Exploration of petrographic, elemental, and material properties of dynamic failure-prone coals

Heather Lawson
Spokane Mining Research Division, National Institute for Occupational Safety and Health, Spokane, WA 99207, USA

Abstract

The purpose of this study is to explore how the geochemical and petrographic components of coal may impact its physical properties and how these correlate with a history of reportable dynamic failure in coal mines. Dynamic failure events, also termed bumps, bounces, or bursts, are the explosive failures of rock in a mining environment. These events occur suddenly and often with no warning, resulting in worker injury up to and including fatality in greater than 60% of reportable cases through the Mine Safety and Health Administration (MSHA). A database of variables was compiled using publicly available datasets, which includes compositional geographic, strength, and Hardgrove grindability index (HGI) data. Results indicated that bumping coals were less mature, lower in carbon, higher in oxygen, softer, and less well cleated than coals that did not bump. High liptinite content was found to correlate with higher average uniaxial compressive strength (UCS) values. However, no clear and direct correlation between UCS and dynamic failure status was observed. The findings of this study established that differences existed between coals that had versus had not experienced reportable dynamic failure accidents. These differences were inherent to the coal itself and were independent of mining-induced risk factors. Results further illuminated how compositional attribute of coal influenced physical properties and began to clarify potential links between geochemistry and dynamic failure status. Only through the better understanding of risk can more effective mitigating strategies be enacted.

Keywords
Dynamic failure; Coal; Bump; Bounce; Burst

1. Introduction

Dynamic failure events, also termed bumps, bounces, or bursts, are the sudden failures of rock in a mining or quarrying environment. Failure occurs when the rock’s critical bearing capacity has been exceeded and the rock fails energetically through the outward expulsion of rubblized material [1]. These events occur suddenly and often with no warning, resulting in worker injury up to and including fatality in greater than 60% of reported cases through the Mine Safety and Health Administration (MSHA). Much research has been devoted to the...
prevention of these events. The effects of overburden depth and stiffness, mine design, mining practices and in situ stresses are well documented [1–10]. Despite these significant advancements in coal mine ground control, events continue to occur. Proactive risk mitigation remains an important research area. This is particularly true in underground coal settings where the rockmass is layered, lithologically diverse, and does not exhibit consistent material properties across deposits.

Many conditions have been associated with the occurrence of dynamic failure phenomena, including: (1) thick, competent strata that can create a bridging effect, resulting in high abutment stresses; (2) overburden thicknesses greater than 150–210 m; (3) a strong coal that is resistant to crushing or that is “uncleated or poorly cleated, strong, sustains high stress and tends to fail suddenly”; (4) the presence of sandstone channels or rolls that can serve to concentrate stresses; (5) fracturing of strong units above or below the coal seam; (6) slip along pre-existing discontinuities; (7) multiple seam mining interactions; (8) mining sequences that can cause anomalously high stress concentrations [1,2,4–6,9–13].

Peng stated that, “a bump may occur even though one or more (generally accepted) geological conditions are not present.” [1]. Rice suggested that a combination of factors, rather than one or two specific circumstances, is required to facilitate a bumping event [11]. Identifying a set of conditions that will consistently produce bumping has proven elusive; conditions associated with dynamic failure might produce an event at one site but not another. It is more likely that dynamic failure occurrence is not produced by a single set of circumstances, but rather that they are facilitated by a critical nexus of innate bursting capacity and stress. To date, the majority of dynamic failure research has focused on identifying those factors that produce unfavorable stress conditions. Innate capacity of the coal to burst has been largely neglected as a research topic, with some researchers going so far as to suggest that coal properties play no role in dynamic failure risk [8].

1.1. Reportable dynamic failure events by basin, 1983–2014

However, history has clearly demonstrated that some coals bump more easily than others [13–15]. A study of dynamic failures in the Sunnyside coal seam in the Uinta Basin, Utah, was carried out by Peperakis to identify the root causes of events occurring under low cover during development mining in virgin coal [13]. Ultimately, it was concluded that the bumps were associated with regional faulting. However, this conclusion begs the obvious question: Faulting is not an uncommon condition. Why has proximity to faults not consistently yielded similar events under similar conditions? More compellingly, Babcock and Bickel obliquely addressed this issue when they found that under laboratory conditions, some coals could be induced to exhibit bursting behavior more easily than others [14]. In fact, out of 15 coal samples, 13 could be induced to burst with differing levels of difficulty. Of these 13, coals from the Uinta and Piceance Creek Basins of the Western United States could be induced to burst with the least difficulty.

Plotting the number of reportable dynamic failures by county on a map reveals that dynamic failure events are not geographically widespread. In fact, quite the opposite is the case: in 1983–2014, nearly all reported dynamic failure events occurred in bituminous coals within the Uinta basin, the Piceance Creek Basin, and the Central Appalachian Basin (Fig. 1). Of
these, most events occurred in the Uinta and Piceance Basins (Fig. 2), echoing the findings of Babcock and Bickel that these coals might be particularly prone to bursting behavior [14]. It is notable that during the time period from which the bulk of this data was collected that the majority of mining took place in the Appalachian Basin. It has not been until recent years that the Western United States coal industry has begun to keep pace with Eastern coal mining with respect to economic sustainability. This suggests that:

1. Some set of conditions exist within the Uinta, Piceance and Central Appalachian Basins that do not exist outside of them, and that it is these conditions that facilitate dynamic failure events. Moreover, these factors are likely to be linked to some extent to the innate susceptibility of the rockmass to fail dynamically, as unfavorable stresses can and do accumulate across a broad swath of minable deposits without prompting similar events.

2. Coal mines in the Uinta and Piceance Creek Basins appear to be at higher risk for dynamic failure events, as evidenced by high rates of reported occurrence, despite overall lower historical production rates relative to the Central Appalachian Basin.

1.2. Coal composition as an indicator of material properties

Significant success has been achieved in correlating the material properties of coals with their elemental and petrographic characteristics. Van Krevelen and Van Krevelen and Schuyer describe empirical relationships between the chemical composition of coal and acoustic properties, Hardgrove grindability index (HGI), thermal and electric conductivity, porosity, calorific value, and other attributes [16,17]. Laubach et al. define an empirical relationship between vitrinite reflectance—a common measure of kerogen maturity—and cleat density [18]. Mathews et al. provide an overview of empirically determined relationships between both elemental and petrographic parameters of coal composition and many physical properties [19].

Given that compositional characteristics of coal correlate with many of its physical properties, it is reasonable to suggest that innate dynamic failure susceptibility may be assessed in the same way. This concept is not without precedent: Bräuner makes the observation that bumps were not observed in coals with less than 12% volatile matter [3]. This correlation between bumping and coal composition is supported by Osterwald et al., who state that there is an apparent correlation between bumping and the presence of benzene in the coal matrix [20]. More recently, research has suggested that coals that have a history of reportable dynamic failure phenomena also have high ratios of compositional volatile matter to organic sulfur [21].

2. Methods

This study examines correlations between coal properties, elemental and petrographic composition, and the presence or absence of dynamic failure history. The dataset used for this purpose represents the combination of several publicly available databases. These include coal records from the Penn State Coal Sample Databank, currently maintained by the Indiana Geological and Water Survey, accident reports available through MSHA, and the
Database of Unconfined Compressive Strength (DUCS). Incorporation of DUCS data into this dataset represents an expansion of the original used by Lawson et al. [21]. Assignment of bump status was performed by Lawson et al. by first establishing seams mined in the MSHA database of reportable events, and then cross-referencing these seams with channel sample records available through the Penn State Coal Sample Databank, limited by the geographic controls of the event mine location [21]. This is a binary true/false assignment of dynamic failure status, based on whether any evidence that a given seam had experienced reportable dynamic failure information could be found. It is notable that dynamic failure status assignment does not take into account the number of events and has not been normalized to production rates. Moreover, it does not address mechanism or other known risk factors such as mining method, design or overburden depth; it denotes only whether a seam has or has not experienced one or more reportable dynamic failure events at some point in its history after 1983. Incorporation of these data in future work will further clarify dynamic failure risk.

Several variables were considered for bivariate analysis during this study. As physical properties of coal will ultimately be the outward expression of its molecular character [16], there is an inherent interrelatedness of many, if not all, of these variables. The purpose of approaching these data in this way, then, is to determine which compositional variables correlate most closely with both physical coal properties and dynamic failure history, with the understanding that there is an implicit connection across them. Only those variables exhibiting some correlation with dynamic failure history are presented here. These include: (1) coal maturity; (2) petrographic composition, used here on a Moisture-Ash-Free (MAF) basis; (3) elemental composition; (4) UCS; (5) HGI; (6) inferred cleat density: Many empirical relationships have been determined on a regional basis to approximate cleat spacing in coal. For the purposes of this paper, the relationship postulated by Laubach et al. is used to estimate average cleat spacings and is given:

\[
\text{Inferred cleat spacing} = 0.473 \times 10^{0.398 v_{RO}} \text{ (cm)}, \text{ where } v_{RO} \text{ is vitrinite reflectance}; \]

(7) location and dynamic failure history, determined by referencing MSHA accident reports [18].

3. Results and discussion

3.1. Maturity

Plotting of the ratios of oxygen-to-carbon against hydrogen-to-carbon on a Van Krevelen diagram, as shown in Fig. 3, shows clearly that the bulk of bumping seams cluster in the upper right-hand side of the graph. This is indicative of higher compositional concentrations of hydrogen and oxygen and overall lower maturity. High carbon content is associated with harder coals, but it also is associated with more well-developed cleating [18]. When these same data are plotted with the inclusion of the coal basin, it becomes apparent that, in general, coals from the Central Appalachian Basin are more mature than those in the Uinta and Piceance Basins. This is unsurprising given the relative ages of the coal deposits; Appalachian coals are generally Carboniferous in age versus Upper Cretaceous in age in the Uinta and Piceance Basins. However, dynamic failure-prone seams from the Appalachian Basin still follow the general trend of lower maturity exhibited by other dynamic failure-prone seams.
Several points deviate from this overall trend and are highlighted in red in Fig. 4. These come exclusively from the Pocahontas #3 coal seam in West Virginia and the Coal Basin B seam in Pitkin and Gunnison counties, Colorado. The Coal Basin B seam is the seam mined by the Dutch Creek Mine during the 1981 mine disaster that resulted in the death of 15 miners [22]. This accident was classified as an ignition, rather than a dynamic failure. However, the initiating event was a dynamic failure that released methane gas, facilitating the subsequent ignition. There is evidence to suggest that dynamic failures in the northern B seam of Colorado are driven at least in part by internal gas pressures (NIOSH database, unpublished), suggesting that the primary failure mechanism observed in this area may diverge significantly from those observed in other United States coal mines. While accident reports from the Pocahontas #3 seam do not suggest gas pressure as a significant contributing factor, it is possible that failure mechanism in these events may also represent unusual conditions in some other yet-to-be-established fashion.

3.2. Petrographic character

The ratio of vitrinite to the sum of liptinite and inertinite does not appear to bear any direct correlation with dynamic failure history, as shown in Fig. 5. This ratio has been plotted against vitrinite reflectance to account for differences attributable to maturity. Bumping coals generally exhibit reflectance values of 1 or less. This finding only echoes the results of Van Krevelen diagrams indicating that bumping coals tend to be immature.

Fig. 6 plots liptinite content against vitrinite reflectance. This plot shows that for both bumping and non-bumping sample sets, liptinite decreases with increasing vitrinite reflectance, reaching a value of 0 for both groups at vitrinite reflectance values of about 1.4. Additionally, lower maturity coals in this sample set are, in general, moderately lower in liptinite than more mature coals, with vitrinite reflectance values from roughly 0.7 to 1.4. A possible explanation for this is that many of these “mid-range” coals were deposited during the Carboniferous period, prior to the evolution of angiosperms: The prominence of spore-producing flora could be responsible for overall higher liptinite composition during this time period. The abrupt decrease in liptinite content at vitrinite reflectance values of 1.4 suggests that liptinite does not survive the process of diagenesis as well as other maceral groups. However, no apparent direct correlation existed between dynamic failure status and liptinite content.

3.3. Elemental composition

The ratios of nitrogen, hydrogen, oxygen, and carbon to sulfur were compared with respect to dynamic failure. Sulfur was chosen as a constant variable, as it is known to correlate very well with a history of dynamic failure and is the intent of this study to expand on this initial observation of Lawson et al. [21]. Moreover, plotting elemental data against vitrinite reflectance, as was done for maceral composition, reflects only regular changes in elemental composition during coal maturation.

Plotting carbon, hydrogen, and oxygen against sulfur content echoes the correlation between increasing maturity and decreasing dynamic failure susceptibility. Coals with a history of dynamic failure generally have lower carbon content and consistently lower sulfur content.
than their non-bumping counterparts. Interestingly, there appears to be a subgroup of the non-bumping samples whose carbon content overlaps the dominant range of bumping coals at approximately 75%–83% carbon (Fig. 7). The defining differences between these two groups appears to be sulfur content, which is relatively high in the non-bumping sample set and decreases with increasing carbon content, corresponding to increasing maturity. This trend is not seen in the bumping samples; sulfur content begins low and remains low throughout their maturation process.

Plotting oxygen content against sulfur content indicates that, in general, bumping coals tend to have higher oxygen content than coals that have not bumped (Fig. 8). While there is clearly overlap between the two groups, the majority of the bumping coal samples have oxygen contents of greater than 10%, while very few non-bumping samples have oxygen content above this value. Again, low sulfur content remains a constant attribute of bumping coals.

Hydrogen, by contrast, shows a large degree of overlap between the bumping and non-bumping groups, although the bumping samples have higher hydrogen content in general (Fig. 9). This may be due to their lower maturity. However, no bumping samples within this dataset have hydrogen contents of less than approximately 4%, while some non-bumping samples fall below this limit.

Carbon, oxygen, and hydrogen content are all functions of overall maturity, and these observations support the finding that dynamic failure history is closely linked to maturity. As coals that have bumped tend to be relatively immature, it is unsurprising that they are more relatively deficient in carbon, while having higher oxygen content. Disparities between the relative ratios of oxygen to hydrogen in bumping versus non-bumping sample sets of approximately 2:1 and 1:1, respectively, may be explained by changes in the slope of the line in Figs. 3 and 4. The shallower slope of the portion of the curve furthest from the graph axis suggests that during the early stages of diagenesis demethanation occurs less rapidly than decarboxylation, increasing in relative rate with increasing maturity.

Nitrogen values tend to range from 1% to 2% for most coal records, regardless of dynamic failure status (Fig. 10). Similarly to hydrogen, some bump-negative records fall below this range, likely corresponding to an increase in maturity.

Low sulfur content is consistently associated with coals with a history of dynamic failure in this sample set. The relative immaturity of bump-positive coal records in combination with consistently low sulfur composition suggests that the original depositional environment for these coals must be sulfur-lean. Sulfur is incorporated into coals during peat formation, and may be incorporated into organosulfur compounds, sulfide minerals or sulfates [23,24].

There are two primary initial environmental sources of sulfur during peat formation: marine waters and parent plant material [23]. Chou states that sulfur in sulfur-lean coals (<1% sulfur) likely derives wholly or nearly wholly from parent plant material, and that these coals likely formed in freshwater environments with limited influence from seawater [23]. This suggests that coals prone toward dynamic failure are deposited in freshwater environments,
and that this may be one unifying characteristic of bumping coals, regardless of geographic location.

Interestingly, marine-dominated stratigraphy rich in mudstone may also carry lower risk for unfavorable stress concentrations [7]. Likewise, they are less likely to be associated with strong, competent strata capable of the bridging effects, noted by Rice, Whyatt and Varley, and others, to contribute to “shock bumps” [11,12]. This then raises the question of whether low sulfur content is associated with dynamic failure because it serves as a geochemical proxy for known stratigraphic risk factors, whether it increases the innate susceptibility of the coal for bursting behavior, or, as a more concerning possibility, both of these.

3.4. UCS

An abbreviated dataset of 64 Penn State records was correlated with DUCS values based on seam and location. This is due to the limited number of samples within the DUCS dataset that were both (a) geometrically identical and (b) had Penn State Coal Sample Databank counterparts. No direct correlation between UCS and a history of dynamic failure is observed in the available data (Fig. 11). It may be notable, however, that the Blind Canyon and Upper Hiawatha seams of Utah exhibited the highest UCS values and that it was also these seams that had the highest rates of dynamic failure within this more limited dataset. Additionally, standard deviations in the DUCS ranged from 1 to 7 MPa, a considerable range. In general, standard deviation was higher in the bumping sample set, perhaps due to less dense cleating, corresponding to lower maturity. More infrequent cleating on such a small scale might render testing results more sensitive to variability in cleat angle and number per sample. Each DUCS record represented the averaging of testing results of 7 to 20 individual specimens. The Pittsburgh No. 8 seam also showed relatively high UCS values, yet it had no history of dynamic failure.

A comparison of dynamic failure status with respect to compositional carbon versus UCS reveals that UCS values in the bumping sample set show a slight increase in carbon content relative to UCS (Fig. 12). No such correlation, however, was observed in the non-bumping sample set.

A comparison of compositional sulfur to UCS suggests that in the bump-negative sulfur set there may be a weak negative correlation between sulfur content and UCS (Fig. 13). This supports the trend seen in bumping coals that average UCS increases with increasing carbon content, as sulfur would ultimately be expelled from the coal matrix during the condensation of carbon atoms.

However, no such correlation existed in the bumping sample set; these coals had low initial sulfur values. In other words, low sulfur in bumping coals was not related to maturity, and hence greater condensation of carbon atoms, but rather result from initial depositional conditions.

There is also a correlation between liptinite content and UCS in both the bumping and non-bumping sample sets, with increasing liptinite content corresponding to increasing strength (Fig. 14). However, as UCS does not appear to show any clear correlation with dynamic
failure potential, it is questionable how meaningful this finding may be with respect to
dynamic failure potential.

These results fail to provide sufficient evidence to conclude that UCS does or does not play a
role in dynamic failure potential. Dynamic failure mechanisms are complex and distinct,
compelled by many different risk factors. Within the appropriate context, UCS may yet show
some relation to dynamic failure if other factors such as pillar design, cleat density and
stresses are simultaneously considered. Incorporation of these risk factors, however, is
beyond the scope of this simple study and may be the subject of future work. Furthermore,
no data is available regarding potential localized disparities between individual DUCS
specimens used to generate the published averages, such as changes in cleating or
geochemical variability. Consequently, while DUCS provides a useful overview of
differences in laboratory measured UCS values, it may be too homogenized for use for this
purpose.

3.5. HGI and inferred cleat density

Fig. 15 shows a clear correlation between increasing HGI and increasing carbon content.
Bumping coals cluster near the lower spectrum of HGI values, corresponding to lower
maturity and subsequently lower overall carbon content. This implies that, in general, coals
with a history of dynamic failure are in fact softer than their non-bumping counterparts.

In both bumping and non-bumping coals, inferred cleat density decreases with decreasing
carbon content; in other words, there are wider spaces between cleat apertures in coals with
lower carbon content. Bumping coals cluster near the low-carbon, widecleat-spacing end of
this curve in Fig. 16. It is counterintuitive that a hard coal would be less prone toward
dynamic failure, and it is likely that this attribute—an increase in cleating relative to carbon—
may account for this apparent oddity. As maturity increases, carbon atoms become more
condensed and HGI becomes higher, but simultaneously, the ubiquitousness of cleat also
increases, as shown in Fig. 17. These conclusions are reminiscent of the findings of Kim and
Larson, who suggest that cleating is a controlling variable in stress accumulation and
dynamic failure occurrence [25].

Fig. 18 shows the plot of sulfur against HGI and suggests a bimodal distribution of bump-
positive seams with respect to these variables. While this is a somewhat ambiguous result, it
may suggest that there are two clusters of bumping phenomena occurring in United States
coal deposits. This observation has been seen in other relationships in this study, such as in
Fig. 4 showing outlier data points corresponding to high maturity coals. Identifying the
dynamic failure mechanism and the mechanism sub-type in these events is an important next
step in clarifying their nature.

Fig. 19 suggests that liptinite decreases with increasing HGI. Most coals with a history of
dynamic failure have HGI values of 70 or less and contain liptinite in slightly higher
concentrations to non-bumping coals of low maturity and lower concentrations in mid-range
maturity coals ($v_{RO}=0.7–1.4$). In this case, it appears that HGI is the controlling variable and
that this is a function of maturity.
4. Summary

Results of bivariate statistics are summarized in Table 1 and indicate that bumping coals are generally less mature, lower in carbon, higher in oxygen, softer and less well cleated than coals that do not bump. Table 1 also show marginally higher average hydrogen. Liptinite content is marginally higher in low maturity bumping coals relative to non-bumping coals of similar maturity. High liptinite content was found to correlate with higher average UCS values. However, no clear, direct correlation between UCS and dynamic failure status was observed.

It is notable that these results are generalities and relative; by no means do they represent firm limits beyond which dynamic failure-prone coals do or do not exist. Moreover, all samples in this study come from bituminous deposits and cannot be reasonably extrapolated to other coal ranks. Despite these limitations, however, these findings are useful as a relative tool in understanding how bumping coals may differ from those that have not bumped.

5. Conclusions

This study illustrates that differences exist in United States bituminous coals that have versus have not experienced reportable dynamic failure events. In general, coals prone to dynamic failure are:

1. Relatively immature, with overall carbon contents below 87% and average vitrinite reflectance values of less than 1.
2. High in oxygen, relative to coals that have not bumped. This is likely a function of maturity. However, while bumping coals have moderately higher levels of hydrogen, this correlation is not well developed. This may be the effect of differential rates of demethanation and decarboxylation during earlier stages of diagenesis.
3. Relatively soft and less well cleated. Lower HGI likely results from lower carbon content: as carbon atoms condense, hardness increases. In other words, hardness increases with increasing maturity. However, as carbon content increases, cleats become more tightly spaced and well-developed within the bituminous range, mitigating the effect of increasing hardness. This suggests that the degree of cleat development may be a controlling variable in the susceptibility of a given coal to dynamic failure phenomena.
4. Consistently low in sulfur, regardless of maturity. This suggests that coals that have experienced dynamic failure events may share similar depositional environments, which may be freshwater, and isolated from marine flooding (i.e. more inland). This raises the question of whether sulfur is actually a proxy for stratigraphic risk factors, or whether sulfur content has some impact on innate coal susceptibility to bursting behavior. Dynamic failure status in this study was determined using records of in-mine events; in order to clarify this issue, coals must be tested under laboratory conditions, insulated from the effects of local stratigraphy.
Results further suggest that there may be two subsets of dynamic failure-prone coals. While the bulk of coals adhere to the general trends outlined above, a second, smaller group of records exists that are: (a) higher in maturity, with vitrinite reflectance values of greater than 1, less than 2. These coals likewise have higher carbon content, and lower oxygen and hydrogen relative to other dynamic failure-prone coals; (b) harder and more well-cleated; and (c) similarly to other dynamic failure prone coals, consistently low in sulfur. Interestingly, these events come entirely from the B seam, in the vicinity of Pitkin County, Colorado, and from the Pocahontas #3 seam, in the vicinity of Wyoming County, West Virginia. More in-depth analysis of active risk factors associated with these events may help to clarify how or if these events differ from others used in this study and suggest any similarities that they may share with each other.

The findings of this study help to define the differences between coals that have versus have not experienced reportable dynamic failure accidents with respect to compositional attributes and material properties. Only through the better understanding of risk can more effective mitigating strategies be enacted.

References

[1]. Peng SS. Coal mine ground control. third ed Morgantown WV: West Virginia University; 2008 p. 750.
[2]. Agapito JFT. Five stress factors conducive to bumps in Utah, USA, coal mines In: Proceedings of
the 19th international conference on ground control in mining. Morgantown, WV: West Virginia
University; 2000 p. 93–100.
[3]. Bräuner G Rockbursts in coal mines and their prevention. Amsterdam: Balkema; 1994 p. 144.
[4]. Campoli AA, Kertis CA, Goode CA. Coal mine bumps: five case studies in the eastern United
States. U.S. Bureau of Mines, IC 9149; 1987 p. 34.
[5]. Holland CT, Thomas E. Coal mine bumps: some aspects of occurrence, cause and control. U.S.
Bureau of Mines Bulletin 535; 1954 p. 36.
[6]. Iannacchione AT, Zelanko JC. Occurrence and remediation of coal mine bumps: a historical review
01–95. In: Proceedings of mechanics and mitigation of violent failure in coal and hard-rock
mines. U.S. Department of the Interior, U.S. Bureau of Mines, Special Publication; 1995 p. 27–
68.
[7]. Lawson HE, Tesarik D, Larson MK, Abraham H. Effects of overburden characteristics on dynamic
failure in underground coal mining. Int J Min Sci Technol 2016;27(1):121–9.
[8]. Mark C Coal bursts in the deep longwall mines of the United States. Int J Coal Sci Technol
2016;3(1):1–9.
[9]. Newman D A case history investigation of two coal bumps in the southern appalachian coalfield
In: Proceedings of the 21st international conference on ground control in mining. Morgantown,
WV: West Virginia University; 2002 p. 90–7.
[10]. Whyatt J Dynamic failure in deep coal: recent trends and a path forward In: Proceedings of the
27th international conference on ground control in mining. Morgantown, WV: West Virginia
University; 2008 p. 37–45.
[11]. Rice GS. Bumps in coal mines: theories of causes and suggested means of prevention or
minimizing effects. New York: American Institute of Mining & Metallurgical Engineers; 1935.
[12]. Whyatt JK, Varley F. Regional bumps: case studies from the 1958 bump symposium. Trans Soc
Min, Metall Explor 2009;326:101–5.
[13]. Peperakis J Mountain bumps at the Sunnyside mines. Min, Metallur, Petrol Eng 1958;211:982–6.
[14]. Babcock CO, Bickel DL. Constraint–the missing variable in the coal burst problem In:
Proceedings of the 25th U.S. symposium on rock mechanics (USRMS) Evanston, IL:
Northwestern University; 1984 p. 639–47.
[15]. Mark C Coal bursts that occur during development: A rock mechanics enigma. Int J Min Sci Technol 2018;28(1):35–42.
[16]. Van Krevelen DW. Coal: typology, chemistry, physics, constitution. first ed Netherlands: Elsevier; 1961 p. 313–422.
[17]. Van Krevelen DW, Schuyer J. Coal science: aspects of coal constitution. Netherlands: Elsevier; 1957 p. 249–308.
[18]. Laubach SE, Marrett RA, Olson JE, Scott R. Characteristics and origin of coal cleat: a review. Int J Coal Geol 1998;35(1–4):175–207.
[19]. Mathews JP, Krishnamoorthy V, Louw E, Tchapda AHN, Castro-Marcano F, Karri V, et al. A review of the correlations of coal properties with elemental composition. Fuel Process Technol 2014;121:104–13.
[20]. Osterwald FW, Dunrud CR, Collins DS. Coal mine bumps related to geologic features in the northern part of the Sunnyside District, Carbon County, Utah. U. S. Geological Survey. USGS Prof; 1993 p. 76.
[21]. Lawson H, Weakley A, Miller A. Dynamic failure in coals seams: implications of coal composition for bump susceptibility. Int J Min Sci Technol 2016;26 (1):3–8.
[22]. Elam R, Lester C, O’Rourke A, Strahin R, Thompson T, Kawenski E. Report of investigation: Underground coal mine explosion. Dutch Creek No. 1 Mine-ID No. 05-00301, Mid-Continent Resources, Inc; 1981.
[23]. Chou CL. Sulfur in coals: a review of geochemistry and origins. Int J Coal Geol 2012;100:1–13.
[24]. Novák M, Wieder RK, Schell WR. Sulfur during early diagenesis in Sphagnum peat: Insights from δ34S ratio profiles in 210Pb-dated peat cores. Limnol Oceanogr 1994;39(5):1172–85.
[25]. Kim BH, Larson MK. Evaluation of bumps-prone potential regarding the spatial characteristics of cleat in coal pillars under highly stressed ground conditions In: Proceedings of the 51st U.S. rock mechanics/geomechanics symposium Alexandria, VA: American Rock Mechanics Association (ARMA); 2017 p. 8.
Fig. 1.
Reportable dynamic failure events occurring in 1983–2014. All reportable events occur within three basins: the Uinta, Piceance Creek, and Central Appalachian, despite the prevalence of widespread coal deposits (indicated in grey).
Fig. 2.
Geographic distribution of reported dynamic failure events by basin in 1983–2014.
Fig. 3.
Van Krevelen diagram of bump-positive versus bump-negative coal seams.
Fig. 4.
Van Krevelen diagram of bump-positive versus bump-negative by basin.
Fig. 5.
The ratio of vitrinite to the sum of liptinite and inertinite versus maturity as indicated by vitrinite reflectance.
Fig. 6.
Liptinite versus vitrinite reflectance.
Fig. 7.
Sulfur versus carbon.
Fig. 8.
Sulfur versus oxygen.
Fig. 9.
Sulfur versus hydrogen.
Fig. 10.
Sulfur versus nitrogen.
Fig. 11.
UCS of dynamic failure prone (marked in orange) versus control seams (marked in blue).
Fig. 12.
Carbon versus UCS.
Fig. 13.
Sulfur versus UCS.
Fig. 14.
Liptinite versus UCS.
Fig. 15.
Carbon versus HGI.
Fig. 16.
Carbon versus inferred cleat density.
Fig. 17.
Inferred cleat density versus HGI.
Fig. 18.
Sulfur versus HGI.
Fig. 19.
Liptinite versus HGI.
Table 1

Summary of bivariate statistics.

Parameter	Dynamic failure status	Negative
Maturity	Low	High
Sulfur content	Low, <1%	High, >1%
Carbon content	Lower, average range of 75%–87%	Higher, average range of 75%–96%
Oxygen content	High, >10%	Low, <10%
Hydrogen content	Marginally higher on average	Marginally lower on average
Liptinite	Marginally higher on average, in lower maturity coals, lower or absent in mid-range maturity to mature coals	Higher on average, in higher maturity coals below $v_{RO} = 1.4$
HGI	Softer, <60 on average	Higher, >57 on average
Inferred cleat density	Wider, ≥1.5 cm on average	Tighter, <1.8 cm on average
UCS	Ambiguous results, potentially suggesting higher values	Ambiguous results
Other variables	No clear correlations	No clear correlations