Fracture Analysis of Vacancy Defected Nitrogen Doped Graphene Sheets Via MD Simulations

Hassan Shirzadi Jahromi\textsuperscript{a,}\textsuperscript{*}, Fatemeh Mehdipour\textsuperscript{b}, Ghasem Firooz\textsuperscript{c}

\textsuperscript{a} Department of Mechanical and Aerospace Engineering, Western Michigan University, Kalamazoo, USA
\textsuperscript{b} Institute for Solid Mechanics, Dresden University of Technology, Dresden, Germany
\textsuperscript{c} Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran

\begin{tabular}{|l|}
\hline
\textbf{Article Info} & \\
\hline
\textbf{Article history:} & \\
Received Feb 2\textsuperscript{nd}, 2021 & \\
Revised Apr 10\textsuperscript{th}, 2021 & \\
Accepted Apr 29\textsuperscript{th}, 2021 & \\
\hline
\textbf{Keyword:} & \\
Graphene & \\
Defect & \\
Fracture analysis & \\
Nitrogen doped graphene & \\
Molecular dynamics simulations & \\
\hline
\end{tabular}

\begin{tabular}{|l|}
\hline
\textbf{Abstract} & \\
The novel hexagonal monolayer sheet of carbon atoms, graphene, has attracted great attention due to their exceptional electrical and mechanical properties. Their phenomenally high strength and elastic strain, nevertheless, can be altered by structural defects due to stress concentration. In this paper, the fracture behaviour of graphene sheets and nitrogen doped graphene sheets with vacancies were investigated using molecular dynamics (MD) simulations at the different temperatures of 300K, 500K, and 900K. The results reveal a significant strength loss caused by both the defects and vacancies and doped nitrogen in graphene. The deformation process of graphene at various strain rate levels, with regard to the failure behaviour, is discussed. The validity of the proposed MD simulations is verified by comparing the simulation results with the available predictions from the quantized fracture mechanics. & \\
\hline
\end{tabular}

1. Introduction

The Ilijma’s invention of carbon nanotubes [1] opened a new way to conduct research of nanotechnology’s science. Lots of applications and the outstanding physical, mechanical, and electrical properties of carbon nanotubes and graphene [2-12], make them the subject of intensive studies. Increasing research efforts of graphene has been enticing since its discovery [13]. Graphene possesses many superior properties such as exceptional elastic properties [14], high mechanical strength, and extremely high Young’s modulus (about 1TPa) and fracture strength (130 GPa) [15], chemical inertness, high heat conduction, and piezoelectricity [16, 17]. Chemical vapor deposition (CVD) and mechanical exfoliation [18], chemical reduction of graphene oxide sheets [19], can be led to produce graphene [20]. However, the premier properties of graphene saliently diminish owing to defects generated by both material production processes such as Stone-Wales (S-W) type defects, dislocation like defects, single and multiply vacancies, accessory chemical groups, or carbon adatoms [21]. Therefore, the study of the imperfect graphene sheets will be an important problem. Molecular dynamics (MD) simulations are recognized as one of the most reliable methods in the study of nanostructured materials. The elastic behavior of graphene sheets using molecular dynamics simulations subjected to various static loading conditions such as axial, pressure and torsional [22] has been studied in the literatures. Fracture behavior of nanostructures is important for many engineering and nano-electro-mechanical systems such as sensor devices [23] and clocks. Guo et al. [24] performed MD simulations to study various aspects of energy dissipation in gigahertz oscillators. The mechanisms of energy dissipation in graphene oscillators was studied by Zhao et al. [25]. They understand the differences between oscillators with short graphene sheets and long ones. In this current study, molecular dynamics (MD) simulations based on Tersoff-Brenner many-body potential function is presented to perform a comprehensive investigation into the fracture behavior of graphene sheets with defects and doped nitrogen. To validate the results, the fracture strength predicted from the simulation is compared with the so-called quantized fracture mechanics (QFM) theory [26] and previous atomic models [27].

\textsuperscript{*} Corresponding author: hassan.shirzadijahromi@wmich.edu

\begin{itemize}
\item This is an open access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/).
\end{itemize}

© Authors retain all copyrights.
2. Molecular dynamics simulation

Molecular dynamics simulation is a powerful method based on Newtonian equations. It is numerically determining the pathway of atoms. The point to the MD simulations is to select an exact potential energy model. The carbon-carbon interatomic forces are represented by the Tersoff-Brenner potential function implemented in the LAMMPS [28]. Fracture analysis is a significant mechanical response and presents a design constraint on many nano structural systems, particularly in the field of nano materials and graphene. To simulate fracture behavior of a monolayer graphene sheet, the Tersoff-Brenner many-body potential function is chosen. It is expressed as:

\[
\sum_i E_i = \frac{1}{2} \sum_{i \neq j} V_{ij},
\]

\[
V_{ij} = f_c(r_{ij})[V_{rep}(r_{ij}) + b_{ij}V_{att}(r_{ij})],
\]

\[
b_{ij} = b_{ij}(g_{ij}); g_{ij} = \sum_k f_c(r_{ik})g(\theta_{ijk})f'(r_{ij} - r_{ik}).
\]

where \(r_{ij}\) is the distance between pairs adjoining atoms \(i\) and \(j\), \(V_{ij}\) is the bonding energy, \(b_{ij}\) is an empirical bond-order term, \(V_{att}\) and \(V_{rep}\) are the attractive and repulsive parts of the potential, \(f_c(r_{ij})\) is cutoff function and \(g_{ij}\) is the coordination [29-31].

The MD simulation model for uniaxial tensile test of graphene with the chirality angle of \(\approx 10^\circ\) is illustrated in Figures 1 and 2. The chirality angles equal to 0° and 30° are called armchair and zigzag, respectively. A model consisting of 800 carbon atoms with geometric dimensions of \(I = 42.6\,\text{Å}\) and \(J = 49.2\,\text{Å}\) demonstrated in Figure 2 for MD simulation was created. In order to neglect the size effect based on Zhao and et al. the diagonal length of the model was selected as 6.5nm. Another model with the same number of atoms was built and nitrogen atoms were randomly replaced with carbon to simulate nitrogen doped graphene sheet. Figure 3 illustrates a schematic of nitrogen doped graphene sheet. The modeled graphene structure was left to relax at atmosphere pressure along the periodic directions for boundary conditions at room temperature using constant pressure temperature by means of Nosé–Hoover barostat and thermostat method (i.e. NPT ensemble) [32]. The uniaxial load was applied to the graphene sheet alongside both zigzag and armchair direction by deflection rate of 0.005 ps\(^{-1}\) and timestep of 0.001 ps. Moreover, in order to reduce the intensity of high strain rate effects on the obtained properties, the raised temperature as a result of high loading strain rates must be damped by performing the constant temperature simulations during the loading step.

Figure 1. Zigzag Direction (a) Armchair Direction (b)

Figure 2. Simulation models of graphene sheet: uniaxial tension
3. Results and Discussion

To validate the MD model, the fracture strength of a pristine graphene sheet was determined. Figure 4 demonstrates the stress-strain curves of two zigzag and armchair directions. The engineering stress is around 145 GPa and 110 GPa for armchair and zigzag direction, respectively. These values have a great agreement with the experimental determination 130 GPa [26] and previous numerical simulation [27].

![Stress-Strain curves of perfect graphene sheet under uniaxial tensile load for armchair and zigzag chirality.](image)

In this paper, vacancy defects models were built to evaluate the effects of different numbers of vacancies at a temperature range of 300-900 K under tension along the armchair direction. Figure 5 shows the removed atoms from the middle of the graphene sheet to provide a vacancy defects model for simulations. It can be considered fracture strength decreases with an increasing number of vacancies as well as temperature. For the graphene sheet with two vacancies, the engineering strength loss is 35.62%, 42.53% and 45.12% at the 300K to 900K temperature range. Figure 6 illustrates the evaluated fracture strength at different temperatures for different numbers of vacancies. These results are compared with the available QFM theory results and there is a very good agreement between QFM and MD simulations results.
In this work, the effect of vacancy defects on a nitrogen doped graphene at 300K was evaluated. The simulated model during the tension is shown in figure 7. The results compared with a single layer graphene sheet without nitrogen. Figure 8 shows the Fracture strength of defected nitrogen doped graphene and graphene sheet versus number of vacancy defects in MD simulations. Results show decrease in fracture strength by doping nitrogen in the graphene sheet as well as increasing the number of vacancy defects.
4. Conclusions

The novel hexagonal monolayer sheet of carbon atoms, graphene, has attracted great attention due to their exceptional electrical and mechanical properties. Their phenomenally high strength and elastic strain, nevertheless, can be altered by structural defects due to stress concentration. In this paper, the fracture behaviour of graphene sheets and nitrogen doped graphene sheets with vacancies were investigated using molecular dynamics (MD) simulations at the different temperatures of 300K, 500K, and 900K. The results reveal a significant strength loss caused by both the defects and vacancies and doped nitrogen in graphene. The deformation process of graphene at various strain rate levels, with regard to the failure behaviour, is discussed. The validity of the proposed MD simulations is verified by comparing the simulation results with the available predictions from the quantized fracture mechanics.

References

[1] S. Iijima. Helical microtubules of graphitic carbon. Nature. 354 (1991) 56-8.

[2] C. Lee, X. Wei, J.W. Kysar, J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 321 (2008) 385-8.

[3] B. WenXing, Z. ChangChun, C. WanZhao. Simulation of Young's modulus of single-walled carbon nanotubes by molecular dynamics. Physica B: Condensed Matter. 352 (2004) 156-63.

[4] F. Sani, F. Mehdipour, T. Talaei-Khozani, M. Sani, V. Razban. Fabrication of platelet-rich plasma/silica scaffolds for bone tissue engineering. Bioinspired, Biomimetic and Nanobiomaterials. 7 (2017) 74-81.

[5] C.-L. Zhang, H.-S. Shen. Buckling and postbuckling analysis of single-walled carbon nanotubes in thermal environments via molecular dynamics simulation. Carbon. 44 (2006) 2608-16.

[6] E. Maghami, R. Pejman, A.R. Najafi. Fracture micromechanics of human dentin: A microscale numerical model. Journal of the Mechanical Behavior of Biomedical Materials. 114 (2021) 104171.

[7] H. Eslami, F. Mehdipour, A. Setoodeh, J. Rouzegar. Nanoconfined polymers: Modelling and simulation approaches. Molecular Simulation. 41 (2015) 367-81.

[8] Y. Zhang, C.M. Wang, Y. Xiang. A molecular dynamics investigation of the torsional responses of defective single-walled carbon nanotubes. Carbon. 48 (2010) 4100-8.

[9] Z. Wang, M. Devel, B. Dulmet. Twisting carbon nanotubes: A molecular dynamics study. Surface Science. 604 (2010) 496-9.
[10] H.S. Jahromi, A. Setoodeh. Longitudinal, Transverse, and Torsional Free Vibrational and Mechanical Behavior of Silicon Nanotubes Using an Atomistic Model. Materials Research. 23 (2020).

[11] A. Rostamijavanani. Dynamic Buckling of Cylindrical Composite Panels under Axial Compressions and Lateral External Pressures. Journal of Failure Analysis and Prevention. (2020) 1-10.

[12] A. Rostamijavanani, M. Ebrahimi, S. Jahedi. Thermal Post-buckling Analysis of Laminated Composite Plates Embedded with Shape Memory Alloy Fibers Using Semi-analytical Finite Strip Method. Journal of Failure Analysis and Prevention. (2020) 1-12.

[13] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al. Electric field effect in atomically thin carbon films. Science. 306 (2004) 666-9.

[14] B. Mortazavi, A. Ahzi. Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene. Solid State Communications. 152 (2012) 1503-7.

[15] M.A. Rafiee, W. Lu, A.V. Thomas, A. Zandiatashbar, J. Rafiee, J.M. Tour, et al. Graphene nanoribbon composites. ACS nano. 4 (2010) 7415-20.

[16] E.-S. Oh. Elastic properties of boron-nitride nanotubes through the continuum lattice approach. Materials Letters. 64 (2010) 859-62.

[17] R. Jahromi, M. Rezaei, S.H. Samadi, H. Jahromi. Biomass gasification in a downdraft fixed-bed gasifier: Optimization of operating conditions. Chemical Engineering Science. 231 (2021) 116249.

[18] A.A. Green, M.C. Hersam. Solution phase production of graphene with controlled thickness via density differentiation. Nano letters. 9 (2009) 4031-6.

[19] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal. Graphene based materials: past, present and future. Progress in materials science. 56 (2011) 1178-271.

[20] P.R. Somani, S.P. Somani, M. Umeno. Planer nano-graphenes from camphor by CVD. Chemical Physics Letters. 430 (2006) 56-9.

[21] A.J. Stone, D.J. Wales. Theoretical studies of icosahedral C60 and some related species. Chemical Physics Letters. 128 (1986) 501-3.

[22] A.R. Ranjbartoreh, G. Wang. Molecular dynamic investigation of mechanical properties of armchair and zigzag double-walled carbon nanotubes under various loading conditions. Physics Letters A. 374 (2010) 969-74.

[23] S. Hajian, X. Zhang, D. Maddipatla, B.B. Narakathu, J. Rodriguez-Labra, R. Blair, et al. Flexible capacitive humidity sensor based on fluorinated graphene. 2019 IEEE SENSORS. IEEE2019. pp. 1-4.

[24] W. Guo, Y. Guo, H. Gao, Q. Zheng, W. Zhong. Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes. Physical review letters. 91 (2003) 125501.

[25] Y. Zhao, C.-C. Ma, G. Chen, Q. Jiang. Energy dissipation mechanisms in carbon nanotube oscillators. Physical review letters. 91 (2003) 175504.

[26] M. Wang, C. Yan, L. Ma, N. Hu, M. Chen. Effect of defects on fracture strength of graphene sheets. Computational Materials Science. 54 (2012) 236-9.

[27] A. Setoodeh, H. Badjian, H.S. Jahromi. Atomic study of mono/multi-atomic vacancy defects on the mechanical characterization of boron-doped graphene sheets. Journal of molecular modeling. 23 (2017) 1-9.

[28] J. Tersoff. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical review B. 39 (1989) 5566.

[29] J. Tersoff. Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B. 41 (1990) 3248.

[30] H. Zhao, N. Aluru. Temperature and strain-rate dependent fracture strength of graphene. Journal of Applied Physics. 108 (2010) 064321.

[31] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics. 117 (1995) 1-19.

[32] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics. 81 (1984) 511-9.