Rickettsiae Induce Microvascular Hyperpermeability via Phosphorylation of VE-Cadherins: Evidence from Atomic Force Microscopy and Biochemical Studies

Bin Gong1,2*, Liang Ma3, Yan Liu1, Qinyu Gong1, Thomas Shelite1, Donald Bouyer1,2, Paul J. Boor1, Yong Sun Lee4, Andres Oberhauser3,4,5

1 Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America, 2 Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America, 3 Department of Neurosciences and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America, 4 Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America, 5 Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America

Abstract

The most prominent pathophysiological effect of spotted fever group (SFG) rickettsial infection of microvascular endothelial cells (ECs) is an enhanced vascular permeability, promoting vasogenic cerebral edema and non-cardiogenic pulmonary edema, which are responsible for most of the morbidity and mortality in severe cases. To date, the cellular and molecular mechanisms by which SFG Rickettsia increase EC permeability are largely unknown. In the present study we used atomic force microscopy (AFM) to study the interactive forces between vascular endothelial (VE)-cadherin and human cerebral microvascular EC infected with R. montanensis, which is genetically similar to R. rickettsii and R. conorii, and displays a similar ability to invade cells, but is non-pathogenic and can be experimentally manipulated under Biosafety Level 2 (BSL2) conditions. We found that infected ECs show a significant decrease in VE-cadherin-EC interactions. In addition, we applied immunofluorescent staining, immunoprecipitation phosphorylation assay, and an in vitro endothelial permeability assay to study the biochemical mechanisms that may participate in the enhanced vascular permeability as an underlying pathologic alteration of SFG rickettsial infection. A major finding is that infection of R. montanensis significantly activated tyrosine phosphorylation of VE-cadherin beginning at 48 hr and reaching a peak at 72 hr p.i. In vitro permeability assay showed an enhanced microvascular permeability at 72 hr p.i. On the other hand, AFM experiments showed a dramatic reduction in VE-cadherin-EC interactive forces at 48 hr p.i. We conclude that upon infection by SFG rickettsiae, phosphorylation of VE-cadherin directly attenuates homophilic protein–protein interactions at the endothelial adherens junctions, and may lead to endothelial paracellular barrier dysfunction causing microvascular hyperpermeability. These new approaches should prove useful in characterizing the antigenically related SFG rickettsiae R. conorii and R. rickettsii in a BSL3 environment. Future studies may lead to the development of new therapeutic strategies to inhibit the VE-cadherin-associated microvascular hyperpermeability in SFG rickettsioses.

Citation: Gong B, Ma L, Liu Y, Gong Q, Shelite T, et al. (2012) Rickettsiae Induce Microvascular Hyperpermeability via Phosphorylation of VE-Cadherins: Evidence from Atomic Force Microscopy and Biochemical Studies. PLoS Negl Trop Dis 6(6): e1699. doi:10.1371/journal.pntd.0001699

Editor: David H. Walker, University of Texas Medical Branch, United States of America

Received February 14, 2012; Accepted May 2, 2012; Published June 12, 2012

Copyright: © 2012 Gong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Center for Biodefense and Emerging Infectious Diseases (BG and AO), Carmage and Martha Walls Distinguished University Chair in Tropical Diseases (BG), National Institutes of Health (NIH) grant R01DK073394 (AO), and the John Sealy Memorial Endowment Fund for Biomedical Research (AO). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: bigong@utmb.edu

Introduction

Spotted fever group (SFG) rickettsioses are composed of over 25 species of rickettsiae that are causative agents of a wide spectrum of diseases, ranging from the virulent Rocky Mountain spotted fever (Rickettsia rickettsii) and severe systemic Mediterranean spotted fever (R. conorii) to the recently identified R. parkeri rickettsiosis (R. parkeri) and non-pathogenic R. montanensis [1,2]. The main target cells of SFG rickettsiae are the endothelial cells that line the entire vasculature [3–5]. The most prominent pathophysiological effects of rickettsial infection are increased microvascular permeability, promoting vasogenic cerebral edema and non-cardiogenic pulmonary edema, which are responsible for most of the severity and mortality in Rocky Mountain spotted fever and Mediterranean spotted fever [6]. The cellular and molecular mechanisms by which Rickettsia increase endothelial cell permeability are largely unknown. Previous studies show that R. rickettsii and R. conorii cause dose-dependent hyperpermeability, which was associated with disruption of intercellular adherens junctions (AJs) after infection [5,7,8]. The underlying molecular mechanism by which the junctional complexes are disrupted, ultimately causing changes in the endothelial paracellular milieu during rickettsial infection, remains unclear [6,9].

The available evidence suggests that inflammatory stimuli such as histamine, tumor necrosis factor (TNF), and vascular endothelial growth factor (VEGF) can trigger tyrosine phosphorylation of various components of AJs, mainly the vascular endothelial–cadherin (VE-cadherin), β-catenin, and p120-catenin complex,
VE-Cadherin-EC Interactions in SFGR Infection

Author Summary

Rickettsial diseases are serious human infections. Some spotted fever group (SFG) rickettsial pathogens are bioterror agents. A major clinical hallmark of SFG rickettsial disease is the infection of endothelial cells leading to enhanced vascular permeability. Previous studies show that SFG rickettsiae cause dose-dependent hyperpermeability, which was associated with disruption of intercellular adherens junctions (AJs). The underlying molecular mechanism by which the junctional complexes are disrupted, ultimately causing changes in the endothelial paracellular milieu during rickettsial infection, remains largely unclear. The available evidence suggests that inflammatory stimuli can trigger tyrosine phosphorylation of various components of AJs, which results in aberrant properties of junctional complexes. In order to mimic different aqueous physiological conditions and to test this hypothesis, detailed information about the biomechanical properties of protein–protein interactions as well as protein–cell interactions at the molecular level is required. Here, we hypothesize that infection by SFG rickettsiae induces endothelial cells to develop altered VE-cadherin in association with phosphorylation of tyrosine residues. Using nano-mechanical studies with atomic force microscopy and biochemical analysis of the major AJ protein VE-cadherin, we have implicated that phosphorylation of VE-cadherin directly attenuates homophilic interactions between VE-cadherins. The experimental approach advances a new way of studying rickettsial infection. This strategy should prove useful in uncovering novel therapeutic strategies for virulent arthropod-borne rickettsioses.

Materials and Methods

Reagents

Recombinant human VE-cadherin Fc chimera was purchased from R&D Systems (Minneapolis, MN). Cell culture medium Prigrow I and fetal bovine serum were obtained from Applied Biological Materials (Richmond, BC, Canada). Unless otherwise indicated, all reagents were purchased from Thermal Fisher Scientific (Waltham, MA).

Rickettsia purification

To allow us to employ BSL2 procedures, we utilized a BSL2 rickettsial species, R. montanensis (strain M/5–6), was used for the present study, obtained from the laboratory of David H. Walker. A 10% yolk sac suspension of R. montanensis from infected eggs diluted in sucrose-phosphate-glutamate (SPG) buffer (0.218 M sucrose, 3.8 mM KH2PO4, 7.2 mM K2HPO4, 4.9 mM monosodium L-glutamic acid, pH 7.0) was propagated through two passages in Vero cells [32,33]. R. montanensis cells were harvested from 180-cm2 tissue culture flasks containing confluent monolayers of infected Vero cells. The infected Vero cells were harvested from each flask surface with scraper, diluted in 10 ml of supplemented medium, and transferred to a precooled 50-ml tube containing 5 g of 3-mm glass beads, and vortexed vigorously for 30 s in order to disrupt the Vero cells. Vortexing was repeated two times with 60-s intervals of incubation on ice between each 30-s vortexing. The lysates were centrifuged at approximately 13,000 x g for 5 min at room temperature. The pellet from each flask was transferred to a tube, and the rickettsiae were pelleted by centrifugation at 15,000 x g for 25 min at 4 °C. Purified rickettsiae were frozen in SPG buffer at −80 °C. Rickettsial content of the frozen stocks was determined by plaque assay and TCID50 assays on Vero cells, and yielded approximately 1 x 109 bacterial cells per ml. Uninfected Vero cells were processed by the same procedure as normal control material.

Cell culture

Immortalized human cerebral microvascular endothelial cells (h-CMEC; Applied Biological Materials, Richmond, BC, Canada) were grown in Prigrow I medium supplemented with 10% heat-inactivated fetal bovine serum in 5% CO2 at 37 °C. All experiments were performed between passages 15 and 18, and cells were fed with Prigrow I medium with 1% fetal bovine serum. h-CMEC were cultured on round glass coverslips (12 mm diameter, Ted Pella, Redding, CA) for AFM studies and IF assay until confluent at 90%. The cells were then infected with R. montanensis at a multiplicity of infection (MOI) of 10. After 24, 48, and 72 h, the cells on the coverslips were washed three times in phosphate-buffered saline (PBS) before the downstream studies were performed.

www.plosntds.org 2 June 2012 | Volume 6 | Issue 6 | e1699

Author Summary

Rickettsial diseases are serious human infections. Some spotted fever group (SFG) rickettsial pathogens are bioterror agents. A major clinical hallmark of SFG rickettsial disease is the infection of endothelial cells leading to enhanced vascular permeability. Previous studies show that SFG rickettsiae cause dose-dependent hyperpermeability, which was associated with disruption of intercellular adherens junctions (AJs). The underlying molecular mechanism by which the junctional complexes are disrupted, ultimately causing changes in the endothelial paracellular milieu during rickettsial infection, remains largely unclear. The available evidence suggests that inflammatory stimuli can trigger tyrosine phosphorylation of various components of AJs, which results in aberrant properties of junctional complexes. In order to mimic different aqueous physiological conditions and to test this hypothesis, detailed information about the biomechanical properties of protein–protein interactions as well as protein–cell interactions at the molecular level is required. Here, we hypothesize that infection by SFG rickettsiae induces endothelial cells to develop altered VE-cadherin in association with phosphorylation of tyrosine residues. Utilizing nano-mechanical studies with atomic force microscopy and biochemical analysis of the major AJ protein VE-cadherin, we have implicated that phosphorylation of VE-cadherin directly attenuates homophilic interactions between VE-cadherins. The experimental approach advances a new way of studying rickettsial infection. This strategy should prove useful in uncovering novel therapeutic strategies for virulent arthropod-borne rickettsioses.

Materials and Methods

Reagents

Recombinant human VE-cadherin Fc chimera was purchased from R&D Systems (Minneapolis, MN). Cell culture medium Prigrow I and fetal bovine serum were obtained from Applied Biological Materials (Richmond, BC, Canada). Unless otherwise indicated, all reagents were purchased from Thermal Fisher Scientific (Waltham, MA).

Rickettsia purification

To allow us to employ BSL2 procedures, we utilized a BSL2 rickettsial species, R. montanensis (strain M/5–6), was used for the present study, obtained from the laboratory of David H. Walker. A 10% yolk sac suspension of R. montanensis from infected eggs diluted in sucrose-phosphate-glutamate (SPG) buffer (0.218 M sucrose, 3.8 mM KH2PO4, 7.2 mM K2HPO4, 4.9 mM monosodium L-glutamic acid, pH 7.0) was propagated through two passages in Vero cells [32,33]. R. montanensis cells were harvested from 180-cm2 tissue culture flasks containing confluent monolayers of infected Vero cells. The infected Vero cells were harvested from each flask surface with scraper, diluted in 10 ml of supplemented medium, and centrifuged at approximately 13,000 x g for 5 min at room temperature. The pellet from each flask was suspended in 15 ml of supplemented media, and was transferred to a precooled 50-ml tube containing 5 g of 3-mm glass beads, and vortexed vigorously for 30 s in order to disrupt the Vero cells. Vortexing was repeated two times with 60-s intervals of incubation on ice between each 30-s vortexing. The lysates were centrifuged at approximately 800 x g for 10 min to remove unbroken Vero cells and cellular debris. The supernatant, containing released R. montanensis cells, was transferred to a tube, and the rickettsiae were pelleted by centrifugation at 15,000 x g for 25 min at 4 °C. Purified rickettsiae were frozen in SPG buffer at −80 °C. Rickettsial content of the frozen stocks was determined by plaque assay and TCID50 assays on Vero cells, and yielded approximately 1 x 109 bacterial cells per ml. Uninfected Vero cells were processed by the same procedure as normal control material.

Cell culture

Immortalized human cerebral microvascular endothelial cells (h-CMEC; Applied Biological Materials, Richmond, BC, Canada) were grown in Prigrow I medium supplemented with 10% heat-inactivated fetal bovine serum in 5% CO2 at 37 °C. All experiments were performed between passages 15 and 18, and cells were fed with Prigrow I medium with 1% fetal bovine serum. h-CMEC were cultured on round glass coverslips (12 mm diameter, Ted Pella, Redding, CA) for AFM studies and IF assay until confluent at 90%. The cells were then infected with R. montanensis at a multiplicity of infection (MOI) of 10. After 24, 48, and 72 h, the cells on the coverslips were washed three times in phosphate-buffered saline (PBS) before the downstream studies were performed.
measured by pressing the cantilever onto the cell monolayer for ~500 ms and then stretching for several hundred nm. We used a serum-free Hank’s Balanced Salt Solution (HBSS) supplemented with 10 mM HEPES, 2 mM CaCl₂ and 1 mM glucose. In the experiments using blocking antibodies, cells were pretreated with different antibodies (25 µg/ml) for 15 min before the AFM measurements. Unless noted, the pulling speed of the different force-extension curves was about 1.0 µm/s.

Endothelial cell permeability assay

The permeability of h-CMECs upon infection with *R. montanensis* at a MOI of 10 was determined using an in vitro vascular permeability assay (Millipore, Billerica, MA) as previously described [12,14,35,36]. Briefly, h-CMECs were seeded onto type I rat-tail collagen-coated polycarbonate Transwell filters (6.5-mm diameter and 3-µm pore size; Millipore, Billerica, MA) and confluent monolayers were inoculated with *R. montanensis* or mock-infected control material cells. At different time points post-infection (p.i.), hCMEC permeability was assessed by adding 0.5 mg/ml of fluorescein isothiocyanate (FITC)-dextran (40 kDa; Sigma, St. Louis, MO) to the top chamber above the filter. After 3 hours, FITC-dextran present in the bottom compartment was assayed by using a BioTek Synergy 2 multimode microplate reader (485 nm excitation, 530 nm emission). The fold-change in fluorescence intensity over the basal permeability of monolayers was used as an indicator of paracellular permeability of assessed monolayers. Experiments were performed in sets of four.

Immunofluorescence (IF)

Cells were fixed with cold methanol at 24, 48, or 72 h after infection. Each experiment was repeated three times. The primary antibodies, a mouse monoclonal IgG against VE-cadherin (1/500) (Clone TEA1/31, Meridian Life Science, Saco, ME) and a rabbit polyclonal IgG antibody against SFG rickettsiae (1:5000), were added and incubated for 2 h. VE-cadherins and rickettsiae were detected with secondary goat anti-mouse Alexa 488 and goat anti-rabbit Alexa 594 conjugated antibodies (Invitrogen, Carlsbad, CA), respectively. IF images were taken and analyzed with an Olympus BX51 imaging system.

Western immunoblots

In experiments following IF studies, in vitro cellular expression of VE-cadherin was analyzed by Western immunoblotting according to established methods [37,38]. After infection with *R. montanensis* for 24, 48, or 72 h in T75 flasks, whole-cell extracts of infected and mock control cells were prepared by lysis in RIPA buffer (Santa Cruz Biotechnology, Santa Cruz, CA) containing 1% PBS, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), aprotinin, and phenylmethylsulfonyl fluoride (PMSF). The concentration of total protein was determined before equal amounts of soluble protein (50 µg/lane) were subjected to SDS–polyacrylamide gel electrophoresis (SDS-PAGE) (10% acrylamide) (Invitrogen, Carlsbad, CA). Proteins were transferred onto a polyvinylidene difluoride (PVDF) membrane and then incubated with mouse monoclonal anti-VE-cadherin antibody (dilution 1:1000; Meridian Life Science, Saco, ME), followed by incubation with a secondary antibody at 1:2000 for 30 min. Blots were visualized by using a chemiluminescence kit (Pierce, Rockford, IL). Data were analyzed densitometrically using 1D scan EX software (BD Biosciences, Rockville, MD). A Western blot for α-tubulin served as loading control to verify equal loading and transfer.

Figure 1. Immunofluorescence studies show rickettsiae (red) located in human cerebral microvascular endothelial cells at 24, 48 and 72 hr after infection. Dual immunofluorescence staining of SFG rickettsiae (red) and VE-cadherin (green) using dual wave lengths filter system reveals that, compared to normal controls, *R. montanensis* infection (10 MOI) resulted in degradation of the density of VE-cadherin, suggesting disruption in the continuity of VE-cadherin at neighbouring areas at 72 hr post-infection. doi:10.1371/journal.pntd.0001699.g001

Atomic force microscopy

The mechanical properties between VE-cadherin functionalized AFM tips and cell monolayers were studied using AFM that consisted of a detector head (Digital Instruments, Tonawanda, NY) mounted on top of a single axis piezoelectric positioner with a strain gauge sensor (P841.10, Physik Instrumente, Auburn, MA). This system has a z-axis resolution of a few nm and can measure forces in the range of 5–10,000 pN [34]. The monitoring of the force reported by the cantilever and the control of the movement forces in the range of 5–10,000 pN [34]. The monitoring of the force-extension curves was about 1.0 µm/s.
Immunoprecipitation (IP) phosphorylation assay [39]

To study VE-cadherin phosphorylation, cell lysates were prepared with an ice-cold RIPA lysis buffer (the same as for Western immunoblot assays). After centrifugation at 12,000 × g for 20 min, the protein supernatant was collected. Equal amounts of protein with optimal Dynabead Protein G (Invitrogen, Carlsbad, CA) conjugated with anti-VE-cadherin antibody were incubated for 2 h at room temperature. The Dynabead-antibody-antigen complex pellets were precipitated and separated using DynaMag-2 (Invitrogen, Carlsbad, CA). The pellet was washed three times with PBS, and resuspended in 20 μL of SDS sample buffer (Invitrogen, Carlsbad, CA) and heated for 10 min at 70°C. Samples were then separated by gel electrophoresis followed by immunoblotting. A mouse monoclonal anti-phosphotyrosine antibody, 4G10 (Millipore, Billerica, MA) was used at dilution of 1:500 for detection of proteins containing phosphotyrosine. All experiments were performed in sets of three.

Statistical analysis

Values are reported as mean ± SD. The data were analyzed using Student’s paired t-test (Sigmaplot, Sigma Stat, Jandel Scientific Software, San Rafael, CA). Statistical significance was determined at P<0.05.

Results

SFG rickettsial infection affects endothelial AJ integrity and enhances paracellular permeability

The abnormal VE-cadherin expression induced upon infection of rickettsiae was visualized under fluorescence microscopy. At earlier time points, no detectable difference was noted in IF studies of VE-cadherin compared to normal controls, although rickettsiae were detected at 24 hr and 48 hr post-infection (Figure 1). As the infection progressed, VE-cadherin’s distribution appeared disrupted after 72 hr at endothelial cell contacts in confluent cell layers when compared to controls (Figure 1).

To determine if disorganized or reduced VE-cadherin at endothelial AJs are relevant to endothelial paracellular barrier dysfunction, we assessed cell permeability by an in vitro vascular endothelial cell permeability assay. As seen in Figure 2, in h-CMEC monolayers, infection of R. montanensis induced a 1.58-fold increase in para-endothelial cell permeability at 72 hr post-infection compared to control. There was no significant change in hCMEC monolayers at 24 hr and 48 hr post-infection compared to normal controls.

SFG rickettsial infection causes tyrosine phosphorylation of VE-cadherin, leading to increased instability of VE-cadherin at inter-endothelial interactions

To determine the possible biochemical basis of increased endothelial permeability, we examined VE-cadherin using Western immunoblotting. Initial studies failed to reveal any alterations in expression of general VE-cadherin between control and infected experimental monolayers at 24, 48, and 72 h post-infection (Figure 3A). Therefore, we used an IP-phosphorylation assay to focus on tyrosine phosphorylation of VE-cadherin because phosphorylation is thought to be an important event leading to destabilization of the AJ complex [10,11,14]. Infection with R. montanensis at a MOI of 10 stimulated increased tyrosine phosphorylation of VE-cadherin at 48 hr, with even greater phosphorylation at 72 hr post-infection (Figure 3B and 3C). This time corresponds to the increased endothelial permeability, suggesting that modulating VE-cadherin activity through phosphorylation is one of the mechanisms regulating VE-cadherin-related endothelial monolayer paracellular permeability.
To confirm the specificity of this VE-cadherin-EC interaction, several control experiments were performed. For example, an excess of antibodies to VE-cadherin was added, or BSA was added to block the interactions between the VE-cadherin and ECs. As shown in Figure 4, the presence of a blocking monoclonal antibody against VE-cadherin (25 µg/ml) resulted in a significant decrease in the adhesion interaction between normal cells and the probing cantilever. The detected force was small, only about 30 pN, which is close to the detection limit of our instrument (~20 pN). Another control experiment was to probe the normal cells with a cantilever covered by BSA at 100 µg/ml in PBS. No force was detected in this experiment since the exposed surface of the cantilever was completely blocked by BSA (data not shown).

Discussion.

SFG rickettsial diseases are serious human infections. Some SFG rickettsial pathogens are bioterror agents [40]. A major clinical hallmark of SFG rickettsial disease is the infection of EC leading to enhanced vascular permeability [6]. The cellular and molecular mechanisms by which SFG rickettsiae increase endothelial permeability are largely unknown [4]. The endothelial cells that line all blood vessels function to regulate the influx and efflux of solutes and fluids between the vessel lumen and the surrounding interstitium. The movement of vessel contents is mediated by two broad mechanisms, the paracellular and transcellular routes. Relatively little is known about the role of the second route in microvascular hyperpermeability during inflammation [14]. The paracellular pathway, which is generally accepted to be dominant in inflammatory pathological states, is controlled by the dynamic opening and closing of endothelial junctions, mainly mediated by transmembrane proteins VE-cadherin at AJs and claudin at tight junctions (TJs) [10,41,42]. VE-cadherin initiates cell-cell adhesion and promotes its maintenance through its transmembrane domains [17]. VE-cadherin may also form a signaling complex through its cytoplasmic tail, interacting with β-catenin and pl20-catenin [43]. However, it is hard to clearly separate these two aspects. VE-cadherins are linked to a large variety of intracellular partners that mediate intracellular signaling and modulate the organization of the actin cytoskeleton to provide the dynamic forces necessary for appropriate tissue morphogenesis [10]. VE-cadherin-deficient mice die at mid-gestation due to defective vascular remodeling [44]. The primitive vascular plexus initially forms, but beyond embryonic day 9 these vessels regress and disintegrate. VE-cadherin-blocking antibodies disrupt cell-cell adhesion, increase permeability, and enhance transmigration of leukocytes [45,46]. However, VE-cadherin’s role in the mechanism responsible for enhanced microvascular permeability during SFG rickettsiosis needs to be elucidated.

In an earlier study, a remarkable observation was made regarding discontinuities in the endothelial localization of AJ proteins after a prolonged period of *R. conorii* infection [9]. Similar findings were made by our group using IF studies in mouse models of intravenous infection by *R. conorii*. Endothelial cells lining cerebral and pulmonary microcirculation display significantly diminished AJ and TJ proteins at day 5 after infection with a lethal dose of rickettsiae (unpublished observations). Furthermore, in an *in vitro* functional study, enhanced microvascular endothelial permeability has been described, which is correlated with dissociation of AJs (β-catenin and p120) during 24, 48, and 72 hr post-infection by *R. rickettsii* [7]. In the present study using a human cerebral microvascular endothelial model, we observed aberrant structures of inter-ECs VE-cadherin at 72 hr post-infection by *R. montanensis*, in which enhanced microvascular permeability was documented using an *in vitro* endothelial cell permeability assay.
VE-cadherins engage in Ca\(^{2+}\)-dependent homophilic interactions in which a VE-cadherin molecule on one cell binds to an identical VE-cadherin molecule on an adjacent cell [43]. After binding, cadherins aggregate laterally in trans and cis at cell–cell junctions and form a zipper-like structure along the cell border that promotes tight adhesion between endothelial cells [16,17]. In the present study, we used AFM to directly examine alterations in protein-protein adhesion forces that underlie this paracellular dysfunction following SFG rickettsial infection. AFM experiments revealed a dramatic reduction in the interactive forces between VE-cadherin and EC after 48 hr of infection. This decreased protein-EC interaction took place prior to the enhanced microvascular permeability detected by in vitro endothelial permeability assay at 72 hr p.i. This fact indirectly supports the idea that Ca\(^{2+}\)-dependent homophilic interactions between VE-cadherin molecules on adjacent cells are the target during SFG rickettsial infection-induced endothelial hyperpermeability.

There are many mechanisms that regulate VE-cadherin, including modulating VE-cadherin activity through phosphorylation and controlling VE-cadherin availability at the endothelial surface [10,47]. Stimuli such as histamine, thrombin, tumor necrosis factor (TNF), and vascular growth factor (VEGF) induce tyrosine phosphorylation of VE-cadherin, in which Src and Rac play a role as key pathway mediators to promote kinase-regulated phosphorylation of VE-cadherin on different residues attenuating stability at endothelial AJs [10,48]. Evidence has been established that mediators of inflammation signal through Src and Rac to trigger the tyrosine phosphorylation of VE-cadherin, leading to the endocytosis of VE-cadherin in a β-arrestin-dependent fashion [49]. Thus, kinase-mediated phosphorylation coordinates with the destabilizing barrier function of VE-cadherin at endothelial AJs. By competing with phosphorylate kinase, binding of p120-catenin may prevent VE-cadherin endocytosis from the plasma membrane, stabilizing it at the endothelial AJ [50]. Previous studies have demonstrated that the catenin class of proteins, β-catenin and p120-catenin, dissociate from the interendothelial cell junctions in response to SFG rickettsial infections [7,9]. Furthermore, a study using in vitro human endothelial-targeted R. rickettsii and human cerebral microvascular endothelial cells showed that the addition of pro-inflammatory stimuli essential to rickettsial immunity enhances rickettsia-induced microvascular permeability in a dose-dependent manner [7]. Taken together, this evidence suggests that SFG rickettsial infection may cause endothelial paracellular barrier dysfunction in association with phosphorylation of VE-cadherin, thus destabilizing endothelial AJs. A major finding of the present study is that upon infection by SFG rickettsiae, tyrosine phosphorylation of VE-cadherin was activated in human cerebral microvascular endothelial cells, which started at 48 hr and increased at 72 hr post-infection, although no difference was detected for general VE-cadherin expression at the same time. Given that the in vitro endothelial permeability assay showed enhanced microvascular permeability at 72 hr post-infection and the AFM studies showed a dramatic reduction in the adhesive force between VE-cadherin and endothelial cells at 48 hr, we suggest that upon infection by SFG rickettsiae, phosphorylation of VE-cadherin directly attenuates homophilic protein-protein interactions at the endothelial AJs, leading to endothelial paracellular barrier dysfunction and microvascular hyperpermeability.

In the present study, we present data to support the association between phosphorylation of endothelial AJ proteins and enhanced microvascular permeability during SFG rickettsial infection. However, it is not established whether activated phosphorylation is a direct consequence of rickettsial infection of the endothelial microvasculature, or whether it is a consequence of less specific physiological responses such as inflammation. We will utilize atomic force microscopy in future studies involving pathogenic SFG R. conorii and R. rickettsii to help address the potential role of rickettsiae as a trigger mechanism to alter major AJ components that affect vascular permeability.
In summary, our results indicate that phosphorylation of VE-cadherin directly attenuates homophilic interactions between VE-cadherins. Our nano-mechanical and biochemical studies of the major endothelial AJ protein VE-cadherin have implicated attenuated VE-cadherin-endothelial cell interaction as an underlying cause of enhanced microvascular permeability that occurs at one prolonged stage upon infection by R. montanensis. Our experimental approach advances a new way of studying rickettsial infection and will allow similar studies of the closely related SFG rickettsiae R. conorii and R. rickettsii. This strategy should prove useful in uncovering novel therapeutic strategies for virulent arthropod-borne rickettsioses.

Acknowledgments

We gratefully acknowledge Drs. David Walker and Kimberly Schuenke for their critical review and editing of the manuscript. We thank Dr. Olano at UTMB for his suggestions regarding the endothelial model selection. We also thank Nicole Mendell, Qing Chang and Toha Ha for expert technical assistance.

Author Contributions

Conceived and designed the experiments: BG AO. Performed the experiments: BG LM YL GS DB PJB YSL AO. Analyzed the data: BG AO. Contributed reagents/materials/analysis tools: BG YSL AO. Wrote the paper: BG LM PJB AO.

References

1. Feng WC, Waner JL (1980) Serological cross-reaction and cross-protection in guinea pigs infected with Rickettsia rickettsii and Rickettsia montana. Infect Immun 28: 627–629.
2. Walker DH (2007) Rickettsiae and rickettsial infections: the current state of knowledge. Clin Infect Dis 45 Suppl 1: S39–44.
3. Valbuena G, Walker DH (2009) Infection of the endothelium by members of the J. Microbiol. Immunol. Infect. 42: 1071–1078.
4. Valbuena G, Walker DH (2006) The endothelium as a target for infections. Annu Rev Pathol 1: 171–198.
5. Walker DH (2009) The realities of biodefense vaccines against Rickettsia. Vaccine 27 Suppl 4: D11–15.
6. Walker DH, Jansal N (2008) Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol 6: 375–386.
7. Woods ME, Olano JP (2008) Host defenses to Rickettsia rickettsii infection contribute to increased microvascular permeability during acute rickettsoasis. Ann N Y Acad Sci 1065: 239–245.
8. Woods ME, Wen G, Olano JP (2005) Nitric oxide as a mediator of increased microvascular permeability during acute rickettsioses. Ann N Y Acad Sci 1065: 239–245.
9. Valbuena G, Walker DH (2005) Changes in the adherens junctions of human endothelial cells infected with spotted fever group rickettsia. Virochows Arch 446: 379–382.
10. Dejana E, Osongo F, Lampagasmi MG (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121: 2115–2122.
11. Esser S, Lampeganagi MG, Corada M, Dejana E, Risau W (1996) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111 Pt 13: 1853–1865.
12. Gorbunova EE, Gavrilovskaya IN, Pipini T, Mackow ER (2011) VEGFR2 and Src kinase inhibitors suppress Andus virus-induced endothelial cell permeability. J Virol 85: 2296–2303.
13. Allingham MJ, van Buul JD, Burridge K (2007) Catenin-dependent and -independent functions of vascular endothelial cadherin. J Cell Sci 120 Part 15: 2893–2909.
14. Guilluy C, Zhang Z, Bhende P, Shamkhi L, Wang L, et al. (2011) Latent KSHV infection increases the vascular permeability of human endothelial cells. Blood 118: 5344–5354.
15. Gouin B, Bell B, Boor PJ, Albrecht TB, Aumakki G, et al. (2006) Cardiac preconditioning with local laser-induced hyperthermia. J Surg Res 149: 177–183.
16. Gouin B, Aumakki G, Chen Z, Albrecht TB, Boor PJ, et al. (2006) Whole-body hyperthermia induces up-regulation of vascular endothelial growth factor accompanied by neovascularization in cardiac tissue. Life Sci 79: 1781–1788.
17. Xu Y, Gong B, Yang Y, Awasthi YC, Woods M, et al. (2007) Glahtomin-S-transferrase protects against oxidative injury of endothelial cell tight junctions. Endothelium 14: 333–343.
18. Walker DH (1989) Rickettsioses of the spotted fever group around the world. Rev Infect Dis 11 (6 Pt 1): 147–157.
19. Arid WC (2005) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100: 158–173.
20. Caterell P, Lampeganagi MG, Mason L, Belevardi F, Compernelle V, et al. (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs Vegf-mediated endothelial survival and angiogenesis. Cell 98: 147–157.
21. Corada M, Mariotti M, Thurston G, Smith K, Kunkei R, et al. (1999) Vascular endothelial-cadiherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A 96: 9815–9820.
22. Gavard I, Berges E, Boos K, Bogermeyer E, Simon M, et al. (1997) VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 110 (Pt 7): 1475–1485.
23. Arid WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100: 158–173.
24. Caterell P, Lampeganagi MG, Mason L, Belevardi F, Compernelle V, et al. (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs Vegf-mediated endothelial survival and angiogenesis. Cell 98: 147–157.