Hyaline Tintinnina (Protozoa-Ciliophora-Oligotrichida) from northeast Brazilian coastal reefs

Roberto SASSI & Gilson do Nascimento MELO

Abstract: Seven species of hyaline Tintinnina were obtained from plankton samples collected near the coastal reefs of Ponta do Seixas (Lat. 7°09'16"S, Long. 34°47'35"W), Northeastern Brazil, from April 1981 to May 1982 and from April 1983 to May 1984: Amphorelopsis acuta (Schmidt, 1901), Dadayiella ganymedes (Entz Sr., 1884), Epiplocyoides reticulata (Ostenfeld & Schmidt, 1901), Eutintinopsis tubulosus (Ostenfeld, 1899), Favella ehrenbergi (Claparede & Lachmann, 1858), Metaeyolis mereschkowskyi Kofoid & Campbell, 1929 and M. perspicax (Hada, 1938). The most frequent and abundant species were *M. mereschkowskyi* and *F. ehrenbergi*. Except *D. ganymedes*, *E. reticulata* and *F. ehrenbergi* all species are new records from Brazil. *Metaeyolis perspicax* is also the seventh world register. For all species we provide description, drawings, measurements, seasonal occurrence, world distribution and some systematic comments.

Descriptors: Tintinnina, Protozoa, Ciliates, Systematics, New records, Microzooplankton, Reefs, Northeast Brazil.

Introduction

The first studies regarding Brazilian Tintinnina were started by Brandt (1906;1907), based on samples gathered in the northern region during the "Plankton Expedition" of the Humboldt Foundation (Germany), and by Bresslau (1906), based on material gathered near the city of Rio de Janeiro. Brandt’s paper is essentially a systematic account, with description of some new species from Brazil, while the paper of Bresslau shows details of the conjugation among specimens of *Tintinnopsis ventricosa* (= *Stenosomella ventricosa*).

After these two pioneer works, only very few studies were carried out along the Brazilian coast. Some species were cited for the south and southeast regions by Faria & Cunha (1917), Cunha & Fonseca (1918), Lutz et al. (1918), Carvalho (1939), Moreira Filho (1961), Seguin (1965) and Souto (1970 a,b). Nevertheless, only the papers of Souto (*op. cit.*), are the most complete for those regions.

For the northeastern coastal waters the only detailed study was conducted by Balech (1971a) (from shelf and oceanic waters off Ceará and Piauí States), by Paranaguá & Neumann-Leitão (1980) (from the State of Pernambuco) and by Singarajah (1978) (from the State of Paraíba).

Although reef formations are a common feature from the northeastern Brazil, there is no studies regarding these pelagic protozoans in these environments. This paper is the first contribution to the systematics of Tintinnina found in these regions. Only the species with hyaline lorica are treated here.

Material and methods

Samples were gathered weekly from April, 1981 to May, 1982, and most scarcely from April, 1983 to May, 1984, in a fixed station near the reef formation of Ponta do Seixas (Lat. 7°09'16"S, Long. 34°47'35"W), State of Paraíba. The collections were made only at the surface using a standard plankton net with 50 μm mesh size. The material was preserved with 4% neutralized formaldehyde and analysed in several magnifications with a Zeiss phase contrast microscope. Five subsamples of each sample were studied. To give an idea of the abundance of each species along the studied period all specimens were counted. Selected individuals of each species were drawn with a camera lucida and measured.
Results

Only seven species of hyaline Tintinnina were found during this study: *Amphoreloppis acuta* (Schmidt, 1901), *Eutintinnus tubulosus* (Ostenfeld, 1899), *Dadayiella ganymedes* (Entz Sr., 1884), *Epiplocytoideis reticulata* (Ostenfeld & Schmidt, 1901), *Metacylis mereschkowskyi* Kofoid & Campbell, 1929, *Metacylis perspicax* (Hada, 1938), and *Favella ehrenbergii* (Claparède & Lachmann, 1858). For each species the following systematic treatment is presented:

Family Coxillellidae Kofoid & Campbell, 1929
Genus Metacylis Jörgensen, 1924

Metacylis mereschkowskyi Kofoid & Campbell, 1929

(Plate I, Figs 1-6)

Metacylis mediterraneus var. *pontica* Mereschkowsky, Rossolimo, 1922, *partim*, p. 29, pl. 2, fig. 24, left figure only (right figure = *M. joergensenii*).

Metacylis mediterranea var. *pontica* (Mereschkowsky), Jörgensen, 1924, p. 97, *fig. 109b*, non *fig. 109a (= *M. joergensenii*).

Metacylis mereschkowskyi Kofoid & Campbell, 1929, p. 200, *fig. 377*; Hada, 1938, p. 134, *fig. 21*; Silva, 1952, p. 618, pl. 3, *figs 6, 7*; Cosper, 1972, *fig. 25*.

Metacylis mereschkowskyi Kofoid & Campbell, Balech, 1968, p. 176, pl. 2, *fig. 16*.

Metacylis sp. Silva, 1953, p. 109, *fig. 7*.

Metacylis sp. Gold, 1970, p. 209, *fig. 9*.

Metacylis sp. aff. mereschkowskyi, Cao, 1986, p. 145, *figs 2g, 3c*.

Description: Lorica short and wide, vase shaped, very translucent, consisting of a collar with one or two annular rings and a convex conical bowl. Distinct shoulder below collar, where the wall is reinforced. Widest diameter in the shoulder region. Colar end slightly acute or rounded. Bowl wall with small alveolate structures, more visible on the shoulder. Collar with very faint oblique lines.

Dimensions (35 specimens): Total length, 39.0-51.5; oral diameter, 37.1-42.0; greatest diameter, 44.9-49.7; height of the collar, 2.5-4.0.

Occurrence: 07/03/81 (16), 08/06/81 (1), 08/14/81 (2), 08/21/81 (1), 08/27/81 (4), 09/02/81 (30), 09/11/81 (4), 10/02/81 (4), 10/16/81 (9), 10/23/81 (1), 11/26/81 (1), 12/03/81 (3), 12/11/81 (1), 12/28/81 (1), 01/22/82 (2), 02/12/82 (2), 02/05/82 (10), 04/16/82 (3), 09/06/83 (6).

Distribution: Brazil (new record); Gulf of Mexico (Lackey & Hynes, 1955, *fide* Balech, 1968, p. 176; Balech, 1968; Cosper, 1972); Guinea Bissau waters (Silva, 1952); Portugal waters (Silva, 1953); Mediterranean Sea (Jörgensen, 1924); Black Sea (Rossolimo, 1922; Jörgensen, 1924; Mamaeva, 1980); Micronesian waters (Hada, 1938); Argentina waters (Cao, 1986).

Remarks: A mistake was perpetrated in the synonymic list furnished by Kofoid & Campbell (1929): in fact, the *fig. 24* (left figure) of Rossolimo (1922) is *Tintinnus mediterraneus* var. *pontica* and not *T. mediterraneus* var. *neapolitana* as they wrote.

The assignment of *M. mereschkowskyi* by Kofoid & Campbell (op. cit.) and Hada (1938) for the European western coast, Florida and East China Sea constitutes a misinterpretation of Jörgensen's paper of 1924. In fact, *Jörgensen* (op. cit.) just refers for such regions *M. mediterranea* and its forma *neapolitana* (= *M. joergensenii*) but not the variety *pontica* (= *M. mereschkowskyi*), which he observed only in waters from the southern Ionian Sea (station 152) and the Black Sea region (stations 171 and 172).

M. mereschkowskyi is very similar to *M. angulata* Lackey & Balech (1966) but differs from this species by its smaller dimensions and a most hyaline lorica always without an aboral tip. Also, it shows some similarity with *M. perspicax* Hada (1938), from which differs in the collar shape and by having the greatest diameter above the equatorial portion of the lorica, while in *M. perspicax* this diameter is near the middle portion.

Although *M. mereschkowskyi* frequently presents an almost triangular lorica, with acuminated aboral extremity, we found some specimens most globose and with an aboral end rounded (Pl. I, *fig. 6*). We have also observed some specimens with a large oral aperture, with dimensions closest to the maximum diameter (Pl. I, *fig. 4*). This variability led us to consider the specimens studied by Silva (1953), Gold (1970) and Cao (1986) as belonging to *M. mereschkowskyi*.

Metacylis perspicax (Hada, 1938).

(Plate I, Figs 7,8)

Metacylis corubala var. *perspicax* Hada, 1938, p. 136, *fig. 53*.

Metacylis corubala Kofoid & Campbell, Marshall, 1934, p. 646, *fig. 26*; Hada, 1938, p. 135, *fig. 52a,b*; Marrón-Aguillar & López-Ochoferena, 1969, p. 52, pl. 4, *fig. 36*; *non M. corubala* Kofoid & Campbell, 1929, *p. 199, fig. 370*.

Metacylis sanyahensis Nie & Ch'eng, 1947, p. 69, *fig. 29*.

Metacylis perspicax (Hada, 1938), Marrón-Aguillar & López-Ochoferena, 1969, p. 53, pl. 4, *fig. 37*.

Description: A minute species with a hyaline, subglobular lorica, showing two differentiated portions: a truncate conical collar, with four annular rings, corresponding to about 0.20-0.25 of total length, and a hemispherical bowl, sometimes slightly acuminated in its aboral end. Maximum diameter almost equal to total length.

Dimensions (9 specimens): Total length, 36.4-44.3; oral diameter, 37.4-42.3; greatest diameter, 43.0-47.0; height of collar, 5.0-9.8.

Occurrence: A rare species in the studied region. Present only on 07/03/81 (2), 08/27/81 (4), 09/02/81 (2), 09/11/81 (5), 10/16/81 (1) and 04/07/82 (1).
Distribution: Brazil (new record); Caribbean Sea (Durán, 1957); Gulf of Mexico (Marrón-Aguillar & López-Ochoterena, 1969); Guinea-Bissau waters (Silva, 1952); Great Barrier Reef (Marshall, 1934); Philippine Sea (Hada, 1938); Hainan Region (China) (Nie & López-Durán, 1957); Gulf of Mexico (Marrón-Aguillar, 1952); Great Barrier Reef (Marshall, 1934); Philippine Palau Island. In that region he found some specimens time by Hada (1938) from material collected near the was very arbitrary as the only difference with the main form is in the collar shape. Moreover, his specimens (main attributable to considered as a new variety, apparently only one slightly different lorica which was was raised to the specific status by Marrón-Aguillar & López-Durán, 1969). In our opinion the establishment of this new variety was very arbitrary as the only difference with the main form is in the collar shape. Moreover, his specimens (main form and variety) are very distinct of the true M. corbula and should be treated more properly as a new species. By the way, Nie & Ch'eng (1947), studying material from the Hainan region (China), have created a new species (M. sanyahensis), and have considered M. corbula and M. corbula var. perspicax of the Japanese author as synonyms. According to the ICZN, this taxon was erroneously established since the name perspicax is priority. We think the variety perspicax was raised to the specific status by Marrón-Aguillar & López-Ochoterena (1969), as they presented for the first time the correct nomenclature, although without any comments.

Family Epiplocyliididae Kofoid & Campbell, 1939
Genus Epiplocyloides Hada, 1938
Epiplocyloides reticulata (Ostenfeld & Schmidt, 1901) (Plate I, Fig. 9)

Cyttarocylis reticulata Ostenfeld & Schmidt, 1901, p. 180, fig. 28.

Ptychocylis reticulata (Ostenfeld & Schmidt), Brandt, 1906, pl. 58, figs 1, 4; 1907, p. 208 (only description); Laackmann, 1909, p. 457 (only description).

Epiplocyloides reticulata (Ostenfeld & Schmidt), Kofoid & Campbell, 1929, p. 184, fig. 325.

Epiplocyloides curta Kofoid & Campbell, 1929, p. 178, fig. 319.

Epiplocyloides healdi Kofoid & Campbell, 1929, p. 180, fig. 321; Marshall, 1934, p. 643, fgs 16, 16a; Hada, 1935, p. 245.

Epiplocyloides acuta Kofoid & Campbell, 1929, p. 175, fig. 322.

Epiplocyloides brandti Kofoid & Campbell, 1929, p. 177, fig. 324.

Epiplocyloides reticulata (Ostenfeld & Schmidt), Hada, 1938, p. 130, fig. 47; Balech, 1962, p. 78, pl. 8, fig. 93; Durán, 1965, p. 21, pl. 3, figs 42, 44; Souto, 1970a, p. 219, fig. 4.

Epiplocyloides reticulata var. acuta (Kofoid & Campbell, 1929), Hada, 1938, p. 131, fig. 48; Balech, 1962, p. 79, pl. 8, fig. 94; Kuzmina & Rogachenko, 1980, p. 73, fig. 2c.

Epiplocyloides reticulata var. curta (Kofoid & Campbell), Hada, 1938, p. 129.

Epiplocyloides curta (Kofoid & Campbell), Durán, 1957, p. 116, fig. 17.

Epirella brandti (Kofoid & Campbell), Kofoid & Campbell, 1939, p. 134; Campbell, 1942, p. 73 (only description).

Epirella curta (Kofoid & Campbell), Kofoid & Campbell, 1939, p. 135, pl. 8, figs 7, 8; Campbell, 1942, p. 73 (only description); Silva, 1954, p. 204, pl. 3, fig. 4, 5; Komarovsky, 1959, p. 14, fig. 28.

Epirella healdi (Kofoid & Campbell), Kofoid & Campbell, 1939, p. 136, pl. 8, fgs 12-14; Campbell, 1942, p.74, fig. 79.

Epirella acuta (Kofoid & Campbell), Kofoid & Campbell, 1939, p. 135, pl. 8, fgs 2, 9, 11.

Epirella reticulata (Kofoid & Campbell), Kofoid & Campbell, 1939, p. 134; Silva, 1954, p. 204, pl. 3, fig. 6.

Description: Lorica chalice-shaped; bowl subcylindrical in its anterior half. Aboral portion convex-conical, provided with a short and pointed pedicle. Oral rim smooth. Oral region differentiated, with a small hyaline collar and a suboral shell; diameter at the level of the shelf being greater than the oral diameter. Reticulated zone covering the surface of the aboral region, with irregular polygons almost reaching the middle of the bowl. Maximum number of reticulations about 18 across one face. Longitudinal anastomosing free lines extending from the reticulated zone to the suboral shelf. Collar with a very tenuous longitudinal striation almost imperceptible.

Dimensions (2 specimens): Total length, 70.5-73.9; oral diameter, 44.7-45.6; diameter in the oral shelf, 53.3-54.2; length of the caudal appendage, 6.0-7.5.

Occurrence: Only two specimens were observed in the studied region, both in the sample collected on 1/29/82.

Distribution: Southeastern Brazil (Souto, 1970a; Balech, 1971b); Northeastern Brazil (off Ceará State) (Balech, 1971a); Western Atlantic Equatorial waters (Campbell, 1942; Balech, 1971a); South Equatorial Current waters (Brandt, 1906, 1907); Caribbean Sea (Campbell, 1942; Durán, 1957); Gulf of Mexico (Balech, 1967; Lubel, 1974); Gulf Stream waters (Campbell, 1942); Sargasso Sea (Campbell, 1942); Atlantic North Equatorial Current waters (Campbell, 1942); Mediterranean Sea (Travers, 1975); Senegal waters (Silva, 1956a; Durán, 1965); Angola waters (Silva, 1954, 1958); Benguela Current waters (Laackmann, 1909); Red Sea (Ostenfeld & Schmidt, 1901; Komarovsky, 1959; Kimor & Golandsky-Baras, 1981); Seychelles Islands waters (Brandt, 1906, 1907); Mozambique Channel (Silva, 1956b, 1960; Travers & Travers, 1965); Malaysia and Western Indonesia Region (Hada, 1938); Celebes Sea (Tanguchi, 1977); Phillipine Sea (Hada, 1938; Tanguchi, 1977); Marquesas Islands (Kuzmina & Rogachenko, 1980); Great Barrier Reef (Marshall, 1934); California coastal waters (Kofoid & Campbell, 1929); Western Mexican waters (Kofoid & Campbell, 1939; Balech, 1962); Peru-Galapagos waters (Kofoid & Campbell, 1929, 1939; Campbell, 1942); Pacific Equatorial Counter Current region (Kofoid & Campbell, 1929, 1939; Balech, 1962); Easter Island waters (Kofoid & Campbell, 1929).
Plate I. *Metacylis mereschkowskyi* (1-6); *Metacylis perspicax* (7-8); *Epilicyloides reticulata* (9).
Remarks: We are in agreement with Hada (1938) and Durán (1965) that *Epiplocyloides acuta, E. brandii, E. curta and E. healdi* do not constitute distinct taxa from *E. reticulata*, i.e., they represent only morphological variants. There are some facts that seem to corroborate this viewpoint: 1) Hada (*op. cit.*) found loricae attributable to *E. brandii* and *E. healdi*, but he recognized the difficult to separate the specimens into two groups due to gradual modifications in the loricar contour and extent of the reticulate zone; 2) Silva (1954) observed one lorica (pl. 3, fig. 6) whose general shape evokes *E. brandii*; however, other features observed in the same specimen (extent of the reticulate area, presence of elongated suboral meshes, lack of free lines) are typical of *E. reticulata*; and 3) some authors treat *E. acuta* as a variety of the species under discussion (cf. Hada, 1938; Balech, 1962; Kuzmina & Rogachenko, 1980).

From these considerations, it is clear for us that the diagnostic features taken into account for distinguishing the aforementioned species do not allow the establishment of precise limits among them.

Family Ptychocylididae

Favella ehrenbergii (Claparède & Lachmann, 1858) (Plate II, Figs 10-15; III, Figs 16-21; IV, Figs 22-24)

For detailed synonymy see Kofoid & Campbell, 1929

Favella ehrenbergii Genus Favella Jörgensen, 1924

Favella adriatica (Durán, 1953), p. 61, fig. 22a.

Favella campanula, Balech, 1959, p. 35, pl. 10, figs 154-157; Sassi & Melo, 1982, p. 147, pl. 5, figs 28-32.

Favella fistuliscauda Jörgensen, 1924, p. 31, fig. 34; Kofoid & Campbell, 1929, p. 154, fig. 278; Silva, 1953, p. 111, pl. 3, fig. 3.

Favella sp., Carvalho, 1939, p. 36, fig. 3.

Favella ehrenbergi, Kofoid & Campbell, 1929, p. 152, fig. 280; Lavall-Peuto, 1981, p. 249-270, figs 1-34; Lavall-Peuto, 1983, p. 503-510, fig. I-8.

Favella ehrenbergi f. cordiella, Kršinić, 1980, p. 43.

Favella ehrenbergi var. a Hada, 1937, p. 186, fig. 32.

Favella ehrenbergii, Balech, 1959, p. 33, pl. 9, figs 146-149, pl. 10, fig. 150-153; Durán, 1965, p. 19, pl. 6, figs 66-68; Hada, 1974, p. 92, fig. 41.

Description: Lorica bell-shaped, hyaline, subcylindrical in the anterior portion and convex conical in the posterior one. Oral rim uneven or entire. Oral region provided with a collar, usually composed of one ring. Nevertheless, it is common the occurrence of loricae with supernumerary (spiraled) collar, consisting of several spiral turns (up to eight, in our samples). Aboral horn without fins, elongate, varying in length and form and sometimes provided with few longitudinal ridges. Wall bilamellate. Reticulation regular.

Dimensions (30 specimens): Total length, 155.0-247.6; oral diameter, 79.5-107.1; height of the collar, 4.0-37.2; length of the caudal appendage, 19.0-52.5.

Occurrence: It was the most frequent and abundant species in the studied region. Present on 07/03/81 (1), 07/17/81 (3), 08/06/81 (4), 08/14/81 (2), 08/21/81 (3), 09/02/81 (1), 10/02/81 (16), 10/09/81 (2), 12/23/81 (2), 02/19/82 (2), 02/26/82 (1), 03/17/82 (3), 04/07/82 (521), 04/16/82 (1), 04/22/82 (2), 05/14/82 (1), 05/27/82 (3), 06/07/83 (6), 06/15/83 (1), 06/01/83 (1), 07/20/83 (1), 09/06/83 (6) and 12/13/83 (1).

Distribution: Southern Brazil (Cunha & Fonseca, 1918; Seguin, 1965); Southeastern Brazil (Faria & Cunha, 1917; Carvalho, 1939; Krau, 1958; Seguin, 1965); Northeastern Brazil (Paranaguá & Neumann-Leitão, 1980; Sassi & Melo, 1982); Caribbean Sea (Durán, 1957); Gulf of Mexico (Marrón-Aguilar & López-Ochoterena, 1969; Lubel, 1974); Northeastern United States (Hargraves, 1981; Stoecker et al., 1981; Capriulo & Carpenter, 1983); Norwegian Sea (Jörgensen, 1899); western coast of Sweden (Hedin, 1975); North Sea (Claparède, 1865; Hada, 1937; Silva, 1952); Portugal waters (Silva, 1952); Mediterranean Sea (Davey, 1985; Zacharias, 1906; Jörgensen, 1924; Balech, 1959; Travers & Travers, 1971; Travers, 1975; Kršinić, 1977; Rossouwzadege, 1978, 1979; Kršinić, 1980; Lavall-Peuto, 1981, 1983; Koray, 1983; Koray & Özsel, 1983; Abboud-Abi Saab, 1985; Lakkis & Novell-Lakkis, 1985; Kršinić, 1987a, b); Black Sea (Rossolimo, 1922; Jörgensen, 1924); Mauritania coast (Durán, 1965); Guinea-Bissau waters (Silva, 1952);
Plate II. *Favella enhrenbergi* (10-15).
Plate III. *Favella enhrenbergii* (16-21).
Angola waters (Silva, 1954); Arabian Sea (Malabar coast, India) (Hada, 1974); Bay of Bengal (Coromandel coast, India) (Krishnamurthy et al., 1978, 1979); Java and Flores Seas (Cleve, 1901); off Shim and Shirahama (Honshu Island, Japan) (Okamura, 1907); Akasaki Bay (Hokkaido Island, Japan) (Hada, 1937); Japan Sea (Konovalova & Rogachenko, 1974); Strait of Georgia (Southwestern Canada) (Wailes, 1925); California coastal waters (Campbell, 1927).

Remarks: Although some authors have admitted the extreme morphological variability of *F. ehrenbergi* (cf. Balech, 1959; Durán, 1965), no one suspected that such variability could comprise forms traditionally accepted as belonging to a genus distinct from that of the species under consideration. This surprising fact was recently demonstrated by Laval-Peruto (1977, 1981, 1983), who observed, using cultures, that *Coxiella annulata* and *C. decipiens* are merely forms of the life-cycle of *F. ehrenbergi*. The first named she calls "coxiiella" form and the other, "decipiens" form. Her findings were confirmed by Taniguchi & Kawakami (1983) in the congeneric species *F. taraensis*.

Nevertheless, it is noteworthy that some clues in this direction were furnished by early authors, but they passed unnoticed. For instance, Entz, Jr. (1909: pl. 10, fig. 6) identified correctly as belonging to *Cyttarocyclus ehrenbergii* (= *F. ehrenbergi*) a lorica later referred to *Coxiella longa* by Kofoid & Campbell (1929: p. 101). Jørgensen (1924: p. 74) comments that *C. annulata* is a "...large species, with a lorica of not very firm consistence, similar to that of *Favella ehrenbergi*, to which it may be somehow allied". The same author (1924: p. 75) points out that *C. decipiens* is "...very similar to *Favella ehrenbergi* var. **Claparedie...**". Margaléf & Durán (1953: p. 62) state about *C. annulata*: "su estructura es tal, que recuerda muy de cerca la de *Favella ehrenbergi*".

Beside these evidences, one should consider that the presence of *C. annulata* and *C. decipiens* is almost always associated to that of *F. ehrenbergi* (and/or its synonyms) in the same sample (cf. Laackmann, 1913; Faria & Cunha, 1917; Jørgensen, 1924; Margaléf & Durán, 1953; Silva, 1953; Balech, 1959; Laval-Peruto, 1981).

We did not observe "coxiiella" and "decipiens" loricae in our samples probably due to the rarity of such phenotypes in nature (cf. Laval-Peruto, op. cit.).

Considering the highly polymorphic nature of *F. ehrenbergi*, we believe that further studies will demonstrate that *F. adriatica*, *F. brevis*, *F. campanula* and probably *C. ampla* are also its synonyms.

On the other hand, the allocation by Kofoid & Campbell (1929) of Laackmann's (1913) *Tintinnopsis helix* (= *L. subrotundata*) var. *coalchecta* in the synonymy of *C. annulata* (and consequently of *F. ehrenbergi*) is very questionable. The general outline of the loricae represented by Laackmann (pl. 3, figs 45-47) lead us to think so. Further, the oral diameter estimated from these figures (34-44 μm) is quite lower than that established for the "coxiiella" form of *F. ehrenbergi*.

Family Tintinnidae Claparède & Lachmann, 1858
Genus Amphorellopsis Kofoid & Campbell, 1929

Amphorellopsis acuta (Schmidt, 1901)
(Plate IV, fig. 25)

Amphorellopsis acuta Schmidt, 1901, p. 184, fig. 2a-c.

Tintinnus acutus, Brandt, 1906, p. 33, pl. 70, figs 6, 7; 1907, p. 435.

Amphorellopsis acuta (Schmidt), Kofoid & Campbell, 1929, p. 315, fig. 598; Hada, 1938, p. 169, fig. 85; Kofoid & Campbell, 1939, p. 334 (only description); Osorio-Tafall, 1941, p. 169, pl. 9, fig. 3; Silva, 1952, p. 622, pl. 3, fig. 10; Silva, 1954, p. 227, pl. 6, fig. 18; Durán, 1957, p. 118, fig. 19; Marrón-Aguilar & López-Ochoterena, 1969, p. 45, pl. 1, fig. 1; Cooper, 1972, p. 412, fig. 21; Hada, 1974, p. 93, fig. 42; Cao, 1986, p. 145, fig. 2-B.

Amphorellopsis acuta (Schmidt) Kofoid & Campbell var. *minor* Silva, 1956b, p. 83, pl. 14, fig. 12.

Description: Lorica amphora-shaped, hyaline. Upper portion somewhat flaring, like a funnel, with the wall more reinforced than the rest of the lorica. Oral margin smooth. Bowl elongated with convex sides, converging below the middle and tapering to an acute aboral end. Cross section of the lorica being circular in the anterior 0.4 of the total length, and triangular in the remainder due to the development of three longitudinal fins, which arise from the aboral end.

Dimensions (3 specimens): Total length, 115.0-143.7; oral diameter, 32.0-45.2; suboral constriction diameter, 24.6-25.6; maximum diameter at bowl, 31.5-33.3.

Occurrence: Rare in the studied region. Only three loricae have been found, on 8/21/81, 8/27/81 and 5/20/82.

Distribution: Brazil (new record); Caribbean Sea (Durán, 1957); Gulf of Mexico (Marrón-Aguilar & López-Ochoterena, 1969; Cooper, 1972; Lubel, 1974); Sargasso Sea (Gaarder, 1946); Guinea-Bissau waters (Silva, 1952); Angola waters (Brandt, 1906, 1907; Silva, 1954, 1958); Mozambique waters (Silva, 1960); Arabian Sea (Malabar coast, India) (Hada, 1974); Bay of Bengal (Coromandel coast, India) (Naidu et al., 1977); Malaysia and Western Indonesia region (Hada, 1938); Phillipine Sea (Hada, 1938); off Baja California (Balech, 1962); Southern California coastal waters (Heinbockel, 1978); Panama waters (Kofoid & Campbell, 1939); Eastern, Tropical Pacific (19º57'30" N, 129º44' W; 31º08'30" N, 143º39' W and 28º15' S, 96º54' W) (Balech, 1962); Argentina waters (Cao, 1986).

Remarks: We do not accept the variety *minor* of Silva (1956b) since the dimensions and morphological features of her specimens fall within the variability range observed for this species.

Dadayiella ganymedes (Entz, Sr., 1884)
(Plate IV, Fig. 26)

(For complete synonymy and world distribution of this species, see Sassi & Melo, 1986).

Description: Lorica tubulose, with sides slightly diverging towards oral region and converging aborally. Oral rim tenuous, which makes its perception difficult. Upper quarter of the lorica provided with six longitudinal lines; the greatest among them reaching beyond the oral margin. Caudal appendage narrow and elongated.
Dimensions (1 specimen): Total length, 106.6; oral diameter, 33.5; maximum transversal diameter, 27.5; length of the caudal appendage, 21.5; medium diameter of the caudal appendage, 3.5.

Occurrence: Only one specimen was observed in the studied period on 7/17/81.

Remarks: This is a well known marine species, assigned for tropical and temperate waters around the world. It presents a reasonable degree of polymorphism, with variations in total length, general contour of the lorica, number of longitudinal lines and shape of the caudal appendage (Hada, 1938).

Eutintinnus tubulosus (Ostenfeld, 1899)
(Plate IV, Figs 27-31).

Tintinnus tubulosus Ostenfeld, 1899, p. 439, fig. 2f; Kofoid & Campbell, 1929, p. 340, fig. 651; Hada, 1937, p. 211, fig. 53.

Eutintinnus tubulosus (Ostenfeld), Kofoid & Campbell, 1939, p. 374, pl. 32, fig. 8; Durán, 1951, p. 106, fig. 1a (non fig. 1b = *E. lusus undae*); Silva, 1954, p. 231, pl. 7, fig. 12; Balech, 1959, p. 58, pl. 21, figs 316-318; Balech, 1962, p. 110, pl. 14, figs 184, 185; Marrón-Aguillar & López-Ochoterena, 1969, p. 47, pl. 1, fig. 6; Balech, 1971b, p. 181 (only description); Cosper, 1972, p. 413, fig. 26.

Tintinnus lusus undae Entz, Daday, 1887a, p. 527, pl. 18, fig. 3, 14; 1887b, p. 159-208, pl. 1, fig. 1.

Tintinnus lusus-undae var. *tubulosa* (Ostenfeld), Brandt, 1906, p. 32, pl. 65, fig. 14.

Tintinnus lusus-undae var. *tubulosus* (Ostenfeld), Jörgensen, 1924, p. 10, fig. 2.

Tintinnus lusus-undae var. *tubulosus* (Ostenfeld), Jörgensen, 1927, p. 9, fig. 9.

Tintinnus exigus Hada, 1932, p. 570, fig. 24.

Eutintinnus elegans Balech, 1942, p. 248, fig. 6.

Eutintinnus australis Balech, 1944, p. 443.

Description: Lorica hyaline, tubular, as a truncated cone, and with sides almost straight. Wall without visible structures and rarely with foreign bodies adhered. Oral end very slightly expanded outward. Aboral extremity without expansion.

Dimensions (6 specimens): Total length, 154.0-160.5; oral diameter, 37.8-44.1; aboral diameter, 34.5-41.1.

Occurrence: Only eleven specimens were found in the subsamples examined. They were observed on 2/5/82 (1), 4/20/83 (4), 8/11/83 (1) and 12/13/83 (5).

Distribution: Brazil (new record); Western Atlantic Equatorial waters (Balech, 1971a); Gulf of Mexico (Balech, 1967; Lubel, 1974); North Atlantic waters (Ostenfeld, 1899); western coast of Sweden (Hedin, 1975); northwestern coast of Spain (Margaléf & Durán, 1953); Mediterranean Sea (Vitello, 1964; Travers & Travers, 1971; Travers, 1975; Krsnić, 1980, 1982, 1987a,b); off Namibia (Kruger, 1980); Mozambique waters (Silva, 1960); Mutsu Bay (Honshu Island, Japan) (Hada, 1932); Philippine Sea (Taniguchi, 1977); South Equatorial Pacific Current (Balech, 1962); Pacific Southern Gyral (Balech, 1962); Peru Current (Balech, 1962; Uribe & Castillo, 1982); Chilean waters (Uribe & Castillo, 1982); Drake Passage (Balech, 1971b); Patagonia waters (Southern Argentina) (Balech, 1942, 1944, 1971b; Souto, 1972); off Plata River mouth (Northeastern Argentina) (Balech, 1971b).

Remarks: Most of the criteria used to distinguish the species of *Eutintinnus* are very subjective. Therefore, the actual status of this and other allied species (*E. pacificus* (Kofoid & Campbell), *E. pinguis* (Kofoid & Campbell) and other trumpet-shaped species as *E. lusus undae* (Entz, Sr.)) should be revised using material from different sites as there is no significant morphological and metric differences within their limits of separation, according to the data of the literature.

Beside the intraspecific variability, some of the differences found among them may be also attributed to the position in which the specimens are seen under the microscope or to deformations of the lorica due to coverside pressure. Our Figure 29 reinforces such comment since it presents a clear inward aboral inflexion of the lorica, which is not observed in another position (Fig. 28) of the same specimen.

Discussion

The coastal reefs of Ponta do Seixas present a very poor fauna of hyaline Tintinnina as only seven species were found in this ecosystem during a period of two complete years. Only *Metacylis mereschkowskyi* and *Favella ehrenbergi* were the most frequent and abundant species found in the studied area.

Except *F. ehrenbergi*, *Epiplocyloides reticulata* and *Dadayiella gynemades*, all species constitute new records from Brazil. *Metacylis persicae* also represents the seventh world citation.

The low diversity and the low density of these protozoans may be associated with food availability, turbulence of the local water mass, and grazing pressure by predators.

According to Sassi (1987), the phytoplankton from Ponta do Seixas reefs is dominated by small diatoms and phytoflagellates. We believe these organisms may not be important as alimentary items for most of the hyaline Tintinnina found in the region. We also think these protozoans are opportunistic, showing intensive growth when a more appropriate food is available. The greater success of *M. mereschkowskii* and *F. ehrenbergi* upon the other species by colonizing the region most vigourously during some months may be a reflection of this aspect.

Sassi (op. cit.) has shown that this region is oligotrophic, although mesotrophic features arise during the rainfall season (March to August) when a moderate phytoplanktonic pulse occurs due to the enrichment of the local water mass by continental runoff. Accordingly, the maximum densities of *F. ehrenbergi* and *M. mereschkowskii* were observed during these months in 1981/1982. At that time, the samples examinations revealed several specimens belonging to these species with several small phytoplanktonic phagocytated cells. The absence of any intensive growth of these species during 1983 seems to reinforce their opportunism, as well as the hypothesis of appropriated food items for growth, as pointed out above.
Plate IV. *Favella ehrenbergi* (22-24); *Amphorellopsis acuta* (25); *Dadayiella ganymedes* (26); *Eutintinnus tubulosus* (27-31).
The importance of predators to regulate the diversity and density of the hyaline Tintinnina in the studied region is most difficult to avail, as no data exist for greater zooplankton. Nevertheless, considering the coral are primarily zooplanktophagous, we think the predation of these benthic animals upon the microzooplankton, these benthic animals upon the microzooplankton, could not be neglected. It is also relevant to mention the importance of the turbulence. Sassi (op. cit.) mentioned the dynamics of the studied region under the hydrographic viewpoint. The surf (resulting from the wave impact upon the reef barrier and near the beach), the drift coastal current (of S-N direction) as well as the wind action may select species adapted to turbulent waters and, at the same time, may limit the growth of those adapted to more stable areas. Regarding this approach we think that the greater frequency of *F. ehrenbergi* and *M. mereschkowskyi* in the studied region should indicate a higher preference of these species for most turbulent zones than the other hyaline species found there. Nevertheless, in conditions of high turbulence one would expect to find more agglutinated Tintinnina, as pointed out by Capriulo *et al.* (1982). The increasing of turbulence would lessen the energy costs used to escape from predators and to maintain their position in the euphotic zone. As agglutinated Tintinnina have a heavier and most rigid lorica due to adhered particles, they could be more favoured than the hyaline Tintinnina (whose lorica is more delicate and could be easily damaged by the turbulence actions) in such highly turbulent environments, becoming more diversified and abundant in coastal zones. By that reason, Souto (1970b) has observed agglutinated Tintinnina, *Stenosemella*, *Sytyicauda* and *Stenosemella* predominant in shallow coastal waters, and the hyaline Tintinnina predominantly in offshore samples. Cao (1986) has also observed the abundance of agglutinated Tintinnina (*Leprotintinnus*, *Tintinnopsidae*, *Tintinnidium*, *Stenosemella*, *Stenosemella* and *Codonellidopsis*) in estuarine biotopes and of hyaline Tintinnina (*Helicostomella*, *Favella*, *Metacylis*, *Anphorelopopsis*, *Euertinunus* and *Salpingella*) in sites most influenced by oceanic waters.

The presence of hyaline or agglutinated *loricae* among Tintinnina may be a survival strategy. As pointed out by Capriulo *et al.* (1982), hyaline lorica becomes less visible and is more difficult to be captured by visual predators. Although devoid of adhered particles, these ciliates are still negative buoyant and have substantial sinking rates, which permit them to escape from slower swimming predators, while remaining inconspicuous to the larger visual feeders. The agglutinated lorica is heavier and present faster sinking rates which also increase the possibility of escaping from predators, although this could increase the energetic cost for their swimming and maintenance in the euphotic zone.

Although in agreement with Capriulo *et al.* (op. cit.) in the above mentioned considerations we must remember Gold (1979), who has observed non-agglutinated *loricae* in experimental culture studies, formed by species with normally agglutinated *loricae* in the absence of particles. Also Bernatzy (1981) (fide Laval-Peuto & Brownlee, 1986) has observed that in freshwater Tintinnina the agglutination depends on the environment and season. Accordingly, we also found some *loricae* of *Euertinunus tubulosus* (normally a hyaline Tintinnina) with foreign particles adhered (Figs 30-31).

Regarding the systematic viewpoint, we also stress the necessity for further studies using the soft body (cytological data), as the traditional lorical classification is very arbitrary. Large number of the nearly 1,200 species of known Tintinnina, probably were unjustifiably created, as most of them could represent only inraspecific variations of polymorphic species. As pointed out by Durán (1965), although great efforts have been carried out by several authors, a lamentable imprecision in the species diagnosis of these ciliates still remains. Indeed, the magnific morphological changes in the lorica of *F. ehrenbergi* to *caudicella* and *decipiens* forms, as demonstrated by Laval-Peuto (1981) in *in vivo* studies, show how much is still inconsistent the systematics of these important microzooplankters.

Acknowledgements

We wish to express our acknowledgements to Dr. Enrique Balech from Necochea, Argentina, for the critical review of the manuscript, and to Dr. Ricardo S. Rosas from the Federal University of Paráiba, for reviewing the final English text.

References

ABBBOUD-ABI SAAB, M. 1985. Contribution à l'étude du microplancton en Méditerranée orientale: ciliés oligotriches tintinnides (Tintinnina). Rapp. P.-v. Réun. Commn int. Explor. scient. Mer Médit., 29(9):173-174.

BALECH, E. 1942. Tintinnoíneos del Estrecho Le Maire. Fysis, B. Aires, 19:245-252.

1944. Contribución al conocimiento del plancton de Lennox y Cabo de Hornos. Physis, B. Aires, 19:423-446.

1959. Tintinnoíneos del Mediterráneo. Trab. Inst. esp. Oceanogr., 28:1-88.

1962. Tintinnoíneos y Dinoflagellata del Pacífico según material de las expediciones Norpac y Downwind del Instituto Scripps de Oceanografía. Revta Mus. argent. Cienc. nat. Bernardino Rivadavia, Cienc. Zool., 7(1):1-253, pls. 1-26.

1967. Dinoflagellates and tintinnids in the northeastern Gulf of Mexico. Bull. mar. Sci., 17(2):280-298.

1968. Algunas especies nuevas o interesantes de tintinnidos del Golfo de México y Caribe. Revta Mus. argent. Cienc. nat. Bernardino Rivadavia, Hidrobiol., 2(5): 165-197, 4 pls.

1971a. Microplancton del Atlántico Ecuatorial Oeste (Equatiant 1). Serv. Hidrogr. nav. Buenos Aires,(H. 654):1-103, pls. 1-12.
Balech, E. 1971b. Microplankton de la campaña oceanográfica Productividad III. Revta Mus. argent. Cienc. nat. Bernardino Rivadavia, Hidrobiol., 3(1): 1-202, pls. 1-39.

Brandt, K. 1906. Die Tintinnodeen der Plankton-Expeditio. Tafelserübrungen nebst kurzer Diagnose der neuen Arten. Ergebn. Atlant. Ozean Plankton exp. Humboldt-Stift., 3(La.): 1-33, pls. 1-70.

1907. Die Tintinnodeen der Plankton-Expeditio. Systematischer Teil. Ergebn. Atlant. Ozean Plankton exp. Humboldt-Stift., 3(La.) : i + 499 p.

Breeman, P.J. van. 1905. Plankton van Noord- en Zuiderzee. Tijdschr. ned. dierk. (Vereen., ser. 2, 9: 145-324, 2 pls.

Bresslau, E. 1906. Eine Anzahl Tintinnen aus dem Plankton der Bucht von Rio de Janeiro. Verh. dt. zool. Ges., 16:260-261.

Campbell, A.S. 1927. Studies on the marine ciliate Faveola (Jörgensen), with special regard to the neuromotor apparatus and its role in the formation of the lorica. Univ. Calif. Publs Zool., 29:429-452, pls. 21-22.

1942. The oceanic Tintinnoína of the plankton gathered during the last cruise of the Carnegie. Publs Carnegie Inst., 537: 1-163.

Cao, M.B. 1986. Contribución al conocimiento de Tintinnina (Protozoa, Ciliophora) de la zona de Bahía Blanca, II (Argentina). Boln Inst. esp. Oceanogr., 3(1): 143-150.

Capriliulo, G. M. & Carpenter, E. J. 1983. Abundance, species composition and feeding impact of tintinnid microzooplankton in central Long Island Sound. Mar. Ecol.-Prog. Ser., 10:277-288.

& Ninnivaggi, D.V. 1982. A comparison of the feeding activities of field collected tintinnids and copepods fed identical natural particle assemblages. Annls Inst. oceanogr., Paris, 58(S): 325-334.

; Gold, K. & Okubo, A. 1982. Evolution of the lorica in tintinnids: a possible selective advantage. Annls Inst. oceanogr., Paris, 58(S): 319-323.

Carvalho, J.P. 1939. Variação do planocton da baía de Santos. Boln biol., n. sér., S Paulo, 4(1): 32-49.

Claparede, E. & Lachmann, J. 1858. Études sur les infusoires et les rhizopodes. Mém. Inst. genevois, 5: mem. 3: 1-260, pls. 1-13.

Cleva, P.T. 1900. The plankton of the North Sea, the English Channel, and the Skagerak in 1898. K. svenska VetenskAkad. Akad. Handl., 32(8):1-53.

Cleva, P.T. 1901. Plankton from the Indian Ocean and the Malay Archipelago. K. svenska VetenskAkad. Handl., 35(5): 1-58, pls. 1-8.

Corliss, J.O. 1977. Annotated assignment of families and genera to the orders and classes currently comprising the Corlissan scheme of higher classification for the phylum Ciliophora. Trans. Am. micros. Soc., 96(1): 104-140.

Cospér, T.C. 1972. The identification of tintinnids (Protozoa: Ciliata: Tintinnida) of the St. Andrew Bay System. Florida. Bull. mar. Sci., 22(2): 391-418.

Cunha, A.M. & Fonseca, O. 1918. O microplankton das costas meridionaes do Brazil. Mems Inst. Oswaldo Cruz, 10(2): 99-103.

Daday, E. von. 1887a. Monographic Der Familie der Tintinnodeen. Mitt. zool. Sin Neapel, 7: 473-591, pls. 18-21.

1887b. A Tintinnodeaí szervezeti viszonyai. Math. Term. Közl., 22: 157-209, pls. 1-2.

Durán, M. 1951. Contribución al estudio de los tintínidos del plankton de las costas de Castellón (Mediterráneo occidental). Publices Inst. Biol. apl., Barcelona, 5: 101-122.

1953. Contribución al estudio de los tintínidos del plankton de las costas de Castellón (Mediterráneo occidental). Nota II. Publices Inst. Biol. apl., Barcelona, 5: 95-95.

1985. Nota sobre alguns tintinníneos do plancton de Puerto Rico. Investigación pesq., Barcelona, 8:97-120.

1965. Tintínnidos de las costas de Mauritania y Senegal. Trab. Inst. esp. Oceanogr., 32: 1-32, pls. 1-11.

Entz Jr., G. 1908. A Tintinnidae κατανοητείς της ισφαγιάς του "Bugat"-Dijial jutalmazott Pállyamii. Math. Term. Közl., 29:431-568, 13 pls.

1909. Studien über Organisation und Biologie der Tintinniden. Arch. Protistenk., 15/93-226, pls. 8-21.

Faría, J.G. & Cunha, A.M. 1917. Estudos sobre o microplancnoton da Baía do Rio de Janeiro e suas imediações. Mems Inst. Oswaldo Cruz, 9(1): 68-93.

Gaarder, K. R. 1946. Tintinnínneenso de la "Michael Sars" North Atlantic Deep-Sea Expedition 1910. Rept. scient. Results Michael Sars N. Atlant. deep-Sea Exped., 2(1): 1- 37.

Gold, K. 1970. Cultivation of marine ciliates (Tintinnida) and heterotrophic flagellates. Helgoländer wiss. Meeresunters., 20: 264-271.
GOLD, K. 1979. Scanning electron microscopy of Tintinnopsis parva: studies on particle accumulation and the striae. J. Protozool., 26(3): 415-419.

HADA, Y. 1932. Report of the biological survey of Mutsu Bay. 26. The pelagic Ciliata, suborder Tintinnina. Scient. Rept Tôhoku Imp. Univ., Ser. 4, Biol., 7(4): 553-573.

HEDIN, H. 1975. Considerations on the character of the plankton in the seas. Bull. Japan. Soc. scient. Fish., 4: 242-252. (Japanese with English synopsis).

HEDIN, H. 1974. The fauna of Akkeshi Bay. IV. The pelagic Ciliata. J. Fac. Sci. Hokkaido Univ., ser. 6, Zool., 5: 143-216.

HEINBOKEL, J.F. 1978. Studies on the functional role of tintinnids in the Southern California Bight. II. Grazing rates of field populations. Mar. Biol., 47: 191-197.

JÖRGENSEN, E. 1899. Ueber die Tintinnodeen der norwegischen westküste. Bergens Mus. Aarb., 2: 1-48, pls. 1-3.

JÖRGENSEN, E. 1924. Mediterranean Tintinninae. Rept Dan. oceanoogr. Exped. Mediterr., Biol., 2(13): 1-110.

KOMAROVSKY, B. 1959. The Tintinnina of the Gulf of Eilath (Aqaba). Bull. Sea Fish. Res. Stn., H. Israel, 21:1-40.

KOFÖID, C.A. & CAMPBELL, A.S. 1939. Reports on the scientific results of the expedition to the Eastern Tropical Pacific, in charge to Alexander Agassiz, by U.S. Fish Commission Steamer "Albatross", from October, 1904, to March, 1905. Lieut.-Commander L.M. Garrett, U.S.N. commanding. XXXVII. The Ciliata: The Tintinnina. Bull. Mus. comp. Zool. Harv. Coll., 84:1-473, pls. 1-36.

KORAY, T. 1987. One-celled microplankton species of Izmir Bay (Aegean Sea): a species list and a comparison with the records of adjacent regions. Doğan, 11(3): 130-146.

KRISHNAMURTHY, K.; NAIDU, W.D. & CZERNY, W. 1966. Studies on the Tintinninae from the East Indies with considerations on the character of the plankton in the seas. Bull. Japan. Soc. scient. Fish., 4: 242-252. (Japanese with English synopsis).

KRAMER, L. 1958. Modificações no plâncton da Enseada de Inhauá, antes e depois da poluição. Mems Inst. Oswaldo Cruz, 52(2): 473-476.

KRAU, L. 1958. Modificações no plâncton da Enseada de Inhauá, antes e depois da poluição. Mems Inst. Oswaldo Cruz, 52(2): 473-476.

KRISHNAMURTHY, K.; NAIDU, W.D. & SANTHANAM, R. 1978. Plankton biogeography of the Indian Ocean. Int. Revue ges. Hydrobiol., 63(5): 721-726.

KORAY, T. 1987. One-celled microplankton species of Izmir Bay (Aegean Sea): a species list and a comparison with the records of adjacent regions. Doğan, 11(3): 130-146.

KRŞİNİĆ, F. 1977. Tintinnids of the eastern coasts of Middle Adriatic. Rapp. P.-v. Réun. Commn int. Explor. scient. Mer Médit., 28(9): 123-124.

KRŞİNİĆ, F. 1980. Qualitative and quantitative investigations of the tintinnids along the coast of the Adriatic. Acta adriat., 21(1): 19-104. (Yugoslav with English summary).

KRŞİNİĆ, F. 1982. On vertical distribution of tintinnines (Ciliata, Oligotrichida, Tintinnina) in the open waters of the South Adriatic. Mar. Biol., 68(1): 83-90.

KRŞİNİĆ, F. 1987. On the ecology of tintinnines in the Bay of Mali Ston (Eastern Adriatic). Estuar. coast. Shelf Sci., 24:401-418.

KRŞİNİĆ, F. 1987. Tintinnines (Ciliophora, Oligotrichida, Tintinnina) in Eastern Adriatic bays. Estuar. coast. Shelf Sci., 24: 527-538.
SASSOULZADEGAN, F. 1978. Dimensions et taux d'ingestion des particules consommées par un Tintinnide: *Favella ehrenbergii* (Clap. et Lachm.) Jörg., Cilié pélagique marin. Annls Inst. océanogr., Paris, 54(1): 17-23.

1979. Évolution annuelle des ciliés pélagiques en Méditerranée nord-occidentale. II. Ciliés Oligotriches. Tintinnides (Tintinnina). Investigación pesq., Barcelona, 43(2): 417-448.

ROSSOLIMO, L. 1922. Tintinnodes Planktona Cernogo Morya. Ark. Russ. Protist. Obs., 1: 22-34, 2 pls.

RASSI, R. 1987. Fitoplâncton de Dakar et des régions maritimes voisines. Bull. Inst. océanogr. VI + 163 p.

& MELO, G.N. 1982. Contribuição ao conhecimento da fauna de protozoários do estuário do Rio Parába do Norte: tintinoíneos do Rio Mandacaru. Revta nordest. Biol., 5(2): 141-155.

1986. Tintinnina (Protozoa-Ciliophora-Oligotrichida) from the first Brazilian Expedition to the Antarctic. Anais Acad. brasil. Ciênc., 58 (Supl.): 63-83.

SASSI, R. 1922. Tintinnodea Planktona Cernogo Morya. Ark. Russ. Protist. Obs., 1: 22-34, 2 pls.

SCHMIDT, J. 1901. Some Tintinnidea from the Gulf of Siam. Vidensk. Meddr dansk naturh. Foren., Kjøbenhavn: 183-190.

SEGUIN, G. 1965. Contribution à la connaissance du plancton des eaux côtières de Brésil (Copepodes et Amphipodes exceptés) et comparaison avec celui du Sénégal (Campagne de la "Calypso": Janvier-Fevrier, 1962). Pelagos, 2(3): 7-43.

SILVA, E. S. 1950. Les Tintinnides de la Baie de Cascais (Portugal). Bull. Inst. océanogr., Monaco, (979):1-28.

1952. Tintininoïne des âguas litorais da Guiné Portuguesa. Bolm. cult. Guiné. port., Ano VII, 27:607-623.

1953. Estudos de plancton na Lagoa de Óbidos. II. Tintininoïne. Revta Fac. Ciênc. Lisboa, 2 Sér., 2(1): 97-116.

1954. Tintininoïne do plancton marinho de Angola. Anais Jta Invest. Ulamar, 10: 181-243, pls. 1-8.

1956a. Contribution a l'étude du microplancton de Dakar et des régions maritimes voisines. Bull. Inst. Fr. Afr. noire, Sér. A., 18(2): 335-371.

SILVA, E.S. 1956b. Contribuição para o estudo do microplâncton marinho de Moçambique. Estudos Ensaio Docum. Jta Invest. Ulamar, 28:4-97.

1958. Nova contribuição para o estudo do microplâncton marinho de Angola. Trabhs Miss. Biol. marit., 18:28-85, pls. 1-10.

1960. O microplâncton de superfície nos meses de Setembro e Outubro na estação de Inhaca (Moçambique). Mem. Jta Invest. Ulamar, 2ª Sér., 18:9-56, pls. 1-23.

& PINTO, J.S. 1949. O plancton da Baía de S. Martinho do Porto. II. Zooplancton. Bolm Soc. port. Cien. nat., 2(2): 203-241.

SINGARAJAH, K.V. 1978. Hydrographic conditions, composition and distribution of plankton in relation to potential resources of Paraiba River Estuary. Revta nordest. Biol., 1(1): 125-144.

SOUTH, S. 1970a. Tintinnides de la costa brasileira coletados por el Walther Herwig (Protozoa-Ciliata). Physis, B. Aires, 30(80): 209-224.

1970b. Tintinnides de la costa atlántica entre 31° y 35° de latitud sur (Uruguay y Sur de Brasil) (Protozoa, Ciliata). Physis, B. Aires, 30(80): 187-208.

1972. Tintinnides subantárticos del Mar Argentino. Physis, B. Aires, 31 (83): 451-462.

STOECKER, D.; GUILLARD, R.R.L. & KAVEE, R.M. 1981. Selective predation by *Favella ehrenbergii* (Tintinnina) on and among dinoflagellates. Biol. Bull. mar. biol. Lab., Woods Hole, 160: 136-145.

TANIGUCHI, A. 1977. Biomass and size composition of copepod nauplii and tintinnids in the Philippine Sea and the Celebes Sea, summer 1972. Bull. Plankt. Soc. Japan, 24(1): 1-10.

& KAWAKAMI, R. 1983. Growth rates of ciliate *Eutintinnus latususundae* and *Favella taratkaensis* observed in the laboratory culture experiments. Bull. Plankt. Soc. Japan, 30(1): 33-40.

TRAVERS, A. & TRAVERS, M. 1965. Introduction à l'étude du phytoplancton et des Tintinnides de la région de Touléar (Madagascar). Recl Trav. Sin mar. Endoume, Fasc. hors série, Suppl., (4): 125-162.

1971. Catalogue des tintinnides (Ciliés Oligotriches) récoltes dans le Golfe de Marseille de 1962 a 1964. Théys, 2(3): 639-646.

TRAVERS, M. 1975. Inventaire des protistes de Golfe de Marseille et des ses parages. Annls Inst. océanogr., Paris, 51(1): 51-75.
URIBE, E. & CASTILLO, J. 1982. Tintinnidos indicadores de masas de agua. Investnes mar., Valparaíso, 10 (1/2): 15-34.

VITIELLO, P. 1964. Contribution à l'étude des tintinnides de la baie d'Alger. Pelagos, 2(2): 5-41.

WAILES, G. H. 1925. Tintinnidae from the Strait of Georgia, B.C. Contr. Canad. Biol., n.s., 2: 533-539, pls. 1-2.

ZACHARIAS, O. 1906. Über Periodizität, Variation und Verbreitung verschiedener Planktonwesen in südlichen Meeren. Arch. Hydrobiol. Planktonk, 1: 498-575.

(Received 04-04-89; accepted 16-10-89)