Studies on Shoot and Fruit Characters of Brinjal Plants and their Quantitative Relationships with Brinjal Shoot and Fruit Borer

E. Sowmya* and S. Pradeep

Department of Entomology, University of Agricultural and Horticultural Sciences, Navile, Shimoga – 577 225, India

*Corresponding author

Abstract

The field experiment was conducted with thirty four brinjal cultivars during September 2013 to December 2013 to identify shoot and fruit characteristics of brinjal plants for their susceptibility/resistance against brinjal shoot and fruit borer infestation. Borer infestation was influenced by different characters of plant shoot and fruit. Various parameters like plant height stem diameter, number of branches and leaves per plant, third leaf length, phenol content in shoot and fruit length, fruit weight, mesocarp thickness, number of seeds, phenol content and tannin content in fruit were recorded from different cultivars used. The shoot infestation highly significant and gave a very strong significant negative correlation between shoot infestation with leaf trichomes (-0.391*) and biochemical factors like phenol content (-0.710**). Fruit infestation had negative significant correlation with fruit weight (-0.455**), mesocarp thickness (-0.389*), number of seeds (-0.740**), phenol content (-0.357*) and yield (-0.825**). The trichomes and hairs on different parts of the plant seem to have a significant role towards non preference for fruit infestation and Phenol content had a high negative direct effect on shoot and fruit borer infestation.

Keywords
Brinjal shoot and fruit borer, Shoot and fruit characters, Quantitative relationship, Infestation

Accepted: 26 July 2020
Available Online: 10 August 2020

Introduction

Brinjal, Solanum melongena Linnaeus is highly cosmopolitan and popular vegetable grown as poor man’s crop in India. It is the most-consumed and most-sprayed vegetable in India, where it is grown on more than 5, 00,000 hectares, making it one of the main sources of cash for many farmers (Daniel Miller, 2007). The average yields of brinjal in India are reported to be 17.35 tonnes per hectare (Anon, 2011). Various insects cause enormous losses to this vegetable throughout the season in Bangladesh as well as in Indian sub-continent (Alam, 1969 and Dhankar, 1988), among them brinjal shoot and fruit borer (BSFB), Leucinodes orbonalis Guenee, is the most serious and destructive one. Due to the attack of this pest considerable damage is occurred each year affecting the quality and yield of the crop. Only the larvae of this pest cause 12-16 % damage to shoots and 20-60% to fruits (Alam, 1970; Maureal et al., 1982). The pest is very active during the rainy and summer season and often causes more than 90% damage (Ali et al., 1980; Kalloo, 1988).
The yield loss has been estimated up to 86% (Ali et al., 1980) in Bangladesh and up to 95% (Naresh et al., 1986) in India. Indiscriminate use of synthetic chemicals for the controlling insect pest resulted hazardous effects causing serious problems including pest resistance, secondary pest outbreak, pest resurgence and environmental pollution. Considering the above fact, the present study was undertaken to find out whether the shoot and fruit characters influencing the infestation rate of BSFB and also their quantitative relationships with infestation which will help to develop resistant/tolerant varieties against this pest.

Materials and Methods

For the experiment thirty four brinjal cultivars were used. The experiment was laid out in a Randomized Complete Block Design (RCBD) with two replications. Uniform and healthy seedlings of 45 days old were taken separately from the seedbed, transplanted in the experimental plots maintaining a spacing of 75cm x 60cm between the row to row and plant to plant. Different intercultural operations (weeding, gap filling and irrigation) were accomplished for better growth and development but no insecticide was used. The data on plant height (cm), stem diameter (cm), number of branches and leaves per plant, third leaf length (cm), phenol content in shoot, fruit length (cm), fruit weight (g), mesocarp thickness (cm), number of seeds, phenol content (mg/g), tannin content (mg/g)in fruit and infestation were recorded at 90 and 120 days after transplantation in shoot and fruit, respectively. Total phenols and tannin content from brinjal shoots and fruits were determined by method given by Bray and Thorpe (1954) and Sadashivam and Manickam (1996) and experiment was carried out in Microbiology Department, UAHS, and the College of Agricultural and Horticultural Sciences, Navile, Shimoga. One ml of plant extract (alcohol evaporated after extraction with 80 % alcohol) was pipetted out into a test tube. 1 ml of folin-cioacalteu reagent followed by 2 ml of Na2CO3 solution was added. Shakings were given to the tubes with automatic shaker and heated in a boiling water bath for exactly 1 min. After boiling, solutions were allowed to cool and diluted the blue solution to 100 ml with distilled water and absorbance was measured at 650 nm in a spectrophotometer. A blank containing all the reagents (without plant extract) was used to adjust the absorbance to zero. A standard graph was prepared by plotting absorbance V/Stannic acid concentration (0.2, 0.4, 0.6, 0.8 and 1.0). With the help of a standard graph, per cent total phenols were calculated and tannin content estimated by pipetted out Tannic acid working standard solutions (0.05 mg/ml) from 0.2-1 ml to 5 individual test tubes, make up the volume to 1 ml with distilled water. To each tube add 5 ml of Folin-denis reagent was added followed by 10 ml of 35 % Na2CO3 solution mix the contents well and leave for incubation at room temperature for 30 min. After the incubation read the absorbance at 700 nm against the reagent blank along with test samples. The experimental data recorded on various parameters during the investigation were analyzed statistically by adopting Fischer’s method of analysis of variance as outlined by Gomez and Gomez (1976) and mean difference were adjusted with DMRT (Duncan, 1955).

Results and Discussion

Evaluation of traditional brinjal cultivars for shoot and fruit characters of brinjal in relation to shoot and fruit borer infestation (Table 1-4). The stem girth of various traditional brinjal cultivars ranged from 2 cm to 4 cm being maximum in mulla badane (4 cm), minimum in hosajavari badane (2 cm) and
stem girth (0.016) was non significant negative correlation with shoot and fruit borer infestation. But Hossain et al. (2002) reported that the stem diameter positively correlated (0.5472) with BSFB infestation. The genotype Apple badane (55.4 cm) showed maximum plant height whereas, minimum plant height showed Thailand badane (24.2 cm) and plant height (-0.130) was non significant negative correlation with shoot and fruit borer infestation. But Hossain et al. (2002) reported that the plant height positively correlated (0.5310) with BSFB, L. orbonalis infestation. The average maximum third leaf length was recorded in the cultivar Sakleshpura badane (9.15 cm), minimum in doddamullina badane (3.9) and third leaf length (-0.290) was non significant negative correlation with shoot and fruit borer infestation. But Hossain et al. (2002) reported that third leaf length (cm) of selected brinjal genotypes was positively correlated (0.3158) with BSFB infestation.

Number of shoots ranged from 2.1 to 7 being maximum in Ramadurga badane (7), minimum in biludda badane (2.1) and number of shoots (0.014) was positive non significant correlation with shoot and fruit borer infestation. The present findings are in line with Hossain et al. (2002) number of branches per plant was positively correlated (0.4180) with BSFB infestation.

The average maximum numbers of leaves were recorded in the cultivar dorelo badane (72) and in the cultivar biliudda badane (12.1) and number of leaves (0.064) was non significant positive correlation with shoot and fruit borer infestation. But Hossain et al. (2002) observed that the number of leaf per plant were positively correlated (0.3968) with BSFB infestation. Cultivars had the maximum number of trichomes on the leaf surface of Sakleshpura badane (17.55), minimum in bilichendu badane (9.7) and leaf trichomes (-0.391*) was negatively significantly correlated with shoot and fruit borer infestation due to more number of trichome reduces shoot and fruit borer infestation.

The present findings were in line with Javed et al., 2011, who reported that the trichomes and hairs on different parts of the plant seem to have a significant role towards non preference for fruit infestation which is in conformity with the findings of Hossain et al., (2004).

According to them, less number of trichomes may be responsible for the susceptibility of brinjal plant to shoot and fruit borer. The traditional cultivars was found to have varying levels of Phenol content in shoot, ranging from 162.5 mg/100gm to 784 mg/100gm being maximum in Heddaragulla badane (761 mg/100gm), minimum in annageri badane (162.5 mg/100gm) and phenol content (-0.710**) was significantly negatively correlated with shoot and fruit borer infestation due to cultivars with maximum amount of Phenol content received the minimum infestation in both shoot and fruit due to phenol content impart resistance against brinjal shoot and fruit borer.

Findings of the present study are supported by several earlier investigators Martin (2004) and Doshi (2004) also reported that PPO activity had a high negative direct effect on shoot and fruit borer infestation. The maximum fruit length 6.95 cm was recorded in Apple badane and minimum fruit length reported in kothithale badane (2.4 cm) and fruit length (-0.301) was non significant negative correlation with shoot and fruit borer infestation. Similar findings were reported by Grewal and Singh (1995) and Gupta and Kauntey (2008) who did not find any linear correlation between length and diameter of fruits and degree of fruit infestation (Fig. 1 and 2).
Table 1 Morphological and biochemical characters of brinjal plant in relation to shoot infestation

Cultivar	Mean Shoot infestation	Shoot characters	Phenol content (mg/100g)					
	plant height (cm)	Stem girth (cm)	Third leaf length (cm)	No. of leaves / plant	No. of shoots / plant	No. of Trichomes/leaf		
Sthaliya badane	28.02	29.65^i-m	6.55^f-k	29.00^g-m	4.40^c-j	11.15^g-j	680.50^a	
Holesalu badane	27.52	31.40^h-m	3.25^def	34.30^e-l	5.90^a-d	10.20^jk	721.00^a	
Heddaragulla badane	29.77	34.00^f-m	8.15^abc	18.40^mn	2.80^ijk	10.90^hij	784.00^a	
Andhra sahare	30.31	51.64^abc	3.19^ef	36.00^f-k	5.40^a-g	12.39^fgh	640.50^d	
Apple badane	34.97	55.40^a	7.92^def	49.00^b-f	5.90^a-d	16.52^ab	761.00^a	
Kanakapura badane	35.28	44.00^c-f	8.00^bcd	43.10^c-g	5.90^a-d	16.92^a	283.00^bcd	
Biligundu badane	36.35	49.80^a-d	7.42^c-g	53.00^b-e	5.90^a-d	16.52^ab	288.50^bcd	
Annageri badane	38.74	45.75^a-e	5.10^lmno	49.00^b-f	5.50^a-f	10.50^jk	162.50^e	
40-A badane	35.69	44.05^c-f	7.44^c-g	37.50^j	4.10^d-k	15.32^bc	171.00^e	
Biligundi badane	36.34	40.30^d-j	2.70^hi	34.60^b-l	6.00^a-d	10.95^hi	304.50^bcd	
Kalkare badane	39.14	42.20^c-g	6.17^h-l	56.70^bc	6.60^ab	14.75^d	348.50^bcd	
Kothithale badane	36.45	44.30^b-f	6.65^fg	19.30^lnn	2.50^k	11.12^g-j	290.50^bcd	
Sakleshpura badane	40.74	55.05^ab	3.00^gh	9.15^a	23.00^i-n	4.40^c-j	17.55^a	324.50^bcd
Ramadurga badane	42.08	39.95^d-j	3.00^gh	7.60^b-f	33.60^f-m	7.00^a	14.35^ed	258.50^bcd
Keredoddi kollegai badane	40.93	35.65^c-i	3.00^gh	5.77^j-m	37.80^e-j	5.90^a-d	10.92^hij	295.50^bcd
Values in each column superscripted by same letter do not differ significantly

Hosajavari badane	41.45	41.70	2.00	6.65	19.30	2.50	12.62	324.50	
Bilichandubadane	40.15	39.80	3.50	5.60	40.30	5.5	9.7	195.50	
Biliudda badane	39.83	40.60	4.00	8.05	12.10	2.1	13.1	177.50	
Naabe badane	41.26	35.80	3.50	5.64	26.40	4.8	9.84	166.00	
Ullala badane	41.63	33.70	3.00	5.40	29.10	4.5	10.85	250.50	
Rosilla badane	41.81	29.50	3.50	6.20	29.30	4.5	10.1	384.00	
Mullugai badane	38.84	25.65	2.50	5.52	22.40	3.2	9.67	290.50	
Hebberalu badane	42.37	40.50	3.50	4.69	38.20	6.4	8.95	324.50	
Doddamullina	38.86	37.70	3.00	3.90	21.80	5.1	7.3	258.50	
Javari badane	40.30	36.40	2.00	5.35	22.30	3.8	9.7	395.00	
Dodda badane	42.63	28.60	3.00	5.60	30.40	3.4	10.67	425.50	
Harirukempu	36.56	36.40	2.55	5.85	21.80	3.8	12.12	230.50	
Anaamadeya badane	37.55	29.90	2.50	6.13	28.30	4.1	10.5	210.00	
Hasirruudda badane	41.14	30.00	2.50	6.00	61.00	6.7	10.9	304.50	
Mobbbugulla badane	38.57	34.20	4.00	8.90	25.40	4.5	16.92	316.00	
Thiland badane	38.51	24.20	2.50	4.20	55.50	3.5	5.98	290.50	
Dorolo badane	40.96	32.80	3.00	7.20	72.50	4.9	14.6	209.50	
Anemadeha-1	40.31	30.80	3.50	7.00	27.80	3.2	13.6	213.00	
Mulla badane	40.16	32.20	4.00	6.80	35.40	5.8	13.3	191.50	
S.Em.±	1.09	0.22	0.01	0.06	0.32	0.10	0.05	48.79	
CD	4.44	0.89	0.07	0.25	1.33	0.44	0.23	198.54	

3596
Table 2: Correlation between shoot infestation and plant characters

Characters	Plant height (cm)	Stem girth (cm)	Third leaf length (cm)	No. of leaves/plant	No. of shoot/plant	No. of Trichomes/leaf	Phenols (mg/100g)	r
Shoot infestation	-0.130	-0.016	-0.290	0.064	0.014	-0.391*	-0.710*	0.389

* Correlation is significant at the 0.05 level (2-tailed)
N=34
r=0.389

Table 3: Morphological and biochemical characters of brinjal fruit in relation to fruit infestation

Cultivar	Mean Fruit infestation	Fruit weight (gm)	Mesocarp thickness (cm)	No. of seeds/fruits	Fruit length (cm)	Phenol Content mg/100g	Tannin Content mg/100g	Yield t/ha
Sthaliya badane	29.93	37.09^h-a	0.45^hi	831.5^de	5.40^bf	201^ab	116.7^a-h	9.28^ab
Holesalu badane	31.36	53.16^fg	0.82^c	1170^e	5.40^c-h	212.5^a	119.1^a-g	9.50^ab
Heddaraagulla badane	31.83	302.39^a	1.55^a	2160^a	5.40^a-d	190.5^a-e	125^c-e	9.64^a
Andhra sahare	31.18	81.84^cde	0.87^d	1480^b	5.40^b-f	207.5^ab	121^a-f	9.98^a
Apple badane	30.16	70.76^c-g	1.10^c	660^ef	6.95^a	192.5^a-e	128^ab	10.68^a
Kanakapurabadane	32.28	123.43^b	1.16^bc	675^ef	3.75^b-l	195.5^a-d	114.5^a-h	6.15^d
Biligundu badane	38.73	137.62^h	0.55^fgh	649.4^f	3.45^f-l	151^gh	123^a-f	5.84^h
Annageri badane	41.42	18.42^mm	0.50^ghi	704.6^f	3.40^e-l	178.5^b-g	129^ab	5.14^gh
40-A badane	43.39	81.98^cd	0.40^f	350.8^gh	3.50^k-l	193.5^a-c	131.1^a	5.53^gfh
Biligundi badane	38.59	19.95^lmn	0.45^bi	558.8^f	4.00^j	162^c-h	106.7^c-f	4.79^j
Kalkare badane	38.14	76.67^c-f	0.65^f	838.0^de	3.75^l	164.5^c-h	105^h	3.94^i
Kothithale badane	37.29	117.01^b	0.65^f	970.0^d	2.40^kl	185^a-f	98.5^gh	4.08^i
Badane	CD	S.Em.±	Mulla badane	Anemadeh				
-------------------------------------	-------	--------	--------------	----------				
Sakleshpura	40.20	81.96cd	0.65f	340ghi				
Ramadurga	38.66	63.19c-h	0.60fg	283ghi				
Kereddodi kollegai	40.79	19.93lm	0.50ghi	198.5ghi				
Hosajavari	42.005	39.45h-n	0.50ghi	297.3ghi				
Bilichandu	42.74	22.93k-n	0.50ghi	371g				
Biliudda	42.64	28.92j-n	0.45ghi	182.8ghi				
Naabe badane	40.37	33.11i-n	0.62f	184ghi				
Ullala badane	39.43	38.02h-n	0.61fg	200ghi				
Rosilla badane	39.90	22.43k-n	0.45hi	193ghi				
Mullugai badane	40.50	58.38d-i	0.80e	171.5ghi				
Hebberalu	42.85	37.69h-n	0.80e	187.9ghi				
Doddumullina	39.89	11.70a	0.55fg	178.4ghi				
Javari badane	39.47	33.24i-n	1.25b	205ghi				
Dodda badane	41.51	46.57g-m	0.45hi	215ghi				
Hariru kempu badane	40.07	30.08i-n	0.40i	164i				
Anaamadeya badane	41.98	48.12g-l	1.25b	183hi				
Hasiru udda badane	41.82	87.54c	0.95d	172.8ghi				
Mobbugulla badane	40.96	53.38e-j	1.20bc	172hi				
Thailand badane	41.88	16.83a	0.65f	183ahi				
Dorelo badane	40.09	53.38e-j	1.20bc	172hi				
Anemadeh-Ibadane	41.51	46.57g-m	0.45hi	215ghi				
Mulla badane	40.07	30.08i-n	0.40i	164i				
S.Em.±	1.11	7.01	0.02	44.56				
CD at 5%	4.55	28.53	0.11	181.31				
Table 4 Correlation between fruit infestation and fruit characters

Characters	Fruit Weight (g)	Mesocarp Thickness (cm)	No. of seeds	Fruit Length (cm)	Phenol content (mg/g)	Tannin content (mg/g)	Yield
Fruit infestation	-0.455**	-0.389*	-0.740**	-0.301	-0.357*	-0.052	-0.825**

**. Correlation is significant at 0.01 level (2-tailed).
*. Correlation is significant at 0.05 level (2-tailed)

N=34
r=0.389

Fig.1 Correlation between physico-morphic and biochemical characters of shoots of traditional brinjal cultivars against shoot and fruit borer

Fig.2 Correlation between physico-morphic and biochemical characters of fruits of traditional brinjal cultivars against shoot and fruit borer
The maximum fruit weight 302.39 gm was recorded in heddaragulla badane (302.39 gm) whereas, minimum fruit weight reported in Javari badane (11.70 gm) and fruit weight (-0.455**) was significant negative correlation with shoot and fruit borer infestation. Similar findings were reported by Hazra et al., 2004, there was a positive and significant effect of fruit weight (0.45) on the susceptibility to fruit infestation of the pest. The maximum mesocarp thickness reported in the cultivar heddaragulla badane (1.55 cm) whereas, minimum in 40-A badane (0.4 cm) and mesocarp thickness (-0.389*) was significant negative correlation with shoot and fruit borer infestation. These findings are in line with Krishnaiah and Vijay (1975). According to them susceptibility might be due to the spherical and oblong fruit with soft mesocarp and loosely arranged seeds. The maximum number of seeds2160 was recorded in heddaragulla badane, the minimum number of seeds was noticed in mobbugulla badane (164) and number of seeds (-0.740**) was non significant negative correlation with shoot and fruit borer infestation. The literature on this aspect of study is lacking in case of brinjal to compare and discusses the present results and therefore this study forms first of its kind. The maximum tannin content 131.1mg/100gm was recorded in 40-A badane and mullugai badane, minimum in kothithale badane (97 mg/100gm) and tannin content (-0.052) was non significant negative correlation with shoot and fruit borer infestation. The maximum phenol content reported in holesalu badane (212.5 mg/100gm), minimumin dorelo badane (74.5 mg/100gm) and phenol content (-0.357*) was significant negative correlation with shoot and fruit borer infestation and findings of the present study are supported by Doshi (2004) also reported that PPO activity had a high negative direct effect on shoot and fruit borer infestation. Maximum yield was recorded in Apple badane (10.68 t ha$^{-1}$) and the minimum yield was recorded in Thailand badane (3.26 t ha$^{-1}$). However, the yield was significant negative correlation with incidence of shoot borer (-0.825**).

References

Alam, M.Z. 1970. Insect pest of vegetables and their control in Bangladesh. Agril. Inf. Serv. Dacca, Bangladesh. 132 p.

Ali, M.I., Ali, M.S. and Rahman, M.S. 1980. Field evaluation of wilt disease and shoot and fruit borer attack of different cultivars of brinjal. Bangladesh J. Agril. Sci. 7(2): 193-194.

Anonymous, 2011, Indian Horticulture Database, National horticulture board, 2011, Ministry of Agriculture, Government of India. at www.nhb.go.in.

Bray, H. G. and Thorpe, W. V., 1954, Analysis of phenolic compounds of interest in metabolism. Methods of Biochemical Analysis, 1: -27-52.

Daniel Miller. 2007. Genetically Engineered Eggplant. Span, 41.

Dhankar, B. S., 1988, Progress in resistance studying in Eggplant (Solanum melongena L.) against shoot and fruit borer (Leucinodes orbonalis Guenee) infestation. Trop. pest Manag., 34: 343-345.

Doshi, K. M., 2004, Influence of biochemical factors on the incidence of shoot and fruit borer infestation in eggplant. Capsicum and Eggplant Newsletter, 23: 145-148.

Duncan, D.V. 1955. Multiple Ranges and Multiple F- test. Biometrics. 11:1- 42.

Gomez, K. A. and Gomez, A. A., 1976, Statistical procedure for agricultural research (2nd Ed.). A Willely Inter. sci. Publs., New York. p.680.

Grewal, R. S., SINGH AND Dilbagh, 1995, Fruit characters of brinjal in relation to infestation by L. orbonalis Guen. Indian
J. Ent., 57: 336-343.
Gupta Y. C. and Kauntey, R. P. S., 2008, Studies on fruit characters in relation to infestation of shoot and fruit borer, *Leucinodes orbonalis* Guen. in brinjal *Solanum melongena* Linn. *J. Ent. Res.*, 32: 119-123.
Hazra, P., R. Dutta and T. K. Maity. 2004. Morphological and biochemical characters associated with field tolerance of brinjal (*Solanum Melongena* L.) to shoot and fruit borer and their implication in breeding for tolerance. *Indian J. Genet.*, 64(3): 255-256.
Hossain, M. M., M. Shahjahan and A. K. M. Saad-UD-Doula Prodhan. 2002. Study of anatomical characters in relation to resistance against brinjal shoot and fruit borer. *Pak. J. Biol. Sci.*, 5(6): 672-678.
Kalloo. 1988. *Solanaceous* crops. In: Vegetable Breeding. Vol. II. CRC. Press. INC BOCA Raton, Florida. pp. 520-570.
Krishnaiah, K. and Vijay, O. P. 1975. Evaluation of brinjal varieties for resistance to shoot and fruit borer, *Leucinodes orbonalis* Guen. *Indian Journal of Horticulture*, 32 (1-2): 84-86.
Martin, S., 2004, Biochemical and molecular profiling of diversity in *Solanum* spp. and its impact on pests. *An Msc thesis inBiotechnology, Tamil Nadu Agril. Univ.*, p.124.
Maureal, A. M., Noriel, L. M. and Esguerra, N. M. 1982. Life history and behaviour of eggplant fruit borer. *Annal. Trop. Res.* 4(3): 178.
Naresh, J. S., Malik, V. S., Balan, J. S. and Khokhar, K. S. 1986. A new record of *Trathala* sp., a larval endoparasite attacking brinjal fruit borer, *Leucinodes orbonalis* Guenee. *Bull. Ent.* New Delhi. 27(1): 74.
Sadashivam, S. and Manickam, A., 1996, Biochemical methods. *New age international (P) Ltd., publishers*, (Edn. 2), May.

How to cite this article:

Sowmya, E. and Pradeep, S. 2020. Studies on Shoot and Fruit Characters of Brinjal Plants and their Quantitative Relationships with Brinjal Shoot and Fruit Borer. *Int.J.Curr.Microbiol.App.Sci.* 9(08): xx-xx. doi: https://doi.org/10.20546/ijcmas.2020.908.414