A POSSIBLE BROWN DWARF COMPANION
TO THE WHITE DWARF GD1400

J. Farihi

Department of Physics & Astronomy, University of California, Los Angeles, CA 90095
jfarihi@astro.ucla.edu

and

M. Christopher

Department of Astronomy, California Institute of Technology, Pasadena, CA 91125
mc@astro.caltech.edu

ABSTRACT

An unresolved, likely L dwarf companion to the DA white dwarf GD1400 is reported. This would be only the second such system known, discovered 17 years after the prototype L dwarf, GD165B, was determined to be a companion to a white dwarf. Photometric observations and model predicted stellar parameters of the well studied white dwarf primary indicate that GD1400B has $J-K \gtrsim 2.0$ and $M_K = 12.13$ mag. If correct, this would place GD1400B at spectral type L6, and it would be the lowest luminosity unevolved companion known to a white dwarf, and thus a definite brown dwarf. However, a low resolution Keck NIRSPEC 2.1–2.4μm spectrum may not be consistent with known L dwarfs. Uncertainties in classification remain until the binary is resolved or a trigonometric parallax is measured.

Subject headings: binaries: general—stars: low mass, brown dwarfs—stars: individual(GD1400)—white dwarfs

1. INTRODUCTION

In 1988, Becklin & Zuckerman announced the discovery of the coolest dwarf star yet seen. Imaged with the first generation of infrared cameras, this companion to the white dwarf GD165 went without proper classification for several years. The L dwarf prototype,
GD165B came to represent the first new class of main sequence stars in 100 years, a class believed to retain both stellar and substellar objects over the age of the Galaxy (Burrows et al. 1997; Kirpatrick et al. 1999; Kirkpatrick et al. 2000; Burgasser et al. 2003). Since that time, over two hundred and fifty objects of this spectral type have been discovered. Rather ubiquitous in the field and in young clusters, L dwarfs have remained relatively infrequent companions to stars with $M \gtrsim 0.2M_\odot$ (Zuckerman & Becklin 1987, 1992; Schroeder et al. 2000; Oppenheimer et al. 2001; Hinz et al. 2002; Farihi, Becklin, & Zuckerman 2003; McCarthy & Zuckerman 2004). Understanding the overall statistics and individual properties of the lowest mass companion systems is important for both star and planet formation.

This paper describes the properties of a very cool companion to the white dwarf GD1400 (WD0145-221, $01^h 47^m 21.8^s, -21^\circ 56' 51.4''$ Eq. J2000). Spectroscopic and photometric evidence is presented that indicates the presence of a low mass, L type dwarf within 0.3" of the primary.

2. OBSERVATIONS & DATA

2.1. V Band Photometry

Optical V band data were taken 3 January 2004 with the CCD Camera on the Nickel 1 meter telescope at Lick Observatory. GD1400 and a nearby Tycho 2 catalog star (TYC4688-111-1) were both observed for a total of 3 minutes, each in 3 separate 1 minute exposures, yielding SNR ~ 240 on GD1400 and SNR ~ 7000 on the $V = 11.24$ mag calibrator (Høg et al. 2000; Bessell 2000). Conditions were clear but with poor seeing ($\theta \sim 4.5''$) that appeared to remain relatively stable between target and calibrator observations. The individual frames were bias subtracted, flat fielded, registered and then averaged to create a single reduced image upon which to perform photometric measurements.

Photometry was executed with 10" and 20" diameter apertures on both GD1400 and calibrator, including telluric extinction corrections, producing consistent results to within 0.01 mag. The error in the measured flux of each object was < 0.01 mag. The published uncertainty in the magnitude of TYC4688-111-1 is 0.12 mag (Høg et al. 2000). The result for GD1400 is $V = 14.85 \pm 0.12$ mag.
2.2. \textit{K} Band Spectroscopy

GD1400 was observed on 16 January 2004, using the Near Infrared Spectrograph (NIRSPEC, McLean et al. 1998) at Keck Observatory. NIRSPEC was used in low resolution mode with a 0.76'' slit, yielding a spectral resolution of $\lambda/\Delta\lambda \sim 1500$. The seeing was poor during the observations ($\theta \sim 1.2''$ at K) and the telescope suffered from significant windshake at the location of GD1400, so no companion was resolved, nor was any elongation detected except due to the effects of windshake.

Two 10 minute spectra (dithered by 15'' for sky subtraction) were obtained in K band using the N7 filter, which yielded a wavelength coverage of 2.04 – 2.45μm. The observations had a fixed position angle on the sky of 38°. HD63586, an A0V star, was observed at similar airmass for atmospheric calibration.

The spectrum of GD1400 was reduced using the REDSPEC data reduction package. The images were cleaned of bad pixels, flat fielded, pair subtracted, and spatially rectified. Two spectra of GD1400 were extracted, averaged, divided by the calibrator spectrum (scaled by a blackbody), wavelength calibrated and normalized. The average of the two spectra is shown in Figure 1.

3. RESULTS

An unresolved companion was suspected based on the optical and near infrared data available on GD1400. In the following sections, evidence is presented that reveals a low mass companion causing excess emission at 2.2μm.

3.1. \textit{J} \& \textit{K} Magnitudes and Color

There exist two independent spectroscopic analyses of the hydrogen rich (DA) white dwarf GD1400. Both Koester et al. (2001) and Fontaine et al. (2003) give results based on high resolution spectroscopy that agree quite well; $T_{\text{eff}} = 11,605$ K, $\log g = 8.05$ and $T_{\text{eff}} = 11,550$ K, $\log g = 8.14$ respectively. The average and standard deviation of these two results ($11,580 \pm 40$ K, $\log g = 8.10 \pm 0.06$) were used to predict model colors and absolute magnitudes, with errors, for GD1400 (Bergeron, Wesemael, & Beuchamp 1995).

Before considering distances and absolute magnitudes for GD1400B, the flux ratio of primary and secondary should be considered. Based on the measured V magnitude and the $V - K = -0.24$ model predicted color for GD1400, the predicted K magnitude is
\(K = 15.09 \pm 0.12 \) mag (model predicted color has less than 0.01 mag uncertainty and is essentially independent of surface gravity – the error is all measurement error in \(V \)). The 2MASS point source catalog gives a SNR=19.2 measurement of \(K_s = 14.34 \pm 0.06 \) mag for the composite pair. Ignoring corrections between 2.2\(\mu \)m filter sets, a deconvolved magnitude of \(K = 15.10 \pm 0.20 \) mag is calculated for the companion. If the white dwarf models are accurate, the companion and primary appear equally luminous at this wavelength.

There is little or no excess emission measured for GD1400 at 1.2\(\mu \)m, which is consistent with a very red color of \(J - K \gtrsim 2.0 \) for its companion (Table 1); consistent with a spectral type of L5.5 or later (Kirkpatrick et al. 2000; Dahn et al. 2002). Within the uncertainties of the 2MASS measured \(J \) magnitude of the composite and the white dwarf model extrapolation, it is possible that the companion \(J \) band flux is undetected.

The radius of GD1400, which has been determined spectroscopically by two independent measurements, can be used to estimate an absolute magnitude for GD1400B. At an assumed 39 pc photometric distance for GD1400 (based on the model predicted absolute magnitude of \(M_V = 11.88 \pm 0.10 \) mag for the white dwarf) an absolute \(K \) magnitude of \(M_K = 12.13 \pm 0.22 \) mag is determined for the L dwarf companion. These data are most compatible with spectral type L6 and \(T_{\text{eff}} \sim 1650 \) K for GD1400B (Reid et al. 1999; Kirkpatrick et al. 2000; Dahn et al. 2002).

3.2. A Comparison with the GD165 Binary System

Coincidentally, the GD165 system (DA4.2+dL4), which has a white dwarf primary with similar temperature and surface gravity to GD1400, will serve as a useful guide and comparator for the following analysis. There are two independent spectroscopic parameter determinations for GD165. Both Koester et al. (2001) and Bergeron et al. (1995) give similar results; \(T_{\text{eff}} = 11,970 \) K, \(\log g = 7.91 \) and \(T_{\text{eff}} = 11,980 \) K, \(\log g = 8.06 \), respectively. Also, GD165 has a trigonometric parallax which places it at 31.5 pc. The difference between the model predicted versus measured absolute magnitudes for GD165A are 0.06 mag at \(V \), 0.03 mag at \(J \) and 0.04 mag at \(K \) (Bergeron, Wesemael, & Beauchamp 1995; Bergeron et al. 1995; Becklin & Zuckerman. 1988). Hence the models appear quite accurate in this case.

In contrast to the equally luminous components of the GD1400 system, GD165B is 0.41 mag brighter than its white dwarf primary at \(K \). Provided that brown dwarfs and the lowest mass stars all have radii near \(1R_J \) after 1 Gyr (Burrows et al. 2001), GD1400B appears cooler than the L4 dwarf GD165B. The total \(J \) band flux of the GD1400 system is consistent (within the errors) with a single star, yet the combined \(J \) band flux of both components of
the GD165 system is 0.29 mag brighter than the flux from the white dwarf alone (Bergeron, Wesemael, & Beauchamp 1995). Again, if the white dwarf and brown dwarf models used here are accurate, GD1400B appears to be cooler than GD165B.

Although this photometric evidence points to an object cooler than GD165B, there is still room for some error in the models and perhaps even in the spectroscopy of the primary white dwarf. The GD1400 system is unresolved and there currently exists no trigonometric parallax.

3.3. K Band Spectrum

Near infrared spectroscopy was performed to examine the possibility of a red background object or dust as the cause of the excess emission seen at 2.2μm. The 2.1 – 2.4μm spectrum of GD1400 is shown in Figure 1. The two features seen at 2.29μm and 2.32μm are CO bandheads, which are indicative of a low mass companion and readily visible in this composite spectrum. An 11,500 K blackbody spectrum, scaled to have exactly half the flux of the composite at 2.20μm, was subtracted from the spectrum in Figure 1, thus effectively removing the expected contribution from the featureless white dwarf at these wavelengths. The resulting spectrum is shown in Figure 2.

In the subtracted spectrum, both CO bandheads have SNR > 25. Figure 3 shows the equivalent widths of these features for several M and L dwarfs from Cushing (2000) together with GD1400B – all measured in a uniform way for this work. The equivalent widths for GD1400B appear stronger than those of known single L and M dwarfs. Oversubtraction of the white dwarf continuum from the composite spectrum could, in principle, cause the measured CO bandhead equivalent widths to be larger than their intrinsic values. Another possibility is close binary interactions, such as heating of the companion by the white dwarf. Further observations are necessary to reconcile this apparent anomaly.

There is an absence of Na at 2.21μm, which can be seen weakly as late as spectral type L2, but not later. Equivalent widths vary between 0.2 – 3.0 Å for early L dwarfs (McLean et al. 2003; Cushing 2000). A measurement of this region in the spectrum of GD1400B is consistent with an equivalent width of < 1.0 Å. The noise in the region from 2.19 – 2.23μm is 0.040 flux units per resolution element and the Na line typically has a full width of ∼ 50 Å (McLean et al. 2003; Cushing 2000) in late M dwarfs, or roughly 5 resolution elements of 2.6 pixels each. Hence, an equivalent width as small as 1.0 Å could have been detected at the 1σ level. The lack of Na is inconsistent with an M dwarf.

The conclusion based on spectroscopy alone is that an early L type cannot be ruled
out with confidence. Although the equivalent widths of the first and second CO bandheads are larger than those seen in single L and late M dwarfs, this could be due to close binary interactions or model uncertainties which led to oversubtraction of the white dwarf flux. The fact that Na is not manifest in the spectrum may be at odds with the CO equivalent widths, but is consistent with the photometry.

4. DISCUSSION

4.1. The Age & Mass of GD1400B

GD1400, a 0.67M_\odot white dwarf, has been cooling for 0.51 Gyr according to models (P. Bergeron 2002, private communication). From the initial to final mass relation for white dwarfs (Weidemann 1987, 1990, 2000; Bragaglia, Renzini, & Bergeron 1995), a white dwarf with this mass has evolved from a main sequence progenitor with a mass in the range $2.5M_\odot - 3.0M_\odot$. The main sequence lifetime then falls within the range $0.5 - 1.0$ Gyr (Maeder 1989), yielding a total age between $1.0 - 1.5$ Gyr. The very moderate proper motion of GD1400, $\mu \approx 0.05''$ yr$^{-1}$ (Zacharias et al. 2004), also supports the conclusion that this is a relatively young system. Assuming $v_{\text{rad}} = 0$, its Galactic space velocity relative to the LSR is $(U, V, W) = (-4, +5, +9)$ km s$^{-1}$ (U is taken to be positive toward the Galactic anticenter, V positive in the direction of Galactic rotation, and W positive toward the North Galactic Pole), with a total space motion of only 9 km s$^{-1}$ with respect to the Sun – typical of young disk objects (Mihalas & Binney 1981; Leggett 1992). At 1.25 Gyr, a $T_{\text{eff}} \sim 1650$ K brown dwarf is predicted to have $M \approx 60M_\J$ (Chabrier et al. 2000).

4.2. Origin & Evolution of the GD1400 Binary System

The orbital separation of GD1400B is uncertain. The system remained unresolved in subsequent NIRSPEC K band images taken two weeks after the spectrum was obtained. The image with the best spatial resolution reveals a full width of $\theta = 0.82''$ and a sufficiently symmetric PSF to rule out an equally luminous binary with separation $\gtrsim 0.3''$. Although there is the possibility of a chance alignment, the most likely explanation for the unresolved nature of the binary is a relatively small, $a < 12$ AU, semimajor axis.

During the AGB phase of stellar evolution, orbiting bodies outside of ~ 5 AU should eschew the expanding envelope and eventually have their semimajor axes expanded by a factor (typically 3 to 5) related to the mass lost (Jeans 1924; Zuckerman & Becklin 1987). Inside of ~ 5 AU, a companion should inspiral due to tidal and frictional interaction with
the slow AGB wind and expanding photosphere (Debes & Sigurdsson 2002). Hence, it is likely that the semimajor axis of GD1400B’s orbit is less than a few AU. A sensitive search for radial velocity variations might be able to confirm or rule out a close binary system.

5. CONCLUSION

Based on photometric data presented here, the first unambiguous substellar companion to a white dwarf may have been discovered within 0.3" (~ 12 AU) of GD1400 (DA4.4). However, the near infrared spectroscopy may indicate a CO temperature that is higher than the photospheric temperature indicated by the photometry. This could be the result of close binary interactions causing the CO bandheads to appear more strongly than in isolated L dwarfs or may be due to errors in the models used to remove the flux of the primary.

From a direct comparison with the GD165 binary system (relying on the same white dwarf and brown dwarf models), it appears that GD1400B is cooler than spectral type L4. The deconvolved magnitudes and colors of GD1400B are most consistent with spectral type L6, indicative of a 60M_J brown dwarf at an estimated age of 1.25 Gyr. Its true nature and origins remain uncertain until more is known about the binary system. A trigonometric parallax determination, radial velocity measurements, or very high resolution imaging should be able to further constrain the properties of this system.

Both authors owe a debt of gratitude to M. Cushing for kindly providing us with his spectra for analysis here and to N. Scoville for donating some of his Keck NIRSPEC time to observe GD1400. J. Farihi wishes to express sincere thanks to B. Zuckerman for his assistance in acquiring the optical data, to E. Gates of Lick Observatory for taking the optical data, to L. Prato & M. McGovern for securing follow up near infrared images and many helpful discussions, and to E. E. Becklin & B. Zuckerman for careful readings of the manuscript and constructive comments. Some of the data presented herein were obtained at Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology (CIT), the University of California and the National Aeronautics and Space Administration (NASA). Some data used in this paper are part of the Two Micron All Sky Survey, a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC)/CIT, funded by NASA and the National Science Foundation (NSF). 2MASS data were retrieved from the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, CIT, under contract with NASA. J. Farihi has been supported in part by grants from NASA to UCLA and M. Christopher by NSF grant AST02-28955.
Facilities: Nickel, Keck.

REFERENCES

Becklin, E. E., & Zuckerman, B. 1988, Nature, 336, 656
Bergeron, P., Wesemael, F., & Beauchamp, A. 1995, PASP, 107, 1047
Bergeron, P., Wesemael, F., Lamontagne, R., Fontaine, G., Saffer, R.A., & Allard, N. F. 1995, ApJ, 449, 258.
Bessell, M. S. 2000, PASP, 112, 961
Bragaglia, A., Renzini, A., & Bergeron, P. 1995, ApJ, 443, 735
Burrows, A., Hubbard, W. B., Lunine, J. I., Liebert, J. 2001, RvMP, 73, 719
Burrows, A. 1997, ApJ, 491, 856
Burgasser, A. J., 2003, ApJ, 592, 1186
Carson, J., Eikenberry, S., Brandl, B., & Wilson, J. 2003, Proceedings of IAU Symposium 211, ed. E. Martín (San Francisco: ASP), 271
Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, 464
Cushing, M. 2000, Ph.D. Thesis, University of Hawaii
Dahn, C. C., et al. 2002, AJ, 124, 1170
Debes, J. H., & Sigurdsson, S. 2002, ApJ, 572, 556
Farihi, J., Becklin, E. E., & Zuckerman, B. 2003, in Proceedings of IAU Symposium 211: Brown Dwarfs, ed. E. Martín (San Francisco: ASP), 289
Fontaine, G. Bergeron, P., Billères, M., & Charpinet, S. 2003, ApJ, 591, 1184
Hinz, J., McCarthy, D., Simons, D., Henry, T., Kirkpatrick, J., & McGuire, P. 2002, AJ, 123, 2027
Høg, E., et al. 2000, A&A, 355, 27
Jeans, J. H. 1924, MNRAS, 85, 2
Kirkpatrick, J. D., Allard, F., Bida, T., Zuckerman, B., Becklin, E. E., Chabrier, G., Baraffe, I., 1999, ApJ, 519, 834
Kirkpatrick, J. D., et al. 2000, AJ., 120, 447
Koester, D., et al. 2001, A&A, 378, 556
Leggett, S. K. 1992, ApJS, 82, 351
Maeder, A. 1989, Proceedings of the 5th IAP Workshop: Astrophysical Ages and Dating Methods, eds. E. Vangioni-Flam, M. Cassé, J. Audouze, J. Tran Thanh Van, 71
Marois, C., Nadeau, D., Doyon, R., Racine, R., & Walker, G. 2003, Proceedings of IAU Symposium 211, ed. E. Martín (San Francisco: ASP), 275
McCarthy, C., & Zuckerman, B. 2004, AJ, 127, 2871
McLean, I. S., et al. 1998, SPIE, 3354, 566
McLean, I. S., McGovern, M. R., Burgasser, A. J., Kirkpatrick, J. D., Prato, L., & Kim, S. S. 2003, ApJ, 596, 561
Mihalas, D., & Binney, J. 1981, in Galactic Astronomy: Structure and Kinematics, (San Francisco: W. H. Freeman and Co.), 278
Oppenheimer, B., Golimowski, D., Kulkarni, S., Matthews, K., Nakajima, T., Creech-Eakman, M., & Durrance, S. 2001, AJ, 121, 2189
Potter, D., Martín, E., & Cushing, M. 2003, Proceedings of IAU Symposium 211, ed. E. Martín (San Francisco: ASP), 265
Reid, I. N., et al. 1999, ApJ, 521, 613
Schroeder, D., Golimowski, D., Brukardt, R., Burrows, C., et al. 2000, AJ, 119, 906
Weidemann, V. 1987, A&A, 188, 74
Weidemann, V. 1990, ARA&A, 28, 103
Weidemann, V. 2000, A&A, 363, 647
Zacharias, N., et al. 2004 AJ, 127, 3043
Zuckerman, B., & Becklin, E. E. 1987, ApJ, 319, L99
Zuckerman, B., & Becklin, E. E. 1992, ApJ, 386, 260
Fig. 1.— Combined spectrum of GD1400 and L dwarf companion, normalized to 1.0 at 2.235\(\mu\)m
Fig. 2.— L dwarf companion spectrum after subtraction of a 11,500 K blackbody of equal flux at 2.2\(\mu\)m. The CO bandheads at 2.29\(\mu\)m and 2.32\(\mu\)m are clearly seen. Also note the absence of Na at 2.21\(\mu\)m. The standard deviation between 2.07 – 2.28\(\mu\)m is 0.06 flux units per resolution element.
Fig. 3.— Equivalent widths measured for individual M and L dwarfs from (Cushing 2000). GD1400B appears somewhat anomalous.
Table 1. Magnitudes for GD1400 and Companion

Filter	$\lambda_0 (\mu m)$	Composite	White Dwarf (mag)	L Dwarf (mag)
V	0.55	14.85 ± 0.12	14.85 ± 0.12	...
J	1.22	14.92 ± 0.03	15.02 ± 0.12	17.5 ± 0.9‡
H	1.65	14.45 ± 0.05	15.02 ± 0.12	15.42 ± 0.26
K	2.16	14.34 ± 0.06	15.09 ± 0.12	15.10 ± 0.20

Note. — Measured magnitudes for the composite star are from this work and 2MASS (2.2μm data point is a K_s magnitude). Predicted near infrared magnitudes for the white dwarf are from Bergeron, Wesemael, & Beuchamp (1995).

‡Deconvolved L dwarf J magnitude is extremely sensitive to small changes in the measured and predicted magnitudes (§3.1).