The detection of individual quanta of light is important for quantum communication, fluorescence lifetime imaging, remote sensing and more. Due to their high detection efficiency, exceptional signal-to-noise ratio and fast recovery times, superconducting-nanowire single-photon detectors (SNSPDs) have become a critical component in these applications. However, the operation of conventional SNSPDs requires costly cryocoolers. Here we report the fabrication of two types of high-temperature superconducting nanowires. We observe linear scaling of the photon count rate on the radiation power at the telecommunications wavelength of 1.5 μm and thereby reveal single-photon operation. SNSPDs made from thin flakes of Bi₂Sr₂CaCu₂O₈₊ₓ exhibit a single-photon response up to 25 K, and for SNSPDs from La₁.₅₅Sr₀.₄₅CuO₄/La₂CuO₄ bilayer films, this response is observed up to 8 K. While the underlying detection mechanism is not fully understood yet, our work expands the family of materials for SNSPD technology beyond the liquid helium temperature limit and suggests that even higher operation temperatures may be reached using other high-temperature superconductors.
The SNW region is chosen to reduce the total resistance of the gold electrodes. Scale bar, 3 μm. Inset: example SEM image of a BSCCO SNW produced by He+ beam exposure (similar but not identical to that from the photograph: to avoid degradation, we refrained from characterizing the photodetector using SEM imaging). Scale bar, 2 μm. Schematic of the LSCO–LCO single-photon detector: a high-\(T_c \) two-dimensional superconductor (SC) is formed at the interface between the 5-UC-thick layer of the LCO insulator and the 5-UC-thick layer of the LSCO metal on strontium lanthanum aluminate (LSAO) substrate. The contact leads are 50-nm-thick titanium–gold. An SEM image of a typical LSCO–LCO SNW device. Scale bar, 2 μm.

Fig. 1 | High-\(T_c \) superconducting nanowires. a, Schematic of the BSCCO single-photon detector: a relatively thin flake of BSCCO is covered by a much thicker flake of hBN and transferred onto ultra-flat gold contacts. The SNW region is defined by a He+ beam exposure. b, Optical photograph of the BSCCO device. The green line demarcates the photodetector area. The contact geometry was chosen to reduce the total resistance of the gold electrodes. Scale bar, 3 μm. Inset: example SEM image of a BSCCO SNW produced by He+ beam exposure (similar but not identical to that from the photograph: to avoid degradation, we refrained from characterizing the photodetector using SEM imaging). Scale bar, 2 μm. c, Schematic of the LSCO–LCO single-photon detector: a high-\(T_c \) two-dimensional superconductor (SC) is formed at the interface between the 5-UC-thick layer of the LCO insulator and the 5-UC-thick layer of the LSCO metal on strontium lanthanum aluminate (LSAO) substrate. The contact leads are 50-nm-thick titanium–gold. d, An SEM image of a typical LSCO–LCO SNW device. Scale bar, 2 μm.

Fig. 2 | Transport properties of cuprate SNWs. a, b, Examples of the \(R(T) \) dependencies for BSCCO (a) and LSCO–LCO (b) flake, film and SNWs. c, \(I-V \) curve for BSCCO SNWs measured at \(T = 3.7 \) K in the four-terminal configuration. d, Typical \(I-V \) curves of LSCO–LCO SNWs measured in the two-terminal configuration at \(T = 3.7 \) K before and after He+ ion exposure.
of magnitude, among the smallest of any SNW so far reported. Finally, LSCO–LCO bilayers are stable in air for years, and resilient to degradation during standard lithography, etching and contact deposition processes. In this work, we used heterostructures comprised of a 5-unit-cell (UC)-thick layer of LCO grown on top of a 5-UC-thick layer of LSCO (Fig. 1c). We used the electron-beam lithography to define an SNW meander structure typical for SNSPDs, 60 μm in length and 100 nm in width, with a filling factor 0.28 (Fig. 1d). For the fabrication details, see Methods and Supplementary Information, section 2.

After fabrication, we characterized the transport properties of our high-Τ SNWs. Figure 2a,b shows the typical temperature dependence of the resistance, R(T), of SNWs fabricated out of BSCCO and LSCO–LCO, revealing their respective critical temperatures of 69.8 K and 34.4 K as determined from the maximum of dR/dT(T). The obtained values are somewhat lower than those obtained for the parent BSCCO flake and LSCO–LCO bilayer film, that is, 79.8 K and 35.5 K, respectively (Fig. 2a,b, black traces). This indicates a mild degradation of the materials’ superconducting properties during the fabrication. BSCCO underwent a more substantial change in Τc, probably because of its much stronger sensitivity to the environment.

An important characteristic of most SNWs, enabling the generation of a voltage pulse upon single-photon absorption, is the metastable state that emerges under current biasing. This metastable state appears due to the competition between the current-induced Joule self-heating of the SNW in the normal state and electron cooling processes, and manifests itself as a pronounced hysteresis on the I–V characteristics. Figure 2c shows a typical I–V curve measured in our BSCCO device below Τc when the SNW is current-biased. A clear hysteresis with h = 516 μA is observed. The origin of the I–V hysteresis with hysteresis-free and thus these SNWs were not suitable for a single-photon detector per se (Fig. 2d). To circumvent this problem, we exposed the device to a relatively small dose of He+ ions (1016 cm−2) (Supplementary Information, section 3). Such exposure had only a mild effect on Ic, Τc and the normal state Rn; however, it led to the desired I–V hysteresis with Ic = 86.7 μA and Iph = 36.3 μA (Fig. 2d and Supplementary Information, section 4). The origin of I–V hysteresis in the exposed LSCO–LCO bilayer SNWs is yet to be understood; we tentatively attribute it to the modification of the electron cooling rate caused by the introduced defects.

Photoresponse measurements

To perform the photoresponse measurements, we mounted our cuprate SNWs in a variable-temperature cryostat equipped with radiofrequency coax cables and an optical fibre. The latter was held approximately 1 cm away from the device so that a defocused continuous-wave laser beam covered the entire device area. The cooling power of our cryogenic set-up significantly exceeds the power of incident laser radiation, ensuring the thermal stability of our samples upon illumination. The simplified circuit diagrams, used for the photoresponse measurements, are shown in Fig. 3a,b. The LSCO–LCO device was measured in a conventional SPD configuration in which the SNW was biased through a d.c. input of the bias tee using an isolated voltage source connected in series with a resistor, Rsh. The a.c. output was connected to a low-noise amplifier, the output of which was fed to an oscilloscope or a photon counter (Fig. 3a). To mitigate latching effects in this superconducting photodetector, the SNW was connected in series with an on-chip kinetic inductor, Lsh, as well as made out of the superconducting LSCO–LCO bilayer. The BSCCO measurement configuration was somewhat similar, but in this case, we used a more conventional low-frequency reset loop formed by an inductor, Lsh, and a resistor, Rsh, connected in series with each other (Fig. 3b).
Figure 3c shows an example of the photovoltage generation, V_{ph}, measured across the current-biased LSCO–LCO SNWs when the device was exposed to laser beam radiation of wavelength $\lambda = 1.5 \, \mu m$. The $V_{ph}(t)$ traces of this SNW shared common features with the photoresponse of conventional SNSPDs. After photon absorption, $V_{ph}(t)$ spikes and quickly reaches its maximum value. This is followed by a much slower decay with the characteristic time τ, often referred to as dead or recovery time, which depends on the total kinetic inductance, L_s, of the superconducting circuit\(^4\). The measured value, $\tau = 7 \, ns$ (determined as the time when the signal dropped to 30% of its maximum value) is in agreement with our measurements of the kinetic inductance in the LSCO–LCO bilayer films (Supplementary Information, section 5). The V_{ph} spikes in the LSCO–LCO SNW device were observed below and above the liquid helium temperature and could be detected up to $T = 8 \, K$. At higher T, LSCO–LCO SNWs did not exhibit an I–V hysteresis, and thus no voltage pulses were observed upon illuminating the SNW with low-intensity laser light (Supplementary Information, section 4).

As compared to LSCO–LCO, the V_{ph} pulses in biased BSCCO SNWs were observed up to much higher $T = 25 \, K$ (Fig. 3d), above which the I–V hysteresis disappeared (Supplementary Information, section 4). The spikes were characterized by a much faster recovery time $\tau = 0.8 \, ns$. We attribute this short τ to a smaller total kinetic inductance of the BSCCO photodetector (Supplementary Information, section 5). We have also tested the dependence of V_{ph} on the photon energy and found that the LSCO–LCO and BSCCO SNWs yielded spikes at both $\lambda = 1.5 \, \mu m$ and $\lambda = 780 \, nm$ (Fig. 3e,f). Finally, we note that above the critical current our devices latch, and therefore do not feature voltage pulses on an oscilloscope and corresponding counts on a photon counter.

Single-photon sensitivity of the cuprate photodetectors

To get further insight into the performance of our cuprate photodetectors, we recorded the photon count rate, PCR (the number of V_{ph} pulses per unit time), as a function of the bias current, I_{bias}. Figure 4a shows the PCR normalized to its maximum value, measured in our BSCCO device in the dark and upon exposing it to the $\lambda = 1.5 \, \mu m$ laser light. In the dark, spontaneous voltage pulses emerge close to the critical current, a typical behaviour of SNSPDs. The absolute value of these dark counts did not exceed 10^3 s$^{-1}$, comparable to the values in conventional NbN SNSPDs. Upon illumination, the counts appeared at much lower onset current $I_{bias} = 0.62I_c$, whereas the PCR showed some tendency to saturation upon approaching I_c. This saturation indicates high internal detector efficiency\(^5\). With increasing T to 25 K, the onset current decreased together with I_c, as expected for conventional SNSPDs (Fig. 4c). Furthermore, we found that the PCR for a given I_{bias} was almost independent of λ and featured similar PCR(I_{bias}) functional dependencies for $\lambda = 780 \, nm$ and $\lambda = 1.5 \, \mu m$ (Supplementary Information, section 5).
6). We observed zero PCR on devices made out of non-optimally doped BSCCO flakes; the latter exhibited only signatures of the bolometric photoresponse (Supplementary Information, section 6).

The PCR–I_bias characteristics obtained for the LSCO–LCO photodetector at λ = 1.5 μm were rather similar to those for BSCCO yet the counts emerged at much smaller I_bias due to a smaller critical current in this SNW (Fig. 4b,d). The onset current was about 0.75 μA for both T = 3.7 and 8 K. Notably, upon decreasing λ to 780 nm, the functional form of the PCR(I_bias) scaling changed drastically and featured a rather unusual dependence (Fig. 4d). First, the counts appeared at much lower I_bias = 20 μA. Then, the PCR exhibits a tendency to saturation on increasing I_bias to ~52 μA. Finally, above this value, the PCR started to ascend again, suggesting two distinct operation modes of the LSCO–LCO photodetector.

While the data support the hypothesis of single-photon detection in these two materials, a number of features of the data are different from the observations in SNSPDs in conventional superconductors. Specifically: (1) we observed unusual λ–I characteristics in hysteretic LSCO–LCO SNWs (Fig. 2d); (2) we observed at one temperature (16 K) a < 1 slope in the PCR(A) curve for BSSCO at high A; and (3) we observed unusual structure in the PCR(A) curves for the LSCO–LCO SNSPD. Given the early stage of development of materials processing used in this work, such anomalies are not unexpected. While our high-T, films are homogeneous, we expect non-uniformity in the patterning and processing, so different regions of the SNWs could be participating in the detection process at different T, λ and I_bias.

Next, in Supplementary Information, section 7, we provide estimates for the BSCCO detector efficiency, DE. To this end, we used experimentally determined absorption of thin BSCCO flakes deposited onto SiO2 substrate. We found that at 25 K, at which PCR is ~10^{-3} s^{-1} for the 10 dB attenuation, the DE is of the order of 1.5%. Note, these estimates and their approximations cannot be used because they take into account the absorption and the transmission of the SiO2 substrate. In the cases of the LSCO–LCO SNSPD, the detection process at different T, λ and I_bias.

Conclusions

In this work, we demonstrated single-photon detection in high-Tc cuprate SNWs at temperatures up to 25 K. Our results refute the long-standing opinion that large-gap superconductors have lower sensitivity to low-energy photons. Additionally, it is surprising that these materials, which are very different from past examples, also exhibit single-photon detection, suggesting that the detection mechanism may need to be reconsidered. Finally, our work opens prospects of further developments in the high-Tc quantum sensors and their integration into on-chip phononic quantum information circuits.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41565-023-01325-2.

References

1. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).
2. Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).
3. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).
4. Tillmann, M. et al. Experimental boson sampling. Nat. Photonics 7, 540–544 (2013).
5. Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).
6. Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photonics 11, 361–365 (2017).
7. Paterova, A. V., Yang, H., An, C., Kalashnikov, D. A. & Krivitsky, L. A. Tunable optical coherence tomography in the infrared range using visible photons. Quantum Sci. Technol. 3, 025008 (2018).
8. Bhargava, A. M., Rakshit, R. K., Das, S. & Singh, M. Metrology perspective of single-photon detectors: review on global calibration methods. Adv. Quantum Technol. 4, 2100008 (2021).
9. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011).
10. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696–705 (2009).
11. Valvarthi, R. et al. Quantum teleportation across a metropolitan fibre network. Nat. Photonics 10, 676–680 (2016).
12. Liao, S.-K. et al. Satellite relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018).
13. Gisin, N. & Thew, R. Quantum communication. Nat. Photonics 1, 165–171 (2007).
14. Zhao, Q.-Y. et al. Single-photon imager based on a superconducting nanowire delay line. Nat. Photonics 11, 247–251 (2017).
15. Xia, F. et al. Short-wave infrared confocal fluorescence imaging of deep mouse brain with a superconducting nanowire single-photon detector. ACS Photonics 8, 2800–2810 (2021).
16. Ozana, N. et al. Superconducting nanowire single-photon sensing of cerebral blood flow. Neurophotonics 8, 035006 (2021).
17. Li, L. & Davis, L. M. Single photon avalanche diode for single molecule detection. Rev. Sci. Instrum. 64, 1524–1529 (1993).
18. Bao, Z. et al. Laser ranging at few-photon level by photon-number-resolving detection. Appl. Opt. 53, 3908–3912 (2014).
19. Zhu, J. et al. Demonstration of measuring sea fog with an SNSPD-based lidar system. Sci. Rep. 7, 1–7 (2017).
20. Carp, S. A. et al. Diffuse correlation spectroscopy measurements of blood flow using 1064 nm light. J. Biamed. Opt. 25, 097003 (2020).
21. Poon, C.-S. et al. First-in-clinical application of a time-gated diffuse correlation spectroscopy system at 1064 nm using superconducting nanowire single photon detectors in a neuro intensive care unit. *Biomed. Opt. Express* **13**, 1344–1356 (2022).

22. Ota, R. Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging. *Radiol. Phys. Technol.* **14**, 134–148 (2021).

23. Ceccarelli, F. et al. Recent advances and future perspectives of single-photon avalanche diodes for quantum photonics applications. *Adv. Quantum Technol.* **4**, 2000102 (2021).

24. Kim, J., Takeuchi, S., Yamamoto, Y. & Hogue, H. H. Multiphoton detection using visible light photon counter. *Appl. Phys. Lett.* **74**, 902–904 (1999).

25. Berggren, K. & Nam, S.-W. in Single-Photon Generation and Detection Vol. 45 (eds Migdall, A. et al.) Ch. 6 (Elsevier, 2013).

26. Wolff, M. A. et al. Broadband waveguide-integrated superconducting single-photon detectors with high system detection efficiency. *Appl. Phys. Lett.* **118**, 154004 (2021).

27. Reddy, D. V., Nerem, R. R., Nam, S. W., Mirin, R. P. & Verma, V. B. Superconducting nanowire single-photon detectors with 98% system detection efficiency at 1550 nm. *Optica* **7**, 1649–1653 (2020).

28. Hu, P. et al. Detecting single infrared photons toward optimal system detection efficiency. *Opt. Express* **28**, 36884–36891 (2020).

29. Chang, J. et al. Detecting telecom single photons with 99.5% system detection efficiency and high time resolution. *Apl Photonics* **6**, 036114 (2021).

30. Hochberg, Y. et al. Detecting sub-GeV dark matter with superconducting nanowires. *Phys. Rev. Lett.* **123**, 151802 (2019).

31. Korzh, B. et al. Demonstration of sub-3-ps temporal resolution with a superconducting nanowire single-photon detector. *Nat. Photonics* **14**, 250–255 (2020).

32. Cherednichenko, S., Acharya, N., Novoselov, E. & Drakinskiy, V. Low kinetic inductance superconducting MgB2 nanowires with a 130 ps relaxation time for single-photon detection applications. *Supercond. Sci. Technol.* **34**, 044001 (2021).

33. Engel, A., Renema, J. J., Il’In, K. & Semenov, A. Detection mechanism of superconducting nanowire single-photon detectors. *Supercond. Sci. Technol.* **28**, 114003 (2015).

34. Natarajan, C. M., Tanner, M. G. & Hadfield, R. H. Superconducting nanowire single-photon detectors; physics and applications. *Supercond. Sci. Technol.* **25**, 063001 (2012).

35. Sherman, N. Superconducting nuclear particle detector. *Phys. Rev. Lett.* **8**, 438 (1962).

36. Johnson, M., Herr, A. & Kadin, A. Bolometric and nonbolometric infrared photoresponses in ultrathin superconducting nbn films. *J. Appl. Phys.* **79**, 7069–7074 (1996).

37. Semenov, A. D., Gol’Tsman, G. N. & Korneev, A. A. Quantum detection by current carrying superconducting film. *Phys. C Supercond.* **351**, 349–356 (2001).

38. Gol’Tsman, G. et al. Pico-second superconducting single-photon optical detector. *Appl. Phys. Lett.* **79**, 705–707 (2001).

39. Shibata, H. Review of superconducting nanostritp photon detectors using various superconductors. *IEICE Trans. Electron.* **104**, 429–434 (2021).

40. Velasco, A. E. et al. High-operating-temperature superconducting nanowire single photon detectors. In *Conference on Lasers and Electro-optics QELS_Fundamental Science*, FW4C–5 (Optical Society of America, 2016).

41. Andersson, E., Arpaia, R., Trabaldo, E., Bauch, T. & Lombardi, F. Fabrication and electrical transport characterization of high quality underdoped YBa2Cu3O7−δ nanowires. *Supercond. Sci. Technol.* **33**, 064002 (2020).

42. Ejrnaes, M. et al. Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics. *Supercond. Sci. Technol.* **30**, 12LT02 (2017).

43. Lyatti, M. et al. Energy-level quantization and single-photon control of phase slips in YBa2Cu3O7−δ nanowires. *Nat. Commun.* **11**, 763 (2020).

44. Frenkel, A. et al. Optical response of nongranular high Tc YBa2Cu3O7−δ superconducting thin films. *J. Appl. Phys.* **67**, 3054–3068 (1990).

45. Amari, P. et al. High-temperature superconducting nanomeanders made by ion irradiation. *Supercond. Sci. Technol.* **31**, 015019 (2018).

46. Coulêdo, F. et al. Dynamic properties of high-T, superconducting nano-junctions made with a focused helium ion beam. *Sci. Rep.* **10**, 1–9 (2020).

47. Sterpetti, E., Biscaras, J., Erb, A. & Shukla, A. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8. *Nat. Commun.* **8**, 1–8 (2017).

48. Wang, F., Biscaras, J., Erb, A. & Shukla, A. Supercractor–insulator transition in space charge doped one unit cell Bi2Sr2CaCu2O8. *Nat. Commun.* **12**, 1–6 (2021).

49. Sandilands, L. J. et al. Origin of the insulating state in exfoliated high-Tc two-dimensional atomic crystals. *Phys. Rev. B* **90**, 081402 (2014).

50. Vasquez, R. Intrinsic photoemission signals, surface preparation, and surface stability of high temperature superconductors. *J. Electron Spectrosc. Relat. Phenom.* **66**, 209–222 (1994).

51. Poccia, N. et al. Evolution and control of oxygen order in a cuprate superconductor. *Nat. Mater.* **10**, 733–736 (2011).

52. Zhao, S. Y. F. et al. Sign-reversing Hall effect in atomically thin high-temperature Bi2Sr2CaCu2O8+δ superconductors. *Phys. Rev. Lett.* **122**, 247001 (2019).

53. Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. *Nature* **575**, 156–163 (2019).

54. Cybart, S. A. et al. Nano Josephson superconducting tunnel junctions in YBa2Cu3O7−δ directly patterned with a focused helium ion beam. *Nat. Nanotechnol.* **10**, 588–602 (2015).

55. Martinez, G. D., Buckley, D., Charaev, I., Dow, D. E. & Berggren, K. K. Superconducting nanowire fabrication using dislocation engineering. In *2019 IEEE MIT Conference (URTC)*:1–4 (IEEE, 2019).

56. Gozar, A., Litombe, N. E., Hoffman, J. E. & Božović, I. Optical nanoscopy of high Tc cuprate nanonstrctive devices patterned by helium ion beams. *Nano Lett.* **17**, 1582–1586 (2017).

57. Seifert, P. et al. A high-Tc Van der Waals superconductor based photodetector with ultra-high responsivity and nanosecond relaxation time. *2D Mater.* **8**, 035053 (2021).

58. Gozar, A. et al. High-temperature interface superconductivity between metallic and insulating copper oxides. *Nature* **455**, 782–785 (2008).

59. Logvenov, G., Gozar, A. & Božovic, I. High-temperature superconductivity in a single copper–oxygen plane. *Science* **326**, 699–702 (2009).

60. Skocpol, W., Beasley, M. & Tinkham, M. Self-heating hotspots in superconducting thin-film microbridges. *J. Appl. Phys.* **45**, 4054–4066 (1974).

61. Chiles, J. et al. Superconducting microwave detectors based on WSi with single-photon sensitivity in the near-infrared. *Appl. Phys. Lett.* **116**, 242602 (2020).

62. Caloz, M. et al. Intrinsically-limited timing jitter in molybdenum silicide superconducting nanowire single-photon detectors. *J. Appl. Phys.* **126**, 164501 (2019).

63. Cheng, R. et al. A 100-pixel photon-number-resolving detector unveiling photon statistics. *Nat. Photonics* **17**, 112–119 (2023).
64. Kerman, A. J., Yang, J. K., Molnar, R. J., Dauler, E. A. & Berggren, K. K. Electrothermal feedback in superconducting nanowire single-photon detectors. Phys. Rev. B 79, 100509 (2009).
65. Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photonics 7, 210–214 (2013).
66. Semenov, A. D. Superconducting nanostrip single-photon detectors some fundamental aspects in detection mechanism, technology and performance. Supercond. Sci. Technol. 34, 054002 (2021).
67. Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).
68. Varma, C. M. Colloquium: linear in temperature resistivity and associated mysteries including high temperature superconductivity. Rev. Mod. Phys. 92, 031001 (2020).
69. Zhou, X. et al. High-temperature superconductivity. Nat. Rev. Phys. 3, 462–465 (2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2023
Methods

Fabrication of BSCCO photodetectors
To fabricate SNWs out of BSCCO we mechanically exfoliated bulk crystals and deposited cleaved flakes onto polydimethylsiloxane (PDMS) polymer stamps attached to the glass slide. To avoid the degradation of the flakes, the exfoliation was done in the inert atmosphere of the argon-filled glovebox. The flakes were then transferred onto prepatterned Si/SiO₂ substrates with ultra-flat titanium/gold contacts and covered by relatively thick (~50 nm) slabs of hBN.

The fabrication of ultra-flat contacts comprised several steps and relied on a lift-off-free procedure. First, thin layers of titanium (3 nm) and gold (25 nm) were evaporated onto the Si/SiO₂ wafer. Next, negative e-beam lithography was used to define a mask for selective removal of the metal outside the designated contact areas. This removal was done by a combination of argon and oxygen etching. Resist residues were further removed by immersing the substrates into N-methyl-pyrrolidone (NMP) solution and subsequent aggressive stripping using extensive oxygen plasma cleaning. We intentionally increased the typical dwell time of the plasma cleaning to reduce the thickness of the gold layer to 20 nm.

To define superconducting SNWs out of prepared partially encapsulated BSCCO devices by He+ ion beam, we first ran the simulation of the ion collision damage using SRIM software (Supplementary Information, section 1). This allowed us to estimate the characteristic doses needed to introduce a significant number of defects into the BSCCO crystal lattice and suppress superconductivity. Next, starting from the obtained values, we performed dose tests using a Zeiss Orion microscope equipped with a Raith pattern generator. The irradiation was realized through sweeping of the beam across the SNW area. The exposed area is a rectangle with approximate dimensions of 5 × 3 μm² (to cover the whole meander area). The beam spot is ~2 nm. The dose varied in the range from 10¹⁵ to 10²⁰ ions per cm² (Supplementary Information, section 1). This allowed us to estimate the characteristic doses needed to introduce a significant number of defects into the BSCCO crystal lattice and suppress superconductivity.

Data availability
The data reported in Figs. 2–4 can be found on Zenodo (https://doi.org/10.5281/zenodo.7501827). The other data that support the findings of this study are available from the corresponding authors upon reasonable request.

Acknowledgements
Work in the P.J.H. group was partly supported through AFOSR grant FA9550-21-1-0318, through the NSF QII-TAQS programme (grant 1936263), and the Gordon and Betty Moore Foundation EPiQS Initiative through grant GBMF9463 to P.J.H. I.Y.P acknowledges support from the MIT undergraduate research opportunities programme and the Johnson & Johnson research scholars programme. K.K.B. and group members acknowledge support from Brookhaven Science Associates, LLC award number 030814-00001. K.W. and T.T. acknowledge support from JSPS KAKENHI (grant numbers 19H05790, 20H00354 and 21H05233). Thin-film synthesis and characterization at Brookhaven National Laboratory was supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. H.X. was supported by the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF9074. O. Medeiros acknowledges funding from the NDSEG Fellowship Program. We acknowledge valuable discussions with S. Rescia (BNL) and G. Carini (BNL) and their significant help during the planning and development of this research work. The authors thank J. Daley and M. Mondol of the MIT Nanostructures laboratory for the technical support related to electron-beam fabrication and helium ion microscopy. We also thank F. Zhao (Harvard), Prof. Schilling (UZH) and M. Karmanov (MMDES) for helpful discussions.

Author contributions
D.A.B. and I.C. conceived and designed the project. I.C. and D.A.B. performed transport measurements. I.C. performed the photoresponse measurements. D.A.B., I.C. and I.Y.P. fabricated the devices. B.A.B., M.C. and I.C. designed the readout circuit. O.M. simulated the readout circuit. I.C. and D.A.B. analysed the experimental data with help from I.B., P.J.-H. and K.K.B. I.D. provided BSCCO crystals. X.H., A.T.B. and I.B. synthesized and characterized the LSCO–LCO bilayer films. T.T. and K.W. provided high-quality hBN crystals. I.C. and D.A.B. wrote the manuscript with input from all coauthors. P.J.-H., I.B. and K.K.B. supervised the project. All authors contributed to discussions.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41565-023-01325-2.

Correspondence and requests for materials should be addressed to I. Charaev, D. A. Bandurin or K. K. Berggren.

Peer review information Nature Nanotechnology thanks Cheryl Feuillet-Palma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.