A Single-Crystal Neutron Diffraction Study on Magnetic Structure of the Quasi-One-Dimensional Antiferromagnet SrCo$_2$V$_2$O$_8$ *

Juan-Juan Liu(刘娟娟)1, Jin-Chen Wang(汪晋辰)1, Wei Luo(罗伟)1, Jie-Ming Sheng(盛洁明)1, Zhang-Zhen He(何长振)2, S. A. Daniilkin3, Wei Bao(鲍威)1,23*

1Department of Physics, Renmin University of China, Beijing 100872
2State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002
3Bragg Institute, ANSTO, Locked Bag 2001, Kirrawee DC NSW 2232, Australia

PACS: 75.10.Pq, 75.25.+z, 75.40.Cx, 75.30.Kz

DOI: 10.1088/0256-307X/33/3/037502

Study on quasi-one-dimensional antiferromagnetic materials in recent decades has revealed interesting quantum magnetic effects which are absent in three-dimensional classical antiferromagnets. While whether the spin is an integer or half-integer would have made no difference in the classical magnetic theory, drastically different physics phenomena have been predicted\(^1\) and demonstrated between the spin $S = 1$ chains\(^2\sim 6\) and the $S = \frac{1}{2}$ chains.\(^7\sim 11\) In addition to chain compounds, magnetic moments forming a ladder constitute another important geometric system in investigation on quasi-one-dimensional quantum antiferromagnetism with the competition between the intra and inter-chain exchange interactions as an additional tuning parameter.\(^12\sim 15\) More recently a series of quasi-one-dimensional spin systems built from a screw chain structure have been realized in transition metal vanadates $AM_2V_2O_8$, where A=Ba, Sr, or Pb and M=Cu, Co, or Ni.\(^16\sim 19\) Remarkably, a quantum phase transition to the Tomonaga–Luttinger liquid has been induced by an external magnetic field in BaCo$_2$V$_2$O$_8$.\(^20\sim 27\)

The magnetic structure of BaCo$_2$V$_2$O$_8$ at the zero magnetic field was first investigated by neutron powder diffraction experiments\(^23\) and completely determined by neutron single-crystal diffraction experiments.\(^24\) The direct measurements of the antiferromagnetic structure and its evolution in the magnetic field by neutron diffraction experiments have provided the valuable evidence to compare with theoretical prediction of the novel quantum phenomena in half-integer spin chains.\(^20\sim 24\) For the isostructural SrCo$_2$V$_2$O$_8$, heat capacity and magnetic susceptibility measurements also indicate a magnetic transition at $T_N \sim 5\ K$.\(^26,29\) An additional magnetic transition to a canted antiferromagnetic structure at $\sim 3\ K$ was reported in one of the studies\(^28\) which is different from the case for BaCo$_2$V$_2$O$_8$. A direct determination of the magnetic configuration by neutron diffraction is called for. In the single-crystal neutron diffraction study of SrCo$_2$V$_2$O$_8$, we observed only one antiferromagnetic phase transition at $T_N = 4.96\ K$. No anomaly in nuclear or magnetic Bragg peak intensity can be detected around 3K. The magnetic structure of SrCo$_2$V$_2$O$_8$ is found to be the same as that of BaCo$_2$V$_2$O$_8$ reported previously.\(^24\) The magnetic moment $2.16(1) \mu_B$ per Co$^{2+}$ ion in SrCo$_2$V$_2$O$_8$ is also very close to that of BaCo$_2$V$_2$O$_8$. Therefore, SrCo$_2$V$_2$O$_8$ can be another candidate of the vanadate series $AM_2V_2O_8$ for investigation of quasi-one-dimensional quantum antiferromagnetism.

The single crystal sample of SrCo$_2$V$_2$O$_8$ used in this study was grown by the spontaneous nucleation method\(^19\) with dimensions $\sim 2\times 2\times 3\ mm^3$. Neutron scattering experiments were performed using the thermal triple-axis spectrometer Taipan at ANSTO.\(^30\) The horizontal collimations were open-40°-40°-open. Neutrons with incident energy $E = 14.7\ meV$ were selected using the (0, 0, 2) reflection of a pyrolytic graphite (PG) monochromator. PG filters were used

*Supported by the National Basic Research Program of China under Grant Nos 2012CB921700 and 2011CBA00112, and the National Natural Science Foundation of China under Grant Nos 11034012 and 11190024.

**Corresponding author. Email: wbao@ruc.edu.cn

© 2016 Chinese Physical Society and IOP Publishing Ltd

037502-1
to remove higher-order neutrons from the neutron beam. The temperature of the sample was regulated by the ILL Orange Cryostat in a temperature range from 1.5 K to 300 K.

SrCo$_2$V$_2$O$_8$ crystallizes in the tetragonal SrNi$_2$(AsO$_4$)$_2$ structure (space group No.110, I4$_1$cd), with lattice parameters $a = 12.267(1)$ Å and $c = 8.424(1)$ Å at room temperature. In a structural unit cell, the magnetic ions Co$^{2+}$ in the edge-shared CoO$_6$ octahedra form screw chains along the c axis (Fig.1). The screw chains are well separated by non-magnetic VO$_4$ tetrahedra and Sr$^{2+}$ ions, resulting in quasi-one-dimensional magnetic chains.

We aligned the SrCo$_2$V$_2$O$_8$ crystal sample to the $(h0l)$ scattering plane. In the scattering plane, nuclear Bragg peaks were observed at h = even and l = even positions, which is consistent with the selection rule of the I4$_1$cd space group. Below 5 K a new set of magnetic peaks show up at $h + l$ = odd positions which are shifted from the nuclear Bragg peaks by the $Q_{\text{AF}} = (1,0,0)$ magnetic wave vector. This situation facilitates the collection and measurements of the separated Bragg peaks of crystalline and magnetic origins.

To investigate the magnetic phase transitions, we measured the temperature dependence of magnetic Bragg reflection $(-2,0,-1)$ from 1.6 K to 8.4 K, refer to Fig. 2. It clearly illustrates the emergence of new peaks below the magnetic transition. The integrated intensities are fitted to the function $I = I_0 + A(1 - e^{-q F})^3$ to obtain the critical temperature $T_N = 4.96(1)$ K. It is consistent with the ~ 5 K magnetic transition reported in bulk measurement. The rocking scan in the inset of Fig. 2 has the resolution-limited peak width and shows no change with temperature. It indicates the long-range nature of the magnetic ordering.

In addition to the 5 K transition, He et al. reported a second anomaly at ~ 3 K which is attributed to a transition to a canted antiferromagnetic state in their dynamic magnetic susceptibility work. On the other hand, Lejay et al. found no such transition. To check the existence of the possible additional transition, we measured a selected set of structural and magnetic Bragg reflections in more than three quadrants of the scattering plane at 1.6 K and 4 K. The integrated intensities of the nuclear reflections at 1.6 K and 4 K do not yield any observable ferromagnetic signal. There is no anomaly either on antiferromagnetic reflections around 3 K. Therefore, our data do not detect the additional transition.

The propagation vector of the magnetic structure $Q_{\text{AF}} = (1,0,0)$ of SrCo$_2$V$_2$O$_8$ is the same as that of BaCo$_2$V$_2$O$_8$. In BaCo$_2$V$_2$O$_8$, the spins of Co$^{2+}$ are aligned antiferromagnetically along the screw chains, but at a given basal plane they form antiferromagnetic (or ferromagnetic) alignment along the a (or b) axis. This spin configuration is no longer invariant under the symmetry operator 4_1 screw axis of the paramagnetic space group I4$_1$cd. Two magnetic domains are thus expected with antiferromagnetic lines formed along either a or b axis, as illustrated in Figs. 3(a) and 3(b), respectively.

The magnetic neutron scattering cross section $\sigma(q)$ of SrCo$_2$V$_2$O$_8$ is described by

$$\sigma(q) = \frac{(\gamma r_0)^2}{2} N_m \left(\frac{2m}{\hbar^2}\right)^3 |\langle f(q) \rangle|^2 |F|^2 (1 - (\hat{q} \cdot \hat{s})^2),$$

where $(\gamma r_0/2)^2 = 0.07265$ barn/μ_B^2, N_m is the number of magnetic unit cells in the sample, \hbar is the volume of magnetic unit cell, M is the staggered moment of the Co$^{2+}$ ion, $f(q)$ is the magnetic form factor of the Co$^{2+}$, \hat{q} the unit vector of q, \hat{s} the unit vector of the staggered moment, and F the magnetic structure factor per unit cell. Using (x,y,z) as the fractional coordination of the Co atom in the unit cell and (hkl)
as the Miller indices of the neutron scattering vector \(\mathbf{q} \), the squared magnetic structure factor \(|\mathcal{F}(\mathbf{q})|^2 \) of the antiferromagnetic model shown in Fig. 3(a) is

\[
|\mathcal{F}(\mathbf{q})|^2 = 64\{\sin(2\pi h x) - \sin(2\pi h y)\}^2
\]

for \(h = 2n + 1, l = 4n \), and

\[
|\mathcal{F}(\mathbf{q})|^2 = 64\{\sin(2\pi h x) + \sin(2\pi h y)\}^2
\]

for \(h = 2n + 1, l = 4n + 2 \). Namely, for domain 1, magnetic signals only appear at the positions of \(h = \text{odd} \) and \(l = \text{even} \) in the \((h0l)\) scattering plane. For domain 2 in Fig. 3(b), the magnetic peaks only appear when \(h = \text{even} \) and \(l = \text{odd} \), and

\[
|\mathcal{F}(\mathbf{q})|^2 = 64\{\sin^2(2\pi h x) + \sin^2(2\pi h y)\}
\]

for \(h = 2n, l = 2n + 1 \).

![Fig. 3. Two magnetic domains of SrCo\(_2\)O\(_4\) viewed in the c axis. Only intrachain bonded Co atoms are presented, with their sense of rotation marked by screw arrows. The c-axis fractional coordinates are \(z, z+1/4, z+1/2, z+3/4 \), respectively, for Co with 1, 2, 3, 4 labels. Spin directions parallel or antiparallel to the \(c \) axis are marked by + and − signs. The same (blue and yellow) colors represent the ferromagnetic arrangement in the basal plane.](image)

The measured magnetic cross section deduced from the integrated intensity of the rocking scans by \(\mathbf{q}(\mathbf{q}) = I \sin(2\theta) \) and normalized by nuclear Bragg peaks is shown in Fig. 4(a). The blue and red symbols denote Bragg intensities from the domains 1 and 2 shown in Fig. 3, respectively. The experimental data agree well with the intensities calculated with the same magnetic structure of BaCo\(_2\)V\(_2\)O\(_8\) but of a staggered magnetic moment \(2.16(1)\mu_B \) per Co, see Fig. 4(b). The relative intensities of the blue and red Bragg peaks lead to the domain population 49.9(1)% for domain 1 and 50.1(1)% for domain 2 in the least squared fit. Therefore, the two domains have essentially the equal population. After we finished our work, we noticed a neutron powder diffraction work on magnetic structure of SrCo\(_2\)V\(_2\)O\(_8\). Both \(T_N = 5.21(3) \) and \(M = 2.25(5)\mu_B/\text{Co} \) are slightly larger than our values. While the same magnetic structure was reported by Bera et al., the domain population can be measured only in a single-crystal diffraction experiment and the domain information is important in achieving the realistic refinement result, as pointed out by Canévet et al.

![Fig. 4. Scattering pattern in reciprocal lattice of (h0l) plane. (a) Measured Bragg peaks at 1.6 K. (b) Calculated results. Asterisks mark the structural Bragg peaks. The filled blue circles are magnetic peaks of domain 1, and filled red circles are magnetic peaks of domain 2. The logarithmic scale is used for the magnetic intensities that are illustrated by the size of symbols.](image)

The magnetic structure of SrCo\(_2\)V\(_2\)O\(_8\) is identical to that of the isostructural BaCo\(_2\)V\(_2\)O\(_8\). Only the Co moment \(2.16(1)\mu_B \) is slightly smaller than \(2.267(3)\mu_B \) reported for BaCo\(_2\)V\(_2\)O\(_8\). Our result thus explains the similar macroscopic properties observed in bulk measurements: Both SrCo\(_2\)V\(_2\)O\(_8\) and BaCo\(_2\)V\(_2\)O\(_8\) show \(\lambda \)-shape anomalies in heat capacity measurements at \(T_N \approx 5 \) K at zero magnetic field. The antiferromagnetic order is suppressed by magnetic field in similar manners for both compounds, with the critical field smaller for \(H \parallel c \) than \(H \perp c \). The same in-plane anisotropy between \(H \parallel (110) \) and \((100) \) was also recently revealed. In the substitution study, all the key features are preserved in Ba\(_{1-x}\)Sr\(_x\)Co\(_2\)V\(_2\)O\(_8\) in thermal expansion and magnetostriiction measurements.

As a realization of the one-dimensional XXZ half-integer spin chain model, BaCo\(_2\)V\(_2\)O\(_8\) has shown the predicted magnetic field-induced quantum spin liquid behavior. Although such a field induced phenomenon has not been confirmed in SrCo\(_2\)V\(_2\)O\(_8\), the same zero-field magnetic state suggests that SrCo\(_2\)V\(_2\)O\(_8\) could be another interesting material to explore the novel quantum spin properties. Recent terahertz spectroscopy experiments show that SrCo\(_2\)V\(_2\)O\(_8\) is less anisotropic than BaCo\(_2\)V\(_2\)O\(_8\) with the anisotropy parameter \(\epsilon \approx 0.73 \) compared to \(\epsilon \approx 0.46 \) for the latter, with \(\epsilon = 1 \) corresponding to the isotropic Heisenberg limit. Therefore, SrCo\(_2\)V\(_2\)O\(_8\) from the transition metal vanadates series AM\(_2\)V\(_2\)O\(_8\) provides an interesting tuning parameter in the anisotropy parameter. An additional
tuning parameter, such as that in the spin ladder compounds,[12–15] would enrich study on quasi-one-dimensional quantum antiferromagnetism.

In conclusion, the magnetic structure of SrCo$_2$V$_2$O$_8$ is determined in our neutron-single-crystal diffraction study as the same as that of BaCo$_2$V$_2$O$_8$[24] The magnetic moment of the Co$^{2+}$ ions is 2.16(1)μ_B/Co at 1.6 K and the Néel temperature is 4.96(1) K. The antiferromagnetic structure breaks the four-fold in-plane symmetry and the resulting two magnetic domains have the identical population. We do not observe the 3 K canting transition, thus SrCo$_2$V$_2$O$_8$ and BaCo$_2$V$_2$O$_8$ share the same zero field magnetic state. With almost identical magnetic state but less magnetic anisotropy, SrCo$_2$V$_2$O$_8$ could be a worthy addition to BaCo$_2$V$_2$O$_8$ in the investigation of spin-chain quantum antiferromagnetism.

References

[1] Haldane F D M 1980 \textit{Phys. Rev. Lett.} \textbf{45} 1358
[2] Steiner M, Kakuraj K, Kjems J K, Petitgrand D and Pynn R 1987 \textit{J. Appl. Phys.} \textbf{61} 3953
[3] Buyers W J L, Morra R M, Armstrong R L, Hogan M J, Gerlach P and Hirakawa K 1986 \textit{Phys. Rev. Lett.} \textbf{56} 371
[4] Ma S, Broholm C, Reich D H, Sterlinlieb B J and Erwin R W 1992 \textit{Phys. Rev. Lett.} \textbf{69} 3571
[5] Regnault L P, Zaliznyak I, Renard J P and Vettier C 1994 \textit{Phys. Rev. B} \textbf{50} 9174
[6] Suh S, Al-Hassanieh K A, Samulon E C, Fisher I R, Brown S E and Batista C D 2011 \textit{Phys. Rev. B} \textbf{84} 054413
[7] Tennant D A, Cowley R A, Nagler S E and Tsvetik A M 1995 \textit{Phys. Rev. B} \textbf{52} 13368
[8] Dender D C, Hammar P R, Reich D H, Broholm C and Aeppli G 1997 \textit{Phys. Rev. Lett.} \textbf{79} 1750
[9] Giamarchi T, Rüegg C and Tchernyshyov O 2008 \textit{Nat. Phys.} \textbf{4} 198
[10] Conner B S, Zhou H D, Jo Y J, Balicas L, Wiebe C R, Carlo J P, Uemura Y J, Aczel A A, Williams T J and Luke G M 2010 \textit{Phys. Rev. B} \textbf{81} 132401
[11] Zaliznyak I A, Lee S H and Petrov S V 2001 \textit{Phys. Rev. Lett.} \textbf{87} 017202
[12] Klanjšek M, Mayaffre H, Berthier C, Horvatić M, Chiari B, Piovesana O, Bouillot P, Kollath C, Orignac E, Citro R and Giamarchi T 2008 \textit{Phys. Rev. Lett.} \textbf{101} 137207
[13] Rüegg C, Kiefer K, Thielemann B, McMorrow D F, Zapf V, Normand B, Zvonarev M B, Bouillot P, Kollath C, Giamarchi T, Capponi S, Poilblanc D, Biner D and Krämer K 2008 \textit{Phys. Rev. Lett.} \textbf{101} 247202
[14] Jeong M, Mayaffre H, Berthier C, Schmidiger D, Zheludev A and Horvatić M 2013 \textit{Phys. Rev. Lett.} \textbf{111} 106404
[15] Lake B, Tennant D A, Caux J S, Barthel T, Schollwöck U, Nagler S E and Frost C D 2013 \textit{Phys. Rev. Lett.} \textbf{111} 137205
[16] He Z, Kyömen T and Itoh M 2005 \textit{J. Cryst. Growth} \textbf{247} 486
[17] He Z, Fu D, Kyömen T, Taniyama T and Itoh M 2005 \textit{Chem. Mater.} \textbf{17} 2924
[18] He Z, Taniyama T and Itoh M 2006 \textit{J. Cryst. Growth} \textbf{293} 458
[19] He Z, Ueda Y and Itoh M 2007 \textit{J. Solid State Chem.} \textbf{180} 1770
[20] Kimura S, Takeuchi T, Okunishi K, Hagiwara M, He Z, Kindo K, Taniyama T and Itoh M 2008 \textit{Phys. Rev. Lett.} \textbf{100} 057202
[21] Okunishi K and Suzuki T 2007 \textit{Phys. Rev. B} \textbf{76} 224411
[22] Kimura S, Matsuda M, Masuda T, Hondo S, Kaneko K, Metoki N, Hagiwara M, Takeuchi T, Okunishi K, He Z, Kindo K, Taniyama T and Itoh M 2008 \textit{Phys. Rev. Lett.} \textbf{101} 207201
[23] Kawasaky G, Gavilano J L, Keller L, Schefer J, Christensen N B, Amato A, Ohno T, Kishimoto Y, He Z, Ueda Y and Itoh M 2011 \textit{Phys. Rev. B} \textbf{83} 064421
[24] Canévet E, Grenier B, Klanjšek M, Berthier C, Horvatić M, Simonet V and Lejay P 2013 \textit{Phys. Rev. B} \textbf{87} 054408
[25] Klanjšek M, Horvatić M, Krämer S, Mukhopadhyay S, Mayaffre H, Berthier C, Canévet E, Grenier B, Lejay P and Orignac E 2015 \textit{Phys. Rev. B} \textbf{92} 060408
[26] Grenier B, Simonet V, Canals B, Lejay P, Klanjšek M, Horvatić M and Berthier C 2015 \textit{Phys. Rev. B} \textbf{92} 134416
[27] Grenier B, Petit S, Simonet V, Canévet E, Regnault L P, Raymond S, Canals B, Berthier C and Lejay P 2015 \textit{Phys. Rev. Lett.} \textbf{114} 017201
[28] He Z, Taniyama T, Itoh M, Yamaura J I and Ueda Y 2007 \textit{Solid State Commun.} \textbf{141} 667
[29] Lejay P, Canévet E, Srivastava S, Grenier B, Klanjšek M and Berthier C 2011 \textit{J. Cryst. Growth} \textbf{317} 128
[30] Danilkin S A, Horton G, Moore R, Braoudakis G and Hagen M 2007 \textit{J. Neutron Res.} \textbf{15} 15
[31] Osterloh D and H Mueller Buschbaum 1994 \textit{Z. Naturforsch. B} \textbf{49} 923
[32] Squires G L 2012 \textit{Introduction to the Theory of Thermal Neutron Scattering} (Cambridge: Cambridge University Press)
[33] Bera A K, Lake B, Stein W D and Zander S 2014 \textit{Phys. Rev. B} \textbf{89} 094402
[34] Niesen S K, Breunig O, Salm S, Seher M, Vallador M, Warzazowski P and Lorenz T 2014 \textit{Phys. Rev. B} \textbf{90} 104419
[35] Kimura S, Okunishi K, Hagiwara M, Kindo K, He Z, Taniyama T, Itoh M, Koyama K and Watanabe K 2013 \textit{J. Phys. Soc. Jpn.} \textbf{82} 033706
[36] Niesen S K, Kolland G, Seher M, Breunig O, Vallador M, Braden M, Grenier B and Lorenz T 2013 \textit{Phys. Rev. B} \textbf{87} 224413
[37] Wang Z, Schmidt M, Bera A K, Islam A T M N, Lake B, Lodl A and Deisenhofer J 2015 \textit{Phys. Rev. B} \textbf{91} 140404
[38] Kimura S, Yashiro H, Hagiwara M, Okunishi K, Kindo K, He Z, Taniyama T and Itoh M 2006 \textit{J. Phys.: Conf. Ser.} \textbf{51} 99