Ocean waves are characterized by a statistically small steepness and often (but not always; see, for example, [1]) a weakly nonlinear approach is sufficient to capture some of the intriguing aspects hidden in the fully nonlinear primitive equations. This weakly nonlinear approach is also shared by other fields of physics such as nonlinear optics [2] and plasma physics [3] where small parameters can be individuated and asymptotic expansions can be used to simplify the original equations. If the considered physical process is not only weakly nonlinear but also narrow banded then the lion’s share is played by the nonlinear Schrödinger equation (NLS). Being an exactly integrable equation via the inverse scattering transform [4], bizarre analytical solutions have been found in the past: besides traveling waves, breathers or multibreather solutions have been found [5–7] and observed in hydrodynamics [8,9], nonlinear optics [10,11], and plasma [12] experiments. Starting from [13,14], such solutions have been considered as prototypes of rogue waves. The early stages of the so-called Akhmediev breather solution [6] describes the exponential growth of slightly perturbed plane waves, i.e., it corresponds to the classical modulational instability process [15]. For water waves in infinite water depth, the instability is active when $\epsilon N \gtrsim 1/\sqrt{2}$, where $\epsilon = k_0 a_0$ is the initial steepness of the plane wave, k_0 the wave number, a_0 its amplitude, and $N = a_0 / \Delta \Omega$ the number of waves under the modulation; a_0 is the angular frequency corresponding to the carrier wave number k_0 and $\Delta \Omega$ the angular frequency of the modulation.

The whole picture is by now pretty well understood and relies on the fact that the medium in which waves propagate is homogeneous. In terms of the NLS equation this means that the coefficients of the dispersive and nonlinear terms do not depend on the spatial coordinates. Much more complicated and intriguing is the case in which the medium changes its properties along the direction of propagation of the waves. This situation is much more difficult to treat in terms of simplified models because it turns out that in general the resulting modified NLS does not share the property of integrability as the standard NLS, and analytical breather solutions can be found only in special cases (see some examples in [16–18]).

In the oceanographic context, the nonhomogeneity of the medium is mostly due to currents or bottom topography. In this Rapid Communication we will consider, from an experimental point of view, the interaction of waves and currents and the consequent formation of rogue waves. Wave-current interaction and its effect on wave instability have been the subject of a number studies over the past decades [19–26]. Only recently, however, has the rogue wave formation process induced by an opposite current gradient been studied numerically on the basis of the modified NLS equation [27–30]. Specifically, researchers [28] applied a transformation to the one-dimensional current-modified NLS equation derived in [27] to obtain the following NLS-type of equation:

$$\frac{\partial B}{\partial x} + i \frac{k_0}{a_0} \frac{\partial^2 B}{\partial t^2} + i k_0^3 \exp(-\Delta U/c_\xi) |B|^2 B = 0,$$

where c_ξ is the group velocity, $\Delta U = U(x) - U(0)$, with $U(x)$ the velocity of the current at position x, and $U(0)$ is the current at $x = 0$. For simplicity, we will consider the physical case of a wave generated in a region of zero current, $U(0) = 0$, that enters into a region where an opposite current starts increasing its speed (in absolute value) and then adjusts to some constant value U_0. Note that in this case the coefficient of the nonlinear term of Eq. (1) increases as the waves enter into the current up to a certain value and then remains constant. The net effect is therefore an increase of the nonlinearity of the system. Numerical simulations of the current-modified NLS equation presented in [28] showed that an envelope of an initially stable wave train becomes unstable after entering the current region. As a result, the maximum amplitude shows a growing trend.
for increasing the ratio U_0/c_g, corroborating the idea that an originally stable plane wave is transformed into a breather by the presence of a current.

In [30] it was noted that the modified NLS equation proposed in [27] and used in [28] does not preserve wave action (see [21]). To the lowest order, conservation of wave action can be accounted for in Eq. (1) by simply multiplying the ratio U_0/c_g by a factor 2. Based on this modification, a prediction for the maximum wave amplitude obeys the following equation:

\[
\frac{A_{\text{max}}}{\sqrt{E}} = 1 + 2 \sqrt{1 - \left(\frac{\exp(U_0/c_g)}{\sqrt{2\kappa N}} \right)^2},
\]

where A_{max} is the maximum wave amplitude achieved in the region of constant current and \sqrt{E} is the standard deviation of the wave envelope once the current has reached its maximum constant value. In [30] a derivation of a modified NLS equation based on a Hamiltonian formulation of surface gravity waves has been performed. A similar prediction as the one in Eq. (2) has been proposed and takes the following form:

\[
\frac{A_{\text{max}}}{\sqrt{E}} = 1 + 2 \sqrt{1 - \left(\frac{(1 + \sqrt{1 + 2U_0/c_g})^4}{\sqrt{2\kappa N}16(1 + 2U_0/c_g)^{1/4}} \right)^2}.
\]

Note that to the lowest order, an expression equivalent to Eq. (3) can be derived from Eq. (1) by multiplying the ratio U_0/c_g by a factor of 3.

In this Rapid Communication we present two independent sets of laboratory experiments that were conducted in the wave flume of Plymouth University and in the narrow directional wave basin at the Ocean Engineering Tank of the University of Tokyo. The wave flume at Plymouth University is 35 m long and 0.6 m wide with a uniform water depth of 0.75 m. The facility is equipped with a piston wavemaker with active force absorption at one side and a passive absorber panel at the other end; only unidirectional propagation is allowed. The flume is also equipped with a pump for the generation of background currents up to 0.5 m/s, which can follow or oppose the wave direction of propagation (only an opposing current was used for the present study though). One of the inlets or outlets is located near the absorber, while the other is at a distance of about 2.5 m from the wavemaker. This particular configuration allows waves to be generated outside the current field and propagate for a few wavelengths before encountering a current gradient. The wave field was monitored with 10 wave probes equally spaced along the tank, while the velocity field was monitored with two acoustic Doppler velocimeters (ADVs) properly seeded. A survey of the current revealed a fairly uniform flow both in space and time. Two electromagnetic velocimeters were used to survey the current. Instruments were deployed at several locations in the tank at a depth of 0.2 m; a vertical profile was measured at about 10 m from the wavemaker. Instantaneous measurements of horizontal velocity revealed that the flow had substantial spatial and temporal variations, with a dominant oscillation period of approximately 150 s. Average values are presented in Figs. 1(c) and 1(d). For these tests, the standard deviation was about 25% of the mean over the entire time series. As the flow’s outlet is located just below the wave generator, the velocity is approximately zero at a distance of about 0.2 m from the wavemaker, while the flow is at regime at a distance of 5 m from the wavemaker. Waves are therefore generated in a condition of (almost) still water and undergo a current gradient about 1 m after being generated. Farther from the wavemaker, between 5 and 30 m from the generator, the current still shows a weak gradient, which may slightly affect the wave field. Although the average horizontal velocity weakly decreased with the water depth, the vertical profile remained fairly uniform over a depth of about 1.5 m. The survey of the current field also indicated that the current runs faster on one side (along the wave probes), while it is slower on the other [see Fig. 1(c), for example]. It is important to mention that the cross-tank gradient refracts the wave field towards the sidewall (probes side). As such, this may cause linear directional focusing, steepening the wave profile and hence affecting wave dynamics.
A number of tests characterized by different values of the modulation frequency and current velocity have been carried out in both facilities. For all tests, the initial signal at the wavemaker consisted of a three-component system: a carrier wave of period $T_0 = 0.8$ s (wavelength $\lambda_0 = 2\pi / k_0 \approx 1$ m) and two side bands with amplitudes b_{\pm} equal to 0.25 times the amplitude a_c of the carrier waves. Considering the water depth of 0.75 m in the wave flume and 5 m in the directional basin, experiments were performed under deep water conditions ($k_0 h > 4$). As the effect of the current is to steepen the wave profile, a small initial steepness was selected in order to avoid wave breaking. The tests presented here were carried out by selecting the wave amplitude of the carrier wave a_c in such a way that the wave steepness was $k_0 a_0 = 0.063$ with $a_0^2 = a_c^2 + b_1^2 + b_2^2$. The frequency of the disturbances was chosen to force the number of waves under the perturbation $N = \omega_0 / \Delta \Omega$ (with ω_0 being the angular frequency of the carrier waves) to be equal to 11. Under these circumstances, the perturbation frequency lays just outside the NLS-based instability region, i.e., waves are stable ($\epsilon N = k_0 a_0 N = 0.69 < 1/\sqrt{2}$). These packets were tested against different opposing current speeds. Velocities ranged from 0 to 0.3 m/s with step of 0.02 m/s. All tests were run for a time period of 10 min. Considering the variability of the current in the directional basin, this ensured enough data to perform a standard statistical analysis of the observations.

Typical time series of the water surface elevation are presented in Fig. 2 for $U_0/c_g = 0$ and $U_0/c_g = −0.1$. What is clear from the figure is that, while the modulation does not grow in absence of current (top panels), the wave packets undergo a modulationally unstable process (nonlinear focusing) and wave amplification in the presence of a current. Interestingly enough, amplification is less sharp in the wave flume because of a more regular current field and the absence of contaminating three-dimensional effects.

A standard zero-crossing procedure was applied to extract the maximum amplitude at each probe. Because of the temporal variability of the current in the directional basin, the analysis was performed on segments of three consecutive wave groups, i.e., time window $\tau = 26.4$ s, where the current was nearly steady (velocity fluctuations were confined within a range of $±0.01$ m/s, namely, one order of magnitude smaller than the average). As the prediction in Eq. (2) only includes the contribution of free wave modes, frequencies greater than $1.5 \omega_c$ and smaller than $0.5 \omega_c$ were removed to filter out bound modes. The amplitude was then normalized by $E^{1/2} = (1/\tau) \int_0^\tau |A|^2 dt)^{1/2}$, where A is the wave envelope of the concurrent segment, to eliminate the current-induced increase of wave amplitude. An average normalized maximum amplitude and standard deviation were calculated over the entire time series. The maximum wave amplitude is presented as a function of U_0/c_g in Fig. 3 together with Eq. (2) (solid line) and the prediction model in Eq. (3) (dashed line); error bands equivalent to the 68% confidence interval (one standard deviation) are also shown. Owing to the stable current field, the error band for flume experiments is notably smaller than the one detected in the directional basin. Qualitatively, both tests are in good agreement with theory, substantiating that an adverse current gradient triggers modulational instability processes. Quantitatively, however, observations are notably overestimated by the model in Eq. (3), especially for strong current fields. Equation (2), on the contrary, produces a satisfactory approximation of the records, particularly for the flume experiments. It is important to remark, in this regard, that three-dimensional effects induced by refraction enhance the breaking probability in the directional wave basin and hence limit the maximum wave amplitude also for relatively mild currents. Amplitude growth ceases, in fact,
for $|U_0/c_g| > 0.2$ as individual waves systematically reach their limiting steepness [32] and break. In the wave flume, three-dimensional effects are suppressed, making breaking dissipation less likely and thus allowing waves to develop the maximum amplification. This justifies the good agreement with theory until $|U_0/c_g| \approx 0.4$; beyond this threshold waves reach the limiting steepness and break.

In conclusion, the conjecture on the generation of rogue waves in an opposite current using a current-modified cubic NLS equation has been here confirmed by two independent sets of laboratory experiments, which were carried out in a wave flume and a narrow directional wave basin. Observations corroborate that the excitation of the modulation and the concurrent intensification of the maximum wave growth is a function of the adverse current U_0/c_g and is consistent with theoretical predictions in Eq. (2), but overestimated by the model in Eq. (3). Despite possible shortcomings of the theory and uncertainties in the experimental conditions, especially related to the irregularities of the current field, the present study clearly shows evidence that an opposing current field can destabilize an otherwise stable wave packet. The result is the formation of a rogue wave, whose amplitude depends on the ratio of current velocity to group velocity. Note that the essence of the theoretical predictions in [28,30] is to account for the impact of the current shear only to modify the basic parameters that control the dynamics of the wave train. Once the basic parameters have changed, the instability process follows its nominal evolution pattern (namely, the nonlinear stages of modulational instability). It is important to mention that this is the case for our experiments because the spatial scale of the current field variation was smaller than the spatial scale of the nonlinear evolution. This is not necessarily the case in reality and further research is needed for those cases when the two scales are of the same order. From a physical point of view, the process that we have described may take place in nature when a modulationally stable swell (waves propagating without the forcing of the wind), which is characterized by a narrow spectrum (both in direction and frequency) enters a region of an opposite variable current. Besides the linear effect of refraction which could generate linear focusing, the current gradient can destabilize the wave packets leading to a nonlinear focusing effect and the formation of rogue waves. Indeed, as mentioned in [28], such currents may reach velocities up to 1.5 m/s, and for a group velocity corresponding to waves of period equal to 10 s (a typical condition during storms), the ratio U_0/c_g is of the order of 0.2, large enough to trigger a dangerous rogue wave. We believe that the mechanism we have observed is universal and can be reproduced in all fields of physics where an NLS equation with a variable coefficient of the nonlinear term can be written.

Experiments were supported by the JSPS Fellowship for Research in Japan Program, Grants-in-Aid for Scientific Research of the JSPS, and the International Science Linkages (ISL) Program of the Australian Academy of Science. Financial support of the Australian Research Council and Woodside Energy Ltd. through Grant No. LP0883888 is also acknowledged. M.O. and A.T. acknowledge the VDRS grant from Swinburne University of Technology. M.O. was supported by EU project EXTREME SEAS (SCP8-GA-2009-234175) and ONR Grant No. N000141010991. M.O. acknowledges Dr. B. Giulii Nico for interesting discussions.

[1] V. Zakharov and A. Dyachenko, Eur. J. Mech. B. Fluid 29, 127 (2010).
[2] A. Newell and J. Moloney, Nonlinear Optics (Addison-Wesley, Redwood City, CA, 1992).
[3] V. Zakharov, S. Mushner, and A. Rubenchik, Phys. Rep. 126, 285 (1988).
[4] V. Zakharov and A. Shabat, Funct. Anal. Appl. 8, 226 (1974).
[5] E. A. Kuznetsov, Akademiia Nauk SSSR Doklady 236, 575, (1977).
[6] N. Akhmediev, V. Eleonskii, and N. Kulagin, Theor. Math. Phys. 72, 809 (1987).
[7] D. Peregrine, J. Aust. Math. Soc. Appl. Math. 25, 16 (1983).
[8] A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, Phys. Rev. Lett. 106, 204502 (2011).
[9] A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev, Phys. Rev. X 2, 011051 (2012).
[10] B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzl, N. Akhmediev, F. Dias, and J. M. Dudley, Sci. Rep. 2, 463 (2012).
[11] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, and J. Dudley, Nat. Phys. 6, 790 (2010).
[12] H. Bailung, S. K. Sharma, and Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011).
[13] K. B. Dysthe and K. Trulsen, Phys. Scr. T 82, 48 (1999).
[14] A. Osborne, M. Onorato, and M. Serio, Phys. Lett. A 275, 386 (2000).
[15] V. Zakharov and L. Ostrovsky, Phys. Nonlinear Phenom. 238, 540 (2009).
[16] Z. Yan, Phys. Lett. A 374, 672 (2010).
[17] C. Dai, X. Wang, and J. Zhang, Ann. Phys. (NY) 326, 645 (2011).
[18] M. Onorato and D. Proment, Phys. Lett. A 376, 3057 (2012).
[19] A. Chawla, Ph.D. thesis, University of Delaware, 2000.
[20] A. Chawla and J. T. Kirby, J. Geophys. Res. 107, 4-1 (2002).
[21] M. Gerber, J. Fluid Mech. 176, 311 (1987).
[22] R. J. Lai, S. R. Long, and N. Huang, J. Geophys. Res. 94, 16201 (1989).
[23] R. Moreira and D. Peregrine, J. Fluid Mech. 691, 1 (2012).
[24] J. D. Stocker and D. H. Peregrine, J. Fluid Mech. 399, 335 (1999).
[25] I. K. Suastika, Ph.D. thesis, Technische Universiteit Delft, 2004.
[26] A. Toffoli, L. Cavalieri, A. V. Babarin, M. Benoit, E. M. Bitner-Gregersen, J. Moskalik, M. Onorato, A. R. Osborne, and C. T. Stansberg, Nat. Hazards Earth Syst. Sci. 11, 1 (2011).
[27] K. B. Hjelmervik and K. Trulsen, J. Fluid Mech. 637, 267 (2009).
[28] M. Onorato, D. Proment, and A. Toffoli, Phys. Rev. Lett. 107, 184502 (2011).
[29] L. Ying, Z. Zhuang, E. Heller, and L. Kaplan, Nonlinearity 24, R67 (2011).
[30] V. Ruban, JETP Lett. 95, 486 (2012).
[31] T. Waseda, T. Kinoshita, and H. Tamura, J. Phys. Oceanogr. 39, 621 (2009).
[32] A. Toffoli, A. V. Babarin, M. Onorato, and T. Waseda, Geophys. Res. Lett. 37, L05603 (2010).