Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges

Sofía Parrasia, Ildikó Szabó, Mario Zoratti, and Lucia Biasutto*

Cite This: Mol. Pharmaceutics 2022, 19, 3700−3729

ABSTRACT: Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), “cell-penetrating peptides” (CPPs; e.g. TAT₄₇−₅₇, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.

KEYWORDS: peptides, blood-brain-barrier, receptor-mediated transcytosis, cell-penetrating peptides, drug delivery

1. INTRODUCTION: THE MARVELOUS WORLD OF PEPTIDES

The astounding success of life on Earth is largely due to the versatility provided by the mathematical “rule of product” incorporated into the polymeric fabric of living matter. The 20 standard amino acids can in principle be combined to produce \(20^N\) sequences, where \(N\) is the number of monomers in the (linear) chain. Thus, nature can use evolution to pick the molecule most suitable for any given biochemical task, selecting among 8000 possible tripeptides, 160 000 tetrapeptides, 200 billion decapeptides, and so forth. Relatively short peptides, of up to, say, 30 monomers, seldom act as enzymes, but they have plenty of other functions. They can be selectively toxic for microorganisms and thus constitute a first line of defense against infections by cellular organisms (host defense peptides) and viruses, inspiring man-made or “borrowed” peptide antibiotics. Vice versa, powerful peptide toxins are produced by many microorganisms and animals, and also find or hope to find much pharmaceutical use. Peptides can be immunomodulatory, with an impact on inflammation and cancer. A list of those acting as hormones would be long. They offer hope as anticancer vaccines or as “direct” chemo-

therapeutics. Just as relatively short amino acidic sequences may have egregious physiological effects, relatively short polypeptide domains are often directly responsible for specific features of a protein’s activity or behavior. This offers a window of opportunity for pharmacologists, who can discover or engineer appropriate peptides to inhibit, activate, compete, direct.

To mention just one currently relevant example of such an application, interfering with protein−protein interaction, peptides are being developed that compete with the binding of the SARS-CoV-2 virus Spike protein to its receptors, the major one being angiotensin-converting enzyme 2 (ACE-2) (for reviews, see refs 1−3). A brief overview of current pharmaceutical applications of peptide-drug conjugates can be...
found in refs 4 and 5. The perspectives of food-derived peptides are summarized in ref 6.

Besides the versatility of peptides, an advantage for researchers is, generally speaking, the ease of their synthesis by standard solid-phase procedures and of their characterization by established methods. Another is the possibility of screening large random libraries selecting effective peptides thanks to phage, yeast, bacterial, and other forms of display/biopanning technology.\(^7\) The isolated sequences can be produced (and modified/adapted) and used to build drug conjugates or to decorate nanovehicles for selective delivery.\(^8\) Phage display can be used for biopanning in vivo: phage libraries can for example be infused into the circulatory system, and the phages remaining most tenaciously associated with a given organ/compartment/cell type (e.g., the epithelial surface of the BBB) can be isolated through multiple rounds of selection (for a review, see ref 9).

Besides discovery via phage display, this example illustrates the use of peptides to target vascular “receptors” for pharmacological purposes (i.e., either to alter the functionality of the target protein or to use it as a docking site for the delivery of a “cargo” that may be a small molecule or a nanovehicle). For efficient cargo delivery, obviously the receptor ought to be strongly expressed on the luminal surface of the targeted vasculature and ought to have a fast transcytosis or endocytosis turnover (see below).

The numbers of such peptides, their known receptors, and clinical trials testing them mostly for oncological and cardiovascular applications run into the dozens.\(^{10−13}\) Among the most popular target-recognizing sequences are the RGD (or KGĐ) motif, which homes to integrins and the NGR triplet, which recognizes instead CD13, an aminopeptidase overexpressed by tumor vascular cells.\(^{14,15}\) These motifs may exhibit a higher affinity for their targets when presented within conformationally constrained, cyclized, peptides.\(^{16}\)

We focus now on the use of targeting peptides to aid the delivery of small-molecule drugs (or other peptides) and nanovehicles to the brain vasculature and parenchyma.

In this paper the amino acid sequences of peptides are written following the usual convention (i.e., with the N-terminal at left). Amino acids with the natural (L) configuration are denoted by their uppercase one-letter code,
while unnatural (n) enantiomers are indicated by the use of the lower case. A lower-case “d” preceding a peptide’s nickname (label/abbreviation) indicates that the peptide is formed by d-amino acids (e.g., dA7R), while a “c” preceding peptide’s name or sequence indicates a cyclic peptide. For readability, the main text peptides are often mentioned by their abbreviation, without giving the amino acid sequence, which can however be found in the tables.

2. THE BLOOD-BRAIN BARRIER (BBB)

2.1. BBB Function and Structure. The BBB, discovered by Paul Ehrlich in 1885, is the interface separating circulating blood from the brain parenchyma in the central nervous system (CNS) (for an overview of human cerebral vasculature, see ref 17). Far from being a fixed structure, it changes in time and space.18–20 The main functions of the BBB are the protection of the brain from external agents, either chemical or biological, that could damage it, and the maintenance of the correct homeostasis for optimal neuronal function.18

The BBB is a multicellular structure, with the participation of pericytes, astrocytes, microglia, neurons, and a basal membrane, which helps the anchoring of the cells (Figure 1). Astrocytes are important for the modulation of the expression of transporters and receptors and for fine-tuning the tight junctions (TJs; see below) and efflux pumps. Pericytes exert a major role in the modulation of the trans-endothelial resistance, of the rate of transcytosis, and of the expression of efflux pumps.

The functionality of the BBB is ensured by the presence of two main junctional complexes, namely, tight junctions (TJs) and adherens junctions (AJs), connecting the endothelial cells of the brain capillaries that selectively regulate the influx and efflux of substances through the paracellular pathway.21 (Figure 2).

AJs play a role in the maintenance of cellular polarity and in the stability and survival of endothelial cells. They are located in the basal region of the lateral plasma membrane and are mainly built by vascular endothelial cadherin (VE-cadherin), which forms homophilic cell–cell junctions. The reciprocal interaction of cadherin building blocks is Ca\(^{2+}\)-dependent but also needs the presence of catenins, which together with other proteins act as anchor molecules connecting cadherin to the actin cytoskeleton.

TJs are essential for the integrity of the BBB, especially for the maintenance of the trans-endothelial electrical resistance. They are formed by up to 40 different proteins such as claudins (CLDN), occludin (OCLN), zona occludens (ZO), junctional adhesion molecules (JAM), and others. CLDNs are characterized by four transmembrane domains with two extracellular loops and are fundamental in the formation of TJ strands. CLDN-5 is the major claudin of the BBB. The composition of CLDNs determines the molecular weight (MW) of molecules that can cross the junction. OCLNs are also involved in the MW cutoff for crossing the BBB and, in particular, they are very selective for low-MW molecules. Another important TJ protein family is that of the JAM, which are type 1 single-transmembrane proteins. Within this family, JAM-A is highly expressed in the brain and limits the passage of molecules with MW higher than 4 kDa by forming close membrane appositions.22 The ZO family connects TJs transmembrane proteins to the actin cytoskeleton and stabilizes TJ strands. The presence of ZO-1 and -2 is fundamental for the formation of TJs.23

While the exchange of small as well as larger molecules is essential to support the high metabolic demands of the brain, the structure of the BBB makes the delivery of drugs to the brain difficult. The problem of overcoming it to deliver psychotropic agents or drugs against CNS cancers, neurodegeneration, neuroinflammatory states, autoimmune disorders, and so on has vexed generations of researchers and physicians.23–30 It is estimated that only 2% of “small” molecules can cross the BBB, regardless of their beneficial or noxious effects.24

Generally speaking, the diffusion through the BBB can be achieved by para- or transcellular pathways (see below, sections 2.2 and 2.3; Figure 2).

2.2. BBB Permeation: Paracellular Transport. In the healthy brain, the passage of substances through the intercellular space between endothelial cells of the BBB (i.e., the paracellular transport) is dramatically restricted because of the presence of TJs and AJs (Figure 2). Pathological conditions such as neuroinflammatory states, neurodegenerative diseases, or cerebral cancers may be associated with a loss or decrease of BBB integrity.31 Alterations induced for drug delivery purposes obviously need to be transient. Many efforts have been made to alter the permeability of the BBB using broadly acting approaches. These include transiently loosening the TJs with vasoactive compounds such as histamine or agonists of the A2A adenosine receptor32 (the latter also downregulate the expression of efflux “pumps”).33 Osmotic agents (e.g., mannitol),34 ultrasound,35 X-rays,36 electromagnetic fields,37 and increasing the temperature in a focused manner (e.g., with microwave beams)38 have also been used.

TJ tightness is regulated by phosphorylation and dephosphorylation of essentially all participating proteins by several kinases, in a complex and not fully understood manner.39,40 For instance, phosphorylation at the C-terminus of CLDNs by PKC\(\beta\) counteracts their interaction with ZO-1. However, phosphorylation of OCLN and ZO-1 is essential for the integrity of the BBB, but additional phosphorylation can lead to barrier disruption.41 A localized, reversible, and specific modulation of kinase and/or phosphatase activity might thus be a way to help drugs enter the brain. Little research in this direction seems to have been conducted so far.38,42

Molecular-size-specific approaches for the modulation of BBB can be achieved by the use of RNA interference,38,42 for example, siRNA administration was used to knock-down CLDN-5 and thus to allow the delivery of molecules up to 1 kDa to the brain.

Extracellular vesicles (EVs) are able to cross the BBB in either direction.43,44 Even though the exact transport pathways have not yet been fully clarified, it is interesting that in a zebrafish model EVs and exosomes (EXOs)45 holding miRNA miR-132 can modulate the expression of VE-cadherin. Interference with the expression of neuronal miR-132 or with the secretion of miR-132 containing EXOs leads to an increase in the BBB permeability.45

The controllers of junctional tightness can also be targeted by other means.48,42 For example, claudin and occludin can be engaged by fragments of bacterial toxins or antibodies.46 Peptides directed against components of the cell–cell interfaces have been used in several studies.38,42 Anti-VE-cadherin mAbs and peptides have been used to strongly modulate BBB permeability.47 Boscik and co-workers identified a set of short peptides recognizing components of intercellular junctions which induced a marked decrease of
the trans-endothelial electrical resistance (TEER) and an increased permeability of a ternary coculture BBB in vitro model. The authors proposed that these peptides might represent suitable excipients to improve drug absorption. The concentrations applied in their experiments were however relatively high, ranging from 10 μM to 2 mM. In analogous work, claudin peptidomimetics, binding with nanomolar-range affinity to extracellular loop 1 of CLDN-5, were able to transiently loosen the junctions of bEND.3 cells, a mouse BBB model, and of a more complex model formed by filter-grown primary rat brain endothelial cells cocultured with pericytes and glial cells. The effect was associated with redistribution of CLDN-5 from the membrane to the cytosol and with morphological changes of the cells. The mRNAs of CLDN-5, ZO-1, and occludin were reduced. All effects could be reversed by washing off the agent. In vivo injection of 3.5 μmol/kg of body weight (bw) of CSC2 (the best performer: a 29 aa peptide based on a segment of the first extracellular domain of CLDN-5) determined an increase in the amount of trackers reaching the brain. Similar results were obtained with another 29 aa peptide (C1C2) targeting CLDN-1, applied to models of the peripheral nerve—blood barrier.

2.3. BBB Permeation: Transcellular Transport. 2.3.1. Passive Diffusion. Transmembrane diffusion is a nonsaturatable process that mostly depends on physicochemical characteristics of the molecules such as molecular weight and lipid solubility (Figure 2). The ideal MW should not exceed 400 Da. Already some 50 years ago it was pointed out that a MW increase of 150 Da is enough to cause a 100-fold decrease in BBB permeation. The characteristics that collectively should be present in a drug addressed to the CNS are summarized by the well-known “Lipinski’s rule of five”: Besides a reasonably low MW, they include a limit on hydrogen bonds (<6), a clear lipophilicity (LogP > 2), the absence of free rotatable bonds, and a polar surface area <60 Å. Methods have been proposed to estimate a priori the “CNS druggability” of a given drug on the basis of its composition and structure. Thus, while some small molecules such as some lipid-soluble compounds can cross the BBB by passive diffusion, molecules with higher molecular weight, bearing electrical charges, or with marked polarity or hydrophobicity need to exploit facilitated transport.

2.3.2. Carrier-Mediated Transport. The BBB expresses in a development-dependent manner various transporters in order to satisfy the energetic and nutritional demands of the brain. Among those functionally devoted to influx are carriers for L-type amino acids (LAT1, which can also transport drugs such as L-DOPA, gabapentin, or mephalan due to structural similarities with the endogenous ligands), glucose (GLUT1), monocarboxylates (MCT1), cationic amino acids (CAT1), choline (ChT), and possibly organic cation transporters (OCT/OCTN) and sodium-coupled glucose transporters. These carriers can be exploited to facilitate the transport of appropriate prodrugs across the BBB (Figure 2).

2.3.3. Efflux Transport. Efflux transporters are represented by various ATP-driven drug “pumps”, including P-glycoprotein (P-gp), breast cancer resistance protein (Bcrp), and the multidrug resistance-related proteins (Mdrp1, 2, 4, and 5). These contribute to limiting the entry of drugs and toxins into the brain (Figure 2). They are expressed on the luminal side of brain capillaries and are regulated by various mechanisms, including WNT signaling. Inhibition of efflux pumps or of their expression is one possible approach to increasing the net influx of drugs into the brain parenchyma (e.g., refs 33, 68, and 69). Coupling the drug to a BBB-penetrating peptide may allow it to avoid Pgp action.

2.4. BBB Permeation: Transcytosis. 2.4.1. Receptor-Mediated Transcytosis. This family of processes is normally used for the uptake of relatively bulky molecules or complexes. Receptor-mediated transcytosis (RMT), which exploits the presence of specific receptors at the BBB, is highly specific and provides the uptake of the receptor ligand from the luminal side of the endothelial cells to the brain (Figure 2). RMT is a complex and still incompletely understood process involving clathrin- and caveolin-coated vesicles, the delivery of ligands to the basal membrane avoiding the lysosomal degradation pathway, and the recycling of receptors. Transcytosis is lower in the BBB than in other endothelia, due to regulation by major superfamilies, such as sulfate or phosphate groups in glycoproteins or the phospholipid head groups of the lipid bilayer (Figure 2). Uptake then takes place via processes such as pinocytosis, lipid-raft-mediated internalization, endocytosis. Adsorptive transcytosis is characteristic of nanovehicles decorated with cell-penetrating peptides (CPPs; see below).

These pathways are discussed further below, in connection with peptide-mediated brain delivery. A variety of nanovehicles have been engineered to favor receptor-dependent or receptor-independent transcytosis of the transported drug.

3. Peptides as Pharmacological Carriers to the Brain: Promising Aspects

Peptides recognizing specific components or features of the CNS microvessel luminal surface represent a useful strategy to target the BBB and overcome it. Peptides are also used to build conjugates comprising the active principle, in many cases a peptide itself, linked stably or in prodrug fashion (e.g., refs 82–84). They are, despite the limitations which we shall discuss, the most promising pharmacological tool available. A database containing an updated list of all the BBB-penetrating peptides studied so far has been recently built up by Raghava’s group (B3Pdb database: https://webs.iiitd.edu.in/raghava/b3pdb/).

3.1. Receptor-Targeted Peptides. Various receptors expressed on the surface of brain microcapillaries have been investigated as potential brain parenchyma entry points by RMT. They prominently include the transferrin receptor (TfR), low-density lipoprotein family receptors (LDLR), the transferrin receptor–related protein 1 (LRP1), the nicotinic acetylcholine receptor (nAchR), and the lepton receptor (leptin R).
Table 1. Receptor-Targeting Peptides

receptor	peptide	notes	refs
nAchR	D8: riTGrarEw	From *Bungarus candidus* toxin candidoxin. Most work done with the retro-inverso peptide and nanovehicles	69, 101-103, 128-130
nAchR	RVG29: YTIWMPENPRPGTPCDIFTNRSRGKASNG	From Rabies virus glycoprotein, amino acids 189–214. Many variants, especially shortened sequences such as RVG15	131-140
nAchR	RDP: KSVRTWNIEIPSGCLRV-GGRCHPHVN	From Rabies virus glycoprotein, amino acids 330–357. Variants	141, 142
transferrin receptor (TfR)	B6: GHKAKGRK		143-148
TfR	CRT: c(CRTIGPSV)		149, 150
TfR	T7/HAI peptide/7pep: HAIYPRH	TfR recognition sequence	148, 151-162
TfR	T7-D-LP4: HAIYPRH-SWTWE-kkletavnlawtagnsn-KWTWK	A VDAC1-derived sequence (d-LP4), fused via a linker to the C-terminal of the HAI peptide (see above)	163
TfR	THR: THRPPMWSVPWP dTHR: thrppmwsvpwp rTHR: pwvpswmprphr	Also variants, such as N-methylation and branching	100, 148, 151, 164-167
TfR	TFBG1 (TfR binder 1 generation 1): GSREGCASRCTKYNAELEKCEA-RVSSMSNTTEETCVQELFDLLHVC-VDCVSQ	High affinity. Variants tested	168
TfR and RAGE	GYR: GYRPVHNIIRGHWAPG		169-171
neuropilin-1 (NRP-1)	tLyP-1: CGNKRTTR	Contains the “CendR” motif: (R/K)XX(R/K), which binds NRP-1	172, 173
NRP-1	Tuftsin-antagonist Peptide: TKPPR	Contains the “CendR” motif. Various drug conjugates used in *in vitro* test systems	83
VEGFR2 and NRP-1	A7R: ATWLPPPR dA7R: atwlprr rA7R: rpplwta	Variants: glucosylated A7R 96; myristoylated dA7R 174; cyclic A7R 97	97, 98, 101, 104, 174, 175
integrins (αβ3/5/1)	c(RGDyK)		129, 176
integrins (αβ3/5/1) and NRP-1	iRGD: c(CRGDRGPDC)	Includes the vascular homing motif (RGD), a protease recognition site and a “CendR” motif	177
integrins (αβ3/5/1)	cHP: c(RGDf(N-Me)VK)-C	N-methylated (N-Me), proteolytically stable cyclic RGD heptapeptide. Other variants also studied	178
integrins (αβ3/5/1)	RGD	W22: RGD-PEG-Suc-PD0325901; a conjugate of RGD with an anti-glioblastoma drug	179
receptor	peptide	notes	refs
---	--	--	---------------------------
low-density lipoprotein receptor-related protein 1 (LRP-1)	Angiopep2 (An2): TFFYGGSRGKRNKFTEEY riAn2: yeetlfnrkrGrspGyff	An2-paclitaxel conjugate: ANG1005/GRN1005 108, 180 An2-doxorubicin conjugate: ANG1007 An2-etoposide conjugate: ANG1009 181 An2-neurotensin conjugate: ANG2002 105	82, 94, 101, 105, 108, 109, 115, 157, 180-208
LRP-1	Angiopep7: TFFYGGSRGRRRRFTEEY		209
LRP-1	LS7: TWPKHFDKHTFYSILKGLKH		209
LRP-1	M1: TFFYGRPRKNNFLRGIR		210
LRP-1	RAP12: EAKIEKHNHYQK	Contains a sequence from Receptor Associated Protein (RAP); targeted NPs	211
LDL receptor (LDLR)	LDL receptor-peptide 2 (LRPep2): HPWCGLRLDLR	Uses caveolin internalization system	91
LDLR	VH434: c(CMPRLRGC) VH445/Peptide 22: c(CMPRLRGC) VH4127: c(cM"Thz"RLG"Pen")	Other peptides of the family identified and screened. Thz: thiazolidine; Pen: penicillamine (unnatural amino acids)	92, 93, 212-214
LDLR	COG133: LVRVLASHLRKRLKRL	From human apoE, amino acids 133 - 149	199, 215
LDLR	AEP/ApoE: LKRKRKRLL	Corresponds to the second part of COG133. Variants and a dimeric form also studied	216-219
LDLR	ApoB: SVIDALQYKLEGTTTRLRKLGLLA TALSNSKFVEGS	LDLR-binding domain of ApoB	220-222
glucose-regulated protein 78 (GRP78)	Pep42: CTVALPGGYVRVC		119, 120
GRP78	VAP: SNTRVAP dVAP: sntrvap riVAP: pavrtns		223, 224
deltorphin receptor	Deltorphin-derived peptides Y/G-aFDVVG-CONH₂	Glycosylated peptides most effective for BBB permeation and NP delivery	225
leptin receptor (Leptin R)	Leptin30 (Leptin1-30): YQQLTSMPSRNVIQSNDLENLRLDHVL (human) YQQVLTSLPQNVLIANDLENLRLDHL (mouse)	Other segments of Leptin also tested	96, 226
Leptin R	g21: 'TLIKTVTRINDISHTQSVSA	From human Leptin, amino acids 33-53	227
Leptin R	Lep70-89 SRNVIQSNDLENLRLDLLHV	From human Leptin, amino acids 70-89	228
GSH transporter	Glutathione (GSH; γ-L-Glutamyl-L-cysteinylglycine)		229-237
Gangliosides GM1, GT1b	G23/Tet1: HLNLSTLWKYR	GT1b is the target of tetanus toxin C. Other gangliosides may also act as receptors	238-244
Table 1 presents a tabulation of literature reports concerning peptides targeting identified BBB receptors. Table 2 lists peptides discovered using phage display and thus also presumably recognizing still-unidentified BBB proteins. Among the former, we may single out as an example A7R, identified via phage display, which is a specific ligand for VEGFR-2 and neuropilin-1 (NRP-1). By binding to one or the other of these two partnering receptors, A7R prevents their association and thus impacts angiogenesis. These receptors are highly expressed also in glioma cells, making A7R a candidate weapon against CNS cancers. It turned out however to be rapidly degraded by proteases and to be excluded by the BBB. The stability problem was approached by constructing a head-to-tail cyclized derivative, which retained much the same binding properties as the linear peptide.

A glycosylated derivative, intended to exploit the GLUT-1 transporter abundant in brain microvessels, was reported not only to be more stable but also to traverse the BBB and to successfully deliver paclitaxel-loaded “nanodisks” to orthotopically implanted U87MG glioma cells after intravenous (i.v.) administration. A more widespread and effective approach to stabilization, used also with A7R, is to construct peptides with D-amino acids, which are not recognized by peptidases. These unnatural peptides may be built with the same amino acid sequence of the natural parent peptide or with the reverse one (retro-inverso, ri) (for an example of the latter, see ref 100).

Ying et al.101 used both dA7R and dCDX, a D-peptide ligand of nicotinic acetylcholine receptors (nAChRs) derived from candoxin and capable of passing the BBB,102,103 to decorate liposomes that functioned as hoped, overcoming the BBB to deliver their content of doxorubicin to glioma more efficiently than liposomes decorated with one or the other of the individual peptides. Zhang and Lu coupled dA7R with another peptide, GICP, also identified via phage display, which binds to VAV3, a Rho-GTPase GEF highly expressed by glioma cells. The construct showed improved homing and BBB-crossing abilities.

The angiopep (An) family of peptides targets instead LRP1. These were derived from the Kunitz protease-inhibitor domain (present also in secreted β-amyloid precursor protein) of aprotinin, a 6500 Da protease inhibitor that can cross the BBB.105 Several studies have upheld its ability to facilitate the cross-BBB delivery of “cargo”, including nano-vehicles (see Table 1). Again, since LRP-1 is highly expressed in astrocytomas, especially glioblastomas,106,107 this vector is a potentially useful tool against CNS cancers. Indeed, an An2-paclitaxel conjugate (ANG1005)108,109 has reached the clinical trials phase.

Table 2. Peptides (Discovered by Phage Display) Presumably Targeting an Unidentified BBB Protein

peptide	notes	refs
YtGFLS(β-1-glucose)-CONH₂	Glucosylated peptides are derived from enkephalin; GLUT-1 may be involved in BBB crossing.	252
glioma-homing peptide (gHo): NHQQQQNPQQPMM	Fusion constructs with peptides pVEC, SynB3, and An2 have been studied (see Table 4).	253
CAGALCY	254,255	
PepC7: c(CTSTSAPYCY)	256	
GLHTSAYNLILH	257	
VAARTGIEYWPW	257	
SGV: SGYKAYWDQWH	other sequences also evaluated; internalization by clathrin-coated pits	258
TPS: TPSYDTFAYAELR	permeation of the blood—cerebrospinal fluid barrier	259
c(AC-SYTSSTM-CGGGS)	AC and CGGGS are flanking sequences used to cyclize; other similar sequences identified.	260
GLA: GLAHSFDARDFA	adhesion to brain microvasculature	169,170
GYR: GRYPVHNIRGHWAPG	used for DNA delivery	261
brain-homing peptide (BH): CNAFTPDY	other similar sequences identified; targets ischemic area of rat brain	262
CLEIVSRKNC	brain-targeting peptide based on apamin; other variants also	263,264
miniAp-3: c(CKAPETALC)	265—268	
TGN: TGYNKALHPHNG	265—268	
EI-3: FSFRPAFL	other less promising peptides identified; in vitro studies only	269
CSLSRDLAC	other brain-homing peptides also identified: CNSRLHLRC, CENWWGDCV, WRCVLREGPAAGCRAWFRHL	270
TACL05: c(CACSPSHLTKM)	other peptides also identified	271
RLSSVDSLSGC	other peptides identified, including: LYYLHSRGKFWKAALE, LGVS, GFVRFRLSNTR	272
EI-3: FSFRPAFL	several other peptides identified; internalized by medulloblastoma cell.	269
SLS: SLSHSPQ	cyclized form also tested	273
c(ACSLHSHPO-CGGGS)	274	

Table 1 presents a tabulation of literature reports concerning peptides targeting identified BBB receptors. Table 2 lists peptides discovered using phage display and thus also presumably recognizing still-unidentified BBB proteins. Among the former, we may single out as an example A7R, identified via phage display, which is a specific ligand for VEGFR-2 and neuropilin-1 (NRP-1). By binding to one or the other of these two partnering receptors, A7R prevents their association and thus impacts angiogenesis. These receptors are highly expressed also in glioma cells, making A7R a candidate weapon against CNS cancers. It turned out however to be rapidly degraded by proteases and to be excluded by the BBB. The stability problem was approached by constructing a head-to-tail cyclized derivative, which retained much the same binding properties as the linear peptide. A glycosylated derivative, intended to exploit the GLUT-1 transporter abundant in brain microvessels, was reported not only to be more stable but also to traverse the BBB and to successfully deliver paclitaxel-loaded “nanodisks” to orthotopically implanted U87MG glioma cells after intravenous (i.v.) administration. A more widespread and effective approach to stabilization, used also with A7R, is to construct peptides with D-amino acids, which are not recognized by peptidases. These unnatural peptides may be built with the same amino acid sequence of the natural parent peptide or with the reverse one (retro-inverso, ri) (for an example of the latter, see ref 100).

Ying et al.101 used both dA7R and dCDX, a D-peptide ligand of nicotinic acetylcholine receptors (nAChRs) derived from candoxin and capable of passing the BBB,102,103 to decorate liposomes that functioned as hoped, overcoming the BBB to deliver their content of doxorubicin to glioma more efficiently than liposomes decorated with one or the other of the individual peptides.

Zhang and Lu coupled dA7R with another peptide, GICP, also identified via phage display, which binds to VAV3, a Rho-GTPase GEF highly expressed by glioma cells. The construct showed improved homing and BBB-crossing abilities. The angiopep (An) family of peptides targets instead LRP1. These were derived from the Kunitz protease-inhibitor domain (present also in secreted β-amyloid precursor protein) of aprotinin, a 6500 Da protease inhibitor that can cross the BBB. Several studies have upheld its ability to facilitate the cross-BBB delivery of “cargo”, including nano-vehicles (see Table 1). Again, since LRP-1 is highly expressed in astrocytomas, especially glioblastomas, this vector is a potentially useful tool against CNS cancers. Indeed, an An2-paclitaxel conjugate (ANG1005) has reached the clinical trials phase.
Table 3. Peptides (CPPs) Facilitating Receptor-Independent BBB Transcytosis

Peptide	Notes	Refs
Tat47-57: YGRKKRRQRRR	from HIV-1 Tat; variants depending on sequence stretch chosen; various cargos attached.	84,297–315
D3: rprthlnbr	all-o peptide with a few homologies to Tat	316–319
Penetratin43-54: RQIKIWFQNRRMKWKK	from Drosophila antennapedia homeodomain; several variants (e.g., dodeca-penetratin: RQIKIWFQKVKK)	136,320–325
Vladimir: GILPRHK	vascular endothelial-cadherin derived peptide (pVEC)	253,297,326,327
Transportan 10 (TP10): AGYLLKINLAKALALQAHASKL	abbreviated form of transportan (a combination of the N-termini of galanin, a porcine neuropeptide, and mastoparan, a pore former in wasp venom); transportan 10–2 differs by substitution of the second A by a P.	297,328,329
SynB1: RGGRLSYSRRRFSTSTGR	from protegrin, a natural antimicrobial peptide; various drug conjugates	321,330–333
SynB3: RRLSYSRRRFRRSRRRF	truncated derivative of SynB1; various drug conjugates	70,83,297,330,332,334–337
G7: GPFGFLS[O-β-d-glucose]	from the opioid peptide MMP-2200	338–343
Deltorphin-derived peptides: GaFDVVG; GaF(N-β-GluNac-OH) DYYG	drive NPs across BBB	225
PEP3: AGILKRW	α-helical domain of the dengue virus type-2 capsid protein; variants also	344,345
dPEP3: agiklw	negatively charged permeating peptide (the only case as far as we know)	281
PepNeg: SGTQEEY	short N-methyl-phenylalanine (N-MePhe) sequences coupled to small molecules; passive diffusion	346,347
N-MePhe-rich peptides (e.g., N-MePhe-(N-MePhe)3-COMH2)	phenyl-proline tetrapeptides; passive diffusion; improved solubility versus N-MeF peptides (see above); instances of enantiomeric selectivity in permeation	348
(PhPro)4	quorum-sensing peptide from Clostridium acetobutylicum; other peptides also investigated	349,350
WSW/PhETCET1: SYPGWSW	from human novel LZAP-binding protein (NLBP), amino acids 444–454.; dimer of NP2 actually used	315,351,352
nWSW: wswgypsy		
NP2: KIKVKKKGRRK	from human novel LZAP-binding protein (NLBP), amino acids 444–454.; dimer of NP2 actually used	315,351,352
dimeric NP2: KIKVKKKGRRKGSKKVKKKGRRK	from human novel LZAP-binding protein (NLBP), amino acids 444–454.; dimer of NP2 actually used	315,351,352
cytoplasmic transduction peptide (CTP): YGRARRRRRRRR	from human novel LZAP-binding protein (NLBP), amino acids 444–454.; dimer of NP2 actually used	315,351,352
LIMK2 NoLS peptide (LNP): KKRTLKRDRKKRC	from human novel LZAP-binding protein (NLBP), amino acids 444–454.; dimer of NP2 actually used	315,351,352
r7	poly-arginine peptide; variations (e.g., myristoylation)	356
r8	poly-arginine peptide	310
r11	poly-arginine peptide	357
R-rich peptide: (RXRRBR)XB	X: any amino acid	358

Trials stage.110–112 Our group has recently produced a conjugate of An2 with PAPTP, a triphenylphosphonium (TPP)-containing mitochondrialtropic psoralene derivative which shows powerful anticancer activity113 but cannot cross the BBB.114 Conjugation to the peptide, a first for TPP-decorated molecules, allowed brain delivery.115

Transferrin receptors are abundant in brain capillary endothelial cells and in rapidly dividing cells and immature erythroid cells.116 They are however scarce in other vasculature and tissues, and this provides a built-in selectivity which has made this system a popular target for receptor-mediated delivery attempts.109,110 (see Table 1).

A strategy waiting to be tested may involve Glucose-regulated protein 78 (GRP78), also called immunoglobulin heavy-chain binding protein or BiP), a heat shock protein with endoplasmic reticulum (ER) regulatory functions, expressed in the ER of the vast majority of cells. GRP78 is also expressed on the surface of cancer cells,117,118 including glioma and angiogenic epithelial cells. This overexpression has been linked to malignant behavior, including drug resistance. Thus, GRP78 has been investigated for cancer therapy, and a cyclic 13-mer peptide called Pep42 has been designed to selectively target it.119,120 Recent findings have shown that GRP78 is found on the cell surface of brain microvascular endothelial cells, and that autoantibodies against GRP78 are associated with CLDN-5 downregulation and BBB loosening in neuromyelitis optica121 and systemic lupus erythematosus.122 In rats treated with the mitochondrial toxin 3-nitropropionic acid, vascular GRP78 expression was spatially and temporally correlated with BBB leakage.123 Collectively, these observations suggest the possibility to use GRP78-specific peptides to reversibly loosen and bypass the BBB.

Parenthetically, GRP78 is a candidate receptor for the spike protein of SARS-CoV-2,124,125 for the ZIKV protein of Zika virus,126 and for glycoproteins GP1 and GP2 of Ebola virus.127

3.2. Cell-Penetrating Peptides. An alternative to receptor-targeting peptides is offered by so-called “cell-penetrating peptides” (CPPs), a large catalogue (about 1855 unique sequences are currently listed in CPPsite 2.0 database) of short chains that generally speaking can pass the membrane barrier thanks to their properties rather than specific interactions with proteins.278–281 Some efficiently permeate the BBB (Table 3), and they can be a useful tool for the delivery to subcellular compartments as well.279,280

They typically contain a high proportion of positively charged (basic) amino acids (cationic CPPs) or alternating patterns of charged and hydrophobic amino acids (amphipathic CPPs) (for an exception, see ref 281). They can be variously
receptor(s)	peptides	notes	refs
nAChR	RVG29 + Penetratin	RVG29 targets nAChR; Penetratin is a CPP	136
nAChR	RVG29-d9R: YTIWMPENPRPGTPCD	Fusion of RVG29 and D-arginine nonapeptide, a CPP.	374
nAChR	RVG29-acR: YTIWMPENPRPGTPCD	Fusion of RVG29 and D-/L-arginine nonapeptide	375
nAChβ1, VEGFR2/NRP-1	riCDX + riAT7R	riCDX targets nAChR; riAT7R targets VEGFR2/NRP-1. Combination on nanovehicles. Compared to single peptide	181
nAChβ1, integrins	riCDX: greitrgraerwslef	riCDX targets nAChR; c(RGDyK) targets integrins. Combination on nanovehicles compared to single peptide	129
integrins (αβ3)	c[RGDK]-H-k(R3)2	A conjugate of c(RGDyK) with H-k(R3)2, a pH-sensitive cationic CPP	376,377
integrins (αβ3)	RGD-R8	A conjugate of RGD and octa-arginine. NPs are also decorated with an AANCD peptide to increase retention in glioblastoma	378
integrins (αβ3)	R8-(-RGDK)		379
integrins (αβ3), NRP-1/VEGFR2	RGD: GARYCGRDFCDG	RGD targets integrins; A7R targets NRP-1/VEGFR2. Liposomes carrying single peptides also tested	175
integrins (αβ3, LDLR)	c(RGD)K + VH445/Pep22	RGDK targets integrins; VH445 targets LDLR	137
LDLR	COG112: YRQIKWFQNRMRKIKKLC-LRVRFLRSNRRKRRKLL	Fusion of PenetratinY55 (YRQIKWFQRMRKIKK) with COG112 (LRVRFLSLRKLKRLL, which targets LDLR)	340
LDLR	ApoE: CGLRLKLRKLLR	ApoE-binds LDLR; BH: brain-homing peptide 291; TAT is a CPP; NLS is a nuclear localization signal	285
TIR	CRT + gH625 (gH)	CRT targets TIR, gH is a CPP, βAK and GGG linkers were attached as bridges to membrane-anchoring moieties	382
TIR	T7/HAI + CLEVSRKNC	CLEVSRKNC is a stroke area-homing peptide	383
TIR	T7/HAI + TAT	T7/HAI: HAIYPRH TATαβ3: AVYKKRRQRRR	384
TIR	THR peptide + R8	THR targets TIR	385
TIR	GGGCTTHWGFTLCHAIYPRH	Formed by conjugation (fusion) of c(CTTHWGFTL), an MMP-9 inhibiting peptide, with T7/HAI	244
TIR	Transferrin + TAT47-52		314,324,394
TIR	Transferrin + pVEG		314
TIR	Transferrin + QL	QL: QLPMV	314,394
TIR	Transferrin + Penetratin43-50	Penetratin43-50: RQIKWFQRMRKMKWKK	324,365,367
TIR	Transferrin + mastoparan	Mastoparan is a wasp venom peptide	324
receptor(s)	peptides	notes	refs
------------	----------	-------	------
TIR	Transferrin + FFYLI	FFYLI is an hydrophobic, acid-activated CPP, which represents the C-terminal portion of C105Y, a CPP based on the sequence of e1-antitripsin	396, 397
TIR	Transferrin + R9F2 R9F2: RRRRRRRRRFF	R9F2 (Arg-Phe) is a cationic CPP	398
TIR	Transferrin + melittin Melittin: GI3V1LTTTGLPALISWKRKRRQQ	Melittin is a component of bee venom and a CPP	399
TIR	Transferrin + kFGF kFGF: AAVALLPAVLLALLAP	kFGF is a sequence from Kaposi’s fibroblast growth factor	399
TIR	Transferrin + Poly-R		399
TIR, VEGFR2/NRP-1	T7/HAI = dA7R T7/HAI: HAIYPHR dA7R: atwlprr	T7/HAI targets TIR dA7R targets VEGFR2/NRP-1	399, 392
TIR, CD13	T7/HAI = NGR HAI: HAIYPHR NGR: YGGRRNG	NGR targets CD13	399
TIR, nAChR	Transferrin + RVG29 RVG29: YTTWMPEPFRPRGPTCDFTN-SRGKRASNG	RVG29 is a sequence from Rabies Virus Glycoprotein, targeting nAChR	400
	GGCTTHWGFTLCKAPETALC	Formed by conjugation (fusion) of c(CTTHWGFTLC) with mini-AP-4 (KAPETALC), a brain-homing peptide	401
NRP-1, nucleolin	tLyP-1 + F3 tLyP-1: CGNNKRTTR F3: CKDEPQRRSAERSAKAPPPKEPK-PKAKAPK	tLyP-1 targets NRP-1; F3 targets nucleolin	402
NRP-1	Synb3-TKPR: (GFLG)RLSLSSRFRFTKPR Synb3: RRLSRRFFR	Tandem peptide (fused sequences) TKPR (tuftsin-antagonist peptide) targets NRP-1; Synb3 is a CPP; GFLG is a cathespisin-cleavable sequence useful for drug release	403
LRP-1	PepFect32: LLOOLAAAAALOULL-TFFYGGSRG	Fusion of a DNA-binding peptide and Angiopep-2. O: orithine	404, 396
LRP-1	An2-TAT fusion peptide: TFFYGGSRGKRNKNFK(Biotin)TREF-YGRKKRRQHPRQQ	An2 targets LRP-1	405
LRP-1	Angiopep-2 + TAT An2: TFFYGGSRGKRNKNFTEVEYC TAT: = YGRKKRRQRRRC		406
LRP-1, integrins	M1-RGD fusion peptide: TFFYGGPRKNNFLGIRGSRG		407
gHo (glioma-homing)	gHo (glioma-homing) fused to TP10 or SynB3 or An2 gHo: NHQQQNHQPQPM TP10: AGYLLGKINLKAALAAKLIL SynB3: RRLSRRRF An2: TFFYGGSGRKRNNFTEVEYC	Doxorubicin-gHoPe2 construct	408
gHo-PVEC or pVEC-gHo fusion peptides (gHoPe2): gHo: NHQQQNHQPQPM pVEC: LIIILRRRIRKQAHSHK		409	
TGN + dQSH	TGN: TGNYKALHPING dQSH: qshybrispaqy	dQSH binds to A[b]	410, 411
ri-OR2-TAT conjugate: riOr2-Peptide	riOr2-Peptide	riOr2 inhibits the formation of A[b] oligomers and fibrils in vitro	412, 413
GRP78	dWVAP (dVAP-rWSW conjugate): sntrvac-Ahx-wwsgggsys	dVAP targets GRP78; Ahx: aminocaproic acid linker; rWSW is from a quorum-sensing peptide	414
mediated uptake, followed by escape from the endocytic pathway, which often is an important problem. This can proceed via pinocytosis and/or clathrin- and/or caveolin-dependent endocytosis ("direct translocation" and endocytosis). Endocytosis can alter cell surface molecules, such as proteoglycans/glucosaminoglycans (e.g., refs 288) is believed to be an important early step during peptide uptake.

Direct, or energy-independent, translocation is envisioned to take place through one or the other of at least three mechanisms: formation of an oligomeric pore in the membrane (barrel stave model); adhesion to the phospholipidic cell surface, followed by a "disorderly" penetration and membrane alterations (on which see, e.g., discussion in ref 289) ("carpet" model); and formation of inverted micelles at the cell surface, followed by a "disorderly" penetration and membrane alterations. (In other cases however, NP-mediated brain delivery can reach the contralateral hemisphere; in an orthotopically growing tumor it was however found to be as high as 0.25% per gram of tissue). The major strategy fielded to counter lack of specificity is to combine a CPP and a specificity-conferring moiety (e.g., another peptide) on the surface of a nanovehicle (Table 3).

3.3. Combined Approaches

The major strategy fielded to counter lack of specificity is to combine a CPP and a specificity-conferring moiety (e.g., another peptide) on the surface of a nanovehicle.

Singh and collaborators for example delivered genetic material or chemotherapeutics using liposomes carrying transferrin (Tf) and a CPP. As CPPs, the group used penetratin, Cationic CPPs can not only change the organization of membrane lipids, but also their composition. Specifically, Verdurmen and colleagues have shown that at high concentrations a contribution to the entry of cationic CPPs (they used oloarginine) may be provided by a CPP-induced movement of acid sphingomyelinase from lysosomes to the outer leaflet of the cellular membrane, where the enzyme proceeds to generate ceramide, which facilitates peptide entry. CPPs can also induce various other cellular responses (as reviewed in ref 293).

Given these multiple and complex features, it is unsurprising that the mechanistic details of cell entry may depend on the exact peptide sequence, the specific “cargo” attached to it, and/or the concentration of peptide or peptide-comprising construct.

Besides the endosomal escape problem, which can impede the intracellular delivery of endocytosed agents because of their trapping in endosomes/lysosomes, a drawback of CPPs is that since they do not depend on the presence of a specific “receptor”, generally they are not very selective and tend to interact with all membranes (although, besides surface charge, lipid composition and membrane tension play a part). Nonetheless, a few are viewed as an effective instrument to overcome the BBB, generally with the intent of attacking CNS cancers such as glioma. These are tabulated in Table 3 and prominently include TAT (the first CPP to be discovered) and penetratin (derived from the Antennapedia protein homeodomain).
4. SHORTCOMINGS

Only a minority of the innumerable papers in the literature report negative or toxic effects of peptides or peptide-comprising molecular constructs or nanovehicles. This no doubt reflects the good overall profile of these materials, which generally show satisfactory biocompatibility. It clearly emerges however that generalizations are dangerous, that peptides may have important undesirable side effects and, in particular, that peptide conjugates may have properties quite distinct from those of the peptide itself.

There have been reports of antigenicity (i.e., peptides can, unsurprisingly, cause an immune response when conjugated to macromolecules/nanovehicles or due to aggregation to form supramolecular structures of sorts). In this respect, the report by Wang et al. is noteworthy in that cyclic RGD peptides such as cRGDyK (e.g., refs 129 and 176) displayed on liposomes or conjugated to PEG
designed on liposomes or conjugated to PEG
designed to induce significant LDH leakage, (i.v. administration). LD
potentially toxic. Thus, in mice TAT was reported to have an
accelerated their clearance following IgM absorption and
complement activation and resulted in anaphylaxis. The
response when re-administered.
Possibly the most significant source of toxicity is the
hemolytic potential of some peptides or peptide-cargo
constructs. Again, this essentially concerns cell-penetrating
peptides and harks back to the action of antimicrobial peptides,
which also often display hemolytic activity (see refs 429–433).
These are, generally speaking, α-helical in the vicinity of lipid
membranes and have a high content of both positively charged
and hydrophobic amino acids. Lytic activity can be strongly
influenced by apparently minor changes in amino acid
composition.

A clear example of this type of “complication” is provided by
conjugates of TP10 with ciprofloxacin or levofloxacin, two
fluoroquinolone antibacterials. The peptide itself can form
colloids at relatively high concentrations was confirmed also
in a study showing its ability to ferry vancomycin into the
brain.

CPPs, arginine-rich peptides in particular, appear to be
toxicity potential. Thus, in mice TAT was reported to have an
LD₅₀ of 27 mg/kg bw (17.3 μmol/kg), CTP one of 21 mg/kg
bw (13.5 μmol/kg), R11 one of 16.5 mg/kg (9.5 μmol/kg) (i.v. administration). LD₅₀’s were lowered to 19 and 13 mg/kg
bw (11.5 μmol/kg and 13.5 μmol/kg), respectively, by
conjugation of TAT and CTP with GABA.

The overall safety of TAT-containing peptides TAT-
NR2B9c (TAT-KLSSIESDV, also known as NA-1 or
nerinetide; see Table 4) and TAT-N/O-dimer (TAT-N/O-
PEG₄(IEpDV)₂, also known as UCCB01-144; see Table 2)
was evaluated by Bach et al.112. These are constructs aimed at
ameliorating the consequences of stroke by interfering with the
interaction of NMDAR (NR2 subunit, of which they
depend on “cargo”. This is confirmed for example by El-Andaloussi et al.228. Using the peptide TP10
coupled to carboxyfluorescein, these latter authors observed
that toxicity also depended on the position of attachment of
cargo to the peptide chain. The hemolytic activity of a TP10
conjugate at relatively high concentrations was confirmed also
in a study showing its ability to ferry vancomycin into the
brain.

Hemolytic activity was also observed in the study comparing
the BBB-permeating abilities of liposomes decorated with
peptides pVEC, TAT or the pentapeptide QLPVM, each in
combination with transferrin to target BBB cells.314. Measur-able hemolysis was observed even at the lowest concen-
trations tested (31 nM phospholipids).

In recent work we exploited Angiopep2 or TAT to deliver to the
brain PAPTP, a promising inhibitor of mitochondrial
of NMDAR (NR2 subunit, of which they
reproduce/imitate the C-terminal) with the tandem PDZ1-2
domains of the four PSD-95-like MAGUKs in neurons. They
did significantly reduce the infarcted area, but TAT-NR2B9c
actually worsened the survival score because of cardiac
complications and strongly lowered the heart rate and blood
pressure in healthy control mice. TAT-N-dimer produced
comparable protective results at lower dosages and had a better
cardiovascular safety profile.

In a study with cultured cells, Saar et al.225 compared the
toxicity (at 10 μM) of penetratin (TAT-N/O-
PEG₄(IEpDV)₂, also known as UCCB01-144; see Table 2) and
transportan (10 (TP10). All the peptides used in the study
were modified with a C-terminal amide. MAP and TP10 (K-
rich peptides) turned out to induce significant LDH leakage,
which depended on the cell line, as also indicated by the other
in vitro studies. In an analogous study, Kilk et al.426 found that
TAT, MAP, and, especially, TP10 (used at 5 μM) impacted
the intracellular metabolome. Penetratin and R9 (Arg nonamer) instead had a negligible impact.

Jones et al.427 working with cultured cells, reported EC₅₀’s of
6, 10, 17, and >100 μM for rhodamine-labeled traspotan,
polyArg (R11), Antennapedia, and TAT-derived peptides,
respectively. These authors also present evidence that toxicity
in their system depends on “cargo”. This is confirmed for example by El-Andaloussi et al.228. Using the peptide TP10
targeted to carboxyfluorescein, these latter authors observed
that toxicity also depended on the position of attachment of
cargo to the peptide chain. The hemolytic activity of a TP10
conjugate at relatively high concentrations was confirmed also
in a study showing its ability to ferry vancomycin into the
brain.

Possibly the most significant source of toxicity is the
hemolytic potential of some peptides or peptide-cargo
constructs. Again, this essentially concerns cell-penetrating
peptides and harks back to the action of antimicrobial peptides,
which also often display hemolytic activity (see refs 429–433).
These are, generally speaking, α-helical in the vicinity of lipid
membranes and have a high content of both positively charged
and hydrophobic amino acids. Lytic activity can be strongly
influenced by apparently minor changes in amino acid
composition.

A clear example of this type of “complication” is provided by
conjugates of TP10 with ciprofloxacin or levofloxacin, two
fluoroquinolone antibacterials. The peptide itself can form
colloids at relatively high concentrations was confirmed also
in a study showing its ability to ferry vancomycin into the
brain.

Hemolytic activity was also observed in the study comparing
the BBB-permeating abilities of liposomes decorated with
peptides pVEC, TAT or the pentapeptide QLPVM, each in
combination with transferrin to target BBB cells.314. Measur-able hemolysis was observed even at the lowest concen-
trations tested (31 nM phospholipids).

In recent work we exploited Angiopep2 or TAT to deliver to the
brain PAPTP, a promising inhibitor of mitochondrial
voltage-gated potassium channel 1.3 (Kv1.3), which completely
lacks the ability to cross the BBB. Both Angiopep2 and
TAT allowed the brain delivery of PAPTP (0.1% of the
injected dose). However, the severe toxicity observed in the
case of TAT-PAPTP forced us to focus the study on
Angiopep2-PAPTP. TAT-PAPTP toxicity may be attributed,
at least in part, to its hemolytic action.113

The ability to cause lysis can be put to good use, at least in
principle, not only against noxious microorganisms but also
against cancer, since cancer cells appear to be more sensitive to
them than normal ones, probably due to differences in lipid
composition.422,434 For example, breast and prostate cancers
and their metastases have been attacked with lytic peptides
conjugated to ligands of hormone receptors.444–446 Kawaka-

3711 https://doi.org/10.1021/acs.molpharmaceut.2c00523
Mol. Pharmaceutics 2022, 19, 3700–3729
mi’s group has coupled, via a glycine triplet, a lytic peptide (KLLKLLKKLLKLLKKK or KLLKLLKKLLKLLKKK) with peptides targeting the epidermal growth factor receptor (EGFR), the transferrin receptor (TfR), the epidermal growth factor receptor 2 (HER2/Erb2), and interleukin-13 receptor alpha 2 (IL-13Rα2) to obtain selective cancer cell-killing tools.

5. CHALLENGES

The widespread application of peptides in the clinic is still hindered by a series of difficulties, summarized by ref 452. A major problem, at least for peptides composed wholly by natural amino acids, is their short lifetime in vivo, due to the abundance of peptidases in the digestive system (which limits their short lifetime in vivo, due to the abundance of peptidases in the digestive system (which limits oral administration), blood, liver, the BBB, and other organs (for tabulations, see ref 454). Clearly, since the cell-penetrating or target-recognizing ability depends on sequence integrity, a rapid degradation is expected to lead to a lower effectiveness. Thus, for example, the half-life in human serum of HAI/T7, a 7 amino acid peptide targeting the transferrin receptor (see Table 1) was around 5 min (but increased to more than 24 h if the proteolytic sites were protected by N-methylation at the most labile positions or if the retro-inverso peptide was assayed). Similar (or lower) estimates were obtained with TAT-labeled peptides pVEC (<3 min), SynB3 (5.5 min), and TAT(27–57) (2.7 min) (for refs to the peptides see Table 1) in mouse serum. These sequences were more resistant in liver, kidney, or brain homogenates, in which their half-lives ranged from 5 to 68 min. However, the concentration of TP10 (see Table 3) in human serum was halved in 22 h, and that of TP10–2, which differs from TP10 by the substitution of a proline for an alanine, was halved in about 4 h. The survival of peptides in the face of protease attack can be heavily influenced by “details” such as apparently minor variations in the sequence, the attachment of cargo or labeling, and the species in which the test is carried out. For example, in human plasma, the TAT(27–57) which has 6 trypsin cleavage sites, was pegged at 3.5 min in the study by Grunwald et al. In-DOTA-TAT(48–61) (DOTA is a metal chelator) instead required about 9 h.

The (partial) remedies adopted by researchers may have an impact on peptide functionality and often require painstaking elaboration. They include cyclization, which blocks exopeptidases (e.g., 457), and can utilize disulide bonds or “head to tail” formation of an amide bond. As an alternative, researchers can use N-terminal acetylation and/or C-terminal amidation, or otherwise blocking a peptide terminus, or “stapling” (i.e., linking two positions in the peptide with a hydrocarbon or other chain). Glycosylation also favors membrane permeation. Once the protease-sensitive sites in the peptide have been identified, they can be “reinforced” by substituting some of the amino acids so as to make the cut less likely. Pro and Trp, sterically impacting, can be effective. Stabilization may also be sought by the introduction of unnatural amino acids (or β-amino acids) at selected positions and even changing the type of linkage between amino acids. Backbone N-methylation also favors membrane permeation. Once the protease-sensitive sites in the peptide have been identified, they can be “reinforced” by substituting some of the amino acids so as to make the cut less likely. Pro and Trp, sterically impacting, can be effective. Stabilization may also be sought by the introduction of unnatural amino acids (or β-amino acids) at selected positions and even changing the type of linkage between amino acids. The most effective and used approach to stabilization may however be the construction of “enanti” peptides, composed of D-amino acids in the same H- to NH2-terminus sequence as in the parent compound. This may however result in a reduction of the activity. Retro-inverso peptides, also formed by the same D-amino acids, however joined in the reverse C-to-N-terminus order, may help in such cases. The substitution of D- for L-peptides may also be partial. The applications of this strategy are many. Examples are provided by Prades and colleagues for the 12-mer THR peptide targeting TfR, by Schorderet and colleagues for TAT, and by Wei and colleagues for Angiopep-2. Willbold’s group has developed a family of all-D peptides directed against the formation of β-oligomers (D3 (prprtrlhtrmr), D3D3, and RD2), which resisted oral administration, had a half-life of up to 60 h in vivo, and had a positive impact on cognition in a genetic mouse model of Alzheimer’s disease. Another possibility is shielding the peptide by large PEG molecules, either linked to the peptide itself or juxtaposed on the surface of nanovehicles. The various approaches can be used in combination so as to optimize stability without interfering with selectivity and performance (for comprehensive overviews, see refs 474 and 475).

A problem affecting many peptide-based delivery systems, especially those exploiting membrane receptors and nanovehicles, is that the construct may end up in the endosomal/lysosomal degradation pathway and be lost. Hence efforts to devise ways to promote the escape of the cargo from the endosome are often based on the acidity of the endosomal compartment. The cargo may be linked to the peptide via an acid-labile group, or appropriate environment-sensitive “adaptador” peptides may be used. Engineered pH-sensitive vehicles may permeabilize or fuse with the organellar membrane under these conditions, releasing the cargo to the cytosol. Escape may for example be promoted by a fusogenic peptide such as H5WYG (GLFHAIA-HFIHGWWGLIHGWYG), derived from the N-terminal sequence of the HA-2 subunit of influenza virus hemagglutinin. Viruses have in fact achieved a high level of proficiency in endosome escape.

In the specific case of trans-BBB delivery, the matter may be construed as the need to maximize transcytosis vs lysosomal degradation. Some attention has been devoted to this aspect in studies of oral/intestinal uptake, but more needs to be done, especially in the field of brain delivery. Ju et al. have recently reported some success in this direction by using a two-punch strategy. They relied on a previously developed “transcytosis targeting” peptide (TPP: LRQRRRLYC in their case) which binds to heparin sulfate. Nanovehicles decorated with this peptide are then endocytosed via lipid-raft-mediated endocytosis and are transcytosed. Ju et al. first treated their cells and mice with TPP-carrying NPs loaded with tunicamycin, believed to be an inhibitor of Mfsd2a (see above, section 2.4), then administered analogous NPs loaded with doxorubicin or a fluorescent marker. The “priming” procedure resulted in an approximately 4-fold increase in trans-BBB delivery.

Empirically, the question of which BBB membrane receptor is engaged is relevant. LR1P1, the receptor for An2, seems to perform better than TfR in this respect. Guo et al. reported using statins-loaded, Angiopep-2-decorated NPs to achieve upregulation of the expression of LR1P in reaction to lowered cholesterol. This in turn resulted in reinforcement of subsequent transcytosis and drug delivery to brain metastases by LR1P-targeting An2-NPs.

While there is little doubt that some peptides (e.g., TAT and Angiopep-2) can dramatically improve brain delivery of a
“cargo” in comparison with its administration as such, in most cases this improvement still falls short of what a pharmacologist might desire. In other words, the efficiency of brain delivery often remains, in absolute terms, rather low. Examples follow.

The delivery of UCCB01-144 (TAT-N-PEG$_4$-((IETDV)$_2$)$_{116}$ and UCCB01-125 (PEG$_4$-((IETAV)$_2$))$_{185}$ to the brain was studied by Andreassen and collaborators. The molecules, whose purpose is to interfere with the interaction between the NMDA receptor and PSD-95, were labeled with 5-carboxyfluorescein and a 30 mg/kg bw (8.23 or 17.42 μmol/kg bw, respectively) dose was administered intraperitoneally to mice weighing approximately 23 g (range 20–26 g). The authors found 865 ± 113 and 107 ± 42 nmol/kg brain tissue, respectively, after 30 min from injection. Assuming a 0.5 g average brain, this translates to approximately 0.23% (UCCB01-144) and 0.013% (UCCB01-125) of the administered dose, respectively. The free (i.e., unbound) concentrations were calculated from equilibrium dialysis data to be on the order of 122 ± 16 and 10 ± 4 nmol/kg, respectively. The comparison between the TAT-comprising compound (UCCB01-144) and the TAT-less one (UCCB1-125) highlights the usefulness of TAT as a brain-delivering device, but still one may note that the concentration of UCCB01-144 reached in brain (865 nmol/kg) was only about one-tenth of the concentration that would have been obtained if the drug had diffused evenly throughout the body of the animal (8230 nmol/kg).

The same group was i.v. injected with 7.5 mg/kg bw (equivalent to 567 nmoles per average animal) of carboxyfluorescein-labeled UCCB01-144 into rats with a mean bw of 251 g. The maximal concentration in the brain was 0.398 ± 0.123 nmol/g (at 1 h post injection). Assuming a 2 g brain, this translates to approximately 0.14% of the administered dose. In turn, since the unbound fraction was estimated at 11.5%, this corresponds to approximately 1.2% of the dose if the bound fraction is included.

In a recent study Kristensen and co-workers evaluated the delivery to brain parenchyma of carboxytetramethylrhodamine (TAMRA)-labeled peptides TAT, TAT-NR2B9c and TAT-N-dimer/UCCB01-144 (see above and Table 4) in mice. The animals received 3 nmol/g bw of the compounds via i.v. injection, and delivery was assessed by two-photon fluorescence microscopy of the brain as well as by extraction and fluorescence measurements of the lysates of various organs, including the brain. Fluorescence accumulated mainly in the kidneys, liver, and intestine but was excluded from the heart. At 1 h after injection, the intensity measured in the brain, including microvessels, corresponded to about 0.27% of the injected amount, for all three constructs, in agreement with the results of Andreassen and colleagues with UCCB01-14. Entry into the brain parenchyma appeared to be lower and considerably hindered by the presence of the “cargo” attached to TAT (i.e., the NR2B9c peptide or the N-PEG$_4$-((IETDV)$_2$) moiety), confirming that each construct may constitute a case apart. Phenomena such as self-association to form supramolecular complexes, variations in the extent of charge shielding, differences in adhesion to macromolecules in solution or to surfaces, and differences in the rate of proteolytic degradation may all contribute to these “cargo effects”.

Turning to another popular brain-delivery peptide, Angiopep-2 (see Table 1), quantitative estimates of brain delivery have been carried out with conjugates of the peptide with chemotherapeutics paclitaxel (ANG1005), doxorubicin (ANG1007) and etoposide (ANG1009). The i.v. injection of 14 nmol/g bw of radiolabeled ANG1005 (42 nmol/g bw of conjugated paclitaxel, linked via ester bonds) into 20 g mice led to the presence, after 30 min, of 0.62 nmol/g (calculated from radioactivity measurements, without actual knowledge of the chemical identity of the emitting species) in the brain parenchyma. This amount corresponds to about 0.11% of the administered dose (assuming a 0.5 g average brain) and represents a 54-fold increase over the brain delivery achieved by administering the same molar amount of unconjugated paclitaxel. Similar experiments with ANG1007 and ANG1009 resulted in the delivery of about 0.08 and 0.17%, respectively, of the injected dose.

Again, these amounts represent remarkable increases in comparison to the administration of equimolar amounts of the unconjugated drugs. As may have been expected on the basis of the enhanced permeability and retention (EPR) effect, the delivery to the tumor mass in an orthotopic model of U87 glioma was considerably higher for both doxorubicin and etoposide; their Angiopep-2 conjugates however maintained their advantage, reaching about 1.2% of the administered dose in the most favorable case (ANG1009). This well-known higher accessibility of tumors, coupled with the higher efficiency of the conjugate, may explain the positive impact of at least ANG1005 in in vivo brain tumor models and in limited clinical trials with humans.

As a final example, Sakamoto and co-workers measured in mice the brain uptake of 125I-labeled LS7, a peptide selected via phage display, and Angiopep-7, both recognizing LRP-1. At 1 h after i.v. injection, the radioactivity counts found in the brain corresponded to 0.042 ± 0.017 and 0.032 ± 0.020%, respectively, of the injected dose.

As far as one can tell from the sparse quantitative reports, in many cases the delivery effectiveness is similar if these peptides are used to ferry across the BBB drug-loaded nanovehicles rather than individual drug molecules. For example, TAT has been anchored to the surface of doxorubicin-loaded liposomes with the intent of increasing the delivery of the drug to the brain. Mice then received via i.v. delivery a dose of liposomes carrying 2.5 μg/g bw of doxorubicin. The peak concentration of doxorubicin in the brain (at 1 h post-injection) was approximately 0.45 μg/g. Assuming an average mouse weight of 20 g and an average brain weight of 0.5 g, this works out to the delivery of about 0.45% of injected doxorubicin to the brain.

The same group compared the ability of four peptides to drive coumarin 6-loaded liposomes to the brain. The peptides were TAT-derived AYGRKKRRQRRR (1), its scrambled control RKARYRGRKQR (2), a sequence reported as AYGQQQGGQGGG but possibly containing some glutamic acid residues (3), and octa-arginine (4). Uptake into various organs was evaluated at 1, 4, and 12 h after tail vein injection of 100 ng/g bw (0.1 mg/kg) of coumarin 6 contained in the differently labeled liposomes. The highest concentrations of coumarin were observed at the 1 h time point. At that time, the amounts found in the brain parenchyma were close to 2 ng/g tissue (2.5–3 ng/g if capillary depletion was not performed) for peptides 1, 2, and 4 and to 1 ng/g tissue for peptide 3. Assuming again 20 g mice and 0.5 g brains, for the three best-performing vehicles this translates to a delivery to the brain parenchyma of approximately 0.25% (0.3–0.4% considering the brain with its capillaries) of the administered dose. An even
distribution of the drug would have led to concentrations of about 100 ng/g, an approximately 50-fold higher level.

In an analogous study employing solid–lipid nanoparticles loaded with docetaxel (DTX) and Angiopep-2 as the targeting peptide, after i.v. injection of 10 μg/g bw DTX, the peak concentration of DTX in the brain was measured at 4.13 μg/g, which corresponds to about 0.9% of the dose.\(^\text{201}\)

We have already mentioned however that better performances can be had with pluri-functionalized nanoparticles carrying different types of peptides. Another exception to the norm of a relatively low efficiency in trans-BBB delivery may furthermore be provided by some opioid peptides, in particular the glycopeptide g7, derived from the glycopeptide MMP-2200 and ultimately from leu-enkephalin (e.g. refs 489 and 490). This peptide enters cells by multiple mechanisms and may be considered to be receptor-independent.\(^\text{202}\) It was used to decorate poly[(R)-\(\alpha\)-lactide-co-glycolide] (PLGA) NPs marked to reveal their presence as a fluorescent spot.\(^\text{338,491,492}\) Quantifying the effects of the cargo (loperamide, an analgesic) and by direct analysis of the NPs and their cargo in the brain, the authors concluded that up to 15% of the injected (i.v.) dose of g7-decorated nanoparticles reached the brain of rodents.\(^\text{439,440}\) This remarkable success has been attributed to the ability of the glycopeptides to assume a specific conformation favoring its interaction with the BBB and folding to form an amphipatic \(\alpha\)-helix, coupled to an enhanced water solubility conferred by the attached sugar moiety.\(^\text{225,440}\) In fact it has been argued that a presence of a glycosidic moiety may be an often-useful feature helping peptides to pass the BBB.\(^\text{460}\)

Positively charged peptides (CPPs) obviously tend to bind to negatively charged biomolecules and structures, such as albumin\(^\text{693}\) and glycosaminoglycans (e.g., heparan sulfate, hyaluronic acid;\(^\text{287,494}\) or blood cells (see above)). Other aspects aside, this may result in hindrance to diffusion,\(^\text{494–497}\) lowered availability, and even analytical difficulties for the researcher.\(^\text{115}\)

6. CONCLUSIONS AND PERSPECTIVES

Peptides are a marvelous resource, but not all that glitters is gold. Like anything else, they need to be handled with caution, and they are not yet the cure-all for delivery problems, or, more specifically, for trans-BBB delivery problems. In most studies providing this type of information, the amount reaching the brain remained below par, which cannot be considered a satisfactory state of affairs even though enough active principle may have reached the brain to have an impact on the CNS pathology under study. In our opinion, peptides remain however a key component of the so-far elusive solution of the brain delivery problem. The search for more efficient sequences, the use of “stabilized” and/or “decorated” (e.g., glycosylated) peptides, the further development of cleverly engineered nanovehicles, and the ongoing exploration of innovative delivery routes (e.g., the nose-to-brain pathway) offer the perspective of steady progress toward the eventual implementation of a peptide-based technology affording the needed concentration of the drug in brain parenchyma.

AUTHOR INFORMATION

Corresponding Author
Lucia Biasutto — CNR Neuroscience Institute, 35131 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; orcid.org/0000-0002-7638-8685; Email: lucia.biasutto@cnr.it

Authors
Sofia Parrasia — Department of Biology, University of Padova, 35131 Padova, Italy
Illdiko Szabo — Department of Biology, University of Padova, 35131 Padova, Italy
Mario Zoratti — CNR Neuroscience Institute, 35131 Padova, Italy; Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.molpharmaceut.2c00523

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Authors were supported by AIRC (grant IG2017, no. 20286 to I.S., and fellowship no. 26584 to S.P.), by WWCR (grant number 22-0348, to I.S.) and by the CNR InterOmics project (GLIOMICS). The figures were created using images from Servier Medical Art (http://smart.servier.com). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.

REFERENCES

(1) Panchal, D.; Katařa, J.; Patel, K.; Crowe, K.; Pai, V.; Azizoglu, A. R.; Kadian, N.; Sanyal, S.; Roy, A.; Dodd, O. J.; et al. Peptide-Based Inhibitors for SARS-CoV-2 and SARS-CoV. Adv. Ther. 2021, 4, 2100104.
(2) Zhang, Q.; Xiang, R.; Hsu, S.; Zhou, Y.; Jiang, S.; Wang, Q.; Yu, F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Sig. Transduct. Target Ther. 2021, 6 (1), 233.
(3) Shah, J. N.; Guo, G. Q.; Krishnan, A.; Ramesh, M.; Kataria, N. K.; Shahbaaz, M.; Abdellattif, M. H.; Singh, S. K.; Dua, K. Peptides-based therapeutics: Emerging potential therapeutic agents for COVID-19. Therapie 2022, 77 (3), 319–328.
(4) He, R.; Finan, B.; Mayer, J. P.; DiMarchi, R. D. Peptide Conjugates with Small Molecules Designed to Enhance Efficacy and Safety. Molecules 2019, 24 (10), 1855.
(5) Lindberg, J.; Nilvebrant, J.; Nygren, P.; Lehmann, F. Progress and Future Directions with Peptide-Drug Conjugates for Targeted Cancer Therapy. Molecules 2021, 26 (19), 6042.
(6) Manzoor, M.; Singh, J.; Gani, A. Exploration of bioactive peptides from various origin as promising nutraceuticals: In vitro, in silico and in vivo studies. Food Chem. 2022, 373, 131395.
(7) Stutz, C. C.; Zhang, X.; Shusta, E. V. Combinatorial approaches for the identification of brain drug delivery targets. Current pharmaceutical design 2014, 20 (10), 1564–1576.
(8) Newman, M. R.; Benoit, D. S. W. In Vivo Translation of Peptide-Targeted Drug Delivery Systems Discovered by Phage Display. Bioconjugate Chem. 2018, 29 (7), 2161–2169.
(9) Babičková, J.; Tóthová, L.; Boor, P.; Celc, P. In vivo phage display–a discovery tool in molecular biomedicine. Biotechnol. Adv. 2013, 31 (8), 1247–1259.
(10) D’Onofrio, N.; Caraglia, M.; Grimaldi, A.; Marfella, R.; Servillo, L.; Paolilio, G.; Balestrieri, M. L. Vascular-homing peptides for targeted drug delivery and molecular imaging: meeting the clinical challenges. Biochim. Biophys. Acta 2014, 1846 (1), 1–12.
(11) Lu, L.; Qi, H.; Zhu, J.; Sun, W. X.; Zhang, B.; Tang, C. Y.; Cheng, Q. Vascular-homing peptides for cancer therapy. Biomed. Pharmacother. 2017, 92, 187–195.
(12) Lu, L.; Chen, H.; Hao, D.; Zhang, X.; Wang, F. The functions and applications of A7R in anti-angiogenic therapy, imaging and drug delivery systems. Asian journal of pharmaceutical sciences 2019, 14 (6), 595–608.
13 Aronson, M. R.; Medina, S. H.; Mitchell, M. J. Peptide functionalized liposomes for receptor targeted cancer therapy. *APL bioengineering* 2021, 5 (1), 011501.

14 Soudy, R.; Ahmed, S.; Kaur, K. NGR peptide ligands for targeting CD13/APN identified through peptide array screening resemble fibronectin sequences. *ACS combinatorial science* 2012, 14 (11), 590–599.

15 Gajbhiye, K. R.; Gajbhiye, V.; Siddiqui, I. A.; Gajbhiye, J. M. cRGD functionalised nanocarriers for targeted delivery of bioactives. *J. Drug Targeting* 2019, 27 (2), 111–124.

16 Koivunen, E.; Wang, B.; Ruosluatti, E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. *Bio/Technology* 1995, 13 (3), 265–270.

17 Agarwal, N.; Carare, R. O. Cerebral Vessels: An Overview of Anatomy, Physiology, and Role in the Drainage of Fluids and Solutes. *Front. Neurol.* 2021, 12, 614855.

18 Segarra, M.; Aburto, M. R.; Acker-Palmer, A. Blood-Brain Barrier Dynamics to Maintain Brain Homeostasis. *Trends in neurosciences* 2021, 44 (5), 393–405.

19 Villabona-Rueda, A.; Ericc, C.; Pardo, C. A.; Stins, M. F. The Evolving Concept of the Blood Brain Barrier (BBB): From a Single Static Barrier to a Heterogeneous and Dynamic Relay Center. *Front. Cell. Neurosci.* 2019, 13, 405.

20 Profaci, C. P.; Munji, R. N.; Pulido, R. S.; Daneman, R. The blood-brain barrier in health and disease: Important unanswered questions. *J. Exp. Med.* 2020, 217 (4), e20190062.

21 Stamatovic, S. M.; Johnson, A. M.; Keep, R. F.; Andjelkovic, A. V. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. *Tissue barriers* 2016, 4 (1), No. e1154641.

22 Otani, T.; Nguyen, T. P.; Tokuda, S.; Sugihara, K.; Sugawara, T.; Furuse, K.; Miura, T.; Ebnet, K.; Furuse, M. Claudins and JAM-A coordinateantly regulate tight junction formation and epithelial polarity. *J. Cell Biol.* 2019, 218 (10), 3372–3396.

23 Wang, D.; Wang, C.; Wang, L.; Chen, Y. A comprehensive review in improving delivery of small-molecule chemotherapeutic agents overcoming the blood-brain/brain tumor barriers for glioblastoma treatment. *Drug delivery* 2019, 26 (1), 551–565.

24 Partridge, W. M. Treatment of Alzheimer’s Disease and Blood-Brain Barrier Drug Delivery. *Pharmaceuticals* 2020, 13 (11), 394.

25 Angeli, E.; Nguyen, T. T.; Janin, A.; Bousquet, G. How to Make Anticancer Drugs Cross the Blood-Brain Barrier to Treat Brain Metastases. *Int. J. Mol. Sci.* 2020, 21 (1), 22.

26 Arvanitis, C. D.; Ferraro, G. B.; Jain, R. K. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. *Nature reviews. Cancer* 2020, 20 (1), 26–41.

27 Razzak, R. A.; Florence, G. J.; Gunn-Moore, F. J. Approaches to CNS Drug Delivery with a Focus on Transporter-Mediated Transcytosis. *Int. J. Mol. Sci.* 2019, 20 (12), 3108.

28 Lochhead, J. J.; Yang, J.; Ronaldson, P. T.; Davis, T. P. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. *Front. Physiol.* 2020, 11, 914.

29 Sun, Y.; Sun, X. Exploring the interstitial system in the brain: the last mile of drug delivery. *Reviews in the neurosciences* 2021, 32 (4), 363–377.

30 D’Souza, A.; Dave, K. M.; Stetler, R. A.; S. Manickam, D. Targeting the blood-brain barrier for the delivery of stroke therapies. *Adv. Drug Delivery Res.* 2021, 171, 332–351.

31 Segura-Collar, B.; Mata-Martinez, P.; Hernandez-Lain, A.; Sanchez-Gomez, P.; Gargini, R. Blood-Brain Barrier Disruption: A Common Driver of Central Nervous System Diseases. *Neuroscientist* 2022, 28, 222–237.

32 Meng, L.; Wang, C.; Lu, Y.; Sheng, G.; Yang, L.; Wu, Z.; Xu, H.; Han, C.; Lu, Y.; Han, F. Targeted Regulation of Blood-Brain Barrier for Enhanced Therapeutic Efficiency of Hypoxia-Modifying Nanoparticles and Immune Checkpoint Blockade Antibodies for Glioblastoma. *ACS Appl. Mater. Interfaces* 2021, 13 (10), 11657–11671.

33 Kim, D. G.; Bynoe, M. S. A2A adenosine receptor modulates drug efﬂux transporter P-glycoprotein at the blood-brain barrier. *J. Clin. Invest.* 2016, 126 (5), 1717–1733.

34 Chu, C.; Jablonska, A.; Lesniak, W. G.; Thomas, A. M.; Lan, X.; Linville, R. M.; Li, S.; Pearson, P. C.; Liu, G.; Pearl, M.; et al. Optimization of osmotic blood-brain barrier opening to enable intravital microscopy studies on drug delivery in mouse cortex. *Journal of controlled release: official journal of the Controlled Release Society* 2020, 317, 312–321.

35 Pandit, R.; Chen, L.; Götz, J. The blood-brain barrier: Physiology and strategies for drug delivery. *Advanced drug delivery reviews* 2020, 165–166, 1–14.

36 Tamborini, M.; Locatelli, E.; Rasile, M.; Monaco, I.; Rodighiero, S.; Corradini, I.; Comes Franchini, M.; Passoni, L.; Matteoli, M. A Combined Approach Employing Cholotoxin-Nanovectors and Low Dose Radiation To Reach Infiltrating Tumor Niches in Glioblastoma. *ACS Nano* 2016, 10 (2), 2509–2520.

37 Sharabi, S.; Last, D.; Daniels, D.; Fabian, I. D.; Atrakchi, D.; Bresler, Y.; Liraz-Zalsman, S.; Cooper, I.; Mardor, Y. Non-Invasive Low Pulsed Electrical Fields for Inducing BBB Disruption in Mouse Feasibility Demonstration. *Pharmaceutics* 2021, 13 (2), 169.

38 Hashimoto, Y.; Campbell, M. Tight junction modulation at the blood-brain barrier: Current and future perspectives. *Biochimica et biophysica acta. Biomembranes* 2020, 1862 (9), 183298.

39 Cong, X.; Kong, W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. *Cellular signalling* 2020, 66, 109485.

40 Van Itallie, C. M.; Anderson, J. M. Phosphorylation of tight junction transmembrane proteins: Many sites, much to do. *Tissue barriers* 2018, 6 (1), No. e1382671.

41 Yuan, S.; Liu, J. K.; Qi, Z. Occludin regulation of blood-brain barrier and potential therapeutic target in ischemic stroke. *Brain circulation* 2020, 6 (3), 152–162.

42 Hashimoto, Y.; Tachibana, K.; Kondo, M. Tight junction modulators for drug delivery to the central nervous system. *Drug discovery today* 2020, 25 (8), 1477–1486.

43 Saint-Pol, J.; Gosselet, F.; Duban-Deweer, S.; Pottiez, G.; Matteoli, M. A Combined Approach Employing Chlorotoxin-Nanovectors and Low Dose Radiation To Reach Infiltrating Tumor Niches in Glioblastoma. *ACS Nano* 2016, 10 (2), 2509–2520.

44 Saint-Pol, J.; Gosselet, F.; Duban-Deweer, S.; Pottiez, G.; Matteoli, M. A Combined Approach Employing Cholotoxin-Nanovectors and Low Dose Radiation To Reach Infiltrating Tumor Niches in Glioblastoma. *ACS Nano* 2016, 10 (2), 2509–2520.

45 Saint-Pol, J.; Gosselet, F.; Duban-Deweer, S.; Pottiez, G.; Matteoli, M. A Combined Approach Employing Cholotoxin-Nanovectors and Low Dose Radiation To Reach Infiltrating Tumor Niches in Glioblastoma. *ACS Nano* 2016, 10 (2), 2509–2520.

46 Saint-Pol, J.; Gosselet, F.; Duban-Deweer, S.; Pottiez, G.; Matteoli, M. A Combined Approach Employing Cholotoxin-Nanovectors and Low Dose Radiation To Reach Infiltrating Tumor Niches in Glioblastoma. *ACS Nano* 2016, 10 (2), 2509–2520.
Molecular Pharmaceutics

(86) Ghosh, D.; Peng, X.; Leal, J.; Mohanty, R. Peptides as drug delivery vehicles across biological barriers. *Journal of pharmaceutical investigation* 2018, 48 (1), 89–111.

(87) Kumar, V.; Patival, S.; Kumar, R.; Sahai, S.; Kaur, D.; Lathwal, A.; Raghava, G. P. S. B3Pdb: an archive of blood-brain barrier-penetrating peptides. *Brain structure & function* 2021, 226 (8), 2489–2495.

(88) Anthony, D. P.; Hegde, M.; Shetty, S. S.; Rafic, T.; Matalik, S.; Rao, B. S. Targeting receptor-ligand chemistry for drug delivery across blood-brain barrier in brain diseases. *Life sciences* 2021, 274, 119326.

(89) Johnsen, K. B.; Burkhart, A.; Thomsen, L. B.; Andresen, T. L.; Moos, T. Targeting the transferrin receptor for brain drug delivery. *Progress in neurobiology* 2019, 181, 101665.

(90) Choudhury, H.; Pandey, M.; Chin, P. X.; Phang, Y. L.; Cheah, J. Y.; Ooi, S. C.; Mak, K. K.; Pichika, M. R.; Kesharwani, P.; Hussain, Z.; et al. Transferrin receptor-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends. *Drug delivery and translational research* 2018, 8 (5), 1545–1563.

(91) André, S.; Larbanoix, L.; Verteneuil, S.; Stanicki, D.; Nonlercq, D.; Vander Elst, L.; Laurent, S.; Muller, R. N.; Burtea, C. Development of an LDL Receptor-Targeted Peptide Susceptible to Facilitate the Brain Access of Diagnostic or Therapeutic Agents. *Biology* 2020, 9 (7), 161.

(92) Malcor, J. D.; Payrot, N.; David, M.; Fauccon, A.; Abouzid, K.; Jacquot, G.; Floquet, N.; Debarbich, F.; Rougon, G.; Martinez, J.; et al. Chemical optimization of new ligands of the low-density lipoprotein receptor as potential vectors for central nervous system targeting. *Journal of medicinal chemistry* 2012, 55 (5), 2227–2241.

(93) Molino, Y.; David, M.; Varini, K.; Jabes, F.; Gaudin, N.; Fortoul, A.; Baklou, K.; Masse, M.; Bernard, A.; Drobecq, L.; et al. Use of LDL receptor-targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. *FASEB journal: official publication of the Federation of American Societies for Experimental Biology* 2017, 31 (5), 1807–1827.

(94) Demeule, M.; Currie, J. C.; Bertrand, Y.; Ché, C.; Nguyen, T.; Régina, A.; Gabathuler, R.; Castaigne, J. P.; Béliveau, R. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. *Journal of neurochemistry* 2008, 106 (4), 1534–1544.

(95) Oswald, M.; Geissler, S.; Goepferich, A. Targeting the Central Nervous System (CNS): A Review of Rabies Virus-Targeting Strategies. *Mol. Pharmaceutics* 2017, 14 (7), 2177–2196.

(96) Liu, Y.; Li, J.; Shao, K.; Huang, R.; Ye, L.; Lou, J.; Jiang, C. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine for releasing: official journal of the Controlled Release Society 2021, 264, 102–111.

(103) Chai, Z.; Hu, X.; Wei, X.; Zhan, C.; Lu, L.; Jiang, K.; Su, B.; Ruan, H.; Ran, D.; Fang, R. H.; et al. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. *Journal of controlled release: official journal of the Controlled Release Society* 2017, 244, 1064–1072.

(104) Yamamoto, M.; Ikeda, K.; Ohshima, K.; Tsugol, H.; Komura, H.; Tomonaga, M. Increased expression of low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor in human malignant astrocytomas. *Cancer Res.* 1997, 57 (13), 2799–2805.

(107) Maletinski, L.; Blakely, E. A.; Bjornstad, K. A.; Deen, D. F.; Knoff, L. J.; Forte, T. M. Human glioblastoma cell lines: levels of low-density lipoprotein receptor and low-density lipoprotein receptor-related protein. *Cancer Res.* 2000, 60 (8), 2300–2303.

(108) Régina, A.; Demeule, M.; Ché, C.; Lavallée, L.; Poirier, J.; Gabathuler, R.; Béliveau, R.; Castaigne, J. P. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. *British journal of pharmacology* 2008, 155 (2), 185–197.

(109) Thomas, F. C.; Taskar, K.; Rudraraju, V.; Goda, S.; Thorshim, H. R.; Gaasch, J. A.; Mittapalli, R. K.; Palmieri, D.; Steeg, P. S.; Lockman, P. R.; et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-brain barrier into brain and experimental brain metastases of breast cancer. *Pharm. Res.* 2009, 26 (11), 2486–2494.

(110) Kurzrock, R.; Gabrail, N.; Chadhasin, C.; Moulder, S.; Smith, C.; Brenner, A.; Sankhala, K.; Mita, A.; Elkan, I.; Bouchard, D.; et al. Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. *Molecular cancer therapeutics* 2012, 11 (2), 308–316.

(111) Drappatz, J.; Brenner, A.; Wong, E. T.; Eichler, A.; Schuff, D.; Groves, M. D.; Mikkelsen, T.; Rosenfeld, S.; Sarantopoulos, J.; Meyers, C. A.; et al. Phase I study of GRN1005 in recurrent malignant glioma. *Clinical cancer research: an official journal of the American Association for Cancer Research* 2013, 19 (6), 1567–1576.

(112) O’Sullivan, C. C.; Lindenberg, M.; Bryla, C.; Patrons, N.; Peer, C.; Amiri-Kordestani, L.; Davaranah, N.; Gonzalez, E. M.; Burotto, M.; Choyke, P.; et al. ANG1005 for breast cancer brain metastases: correlation between (18)F-FLT-PET after first cycle and MRI in response assessment. *Breast cancer research and treatment* 2016, 160 (1), 51–59.

(113) Leanza, L.; Romio, M.; Becker, K. A.; Azzolini, M.; Trentin, L.; Manago, A.; Venturini, E.; Zaccagnino, A.; Mattarei, A.; Carraretto, L.; et al. Direct Pharmacological Targeting of a Mitochondrial Ion Channel Selectively Kills Tumor Cells In Vivo. *Cancer cell* 2017, 31 (4), 516–531.

(119) Venturini, E.; Leanza, L.; Azzolini, M.; Kadow, S.; Mattarei, A.; Weller, M.; Tabatabai, G.; Edwards, M. J.; Zoratti, M.; Paradisi, C.; et al. Targeting the Potassium Channel Kv1.3 Kills Glioblastoma Cells. *Neuro-Signals* 2018, 25 (1), 26–38.

(120) Parrasia, S.; Rossa, A.; Varanita, T.; Checchetto, V.; De Lorenzi, R.; Zoratti, M.; Paradisi, C.; Ruzzo, P.; Mattarei, A.; Szabó, I. An Angiopep2-PAPTP Construct Overcomes the Blood-Brain Barrier. New Perspectives against Brain Tumors. *Pharmaceuticals* 2021, 14 (2), 129.
Molecular Pharmaceutics

116) Ponka, P.; Lok, C. N. The transferrin receptor: role in health and disease. *International Journal of Biochemistry & Cell Biology* 1999, 31 (10), 1111–1137.

117) Arap, M. A.; Lahdenranta, J.; Mintz, P. J.; Hajitou, A.; Sarkis, A. S.; Arap, W.; Pasqualini, R. Cell surface expression of the stress response chaperone GRP78 enables tumor targeting by circulating ligands. *Cancer Cell* 2004, 6 (3), 275–284.

118) Farshbaf, M.; Khosroushahi, A. Y.; Mojjarad-Jabali, S.; Zarebkohan, A.; Valizadeh, H.; Walker, P. R. C. Cell surface GRP78: An emerging imaging marker and therapeutic target for cancer. *Journal of Controlled Release: official journal of the Controlled Release Society* 2020, 328, 932–941.

119) Kim, Y.; Lillo, A. M.; Steiniger, S. C.; Liu, Y.; Ballatore, C.; Anichini, A.; Mortarini, R.; Kaufmann, G. F.; Zhou, B.; Felding-Habermann, B.; et al. Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. *Biochemistry* 2006, 45 (31), 9434–9444.

120) Yoneda, Y.; Steiniger, S. C.; Capková, K.; Mee, J. M.; Liu, Y.; Kaufmann, G. F.; Janda, K. D. A cell-penetrating peptidic GRP78 ligand for tumor cell-specific prodrug therapy. *Bioorganic & Medicinal Chemistry Letters* 2008, 18 (5), 1632–1636.

121) Shimizu, F.; Schaller, K. L.; Owens, G. P.; Coteleur, A. C.; Kellner, D.; Takeshita, Y.; Obermeier, B.; Kryzer, T. J.; Sano, Y.; Kanda, T. Glucose-regulated protein 78 autoantibody associates with blood-brain barrier disruption in myeloneuropathy. *Sci. Transl. Med.* 2017, 9 (397), eaay9111.

122) Matsuda, Y.; Arimura, Y.; Nagai, T.; Hirohata, S. Elevation of serum anti-glucose-regulated protein 78 antibodies in neuro-psychiatric systemic lupus erythematosus. * Lupus Science & Medicine* 2018, 5 (1), No. e000281.

123) Jin, X.; Rieu, T. R.; Kim, H. L.; Kim, S.; Lee, M. Y. Spatiotemporal Expression of GRP78 in the Blood Vessels of Rats Treated With 3-Nitropropionic Acid Correlates With Blood-Brain Barrier Disruption. *Front. Cell. Neurosci.* 2018, 12, 434.

124) Ibrahim, I. M.; Abdelmalek, D. H.; Elshahat, M. E.; Elfyky, A. A. COVID-19 spike-host cell receptor GRP78 binding site prediction. *Journal of infection 2020*, 80 (5), 554–562.

125) Zhang, Y.; Greer, R. A.; Song, Y.; Praveen, H.; Song, Y. In silico identification of available drugs targeting cell surface BiP to disrupt SARS-CoV-2 binding and replication: Drug repurposing silico identification of available drugs targeting cell surface BiP to disrupt SARS-CoV-2 binding and replication: Drug repurposing single-component transfer vector. *F1000Research* 2021, 3268. 10.21203/r7.5z83.1mdx

126) Arap, M. A.; Lahdenranta, J.; Mintz, P. J.; Hajitou, A.; Sarkis, A. S.; Arap, W.; Pasqualini, R. Cell surface GRP78: An emerging imaging marker and therapeutic target for cancer. *Journal of Controlled Release: official journal of the Controlled Release Society* 2020, 328, 932–941.

127) Han, M.; Xing, H.; Chen, L.; Cui, M.; Zhang, Y.; Qi, L.; Jin, M.; Yang, Y.; Gao, C.; Gao, Z.; et al. Efficient antiangioblastoma therapy in mice through doxorubicin-loaded nanomiscelles modified using a novel brain-targeted RVG-15 peptide. *J. Drug Targeting 2021*, 29 (9), 1016–1028.

128) Liu, Z.; Gao, X.; Kang, T.; Jiang, M.; Miao, D.; Gu, G.; Hu, X.; et al. Rapamycin-loaded PLGA-PEG nanoparticles for enhanced brain delivery of neuroprotective peptide. *Biomaterials* 2013, 34 (4), 1170–1176.

129) Motasadizadeh, H.; Shahbazi Mojarrad, J.; Atyabi, F.; Zakeri-Milani, P.; Valizadeh, H. Comparison of three synthetic transferrin mimetic ligand for tumor cell-specific prodrug therapy. *Journal of medicinal chemistry* 2016, 59 (21), 9444–9446.

130) Arap, M. A.; Lahdenranta, J.; Mintz, P. J.; Hajitou, A.; Sarkis, A. S.; Arap, W.; Pasqualini, R. Cell surface GRP78: An emerging imaging marker and therapeutic target for cancer. *Journal of Controlled Release: official journal of the Controlled Release Society* 2020, 328, 932–941.

131) Guan, J.; Jiang, Z.; Wang, M.; Liu, Y.; Liu, J.; Yang, Y.; Ding, T.; Lu, W.; Gao, C.; Qian, J.; et al. Short Peptide-Mediated Brain-Targeted Drug Delivery with Enhanced Immuno-compatibility. *Mol. Pharmaceutics* 2019, 16 (2), 907–913.

132) Gao, Y.; Wang, Z. Y.; Zhang, J.; Yang, Y.; Huo, H.; Wang, T.; Jiang, T.; Wang, S. RVG-peptide-linked trimethylated chitosan for delivery of siRNA to the brain. *Biomacromolecules* 2014, 15 (3), 1010–1018.

133) Park, T. E.; Singh, B.; Li, H.; Lee, J. Y.; Kang, S. K.; Choi, Y. J.; Cho, C. S. Enhanced BBB permeability of osmotically active poly(mannitol-co-PEI) modified with rabies virus glycoprotein via selective stimulation of caveolar endocytosis for RNAi therapeutics in Alzheimer’s disease. *Biomaterials* 2015, 38, 61–71.

134) Javed, H.; Menon, S. A.; Al-Mansoori, K. M.; Al-Wandi, A.; Majbour, N. K.; Ardhah, M. T.; Varghese, S.; Vaikath, N. N.; Haque, M. E.; Azzouz, M.; et al. Development of Nonviral Vectors Targeting the Brain as a Therapeutic Approach For Parkinson’s Disease and Other Brain Disorders. *Molecular therapy: the journal of the American Society of Gene Therapy* 2016, 24 (4), 746–758.

135) Hua, H.; Zhang, X.; Mu, H.; Meng, Q.; Jiang, Y.; Wang, Y.; Lu, X.; Wang, A.; Liu, S.; Zhang, Y.; et al. RVG29-modified docetaxel-loaded nanoparticles for brain-targeted glioma therapy. *International journal of pharmaceutical sciences* 2018, 543 (1–2), 179–189.

136) Arap, M. A.; Lahdenranta, J.; Mintz, P. J.; Hajitou, A.; Sarkis, A. S.; Farshbaf, M.; Hemmati, S.; Sarfraz, M.; Motosadizadeh, H.; Shahbazi Mohammad, J.; Ayabi, F.; Zakeri-Milani, P.; Valizadeh, H. Comparison of three synthetic transferrin mimetic small peptides to promote the blood–brain barrier penetration of vincristine liposomes for improved glioma targeted therapy. *Int. J. Pharm.* 2022, 613, 121395.

137) Staquicini, F. I.; Ozawa, M. G.; Moya, C. A.; Diessien, W. H.; Barbu, E. M.; Nishimori, H.; Soghomonyan, S.; Flores, L. G., 2nd; ...
Liang, X.; Paolillo, V.; et al. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma. *J. Clin. Invest.* 2011, 121 (1), 161–173.

(150) Kang, T.; Jiang, M.; Jiang, D.; Feng, X.; Yao, J.; Song, Q.; Chen, H.; Gao, X.; Chen, J. Enhancing Glioblastoma-Specific Penetration by Functionalization of Nanoparticles with an Iron-Mimic Peptide Targeting Transferin/Transferin Receptor Complex. *Mol. Pharmaceutics* 2015, 12 (8), 2947–2961.

(151) Lee, J. H.; Engler, J. A.; Collawn, J. F.; Moore, B. A. Receptor mediated uptake of peptides that bind the human transferrin receptor. *European journal of biochemistry* 2001, 268 (7), 2004–2012.

(152) Kuang, Y.; An, S.; Guo, Y.; Huang, S.; Shao, K.; Liu, Y.; Li, J.; Ma, H.; Jiang, C. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. *International journal of pharmacaceutics* 2013, 454 (1), 11–20.

(153) Du, W.; Fan, Y.; Zheng, N.; He, B.; Yuan, L.; Zhang, H.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. Transferin receptor specific nanocarriers conjugated with functional 6peptide for oral drug delivery. *Biomaterials* 2013, 34 (3), 794–806.

(154) Wang, Z.; Zhao, Y.; Jiang, Y.; Lv, W.; Wu, L.; Wang, B.; Lv, L.; Xu, Q.; Xin, H. Enhanced anti-ischemic stroke of ZL006 by T7-conjugated PEGylated liposomes drug delivery system. *Sci. Rep.* 2015, 5, 12651.

(155) Xie, Y.; Killinger, B.; Mosczynska, A.; Merkel, O. M. Targeted Delivery of siRNA to Transferin Receptor Overexpressing Tumor Cells via Peptide Modified Polyethyleneimine. *Molecules* 2016, 21 (10), 1334.

(156) Kuang, Y.; Jiang, X.; Zhang, Y.; Lu, Y.; Ma, H.; Guo, Y.; Zhang, Y.; An, S.; Li, J.; Liu, L.; et al. Dual Functional Peptide-Driven Nanoparticles for Highly Efficient Glioma-Targeting and Drug Codelivery. *Mol. Pharmaceutics* 2016, 13 (5), 1599–1607.

(157) Chen, C.; Duan, Z.; Yuan, Y.; Li, R.; Pang, L.; Liang, J.; Xu, X.; Wang, J. Peptide-22 and Cyclic RGD Functionalized Liposomes for Glioma Targeting Drug Delivery Overcoming BBB and BBTB. *ACS Appl. Mater. Interfaces* 2017, 9 (7), 5864–5873.

(158) Arranz-Gilbert, P.; Prades, R.; Guixer, B.; Guerrero, S.; Araya, E.; Ciudad, S.; Kogan, M. J.; Giralt, E.; Teixidó, M. HAI Peptide and Backbone Analogs-Validation and Enhancement of Biotostability and Bioactivity of BBB Shuttles. *Sci. Rep.* 2018, 8 (1), 17932.

(159) Cui, L.; Wang, Y.; Liang, M.; Chu, X.; Fu, S.; Gao, C.; Liu, Q.; Gong, W.; Yang, M.; Li, Z.; et al. Dual-modified natural high density lipoprotein particles for systemic glioma-targeting drug delivery. *Drug delivery* 2018, 25 (1), 1865–1876.

(160) Liang, M.; Gao, C.; Wang, Y.; Gong, W.; Fu, S.; Cui, L.; Zhou, Z.; Chu, X.; Zhang, Y.; Liu, Q.; et al. Enhanced blood-brain barrier penetration and glioma therapy mediated by T7 peptide-modified low-density lipoprotein particles. *Drug delivery* 2018, 25 (1), 1652–1663.

(161) Wang, X.; Mao, W.; Wang, Z.; Li, X.; Xiong, Y.; Lu, H.; Wang, X.; Yin, H.; Cao, X.; Xin, H. Enhanced Anti-Brain Metastasis from Non-Small Cell Lung Cancer of Osimertinib and Doxorubicin Co-Delivery Targeted Nanocarrier. *International journal of nanomedicine* 2020, 15, 5491–5505.

(162) Han, L.; Huang, R.; Liu, S.; Huang, S.; Jiang, C. Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors. *Mol. Pharmaceutics* 2010, 7 (6), 2156–2165.

(163) Shteiinber-Kuzminie, A.; Arif, T.; Krelin, Y.; Tripathi, S. S.; Paul, A.; Shoshan-Barmatz, V. Mitochondrial VDAC1-based peptides: Attacking oncogenic properties in glioblastoma. *Oncotarget* 2017, 8 (19), 31329–31346.

(164) Wängler, C.; Nada, D.; Höfner, G.; Maschauer, S.; Wängler, B.; Schneider, S.; Schirmacher, E.; Wanner, K. T.; Schirmacher, R.; Prante, O. In vitro and initial in vivo evaluation of 68Ga-labeled transferrin receptor (TIR) binding peptides as potential carriers for enhanced drug transport into TIR expressing cells. *Molecular imaging and biology* 2011, 13 (2), 332–341.

(165) Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zarita, E.; Selva, J.; Egea, G.; López-Iglesias, C.; Teixidó, M.; et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. *Biomaterials* 2012, 33 (29), 7194–7205.

(166) Gomes, M. J.; Kennedy, P. J.; Martins, S.; Sarmento, B. Delivery of siRNA silencing P-gp in peptide-functionalized nanoparticles causes efflux modulation at the blood-brain barrier. *Chemical science* 2018, 9 (44), 8409–8415.

(167) Díaz-Perlas, C.; Oller-Salvia, B.; Sánchez-Navarro, M.; Teixidó, M.; Giralt, E. Branched BB-shuttle peptides: chemoselective modification of proteins to enhance blood-brain barrier transport. *European journal of pharmacetical sciences: official journal of the European Federation for Pharmaceutical Sciences* 2017, 45 (3), 330–335.

(170) van Rooy, I.; Cakir-Tascigolu, S.; Couraud, P. O.; Romero, L. A.; Weksler, B.; Storm, G.; Hennink, W. E.; Schifferles, R. M.; Mastrobattista, E. Identification of peptide ligands for targeting to the blood-brain barrier. *Pharm. Res.* 2010, 27 (4), 673–682.

(171) Wu, L. P.; Ahmadvand, D.; Su, J.; Hall, A.; Tan, X.; Farhangzari, Z. S.; Moghim, S. M. Crossing the blood-brain-barrier with nanoligand drug carriers self-assembled from a phage display peptide. *Nat. Commun.* 2019, 10 (1), 4635.

(172) Miao, D.; Jiang, M.; Liu, Z.; Gu, G.; Hu, Q.; Kang, T.; Song, Q.; Yao, L.; Li, W.; Gao, X.; et al. Co-administration of dual-targeting nanoparticles with penetration enhancement peptide for anti-glioblastoma therapy. *Mol. Pharmaceutics* 2014, 11 (1), 90–101.

(173) Jin, Z.; Piao, L.; Sun, G.; Lv, C.; Jing, Y.; Jin, R. Dual functional nanoparticles efficiently across the blood-brain barrier to combat glioblastoma via simultaneously inhibit the PI3K pathway and NKG2A axis. *J. Drug Targeting* 2021, 29 (3), 325–335.

(174) Ying, M.; Wang, S.; Zhang, M.; Wang, R.; Zhu, H.; Ruan, H.; Ran, D.; Chai, Z.; Wang, X.; Lu, W. Muristic Acid-Modified (D)A7R Peptide for Whole-Process Gloma-Targeted Drug Delivery. *ACS Appl. Mater. Interfaces* 2018, 10 (23), 19473–19482.

(175) Song, Y.; Li, W.; Meng, S.; Zhou, W.; Su, B.; Tang, L.; Zhao, Y.; Wu, X.; Yin, D.; Fan, M.; et al. El dual integrin αvβ3 and NRP-1-Targeting Paramagnetic Liposome for Tumor Early Detection in Magnetic Resonance Imaging. *Nano-Res. Lett.* 2018, 13 (1), 380.

(176) Belhadj, Z.; Ying, M.; Cao, X.; Hu, X.; Zhan, C.; Wei, X.; Gao, J.; Wang, X.; Yan, Z.; Lu, W. Design of Y-shaped targeting material for liposome-based multifunctional glioblastoma-targeted drug delivery. *Journal of controlled release: official journal of the Controlled Release Society* 2017, 255, 132–141.

(177) Lu, L.; Zhao, X.; Fu, T.; Li, K.; He, Y.; Luo, Z.; Dai, L.; Zeng, R.; Cai, K. An iRGD-conjugated prodrug micelle with blood-brain-barrier penetrability for anti-glioma therapy. *Biomaterials* 2020, 230, 119666.

(178) Zhang, X.; Li, X.; Hua, H.; Wang, A.; Liu, W.; Li, Y.; Fu, F.; Shi, Y.; Sun, K. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue. *International journal of nanomedicine* 2017, 12, 5717–5732.

(179) Hou, J.; Diao, Y.; Li, W.; Yang, Z.; Zhang, L.; Chen, Z.; Wu, Y. RGD peptide conjugation results in enhanced antitumor activity of PD0325901 against glioblastoma by both tumor-targeting delivery and combination therapy. *International journal of pharmaceutical sciences* 2016, 505 (1–2), 329–340.

(180) Bertrand, Y.; Currie, J. C.; Poirier, J.; Demeule, M.; Aubrol, A.; Fatehi, D.; Stanimirovic, D.; Sartelet, H.; Castaigne, J. P.; Beliveau, R. Influence of glioma tumour microenvironment on the transport of...
Glioma.

for Targeted and pH-Triggered Delivery of Arsenic Trioxide into Drug Delivery particles delivery TMZ for glioma synergistic TMZ and RT therapy. Modified lipid-poly (hypoxic radiosensitized polyprodrug) nanoparticles delivery system for brain glioma. A novel LRP1-binding peptide L57 that crosses the blood brain barrier. Oncotarget 2016, 7 (48), 79401–79407.

Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials 2011, 32 (28), 6832–6838.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

L; Lu, J.; Li, W.; et al. Targeted Imaging of Brain Tumors with a Framework Nucleic Acid Probe. Mater. Interfaces 2019, 4 (10), 32625.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

L; Lu, J.; Li, W.; et al. Targeted Imaging of Brain Tumors with a Framework Nucleic Acid Probe. Mater. Interfaces 2019, 4 (10), 32625.

Angiopep-2 modified PE-PEG based polymeric micelles for Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials 2011, 32 (28), 6832–6838.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials 2011, 32 (28), 6832–6838.

Communication of five different targeting ligands to enhance accumulation of liposomes into the brain. J. Controlled Release 2011, 150 (1), 30–36.

Retro-inverso isomer of Angiopep-2: a stable d-peptide ligand inspires brain-targeted drug delivery. Mol. Pharmaceutics 2014, 11 (10), 3261–3268.

Retro-inverso isomer of Angiopep-2: a stable d-peptide ligand inspires brain-targeted drug delivery. Mol. Pharmaceutics 2014, 11 (10), 3261–3268.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

Angiopep-2 modified PE-PEG based polymeric micelles for Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma. Biomaterials 2011, 32 (28), 6832–6838.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.

A cascade targeting strategy for brain neuronal cells employing nanoparticles modified with angiopep-2 peptide and EGFP-EGF1 protein. Biomaterials 2011, 32 (33), 8669–8675.
(211) Ruan, H.; Chai, Z.; Shen, Q.; Chen, X.; Su, B.; Xie, C.; Zhan, C.; Yao, S.; Wang, H.; Zhang, M.; et al. A novel peptide ligand RAP12 of LRP1 for glioma targeted drug delivery. Journal of controlled release: official journal of the Controlled Release Society 2018, 279, 306–315.

(212) Zhang, B.; Sun, X.; Mei, H.; Wang, Y.; Liao, Z.; Chen, J.; Zhang, Q.; Hu, Y.; Pang, Z.; Jiang, X. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Biomaterials 2013, 34 (36), 9171–9182.

(213) Jacquot, G.; Lécorché, P.; Malcòr, J. D.; Laurencin, M.; Sminnova, M.; Varini, K.; Malicet, C.; Gassiot, F.; Abouzid, K.; Faucon, A.; et al. Optimization and in Vivo Validation of Peptide Vectors Targeting the LDL Receptor. Mol. Pharmaceutics 2016, 13 (12), 4094–4105.

(214) David, M.; Lécorché, P.; Masse, M.; Faucon, A.; Abouzid, K.; Gaudin, N.; Varini, K.; Gassiot, F.; Ferracci, G.; Jacquot, G.; et al. Identification and characterization of highly versatile peptide-vectors that bind non-competitively to the low-density lipoprotein receptor for in vivo targeting and delivery of small molecules and protein cargos. PloS one 2018, 13 (2), No. e0191052.

(215) Lynch, J. R.; Tang, W.; Wang, H.; Vitek, M. P.; Bennett, E. R.; Sullivan, P. M.; Warner, D. S.; Laskowitz, D. T. APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response. J. Biol. Chem. 2003, 278 (49), 48529–48533.

(216) Al-Azzawi, S.; Masheta, D.; Guildford, A.; Phillips, G.; Santin, M. Designing and Characterization of a Novel Delivery System for Improved Cellular Uptake by Brain Using Dendronised Apo-E Derived Peptide. Front. Bioeng. Biotechnol. 2019, 7, 49.

(217) Wang, D.; El-Amouri, S. S.; Dai, M.; Kuan, C. Y.; Hui, D. Y.; Brady, R. O.; Pan, D. Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood-brain barrier. Proc. Natl. Acad. Sci. U.S.A. 2013, 110 (8), 2999–3004.

(218) Jiang, Y.; Zhang, J.; Meng, F.; Zhong, Z. Apolipoprotein E Peptide-Directed Chimeric Polymersomes Mediate an Ultrahigh-Efficiency Targeted Protein Therapy for Glioblastoma. ACS Nano 2018, 12 (11), 11070–11079.

(219) Qin, H.; Jiang, Y.; Zhang, J.; Deng, C.; Zhong, Z. Oncoprotein Inhibitor Rigosertib Loaded in ApoE-Targeted Smart Polymersomes Reveals High Safety and Potency against Human Glioblastoma in Mice. Mol. Pharmaceutics 2019, 16 (8), 3711–3719.

(220) Spencer, B. J.; Verma, I. M. Targeted delivery of proteins across the blood-brain barrier. Proc. Natl. Acad. Sci. U.S.A. 2007, 104 (18), 7594–7599.

(221) Spencer, B.; Marr, R. A.; Gindi, R.; Potkar, R.; Michael, S.; Adame, A.; Rockenstein, E.; Verma, I. M.; Masliah, E. Peripheral delivery of a CNS targeted, metalo-protease reduces α/β toxicity in a mouse model of Alzheimer’s disease. PloS one 2011, 6 (1), No. e16575.

(222) Sorrentino, N. C.; D’Orsi, L.; Sambri, I.; Nunso, E.; Monaco, C.; Spampanato, C.; Polishchuk, E.; Saccone, P.; De Leonibus, E.; Grilli, M.; et al. A highly secreted sulphamidase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA. EMBO Mol. Med. 2013, 5 (5), 675–690.

(223) Ran, D.; Mao, J.; Shen, Q.; Xie, C.; Zhan, C.; Wang, R.; Lu, W. GRP78 enabled micelle-based glioma targeted drug delivery. Journal of controlled release: official journal of the Controlled Release Society 2017, 255, 120–131.

(224) Wang, X.; Meng, N.; Wang, S.; Zhang, Y.; Lu, L.; Wang, R.; Ruan, H.; Jiang, K.; Wang, H.; Ran, D.; et al. Non-immunogenic, low-toxicity and glioma targeting MTT-31 liposomes. Journal of controlled release: official journal of the Controlled Release Society 2019, 316, 381–392.

(225) Duskey, J. T.; Ottonelli, I.; Da Ros, F.; Villela, A.; Zoli, M.; Kovachka, S.; Spyrakis, F.; Vandelli, M. A.; Tosi, G.; Ruozzi, B. Novel peptide-conjugated nanomedicines for brain targeting: In vivo evidence. Nanomedicine 2020, 28, 102226.
Discover blood-brain barrier (BBB)-shuttle peptides: panning against a human BBB cellular model. *Biopolymers 2017, 108 (1), e22928.

(259) Li, J.; Feng, L.; Jiang, X. In vivo phage display screen for peptide sequences that cross the blood-cerebrospinal-fluid barrier. *Amino acids 2015, 47 (2), 401–405.

(260) Smith, M. W.; Al-Jayyousi, G.; Gumbleton, M. Peptide sequences mediating tropism to intact blood-brain barrier: an in vivo biodistribution study using phage display. *Peptides 2012, 38 (1), 172–180.

(261) Zhang, H.; Gerson, T.; Varney, M. L.; Singh, R. K.; Vinogradov, S. V. Multifunctional peptide-PEG intercalating conjugates: programmatic of gene delivery to the blood-brain barrier. *Pharm. Res. 2010, 27 (12), 2528–2543.

(262) Hong, H. Y.; Choi, J. S.; Kim, Y. J.; Lee, H. Y.; Kwak, W.; Yoo, J.; Lee, J. T.; Kwon, T. H.; Kim, I. S.; Han, H. S.; et al. Detection of apoptosis in a rat model of focal cerebral ischemia using a homing peptide selected from in vivo phage display. *Journal of controlled release: official journal of the Controlled Release Society 2008, 131 (3), 167–172.

(263) Oller-Salvia, B.; Sánchez-Navarro, M.; Ciudad, S.; Guiu, M.; Arranz-Gibert, P.; Garcia, C.; Gomis, R. R.; Cecchelli, R.; García, J.; Gilart, E.; et al. Mini-Ap-4: A Venom-Inspired Peptidomimetic for Brain Delivery. *Angewandte Chemie (International ed. in English) 2016, 55 (5), 572–575.

(264) Islam, Y.; Khalid, A.; Pluchino, S.; Sivakumaran, M.; Teixidó, M.; Leach, A.; Fatokun, A. A.; Downing, J.; Coxon, C.; Ehtezazi, T. Development of Brain Targeting Peptide Based MPP-9 Inhibiting Nanoparticles for the Treatment of Brain Diseases with Elevated MPP-9 Activity. *Journal of pharmaceutical sciences 2020, 109 (10), 3134–3144.

(265) Li, J.; Feng, L.; Fan, L.; Zha, Y.; Guo, L.; Zhang, Q.; Chen, J.; Pang, Z.; Wang, Y.; Jiang, X.; et al. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides. *Biomaterials 2011, 32 (21), 4943–4950.

(266) Gao, H.; Qian, J.; Cao, S.; Yang, Z.; Pang, Z.; Pan, S.; Fan, L.; Xi, Z.; Jiang, X.; Zhang, Q. Precise glioma targeting of and penetration by aptamer and peptide dual-functionalized nanoparticles. *Biomaterials 2012, 33 (20), 5115–5123.

(267) Qian, Y.; Zha, Y.; Feng, B.; Pang, Z.; Zhang, B.; Sun, X.; Ren, J.; Zhang, C.; Shao, X.; Zhang, Q.; et al. PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phase-displayed TGN peptide for brain-targeted gene delivery. *Biomaterials 2013, 34 (8), 2117–2129.

(268) Ma, H.; Gao, Z.; Yu, P.; Shen, S.; Liu, Y.; Xu, B. A dual functional fluorescent probe for glioma imaging mediated by blood-brain barrier penetration and glioma cell targeting. *Biochemical and biophysical research communications 2014, 449 (1), 44–48.

(269) Tjandra, K. C.; McCarthy, N.; Yang, L.; Laos, A. J.; Sharbeen, G.; Phillips, P. A.; Forgham, H.; Sagnella, S. M.; Whan, R. M.; Kavallaris, M.; et al. Identification of Novel Medulloblastoma Cell-Targeting Peptides for Use in Selective Chemotherapy Drug Delivery. *Journal of medicinal chemistry 2020, 63 (5), 2181–2193.

(270) Pasqualini, R.; Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. *Nature 1996, 380 (6572), 364–366.

(271) Sellers, D. L.; Tan, J. Y.; Pineda, J. M. B.; Peeler, D. J.; Porubsky, V. L.; Olden, B. R.; Salipante, S. J.; Pan, S. H. Targeting Ligands Deliver Model Drug Cargo into the Central Nervous System along Autonomic Neurons. *ACS Nano 2019, 13 (10), 10961–10971.

(272) Urich, E.; Schmucki, R.; Ruderisch, N.; Kitas, E.; Certa, U.; Jacobson, H.; Schweitzer, C.; Bergadano, A.; Ebeling, M.; Loetscher, H.; et al. Cargo Delivery into the Brain by in vivo identified Transport Peptides. *Sci. Rep. 2015, 5, 14104.

(273) Yamaguchi, S.; Ito, S.; Masuda, T.; Couraud, P. O.; Ohtsuki, S. Novel cyclic peptides facilitating transcellular blood-brain barrier transport of macromolecules in vitro and in vivo. *Journal of controlled release: official journal of the Controlled Release Society 2020, 321, 744–755.

(274) Agrawal, P.; Bhatta, S.; Usmani, S. S.; Singh, S.; Chaudhary, K.; Raghava, G. P.; Gautam, A. CPPsite 2.0: a repository of...
Comparison of four different peptides to enhance accumulation of liposomes into the brain. *J. Drug Targeting* 2012, 20 (3), 235–245.

Yu, R.; Zeng, Z.; Guo, X.; Zhang, H.; Liu, X.; Ding, Y.; Chen, J. The TAT peptide endows PACAP with an enhanced ability to traverse bio-barriers. *Neuroscience letters* 2012, 527 (1), 1–5.

Malhotra, M.; Tomaro-Duchesneau, C.; Prakash, S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. *Biomaterials* 2013, 34 (4), 1270–1280.

Yu, R.; Yang, Y.; Cui, Z.; Zheng, L.; Zeng, Z.; Zhang, H. Novel peptide VIP-TAT with higher affinity for PAC1 inhibited scopolamine delivery targeting neurodegenerative diseases. *Theranostics* 2020, 10 (7), 3138–3150.

Groen, T.; Wiesehan, K.; Funke, S. A.; Kadish, I.; Nagel-Steger, L.; Willbold, D. Reduction of Alzheimer’s disease amyloid plaque load in transgenic mice by D3, A D-enantiomeric peptide identified by mirror image phage display. *ChemMedChem* 2008, 3 (12), 1848–1852.

Groen, T.; Kadish, I.; Wiesehan, K.; Funke, S. A.; Willbold, D. In vitro and in vivo staining characteristics of small, fluorescent, Abetat2-binding D-enantiomeric peptides in transgenic AD mouse models. *ChemMedChem* 2009, 4 (2), 276–282.

Groen, T.; Kadish, I.; Funke, S. A.; Bartnik, D.; Willbold, D. Treatment with D3 removes amyloid deposits, reduces inflammation, and improves cognition in aged AβPP/PS1 double transgenic mice. *Alzheimer’s Dis.* 2013, 34 (3), 609–620.

Jiang, N.; Frenzel, D.; Schartmann, E.; van Groen, T.; Kadish, I.; Shah, N. J.; Langen, K. J.; Willbold, D.; Willuweit, A. Blood-brain barrier penetration of an AβPP/PS1 double transgenic mouse. *Trends in synthetic biology* 2011, 34 (3), 609–620.}

Li, H.; Zhang, W.; Ma, L.; Fan, L.; Gao, F.; Ni, J.; Wang, R. The improved blood-brain barrier permeability of endomorphin-1 and endomorphin-2 in transgenic mice. *Mol. Pharmaceutics* 2012, 9 (1), 376–386.

Liu, H.; Zhang, Q.; Chen, H.; Yuan, W.; Kuai, R.; Xie, F.; Zhang, L.; Wang, X.; Zhang, Z.; Liu, J.; et al. Comparison of four different peptides to enhance accumulation of liposomes into the brain. *J. Drug Targeting* 2012, 20 (3), 235–245.

Yu, R.; Zeng, Z.; Guo, X.; Zhang, H.; Liu, X.; Ding, Y.; Chen, J. The TAT peptide endows PACAP with an enhanced ability to traverse bio-barriers. *Neuroscience letters* 2012, 527 (1), 1–5.

Malhotra, M.; Tomaro-Duchesneau, C.; Prakash, S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. *Biomaterials* 2013, 34 (4), 1270–1280.

Yu, R.; Yang, Y.; Cui, Z.; Zheng, L.; Zeng, Z.; Zhang, H. Novel peptide VIP-TAT with higher affinity for PAC1 inhibited scopolamine delivery targeting neurodegenerative diseases. *Theranostics* 2020, 10 (7), 3138–3150.

Groen, T.; Wiesehan, K.; Funke, S. A.; Kadish, I.; Nagel-Steger, L.; Willbold, D. Reduction of Alzheimer’s disease amyloid plaque load in transgenic mice by D3, A D-enantiomeric peptide identified by mirror image phage display. *ChemMedChem* 2008, 3 (12), 1848–1852.

Groen, T.; Kadish, I.; Wiesehan, K.; Funke, S. A.; Willbold, D. In vitro and in vivo staining characteristics of small, fluorescent, Abetat2-binding D-enantiomeric peptides in transgenic AD mouse models. *ChemMedChem* 2009, 4 (2), 276–282.

Groen, T.; Kadish, I.; Funke, S. A.; Bartnik, D.; Willbold, D. Treatment with D3 removes amyloid deposits, reduces inflammation, and improves cognition in aged AβPP/PS1 double transgenic mice. *Alzheimer’s Dis.* 2013, 34 (3), 609–620.

Jiang, N.; Frenzel, D.; Schartmann, E.; van Groen, T.; Kadish, I.; Shah, N. J.; Langen, K. J.; Willbold, D.; Willuweit, A. Blood-brain barrier penetration of an AβPP/PS1 double transgenic mouse. *Trends in synthetic biology* 2011, 34 (3), 609–620.
(342) Salvalaio, M.; Rigon, L.; Belleti, D.; D’Avanzo, F.; Pederzoli, F.; Ruozzi, B.; Marin, O.; Vandelli, M. A.; Forni, F.; Scarpa, M.; et al. Targeted Polymeric Nanoparticles for Brain Delivery of High Molecular Weight Molecules in Lysosomal Storage Disorders. *PloS one* **2016**, *11* (5), e0156452.

(343) Rigon, L.; Salvalaio, M.; Pederzoli, F.; Legnini, E.; Duskey, J. T.; D’Avanzo, F.; De Filippis, C.; Ruozzi, B.; Marin, O.; Vandelli, M. A. Targeting Brain Disease in MPSII: Preclinical Evaluation of IDS-Loaded PLGA Nanoparticles. *Int. J. Mol. Sci.* **2019**, *20* (8), 2014.

(344) Neves, V.; Aires-da-Silva, F.; Morais, M.; Gano, L.; Ribeiro, E.; Pinto, A.; Aguiar, S.; Gaspar, D.; Fernandes, C.; Correia, J. D. G.; et al. Novel Peptides Derived from Dengue Virus Capsid Protein Translocate Reversibly the Blood-Brain Barrier through a Receptor-Free Mechanism. *ACS Chem. Biol.* **2017**, *12* (5), 1257–1268.

(345) Cavaco, M.; Valle, J.; da Silva, R.; Correia, J. D. G.; Castanho, M.; Andreu, D.; Neves, V. (D)PepH3, an Improved Peptide Shuttle for Receptor-independent Transport Across the Blood-Brain Barrier. *Current pharmaceutical design* **2020**, *26* (13), 1495–1506.

(346) Malakoutikhah, M.; Prades, R.; Teixido, M.; Giralt, E. N-methyl phenylalanine-rich peptides as highly versatile blood-brain barrier shuttles. *Journal of medicinal chemistry* **2010**, *53* (6), 2354–2363.

(347) Malakoutikhah, M.; Guixer, B.; Arranz-Gibert, P.; Teixido, M.; Giralt, E. ‘À la carte’ peptide shuttles: tools to increase their passage across the blood-brain barrier. *ChemMedChem* **2014**, *9* (7), 1594–1601.

(348) Arranz-Gibert, P.; Guixer, B.; Malakoutikhah, M.; Muttenthaler, M.; Guzmán, F.; Teixido, M.; Giralt, E. Lipid bilayer crossing-the gate of symmetry. Water-soluble phenylproline-based brain barrier-permeable peptide enabling ctCTLA-4 protein delivery across the blood-brain barrier. *PloS one* **2015**, *10* (11), e0142071.

(349) Ran, D.; Mao, J.; Zhan, C.; Xie, C.; Ruan, H.; Ying, M.; Zhou, J.; Lu, W. L.; Lu, W. d-Retroenantiomer of Quorum-Sensing Peptide-crossing-the gate of symmetry. Water-soluble phenylproline-based brain barrier-permeable peptide enabling ctCTLA-4 protein delivery across the blood-brain barrier. *PloS one* **2015**, *10* (11), e0142071.

(350) Lim, S.; Kim, W. J.; Kim, Y. H.; Lee, S.; Koo, J. H.; Lee, J. A.; Yoon, H.; Kim, D. H.; Park, H. J.; Kim, H. M.; et al. dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery across the blood-brain barrier. *ACS omega* **2019**, *4* (11), No. e0156452.

(351) Li, Q.; Wang, S.; Xiao, W.; Huang, C.; Li, H.; Sun, M. BBs: Permeable Conjugate of Exogenic GABA. *ACS omega* **2017**, *2* (8), 4108–4111.

(352) Lee, H. G.; Lim, K. L.; Choi, J. M. NFAT-Specific Inhibition by dNP2-VIVITAmeliorates Autoimmune Encephalomyelitis by Regulation of Th1 and Th17. *Molecular therapy. Methods & clinical development* **2020**, *16*, 32–41.

(353) Gulyaev, A. E.; Gelperina, S. E.; Skidan, I. N.; Antropov, A. S.; Iverson, L. J.; Kreuter, J. Signiﬁcant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. *Pharm. Res.* **1999**, *16* (10), 1564–1569.

(354) Ambruosi, A.; Yamamoto, H.; Kreuter, J. Body distribution of polysorbate-80 and doxorubicin-loaded [14C]-polyl[butyl cyanoacrylate] nanoparticles after i.v. administration in rats. *J. Drug Targeting* **2005**, *13* (10), 535–542.

(355) Calvo, P.; Gouritin, B.; Villarroya, H.; Eclancher, F.; Giannavola, C.; Klein, C.; Andreux, J. P.; Couvreur, P. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in the Controlled Release Society International Symposium on the Controlled Release Society. *Controlled Release Society* **2016**, 264–278.

(356) Calvo, P.; Villa, B.; Gouritin, B.; Villarroya, H.; Eclancher, F.; Giannavola, C.; Klein, C.; Andreux, J. P.; Couvreur, P. Quantification and localization of PEGylated polycyanoacrylate nanoparticles in the Controlled Release Society International Symposium on the Controlled Release Society. *Controlled Release Society* **2016**, 264–278.

(357) Wohlfart, S.; Khalansky, A. S.; Gelperina, S. E.; Skidan, I. N.; Antropov, A. S.; Iverson, L. J.; Kreuter, J. Kinetics of transport of doxorubicin bound to nanoparticles across triple co-culture blood brain barrier model and specific in vivo neuronal transfection. *Journal of controlled release: official journal of the Controlled Release Society* **2018**, *286*, 264–278.

(358) Cavaco, M.; Valle, J.; da Silva, R.; Correia, J. D. G.; Castanho, M.; Andreu, D.; Neves, V. (D)PepH3, an Improved Peptide Shuttle for Receptor-independent Transport Across the Blood-Brain Barrier. *Current pharmaceutical design* **2020**, *26* (13), 1495–1506.

(359) Lo, E. H.; Medarova, Z.; Rosen, B.; Moore, A. Crossing the blood-brain barrier: a potential application of myristoylated polyarginine for in vivo neuroimaging. *NeuroImage* **2005**, *28* (1), 287–292.

(360) Gotanda, Y.; Wei, F. Y.; Harada, H.; Ohta, K.; Nakamura, K.; I.; Tomizawa, K.; Ushijima, K. Efficient transduction of 11 polyarginine peptide in an ischemic lesion of mouse brain. *Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association* **2014**, *23* (8), 2023–2030.
across the blood-brain barrier. Journal of controlled release: official journal of the Controlled Release Society 2011, 154 (1), 103–107.

(374) Kumar, P.; Wu, H.; McBride, J. L.; Jung, K.-E.; Hee Kim, M.; Davidson, B. L.; Kyung Lee, S.; Shankar, P.; Manjunath, N. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007, 448 (7149), 39–43.

(375) Gong, C.; Li, X.; Xu, L.; Zhang, Y. H. Target delivery of a gene into the brain using the RVG29-oligoarginine peptide. Biomaterials 2012, 33 (12), 3456–3463.

(376) Basso, J.; Mendes, M.; Silva, J.; Sereno, J.; Cova, T.; Oliveira, R.; Fortuna, A.; Castelo-Branco, M.; Falcão, A.; Sousa, J.; et al. Peptide-lipid nanoconstructs act site-specifically towards glioblastoma growth impairment. European journal of pharmacaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik eV 2020, 155, 177–189.

(377) Mendes, M.; Cova, T.; Basso, J.; Ramos, M. L.; Vitorino, R.; Sousa, J.; Pais, A.; Vitorino, C. Hierarchical design of hyaluronic acid-peptide constructs for glioblastoma targeting: Combining insights from NMR and molecular dynamics simulations. J. Mol. Liq. 2020, 315, 113774.

(378) Ruan, S.; Xiao, W.; Hu, C.; Zhang, H.; Rao, J.; Wang, S.; Wang, X.; He, Q.; Gao, H. Ligand-Mediated and Enzyme-Directed Precise Targeting and Retention for the Enhanced Treatment of Glioblastoma. ACS Appl. Mater. Interfaces 2017, 9 (24), 20348–20360.

(379) Liu, Y.; Ran, R.; Chen, J.; Kuang, Q.; Tang, J.; Mei, L.; Zhang, Q.; Gao, H.; Zhang, Z.; He, Q. Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. Biomaterials 2014, 35 (17), 4835–4847.

(380) Li, F. Q.; Sempowski, G. D.; McKenna, S. E.; Laskowitz, D. T.; Colton, C. A.; Vitek, M. P. Apolipoprotein E-derived peptides ameliorate clinical disability and inflammatory infiltrates into the brain using the RVG29-oligoarginine peptide. Journal of controlled release: official journal of the Controlled Release Society 2012, 167 (1), 1–10.

(381) Takayama, K.; Nakase, I.; Michiue, H.; Takeuchi, T.; Tomizawa, K.; Matsu, H.; Futaki, S. Enhanced intracerebral delivery using arginine-rich peptides by the addition of penetration accelerating sequences (Pas). Journal of controlled release: official journal of the Controlled Release Society 2009, 138 (2), 128–133.

(382) Zhang, Y.; Zhai, M.; Chen, Z.; Han, X.; Yu, F.; Li, Z.; Xie, X.; Han, C.; Yu, L.; Yang, Y.; et al. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug delivery 2017, 24 (1), 1045–1055.

(383) Fu, S.; Liang, M.; Wang, Y.; Cui, L.; Gao, C.; Zhu, X.; Liu, Q.; Feng, Y.; Gong, W.; Yang, M.; et al. Dual-Modified Novel Biomimetic Nanocarriers Improve Targeting and Therapeutic Efficacy in Glioma. ACS Appl. Mater. Interfaces 2019, 11 (2), 1841–1854.

(384) Hu, Q.; Gu, G.; Liu, Z.; Jiang, M.; Kang, T.; Miao, D.; Tu, Y.; Pang, Z.; Song, Q.; Yao, L.; et al. F3 peptide-functionalized PEG-PLA nanoparticles co-administrated with tLyP-1 peptide for anti-glioma drug delivery. Biomaterials 2013, 34 (4), 1135–1145.

(385) Rbegberj, J.; Srimanee, A.; Erlandsson, M.; Sillard, R.; Dobchew, D. A.; Karelson, M.; Langel, U. Rational design of a series of novel amphiampathic cell-penetrating peptides. International journal of pharmaceutics 2014, 464 (1–2), 111–116.

(386) Srimanee, A.; Rbegberj, J.; Hallbrink, M.; Vajragupta, O.; Angel, U. Role of scavenger receptors in peptide-based delivery of plasmid DNA across a scavenger-brain barrier model. International journal of pharmacaceutics 2016, 500 (1–2), 128–135.

(387) Han, W.; Yin, G.; Pu, X.; Chen, X.; Liao, X.; Huang, Z. Glioma targeted delivery strategy of doxorubicin-loaded liposomes by dual-ligand modification. Journal of biomaterials science. Polymer edition 2017, 28 (15), 1695–1712.

(388) Zhu, Y.; Jiang, Y.; Meng, F.; Deng, C.; Cheng, R.; Zhang, J.; Feijen, J.; Zhong, Z. Highly efficacious and specific anti-glioma chemotherapy by tandem nanomicles co-functionalized with brain tumor-targeting and cell-penetrating peptides. Journal of controlled release: official journal of the Controlled Release Society 2018, 278, 1–8.

(389) Zhang, C.; Zhong, X.; Wan, X.; Shao, X.; Liu, Q.; Zhang, Z.; Zhang, Q. The potential use of H102 peptide-loaded dual-functional nanoparticles in the treatment of Alzheimer’s disease. Journal of controlled release: official journal of the Controlled Release Society 2014, 192, 317–324.

(390) Zhong, X.; Zhang, C.; Guo, Q.; Wan, X.; Shao, X.; Liu, Q.; Zhang, Q. Dual-functional nanoparticles for precise drug delivery to Alzheimer’s disease’s lesions: Targeting mechanisms, pharmacodynamics and safety. International journal of pharmaceutics 2017, 525 (1), 237–248.

(391) Cameron, J.; Moore, S.; Mayes, J.; Beeg, M.; Canovi, M.; Tinker, C.; Jones, G.; Kolosov, O.; Salvati, E.; Gregori, M.; Masserini, M.; et al. A novel retro-inverso peptide inhibitor reduces amyloid aggregation of a potential novel treatment for Alzheimer’s disease. Biochemistry 2010, 49 (15), 3261–3272.

(392) Parthasarathy, V.; McClean, P. L.; Hölscher, C.; Taylor, M.; Tinker, C.; Jones, G.; Kolosov, O.; Salvati, E.; Gregori, M.; Masserini, M.; et al. A novel retro-inverso peptide inhibitor reduces amyloid deposition, oxidation and inflammation and stimulates neurogenesis in the APP/PS1ΔE9 mouse model of Alzheimer’s disease. PLoS one 2013, 8 (1), e54769.
Molecular Pharmaceutics

S. Effects of the dimeric PSD-95 inhibitor UCCB01

Sahlholt, M.; Bach, A.; Gynther, M.; Strømgaard, K.; Pickering, D. S. In vitro and in vivo effects of a novel dimeric inhibitor of PSD-95 on excitotoxicity and functional recovery after experimental traumatic brain injury. European journal of neuroscience 2017, 45 (2), 238–248.

(419) Fu, B.; Zhang, Y.; Long, W.; Zhang, A.; Zhang, Y.; An, Y.; Miao, F.; Nie, F.; Li, M.; He, Y.; et al. Characterization and identification of a novel phage display-derived peptide with affinity for human brain metastatic breast cancer. Biotechnology letters 2014, 36 (11), 2291–2301.

(420) Ellerby, H. M.; Arap, W.; Ellerby, L. M.; Kain, R.; Andrusiak, R.; Rio, G. D.; Krajewski, S.; Lombardo, C. R.; Rao, R.; Ruoslahti, E.; et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nature medicine 1999, 5 (9), 1032–1038.

(421) Fu, B.; Long, W.; Zhang, Y.; Zhang, A.; Miao, F.; Shen, Y.; Pan, N.; Gan, G.; Nie, F.; He, Y.; et al. Enhanced antitumor effects of the BRBP1 compound peptide BRBP1-TAT-KLA on human brain metastatic breast cancer. Sci. Rep. 2015, 5, 8029.

(422) Wang, X.; Wang, H.; Jiang, K.; Zhang, Y.; Zhan, C.; Ying, M.; Zhang, M.; Lu, L.; Wang, R.; Wang, S.; et al. Liposomes with cyclic RGD peptide motif triggers acute immune response in mice. Journal of controlled release: official journal of the Controlled Release Society 2019, 293, 201–214.

(423) Wang, X.; Meng, N.; Wang, S.; Lu, L.; Wang, H.; Zhan, C.; Burgess, D. J.; Lu, W. Factors Influencing the Immunogenicity and Immunotoxicity of Cyclic RGD Peptide-Modified Nanodrug Delivery Systems. Mol. Pharmaceutics 2020, 17 (9), 3281–3290.

(424) Li, Q.; Xu, M.; Cui, Y.; Huang, C.; Sun, M. Arginine-rich membrane-permeable peptides are seriously toxic. Pharmacol. Res. Perspect. 2017, 5 (5), e00334.

(425) Saar, K.; Lindgren, M.; Hansen, M.; Eiriksdottir, E.; Jiang, Y.; Rosenthal-Aizman, K.; Sassian, M.; Langel, U. Cell-penetrating peptides: a comparative membrane toxicity study. Analytical biochemistry 2005, 345 (1), 55–65.

(426) Kilk, M.; Mahlapuu, R.; Soomets, U.; Langel, U. Analysis of in vitro toxicity of five cell-penetrating peptides by metabolic profiling. Toxicology 2009, 265 (3), 87–95.

(427) Jones, S. W.; Christison, R.; Bundell, K.; Voyce, C. J.; Brockbank, S. M.; Newham, P.; Lindsay, M. A. Characterisation of cell-penetrating peptide-mediated peptide delivery. British journal of pharmacology 2005, 145 (8), 1093–1102.

(428) El-Andaloussi, S.; Järver, P.; Johansson, H. J.; Langel, U. Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: a comparative study. Biochemical journal 2007, 407 (2), 285–292.

(429) Henriques, S. T.; Melo, M. N.; Castano, M. A. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochemical journal 2006, 399 (1), 1–7.

(430) Rodriguez Plaza, J. G.; Morales-Nava, R.; Diener, C.; Schreiber, G.; Gonzalez, Z. D.; Lara Ortiz, M. T.; Ortega Blake, I.; Pantoja, O.; Volkmer, R.; Klipp, E.; et al. Cell penetrating peptides and cationic antibacterial peptides: two sides of the same coin. J. Biol. Chem. 2014, 289 (21), 14448–14457.

(431) Mami, A. M.; Separovic, F. How Membrane-Active Peptides Get into Lipid Membranes. Accounts of chemical research 2016, 49 (6), 1130–1138.

(432) Avci, F. G.; Akbulut, B. S.; Ozkirimli, E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018, 8 (3), 77.

(433) Greco, I.; Molchanova, N.; Holmedal, E.; Jeness, H.; Hummel, B. D.; Watts, J. L.; Häkansson, J.; Hansen, P. R.; Svendsen, J. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep. 2020, 10 (1), 13206.

(434) Chen, X.; Ji, S.; Li, A.; Liu, H.; Fei, H. Toggling Preassembly with Single-Site Mutation Switches the Cytotoxic Mechanism of Cationic Amphipathic Peptides. Journal of medicinal chemistry 2020, 63 (3), 1132–1141.
(469) Rečnik, L. M.; Kandioller, W.; Mindt, T. L. 1,4-Disubstituted 1,2,3-Triazoles as Amide Bond Surrogates for the Stabilisation of Linear Peptides with Biological Activity. *Molecules 2020*, 25 (16), 3576.

(470) Schorderet, D. F.; Manzi, V.; Canola, K.; Bonny, C.; Arsenijevic, Y.; Munier, F. L.; Maurer, F. D-TAT transporter as an ocular peptide delivery system. *Clinical & experimental ophthalmology 2005*, 33 (6), 628–635.

(471) Kutzsche, J.; Schemmert, S.; Tusche, M.; Neddens, J.; Rabl, R.; Jürgens, D.; Bremer, O.; Willuweit, A.; Hutter-Paier, B.; Willbold, D. Large-Scale Oral Treatment Study with the Four Most Promising D3-Derivatives for the Treatment of Alzheimer’s Disease. *Molecules 2017*, 22 (10), 1693.

(472) Elglen, A.; Hupert, M.; Bochinsky, K.; Tusche, M.; González de San Román Martin, E.; Gering, L.; Sacchi, S.; Pollegioni, L.; Huesgen, P. F.; Hartmann, R.; et al. Metabolic resistance of the D-peptide RD2 developed for direct elimination of amyloid-β oligomers. *Sci. Rep. 2019*, 9 (1), 5715.

(473) Koren, E.; Apte, A.; Sawant, R. R.; Grunwald, J.; Torchilin, V. P. Cell-penetrating TAT peptide in drug delivery systems: proteolytic stability requirements. *Drug delivery 2011*, 18 (5), 377–384.

(474) Evans, B. J.; King, A. T.; Katsisfis, A.; Matesic, L.; Jamie, J. F. Methods to Enhance the Metabolic Stability of Peptide-Based PET Radiopharmaceuticals. *Molecules 2020*, 25 (10), 2314.

(475) Abbasi Ghanbakti, N.; Chonlon, J. M.; Hossseinimehr, S. J. Strategies for improving stability and pharmacokinetic characteristics of radiolabeled peptides for imaging and therapy. *Peptides 2020*, 133, 170385.

(476) Dastpeyman, M.; Sharifi, R.; Amin, A.; Karas, J. A.; Cuic, B.; Pan, Y.; Nicolazzo, J. A.; Turner, B. J.; Shabanpoor, F. Endosomal escape cell-penetrating peptides significantly enhance pharmacological effectiveness and CNS activity of systemically administered antisense oligonucleotides. *International journal of pharmaceutics 2021*, 599, 120398.

(477) Ahmad, A.; Khan, J. M.; Haque, S. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles. *Biochimie 2019*, 160, 61–75.

(478) Dökus, L. E.; Lajkó, E.; Randelović, I.; Mezo, D.; Schlosser, G.; Köhidai, L.; Tóvári, J.; Mezo, G. Phage Display-Base Homing Peptide-Daunomycin Conjugates for Selective Drug Targeting to PAN-1 Pancreatic Cancer. *Pharmaceuticals 2020*, 12 (6), 576.

(479) Ngwa, V. M.; Axford, D. S.; Healey, A. N.; Nowak, S. J.; Chrestensen, C. A.; McMurry, J. L. A versatile cell-penetrating peptide-adaptor system for efficient delivery of molecular cargos to subcellular destinations. *PloS one 2017*, 12 (5), e0178648.

(480) Khalil, I. A.; Kimura, S.; Sato, Y.; Harashima, H. Synergism between a cell penetrating peptide and a pH-sensitive cationic lipid in efficient gene delivery based on double-coated nanoparticles. *Journal of controlled release: official journal of the Controlled Release Society 2018*, 275, 107–116.

(481) Midoux, P.; Kichler, A.; Boutin, V.; Maurizot, J. C.; Monsigny, M. Membrane permeabilization and efficient gene transfer by a peptide containing several histidines. *Biocconjgate Chem. 1998*, 9 (2), 260–267.

(482) Staring, J.; Raaben, M.; Brummelkamp, T. R. Viral escape from endosomes and host detection at a glance. *J. Cell Sci. 2018*, 131 (15), jc216259.

(483) Ju, X.; Miao, T.; Chen, H.; Ni, J.; Han, L. Overcoming Mfsd2a-Mediated Low Transcytosis to Boost Nanoparticle Delivery to Brain for Chemotherapy of Brain Metastases. *Adv. Healthcare Mater. 2021*, 10 (9), No. 2001997.

(484) Akita, H.; Fujiwara, T.; Santiwarangkool, S.; Hosseini, N.; Kajimoto, K.; El-Sayed, A.; Tabata, Y.; Harashima, H. Transcytosis-Targeting Peptide: A Conductor of Liposomal Nanoparticles through the Endothelial Cell Barrier. *Small (Weinheim an der Bergstrasse, Germany) 2016*, 12 (9), 1212–1221.

(485) Arendt, J. T.; Bach, A.; Gynther, M.; Nasser, A.; Mogensen, J.; Strengaard, K.; Pickering, D. S. UCCB01–125, a dimeric inhibitor of PSD-95, reduces inflammatory pain without disrupting cognitive or motor performance: comparison with the NMDA receptor antagonist MK-801. *Neuropharmacology 2013*, 67, 193–200.

(486) Sommer, J. B.; Bach, A.; Malá, H.; Strengaard, K.; Mogensen, J.; Pickering, D. S. Effects of the dimeric PSD-95 inhibitor UCCB01–144 on functional recovery after fimbria-fornix transection in rats. *Pharmacology, biochemistry, and behavior 2017*, 161, 62–67.

(487) Kuntekhar, P.; Tang, S. C.; Brenner, A. J.; Kesari, S.; Piccioni, D. E.; Anders, C.; Carrillo, J.; Chalasani, P.; Kabos, P.; Puhalla, S.; et al. ANG1005, a Brain-Penetrating Peptide-Drug Conjugate, Shows Activity in Patients with Breast Cancer with Leptomeningeal Carcinomatosis and Recurrent Brain Metastases. *Clinical cancer research: an official journal of the American Association for Cancer Research 2020*, 26 (12), 2789–2799.

(488) Qin, Y.; Chen, H.; Zhang, Q.; Wang, X.; Yuan, W.; Kuai, R.; Tang, J.; Zhang, L.; Zhang, Z.; Zhang, Q.; et al. Liposome formulated TAT-modified cholesterol for improving brain delivery and therapeutic efficacy on brain glioma in animals. *International journal of pharmaceutics 2011*, 420 (2), 304–312.

(489) Lowery, J. J.; Raymond, T. J.; Giuvelis, D.; Bidlack, J. M.; Bolt, R.; Blisky, E. J. In vivo characterization of MMP-2200, a mixed β/μ opioid agonist, in mice. *Journal of pharmacology and experimental therapeutics 2011*, 336 (3), 767–778.

(490) Mabrouk, O. S.; Falk, T.; Sherman, S. J.; Kennedy, R. T.; Bolt, R. CNS penetration of the opioid glycopeptide MMP-2200: a microdialysis study. *Neuroscience letters 2012*, 531 (2), 99–103.

(491) Costantino, L.; Gandolfi, F.; Tosi, G.; Rivasi, F.; Vandelii, M. A.; Forni, F. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. *Journal of controlled release: official journal of the Controlled Release Society 2005*, 108 (1), 84–96.

(492) Birolini, G.; Valenza, M.; Ottonelli, L.; Passoni, A.; Favagrossa, M.; Duskey, J. T.; Bombaci, M.; Vandelii, M. A.; Colombo, L.; Bagnati, R.; et al. Insights into kinetics, release, and behavioral effects of brain-targeted hybrid nanoparticles for cholesterol delivery in Huntington’s disease. *Journal of controlled release: official journal of the Controlled Release Society 2021*, 330, 587–598.

(493) Sivertsen, A.; Isaksjøn, J.; Leiros, H. K.; Svensson, J.; Svendsen, J. S.; Brandsdal, B. O. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. *BMC Struct. Biol. 2014*, 14, 4.

(494) Käsdorf, B. T.; Arends, F.; Lieleg, O. Diffusion Regulation in the Vitreous Humor. *Biophysical journal 2015*, 109 (10), 2171–2181.

(495) Vedadhavami, A.; Wagner, E. K.; Mehta, S.; He, T.; Zhang, C.; Bajpayee, A. G. Cartilage penetrating cationic peptide carriers for applications in drug delivery to avascular negatively charged tissues. *Acta biomaterialia 2019*, 93, 258–269.

(496) Vedadhavami, A.; Zhang, C.; Bajpayee, A. G. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. *Nano Today 2020*, 34, 100898.

(497) Young, C. C.; Vedadhavami, A.; Bajpayee, A. G. Bioelectricity for Drug Delivery: The Promise of Cationic Therapeutics. *Bioelectricity 2020*, 2 (2), 68–81.