Newton’s gravitation-force’s classical average proof of a Verlinde’s conjecture

A. Plastino1,3,4, M. C. Rocca1,2,3,

1 Departamento de Física, Universidad Nacional de La Plata,
2 Departamento de Matemática, Universidad Nacional de La Plata,
3 Consejo Nacional de Investigaciones Científicas y Tecnológicas (IFLP-CCT-CONICET)-C. C. 727, 1900 La Plata - Argentina
4 SThAR - EPFL, Lausanne, Switzerland

June 13, 2018

Abstract

A surprising, gravity related Verlinde-conjecture, that generated immense interest, asserts that gravity is an emergent entropic force. We provided a classical proof of the assertion in [doi.org/j.physa.2018.03.019]. Here, we classically prove a related, second Verlinde-conjecture. This states that, at very large distances (r_0), gravity departs from its classical nature and begins to decay linearly with r_0.

KEYWORDS: Verlinde’s second conjecture, Boltzmann-Gibbs distribution, divergences, dimensional regularization.

1 Introduction

Entropic gravity, or emergent one, is a Verlinde’s conjecture that has attracted immense interest \[1\]. He describes gravity as an entropic force (EF). This EF is endowed with macro-scale homogeneity, being at the same time subjected to quantum-disorder. Accordingly, this two-body EF would not be a fundamental interaction. Verlinde based his ideas on string theory, black
hole physics, and quantum information theory. We provided a classical proof of the assertion in [2].

Such EF theory involves what we call here a second conjecture. It says that when gravity becomes vanishingly weak, at very large distances, it differs from its Newtonian quadratic nature because its strength starts to decay linearly with the inverse distance from a given mass. We intend to prove below this second conjecture.

The main technical ingredient of our proceedings is dimensional regularization (DR). DR [3, 4] constitutes one of the greatest advances in the theoretical physics of the last 45 years, with applications in several branches of physics (see, for instance, [5]-[58].

It was believed that the classical Boltzmann-Gibbs (BG) probability distribution can not yield finite results because the associated partition function Z diverges [59, 60]. This belief did not take into account the possibility of analytical extensions, that could overcome divergences, e.g., at the origin. However, it was shown in Refs. [61, 62], that Z can be calculated and yields finite results for Boltzmann-Gibbs and Tsallis entropies, using the 45-years old DR technique.

It is well known that, at a quantum field theory level, DR can not cope with the gravitational field, since it is non-renormalizable. Our present challenge is quite different, though, because we deal with Newton’s gravity at a classical level and we are not attempting renormalization.

We prove the second conjecture in three dimensions in Section 2 and in two dimensions in Section 3. The ensuing conclusions are drawn in Section 4.

2 The three-dimensional case

In [2], we classically verified Verlinde’s emergent gravitation conjecture by starting with the ideal gas Hamiltonian, constructing the associated partition function, and from it the entropy. Then, following Verlinde’s prescription for an entropic force, we showed that it had Newton’s appearance. Now instead, we start from the gravitation Hamiltonian and compute the concomitant partition function.
The Boltzmann-Gibbs (BG) partition function Z_ν for a Newton potential $\frac{GmM}{r}$ is [62]

$$Z_\nu = \int_{\mathcal{W}} e^{-\beta \left(\frac{p^2}{2m} - \frac{GmM}{r} \right)} d^\nu x d^\nu p,$$

where the masses involved are M and m. We call $\mathcal{W} = R^\nu \oplus S^\nu(r_0)$, $S^\nu(r_0)$ being the spherical volume of radius r_0. For effecting the integration process one uses hyper-spherical coordinates and two integrals, each in ν dimensions. One is then left with just two radial coordinates (one in $r-$ space and the other in $p-$ space) and $2(\nu - 1)$ angles. Accordingly [62],

$$Z_\nu = \left[\frac{2\pi^{\nu/2}}{\Gamma(\frac{\nu}{2})} \right]^2 \int_0^\infty e^{-\frac{\beta p^2}{2m}} p^{\nu-1} dp \int_0^{r_0} e^{\frac{\beta GmM}{r}} r^{\nu-1} dr.$$

We appeal here to a Table if Integrals [63] the integral

$$\int_0^\infty e^{-\frac{\beta p^2}{2m}} p^{\nu-1} dp = \left(\frac{2m}{\beta} \right)^{\nu/2} \frac{\Gamma(\frac{\nu}{2})}{2}.$$

The remaining integral is cast as

$$\int_0^{r_0} e^{\frac{\beta GmM}{r}} r^{\nu-1} dr = \int_0^\infty e^{\frac{\beta GmM}{r}} r^{\nu-1} dr - \int_0^{r_0} e^{\frac{\beta GmM}{r}} r^{\nu-1} dr =$$

$$\Gamma(-\nu) \cos \pi \nu (\beta GmM)^\nu + \frac{r_0^\nu}{\nu} \phi \left(-\nu, 1 - \nu; \frac{\beta GmM}{r_0} \right).$$

The first integral on the r.h.s has been evaluated in [62] while the second can be read off [63]. We call ϕ the confluent hypergeometric function. We arrive in this way to the following expression for Z_ν

$$Z_\nu = 2 \frac{\Gamma(\frac{\nu}{2})}{\Gamma(\frac{\nu}{2})} \left(\frac{2m}{\beta} \right)^{\nu/2} \left[\Gamma(-\nu) \cos \pi \nu (\beta GmM)^\nu + \frac{r_0^\nu}{\nu} \phi \left(-\nu, 1 - \nu; \frac{\beta GmM}{r_0} \right) \right].$$
We need further appeal to \(63\) to find
\[
\phi(-\nu, 1 - \nu; z) = e^z \phi(1, 1 - \nu; -z) = e^z \left[1 + \frac{z}{\nu - 1} + \frac{z^2}{(\nu - 1)(\nu - 2)} \right] + \frac{z^3}{(\nu - 1)(\nu - 2)(\nu - 3)} \phi(1, 4 - \nu; -z),
\]
(2.6)
refining further \(\mathcal{Z}\) as
\[
\mathcal{Z}_\nu = \frac{2}{\Gamma\left(\frac{\nu}{2}\right)} \cos \pi \nu \left(2\pi^2 \beta G^2 m^3 M^2\right)^{\frac{\nu}{2}} \Gamma(-\nu) +
\]
\[
\frac{2}{\Gamma\left(\frac{\nu}{2}\right)} \left(\frac{2\pi^2 m}{\beta}\right)^{\frac{\nu}{2}} r_0^{\frac{\beta G m M}{\nu r_0}} \left[1 + \frac{\beta G m M}{(\nu - 1) r_0} + \frac{(\beta G m M)^2}{(\nu - 1)(\nu - 2) r_0^2} \right] + \frac{2}{\Gamma\left(\frac{\nu}{2}\right)} \left(\frac{2\pi^2 m}{\beta}\right)^{\frac{\nu}{2}} \frac{r_0^{\nu - 3}}{\nu} e^{\frac{\beta G m M}{r_0}} \left(\frac{\beta G m M}{(\nu - 1)(\nu - 2)(\nu - 3)} \phi(1, 4 - \nu; -\beta G m M r_0) \right).
\]
(2.7)

From (2.7) one gathers that poles emerge for any dimension \(\nu, \nu = 3\) included. Thus, appeal to dimensional regularization (DR) is mandatory. To this effect we use the DR-Bollini @ Giambiagi’s technique’s generalization given in [4]. In a nut-shell the (DR) process consists in this procedure: if we have, for instance, an expression \(\hat{F}(\nu)\) that diverges, say, for \(\nu = 3\), our Bollini-Giambiagi’s DR generalization consists in performing the Laurent-expansion of \(\hat{F}\) around \(\nu = 3\) and select afterwards, as the physical result for \(\hat{F}\), the \(\nu = 3\)-independent term in the expansion. The justification for such a procedure is clearly explained in [4].

The \(\mathcal{Z}_\nu\)’s Laurent expansion reads
\[
\mathcal{Z}_\nu = \frac{a_{-1}}{\nu - 3} + a_0 + \sum_{n=0}^{\infty} a_n (\nu - 3)^n.
\]
(2.8)

Physically then, from \(\mathcal{Z}\), DR selects the \(a_0\)-term, i.e.,
\[
\mathcal{Z} = a_0 = -\frac{1}{3\sqrt{\pi}} (2\pi^2 \beta G^2 m^3 M^2)^{\frac{1}{2}} \left[\ln(2\pi^2 \beta G^2 m^3 M^2) - C - \frac{17}{3} \right] + \frac{4}{3\sqrt{\pi}} \left(\frac{2\pi^2 m}{\beta}\right)^{\frac{3}{2}} r_0^{\frac{\beta G m M}{2r_0}} \left[1 + \frac{\beta G m M}{2r_0} + \frac{(\beta G m M)^2}{2r_0^2} \right] + \ldots
\]
\[
\left(\frac{2\pi^2 \beta G^2 m^3 M^2}{3\sqrt{\pi}} \right)^\frac{3}{2} \left[\ln \left(\frac{2\pi^2 m r_0^2}{\beta} \right) + C + 2 \ln 2 - \frac{17}{3} \right] - \frac{2}{3\sqrt{\pi}} e^{\frac{\beta G M}{r_0}} \left(\frac{2\pi^2 \beta G^2 m^3 M^2}{3\sqrt{\pi}} \right)^\frac{3}{2} \phi^{(1)} \left(1, 4 - \nu; -\frac{\beta G M}{r_0} \right) \right]_{\nu=3}, \tag{2.9}
\]

where \(\phi^{(1)} \) denotes derivative of \(\phi \) with respect to \(4 - \nu \). [65].

We now analyze the 4 lines that make up Eq. (2.9) for very large \(r_0 \). In such an instance, the first line is constant, the second line grows as \(r_0^3 \), the third line grows logarithmically, and the fourth one is constant. Thus, when we pass to the limit of very large \(r_0 \) we find

\[
\mathcal{Z} = \frac{4}{3\sqrt{\pi}} \left(\frac{2\pi^2 m}{\beta} \right)^\frac{3}{2} r_0^3. \tag{2.10}
\]

We consider next the mean energy \(\langle U \rangle \) and face

\[
\langle U \rangle = \frac{1}{\mathcal{Z}} \int_{\mathcal{M}} e^{-\beta \left(\frac{\nu^2}{2m} - \frac{G m M}{r} \right)} \left(\frac{p^2}{2m} - \frac{G m M}{r} \right) d^\nu x d^\nu p. \tag{2.11}
\]

We have to treat \(\langle U \rangle \) now in identical manner as we did above with \(\mathcal{Z} \). We do not give the pertinent details to save space. The ensuing result reads

\[
\langle U \rangle = -\frac{\nu}{\beta \Gamma \left(\frac{\nu}{2} \right)} \cos \pi \nu \left(2\pi^2 \beta G^2 m^3 M^2 \right)^\frac{\nu}{2} \Gamma(-\nu) + \frac{1}{\beta \Gamma \left(\frac{\nu}{2} \right)} \left(\frac{2\pi^2 m}{\beta} \right)^\frac{\nu}{2} r_0^\nu e^{\frac{\beta G M}{r_0}} \left[1 - \frac{\beta G M}{(\nu - 1)r_0} - \frac{(\beta G M)^2}{(\nu - 1)(\nu - 2)r_0^2} \right] - \frac{1}{\beta \Gamma \left(\frac{\nu}{2} \right)} \left(\frac{2\pi^2 m}{\beta} \right)^\frac{\nu}{2} r_0^{\nu-3} e^{\frac{\beta G M}{r_0}} \frac{(\beta G M)^3}{(\nu - 1)(\nu - 2)(\nu - 3)} \phi \left(1, 4 - \nu; -\frac{\beta G M}{r_0} \right). \tag{2.12}
\]

Again, poles in \(\nu \) ensue and we need DR once again, that is, the Laurent series for \(\langle U \rangle \) around \(\nu = 3 \). We arrive at

\[
\langle U \rangle = \frac{1}{\mathcal{Z}} \left[\frac{b_{-1}}{\nu - 3} + b_0 + \sum_{n=0}^{\infty} b_n (\nu - 3)^n \right]. \tag{2.13}
\]
and the physical term for U, the one independent of $\nu - 3$, is now

$$<U> = \frac{b_0}{\mathcal{Z}} = \frac{1}{\mathcal{Z}} \left\{ \frac{1}{2\beta \sqrt{\pi}} (2\pi^2 \beta G^2 m^3 M^2)^{\frac{3}{2}} \left[\ln(2\pi^2 \beta G^2 m^3 M^2) - C - 5 \right] + \frac{2}{\beta \sqrt{\pi}} \left(\frac{2\pi^2 m}{\beta} \right)^{\frac{3}{2}} r_0^3 e^{-\frac{\beta G m M}{r_0}} \left[1 - \frac{\beta G m M}{2r_0} - \frac{(\beta G m M)^2}{2r_0^2} \right] + \frac{(2\pi^2 \beta G^2 m^3 M^2)^{\frac{3}{2}}}{2\beta \sqrt{\pi}} \left[\ln \left(\frac{8\pi^2 m r_0^2}{\beta} \right) + C - 5 \right] - \frac{1}{\beta \sqrt{\pi}} e^{-\frac{\beta G m M}{r_0}} (2\pi^2 \beta G^2 m^3 M^2)^{\frac{3}{2}} \left[1, 4 - \nu, -\frac{\beta G m M}{r_0} \right] \right\}_{\nu=3}. \quad (2.14)$$

Proceeding similarly to what was done with \mathcal{Z} we have for very large r_0:

$$<U> = \frac{3}{2\beta}. \quad (2.15)$$

The following abbreviation is useful:

$$\mathcal{Z} = \alpha r_0^3; \quad \alpha = \frac{4}{3\sqrt{\pi}} \left(\frac{2\pi^2 m}{\beta} \right)^{\frac{3}{2}}. \quad (2.16)$$

The entropy in the canonical ensemble reads now [62]

$$S = \ln \mathcal{Z} + \beta <U> = \ln \mathcal{Z} + \frac{3}{2} \quad (2.17)$$

for very large r_0. Verlinde’s entropic force is defined as

$$F_e = -\frac{\lambda}{\beta r_0} \frac{\partial S}{\partial r_0} = \frac{\lambda}{\beta \mathcal{Z}} \frac{\partial \mathcal{Z}}{\partial r_0}, \quad (2.18)$$

i.e.,

$$F_e = -\frac{3\lambda}{\beta r_0} = -\frac{G m M}{r_0}, \quad (2.19)$$

with λ

$$\lambda = \frac{\beta G m M}{3}. \quad (2.20)$$

We realize that (2.19) does have for F_e the form, at large distance, conjectured by Verlinde, QED. This is our main conclusion in the present Communication.
3 The planar case

In two dimensions one faces

\[Z_2 = \int_{\mathcal{M}} e^{-\beta \left(\frac{p^2}{2m} + 2GmM \ln r \right)} d^2 x d^2 p, \]

(3.1)

where \(\mathcal{M} = R^2 \oplus S^2 \left(r_0 \right) \) and \(S^2 \left(r_0 \right) \) is the spherical volume of radius \(r_0 \). Using polar coordinates one has

\[Z_\nu = 4\pi^2 \int_0^{\infty} e^{-\beta \frac{p^2}{2m}} p dp \int_0^{r_0} e^{-2\beta GmM \ln r} r dr \]

(3.2)

or

\[Z = 4\pi^2 \int_0^{\infty} e^{-\beta \frac{p^2}{2m}} p dp \int_0^{r_0} r^{1-2\beta GmM} dr. \]

(3.3)

The first integral on the r.h.s. of (3.3) is straightforward. The second needs appeal to the integral regularization technique of I. M. Guelfand in Vol. 1 of his treatise [64]. This leads to

\[\int_0^{r_0} r^{1-2\beta GmM} dr = \frac{r_0^{2-2\beta GmM}}{2 - 2\beta GmM} \quad ; \quad 2 - 2\beta GmM \neq 0. \]

(3.4)

The planar partition function becomes

\[Z = \frac{4\pi^2 m}{\beta} \frac{r_0^{2-2\beta GmM}}{2 - 2\beta GmM}, \]

(3.5)

while \(< U > \) is

\[< U > = \frac{1}{Z} \int_{\mathcal{M}} e^{-\beta \left(\frac{p^2}{2m} + 2GmM \ln r \right)} \left(\frac{p^2}{2m} + 2GmM \ln r \right) d^2 x d^2 p. \]

(3.6)

We follow the steps of the preceding Section and obtain for the partition function times \(< U > \)
\[Z \langle U \rangle = \frac{4\pi^2 m \beta^2}{2 - 2\beta G m M} \left[1 + 2\beta G m M \left(\ln r_0 - \frac{1}{2 - 2\beta G m M} \right) \right], \quad (3.7) \]

or
\[\langle U \rangle = \frac{1}{\beta} \left[1 + 2\beta G m M \left(\ln r_0 - \frac{1}{2 - 2\beta G m M} \right) \right]. \quad (3.8) \]

From large \(r_0 \) one finds, from (3.8):
\[\langle U \rangle = \frac{1}{\beta} \left(1 + 2\beta G m M \ln r_0 \right). \quad (3.9) \]

Passing to the entropic force we face
\[F_e = -\frac{2\lambda}{\beta r_0} = -\frac{G m M}{r_0}, \quad (3.10) \]

with
\[\lambda = \frac{\beta G m M}{2}. \quad (3.11) \]

The statistically averaged planar entropic force’s behaviour coincides with that of the three-dimensional one at very large \(r \). This fact might tempt one to conjecture that, at large distances, the mass-distribution should be planar.

4 Conclusions

Two inspiring Verlinde’s conjectures regarding the gravitational interaction have been proved at a classical statistical level.

First, that it is an emergent force derived from entropy, proved in [2]. Second, proved here, that at at very large distances the interaction decays as \(1/r \) and not as \(1/r^2 \).

Verlinde has revolutionized our conception of gravity. Here we have contributed our grain of sand to such revolution.
References

[1] E. Verlinde, arXiv:1001.0785 [hep-th]; JHEP 04 (2011) 29.

[2] A. Plastino, M. C. Rocca. See Researchgate: "On the entropic derivation of the r^{-2} Newtonian gravity force".
https://www.researchgate.net/publication/321679904_On_the_entropic_derivation_of_the_r_-2_Newtonian_gravity_force
(accepted for publication by Physica A).

[3] C. G. Bollini and J. J. Giambiagi, Phys. Lett. B 40 (1972) 566; Il Nuovo Cim. B 12 (1972) 20; C. G. Bollini and J.J Giambiagi, Phys. Rev. D 53 (1996) 5761; W. Bietenholz, L. Prado, Physics Today 67 (2014) 38;

[4] A. Plastino, M. C. Rocca: "Quantum Field Theory, Feynman and Wheeler Propagators and Dimensional Regularization in Configuration Space". arXiv:1708.04506
https://arxiv.org/abs/1708.04506?context=hep-th

[5] D. Berenstein and A. Miller: Phys. Rev. D 90 (2014) 086011.

[6] D. Anselmi: Phys. Rev. D 89 (2014) 125024.

[7] P. Jaranowski and G. Schfer: Phys. Rev. D 87 (2013) 081503(R).

[8] T. Inagaki, D. Kimura, H. Kohyama, and A. Kvinikhidze: Phys. Rev. D 86 (2012) 116013.

[9] J. Qiu: Phys. Rev. D 77 (2008) 125032.

[10] L. Blanchet, T. Damour, G. Esposito-Farse, and B. R. Iyer: Phys. Rev. D 71 (2005) 124004.

[11] F. Bastianelli, O. Corradini, and A. Zirott i: Phys. Rev. D 67 (2003) 104009.

[12] D. Lehmann and G. Przeau: Phys. Rev. D 65 (2001) 016001.

[13] A. P. Bata Scarpelli, M. Sampaio, and M. C. Nemes: Phys. Rev. D 63 (2001) 046004.

[14] E. Braaten and Yu-Qi Chen: Phys. Rev. D 55 (1997) 7152.

[15] J. Smith and W. L. van Neerven EPJ C 40 (2005) 199.
[16] J. F. Schonfeld EPJ C 76 (2016) 710.
[17] C. Gnendiger et al.: EPJ C 77 (2017) 471.
[18] P. Arnold, Han-Chih Chang and S. Iqbal: JHEP 100 (2016).
[19] I. AravE, Y. Oz and A. Raviv-Moshe: JHEP 88 (2017).
[20] C. Anastasiou, S. Buehler, C. Duhr and F. Herzog: JHEP 62 (2012).
[21] F. Niedermayer and P. Weisz: JHEP 110 (2016).
[22] C. Coriano, L. Delle Rose, E. Mottola and M. Serino: JHEP 147 (2012).
[23] F. Dulat, S. Lionetti, B. Mistlberger, A. Pelloni and C. Specchia: JHEP 17 (2017).
[24] T. Gehrmann and N. Greiner: JHEP 50 (2010).
[25] T. Lappia and R. Paatelainen: Ann. of Phys. 379 (2017) 34.
[26] S. Grooteab, J. G. Krner and A. A. Pivovarov: Ann. of Phys. 322 (2007) 2374.
[27] N. C. Tsamis and R. P. Woodard: Ann. of Phys. 321 (2006) 875.
[28] S. Krewaland and K. Nakayama: Ann. of Phys. 216 (1992) 210.
[29] L. Rosen and J. D. Wright Comm. Math. Phys. 134 (1990) 433.
[30] F. David Comm. Math. Phys. 81 (1981) 149.
[31] P. Breitenlohner and D. Maison Comm. Math. Phys. 52 (1977) 11.
[32] S. Teber and A. V. Kotikov: EPL 107 (2014) 57001.
[33] H. Fujisaki: EPL 28 (1994) 623.
[34] M. W. Kalinowski, M. Seweryski and L. Szymanski: JMP 24 (1983) 375.
[35] R. Contino and A. Gambassi: JMP 44 (2003) 570.
[36] M. Dutsch, K. Fredenhagen, K. J. Keller and K. Rejzner3: JMP 55 (2014) 122303.
[37] T. Nguyen: JMP 57 (2016) 092301.

[38] J. Ben Geloun and R. Toriumi: JMP 56 (2015) 093503.

[39] J. Ben Geloun and R. Toriumi: J. Phys. A 45 (2012) 374026.

[40] B. Mutet, P. Grange and E. Werner: J. Phys. A 45 (2012) 315401.

[41] M. C Abbott and P. Sundin: J. Phys. A 45 (2012) 025401.

[42] T Fujihara et al.: J. Phys. A 39 (2008) 6371.

[43] Silke Falk et al.: J. Phys. A 43 (2010) 035401.

[44] Germn Rodrigo et al.: J. Phys. G 25 (1999) 1593.

[45] B. M. Pimentel and J. L. Tomazelli: J. Phys. G 20 (1994) 845.

[46] A. Khare: J. Phys. G 3 (1977) 1019.

[47] J. C. D’Cruz: J. Phys. G 1 (1975) 151.

[48] R. Sepahv and S. Dadfar: Nuc. Phys. A 960 (2017) 36.

[49] J. V. Steele and R. J. Furnstahl: Nuc. Phys. A 630 (1998) 46.

[50] D. R. Phillips, S. R. Beane and T. D. Cohena: Nuc. Phys. A 631 (1998) 447.

[51] A. J. Stoddart and R. D. Viollier: Nuc. Phys. A 532 (1991) 657.

[52] E. Panzer: Nuc. Phys. B 874 (2013) 567.

[53] R. N. Lee, A. V. Smirnov and and V. A. Smirnov: Nuc. Phys. B 856 (2012) 95.

[54] A. P. Isaev: Nuc. Phys. B 662 (2003) 461.

[55] J. M. Campbell, E. W. N. Glover and D. J. Miller: Nuc. Phys. B 498 (1997) 397.

[56] C. J. Yang, M. Grasso, X. Roca-Maza, G. Colo, and K. Moghrabi: Phys. Rev. C 94 (2016) 034311.
[57] K. Moghrabi and M. Grasso: Phys. Rev. C 86 (2012) 044319.

[58] D. R. Phillips, I. R. Afnan, and A. G. Henry-Edwards: Phys. Rev. C 61 (2000) 044002.

[59] D. Lynden-Bell, R. M. Lynden-Bell, Mon. Not. R. Astron. Soc. 181 (1977) 405.

[60] T. Padmanabhan, Physics Reports 188 (1990) 285; T. Padmanabhan in Dynamics and Thermodynamics of Systems with Long Range Interactions Eds: T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens; Lecture Notes in Physics (Springer, Berlin, 2002); astro-ph/0206131; T. Padmanabhan, Theoretical Astrophysics, Vol. I: Astrophysical Processes (Cambridge University Press, Cambridge, 2000), chapter 10; J. Binney and S. Tremaine, Galactic Dynamics (Princeton University Press, New Jersey, 1987).

[61] J. D. Zamora, M. C. Rocca, A. Plastino, G. L. Ferri: Physica A 497 (2018) 310.

[62] J. D. Zamora, M. C. Rocca, A. Plastino, G. L. Ferri, https://www.sciencedirect.com/science/article/pii/S037843711830339X

[63] I. S. Gradshteyn and I. M. Rizhik, Table of Integrals Series and Products. Academic Press, NY (1965).

[64] I. M. Gel’fand and G. E. Shilov:”Generalized Functions” Academic Press (1964).

[65] L. U. Ancarani and G. Gasaneo: JMP 49 (2008), 063508.