission following THA \((26.2\% \text{ vs. } 9.9\%; p = 0.002) \) while the cause of OA was not correlated with readmission in TKA.

There were several significant associations between patient comorbidities and 30-day readmission following THA and TKA. Readmission after THA had significantly higher rates of previous myocardial infarction \((28.6\% \text{ vs. } 11.8\%; p = 0.001) \) and anticoagulant use \((52.4\% \text{ vs. } 35.7\%; p = 0.028) \) while readmission after TKA had significantly higher rate of diabetes mellitus with complications \((53.6\% \text{ vs. } 31.2\%; p = 0.012) \) and hypertension \((89.3\% \text{ vs. } 64.7\%; p = 0.008) \).

With regard to the operative variables, readmission after THA \((61.9\% \text{ vs. } 31.0\%; p < 0.0001) \) and TKA \((57.1\% \text{ vs. } 36.0\%; p = 0.008) \) had significantly higher rates of patients with ASA class 3, while the majority of the nonreadmitted patients were ASA class 2 both after THA \((64.8\% \text{ vs. } 33.3\%; p < 0.0001) \) and TKA \((61.9\% \text{ vs. } 35.7\%; p = 0.008) \). Longer hospital LOS correlated with readmission \((4.2 \text{ days vs. } 3.1 \text{ days}; p = 0.007 \text{ for THA and } 4.2 \text{ days vs. } 2.9 \text{ days}; p = 0.015 \text{ for TKA}) \).

Incidences and postoperative causes of 30-day readmissions

Incidences of 30-day readmission (Table 3) were 3.4% and 2.2% for THA and TKA, respectively. The most common cause of readmission within 30 days following total joint arthroplasty in lower extremity was infection. Trauma was the second most common readmission for THA while wound dehiscence was the second most common readmission for TKA. There were comparable rates of surgical causes for readmission in THA and TKA \((78.6\% \text{ vs. } 78.6\%) \) as well as medical causes for readmission \((21.4\% \text{ vs. } 21.4\%) \) in THA and TKA.

Table 3. Causes of readmission within 30 days.

Causes	THA (%)	TKA (%)
Surgical	33	22
Infection	15	17
Superficial wound infection	9	14
Deep wound infection	6	3
Stiffness	0	1
Wound (hematoma, dehiscence)	4	3
Trauma (PPF, dislocation)	12	1
Joint-unrelated infection	2	0
(instability, loosening)		
Medical	9	6
Cardiovascular	1	2
Respiratory (pulmonary embolism, pneumonia)	3	2
GI	1	1
Hematologic	1	0
Psych/neuro	3	1
Overall readmission: n (%)	42 (3.4)	28 (2.2)

THA: total hip arthroplasty; TKA: total knee arthroplasty; PPF: Periprosthetic fracture; GI: Gastrointestinal disease.

Adjusted OR

Multivariate regression analysis was applied to control for confounders due to multiple predictive factors of readmission, as given in Table 4. The calculated c-statistic was 0.786 for THA and 0.833 for TKA, denoting high predictive value. Patients with post-traumatic OA of the hip had approximately 2.6 times higher likelihood of readmission than those with primary OA. Longer hospital LOS was independently associated with a higher likelihood of readmission both after THA \((OR 1.125; 95\% CI 1.003–1.262; p = 0.044) \) and TKA \((OR 1.399; 95\% CI 1.184–1.652; p = 0.0001) \).

Discussion

Readmission after elective surgery has received increasing national attention as a result of recent changes to the CMS readmission reduction program. Using our own hospital electronic patient database, we built upon previous literature by reporting our experience with THA and TKA in which Pugely et al. identified multiple comorbidities, which are associated with readmission.11 Using our own hospital electronic patient database, we built upon previous literature by reporting our experience with THA and TKA readmission with respect to etiology. In this regard, surgical factors accounted for roughly four times higher readmission rates for both THA and TKA. The most common surgical cause for readmission was infection for both THA and TKA, while the second most common diagnosis among total hip readmissions was trauma (nine
posterior hip dislocations, two periprosthetic femoral fractures, and one distal tibial fracture), and for total knee readmission, wound complication. Overall, our 30-day readmission rates were lower than those reported previously.7–12

Univariate analysis identified that high BMI was associated with increasing 30-day readmission rates both in THA \((p = 0.019)\) and TKA \((p = 0.040)\). For THA, morbid obesity \((40 \text{ to } <45 \text{ kg/m}^2)\) and super obesity \((>45 \text{ kg/m}^2)\) were a significant risk factor for readmission within 30 days while very obese \((35 \text{ to } <40 \text{ kg/m}^2)\) and super obese \((>45 \text{ kg/m}^2)\) were a predictor for readmission in TKA. Our findings were consistent with several previous studies, which showed that obesity was a predictor of readmission of total joint arthroplasty within 30 and 90 days.27–30

Table 4. Multivariate regression of readmission after total hip and total knee arthroplasty.

Predictors	Odds ratio*	p Valueb
THA Demographic factors		
BMI category		
Overweight \((25 \text{ to } <30 \text{ kg/m}^2)\) vs. normal	2.007 \((0.751–5.364)\)	0.165
Obese \((30 \text{ to } <35 \text{ kg/m}^2)\) vs. normal	0.661 \((0.176–2.482)\)	0.540
Very obese \((35 \text{ to } <40 \text{ kg/m}^2)\) vs. normal	0.894 \((0.236–3.396)\)	0.870
Morbid obesity \((40 \text{ to } <45 \text{ kg/m}^2)\) vs. normal	2.213 \((0.601–8.155)\)	0.233
Super obese \((>45 \text{ kg/m}^2)\) vs. normal	3.528 \((0.922–13.505)\)	0.066
Specific characteristics		
Bmi category		
Metabolic equivalents (METs)		
Moderate vs. high	2.303 \((0.284–18.696)\)	0.435
Low vs. high	3.506 \((0.436–28.18)\)	0.238
Charlson comorbidity index	1.100 \((0.906–1.335)\)	0.336
Causes of osteoarthritis		
OA vs. OA	1.893 \((0.781–4.587)\)	0.158
PTOA vs. OA	2.565 \((1.007–6.537)\)	0.048
Comorbidities		
Previous myocardial infarction	1.812 \((0.772–4.253)\)	0.172
Anticoagulant use	1.323 \((0.632–2.77)\)	0.458
Operative values		
ASA classification: ASA class 2 vs. class 1	0.270 \((0.055–1.327)\)	0.107
ASA class 3 vs. class 1	0.442 \((0.081–2.407)\)	0.345
Hospital length of stay (day from operation to discharge)c	1.125 \((1.003–1.262)\)	0.044
TKA Demographic factors		
Sex		
Female vs. male	0.426 \((0.143–1.27)\)	0.127
Specific characteristics		
Metabolic equivalents (METs)		
Low vs. moderate	1.713 \((0.653–4.497)\)	0.274
Charlson comorbidity index	0.973 \((0.716–1.322)\)	0.860
Comorbidities		
Diabetes mellitus	2.305 \((0.905–5.871)\)	0.080
Hypertension	0.790 \((0.096–6.48)\)	0.827
Operative values		
Hospital length of stay (day from operation to discharge)c	1.399 \((1.184–1.652)\)	<0.0001

THA: total hip arthroplasty; OA: osteoarthritis; TKA: total knee arthroplasty; BMI: body mass index; SD: standard deviation; ASA: American Society of Anesthesiologists; COPD: chronic obstructive pulmonary disease; PTOA: Post-traumatic osteoarthritis.

*The values are given as the odds ratio with 95% confidence intervals in parentheses.

**Significance was set at \(p < 0.05\).

†Odds ratio for continuous variables represent increases in likelihood per unit change with a \(c\)-statistic of 0.786 for THA and 0.833 for TKA.

The ASA classification has been widely accepted as a reliable prognosticator for perioperative morbidity.31 Traditionally, this parameter is used to understand and predict a patient’s ability to tolerate the stress of surgery and to compensate physiologically during and after general
anesthesia. Patients with higher ASA class have been shown to have higher complication rates after multiple orthopedic procedures. Analysis of our hospital database showed that similar to previously reported national data, patients readmitted to the hospital within 30 days of an elective THA or TKA had a higher ASA class. Surgeons and care providers should exercise caution and thoroughly counsel when offering elective total joint arthroplasty to patients with a greater burden of systemic illness.

MET or exercise tolerance is a surrogate marker for functional capacity or physical activity level, defined by Jette et al. We hypothesized that this parameter may be relevant in the postoperative period in TJA as patients begin the rehabilitation process. To our knowledge, no current literature has sought to define the relationship between MET and readmission rates following total joint arthroplasty. Our study found that low METs were strongly associated with readmission after THA (p = 0.0007) and TKA (p = 0.026). This finding is useful for patient counseling, as those with low levels of preoperative physical activity tend to have a higher risk of hospital readmission.

Patient systemic illness, documented by patient comorbidities, has been shown to affect readmission after TJA. Our results establish that a higher CCI is an independent risk factor for readmission. Our data is in keeping with previous analyses of CCI, which demonstrate that higher CCI is associated with higher health care costs and higher incidence of postoperative complications. Prior authors have found that CCI >1 is associated with increased 2 years mortality risk after proximal femur fractures. Others have identified CCI ≥2 as a predictor of surgical site infection following total joint arthroplasty. The utility of the CCI rests in the fact that it serves as a marker for the summation of systemic illness in a particular patient. Our study demonstrated that this simple-to-calculate parameter is a strong predictor of readmission after elective TJA.

Our study possesses several limitations. First, there is a limitation to quality of data, which are collected while providing care. For example, comorbidities documented are at the discretion of the treating physician so information regarding patient systemic illness may be incomplete. This would affect our calculation of the CCI for patients. Also, the retrospective nature of the study imposes the inherent limitation that patient data are not obtained according to a standard protocol. Second, we sampled only a portion of the THA and TKA patients in the time period of interest for convenience of data collection. Therefore, although sampling was random, we cannot entirely exclude a selection bias in our sample. Third, our sample size was modest compared with large national studies, so we may have failed to detect subtle statistically significant differences in the multiple parameters analyzed.

Conclusion
Patient comorbidities and preoperative functional capacity significantly affect 30-day readmission rates following total joint arthroplasty. Adjustments for these parameters should be considered and we recommend the use of CCI and METs in risk adjustment models that use 30-day readmission as a marker for quality of patient care.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Ong-art Phruetthiphat https://orcid.org/0000-0001-7903-9685

References
1. Ethgen O, Bruyere O, Richy F, et al. Health-related quality of life in total hip and total knee arthroplasty. A quality and systematic review of the literature. J Bone Joint Surg Am 2004; 86(5): 963–974.
2. Jones CA, Voaklander DC, Johnston DW, et al. Health related quality of life outcomes after total hip and knee arthroplasties in a community-based population. J Rheumatol 2000; 27(7): 1745–1752.
3. Cram P, Lu X, Kates SL, et al. Total knee arthroplasty volume, utilization, and outcome Medicare beneficiaries, 1991–2010. JAMA 2012; 308(12): 1227–1236.
4. Phruetthiphat OA, Gao Y, Anthony CA, et al. Incidence of and preoperative risk factors for surgical delay in primary total hip arthroplasty: analysis from ACS-NSQIP. J Arthroplasty 2016; 31(11): 2432–2436.
5. Phruetthiphat OA, Gao Y, Vasta S, et al. Preoperative risk factors for, and incidence of delayed surgery in elective primary total knee arthroplasty after hospital admission: the ACS-NSQIP. J Arthroplasty 2016; 31(7): 1413–1416.
6. Bini SA, Fithian DC, Paxton LW, et al. Does discharge disposition after primary total joint arthroplasty affect readmission rates? J Arthroplasty 2010; 25(1): 114–117.
7. Cullen C, Johnson DS, and Cook G. Re-admission rates within 28 days of total hip replacement. Ann R Coll Surg Engl 2006; 88(5): 475–478.
8. Lavermia CJ and Villa JM. Readmission rates in total hip arthroplasty: a granular analysis? J Arthroplasty 2015; 30(7): 1127–1131. DOI: 10.1016/j.arthro.2015.01.028.
9. Vorhies JS, Wang Y, Herndon J, et al. Readmission and length of stay after total hip arthroplasty in a national Medicare sample. J Arthroplasty 2011; 26(6 Suppl): 119–123.
10. Adelani MA, Keeney JA, Nunley RM, et al. Readmission following total knee arthroplasty: venous thromboembolism...
12. James MS, Geoffrey SM, Tyler RW, et al. Understanding readmission after primary total hip and knee arthroplasty: who’s at risk? *J Arthroplasty* 2014; 29(2): 256–260.

13. Husted H, Otte KS, Kristensen BB, et al. Readmissions after fast-track hip and knee arthroplasty. *Arch Orthop Trauma Surg* 2010; 130(9): 1185–1191.

14. Keeney JA, Adelani MA, Nunley RM, et al. Assessing readmission databases: how reliable is the information? *J Arthroplasty* 2012; 27(8 Suppl): 72–76.

15. Higuera CA, Elsharkawy K, Klika AK, et al. 2010 Mid-America Orthopaedic Association Physician in Training Award: predictors of early adverse outcomes after knee and hip arthroplasty in geriatric patients. *Clin Orthop Relat Res* 2011; 469(5): 1391–1400.

16. Huddleston JI, Wang Y, Uquillas C, et al. Age and obesity are risk factors for adverse events after total hip arthroplasty. *Clin Orthop Relat Res* 2012; 470(2): 490–496.

17. Soohoo NF, Fargn E, Lieberman JR, et al. Factors that predict short-term complication rates after total hip arthroplasty. *Clin Orthop Relat Res* 2010; 468(9): 2363–2371.

18. Charlson ME, Pompei P, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. *J Chronic Dis* 1987; 40(5): 373–383.

19. Sundararajan V, Henderson T, Perry C, et al. New ICD-10 version of the Charlson comorbidity index predicted inhospital mortality. *J Clin Epidemiol* 2004; 57(12): 1288–1294.

20. Jetté M, Sidney K, and Bluemchen G. Metabolic equivalents (METs) in exercise testing, exercise prescription, and evaluation of functional capacity. *Clin Cardiol* 1990; 13(8): 555–565.

21. Mak PH, Campbell RC, Irwin MG, et al. The ASA physical status classification: inter-observer consistency. *American Society of Anesthesiologists*. *Anaeseth Intensive Care* 2002; 30(5): 633–640.

22. Daabiss M. American Society of Anesthesiologists physical status classification. *Indian J Anaesth* 2011; 55(2): 111–115.

23. Merkow RP, Hall BL, Cohen ME, et al. Relevance of the c-statistic when evaluating risk-adjustment models in surgery. *J Am Coll Surg* 2012; 214(5): 822–830.

24. Centers for Medicare & Medicaid Services (CMS). *CMS dry run hospital – specific report for hospital-wide all-cause unplanned readmission (HWR) measure*. Baltimore: Centers for Medicare and Medicaid Services (CMS), 2012.

25. Grosso LM, Curtis JP, Lin Z, et al. Hospital-level 30-day all-cause risk standardized readmission rate following elective primary total hip arthroplasty (THA) and/or total knee arthroplasty (TKA). Baltimore: Centers for Medicare and Medicaid Services (CMS), 2012.

26. Atkinson JG. Flaws in the Medicare readmission penalty. *N Engl J Med* 2012; 367(21): 2056–2057.

27. Dowsey MM, Liew D, and Choong PF. Economic burden of obesity in primary total knee arthroplasty. *Arthritis Care Res* (Hoboken) 2011; 63(10): 1375–1381.

28. Silber JH, Rosenbaum PR, Kelz RR, et al. Medical and financial risks associated with surgery in the elderly obese. *Ann Surg* 2012; 256(1): 79–86.

29. Schwarzkopf R, Thompson SL, Adwar SJ, et al. Postoperative complication rates in the “super-obese” hip and knee arthroplasty population. *J Arthroplasty* 2012; 27(3): 397–401.

30. Mednick RE, Alvi HM, Krishnan V, et al. Factors affecting readmission rates following primary total hip arthroplasty. *J Bone Joint Surg Am* 2014; 96(14): 1201–1209.

31. Wolters U, Wolf T, Stützer H, et al. ASA classification and postoperative variables as predictors of postoperative outcome. *Br J Anaesth* 1996; 77(2): 217–222.

32. Duchman KR, Gao Y, Pugely AJ, et al. Differences in short-term complications between unicompartamental and total knee arthroplasty. *J Bone Joint Surg Am* 2014; 96(16): 1387–1394.

33. Schick CW, Koehler DM, Martin CT, et al. Risk factors for 30-day postoperative complications and mortality following open reduction and internal fixation of distal radius fractures. *J Hand Surg Am* 2014; 39(12): 2373–2380.

34. Charlson M, Martin TW, Ralph U, et al. The Charlson comorbidity index can be used prospectively to identify patients who will incur high future costs. *PLoS One* 2014; 9(12): e112479.

35. Koichi O, Hideo Y, Hiromasa H, et al. What is the effect of advanced age and comorbidity on postoperative morbidity and mortality after musculoskeletal tumor surgery? *Clin Orthop Relat Res* 2014; 472(12): 3971–3978.

36. Meessen JM, Pisani S, Gambino ML, et al. Assessment of mortality risk in elderly patients after proximal femoral fracture. *Orthopedics* 2014; 37(2): 194–200.

37. Mohammad RR, Camilo R, Parvizi J, et al. Risk factors for surgical site infection following total joint arthroplasty. *Bone Joint Surg Am* 2014; 96(18): 158.