Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis

Jincheng Wang, a,†, Kaili Hu, a,b,†, Xuanyan Cai, a, Bo Yang, b, Qiaojun He, a,b, Jiajia Wang, a,*, Qinjie Weng, a,b,*

a Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
b Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China

Received 12 March 2021; received in revised form 13 June 2021; accepted 9 July 2021

KEY WORDS
Idiopathic pulmonary fibrosis; PI3K/AKT signaling; Pathogenesis; Coagulation cascade; Immune activation; Fibroblast accumulation; Therapeutic target; Drug therapy

Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial pneumonia with unknown causes. The incidence rate increases year by year and the prognosis is poor without cure. Recently, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway can be considered as a master regulator for IPF. The contribution of the PI3K/AKT in fibrotic processes is increasingly prominent, with PI3K/AKT inhibitors currently under clinical evaluation in IPF. Therefore, PI3K/AKT represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies. This review epitomizes the progress that is being made in understanding the complex interpretation of the cause of IPF, and demonstrates that PI3K/AKT can directly participate to the greatest extent in the formation of IPF or cooperate with other pathways to promote the development of fibrosis. We further summarize promising PI3K/AKT inhibitors with IPF treatment benefits, including inhibitors in clinical trials and pre-clinical studies and natural products, and discuss how these inhibitors mitigate fibrotic progression to explore possible potential agents, which will help to develop effective treatment strategies for IPF in the near future.

© 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

*Corresponding authors. Tel.: +86 571 88208076.
E-mail addresses: wangjiajia3301@zju.edu.cn (Jiajia Wang), wengqinjie@zju.edu.cn (Qinjie Weng).
†These authors made equal contributions to this work.
Peer review under responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

https://doi.org/10.1016/j.apsb.2021.07.023
2211-3835 © 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Idiopathic pulmonary fibrosis (IPF) is one of the chronic, progressive fibrotic interstitial lung diseases without an identifiable cause. It is identified as one of the most common and severe idiopathic interstitial pneumonia1, accompanied with difficult breathing, coughing, and worsening lung function. IPF is reported with quite a high prevalence of 58.7 per 100,000 person-year, as well as a high mortality rate2. Respiratory failure contributes the most to the death of IPF patients, other causes include coronary heart disease, pulmonary embolism and lung cancer3. Currently, only pirfenidone and nintedanib are approved by the US Food and Drug Administration for IPF treatment. Both of them can interfere with fibroblast proliferation and migration, and reduce fibroblasts-embedded collagen gel contraction and excess extracellular matrix (ECM) secretion4,5. However, gastrointestinal and skin-related adverse events (AEs) are reported in pirfenidone treatment6, and diarrhea and increase of hepatic enzymes are common AEs for nintedanib therapy7, preventing the widespread use of these drugs. Therefore, it is urgent to seek for other appropriate therapeutic approaches for IPF.

Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway is one of the core signaling pathways in cells that regulates cell growth, proliferation, motility, metabolism and survival8. PI3K is a group of lipid kinases associated with the plasma membrane, and it can be divided into three categories: classes I, II, and III9. Class I PI3Ks are heterodimer formed by the p110 catalytic subunit and the P85 regulatory subunit, and exist in four isoforms including class IA (PI3Kα, PI3Kβ and PI3Kδ) and class IB (PI3Kγ). Among these four isoforms, which can be expressed in human lung fibroblasts10, PI3Kα is often up-regulated or mutated in lung-related diseases11, and PI3Kγ is usually found overexpressed in IPF lung homogenate and fibroblasts12, while class III PI3Ks are involved in the formation of autophagosome membranes which may affect pulmonary fibrosis13. AKT is a serine/threonine protein kinase with three subtypes: AKT1, AKT2 and AKT314, can be activated in response to upstream PI3K. Since AKT3 is predominantly expressed in brain tissue, research related to pulmonary fibrosis mainly focuses on AKT1 and AKT2 subtypes. AKT1-mediated mitophages contribute to alveolar macrophage apoptosis resistance, which is required for pulmonary fibrosis development15, and AKT2-deficient mice are protected against bleomycin (BLM)-induced pulmonary fibrosis and inflammation16, indicating that PI3K/AKT signaling plays important roles during IPF development.

Existing evidence suggested that overexpression of alpha-smooth muscle actin (α-SMA) in lung fibrosis was related to the activation of PI3K/AKT17, and the interaction between transforming growth factor-β (TGF-β) and PI3K/AKT promoted the formation of pulmonary fibrosis18,19. Besides, the activation of PI3K/AKT can participate in pulmonary fibrosis by regulating its downstreams such as mammalian target of rapamycin (mTOR), hypoxia inducible factor-1α (HIF-1α) and Fox family20,21,22. It is precisely because of the important role of PI3K/AKT in regulating receptor-mediated signal transduction, targeting PI3K/AKT to be a new strategy for IPF treatment.

Here, we review the comprehensive pathogenesis of IPF, and systematically sort out the key role of PI3K/AKT signaling during the initial stage of epithelial cell damage, coagulation cascade, immune activation, and fibroblast accumulation. Based on the important role of PI3K/AKT signaling in IPF, we sum up the potential drugs targeting PI3K/AKT signaling which have been evaluated as therapeutic agents for IPF. Among them, GSK2126458, HEC68498 and rapamycin are currently under the clinical evaluation for the treatment of patients with IPF. Besides, substantial progresses are made in the treatment of IPF with other small molecules and natural compounds targeting PI3K/AKT signaling, broadening the treatment landscape of IPF and accelerating the advent of new promising drugs.

2. PI3K/AKT signaling in different development stage of IPF

The pathogenesis of IPF disease is largely unknown; however, singular strides have been made over the past few years. Numerous studies have suggested that some environmental and occupational exposures are related to the onset of IPF disease23, and corresponding speculation about the potential role of genetic mutations and interplay with assumed external factors has been made24,25. Currently, IPF is considered to be an abnormal wound healing response caused by damage to alveolar epithelial cells (AEcs)26,27,28. Routine wound healing goes through four distinct phases: the clotting/coagulation phase, the inflammatory cell migration phase, the fibroblast migration/proliferation/activation phase, and tissue remodeling and decomposition29. Injured AEcs activate multiple inflammatory responses, repair pathways and signaling pathways, including the PI3K–AKT pathway30, to release profibrotic mediators and disturb the balance between profibrotic and anti-fibrotic mediators31. This response is accompanied by abnormal epithelial–mesenchymal crosstalk32,33, fibroblast proliferation, and fibroblast to myofibroblast transformation34. Additionally, myofibroblasts secrete ECM, mainly collagen, which leads to chaotic lung remodeling35, and ultimately progressive pulmonary fibrosis and loss of function.

Pulmonary trauma repair is a complex, coordinated, and orderly process. If dysregulation or lung injury persists at any stage of the tissue repair process, fibrosis will develop, eventually leading to the development of multiple lung diseases (Fig. 1). Further investigation into the pathogenesis of IPF will provide a theoretical basis for the treatment of multiple fibrotic diseases36,37.

2.1. Disease initiation: Epithelial cell damage

Numerous studies have revealed the critical role of AEcs in the pathogenesis of IPF, and several pieces of evidence support the opinion that injury to the alveolar epithelium is central to disease initiation. Initially, several genetic studies showed that defects of the alveolar epithelium are the basis of disease development38. The variant of the mucin 5B (MUC5B) gene has been reported to be one of the most relevant risk factors for familial and sporadic IPF. Moreover, the primary mucin-expressing cells in microscopic honeycomb cysts of IPF are AEcs, suggesting that alveolar epithelium defects are the primary contributors to IPF39. Mutations in lung epithelial restricted genes (SFTPC, SFTPA2, and ABCA3) have also been implicated in familial forms of pulmonary fibrosis. Additionally, genome-wide association studies have also verified that variants in telomerase reverse transcriptase (TERT) and regulator of telomere elongation helicase 1 (RTEL1) notably shorten telomeres and increase the risk of IPF disease40. Defects in telomere maintenance have been linked to epithelial cell senescence and an impaired response to epithelial injury41. Further, established environmental exposures such as smoking42, inhaled...
particulates due to occupational factors (e.g., sawdust and metal dust), microbial (viral, bacterial, and fungal) infections, and gastroesophageal reflux disease risk factors for pulmonary fibrosis may act as sources of recurrent damage to the alveolar epithelium. Myofibroblasts secrete extracellular matrix, causing chaotic lung remodeling, which eventually generates progressive pulmonary fibrosis and loses functions.

It is common to observe abnormal epithelial cells, such as bronchial epithelial cells and proliferative type II AECs, lined with honeycomb fibrotic areas in IPF lung biopsies, and studies have shown that AECs damage is sufficient to cause pulmonary fibrosis. Obvious AECs apoptosis in areas of positive remodeling and regions with high myofibroblast activity have also been found in IPF lung biopsies, suggesting that AECs apoptosis is associated with the onset of IPF. Moreover, AECs produce key fibrogenic mediators, including connective tissue growth factor (CTGF), platelet-derived growth factor (PDGF), TGF-β. The interaction of predisposing risk factors, including genetic susceptibility and environmental exposure, plays a vital role in repeated micro-damage of epithelial cells followed by epithelial–mesenchymal transition (EMT), senescence, and apoptosis, which is considered to be the initial cause of IPF responses. The exact mechanisms of epithelial cell damage are complex and have not yet been elucidated. However, it is clear that EMT, senescence, and apoptosis of vulnerable alveolar epithelium are central to this process, among which, the PI3K/AKT signaling pathway is widely involved.

2.1.1. EMT

EMT is indispensable to the pathogenesis of IPF in that it allows epithelial cells to obtain a mesenchymal phenotype through disassembly of epithelial cell–cell contacts, resulting in the loss of cell polarity. The role of EMT in fibrosis is pernicious, and activation of EMT in the lung has been advocated as one relevant mechanism leading to alveolar cell loss, myofibroblast accumulation, and lung fibrosis in both human and experimental studies. Several studies have shown that the EMT was disrupted when PI3K/AKT is inhibited, and the use of AKT inhibitors can partially reverse EMT. TGF-β is the most important EMT inducer in fibrosis and cancer. In renal fibrosis, EMT can be promoted by enhancing the expression of PI3K subunit p110β induced by TGF-β and the phosphorylation of AKT. Activated AKT activates HIF-1α, which promotes the conversion of AECs to fibroblasts and mediates EMT to participate in pulmonary fibrosis. Additionally, PI3K P85 was highly expressed in silica-induced lung fibrosis, HBE cells, and A549 cells. Indeed, siRNA mediated knockout of PI3K P85 in HBE and A549 cells reduced the severity of pulmonary fibrosis by weakening the process of EMT. Recent research confirmed that the non-SMAD signaling pathway of PI3K/AKT plays a key role in BLM-induced EMT. These findings demonstrated that PI3K/AKT promotes EMT and contributes to the pathogenesis of fibrosis.

2.1.2. Senescence

Interestingly, in the fibroblastic lesions and honeycomb areas of the IPF lung, increased aging markers were found mainly in epithelial cells. Aging epithelial cells secrete several mediators in senescence-associated secretory phenotype (SASP), which directly affects the surrounding microenvironment, thereby triggering IPF; thus, epithelial cell senescence can be considered a pathological feature of IPF. Gene mutations related to telomere shortening IPF; thus, epithelial cell senescence can be considered a pathological feature of IPF. Gene mutations related to telomere shortening and the recruitment of SASP, which directly affects the surrounding microenvironment, thereby triggering IPF.

2.1.3. Apoptosis

A growing body of evidence suggests that apoptosis of AECs plays an important role in the pathogenesis of lung diseases. Many apoptosis incentives have been identified, and the most relevant to the pathobiology of IPF include autophagy, oxidative stress and endoplasmic reticulum (ER) stress. Autophagy ameliorated BLM-induced pulmonary fibrosis by inhibiting the apoptosis of lung epithelial cells. Insufficient autophagy was found in IPF, mainly in the AECs of the IPF lung, and further affects fibroblast differentiation. Studies have indicated that the PI3K/AKT signaling pathway is up-regulated and autophagy regulator mTOR activation is increased to inhibit autophagy and...
exacerbate apoptosis of AECs to promote pulmonary fibrosis. Oxidative stress is also important in the development of pulmonary fibrosis, and it has been proposed that the imbalance between the antioxidative and pro-oxidative state may promote apoptosis of epithelial cells and activation of fibrotic pathways. Model studies of BLM-induced pulmonary fibrosis have also shown that the over-activated PI3K/AKT/HIF-1α pathway regulates abnormal cell proliferation and apoptosis through oxidative stress, thereby further affecting the normal repair of AECs, leading to the production of type III collagen and the formation of pulmonary fibrosis. Studies have reported that markers (BIP, EDEM, and XBP-1) of ER stress and unfolded protein response activation were primarily elevated in the hyperplastic type II AECs overlying fibroblastic foci of patients with IPF. The mechanisms by which ER stress regulates AEC apoptosis are not fully understood, and recent research has confirmed that ER stress and oxidative stress affect the apoptosis of type II AECs via activating PI3K/AKT pathway, leading to silicon dioxide nanoparticles-induced pulmonary fibrosis.

2. Disease progression: Coagulation cascade

The coagulation cascade is responsible for fibrin formation at sites of damaged blood vessels, and functions to prevent blood loss. In the early stages of wound healing, endothelial and epithelial damage can activate the coagulation cascade, resulting in the production of thrombin, followed by thrombin-mediated conversion of serum-derived fibrinogen to fibrin to form a precellular fibrosis. Accumulating evidence suggests that the physiological function of the coagulation cascade is not limited to coagulation, and that this cascade also plays a key role in influencing inflammatory and tissue damage repair responses. Therefore, uncontrolled coagulation contributes to the pathophysiology of various diseases, including acute and chronic lung injury. Previous studies have shown that several zymogens of both the exogenous coagulation cascade and plasminergic systems, including factor X, thrombin, and plasminogen, are locally produced and activated in IPF fibrotic foci, and that this cascade is closely related to fibrin deposition in the lungs of patients with IPF. Furthermore, increased pro-coagulant activity has been observed in the bronchoalveolar lavage fluids of patients with IPF, and there is sufficient evidence to show that the balance of pro coagulation is increased in patients with IPF. Under these coagulation promoting conditions, ECM degradation decreases, leading to fibrosis-promoting effects, and fibroblast differentiation into myofibroblasts is induced by protease-activated receptor. It well recognized that activation of the coagulation cascade and PI3K/AKT may affect the pathogenesis of pulmonary fibrosis (Fig. 2).

The alveolar blood vessels are affected by damage to the alveolar structure and removal of AECs in the basement membrane, which leads to increased vascular permeability. Extravasation of coagulation factors into the tissue leads to extravascular coagulation. Subsequently, endothelial cells and endothelial progenitor cells will proliferate to form new blood vessels. Studies have shown that the quantity of endothelial progenitor cells in patients with IPF is significantly reduced, which to a large extent leads to the failure of reendothelialization, and may further lead to dysfunction of the alveolar-capillary barrier, profibrotic response, and increase in vascular endothelial growth factor (VEGF). VEGF combines with the receptor KDR on vascular endothelial cells to activate the PI3K/AKT signaling pathway, thereby promoting the growth and migration of vascular endothelial cells and the formation of new blood vessels. Strong expression of VEGF...
can be detected in the lavage fluid and serum of patients with IPF, and pulmonary fibrosis can be reduced by inhibiting the expression of VEGF through the inhibition of PI3K/AKT.

Additionally, endothelial cells may undergo mesenchymal transformation to promote the development of fibrosis, and mesothelial–mesenchymal transition also contributes to BLM-induced pulmonary fibrosis. Previous studies have shown that tissue factor-dependent exogenous coagulation pathways are central to the pathogenesis of IPF, and both plasmin and thrombin are considered effective activators of the PI3K/AKT signaling pathway. Moreover, pleural mesothelial cells have been found to undergo thrombin-mediated PI3K/AKT activation through protease-activated receptor-1 activation to obtain mesothelial–mesenchymal transition, leading to increased expression of α-SMA and a characteristic fibrotic phenotype. Additionally, PI3Kβ is considered to be associated with thrombus formation, and PI3Kβ plays various roles in downstream G protein-coupled receptor-mediated thrombin and ADP signals, as well as in integrin and glycoprotein receptors; thus, it is speculated that β isoform is related to the coagulation cascade process of IPF.

2.3. Disease maintenance: Immune activation

The immune response is divided into innate and adaptive immunity, both of which seem to be activated in IPF. Numerous studies have confirmed that inflammatory cells and lymphocytes and their related signals affect the pathophysiology of IPF. Inflammation occurs in the early stage of wound healing and is characterized by continuous infiltration of inflammatory cells. In IPF, macrophages and neutrophils are the most studied innate immune cells, while the role of lymphocytes in fibrosis is poorly understood and remains controversial. This controversy mainly lies in the failure of IPF to improve in response to lymphocyte modulation therapies, but lymphocyte subsets and activation of lymphocytes are indeed found in the lungs and blood of IPF patients with abnormal prognosis. Moreover, in patients with IPF, lymphocytes aggregate in lung tissue and autoantibodies are present in the serum, indicating that lymphocytes should still be regarded as a treatment target of IPF.

2.3.1. Macrophage plasticity

Macrophages are the origin of tissue inhibitors of metalloproteinase, which can antagonize the degradation of the ECM mediated by metalloproteinase. Macrophages have two phenotypes: M1 (classical activation) and M2 (alternative activation). According to the polarization, local microstructure, and fibrosis stage of alveolar macrophages, M1 and M2 play different roles in the process of fibrosis and exhibit obvious phenotypic plasticity. At the early stages of inflammation, acute lung injury promotes an M1 phenotype, leading to the secretion of proinflammatory cytokines. The continuous inflammatory response serves as a trigger to initiate fibrotic responses in the lung. However, M2 macrophages are important in wound healing processes and in terminating inflammatory responses in the lung. The mechanism by which M2 macrophages improve IPF may be via the generation of TGF-β and PDGF, or by enhancing ECM degradation through matrix metalloproteinase (MMP) activity. It is well known that interleukin (IL)-4 is the major inducer of M2 polarization via activation of one of its major downstream signals PI3K/AKT. Studies have shown that IL-13 produced by M2 macrophages also plays a key role in the homeostasis control of normal lungs and the pathogenesis of pulmonary fibrosis. AKT1 regulates pulmonary fibrosis by inducing M2 macrophages to produce IL-13, suggesting that targeting AKT1 blocks the fibrotic process of IPF. The O subclass of the Forkhead box (FOXO) family, such as FOXO1, FOXO3, and FOXO4, are directly phosphorylated by AKT, causing them to be exported to the cytoplasm and degraded through the ubiquitin-proteasome pathway. AKT2 regulates pulmonary fibrosis by up-regulating the production of pro-fibrotic cytokines, TGF-β1, and IL-13, via the AKT2/FOXO3a signaling pathway. It has also been reported that myeloid PTEN deficient mice induced by BLM exhibit sustained PI3K activation to enhance macrophage M2 polarization, which leads to increased morbidity.

2.3.2. Formation of neutrophil extracellular traps

Neutrophils produce various proteases, especially serine proteases (neutrophil elastase [NE]) and MMPs, which degrade matrix components, but can also activate TGF-β and produce inhibitory factors through NE, thus promoting the accumulation of ECM. NE can promote fibroblast proliferation and myofibroblast differentiation in vitro, while NE-deficient mice are protected from asbestos-induced pulmonary fibrosis. Neutrophil extracellular traps (NETs) are released by neutrophils and consist of decolorized chromatin filaments and granular proteins. The release of NETs may cause local tissue damage and inflammation, and plays a significant role in cystic fibrosis and acute virus-mediated lung injury. If the damage is sustained, neutrophils and monocytes are recruited, and promote the production of reactive oxygen species (ROS) to intensify epithelial damage. PI3Kγ and PI3Kδ are mainly expressed in leukocytes, which leads to speculation that these are the primary isoforms in PI3K-mediated innate and adaptive immune response signals. Neutrophils primed with tumor necrosis factor-α (TNFα) can be divided into two phases: PI3Kγ mainly mediates PIP3 accumulation at the leading edge of the cell in the chemokinetic phase, while the subsequent chemotactic phase depends on PI3Kδ. PI3Kγ and PI3Kδ have also been shown to affect neutrophil degranulation and superoxide production. Inhibition of PI3Kγ and PI3Kδ can restore the effective directionality of neutrophil movement to reduce the release of NETs and minimize potential diseases due to immunosuppression.

2.3.3. Lymphocyte aggregates

Studies have confirmed that lymphocyte factors are related to IPF, but the role of lymphocytes is controversial. In IPF lungs, lymphocytes usually aggregate near the fibroblast foci. These aggregates are composed of CD3+ T lymphocytes and mature dendritic cells. TH2 and Th17 cells promote pulmonary fibrosis by inducing elevated levels of IL-4, IL-13, and TGF-β1, while Th1, Th22, and γδ-T cells inhibit fibrosis by inducing IFN-γ and IL-12, IL-9, and CXCL10, respectively. Regulatory T cells and TH9 cells have been associated with anti-fibrosis effects. An increase in CD20+ B cells has also been detected in the lungs of patients with IPF, and represent an important subset of aggregation. Additionally, many soluble factors that promote the growth and differentiation of B cells have been observed in the blood of patients with IPF, including B cell activating factor (also known as B lymphocyte stimulator), IL-6, and IL-13. The inhibition of the PI3K/AKT pathway can inhibit the overproduction of pro-inflammatory cytokines, including TNFα, IL-1β, and IL-6, in bronchoalveolar lavage fluids.
2.4. Disease evolution: Fibroblast accumulation/myofibroblast differentiation

Fibroblasts are tissue-derived mesenchymal cells whose central features are to secrete ECM proteins, providing an environment for regular repair events such as epithelial cell migration[22]. During the pathogenesis of IPF, activated fibroblasts secrete pro-fibrotic mediators to enhance the fibrotic environment, leading to excessive production of ECM and transdifferentiation to myofibroblasts[23]. Myofibroblasts have shrinkable attributes similar to smooth muscle cells and express α-SMA[24]. Compared to fibroblasts, myofibroblasts survive longer in damaged tissues and synthesize more ECM[25]. The strict connection between endothelial cytokines and interstitial cells is conducive to abnormal crosstalk and augments the role of the TGF-β1, PDGF, and WNT pathways, amplifies the fibrotic environment, and leads to a higher rate of transdifferentiation[126]. One unique pathological characteristic of IPF is the existence of fibroblastic foci, that is, an active synthetic cluster of fibroblasts in the vicinity of the air-tissue interface, which can be regarded as the site of new fibrosis[27]. Therefore, fibroblasts and myofibroblasts are deemed the potential therapeutic targets for IPF.

Lysoosphatidic acid (LPA) has been identified as a key fibroblast chemokine in experimental lung fibrosis, and LPA1 receptor KO mice are protected in this model[128]. Studies have found that PI3K/β is a key downstream target of LPA in vivo. The activation of PI3K/β downstream of LPA may help fibroblasts chemotax to sites of tissue damage in vivo[29]. Additionally, the increase in PI3Kγ expression in fibroblasts and basal cells is thought to be related to IPF[14]. In fibroblasts, activated AKT regulates the production of collagens I and III, and promotes human liver fibrosis and BLM-induced lung fibrosis in mice. In addition, AKT can maintain the low autophagy activity of fibroblasts by activating downstream mTOR signaling so that it can preserve the characteristics of high proliferation and anti-apoptosis[130]. Importantly, AKT inhibitors can effectively inhibit the expansion of fibroblasts and the formation of fibronectin matrix in lung tissue, reducing the levels of collagen I and collagen III and retaining lung compliance[14]. Because the fibroblasts in the fibrotic foci express low levels of PTEN, PI3K/AKT activity is enhanced in IPF fibroblasts[131]. Studies have found that PTEN inhibition and AKT/mTOR activation desensitize IPF fibroblasts from collagen accumulation[132]. Additionally, AKT can act on fibroblasts after activation, causing the release of hydrogen peroxide and subsequent damage to adjacent type II AECs to participate in pulmonary fibrosis[146]. By inhibiting catalase and other products produced by ROS, the activation of the PI3K/AKT signaling pathway is inhibited to mediate anti-pulmonary fibrosis.

BLM-induced pulmonary fibrosis depends on the production of ROS, and ROS can participate in lung injury through the PI3K/AKT signaling pathway. Studies have found that ROS can cause fibroblast proliferation and collagen production by activating the PI3K/AKT/HIF-1α pathway[147]. Additionally, AKT can act on fibroblasts after activation, causing the release of hydrogen peroxide and subsequent damage to adjacent type II AECs to participate in pulmonary fibrosis[146]. By inhibiting catalase and other products produced by ROS, the activation of the PI3K/AKT signaling pathway is inhibited to mediate anti-pulmonary fibrosis.

2.5. Disease formation: Tissue remodeling and decomposition

After the completion of the proliferative phase, wound repair enters its ultimate remodeling stage, which can take several years. A major feature of this stage is the remodeling of the ECM into a structure resembling normal tissue[147]. The abnormal tissue remodeling is represented by considerable ECM accumulation. With the development of fibrosis, the biological characteristics of the ECM have changed, such as increased tissue elasticity (stiffness) and changes in matrix composition[138]. Increasing matrix stiffness increases the ability of myofibroblasts to differentiate, and, in turn, myofibroblasts can extend matrix stiffness, which may be accomplished by collagen synthesis and cross-linking to create a feedforward loop that drives the fibrosis process[149]. Studies on the ECM of IPF lungs have shown that type III collagen is mainly present in the alveolar septum and interstitial fibrosis area, while type I collagen is dominant in mature fibrosis area[148,149]. ECM turnover is tightly regulated by several protease families and their respective inhibitors[149]. MMPs include a family of proteases that target collagen and other matrix components for degradation. However, during fibrosis, collagen in the ECM is insoluble, and it is relatively resistant to deterioration by regulating the proliferation of fibroblasts has not yet been elucidated. Moreover, pharmacological inhibition of ER stress reduces TGF-β1-induced myofibroblast differentiation, α-SMA expression, and collagen production in patients with IPF. ER stress-induced autophagy is partly attributable to the down-regulation of the AKT/mTOR pathway, and TGF-β1 inhibits autophagy of fibroblasts, at least in part, by activating mTORC1[140,141], indicating that the activation of PI3K/AKT contribute to fibroblast accumulation and myofibroblast differentiation induced by TGF-β.

WNT protein is a secreted glycoprotein that can signal paracrine or autocrine through its frizzled receptors, low-density lipoprotein receptor-related protein 5 and 6, and disheveled to stabilize β-catenin and cause its nuclear translocation[142]. Activation of the WNT/β-catenin pathway is closely related to apoptosis resistance and proliferation[143], and it is connected with EMT and fibrogenesis after initiation by TGF-β1, sonic Hedgehog, gremlin-1, and PTEN. It is worth noting that both TGF-β1 and the canonical WNT/β-catenin pathway can stimulate each other through PI3K/AKT signaling, and the WNT/β-catenin pathway is considered an upstream activator of the PI3K/AKT/mTOR pathway. More importantly, WNT/β-catenin signaling has been found to be activated in patients with IPF, in whom several WNT/β-catenin-dependent are up-regulated simultaneously[143,144]. Additionally, WNT target genes, such as stromelysin (MMP-7) and fibronectin, contribute to the transdifferentiation of fibroblasts in the development of pulmonary fibrosis[145]. Therefore, the WNT/β-catenin pathway and the PI3K/AKT pathway mediate each other to promote the pathogenesis of IPF.

The role of TGF-β1-induced myofibroblast differentiation, α-SMA expression, and collagen production in patients with IPF. ER stress-induced autophagy is partly attributable to the down-regulation of the AKT/mTOR pathway, and TGF-β1 inhibits autophagy of fibroblasts, at least in part, by activating mTORC1[140,141], indicating that the activation of PI3K/AKT contribute to fibroblast accumulation and myofibroblast differentiation induced by TGF-β.

WNT protein is a secreted glycoprotein that can signal paracrine or autocrine through its frizzled receptors, low-density lipoprotein receptor-related protein 5 and 6, and disheveled to stabilize β-catenin and cause its nuclear translocation[142]. Activation of the WNT/β-catenin pathway is closely related to apoptosis resistance and proliferation[143], and it is connected with EMT and fibrogenesis after initiation by TGF-β1, sonic Hedgehog, gremlin-1, and PTEN. It is worth noting that both TGF-β1 and the canonical WNT/β-catenin pathway can stimulate each other through PI3K/AKT signaling, and the WNT/β-catenin pathway is considered an upstream activator of the PI3K/AKT/mTOR pathway. More importantly, WNT/β-catenin signaling has been found to be activated in patients with IPF, in whom several WNT/β-catenin-dependent are up-regulated simultaneously[143,144]. Additionally, WNT target genes, such as stromelysin (MMP-7) and fibronectin, contribute to the transdifferentiation of fibroblasts in the development of pulmonary fibrosis[145]. Therefore, the WNT/β-catenin pathway and the PI3K/AKT pathway mediate each other to promote the pathogenesis of IPF.
Agent	Mechanism/target	Function description	Phase of development and status	Common adverse event	Ref.
GSK2126458	PI3K/mTOR inhibitor	Reduce TGF-β-induced fibroblast proliferation and collagen I synthesis	Phase I completed (NCT01725139)	Diarrhoea, hyperglycaemia, nausea	166
HEC68498	PI3K inhibitor	Anti-fibrosis and anti-inflammation	Phase I Active, not recruiting (NCT03502902)	Not described	
Rapamycin	mTOR inhibitor	Inhibit TGF-α and EGFR signaling	NA, completed (NCT01462006)	Hyperglycemia, hypophosphatemia, anemia	167
PX-866	pan-PI3K inhibitor	Inhibit TGF-α	Pre-clinical	Rash, hyperglycemia, transaminase elevations	168
Derivatives of 4-methylquinazoline	PI3K inhibitor	Anti-fibrosis and anti-inflammation	Pre-clinical	Not described	169
LY294002	AKT inhibitor	Inhibit fibroblasts expansion and fibronectin matrix formation	Pre-clinical	Not described	49
ASV	TGF-β1/PI3K/AKT pathway inhibition	Inhibit EMT	Pre-clinical	Raised total bilirubin and rash	170,171
Hyp	AKT/GSK3β pathway inhibition	Inhibit inflammation, oxidative stress and EMT	Pre-clinical	Not described	172
Ligustrazine	PI3K/AKT/mTOR pathway inhibition	Reduce ROS	Pre-clinical	Edema, hypertension, gastrointestinal bleeding	62,173
Quercetin	PI3K/AKT pathway inhibition	Anti-oxidation and anti-aging	Pre-clinical	Gastrointestinal effects, rash	174–176

PI3K, phosphatidylinositol-3-kinase; mTOR, mammalian target of rapamycin; TGF-α, transforming growth factor-α; EGFR, epidermal growth factor receptor; TGF-β1, transforming growth factor-β1; ASV, astragaloside IV; EMT, epithelial–mesenchymal transition; Hyp, hyperin; GSK3β, glycogen synthase kinase 3β; ROS, reactive oxygen species. NA, not available.
proteases. Therefore, an understanding of this process is conducive to determining new targets for the treatment of IPF.

There is a substantial body of literature that support that PI3K/AKT can greatly regulate ECM synthesis. Studies have found that when IPF fibroblasts interact with collagen-rich matrix, integrin receptors signal down-regulation of PTEN, which is followed by activation of the PI3K/AKT/mTORC1 phosphorylation cascade. Additionally, focal adhesion kinase (FAK) plays a key role in regulating the integrin-mediated ECM signal. The signaling between FAK and PI3K, which are also important in the focal adhesion cascade, could regulate cell survival, apoptosis, and cell cycle progression.

Omipalisib (also known as CCN2) belongs to the connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family. As an essential downstream mediator of TGF-β signaling, CTGF is also regarded as a component of the profibrotic matrix. CTGF is usually expressed at low levels in healthy individuals, but is strongly upregulated in mechanically stressed tissues. In patients with IPF, high CTGF expression has been proven to promote ECM deposition, fibroblast activation, cell adhesion, and invasion, which are key in tissue remodeling and fibrosis.

Rapamycin can regulate the expression of CTGF in lung fibroblasts and epithelial cells through the PI3K signaling pathway, leading to excessive accumulation of ECM. As a CCN family member, makes a dominant-negative protein to suppress CCN2-mediated fibrogenesis. Emerging evidence has demonstrated that when CCN5 is overexpressed, it can down-regulate CCN2 to inhibit the PI3K/AKT signaling pathway and alleviate pulmonary fibrosis.

3. Potential drugs targeting PI3K/AKT for IPF treatment

Based on this understanding of IPF, numerous therapeutic targets have been realized and the development of anti-IPF drugs has been improved. While several of these anti-IPF drugs have entered clinical trials, only nintedanib and pirfenidone are approved for IPF treatment, and the effects of these two drugs are limited to slowing down the disease process. Three drugs target the PI3K signaling pathway, and many other experimental trials have also achieved promising results. A summary of these drugs is shown in Table 1.

3.1. Clinical trials of PI3K/AKT inhibitors for IPF treatment

Based on the significance of PI3K/AKT in the pathogenesis of IPF, clinical trials began to reposition some PI3K/AKT inhibitors originally used for cancer treatment for the treatment of IPF. Although current drugs targeting PI3K to treat IPF are still in the early stages, their therapeutic effects are impressive. These clinical trials could provide important insights into the treatment of IPF and identify more PI3K/AKT inhibitors for lung fibrotic disorders.

3.1.1. Omipalisib (GSK2126458)

Omipalisib (GSK2126458), an effective small molecule inhibitor of the PI3K/mTOR pathway, was developed as an anti-tumor treatment and has been evaluated in phase I clinical trials in subjects with solid tumors and lymphomas. The efficacy of omipalisib in IPF has also been evaluated. In primary human lung fibroblasts derived from IPF lung tissue, omipalisib can reduce TGF-β-induced fibroblast proliferation and collagen I synthesis in vitro. Additionally, omipalisib has an anti-fibrotic effect in IPF fibroblasts by inhibiting AKT phosphorylation. Moreover, some studies have shown that omipalisib changes the glycosylation in the IPF lung and fibroblasts isolated from fibrotic tissue, and can also reduce abnormal glucose signaling in IPF lung fibrosis areas. A dose-finding, double-blind, placebo-controlled study has demonstrated the safety of the drug. The results showed that orally dosed omipalisib exerts a measurable dose- and exposure-dependent inhibition of the PI3K/mTOR pathway in the systemic circulation and lungs of individuals with IPF. Reported treatment-related AEs mainly include diarrhea, hyperglycemia, and nausea, and no serious AEs were reported, as well as no AEs that led to early termination of treatment. However, there are some weaknesses in this study that limit its further research. The study only recruited a small number of subjects, and no formal evaluation of anti-fibrosis efficacy was performed due to the short duration of the study. Furthermore, it is designed to establish the pharmacological properties and biological relevance of the use of a PI3K inhibitor to alleviate IPF, and the evaluation of IPF therapeutic effects of this trial is inadequate. Further clinical trials are needed to determine more clinically relevant effects of GSK2126458 on attenuating IPF.

3.1.2. HEC68498

As a class I isoform inhibitor of PI3K and mTOR, HEC68498 has convincing and highly selective properties. It has a robust activity against fibrosis and inflammation, which can, at a lower effective dose, achieve a superior therapeutic effect. To study the application of HEC68498 IPF, a phase I, double-blind, placebo-controlled, single oral dose study is underway to assess safety, tolerability, and pharmacokinetics. As of now, there has been no progress in related experiments and no relevant research results made public.

3.1.3. Rapamycin

Rapamycin, also known as sirolimus, is an mTOR inhibitor. Because of its anti-inflammatory and anti-immune effects, rapamycin is mainly used for immunosuppressive therapy. With the deepening of research on mTOR, the role of this important target in anti-fibrosis therapy has become increasingly clear. Rapamycin has antifibrotic properties in BLM-induced fibrosis in mice. Moreover, previous studies have found that rapamycin can prevent and inhibit the progression of progressive pulmonary fibrosis caused by the expression of TGF-α and increased epidermal growth factor receptor (EGFR) signaling. A double-blind, placebo-controlled trial is currently underway to evaluate the ability of rapamycin to act as a fibrosis inhibitor. The results of the study have not been made public, but related studies have observed grade 3 or 4 AEs related to rapamycin, including hyperglycemia, hypophosphatemia, and anemia. However, studies have also shown that rapamycin can effectively promote CCN2 expression in a PI3K-dependent manner to produce direct fibrotic activity. Considering the controversial role of rapamycin for the treatment of IPF, there is no recent progress in the clinical treatment of IPF. It may due to the negative feedback of PI3K/mTOR pathway by rapamycin as a single-target inhibitor of mTOR. Interestingly, the combination therapy of mTOR and PI3K/MAPK inhibitors showed superior anti-tumor activity, suggesting that this combination therapy could be considered for treating IPF.
3.2. PI3K/AKT inhibitor in the treatment of IPF

Several PI3K/AKT inhibitors are being investigated in pre-clinical research and have shown positive progress. The advent of these inhibitors has profoundly expanded the treatment landscape of IPF, and novel PI3K/AKT inhibitor drugs are currently under evaluation. We believe that more PI3K pathway-targeted drugs will be available for the treatment of IPF in the future.

3.2.1. PX-866

PX-866, a pan-PI3K inhibitor, can down-regulate tumor phosphorylation of AKT and has anti-tumor activity in many human tumor xenograft models. Recent studies indicate that PX-866 can prevent the progression of TGF-α-induced lung fibrosis in vivo. Rash, hyperglycemia, and transaminase elevation are considered common AEs related to the treatment of PX-866. At present, there has been no new progress in the use of PX-866 for the treatment of IPF.

3.2.2. Derivatives of 4-methylquinazoline

Rationally designed chemical derivatives of 4-methylquinazoline can be used as high-efficiency PI3K inhibitors for the potential treatment of IPF. They have excellent resistance to proliferate mouse lung fibroblasts, and can significantly improve the lung function of BLM-induced pulmonary fibrosis mice by reducing the levels of α-SMA and hydroxyproline and exerting anti-fibrosis and anti-inflammation effects. These derivatives are expected to become popular drugs for IPF treatment, largely due to their limited adverse event reports.

3.2.3. LY294002

LY294002, a specific PI3K/AKT inhibitor, has been reported to significantly ease PI3K/AKT-mediated cellular processes by suppressing AKT phosphorylation. Numerous studies have confirmed that LY294002 can inhibit the expansion of fibroblasts and the formation of fibronectin matrix in lung tissue in the BLM-induced pulmonary fibrosis model, as well as reduce the content of collagens I and III. These findings suggest that AKT inhibitors have anti-inflammatory and anti-fibrotic effects in pulmonary fibrosis, and no related AEs have yet been described.

3.3. Promising natural products targeting PI3K/AKT in IPF treatment

Recent studies have shown that active ingredients in natural compounds have anti-fibrotic effects. These natural compounds may provide promising drug candidates for treating pulmonary fibrosis.

3.3.1. Astragaloside IV (ASV)

ASV is a natural saponin derived from astragalus, which has anti-fibrotic properties in BLM-induced pulmonary fibrosis. The therapeutic effect of ASV is via the activation of FOXO3a by inhibiting the TGF-β1/PI3K/AKT pathway, thereby preventing EMT in BLM-induced pulmonary fibrosis. Few studies have been conducted on the toxicity and AEs of ASV in vivo and in vitro, although preclinical trails indicate that ASV is safe and well tolerated, and that the AEs, such as raised total bilirubin and rash, were mild and resolved spontaneously.

3.3.2. Hyperin (Hyp)

Hyp is extracted from rhododendron and has various biological effects, including anti-inflammatory, anti-oxidant, anti-fibrosis, and anti-cancer effects. Hyp has been shown to reduce the development of pulmonary fibrosis in mice, potentially due to the inhibition of BLM-induced inflammation, oxidative stress, and EMT through the AKT/glycogen synthase kinase 3β (GSK3β) pathway. Moreover, few treatment-related AEs have been reported following the use of Hyp.
3.3.3. Ligustrazine

Ligustrazine is extracted from the roots and stems of *Ligusticum chuanxiong* Hort. (Chuan Xiong), and has a protective effect by scavenging ROS, regulating the production of nitric oxide, and preventing the formation of peroxynitrite. As ROS causes fibroblast proliferation and stimulates collagen synthesis, ROS play a pivotal role in IPF pathogenesis. Studies have found that ligustrazine can reduce pulmonary fibrosis by inhibiting PI3K/AKT/mTOR. Common AEs reported following Ligustrazine use include edema, hypertension, and gastrointestinal bleeding.

3.3.4. Quercetin

Quercetin is a member of the flavonoid family and can provide direct protection in the development of pulmonary fibrosis by resisting oxidative damage and inflammation. Additionally, quercetin and its regulate the activities of PI3K and other kinases, and selectively reduce the viability of senescent endothelial cells. The combination of dasatinib and quercetin effectively reduce senescence and SASP markers in isolated AEC2 from BLM-treated mice. Intriguingly, a recent study reported that quercetin might render senescent IPF fibroblasts susceptible to pro-apoptotic stimuli via up-regulation of caveolin-1 and inhibition of PI3K/AKT. Common AEs associated with quercetin tend to be gastrointestinal (constipation, heartburn, bloating, diarrhea, nausea, and vomiting) and skin associated (rash, dryness, flushing).

4. Conclusions and future prospects

The PI3K/AKT pathway has gained growing recognition in the field of oncology due to its key roles in cell survival, growth, and proliferation. However, recent studies have found significant PI3K signaling activity in fibrotic lung lesions. This review encapsulates the correlation between PI3K/AKT and IPF (Fig. 3) and explores potent PI3K/AKT inhibitors and novel anti-fibrotic agents in IPF. Although the pathogenesis of IPF remains largely unknown, the current findings are sufficient to deem the PI3K/AKT pathway a reasonable target for the treatment of IPF.

First, aside from regulating IPF alone, PI3K/AKT also has numerous crosstalk and interactions with signaling pathways, including TGF, VEGF, WNT, FAK, mTOR, Jun N-terminal kinase, CTGF, Hedgehog, and Notch pathway, thus participating in multiple links in the pathogenesis of IPF. Second, there are few drugs that can directly target PI3K and AKT to treat pulmonary fibrosis, but these PI3K pathway-targeted drugs have entered the clinical research stage with encouraging results, and there is scope for improvement for treating IPF in the future. Some natural compounds also exhibit potent anti-fibrotic activity through the inhibition of PI3K/AKT, and are considered promising drug candidates for IPF treatment. It is worth noting that as the PI3K/AKT pathway contains a complex negative feedback system, compared to the suppression of specific isoforms in tumor treatment, inhibiting all four class I PI3K subtypes may produce better IPF treatment efficacy. This has higher requirements, that is, to reduce the systemic toxicity of pan-PI3K as much as possible while effectively treating IPF. Thus, it may be appropriate to design drugs that target pathological cells such as fibroblasts. Finally, the role of PI3K/AKT in IPF broadens the treatment horizons for IPF to establish novel targets to treat IPF, such as peroxisome proliferators-activated receptor γ and the eukaryotic translation initiation factor 4E-binding protein 1. Therefore, it is not difficult for us to conclude that the PI3K and AKT play a significant role in the pathogenesis of IPF. A clear understanding of the existing problems and finding new ways to cure IPF is still something that will require continued efforts for a long time to come.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 82003873), the Postdoctoral Science Foundation of China (No. 2020M681899) and the Zhejiang Provincial Natural Science Foundation of China (No. LR21H310001).

Author contributions

Qinjie Weng and Jiajia Wang designed the work. Jincheng Wang, Kaili Hu, and Xuanyan Cai collected data and wrote the manuscript. Jincheng Wang and Kaili Hu designed and regenerated the conceptual pictures. Bo Yang and Qiaojun He gave some critical comments. Jincheng Wang, Kaili Hu, Jiajia Wang, and Qinjie Weng in charge of checking and revision. All of the authors have read and approved the final manuscript.

Conflicts of interest

The authors declare no conflicts of interest.

References

1. Meltzer EB, Noble PW. Idiopathic pulmonary fibrosis. *Orphanet J Rare Dis* 2008;3:8.

2. Esposito DB, Lanes S, Donneyong M, Holick CN, Lasky JA, Lederer D, et al. Idiopathic pulmonary fibrosis in United States automated claims. Incidence, prevalence, and algorithm validation. *Am J Respir Crit Care Med* 2015;192:1200–7.

3. Hutchinson J, Fogarty A, Hubbard R, McKeever T. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. *Eur Respir J* 2015;46:795–806.

4. Allen RJ, Guileen-Guo B, Oldham JM, Ma SF, Dressen A, Paynton ML, et al. Genome-wide association study of susceptibility to idiopathic pulmonary fibrosis. *Am J Resp Crit Care Med* 2020;201:564–74.

5. Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. *Lancet* 2017;389:1941–52.

6. Jin J, Togo S, Kadoya K, Tulafu M, Namba Y, Iwai M, et al. Pirfenidone attenuates lung fibrotic fibroblast responses to transforming growth factor-β1. *Respir Res* 2019;20:119.

7. Varone F, Sgalla G, Iovene B, Bruni T, Richeldi L, Nintedanib for the treatment of idiopathic pulmonary fibrosis. *Expet Opin Pharmacother* 2018;19:167–75.

8. Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: molecular mechanisms and potential clinical applications in lung disease. *Am J Resp Cell Mol* 2020;62:413–22.

9. Tepede A, Yogaratnam D. Nintedanib for idiopathic pulmonary fibrosis. *J Pharm Pract* 2019;32:199–206.

10. Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. *Mol Cancer* 2019;18:26.

11. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. *Nat Rev Genet* 2006;7:606–19.

12. Conte E, Fruciano M, Fagone E, Gili E, Caraci F, Iemmolo M, et al. Inhibition of PI3K prevents the proliferation and differentiation of human lung fibroblasts into myofibroblasts: the role of class I PI10 isoforms. *PLoS One* 2011;6:e24663.
13. Green S, Trejo CL, McMahon M. PIK3CA(H1047R) accelerates and enhances KRAS(G12D)-driven lung tumorigenesis. Cancer Res 2015;75:5378–91.

14. Conte E, Gili E, Fruciano M, Korfei M, Fagone E, Iemmolo M, et al. PI3K p110alpha overexpression in idiopathic pulmonary fibrosis lung tissue and fibroblast cells: in vitro effects of its inhibition. Lab Invest 2013;93:566–76.

15. Zhao C, Cheng J, Muijahid H, Wang H, Kong J, Yin Y, et al. Selective inhibition of PI3K/Akt/mTOR signaling pathway regulates autophagy of macrophage and vulnerability of atherosclerotic plaque. PLoS One 2014;9:e90563.

16. Revathidevi S, Murirajan AK. Akt in cancer: mediator and more. Semin Cancer Biol 2019;59:80–91.

17. Larson Casey JL, Deshane JS, Ryan AJ, Thannickal VJ, Carter AB. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity 2016;44:582–96.

18. Nie Y, Sun L, Wu Y, Yang Y, Wang J, He H, et al. AKT2 regulates pulmonary inflammation and fibrosis via modulating macrophage activation. J Immunol 2017;198:4470–80.

19. Sun Y, Zhang Y, Chi P. Pirfenidone suppresses TGFbeta1 induced activation.

20. Kinoshita T, Goto T. Molecular mechanisms of pulmonary fibrosis and lung cancer: a review. Int J Mol Sci 2019;20:1461.

21. Sgalla G, Iovene B, Calvello M, Ori M, Varone F, Richeldi L. Idiopathic pulmonary fibrosis: pathogenesis and management. Respir Rev 2018;19:32–43.

22. Tzouvelekis A, Komatou G, Bouros E, Trigidou R, Tzilas V, Bouros D. Common pathogenic mechanisms between idiopathic pulmonary fibrosis and lung cancer. Chest 2019;156:383–91.

23. Selman M, K T, Pardo A, American Thoracic Society; European Respiratory Society; American College of Chest Physicians. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001;134:136–51.

24. Bellaye PS, K M. Why do patients get idiopathic pulmonary fibrosis? Current concepts in the pathogenesis of pulmonary fibrosis. BMC Med 2015;13:176.

25. Betensley A, Sharif R, Karamichos D. A systematic review of the role of dysfunctional wound healing in the pathogenesis and treatment of idiopathic pulmonary fibrosis. J Clin Med 2016;6:2.

26. Maher TM, Wells AU, Laurent GJ. Idiopathic pulmonary fibrosis: multiple causes and multiple mechanisms?. Eur Respir J 2007;30:835–9.

27. Liu YM, Nepali K, Liou JP. Idiopathic pulmonary fibrosis: current status, recent progress, and emerging targets. J Med Chem 2017;60:527–53.

28. Hewlett JC, Kropski JA, Blackwell TS. Idiopathic pulmonary fibrosis: epithelial–mesenchymal interactions and emerging therapeutic targets. Matrix Biol 2018;71–72:112–27.

29. Kolb M, Bonella F, Wollin L. Therapeutic targets in idiopathic pulmonary fibrosis. Respir Med 2017;131:49–57.

30. Selman M, Pardo A. Idiopathic pulmonary fibrosis: clinical behavior, pathogenic mechanisms and therapeutic approach. Barcelona Respir Network Rev 2015;1:13–25.

31. Evans CM, Fingerlin TE, Schwarz MI, Lynch D, Kuche J, Warg L, et al. Idiopathic pulmonary fibrosis: a genetic disease that involves mucociliary dysfunction of the peripheral airways. Physiol Rev 2016;96:1567–91.

32. Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal 2020;66:109482.

33. Moore C, Blumhagen RZ, Yang IV, Walts A, Powers J, Walker T, et al. Resequencing study confirms that host defense and cell senescence gene variants contribute to the risk of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2019;200:199–208.

34. Armanios M. Telomerase and idiopathic pulmonary fibrosis. Mutat Res 2012;730:52–8.

35. Spira A, Beane J, Shah V, Liu G, Schemberi F, Yang XM, et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A 2004;101:10143–8.

36. Taskar V, Coultas D. Exposures and idiopathic lung disease. Semin Respir Crit Care Med 2008;29:670–9.

37. Chiomi OS, Drake WP. Role of microbial agents in pulmonary fibrosis. Yale J Biol Med 2017;90:219–27.

38. Winters NJ, Burman C, Kropski JA, Blackwell TS. Epithelial injury and dysfunction in the pathogenesis of idiopathic pulmonary fibrosis. Am J Med Sci 2019;357:374–8.

39. Li XP, Shu RJ, Filippatos G, Uhal BD. Apoptosis in lung injury and remodeling. J Appl Physiol 2004;97:1353–42.

40. Uhal BD, Joshi I, Hughes WF, Ramos C, Pardo A, Selman M. Alveolar epithelial cell death adjacent to underlying myofibroblasts in advanced fibrotic human lung. Am J Physiol 1998;275:L1192–9.

41. Pan LH, Yamachi K, Uzuki M, Nakainshi T, Takigawa M, Inoue H, et al. Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF. Eur Respir J 2001;17:1220–7.

42. Antoniades MN, Bravo MA, Avila RE, Neville-Golden J, Maxwell M, et al. Platelet-derived growth factor in idiopathic pulmonary fibrosis. J Clin Invest 1990;86:1055–64.

43. Khalil N, O’Connor RN, Flanders KC, Unruh H. TGF-beta(1), but not TGF-beta(2) or TGF-beta(3), is differentially present in epithelial cells of advanced pulmonary fibrosis: an immunohistochemical study. Am J Respir Cell Mol Biol 1996;14:131–8.

44. Lamouille S, Xu J, Derynick R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014;15:178–96.

45. Hill C, Jones MG, Davies DE, Wang Y. Epithelial–mesenchymal transition contributes to pulmonary fibrosis via aberrant epithelial/fibroblast cross-talk. J Lung Health Dis 2019;3:3–15.

46. Lin G, Gai R, Chen Z, Wang Y, Liao S, Dong R, et al. Dual PI3K/mTOR inhibitor NVP-BEZ235 prevents epithelial–mesenchymal transition induced by hypoxia and TGF-beta1. Eur J Pharmacol 2014;729:45–53.

47. Saito S, Zhang Y, Shan B, Danchuk S, Luo F, Korfei M, et al. Tubastatin ameliorates pulmonary fibrosis by targeting the TGFbeta1–PI3K–Akt pathway. PLoS One 2017;12:e0186615.

48. Yan WW, Wu QY, Yao WX, Li Y, Liu Y, Yuan JL, et al. MiR-503 modulates epithelial–mesenchymal transition in silico-induced pulmonary fibrosis by targeting PI3K p85 and is spliced by IncRNA MALAT1. Sci Rep 2017;7:11133.

49. Zhang XL, Xing RG, Chen L, Liu CR, Miao ZG. PI3K/Akt signaling is involved in the pathogenesis of bleomycin-induced pulmonary fibrosis via regulation of epithelial–mesenchymal transition. Mol Med Rep 2016;14:75699–706.

50. Schafer MJ, White TA, Li, Haak AJ, Liggrest G, Atkinson EJ, et al. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 2017;8:14532.

51. Minagawa S, Araya J, Numata T, Nojiri S, Hara H, Yumino Y, et al. Oxidative stress dependent microRNA-34a activation in epithelial cells of advanced pulmonary fibrosis: an immunohistochemical study. Am J Respir Cell Mol Biol 2019;60:136–47.

52. Liu T, De Los Santos F Gonzalez, Zhao Y, Wu Z, Rinke AE, Kim KK, et al. Telomerase reverse transcriptase ameliorates lung fibrosis by protecting alveolar epithelial cells against senescence. J Biol Chem 2019;294:8861–71.
Targeting PI3K/AKT signaling for treatment of IPF

54. Pereira PR, Oliveira-Junior MC, Mackenzie B, Chiovatto JE, Matos Y, Greiffo FR, et al. Exercise reduces lung fibrosis involving serotonin/Akt signaling. Med Sci Sports Exerc 2016;48:1276–84.

55. Papa A, Pandolfi PP. The PTEN–PI3K axis in cancer. Biomolecules 2019;9:153.

56. Qiu T, Tian Y, Gao Y, Ma M, Li H, Liu X, et al. PTEN loss regulates alveolar epithelial cell senescence in pulmonary fibrosis depending on Akt activation. Aging 2019;11:7492–509.

57. Barnes PJ, Baker J, Donnelly LE. Cellular senescence as a mechanism and target in chronic lung diseases. Am J Resp Crit Care 2019;200:556–64.

58. Chambers RC, Mercer PF. Mechanisms of alveolar epithelial injury, repair, and fibrosis. Ann Am Thorac Soc 2015;12 Suppl 1:S16–20.

59. Wang K, Zhang T, Lei YL, Li XF, Jiang JW, Lan J, et al. Identification of ANXA2 (annexin A2) as a specific bleomycin target to induce pulmonary fibrosis by impeding TFEB-mediated autophagic flux. Autophagy 2018;14:269–82.

60. Park S, Kim S, Kim MJ, Hong Y, Lee AY, Lee H, et al. GOLGA2 loss causes fibrosis with autophagy in the mouse lung and liver. Biochem Biophys Res Commun 2018;495:594–600.

61. Gui X, Chen H, Cai H, Sun L, Gu L. Leptin promotes pulmonary fibrosis development by inhibiting autophagy via PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun 2018;498:660–6.

62. Liu MW, Su MX, Tang DY, Hao L, Xun XH, Huang YQ. Liguizastrin increases lung cell autophagy and ameliorates paracetamol-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and hedgehog signalling via increasing miR-193a expression. BMC Pulm Med 2019;19:35.

63. Camelli P, Carleo A, Bergantini L, Landi C, Prasse A, Bargagli E. Oxidant/antioxidant disequilibrium in idiopathic pulmonary fibrosis pathogenesis. Inflammation 2020;43:1–7.

64. Lu Y, Azad N, Wang L, Iyer AK, Castranova V, Jiang BH, et al. Phosphatidylinositol-3-kinase-3-kinase/Akt regulates bleomycin-induced fibroblast proliferation and collagen production. Am J Respir Cell Mol Physiol 2010;42:432–41.

65. Lawson WE, Crossno PF, Polosukhin VV, Roldan J, Cheng DS, Lane KB, et al. Endoplasmic reticulum stress is alveolar epithelial cells is prominent in IPF: association with altered surfactant protein processing and herpesvirus infection. Am J Physiol Lung Cell Mol Physiol 2008;294:L1119–26.

66. Lee KJ, Su CC, Fang KM, Wu CC, Wu CT, Chen YW. Ultrafine silicon dioxide nanoparticles cause lung epithelial cells apoptosis via oxidative stress-activated PI3K/Akt-mediated mitochondria- and endoplasmic reticulum stress-dependent signaling pathways. Sci Rep 2020;10:9928.

67. Lin C, Borenstjna K, Spck CA. Targeting coagulation factor receptors—prostate-activated receptors in idiopathic pulmonary fibrosis. J Thromb Haemost 2017;15:597–607.

68. Chambers RC, Scotton CJ. Coagulation cascade proteins in lung injury and fibrosis. Proc Am Thorac Soc 2012;9:96–101.

69. Anthoni C, Russell J, Wood KC, Stokes KY, Yowinkle T, Kirchhofer D, et al. Tissue factor: a mediator of inflammatory cell recruitment, tissue injury, and thrombus formation in experimental colitis. J Exp Med 2007;204:1595–601.

70. Saprana, Wiemels JL, Witte JS, Ware LB, Matthay MA. Acute lung injury and the coagulation pathway: potential role of gene polymorphisms in the protein C and fibrinolytic pathways. Intensive Care Med 2006;32:1293–303.

71. Josef RJ, Williams AE, Chambers RC, Proteinase-activated receptors in fibroproliferative lung disease. Thorax 2014;69:190–2.

72. Wygrecka M, Kwapiszewska G, Jablonska E, von Gerlach S, Henneke I, Zakrzewicz D, et al. Role of prostate-activated receptor-2 in idiopathic pulmonary fibrosis. Am J Resp Crit Care Med 2011;183:1703–14.

73. Kotani I, Sato A, Hayakawa H, Urano T, Takada Y, Takada A. Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis. Thromb Res 1995;77:495–504.

74. Günther A, Mosavi P, Ruppert C, Heinemann S, Temmesfeld B, Velcovsky HG, et al. Enhanced tissue factor pathway activity and fibrin turnover in the alveolar compartment of patients with interstitial lung disease. Thromb Haemost 2000;83:853–60.

75. Crooks MG, Hart SP. Coagulation and anticoagulation in idiopathic pulmonary fibrosis. Eur Respir Rev 2015;24:392–9.

76. King TE, Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet 2011;378:1949–61.

77. Dvorak HF. Tumors: wounds that do not heal—a historical perspective with a focus on the fundamental roles of increased vascular permeability and clotting. Semin Thromb Hemost 2019;45:576–92.

78. Ebina M. Pathogenic remodeling of blood and lymphatic capillaries in idiopathic pulmonary fibrosis. Respir Investig 2017;55:2–9.

79. Iyer AK, Ramesh V, Castro CA, Kaushik V, Kulkarni YM, Wright CA, et al. Nitric oxide mediates bleomycin-induced angiogenesis and pulmonary fibrosis via regulation of VEGF. J Cell Biochem 2015;116:2484–93.

80. Laddha AP, Kulkarni YA. VEGF and FGF-2: promising targets for the treatment of respiratory disorders. Respir Med 2019;156:33–46.

81. Malli F, Koutsokera A, Paraskeva E, Zakynthinos E, Papagianni M, Makris D, et al. Endothelial progenitor cells in the pathogenesis of idiopathic pulmonary fibrosis: an evolving concept. PLoS One 2013;8:e53658.

82. Jackson SP, Schoenwaelder SM, Goncalves A, Nespitt WS, Yap CL, Weight CE, et al. PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med 2005;11:507–14.

83. Desai O, Winkler J, Minasyan M, Herzog EL. The role of immune and inflammatory cells in idiopathic pulmonary fibrosis. Front Med 2018;5:43.

84. Molyneaux PL, Maher TM. The role of infection in the pathogenesis of idiopathic pulmonary fibrosis. Eur Respir Rev 2013;22:376–81.

85. LoRusso PM. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol 2016;34:3803–15.

86. Hvoyne GF, Elliott H, Mutsaers SE, Prele CM. Idiopathic pulmonary fibrosis and a role for autoimmunity. Immunol Cell Biol 2017;95:577–83.

87. Barron L, Wynn TA. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am J Physiol Lung Cell Mol Physiol 2011;300:G723–8.

88. Sun L, Louie MC, Vannella BM, LeVine AM, Moore BB, et al. New concepts of IL-10-induced lung fibrosis: fibrocyte recruitment and M2 activation in a CCL2/CCR2 axis. Am J Respir Cell Mol Physiol 2011;45:3803–15.

89. Mills CD, Ley K, M1 and M2 macrophages: the chicken and the egg of immunity. Immunity 2014;6:716–26.

90. Hou J, Shi J, Chen L, Lv Z, Chen X, Cao H, et al. M2 macrophages promote myofibroblast differentiation of LR-MSCs and are associated with pulmonary fibrogenesis. Cell Commun Signal 2018;16:89.

91. van den Brule S, Heymans J, Havaux X, Renauld JC, Lison D, Huaux F, et al. Prothrombotic effect of IL-9 overexpression in a model of airway remodeling. Am J Respir Cell Mol Biol 2007;37:202–9.

92. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011;11:723–37.

93. Huang SCC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, et al. Metabolic reprogramming mediated by the mTORC2–IRF4 signaling axis is essential for macrophage alternative activation. Immunity 2016;45:817–30.
95. Nie Y, Hu Y, Yu K, Zhang D, Shi Y, Li Y, et al. Akt1 regulates pulmonary fibrosis via modulating IL-13 expression in macrophages. *Innate Immun* 2019;25:451–61.

96. Kral JB, Kuttke M, Schrottmaier WC, Birncker B, Warszawski J, Wernig C, et al. Sustained PI3K activation exacerbates BLM-induced lung fibrosis via activation of pro-inflammatory and pro-fibrotic pathways. *Sci Rep* 2016;6:23034.

97. Kruger P, Saffarzadeh M, Weber ANR, Rieber N, Radsak M, von Bernuth H, et al. Neutrophils: between host defence, immune modulation, and tissue injury. *PLoS Pathog* 2015;11:e1004651.

98. Takamasa A, Ishii Y, Fukuda T. A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice. *Eur Respir J* 2012;40:1475–82.

99. Manoury B, Nenan S, Guenon I, Lagente V, Boichot E. Influence of early neutrophil depletion on MPP1/TIMP-1 balance in bleomycin-induced lung fibrosis. *Int Immunopharmac* 2007;7:990–11.

100. Gregory AD, Kliment CR, Metz HE, Kim KH, Kargl J, Agostini BA, et al. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. *J Leukoc Biol* 2015;98:143–52.

101. O’Dwyer DN, Ashley SL, Moore BB. Involvement of innate immunity, autophagy, and fibroblast activation in the pathogenesis of lung fibrosis. *Am J Physiol Lung Cell Mol Physiol* 2016;311:L590–601.

102. Manzenreiter R, Kienberger F, Marcos V, Schilker K, Krautgartner WD, Obermayer A, et al. Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy. *J Cyst Fibros* 2012;11:84–92.

103. Narasaraju T, Yang E, Samy RP, Ng HH, Poh WP, Liew AA, et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. *Am J Pathol* 2011;179:199–210.

104. Medina-Tato DA, Ward SG, Watson ML. Phosphoinositide 3-kinase signalling in lung disease: leucocytes and beyond. *Immunology* 2007;121:448–61.

105. Yago T, Zhang N, Zhao L, Abrams CS, McEver RP. Selectins and chemokines use shared and distinct signals to activate β2 integrins in neutrophils. *Blood Adv* 2018;2:731–44.

106. Leisching GR. PI3-kinase δatty catalytic isofoms regulate the Th-17 response in tuberculous. *Front Immunol* 2019;10:2583.

107. Perry MWD, Abdulai R, Mogemark M, Petersen J, Thomas MJ, Valastro B, et al. Evolution of PI3Kgamma and delta inhibitors for inflammatory and autoimmune diseases. *J Med Chem* 2019;62:4783–814.

108. Saper E, Greenwood H, Walton G, Mann E, Love A, Aaronson N, et al. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly; toward targeted treatments for immunosenescence. *Blood* 2012;123:239–48.

109. Todd NW, Scheraga RG, Galvin JR, Iacono AT, Britt EJ, Luzina IG, et al. Lymphocyte aggregates persist and accumulate in the lungs of patients with idiopathic pulmonary fibrosis. *J Inflamm Res* 2013;6:63–70.

110. Vuga LJ, Tedrow JR, Pandit KV, Tan JN, Kiss DJ, Xue JM, et al. C-X-C motif chemokine 13 (CXCL13) is a prognostic biomarker of idiopathic pulmonary fibrosis. *Am J Pathol* 2009;182:657–65.

111. Chen Y, Li CY, Weng D, Song LY, Tang W, Dai WJ, et al. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice. *Toxicol Appl Pharmacol* 2014;275:62–72.

112. Arras M, Huaux F, Vink A, Delos M, Coutelier JP, Many MC, et al. Interleukin-9 reduces lung fibrosis and type 2 immune polarization induced by silica particles in a murine model. *Am J Resp Cell Mol Biol* 2004;24:368–75.

113. Arras M, Louahed J, Heilier JF, Delos M, Brombacher F, Renaud JC, et al. IL-9 protects against bleomycin-induced lung injury—involution of prostaglandins. *Am J Pathol* 2005;166:107–15.

114. Simonian PL, Wehrmann F, Roark CL, Born WK, O’Brien RL, Fontenot AP. Gammadelta T cells protect against lung fibrosis via IL-22. *J Exp Med* 2010;207:2239–53.

115. Pociask DA, Chen K, Choi SM, Oury TD, Steele C, Kolls JK. Gamma delta T cells attenuate bleomycin-induced fibrosis through the production of CXCL10. *Am J Pathol* 2011;178:1167–76.

116. Boveda-Ruiz D, D’Alessandro-Gabazza CN, Toda M, Takagi T, Naito M, Matsushima Y, et al. Differential role of regulatory T cells in early and late stages of pulmonary fibrosis. *Immunobiology* 2013;218:245–54.

117. Xu J, Kiss DJ, Bon J, Vuga L, Tan J, Cizmadia E, et al. Plasma B lymphocyte stimulator and B cell differentiation in idiopathic pulmonary fibrosis patients. *J Immunol* 2013;191:2089–95.

118. Aoz DF, Lawton WE, Blackwell TD. ISPI pulmonary fibrosis: a disorder of epithelial cell dysfunction. *Am J Med Sci* 2011;341:435–8.

119. Scotton CJ, Chambers RC. Molecular targets in pulmonary fibrosis—the myofibroblast in focus. *Chest* 2007;132:1311–21.

120. Abraham DJ, Eckes B, Rajkumar V, Krieg T. New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. *Curr Rheumatol Rep* 2007;9:136–43.

121. Desmouliere A, Chaponnier C, Gabbiani G. Tissue repair, contraction, and the myofibroblast. *Wound Repair Regen* 2005;13:7–12.

122. Zolak JS, de Andrade JA. Idiopathic pulmonary fibrosis. *Am J Respir Crit Care Med* 2012;183:511–23.

123. Kahn 3rd C, Boldt J, King Jr TE, Crouch E, Vartio T, McDonald JA. An immunohistomorphological study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. *Am Rev Respir Dis* 1989;140:1693–700.

124. Ninou I, Kaffe E, Muller S, Budd DC, Stevenson CS, Ullmer C, et al. Pharmacologic targeting of the ATX/LPA axis attenuates bleomycin-induced pulmonary fibrosis. *Palm Pharmacol Therapeut* 2018;52:32–40.

125. Fritsch R, de Krijger I, Fritsch K, George R, Reason B, Kumar MS, et al. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isofoms. *Cell* 2013;153:1050–63.

126. Spangle JM, Roberts TM, Zhao JJ. The emerging role of PI3K/AKT-mediated signaling in idiopathic pulmonary fibrosis. *Am J Physiol Lung Cell Mol Physiol* 2014;306:L1475.

127. Aschner Y, Downey GP. Transforming growth factor-beta: master regulator of the respiratory system in health and disease. *Am J Resp Cell Mol Biol* 2016;54:647–55.

128. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. *Front Immunol* 2019;10:703.

129. Kuhn 3rd C, Boldt J, King JR TE, Crouch E, Vartio T, McDonald JA. An immunohistomorphological study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. *Am Rev Respir Dis* 1989;140:1693–700.

130. Fritsch R, de Krijger I, Fritsch K, George R, Reason B, Kumar MS, et al. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isofoms. *Cell* 2013;153:1050–63.

131. Xia H, Khalil W, Cahal MR, Kleidon J, Henke CA. Pathologic caveolin-1 regulation of PTEN in idiopathic pulmonary fibrosis. *Thorax* 1994;49:583–94.

132. Aschner Y, Downey GP. Transforming growth factor-beta: master regulator of the respiratory system in health and disease. *Am J Resp Cell Mol Biol* 2016;54:647–55.

133. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. *FASEB J* 2007;21:853–94.

134. Border WA, Noble NA. Transforming growth factor beta in tissue repair, contraction, and the myofibroblast. *Wound Repair Regen* 2005;13:7–12.

135. Giri SN, Hyde DM, Hollinger MA. Effect of antibody to transforming growth factor beta on bleomycin induced accumulation of lung collagen in mice. *Thorax* 1997;52:663–70.

136. Wu L, Zhang Q, Mo W, Feng J, Li S, Li J, et al. Quercetin prevents hepatic fibrosis by inhibiting hepatic stellate cell activation and
reducing autophagy via the TGF-beta1/Smad and PI3K/Akt pathways. *Sci Rep* 2017;7:9289.

138. Hsu HS, Liu CC, Lin JH, Hsu TW, Hsu JW, Su K, et al. Involvement of ER stress, PI3K/AKT activation, and lung fibroblast proliferation in bleomycin-induced pulmonary fibrosis. *Sci Rep* 2017; 7:14272.

139. Lawrence J, Nho R. The role of the mammalian target of rapamycin (mTOR) in pulmonary fibrosis. *Int J Mol Sci* 2018; 19:778.

140. Baek HA, Kim DS, Park HS, Jang KY, Kang MJ, Lee DG, et al. Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. *Plos Med* 2005;2:e251.

141. Konigshoff M, Kramer M, Park HS, Jang KY, Kang MJ, Lee DG, et al. Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. *J Clin Invest* 2008;119:772–87.

142. Spassov SG, Domas R, Ible PM, Engelstaedter H, Hoetzl A, Faller S. Hydrogen sulfide prevents formation of reactive oxygen species through PI3K/Akt signaling and limits ventilator-induced lung injury. *Oxid Med Cell Longev* 2017; 2017:3715037.

143. Clarke DL, Curruthers AM, Mustelin T, Murray LA. Matrix regulation of idiopathic pulmonary fibrosis: the role of enzymes. *Fibrogene Tissue Repair* 2013;6:20.

144. Shimbori C, Gauldie J, Kolb M. Extracellular matrix microenvironment contributes actively to pulmonary fibrosis. *Curr Opin Pulm Med* 2013;19:446–52.

145. Konigshoff M, Kramer M, Park HS, Jang KY, Kang MJ, Lee DG, et al. Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. *Plos Med* 2005;2:e251.

146. Lukey PT, Harrison SA, Yang S, Man Y, Holman BF, Rashidnasab A, et al. A randomised, placebo-controlled study of omipalisib (PI3K/mTOR) in idiopathic pulmonary fibrosis. *Eur Respir J* 2019; 53:1801992.

147. Waqar SN, Baggstrom MQ, Morgenstern D, Williams K, Rigden C, Govindan R. A phase I trial of temsirolimus and pemetrexed in patients with advanced non-small cell lung cancer. *Chemotherapy* 2016;61:144–7.

148. Le Cras TD, Korthagen TR, Davidson C, Schmidt S, Fenichel M, Ikegami M, et al. Inhibition of PI3K by PX-866 prevents transforming growth factor-alpha-induced pulmonary fibrosis. *Am J Pathol* 2010;176:679–86.

149. Lin S, Jin J, Liu Y, Tian H, Zhang Y, Fu R, et al. Discovery of 4-methylquinazoline based PI3K inhibitors for the potential treatment of idiopathic pulmonary fibrosis. *J Med Chem* 2019;62:8873–9.

150. Qian W, Cai X, Qian Q, Zhang W, Wang D. Astragaloside IV modulates TGF-beta1-dependent epithelial–mesenchymal transition in bleomycin-induced pulmonary fibrosis. *J Cell Mol Biol* 2018;22:4354–65.

151. Xu M, Yin J, Xie L, Zhang J, Zou C, Zou J, et al. Pharmacokinetics and tolerability of tolazastragalosides after intravenous infusion of astragalosides injection in healthy Chinese volunteers. *Phytomedicine* 2013;20:1105–11.

152. Huang J, Tong X, Zhang L, Zhang Y, Wang D, et al. Hyperoside attenuates bleomycin-induced pulmonary fibrosis development in mice. *Front Pharmacol* 2020;11:550955.

153. Wu X, Li W, Luo Z, Chen Y. Meta-analysis of clinical efficacy and safety of ligustazine in the treatment of idiopathic pulmonary fibrosis. *Evid Based Complement Altern Med* 2020;2020:2416132.

154. Lehmann M, Korfei M, Mutze K, Klee S, Skronska- Waszek E, Alsafadi N, et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis *ex vivo*. *Eur Respir J* 2017;50:1602367.

155. Hohmann MS, Habiel DM, Coelho AL, Verri Jr WA, Hogaboam CM. Quercetin enhances ligand-induced apoptosis in senescent idiopathic pulmonary fibrosis fibroblasts and reduces lung fibrosis *in vivo*. *Am J Respir Cell Mol Biol* 2019;60:28–40.

156. Andres S, Pevny S, Ziegenhagen R, Bakhinya N, Schafer B, Hirsch-Ernt KI, et al. Safety aspects of the use of quercetin as a dietary supplement. *Mol Nutr Food Res* 2018;62:1700447.
177. Munster P, Aggarwal R, Hong D, Schellens JH, van der Noll R, Speccht J, et al. First-in-human phase I study of GSK2126458, an oral pan-class I phosphatidylinositol-3-kinase inhibitor, in patients with advanced solid tumor malignancies. Clin Cancer Res 2016;22:1932–9.

178. Knight SD, Adams ND, Burgess JL, Chaudhari AM, Darcy MG, Donatelli CA, et al. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med Chem Lett 2010;1:39–43.

179. Mercer PF, Woodcock HV, Eley JD, Plate M, Sulikowski MG, Durrenberger PF, et al. Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF. Thorax 2016;71:701–11.

180. Kottmann RM, Trawick E, Judge JL, Wahl LA, Epa AP, Owens KM, et al. Pharmacologic inhibition of lactate production prevents myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol 2015;309:L1305–12.

181. Jin X, Dai H, Ding K, Xu X, Pang B, Wang C. Rapamycin attenuates bleomycin-induced pulmonary fibrosis in rats and the expression of metalloproteinase-9 and tissue inhibitors of metalloproteinase-1 in lung tissue. Chin Med J 2014;127:1304–9.

182. Korfhagen TR, Le Cras TD, Davidson CR, Schmidt SM, Ikegami M, Whitsett JA, et al. Rapamycin prevents transforming growth factor-alpha-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2009;41:562–72.

183. Molina-Molina M, Machahua-Huamani C, Vicens-Zygmun V, Llatjos R, Escobar I, Sala-Llinas E, et al. Anti-fibrotic effects of pirfenidone and rapamycin in primary IPF fibroblasts and human alveolar epithelial cells. BMC Pulm Med 2018;18:63.

184. Roberts PJ, Usary JE, Darr DB, Dillon PM, Pfefferle AD, Whittle MC, et al. Combined PI3K/mTOR and MEK inhibition provides broad antitumor activity in faithful murine cancer models. Clin Cancer Res 2012;18:5290–303.

185. Ihle NT, Williams R, Chow S, Chew W, Berggren MI, Paine-Murrieta G, et al. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol Cancer Ther 2004;3:763–72.

186. Levy B, Spira A, Becker D, Evans T, Schnadig I, Camidge DR, et al. A randomized, phase 2 trial of docetaxel with or without PX-866, an irreversible oral phosphatidylinositol-3-kinase inhibitor, in patients with relapsed or metastatic non-small-cell lung cancer. J Thorac Oncol 2014;9:1031–5.

187. Hu X, Xu Q, Wan H, Hu Y, Xing S, Yang H, et al. PI3K–Akt–mTOR/PP2FB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. Lab Invest 2020;100:801–11.

188. Li LC, Kan LD. Traditional Chinese medicine for pulmonary fibrosis therapy: progress and future prospects. J Ethnopharmacol 2017;198:45–63.

189. Li L, Hou X, Xu R, Liu C, Tu M. Research review on the pharmacological effects of astragaloside IV. Fundam Clin Pharmacol 2017;31:17–36.

190. Ye P, Yang XL, Chen X, Shi C. Hyperoside attenuates OVA-induced allergic airway inflammation by activating Nrf2. Int Immunopharm 2017;44:168–73.

191. Zou L, Chen S, Li L, Wu T. The protective effect of hyperoside on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of Nrf2. Exp Toxicol Pathol 2017;69:451–60.

192. Li W, Tang Y, Chen Y, Duan JA. Advances in the chemical analysis and biological activities of chuanxiong. Molecules 2012;17:10614–51.

193. Boots AW, Veith C, Albrecht C, Bartholome R, Drittij MJ, Claessen SMH, et al. The dietary antioxidant quercetin reduces hallmarks of bleomycin-induced lung fibrogenesis in mice. BMC Pulm Med 2020;20:112.

194. Rosenbloom J, Mendoza FA, Jimenez SA. Strategies for anti-fibrotic therapies. Biochim Biophys Acta 2013;1832:1088–103.