Power-Line Frequency Electromagnetic Fields Do Not Induce Changes in Phosphorylation, Localization, or Expression of the 27-Kilodalton Heat Shock Protein in Human Keratinocytes

Biao Shi,1 Behnom Farboud,2 Richard Nuccitelli,2 and R. Rivkah Isseroff1

1Department of Dermatology and 2Section of Molecular and Cellular Biology, University of California-Davis, Davis, California, USA

The linkage of the exposure to the power-line frequency (50–60 Hz) electromagnetic fields (EMF) with human cancers remains controversial after more than 10 years of study. The in vitro studies on the adverse effects of EMF on human cells have not yielded a clear conclusion. In this study, we investigated whether power-line frequency EMF could act as an environmental insult to invoke stress responses in human keratinocytes using the 27-kDa heat shock protein (HSP27) as a stress marker. After exposure to 1 gauss (100 μT) EMF from 20 min to 24 hr, the isoform pattern of HSP27 in keratinocytes remained unchanged, suggesting that EMF did not induce the phosphorylation of this stress protein. EMF exposure also failed to induce the translocation of HSP27 from the cytoplasm to the nucleus. Moreover, EMF exposure did not increase the abundance of HSP27 in keratinocytes. In addition, we found no evidence that EMF exposure enhanced the level of the 70-kDa heat shock protein (HSP70) in breast or leukemia cells as reported previously. Therefore, in this study we did not detect any of a number of stress responses in human keratinocytes exposed to power-line frequency EMF. Key words: electromagnetic fields, heat shock proteins, HSP70, HSP27 phosphorylation, HSP27 translocation, keratinocytes, signal transduction, stress. Environ Health Perspect 111:281–287 (2003). doi:10.1289/ehp.5395 available via http://dx.doi.org/[Online 20 November 2002]
Materials and Methods

EMF exposure system. The EMF exposure system consists of two identical modules, each housed in identical incubators (Figure 1A–C). A uniform electromagnetic field was applied using a cube-shaped Merritt coil with four square, double-wrapped coils 12.5 inches on a side using 26/11/11/26 turns, respectively (Figure 1A). The wire used was 24-gauge, parallel speaker wire, and the total resistance of a single wire forming four coils was 8.3 ohms. Using speaker wire with two parallel leads allowed us to pass current through the parallel pair in a parallel or antiparallel mode. For EMF exposure, current was passed in a parallel mode through each wire of the pair. For non-EMF-exposed controls, current was passed in an antiparallel manner through the pair of wires so that the magnetic fields generated by each one would cancel each other while generating the same amount of joule heating as in the experimental exposure. This coil was placed inside a mu-metal box (Figure 1B) that was, in turn, placed inside a CO2 incubator held at 37°C (Figure 1C). The mu-metal box eliminated any external magnetic fields generated by the incubator and the Earth. To compensate for the lack of the Earth’s magnetic field, a DC current of 115 mA was driven through each of the parallel coils to simulate the Earth’s field of 250 μT. This DC current generated a joule heating of 110 mW in each coil, and we did not detect any temperature increase near the coils due to this joule heating. The AC electromagnetic fields used were at the most 100 μT root mean square, and they were generated by currents of 241 mA root mean square in each of the parallel coils. The distribution of both the DC and AC electromagnetic fields in the incubators was determined using a gaussmeter (Model 9640; F.W. Bell, Orlando, FL). The background field in the incubator where control samples were placed was zero when no current was passed through the coils. We positioned all of the culture dishes in the central area on the shelf where the EMF was very uniform (Figure 1D).

We monitored and adjusted temperature and CO2 in the control and EMF incubators so that the culture conditions in the two incubators were identical. All experiments were done in a double-blind fashion with randomly labeled samples, so that the identities of EMF-exposed and control samples remained unknown to the experimenters who made measurements until all of the data were analyzed.

Cell culture. Normal human keratinocytes were derived from neonatal foreskin and maintained in Medium 154 (Cascade Biologies, Inc., Portland, OR) as described by Rood et al. (34). Cells of passage 5–6 were used in this study. The human skin-derived keratinocytes of HaCaT line (a gift of N. Fusenig) were cultured in Dulbecco’s modified Eagle’s medium (Life Technologies, Gaithersburg, MD), supplemented with 10% (v/v) bovine calf serum (Hyclone Laboratories Inc., Logan, UT). Both normal and HaCaT keratinocytes were grown at 37°C in a 5% CO2 incubator and exposed to EMF when cultures had reached confluence.

The HTB124 human mammary epithelial cell line was kindly provided by R. Goodman and cultured following published protocol (30). The experiment with HL60 human promyelocytic leukemia cells was performed in the laboratory of R. Goodman, who kindly allowed one of us (B.S.) to participate in the experiment performed there.

Extraction of cellular proteins. The extraction of cellular proteins was carried out at 4°C. The cultures were quickly rinsed with Ca2+- and Mg2+-free phosphate-buffered saline (PBS), scraped, and pelleted by centrifugation at 500 × g. The cells were resuspended in an extraction buffer (pH 7.4) containing 10 mM Tris, 10 mM NaCl, 2 mM ethylenediamine tetraacetic acid (EDTA), 2 mM phenylmethylsulfonyl fluoride (PMSF), and protease inhibitors (2.5 µg/mL aprotinin, 1.0 µg/mL bestatin, 2.5 µg/mL leupeptin, and 1.0 µg/mL pepstatin A), then lysed by ultrasonication on a Sonifer Cell Disrupter Model W140 (Ultrasonics Inc., Plainview, NY). After being rocked for 30 min, cell lysates were centrifuged at 10,000 × g for 10 min. The supernatants were aliquoted as cell extracts and stored at –80°C. We determined protein concentrations of the samples using a Bradford protein assay (Bio-Rad Laboratories, Hercules, CA).

For some experiments, cells were lysed using a published protocol (30). Cells were harvested in PBS and centrifuged. Cell pellets were frozen overnight at –70°C, lysed in 100 µL of Mosser’s buffer (20 mM HEPES, 25% glycerol, 0.42 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM PMSF, and 1.0 mM dithiothreitol, pH 8.0), then centrifuged at 12,000 rpm in an Eppendorf centrifuge for 20 min. We collected the supernatants for gel electrophoresis.

Gel electrophoresis and immunoblotting. We carried out one-dimensional isoelectric focusing (IEF) gel electrophoresis as previously described (35,36). A mini IEF gel was precropped for 30 min at 150 mV. Samples of equal amounts of protein, premixed with a loading buffer, were loaded. IEF was run at 150 mV for 30 min, at 200 mV for 120 min, and at 250 mV for 30 min with 20 mM NaOH as catholyte and 10 mM H2PO4 as anolyte. The cellular proteins on the IEF gel were transferred onto Immunobilon-P membranes (Millipore, Bedford, MA) at 100 mV using 0.7% acetic acid solution as the transfer buffer. In SDS-PAGE, samples were loaded into a 10% acrylamide gel, and electrophoresis.
was done at 200 mV. We transferred the proteins on the gel onto a membrane at 100 mV for 1 hr.

For immunoblotting, membranes were blocked with 5% non-fat dry milk in PBS, then probed with mouse IgG anti-HSP27 or mouse IgG anti-HSP70 (StressGen Biotechnologies Corp., Victoria, BC, Canada) at 1:2,000–5,000 dilution, or IgG anti-actin (Sigma Chemical Co., St. Louis, MO) at 1:200–400 dilution. The immunoreactive proteins were detected using horseradish peroxidase-linked anti-mouse IgG, then stained with ECL (electrogenerated chemiluminescence) Western blotting detection reagents (Amersham Life Science Inc., St. Louis, MO). We scanned immunoblots on a UMAX S-6E scanner and determined the optical density (OD) of each band using NIH Image 1.61 (National Institutes of Health, Bethesda, MD). We used only images with bands within the linear range of detection for evaluation of protein abundance and densitometry.

To compare the “non-normalized” OD values of HSP (HSP27 or HSP70) bands in control and EMF-exposed groups, the average OD of all HSP bands in each group was taken; then the E/C OD ratio (average OD of HSP bands in EMF-exposed samples over average OD of HSP bands in control samples) was calculated. To normalize OD values of HSP bands based on the amount of proteins loaded in each well, we took the average OD of all actin bands and then calculated the normalizing factor (i.e., loading difference) for each lane by dividing the OD of each individual actin band by the average OD of all actin bands. The normalized OD of each HSP band was obtained by dividing the non-normalized OD of the HSP band by the normalizing factor. Finally, the average of the normalized OD of four HSP bands of each treatment was taken and compared.

Immunofluoresence staining. Keratinocytes were plated on 12-mm diameter round cover-slips and cultured until nearly confluent before use. After treatments, cells were fixed with 4.0% paraformaldehyde in PBS, permeabilized with 0.1% Triton X-100 in PBS, then blocked in a blocking buffer of 2% bovine serum albumin/PBS. The blocked samples were incubated with mouse IgG anti-HSP27 (1:250 in the blocking buffer) at 4°C overnight and detected with biotinylated anti-mouse antibody (1:500 in the blocking buffer) for 1 hr, then stained with fluorescein isothiocyanate (Sigma; 1:1,000 in the blocking buffer) for 30 min. We examined and photographed coverslips with a Dage-MTI camera (model CCD-72T; Dage-MTI, Michigan City, IN). Digital images were captured and stored in a computer using NIH Image 1.61.

Results

Phosphorylation of HSP27 in keratinocytes. In unstressed normal keratinocytes, the non-phosphorylated HSP27 (HSP27A, pI 6.4) isoform is predominantly expressed along with a small amount of the monophosphorylated isoform, HSP27B (pI 6.0). Exposure of cells to a 1 gauss (100 µT), 60 Hz electromagnetic field did not induce the phosphorylation of HSP27. Two independent experiments were done, and similar results were obtained in duplicate samples from each experiment.

Figure 2. IEF immunoblot of HSP27 isoforms in normal keratinocytes exposed to a 100 µT EMF for 5 min, 20 min, 2 hr, or 24 hr, or treated with 100 µM sodium arsenite (As) for 2 hr. C, control sample. HSP27 isoforms were separated and detected using IEF immunostaining as described in “Materials and Methods.” EMF exposure did not induce changes in HSP27 isoforms in these cells. Two independent experiments were done, and similar results were obtained in duplicate samples from each experiment.

Figure 3. IEF immunoblot of HSP27 isoforms in HaCaT keratinocytes exposed to a 100 µT EMF for 5 min, 20 min, 2 hr, or 24 hr, or treated with 100 µM sodium arsenite (As) for 2 hr. C, control sample. HSP27 isoforms were separated and detected using IEF immunostaining as described in “Materials and Methods.” EMF exposure did not induce changes in HSP27 isoforms in these cells. Two independent experiments were done, and similar results were obtained in duplicate samples from each experiment.

Figure 4. Photomicrographs of control cells not exposed to EMF (A), cells exposed to 100 µT EMF for 5 min (B), 20 min (C), 2 hr (D), or 24 hr (E), or treated with 100 µM arsenite for 2 hr (F). HSP27 was visualized by immunofluorescence as described in “Materials and Methods.” EMF exposure did not induce the translocation of HSP27 from the cytoplasm to the nucleus in normal keratinocytes. Similar results were obtained in two independent experiments with triplicate samples.
There was neither an immediate (5 or 20 min) nor late (24 hr) change in the isoform pattern of HSP27 in response to EMF exposure. In a positive control, we treated the cells with 100 µM sodium arsenite (NaAsO2) for 2 hr, and the phosphorylation of HSP27 was noted, as has been previously reported (32). The arsenite-treated cells exhibited a marked reduction of the non-phosphorylated HSP27A and significant increase in monophosphorylated HSP27B. The further phosphorylation of HSP27 resulted in an increased level of biphosphorylated HSP27C (pI 5.7) and triphosphorylated HSP27D isoforms (pI 5.4) and a small amount of a fifth isoform.

To avoid possible variability of experimental results resulting from the use of different strains of normal keratinocytes, the study was also performed with keratinocytes of an immortalized line HaCaT, which is reported to differentiate in a nearly normal fashion (37). In these cells, the HSP27B isoform was less abundant in unstressed cells, and arsenite treatment induced fewer phosphorylated isoforms as compared to normal keratinocytes. However, as in normal keratinocytes, HSP27 was not phosphorylated, and its isoform pattern remained unchanged in HaCaT cells after EMF exposure (Figure 3).

Cellular relocalization of HSP27 in keratinocytes. We examined the subcellular distribution of HSP27 using indirect immunofluorescence staining. In the unstressed, normal, or HaCaT keratinocytes, HSP27 was primarily located throughout the cytoplasm and was absent from the nucleus. After treatment with arsenite, HSP27 molecules were translocated into the nuclei and formed bright granular aggregates within the nucleus in both normal (Figure 4F) and HaCaT (Figure 5F) keratinocytes. However, this relocalization of HSP27 from the cytoplasm to the nucleus was not observed in either normal (Figure 4) or HaCaT (Figure 5) keratinocytes that had been subjected to short- or long-term EMF exposure.

Synthesis of HSP27 in keratinocytes. Some environmental insults may also increase the abundance of HSP27 in addition to inducing its phosphorylation. However, the total amount of all HSP27 isoforms in EMF-exposed samples in Figures 2 and 3 appeared approximately equal to that of the unexposed sample. To determine if total HSP27 was increased, we totaled the optical densities (OD) of each isoform band in the IEF blot.

Table 1. Quantitative analysis (OD) of HSP27 isoforms shown in Figure 2.

Sample	A	B	C	D	E	Total	S/C
Control	1,683	763				2.446	1.000
EMF 5 min	1,630	697				2.317	0.947
20 min	1,493	724				2.217	0.906
2 hr	1,683	850				2.513	1.027
24 hr	1,706	635				2.341	0.957
Arsenite	516	1,417	1,616	1,654	558	5,761	2.355

The optical density of each band on the blot in Figure 2 was measured with NIH Image 1.61 using arbitrary units. Total OD is the sum of OD values of all HSP27 isoform bands in a sample. The S/C (sample/control) OD ratio was calculated by dividing the total OD of a sample by the total OD of the control.
EMF exposure on HSP27 abundance in keratinocytes using SDS-PAGE/Western blotting. To reduce possible variations due to unequal loading of the samples, actin was used as an internal loading control. The amount of HSP27 in HaCaT cells exposed to EMF from 5 min to 24 hr was virtually unchanged from unexposed controls (Figure 6A). Similar results were obtained in normal keratinocytes (Figure 6B). As positive controls, increases in HSP27 abundance in cells treated with arsenite (100 µM, 2 hr) were detectable.

To reduce experimental error, we analyzed multiple replicate samples for HSP27 levels. In the experiment reported in Figure 7, each of the control and 24 hr EMF-exposed treatment contained four samples of HaCaT keratinocytes. The OD of each HSP27 band on the Western blot was measured, and normalized against the OD of the actin band in the same lane. Data analysis with either the non-normalized OD or normalized OD suggests that EMF exposure did not induce significant increases in HSP27 level. Without the normalization, the HSP27 level was 962 ± 184 (arbitrary units; n = 4) in EMF-exposed cells, compared to 951 ± 102 (n = 4) in controls, yielding an EMF/control OD ratio of 1.012. With the normalization, the HSP27 level was 980 ± 136 in EMF-exposed samples, versus 930 ± 114 in controls, with an EMF/control OD ratio of 1.054 (Figure 7B).

Taken together, IEF and SDS-PAGE data reveal that the HSP27 abundance in keratinocytes is not affected by EMF exposure. Thus, electromagnetic fields, as applied in this study, do not induce de novo synthesis of HSP27.

Synthesis of HSP70 or HSP27 in breast or leukemia cells. To determine if the effects of EMF on heat shock proteins are specific for certain types of HSP or restricted to certain types of cells, the study was expanded to include HSP70 along with HSP27 and to include HTB124 human mammary epithelial cells. This cell line was chosen because EMF exposure has been reported to increase the expression of HSP70 in HTB124 cells (30). The amount of HSP70 in HTB124 cells was not increased in response to short or long-term EMF (8 µT) exposure, and neither of the stress proteins were induced in HaCaT cells (Figure 8A). In another experiment, HTB124 cells were exposed to 8 µT EMF for 20 min, a condition reported to induce HSP70 expression (26). To maximize comparability of results, the cells were lysed using either our protocol or Goodman’s protocol (26). The results indicated that there was no difference between the levels of HSP70 in the samples extracted using either lysis protocol. With either protocol, the HSP70 kept not affected by EMF exposure (Figure 8B). As a positive control, arsenite elicited a measurable increase in HSP70 expression in these cells.

To control for geographical alteration in EMF, or other unknown experimental conditions that might have explained the difference in the observation in our laboratory in Davis, California, compared to those obtained by Goodman and co-workers in their New York laboratory, we replicated experimental conditions reported by Lin et al. (26) in that laboratory. HL60 human promyelocytic leukemia cells were exposed to 8 µT EMF for 20 min in the New York laboratory, then lysed using the procedure as described by Lin et al. (38). An aliquot of each sample was analyzed by Western blotting in the New York laboratory, and we were unable to confirm the EMF-associated increase in HSP70 synthesis (data not shown). Another aliquot of each sample was transported on dry ice to our laboratory for Western blotting analysis (Figure 9). A similar negative result was obtained: The non-normalized ratio of HSP70 level in EMF-exposed cells versus HSP70 level in control (E/C ratio) was 0.971. After normalization against actin, the E/C ratio was 0.997.

Discussion

In this study we investigated the effects of power-line frequency EMF on the heat shock protein HSP27 in human epithelial keratinocytes. To establish plausible causality of EMF-dependent effects with multiple parameters, we examined the phosphorylation, cytoplasmic redistribution, and total amount of HSP27 after EMF exposure. We took several precautions to eliminate experimenter’s bias and reduce experimental errors, including using a double-blind protocol, assay and data analysis, use of positive controls and loading references, assessment of multiple samples, and testing a range of EMF exposure duration. Many of these measures have been suggested and used by other investigators (19,22).

The responses of heat shock proteins in living cells to environmental insults may occur at the transcriptional and posttranslational levels. As a posttranslational modification, the phosphorylation of heat shock proteins represents the more immediate stress response. A
variety of environmental stressors are able to induce serine phosphorylation of HSP27 in keratinocytes (32,39), resulting in multiple easily separable isoforms. However, as our data demonstrate, this is not the case for EMF exposure. Neither short- (5–20 min) nor long-term (24 hr) exposure had any detectable effect on HSP27 phosphorylation in either normal keratinocytes or the immortalized HaCaT keratinocyte line. Because we were able to detect characteristic changes in HS27 phosphorylation induced by arsenite (32,40), it is clear that our experimental system has the sensitivity to detect a change in HSP27 isoform pattern if one were elicited by EMF exposure.

Exposure of cells to environmental stresses may also induce intracellular redistribution of HSP27. In unstimred cells, HSP27 is found exclusively in the cytosol. Following stress, some of HSP27 molecules bind to cytoskeletal elements and act as molecular chaperones to stabilize actin filaments (41,42). Concomitantly, some HSP27 molecules are translocated into the nucleus, where they are thought to be associated with and protect ribonucleoproteins (39). Such translocation from the cytoplasm to the nucleus is seen in keratinocytes that have been stressed with heat, UVB irradiation, or oxidants (32,43). In this study, although HSP27 was relocalized to the nucleus after arsenite treatment in normal and HaCaT keratinocytes, there was no nuclear HSP27 translocation observed in the cells exposed to EMF.

Stress-initiated signals also upregulate the expression of heat shock protein genes, presumably by activating heat shock transcription factors that are targeted to heat-shock elements within the promoter regions of these genes (39). Lin et al. (26) reported that a brief exposure of 8 µT EMF provided a stress sufficient to increase level of HSP70 transcripts by 0.7-fold and level of HSP70 proteins by 1.2-fold in HL60 leukemia cells, presumably promoted by the increase in c-mpc expression. In human breast cells, they found that a 1-hr EMF exposure or a repeated 20-min EMF exposure led to 30–40% increases in HSP70 protein (30). More recently, Pipkin et al. (44) reported that both HS70 and HSP27 were induced in HL-60 cells after a 1 mT EMF exposure for 2 hr.

In contrast, we found that synthesis of HSP27 in human keratinocytes was not sensitive to EMF exposure. When cells were exposed to 100 µT EMF for 5 min, 30 min, 2 hr, and 24 hr, the total levels of HSP27 demonstrated no significant change at any time point compared to the controls exposed to ambient EMF background. We further explored the possibility that the effects of EMF on heat shock proteins are specific for certain heat shock proteins or restricted to certain cell types by attempting to reproduce the results that Goodman and co-workers have reported. Our data demonstrate that the lack of HSP27 response to EMF exposure is not restricted to keratinocytes. Breast cells (HTB124) previously tested by Goodman and colleagues showed no significant change in abundance of HSP27 after exposure to EMF (Figure 8A). Similarly, we were not able to observe any EMF-associated increase in HSP70 level using either breast cells (HTB124) or leukemia cells (HL60). Other investigators have also failed to demonstrate that EMF exposure induces an increase in the synthesis of HSP70 in epithelial carcinoma-derived cells and HL60 cells (45,46).

In summary, in this study we failed to detect any of a number of stress responses in keratinocytes exposed to power-line frequency EMF. Not only synthesis of heat shock proteins but also two other parameters of phosphorylation and translocation were not affected by power-line frequency EMF. Evaluation of these three parameters consistently demonstrated that EMF does not elicit the stress responses that are induced by heat shock or other environmental insults. Our study joins a growing body of evidence that suggests that power-line frequency EMF exposure does not elicit detectable cellular responses.

References

1. Tenforde TS. Biological interactions and potential health effects of extremely low-frequency magnetic fields from power lines and other common sources. Annu Rev Public Health 13:173–196 (1992).
2. Heinerman RA, Kaur JS, Hatch EE, Wacholder S, Linet MS, Robison LL, Nwia S, Tarone RE. Are children living near high-voltage power lines at increased risk of acute lymphoblastic leukemia? Am J Epidemiol 151:512–515 (2000).
3. Angelle IF, Villait P. Residential exposure to electromagnetic fields and childhood leukemia: a meta-analysis. Bull WHO 77:906–915 (1999).
4. Matsanoski GM, Breyssse PN, Elliott EA. Electromagnetic field exposure and male breast cancer. Lancet 337:737 (1991).
5. Loomis DP, Savitz DA, Ananth CV. Breast cancer mortality among female electrical workers in the United States. J Natl Cancer Inst 86:921–925 (1994).
6. Boorman GA, McCormick DL, Ward JM, Haseman JK, Stills RC. Magnetic fields and mammary cancer in rodents: a critical review and evaluation of published literature. Radiat Res 153:617–626 (2000).
7. McLean J, Thansandhrie A, Lecuyer D, Goddard M, Tryphonas L, Scaino JC, Johnson F. A 60-Hz magnetic field increases the incidence of squamous cell carcinomas in mice previously exposed to chemical carcinogens. Cancer Lett 92:121–125 (1995).
8. Morris JE, Sassler LB, Miller DL, Kvetz RI, Johnston DA, DiGiovanni J, Anderson LE. 60 Hz magnetic field exposure and skin cancer in a mouse model. In: BEMS Eighteenth Annual Meeting, Victoria, British Columbia, Canada, 9–14 June 1996. Frederick, MD: The Bioelectromagnetics Society, 1996;A-7-4.
9. Moulder JE. The electric and magnetic fields research and public information dissemination (EMF-RAPID) program. Radiat Res 153:613–616 (2000).
10. Boorman GA, Doren RD, Lotz WG, Galvin Jr MJ. Evaluation of in vitro effects of 50 and 60 Hz magnetic fields in regional EMF exposure facilities. Radiat Res 153:465 (2000).
11. Valberg PA, Kvetz R, Rafferty CN. Can low-level 50/60 Hz electric and magnetic fields cause biological effects? Radiat Res 148:2–21 (1997).
12. Lacy-Hulbert A, Metcalfe JC, Hesketh R. Biological responses to electromagnetic fields. FASEB J 12:395–420 (1998).
13. Díbírík I, Kristupaitis D, Kurokoshi T, Tsuji-Hiğlren L, Chu A, Pond D, Tsung D, Lubin R, Uckun FM. Stimulation of Src family protein-tyrosine kinases as a proximal and mandatory step for SYK kinase-dependent phospholipase C2 activation in lymphoma cells exposed to low energy electromagnetic fields. J Biol Chem 273:4025–4032 (1998).
14. Uckun FM, Kurokoshi T, Jin I, Jun X, Morgan A, Takata M, Bolon J, Lubin R. Exposure of B-lineage lymphoid cells to low energy electromagnetic fields stimulates Lyn kinase. J Biol Chem 270:2666–2670 (1995).
15. Loschinger M, Thumm S, Hammler H, Rodemann HP. Stimulation of protein kinase A activity and induced terminal differentiation of human skin fibroblasts in culture by low-frequency electromagnetic fields. Toxicol Lett 96:97–396 (1998).
16. Miller SC, Furniss MJ. Bruto’s tyrosine kinase activity and inositol 1,4,5-triphosphate production are not altered in Daudi lymphoma cells exposed to power line frequency magnetic fields. J Biol Chem 273:32618–32626 (1998).
17. Miller SC, Haberer J, Venkatasharam U, Furniss MJ. NF-κB or AP-1-dependent reporter gene expression is not altered in human U937 cells exposed to power-line frequency magnetic fields. Radiat Res 151:310–318 (1999).
18. Lin H, Goodman R. Electric and magnetic noise blocks the 60 Hz magnetic enhancement of steady state c-myc transcript levels in human leukemia cells. Bioelectromagn Bioenerg. 36:33–37 (1995).
19. Saffer JD, Thurston SJ. Short exposures to 60 Hz magnetic fields do not alter MYC expression in HL60 or Daudi cells. Radiat Res 144:18–25 (1996).
20. Lacy-Hulbert A, Wilkins TR, Hesketh TR, Metcalfe JC. No effect of 60 Hz electromagnetic fields on MYC or β-actin expression in HL60 leukemia cells. Radiat Res 144:18–25 (1996).

Figure 9. Effect of EMF exposure on HSP70 levels in HL60 leukemia cells. Cells were grown and then exposed to 8 µT EMF for 20 min as described by Lin et al. (26). Abbreviations: C, control sample; E, EMF-treated sample. (A) Immunoblot of HSP70 in HL60 cells; each sample was loaded into two duplicate wells for Western blotting. (B) OD measurement of HSP70 bands in 9A (average of non-normalized or normalized OD values of HSP70 bands in the control or the EMF-exposed group). The E/C ratio is the ratio of the average OD of HSP70 bands in the EMF-exposed group over the average OD of HSP70 bands in the control group. See “Materials and Methods” for details.
expression in human leukemic cells. Radiat Res 144:9–17 (1995).

21. Desjobert H, Hillion J, Adolphe M, Averlant G, Nafziger J. Effects of 50 Hz magnetic fields on c-myc transcript levels in nonsynchronized and synchronized human cells. Bioelectromagnetics 16:277–283 (1995).

22. Owen RD. MYC mRNA abundance is unchanged in subcultures of HL60 cells exposed to power-line frequency magnetic fields. Radiat Res 150:23–30 (1998).

23. Balcer-Kubiczek EK, Zhang XF, Harrison GH, McCready WA, Shi ZM, Han LH, Abraham JM, Ampey LL, Meltzer SJ, Jacobs MC, et al. Rodent cell transformation and immediate early gene expression following 60-Hz magnetic field exposure. Environ Health Perspect 104:1188–1198 (1996).

24. Loberg UJ, Gauger JR, Buthod JL, Engdahl WR, McCormick DL. Gene expression in human breast epithelial cells exposed to 60 Hz magnetic fields. Carcinogenesis 20:1633–1636 (1999).

25. Smith O. Cells, stress and EMFs. Nature Med 2:23–24 (1996).

26. Lin H, Head M, Black M, Han L, Jin M, Goodman R. Myc-mediated transactivation of HSP70 expression following exposure to magnetic fields. J Cell Biochem 69:181–188 (1998).

27. Benjamin IJ, McMillan DR. Stress (heat shock) proteins. Molecular chaperones in cardiovascular biology and disease. Circ Res 82:117–132 (1998).

28. Peus D, Vasa RA, Beyerle A, Meves A, Krautmacher C, Pittelkow MR. UVB activates ERK1/2 and p38 signaling pathways via reactive oxygen species in cultured keratinocytes. J Invest Dermatol 112:751–756 (1999).

29. Ono K, Han J. The p38 signal transduction pathway activation and function. Cell Signal 12:1–13 (2000).

30. Han L, Lin H, Head M, Jin M, Blank M, Goodman R. Application of magnetic field-induced heat shock protein 70 for presurgical cytoprotection. J Cell Biochem 71:537–583 (1999).

31. Nozaki J, Takehana M, Kobayashi S. UVB irradiation induces changes in cellular localization and phosphorylation of mouse HSP27. Photochem Photobiol 65:483–486 (1997).

32. Wong JW, Shi B, Farboud B, McClaren M, Shibamoto T, Cross CE, Isseroff RR. Ultraviolet B-mediated phosphorylation of the small heat shock HSP27 in human keratinocytes. J Invest Dermatol 115:427–434 (2000).

33. Misakian M, Sheppard AR, Krause D, Frazier ME, Miller DL. Biological, physical and electrical parameters for in vitro studies with ELF magnetic and electric fields: a primer. Bioelectromagnetics Suppl 2:1–73 (1993).

34. Rood PA, Haas AF, Graves PJ, Wheeland RG, Isseroff RR. Low-energy helium neon laser irradiation does not alter human keratinocyte differentiation. J Invest Dermatol 99:445–448 (1993).

35. Bollag DM, Rozycki MD, Edelstein SJ. Isoelectric focusing and two dimensional gel electrophoresis. In: Protein Methods, 2nd ed. New York: Wiley-Liss Inc., 1996;173–193.

36. Shi B, Isseroff RR. Thapsigargin induces phosphorylation of the 27-kDa heat shock protein in human keratinocytes. J Invest Dermatol 107:749–754 (1996).

37. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771 (1988).

38. Lin H, Opler M, Head M, Blank M, Goodman R. Electromagnetic field exposure induces rapid, transitory heat shock factor activation in human cells. J Cell Biochem 66:482–488 (1997).

39. Maylin EV. Heat shock proteins and molecular chaperones: implications for adaptive responses in the skin. J Invest Dermatol 104:448–455 (1995).

40. Kato K, Ito H, Okamoto K. Modulation of the arsenite-induced expression of stress proteins by reducing agents. Cell Stress Chaperones 2:199–209 (1997).

41. Zhu Y, O’Neill S, Saklatvala J, Tassi L, Mendelsohn ME. Phosphorylated HSP27 associates with the activation-dependent cytoskeleton in human platelets. Blood 84:1715–1722 (1999).

42. Lavoie JN, Lambert H, Hickey E, Weber LA, Landry J. Modulation of cellular thermoresistance and actin filament stability accompanies phosphorylation-induced changes in the oligomeric structure of heat shock protein 27. Mol Cell Biol 15:505–518 (1995).

43. McCloskey J, Isseroff RR. Dynamic changes in intracellular localization and isoforms of the 27-kDa stress protein in human keratinocytes. J Invest Dermatol 102:375–381 (1994).

44. Pipkin JL, Hinson WG, Young JF, Rowland KL, Shaddock JG, Tolleson WH, Duffy PH, Casciano DA. Induction of stress proteins by electromagnetic fields in cultured HL-60 cells. Bioelectromagnetics 20:347–357 (1999).

45. Kang KI, Boucherche I, Fortin D, Baulieu EE, Catelli MG. Luciferase activity and synthesis of Hsp70 and Hsp90 are insensitive to 50Hz electromagnetic fields. Life Sci 62:489–497 (1998).

46. Morehouse CA, Owen RD. Exposure to low-frequency electromagnetic fields does not alter HSP70 expression or HSF-HSE binding in HL60 cells. Radiat Res 153:658–662 (2000).