Production of stringbean (*Phaseolus vulgaris* L.) using phosphate solubizing bacteria and natural phosphate fertilizer on acid soil

C Hidayat*, M A Pratama, S Hasani and A Sudrajat
Agrotechnology Department, Faculty Science and Technology, UIN Sunan Gunung Djati Bandung, Bandung, Indonesia

Cephidayat62@uinsgd.ac.id

Abstract. Acid soil can be used for land extensification, but need input technology in order its for maximum crop growth support. The aim of the research was to know the effect of Phosphate Solubilizing Bacteria and Natural Phosphate Fertilizer on the production of Stringbean (*Phaseolus vulgaris* L.). A field trial at Universitas Padjadjaran research station 768 m above sea level had been carried out using randomized block design two factors with factorial pattern and three replications. The first factor was concentration of Phosphate Solubilizing Bacteria (0 ml, 10 ml, 20 ml, 30 ml), while the second factor was the type of natural phosphate fertilizer (120 g of guano polybag⁻¹, 120 g of rock phosphate polybag⁻¹ and 120 g of swimmer crab flour polybag⁻¹). The results showed there was no interaction effect of Phosphate Solubilizing Bacteria and Natural Phosphate Fertilizer on harvest index. The type of natural phosphate fertilizer has an independent effect on leaf area and pod dry weight but the value is still below its potential production.

1. Introduction

Stringbean (*Phaseolus vulgaris* L.) cultivation on acid soil produces low production. On the acid soil P is converted into insoluble complexes due to precipitation reactions with Al³⁺ and Fe³⁺ in acidic soil cause low available phosphorus [1,2].

Indonesia has a range of potential natural phosphate fertilizer that can be used as a source of P with high P content, but low availability. Rock phosphate has high phosphate content but slow release [3]. Bat guano also has high phosphorus and can enhance plant growth with organic matter by 23.0%-79.0% [4,5]. Swimmer crab flour has high calcium content and potential to increase pH thus phosphate can be released [6].

Phosphate Solubilizing Bacteria (PSB) is considered among the most effective plant assistant to supply phosphorus at a favorable level [7]. PSB play a vital role in P solubilization by producing organic acids [8]. Organic acids were found to be responsible for rock phosphate solubilization [9]. PSB is important in increasing the P efficiency of both native and applied P and improving the growth and yield various crops [2].

Phosphorus native sources and bacterial inoculation are considered beneficial for improving the P supply [10,11]. In this study, source of P not only from natural phosphate, but using waste product namely swimmer crab flour.
The aim of the research was to know the effect of Phosphate Solubilizing Bacteria and Natural Phosphate Fertilizers on improving the production of Stringbean (*Phaseolus vulgaris.*L) on acid soil.

2. Methods
A field trial at Unpad research station 768 m above sea level had been carried out using randomized block design two factors with factorial pattern and three replications. The first factor was concentration of Phosphate Solubilizing Bacteria concentration (0 ml, 10 ml, 20 ml, 30 ml) while the second factor was the type of natural phosphate fertilizer (120 g of guano polybag⁵, 120 g of rock phosphate polybag¹, and 120 g of swimmer crab flour polybag¹). Parameters evaluated were leaf area, harvest index and pod dry weight measured at the time of harvest. To analyze the data, F test at 5 % level was used and continued with Duncan’s Multi Range Test at 5 % level.

Acid soil inserted in 30x30 cm polybags and applied with manure 120 g polybag⁻¹, rock phosphate 120 g polybag⁻¹, guano polybag¹, and crab swimmer flour 120 g polybag⁻¹ and incubated within 1 week, then treated by PSB (Pseudomonas cepaceae) inoculum appropriate with the treatment 10 ml crop¹, 20 ml crop¹ and 30 ml crop¹ at 3 days before planting. Two weeks old seedling with 3-4 fresh green leaves was planted 3-5 cm deep in polybag and covered by soil. Maintenance included replacing abnormal plant at maximum 7 days after planting (DAP), watering in the morning and in the afternoon when there was no rain. Continued fertilization was given at 14 DAP using urea 1,66 g polybag⁻¹, SP36 0,86 g polybag⁻¹, KCl 1,04 g polybag⁻¹ in a manner to be immersed as deep as 5 cm. Pest and disease control was done by mechanical method and pesticide as last alternative and harvesting at 45 DAP.

3. Result and discussion
3.1. Leaf width
Application of PSB and natural phosphate ferilizer showed no interaction effect on leaf width. PSB and natural phosphate fertilizer each increased leaf width significantly. Application 30 ml of PSB reached the highest width leaf and all of the natural phosphate fertilizers which were used in this experiment increased leaf width significantly (table 1).

Treatments	Leaf Width (cm²)
PSB concentration	Total
b₀	224.96 a
b₁	273.05 ab
b₂	276.96 ab
b₃	321.20 b
natural phosphate fertilizers	
p₀	198.01 a
p₁	306.58 b
p₂	306.58 b
p₃	309.02 b

Remarks: Numbers followed by same letter are not significantly different based on Duncan’s Multiple Range Test at 5% level.

Phosphate solubilizing bacteria and natural phosphate fertilizer increased leaf width. The PSB released phosphatase enzyme that accelerates the P availability process. The treatment of plants with PSB...
increased soil available P and P uptake in leaves of *Aloe barbadensis*, and consequently elevated all parameters of *A. barbadensis*, including leaf length and total number of leaves [11].

Natural phosphate fertilizers provide P which was needed by plant in the storage and transfer of energy in the plant. Phosphorus is an essential part in the process of photosynthesis and carbohydrate metabolism, the formation of cell nuclei, cell division and cell duplication. Finally it would affect organ vegetative development including leaves.

3.2. Harvest Index
There was no interaction effect or simple effect of Phosphate solubilizing bacteria and natural phosphate fertilizer on harvest index. The treatments did not improve harvest index value (table 2).

Treatments	Harvest index
	Total
PSB concentration	
b₀	0.34 a
b₁	0.34 a
b₂	0.33 a
b₃	0.31 a
natural phosphate fertilizers	
p₀	0.34 a
p₁	0.33 a
p₂	0.34 a
p₃	0.33 a

Remarks: Numbers followed by same letter are not significantly different based on Duncan’s Multiple Range Test at 5% level.

Phosphate solubilizing bacteria and natural phosphate fertilizer increased leaf width (table 1) and pod dry weight (table 3) but not yet for harvest index. Apparently the PSB provided insufficient P for harvest index due to soil C organic content was very low. With very low soil C organic content the number of PSB is not high enough therefore did not work maximum in phosphate solubilization process. Bat guano and rock phosphate contain high phosphate, but in the insoluble form which was needed microbe help to solubilize insoluble inorganic phosphate from native P source. Whereas swimmer crab flour increased pH below 5 so the P release being limited. Limitations of P supply cause photosynthate partition to the harvesting organ being reduced. The adequate supply of P could have increased the number of branches per plant, and leaf area which in turn increased photosynthetic area resulting in higher dry matter accumulation [12].

3.3. Pod dry weight
Application of PSB and natural phosphate fertilizer gave no interaction effect on pod dry weight. PSB and natural phosphate fertilizers each increased pod dry weight. Increasing of pod dry weight significantly. Increasing of pod dry weight by PSB was started from concentration 10 ml and all of the natural phosphate fertilizers increased pod dry weight (Table 3).

PSB inoculation increased pod dry weight. PSB increase pod dry weight through increasing P uptake. *Pseudomonas cepaceae* as PSB used in this study is capable of increasing the nutrient elements P by utilizing the total soil P (24.77%) where P element is required in the pods formation. PSB treatment had the maximum stimulatory effect on shoot dry weight [13]. That P content in the soil promoted root growth, resulting in root expansion into more soil space for assimilating nutrient uptake [14]. A developed root system is beneficial to the development of aboveground parts. The increase in
above ground dry biomass yield might be attributed to the enhanced availability of P for vegetative
growth of the plants (Table 1) [12].

Application of natural phosphate fertilizers increased also pod dry weight. This means that P element
contained in guano, rock phosphate, and smimmer crab flour were adequate to support crop yield. Seen
the influence of P on pod dry weight, although showed improvement, but the value is still below the
potential crop yield.

Table 3. The Effect of Phosphate Solubilizing Bacteria BPF concentration and natural
phosphate fertilizer on pod dry weight.

Treatments	Pod dry weight Total
PSB Concentration	
b₀	3.65 a
b₁	4.99 b
b₂	5.28 b
b₃	5.33 b
natural phosphate fertilizer	
p₀	3.32 a
p₁	4.92 b
p₂	5.25 b
p₃	5.77 b

Remarks: Numbers followed by same letter are not significantly different based on Duncan’s Multiple
Range Test at 5% level.

4. Conclusion
Application of Phosphate solubilizing bacteria and natural phosphate fertilizer independently increased
leaf width and crop yield, but the value is still below its potential production.

Acknowledgement
Authors would like to thank to LP2M UIN Sunan Gunung Djati Bandung for financial support.

References

[1] Mehta P, Walia A, Kulshrestha S, Chauhan A, Shirkot C K 2015 Efficiency of plant growth-
 promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under
 net house conditions Journal of basic microbiology Jan 55(1) pp 33-44
[2] Khan A A, Jilani G, Akhtar M S, Naqvi S M, Rasheed M 2009 Phosphorus solubilizing bacteria:
 occurrence, mechanisms and their role in crop production J agric biol sci. 1(1) pp 48-58
[3] Tanah B P 2012 Analisis Kimia Tanah, Tanaman, Air dan Pupuk Badan Penelitian dan
 Pengembangan Pertanian Departemen Pertanian Edisi Petunjuk Teknis II
[4] Sothearen T, Furey N M, Jurgens J A 2014 Effect of bat guano on the growth of five
 economically important plant species Journal of Tropical Agriculture Dec 31 52(2) pp 169-
 73
[5] Ünal M, Can O, Can B A, Poyraz K 2018 The effect of bat guano applied to the soil in different
 forms and doses on some plant nutrient contents Communications in soil science and plant
 analysis 49 pp 1–9
[6] Yanuar V 2013 Tepung Cangkang Rajungan (Portunus Pelagicus) Sebagai Sumber Kalsium
 (Ca) Juristek 2 no 1 pp 185–194
[7] Mehrvarz S and Chaichi M R 2008 Effect of Phosphate Solubilizing Microorganisms and
 Phosphorus Chemical Fertilizer on Forage and Grain Quality of Barely (Hordeum vulgare
 L.) Am. J. Agric. Environ. Sci. 3 no 6 pp 855–860
[8] Panhwar Q A, Naher U A, Jusop S, Othman R, Latif M A, and Ismail M R 2014 Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth *PLoS One* 9 no 10

[9] Kumari A, Kapoor K K, Kundu B S, and Mehta R K 2008 Identification of organic acids produced during rice straw decomposition and their role in rock phosphate solubilization *Plant Soil and Environment* Feb 1 54(2) p72

[10] Saleem M M, Arshad M, and Yaseen M 2013 Effectiveness of various approaches to use rock phosphate as a potential source of plant available P for sustainable wheat production *Int. J. Agric. Biol.* 15 no 2 pp 223–230

[11] Gupta M, Kiran S, Gulati A, Singh B, and Tewari R 2012 Isolation and identification of phosphate solubilizing bacteria able to enhance the growth and aloin-A biosynthesis of Aloe barbadensis Miller *Microbiol. Res.* 167 no 6 pp 358–363

[12] Dejene T, Tana T, and Urage E 2016 Response of Common Bean (Phaseolus vulgaris L.) to Application of Lime and Phosphorus on Acidic Soil of Areka, Southern Ethiopia *IISTE* 6 pp 2224–3186

[13] Liu M, Liu X, Cheng B S, Ma X L, Lyu X T, Zhao X F, Ju Y L, Min Z, Zhang Z W, Fang Y L 2016 Selection and evaluation of phosphate-solubilizing bacteria from grapevine rhizospheres for use as biofertilizers *Spanish journal of agricultural research* 14(4) p 26

[14] Wang Z, Xu G, Ma P, Lin Y, Yang X, Cao C 2017 Isolation and characterization of a phosphorus-solubilizing bacterium from rhizosphere soils and its colonization of chinese cabbage (Brassica campestris ssp. chinensis) *Frontiers in Microbiology* Jul 26 8 p 1270