Transcriptome change in Staphylococcus aureus in infecting mice

Hiroshi Hamamoto
Teikyo University https://orcid.org/0000-0001-9315-7442

Suresh Panthee
RIKEN https://orcid.org/0000-0003-4021-7936

Atmika Paudel
Hokkaido University

Ohgi Suguru
The University of Tokyo

Yutaka Suzuki
The University of Tokyo

Kazuhisa Sekimizu sekimizu@main.teikyo-u.ac.jp
Teikyo University https://orcid.org/0000-0002-2849-8432

Article

Keywords: Staphylococcus aureus, RNA-sequencing, 2-step cell-crush method

DOI: https://doi.org/10.21203/rs.3.rs-636230/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Transcriptome change in *Staphylococcus aureus* in infecting mice

Hiroshi Hamamoto¹,², Suresh Panthee²,³, Atmika Paudel³, Suguru Ohgi⁴,⁶, Yutaka Suzuki⁵, Kazuhisa Sekimizu²,*

1 Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachio-ji shi, Tokyo, 192-0395, Japan
2 Drug Discoveries by Silkworm Models, Faculty of Pharma-Science, Teikyo University
3 International Institute for Zoonosis Control, Hokkaido University, North 20, West 10, Kita-ku, Sapporo Hokkaido 001-0020, Japan
4 Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
5 Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa shi, Chiba, 277-8562, Japan

Present address
6 Kyowa Kirin Co., Ltd., 1-9-2 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan

Corresponding Author:
* To whom correspondence should be addressed (sekimizu@main.teikyo-u.ac.jp)

These authors equally contributed to this study
Summary

We performed in vivo RNA-sequencing analysis of *Staphylococcus aureus* in infected mouse liver using the 2-step cell-crush method. We compared the transcriptome of *S. aureus* at 6, 24, and 48 h post-infection (h.p.i) in mice and in culture medium. Genes related to anaerobic respiration were highly upregulated at 24 and 48 h.p.i. The gene expression patterns of virulence factors differed depending on the type of toxin. For example, hemolysins, but not leukotoxins and serine proteases, were highly upregulated at 6 h.p.i. Gene expression of metal transporters, such as iron transporters, gradually increased at 24 and 48 h.p.i. We also analyzed the transcriptome of mouse liver infected with *S. aureus*. Hypoxia response genes were upregulated at 24 and 48 h.p.i., and immune response genes were upregulated from 6 h.p.i. These findings suggest that gene expression of *S. aureus* in the host changes in response to changes in the host environment, such as oxygenation status or immune system attacks during infection.

Introduction

The rapid emergence of multi-antimicrobial resistant strains has created an urgent need for the development of novel therapeutic agents. The number of recent discoveries of therapeutically active antimicrobials with novel mechanisms such as texobactin\(^1\) and lysocin E\(^2\) is limited, however, suggesting a depletion of excellent target molecules to develop as novel antimicrobials. Antimicrobials are typically screened on the basis of their antimicrobial activity *in vitro*. As recently pointed out\(^3,4\), however, pathogen behavior exhibited during *in vitro* culture is much different from that *in vivo* in the host; thus, it is important to identify antimicrobial targets expected to be more efficient in the host.

Staphylococcus aureus has successfully adapted to the environmental conditions of the human body. It can survive and respond to various conditions in the human body, and causes a wide range of diseases such as acne, pneumonia, and bacteremia\(^5\) despite its relatively small genome size\(^6\). In addition, *S. aureus* easily acquires multidrug resistance\(^7\). It is estimated that 10,000 people in the United States and 4000 people in Japan die annually from infections caused by methicillin-resistant *S. aureus*\(^8\). *S. aureus* secretes various kinds of toxins such as hemolysins, leukotoxins, and proteases\(^9\), and grows under both aerobic and anaerobic conditions\(^10\). Furthermore, *S. aureus* has at least 5 iron acquisition systems and many metal transporters, which are
essential for its colonization and pathogenesis under host conditions. Many genes have been identified as pathogenic factors of *S. aureus*, and prompt analysis of their transcriptomes under host infection conditions is crucial. By performing RNA sequencing (RNA-Seq) analysis, we revealed the *in vivo* transcriptome of *S. aureus*, which in previous studies had only been analyzed at one specific time-point after systemic infection. We recently established an improved *in vivo* RNA-Seq analysis applicable to a smaller *S. aureus* population size in infected organs by taking advantage of the fact that gram-positive bacteria can be separated from host cells by mechanical disruption due to the presence of a strong cell wall. This technique has been successfully applied to *in vivo* RNA-Seq for *Streptococcus pyogenes*, and in the present study, we applied the method to *S. aureus* in systemic mouse infection.

Results and Discussion

1. Result of *in vivo* RNA-Seq analysis for *S. aureus* infection in mouse liver

We previously reported that the 2-step cell crush method was applicable to *in vivo* RNA-Seq analysis of *S. pyogenes*, which have a rigid cell wall like *S. aureus*, in necrotizing fasciitis. In this method, the first step was to use large beads to crush and lyse the host tissue in lysis buffer, followed by the use of small beads to crush enriched *S. aureus* cells in mouse organs to prepare enriched bacterial RNA for RNA-Seq analysis (Figure 1). In the present study, we performed *in vivo* RNA-Seq analysis of *S. aureus* grown in organs of mice that were systemically infected with *S. aureus*. Injection of *S. aureus* Newman strain into the mouse tail vein killed half of the mice within 48 h post-infection (h.p.i.), and all the mice within 72 h (Supplementary Fig. 1A). Under this condition, the number of bacterial cells per organ increased exponentially in the kidney and heart within 24 h.p.i., and reached 10^7 colony forming unit (CFU)/mg in the liver at 6 h.p.i. and kept more than 10^6 CFU/mg level in most of individuals until 48 h.p.i. (Supplementary Fig. 1B). Thus, we performed in vivo RNA-Seq analysis of *S. aureus* in the liver at 6, 24, and 48 h.p.i., and obtained approximately 160 to 700 thousand uniquely mapped reads on the *S. aureus* genome (Supplementary table 1). The number of genes with no mapped reads was 97 (3% of all genes) for RNA extracted from *in vitro* culture and 374 (12% of all genes) in *S. aureus* Newman strain isolated from liver 6 h.p.i. Therefore, most of the genes in the *S. aureus* genome were successfully analyzed by this method (Supplementary Dataset 1).
Figure 1 | The 2-step cell-crush method for in vivo RNA-Seq analysis of S. aureus in mouse liver

C57BL/6J mice were infected with S. aureus Newman strain injected through the tail vein, and organs were harvested at 6, 24, and 48 h.p.i. Tissue and bacterial cells were separately crushed and lysed in lysis buffer using beads of 2 different sizes.
Sample Origin	in liver	in vitro											
Harvested time/Medium	6 h.p.i.	24 h.p.i.	48 h.p.i.	TSB									
Sample name	No.3	No.23	No.33	No.3	No.13	No.83	L10-2	L10-3	D2-3	NMWT-1	NMWT-2	MMWT-3	NMWT-4
cells in the sample (x10^3)	1,484	1,300	1,162	503	143	753	3,580	5,001	3,561				
Total reads	178,491,141	98,324,305	179,892,351	105,370,467	88,463,582	106,305,171	104,816,965	93,625,792	89,721,859	19,256,012	19,700,338	25,971,088	44,444,034
Mapped reads	328,107	526,721	237,715	534,170	404,538	576,442	980,823	1,149,746	249,904	16,519,511	16,578,709	22,522,546	33,925,903
Uniquely mapped reads	300,156	485,379	215,196	423,322	315,772	489,315	707,532	533,073	161,085	587,376	5,596,383	7,368,820	4,030,565
Non-specifically mapped reads	27,951	41,342	22,519	110,848	88,766	87,127	273,291	616,673	88,819	10,629,133	10,982,326	15,153,726	29,895,338
The genes not read mapped	374 (12%)	269 (9.0%)	14 (0.47%)	97 (3.2%)									

Supplementary Table 1 | Summary of *in vivo* RNA-Seq results of *S. aureus* in infected mouse liver
Supplementary Figure 1 | Conditions of systemic *S. aureus* infection model in this analysis

a, Survival of mice infected with *S. aureus* Newman strain. Bacterial cells (5.6x10^7 CFU) were injected into the tail vein (n=5).

b, Number of *S. aureus* cells in each organ after infection with (5.3x10^7 CFU) *S. aureus* Newman strain.
2.1 Pathway analysis of the genes altered after infection with S. aureus

To elucidate the trend of S. aureus gene expression in the host environment, we performed KEGG pathway enrichment analysis to compare with gene expression analysis in the culture medium (Table 1). We found that expression of genes involved in carbon metabolism (glycolysis) and TCA cycle pathways was significantly upregulated at 6 h.p.i (Table 1), but not at 48 h.p.i. Expression of genes involved in beta-oxidation, responsible for the production of acetyl-CoA from fatty acids, and the PTS system, required for incorporation of phosphorylated saccharide, was significantly upregulated starting at 24 h.p.i. Expression of genes required for iron acquisition, such as biosynthesis of various secondary metabolites- staphyloferrin A and B, was not upregulated at 6 h.p.i., but was upregulated after 24 h.p.i. In addition, expression of ABC transporters, required for the acquisition of nickel and manganese, was upregulated after 24 h.p.i. On the other hand, expression of genes involved in terpenoid backbone biosynthesis, required for cell wall synthesis, pigment, menaquinone, and peptidoglycan biosynthesis, was downregulated from 24 h.p.i. As for the host side, we performed RNA-Seq analysis using RNA of liver organs mixed in the sample that mapped uniquely on the mice genome (Supplementary Dataset 2) and selected genes with a significant 5-fold difference (false discovery rate [FDR] p-value <0.05) in liver infected with S. aureus compared with liver injected with PBS to perform the GO term enrichment analysis (Reactome, Supplementary Dataset 3). The results suggested that genes involved in the induction of innate immunity and inflammation, and those related to metal sequestration were significantly upregulated (Supplementary Table 3). On the other hand, reactomes related to ATP synthesis, such as respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins, were downregulated at all time-points (Supplementary Table 3). In addition, hif1a and hif3a, which are involved in the hypoxia response, were upregulated after 24 h.p.i., suggesting that the host environment was low in oxygen at the late stage of infection. These results well correlated with the trend of the S. aureus gene expression changes in the host and suggested that carbon metabolism, metal metabolism, and cell wall synthesis of S. aureus were highly influenced by the host condition.
Hours	Pathway ID	Description	GeneRatio	BgRatio	p.adjust
Up regulated					
6hr	sae00020	Citrate cycle (TCA cycle)	15/157	22/963	0.0000
	sae01120	Microbial metabolism in diverse environments	43/157	132/963	0.0000
	sae01200	Carbon metabolism	29/157	80/963	0.0001
24hr	sae00997	Biosynthesis of various secondary metabolites - part 3	9/208	10/963	0.0004
	sae01120	Microbial metabolism in diverse environments	48/208	132/963	0.0006
	sae00290	Valine, leucine and isoleucine biosynthesis	9/208	11/963	0.0006
	sae00020	Citrate cycle (TCA cycle)	13/208	22/963	0.0018
	sae01210	2-Oxocarboxylic acid metabolism	11/208	18/963	0.0033
	sae00650	Butanoate metabolism	10/208	16/963	0.0041
	sae05150	Staphylococcus aureus infection	17/208	38/963	0.0077
	sae02060	Phosphotransferase system (PTS)	12/208	23/963	0.0077
	sae00071	Fatty acid degradation	7/208	10/963	0.0085
	sae01100	Metabolic pathways	125/208	497/963	0.0204
	sae02010	ABC transporters	28/208	85/963	0.0396
48hr	sae00220	Arginine biosynthesis	15/253	18/963	0.0000
	sae02010	ABC transporters	39/253	85/963	0.0008
	sae00997	Biosynthesis of various secondary metabolites - part 3	9/253	10/963	0.0008
	sae00340	Histidine metabolism	12/253	16/963	0.0008
	sae00290	Valine, leucine and isoleucine biosynthesis	9/253	11/963	0.0020
	sae01230	Biosynthesis of amino acids	42/253	100/963	0.0021
	sae01210	2-Oxocarboxylic acid metabolism	12/253	18/963	0.0027
	sae02060	Phosphotransferase system (PTS)	14/253	23/963	0.0030
	sae02024	Quorum sensing	28/253	61/963	0.0032
	sae05150	Staphylococcus aureus infection	19/253	38/963	0.0068
	sae00052	Galactose metabolism	12/253	20/963	0.0069
	sae00071	Fatty acid degradation	7/253	10/963	0.0216
	sae01100	Metabolic pathways	148/253	497/963	0.0284
	sae02020	Two-component system	29/253	75/963	0.0398
Down regulated					
6hr	sae03010	Ribosome	47/297	73/963	0.0000
	sae003030	Purine metabolism	25/297	43/963	0.0041
24hr	sae03010	Ribosome	46/311	73/963	0.0000
	sae00240	Pyrimidine metabolism	18/311	28/963	0.0125
	sae00900	Terpenoid backbone biosynthesis	9/311	11/963	0.0195
48hr	sae03010	Ribosome	56/460	73/963	0.0000
	sae00900	Terpenoid backbone biosynthesis	11/460	11/963	0.0065
	sae00550	Peptidoglycan biosynthesis	20/460	24/963	0.0065
	sae00240	Pyrimidine metabolism	22/460	28/963	0.0115

Table 1 KEGG pathway enrichment analysis for upregulated and downregulated genes of *S. aureus*-infected liver compared with culture medium
Supplementary Table 2 | Gene expression change in representative genes in *S. aureus*-infected mice compared with PBS-injected mice.

2.2 Energy metabolism

We further analyzed the gene expression changes in each *S. aureus* pathway in mouse liver after infection. The expression of genes involved in the glycolysis pathway was suppressed in mouse liver compared with the culture medium conditions (Supplementary Figure 2) throughout the infection period. Expression of genes involved in the TCA cycle was relatively upregulated until 24 h.p.i. and downregulated at 48 h.p.i. On the other hand, fermentation-related genes such as *pflB*, *ldh*, and *adhE* were highly upregulated at 24 and 48 h.p.i. In addition, the genes involved in nitrate respiration such as *narK*, which is required for nitrate uptake; the *narGHJI* operon encoding respiratory nitrate reductase; and the *nirBD* operon encoding assimilatory nitrite reductase, which produces nitrate (NO$_3^-$), an electron acceptor instead of oxygen in anaerobic conditions in the electron transport chain (Figure 2a)\(^6\), were upregulated at 24 h.p.i. and highly upregulated at 48 h.p.i. (Figure 2b). We established a disruption strain of the *narK* gene, the gene most upregulated in this system at 48 h.p.i. and found that *narK* gene-disrupted mutants had significantly reduced virulence in the mouse systemic infection model (Figure 2c). These results suggest that nitrate respiration was upregulated at the late stage of infection and required for full virulence of *S. aureus* under reduced oxygen pressure caused by progression of the infection. On the other hand, the mouse killing ability of the *pflB* gene-disrupted mutant was not significantly reduced (Supplementary Figure 3). *PflB* is involved in synthesizing acetyl CoA from pyruvate in anaerobic conditions, although other enzymes also cover this enzymatic reaction. Thus, an alternative pathway might compensate its function in the *pflB* gene disruption mutant.
Figure 2 | Gene expression changes regarding nitrate respiration of *S. aureus* infected in liver

a, Metabolic pathway of nitrate in *S. aureus*. b, Expression changes in genes involved in the nitrogen respiration pathway. The values in the box show Transcripts Per Million (TPM) and the boxes which TPM more than 300 filled by red. c, Survival curves of mice treated with wild-type and *narK* gene-disrupted strains by tail vein injection with 4.3x10^7 CFU and 4.6x10^7 CFU, respectively. (n=5 in each group, log-rank test, p=0.0035 chi square=8.544, df=1).
Supplementary Figure 2 | Gene expression changes related to glycolysis and the TCA cycle in infected mouse liver compared with culture medium.
Supplementary Figure 3| Mouse-killing ability of a disruption mutant of the pflB gene involved in anaerobic metabolism

Parent and ∆pflB strains were intravenously injected at doses of 3.8x10^7 CFU and 3.2x10^7 CFU, respectively. No significant difference was detected by log-rank test (p=0.6717, chi square=0.1797, df=1).

2.3 Lipid metabolism

KEGG pathway analysis suggested the upregulation of genes regulating fatty acid degradation. The genes fadABDE are involved in beta oxidation of lipids and required for acetyl-CoA production utilized in the TCA cycle. These genes were upregulated in the host liver from the initial stage of infection compared with culture medium conditions. In contrast, expression of the fabIH genes, required for type II fatty acid synthetase, a target for antimicrobial agents development\(^1\), were significantly downregulated in the later stage of infection. These findings suggest that S. aureus infected in mouse liver obtained a part of its energy from fatty acid degradation.
gene	KEGG pathway	6hr Fold change	FDR p-value	24hr Fold change	FDR p-value	48hr Fold change	FDR p-value
fadA	Fatty acid degradation*	12.0	<0.001	11.5	<0.001	6.7	<0.001
fadB	Fatty acid	26.3	<0.001	16.8	<0.001	7.3	<0.001
fadD	Fatty acid degradation*	84.7	<0.001	61.9	<0.001	9.7	<0.001
fadE	Fatty acid	23.4	<0.001	30.0	<0.001	7.7	<0.001
fab	Fatty acid elongation**	-1.8	0.050	-2.3	0.006	-5.3	<0.001
fabD	Fatty acid	-1.9	0.030	-2.3	0.005	-3.7	<0.001
fabG	Fatty acid elongation**	-1.8	0.024	-2.8	<0.001	-3.2	<0.001
fabH	Fatty acid elongation**	-5.3	<0.001	-4.7	<0.001	-4.3	<0.001
fabI	Fatty acid elongation**	-1.1	0.959	-1.5	0.214	-3.2	<0.001
fabZ	Fatty acid elongation**	-2.7	<0.001	-4.1	<0.001	-4.5	<0.001

Table 2 | Gene expression change of *S. aureus* lipid metabolism in the host liver compared with culture medium

*https://www.kegg.jp/kegg-bin/show_pathway?sa00071

**https://www.kegg.jp/kegg-bin/show_pathway?sa00061
2.4 Metal acquisition system

Iron acquisition is essential for pathogen growth in the host18. \textit{S. aureus} has at least 5 iron acquisition systems, and the genes involved in these systems are known to be upregulated in the host, since the pathogen-infected host hides iron by increasing metal sequestration proteins, as shown in Supplementary Table 2. Although the expression of iron acquisition system genes was not upregulated at 6 h.p.i., it was highly increased at 24 and 48 h.p.i. (Figure 3A), a pattern that did not correspond to that of the host’s metal sequestration proteins, which were upregulated from 6 h.p.i. It might be that \textit{S. aureus} obtained iron from lysed hemocytes by hemolysins, which were highly upregulated at the initial infection stage in the host, as described below.

\textit{S. aureus} is known to have 2 manganese transporters; the \textit{mntABC} genes encoding the ABC transporter, and the \textit{mntH} gene encoding a proton-ion coupled transporter. Disruption mutants of both genes show reduced virulence against mice19. In this analysis, we found that \textit{mntABC} genes and not the \textit{mntH} gene were highly upregulated in the host compared with the culture medium condition (Figure 3B). In addition, we revealed that disruption of the \textit{mntABC} gene operon in \textit{S. aureus} reduced virulence against mice (Figure 3C), indicating that the MntABC transporter significantly contributes to the virulence of \textit{S. aureus}. In addition, a staphylopine-mediated transport system related to the acquisition of broad metal ions such as iron, zinc, copper, nickel, and cobalt was recently reported12. The expression level of the \textit{cntABCDF} operon encoding the ABC transporter increased from 24 h.p.i. to 48 h.p.i., and the expression level of the \textit{cntKLM} gene, which is involved in staphylopine synthesis, increased several-fold as the infection progressed. Disruption of the \textit{cntK} gene, which is involved in staphylopine synthesis, and the \textit{cntE} gene, which is involved in the secretion of staphylopine from the bacterial cell, significantly reduces virulence, suggesting that this metal transporter is essential for the virulence of \textit{S. aureus} (Figure 3D, E).

A gradual increase in the copper, molybdenum, and cobalt metal transporters, \textit{copA}, \textit{modABC}, and \textit{cobI}, respectively, was observed after infection. We observed no difference in the expression of the \textit{mgtE} gene, a transporter of magnesium, in the host compared with that in the culture medium condition.
Figure 3 Gene expression change in *S. aureus* metal acquisition system in the host liver compared with culture medium.

a. Time course of expression changes in the iron acquisition systems in *S. aureus*-infected liver...
compared with culture medium. The values in the box show TPM and the boxes with TPM more than 200 filled by red. b, Time course of expression changes in the divalent cation acquisition systems in *S. aureus*-infected liver compared with culture medium. The values in the box show TPM and the boxes which TPM more than 100 filled by red. c-e, Mouse-killing ability of a disruption mutant of the *mntA*, *cntE* and *cntK* gene, respectively. Bacterial suspensions were intravenously injected at doses of 3.8x10⁷ CFU, (c and e) and 4.3x10⁷ CFU (d) for wild type strain, and 3.8x10⁷ CFU, 4.3 x10⁷ CFU and 3.8x10⁷ CFU for ∆*mntA* strain (c), ∆*cntE* strain (d) and ∆*cntK* strain (e), respectively. Statistical analyses were performed by Log-rank (Mantel-Cox) test (n=5 in each group c: p=0.0006, chi square=11.74, df=1, d: p=0.0035, chi square=8.544, df=1, e: p=0.0015, chi square=10.04, df=1).

2.5 Virulence factors and their regulators

S. aureus possesses a wide variety of toxins, and the expression of these toxins, such as hemolysin, increases after infection¹⁴. In this study, we revealed the time course of these changes in gene expression (Figure 4). Expression of genes encoding hemolysins such as *hla* and *hlgABC* was highly upregulated from the initial stage of infection. Expression of these genes contribute to iron acquisition of *S. aureus* in the host at the early stage of infection. The expression level of leukotoxin genes was not increased at 6 h.p.i, but was increased after 24 h.p.i. Expression of superantigen genes, which are involved in evading the immune system²⁰, increased starting at 6 h.p.i, although significant expression increments were observed from 24 h.p.i. It is uncertain why the expression of genes corresponding to the host's immune response was delayed even though the innate immune system of the mice was already activated at 6 h.p.i.

We further evaluated the expression of 2-component regulatory systems identified in *S. aureus*, required for environmental responses and toxin regulators. The expression of *agr* and *sae* genes, which are necessary for toxin expression²¹, did not increase in the host, but rather tended to decrease at 48 h.p.i. (Table 3). These findings were consistent with findings in other models³,²². Several transcription factors are considered to influence *agr* gene regulation, which regulates toxin production²¹,²³,²⁴. The expression levels of *sarH1* and *sarX*, which negatively regulate *agr* gene expression, were decreased, while that of *rsr*, a repressor of *agr* expression, was increased. On the other hand, the expression levels of *sarA*, *sarZ*, *ccpA*, and *mgrA*, which positively regulate *agr* expression, tended to decrease. Furthermore, *sarH1* and *sarT*, which are negative regulators of *agr* and *sarA* genes, decreased at 6 h.p.i, but increased after 24 h.p.i. These
findings suggest that the expression of transcription factors involved in the regulation of virulence gene expression in the host condition was not consistent with the interpretation of the regulation of toxin production and *agr* gene expression based on *in vitro* analysis. Furthermore, expression of the tcs7RS gene, a 2-component regulatory system with unknown function, and *kdpDE* genes, a 2-component regulatory system for potassium homeostasis, was also upregulated throughout the infection process. In addition, we recently reported a novel virulence regulator, the *yjbH* gene, which regulates the expression of an iron transporter, and several virulence factors such as spa and leukotoxin and oxidative stress response genes, were upregulated until 24 h.p.i., suggesting that *yjbH* contributes to the expression of virulence-related genes in the early stage of infection in mice. These results suggest that transcription of *agr* gene was not positively regulated and other genes such as *yjbH* gene regulate the expression of virulence-related genes.

Figure 4 | Time course of expression changes in virulence factors in *S. aureus*-infected liver compared with culture medium
Gene	Function	6h	24hr	48hr	Fold increment
Two component factors⁶					
agrC	Quorum sensing control of adhesion and virulence factors	1	1	-2.3	0.013
agrA	Virulence factors regulation (toxins, enzymes)	1.2	0.769	1.2	0.266
sasR	Virulence factors regulation (toxins, enzymes)	1.1	0.946	1.1	<0.001
vraR	Cell wall -affecting antibiotic resistance, cell wall biosynthesis	2.3	<0.001	1.7	0.009
sarS	Cell wall -affecting antibiotic resistance, cell wall biosynthesis	2.1	0.001	1.3	0.005
graX	AMP resistance, growth at low pH	1.9	0.007	1.1	0.981
graR	AMP resistance, growth at low pH	2.7	<0.001	1.0	0.996
graS	AMP resistance, growth at low pH	1.9	0.007	1.3	0.694
braR	Antimicrobial peptide resistance	1.2	0.088	1.3	0.885
sarR	Pathogenicity, metabolism: autolysis, adherence, biofilm	-1.4	0.468	-1.4	1.1
sarA	Pathogenicity, metabolism: autolysis, adherence, biofilm	1.4	0.019	-1.2	0.016
walK	Cell wall maintenance, cell viability	1.2	0.612	-1.2	0.613
whiB	Intercellular survival, uptake of hexose phosphate	1	0.115	1.1	0.216
hptR	Intercellular survival, uptake of hexose phosphate	-3.3	0.012	-2.8	0.046
tcsR	Uncharacterized function	4.9	<0.001	3.0	0.865
tcsS	Uncharacterized function	3.2	<0.001	2.7	0.371
srbB	Anaerobic respiration, metabolism, growth at low temperature	-1.8	0.027	-1.5	0.443
sarB	Anaerobic respiration, metabolism, growth at low temperature	-1.4	0.303	-1.4	0.03
phoR	Phosphate uptake and homeostasis	5.3	<0.001	3.4	0.486
phoP	Phosphate uptake and homeostasis	1.2	0.555	-1.1	0.252
airR	Oxidative stress response	-1.3	0.634	1.6	0.089
airS	Oxidative stress response	1.1	0.802	1.6	3.831
kdpD	Potassium homeostasis regulation	1.4	0.545	3.5	<0.001
kdpE	Potassium homeostasis regulation	2.1	0.123	3.1	<0.001
hisS	Heme metabolism regulation	-1.7	0.317	-5.3	0.228
hisR	Heme metabolism regulation	1.8	0.058	-1.1	0.826
nireC	Response to low oxygen, nitrate reduction	1.3	0.337	1.2	0.56
mefB	Response to low oxygen, nitrate reduction	1.1	0.872	1.2	1.77
Transcription factors⁷					
sarA	Positive to agr expression, induction of exoproteins and repression of spa	-1.6	0.051	1.7	<0.001
sarB	Positive to agr expression, repression of spa, sarA	-1.3	<0.001	1.8	<0.001
sarC	Negative to agr, sarA	1.1	0.792	1.1	0.001
sarD	Negative to agr, sarA	-1.1	0.925	1.1	<0.001
sarT	Negative to agr, hla, sarU expression	-9.4	0.068	6.9	<0.001
sarX	Negative to agr	-8.6	0.001	-12	0.255
sarY	Negative to agr	-1.2	0.015	-1.5	0.011
codY	Negative to agr	1.2	0.014	1.4	0.783
mgrA	Cytoplasmic regulator; induction of efflux pumps and capsule expression; repression of sarZ, sarX	-1.9	0.017	1.1	<0.001
mraY	Repressor of agr⁸	4.9	<0.001	2.3	0.992
sigA	Stress response	-2.4	<0.001	-2.8	<0.001
sigB	Virulence factor regulator⁹	0.8	<0.001	2.4	0.139

Table 3: Gene expression change in the *S. aureus* 2-component system and virulence-related transcription factors in the host liver compared with culture medium
Conclusions

In the present study, *S. aureus* gene expression changes in mouse liver after systemic infection were analyzed over time by *in vivo* RNA-Seq. The results suggested that *S. aureus* responds to changes in oxygenation and environmental influences associated with deterioration of the host's cardiovascular status as the infection progresses, and obtains energy through anaerobic respiration. Further, expression of metal transporters did not increase until 6 h.p.i., but increased remarkably after that time. Our results also revealed the contribution of the manganese transporter *mntABC* and staphylopine to the pathogenicity of the broad metal transport system for the first time. As for the expression of pathogenic toxins, the timing of the upregulation differed depending on the toxin. Blood hemolytic toxin significantly increased from the early stage of infection, while the expression levels of leukocyte toxin, superantigens, and serine proteases increased in the late stage of infection. *S. aureus* exhibits a sophisticated response to changes in environmental conditions in the host during infection by regulating gene expression.

Material and Method

Ethics statement

All mouse experiments were performed at the University of Tokyo following the regulations for animal care and use and approved by the Animal Use Committee at the Graduate School of Pharmaceutical Science at the University of Tokyo (P27-4).

S. aureus infection and organ collection for RNA isolation

S. aureus Newman strain was grown overnight on TSB medium at 37°C. The full growth was diluted 100-fold with 5 ml TSB and regrown, and then the cells were centrifuged and suspended in PBS pH 7.2. The cells (5.6×10⁷ CFU) were injected into C57BL/6J mice via the tail vein. At 6, 24, and 48 h.pi, mice were killed to isolate liver. The organs were immediately placed in liquid nitrogen and maintained at -80°C until RNA extraction. One kidney and a part of the liver were homogenized to calculate viable cell numbers in each organ. Each experiment was conducted with 3 animals and data are represented as an average.

Enrichment of *S. aureus* Newman RNA from infected mouse organs and removal of ribosomal RNA
Mouse organs were homogenized and lysed in buffer RLT using an RNeasy Mini Kit (QIAGEN, Hilden, Germany) with 5-mm zirconia beads by shaking using a Bead Crusher (μT-12, Taitec, Saitama, Japan) at 2500 rpm for 1 min. The samples were centrifuged, and precipitants were washed with an equal volume of PBS. Bacterial cell precipitates were suspended in 200 μl of TE containing 0.2 mg/mL lysostaphin and incubated at room temperature for 30 min. After adding 700 μl of RLT and 200 μl volume of 0.5-mm zirconia beads, the samples were shaken at 2500 rpm for 5 min, and debris was removed by centrifugation. The RNA was purified according to the manufacturer’s instructions. Ribosomal RNA in the above samples was removed using a Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat) (Illumina, San Diego, CA) according to the manufacturer’s protocol.

Library preparation and RNA-sequencing

RNA-Seq analysis for differential expression analysis was performed with the HiSeq platform (Illumina) or Ion Proton system (Thermo Fisher Scientific) according to the manufacturer’s instructions. Briefly, for HiSeq, the RNA-Seq libraries were prepared using the TruSeq RNA sample preparation kit (version 2; Illumina), except the poly(A) selection procedure was omitted. The double-stranded PCR products were purified and size-fractionated using a bead-mediated method with AMPure XP (Beckman Coulter, California, CA). The RNA-Seq libraries were quantified by a bioanalyzer (Agilent, California, CA). Thirty-six base-pair single-end sequencing was conducted on a HiSeq 2000 or 2500 platform, using a TruSeq SR Cluster Kit v3-cBot-HS and a TruSeq SBS kit (version 3-HS). For the Ion Proton system, library preparation for RNA-Seq was performed using an Ion Total RNA-Seq Kit v2 following the manufacturer’s instructions. Briefly, rRNA depletion from the RNA was achieved using a MICROBExpress™ Kit (Thermo Fisher Scientific, Waltham, MA). The RNA was then fragmented by RNase III, reverse transcribed, and amplified. The size distribution and yield of the amplified library was confirmed in the bioanalyzer, and the libraries were enriched in an Ion PI Chip v2 using the Ion Chef (Thermo Fisher Scientific). Subsequent sequencing was performed in the Ion Proton System. The data were deposited in the DNA Data Bank of Japan (DDBJ) BioProject under accession number PRJDB3874.

Differential gene expression analysis
All data were analyzed using CLC Genomics Workbench software, version 12 (CLC Bio, Aarhus, Denmark). Reads were aligned to the Newman genome (Accession No. NC_009641) and the mouse genome (Mus_musculus.GRCm38) allowing a minimum length fraction of 0.95 and minimum similarity fraction of 0.95. Differential gene expression analysis was performed using edgeR analysis\(^\text{29}\) for a normalized dataset by scaling using the default setting. Genes with an FDR \(p<0.05\) using the Benjamini and Hochberg’s algorithm\(^\text{30}\) were classified as having significantly different expression.

Data analysis

For the KEGG pathway analysis, we selected *S. aureus* genes whose expression levels changed more than 2-fold in mouse liver compared with *in vitro* culture medium conditions and whose FDR p-value was less than 0.05. R ver. 3.6.1, Bioconductor 3.10 package, and pathview\(^\text{31}\) were used. GO term enrichment analysis was performed on the site http://geneontology.org using the Reactome pathway. The genes selected for expression were significantly (FDR p-value < 0.05) upregulated or downregulated 5-fold in *S. aureus*-infected mice compared with PBS-treated mice and analyzed by the Fishers exact test with FDR correction (FDR p-value < 0.05 was considered statistically significant).

Construction of *S. aureus* mutants and complement strain

Single cross-over recombination; gene disruptions were performed as previously described\(^\text{32}\). In summary, the internal regions within the open reading frames of the gene were amplified by PCR (Prime Star Max DNA polymerase, Takara, Tokyo, Japan) using the primers listed in **Supplementary Table 2**, and the PCR product was cloned into integration vector pCK20\(^\text{32}\). The plasmid was then transformed to *S. aureus* RN4220\(^\text{23}\) by electroporation. Double cross-over recombination; gene disruptions were performed as previously described\(^\text{33}\). The genome DNA regions upstream and downstream of the target region were amplified by PCR using the listed primers, and then overlap extension-PCR was performed using these 2 DNA fragments together with the *aph* gene amplified from the pSF151 vector (primers: KmF; 5’ AGCGAACCATTTGAGGTGAT 3’ and KmR; 5’ GGGACCCCT ATCTAGCGAAC 3’). The PCR product was cloned into the pKOR3a vector\(^\text{33}\) and introduced into the RN4220 strain by electroporation. Integration of the mutant cassette in the genome was confirmed by PCR and further transformed into *S.
S. aureus Newman34 by phage transduction using phage 80α as previously described35.

Disrupted gene	Primer name	Sequence (5'->3')
pflB	0162_F	GTGTCCTTTAAGCATAGT
	0162_R	CAGATGGAGGCGTTTATAGT
mntA	0603_F	CTACAGTCAGTGCTACTC
	0603_R	TGGTGCTGGTAAATCTTC
narK	2288_F	TTTTTTGACCTACGTTTCTTGTGTGCACC
	2288_R	TTTTTGGATCGTTTATTGTTGGGTGTATGG
cntE	2359_F	TTTTTTGACGCAGAGCTAGCCAAAGAATCTC
	2359_R	TTTTTGATCCCTGGCCCTTTTGGAGAT
cntK	2367_F	ACTAAATACTGCCCTCTC
	2367_R	ATGCACTATCAGCCAATC

Supplementary Table 2 Primers used in this study

Mouse survival assay

S. aureus Newman wild-type and mutant strains were grown overnight on TSB medium supplemented with antibiotics on a rotary shaker maintained at 37˚C to obtain full growth. The full growth was diluted 100-fold with TSB and cultured overnight on the same shaker, and then the cells were centrifuged and resuspended in PBS pH 7.2 to an optical density of 0.7 at 600 nm. From this, 200 µl of the cells was injected intravenously into C57BL/6J mice, and mouse survival was determined. Survival analysis was performed using GraphPad Prism ver 9.0 (GraphPad Software), and statistical analysis was performed using the log-rank test.

Acknowledgements

This work was supported by Grant-in-Aid for scientific research (S) (JSPS KAKENHI JP15H05783) to K.S., Grant-in-Aid for Young Scientist (A) JSPS KAKENHI JP24689008) and JSPS KAKENHI Grant Numbers 19K07140JP to H.H., and by a Grant-in-Aid for Scientific Research on Innovative Areas, Genome Science (MEXT KAKENHI 221S0002), and in part by the Takeda Science Foundation to H.H. The illustration in Figure 1 was utilized from DBCLS TogoTV (© 2016 DBCLS TogoTV).

Author contributions

H.H. established and performed the *in vivo* RNA-Seq analysis. H.H and S.P. wrote the manuscript. S.P. and S.O. prepared the gene disruption mutants. H.H., S.P., and S.O.
performed the mouse systemic infection assays. Y.S. performed the RNA-Seq by Hi-Seq. K.S. critically revised the article for important intellectual content and provided final approval of the article.

Competing interest declaration

The authors declare competing financial interests as follows: Dr. Sekimizu is a consultant for Genome Pharmaceutical Institute Co, Ltd.

References

1. Ling, L.L. et al. A new antibiotic kills pathogens without detectable resistance. *Nature* **517**, 455-9 (2015).

2. Hamamoto, H. et al. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. *Nat Chem Biol* **11**, 127-33 (2015).

3. Goerke, C. et al. Direct quantitative transcript analysis of the agr regulon of *Staphylococcus aureus* during human infection in comparison to the expression profile in vitro. *Infect Immun* **68**, 1304-11 (2000).

4. Pragman, A.A. & Schlievert, P.M. Virulence regulation in *Staphylococcus aureus*: the need for in vivo analysis of virulence factor regulation. *FEMS Immunol Med Microbiol* **42**, 147-54 (2004).

5. Lowy, F.D. *Staphylococcus aureus* infections. *N Engl J Med* **339**, 520-32 (1998).

6. Kuroda, M. et al. Whole genome sequencing of meticillin-resistant *Staphylococcus aureus*. *Lancet* **357**, 1225-40 (2001).

7. Hiramatsu, K. et al. Multi-drug-resistant *Staphylococcus aureus* and future chemotherapy. *J Infect Chemother* **20**, 593-601 (2014).

8. Tsuzuki, S. et al. National trend of blood-stream infection attributable deaths caused by *Staphylococcus aureus* and *Escherichia coli* in Japan. *J Infect Chemother* **26**, 367-371 (2020).

9. Otto, M. *Staphylococcus aureus* toxins. *Curr Opin Microbiol* **17**, 32-7 (2014).

10. Schlag, S. et al. Characterization of the oxygen-responsive NreABC regulon of *Staphylococcus aureus*. *J Bacteriol* **190**, 7847-58 (2008).

11. Maresso, A.W. & Schneewind, O. Iron acquisition and transport in *Staphylococcus aureus*. *Biometals* **19**, 193-203 (2006).

12. Ghssein, G. et al. Biosynthesis of a broad-spectrum nicotianamine-like...
13. Xu, Y. et al. In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. *BMC Microbiol* **16**, 80 (2016).

14. Thanert, R., Goldmann, O., Beineke, A. & Medina, E. Host-inherent variability influences the transcriptional response of Staphylococcus aureus during in vivo infection. *Nat Commun* **8**, 14268 (2017).

15. Hirose, Y. et al. *Streptococcus pyogenes* Transcriptome Changes in the Inflammatory Environment of Necrotizing Fasciitis. *Appl Environ Microbiol* **85**, e01428-19 (2019).

16. Fuchs, S., Pane-Farre, J., Kohler, C., Hecker, M. & Engelmann, S. Anaerobic gene expression in Staphylococcus aureus. *J Bacteriol* **189**, 4275-89 (2007).

17. Lu, H. & Tonge, P.J. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway. *Acc Chem Res* **41**, 11-20 (2008).

18. Cassat, J.E. & Skaar, E.P. Metal ion acquisition in *Staphylococcus aureus*: overcoming nutritional immunity. *Semin Immunopathol* **34**, 215-35 (2012).

19. Kehl-Fie, T.E. et al. MntABC and MntH contribute to systemic *Staphylococcus aureus* infection by competing with calprotectin for nutrient manganese. *Infect Immun* **81**, 3395-405 (2013).

20. Spaulding, A.R. et al. Staphylococcal and streptococcal superantigen exotoxins. *Clin Microbiol Rev* **26**, 422-47 (2013).

21. Cheung, A.L., Bayer, A.S., Zhang, G., Gresham, H. & Xiong, Y.Q. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. *FEMS Immunol Med Microbiol* **40**, 1-9 (2004).

22. Chaffin, D.O., Taylor, D., Skerrett, S.J. & Rubens, C.E. Changes in the *Staphylococcus aureus* transcriptome during early adaptation to the lung. *PLoS One* **7**, e41329 (2012).

23. Peng, H.L., Novick, R.P., Kreiswirth, B., Kornblum, J. & Schlievert, P. Cloning, characterization, and sequencing of an accessory gene regulator (*agr*) in *Staphylococcus aureus*. *J Bacteriol* **170**, 4365-72 (1988).

24. Jenul, C. & Horswill, A.R. Regulation of Staphylococcus aureus Virulence. *Microbiol Spectr* **7**(2019).

25. Paudel, A., Panthee, S., Hamamoto, H., Grunert, T. & Sekimizu, K. YjbH
regulates virulence genes expression and oxidative stress resistance in *Staphylococcus aureus*. *Virulence* **12**, 470-480 (2021).

26. Rapun-Araiz, B., Haag, A.F., Solano, C. & Lasa, I. The impact of two-component sensorial network in staphylococcal speciation. *Curr Opin Microbiol* **55**, 40-47 (2020).

27. Kaito, C., Morishita, D., Matsumoto, Y., Kurokawa, K. & Sekimizu, K. Novel DNA binding protein SarZ contributes to virulence in *Staphylococcus aureus*. *Mol Microbiol* **62**, 1601-17 (2006).

28. Tamber, S. et al. The staphylococcus-specific gene rsr represses agr and virulence in *Staphylococcus aureus*. *Infect Immun* **78**, 4384-91 (2010).

29. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139-40 (2010).

30. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B (Methodological)* **57**, 289-300 (1995).

31. Luo, W. & Brouwer, C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. *Bioinformatics* **29**, 1830-1 (2013).

32. Ichihashi, N., Kurokawa, K., Matsuo, M., Kaito, C. & Sekimizu, K. Inhibitory effects of basic or neutral phospholipid on acidic phospholipid-mediated dissociation of adenine nucleotide bound to DnaA protein, the initiator of chromosomal DNA replication. *J Biol Chem* **278**, 28778-86 (2003).

33. Kaito, C., Hirano, T., Omae, Y. & Sekimizu, K. Digestion of extracellular DNA is required for giant colony formation of *Staphylococcus aureus*. *Microb Pathog* **51**, 142-8 (2011).

34. Duthie, E.S. & Lorenz, L.L. Staphylococcal coagulase; mode of action and antigenicity. *J Gen Microbiol* **6**, 95-107 (1952).

35. Novick, R.P. Genetic systems in staphylococci. *Methods Enzymol* **204**, 587-636 (1991).
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryDataset1.xlsx
- SupplementaryDataset2.xlsx
- SupplementaryDataset3.xlsx