Analyzing the relationships between travel mode indicators and the number of passenger transport fatalities at the city level

Zohreh Asadi-Shekaria, Mehdi Moeinaddini b, Zahid Sultan b, Muhammad Zaly Shah b, and Amran Hamzah a

aCentre for Innovative Planning and Development, Faculty of Built Environment, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia; bDepartment of Urban and Regional Planning, Faculty of Built Environment, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia

ABSTRACT

Objective: A number of efforts have been conducted on travel behavior and transport fatalities at the neighborhood or street level, and they have identified different factors such as roadway characteristics, personal indicators, and design indicators related to transport safety. However, only a limited number of studies have considered the relationship between travel behavior indicators and the number of transport fatalities at the city level. Therefore, this study explores this relationship and how to fill the mentioned gap in current knowledge.

Method: A generalized linear model (GLM) estimates the relationships between different travel mode indicators (e.g., length of motorway per inhabitant, number of motorcycles per inhabitant, percentage of daily trips on foot and by bicycle, percentage of daily trips by public transport) and the number of passenger transport fatalities. Because this city-level model is developed using data sets from different cities all over the world, the impacts of gross domestic product (GDP) are also included in the model.

Conclusions: Overall, the results imply that the percentage of daily trips by public transport, the percentage of daily trips on foot and by bicycle, and the GDP per inhabitant have negative relationships with the number of passenger transport fatalities, whereas motorway length and the number of motorcycles have positive relationships with the number of passenger transport fatalities.

Introduction

Fatalities from traffic accidents are considered global health and development problems (Ngheim et al. 2013), and the largest single cause of fatalities among people aged 15 to 29 is transport crashes (Eurostat 2014). Road traffic fatalities will become one of the 3 major causes of death in low- and middle-income countries in the near future (Abdul-Manan and Várhegyi 2012; Grimm and Treibich 2010; Sarani et al. 2012; The World Bank 2014; World Health Organization 2009, 2014). In addition, in 2012, approximately 28,000 road fatalities were recorded in European countries (European Commission 2013). Therefore, concerns regarding traffic safety are very serious in developing countries, and they still exist in European countries (Asadi-Shekari, Moeinaddini, and Zaly Shah 2015a, 2015b; Moeinaddini et al. 2014b; Moeinaddini, Asadi-Shekari, Sultan, and Zaly Shah 2015).

Although safety is one of the most important factors to consider when investigating mode choice (Can 2013; Deka 2013; Lovegrove et al. 2010; Lovegrove and Sayed 2006a, 2006b, 2007; Moeinaddini, Asadi-Shekari, Sultan, and Zaly Shah 2015), in previous efforts, several important macroscopic factors were not considered (De Leur and Sayed 2001). For instance, there is limited research on exploring the impacts of travel mode choice on traffic fatalities in different contexts at a macroscale. In addition, the majority of previous efforts examined the relationship between each travel mode, including walking, cycling, public transport, motorcycles and cars, with traffic fatalities separately and on the microscale. There are limited studies that identify the effects of these travel options on traffic fatalities when considering all of these travel modes in one relationship model (refer to Appendix A, online supplement). Therefore, this research fills this gap by formulating a generalized linear model (GLM) to explain the relationships between travel mode choice indicators and transport fatalities at the macrolevel while controlling gross domestic product (GDP) impacts. The independent variables in this model include GDP per inhabitant, length of motorway per inhabitant, percentage of daily trips on foot and by bicycle, percentage of daily trips by public transport, and number of motorcycles per inhabitant. The dependent variable is the passenger transport fatalities per inhabitant.

Data and methodology

The majority of previous studies focus on microlevel indicators that are related to one of the travel modes (e.g., walking, cycling, public transport, motorcycle, and car), and there are a limited number of studies that try to identify the effects of these travel options on traffic fatalities in one relationship model at the macroscale. In addition, there are a limited number of studies regarding the relationship between travel mode choice indicators and traffic fatalities while controlling the impacts of GDP.
Therefore, this study focuses on GDP and travel mode choice indicators (percentage of daily trips on foot and by bicycle, percentage of daily trips by public transport, number of motorcycles per hundred thousand inhabitants, and length of motorway per hundred thousand inhabitants) as independent variables and traffic fatalities as the dependent variable at the macroscale (city level). The Mobility in Cities Database (International Association of Public Transport 2006) is an urban mobility database that is used for data collection. This database is the most complete urban mobility database at the city level. Although this database has 120 urban mobility indicators from 52 cities in different parts of the world, the lack of travel mode choice data for some cities limited the research data. Table 1 presents these research data.

Globalization, occupational structure, welfare regimes, social inequalities, and housing systems are the main structural factors for urban socioeconomic segregation (Hamnett 1994; Kemeny 1995; Marciniak et al. 2015; Sassen 1991). Because of data availability, most of the cities in this study are European cities. Because economic restructuring and globalization lead to socio-housing divisions in most European cities, economic restructuring and globalization are the main factors that represent socioeconomic and residential segregation (Arbaci 2007; Jones and Murie 2006; Kleinhans and Van Ham 2013; Van Ham and

City	GDP per hundred thousand inhabitants	Length of motorway per hundred thousand inhabitants	Number of motorcycles per hundred thousand inhabitants	Percentage of daily trips on foot and by bicycle	Percentage of daily trips by public transport	Passenger transport fatalities per hundred thousand inhabitants
Amsterdam	0.34	0.17	0.64	0.51	0.15	330
Athens	0.12	0.39	0.66	0.34	0.19	840
Barcelona	0.17	0.9	0.66	0.34	0.19	840
Berlin	0.2	0.2	0.24	0.36	0.25	190
Bern	0.36	1.57	0.66	0.38	0.21	350
Bilbao	0.21	1.2	0.19	0.49	0.16	540
Bologna	0.31	1.52	1.02	0.29	0.14	990
Brussels	0.24	0.36	0.18	0.28	0.14	460
Budapest	0.1	0.14	0.07	0.23	0.44	630
Chicago	0.4	0.95	0.2	0.06	0.06	800
Clermont Ferrand	0.24	0.42	0.3	0.33	0.06	1,140
Copenhagen	0.34	1.25	0.19	0.39	0.12	470
Dublin	0.22	3.95	0.04	0.16	0.07	2,030
Ghent	0.27	1.46	0.28	0.3	0.05	400
Glasgow	0.21	1.11	0.05	0.24	0.11	530
Graz	0.3	0.8	0.49	0.35	0.18	400
Hamburg	0.39	0.26	0.37	0.16	0.16	340
Helsinki	0.37	0.91	0.16	0.29	0.27	210
Hong Kong	0.28	0.16	0.04	0.38	0.46	300
Krakow	0.07	0.22	0.11	0.33	0.4	44
Lille	0.22	1.44	0.24	0.31	0.06	240
Lisbon	0.17	0.87	0.26	0.24	0.28	730
London	0.36	0.1	0.14	0.31	0.19	420
Lyons	0.27	0.68	0.26	0.33	0.13	220
Madrid	0.2	0.98	0.3	0.26	0.22	710
Manchester	0.22	0.71	0.1	0.23	0.09	420
Marseilles	0.23	0.41	0.19	0.34	0.11	620
Melbourne	0.23	0.2	0.18	0.06	0.06	770
Milan	0.3	0.5				
Moscow	0.06	0.11	0.04	0.24	0.49	470
Munich	0.46	0.48	0.42	0.38	0.22	220
Nantes	0.25	1.23	0.29	0.23	0.13	650
Newcastle	0.18	1.29	0.09	0.27	0.16	230
Oslo	0.43	1.7	0.41	0.26	0.15	390
Paris	0.37	0.7	0.39	0.36	0.18	660
Prague	0.15	0.64	0.45	0.21	0.43	590
Rome	0.27	1.11	0.81	0.24	0.2	1,080
Rotterdam	0.28	0.18	0.42	0.1	340	
Sao Paulo	0.06	0.2	0.22	0.37	0.29	1,090
Seville	0.11	1.16	0.35	0.42	0.1	1,030
Singapore	0.29	0.45	0.4	0.14	0.41	580
Stockholm	0.33	2.69	0.13	0.31	0.22	360
Stuttgart	0.32	0.49	0.44	0.3	0.11	570
Tallinn	0.07	0.25	0.03			
Tunis	0.02	0.21				
Turin	0.27	1.72	0.52	0.25	0.21	980
Valencia	0.14	0.29	0.42	0.46	0.12	340
Vienna	0.34	0.26	0.42	0.3	0.34	260
Warsaw	0.13	0.45	0.19	0.2	0.52	
Zurich	0.42	1.09	0.58	0.3	0.23	450
Manley 2009; Van Kempen and Murie 2009). Therefore, economic globalization indicators such as GDP can provide an overview of the main trends in globalization and socioeconomic segregation for the majority of the cities that are selected in this study.

When the sample size is not large, the maximum likelihood estimates may be biased. This bias is usually ignored (e.g., Moeinaddini et al. 2014b; Moeinaddini, Asadi-Shekari, Sultan, and Zaly Shah 2015) because it is negligible compared to the standard errors (Cordio and McCullagh 1991). In addition, the risk function called Akaike’s information criterion (AIC) occasionally has a nonnegligible bias when the sample size is not large (Akaike 1973). The bias may lead to more parameters for the selected model among the candidate models as the best model based on AIC (Shibata 1980). There are various studies regarding bias-corrected AIC for a small sample size in various models (e.g., Davies et al. 2006; Hurvich and Tsai 1989; Kamo et al. 2013; Sugiura 1978; Wong and Li 1998; Yanagihara et al. 2003). The finite sample corrected AIC (AICc) that is proposed by Hurvich and Tsai (1989) is used in this study to avoid biased AIC.

The number of passenger transport fatalities per hundred thousand inhabitants is a dependent variable in this study, and it is similar to count data (the number of fatalities only takes nonnegative and discrete values). On the other hand, this variable is divided by inhabitants. This division converts this variable to a scaled factor. In addition, the data set does not include a large number of zeros. Therefore, lognormal and gamma with log link models that are contributed to scale data in the GLM framework can be utilized for this variable. Because lognormal is not in the exponential family (e.g., Poisson, gamma, binomial, inverse, negative binomial, etc.) and GLMs with a gamma distribution performed slightly better than the log-transformed model, gamma with the log link model is selected to test the proposed relationships in this study.

Results

The results of the GLM analysis that tested the relationships between travel mode indicators and transport fatalities while controlling GDP impacts are discussed in this section. Descriptive statistics for the variables included in the model (78.8%) are presented in Table 2. Table 3 presents the correlation matrix. A strong correlation does not exist between the independent variables (see Table 3). The parameter estimates and the significance of the parameters (5% level) are shown in Table 4. The model goodness of fit is represented by the omnibus test (the likelihood ratio chi-square test statistics, $P \approx .0001$), the scaled deviance (SD), and Pearson’s chi-square statistic (Table 5). The final model can be defined as $PF = \exp(7.450 - 2.915G + 0.185L - 0.673M - 1.786FB - 1.269PT)$, where PF is the passenger transport fatalities per hundred thousand inhabitants, G is the GDP per hundred thousand inhabitants, L is the length of the motorway per hundred thousand inhabitants, M is the number of motorcycles per hundred thousand inhabitants, FB is the percentage of daily trips on foot and by bicycle, and PT is the percentage of daily trips by public transport.

The results show that passenger transport fatalities are significantly affected by GDP and travel mode indicators. Among these indicators, the GDP per hundred thousand inhabitants has the highest negative parameter, so a higher GDP has greater impacts on passenger transport fatality reduction in this model compared to other effective factors. The percentage of daily trips on foot and by bicycle and the percentage of daily trips by public transport that have negative relationships with passenger transport fatalities are the second and third effective factors in this model. More walking, more cycling, and a higher rate of public transport usage are associated with fewer fatalities. The fifth effective indicator with a positive relationship is the number

Model	Collinearity Statistics		
	Tolerance	VIF	
1	GDP per hundred thousand inhabitants	0.853	1.172
	Length of motorway per hundred thousand inhabitants	0.783	1.276
	Number of motorcycles per hundred thousand inhabitants	0.916	1.092
	Percentage of daily trips on foot and by bicycle	0.925	1.082
	Percentage of daily trips by public transport	0.765	1.307

Table 2. Continuous variable information.

Dependent variable	Minimum	Maximum	Mean	SD
Passenger transport fatalities per hundred thousand inhabitants	41	190.00	2,030.00	593.9024

Dependent variable: Passenger transport fatalities per hundred thousand inhabitants.

Table 3. Correlation matrix.

Model	Collinearity Statistics		
	Tolerance	VIF	
1	GDP per hundred thousand inhabitants	0.853	1.172
	Length of motorway per hundred thousand inhabitants	0.783	1.276
	Number of motorcycles per hundred thousand inhabitants	0.916	1.092
	Percentage of daily trips on foot and by bicycle	0.925	1.082
	Percentage of daily trips by public transport	0.765	1.307

`aDependent variable: Passenger transport fatalities per hundred thousand inhabitants.`
of motorcycles per hundred thousand inhabitants, and the last positive effective indicator is the length of the motorway per hundred thousand inhabitants. Thus, more motorways and motorcycles are associated with more transport fatalities in this model.

Overall, fewer motorcycles, shorter motorways per inhabitant, a higher GDP per inhabitant, a higher percentage of daily trips on foot and by bicycle, and a higher percentage of daily trips by public transport are effective indicators that are associated with fewer transport fatalities. This suggests that macroscale urban planning that reduces the number of motorcycles and motorway density and increases alternative travel modes (walking, cycling, and public transport) could contribute to fewer transport fatalities across different cities while GDP tends to increase.

Discussion

GDP and urban travel mode indicators as independent variables and passenger transport fatalities as the dependent variable are analyzed in this research using GLM analysis at the macroscale. From this study, it can be concluded that the length of the motorway per hundred thousand inhabitants, the percentage of daily trips on foot and by bicycle, the percentage of daily trips by public transport that are urban travel mode indicators, and the GDP per hundred thousand inhabitants are associated with passenger transport fatalities.

The model shows that a higher GDP per inhabitant is correlated with fewer passenger transport fatalities. The results of previous studies show that though increasing GDP leads to an increase in fatalities in the first stages of economic development, the relationship between GDP and transport fatalities will change when economic development reaches a certain level (e.g., Elvik 2010; Kopits and Cropper 2005; Law et al. 2011). The majority of the cities in the proposed model have reached a certain level of economic development, so GDP has a negative relationship with transport fatalities, and this negative relationship is greater than other effective factors in this model. In addition, considering GDP in the proposed model can indicate the impacts of socioeconomic factors (context effects) at the macrolevel on the relationship between travel mode indicators and transport fatalities.

The model also shows that more alternative travel modes (walking, cycling, and public transport) are correlated with fewer passenger transport fatalities. More walking and cycling can be the result of more facilities and connected routes that are used for nonmotorized modes (Asadi-Shekari, Moeinaddini, and Zaly Shah 2013a, 2013b; Asadi-Shekari et al. 2014). These facilities and connected routes are effective in allowing fewer conflicts and transport fatalities (Asadi-Shekari, Moeinaddini, Sultan, et al. 2015; Asadi-Shekari, Moeinaddini, and Zaly Shah 2015a, 2015b). In addition, more transit trips mean fewer private motorized trips and fewer conflicts (Ibrahim Sheikh et al. 2006; Moeinaddini, Asadi-Shekari, Sultan, and Zaly Shah 2014a, 2015; Moeinaddini, Asadi-Shekari, Sultan, and Zaly Shah 2015). The model also indicates that a longer motorway and more motorcycles per inhabitant are correlated with more passenger transport fatalities. More motorways mean more private motorized vehicle users because motorways belong to motorized vehicles with high speed, and this high speed increases the accident risk (Asadi-Shekari et al. 2013a, 2013b; Atubi 2012; Moeinaddini, Asadi-Shekari, Sultan, and Zaly Shah 2015; Moeinaddini, Asadi-Shekari, and Zaly Shah 2014a, 2014b, 2015). Motorcycle safety can decrease easily in different traffic and weather conditions.
This study evaluates the relationship between urban travel mode indicators and passenger transport fatalities in different cities within various contexts at the city level while controlling GDP impacts. Therefore, the results of this study can be used to explain the impacts of urban travel mode choice on transport fatalities regardless of context effects. In addition, this study also attempts to use a socioeconomic context–related factor (GDP) and urban travel mode indicators at the city level (instead of the neighbourhood level) that have not been sufficiently investigated in previous efforts. These types of relationships can be used in fatality reduction strategies at the city level and to propose better planning decisions for new and existing cities.

This research is limited to the available data in the UITP database in selected cities. Additional studies can improve the proposed model by adding more cities and urban structure indicators. The same method can be used in additional studies to identify more effective factors for sustainable travel patterns regardless of context effects at the city level. In addition, because urban structure indicators change rapidly, these indicators can be updated in regularly future studies to evaluate the changes in the relationship between urban structure indicators (e.g., urban travel mode indicators) and transport fatalities at the macrolevel.

Acknowledgments

The authors thank all of those who have supported this research for their useful comments during its completion. In particular, we would like to acknowledge the Universiti Teknologi Malaysia Research Management Centre (RMC) and Centre for Innovative Planning and Development (CIPD).

Funding

The funding for this project is made possible through the research grant obtained from the Ministry of Education, Malaysia, under the Fundamental Research Grant Scheme (FRGS) 2014 (FRGS grant No. R.J130000.7821.4F602).

References

Abdul-Manan MM, Jonsson T, Varbelyi AS. Development of a safety performance function for motorcycle accident fatalities on Malaysian primary roads. Saf Sci. 2013;60:13–20.

Akaie H. Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F, eds. 2nd International Symposium on Information Theory. Budapest, Hungary: Akademiai Kiado; 1973:267–281.

Arbaci E. Ethnic segregation, housing systems and welfare regimes in Europe. Int J Housing Policy. 2007;7:401–433.

Asadi-Shekari Z, Moeinaddini M, Sultan Z, Zalay Shah M, Hamzah A. The relationship between street network morphology and percentage of daily trips on foot and by bicycle at the city-level. Jurnal Teknologi. 2015;76(14):23–28.

Asadi-Shekari Z, Moeinaddini M, Zalay Shah M. Disabled pedestrian level of service method for evaluating and promoting inclusive walking facilities on urban streets. J Transp Eng. 2013a;139:181–192.

Asadi-Shekari Z, Moeinaddini M, Zalay Shah M. Non-motorised level of service: addressing challenges in pedestrian and bicycle level of service. Transp Rev. 2013b;33:166–194.

Asadi-Shekari Z, Moeinaddini M, Zalay Shah M. A pedestrian level of service method for evaluating and promoting walking facilities on campus streets. Land Use Policy. 2014;38:175–193.

Asadi-Shekari Z, Moeinaddini M, Zalay Shah M. A bicycle safety index for evaluating urban street facilities. Traffic Inf Prev. 2015a;16:283–288.

Asadi-Shekari Z, Moeinaddini M, Zalay Shah M. Pedestrian safety index for evaluating street facilities in urban areas. Saf Sci. 2015b;74:11–14.

Atubhi AO. Determinants of road traffic accident occurrences in Lagos State: some lessons for Nigeria. Int J Humanit Soc Sci. 2012;2(6):252–259.

Can VV. Estimation of travel mode choice for domestic tourists to Nha Trang using the multinomial probit model. Transp Res Part A Policy Pract. 2013;49:149–159.

Chung Y, Song T-J, Yoon B-J. Injury severity in delivery—motorcycle to vehicle crashes in the Seoul metropolitan area. Accid Anal Prev. 2014;62:79–86.

Cordio GM, McCullagh P. Bias correction in generalized linear models. JR Stat Soc B. 1991;53:629–643.

Davies SL, Nealh AA, Cavanaugh JE. Estimation optimality of corrected AIC and modified Cp in linear regression. Int Stat Rev. 2006;74(2):161–168.

Deka D. An explanation of the relationship between adults’ work trip mode and children’s school trip mode through the Heckman approach. J Transp Geogr. 2013;31:54–63.

De Leur P, Sayed T. Using claims prediction model for road safety evaluation. Canadian Journal of Civil Engineering. 2001;28:804–812.

Elvik R. The stability of long-term trends in the number of traffic fatalities in a sample of highly motorised countries. Accid Anal Prev. 2010;42:245–260.

European Commission. Road Safety. Vademecum Road Safety Trends, Statistics and Challenges in the EU 2011–2012. Brussels, Belgium: Author; 2013.

Eurostat. Transport accident statistics. 2014. Available at: http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Transport_accident_statistics. Accessed November, 2014.

Grimm M, Treibich C. Socio-economic Determinants of Road Traffic Accident Fatalities in Low and Middle Income Countries. The Hague, Netherlands: Institute of Social Studies; 2010.

Hamnett C. Social polarisation in global cities: theory and evidence. Urban Stud. 1994;31:401–424.

Hurvich CM, Tsai CL. Regression and time series model selection in small samples. Biomietrika. 1989;76:297–307.

International Association of Public Transport. Mobility in Cities Database. Brussels, Belgium: Author; 2006.

Jones C, Murie A. The Right to Buy. Oxford, UK: Blackwell Publishing; 2006.

Jung S, Xiao Q, Yoon Y. Evaluation of motorcycle safety strategies using the severity of injuries. Accid Anal Prev. 2013;59:357–364.

Kamo K, Yanagihara H, Sato K. Bias-corrected AIC for selecting variables in Poisson regression models. Commun Statist Theory Methods. 2013;42:1911–1921.

Kemeny J. From Public Housing to the Social Market: Rental Policy Strategies in Comparative Perspective. London, UK: Routledge; 1995.

Kleinmans R, Van Ham M. Lessons learned from the largest tenure mix operation in the world: right to buy in the United Kingdom. Cityscape. 2013;15(2):101–118.

Kopits E, Cropper M. Traffic fatalities and economic growth. Accid Anal Prev. 2005;37:169–178.

Law T-H, Noland RB, Evans AW. The sources of the Kuznets relationship between road fatalities and economic growth. J Transp Geogr. 2011;19:355–365.

Lovegrove G, Sayed T. Macro-level collision prediction models to enhance road safety planning applications. Transp Res Part A Policy Pract. 2010;44(2):120–128.

Lovegrove G, Sayed T. Using macro-level collision prediction models in road safety planning applications. Transp Res Rec. 2006b;1950:73–82.

Lovegrove G, Sayed T. Macro-level collision prediction models for evaluating neighbouring traffic safety. Canadian Journal of Civil Engineering. 2006a;33:609–621.

Lovegrove G, Sayed T. Macro-level collision prediction models to enhance traditional reactive road safety improvement programs. Transp Res Rec. 2007;2019:65–73.
Marcińczak S, Tammaru T, Novák J, et al. Patterns of socioeconomic segregation in the capital cities of fast-track reforming postsocialist countries. *Ann Am Assoc Geogr.* 2015;105:183–202.

Moeinaddini M, Asadi-Shekari Z, Sultan Z, Zaly Shah M. Analyzing the relationships between the number of deaths in road accidents and the work travel mode choice at the city level. *Saf Sci.* 2015;72:249–254.

Moeinaddini M, Asadi-Shekari Z, Zaly Shah M. Analyzing the relationship between park-and-ride facilities and private motorized trips indicators. *Arabian Journal for Science and Engineering.* 2014a;39:3481–3488.

Moeinaddini M, Asadi-Shekari Z, Zaly Shah M. The relationship between urban street networks and the number of transport fatalities at the city level. *Saf Sci.* 2014b;62:114–120.

Moeinaddini M, Asadi-Shekari Z, Zaly Shah M. An urban mobility index for evaluating and reducing private motorized trips. *Measurement.* 2015;63:30–40.

Nghiem HS, Connelly LB, Gargett S. Are road traffic crash fatality rates converging among OECD countries? *Accid Anal Prev.* 2013;52:162–170.

Salehi S, Hamid H, Arintono S, Hua LT, Davoodi SR. Effects of traffic and road factors on motorcycling safety perception. *Transport.* 2013;166:289–293.

Sarani R, Rahim SASM, Marjan JM, Voon WS. Predicting Malaysian Road Fatalities for Year 2020. Kajang, Selangor: Malaysia: Malaysian Institute of Road Safety Research; 2012.

Sassen S. *The Global City: New York, London, Tokyo.* Princeton, NJ: Princeton University Press; 1991.

Shibata R. Asymptotically efficient selection of the order of the model for estimating parameters of a linear process. *Ann Math Stat.* 1980;8:147–164.

Sugiura N. Further analysis of the data by Akaike’s information criterion and the finite corrections. *Commun Stat Theory Methods.* 1978;7:13–26.

Van Ham M, Manley D. Social housing allocation, choice and neighbourhood ethnic mix in England. *Journal of Housing and the Built Environment.* 2009;24:407–422.

Van Kempen R, Murie A. The new divided city: changing patterns in European cities. *Tijdschr Econ Soc Geogr.* 2009;100:377–398.

Wong CS, Li WK. A note on the corrected Akaike information criterion for threshold autoregressive models. *J Time Ser Anal.* 1998;19:113–124.

The World Bank. Road safety: a development challenge for South Asia. 2014. Available at: http://web.worldbank.org/WEBSITE/EXTERNAL/COUNTRIES/SOUTHASIAEXT/EXTSARREGTOPTRANSPORT/0,,contentMDK:20674828~pagePK:34004173~piPK:34003707~theSitePK:579598,00.html. Accessed November, 2014.

World Health Organization. *Global Status Report on Road Safety, Time for Action.* Geneva, Switzerland: Author; 2009.

World Health Organization. Road traffic deaths. 2014. Available at: http://www.who.int/gho/road_safety/mortality/en/. Accessed November, 2014.

Yanagihara H, Sekiguchi R, Fujikoshi Y. Bias correction of AIC in logistic regression models. *J Stat Plan Inference.* 2003;115:349–360.