RoVISQ: Reduction of Video Service Quality via Adversarial Attacks on Deep Learning-based Video Compression

Jung-Woo Chang1, Mojan Javaheripi1, Seira Hidano2, Farinaz Koushanfar1

1University of California, San Diego
2KDDI Research, Inc.
Introduction

- **Video traffic** has experienced an even higher growth with the advent of streaming services.
- Recent developments in deep learning (DL) have given rise to various video analytics such as health care diagnosis.
Video Compression

- In order to maximize the quality of experience (QoE), **video compression** is a key enabler for the aforesaid applications.
- Video compression employs rate-distortion (\(R-D\)) optimization to adapt to different **bandwidth constraints**.
 - Lower D requires higher R.

![Rate-Distortion Model Diagram](image)
Recently, **DL-based video compression** achieves impressive results by replacing all the components in the standard codecs with deep neural networks (DNNs).

- It has been explored by the **Moving Picture Experts Group (MPEG)** for adoption in the next-generation video codecs.
Adversarial Attacks in DNNs

- Unfortunately, DNNs are known to be susceptible to **adversarial examples**.
 - Small perturbations added to the inputs of a DNN can cause it to misclassify the perturbed inputs.
Motivation 1

- Compression techniques have been employed to remove the adversarial effect in several works\cite{1-4}.
- Video compression can remove the state-of-the-art video classification attacks.

\cite{1} Jia, Xiaojun, et al. Comdefend: An efficient image compression model to defend adversarial examples. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2019.
\cite{2} Zihao Liu, et al. Feature distillation: Dnn-oriented jpeg compression against adversarial examples. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2019.
\cite{3} Aaditya Prakash, et al. Protecting jpeg images against adversarial attacks. *Data Compression Conference*, 2018.
\cite{4} Ayse Elvan Aydemir, Alptekin Temizel, and Tugba Taskaya Temizel. The effects of jpeg and jpeg2000 compression on attacks using adversarial examples. *CoRR, abs/1803.10418*, 2018
Motivation 1

- Compression techniques have been employed to remove the adversarial effect in several works\cite{Jia2019, Zihao2019, Aaditya2018, Ayse2018}.
- Video compression can remove the state-of-the-art video classification attacks.
- Can a DL-based video compression be vulnerable to adversarial examples?

\cite{Jia2019} Jia, Xiaojun, et al. Comdefend: An efficient image compression model to defend adversarial examples. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*. 2019.

\cite{Zihao2019} Zihao Liu, et al. Feature distillation: Dnn-oriented jpeg compression against adversarial examples. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2019.

\cite{Aaditya2018} Aaditya Prakash, et al. Protecting jpeg images against adversarial attacks. *Data Compression Conference*, 2018.

\cite{Ayse2018} Ayse Elvan Aydemir, Alptekin Temizel, and Tugba Taskaya Temizel. The effects of jpeg and jpeg2000 compression on attacks using adversarial examples. *CoRR, abs/1803.10418*, 2018.
Motivation 2

- DL-based video compression models[5-7] have a fixed R-D relationship through offline training.

[5] Guo Lu, et al. Dvc: An end-to-end deep video compression framework. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019.

[6] Ren Yang, et al. Learning for video compression with hierarchical quality and recurrent enhancement. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.

[7] Zhihao Hu, et al. Fvc: A new framework towards deep video compression in feature space. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
Motivation 2

- DL-based video compression models\cite{5-7} have a fixed R-D relationship through offline training.
- *Can an adversary manipulate the R-D relationship arbitrarily?*

[5] Guo Lu, et al. Dvc: An end-to-end deep video compression framework. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2019.
[6] Ren Yang, et al. Learning for video compression with hierarchical quality and recurrent enhancement. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2020.
[7] Zhihao Hu, et al. Fvc: A new framework towards deep video compression in feature space. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2021.
Motivation 2

- DL-based video compression models\cite{5-7} have a fixed R-D relationship through offline training.
- Can an adversary manipulate the R-D relationship arbitrarily?

\[\text{Distortion (D)}\]
\[\text{Bit-rate (R)}\]

DNN Model\(^1\)
DNN Model\(^2\)
DNN Model\(^3\)
DNN Model\(^4\)

[5] Guo Lu, et al. Dvc: An end-to-end deep video compression framework. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019.
[6] Ren Yang, et al. Learning for video compression with hierarchical quality and recurrent enhancement. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.
[7] Zhihao Hu, et al. Fvc: A new framework towards deep video compression in feature space. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
DL-based video compression models\cite{5-7} have a fixed R-D relationship through offline training.

Can an adversary manipulate the R-D relationship arbitrarily?

[5] Guo Lu, et al. Dvc: An end-to-end deep video compression framework. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2019.

[6] Ren Yang, et al. Learning for video compression with hierarchical quality and recurrent enhancement. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.

[7] Zhihao Hu, et al. Fvc: A new framework towards deep video compression in feature space. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021.
Motivation 3

- The state-of-the-art works on video classification attacks[^8-9] didn’t consider video compression in their threat model.

[^8]: Shasha Li, et al. Stealthy adversarial perturbations against real-time video classification systems. In Proceedings 2019 Network and Distributed System Security Symposium (NDSS), 2019.
[^9]: Shangyu Xie, et al. Universal 3-dimensional perturbations for black-box attacks on video recognition systems. In 2022 IEEE Symposium on Security and Privacy (SP), 2022.
Motivation 3

- The state-of-the-art works on video classification attacks\cite{8-9} didn’t consider video compression in their threat model.
- *Can an adversary target towards front-end video sources and also affect a downstream video recognition system?*

\[\text{<Our proposed attack pipeline>}\]

\[\text{[8] Shasha Li, et al. Stealthy adversarial perturbations against real-time video classification systems. In Proceedings 2019 Network and Distributed System Security Symposium (NDSS), 2019.}\]
\[\text{[9] Shangyu Xie, et al. Universal 3-dimensional perturbations for black-box attacks on video recognition systems. In 2022 IEEE Symposium on Security and Privacy (SP), 2022.}\]
Motivation 4

● Video compression group a series of frames into sequences called **Group of Pictures (GOP)**\(^{[5-7]}\) to allow back-end users to access video streams at any time.
 ○ Three types of GOP structures are used in DNN-based video compression systems.

[5] Guo Lu, et al. Dvc: An end-to-end deep video compression framework. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2019.
[6] Ren Yang, et al. Learning for video compression with hierarchical quality and recurrent enhancement. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2020.
[7] Zhihao Hu, et al. Fvc: A new framework towards deep video compression in feature space. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2021.
Motivation 4

- Video compression group a series of frames into sequences called **Group of Pictures (GOP)**\(^{[5-7]}\) to allow back-end users to access video streams at any time.
 - Three types of GOP structures are used in DNN-based video compression systems.

- **Can well-crafted perturbations break down temporal coding structures?**

\(^{[5]}\) Guo Lu, et al. Dvc: An end-to-end deep video compression framework. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2019.

\(^{[6]}\) Ren Yang, et al. Learning for video compression with hierarchical quality and recurrent enhancement. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2020.

\(^{[7]}\) Zhihao Hu, et al. Fvc: A new framework towards deep video compression in feature space. *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 2021.
Contributions

● Perform the **first** systematic study of adversarial attacks on DL-based video compression and downstream video recognition systems.
● Propose **four** new adversarial attacks, dubbed RoVISQ, that result in high-impact security and QoE consequences.
● Construct a well-designed **universal perturbation** that is invariant to the underlying DNN model, encoding parameters, and input videos.
● Show the **resiliency** of RoVISQ attacks against various defenses.
Threat Model

● Attack Scenarios
 ○ Adversary adds small perturbations to a stored video to subvert the video compression over a long period of time.
Threat Model

- Attack Scenarios
 - There are two attack scenarios.
 - **Offline Attack**: sample-wise perturbations that are independently added to each sample.
 - **Online Attack**: well-crafted universal perturbations that can be used to attack any given video sequence at any time step.
Threat Model

- Adversary’s Goal
 - Selectively degrade the bit-rate R and/or distortion level D compared to the R-D relationship from the pre-trained model.
 - **Video Quality Attack** -> Low quality
 - **Bandwidth Attack** -> Buffering, Low-Resolution Video
 - **RD Attack** -> Low quality, Buffering, Low-Resolution Video
 - **Video Classification Attack**
Threat Model

- Adversary’s Capability and knowledge
 - **Offline Scenario**
 - We assume that the adversary knows every **encoding parameters**.
 - We assume the attacker has **white-box** access to an open-source model.
 - Our perturbations are independently added to each sample because the attack latency is no constrained.

* Compression rate, GOP structure
Threat Model

- Adversary’s Capability and knowledge
 - **Online Scenario**
 - We assume that the adversary doesn’t know any **encoding parameters**.
 - We study both white-box and black-box settings for DNN models.
 - Attacker is capable of injecting perturbations onto the real-time video stream.

Compression rate, GOP structure
Our Offline Attack Construction
Offline Attack Construction

- In offline scenario, the raw frames are stored in the storage device.
Our adversary adds the small perturbations to the input frames stored in the storage.
Offline Attack Construction

- For example,

\[
\begin{align*}
&t=1 \\
&t=2 \\
&t=3 \\
\end{align*}
\]

1st GOP

\[
\begin{align*}
&t=T-2 \\
&t=T-1 \\
&t=T \\
\end{align*}
\]

G-th GOP

\[
\begin{align*}
&\text{Adversarial perturbations} \\
&\text{Perturbed input frames}
\end{align*}
\]
Offline Attack Construction

- Video Compression groups a series of input frames into GOP.

Perturbed input frames

1. For the 1st GOP:
 - $t=1$,
 - $t=2$,
 - $t=3$

2. For the G-th GOP:
 - $t=T-2$,
 - $t=T-1$,
 - $t=T$

Grouping

1. For the 1st GOP:
 - $t=1$
 - $t=2$
 - $t=3$

2. For the G-th GOP:
 - $t=T-2$
 - $t=T-1$
 - $t=T$
Offline Attack Construction

- For a given k, the n-th coding order in the g-th GOP is mapped to a new time step t using a deterministic function $m_k(g, n)$

$$
\begin{align*}
&\text{Perturbed input frames} \\
&1\text{st GOP} \quad t=1, t=2, t=3, \ldots \\
&G\text{-th GOP} \quad t=T-2, t=T-1, t=T, \ldots \\
&\quad \quad m_k(g, n) \\
&\text{1st GOP} \quad t = m_k(0,1), t = m_k(0,2), t = m_k(0,3), \ldots \\
&G\text{-th GOP} \quad t = m_k\left(\frac{T}{G}, G-3\right), t = m_k\left(\frac{T}{G}, G-1\right), t = m_k\left(\frac{T}{G}, G\right), \ldots
\end{align*}
$$
We quantify the video compression performance based on two important measures.

- **Bit-rate**
- **Distortion (mean squared error)**
We formulate the QoE factors for the g-th GOP from the bit-rate and the distortion:

\[Q_0(\mathcal{B}_g) = \frac{1}{G} \sum_{\bar{b}_t \in \mathcal{B}_g} R(\bar{b}_t) \quad Q_1(X_g, \bar{Y}_g) = \frac{1}{G} \sum_{\bar{y}_t \in \mathcal{Y}_g} D(x_t, \bar{y}_t) \]
To generate the perturbations, the adversary maximizes the following loss function.

\[
\max_{\Delta_g} \mathcal{L}_{\text{comp}}(g) \quad \text{s.t.} \quad \|\Delta_g\|_\infty \leq \epsilon_c
\]

\[
\mathcal{L}_{\text{comp}}(g) = \begin{cases}
E_0 + \lambda \cdot Q_1(X_g, \tilde{Y}_g) & \text{if } \xi = 0 \\
Q_0(\tilde{B}_g) + \lambda \cdot E_1 & \text{if } \xi = 1 \\
Q_0(\tilde{B}_g) + \lambda \cdot Q_1(X_g, \tilde{Y}_g) & \text{if } \xi = 2
\end{cases}
\]

\(\xi\) determines the attack type.

\(\epsilon_c\) is the upper bound of the L-infinity norm of the perturbation.

\(\lambda\) determines the target video compression model by controlling \(R-D\) trade-off.
Offline Attack Construction

- Adversarial Loss for Downstream **Video Classification**

\[
\mathcal{L}_{adv} = \begin{cases}
F_{c'(Y)}(\bar{Y}) - \max_{c \neq c'(Y)} F_{c}(\bar{Y}) & \text{(Untargeted)} \\
\max_{c \neq c^*} F_{c}(\bar{Y}) - F_{c^*}(\bar{Y}) & \text{(Targeted)}
\end{cases}
\]

- $F_{c}(\bar{Y})$ indicates the probability of the video belonging to a specific class C.
- $C(\bar{Y})$ maps a video to the class with the maximum probability.
Finally, we integrate all the loss functions to simultaneously derive perturbations on video compression and classification.

\[
\max_{\Delta} \mathcal{L}_{\text{total}} = \frac{1}{\lceil \frac{T}{G} \rceil + 1} \sum_{g=0}^{\lceil \frac{T}{G} \rceil} \mathcal{L}_{\text{comp}}(g) - \beta \cdot \mathcal{L}_{\text{adv}}
\]

where \(\beta\) adjusts the scale of the two loss functions.
Our Online Attack Construction
Challenges of Online Attack

- Online adversarial attack is particularly challenging.
 - What is the compression rate of video compression?
 - Which mapping function $m_k(\cdot)$ does victim video compression use? **Mapping function depends on the GOP structures.**
 - How to align the perturbations with the target video sequence?
 - Contents of the video sequences are unknown. **Each content has a different distribution of video data.**
Online Attack Construction

- We train our universal perturbations that are agnostic to (1) compression ratio, (2) GOP structure, and (3) input, which is suitable for online attack.
 - We average the loss values across all training videos available to the attacker.

Training Dataset

Universal Perturbations

L_{total}

Avg

\mathcal{L}_{total}
Online Attack Construction

- Real-time Adversarial Attacks on Entire Systems
Experimental Results

- **Evaluation Setup**
 - **Baselines**
 - Gaussian (Case I): $\sigma_I = \sigma_P = \sigma_B = \epsilon_\alpha$
 - Gaussian (Case II): $\sigma_I = 2 \cdot \epsilon_c$, $\sigma_P = \sigma_B = \epsilon_c$

- **White-box Attack Performance**
Experimental Results

- Black-box Attack Performance

<Attack performance against conventional codecs>

	Video Quality Attack	Bandwidth Attack	RD Attack	Gaussian Noise	
PSNR (dB) H.265	-3.47	-1.55	-3.62	-1.71	
	H.264	-3.19	-1.03	-3.48	
Bpp	H.265	+45.5%	+78.4%	+73.8%	+62.1%
	H.264	+34.7%	+65.2%	+61.8%	+45.9%

<Attack performance against unseen DNN models>

	Video Quality Attack	Bandwidth Attack	RD Attack	Gaussian Noise	
M1	PSNR (dB)	+18.4%	+32.5%	+29.7%	+17.3%
	Bpp	+19.1%	+30.4%	+27.7%	+17.8%
M2	PSNR (dB)	-2.31	-0.92	-2.48	-1.44
	Bpp	+19.5%	+31.7%	+31.1%	+14.8%
M3	PSNR (dB)	-2.44	-0.91	-2.55	-1.68
	Bpp	+19.5%	+31.7%	+31.1%	+14.8%
M4	PSNR (dB)	-2.47	-0.95	-2.51	-1.63
	Bpp	+18.6%	+29.4%	+30.2%	+15.2%
M5	PSNR (dB)	-2.49	-0.88	-2.53	-1.72
	Bpp	+17.6%	+32.8%	+30.6%	+17.4%
M6	PSNR (dB)	-2.38	-0.98	-2.36	-1.65
	Bpp	+18.3%	+31.4%	+32.1%	+17.8%
Experimental Results

- **White-box Attacks on Video Classification**
 - We evaluate the success rate when directed towards a downstream video classifier and provide comparisons with state-of-the-art attacks on video classification.
 - As seen, our attack consistently achieves the highest success rate.
 - In particular, we obtain over 90% success rate on the UCF-101 and Jester datasets.
Experimental Results

- **Black-box Attacks on Video Classification**
 - The proposed adversarial perturbations are transferable to unseen video classification models, outperforming previous attacks.

Victim Model	Attack	Attack Success Rate (%)	\(\lambda = 256\)	512	1024	2048
TPN [73]	GeoTrap [36]	6.4	16.8	18.5	32.4	
	U3D [71]	7.4	17.5	19.4	36.1	
	Bandwidth (I3D)	71.3	76.9	79.6	**82.4**	
	Bandwidth (SlowFast)	**73.2**	**77.8**	**80.6**	81.5	
SlowFast [21]	GeoTrap [36]	11.2	22.2	38.9	54.6	
	U3D [71]	10.2	24.1	37.0	60.2	
	Bandwidth (I3D)	75.2	**76.9**	78.7	81.5	
	Bandwidth (TPN)	**74.1**	75.0	**80.6**	**82.4**	
I3D [13]	GeoTrap [36]	8.3	24.1	41.7	42.6	
	U3D [71]	6.5	16.7	39.8	48.1	
	Bandwidth (SlowFast)	70.4	**76.9**	**81.5**	**83.3**	
	Bandwidth (TPN)	**72.2**	74.1	76.9	80.6	
Evaluation of Existing Defenses

- **Defense Construction**
 - We comprehensively evaluate different defense mechanisms against our attacks. There are very few defenses available for adversarial video classification.
 - We implement new defense mechanisms that rely on signal transformations to remove adversarial perturbations
 - **Adversarial Training**
 - **Video Denoising**
 - **JPEG Image Compression**
Experimental Results

- **Attack Visualization**

 ![Image of attack visualization](image)

 (a) No Attack
 - Input
 - DVC
 - PSNR / Bpp: 29.48 / 0.51576

 (b) Video Quality Attack
 - Without Defense
 - With Defense
 - PSNR / Bpp: 25.17 / 0.52034 (Without Defense), 25.35 / 0.51846 (With Defense)

 (c) Bandwidth Attack
 - Without Defense
 - With Defense
 - PSNR / Bpp: 29.47 / 0.9289 (Without Defense), 29.34 / 0.7846 (With Defense)

 (d) RD Attack
 - Without Defense
 - With Defense
 - PSNR / Bpp: 24.22 / 0.8834 (Without Defense), 24.45 / 0.7164 (With Defense)

 Attacked Video

 - Clean
 - Attacked
Conclusion

- We present the first systematic study on adversarial attacks to deep learning-based video compression systems.
- Our comprehensive experiments show that our attacks outperform noise baselines and previously proposed attacks in both offline and online settings.
- Furthermore, our attacks still maintain high success rate in the presence of various defenses.
- Video demo is available at https://sites.google.com/view/demo-of-rovisq/home
Thank you!

Questions?
Supplementary Slides
Proposed Attacks

- **Bandwidth Attack**
 - This prevents legitimate users from successful communication with the streaming server and induces a high latency.
 - The end-users either experience **buffering** when downloading high-resolution videos due to increased bit-rate or a **reduced video resolution** at a fixed bit-rate.

PSNR/Bpp	Original Video	Attacked Video
29.48 / 0.51576	![Original Video](image1)	![Attacked Video](image2)
Proposed Attacks

● Video Quality Attack
 ○ This attack is particularly advantageous when the media server administrator is monitoring the network bandwidth in real time.
 ○ In this scenario, the service provider can detect anomalies in the bit-rate, but the proposed distortion attack remains stealthy.
Proposed Attacks

RD Attack

- This attack combines the capabilities of the above two attacks by simultaneously targeting R and D to cause a high latency and video distortion.
- The back-end users suffer from the **strongest** low-quality or denial-of-service.
- If the media server lowers the video resolution to reduce network traffic, the RD attack is further exacerbated.

	Original Video	Attacked Video
PSNR/Bpp	29.48 / 0.51576	24.22 / 0.8834
Experimental Results

- **Defense against Adversarial Attacks on Video Compression**
 - Our attacks still maintain high success rate in the presence of various defenses, such as adversarial training, video denoising, and JPEG coding.

Benchmark	w Defense	w/o Defense		
	PSNR (dB)	Bpp	PSNR (dB)	Bpp
DVC [44]	29.22	0.34	31.24	0.27
Video Quality (Offline)	-2.41	+0.6%	-3.52	+0.7%
Video Quality (Online)	-2.51	+16.4%	-3.05	+19.9%
Bandwidth (Offline)	-0.12	+84.2%	-0.01	+99.4%
Bandwidth (Online)	-0.75	+31.5%	-0.39	+35.7%
RD (Offline)	-2.88	+71.5%	-4.21	+85.3%
RD (Online)	-2.41	+25.6%	-3.10	+33.5%

Adversarial Training

Benchmark	w Defense	w/o Defense		
	PSNR (dB)	Bpp	PSNR (dB)	Bpp
DVC [44]	29.74	0.28	31.24	0.27
Video Quality (Offline)	-3.23	+0.5%	-3.52	+0.8%
Video Quality (Online)	-2.76	+14.3%	-3.05	+19.9%
Bandwidth (Offline)	-0.12	+64.8%	-0.01	+99.5%
Bandwidth (Online)	-0.43	+21.8%	-0.39	+35.7%
RD (Offline)	-3.81	+56.8%	-4.21	+85.3%
RD (Online)	-2.63	+18.4%	-3.10	+33.5%

Benchmark	CF	w Defense	w/o Defense		
		PSNR (dB)	Bpp	PSNR (dB)	Bpp
DVC [44]	20	31.14	0.28	31.24	0.27
	40	29.26	0.21		
Video Quality (Offline)	20	-3.35	+0.7%	-3.52	+0.8%
	40	-3.14	+0.6%		+0.8%
Video Quality (Online)	20	-2.86	+19.1%	-3.05	+19.9%
	40	-2.76	+18.4%		
Bandwidth (Offline)	20	-0.25	+95.4%	-0.01	+99.5%
	40	-0.45	+86.7%		
Bandwidth (Online)	20	-1.45	+34.2%	-0.39	+35.7%
	40	-1.76	+31.2%		
RD (Offline)	20	-4.09	+82.6%	-4.21	+85.3%
	40	-3.71	+70.5%		
RD (Online)	20	-2.95	+31.8%	-3.10	+33.5%
	40	-2.79	+28.6%		
Experimental Results

- Defense against Adversarial Attacks on **Video Classification**
 - Our attacks still maintain high success rate in the presence of various defenses, such as adversarial training, video denoising, and JPEG coding.

Video Classifier	Defense	ACC (%) w/o Defense	ACC Drop (%)	ASR (%) w/o Defense	ASR (%) w/o Defense
SlowFast [21]	AT [46]	85.4	-11.3	68.2	93.2
	JPEG [67]		-5.2	75.5	
	Denoising [16]		-7.5	76.9	
TPN [73]	AT [46]	74.3	-10.1	63.1	92.0
	JPEG [67]		-2.5	74.8	
	Denoising [16]		-4.0	75.3	
I3D [13]	AT [46]	71.7	-8.0	76.2	92.1
	JPEG [67]		-7.4	80.1	
	Denoising [16]		-5.8	81.8	

Video Classifier	Defense	ASR (%) w/o Defense	ASR (%) w/o Defense
SlowFast [21]	AT [46]	67.1	53.2
	JPEG [67]	72.3	64.6
	Denoising [16]	73.3	64.1
TPN [73]	AT [46]	64.2	58.2
	JPEG [67]	70.9	61.2
	Denoising [16]	71.8	63.8
I3D [13]	AT [46]	75.8	65.3
	JPEG [67]	80.8	72.2
	Denoising [16]	82.7	68.5