Laparoendoscopic Single-Site Surgeries: A Single-Center Experience of 171 Consecutive Cases

Kyung Hwa Choi, Won Sik Ham, Koon Ho Rha, Jae Won Lee, Hwang Gyun Jeon¹, Francis Raymond P. Arkance, Seung Choul Yang, Woong Kyu Han

Department of Urology, Urological Science Institute, Yonsei University College of Medicine, Seoul, ¹CHA Bundang Medical Center, CHA University, Seongnam, Korea

Purpose: We report our experience to date with 171 patients who underwent laparoendoscopic single-site surgery for diverse urologic diseases in a single institution.

Materials and Methods: Between December 2008 and August 2010, we performed 171 consecutive laparoendoscopic single-site surgeries. These included simple nephrectomy (n=18; robotic surgeries, n=1), radical nephrectomy (n=26; robotic surgeries, n=2), partial nephrectomy (n=59; robotic surgeries, n=56), nephroureterectomy (n=20; robotic surgeries, n=12), pyeloplasty (n=4), renal cyst decortications (n=22), adrenalectomy (n=4; robotic surgeries, n=2), ureterolithotomy (n=10), partial cystectomy (n=3), ureterectomy (n=1), urachal mass excision (n=1), orchiectomy (n=1), seminal vesiclectomy (n=1), and retroperitoneal mass excision (n=1). All procedures were performed by use of a homemade single-port device with a wound retractor and surgical gloves. A prospective study was performed to evaluate outcomes in 171 cases.

Results: Of the 171 patients, 98 underwent conventional laparoendoscopic single-site surgery and 73 underwent robotic laparoendoscopic single-site surgery. Mean patient age was 53 years, mean operative time was 190.8 minutes, and mean estimated blood loss was 204 ml. Intraoperative complications occurred in seven cases (4.1%), and postoperative complications in nine cases (5.3%). There were no complications classified as Grade IIIb or higher (Clavien-Dindo classification for surgical complications). Conversion to mini-incision open surgery occurred in seven (4.1%) cases. Regarding oncologic outcomes, no cancer-related events occurred during follow-up other than one aggressive progression of Ewing sarcoma.

Conclusions: Laparoendoscopic single-site surgery is technically feasible and safe for various urologic diseases; however, surgical experience and long-term follow-up are needed to test the superiority of laparoendoscopic single-site surgery.

Key Words: Kidney; Laparoscopy; Minimally invasive surgical procedures; Robotics; Ureter
fore, we present 171 consecutive cases of urologic LESS, including robotic procedures, in which our homemade port device was used.

MATERIALS AND METHODS

From December 2008 to August 2010, 171 cases of LESS were performed in our institution. Conventional LESS (C-LESS) and robotic LESS (R-LESS) were performed by three expert laparoscopic surgeons. The disease-specific inclusion and exclusion criteria for LESS were the same as for conventional laparoscopic surgery. Patients were given a choice of conventional laparoscopy, C-LESS, R-LESS, or open surgery. We described the expected surgical and postoperative outcomes, including pain and incisional wounds, with our own data and photographs. We also explained the advantages and disadvantages of LESS and its cost compared with other surgery types. We performed LESS only when the patients provided written consent. Patients were followed up with the appropriate studies. Cancer patients were evaluated by computed tomography (CT) or positron emission tomography-CT (PET-CT) at 3, 6, and 12 months after surgery, and then every 6 months if there was no evidence of recurrence or metastasis. Postoperative complications were classified according to the Clavien-Dindo classification for surgical complications [12]. We analyzed indications and perioperative outcomes. The present study was approved by the institutional review board at Yonsei Severance Hospital, Seoul, Korea.

Through the 2 to 5 cm umbilical incision, we placed the port device with a size 7 powder-free surgical glove and wound retractor for both C-LESS and R-LESS. For C-LESS, a total of three or four trocars (12 mm and 5 mm) were used (Fig. 1A). In C-LESS, a 10 mm 30° rigid laparoscope (Stryker, Kalamazoo, MI, USA) with integrated camera and right-angled light cable adaptor was used. In some cases, an additional 5 mm or 2 mm trocar was used for liver retraction or pelvic surgery [3]. We used conventional laparoscopic instruments and flexible articulating laparoscopic instruments depending on the type of procedure. Straight retractor devices were typically used for kidney and ureteral dissection without difficulty. Articulating devices such as hook cautery and scissors were used with the dominant hand only for renal vascular dissection, upper posterior kidney dissection, and adrenal dissection.

The homemade single-port system was placed for R-LESS (da Vinci S, Intuitive Surgical, Sunnyvale, USA) as it was for C-LESS. Two 12 mm trocars and two 5 mm trocars were used. The camera was inserted through the 12 mm trocar and the robot arms were inserted through the 8 mm port [13]. In most cases, an additional trocar was inserted alongside the port device to create a 12 mm hybrid port. To

Fig. 1. Conventional laparoendoscopic single-site surgery. (A) A homemade single-port device and laparoscopic instruments for right radical nephrectomy. (B) Renal hilar dissection with articulating hook electrocautery. (C) Ureteropelvic reconstruction with a straight laparoscopic needle holder. We used the first stitch string for internal traction of the ureter. A double-J stent was inserted in the distal ureter; the proximal coil was not yet inserted. (D) Urachal mass excision using an additional 2 mm MiniLap Alligator clamp (Stryker, NY, USA, left).
FIG. 2. Robotic laparoendoscopic single-site partial nephrectomy. (A) A homemade single-port device was established by inserting two 12 mm trocars and two 8 mm trocars through the fingers of the surgical gloves. The scope was placed at a 30° upward angle to the robotic arms. (B) Renal vessel clamping.

prevent the outer clashing of robotic arms, the scope was placed at a 30° upward angle to the robotic arms (Fig. 2A) [13]. We maintained intra-abdominal pressure under 12 mmHg and checked the glove to ensure that it did not inflate. All surgical procedures were performed with the homemade single-port device (Fig. 1B-D, 2B).

RESULTS

Between 2008 and 2010, 171 patients underwent C-LESS (n=98) or R-LESS (n=73) for various urologic diseases (male, n=94 [55%]; female, n=77 [45%]). Mean patient age was 53 years (range, 1-86 years), and mean body mass index was 23.7 kg/m² (range, 14.3-32.9 kg/m²). Thirty-three patients (19.3%) had undergone previous abdominal surgery, and seven cases were converted to mini-incision open surgery owing to severe adhesions from previous surgery (C-LESS, n=3; R-LESS n=2), failure to identify endophytic renal mass even by intraoperative ultrasonogram (R-LESS n=1), or inferior vena cava injury (C-LESS n=1). Mean operative time was 190.8 min (range, 20-440 min), and mean ischemic time for partial nephrectomy was 26 min (range, 11-65 min). Mean estimated blood loss (EBL) was 204 ml (range, <10-2,700 ml), and the total transfusion rate was 9%. The mean hospital stay was 4.5 days (range, 1-19 days). Intraoperative complications occurred in seven cases (4.1%): diaphragm injury during C-LESS radical nephrectomy (n=2), bowel injury during C-LESS partial nephrectomy and R-LESS simple nephrectomy (n=2), inferior vena cava injury during C-LESS simple nephrectomy (n=1), renal vein injury (n=1), and ureter injury during R-LESS partial nephrectomy (n=1).

An additional port was used for seven right renal surgeries and one pelvic surgery during C-LESS (4.7%). Most R-LESS procedures used an additional hybrid port except for simple and radical nephrectomies. Postoperative complications occurred in nine patients (5.3%). Wound dehiscence (Clavien-Dindo Grade I) occurred in three patients; however, they did not require secondary closure. One patient suffered from prolonged ileus after C-LESS (Grade I), but recovered and was discharged according to schedule. Acute renal failure (Grade I) developed immediately after R-LESS nephroureterectomy, but patients recovered with hydration and diuretics. One patient required a transfusion for postoperative bleeding (Grade II). After C-LESS nephroureterectomy, one patient developed a retroperitoneal abscess on postoperative day 8 and was treated with antibiotics (Grade II). One retroperitoneal abscess (Grade IIIa) was detected on postoperative day 11 after R-LESS nephroureterectomy and was treated with antibiotics and pigtail drainage for 8 days. In one C-LESS pyeloplasty, the ureteral catheter migrated downward on postoperative day 4 (Grade IIIa); the patient reported flank pain, so we exchanged the ureteral catheter. No grade IIIb, IV, or V (death) complications were reported. Surgical scars were almost undetectable within a few months after surgery (Fig. 3).

Regarding oncologic outcomes, two cases with focal positive margins underwent R-LESS partial nephrectomy. In these cases, intraoperative analysis of frozen sections was negative, and no evidence of recurrence was found at the 1-month or 6-month follow-up CT evaluations of either patient. One patient who underwent C-LESS radical neph-
TABLE 1. Procedures, surgical indication or diagnosis, and perioperative results for LESS (n=171)

Procedures	n	Surgical indication or diagnosis	Mean size (cm)	Mean OR time (min)	Mean EBL (ml)	Mean HS (day)	Transfusion rate (%)	Comments
Simple nephrectomy								
2008 Desai et al [4]	14	Benign nonfunctioning kidney		145	109	2	0	All cases morcellated and extracted Additional port (5; 41%)
2008 White et al [2]	7	Nonfunctional renal unit	-	156	121	2.3	0	No complications
2009 Raybourn et al [16]	11	Atrophic nonfunctioning kidney	-	151	51	32	0	Port site bruising (1), pyrexia (1)
2010 Present study	17	Benign nonfunctioning kidney	-	221	328	5.5	18	IVC injury: mini-incision open conversion (1) Additional port for liver traction (2) Ileus (1)
C-LESS								
R-LESS	1	Benign nonfunctioning kidney	-	128	100	7.0	0	Bowel injury (1), no additional port
Radical nephrectomy								
2008 Desai et al [4]	3	RCC	-	208	200	3.5	0	Gonadal vein avulsion (1) Transvaginal extraction (1) Additional port
2008 White et al [2]	6	Enhanced renal mass suggesting malignancy	4.6	206	146	2.3	17	Intensive care unit admission for postoperative bleeding and embolization (1)
2009 Stolzenburg et al [17]	10	RCC	5.2	146.4	202	-	10	Bleeding requiring transfusion (1)
2010 Present study	24	RCC (21) Urothelial carcinoma, pelvis (1) Ewing sarcoma (1), Mixed epithelial and stromal tumor (1)	4.8	209	289	5.7	17	Diaphragm injury (2) Mini-incision open conversion (1) Wound dehiscence (1) Additional port for liver traction (2)
C-LESS								
R-LESS	2	RCC (1) Leiomyosarcoma (1)	9.0	248	225	4.7	0	Mini-incision open conversion (1) No additional port
Partial nephrectomy								
2008 Desai et al [4]	6	RCC (2) AML (1) Oncocytoma (1)	-	271	475	7.2	0	Laparoscopic conversion (1) Postoperative bleeding - angioembolization (1) Additional port, negative margins
2008 White et al [2]	15	Enhancing renal mass suggesting malignancy	3.01	196	422	4.5	27	Conversion (2), Positive margins (1)
2008 Aron et al [18]	5	RCC (3) Oncocytoma (2)	3	270	150	3	0	Postoperative hemorrhage and pulmonary embolism (1), negative margins
2008 Kaouk et al [19]	5	RCC (6) Benign cyst (1)	2.1	160	420	3.2	-	Focally positive margin (1) Conversion to laparoscopy (1) No additional port
C-LESS								
R-LESS	2		2.0	170	100	3.5	0	No complications, negative margins No additional port
2010 Present study	3	RCC (1) AML (1) Metanephric adenoma in a child (1)	2.5	226	70	4.3	0	Bowel injury (1) Mini-incision open conversion (1) Margins negative Mean ischemic time 29 min Additional port for liver traction (1)
C-LESS								
R-LESS	56	RCC (49) AML (3) Oncocytoma (1) Other (3)	2.8	198	273	4.7	13	Mini-incision open conversion (2) Renal vein injury (1), ureter injury (1) Postoperative bleeding (1) Positive margins (2) Mean ischemic time 26 min, Hybrid port
TABLE 1. Continued

Procedures	n	Surgical indication or diagnosis	Mean size (cm)	Mean OR time (min)	Mean EBL (ml)	Mean HS (day)	Transfusion rate (%)	Comments
Nephroureterectomy								
2008 Desai et al [4]	2	Urothelial carcinoma (1) Reflux + recurrent pyelonephritis (1)	-	90	75	5	0	Distal ureter: cystoscopic resection + laparoscopic EndoGIA No complications, additional port (2)
2008 White et al [2]	7	Urothelial carcinoma	2.73	198	396	3.9	14	Conversion (1)
2010 Present study	8	Urothelial carcinoma (5) Vesicoureteral reflux in a child (2) Ectopic ureter in a child (1)	3.3	315	103	7.4	0	Retroperitoneal abscess (1) Additional port for liver traction (2)
Pyeloplasty								
2008 Desai et al [4]	17	Primary ureteropelvic junction obstruction	-	236	79	2	0	Laparoscopic conversion (1) Additional port success rate: 15/16 93.5%; follow-up data available for 16/19
2008 White et al [2]	8	Ureropelvic junction obstruction	-	233	62.5	3.4	0	Hernia (1)
2009 Tracy et al [20]	15	Ureropelvic junction obstruction and delayed urinary excretion based on functional imaging	-	202	35	77	5	Hematuria, urine leak, clot obstruction (5)
2010 Present study	4	Ureteropelvic junction obstruction	-	196	80	4.5	0	Stent migration (1)
Renal cyst decortications								
2008 Desai et al [4]	1	Extrinsic compression and ureteropelvic junction obstruction	-	60	<50	1	0	No complications Additional port
2008 White et al [2]	2	Symptomatic renal cyst	-	135	50	1.5	0	No complications
2009 Ryu et al [21]	5	Large renal cyst	-	56	178.8	5.2	0	Wound dehiscence (1)
2010 Present study	22	Symptomatic renal cyst	6.0	93	20	2.2	0	No complications Transperitoneal (19), Retroperitoneal (3)
Adrenalectomy								
2008 Desai et al [4]	1	Adrenal mass	-	150	650	3	0	Laparoscopic conversion (1) Renal vein injury (1) Additional port Small bowel injury (1)
2009 Jeong et al [22]	9	Pheochromocytoma (5) Nonfunctioning adenoma (3) Cushing's syndrome (1)	2.8	169.2	177.8	77	0	Small bowel injury (1)
2010 Present study	2	Pheochromocytoma (1) Leiomysarcoma (1)	5.7	260	125	3.0	0	No complications
R-LESS	2	Pheochromocytoma (1) Nonfunctioning adenoma (1)	2.5	167	250	3.5	0	No complications Hybrid port
TABLE 1.

Procedures	n	Surgical indication or diagnosis	Mean size (cm)	Mean OR time (min)	Mean EBL (ml)	Mean HS (day)	Transfusion rate (%)	Comments
Other C-LESS procedures in the present study								
Ureterolithotomy	10	Ureter stone	1.8	162	70	3	0	Wound dehiscence (1)
Partial cystectomy	3	Urachal remnant (2)	3.5	171	50	3.3	0	Mini-incision open conversion (1)
		Leiomyoma (1)						No complications
Ureterectomy	1	Duplication of ureter (ectopic ureter)	-	80	150	3	0	Wound dehiscence (1)
Urachal mass excision	1	Urachal remnant	1.5	100	<10	3	0	Additional 2 mm port (1)
Orchiectomy	1	Cryptorchidism		20	<10	2	0	No complications
Seminal vesiculotomy	1	Seminal vesicle cyst	4.4	110	<10	2	0	No complications
Retroperitoneal mass excision	1	Cystic lymphangioma	6.4	99	30	6	0	No complications

LESS: laparoendoscopic single-site surgery, OR: operating room, EBL: estimated blood loss. HS: hospital stay, IVC: inferior vena cava, RCC: renal cell carcinoma, AML: angiomyolipoma, a: xanthomatous pyelonephritis (n=1), metanephric adenoma (n=1), hemorrhagic cyst (n=1), b: focally positive on final pathology. Intraoperative analysis of frozen section was negative.

rectomy eventually received a diagnosis of Ewing sarcoma; multiple lymph node metastasis and bone metastasis were detected within 2 months. Other than this case, no recurrence or metastasis was reported during follow-up (mean follow-up, 9.4 months). Even leiomyosarcoma, which was treated by C-LESS adrenalectomy, had not recurred by the 15-month follow-up. Perioperative outcomes and specific comments regarding each type of surgery are shown in Table 1.

DISCUSSION

In recent decades, laparoscopic surgery has undergone rapid technical development and advances in laparoscopic instruments. The aims of laparoscopic surgery include minimal invasiveness, safety, and cost-effectiveness; thus, laparoscopic surgeons have worked to continuously improve the surgical techniques. A result of these efforts is the nearly scarless technique, LESS [1]. The last 3 years have witnessed a rapid expansion of LESS for various urologic diseases. To evaluate LESS, worldwide experiences have been reported [14], including large-scale studies conducted in a single institution. Table 1 compares the outcomes of previous studies with our data [2,15-22]. Desai et al performed a total of 100 LESS procedures including simple prostatectomy (32%), donor nephrectomy (17%), pyeloplasty (17%), simple nephrectomy (14%), and partial nephrectomy (6%) [4]. White et al reported the same number of LESS procedures including donor nephrectomy (19%), partial nephrectomy (15%), sacral colpopexy (13%), and renal cryotherapy (8%) [2]. Indications for LESS in the present study differed somewhat from those of the previous studies. In our study, more than half of the LESS procedures were performed for malignancies, 59 (34.5%) of the LESS cases were performed for partial nephrectomy, and 26 (15.2%) for radical nephrectomy. However, this difference may be due to different patient populations rather than the surgeons’ preferences.

The ideal indications for LESS may be pediatric urologic diseases and benign diseases for which cosmetic outcomes are important. Park et al and Marietti et al have reported outcomes for C-LESS in simple nephrectomies for pediatric cases of nonfunctioning kidney [8,10]. In the present study, four pediatric patients underwent C-LESS: two nephroureterectomies for nonfunctioning kidney, one partial nephrectomy for metanephric adenoma, and one ureterectomy for ectopic ureter were successfully performed without complications. Anecdotally, their parents seemed extremely satisfied with the postoperative cosmetic results. Similarly, surgeries that require smaller incisions for specimen extraction appear to be good indications for LESS. Patients are more concerned with cosmesis in non-life-threatening diseases such as ureteropelvic junction obstruction, renal cyst, or ureteral stone. In addition, these surgical procedures do not require a wide surgical field, and the specimens are smaller than the single-port device. Ryu et al achieved favorable results using LESS for renal cyst decortication [21]. We have expanded the use of LESS to pyeloplasty, ureterolithotomy, and other benign surgeries such as urachal mass excision, orchietomy, seminal vesiculotomy, and retroperitoneal mass excision, as shown in Table 1. Comparing the indications for C-LESS and R-LESS, R-LESS was more suitable for technically demanding procedures requiring meticulous intracorporeal
sutting such as partial nephrectomy and bladder cuff resection. On the other hand, C-LESS is relatively suitable for simple and radical nephrectomy, renal cyst decortica-
tions, ureterolithotomy, and pediatric surgery because these can be comfortably performed without the expensive robot assistance even with standard laparoscopic instru-
tions. For partial nephrectomy, we preferred to use R-
LESS (94%), because the robotic EndoWrist and hybrid port technique was more convenient and safe for upper pos-
terior renal dissection and hilar management. With this system, we could also perform the meticulous suturing for renorrhaphy without difficulty [3,9,13]. In the first C-
LESS nephroureterectomy, we used the Endo-GIA stapler for bladder repair. Even with stay sutures, deep bladder cuff resection using the laparoscopic endoshears (inclu-
ding detrusor muscle as previously reported) was somewhat difficult in C-LESS [23]. In contrast, robotic assist-
tance could make a deep bladder cuff resection and con-
venient suturing of the bladder defect. However, lymph node dissection was not performed in all nephroureter-
ectomy cases, because only low-grade tumors were selec-
ted.

The operative outcomes of the present study were com-
parable to those of previous studies (Table 1). However, in partial nephrectomy, the mean EBL of our C-LESS proce-
dures (70 ml) was noticeably less than that of other studies (150-475 ml) [2,4,18,19]. In contrast, the mean EBL of R-LESS procedures (273 ml) was greater than that re-
ported by a previous study (100 ml) [19], but was still smaller than that of C-LESS procedures in other studies. These differences may not be due to differences in technical skill, but may be the result of different surgical indications. When we began treating partial nephrectomies with C-LESS, we limited the procedure to exophytic anterior lower pole masses. After the transition to R-LESS, we grad-
vually expanded the indication to endophytic and upper pos-
terior masses, because R-LESS enables more accurate suturing and safer hilar and upper pole management. The mean EBL for C-LESS simple nephrectomy was larger than that reported in other studies, and larger than that of radical nephrectomy and even partial nephrectomy in our study, because of three cases: the surgeon’s first LESS case, inferior vena cava injury in one case, and multiple re-
nal vessels in one case. Apart from these three cases, the EBL was comparable (159 ml).

Intraoperative safety is the most important concern in laparoscopic surgery. White et al reported that no intra-
operative complications occurred in 100 cases [2]. Another study of renal and ureteral LESS reported the same out-
come [21]. However, Desai et al reported 4/100 (4%) intra-
operative complications that included gonadal vein avul-
sion, bowel injury, bleeding requiring sutures, and renal vein injury [4]. In the present study, seven intraoperative complications (4.1%) occurred, and one case (inferior vena cava injury) was converted to mini-laparotomy (6 cm). The total conversion rate (7/171 [4.1%]) was lower than that of the two previous studies with 100 cases (conversion rates,
clashing was unavoidable, and we used a hybrid port technique. With these changes, the LESS procedure will become safer and more convenient for surgeons.

There were several limitations to this study. We did not attempt to evaluate the superiority of LESS over conventional laparoscopy or robotic surgery. In addition, cosmetic outcomes and quality of life data were not evaluated. To overcome these limitations, additional surgical experience, longer follow-up, and large-scale randomized controlled trials are needed.

CONCLUSIONS

We presented 171 cases of urologic LESS procedures performed with the use of a homemade single-port device. We have demonstrated that LESS is feasible and can be safely applied to a variety of urologic operations, although LESS is still a challenging technique for urologic conditions. Long-term follow-up will be needed to prove the safety, cosmesis, and cost-effectiveness of LESS and provide a comparative analysis with other procedures to confirm the significant benefits of LESS.

Conflicts of Interest

The authors have nothing to disclose.

REFERENCES

1. Raman JD, Bensalah K, Bagrodia A, Stern JM, Cadeddu JA. Laboratory and clinical development of single keyhole umbilical nephrectomy. Urology 2007;70:1039-42.
2. White WM, Haber GP, Goel RK, Crouzet S, Stein RJ, Kaouk JH. Single-port urological surgery: single-center experience with the first 100 cases. Urology 2009;74:801-4.
3. Jeon HG, Jeong W, Oh CK, Lorenzo EI, Ham WS, Rha KH, et al. Initial experience with 50 laparoendoscopic single site surgeries using a homemade, single port device at a single center. J Urol 2010;183:1866-71.
4. Desai MM, Berger AK, Brandina R, Aron M, Irwin BH, Canes D, et al. Laparoendoscopic single-site surgery: initial hundred patients. Urology 2009;74:805-12.
5. Gill IS, Canes D, Aron M, Haber GP, Goldfarb DA, Flechner S, et al. Single port transumbilical (E-NOTES) donor nephrectomy. J Urol 2008;180:637-41.
6. Seo JY, Hong HM, Kang IS, Lee JW, Rim JS. Early experience of laparoendoscopic single-site nephroureterectomy for upper urinary tract tumors. Korean J Urol 2010;51:472-6.
7. Kim TH, Jeong BC, Seo SI, Jeon SS, Han DH. Transumbilical laparoendoscopic single-site ureterolithotomy for large impacted ureteral stones: initial experiences. Korean J Urol 2010;51:405-8.
8. Park YH, Kang MY, Jeong MS, Choi H, Kim HH. Laparoendoscopic single-site nephrectomy using a homemade single-port device for single-system ectopic ureter in a child: initial case report. J Endourol 2009;23:833-5.
9. Jeon HG, Kim DS, Jeoung HB, Han SW, Hong CH, Im YJ, et al. Pediatric laparoendoscopic single-site partial nephrectomy: initial report. Urology 2010;76:138-41.
10. Marietti S, DeCambre M, Fairbanks T, Kling K, Chiang G. Early experience with laparoendoscopic single-site surgery in the pediatric urology patient population. J Endourol 2010;24:1321-4.
11. Kaouk JH, Goel RK, Haber GP, Crouzet S, Stein RJ. Robotic single-port transumbilical surgery in humans: initial report. BJU Int 2009;103:366-9.
12. Claivien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, et al. The Claivien-Dindo classification of surgical complications: five-year experience. Ann Surg 2009;250:187-96.
13. Han WK, Kim DS, Jeon HG, Jeong W, Oh CK, Choi KH, et al. Robot-assisted laparoendoscopic single-site surgery: partial nephrectomy for renal malignancy. Urology 2010;Epub ahead of print.
14. Autorino R, Stein RJ, Lima E, Damiano R, Khanna R, Haber GP, et al. Current status and future perspectives in laparoendoscopic single-site and natural orifice transluminal endoscopic urological surgery. Int J Urol 2010;17:410-31.
15. Desai MM, Rao PP, Aron M, Pascal-Haber G, Desai MR, Mishra S, et al. Scarless single port transumbilical nephrectomy and pyeloplasty: first clinical report. BJU Int 2008;101:83-8.
16. Raybourn JH 3rd, Rane A, Sundaram CP. Laparoendoscopic single-site surgery for nephrectomy as a feasible alternative to traditional laparoscopy. Urology 2010;75:100-3.
17. Stolzenburg JU, Kallidonis P, Hellawell G, Do M, Haefner T, Dietel A, et al. Technique of laparoscopic-endoscopic single-site surgery radical nephrectomy. Eur Urol 2009;56:644-50.
18. Aron M, Canes D, Desai MM, Haber GP, Kaouk JH, Gill IS. Transumbilical single-port laparoscopic partial nephrectomy. BJU Int 2009;103:516-21.
19. Kaouk JH, Goel RK. Single-port laparoscopic and robotic partial nephrectomy. Eur Urol 2009;55:1163-9.
20. Tracy CR, Raman JD, Bagrodia A, Cadeddu JA. Perioperative outcomes in patients undergoing conventional laparoscopic versus laparoendoscopic single-site pyeloplasty. Urology 2009;74:1029-34.
21. Ryu DS, Park WJ, Oh TH. Retroperitoneal laparoendoscopic single-site surgery in urology: initial experience. J Endourol 2009;23:1857-62.
22. Jeong BC, Park YH, Han DH, Kim HH. Laparoendoscopic single-site nephroureterectomy with bladder cuff excision for upper urinary tract transitional-cell carcinoma: technical details based on oncologic principles. J Endourol 2010;24:569-6.