Knowledge, attitude and behavior towards vaccinations among nursing- and health care students in Hesse. An observational study

Abstract

Objective: Work-related vaccinations are recommended for employees in nursing and health care professions due to their elevated risk of infection because of job-related exposure. These vaccinations prevent work-related infections, protect patients and help to maintain the medical infrastructure. Thorough training and imparting of knowledge about vaccinations and work-related infections are essential pillars of the vaccination decision and thus for achieving a protective immune status. The present study examines the knowledge, attitudes and behavior of nursing- and health care students in Hesse regarding work-related infections and vaccinations.

Methods: In spring 2018, seven nursing schools in Hesse took part in an anonymous survey study. A total of 690 surveys from students of various health care professions were included in the study. The content of the survey was based on the recommendations of the Standing Committee on Vaccination (STIKO), a literature review and sample questions from the World Health Organization (WHO) regarding “vaccine hesitancy”. Vaccination cards were also evaluated based on the STIKO recommendations concerning standard vaccinations and occupational vaccinations for health care workers.

Results: The risk of acquiring a work-related infection was estimated to be quite high over all years of training. Gaps in knowledge were particularly evident in the area of vaccinations. Only three quarter of those surveyed believed that the effectiveness of vaccinations has been proven, and nearly 30% believed that the doses of the drugs used in vaccines were dangerous. Over 80% of the students had never had an influenza vaccination documented in their vaccination card.

Conclusions: The knowledge about vaccinations imparted in the course of the education should be expanded. A special course on the subject of vaccinations and the immune system with practical elements could contribute to a better understanding of how vaccinations work and misunderstandings could be eliminated in early stages of the training through the dialog between the students and the teacher in the classroom and the occupational physician as part of preventive occupational health check-ups.

Keywords: health care workers, vaccination, occupational health, occupational physician, health education, nurses

Timm Tristan Berg
Sabine Wicker

1 Plant Medical Services, Wetzlar, Germany
2 University Hospital of Frankfurt, Company Medical Services, Frankfurt/M., Germany
Introduction

Health care workers have a higher risk of infection due to their job responsibilities [1], [2]. Vaccinations are an integral part of the prevention of infectious diseases in employees and their patients [3], [4] and more importantly to protect those with preexisting conditions [5]. In addition, vaccinations are an important component in maintaining our medical infrastructure, as can be seen in the current SARS-CoV-2 pandemic. The significance of health care workers in terms of role models and influencers with regard to the validation and acceptance of vaccinations [6], [7] also underscores the importance of good training especially in the area of vaccination medicine. They act as important information sources and recommendation providers for patients [8], and their relatives [9]. Yet there are significant vaccination gaps within the nursing profession. In an online survey in 2019/2020, 79.3% of physicians were vaccinated against influenza, in the same period the rate of nurses vaccinated was only 46.7% [10].

The assessment of one’s own risk of infection and getting sick, the knowledge about vaccinations and one’s own attitude towards the subject of vaccinations are important factors for the decision to get vaccinated [6], [11]. Employees in health care also belong to a group of the working population with the most work-related vaccination recommendations of the Standing Commission on Vaccination (STIKO) [12], [13] and are also often confronted with recurring vaccinations, for example the seasonal flu shot or new vaccinations (e.g. against COVID-19) throughout their careers. A current study about the opinion of hospital employees on the COVID-19 vaccination shows, however, that affiliation to the occupational group of nursing personnel was associated with significantly less willingness to get vaccinated [14]. It was therefore the goal of the current study to conduct a survey on the factors that influence the decision on vaccination in order to work out potential approaches for improving the stance on vaccination and the willingness to get vaccinated.

Occupational physicians for health care workers, assume a special role here, because their recommendations for occupationally indicated vaccinations depend on their knowledge about current vaccination recommendations, as well as their personal attitude towards vaccinations [15]. Health care workers are subject to mandatory occupational health check-ups due to their contact with biological materials as part of their job. The employer must arrange these occupational health check-ups for his employees in accordance with the Ordinance on Occupational Health Precautions (ArbMedVW) [https://www.gesetze-im-internet.de/arbmedvww/]. These health check-ups must be carried out by the employee before the start of work and at the latest 12 months thereafter [https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/AMR/pdf/AMR-2-1.pdf?__blob=publicationFile]. This provides two intervention points for occupational physicians to inform students about vaccinations and infectious diseases during their education. In this regard, the present study investigated the extent to which students are informed about the vaccination services offered by their occupational physician and to what extent he/she is consulted as a source of information regarding vaccinations and infectious diseases.

With the inclusion of §23a in the Infection Protection Act in 2015 [https://www.gesetze-im-internet.de/ifsg/] and the 2020 Measles Protection and Vaccine Prevention Strengthening Act [16], health care workers are also subject to legal provisions. Last but not least as a building block for the elimination of measles in Germany [17], this is a formal goal of German health care policy. According to the “National Action Plan 2015-2020 for the Elimination of Measles and Rubella in Germany”, adults born after 1970 and, above all, health care workers are among the population groups with a special need for action [18]. In addition, the World Health Organization (WHO) already declared vaccine hesitancy as one of the top ten risks to global health in 2019 [19].

Methods

In spring 2018, seven nursing schools in Hesse took part in an anonymous survey study. All nursing schools contacted had agreed to participate. 476 health care and nursing students, 108 health care and pediatric nursing students, and 98 STA- (surgical technical assistant) or MTA- (medical technical assistant) students participated in the study, which was conducted between March and October 2018. The questionnaire consisted of 10 questions, plus a “knowledge test” with 9 statements about vaccinations to be assessed.

The development of the questionnaire resulted from the vaccination recommendations of the STIKO [12], as well as sample questions of the WHO regarding “vaccine hesitancy” [20]. Based on the results of the literature review about important factors of a vaccination decision, the questions of the questionnaire were divided into three content-related topics: The “infections” section includes questions about assessing the level of knowledge on infectious diseases, preparation to avoid work-related infections and assessing the risk of contracting a work-related infection. The “vaccinations in general” section includes questions about the assessment of the level of knowledge regarding vaccinations, one’s own attitude towards vaccinations, as well as the conveying of knowledge about vaccinations during the training. The “vaccinations specifically” section includes questions about one’s own vaccination status and knowledge of work-related vaccination recommendations. Questions 9 and 10 of the questionnaire target the issue of vaccine availability and information. The knowledge test itself (question 11 of the questionnaire) was taken from a study by Zingg A. and Sigrist M. [21]. The questionnaire is located in attachment 1.
The questionnaires were distributed either via the school administrators and class teachers, or they were handed out to the students at the beginning of a course on the topic “vaccinations and the immune system”, filled out anonymously on a voluntary basis, and the questions were answered mainly using multiple-choice answers. The given answer options were numerically scaled according to the number of possible answers related to the question, and the respective mean values (MV) with standard deviation (SD) were determined. Statistical analysis of the data by analysis of variance or chi-square tests was performed using SPSS and Microsoft Excel. Groups were categorized according to type of training (health care and nursing, health care and pediatric nursing, STA/MTA), age, gender and year of training. Questionnaires in which questions about group membership were omitted or not answered clearly were removed from the respective group analysis. Questions that were omitted or not answered clearly were not included in the evaluation.

In addition, participating schools were offered a double lesson on infectious diseases and vaccinations. The contents of the lessons included an introduction to the theory of infections, on how the immune system works and vaccinations. Five of the seven participating schools accepted the offer of instruction, which was conducted by the study director himself. Following the class, the students also had the opportunity to have their vaccination cards checked by the study director according to the current STIKO recommendations (standard vaccinations, as well as occupational vaccination recommendations for health care workers) – this opportunity was communicated to the students in advance via their respective class teacher. Each student received the card back along with an individual recommendation on outstanding vaccinations after collecting the anonymous data. Immunization status for the study was analyzed as descriptive statistics using Microsoft Excel. See attachment 2 for compilation of vaccination recommendations for evaluation.

Results

Out of 722 questionnaires handed out, 690 questionnaires from students in all three years of vocational training were included in the study and statistically analyzed, which corresponds to a response rate of 95.6%. The individual groups showed the following distribution (see table 1).

Year of Training	Number of Questionnaires
First year	242
Second year	243
Third year	205

There were also 292 vaccination cards of students from all levels of training that were checked for completeness and evaluated.

Evaluations of the questionnaires in the “infections” section

Knowledge of infectious diseases in general was rated as predominantly “good” to “average” (scale of one=very good to five=very poor). The mean value across all years of training was 2.66 (SD: 0.64). 93.3% of all respondents rated their knowledge between “average” and “very good” (643 of 689 responses).

It was demonstrated that knowledge of infectious diseases increases with advanced training time. Thus, students in their third year of training estimated their knowledge significantly better than those in their first year of training (p=0.012).

The students surveyed also indicated that they had been for the most part well informed regarding the prevention of work-related infections during the course of their training – the mean value across all years of training was 2.18 (SD: 0.84).

Here, too, an improvement became apparent in the course of the training. Thus, students in their first year of training still felt significantly less prepared than in the second and third years of training (p<0.001).

A comparison of the three types of training with each other (health care and nursing, health care and pediatric nursing, and STA/MTA) showed no significant differences. In addition, students were asked to rate how likely they would think medical personnel are to contract a work-related infection.

Across all years of training, students indicated that they considered the likelihood “fairly high”. The mean value here was 4.98 (SD: 1.26). 452 of 686 respondents (65.9%) rated the risk as “fairly high” or higher.

The data for the individual questions in this area are shown in figure 1, as well as in table 2.

Evaluations of the questionnaires in the “vaccinations in general” section

Knowledge about vaccinations was rated as rather “average”. The mean value across all years of training was 2.84 (SD: 0.71). 85.2% of all respondents rated their knowledge between “average” and “very good” (588 of 690 responses).

In contrast to knowledge about infectious diseases, knowledge about vaccinations did not change significantly with increasing training time. It also showed that knowledge about vaccinations in general was rated significantly poorer than knowledge about infectious diseases in general (p<0.001).

When asked about attitudes toward vaccination, there was a stable and positive attitude toward vaccination across all years of training. The mean value was 5.52 (SD: 1.21). 79.5% of respondents were “more pro vaccination” to “completely pro vaccination” (547 of 688 responses).

The students surveyed also indicated that they had been for the most part “moderately” informed about vaccinations during the course of their training – the mean value
Table 1: Division of the individual groups

Type of training (n = 682)	Health care and nursing students	69.9% (n = 479)
	Health care and pediatric nursing students	15.8% (n = 108)
	Surgical/Medical-Technical Assistant students	14.4% (n = 98)

Training year (n = 685)	1st training year	45.3% (n = 310)
	2nd training year	33.4% (n = 229)
	3rd training year	21.3% (n = 146)

| Age (n = 687) | Including up to age 25 years | 85% (n = 584) |
| | Over 25 years of age | 15% (n = 103) |

| Gender (n = 687) | Female | 83.1% (n = 571) |
| | Male | 16.9% (n = 116) |

Table 2: Responses of the topic “infections” broken down by year of training

How good do you consider your knowledge of infectious diseases in general? (Scale: 1 = very good, 5 = very bad).	n	Mean value	Standard deviation
1st Training year	310	2.71	0.63
2nd Training year	228	2.67	0.63
3rd Training year	146	2.52	0.69

Has your previous training prepared you well to prevent work-related infections? (Scale: 1 = very good, 5 = very bad).	n	Mean value	Standard deviation
1st Training year	307	2.31	0.89
2nd Training year	229	2.05	0.80
3rd Training year	146	2.08	0.71

How likely do you think health care workers are to contract work-related infections? (Scale: 1 = almost zero, 7 = very likely).	n	Mean value	Standard deviation
1st Training year	308	4.89	1.34
2nd Training year	228	5.16	1.10
3rd Training year	145	4.89	1.29

Across all years of training was 3.03 (SD: 0.87). Only 25% of all respondents reported being “very well” or “well” informed about vaccinations (172 of 688 responses). Contrary to the assessment that knowledge about vaccinations did not significantly improve with increasing training time, this question showed that the more training time the students had already completed, the better they considered themselves informed about vaccinations – the third year of training showed a significant increase compared to the first and second year of training (p<0.001).

Evaluations by type of training showed that students in STA/MTA training felt themselves significantly less informed about vaccinations than students in health care and nursing or health care and pediatric nursing (p<0.001).

The data for the individual questions in this area are shown in figure 2, as well as in table 3.

Evaluations of the questionnaires in the “vaccinations specifically” section

Students were further asked about who they would contact if they needed information about vaccinations.
Figure 1: Frequency distribution of all evaluated answers in the “infections” section
Consultation of the following sources, among others, increased as the training period progressed:

- occupational medical services (33.5% in the first year of training to 37.7% in the last year of training)
- primary physician (77.1% in the first year of training to 88.4% in the last year of training)
- textbooks (4.8% in the first year of training to 8.9% in the last year of training)
- official websites/forums (24.5% in the first year of training to 37% in the last year of training)

Consultation of the following source decreased as the training period progressed:

- experience of medical nonprofessionals (12.9% in the first year of training to 6.2% in the last year of training)

In addition, it was demonstrated that younger students (up to 25 years) were even more likely to seek advice from work colleagues (13.0% vs. 5.8%) or medical nonprofessionals (11.5% vs. 1.9%) than older students (over 25 years). They are also more likely to obtain information from textbooks (7.0% vs. 2.9%).

Evaluation of the knowledge test

The knowledge test on the topic of vaccinations showed that the results of the second and third year of training were significantly better than those of the first year of training (p<0.01 and p<0.001) for both the correctly answered questions and the incorrectly answered questions (see figure 4).

It was also found that the male students gave correct answers significantly more often than female students. On average, the male students had answered just under 64% of the questions correctly, while the female students had answered just under 55% (p<0.001).

Individual responses can be found in figure 5.

Evaluations of the vaccination cards

Review of vaccination cards revealed high rates of complete basic immunization against tetanus, diphtheria, pertussis (between 95.2% and 100%), and polio (between 59.5% and 89.2%) in the 3 years of training. Current tetanus, diphtheria, pertussis vaccination ranged from 70.7% and 77.6%.
Figure 2: Frequency distribution of all evaluated responses in the area “vaccinations in general”
Two-time measles, mumps, rubella vaccination was present in 72.9%-89.5% of students.

Over the years of training, the proportion of students with complete hepatitis B and hepatitis A basic immunization also improved. Thus, 75% (n=53) of the students in the first year of training had complete basic immunization against hepatitis B, 85.4% (n=49) of the students in the second year of training, and 95.1% (n=41) in the final year of training. Complete basic immunization against hepatitis A was present in 18.8% of students in the first year of training (n=53), in 51% in the second year of training (n=49) and in 64.1% of students in the last year of training (n=41).

With regard to seasonal influenza vaccination, it was found that across all years of education, 82.5% of all students had never had an influenza vaccination documented on their vaccination card.

Discussion

In the present study, the respondents' own risk of contracting a work-related infection was rated as fairly high irrespective of their year of training with nearly 66% of respondents rating the risk as “fairly high” or higher. The result is comparable to that of a similar question asked of medical students in a study by Petersen et al. [22]: Here, 68.6% of medical students had assessed their risk accordingly. This is an important finding, as the assessment of one’s own risk is an important reason for deciding whether to get vaccinated. For example, in a cross-sectional survey concerning nurses’ knowledge and risk perception of seasonal influenza by Zhang et al. [7], nurses with high perceived risk were more likely to get vaccinated against influenza than those with low perceived risk. In another review of influenza vaccination among health care workers in hospitals by Hollmeyer et al. [23], it was also shown that self-protection was often the most important reason for getting vaccinated.
One’s own attitude toward vaccination is also an important factor in the vaccination decision. For example, an older study among Danish physicians already showed that the average MMR vaccination rate was 85% when it was judged that MMR vaccination was “very helpful” – compared with 69% in practices that described MMR vaccination as “helpful” [24]. For occupational physicians, their own attitude also plays an important role in recommending vaccinations to health care workers under their care [15]. Knowledge about vaccines and their efficacy helps to increase health care workers’ confidence in vaccinations and thus their willingness to recommend vaccinations to others [25].

Our survey revealed a generally positive attitude towards vaccination, which was already evident in the first year of training. Nearly 80% of respondents had indicated a positive attitude toward vaccination. However, compared with the result of the study by Petersen et al. in which more than 90% of medical students had reported a positive attitude toward vaccination [22], there is still room
for improvement. In addition, despite increased information about vaccination during training, vaccination attitudes had not significantly improved in our study. Misunderstanding or lack of knowledge about infections are often cited as barriers to get vaccinated [23]. In our study, both knowledge of infectious diseases and preparation to prevent work-related infections were better assessed as training progressed. On the one hand, the students seem to be aware of the risk of work-related infections and, on the other hand, they seem to have received a correspondingly good education in the area of infectious diseases.

Another important barrier to vaccination is the real or subjectively perceived lack of conveniently available vaccine [26]. Our survey showed that knowledge of the vaccinations offered by the occupational physician increased as training progressed, but despite this, only just over a quarter of students at the end of their training even knew which vaccinations were available to them by their occupational physician. At the same time, the use of primary care physicians for vaccinations declined from just over a quarter in the first year of training to just under 18% in the final year of training, although primary care physicians were increasingly cited as a potential source of information regarding vaccinations.

Here in particular, the involvement of occupational physicians in teaching about vaccinations and in passing on information about the vaccinations available (as well as in the context of the occupational health check-ups that take place anyway) and appropriately organized vaccination campaigns, could increase the willingness to be vaccinated. The combining of a practical approach with theoretical teaching (for example, by an occupational physician) can help improve instruction, as a recent study at the University Hospital of Frankfurt showed. Here, comparing a theoretical vaccination seminar to a practical one, the practical seminar was graded significantly better by medical students [27]. Knowledge about vaccinations in general is rated lower than knowledge about infections and does not increase over the course of education, although students reported being better informed about vaccinations over the course of their education. Students in STA/MTA training also perceived themselves to be significantly less informed about vaccinations than students in health and nursing or health and pediatric nursing. Joint courses on this topic, which is also relevant for students in the STA/MTA field, would be conceivable here.

Nevertheless, increased education about vaccinations seems to have had a positive effect over the years as both correct answers on the knowledge test increased over the course of training and incorrect answers decreased over the course of training. Regardless of this, however, gaps in knowledge were still apparent here as well. Almost a quarter of the respondents stated that they believe the effectiveness of vaccinations has not been proven (or they don’t know) and almost 30% of the opinion that the doses of drugs obtained in vaccines are dangerous. There is an urgent need for training in this area as doubts about the efficacy of vaccinations [28] and fear of side effects [7] are further important obstacles to being vaccinated.

Meanwhile, the reason male participants performed significantly better in the knowledge test remains speculative – at least the male participants showed a slightly higher willingness to make decisions: On average, only about 22% opted for the answer option “don’t know”; among the female participants, the figure was just under 29%. Increased information about vaccinations also did not appear to result in students being better informed about current STIKO recommendations in their final year of training than at the beginning of their training. Only about half of all students across all years of training indicated that they thought they had received all of the vaccinations recommended by the STIKO, and likewise only about half of all students indicated that they were aware that the STIKO recommends any additional vaccinations at all for health care workers. This would mean that about half of all graduates would have incomplete vaccination protection at the end of the third year of training and thus shortly before starting their careers (assuming correct self-assessment) and would not know about vaccinations specifically recommended for health care workers. However, review of the vaccination cards showed that the immunization status was better than the students’ assessment. Higher vaccination rates against hepatitis A and B were as students progressed in their training. Nevertheless, overall vaccination rates are in need of improvement. For example, nearly one-quarter of the students did not have current tetanus, diphtheria, and pertussis vaccinations. Vaccination against seasonal influenza also showed large gaps: Over 80% of the students had never had an influenza vaccination documented in their vaccination card. Moreover, no relevant change can be seen here in the course of training and there is still a clear need to level the knowledge gap in educational work, as studies show that nurses with a high level of knowledge about influenza vaccinations are more likely to be vaccinated against influenza than nurses with a low level of knowledge [7]. In addition, it is known from other studies that there is a positive relationship between one’s own vaccination or willingness to get vaccinated and the recommendation for others to get vaccinated [7], [29], [30], [31].

Limitations

As a limitation of the study, it should be noted that comparability in the group of the training year is limited, since at the time of the study in the respective nursing school not necessarily all students of a year cover the same topics in their classes and the curriculum varies depending on the type of training. Another limitation is the subjective self-assessment of the participants, which could also lead to answers which are socially desirable.
Conclusions

The present study shows that students are aware of the risk of contracting a work-related infection during their careers. In this regard, the education seems to provide good information, especially with regard to the prevention of work-related infections. Vaccinations play a prominent role in this context. However, it is precisely in this area that there still seems to be a need to level the knowledge gap – also in school education. Thus, in addition to the existing courses on the topic of infectious diseases, the teaching curricula should also explicitly include the topic of vaccinations. Especially the dialog between teacher and students can help to close gaps in knowledge at an early stage and the integration of a practical reference can additionally increase the attractiveness of the curriculum.

Also, the topic of work-related infections will and should continue to be addressed and addressed in greater depth as part of occupational health check-ups. Information dissemination about vaccination supply should be intensified.

With the change in the STIKO vaccination recommendations for the occupationally indicated vaccinations against measles, mumps, rubella and varicella for health care workers in 2020 and the Measles Protection Act, occupational physicians' involvement with these vaccinations will also become even more important. Many students did not have their vaccination cards with them at the time of the class (despite being informed of the offer to have their vaccination card checked anonymously). Here, a digital vaccination card could save searching in the future, as almost every young person has an appropriate app-enabled smartphone.

Acknowledgements

The author thanks the participating nursing schools for their support.

Competing interests

The authors declare that they have no competing interests. Prof. Wicker is vice-chair of the STIKO.

Attachments

Available from

http://www.egms.de/en/journals/zma/2021-38/zma001511.shtml

1. Attachment_1.pdf (152 KB) Questionnaire
2. Attachment_2.pdf (87 KB) Evaluation based on the STIKO recommendations

References

1. Center for Disease Control and Prevention (CDC). Immunization of Health-Care Personnel. Morb Mort Weekly Report. 2011;6(7):1-46.
2. Beltrami EM, Williams IT, Shapiro CN, Chamberland ME. Risk and management of blood-borne infections in health care workers. Clin Microbiol Rev. 2002;13(3):385-407. DOI: 10.1128/cmr.13.3.385-407.2000
3. Sydnor E, Perl TM. Healthcare providers as source of vaccine-preventable diseases. Vaccine. 2014;32(38):4814-4822. DOI: 10.1016/j.vaccine.2014.03.097
4. Huttunen R, Syrjanen J. Healthcare workers as vectors of infectious diseases. Eur J Clin Microbiol Infect Dis. 2014;33(9):1477-1488. DOI: 10.1007/s10096-014-2119-6
5. Wicker S, Seale H, von Gierke L, Maltezou HC. Vaccination of healthcare personnel: Spotlight on groups with underlying conditions. Vaccine. 2014;32(32):4025-4031. DOI: 10.1016/j.vaccine.2014.05.070
6. Yaqub O, Castle-Clarke S, Sevdalis N, Chataway J. Attitudes to vaccination: A critical review. Soc Sci Med. 2014;112:1-11. DOI: 10.1016/j.socscimed.2014.04.018
7. Zhang J, White AE, Norman U. Nurses' knowledge and risk perception towards seasonal influenza and vaccination and their vaccination behaviours: A cross-sectional survey. Int J Nurs Stud. 2011;48(10):1281-1289. DOI: 10.1016/j.ijnurstu.2011.03.002
8. Wiley KE, Massey PD, Coop SC, Wood N, Quinn HE, Leask J. Pregnant women's intention to take up a post-partum pertussis vaccine, and their willingness to take up the vaccine while pregnant: A cross sectional survey. Vaccine. 2013;31(37):3972-3978. DOI: 10.1016/j.vaccine.2013.06.015
9. European Centre for Disease Prevention and Control (ECDC). Communication on immunisation-building trust. Solna, Sweden: European Centre for Disease Prevention and Control; 2012. Zugänglich unter/available from: https://www.ecdc.europa.eu/en/publications-data/communication-immunisation-building-trust
10. Rieck T, Steffen A, Schmid-Küpe N, Feig M, Wichman O, Siedler A. Impfquoten bei Erwachsenen in Deutschland- Aktuelles aus der KV-Impf-surveillance und der Onlinebefragung von Krankenhauspersonal. OkaPi. Epid Bull. 2020;47:3-26. DOI: 10.25646/7658
11. Betsch C, Wicker S. E-health use, vaccination knowledge and perception of own risk: Drivers of vaccination uptake in medical students. Vaccine. 2012;30(6):1143-1148. DOI: 10.1016/j.vaccine.2011
12. Ständige Impfkommission. Empfehlungen der Ständigen Impfkommission (STIKO) am Robert Koch-Institut. Epid Bull. 2019;34(3):313-364. DOI: 10.25646/6233.7
13. Ständige Impfkommission. Mitteilung der Ständigen Impfkommission beim Robert Koch-Institut: Empfehlung und wissenschaftliche Begründung für die Angleichung der beruflich indizierten Masern-Mumps-Röteln-(MMR-) und Varizellen-Impfung. Epid Bull. 2020;2(1):22. DOI: 10.25646/6447.3
14. Janssens U, Kluge S, Marx G, Hermes C, Salzberger B, Karagiannidis C. Einstellung zur Impfung gegen SARS-CoV-2. Med Klin Intensivmed Notfmed. 2021;116:421-430. DOI: 10.1007/s00063-021-00821-4
15. Betsch C, Wicker S. Personal attitudes and misconceptions, not official recommendations guide occupational physicians' vaccination decisions. Vaccine. 2014;32(35):4478-4484. DOI: 10.1016/j.vaccine.2014.06.046
16. Bundestag. Gesetz für den Schutz vor Masern und zur Stärkung der Impfprävention (Masernschutzgesetz) vom 10.02.2020. Berlin: Bundestag; 2020. Zugänglich unter/available from: https://www.bundestag.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&start=%2F%2F%5B%40attr_id%27%5D%2F%5B%58%40attr_id%3D%27bgbl120s0148.pdf%27%5D__1615046643659.

17. Storr C, Sanftenberg L, Schelling J, Heininger U, Schneider A. Masernstatus - Impfbarrieren und Strategien zur deren Überwindung. Dtsch Arztebl Int. 2018;115:723-730. DOI: 10.3238/arztebl.2018.0723

18. Bundesministerium für Gesundheit. Nationaler Aktionsplan 2015-2020 zur Elimination der Masern und Röteln in Deutschland vom 01.06.2015. Berlin: Bundesministerium für Gesundheit; 2015. Zugänglich unter/available from: https://www.bundesregierung.de/breg-de/service/publikationen/nationaler_aktionsplan_2015-2020-zur-elimination-der-masern-und-roeteln-in-deutschland-734080

19. World Health Organization (WHO). Ten threats to global health in 2019. Geneva: WHO; 2019. Zugänglich unter/available from: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019

20. World Health Organization. Vaccine Hesitancy Survey Questions Related to SAGE Vaccine Hesitancy Matrix. Examples of survey questions designed to assess determinants of vaccine hesitancy. Geneva: WHO. Zugänglich unter/available from: https://www.who.int/immunization/programmes_systems/Survey_Questions_Hesitancy.pdf?ua=1

21. Zingg A, Sigrist M. Measuring people's knowledge about vaccination: Developing a one-dimensional scale. Vaccine. 2012;30(25):3771-3777. DOI: 10.1016/j.vaccine.2012.03.014

22. Petersen S, Roggendorf H, Wicker S. Impfpräventable Erkrankungen: Wissen, Einstellung und Impfstatus von Medizinstudierenden. Gesundheitswesen. 2017;79(05):394-398. DOI: 10.1055/s-0035-1547274

23. Hollmeyer HG, Hayden F, Poland G, Buchholz U. Influenza vaccination of health care workers in hospitals: A review of studies on attitudes and predictors. Vaccine. 2009;27(30):3935-3944. DOI: 10.1016/j.vaccine.2009.03.056

24. Trier H. Doctors' Attitudes and MMR-Vaccination. Scan J Prim Health Care. 1991;9(1):29-33. DOI: 10.3109/02813439109026578

25. Paterson P, Meurice F, Stanberry LR, Gilsmann S, Rosenthal SL, Larson HJ. Vaccine hesitancy and healthcare providers. Vaccine. 2016;34(52):6700-6706. DOI: 10.1016/j.vaccine.2016.10.042

26. Hofmann F, Ferracin C, Marsh G, Dumas R. Influenza Vaccination of Healthcare Workers: a Literature Review of Attitudes and Beliefs. Infection. 2006; 34(3):142-147. DOI: 10.1007/s15010-006-5109-5

27. Rill V, Steffen B, Wicker S. Evaluation of a vaccination seminar in regard to medical students' attitudes and their theoretical and practical vaccination-specific competencies. GMS J Med Educ. 2020;37(4):Doc38. DOI: 10.3205/zma001331

28. Petek D, Karmik-Kuch M. Motivators and barriers to vaccination of health professionals against seasonal influenza in primary healthcare. BMC Health Serv Res. 2018;18(1):853. DOI: 10.1186/s12913-018-3659-8

29. LaVela SL, Smith B, Weaver FM, Legro MW, Goldstein B, Nichol K. Attitudes and Practices Regarding Influenza Vaccination Among Healthcare Workers Providing Services to Individuals With Spinal Cord Injuries and Disorders. Infect Control Hosp Epidemiol. 2004;25(11):933-940. DOI: 10.1086/502323

30. Makwe CC, Anorlu RI. Knowledge of and attitude toward human papillomavirus infection and vaccines among female nurses at a tertiary hospital in Nigeria. Int J Womens Health. 2011;3:313-317. DOI: 10.2147/IJWH.S22792

31. Askarian M, Khazaiepour Z, McLaws ML. Facilitators for influenza vaccination uptake in nurses at the Shiraz University of Medical Sciences. Public Health. 2011;125(8):512-517. DOI: 10.1016/j.puhe.2011.03.012

Corresponding author:
Timm Tristan Berg
Plant Medical Services, Uferstr. 5d, D-35576 Wetzlar, Germany
timm-tristan.berg@t-online.de

Please cite as
Berg TT, Wicker S. Knowledge, attitude and behavior towards vaccinations among nursing- and health care students in Hesse. An observational study. GMS J Med Educ. 2021;38(7):Doc115. DOI: 10.3205/zma0015111, URN: urn:nbn:de:0183-zma0015111

This article is freely available from http://www.ejms.de/en/journals/zma/2021-38/zma001511.shtml

Received: 2021-03-15
Revised: 2021-08-04
Accepted: 2021-08-09
Published: 2021-11-15

Copyright ©2021 Berg et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Wissen, Einstellung und Verhalten zu Impfmedizin bei Auszubildenden in medizinischen Ausbildungsberufen in Hessen. Eine Beobachtungsstudie

Zusammenfassung

Zielsetzung: Beschäftigte in der Krankenpflege und medizinischen Ausbildungsberufen sind berufsbedingt einer erhöhten Infektionsgefährdung ausgesetzt, daher bestehen für sie Empfehlungen für beruflich indizierte Impfungen. Diese dienen neben der Vermeidung arbeitsbedingter Infektionen auch dem Patientenschutz, sowie der Aufrechterhaltung der medizinischen Infrastruktur. Eine profunde Ausbildung und Wissensvermittlung über Impfungen und arbeitsbedingte Infektionen sind wichtige Grundlagen der Impfentscheidung und somit zur Erlangung eines schützenden Immunstatus. Die vorliegende Studie untersucht das Wissen, die Einstellung und das Verhalten von Auszubildenden in medizinischen Ausbildungsberufen in Hessen zu arbeitsbedingten Infektionen und Impfungen.

Methodik: Im Frühjahr 2018 nahmen sieben Pflegeschulen in Hessen an einer anonymen Fragebogenstudie teil. Insgesamt wurden 690 Fragebögen von Schülerinnen und Schülern verschiedener medizinischer Ausbildungsberufe in die Studie aufgenommen. Der Inhalt der Fragen orientierte sich an den Empfehlungen der Ständigen Impfkommission (STIKO), einer Literaturrecherche, sowie an den Beispielfragen der Weltgesundheitsorganisation (WHO) bezüglich „vaccine hesitancy“. Ebenso erfolgte die Auswertung von Impfpässen anhand der STIKO-Empfehlungen hinsichtlich Standardimpfungen, sowie den beruflich bedingten Impfungen für Beschäftigte im Gesundheitswesen.

Ergebnisse: Das Risiko an einer arbeitsbedingten Infektion zu erkranken wurde über alle Ausbildungsjahre hinweg als ziemlich groß eingeschätzt. Wissenslücken zeigten sich vor allem im Bereich der Impfungen. Nur knapp drei Viertel der Befragten hielt die Wirksamkeit von Impfung für belegt und fast 30% waren der Meinung, dass die Dosierungen der in Impfstoffen erhaltenen Arzneistoffe gefährlich sind. Über 80% der Schülerinnen und Schüler hatten noch niemals eine Influenza-Impfung erhalten.

Schlussfolgerung: Das im Rahmen der Ausbildung vermittelte Wissen über Impfungen sollte ausgebaut werden. Eine spezielle Unterrichtseinheit zum Thema Impfungen und Immunsystem mit praktischen Anteilen könnte zum besseren Verständnis über die Wirkungsweise von Impfungen beitragen und Missverständnisse könnten im Dialog der Schülerinnen und Schüler mit der Lehrkraft im Unterricht und dem Betriebsarzt im Rahmen der arbeitsmedizinischen Vorsorgen bereits in frühen Stadien der Ausbildung beseitigt werden.

Schlüsselwörter: Beschäftigte im Gesundheitswesen, Impfungen, Arbeitsmedizin, Betriebsärzte, Ausbildung Gesundheitsberufe, Krankenpflege

Timm Tristan Berg

Sabine Wicker

1 Werksärztlicher Dienst, Wetzlar, Deutschland
2 Universitätsklinikum Frankfurt, Betriebsärztlicher Dienst, Frankfurt/M., Deutschland
Einleitung

Mitarbeiter im Gesundheitswesen haben aufgrund ihrer beruflichen Tätigkeit ein erhöhtes Infektionsrisiko [1], [2]. Impfungen sind dabei integraler Bestandteil zur Vermeidung von impfpräventablen Infektionserkrankungen bei den Beschäftigten selbst und deren Patienten [3], [4] auch, und umso wichtiger, bei vorbestehenden Grunderkrankungen [5]. Außerdem sind Impfungen ein wichtiger Baustein in der Aufrechterhaltung unserer medizinischen Infrastruktur – wie es sich gerade in der aktuellen SARS-CoV-2-Pandemie zeigt.

Die besondere Bedeutung von Beschäftigten im Gesundheitswesen im Sinne einer Vorbild- und Multiplikatorenrolle bezüglich Sinnhaftigkeit und Akzeptanz von Impfungen [6], [7] unterstreichen zudem die Wichtigkeit einer guten Ausbildung gerade im Bereich der Impfmedizin. Sie fungieren als wichtige Informationsquelle und Einführungsgeber für Patienten [8], und auch deren Angehörige [9]. Und doch zeigen sich gerade in der Gruppe der Pflegepersonals Teilaspekte erhebliche Impflücken. So waren in einer Onlinebefragung in der Saison 2019/20 79,3% der Ärzte gegen Infektionen geimpft, im gleichen Zeitraum lag die Quote im Pflegedienst jedoch lediglich bei 46,7% [10].

Die Einschätzung des eigenen Infektions- und Erkran kungsrisikos, das Wissen über Impfungen und die eigene Einstellung gegenüber dem Impfen sind wichtige Faktoren der Impfentscheidung [6], [11]. Beschäftigte im Gesundheitswesen zählen darüber hinaus zur Gruppe der arbeitenden Bevölkerung mit den meisten berufsbezoge nen Impfempfehlungen der Ständigen Impfkommission der Ständigen Impfkommission (STIKO) [12], [13] und sind auch im Hinblick auf häufig wiederkehrende Impfungen wie z.B. der saisonalen Infektionen, Impfungen oder neuen Impfungen (z.B. gegen COVID-19) fortwährend berufsbegleitend mit Impfungen konfrontiert. In einer aktuellen Studie über die Einstellung zur Impfung gegen COVID-19 unter Krankenhausmitarbeitern zeigte sich jedoch, dass gerade die Zugehörigkeit zur Berufsgruppe der Pflegekräfte signifikant mit einer eingeschränkten Impfbereitschaft assoziiert war [14]. Daher war es Ziel der vorliegenden Studie die Faktoren der Impfentscheidung zu erfragen um potentielle Ansatzpunkte zur Verbesserung von Impfleistungs- und -bereitschaft herauszuarbeiten.

Betriebsärzte, die Beschäftigte im Gesundheitswesen betreuen, nehmen dabei eine besondere Rolle ein – deren Empfehlungen zu beruflich indizierten Impfungen im Gesundheitswesen hängen unter anderem vom Wissen über die aktuellen Impfempfehlungen, sowie der persönlichen Einstellung der Betriebsärzte gegenüber Impfungen ab [15].

Mitarbeiter im Gesundheitswesen unterliegen aufgrund ihrer nicht gezielten Tätigkeit mit biologischen Arbeitsstoffen einer arbeitsmedizinischen Pflichtvorsorge. Diese hat der Arbeitgeber nach Maßgabe der Verordnung zur arbeitsmedizinischen Vorsorge (ArbMedV) für seine Beschäftigten zu veranlassen [https://www.gesetze-im-internet.de/arbmedv/]. Die Vorsorge muss vor Aufnahme der Tätigkeit, sowie spätestens 12 Monate danach erneut veranlasst und durch den Mitarbeiter wahr genommen werden [https://www.baua.de/DE/Angebote/ Rechtstexte-und-Technische-Regeln/Regelwerk/AMR/ pdf/AMR-2-1.pdf?__blob=publicationFile]. Hierdurch bieten sich bereits während der Ausbildung zwei betriebs ärztliche Interventionspunkte, um mit den Auszubildenden über das Thema Impfungen und Infektionskrankheiten ins Gespräch zu kommen. Diesbezüglich wurde in der vorliegenden Studie untersucht in wie weit die Ausbildenden über das Impfangebot ihres Betriebsarztes informiert sind, und in welchem Maße er als Informationsquelle bezüglich Impfungen und Infektionskrankheiten konsultiert wird.

Mit der Aufnahme des §23a in das Impfgeschutzgesetz im Jahr 2015 [https://www.gesetze-im-internet.de/ifsg/] und dem Gesetz für den Schutz vor Masern und zur Stärkung der Impfprävention im Jahr 2020 [16] sind Beschäftigte im Gesundheitswesen darüber hinaus auch gesetzlichen Bestimmungen unterworfen. Letzteres nicht zuletzt als Baustein zur Elimination der Masern in Deutschland [17]. Diese gilt als erklärtes Ziel deutscher Gesundheitspolitik. Erwachsene die nach dem Jahr 1970 geboren sind und vor allem auch Beschäftigte im Gesundheitswesen gelten nach dem „Nationalen Aktionsplan 2015–2020 zur Elimination der Masern und Röteln in Deutschland“ als „Vorhutpatienten“ [18]. Darüber hinaus hatte die Weltgesundheitsorganisation (WHO) bereits 2019 das Impfzögern, die „vaccine hesitancy“, als eine der zehn größten Risiken für die globale Gesundheit erklärt [19].

Methodik

Im Frühjahr 2018 wurden sieben Pflegeschulen in Hessen schriftlich angefragt an einer anonymen Fragebogenstudie teilzunehmen. Alle angeschriebenen Pflegeschulen hatten der Teilnahme zugestimmt. 476 Gesundheits- und Krankenpflegeschüler(innen), 108 Gesundheits- und Kinderkran kenpflegeschüler(innen) und 98 OTA (operationstechnische Assistenz) bzw. MTA (medizinisch-technische Assistenz) - Schüler(innen) nahmen an der Studie teil, die im Zeitraum zwischen März bis Oktober 2018 durchgeführt wurde. Der Fragebogen bestand aus 10 Fragen, sowie einem „Wissenstest“ mit 9 zu beurteilenden Aussagen über Impfungen.

Die Entwicklung des Fragebogens ergab sich aus den Impfempfehlungen der STIKO [12], sowie Beispielfragen der WHO bezüglich „vaccine hesitancy“ [20]. Angelehnt an die Ergebnisse der Literaturverzeichnisbezüglich wichtiger Faktoren einer Impfentscheidung wurden die Fragen des Fragebogens in drei inhaltliche Themengebiete gegliedert: Der Bereich „Infektionen“ beinhaltet Fragen nach der Einschätzung des Wissenstands bezüglich infektiöser Erkrankungen, der Vorbereitung auf die Vermeidung der Infektionen und der Risikoeinschätzung an einer arbeitsbedingten Infektion zu erkennen. Im Bereich „Impfungen allgemein“ finden sich die Fragen
Die Verteilung der Fragebögen erfolgte entweder über die Schulleitungen und Klassenlehrer, oder sie wurden zu Beginn einer Unterrichtseinheit zum Thema „Impfungen und Immunsystem“ an die Schülerinnen und Schüler ausgehändigt, auf freiwilliger Basis anonym ausgefüllt und die Fragen überwiegend anhand von multiple-choice Antworten beantwortet.

Die vorgegebenen Antwortmöglichkeiten wurden fragenabhängig nach Anzahl der möglichen Antworten numerisch skaliert, und die jeweiligen Mittelwerte (MW) mit Standardabweichung (SA) ermittelt.

Die statistische Auswertung der Daten per Varianzanalyse oder Chi-Quadrat-Tests erfolgte mit Hilfe von SPSS und Microsoft Excel. Unterschieden wurde zwischen den Gruppen der Ausbildungsart (Gesundheits- und Krankenpflege, Gesundheits- und Kinderkrankenpflege, OTA/MTA), des Alters, des Geschlechts und des Ausbildungsjahres. Fragebögen, in denen Fragen nach der Gruppenzugehörigkeit nicht oder nicht eindeutig beantwortet wurden, wurde aus der jeweiligen Gruppenanalyse herausgenommen. Inhaltliche Fragen die nicht oder nicht eindeutig beantwortet wurden, wurden nicht in die Auswertung mit aufgenommen.

Darüber hinaus wurde den teilnehmenden Schulen eine Doppelstunde Unterricht zum Thema Infektionserkrankungen und Impfungen angeboten. Inhalte des Unterrichtes waren eine Einführung in die Infektionslehre, Wirkprinzipien des Immunsystems und Impfungen. Das Angebot des Unterrichtes wurde von fünf der sieben teilnehmenden Schulen angenommen und die Durchführung erfolgte durch den Studienleiter selbst.

Im Anschluss an den Unterricht hatten die Schülerinnen und Schüler zudem die Möglichkeit ihre Impfpässe gemäß den aktuellen STIKO-Empfehlungen (Standardimpfungen, sowie beruflich bedingte Impfempfehlungen für Beschäftigte im Gesundheitswesen) durch den Studienleiter überprüfen zu lassen – diese Möglichkeit wurde über den jeweiligen Klassenlehrer im Vorfeld an die Schülerinnen und Schüler kommuniziert. Jede Schülerin und jeder Schüler erhielt den Pass mitsamt einer individuellen Empfehlung über noch ausstehende Impfungen im Anschluss an die anonyme Datenerfassung zurück. Die Auswertung des Impfstatus für die Studie erfolgte als deskriptive Statistik mittels Microsoft Excel. Zusammenstellung der Impfempfehlungen für die Auswertung siehe Anhang 2.

Ergebnisse
Von 722 ausgehändigten Fragebögen wurden 690 Fragebögen von Schülerinnen und Schülern in allen drei Jahren der Berufsausbildung in die Studie aufgenommen und statistisch ausgewertet, was einer Rücklaufquote von 95,6% entspricht. In den einzelnen Gruppen zeigte sich folgende Aufteilung (siehe Tabelle 1).

Es wurden zudem 292 Impfpässe von Auszubildenden aller Jahrgangsstufen auf ihre Vollständigkeit geprüft und ausgewertet.

Auswertungen des Fragebogens im Bereich „Infektionen“

Das Wissen über Infektionserkrankungen im Allgemeinen wurde als überwiegend „gut“ bis „mittelmäßig“ eingeschätzt (Skala von eins = sehr gut bis fünf = sehr schlecht). Der Mittelwert über alle Ausbildungsjahre hiweg betrug 2,66 (SA: 0,64). 93,3% aller Befragten schätzten ihr Wissen zwischen „mittelmäßig“ und „sehr gut“ ein (643 von 689 Antworten).

Es zeigte sich, dass mit fortgesetzter Ausbildungsdauer das Wissen über Infektionserkrankungen zunimmt. So schätzten Schülerinnen und Schüler des dritten Ausbildungsjahres ihr Wissen signifikant besser ein als die des ersten Ausbildungsjahres (p=0,012).

Die befragten Schülerinnen und Schüler gaben zudem an, dass sie im Laufe ihrer Ausbildung überwiegend gut über die Vermeidung arbeitsbedingter Infektionen informiert worden seien – der Mittelwert über alle Ausbildungsjahre hinweg betrug 2,18 (SA: 0,84).

Auch hier zeigte sich im Laufe der Ausbildung eine Verbesserung. So fühlten sich die Auszubildenden im ersten Ausbildungsjahr noch signifikant schlechter vorbereitet als im zweiten und dritten Ausbildungsjahr (p<0,001). Im Vergleich der drei Ausbildungsarten zueinander (Gesundheits- und Krankenpflege, Gesundheits- und Kinderkrankenpflege und OTA/MTA) zeigten sich keine signifikanten Unterschiede.

Zudem wurden die Schülerinnen und Schüler gebeten einzuschätzen, für wie groß sie die Wahrscheinlichkeit für medizinisches Personal einstufen würden an einer Arbeitsstätte Infektion zu erkranken.

Über alle Ausbildungsjahre hinweg gaben die Schülerinnen und Schüler an, dass sie die Wahrscheinlichkeit als „ziemlich groß“ einschätzten. Der Mittelwert betrug hier 4,98 (SA: 1,26).

452 von 688 Befragten (65,9 %)gaben an, es Risiko als „ziemlich groß“ oder höher einzustufen. Die Daten der Einzelfragen dieses Bereiches sind in der Abbildung 1, sowie in der Tabelle 2 dargestellt.
Tabelle 1: Aufteilung der einzelnen Gruppen

Ausbildungsart (n = 682)	Gesundheits- und Krankenpflegescha... (n = 476)	Gesundheits- und Kinderkrank... (n = 108)	Operationstechnische-/Medizinisch-Technische Ass... (n = 98)
Erstes Ausbildungsjahr	69,8 %	15,8 %	14,4 %
Zweites Ausbildungsjahr	45,3 %	33,4 %	
Drittes Ausbildungsjahr	21,3 %		

Alter (n = 687)	bis inklusive 25 Jahre alt	über 25 Jahre alt
	85 %	15 %

Geschlecht (n = 687)	Weiblich	Männlich
	83,1 %	16,9 %

Tabelle 2: Antworten des Themengebietes „Infektionen“ aufgeschlüsselt nach Ausbildungsjahr

Für wie gut schätzen Sie Ihr Wissen über Infektionserkrankungen im Allgemeinen ein? (Skala: 1 = sehr gut, 5 = sehr schlecht)	n	Mittelwert	Standardabweichung
1. Ausbildungsjahr	310	2,71	0,63
2. Ausbildungsjahr	228	2,67	0,63
3. Ausbildungsjahr	146	2,52	0,69

Hat sie Ihre bisherige Ausbildung gut auf die Vermeidung von arbeitsbedingten Infektionen vorbereitet? (Skala: 1 = sehr gut, 5 = sehr schlecht)	n	Mittelwert	Standardabweichung
1. Ausbildungsjahr	307	2,31	0,89
2. Ausbildungsjahr	229	2,05	0,80
3. Ausbildungsjahr	146	2,08	0,71

Für wie groß schätzen Sie die Wahrscheinlichkeit für medizinisches Personal ein, an arbeitsbedingten Infektionen zu erkranken? (Skala: 1 = fast null, 7 = sehr groß)	n	Mittelwert	Standardabweichung
1. Ausbildungsjahr	308	4,89	1,34
2. Ausbildungsjahr	228	5,16	1,10
3. Ausbildungsjahr	145	4,89	1,29

Auswertungen des Fragenbogens im Bereich „Impfungen allgemein“

Das Wissen über Impfungen wurde als eher „mittelmäßig“ eingeschätzt. Der Mittelwert über alle Ausbildungsjahre hinweg betrug 2,84 (SA: 0,71). 85,2% aller Befragten schätzten ihr Wissen zwischen „mittelmäßig“ und „sehr gut“ ein (588 von 690 Antworten).

Im Gegensatz zum Wissen über Infektionserkrankungen, ließ sich beim Wissen über Impfungen auch mit zunehmender Ausbildungszeit keine signifikante Änderung dieser Einschätzung erkennen. Außerdem zeigte sich, dass das Wissen über Impfungen im Allgemeinen signifikant schlechter eingeschätzt wurde als das Wissen über Infektionserkrankungen im Allgemeinen (p<0,001).

Bei der Frage nach der Impfeinstellung zeigte sich eine über alle Ausbildungsjahre hinweg stabile und positive Einstellung gegenüber dem Impfen. Der Mittelwert über alle Ausbildungsjahre hinweg betrug 5,52 (SA: 1,21). 79,5% der Befragten waren „eher für Impfen“ bis „vollkommen für das Impfen“ (547 von 688 Antworten).

Die befragten Schülerinnen und Schüler gaben zudem an, dass sie im Laufe ihrer Ausbildung überwiegend „mittelmäßig“ über Impfungen informiert worden seien – der Mittelwert über alle Ausbildungsjahre hinweg betrug.
Abbildung 1: Häufigkeitsverteilung aller ausgewerteten Antworten im Bereich „Infektionen“
3,03 (SA: 0,87). Nur 25% aller Befragten gaben an „sehr gut“ oder „gut“ über Impfungen informiert worden zu sein (172 von 688 Antworten). Entgegen der Einschätzung, dass sich das Wissen über Impfungen nicht signifikant mit zunehmender Ausbildungszeit verbessert habe, zeigte sich bei dieser Frage, dass sich die Schüler umso besser über Impfungen informiert sahen, umso mehr Ausbildungszeit sie bereits hinter sich hatten – Das dritte Ausbildungsjahr zeigte eine signifikante Steigerung im Vergleich zum ersten und zweiten Ausbildungsjahr (p<0,001).

Bei den Auswertungen nach der Ausbildungsart zeigte sich, dass sich die Schülerinnen und Schüler in der OTA/MTA-Ausbildung signifikant schlechter über Impfungen informiert sahen, als die Auszubildenden in den Bereichen der Gesundheits- und Krankenpflege oder der Gesundheits- und Kinderkrankenpflege (p<0,001). Die Daten der Einzelfragen dieses Bereiches sind in der Abbildung 2, sowie in der Tabelle 3 dargestellt.

Auswertungen des Fragenbogens im Bereich „Impfungen speziell“

Die Schülerinnen und Schüler wurden weiterhin dazu befragt, an wen Sie sich wenden würden, wenn Sie Informationen über Impfungen benötigten. Mit zunehmender Ausbildungszeit stieg unter anderem die Konsultation folgender Quellen:

- Betriebsärztlicher Dienst (33,5% im ersten Ausbildungsjahr auf 37,7% im letzten Ausbildungsjahr)
- Hausarzt (77,1% im ersten Ausbildungsjahr auf 88,4% im letzten Ausbildungsjahr)
- Lehrbücher (4,8% im ersten Ausbildungsjahr auf 8,9% im letzten Ausbildungsjahr)
- Offizielle Internetseiten/-foren (24,5% im ersten Ausbildungsjahr auf 37% im letzten Ausbildungsjahr)

Mit zunehmender Ausbildungszeit sank die Konsultation folgender Quelle:

- Erfahrung von medizinischen Laien (12,9% im ersten Ausbildungsjahr auf 6,2% im letzten Ausbildungsjahr)

Zudem zeigte sich, dass jüngere Auszubildende (bis 25 Jahren) noch häufiger den Rat von Arbeitskollegen (13,0% vs. 5,8%) oder medizinischen Laien (11,5% vs. 1,9%) in Anspruch nehmen als Ältere (über 25 Jahre). Auch informieren sie sich häufiger über Lehrbücher (7,0% vs. 2,9%). Die Einzelaufschlüsselung der Antworten finden sich in Abbildung 3.

Im ersten Ausbildungsjahr waren 18,9% der Befragten über das Impfangebot ihres Betriebsarztes informiert. Im dritten Ausbildungsjahr gaben 26,6% der Befragten an, das Angebot des Betriebsarztes zu kennen – bei den OTA/MTA-Auszubildenden waren es sogar nur knapp 8%. Gleichzeitig sank die Inanspruchnahme von Impfungen durch den Hausarzt von 25,5% im ersten Ausbildungsjahr auf 17,8% im letzten Ausbildungsjahr. Bei den Fragen bezüglich der Impfempfehlungen zeigte sich, dass nur ca. die Hälfte aller Schülerinnen und Schüler über alle Ausbildungsjahre hinweg angaben, dass sie alle von der STIKO empfohlenen Impfungen erhalten haben – aufgeschlüsselt nach Ausbildungsart waren es im Bereich der Gesundheits- und Krankenpflege sogar nur knapp 46%. Bis zu knapp zehn Prozent gaben an, nicht alle empfohlenen Impfungen erhalten zu haben und ungefähr ein Viertel aller Schülerinnen und Schüler gaben an, dass sie denken nur einen Teil der empfohlenen Impfungen erhalten zu haben.

Ausgewertet nach Alter, zeigte sich, dass die jüngeren Schülerinnen und Schüler signifikant häufiger angaben, die empfohlenen Impfungen erhalten zu haben als die Älteren (p=0,039). In jedem Ausbildungsjahr gaben nur ca. die Hälfte aller Schülerinnen und Schüler an, dass ihnen bekannt ist, dass die STIKO für Beschäftigte im Gesundheitswesen weitere Impfungen empfiehlt.

Die Daten der Einzelfragen dieses Bereiches sind in der Tabelle 4 dargestellt.

Auswertung des Wissenstests

Im Wissenstest zum Thema Impfungen zeigte sich, dass sowohl bei den richtig beantworteten Fragen, als auch bei den falsch beantworteten Fragen die Ergebnisse des zweiten und dritten Ausbildungsjahres signifikant besser waren als noch im ersten Ausbildungsjahr (p<0,01 und p<0,001) (siehe Abbildung 4). Es zeigte sich zudem, dass die männlichen Auszubildenden signifikant häufiger richtige Antworten gaben, als die weiblichen Auszubildenden. Die männlichen Auszubildenden hatten im Mittelwert knapp 64% der Fragen korrekt beantwortet, die weiblichen Auszubildenden dagegen nur knapp 55% (p<0,001). Die Darstellung der Einzelantworten finden sich in Abbildung 5.

Auswertungen der Impfpässe

Bei der Durchsicht der Impfpässe zeigten sich in den 3 Ausbildungsjahren hohe Quoten bei der vollständigen Grundimmunisierung gegen Tetanus, Diphtherie, Pertussis (zwischen 95,2% und 100%) und Polio (zwischen 59,5% und 89,2%). Eine aktuelle Tetanus-, Diphtherie-, Pertussis-Impfung bestand zwischen 70,7% und 77,6%. Eine zweimalige Masern-, Mumps-, Röteln-Impfung lag bei 72,9%-89,5% der Schülerinnen und Schülern vor. Im Laufe der Ausbildungsjahre verbesserte sich auch der Anteil der Schülerinnen und Schüler mit vollständiger Hepatitis B- und Hepatitis A-Grundimmunisierung. So wiesen Schülerinnen und Schüler im ersten Ausbildungsjahr zu 75% (n=53), im zweiten Ausbildungsjahr zu 85,4% (n=49) und im letzten Ausbildungsjahr zu 95,1% (n=41) eine vollständige Grundimmunisierung gegen Hepatitis B auf. Eine vollständige Grundimmunisierung gegenüber Hepatitis A bestand bei 18,8% der Schülerinnen und Schüler im ersten Ausbildungsjahr (n=53), bei 51% im zweiten Ausbildungsjahr (n=49) und bei 64,1% der...
Tabelle 3: Antworten des Themengebietes „Impfungen allgemein“ aufgeschlüsselt nach Ausbildungsjahr

| Für wie gut schätzen Sie Ihr Wissen über Impfungen im Allgemeinen ein? (Skala: 1 = sehr gut, 5 = sehr schlecht) |
|-----------------|-----------------|-----------------|
| | n | Mittelwert | Standardabweichung |
| 1. Ausbildungsjahr | 310 | 2,85 | 0,72 |
| 2. Ausbildungsjahr | 229 | 2,87 | 0,68 |
| 3. Ausbildungsjahr | 146 | 2,75 | 0,71 |

| Welche Aussage entspricht am ehesten Ihrer Einstellung zum Impfen? (Skala: 1 = vollkommen gegen Impfen, 7 = vollkommen für Impfen) |
|-----------------|-----------------|-----------------|
| | n | Mittelwert | Standardabweichung |
| 1. Ausbildungsjahr | 308 | 5,53 | 1,18 |
| 2. Ausbildungsjahr | 229 | 5,48 | 1,26 |
| 3. Ausbildungsjahr | 146 | 5,58 | 1,23 |

| Wie gut sind Sie im Laufe Ihrer Ausbildung über Impfungen informiert worden? (Skala: 1 = sehr gut, 5 = sehr schlecht) |
|-----------------|-----------------|-----------------|
| | n | Mittelwert | Standardabweichung |
| 1. Ausbildungsjahr | 309 | 3,18 | 0,94 |
| 2. Ausbildungsjahr | 228 | 3,01 | 0,86 |
| 3. Ausbildungsjahr | 146 | 2,77 | 0,70 |

Schülerinnen und Schüler des letzten Ausbildungsjahres (n=41).

Bezüglich der saisonalen Influenza-Impfung zeigte sich, dass über alle Ausbildungsjahre hinweg bei 82,5% aller Schülerinnen und Schüler noch niemals eine Influenza-Impfung im Impfpass dokumentiert wurde.

Diskussion

In der vorliegenden Studie wurde das eigene Risiko an einer arbeitsbedingten Infektion zu erkranken jährungsübergreifend als ziemlich groß eingeschätzt – mit knapp 66% der Befragten, die das Risiko als „ziemlich groß“ oder höher einstuften, liegt das Ergebnis vergleichbar dem einer ähnlichen Frage an Medizinstudierende in einer Studie von Petersen et al. [22]: Hier hatten sich 68,6% der Medizinstudenten für eine entsprechende Einschätzung entschieden. Dies ist eine wichtige Erkenntnis, da die Einschätzung des eigenen Risikos ein wichtiger Entscheidungsgrund für oder gegen die eigene Impfung ist. So zeigte sich in einer Querschnittserhebung über Wissen und Risikowahrnehmung von Pflegekräften in Bezug auf die saisonale Influenza von Zhang et al. [7], dass sich die Krankenpflegekräfte mit hohem wahrgenommenen Risiko häufiger gegen Influenza impfen ließen, als die mit geringem wahrgenommenen Risiko. In einem weiteren Review über die Influenza-Impfung von Beschäftigten im Gesundheitswesen in Krankenhäusern von Hollmeyer et al. [23] zeigte sich zudem, dass der Selbstschutz oftmals der wichtigste Grund für die eigene Impfung war. Auch die eigene Einstellung gegenüber Impfungen ist ein wichtiger Faktor der Impfentscheidung. So zeigte bereits eine ältere Studie unter dänischen Ärzten, dass die durchschnittliche MMR-Impfquote bei der Einschätzung, dass die MMR-Impfung „sehr hilfreich“ sei 85% betrug – verglichen mit 69% in Praxen die die MMR-Impfung als „hilfreich“ bezeichneten [24]. Auch bei Betriebsärzten spielt die eigene Einstellung eine wichtige Rolle bei der Impfempfehlung gegenüber betreuten Beschäftigten im Gesundheitswesen [15]. Das Wissen über Impfstoffe und deren Wirksamkeit helfen das Vertrauen von Beschäftigten im Gesundheitswesen in Impfungen zu stärken und damit auch deren Bereitschaft Impfungen weiter zu empfehlen [25].

In unserer Befragung zeigte sich eine allgemein positive Einstellung gegenüber dem Impfen – dies auch bereits im ersten Ausbildungsjahr. Knapp 80% der Befragten hatten eine positive Einstellung gegenüber dem Impfen angegeben. Verglichen mit dem Ergebnis der Studie von Petersen et al., in der über 90% der Medizinstudierenden eine positive Impfeinstellung angegeben hatten [22], ist jedoch auch hier noch Verbesserungspotential. Zudem hatte sich die Impfeinstellung in unserer Studie trotz der vermehrten Information über Impfungen im Laufe der Ausbildung nicht signifikant verbessert. Als Hinderungsgründe für eine Impfung werden oftmals Missverständnisse oder mangelndes Wissen über Infektionen angegeben [23]. In unserer Studie wurden sowohl das Wissen über Infektionserkrankungen als auch die Vorbereitung auf die Vermeidung arbeitsbedingter Infektionen im Laufe der Ausbildung zunehmend besser eingeschätzt. Hier scheint bei den Auszubildenden also zum Einen ein Risikobewusstsein bezüglich arbeitsbedingter Infektionen vorhanden zu sein und zum Anderen auch eine entsprechend gute schulische Ausbildung im Bereich der Infektionskrankungen stattzufinden.

Ein weiterer wichtiger Hinderungsgrund für eine Impfung ist der real existierende oder subjektiv wahrgenommene Mangel an bequem verfügbarem Impfstoff [26]. In unserer Befragung zeigte sich, dass die Kenntnis über das Impfangebot des Betriebsarztes mit fortschreitender Ausbildung zwar anstieg – trotzdem wussten aber nur knapp über ein Viertel der Schülerinnen und Schüler am Ende
Abbildung 2: Häufigkeitsverteilung aller ausgewerteten Antworten im Bereich „Impfungen allgemein“
ihrer Ausbildung überhaupt welche Impfungen ihnen der zuständige Betriebsarzt zur Verfügung stellt. Gleichzeitig sank die Inanspruchnahme von Impfungen durch den Hausarzt von etwas über einem Viertel im ersten Ausbildungsjahr auf knapp 18% im letzten Ausbildungsjahr, obwohl der Hausarzt zunehmend als potentielle Informationsquelle bezüglich Impfungen angegeben wurde.

Gerade hier könnten eine Einbindung der Betriebsärzte im Unterricht zum Thema Impfungen und in der Informationsweitergabe des Impfangebotes (wie auch im Rahmen der ohnehin stattfindenden arbeitsmedizinischen Vorsorgen), sowie entsprechend organisierte Impfkampagnen die Impfbereitschaft steigern. Die Integration eines Praxisbezuges in den theoretischen Unterricht (z.B. durch einen Arbeitsmediziner) kann zur Verbesserung des Unterrichtes beitragen, wie eine Studie an der Uniklinik Frankfurt jüngst zeigte. Hier wurde – im Vergleich eines theoretischen Impfseminars zu einem praktischen – das praktische Seminar signifikant besser von den Medizinstudierenden benotet [27].

Das Wissen über Impfungen im Allgemeinen wird schlechter eingeschätzt als das Wissen über Infektionen und nimmt auch im Laufe der Ausbildung nicht zu, obwohl die Schüler angaben, im Laufe ihrer Ausbildung besser über Impfungen informiert zu sein. Schülerinnen und Schüler in der OTA/MTA-Ausbildung sahen sich signifikant schlechter über Impfungen informiert, als die Auszubildenden im Bereich der Gesundheits- und Krankenpflege oder der Gesundheits- und Kinderkrankenpflege. Hier wären gemeinsame Unterrichtseinheiten zu diesem, auch für Auszubildende im Bereich OTA/MTA, relevanten Thema vorstellbar.
Abbildung 4: Auswertung des Wissenstests nach richtig und falsch beantworteten Fragen. (Dargestellt sind sowohl die Mittelwerte der richtig beantworteten Fragen als auch die Mittelwerte der falsch beantworteten Fragen mit ihren jeweiligen Standardabweichungen, aufgeschlüsselt nach Ausbildungsjahren.)

Abbildung 5: Antworten des Wissenstests in Prozent der gegebenen Antworten
Trotzdem scheint sich die vermehrte Aufklärung über Impfungen über die Jahre positiv ausgewirkt zu haben, da sowohl die korrekten Antworten im Wissenstest im Laufe der Ausbildung zunahmen, als auch die falschen Antworten im Laufe der Ausbildung abnahmen. Dessen ungeachtet zeigten sich aber auch hier noch Wissenslücken: So gaben knapp ein Viertel der Befragten an, dass sie entweder nicht wüssten, ob die Wirksamkeit von Impfungen belegt ist, oder sogar, dass sie nicht belegt sei und fast 30% waren der Meinung, dass die Dosierungen der in Impfstoffen enthaltenen Arzneistoffen gefährlich sind. Hier ist dringend Schulungsbedarf geboten, da gerade der Zweifel an der Wirksamkeit von Impfungen [28] und die Ängst vor Nebenwirkungen [7] weitere wichtige Hinderungsgründe für die eigene Impfung sind. Warum die männlichen Teilnehmer im Wissenstest signifikant besser abschnitten, bleibt derweil spekulativ – zumindest zeigte sich bei den männlichen Teilnehmern eine etwas höhere Entscheidungsbereitschaft: Im Mittel entschieden sich nur etwa 22% für die Antwortmöglichkeit „weiß nicht“, bei den weiblichen Teilnehmern waren es knapp 29%.

Die vermehrte Information über Impfungen führte auch scheinbar nicht dazu, dass die Schülerinnen und Schüler im letzten Ausbildungsjahr besser über die aktuellen STIKO-Empfehlungen informiert wären als zu Beginn ihrer Ausbildung. Nur ca. die Hälfte aller Schülerinnen und Schüler und Schüler gaben über alle Ausbildungsjahre hinweg an, dass sie denken alle von der STIKO empfohlenen Impfungen erhalten zu haben und ebenfalls nur ca. die Hälfte aller Schülerinnen und Schüler gaben an, dass ihnen bekannt ist, dass die STIKO überhaupt für Beschäftigte im Gesundheitswesen weitere Impfungen empfiehlt. Dies würde bedeuten, dass ca. die Hälfte aller Absolventinnen und Absolventen am Ende des dritten Ausbildungsjahres und damit kurz vor dem Start in den Beruf (bei korrekter Selbstbeinschätzung) einen unvollständigen Impfschutz hätten und nicht über speziell für Beschäftigte im Gesundheitswesen empfohlenen Impfungen Bescheid wüssten. Die Durchsicht der Impfpässe zeigte aber, dass der Impfstatus besser ist, als von den Schülerinnen und Schülern eingeschätzt. Es zeigten sich höhere Impfquoten gegen Hepatitis A und B je weiter fortgeschritten die Auszubildenden in ihrer Ausbildung waren. Trotzdem sind die Impfquoten insgesamt verbesserungswürdig. So hatten knapp ein Viertel der Schülerinnen und Schüler keine aktuelle Tetanus-, Diphtherie- und Pertussis-Impfung. Auch bei der Impfung gegen die saisonale Influenza zeigten sich große Lücken: Über 80% aller Schülerinnen und Schüler hatten noch niemals eine dokumentierte Influenza-Impfung. Hier ist zudem keine relevante Veränderung im Laufe der Ausbildung zu erkennen und noch deutlich Nachholbedarf in der Aufklärungsarbeit, da Studien zeigen, dass sich Pflegekräfte mit einem hohen Wissensstand über Influenza-Impfungen häufiger gegen Influenza impfen lassen als Pflegekräfte mit einem niedrigen Wissensstand [7]. Zudem ist aus anderen Studien bekannt, dass es einen positiven Zusammenhang gibt zwischen der eigenen Impfung bzw. Bereitschaft sich impfen zu lassen und der Empfehlung der Impfung gegenüber anderen [7], [29], [30], [31].

Schlussfolgerungen

Die vorliegende Untersuchung zeigt, dass sich die Auszubildenden des Risikos im Laufe ihres Berufslebens an einer arbeitsbedingten Infektion erkranken zu können, bewusst sind. Die Ausbildung scheint dabei vor allem hinsichtlich der Vermeidung von arbeitsbedingten Infektionen gut zu informieren. Impfungen nehmen hierbei eine herausragende Stellung ein. Gerade in diesem Bereich scheint jedoch noch Nachholbedarf – auch in der schulischen Ausbildung – zu bestehen. So sollten die Lehrcurricula, neben den bereits bestehenden Unterrichtseinheiten zum Thema der Infektionskrankheiten, auch das Thema der Impfungen explizit aufnehmen. Gerade der Dialog zwischen Lehrkraft und Schülerinnen und Schülern kann helfen frühzeitig Wissenslücken zu schließen und die Integration eines Praxisbezuges kann die Attraktivität des Unterrichtsangebotes zusätzlich steigern.

Auch wird und sollte weiterhin im Rahmen der arbeitsmedizinischen Vorsorgen das Thema der arbeitsbedingten Infektionen angesprochen und vertieft werden. Die Informationsweltergabe über das Impfangebot sollte intensiviert werden.

Mit der Änderung der STIKO-Impfempfehlungen für die beruflich indizierten Impfungen gegen Masern, Mumps, Röteln und die Varizellen für Beschäftigte im Gesundheitswesen im Jahr 2020 und dem Masernschutzgesetz rückt auch die Auseinandersetzung der Betriebsärzte mit diesen Impfungen noch stärker in den Vordergrund. Viele Schülerinnen und Schüler hatten zum Zeitpunkt des Unterrichts ihren Impfpass (trotz Information über das Angebot den Impfpass anonym überprüfen zu lassen) nicht dabei. Hier könnte ein digitaler Impfnachweis die Suchen in Zukunft ersparen, da fast jeder Jugendliche über ein entsprechendes App-fähiges Smartphone verfügt.
Danksagung
Der Autor dankt den teilnehmenden Pflegeschulen für ihre Unterstützung.

Interessenkonflikt
Die Autor*innen erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Anhänge
Verfügbar unter
http://www.egms.de/en/journals/zma/2021-38/zma001511.shtml
1. Anhang_1.pdf (153 KB) Fragebogen
2. Anhang_2.pdf (90 KB) Auswertung anhand der STIKO-Empfehlungen

Literatur
1. Center for Disease Control and Prevention (CDC). Immunization of Health-Care Personnel. Morb Mort Weekly Report. 2011;60(7):1-46.
2. Beltrami EM, Williams IT, Shapiro CN, Chamberland ME. Risk and management of blood-borne infections in healthcare workers. Clin Microbiol Rev. 2002;13(3):385-407. DOI: 10.1128/cmr.13.3.385-407.2000
3. Sydor E, Perl TM. Healthcare providers as source of vaccine-preventable diseases. Vaccine. 2014;32(38):4814-4822. DOI: 10.1016/j.vaccine.2014.03.097
4. Huttunen R, Sjöqvist J. Healthcare workers as vectors of infectious diseases. Eur J Clin Microbiol Infect Dis. 2014;33(9):1477-1488. DOI: 10.1007/s10096-014-2119-6
5. Wicker S, Seale H, von Gierke L, Maltezou HC. Vaccination of healthcare personnel: Spotlight on groups with underlying conditions. Vaccine. 2014;32(32):4025-4031. DOI: 10.1016/j.vaccine.2014.05.070
6. Yaqub O, Castle-Clarke S, Sevdalis N, Chataway J. Attitudes to vaccination: A critical review. Soc Sci Med. 2014;112:1-11. DOI: 10.1016/j.socscimed.2014.04.018
7. Zhang J, While AE, Norman U. Nurses’ knowledge and risk perception towards seasonal influenza and vaccination and their vaccination behaviours: A cross-sectional survey. Int J Nurs Stud. 2011;48(10):1281-1289. DOI: 10.1016/j.ijnurstu.2011.03.002
8. Wiley KE, Massey PD, Coop SC, Wood N, Quinn HE, Leask J. Pregnant women’s intention to take up a post-partum pertussis vaccine, and their willingness to take up the vaccine while pregnant: A cross sectional survey. Vaccine. 2015;33(37):3972-3978. DOI: 10.1016/j.vaccine.2013.06.015
9. European Centre for Disease Prevention and Control (ECDC). Communication on immunisation-building trust. Solna, Sweden: European Centre for Disease Prevention and Control; 2012. Zugänglich unter/available from: https://www.ecdc.europa.eu/en/publications-data/communication-immunisation-building-trust
10. Rieck T, Steffen A, Schmid-Küpe N, Feig M, Wichman O, Siedler A. Impfquoten bei Erwachsenen in Deutschland- Aktuelles aus der KV-Impf-surveillance und der Onlinebefragung von Krankenhauspersonal OkaPfI. Epid Bull. 2020;47:3-26. DOI: 10.25646/7658
11. Betsch C, Wicker S. E-health use, vaccination knowledge and perception of own risk: Drivers of vaccination uptake in medical students. Vaccine. 2012;30(6):1143-1148. DOI: 10.1016/j.vaccine.2011
12. Ständige Impfkommission. Empfehlungen der Ständigen Impfkommission (STIKO) am Robert Koch-Institut. Epid Bull. 2019;34:313-364. DOI: 10.25646/6233.7
13. Ständige Impfkommission. Mitteilung der Ständigen Impfkommission beim Robert Koch-Institut: Empfehlung und wissenschaftliche Begründung für die Angleichung der beruflich indizierten Masern-Mumps-Röteln-(MMR-) und Varizellen-IMPfung. Epid Bull. 2020;(2):1-22. DOI: 10.25646/6447.3
14. Janssens U, Kluge S, Marx G, Hermes C, Salzberger B, Karagiannidis C. Einstellung zur Impfung gegen SARS-CoV-2. Med Klin Intensivmed Notfmed. 2021;116:421-430. DOI: 10.1007/s00067-021-00821-4
15. Betsch C, Wicker S. Personal attitudes and misconceptions, not official recommendations guide occupational physicians’ vaccination decisions. Vaccine. 2014;32(35):4478-4484. DOI: 10.1016/j.vaccine.2014.06.046
16. Bundestag. Gesetzentwurf für die Verhütung der Impffälschung (Masernimpfungsgesetz) vom 10.02.2020. Berlin: Bundestag; 2020. Zugänglich unter/available from: https://www.bbgbi.de/xaver/bgb1/start.xav?startbk=Bundesanzeiger_BBGBild&start%2F%2F%2F%5B%5B%2Fattr_id%27gbgb120s0148.pdf%27%5D_%2F%2F%2F%2F%5B%5B%2Fattr_id%3D%27gbgb120s0148.pdf%27%5D__1615046643659.
17. Storr C, Sanftenberg L, Schelling J, Heininger U, Schneider A. Masernstatus-Impfbarrieren und Strategien zu deren Überwindung. Dtsch Arztebl Int. 2018;115:723-730. DOI: 10.3238/arztebl.2018.0723
18. Bundesministerium für Gesundheit. Nationaler Aktionsplan 2015-2020 zur Elimination der Masern und Röteln in Deutschland vom 01.06.2015. Berlin: Bundesministerium für Gesundheit; 2015. Zugänglich unter/available from: https://www.bundesregierung.de/breg-de/service/publikationen/nationaler-aktionsplan-2015-2020-zur-elimination-der-masern-und-roeteln-in-deutschland-734080
19. World Health Organization (WHO). Ten threats to global health in 2019. Geneva: WHO; 2019. Zugänglich unter/available from: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
20. World Health Organization. Vaccine Hesitancy Survey Questions Related to SAGE Vaccine Hesitancy Matrix. Examples of survey questions designed to assess determinants of vaccine hesitancy. Geneva: WHO, Zugänglich unter/available from: https://www.who.int/immunization/programmes_systems/Survey_Questions_Hesitancy.pdf?ua=1
21. Zinga A, Sigrist M. Measuring people’s knowledge about vaccination: Developing a one-dimensional scale. Vaccine. 2012;30(25):3771-3777. DOI: 10.1016/j.vaccine.2012.03.014
22. Petersen S, Röggendorf H, Wicker S. Impfpräventable Erkrankungen: Wissen, Einstellung und Impfstatus von Medizinstudierenden. Gesundheitswesen. 2017;79(05):394-398. DOI: 10.1055/s-0035-1547274
23. Hollmeyer HG, Hayden F, Poland G, Buchholz U. Influenzavaccination of health care workers in hospitals: A review of studies on attitudes and predictors. Vaccine. 2009;27(30):3935-3944. DOI: 10.1016/j.vaccine.2009.03.056
24. Trier H. Doctors' Attitudes and MMR-Vaccination. Scan J Prim Health Care. 1991;9(1):29-33. DOI: 10.3109/02813439109026578

25. Paterson P, Meurice F, Stanberry LR, Glismann S, Rosenthal SL, Larson HJ. Vaccine hesitancy and healthcare providers. Vaccine. 2016;34(52):6700-6706. DOI: 10.1016/j.vaccine.2016.10.042

26. Hofmann F, Ferracin C, Marsh G, Dumas R. Influenza Vaccination of Healthcare Workers: a Literature Review of Attitudes and Beliefs. Infection. 2006; 34(3):142-147. DOI: 10.1007/s15010-006-5109-5

27. Rill V, Steffen B, Wicker S. Evaluation of a vaccination seminar in regard to medical students' attitudes and their theoretical and practical vaccination-specific competencies. GMS J Med Educ. 2020;37(4):Doc38. DOI: 10.3205/zma001331

28. Petek D, Kamnik-Jug K. Motivators and barriers to vaccination of health professionals against seasonal influenza in primary healthcare. BMC Health Serv Res. 2018;18(1):853. DOI: 10.1186/s12913-018-3659-8

29. LaVela SL, Smith B, Weaver FM, Legro MW, Goldstein B, Nichol K. Attitudes and Practices Regarding Influenza Vaccination Among Healthcare Workers Providing Services to Individuals With Spinal Cord Injuries and Disorders. Infect Control Hosp Epidemiol. 2004;25(11):933-940. DOI: 10.1086/502323

30. Makwe CC, Anorlu RI. Knowledge of and attitude toward human papillomavirus infection and vaccines among female nurses at a tertiary hospital in Nigeria. Int J Womens Health. 2011;3:313-317. DOI: 10.2147/IWHP.S22792

31. Askarian M, Khazaiepour Z, McLaws ML. Facilitators for influenza vaccination uptake in nurses at the Shiraz University of Medical Sciences. Public Health. 2011;125(8):512-517. DOI: 10.1016/j.puhe.2011.03.012

Korrespondenzadresse:
Timm Tristan Berg
Werksärztlicher Dienst, Uferstr. 5d, 35576 Wetzlar, Deutschland
timm-tristan.berg@t-online.de

Bitte zitieren als
Berg TT, Wicker S. Knowledge, attitude and behavior towards vaccinations among nursing- and health care students in Hesse. An observational study. GMS J Med Educ. 2021;38(7):Doc115. DOI: 10.3205/zma0015111, URN: urn:nbn:de:0183-zma0015111

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/zma/2021-38/zma001511.shtml

Eingereicht: 15.03.2021
Überarbeitet: 04.08.2021
Angenommen: 09.08.2021
Veröffentlicht: 15.11.2021

Copyright
©2021 Berg et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.