Electronic properties of antidot lattices fabricated by atomic force lithography

A. Dorn, A. Fuhrer, T. Ihn, T. Heinzel, and K. Ensslin
Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland

W. Wegscheider
Angewandte und Experimentelle Physik, Universität Regensburg, 93040 Regensburg, Germany

B. Bichler
Walter Schottky Institut, TUM München, 85748 Garching, Germany

(August 30, 2001)

Antidot lattices were fabricated by atomic force lithography using local oxidation. High quality finite 20 x20 lattices are demonstrated with periods of 300 nm. The low-temperature magnetoresistance shows well developed commensurability oscillations as well as a quenching of the Hall effect around zero magnetic field. In addition, we find B-periodic oscillations superimposed on the classical commensurability peaks at temperatures as high as 1.7 K. These observations indicate the high electronic quality of our samples.

Experiments on lateral superlattices have revealed a variety of unexpected phenomena in the classical as well as in the quantum regime. Antidot lattices are particularly appealing for studying how a classically chaotic system develops quantum signatures for shorter lattice periods. Most high-quality samples have so far been fabricated with electron beam lithography. This technology is well-developed and offers reliable performance as well as excellent electronic quality of the fabricated samples down to lattice periods of about 100 nm. The quest for the experimental observation of a quantum mechanical bandstructure based on the periodic lateral potential modulation is ongoing and requires lattice periods of the order of the Fermi wavelength of the electrons in the two-dimensional electron gas. Lattice periods of the order of 40-50 nm are difficult to fabricate by electron beam lithography due to the proximity effect.

Lithography based on scanning probe techniques has evolved into a powerful tool for defining ultrasmall patterns on surfaces. Electronically functional lateral superlattices have been fabricated by using the (sharpened) tip of an atomic force microscope to either scratch a pattern in a resist layer or directly scratch into the surface of an InAs heterostructure. An alternative approach relies on the local oxidation of a water covered surface by applying a voltage between a conductive AFM tip and the underlying surface. If applied to AlGaAs heterostructures a two-dimensional electron gas close enough to the sample surface (less than 50 nm for practical considerations) has been shown to be depleted below the oxidized lines. This procedure has the desirable property that the pattern transfer occurs simultaneously with the lithography step and no further treatment/processing is needed. It has been demonstrated that electronically tunable quantum wires and quantum dots can be fabricated with this technology. Important features of nanostructures fabricated this way are the smooth and as well as steep potential walls. These are crucial ingredients for the successful realization of lateral superlattices.

We started from a high quality two-dimensional electron gas with a 4K mobility of $\mu = 800,000 \text{cm}^2/\text{Vs}$ and an electron density of $N_s = 5 \cdot 10^{11} \text{cm}^{-2}$. The electron gas embedded in the AlGaAs heterostructure was 34 nm below the sample surface. For lithography we used a commercial Digital Instruments Dimension 3100 with metrology head. This AFM is equipped with capacitive sensors that reduce long time drifts and creep through a hardware feedback and enable a lateral positioning of the tip with a precision in the nm range. The humidity of the atmosphere surrounding tip and sample is kept at a value of about 40% during the writing process. Typical voltages for the oxidation of the GaAs surface were -10 to -30 V applied to the tip with the GaAs grounded. The oxide pillars in this structure were written in tapping mode with a stationary 3s/-18V pul at each site. The pillars show a high uniformity and have a cone like shape with a base of about 250nm and a height of about 8nm.

For large antidot arrays we observed a weakening of the oxidation process either caused by a deterioration of the AFM tip and/or an insufficient supply of water on the surface as many oxide pillars are formed. In this paper we present results on a 20x20 array where we are safely within the limit of a uniform pattern.

After the AFM process the sample is covered with a uniform metallic layer which allows us to tune the Fermi energy of the lattice and in addition protects the sample surface from contamination or further oxidation. It is well known that the piezos which drive the scanning unit have intrinsic creep and hysteresis properties. While the results of these unwanted features can be eliminated to some degree by software in the imaging mode, they can have detrimental consequences for lithography. As
long as single nanostructures are envisioned, such as dots and wires, small imperfections of their shape can be tolerated since the potential landscape has some random background due to the modulation doping anyway. For periodic lattices, however, creep and hysteresis can lead to errors of the order of the lattice period for arrays with periods below 100 nm. It is therefore crucial for the precision of our pattern that we have hardware control over the actual position of the AFM tip as described above.

Another limitation for the precision of periodic lattices fabricated by AFM lithography is thermal drift which cannot easily be compensated by hardware since it affects the entire instrument.

FIG. 1. (a) Overview of the entire AFM patterned area. The bright areas mark the oxidized regions below which the electron gas is depleted. The contacts are numbered 1-4. (b) Close-up of a 3X4 period segment from (a). (c) Line scan along the direction indicated in (b).

We found empirically that a carefully controlled lab environment (ΔT < 0.5 K) in combination with settling times of the order of several hours reduce the thermal drift to values which are no longer detectable in our antidot lattices.

Figure 1 (a) shows an overview of the entire 20x20 array with a lattice period of 300 nm. The bright areas are patterned with the AFM and define the regions of depleted electron gas. The four outer bars are necessary to define a measurement geometry for the finite lattice. Typical breakdown voltages between areas of 2DEG separated by insulating lines are ≥ 1 V at T = 4.2 K. The close-up presented in Fig. 1 (b) as well as the line scan in (c) show the precision obtained with this technology. From an analysis of the topography of the entire lattice we estimate the error in antidot position to be Δa/a ≈ 1%, and the variation in antidot size to be less than 5%.

FIG. 2. 4-terminal magnetoresistance (left hand scale) and Hall resistance (right hand scale) at T=1.7 K through the finite antidot geometry, contacts are numbered as indicated in Fig. 1 (a) . The inset shows a close-up of the Hall effect around B=0.

Figure 2 shows the magnetoresistance of the structure presented in Fig. 1 at T=1.7 K. The resistance R_{14,23} is a 2-terminal resistance with respect to the square geometry. However, there are two independent Ohmic contacts in each of the corresponding electron gas regions next to the square geometry in order to eliminate contact resistances. The magnetoresistance measured this way displays the well known commensurability maxima which are related to classical cyclotron orbits around 1 (B ∼ 0.8 T) resp. 4 (B ∼ 0.2 T) antidots. At high magnetic fields where the cyclotron diameter becomes much smaller than any of the lattice features, Shubnikov-de Haas oscillations are recovered. The Hall resistance R_{1,23} displays plateau-like features close to the commensurability conditions and a quenching around B=0.

All of these features are well known from previous experiments. The quality of the features as presented in Fig. 2 shows that the electronic potential landscape created by AFM lithography is at least comparable to those obtained by conventional electron beam lithography. From the shape of the classical maxima in the magnetoresistance as well as from the onset of Shubnikov-de Haas oscillations we estimate the electronic size of an antidot at the Fermi energy to be less than 200 nm. This is consistent with the lithographic size as well as with the lateral depletion length obtained for wires [13] and dots fabricated with the same technology.

In addition to the classical effects we observe fluctuations and oscillations of phase coherent origin superimposed on the commensurability maximum. In order to show these effects most clearly the carrier density is reduced by applying a negative gate voltage of V_g = −100 mV. Figure 3 shows R_{11,44}, where the point contacts still support several 1D modes, but the antidots have become large enough at the Fermi surface, that the magnetoresistance maximum corresponding to a ballistic orbit around 4 antidots is eliminated. In this regime it has been demonstrated that B-periodic oscillations can be observed in an infinite lattice [22]. For a finite lattice much smaller than ours, on the other hand, these quantum oscillations were dominated by ballistic conductance fluctuations [23]. In our case where the phase coherence length is much larger than the lattice period but probably comparable or smaller than the extent of the finite lattice, we observe at T=1.7 K both types of phase coherent phenomena. In Fig. 3 we show R_{11,44} at T=4.2 K (dashed line), at T=1.7 K (solid line, vertically offset by 0.5 kΩ) and the difference (bottom curve). Thin vertical lines connect minima in the magnetoresistance with the very top curve where the minima are plotted according to their number which is extrapolated from filling factors extracted from the high-field Shubnikov-de Haas oscillations. The straight dashed line shows the behavior expected for consecutively adding flux quanta through a circle with diameter 300 nm.
can no longer contract for increasing magnetic field, since
the Lorentz force is increasingly compensated by electrode-
sic deflection at the antidot pillars. In this regime
the magnetoresistance minima follow a B- rather than a $1/B$-periodicity. Because our lattice is finite,
additional features occur in the magnetoresistance due to
ballistic phase coherent fluctuations.

We have demonstrated that high-quality antidot lattices
can be fabricated by AFM-mediated local oxidation of AlGaAs heterostructures. The experimentally observed features, e.g. classical commensurability oscilla-
tions superimposed by phase coherent fluctuations, demonstrate that the electronic potential landscape can at least compete with the best samples prepared by other means. Since our technological approach is based on scanning probe techniques it offers the intrinsic advantage to fabricate samples with substantially smaller lattice periods. This requires high-quality 2DEGs close to the sample surface. Furthermore, one of the major challenges is to keep the uniformity of the pattern for smaller periods and thinner oxide pillars.

We are grateful to the Swiss Science Foundation (Schweizerischer Nationalfonds) for financial support.

[1] K. Ensslin and P. M. Petroff, Phys. Rev. B 41, 12307 (1990).
[2] D. Weiss, M. L. Roukes, A. Menschig, P. Grambow, K. v. Klitzing, and G. Weimann, Phys. Rev. Lett. 66, 2790 (1991).
[3] A. Lorke, J. P. Kotthaus, and K. Ploog, Superlat. Microrstruct. 9, 103 (1991).
[4] D. Weiss, K. Richter, A. Menschig, R. Bergmann, H. Schweizer, K. v. Klitzing, and G. Weimann, Phys. Rev. Lett. 70, 4118 (1993).
[5] R. Schuster, K. Ensslin, D. Wharam, S. Kühn, J. P. Kotthaus, G. Böhm, W. Klein, G. Tränkle, and G. Weimann, Phys. Rev. B 49, 8510 (1994).
[6] for a review see R. Schuster and K. Ensslin, Advances in Solid State Physics 34, 195 (1994)
[7] T. Schlässer, K. Ensslin, J. P. Kotthaus, and M. Holland, Europhys. Lett. 33, 683 (1996)
[8] C. Albrecht, J. H. Smet, K. von Klitzing, D. Weiss, V. Umansky, and H. Schweizer Phys. Rev. Lett. 86, 147 (2001)
[9] For a review, see, Technology of Proximal Probe Lithography, edited by C. R. K. Marrian (SPIE Optical Engineering, Bellingham, WA, 1993).
[10] M. Wendel, H. Lorenz, and J. P. Kotthaus, Appl. Phys. Lett. 67, 3732 (1995)
[11] J. Cortes Rosa, M. Wendel, H. Lorenz, J. P. Kotthaus, M. Thomas and H. Kroemer, Appl. Phys. Lett. 73, 2684 (1998).
[12] R. S. Becker, J. A. Golavchenko, and B. S. Swartzentruber, Nature (London) 325, 419 (1987); J. A. Dagata, J. Schneir, H. H. Harary, and C. J. Evans, Appl. Phys. Lett. 56, 2001 (1990); H. Sugimura, T. Uchida, N. Kitamura, and H. Masuhara, Appl. Phys. Lett. 63, 1288 (1993); D. Wang, L. Tsau, and K. L. Wang, Appl. Phys. Lett. 67, 1295 (1995); E. S. Snow, D. Park, and P. M. Campbell, Appl. Phys. Lett. 69, 269 (1996); E. S. Snow and P. M. Campbell, Appl. Phys. Lett. 64, 1933 (1994); E. S. Snow and P. M. Campbell, Science 270, 1639 (1995); E. S. Snow and P. J. McMarr, Appl. Phys. Lett. 66, 1388 (1995); R. Held, T. Heinzel, P. Studerus, K. Ensslin, and M. Holland Appl. Phys. Lett. 71, 2689 (1997).
[13] R. Held, T. Vancura, T. Heinzel, K. Ensslin, M. Holland, and W. Wegscheider, Appl. Phys. Lett. 73, 262 (1998).
[14] R. Held, S. Lüscher, T. Heinzel, K. Ensslin, and W. Wegscheider, Appl. Phys. Lett. 75, 1134 (1999).
[15] S. Lüscher, A. Fuhrer, R. Held, T. Heinzel, K. Ensslin, and W. Wegscheider, Appl. Phys. Lett. 75, 2452 (1999).
[16] T. Heinzel, G. Salis, S. Lüscher, R. Held, K. Ensslin, and W. Wegscheider, Phys. Rev. B 61, R13353 (2000).
[17] A. Fuhrer, S. Lüscher, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, Phys. Rev. B 63, 125309 (2001).
[18] K. Richter, Europhys. Lett. 29, 7 (1995).
[19] G. Hackenbroich and F. von Oppen, Europhys. Lett. 29, 151 (1995).
\[R_{11.44} (\Omega) \]

\[R_{14.23} (\Omega) \]
The graph shows the resistance R as a function of magnetic field B at different temperatures. The resistance R is measured in kΩ. The plot includes the difference between the resistance at 1.7 K and 4 K. The graph contains data points and lines indicating the trend of resistance with varying magnetic fields.