Supporting Information

Iridium-Catalyzed Selective 1,2-Hydrosilylation of N-Heterocycles

Jinseong Jeong†,‡ Sehoon Park,*†,‡ and Sukbok Chang*†

†Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 305-701, South Korea
‡Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 305-701, South Korea

*Email: sehoonp@kaist.ac.kr; sbchang@kaist.ac.kr

Table of Content

I. General Considerations..S2
II. Optimization of the Iridium-Catalyzed 1,2-Hydrosilylation of Quinoline (2a) (Table S1)........S3
III. Ir-Catalyzed 1,2-Hydrosilylation of Quinolines (Table 2) ..S4
IV. Ir-Catalyzed 1,2-Hydrosilylation of Substituted Pyridines (Table S2 and Table 3)S11
V. Ir-Catalyzed Dearomative Hydrosilylation of N-Heteroaromatics (Table 4)S15
VI. Stoichiometric Reaction of [Ir(coe)₂Cl]₂ with Et₂SiH₂ and 3-Methylpyridine (Fig. 1)S21
VII. Observation of the Catalyst Resting Species in the Hydrosilylation TurnoverS29
VIII. Initial-Rate Kinetic Measurements (Scheme 4 and 5)...S31
IX. Synthetic Applications (Scheme 7)..S40
Appendix I. Copies of Spectroscopic Data...S46
Appendix II. Crystallographic Data (3k-PNB)..S118
I. General Considerations

Unless otherwise stated, all catalytic reactions were carried out under argon atmosphere. Benzene-d_6 and toluene-d_8 purchased and used without additional purification for the catalytic hydrosilylation and mechanistic studies. All other solvents used in this study were freshly distilled before use. Chlorobis(cyclooctene)iridium(I) dimer [Ir(coe)$_2$Cl]$_2$ and other iridium complexes were purchased. All other commercial reagents were directly used as received from chemical sources without further purification unless otherwise stated. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 F254 plates. Visualization on TLC was achieved by the use of UV light (254 nm), exposure to treatment with acidic anisaldehyde, phosphomolybdic acid, ninhydrin or ceric ammonium molydate stain followed by heating. Column chromatography was undertaken on silica gel (400-630 mesh) using proper eluent. 1H NMR was recorded on AVHD 400 (400 MHz) and/or Agilent Technologies DD2 (400 MHz) for mechanistic studies, and Bruker Avance 400 (400 MHz) or Agilent Technologies DD2 600 (600 MHz) for routine characterization of compounds. Chemical shifts were quoted in parts per million (ppm) referenced to the appropriate solvent peak (C$_6$H$_6$ in C$_6$D$_6$: 7.12 ppm; 1,4-dioxane: 3.32 ppm; mesitylene: 6.73 and 2.22 ppm; DMSO in DMSO-d_6: 2.54 ppm; H$_2$O in DMSO-d_6: 3.33 ppm). The following abbreviations were used to describe peak splitting patterns when appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, dd = doublet of doublet, td = triplet of doublet, ddd = doublet of doublet of doublet, m = multiplet. Coupling constants, J, were reported in hertz unit (Hz). 13C{1H} NMR was fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center of a triplet at 127.6 ppm of C$_6$D$_6$ or 40.45 ppm of DMSO-d_6. 29Si{1H} NMR was referenced to a peak of external Et$_2$SiH$_2$ at -23.0 ppm. Infrared (IR) spectra were acquired on Bruker Alpha ATR FT-IR Spectrometer. Frequencies were given in wave numbers (cm$^{-1}$) and only selected peaks were reported. High resolution mass spectra were obtained by using EI or FAB method from Korea Basic Science Institute (Daegu) or ESI from KAIST Research Analysis Center (Daejeon).

[Note that the N-silyl form of hydrosilylation products were highly air- and moisture-sensitive, and thus easily decomposed during the course of conventional purification by silica column chromatography as reported (Ref. 6e and 6g). For this reason, the N-silylated products were directly identified without isolation through 1D and/or 2D NMR experiments, and yields of N-silyl products were in situ determined by 1H NMR based on internal standard materials (1,4-dioxane or mesitylene). However, a range of representative N-silylated products were transformed to the corresponding N-acyl derivatives, which were then successfully isolated by the conventional column chromatography under ambient conditions.]
II. Optimization of the Iridium-Catalyzed 1,2-Hydrosilylation of Quinoline (2a)

Silane (0.53 ~ 1.05 mmol, 1.5 ~ 3.0 equiv) was added to a solution of an iridium precatalyst (0.00036 ~ 0.015 mmol, 0.1 ~ 4.2 mol %) in deuterated solvent (0.35 mL) or neat in a medium-walled J. Young NMR tube under Ar atmosphere, and the solution was shaken briefly. After 5 min, quinoline (0.35 mmol, 1.0 equiv) was added and the reaction mixture was allowed to react at the indicated temperature and time. Then, it was cooled down to room temperature, into which a suitable internal standard (1,4-dioxane or mesitylene) was added under Ar atmosphere. Finally, the resulting reaction mixture was subject to 1H NMR analysis in order to calculate the crude NMR yields based on the internal standard.

Table S1 Optimization of 1,2-Hydrosilylation of 2a

entry	Ir catalyst (mol %)	silane (equiv)	solvent	T, (°C)	time (h)	yield (%)6
1	[Ir(coe)Cl]$_2$ (1.4)	Et$_2$SiH$_2$ (1.5)	CDCl$_3$	25	5	62
2	[Ir(coe)Cl]$_2$ (1.4)	Et$_2$SiH$_2$ (1.5)	THF-d_8	25	15	69
3	[Ir(coe)Cl]$_2$ (1.4)	Et$_2$SiH$_2$ (1.5)	C$_6$D$_6$	25	4	85
4	[Ir(coe)Cl]$_2$ (1.4)	Et$_2$SiH$_2$ (1.5)	hexane-d_{14}	25	4	99
5	[Ir(coe)Cl]$_2$ (1.4)	Et$_2$SiH$_2$ (1.5)	neat	25	2	99
6	[Ir(coe)Cl]$_2$ (1.4)	Et$_2$SiH$_2$ (1.5)	C$_5$D$_6$	55	1	99
7c	[Ir(coe)Cl]$_2$ (1.4)	Et$_2$SiH$_2$ (1.5)	C$_6$D$_6$	55	1	99
8	[Ir(coe)Cl]$_2$ (0.1)	Et$_2$SiH$_2$ (1.5)	C$_6$D$_6$	55	60	99
9	[Ir(coe)Cl]$_2$ (0.1)	Et$_2$SiH$_2$ (3.0)	neat	55	60	99
10	[Ir(coe)Cl]$_2$ (4.2)	Et$_2$SiH (1.5)	C$_6$D$_6$	85	15	<1
11	[Ir(coe)Cl]$_2$ (4.2)	Me$_2$PhSiH (1.5)	C$_6$D$_6$	55	15	<1
12	[Ir(coe)Cl]$_2$ (4.2)	Ph$_2$SiH$_2$ (1.5)	C$_6$D$_6$	55	15	<1
13	[Ir(coe)Cl]$_2$ (4.2)	'Bu$_2$SiH$_2$ (1.5)	C$_6$D$_6$	55	15	<1
14	[Ir(coe)Cl]$_2$ (1.4)	PhMeSiH$_2$ (1.5)	C$_6$D$_6$	25	4	40
15	[Ir(coe)Cl]$_2$ (1.4)	PhSiH$_3$ (1.5)	C$_6$D$_6$	25	15	29d
16	[Ir(cod)OMe]$_2$ (1.4)	Et$_2$SiH$_2$ (1.5)	C$_6$D$_6$	25	4	61
17	[Ir(cod)Cl]$_2$ (1.4)	Et$_2$SiH$_2$ (1.5)	C$_6$D$_6$	25	4	58
18	[Cp*IrCl]$_2$ (1.4)	Et$_2$SiH$_2$ (1.5)	CDCl$_3$	25	4	57c

aCarried out in J-Young NMR tube in 0.35 mmol scale (2a) under argon atmosphere. bYield of 3a determined by 1H NMR. cPerformed in a reaction vial. dUnidentified side products were also formed. eN-Silyl-1,4-dihydroquinoline was formed in 43% crude yield.
III. Ir-Catalyzed 1,2-Hydrosilylation of Quinolines

A. Preparation of Quinoline Starting Materials

3-Isopropylquinoline (2d), \(^{31}\) 4-idoquinoline, \(^{32}\) and 6-ethenylquinoline (2o) \(^{33-4}\) were prepared according to the previous literatures.

B. Typical Procedure for the 1,2-Hydrosilylation of Quinoines (Table 2)

(i) Diethylsilane (0.53 mmol, 1.5 equiv or 1.75 mmol, 5.0 equiv) was added to a solution of [Ir(coe)_2Cl]_2 (0.005 to 0.015 mmol, 1.4 to 4.2 mol %) in C_6D_6 (0.35 mL) or neat in a medium-walled J-Young NMR tube under Ar atmosphere, and the solution was shaken briefly. After 5 min, quinolines (0.35 mmol, 1.0 equiv) were added into the solution under Ar atmosphere, and it was reacted at the indicated temperature for the indicated period of time. Following an NMR analysis of this crude reaction solution with internal standards (1,4-dioxane = 0.1 mmol; mesitylene = 0.117 mmol), it was diluted with acetonitrile (0.2 mL) and cooled to 0 °C. 4-Nitrobenzoyl chloride (0.53 mmol, 1.5 equiv) with the catalytic amount of I_2 (0.035 mmol, 0.1 equiv, 10 mol %) in acetonitrile (0.3 mL) was slowly added into the above reaction mixture at 0 °C. \(^{35}\) Then, the mixture was allowed to react at room temperature for 1 h and quenched by adding Na_2S_2O_3 (0.053 mmol, 0.15 equiv). Subsequently, this quenched crude solution was evaporated under reduced pressure, and purified by column chromatography on silica gel (EA/Hx = 1/4) to give the corresponding N-benzyolated 1,2-dihydroquinoline products (3-PNB).

(iii) To the catalytic reaction mixture in a J. Young NMR tube was dropwise added HCl solution in ether (2 M, 1.5 mL) at room temperature and the mixture was vigorously shaken. After 1 h, the precipitated salts were filtered and washed with ether (3 mL x 3) to give the desired products as HCl salt (3-HCl). The obtained salts were subject to NMR and/or HRMS analysis.
1-(Diethylsilyl)-1,2-dihydroquinoline (Table 2, 3a) (Crude yield = 99%)

1H NMR (400 MHz, C₆D₆) δ 6.92 (t, J = 7.6 Hz, 1H), 6.83 – 6.74 (m, 2H), 6.68 (t, J = 7.3 Hz, 1H), 6.24 (d, J = 9.5 Hz, 1H), 5.42 (dt, J = 9.0, 4.0 Hz, 1H), 4.50 (quint, J = 3.1 Hz, 1H), 3.66 (dd, J = 4.1, 1.9 Hz, 2H); **13C NMR** (100 MHz, C₆D₆) δ 146.3, 128.2, 127.5, 127.3, 126.8, 122.8, 119.9, 117.8, 45.6, 7.7 (2C), 5.6 (2C); **29Si NMR** (120 MHz, C₆D₆) δ 5.4.

(4-Nitrophenyl)[quinolin-1(2H)-yl]methanone (3a-PNB) (Isolated yield = 82%) Bright yellow solid; **1H NMR** (400 MHz, CDCl₃) δ 8.11 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.14 (d, J = 7.0 Hz, 1H), 7.06 (t, J = 7.3 Hz, 1H), 6.84 (t, J = 6.8 Hz, 1H), 6.64 (d, J = 9.4 Hz, 1H), 6.47 (s, 1H), 6.17 (dt, J = 9.4, 4.2 Hz, 1H), 4.56 (s, 2H); **13C NMR** (150 MHz, CDCl₃) δ 167.4, 148.5, 141.6, 136.1, 129.9 (2C), 128.4, 127.0, 126.7 (2C), 126.2, 125.9, 124.6, 123.4 (2C), 43.2; **IR** (cm⁻¹): 2834, 1654, 1600, 1523, 1487, 1342, 1224, 784; **HRMS** (ESI): Calculated for C₁₀H₁₃N₂O₃ [M⁺]: 280.0848, Found: 280.0844.

1,2-Dihydroquinolin-1-ium chloride (3a-HCl) (Isolated yield = 99%)

White solid; **1H NMR** (400 MHz, DMSO-d₆) δ 11.31 (s, 2H), 7.28 – 7.11 (m, 4H), 6.59 – 6.53 (m, 1H), 6.02 – 5.91 (m, 1H), 3.93 – 3.89 (m, 2H); **13C NMR** (150 MHz, DMSO-d₆) δ 132.8, 129.2, 127.6, 127.0, 126.8, 125.7, 123.3, 120.7, 40.9; **IR** (cm⁻¹): 3401, 3372, 2930, 1638, 1595, 1495, 1035, 692; **HRMS** (EI): Calculated for C₅H₁₀N [M+HCl]⁺: 132.0808, Found: 132.0810.

1-(Diethylsilyl)-3-methyl-1,2-dihydroquinoline (3b) (Crude yield = 99%)

1H NMR (400 MHz, C₆D₆) δ 6.93 (td, J = 7.7, 1.7 Hz, 1H), 6.83 – 6.79 (m, 2H), 6.71 (t, J = 7.4 Hz, 1H), 5.99 (s, 1H), 4.51 (quint, J = 3.4 Hz, 1H), 3.61 (s, 2H), 1.51 (s, 3H), 0.89 (t, J = 8.0 Hz, 6H), 0.72 – 0.64 (m, 2H), 0.62 – 0.54 (m, 2H); **13C NMR** (100 MHz, C₆D₆) δ 144.1, 131.8, 126.9, 126.8, 126.1, 121.9, 119.4, 116.8, 49.9, 20.2, 7.2 (2C), 5.1 (2C); **HRMS** of HCl salt form (EI): Calculated for C₁₀H₁₂N [M-HCl]⁺: 146.0964, Found: 146.0971.
1-(Diethylsilyl)-4-methyl-1,2-dihydroquinoline (3c) (Crude yield = 99%)

\[\text{H NMR (400 MHz, C}_6\text{D}_6\text{)} \delta 7.05 (d, J = 7.7 \text{ Hz, 1H}), 6.98 (t, J = 7.8 \text{ Hz, 1H}), 6.85 (d, J = 8.0 \text{ Hz, 1H}), 6.74 (t, J = 7.5 \text{ Hz, 1H}), 5.30 (s, 1H), 4.53 (s, 1H), 3.66 (s, 2H), 1.82 (s, 3H), 0.90 (t, J = 8.1 \text{ Hz, 6H}), 0.72 – 0.63 (m, 2H), 0.62 – 0.54 (m, 2H); \text{C NMR (100 MHz, C}_6\text{D}_6\text{)} \delta 146.0, 131.5, 127.9, 127.6, 123.8, 119.4, 119.2, 117.4, 45.0, 18.4, 7.3 (2C), 5.2 (2C); \text{HRMS of HCl salt form (EI)}: \text{Calculated for C}_{10}\text{H}_{12}\text{N [M-Cl]+: 146.0964, Found: 146.0968.}\]

1-(Diethylsilyl)-3-isopropyl-1,2-dihydroquinoline (3d) (Crude yield = 99%)

\[\text{H NMR (400 MHz, C}_6\text{D}_6\text{)} \delta 6.95 (t, J = 7.0 \text{ Hz, 1H}), 6.90 (d, J = 7.2 \text{ Hz, 1H}), 6.84 (d, J = 8.1 \text{ Hz, 1H}), 6.74 (t, J = 6.8 \text{ Hz, 1H}), 6.08 (s, 1H), 4.54 (s, 1H), 3.69 (s, 2H), 2.14 – 2.06 (m, 1H), 0.95 (d, J = 6.9 \text{ Hz, 6H}), 0.92 – 0.88 (m, 6H), 0.76 – 0.64 (m, 2H), 0.65 – 0.55 (m, 2H); \text{C NMR (100 MHz, C}_6\text{D}_6\text{)} \delta 144.7, 141.4, 127.2, 126.9, 126.6, 119.6, 118.9, 117.0, 47.3, 32.9, 20.4 (2C), 7.3 (2C), 5.2 (2C); \text{HRMS of HCl salt form (EI)}: \text{Calculated for C}_{12}\text{H}_{14}\text{N [M-HCl]+: 172.1126, Found: 172.1147.}\]

3-Bromo-1-(diethylsilyl)-1,2-dihydroquinoline (3e) (Crude yield = 99%)

\[\text{H NMR (400 MHz, C}_6\text{D}_6\text{)} \delta 6.89 (ddd, J = 8.7, 6.2, 2.8 \text{ Hz, 1H}), 6.72 (d, J = 8.1 \text{ Hz, 1H}), 6.68 – 6.59 (m, 2H), 6.51 (s, 1H), 4.41 (quint, J = 3.4 \text{ Hz, 1H}), 3.91 (s, 2H), 0.82 (t, J = 7.9 \text{ Hz, 6H}); \text{C NMR (100 MHz, C}_6\text{D}_6\text{)} \delta 143.6, 128.1, 128.0, 126.5, 126.3, 120.1, 117.7, 115.2, 52.7, 7.1 (2C), 5.0 (2C).\]

3-Bromoquinolin-1(2H)-yl][4-nitrophenyl]methanone (3e-PNB) (Isolated yield = 95%)

Bright yellow solid; \[\text{H NMR (400 MHz, CDCl}_3\text{) } \delta 8.15 (d, J = 8.4 \text{ Hz, 2H}), 7.52 (d, J = 8.4 \text{ Hz, 2H}), 7.20 – 7.06 (m, 2H), 6.99 (s, 1H), 6.90 (t, J = 7.4 \text{ Hz, 1H}), 6.47 (s, 1H), 4.80 (s, 2H); \text{C NMR (100 MHz, CDCl}_3\text{) } \delta 167.3, 148.7, 140.9, 134.5, 130.0 (2C), 128.2, 127.7, 127.4, 126.3 (2C), 124.7, 123.5 (2C), 119.3, 50.0; \text{IR (cm}^{-1}\text{): 3060, 2882, 1640, 1601, 1521, 1489, 1342, 709, 585; HRMS (EI): Calculated for C}_{16}\text{H}_{11}\text{BrN}_{2}\text{O}_3 [M]^+: 357.9953, Found: 357.9955.\]
4,7-Dichloro-1-(diethylsilyl)-1,2-dihydroquinoline (3f) (Crude yield = 99%)

\[
\text{H NMR (400 MHz, C}_6\text{D}_6) \delta 7.28 (d, J = 8.3 \text{ Hz}, 1\text{H}), 6.82 (s, 1\text{H}), 6.64 (d, J = 8.3 \text{ Hz}, 1\text{H}), 5.42 (t, J = 4.6 \text{ Hz}, 1\text{H}), 4.29 (s, 1\text{H}), 3.43 (d, J = 4.5 \text{ Hz}, 2\text{H}), 0.76 (t, J = 7.9 \text{ Hz}, 6\text{H}), 0.62 – 0.53 (m, 2\text{H}), 0.53 – 0.46 (m, 2\text{H}); \]
\[
\text{C NMR (100 MHz, C}_6\text{D}_6) \delta 147.6, 134.6, 128.9, 126.1, 122.9, 119.7, 119.4, 117.2, 45.6, 7.0 (2\text{C}), 4.6 (2\text{C}); \]
\[
\text{HRMS of HCl salt form (EI): Calculated for C}_9\text{H}_6\text{Cl}_2\text{N} [\text{M- H}_2\text{Cl}]^+: 197.9877, \text{Found: 197.9883.}
\]

4-Chloro-1-(diethylsilyl)-7-iodo-1,2-dihydroquinoline (3g) (Crude yield = 99%)

\[
\text{H NMR (400 MHz, C}_6\text{D}_6) \delta 7.29 (d, J = 8.3 \text{ Hz}, 1\text{H}), 6.86 (s, 1\text{H}), 6.72 (d, J = 8.3, 2.0 \text{ Hz}, 1\text{H}), 6.10 (t, J = 4.7 \text{ Hz}, 1\text{H}), 4.40 \text{ (quint, J = 3.3 Hz}, 1\text{H}), 3.41 (d, J = 4.7 \text{ Hz}, 2\text{H}); \]
\[
\text{C NMR (100 MHz, C}_6\text{D}_6) \delta 146.8, 134.6, 133.4, 133.0, 125.2, 119.7, 117.4, 94.6, 47.4, 7.2 (2\text{C}), 4.8 (2\text{C}); \]
\[
\text{HRMS of HCl salt form (EI): Calculated for C}_9\text{H}_6\text{ClI}_2\text{N} [\text{M- H}_2\text{Cl}]^+: 289.9233, \text{Found: 289.9242.}
\]

3,4-Dichloro-1-(diethylsilyl)-6-fluoro-1,2-dihydroquinoline (3h) (Crude yield = 99%)

\[
\text{H NMR (400 MHz, C}_6\text{D}_6) \delta 7.28 (dd, J = 9.4, 2.7 \text{ Hz}, 1\text{H}), 6.71 – 6.60 (m, 2\text{H}), 4.40 \text{ (quint, J = 3.3 Hz}, 1\text{H}), 3.85 (s, 2\text{H}); \]
\[
\text{C NMR (100 MHz, C}_6\text{D}_6) \delta 157.3 (d, J = 238.9 \text{ Hz}), 140.3 (d, J = 2.4 \text{ Hz}), 126.1 (d, J = 8.4 \text{ Hz}), 125.1 (d, J = 2.3 \text{ Hz}), 124.4, 118.9 (d, J = 7.7 \text{ Hz}), 115.0 (d, J = 22.8 \text{ Hz}), 111.7 (d, J = 25.5 \text{ Hz}), 51.8, 6.8 (2\text{C}), 4.8 (2\text{C}); \]
\[
\text{HRMS of HCl salt form (EI): Calculated for C}_{12}\text{H}_{14}\text{N} [\text{M-Cl- H}_2]^+: 215.9783, \text{Found: 215.9780.}
\]

4-Chloro-1-(diethylsilyl)-2-methyl-1,2-dihydroquinoline (3i) (Crude yield = 80%)

\[
\text{H NMR (400 MHz, C}_6\text{D}_6) \delta 7.52 – 7.44 (m, 1\text{H}, overlapped with 2i), 6.93 – 6.86 (m, 1\text{H}, overlapped with 2i), 6.71 (d, J = 7.6 \text{ Hz}, 1\text{H}), 6.69 – 6.62 (m, 1\text{H}, overlapped with 2i), 5.66 (d, J = 6.4 \text{ Hz}, 1\text{H}), 4.36 \text{ (quint, J = 3.4 Hz}, 1\text{H}), 3.74 – 3.69 (m, 1\text{H}, overlapped with Et}_2\text{SiH}_2), 1.0 – 0.75 (3\text{H}, overlapped with Et}_2\text{SiH}_2); \]
\[
\text{C NMR (100 MHz, C}_6\text{D}_6) \delta 143.7, 129.4, 128.7, 128.5, 124.7, 124.3, 119.2, 118.5, 51.1, 21.0, 7.1 (2\text{C}), 4.7 (2\text{C}).
\]
[4-Chloro-2-methylquinolin-1(2H)-yl](4-nitrophenyl)methanone (3i-PNB) (Isolated yield = 62%)

Bright yellow solid; 1H NMR (400 MHz, CDCl$_3$) δ 8.14 (d, $J = 8.1$ Hz, 2H), 7.66 (d, $J = 7.7$ Hz, 1H), 7.52 (d, $J = 8.1$ Hz, 2H), 7.18 (t, $J = 7.4$ Hz, 1H), 6.96 (t, $J = 7.6$ Hz, 1H), 6.47 (s, 1H), 6.34 (d, $J = 5.3$ Hz, 1H), 5.42 (s, 1H), 1.26 (d, $J = 5.3$ Hz, 3H); 13C NMR (150 MHz, CDCl$_3$) δ 167.1, 148.7, 141.3, 134.4, 130.1 (2C), 128.9, 128.5, 127.7, 125.9, 125.6, 125.0, 123.5 (2C), 50.0, 17.3; IR (cm$^{-1}$): 3066, 2921, 1657, 1597, 1519, 1485, 1336, 859, 760; HRMS (EI): Calculated for C$_{17}$H$_{15}$ClN$_2$O$_3$ [M]$^+$: 328.0615, Found: 328.0613.

6-Chloro-1-(diethylsilyl)-8-fluoro-1,2-dihydroquinoline (3j) (Crude yield = 99%)

1H NMR (600 MHz, C$_6$D$_6$) δ 6.69 (d, $J = 11.0$ Hz, 1H), 6.51 (s, 1H), 5.97 (d, $J = 9.1$ Hz, 1H), 5.48 – 5.36 (m, 1H), 4.33 (s, 1H), 3.50 (s, 2H); 13C NMR (150 MHz, C$_6$D$_6$) δ 153.0 (d, $J = 241.9$ Hz), 132.0 (d, $J = 12.2$ Hz), 130.3 (d, $J = 5.0$ Hz), 125.9, 125.1 (d, $J = 3.9$ Hz), 122.1 (d, $J = 2.9$ Hz), 114.90 (d, $J = 24.8$ Hz), 45.6, 7.2, 5.4 (d, $J = 5.3$ Hz).

[6-Chloro-8-fluoroquinolin-1(2H)-yl](4-nitrophenyl)methanone (3j-PNB) (Isolated yield = 79%)

Bright green solid; 1H NMR (400 MHz, CDCl$_3$) at 328K δ 8.10 (d, $J = 8.4$ Hz, 2H), 7.49 (d, $J = 8.4$ Hz, 2H), 6.97 (s, 1H), 6.73 (d, $J = 9.7$ Hz, 1H), 6.60 (d, $J = 9.4$ Hz, 1H), 6.30 – 6.21 (m, 1H), 4.48 (s, 2H); 13C NMR (150 MHz, CDCl$_3$) δ 167.8, 153.5 (d, $J = 251.3$ Hz), 148.9, 140.6 (d, $J = 4.0$ Hz), 132.1 (d, $J = 10.3$ Hz), 131.4, 130.0, 129.2 (2C), 125.1, 123.2 (2C), 123.0, 122.3, 115.9 (d, $J = 24.0$ Hz), 43.4; IR (cm$^{-1}$): 3079, 2854, 1655, 1602, 1522, 1478, 1336, 1270, 858, 712; HRMS (EI): Calculated for C$_{18}$H$_{10}$ClF$_2$N$_2$O$_3$ [M]$^+$: 332.0364, Found: 332.0365.

6-Bromo-1-(diethylsilyl)-1,2-dihydroquinoline (3k) (Crude yield = 99%)

1H NMR (600 MHz, C$_6$D$_6$) δ 6.99 (d, $J = 8.5$ Hz, 1H), 6.89 (s, 1H), 6.49 (d, $J = 8.4$ Hz, 1H), 5.98 (d, $J = 9.2$ Hz, 1H), 5.37 – 5.29 (m, 1H), 4.37 (s, 1H), 3.55 (s, 2H), 0.83 (t, $J = 7.0$ Hz, 6H), 0.63 – 0.53 (m, 4H); 13C NMR (150 MHz, C$_6$D$_6$) δ 144.8, 130.2, 129.4, 128.0, 125.6, 123.5, 118.7, 111.4, 44.9, 7.2 (2C), 4.9 (2C)

S8
[6-Bromoquinolin-1(2H)-yl][4-nitrophenyl]methanone (3k-PNB) (Isolated yield = 80%)

Bright yellow solid; \(^1H \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.14 (d, \(J = 8.0 \) Hz, 2H), 7.51 (d, \(J = 8.0 \) Hz, 2H), 7.27 (s, 1H), 6.97 (d, \(J = 8.5 \) Hz, 1H), 6.57 (d, \(J = 9.4 \) Hz, 1H), 6.39 (s, 1H), 6.25 – 6.14 (m, 1H), 4.53 (s, 2H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta \) 167.4, 148.7, 141.1, 135.1, 130.1, 129.9 (2C), 129.7, 129.4, 128.1, 126.0, 125.3, 123.6 (2C), 118.9, 43.4; IR (cm\(^{-1}\)): 3062, 2922, 1640, 1600, 1518, 1475, 1363, 808, 692; HRMS (El): Calculated for C\(_{16}H_{11}BrN_2O_3\) [M]$: 357.9953, Found: 357.9954.

1-(Diethylsilyl)-6-fluoro-1,2-dihydroquinoline (3l) (Crude yield = 99%)

\(^1H \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 6.63 – 6.56 (m, 2H), 6.51 (d, \(J = 8.9 \) Hz, 1H), 6.04 (d, \(J = 8.9 \) Hz, 1H), 5.43 – 5.40 (m, 1H), 4.42 (s, 1H), 3.55 (s, 2H), 0.87 – 0.82 (m, 6H), 0.63 – 0.55 (m, 2H), 0.54 – 0.47 (m, 2H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta \) 157.0 (d, \(J = 237.0 \) Hz), 141.6, 129.9, 126.0, 124.2, 118.2 (d, \(J = 7.5 \) Hz), 113.7 (d, \(J = 22.5 \) Hz), 113.0 (d, \(J = 22.6 \) Hz), 44.9, 7.2 (2C), 5.1 (2C); HRMS of HCl salt form (El):

Calculated for C\(_6\)H\(_9\)FN [M-Cl]$^+: 150.0714, Found: 150.0729.

1-(Diethylsilyl)-6-methoxy-1,2-dihydroquinoline (3m) (Crude yield = 99%)

\(^1H \) NMR (600 MHz, CDCl\(_3\)) \(\delta \) 6.63 (d, \(J = 8.6 \) Hz, 1H), 6.47 (dd, \(J = 8.6, 2.8 \) Hz, 1H), 6.40 (d, \(J = 2.8 \) Hz, 1H), 6.17 (d, \(J = 9.5 \) Hz, 1H), 5.50 (dt, \(J = 8.9, 4.2 \) Hz, 1H), 4.45 – 4.39 (m, 1H), 3.64 (d, \(J = 4.2 \) Hz, 2H), 3.37 (s, 3H); \(^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta \) 153.6, 138.9, 127.3, 126.7, 123.5, 118.2, 113.0, 112.1, 54.5, 45.2, 7.2 (2C), 5.3 (2C).

[6-Methoxyquinolin-1(2H)-yl][4-nitrophenyl]methanone (3m-PNB) (Isolated yield = 77%)

Bright yellow solid; \(^1H \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 8.12 (d, \(J = 8.1 \) Hz, 2H), 7.48 (d, \(J = 8.2 \) Hz, 2H), 6.69 (s, 1H), 6.60 (d, \(J = 9.6 \) Hz, 1H), 6.45 – 6.11 (m, 3H), 4.55 (s, 2H), 3.75 (s, 3H); \(^{13}C\) NMR (150 MHz, CDCl\(_3\)) \(\delta \) 167.1, 157.5, 148.4, 141.8, 129.9, 129.5, 129.1, 127.6, 126.3, 125.6, 123.3 (2C), 112.1, 111.8 (2C), 55.4, 43.0; IR (cm\(^{-1}\)): 2952, 2926, 1650, 1601, 1519, 1492, 1338, 1272, 817; HRMS (El): Calculated for C\(_{17}H_{14}N_2O_4\) [M]$^+: 310.0954, Found: 310.0952.
1-(Diethylsilyl)-7-methyl-1,2-dihydroquinoline (3n) (Crude yield = 99%)

\[
\begin{align*}
1^H \text{NMR} (400 MHz, C_6D_6) & \delta 6.75 (d, J = 7.5 Hz, 1H), 6.70 (s, 1H), 6.52 – 6.50 (m, 1H), 6.27 (d, J = 9.5 Hz, 1H), 5.42 (dt, J = 9.5, 4.2 Hz, 1H), 4.55 (quint, J = 3.8 Hz, 1H), 3.68 (dd, J = 4.3, 1.6 Hz, 2H), 2.10 (s, 3H), 0.91 (t, J = 7.9 Hz, 6H), 0.69 (dqd, J = 15.6, 7.9, 3.8 Hz, 2H), 0.59 (dqd, J = 15.6, 7.9, 3.8 Hz, 2H);
\end{align*}
\]

\[1^C \text{NMR} (100 MHz, C_6D_6) \delta 145.8, 137.2, 126.9, 126.7, 123.9, 121.2, 120.3, 118.1, 45.1, 21.3, 7.3 (2C), 0.59 (2C); \]

HRMS of HCl salt form (EI): Calculated for C_{10}H_{10}N [M-HCl]^+:

144.0813, Found: 144.0838.

1-(Diethylsilyl)-6-vinyl-1,2-dihydroquinoline (3o) (Crude yield = 99%)

\[
\begin{align*}
1^H \text{NMR} (600 MHz, C_6D_6) & \delta 7.00 (d, J = 8.3 Hz, 1H), 6.90 (s, 1H), 6.71 (d, J = 8.3 Hz, 1H), 6.55 (dd, J = 17.6, 10.9 Hz, 1H), 6.21 (d, J = 9.6 Hz, 1H), 5.50 (d, J = 17.6 Hz, 1H), 5.44 – 5.37 (m, 1H), 4.98 (d, J = 10.9 Hz, 1H), 4.48 (s, 1H), 3.66 (s, 2H), 0.88 (t, J = 8.2 Hz, 7H), 0.69 – 0.60 (m, 2H), 0.60 – 0.52 (m, 2H);
\end{align*}
\]

\[1^C \text{NMR} (150 MHz, C_6D_6) \delta 145.7, 136.7, 129.2, 126.7, 126.0, 125.9, 125.0, 122.4, 117.0, 109.9, 45.3, 7.2 (2C), 5.0 (2C). \]

(4-Nitrophenyl)[6-vinylquinolin-1(2H)-yl]methanone (3o-PNB) (Isolated yield = 55%)

Bright yellow solid; \[1^H \text{NMR} (400 MHz, CDCl_3) \delta 8.10 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 7.15 (s, 1H), 6.86 (d, J = 8.2 Hz, 1H), 6.65 – 6.50 (m, 2H), 6.36 (s, 1H), 6.22 – 6.10 (m, 1H), 5.64 (d, J = 17.6 Hz, 1H), 5.20 (dd, J = 10.7, 3.7 Hz, 1H), 4.53 (s, 2H); \]

\[1^C \text{NMR} (150 MHz, CDCl_3) \delta 167.4, 148.6, 141.6, 135.6, 135.5, 135.3, 130.0 (2C), 128.4, 126.8, 126.2, 124.7, 124.7, 124.4, 123.5 (2C), 114.4, 43.4; \]

IR (cm\(^{-1}\)): 3071, 2920, 1641, 1599, 1518, 1340, 1167, 991, 773; HRMS (EI):

Calculated for C_{18}H_{16}N_{2}O_{3} [M]^+: 306.1004, Found: 306.1002.
IV. Ir-Catalyzed 1,2-Hydrosilylation of Substituted Pyridines

IV-A. Optimization of the 1,2-Hydrosilylation of 4-(Trifluoromethyl)Pyridine (*Table S2*)

![Reaction Scheme](image)

entry	silane (equiv)	solvent	T, ($^\circ$C)	time (h)	yield (%)b
1	Et$_2$SiH$_2$ (1.5)	CDCl$_3$	55	1	76
2	Et$_2$SiH$_2$ (1.5)	THF-d_8	55	1	76
3	Et$_2$SiH$_2$ (1.5)	C$_6$D$_6$	55	1	85
4	Et$_2$SiH$_2$ (1.5)	*neat*	55	1	89
5	Et$_2$SiH$_2$ (1.5)	*neat*	25	3	87
6	Et$_2$SiH$_2$ (1.5)	*neat*	55	3	85
7	Et$_2$SiH$_2$ (1.5)	*neat*	80	3	83
8	Ph$_2$SiH$_2$ (1.5)	*neat*	55	12	47
9	PhSiH$_3$ (1.5)	*neat*	55	12	<1
10	Et$_3$SiH (1.5)	*neat*	55	12	<1

aCarried out in a reaction vial in 0.35 mmol scale under argon atmosphere.

bYield of 3p determined by 1H NMR.
IV-B. Typical Procedure for the 1,2-Hydrosilylation of Substituted Pyridines (Table 3)

(i) Diethylsilane (1.75 mmol, 5.0 equiv) was directly added to \([\text{Ir(coe)}_2\text{Cl}]_2\) (0.005 mmol, 1.4 mol %) in neat in a medium-walled J-Young NMR tube under Ar atmosphere, and the solution was shaken briefly. After 5 min, pyridine substrates (0.35 mmol, 1.0 equiv) were added into the above solution under Ar atmosphere, and it was reacted at 55 °C for the indicated period of time. Following a NMR analysis of this crude reaction solution, it was subject to N-benzylation using 4-nitrobenzylo chloride.

(ii) The catalytic reaction mixture was diluted with toluene (0.2 mL) and cooled down to 0 °C. 4-Nitrobenzoyl chloride (0.53 mmol, 1.5 equiv) was added along with a catalytic amount of I₂ or tert-butylpyridine (0.035 mmol, 0.1 equiv, 10 mol %) (Ref. 6d) in toluene (0.3 mL) into the above reaction mixture at 0 °C. The reaction mixture was allowed to react at room temperature for 1 h for 3p-PNB or 12 h for 3u-PNB. The solution of 3p-PNB was additionally quenched by adding Na₂S₂O₃ (0.053 mmol, 0.15 equiv). Then, the crude solution was evaporated under reduced pressure, and purified by column chromatography on silica gel (EA/Hx = 1/4) to give the corresponding N-benzylated 1,2-dihydroquinoline products (3p-PNB and 3u-PNB).

1-(Diethylsilyl)-4-(trifluoromethyl)-1,2-dihydropyridine (Table 3, 3p) (Crude yield = 95%)

\[^1H \text{ NMR (400 MHz, } CD_6D_6) \delta 6.03 \text{ (d, } J = 7.3 \text{ Hz, } 1H), 5.10 \text{ (s, } 1H), 5.01 \text{ (dd, } J = 7.2, 1.9 \text{ Hz, } 1H), 4.03 \text{ (quint, } J = 3.1 \text{ Hz, } 1H), 3.50 \text{ (dd, } J = 4.6, 2.3 \text{ Hz, } 2H); ^{13}C \text{ NMR (100 MHz, } CD_6D_6) \delta 138.5, 129.0 \text{ (q, } J = 31.9 \text{ Hz), 123.3 (q, } J = 271.0 \text{ Hz), 108.6 (q, } J = 5.8 \text{ Hz), 95.5 (q, } J = 2.5 \text{ Hz), 42.9, 6.4 (2C), 3.6 (2C).} \]

(4-Nitrophenyl)[4-(trifluoromethyl)pyridin-1(2H)-yl]methanone (3p-PNB) (Isolated yield = 57%)

Bright green solid; \(^1H\) NMR (400 MHz, CDCl₃) δ 8.31 (d, J = 7.6 Hz, 2H), 7.70 (d, J = 7.6 Hz, 2H), 6.46 (s, 1H), 6.22 (s, 1H), 5.30 (s, 1H), 4.69 (s, 2H); \(^{13}C\) NMR (150 MHz, CDCl₃) δ 167.2, 149.2, 139.4, 129.5 (2C), 128.6, 126.1, 124 (2C), 122.1 (q, J = 271.4 Hz), 121.4, 101.4, 42.8; IR (cm⁻¹): 3092, 2859, 1655, 1588, 1523, 1319, 1300, 715; HRMS (EI): Calculated for C₁₅H₁₀F₃N₂O₃ [M]+: 298.0565, Found: 298.0564.
4-Chloro-1-(diethylsilyl)-1,2-dihydropyridine (3q) (Crude yield = 94%)

1H NMR (400 MHz, C$_6$D$_6$) δ 6.08 (d, J = 7.4 Hz, 1H), 5.01 (dd, J = 7.3, 2.1 Hz, 1H), 4.86 (td, J = 4.6, 2.0 Hz, 1H), 4.18 (quint, J = 3.0 Hz, 1H), 3.70 (d, J = 4.5 Hz, 2H); 13C NMR (100 MHz, C$_6$D$_6$) δ 138.3, 129.9, 104.1, 102.2, 45.0, 6.6 (2C), 3.7 (2C).

4-Bromo-1-(diethylsilyl)-1,2-dihydropyridine (3r) (Crude yield = 83%)

1H NMR (400 MHz, C$_6$D$_6$) δ 5.88 (d, J = 7.2 Hz, 1H), 4.97 (dd, J = 7.2, 2.0 Hz, 1H), 4.94 – 4.79 (m, 1H), 4.02 (quint, J = 3.0 Hz, 1H), 3.51 (d, J = 4.6 Hz, 2H); 13C NMR (100 MHz, C$_6$D$_6$) δ 138.1, 118.0, 107.8, 104.4, 45.7, 6.6 (2C), 3.7 (2C).

1-(Diethylsilyl)-4-iodo-1,2-dihydropyridine (3s) (Crude yield = 95%)

1H NMR (400 MHz, C$_6$D$_6$) δ 5.91 (d, J = 7.0 Hz, 1H), 5.33 – 5.27 (m, 2H), 4.15 (quint, J = 2.9 Hz, 1H), 3.57 (d, J = 4.6 Hz, 2H); 13C NMR (100 MHz, C$_6$D$_6$) δ 137.7, 116.0, 109.2, 89.7, 46.4, 6.8 (2C), 3.9 (2C).

1-(Diethylsilyl)-3-fluoro-1,2-dihydropyridine (3t) (Crude yield = 83%)

1H NMR (400 MHz, C$_6$D$_6$) δ 5.67 (dd, J = 7.0, 2.4 Hz, 1H), 5.21 (dd, J = 11.5, 6.2 Hz, 1H), 4.61 – 4.48 (m, 1H), 4.04 (quint, J = 3.0 Hz, 1H), 3.81 (dd, J = 3.0, 1.2 Hz, 2H); 13C NMR (100 MHz, C$_6$D$_6$) δ 147.97 (d, J = 267.3 Hz), 130.41 (d, J = 3.3 Hz), 100.20 (d, J = 14.3 Hz), 96.25 (d, J = 4.3 Hz), 44.57 (d, J = 33.3 Hz), 6.6 (2C), 3.5 (2C); 29Si NMR (120 MHz, C$_6$D$_6$) δ 7.7.

3-Chloro-1-(diethylsilyl)-1,2-dihydropyridine (3u) [Crude yield = 85%; 3u' (1,6-product) = 3%]

3u (1,2-product): 3u' (1,6-product) = 28:1; 1H NMR (400 MHz, C$_6$D$_6$) δ 6.13 (s, 1H, 1,6-product), 5.87 (d, J = 6.9 Hz, 1H, 1,2-product), 5.78 (d, J = 5.9 Hz, 1H, 1,2-product), 4.74 – 4.66 (m, 1H, 1,2-product), 4.05 (quint, J = 3.0 Hz, 1H, 1,2-product), 3.83 (s, 2H, 1,2-product); 13C NMR (100 MHz, C$_6$D$_6$) δ 133.6, 121.7, 113.6, 99.4, 49.8, 6.5 (2C), 3.6 (2C).
[3-Chloropyridin-1(2H)-yl](4-nitrophenyl)methanone (3u-PNB) (Isolated yield = 47%)
Orange solid; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.30 (d, \(J = 8.4\) Hz, 2H), 7.67 (d, \(J = 8.4\) Hz, 2H), 6.25 (d, \(J = 7.7\) Hz, 1H), 6.06 (d, \(J = 6.2\) Hz, 1H), 5.18 (t, \(J = 7.0\) Hz, 1H), 4.64 (s, 2H); \(^13\)C NMR (150 MHz, CDCl\(_3\)) \(\delta\) 167.0, 149.0, 139.8, 129.5 (2C), 125.1, 124.8, 123.9 (2C), 119.6, 106.0, 48.2; IR (cm\(^{-1}\)): 3071, 2922, 1631, 1585, 1460, 1349, 731, 704; HRMS (EI): Calculated for C\(_{12}\)H\(_8\)ClN\(_2\)O\(_3\) [M]\(^+\): 264.0302, Found: 264.0300.

1-(Diethylsilyl)-3-(trifluoromethyl)-1,2-dihydropyridine (3v) [Crude yield = 17%; \(3v^\prime\) (1,6-product) = 82%]
\(3v\) (1,6-product):\(3v^\prime\) (1,6-product) = 1:4.8; \(^1\)H NMR (400 MHz, C\(_6\)D\(_6\)) \(\delta\) 6.70 (s, 1H, 1,6-product), 6.39 – 6.35 (m, 1H, 1,2-product), 6.26 (d, \(J = 6.9\) Hz, 1H, 1,2-product), 6.04 (d, \(J = 9.6\) Hz, 1H, 1,6-product), 5.03 (t, \(J = 6.4\) Hz, 1H, 1,2-product), 4.87 (dt, \(J = 9.2\), 4.1 Hz, 1H, 1,6-product), 4.70 (quint, \(J = 3.1\) Hz, 1H, 1,2-product), 4.14 (quint, \(J = 3.1\) Hz, 1H, 1,6-product), 3.64 (d, \(J = 3.8\) Hz, 1H, 1,6-product); \(^13\)C NMR (100 MHz, C\(_6\)D\(_6\)) \(\delta\) 138.3 (q, \(J = 6.3\) Hz), 125.7 (q, \(J = 266.5\) Hz), 120.5 (q, \(J = 2.4\) Hz), 109.2, 103.6 (q, \(J = 32.4\) Hz), 43.3, 6.3 (2C), 3.3 (2C).

3,5-Dichloro-1-(diethylsilyl)-1,2-dihydropyridine (3w) (Crude yield = 93%)
\(^1\)H NMR (400 MHz, C\(_6\)D\(_6\)) \(\delta\) 6.14 (d, \(J = 0.9\) Hz, 1H), 6.00 – 5.94 (m, 1H), 4.12 – 4.08 (m, 1H), 3.81 – 3.75 (m, 2H); \(^13\)C NMR (100 MHz, C\(_6\)D\(_6\)) \(\delta\) 131.0, 123.8, 114.9, 105.9, 49.4, 6.5 (2C), 3.6 (2C).

4-(3-Bromophenyl)-1-(diethylsilyl)-1,2-dihydropyridine (3x) (Crude yield = 90%)
\(^1\)H NMR (400 MHz, C\(_6\)D\(_6\)) \(\delta\) 7.59 (s, 1H), 7.26 (d, \(J = 7.8\) Hz, 1H), 7.22 (d, \(J = 7.8\) Hz, 1H), 6.94 (t, \(J = 7.8\) Hz, 1H), 6.31 (d, \(J = 7.2\) Hz, 1H), 5.33 (dd, \(J = 7.2\), 1.7 Hz, 1H), 5.10 – 5.05 (m, 1H), 4.30 (quint, \(J = 2.9\) Hz, 1H), 3.83 (d, \(J = 4.9\) Hz, 2H); \(^13\)C NMR (100 MHz, C\(_6\)D\(_6\)) \(\delta\) 142.2, 136.9, 135.8, 129.6, 129.4, 128.6, 123.9, 122.5, 105.9, 101.1, 44.2, 6.8 (2C), 3.9 (2C).
V. Ir-Catalyzed Dearomative Hydrosilylation of N-Heteroaromatics

V-A. Typical Procedure for the Hydrosilylation of N-Heteroaromatics (Table 4)

(i) Diethylsilane (0.53 mmol, 1.5 equiv or 1.75 mmol, 5.0 equiv) was added to [Ir(coe)$_2$Cl]$_2$ (0.005 to 0.015 mmol, 1.4 to 4.2 mol %) in C$_6$D$_6$ (0.35 mL) or neat in a medium-walled J-Young NMR tube under Ar atmosphere, and the solution was shaken briefly. After 5 min, N-aromatic heterocycle (0.35 mmol, 1.0 equiv) was added into the solution under Ar atmosphere, and it was reacted at 55 °C for the indicated period of time. Following a NMR analysis of this crude reaction solution, the resulting mixture was subject to N-acetylation using acetyl chloride or HCl salt formation by adding HCl / ether solution.

(ii) The catalytic reaction mixture was diluted with toluene (0.2 mL) and cooled down to 0 °C. Acetyl chloride (0.53 mmol, 1.5 equiv) with a catalytic amount of tert-butylpyridine (0.035 mmol, 0.1 equiv, 10 mol %) in toluene (0.3 mL) was slowly added into the above reaction mixture at 0 °C. The reaction mixture was allowed to react at room temperature for 12 h. The crude mixture was evaporated under reduced pressure, and purified by column chromatography on silica gel (EA/Hx = 1/4) to give the corresponding N-acetylated 1,2-dihydroisoquinoline product (5c-Ac) in 83% yield.

(iii) To the catalytic reaction mixture in a J. Young NMR tube was dropwise added HCl solution in ether (2 M, 1.5 mL) at room temperature and the mixture was vigorously shaken. After 1 h, the precipitated salts were filtered and washed with ether (3 mL x 3) to give the desired product as HCl salt (5f-HCl) in 93% yield. The obtained salt was subject to NMR and HRMS analysis.

2-(Diethysilyl)-1,2-dihydroisoquinoline (Table 4, 5a) (Crude yield = 99%)

1H NMR (400 MHz, C$_6$D$_6$) δ 7.02 (t, $J = 7.4$ Hz, 1H), 6.93 (t, $J = 7.4$ Hz, 1H), 6.83 (d, $J = 7.4$ Hz, 1H), 6.72 (d, $J = 7.3$ Hz, 1H), 6.20 (d, $J = 7.2$ Hz, 1H), 5.57 (d, $J = 7.2$ Hz, 1H), 4.27 (quint, $J = 3.0$ Hz, 1H), 4.14 (s, 2H), 0.82 (t, $J = 7.9$ Hz, 6H), 0.64 – 0.53 (m, 2H), 0.54 – 0.43 (m, 2H); 13C NMR (100 MHz, C$_6$D$_6$) δ 136.2, 134.2, 127.3, 126.7, 125.0, 124.6, 122.4, 103.0, 48.0, 6.9 (2C), 4.0 (2C).
4-Bromo-2-(diethylsilyl)-1,2-dihydroisoquinoline (5b) (Crude yield = 99%)

\[\text{1H NMR (400 MHz, C}_6\text{D}_6) \delta 7.44 – 7.39 (m, 1H), 7.08 – 6.98 (m, 1H), 6.95 – 6.86 (m, 1H), 6.62 – 6.59 (m, 1H), 6.58 (s, 1H), 4.12 (s, 1H), 3.98 (s, 1H), 3.32 (s, 1H), 0.75 – 0.70 (m, 6H), 0.53 – 0.47 (m, 1H), 0.41 – 0.34 (m, 2H); \text{13C NMR (100 MHz, C}_6\text{D}_6) \delta 137.6, 132.9, 127.7, 127.0, 126.4, 124.2, 122.2, 96.9, 48.1, 6.7 (2C), 3.8 (2C).\]

5-Chloro-2-(diethylsilyl)-1,2-dihydroisoquinoline (5c) (Crude yield = 99%)

\[\text{1H NMR (400 MHz, C}_6\text{D}_6) \delta 7.16 (d, J = 8.0 Hz, 1H), 6.83 – 6.65 (m, 1H), 6.58 (d, J = 7.4 Hz, 1H), 6.33 (d, J = 7.4 Hz, 1H), 6.12 (d, J = 7.4 Hz, 1H), 4.31 (quint, J = 3.0 Hz, 1H), 4.12 (s, 2H), 0.90 (t, J = 7.9 Hz, 6H), 0.74 – 0.39 (m, 4H); \text{13C NMR (100 MHz, C}_6\text{D}_6) \delta 138.2, 132.0, 128.1, 128.0, 127.5, 125.3, 123.1, 98.9, 48.0, 6.9 (2C), 3.9 (2C).\]

1-[5-Chloroisquinolin-2(1H)-yl]ethan-1-one (5c-Ac) (Isolated yield = 83%)

Yellow oil; An isomeric mixture (6:1) \[\text{1H NMR (400 MHz, CDCl}_3) \delta 7.27 (d, J = 8.0 Hz, 1H, minor), 7.19 – 6.65 (m, 4H, major / 3H, minor), 6.20 (d, J = 8.2 Hz, 1H, minor), 6.13 (d, J = 8.0 Hz, 1H, major), 4.84 (s, 2H, major), 4.74 (s, 2H, minor), 2.20 (s, 3H, minor), 2.16 (s, 3H, major); \text{13C NMR (100 MHz, CDCl}_3) \delta 168.3 (major), 168.0 (minor), 131.2 (major), 130.2 (minor), 129.9 (minor), 129.7 (major), 129.2 (minor), 128.8 (minor), 128.4 (major), 128.3 (major), 127.8 (major), 127.5 (major), 127.4 (minor), 126.7 (minor), 124.3 (major), 123.8 (minor), 105.7 (minor), 105.8 (major), 47.9 (minor), 44.1 (major), 22.0 (minor), 21.1 (major); \text{IR (cm}^{-1})\): 3071, 2926, 2839, 1667, 1560, 1448, 1448, 1215, 758; \text{HRMS (EI): Calculated for C}_{11}\text{H}_{10}\text{ClNO [M]+: 207.0451, Found: 207.0449.}\]

7-(Diethylsilyl)-7,8-dihydro-1,7-phenanthroline (5d) (Crude yield = 94%)

\[\text{1H NMR (600 MHz, C}_6\text{D}_6) \delta 8.72 – 8.70 (m, 1H), 8.11 (d, J = 9.0 Hz, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.18 (d, J = 8.6 Hz, 1H), 7.11 (d, J = 8.8 Hz, 1H), 6.78 – 6.64 (m, 1H), 5.66 – 5.43 (m, 1H), 4.70 – 4.44 (m, 1H), 3.77 – 3.65 (m, 2H); \text{13C NMR (150 MHz, C}_6\text{D}_6) \delta 149.7, 146.7, 145.7, 135.1, 126.5, 123.5, 122.6, 121.3, 119.9, 119.1, 118.1, 44.9, 7.2 (2C), 5.2 (2C).\]
4,7-Bis(diethylsilyl)-3,4,7,8-tetrahydro-4,7-phenanthroline (5e) (Crude yield = 92%)

\[\text{1H NMR (600 MHz, C}_6\text{D}_6 \text{)} \delta 6.71 (s, 2H), 6.66 (d, J = 9.6 Hz, 2H), 5.71 (dt, J = 9.3, 4.4 Hz, 2H), 4.59 (quint, J = 3.3 Hz, 2H), 3.70 (d, J = 4.6 Hz, 4H); \text{13C NMR (150 MHz, C}_6\text{D}_6 \text{)} \delta 138.6 (2C), 123.1 (2C), 122.9 (2C), 122.8 (2C), 117.3 (2C), 44.5 (2C), 7.3 (4C), 5.5 (4C). \]

1,3-Bis(diethylsilyl)-1,2,3,4-tetrahydroquinazoline (5f) (Crude yield = 99%)

\[\text{1H NMR (400 MHz, C}_6\text{D}_6 \text{)} \delta 6.86 (t, J = 7.5 Hz, 1H), 6.69 (m, J = 8.0 Hz, 2H), 6.59 (t, J = 7.3 Hz, 1H), 4.45 (quint, J = 3.4 Hz, 1H), 4.31 (quint, J = 2.8 Hz, 1H), 4.27 (s, 2H), 3.99 (s, 2H); \text{13C NMR (100 MHz, C}_6\text{D}_6 \text{)} \delta 145.0, 126.4, 126.2, 123.3, 118.1, 116.7, 63.1, 48.0, 7.4 (2C), 7.1 (2C), 5.2 (2C), 4.8 (2C). \]

1,2,3,4-Tetrahydroquinazolin-3-ium chloride (5f-HCl) (Isolated yield = 93%)

White solid; \text{1H NMR (400 MHz, DMSO-d}_6 \text{)} \delta 9.83 (s, 2H), 7.24 – 6.95 (m, 2H), 6.83 – 6.62 (m, 3H), 4.40 (d, J = 16.3 Hz, 2H), 4.25 (d, J = 16.3 Hz, 2H); \text{13C NMR (150 MHz, DMSO-d}_6 \text{)} \delta 141.6, 128.5, 127.6, 118.6, 115.9, 115.1, 55.0, 43.4; \text{IR (cm}^{-1}): \text{3256, 2906, 1611, 1508, 1471, 1120, 1070, 745; \text{HRMS (EI)}}: \text{Calculated for C}_{8}\text{H}_{11}\text{N}_{2} [\text{M-Cl}]^{+}: 135.0917, \text{Found: 135.0916.} \]

1,3-Bis(diethylsilyl)-1,2,3,4-tetrahydropyrimidine (5g) (Crude yield = 99%)

\[\text{1H NMR (400 MHz, C}_6\text{D}_6 \text{)} \delta 6.24 (dt, J = 8.0, 1.7 Hz, 1H), 4.57 (dt, J = 8.0, 3.2 Hz, 1H), 4.42 (quint, J = 2.5 Hz, 1H), 4.32 (quint, J = 2.8 Hz, 1H), 4.26 (s, 2H), 3.49 (dd, J = 3.2, 1.7 Hz, 2H); \text{13C NMR (100 MHz, C}_6\text{D}_6 \text{)} \delta 132.2, 99.3, 60.8, 43.7, 7.2 (2C), 6.9 (2C), 5.0 (2C), 4.4 (2C). \]
5-Bromo-1,3-bis(diethylsilyl)-1,2,3,4-tetrahydropyrimidine (5h) (Crude yield = 99%)

1H NMR (400 MHz, C$_6$D$_6$) δ 6.48 (s, 1H), 4.34 (quint, $J = 3.0$ Hz, 1H), 4.23 (quint, $J = 3.1$ Hz, 1H), 4.11 (s, 2H), 3.64 (s, 2H); 13C NMR (100 MHz, C$_6$D$_6$) δ 132.8, 93.0, 60.2, 50.7, 7.0 (2C), 6.8 (2C), 4.9 (2C), 4.2 (2C).

1,3-Bis(diethylsilyl)-5-methyl-1,2,3,4-tetrahydropyrimidine (5i) (Crude yield = 99%)

1H NMR (400 MHz, C$_6$D$_6$) δ 6.04 (d, $J = 1.0$ Hz, 1H), 4.42 (quint, $J = 2.9$ Hz, 1H), 4.34 (quint, $J = 2.9$ Hz, 1H), 4.19 (s, 2H), 3.39 (s, 2H), 1.58 (s, 3H); 13C NMR (100 MHz, C$_6$D$_6$) δ 127.7, 107.2, 61.0, 48.9, 18.8, 7.8 (2C), 7.6 (2C), 5.7 (2C), 5.2 (2C).

1,3-Bis(diethylsilyl)-4-methyl-1,2,3,4-tetrahydropyrimidine (5j) (Crude yield = 99%)

1H NMR (400 MHz, C$_6$D$_6$) δ 4.54 – 4.41 (m, 3H), 4.29 (s, 2H), 3.52 – 3.50 (m, 2H), 1.83 (d, $J = 1.0$ Hz, 3H); 13C NMR (100 MHz, C$_6$D$_6$) δ 139.6, 98.5, 62.3, 44.4, 20.8, 7.4 (2C), 7.2 (2C), 6.4 (2C), 4.9 (2C); 29Si NMR (120 MHz, C$_6$D$_6$) δ 3.1, 0.8.

1,4-Bis(diethylsilyl)-1,2,3,4-tetrahydropyrazine (5k) (Crude yield = 99%)

1H NMR (400 MHz, C$_6$D$_6$) δ 5.39 (s, 2H), 4.30 (quint, $J = 3.3$ Hz, 2H), 3.17 (s, 4H); 13C NMR (100 MHz, C$_6$D$_6$) δ 111.1 (2C), 44.7 (2C), 7.0 (4C), 4.2 (4C).

1,4-Bis(diethylsilyl)-2-methyl-1,2,3,4-tetrahydropyrazine (5l) (Crude yield = 99%)

1H NMR (600 MHz, C$_6$D$_6$) δ 5.24 (d, $J = 5.9$ Hz, 1H), 5.19 (d, $J = 6.0$ Hz, 1H), 4.25 (quint, $J = 2.8$ Hz, 1H), 4.20 (quint, $J = 2.9$ Hz, 1H), 3.26 – 3.19 (m, 1H), 2.92 (d, $J = 11.2$ Hz, 1H), 2.77 (d, $J = 11.2$ Hz, 1H), 1.01 (d, $J = 6.4$ Hz, 3H); 13C NMR (150 MHz, C$_6$D$_6$) δ 110.0, 109.3, 48.8, 47.9, 18.5, 7.1 (2C), 7.0 (2C), 4.8 (2C), 4.3 (2C); 29Si NMR (120 MHz, C$_6$D$_6$) δ 4.2, 2.5.
1,4-Bis(diethylsilyl)-2,5-dimethyl-1,2,3,4-tetrahydropyrazine (5m) (Crude yield = 94%)

\[\text{H NMR (400 MHz, C}_6\text{D}_6 \delta 5.06 (s, 1H), 4.38 (s, 1H), 4.20 (s, 1H), 3.21 - 3.15 (m, 1H), 2.88 (s, 2H), 1.72 (s, 3H), 0.96 (d, J = 6.0 Hz, 3H); } \]
\[\text{^13C NMR (100 MHz, C}_6\text{D}_6 \delta 116.0, 107.5, 50.5, 47.5, 19.9, 18.8, 7.5 (2C) 7.3 (2C), 4.7 (2C), 4.3 (2C). } \]

3,7-Bis(diethylsilyl)-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidine (5n) (Crude yield = 99%)

\[\text{H NMR (600 MHz, C}_6\text{D}_6 \delta 6.69 (s, 1H), 6.39 (d, J = 3.2 Hz, 1H), 5.80 (d, J = 3.2 Hz, 1H), 4.67 (quint, J = 3.0 Hz, 1H), 4.42 (s, 2H), 4.06 (quint, J = 3.1 Hz, 1H); } \]
\[\text{^13C NMR (150 MHz, C}_6\text{D}_6 \delta 146.3, 139.7 120.0, 106.5, 98.7, 43.6, 6.8 (2C) 6.4 (2C), 4.9 (2C), 2.7 (2C); } \]
\[\text{^29Si NMR (120 MHz, C}_6\text{D}_6 \delta 9.2, 4.3. } \]

1,3,5-Tris(diethylsilyl)-1,3,5-triazinane (5o) (Crude yield = 96%)

\[\text{H NMR (400 MHz, C}_6\text{D}_6 \delta 4.40 (quint, J = 2.7 Hz, 3H), 4.27 (s, 6H); } \]
\[\text{^13C NMR (100 MHz, C}_6\text{D}_6 \delta 63.9 (3C), 7.2 (6C), 4.7 (6C). } \]

1-(Diethylsilyl)-3-methyl-2,3-dihydro-1H-benzo[d]imidazole (5p) (Crude yield = 92%)

\[\text{H NMR (400 MHz, C}_6\text{D}_6 \delta 6.82 - 6.69 (m, 2H), 6.62 (d, J = 6.7 Hz, 1H), 6.35 (d, J = 6.8 Hz, 1H), 4.62 (quint, J = 3.1 Hz, 1H), 4.53 (s, 2H), 2.38 (s, 3H); } \]
\[\text{^13C NMR (100 MHz, C}_6\text{D}_6 \delta 144.5, 142.1, 119.0, 118.8, 107.4, 105.8, 75.0, 33.6, 7.2 (2C), 3.9 (2C). } \]
VI. Stoichiometric Reaction of [Ir(coe)\textsubscript{2}Cl\textsubscript{2}] with Et\textsubscript{2}SiH\textsubscript{2} and 3-Methylpyridine (Fig. 1)

(A) [Ir(coe)\textsubscript{2}Cl\textsubscript{2} (17.7 mg, 0.02 mmol, 1 equiv) was weighed into a J. Young NMR tube, dried in vacuo, and suspended in toluene-\textit{d}\textsubscript{8} (0.5 mL) under Ar atmosphere, into which Et\textsubscript{2}SiH\textsubscript{2} (38.9 \textmu L, 15 equiv) was added, and then the solution was shaken briefly at r.t. (being homogeneous in 10 min) to give rise to an isomeric mixture of I/I’ with 3:2 ratio. This catalyst solution was subjected to NMR analysis.

(B) To a mixture of I/I’ in toluene-\textit{d}\textsubscript{8} was subsequently added 3-methylpyridine (9.7 \textmu L, 5 equiv) under argon atmosphere, and it was allowed to react at room temperature to form 6a (17 mol % relative to initially added 3-methylpyridine) in 10 min. This reaction mixture was analyzed by NMR.

(C) Prolonged reaction up to 18 h at the same temperature led to the formation of 3-methyl-1-(diethylsilyl)-1,2-dihydropyridine in 9% NMR yield with the observation of 6a (17 mol %). This reaction mixture was subjected to NMR analysis.

Cyclooctene Adduct (I/I’ = 3:2)

1H NMR (600 MHz, toluene-\textit{d}\textsubscript{8}, selected data) \(\delta \) 5.63 (2H, olefinic Hs), 4.73 (quint, \(J = 2.6 \) Hz, 1H, Ha), -12.48 (3H, Hb, major), -12.52 (3H, Hb, minor), -12.75 (2H, Hc, major), -12.78 (2H, Hc, minor). 29Si NMR (120 MHz, toluene-\textit{d}\textsubscript{8}) \(\delta \) 130.19 (bridged silylene, minor), 128.68 (bridged silylene, major), 40.70 (terminal silyl, minor), 40.40 (terminal silyl, major), 18.60 (Et\textsubscript{2}SiHCl), 1.56 (Et\textsubscript{2}HSiOSiHEt\textsubscript{2}), -0.04 (Me\textsubscript{4}Si), -23.0 (Et\textsubscript{2}SiH\textsubscript{2}).
3-Methylpyridine Adduct (6a)

1H NMR (400 MHz, toluene-d_8, selected data) δ 8.85 (s, 1H, Ha), 8.36 (d, J = 5.8 Hz, 1H, Hb), 6.79 (1H, Hc, overlapped with toluene), 6.59 (dd, J = 8.4, 5.7 Hz, 1H, Hd), 4.74 (quint, J = 2.6 Hz, 1H, He), 1.80 (s, 3H, C3-methyl), -13.01 (3H, Hf), -13.20 (2H, Hg). 29Si NMR (120 MHz, toluene-d_8) δ 130.4 (bridged silylene), 78.7 [Ir-(Et$_2$)Si-H(η2)--Ir], 44.5 (terminal silyl), 18.60 (Et$_2$SiHCl), 1.54 (Et$_2$HSiOSiHEt$_2$), -23.0 (Et$_2$SiH$_2$).

1-(Diethylsilyl)-3-methyl-1,2-dihydropyridine

1H NMR (600 MHz, toluene-d_8, selected data) δ 6.12 (d, J = 6.8 Hz, 1H, Ha), 5.70 (1H, Hb, overlapped with cyclooctene), 5.09 (dd, J = 7.1, 5.5 Hz, 1H, Hc), 4.34 (quint, J = 3.1 Hz, 1H, Hd), 3.84 – 3.77 (m, 2H, He), 1.64 (s, 3H, C3-methyl).
Fig. S1 Crude 1H and 29Si[1H] NMR Spectra of I/I' in toluene-d_8 at 25 °C (Fig. 1A)
Fig. S2 1H and 29Si(1H) NMR Spectra in 10 min after the Addition of 3-Methylpyridine at 25 °C (Fig. 1B)
Fig. S3 1H and 29Si(1H) NMR Spectra in 18 h after the Addition of 3-Methylpyridine at 25 °C (Fig. 1C)
Fig. S4 Expansion (δ -12.0 ~ -14.0) of the 1H NMR Spectra of I/I’ at Variable Temperatures (400 MHz, toluene-d_8)

Fig. S5 Expansion (δ -12.0 ~ -14.5) of the 1H NMR Spectra of 6a at Variable Temperatures (400 MHz, toluene-d_8)
Fig. S6 1H-1H COSY of I/I$'$ at 25 °C (600 MHz, toluene-d_8)

Fig. S7 1H-1H NOESY of 6a at -70 °C (400 MHz, toluene-d_8)
Fig. S8 Low Resolution Mass Spectrum (FAB-mode) of 6b

Fig. S9 High Resolution Mass Spectrum (FAB-mode) of 6a
VII. Observation of the Catalyst Resting Species in the Hydrosilylation Turnover

Diethylsilane (0.7 mmol, 1 equiv) was added to [Ir(coe)Cl]₂ (0.02 mmol, 2.9 mol %) in C₆D₆ (0.5 mL) in a medium-walled J-Young NMR tube under Ar atmosphere, and the solution was shaken briefly. After 5 min, 3-fluoropyridine (0.7 mmol, 1 equiv) was added into the solution under Ar atmosphere, and it was allowed to react at 25 °C for 12 h. The crude reaction mixture was then subject to NMR analysis.

Fig. S10 ¹H NMR Spectrum of the 1,2-Hydrosilylation of 3-Fluoropyridine (2t) Using [Ir(coe)Cl]₂ (2.9 mol %) with Et₂SiH₂ (1 equiv) at 25 °C for 12 h (600 MHz, C₆D₆)
Fig. S11 29Si(1H) NMR Spectrum of the 1,2-Hydrosilylation of 3-Fluoropyridine (2t) Using [Ir(coe)$_2$Cl]$_2$ (2.9 mol %) with Et$_2$SiH$_2$ (1 equiv) at 25 °C for 12 h (120 MHz, C$_6$D$_6$)
VIII. Initial-Rate Kinetic Measurements (Scheme 4 and 5)

VIII-A. General Considerations for Kinetic Experiments

Reactions used for the kinetic analysis were set up in an Ar-filled J-Young NMR tube. Kinetic analysis of the NMR scale reaction was carried out by collecting multiple (10~20) data points early in the reaction before the substrate concentrations were depleted. Reaction progress was monitored by 1H NMR (400 MHz, toluene-d_8) analysis at 50 sec intervals over 1 h at the specified temperature. The kinetic data were obtained from intensity increase in the dearomatized 1,2-dihydroquinoline-β-H integral over time (up to 20% conversion) on the basis of the internal standard of 1,4-dioxane to determine the initial reaction rate. Data were fit by least-squares analysis ($R^2 > 0.985$).

VIII-B. Representative Procedure for Initial-Rate Kinetics

![Image of reaction scheme](image)

Iridium species [Ir(coe)$_2$Cl]$_2$ (4.48 mg, 0.005 mmol, 1.4 mol %) was weighed into a J. Young NMR tube, dried in vacuo, and suspended in toluene-d_8 (350 µL) under Ar atmosphere, into which Et$_2$SiH$_2$ (90.7 µL, 0.7 mmol, 2 equiv) and 1,4-dioxane as an internal standard (8.5 µL, 0.1 mmol) were added, and then the mixture was briefly shaken for 10 min at r.t. as a homogeneous yellow solution formed. The NMR tube of the resulting solution was put in a pre-cooled bath at -60 °C under argon atmosphere. After 10 min, quinoline (2a, 0.35 mmol, 1 equiv) was gently added into the solution containing the Ir precatalyst and excess silane with maintaining the low temperature (< -60 °C), leading to a total reaction volume of approximately 500 µL. The NMR tube was well shaken to mix up all components for approximately 10 seconds, and was quickly put into the NMR probe that was pre-adjusted to the target temperature, 25 °C (298 K). Then, the 1,2-hydrosilylation of 2a was monitored by 1H NMR at 50 seconds intervals for 1 h to determine an initial rate (v_i) for the appearance of 1-(diethylsilyl)-1,2-dihydroquinoline (3a) (up to ~10% conversion) at 25 °C.

![Graph of reaction profile](image)

Fig. S12 Reaction Profile for Initial Rate Calculation in the Reaction of Quinoline at 25 °C

y = 0.000070992 x - 0.005013907
$R^2 = 0.995169957$
VIII-C. Reaction Monitoring

![Chemical Structure](image)

[Ir(coe)\(_2\)Cl]\(_2\) (8.96 mg, 0.01 mmol, 2.9 mol \%) was weighed into a J. Young NMR tube, dried *in vacuo*, and suspended in toluene-\(d_8\) (350 \(\mu\)L) under Ar atmosphere, into which Et\(_2\)SiH\(_2\) (90.7 \(\mu\)L, 0.7 mmol, 2 equiv) and 1,4-dioxane (internal standard, 8.5 \(\mu\)L, 0.1 mmol) were added, and then the mixture was briefly shaken for 10 min at r.t. as a homogeneous yellow solution formed. After 10 min, quinoline (2a, 0.35 mmol, 1 equiv) was added into the solution at \(<-60^\circ C\), leading to a total reaction volume of approximately 500 \(\mu\)L. The NMR tube was well shaken to mix all components for approximately 10 seconds, and was quickly put into the NMR probe that was pre-adjusted to the target temperature, 40 \(^\circ C\) (313 K). The 1,2-hydrosilylation of 2a was monitored by \(^1\)H NMR at 50 second intervals over 1 h to determine an initial rate (\(v_i\)) for the appearance of 1-(diethylsilyl)-1,2-dihydroquinoline (3a) (up to \(~20\%\) conversion) at 40 \(^\circ C\).

Fig. S13 Plot of concentrations of 2a ([2a]\(_0\) = 0.7 or 1.4 M) and 3a vs time at 40 \(^\circ C\)

VIII-D. Reaction Monitoring in the Presence of 3a

![Chemical Structure](image)

[Ir(coe)\(_2\)Cl]\(_2\) (8.96 mg, 0.01 mmol, 2.9 mol \%) was weighed into a J. Young NMR tube, dried *in vacuo*, and suspended in toluene-\(d_8\) (200 \(\mu\)L) under Ar atmosphere, into which Et\(_2\)SiH\(_2\) (90.7 \(\mu\)L, 0.7 mmol, 2 equiv) and 1,4-dioxane (internal standard, 8.5 \(\mu\)L, 0.1 mmol) were added, and then the mixture was briefly shaken for 10 min at r.t. as a homogeneous yellow solution formed. To this solution was added 150 \(\mu\)L of a stock solution containing 3a (0.105 mmol) and Et\(_2\)SiH\(_2\) (0.21 mmol) in toluene, and the NMR tube of the resulting mixture of Ir precatalyst, 3a, and silane was put in a pre-cooled bath at -60 \(^\circ C\) under argon atmosphere.
After 10 min, quinoline (2a, 0.35 mmol, 1 equiv) was added into the solution at the same temperature (< -60 °C), leading to a total reaction volume of approximately 500 μL. The NMR tube was well shaken to mix all components for approximately 10 seconds, and was quickly put into the NMR probe that was pre-adjusted to the target temperature, 40 °C (313 K). The 1,2-hydrosilylation of 2a was monitored by 1H NMR at 50 second intervals over 1 h to determine an initial rate (νi) for the appearance of newly formed 1-(diethylsilyl)-1,2-dihydroquinoline (3a) (up to ~20% conversion) at 40 °C.

![Plot of Concentrations of 2a ([2a]₀ = 0.7 M) and newly formed 3a vs time in the presence of 3a (0.21 M) at 40 °C](image)

Fig. S14 Plot of Concentrations of 2a ([2a]₀ = 0.7 M) and newly formed 3a vs time in the presence of 3a (0.21 M) at 40 °C

VIII-E. Hydrosilylation of 2a in the Presence of Cyclooctene

Iridium species [Ir(coe)₂Cl₂ (4.48 mg, 0.005 mmol, 1.4 mol %) was weighed into a J. Young NMR tube, dried in vacuo, and suspended in toluene-d₈ (300 μL) under Ar atmosphere, into which Et₂SiH₂ (90.7 μL, 0.7 mmol, 2 equiv), cyclooctene (50 μL, 0.39 mmol, 1.1 equiv), and 1,4-dioxane as an internal standard (8.5 μL, 0.1 mmol) were added, and then the mixture was briefly shaken for 10 min at r.t. as a homogeneous yellow solution formed. After 10 min, quinoline (2a, 0.35 mmol, 1 equiv) was gently added into the solution containing the Ir precatalyst, excess silane, and cyclooctene, leading to a total reaction volume of approximately 500 μL. The NMR tube was well shaken to mix up all components for approximately 10 seconds, and was quickly put into the NMR probe that was pre-adjusted to the target temperature, 25 °C (298 K). Then, the 1,2-hydrosilylation of 2a was monitored by 1H NMR at 25 °C.
VIII-F. 1H NMR Monitoring of the Ir-H Region during Hydrosilylation of 2a

\[
\text{[Ir(coe)Cl]_2} \text{(4.48 mg, 0.005 mmol, 1.4 mol %)} \text{ was weighed into a J. Young NMR tube, dried in vacuo, and suspended in C}_6\text{D}_6 (350 \mu\text{L}) \text{ under Ar atmosphere, into which Et}_2\text{SiH}_2 (68.0 \mu\text{L, 0.525 mmol, 1.5 equiv}) \text{ was added, and then the mixture was briefly shaken for 10 min at r.t. as a homogeneous yellow solution formed. Then, quinoline 2a (0.35 mmol, 1.0 equiv) was added into the solution containing the Ir precatalyst and excess silane. The 1,2-hydrosilylation of 2a was monitored over 4 h at 25 °C by 1H NMR especially in order to observe the Ir-H resting species during the catalytic turnover.}
\]

$\text{Fig. S15 Expansion (δ -10.0 ~ -16.0) of the 1H NMR Spectra of the Hydrosilylation of 2a at 25 °C over 4 h (400 MHz, C}_6\text{D}_6$)
VIII-G. Stoichiometric Reaction of [Ir(coe)$_2$Cl]$_2$, Et$_2$SiH$_2$, 3-Methylpyridine, and COE in a ratio of 1:15:3:45 at 25 °C

(A) [Ir(coe)$_2$Cl]$_2$ (17.7 mg, 0.02 mmol, 1 equiv) was weighed into a J. Young NMR tube, dried in vacuo, and suspended in toluene-d_8 (0.5 mL) under Ar atmosphere, into which Et$_2$SiH$_2$ (38.9 µL, 15 equiv) was added, and then the solution was shaken briefly at 25 °C (being homogeneous in 10 min). Subsequently, to this mixture in toluene-d_8 was added 3-methylpyridine (5.8 µL, 3 equiv) under argon atmosphere, and it was allowed to react at 25 °C to quantitatively form 6a in 10 min.

(B) Up on confirming the formation of 6a, cyclooctene (COE, 117.0 µL = 45 equiv) was directly added into the reaction mixture of (A). Prolonged reaction up to 18 h at 25 °C led to the formation of 3-methyl-1-(diethylsilyl)-1,2-dihydropyridine in 10% NMR yield with the exclusive observation of 6a, but trace II' detected throughout the reaction.

Fig. S16 1H NMR spectrum of a reaction of [Ir(coe)$_2$Cl]$_2$, Et$_2$SiH$_2$, 3-methylpyridine, and COE in a ratio of 1:15:3:45 in 18 h at 25 °C (B)
VIII-H. Relative Initial Rates of Substituted Quinolines (Separated Vessel)

\[\text{[Ir(coe)}_2\text{Cl]}_2 (4.48 \text{ mg, 0.005 mmol, 1.4 mol %}) \] was weighed into a J. Young NMR tube, dried in vacuo, and suspended in toluene-\text{d}_8 (350 \mu\text{L}) under Ar atmosphere, into which \text{Et}_2\text{SiH}_2 (90.7 \mu\text{L, 0.7 mmol, 2 equiv}) and 1,4-dioxane (internal standard, 8.5 \mu\text{L, 0.1 mmol}) were added, and then the mixture was briefly shaken for 10 min at r.t. as a homogeneous yellow solution formed. The NMR tube of the resulting solution was put in a pre-cooled bath at -60 °C under argon atmosphere. After 10 min, the quinoline substrate (0.35 mmol, 1.0 equiv) was added into the solution containing the Ir precatalyst and excess silane at the same temperature (< -60 °C), leading to a total reaction volume of approximately 500 \mu\text{L}. The NMR tube was then well shaken to mix all components for approximately 10 seconds, and was quickly put into the NMR probe that was pre-adjusted to the target temperature, 25 °C (298 K). The 1,2-hydrosilylation of the quinoline was monitored by 1H NMR at 50 second interval over 1 h to determine the initial rate (\(v_i\)) for the appearance of dihydroquinoiline product (up to ~15% conversion) at 25 °C.

\[X^1 = \text{Me, H, Cl, Br, I}; \quad X^2 = \text{Br, I} \]

\[v_i = 4.16 \times 10^{-5}, 7.49 \times 10^{-6}, 9.44 \times 10^{-6}, 1.14 \times 10^{-4}, 1.66 \times 10^{-4}, 3.11 \times 10^{-4} \]

\(v_i (\text{M} \text{s}^{-1}) \times 10^5 \)

\(X^1 = \text{Me, H (2a), Cl, Br, I}; \quad X^2 = \text{Br, I} \)

Fig. S17 Initial Rate as a Function of Quinoline Substituents in the 1,2-Hydrosilylation of Quinolines with \text{Et}_2\text{SiH}_2 at 25 °C in Separated Flasks

VIII-I. Rate-Order Assessment Based on Initial-Rate Kinetics

\[\text{[Ir(coe)}_2\text{Cl]}_2 (2.2~13.4 \text{ mg, 0.0025~0.015 mmol}) \] was weighed into a J. Young NMR tube, dried in vacuo, and suspended in toluene-\text{d}_8 under Ar atmosphere, into which \text{Et}_2\text{SiH}_2 (45.3~181.2 \mu\text{L, 0.35~1.4 mmol}) and 1,4-dioxane (internal standard, 8.5 \mu\text{L, 0.1 mmol}) were added, and then the mixture was briefly shaken
for 10 min at r.t. as a homogeneous yellow solution formed. The NMR tube of the resulting solution was put in a pre-cooled bath at -60 °C under argon atmosphere. After 10 min, quinoline (2a, 0.044~0.7 mmol, 1 equiv) was added into the solution containing the Ir precatalyst and excess silane at the same temperature (< -60 °C), leading to a total reaction volume of approximately 500 μL. The NMR tube was well shaken to mix up all components for approximately 10 seconds, and was quickly put into the NMR probe that was pre-adjusted to the target temperature, 25 °C (298 K). The 1,2-hydrosilylation of 2a was then monitored by \(^1\)H NMR at 50 second intervals over 1 h to determine the initial rate (\(v_i\)) for the appearance of 1-(diethylsilyl)-1,2-dihydroquinoline (3a) (up to ~20% conversion) at 25 °C.

(1) Iridium Rate Order

[(Ir(coe)_2Cl)_2] (M)	Rate (M/s)	\(R^2\)
0.005	0.00002296	0.9949
0.005	0.00002555	0.9952
0.01	0.00007885	0.9882
0.01	0.00007099	0.9952
0.02	0.0001281	0.9868
0.02	0.0001281	0.9875
0.03	0.0002397	0.9865

Fig. S18 Plot of the Initial Rate, \(v_i\) of Appearance of 3a vs [Ir(coe)_2Cl)_2 Concentration at 25 °C
(2) Silane Rate Order

Et₂SiH₂ (M)	Rate (M/s)	R²
0.7	0.00006654	0.9952
0.7	0.00006684	0.9902
1.4	0.00007885	0.9882
1.4	0.00007099	0.9952
2.0	0.00007641	0.9924
2.0	0.00008084	0.9980
2.8	0.00008040	0.9865
2.8	0.00007577	0.9973

![Graph](image.png)

Fig. S19 Plot of the Initial Rate, \(v_1 \) of Appearance of 3a vs Et₂SiH₂ Concentration at 25 °C
(3) Quinoline Rate Order

Quinoline (M)	Rate (M/s)	R²
0.0875	0.00003463	0.9929
0.175	0.00005324	0.9920
0.175	0.00004921	0.9968
0.35	0.00006230	0.9933
0.7	0.00007885	0.9882
0.7	0.00007099	0.9952
1.0	0.00007429	0.9865
1.0	0.00008378	0.9931
1.4	0.00007047	0.9966
1.4	0.00007739	0.9918

Fig. S20 Plot of the Initial Rate, \(v_i \), of Appearance of 3a vs 2a Concentration at 25 °C
IX. Synthetic Applications (Scheme 7)

(i) Diethylsilane (12 mmol for 3a-Ac or 10.5 mmol for 3c-Ac, 1.5 equiv) was added to a solution of [Ir(coe)₂Cl]₂ (0.008 to 0.098 mmol, 0.1 to 1.4 mol %) in neat (for 3a-Ac) or toluene (7 mL) (for 3c-Ac) in a flame dried round-bottom flask (25 mL) under Ar atmosphere, and the solution was stirred for 5 min. Quinoline substrate (2a, 8 mmol or 2c, 7 mmol, 1.0 equiv, respectively) was added into the solution under Ar atmosphere and stirred at 55 °C for 72 h (for 3a-Ac) or 3 h (for 3c-Ac). The resulting mixture was subjected to N-acetylation using acetyl chloride.

(ii) The catalytic reaction mixture was diluted with toluene (1 mL) in case of the neat reaction, and cooled down to 0 °C. Acetyl chloride (6 mmol, 1.2 equiv) with the catalytic amount of tert-butylpyridine (0.8 mmol, 0.1 equiv, 10 mol %) in toluene (5 mL) was slowly added into the above reaction mixture at 0 °C. Then, the mixture was allowed to react at room temperature for 12 h, evaporated under reduced pressure, and purified by column chromatography on silica gel (EA/Hx = 1/4) to give the corresponding N-acetylated 1,2-dihydroquinoline products (3a-Ac, 1.25 g, 90%; 3c-Ac, 1.03 g, 78% over two steps).

1-[Quinolin-1(2H)-yl]ethan-1-one (3a-Ac) [Isolated yield = 90% (1.25 g)]

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.07 (m, 4H), 6.58 (d, J = 9.5 Hz, 1H), 6.13 (dt, J = 9.0, 4.2 Hz, 1H), 4.46 (s, 2H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 137.2, 129.2, 128.1, 127.0, 126.3, 126.2, 125.4, 123.9, 41.4, 22.3; IR (cm⁻¹): 3042, 2985, 2841, 1654, 1568, 1458, 1219, 752; HRMS (EI): Calculated for C₁₁H₁₁NO [M⁺]: 173.0841, Found: 173.0838.

1-[4-Methylquinolin-1(2H)-yl]ethan-1-one (3c-Ac) [Isolated yield = 78% (1.03 g)]

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 6.94 (m, 1H), 5.83 (s, 1H), 4.35 (s, 2H), 2.14 (s, 3H), 2.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.7, 137.1, 131.5, 131.0, 126.9, 125.5, 124.4, 123.8, 123.4, 41.2, 22.3, 18.1; IR (cm⁻¹): 3034, 2942, 2849, 1639, 1567, 1452, 1211, 755; HRMS (EI): Calculated for C₁₂H₁₃NO [M⁺]: 187.0997, Found: 187.0995.
(i) Diethylsilane (7.5 mmol, 1.5 equiv) was added to a solution of [Ir(coe)_2Cl_2] (0.07 mmol, 1.4 mol %) in neat in a flame dried round-bottom flask (25 mL) under Ar atmosphere, and the solution was stirred for 5 min. Quinoline substrate (2e, 5 mmol, 1 equiv) was added into the solution under Ar atmosphere and stirred at 25 °C for 3 h under air. The resulting mixture was subjected to N-benzylation using 4-nitrobenzoyl chloride.

(ii) The catalytic reaction mixture was diluted with acetonitrile (1 mL) and cooled down to 0 °C. 4-Nitrobenzoyl chloride (6.0 mmol, 1.2 equiv) with catalytic amount of I_2 (0.5 mmol, 0.1 equiv, 10 mol %) in acetonitrile (3 mL) was slowly added into the above reaction mixture at 0 °C. Then, the mixture was allowed to react at r.t. for 1 h, evaporated under reduced pressure. The desired N-benzyolated 1,2-dihydroquinoline 3e-PNB was recrystallized out by using acetonitrile and ether, and finally filtered to give 3e-PNB (1.54 g, 86% over two steps).

To a flame dried round-bottom flask (25 mL) were added 3a-PNB or 3c-PNB (0.5 mmol, 1 equiv), acetonitrile (0.35 mL), and aqueous Na_2EDTA (ethylenediaminetetraacetic acid disodium salt) solution (2.5 mL, 4 x 10^{-4} M). After sealing the flask with a septum, the resulting homogeneous solution was cooled to 0 °C, followed by addition of 1,1,1-trifluoroacetone (1.0~1.5 mL) via a pre-cooled syringe. To this solution was added a mixture of NaHCO_3 (0.23 g, 2.75 mmol, 5.5 equiv) and KHSO_5 (0.77 g, 2.5 mmol, 5 equiv), and the mixture was stirred for 1~3 h at 25 °C. The reaction mixture was poured into distilled water (30 mL), extracted with CH_2Cl_2 (3 x 20 mL), and dried over anhydrous Na_2SO_4. The solution was filtered, evaporated under reduced pressure, and purified by flash column chromatography on silica gel (ethyl acetate/n-hexane, 1:4) to give the corresponding epoxidation products in 84% (from 3a-PNB) and 70% (from 3c-PNB) isolated yields over two steps.\(^{s6}\)
[4-Methylquinolin-1(2H)-yl](4-nitrophenyl)methanone

Yellow solid; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.11 (d, \(J = 8.0\) Hz, 2H), 7.50 (d, \(J = 8.0\) Hz, 2H), 7.32 (d, \(J = 7.5\) Hz, 1H), 7.12 (t, \(J = 7.5\) Hz, 1H), 6.88 (s, 1H), 6.50 (s, 1H), 5.96 (s, 1H), 4.49 (s, 2H), 2.16 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 167.2, 148.5, 141.7, 136.2, 131.6, 130.1, 129.9 (2C), 126.9, 125.7, 124.7, 123.8, 123.4 (2C), 122.9, 43.2, 18.3; IR (cm\(^{-1}\)): 3051, 2854, 1645, 1598, 1521, 1486, 1454, 768; HRMS (EI): Calculated for C\(_{17}\)H\(_{14}\)N\(_2\)O\(_3\) [M]+: 294.1004, Found: 294.1002.

[1a,7b-Dihydrooxireno[2,3-c]quinolin-3(2H)-yl](4-nitrophenyl)methanone (Isolated yield = 84%)

White solid; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.04 (d, \(J = 8.3\) Hz, 2H), 7.58 – 7.42 (m, 3H), 7.11 (t, \(J = 7.6\) Hz, 1H), 6.97 (t, \(J = 7.8\) Hz, 1H), 6.42 (s, 1H), 5.19 (d, \(J = 14.1\) Hz, 1H), 4.04 (s, 2H), 3.18 (d, \(J = 14.1\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 168.8, 148.4, 141.9, 137.2, 130.0, 129.8 (2C), 128.7, 126.4, 126.1, 126.0, 123.3 (2C), 58.1, 51.0, 40.4; IR (cm\(^{-1}\)): 2864, 1641, 1601, 1523, 1493, 1493, 1342, 849, 787; HRMS (EI): Calculated for C\(_{16}\)H\(_{12}\)N\(_2\)O\(_4\) [M]+: 296.0797, Found: 296.0798.

[7b-Methyl-1a,7b-dihydrooxireno[2,3-c]quinolin-3(2H)-yl](4-nitrophenyl)methanone (Isolated yield = 70%)

White solid; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 8.08 (d, \(J = 8.4\) Hz, 2H), 7.58 (d, \(J = 7.8\) Hz, 1H), 7.52 (d, \(J = 8.3\) Hz, 2H), 7.16 (t, \(J = 7.6\) Hz, 1H), 7.04 – 6.92 (m, 1H), 6.43 (s, 1H), 5.20 (d, \(J = 14.1\) Hz, 1H), 3.82 (s, 1H), 3.28 (d, \(J = 14.0\) Hz, 1H), 1.89 (s, 3H); \(^{13}\)C NMR (150 MHz, CDCl\(_3\)) \(\delta\) 168.7, 148.4, 142.0, 137.0, 129.9 (2C), 128.9, 128.2, 127.6, 126.2, 126.0, 123.2 (2C), 64.3, 54.4, 40.8, 19.1; IR (cm\(^{-1}\)): 2921, 1650, 1604, 1522, 1493, 1345, 849, 711; HRMS (EI): Calculated for C\(_{17}\)H\(_{14}\)N\(_2\)O\(_4\) [M]+: 310.0954, Found: 310.0950.
(i) Diethylsilane (1.75 mmol, 5.0 equiv) in neat was added to a J-Young NMR tube containing [Ir(coe)Cl]$_2$ (0.015 mmol, 4.2 mol %) and hydroquinine (7a, 0.35 mmol, 1.0 equiv) under argon atmosphere, and the solution was allowed to react at 55 °C for 24 h.

(ii) To the resulting crude mixture in a J-Young NMR tube was subsequently dropwise added 2 M HCl solution in ether (1.5 mL) at -78 °C and the mixture was vigorously stirred. After 1 h, the precipitated salts were filtered and washed with ether (3 mL x 3) at 25 °C to give the desired product (8a-2HCl). The structure of 8a-2HCl was confirmed by 1D/2D-NMR experiments (DMSO-d_6), HRMS, and IR. However, 8a-2HCl in DMSO was found to readily undergo rearomatization (e.g. 25% rearomatization in 30 min at 25 °C).

$\text{(1S,2R,4S,5R)-2-[(R)-(1-(diethylsilyl)-6-methoxy-1,2-dihydroquinolin-4-yl]-(diethylsilyl)oxymethyl]-}5$-ethylquinuclidine (8a) (Crude yield = 95%)

1H NMR (400 MHz, C$_6$D$_6$, selected data) δ 7.24 – 7.11 (m, 1H), 6.78 (d, J = 8.7 Hz, 1H), 6.54 (dd, J = 8.7, 2.9 Hz, 1H), 5.76 (s, 1H), 4.81 – 4.65 (m, 1H), 4.62 (quint, J = 2.4 Hz, 1H), 4.49 (quint, J = 3.3 Hz, 1H), 3.68 (d, J = 4.5 Hz, 2H), 3.47 (s, 3H), 3.19 – 3.03 (m, 1H), 3.01 – 2.91 (m, 1H), 2.81 (dd, J = 13.5, 8.7 Hz, 1H), 2.49 – 2.37 (m, 1H); 13C NMR (100 MHz, C$_6$D$_6$) δ 153.5, 139.3, 137.0, 129.8, 120.9, 119.1, 112.5, 109.9, 59.1, 58.6, 54.6, 45.0, 42.7, 42.4, 37.9, 27.6, 11.9, 7.9, 7.1, 6.6, 6.5, 5.6, 5.2, 2.4.
(1S,2R,4S,5R)-5-Ethyl-2-[(R)-hydroxy(6-methoxy-1,2-dihydroquinolin-1-ium-4-yl)methyl]-quinuclidin-1-ium chloride (8a-2HCl)

White solid; \(^1H\) NMR (400 MHz, DMSO-\(d_6\)) \(\delta\) 11.65 (s, 2H), 11.08 (s, 1H), 7.46 (d, \(J = 8.7\) Hz, 1H), 7.39 (d, \(J = 2.7\) Hz, 1H), 6.95 (dd, \(J = 8.8, 2.6\) Hz, 1H), 6.31 (t, \(J = 4.1\) Hz, 1H), 5.46 (s, 1H), 3.91 (dd, \(J = 16.4, 5.1\) Hz, 1H), 3.83 (s, 3H), 3.82 – 3.72 (m, 2H), 3.37 – 3.29 (m, 1H), 3.18 (t, \(J = 7.0\) Hz, 1H), 3.01 (td, \(J = 11.7, 5.6\) Hz, 1H), 2.69 (dd, \(J = 13.1, 5.5\) Hz, 1H), 1.93 – 1.89 (m, 1H), 1.89 – 1.82 (m, 2H), 1.82 – 1.73 (m, 2H), 1.66 (t, \(J = 10.0\) Hz, 1H), 1.34 – 1.20 (m, 2H), 0.76 (t, \(J = 7.3\) Hz, 3H); \(^{13}C\) NMR (150 MHz, CDCl\(_3\)) \(\delta\) 160.0, 135.8, 128.4, 123.7, 123.4, 121.9, 114.5, 110.7, 66.9, 65.3 (ether), 58.6, 56.7, 55.4, 42.7, 40.9, 35.1, 26.2, 24.7, 24.5, 15.6 (ether), 11.9, 7.3; IR (cm\(^{-1}\)): 3246 (OH stretch), 2932, 1590, 1503, 1457, 1260, 1033, 827; HRMS (EI): Calculated for C\(_{20}\)H\(_{29}\)N\(_2\)O\(_2\) [M-Cl-HCl]": 329.2229, Found: 329.2228.
References

S1. H. V. Mierde, P. V. D. Voort and F. Verpoort, Tetrahedron Lett., 2009, 50, 201.

S2. C. Wolf, G. E. Tumambac and C. N. Villalobos, Synlett, 2003, 12, 1801.

S3. G. Baccolini, C. Delpibo and G. Micheletti, Phosphorus, Sulfur, and Silicon, 2012, 187, 1291.

S4. M. A. Fakhfakh, A. Fournet, E. Prina, J.-F. Mouscadet, X. Franck, R. Hocquemiller and B. Figadère, Bioorg. Med. Chem., 2003, 11, 5013.

S5. K. Phukan, M. Ganguly and N. Devi, Synthetic Commun., 2009, 39, 2694.

S6. D. Yang, M. K. Wong and Y. C. Yip, J. Org. Chem., 1996, 60, 3887.
Appendix I

Spectral Copies of 1H and 13C NMR of Compounds Obtained in This Study
1-(Diethylsilyl)-1,2-dihydroquinoline (Table 2, 3a)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane (internal standard)

Crude yield = 99%
$^{1}H-^{13}C$ HSQC ($C_{6}D_{6}$)

29Si NMR (120MHz, $C_{6}D_{6}$)
4-Nitrophenyl-[quinolin-1(2H)-yl]methanone (3a-PNB)
1,2-Dihydroquinolin-1-ium chloride (3a-HCl in DMSO-d$_6$)

H·HCl

\[
\begin{align*}
\text{H} & \quad \text{N} \\
\text{H} & \quad \text{N}
\end{align*}
\]
1-(Diethylsilyl)-3-methyl-1,2-dihydroquinoline (3b)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

crude yield = 99%
1-(Diethylsilyl)-4-methyl-1,2-dihydroquinoline (3c)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

Crude yield = 99%
1-(Diethylsilyl)-3-isopropyl-1,2-dihydroquinoline (3d)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

![NMR spectrum of 1-(Diethylsilyl)-3-isopropyl-1,2-dihydroquinoline (3d)]

Crude yield = 99%
3-Bromo-1-(diethylsilyl)-1,2-dihydroquinoline (3e)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

Crude yield = 99%
[3-Bromoquinolin-1(2H)-yl](4-nitrophenyl)methanone (3e-PNB)
4,7-Dichloro-1-(diethylsilyl)-1,2-dihydroquinoline (3f)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

Crude yield = 99%

1,4-dioxane (8H, 0.1 mmol)
4-Chloro-1-(diethylsilyl)-7-iodo-1,2-dihydroquinoline (3g)
$	extsuperscript{1}$H NMR (400 MHz, C$_6D_6$) & 13C NMR (150 MHz, C$_6D_6$); mesitylene, internal standard

Crude yield = 99%
3,4-Dichloro-1-(diethylsilyl)-6-fluoro-1,2-dihydroquinoline (3h)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); mesitylene, internal standard

crude yield = 99%

mesitylene (9H, 0.117 mmol)
4-Chloro-1-(diethylsilyl)-2-methyl-1,2-dihydroquinoline (3i)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

Crude yield = 80%
[4-Chloro-2-methylquinolin-1(2H)-yl](4-nitrophenyl)methanone (3i-PNB)
5-Chloro-1-(diethylsilyl)-8-fluoro-1,2-dihydroquinoline (3j)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

Crude yield = 99%
[6-Chloro-8-fluoroquinolin-1(2H)-yl](4-nitrophenyl)methanone (3j-PNB)
6-Bromo-1-(diethylsilyl)-1,2-dihydroquinoline (3k)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

Crude yield = 99%
[6-Bromoquinolin-1(2H)-yl](4-nitrophenyl)methanone (3k-PNB)
6-Fluoro-1-(diethylsilyl)-1,2-dihydroquinoline (3l)

1H NMR (400 MHz, CD$_6$D$_6$) & 13C NMR (100 MHz, CD$_6$D$_6$); 1,4-dioxane, internal standard

Crude yield = 99%
1-(Diethylsilyl)-6-methoxy-1,2-dihydroquinoline (3m)

\(^1\)H NMR (400 MHz, \(\text{C}_6\text{D}_6\)) & \(^{13}\)C NMR (100 MHz, \(\text{C}_6\text{D}_6\)); 1,4-dioxane, internal standard

crude yield = 99%
[6-Methoxyquinolin-1(2H)-yl][4-nitrophenyl]methanone (3m-PNB)
1-(Diethylsilyl)-7-methyl-1,2-dihydroquinoline (3n)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

Crude yield = 99%
1-(Diethylsilyl)-6-vinyl-1,2-dihydroquinoline (3o)

\(^1\)H NMR (600 MHz, C\(_6\)D\(_6\)) & \(^{13}\)C NMR (150 MHz, C\(_6\)D\(_6\)); 1,4-dioxane, internal standard

Crude yield = 99%
(4-Nitrophenyl)[6-vinylquinolin-1(2H)-yl]methanone (3o-PNB)
1-(Diethylsilyl)-4-(trifluoromethyl)-1,2-dihydropyridine (Table 3, 3p)

\[^1H\text{ NMR (400 MHz, C}_6\text{D}_6\text{) & } ^{13}C\text{ NMR (100 MHz, C}_6\text{D}_6\text{); 1,4-dioxane, internal standard} \]

Crude yield = 95%
(4-Nitrophenyl)[4-(trifluoromethyl)pyridin-1(2H)-yl]methanone (3p-PNB)
4-Chloro-1-(diethylsilyl)-1,2-dihydropyridine (3q)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); mesitylene, internal standard

crude yield = 94%
4-Bromo-1-(diethylsilyl)-1,2-dihydropyridine (3r)

1H NMR (400 MHz, C_6D_6) & 13C NMR (100 MHz, C_6D_6); 1,4-dioxane, internal standard

crude yield = 83%
1-(Diethylsilyl)-4-iodo-1,2-dihydropyridine (3s)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); mesitylene, internal standard

crude yield = 95%

mesitylene
(3H, 0.117 mmol)
1-(Diethylsilyl)-3-fluoro-1,2-dihydropyridine (3t)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

crude yield = 83%
\[^1\text{H}-^{13}\text{C}\text{ HSQC (C}_\text{D}_6\text{)}\]

\[^1\text{H}-^{13}\text{C}\text{ HMBC (C}_\text{D}_6\text{)}\]
29Si NMR (120MHz, C$_6$D$_6$)
3-Chloro-1-(diethylsilyl)-1,2-dihydropyridine (3u)

1H NMR (400 MHz, CD$_6$D) & 13C NMR (100 MHz, CD$_6$D); 1,4-dioxane, internal standard

crude yield = 85%

+ SiEt$_2$H

crude yield = 5%

1,4-dioxane (8H, 0.1 mmol)
[3-Chloropyridin-1(2H)-yl](4-nitrophenyl)methanone (3u-PNB)
1-(Diethylsilyl)-3-(trifluoromethyl)-1,2-dihydropyridine (3v)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); mesitylene, internal standard

Crude yield = 17%

+

Crude yield = 82%

Mesitylene (3H, 0.117 mmol)
1H-1C HSQC (C$_6$D$_6$)

1H-1C HMBC (C$_6$D$_6$)
3,5-Dichloro-1-(diethysilyl)-1,2-dihydropyridine (3w)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); mesitylene, internal standard

crude yield = 93%
4-(3-Bromophenyl)-1-(diethylsilyl)-1,2-dihydropyridine (3x)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); mesitylene, internal standard

crude yield = 90%
1-(Diethylsilyl)-1,2-dihydropyridine (A dotted box in Table 3)

1H NMR (400 MHz, C$_6$D$_6$); mesitylene, internal standard

Crude yield = 24%

4-Dimethylaminopyridine (A dotted box in Table 3)

1H NMR (400 MHz, C$_6$D$_6$); No reaction
1-(Diethylsilyl)-3-methyl-1,2-dihydropyridine (A dotted box in Table 3)

1H NMR (400 MHz, C$_6$D$_6$); mesitylene, internal standard

crude yield = 52%

1-(Diethylsilyl)-4-methyl-1,2-dihydropyridine (A dotted box in Table 3)

1H NMR (400 MHz, C$_6$D$_6$); mesitylene, internal standard

crude yield = 51%
1-(Diethylsilyl)-4-methoxy-1,2-dihydropyridine (A dotted box in Table 3)

1H NMR (400 MHz, C$_6$D$_6$); mesitylene, internal standard

Crude yield = 29%

Mesitylene (3H, 0.117 mmol)
2-(Diethyldimethyl)silyl)-1,2-dihydroisoquinoline (Table 4, 5a)

1H NMR (400 MHz, CD$_6$D$_6$) & 13C NMR (100 MHz, CD$_6$D$_6$); 1.4-dioxane, internal standard

crude yield = 99%
4-Bromo-2-(diethylsilyl)-1,2-dihydroisoquinoline (5b)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

Crude yield = 99%
5-Chloro-2-(diethylsilyl)-1,2-dihydroisoquinoline (5c)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); mesitylene, internal standard

Crude yield = 99%

Mesitylene (9H, 0.117 mmol)
1-[5-Chloroisquinolin-2(1H)-yl]ethan-1-one (5c-Ac)
7-(Diethylsilyl)-7,8-dihydro-1,7-phenanthroline (5d)

1H NMR (600 MHz, C$_6$D$_6$) & 13C NMR (150 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

1,4-dioxane (8H, 0.1 mmol)

crude yield = 94%
4,7-Bis(diethylsilyl)-3,4,7,8-tetrahydro-4,7-phenanthroline (5e)

1H NMR (600 MHz, C$_6$D$_6$) & 13C NMR (150 MHz, C$_6$D$_6$); mesitylene, internal standard

crude yield = 92%
1,3-Bis(diethylsilyl)-1,2,3,4-tetrahydroquinazoline (5f)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (150 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

Crude yield = 99%
1,2,3,4-Tetrahydroquinazoline-3-ium chloride (5f-HCl)
1,3-Bis(diethylsilyl)-1,2,3,4-tetrahydropyrimidine (5g)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (150 MHz, C$_6$D$_6$); mesitylene, internal standard

crude yield = 99%

mesitylene (3H, 0.117 mmol)
5-Bromo-1,3-bis(diethylsilyl)-1,2,3,4-tetrahydropyrimidine (5h)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); mesitylene, internal standard

crude yield = 99%

mesitylene (3H, 0.117 mmol)
1,3-Bis(diethylsilyl)-5-methyl-1,2,3,4-tetrahydropyrimidine (5i)

1H NMR (400 MHz, C_6D_6) & 13C NMR (100 MHz, C_6D_6); mesitylene, internal standard

Crude yield = 99%

Mesitylene (3H, 0.117 mmol)
1,3-Bis(diethylsilyl)-4-methyl-1,2,3,4-tetrahydropyrimidine (5j)

1H NMR (400 MHz, CD$_6$D$_6$) & 13C NMR (100 MHz, CD$_6$D$_6$); mesitylene, internal standard

crude yield = 99%
$^{1}H-^{13}C$ HSQC (C_6D_6)

29Si NMR (120MHz, C_6D_6)
1,4-Bis(diethylsilyl)-1,2,3,4-tetrahydropyrazine (5k)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); mesitylene, internal standard

crude yield = 99%

mesitylene (3H, 0.117 mmol)
1,4-Bis(diethylsilyl)-2-methyl-1,2,3,4-tetrahydropyrazine (5l)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

crude yield = 99%
1,4-Bis(diethylsilyl)-2,5-dimethyl-1,2,3,4-tetrahydropyrazine (5m)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); 1,4-dioxane, internal standard

Crude yield = 94%
3,7-Bis(diethylsilyl)-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidine (5n)

1H NMR (400 MHz, C_6D_6) & 13C NMR (100 MHz, C_6D_6); 1,4-dioxane, internal standard

Crude yield = 99%
$\text{H}^{1}{\text{C}}$ HSQC (C₆D₆)

$\text{H}^{1}{\text{C}}$ HMBC (C₆D₆)
$^{29}\text{Si NMR (120MHz, C}_6\text{D}_6\text{)}$
1,3,5-Tris(diethylsilyl)-1,3,5-triazinane (5o)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); mesitylene, internal standard

crude yield = 96%
1-(Diethylsilyl)-3-methyl-2,3-dihydro-1H-benzo[d]imidazole (5p)

1H NMR (400 MHz, C$_6$D$_6$) & 13C NMR (100 MHz, C$_6$D$_6$); mesitylene, internal standard

Crude yield = 92%
1-[Quinolin-1(2H)-yl]ethan-1-one (3a-Ac)
1-[4-Methylquinolin-1(2H)-yl]ethan-1-ono (3c-Ac)
[4-Methylquinolin-1(2H)-yl](4-nitrophenyl)methanone (3c-PNB)
[1a,7b-Dihydrooxireno[2,3-c]quinolin-3(2H)-yl](4-nitrophenyl)methanone
[7b-Methyl-1a,7b-dihydrooxiren[2,3-c]quinolin-3(2H)-yl](4-nitrophenyl)methanone
(1S,2R,4S,5R)-2-[(R)-(1-(diethylsilyl)-6-methoxy-1,2-dihydroquinolin-4-yl]-[(diethylsilyl)oxymethyl]-5-ethylquinuclidine (8a)

\[^1H \text{NMR} (400 \text{ MHz, } CD_6D_6) \text{ & } ^13C \text{NMR} (100 \text{ MHz, } CD_6D_6); \text{ mesitylene, internal standard} \]

Crude yield = 95%
(1S,2R,4S,5R)-5-Ethyl-2-[(R)-hydroxy(6-methoxy-1,2-dihydroquinolin-1-ium-4-yl)methyl]quinuclidin-1-ium chloride (8a-2HCl) (DMSO-d$_6$)
1H-13C HSQC (DMSO-d_6)
Appendix II

Crystallographic Data for 3k-PNB
Table S3 Crystal data and structure refinement of 3k-PNB.

Parameter	3k-PNB
Identification code	3k-PNB
Empirical formula	C₁₆H₁₁BrN₂O₃
Formula weight	359.18
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	a = 7.593(3) Å \(\alpha=90^\circ\), b = 11.744(4) Å \(\beta=99.277(7)^\circ\), c = 16.592(5) Å \(\gamma=90^\circ\).
Volume	1460.3(8) Å³
Z	4
Density (calculated)	1.634 Mg/m³
Absorption coefficient	2.829 mm⁻¹
F(000)	720
Crystal size	0.28 x 0.25 x 0.14 mm³
Theta range for data collection	2.13 to 26.04°.
Index ranges	-9\(\leq\)h\(\leq\)9, -14\(\leq\)k\(\leq\)12, -20\(\leq\)l\(\leq\)18
Reflections collected	8870
Independent reflections	2875 [R(int) = 0.0461]
Completeness to theta = 26.04°	99.4%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6928 and 0.5047
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	2875 / 0 / 199
Goodness-of-fit on F²	1.021
Final R indices [I>2sigma(I)]	R₁ = 0.0416, wR₂ = 0.0813
R indices (all data)	R₁ = 0.0885, wR₂ = 0.1074
Largest diff. peak and hole	0.257 and -0.375 e.Å⁻³
Table S4 Atomic coordinates (x 104) and equivalent isotropic displacement parameters (Å² x 103) for 3k-PNB. U(eq) is defined as one third of the trace of the orthogonalized U tensor.

	x	y	z	U(eq)
C(1)	9500(5)	5709(3)	3047(2)	48(1)
O(1)	8505(3)	6531(2)	2923(2)	63(1)
C(2)	11326(5)	5868(3)	3544(2)	47(1)
C(3)	11465(5)	6570(3)	4224(2)	59(1)
C(4)	13096(5)	6798(3)	4687(2)	61(1)
C(5)	14600(5)	6337(3)	4459(2)	50(1)
C(6)	14516(5)	5674(3)	3774(2)	58(1)
N(1)	16350(4)	6562(3)	4972(2)	62(1)
O(2)	17645(4)	6045(3)	4812(2)	83(1)
O(3)	16401(4)	7224(3)	5546(2)	88(1)
N(2)	9030(4)	4652(2)	2735(2)	51(1)
C(7)	12885(5)	5442(3)	3316(2)	56(1)
C(8)	9914(5)	3589(3)	3068(2)	63(1)
C(9)	8605(6)	2782(3)	3325(2)	67(1)
C(10)	6898(6)	2806(3)	2993(2)	63(1)
C(11)	6244(5)	3621(3)	2348(2)	50(1)
C(12)	4562(5)	3533(3)	1876(2)	56(1)
C(13)	4037(5)	4325(3)	1277(2)	54(1)
Br(1)	1657(1)	4292(1)	690(1)	86(1)
C(14)	5174(5)	5178(3)	1100(2)	56(1)
C(15)	6848(5)	5272(3)	1568(2)	57(1)
C(16)	7376(5)	4512(3)	2201(2)	49(1)
Table S5 Bond lengths [Å] and angles [°] for 3k-PNB.

Bond or Angle	Value
C(1)-O(1)	1.223(4)
C(1)-N(2)	1.370(4)
C(1)-C(2)	1.506(5)
C(2)-C(3)	1.387(5)
C(2)-C(7)	1.393(5)
C(3)-C(4)	1.374(5)
C(3)-H(3)	0.9500
C(4)-C(5)	1.371(5)
C(4)-H(4)	0.9500
C(5)-C(6)	1.370(5)
C(5)-N(1)	1.482(5)
C(6)-C(7)	1.372(5)
C(6)-H(6)	0.9500
N(1)-O(2)	1.221(4)
N(1)-O(3)	1.226(4)
N(2)-C(16)	1.425(4)
N(2)-C(8)	1.482(4)
C(7)-H(7)	0.9500
C(8)-C(9)	1.484(5)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(10)	1.324(5)
C(9)-H(9)	0.9500
C(10)-C(11)	1.462(5)
C(10)-H(10)	0.9500
C(11)-C(12)	1.390(5)
C(11)-C(16)	1.400(5)
C(12)-C(13)	1.373(5)
C(12)-H(12)	0.9500
C(13)-C(14)	1.384(5)
C(13)-Br(1)	1.910(4)
C(14)-C(15)	1.383(5)
C(14)-H(14)	0.9500
C(15)-C(16)	1.387(5)
C(15)-H(15)	0.9500
O(1)-C(1)-N(2)	122.4(3)
O(1)-C(1)-C(2)	118.9(3)
N(2)-C(1)-C(2)	118.7(3)
C(3)-C(2)-C(7)	118.5(3)
C(3)-C(2)-C(1)	117.5(3)
C(7)-C(2)-C(1)	123.7(3)
C(4)-C(3)-C(2)	120.9(3)
C(4)-C(3)-H(3)	119.5
C(2)-C(3)-H(3)	119.5
C(5)-C(4)-C(3)	119.0(3)
C(5)-C(4)-H(4)	120.5
C(3)-C(4)-H(4)	120.5
C(6)-C(5)-C(4)	121.6(3)
C(6)-C(5)-N(1)	119.7(3)
C(4)-C(5)-N(1) 118.8(3)
C(5)-C(6)-C(7) 119.3(3)
C(5)-C(6)-H(6) 120.4
C(7)-C(6)-H(6) 120.4
O(2)-N(1)-O(3) 124.0(3)
O(2)-N(1)-C(5) 117.8(4)
O(3)-N(1)-C(5) 118.2(3)
C(1)-N(2)-C(16) 119.3(3)
C(1)-N(2)-C(8) 123.2(3)
C(16)-N(2)-C(8) 115.8(3)
C(6)-C(7)-C(2) 120.6(3)
C(6)-C(7)-H(7) 119.7
C(2)-C(7)-H(7) 119.7
N(2)-C(8)-C(9) 111.2(3)
N(2)-C(8)-H(8A) 109.4
C(9)-C(8)-H(8A) 109.4
N(2)-C(8)-H(8B) 109.4
C(9)-C(8)-H(8B) 109.4
H(8A)-C(8)-H(8B) 108.0
C(10)-C(9)-C(8) 121.5(4)
C(10)-C(9)-H(9) 119.2
C(8)-C(9)-H(9) 119.2
C(9)-C(10)-C(11) 120.8(4)
C(9)-C(10)-H(10) 119.6
C(11)-C(10)-H(10) 119.6
C(12)-C(11)-C(16) 119.4(3)
C(12)-C(11)-C(10) 122.4(3)
C(16)-C(11)-C(10) 118.1(3)
C(13)-C(12)-C(11) 119.4(3)
C(13)-C(12)-H(12) 120.3
C(11)-C(12)-H(12) 120.3
C(12)-C(13)-C(14) 121.7(3)
C(12)-C(13)-Br(1) 119.7(3)
C(14)-C(13)-Br(1) 118.5(3)
C(15)-C(14)-C(13) 119.1(3)
C(15)-C(14)-H(14) 120.4
C(13)-C(14)-H(14) 120.4
C(14)-C(15)-C(16) 120.1(4)
C(14)-C(15)-H(15) 120.0
C(16)-C(15)-H(15) 120.0
C(15)-C(16)-C(11) 120.2(3)
C(15)-C(16)-N(2) 121.0(3)
C(11)-C(16)-N(2) 118.8(3)

Symmetry transformations used to generate equivalent atoms:
Table S6: Anisotropic displacement parameters (Å² x 1⁰³) for 3k-PNB. The anisotropic displacement factor exponent takes the form: \(-2\pi^2 a^2 U_{11} + ... + 2 h k a^* b^* U_{12} \)

	U11	U22	U33	U23	U13	U12
C(1)	48(2)	49(2)	49(2)	2(2)	9(2)	0(2)
O(1)	56(2)	43(2)	85(2)	-3(1)	2(1)	7(1)
C(2)	47(2)	42(2)	52(2)	-2(2)	10(2)	2(2)
C(3)	46(2)	59(3)	73(3)	-16(2)	16(2)	0(2)
C(4)	57(2)	62(3)	64(2)	-18(2)	14(2)	-4(2)
C(5)	44(2)	47(2)	59(2)	4(2)	8(2)	-3(2)
C(6)	51(2)	61(3)	64(3)	0(2)	21(2)	6(2)
N(1)	53(2)	59(2)	72(2)	12(2)	6(2)	-7(2)
O(2)	47(2)	104(2)	97(2)	5(2)	12(2)	1(2)
O(3)	76(2)	81(2)	100(2)	-28(2)	-9(2)	-9(2)
N(2)	55(2)	35(2)	59(2)	-2(1)	5(2)	1(1)
C(7)	56(2)	63(3)	50(2)	-12(2)	12(2)	4(2)
C(8)	65(3)	45(2)	77(3)	-3(2)	3(2)	9(2)
C(9)	84(3)	47(2)	66(3)	5(2)	5(2)	4(2)
C(10)	80(3)	52(2)	58(2)	2(2)	19(2)	-8(2)
C(11)	58(2)	45(2)	49(2)	-8(2)	14(2)	0(2)
C(12)	56(2)	50(2)	63(3)	-8(2)	15(2)	-7(2)
C(13)	52(2)	55(2)	55(2)	-16(2)	8(2)	-1(2)
Br(1)	60(1)	86(1)	103(1)	-8(1)	-10(1)	-4(1)
C(14)	65(3)	50(2)	51(2)	2(2)	7(2)	0(2)
C(15)	59(2)	53(2)	57(2)	0(2)	7(2)	-5(2)
C(16)	52(2)	42(2)	52(2)	-5(2)	7(2)	0(2)
Table S7 Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å$^2 x 10^3$) for 3k-PNB.

	x	y	z	U(eq)
H(3)	10419	6899	4371	70
H(4)	13180	7268	5158	73
H(6)	15576	5378	3619	69
H(7)	12819	4986	2839	67
H(8A)	10836	3773	3543	76
H(8B)	10512	3225	2647	76
H(9)	9001	2236	3737	80
H(10)	6088	2287	3177	75
H(12)	3782	2931	1968	67
H(14)	4808	5692	663	67
H(15)	7637	5858	1456	68
Table S8 Torsion angles [°] for 3k-PNB.

Bond	Torsion Angle [°]
O(1)-C(1)-C(2)-C(3)	40.3(5)
N(2)-C(1)-C(2)-C(3)	-141.1(3)
O(1)-C(1)-C(2)-C(7)	-133.2(4)
N(2)-C(1)-C(2)-C(7)	45.4(5)
C(7)-C(2)-C(3)-C(4)	-3.2(6)
C(1)-C(2)-C(3)-C(4)	-177.0(3)
C(2)-C(3)-C(4)-C(5)	1.3(6)
C(3)-C(4)-C(5)-C(6)	1.2(6)
C(3)-C(4)-C(5)-N(1)	-178.5(3)
C(4)-C(5)-C(6)-C(7)	-1.6(6)
N(1)-C(5)-C(6)-C(7)	178.0(3)
C(6)-N(1)-O(2)	-7.6(5)
C(4)-C(5)-N(1)-O(2)	172.1(3)
C(6)-C(5)-N(1)-O(3)	174.8(3)
C(4)-C(5)-N(1)-O(3)	-5.5(5)
O(1)-C(1)-N(2)-C(16)	4.4(5)
C(2)-C(1)-N(2)-C(16)	-174.2(3)
O(1)-C(1)-N(2)-C(8)	-160.3(3)
C(2)-C(1)-N(2)-C(8)	21.1(5)
C(5)-C(6)-C(7)-C(2)	-0.4(6)
C(3)-C(2)-C(7)-C(6)	2.7(5)
C(1)-C(2)-C(7)-C(6)	176.2(3)
C(1)-N(2)-C(8)-C(9)	122.4(4)
C(16)-N(2)-C(8)-C(9)	-42.8(4)
N(2)-C(8)-C(9)-C(10)	25.8(5)
C(8)-C(9)-C(10)-C(11)	1.1(6)
C(9)-C(10)-C(11)-C(12)	167.1(4)
C(9)-C(10)-C(11)-C(16)	-12.2(5)
C(16)-C(11)-C(12)-C(13)	-0.3(5)
C(10)-C(11)-C(12)-C(13)	-179.6(3)
C(11)-C(12)-C(13)-C(14)	3.3(5)
C(11)-C(12)-C(13)-Br(1)	-174.5(2)
C(12)-C(13)-C(14)-C(15)	-3.4(5)
Br(1)-C(13)-C(14)-C(15)	174.4(3)
C(13)-C(14)-C(15)-C(16)	0.5(5)
C(14)-C(15)-C(16)-C(11)	2.5(5)
C(14)-C(15)-C(16)-N(2)	-174.5(3)
C(12)-C(11)-C(16)-C(15)	-2.6(5)
C(10)-C(11)-C(16)-C(15)	176.8(3)
C(12)-C(11)-C(16)-N(2)	174.4(3)
C(10)-C(11)-C(16)-N(2)	-6.2(5)
C(1)-N(2)-C(16)-C(15)	45.6(5)
C(8)-N(2)-C(16)-C(15)	-148.6(3)
C(1)-N(2)-C(16)-C(11)	-131.4(3)
C(8)-N(2)-C(16)-C(11)	34.4(4)

Symmetry transformations used to generate equivalent atoms: