REPRODUCTIVE BIOLOGY AND HOST FISHES OF FOUR UNIONIDS FROM THE LAKE PONTCHARTRAIN BASIN, LOUISIANA, U.S.A.

Wesley M. Daniel & Kenneth M. Brown

Biological Sciences Department, Louisiana State University, Baton Rouge, LA 70803, U.S.A.
email: Wdanie7@Tigers.lsu.edu

ABSTRACT
Host fishes, fecundity estimates, and gravid periods were identified for four species of freshwater mussels from the Lake Pontchartrain basin, Louisiana. Two of the mussel species have broad distributions both in the Mississippi River and elsewhere in Louisiana: Villosoa lienosa and Luxilus chrysocephalus. The other two species have more restricted distributions: Oquedula quadula and Lampsis teres (Penn, 1939; Coker et al., 2008; Strayer, 2008), and mussel recruitment to these two species was found in late June and its fecundity was estimated at 32,450 glochidia and a host was identified as Pyldicic olivaris.

KEY WORDS: mussels, host fish, Lake Pontchartrain

INTRODUCTION
Freshwater mussels (Unionidae) are among the most endangered aquatic animals in North America (Williams et al., 1993; Neves et al., 1998; Lydeard et al., 2004; Strayer, 2008). Their loss from iotic ecosystems could have considerable effects on ecosystem health and function, because they often provide food resources and physical structure for other macro-invertebrates (Vaughn et al., 2004; Howard & Cuffney, 2003) and are important in iotic nutrient cycling (Vaughn et al., 2008). Within the Lake Pontchartrain Basin of Louisiana, there are 32 species of unionids (Stern 1976) with around 17% without identified host fishes (Oesch, 1995; Howells et al., 1996; Keller & Ruesler, 1997; Watters et al., 2009). Understanding these host relationships is important because host diversity is a strong predictor of mussel diversity (Watters, 1992; Haag & Warren, 1998; Vaughn & Taylor, 2000; Strayer, 2008) and is also an important factor in dispersal, propagation (Newton et al., 2008; Strayer, 2008), and mussel recruitment (Newton et al., 2008). In vivo host fish determination techniques have been described in several studies (Howard, 1916, Coker et al., 1921; Penn, 1939; Cope, 1959; Hove & Neves, 1994; Watters, 1994; Hove et al., 2000; Yeager & Saylor, 2007). The success of determining the host is based, at least in part, on knowledge of the natural history of the species. The complexity of some unionid life histories makes determination of their hosts difficult. Complicating factors include brooding period length, percentage of the population that is gravid, and whether the mussel is a host fish specialist (Farries & Van Hassel, 2007).

The host fish is thus a critical component of the mussel’s natural history and is required knowledge for successful conservation. We conducted host fish trails and collected natural history data on four species of mussels: the little spectacle case Villosoa lienosa (Conrad, 1834), yellow sandshell Lampsis teres (Rafinesque, 1820), purple pimpleback Quadrula quadula (Lea, 1868), and southern pocketbook Lampisima ornata (Conrad, 1835). For each species, we present data on their gravid period, fecundity, and host suitability. These abundant species are found in many of the larger rivers (Lampalis teres, Lampisima ornata, and Quadrula quadula) or in the smallest drainages that support unionid species (Villosoa lienosa) in the Lake Pontchartrain Basin, Louisiana. The identification of additional host fishes and data on reproductive biology should...
aid in future studies detailing important environmental influences on mussels, including a state species of concern, *L. ornata* (Gregory, 2009).

METHODS

Gravid females of all unionids were collected by hand from the Lake Pontchartrain Basin (Fig. 1) in the spring and summer 2008-2010 and transported immediately to the laboratory for host trials. Specimens were collected from the Amite, Tickfaw, and Tangipahoa rivers. All specimens were inspected in the field for engorged marsupia. Females were transported to the lab in aerated coolers. Mussels were isolated in glass aquaria with sand substrate and recirculating river water.

Glochidia were obtained from gravid females by two methods: 1) direct removal and 2) using expelled glochidial packets. Direct removal involved puncturing the marsupial gills with a 20 gauge needle. Glochidia were then flushed from gills into a Petri dish using a squirt bottle filled with tank water. The second method involved the use of expelled glochidial packets from some of the *Villosa lienosa* individuals. In both cases, the glochidia obtained were held in suspension in a beaker of 50 - 100 ml of water with use of a stir rod. Each female had a single 3 ml aliquot of suspended glochidia and water removed for fecundity counts. The 3 ml samples were counted with a dissecting scope at 50X and corrected for the exact volume of water used to keep glochidia in suspension. Viability of the glochidia was tested by exposing a subsample to NaCl. Glochidia were considered viable if > 90% of the subsampled glochidia snapped shut.

The glochidia were then transferred to the fish by direct placement onto the fish's gills. Before infestation with glochidia, fish were anaesthetized with MS-222 (tricane methanesulfonate, trade name Finquel™). The anaesthetized fish had 3 ml of a glochidial water solution injected into their mouths and flushed across the gills. In preliminary experiments with *Lampsilis ornata*, fish were instead exposed to the glochidia in a heavily aerated beaker. This passive infection method was ineffective and the direct transfer method was employed. Fishes were held in 3,029 L raceways for no less than a month to prevent accidental introduction of wild glochidia to test tanks. All fishes used in host trials had their gill inspected for glochidial infection before use. Previously known host fishes of mussels were determined from recent literature (Oesch, 1995; Howells et al., 1996; Keller & Ruessler, 1997; Watters et al., 2009).

RESULTS

Twelve gravid *Lampsilis teres*, seven *Lampsilis ornata*, twelve *Villosa lienosa*, and one *Quadrula reflexa* were found. Although *Quadrula reflexa* populations were surveyed for gravid females through two seasons of field work, only a single female was found gravid in late June, and was used to test for host suitability.

Of the twenty-three species of fishes tested as potential hosts (Table 1), we found four previously unknown hosts for *Villosa lienosa*: *Lepomis megalotis*, *Lestodon nigricans*, and *Lampsilis teres*; *M. salmoides*, *L. humilis*, *L. microlophus* and *L. cyanellus*, and confirmed two already documented hosts: *Lepomis macrochirus* and *Micropterus salmoides*. For *Lampsilis ornata*, we established a mussel-host relationship with *Luxilus chrysocephalus*, and confirmed *M. salmoides* as a host. We confirmed three hosts for *Lampsilis teres*: *M. salmoides*, *Pomoxis annularis*, and *L. humilis*, and established two new fish hosts: *L. microlophus* and *Notropis varvis*. For *Quadrula reflexa*, a mussel-host-fish relationship was established with *Pylodictis olivaris*. Brooding period *Lampsilis teres* was gravid from April until September and is considered a bradytictic brooder. *Lampsilis ornata* and filtrates were examined with a 50X dissecting microscope during which all glochidia and juveniles (dead or alive) were counted. Juveniles were characterized by notching movement, or the presence of adductor muscles and a foot. Experiments were terminated after 40 days, if no juveniles were found, or one week after the last juveniles were collected from a tank.

Fish species selected for potential host tests were collected in the same streams as the mussel species. Fishes were sampled in either 1) wadeable streams (Tickfaw and Tangipahoa rivers) with a backpack electrofishing unit (Smith-Root model 15), or 2) from the larger Amite river with an electro-fishing boat, emphasizing fish habitat along banks of the river. The fishes were stored in aerated coolers for transport back to the laboratory. All fishes used in experiments were housed, handled, and disposed of according to departmental and university guidelines. Young individuals of species were preferred for host trails as they were less likely to have developed any immunity to unionid infections. Fishes were held in 3,029 L raceways for no less than a month to prevent accidental introduction of wild glochidia to test tanks. All fishes used in host trials had their gill inspected for glochidial infection before use. Previously known host fishes of mussels were determined from recent literature (Oesch, 1995; Howells et al., 1996; Keller & Ruessler, 1997; Watters et al., 2009).

FIGURE 1

Rivers in the Lake Pontchartrain Basin sampled for fishes and mussels for host fish trials.
aid in future studies detailing important environmental influences on mussels, including a state species of concern, L. ornata (Gregory, 2009).

METHODS

Gravid females of all unionids were collected by hand from the Lake Pontchartrain Basin (Fig. 1) in the spring and summer 2008-2010 and transported immediately to the laboratory for host trials. Specimens were collected from the Amite, Tickfaw, and Tangipahoa rivers. All specimens were inspected in the field for engorged marsupia. Females were transported to the lab in aerated coolers. Mussels were isolated in glass aquaria with sand substrate and re-circulating river water.

Glochidia were obtained from gravid females by two methods: 1) direct removal and 2) using expelled glochidial packets. Direct removal involved puncturing the marsupial gills with a 20 gauge needle. Glochidia were then flushed from gills into a Petri dish using a squirt bottle filled with tank water. The second method involved the use of expelled glochidial packets from some of the Villosa lienosa individuals. In both cases, the glochidia obtained were held in suspension in beakers of 50 - 100 ml of water with use of a stir rod. Each female had a single 3 ml aliquot of suspended glochidia and water removed for fecundity counts. The 3 ml samples were counted with a dissecting scope at 50X and corrected for the exact volume of water used to keep glochidia in suspension. Viability of the glochidia was tested by exposing a subsample to NaCl. Glochidia were considered viable if > 90% of the subsampled glochidia snapped shut.

The glochidia were then transferred to the fish by direct placement onto the fish’s gills. Before infestation with glochidia, fish were anaesthetized with MS-222 (tricaine methanesulfonate, trade name Finquel™). The anaesthetized fish had 3 ml of a glochidial water solution injected into their mouths and flushed across the gills. In preliminary experiments with Lampsis ornata, the fish were instead exposed to the glochidia in a heavily aerated beaker. This passive infection method was ineffective and the direct transfer method was therefore used.

Following infestation, the fish were immediately placed into individual 26.5 L aerated tanks. Each tank was kept at 23° C and nutrient-free waste maintained at < 0.2 mg/l throughout the infestation period. The tank bottom was siphoned twice a week to check for juvenile mussels and to replace existing water with fresh, de-chlorinated water. Between 11-19 L were siphoned each time. All siphoned water was filtered through an 87 µm mesh to retain juveniles or rejected glochidia and filtrates were examined with a 50X dissecting microscope during which all glochidia and juveniles (dead or alive) were counted. Juveniles were characterized by notching movement, or the presence of adductor muscles and a foot. Experiments were terminated after 40 days, if no juveniles were found, or one week after the last juveniles were collected from a tank.

Fish species selected for potential host tests were collected in the same streams as the mussel species. Fishes were sampled in either 1) wadeable streams (Tickfaw and Tangipahoa rivers) with a backpack electrofishing unit (Smith-Roat model 15), or 2) from the larger Amite river with an electro-fishing boat, emphasizing fish habitat along banks of the river. The fishes were stored in aerated coolers for transport back to the laboratory. All fishes used in experiments were housed, handled, and disposed off according to departmental and university guidelines. Young individuals of species were preferred for host trails as they were less likely to have developed any immunity to unionid infections. Fishes were held in 3,029 L raceways for no less than a month to prevent accidental introduction of wild glochidia to test tanks. All fishes used in host trails had their gill inspected for glochidial infection before use. Previously known host fishes of mussels were determined from recent literature (Oesch, 1995; Howells et al., 1996; Keller & Ruessler, 1997; Watters et al., 2009).

RESULTS

Twelve gravid Lampsis teres, seven Lampsis ornata, twelve Villosa lienosa, and one Quadrula refugens were found. Although Quadrula refugens populations were surveyed for gravid females through two seasons of field work, only a single female was found gravid in late June, and was used to test for host suitability.

Of the twenty-three species of fishes tested as potential hosts (Table 1), we found four previously unknown hosts for Villosa lienosa: Lepomis megalotis, Lepomis humilis, Lepomis microlophus and Lepomis cyanellus, and confirmed two already documented hosts: Lepomis macrochirus and Micropterus salmoides. For Lampsis ornata, we established a mussel-host relationship with Luxilus chrysocephalus, and confirmed M. salmoides as a host. We confirmed three hosts for Lampsis teres: M. salmoides, Pomoxis annularis, and L. humilis, and established two new fish hosts: L. microlophus and Notropis venustus. For Quadrula refugens, a mussel-host-fish relationship was established with Pygolichia olivaris.

Brooding period Lampsis teres was gravid from April until September and is considered a bradystictic brooder. Lampsis
ornata was gravid from late February until April and is a tachytic brooder. Villosa lienosa was considered in the literature (Keller & Russel's, 1997) a long term brooder, but was only found gravid in our study from April to June. The single Quadrula refulgens gravid female was found in late June, and the species is con-
sidered to be a tachytic brooder.

Fecundity estimates

Lampsilis teres had an average fecundity of 403,373 glochidia with a standard error of +24,727 glochidia for the 12 females that averaged 113.25 mm in shell length. *Lampsilis ornata* had a fecundity of 451,214 +27,239 glochidia for seven females that averaged 89.12 mm. The 12 *Villosa lienosa* averaged 48.15 mm and had a fecundity of 38,562 +3,073 glochidia. The single *Quadrula refulgens* was 48.5 mm in length and had an estimated 32,450 glochidia.

DISCUSSION

Understanding the complex reproductive cycle of unionoids can be critical to their management and rep-
dresent a major barrier to their conservation (Yeager & Saylor, 2007). Lack of suitable host fishes may limit the reproductive and dispersal ability of unionids within drain-
ages. We have identified suitable hosts for four species of mussels from the Lake Pontchartrain Basin, Louisiana.

We categorized *Lampsilis teres* as a host generalist because five species, from two families were identified as proper hosts. *L. teres* is listed in the literature (Keller & Russel’s, 1997; Walters et al., 2009). We classified *Villosa lienosa* as a specialist on the Centrarchidae family using six species within this family. *Quadrula refulgens* and *Lampsilis ornata* were specialists, with only one and two hosts, respectively. *Lampsilis ornata* was classified as a specialist, because it was tested on 16 species of fish and only one species was identified as a possible host. *Quadrula refulgens* was a specialist, because it had only nine juveniles metamorphosed. Even though *Luxilus chrysocephalus* was classified as a specialist, because it was tested on 16 species of fishes from nine families used in the (2003) study.

ACKNOWLEDGEMENTS

Funding was provided by Louisiana Wildlife and Fisheries’ State Wildlife Grant T-61. We thank the Department of Renewable Natural Resources at LSU, including Raynie Barranger for assistance in capturing wild fishes, and Dr. William Kelso for providing mussel and fish housing. Additional thanks go to Jerry George for assistance in mussel collection, fish infestation, and juvenile identification, and Jonathan McNair for assistance with glochidial counts.

LITERATURE CITED

Coker, R.E., Shira, A.F., Clark, H.W. & A.D. Howard. 1921. Natural history and propagation of fresh-
water mussels. *Bulletin of Bureau of Fisheries* 37: 71-158.

Cope, O.B. 1959. New parasite records from sable-
back and salmon in a Alaskan stream. *Translation from American Microscopy Society* 789: 157-162.

Farris, J.L. & J.H. Van Hassel. 2007. *Freshwater Bivalve Ecology*. 1st edition. Society of Environmental Toxicology and Ch of tisty (SETAC Press), Pensacola, Florida. 375 pp.

Gregory, B. 2009. Louisiana’s rare animals of conserva-
tion concern. Louisiana Natural Heritage Program, Louisiana Department of Wildlife and Fisheries.

Haag, W.R. & M.L. Warren. 1993. Host fish and infection strategies of freshwater mussels in large Mobile Basin streams, USA. *The North American Benthological Society* 22(1): 78-91.

Haag, W.R. 2009. Extreme longevity in freshwater mussels revisited: sources of bias in age esti-
mates derived from mark–recapture experiments. *Freshwater Biology* 54 (7): 1474-1486.

Hove, M.C. & R.J. Neves. 1994. *Life history of the en-
dangered James spinymussel Pleurobema collina* (Conrad, 1833) (*Mollusca: Unionidae*). *American Malacological Bulletin* 11(1): 29-40.

Hove, M.C., Hillegats, K.R., Kurth, J.E., PEP. V.E., Lee, C.J., Knudsen, K.A., Kapuscinski, A.R., Mahoney, P.A. & M.M. Bomier. 2000. Considerations for conducting host suitability studies. *Pp. 27-34. [In] Freshwater Mollusk Symposia Proceedings: Part I. Proceedings of the Conservation, Captive Care and Propagation of Freshwater Mussels. Tankersley, R.A., Wartelts, D.I., Watters, G.T., Armstrong, B.J., Johnson, P.D. & R.S. Butler (eds). *Ohio Biological Survey Special Publication*, Columbus. 274 pp.

Howard, A.D. 1916. A second generation of artificially reared freshwater mussels. *Transactions of the American Fishery Society* 46: 39-49.

Howard, J.K. & K.M. Cuffney. 2003. Freshwater mussels in a California Coast Range river: occurrence, distribution, and controls. *Journal of the North American Benthological Society* 22: 63-77.

Howells, R.G., Neck R.W. & H.D. Murray. 1996. *Fresh-
water Mussels of Texas. Texas Parks and Wildlife Department*, Austin, Texas. 218 pp.

Keller, A.E. & D.S. Ruesslers. 1997. Determination or verification of host fish for nine species of unionid mussels. *American Midland Naturalist* 138: 402-407.

Lydeard, C., Cowie, R., Bogan, A.E., Bouchet, P., Cummings, K.S., Freil, T.J., Hober, D.G., Hershler, R., Garamony, O., Perez, K., Ponder, W.F., Roth, B., Seddon, M., Strong E.E. & F.G. Thompson. 2004. The global decline of nonmarine mollusks. *Bioscience* 54: 321-330.

Neves, R.J., Bogan, A.E., Williams, J.D., Ahlsted, S.A. & P.W.哈尔特. 1998. Status of aquatic mussels in the southeastern United States: a downward spiral of diversity. *Pp. 43-85 [In] Benz, O.W. & D.E. Collins (eds). *Aquatic fauna in peril. The Southeastern perspective. Southeast Aquatic Research Institute*. Chattanooga, Tennessee. 554 pp.

Newton, T.J., Wootlough, D.A. & D.L. Strayer. 2008. Using landscape ecology to understand and manage freshwater mussel populations. *Journal of the North American Benthological Society* 27: 424-429.

Oesch, R.D. 1995. *Missouri Naiadace: A Guide to the Mussels of Missouri*. 2nd ed. Conservation Com-
mision of the State of Missouri. Jefferson City, Missouri. 271 pp.

Perr, G.H. 1939. *A study of the life cycle of the fresh-
water mussel, Anodonta grandis*, in New Orleans. *Nautilus* 52: 99-101.

Smith, E.M. 1976. *The Freshwater Mussels (Unioniidae) of the Lake Maurepas-Ponchartrain-Borgne Drainage System, Louisiana and Mississippi*. *Ph. Dissertation*, Louisiana State University. 206 pp.

Strayer, D.L. 2008. *Freshwater Mussel Ecology: A Multifactor Approach to Distribution and Abun-
dance*. University of California Press, Berkeley, California. 204 pp.

Vaughn, C.C. & C.M. Taylor. 2000. *Macroecology of a host-parasite relationship: distribution patterns of mussels and fishes*. *Ecography* 23: 11-20.

Vaughn, C.C., Gido, K.B. & D.E. Spone. 2004. *Eco-
system processes performed by unionid mussels in stream mesocosms: species roles and effects of abundance*. *Hydrobiologia* 527: 35-47.

Vaughn, C.C., Nichols, S.J. & D.E. Spone. 2008. Community and foodweb ecology of freshwater mussels. *Journal of the North American Benthological Society* 27: 409-423.

Watters, G.T. 1992. *Unionids, fishes, and the species-
area curve*. *Journal of Biogeography* 19: 481-490.

Watters, G.T. 1994. An annotated bibliography of the reproduction and propagation of the Unionoidea (Primarily of North America). *Ohio Biological Survey Miscellaneous Contributions 1: 1-158.

Watters, G.T., Hoggart, M.A. & D.H. Stansby. 2009. *The freshwater mussels of Missouri*. *The Ohio State University Press*, Columbus, Ohio. 421 pp.

Williams, J.P. Warren Jr., M.K., Cummings, K.S., Har-
riss, J.L. & R.J. Neves. 1993. Conservation status of freshwater mussels of the United States and Canada. *Fishes 18*: 6-22.

Yeager, B.L. & C.F. Saylor. 2007. Fish hosts for four species of freshwater mussels (*Pelecydopa: Unionidae*) in the upper Tennessee River drain-
age. *American Midland Naturalist* 133 (1): 1-6.
Lampsilis teres had an average fecundity of 407,333 +24,727 glochidia for seven females that had an estimated 32,450 glochidia. The single Lampsilis ornata was gravid in late June, and the species is considered to be a tachytictic brooder. Quadrula refulgens was found gravid during the early spring. Several L. ornata were found as a specialist on the Centrarchidae family using six hosts of 451,214 +27,239 glochidia for seven females that had an estimated 32,450 glochidia. The single Lampsilis ornata was 48.5 mm in length and had an average of 407,333 +24,727 glochidia for seven females that averaged 89.12 mm. The 12 L. ornata averaged 48.15 mm and a fecundity of 38,562 +3,073 glochidia. The single Lampsilis ornata was 48.5 mm in length and had an estimated 32,450 glochidia.

DISCUSSION

Understanding the complex reproductive cycle of unionoids can be critical to their management and represent a major barrier to their conservation (Yeager & Saylor, 2007). Lack of suitable host fishes may limit the reproductive and dispersal ability of unionids within drainages. We have identified suitable hosts for four species of mussels from the Lake Pontchartrain Basin, Louisiana. We categorized Lampsilis teres as a host generalist because five species, from two families were identified as proper hosts. L. teres is listed in the literature using over a dozen hosts from five families (Keller & Russel, 1997; Watters et al., 2009). We classified Lampsilis ornata as a specialist on the Centrarchidae family using six species within this family. Quadrula refugens and Lampsilis ornata were specialists, with only one and two hosts, respectively. Lampsilis ornata was classified as a specialist, because it was tested on 16 species of fish in our study, and 15 species in Haag and Warren’s (2003) study. L. ornata used two species as potential hosts from 26 species from nine families used in the two studies. Micropterus salmoides was also a host, which was also verified by Haag and Warren (2003), but Lutusulus chrysopheus was a poor host, because it had only nine juveniles metamorphosed. Even though the two hosts are from different families, we believe that L. ornata can still be classified as a specialist.

Lampsilis teres and Lampsilis ornata were gravid for long periods, whereas Quadrula refugens and Lampsilis ornata had shorter brooding periods. Lampsilis ornata is generally considered a long-term brooder, but it was found gravid during the early spring. Several L. ornata aborbed glochidia or eggs during transport, or the follow- ing day after being housed in the laboratory. Other spec- ies did not abort glochidia, suggesting V. lenosa are less tolerant of stress. If V. lenosa responds to disturbance by aborting glochidia, temperature stress during midsummer could lead to loss of reproduction in the fall.

Only a single gravid female was found of Quadrula refugens, although the species is considered one of the most abundant mussels in the Amite River, LA. We suggest that this species may be a short-term brooder that only broods glochidia for a few weeks. Quadrula species are long lived (Haag, 2009), including Q. refugens (W. Daniel, unpublished data) and may not reproduce every season. The short brooding period and sporadic reproduction make finding gravid Q. refugens difficult.

Both of the Lampsilis species (ornata and teres) were relatively fecund compared to Lampsilis lenosa and Quadrula refugens. Thus, we found considerable variation among mussel species in brooding patterns, host selectivity and fecundity. Further studies will allow us to better categorize these mussel species as to their reproductive tactics and life history, and help resource managers better conserve these populations, especially the locally rare L. ornata.

ACKNOWLEDGEMENTS

Funding was provided by Louisiana Wildlife and Fisheries’ State Wildlife Grant T-61. We thank the Department of Renewable Natural Resources at LSU, including Raynie Bambarger for assistance in capturing wild fishes, and Dr. William Kelso for providing mussel samples derived from mark–recapture experiments. Freshwater Biology 54 (7): 1474-1486.

Hove, M.C. & R.J. Neves. 1994. Life history of the endangered James spinymussel Pleurobema collina (Conrad, 1837) (Mollusca: Unionacea). American Malacological Bulletin 11(1): 29-40.

Hove, M.C., Hilligas, K.R., Kurth, J.E., Pepi, V.E., Lee, C.J., Knudsen, K.A., Kapucinski, A.R., Mahoney, P.A. & M.M. Bonier. 2000. Considerations for conducting host suitability studies. Pp. 27-34. [In] Freshwater Mollusk Symposia Proceedings: Part I. Proceedings of the Conservation, Captive Care and Propagation of Freshwater Mussels. Tankersley, R.A., Warmolts, D.I., Watters, G.T., Armitage, B.J., Johnson, P.D. & R.S. Butler (eds). Ohio Biological Survey Special Publication, Columbus. 274 pp.

Howard, A.D. 1916. A second generation of artificially reared freshwater mussels. Transactions of the American Fishery Society 46: 39-49.

Howard, J.K. & M.K. Cuffney. 2003. Freshwater mussels in a California Coast Range River: occurrence, distribution, and controls. Journal of the North American Benthological Society 22: 63-77.

Howells, R.G., Neck R.W. & H.D. Murray. 1996. Freshwater mussels of Texas. Texas Parks and Wildlife Department, Austin, Texas. 218 pp.

Keller, A.E. & D.S. Russel. 1997. Determination or verification of host fish for nine species of unionid mussels. American Midland Naturalist 138: 402-407.

Lydeard, C., Cowie, R., Bogan, A.E., Bouchet, P., Brown, S.S., Frest, T.J., Hobert, D.G., Hershler, R., Garmony, O., Perez, K., Ponder, W.F., Roth, B., Seddon, M., Strong E.E. & F.G. Thompson. 2004. The global decline of nonmarine mollusks. Bioscience 54: 321-330.

Neves, R.J., Bogan, A.E., Williams, J.D., Ahlstedt, S.A. & P.W. Hartfield. 1998. Status of aquatic mussels in the southeastern United States: a downward spiral of diversity. Pp. 43-83. [In] Beng. Q.W. & D.E. Collins (eds.), Aquatic fauna in peril. The Southeastern perspective. Southeast Aquatic Research Institute. Chattanooga, Tennessee. 554 pp.

Newton, T.J., Woolough, D.A. & D.L. Strayer. 2008. Using landscape ecology to understand and manage freshwater mussel populations. Journal of the North American Benthological Society 27: 424-429.

Oesch, R.D. 1995. Missouri Naiadas: A Guide to the Mussels of Missouri. 2nd ed. Conservation Commission of the State of Missouri. Jefferson City, Missouri. 271 pp.

Penny, G.H. 1939. A study of the life cycle of the fresh- water mussel, Anodonta grandis, in New Orleans. Nautilus 52: 39-101.

Sterm, E.M. 1976. The freshwater mussels (Unionacea) of the Lake Maurepas-Ponchatraing-Borgne Drainage System, Louisiana and Mississippi. Ph.D. Dissertation, Louisiana State University. 206 pp.

Strayer, D.L. 2008. Freshwater Mollusk Ecology: A Multifactor Approach to Distribution and Abundance. University of California Press, Berkeley, California. 204 pp.

Vaughn, C.C. & C.M. Taylor. 2000. Macroecology of a host-parasite relationship: distribution patterns of mussels and fishes. Ecography 23: 11-20.

Vaughn, C.C., Gido, K.B. & D.E. Soper. 2004. Eco- system processes performed by unionid mussels in stream mesocosms: species roles and effects of abundance. Hydrobiologia 527: 35-47.

Vaughn, C.C., Nichols, S.J. & D.E. Soper. 2008. Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society 27: 409-423.

Watters, G.T. 1992. Unionids, fishes, and the species- area curve. Journal of Biogeography 19: 481-490.

Watters, G.T. 1994. An annotated bibliography of the reproduction and propagation of the Unionoida (Primarily of North America). Ohio Biological Survey Miscellaneous Contributions 1: 1-118.

Watters, G.T., Hoggart, M.A. & D.H. Slansbery. 2009. The freshwater mussel and the Ohio. Ohio State University Press, Columbus, Ohio. 421 pp.

Williams, J.P. Warren Jr., M.K., Cummings, K.S., Har- ris, J.L. & R.J. Neves. 1993. Conservation status of freshwater mussels of the United States and Canada. Fisheries 18: 6-22.

Yeager, B.L. & C.F. Saylor. 2007. Fish hosts for four species of freshwater mussels (Ptychopoda: Unionoidea) in the upper Tennessee River drain- age. American Midland Naturalist 133 (1): 1-6.
TABLE 1
Fish species tested as a host for each unionid. Numbers represent the total number of live juveniles recovered from host fish. X represents a trial with no juveniles produced. *indicates a previously known host fish.

Family	Common Name	Scientific Name	L. ornata	L. levis	L. teres	Q. reflexus
Aphrododidae				X	X	
Pisces Perch	Aphrododus sayanus	X		X	X	
Cinaodontidae				X	X	
Blackrain redhorse	Microtoma poeciliae	X		X	X	
Contraclidae	Bluegill	Lepomis macrochirus	119, 76*	X		
Green sunfish	Lepomis cyanellus	X	17	X*		
Longear sunfish	Lepomis megalops	X	266, 176	X		
Orange sunfish	Lepomis humilis	X	72	60*		
Shadow bass	Ambloplites ariamenis	X				
Warmouth	Lepomis galvis	X	X	X*		
White Crappie	Pomoxis annularis	X	28*			
Redear Sunfish	Lepomis microlepidotus	4	66, 37			
Cyprinidae	Striped shiner	Exostus chrysospilus	9	X		
Golden shiner	Notemigonus crysoleucas	X	X	X		
Blackchin shiner	Cyprinella venosa	12				
Cyprinodontidae						
Blackstripe dace	Fundulus notatus	X	X			
Icthyidae						
Yellow bullhead	Anacorana anacorana	X	X	X	X	
Tallple shiner	Notemigonus concinnus	X	X	X	X	
Brown shiner	Notemigonus phaeus	X		X		
Flathead catfish	Pylodictus olivaris	28				
Percidae						
Bended darter	Etheostoma noronhae	X	X			
Blackbended darter	Persina nigrofasciata	X				
Poeciliidae	Mosquitofish	Gambusia affinis	X	X		
Salamis Molly	Poecilia latipinnia	X				