Trend analysis of drought indices in the eastern Slovakia

P Nagy1, P Purcz2, S Galas3, M M Portela4, Helena Hlavatá5 and Dorota Simonová5

1 Institute of Environmental Engineering, Department of Environmental Engineering, Faculty of Civil Engineering Technical University of Kosice, Vysokoskolska 4, Kosice 04200, Slovakia
2 Institute of Construction Technology, Economics and Management, Faculty of Civil Engineering Technical University of Kosice, Vysokoskolska 4, Kosice 04200, Slovakia
3 Department of Environmental Analysis, Geological Mapping and Economic Geology, AGH Krakow, Adama Mickiewicza 30, 30-059 Kraków, Poland
4 Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
5 Slovak Hydrometeorological Institute, Branch Office Košice Ďumbierska 26, 041 17 Košice, Slovakia

Abstract. Extreme weather changes have been increasing in the recent times also in the eastern Slovakia. Extremely dry periods alternate with above-average precipitation. In the paper, the drought indices were evaluated: Standardized Evapotranspiration Index (SPEI) and Standardized Precipitation Index (SPI). Using the non-parametric statistical Mann-Kendall test. The evaluated period was 1960–2015 at selected river and climatological stations in the eastern Slovakia. The results showed that no clean significant trends occurred in all evaluated indices and stations.

1. Introduction
Climate change is a global phenomenon of the scientific community and the public. Recently, global air temperature has risen, potentially increasing global temperature [1-2]. The increase in temperature is associated with a basic hydrological cycle that modifies precipitation changes, evapotranspiration changes, and thus increases the risk of extreme events such as drought and tidal floods from extreme precipitation [2]. The characteristics of the drought may vary with respect to the area where the drought occurs, the time in which climate area and various other aspects. Drought events are also occurring in the Central Europe, which is in a temperate climate zone and where are located the selected weather stations [3].

Drought classification is a prerequisite for research on dry and wet seasons. Many different drought indices are currently being developed and are used according to the area we want to explore [4-6]. Indices can be classified mainly into four basic areas: meteorology, soil moisture, hydrology and remote sensing. I dealt with meteorological indices, which are Standardized Precipitation index (SPI) and Standardized Evapotranspiration Index (SPEI). The World Meteorological Organization recommends the non-parametric Mann-Kendall trend test to detect trends in climate variables [7-8].

2. Materials and Methods
2.1. Methods
The Standardized Precipitation Index (SPI) is a simple drought index that characterizes the meteorological drought in time periods ranging from 1 month to 36 months. In the paper, 12 months SPI...
was used. The SPI can calculate them on the basis of a minimum time series of 20 years. I had available time series data of 30 or more years. The Drinc software was used for SPI calculation [9-11].

Standardized evapotranspiration index (SPEI), is based on water balance. The input data for this index calculation are precipitation and air temperature. This index combines potential evapotranspiration (PET) and precipitation. The PET calculated using the Thornthwaite method and the SPEI is calculated be using the Rgui statistical program [13-14].

The Mann-Kendall trend test is a statistical non-parametric test method and is considered as a good tool for trend analysis. The Mann-Kendal test is independent of data distribution and less sensitive to missing data and is therefore most commonly used to assess trends for various climatological and hydrological variables [12].

2.2. Datasets and study area
For calculation of SPI and SPEI indices I used monthly average temperatures and precipitation from selected climatological stations in eastern Slovakia. Table 1 describes selected climatological stations. It presents the evaluated period for which we had available data and average, minimum, maximum values of climatological variables. The were provided by the Slovak Hydrometeorological Institute branch office Košice. Seven climatological stations were assessed. The climatological stations Červený Kláštor, Poprad and Mníšek nad Hnilcom are located in the north of the eastern Slovakia, the stations Streda nad Bodrogom and Košice are located in the south of Slovakia. Humenné, Kamenica nad Cirochou and Krásny Brod are located in the eastern part of eastern Slovakia and the Mníšek nad Hnilcom and Švedlár are located in the western part of the eastern Slovakia.

Station	Value variables	Evaluated period	Min monthly	Max monthly	Average monthly
Poprad	Precipitation [mm]	1960-2014	0.4	220.4	50.1
	Air temperature [°C]	1960-2014	-24.7	25.65	6.15
Chmeľnica	Precipitation [mm]	1980-2010	4.6	259.3	64.7
Červený Kláštor	Air temperature [°C]	1961-2014	-29.9	26.7	6.34
Mníšek nad Hnilcom	Precipitation [mm]	1980-2010	1.1	261.2	59.8
Švedlár	Air temperature [°C]	1961-2014	-22.4	25.4	6.56
Humenné	Precipitation [mm]	1980-2014	4.8	271.7	61.4
Kamenica nad Cirochou	Air temperature [°C]	1960-2014	-21.1	29.6	8.7
Krásny brod	Precipitation [mm]	1986-2010	1.4	245.5	69.2
Tisinec-Stropkov	Air temperature [°C]	1963-2010	-22.3	26.8	8.14
Streda nad Bodrogom	Precipitation [mm]	1980-2014	0.6	260	53.1
Košice	Air temperature [°C]	1960-2014	-18.4	29.75	9.1

As you can see from table 1 precipitation varies from 0.4 to 271.7 mm per month. Air temperature varies from -29.9 to 29.75.
3. Results

Using the nonparametric Mann Kendall test, it is possible to identify trend in indices. In Table 2, 12-month Standardized Precipitation Index in the evaluated climatological stations are interpreted. There is no trend in Poprad station resulting from the alternation of dry and wet seasons, and in other stations there is a negative trend, with dry periods prevail.

Climatological station seasons	Mann-Kendall trend test	Test interpretation	
Poprad 1960-2014			
Kendall's tau	0.154	H0: There is no trend H1: There is a trend	There is no trend
S	221.000		
Var(S)	17967.000		
p-value (Two-tailed)	0.101		
alpha	0.05		
Mníšek nad Hnilcom 1980-2010			
Kendall's tau	0.631	H0: There is no trend H1: There is a trend	There is a trend
S	773.000		
Var(S)	14291.667		
p-value (Two-tailed)	< 0.0001		
alpha	0.05		
Humenné Humenné 1980-2010			
Kendall's tau	0.384	H0: There is no trend H1: There is a trend	There is a trend
S	471.000		
Var(S)	14291.667		
p-value (Two-tailed)	< 0.0001		
alpha	0.05		
Krásny Brod 1986-2010			
Kendall's tau	0.552	H0: There is no trend H1: There is a trend	There is a trend
S	676.000		
Var(S)	14290.667		
p-value (Two-tailed)	< 0.0001		
alpha	0.05		
Chmeňnica 1980-2010			
Kendall's tau	0.520	H0: There is no trend H1: There is a trend	There is a trend
S	637.000		
Var(S)	14291.667		
p-value (Two-tailed)	< 0.0001		
alpha	0.05		
Streda nad Bodrogom 1980-2010			
Kendall's tau	0.411	H0: There is no trend H1: There is a trend	There is a trend
S	501.000		
Var(S)	14275.000		
p-value (Two-tailed)	< 0.0001		
alpha	0.05		

In Table 3 is presented in the evaluated climatological stations. There is a trend in the stations Poprad, Mníšek nad Hnilcom and Chmeňnica in the SPEI index and it is decreasing, so there are more dry periods. In Humenné, Krásny Brod and Chmeňnica there is no trend characterized by alternating periods.
Table 3. Mann-Kendall trend test of 12 months SPEI.

Climatology station season	Mann-Kendall trend test	Test interpretation
	Kendall's tau	-0.201
	S	-393.000
	Var(S)	28427.000
	p-value (Two-tailed)	0.020
	alpha	0.05
Poprad 1960-2014	0.05 (Two-tailed)	H0: There is no trend
	0.05 (Two-tailed)	H1: There is a trend
	There is a trend	
Mníšek nad Hnilcom and Švedlár 1980-2010	Kendall's tau	0.365
	S	148.000
	Var(S)	2842.000
	p-value (Two-tailed)	0.006
	alpha	0.05
	H0: There is no trend	
	H1: There is a trend	
	There is a trend	
Humenné and Kamenica nad Cirochou 1989-2010	Kendall's tau	-0.067
	S	-29.000
	Var(S)	3141.667
	p-value (Two-tailed)	0.617
	alpha	0.05
	H0: There is no trend	
	H1: There is a trend	
	There is no trend	
Krásny Brod and Tisinec-Stropkov 1980-2010	Kendall's tau	0.225
	S	62.000
	Var(S)	1625.333
	p-value (Two-tailed)	0.130
	alpha	0.05
	H0: There is no trend	
	H1: There is a trend	
	There is no trend	
Chmeľnica and Červený Kláštor 1986-2010	Kendall's tau	0.448
	S	182.000
	Var(S)	2842.000
	p-value (Two-tailed)	0.001
	alpha	0.05
	H0: There is no trend	
	H1: There is a trend	
	There is a trend	
Streda nad Bodrogom and Košice 1980-2014	Kendall's tau	-0.200
	S	-87.000
	Var(S)	3141.667
	p-value (Two-tailed)	0.125
	alpha	0.05
	H0: There is no trend	
	H1: There is a trend	
	There is no trend	

4. Conclusions

The work was focused on occurrence of trend in climatological indices Standardized Precipitation Index (SPI) and Standardized Evapotranspiration Index (SPEI). The results show that in the SPI no trend was only in the station Poprad, in other stations evaluated the trend has a decreasing character. In the SPEI, no trend is in three stations: Humenné/Kamenica nad Cirochou, Krásny Brod/Tisinec, Streda nad Bodrogom/Košice and the other three: Poprad, Mníšek nad Hnilcom/Švedlár, Chmeľnica/Červený Kláštor. Where the trend does not occur is the alternation of dry and wet periods but is not possible to determine the frequency of the alternation of periods. The results would be useful for further research into climate and hydrological models, which would be relevant for strategic water resource planning and drought prevention.

The main factors of climate change are decreasing precipitation and rising air temperature, which contribute to drought formation. As the temperature rises, the surface water vapor increases, which
implies that precipitation should increase but this is not the case. Drought occurrence continuous research and should be given more attention. Reducing the length and intensity of droughts would be possible if the drought could be more accurately predicted and water management could be better managed. During the dry season it is necessary to increase the soil moisture, which would be beneficial for agriculture, overestimating water levels in the river basins and in wet periods it was necessary to retain water in the country.

5. References

[1] Mishra S, Ashok K and Singh V P 2010 J. Hydrol. 391 202-216
[2] Mesaros P, Smetankova J and Krajnikova K 2020 Lecture Notes in Civil Engineering 47 307-314
[3] Mesaros P, Mandicak T, Behun M and Smetankova J 2018 ICETA 2018 - 16th IEEE International Conference on Emerging eLearning Technologies and Applications, Proceedings 10 367-372
[4] Fendekova, M, Poorová J and Slívova V 2018 Hydrologické sucho na Slovensku a prognóza jeho vývoja (Bratislava: Comenius University)
[5] Didovets I, Krvsanova V, Burger G, Snizhko S, Balabukh V, and Bronstert A 2019 J. Hydrol.: Reg. Stud. 22 100590
[6] Milanovic M, Gocic M, and Trajkovic, S 2015 Agric. Agric. Sci. Procedia 4 167-174
[7] Zelenáková M, Purcz P, Ondrejka Harbuláková V, and Oravcová A 2016 Desalin. Water Treat. 57 2693-2701
[8] Harbuláková V O. Zelenáková M. and Sugarekova M 2018 International Multidisciplinary Scientific GeoConference: SGEM: Surveying Geology & mining Ecology Management 18 391-398
[9] West H, Quinn N, and Horswell M 2019 Remote Sens. Environ. 232 111291
[10] Tirivarombo S, Osupile D, and Eliasson, P 2018 Phys. Chem. Earth. Parts A/B/C 106 1-10
[11] Svoboda M, Hayes M, and Wood D 2012 Standardized precipitation index user guide (World Meteorological Organization Geneva, Switzerland)
[12] Mann H B 1945 Econometrica: Journal of the Econometric Society 245-259
[13] Thornthwaite C W 1948 Geogr. rev. 38 55-94
[14] Spinoni J, Barbosa P, De Jager A, McCormick N, Naumann G, Vogt J V, and Mazzeschi M 2019 J. Hydrol.: Reg. Stud. 22 100593

Acknowledgments
This work has been supported by the Slovak Research and Development Agency by supporting the project SK-PT-18-0008 and project SL-PL-18-0033.