Cullin-1 and -2 Protein Expression in Colorectal Cancer: Correlation with Clinicopathological Variables

OTHON MICHAEL1, DEMETRIOS MORIS2, STAMATIOS THEOCHARIS3 and JOHN GRINIATOS1

1First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece; 2Department of Surgery, Duke University Medical Center, Durham, NC, U.S.A.; 3Department of Forensic Medicine and Toxicology, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece

Abstract. Background/Aim: The cullin (CUL) family of proteins is involved in the ubiquitin-mediated degradation of proteins, regulating cell proliferation, cell-cycle control, migration, invasion and metastasis in the process of tumor progression. The aim of the present study was to examine if there is any correlation between the immunohistochemical (IHC) expression of Cullin-1 and -2 proteins in colorectal cancer tissue specimens with several clinicopathological variables. Materials and Methods: Between January 2012 and December 2014, 96 consecutive adenocarcinoma patients were submitted to oncological colectomy, as the first therapeutic option, with a curative intent. CUL-1 and -2 protein expression was examined with IHC on paraffin-embedded tissue sections. CUL-1 and -2 protein positivity, was correlated with patients’ age, gender, stage, histological grade, proliferative capacity (Ki-67 labeling index) and mutant p53 protein expression. The positivity for CUL-1, CUL-2, mutant p53 protein and Ki-67 index, was determined by the percentage of their IHC expression in the total number of cancer cells. Results: Choosing as a cut-off point for CUL-1 positivity the 10%, a statistically significant relationship of the expression of the mutant p53 protein (p=0.047) was noticed. Co-expression of CUL-1 and -2 in more than 10%, significantly correlated to the coexistence of adenomatous polyps along the large bowel (p=0.0329). Multivariate analysis of CUL-1 and -2 co-expression in more than 10% disclosed their expression as an independent factor for adenomatous polyps development in the large bowel (p=0.035, RR=2.1). Conclusion: CUL-1 overexpression may happen early in the process of carcinogenesis mainly affecting the vulnerable p53(+) large bowel cells, arresting them in the G1 phase of cell-cycle, while it may also induce the expression of CUL-2. Co-expression of CUL-1 and CUL-2, in the arrested (in G1 phase) large bowel cells, promotes carcinogenesis up to adenomatous polyp formation. Since no relationship between cullins expression and development of cancer on adenoma was found, the results of the present study may be useful explaining the initiation but not the progression of carcinogenesis in colorectal cancer. Further molecular and clinical studies are needed in order to delineate the clinical importance of these proteins in the management of colorectal cancer patients.

Several biological processes such as proliferation, differentiation, apoptosis, migration, invasion, signal transduction, transcription, cell-cycle progression and cell death, (1) depend precisely on the timely synthesis and degradation of key regulatory proteins (2).

While protein synthesis can be regulated at multiple levels, protein degradation is mainly controlled by the ubiquitin – proteasome system (UPS) (2, 3) which consists of two distinct steps: ubiquitination of targeted proteins by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, (4) and subsequent degradation by the 26S proteasome (4, 5).

Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsible for the turnover of many key regulatory proteins.
Similarly to other post-translational modifications, the process of ubiquitination is reversible, with the removal of ubiquitin from substrates regulated by deubiquitinating enzymes (7). Up to date, more than 600 E3 ubiquitin ligases and 100 de-ubiquitinating enzymes have been identified, forming a molecular network governing intracellular ubiquitination dynamics (8).

Dysregulation of the proteolytic system results in uncontrolled proliferation, genomic instability and cancer (1). Aberrant regulation of SCF E3 ligases is associated with various human diseases, such as cancers (2) while, misregulated expression of the members of the ubiquitination cascade, attributes a cancerous phenotype to various cells including enhanced proliferation, survival and metastatic potential (9).

Cullins (CUL) are a protein family acting as a matrix for E3-ubiquitin ligases. CUL1 is an essential scaffold of the SKP1-CUL1-F-box protein (SCF) E3 ubiquitin ligase complex, (6) which mediates the ubiquitination of proteins involved in cell-cycle induction and progression (3). CUL-1 is required for the developmentally programmed transitions from the G1 to the G0 phase of the cell cycle or the apoptotic pathway. Moreover, the mutant phenotype suggests that G1- to S phase progression is accelerated, overriding mechanisms for mitotic arrest and producing abnormally small cells (10). Cullin-2 (CUL-2) interacts with the trimeric von Hippel Lindau-elongin B-elongin C complex and plays an essential role in the degradation of hypoxia-inducing factor 1α by ubiquitination (11).

On the other hand, knockdown of CUL-1 inhibits cell growth, proliferation, migration and invasion (mainly by up-regulating p27 expression) (12, 13) in cases of melanoma (12), gastric cancer (13), lung cancer (14), breast cancer (15) and skin cancer (16), by arresting cells in the G1 phase (16).

The aim of the present study was to examine if there was any correlation between the immunohistochemical (IHC) expression of CUL-1 and CUL-2 proteins in colorectal cancer tissue specimens to several clinicopathological variables.

Materials and Methods

Patients. From 2011 onwards, all patients who were referred to our Department for further investigation and treatment, having been diagnosed with colorectal cancer, were prospectively collected. Demographics, clinical data, adjuvant or neo-adjuvant therapies, type of operation, postoperative complications, histological findings and follow-up, were recorded.

All patients suffered from colorectal cancer and had undergone colonoscopy and biopsies for histological confirmation of the disease. All of them were submitted at least to computer tomography (CT) of thorax and abdomen for staging of the disease, while patients suffering from rectal tumors were further submitted to magnetic resonance imaging (MRI) of the pelvis for loco-regional staging of the disease (17).

Excluding patients (i) who were diagnosed with histological types other than adenocarcinoma, (ii) who were operated on for palliation, (iii) who were classified as suffering from locally advanced disease and referred for neo-adjuvant therapies, (iv) who were diagnosed as stage IV, even though a curative resection was achieved and (v) who suffered from multiple distant metastases and referred for systematic chemotherapy, a total of 96 consecutive adenocarcinoma patients were submitted to oncological colectomy, as a first therapeutic option, with curative intent, between January 2012 and December 2014.

The pathological stage of the disease was based on the 7th TNM Classification, (18) while tumor grade was based on the WHO classification (19).

Immunohistochemical (IHC) staining. Tissue blocks were extracted from the surgical specimen and subjected to immunohistochemical (IHC) staining. Paraffin embedded biopsy specimens were used. The method used is as follows: One 4-μm-thick section was cut from 1 representative paraffin block of each case. The sections were floated onto salinized glass slides, dried out at 37°C overnight, and then kept at 60°C for 1 hour, before de-paraffinization in xylene and rehydration through graded ethanol. All sections were subjected to microwave heating at 850 W for 22 min in pH 6.0 citrate buffer and cooled in running water. The antibodies used were mouse cullin-1 and 2 (Novus Biological, Littleton, CO, USA), pRB (Santa Cruz Biotechnology, Dallas, TX, USA), Ki-67 (DAKO, Poland, Warsaw), dilution 1:50.

Table I. Clinicopathological characteristics of the enrolled patients.

Gender	Male	Female
	43	53

Age	Median + Interquartile Range (IR)
	70 (63-77)

Location of the primary tumor	Cecum-Ascending colon	Transverse colon	Descending-Sigmoid colon	Rectum
	15	5	47	29

Grade	1	2	3
	21	62	13

Stage	A	B	C1	C2
	23	33	23	17

Cancer on adenoma	Yes	No
	18	78

Coexistence of adenomas	Yes	No
	29	67

Vascular invasion	Yes	No
	24	72

392
at room temperature for 1 hour. IHC staining was carried out using an HRP polymer detection envision method (DAKO EnVision+ System, Poland, Warsaw). Diaminobenzidine (DAB) was used as chromogen and sections were counterstained with Harris' hematoxylin. Appropriate positive and negative controls omitting the primary antibodies were included with each slide run.

Table II. Univariate analysis between expression of cullin-1 ≥10% and evaluated parameters.

Parameter	Cullin-1 ≥10% (n=75)	Cullin-1 <10% (n=21)	p-Value	
Gender	Male	31	12	
	Female	44	9	
Age (Median+IR)	70 (63.5-77)	69 (63-80)		
Location of the primary tumor	Right colon	17	3	
	Left colon	36	11	
	Rectum	22	7	
Size of the primary tumor (mm)	(Median+IR)	50 (40-70) mm	75 (50-90) mm	
Grade	1	16	5	
	2	49	13	
	3	10	3	
Stage	I	18	5	
	II A	10	5	
	IIB	13	5	
	III A	21	2	
	IIIB	13	4	
Nodal Infiltration	Yes	33	6	
	No	42	15	
Cancer on adenoma	Yes	15	3	
	No	6018		
Coexistence of adenomas	Yes	24	5	
	No	51	16	
Vascular invasion	Yes	18	6	
	No	57	15	
Cullin-2 expression	Positive	47	15	
	Negative	28	6	
Cullin-2 expression (%)	(Median+IR)	60 (37.5-72.5)	35 (20-45)	0.003
Ki-67 (%)	(Median+IR)	20 (10-37)	16 (3-25)	
Mutant p53 (%)	(Median+IR)	43.5 (2.25-68.75)	2 (2-58)	0.04

The percentage of cells expressing CUL-1, CUL-2, mutant p53 protein and Ki-67 index as assayed by IHC was determined and all examined parameters were correlated with patient’s age, gender, stage of the disease, tumor histological grade, tumor proliferative activity (Ki-67 labeling index) and mutant p53 protein expression.

Table III. Univariate analysis between co-expression of cullin-1 and cullin-2 in percentage ≥10 and evaluated parameters.

Parameter	Cullin 1 +2 pos (n=47)	Cullin 1 1+2 neg (n=49)	p-Value	
Gender	Male	20	23	
	Female	27	26	
Age (Median+IR)	69 (63-76.5)	70 (63-78)		
Location of the primary tumor	Right colon	11	10	
	Left colon	23	20	
	Rectum	13	19	
Size of the primary tumor (mm)	(Median+IR)	50 (30-65) mm	52 (40-70) mm	
Grade	1	11	10	
	2	31	31	
	3	5	8	
Stage	A	10	13	
	II A	7	8	
	II B	9	9	
	III A	11	12	
	IIIB	10	7	
Nodal infiltration	YES	20	19	
	No	27	30	
Cancer on adenoma	Yes	10	8	
	No	37	41	
Coexistence of adenomas	Yes	19	10	
	No	28	39	0.0329
Vascular invasion	Yes	11	13	
	No	36	36	
Mutant p53 (%)	(Median+IR)	50.5 (14-70) mm	12 (2-66)	0.064
Ki-67 (%)	(Median+IR)	25 (12-38) mm	17 (4-27)	0.070

Statistical analysis. For the correlation between CUL and the clinicopathological variables the chi-square test was used. p-Value with statistical significance was set at p<0.05. For statistical analysis the SPSS (version 18) statistical package, was used.
Results

There were 96 patients with a median age of 70 years (IR: 63-77 years), who underwent oncological colectomy for colorectal adenocarcinoma. The clinicopathological characteristics of the patients enrolled, are presented in Table I.

Univariate analysis between CUL-1 expression to several clinicopathological variables. Choosing as a cut-off point for CUL-1 positivity the 10% (Table II), 75 specimens (78%) were characterized as positive and statistically significantly related to the expression of mutant p53 protein \((p=0.04)\) and the co-expression of CUL-2 \((p=0.003)\).

By setting the cut-off limit for CUL-1 expression to 30%, 36 specimens (37.5%) were characterized as positive. The statistical significance to the CUL-2 co-expression was preserved \((p=0.02)\), although a slight decrease of the statistical significance between CUL-1 expression and the mutant p53 protein expression was observed \((p=0.07)\).

Univariate analysis between CUL-2 expression to several clinicopathological variables. By setting the cut-off limit for CUL-2 expression to 10%, 62 specimens (64.5%) were considered positive. No statistically significant differences were observed between CUL-2 >10% expression and the examined clinicopathological variables.

By increasing the cut-off limit for CUL-2 expression to 30%, 44 specimens (46%) were considered positive. A statistically significant correlation of its expression to the mutated p53 protein was noticed \((p=0.047)\).

Univariate analysis between CUL-1 & 2 expressions ≥10% to several clinicopathological variables. By setting the cut-off point for both CUL expressions to 10%, 47 specimens (49%), were considered positive (Table III). A statistically significant correlation between their co-expression to the coexistence of adenomatous polyps along the large bowel \((p=0.0329)\), as well as a nearly statistically significant correlation to mutant p53 protein expression \((p=0.064)\) and Ki-67 expression \((p=0.07)\) were observed.

Multivariate analysis of CUL-1 and -2 co-expression. Multivariate analysis (Table IV) of CUL-1 and -2 co-expression in more than 10% disclosed their expression as an independent factor for adenomatous polypl development along the large bowel \((p=0.035, RR=2.1)\).

Discussion

The present study disclosed that 78% of the colorectal cancers analysed, expressed CUL-1. The prognostic significance of CUL expression in colorectal cancer has been studied by Wang et al. (20) who found that high CUL-1 expression was positively associated with a larger primary tumor diameter and lymph node metastasis, revealing that high CUL1 expression was an independent unfavourable prognostic factor for colorectal cancer patients. Similarly, Jiang et al. (21) addressed that high CUL4B expression was significantly associated with the depth of tumor invasion, lymph node metastasis, distant metastasis, histological differentiation, vascular invasion, and advanced tumor stage, while patients with CUL4B-positive tumors, had a higher recurrence rate and a poorer survival compared to those with CUL4B-negative tumors, finally concluding that CUL4B expression was an independent factor for determining colon cancer prognosis after surgery. Both studies (20, 21) addressed that CUL expression was significantly upregulated in colorectal tumor tissue compared to the paired normal mucosa, both in vitro and in vivo.

The present study did not provide similar results, however disclosed that CUL-1 expression was statistically significantly related to the expression of mutant p53. Since the expression of mutant p53 protein represents a well-known independent dismal prognostic factor for sporadic colorectal cancer (22, 23) and TP53 mutant cancer cells tend to be more resistant to a range of cytotoxic drugs, (24) the present study indirectly indicates a potential unfavorable prognostic role for CUL-1.

Although CUL-1 expression did not directly correlate to CUL-2 expression, the present study addressed that CUL-1(+) tumors overexpress CUL-2, an also indirect
finding for inductiveness of CUL-1 on CUL-2 expression. A potentially clinically interesting observation of the present study is that neither the expression of CUL-1 or CUL-2 nor their co-expression, promoted carcinogenesis on an adenomatous polyp. However, multivariate analysis disclosed CUL-1 and CUL-2 co-expression as an independent factor favoring adenomatous polyp development in the large bowel.

Inactivation or loss of the TP53 gene is a prerequisite for tumor growth (25). Mutant p53 not only loses its anti-tumor transcriptional activity, but also often acquires oncogenic functions to promote tumor proliferation and invasion (26). The present study indicates that in these vulnerable mutant p53(+)+ large bowel cells, CUL-1 overexpression happens at an early stage of carcinogenesis arresting cells in the G1 phase (16) and may also induct the expression of CUL-2. Co-expression of CUL-1 and CUL-2 promotes carcinogenesis further, to adenomatous polyp formation in the large bowel. In the absence of hereditary syndromes, adenomatous polyps represent a predisposing but not a definite causative factor for colorectal cancer development. Further research regarding the malignant progression from adenoma status requires cellular and molecular pathways unable to be explained based only on clinical observations.

Conclusion

The results of the present study indicate that CUL-1 overexpression may happen early in the process of carcinogenesis mainly affecting the vulnerable p53(+) large bowel cells, arresting them in the G1 phase of cell-cycle, while it may also induct the expression of CUL-2. Co-expression of CUL-1 and CUL-2 in G1 phase-arrested large bowel cells promotes carcinogenesis. Since no relationship between cullin expression and development of adenocarcinoma was found, the results of the present study may be useful in explaining the initiation but not the progression of carcinogenesis in colorectal cancer. Further molecular and clinical studies are needed in order to delineate the clinical importance of these proteins in the management of colorectal cancer patients.

Conflicts of Interest

None.

References

1 Zheng N, Zhou Q, Wang Z and Wei W: Recent advances in SCF ubiquitin ligase complex: clinical implications. Biochim Biophys Acta 1866: 12-22, 2016.
2 Xie CM, Wei W and Sun Y: Role of SKP1-CUL1-F-Box-Protein (SCF) E3 ubiquitin ligases in skin cancer. J Genet Genomics 40(3): 97-106, 2013.
3 Nakayama KI and Nakayama K: Ubiquitin ligases: cell-cycle control and cancer. Nature Rev Cancer 6: 369-381, 2006.
4 Ma J, Guo W and Li C: Ubiquitination in melanoma pathogenesis and treatment. Cancer Med 6: 1362-1377, 2017.
5 Bedford L, Lowe J, Dick LR, Mayer RJ and Brownell JE: Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 10: 29-46, 2011.
6 Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Ellidge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW and Pavletich NP: Structure of the Cul1-Rbx1-Skp1-F-boxSkp2 SCF ubiquitin ligase complex. Nature 416(6862): 703-709, 2002.
7 ReyesTurcu Fe, Venti KH and Wilkinson KD: Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78: 363-397, 2009.
8 Grabbe C, Husnjak K and Dikic I: The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol 12: 295-307, 2011.
9 Gallo LH, Ko J and Donoghue DJ: The importance of regulatory ubiquitination in cancer and metastasis. Cell Cycle 16: 634-648, 2017.
10 Kipreos ET, Lander LE, Wing JP, He WW and Hedgcock EM: cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 85: 829-839, 1996.
11 Pause A, Lee S, Worrell RA, Chen DY, Burgess WH, Linehan WM and Klausner RD: The von hippel-lindau tumor-suppressor gene product forms a stable complex with human cul-2, a member of the cdc53 family of proteins. Proc Natl Acad Sci USA 94: 2156-2161, 1997.
12 Chen G and Li G: Increased cul1 expression promotes melanoma cell proliferation through regulating p27 expression. Int J Oncol 37: 1339-1344, 2010.
13 Bai J, Zhou Y, Chen G, Zeng J, Ding J, Tan Y, Zhou J and Li G: Overexpression of cullin1 is associated with poor prognosis of patients with gastric cancer. Hum Pathol 42: 375-383, 2011.
14 Salon C, Brambilla E, Brambilla C, Lantuejoul S, Gazzeri S and Eymin B: Altered pattern of cul-1 protein expression and neddylation in human lung tumours: Relationships with cand1 and cyclin e protein levels. J Pathol 213: 303-310, 2007.
15 Bai J, Yong HM, Chen FF, Mei PJ, Liu H, Li C, Pan ZQ, Wu YP and Zheng JN: Cullin1 is a novel marker of poor prognosis and a potential therapeutic target in human breast cancer. Ann Oncol 24: 2016-2022, 2013.
16 Xie CM, Wei W and Sun Y: Role of skp1-cul1-f-box-protein (scf) e3 ubiquitin ligases in skin cancer. J Genet Genomics 40: 97-106, 2013.
17 Balaysnikova S and Brown G: Optimal imaging strategies for renal cancer staging and ongoing management. Curr Treat Options Oncol 17: 32, 2016.
18 Sobin LH, Gospodarowicz MK and Wittekind C: TNM classification of malignant tumors, 7th edition, Wiley-Blackwell, 2011.
19 Kleihues P and Sobin LH: World health organization classification of tumors. Cancer 88: 2887, 2000.
20 Wang W, Chen Y, Deng J, Zhou J, Gu X, Tang Y, Zhang G, Tan Y, Ge Z, Huang Y, Wang S, Zhou J, Zhou Y and Zhou S: Cullin1 is a novel prognostic marker and regulates the cell proliferation and metastasis in colorectal cancer. J Cancer Res Clin Oncol 141: 1603-1612, 2015.
21 Zhang T, Tang HM, Wu ZH, Chen J, Lu S, Zhou CZ, Yan DW and Peng ZH: Cullin 4b is a novel prognostic marker that correlates with colon cancer progression and pathogenesis. Med Oncol 30: 534, 2013.
22 Westra JL, Schaapveld M, Hollema H, de Boer JP, Kraak MM, de Jong D, ter Elst A, Mulder NH, Buys CH, Hofstra RM and Plukker JT: Determination of TP53 mutation is more relevant than microsatellite instability status for the prediction of disease-free survival in adjuvant-treated stage III colon cancer patients. J Clin Oncol 23: 5635-5643, 2005.

23 Chang SC, Lin JK, Yang SH, Wang HS, Li AF and Chi CW: Relationship between genetic alterations and prognosis in sporadic colorectal cancer. Int J Cancer 118: 1721-1727, 2006.

24 Hu T, Li Z, Gao CY and Cho CH: Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol 22: 6876-6889, 2016.

25 Merkel O, Taylor N, Prutsch N, Staber PB, Moriggl R, Turner SD and Kenner L: When the guardian sleeps: Reactivation of the p53 pathway in cancer. Mutat Res 773: 1-13, 2017.

26 Zhao D, Tahaney WM, Mazumdar A, Savage MI and Brown PH: Molecularly targeted therapies for p53-mutant cancers. Cell Mol Life Sci 74: 4171-4187, 2017.

Received December 2, 2017
Revised December 29, 2017
Accepted January 3, 2018