The Role of HIF1α-PFKFB3 pathway in Diabetic Retinopathy

Jie Min*1,2, Tianshu Zeng *1, Margaretha Roux 3, David Lazar 4, Lulu Chen#1 and Slavica Tudzarova#2

1 Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; 2 Larry L. Hillblom Islet Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA; 3 Groote Schuur and Red Cross Children’s Hospital, University of Cape Town, South Africa; 4 Lazar Retina Ophthalmology, Los Angeles, USA.

Corresponding Slavica Tudzarova, email: studzarova@mednet.ucla.edu; Lulu Chen, email: cheria_chen@126.com. Correspondence and requests for materials should be addressed to Slavica Tudzarova.

* Contributed equally

Authors Emails

Jie Min, email: minjie77@outlook.com;

Tianshu Zeng, email: tszeng@126.com;

Margaretha Roux, email: rxxmar014@wf.uct.ac.za;

David Lazar, email: dblazar@gmail.com;

Lulu Chen, email: cheria_chen@126.com;

Slavica Tudzarova, email: studzarova@mednet.ucla.edu.
Disclosure summary. Nothing to declare.

Name and address of person to whom reprint requests should be addressed

ORCID number: 0000-0002-9617-3779 (Slavica Tudzarova)

ORCID number: 0000-0002-8371-2390 (Jie Min)
Abstract

Diabetic retinopathy (DR) is the leading cause of blindness in adults of developed countries. Both microvasculopathy and neurodegeneration are implicated in mechanisms of DR development, with neuronal impairment preceding microvascular abnormalities, which is often underappreciated in the clinic. Most current therapeutic strategies, including anti-vascular endothelial growth factor (anti-VEGF)-antibodies, aim at treating the advanced stages (diabetic macular oedema and proliferative diabetic retinopathy) and fail to target the neuronal deterioration. Hence, new therapeutic approach(es) intended to address both vascular and neuronal impairment are urgently needed.

Hypoxia-inducible factor 1α (HIF1α) - 6-phosphofructo-2-kinase - fructose-2,6-bisphosphatase 3 (PFKFB3) pathway is critically implicated in the islet pathology of diabetes. Recent evidence highlighted the pathway relevance for pathologic angiogenesis and neurodegeneration, two key aspects in the diabetic retinopathy complication. PFKFB3 is a key to the sprouting angiogenesis along with VEGF by determining the endothelial tip-cell competition. Also, PFKFB3-driven glycolysis compromises the anti-oxidative capacity of neurons leading to neuronal loss and reactive gliosis. Therefore, the HIF1α-PFKFB3 signalling pathway is unique as being a pervasive pathological component across multiple cell types in the retina in the early as well as late stages of DR. A metabolic point-of-intervention based on HIF1α-PFKFB3 targeting thus deserves further consideration in DR.

Key words: HIF1α, PFKFB, diabetic retinopathy, angiogenesis, neurodegeneration.
Introduction

Diabetic retinopathy (DR) is the leading cause of vision loss among adults between 20 and 74 years of age in industrialised societies. A population-based study shows that one out of 12 diabetic patients over 40 years of age suffers from vision-threatening retinopathy. DR affects the neurovascular coupling in the retina. Neurovascular coupling describes the physical and biochemical relationship between the retinal neurons, glia cells, and the vascular endothelial cells (ECs), lining the eyeball’s inner surface. Inner retinal microvascular abnormalities increase vascular permeability and neovascularisation (Figure 1). These abnormalities include thickening of the vascular basement membrane, tight junction failure, pericyte loss, and formation of acellular capillaries. As a consequence, capillary occlusion and non-perfusion lead to ischaemia and trigger pathologic angiogenesis. Angiogenesis that escapes qualitative and quantitative control is the typical pathological feature of proliferative diabetic retinopathy (PDR), which is an advanced form of DR. Angiogenesis involves the outgrowth of new blood vessels from the existing vasculature in response to the reduced supply of blood/oxygen and nutrients that occur after non-perfusion and ischaemia. However, pathogenic angiogenesis also perpetually enhances ischaemia and adds to the inflammation and immune dysfunction, which are critical to PDR progression. Pro-angiogenic factors released during DR contribute directly to pathological retinal neovascularisation and to a failure to re-establish physiological control of vascular renewal. Consequently, new vessels that are formed in PDR are immature, highly permeable, and easily ruptured. The condition of these vessels leads to vitreous haemorrhages and tractional retinal detachments, which disrupt the functional orchestration of the retinal vasculature and ultimately cause vision loss.

There is growing evidence that retinal neurodegeneration precedes microvascular impairments that cannot be fully assessed by imaging methods. It was previously shown that scanning laser polarimetry and optical coherence tomography (OCT) could identify the loss of retinal ganglion cells (RGCs) concomitantly with the reduction of the nerve fibre layer thickness. This can be
advantageous given that neurodegeneration may occur in the retina in the absence of any microvascular deficit. Retinal neurodegeneration is mainly presented via neuronal apoptosis and reactive gliosis. Retinal neurodegeneration may also advance to blood-retinal barrier (BRB) breakdown and vasoregression (Figure 1). Primary mechanisms that underlie neurodegeneration in DR are considered to include extracellular glutamate accumulation (glutamate excitotoxicity), oxidative stress, imbalance between the neuroprotective and neurotrophic factors, and chronic inflammation.

To date, treatment of DR has been limited to very few therapeutic strategies aimed at controlling or containing the risk factors of progression, such as hyperglycaemia, hyperlipidaemia, and hypertension. However, the Diabetes Control and Complications Trial (DCCT) has shown that the total glycaemic exposure (HbA1c and duration of diabetes) can only account for 11% of the cumulative risk of DR, which suggests that major risk remains even after euglycaemia is established. The current therapeutic strategies are rather focused on treating the most advanced and vision-threatening states of DR. The cost-effectiveness, safety, and potential for long-term application of these therapies are controversial.

Hence, there is an unmet need for new therapeutic approach(es), especially in the early stages of DR, that are intended to target both vascular and neuronal impairments.

This review aims to illustrate the mechanisms by which the HIF1α-PFKFB3 pathway can contribute to the pathogenesis of DR and to highlight the emerging novel strategies for metabolic point-of-intervention in DR.
HIF1α-PFKFB3 signalling pathway

In our studies of islet biology in diabetes, we found that the hypoxia inducible factor 1 alpha (HIF1α) and 6-phosphofructo-2-kinase - fructose-2,6-bisphosphatase 3 (PFKFB3) signalling integrated both pseudo-hypoxic and metabolic responses to injury. HIF1α-PFKFB3 activation promoted β-cell survival at the expense of β-cell function in type 1 and type 2 diabetes 18, 19. However, HIF1α-PFKFB3 signalling has been implicated also in the control of neovascular formation 20 and neurodegeneration 21, hence potentially recapitulating the vascular and neuronal aspects of DR pathogenesis.

Several studies show that PFKFB3 can be regulated by transcriptional as well as post-transcriptional mechanisms 22. The pfkfb3 gene is located on chromosome 10p15.1 23. Its 5' promoter contains hypoxia response element (HRE) that makes pfkfb3 gene a bona fide transcriptional target of HIF1α 24. At the post-translational level, two E3 ubiquitin ligases induce PFKFB3 degradation: APC/C-Cdh1 and SKP1-CUL1-F-box protein (SCF)/β-TrCP 25, 26.

PFKFB3 is one of the bifunctional PFK2 isoenzymes (PFKFB1-4), which are ubiquitously expressed in human tissues, including the human retina 27, 28. The PFKFB3 protein is a homodimer, each monomer of which consists of two different functional domains: the N-terminal, which contains the kinase domain that is responsible for the synthesis of F2,6P2; and the C-terminal domain, which contains the bisphosphatase active site that is responsible for the degradation of F2,6P2 29. Among the four isoforms, PFKFB3 has the highest kinase to bisphosphatase activity (700-fold), and therefore this isoform promotes F2,6P2 formation. F2,6P2 allosterically activates PFK1, which is the rate-limiting enzyme of glycolysis. F2,6P2 overcomes the inhibition of PFK1 by the TCA-derived ATP, thus ultimately increasing the flux of glycolysis 30, 31.
HIF1α has been implicated in retinal microvasculopathy primarily through transcriptional activation of the critical angiogenic genes (e.g., vegf) \(^{32}\). Overactivation of VEGF signalling is essential to BRB breakdown and pathological neovascularization.

Further, PFKFB3 from the HIF1α pathway is also essential for angiogenesis by mediating the endothelial sprouting \(^{20,33}\).

HIF1α-PFKFB3 signalling appears to also play an essential role in neurodegeneration \(^{34,35}\). PFKFB3 becomes activated in response to glutamate excitotoxicity after the overstimulation of N-methyl-D-aspartate receptor (NMDAR) \(^{36-38}\), that is highly expressed in RGCs. PFKFB3-driven glycolysis is not only critical to neuronal apoptosis, but also to reactive gliosis through stimulation of unscheduled proliferation \(^{21,39}\).

Role of ROS in DR

Reactive oxygen species (ROS) are byproducts of oxidative metabolism that act as signalling molecules in a number of physiological settings. An imbalance that results from excessive formation and/or impaired clearance of ROS leads to cytopathological consequences due to accumulation of oxidatively damaged biological macromolecules (such as DNA, proteins or lipids). The resulting oxidative stress that is instrumental in various disease states, is also considered to be a causal link between diabetes and the development of diabetic complications \(^{40-47}\).

As the retina has a high content of polyunsaturated fatty acids and the highest oxygen uptake as well as glucose oxidation relative to any other tissue, it is highly susceptible to oxidative stress \(^{48}\). Diabetic retina is marked by elevated levels of ROS such as superoxides and hydrogen peroxide, membrane lipid peroxidation \(^{49-52}\) and oxidative lesions of DNA (such as DNA adduct 8-hydroxy-2-deoxyguanosine, 8-OHdG) \(^{41,49,53}\). At the same time, levels of antioxidant enzymes superoxide dismutase (SOD), glutathione reductase, glutathione peroxidase and catalase, which scavenge free radicals, are reduced in the retina \(^{41,44}\). It is interesting that the mismatch between antioxidant
response and oxidative stress in the retina is similar to that observed in β-cells and neurons; both are characterised by a high susceptibility to excessive levels of ROS due to modest or low antioxidant defence \(^{54, 55}\). Further, once oxidative stress is initiated, it leads to accumulation of oxidatively damaged macromolecules that are responsible for progression of DR even after restoration of glycaemic control \(^{56}\). One explanation is that oxidative stress creates a self-amplifying loop through activation of the following metabolic pathways: the polyol pathway \(^{57}\), advanced glycation end-products (AGE) \(^{58}\), protein kinase C (PKC) \(^{59, 60}\), and the hexosamine biosynthesis pathway \(^{61}\), all of which are interrelated with mitochondrial overproduction of superoxide \(^{62}\).

Several transcriptional regulatory networks have evolved to leverage ROS levels to modify mitochondrial generation of ROS during stress. As such, the nuclear factor erythroid 2–related factor 2 (NRF2) directly regulates expression of HIF1A gene via antioxidant response element \(^{63}\). Apart from HIF1α role in mitochondrial ROS suppression by diverting pyruvate away from mitochondria, new evidence has emerged, which indicates that mitochondria-localised HIF1α can modify oxidative stress \(^{64}\). PFKFB3, the target of HIF1α, has been shown to undergo inhibitory posttranslational modifications to redirect the glucose metabolism towards the pentose phosphate pathway (PPP), enhancing the availability of the antioxidant systems \(^{65-67}\). However, hyperactivation of HIF1α–PFKFB3 may compromise their role in oxidative stress.

On the other hand, metabolism itself can be a target of the oxidative stress. As such, the decrease in the activity of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) by a mechanism that involves mitochondrial overproduction of superoxide is one of the defining metabolic events upon onset of diabetes and hyperglycaemia. Mitochondrial superoxide inhibits GAPDH activity in vivo by (ADP)ribosylation of the enzyme in poly(ADP-ribose) polymerase (PARP)-dependent fashion \(^{68}\). The effect of inhibition of GAPDH can be prevented by suppression of mitochondrial superoxide by either uncoupling protein 1 (UCP-1) or by activity of manganese SOD (MnSOD) \(^{69}\). When GAPDH activity is inhibited, the levels of all glycolytic intermediates, which are upstream of GAPDH such as glyceraldehyde 3-phosphate (G3P), fructose-6-phosphate (F6P) or glucose, increase. G3P activates AGE \(^{58, 70}\) and the PKC pathway \(^{60, 71, 72}\), since the AGE precursor
methylglyoxal and PKC activator diacylglycerol are formed from G3P. Hyperglycaemia-induced methylglyoxal has been shown to cause both increased expression of the receptor for AGE-products (RAGE) and its activating ligands. In addition, the presence of pathologically activated PKC leads to increased vessel permeability and blood flow, altered recycling of growth factor receptors, stimulation of neovascularisation, endothelial proliferation and apoptosis. In contrast, mice deficient in the PKC isoform PKCβ have been found to be protected from diabetes-induced oxidative stress.

Accumulation of F6P increases the flux through the hexosamine pathway while the accumulation of glucose increases the flux through the polyol pathway. The enzyme aldose reductase reduces glucose (or G3P) thereby consuming the NADPH in the process. Recent studies confirmed GAPDH implication demonstrating that the inhibition of GAPDH activity with antisense DNA increases the activity of each of the pathways of oxidative damage to the same extent as in hyperglycaemia.

Therefore, the initial oxidative stress and the pathways that arise from glucose metabolism and that amplify ROS production seem to be highly implicated in the pathogenesis of DR.

Role of mitochondrial dysfunction in DR

Similar to β-cells in pancreatic islets, retina represents highly active metabolic tissue. Our group previously demonstrated that diabetogenic stress leads to mitochondrial suppression in diabetic β-cells that results in metabolic pseudo-hypoxia (suppression of mitochondria that mimics hypoxia) and activation of HIF1α-PFKFB3 pathway. As a consequence of HIF1α-PFKFB3 activation, glucose metabolism in diabetic β-cells is diverted away from mitochondria, leading to loss of glucose sensitive insulin secretion and thus β-cell function. The outcome of HIF1α activation in diabetes recapitulates previous studies in vivo utilizing mice with β-cell specific inactivation of von Hippel Lindau (Vhlh) gene that leads to HIF1α stabilization. Vhlh-deficient mice, similar to diabetic mice with high HIF1α β-cell expression, exhibit diminished mitochondrial activity and glucose-stimulated
changes in Ca^{2+} concentration, and insulin secretion. All together, these results highlight the key role of HIF1α in mitochondrial suppression in diabetes.

In diabetic retinal cells, more glucose-derived pyruvate is being oxidized, increasing the flux of electron donors (NADH and FADH2) into the electron transport chain (ETC). At the threshold of the voltage gradient, electron transfer inside complex III becomes reduced, leading to generation of superoxide. Hyperglycemia mediated ROS generation is prevented by MnSOD and/or uncoupling protein 1 (UCP-1) overexpression. However, MnSOD, together with glutathione (GSH), is being found suppressed in the diabetic and high glucose-cultured retinal mitochondria. Under this condition, endothelial cells and pericytes gradually lose their original morphological features and become heterogeneous with irregular arrangement, ultimately undergoing apoptosis. ROS-mediated damage to the mitochondrial lipid membrane results in increased activity across the permeability transition pore (PTP) in diabetic mice. Activated PTP facilitates release of cytochrome C and Bax mitochondrial membrane translocation resulting in apoptosis of the retinal capillary cells. These findings support the link between mitochondrial superoxide production and increased demise of retinal cells in high glucose environment.

The morphology of retinal mitochondria in diabetic rats resembles the predominant mitochondrial fission in response to changes of redox homeostasis in injured β-cells in diabetes. However, it seems that the mitochondrial dysfunction in the retina from DR is more pronounced. It involves damage to mitochondrial DNA (mtDNA), impaired DNA repair and mtDNA transcription which further compromises the ETC. Oxidative stress is further exacerbated by NADPH oxidase 2 (Nox2) activity and involves DNA methylation as a novel epigenetic control mechanism of cytosolic ROS production. Increased ROS levels also activate the matrix metalloproteinase 9 (MMP-9) that translocates to mitochondria, representing yet another ROS-driven pathological sequel unique to retinal mitochondria that results in the breakdown of mitochondrial membranes and apoptosis.
All together, these studies highlight the central role of mitochondrial ROS production and interrelated metabolic pathways in the early as well as late pathogenesis of progression of DR.

Retinal glycolysis

Glycolysis is critical for the retina to meet its energy and biogenesis demand. The prevailing oxygen-independent mode of energy generation in the presence of oxygen, known as aerobic glycolysis, dominates the energy metabolism of the retina and mimics the Warburg effect in cancer cells. Retinal cells convert 80-96% of glucose into lactate instead of directing it to the tricarboxylic acid (TCA) cycle. The gradient of aerobic glycolysis in adult retinal cells applies mainly to outer and inner retina layers because the inner retina is more dependent on oxidative phosphorylation with few exceptions, such as macroglial cells. Utilisation of aerobic glycolysis in the outer layer arises from the energy demand for the constant renewal of the photoreceptor outer segment (OS). Photoreceptors detect light from the environment and transduce it into signals in the retina. They convert most of the glucose into lactate via aerobic glycolysis to meet their high energy and biogenesis demands. A recent study used in situ hybridisation and immunochemistry to examine the phosphofructokinase-2 (PFK2) isoenzymes (one of the critical glycolytic enzymes, which are discussed below). Under the physiological conditions that prevailed in the absence of stress, photoreceptors expressed PFKFB1, PFKFB2, and PFKFB4, while PFKFB3 expression remained undetectable. However, overexpression of PFKFB3 in the adult photoreceptors affected the OS length by the increase in fructose-2,6-bisphosphate (F2,6P2). These findings suggest that PFKFB3 is not primarily involved in the aerobic glycolysis of the photoreceptors under physiological conditions. In addition, a substantial increase of aerobic glycolysis follows the progression of microvascular failure and non-perfusion during the development of DR, which may not preclude the pathological role of PFKFB3.

Although part of the inner retinal layer, macroglial cells (Müller cells and astrocytes) dominantly rely on glycolysis; Müller cells metabolise only 1% of the total glucose via oxidative phosphorylation.
This glycolysis preference originates from the fact that macroglial cells convert glucose to lactate and provide lactate as a secondary energy source to neurons \(^97\). However, the role of PFKFB3 in the retinal macroglial cells is still elusive.

Furthermore, ECs also acquire most of their energy through glycolysis rather than through oxidative phosphorylation \(^20\) (discussed below). Therefore, they form another retinal cell type that adds to the high glycolysis to oxidative phosphorylation ratio in the retina.

HIF1α-PFKFB3 signalling activation in diabetic retinopathy

HIF1α signalling activation in retinopathy

In order to maintain the continuous and delicate balance between oxygen supply and consumption, two vascular supporting systems are present in the retina: the inner retinal circulation (capillary plexuses, which are branched from the central artery of the retina) and the choroidal circulation (which nourishes the photoreceptors and the outer plexiform layer) \(^98\). The retinal vasculature adjusts continuously to minimise optical interference in the light path, which leads to a considerable oxygen tension between the retinal arteries and veins that increases retinal susceptibility to hypoxia \(^99\).

Many factors can assist the progression of retinal hypoxia in chronic hyperglycaemia. These include capillary occlusion and non-perfusion caused by an increased number of leukocytes and enhanced leukocyte adhesion \(^100\)-\(^102\), an increased number of AGEs, and oxidative stress \(^99\). Hypoxia may occur even before the retinal lesions appear, even though the total retinal blood flow seems to be increased at the early stage of DR \(^47\), \(^103\)-\(^105\).
Hypoxia-inducible factors (HIFs) are activated via post-translational stabilisation in response to hypoxia. HIFs are the transcription factors that control many aspects of the survival of tissue exposed to hypoxia, such as angiogenesis, aerobic glycolysis, cell proliferation, and inflammation. In normoxic conditions, proline residues in oxygen-dependent degradation (ODD) domain of HIF1α are hydroxylated by prolyl hydroxylases. This process leads to rapid degradation and a short half-life of HIF1α via the von Hippel-Lindau (VHL)-mediated ubiquitin-proteasome pathway. In addition, aspartic acid residues of HIF1α in the C-terminal transactivation domain (CTAD) are hydroxylated by factor-inhibiting HIF-1 (FIH-1), which blocks the binding of HIF1α to the co-activator p300/CBP (CREB-binding protein) and decreases HIF1α transcriptional activity. Under hypoxia, stabilised HIF1α binds to hypoxia-inducible factor 1β (HIF1β) (which is constitutively expressed) and forms HIF1 transcription complex, which targets multiple genes for transactivation.

Many studies have implicated HIF1α in the pathological angiogenesis and neurodegeneration of the retina in DR (Table 1). Given the transcriptional repertoire of HIF1α in hypoxia and injury, studies were performed to investigate the benefit of modifying HIF1α in retinal pathologies. Oral administration of HIF1α inhibitors have been shown to suppress significantly retinal neovascular tufts in the oxygen-induced retinopathy (OIR) model. In regard to neurodegeneration, inhibition of HIF1α improved the survival rates of RGCs and alleviated the degeneration of photoreceptors in chronic hypoxia. Specific knockout of HIF1α in Müller cells also decreased retinal vascular leakage as well as the build-up of adherent leucocytes both in OIR and in the mouse model of streptozotocin (STZ)-induced DR. Collectively, these studies indicate that HIF1α plays a crucial role in the development of the ischaemia/injury response in DR.

HIF1α directly targets more than 1,000 genes, but only a subset of these genes can be activated under hypoxia. This subset is further divided into two major categories: 1) those that increase oxygen delivery, and 2) those that decrease oxygen consumption.
HIF1α signalling-increased oxygen delivery

To increase oxygen delivery, HIF1α mediates angiogenesis by transcriptional activation of the key angiogenic genes, which include VEGF, C-X-C motif chemokine 12 (CXCL12), angiopoietin 2 (ANGPT2), placental growth factor (PGF), platelet-derived growth factor B (PDGFB), and erythropoietin. Chronic HIF1α-mediated VEGF transactivation leads to increased microvascular permeability of ECs under stress that can be exacerbated into the BRB breakdown and pathological neovascularisation. Activation of the vascular endothelial growth factor receptor 2 (VEGFR2) by VEGF, in turn, activates three signalling pathways: the protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt), and mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK) pathway, which collectively contributes to the DR pathogenesis. These results encouraged the efforts to design VEGF targeting therapies. Although intravitreal injections of anti-VEGF antibodies have been used to treat DME for many years and the indications have been broadened recently to PDR, fewer than half the number of treated patients benefited from improved vision. This finding implies that functional redundancy and other factors play a role in DR progression.

Further, there are concerns that the suppression of VEGF may result in adverse effects on the survival of neurons. One study in the rat retinal ischaemia-reperfusion model has caused controversy because inhibition of VEGF-A diminished VEGF-A’s protective effects against RGC apoptosis, which was not reproduced by other studies. One explanation for the different results reported on the effect of VEGF targeting can be the context-dependent outcome of these interventions.

Further work is needed to draw conclusions on the possible adverse effects of anti-VEGF treatment on retinal neurons.
HIF1α signalling-decreased oxygen consumption

HIF1α remodels cell metabolism by shifting the glucose from oxidative phosphorylation to glycolysis and reducing oxygen consumption. HIF1α is potently induced by hypoxia\(^{107}\). Hypoxia can increase the flux of glucose through glycolysis in the retina. In a rat retina model under hypoxia, an accumulation of reduced mitochondrial nicotinamide adenine dinucleotide (NADH) was shown to decrease the transference of electrons and protons from cytosolic NADH to mitochondrial NAD\(^+\). This decrease led to reduced oxidative phosphorylation and the activation of phosphofructokinase (PFK), which led to increased glycolysis in both normoglycaemic and hyperglycaemic conditions\(^{127}\).

The master regulation by HIF1α is provided by transactivation of all critical glycolytic genes, such as glucose transporters (GLUTs), hexokinases (HKs), phosphofructokinases 1 (PFK1) and 2 (PFK2), pyruvate kinase muscle isozymes (PKMs), and lactate dehydrogenase A (LDHA). HIF1α also inhibits oxidative phosphorylation by up-regulation of pyruvate dehydrogenase kinase 1 (PDK1), which suppresses pyruvate dehydrogenase (PDH) and consequently leads to decreased incorporation of pyruvate into acetyl coenzyme A synthesis\(^{107}\).

In hypoxia, increased rates of glycolysis balance metabolic requirements and oxygen supply, for which reduction in oxygen consumption by HIF1α is essential.
PFKFB3 role in angiogenesis

Angiogenesis is the term for the sequence of ECs activation, tip-cell selection, sprouting, and elongation under the regulation of pro-angiogenic factors. Throughout these sequences of activation ECs adopt various metabolic states. ECs preferentially use glycolysis (about 85%) over oxidative phosphorylation to produce ATP and meet their energy demand during angiogenesis. This is due partly to the lag of the oxygen supply behind the glucose supply of the initiating tip cells and the reservation of oxygen for perivascular tissue. Besides energy, glycolysis also provides metabolic substrates. It furnishes stalk cells with carbon precursors for proliferation and generates a high level of lactate, which regulates blood flow and supplies energy for the neurons. Use of glycolysis to produce energy also protects ECs against oxidative stress arising from reactive oxygen species (ROS) during oxidative phosphorylation. Redirection of glycolysis into the PPP will increase nicotinamide adenine dinucleotide phosphate (NADPH), thus re-establishing a redox balance.

PFKFB3 has been implicated in new vessel formation. De Bock and her colleagues used different models (EC mosaic spheroids, human umbilical vein endothelial cells (HUVECs), the postnatal retina model, the OIR model, and the choroidal neovascularisation model), which revealed that PFKFB3-driven glycolysis regulated vessel sprouting in both physiological and pathological angiogenesis. After the addition of 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), the glycolysis was decreased by 35-40%, which led to reduced EC proliferation, impaired vessel sprouting, and an amplified effect of anti-VEGFR2 monoclonal antibody. Reduced angiogenesis as a result of PFKFB3 inhibition was demonstrated in different biological and disease contexts such as pulmonary hypertension and various tumours.
PFKFB3 role in vessel sprouting

The mechanisms that underlie vessel sprouting have been studied for many years. In sprouting angiogenesis, the ECs fall into two particular subtypes, each of which executes different functions: tip cells migrate to the forefront of the vascular branch and protrude to form highly motile filopodia, while stalk cells proliferate behind tip cells and elongate the branch. ECs dynamically compete for the tip-cell position, which is continuously monitored and regulated by the VEGF-DLL4-Notch signalling (Figure 2). VEGF binds to the VEGF receptor (VEGFR) to regulate vascular function and the EC subtype specification. On the one hand, VEGF promotes the initial tip-cell expression of the Notch ligand delta-like ligand 4 (DLL4), which binds to the Notch receptor of neighbouring stalk cells. Consequently, DLL4 conducts the Notch signalling by cleavage and releasing the Notch 1 intracellular domain (NICD), which suppresses VEGFR and PFKFB3 expression in the stalk cells. On the other hand, DLL4 from the tip cells inhibits the expression of DLL4 by the stalk cells, and this process amplifies the differences between the tip and stalk cells. As a result, tip cells have a greater concentration of DLL4 and VEGF; stalk cells are subject to Notch activity. In addition, tip cells are subjected to higher glycolytic flux because of the increased PFKFB3 expression via VEGF signalling that enables tip-cell position and migration. The silencing of PFKFB3 impaired the vessel sprouting through a direct mechanism since the expression of the sprouting-related genes remained unaffected.

PFKFB3 role in BRB breakdown

PFKFB3 down-regulates the expression of vascular endothelial (VE)-cadherin, which is responsible for vessel rearrangement during sprouting. VE-cadherin is a main adherens junction protein that serves as the attachment site of the cytoskeleton and is involved in EC motility, angiogenesis, and survival.
It seems that PFKFB3-driven glycolysis is critical for ECs migration during vessel sprouting since inhibition of PFKFB3 interferes with VE-cadherin-dependent adhesion. VE-cadherin function is regulated by clathrin-dependent endocytosis, which determines the level of available VE-cadherin at the plasma membrane and adhesion strength in an ATP-dependent manner. VEGF reduces VE-cadherin-dependent adhesion, while Notch signalling has an opposing effect stimulating VE-cadherin-dependent adhesion, leading to an increase or decrease in EC migration, respectively. VE-cadherin resurfacing on the plasma membrane was depended on the PFKFB3, although it was not possible to distinguish whether this effect was caused by ATP or the independent role of PFKFB3 in the HUVEC model. Although VE-cadherin expression remained intact in this study, another study using murine ECs haplodeficient for PFKFB3 indicated the accumulation of VE-cadherin. Collectively, these studies highlighted the important role of PFKFB3 in VE-cadherin-driven ECs migration.

PFKFB3 role in Neurodegeneration

PFKFB3 role in neuronal apoptosis

RGCs are retinal neurons located in the inner retina, where they form optic nerves and provide the final common pathway for the integration and transmission of visual information from the retina to the brain. RGCs are susceptible to various types of stress, including hyperglycaemia and ischaemia/hypoxia, later related to their dependence on oxidative phosphorylation.

Increased frequency of RGC apoptosis has been reported in both animal models of diabetes and diabetic patients, indicating a potential role of hyperglycaemia in DR neurodegeneration. Nevertheless, typical mechanisms in relation to neurodegeneration in DR which may or may not involve hyperglycaemia are: 1) oxidative stress; 2) extracellular glutamate accumulation; 3) increased inflammation; and 4) decrease in neuroprotective and neurotrophic factors.
PPP flux is critical for the antioxidant defense and survival of neurons, including RGCs. Maintenance of PPP flux depends on the continuous degradation of PFKFB3 by APC/C-Cdh1. This provides the flux from glucose-6-phosphate (G6P) to 6-phosphogluconate (6PG) to be maintained at the expense of glycolytic F1,6P2. Per implication, increased levels of PFKFB3 contribute to oxidative stress with a concurrent decrease of NADPH production from PPP, ultimately leading to apoptosis in neurons and RGCs (Figure 3).

NMDAR is an ionotropic glutamate receptor that is activated by an excess of extracellular glutamate. This mechanism plays a central role in the pathogenesis of neurodegeneration in the DR, which contributes to RGC loss in both human and rat DR models. NMDAR mediated loss of primary cortical neurons may be similar to NMDAR mediated loss of RGCs in DR, converging at PFKFB3 stabilisation in APC/Cdh1 dependent fashion. Identifying PFKFB3 pathological stabilisation during NMDAR activation in the diabetic retina will inform the potential rationale for PFKFB3-based interventions.

In addition to PFKFB3, HIF1α can also lead to glutamate toxicity by increasing the release of glutamate via glutamate/aspartate transporter (GLAST) encoded by slc1a3 as demonstrated in the rodent cerebral ischaemia-reperfusion model. It is tempting to investigate if similar HIF1α dependent regulation of human SLC1A3 in the retina may contribute to glutamate excitotoxicity and neurodegeneration in DR.
PFKFB3 role in gliosis

Müller cells and astrocytes belong to macroglia cells of the retina. Unlike Müller cells, astrocytes originate from the brain and migrate to the retina along the blood vessels to build the BRB. Retinal astrocytes are mainly present at the inner surface of the retina near the optic nerve head where they wrap around blood vessels and ganglion cell axon bundles. It is believed that macroglia may contribute to DR neurodegeneration involving direct or indirect mechanisms. Macroglia uptake extracellular glutamate and convert it to glutamine, which protects neurons from glutamate excitotoxicity, while at the same time they provide them with neurotrophic factors. This interaction with neurons illustrates an indirect but important mechanism that supports neuron survival. Another indirect mechanism that increases neuronal survival via astrocyte interaction involves glycolytic metabolites, such as lactate and pyruvate. Astrocyte glycolysis preference is maintained by low APC/C-Cdh1 activity that results in stabilised expression of PFKFB3. The glycolytic mode dependent on PFKFB3 alone increases astrocyte resilience to amyloid β (Aβ) plaque formation and subsequent stress. This was demonstrated in the Alzheimer’s disease mouse model after inhibition of PFKFB3 by 1-(4-pyridinyl)-3-(2-quinolynyl)-2-propen-1-one (PFK15), clearly implicating PFKFB3 in Aβ induced gliosis.

Although some types of stress, such as ischaemic/hypoxic stress, will increase PFKFB3-driven glycolysis in astrocytes, at the same time, it is proposed that it leads to the secretion of proinflammation factors that compromise the BRB integrity. Thus, careful experimental discernment of the role of PFKFB3 in these processes is warranted in the future.

Future studies need to clarify whether dysregulation of PFKFB3 is also implicated in Müller cell-mediated gliosis and neurodegeneration.
Conclusions

Unlike physiological levels that support retinal function, excessive and/or chronic increase in the glycolytic flux contributes to aberrant angiogenesis, exposes neurons to oxidative stress due to the suppressed PPP, and increases the secretion of proinflammatory cytokines, chemokines, and neurotoxic factors, all of which collectively lead to neurodegeneration as well.

Thus, the hallmarks of DR, pathologic angiogenesis and neurodegeneration may stem from dysregulation of HIF1α-PFKFB3 pathway. The literature evidence suggests strongly that the HIF1α-PFKFB3 pathway is critical for the two key aspects of DR pathogenesis (angiogenesis and neurodegeneration) and is a common denominator of metabolic and hypoxic stress response across multiple rather than isolated cell types in the retina. Our literature review highlights the urgent need to investigate this pathway as a target for disease intersection in DR.
Acknowledgements

This work was supported by funding from the Larry Hillblom Foundation (Start-up Grant #2017-D-002-SUP). J.M. was supported by Department of Endocrinology, Union Hospital of Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei, China.

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
REFERENCES

1. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. *N Engl J Med*. Mar 29 2012;366(13):1227-39.
2. Solomon SD, Chew E, Duh EJ, et al. Diabetic Retinopathy: A Position Statement by the American Diabetes Association. *Diabetes Care*. Mar 2017;40(3):412-418.
3. Kempen JH, O'Colmain BJ, Leske MC, et al. The prevalence of diabetic retinopathy among adults in the United States. *Arch Ophthalmol*. Apr 2004;122(4):552-63.
4. Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy. *Prog Retin Eye Res*. Mar 2016;51:156-86.
5. Wong TY, Cheung CM, Larsen M, Sharma S, Simo R. Diabetic retinopathy. *Nat Rev Dis Primers*. Mar 17 2016;2:16012.
6. Potente M, Carmeliet P. The Link Between Angiogenesis and Endothelial Metabolism. *Annu Rev Physiol*. Feb 10 2017;79:43-66.
7. Xu Y, An X, Guo X, et al. Endothelial PFKFB3 plays a critical role in angiogenesis. *Arterioscler Thromb Vasc Biol*. Jun 2014;34(6):1231-9.
8. Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. *JCI Insight*. Jul 20 2017;2(14)
9. Usui Y, Westenskow PD, Murinello S, et al. Angiogenesis and Eye Disease. *Annu Rev Vis Sci*. Nov 24 2015;1:155-184.
10. Barber AJ, Lieth E, Khin SA, Antonetti DA, Buchanan AG, Gardner TW. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. *J Clin Invest*. Aug 15 1998;102(4):783-91.
11. Sohn EH, van Dijk HW, Jiao C, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. *Proc Natl Acad Sci U S A*. May 10 2016;113(19):E2655-64.
12. Simo R, Hernandez C, European Consortium for the Early Treatment of Diabetic R. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. *Trends Endocrinol Metab*. Jan 2014;25(1):23-33.
13. Lachin JM, Gennuth S, Nathan DM, Zinman B, Rutledge BN, Group DER. Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial--revisited. *Diabetes*. Apr 2008;57(4):995-1001.
14. Cheung CM, Wong TY. Treatment of age-related macular degeneration. *Lancet*. Oct 12 2013;382(9900):1230-2.
15. Kuiper EJ, Van Nieuwenhoven FA, de Smet MD, et al. The angio-fibrotic switch of VEGF and CTGF in proliferative diabetic retinopathy. *PLoS One*. Jul 16 2008;3(7):e2675.
16. Simo R, Hernandez C. Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy. *Diabetologia*. Sep 2008;51(9):1574-80.
17. Eubs JM, Kerbel RS. Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. *Nat Rev Clin Oncol*. Mar 1 2011;8(4):210-21.
18. Montemurro C, Nomoto H, Pei L, et al. IAPP toxicity activates HIF1alpha/PFKFB3 signaling delaying beta-cell loss at the expense of beta-cell function. *Nat Commun*. Jun 18 2019;10(1):2679.
19. Nomoto H, Pei L, Montemurro C, et al. Activation of the HIF1alpha/PFKFB3 stress response pathway in beta cells in type 1 diabetes. *Diabetologia*. Jan 2020;63(1):149-161.
20. De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. *Cell*. Aug 1 2013;154(3):651-63.
21. Almeida A, Moncada S, Bolanos JP. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. *Nat Cell Biol*. Jan 2004;6(1):45-51.
22. Shi L, Pan H, Liu Z, Xie J, Han W. Roles of PFKFB3 in cancer. *Signal Transduct Target Ther*. 2017;2:17044.
23. Fleischer M, Kessler R, Klammer A, Warnke JP, Eschrich K. LOH on 10p14-p15 targets the PFKFB3 gene locus in human glioblastomas. *Genes Chromosomes Cancer*. Dec 2011;50(12):1010-20.
24. Obach M, Navarro-Sabate A, Caro J, et al. 6-Phosphofructo-2-kinase (pfkfb3) gene promoter contains hypoxia-inducible factor-1 binding sites necessary for transactivation in response to hypoxia. *J Biol Chem*. Dec 17 2004;279(51):53562-70.
25. Tudzarova S, Colombo SL, Stoeber K, Carcamo S, Williams GH, Moncada S. Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-beta-TrCP, sequentially regulate glycolysis during the cell cycle. *Proc Natl Acad Sci U S A*. Mar 29 2011;108(13):5278-83.
26. Colombo SL, Palacios-Callender M, Frakich N, et al. Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells. *Proc Natl Acad Sci U S A*. Dec 27 2011;108(52):21069-74.
27. Manzano A, Rosa JL, Ventura F, et al. Molecular cloning, expression, and chromosomal localization of a ubiquitously expressed human 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase gene (PFKFB3). *Cytogenet Cell Genet*. 1998;83(3-4):214-7.
28. Schoors S, De Bock K, Cantelmo AR, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. *Cell Metab*. Jan 7 2014;19(1):37-48.
29. Li L, Lin K, Pilkis J, Correia JJ, Pilkis SJ. Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The role of surface loop basic residues in substrate binding to the fructose-2,6-bisphosphatase domain. *J Biol Chem*. Oct 25 1992;267(30):21588-94.
30. Van Schaftingen E, Lederer B, Bartrons R, Hers HG. A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. *Eur J Biochem*. Dec 1982;129(1):191-5.
31. Yalcin A, Telang S, Clem B, Chesney J. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer. *Exp Mol Pathol*. Jun 2009;86(3):174-9.
32. Rey S, Semenza GL. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. *Cardiovasc Res*. May 1 2010;86(2):236-42.
33. Jakobsson L, Franco CA, Bentley K, et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. *Nat Cell Biol*. Oct 2010;12(10):943-53.
34. Barben M, Ail D, Storti F, et al. Hif1α inactivation rescues photoreceptor degeneration induced by a chronic hypoxia-like stress. *Cell Death Differ*. Dec 2018;25(12):2071-2085.
35. Kunimi H, Miwa Y, Katada Y, Tsubota K, Kurihara T. HIF inhibitor topotecan has a neuroprotective effect in a murine retinal ischemia-reperfusion model. *PeerJ*. 2019;7:e7849.
36. Ng YK, Zeng XX, Ling EA. Expression of glutamate receptors and calcium-binding proteins in the retina of streptozotocin-induced diabetic rats. *Brain Res*. Aug 20 2004;1018(1):66-72.
37. Santiago AR, Hughes JM, Kamphuis W, Schlingemann RO, Ambrosio AF. Diabetes changes ionotropic glutamate receptor subunit expression level in the human retina. Brain Res. Mar 10 2008;1198:153-9.
38. Christensen I, Lu B, Yang N, Huang K, Wang P, Tian N. The Susceptibility of Retinal Ganglion Cells to Glutamatergic Excitotoxicity Is Type-Specific. Front Neurosci. 2019;13:219.
39. Lv Y, Zhang B, Zhai C, et al. PFKFB3-mediated glycolysis is involved in reactive astrocyte proliferation after oxygen-glucose deprivation/reperfusion and is regulated by Cdh1. Neurochem Int. Dec 2015;91:26-33.
40. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. Dec 13 2001;414(6865):813-20.
41. Kowluru RA, Tang J, Kern TS. Abnormalities of retinal metabolism in diabetes and experimental galactosemia. VII. Effect of long-term administration of antioxidants on the development of retinopathy. Diabetes. Aug 2001;50(8):1938-42.
42. Wohaieb SA, Godin DV. Alterations in free radical tissue-defense mechanisms in streptozocin-induced diabetes in rat. Effects of insulin treatment. Diabetes. Sep 1987;36(9):1014-8.
43. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. Jan 1999;48(1):1-9.
44. Haskins K, Bradley B, Powers K, et al. Oxidative stress in type 1 diabetes. Ann N Y Acad Sci. Nov 2003;1005:43-54.
45. Cutler RG. Oxidative stress profiling: part I. Its potential importance in the optimization of human health. Ann N Y Acad Sci. Dec 2005;1055:93-135.
46. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. Apr 1991;40(4):405-12.
47. Berkowitz BA, Kowluru RA, Frank RN, Kern TS, Hohman TC, Prakash M. Subnormal retinal oxygenation response precedes diabetic-like retinopathy. Invest Ophthalmol Vis Sci. Aug 1999;40(9):2100-5.
48. Anderson RE, Rapp LM, Wiegand RD. Lipid peroxidation and retinal degeneration. Curr Eye Res. Jan 1984;3(1):223-7.
49. Kowluru RA, Abbas SN. Diabetes-induced mitochondrial dysfunction in the retina. Invest Ophthalmol Vis Sci. Dec 2003;44(12):5327-34.
50. Du Y, Miller CM, Kern TS. Hyperglycemia increases mitochondrial superoxide in retina and retinal cells. Free Radic Biol Med. Dec 1 2003;35(11):1491-9.
51. Cui Y, Xu X, Bi H, et al. Expression modification of uncoupling proteins and MnSOD in retinal endothelial cells and pericytes induced by high glucose: the role of reactive oxygen species in diabetic retinopathy. Exp Eye Res. Oct 2006;83(4):807-16.
52. Ellis EA, Guberski DL, Somogyi-Mann M, Grant MB. Increased H2O2, vascular endothelial growth factor and receptors in the retina of the BBZ/Wor diabetic rat. Free Radic Biol Med. Jan 1 2000;28(1):91-101.
53. Kowluru RA. Diabetes-induced elevations in retinal oxidative stress, protein kinase C and nitric oxide are interrelated. Acta Diabetol. Dec 2001;38(4):179-85.
54. Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med. 1996;20(3):463-6.
55. Baxter PS, Hardingham GE. Adaptive regulation of the brain's antioxidant defences by neurons and astrocytes. Free Radic Biol Med. Nov 2016;100:147-152.
56. Kowluru RA. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. *Diabetes*. Mar 2003;52(3):818-23.

57. Engerman RL, Kern TS, Larson ME. Nerve conduction and aldose reductase inhibition during 5 years of diabetes or galactosaemia in dogs. *Diabetologia*. Feb 1994;37(2):141-4.

58. Beisswenger PJ, Howell SK, Smith K, Szwergold BS. Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes. *Biochim Biophys Acta*. Jan 2003;1637(1):98-106.

59. Stauble B, Boscoboinik D, Tasinato A, Azzi A. Modulation of activator protein-1 (AP-1) transcription factor and protein kinase C by hydrogen peroxide and D-alpha-tocopherol in vascular smooth muscle cells. *Eur J Biochem*. Dec 1 1994;226(2):393-402.

60. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. *Diabetes*. Jun 1998;47(6):859-66.

61. Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. *Proc Natl Acad Sci U S A*. Oct 24 2000;97(22):12222-6.

62. Kowluru RA. Diabetic retinopathy: mitochondrial dysfunction and retinal capillary cell death. *Antioxid Redox Signal*. Nov-Dec 2005;7(11-12):1581-87.

63. Lacher SE, Levings DC, Freeman S, Slattery M. Identification of a functional antioxidant response element at the HIF1A locus. *Redox Biol*. Oct 2018;19:401-411.

64. Li HS, Zhou YN, Li L, et al. HIF-1alpha protects against oxidative stress by directly targeting mitochondria. *Redox Biol*. Jul 2019;25:101109.

65. Seo M, Lee YH. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. *J Mol Biol*. Feb 20 2014;426(4):830-42.

66. Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolanos JP. Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. *Cell Death Differ*. Oct 2012;19(10):1582-9.

67. Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. *J Clin Invest*. Oct 2003;112(7):1049-57.

68. Nascimento NR, Lessa LM, Kerntopf MR, et al. Inositols prevent and reverse endothelial dysfunction in diabetic rat and rabbit vasculature metabolically and by scavenging superoxide. *Proc Natl Acad Sci U S A*. Jan 3 2006;103(1):218-23.

69. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. *Diabetes*. Jun 2005;54(6):1615-25.

70. Ishii H, Jirousek MR, Koya D, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. *Science*. May 3 1996;272(5262):728-31.

71. Kowluru RA, Kern TS, Engerman RL, Armstrong D. Abnormalities of retinal metabolism in diabetes or experimental galactosemia. III. Effects of antioxidants. *Diabetes*. Sep 1996;45(9):1233-7.

72. Yao D, Brownlee M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. *Diabetes*. Jan 2010;59(1):249-55.
74. Palumbo EJ, Sweatt JD, Chen SJ, Klann E. Oxidation-induced persistent activation of protein kinase C in hippocampal homogenates. *Biochem Biophys Res Commun.* Sep 30 1992;187(3):1439-45.
75. Ohshiro Y, Ma RC, Yasuda Y, et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. *Diabetes.* Nov 2006;55(11):3112-20.
76. Trumpower BL. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. *J Biol Chem.* Jul 15 1990;265(20):11409-12.
77. Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. *J Clin Invest.* Nov 2001;108(9):1341-8.
78. Kanwar M, Chan PS, Kern TS, Kowluru RA. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. *Invest Ophthalmol Vis Sci.* Aug 2007;48(8):3805-11.
79. Kowluru RA, Atasi L, Ho YS. Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. *Invest Ophthalmol Vis Sci.* Apr 2006;47(4):1594-9.
80. Kowluru RA, Kowluru V, Xiong Y, Ho YS. Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. *Free Radic Biol Med.* Oct 15 2006;41(8):1191-6.
81. Li X, Zhang M, Zhou H. The morphological features and mitochondrial oxidative stress mechanism of the retinal neurons apoptosis in early diabetic rats. *J Diabetes Res.* 2014;2014:678123.
82. de Souza BM, Brondani LA, Boucas AP, et al. Associations between UCP1 -3826A/G, UCP2 -866G/A, Ala55Val and Ins/Del, and UCP3 -55C/T polymorphisms and susceptibility to type 2 diabetes mellitus: case-control study and meta-analysis. *PLoS One.* 2013;8(1):e54259.
83. Li C, Miao X, Li F, et al. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy. *Oxid Med Cell Longev.* 2017;2017:9702820.
84. Barot M, Gokulgandhi MR, Mitra AK. Mitochondrial dysfunction in retinal diseases. *Curr Eye Res.* Dec 2011;36(12):1069-77.
85. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. *Proc Natl Acad Sci U S A.* Feb 21 2006;103(8):2653-8.
86. Maassen JA, LM TH, Van Essen E, et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. *Diabetes.* Feb 2004;53 Suppl 1:S103-9.
87. Duraisamy AJ, Mishra M, Kowluru A, Kowluru RA. Epigenetics and Regulation of Oxidative Stress in Diabetic Retinopathy. *Invest Ophthalmol Vis Sci.* Oct 1 2018;59(12):4831-4840.
88. Kowluru RA, Mishra M. Regulation of Matrix Metalloproteinase in the Pathogenesis of Diabetic Retinopathy. *Prog Mol Biol Transl Sci.* 2017;148:67-85.
89. Huang C, Kim Y, Caramori ML, et al. Diabetic nephropathy is associated with gene expression levels of oxidative phosphorylation and related pathways. *Diabetes.* Jun 2006;55(6):1826-31.
90. Ng SK, Wood JP, Chidlow G, et al. Cancer-like metabolism of the mammalian retina. *Clin Exp Ophthalmol.* May-Jun 2015;43(4):367-76.
91. Grenell A, Wang Y, Yam M, et al. Loss of MPC1 reprograms retinal metabolism to impair visual function. *Proc Natl Acad Sci U S A.* Feb 26 2019;116(9):3530-3535.
92. Young RW. The renewal of photoreceptor cell outer segments. J Cell Biol. Apr 1967;33(1):61-72.
93. Narayan DS, Chidlow G, Wood JP, Casson RJ. Glucose metabolism in mammalian photoreceptor inner and outer segments. Clin Exp Ophthalmol. Sep 2017;45(7):730-741.
94. Chinchoro Y, Begaj T, Wu D, Drokhlyansky E, Cepko CL. Glycolytic reliance promotes anabolism in photoreceptors. Elife. Jun 9 2017;6
95. Hardie DG. Metabolic control: a new solution to an old problem. Curr Biol. Oct 19 2000;10(20):R757-9.
96. Winkler BS, Arnold MJ, Brassell MA, Puro DG. Energy metabolism in human retinal Muller cells. Invest Ophthalmol Vis Sci. Sep 2000;41(10):3183-90.
97. Hurley JB, Lindsay KJ, Du J. Glucose, lactate, and shuttling of metabolites in vertebrate retinas. J Neurosci Res. Jul 2015;93(7):1079-92.
98. Wangsa-Wirawan ND, Linsenmeier RA. Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol. Apr 2003;121(4):547-57.
99. Cai J, Boulton M. The pathogenesis of diabetic retinopathy: old concepts and new questions. Eye (Lond). May 2002;16(3):242-60.
100. Schroder S, Palinski W, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol. Jul 1991;139(1):81-100.
101. Bullard SR, Hatchell DL, Cohen HJ, Rao KM. Increased adhesion of neutrophils to retinal vascular endothelial cells exposed to hyperosmolarity. Exp Eye Res. Jun 1994;58(6):641-7.
102. McLeod DS, Lefer DJ, Merges C, Lutty GA. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol. Sep 1995;147(3):642-53.
103. Patel V, Rassam S, Newsom R, Wiek J, Kohner E. Retinal blood flow in diabetic retinopathy. BMJ. Sep 1992;305(6855):678-83.
104. Linsenmeier RA, Braun RD, McRipley MA, et al. Retinal hypoxia in long-term diabetic cats. Invest Ophthalmol Vis Sci. Aug 1998;39(9):1647-57.
105. Fondi K, Wozniak PA, Howorka K, et al. Retinal oxygen extraction in individuals with type 1 diabetes with no or mild diabetic retinopathy. Diabetologia. Aug 2017;60(8):1534-1540.
106. Brahimi-Horn MC, Pouyssegur J. HIF at a glance. J Cell Sci. Apr 15 2009;122(Pt 8):1055-7.
107. Yeo EJ. Hypoxia and aging. Exp Mol Med. Jun 20 2019;51(6):1-15.
108. Lando D, Peet DJ, Gorman J, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. Jun 15 2002;16(12):1466-71.
109. Lin M, Chen Y, Jin J, et al. Ischaemia-induced retinal neovascularisation and diabetic retinopathy in mice with conditional knockout of hypoxia-inducible factor-1 in retinal Muller cells. Diabetologia. Jun 2011;54(6):1554-66.
110. Wert KJ, Mahajan VB, Zhang L, et al. Neuroretinal hypoxic signaling in a new preclinical murine model for proliferative diabetic retinopathy. Signal Transduct Target Ther. 2016;1
111. Sharavana G, Baskaran V. Lutein downregulates retinal vascular endothelial growth factor possibly via hypoxia inducible factor 1 alpha and X-box binding protein 1 expression in streptozotocin induced diabetic rats. J Funct Foods. Apr 2017;31:97-103.
112. Kusunose N, Akamine T, Kobayashi Y, et al. Contribution of the clock gene DEC2 to VEGF mRNA upregulation by modulation of HIF1alpha protein levels in hypoxic MIO-M1 cells, a human cell line of retinal glial (Muller) cells. *Jpn J Ophthalmol*. Nov 2018;62(6):677-685.

113. D'Amico AG, Maugeri G, Rasa DM, et al. NAP counteracts hyperglycemia/hypoxia induced retinal pigment epithelial barrier breakdown through modulation of HIFs and VEGF expression. *J Cell Physiol*. Feb 2018;233(2):1120-1128.

114. Miwa Y, Hoshino Y, Shoda C, Jiang X, Tsubota K, Kurihara T. Pharmacological HIF inhibition prevents retinal neovascularization with improved visual function in a murine oxygen-induced retinopathy model. *Neurochem Int*. Sep 2019;128:21-31.

115. Zhang Q, Cunha APD, Li S, et al. IL-27 regulates HIF-1alpha-mediated VEGFA response in macrophages of diabetic retinopathy patients and healthy individuals. *Cytokine*. Jan 2019;113:238-247.

116. Shoda C, Miwa Y, Nimura K, et al. Hypoxia-Inducible Factor Inhibitors Derived from Marine Products Suppress a Murine Model of Neovascular Retinopathy. *Nutrients*. Apr 10 2020;12(4)

117. Zhao D, Zhao Y, Wang J, et al. Long noncoding RNA Hotair facilitates retinal endothelial cell dysfunction in diabetic retinopathy. *Clin Sci (Lond)*. Sep 18 2020;134(17):2419-2434.

118. Liu L, Xu H, Zhao H, Jiang C. STEAP4 Inhibits HIF-1alpha/PKM2 Signaling and Reduces High Glucose-Induced Apoptosis of Retinal Vascular Endothelial Cells. *Diabetes Metab Syndr Obes*. 2020;13:2573-2582.

119. Liu L, Xu H, Zhao H, Sui D. MicroRNA-135b-5p promotes endothelial cell proliferation and angiogenesis in diabetic retinopathy mice by inhibiting Von Hippel-Lindau and elevating hypoxia inducible factor alpha expression. *J Drug Target*. Mar 2021;29(3):300-309.

120. Dong L, Li W, Lin T, et al. PSF functions as a repressor of hypoxia-induced angiogenesis by promoting mitochondrial function. *Cell Commun Signal*. Feb 11 2021;19(1):14.

121. Kelly BD, Hackett SF, Hirota K, et al. Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. *Circ Res*. Nov 28 2003;93(11):1074-81.

122. Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. *Annu Rev Pathol*. 2014;9:47-71.

123. Cheung N, Wong IY, Wong TY. Ocular anti-VEGF therapy for diabetic retinopathy: overview of clinical efficacy and evolving applications. *Diabetes Care*. Apr 2014;37(4):900-5.

124. American Diabetes A. 11. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes-2021. *Diabetes Care*. Jan 2021;44(Suppl 1):S151-S167.

125. Nishijima K, Ng YS, Zhong L, et al. Vascular endothelial growth factor-A is a survival factor for retinal neurons and a critical neuroprotectant during the adaptive response to ischemic injury. *Am J Pathol*. Jul 2007;171(1):53-67.

126. Bai Y, Ma JX, Guo J, et al. Muller cell-derived VEGF is a significant contributor to retinal neovascularization. *J Pathol*. Dec 2009;219(4):446-54.

127. Nyengaard JR, Ido Y, Kilo C, Williamson JR. Interactions between hyperglycemia and hypoxia: implications for diabetic retinopathy. *Diabetes*. Nov 2004;53(11):2931-8.

128. Geudens I, Gerhardt H. Coordinating cell behaviour during blood vessel formation. *Development*. Nov 2011;138(21):4569-83.
129. De Bock K, Georgiadou M, Carmeliet P. Role of endothelial cell metabolism in vessel sprouting. *Cell Metab.* Nov 5 2013;18(5):634-47.
130. Helmlinger G, Endo M, Ferrara N, Hlatky L, Jain RK. Formation of endothelial cell networks. *Nature.* May 11 2000;405(6783):139-41.
131. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. *Science.* May 22 2009;324(5930):1029-33.
132. Antonetti DA, Barber AJ, Bronson SK, et al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. *Diabetes.* Sep 2006;55(9):2401-11.
133. Machler P, Wyss MT, Elsayed M, et al. In Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons. *Cell Metab.* Jan 12 2016;23(1):94-102.
134. Cao Y, Zhang X, Wang L, et al. PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension. *Proc Natl Acad Sci U S A.* Jul 2 2019;116(27):13394-13403.
135. Eelen G, Treps L, Li X, Carmeliet P. Basic and Therapeutic Aspects of Angiogenesis Updated. *Circ Res.* Jul 3 2020;127(2):310-329.
136. Draoui N, de Zeeuw P, Carmeliet P. Angiogenesis revisited from a metabolic perspective: role and therapeutic implications of endothelial cell metabolism. *Open Biol.* Dec 2017;7(12)
137. Lee SY, Long F. Notch signaling suppresses glucose metabolism in mesenchymal progenitors to restrict osteoblast differentiation. *J Clin Invest.* Dec 3 2018;128(12):5573-5586.
138. Carmeliet P, Lampugnani MG, Moons L, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. *Cell.* Jul 23 1999;98(2):147-57.
139. Bentley K, Franco CA, Philippides A, et al. The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. *Nat Cell Biol.* Apr 2014;16(4):309-21.
140. Cruys B, Wong BW, Kuchnio A, et al. Glycolytic regulation of cell rearrangement in angiogenesis. *Nat Commun.* Jul 20 2016;7:12240.
141. Xiao K, Allison DF, Kurtke MD, et al. Mechanisms of VE-cadherin processing and degradation in microvascular endothelial cells. *J Biol Chem.* May 23 2003;278(21):19199-208.
142. Xiao K, Garner J, Buckley KM, et al. p120-Catenin regulates clathrin-dependent endocytosis of VE-cadherin. *Mol Biol Cell.* Nov 2005;16(11):5141-51.
143. Cantelmo AR, Conradi LC, Brajic A, et al. Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy. *Cancer Cell.* Dec 12 2016;30(6):968-985.
144. Kaksonen M, Roux A. Mechanisms of clathrin-mediated endocytosis. *Nat Rev Mol Cell Biol.* May 2018;19(5):313-326.
145. Gomez-Escudero J, Clemente C, Garcia-Weber D, et al. PKM2 regulates endothelial cell junction dynamics and angiogenesis via ATP production. *Sci Rep.* Oct 21 2019;9(1):15022.
146. Dowling JE. Restoring vision to the blind. *Science.* May 22 2020;368(6493):827-828.
147. Kergoat H, Herard ME, Lemay M. RGC sensitivity to mild systemic hypoxia. *Invest Ophthamol Vis Sci.* Dec 2006;47(12):5423-7.
148. Kaur C, Foulds WS, Ling EA. Hypoxia-ischemia and retinal ganglion cell damage. *Clin Ophthamol.* Dec 2008;2(4):879-89.
149. Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol. Jun 2009;11(6):747-52.

150. Li Q, Puro DG. Diabetes-induced dysfunction of the glutamate transporter in retinal Muller cells. Invest Ophthalmol Vis Sci. Sep 2002;43(9):3109-16.

151. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna). Aug 2014;121(8):799-817.

152. Hsieh CH, Lin YJ, Chen WL, et al. HIF-1alpha triggers long-lasting glutamate excitotoxicity via system xc(-) in cerebral ischaemia-reperfusion. J Pathol. Feb 2017;241(3):337-349.

153. Stone J, Dreher Z. Relationship between astrocytes, ganglion cells and vasculature of the retina. J Comp Neurol. Jan 1 1987;255(1):35-49.

154. Li K, Li J, Zheng J, Qin S. Reactive Astrocytes in Neurodegenerative Diseases. Aging Dis. Jun 2019;10(3):664-675.

155. Almeida A, Almeida J, Bolanos JP, Moncada S. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci U S A. Dec 18 2001;98(26):15294-9.

156. Fu W, Shi D, Westaway D, Jhamandas JH. Bioenergetic mechanisms in astrocytes may contribute to amyloid plaque deposition and toxicity. J Biol Chem. May 15 2015;290(20):12504-13.

157. Rubsam A, Parikh S, Fort PE. Role of Inflammation in Diabetic Retinopathy. Int J Mol Sci. Mar 22 2018;19(4)
Figure 1. Cytopathological stages of diabetic retinopathy (DR). (left) Health. The inner blood-retinal barrier (BRB) consists of tightly connected endothelial cells (ECs) to pericytes, astrocytes, and Müller cells. Neurovascular coupling of glial cells, ECs, and neurons regulates blood flow and maintains hemodynamic stability to match the metabolic demands of the neurons. (middle) Non-proliferative DR is featured by thickening of vascular basement membrane, ECs damage with disruption of tight and adherent junctions, pericyte loss, occlusion of capillaries, and the subsequent capillary non-perfusion/ischaemia. Neurodegeneration marked by neuronal apoptosis and reactive gliosis precedes microvascular impairments, and results in BRB breakdown, vasoregression, and defective neurovascular coupling. (right) Proliferative diabetic retinopathy (PDR) manifests with pathological neovascularisation triggered by progressive retinal ischaemia. Diabetic macular oedema (DME) and PDR are the major causes of blindness in DR. GCL, ganglion cell layer; ILM, inner limiting membrane; INL, inner nuclear layer; IPL, inner plexiform layer; NFL, nerve fibre layer; OLM, outer limiting membrane; ONL, outer nuclear layer; OPL, outer plexiform layer; RPE, retinal pigment epithelium.
Figure 2. Role of HIF1α-PFKFB3 signalling in angiogenesis. (A) Retinal non-perfusion and ischaemia promote hypoxia, which activates HIF1α. HIF1α activates different angiogenic factors, including VEGF (orange dots), to increase blood reperfusion and oxygen delivery. As a HIF1α target gene, PFKFB3 is implicated in the tip cell phenotype and vessel sprouting. (B) Targeting HIF1α-PFKFB3 signalling may prevent sprouting and abnormal vessel formation. (C) HIF1α-PFKFB3 signalling and its biological mediator F2,6P2 promote tip cell competition by initiating the VEGF-DLL4-Notch signalling circuit. VEGF activates VEGFR2, which upregulates PFKFB3 levels and increases glycolysis and the expression of Notch ligand – DLL4. DLL4 binds to the Notch receptor of stalk cells, activates NICD; the latter, in turn, exerting negative feedback on VEGFR2 signalling in the stalk cells. This signalling cascade results in the glycolytic tip cells with high DLL4 and VEGF expression and less glycolytic stalk cells with high Notch signalling, directly involved in vessel sprouting. F2,6P2, fructose-2,6-biphosphate 2; FBPase1, fructose-1,6-biphosphatase 1; DLL4, delta-like ligand 4; NICD, Notch 1 intracellular domain; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.
Figure 3. HIF1α-PFKFB3 signalling in neurodegeneration. Oxidative stress and extracellular glutamate (yellow dots) accumulation are two critical mechanisms underlying neurodegeneration in diabetic retinopathy (DR). Under physiological conditions, glucose metabolism in neurons is directed to the PPP to maintain their antioxidant status. This process is accomplished by high APC/C-Cdh1 activity in neurons, in which ubiquitinated PFKFB3 is continuously degraded and its biologic mediator F2,6P2 is suppressed. During stress in DR, PFKFB3 is activated by HIF1α leading to reduced PPP. Besides, NMDAR overstimulated by extracellular glutamate accumulation inhibits APC/C-Cdh1 and upregulates PFKFB3; the latter enhances glycolytic flux, which is detrimental to neurons, thus corroborating neurodegeneration. In addition to neurons, hyperactivated astrocytes (gliosis) overexpress various proinflammatory cytokines and chemokines (blue dots), thus compromising the integrity of the blood-retinal barrier and promoting neurodegeneration. APC/C-Cdh1, anaphase-promoting complex/cyclosome; F6P, fructose-6-phosphate; F1,6P2, fructose-1,6-bisphosphate; F2,6P2, fructose-2,6-bisphosphate 2; FBPase1, fructose-1,6-bisphosphatase 1; G6P, glucose-6-phosphate; HIF1, hypoxia-inducible factor 1α transcription complex; HRE, hypoxia response element; NMDAR, N-methyl-D-aspartate receptor; PPP, pentose phosphate pathway; ROS, reactive oxygen species.
Table 1 Summary of articles that describe implication of HIF1α and/or PFKFB3 in retinopathy

Publications	Year	Main Findings	Citations
Lin M, et al. *Diabetologia.*	2011	Specific knockout of HIF1α in Müller cells attenuated retinal neovascularisation, vascular leakage and inflammation in both in OIR and in the mouse model of streptozotocin (STZ)-induced DR.	(109)
De Bock K, et al. *Cell.*	2013	PFKFB3-driven glycolysis regulated vessel sprouting in pathological retinal angiogenesis (including OIR model).	(20)
Wert KJ, et al. *Signal Transduct Target Ther.*	2016	Neurotinal cells with neoretinal-specific loss of VHL protein overexpressed HIF1α and developed severe, irreversible ischemic retinopathy featured by human PDR.	(110)
Sharavana G, et al. *J Funct Foods.*	2017	Lutein decreased HIF1α and X-box binding protein 1 mRNA expression, thus downregulated retinal VEGF in streptozotocin induced diabetic rats.	(111)
Barben M, et al. *Cell Death Differ.*	2018	HIF1 activation led to a slowly retinal degeneration in the ageing mouse retina, and inhibiting HIF1α can mitigate this degeneration.	(34)
Kusunose N, et al. *Jpn J Ophthalmol.*	2018	The clock gene DEC2 modulated HIF1 protein levels and upregulated VEGF mRNA in human cell line of retinal glial cells.	(112)
D’Amico AG, et al. *J Cell Physiol.*	2018	NAP (a small peptide derived from the activity-dependent neuroprotective protein) prevented outer BRB breakdown by reducing HIF1/HIF2 and VEGF/VEGFR expression and increasing HIF3 expression in human retinal pigmented epithelial cells.	(113)
Miwa Y, et al. *Neurochem Int.*	2019	HIF inhibition prevented retinal neovascularization with improved visual function in a murine OIR model.	(114)
Kunimi H, et al. *PeerJ.*	2019	HIF inhibitor improved RGCs survival in a murine model of retinal ischemia-reperfusion injury.	(35)
Zhang Q, et al. *Cytokine.*	2019	IL-27 disrupted HIF1α action and suppressed VEGFA production in macrophages of DR patients and healthy individuals.	(115)
Shoda C, et al. *Nutrients.*	2020	HIF inhibitors derived from marine products suppressed retinal neovascular tufts in OIR model.	(116)
Zhao D, et al. *Clin Sci (Lond).*	2020	Hotair bounded to lysine-specific demethylase 1 to inhibit VE-cadherin transcription and to facilitate transcription factor HIF1α-mediated transcriptional activation of VEGFA, leading to retinal ECs dysfunction.	(117)
Liu L, et al. *Diabetes Metab Syndr Obes.*	2020	Six-transmembrane epithelial antigen of the prostate 4 inhibited HIF1α/PKM2 signaling and reduced hyperglycemic-induced retinal ECs apoptosis.	(118)
Liu L, et al. *J Drug Target.*	2021	MicroRNA-135b-5p inhibited VHL and elevated HIF1α expression, thereby promoting ECs proliferation and angiogenesis in DR mice.	(119)
Dong L, et al. *Cell Commun Signal.*	2021	Polypyr imidine tract-binding protein-associated splicing factor (PSF) ameliorated retinal neovascularization by inhibiting HIF1α under hypoxia.	(120)
Figure 1
Figure 2
Figure 3