Exposures of Children to Organophosphate Pesticides and Their Potential Adverse Health Effects

Brenda Eskenazi, Asa Bradman, and Rosemary Castorina

Center for Children’s Environmental Health Research, School of Public Health, University of California, Berkeley, California USA

Recent studies show that young children can be exposed to pesticides during normal oral exploration of their environment and their level of dermal contact with floors and other surfaces. Children living in agricultural areas may be exposed to higher pesticide levels than other children because of pesticides tracked into their homes by household members, by pesticide drift, by breast milk from their farmworker mother, or by playing in nearby fields. Nevertheless, few studies have assessed the extent of children’s pesticide exposure, and no studies have examined whether there are adverse health effects of chronic exposure. There is substantial toxicologic evidence that repeated low-level exposure to organophosphate (OP) pesticides may affect neurodevelopment and growth in developing animals. For example, animal studies have reported neurobehavioral effects such as impairment on maze performance, locomotion, and balance in neonates exposed in utero and during early postnatal life. Possible mechanisms for these effects include inhibition of brain acetylcholinesterase, downregulation of muscarinic receptors, decreased brain DNA synthesis, and reduced brain weight in offspring. Research findings also suggest that it is biologically plausible that OP exposure may be related to respiratory disease in children through dysregulation of the autonomic nervous system. The University of California Berkeley Center for Children’s Environmental Health Research is working to build a community–university partnership to study the environmental health of rural children. This Center for the Health Assessment of Mothers and Children of Salinas, or CHAMACOS in Monterey County, California, will assess in utero and postnatal OP pesticide exposure and the relationship of exposure to neurodevelopment, growth, and symptoms of respiratory illness in children. The ultimate goal of the center is to translate research findings into a reduction of children’s exposure to pesticides and other environmental agents, and thereby reduce the incidence of environmentally related disease.

— Environ Health Perspect 107(suppl 3):409–419 (1999).
http://ehpnet1.neihs.nih.gov/docs/1999/suppl-3/409-419eskenazi/abstract.html

Nationally, approximately 750–800 million pounds of conventional pesticides are used annually in agriculture, excluding sulfur, oils and repellants (14). Total conventional pesticide use, including home, structural, and other applications, averages about 1 billion pounds in the United States. During the mid-1990s, national pesticide use levels have been stable (15), although trends vary by region. In California, which has the largest agricultural output of all 50 states, approximately 200 million pounds of pesticidal active ingredient are used annually in agriculture (16). Pesticide use data for California suggest a trend of increasing use between 1991 and 1995 for production agriculture, postharvest treatment, structural fumigation, and landscape maintenance (16). These changes may be due, in part, to unique meteorologic and economic factors, including heavy rains, shifts to lower toxicity compounds that require higher volumes, and changes in planted acreage (16–18). Agricultural use of neurotoxic pesticides, including the OPs chlorpyrifos and diazinon, was also higher in 1995 than in 1991, most likely due to increased use on cotton, and to a lesser extent on oranges, alfalfa, apples, and broccoli (16,17). Overall, pesticide use in California appears to be stable or increasing, with annual fluctuations making it difficult to identify long-term trends.

Pesticide residue in food may also contribute to children’s exposures. In response to concern about low-level exposure, the Food Quality Protection Act of 1996 (P.L. 104–170) (19) was unani mously passed by the U.S. Congress to address pesticide food safety issues raised by the seminal 1993 National Academy of Sciences report Pesticides in the Diets of Infants and Children (13). This report drew the public’s attention to the specific vulnerability of children to many pesticides. The National Academy of Sciences committee found that current tolerances for pesticide levels in food are not health based and may not adequately protect children. Congress specifically directed the U.S. Environmental Protection Agency (U.S. EPA) to reevaluate food tolerances and establish health-based standards that account for children’s unique sensitivity to environmental toxicants. The law requires the U.S. EPA to consider all nonoccupational sources of pesticide exposure, especially exposure to compounds with similar mechanisms of toxicity. The National Academy of Sciences recommended in 1993 that the U.S. EPA modify its...
decision-making process for setting pesticide tolerances to reflect the unique characteristics of the diets of infants and children and account also for all nondietary intake of pesticides (13). Findings from several small, cross-sectional studies (3–6,8,12) indicate that nondietary exposures to young children from residential contamination may be an important component of total pesticide exposure. Unfortunately, our knowledge about the actual levels of pesticide exposures of children from food and environmental exposures and their potential health effects is extremely limited.

Children's Exposure to Pesticides

National population-based surveys of pesticide urinary metabolites in adults indicate widespread exposure to pesticides, including organophosphates, carbamates, wood preservatives, and fungicides (20,21). For example, Hill et al. (20) detected chlorpyrifos, an OP pesticide, in 82% of 993 adults tested through the National Health and Nutrition Examination Survey, and found a 5-fold increase in the proportion of adults with levels over 5 μg/L compared to earlier surveys, suggesting increasing exposure in the general population. OPs are eliminated from the body after 3–6 days (22), so the widespread detection of these compounds indicates continuing exposure.

Biologic information on children's pesticide exposure is very limited. Hill et al. (23) reported detections of dichlorobenzene and wood preservatives in 96% and 100%, respectively, of 197 Arkansas children, whereas phenoxy herbicide metabolites were found in 20% of all samples. Preliminary results from the federal Agricultural Health Study indicate detectable pesticide residues in children's urine (8). Loewenherz et al. (24), working in Washington state, found that 44% of children of pesticide applicators and 27% of nonfarm, rural children had detectable OP residues. In preliminary data from Arizona, chlorpyrifos was detected in 100% of about 40 children >6 years of age sampled in a population-based survey, and approximately 25% of 150 children ≤6 years of age sampled in an agricultural area. Detection limits in the second survey were higher (25). Comparison of these studies to each other and to data reported by Hill et al. (20) is difficult because of differences in detection limits, sample type (spot samples vs first morning void), and ages of participants. Overall, these studies suggest the potential for widespread low-level pesticide exposure in children and the need for population-based studies to establish norms.

Pesticides enter children's bodies via dermal absorption, ingestion, and inhalation. Exposure in the home depends on the frequency, duration, and nature (i.e., dermal contact, hand-to-mouth behavior) of the child's interaction with contaminated media such as house dust. Children may have higher exposure to pesticides than other residents living in the same contaminated environment, in part because young children spend more of their time indoors at home (26,27). Thus, they are likely to spend more time in proximity to any pesticides present in their immediate environment. The importance of specific exposure-related behaviors, such as hand-to-mouth activity, will be age dependent, suggesting that consequent exposure levels and pathways will vary with age, as has been observed for lead exposure (28). For example, children younger than 6 months of age may receive their greatest exposures through breast milk or inhalation, but dermal absorption and ingestion may be the major pathway of exposure when children begin crawling and placing their hands on dusty surfaces and increasing their hand-to-mouth behavior. The level of exposure may continue to increase, given that the normal tendency of young children to explore their environment orally increases through 2 years of age. The actual dose to the child will depend on environmental concentrations and the efficiency of pesticide uptake for the different types of exposure routes, i.e., dermal contact versus ingestion. To date, direct observation and quantification of children's exposure-related activity patterns and their interaction with their environment is very limited. Time-activity analysis thus could provide information about age-specific exposure pathways.

To assess time–activity patterns, most researchers have preferred self-administered time diaries and interviews (29,30). However, these diaries are subject to inaccurate recall and thus have limited validity (31–33). Moreover, they fail to document microactivities such as dermal and hand-to-mouth contacts, which are important pathways of exposure in young children. Observational techniques are more detailed and accurate than conventional methods of questionnaires and diaries for recording such microscopic data (34–37). Leckie and Zartarian and co-workers (36–39) have successfully developed videotaping methodologies and video translation software to quantify children's activity patterns for dermal and nondietary contacts, and have piloted these techniques on 2- to 4-year-old children of Mexican American farmworkers in California (36). More extensive data collection is needed on children of various ages to assess the changing pathways and routes of exposure as children develop.

Exposures of Farmworkers and Their Families

Nationally, an estimated 5 million farmworkers work on America's farms, including approximately 1 million California residents (40). A growing body of literature indicates that resident farm families, hired farmworkers, and their children are among those most highly exposed to pesticides (5,6,8,10,12,24,41–49). These studies suggest that farm children can be exposed by the same pathways as other children, namely through consumption of contaminated food, by household use of pesticides, as a result of drift from nearby agricultural applications, by contaminated breast milk from their farmworker mothers, by playing in the fields, and through pesticides tracked into their homes by their parents or other household members working in fields (5,6,8,10,12,24,41–43,50,51). For example, preliminary data from pilot studies conducted for the Agricultural Health Study in North Carolina and Iowa indicate elevated levels of recently applied pesticides in the food, homes, and bodies of farm families and their children (8,10,12,43,44). In a study of 88 children in the Yakima Valley, Washington, Loewenherz et al. (24) reported more frequent detection of OP metabolites in children of pesticide applicators compared to nonapplicators, particularly those living less than 200 ft from orchards. Trends of increasing exposure with decreasing age also suggested that child activity is an important exposure variable.

Simcox et al. (5) studied 59 families in the Yakima Valley, and compared levels of four organophosphate (OP) pesticides in the homes of hired farmworkers, families residing on farms, and nonagricultural families. Chlorpyrifos was detected in 95% of the homes. House dust concentrations were consistently higher for agricultural families than for nonagricultural families, and pesticide applicators tended to have higher house dust concentrations compared to nonapplicators. There was a 3-fold difference in median chlorpyrifos house dust concentration between farmworkers who did not directly handle pesticides and reference families of nonfarmworkers living in agricultural communities (median
Several case-control studies have associated exposure to OPs and carbamates with tumors, increased risk of neurodevelopmental disorders, and adverse health effects, including neurologic, cardiovascular, and respiratory effects. Bradman et al. (6) conducted a pilot study of pesticide exposures to children of migrant farmworkers and nonfarmworkers living in a largely Latino community in California's Central Valley. Floor dust samples and child hand wipes were collected from the homes of 10 families, 5 of which had at least one resident farmworker. Higher levels of the OPs diazinon (maximum = 160 ppm), chlorpyrifos (maximum = 33 ppm), and malathion (maximum = 1.6 ppm) were found in house dust in farmworker homes (6). Residues of diazinon and chlorpyrifos were detected on the hands of two and three farmworker toddlers, respectively, who also lived in the homes with the highest dust concentrations. A preliminary risk assessment suggested that diazinon exposures in children could exceed the U.S. EPA Office of Pesticide Program's oral reference dose of 9E-5 mg/kg/day.

Overall, the findings from these studies suggest that inadvertent carry-homes of occupational pesticides are occurring and that contamination in the homes of farm families are likely to be higher than in other homes. Further, a significant source of exposure to farmworker families may derive from their residential proximity to fields.

Potential Health Effects of Exposure to OP Pesticides

Studies of the effects of pesticide exposure on children's health have been limited to those of birth defects, childhood cancer, and acute poisonings following ingestion. Several case-control studies have associated parental exposure to pesticides or pesticide use in the home with childhood brain tumors, leukemias and lymphomas, testicular cancers, and other cancers (52-55). Other studies have reported that parental exposure to pesticides or application of pesticides in the home is associated with certain birth defects including neural tube and other birth defects (56,57).

To date, only one small ecologic study has examined whether low-level chronic exposure of children to pesticides can lead to adverse health consequences (58). This study of Yaqui children in Mexico found that children 4-5 years of age (n = 33) living in an agricultural valley with presumably higher pesticide exposure had deficits in tests of stamina, coordination, recall, and ability to draw a person, compared to children (n = 17) living in the foothills where there was mostly ranching. This study, although suggestive of an effect of pesticides, is limited by small sample size, utilization of a convenience sample, the lack of individual exposure data, and no statistical control of potential confounders. At present, the only prospective study investigating pesticides and adverse health effects is the National Cancer Institute/ U.S. EPA Agricultural Health Study, which is a large cohort study of cancer in midwestern and eastern farmers and their families (49). In spite of the paucity of information concerning the potential health effects in children of chronic low-level exposure to organophosphates, there is substantial evidence in developing rodents and limited evidence in adult humans who have been chronically exposed to OPs. In studies with OPs, the results reported (68,69).

The primary effects of OP and carbamate acute exposure are on the parasympathetic, sympathetic, and central nervous systems. These pesticides interfere with the metabolism of acetylcholine (ACh) by inhibiting the enzyme that hydrolyzes it, acetylcholinesterase (AChE) (59). ACh accumulates at the neuronal junctions, resulting in the continued stimulation and then suppression of neurotransmission to organs. ACh is the chemical transmitter of somatic motor neurons to skeletal muscle, postganglionic parasympathetic nerve fibers, preganglionic fibers of both sympathetic and parasympathetic nerves, and some fibers in the central nervous system. The accumulation of ACh at the motor nerves results in weakness, fatigue, muscle cramps, fasciculations, and muscular weakness of respiratory muscles. Accumulation at the autonomic ganglia results in increased heartbeat and blood pressure, pallor, and hypoglycemia. Accumulation of ACh at muscarinic receptors results in visual disturbances, tightness in the chest and wheezing due to bronchoconstriction and increased bronchial secretions, and increased salivation, lacrimation, sweating, peristalsis (resulting in nausea, vomiting, cramps, diarrhea), and urination. Central nervous system effects from ACh accumulation include anxiety, headache, confusion, convulsions, ataxia, depression of respiration and circulation, slurred speech, tremor, and generalized weakness (59,60). Carbamates, unlike OPs, do not irreversibly inhibit AChE. Thus, their activity is quickly reversed after exposure of the pesticide (61). Pregnancy may pose a risk increased risk because plasma AChE activity is already reduced, at least during the first two trimesters (62,63).

The most frequent acute symptoms of OP poisoning in children include miosis, excessive salivation, nausea and vomiting, lethargy, muscle weakness, tachycardia, hyporeflexia, and hypertonia, and respiratory distress (60,64). Duration of symptoms depends on the dose, with the highest doses resulting in death. In one study, pneumonitis developed in one third of poisoned children (64). OP-induced delayed onset peripheral neuropathy (OPIDN), reported for adults, has not been reported in children.

Long-Term Sequelae of Acute Exposure to OP and Carbamate Pesticides in Adults

Although no studies have examined the long-term sequelae of acute pesticide poisoning in children, some studies in adults suggest that there are residual effects. Neuropsychologic investigations of poisoned farmworkers, pest control workers, and industrial workers tested a number of months to years after acute exposure to various OP pesticides have revealed deficits in overall abstraction, verbal and visual attention, visual memory, visuomotor speed, sequencing, visuomotor problem solving, motor steadiness, motor dexterity, and fine motor speed (65-68). These workers report anxiety, depression, irritability, confusion, and impaired concentration and memory. On neurologic exam, lower vibrotactile sensitivity has been reported (68,69). High acute or subchronic exposures to OPs may also result in delayed neurotoxicity or OPIDN (59,70,71). OPIDN usually manifests 1 to 6 weeks after exposure and may result in moderate to severe peripheral neuropathies lasting months, years, or indefinitely (59).

Effects of Chronic Exposure to OP and Carbamate Pesticides in Adults

Although there are no studies in children on the neuropsychologic effects of chronic pesticide exposure, small studies of chronic low-level exposures of farmers or pest
control workers who had levels of AChE within normal limits found no differences in tests of their neurobehavioral functioning compared to those of unexposed controls (72) or in a pre/post exposure comparison (73). Results of other studies in adults indicate that there may be mild peripheral effects of chronic lower level exposure as indicated by slower reaction times (74), impaired proprioception (postural sway) (75), decreased conduction velocities in motor (median and peroneal) and sensory (median and sural) nerves (76), wider two-point discrimination (77), as well as some neurobehavioral effects such as increased anxiety (78), decreased visual-motor speed (65,79,80), and short-term verbal memory (79). Daily exposure to OPs that are insufficient to cause signs and symptoms of acute poisoning may also produce an influenza-type illness characterized by weakness, anorexia, and malaise (81). In chronic lower level exposures, depression of cholinesterase activity may be cumulative, and there is no predictable correlation between the severity of symptoms and the degree of cholinesterase inhibition.

Animal Evidence for Neurodevelopmental Effects of Exposure to OP Pesticides

There is a strong and growing body of evidence linking exposure to OP pesticides during gestation or the early postnatal period and neurodevelopmental effects in animals. These effects may be due to the direct impact of OPs on the cholinergic system of the fetus, although effects on cellular intermediates such as adenylyl cyclase (82) and altered DNA synthesis in the brain through noncholinergic mechanisms (83–85) have been hypothesized. Table 1 summarizes animal studies investigating different organophosphate pesticides, dosing regimes, and exposure routes and their impacts on the developing nervous system.

Chlorpyrifos

Neurobehavioral tests given postnatally found that animals exposed in utero demonstrated decreased balance (86), increased righting reflex time, and poorer cliff avoidance (87,88). When exposure occurred in the early postnatal period, there was a lowered threshold for convulsions (89) as well as increased gait abnormalities and tremors (90) and deficits in delayed alternation on mazes (91).

Some studies suggest that early gestation may be a critical period for the neurodevelopmental effects of certain pesticides. Muto et al. (86) studied the effects of exposure to chlorpyrifos in rats occurring both during gestation (gestation days 0–7 and 7–21) and the postnatal period. They reported that early prenatal exposures were more likely to result in poorer performance on the rotorod test than exposures during later gestation, which was in turn, more likely to result in deficits than those occurring postnatally.

A number of mechanisms have been proposed to explain the observed neurobehavioral effects in animals. Chanda and Pope (88) found that repeated exposure of rodents to low levels of chlorpyrifos during gestation was related to inhibited levels of AChE and downregulated muscarinic receptors in the fetal brain. Transient brain AChE inhibition also has been consistently reported in neonates postnatally exposed to chlorpyrifos (90–94). Other effects of chlorpyrifos that, in part, could explain the neurobehavioral impairment include decreased muscarinic receptor binding (90,94,95), altered brain RNA concentrations (96), and inhibition of brain DNA synthesis (84,85,97). For example, after treating rats on postnatal days 1–4 with a dosage that produced minimal AChE inhibition (1 mg/kg), Dam et al. (85) reported large deficits in DNA synthesis in the brain stem and forebrain, with lesser effects on the cerebellum. Similar deficits in DNA synthesis were observed after a single early postnatal exposure but at a slightly higher dose (97). Early postnatal exposure to chlorpyrifos (postnatal days 1–4 or 11–45) also altered RNA concentrations in the brain stem and forebrain of rats (96). By targeting RNA, the macromolecule that controls postmitotic processes of cell differentiation and growth, the chemical may evoke alterations in cell function and number in developing organisms (96).

The results of these studies indicate that OP pesticides could contribute to behavioral abnormalities in young animals by producing cellular deficits in the developing brain. Recently, Campbell et al. (84) concluded that regions rich in cholinergic projections, such as the brain stem and forebrain may be more affected than the less cholinergic regions such as the cerebellum. However, the maturational timetable of each region (brain stem then forebrain then cerebellum) may be an important factor in determining relative vulnerability. Nevertheless, there is reasonable evidence that even subtoxic exposure to chlorpyrifos during the critical period of brain development could produce cellular, synaptic, and neurobehavioral aberrations in animals (97).

Other OP Pesticides

OPs other than chlorpyrifos have been associated with lowered AChE in the brain of rodents exposed prenatally [bromophos (98), dichlorvos (99), dimethoate (100), methyl parathion (101), quinalphos (102)]. Studies in which animals were exposed early in the postnatal period to these other organophosphate pesticides have also reported inhibition of brain AChE [dichlorvos (103), diisopropylfluorophosphate (104), quinalphos (105), parathion (92,93,95,106)] and downregulation of muscarinic receptors [diisopropylfluorophosphate (104,107), parathion (95,106)]. In addition, evidence from a single in vitro study suggests that prenatal exposure to organophosphates could alter human fetal brain AChE levels. For example, Banerjee et al. (108) reported a dose-dependent inhibition of cerebellar AChE activity in human fetal brain cells (8–10 weeks gestation) treated with 5 × 10⁻¹¹ to 5 × 10⁻⁸ M diisopropylfluorophosphate. Further research in rodents has found reductions in brain weight, most pronounced in the cerebellum and brainstem, following OP exposure during gestation [dichlorvos (109), trichlorfon (109–111)].

Neurobehavioral deficits such as impaired maze performance [dichlorvos (99), diazinon (112)], decreased open-field activity [sumithion (113)], impaired locomotion or swimming [trichlorfon (110), diazinon (112)], and reduced time on the rotord test [diazinon (112), sumithion (113)] have also been associated with prenatal organophosphate exposure. In addition, permanent alterations in spontaneous motor behavior (i.e., locomotion, rearing, and total activity) have been observed in mice exposed to a single subthreshold dose of diisopropylfluorophosphate early in the postnatal period (107).

Other Potential Developmental Effects of OP Pesticides

Decreased Birth Weight and Altered Growth

A number of the animal studies reported above have demonstrated a decrease in birth weight or body weight in developing animals exposed to OPs. Anticholinesterase agents such as OPs may have a nonspecific regulatory effect on growth, perhaps by an influence on placental transport of nutrients (112,114) or by altering the activity and reactivity of the adenylyl cyclase.
Table 1. Review of the literature of the effects of organophosphate pesticides on neurobehavioral functioning in developing animals.

Author, year	Species	Agent (dose mg/kg)	Exposure period	Neurodevelopmental effects		
Spyker and Avery, 1977 (112)	Mouse	Diazinon (0.18, 9) Oral	Throughout gestation	Lower birth weight Decreased rate of postnatal weight gain Balance (rotorod), swimming, and maze (speed) effects No differences in auditory startle, visual cliff response, or open-field motor activity		
Crowder et al., 1980 (132)	Rat	Methyl parathion (1.0) Gavage	GD 7–15	Slight changes in learning ability as measured by simple two-choice maze Effects on open-field activity		
Maslinska et al., 1981 (103)	Rabbit	Dichlorvos (9.0) Gavage	PND 6–16 or 16	Inhibited AChE activity in all brain regions tested; recovery slower in animals exposed over 10 days than after a single dose Decreased serotonin concentration in brainstem (22%), mesencephalon (26%), and hippocampus (59%) after prolonged exposure		
Gupta et al., 1985 (101)	Rat	Methyl parathion (1.0, 1.5) Oral	GD 6–12	Altered postnatal development of brain cholinergic neurons Reduced AChE activity in all brain regions (1.5 mg/kg) Increased choline acetyltransferase activities in all brain regions (1.5 mg/kg) Subtle alterations in selected behaviors: impaired cage emergence, accommodated locomotor activity, and operant behavior in a mixed paradigm No morphologic changes in hippocampal or cerebellar tissue		
Berge et al., 1986 (110)	Guinea pig	Trichlorfon (100) Gavage	GD 36–38 or 51–53	Disturbances of locomotion Reduced brain weight, particularly cerebellum, hippocampus, thalamus, and colliculi		
Pope et al., 1986 (133)	Pig	Trichlorfon (60) Oral	GD 55 or 55 and 70	Dose-related cerebellar hypoplasia Ataxia not observed in neonates		
Stamper et al., 1988 (95)	Rat	Parathion (1.3, 1.9) Subcutaneous	PND 5–20	Dose-dependent reductions in AChE activity and muscarinic receptor binding in the cortex No differences in most reflex measures, eye opening, or incisor eruption during the preweanling period Small deficits in tests of spatial memory in both the T-maze and the radial arm maze during the postweanling period		
Lehotzky et al., 1989 (113)	Rat	Sumithion (5, 10, 15) Gavage	GD 7–15	Dose-related decrease in open-field activity and motor coordination (rotorod) Alterations in acquisition and extinction of a conditioned escape response Increased social interactions No significant behavioral effects at lowest dose (5 mg/kg)		
Clemens et al., 1990 (134)	Rat	METASYSTOX-R (Methyl demeton) (0.5, 1.5, 4.5) Oral	GD 6–15	No differences in fetal brain AChE No differences in neonatal survival, growth, and development No alteration of sensory or reflex functions, maze learning ability, or open-field activity		
Veronesi and Pope, 1990 (106)	Rat	Parathion (0.882) Subcutaneous	PND 5–20	Cellular disruption and necrosis in the dentate gyrus and CA4 regions of the hippocampus Depressed hippocampal AChE (73%) and muscarinic [H] QNB binding (38%) at PND 12		
Pope et al., 1991 (92)	Rat	Methyl parathion (7.8) (adult: 18) Parathion (2.1) (adult: 18) Chlorpyrifos (45) (adult: 279) Subcutaneous	PND 7 and adult	ChE inhibition in whole brain, plasma, and erythrocytes (transient) Maximal brain ChE inhibition (>78%) similar in both age groups ChE activity recovered faster in neonate		
Muto et al., 1992 (86)	Rat	Chlorpyrifos (0.03, 0.1, 0.3) (0.1, 0.3) Intrapertional	GD 0–7 or 7–21 PND 3, 10 or 12, 6–10	Lower body weight Balance effects (rotorod) Effects on open-field motor behavior Effects early gestation > late gestation > postnatal		
Pope and Chakraborti, 1992 (93)	Rat	Methyl parathion (< 7.8) (adult: < 18) Parathion (< 2.1) (adult: < 18) Chlorpyrifos (< 45) (adult: < 279) Subcutaneous	PND 7 and adult	Inhibition of brain and plasma ChE activity in both neonate and adult Good correlation between brain ChE (r = 0.93) or plasma ChE (r = 0.99) inhibitory potency and acute toxicity		
Author/Year	Species	Agent (dose mg/kg)	Route	Exposure period	Neurodevelopmental effects	
------------	---------	--------------------	-------	----------------	--------------------------	
Srivastava et al., 1992 (102)	Rat	Quinaphos	(0.5, 1.5) Gavage	GD 6–20	Reduced AChE activity in fetal brain (0.5–1.5 mg/kg) and placenta (1.5 mg/kg) No differences in fetal weight or anomalies	
Baldiuni et al., 1993 (104)	Rat	Diisopropyl-fluorophosphate	(0.5–1.0) Subcutaneous	PND 4–9 or 4–20	Inhibition of AChE Downregulation of muscarinic receptor recognition sites These alterations may delay the maturation of the cholinergic system and may account for some long-lasting neurotoxic effects observed after developmental exposure	
Wurpel et al., 1993 (89)	Rat	Chlorpyrifos	(0.3–10) Subcutaneous	PND 16 or 17	More rapid amygdala kindling in treated animals Proconvulsant effect was dose related Increased excitability of the amygdala	
Chakraborti et al., 1993 (94)	Rat	Chlorpyrifos	(40) Subcutaneous	PND 7–10	AChE activity 55–60% controls Less inhibition of AChE in neonate relative to adult Muscarinic [3H] QNB receptor binding in cortex, hippocampus, and striatum marginally affected (5–11% reduction) in neonate Basal motor activity levels not affected	
Mehl et al., 1994 (129)	Guinea pig	Dichlorvos	(15–30) Gavage	GD 42–46	Reduction in brain weight Most pronounced in cerebellum, medulla, thalamus, hypothalamus, and quadrageminal plate	
Santhoshkumar and Shivanandappa, 1994 (36)	Rat	Bromophos	(500) Gavage	GD 18	AChE inhibition in fetal brain started at 2 hr and reached a maximum at 16 hr postexposure (transient) Recovery almost complete by PND 1 Sensitivity of ChE inhibition in vivo: maternal serum > maternal brain > fetal brain	
Stanton et al., 1994 (91)	Rat	Chlorpyrifos	(90, 120, 240) Subcutaneous	PND 21	Signs of severe poisoning prevented behavioral testing at highest dose Transient memory impairment on maze (120 mg/kg) Dose-related inhibition of brain AChE but transient Reduced muscarinic binding of [3H]QNB in frontal cortex (240 mg/kg)	
Ahlbom et al., 1995 (107)	Mouse	Diisopropyl-fluorophosphate	(1.5) Gavage	PND 3, 10, or 19	Altered spontaneous motor behavior (increased locomotion, rearing, and total activity) observed at adult age of 4 months Decreased muscarinic receptor density at adult age Persistent effects found in adult mice exposed to single subsymptomatic dose on PND 3 or 10, not in animals exposed on PND 19	
Chanda et al., 1995 (87)	Rat	Chlorpyrifos	(200) Subcutaneous	GD 12	Decreased brain AChE activity in both dams (85–88%) and fetuses (42–44%) By PND 3, brain AChE still inhibited in pups (30%), less than for dams (82%) In vitro inhibition of maternal and fetal brain AChE activity indicated that prenatal AChE activity was somewhat more sensitive Righting reflex time was increased in PND 1 pups No differences in righting reflex at PND 3	
Nagymajtenyi et al., 1995 (135)	Rat	Dimethoate	(7, 10.5, 14, 28) Dichlorvos	Three generations	Altered electrophysiological function in primary somatosensory, visual, and auditory cortex Increased mean frequency and EEG index, and decreased mean amplitude dose dependent Changes more expressed in second and third generations AChE inhibition in brain (significant at highest dosages)	
	Rat	Dichlorvos	(1, 1.5, 2, 3.9) Methyl parathion	Throughout gestation and lactation		
	Rat	Dichlorvos	(0.2, 0.3, 0.4, 0.9) Gavage			
	Rat	Dichlorvos	(0.97–3.88) Oral			
Schulz et al., 1995 (89)	Rat	Dichlorvos	(0.97–3.88) Oral	Throughout gestation and lactation	Increased maze running time and errors AChE in brain 40–65% control Changes were dose related	
Whitney et al., 1995 (97)	Rat	Chlorpyrifos	(2.0) Subcutaneous	PND 1	Inhibition of DNA synthesis within 4 hr of treatment and at 8 days of age in all brain regions Concluded that low doses target the developing brain during critical period in which cell division is occurring, effects that may produce eventual cellular, synaptic, and behavioral aberrations after repeated or prolonged subtoxic exposures	
Breslin et al., 1996 (115)	Rat	Chlorpyrifos	(0.1, 3, 15) gavage	GD 6–15	Two generations: AChE inhibition in brain (52% control) and decreased body weight in F1 litters (5 mg/kg)	

(Continued)
signaling cascade, which would disrupt cell development in all areas of the body, not only those cholinergically regulated (82).

Muto et al. (86) reported lower body weight in rats exposed during the first 7 days of gestation to chlorpyrifos (0.03 mg/kg); with higher doses they found a decrease in the length of the limbs (0.1 and 0.3 mg/kg) and head circumference (0.3 mg/kg). Other studies have reported a decrease in pup weight (115) and a decrease in weight gain postnatally following exposure to chlorpyrifos (88) or diazinon (112) during gestation. Spyker and Aver (112) also reported lower birth weight and a slower rate of postnatal weight gain in mice exposed to diazinon (9 mg/kg) throughout gestation. In rats, low levels of two carbamates and a triazine herbicide administered postnatally interacted to increase thyroxine levels and alter levels of somatotropins, hormones that regulate growth (116).

Potential Respiratory Health Effects

Much of the animal literature reviewed here has focused on the central nervous system effects of organophosphate exposure. Because OP pesticides exert their pharmacologic effects through inhibition of AChE, both short- and long-term effects on autonomic regulation are prominent features in the toxicology of this class of pesticides (76,117). No previous work has addressed the autonomic sequelae of pesticide exposure per se, yet disorders of autonomic regulation may be one of the earliest and most sensitive measures of long-term physiologic effects of exposures in infants and young children.
Similarly, the parasympathetic nervous system provides the principal neural control of lung airway tone. There are considerable data indicating that dysregulation of both parasympathetic (cholinergic) and sympathetic autonomic control of airways, such as by pesticide exposure, may be important in the occurrence of asthma and its severity (118). Dysregulation of parasympathetic function, as measured by respiratory sinus arrhythmia, predicts the onset of wheezing in adults (119). Although there are few direct studies of the effects of OP and carbamate pesticide exposure on asthma risk, farmworkers’ exposure to carbamate pesticides has been associated with the occurrence of asthma after adjustment for other relevant factors (120). Professional fumigators reportedly have an increased occurrence of allergy and asthma in parallel with a higher risk of a > 20% decrease in red blood cell AChE (121). Exposure to chlorpyrifos has also been associated with an increase in the occurrence of atopic conditions (122). Although none of these studies involved children, they raise the prospect that pesticide exposure could be important etiologic and morbidity-modifying factors in the occurrence of childhood asthma.

Biologic Plausibility for the Effects of Low-Level Chronic Pesticide Exposure in Children

Tests on young rodents demonstrate a progressive decrease in susceptibility to OP pesticides with increasing age (13,123–125). In some cases, the lethal dose in immature animals is only 1% of the adult lethal dose (92,93,97). A study of rats found that animals 1 and 7 days of age tolerated only 4% and 17% of the adult dose, respectively (92,93,97). Seven-day-old rats were 2.3, 8.6, and 6.2 times more sensitive than adults to the acute toxicity of methyl parathion, parathion, and chlorpyrifos, respectively (92). In humans, children have had higher fatality rates than adults in several cases of OP poisoning (13).

Young animals may be more susceptible to the toxic effects of organophosphates due to lower activity of detoxifying enzymes such as paraoxonase that deactivate active OP metabolites (e.g., paraoxon, chlorpyrifos–oxon) (123,126–131). For example, Mortensen et al. (126) reported markedly lower plasma and liver chlorpyrifos–oxonase levels in neonate compared to adult rat tissue. They concluded that the higher sensitivity of young rats to acute chlorpyrifos toxicity may not be explained by increased sensitivity of the target enzyme, brain AChE, but it may be partially explained by a deficiency of chlorpyrifos–oxonase activity (126).

Although young animals are more sensitive than adults to the acute toxic effects of chlorpyrifos, some researchers have suggested that lower level chlorpyrifos exposures may produce more extensive neurobehavioral effects in the adult rat than in the neonate (94). In addition, more extensive changes have been found in cholinergic parameters in the maternal brain compared to the fetus or neonate (88). Developing animals also appear to recover more quickly from cholinesterase inhibition than the adult (92,98), and may be less susceptible to developing OPIDN (71). However, repeated low-dose chlorpyrifos exposure during gestation has been associated with persistent neurochemical and neurobehavioral changes in developing rodents (88).

In summary, young children may be especially vulnerable to pesticides because of the sensitivity of their developing organ systems combined with a limited ability to enzymatically detoxify these chemicals (13,123,126–131). According to the National Academy of Sciences (13), children’s OP exposures are of special concern because “exposure to neurotoxic compounds at levels believed to be safe for adults could result in permanent loss of brain function if it occurred during the prenatal and early childhood period of brain development” (13). Because there is so little information available on the levels and routes of children’s pesticide exposure, it is not feasible to conduct a risk assessment predicting the likelihood of adverse effects based on animal studies. Thus far, there are no data in children to support or refute the hypothesized health effects of chronic low-level pesticide exposure.

Future Directions

There is clearly a lack of information on the sources, pathways, and levels of pesticide exposures of children, and in particular, of those children at highest risk because they live in agricultural communities. Similarly, there is a dearth of information on whether low-level chronic exposure to pesticides is associated with adverse health effects. The goal of the Center for Children’s Environmental Health Research at the University of California, Berkeley is to address these questions by conducting a longitudinal cohort study of approximately 500 pregnant women and their children who live in a rural agricultural community in the Salinas Valley of Monterey County, California. The specific aims of this Center for the Health Assessment of Mothers and Children of Salinas, or CHAMACOS (which means “little child” in Chicano Spanish), are to a) characterize OP exposure levels and pathways in pregnant women and their children; b) determine the predictors of OP levels in the body and home; c) describe the exposure-prone behavior of children at different developmental stages using time–activity analysis; and d) follow up the children to 3 years of age to determine whether exposure in utero and/or during the postnatal period is associated with poor neurodevelopment (assessed by tests of the central and autonomic nervous system), slower and stunted growth, and increased prevalence of respiratory symptoms and disease. Our ultimate goal is to involve community partners in planning, coordinating, and conducting an intervention to reduce pesticide exposures to young children in this agricultural community and to evaluate the efficacy and sustainability of the intervention. To accomplish our goals, we have established a multidisciplinary partnership comprised of farmworkers, health care providers, growers, journalists, scientists, educators, and representatives of community groups and state and county health and agricultural departments. We are hopeful that the results of this study will benefit this community and agricultural communities, in general, and will directly contribute to the information necessary for the implementation of the Food Quality Protection Act.

References and Notes

1. Starr HG Jr, Aldrich FD, MacDougall WD, Mounce LM. Contribution of household dust to the human exposure to pesticides. Pestic Monit J 8:209–212 (1974).
2. Reinstedt KS, Louis JB, Rosen JD. Determination of pesticides in indoor air and dust. J AOAC Int 76:1121–1126 (1993).
3. Lewis RG, Fortmann RC, Camann DE. Evaluation of methods for monitoring the potential exposure of small children to pesticides in the residential environment. Arch Environ Contam Toxicol 28:37–46 (1994).
4. Whitmore RW, Immerman FW, Camann DE, Bond AE, Lewis RG, Schaum JL. Non-occupational exposures to pesticides for residents of two U.S. cities. Arch Environ Contam Toxicol 26:47–59 (1994).
5. Simcox NJ, Fanske RA, Wolz SA, Lee IC, Kalman DA. Pesticides in household dust and soil: exposure pathways for children of agricultural families. Environ Health Perspect 103:1125–1134 (1995).
6. Bradman MA, Harlin ME, Draper W, Seidel S,

Environmental Health Perspectives • Vol 107, Supplement 3 • June 1999
CHILDREN AND PESTICIDES

Teran S, Wakeham D, Neutra R. Pesticide exposures to children from California’s Central Valley: results of a pilot study. J Expo Anal Environ Epidemiol 7:217–234 (1997).

7. Buckley T, Liddle J, Ashley D, Paschal D, Burse V, Needham L, Akland G. Environmental and biomarker measurements in nine homes in the lower Rio Grande Valley: multimedia results for pesticides, metals, PAHs, and VOCs. Environmental International 23:705–732 (1997).

8. Steen W, Bond A, Mage D. Agricultural Health Study-Exposure Pilot Study Report. Research Triangle Park, NC.U.S. Environmental Protection Agency, 1997.

9. Colt JZ, SH. Camann, DE. Hartge, P. Comparison of pesticides and other compounds in carpet dust samples collected from used vacuum cleaner bags and from a high-volume surface sampler. Environ Health Perspect 106:721–724 (1998).

10. Camann D, Harding H, Clotheir J, Kuchibhatla R, Bond A. Dermal and in-home exposure of the farm family to agricultural pesticides. In: Measurement of Toxic and Related Air Pollutants. Pittsburgh, PA: Air & Waste Management Association, 1995;548–554.

11. Camann D, MacIntosh D, Weger R, Hamerstrom K, Ryan P. Associations among pesticide and PAH concentrations in residential environmental measurements. In: Unpublished presentation at ISEA Annual Conference, 5–7 November 1997, Research Triangle Park, North Carolina.

12. Camann D, Akland G, Buckley J, Bond A, Mage D. Carpet dust and pesticide exposure of farm children. In: Unpublished presentation at International Society of Exposure Analysis Annual Meeting, 5 November 1997, Research Triangle Park, North Carolina.

13. National Research Council. Pesticides in the Diets of Infants and Children. Washington: National Academy Press, 1993.

14. Aspelin A. Pesticides Industry Sales and Usage, 1994 and 1995 Market Estimates. Washington: U.S. Environmental Protection Agency, 1997.

15. Aspelin A. Personal communication.

16. DPR. Pesticide Use Report, Annual 1995, Integrated Pest Management and Crop, Sacramento, CA. Department of Pesticide Regulation, California Environmental Protection Agency, 1996.

17. Wilhoit L, Supkoff D, Stegall J, Braun A, Goodman C, Hobza B, Todd B, Lee M. An Analysis of Pesticide Use in California. Sacramento, CA. Department of Pesticide Regulation, California Environmental Protection Agency, 1998.

18. Liebman J, Brewer C, Bourque M, Katten A, Rice C, Campbell K. Rising Toxic Tide: Pesticide use in California, 1991–1995. San Francisco: Pesticide Action Network, 1997.

19. Food Quality Protection Act of 1996. U.S. Congress. Pub. L No 104–170, 110 Stat 1489.

20. Hill RH Jr, Head SL, Baker S, Gregg M, Shealy DB, Bailey SL, Williams CC, Sampson JF, Needham LL. Pesticide residues in urine of adults living in the United States: reference range concentrations. Environ Res 71:99–108 (1995).

21. Murphy RS, Kutz FW, Strassman SC. Selected pesticide residues or metabolites in blood and urine specimens from a general population survey. Environ Health Perspect 48:81–86 (1983).

22. Bradway D, Shafik T, Lores E. Comparison of cholinesterase activity, residue levels, and urinary metabolite excretion of rats exposed to organophosphorus pesticides. J Agric Food Chem 25:1353–1358 (1977).

23. Hill R, To T, Holler J, Fast D, Smith S, Needham L, Binder S. Residues of chlorinated phenols and phenoxy acid herbicides in the urine of Arkansas children. Arch Environ Contam Toxicol 18:469–474 (1985).

24. Loewenherz C, Fenske RA, Simcox NJ, Bellamy G, Kalmann D. Biological monitoring of organophosphorus pesticide exposure among children of agricultural workers in central Washington State. Environ Health Perspect 105:1344–1353 (1997).

25. O’Rourke M. Personal Communication, 1998.

26. Silvers A, Florence ST, Rouke DL, Lomiror RJ. How children spend their time: a sample survey for use in exposure and risk assessments. Risk Anal 14:931–944 (1994).

27. CARB. Studies of Children’s Activity Patterns. (Final Report) A733-149. Sacramento, CA: California Air Resources Board, 1991.

28. Lark C, Hardman R, Que Hee S, Hammond P. Peace B. Condition and type of housing as an indicator of potential environmental lead exposure and pediatric blood lead levels. Environ Res 38:46–53 (1985).

29. As D. Observing environmental behavior: the behavior setting. In: Behavioral Research in Environmental Design, Vol 8 (Michelson W, ed). Stroudsburg, PA: Dowden, Hutchinson, and Ross, 1975:280–300.

30. Michelson W. From Sun to Sun: Daily Obligations and Community Structure in the Lives of Employed Women and Their Families. Totowa, NJ: Rowman & Allanheld, 1985.

31. Ott W. Exposure estimates based on computer generated activity patterns. J Toxicol Clin Toxicol 21:97–128 (1983).

32. Ott MG, Teta MJ, Greenberg HL. Assessment of exposure to chemicals in a complex work environment. Am J Ind Med 16:617–630 (1989).

33. Stock T, Moe D. Evaluation of self-reported and independently-observed activity patterns in an air pollution health effects study. In: Unpublished presentation at Research Planning Conference on Human Activity Patterns, Environmental Research Center, Las Vegas, Nevada, 1989.

34. Wright HF. Recording and Analyzing Child Behavior with Ecological Data from an American Town. New York: Harper & Row, 1967.

35. Michelson W. Reed P. The time budget—behavioral research in environmental design. In: Behavioral Research Methods in Environmental Design (Michelson W, ed). Stroudsburg, PA: Dowden, Hutchinson & Ross, 1975:185–234.

36. Zartarian VG, Streicker J, Rivera A, conejo CS, Molina S, Valadez OF, Leckie J. A pilot study to collect micro-activity data of two- to four-year-old farm labor children in Salinas Valley, California. J Expo Anal Environ Epidemiol 5:21–34 (1995).

37. Zartarian V, Ferguson A, Leckie J. Quantified dermal activity data from a four-child pilot field study. J Expo Anal Environ Epidemiol 7:543–552 (1997).

38. Zartarian V. DER (Dermal Exposure Reduction Model): A Physical-Stochastic Model for Understanding Dermal Exposure to Chemicals. Palo Alto, CA: Stanford University, 1996.

39. Zartarian V, Ferguson A, Ong C, Leckie J. Quantifying videotaped activity patterns: video translation software and training methodologies. J Expo Anal Environ Epidemiol 7:535–542 (1997).

40. Moberg K, Gold EB, Schenker MB. Occupational health problems among migrant and seasonal farm workers. West J Med 157:367–373 (1992).

41. Griestop J, Villanueva N, Stiles M. Wash day blues: secondhand exposure to agricultural chemicals. J Rural Health 10:247–257 (1994).

42. NIOSH. Report to Congress on Workers’ Home Contamination Study Conducted Under the Workers’ Family Protection Act, Cincinnati, OH: National Institute for Occupational Safety and Health, 1995.

43. Melnyk LJ, Berry MR, Sheldon LS. Dietary exposure from pesticide application on farms in the Agricultural Health Pilot Study. J Expo Anal Environ Epidemiol 7:61–80 (1997).

44. Sheahey BB, Barr JR, Ashley DL, Patterson DG Jr, Camann DE, Bond AE. Correlation of environmental carbaryl measurements with serum and urinary 1-naphthol measurements in a farmer applicant and his family. Environ Health Perspect 105:510–513 (1997).

45. Musico M, Sant M, Molinari S, Filippini G, Gatta G, Bernini F. A case-control study of brain gliomas and occupational exposure to chemical carcinogens: the risk to farmers. Am J Epidemiol 128:779–785 (1988).

46. Brown BL, Blair A, Gibson R, Everett GD, Cantor KP, Schuman LM, Burmeister LF, Van Lier SF, Dick F. Pesticide exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota. Cancer Res 50:655–659 (1990).

47. Richter ED, Chouwer P, Levy Y, Gordon M, Grauer F, Marzouk J, Levy S, Barron S, Gruener N. Health effects from exposure to organophosphate pesticides in workers and residents in Israel. Isr J Med Sci 25:555–568 (1989).

48. Moses M, Johnson ES, Anger WK, Burse WV, Horstman SW, Jackson RJ, Lewis RG, Maddy KT, McConnell R, Meggs WJ, et al. Environmental equity and pesticide exposure. Toxicol Ind Health 9:913–953 (1993).

49. Alavanja MC, Sandifer DP, McMaster SB, Zhao SH, McConnell CJ, Lynch CF, Pennybacker M, Rothman N, Dosemeci M, Bond AE, et al. The Agricultural Health Study. Environ Health Perspect 104:362–363 (1996).

50. Sonawane B. Chemical contaminants in human milk: an overview. Environ Health Perspect 103:197–205 (1995).

51. USDA. United States Department of Agriculture, Pesticide Data Program: Annual Summary Calendar Year 1997. Agricultural Marketing Service, 1997.

52. Buckley JD, Robison LL, Swatosky R, Garabrant DH, LeBeau M, Manchester P, Nesbit ME, Odom L, Peters JM, Woods WG. Occupational exposures of parents of children with acute nonlymphocytic leukemia: a report from the Children’s Cancer Study Group. Cancer Res 49:4030–4037 (1989).
53. Blair A, Zahm SH, Pearce NE, Heineman EF, Fraumeni JF Jr. Clues to cancer etiology from studies of farmers. Scand J Work Environ Health 18:208–215 (1992).

54. Leiss JK, Savitz DA. Home pesticide use and childhood cancer: a case-control study [see comments]. Am J Public Health 85:249–252 (1995).

55. Kristensen P, Andersen A, Irgens LM, Bye AS, Vagstad N. Testicular cancer and parental use of fertilizers in agriculture. Cancer Epidemiol Biomarkers Prev 5:3–9 (1996).

56. Shaw GM, Wasserman CR, O'Malley CD. Maternal pesticide exposures as risk factors for oralclefts andneural tube defects. Am J Epidemiol 141(suppl 11):S3 (1995).

57. Blatter BM, Hermens R, Bakker M, Roeleveld N, Verbeek AL, Ziehau G. Maternal occupational exposure around conception and spina bifida in offspring. Am J Ind Med 22:283–291 (1993).

58. Guillitte EA, Meza MM, Aquilar MG, Soto AD, Garcia IE. An anthropological approach to the evaluation of preschool children exposed to pesticides in Mexico. Environ Health Perspect 106:347–353 (1998).

59. Ecobichon D. Organophosphorus ester insecticides. In: Pesticides and Neurological Diseases (Ecobichon DJ, Joy RM, eds.). Boca Raton, FL: CRC Press, 1994:171–250.

60. Sherman JD. Organophosphate pesticides—neurological and respiratory toxicity. Toxicol Ind Health 11:33–39 (1995).

61. Keifer MC, Mahurin RK. Chronic neurologic effects of pesticide overexposure. Occup Med 12:291–304 (1997).

62. Howard JK, East NJ, Chaney JL. Plasma cholinesterase activity in early pregnancy. Arch Environ Health 33:277–279 (1978).

63. Evans RT, O'Callahan J, Norman A. A longitudinal study of cholinesterase changes in pregnancy. Clin Chem 34:2249–2252 (1988).

64. Zwirner RJ, Ginzburg CM. Organophosphate and carbamate poisoning in infants and children. Pediatrics 81:121–126 (1988). [published erratum appears in Pediatrics 81(5):683 (1988)].

65. Eskenazi B, Maizlish NA. Effects of occupational exposure to chemicals on neurobehaviorsal functioning. In: Medical Neuropsychology: The Impact of Disease on Behavior (Tarter RC, Thiel DHV, Edwards KL, eds.). New York City: Plenum Press, 1988:223–264.

66. Savage EP, Keefe TJ, Mounce LM, Heaton RK, Lewis JA, Bucar FJ. Chronic neurololgical sequelae of acute organophosphate pesticide poisoning. Arch Environ Health 43:38–45 (1988).

67. Rosenstock L, Keifer M, Daniell WE, McConnell R, Claypoole K. Chronic central nervous system effects of acute organophosphate pesticide intoxication. The Pesticide Health Effects Study Group [see comments]. Lancet 338:223–227 (1991).

68. Steenland K, Jenkins B, Ames RG, O'Malley M, Chrisp D, Russo J. Chronic neurological sequelae to organophosphate pesticide poisoning. Ann N Y Acad Sci 741:37–136 (1994).

69. McConnell R, Keifer M, Rosenstock L. Elevated quantitative vibrotactile threshold among workers previously poisoned with methamidophos and other organophosphate pesticides. Am J Ind Med 25:325–334 (1994).
inhibition on postnatal brain development in rabbit. J Level of serotonin in different brain regions. Acta Neuropathol Suppl 7:52–55 (1981).

104. Balduni W, Cimino M, Reno F, Marini P, Princivalle A, Cattabeni F. Effects of postnatal or adult chronic acetylcholinesterase inhibition on muscarinic receptors, phosphoinositide turnover and m1 mRNA expression. Eur J Pharmacol 248:281–286 (1993).

105. Gupta A, Gupta A, Shukla GS. Effects of neonatal quinalphos exposure and subsequent withdrawal on free radical generation and antioxidative defenses in developing rat brain. J Appl Toxicol 18:71–77 (1998).

106. Veronesi B, Pope C. The neurotoxicity of parathion-induced acetylcholinesterase inhibition in neonatal rats. Neurotoxicology 11: 659–626 (1990).

107. Ahlbom J, Fredriksson A, Eriksson P. Exposure to an organophosphate (DFP) during a defined period in neonatal life induces permanent changes in brain muscarinic receptors and behavior in adult mice. Brain Res 677:13–19 (1995).

108. Banerjee J, Ghosh P, Mitra S, Ghosh N, Bhattacharya S. Inhibition of human fetal brain acetylcholinesterase: marker effect of neurotoxicity. J Toxicol Environ Health 33:283–290 (1991).

109. Meh1 A, Schanke TM, Johnsen BA, Fonnum F. The effect of trichlorfon and other organophosphates on prenatal brain development in the guinea pig. Neurotoxicology 13:1–14 (1992).

110. Borge GN, Nafstad I, Fonnum F. Prenatal effects of DFP on the guinea pig brain. Arch Toxicol 39:30–35 (1986).

111. Hjelde T, Meh1 A, Schanke TM, Fonnum F. Teratogenic effects of trichlorfon (Metrifonate) on the guinea-pig brain. Determination of the effective dose and the sensitive period. Neurochem Int 32:469–477 (1998).

112. Spyker JM, Avery DL. Neurobehavioral effects of prenatal exposure to the organophosphate Diazinon in mice. J Toxicol Environ Health 3:989–1002 (1977).

113. Lehotzky K, Szabereinyi MJ, Kiss A. Behavioral consequences of prenatal exposure to the organophosphate insecticide sumithion. Neurotoxicol Teratol 11:321–324 (1989).

114. Fant ME, Harbison RD, Harrison RW. Glucocorticoid uptake into human placental membrane vesicles. J Biol Chem 254:6213–6221 (1979).

115. Breslin W, Liberacci A, Dittenber D, Quast J. Evaluation of the developmental and reproductive toxicity of chlorpyrifos in the rat. Fundam Appl Toxicol 29:119–130 (1996).

116. Porter WP, Green SM, Debink NL, Carlson I. Groundwater pesticides: interactive effects of low concentrations of carbamates aldicarb and methomyl and the trazine metribuzin on thymine and somatomedin levels in white rats. J Toxicol Environ Health 40:15–34 (1993).

117. Eyre P. Neuropsychopathological changes by organophosphorous compounds—a review. Hum Exp Toxicol 14:857–864 (1995).

118. Barnes PJ. Is asthma a nervous disease? The Parker B. Francis Lectureship. Chest 107:1195–1235 (1995).

119. Sparrow D, GT OC, Basner RC, Rosner B, Weiss ST. Predictors of the new onset of wheezing among middle-aged and older men. The Normative Aging Study. Am Rev Respir Dis 147:367–371 (1993).

120. Senthilvelan A, McDuffie HH, Dosman JA. Association of asthma with use of pesticides. Results of a cross-sectional survey of farmers. Am Rev Respir Dis 146:884–887 (1992).

121. Garry V, Kelly J, Sprafka J, Edwards S, Griffith J. Survey of health and use characterization of pesticide applicators in Minnesota. Arch Environ Health 49:337–343 (1994).

122. Thrasher JD, Madison R, Broughton A. Immunologic abnormalities in humans exposed to chlorpyrifos: preliminary observations. Arch Environ Health 48:89–93 (1993).

123. Benke GM, Murphy SD. The influence of age on the toxicity and metabolism of methyl parathion and parathion in male and female rats. Toxicol Appl Pharmacol 31:254–269 (1975).

124. Brodeur J, Dubos K. Comparison of acute toxicity of anticholinesterase insecticides to weaning and adult male rats. Proc Soc Exp Biol Med 114:509–511 (1963).

125. Lu F, Jessup D, Lalvalle A. Toxicity of pesticides in young versus adult rats. Food Cosmet Toxicol 3:591–596 (1965).

126. Mortensen SR, Chanda SM, Hooper MJ, Padilla S. Maturational differences in chlorpyrifos-oxonase activity may contribute to age-related sensitivity to chlorpyrifos. J Biochem Toxicol 11:279–287 (1996).

127. Gagne J, Brodeur J. Metabolic studies on the mechanics of increased susceptibility of weaning rats to parathion. Can J Physiol Pharmacol 50:902–915 (1972).

128. Murphy S. Toxicity and hepatic metabolism of organophosphate insecticides in developing rats. Banbury Report 11:125–136 (1982).

129. Atterberry TT, Burnett WT, Chambers JE. Age-related differences in parathion and chlorpyri- fos toxicity in male rats: target and nontarget esterase sensitivity and cytochrome P450-mediated metabolism. Toxicol Appl Pharmacol 147:411–418 (1997).

130. Davies HG, Richter RJ, Keifer M, Broomfield CA, Sowa JA, Furlong CE. The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 14:334–336 (1996).

131. Grossman J. What’s hiding under the sink: dangers of household pesticides [News]. Environ Health Perspect 103:550–554 (1995).

132. Crowder LA, Lanzaro GC, Whitson RS. Behavioral effects of methyl parathion and toxaphene exposure in rats. J Environ Sci Health [B] 15:365–378 (1980).

133. Pope AM, Heavner JE, Guarnieri JA, Knobloch CP. Trichlorfon-induced congenital cerebellar hypoplasia in neonatal pigs. J Am Vet Med Assoc 189:781–783 (1986).

134. Clemens GR, Hartnagel RE, Ber J, Thysen JH. Teratological, neurochemical, and postnatal neurobehavioral assessment of METASTOX-R, an organophosphate pesticide in the rat. Fundam Appl Toxicol 14:131–143 (1990).

135. Nagymajtényi I, Schulz H, Desi I. Changes in EEG of freely-moving rats caused by three-generation organophosphate treatment. Arch Toxicol Suppl 17:289–294 (1995).