Some Open Problems Concerning Orthogonal Polynomials on Fractals and Related Questions

Gökalp Alpan and Alexander Goncharov

1 Background and notation

1.1 Chebyshev and orthogonal polynomials

Let $K \subset \mathbb{C}$ be a compact set containing infinitely many points. We use $\| \cdot \|_{L^\infty(K)}$ to denote the sup-norm on K, \mathcal{M}_n is the set of all monic polynomials of degree n. The polynomial $T_{n,K}$ that minimizes $\|Q_n\|_{L^\infty(K)}$ for $Q_n \in \mathcal{M}_n$ is called the n-th Chebyshev polynomial on K.

Let the logarithmic capacity $\text{Cap}(K)$ be positive. Then we define the n-th Widom factor for K by

$$W_n(K) := \frac{\|T_{n,K}\|_{L^\infty(K)}}{\text{Cap}(K)^n}.$$

In what follows we consider unit Borel measures μ with non-polar compact support $\text{supp}(\mu)$ in \mathbb{C}. The n-th monic orthogonal polynomial $P_n(z;\mu) = z^n + \ldots$ associated with μ has the property

$$\|P_n(\cdot;\mu)\|_{L^2(\mu)}^2 = \inf_{Q_n \in \mathcal{M}_n} \int |Q_n(z)|^2 d\mu(z),$$

where $\| \cdot \|_{L^2(\mu)}$ is the norm in $L^2(\mu)$. Then the n-th Widom-Hilbert factor for μ is

$$W_n^2(\mu) := \frac{\|P_n(\cdot;\mu)\|_{L^2(\mu)}}{(\text{Cap}(\text{supp}(\mu)))^n}.$$

If $\text{supp}(\mu) \subset \mathbb{R}$ then a three-term recurrence relation

$$xP_n(x;\mu) = P_{n+1}(x;\mu) + b_{n+1}P_n(x;\mu) + a_n^2 P_{n-1}(x;\mu)$$

is valid for $n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$. The initial conditions $P_{-1}(x;\mu) \equiv 0$ and $P_0(x;\mu) \equiv 1$ generate two bounded sequences $(a_n)_{n=1}^\infty, (b_n)_{n=1}^\infty$ of recurrence coefficients associated with μ. Here, $a_n > 0, b_n \in \mathbb{R}$ for $n \in \mathbb{N}$ and

$$\|P_n(\cdot;\mu)\|_{L^2(\mu)} = a_1 \cdots a_n.$$

A bounded two sided \mathbb{C}-valued sequence $(d_n)_{n=-\infty}^{\infty}$ is called almost periodic if the set $\{(d_{n+k})_{n=-\infty}^{\infty} : k \in \mathbb{Z}\}$ is precompact in $l^\infty(\mathbb{Z})$. A one sided sequence $(c_n)_{n=1}^{\infty}$ is called almost periodic if it is the restriction of a two sided almost periodic sequence.
A sequence \((e_n)_{n=1}^{\infty}\) is called asymptotically almost periodic if there is an almost periodic sequence \((e'_n)_{n=1}^{\infty}\) such that \(|e_n - e'_n| \to 0\) as \(n \to 0\).

A class of Parreau-Widom sets plays a special role in the recent theory of orthogonal and Chebyshev polynomials. Let \(K\) be a non-polar compact set and \(g_{\mathbb{C} \setminus K}\) denote the Green function for \(\mathbb{C} \setminus K\) with a pole at infinity. Suppose \(K\) is regular with respect to the Dirichlet problem, so the set \(\mathcal{C}\) of critical points of \(g_{\mathbb{C} \setminus K}\) is at most countable. Then \(K\) is said to be a Parreau-Widom set if \(\sum_{c \in \mathcal{C}} g_{\mathbb{C} \setminus K}(c) < \infty\). Parreau-Widom sets on \(\mathbb{R}\) have positive Lebesgue measure. For different aspects of such sets, see [9, 16, 24].

A class of regular in the sense of Stahl-Totik measures can be defined by the following condition

\[
\lim_{n \to \infty} W_n(\mu)^{1/n} = 1.
\]

For a measure \(\mu\) supported on \(\mathbb{R}\) we use the Lebesgue decomposition of \(\mu\) with respect to the Lebesgue measure:

\[
d\mu(x) = f(x)dx + d\mu_s(x).
\]

Following [10], let us define the Szegő class \(\text{Sz}(K)\) of measures on a given Parreau-Widom set \(K \subset \mathbb{R}\). Let \(\mu_K\) be the equilibrium measure on \(K\). By \(\text{ess supp}(\cdot)\) we denote the essential support of the measure, that is the set of accumulation points of the support. We have \(\text{Cap}(\text{supp}(\mu)) = \text{Cap}(\text{ess supp}(\mu))\), see Section 1 of [22]. A measure \(\mu\) is in the Szegő class of \(K\) if

(i) \(\text{ess supp}(\mu) = K\).

(ii) \(\int_K \log f(x) d\mu_K(x) > -\infty\). (Szegő condition)

(iii) the isolated points \(\{x_n\}\) of \(\text{supp}(\mu)\) satisfy \(\sum_n g_{\mathbb{C} \setminus K}(x_n) < \infty\).

By Theorem 2 in [10] and its proof, (ii) can be replaced by one of the following conditions:

(ii') \(\limsup_{n \to \infty} W_n^2(\mu) > 0\). (Widom condition)

(ii'') \(\liminf_{n \to \infty} W_n^2(\mu) > 0\). (Widom condition 2)

One can show that any \(\mu \in \text{Sz}(K)\) is regular in the sense of Stahl-Totik.

1.2 Generalized Julia sets and \(K(\gamma)\)

Let \((f_n)_{n=1}^{\infty}\) be a sequence of rational functions with \(\deg f_n \geq 2\) in \(\overline{\mathbb{C}}\) and \(F_n := f_n \circ f_{n-1} \circ \ldots \circ f_1\). The domain of normality for \((F_n)_{n=1}^{\infty}\) in the sense of Montel is called the Fatou set for \((f_n)\). The complement of the Fatou set in \(\overline{\mathbb{C}}\) is called the Julia set for \((f_n)\). We denote them by \(F_{(f_n)}\) and \(J_{(f_n)}\) respectively. These sets were considered first
in [12]. In particular, if \(f_n = f \) for some fixed rational function \(f \) for all \(n \) then \(F(f) \) and \(J(f) \) are used instead. To distinguish this last case, the word autonomous is used in the literature.

Suppose \(f_n(z) = \sum_{j=0}^{d_n} a_{n,j} \cdot z^j \) where \(d_n \geq 2 \) and \(a_{n,d_n} \neq 0 \) for all \(n \in \mathbb{N} \). Following [8], we say that \((f_n) \) is a regular polynomial sequence (write \(f_n \in \mathcal{R} \)) if positive constants \(A_1, A_2, A_3 \) exist such that for all \(n \in \mathbb{N} \) we have the following three conditions:

\[
\begin{align*}
|a_{n,d_n}| &\geq A_1 \\
|a_{n,j}| &\leq A_2 |a_{n,d_n}| \text{ for } j = 0, 1, \ldots, d_n - 1 \\
\log |a_{n,d_n}| &\leq A_3 \cdot d_n
\end{align*}
\]

For such polynomial sequences, by [8], \(J(f_n) \) is a regular compact set in \(\mathbb{C} \). In addition, \(\text{Cap}(J(f_n)) > 0 \) and \(J(f_n) \) is the boundary of

\[
\mathcal{A}(f_n)(\infty) := \{ z \in \mathbb{C} : F_n(z) \text{ goes locally uniformly to } \infty \}.
\]

The following construction is from [13]. Let \(\gamma := (\gamma_k)_{k=1}^{\infty} \) be a sequence provided that \(0 < \gamma_k < 1/4 \) holds for all \(k \in \mathbb{N} \) and \(\gamma_0 := 1 \). Let \(f_1(z) = 2z(z - 1)/\gamma_1 + 1 \) and \(f_n(z) = \frac{1}{2\gamma_n}(z^{2^n} - 1) + 1 \) for \(n > 1 \). Then \(K(\gamma) := \bigcap_{s=1}^{\infty} F_s^{-1}([-1, 1]) \) is a Cantor set on \(\mathbb{R} \). Furthermore, \(F_s^{-1}([-1, 1]) \subset F_t^{-1}([-1, 1]) \subset [0, 1] \) whenever \(s > t \).

Also we use an expanded version of this set. For a sequence \(\gamma \) as above, let \(f_n(z) = \frac{1}{2\gamma_n}(z^{2^n} - 1) + 1 \) for \(n \in \mathbb{N} \). Then \(K_1(\gamma) := \bigcap_{s=1}^{\infty} F_s^{-1}([-1, 1]) \subset [-1, 1] \) and \(F_s^{-1}([-1, 1]) \subset F_t^{-1}([-1, 1]) \subset [-1, 1] \) provided that \(s > t \). It is a Cantor set. If there is a \(c \) with \(0 < c < \gamma_k \) for all \(k \) then \((f_n) \in \mathcal{R} \) and \(J(f_n) = K_1(\gamma) \), see [5]. If \(\gamma_1 = \ldots = \gamma_k \) for all \(k \in \mathbb{N} \) then \(K_1(\gamma) \) is an autonomous polynomial Julia set.

1.3 Hausdorff measure

A function \(h : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) is called a dimension function if it is increasing, continuous and \(h(0) = 0 \). Given a set \(E \subset \mathbb{C} \), its \(h \)-Hausdorff measure is defined as

\[
\Lambda_h(E) = \liminf_{\delta \to 0} \left\{ \sum h(r_j) : E \subset \bigcup B(z_j, r_j) \text{ with } r_j < \delta \right\},
\]

where \(B(z, r) \) is the open ball of radius \(r \) centered at \(z \). For a dimension function \(h \), a set \(K \subset \mathbb{C} \) is an \(h \)-set if \(0 < \Lambda_h(K) < \infty \). To denote the Hausdorff measure for \(h(t) = t^\alpha \), \(\Lambda_\alpha \) is used. Hausdorff dimension of \(K \) is defined as \(\inf \{ \alpha > 0 : \Lambda_\alpha(K) = 0 \} \).

2 Smoothness of Green functions and Markov Factors

The next set of problems is concerned with the smoothness properties of the Green function \(g_{\mathbb{C}\setminus K} \) near compact set \(K \) and related questions. We suppose that \(K \) is regular with respect to the Dirichlet problem, so the function \(g_{\mathbb{C}\setminus K} \) is continuous throughout \(\mathbb{C} \). The next problem was posed in [13].
Problem 1. Given modulus of continuity ω, find a compact set K such that the modulus of continuity $\omega(g_{C\setminus K}, \cdot)$ is similar to ω.

Here, one can consider similarity as coincidence of moduli on some null sequence or in the sense of weak equivalence: $\exists C_1, C_2$ such that

$$C_1 \omega(\delta) \leq \omega(g_{C\setminus K}, \delta) \leq C_2 \omega(\delta)$$

for sufficiently small positive δ.

We guess that a set $K(\gamma)$ from [13] is a candidate for the desired K provided a suitable choice of the parameters. We recall that, for many moduli of continuity, the corresponding Green’s functions were given in [13], whereas the characterization of optimal smoothness for $g_{C\setminus K(\gamma)}$ is presented in [[5], Th.6.3].

A stronger version of the problem is about pointwise estimation of the Green function:

Problem 2. Given modulus of continuity ω, find a compact set K such that

$$C_1 \omega(\delta) \leq g_{C\setminus K}(z) \leq C_2 \omega(\delta)$$

for $\delta = dist(z, K) \leq \delta_0$, where C_1, C_2 and δ_0 do not depend on z.

In the most important case we get a problem about “two-sided Hölder” Green function, which was posed by A. Volberg on his seminar (quoted with permission):

Problem 3. Find a compact set K on the line such that for some $\alpha > 0$ and constants C_1, C_2, if $\delta = dist(z, K)$ is small enough then

$$C_1 \delta^\alpha \leq g_{C\setminus K}(z) \leq C_2 \delta^\alpha. \quad (1)$$

Clearly, a closed analytic curve gives a solution for sets on the plane.

If $K \subset \mathbb{R}$ satisfies (1), then K is of Cantor-type. Indeed, if interior of K (with respect to \mathbb{R}) is not empty, let $(a, b) \subset K$, then $g_{C\setminus K}$ has $\text{Lip } 1$ behavior near the point $(a + b)/2$. On the other hand, near endpoints of K the function $g_{C\setminus K}$ cannot be better than $\text{Lip } 1/2$.

By the Bernstein-Walsh inequality, smoothness properties of Green functions are closely related with a character of maximal growth of polynomials outside the corresponding compact sets, which, in turn, allows to evaluate Markov’s factors for the sets. Recall that, for a fixed $n \in \mathbb{N}$ and (infinite) compact set K, the n–th Markov factor $M_n(K)$ is the norm of operator of differentiation in the space of holomorphic polynomials P_n with the uniform norm on K. In particular, the Hölder smoothness (the right inequality in (1)) implies Markov’s property of the set K (a polynomial growth rate of $M_n(K)$). The problem about inverse implication (see e.g [20]) has attracted attention of many researches.
By W. Pleśniak [20], any Markov set $K \subset \mathbb{R}^d$ has the extension property (EP), which means that there exists a continuous linear extension operator from the space of Whitney functions $\mathcal{E}(K)$ to the space of infinitely differentiable functions on \mathbb{R}^d. We guess that there is some extremal growth rate of M_n which implies the lack of EP. Recently it was shown in [15] that there is no complete characterization of EP in terms of growth rate of Markov’s factors. Namely, two sets were presented, K_1 with EP and K_2 without it, such that $M_n(K_1)$ grows essentially faster than $M_n(K_2)$ as $n \to \infty$. Thus there exists non-empty zone of uncertainty where the growth rate of $M_n(K)$ is not related with EP of the set K.

Problem 4. Characterize the growth rates of Markov’s factors that define the boundaries of the zone of uncertainty for the extension property.

3 Orthogonal polynomials

One of the most interesting problems concerning orthogonal polynomials on Cantor sets on \mathbb{R} is the character of periodicity of recurrence coefficients. It was conjectured in p. 123 of [7] that if f is a non-linear polynomial such that $J(f)$ is a totally disconnected subset of \mathbb{R} then the recurrence coefficients for $\mu_{J(f)}$ are all almost periodic. This is still an open problem. In [6], the authors conjectured that the recurrence coefficients for $\mu_{K(\gamma)}$ are asymptotically almost periodic for any γ. It may be hoped that a more general and slightly weaker version of Bellissard’s conjecture can be valid.

Problem 5. Let (f_n) be a regular polynomial sequence such that $J(f_n)$ is a Cantor-type subset of the real line. Prove that the recurrence coefficients for $\mu_{J(f_n)}$ are asymptotically almost periodic.

For a measure μ which is supported on \mathbb{R}, let $Z_n(\mu) := \{x : P_n(x; \mu) = 0\}$. We define $U_n(\mu)$ by

$$U_n(\mu) := \inf_{x, x' \in Z_n(\mu)} |x - x'|.$$

In [18] Krüger and Simon gave a lower bound for $U_n(\mu)$ where μ is the Cantor-Lebesgue measure of the (translated and scaled) Cantor ternary set. In [17], it was shown that Markov’s inequality and spacing of the zeros of orthogonal polynomials are somewhat related.

Let $\gamma = (\gamma_k)_{k=1}^{\infty}$ and $n \in \mathbb{N}$ with $n > 1$ be given and define $\delta_k = \gamma_0 \cdots \gamma_k$ for all $k \in \mathbb{N}_0$. Let s be the integer satisfying $2^{s-1} \leq n < 2^s$. By [2],

$$\frac{\pi^2}{4} \cdot \delta_{s+2} \leq U_n(\mu_{K(\gamma)}) \leq \frac{\pi^2}{4} \cdot \delta_{s-2}$$

holds. In particular, if there is a number c such that $0 < c < \gamma_k < 1/4$ holds for all $k \in \mathbb{N}$ then, by [2], we have

$$c^2 \cdot \delta_s \leq U_n(\mu_{K(\gamma)}) \leq \frac{\pi^2}{4c^2} \cdot \delta_s. \quad (2)$$
By [13], at least for small sets $K(\gamma)$, we have $M_2(\gamma) \sim 2/\delta$, where the symbol \sim means the strong equivalence.

Problem 6. Let K be a non-polar compact subset of \mathbb{R}. Is there a general relation between the zero spacing of orthogonal polynomials for μ_K and smoothness of $g_{\mathbb{C}\setminus K}$? Is there a relation between the zero spacing of μ_K and the Markov factors?

As mentioned in section 1, the Szegö condition and the Widom condition are equivalent for Parreau-Widom sets. Let K be a Parreau-Widom set. Let μ be a measure such that $\text{ess supp}(\mu) = K$ and $\{x_n\}$ of $\text{supp}(\mu)$ satisfy $\sum_n g_{\mathbb{C}\setminus K}(x_n) < \infty$. Then, as it is discussed in Section 6 of [4], the Szegö condition is equivalent to the condition

$$\int_K \log(d\mu/d\mu_K) d\mu_K(x) > -\infty.$$ \hspace{1cm} (3)

This condition is also equivalent to the Widom condition under these assumptions.

It was shown in [1] that $\inf_{n \in \mathbb{N}} W_n(\mu_K) \geq 1$ for non-polar compact $K \subset \mathbb{R}$. Thus the Szegö condition in the form (3) and the Widom condition are related on arbitrary non-polar sets.

Problem 7. Let K be a non-polar compact subset of \mathbb{R} which is regular with respect to the Dirichlet problem. Let μ be a measure such that $\text{ess supp}(\mu) = K$. Assume that the isolated points $\{x_n\}$ of $\text{supp}(\mu)$ satisfy $\sum_n g_{\mathbb{C}\setminus K}(x_n) < \infty$. If the condition (3) is valid for μ is it necessarily true that the Widom condition or the Widom condition 2 holds? Conversely, does the Widom condition imply (3)?

It was proved in [11] that if K is a Parreau-Widom set which is a subset of \mathbb{R} then $(W_n(K))_{n=1}^{\infty}$ is bounded above. On the other hand, $(W_n(K))_{n=1}^{\infty}$ is unbounded for some Cantor-type sets, see e.g. [14].

Problem 8. Is it possible to find a regular non-polar compact subset K of \mathbb{R} which is not Parreau-Widom but $(W_n(K))_{n=1}^{\infty}$ is bounded? If K has zero Lebesgue measure then is it true that $(W_n(K))_{n=1}^{\infty}$ is bounded? We can ask the same problems if we replace $(W_n(K))_{n=1}^{\infty}$ by $(W_n^2(\mu_K))_{n=1}^{\infty}$ above.

Let T_N be a real polynomial of degree N with $N \geq 2$ such that it has N real and simple zeros $x_1 < \cdots < x_n$ and $N - 1$ critical points $y_1 < \cdots < y_{n-1}$ with $|T_N(y_i)| \geq 1$ for each $i \in \{1, \ldots, N-1\}$. We call such a polynomial admissible. If $K = T_N^{-1}([-1, 1])$ for an admissible polynomial T_N then K is called a T-set. The following result is well known, see e.g. [23].

Theorem 1. Let $K = \cup_{j=1}^n [\alpha_j, \beta_j]$ be a disjoint union of n intervals such that α_1 is the leftmost end point. Then K is a T-set if and only if $\mu_K([\alpha_1, c])$ is in \mathbb{Q} for all $c \in \mathbb{R} \setminus K$.
For $K(\gamma)$, it is known that $\mu_{K(\gamma)}([0,c]) \in \mathbb{Q}$ if $c \in \mathbb{R} \setminus K(\gamma)$, see Section 4 in [2].

Problem 9. Let K be a regular non-polar compact subset of \mathbb{R} and α be the leftmost end point of K. Let $\mu_K([\alpha,c]) \in \mathbb{Q}$ for all $c \in \mathbb{R} \setminus K$. What can we say about K? Is it necessarily a polynomial generalized Julia set? Does this imply that there is a sequence of admissible polynomials $(f_n)_{n=1}^{\infty}$ such that $(F_n^{-1}[-1,1])_{n=1}^{\infty}$ is a decreasing sequence of sets such that $K = \cap_{n=1}^{\infty} F_n^{-1}[-1,1]$?

4 Hausdorff measures

It is valid for a wide class of Cantor sets that the equilibrium measure and the corresponding Hausdorff measure on this set are mutually singular, see e.g. [19].

Let $\gamma = (\gamma_k)_{k=1}^{\infty}$ with $0 < \gamma_k < 1/32$ satisfy $\sum_{k=1}^{\infty} \gamma_k < \infty$. This implies that $K(\gamma)$ has Hausdorff dimension 0. In [3], the authors constructed a dimension function h_γ that makes $K(\gamma)$ an h-set. Provided also that $K(\gamma)$ is not polar it was shown that there is a $C > 0$ such that for any Borel set B, $C^{-1} \cdot \mu_K(\gamma)(B) < \Lambda_h(B) < C \cdot \mu_K(\gamma)(B)$ and in particular the equilibrium measure and Λ_h restricted to $K(\gamma)$ are mutually absolutely continuous. In [15], it was shown by the authors that indeed these two measures coincide. To the best of our knowledge, this is the first example of a subset of \mathbb{R} such that the equilibrium measure is a Hausdorff measure restricted to the set.

Problem 10. Let K be a non-polar compact subset of \mathbb{R} such that μ_K is equal to a Hausdorff measure restricted to K. Is it necessarily true that the Hausdorff dimension of K is 0?

Hausdorff dimension of a unit Borel measure μ supported on \mathbb{C} is defined by $\dim(\mu) := \inf\{\text{HD}(K) : \mu(K) = 1\}$ where $\text{HD}(\cdot)$ denotes Hausdorff dimension of the given set. For polynomial Julia sets which are totally disconnected there is a formula for $\dim(\mu_{J(f)})$, see e.g. p. 23 in [19] and p.176-177 in [21].

Problem 11. Is it possible to find simple formulas for $\dim \left(\mu_{J(f_n)} \right)$ where (f_n) is a regular polynomial sequence?

References

[1] Alpan, G.: Orthogonal polynomials associated with equilibrium measures on \mathbb{R}, electronically published in Potential Anal., (2016) http://dx.doi.org/10.1007/s11118-016-9589-3

[2] Alpan, G.: Spacing properties of the zeros of orthogonal polynomials on Cantor sets via a sequence of polynomial mappings, Acta Math. Hungar. 149(2), 509–522 (2016)

[3] Alpan, G., Goncharov, A.: Two measures on Cantor sets, J. Approx. Theory. 186, 28–32 (2014) (pdf)

[4] Alpan, G., Goncharov, A.: Orthogonal polynomials for the weakly equilibrium Cantor sets, Proc. Amer. Math. Soc., 144, 3781–3795 (2016) (pdf)
The authors are partially supported by a grant from Tübitak: 115F199