This is the submitted version of the following article:

Lima F.A.S., Vasconcelos I.F., Lira-Cantu M.. Electrochemically synthesized mesoporous thin films of ZnO for highly efficient dye sensitized solar cells. Ceramics International, (2015). 41. 10350: 9314 - . 10.1016/j.ceramint.2015.03.271,

which has been published in final form at https://dx.doi.org/10.1016/j.ceramint.2015.03.271 © https://dx.doi.org/10.1016/j.ceramint.2015.03.271. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Electrochemically synthesized mesoporous thin films of ZnO for highly efficient dye sensitized solar cells

F. Anderson S. Limaa,b,n, Igor F. Vasconcelosa, M. Lira-Cantub

aDep. Eng. Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici Bloco 714, 60455-760 Fortaleza, CE, Brazil bInstitut Català de Nanociència i Nanotecnologia, Campus de la UAB, Edifici ICN2 08193 Bellaterra, BCN, Spain

Abstract

In this work, nanostructured thin films of ZnO were electrochemically grown on FTO substrates. The morphology was tuned by modifying the synthesis parameters. The synthesis was carried out by applying Zn(NO\textsubscript{3})\textsubscript{6}H\textsubscript{2}O as the sole component of the aqueous electrolyte, avoiding the use of capping agents. The composition and morphology of the prepared ZnO were characterized by energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM), respectively. The as-deposited films were applied as electrodes in dye sensitized solar cells (DSCs). The performance of the cells was investigated by JV curves and IPCE (incident photon to charge carrier efficiency) measurements. The SEM analysis demonstrated a direct relationship between ZnO morphology and Zn precursor concentration. It has been shown that the lower the concentration is, the more porous the morphology is. Increasing the amount of dye adsorbed on the ZnO decreased the power conversion efficiency of the final DSCs. The best cell presented the following parameters: open circuit voltage $V_{OC}=0.59$ V, short circuit current $J_{SC}=7.64$ mA cm-2, fill factor FF\%50.41\%, and power conversion efficiency PCE\%2.27\%.

Keywords: ZnO; Electrodeposition; Dye sensitized solar cells

1. Introduction

ZnO has recently emerged as a promising candidate for its application in excitonic solar cells (XSC). Different ZnO nanostructures like nanowires, nanotubes, nanobelts, nanotetrapods, mesoporous thin films, among others have been successfully obtained by low-cost techniques such as the hydrothermal and the electrochemical synthesis routes \cite{1–6}. TiO\textsubscript{2} is still the most commonly used semiconductor oxide in XSC applications. However, interest at ZnO XSC has increased in the same rate as it has been investigated and successfully applied in this technology \cite{7–9}. ZnO presents unique properties that are very similar to those of TiO\textsubscript{2}. In fact, ZnO presents some advantages in comparison with TiO\textsubscript{2} like faster charge transport due to electron mobility and conductivity of several orders of magnitude higher than that observed for TiO\textsubscript{2} \cite{10, 11}. Among the various synthesis methods developed to produce ZnO nanostructured thin films, the electrodeposition is a very attractive technique due to its low cost, scalability, and low temperature processing. Direct control of film morphology is possible by manipulating the electrodeposition parameters like applied current, applied potential, electrolyte concentration, temperature, and pH \cite{12–15}. Moreover, electrochemical deposition of ZnO permits the fabrication of novel nanostructured thin films with superior advantages like large surface area and electron mobility, and more efficient charge transport \cite{16–20}. Zhu et al. \cite{21} have proved that a combination of nanorod/nanoparticle composite architecture can improve the performance of TiO\textsubscript{2} DSCs. Over the last few years, different ZnO nanostructures have been successfully applied in DSCs \cite{22–25}.

In this work, thin films of ZnO were obtained by electrodeposition under different synthesis parameters. These films were morphologically, compositionally, and structurally characterized. The photoanodes were finally applied to assemble DSCs.
2. Experimental procedure

2.1. Synthesis of nanostructured ZnO thin films

Nanostructured ZnO thin films were fabricated by an electrochemical deposition process. The film deposition was carried out by applying the Zn(NO₃)₆·H₂O as the sole component of the aqueous electrolyte avoiding the use of any capping agent. A Pt foil and a FTO-coated glass from SOLEMS with sheet resistance of 50–70 Ω/square were used as a counter electrode and a working electrode, respectively. The potential was applied with respect to an Ag/AgCl (KCl-Sat) reference electrode. Three different concentrations of zinc nitrate on the aqueous solutions were used: 12.5 mM, 25 mM and 50 mM. The temperature of the aqueous electrolyte was always kept at 80 °C, through the use of a hot plate and the applied potential for all procedures was 1.0 V. The reaction time ranged from 0.5 h to 2 h. The crystal structure, morphology and composition of the as-deposited ZnO nanostructured thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) respectively.

2.2. Solar cell fabrication and characterization

As-deposited ZnO thin films were immersed in a 0.5 mM/L ethanolic solution of N719 dye for 1 h in order to provide dye loading at the ZnO. After dye loading, the working electrodes/film morphology was studied. Films grown from a 50 nm zinc nitrate electrolyte of 25 mM and 12.5 mM respectively. The influence of deposition reaction time and contact with air on the nanostructure was studied. The platinized FTO counter electrode (samples 1, 2, and 3) were used. Fig. 2(a) shows the absorption and reflectance spectra of the samples 1, 2, and 3. The photovoltaic performance of the DSSC was measured using a QE/IPCE measurement system from Oriel at 10 nm intervals between 300 and 700 nm. The results were not corrected for intensity losses due to light absorption and reflection by the glass support.

3. Results and discussion

3.1. Structural, morphological and compositional analysis

Table 1 summarizes the deposition conditions for the preparation of each electrode.

![Table 1: Samples and deposition conditions.](image)

Fig. 1 shows XRD diffractograms for Samples 3, 4 and 5. The diffractogram corresponding to sample 3 electrode (electrolyte concentration of 50 mM) reveals the existence of a single crystalline phase with hexagonal wurtzite structure (CPDS card file number 36-1451, zincite phase). The maximum intensity for the ZnO corresponds to the (1011) diffraction peak. Therefore, the observation of a strong and narrow (0002) peak suggests that the nanostructure is highly oriented along the c-axis perpendicular to the plane of the substrate ([0001] direction). The diffractograms of samples 4 and 5 (electrolyte concentrations of 25 mM and 12.5 mM) also show a preferential orientation along the (0002) plane but with increasingly lower relative intensity of the (0002) peak. The diffractograms of samples 4 and 5 agree with the presence of ZnO as described before. Extra peaks at 2θ equal to 26.51, 36.31 and 56.61 correspond to the FTO substrate.

Special attention was given to the optimization of the reaction time and to the concentration of zinc nitrate in the aqueous electrolyte. Samples 1, 2 and 3 were deposited from a 50 mM zinc nitrate electrolyte for 0.5 h (sample 1) and 2 h in 4 steps of 0.5 h each (samples 2 and 3). Sample 2 was cleaned with deionized water and dried with nitrogen between two consecutive 0.5 h steps left standing in air between cycles. Sample 3 was maintained in the electrolyte solution between cycles. For samples 4 and 5, the total reaction time was 2 h in one single step with concentration of zinc nitrate in the aqueous electrolyte of 25 mM and 12.5 mM respectively.
Fig. 1. XRD diffractograms for the electrodes from the samples 3, 4 and 5.
Fig. 2. The deposition of vertically aligned nanorods confirms the XRD results and is explained by the fact that ZnO crystallizes with the wurtzite crystal structure, which presents hexagonal symmetry and consists of tetrahedrally coordinated Zn and O atoms in alternating layers along the c-axis. These layers are composed uniquely of either Zn$^{2+}$ or O$^{2-}$ ions and are therefore polar [9]. The polar (0001) plane has higher surface energy and leads to the fast crystal growth rate.
along the [0001] direction resulting in the formation of one-dimensional ZnO nanostructures [26].

Although the internal structure of ZnO favors the anisotropic growth along the [0001] direction, the surrounding conditions during the electrodeposition process may affect the growth habit of ZnO [27]. The later could explain the different morphology observed between the nanorods. This growth mechanism can be also responsible for the coalescence between adjacent nanorods observed on the microstructure of the sample 2 as can be clearly seen in the micrograph in Fig. 2(c). Moreover, the growth of a3.2. Photovoltaic performance porous nanostructure between the nanorods of sample 3 is observed in Fig. 2(d). According to Ludwig et al. [28] there is a

The electrodes described above were used without any further strong correlation between the amount of electrochemically treatment as photoanodes to construct dye sensitized solar cells deposited ZnO and the morphology of the thin film. The total DSCs. The solar cells were tested under simulated AM 1.5 solar amount of electrochemically deposited ZnO can be estimated illumination at 100 mW/cm². Fig. 5 shows JV curves and IPCE from the total charge deposited per area (integrated from the spectra for the samples using different ZnO layers, while Table 3 monitored current density versus time). In this study, the averageshow the photovoltaic parameters for these cells. The data show current density for all the deposited films was 1.3 mA/cm², that all DSCs presented short circuit current density J_{SC} greater than high current density probably led to a fast growth rate of the ZnO2.89 mA/cm², open circuit potential V_{OC} greater than 0.59 V, fill nuclei, and the growth of ZnO along other directions. As a result, factor FF greater than 46.58% and power conversion efficiency the creation of different nanostructures between the nanorods PCE greater than 0.97%. These values are in good agreement with and their coalescence was observed.

The data show that V_{OC} values are approximately the same for all the cells. As the V_{OC} for a DSCs is defined as the difference between the redox potential of the mediator and the Fermi level of the nanocrystalline film [29], it is possible to state that Fermi level energies for all thin films are approximately the same. The data also reveals that J_{SC} values tend to increase with decreasing electrolyte concentration. According to SEM and XRD results, a decrease in electrolyte concentration leads to more porous films which is desired in order to get the best photovoltaic performance. In fact, the solar cell built with sample 4 (12.5 mM), that presented a mesoporous nanostructure, reached the maximum J_{SC} value. Moreover, considering the absence of post-deposition treatment, a remarkably high PCE value of 2.27% was obtained for this cell. The improvement on J_{SC} can be attributed to mesoporous structure of the thin film, which allows the absorption of larger amount of dye, as monolayers, on the ZnO nanostructures which provides the generation of more photoelectrons and consequently higher J_{SC}.

The influence of the concentration of zinc precursor on the morphology of the films was also investigated. For this study, the series and shunt resistance were determined from the slopes of the I–V curves. The photovoltaic parameters for the DSCs analyzed single step of 2 h (samples 4 and 5) with all other parameters in this study are presented in Table 3.

The amount of dye adsorbed on the oxide was measured by the dye desorption method, which consists of the separation of the two the zinc precursor in the aqueous electrolyte led to novel electrodes, followed by the immersion of the ZnO-dye electrode in the aqueous basic solution of 0.1 mM KOH. The dye desorption took place after 1 h, with the solution turning into a pink color dye grown from 25 mM and 12.5 mM electrolytes, respectively. Into the presence of the N719 dye. At the same time, the ZnO these images, porous films are seen instead of the vertically electrode turned colorless as was found by Neale et al. [32]. The aligned nanorods found for samples grown from 50 mM EDX results on the composition of some ZnO electrodes.
Sample	O %at.	Zn %at.	Ratio O/Zn
With air contact	56.07	43.93	1.28
Without air contact	50.37	49.63	1.01

The quantity of dye adsorbed on the ZnO electrode was determined by UV-vis analysis of the desorbed dye solution applying the Lambert–Beer law. The results were corrected by the active area of the DSCs. The relationship between the amount of adsorbed dye and efficiency, for the electrodes grown on the electrolyte containing 50 mM of zinc nitrate, is shown in Fig. 6. The data revealed higher power conversion efficiency for samples with the

![Fig. 3. SEM micrographs of electrodes from: (a) sample 4 - top view; (b) sample 5 - top view; (c) sample 4 - cross sectional view; and (d) sample 5 - cross sectional view.](image-url)
Fig. 4. High resolution SEM micrographs of an electrode from sample 5: (a) top view and (b) cross sectional.

Fig. 5. (a) JV curve and (b) IPCE spectra for the five samples.

Table 3

Sample	J_{SC} (mA/cm²)	V_{OC} (V)	FF (%)	PCE (%)	R_{sh} Ω cm²	R_{s} cm²
1	2.89	0.60	55.60	0.97	2.25	1.80
2	4.72	0.61	51.95	1.50	0.83	1.06
3	5.55	0.63	50.99	1.79	1.92	1.37
4	5.17	0.61	50.41	1.46	20.00	1.02
5	7.64	0.59	46.58	2.27	0.69	1.10

Fig. 6. Influence of dye adsorption on PCE values of solar cells.

lowest amount of dye adsorbed. This result can be explained by the dye precipitation on the ZnO nanostructure. According to Keis et al. [33] dye precipitation can take place on the ZnO...
nanostructure and, in this case, some dissolution of the ZnO by the acidic carboxylic groups of the dye can occur. The resulting Zn2+ ions form insoluble complexes with the N719 dye, causing precipitation of these complexes in the pores of the film. This gives rise to a filter effect (inactive dye molecules) [34].

4. Conclusions

ZnO thin films were synthesized by a low cost, electrodeposition technique, and used without any post-deposition treatment, to assembled DSCs. All the photoelectrodes were successfully used in DSCs. The morphological, structural and electrical characterization of the samples revealed the best performance for the more porous electrodes. The analysis of the amount of adsorbed dye reveals that a big amount of adsorbed dye decreases the PCE, probably due to the precipitation of the dye on the porous of the thin film. The devices present the feature to improve the PCE with the aging under ambient conditions. A remarkably high PCE 2.27% was obtained with the cell present with a mesoporous nanostructure. For this device the photovoltaic parameters were $V_{OC} \approx 0.59$ V, the $J_{SC} \approx 7.64$ mA/cm2, FF $\approx 50.41\%$, and the PCE $\approx 2.27\%$.

Acknowledgments

The authors are grateful to the Brazilian research agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq for the fellowship (246430/2012-5). The authors are also grateful to Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) and Secretaria da Educação do Ceará (SEDUC-CE) for financial support.

References

[1] B. Cao, W. Cai, H. Zeng, G. Duan, Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates, J. Appl. Phys. 99 (2006) 073516.
[2] M. Z. M. Zhu, L. Chen, H. Wei, X. Yang, B. Cao, ZnO photoanodes with different morphologies grown by electrochemical deposition and their dye-sensitized solar cell properties, Ceram. Int. 40 (2014) 7965–7970.
[3] C. Kung, H. Chen, C. Lin, Y. Lai, R. Vittal, K. Ho, Electrochemical synthesis of a double-layer film of ZnO nanosheets/nanoparticles and its application for dye-sensitized solar cells, Prog. Photovolt.: Res. Appl. 22 (2014) 440–451.
[4] X. Zou, Y. Liu, C. Wei, Z. Huang, X. Meng, Electrodeposition combination with hydrothermal preparation of ZnO films and their application in dye-sensitized solar cell, J. Chem. 820708 (2014).
[5] T. Yoshida, H. Minoura, Electrochemical self-assembly of dye-modified zinc oxide thin films, Adv. Mater. 12 (2000) 1219–1222.
[6] M.S. Akhtar, M.A. Khan, M.S. Jeon, O. Yang, Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells, Electrochem. Acta 53 (2008) 7869–7874.
[7] I. Gonzalez-Valls, M. Lira-Cantu, Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review, Energy Environ. Sci. 2 (2009) 19–34.
[8] M.H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P.P. Boix, N. Mathewa, Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells, Chem. Commun. 49 (2013) 11089–11091.
[9] B.N. Ily, A.C. Cnucikshank, S. Schumann, R. Campo, T.S. Jones, S. Heutz, M.A. McLachlan, D.W. McComb, D.J. Riley, M.P. Ryan, Electrodeposition of ZnO layers for photovoltaic applications: controlling film thickness and orientation, J. Mater. Chem. 21 (2011) 12949–12957.
[10] T. Paaporté, C. Magne, Impedance spectroscopy study of N719 sensitized ZnO-based solar cells, Thin Solid Films 560 (2014) 20–26.
[11] I. Gonzalez-Valls, Y. Yu, B. Ballesteros, I. Oro, M. Lira-Cantu, Synthesis conditions, light intensity and temperature effect on the performance of ZnO nanorods-based dye sensitized solar cells, J. Power Sources 196 (2011) 6609–6621.
[12] P. Peulon, D. Lincot, Cathodic electrodeposition of aequinone solution of dense or open-structured zinc oxide films, Adv. Mater. 8 (1996) 166–170.
[13] P. Peulon, D. Lincot, Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxochloride films from oxygenated aqueous zinc chloride solutions, J. Electrochem. Soc. 145 (1998) 864–874.
[14] M.J. Zheng, L.D. Zhang, G.H. Li, W.Z. Shen, Fabrication and optical properties of large-scale uniform zinc oxide nanopore arrays by one-step electrochemical deposition technique, Chem. Phys. Lett. 363 (2002) 123–128.
[15] X. Qiu, L. Chen, H. Gong, M. Zhu, J. Han, M. Zi, X. Yang, C. Ji, B. Cao, The influence of annealing temperature on the interface and photovoltaic properties of CdS/CdSe quantum dot sensitized ZnO nanorods solar cells, J. Colloid Interface Sci. 430 (2014) 200–206.
[16] T. Paaporté, D. Lincot, Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide, Electrochim. Acta 45 (2000) 3345–3353.
[17] D. Lincot, Electrodeposition of semiconductors, Thin Solid Films 487 (2005) 40–48.
[18] J. Elías, R. Tena-Zaera, C. Lévy-Clément, Electrochemical deposition of ZnO nanowire arrays with tailored dimensions, J. Electroanal. Chem. 621 (2008) 171–177.
[19] H. Wei, H. Gong, Y. Wang, X. Hu, L. Chen, H. Xu, P. Liu, B. Cao., Three kinds of Cu/ZnO heterostructures solar cells fabricated with electrochemical deposition and their structure-related photovoltaic properties, Crys. Eng. Comm. 13 (2011) 6065–6070.
[20] J. Elías, J. Michler, L. Philippe, M. Lin, C. Couteau, G. Lerondel, C. Lévy-Clément, ZnO nanowires, nanotubes, and complex hierarchical structures obtained by electrochemical deposition, J. Electron. Mater. 40 (2011) 728–732.
[26] B. Xue, Y. Liang, L. Danglai, N. Eryong, S. Congli, F. Huanhuan, X. Jingjing, J. Yong, J. Zhifeng, S. Xiaosong, Electrodeposition from ZnO nano-rods to nano-sheets with only zinc nitrate electrolyte and its photoluminescence, Appl. Surf. Sci. 257 (2011) 10317–10321.

[27] Y. Lin, J. Yang, X. Zhou, Controlled synthesis of oriented ZnO nanorod arrays by seed-layer-free electrochemical deposition, Appl. Surf. Sci. 258 (2011) 1491–1494.

[28] W. Ludwig, W. Ohm, J. Correa-Hoyos, Y. Zhao, M. Lux-Steiner, S. Gledhill, Electrodeposition parameters for ZnO nanorods arrays for photovoltaic applications, Phys. Status Solid A 210 (2013) 1557–1563.

[29] M. Grätzel, Dye-sensitized solar cells, J. Photochem. Photobiol., C 4 (2003) 145–153.

[30] Y. Lin, J. Yang, Y. Meng, Nanostructured ZnO thin films by SDS-assisted electrodeposition for dye-sensitized solar cell applications, Ceram. Int. 39 (2013) 5049–5052.

[31] Y. Meng, Y. Lin, Y. Lin, Electrodeposition for the synthesis of ZnO nanorods modified by surface attachment with ZnO nanoparticles and their dye-sensitized solar cell applications, Ceram. Int. 40 (2014) 1693–1698.

[32] N.R. Neale, N. Kopidakis, J. Lagemaat, M. Grätzel, A.J. Frank, Effect of a coadsorbent of the performance of dye-sensitized TiO$_2$ solar cells: shielding versus band-edge movement, J. Phys. Chem. B 109 (2005) 23183–23189.

[33] K. Keis, J. Lindgren, S.E. Lindquist, A. Hagfeldt, Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes, Langmuir 16 (2000) 4688–4694.

[34] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells, Chem. Rev. 110 (2010) 6595–6663.