Characterization of a circulating PRRSV strain by means of random PCR cloning and full genome sequencing

Jan Van Doorsselaere1*, Marc Geldhof2, Hans J Nauwynck2 and Peter L Delputte2,3

Abstract
PRRS is a pig disease of major economic importance that causes respiratory and reproductive problems in pigs. Over the last years it has become clear that PRRSV heterogeneity is increasing. Consequently, this has a potential impact on diagnosis and strategies to counter this disease. The use of sequence-independent PCR techniques for the detection and characterization of PRRSV could be useful to bypass problems associated with the heterogeneity of this virus.

A random PCR cloning approach was tested for the characterization of PRRSV strain 07V063 of unknown genetic background that circulated on a Belgian farm. By using this approach, 7305 bp of sequence data were obtained, distributed randomly across the genome. Using RT-PCR with strain-specific primers, the full length sequence (15014 nt) was obtained. Phylogenetic relationships using ORF5 and ORF1a (NSP2) sequences showed that 07V063 was classified in type 1 subtype 1 and that 07V063 was genetically different from prototype Lelystad Virus (LV). 07V063 showed 87-93% aa identity with LV ORFs coding for structural proteins. Most variation (compared to LV) was noticed in Nsp2 (81% identity) with a deletion of 28 aa. This deletion was different from other known deletions in this ORF. In conclusion, it is shown that this random PCR cloning approach can be used for the characterization of new PRRSV strains of unknown genetic background.

Findings
Porcine reproductive and respiratory syndrome (PRRS) is an economically important viral pig disease in swine producing countries worldwide. The virus can cause reproductive disorders and can give rise to respiratory problems in pigs of all ages [1]. Prevention of the disease is based on a combination of management and vaccination. Evidence is accumulating that PRRSV heterogeneity is affecting the vaccination efficiency. It is suggested that vaccines are only efficacious when the vaccine virus and the challenge virus share a sufficiently high homology [2-6]. PRRSV heterogeneity was originally considered mainly to occur between European (genotype 1) and American type (genotype 2) PRRSV, but current understanding shows a more complex situation with considerable genetic variability within genotypes [7-9]. Since such variability may affect the efficacy of vaccination programs and pose an obstacle for PRRSV prevention and control, knowledge on the PRRSV strains circulating on a farm may be essential for choosing an appropriate vaccine [10].

PRRSV diagnosis is mainly based on detection of PRRSV antibodies, Reverse Transcriptase (RT) PCR or virus isolation. Detection of antibodies by ELISA or IPMA is not sufficient to establish the level of PRRSV heterogeneity [11]. RT-PCR allows rapid detection and genotyping of PRRSV, but the high degree of sequence variation observed for PRRSV can influence results obtained by (real-time) RT-PCR and primers and/or probes should be carefully designed based on conserved regions [8,12]. The development of sequence-independent PCR techniques could be useful for the diagnosis and genotyping of unknown PRRSV isolates and for assessment of the PRRSV heterogeneity of field isolates. Several methods have been developed for the identification of viruses without prior sequence knowledge [13]. For instance, whole genome amplification and random PCR are relatively simple. In both these methods, viral
particles (from biological samples or cell culture) are treated with DNase and RNase to remove contaminating nucleic acids. RNA and/or DNA from the viral particles is extracted and RNA is reverse transcribed to cDNA using a primer with a random 3’ end. Subsequently, cDNA or viral DNA is amplified using a shorter primer (without the 3’ random end). This results in DNA fragments of varying size (e.g. 0.5 - 2 Kb) and these fragments can be cloned and sequenced. For instance Allander et al. [14] used random PCR on human respiratory tract samples which allowed identification of several unknown viruses.

The aim of this study was to test a random PCR cloning technique [14] for the detection and genotyping of a PRRSV strain of unknown genetic background.

Random PCR cloning for the identification of PRRSV 07V063

PRRSV 07V063 was isolated from an aborted foetus from a Belgian farm, by inoculation of porcine alveolar macrophages. On this farm, vaccination with Porcilis™ was in place. PRRS diagnosis was confirmed upon detection of cytopathic effect (CPE), and detection of PRRSV antigens by IPMA staining with the nucleocapsid specific mAb. PRRS diagnosis was confirmed upon detection of PRRSV antigens by IPMA staining with the nucleocapsid specific mAb

The viral pellet was treated with DNAseI and RNAse. MARC-145 cells and concentrated as described [16] and the viral pellet was treated with DNaseI and RNase. RNA was extracted using commercial kits and used in reverse transcription and random amplification using the tagged random hexanucleotide 5’-GCCGGAGCTCTG-CAGATATCNNNNNNN-3’ for both first- and second strand cDNA synthesis and subsequent amplification of the cDNA with primer 5’-GCCGGAGCTCTGCGAG-CATC-3’ [14]. Random PCR fragments ranging between 500 and 1200 bp were cloned in pCR-Blunt II-TOPO (Invitrogen). Twenty nine clones were sequenced as described [17]. Twenty three clones (80% of the clones) contained PRRS sequences (Table 1). The six other clones showed no match when performing BlastN [16]. Random PCR fragments ranging between 622 and 2072 bp) were obtained (Figure 1). Thus, without prior knowledge of the sequence it was possible to obtain 7305 bp sequence data using a random PCR cloning approach, hereby confirming PRRS identity.

Table 1 Overview of the sequences from 07V063 obtained by random PCR cloning

Clone	Size (nt)	Position	% nt identity
49	671	774-1444	81
73	198	1692-1889	89
104	826	1808-2633	89
20	798	2616-3413	86
105	375	3069-3443	88
88	429	3420-3847	93
33	332	3957-4288	91
92	316	6198-6512	93
61	713	6367-7079	93
103	312	6768-7079	94
35	364	6500-6863	93
12	247	8132-8378	89
51	627	8931-9557	86
80	358	9200-9557	87
82	622	11225-11846	87
11	258	11225-11482	86
81	601	11928-12528	92
70	189	12336-12524	94
40	277	12364-12640	90
78	395	12991-13385	90
57	935	13195-14129	91

The position of the sequences is indicated relative to LV. % nt identity is with LV.

The full length genome sequence of 07V063 and comparison with prototype LV

To allow a more detailed evaluation of the PRRSV isolate 07V063, the full length genome sequence was obtained using primers that were based on the 07V063 sequences from the random PCR cloning approach (Table 2). Overlapping amplicons (spanning the complete genome) were obtained using RT-PCR. Both strands of these fragments were directly sequenced. For the amplification of the 3’ end oligodT was used in combination with ORF7fw. A 5’ end primer (5’endfw) was designed based on the alignment of genotype 1 strains LV (M96262), EuroPRRS (AY366525), SD01-08 (DQ489311), KNU-07 (FJ349261) and HKEU16 (EU076704). This primer was used in combination with primer Lavgsprev to amplify the 5’ end of LV with 92.3% identity and 17 nt dispersion over the genome. The contigs are shown with a line.

Figure 1 PRRSV genome and position of the contigs. The sequences obtained in the random PCR cloning approach were assembled in six contigs (with sizes between 622 and 2072 bp) dispersed over the genome. The contigs are shown with a line.

Table 1: 07V063 sequence information and in combination with small scale shotgun sequencing, this can result in viral sequences. Virus 07V063 was grown on MARC-145 cells and concentrated as described [16] and the viral pellet was treated with DNaseI and RNase. RNA was extracted using commercial kits and used in reverse transcription and random amplification using the tagged random hexanucleotide 5’-GCCGGAGCTCTG-CAGATATCNNNNNNN-3’ for both first- and second strand cDNA synthesis and subsequent amplification of the cDNA with primer 5’-GCCGGAGCTCTGCGAG-CATC-3’ [14]. Random PCR fragments ranging between 500 and 1200 bp were cloned in pCR-Blunt II-TOPO (Invitrogen). Twenty nine clones were sequenced as described [17]. Twenty three clones (80% of the clones) contained PRRS sequences (Table 1). The six other clones showed no match when performing BlastN.
differences. Several motifs such as the transcription regulatory sequence (UUAACC) and CACCC stretches (involved in binding of host cell transcription factors) are conserved in 07V063 [18]. Table 3 gives an overview of all ORFs in the 07V063 genome and comparison with ORFs from prototype LV. Most variation with LV was

Table 2 Oligonucleotide primers used in RT-PCR amplification and nucleotide sequencing of 07V063

Primer	Sequence	Position
S'endFW	atgatgcaggggtttccccccc	1-22
Orf1uniFW	cccctagaaccatgcctggc	111-130
Orf1-1fw	cattcccgttctgctgctttt	336-355
Orf1-2fw	gggagccacccacctgtgctt	681-701
Lav49fw	acaatgtgcaggggtttccccccc	1072-1091
Orf1-3fw	tcaatgacccgagttcccaggcc	1631-1650
Orf1-4fw	ctggtagctgctgctgtttt	1988-2007
Orf1-5fw	acaacgcaggggtttccccccc	2472-2490
Lav73fw	tcaatgacccgagttcccaggcc	3012-3121
Orf1-6fw	gttctctgctgctgctgtttt	3451-3469
Orf1-7fw	cttgaccctgctgctgctgtttt	3686-3705
Lav33fw	ggtctctgctgctgctgtttt	4129-4147
Orf1-8fw	gttctctgctgctgctgtttt	4538-4557
Orf1-9fw	tcttcggagtccctgctgctgtttt	4859-4878
Orf1-10fw	gttctctgctgctgctgtttt	5364-5383
Orf1-11fw	gttctctgctgctgctgtttt	6819-6911
Orf1-12fw	gttctctgctgctgctgtttt	7001-6819
Orf1-13fw	gttctctgctgctgctgtttt	7280-7299
Orf1-14fw	gttctctgctgctgctgtttt	7765-7783
Orf1-15fw	gttctctgctgctgctgtttt	8172-8191
Orf1-16fw	gttctctgctgctgctgtttt	8442-8461
Lav51fw	gttctctgctgctgctgtttt	8817-8835
Orf1-17fw	gttctctgctgctgctgtttt	9316-9335
Orf1-18fw	gttctctgctgctgctgtttt	9764-9783
Orf1-19fw	gttctctgctgctgctgtttt	10136-10155
Orf1-20fw	gttctctgctgctgctgtttt	10633-10652
Orf1-21fw	gttctctgctgctgctgtttt	11132-11150
Orf1-22fw	gttctctgctgctgctgtttt	11577-11598
Orf1-23fw	gttctctgctgctgctgtttt	12234-12253
Orf1-24fw	gttctctgctgctgctgtttt	12661-12280
Orf1-25fw	gttctctgctgctgctgtttt	12672-12691
Orf1-26fw	gttctctgctgctgctgtttt	13320-13337
Orf1-27fw	gttctctgctgctgctgtttt	13838-13856
Orf1-28fw	gttctctgctgctgctgtttt	14328-14345
Orf1-29fw	gttctctgctgctgctgtttt	14966-14986

Table 2 Oligonucleotide primers used in RT-PCR amplification and nucleotide sequencing of 07V063 (Continued)

Primer	Sequence	Position
Orf1-30fw	gttctctgctgctgctgtttt	15686-15705
Orf1-31fw	gttctctgctgctgctgtttt	16254-16273
Orf1-32fw	gttctctgctgctgctgtttt	16817-16835
Orf1-33fw	gttctctgctgctgctgtttt	17382-17400
Orf1-34fw	gttctctgctgctgctgtttt	17950-17968
Orf1-35fw	gttctctgctgctgctgtttt	18516-18534
Orf1-36fw	gttctctgctgctgctgtttt	19082-19100
Orf1-37fw	gttctctgctgctgctgtttt	19658-19676
Orf1-38fw	gttctctgctgctgctgtttt	20214-20232
Orf1-39fw	gttctctgctgctgctgtttt	20780-20798
Orf1-40fw	gttctctgctgctgctgtttt	21346-21364
Orf1-41fw	gttctctgctgctgctgtttt	21902-21920
Orf1-42fw	gttctctgctgctgctgtttt	22468-22486

Table 3 Comparison of proteins from 07V063 and prototype LV

ORF	Protein	Size 07V063	Size LV	% identity	% similarity
1a	Nsp1	385	385	85	91
	Nsp2	833	861	81	85
	Nsp3	447	447	93	96
	Nsp4	203	203	92	96
	Nsp5	170	170	96	97
	Nsp6	16	16	100	100
	Nsp7	269	269	97	97
	Nsp8	45	45	100	100
1b	Nsp9	645	645	98	98
	Nsp10	442	442	94	97
	Nsp11	224	224	95	97
	Nsp12	152	152	96	97
2a	GP2	249	249	93	94
	E	70	70	95	97
2b	GP3	265	265	89	92
	GP4	183	183	87	93
3	N	173	173	93	94
noticed in Nsp1 (85% identity/91% similarity) and Nsp2 (81% identity/85% similarity). A major difference is a deletion of 28 aa in a variable region of Nsp2 (at positions 683-710). Similar deletions in this region are known e.g. EuroPRRS has a 17 aa deletion (Figure 2A; [18]). The deletion in Nsp2 in 07V63 could be a unique marker for this strain.

Strain 07V063 showed 87 - 95% aa identity with LV for the structural ORFs 2 - 7. We compared GP4 and GP5 proteins from 07V063 and LV since it has been shown that these proteins are the main target for neutralizing antibodies. Figure 2 shows an alignment of ORF4 proteins. Notably is the high variation in the region 50-70. It has been shown that a neutralizing epitope in LV (57-68) is underlined. Figure 2B shows an alignment of ORF5 proteins. A neutralizing epitope in North American strains (37-45) is underlined.

Figure 2 Alignment of Nsp2, ORF4 and ORF5 proteins from 07V063 with LV (ORF4 and ORF5) and a selection of genotype 1 strains (Nsp2). A. Alignment of Nsp2 proteins from genotype 1 strains. Only aa positions 636-755 (LV) are shown. The deletion in 07V063 is located at aa positions 683-710. B. Alignment of GP4 from 07V063 and LV (only the first 120 aa are shown). A neutralizing epitope in LV (57-68) is underlined. C. Alignment of GP5 from 07V063 and LV. A neutralizing epitope in North American strains (37-45) is underlined.
epitope is present in LV at positions 57-68 [19] and that this region is under antibody-mediated pressure in vitro and in vivo [20,21]. Pigs infected with 07V063 produce neutralizing antibodies against the 57RVTAAQGRIYTR68 epitope. However, these antibodies do not cross-protect against LV [22]. Similarly, antibodies against the same region in LV, do not cross-protect against 07V063. Interestingly, this lack of cross-neutralization is in agreement with the finding that strain 07V063 was able to replicate and cause disease on a farm where animals were vaccinated with the LV-like Porcilis™ vaccine.

GP5 has been described as the main target for virus-neutralizing antibodies in North American PRRSV strains. A neutralizing epitope has been identified at positions 37-45 [23]. Figure 2C shows that 07V063 and LV have an identical sequence from 37-45 with the exception of an extra glycosylation site at position 37 in 07V063. It has been shown that several strains are glycosylated at this position but the significance of this glycosylation is not known. Other amino acid changes occur throughout the sequence and several of these positions have been described as variable [24]. No other differences in glycosylation pattern of the structural proteins between 07V063 and LV was observed.

Phylogenetic relationship of 07V063

Since ORF5 is frequently used as a marker for the study of genetic relationships [8], we constructed phylogenetic trees using ORF5 sequences from a selection of genotype 1 strains (Table 4). In addition genotype 1 strains for which the full length sequence was available in Genbank were included. VR-2332 (genotype 2) was used as out-group.

Figure 3A shows a phylogenetic tree of ORF5 DNA sequences based on the Neighbour Joining (NJ) method. Several clusters are evident and supported by high bootstrap values. It can be concluded that 07V063 clusters within the pan-European subtype 1 [8]. Within subtype 1, a cluster with LV- and Olot/91-like strains can be distinguished. Although both LV and Olot/91 belong to the earliest PRRSV isolates, still LV and Olot/91-like strains such as SD01-08 are circulating. Strain 07V063 is genetically different from LV- and Olot/91-like strains. Apparently 07V063 clusters together with isolates from different geographical locations e.g. isolates from Spain (16/2000), Denmark (361-4), China (BIEU06-1) and South-Korea (IV3140) although this clustering is not supported by high bootstrap values. A similar tree topology was obtained using ORF5 protein sequences (data not shown). The sub-clustering of type 1 is complex and cannot always be explained by geographic isolation of the strains [8]. The sequence of 07V63 adds to the increase of genetic diversity of type 1 strains and is an example of continuous genetic drift within PRRSV [24].

Table 4 Overview of strains used for phylogenetic analysis

Strain	Genotype	Genbank Accession ORF5	Genbank Accession ORF1a (nsp2)
VR-2332	2	U87392	U87392
Lelystad	1 (subtype 1)	M96262	M96262
EuroPRRS	1	AY366525	AY366525
01-CB1	1 (subtype 1)	DQ864705	DQ864705
Amervac	1 (subtype 1)	GU067771	GU067771
HKEU16	1 (subtype 1)	EU076704	EU076704
KNU-07	1 (subtype 1)	FJ349261	FJ349261
SHE	1 (subtype 1)	GQ461593	GQ461593
SD01-08	1 (subtype 1)	DQ489311	DQ489311
BIEU06-1	1 (subtype 1)	GUO47344	GUO47344
NMEU09-1	1 (subtype 1)	GUO47345	GUO47345
07V063	1 (subtype 1)	GU737264	GU737264
PysVac	1 (subtype 1)	DQ324681	ND
Porcilis	1 (subtype 1)	AAW78001	ND
Olot/91	1 (subtype 1)	X92942	ND
Yuz-34	1 (subtype 3)	DQ324692	ND
Bel-42	1 (subtype 3)	DQ324669	ND
Obu-1	1 (subtype 3)	DQ324671	ND
Soz-6	1 (subtype 3)	DQ324686	ND
Dzi-62	1 (subtype 1)	DQ324675	ND
Cresa11	1 (subtype 1)	DQ009626	ND
IV3140	1 (subtype 1)	DQ355821	ND
28639/98	1 (subtype 1)	AO35912	ND
361-4	1 (subtype 1)	AO35915	ND
Sna-4	2 (subtype 2)	DQ324683	ND
Sid	2 (subtype 2)	DQ324682	ND
Aus	2 (subtype 2)	DQ324667	ND
Okt-35	1	DQ324677	ND
16/2000	1	DQ345743	ND
SO02-11	1 (subtype 1)	AO359078	AY383634
SO01-07	1 (subtype 1)	AO359079	AY383632
SO03-12	1 (subtype 1)	AO359074	AY383635
SO03-15	1 (subtype 1)	AO359076	AY383636
It-22	1 (subtype 1)	AYT39978	ND
It-39	1 (subtype 1)	AYT39995	ND
It-44	1 (subtype 1)	AYT40000	ND
It-35	1 (subtype 1)	AYT39991	ND
It-13	1 (subtype 1)	AYT39969	ND
Lena	3 (subtype 3)	EU909691	ND

The type of the strains is according to Stadejek et al (2008). ND = no data. VR-2332 is genotype 2. Eleven genotype 1 isolates for which full length sequences were obtained are listed first.

A recent PRRSV study in Spain [25] demonstrated that Spanish isolates from different years show continuous evolution and increase in heterogeneity and that different genotypes and variants within the genotypes co-circulate.
Also, phylogenetic trees using Nsp2 were constructed (Figure 3B). Sequences from all known full length genotype 1 strains (Table 4) were included. Essentially, the same topology can be observed as for ORF5. A cluster of LV-like strains is evident and supported by high bootstrap values. As was already observed from the ORF5 phylogenetic tree, Amervac and SHE are very closely related as is the case for strains 01-CB1 and LV. 07V063 clusters apart from LV and is genetically distinct from the LV prototype.

Conclusions
By using a simple random PCR cloning approach we obtained PRRSV sequence data from a recent European PRRSV isolate of unknown genetic background. This approach can be used to obtain partial genome sequences from for instance East-European type strains (for which until present, no full length genomes are available) and to get a better knowledge of the increasing PRRSV variability. We also showed that the isolate sequenced in this study is genetically different from prototype LV.

List of abbreviations
PRRSV: porcine reproductive and respiratory syndrome virus; RT-PCR: reverse transcriptase polymerase chain reaction.

Acknowledgements
This work was supported by the Industrial Research Fund (IOF) of Ghent University. The authors would like to thank Iene Vanherpe for technical assistance and Merijn Vanhee for critical reading of the manuscript.

Author details
1Department of Health Care and Biotechnology, KATHO Catholic University College of South-West Flanders, Wilgenstraat 52, 8800 Roeselare, Belgium.
2Department Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
References

1. Wensvoort G, de Kloevery EP, Pol JM, Wagenaar F, Moormann RJ, Hulst MM, Bloemraad R, den Besten A, Zetsra T, Terpstra C: Lelystad virus, the cause of porcine epidemic abortion and respiratory syndrome: a review of mystery swine disease research at Lelystad. Vet Microbiol 1992, 33:185-193.

2. Cano JP, Dee SA, Murtaugh MP, Trincado CA, Pijoan CB: Effect of vaccination with a modified-live porcine reproductive and respiratory syndrome virus vaccine on dynamics of homologous viral infection in pigs. Am J Vet Res 2007, 68:565-571.

3. Cano JP, Dee SA, Murtaugh MP, Pijoan C: Impact of a modified-live porcine reproductive and respiratory syndrome virus vaccine intervention on a population of pigs infected with a heterologous isolate. Vaccine 2007, 25:4382-4391.

4. Labarque G, Van Reeth K, Nauwynck H, Drexler C, Van Gucht S, Pensaert M: Impact of genetic diversity of European-type porcine reproductive and respiratory syndrome virus strains on vaccine efficacy. Vaccine 2004, 22:4183-4190.

5. Scortti M, Prieto C, Alvarez E, Simarro I, Castro JM: Similarity of European porcine reproductive and respiratory syndrome virus isolates. Vet Res 2007, 38:109-813.

6. Prieto C, Alvarez E, Martinez-Lobo FJ, Simarro I, Castro JM: Similarity of European porcine reproductive and respiratory virus strains to vaccine strain is not necessarily predictive of the degree of protective immunity conferred. Vet J 2008, 175:356-363.

7. Stadjeck T, Olekisiewicz MB, Potapchuk DJ, Podgesak P: Porcine reproductive and respiratory syndrome virus strains of exceptional diversity in eastern Europe support the definition of new genetic subtypes. J Gen Virol 2006, 87:1835-1841.

8. Stadjeck T, Olekisiewicz MB, Schetkabok AV, Timina AM, Krabbe JS, Chabros K, Potapchuk D: Definition of subtypes of the European genotypic of porcine reproductive and respiratory syndrome virus: nucelcoaprid characteristics and geographical distribution in Europe. Arch Virol 2008, 153:1479-1488.

9. Balka G, Hornyak A, Balint A, Kiss I, Keckemeti S, Bakonyi T, Rusvai M: Genetic diversity of porcine reproductive and respiratory syndrome virus strains circulating in Hungarian swine herds. Vet Microbio 2008, 127:129-135.

10. Meng XJ: Heterogeneity of porcine reproductive and respiratory syndrome virus: implications for current vaccine efficacy and future vaccine development. Vet Microbio 2000, 74:309-329.

11. Yoon KJ, Zimmerman JJ, McGinley MJ, Landgraf J, Frey ML, Hill HT, Plant KB: Failure to consider the antigenic diversity of porcine reproductive and respiratory syndrome virus (PRRSV) virus isolates may lead to misdiagnosis. J Vet Diagn Invest 1995, 7:386-397.

12. Indik S, Schmol F, Sipos W, Klein D: Genetic variability of PRRSV virus in Austria: consequences for molecular diagnostics and quantification. Vet Microbio 2005, 107:171-187.

13. Ambrose HE, Clewley JP: Virus discovery by sequence-independent genome amplification. Rev Med Vet 2006, 16:365-383.

14. Allander T, Tammi MT, Eriksson M, Borker A, Tiveljung-Lindell A, Andersson B: Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA 2005, 102:12891-12896.

15. Wieczorek-Kromher M, Weiland F, Conzelmann K, Koh D, Visser N, van Woensel P, Thiel HJ, Weiland E: Porcine reproductive and respiratory syndrome virus (PRRSV): monoclonal antibodies detect common epitopes on two viral proteins of European and U.S. isolates. Vet Microbiol 1996, 51:257-266.

16. Delputte PL, Nauwynck H: Porcine arterivirus infection of alveolar macrophages is mediated by sialic acid on the virus. J Virol 2004, 78:8094-8101.

17. Karnychuk UU, Geldhof M, Vanhee M, Van Doorselaere J, Saveleva TA, Nauwynck H: Pathogenesis and antigenic characterization of a new East European subtype 3 porcine reproductive and respiratory syndrome virus isolate. BMC Vet Res 2010, 6:30.

18. Ropp SL, Mahlung Wees CE, Fang Y, Nelson EA, Rossow KD, Bien M, Amrtd B, Preszer S, Steen P, Christopher-Hennings J, Collins JF, Benfield DA, Faaberg KS: Characterization of emerging European-like porcine reproductive and respiratory syndrome virus isolates in the United States. J Virol 2004, 78:3684-3700.

19. Meuleenberg JJ, van Nieuwstadt AP, van Essen-Zandbergen A, Langeveld JP: Posttranslational processing and identification of a neutralization domain of the GP4 protein encoded by ORF4 of the Lelystad Virus. J Virol 1997, 71:6061-6070.

20. Costers S, Lefebvre DJ, Vanhee M, Geldhof M, Van Doorselaere J, Delputte PL, Nauwynck H: GP4 of porcine reproductive and respiratory syndrome virus contains a neutralizing epitope that is susceptible to immuno-selection in vitro. Arch Virol 2010, 155:371-378.

21. Costers S, Vanhee M, Van Breedam W, Van Doorselaere J, Geldhof M, Nauwynck H: GP4-specific neutralizing antibodies might be a driving force in PRRSV evolution. Virus Res 2010, 154:104-113.

22. Vanhee M, Costers S, Van Breedam W, Geldhof M, Van Doorselaere J, Nauwynck H: A variable region in GP4 of European-type porcine reproductive and respiratory syndrome virus induces neutralizing antibodies against homologous but not heterologous virus strains. Viral Immunol 2010, 23:1-11.

23. Ostrowski M, Galeote JA, Jar AM, Platt KB, Osorio FA, Lopez OJ: Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain. J Virol 2006, 70:4241-4250.

24. Pesh S, Meyer C, Ohlinger VF: New insights into the genetic diversity of European porcine reproductive and respiratory syndrome virus (PRRSV). Vet Microbio 2005, 107:31-48.

25. Prieto C, Vazquez A, Nuezez JI, Alvarez E, Simarro I, Castro JM: Influence of time on the genetic heterogeneity of Spanish porcine reproductive and respiratory syndrome virus isolates. Virol J 2009, 180:363-370.

Cite this article as: Van Doorselaere et al.: Characterization of a circulating PRRSV strain by means of random PCR cloning and full genome sequencing. Virology Journal 2011 8:160.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit