Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/165783

How to cite:
Please refer to published version for the most recent bibliographic citation information. If a published version is known of, the repository item page linked to above, will contain details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

© 2022 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.
Impact of the COVID-19 pandemic on public attitudes to cardiopulmonary resuscitation and publicly accessible defibrillator use in the UK

Claire A Hawkes, Inès Kander, Abraham Contreras, Chen Ji, Terry P Brown, Scott Booth, A. Niroshan Siriwardena, Rachael T Fothergill, Julia Williams, Nigel Rees, Estelle Stephenson, Gavin D Perkins.

Version accepted for publication by Resuscitation Plus 23.5.22.

Abstract

Introduction
Members of the public can initiate resuscitation, contributing to improved survival for out-of-hospital cardiac arrest (OHCA) patients. Many countries have seen increasing proportions of their populations trained in resuscitation skills and reporting that they would be likely to use them if needed. This study investigated changes in the UK public’s attitudes to cardiopulmonary resuscitation (CPR) and publicly accessible defibrillator (PAD) use during the early phase of the COVID-19 pandemic.

Methods
An observational study comparing pre-pandemic (2019) and survey data collected at 5 time points during the pandemic between April and November 2020. YouGov administered the surveys achieving samples of over 4000 each time. Descriptive statistics were used to analyse responses. Logistic regression and post-hoc contrasts of marginal linear predictions were used to explore trend changes.

Results
Compared with pre-pandemic responses, during the pandemic participants reported being more likely to perform CPR (any type) in spite of increased concerns about catching a disease. Proportions reporting that they were likely to perform compression-only CPR rose (58.0% to 67.8%) while CPR with rescue breaths declined (58.1% to 39.4%)(both linear trends p<0.001). Awareness of safe CPR pandemic guidance was low (31.7%). Lack of knowledge remained one of the main reasons that made people reluctant to perform CPR (42.9%).

Conclusions
Encouragingly, people’s willingness to help someone sustaining an OHCA has not declined during the pandemic in the UK. Continued efforts to inform the public of safe practice when performing CPR are needed.

Abbreviations

COCPR: Compression-Only Cardiopulmonary Resuscitation
CPR: Cardiopulmonary Resuscitation
EMS: Emergency Medical Services
OHCA: Out-of-Hospital Cardiac Arrest
PAD: Public Access Defibrillator
Introduction

Members of the public have an essential role to play in the out-of-hospital cardiac arrest (OHCA) chain of survival by acting to call Emergency Medical Services (EMS), start cardiopulmonary resuscitation (CPR) and use a Public Access Defibrillator (PAD) to help save lives. In recent years, there has been a rise in bystander CPR rates across many worldwide EMS systems (Denmark, United States, Japan, Canada, South Korea). In England, the percentage of people sustaining an OHCA that was either unwitnessed or witnessed by a bystander and who received bystander CPR has risen from 55.2% in 2014 to 69.8% in 2019. In Scotland, this increased from 39.4% in 2011–2012 to 64.0% in 2018–2019.

In the UK, as in many other countries, there has been a parallel rise in the proportion of people reporting they have trained in resuscitation skills. In 2014, 47% of people reported formal CPR skills training and by 2019 it was 62.2%. National initiatives are associated with increases in the numbers of people trained, which in turn is associated with increased bystander CPR rates and improved survival outcomes.

The COVID-19 pandemic appears to have increased the incidence of OHCA cases. In some places bystander CPR rates also appear to be reduced. National and international organisations have developed revised guidelines for performing CPR as safely as possible on OHCA patients during the pandemic to reduce the risk of the rescuer catching COVID-19 during a resuscitation attempt (such as favouring compression-only CPR with a cloth over the patients mouth rather than CPR with rescue breaths). However, little is known about the public’s knowledge of this guidance, how their attitudes to performing different resuscitation actions may have changed and reasons for any reluctance to do so during the pandemic. Public health messaging on social distancing may have contributed to increased fear about helping OHCA patients.

Research to understand whether concerns about the COVID-19 pandemic have adversely affected gains in bystander CPR rates, including any changes in public attitudes to performing CPR is needed. It will inform stakeholders’ strategies to support recovery in the public’s confidence and likelihood of helping people who sustain an OHCA.

We conducted 4 short surveys of adults during the first wave of the pandemic in the UK (April – July 2020) and a longer survey in November 2020 to assess the UK public’s knowledge of revised resuscitation guidance and the impact of the COVID-19 pandemic on their attitudes to CPR and defibrillator use.

Methods

Design
We conducted a prospective observational study of attitudes to CPR, collecting data through surveys at several timepoints during the pandemic and compared the results with those from a similar study we conducted before the pandemic in May 2019, and to an earlier study conducted in 2015.

Sample
A sample of around 4,500 UK adults (18 years old and over) for each period was achieved through YouGov’s omnibus survey using their non-probabilistic active sampling method from their panel of over 1 million adults registered and incentivised to participate in studies. A different sample was selected for each period. The achieved samples were independently weighted to be representative of UK adults in terms of age, gender, social class, region, and education.

**Data collection**
YouGov ran the study online in May 2019, April, May, June and July and November 2020. Each data collection period was 2 consecutive working days. Questions were designed by the study team, using some previously reported questions to ensure accurate comparisons. YouGov actively select a sample with the characteristics of the UK adult population from their panel of over 1 million British adults. Weights as described above are applied to ensure the sample is representative. The sample were emailed a link to the survey. YouGov returned the anonymised dataset to the study team for analysis.

**Data analysis**
All analyses were performed in StataSE 17.0.

We analysed the sample’s characteristics and their responses using descriptive statistics, with YouGov weights applied to ensure the results were representative of the UK adult population.

Logistic regression was used to compare the likelihood of performing different actions upon witnessing an OHCA over time. Time was defined as the months from the reference time point (May 2019) and was treated as categorical variable in the analysis. Each model was adjusted using sampling weights as well as demographic variables (age group, gender, social grade and government region). Post-hoc Wald tests were used to test for linear trends. Bonferroni corrections were applied to account for multiple testing. A significance level of $p<0.05$ was used.

Taking the same approach as in our previously reported study, a number of variables were dichotomised for analysis: likelihood of performing different actions upon witnessing an OHCA were transformed from a 4-point Likert scale and a ‘don’t know’ option into a ‘likely’ and ‘unlikely’ binary form, where ‘don’t know’ was categorised as ‘unlikely’.

**Ethical considerations**
The University of Warwick’s Biomedical and Scientific Research Ethics Committee approved the study (ref REGO-2016-1906). Consent was presumed in those who chose to complete the questions, having read the introductory information on its content and purpose.

**Results**

**Demographic characteristics**
The sample characteristics are presented in table 1. Over half of respondents were female (51.5%), 57% were from higher social grades (ABC1). Over 90% (93.1%) reported they were
from White ethnic backgrounds, 1.6% Mixed, 2.8% East and South Asian and 1.0% African-Caribbean ethnic backgrounds (July and November surveys only).

[Table 1]

**Changes to bystander-reported responses to cardiac arrest**

The percentage of respondents likely to perform different actions upon witnessing someone having a cardiac arrest are presented in figure 1. A summary of the logistic regression models and post-hoc analyses is presented in tables 2 and 3.

The likelihood of bystanders calling the EMS upon witnessing someone having an OHCA did not significantly change between May 2019 and November 2020 (Odds Ratio (OR)=0.82, 95% Confidence Interval (CI)=0.64 – 1.04, p=0.11). In spite of a temporary reduction in likelihood in April 2020 (OR=0.72, 95%CI=0.58 – 0.90, p<0.05) (table 2), there was no significant linear trend for likelihood to call the EMS between the May 2019 to November 2020 period (χ²=3.64, p=0.057) (table 3).

There was a significant linear trend in the likelihood of bystanders performing any type of CPR over time (χ²=23.00, p=0.001) (table 3). In addition, there was a significant increase between May 2019 and April 2020 (OR=1.42, 95%CI=1.29 – 1.57, p<0.001) (table 2), which was sustained through to November 2020 (table 3). There was however a significant linear decrease in the likelihood of performing CPR with rescue breaths over time (χ²=183.81, p<0.001), with a particularly marked drop between July and November 2020 (0.55; 95%CI=0.49 – 0.62, p<0.001) (table 3). In contrast, there was a significant positive linear trend for the likelihood of performing COCPR (with or without a cloth covering the person’s mouth) between May 2019 and November 2020 (χ²=31.10, p<0.001), with again a significant increase between July and November 2020 (1.43, 95%CI=1.27 – 1.62, p<0.001) (table 3).

The likelihood of a bystander who witnessed an OHCA going to get or use a PAD followed similar patterns. Both followed a statistically significant if modest positive linear trend during the study period (get a PAD: χ²=1.62, p<0.001; use a PAD: χ²=45.95, p<0.001) (table 3).

[Figure 1 (in colour)]

[Table 2]

[Table 3]

**Barriers to CPR**

In November 2020, only one in three (31.7%) respondents were aware of modifications to guidance for performing CPR during the COVID-19 pandemic. Few (14.7%) were aware of advice to put a cloth or a towel over the person’s mouth whilst performing chest compressions.
Overall, 30.1% said they were likely or very likely to train for the first time or take a refresher course in resuscitation skills over the next 6 months (i.e. between November and April 2021, during the second wave of the pandemic in the UK). Almost 80% (77.9%) of those said they were likely or very likely to use online resources; 45.6% percent said they would attend a face-to-face class with social distancing, and 40.5% said they would attend an online class.

Error! Reference source not found. presents information about perceived barriers to performing CPR. Data are included from a survey completed in 2015 for comparison with the rates reported through the pandemic period. The most striking changes between October 2015 and November 2020 are an increased reluctance to perform mouth-to-mouth ventilation (10.1 percentage points) and concerns about catching an infection (15.4 percentage points). Overall, all reasons for reluctance to perform CPR have increased since 2015. The leading reasons for reluctance in November 2020 remained fear of causing more harm than good (52.4%), lacking the knowledge and skills to perform CPR (42.9%), and being unsure that the person concerned definitely needs CPR (40.0%).

[Figure 2 (in colour)]

Discussion

Summary of key findings
Many (but not all) members of the UK public remain likely to activate the EMS and to commence COCPR if faced with someone who has sustained an OHCA. By contrast, the likelihood of performing mouth-to-mouth ventilation has fallen since the onset of the COVID-19 pandemic. This is mirrored by concerns about the safety of mouth-to-mouth ventilation and the risks of contracting illness following a resuscitation attempt. The likelihood of going to get or use a PAD remained relatively stable but remains sub-optimal (with only about 50% expressing a likelihood of using this technology). There seems to have been limited penetration of guidance suggesting how resuscitation techniques should be modified during the COVID-19 pandemic.

Concerns over people’s attitudes to CPR being affected by the pandemic seem to be borne out in our study in part. In contrast to some other reports 28, we found the overall likelihood of people performing any kind of CPR had actually increased since 2019. However, two distinct trends emerge when looking at CPR with rescue breaths and compression-only CPR separately.

People’s likelihood of performing CPR with rescue breaths had decreased since the onset of the pandemic, with a particularly marked drop in November 2020, coinciding with the onset of a second wave of infections in the UK. Within the same timeframe, the likelihood of performing COCPR increased to the highest levels ever reported in similar studies 29, 30. Therefore, our study suggests that the decrease in likelihood of using CPR with rescue breaths has been compensated for by the increase in likelihood of performing COCPR with or without a cloth covering the person’s mouth. Although analysis of national data for bystander CPR is not yet available, data from the London Ambulance Service early in the pandemic reported that bystander CPR rates had increased 20.
Our study shows that being put off by performing mouth-to-mouth resuscitation and fear of catching an illness are increasingly cited as reasons for reluctance to perform CPR. It is plausible that changes in preferred CPR techniques have been driven by the pandemic and perceived increased contamination risk by providing CPR with rescue breaths compared to COCPR. Another explanation – not necessarily mutually exclusive with the first – is that changes in international resuscitation guidelines (set in motion prior to the pandemic) and recommendations that untrained bystanders favour COCPR over CPR with rescue breaths have reached a large part of the general public.

Elements of our study evaluating penetration of resuscitation recommendations, showed that knowledge about safe CPR practice during the pandemic — namely advice for COCPR with a cloth or towel covering the person’s face — was poor and a worrying proportion of people reported they were likely or very likely to still perform CPR with rescue breaths (39.4% in November 2020).

Lack of knowledge about CPR continues to be one of the leading reasons for reluctance to perform CPR. Further work to increase the public’s awareness of safe resuscitation practice and sustained efforts to provide training are still needed in the UK. Although the pandemic is quickly evolving and many of the UK adult public are now vaccinated (which was not the case when the data for this study was collected), attention should be paid in planning for training provision to shifting preferences in accessing CPR training: our study showed that the majority of people intending to undertake training in the near future would prefer to use asynchronous online resources, as opposed to ‘traditional’ face-to-face training. However, the effects of high vaccination uptake in the UK on training preferences should continue to be monitored.

While we did not observe any decline in people’s reported likelihood of using a PAD, it remains below 50%. There is significant room for training more people in this skill as early defibrillation is known to increase survival from OHCA.

Public awareness of cardiac arrest and the importance of early action by bystanders, may have been raised by the arrest sustained by Christian Eriksen during a recent televised match in the Union of European Football Associations 2020 Championship (played in June 2021). As campaigns and training evolve in response to the pandemic and high-profile cardiac arrests such as Eriksen’s, studies will be needed to monitor and assess resulting changes in attitudes to CPR, including knowledge of safe practice and uptake of training.

Limitations
The limitations of using non-probabilistic sampling are reported elsewhere. We provide unweighted demographic data in the supplementary tables for comparison with weighted data reported in the main text.

Our sample did not include sufficient numbers or representative proportions of respondents from minority ethnic groups to conduct a robust analysis to assess differences between the majority and minority groups in the UK. YouGov weighting methodology does not account for ethnicity, therefore it is not surprising that our sample did not reflect the proportions
in the 2011 census (where the percentage of the population from all non-mixed White ethnic backgrounds was 87.2% \cite{36}), resulting in an overrepresentation of White British respondents. Further studies designed to include larger numbers of people from minority ethnic groups should be conducted in future.

Our study questions generally differentiated between CPR with rescue breaths and COCPR. In order to facilitate comparison with earlier data, we used the same question in May 2019 through to November 2020 as was used in October 2015, and which did not enquire about CPR with rescue breaths and COCPR separately. Considering the differences in the likelihood of performing CPR with rescue breaths and COCPR, future studies should examine reasons for reluctance to perform CPR with rescue breaths and COCPR separately. In addition, we only had access to aggregated data for the October 2015 study, and so we were unable to test differences between 2015 and data from April – November 2020 for statistical significance.

**Conclusions**
The UK public’s reported likelihood of helping someone sustaining an OHCAO has remained stable. Whether this is borne out in actual bystander actions remains to be seen. Initiatives are still needed to further increase the proportion of people with resuscitation skills and to reduce the proportions reporting a lack of knowledge as a key concern. More needs to be done to ensure members of the public know how to minimise the risk of virus transmission during a resuscitation attempt.

**Acknowledgements**
The survey was conducted by YouGov on behalf of the Out-of-Hospital Cardiac Arrest Outcomes (OHCAO) team. Questions were developed by the authors, and YouGov provided suggestions to improve clarity and understandability. The following ambulance services participate in the OHCAO project: East of England Ambulance Service NHS Trust, East Midlands Ambulance Service NHS Trust, London Ambulance Service NHS Trust, North East Ambulance Service NHS Foundation Trust, North West Ambulance Service NHS Trust, South Central Ambulance Service NHS Foundation Trust, South East Coast Ambulance Service NHS Foundation Trust, South Western Ambulance Service NHS Foundation Trust, Welsh Ambulance Services NHS Trust/Ymddiriedolaeth GIG Gwasanaethau Ambiwlans Cymru, West Midlands Ambulance Service University NHS Foundation Trust, Yorkshire Ambulance Service NHS Trust.

**Funding source**
This study was conducted by the OHCAO Registry team whose work is funded by research grants from the British Heart Foundation and the Resuscitation Council UK. Gavin Perkins and Terry Brown are supported by funding from the NIHR Applied Research Collaboration (ARC) West Midlands.
References

1. Deakin C.D. The chain of survival: Not all links are equal. Resuscitation. 2018;126:80-2. doi: 10.1016/j.resuscitation.2018.02.012

2. Perkins G.D., Gräsner J.-T., Semeraro F., et al. European Resuscitation Council Guidelines 2021: Executive summary. Resuscitation. 2021;161:1-60. doi: 10.1016/j.resuscitation.2021.02.003

3. Ong M.E.H., Perkins G.D., Cariou A. Out-of-hospital cardiac arrest: prehospital management. Lancet. 2018;391:980-8. doi: 10.1016/s0140-6736(18)30316-7

4. Song J., Guo W., Lu X., Kang X., Song Y., Gong D. The effect of bystander cardiopulmonary resuscitation on the survival of out-of-hospital cardiac arrests: a systematic review and meta-analysis. Scand J Trauma, Resusc Emerg Med. 2018;26:86. doi: 10.1186/s13049-018-0552-8

5. Yan S., Gan Y., Jiang N., et al. The global survival rate among adult out-of-hospital cardiac arrest patients who received cardiopulmonary resuscitation: a systematic review and meta-analysis. Crit Care. 2020;24:61. doi: 10.1186/s13054-020-2773-2

6. Wissenberg M., Lippert F.K., Folke F., et al. Association of National Initiatives to Improve Cardiac Arrest Management With Rates of Bystander Intervention and Patient Survival After Out-of-Hospital Cardiac Arrest. JAMA. 2013;310:1377-84. doi: 10.1001/jama.2013.278483

7. Sondergaard K.B., Wissenberg M., Gerds T.A., et al. Bystander cardiopulmonary resuscitation and long-term outcomes in out-of-hospital cardiac arrest according to location of arrest. Eur Heart J. 2019;40:309-18. doi: 10.1093/eurheartj/ehy687

8. Chan P.S., McNally B., Tang F., Kellermann A. Recent trends in survival from out-of-hospital cardiac arrest in the United States. Circulation. 2014;130:1876-82. doi: 10.1161/circulationaha.114.009711

9. Okubo M., Kiyohara K., Iwami T., Callaway C.W., Kitamura T. Nationwide and regional trends in survival from out-of-hospital cardiac arrest in Japan: A 10-year cohort study from 2005 to 2014. Resuscitation. 2017;115:120-8. doi: 10.1016/j.resuscitation.2017.03.036

10. Buick J.E., Drennan I.R., Scales D.C., et al. Improving Temporal Trends in Survival and Neurological Outcomes After Out-of-Hospital Cardiac Arrest. Circ Cardiovasc Qual Outcomes. 2018;11:e003561. doi: 10.1161/circoutcomes.117.003561
11. Hwang S.S., Ahn K.O., Shin S.D., et al. Temporal trends in out-of-hospital cardiac arrest outcomes in men and women from 2008 to 2015: A national observational study. Am J Emerg Med. 2021;41:174-8. doi: 10.1016/j.ajem.2020.01.055

12. Hawkes C., Booth S., Ji C., et al. Epidemiology and outcomes from out-of-hospital cardiac arrests in England. Resuscitation. 2017;110:133-40. doi: 10.1016/j.resuscitation.2016.10.030

13. University of Warwick OHCAO Team. Out-of-hospital Cardiac Arrest in England: 2019 epidemiology report. 2019. https://warwick.ac.uk/fac/sci/med/research/ctu/trials/ohcao/publications/epidemiologyreports/. Accessed: 2021/06/01

14. Scottish Government. Scottish out-of-hospital cardiac arrest data linkage project: 2018/19 results. 2020. https://www.gov.scot/publications/scottish-out-of-hospital-cardiac-arrest-data-linkage-project-2018-19-results/. Accessed: 2021/10/19

15. British Heart Foundation. Policy statement: creating a nation of lifesavers. 2014. https://www.bhf.org.uk/-/media/files/publications/policy-documents/final_nation_of_lifesavers_policy_statement_14102014.pdf. Accessed: 2021/06/01

16. Out-of-Hospital Cardiac Arrest Outcomes Registry. Out-of-hospital Cardiac Arrest in England: 2019 epidemiology report. 2019. https://warwick.ac.uk/fac/sci/med/research/ctu/trials/ohcao/publications/epidemiologyreports/. Accessed: 2021/06/01

17. Brown T., Booth S., Lockey A., Hawkes C., Fothergill R. Bystander cardiopulmonary resuscitation: impact of training initiatives. Resuscitation. 2018;130. doi: 10.1016/j.resuscitation.2018.07.202

18. Marijon E., Karam N., Jost D., et al. Out-of-hospital cardiac arrest during the COVID-19 pandemic in Paris, France: a population-based, observational study. Lancet Public Health. 2020;5:e437-e43. doi: 10.1016/s2468-2667(20)30117-1

19. Baldi E., Sechi G.M., Mare C., et al. Out-of-Hospital Cardiac Arrest during the Covid-19 Outbreak in Italy. N Engl J Med. 2020;383:496-8. doi: 10.1056/NEJMc2010418

20. Fothergill R.T., Smith A.L., Wrigley F., Perkins G.D. Out-of-Hospital Cardiac Arrest in London during the COVID-19 pandemic. Resuscitation Plus. 2021;5:100066. doi: 10.1016/j.resplu.2020.100066

21. McVaney K.E., Pepe P.E., Maloney L.M., et al. The relationship of large city out-of-hospital cardiac arrests and the prevalence of COVID-19. EClinicalMedicine. 2021;34. doi: 10.1016/j.eclinm.2021.100815
22. Resuscitation Council UK. Resuscitation Council UK Statement on COVID-19 in relation to CPR and resuscitation in first aid and community settings. 2020. https://www.resus.org.uk/covid-19-resources/covid-19-resources-general-public/resuscitation-council-uk-statement-covid-19. Accessed: 2021/06/15

23. Nolan, JP; Monsieurs, KG; Bossaert, L; Böttiger, BW; Greif, R; Lott, C; Madar, J; Olasveengen, TM; Roehr, CC; Semeraro, F; Soar, J; Van de Voorde, P; Zideman, DA; Perkins, GD; European Resuscitation Council COVID-Guideline Writing Groups. European Resuscitation Council COVID-19 guidelines executive summary. Resuscitation, 2020:153; 45-55 doi: 10.1016/j.resuscitation.2020.06.001

24. Chong K.-M., Chen J.-W., Lien W.-C., et al. Attitude and behavior toward bystander cardiopulmonary resuscitation during COVID-19 outbreak. PLoS One. 2021;16:e0252841-e. doi: 10.1371/journal.pone.0252841

25. Hawkes C.A., Brown T.P., Booth S., et al. Attitudes to Cardiopulmonary Resuscitation and Defibrillator Use: A Survey of UK Adults in 2017. J Am Heart Assoc. 2019;8:e008267. doi: 10.1161/JAHA.117.008267

26. YouGov. Panel methodology. 2018. https://yougov.co.uk/about/panel-methodology Accessed: 2021/06/01

27. National Readership Survey. Social Grade. 2017. http://www.nrs.co.uk/nrs-print/lifestyle-and-classification-data/social-grade/. Accessed: 2021/06/01

28. Grunau B., Bal J., Scheuermeyer F., et al. Bystanders are less willing to resuscitate out-of-hospital cardiac arrest victims during the COVID-19 pandemic. Resuscitation Plus. 2020;4:100034. doi: 10.1016/j.resplu.2020.100034

29. Out-of-Hospital Cardiac Arrest Outcomes Registry. Annual Attitudes to CPR survey. 2018. https://warwick.ac.uk/fac/sci/med/research/ctu/trials/ohcao/publications/surveys. Accessed: 2021/06/01

30. Out-of-Hospital Cardiac Arrest Outcomes Registry. Annual Attitude to CPR survey. 2019. https://warwick.ac.uk/fac/sci/med/research/ctu/trials/ohcao/publications/surveys. Accessed: 2021/06/01

31. Travers A.H., Perkins G.D., Berg R.A., et al. Part 3: Adult Basic Life Support and Automated External Defibrillation. Circulation. 2015;132:S51-S83. doi: 10.1161/CIR.0000000000000272

32. Olasveengen T.M., Mancini M.E., Perkins G.D., et al. Adult Basic Life Support: International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation. 2020;156:A35-A79. doi: 10.1016/j.resuscitation.2020.09.010
33. Public Health England. Vaccinations in the United Kingdom. 2021. https://coronavirus.data.gov.uk/details/vaccinations. Accessed: 2021/09/28

34. Capucci A., Aschieri D., Piepoli M.F., Bardy G.H., Iconomu E., Arvedi M. Tripling survival from sudden cardiac arrest via early defibrillation without traditional education in cardiopulmonary resuscitation. Circulation. 2002;106:1065-70. doi: 10.1161/01.cir.0000028148.62305.69

35. Herlitz J., Ekström L., Wennerblom B., Axelsson A., Bång A., Holmberg S. Type of arrhythmia at EMS arrival on scene in out-of-hospital cardiac arrest in relation to interval from collapse and whether a bystander initiated CPR. Am J Emerg Med. 1996;14:119-23. doi: 10.1016/s0735-6757(96)90116-3

36. Office for National Statistics. 2011 Census: ethnic group, local authorities in the United Kingdom (Table KS201UK). 2013. https://web.archive.org/web/20131021150149/http://www.ons.gov.uk/ons/rel/census/2011-census/key-statistics-and-quick-statistics-for-local-authorities-in-the-united-kingdom---part-1/rft-ks201uk.xls. Accessed: 2021/07/21
**Figures and Tables**

Table 1. Demographic characteristics (weighted)

|                      | May 2019 | Apr 2020 | May 2020 | Jun 2020 | Jul 2020 | Nov 2020 |
|----------------------|----------|----------|----------|----------|----------|----------|
| **Total respondents**| 4,516    | 4,884    | 4,362    | 4,250    | 4,429    | 4,418    |
| **Sex (%)**          |          |          |          |          |          |          |
| Male                 | 48.5     | 48.5     | 48.5     | 48.5     | 48.5     | 48.5     |
| Female               | 51.5     | 51.5     | 51.5     | 51.5     | 51.5     | 51.5     |
| **Age group (%)**    |          |          |          |          |          |          |
| 18-24                | 11.1     | 11.1     | 11.1     | 11.1     | 11.1     | 11.1     |
| 25-34                | 14.8     | 16.8     | 15.4     | 15.5     | 14.9     | 15.9     |
| 35-44                | 18.4     | 16.4     | 17.6     | 17.2     | 17.9     | 17.5     |
| 45-54                | 16.5     | 15.8     | 15.8     | 17.2     | 17.0     | 16.2     |
| 55+                  | 39.3     | 40.0     | 40.1     | 39.0     | 39.1     | 39.3     |
| **Social grade (%)** |          |          |          |          |          |          |
| ABC1                 | 57.0     | 57.0     | 57.0     | 57.0     | 57.0     | 57.0     |
| C2DE                 | 43.0     | 43.0     | 43.0     | 43.0     | 43.0     | 43.0     |
| **Government region (%)** |      |          |          |          |          |          |
| North East           | 3.8      | 4.0      | 4.6      | 4.3      | 4.1      | 4.1      |
| North West           | 10.5     | 11.3     | 10.6     | 9.9      | 11.0     | 10.5     |
| Yorkshire and the Humber | 9.0   | 8.0      | 8.1      | 9.1      | 8.2      | 8.7      |
| East Midlands        | 8.0      | 8.0      | 7.9      | 7.8      | 8.2      | 7.0      |
| West Midlands        | 8.1      | 8.1      | 8.2      | 8.3      | 7.9      | 9.1      |
| East of England      | 9.2      | 8.7      | 8.6      | 9.5      | 7.9      | 9.0      |
| London               | 13.1     | 13.1     | 13.1     | 13.1     | 13.1     | 13.1     |
| South East           | 12.7     | 13.5     | 13.3     | 13.2     | 14.0     | 13.8     |
| South West           | 9.7      | 9.5      | 9.7      | 9.2      | 9.7      | 8.8      |
| Wales                | 4.8      | 4.8      | 4.8      | 4.8      | 4.8      | 4.8      |
| Scotland             | 8.4      | 8.4      | 8.4      | 8.4      | 8.4      | 8.4      |
| Northern Ireland     | 2.7      | 2.7      | 2.7      | 2.7      | 2.7      | 2.7      |

*Social grade: A: high managerial, administrative, or professional (4% of the population January – December 2016); B: intermediate managerial, administrative, or professional (23%); C1: supervisory, clerical, and junior managerial, administrative, or professional (28%); C2: skilled manual worker (20%); D: semi-skilled and unskilled manual worker (15%); E: state pensioner casual or lowest grade worker, unemployed with state benefits only (10%).*
Table 2. Logistic regression models for changes in bystander response to OHCA over time

| Call EMS | Perform any type of CPR | Perform CPR |
|---------|-------------------------|-------------|
| Overall | Overall | Overall |
| OR   | 95%CI | p  | OR   | 95%CI | p  | OR   | 95%CI | p  |
| May 2019 | 1 |  | 1 | 1.42 | 1.29 – 1.57 | <0.001 | 0.95 | 0.88 – 1.04 | 0.280 |
| Apr 2020 | 0.72 | 0.58 – 0.90 | 0.003 | 1.30 | 1.18 – 1.43 | <0.001 | 0.92 | 0.84 – 1.00 | 0.056 |
| May 2020 | 0.85 | 0.68 – 1.07 | 0.171 | 1.25 | 1.13 – 1.38 | <0.001 | 0.84 | 0.77 – 0.92 | <0.001 |
| Jun 2020 | 0.68 | 0.55 – 0.85 | 0.001 | 1.30 | 1.18 – 1.44 | <0.001 | 0.85 | 0.78 – 0.93 | <0.001 |
| Jul 2020 | 0.91 | 0.73 – 1.15 | 0.438 | 1.19 | 1.07 – 1.31 | 0.001 | 0.47 | 0.43 – 0.51 | <0.001 |
| Nov 2020 | 0.82 | 0.64 – 1.04 | 0.105 | 1.10 | 1.00 – 1.20 | 0.039 | 1.14 | 1.04 – 1.24 | 0.004 |

| Perform COCPR | Get PAD | Use PAD |
|----------------|----------|---------|
| Overall | Overall | Overall |
| OR | 95%CI | p | OR | 95%CI | p | OR | 95%CI | p |
| May 2019 | 1 |  | 1 | 1.55 | 1.43 – 1.69 | <0.001 | 1.61 | 1.48 – 1.75 | <0.001 |
| Apr 2020 | 1.09 | 1.00 – 1.19 | 0.043 | 1.50 | 1.38 – 1.64 | <0.001 | 1.52 | 1.39 – 1.66 | <0.001 |
| May 2020 | 1.09 | 1.00 – 1.19 | 0.063 | 1.64 | 1.50 – 1.79 | <0.001 | 1.64 | 1.50 – 1.79 | <0.001 |
| Jun 2020 | 1.12 | 1.02 – 1.22 | 0.016 | 1.56 | 1.43 – 1.70 | <0.001 | 1.51 | 1.39 – 1.65 | <0.001 |
| Jul 2020 | 1.06 | 0.97 – 1.16 | 0.183 | 1.10 | 1.00 – 1.20 | 0.039 | 1.14 | 1.04 – 1.24 | 0.004 |
| Nov 2020 | 1.36 | 1.24 – 1.49 | <0.001 | 1.10 | 1.00 – 1.20 | 0.039 | 1.14 | 1.04 – 1.24 | 0.042 |
Key: May 2019 is the reference group; EMS – Emergency Medical Services; CPR: cardiopulmonary resuscitation; COCPR: compression-only CPR; PAD: Public Access Defibrillator; CI: Confidence Interval

Table 3. Post-Hoc analysis: contrasts of marginal linear predictions

|                  | Call EMS OR | 95% CI | p   | Perform any type of CPR OR | 95% CI | p   | Perform CPR OR | 95% CI | p   |
|------------------|-------------|--------|-----|----------------------------|--------|-----|----------------|--------|-----|
| Apr 2020 vs May 19 | 0.72        | 0.58–0.90 | 0.017 | 1.42                      | 1.25–1.6 | <0.001 | 0.95          | 0.85–1.06 | 1.000 |
| May 2020 vs Apr 2020 | 1.18        | 0.96–1.54 | 0.627 | 0.91                      | 0.8–1.04 | 0.384 | 0.96          | 0.86–1.07 | 1.000 |
| Jun 2020 vs May 2020 | 0.80        | 0.65–0.99 | 0.188 | 0.96                      | 0.84–1.11 | 1.000 | 0.92          | 0.82–1.04 | 0.343 |
| Jul 2020 vs Jun 2020 | 1.34        | 1.09–1.66 | 0.029 | 1.04                      | 0.91–1.2 | 1.000 | 1.01          | 0.9–1.14 | 1.000 |
| Nov 2020 vs Jul 2020 | 0.90        | 0.71–1.13 | 1.000 | 0.90                      | 0.79–1.03 | 0.311 | 0.55          | 0.49–0.62 | <0.001 |

Linear trend: $X^2=3.64$, $p=0.057$  
$X^2=23.00$, $p<0.001$  
$X^2=183.81$, $p<0.001$

|                  | Perform COCPR OR | 95% CI | p   | Get PAD OR | 95% CI | p   | Use PAD OR | 95% CI | p   |
|------------------|------------------|--------|-----|-------------|--------|-----|------------|--------|-----|
| Apr 2020 vs May 19 | 1.09          | 0.97–1.22 | 0.216 | 1.54         | 1.38–1.72 | <0.001 | 1.58        | 1.42–1.77 | <0.001 |
| May 2020 vs Apr 2020 | 1.00         | 0.89–1.12 | 1.000 | 0.97         | 0.86–1.08 | 1.000 | 0.95        | 0.84–1.06 | 0.985 |
| Jun 2020 vs May 2020 | 1.03         | 0.91–1.15 | 1.000 | 1.09         | 0.97–1.23 | 0.321 | 1.08        | 0.96–1.21 | 0.470 |
| Jul 2020 vs Jun 2020 | 0.95         | 0.84–1.07 | 1.000 | 0.95         | 0.85–1.07 | 1.000 | 0.93        | 0.83–1.04 | 0.365 |
| Nov 2020 vs Jul 2020 | 1.43         | 1.27–1.62 | <0.001 | 0.70         | 0.63–0.79 | <0.001 | 0.75        | 0.67–0.84 | <0.001 |

Linear trend: $X^2=31.10$, $p<0.001$  
$X^2=41.62$, $p<0.001$  
$X^2=45.95$, $p<0.001$

Key: EMS – Emergency Medical Services; CPR: cardiopulmonary resuscitation; COCPR: compression-only CPR; PAD: Public Access Defibrillator; CI: Confidence Interval
Figure 1. Likelihood of acting in different ways upon witnessing a cardiac arrest (weighted data)

Key: EMS: Emergency Medical Services; CPR: Cardiopulmonary Resuscitation; COCPR: Compression-Only Cardiopulmonary Resuscitation; PAD: Public Access Defibrillator
Figure 2. Reasons for reluctance to perform CPR (October 2015, April – July 2020, November 2020, weighted data)

Key: CPR: Cardiopulmonary Resuscitation
### Supplementary Material

#### Unweighted data

|                      | May 2019 | Apr 2020 | May 2020 | Jun 2020 | Jul 2020 | Nov 2020 |
|----------------------|----------|----------|----------|----------|----------|----------|
| **Sex (%)**          |          |          |          |          |          |          |
| Male                 | 46.06    | 46.09    | 45.80    | 46.24    | 45.99    | 46.45    |
| Female               | 53.94    | 53.91    | 54.20    | 53.76    | 54.01    | 53.55    |
| **Age group (%)**    |          |          |          |          |          |          |
| 18-24                | 8.33     | 9.11     | 7.15     | 7.95     | 9.53     | 6.84     |
| 25-34                | 14.90    | 15.83    | 15.59    | 15.18    | 14.43    | 16.50    |
| 35-44                | 18.11    | 15.72    | 17.68    | 17.34    | 17.75    | 18.18    |
| 45-54                | 16.41    | 15.81    | 15.80    | 18.05    | 17.05    | 16.36    |
| 55+                  | 42.25    | 43.53    | 43.79    | 41.48    | 41.25    | 42.12    |
| **Social grade (%)** |          |          |          |          |          |          |
| ABC1                 | 60.65    | 59.50    | 60.34    | 61.48    | 59.43    | 59.76    |
| C2DE                 | 39.35    | 40.50    | 39.66    | 38.52    | 40.57    | 40.24    |
| **Government region (%)** |        |          |          |          |          |          |
| North East           | 3.85     | 4.05     | 4.56     | 4.31     | 4.13     | 4.19     |
| North West           | 10.81    | 11.61    | 10.94    | 10.14    | 11.15    | 10.64    |
| Yorkshire and the Humber | 9.26   | 7.86     | 8.23     | 9.22     | 8.29     | 8.87     |
| East Midlands        | 8.26     | 7.80     | 7.89     | 8.02     | 8.26     | 6.97     |
| West Midlands        | 8.28     | 7.90     | 8.25     | 8.66     | 7.95     | 8.90     |
| East of England      | 9.54     | 8.95     | 8.71     | 9.39     | 8.04     | 9.14     |
| London               | 11.32    | 12.67    | 11.67    | 11.34    | 11.97    | 12.38    |
| South East           | 12.78    | 13.86    | 13.46    | 13.51    | 14.20    | 13.90    |
| South West           | 9.81     | 9.73     | 10.11    | 9.36     | 10.02    | 9.08     |
| Wales                | 5.05     | 4.77     | 4.84     | 4.71     | 4.76     | 5.00     |
| Scotland             | 8.66     | 8.09     | 8.80     | 8.73     | 8.85     | 7.85     |
| Northern Ireland     | 2.39     | 2.70     | 2.54     | 2.61     | 2.37     | 3.08     |

|                          | Jul 2020 | Nov 2020 |
|--------------------------|----------|----------|
| White English / Welsh / Scottish / Northern Irish (%) | 88.89    | 88.43    |
| White Irish (%)          | 1.05     | 1.17     |
| White Gypsy or Irish Traveller (%) | 0.00     | 0.09     |
| Any other White background (%) | 3.90     | 3.87     |
| White and Black Caribbean (%) | 0.38     | 0.35     |
| White and Black African (%) | 0.21     | 0.05     |
| White and Asian (%)      | 0.45     | 0.40     |
| Ethnic Background                                      | 2022 | 2023 |
|--------------------------------------------------------|------|------|
| Any other Mixed / Multiple ethnic background (%)        | 0.59 | 0.52 |
| Indian (%)                                              | 0.88 | 1.03 |
| Pakistani (%)                                           | 0.40 | 0.45 |
| Bangladeshi (%)                                         | 0.26 | 0.35 |
| Chinese (%)                                             | 0.38 | 0.47 |
| Any other Asian background (%)                          | 0.38 | 0.47 |
| African (%)                                             | 0.40 | 0.52 |
| Caribbean (%)                                           | 0.48 | 0.38 |
| Any other Black / African / Caribbean background (%)    | 0.10 | 0.14 |
| Arab (%)                                                | 0.21 | 0.02 |
| Any other ethnic group (%)                              | 0.24 | 0.19 |
| Prefer not to say (%)                                   | 0.79 | 1.10 |
**List of questions**

The table below details the questions and answer options included in the analysis presented in this paper. A more complete overview of annual surveys on the UK public’s attitudes to CPR is available on the OHCAO website:

https://warwick.ac.uk/fac/sci/med/research/ctu/trials/ohcao/publications/surveys

As a reminder, by “cardiac arrest” we mean when a person’s heart stops beating, and they stop breathing.

Please imagine that you were witnessing someone having a cardiac arrest in front of you…. Provided all of these options were available to you (i.e. you had access to a phone, defibrillator, etc…), **how likely, if at all, would you be to do each of the following?** (Please select one option on each row)

|                                                                 | Not at all likely | Not very likely | Fairly likely | Very likely | Don’t know |
|-----------------------------------------------------------------|-------------------|-----------------|---------------|-------------|------------|
| Phone 999                                                       |                   |                 |               |             |            |
| Perform chest compressions only                                 |                   |                 |               |             |            |
| Perform chest compressions only with a cloth over the person’s mouth |                   |                 |               |             |            |
| Perform chest compressions and rescue breathing (i.e. mouth-to-mouth resuscitation) |                   |                 |               |             |            |
| Go and get a publicly accessible defibrillator (i.e. a machine which can deliver an electric shock to restart the heart) |                   |                 |               |             |            |
| Use a defibrillator (i.e. a machine which can deliver an electric shock to restart the heart) |                   |                 |               |             |            |

1. Nov 20 only

Some organisations have issued advice about how to perform CPR during the coronavirus pandemic...

**Which, if any, of the following organisations have you seen or heard any advice from on how to perform CPR on someone who is having a cardiac arrest during the coronavirus pandemic?** (Please select all that apply. If you have not seen or heard any advice on how to perform CPR during the coronavirus pandemic, please select the 'Not applicable' option)

1. British Heart Foundation Resuscitation Council UK
2. St John Ambulance and Red Cross
3. Health & Safety Executive (HSE)
4. NHS
5. Other
6. Don’t know/ can’t recall
7. Not applicable - I haven’t seen or heard any advice on how to perform CPR during the coronavirus pandemic

Thinking about the best way for a member of the public to perform CPR on someone that is having a cardiac arrest during the coronavirus pandemic (i.e. since February 2020)...After ringing 999 for an ambulance, **which of the following statements do you think are true or false about what the member of the public should do when helping someone that is having a cardiac arrest? (Please select an option on each row)**

| Statement                                                                 | True | False | Don’t know/can’t recall |
|---------------------------------------------------------------------------|------|-------|-------------------------|
| They should wear a mask themselves or put a piece of cloth or a towel over the persons mouth and give mouth to mouth breaths and chest compressions |      |       |                         |
| They should wear a mask themselves and give chest compressions only (pressing up and down on the persons chest) |      |       |                         |
| They should put a cloth or a towel over the persons’ mouth and then do chest compressions only |      |       |                         |
| They should not give any kind of CPR and wait until paramedics arrive who will attempt to resuscitate the person wearing Personal Protective Equipment (PPE) |      |       |                         |

Still imagining that you were witnessing someone have a cardiac arrest in front of you…

**Which, if any, of the following would be your reasons for not performing CPR? (Please select all that apply. If you would always perform CPR, please select the “Not applicable” option).**

1. Fear of causing the individual more harm than good
2. I lack the knowledge and skills to perform CPR
3. Being unsure that the person concerned is definitely in need of CPR
4. I lack the confidence to act in a public situation where I might feel pressurised
5. Fear of being sued
6. Fear of being embarrassed if I did something wrong
7. Performing mouth-to-mouth resuscitation, as part of CPR, puts me off
8. Fear of catching a disease/ illness from the person concerned
9. I like to 'keep myself to myself'
10. Other
11. Don’t know
12. Not applicable – Nothing would make me reluctant to perform CPR
13. Prefer not to say

A similar question was asked in a survey conducted by the British Heart Foundation through YouGov in October 2015. Only aggregated results were available for analysis.
|   |   |
|---|---|
| Which, if any, of the following would be your reasons for not performing CPR? (Please select all that apply. If you would always perform CPR, please select the “Not applicable” option). |   |
| 1. I lack the knowledge and skills to perform CPR |   |
| 2. Fear of causing the individual more harm than good |   |
| 3. Fear of being sued |   |
| 4. I lack the confidence to act in a public situation where I might feel pressurised |   |
| 5. Fear of catching a disease / illness from the person concerned |   |
| 6. Fear of being embarrassed if I did something wrong |   |
| 7. I like to ‘keep myself to myself’ |   |
| 8. Being unsure that the person concerned is definitely in need of CPR |   |
| 9. Performing mouth-to-mouth resuscitation, as part of CPR, puts me off |   |
| 10. Other |   |
| 11. Don’t know |   |
| 12. Not applicable – I would always perform CPR |   |

8 X — question asked