Engineered yeast with a CO$_2$-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars

Yun-Jie Li1,2,3, Miao-Miao Wang1,2,3, Ya-Wei Chen1,2,3, Meng Wang1,2,3, Li-Hai Fan1,2,3 & Tian-Wei Tan1,2,3

Bio-ethanol production from lignocellulosic raw materials could serve as a sustainable potential for improving the supply of liquid fuels in face of the food-to-fuel competition and the growing energy demand. Xylose is the second abundant sugar of lignocelluloses hydrolysates, but its commercial-scale conversion to ethanol by fermentation is challenged by incomplete and inefficient utilization of xylose. Here, we use a coupled strategy of simultaneous maltose utilization and in-situ carbon dioxide (CO$_2$) fixation to achieve efficient xylose fermentation by the engineered *Saccharomyces cerevisiae*. Our results showed that the introduction of CO$_2$ as electron acceptor for nicotinamide adenine dinucleotide (NADH) oxidation increased the total ethanol productivity and yield at the expense of simultaneous maltose and xylose utilization. Our achievements present an innovative strategy using CO$_2$ to drive and redistribute the central pathways of xylose to desirable products and demonstrate a possible breakthrough in product yield of sugars.

Fossil fuel depletion and environmental concerns drive the worldwide development of renewable fuel sources, with high focus on biofuels and biochemicals produced from alternative and sustainable raw materials1,2. Bio-ethanol, as typical example, can be produced by first, second and third generation processes depending on the use of hexoses, biomass cellulose-released sugars, or algae starch and cellulose, respectively$^{3-5}$. Whereas first generation bio-ethanol processes are widely applied, they currently suffer from high production costs, low fossil fuel prices, and food-to-fuel competition6. The development of lignocellulosic raw materials is hence recognized as essential for a sustainable potential of bio-ethanol production7. Third generation bio-ethanol processes are at early stages of investigation, and only the algae left-over cake (after lipids extraction) should be considered, hence reversing into a second generation raw material of starch and cellulose. Xylose is the second most abundant sugar and consists of up to 35% of cellulosic sugars present in lignocellulosic biomass8. However, incomplete and inefficient conversion of xylose into bio-ethanol has hindered its commercial-scale processes.

Although xylose-fermenting microbes exist in nature, their ethanol production rates and tolerances are inferior to *Saccharomyces cerevisiae*. Its endogenous pathway can catalyze xylose to ethanol, but it cannot convert xylose to xylulose9. Metabolic engineering has thus been used to develop xylose-utilizing *S. cerevisiae*$^{11-13}$. Generally, the xylose catabolism in engineered yeasts is mediated by a heterologously expressed fungal pathway consisting of xylose reductase (XR) and xylitol dehydrogenase (XDH)14, or by the bacterial xylose isomerase (XI)15 to covert xylose into xylulose. Compared with the XI-carrying yeasts, the XR-XDH-carrying strains had greater strengths on xylose consumption rate and ethanol productivity16. Moreover, co-expression of a xylulokinase (XK)17,18 and the key enzymes involved in the pentose phosphate pathway (PPP)19,20 with XR and XDH was able to further improve the utilization of xylose.

However, XR prefers nicotinamide adenine dinucleotide phosphate (NADPH) to nicotinamide adenine dinucleotide (NAD$^+$) as a cofactor14. Compared with the redox-neutral glycolysis21 for ethanol production from glucose, the engineered XR-XDH pathway in

1College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China. 2National Energy R&D Center for Biorefinery, Beijing, People’s Republic of China. 3Beijing Key Laboratory of Bioprocess, Beijing, People’s Republic of China. Correspondence and requests for materials should be addressed to L.-H.F. (email: fanlh@mail.buct.edu.cn) or T.-W.T. (email: twtan@mail.buct.edu.cn)
S. cerevisiae may lead to cofactor imbalance. On the one hand, NADPH for XR is supplied by glucose-6-phosphate (G6P) metabolism through oxidative branch of PPP, but gluconeogenesis pathway for conversion of xylose to G6P is limited when S. cerevisiae grows on xylose. On the other hand, catalysis of NAD$^+$ to NADH by XDH usually facilitates the formation of by-products such as glycerol and xylitol. Many efforts have been devoted to relieve the cofactor imbalance. Use of the mutant XR (mXR) that exhibits higher preference for NADH or the mutant XDH (mXDH) using nicotinamide adenine dinucleotide phosphate (NADP$^+$) showed positive effects on xylose utilization. Besides, by co-expressing a heterogeneous acetate-consumption pathway or a carbon dioxide (CO$_2$)-fixation pathway in the yeasts with XR and XDH, a decrease of by-products and an increase of ethanol from xylose were also observed since acetate acid and CO$_2$ could be used as electric acceptor for NADH oxidation.

Therefore, the present research constructed a PRK-Rubisco module together with a mXR-XDH module into S. cerevisiae. Then, the resulted yeast strains were applied for xylose fermentation with simultaneous utilization of maltose and CO$_2$ (Fig. 1). This strategy may have three major benefits: (i) The mXR-XDH module containing a mutant XR (R276H) preferring NADH, a XR, a XDH and a XK could improve the ethanol productivity and decrease the by-product accumulation. (ii) Catabolism of maltose could simultaneously supply energy and cofactors to meet the requirement for xylose metabolism. (iii) The CO$_2$ fixation pathway may bypass the glucose repression on xylose catabolism inside the cell. The CO$_2$ produced during fermentation can also form an appropriate atmosphere for Rubisco activity and a redox sink for improving the cofactor balance.

Results

Construction of xylose metabolic pathway in S. cerevisiae. We obtained a xylose-fermenting yeast strain YSX4 (Table 1) with co-expression of wild-type XR, mutant XR (R276H), XDH and XK in S. cerevisiae YS58. In previous work, the same xylose metabolic pathway has been used in an engineered S. cerevisiae DA24. XR (R276H) was found to exhibit much higher preference for NADH whereas XR showed two-fold higher preference for NADPH. Theoretically, co-expression of wild-type XR and mutant XR (R276H) could enable YSX4 with comparable XR activities towards NADPH and NADH.

The fermentation performance of the resulted YSX4 was evaluated under an oxygen-limited condition with xylose and glucose, or xylose and maltose as carbon source respectively (Table 2). We found that the xylose consumption rate of YSX4 (0.57 g/L/h) was similar with that of DA24 (0.53 g/L/h) on a glucose-xylose mixture, although the key enzymes involved in the xylose metabolic pathway in YSX4 were expressed by using a multi-copy plasmid, while in DA24, they were integrated in genome. Interestingly, compared with the glucose-xylose...
mixture, YSX4 exhibited a higher efficiency of xylose utilization (0.70 g/L/h) when grown on xylose and maltose, which is in agreement with previous results using cellobiose and xylose as carbon source29,30. Evidences showed that intracellular hydrolysis of cellobiose minimized glucose repression on xylose uptake, and simultaneous fermentation of cellobiose and xylose was capable of improving ethanol productivity when compared to fermentation with xylose only30. For both of maltose and cellobiose, disaccharides are formed from two glucose molecules. The difference is that glucose units are joined with an \(α(1 → 4)\) bond in maltose and a \(β(1 → 4)\) bond in cellobi-ose respectively. Therefore, we suspected that YSX4 could also co-ferment maltose and xylose, thus consumption of xylose by YSX4 was enhanced when cells were grown on maltose-xylose mixture.

Table 1. Plasmids and strains used in this work.

Strains	Description
YS58	MATa, leu2, his3, ura3, trp1
YSX4	YS58 harboring pPS425-mXYL1-XYL2-KKS1-XYL1
YSC000	YS58 harboring YCplac33
YSC110	YS58 harboring YCplac33-cbbM-sPRK
YSC111	YS58 harboring YCplac33-cbbM-sPRK-GroEL-GroES
YSC220	YS58 harboring YCplac33-cbbM-cfxP1
YSC222	YS58 harboring YCplac33-cbbM-cfxP1-HSP60-HSP10
YSX4C000	YS58 harboring pPS425-mXYL1-XYL2-KKS1-XYL1 and YCplac33
YSX4C110	YS58 harboring pPS425-mXYL1-XYL2-KKS1-XYL1 and YCplac33-cbbM-sPRK
YSX4C111	YS58 harboring pPS425-mXYL1-XYL2-KKS1-XYL1 and YCplac33-cbbM-sPRK-GroEL-GroES
YSX4C220	YS58 harboring pPS425-mXYL1-XYL2-KKS1-XYL1 and YCplac33-cbbL1-cbbS1-cfxP1
YSX4C222	YS58 harboring pPS425-mXYL1-XYL2-KKS1-XYL1 and YCplac33-cbbL1-cbbS1-cfxP1-HSP60-HSP10

Functional expression of CO\(_2\)-fixation pathway in \textit{S. cerevisiae}. As a heterotrophic microorganism, \textit{S. cerevisiae} intracellularly converts ribulose-5-phosphate (Ru5P) to glycerate-3-phosphate (G3P) through the non-oxidative branch of PPP without consumption of CO\(_2\). In contrast, many autotrophic microbes achieve this conversion by a two-step reaction using ribulose biphosphatase carboxylase-oxygenase (Rubisco) and phosphoribulokinase (PRK)31,32. PRK catalyzes Ru5P to ribulose-1,5-bisphosphate (Ru1,5BP), while Rubisco converts Ru1,5BP to G3P with CO\(_2\) fixation. There are four known forms of Rubisco in nature33. Form-I Rubisco (L\(_8\)S\(_8\)) is composed of eight large subunits and eight small subunits, of which the small subunits are able to concentrate surrounding CO\(_2\) to improve the reactivity of the large subunits. Form-II (L\(_8\)) only contains eight large subunits.

The difference is that glucose units are joined with an \(α(1 → 4)\) bond in maltose and a \(β(1 → 4)\) bond in cellobi-ose respectively. Therefore, we suspected that YSX4 could also co-ferment maltose and xylose, thus consumption of xylose by YSX4 was enhanced when cells were grown on maltose-xylose mixture.

Strains	Description
YSC222	YS58 harboring YCplac33-cbbM-cfxP1-HSP60-HSP10
YSX4C111	YS58 harboring pPS425-mXYL1-XYL2-KKS1-XYL1 and YCplac33-cbbM-sPRK-GroEL-GroES
YSC220	YS58 harboring YCplac33-cbbM-cfxP1
YSX4C111	YS58 harboring pPS425-mXYL1-XYL2-KKS1-XYL1 and YCplac33-cbbM-sPRK-GroEL-GroES
YSC220	YS58 harboring YCplac33-cbbM-cfxP1
YSX4C222	YS58 harboring pPS425-mXYL1-XYL2-KKS1-XYL1 and YCplac33-cbbL1-cbbS1-cfxP1-HSP60-HSP10

Table 1. Plasmids and strains used in this work.

Plasmids and strains

Plasmids	Description
pPS425	LEU2, a multi-copy plasmid
pPS425-mXYL1-XYL2-KKS1-XYL1	Expression of XR (R276H), XDH, XK and XR through pPS425
YCplac33	URA3, a single-copy plasmid
YCplac33-cbbM-sPRK	Expression of cbbM and sPRK through YCplac33
YCplac33-cbbM-cfxP1	Expression of cbbL1-cbbS1 and PRK through YCplac33
YCplac33-cbbM-sPRK-GroEL-GroES	Expression of cbbM, sPRK and GroEL-GroES through YCplac33
YCplac33-cbbL1-cbbS1-cfxP1-HSP60-HSP10	Expression of cbbL1-cbbS1, PRK and HSP60-HSP10 through YCplac33

Plasmids and strains used in this work.

- pPS425: LEU2, a multi-copy plasmid
- pPS425-mXYL1-XYL2-KKS1-XYL1: Expression of XR (R276H), XDH, XK and XR through pPS425
- YCplac33: URA3, a single-copy plasmid
- YCplac33-cbbM-sPRK: Expression of cbbM and sPRK through YCplac33
- YCplac33-cbbM-cfxP1: Expression of cbbL1-cbbS1 and PRK through YCplac33
- YCplac33-cbbM-sPRK-GroEL-GroES: Expression of cbbM, sPRK and GroEL-GroES through YCplac33
- YCplac33-cbbL1-cbbS1-cfxP1-HSP60-HSP10: Expression of cbbL1-cbbS1, PRK and HSP60-HSP10 through YCplac33

Functional expression of CO\(_2\)-fixation pathway in \textit{S. cerevisiae}

As a heterotrophic microorganism, \textit{S. cerevisiae} intracellularly converts ribulose-5-phosphate (Ru5P) to glycerate-3-phosphate (G3P) through the non-oxidative branch of PPP without consumption of CO\(_2\). In contrast, many autotrophic microbes achieve this conversion by a two-step reaction using ribulose biphosphatase carboxylase-oxygenase (Rubisco) and phosphoribulokinase (PRK)31,32. PRK catalyzes Ru5P to ribulose-1,5-bisphosphate (Ru1,5BP), while Rubisco converts Ru1,5BP to G3P with CO\(_2\) fixation. There are four known forms of Rubisco in nature33. Form-I Rubisco (L\(_8\)S\(_8\)) is composed of eight large subunits and eight small subunits, of which the small subunits are able to concentrate surrounding CO\(_2\) to improve the reactivity of the large subunits. Form-II (L\(_8\)) only contains eight large subunits.
Effects of CO2 fixation on xylose utilization. The functional CO2-fixation pathway was constructed in the engineered S. cerevisiae YSX4, resulting in YSX4C111 and YSX4C222. YSX4C222 exhibited the highest xylose consumption rate, ethanol productivity and strain growth rate (Fig. 3). Compared with YSX4C000, the rate of xylose consumption elevated from 0.54 g/L/h to 0.70 g/L/h by using YSX4C222 (Table 3), while both of the final ethanol level and cell density got an over 25% increase (Fig. 3c,d).

Then, YSX4C111 and YSX4C222 were applied in the medium containing 70 g/L maltose and 40 g/L xylose. As shown in Table 2, the xylose consumption rates of YSX4C111 and YSX4C222 arrived to 0.97 and 1.1 g/L/h respectively. The total sugar consumption rate and the ethanol yield of YSX4C222 reached 3.1 g/L/h and 0.47 g/g sugars, which was 63% and 15% higher than YSX4C000. YSX4C222 cell extract also showed the highest carboxylation activity (Fig. S2). These findings suggested that the Form-I based CO2 fixation system was preferred in facilitation of the xylose metabolism.

Relative quantification of heterotrophic CO2 fixation. To evaluate the strength of the CO2 flux in YSX4C111 and YSX4C222, a reported metabolic flux index, MFIh-CO2, was employed to indicate the metabolic flux ratio between the CO2-fixation and the PPP-based pathways. The G3P generated by these two pathways was differentiated by using 13C-labeled CO2 and unlabeled sugars to obtain the MFIh-CO2 value.

As illustrated in Fig. S3, we assumed that a mole of glyceraldehyde-3-phosphate (GADP) was metabolized to G3P, while b mole of 13CO2 from NaH13CO3 and 12CO2 from sugars was fixed to G3P within a given time period. Moreover, we assumed that c mole of unlabeled G3P and d mole of 13C-G3P were channeled into the downstream metabolism. Fermentation experiments were performed using 10 g/L maltose and 20 g/L xylose with 100 mM NaH13CO3 and cell density of OD 600 = ~0.1. The amounts of 13C-labeled and unlabeled G3P were measured by LC-MS/MS. S. cerevisiae YS58 was cultivated in a medium free of any carbon isotope to determine the ratio of 13C-G3P to the unlabeled G3P as the basal isotopic level, which was about 3.1%. The actually detected molar amount of 13C-G3P (y) can be calculated by Eq. (1), while the actually detected unlabeled G3P (x) can be calculated by Eq. (2).

\[y = \frac{b}{4} + 3.1\% \times (a + 3b/4) - d \]

\[x = (1 - 3.1\%) \times (a + 3b/4) - c \]

Under a metabolic steady-state, the relationship of d, c, x and y is shown in Eq. (3).

\[d/c = y/x \]

Therefore, the value of MFIh-CO2 can be calculated by Eq. (4).

\[MFI_{h-CO2} = \frac{b/a}{(0.97y - 0.03x)/(0.27x - 0.73y)} \]
Determination of the CO₂-fixation rate in the engineered yeasts. The carbon balance of wild-type *S. cerevisiae* indicated that 96% carbon of the consumed sugars \(C_{\text{consumed sugars}} \) was incorporated into biomass \(C_{\text{biomass}} \), CO₂, ethanol \(C_{\text{ethanol}} \), xylitol \(C_{\text{xylitol}} \), glycerol \(C_{\text{glycerol}} \) and Acetate \(C_{\text{acetate}} \). Therefore, the carbon of CO₂ fixed by YSX4C111 or YSX4C222 \(C_{\text{fixed CO₂}} \) can be calculated using Eq. (5). \(C_{\text{with biomass}} \) and \(C_{\text{with ethanol}} \) represent the CO₂ from cell respiration and from ethanol biosynthesis respectively.

\[
C_{\text{fixed CO₂}} = C_{\text{CO₂ with biomass}} + C_{\text{biomass}} + C_{\text{CO₂ with ethanol}} + C_{\text{ethanol}} + C_{\text{glycerol}} + C_{\text{xylitol}} + C_{\text{acetate}} - 0.96 C_{\text{consumed sugars}} \tag{5}
\]

We assume that \(C_{\text{CO₂ with biomass}} \) is in direct proportion to \(C_{\text{biomass}} \). Therefore, Eq. (5) can be transformed into Eq. (6).

\[
C_{\text{fixed CO₂}} = (K + 1) C_{\text{biomass}} + \frac{3}{2} C_{\text{ethanol}} + C_{\text{glycerol}} + C_{\text{xylitol}} + C_{\text{acetate}} - 0.96 C_{\text{consumed sugars}} \tag{6}
\]

The carbon balance of YSX4C000 is shown as Eq. (7).

\[
0.96 C_{\text{Consumed sugars}} = (K + 1) C_{\text{biomass}} + \frac{3}{2} C_{\text{ethanol}} + C_{\text{glycerol}} + C_{\text{xylitol}} + C_{\text{acetate}} \tag{7}
\]

Substitution of \(K \) in Eq. (6) into Eq. (7), thus

\[
C_{\text{fixed CO₂}} = (0.96 C_{\text{consumed sugars}} - \frac{3}{2} C_{\text{ethanol}} - C_{\text{glycerol}} - C_{\text{xylitol}} + C_{\text{acetate}}) * \frac{C_{\text{biomass}}}{C_{\text{biomass}}} + \frac{3}{2} C_{\text{ethanol}} + C_{\text{glycerol}} + C_{\text{xylitol}} + C_{\text{acetate}} - 0.96 C_{\text{consumed sugars}} \tag{8}
\]

Fermentation data of YSX4C000, YSX4C111 or YSX4C222 on 70 g/L maltose and 40 g/L xylose are summarized in Table 3. The results showed that our yeasts were able to fix CO₂ at a rate of 336.6–436.3 mg CO₂/L/h, significantly exceeding the natural or the engineered microbes (5.8 to 147.0 mg CO₂/L/h) in previous reports (Table S2).

Discussion

Currently, xylose fermentation with the engineered *S. cerevisiae* is inferior to glucose fermentation by the wild-type *S. cerevisiae*. Besides cofactor imbalance of the engineered XR-XDH pathway, supply of NADPH was
limited because expression of the enzymes involved in gluconeogenesis in \textit{S. cerevisiae} cannot be upregulated on xylose. Some rate-limiting enzymes in the non-oxidative branch of PPP need to be over-expressed to enhance the xylose downstream metabolic flux. Here, we engineered \textit{S. cerevisiae} to achieve efficient bio-ethanol production from maltose and xylose with CO$_2$ fixation. NADH could be reduced through the mXR and CO$_2$-fixation pathway, while the NADPH for the wild-type XR and the adenosine triphosphate (ATP) for activating Ru5P to Ru1,5BP used in Rubisco reaction were provided by co-fermentation of maltose and xylose.

Xylose can enter the cell by facilitated diffusion through some yeast hexose transporters (HXTs)38. For engineered XR-XDH-carrying yeasts, intracellular xylose conversion is only slightly affected by catabolism of intracellular glucose, but xylose transport is strongly inhibited by extracellular glucose39. The engineered xylose transporters by non-rational mutagenesis or rational design have been used to improve simultaneous utilization of xylose and glucose40,41. However, the specific xylose transporters without glucose inhibition have still not been developed42. On the other hand, introduction of a cellodextrin transport (CDT-1) from \textit{Neurospora crassa} into
the yeast with intracellular β-glucosidase (GH1-1) achieved simultaneous utilization of cellulosic and xylene and showed synergic effects due to sufficient NADPH supply. But intrast, β-glucosidase (GH1-1) can convert cellulois to cellodextrins (cellotriose, cellotetraose) by its transglycosylation activity, while cellodextrin transport (CDT-1) can transport cellodextrins and glucose into the medium. This problem resulted in low ethanol yield and productivity from cellulosic and xylene. In this study, we employed another disaccharide, maltose, which can be utilized as efficiently as glucose by the wild-type yeast, to facilitate xylene metabolism and achieved the synergic effects.

Heterotrophic Form-I and Form-II based CO₂ fixation systems were successfully expressed in S. cerevisiae. We observed that the engineered yeast YSX4C111 and YSX4C222 grew better and exhibited higher ethanol productivity than YSX4C000. The results suggest that additional ATP consumption by implementing the CO₂-fixation pathway had a less negative effect on cell growth than the beneficial effect that the pathway might bring during co-fermentation of xylene and maltose. With increase of sugar concentrations in fermentation, the engineered yeasts expressing CO₂ fixation pathway showed better ethanol productivity. The possible reason was more CO₂ production from sugars increased environmental CO₂ and HCO₃⁻ concentrations so that improved the carboxylation activity of Rubisco under oxygen-limited condition. The same effects were also observed by supplementation of external CO₂. The activity of Rubisco could further be optimized through expressing heterogeneous carbonic anhydrase (CA), which catalyzes the reversible conversion of CO₂ and HCO₃⁻, or constructing a microcompartment for Rubisco, similar to the semi-permeable carboxysome in cyanobacteria.

At present, low efficiency of photosynthetic processes and electro-synthetic processes using photautotrophic and chemoaototrophic microbes are limited in their growths and productivities. Differing from autotrophic microbes, heterotrophic microbes such as S. cerevisiae, which has very short doubling time, have been widely applied in industrial production of bio-chemicals. The CO₂ fixation at the expense of sugars in heterotrophic S. cerevisiae presented high CO₂-fixation rates and product yields. The construction of a functional CO₂-fixation pathway for efficient ethanol production from xylene and maltose in S. cerevisiae would create a foundation for other biofuels and chemicals production from lignocellulosic biomass.

Methods

Strains, plasmids and media. *Escherichia coli* Trans10 (TransGen Biotech) was used for genetic manipulation. The plasmids and yeasts used in this work were summarized in Table 1. Synthetic complete (SC)-Ura-Leu minimal medium contains 0.67% yeast nitrogen base with ammonium sulfate and without amino acids (YNB), 2% glucose, 0.005% histidine and 0.01% tryptophan. SC-Leu or SC-Ura minimal medium contains 0.67% YNB, 2% glucose, 0.005% histidine, 0.01% tryptophan, 0.005% leucine or 0.01% Uracil. SC-Ura-Leu, SC-Ura and SC-Leu minimal medium contains 0.67% YNB, 2% glucose, 0.005% histidine and 0.01% tryptophan. SC-Leu or SC-Ura minimal medium contains 0.67% YNB, 2% glucose, 0.005% histidine, 0.01% tryptophan and 0.005% (aspartic acid, histidine, isoleucine, leucine, methionine, phenylalanine, proline, serine, tyrosine, valine), while appropriate leucine and uracil addition when required. YE medium contains 1% yeast extract and 2% peptone.

Construction of xylene and CO₂-fixation pathway. The gene expression cassettes of xylene pathway were constructed. The genes of *XYL1* (Gene ID: 4853932, coding for XR) and *XYL2* (Gene ID: 4852013, coding for XPL) were codon-optimized by Jcat (http://www.jcat.de/) and synthesized in KLSBE (Key Laboratory of Systems Bioengineering, Ministry of Education, China). The synthetic gene fragments were inserted between promoters and terminators individually in the recombinant pUC19 as shown in Table S4. The mutant *XYL1* (A826C, G827A, A828C) coding for XR (R276H) was amplified from pUC19-TEF1p-XYL1-tPI1t using point mutant primers (R276H-F and R276H-R) (Table S3), and then mutant XYL1 fragment was cloned into pUC19-TEF1p-mXYL1-PGI (Table S4). The genes of *sPK* (GenBank: X07654.1) and *cfxP1* (GenBank: X07654.1) were codon-optimized by Jcat (http://www.jcat.de/) and cloned into pEASY-Blunt with the promoters and terminators (Table S4). The gene expression cassettes were linked to pRS425 or YCplac33 vectors to generate yeast expression plasmids (Table 1). S. cerevisiae transformants were selected on SC-Ura-Leu, SC-Leu or SC-Ura minimal medium.

Fermentation experiments. The engineered yeast YSX4 was pre-cultured in SC-Leu medium. YSC000, YSC110, YSC111 and YSC222 were pre-cultured in SC-Ura medium. YSX4C000, YSX4C110, YSX4C111 and YSX4C222 were pre-cultured in SC-Ura-Leu medium. After washing with distilled water, the cells were

Sugars (g/L)	Strains	Cₚth	Cₚth	Cₚth	Cₚth	DCW	RCO₂
Maltose/Xylene (70/40)	YSX4C000	38.9 ± 0.5	15.2 ± 0.5	3.2 ± 0.3	2.8 ± 0.1	0.2 ± 0.1	5.2 ± 0.2
	YSX4C111	48.2 ± 0.5	5.2 ± 0.3	2.5 ± 0.2	2.4 ± 0.2	0.1 ± 0.1	5.7 ± 0.3
	YSX4C222	51.9 ± 0.5	0.3 ± 0.3	1.6 ± 0.2	2.0 ± 0.1	0.1 ± 0.1	6.4 ± 0.3

Table 3. The CO₂-fixation rates of engineered YSX4C000, YSX4C111 and YSX4C222. Cₚth: ethanol concentration (g/L); Cₓyl: Residual xylene concentration (g/L); Cₓyl: glycerol concentration (g/L); Cₓyl: xylitol ethanol concentration (g/L); Cₓyl: acetal concentration (g/L); DCW: Dry Cell Weight (g/L); RCO₂: CO₂-fixation rate (mg CO₂/L/h).
inoculated into 200 mL YP medium with appropriate sugars (maltose, glucose or xylose) in 500 mL flasks. All fermentation experiments were carried out at 30°C and 200 rpm under oxygen-limited conditions. The initial cell density was adjusted to an OD$_{600}$ (optical density at 600 nm) of ~0.5. Rubisco activity was determined through Rubisco Carboxylation Activity Assay Kit (GENMED, Shanghai) by UV-visible Spectrophotometer SU-2000.

IA inhibition assay. The cells of YSC000, YSC110, YSC111 and YSC222 were inoculated into 200 mL YP medium with 70 g/L glucose in 500 mL flasks. The initial cell density was adjusted to an OD$_{600}$ of ~0.1. IA was at 50 °C and used 0.05 mM sulfuric acids as mobile phase. The sample injection volume was 10 μL.

Analytical methods. Cell growth was monitored using UV-visible Spectrophotometer SU-2000 (OnLab Instruments). Maltose, glucose, xylose, xylitol, glycerol, acetate and ethanol were quantified by high performance liquid chromatography (Agilent 1200 Series HPLC system) equipped with a refractive index detector (Shimadzu, Japan) and an Bio-Rad Aminex HPX-87H organic acid analysis column (7.8 × 300 mm) which was maintained at 50°C and used 0.05 mM sulfuric acids as mobile phase. The sample injection volume was 10 μL and the flow rate was 0.6 mL/min.Metabolites was detected by liquid chromatography-mass spectrometry/mass spectrometry system (Agilent 6460 series LC-MS/MS system) with Agilent XDC18 column (5 μm, 150 mm × 4.6 mm)30. Di-β-hexylammonium acetate (DBAA) and NaH$_{13}$CO$_3$ were purchased from Sigma-Aldrich. Methanol was purchased from Fisher Scientific. The mobile phase was the mixture of solution A (water with 5 mM DBAA) and solution B (methanol with 5 mM DBAA) at the gradient shown in Table S6. The flow rate was 0.6 mL/min. The injection volume was 50 μL and the column temperature was 40°C. The negative ion and selected multiple reactions monitoring (MRM) mode were used for MS detection. All experiments were conducted at least in triplicate, and the error bars in the figures denote the standard deviation from the means of independent experiments.

References

1. Baeyens, J. et al. Challenges and opportunities in improving the production of bio-ethanol. Prog. Energ. Combust. 47, 60–88 (2015).
2. Ragauskas, A. J. et al. The path forward for biofuels and biomaterials. Science 314, 484–489 (2006).
3. Zhang, H. L., Baeyens, J. & Tan, T. W. The bubble-induced mixing in starch-to-ethanol fermenters. Chem. Eng. Res. Des. 90, 2122–2128 (2012).
4. Kang, Q., Appels, L., Tan, T. & Dewil, R. Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem. 51, 1833–1842 (2016).
5. Silva, C. E. D. F. & Bertucco, A. Bioethanol from microalgae and cyanobacteria: current findings determine research priorities. The Scientific world J. 2014, 1–13 (2014).
6.uridad, M. H., Aristidou, A., Ruohonen, L. & Penttilä, M. Conversion of xylose to ethanol by recombinant *Saccharomyces cerevisiae*. Appl. Environ. Microbiol. 79, 398–404 (2013).
7. Zeng, G. C., Liu, J. J., Kong, I. I., Kwak, S. & Jin, Y. S. Combining C6 and C5 sugar metabolism for enhancing microbial production. *Appl. Environ. Microbiol.* 81, 64–66 (2015).
8. Walfridsson, M., Anderlund, M., Bao, X. & Hahn-Hagerdal, B. Xylose-metabolizing *Saccharomyces cerevisiae* strains: a review of the literature and its effects on product formation during xylose utilisation. *Appl. Microbiol. Biotechnol.* 83, 218–224 (2012).
9. Kuyper, M. et al. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by *Saccharomyces cerevisiae*. FEMS Yeast Res. 4, 69–78 (2003).
10. Karhumaa, K., Sanchez, R. G., Hahn-Hagerdal, B. & Gorwa-Grauslund, M. F. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant *Saccharomyces cerevisiae*. *Microb. Cell. Fact.* 6, 1–10 (2007).
11. Toivari, M. H., Salusjärvi, L., Ruohonen, L. & Penttilä, M. Endogenous xylose pathway in *Saccharomyces cerevisiae*. *Appl. Environ. Microbiol.* 70, 3681–3686 (2004).
12. Pan, L. H. et al. Engineering yeast with bifunctional minicellulosome and cellodextrin pathway for co-utilization of cellulose-mixed sugars. *Biotechnol. Biofuels* 9, 1–11 (2016).
13. Jeffries, T. W. & Jin, Y. S. Metabolic engineering for improved fermentation of pentoses by yeasts. *Appl. Microbiol. Biotechnol.* 63, 493–509 (2004).
14. Kuyper, M. et al. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by *Saccharomyces cerevisiae*. *FEMS Yeast Res.* 4, 69–78 (2003).
15. Bar-Even, A., Flamholz, A., Noor, E. & Milo, R. Rethinking glycolysis: on the biochemical logic of metabolic pathways. *Nat. Chem. Biol.* 8, 309–17 (2012).
16. Ho, N. W. Y., Chen, Z. & Brainard, A. P. Genetically engineered *Saccharomyces cerevisiae* yeast capable of effective cofermentation of glucose and xylose. *Appl. Environ. Microbiol.* 64, 1852–1859 (1998).
17. Hector, R. E. et al. *Saccharomyces cerevisiae* engineered for xylose metabolism requires gluconogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation. *Appl. Microbiol. Biotechnol.* 84, 155–160 (2011).
18. Runquist, D., Hahn-Hagerdal, B. & Bettiga, A. M. Increased expression of the oxidative pentose phosphate pathway and gluconogenesis in anaerobically growing xylose-utilizing *Saccharomyces cerevisiae*. *Microb. Cell. Fact.* 8, 49–49 (2009).
19. Watanabe, S. et al. Ethanol production from xylose by recombinant *Saccharomyces cerevisiae* expressing protein-engineered NADP⁺-dependent xylitol dehydrogenase. *J. Biotechnol.* 130, 316–9 (2007).
Engineered yeast with a CO₂-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars.

Y.-J. Li, L.-H. F. and T.-W. T. conceived of the study, designed experiments, performed the statistical analysis, wrote and revised the manuscript. Y.-J. F., L.-H. F. and T.-W. T. performed the experiments. Y.-J. L. contributed to the study design and performed the experiments. Y.-J. L., L.-H. F. and T.-W. T. wrote the manuscript. Y.-J. L., L.-H. F. and T.-W. T. approved the final manuscript.

Supplementary information

Additional Information

Acknowledgements

This work was supported by funding from the National Basic Research Program of China (973 program, 2013CB733600), the National Nature Science Foundation of China (21390202) and the National Natural Science Foundation of China (21376023). We acknowledge Prof. Ying-Jin Yuan (Key Laboratory of Systems Bioengineering, Tianjin University) for help in gene synthesis, Prof. Yin Li and Dr. Fu-Yu Gong (Institute of Microbiology, Chinese Academy of Sciences) for help in determination of metabolites by LC-MS/MS, and Jan Baeyens (University of Warwick, School of Engineering, Coventry, UK) for his help in revising the manuscript.

Author Contributions

Y.-J.L., L.-H.F. and T.-W.T. conceived of the study, designed experiments, performed the statistical analysis, wrote and revised the manuscript. Y.-J.L., M.-M.W., Y.-W.C. and M.W. performed experiments. All authors read and approved the final manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing Interests: The authors declare no competing financial interests.

How to cite this article: Li, Y.-J. et al. Engineered yeast with a CO₂-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars. Sci. Rep. 7, 43875; doi: 10.1038/srep43875 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/