Brucella adaptation and survival at the crossroad of metabolism and virulence
Barbier, T.; Nicolas, C.; Letesson, Jean-Jacques

Published in:
FEBS Letters

DOI:
10.1016/j.febslet.2011.08.011

Publication date:
2011

Document Version
Peer reviewed version

Link to publication
Citation for published version (HARVARD):
Barbier, T, Nicolas, C & Letesson, J-J 2011, 'Brucella adaptation and survival at the crossroad of metabolism and virulence', FEBS Letters, vol. 585, no. 19, pp. 2929-2934. https://doi.org/10.1016/j.febslet.2011.08.011

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

Location in article	Query / Remark: click on the Q link to go
Q1	Please check article title footnote.
Q2	The article title has been slightly modified. Please check, and correct if necessary.
Q3	Please confirm that given name and surnames have been identified correctly.
Q4	Reference 39 is cited in the text but not provided in the reference list. Please provide it in the reference list or delete the citation from the text.

Thank you for your assistance.
The nature of the metabolic network is a fundamental aspect of pathogenic lifestyles. *Brucella* spp. are the intracellular pathogens responsible for chronic infections of mammals. Here we review new insights on the links between *Brucella* virulence and metabolism. Understanding of *Brucella* metabolic abilities will help to decipher its infectious strategies.
Review

Brucella adaptation and survival at the crossroad of metabolism and virulence

T. Barbier, C. Nicolas, J.J. Letesson*

Research Unit in Molecular Biology (URBM), NARILIS, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium

ARTICLE INFO

A B S T R A C T

"In vivo" bacterial nutrition, i.e., the nature of the metabolic network and substrate(s) used by bacteria within their host, is a fundamental aspect of pathogenic or symbiotic lifestyles. A typical example are the **Brucella** spp., facultative intracellular pathogens responsible for chronic infections of animals and humans. Their virulence relies on their ability to modulate immune response and the physiology of host cells, but the fine-tuning of their metabolism in the host during infection appears increasingly crucial. Here we review new insights on the links between **Brucella** virulence and metabolism, pointing out the need to investigate both aspects to decipher **Brucella** infectious strategies.

© 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

1. **Introduction**

In order to successfully colonize a host, a symbiotic and pathogenic bacteria have to be able to occupy specific metabolic niches within their host. Indeed, it is becoming more and more obvious that the sensing of available carbon source(s) and the related metabolic adaptations are intimately linked to the coordinated expression of other virulence determinants, such as colonization factors [1,2]. However with the exception of some recent progress on model bacteria [5–7], the mechanistic basis for this coordination is still frustratingly poorly understood [3–5]. Here, we review the current on the links existing between metabolism and virulence of a particular intracellular pathogen: **Brucella**.

1.1. **Brucella**, a nasty Mr “Hides”

Brucella spp. are Gram-negative intracellular pathogens phylogenetically related to plant symbionts such as the **Rhizobiaceae**. Often referred as “nasty bugs” [8] because of their unusual virulence features, or as “Mr Hides”, in reference to their stealthy ability to evade immune detection [9], they are major zoonotic pathogens, as they are able to induce chronic infections of both animals and humans [10,11]. In Latin America alone, the annual economic loss in animal production from brucellosis has been estimated to be more than $600,000,000 [12].

During the last few decades, efforts to solve the complex jigsaw puzzle of **Brucella** virulence have focused on “classical” virulence factors, or bacterial factors that interact directly with components of the host [13]. Despite an increasing knowledge of the molecular strategies used by this pathogen to interact with host cells during its infectious cycle [14,15], we are still far from understanding it. Moreover, a new piece of this puzzle, long forgotten, has come into view: bacterial metabolism.

2. **Brucella** virulence and metabolism: two sides of the same coin

The global picture emerging from what is known about **Brucella** virulence is an extremely efficient adaptation to shield itself from immune recognition and to manipulate key aspects of host cell physiology, for example apoptosis and vacuolar trafficking [8,9,14–16]. It has also become increasingly evident, though still poorly considered, that one of the keys to successful in vivo adaptation of a pathogen is its ability to fine-tune the metabolism to utilize specific nutrients encountered in each niche occupied by **Brucella** during the infectious cycle [4,17].

One aspect of the physiology of the **Brucellae** that is particularly poorly understood is the architecture and regulation of central metabolic pathways [18]. According to pioneering biochemical investigations [19], as well as more recent genomic data, hexoses can be catabolized through the pentose–phosphate (PP) pathway and an incomplete Embden–Meûrhorf–Parnas glycolytic pathway (EMP), as **Brucellae** seem to lack a phosphofructokinase. However, in some cases, functions predicted from genomic analysis do not agree with results from biochemical analysis of metabolic function in vivo. For example, while genomic analysis indicated that **Brucellae** carry two genes predicted to encode enzymes of the Entner–Doudoroff (ED) pathway (gluconate-6-phosphate dehydrogenase and 2-keto-3-deoxygluconate aldolase), no gluconate-6-phosphate

*Dis-moi ce que tu manges, je te dirai ce que tues. Physiologie du goût (1825), Aphorisme IV. Citations de Anthelme Brillat-Savarin.

*Corresponding author.

E-mail address: jean-jacques.letesson@fundp.ac.be (J.J. Letesson).

0014-5793/$36.00 © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.febslet.2011.08.011

Please cite this article in press as: Barbier, T., et al. **Brucella** adaptation and survival at the crossroad of metabolism and virulence. FEBS Lett. (2011).

doi:10.1016/j.febslet.2011.08.011
dehydratase activity could be detected in vitro [19]. This is also true for the two enzymes of the glyoxylate shunt (isocitrate lyase and malate synthase), whose activity has never been demonstrated. Hexoses can be further metabolized through what appears to be a fully active tricarboxylic acid cycle (TCA) [19]. Nevertheless, it bears mentioning that hexoses are not the favoured carbon sources for the three best characterized Brucella species: B. abortus, B. melitensis and B. suis. Instead, these bacteria preferentially utilize a four carbon sugar alcohol (erythritol) [20], the catabolism of which yields one triose phosphate [21]. In summary, the actual picture of the central metabolic network of Brucella spp. appears to be: (i) active PP and TCA cycles, (ii) potentially active ED and glycolytic pathways (iii) an interrupted EMP. It should be kept in mind that the above description reflects what is known about the most thoroughly investigated three main Brucella species. As new genomic sequences become available, species differences in this metabolic network will certainly emerge as illustrated, for example, by the pseudogenization in B. ovis of some genes of the erythritol catabolic and transport operons or of the phosphoenolpyruvate carboxykinase (pckA) gene involved in the first step of gluconeogenesis [22]. While these differences are likely to be of interest to understanding species differences between the Brucellae, due to the limited biochemical characterization of these additional species we will focus our review on three best characterized Brucella species.

The information above outlines the potential “architecture” of the central metabolic network of Brucellae. However, from this “blueprint”, we can glean little about the functional metabolic pathways and nothing about the potential of Brucellae to adapt their metabolism to conditions in the host. However, the first clues on the nature of the in vivo metabolism of Brucellae were provided by the identification of attenuated mutant strains.

2.1. Metabolic mutants are frequent among attenuated mutants

Previous studies, aiming to identify virulence factors in B. abortus or B. melitensis by screening for transpositional mutants attenuated in the cellular or the mouse model of infection, revealed a link between persistence of Brucella in its hosts and its metabolism [23,24]. Indeed, several systems for transport and degradation of carbohydrates appear to be essential for Brucella survival. Transporters whose predicted function is uptake of amino acids or peptides also appear to be required during infection. These findings suggest that carbohydrates, but also amino acids and peptides, could be available as energy and/or carbon sources at some points during the infectious process.

It can be expected that some of these carbon sources are likely metabolized through the PP pathway, since among the attenuated metabolic mutants, several are impaired in a gene encoding an enzyme of this pathway (see Fig. 1, boxes n°6). This is consistent with the fact that Brucella seems to lack a phosphofructokinase, for a “classical” glycolysis EMP [18]. The PP pathway is consequently suspected to be crucial for sugar degradation in addition to being essential for the generation of biomass precursors such as ribose required for de novo synthesis of purines and pyrimidines [25–27]. In addition, mutants in global regulators affecting metabolism are attenuated, emphasizing the fact that Brucella has to adapt its metabolic functions (including its central metabolism) for a successful infection. For example, B. melitensis and B. suis rsh mutants with an impaired stringent response are severely attenuated [28]. It has been recently shown in alpha-proteobacteria closely related to Brucella (namely Sinorhizobium meliloti and Rhizobium etli) that the stringent response to nitrogen or carbon limitation not only regulates expression of genes encoding biosynthetic or catabolic pathways (protein, amino acids, nucleotides, and lipids) but has also an impact on expression of genes encoding the functions of central metabolism (PP and EMP pathways as well as TCA cycle) [29,30]. Furthermore, three mutants in the Brucella Phosphoenolpyruvate-carbohydrate-phosphotransferase system (PTS) are also impaired in their virulence [25] (see below). Similar mutants in S. meliloti were affected in their carbon metabolism and in their ability to cope with nutritional stress [31].

2.2. A profound and progressive adaptation of central metabolism occurs as Brucella enters and persists in its intracellular niche

Two recent studies further illustrate the central metabolic adaptation performed by Brucella during intracellular infection. In the first one, the proteome of B. suis was analyzed in J774 macrophages at 48 h post infection (PI) and compared to the proteome of B. suis at the early stationary phase in a rich medium [32]. The majority of the 44 differentially produced proteins are involved in the primary metabolism (metabolism strictly needed for survival) of Brucella, among which nine are related to the central metabolism (see Fig. 1, boxes 1). The results suggest that at 48 h PI Brucella had a restricted glycolytic activity and an increase in gluconeogenesis. Moreover isocitrate lyase (AceA) and malate synthase (AceB), two enzymes belonging to the glyoxylate shunt, were upregulated [32]. The glyoxylate shunt acts as an anaplerotic pathway for the Krebs cycle, providing succinate and malate from acetyl-CoA and isocitrate. Usually, a functional glyoxylate shunt allows bacteria to grow on fatty acids, which might thus become an important carbon source for B. suis during infection, as has been reported for Mycobacterium tuberculosis [33].

The second study adds a temporal dimension to the physiological adaptation. Using RAW 264.7 macrophages, Lamontagne et al. performed a proteome analysis on B. abortus at three time points: 3 h PI (when the bacteria are internalized but have not yet reached the replicative niche), 20 h PI (when they have escaped the initial microbicidal “burden” and started an active replication) and 44 h PI (when they reached the maximum of their intracellular number) [17]. Ninety proteins were differentially produced in B. abortus and most of them took part in primary metabolism, of which seven are involved in the central metabolism (see Fig. 1 for the 3 h time point boxes 7). The reduced production of enzymes of central carbon metabolism (TCA cycle, pyruvate and PP pathway), and of sugar uptake transport systems suggests that there is a limited sugar supply at the beginning of infection. At this time, amino acid catabolism feeding the TCA could be the privileged alternative to derive the needed precursors. At later time points, once in the ER derived compartment, the PP pathway would be active suggesting a resupplying of sugars [17].

Thus, these in vivo experiments revealing dynamic metabolic adaptations during cellular infection, were particularly valuable, since they unmasked a metabolic flexibility that could not have been predicted using classical in vitro growth conditions.

2.3. Major virulence regulators act as metabolic regulators “and vice versa”

The metabolic adaptations described above allow Brucella to withstand the wide array of environmental conditions existing within a host and its cells. In response to the conditions encountered at each specific stage of the infectious cycle, a tight and coordinated fine-tuning of gene expression is needed while unnecessary (or no longer needed) functions are accordingly switched off. Expression of virulence genes is usually governed by signaling pathways and regulatory mechanisms similar to those that control genes that are not specific to pathogenesis. These signaling pathways are often based on reversible phosphorylation of proteins (two component system or phosphoenolpyruvate dependent sugar
213 phosphotransfer system) or specialized global regulators acting
214 either at an individual cell or at a population level.

2.3.1. The critical BvrS/R two component system

The BvrS/R two component system (TCS) is a signaling pathway
215 consisting of a membrane-bound histidine kinase (BvrS) and its
216 corresponding response regulator (BvrR). Following the sensing
217 of a (still unknown) specific environmental stimulus, BvrS auto-
218 phosphorlylates on a conserved histidine residue and mediates the
219 transfer of the phosphoryl group to a conserved aspartate of BvrR.
220 The latter coordinates the cellular response, through differential
221 expression of target genes. The BvrS/R TCS is essential for viru-
222 lence. Transpositional inactivation leads to defects in attachment,
223 invasion, and intracellular replication [34]. A recent transcriptomic
224 analysis revealed a clear impact of the bvrR mutation on the
225 expression of genes related to carbohydrates, amino acids, fatty
226 acids and nitrogen metabolism [35]. Among the genes up-regu-
227 lated in the bvrR mutant are the phosphoenolpyruvate carboxyki-
228 nase (pckA) encoding the first enzyme in gluconeogenesis, and
229 four genes involved in TCA cycle and pyruvate metabolism (see
230 Fig. 1, boxes 3).

![Fig. 1. Regulations of Brucella central metabolism in various conditions (see numbers in boxes). In green (boxes and arrows), up-regulations; in red (boxes and arrows), down-regulations; in grey, attenuated mutants. P: proteomic data, T: transcriptomic data. Pgi, phosphoglucoisomerase; Fbpase, fructose-1,6-biphosphatase; Ald, aldolase; Tpi, triose phosphate isomerase; Gapdh, glyceraldehyde-3-phosphate dehydrogenase; Gpm, phosphoglycerate mutase; Eno, enolase; Pyk, pyruvate kinase; Pck, PEP carboxykinase; Pyc, pyruvate carboxylase; Pdh, pyruvate dehydrogenase; AcCoA, Acetyl- coenzyme A synthetase; Cs, citrate synthase; Acon,aconitase; Idh, isocitrate dehydrogenase; Akgdh, 2-oxoglutarate dehydrogenase; Sdhh, succinyl-CoA synthetase; Sdh, succinate dehydrogenase; Fum, fumarase; Maldh, malate dehydrogenase; Icl, isocitrate lyase; Ms, malate synthase; Zwf, glucose-6-phosphate dehydrogenase; Gnd, 6-phosphogluconate dehydrogenase; Rpi, ribose-5-phosphate isomerase; Rpe, ribose-5-phosphate epimerase; Tkt, transketolase; Edd, phosphogluconate dehydratase; GluA, glutamine synthetase; Gdh, glutamate dehydrogenase. (1) B. suis 48h PI (proteomic data from [27]); (2) B. abortus 3h PI (proteomic data from [16]); (3) B. abortus bvrR mutant (transcriptomic data from [30]); (4) B. melitensis DvjbR mutant (transcriptomic and proteomic data from [37]); (5) B. melitensis DbabR mutant (transcriptomic and proteomic data from [37]); (6) B. abortus and B. melitensis attenuated mutants [21,27]; (7) B. melitensis ratio DEI/DEIIANtr mutants (unpublished transcriptomic data).]
TCS appears to affect a larger range of phenotypes related to metabolic functions that potentially mediate adaptation to an intracellular lifestyle [17,35]. Nevertheless, it should be mentioned that for the bvrR transposon mutant used for the studies discussed above, questions remain about whether the transposon insertion led to a loss or gain of BvrR function, since attempts to create defined genomic disruptions or null mutations were unsuccessful, prompting its designation as essential gene. Similar observations were made for Agrobacterium tumefaciens and S. meliloti homologues of bvr [36,37]. Mutation in these TCS prevents growth of the bacteria in complex media [38] and a null mutant can only be obtained on minimal media [38]. In addition, the homologue of bvr in S. meliloti (chvl) is strictly needed for growth on more than 21 different carbon sources [38] and the bvr mutant grows poorly on minimal medium [35], thus reinforcing the link between this TCS and S. meliloti metabolism. Whether the effects of bvr transpositional mutation on the cell envelope (Omp and transporters) is the consequence or the cause of these growth defects remain to be investigated by identifying the direct targets of the regulator.

The potential link of this TCS with the metabolism will be discussed further below in parallel with the Phosphotransferase System (PTS).

2.3.2. Quorum sensing and starvation sensing

Quorum sensing (QS) is a regulatory system that allows bacteria to coordinate gene expression at the population level according to the local bacterial cell density through the individual synthesis and sensing of diffusible signal molecules. Quorum sensing is also known to be involved in the regulation of Brucella virulence determinants mostly linked to the cell surface (Type IV secretion system, flagellum, outer membrane proteins and exopolysaccharide) [39–41]. Surprisingly, recent transcriptomic and proteomic analyses have put forward that inactivation of vjbR and babR, two QS regulators, has a strong impact on genes involved in metabolism and particularly on genes encoding enzymes of the TCA cycle and glycolysis [Fig. 1, boxes 4 and 5 respectively] [42,43]. Interestingly, VjbR and BabR regulate overlapping sets of target genes in an opposing manner, suggesting that QS could have a global reorganization effect on central metabolic processes. No growth delay for the vjbR and babR mutant strains could be observed though liquid or solid culture in rich media. However, differences in growth of these mutants were reported in defined media, depending on the available carbon source.

Placed into an intracellular context, in the vacuole, sensing a "Quorum" for Brucella could mean sensing limited diffusion due to space limitation. That corresponds to "starvation sensing". It can be suggested that QS is directly or indirectly involved in adjusting the metabolism of Brucella. Indeed, by slowing down Brucella basic metabolism, QS (through BabR) would prevent multiplication until the ER-derived replicative compartment is reached. Subsequently, the BabR regulator could play a role in reactivating the basal metabolism. A similar proposal was made for the BvrS/R TCS [17,35]. Thus, both the BvrS/R TCS and the QS system could contribute to the adaptation of the metabolic network during the nutrient shift faced by Brucella all along its intracellular trafficking continuum. These two regulatory systems appear to be connected, since BvrR has an activating effect on vjbR transcription [35,44]. However, it is not yet known whether this activation is direct or whether it is mediated through other global starvation sensing mechanisms like the stringent response [28] and/or the PTS system [45].

2.3.3. The phosphoenolpyruvate phosphotransferase system (PTS) — a missing link

PTS systems are widespread among bacteria. Activated by phosphoenolpyruvate (PEP), this system usually consists of two cytoplasmic energy-coupling proteins (Enzyme I and HPr) as well as several carbohydrate-specific Enzymes II, which catalyze concomitant carbohydrate translocation and phosphorylation [46]. The phosphorylation status of PTS components reflects both the availability of carbohydrates and the energy conditions of the cell. In many bacteria, PTS and their associated proteins convert this information to signals, which are then transduced through different mechanisms (allosteric interactions, phosphorylation) and lead to phenomena including catabolite repression and inducer control [46,47]. The PTS provides bacteria with an integrated system that ensures optimal utilization of carbohydrates in complex environments, a feature that is particularly important in host–bacteria interaction [1,48,49]. In place of a classical PTS, some bacteria have evolved parallel systems that serve strictly regulatory functions. Among such systems are the so-called “Nitrogen PTS”, which are thought to link carbon and nitrogen metabolisms but do not appear to catalyze substrate translocate, as they lack the PTS permeases [50–53]. Brucella spp., A. tumefaciens, S. meliloti and other α-proteobacteria possess a Nitrogen PTS system, and their respective pts mutants were previously shown to be impaired for interaction with the host [25,54,55].

In all pathogenic or symbiotic α-proteobacteria, three pts genes (hpkR, ptsM and ptsO) are located downstream of the conserved two-component system genes (bvrS/R, exoS/chvl) essential for infection or symbiosis [34,38]. This conserved genetic organization suggests a functional link between BvrS/R and the PTS [53,56]. Recently two papers substantiated this link by showing (i) that the above mentioned pts genes are co-transcribed with the bvrS/R genes [45] and (ii) that the hprK gene is downregulated in the bvrR-Tn5 mutant [35]. In addition, a proteomic study with a B. abortus bvrR mutant [57] revealed that BvrR regulates the 2-oxoglutarate dehydrogenase complex that converts 2-oxoglutarate into succinyl-CoA in the TCA cycle. The subunit SucA of the same enzyme was recently shown to interact with the PTS Elia_{min}-like protein encoded by ptsM itself located at the specific conserved locus previously mentioned [45]. Both bvrR and pts mutants have an unaltered growth in liquid rich media but display a restricted or abolished growth on minimal medium with defined carbon source(s) [35,45]. These findings support the hypothesis that the Brucella PTS senses the metabolic state of the cell (by sensing among others the ratio of PEP/pyruvate and the fructose 1,6-biphosphate) leading to a coordinated regulation of C and N metabolisms and as well as some key virulence genes (e.g. the virR operon [45], flagellar genes . . .). This probably involves cross-talk with the two-component system BvrS/R. Interestingly, both the bvrR and one pts mutant (ptsP) seem to share the ability to regulate the expression of the QS regulator VjbR, which in turn regulates determinants of virulence and metabolism (see above).

3. What is NOT known about the central metabolism of Brucella: challenges for the ongoing century

Of course, this paper is not an exhaustive review of all the links connecting virulence and metabolism of Brucella. Our focus being mainly the central metabolism, we omitted some known links (i.e. the recent identification of the virR gene regulator Hutc [58] or the role of the stringent response in regulating the crucial type IV secretion system [28]. In the near future other connections will likely be discovered. A major breakthrough will certainly come from the newly evolving field of RNA based regulation. Long considered only as informative macromolecules, small RNAs (sRNAs) are increasingly recognized as important regulators of gene expression allowing the rapid adaptation of cell growth in response to stress and changes in the environment. These sRNAs post-transcriptionally modulate gene expression, mostly through
base-pairing with target mRNAs, thereby regulating relative levels of translation or decay [59]. In addition, messenger RNAs themselves can act as direct sensors of the physical or metabolic state of the cell via their 5′-untranslated (5′-UTR) region that undergoes structural changes upon metabolite binding (riboswitch). The conformational alteration of the mRNA structure affects the expression of the downstream transcript [60]. Altogether, these RNAs are widespread in bacteria and regulate metabolic pathways, carbon source utilization and the composition of the membrane [61]. Moreover, their direct or indirect involvement in the regulation of virulence genes and host-pathogen relationship is becoming more and more clear [62,63].

With regard to the impact of these sRNAs on Brucella metabolism or virulence, this is almost "terra incognita". Nevertheless, owing to the recognized role of Hfq in facilitating the action of sRNA and the importance of this RNA binding protein in Brucella adaptation [64] the chances are high that Brucella RNA regulation will be brought to the center stage as has recently been the case for other intracellular bacterial pathogens such as Listeria monocytogenes [65,66] or Legionella pneumophila [67].

Nevertheless some basic questions, concerning the functioning of Brucella metabolism, still remain to be investigated:

What parts of the central metabolic network are functional, and under which conditions?

Why is erythritol a preferred carbon source for Brucella?

How is catabolite repression (if any) mediated in Brucella?

What are the carbon sources (sugars and/or amino-acids) that are available intracellularly?

How is the regulation of crucial virulence factors connected to central metabolic adaptation?

How does the PTS regulate the carbon fluxes in the central metabolism?

What is the link between the PTS and the BvrR/TCS?

What is the link between these two regulatory systems and Quorum Sensing?

Is the metabolic network and/or its regulation responsible of the host specificity of Brucella strains?

And to a greater extent, how has the intracellular lifestyle of Brucella influenced the design of its metabolic network?

Undeniably, the way we are looking at bacterial physiology and host bacteria interactions is rapidly evolving in the "omics" era. In the near future, new approaches such as metabolomics [68] or 13C-isotopologue-profiling analysis [2] will lead to an increased understanding of the Brucella metabolic plasticity both in vitro and during cellular infection. This will yield new insights on Brucella virulence and will, potentially, open new prophylactic avenues.

Acknowledgments

This work was supported by grants from the Fond National de la Recherche Scientifique (FNR) (convention FRNC N° 2452110, Belgium), T.B. is “Aspirant du FNR”.

We thank R. Tsolis for improving the English and the anonymous reviewers for their constructive suggestions.

References

[1] Poncet, S., Milohanic, E., Maze, A., Abdallah, J.N., Ake, F., Larrière, M., Deghmane, A.E., Taha, M.K., Dozot, M., De Bolle, X., Letesson, J.-J. and Deutscher, J. (2009) Correlations between carbon metabolism and virulence in bacteria. Contrib. Microbiol. 16, 85–102.

[2] Eisenreich, W., Dandekar, T., Heesemann, J. and Goebel, W. (2010) Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. Nat. Rev. Microbiol. 8, 401–412.

[3] Munoz-Elias, E.J. and McKinney, J.D. (2006) Carbon metabolism of intracellular bacteria. Cell. Microbiol. 8, 10–22.

[4] Brown, S.A., Palmer, K.L. and Whiteley, M. (2008) Revisiting the host as a Brucella growth medium. Nat. Rev. Microbiol. 6, 657–666.

[5] Eyerl, E., Schar, J., Mertins, S., Stoll, R., Bacher, A., Goebel, W. and Eisenreich, W. (2008) Carbon metabolism of Listeria monocytogenes growing inside Microbiol. 170, 990–1017.

[6] Chang, D.-E., Smalley, D.J., Tucker, D.L., Leahman, M.P., Norris, W.E., Stevenson, S.J., Anderson, A.B., Grissom, J.E., Laux, D.C., Cohen, P.S. and Conway, T. (2004) Carbon nutrition of Escherichia coli in the mouse intestine. Proc. Natl. Acad. Sci. USA 101, 7417–7422.

[7] Altei, C.J., Smith, S.N. and Moley, H.L.T. (2009) Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog. 5, e1000448.

[8] Letesson, J.-J., Lestrade, P., Delrue, R.M., Danese, I., Bellefontaine, F., Fretin, D., Taminiau, B., Tabor, A., Dricot, A., Deschamps, C., Haine, V., Leonard, S., Laurent, T., Mertens, P., Vandenhaute, J. and De Bolle, X. (2002) Fun stories about Brucella: the “turtle nasty bug”, Vet. Microbiol. 90, 317–328.

[9] Gorvel, J.-P. (2008) Brucella: a Mr “Hide” converted into Dr. Jekyll. Microbes Infect. 10, 1010–1013.

[10] Corbel, M.J. (1997) Brucellosis: an overview. Emerg. Infect. Dis. 3, 213–221.

[11] Pappas, C., Papadimitriou, P., Akrithakis, N., Christou, I. and Tsianos, E.V. (2006) The new global map of human brucellosis. Lancet Infect. Dis. 6, 91–99.

[12] Boschirolli, M. and Fouloungne, V. (2001) Brucellosis: a worldwide zoonosis. Curr. Opinion Microbiol. 4, 58–64.

[13] Wassenaar, T.M. and Gaastra, W. (2001) Bacterial virulence. Can we draw the line? FEBS Lett. 501, 1–7.

[14] Delrue, R.M., Lestrate, P., De Bolle, X., Tibor, A., Tang, C.M. and Letesson, J.-J. (2000) Identification and characterization of in vivo attenuated mutants of Brucella abortus. J. Proteomics 3, 1094–1099.

[15] Eisenberg, R.C., Seshadri, R., Nelson, K. and Paulsen, I. (2002) Sugar metabolism by Brucellae. Vet. Microbiol. 90, 249–261.

[16] Robertson, D.C. and McCullough, W.G. (1968) The glucose catabolism of the genus Brucella I. Evaluation of pathways. Arch. Biochem. Biophys. 127, 263–273.

[17] Anderson, J.D. and Smith, H. (1965) The metabolism of erythritol by Brucella abortus. J. Gen. Microbiol. 38, 109–124.

[18] Serry, J. (1975) Erythritol catabolism by Brucella abortus. J. Bacteriol. 121, 619–630.

[19] Tsolis, R.M., Seshadri, R., Santos, R.L., Sangaré, F.J., Lobo, J.M.G., de Jong, M.F., Murphy, Q., Myers, L.M., Nelson, W.C., Deboy, R.T., Angiulo, S., Khouri, H., Dimitrov, G., Robinson, J.R., Mulligan, S., Walker, R.L., Elzer, P.E., Hassan, K.A. and Paulsen, I.T. (2009) Genome degradation in Brucella abortus i. PloS One 4, e5519, doi:10.1371/journal.pone.0005519.

[20] Hong, P.C., Tsolis, R.M. and Ficht, T.A. (2000) Identification of genes required for chronic persistence of Brucella abortus in mice. Infect. Immun. 68, 4102–4107.

[21] Lestrade, P., Delrue, R.M., Danese, I., Didierjean, C., Taminiau, B., Mertens, P., De Bolle, X., Tabor, A., Tran, C.M. and Letesson, J.-J. (2000) Identification and characterization of in vivo attenuated mutants of Brucella melitensis. Mol. Microbiol. 38, 543–551.

[22] Delrue, R.M., Lestrade, P., Tabor, A., Letesson, J.-J. and De Bolle, X. (2004) Brucella pathogenesis, genes identified from random large-scale screens. FEMS Microbiol. Lett. 231, 1–7.

[23] Köhler, S., Foulongne, V., Oualiarni-Bettache, S., Bourg, G., Teyssier, J.-R. and Paulsen, I.T. (2009) Genome degradation in Brucella suis. J. Microbiol. 38, 1791–1802.

[24] Bonet, E., Boulanger, D., Dehoux, P., Boulanger, D. and Dehoux, P. (2011) Stress response regulators identified through genome-wide transcriptome analysis of the pcppGp-dependent response in Rhizobium etli. Genome Biol. 12, R17.

[25] Krol E, Becker A (2011) pppCp in Sinorhizobium melloti: biosynthesis in response to pppCp in Sinorhizobium melloti: biosynthesis to response to nutritional downshifts and modulation of the transcription. Mol. Microbiol. “Accepted Article” doi: 10.1111/j.1365-2958.2011.07752.x.

[26] Verreyssse, M., Faubert, M., Jans, A., Beuville, S., Braeken, K., Cloat, L., Engelen, K., Marchal, K. and Michiels, J. (2011) Stress response regulators identified through genome-wide transcriptome analysis of the pcppGp-dependent response in Rhizobium etli. Genome Biol. 12, R17.
Brucella abortus 558 BvrR/BvrS regulates the expression of the type IV secretion system VirB in Guzman-Verri, C. and Chaves-Olarte, E. (2010) The two-component system X. and Letesson, J.-J. (2010) Global analysis of quorum sensing targets in the to gene expression. BMC Microbiol. 10, 167.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838