Investigation of Microwave Characteristics of a Composite Based on Copper-Substituted Nickel-Zinc Ferrite

V Zhivulin¹, P Zezyulina² and A Vasijeva¹

¹Material science & physics and chemistry of materials department, South Ural State University (national research university), 76, Lenin prospekt, Chelyabinsk, 454080, Russia
²Laboratory of composite materials electrophysics, Institute for theoretical and applied electromagnetics, 13, Izhorskaya street, Moscow, 13125412, Russia

E-mail: vinnikda@susu.ru

Abstract. The results of ferrite synthesis and composite preparation and investigation are presented. The Cu substituted Ni-Zn ferrite was prepared in single phase form. The morphology and chemical composition were obtained. The composites on the base of experimental Ni₀.₂₈Zn₀.₆₂Cu₀.₁Fe₂O₄ and commercially available one were prepared. The microwave properties of all samples were investigated. It was checked that the used synthesis method (temperature and time range) can be used for ferrite producing for industry. The microwave properties of composites made of synthesized ferrites are very close to those of composites based on commercially available one. All samples exhibit broad magnetic loss peaks associated with a natural ferrimagnetic resonance.

1. Introduction

Ferrite materials are widely used today. Since 1950, nickel-zinc ferrites with a spinel structure have been actively used as a material for creating various components. The properties that they possess make it possible to use them, for example, in electronics, as choke coils, inductors, transformers [1-3], as well as a material for absorbing electromagnetic radiation [4-7], which must have high electrical resistance, low dielectric loss, high hardness, high Curie temperature and chemical stability.

The production of such materials is possible using various synthesis methods, from which the final properties of the material are very strong. The most popular methods are considered: solid-phase synthesis [8], coprecipitation [9], sol-gel [10-11], auto-combustion [12-13], etc. In this work, as the most promising from the point of view of ease of preparation, method of solid-phase synthesis.

The creation of new materials is one of the main tasks for the development of science and technology. Based on this principle, scientists are faced with the task of producing materials whose properties can be manipulated. By changing the composition of the initial mixture, the properties of the material change dramatically [14-17]. There are a huge number of publications describing certain results of obtaining Ni-Zn ferrites by various methods and with the addition of one or more additional elements. Spinel ferrites with varying chemical substitution and strong correlation between functional properties attract much attention due to fundamental and practical importance [18-21]. The authors of [22] showed that the introduction of Dy³⁺ cations into Ni-Cu-Zn-ferrite leads to an increase in the magnetic properties of the product. Sm³⁺ cations, according to [23], increase the magnetic permeability of Cu-Zn-ferrite, La³⁺ cations decrease the magnetization and coercive force of Zn-Cu-Ni-ferrite [24], and also increase the activation energy of conduction. An increase in the magnetic and electrical characteristics of spinel ferrites is associated with the magnetocrystalline anisotropy of rare earth elements and with the exchange interaction between Fe³⁺ and Ln³⁺ cations.

This work presents the results of obtaining and studying nickel-zinc ferrite doped with copper.
2. Experimental

The initial components for preparing the samples were powders of iron oxides (Fe₂O₃), nickel (NiO), zinc (ZnO), and copper (CuO). All the chemicals used were of analytical grade.

The starting materials were measured in the specified stoichiometric ratios, mixed and ground for 30 minutes in an agate mortar. Table 1 shows the calculation of the mass fraction of the starting materials required for the synthesis of samples in the total mass of the charge.

Target composition	Charge composition (wt.%)			
Ni₀.₂₄ZnC₀.₆₅Cu₀.₁Fe₂O₄	Ni	Zn	Cu	Fe
	0.08	0.22	0.03	0.67

After grinding, the resulting mixture was compressed into a tablet. The pressing was carried out in a metal mold with a diameter of 20 mm using a laboratory hydraulic press. The pressing force was 3 t/cm².

The resulting tablets were placed on a platinum sheet in a high-temperature electric furnace and sintered at temperatures of 1150 °C for 5 hours. The platinum backing is required to prevent the sample from interacting with the furnace lining elements. The furnace heating rate was 400 °C/hour. The furnace cooling rate to 900 °C was 100 °C/hour, at lower temperatures the cooling rate was not controlled.

The phase composition and structure of the obtained samples were studied using a Rigaku diffractometer, model Optima IV (Cu radiation). The elemental composition was studied using a Jeol JSM7001F scanning electron microscope equipped with an INCA-max 80 X-ray energy dispersive spectrometer (Oxford Instruments). Figure 1 shows SEM image of obtained ferrite sample. The crystals are typically shaped for spinel structure. Figure 2 shows the X-ray diffraction spectra of the synthesized sample. Figure 1 shows that the obtained sample is monophasic and have a spinel structure. The dashes indicate the literature data [25]. Table 2 presents the chemical composition and average sample formula.

![Figure 1. Electronic image obtained from a sample cleavage Ni0.24ZnC0.65Cu0.1Fe2O4.](image-url)
Figure 2. X-ray diffraction pattern of experimental Ni0.24Zn0.65 Cu0.1Fe2O4 sample. The dashes indicate the literature data [25].

Table 2. The chemical composition and average sample formulas.

Target composition	Charge composition (wt.%)	Sample formula
Ni_{0.24}Zn_{0.65}Cu_{0.1}Fe_{2}O_{4}	O 31.11 Fe 31.81 Ni 4.26 Cu 1.49 Zn 9.34	Ni_{0.25}Zn_{0.62}Cu_{0.1}Fe_{2}O_{4}

The frequency dependences of complex permeability and permittivity are measured in the frequency range of 0.1 to 20 GHz by the transmission-reflection (Nicolson-Ross) technique [26] in a 7/3 mm coaxial line. The sintered ceramics and composite samples for microwave measurements are shaped to fit the coaxial line.

Composite samples for microwave study are prepared by manual mixing of the ferrite powder with molten paraffin wax. The volume fractions of the powder in composite samples are 10% and 30%. The thickness of the samples is about 2 mm. Figure 3 presents the measured frequency dependences of permeability and permittivity of composite samples.

The microwave properties of composites made of synthesized ferrites are very close to those of composites based on commercially available one. All samples exhibit broad magnetic loss peaks associated with a natural ferrimagnetic resonance. A small discrepancy in the permittivity may be due to the presence of inhomogeneities in the samples or to a gap in the line during measurement.

The magnetic loss peak shifts toward low frequencies, from about 1 GHz to about 0.6 GHz with volume fraction increase. This can be attributed to the interaction between ferrite particles in composites.

The measured frequency dependences of permeability and permittivity of sintered sample are shown in Figure 4.

The frequency of the magnetic peak loss is beyond the region if the measurement. The shift of the magnetic peak loss of composites toward high frequency compared to sintered samples may be due to the influence of a demagnetizing field on the ferrite particles [27].

3. Conclusion

In the current paper the results of ferrite synthesis and composite preparation and investigation are presented. The Cu substituted Ni-Zn ferrite was prepared in single phase form. The morphology and chemical composition were obtained. The composites on the base of experimental Ni_{0.25}Zn_{0.62}Cu_{0.1}Fe_{2}O_{4} and commercially available one were prepared. The microwave properties of all samples were investigated. It was checked that the used synthesis method (temperature and time range) can be used for ferrite producing for industry.
Figure 3. The frequency dependences of permeability and permittivity of composite samples.

Figure 4. The frequency dependences of permeability and permittivity of ferrite samples.
References

[1] Kumar Zhuravlev G I 1970 Chemistry and Technology of Ferrites (Leningrad: Chemistry publ.) p 192

[2] Kumar Sitidze Yu and Sato Kh 1964 Ferrites (Moscow: MIR publ.) p 407

[3] Kumar Smith Ya and Vein Kh 1961 Ferrites (Moscow: Foreign publishing house) p 504

[4] Kostishin V G, Vergazov R M, Andreev V G, Bibikov S B, Morchenko A T, Kaneva I I and Mayorov V R 2011 Influence of technological factors on the dielectric constant and radio-absorbing characteristics of nickel-zinc ferrites Materials of electronic technology 2 42–46

[5] Kumar A M, Varma M C, Dube C L, Rao K H and Kashyap S C 2008 Development of Ni–Zn nanoferrite core material with improved saturation magnetization and DC resistivity J. Magn. Magn. Mater. 320 1995–2000

[6] Hwang Y 2006 Microwave absorbing properties of NiZn-ferrite synthesized from waste iron oxide catalyst Mater. Lett. 60 3277–3280

[7] Kuznetsov A, Mel'nikov V, Gyrdasova O, Bazuev G and Novikov S 2011 Synthesis of spinel Ni$_{0.75}$Zn$_{0.25}$Fe$_{2}$O$_{4}$ and the properties of a coating obtained by gas-flame spraying Theor. Found. Chem. Eng. 45 455–460

[8] Amer M A, Tawfik A, Mostafa A G, El-Shora A F and Zaki S M 2011 Spectral studies of Co substituted Ni–Zn ferrites J. Magn. Magn. Mater. 323 1445–1452

[9] Dalal M, Mallick A, Mahapatra A S, Mitra A, Das A, Das D and Chakrabarti P K 2016 Effect of cation distribution on the magnetic and hyperfine behaviour of nanocrystalline Co doped Ni–Zn ferrite (Ni$_{0.4}$Zn$_{0.6}$Co$_{0.3}$Fe$_{2}$O$_{4}$) Mater. Res. Bull. 76 389–401

[10] Sarveena, Kumar G, Kumar A, Kotnala R K, Batoo K M and Singh M 2016 Investigation of structural, magnetic and Mössbauer properties of Co$_{2+}$ and Cu$_{2+}$ substituted Ni–Zn nanoferrites Ceram. Int. 42 4993–5000

[11] Ramakrishna A, Murali N, Margarette S J, Wegayehu Mammo T, Krishna Joythi N, Sailaja B, Sailaja Kumari C C, Samatha K and Veeraiah V 2018 Studies on structural, magnetic, and DC electrical resistivity properties of Co$_{0.5}$M$_{0.5}$C$_{2}$O$_{4}$ (M = Ni, Zn and Mg) ferrite nanoparticle systems Adv. Powder Technol. 29 2601–2607

[12] Houshiar M and Jamilpanah L 2018 Effect of Cu dopant on the structural, magnetic and electrical properties of Ni-Zn ferrites Mater. Res. Bull. 98 213–218

[13] Paramesh D, Kumar K and Reddy P 2017 Effect of Aluminium substitution on the electrical properties of Ni-Zn nano ferrites J. Magn. Magn. Mater. 444

[14] Sugimoto T, Shimotsuma Y and Itoh H 1998 Synthesis of uniform cobalt ferrite particles from a highly condensed suspension of β-FeOOH and β-Co(OH)$_{2}$ particles Powder Technol. 96 85–89

[15] Pannaparayil T, Marande R and Komarmeni S 1991 Magnetic properties of high-density Mn-Zn ferrites J. Appl. Phys. 69 349–351

[16] López Pérez J A, López Quintela M A, Mira J, Rivas J and Charles S W 1997 Advances in the Preparation of Magnetic Nanoparticles by the Microemulsion Method J. Phys. Chem. B 101 8045–8047

[17] Shafi K V P M, Gedanken A, Prozorov R and Balogh J 1998 Sonochemical Preparation and Size-Dependent Properties of Nanostructured CoFe$_{2}$O$_{3}$ Particles Chem. Mater. 10 3445–3450

[18] Trukhanov A V, Astapovich K A, Turchenko V A, Almessiere M A, Slimani Y, Baykal A, Somba A S B, Zhou D, Jotania R B, Singh C, Zubar T I, Tishkevich D I and Trukhanov S V 2020 Influence of the dysprosium ions on structure, magnetic characteristics and origin of the reflection losses in the Ni–Co spinels J. Alloys Compd. 841 155667

[19] Almessiere M A, Slimani Y, Gungunes H, Kostishyn V G, Trukhanov S, Trukhanov A and Baykal A 2020 Impact of Eu$^{3+}$ ion substitution on structural, magnetic and microwave traits of Ni–Cu–Zn spinel ferrites Ceram. Int. 46

[20] Slimani Y, Unal B, Almessiere M A, Korkmaz A D, Shirsath S E, Yasin G, Trukhanov A V and Baykal A 2020 Investigation of structural and physical properties of Eu$^{3+}$ ions substituted
Ni\textsubscript{0.4}Cu\textsubscript{0.2}Zn\textsubscript{0.4}Fe\textsubscript{2}O\textsubscript{4} spinel ferrite nanoparticles prepared via sonochemical approach Results Phys. 17 103061

[21] Almessiere M A, Trukhanov A, Khan Phd F A, Slimani Y, Tashkandi N, Turchenko V A, Zubart, Chushkova D, Trukhanov S, Panina L and Baykal A 2019 Correlation between microstructure parameters and anti-cancer activity of the [Mn\textsubscript{0.5}Zn\textsubscript{0.5}](EuxNdxFe\textsubscript{2}-2x)O\textsubscript{4} nanoferites produced by modified sol-gel and ultrasonic methods Ceram. Int. 46 7346–7354

[22] Shirsath S E, Kadam R H, Patange S M, Mane M L, Ghasemi A and Morisako A 2012 Enhanced magnetic properties of Dy3+ substituted Ni-Cu-Zn ferrite nanoparticles Appl. Phys. Lett. 100 42407

[23] Sattar A A, Wafik A H, El-Shokrofy K M and El-Tabby M M 1999 Magnetic Properties of Cu–Zn Ferrites Doped with Rare Earth Oxides Phys. status solidi 171 563–569

[24] Roy P K, Nayak B B and Bera J 2008 Study on electro-magnetic properties of La substituted Ni–Cu–Zn ferrite synthesized by auto-combustion method J. Magn. Magn. Mater. 320 1128–1132

[25] Kedesky, Katz 1953 Ceramic Age 62 29–34

[26] Nicolson A M and Ross G F 1970 Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques IEEE Trans. Instrum. Meas. 19 377–382

[27] Salem M M, Morchenko A T, Panina L V, Kostishyn V G, Andreev V G, Bibikov S B and Nikolaev A N 2015 Dielectric and Magnetic Properties of Two-Phase Composite System: Mn-Zn or Ni-Zn ferrites in Dielectric Matrices Phys. Procedia 75 1360–1369

Acknowledgments
This research was funded by RFBR, project no. 20-52-53020. In part of the ferrites preparation the work was supported by RFBR, project no. 20-08-00716.