Equilibrium and off-equilibrium simulations of the 4d Gaussian spin glass

Giorgio Parisi, Federico Ricci Tersenghi and Juan J. Ruiz-Lorenzo

Dipartimento di Fisica and Infn, Università di Roma La Sapienza
P.le A. Moro 2, 00185 Roma (Italy)
parisi@roma1.infn.it
ricci@chimera.roma1.infn.it
ruiz@chimera.roma1.infn.it

May, 1996

Abstract

In this paper we study the on and off-equilibrium properties of the four dimensional Gaussian spin glass.

In the static case we determine the critical temperature and the critical exponents with more precision that in previous simulations.

In the off-equilibrium case we settle the general form of the autocorrelation function, and show, for the first time, that is possible to obtain, dynamically, a value for the order parameter.
1 Introduction

Nowadays, the problem of the full characterization of the phase transition in finite dimensional spin glasses is still opened both from the static and dynamical approaches.

Our discussion is focused on the four dimensional case (the same applies in the more physical case, the three dimensional system).

The equilibrium (static) simulations show a very neat intersection of the Binder cumulant curves, that is a signal of a phase transition at finite temperature with an order parameter (the Edward-Anderson order parameter, that we will denote hereafter as q_{EA}). We can identify this order parameter with the position of a Dirac delta in the probability distribution of the overlap, $P(q)$. Up to now, both the SRSB theory (Spontaneous Replica Symmetry Breaking) and the droplet theory are compatible with this result. Differences concern the shape of the rest of the $P(q)$. In the droplet theory $P(q)$ is the sum of two Dirac deltas, one in q_{EA} and another in the opposite overlap, and has a Binder cumulant equal to 1. The SRSB theory maintains this structure too, but adds a continuous non zero part in the interval $(-q_{EA}, q_{EA})$. This is a non trivial distribution that has a Binder cumulant different from 1, except at $T = 0$ where the SRSB theory predicts two pure states like the droplet theory.

The main problem is the impossibility of a direct measure of the order parameter, q_{EA}. The scaling of the peak of $P(q)$ seems compatible both with a Kosterlitz-Thouless (KT) transition, i.e. $q_{peak} \sim 1/L^\alpha$, and with a scaling like $q_{peak} = q_{EA} + a/L^\rho$. Obviously the KT scenario goes against the intersection of the Binder cumulant curves. A possible explanation of this phenomena could be that the term a/L^ρ is bigger than q_{EA} for the range of lattice sizes that has been simulated and hence the latter is unobservable. Simulation of bigger lattices should be done in order to get $q_{EA} \gg a/L^\rho$.

The dynamical approach has the same problematic of the previously discussed static case. The main physical quantity in this approach is the spin-spin autocorrelation, defined as:

$$C(t, t_w) = \frac{1}{N} \sum_{i=1}^{N} \langle \sigma_i(t) \sigma_i(t + t) \rangle ,$$

(1)

Usually in the literature one finds the empirical formula

$$C(t, t_w) = t^{-x} f(t/t_w) ,$$

(2)

for instance in the Mean Field case and in the three dimensional case

The static limit (on-equilibrium situation) is achieved sending t_w to infinite first, and then simulating larger t. The formula for the spin-spin autocorrelation function goes to zero in this limit. However, in the case of a non zero order parameter, this autocorrelation function must go to q_{EA}. It is clear that in the regime of $t_w \gg t \gg 1$ should be found a formula like

$$C(t, t_w) = (q_{EA}/f(0) + at^{-x}) f(t/t_w) ,$$

(3)

but a very long numerical simulation is needed in order to observe both the terms q_{EA} and at^{-x}. In the present work we show for the first time numerical evidence of this kind of behaviour.

\footnote{Also in an on-equilibrium numerical simulation in the three dimensional case: $C(t) \sim t^{-x}$.}
Up to now, the only numerical studies of off-equilibrium dynamics in finite dimensional spin-glass are those of H. Rieger in the three dimensional case.

The four dimensional case seems easier to simulate, since it is far away from the lower critical dimension of the spin glasses ($d_l < 3$) and the static is thus very clear. In this paper we will study mainly the off-equilibrium dynamics of this model in order to compare with the three dimensional results by Rieger and to examine the possibility to extract a finite value for the order parameter. In addition simulations have been performed in the static (on-equilibrium) case in order to characterize with higher precision the location of the critical temperature and the critical exponents.

Both for the off and on-equilibrium cases we review the numerical results from the point of view of the previous discussion and we try to link both approaches in order to obtain a conclusion regarding the existence of a finite temperature phase transition, with a non zero order parameter.

2 Model, simulation and static observables

We have studied the 4-d Ising spin glass with nearest neighbor interactions and zero external magnetic field, whose Hamiltonian is

$$\mathcal{H} = - \sum_{<i,j>} J_{ij} \sigma_i \sigma_j ,$$

where $<i,j>$ denotes nearest neighbor pairs and the couplings are extracted from a Gaussian distribution with zero mean and unit variance.

The static and dynamical behaviour of the model have been investigated by several different simulations during which many different observables have been measured. This section describes the way we performed measurements of the static exponents and the critical temperature with a precision higher than that available in the literature.

The equilibrium simulations have been performed on small lattices ($L = 3, 4, 5, 6, 7, 8$) to ensure the system reached equilibrium. Most of the work has been made in a range of temperature around the critical one, T_c. The average over the disorder, has been done on 2048 samples for all the lattice sizes. For each realization of the quenched disorder we have simulated two replicas with spin σ_i and τ_i. This enabled us to measure the k-th cumulant of the distribution of the overlaps, $q^{(k)} \equiv \int q^k P(q) dq$, simply by averaging the quantity $(N^{-1} \sum_i \sigma_i \tau_i)^k$ over a large number of independent configurations.

All the calculation have been carried on a tower of the parallel supercomputer APE100 [1], with a real performance of about 5 Gigaflops.

A detailed study has been devoted to the calculation of the number of sweeps needed to reach the equilibrium and to the estimate of the autocorrelation time at the equilibrium. This study suggests a thermalization time of about 10^5 sweeps, being sure that using this value even the biggest system at the lowest temperature will be thermalized. To verify the correctness of this value we studied the evolution of the biggest system ($L = 8$) at the lowest temperature ($T = 1.7$): we choose three replicas of the system such that having, at the starting time, two overlaps set to zero and the third one equal to one; we have followed the evolution of these overlaps averaging over a large number of disorder configurations.
and we have estimated the thermalization time as the time needed in order that the three overlaps converge to a single value.

Once the equilibrium has been reached, we measured how much time was needed to decorrelate the observables. Particularly, we have seen that the overlap between two replicas has a time correlation function that decreases exponentially, \(C(t) \sim \exp(-t/\tau) \). This defines a characteristic time whose typical value at \(T = 1.7 \) are: for \(L = 4 \) \(\tau \sim 200 \), for \(L = 6 \) \(\tau \sim 1000 \) and for \(L = 8 \) \(\tau \sim 3000 \). In the final simulation, after thermalization, we measured every \(\tau \) sweeps the overlap between the two replicas for a time longer than the equilibration one.

Defining the spin glass susceptibility as

\[
\chi_{SG}(L, T) = \frac{1}{N} \sum_{i,j} \langle \sigma_i \sigma_j \rangle^2 = Nq_L^{(2)},
\]

where \(N = L^4 \), \(\langle \cdot \cdot \rangle \) is the thermodynamical average and \(\langle \cdot \cdot \rangle \) the mean over the disorder; and the Binder parameter as

\[
g(L, T) = \frac{1}{2} \left(3 - \frac{q_L^{(4)}}{(q_L^{(2)})^2} \right),
\]

the results of our simulations are plotted in fig.1 for the spin glass susceptibility and fig.2 for the Binder cumulant.

The errors on the plotted data are derived from a jackknife analysis, which also confirms that the overlaps measured every \(\tau \) sweeps are decorrelated. Using finite size scaling we
see that $\chi_{SG}(L, T)$ and $g(L, T)$ scale as (in the scaling region)

$$\chi_{SG}(L, T) = L^{2-\eta} \tilde{\chi}_{SG}(L^{1/\nu}(T - T_c)) ,$$

$$g(L, T) = \tilde{g}(L^{1/\nu}(T - T_c)) .$$

Note that at the critical temperature the Binder parameter does not depend on the size of the system, so T_c is the temperature where the curves of fig.2 cross themselves.

In the neighborhood of T_c we can approximate the function \tilde{g} with a linear one and obtain the following critical temperature and ν exponent

$$T_c = 1.80 \pm 0.01 ,$$

$$\nu = 0.9 \pm 0.1 .$$

The value of ν is also confirmed by the results of the analysis done, following [14], on the quantity

$$\left. \frac{dg}{dT} \right|_{T_0; g(T_0)=g_0} = \alpha L^{1/\nu} ,$$

obtaining

$$\nu = 1.06 \pm 0.06 .$$

The prediction about the infinite volume limit of the Binder cumulant is different in the droplet theory ($g(L, T < T_c) \xrightarrow{L \to \infty} 1$) and in the SRSB picture ($g(L, T < T_c) \xrightarrow{L \to \infty} \overline{g}(T) < 1$). Unfortunately with our data ($L = 3$ to $L = 8$) is impossible to extrapolate the infinite value with a precision that could discriminate, without doubt, between the two predictions.
The estimation of the anomalous dimension η can be performed by fitting the χ_{SG} data, at $T = T_c$, with a power law

$$ \chi_{SG}(L, T = T_c) \propto L^{2-\eta}, \quad (13) $$

obtaining $\eta = -0.35 \pm 0.05$ (the error is due mostly to the indetermination on the critical temperature and to the rapid variation in the region around T_c of the exponent in eq.(13)). These results are in agreement with those found by Bhatt and Young in [11] using a maximum size of 6^4 and 200-800 samples: $T_c = 1.75 \pm 0.05$, $\nu = 0.8 \pm 0.15$ and $\eta = -0.3 \pm 0.15$.

Using the scaling law $\gamma = \nu(2 - \eta)$ and the exponents values just calculated, we have $\gamma = 2.1 \pm 0.2$, which is in good agreement with the value obtained by the high temperature expansions $\gamma = 2.0 \pm 0.4$, [13].

Another series of computer runs, performed using the annealing procedure [16], let us measure the non-connected susceptibility for a wide range of temperature in the spin glass phase ($T < T_c$). We clearly see that the data diverge with increasing system sizes, even though, because of the small lattices, many different fits are possible, e.g.

$$ \chi_{SG}(L, T) = A(T)L^4 \left[1 + B(T)L^{-\Lambda(T)} \right], \quad (14) $$

or

$$ \chi_{SG}(L, T) \propto L^{2-\eta(T)}. \quad (15) $$

Further evidence for the value of T_c can be obtained, as the highest temperature where the power law fit is yet acceptable (by a χ^2 test).

3 Off-equilibrium dynamics

The second part of our study was devotes to the simulation of systems of greater dimensions (ranging from 8^4 to 32×16^3). At the beginning of every simulation the system is frozen from an infinite temperature to one in the critical region ($T < T_c$), and measures of the autocorrelation functions immediately start with the system still out of equilibrium. Due to the huge thermalization times of the simulated systems, the off-equilibrium dynamics is the most realistic situation and also the most interesting. In fact, due to the enormous number of metastable states, the dynamics is very slow and besides it is reminiscent of the time passed in the spin glass phase, that we will call t_w. These effects can be clearly seen by the study of the autocorrelation functions defined as

$$ C(t, t_w) = \frac{1}{N} \sum_{i=1}^{N} \langle \sigma_i(t_w)\sigma_i(t_w+t) \rangle, \quad (16) $$

where $\overline{(\cdot)}$ is the mean over the disorder and $\langle (\cdot) \rangle$ stands not for an average over the equilibrium thermodynamic state, since we are not at the equilibrium, but for an average over the thermal histories. Nevertheless we found that, for the system sizes we considered, disorder fluctuations are always stronger, so generally we omit the angular brackets.
Our simulations cover the cold phase (from $T = T_c = 1.8$ down to $T = 0.2$) through the set of waiting times $t_w = 2^k$ with $k = 7, 8, \ldots, 21$ and averaging over 3072 disorder realizations systems of volumes from 8^4 to 12^4.

In the four-dimensional Ising spin glass the presence of a critical temperature and the subsequent spin glass phase has been widely accepted, so the principal question that remain to answer is which kind of phase space arises for $T < T_c$. In the literature there are principally two theories that try to describe the spin glass systems in their low temperature phase: one is based on a mean field like approximation which predicts a spontaneous replica symmetry breaking (SRSB picture); the other one, starting from a Migdal-Kadanoff renormalization group technique, concludes that the system remains trivial, with only one pure state (droplet model). The predictions of the two theories regarding the autocorrelation function are different: the SRSB picture predicts that in the limit of $t_w \to \infty$ the autocorrelation must be a power law that converge to the Edward-Anderson parameter (q_{EA})

$$C(t, t_w) = (q_{EA} + at^{-x}) \frac{f(t/t_w)}{f(0)},$$

while in the droplet model the relaxation is slower

$$C(t, t_w) = (\log t)^{-\theta/\psi} C' \left(\frac{\log(t/\tau)}{\log(t_w/\tau)} \right).$$

The data we collected (see fig.3 and fig.4) seem to agree with the scaling law used in [7] and in [8]

$$C(t, t_w) = t^{-x'(T)} \tilde{C}(t/t_w),$$

Figure 3: $C(t, t_w)$ vs. t at $T = 0.2$ with $t_w = 2^7, 2^{10}, 2^{13}, 2^{16}, 2^{19}$ (bottom to top).
with a scaling function

\[\tilde{C}(z) = \begin{cases}
\text{constant for } z \to 0 \\
 z^{x'(T) - \lambda(T)} \text{ for } z \to \infty
\end{cases} \tag{20} \]

The values of the exponent \(x'(T) \) is plotted together with the values of \(x(T) \) in fig.9, while \(\lambda(T) \) is plotted in fig.7.

To evaluate the goodness of the two proposed scaling formulas eq.(19) and eq.(18) we plotted in fig.5 the \(T = 0.45 \) data rescaled with the former law, noting that they collapse very well on a single curve. On the contrary, using the droplet model scaling law, it was impossible for us to find a value for the parameters \(\theta/\psi \) and \(\tau \) such to force the data over a single curve; in fig.6 we show the best scalings we could obtain in order to make the data collapse in the \(t < t_w \) or in the \(t > t_w \) region.

Nevertheless the very good rescaling of the data in fig.5 we also performed a deeper analysis in order to find the value of the Edward-Anderson parameter, \(q_{EA} \), which is assumed to be zero in eq.(19). The value of \(q_{EA} \) can be found performing the \(t \to \infty \) limit after the \(t_w \to \infty \) limit; for this purpose we have done very long simulations (more than 4 millions Monte Carlo sweeps). We note that the scaling laws obeyed by the data in the two regions \(t \gg t_w \) and \(t \ll t_w \) are essentially different. In the former the data can be fitted by a power law of the ratio \(t/t_w \), while in the latter we obtain a law equal to that of eq.(17) times a function of \(t/t_w \) which is almost a constant.

Such a behaviour for \(C(t, t_w) \) can be justified assuming that the system evolves as long as \(t \ll t_w \) with a quasi equilibrium dynamics which converges to \(q_{EA} \) while for \(t \gg t_w \) it decorrelates faster and toward zero (\(C \sim t^{-\lambda} \) with \(\lambda(T) \gg x(T) \ \forall T \)), but always with a critical slowing-down.
Figure 5: $T = 0.45$ aging autocorrelation function rescaled following eq.(19), with $x = 0.0054$. We plot $t^x C(t, t_w)$ against t/t_w.

Figure 6: Tentatives of rescaling following the droplet model law eq.(18): in the left plot $\theta/\psi = 0.0054$ and $\log(\tau) = -1$; in the right plot $\theta/\psi = 0.043$ and $\log(\tau) = -1000.$
Figure 7: $\lambda_{t_w=0}(T)$ (top) and $\lambda_{t_w\neq0}(T)$ (bottom) against T; the lower line represents the power fit $\lambda(T) = 0.21(1) T^{0.92(7)}$; the upper line both the linear and the power fit: respectively $\lambda(T) = 0.000(3) + 0.30(1) T$ and $\lambda(T) = 0.303(8) T^{1.00(3)}$.

The values for $\lambda(T)$ have been obtained fitting the $C(t, t_w = 0)$ data with a power law and for $t_w \neq 0$ with

$$\begin{align*}
C(t, t_w) \propto \left(\frac{t}{t_w} \right)^{-\lambda(T)},
\end{align*}$$

in the range $t/t_w \geq 15$. In fig.7 we plot the results either for $t_w = 0$ and for $t_w \neq 0$. We note that both fits are compatible with the linear dependence in the temperature predicted from the experimental measurements [17].

In the region $t_w/t \geq 32$ we have performed the analysis assuming that the correlation function could be factorized as

$$\begin{align*}
C(t, t_w) = (q_{EA} + at^{-x})C(t/t_w),
\end{align*}$$

where we have approximated $C(z) = 1 - c_1 z^{c_2}$ for $z \to 0$. First of all, the rescaling function $C(t/t_w)$ has been calculated fitting the correlation function at a fixed value of t. Later, once divided the data by this function, we verified that the curves for different ratios t/t_w collapse over a single curve and we interpolated the data via a power law plus constant, following eq.(17). In fig.8 we plot in a log-log scale typical $C(t, t_w)/C(t/t_w)$ data with the best fit; we note that up to now in the literature this data have been fitted via a simple power law, while it is evident that the points in fig.8 are not on a straight line.

From these fits the values of q_{EA} and x as a function of the temperature (see fig.8 and fig.10) can be obtained. As a guide to the eye, we plot in fig.10 the simpler function that
Figure 8: \(\frac{C(t, t_w)}{C(t/t_w)} \) data at \(T = 0.9 \) versus \(t \); the upper line is the best power plus constant fit: \(0.60(4) + 0.32(4) t^{-0.08(1)} \), while the lower line is the best power fit.

behaves like \(|T - T_c|^\beta \) near the critical temperature and tends to 1 for \(T = 0 \)

\[
q_{EA}(T) = \left(\frac{T_c - T}{T_c} \right)^{\beta},
\]

(23)

where \(T_c = 1.8 \) and \(\beta = \frac{\nu}{2}(d - 2 + \eta) = 0.74 \) (using the values found in the previous section). From fig. we note that only the quantity \(x(T) \), and not \(x'(T) \), is such that \(x(T)/T \) is roughly independent from the temperature, so that only in this parametrization the \(t_w = \infty \) autocorrelation function \(R(t; T) = C(t, t_w = \infty) \) at temperature \(T \) can be written as

\[
R(t; T) - R(\infty; T) = b(T) \exp(-B T \log(t)) \, .
\]

(24)

The relevance of the variable \(T \log(t) \) has been observed in experiments on magnetic remanence in a wide region [17].

We call off-equilibrium correlation length, \(\xi(t) \), the typical distance over which the system is thermalized after a time \(t \). For this domain growth the SRSB picture predicts a power law

\[
\xi(t) \propto t^{1/z(T)}
\]

(25)

while in the droplet model, where the energy barriers scale proportionally to \(L^\psi \), the law is

\[
\xi(t) \propto (T \log t)^{1/\psi}
\]

(26)
Figure 9: \(x(T)\) (top) and \(x'(T)\) (bottom) against \(T\) (the value at the greater temperature is equal: \(x(T_c) = x'(T_c)\)); the line is best power fit \(x(T) = 0.083(3) T^{1.04(7)}\).

Figure 10: Edward-Anderson order parameter against \(T\); the line is only a guide to the eye as explained in the text.
At least at the critical temperature there is a scaling relationship between the dynamical exponent $z(T_c)$ and the one which describes the dynamics in the quasi equilibrium regime, $x(T_c) = x'(T_c)$ (because $q_{EA}(T = T_c) = 0$)

$$x = \frac{d - 2 + \eta}{2z}. \quad (27)$$

This equation is satisfied by all the exponents we have estimated at the critical temperature: $x = 0.15$, $\eta = -0.35$ and $z = 5.3$.

To find the behaviour of the off-equilibrium correlation length we have measured, like in [9], the equal time spatial correlation functions

$$G(r, t) = \frac{1}{N} \sum_{i=1}^{N} (\sigma_i(t)\sigma_{i+r}(t))^2, \quad (28)$$

where the averages are the same as in eq.(16) and t is the time since the cooling. This study has been performed on systems of volume 32×16^3.

From scaling concepts we know that, at large values of r, $G(r, t)$ must behave like

$$G(r, t) \propto r^{-(d-2+\eta)}f\left(\frac{r}{\xi(t)}\right), \quad (29)$$

and, supposing $f(y) = A \exp(-By^D)$, we have fitted our data with the function

$$G(r, t) = Ar^{-(2+\eta)} \exp\left[-B\left(\frac{r}{\xi(t)^{1/\alpha}}\right)^D\right]. \quad (30)$$

In the $t \to \infty$ limit the exponential term tends to 1 and we obtain a spatial correlation function that decrease with a power law: in fig.11 we plot such function at the critical temperature ($T_c = 1.8$). Note that from the slope of the curve we obtain an estimation of the η exponent compatible with that of section 2.

At the lower temperatures the value of η strongly depends on the r range of interpolation, because the fitting function diverges at $r = 0$. On the contrary, trying to fit the data in different ranges of r, we find that the dynamical exponent $z(T)$ is a robust parameter which remains unchanged for every r range (plotted in fig.12).

Fitting the plotted data with a power law we obtain, up to the critical temperature

$$z(T) = A T^{-\alpha}, \quad (31)$$

with $A = 9.7 \pm 0.5$ and $\alpha = 1.0 \pm 0.1$.

A preliminary analysis of a new set of data at $T = 0.9 = T_c/2$ suggests a value of $\eta \simeq -1$. The fact that the value of z at this temperature is higher than the corresponding value at T_c makes the evaluation of the exponent η prone to systematic error. Nevertheless this rough estimate of η is compatible with the prediction of the reference [18].
Figure 11: $G(r, t = \infty)$ vs. r at $T = T_c = 1.8$; the line is the power fit $0.24(1) r^{-1.63(5)}$.

Figure 12: $z(T)$ vs. T; the line is the power fit, eq. (31).
4 Conclusions

In this paper we have studied the on and off-equilibrium properties of the four dimensional Gaussian spin glass.

In the static case the hypothesis of a transition à la Kosterlitz-Thouless have been rejected owing to the study of the on-equilibrium properties of the model: the existence of a second order phase transition is well testified by the clean cut of the Binder cumulant curves. We have determined with more precision that in previous simulations both the critical temperature as well as the critical exponents.

In the off-equilibrium case we have settled, for the first time, a form of the autocorrelation function compatible, in the large times limit (i.e. on equilibrium), with the existence of an order parameter different from zero. We have been able to determine, in a dynamical way, the value of q_{EA} as a function of the temperature (this again confirm the absence of a Kosterlitz-Thouless transition). Also we have established the temperature dependence of the exponents that appear in these off-equilibrium dynamics, linear in all the cases.

The dynamics of the model seem to be described better by the SRSB theory than by the droplet theory: in effect the autocorrelation functions, properly rescaled, follow very well the power laws predicted by the former, while are quite different from the logarithmic laws predicted by the latter.

Our conclusion is that the SRSB theory seems to be, at the moment, the best picture to describe the EA model in finite dimensions greater than the lower critical dimension.

A still open problem we are planning to study in the future regards the estimate, simulating much larger lattices, of the order parameter using the static spin glass susceptibility.

5 Acknowledgments

We acknowledge useful discussions with E. Marinari. We are very grateful to the APE group for his continuous support and valid assistance. J. J. Ruiz-Lorenzo is supported by an EC HMC(ERBFMBICT950429) grant.

References

[1] M. Mézard, G. Parisi and M. A. Virasoro, “Spin Glass Theory and Beyond”, World Scientific (Singapore, 1987).

[2] G. Parisi, Toward a Mean Field Theory for Spin Glasses, Phys. Lett. 73 A, 203 (1979); A Sequence of Approximated Solutions to the S-K Model for Spin Glasses, J. Phys. A 13, L115 (1980); The Order Parameter for Spin Glasses: A Function on the Interval 0-1, J. Phys. A 13, 1101 (1980); Magnetic Properties of Spin Glasses in a New Mean Field Theory, J. Phys. A 13, 1887 (1980); Order Parameter for Spin-glasses, Phys. Rev. Lett. 50, 1946 (1983).

[3] D. S. Fisher and D. A. Huse, Equilibrium Behavior of the Spin-Glass Ordered Phase, Phys. Rev. B 38, 386 (1988).
[4] L. F. Cugliandolo and J. Kurchan, *On the out of equilibrium relaxation of the SK model*, J. Phys. **A 27**, 5749 (1994).

[5] H. Rieger, *Monte Carlo Studies of Ising Spin Glasses and Random Field Systems*, in Annual Reviews of Computational Physics II. World Scientific 1995, p. 295.

[6] L. F. Cugliandolo, J. Kurchan and F. Ritort, *Evidence of aging in spin-glass mean-field models*, Phys. Rev. **B 49**, 6331 (1994).

[7] H. Rieger, *Non-Equilibrium Dynamics and Aging in the Three-Dimensional Ising Spin-Glass Model*, J. Phys. **A 26**, L615 (1993).

[8] A. T. Ogielski, *Dynamics of Three-Dimensional Ising Spin Glasses in Thermal Equilibrium*, Phys. Rev. **B 32**, 7384 (1985).

[9] E. Marinari, G. Parisi, F. Ritort and J. Ruiz-Lorenzo, *Numerical Evidence for Spontaneously Broken Replica Symmetry in 3D Spin Glasses*, Phys. Rev. Lett. **76**, 843 (1996).

[10] N. Kawashima and A. P. Young, *Phase Transition in the Three-Dimensional ±J Ising Spin Glass*, Phys. Rev **B 53**, R484 (1996).

[11] R. N. Bhatt and A. P. Young, *Numerical Studies of Ising Spin Glasses in Two, Three and Four Dimensions*, Phys. Rev. **B 37**, 5606 (1988).

[12] D. Badoni, J. C. Ciria, G. Parisi, F. Ritort, J. Pech and J. J. Ruiz-Lorenzo, *Numerical Evidence of a Critical Line in the 4d Ising Spin Glass*, Europhys. Lett. **21**, 495 (1993).

[13] The APE collaboration, *The APE100 Computer: the Architecture*, International Journal of High Speed Computing (1993); The APE collaboration, *The Software of the APE100 Processor*, Int. J. Mod. Phys. **C 4**, 955 (1993); The APE collaboration, *A Hardware Implementation of the APE100 Architecture*, Int. J. Mod. Phys. **C 4**, 969 (1993).

[14] D. Iniguez, G. Parisi and J. J. Ruiz-Lorenzo, *Simulation of 3-d Ising spin glass model using three replicas: study of Binder cumulants*, preprint [cond-mat/9603083](http://arxiv.org/abs/cond-mat/9603083), to appear in J. Phys. **A**: Math and Gen.

[15] R. R. P. Singh and S. Chakravarty, *Critical Behavior of an Ising Spin-Glass*, Phys. Rev. Lett. **57**, 245 (1986); R. R. P. Singh and S. Chakravarty, *High-Temperature Series Expansion for Spin Glasses. II. Analysis of the Series*, Phys. Rev. **B 36**, 559 (1987).

[16] S. Kirkpatrick, C. D. Gelatt Jr. and M. P. Vecchi, *Optimization by Simulated Annealing*, Science **220**, 671 (1983).

[17] R. Omari, J. J. Prejean and J. Souletie, *The extra-dimension $W = kT \ln(t/\tau_0)$ of phase space below the spin glass transition: an experimental study of the relaxation of the magnetization at constant field in CuMn*, J. Phys. France **45**, 1809 (1984).
[18] C. De Dominicis, I. Kondor and T. Temesvari, *Ising spin glass: recent progress in the field theory approach*, Int. J. Mod. Phys. B 7, 986 (1993); C. De Dominicis, I. Kondor and T. Temesvari, in *Recent Advances in the Theory of Disordered Systems: Spin Glasses, Random Fields, Random Polymers*, J. Phys. I France 6, 21 (1996).