ON THE POWER OF STANDARD INFORMATION FOR TRACTABILITY FOR L_2-APPROXIMATION IN THE RANDOMIZED SETTING

WANTING LU AND HEPING WANG

Abstract. We study approximation of multivariate functions from a separable Hilbert space in the randomized setting with the error measured in the weighted L_2 norm. We consider algorithms that use standard information Λ^{std} consisting of function values or general linear information Λ^{all} consisting of arbitrary linear functionals. We use the weighted least squares regression algorithm to obtain the upper estimates of the minimal randomized error using Λ^{std}. We investigate the equivalences of various notions of algebraic and exponential tractability for Λ^{std} and Λ^{all} for the normalized or absolute error criterion. We show that in the randomized setting for the normalized or absolute error criterion, the power of Λ^{std} is the same as that of Λ^{all} for all notions of exponential and algebraic tractability without any condition. Specifically, we solve four Open Problems 98, 100-102 as posed by E.Novak and H.Woźniakowski in the book: Tractability of Multivariate Problems, Volume III: Standard Information for Operators, EMS Tracts in Mathematics, Zürich, 2012.

1. Introduction

We study multivariate approximation $\text{APP} = \{\text{APP}_d\}_{d \in \mathbb{N}}$, where

$$\text{APP}_d : F_d \rightarrow G_d \quad \text{with} \quad \text{APP}_d f = f$$

is the compact embedding operator, F_d is a separable Hilbert function space on D_d, G_d is a weighted L_2 space on D_d, $D_d \subset \mathbb{R}^d$, and the dimension d is large or even huge. We consider algorithms that use finitely many information evaluations. Here information evaluation means linear functional on F_d (general linear information) or function value at some point (standard information). We use Λ^{all} and Λ^{std} to denote the extended class of all linear functionals (not necessarily continuous) and the extended class of all function values (defined only almost everywhere), respectively.

For a given error threshold $\varepsilon \in (0,1)$, the information complexity $n(\varepsilon, d)$ is defined to be the minimal number of information evaluations for which the approximation error of some algorithm is at most ε. Tractability is aimed at studying how the information complexity $n(\varepsilon, d)$ depends on ε and d. There are two kinds of tractability based on polynomial convergence and exponential convergence. The algebraic tractability (ALG-tractability) describes how the information complexity $n(\varepsilon, d)$ behaves as a function of d and ε^{-1}, while the exponential tractability (EXP-tractability) does as one of d and $(1 + \ln \varepsilon^{-1})$. The existing
notions of tractability mainly include strong polynomial tractability (SPT), polynomial tractability (PT), quasi-polynomial tractability (QPT), weak tractability (WT), \((s, t)\)-weak tractability \(((s, t)\)-WT), and uniform weak tractability (UWT).

In recent years the study of algebraic and exponential tractability has attracted much interest, and a great number of interesting results have been obtained (see [31, 32, 33, 43, 9, 44, 38, 39, 6, 5, 21, 36, 45, 15, 2, 26, 37] and the references therein).

This paper is devoted to investigating the equivalences of various notions of algebraic and exponential tractability for \(\Lambda^{\text{std}}\) and \(\Lambda^{\text{all}}\) in the randomized setting (see [33, Chapter 22]). The class \(\Lambda^{\text{std}}\) is much smaller and much more practical, and is much more difficult to analyze than the class \(\Lambda^{\text{all}}\). Hence, it is very important to study the power of \(\Lambda^{\text{std}}\) compared to \(\Lambda^{\text{all}}\). There are many papers devoted to this field (see [33, 42, 23, 17, 11, 25, 47, 41, 24, 34, 35, 19, 20, 28, 12, 13, 18]).

In [42, 33] the authors obtained the equivalences of ALG-SPT, ALG-PT, ALG-QPT, ALG-WT in the randomized setting for \(\Lambda^{\text{std}}\) and \(\Lambda^{\text{all}}\) for the normalized error criterion without any condition. Meanwhile, for the absolute error criterion under some conditions, the equivalences of ALG-SPT, ALG-PT, ALG-QPT, ALG-WT were also obtained in [33].

In this paper, we obtain the remaining equivalences of all notions of algebraic and exponential tractability in the randomized setting for \(\Lambda^{\text{std}}\) and \(\Lambda^{\text{all}}\) for the normalized or absolute error criterion without any condition. Our results particularly imply that for the absolute error criterion the imposed conditions are not necessary. This solves Open Problems 98, 101, 102 as posed by Novak and Woźniakowski in [33]. We also give an almost complete solution to Open Problem 100 in [33].

This paper is organized as follows. Section 2 contains 5 subsections. In Subsections 2.1 and 2.2 we introduce the approximation problem in the worst case and randomized settings. The various notions of algebraic and exponential tractability are given in Subsection 2.3. Subsection 2.4 is devoted to give the equivalences of tractability for \(\Lambda^{\text{std}}\) and \(\Lambda^{\text{all}}\) for the absolute or normalized error criterion in the worst case and randomized settings. Our main results, Theorems 2.2, 2.3, 2.5, and 2.6 are stated in Subsection 2.5. In Section 3, we give the proofs of Theorems 2.2 and 2.3. After that, in Section 4, we establish the equivalence results for the notions of algebraic tractability. The equivalence results for the notions of exponential tractability are proved in Section 5.

2. Preliminaries and Main Results

2.1. Deterministic worst case setting.

For \(d \in \mathbb{N}\), let \(F_d\) be a separable Hilbert space of \(d\)-variate functions defined on \(D_d \subset \mathbb{R}^d\), \(G_d = L_2(D_d, \rho_d(x)dx)\) be a weighted \(L_2\) space, where \(D_d\) is a Borel measurable subset of \(\mathbb{R}^d\) with positive Lebesgue measure, \(\rho_d\) is a probability density function on \(D_d\). We consider the multivariate approximation problem \(\text{APP} = \{\text{APP}_d\}_{d \in \mathbb{N}}\) in the deterministic worst case setting which is defined via the compact embedding operator

\[
\text{APP}_d : F_d \rightarrow G_d \quad \text{with} \quad \text{APP}_d f = f.
\]

We approximate \(\text{APP}_d f\) by algorithms \(A_{n,d} f\) of the form

\[
A_{n,d} f = \phi_{n,d}(L_1(f), L_2(f), \ldots, L_n(f)),
\]

where \(L_1, L_2, \ldots, L_n\) are general linear functionals on \(F_d\), and \(\phi_{n,d} : \mathbb{R}^n \rightarrow G_d\) is an arbitrary measurable mapping. The worst case approximation error for the
algorithm $A_{n,d}$ of the form \[(2.2) \] is defined as

$$e_{\text{wor}}(A_{n,d}) = \sup_{f \in F_d, \|f\|_{F_d} \leq 1} \|\text{APP}_d f - A_{n,d} f\|_{G_d}.$$

The nth minimal worst case error is defined by

$$e_{\text{wor}}(n, d; \Lambda^{\text{all}}) = \inf_{A_{n,d} \text{ with } L_i \in \Lambda^{\text{all}}} e_{\text{wor}}(A_{n,d}),$$

where the infimum is taken over all algorithms of the form \((2.2)\).

For $n = 0$, we use $A_{0,d} = 0$. We obtain the so-called initial error $e_{\text{wor}}(0, d; \Lambda^{\text{all}})$, defined by

$$e_{\text{wor}}(0, d; \Lambda^{\text{all}}) = \sup_{f \in F_d, \|f\|_{F_d} \leq 1} \|\text{APP}_d f\|_{G_d}.$$

From \[31, 14\] we know that $e_{\text{wor}}(n, d; \Lambda^{\text{all}})$ depends on the eigenpairs \(\{(\lambda_{k,d}, e_{k,d})\}_{k=1}^{\infty}\) of the operator \(W_d = \text{APP}_d^* \text{APP}_d : F_d \rightarrow F_d\), where APP_d is given by \((2.1)\), APP_d^* is the adjoint operator of APP_d, and

- \(\lambda_{1,d} \geq \lambda_{2,d} \geq \ldots \lambda_{n,d} \geq \ldots \geq 0\).

That is, \(\{e_{j,d}\}_{j \in \mathbb{N}}\) is an orthonormal basis in F_d, and

\(W_d e_{j,d} = \lambda_{j,d} e_{j,d}\).

From \[31\] p. 118 we get that the nth minimal worst case error is

$$e_{\text{wor}}(n, d; \Lambda^{\text{all}}) = (\lambda_{n+1,d})^{1/2},$$

and it is achieved by the optimal algorithm

$$S_{n,d}^* f = \sum_{k=1}^{n} \langle f, e_{k,d} \rangle_{F_d} e_{k,d},$$

that is,

$$e_{\text{wor}}(n, d; \Lambda^{\text{all}}) = \sup_{f \in F_d, \|f\|_{F_d} \leq 1} \|f - S_{n,d}^* f\|_{G_d} = (\lambda_{n+1,d})^{1/2}. \tag{2.3}$$

Without loss of generality, we may assume that all the eigenvalues are positive. We set

- \(\eta_{k,d} = \lambda_{k,d}^{-1/2} e_{k,d}, \quad k \in \mathbb{N}\).

We remark that \(\{e_{k,d}\}\) is an orthonormal basis in F_d, \(\{\eta_{k,d}\}\) is an orthonormal system in G_d, and for $f \in F_d$,

$$\langle f, e_{k,d} \rangle_{F_d} e_{k,d} = \langle f, \eta_{k,d} \rangle_{G_d} \eta_{k,d},$$

and

\(\tag{2.4}
S_{n,d}^* f = \sum_{k=1}^{n} \langle f, \eta_{k,d} \rangle_{G_d} \eta_{k,d} \)
2.2. Randomized setting.

In the randomized setting, we consider randomized algorithms $A_{n,d}^\omega$ of the form

$$A_{n,d}^\omega(f) = \phi_{n,d,\omega}(L_{1,\omega}(f), \ldots, L_{n,\omega}(f)), \ L_{j,\omega} \in \Lambda, \ 1 \leq j \leq n,$$

where $\Lambda \in \{\Lambda^{\text{all}}, \Lambda^{\text{std}}\}$, $\phi_{n,d,\omega}$ and $L_{j,\omega}$ could be randomly selected according to some probability space Ω, for any fixed $\omega \in \Omega$, $A_{n,d}^\omega$ is a deterministic method with cardinality $n = n(f, \omega)$, the number $n = n(f, \omega)$ may be randomized and adaptively depend on the input, and the cardinality of $A_{n,d}^\omega$ is then defined by

$$\text{Card}(A_{n,d}^\omega) = \sup_{f \in F_d, \|f\|_{P_d} \leq 1} \mathbb{E}_\omega n(f, \omega).$$

The randomized approximation error for the algorithm $A_{n,d}^\omega$ of the form (2.5) is defined as

$$e^{\text{ran}}(A_{n,d}^\omega) = \sup_{f \in F_d, \|f\|_{P_d} \leq 1} \left(\mathbb{E}_\omega \|\text{APP}_d f - A_{n,d}^\omega(f)\|^2_{G_d} \right)^{1/2}.$$

The nth minimal randomized error for $\Lambda \in \{\Lambda^{\text{all}}, \Lambda^{\text{std}}\}$ is defined by

$$e^{\text{ran}}(n, d; \Lambda) = \inf_{A_{n,d}^\omega \text{ with } L_{i,\omega} \in \Lambda} e^{\text{ran}}(A_{n,d}^\omega),$$

where the infimum is taken over all randomized algorithms $A_{n,d}^\omega$ of the form (2.5) with $\text{Card}(A_{n,d}^\omega) \leq n$.

For $n = 0$, we use $A_{0,d}^\omega = 0$. We have

$$e^{\text{ran}}(0, d; \Lambda) = e^{\text{wor}}(0, d; \Lambda^{\text{all}}) = (\lambda_{1, d})^{1/2}.$$

There are many papers devoted to studying randomized approximation and relations of $e^{\text{ran}}(n, d; \Lambda)$ and $e^{\text{wor}}(n, d; \Lambda)$ for $\Lambda \in \{\Lambda^{\text{all}}, \Lambda^{\text{std}}\}$ (see $\cite{1, 7, 8, 10, 17, 22, 23, 27, 29, 30, 31, 33, 40, 42}$).

This paper is devoted to discussing the equivalence of tractability for Λ^{all} and Λ^{std} in the randomized settings. For Λ^{std} the authors in $\cite{42, 33, 17}$ used simplified randomized algorithms of the form

$$A_{n, \vec{r}}(f) = \sum_{j=1}^{n} f(t_j)g_{j, \vec{r}},$$

where $\vec{r} = [t_1, \ldots, t_n]$ for some random points t_1, \ldots, t_n from D_d, which are independent, and each t_j is distributed according to some probability. The functions $g_{j, \vec{r}} \in G_d$ may depend on the selected points t_j’s but are independent of f. For any f, we view $A_{n, \vec{r}}(f)$ as a random process, and $A_{n, \vec{r}}(f)$ as its specific realization.

We stress that algorithms of the form (2.6) belong to a restricted class of all randomized algorithms, which are called randomized linear algorithms. Indeed, we assume that n is not randomized, and for a fixed \vec{r} we consider only linear algorithms in $f(t_j)$. In this paper we also consider algorithms of the form (2.6). However, in $\cite{42, 33, 17}$ t_j’s are assumed to be independent, while in this paper we only assume that \vec{r} is distributed according to some probability, and do not assume that t_j’s are independent.

The information complexity can be studied using either the absolute error criterion (ABS) or the normalized error criterion (NOR). For $\diamond \in \{\text{wor, ran}\}$, $\star \in \{\text{abs, nor}\}$
\{\text{ABS, NOR}\}, and \(\Lambda \in \{\Lambda^{\text{all}}, \Lambda^{\text{std}}\}\), we define the information complexity \(n^{\circ,*}(\varepsilon, d; \Lambda)\) as

\begin{equation}
(2.7) \quad n^{\circ,*}(\varepsilon, d; \Lambda) = \inf \{n \mid e^\circ(n, d; \Lambda) \leq \varepsilon C \text{RI}_d\},
\end{equation}

where

\[
\text{CRI}_d = \begin{cases}
1, & \text{for } \star = \text{ABS,} \\
e^\circ(0, d, \Lambda), & \text{for } \star = \text{NOR}
\end{cases},
\]

\[
(\lambda_{1,j})^{1/2}, & \text{for } \star = \text{NOR.}
\]

We remark that

\[
e^{\text{wor}}(0, d, \Lambda^{\text{all}}) = e^{\text{ran}}(0, d, \Lambda^{\text{all}}) = e^{\text{ran}}(0, d, \Lambda^{\text{std}}).
\]

Since \(\Lambda^{\text{std}} \subset \Lambda^{\text{all}}\), we get

\[
e^{\text{ran}}(n, d; \Lambda^{\text{all}}) \leq e^{\text{ran}}(n, d; \Lambda^{\text{std}}).
\]

It follows that for \(\star \in \{\text{ABS, NOR}\}\),

\begin{equation}
(2.8) \quad n^{\text{ran,*}}(\varepsilon, d; \Lambda^{\text{all}}) \leq n^{\text{ran,*}}(\varepsilon, d; \Lambda^{\text{std}}).
\end{equation}

2.3. Notions of tractability.

In this subsection we briefly recall the various tractability notions. Let \(\text{APP} = \{\text{APP}_d \mid d \in \mathbb{N}\}, \diamond \in \{\text{wor, ran}\}, \star \in \{\text{ABS, NOR}\}, \text{ and } \Lambda \in \{\Lambda^{\text{all}}, \Lambda^{\text{std}}\}\). In the \(\diamond\) setting for the class \(\Lambda\), and for error criterion \(\star\), we say that \(\text{APP}\) is

- Algebraic strongly polynomially tractable (\(\text{ALG-SPT}\)) if there exist \(C > 0\) and non-negative number \(p\) such that

\begin{equation}
(2.9) \quad n^{\diamond,*}(\varepsilon, d; \Lambda) \leq C \varepsilon^{-p}, \text{ for all } \varepsilon \in (0, 1).
\end{equation}

The exponent \(\text{ALG-}p^{\diamond,*}(\Lambda)\) of \(\text{ALG-SPT}\) is defined as the infimum of \(p\) for which \(2.9\) holds;

- Algebraic polynomially tractable (\(\text{ALG-PT}\)) if there exist \(C > 0\) and non-negative numbers \(p, q\) such that

\begin{equation}
(\text{ALG-PT}) \quad n^{\diamond,*}(\varepsilon, d; \Lambda) \leq C d^q \varepsilon^{-p}, \text{ for all } d \in \mathbb{N}, \varepsilon \in (0, 1);
\end{equation}

- Algebraic quasi-polynomially tractable (\(\text{ALG-QPT}\)) if there exist \(C > 0\) and non-negative number \(t\) such that

\begin{equation}
(2.10) \quad n^{\diamond,*}(\varepsilon, d; \Lambda) \leq C \exp(t(1 + \ln d)(1 + \ln \varepsilon^{-1})), \text{ for all } d \in \mathbb{N}, \varepsilon \in (0, 1).
\end{equation}

The exponent \(\text{ALG-}t^{\diamond,*}(\Lambda)\) of \(\text{ALG-QPT}\) is defined as the infimum of \(t\) for which \(2.10\) holds;

- Algebraic uniformly weakly tractable (\(\text{ALG-UWT}\)) if

\[
\lim_{\varepsilon^{-1} + d \to \infty} \frac{\ln n^{\diamond,*}(\varepsilon, d; \Lambda)}{\varepsilon^{-\alpha} + d^\beta} = 0, \text{ for all } \alpha, \beta > 0;
\]

- Algebraic weakly tractable (\(\text{ALG-WT}\)) if

\[
\lim_{\varepsilon^{-1} + d \to \infty} \frac{\ln n^{\diamond,*}(\varepsilon, d; \Lambda)}{\varepsilon^{-1} + d} = 0;
\]

- Algebraic \((s, t)\)-weakly tractable (\(\text{ALG-(s, t)-WT}\)) for fixed \(s, t > 0\) if

\[
\lim_{\varepsilon^{-1} + d \to \infty} \frac{\ln n^{\diamond,*}(\varepsilon, d; \Lambda)}{\varepsilon^{-s} + d^t} = 0.
\]

Clearly, \(\text{ALG-(1, 1)-WT}\) is the same as \(\text{ALG-WT}\). If \(\text{APP}\) is not \(\text{ALG-WT}\), then \(\text{APP}\) is called intractable.
If the \(n \)th minimal error decays faster than any polynomial and is exponentially convergent, then we should study tractability with \(\varepsilon^{-1} \) being replaced by \((1 + \ln \frac{1}{\varepsilon}) \), which is called exponential tractability. Recently, there have been many papers studying exponential tractability (see \([6, 5, 36, 37, 21, 15, 2, 26]\)).

In the definitions of ALG-SPT, ALG-PT, ALG-QPT, ALG-UWT, ALG-WT, and ALG-(\(s, t \))-WT, if we replace \(\frac{1}{\varepsilon} \) by \((1 + \ln \frac{1}{\varepsilon}) \), we get the definitions of exponential strong polynomial tractability (EXP-SPT), exponential polynomial tractability (EXP-PT), exponential quasi-polynomial tractability (EXP-QPT), exponential uniform weak tractability (EXP-UWT), exponential weak tractability (EXP-WT), and exponential (\(s, t \))-weak tractability (EXP-(\(s, t \))-WT), respectively. We now give the above notions of exponential tractability in detail.

Let \(\text{APP} = \{\text{APP}_d\}_{d \in \mathbb{N}}, \odot \in \{\text{wor, ran}\}, \star \in \{\text{ABS, NOR}\}, \) and \(\Lambda \in \{\Lambda^\text{all, \Lambda^std}\}. \) In the \(\odot \) setting for the class \(\Lambda \), and for error criterion \(\star \), we say that \(\text{APP} \) is

- Exponential strongly polynomially tractable (EXP-SPT) if there exist \(C > 0 \) and non-negative number \(p \) such that
 \[
 n^{\odot\star}(\varepsilon, d; \Lambda) \leq C(\ln \varepsilon^{-1} + 1)^p, \text{ for all } \varepsilon \in (0, 1),
 \]
 \(\text{(2.11)} \)
 The exponent \(\text{EXP-}p^{\odot\star}(\Lambda) \) of EXP-SPT is defined as the infimum of \(p \) for which \(\text{(2.11)} \) holds;

- Exponential polynomially tractable (EXP-PT) if there exist \(C > 0 \) and non-negative numbers \(p, q \) such that
 \[
 n^{\odot\star}(\varepsilon, d; \Lambda) \leq Cd^q(\ln \varepsilon^{-1} + 1)^p, \text{ for all } d \in \mathbb{N}, \varepsilon \in (0, 1);
 \]
 \(\text{(2.12)} \)
 - Exponential quasi-polynomially tractable (EXP-QPT) if there exist \(C > 0 \) and non-negative number \(t \) such that
 \[
 n^{\odot\star}(\varepsilon, d; \Lambda) \leq C \exp(t(1+\ln d)(1+\ln(\ln \varepsilon^{-1}+1))), \text{ for all } d \in \mathbb{N}, \varepsilon \in (0, 1).
 \]
 The exponent \(\text{EXP-}t^{\odot\star}(\Lambda) \) of EXP-QPT is defined as the infimum of \(t \) for which \(\text{(2.12)} \) holds;

- Exponential uniformly weakly tractable (EXP-UWT) if
 \[
 \lim_{\varepsilon^{-1}+d \to \infty} \frac{\ln n^{\odot\star}(\varepsilon, d; \Lambda)}{(1 + \ln \varepsilon^{-1})^\alpha + d^\beta} = 0, \text{ for all } \alpha, \beta > 0;
 \]
 \(\text{(2.13)} \)
 - Exponential weakly tractable (EXP-WT) if
 \[
 \lim_{\varepsilon^{-1}+d \to \infty} \frac{\ln n^{\odot\star}(\varepsilon, d; \Lambda)}{1 + \ln \varepsilon^{-1} + d} = 0;
 \]
 - Exponential (\(s, t \))-weakly tractable (EXP-(\(s, t \))-WT) for fixed \(s, t > 0 \) if
 \[
 \lim_{\varepsilon^{-1}+d \to \infty} \frac{\ln n^{\odot\star}(\varepsilon, d; \Lambda)}{(1 + \ln \varepsilon^{-1})^s + d^t} = 0.
 \]

2.4. Equivalences of tractability for \(\Lambda^\text{all} \) in the worst case and randomized settings.

In this subsection, we introduce the equivalences of tractability for \(\Lambda^\text{all} \) in the worst case and randomized settings. It follows from \([30, 21] \text{ p. 284}\) that

\[
\frac{1}{2} \varepsilon^{\\text{wor}}(4n - 1, d; \Lambda^\text{all}) \leq \varepsilon^{\\text{ran}}(n, d; \Lambda^\text{all}) \leq \varepsilon^{\\text{wor}}(n, d; \Lambda^\text{all}),
\]

which means that for \(\star \in \{\text{ABS, NOR}\} \) and \(n^{\\text{ran}\star}(\varepsilon, d; \Lambda^\text{all}) \geq 1 \),

\[
\frac{1}{4} (n^{\\text{wor}\star}(2\varepsilon, d; \Lambda^\text{all}) + 1) \leq n^{\\text{ran}\star}(\varepsilon, d; \Lambda^\text{all}) \leq n^{\\text{wor}\star}(\varepsilon, d; \Lambda^\text{all}).
\]

(2.13)
2.5. Main results.

We shall give main results of this paper in this subsection. The first important progress about the relation between $e^{\text{ran}}(n, d; \Lambda^{\text{std}})$ and $e^{\text{wor}}(n, d; \Lambda^{\text{all}})$ was obtained by Wasilkowski and Woźniakowski in [12] by constructing iterated Monte Carlo methods. They showed that the powers of $e^{\text{ran}}(n, d; \Lambda^{\text{std}})$ and $e^{\text{wor}}(n, d; \Lambda^{\text{all}})$ are same, and obtained the equivalences of ALG-SPT and ALG-PT for Λ^{all} and Λ^{std} for the normalized error criterion in the randomized setting. Novak and Woźniakowski in [33] and Krieg in [17] refined the above randomized algorithms and showed that $e^{\text{ran}}(n, d; \Lambda^{\text{std}})$ is asymptotically of the same order as $e^{\text{wor}}(n, d; \Lambda^{\text{all}})$ given that $e^{\text{wor}}(n, d; \Lambda^{\text{all}})$ is regularly decreasing. However, the obtained relations are heavily
dependent of the initial error, and are not sharp if \(e_{\text{wor}}(n, d; \Lambda^{\text{all}}) \) is exponentially convergent.

If nodes \(X = (x^1, \ldots, x^n) \in D_d^n \) are drawn independently and identically distributed according to a probability measure, then the samples on the nodes \(X \) is called the random information (see [12, 13, 18]). Using random information and the least squares method we can obtain the relation between \(e_{\text{ran}}(n, d; \Lambda^{\text{std}}) \) and \(e_{\text{wor}}(n, d; \Lambda^{\text{all}}) \) (see [3, 4]). The authors in [16] used random information satisfying some condition and the least squares method to obtain an inequality between \(e_{\text{ran}}(n, d; \Lambda^{\text{std}}) \) and \(e_{\text{wor}}(n, d; \Lambda^{\text{all}}) \) (see [16, Theorem 6.1]). They remarked in [16, Remark 6.3] that using the weighed least squares method can improve the above inequality.

In this paper we use the method proposed in [16, Remark 6.3], i.e., combining the proof of [16, Theorem 6.1] with the weighed least squares method used in [4], to get an improved inequality between \(e_{\text{ran}}(n, d; \Lambda^{\text{std}}) \) and \(e_{\text{wor}}(n, d; \Lambda^{\text{all}}) \). See the following theorem. Compared with the results in [33, 17], our inequality does not depend on the initial error, and are almost sharp if \(e_{\text{wor}}(n, d; \Lambda^{\text{all}}) \) is exponentially convergent. However, if \(e_{\text{wor}}(n, d; \Lambda^{\text{all}}) \) is regularly decreasing, then by our inequality we can only obtain that \(e_{\text{ran}}(n, d; \Lambda^{\text{std}}) \) is at most asymptotically of the order of \(e_{\text{wor}}(m, d; \Lambda^{\text{all}}) \), where \(n \) is at least of order \(m \ln m \).

Theorem 2.2. Let \(\delta \in (0, 1) \), \(m, n \in \mathbb{N} \) be such that

\[
m = \left\lfloor \frac{n}{48(\sqrt{2 \ln(2n)} - \ln \delta)} \right\rfloor.
\]

Then we have

\[
e_{\text{ran}}(n, d; \Lambda^{\text{std}}) \leq \left(1 + \frac{4m}{n}\right) \frac{1}{\sqrt{1 - \delta}} e_{\text{wor}}(m, d; \Lambda^{\text{all}}),
\]

where \(\lfloor x \rfloor \) denotes the largest integer not exceeding \(x \).

Based on Theorem 2.2, we obtain two relations between the information complexities \(n_{\text{ran}, \star}(\varepsilon, d; \Lambda^{\text{std}}) \) and \(n_{\text{wor}, \star}(\varepsilon, d; \Lambda^{\text{all}}) \) for \(\star \in \{\text{ABS}, \text{NOR}\} \).

Theorem 2.3. For \(\star \in \{\text{ABS}, \text{NOR}\} \), we have

\[
n_{\text{ran}, \star}(\varepsilon, d; \Lambda^{\text{std}}) \leq 96\sqrt{2} \left(n_{\text{wor}, \star}(\varepsilon, d; \Lambda^{\text{all}}) + 1 \right) \left(\ln \left(n_{\text{wor}, \star}(\varepsilon, d; \Lambda^{\text{all}}) + 1 \right) + \ln(192\sqrt{2}) \right).
\]

Furthermore, for sufficiently small \(\delta > 0 \), we have

\[
n_{\text{ran}, \star}(\varepsilon, d; \Lambda^{\text{std}}) \leq 48 \left(\ln 48 + \ln \frac{1}{\delta} + \ln \left(n_{\text{wor}, \star}(\varepsilon, d; \Lambda^{\text{all}}) + 1 \right) \right) + \frac{1}{\delta} \left(n_{\text{wor}, \star}(\varepsilon, A_{\delta}, d; \Lambda^{\text{all}}) + 1 \right),
\]

where \(A_{\delta} := \left(1 + \frac{1}{12\ln A_{\delta}}\right)^{\frac{1}{2}} \frac{1}{\sqrt{1 - \delta}}. \)

It is easy to see that for any \(\omega, \delta > 0 \),

\[
\sup_{x \geq 1} \frac{96\sqrt{2}(\ln x + \ln(192\sqrt{2}))}{x^\omega} = C_\omega < +\infty.
\]
and
\begin{equation}
\sup_{x \geq 1} \frac{48(4 \ln 48 + \ln \ln \frac{1}{x} + \ln \frac{1}{x})}{x^\omega} = C_{\omega, \delta} < +\infty.
\end{equation}

According to (2.15)-(2.18), we have the following corollary which gives two useful inequalities between the information complexities \(n^{\text{ran,*}}(\varepsilon, d; \Lambda^{\text{all}})\) and \(n^{\text{wor,*}}(\varepsilon, d; \Lambda^{\text{all}})\) for \(* \in \{\text{ABS, NOR}\}\).

Corollary 2.4. For \(* \in \{\text{ABS, NOR}\}\) and \(\omega > 0\), we have
\begin{equation}
n^{\text{ran,*}}(\varepsilon, d; \Lambda^{\text{std}}) \leq C_\omega \left(n^{\text{wor,*}}\left(\frac{\varepsilon}{4}, d; \Lambda^{\text{all}}\right) + 1\right)^{1+\omega}.
\end{equation}

Similarly, for sufficiently small \(\omega, \delta > 0\) and \(* \in \{\text{ABS, NOR}\}\), we have
\begin{equation}
n^{\text{ran,*}}(\varepsilon, d; \Lambda^{\text{std}}) \leq C_{\omega, \delta} \left(n^{\text{wor,*}}\left(\frac{\varepsilon}{A_\delta}, d; \Lambda^{\text{all}}\right) + 1\right)^{1+\omega},
\end{equation}
where \(A_\delta := \left(1 + \frac{12\ln \frac{1}{\delta}}{\varepsilon}\right)^\frac{1}{2}\).

In the randomized setting, for the normalized error criterion, [33] Theorems 22.19, 22.21, and 22.5] gives the equivalences of ALG-PT (ALG-SPT), ALG-QPT, ALG-WT for \(\Lambda^{\text{all}}\) and \(\Lambda^{\text{std}}\), and shows that the exponents of ALG-SPT and ALG-QPT for \(\Lambda^{\text{all}}\) and \(\Lambda^{\text{std}}\) are same. For the absolute error criterion, [33] Theorems 22.20, 22.22, and 22.6] gives the equivalences of ALG-PT (ALG-SPT), ALG-QPT, ALG-WT for \(\Lambda^{\text{all}}\) and \(\Lambda^{\text{std}}\) under some conditions on the initial error \(\sqrt{\lambda_{1,d}}\). Novak and Woźniakowski posed Open problems 98, 101, 102 in [33] which ask whether the above conditions are necessary.

In this paper we obtain the equivalences of ALG-SPT, ALG-PT, ALG-QPT, ALG-WT for \(\Lambda^{\text{all}}\) and \(\Lambda^{\text{std}}\) for the absolute error criterion without any condition, which means the above conditions are unnecessary. This solves Open problems 98, 101, 102 in [33]. See the following theorem.

Theorem 2.5. Consider the problem \(\text{APP} = \{\text{APP}_d\}_{d \in \mathbb{N}}\) in the randomized setting for the absolute error criterion. Then

- ALG-SPT, ALG-PT, ALG-QPT, ALG-WT for \(\Lambda^{\text{all}}\) is equivalent to ALG-SPT, ALG-PT, ALG-QPT, ALG-WT for \(\Lambda^{\text{std}}\);

- The exponents \(\text{ALG-}\text{ran,ABS}(\Lambda)\) of ALG-SPT for \(\Lambda^{\text{all}}\) and \(\Lambda^{\text{std}}\) are same, and the exponents \(\text{ALG-}\text{ran,ABS}(\Lambda)\) of ALG-QPT for \(\Lambda^{\text{all}}\) and \(\Lambda^{\text{std}}\) are also same.

In the randomized setting for the normalized or absolute error criterion, the equivalences of ALG-UWT and ALG-(s, t)-WT, and the various notions of EXP-tractability for \(\Lambda^{\text{all}}\) and \(\Lambda^{\text{std}}\), as far as we know, have not been studied. In this paper, we investigate the problem and obtain the following theorem which gives the above equivalences without any condition.

Theorem 2.6. Consider the problem \(\text{APP} = \{\text{APP}_d\}_{d \in \mathbb{N}}\) in the randomized setting for the absolute or normalized error criterion. Then for \(* \in \{\text{ABS, NOR}\}\),

- \(\text{EXP-SPT, EXP-PT, EXP-QPT, EXP-UWT, EXP-WT, EXP-(s,t)-WT, ALG-UWT, ALG-(s,t)-WT for }\Lambda^{\text{all}}\) is equivalent to \(\text{EXP-SPT, EXP-PT, EXP-QPT, EXP-UWT, EXP-WT, EXP-(s,t)-WT, ALG-UWT, ALG-(s,t)-WT for }\Lambda^{\text{std}}\);
• The exponents EXP-$p_{\text{ran},\star}(\Lambda)$ of EXP-SPT for Λ_{all} and Λ_{std} are same, and the exponents EXP-$t_{\text{ran},\star}(\Lambda)$ of EXP-QPT for Λ_{all} and Λ_{std} are also same.

Combining Corollary 2.1 with Theorems 2.5 and 2.6 we obtain the following corollary.

Corollary 2.7. Consider the approximation problem $\text{APP} = \{\text{APP}_d\}_{d \in \mathbb{N}}$ for the absolute or normalized error criterion in the randomized and worst case settings. Then

• ALG-SPT, ALG-PT, ALG-QPT, ALG-UWT, ALG-WT, ALG-(s,t)-WT in the worst case setting for Λ_{all} is equivalent to ALG-SPT, ALG-PT, ALG-QPT, ALG-UWT, ALG-WT, ALG-(s,t)-WT in the randomized setting for Λ_{all} or for Λ_{std};

• EXP-SPT, EXP-PT, EXP-QPT, EXP-UWT, EXP-WT, EXP-(s,t)-WT in the worst case setting for Λ_{all} is equivalent to EXP-SPT, EXP-PT, EXP-QPT, EXP-UWT, EXP-WT, EXP-(s,t)-WT in the randomized setting for Λ_{all} or for Λ_{std};

• the exponents of SPT and QPT are the same in the worst case setting for Λ_{all} and in the randomized setting for Λ_{all} and Λ_{std}, i.e., for $\star \in \{\text{ABS, NOR}\},$

\[
\begin{align*}
\text{ALG}-p_{\text{wor},\star}(\Lambda_{\text{all}}) &= \text{ALG}-p_{\text{ran},\star}(\Lambda_{\text{all}}) = \text{ALG}-p_{\text{ran},\star}(\Lambda_{\text{std}}), \\
\text{ALG}-t_{\text{wor},\star}(\Lambda_{\text{all}}) &= \text{ALG}-t_{\text{ran},\star}(\Lambda_{\text{all}}) = \text{ALG}-t_{\text{ran},\star}(\Lambda_{\text{std}}), \\
\text{EXP}-p_{\text{wor},\star}(\Lambda_{\text{all}}) &= \text{EXP}-p_{\text{ran},\star}(\Lambda_{\text{all}}) = \text{EXP}-p_{\text{ran},\star}(\Lambda_{\text{std}}), \\
\text{EXP}-t_{\text{wor},\star}(\Lambda_{\text{all}}) &= \text{EXP}-t_{\text{ran},\star}(\Lambda_{\text{all}}) = \text{EXP}-t_{\text{ran},\star}(\Lambda_{\text{std}}).
\end{align*}
\]

3. Proofs of Theorems 2.2 and 2.3

Let us keep the notation of Subsection 2.1. For any $m \in \mathbb{N}$, we define the functions $h_{m,d}(x)$ and $\omega_{m,d}$ on D_d by

\[
h_{m,d}(x) := \frac{1}{m} \sum_{j=1}^{m} |\eta_{j,d}(x)|^2, \quad \omega_{m,d}(x) := h_{m,d}(x) \rho_d(x),
\]

where $\{\eta_{j,d}\}_{j=1}^{\infty}$ is an orthonormal system in $G_d = L_2(D_d, \rho_d(x)dx)$. Then $\omega_{m,d}$ is a probability density function on D_d, i.e., $\int_{D_d} \omega_{m,d}(x) dx = 1$. We define the corresponding probability measure $\mu_{m,d}$ by

\[
\mu_{m,d}(A) = \int_A \omega_{m,d}(x) dx,
\]

where A is a Borel subset of D_d. We use the convention that $\frac{0}{0} := 0$. Then $\{\tilde{\eta}_{j,d}\}_{j=1}^{\infty}$ is an orthonormal system in $L_2(D_d, \mu_{m,d})$, where

\[
\tilde{\eta}_{j,d} := \frac{\eta_{j,d}}{\sqrt{h_{m,d}}}.
\]
For \(X = (x^1, \ldots, x^n) \in D_d^n \), we use the following matrices

\[
\tilde{L}_m = \tilde{L}_m(X) = \begin{pmatrix}
\tilde{\eta}_1,d(x^1) & \tilde{\eta}_2,d(x^1) & \cdots & \tilde{\eta}_m,d(x^1) \\
\tilde{\eta}_1,d(x^2) & \tilde{\eta}_2,d(x^2) & \cdots & \tilde{\eta}_m,d(x^2) \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{\eta}_1,d(x^n) & \tilde{\eta}_2,d(x^n) & \cdots & \tilde{\eta}_m,d(x^n)
\end{pmatrix}
\]

and

\[
\tilde{H}_m = \frac{1}{n} \tilde{L}_m^* \tilde{L}_m,
\]

where \(A^* \) is the conjugate transpose of a matrix \(A \). Note that

\[
\tilde{N}(m) := \sup_{x \in D_d} \sum_{k=1}^m |\tilde{\eta}_{k,d}(x)|^2 = m.
\]

According to [16, Propositions 5.1 and 3.1] we have the following results.

Lemma 3.1. Let \(n, m \in \mathbb{N} \). Let \(x^1, \ldots, x^n \in D_d \) be drawn independently and identically distributed at random with respect to the probability measure \(\mu_{m,d} \). Then it holds for \(0 < t < 1 \) that

\[
\mathbb{P}(\|\tilde{H}_m - I_m\| > t) \leq (2n)^{\sqrt{2}} \exp\left(-\frac{nt^2}{12m}\right),
\]

where \(\tilde{L}_m, \tilde{H}_m \) are given by (3.1), \(I_m \) is the identity matrix of order \(m \), and \(\|L\| \) denotes the spectral norm (i.e. the largest singular value) of a matrix \(L \).

Lemma 3.2. Let \(n, m \in \mathbb{N} \), and let \(\tilde{L}_m, \tilde{H}_m \) be given by (3.1). If

\[
\|\tilde{H}_m - I_m\| \leq 1/2,
\]

then

\[
\|(\tilde{L}_m^* \tilde{L}_m)^{-1}\| \leq \frac{2}{n}.
\]

Remark 3.3. From Lemma 3.1 we immediately obtain that the matrix \(\tilde{H}_m \in \mathbb{C}^{m \times m} \) has only eigenvalues larger than \(t := 1/2 \) and satisfies

\[
\|\tilde{H}_m - I_m\| \leq 1/2
\]

with probability at least \(1 - \delta \) if

\[
\tilde{N}(m) = m \leq \frac{n}{48(\sqrt{2} \ln(2n) - \ln \delta)}.
\]

Specifically, if

\[
m = \left\lfloor \frac{n}{48(\sqrt{2} \ln(2n) - \ln \delta)} \right\rfloor \geq 1,
\]

then the matrix \(\tilde{H}_m \) has only eigenvalues larger than \(1/2 \) and satisfies

\[
\|\tilde{H}_m - I_m\| \leq 1/2
\]

with probability at least \(1 - \delta \), where \(\lfloor x \rfloor \) denotes the largest integer not exceeding \(x \). It follows that

\[
\mathbb{P}(\|\tilde{H}_m - I_m\| \leq 1/2) \geq 1 - \delta
\]

holds given the condition (3.3).
Now let \(m, n \in \mathbb{N} \) satisfying (3.3), \(x^1, \ldots, x^n \) be independent and identically distributed sample points from \(D_d \) that are distributed according to the probability measure \(\mu_{m, d} \), and \(\bar{L}_m, \bar{H}_m \) be given by (3.1). If the sample points \(X = (x^1, \ldots, x^n) \) satisfy \(\| \bar{H}_m - I_m \| > 1/2 \), then we discard these points and re-sample until the the re-sample points satisfy \(\| \bar{H}_m - I_m \| \leq 1/2 \). That is, we consider the conditional distribution given the event \(\| \bar{H}_m - I_m \| \leq 1/2 \) and the conditional expectation
\[
\mathbb{E}(X \mid \| \bar{H}_m - I_m \| \leq 1/2) = \frac{\int_{\| \bar{H}_m - I_m \| \leq 1/2} X(x^1, \ldots, x^n) \, d\mu_{m, d}(x^1) \ldots d\mu_{m, d}(x^n)}{\mathbb{P}(\| \bar{H}_m - I_m \| \leq 1/2)}
\]
of a random variable \(X \).

If \(\| \bar{H}_m - I_m \| \leq 1/2 \) for some \(X = (x^1, \ldots, x^n) \in D^n_d \), then \(\bar{L}_m = \bar{L}_m(X) \) has the full rank. The algorithm is a weighted least squares estimator
\[
(3.5) \quad S^m_X f = \arg \min_{g \in V_m} \frac{|f(x^i) - g(x^i)|^2}{h_{m, d}(x^i)},
\]
where \(V_m := \text{span}\{\eta_{1, d}, \ldots, \eta_{m, d}\} \). It follows that \(S^m_X f = f \) whenever \(f \in V_m \).

Algorithm

Weighted least squares regression.

Input: \(X = (x^1, \ldots, x^n) \in D^n_d \) \(\quad \) set of distinct sampling nodes,
\[
\bar{f} = \left(\frac{f(x^1)}{\sqrt{h_{m, d}(x^1)}}, \ldots, \frac{f(x^n)}{\sqrt{h_{m, d}(x^n)}} \right)^T \quad \text{weighted samples of } f \text{ evaluated at the nodes from } X,
\]
\(m \in \mathbb{N} \) \(\quad \) \(m < n \) such that the matrix \(\bar{L}_m := \bar{L}_m(X) \) from (3.1) has full (column) rank.

Solve the over-determined linear system
\[
\bar{L}_m(\bar{c}_1, \cdots, \bar{c}_m)^T = \bar{f}
\]
via least square, i.e., compute
\[
(\bar{c}_1, \cdots, \bar{c}_m)^T = (\bar{L}_m^* \bar{L}_m)^{-1} \bar{L}_m^* \bar{f}.
\]
Output: \(\bar{c} = (\bar{c}_1, \cdots, \bar{c}_m)^T \in \mathbb{C}^m \) coefficients of the approximant \(S^m_X(f) := \sum_{k=1}^{m} \bar{c}_k \eta_{k, d} \) which is the unique solution of (3.5).

Proof of Theorem 2.2.

We have
\[
(e^{\text{ran}}(n, d; \Lambda^{\text{std}}))^2 \leq \mathbb{E}(\| f - S^m_X(f) \|_{G_d}^2 \mid \| \bar{H}_m - I_m \| \leq 1/2),
\]
where \(m, n \in \mathbb{N} \) satisfy (3.3). We estimate \(\| f - S^m_X(f) \|_{G_d}^2 \). We set
\[
H_d = L_2(D_d, \mu_{m, d}).
\]
We recall that \(\{e_{j, d}\}_{j=1}^\infty \) is an orthonormal basis in \(F_d \), \(\{\eta_{j, d}\}_{j=1}^\infty \) is an orthonormal system in \(G_d = L_2(D_d, \rho_d(x)dx) \), and \(\{\tilde{\eta}_{j, d}\}_{j=1}^\infty \) is an orthonormal system in \(H_d = L_2(D_d, \mu_{m, d}) \), where
\[
\eta_{j, d} = \lambda_{j, d}^{-1/2} e_{j, d}, \quad \tilde{\eta}_{j, d} := \frac{\eta_{j, d}}{\sqrt{h_{m, d}}}.
\]
For $f \in F_d$ with $\|f\|_{F_d} \leq 1$, we have

$$f = \sum_{k=1}^{\infty} \langle f, e_{k,d} \rangle_{F_d} e_{k,d} = \sum_{k=1}^{\infty} \langle f, \eta_{k,d} \rangle_{G_d} \eta_{k,d},$$

and

$$\|f\|_{F_d}^2 = \sum_{k=1}^{\infty} |\langle f, e_{k,d} \rangle_{F_d}|^2 = \sum_{k=1}^{\infty} \lambda_{k,d}^{-1} |\langle f, \eta_{k,d} \rangle_{G_d}|^2.$$

We note that $f - S^*_{m,d}(f)$ is orthogonal to the space V_m with respect to the inner product $\langle \cdot, \cdot \rangle_{G_d}$, and

$$S^*_{m,d}(f) = \sum_{k=1}^{m} \langle f, \eta_{k,d} \rangle_{G_d} \eta_{k,d},$$

where $S^*_{m,d}(f) = \sum_{k=1}^{m} \langle f, \eta_{k,d} \rangle_{G_d} \eta_{k,d}$. It follows that

$$\|f - S^*_{m,d}(f)\|_{G_d}^2 = \|f\|_{G_d}^2 + \|S^*_{m,d}(f) \|_{G_d}^2,$$

where $g = f - S^*_{m,d}(f)$.

We recall that

$$S^m_X(g) = \sum_{k=1}^{m} \bar{c}_k \eta_{k,d}, \quad \bar{c} = (\bar{c}_1, \ldots, \bar{c}_m)^T = ((\bar{L}_m)^* \bar{L}_m)^{-1} (\bar{L}_m)^* \bar{g},$$

where

$$\bar{g} = (\bar{g}(x^1), \ldots, \bar{g}(x^n))^T, \quad \bar{g} = \frac{g}{\sqrt{h_{m,d}}}.$$

Since $\{\eta_{k,d}\}_{k=1}^{\infty}$ is an orthonormal system in G_d, we get

$$\|S^m_X(g)\|_{G_d}^2 = \|\bar{c}\|_{2}^2 = \|(\bar{L}_m)^* \bar{L}_m)^{-1} (\bar{L}_m)^* \bar{g}\|_{2}^2 \leq \|(\bar{L}_m)^* \bar{L}_m)^{-1} \| \cdot \|(\bar{L}_m)^* \bar{g}\|_{2}^2 \leq \frac{4}{n^2} \|(\bar{L}_m)^* \bar{g}\|_{2}^2,$$

where $\| \cdot \|_2$ is the Euclidean norm of a vector. We have

$$\|(\bar{L}_m)^* \bar{g}\|_{2}^2 = \sum_{k=1}^{m} \left| \sum_{j=1}^{n} \eta_{k,d}(x^j) \cdot \bar{g}(x^j) \right|^2$$

$$= \sum_{k=1}^{m} \sum_{j=1}^{n} \sum_{i=1}^{n} \eta_{k,d}(x^j) \bar{g}(x^j) \eta_{k,d}(x^i) \bar{g}(x^i).$$
It follows that

\[
J = \int_{\|\tilde{h}_m - I_m\| \leq \frac{1}{2}} \|(\tilde{L}_m)^* \tilde{g}\|_2 \, d\mu_{m,d}(x^1) \ldots d\mu_{m,d}(x^n)
\leq \int_{D_2^m} \|(\tilde{L}_m)^* \tilde{g}\|_2^2 \, d\mu_{m,d}(x^1) \ldots d\mu_{m,d}(x^n)
\leq \sum_{k=1}^m \sum_{i,j=1}^n \int_{D_2^m} \bar{\eta}_{k,d}(x^j) \bar{g}(x^j) \bar{\eta}_{k,d}(x^i) \bar{g}(x^i) \, d\mu_{m,d}(x^1) \ldots d\mu_{m,d}(x^n)
= \sum_{k=1}^m \sum_{i,j=1}^n J_{k,i,j},
\]

where

\[
J_{k,i,j} = \int_{D_2^m} \bar{\eta}_{k,d}(x^j) \bar{g}(x^i) \bar{\eta}_{k,d}(x^j) \bar{g}(x^i) \, d\mu_{m,d}(x^1) \ldots d\mu_{m,d}(x^n).
\]

If \(i \neq j\) and \(1 \leq k \leq m\), then

\[
J_{k,i,j} = |\langle \bar{g}, \bar{\eta}_{k,d} \rangle |^2 = |\langle g, \eta_{k,d} \rangle |^2 = 0;
\]

If \(i = j\), then

\[
J_{k,i,j} = \| \bar{\eta}_{k,d} \cdot \bar{g} \|_{\tilde{H}_d}^2.
\]

Since \(h_{m,d}(x) = \frac{1}{m} \sum_{k=1}^m |\eta_{k,d}(x)|^2\), we get

\[
J \leq \sum_{k=1}^m \sum_{i,j=1}^n J_{k,i,j} = n \sum_{k=1}^m \| \bar{\eta}_{k,d} \cdot \bar{g} \|_{\tilde{H}_d}^2
= n \sum_{k=1}^m \int_{D_2^m} |\bar{g}(x) \bar{\eta}_{k,d}(x)|^2 \rho_d(x) h_{m,d}(x) \, dx
= n \sum_{k=1}^m \int_{D_2^m} \frac{|g(x) \eta_{k,d}(x)|^2}{h_{m,d}(x)} \rho_d(x) \, dx
= n \int_{D_2^m} m|g(x)|^2 \rho_d(x) \, dx
= nm \cdot \| g \|_{\tilde{H}_d}^2.
\]

Hence, by (2.3) we have

\[
\int_{\|\tilde{h}_m - I_m\| \leq \frac{1}{2}} \| f - S_X^m(f) \|_{\tilde{G}_d}^2 \, d\mu_{m,d}(x^1) \ldots d\mu_{m,d}(x^n)
\leq \| g \|_{\tilde{G}_d}^2 + \frac{4}{n^2} J \leq (1 + \frac{4m}{n}) \| g \|_{\tilde{G}_d}^2 \leq (1 + \frac{4m}{n})(e^{\text{wor}}(m,d; \Lambda^{\text{all}}))^2.
\]

We conclude that

\[
\mathbb{E} \left(\| f - S_X^m(f) \|_{\tilde{G}_d}^2 \right) \bigg| \| \tilde{H}_m - I_m \| \leq 1/2
\]
where in the last inequality we used (3.4). This completes the proof of Theorem 2.2.

Proof of Theorem 2.3.

Applying Theorem 2.1 with \(\delta = \frac{1}{2\sqrt{2}} \), we obtain

\[
(3.6) \quad e_{\text{ran}}(n, d; \Lambda_{\text{std}}) \leq \left(1 + \frac{4m}{n} \right)^{\frac{1}{2}} \left(\frac{2\sqrt{2}}{2\sqrt{2} - 1} \right)^{\frac{1}{2}} e_{\text{wor}}(m, d; \Lambda_{\text{all}}),
\]

where \(m, n \in \mathbb{N} \), and

\[
m = \left\lfloor \frac{n}{48\sqrt{2} \ln(4n)} \right\rfloor.
\]

Since \(1 + \frac{4m}{n} \leq 1 + \frac{1}{12\sqrt{2} \ln(4n)} \leq 2 \), by (3.6) we get

\[
(3.7) \quad e_{\text{ran}}(n, d; \Lambda_{\text{std}}) \leq 4 e_{\text{wor}}(m, d; \Lambda_{\text{all}}).
\]

It follows that

\[
n_{\text{ran,}^*}(\varepsilon, d; \Lambda_{\text{std}}) = \min \left\{ n \mid e_{\text{ran}}(n, d; \Lambda_{\text{std}}) \leq \varepsilon CRI_d \right\}
\leq \min \left\{ n \mid 4 e_{\text{wor}}(m, d; \Lambda_{\text{all}}) \leq \varepsilon CRI_d \right\}
\leq \min \left\{ n \mid e_{\text{wor}}(m, d; \Lambda_{\text{all}}) \leq \frac{\varepsilon}{4} CRI_d \right\}.
\]

We note that

\[
m = \left\lfloor \frac{n}{48\sqrt{2} \ln(4n)} \right\rfloor \geq \frac{n}{48\sqrt{2} \ln(4n)} - 1.
\]

This inequality is equivalent to

\[
4n \leq 192\sqrt{2}(m + 1) \ln(4n).
\]

Taking logarithm on both sides of (3.9), and using the inequality \(\ln x \leq \frac{1}{2} x \) for \(x \geq 1 \), we get

\[
\ln(4n) \leq \ln(m + 1) + \ln(192\sqrt{2}) + \ln \ln(4n),
\]

and

\[
\frac{1}{2} \ln(4n) \leq \ln(4n) - \ln \ln(4n) \leq \ln(m + 1) + \ln(192\sqrt{2}).
\]

It follows from (3.9) that

\[
n \leq 96 \sqrt{2}(m + 1)(\ln(m + 1) + \ln(192\sqrt{2})).
\]

By (3.8) and (3.10) we obtain

\[
n_{\text{ran,}^*}(\varepsilon, d; \Lambda_{\text{std}}) \leq 96\sqrt{2} \left(n_{\text{wor,}^*}(\varepsilon, d; \Lambda_{\text{all}}) + 1 \right) \left(\ln \left(n_{\text{wor,}^*}(\varepsilon, d; \Lambda_{\text{all}}) + 1 \right) + \ln(192\sqrt{2}) \right),
\]

proving (2.15).

For sufficiently small \(\delta > 0 \) and \(m, n \in \mathbb{N} \) satisfying

\[
m = \left\lfloor \frac{n}{48\sqrt{2} \ln(2n) - \ln \delta} \right\rfloor,
\]
by Theorem 2.2 we have
\[
e^{\text{ran}}(n, d; \Lambda_{\text{std}}) \leq \left(1 + \frac{4m}{n}\right)^{\frac{1}{2}} \frac{1}{\sqrt{1 - \delta}} e^{\text{wor}}(m, d; \Lambda_{\text{all}})
\]
\[
\leq \left(1 + \frac{1}{4\sqrt{2\ln(2n) + \ln \frac{1}{\delta}}}\right)^{\frac{1}{2}} \frac{1}{\sqrt{1 - \delta}} e^{\text{wor}}(m, d; \Lambda_{\text{all}})
\]
\[
\leq \left(1 + \frac{1}{12 \ln \frac{1}{\delta}}\right)^{\frac{1}{2}} \frac{1}{\sqrt{1 - \delta}} e^{\text{wor}}(m, d; \Lambda_{\text{all}}) = A_\delta e^{\text{wor}}(m, d; \Lambda_{\text{all}}),
\]
where \(A_\delta = \left(1 + \frac{1}{12 \ln \frac{1}{\delta}}\right)^{\frac{1}{2}} \frac{1}{\sqrt{1 - \delta}}\).

Using the same method used in the proof of (3.8), we have
\[
n^{\text{ran,}\star}(\varepsilon, d; \Lambda_{\text{std}}) \leq \min \{n \mid e^{\text{wor}}(m, d; \Lambda_{\text{all}}) \leq \varepsilon A_\delta \text{CRI}_{d}\}.
\]

We note that
\[
n \leq 48\left(\sqrt{2}\ln(2n) + \ln \frac{1}{\delta}\right)(m + 1).
\]

Taking logarithm on both sides, and using the inequalities \(\ln x \leq \frac{x}{4}\) for \(x \geq 9\) and \(a + b \leq ab\) for \(a, b \geq 2\), we get
\[
\ln n \leq \ln 48 + \ln \left(\sqrt{2}\ln(2n) + \ln \frac{1}{\delta}\right) + \ln(m + 1)
\]
\[
\leq \ln 48 + \ln\left(\sqrt{2}\ln(2n)\right) + \ln \frac{1}{\delta} + \ln(m + 1)
\]
\[
\leq \ln 48 + \frac{\sqrt{2}}{4}\ln(2n) + \ln \frac{1}{\delta} + \ln(m + 1).
\]

Since
\[
\frac{\sqrt{2}}{4}\ln(2n) \leq \ln n - \frac{\sqrt{2}}{4}\ln(2n) \quad \text{for} \quad n \geq 9,
\]
we get
\[
\sqrt{2}\ln(2n) \leq 4\left(\ln 48 + \ln \frac{1}{\delta} + \ln(m + 1)\right).
\]

It follows that
\[
n \leq 48\left(4\left(\ln 48 + \ln \frac{1}{\delta} + \ln(m + 1)\right) + \ln \frac{1}{\delta}\right)(m + 1).
\]

We conclude that for sufficiently small \(\delta > 0\),
\[
n^{\text{ran,}\star}(\varepsilon, d; \Lambda_{\text{std}}) \leq 48\left(4\left(\ln 48 + \ln \frac{1}{\delta} + \ln \left(n^{\text{wor,}\star}\left(\frac{\varepsilon}{A_\delta}, d; \Lambda_{\text{all}}\right) + 1\right)\right)
\]
\[
\quad + \ln \frac{1}{\delta}\right)\left(n^{\text{wor,}\star}\left(\frac{\varepsilon}{A_\delta}, d; \Lambda_{\text{all}}\right) + 1\right),
\]
proving (2.16). Theorem 2.3 is proved. \(\square\)

4. Equivalence results of algebraic tractability

First we consider the equivalences of ALG-PT and ALG-SPT for \(\Lambda_{\text{std}}\) and \(\Lambda_{\text{all}}\) in the randomized setting. The equivalent results for the normalized error criterion can be found in [33, Theorem 22.19]. For the absolute error criterion, [33, Theorem 22.20] shows the equivalence of ALG-PT under the condition
\[
\lambda_{1,d} \leq C_\lambda d^{s_\lambda} \quad \text{for all} \quad d \in \mathbb{N}, \quad \text{some} \quad C_\lambda > 0, \quad \text{and some} \quad s_\lambda \geq 0,
\]
and the equivalence of ALG-SPT under the condition (4.1) with $\lambda = 0$.

We obtain the following equivalent results of ALG-PT and ALG-SPT without any condition. Hence, the condition (4.1) is unnecessary. This solves Open Problem 101 as posed by Novak and Woźniakowski in [33].

Theorem 4.1. We consider the problem $\text{APP} = \{\text{APP}_d\}_{d \in \mathbb{N}}$ in the randomized setting for the absolute error criterion. Then,

- ALG-PT for Λ^all is equivalent to ALG-PT for Λ^std.
- ALG-SPT for Λ^all is equivalent to ALG-SPT for Λ^std. In this case, the exponents of ALG-SPT for Λ^all and Λ^std are the same.

Proof. It follows from (2.8) that ALG-PT (ALG-SPT) for Λ^std means ALG-PT (ALG-SPT) for Λ^all in the randomized setting. Since ALG-PT (ALG-SPT) for Λ^all in the worst case setting is equivalent to ALG-PT (ALG-SPT) for Λ^all in the randomized setting, it suffices to show that ALG-PT (ALG-SPT) for Λ^all in the worst case setting means that ALG-PT (ALG-SPT) for Λ^std in the randomized setting.

Suppose that ALG-PT holds for Λ^all in the worst case setting. Then there exist $C \geq 1$ and non-negative p, q such that

$$n^\text{wor, ABS}(\varepsilon, d; \Lambda^\text{all}) \leq Cd^q \varepsilon^{-p}, \quad \text{for all } d \in \mathbb{N}, \varepsilon \in (0, 1).$$

It follows from (2.19) and (4.2) that

$$n^\text{ran, ABS}(\varepsilon, d; \Lambda^\text{std}) \leq C\omega \left(Cd^p \left(\frac{\varepsilon}{4} \right)^{-p} + 1 \right)^{1+\omega} \leq C\omega (2C 4^p)^{1+\omega} d^q (1+\omega) \varepsilon^{-p(1+\omega)},$$

which means that ALG-PT holds for Λ^std in the randomized setting.

If ALG-SPT holds for Λ^all in the worst case setting, then (4.2) holds with $q = 0$. Using the same method we obtain

$$n^\text{ran, ABS}(\varepsilon, d; \Lambda^\text{std}) \leq C\omega (2C 4^p)^{1+\omega} \varepsilon^{-p(1+\omega)},$$

which means that ALG-SPT holds for Λ^std in the randomized setting. Furthermore, since ω can be arbitrary small, by Corollary 2.1 we have

$$\text{ALG-p}_\text{ran, ABS}(\Lambda^\text{std}) \leq \text{ALG-p}_\text{wor, ABS}(\Lambda^\text{all}) = \text{ALG-p}_\text{ran, ABS}(\Lambda^\text{all}) \leq \text{ALG-p}_\text{ran, ABS}(\Lambda^\text{std}),$$

which means that the exponents of ALG-SPT for Λ^all and Λ^std are the same. This completes the proof of Theorem 4.1.

Next we consider the equivalence of ALG-QPT for Λ^std and Λ^all in the randomized setting. The result for the normalized error criterion can be found in [33, Theorem 22.21]. For the absolute error criterion, [33, Theorem 22.22] shows the equivalence of ALG-QPT under the condition

$$\limsup_{d \to \infty} \lambda_{1, d} < \infty.$$

We obtain the following equivalent result of ALG-QPT without any condition. Hence, the condition (4.3) is unnecessary. This solves Open Problem 102 as posed by Novak and Woźniakowski in [33].
Theorem 4.2. We consider the problem \(\text{APP} = \{\text{APP}_d\}_{d \in \mathbb{N}} \) in the randomized setting for the absolute error criterion. Then, \(\text{ALG-QPT} \) for \(\Lambda^{\text{all}} \) is equivalent to \(\text{ALG-QPT} \) for \(\Lambda^{\text{std}} \). In this case, the exponents of \(\text{ALG-QPT} \) for \(\Lambda^{\text{all}} \) and \(\Lambda^{\text{std}} \) are the same.

Proof. Similar to the proof of Theorem 4.1, it is enough to prove that \(\text{ALG-QPT} \) for \(\Lambda^{\text{all}} \) in the worst case setting implies \(\text{ALG-QPT} \) for \(\Lambda^{\text{std}} \) in the randomized setting.

Suppose that \(\text{ALG-QPT} \) holds for \(\Lambda^{\text{all}} \) in the worst case setting. Then there exist \(C \geq 1 \) and non-negative \(t \) such that

\[
(4.4) \ n^{\text{wor,ABS}}(\varepsilon, d; \lambda^{\text{all}}) \leq C \exp(t(1 + \ln d)(1 + \ln \varepsilon^{-1})), \quad \text{for all } d \in \mathbb{N}, \varepsilon \in (0, 1).
\]

It follows from (2.19) and (4.4) that for \(\omega > 0 \),

\[
\begin{align*}
n^{\text{ran,ABS}}(\varepsilon, d; \lambda^{\text{std}}) & \leq C_{\omega} \left(n^{\text{wor,ABS}}(\varepsilon/4, d; \lambda^{\text{all}}) + 1 \right)^{1+\omega} \\
& \leq C_{\omega} \left(C \exp \left(t(1 + \ln d)(1 + \ln \left(\frac{\varepsilon}{4}\right)^{-1}) \right) + 1 \right)^{1+\omega} \\
& \leq C_{\omega}(2C)^{1+\omega} \exp \left((1 + \omega)t(1 + \ln d)(1 + \ln 4 + \ln \varepsilon^{-1}) \right) \\
& \leq C_{\omega}(2C)^{1+\omega} \exp \left(t^*(1 + \ln d)(1 + \ln \varepsilon^{-1}) \right),
\end{align*}
\]

where \(t^* = (1 + \omega)(1 + \ln 4)t \). This implies that \(\text{ALG-QPT} \) holds for \(\Lambda^{\text{std}} \) in the randomized setting.

Next we show that the exponents \(\text{ALG-}t^{\text{ran,ABS}}(\lambda^{\text{all}}) \) and \(\text{ALG-}t^{\text{ran,ABS}}(\lambda^{\text{std}}) \) are equal if \(\text{ALG-QPT} \) holds for \(\Lambda^{\text{all}} \) in the worst case setting. We have

\[
\text{ALG-}t^{\text{wor,ABS}}(\lambda^{\text{all}}) = \text{ALG-}t^{\text{ran,ABS}}(\lambda^{\text{all}}) \leq \text{ALG-}t^{\text{ran,ABS}}(\lambda^{\text{std}}).
\]

It suffices to show that

\[
\text{ALG-}t^{\text{ran,ABS}}(\lambda^{\text{std}}) \leq \text{ALG-}t^{\text{wor,ABS}}(\lambda^{\text{all}}).
\]

Note that using (2.19) we can only obtain that

\[
\text{ALG-}t^{\text{ran,ABS}}(\lambda^{\text{std}}) \leq (1 + \ln 4) \cdot \text{ALG-}t^{\text{wor,ABS}}(\lambda^{\text{all}}).
\]

Instead we use (2.20). For sufficiently small \(\delta > 0 \) and \(\omega > 0 \), it follows from (2.20) and (4.4) that

\[
\begin{align*}
n^{\text{ran,ABS}}(\varepsilon, d; \lambda^{\text{std}}) & \leq C_{\omega,\delta} \left(n^{\text{wor,ABS}}(\frac{\varepsilon}{A_\delta}, d; \lambda^{\text{all}}) + 1 \right)^{1+\omega} \\
& \leq C_{\omega,\delta}(2C)^{1+\omega} \exp \left((1 + \omega)t(1 + \ln d)(1 + \ln A_\delta + \ln \varepsilon^{-1}) \right) \\
& \leq C_{\omega,\delta}(2C)^{1+\omega} \exp \left((1 + \omega)t(1 + \ln A_\delta)(1 + \ln d)(1 + \ln \varepsilon^{-1}) \right),
\end{align*}
\]

where \(A_\delta = \left(1 + \frac{1}{\sqrt{\sqrt{\delta} + 1}} \right)^{\frac{1}{\sqrt{\sqrt{\delta} + 1}} - 1} \). Taking the infimum over \(t \) for which (4.4) holds, and noting that

\[
\lim_{(\delta, \omega) \to (0, 0)} (1 + \omega)(1 + \ln A_\delta) = 1,
\]

we get that

\[
\text{ALG-}t^{\text{ran,ABS}}(\lambda^{\text{std}}) \leq \text{ALG-}t^{\text{wor,ABS}}(\lambda^{\text{all}}).
\]

This completes the proof of Theorem 4.2. \(\square \)

Now we consider the equivalence of \(\text{ALG-WT} \) for \(\lambda^{\text{std}} \) and \(\lambda^{\text{all}} \) in the randomized setting. The result for the normalized error criterion can be found in [33] Theorem
For the absolute error criterion, [33, Theorem 22.6] shows the equivalence of ALG-WT under the condition
\[
\lim_{d \to \infty} \frac{\ln \max(\lambda_{1,d}, 1)}{d} = 0.
\]

We obtain the following equivalent result of ALG-WT without any condition. Hence, the condition (4.5) is unnecessary. This solves Open Problem 98 as posed by Novak and Woźniakowski in [33].

Theorem 4.3. We consider the problem \(APP = \{ APP_d \}_{d \in \mathbb{N}} \) in the randomized setting for the absolute error criterion. Then, ALG-WT for \(\Lambda^{all} \) is equivalent to ALG-WT for \(\Lambda^{std} \).

Proof. The proof is identical to the proof of Theorem 4.4 with \(s = t = 1 \) for the absolute error criterion. We omit the details. \(\square \)

Finally, we consider the equivalences of ALG-(\(s, t \))-WT and ALG-UWT for \(\Lambda^{std} \) and \(\Lambda^{all} \) in the randomized setting. As far as we know, these equivalences have not been studied yet. We obtain the following equivalent results of ALG-(\(s, t \))-WT and ALG-UWT for the absolute or normalized error criterion without any condition.

Theorem 4.4. We consider the problem \(APP = \{ APP_d \}_{d \in \mathbb{N}} \) in the randomized setting for the absolute or normalized error criterion. Then, for fixed \(s, t > 0 \),
\[
\text{ALG-}(s, t)\text{-WT for } \Lambda^{all} \text{ is equivalent to ALG-}(s, t)\text{-WT for } \Lambda^{std}.
\]

Proof. Again it is enough to prove that ALG-(\(s, t \))-WT for \(\Lambda^{all} \) in the worst case setting implies ALG-(\(s, t \))-WT for \(\Lambda^{std} \) in the randomized setting.

Suppose that ALG-(\(s, t \))-WT holds for \(\Lambda^{all} \) in the worst case setting. Then we have for \(* \in \{ \text{ABS, NOR} \} \),
\[
\lim_{\varepsilon^{-1} + d \to \infty} \frac{\ln n^\text{wor,}\ast(\varepsilon, d; \Lambda^{all})}{\varepsilon^{-s} + d^t} = 0.
\]

It follows from (2.19) that for \(\omega > 0 \),
\[
\frac{\ln n^\text{ran,}\ast(\varepsilon, d; \Lambda^{std})}{\varepsilon^{-s} + d^t} \leq \frac{\ln \left(C \omega \left(n^\text{ran,}\ast(\varepsilon/4, d; \Lambda^{all}) + 1 \right)^{1+\omega} \right) \varepsilon^{-s} + d^t}{\varepsilon^{-s} + d^t}
\leq \frac{\ln (C \omega^2 1^{1+\omega})}{\varepsilon^{-s} + d^t} + 4^\ast(1 + \omega) \ln n^\text{wor,}\ast(\varepsilon/4, d; \Lambda^{all}) \varepsilon^{-s} + d^t.
\]

Since \(\varepsilon^{-1} + d \to \infty \) is equivalent to \(\varepsilon^{-s} + d^t \to \infty \), by (4.6) we get that
\[
\lim_{\varepsilon^{-1} + d \to \infty} \frac{\ln (C \omega^2 1^{1+\omega})}{\varepsilon^{-s} + d^t} = 0 \quad \text{and} \quad \lim_{\varepsilon^{-1} + d \to \infty} \frac{\ln n^\text{wor,}\ast(\varepsilon/4, d; \Lambda^{all})}{(\varepsilon/4)^{-s} + d^t} = 0.
\]

We obtain
\[
\lim_{\varepsilon^{-1} + d \to \infty} \frac{\ln n^\text{ran,}\ast(\varepsilon, d; \Lambda^{std})}{\varepsilon^{-s} + d^t} = 0,
\]
which implies that ALG-(\(s, t \))-WT holds for \(\Lambda^{std} \) in the randomized setting. This completes the proof of Theorem 4.4. \(\square \)

Theorem 4.5. We consider the problem \(APP = \{ APP_d \}_{d \in \mathbb{N}} \) in the randomized setting for the absolute or normalized error criterion. Then, ALG-UWT for \(\Lambda^{all} \) is equivalent to ALG-UWT for \(\Lambda^{std} \).
Proof. By definition we know that APP is ALG-UWT if and only if APP is ALG-\((s, t)\)-WT for all \(s, t > 0\). Then Theorem 4.5 follows from Theorem 4.4 immediately.

\[\square \]

Proof of Theorem 2.5.
Theorem 2.5 follows from Theorems 4.1-4.3 immediately.

\[\square \]

5. Equivalence results of exponential tractability

First we consider exponential convergence. Assume that there exist two constants \(A \geq 1\) and \(q \in (0, 1)\) such that

\[
e^{\text{wor}}(n, d; \Lambda_{\text{all}}) \leq Aq^{n+1} \sqrt{\lambda_{1,d}}.
\]

Novak and Woźniakowski proved in [33, Theorem 22.18] that there exist two constants \(C_1 \geq 1\) and \(q_1 \in (q, 1)\) independent of \(d\) and \(n\) such that

\[
e^{\text{ran}}(n, d; \Lambda_{\text{std}}) \leq C_1 A q_1^{\sqrt{n}} \sqrt{\lambda_{1,d}}.
\]

If \(A, q\) in (5.1) are independent of \(d\), then

\[
e^{\text{wor},\text{NOR}}(\varepsilon, d; \Lambda_{\text{all}}) \leq C_2 (\ln \varepsilon^{-1} + 1),
\]

and

\[
e^{\text{ran},\text{NOR}}(\varepsilon, d; \Lambda_{\text{std}}) \leq C_3 (\ln \varepsilon^{-1} + 1)^2.
\]

Novak and Woźniakowski posed Open Problem 100 which states

1. Verify if the upper bound in (5.2) can be improved.
2. Find the smallest \(p\) for which there holds

\[
e^{\text{ran},\text{NOR}}(\varepsilon, d; \Lambda_{\text{std}}) \leq C_4 (\ln \varepsilon^{-1} + 1)^p.
\]

We know that \(p \leq 2\), and if (5.1) is sharp then \(p \geq 1\).

The following theorem gives a confirmative solution to Open Problem 100 (1).

We improve enormously the upper bound \(q_1^{\sqrt{n}}\) in (5.2) to \(q_2^{\frac{n}{\ln(4n)}}\) in (5.5), where \(q_1, q_2 \in (q, 1)\).

Theorem 5.1. Let \(m, n \in \mathbb{N}\) and

\[
m = \left\lfloor \frac{n}{48 \sqrt{2 \ln(4n)}} \right\rfloor.
\]

Then we have

\[
e^{\text{ran}}(n, d; \Lambda_{\text{std}}) \leq 4 e^{\text{wor}}(m, d; \Lambda_{\text{all}}).
\]

Specifically, if (5.1) holds, then we have

\[
e^{\text{ran}}(n, d; \Lambda_{\text{std}}) \leq 4 A q_2^{\frac{n}{\ln(4n)}} \sqrt{\lambda_{1,d}},
\]

where \(q_2 = q^{\frac{1}{\ln(4n)}} \in (q, 1)\).

Proof. Inequality (5.4) is just (5.7), which has been proved. If (5.1) holds, then by (5.3) and (5.4) we get

\[
e^{\text{ran}}(n, d; \Lambda_{\text{std}}) \leq 4 A q_2^{\frac{n}{\ln(4n)}} \sqrt{\lambda_{1,d}} \leq 4 A q_2^{\frac{n}{\ln(4n)}} \sqrt{\lambda_{1,d}} = 4 A q_2^{\frac{n}{\ln(4n)}} \sqrt{\lambda_{1,d}}.
\]

This completes the proof of Theorem 5.1.

\[\square \]
Now we consider the equivalences of various notions of exponential tractability for Λ^{std} and Λ^{all} in the randomized setting. As far as we know, there is hardly any result for these equivalences.

First we consider the equivalences of EXP-PT and EXP-SPT for Λ^{std} and Λ^{all} in the randomized setting. We obtain the following equivalent results of ALG-PT and ALG-SPT without any condition.

Theorem 5.2. We consider the problem $APP = \{APP_d\}_{d \in \mathbb{N}}$ in the randomized setting for the absolute or normalized error criterion. Then,

- EXP-PT for Λ^{all} is equivalent to EXP-PT for Λ^{std}.
- EXP-SPT for Λ^{all} is equivalent to EXP-SPT for Λ^{std}. In this case, the exponents of EXP-SPT for Λ^{all} and Λ^{std} are the same.

Proof. Again, it is enough to prove that EXP-PT for Λ^{all} in the worst case setting implies EXP-PT for Λ^{std} in the randomized setting.

Suppose that EXP-PT holds for Λ^{all} in the worst case setting. Then there exist $C \geq 1$ and non-negative p, q, for $\star \in \{\text{ABS}, \text{NOR}\}$ such that

\[(5.6) \quad n^{\text{wor}, \star}(\varepsilon, d; \Lambda^{all}) \leq Cd^q(ln \varepsilon^{-1} + 1)^p, \quad \text{for all } d \in \mathbb{N}, \varepsilon \in (0, 1).\]

It follows from (2.19) and (5.6) that

\[n^{\text{ran}, \star}(\varepsilon, d; \Lambda^{std}) \leq C\omega(Cd^q(ln(\frac{\varepsilon}{4})^{-1} + 1)^p + 1)^{1+\omega} \leq C\omega(2C)^{1+\omega}(1 + \ln 4)^p(1+\omega)(\ln \varepsilon^{-1} + 1)^p(1+\omega),\]

which means that EXP-PT holds for Λ^{std} in the randomized setting.

If EXP-SPT holds for Λ^{all} in the worst case setting, then (5.6) holds with $q = 0$. We obtain

\[n^{\text{ran}, \star}(\varepsilon, d; \Lambda^{std}) \leq C\omega(2C)^{1+\omega}(1 + \ln 4)^p(1+\omega)(\ln \varepsilon^{-1} + 1)^p(1+\omega),\]

which means that EXP-SPT holds for Λ^{std} in the randomized setting. Furthermore, in this case we have

\[\text{EXP} - p^{\text{ran}, \star}(\Lambda^{std}) \leq \text{EXP} - p^{\text{wor}, \star}(\Lambda^{all}) = \text{EXP} - p^{\text{ran}, \star}(\Lambda^{all}) \leq \text{EXP} - p^{\text{ran}, \star}(\Lambda^{std}),\]

which means that the exponents of EXP-SPT for Λ^{all} and Λ^{std} are the same. This completes the proof of Theorem 5.2. \square

Remark 5.3. We remark that if (5.1) holds with A, q independent of d, then the problem APP is EXP-SPT for Λ^{all} in the randomized setting for the normalized error criterion, and the exponent $\text{EXP} - p^{\text{wor}, \text{NOR}}(\Lambda^{all}) \leq 1$. If (5.1) is sharp, then $\text{EXP} - p^{\text{wor}, \text{NOR}}(\Lambda^{all}) = 1$.

Open Problem 100 (2) is equivalent to finding the exponent $\text{EXP} - p^{\text{ran}, \text{NOR}}(\Lambda^{std})$ of EXP-SPT. By Theorem 5.2 we obtain that if (5.1) holds, then $\text{EXP} - p^{\text{ran}, \text{NOR}}(\Lambda^{std}) \leq 1$, and if (5.1) is sharp, then $\text{EXP} - p^{\text{ran}, \text{NOR}}(\Lambda^{std}) = 1$.

This solves Open Problem 100 (2) as posed by Novak and Woźniakowski in [33].

Next we consider the equivalence of EXP-QPT for Λ^{std} and Λ^{all} in the randomized setting. We obtain the following equivalent result of EXP-QPT without any condition.
Theorem 5.4. We consider the problem $\text{APP} = \{\text{APP}_d\}_{d \in \mathbb{N}}$ in the randomized setting for the absolute or normalized error criterion. Then, EXP-QPT for Λ^{all} is equivalent to EXP-QPT for Λ^{std}. In this case, the exponents of EXP-QPT for Λ^{all} and Λ^{std} are the same.

Proof. Again, it is enough to prove that EXP-QPT for Λ^{all} in the worst case setting implies EXP-QPT for Λ^{std} in the randomized setting.

Suppose that EXP-QPT holds for Λ^{all} in the worst case setting. Then there exist $C \geq 1$ and non-negative t such that

\[n^{\text{wor},*}(\varepsilon, d; \Lambda) \leq C \exp(t(1 + \ln d)(1 + \ln(\varepsilon^{-1} + 1))), \]

for all $d \in \mathbb{N}$, $\varepsilon \in (0, 1)$. It follows from (2.19) and (5.7) that for $\omega > 0$,

\[
\begin{align*}
&n^{\text{ran},*}(\varepsilon, d; \Lambda^{\text{std}}) \\
&\leq C_{\omega} \left(n^{\text{wor},*}(\varepsilon/4, d; \Lambda^{\text{all}}) + 1 \right)^{1+\omega} \\
&\leq C_{\omega} \left(C \exp \left(t(1 + \ln d)(1 + \ln(\varepsilon^{-1} + 1 + 4 + 1)) \right) + 1 \right)^{1+\omega} \\
&\leq C_{\omega}(2C)^{1+\omega} \exp \left((1 + \omega)t(1 + \ln d)(1 + \ln(1 + \ln(\varepsilon^{-1} + 1))) \right) \\
&\leq C_{\omega}(2C)^{1+\omega} \exp \left((1 + \omega)(1 + \ln(1 + \ln(\varepsilon^{-1} + 1))) \right),
\end{align*}
\]

where $t^* = (1 + \omega)(1 + \ln(1 + \ln 4 + 1))$, in the third inequality we used the fact

\[\ln(1 + a + b) \leq \ln(1 + a) + \ln(1 + b), \quad a, b \geq 0. \]

This implies that EXP-QPT holds for Λ^{std} in the randomized setting.

Next we show that the exponents $\text{EXP}^{t^{\text{ran},*}}(\Lambda^{\text{all}})$ and $\text{EXP}^{t^{\text{ran},*}}(\Lambda^{\text{std}})$ are equal if EXP-QPT holds for Λ^{all} in the worst case setting. We have

\[\text{EXP}^{t^{\text{wor},*}}(\Lambda^{\text{all}}) = \text{EXP}^{t^{\text{ran},*}}(\Lambda^{\text{all}}) \leq \text{EXP}^{t^{\text{ran},*}}(\Lambda^{\text{std}}). \]

It suffices to show that

\[\text{EXP}^{t^{\text{ran},*}}(\Lambda^{\text{std}}) \leq \text{EXP}^{t^{\text{wor},*}}(\Lambda^{\text{all}}). \]

Note that using (2.19) we can only obtain that

\[\text{EXP}^{t^{\text{ran},*}}(\Lambda^{\text{std}}) \leq (1 + \ln 4) \cdot \text{EXP}^{t^{\text{wor},*}}(\Lambda^{\text{all}}). \]

Instead we use (2.20). For sufficiently small $\delta > 0$ and $\omega > 0$, it follows from (2.20) and (5.7) that

\[
\begin{align*}
&n^{\text{ran},*}(\varepsilon, d; \Lambda^{\text{std}}) \\
&\leq C_{\omega,\delta} \left(n^{\text{wor},*}(\varepsilon/12\ln A_{\delta}, d; \Lambda^{\text{all}}) + 1 \right)^{1+\omega} \\
&\leq C_{\omega,\delta}(2C)^{1+\omega} \exp \left((1 + \omega)t(1 + \ln d)(1 + \ln(\varepsilon^{-1} + 1)) \right) \\
&\leq C_{\omega,\delta}(2C)^{1+\omega} \exp \left((1 + \omega)(1 + \ln(A_{\delta} + 1))(1 + \ln d)(1 + \ln(\varepsilon^{-1} + 1)) \right),
\end{align*}
\]

where $A_{\delta} = (1 + \frac{1}{12\ln A_{\delta}})^{1/\sqrt{1-\delta}}$. Taking the infimum over t for which (5.7) holds, and noting that

\[\lim_{(\delta, \omega) \to (0, 0)} (1 + \omega)(1 + \ln(A_{\delta} + 1)) = 1, \]

we get that

\[\text{EXP}^{t^{\text{ran},*}}(\Lambda^{\text{std}}) \leq \text{EXP}^{t^{\text{wor},*}}(\Lambda^{\text{all}}). \]

This completes the proof of Theorem 5.4. \qed
Finally, we consider the equivalences of $\text{EXP-}((s, t)-\text{WT})$ (including EXP-WT) and EXP-UWT for Λ_{std} and Λ_{all} in the randomized setting. We obtain the following equivalent results of $\text{EXP-}((s, t)-\text{WT})$ (including EXP-WT) and EXP-UWT for the absolute or normalized error criterion without any condition.

Theorem 5.5. We consider the problem $\text{APP} = \{\text{APP}_d\}_{d \in \mathbb{N}}$ in the randomized setting for the absolute or normalized error criterion. Then for fixed $s, t > 0$, $\text{EXP-}((s, t)-\text{WT})$ for Λ_{all} is equivalent to $\text{EXP-}((s, t)-\text{WT})$ for Λ_{std}. Specifically, EXP-WT for Λ_{all} is equivalent to EXP-WT for Λ_{std}.

Proof. Again, it is enough to prove that $\text{EXP-}((s, t)-\text{WT})$ for Λ_{all} in the worst case setting implies $\text{EXP-}((s, t)-\text{WT})$ for Λ_{std} in the randomized setting.

Suppose that $\text{EXP-}((s, t)-\text{WT})$ holds for Λ_{all} in the worst case setting. Then we have for $\epsilon^{-1} + d \to \infty$,

$$\lim_{\epsilon^{-1} + d \to \infty} \ln n_{\text{wor},*}(\epsilon, d; \Lambda_{\text{all}}) \leq 0.$$

(5.8)

It follows from (2.19) that for $\omega > 0$,

$$\lim_{\epsilon^{-1} + d \to \infty} \ln n_{\text{ran},*}(\epsilon, d; \Lambda_{\text{std}}) \leq \lim_{\epsilon^{-1} + d \to \infty} \ln \left(C_\omega \left(\frac{n_{\text{ran},*}(\epsilon/4, d; \Lambda_{\text{all}}) + 1}{1 + \ln \epsilon^{-1}} \right)^{1+\omega} \right) \leq \frac{\ln(C_\omega 2^{1+\omega})}{1 + \ln \epsilon^{-1}} + \frac{(1 + \ln 4)^s}{1 + \ln(\epsilon/4)^{-1}} \ln n_{\text{wor},*}(\epsilon/4, d; \Lambda_{\text{all}}).$$

Since $\epsilon^{-1} + d \to \infty$ is equivalent to $(1 + \ln \epsilon^{-1})^s + d^t \to \infty$, by (5.8) we get that

$$\lim_{\epsilon^{-1} + d \to \infty} \ln(C_\omega 2^{1+\omega}) = 0 \quad \text{and} \quad \lim_{\epsilon^{-1} + d \to \infty} \ln n_{\text{wor},*}(\epsilon/4, d; \Lambda_{\text{all}}) = 0.$$

We obtain

$$\lim_{\epsilon^{-1} + d \to \infty} \frac{\ln n_{\text{ran},*}(\epsilon, d; \Lambda_{\text{std}})}{(1 + \ln \epsilon^{-1})^s + d^t} = 0,$$

which implies that $\text{EXP-}((s, t)-\text{WT})$ holds for Λ_{std} in the randomized setting.

Specifically, EXP-WT is just $\text{EXP-}((s, t)-\text{WT})$ with $s = t = 1$.

This completes the proof of Theorem 5.5. □

Theorem 5.6. We consider the problem $\text{APP} = \{\text{APP}_d\}_{d \in \mathbb{N}}$ in the randomized setting for the absolute or normalized error criterion. Then, EXP-UWT for Λ_{all} is equivalent to EXP-UWT for Λ_{std}.

Proof. By definition we know that APP is EXP-UWT if and only if APP is $\text{EXP-}((s, t)-\text{WT})$ for all $s, t > 0$. Then Theorem 5.6 follows from Theorem 5.5 immediately. □

Proof of Theorem 2.6.

Theorem 2.6 follows from Theorems 4.4, 4.5, 5.2, and 5.4-5.6 immediately. □

Acknowledgment This work was supported by the National Natural Science Foundation of China (Project no. 11671271).
References

[1] G. Byrenheid, R.J. Kunsch, V.K. Nguyen, Monte Carlo methods for the L_∞-approximation on periodic Sobolev spaces with bounded mixed derivative, J. Complexity 46 (2018) 90-102.

[2] J. Chen, H. Wang, Average Case tractability of multivariate approximation with Gaussian kernels, J. Approx. Theory 239 (2019) 51-71.

[3] A. Cohen, M.A. Davenport, D. Leviatan, On the stability and accuracy of least squares approximations. Found. Comput. Math. 13 (2013) 819-834. (Correction in Found. Comput. Math. 19 (1) (2019) 239.)

[4] A. Cohen, G. Migliorati, Optimal weighted least-squares methods, SMAI J. Comput. Math. 3 (2017) 181-203.

[5] J. Dick, P. Kritzer, F. Pillichshammer, H. Woźniakowski, Approximation of analytic functions in Korobov spaces, J. Complexity 30 (2014) 2-28.

[6] J. Dick, G. Larcher, F. Pillichshammer, H. Woźniakowski, Exponential convergence and tractability of multivariate integration for Korobov spaces, Math. Comp. 80 (2011) 905-930.

[7] G. Fang, L. Duan, The complexity of function approximation on Sobolev spaces with bounded mixed derivative by linear Monte Carlo methods, J. Complexity 24 (2008), 398-409.

[8] G. Fang, L. Duan, The information-based complexity of approximation problem by adaptive Monte Carlo methods, Sci. China Series A: Math. 51(9) (2008) 1679-1698.

[9] M. Gnewuch, H. Woźniakowski, Quasi-polynomial tractability, J. Complexity 27 (2011) 312-330.

[10] S. Heinrich, Lower bounds for the complexity of Monte Carlo function approximation, J. Complexity 8(3) (1992) 277-300.

[11] F.J. Hickernell, G.W. Wasilkowski, H. Woźniakowski, Tractability of linear multivariate problems in the average case setting, in: A. Keller, S. Heinrich, H. Niederreiter (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer, Berlin, 2008, pp. 461-494.

[12] A. Hinrichs, D. Krieg, E. Novak, J. Prochno, M. Ullrich, On the power of random information, in: F.J. Hickernell, P. Kritzer (Eds.), Multivariate Algorithms and Information-Based Complexity, De Gruyter, Berlin/Boston, 2020, pp. 43-64.

[13] A. Hinrichs, D. Krieg, E. Novak, J. Prochno, M. Ullrich, Random sections of ellipsoids and the power of random information, 2019, arXiv: 1901.06639v1.

[14] A. Hinrichs, E. Novak, H. Woźniakowski, Discontinuous information in the worst case and randomized settings, Math. Nachr. 286 (7) (2013) 679-690.

[15] C. Irrgeher, P. Kritzer, F. Pillichshammer, H. Woźniakowski, Tractability of multivariate approximation defined over Hilbert spaces with exponential weights, J. Approx. Theory 207 (2016) 301-338.

[16] P. Kämmerer, T. Ullrich, T. Volkmer, Worst-case recovery guarantees for least squares approximation using random samples, 2020, arXiv: 1911.10111v2.

[17] D. Krieg, Optimal Monte Carlo Methods for L_2-approximation, Constr. Approx. 49 (2019) 385-403.

[18] D. Krieg, M. Sonnleitner, Random points are optimal for the approximation of Sobolev functions, 2020, arXiv: 2009.11275v1.

[19] D. Krieg, M. Ullrich. Function values are enough for L_2-approximation, to appear in Found Comput Math (2021) [http://dx.doi.org/10.1007/s10208-020-09481-w], in press.

[20] D. Krieg, M. Ullrich. Function values are enough for L_2-approximation, PART II, 2020, arXiv: 2011.01779v1.

[21] P. Kritzer, H. Woźniakowski, Simple characterizations of exponential tractability for linear multivariate problems, J. Complexity 51 (2019) 110-128.

[22] R.J. Kunsch, Breaking the curse for uniform approximation in Hilbert spaces via Monte Carlo methods, J. Complexity 48 (2018) 15-35.

[23] F. Y. Kuo, G. W. Wasilkowski, H. Woźniakowski, On the power of standard information for L_∞ approximation in the randomized setting, BIT Numer. Math. 49 (2009) 543-564.

[24] F. Y. Kuo, G. W. Wasilkowski, H. Woźniakowski, On the power of standard information for multivariate approximation in the worst case setting. J. Approx. Theory, 158 (5) (2009): 97-125.

[25] M. Lifshits, M. Zani, Approximation of additive random fields based on standard information: Average case and probabilistic settings, J. Complexity 31 (2015) 659-674.
[26] Y. Liu, G. Xu, Average case tractability of a multivariate approximation problem, J. Complexity 43 (2017) 76-102.
[27] P. Mathé, Random Approximation of Sobolev Embeddings, J. Complexity 7 (1991) 261-281.
[28] N. Nagel, M. Schäfer, T. Ullrich, A new upper bound for sampling numbers, 2020, arXiv: 2010.00327v1.
[29] E. Novak, Deterministic and Stochastic Error Bound in Numerical Analysis, in: Lecture Notes in Mathematics, Vol. 1349, Springer, Berlin, 1988.
[30] E. Novak, Optimal linear randomized methods for linear operators in Hilbert spaces, J. Complexity 8 (1992) 22-36.
[31] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume I: Linear Information, EMS, Zürich, 2008.
[32] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume II: Standard Information for Functionals, EMS, Zürich, 2010.
[33] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems, Volume III: Standard Information for Operators, EMS, Zürich, 2012.
[34] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems for standard and linear information in the worst case setting: Part I, J. Approx. Theory 207 (2016) 177-192.
[35] E. Novak, H. Woźniakowski, Tractability of Multivariate Problems for standard and linear information in the worst case setting: Part II, Contemporary computational mathematics— a celebration of the 80th birthday of Ian Sloan. Vol. 1, 2, 963-977, Springer, Cham, 2018.
[36] A. Papageorgiou, I. Petras, A new criterion for tractability of multivariate problems, J. Complexity 30 (2014) 604-619.
[37] A. Papageorgiou, I. Petras, G. Q. Xu, D. Yanqi, EC-(s,t)–weak tractability of multivariate linear problems in the average case setting, J. Complexity 55 (2019) 101425, 26 pp.
[38] P. Siedlecki, Uniform weak tractability, J. Complexity 29 (6) (2013) 438-453.
[39] P. Siedlecki, M. Weimar, Notes on (s,t)-weak tractability: a refined classification of problems with (sub) exponential information complexity, J. Approx. Theory 200 (2015) 227-258.
[40] J.F. Traub, G.W. Wasilkowski, H. Woźniakowski. Information-Based Complexity. Academic Press, New York, 1988.
[41] G.W. Wasilkowski, H. Woźniakowski, On the power of standard information for weighted approximation, Found. Comput. Math. 1 (2001) 417-434.
[42] G.W. Wasilkowski, H. Woźniakowski, The power of standard information for multivariate approximation in the randomized setting, Math. Comput. 76 (2007) 965-988.
[43] H. Woźniakowski, Tractability and strong tractability of linear multivariate problems, J. Complexity 10 (1994) 96-128.
[44] G. Xu, Quasi-polynomial tractability of linear problems in the average case setting, J. Complexity 30 (2014) 54-68.
[45] G. Xu, Tractability of linear problems defined over Hilbert spaces, J. Complexity 30 (2014) 735-749.
[46] G. Xu, Exponential convergence-tractability of general linear problems in the average case setting, J. Complexity 31 (2015) 617-636.
[47] G. Xu, On the power of standard information for L_2-approximation in the average case setting, J. Complexity 59 (2020) 101482, 20 pp.

School of Mathematical Sciences, Capital Normal University, Beijing 100048, China.

Email address: lwanting1234@163.com

School of Mathematical Sciences, Capital Normal University, Beijing 100048, China.

Email address: wanghp@cnu.edu.cn