A doença causada pelo novo coronavírus, ou COVID-19, foi descrita recentemente e tornou-se uma questão de saúde mundial. Seu diagnóstico de certeza é dado pela reação em cadeia da polimerase. A tomografia computadorizada de alta resolução, entretanto, mostra-se útil no contexto atual de pandemia, especialmente nos casos mais graves, na avaliação da extensão da doença, em possíveis diagnósticos diferenciais e na pesquisa de complicações. Em pacientes com quadro clínico suspeito e achados de imagem típicos, nos quais ainda não há resultado laboratorial ou a reação em cadeia da polimerase não se encontra disponível, ainda se discute o papel desse exame. Importante ressaltar que parte dos pacientes apresenta exames laboratoriais falsos-negativos, notadamente em casos iniciais, o que pode retardar medidas de isolamento, favorecendo a propagação da doença. Dessa forma, o conhecimento da COVID-19 e de suas manifestações nos exames de imagem é de extrema importância para os médicos envolvidos no atendimento, sejam clínicos ou radiologistas.

Descritores: Infecções por coronavírus; Coronavírus; COVID-19; Tomografia computadorizada multidetectores

INTRODUÇÃO
A doença pelo coronavírus 2019 (COVID-19), causada pelo novo coronavírus, denominado SARS-CoV-2, foi descrita, pela primeira vez, em dezembro de 2019 na cidade de Wuhan, na província de Hubei, na China. Com fácil trans-
missão entre humanos, a doença rapidamente tornou-se questão de saúde mundial.(1,2)

Sua confirmação diagnóstica se dá por meio da reação em cadeia da polimerase por transcrição reversa (RT-PCR), porém, como foi demonstrado em recente experiência da Itália, pode haver uma rápida saturação dos laboratórios, com demora crescente para a liberação de resultados e esgotamento dos kits, não sendo possível realizar o diagnóstico e o isolamento precoce de parte dos pacientes, favorecendo o aumento da transmissão.(3) Alguns estudos demonstraram taxa não desprezível inicial de falsos-negativos, mesmo em pacientes sintomáticos – parte dos quais já demonstravam alterações clássicas e características na tomografia computadorizada (TC) de tórax e que somente posteriormente se tornaram positivos laboratorialmente para a doença.(4,5) A TC, muito embora não seja indicada como exame de escolha isolado para o diagnóstico pelas diversas sociedades de especialidade,(6,7) torna-se uma ferramenta de auxílio diagnóstico nesses pacientes, além de ser útil no acompanhamento da evolução e na detecção de possíveis complicações. Importante salientar que os achados de imagem não substituem a RT-PCR para o diagnóstico.(2,6)

O protocolo usual é o de tomografia de tórax com espessura de corte de 1,0mm, se possível em protocolo de baixa dose de radiação e sem contraste endovenoso.(6)

Ainda que não patognomônicas e que possam se sobrepor aos achados de outras infecções virais, algumas alterações tomográficas da COVID-19 têm características que as destacam daquelas vistas em outras infecções, muitas vezes sendo bastante sugestivas desta infecção em particular.(8) O achado mais característico é o de múltiplas opacidades em vidro fosco, por vezes de morfologia arredondada, predominando na periferia dos lobos pulmonares e em suas regiões posteriores, frequentemente nas bases. O acometimento é, na maioria das vezes, bilateral e multifilobal, podendo evoluir para padrão de pavimentação em mosaico (crazy paving) e coalescer em consolidações com a evolução da infecção.

Não são comuns o acometimento das vias aéreas, as linfonodomegalias, as escavações, as consolidações lobares, os nódulos ou mesmo o predomínio peri-hilar das alterações. Quando esses achados estão presentes, superposição de infecções ou, ainda, um diagnóstico alternativo devem ser aventados.(9-13)

O objetivo deste artigo foi apresentar exemplos dos achados tomográficos descritos na pneumonia por COVID-19 para que todos que atuam nessa pandemia fiquem familiarizados e possam identificar mais rapidamente pacientes com suspeita para essa afecção.

O trabalho foi aprovado pelo Comitê de Ética em Pesquisa do Hospital Israelita Albert Einstein com CAAE: 30634120.1.0000.0071 e número do parecer 4.086.306.

OPACIDADE EM VIDRO FOSCO

Opacidades em vidro fosco são definidas como discreto aumento da densidade pulmonar, sem obscurecimento dos vasos e brônquios. Pode ter como causa o preenchimento parcial dos espaços aéreos e/ou espessamento do interstício, sendo encontrada em processos de diversas etiologias, infecciosas (por diversos agentes) e não infecciosas.(14,15)

As opacidades em vidro fosco são o achado mais comum e mais precoce (cerca de zero a 4 dias após o início dos sintomas) nos pacientes com COVID-19, sendo encontradas mais comumente com distribuição bilateral, periférica e subpleural nos lobos inferiores (Figuras 1 e 2).

Figura 1. Paciente de 75 anos com COVID-19, apresentando desconforto respiratório, há 3 dias, e febre, há 1 dia. Tomografia computadorizada mostrando opacidades em vidro fosco periféricas nos lobos superiores.

Figura 2. Paciente de 72 anos com COVID-19, apresentando tosse, febre e dispneia, há 4 dias. As imagens da tomografia demonstram opacidades em vidro fosco multifocais, de aspecto e distribuição típicos da COVID-19.
PAVIMENTAÇÃO EM MOSAICO

As opacidades em vidro fosco, por vezes, são sobrepostas ao espessamento dos septos localizados dentro e entre os lóbulos pulmonares secundários – respectivamente os septos intra e interlobulares. Tais achados sobrepostos são denominados de pavimentação em mosaico, ou *crazy paving*. O vidro fosco não é específico de uma infecção viral, podendo ser encontrado em diversas delas e também ter origem não infecciosa. No contexto da COVID-19, é mais comumente caracterizado após alguns dias do início dos sintomas (Figuras 3 a 5).

DERRAME PLEURAL

A presença de derrame pleural tem maior incidência em pacientes mais graves e pode sugerir um pior prognóstico (Figura 6).
SINAL DO HALO INVERTIDO

O sinal do halo invertido é descrito como área focal arredondada de opacidade em vidro fosco, cercada por uma área anelar de consolidação. Originalmente foi descrito como achado específico para pneumonia em organização criptogênica, porém, posteriormente, foi observado também em pacientes com diversas outras doenças, como nos casos de COVID-19(11) (Figuras 7 e 8).

CONSOLIDAÇÃO

A consolidação é a segunda alteração mais comumente encontrada na pneumonia causada pela COVID-19, após as opacidades em vidro fosco, e tende a predominar em fases mais tardias da infecção – sobretudo após o décimo dia. Muitas vezes, entretanto, aparecem em conjunto. Ela representa o preenchimento dos alvéolos por exsudato inflamatório. Tal achado radiológico é caracterizado como aumento da densidade pulmonar com obscurecimento dos vasos e das linhas intersticiais em seu interior e possui formato frequentemente arredondado nessa pneumonia viral (Figuras 9 a 11). O padrão evolutivo de vidro fosco, pavimentação em mosaico e consolidações é demonstrado na figura 12, que também evidencia bandas parenquimatosas residuais no último controle, achados que vêm sendo descritos na fase tardia de convalescência desses pacientes.(11)
BRONCOGRAMA AÉREO

O broncograma aéreo é a identificação da luz brônquica aerada, no interior de uma consolidação alveolar.\(^{(14,15)}\) Radiologicamente, é caracterizado como estrutura tubular hipoatenuante em meio ao parênquima pulmonar consolidado (Figura 13).

LINFADENOMEGALIA

As linfadenomegalias torácicas são caracterizadas por linfonodos mediastinais e/ou hilarres, medindo mais de 1cm em seu menor eixo axial. A TC só nos fornece as dimensões e a morfologia desses linfonodos, não sendo possível a diferenciação com processo neoplásico primário e/ou secundário. Linfadenomegalias não são comuns na COVID-19\(^{(14,15)}\) (Figura 14).
CONCLUSÃO
Embora o diagnóstico de COVID-19 só possa ser confirmado por meio da reação em cadeia polimerase, a tomografia computadorizada pode auxiliar na avaliação da extensão da doença, das possíveis complicações e na determinação de diagnósticos alternativos. Para tanto, é importante que a equipe envolvida no atendimento conheça os achados sugestivos de pneumonia viral comprovados com COVID-19.

INFORMAÇÃO DOS AUTORES
Rosa ME: http://orcid.org/0000-0003-0423-3402
Matos MJ: http://orcid.org/0000-0001-8939-2407
Furtado RS: http://orcid.org/0000-0002-3246-5684
Amaral LT: http://orcid.org/0000-0002-2831-6934
Beraldo GL: http://orcid.org/0000-0002-1911-737X
Fonseca EK: http://orcid.org/0000-0002-0233-0041
Chate RC: http://orcid.org/0000-0002-4193-7647
Passos RB: http://orcid.org/0000-0003-2428-2287
Silva MM: http://orcid.org/0000-0003-3748-5649
Yokoo P: http://orcid.org/0000-0002-3493-8641
Yanata E: http://orcid.org/0000-0001-7493-2976
Shoji H: http://orcid.org/0000-0002-3701-4647
Szarf G: http://orcid.org/0000-0002-1941-7899
Funari MB: http://orcid.org/0000-0002-6369-3612

REFERÊNCIAS
1. Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time course of lung changes at chest CT during recovery from coronavirus disease 2019 (COVID-19). Radiology. 2020;295(3):715-21.
2. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus Disease 2019 (COVID-19): a perspective from China. Radiology. 2020;200343. doi: 10.1148/radiol.2020200343. [Epub ahead of print].
3. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA, 2020. doi: 10.1001/jama.2020.4031. [Epub ahead of print].
4. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. Radiology. 2020;200343. doi: 10.1148/radiol.2020200343. [Epub ahead of print].
5. Huang P, Liu T, Huang L, Liu H, Lei M, Xu W, et al. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion. Radiology, 2020;295(1):22-3.
6. Colégio Brasileiro de Radiologia e Diagnóstico por Imagem (CBR). Recomendações de uso de métodos de imagem para pacientes suspeitos de infecção pelo COVID-19 [Internet]. São Paulo: CBR; 2020 [citado 2020 Abr 16]. Disponível em: https://cbr.org.br/wp-content/uploads/2020/03/CBR_Recomenda%C3%A7%C3%B5es-de-uso-de-m%C3%A9todos-de-imagem.pdf
7. American College of Radiology (ACR). ACR Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infection [Internet]. ACR; 2020 [cited 2020 Mar 16]. Available from: https://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
8. Hosseiny M, Koorki S, Gholamrezaeezad A, Reddy S, Myers L. Radiology perspective of coronavirus disease 2019 (COVID-19): lessons from severe acute respiratory syndrome and middle east respiratory syndrome. AJR Am J Roentgenol. 2020;214(5):1078-82.
9. Ye Z, Zhang Y, Wang Y, Huang Z, Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol. 2020. https://doi.org/10.1007/s00330-020-06801-0. [Epub ahead of print].
10. Chate RC, Fonseca EK, Passos RB, Teles GB, Shoji H, Szarf G. Presentation of pulmonary infection on CT in COVID-19: initial experience in Brazil. J Bras Pneumol. 2020;46(2):e20200121.
11. Bernheim A, Mei X, Huang M, Yang Y, Fayad ZA, Zhang N, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection. Radiology. 2020;295(3):200463.
12. Wang Y, Dong C, Hu Y, Li C, Ren Q, Zhang X, et al. Temporal changes of CT findings in 90 patients with COVID-19 pneumonia: a longitudinal study. Radiology. 2020;200843. doi: 10.1148/radiol.2020200843. [Epub ahead of print].
13. Simpson S, Kay FU, Abbara S, Bhalla S, Chung JH, Chung M, et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT Findings Related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. Radiol Cardiothorac Imaging. 2020;2(2).
14. Hansell DM, Bankier AA, MacMahon H, McCloud TC, Muller NL, Remy J. Fleischner society: glossary of terms for thoracic imaging. Radiology. 2008;246(3):697-722.
15. Silva CI, Marchiori E, Souza Júnior AS, Müller NL. Consenso brasileiro ilustrado sobre a terminologia dos descritores e padrões fundamentais da TC de tórax. J Bras Pneumol. 2010;36(1):99-123.