MDA-5 recognition of a murine norovirus

Stephen A. McCartney
Washington University School of Medicine in St. Louis

Larissa B. Thackray
Washington University School of Medicine in St. Louis

Leonid Gitlin
Washington University School of Medicine in St. Louis

Susan Gilfillan
Washington University School of Medicine in St. Louis

Herbert W. Virgin
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/icts_facpubs

Part of the Medicine and Health Sciences Commons

Recommended Citation
McCartney, Stephen A.; Thackray, Larissa B.; Gitlin, Leonid; Gilfillan, Susan; Virgin, Herbert W.; and Colonna, Marco, "MDA-5 recognition of a murine norovirus". PLoS Pathogens, e1000108. 2008. Paper 90. https://digitalcommons.wustl.edu/icts_facpubs/90

This Article is brought to you for free and open access by the Institute of Clinical and Translational Sciences at Digital Commons@Becker. It has been accepted for inclusion in ICTS Faculty Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
MDA-5 Recognition of a Murine Norovirus

Stephen A. McCartney, Larissa B. Thackray, Leonid Gitlin, Susan Gilfillan, Herbert W. Virgin IV, Marco Colonna*

Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America

Abstract

Noroviruses are important human pathogens responsible for most cases of viral epidemic gastroenteritis worldwide. Murine norovirus-1 (MNV-1) is one of several murine noroviruses isolated from research mouse facilities and has been used as a model of human norovirus infection. MNV-1 infection has been shown to require components of innate and adaptive immunity for clearance; however, the initial host protein that recognizes MNV-1 infection is unknown. Because noroviruses are RNA viruses, we investigated whether MDA5 and TLR3, cellular sensors that recognize dsRNA, are important for the host response to MNV-1. We demonstrate that MDA5−/− and TLR3−/− mice have a defect in cytokine response to MNV-1. In addition, MNV-1 replicates to higher levels in MDA5−/− DCs as well as in MDA5−/− mice in vivo. Interestingly, TLR3−/− DCs do not have a defect in vitro, but TLR3−/− mice have a slight increase in viral titers. This is the first demonstration of an innate immune sensor for norovirus and shows that MDA5 is required for the control of MNV-1 infection. Knowledge of the host response to MNV-1 may provide keys for prevention and treatment of the human disease.

Introduction

Norwalk virus and other human noroviruses are common human pathogens responsible for most of the nonbacterial epidemic gastroenteritis in both developed and developing countries [1,2,3,4,5]. In humans, norovirus infection can result in vomiting, diarrhea, fever, malaise, and abdominal pain within 24 hours after infection. These symptoms usually clear within 48 hours, but the virus can persist asymptptomatically for 3–6 weeks post-infection [6,7]. Until recently the inability to culture human noroviruses has prevented investigation into its pathogenicity. The discovery and subsequent routine culture of murine norovirus-1 (MNV-1) has led to advances in understanding of both the norovirus lifecycle as well as the host response to norovirus infection [8,9].

Noroviruses are in the Caliciviridae family and are nonenveloped viruses containing a single-stranded positive-sense RNA genome. Norovirus genomes are covalently linked at the 5′ end to a viral nonstructural protein VPg [10]. Norovirus genomes encode three open reading frames (ORFs) [11,12,13,14]. ORF1 encodes a polypeptide that is cleaved into at least six nonstructural proteins by the viral 3C-like protease [15,16,17,18]. ORF2 encodes the major capsid protein, viral protein 1 [11,19], while ORF3 encodes the small basic protein, viral protein 2 [20,21]. An additional ORF, ORF4 was recently discovered in the MNV genome although the function of this ORF has yet to be characterized [14].

The rapid clearance of MNV-1 infection in immunocompetent mice indicates an important role for the innate immune system, since clearance precedes the timeframe normally associated with the initiation of adaptive immunity [22]. Previous work has revealed that MNV-1 infection of mice lacking either the type I and type II interferon (IFNα/β/γ) receptors or the STAT-1 molecule results in lethality [9,22]. Several proteins are known to initiate the IFN response to viruses [23], including Toll-like receptors (TLR) [24], Rig-I-like helicases (RLH) [25,26], PKR [27], and RNase L [28]. However, the initial sensor responsible for recognition of noroviruses and subsequent activation of cytokine response has not yet been determined.

TLRs are located on the plasma membrane and in endosomal compartments. Among the TLRs, TLR 7 and 8 recognize ssRNA [29,30,31], TLR9 recognizes DNA [32,33], while TLR3 signals in response to dsRNA [34]. The RLHs are sensors located within the cytoplasm [26], which include Rig-I and MDA-5 [23,35,36] and signal through IPS-1/MAVS/Cardiffl/VISA [37,38,39,40]. Rig-I has recently been shown to preferentially recognize 5′-phosphorylated RNA [41,42], while MDA5 responds to dsRNA [43]. Recently it has been shown that the lack of Rig-I does not confer susceptibility to human norovirus in vitro [44]. Because MDA5 [45,46,47,48], and TLR3 [49,50] have been shown to play a role in host response to other RNA viruses we investigated if these sensors might be involved in norovirus recognition in vitro and in vivo using the MNV-1 model system. In this study we demonstrate that indeed MDA5 is the predominant sensor of MNV-1 and initiates the innate immune response against the virus, and that TLR3 may also play a role in the response to MNV-1 in certain tissues.

Results

MDA-5 is required for cytokine response to MNV-1 by Bone Marrow-Derived DC

Previous studies have shown a requirement for the type I IFN response for control of MNV-1 infection in vitro [8]. Since both
MDA-5 and TLR3 have been shown to be involved in type I IFN and cytokine signaling in response to infection with other RNA viruses, we were interested to see if they may play a role in MNV-1 infection. MNV-1 infection has a limited cell tropism—infecting only DC and macrophage lineages in vitro [8,51]. In order to test whether the MDA5 or TLR3 sensors were important, BMDCs from Wild Type as well as TLR3−/− and MDA5−/− mice were cultured for 7 days and then inoculated with various MOI of MNV-1. After 24 hours supernatants from the in vitro infections were harvested and tested for cytokine secretion from the BMDCs.

Interestingly, although WT and TLR3 DCs produced similar levels of IFNα and inflammatory cytokines in response to MNV stimulation, MDA5 deficient DCs produced significantly less IFNα, IL-6, MCP-1, TNFα (Figure 1) and IFNβ (data not shown). In this cell type MDA5 appears to be the primary sensor responsible for type I IFN production in response to MNV-1, however, we cannot rule out that other sensors may play a role in other cell types.

MDA5 limits MNV-1 replication in vivo

MNV-1 infection naturally occurs after fecal-oral transmission [8]. In order to test whether MDA5 and TLR3 play a role in MNV-1 detection in vivo we infected WT, MDA5−/−, or TLR3−/− mice with MNV-1.CW3 perorally. Organs were then harvested in titers. This may reflect a cell type-specific role for viral sensors.

MDA-5 limits MNV-1 replication in vivo

MNV-1 infection naturally occurs after fecal-oral transmission [8]. In order to test whether MDA5 and TLR3 play a role in MNV-1 detection in vivo we infected WT, MDA5−/−, or TLR3−/− mice with MNV-1.CW3 perorally. Organs were then harvested in titers. This may reflect a cell type-specific role for viral sensors.
deficient mice were then stimulated with the harvested RNA, as well as RNA treated with RNase A which degrades ssRNA, and proteinase K (PK), which degrades proteins—in this case the VPg cap. As expected, RNase treatment degraded the viral RNA, while PK treatment did not degrade the RNA as seen in Figure 4a. Consistent with the results of in vitro MNV-1 infections shown in Figure 1, both WT and TLR3−/− BMDCs produced type 1 IFN in response to purified viral RNA, while MDA5−/− BMDCs had a significant decrease in IFN response (Figure 4b,c). However, the addition of PK or RNase to the RNA abrogated the cytokine response in WT and TLR3−/− BMDCs. This data demonstrates that VPg is required for MDA5 recognition of MNV-1, and suggests that MDA5 either directly recognizes RNA linked to VPg or, since VPg is required for norovirus replication [44], that MDA5 recognizes dsRNA generated during viral replication. Because MDA5 has been previously shown to recognize uncapped poly I:C [46,47], it is most likely that the result of PK treatment reflects the requirement for viral replication and the subsequent generation of dsRNA that is recognized by MDA5. Consistent with this hypothesis, WT BMDCs inoculated with UV-inactivated MNV-1 did not produce IFNβ (data not shown).

Discussion

We have provided the first description of an initial sensor of norovirus infection. MDA5 recognizes MNV-1 and stimulates antigen presenting cells to produce type I interferon as well as IL-6, MCP-1, and TNFα that function to recruit other immune cells as well as activate antiviral pathways in host cells. Deficiency of this sensor results in lack of cytokine production as well as increased MNV-1 replication in deficient cells and mice.

It is interesting to note that although MDA5 deficient cells have a severe defect in IFNα production, MDA5−/− mice contain and clear MNV-1 infection. This is in contrast the severe systemic infection and survival phenotype as the IFNαβR or STAT1 deficient mice, which lack type I and type II IFN signaling pathways. STAT-1−/− and IFNαβR−/− mice have a 4 log increase in viral titers in vivo and a 2 log increase in viral titers in vitro as seen in previously published data [22]. In our study MDA5−/− mice have a 1-log increase in viral titers in vivo and in vitro, while TLR3−/− mice have a 0.5 log increase, but only in one organ in vivo. This indicates to us that although MDA5 may be the dominant sensor in BMDCs, it is likely that in other cell types additional sensors can detect MNV-1, such as Rig-I, PKR, TLR7, and perhaps other unknown sensors. Further investigation is needed to determine if mice and cells that are deficient in multiple nucleic acid sensors lack all ability to respond to MNV-1 and whether they therefore have a more severe phenotype. Data from our lab and others [44] from in vitro experiments suggest that lack of TLR3 and Rig-I seem to have little effect on MNV-1 recognition individually, however, we cannot rule out that their involvement is masked by MDA5.

Although the putative recognition structure for Rig-I has previously been determined [41,42], the RNA structure recog-
nized by MDA5 in viral infection remains unclear. We demonstrated that MDA5 recognition of MNV RNA is abrogated by treatment with PK, which degrades VPg, preventing viral replication. This data suggests that VPg is essential for MDA5 recognition of MNV-1. Although we cannot rule out the possibility that MDA5 recognizes the VPg-RNA structure itself, this is less likely because MDA5 is known to respond to poly I:C which has no protein cap. It is more likely that since VPg is essential for viral replication of the ssRNA norovirus genome, loss of VPg prevents MDA5 recognition of dsRNA produced during viral replication. Learning more about which viruses are recognized by MDA5 may provide hints as to what this protein recognizes. This information could then be used to design adjuvants to manipulate the immune response for both vaccine design as well as in treatment of viral infection.

Materials and Methods

Cell lines
RAW264.7 cells were maintained in Dulbecco modified Eagle medium (DMEM) supplemented with 10% fetal calf serum (HyClone), 100 U penicillin/ml, 100 μg/ml streptomycin, 10 mM HEPES, and 2 mM L-glutamine.

Viruses
All experiments were performed with MNV-1.CW3 [14]. Virus stocks were generated using RAW 264.7 cells that were inoculated with a multiplicity of infection (MOI) of 0.05 in VP-SFM media (Gibco) and harvested approximately 40 hours after inoculation. Infected cell lysates were frozen at -80°C and thawed three times. Cell lysates were clarified by low-speed centrifugation for 20 min at 3,000 rpm. To generate a concentrated virus stock, clarified cell lysates were concentrated by centrifugation at 4°C for 3 h at 27,000 rpm (90,000 g) in a SW32 rotor.

Bone marrow-derived DC
Bone marrow was flushed from the femurs of mice and cultured as described previously [52]. Briefly, cells were cultured in RPMI (Gibco) with 10% fetal calf serum (HyClone), Glutamax, Na Pyruvate, Non-Essential AAs, and Kanamycin for 7–8 days at 37 degrees.
Mice
MDA5−/− mice were described previously [47]. For the infection studies mice backcrossed onto a pure 129/SVJ background were used. Control WT mice were age and sex matched and were obtained from littermate controls and from Jackson Lab for 129/SVJ and C57BL/6. TLR3−/− mice were kindly provided by Richard Flavell [34]. All mice were bred and housed in a pathogen free facility and regularly tested for MNV-1 antibodies.

In vitro stimulations
BMDCs were counted and plated at 200,000 cells/well in a 96 well plate. MNV-1 was added at various MOI to the cultures, or alternatively 500 ng RNA was complexed with lipofectamine 2000 (invitrogen) and added according to manufactures instructions. After 20–24 hours supernatants were harvested and stored at −20 degrees until cytokine analysis. IFNα and IFNβ levels from the supernatants were measured by ELISA (PBL Biomedical Laboratories, New Brunswick, NJ), while IL-6, MCP-1, and TNFα levels were determined by cytokine bead array (BD Biosciences).

In vivo infections
WT, TLR3−/−, or MDA5−/− mice were infected perorally with 3×10⁷ PFU MNV1.CW3 [14] or mock-infected with media only. Three days post-infection the following organs were harvested and stored at −80 degrees until assayed: spleen, liver, mesenteric lymph node, lung, proximal intestine, distal intestine, stool, and serum.

MNV-1 plaque assay
Tissue samples were homogenized in 1 ml complete DMEM by bead beating with 1.0-mm zirconia/silica beads (BioSpec Products, Inc.). Tissue homogenates were diluted 1:10 in complete DMEM and tested for viral titers by using a plaque assay that has been previously described [8]. Briefly, 2×10⁶ RAW264.7 cells were seeded into each well of six-well plates, and infected the next day with 10-fold dilutions of tissue homogenate in duplicate. After a 1-hr infection, the inoculum was removed and wells were overlaid with 1.5% SeaPlaque agarose (Cambridge Biosciences) in complete minimal essential medium and incubated at 37°C. After 48 hrs, a second overlay was added containing 1.5% SeaKem agarose (Cambridge Biosciences) and 0.01% neutral red in complete minimal essential medium. After 8 hrs, plaques were then visualized.

RNA preparation
Total viral RNA was harvested from concentrated virus stock using Trizol reagent (Invitrogen) according to manufacturer’s instructions. Purified RNA was incubated with either 10 units RNase A (Sigma) in NEB buffer 3 (New England Biolabs) or with 200 μg/ml protease K (Sigma) in 0.1 M NaCl, 10 mM Tris

Figure 3. MDA5 deficiency leads to increased MNV titers in vitro. Bone marrow-derived dendritic cells from wild type (WT), MDA5−/−, or TLR3−/− mice were inoculated with MNV at an MOI of 5 (A) or 0.05 (B) or pre-treated with 20 U IFNαx and then inoculated with an MOI of 0.05 (C). Viral titers were done at 6 hour time-points for each sample and statistical significance was determined using student’s t test. There was no significant difference between WT and TLR3−/− titers, statistical significance is marked between WT and MDA5−/− titers where * = p<0.05. Data shown is the average of four independent experiments (A and B) or three independent experiments (C). In (D) supernatants from WT BMDC infected at MOI 0.05 were harvested at various time-points and tested for IFNβ by ELISA. Data shown is the average of three independent experiments.
doi:10.1371/journal.ppat.1000108.g003
(pH 8), 1 mM EDTA, 0.5% sodium dodecyl sulfate or left untreated in NEB buffer 3 for 30 minutes at 37°C then stopped with 0.1 mM EDTA. To test for RNA degradation, samples were run on a 1% agarose gel and visualized using a UV light box.

Acknowledgments

We would like to thank Richard Flavell (Yale University) and Lena Alexopoulos (Luminy, Marseille) for their generous gift of TLR3 deficient mice. We also thank Mike Diamond for critical review of the manuscript.

Author Contributions

Conceived and designed the experiments: SAM MC. Performed the experiments: SAM. Analyzed the data: SAM LBT HWV. Contributed reagents/materials/analysis tools: LBT LG SG HWV. Wrote the paper: SAM.

References

1. Estes MK, Prasad BV, Amtar RI (2006) Noroviruses everywhere: has something changed? Curr Opin Infect Dis 19: 467–474.
2. Widdowson MA, Monroe SS, Glass RI (2005) Are noroviruses emerging? Emerg Infect Dis 11: 735–737.
3. Lopman B, Vennema H, Kohli E, Pothier P, Sanchez A, et al. (2004) Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. Lancet 363: 682–688.
4. Fankhauser RL, Noel JS, Monroe SS, Ando T, Glass RI (1998) Molecular epidemiology of “Norwalk-like viruses” in outbreaks of gastroenteritis in the United States. J Infect Dis 178: 1571–1578.
5. Mead PS, Shoultski L, Dietz V, McGaig LF, Bresee JS, et al. (1999) Food-related illness and death in the United States. Emerg Infect Dis 5: 607–625.
6. Dolin R, Blacklow NR, DuPont H, Fornal S, Busco RF, et al. (2004) Transmission of acute infectious nonbacterial gastroenteritis to volunteers by oral administration of stool filtrates. 1971. J Infect Dis 189: 2142–2147, discussion 2139–2141.
7. Graham DY, Jiang X, Tanaka T, Opekun AR, Madore HP, et al. (1999) Norwalk virus infection of volunteers: new insights based on improved assays. J Infect Dis 170: 34–43.
8. Wobus CE, Karst SM, Thackray LB, Chang KO, Sonnentox SV, et al. (2004) Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2: e432. doi:10.1371/journal.pbio.0020432.
9. Karst SM, Wobus CE, Lay M, Davidson J, Virgin HW (2003) STAT1-dependent innate immunity to a Norwalk-like virus. Science 299: 1575–1578.
10. Green KY, Chanock RM, Kapikian AZ (2003) Human Caliciviruses. In: DM Knipe PMH, DE Griffin, RA Lamb, MA Martin, B Roizman, SE Straus, eds. Fields virology. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins. pp 841–874.
11. Jiang X, Wang M, Wang K, Estes MK (1995) Sequence and genomic organization of Norwalk virus. Virology 205: 51–61.

12. Lambden PR, Caul EO, Ashley CR, Clarke IN (1995) Sequence and genome organization of a human small round-structured (Norwalk-like) virus. Science 259: 516–519.

13. Clarke IN, Lambden PR (2000) Organization and expression of calicivirus genes. J Infect Dis 181 Suppl 2: S309–S316.

14. Thackray LB, Wobus CE, Chachou KA, Liu B, Alegre ER, et al. (2007) Marine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J Virol 81: 10460–10473.

15. Blakney SJ, Cahill A, Reilly PA (2003) Processing of Norwalk virus nonstructural proteins by a 3C-like cysteine protease. Virology 308: 216–224.

16. Liu B, Clarke IN, Lambden PR (1996) Polyprotein processing in Southampton virus: identification of 3C-like protease cleavage sites by in vitro mutagenesis. J Virol 70: 2605–2610.

17. Liu BL, Lambden PR, Gunther H, Otto P, Elschnig M, et al. (1999) Molecular characterization of a bovine enteric calicivirus: relationship to the Norwalk-like viruses. J Virol 73: 819–825.

18. Sonnevets SV, Belliot G, Chang KO, Prikhodko VG, Thackray LB, et al. (2006) Cleavage map and proteolytic processing of the murine norovirus nonstructural polyprotein in infected cells. J Virol 80: 7816–7831.

19. Prasad BV, Hardy ME, Doldand T, Bella J, Rossmann MG, et al. (1999) X-ray crystallographic structure of the Norwalk virus capsid. Science 286: 287–290.

20. Bertolotti-Ciarlet A, White LJ, Chen R, Prasad BV, Estes MK (2000) Structural requirements for the assembly of Norwalk virus-like particles. J Virol 74: 4044–4055.

21. Glass PJ, White LJ, Ball JM, Leparc-Goffart I, Hardy ME, et al. (2000) Norwalk virus open reading frame 3 encodes a minor structural protein. J Virol 74: 6581–6591.

22. Munphrey SM, Changotra H, Moore TN, Heimann-Nichols ER, Wobus CE, et al. (2007) Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1-dependent interferon responses. J Virol 81: 3251–3263.

23. Takeuchi O, Akira S (2007) Recognition of viruses by innate immunity. Immuno Rev 220: 214–224.

24. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5: 987–995.

25. Sumpter R J, Luo YM, Foy E, Li K, Yoneyama M, et al. (2005) Regulating intracellular antiviral defense and permittiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol 79: 2689–2699.

26. Barchet W, Krug A, Cella M, Newby C, Fischer JA, et al. (2005) Dendritic cells respond to influenza virus through TLR7- and PKR-independent pathways. Proc Natl Acad Sci U S A 102: 5353–5358.

27. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, et al. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5: 730–737.

28. Xu LG, Wang YY, Han JK, Li LY, Zhai Z, et al. (2005) VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 19: 727–740.

29. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, et al. (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167–1172.

30. Sun Q, Sun L, Liu HH, Chen X, Seth RB, et al. (2006) The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24: 633–642.

31. Perry AK, Chen G, Zheng D, Tang H, Cheng G (2005) The host type I interferon response to viral and bacterial infections. Cell Res 15: 407–422.

32. Homung V, Ellegast J, Kim S, Brzozka K, Jung A, et al. (2005) 5’-Triphosphate RNA is the ligand for RIG-I. Science 314: 994–997.

33. Meylan E, Schule O, Tan CP, Naslund TI, Liljestrom P, et al. (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314: 997–1001.

34. Yoneyama M, Kikuchi M, Matsumoto K, Imaiizumi T, Miyagishi M, et al. (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175: 2851–2858.

35. Guis S, Asanaka M, Katayama K, Crawford SE, Neill FH, et al. (2007) Norwalk virus RNA is infectious in mammalian cells. J Virol 81: 12230–12240.

36. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, et al. (2006) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 80: 335–345.

37. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101–105.

38. Gillin L, Barchet W, Gillifan S, Cell M, Beutler B, et al. (2006) Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and echovirus. Nature 437: 1167–1172.

39. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, et al. (2006) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 80: 335–345.

40. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, et al. (2006) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 80: 335–345.

41. Ederleb KH, Richardson-Burns S, Alexopoulou L, Tyler KL, Flavell RA, et al. (2004) Does Toll-like receptor 3 play a biological role in virus infections? Virology 322: 231–238.

42. Wang T, Town T, Alexopoulou L, Anderson JF, Flavell RA, et al. (2004) Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 10: 1366–1373.

43. Ward JM, Wobus CE, Thackray LB, Exner SS, Fauciette LJ, et al. (2006) Pathology of immunodeficient mice with naturally occurring murine norovirus infection. Toxicol Pathol 34: 708–715.

44. Barchet W, Krug A, Cell M, Newby C, Fischer JA, et al. (2005) Dendritic cells respond to influenza virus through TLR7- and PKR-independent pathways. Eur J Immunol 35: 236–242.