Solvation Descriptors for Zwitterionic α-Aminoacids; Estimation of Water–Solvent Partition Coefficients, Solubilities, and Hydrogen-Bond Acidity and Hydrogen-Bond Basicity

Michael H. Abraham*† and William E. Acree, Jr.‡

1Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
2Department of Chemistry, University of North Texas, 155 Union Circle Drive #305070, Denton, Texas 76203-5017, United States

ABSTRACT: The literature data on solubilities and water–solvent partition coefficients have been used to obtain properties or “Absolv descriptors” for zwitterionic α-aminoacids: glycine, α-alanine (α-aminopropanoic acid), α-amino-2-butanoic acid, norvaline (α-aminopentanoic acid), norleucine (α-aminohexanoic acid), valine (α-amine-3-methylbutanoic acid), leucine (α-amino-4-methylpentanoic acid), and α-phenylalanine. Together with equations that we have previously constructed, these descriptors can be used to estimate further solubilities and partition coefficients in a variety of organic solvents and in water–methanol and water–ethanol mixtures. It is shown that equations for neutral solutes are inadequate for the description of solubilities and partition coefficients for these α-aminoacids, and our equations developed for use with both neutral and ionic solutes must be used. The Absolv descriptors include those for hydrogen-bond acidity, A, and hydrogen-bond basicity, B. We find that both of these descriptors are far smaller in value than those for compounds that contain the corresponding ionic groups. Thus, A for α-alanine is 0.28, but A for the ethylammonium cation is 1.31; B for α-alanine is 0.83, and yet B for the acetate anion is no less than 2.93. The additional descriptors that we developed for equations that involve ions, J⁺ and J⁻, are very significant for the α-aminoacids, although numerically smaller than for ionic species such as EtNH₃⁺ and CH₃CO₂⁻.

INTRODUCTION

The α-aminoacids are one of the most important series of compounds in the chemical and biological sciences, and there has been a very large number of experimental and theoretical studies on this series. Campen et al.† have shown that there are some 517 distinct scales of aminoacid properties. Even so, there are notable omissions in some 517 distinct scales of aminoacid properties. Even so, there are notable omissions in some 517 distinct scales of aminoacid properties. Even so, there are notable omissions in some 517 distinct scales of aminoacid properties. The most common methods2–4 for the estimation of water–solvent partition coefficients only apply to the water–wet octanol system and not to any other water–solvent system. The EPI method for the estimation of solubility5 applies only to solubility in water and not to any other solvent. Most surprisingly, there are no estimations of the hydrogen-bond acidity or of the hydrogen-bond basicity of α-aminoacids. The hydrogen-bond acidity of glycine might be supposed to be close to that of the ethylammonium cation, and the corresponding hydrogen-bond basicity close to that of the acetate anion, but no information on these important hydrogen-bond properties is available.

It is our aim to use known physicochemical properties of zwitterionic α-aminoacids such as water–solvent partitions and solubilities in a range of solvents to obtain “descriptors” of these aminoacids. Together with equations that we have previously obtained, these descriptors can be used to estimate further partition coefficients in various water–solvent systems and further solubilities in various solvents. Crucially, these descriptors include the hydrogen-bond acidity and hydrogen-bond basicity so that it will then be possible to compare values for α-aminoacids with those for other species, both charged and uncharged.

METHODS

Over the past few years, we have developed a system of properties or descriptors of solute molecules, known as Abraham descriptors or as Absolv descriptors,5 and have constructed a data base of these solute properties, now available in the public domain.6 In conjunction with this data base, we have assembled a complementary set of equations for physicochemical and biological properties of solutes, so that a combination of solute descriptors and equation coefficients can be used to predict various physicochemical and biological properties, as set out in a number of reviews.7–11 This work7–11 dealt only with neutral species, but was extended to cover charged solutes, specifically ions such as K⁺ and Cl⁻ and ionic species, defined as protonated base cations and...
Table 1. Coefficients in Equation 3 for Water–Solvent Partitions; $SP = \log P$

solvents	c	e	s	a	b	v	j^*	j^*
methanol	0.276	0.334	−0.714	0.243	−3.320	3.549	−2.609	3.027
ethanol	0.222	0.471	−1.035	0.326	−3.596	3.857	−3.170	3.085
propan-1-ol	0.139	0.405	−1.029	0.247	−3.767	3.986	−3.077	2.834
butan-1-ol	0.165	0.401	−1.011	0.056	−3.958	4.044	−3.605	2.685
hexan-1-ol	0.115	0.492	−1.164	0.054	−3.971	4.131	−3.100	2.940
propan-2-ol	0.099	0.344	−1.049	0.406	−3.827	4.033	−3.896	2.889
t-butanol	0.211	0.171	−0.947	0.331	−4.085	4.109	−4.455	2.953
diethylformamide	−0.305	−0.058	0.343	0.358	−4.865	4.486	−3.605	0.415
dimethylethamide	−0.271	0.084	0.209	0.915	−5.003	4.557	−3.152	2.432
acetonitrile	0.413	0.077	0.326	−1.566	−4.391	3.364	−2.234	0.101
nitromethane	0.023	−0.091	0.793	−1.463	−4.364	3.460	−0.149	
N-methylpyrrolidone	0.147	0.532	0.275	0.840	−4.794	3.674	−1.797	0.105
dimethylsulfoxide	−0.194	0.327	0.791	1.260	−4.540	3.361	−3.387	0.132
propylene carbonate	0.004	0.168	0.504	−1.283	−4.407	3.424	−1.989	0.341
sulfolane	0.000	0.147	0.601	−0.318	−4.541	3.290	−1.200	−0.792
propanone	0.313	0.312	−0.121	−0.608	−4.753	3.942	−2.288	0.078
tetrahydrofuran	0.223	0.363	−0.384	−0.238	−4.932	4.450	−2.278	−2.132
NPOEa	0.121	0.600	−0.459	−2.246	−3.879	3.574	−2.314	0.350
dichloromethane	0.319	0.102	−0.187	−3.058	−4.090	4.324	−3.984	0.086
1,2-dichloroethane	0.183	0.294	−0.134	−2.801	−4.291	4.180	−3.429	−0.025
nitrobenzene	−0.152	0.525	0.081	−2.332	−4.494	4.187	−3.373	0.777
benzonitrile	0.097	0.285	0.059	−1.605	−4.562	4.028	−2.729	0.136
chlorobenzene	0.065	0.381	−0.521	−3.183	−4.700	4.614	−4.536	−1.486

aNPOE is o-nitrophenolylactylether.

deprotonated acid anions,$^{12−21}$ as recently reviewed.22 The total method, for neutral and ionic species, has already been applied to a number of systems.$^{23−30}$ Although we had descriptors for a large number of charged species,22 we have not investigated the α-electrochemically neutral but with an internal charge separation, that is, zwitterions. Our general method for the analysis of neutral solutes makes use of the two linear free energy relationships, eqs 1 and 2.

To apply eqs 1 or 3 to a given α-aminoacid, they can be combined with the two linear free energy relationships, eqs 1 and 2, and so only eq 1 is relevant. This equation can be extended to ionic solutes by incorporation of two new terms, as in eq 3. The j^+j^- term refers to cations, and the j^+j^- term refers to anions. Cations have $j^+ = 0$, anions have $j^- = 0$ and neutral compounds have $j^+ = j^- = 0$, so that the equation coefficients c, e, s, a, b, and v are the same for neutral molecules, ions, and ionic species. Thus, for neutral molecules, eq 3 reverts to eq 1.

$$SP = c + cE + sS + aA + bB + vV$$

$$SP = c + cE + sS + aA + bB + vV + j^+j^- + j^-j^+$$

To apply eq 1 or 3 to a given α-aminoacid, values of the dependent variable, SP are needed. The most direct source is a directly determined water–solvent partition coefficient, P, as $\log P$, although for many α-aminoacids, partition coefficients are restricted to the water–octanol system, $P_{oct/w}$, Partition coefficients can also be obtained indirectly from solubilities, in mol dm$^{-3}$, in water, C_w, and a given (usually dry) solvent, C_s, through eq 4.

$$\log P = \log C_s - \log C_w$$

Then, if enough values of $\log P$, direct or indirect, are available for a given α-aminoacid, they can be combined with the corresponding equations, eq 3, and the unknown descriptors calculated by solving the set of simultaneous equations. The Microsoft “Solver” add-on is particularly useful, and any set of simultaneous equations can be solved to give a “best-fit”
solution. Coefficients in eq 3 for the ionic equations that we have obtained so far are given in Table 1.

RESULTS

We first studied the homologous series of α-amino-n-carboxylic acids, because we thought that it is reasonable to expect that the various solute descriptors would vary regularly with the number of carbon atoms in the aminoacids, and that this would help in the assignment of descriptors.

Glycine. Values of directly determined water to (wet) octan-1-ol and water to (wet) butan-1-ol are available. We have the coefficients in eq 3 for partition into both of these solvents, see Table 1. There are a large number of recorded solubilities for glycine in water and various dry solvents, as given in Table 2. Solubilities for glycine in water and various dry solvents, as given in Table 2, are available. We used log C_w taken as 0.49; C_w is the molar solubility in water at 298 K. The values of log P obtained through eq 4 are also in Table 2, and it is these values that we use to derive descriptors for glycine.

In addition to solubilities in pure solvents, there are also available solubilities in aqueous methanol and aqueous ethanol, for which we have the coefficients in the ionic equation, eq 3, see Table 3. We combined the various solubilities to obtain log P values from methanol to water—methanol mixtures and from water to water—ethanol mixtures, using our selected log P values for partition to 100% methanol and 100% ethanol, for consistency. The log P values that we obtained are in Table 4.

There were a number of solvents, 2-methoxyethanol, dioxane, and 1,2-dimethoxyethane, for which we had coefficients only for neutral species. However, we were still left with log P values for 35 solvents or solvent mixtures. The log P values for water to propanone and water to butan-1-ol (and hence the corresponding solubilities) were quite out of line, and so we were left with 33 values. We obtained a value of E = 0.476 for the neutral species NH₂CH₂CO₂H from a refractive index calculated by the ChemSketch program. Judging from our results on base cations and acid anions, we can take E for the zwitterionic species as that for the neutral species. Similarly, we take V = 0.5646 for the neutral species as that for the zwitterion. Then, we have five descriptors, S, A, B, J, and Jᵇ to obtain from 33 simultaneous equations. The descriptors in Table 5 yield a standard deviation SD = 0.241 log units between observed and calculated log P values. The number of data points used is N. In view of the large discrepancies in the solubilities of glycine, the SD value is as small as could reasonably be expected. The calculated log P values for the water—methanol and water—ethanol mixtures are in Table 4, and the calculated log P values for the organic solvents are in Table 2. We also used exactly the same 33 equations to obtain descriptors through the neutral eq 1, that is with Jᵇ and Jᵇ taken as zero. The SD now rises considerably to 0.348 log units, see Table 5.

α-Alanine (α-Aminopropanoic Acid). For α-alanine, there is also a substantial data available. As for glycine, water to (wet) octan-1-ol and water to (wet) butan-1-ol partition coefficients are known. The solubilities of L-α-alanine and DL-α-alanine in water are almost the same, with log C_w = 0.260, 34–37,39,41–48. Solubilities are also known in organic solvents, 34–36,38,39,41–48 water—methanol mixtures, 33,36 and water—ethanol mixtures. We used log C_w = 0.260 to convert solubilities into values of log P through eq 4, see Tables 6 and 7. We obtained E = 0.460 and V = 0.7055 as for glycine and then had five descriptors to obtain from 30 simultaneous equations. The best-fit descriptors are in Table 5. Together with the corresponding equations for log P, these yield the calculated log P values in Tables 6 and 7. The descriptors in Table 5 give SD = 0.206 log units between observed and calculated log P values. If the neutral equation, eq 1 is used, the SD is considerably increased to 0.345 log units, see Table 5.

α-Aminobutanoic Acid. There is less data for α-aminobutanoic acid, but log P values into wet octan-1-ol.
Table 3. Coefficients in Equation 3 for Water–Methanol and Water–Ethanol Partitions, \(SP = \log P \); Composition of Mixtures Given as Volume %

Solvents	Coefficients
Methanol	0.276, 0.334, -0.714, 0.243, -3.320, 3.549, -2.609, 3.027
95%	0.270, 0.278, -0.520, 0.230, -3.368, 3.365, -2.661, 2.909
90%	0.258, 0.250, -0.452, 0.229, -3.206, 3.175, -2.629, 2.707
80%	0.172, 0.197, -0.319, 0.241, -2.912, 2.842, -2.540, 2.421
70%	0.098, 0.192, -0.260, 0.266, -2.585, 2.474, -2.267, 2.164
60%	0.053, 0.207, -0.238, 0.272, -2.157, 2.073, -1.978, 1.872
50%	0.023, 0.223, -0.222, 0.264, -1.747, 1.662, -1.588, 1.569
40%	0.020, 0.222, -0.205, 0.218, -1.329, 1.259, -1.329, 1.259
30%	0.016, 0.187, -0.172, 0.165, -0.953, 0.898, -0.823, 0.930
20%	0.022, 0.142, -0.138, 0.088, -0.574, 0.559, -0.465, 0.599
10%	0.012, 0.072, -0.081, 0.026, -0.249, 0.266, -0.185, 0.287
Ethanol	0.222, 0.471, -1.035, 0.326, -3.596, 3.857, -3.170, 3.085
96%	0.238, 0.353, -0.833, 0.297, -3.533, 3.724, -3.020, 2.970
95%	0.239, 0.328, -0.795, 0.297, -3.514, 3.697, -2.985, 2.943
90%	0.243, 0.213, -0.575, 0.262, -3.450, 3.545, -2.794, 2.837
80%	0.172, 0.175, -0.465, 0.260, -3.212, 3.323, -2.466, 2.722
70%	0.063, 0.085, -0.368, 0.311, -2.936, 3.102, -2.203, 2.550
60%	-0.040, 0.138, -0.335, 0.293, -2.675, 2.812, -1.858, 2.394
50%	-0.142, 0.124, -0.252, 0.251, -2.275, 2.415, -1.569, 2.051
40%	-0.221, 0.131, -0.159, 0.171, -1.809, 1.918, -1.271, 1.676
30%	-0.269, 0.107, -0.098, 0.133, -1.316, 1.414, -0.941, 1.290
20%	-0.252, 0.042, -0.040, 0.096, -0.823, 0.916, -0.677, 0.851
10%	-0.173, -0.023, -0.001, 0.065, -0.372, 0.454, -0.412, 0.401

Table 4. Values of \(\log P \) for Glycine from Water to Water–Methanol and Water–Ethanol Mixtures

Solvents	\(\log P \) Values
Methanol	96, -2.925, -2.750
95%	-2.177, -1.999, 95, -2.856, -2.670
90%	-1.973, -1.902, 90, -2.538, -2.218
80%	-1.631, -1.723, 80, -2.009, -1.865
70%	-1.404, -1.525, 70, -1.594, -1.612
60%	-1.150, -1.355, 60, -1.259, -1.437
50%	-0.987, -1.130, 50, -0.980, -1.233
40%	-0.710, -0.862, 40, -0.739, -0.997
30%	-0.461, -0.645, 30, -0.522, -0.757
20%	-0.300, -0.400, 20, -0.324, -0.551
10%	-0.125, -0.185, 10, -0.148, -0.322

Table 5. Solute Descriptors Obtained from Equation 3

Descriptors	Coefficients
Glycine	0.476, 2.12, 0.27, 0.72, 0.5646, 0.5854, 0.2483, 0.241
Alpha alanine	0.460, 2.58, 0.28, 0.83, 0.7055, 0.6226, 0.4186, 0.206
Alpha aminobutyric acid	0.455, 2.63, 0.28, 0.94, 0.8464, 0.5170, 0.3871, 0.180
Norvaline	0.454, 2.20, 0.33, 0.92, 0.9873, 0.5106, 0.2001, 0.138
Norleucine	0.449, 2.10, 0.32, 0.96, 1.1282, 0.5227, 0.2356, 0.155
Valine	0.439, 2.38, 0.32, 0.95, 0.9873, 0.5804, 0.2897, 0.204
Leucine	0.438, 2.61, 0.32, 0.96, 1.1282, 0.3397, 0.1336, 0.074
Alpha phenylalanine	1.150, 2.48, 0.77, 1.70, 1.3133, 0.1907, 0.5312, 0.144
Glycine	0.476, 1.92, 0.19, 1.05, 0.5646, 0.000, 0.32, 0.348
Alpha alanine	0.460, 2.14, 0.30, 1.09, 0.7055, 0.000, 0.29, 0.345
Alpha aminobutyric acid	0.455, 2.18, 0.49, 1.14, 0.8464, 0.000, 0.16, 0.331
Norvaline	0.454, 2.05, 0.34, 1.20, 0.9873, 0.000, 0.27, 0.214
Alpha phenylalanine	1.150, 1.58, 1.00, 1.65, 1.3133, 0.000, 0.30, 0.330

\(^{a}\)Alpha aminobutyric acid. \(^{b}\)Alpha aminopentanoic acid. \(^{c}\)Alpha aminohexanoic acid. \(^{d}\)Value of A fixed.
Table 6. Solubilities of α-Alanine in Organic Solvents, as log $ C $, and Water–Solvent Partition Coefficients, as log $ P $, at 298 K

solvent	log $ C $	refs	obs	taken	calc
methanol	−1.921	34	−2.181	−2.30	−1.95
methanol	−3.119	37	3.379		
methanol	−2.045	36	−2.305		
ethanol	−2.700	36	−2.960	−2.96	−3.06
ethanol	−2.301	36	−2.561		
ethanol	−2.694	39	−2.954		
propan-1-ol	−2.700	34	−2.960	−3.56	−3.31
propan-1-ol	−2.588	39	−2.848		
propan-1-ol	−3.297	47	−3.557		
propan-2-ol	−2.400	39	−2.660	−3.86	−3.88
propan-2-ol	−2.523	36	−2.783		
propan-2-ol	−2.458	39	−2.718		
propan-2-ol	−3.607	44	−3.867		
tert-butanol	−2.401	34	−2.660	−2.94	−4.09
tert-butanol	−2.680	35	−2.940		
ethylene glycol	−0.824	44	−1.076	−1.08	−1.19
ethylene glycol	−0.816	42	−1.084		
ethylene glycol	−0.814	41	−1.074		
DMSO	−1.339	41	−1.599	−1.12	−1.10
DMSO	−0.859	48	−1.119		
dioxane	−3.873	43	−4.133		
acetonitrile	−1.443	42	−1.693	−1.69	−1.77
dimethylformamide	−1.319	44	−1.579	−1.58	−2.29
2-methoxyethanol	−0.678	45	−0.938	−0.94	
1,2-dimethoxyethane	−0.833	46	−1.093	−1.09	
octan-1-ol, wet	2	2.96	−2.96	−3.35	
butan-1-ol, wet	32	−1.60	−1.60	−1.65	

“Not used in the calculations.”

Table 8. Solubilities of DL-α-Aminobutanoic Acid in Water and Organic Solvents, as log $ C $, and Water–Solvent Partition Coefficients, as log $ P $, at 298 K

solvent	log $ C $	refs	obs	taken	calc
ethanol	−2.507	37	−2.84	−2.84	−2.73
ethylene glycol	−0.584	42	−0.92	−0.93	−1.06
ethylene glycol	−0.604	44	−0.94		
ethylene glycol	−0.606	41	−0.94		
DMSO	−1.171	41	−1.50	−1.50	−1.74
acetonitrile	−1.284	42	−1.62	−1.62	−1.53
dimethylformamide	−1.372	44	−1.71	−1.71	−1.81
2-methoxyethanol	−0.664	45	−1.00	−1.00	
ethanol	96%	37	−2.48		
95%	37	−2.37			
90%	37	−1.99			
80%	37	−1.43			
70%	37	−1.07			
60%	37	−0.84			
50%	37	−0.66			
40%	37	−0.50			
30%	37	−0.36			
20%	37	−0.22			
10%	37	−0.09			
octan-1-ol, wet	2	−2.53			
butan-1-ol, wet	32	−1.34			

“Not used in the calculations.”

Norvaline (α-Aminopentanoic Acid). Values of log $ P $ from water to wet butan-1-ol and wet octan-1-ol are known for norvaline, and solubilities are available for DL-norvaline in water–ethanol mixtures and in a few organic solvents, as set out in Table 10. We took $ E = 0.449 $ and $ V = 1.1282 $, calculated as before. Then, using log $ C_w = 1.062 $, we obtained the given log $ P $ (obs) values. The log $ P $ value for propanone was considerably out of line, but the remaining log $ P $ values yielded 17 simultaneous equations from which we could calculate the descriptors shown in Table 5. The set of equations and calculated solute descriptors yield observed and calculated values of $ P $ with $ SD = 0.153 $ log units.

Valine (α-Amino-3-methylbutanoic Acid). log $ P $ values for partition to wet octan-1-ol (−2.26) and to wet butan-1-ol (−1.14) are known, and solubilities are available in water, organic solvents, and water–ethanol mixtures, and water–ethanol mixtures. The solubilities of L-valine and DL-valine differ somewhat. In water, values of log $ C $ are −0.122, and −0.243. However, log $ P $ values to water–ethanol mixtures as calculated from solubilities of L-valine and DL-valine in water and water–ethanol mixtures are essentially the same for both isomers, as expected. In Table 11 are given values of log $ P $ as obtained from solubilities of L-valine in water and organic solvents or from solubilities of DL-valine in water and organic solvents. The total of log $ P $ values is in Table 11. We took $ E = 0.439 $ and $ V = 0.9873 $, as before, and used 27 simultaneous equations to obtain the descriptors given in Table 5; the value of $ A = 0.32 $ was fixed by comparison to other aminoacids. For the observed and calculated values of log $ P $ in Table 11, $ SD = 0.204 $ log units.
Leucine (α-Amino-4-methylpentanoic Acid). Dey and Lahiri36 report solubilities of 1-leucine in water, water–methanol, water–ethanol, and water-propan-2-ol mixtures. The derived log P values for water to pure solvents are in Table 12. Cohn et al.35 also determined solubilities of L-leucine in water–ethanol mixtures, but the value of log P from water to ethanol is -2.13, as compared to that of -1.54 by Dey and Lahiri.36 Pal et al.35 listed similar data in water-tert–butanol mixtures, and the log P value from water to tert-butanol itself is in Table 12. Also given35,36 are log P values from water to wet octan-1-ol and wet butan-1-ol. Gekko34 has determined solubilities in water–methanol mixtures, and his values in water and pure methanol lead to a log P value of -1.05, as compared to the value of -1.48 from Dey and Lahiri.36

The derived log P values in Table 12 for partition from water to methanol and ethanol are very inconsistent. In addition, those for partition into propan-2-ol and tert-butanol are far out of line by comparison with those for the other α-amino acids. The only way that we could assign descriptors to leucine was on the basis of the already obtained descriptors for the other α-amino acids listed in Table 5. The suggested descriptors for leucine are in Table 5 and lead to the calculated log P values in Table 12. Clearly, more data on leucine are needed.

Table 9. Solubilities of Norvaline in Water and Organic Solvents, as log C, and Water–Solvent Partition Coefficients, as log P, at 298 K

solvents	isomer	log C	refs	log P
water		-0.166	44	
water		-0.169	45	
ethylene glycol		-0.811	42	-0.643
DMSO		-1.334	41	-1.166
acetone		-1.348	42	-1.180
dimethylformamide		-1.520	44	-1.352
2-methoxyethanol		-0.836	45	-0.668
1,2-dimethoxyethane		-1.014	46	-0.846
methanol		-1.153	52	
ethanol		-1.155	51	-2.359
96% ethanol		-1.07	51	-2.135
95% ethanol		-1.07	51	-2.069
80% ethanol		-1.07	51	-1.265
70% ethanol		-1.07	51	-0.979
60% ethanol		-1.07	51	-0.801
50% ethanol		-1.07	51	-0.656
40% ethanol		-1.07	51	-0.525
30% ethanol		-1.07	51	-0.396
20% ethanol		-1.07	51	-0.268
10% ethanol		-1.07	51	-0.138
methanol		-1.07	51	-1.447
96% methanol		-1.07	51	-1.327
90% methanol		-1.07	51	-1.196
80% methanol		-1.07	51	-0.972
70% methanol		-1.07	51	-0.808
60% methanol		-1.07	51	-0.684
50% methanol		-1.07	51	-0.580
40% methanol		-1.07	51	-0.479
30% methanol		-1.07	51	-0.374
20% methanol		-1.07	51	-0.261
10% methanol		-1.07	51	-0.139
octan-1-ol, wet	2	-2.11	2	-2.43
butan-1-ol, wet	32	-0.98	32	-1.09

Not used.

Table 10. Solubilities of DL-Norleucine in Water and Organic Solvents, as log C, and Water–Solvent Partition Coefficients, as log P, at 298 K

solvents	isomer	log C	refs	log P
water		-1.062	38	
formamide		-1.762	38	-0.70
propanone		-4.101	38	-3.04a
methanol		-2.068	38	-1.01
butan-1-ol		-3.474	38	-2.41
ethanol		-2.982	38	-1.92
96%		-2.663	38	-1.60
95%		-2.593	38	-1.53
90%		-1.888	38	-0.83
80%		-1.671	38	-0.61
70%		-1.563	38	-0.50
60%		-1.504	38	-0.44
50%		-1.450	38	-0.39
40%		-1.378	38	-0.32
30%		-1.279	38	-0.22
20%		-1.165	38	-0.10
10%		-1.162	38	-0.10
octan-1-ol, wet	2	-1.54	2	-1.92
butan-1-ol, wet	32	-0.51	32	-0.76

Not used.
Phenylalanine. Solubilities have been determined for both L-phenylalanine and DL-phenylalanine. In water, at 298 K, values of log \(C_w \) are −0.762 for L-phenylalanine \(^{33−36,54,55} \) and −1.065 for DL-phenylalanine.\(^{56−59} \) We use the values of log \(C_w \) = −0.762 and −1.065 to convert solubilities of L-phenylalanine \(^{33,54} \) and DL-phenylalanine \(^{40} \) in solvents to the corresponding log \(P \) values; details are in Table 13. Gomaa\(^{40} \) has determined solubilities of phenylalanine in several solvents. There is no indication of which isomer was used, but we have simply calculated log \(P \) values from the given solubilities in solvents and in water, see Table 13. There should be no difference in the log \(P \) values for L-phenylalanine and DL-phenylalanine for transfer to a given solvent. Also included in Table 13 are recent determinations of solubilities and hence log \(P \) values in dimethylsulfoxide,\(^{61} \) methanol,\(^{62} \) and ethanol.\(^{63} \) Where necessary, we have averaged the various values. Also, given\(^{7} \) are experimental values of log \(P \) for partition into wet octan-1-ol and wet butan-1-ol.

We calculated \(E = 1.15 \) in the same way as for glycine, and we took \(V = 1.3133 \) the same as the corresponding neutral species. We have data for 30 solvents, including aprotic solvents, and derive the descriptors in Table 5 with an SD of 0.144 log units as between observed (taken) and calculated log \(P \) values. If the analysis is carried out with the neutral equations, SD rises to 0.330 log units.

DISCUSSION

There are a number of other zwitterionic \(\alpha \)-amino acids to those in Table 5 for which solubility data are available. The latter invariably refer only to hydroxyl solvents and water–solvent mixtures. In these cases, the set of simultaneous equations for a given amino acid can still be solved, but there then exists numerous solutions that have nearly the same statistical quality, so that no definite set of descriptors can be obtained. Unless data in a number of aprotic solvents such as dimethylsulfoxide, dimethylformamide, acetonitrile, and also propylene carbonate are available, it is difficult to use our method of simultaneous equations to determine descriptors. Exceptions are norleucine, valine, and leucine that are structurally so close to other \(\alpha \)-amino acids, Table 5, that it is possible to estimate some of their descriptors.

One complication is that many \(\alpha \)-amino acids exist as optical isomers (especially as the L- or DL-forms). Although the L- and D-isomers will have the same solubilities, the DL-form may have different solubilities to the L- and D-forms. Then, application of eq 4 requires that log \(C_w \) and log \(C_w \) refer to the same isomer. Of course any value of log \(P \) obtained through eq 4 or directly determined will be the same for an L- or DL-isomer.

An objective of this work was to establish if the properties of \(\alpha \)-amino acids could reasonably be estimated using our simple equation for neutral species, eq 1, or whether the more complicated “ionic” equation, eq 3 should be used. For the five \(\alpha \)-amino acids in Table 5 for which we have reliable descriptors, the average SD as between observed and calculated values of log \(P \) is 0.182 log units, which suggests that we can predict...
Table 14. Solute Descriptors for Aminoacids and Other Species

Solute	E	S	A	B	V	J'	J''
glycine	0.476	2.12	0.27	0.72	0.5646	0.5854	0.2483
α-alanine	0.460	2.58	0.28	0.83	0.7055	0.6226	0.4186
α-aminoisobutyric acid	0.455	2.63	0.28	0.94	0.8464	0.5170	0.3871
norvaline	0.454	2.20	0.33	0.92	0.9873	0.5106	0.2001
norleucine	0.449	2.10	0.32	0.96	1.1282	0.5227	0.2356
valine	0.439	2.38	0.32	0.95	0.9873	0.5804	0.2897
leucine	0.438	2.61	0.32	0.96	1.1282	0.3397	0.1336
α-phenylalanine	1.150	2.48	0.77	1.70	1.3133	0.1907	0.5312
betaine	0.315	1.57	0.00	2.00	0.9873	−0.3240	0.8760
ethylammonium cation	0.086	2.50	1.31	0.00	0.5117	0.7680	0.0000
acetate anion	0.415	2.19	0.00	2.93	0.4433	0.0000	2.0750
ethylamine	0.236	0.35	0.16	0.61	0.4902	0.0000	0.0000
acetic acid	0.265	0.64	0.62	0.44	0.4648	0.0000	0.0000

Further values of log P to about 0.20 log units. Once a given value of log P has been estimated through a combination of descriptors and equation coefficients, the corresponding value of log Cw can be obtained from log Cao, eq 4. If the neutral equation eq 1 is used, the average SD for the five α-aminoacids rises to 0.314 log units. However, we expect that the SD from an equation with five descriptors will be larger than the SD from an equation with seven descriptors. We, therefore, carried out a multiple linear regression of the 33 log P values for glycine against the five solvent descriptors E, S, A, B, and V and found that the Fisher F-statistic was 172.2. For a regression against the seven solvent descriptors E, S, A, B, V, J', and J'', we found that F = 206.0, so that even when taking into account the extra two descriptors, the equation with J' and J'' is preferred. We conclude that use of eq 3 with the J' and J'' descriptors is necessary for the analysis of partition and solubility of α-aminoacids by our method.

In the solution of a set of simultaneous equations for a given solute, the solute descriptors are all determined in the same analysis, so that the individual errors in the descriptors are not obtained. However, the overall errors in the analyses, Table S, are larger than the errors we usually find with neutral compounds for which we have estimated descriptor errors to be around 0.02 units. We suggest that descriptor errors for the α-aminoacids could be 0.03–0.04 units. The obtained descriptors for α-aminoacids, Table S, are of some interest, especially in that the α-aminoacids appear to have remarkably small values of the hydrogen-bond descriptors A and B. It is useful to compare some of the α-aminoacid descriptors with those for other charged species, as shown in Table 14, with α-alanine as an example. There are some very notable differences between the α-alanine descriptors and those for charged species that might be suitable models. Both α-alanine and the ethylammonium cation contain the C-NH3⁺ group, and yet A is only 0.28 for α-alanine as against 1.31 for the cation. α-Alanine, betaine, and the acetate ion all contain the C-CO3²⁻ group, and yet B values are 0.83, 2.00, and 2.93, respectively. The hydrogen-bond acidity and hydrogen-bond basicity of α-alanine are far less than expected by comparison to these particular charged species. Alagona et al. have used the Monte Carlo simulation to show that glycine has an intramolecular hydrogen bond and a quantum mechanics, molecular mechanics simulation by Tünón et al. yields a similar result. The existence of an intramolecular hydrogen bond would at least partially explain the relatively small values of A and B for the α-aminoacids. It is interesting that betaine, which would not be expected to have an intramolecular bond, has a much larger value of B than have the α-aminoacids. Tsai et al. have suggested that zwitterionic α-aminoacids are far less hydrophilic than expected from the presence of two charged groups; the small values of A and B would certainly lead to this result. α-Phenylalanine has substantially larger values of A and B than the other aminoacids in Table 14. Possibly, the presence of the phenyl group interrupts the intramolecular bond that reduces the values of A and B in the other α-aminoacids. This interruption results in a B-value just short of that in betaine, which can have no intramolecular bond.

As we have shown, above, the ionic descriptors J' and J'' are very significant for the α-aminoacids, although they are numerically smaller than those for the ionic species EtNH3⁺ and MeCO3⁻. This parallels the situation with the descriptors A and B and suggests again that the charged groups in the α-aminoacids cannot be compared directly with those in typical anionic and cationic species.

A feature of the log P values for the α-aminoacids is that the observed log P is more negative than calculated in mixtures with a high proportion of alcohols and the observed log P is more positive than calculated in mixtures with a high proportion of water. It is worth pointing out that these differences are quite small. For the glycine/methanol/water system, the errors between observed and calculated log P are −0.18 log units (95% methanol) and + 0.06 log units (10% methanol), see Table 4. For methanol itself, observed values of log P range from −2.43 to −2.86, a difference of 0.43 log units, and for ethanol itself, observed values range from −2.56 to −3.90, a difference of no less than 1.34 log units (Table 2). In view of the errors in observed values, we just note the (rather small) variation of log P with alcohol/water content.

AUTHOR INFORMATION

Corresponding Authors
- E-mail: m.h.abraham@ucl.ac.uk (M.H.A.).
- E-mail: bill.acree@unt.edu (W.E.A.).

ORCID
- Michael H. Abrahm: 0000-0002-4579-8621
- William E. Acree, Jr.: 0000-0002-1177-7419

Notes
The authors declare no competing financial interest.
REFERENCES

(1) Campen, A.; Williams, R. M.; Brown, C. J.; Meng, J.; Uversky, V. N.; Dunker, A. K. TOP-IDP Scale: a new amino acid scale measuring propensity for intrinsic disorder. Protein Pept. Lett. 2008, 15, 956–963.
(2) BioLoom; BioByte Corp: CA, 1995-2015.
(3) Advanced Chemistry Development, Ontario, Canada, 1996-2010.
(4) EPI Suite TM.
(5) ADME Suite 5.0; Advanced Chemistry Development: Ontario, Canada, 1994-2010.
(6) Ulrich, N.; Endo, S.; Brown, T. N.; Watanabe, N.; Brønner, G.; Abraham, M. H.; Goss, K.-U. UFZ-LSER database v 3.2.1 [Internet]; Helmholtz Centre for Environmental Research-UFZ: Leipzig, Germany. http://www.ufz.de/lserd, 2017.
(7) Abraham, M. H. Scales of hydrogen bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 1993, 22, 73–83.
(8) Abraham, M. H.; Ibrahim, A.; Zissimos, A. M. The determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 2004, 1037, 29–47.
(9) Poole, C. F.; Atapattu, S. N.; Poole, S. K.; Bell, A. K. Determination of solute descriptors by chromatographic methods. Anal. Chem. Acta 2009, 652, 32–53.
(10) Poole, C. F.; Ariyasinga, T. C.; Lenca, N. Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J. Chromatogr. A 2013, 1317, 85–104.
(11) Clarke, E. D.; Mallon, L. The Determination of Abraham Descriptors and Their Application to Crop Protection Research. In Modern Methods in Crop Protection Research; Jeschke, P., Krämer, W., Schirmer, U., Witschel, M., Eds.; Wiley-VCH Verlag GmbH & Co. (2012).
(12) Abraham, M. H.; Acree, W. E., Jr. Equations for the transfer of neutral molecules and ionic species from water to organic phases. J. Org. Chem. 2010, 75, 1006–1015.
(13) Abraham, M. H.; Acree, W. E., Jr. Solute descriptors for phenoxide anions and their use to establish correlations of rates of reaction of anions with iodomethane. J. Org. Chem. 2010, 75, 3021–3026.
(14) Abraham, M. H.; Acree, W. E., Jr. The transfer of neutral molecules, ions and ionic species from water to ethylene glycol and to propylene carbonate; descriptors for pyridinium cations. New J. Chem. 2010, 34, 2298–2305.
(15) Abraham, M. H.; Acree, W. E., Jr. The transfer of neutral molecules, ions and ionic species from water to wet octanol. Phys. Chem. Chem. Phys. 2010, 12, 13182–13188.
(16) Abraham, M. H.; Acree, W. E., Jr. The transfer of neutral molecules, ions and ionic species from water to benzonitrile; comparison with nitrobenzene. Thermochim. Acta 2011, 526, 22–28.
(17) Saifullah, M.; Ye, S.; Gruibbs, L. M.; De La Rosa, N. E.; Acree, W. E., Jr.; Abraham, M. H. Abraham model correlations for the transfer of neutral molecules to tetrahydrofuran and to 1,4-dioxane and for transfer of ions to tetrahydrofuran. J. Solution Chem. 2011, 40, 2082–2094.
(18) Abraham, M. H.; Acree, W. E., Jr. Hydrogen bond descriptors and other properties of ion pairs. New J. Chem. 2011, 35, 1740–1750.
(19) Stephens, T. W.; De La Rosa, N. E.; Saifullah, M.; Ye, S.; Chou, V.; Quay, A. N.; Acree, W. E., Jr.; Abraham, M. H. Abraham model correlations for transfer of neutral molecules and ions to sulfolane. Fluid Phase Equilib. 2011, 309, 30–35.
(20) Abraham, M. H.; Acree, W. E., Jr. Equations for the partition of neutral molecules, ions and ionic species from water to water-ethanol mixtures. J. Solution Chem. 2012, 41, 730–740.
(21) Abraham, M. H.; Acree, W. E., Jr. Equations for the partition of neutral molecules, ions and ionic species from water to water-methanol mixtures. J. Solution Chem. 2016, 45, 861–874.
(22) Abraham, M. H.; Acree, W. E., Jr. Descriptors for ions and ion-pairs for use in linear free energy relationships. J. Chromatogr. A 2016, 1430, 2–14.
(23) Abraham, M. H. The permeation of neutral molecules, ions and ionic species through membranes: brain permeation as an example. J. Pharm. Sci. 2011, 100, 1690–1701.
(24) Zhang, K.; Chen, M.; Scriba, G. K. E.; Abraham, M. H.; Fahr, A.; Lui, X. Linear free energy analysis of retention factors in cerasome electrophoretic chromatography intended for predicting skin permeation. J. Pharm. Sci. 2011, 100, 3105–3113.
(25) Abraham, M. H.; Austin, R. P. The effect of ionized species on microsomal binding. Eur. J. Med. Chem. 2012, 47, 202–205.
(26) Zhang, K.; Chen, M.; Scriba, G. K. E.; Abraham, M. H.; Fahr, A.; Lui, X. Human skin permeation of neutral species and ionic species: extended linear free-energy relationship analysis. J. Pharm. Sci. 2012, 101, 2034–2044.
(27) Abraham, M. H.; Acree, W. E., Jr.; Fahr, A.; Lui, X. Analysis of immobilized artificial membrane retention factors for both neutral and ionic species. J. Chromatogr. A 2013, 1298, 44–49.
(28) Abraham, M. H. Human Intestinal Absorption – Neutral Molecules and Ionic Species. J. Pharm. Sci. 2014, 103, 1956–1966.
(29) Zhang, K.; Fahr, A.; Abraham, M. H.; Acree, W. E., Jr.; Tobin, D. J.; Liu, X. Comparison of lipid membrane-water partitioning with various organic solvent-water partitions of neutral species and ionic species: a new measure of cerasome as a model for the stratum corneum in partition processes. Int. J. Pharm. 2015, 494, 1–8.
(30) Zhang, K.; Abraham, M. H.; Liu, X. An equation for the prediction of human skin permeability of neutral molecules, ions and ionic species. Int. J. Pharm. 2017, 521, 259–266.
(31) Abraham, M. H.; Acree, W. E., Jr. Analysis of the solubility of betaine; calculation of descriptors and physicochemical properties. Fluid Phase Equilib. 2015, 387, 1–4.
(32) Gude, M. T.; Meuwissen, H. H. J.; van der Wielen, L. A. M.; Luyben, K. C. A. M. Partition coefficients and solubilities of α-amino acids in aqueous 1-butanol solutions. Ind. Eng. Chem. Res. 1996, 35, 4700–4712.
(33) Needham, T. E., Jr. Ph.D. Thesis; University of Rhode Island, 1970.
(34) Needham, T. E., Jr.; Paruta, A. N.; Gerrnauthy, R. J. Solubilities of α-amino acids in pure solvent systems. J. Pharm. Sci. 1971, 60, 565–567.
(35) Pal, A.; Dey, B. P.; Lahiri, S. C. Studies on the dissociation constants and solubilities of amino acids in t-butanol + water mixtures. Indian J. Chem. 1986, 25A, 322–329.
(36) Dey, B. P.; Lahiri, S. C. Solubilities of amino acids in different mixed solvents. Indian J. Chem. 1986, 25A, 136–140.
(37) Cohn, E. J.; McMeekin, T. L.; Edwards, J. T.; Weare, J. H. Studies in the physical chemistry of amino acids, peptides and related substances. II The solubility of amino acids in water and in alcohol-water mixtures. J. Am. Chem. Soc. 1934, 56, 2270–2282.
(38) McMeekin, T. L.; Cohn, E. J.; Weare, J. H. Studies in the physical chemistry of amino acids, peptides and related substances. VII. A comparison of the solubility of amino acids, peptides and their derivatives. J. Am. Chem. Soc 1936, 58, 2173–2181.
(39) Ferreira, L. A.; Macedo, E. A.; Pinho, S. P. Solubility of amino acids and diglycerine in aqueous-alkanol solutions. Chem. Eng. Sci. 2004, 59, 3117–3124.
(40) Abraham, M. H.; Grellier, P. L. Substitution at saturated carbon. Part XIX. The effect of alcohols and water on the free energy of solutes and on the free energy of transition states in Sn and Sn reactions. J. Chem. Soc., Perkin Trans. 2 1975, 1856–1863.
(41) Mahali, K.; Roy, S.; Dolui, B. K. Solubility and solvation thermodynamics of a series of homologous α-amino acids in nonaqueous binary mixtures of ethylene glycol and dimethylsulfoxide. J. Chem. Eng. Data 2015, 60, 1233–1241.
(42) Mahali, K.; Roy, S.; Dolui, B. K. Solvation thermodynamics of a series of homologous α-amino acids in non-aqueous binary mixtures of protic ethylene glycol and dipolar acetonitrile. J. Solution Chem. 2013, 42, 1096–1110.
(43) Majumder, K.; Majumder, K.; Larhiri, S. C. Solubilities of amino acids in dioxane + water mixtures and the determination of...
transfer free energies of interaction of amino acid from water to aqueous-organic mixtures. Z. Phys. Chem. 2000, 214, 285.

(44) Mahali, K.; Roy, S.; Dolui, B. K. Thermodynamic solvation of a series of a-amino acids in non-aqueous mixture of ethylene-glycol and N,N-dimethylformamide. J. Biophys. Chem. 2011, 2, 185–193.

(45) Mahali, K.; Roy, S.; Dolui, B. K. Chemical transfer energies of a series of homologous a-amino acids in quasi-aprotic 2-methoxethanol-water mixtures. J. Solution Chem. 2016, 45, 574–590.

(46) Mahali, K.; Roy, S.; Dolui, B. K. Thermodynamic solvation of a series of homologous a-amino acids in aqueous mixtures of 1,2-dimethoxethane. J. Solution Chem. 2013, 42, 1096–1110.

(47) Orella, C. J.; Kirwan, D. J. Correlation of amino acid solubilities in aqueous aliphatic alcohol solutions. Ind. Eng. Chem. Res. 1991, 30, 1040–1045.

(48) Roy, S.; Mahali, K.; Mondal, S.; Dolui, B. K. Thermodynamics of DL-alanine solvation in water-dimethylsulfoxide mixtures at 298.15 K. Russ. J. Phys. Chem. A 2015, 89, 654–662.

(49) Bhattacharyya, A.; Bhattacharya, S. K. Chemical transfer energies of some homologous amino acids and the –CH2– group in aqueous DMF: solvent effect on hydrophobic hydration and three dimensional solvent structure. J. Solution Chem. 2013, 42, 2149–2167.

(50) Sinha, R.; Kundu, K. K. Transfer energetics of a series of homologous a-amino acids and hence of –CH2– group – a possible probe for the solvent effect on hydrophobic hydration and the three-dimensional-structuredness of aqueous cosolvents. J. Mol. Liq. 2004, 111, 151–159.

(51) Wang, Y.; Liu, Y.; Shi, P.; Du, S.; Liu, Y.; Han, D.; Sun, P.; Sun, M.; Xu, S.; Gong, J. Uncover the effect of solvent and temperature on solid-liquid behavior of L-norvaline. J. Mol. Liq. 2017, 243, 273–284.

(52) Klimov, A. I.; Descherevsky, V. I. Study of solubilities on nonpolar amino acids in light and heavy water in connection with the thermostability of proteins. Biofizika 1971, 16, 556–560.

(53) Dunn, M. S.; Ross, F. J. Quantitative investigations of amino acids and peptides. IV. The solubilities of the amino acids in water-ethyl alcohol mixtures. J. Biol. Chem. 1938, 125, 309–332.

(54) Gekko, K. Mechanism of polyol-induced protein stabilization: solubility of amino acids and diglycine in aqueous polyol solutions. J. Biochem. 1981, 90, 1633–1641.

(55) Nozaki, Y.; Tanford, C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. J. Biol. Chem. 1971, 246, 2211–2217.

(56) Dalton, J. B.; Schmidt, C. L. A. The solubilities of certain amino acids in water, the densities of their solutions at twenty five degrees, and the calculated heats of solution and partial molal volumes. J. Biol. Chem. 1933, 103, 549–576.

(57) Dunn, M. S.; Ross, F. J.; Read, L. S. The solubility of the amino acids in water. J. Biol. Chem. 1933, 103, 579–595.

(58) Jelińska-Kazimierczuk, M.; Szydlowski, J. Isotope effect on the solubility of amino acids in water. J. Solution Chem. 1996, 25, 1175–1184.

(59) Tseng, H.-C.; Lee, C.-Y.; Weng, W.-L.; Shiah, I.-M. Solubilities of amino acids in water at various pH values under 298.15 K. Fluid Phase Equilib. 2009, 285, 90–95.

(60) Gomaa, E. A. Molal solubility. Dissociation, association and solvation parameters for saturated phenylalanine solutions in various solvents at 298.15 K. Am. J. Biochem. 2012, 2, 25–28.

(61) Hossain, A.; Roy, S.; Ghosh, S.; Mondal, S.; Dolui, B. K. Solubility of DL-serine and DL-phenylalanine in aqueous mixtures of dimethylsulfoxide and solvation thermodynamics. RSC Adv. 2015, 5, 69839–69847.

(62) Imran, S.; Hossain, A.; Mahali, K.; Roy, A. S.; Guin, P. S.; Roy, S. Role of solubility and solvation thermodynamics on the stability of L-phenylalanine in aqueous methanol and ethanol solutions. J. Mol. Liq. 2018, 265, 693–700.

(63) Alagona, G.; Giho, C.; Kollman, P. A. Monte Carlo simulation studies of the solvation of ions. 2. Glycine zwitterion. J. Mol. Struct.: THEOCHEM 1988, 166, 385–392.

(64) Tunon, I.; Silla, E.; Millot, C.; Martins-Costa, M. T. C.; Ruiz-Lopez, M. F. Intramolecular proton transfer of glycine in aqueous solution using quantum mechanics–molecular mechanics simulations. J. Phys. Chem A 1998, 102, 8673–8678.

(65) Tsai, R.-S.; Testa, B.; Tayer, N. E.; Carrrupt, P.-A. Structure-lipophilicity relationships of zwitterionic amino acids. J. Chem. Soc., Perkin Trans. 2 1991, 1797–1802.