New insights on *Pomphorhynchus sphaericus* Gil de Pertierra, Spatz et Doma, 1996 (Acanthocephala: Pomphorhynchidae)

Martin Miguel Montes¹ · Nathalia J. Arredondo² · Paula Marcotegui¹ · Walter Ferrari¹ · Agustin Solari² · Sergio Roberto Martorelli¹

Received: 3 March 2021 / Accepted: 24 September 2021 / Published online: 6 October 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The finding of *Pomphorhynchus sphaericus* in new localities from La Plata River allowed the reevaluation of the species using a taxonomic integrative approach. The newly found specimens in *Pimelodus maculatus* from Samborombon Bay differ from *P. sphaericus* by the roots of hooks 1–6 which not form a wide sheet split into 2 apophysis, the slender, separated and equatorial testicles, the position of the cement glands, the shape of the proboscis, the shape and length of lemnisci, and the eggs size. Despite the notorious observed morphological differences, the COI mtDNA analysis confirmed that *Pomphorhynchus* individuals are the same conspecific, and showed that there is a high phenotypical plasticity in this species. *Pomphorhynchus sphaericus* is the first South American species analyzed to a DNA level (COI mtDNA, ITS, and 18S rDNA genes). The molecular analysis relates *P. sphaericus* to *P. bulbocolli* and *P. purhepechus*.

Keywords Pomphorhynchus · Acanthocephalan · Argentina · Brackish waters · Pimelodus

Introduction
The genus *Pomphorhynchus* Monticelli, 1905 currently includes 31 valid species (Amin 2013; Garcia-Varela et al. 2017; Li et al. 2017). Species of *Pomphorhynchus* shows a worldwide distribution and with most of them known from freshwater fishes. To date, only five species were reported in freshwater fishes of South America. These are *Pomphorhynchus moyanoi* Olmos & Habit, 2007 and *Pomphorhynchus yamagutii* Schmidt & Hugghins, 1973 from Chile parasitizing *Percilia gillissi* Girard and *Percichthys melanops* Girard (Percichthyidae), respectively; and three species from Argentina, *Pomphorhynchus omarsogundoi* Arredondo & Gil de Pertierra, 2010 parasitizing *Gymnotus carapo* Linnaeus (Gymnotidae); *Pomphorhynchus patagonicus* Ortubay et al., 1991 parasitizing several freshwater fish species of Patagonia; and *Pomphorhynchus sphaericus* Gil de Pertierra et al., 1996 parasitizing freshwater pimelodids from the Parano-Platense River basin (Schmidt and Hugghins 1973; Ortubay et al. 1991; Gil de Pertierra et al. 1996; Olmos and Habit 2007; Arredondo and Gil de Pertierra 2010). Recently,
Hernández-Orts et al. (2019) provided a complete list of Argentinean Pomphorhynchus fish hosts.

Another pomphorhynchid species, Pomphorhynchus patii, was described by Lunaschi, 1997 parasitizing Luciopimelodus pati (Valenciennes) and Parapimelodus valenciennis (Lütken) (both Pimelodidae), but it was considered a junior synonym of P. sphaericus based on similarities in morphological features, fish host, and geographical distribution (Amin et al. 2003). Nevertheless, some relevant differences can be observed between these, mainly with respect to the proboscis armature and the morphology of hook roots (Gil de Perttierra et al. 1996; Lunaschi 1997).

During surveys of fish parasites from Samborombón Bay (located in the brackish waters area La Plata River estuary) and Parana River basin, specimens of an acanthocephalan species identified as P. sphaericus were found in Pimelodus maculatus Lacepède (yellow-mandi catfish). The finding of these individuals leads us to study their morphology, and to make a molecular approach using the COI mtDNA, ITS, and 18S rDNA genes to elucidate the real filiation of this species.

Materials and methods

Collection of samples and morphological study

Ten *P. maculatus* were collected from Salado Relief Channel (35° 50’ S, 57° 25’ W) using cast nets and hand nets. Alive fishes were carried in bags to the laboratory with water from the sample site and added oxygen, and then kept in aquariums in the laboratory. Finally, the fishes were euthanized, dissected under a stereomicroscope, and the intestines examined for acanthocephalans.

Acanthocephalans found in the intestine were carefully detached from the intestinal wall, washed in saline solution, placed in distilled water at 4 °C for a few hours to relax and evaginate proboscides, fixed in 10% formalin, and stored in 70% ethanol. Some of the recovered Pomphorhynchus specimens were conserved in 96% alcohol for molecular studies. For morphological studies, the specimens were stained with chlorhydric carmine, dehydrated in a graded ethanol series according to the laboratory protocols (Pritchard and Kruse 1982), cleared in clove oil, and mounted in Canada balsam. Other specimens were unstained and cleared in lactophenol. The drawings were made with the aid of a drawing tube attached to an optical interference Olympus BX53 microscope. Measurements (expressed as the range, followed by the mean in parentheses) are given in millimeters (mm), unless otherwise stated. The hook ranges are given in micrometers. The trunk length does not include the neck, bulb, or proboscis. Parasitological descriptors were calculated according to Bush et al. (1997).

The vouchers were deposited in the Helminthological Collection of the Museo de La Plata, Buenos Aires, Argentina (MLP).

Molecular analysis

Parasite DNA was extracted from two individual specimens using Wizard® Genomic DNA Purification Kit (Promega) and according to the manufacturer’s protocol. To secure the extraction and presence of DNA, no hologenophore specimens were saved. Instead, entire acanthocephalan specimens were used.

The COI mtDNA gene was amplified by PCR on an Eppendorf Mastercycler thermal cycler using the Folmer et al. (1994) primers: LCO1490 forward primer (5’-GGT CAA CAA ATC ATA AAG ATA TTG G-3’) and the HCO2198 reverse primer (5’-TAA ACT TCA GGG TGA CCA AAA AAT CA-3’).

The partial segment 18S rDNA gene was amplified by PCR using the Near et al. (1998) primers: 1073F forward primer (5’-CGG GGG GAG TAT GGT TGC-3’) and the 18SR reverse primer (5’-TGA TCC TTC TGC AGG TTC ACC TAC-3’).

The partial ITS region was amplified by PCR using the Králóvá-Hromadová et al. (2003) primers: BD1 forward primer (5’-GTC GTA ACA AGG TTT CCG TA-3’) and the BD2 reverse primer (5’-TAT GCT TAA ATT CAG CGG GT-3’).

The reactions were carried out with GoTAQ Master Mix (Promega) according to the manufacturer’s protocol, using the thermocycling conditions proposed by Gomez et al. (2002) for a portion of COI mtDNA gene, Perrot-Minnot (2004) for the partial 18S rDNA gene, and Králóvá-Hromadová et al. (2003) for the ITS rDNA gene.

The PCR products were analyzed by electrophoresis in 1% agarose gel using TAE 1 x buffer supplemented with 2 μl of ethidium bromide in the presence of UV light. Sequencing for each sample was carried out for both stands in a specialized laboratory (Macrogen, Korea).

Additionally, one specimen of *P. sphaericus* ex *Pimelodus maculatus* from Colastiné River (tributary of Parana River, 31° 39’ S 60° 46’ W) was used to extract the DNA and sequence the COI mtDNA.

The accuracy of the sequencing data was confirmed by sequencing in both directions. All sequences were edited using the platform Geneious R11 under free trial (http://www.geneious.com, Kearse et al. 2012) and the consensus sequence was built with the MUSCLE (Edgar 2004) alignment tool within Geneious with final edition “by eye” in the same platform. For the barcode sequences, we checked the nucleotide alignment, and for the presence of pseudogenes in Geneious, we used the translated amino acid sequences based on the invertebrate mitochondrial genetic code.
The consensus of each pair of COI mtDNA, ITS, and 18S rDNA sequence obtained after MUSCLE alignment was used to search homologues in the GenBank with the BLASTn tool (Table 1) and then the sequences were aligned using the online version of MAFFT v.7 (Katoh et al. 2017). The alignment was trimmed to the length of the shortest sequence, eliminating any poorly aligned regions of the rDNA using the online program Gblocks v0.91 (Castresana 2000; Talavera and Castresana, 2007) with relaxed parameters.

The best partitioning scheme and substitution model for each DNA partition were chosen under the Akaike information criterion (AIC; Posada and Buckley 2004) in Jmodeltest 2.1 (Darriba et al. 2012). The barcode fragment dataset was partitioned into first, second, and third codon positions with the appropriate nucleotide substitution model implemented for each codon position (TIM2 + I + G for the first, TRN + G for the second, and TPM1uf + G for the third codon position). The appropriate nucleotide substitution models for the ITS and 18S rDNA were TVM + G and TIM2 + I + G, respectively.

According to the analysis made by Li et al. (2017), sequences of Acanthocephalus nanus were used as outgroup taxa (Table 1).

The phylogenetic reconstruction was conducted using Bayesian Inference (BI) through MrBayes v. 3.2.1 (Ronquist et al. 2012). The COI mtDNA, 18 s rDNA, and ITS rDNA trees were constructed using 628, 1770, and 612 bp with 19, 11, and 21 taxa included in the analysis. In addition, a concatenated tree was constructed including all the species. The phylogenetic trees were reconstructed using two parallel analyses of Metropolis-Coupled Markov Chain Monte Carlo (MCMC) for \(2 \times 10^6\) generations each, to estimate the posterior probability (PP) distribution using Bayesian Inference through MrBayes v. 3.2.1 (Ronquist et al. 2012). Topologies were sampled every 1000 generations. The first 25% of the sampled trees were discarded as “burn in.” The consensus tree was visualized in FigTree 1.4.2 (Rambaut 2009).

The proportion (\(\rho\)) of absolute nucleotide sites (\(\rho\)-distance) was obtained to compare the genetic distance among and between lineages as was described by Castro-Romero et al. (2016) using Mega X (Kumar et al. 2018).

Results

Pomphorhynchidae Yamaguti, 1939.

Pomphorhynchus Monticelli, 1905.

Pomphorhynchus sphaericus Gil de Perttierra et al., 1996 (Fig. 1 and Table 2).

Palaeacanthocephala, Pomphorhynchidae, with the characters of the genus *Pomphorhynchus*. Fixed white to light orange individuals. Cylindrical proboscis, enlarged at its anterior third. Hooks arranged in 12 slightly spiraling longitudinal rows, each one armed with 15 hooks with simple roots. Basal crown with large hooks separated from the proper proboscis. Bulb like a posterior expansion of the proboscis, spherical to subspherical. Neck without bulb, shorter than the trunk. Cylindrical trunk with swollen anterior region and slightly thinner at the posterior end. Proboscideal receptacle with a double wall, bag shape, usually extending barely into the trunk. Unequal, short, and cylindrical lemnisci.

Male (based on 7 specimens): trunk 5.24–6.99 (6.14) long, 0.35–0.59 (0.47) wide (Fig. 1A). Proboscis 0.41–0.68 (0.51) long, 0.14–0.26 (0.19) wide, with 12 hook rows, each row with 15 hooks (Fig. 1B). Proboscis hooks length and root length in Table 1 (Fig. 1C). Bulb 0.86–1.11 (0.95) long, 0.78–1.16 (0.93) wide. Neck without bulb 1.84–2.13 (1.96) long, 0.32–0.49 (0.41) wide. Proboscideal receptacle 2.90–3.50 (3.20) long, 0.08–0.12 (0.1) wide. The longest lemnisci with 0.44–0.78 (0.57) long, 0.10–0.14 (0.12) wide. The shortest lemnisci with 0.41–0.62 (0.5) long, 0.08–0.14 (0.11) wide. Oval, equatorial testes, in tandem and slightly separated from each other, anterior testis 0.43–0.57 (0.51) long, 0.24–0.32 (0.28) wide, posterior testis 0.49–0.57 (0.53) long, 0.24–0.35 (0.3) wide. Six pyriform cement glands, similar in shape and arranged 1–1–2–2, without the conducts, 0.3–0.38 (0.35) long, 0.05–0.14 (0.09) wide. Ovoid Saefftigen’s pouch, 0.65–0.78 (0.69) long, 0.16–0.19 (0.18) wide.

Females (based on 10 gravid specimens from *P. maculatus*): trunk 4.37–8.4 (6.69) long, 0.46–0.65 (0.55) wide. Proboscis 0.38–0.49 (0.43) long, 0.16–0.22 (0.18) wide. Proboscis hook length and root length in Table 2. Bulb 0.97–1.57 (1.21) long, 0.95–1.38 (1.10) wide. Neck without bulb 1.46–2.65 (1.82) long, 0.27–0.41 (0.34) wide. Proboscideal receptacle 2.0–4.2 (2.8) long, 0.09–0.13 (0.10) wide. Longest lemnisci 0.34–0.44 (0.38) long, 0.07–0.17 (0.10) wide. Shortest lemnisci 0.23–0.38 (0.29) long, 0.07–0.08 (0.08) wide. Ovary along the anterior 2/3 of the trunk with 2.35–4.86 (4.07) × 0.11–2.97 (0.17). Uterine bell located in the beginning of the posterior 1/3 of body. From there to the posterior end of the trunk, we find the uterus measuring 1.19–2.03 (1.64) × 0.08–0.14 (0.11). Fusiform eggs (in µm) 52–76 (62) × 8–12 (11), with polar prolongations (Fig. 1E).

Taxonomic summary

Host: *Pimelodus maculatus* Lacepède (Characiformes: Pimelodidae).

Site of infection: Attached to the intestine; proboscis and bulb penetrating into or through intestinal wall and body in intestinal lumen. Some specimens induced a host...
Table 1 Species, host, locality, and accession numbers of sequences of COI, 18S, and ITS of the acanthocephalan species included in the phylogenetic analyses

Species	Host	Locality	COI Accession Numbers	18S Accession Numbers	ITS Accession Numbers	References
Acanthocephalus nanus	Cynops pyrhogaster	Japan	LC100070	LC129889	LC100043	Nakao 2016
Longicolllum pagrosomi	Oplegnathus fasciatus	(Temminck & Schlegel, 1844)				
Pomphorhynchus bosniacus	Barbus barbus Linnaeus	Bosnia and Herzegovina	MH319900	MH319901	MH282839	Nedic and Vardic Smrzlic 2018 (direct submission to GenBank)
	Alburnus alburnus					
Pomphorhynchus bulbocollii	Mosoxoma erythrum	Canada	KY911323			Garcia-Varela et al. 2017
	Catostomus nebuliferus		KF559284	KF559285		
	Osteichthys mykiss	Walbaum, 1792	AF001841			
Pomphorhynchus lucyi	Microterus salmonoides	USA	AY133518			
Pomphorhynchus laevis		France	MF563527	EF051062	EF051063	David et al. 2018
	Squallus cephalus	Croatia	KF559305	KF559306		Valic et al. 2013 (direct submission to GenBank)
	Barbus barbus Linnaeus	France	LN994842			
	Barbatula barbatula Linnaeus	1758	LN994843			Perrot and Tougard 2015 (direct submission to GenBank)
Silurus glanis Linnaeus, 1758		Bosnia and Herzegovina	MH282838	MK133342		David et al. 2018
Gammarus rosei Gervais, 1835		Hungary	AY423349	AY423350		Nedic 2018 (direct submission to GenBank) Perrot-Minnot 2004
Gammarus pulex (Linnaeus, 1758)		France	AY423346			
Squallus cephalus (Linnaeus, 1758)		Italy	AY135416			Kraľ’ová-Hromadová et al. 2003
Barbus tyberinus Bonaparte, 1839		Italy	AY135417			
Squallus cephalus Linnaeus, 1758		Croatia	KF559305	KF559306		Valic et al. 2013 (direct submission to GenBank)
Dikerogammarus villosus		Germany	KJ756498			Emde et al. 2014
Neogobius melanostomus		(Pallas, 1814)	KJ756499			
Silurus glanis Linnaeus, 1758		Bosnia and Herzegovina	MH319898	MH319899		Paras and Nikolic 2018 (direct submission to GenBank)
Pomphorhynchus perhepechus	Mosoxoma australinum	Mexico	KY911289	KY911290		Garcia-Varela et al. 2017
Pomphorhynchus spharicicus	Pimelodus maculatus	Lacedpédé, 1803	MK429836	MK429837	MK411251	Present study
		(from brackish waters)			MK411252	
Pomphorhynchus spharicus		(from freshwaters)			MK411253	
					MK411254	
encapsulation reaction that causes deformities or atrophy of the proboscis and/or bulb.

Locality: Salado Relief Channel (35°50'10" S, 57°50'20" W), Samborombón Bay (Buenos Aires province, Argentina).

Prevalence: 10% (1/10) in *P. maculatus* from Salado River Channel (S.R.C.).

Mean intensity: 17 in *P. maculatus*.

Mean abundance: 1.7 in *P. maculatus*.

Deposited specimens: Helminthological Collection of Museo de La Plata, Argentina. Under the voucher number MLP-He 7727.

Remarks

As it was mentioned before, Gil de Pertierra et al. (1996) described *P. sphaericus* from several pimelodids hosts from La Plata River near the port of Buenos Aires City collected during a 2-year period. Almost at the same time, *P. patii* was described by Lunaschi (1997) from another locality in the same estuary. Based on similarities in morphology, fish host, and geographical distribution, *P. patii* was considered a junior synonym of *P. sphaericus* by Amin et al. (2003). However, several morphological differences can be noted among the specimens described by those authors (see Table 2).

One of the most noticeable features observed in *P. sphaericus* and described by Gil de Pertierra et al. (1996) is the morphology of the hook roots, with the roots 1 to 6 formed by a wide sheet that splits into two apophyses, and root 7 and subsequent roots directed posteriorly, and quadangular sheets directed anteriorly (see Fig. 1B Gil de Pertierra et al. 1996). Gil de Pertierra et al. (1996) also remarked the morphology of the hooks, mainly of the fourth hook which is described as “stout.” Another particular feature is the presence of a penial stylet present in the males of these specimens. The mentioned morphological features are almost unique among pomphorhynchids, mainly the presence of two types of hooks, which it is not usual in *Pomphorhynchus*.

The newly collected specimens from Samborombon Bay water share host with *P. sphaericus*. Also, both acanthocephalans share 12 slightly spiralling longitudinal rows, unequal lemniscus, and neck forming a spherical or subspherical bulb. Despite these similarities observed, the specimens described by Gil de Pertierra et al. (1996) differ from the new material from Samborombon Bay, mainly by the following features: the number of hooks per row (14–16 vs 15, respectively); the shape of hooks roots (1–6 formed by a wide sheet split into 2 apophysis vs simple roots, respectively); the size of the hooks (smaller in the Samborombon material with a similar morphology); the size of the female proboscis (0.55–0.81 (0.66) vs 0.38–0.49 (0.43), respectively); the length of the lemniscus (half-length in the new specimens), and the size and arrangement of the testes (pre-equatorial, larger, and close together vs equatorial to post-equatorial, slender, and separated, respectively).

The specimens described by Lunaschi (1997) belong undoubtedly to *P. sphaericus*, but it is worthwhile to note that several dimensions of the structures given by the author are not reliable, as there were apparently erroneous measurements (see Table 2). However, some relevant features can be recognized, for example, the proboscis hook roots morphology, which shows simple roots like in the Samborombon specimens. Additionally, in these specimens, the proboscideal hooks morphology is similar to that showed by the specimens described by Gil de Pertierra et al. (1996), including the “stout” fourth hook. Another similarity could be seen in the proboscideal receptacle, which extends deeply into the trunk, according to both authors.
estuarial areas (Salado relief channel). Four of the five registered hosts (P. albicans, P. maculatus, L. pati, and P. valenciennesi) are present in both areas (García et al. 2010).

Molecular analyses

The COI mtDNA analysis related the acanthocephalans found on P. maculatus from Samborombon River with P. sphaericus. The genetic distance between both parasites is 1%, showing them as the same entity (Fig. 2).

The phylogram constructed on COI mtDNA (Fig. 2) established that Tenuiproboscis Yamaguti, 1935 is the first separated clade, but with a low probability (only 76% PP). After that arise Pomphorhynchus tereticollis (Rudolphi, 1809) at the base of the branch with 34% PP, later the clade of P. bosniacus Kiskaroly & Cankovic, 1969 and P. laevis (Zoega in Muller, 1776) with a high posterior probability (100%). The next node emerges with a low posterior probability (44%) with P. zhoushanensis Li et al., 2017 and L. pagrosomi Yamaguti, 1935 (100% PP), and then a node with a 93% PP, emerging the P. sphaericus specimens, followed by a node with 93% PP and two branches, one belonging to Pomphorhynchus purhepechus García-Varela et al., 2017, and the other with Pomphorhynchus bulboccoli Linkins in Van Cleave, 1919. The p-value calculated for COI mtDNA shows 23–30% of distance among the P. sphaericus and the other species (Table 3). The relationship between P. zhoushanensis and L. pagrosomi stated by Li et al. (2017) is also confirmed.

The relation of P. sphaericus, according to the 18S rDNA (Fig. 3), is close to the node composed by P. tereticollis and P. laevis, but with a low posterior probability (only 46%), and as the sister clade appears Tenuiproboscis with 92% PP. The p-value shows a distance of 1% among P. sphaericus and both P. laevis and P. tereticollis (Table 4).

The phylogram based on ITS gen (Fig. 4) shows that P. sphaericus is closer to Pomphorhynchus lucyi Williams & Rogers, 1984 with 100% PP. The other branches of the phylogenetic tree are the same as stated by Li et al., 2017, P. tereticollis is the sister group of P. laevis + P. bosniacus, and with Tenuiproboscis at the base of that branch. On the other hand, Pomphorhynchus zhoushanensis and Longicollum pagrosomi Yamaguti, 1935 appear to be the same species. The p-value between P. sphaericus and P. lucyi is 5%, and compared with the other species used in the analysis, the distance of these to P. sphaericus is between 23 and 25% (Table 4).

The concatenated tree (Fig. 5) was obtained from all the species including in this study but there is no 18S rDNA sequences for P. bosniacus, P. lucyi, and P. purhepechus; ITS sequences for P. bulboccoli and P. purhepechus; COI mtDNA sequences for P. lucyi and L. pagrosomi. The configuration of this concatenated tree is in accordance with the results

Fig. 1 A Pomphorhynchus sphaericus lateral view complete male specimen. B Armature of male Pomphorhynchus sphaericus proboscis. C Detail of hook showing roots. D Female reproductive system. E Eggs with polar prolongations. Abbreviations: cg, cement glands; d, copulatory bursa; sp, saefftigen’s pouch; u, uterus; vs, vaginal sphincter; v, vagina. Scale bar: A = 400 µm, B = 60 µm, C = 33 µm, D = 85 µm, E = 16 µm
Table 2 Morphometric ranges for *Pomphorhynchus sphaericus* Gil de Pertierra et al., 1996 according to different authors

	P. sphaericus after Gil de Pertierra et al. 1996	*P. sphaericus* (syn. *P. patii*) after Lunaschi, 1997	*P. sphaericus* present study
Body length	–	M: 3.44–4.66	F: 3.5–6.39
Male trunk (L×W)	2.6–8.2 (5.4)×0.4–1.1 (0.7)	2.03–3.39×*51–79	5.24–6.99 (6.14)×0.35–0.59 (0.47)
Female trunk (L×W)	3.2–9.5 (6.0)×0.5–1.0 (0.8)	1.63–3.90×53–80	4.37–8.40 (6.69)×0.46–0.65 (0.55)
Male proboscis (L×W)	0.51–0.72 (0.61)×0.11–0.24 (0.20)	*48–60×*16–20	0.41–0.68 (0.51)×0.14–0.26 (0.19)
Female proboscis (L×W)	0.55–0.81 (0.66)×0.14–0.29 (0.21)	*54–78×*15–18	0.38–0.49 (0.43)×0.16–0.22 (0.18)
Rows of hooks	12	12	12
Hooks per row	14–16	14–15	15
Hooks length (hooks roots length)	1–3°: M: 24–31 F: 24–36 (25–46)	1–3°: M: 28–33 (11–21) F: 21–24 (11–21)	1–3°: M: 19–22 (11–21) F: 19–24 (11–16)
	4°: M: 25–30 F: 23–39 (25–46)	4°: M: 30–33 (22–25)	4°: M: 16–23 (11–16) F: 19–24 (11–16)
	5°: M: 21–25 F: 21–38 (25–46)	5°: M: 22–40 (hook 5 = 15–21, hook 6 = 11)	5°: M: 19–22 (7–13) F: 21–38 (7–13)
	Stout	Stout	Stout
	Shorter and slimmer	Shorter and slimmer	Shorter and slimmer
	6° and 7°: M: 22–28 F: 22–36 (hook 6 = 25–46 and hook 7 = 11–19)	6° and 7°: M: 16–22 (6–8) F: 17–21 (6–10)	6° and 7°: M: 16–22 (5–9) F: 16–28 (6–9)
Hook roots	1–6° wide sheet splits into 2 apophyses	Simple	Simple
	7–16° slender and directed posteriorly with quadrangular sheet directed anteriorly	Simple	Simple
Male bulb (L×W)	0.64–1.40 (1.02)×0.66–1.58 (1.16)	*27–69×0.54–1.07	0.86–1.11 (0.95)×0.78–1.16 (0.93)
Female bulb (L×W)	0.78–1.64 (1.13)×0.96–1.17 (1.28)	*29–75×*77–80	0.97–1.57 (1.21)×0.95–1.38 (1.10)
Male neck (without bulb) (L×W)	0.96–2.39 (1.66)×0.25–0.46 (0.35)	*44–56×*16–35	1.84–2.13 (1.96)×0.32–0.49 (0.41)
Female neck (without bulb) (L×W)	1.07–2.39 (1.65)×233–490 (381)	0.80–1.20×*16–20	1.46–2.65 (1.82)×0.27–0.41 (0.34)
Male proboscideal receptacle (L×W)	1.9–4.2 (3.10)×0.10–0.15 (0.13)	1.57–2.22×0.93–1.15	2.9–3.5 (3.2)×0.08–0.12 (0.10)
Female proboscideal receptacle	2.4–3.8 (3.15)×0.12–0.19 (0.16)	1.89–2.43×*65–93	2.0–4.2 (2.8)×0.09–0.13 (0.10)
Male larger lemmisci (L×W)	0.75–1.61 (1.19)×0.10–0.21 (0.16)	0.54–1.09×0.10–0.14	0.44–0.78 (0.57)×0.10–0.14 (0.12)
Female larger lemmisci (L×W)	0.98–2.04 (1.37)×0.14–0.22 (0.17)	0.44–1.09×*9–5	0.34–0.44 (0.38)×0.07–0.17 (0.10)
Male shorter lemmisci (L×W)	0.61–1.48 (1.07)×0.10–0.24 (0.16)	0.41–0.62 (0.50)×0.08–0.14 (0.11)	
Female shorter lemmisci (L×W)	0.81–1.66 (2.0)×0.12–0.24 (0.19)	0.23–0.38 (0.29)×0.07–0.08 (0.08)	
Anterior testis (L×W)	0.43–1.16 (0.69)×0.31–0.64 (0.48)	*25–35×*18–34	0.43–0.57 (0.51)×0.24–0.32 (0.28)
Posterior testis length (L×W)	0.42–1.23 (0.68)×0.30–0.62 (0.39)	*27–39×*17–33	0.49–0.57 (0.53)×0.24–0.35 (0.30)
Cement glands (L×W)	0.24–0.75 (0.44)	–	0.30–0.28 (0.35)×0.05–0.14 (0.09)
Saefitgen’s pouch (L×W)	–	*45–82×*11–16	0.65–0.78 (0.69)×0.16–0.19 (0.18)
obtained for the trees of 18S rDNA, ITS, and COI mtDNA. The *Pomphorhynchus* sp. is divided in two groups, in the low branch shows *P. bulbocelli* and *P. purhepechus* with high PP value. The other big node shows a close relation between *P. zhoushanensis* and *L. pagrosomi* (100% PP); *P. sphaericus* and *P. lucyi* (94% PP); and among *Tenuiproboscis*, *P. tereticollis*, *P. bosniacus*, and *P. laevis*, respectively.

Discussion

The Pomphorhynchidae Yamaguti, 1939 is composed currently by around 55 species distributed in 5 genera *Longicollum* Yamaguti, 1955, *Parallongicollum* Amin et al., 1991, *Pomphorhynchus* Monticelli, 1905, *Pyriproboscis* Amin et al., 2003, and *Tenuiproboscis* Yamaguti, 1935 (Amin 2013). Like in the rest of the Acanthocephala, the members of the family were characterized by a few morphological features, namely the morphology of the neck and bulb (uniformly cylindrical or not, with a more or less developed bulb), the morphology of the proboscis (cylindrical and filiform or not cylindrical and anteriorly enlarged), and the type of hooks (one type of hook or two types of hooks) (Amin et al. 2003; Amin 2013). However, the recent studies in pomphorhynchids, involving taxonomic integrative approaches, provide new insights into this interesting acanthocephalan genus (Spakulova et al. 2011; Li et al. 2017; Garcia-Varela et al. 2017). The most outstanding of these results show that there is a high phenotypic plasticity in *Pomphorhynchus*, and that the genus is not a monophyletic group, resulting in the opened question about the systematic status of the other genus in the family.

Taking into account only the information provided by the morphology, we could assume that the specimens from Samborombon Bay represent a new species, but the COI mtDNA analysis related those with the species *P. sphaericus*. This fact highlights the advantages of using integrative morphological and molecular approaches to confirm the taxonomic status of the species. In this way, the sequences here reported of *P. sphaericus* from Argentina represent an advance in the knowledge of the phylogenetic analysis inside the Pomphorhynchidae.

Recently, Li et al. (2017) established important evidence about the morphology of this genus and the genetic similarity between *P. zhoushanensis* and *Longicollum pagrosomi* Yamaguti, 1935, and among the clade of *P. tereticollis* + *P. laevis* with *Tenuiproboscis* sp. These authors found that the presence of symmetrical or asymmetrical bulb in the same species is possible, as they reported for *P. zhoushanensis* but, as the authors claim, this could not be true for all the species inside the genus. According to this, the bulb is not so important to discriminate species. The authors also suggest that in order to eliminate the polyphyly of *Pomphorhynchus*, it was necessary to determine the relations among *Pomphorhynchus*, *Longicollum*, and *Tenuiproboscis* (Li et al. 2017).

On the other hand, Spakulova et al. (2011) resurrect *P. tereticollis*, which was previously considered synonym of *P. laevis* (Amin et al. 2003), based on the presence of two types of hook, and the morphology of hook roots. Additionally, the molecular evidence obtained supports the existence of two different species in several fish hosts (including fresh and brackish water) in the same geographical area and emphasizes the need for taxonomical and molecular studies to clarify the status of cryptic species (Spakulova et al. 2011). The findings about *P. sphaericus* are noteworthy despite the morphological differences observed among specimens from different localities, mainly in the shape and size of the hooks and hooks roots, genetically—when the COI mtDNA
is analyzed—they are the same species. In particular, given the significance of the hooks and hook roots for the characterization of the species, it is remarkable that, while in the case of *P. tereticollis* and *P. laevis*, this feature is crucial for discriminating species (Spakulova et al. 2011). In *P. sphaericus*, it could be considered as phenotypical plasticity.

This is not strange that the Pomphorhynchidae family could show high morphological variability and plasticity with different morphotypes (see, for example, Spakulova et al. 2011; Li et al. 2017). According to several authors, the microenvironment could lead to phenotypic plasticity (Stunkard 1957; Mouhaid et al. 1997; Nolan and Cribb 2005; Poulin 2007). Also, according to Amin and Redlin (1980) and Shostack et al. (1986), the age, sex, and geographical location can alter characters in acanthocephalans.

García Varela et al. (2017) described *P. purhepechus* in *Moxostoma australinum* Bean from central Mexico and analyzed the genetic divergence of *P. bulbocalli*, another North American species with a widely distribution and numerous fish hosts. Additionally, the authors analyzed the genetic divergence in *P. bulbocalli*, distribution and host associations, hypothesizing that North and South America would form a distinct monophyletic assemblage with the North American species (*P. bulbocalli, P. lucyi*, and *P. purhepechus*) nesting with the other Paleartic species (*P. laevis* and *P. tereticollis*) (Laurasian origin), whereas the South American species would show a separate but common origin (Gondwanan), revealing that its distribution is not the result of the faunal interchange through the Great American Biotic Interchange (García Varela et al. 2017).

As expected, the addition of new sequenced species to the molecular analysis helps to clarify the systematic status of the genus. The COI mtDNA sequences show that *P. sphaericus* is closely related to *P. bulbocalli* and *P. purhepechus*, both species from North and Central America (93% PP).
The real position of *P. lucyi* in the final arrangement could be stated correctly when the COI sequence of that species (or the *P. bulbocolli* and *P. purhepechus* ITS sequences) is reported. In the light of the closeness of *P. sphaericus* with *P. lucyi*, as seen in the ITS analysis, and with *P. bulbocolli* and *P. purhepechus* with the COI gene, it is probable that they could share a node in the phylogenetic tree.

Despite the low number of sequenced species, the COI phyllogram shows an apparently division among continents. *Pomphorhynchus bulbocolli*, *P. purhepechus*, and *P. sphaericus* (plus *P. lucyi* with the ITS gen) belong to America, while *P. tereticollis* and *P. laevis* belong to Europa, and *P. zhoushanensis* and *L. pagrosomi* to Asia. This distribution contradicts, by the moment, the prediction made by Garcia-Varela et al. (2017). The riddle for the future research in the family Pomphorhynchidae will be to obtain specimens reliable and representative of most of the species, mainly of the Indian members of the family, for example, the seven species of *Tenuiproboscis* sp., a poor known genus from Indian marine fishes (Gupta and Naqvi 1992; Amin 2013). Until now, only one species was analyzed using DNA information, *Tenuiproboscis keralensis* Kaur et al., 2017, while future studies of other *Tenuiproboscis* species are needed.

It is not clear whether it presents a distribution with a clade from each different continent, a visible pattern in other parasites, for example, in the digenean of the genus *Clinostomum* (Locke et al. 2015; Pérez-Ponce de Leon et al. 2016). Up to day, of the seven South American species, only *P. sphaericus* was studied using an integrative taxonomic study.

Table 3 p-distance values of the COI mtDNA calculated in MEGA X with variance estimation, with bootstrap method (500 replicates), and with nucleotide substitution (transition + transversion) uniform rate. Intraspecific divergence in bold font (*n/c*, not calculated).

	0	1	2	3	4	5	6	7	8	9
0. *A. nanus*										
1. *P. tereticolis*	0.34	0.02								
2. *P. laevis*	0.39	0.22	0.01							
3. *P. bosniacus*	0.39	0.25	0.06	0						
4. *Tenuiproboscis* sp.	0.36	0.22	0.24	0.24						
5. *P. sphaericus* (brackish waters)	0.38	0.25	0.28	0.30	0.28	0.01				
6. *P. bulbocolli*	0.35	0.25	0.26	0.27	0.26	0.23	0.04			
7. *P. purhepechus*	0.36	0.25	0.27	0.27	0.27	0.23	0.15	0		
8. *P. zhoushanensis*	0.36	0.27	0.28	0.27	0.27	0.29	0.28	0		
9. *L. pagrosomi*	0.36	0.27	0.28	0.27	0.27	0.29	0.28	0		
10. *P. sphaericus* (freshwater)	0.39	0.25	0.28	0.30	0.29	0.01	0.23	0.24	0.28	0.28

Table 4 p-distance of the 18S rDNA (below diagonal) and ITS rDNA (above diagonal) calculated in MEGA X with variance estimation, with bootstrap method (500 replicates), and with nucleotide substitution (transition + transversion) uniform rate (*n/c*, not calculated).

	0	1	2	3	4	5	6	7	8	9
0. *A. nanus*		0.41	0.41	0.40	0.40	0.39	*n/c*	0.40	0.40	
1. *P. tereticolis*	0.08	0.04	0.24	0.24	0.15	0.23	*n/c*	0.04	0.23	
2. *P. laevis*	0.08	0	0.25	0.25	0.16	0.24	*n/c*	0.01	0.24	
3. *P. zhoushanensis*	0.08	0.03	0.03	*n/c*	0.27	0.23	0.25	0.23		
4. *L. pagrosomi*	0.08	0.02	0.02	0	*n/c*	0.27	0.23	0.25	0.23	
5. *Tenuiproboscis* sp.	0.11	0.01	0.01	0.03	0.02	*n/c*	0.25	0.16	0.25	
6. *P. sphaericus* (brackish waters)	0.07	0.01	0.01	0.04	0.04	*n/c*	*n/c*	0.24	0.05	
7. *P. bulbocolli*	0.18	0.16	0.16	0.16	0.18	0.14	*n/c*	*n/c*	*n/c*	
8. *P. bosniacus*	*n/c*									
9. *P. lucyi*		*n/c*								

Fig. 3 Phylogenetic tree based on 18S rDNA sequences by Bayesian Inference (evolutionary parameter used was TIM2+I+G). The new sequenced forms are in bold. Numbers given at nodes branches are the posterior probability value (<0.90 are not shown).

Parasitology Research (2021) 120:3725–3737
Based on the contradictory results obtained about the interspecific variability inside the genus, it will be interesting to know the relationship among the three Patagonian species (*P. patagonicus*, *P. moyanoi*, and *P. yamagutii*), which show very similar morphological characteristics (see Table 1 in Olmos and Habit 2007). On the other hand, *P. omarsegundoï* could be clearly distinguished from *P. sphaericus*, but the species is characterized by a non-spirally twisted long neck with an inconspicuous and asymmetrical bulb, and this feature does not fit well with the traditional definition of the genus (Arredondo and Gil de Pertierra 2010). Unfortunately, we still do not have neither specimens of *P. sphaericus* from the other fish hosts nor the other species from South America. Therefore, its phylogenetic relationships will be more accurate in the future.

Acknowledgements We would like to thank M. Marcia Montes for the drawings, Carlos Romero, Patricia Tedesco, and Paula Prince for the English revisions, to the Direction of Fauna of the Buenos Aires for the permission, to CONICET and FONCyT for the financial support, and to CEPAVE and UBA for providing the place and equipment where these studies were made.

Funding This research was supported by Agencia Nacional de Promoción Científica y Técnica (PICT 34412/05 and PICT 2358/2015) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 0015 and PIP 11220150100705CO).
Data availability All the material will be deposited in Museums and the sequences deposited on GenBank.

Code availability Not applicable.

Declarations

Ethics approval The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional guides on the care and use of laboratory animals.

Consent to participate All the authors give their consent to participate in this work.

Consent for publication All the authors give their consent to the publication of this work.

Conflict of interest The authors declare no competing interests.

References

Amin OM, Bauer ON, Sidorov EG (1991) The description of Paralongicollum nemachelli n. gen., n. sp. (Acanthocephala: Pomphorhynchidae) from freshwater fishes. Kazakh S.S.R. J Parasitol 77(1):26–31

Amin OM, Redlin MJ (1980) The effect of host species on growth and variability of Echinorhynchus salmonis Müller, 1784 (Acanthocephala: Echinorhyncha), with special reference to the status of the genus. Syst Parasitol 2:9–20

Amin OM (2013) Classification of the Acanthocephala. Folia Parasitol 60:273–305

Amin OM, Abdullah MA, Mhaisen FT (2003) Description of Pomphorhynchus spindletruancus (Acanthocephala: Pomphorhynchidae) from freshwater fishes in northern Iraq, with the erection of a new pomphorhynchid genus, Pyriproboscid n. g., and keys to genera of the Pomphorhynchidae and the species of Pomphorhynchus Monticelli, 1905. Syst Parasitol 54:229–235

Arredondo NJ, Gil de Pertierra AA (2010) Pomphorhynchus omarse-gundoii sp. n. (Acanthocephala:Pomphorhynchidae), parasite of the banded knifefish Gymnotus carapo (Gymnotiformes: Gymnodiidae) from the Paraná River basin Argentina. Folia Parasitol 57:307–311

Baigün RM, Colautti DC, Maiztegui T (2016) Río de la Plata (La Plata River) and Estuary (Argentina and Uruguay). In: Finlayson et al. (eds). The wetland book, vol 2. Springer Nature, Switzerland. pp1–9. https://doi.org/10.1007/978-94-007-6173-5_243-1

Bush AO, Lafferty KD, Lotz JM, Shostak AW Parasitology meets ecology: an ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifer). Evolution 56:1431–1444

García-Varela M, Mendoza-Garfias B, Choudhury A, Perez-Ponce de Leon G (2017) Morphological and molecular data for a new species (Pomphorhynchidae) in the Mexican redhorse Moxostoma austrinum Bean (Cypriniformes: Catostomidae) in central Mexico. Syst Parasitol 94:989–1006. https://doi.org/10.1007/s11230-017-9756-y

García-Varela M, Mendoza-Garfias B, Choudhury A, Perez-Ponce de Leon G (2017) Morphological and molecular data for a new species (Pomphorhynchidae) in the Mexican redhorse Moxostoma austrinum Bean (Cypriniformes: Catostomidae) in central Mexico. Syst Parasitol 94:989–1006. https://doi.org/10.1007/s11230-017-9756-y

García-Varela M, Mendoza-Garfias B, Choudhury A, Perez-Ponce de Leon G (2017) Morphological and molecular data for a new species (Pomphorhynchidae) in the Mexican redhorse Moxostoma austrinum Bean (Cypriniformes: Catostomidae) in central Mexico. Syst Parasitol 94:989–1006. https://doi.org/10.1007/s11230-017-9756-y

Katoh K, Rozewicki J, Yamada KD (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform bbb108:1–7. https://doi.org/10.1093/bib/bbx108

Kaur P, Shamal P, Chandran A, Binesh CP, Gishnu M, Asokan PK, Sanil NK (2017) Morphometric and molecular characterisation of Tenuiproboscis keraleinis n. sp. infecting marine and brackish water fishes from the south-west coast of India with a note on morphological plasticity. Parasitol Res 116:3131–3149. https://doi.org/10.1007/s00438-017-5628-2

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Kally S, Goodwin S, edd. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Králová-Hromadová I, Tietz DF, Shinn AP, Spakulová M (2003) ITS rDNA sequences of Pomphorhynchus laevis (Zoega in Müller, 1776) and P. lucyi (Zoega in Müller, 1776). Parasitol Res 89:575–583. https://doi.org/10.1007/s00428-003-0913-9

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096
Li L, Chen H-X, Amin OM, Yang Y (2017) Morphological variability and molecular characterization of Pomphorhynchus hoshuahensis sp. nov. (Acanthocephala: Pomphorhynchidae), with comments on the systematic status of Pomphorhynchus Monticelli, 1905. Parasitol Int 66:693–698. https://doi.org/10.1016/j.parint.2017.05.010
Locke SA, Caffara M, Marcogliese DJ, Fioravanti ML (2015) A large-scale molecular survey of Clinostomum (Digenaea: Clinostomidae). Zool Scr 44:203–217
Lunaschi LI (1997) Pomphorhynchus patii sp. nov. (Palaeacanthocephala: Pomphorhynchidae) in catfishes from Río de La Plata (Argentina). Gayana 61:1–5
Moret Y, Bollache L, Wattier R, Rigaud T (2007) Is the host or the parasite the most locally adapted in an amphipod-acanthocephalan relationship? A case study in a biological invasion context. Int J Parasitol 37:637–644
Mouhaid G, Casanova JC, Moné H (1997) Plasticidad fenotípica y determinación sistemática de parásitos: el caso de Echinoparyphium elegans. Acta Parasitol Portuguesa 4:127
Nakao M (2016) Pseudoacanthocephalus toshimai sp. nov. (Palaeacanthocephala: Echinorhynchidae), a common acanthocephalan of anuran and urodelan amphibians in Hokkaido, Japan, with a finding of its intermediate host. Parasitol Int 65:323–332
Near TJ, Garey JR, Nadler SA (1998) Phylogenetic relationships of the Acanthocephala inferred from 18S ribosomal DNA sequences. Mol Phyl Evol 10:287–298
Perrot-Minnot MJ (2004) Larval morphology, genetic divergence, and contrasting levels of host manipulation between forms of Pomphorhynchus laevis (Acanthocephala). Int J Parasitol 34:45–54
Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808
Poulin R (2007) Evolutionary ecology of parasites. Princeton University Press, Princeton, p 224
Pritchard MH, Kruse GOW (1982) The collection and preservation of animal parasites. University of Nebraska Press, p 141
Rambaut A (2009) FigTree v1.3.1. 2006–2009. Accessed November 29, 2012: Program package available at http://tree.bio.ed.ac.uk
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029
Schmidt GD, Huggins EJ (1973) Acanthocephala of South American fishes. Part 2. Palaeacanthocephala J Parasitol 59:836–838
Shostack AW, Dick TA, Szalai AJ, Bernier LMJ (1986) Morphological variability in Echinorhynchus gadi, Echinorhynchus leidyi and Echinorhynchus salmonis (Acanthocephala: Echinorhynchidae) from fishes in northern Canadian waters. Can J Zool 64(4):985–995
Spakulova M, Perrot-Minnot MJ, Neuhaus B (2011) Resurrection of Pomphorhynchus tereticollis (Rudolphi, 1809) (Acanthocephala: Pomphorhynchidae) based on new morphological and molecular data. Helminthologia 48:268–277
Stunkard HW (1957) Intraspecific variation in parasitic flatworms. Syst Zool 6:7–18
Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577
Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.