Regulatory T-cells in helminth infection: induction, function and therapeutic potential

Madeleine P. J. White, Caitlin M. McManus and Rick M. Maizels
Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK

doi:10.1111/imm.13190
Received 17 December 2019; revised 4 March 2020; accepted 5 March 2020.
Correspondence: Rick M. Maizels, Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.
Email: rick.maizels@glasgow.ac.uk
Senior author: Rick M. Maizels

Summary
Helminth parasites infect an alarmingly large proportion of the world’s population, primarily within tropical regions, and their ability to downmodulate host immunity is key to their persistence. Helminths have developed multiple mechanisms that induce a state of hyporesponsiveness or immune suppression within the host; of particular interest are mechanisms that drive the induction of regulatory T-cells (Tregs). Helminths actively induce Tregs either directly by secreting factors, such as the TGF-β mimic Hp-TGM, or indirectly by interacting with bystander cell types such as dendritic cells and macrophages that then induce Tregs. Expansion of Tregs not only enhances parasite survival but, in cases such as filarial infection, Tregs also play a role in preventing parasite-associated pathologies. Furthermore, Tregs generated during helminth infection have been associated with suppression of bystander immunopathologies in a range of inflammatory conditions such as allergy and autoimmune disease. In this review, we discuss evidence from natural and experimental infections that point to the pathways and molecules involved in helminth Treg induction, and postulate how parasite-derived molecules and/or Tregs might be applied as anti-inflammatory therapies in the future.
Keywords: immune regulation; immunomodulators; inflammation; therapy.

Introduction
Helminth worm parasite infections currently afflict one-quarter of the world’s population,1,2 the majority of whom are located in resource-poor tropical countries. However, before sanitation improvements and industrialization became more widespread in the last century, the prevalence of helminths was likely to be high across the globe. Alongside the disappearance of helminth infections from the higher-income countries, there have however been sharp rises in a suite of inflammatory autoimmune and allergic disorders. One possibility, suggested by the ‘hygiene hypothesis’ and more recently the ‘old friends hypothesis’ is that helminths are one of the key environmental influences, along with members of the microbial world, that dampen immune reactivity to innocuous bystander antigens.3–6 While the relative importance of each environmental factor in restraining inflammatory processes has yet to be established, the ability of many helminth parasites to downregulate the host immune system suggests that they may play a major role in regulating immune disorders in humans.7

Abbreviations: Ab, antibody; Ag, antigen; ANA, anti-nuclear antibodies; Breg, regulatory B-cells; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DC, dendritic cell; ES, excretory/secretory product; Foxp3, forkhead box P3; GITR, glucocorticoid-induced tumour necrosis factor receptor; HDM, house dust mite; HES, H. polygyrus excretory-secretory product; Hp-TGM, H. polygyrus TGM (TGF-β mimic); IBD, inflammatory bowel disease; ICOS, inducible T-cell co-stimulator; IDO-1, indolamine 2,3-dioxygenase; IFN-γ, interferon gamma; iTregs, induced Tregs; MS, multiple sclerosis; NOD, non-obese diabetic; nTregs, natural Tregs; OVA, ovalbumin; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PP, Peyer’s patch; pTreg, peripheral Tregs; RA, retinoic acid; RORγt, RAR-related orphan receptor gamma; SEA, soluble egg antigens; TGF-β, transforming growth factor beta; TIGIT, T-cell immunoreceptor with Ig and ITIM domains; Tr1, type 1 regulatory cells; TSO, Trichuris suis ova

© 2020 The Authors. Immunology published by John Wiley & Sons Ltd., Immunology, 160, 248–260
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Immune regulation by helminths acts at many levels to interfere with innate antigen sensitization, induction of adaptive immunity, and mobilization of effector mechanisms. One of the most prominent pathways for parasite immunomodulation is through regulatory T-cells (Tregs). Tregs are classified by their expression of the transcription factor Foxp3 (FOX3 in humans) and can express a number of surface markers that are key for their function, including CD25, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), inducible T-cell co-stimulator (ICOS) and T-cell immunoreceptor with Ig and ITIM domains (TIGIT). In both mouse and human studies, Tregs are often defined as CD3+ CD4+ CD25+ Foxp3+ cells, although Treg cells comprise a diverse population. During development, the first set of Tregs are formed in the thymus, making up the natural Treg population (nTreg), while a second type of Tregs can be induced in the periphery from naïve CD4 T-cells [induced Tregs (iTreg)/ peripheral Tregs (pTreg)] in the presence of specific cytokines such as interleukin (IL)-2 and transforming growth factor beta (TGF-β); however, the expression of Foxp3, and indeed regulatory activity, is variable depending on the level of demethylation at the Foxp3 locus, and recent studies have identified a number of Treg subtypes delineated by CD25, Foxp3 and the epigenome. Regulatory activity can also be found in other lymphocyte subsets, such as the Foxp3+ IL-10+ Tr1 cells (previously defined as Th3), although their role in controlling immune responses in helminth infection has yet to be established.

Regulatory T-cells are critical in the prevention of autoimmunity and other forms of immune dysregulation, therefore these cells are likely to allow the parasite to not only survive for longer but also protect the host from a potentially pathogenic immune response. Hence, a large proportion of helminth-infected individuals do not mount an inflammatory response to the parasite, which otherwise would cause 'collateral damage' in the infected tissues.

Activity of Tregs in human helminth infection

In humans, strong links have frequently been identified between helminth infection and Treg cell activity, particularly in individuals who are asymptomatic or hypo-responsive during infection (Table 1). It is important to note that in human studies, unlike in laboratory models, co-infection with other pathogens is common, and there is great variability in the frequency and intensity of exposure to infection. Despite these confounding factors, however, some clear relationships have emerged.

In the case of *Schistosoma mansoni*, infection is associated with elevated numbers of FOXP3-expressing Tregs, and these cells are also more active during helminth infection as indicated by expression of programmed cell death protein 1 (PD-1) and CD45RO. However, after clearance with the anti-schistosomal drug Praziquantel, this population returns to baseline. An increase in nTregs in addition to expanded IL-10 producing T1 cells and Th17 cells has been shown in filarial infected individuals in comparison to uninfected controls. During filarial infections, peripheral T-cells are typically unresponsive to parasite antigen, but responses could be rescued in vitro by depletion of CD25^(high) Tregs. There is also evidence to suggest that Tregs are important in preventing parasite-associated pathologies. In patients infected with *Wuchereria bancrofti*, the major causative agent of lymphatic filariasis, those with lymphoedema have significantly enhanced Th1 and Th17 responses and lower Treg levels in comparison to asymptomatically infected individuals, while in hyper-reactive onchocerciasis (river blindness) there is a deficiency in FOXP3^+ CD25^high Tregs. A recent study on rural Indonesians infected with soil-transmitted helminths showed that CTLA-4 and CD38, HLA-DR, ICOS or CD161 co-expressing Tregs were expanded compared with both urban-dwelling Europeans, and urban-residing Indonesians, excluding ethnicity as a major factor for this difference.

Interestingly, both FOXP3^+ IL-10+ Tr1 and FOXP3^+ Tregs are associated with an isotype switch from IgE to IgG4 in vitro and during helminth infection. IgG4, which does not exist in the mouse, is a strongly anti-inflammatory isotype as it interacts poorly with cell-bound Fc receptors, and also is functionally monovalent due to interchange between heavy-light chain half-molecules following secretion by B-cells. Notably, IgG4 is promoted by IL-10 and competes for the same epitopes as the strongly anti-parasitic IgE isotype, thus suppressing IgE-dependent allergic responses. During helminth infection, individuals have high levels of both IgG4 and IgE, with greater IgG4 : IgE ratios in asymptomatic infections with high Treg activity. These studies are supported by treatment with anthelmintic drugs, which rapidly reduce circulating IgG4 levels indicating another mechanism by which Tregs are involved in immunosuppression by helminths.

At a broader level, poor BCG vaccine responses have been found in helminth-infected individuals, as BCG vaccines show suppressed inflammatory cytokine profiles to purified protein derivative (PPD/tuberculin) antigen and strong TGF-β production, both of which are reversed by anthelmintic treatment. Tregs are implicated in the poor BCG vaccine response, as evidenced by the reduced *in vitro* T-cell proliferative responses to both BCG and malaria, and is recovered once Tregs are removed from these cultures. A more recent study on tuberculosis-infected migrants in the UK showed that those who were co-infected with helminths had a higher Treg frequency and lower interferon (IFN)-γ^-^ CD4 T-cells than those without a helminth infection, and furthermore that anthelmintic treatment reversed this effect.
Table 1. Human helminth Treg associations

Human disease [pathogen(s)]	Evidence for Tregs	Treg type/markers used	Reference
Ascariasis (Ascaris lumbricoides)	Blood samples from infected individuals had higher Treg numbers compared with uninfected controls	CD4⁺ CD25⁺	129
Hookworm infection (Necator americanus)	Higher levels of circulating Tregs compared with healthy non-infected donors	CD4⁺ CD25⁺ FOXP3⁺ also expressed CTLA-4, GITR, IL-10, TGFB and IL-17	130
Lymphatic filariasis (Wuchereria bancrofti)	Patients with lymphoedema had lower Treg levels compared with asymptomatically infected individuals	PBMCs measured for FOXP3, GITR, TGFB and CTLA-4 by RT-PCR	14
(Wuchereria bancrofti and Mansonella perstans)	Infected individuals had significantly increased frequencies of αTreg/Tr1 and nTreg compared with healthy controls	αTreg/Tr1 were CD4⁺ IL-10⁺ FOXP3⁻	12
(Brugia timori)	Asymptomatic microfilareemics showed stronger Treg activity	CD4⁺CD25(hi) cells depleted in vitro	13
Onchocerciasis (Onchocerca volvulus)	Hyper-reactive onchocerciasis patients have deficiency in Tregs	CD4⁻ FOXP3⁺ CD25(hi)	15
Schistosomiasis (Schistosoma mansoni)	Elevated FOXP3-expressing Tregs, expression of activation markers, anti-helminth treatment Treg numbers return to baseline	CD3⁺ CD4⁺ CD25⁻	11
(Schistosoma haematobium)	Increased active Treg frequency, after anti-schistosome treatment Treg numbers decrease but suppressive capacity remains	CD4⁺ CD25(lo) FOXP3⁻	131
Strongyloidiasis (Strongyloides stercoralis)	Tregs increased in patients with HTLV-1 co-infection compared with Strongyloides infection alone	CD4⁺ CD25⁺ FOXP3⁺ in PBMC	132
Strongyloides (Strongyloides stercoralis)	Treg numbers increased in the duodenum of co-infected patients compared with healthy controls	FOXP3 expression by IHC	133
Taeniasis/Cysticercosis (Taenia solium)	Significantly increased frequency of Tregs in patients with neurocystercerosis compared with healthy controls	CD4⁺ CD25(hi) FOXP3(+)Treg	134
νTreg		CD4⁺ CD25(hi) IL-10⁺ (Tr1)	

αTreg/Tr1, adaptive Treg; CTLA-4, cytotoxic T-lymphocyte-associated; GITR, glucocorticoid-induced tumour necrosis factor receptor-related protein; HTLV-1, human T-cell lymphotropic virus type 1; IHC, immunohistochemistry; nTreg, natural Treg; PBMC, peripheral blood mononuclear cell; RT-PCR, reverse transcription polymerase chain reaction.

Overall this body of evidence supports a central role for parasite-induced Tregs in immune regulation by helminths. Understanding the mechanisms by which this induction occurs may provide essential knowledge for anti-helminth vaccinations and drug treatments.

Mouse models of infection – expansion and manipulation of Tregs

Many mouse helminth models also show an expansion in Tregs, both from activating the nTreg population as well as de novo induction of pTregs, with significant increases by 3–7 days post-infection. For example, both Litomosoides sigmodontis and Heligmosomoides polygyrus infections drive an early Treg expansion that is primarily made up of nTregs. In addition, induction of early Foxp3⁺ cells by the filarial nematode Brugia malayi requires live, rather than heat-killed, parasites. In conjunction with a quantitative expansion of host Tregs, helminths also induce expression of activation markers and cytokines including CD103, CTLA-4 and TGFB, indicating that not only are Tregs induced but they may also express a more suppressive phenotype.

Helminth-induced Tregs are essential for long-term parasite survival within the immunocompetent host as removal of Tregs can result in clearance of the infection, whereas expansion of the Treg compartment with IL-2 renders the host more susceptible. The strength of effect depends on the specific mouse model of helminth infection and the different depletion/induction methods employed, as summarized in Table 2. One approach has been to use antibody depletion of CD25⁺ cells (clone PC61), which removed most but not all Tregs. As CD25 is also expressed on activated effector cells, the anti-CD25 is given before infection; Treg depletion in this manner increased host Th2 cytokine responses and enhanced parasite killing. Additional anti-CTLA-4 (clone UC10-4F10-11) or anti-glucocorticoid-induced tumour necrosis factor receptor (GITR) (DTA-1) inhibition alongside anti-CD25 showed a further enhanced worm killing and elevation of Th2 cytokine responses, which may be attributed to ‘reawakening’ the effector T-cell population in the absence of Treg influence.
A second approach has been to fully deplete Tregs in transgenic mice expressing the diphtheria toxin receptor (DTR) under the Foxp3 promoter. Toxin administration to these mice showed that Treg depletion during the early stages of infection may induce protective immunity; however, depletion at the later stages shows enhanced host pathology and lack of worm expulsion. The differing results between antibody depletion and DTR mice may be explained by the residual Treg population in the former scenario, and indicate that a basal level of Tregs may be essential for controlling host pathology and permitting a coherent Th2 response to develop in the face of, for example, IFN-γ responses against commensal bacteria. Furthermore, complete Treg depletion in DTR mice is only possible for short periods of time due to increased mortality, rendering it difficult to determine the role of Tregs during the full time course of a helminth infection.

As summarized in Table 2, in helminth models such as *H. polygyrus*, *L. sigmodontis*, *Schistosoma japonicum* and *Strongyloides ratti*, Tregs have been shown experimentally to be important for parasite survival; however, this is not the case for other species such as *Trichuris muris*, which dramatically reduces the proportion of Tregs during infection and Treg depletion in this model has no effect on worm burden and Th2 responses.

Table 2. Mouse parasite Treg interventions

Parasite	Mouse strain	Treatment	Role of Tregs	Reference
Brugia pahangi	BALB/c	CD25 depletion	Depleting CD25-expressing cells increased Ag-specific Th2 responses	31
Heligmosomoides polygyrus	C57BL/6	DEREG	Early depletion of Tregs did not affect worm burden but Th2 responses were enhanced	27
	BALB/c	Recombinant IL-2-anti-IL2 complex	Worm persistence increased with increased Treg numbers	30
	BALB/c	Foxp3.LuciDTR on days 4, 6, 8 and 10	Increased CD4⁺ T-cell activation and pathology	
	C57BL/6	Foxp3.LuciDTR on days 14–26 every 2 days	No change to parasite burden despite increased Th2 responses	
Litomosoides sigmodontis	BALB/c	Ab depletion – anti-CD25 (PC61) and anti-GITR	Dual depletion results in increased killing of the parasites and enhances IL-4, IL-5 and IL-10 responses	32
	BALB/c	Ab depletion – anti-CD25 (PC61) and anti-CTLA4 (UC10-4F10-11)	Dual depletion results in enhanced parasite killing, cytokine responses unaffected	135
Schistosoma japonicum	BALB/c	Ab depletion – anti-CD25	Reduced Treg numbers were associated with reduced worm burden and increased IFN-γ	33
	BALB/c	Ab depletion – anti-CD25 and anti-CTLA-4	Dual depletion results in enhanced parasite killing	37
	C57BL/6	Ab depletion – anti-CD25 (PC61) on day –3 and day 35	Enhanced egg destruction, increased pathology	34
Schistosoma mansoni	C57BL/6	Ab depletion – anti-CD25	Tregs control Th2 colonic granulomas and reduce pathology during infection	136
	C57BL/6	Ab depletion – anti-CD25 (PC61)	Early depletion of Tregs improved worm expulsion and Th2 responses	29
	BALB/c	CTLA-4 blockade	Moderately increased Th2 and decreased Th1, limited enhancement to worm expulsion	40
Strongyloides ratti	BALB/c	DEREG mice	Early depletion of Tregs improved worm expulsion in BALB/c mice but not C57BL/6 due to low IL-9 production in this strain	
	C57BL/6	Ab depletion with PC61	Enhanced Th2 cytokine response to parasite Ag, no significance on larval burden	35
Trichinella spiralis	C57BL/10	Ab depletion – anti-CD25 (anti-CD25) and anti-GITR	Treg depletion results in increased gut pathology but only anti-GITR results in earlier worm expulsion	36
Trichuris muris	C57BL/6	Ab depletion – PC61 (anti-CD25) and anti-GITR	Early Treg depletion enhances ability to clear the parasite, late Treg depletion reduced worm clearance. Both treatments resulted in enhanced Th2 responses	

Ab, antibody; Ag, antigen; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; DEREG, ‘depletion of regulatory T-cell’ mouse strain using diphtheria toxin-induced ablation of Foxp3⁺ cells; Foxp3.LuciDTR, express knocked-in diphtheria toxin receptor, although a different line function similar to DEREG mice; GITR, glucocorticoid-induced tumour necrosis factor receptor-related protein; IFN-γ, interferon gamma; Treg, regulatory T cell.
on worm survival.42–44 Clearly, helminths have adopted multiple strategies to evade host immunity, and therefore not all species are reliant on the induction of Tregs for survival within the host, and Treg-directed mechanisms may be more or less important according to the genotype of the host.40,43

Pathways by which helminths induce Tregs: directly and indirectly

Upon infection, many helminths drive an expansion or recruitment of nTregs during the early stages as indicated by Helios+ staining,30,46 while nTreg depletion using anti-CD25 antibody prior to infection shows that these cells have a role in parasite persistence.28 Treg expansion in \textit{H. polygyrus}-infected mice is greatest in the Peyer’s patches (PP) that are in contact with the parasite, indicating that secreted products may act in a local manner to promote Treg expansion.47 While it is not known what specifically drives the expansion of nTregs, there have been many studies looking at the factors that increase overall Treg numbers during helminth infection indicating specific pathways by which iTreg/Tr1 cells are induced,48 and these are summarized in Fig. 1.

Many helminths secrete a plethora of proteins that are able to interact with the host, in the case of \textit{H. polygyrus}...
several hundred proteins have been identified in the excretory-secretory products (HES) and, furthermore, these products are able to induce Tregs from naïve CD4+ T-cells in vitro. Further analysis identified the active protein, named Hp-TGM (H. polygyrus TGM (TGF-β mimic)), which mimics the function of TGF-β by binding to the TGF-β receptors and inducing Smad signalling. Although Hp-TGM has no structural homology with mammalian TGF-β, it is a potent inducer of mouse and human Foxp3+ Treg cells in vitro. Elaboration of a factor that drives Treg induction argues that their expansion during helminth infection is not merely a host homeostatic mechanism to rein in overstimulation but an adaptive evolutionary strategy on the part of the parasite to maximize their survival in an immune environment.

Interestingly, Hp-TGM is part of a larger gene family made up of 10 members based on a similar sequence, with multiple variants able to induce Tregs. This redundancy indicates that TGF-β mimicry is a central survival ploy by this parasite. However, other helminths appear to depend upon host TGF-β to indirectly induce Tregs. For example, in S. mansoni infection, soluble egg antigens (SEA) are able to upregulate host cell TGF-β secretions and induce Foxp3+ Tregs in a TLR2-dependent manner.

Further examples substantiate that helminths and their products act on bystander cell types, which are then able to induce Tregs in an indirect manner. One such hypothesized mechanism is through the induction of tolerogenic dendritic cells (DCs) that express a range of immunosuppressive factors, including IL-10, indolamine 2,3-dioxygenase (IDO), programmed death-ligand 1 (PD-L1), retinoic acid (RA) and TGF-β, which are known to drive naïve T-cells towards a Treg phenotype. This pathway has been implicated in Trichinella spiralis infection in which DCs exposed to muscle larvae excretory/secretory (ES) product are able to expand IL-10 and TGF-β-producing Foxp3+ Tregs in an IDO-1-dependent manner. Bone marrow-derived DCs treated with H. polygyrus ES also have reduced co-stimulatory molecule and cytokine expression, and these cells are able to induce IL-10-secreting T-cells (Tr1, regulatory cells) capable of suppressing effector T-cell responses.

An emerging area of interest for Treg induction in vivo relates to the role ofalarmins and tissue-derived cytokines in promoting the regulatory environment. In addition to factors secreted by the parasites, the epithelial damage caused by helminths results in release of alarmins such as TSLP and IL-33, which may also be involved, indirectly or directly, in expanding Treg numbers during infection. For example, macrophages express ST2, a receptor for IL-33, and in the presence of this cytokine can be polarized to an M2 phenotype leading to IL-10 upregulation and consequent Treg expansion.

Treg locations: subtypes and surface markers

Helminths are able to infect a range of tissues outside of the gut, including the lung, pleural cavity, peritoneal cavity and liver. In each of these different tissue sites, the immune environment these helminths encounter will be unique, with tissue-specific immunological properties including Treg features. While our understanding of helminth–Treg interactions in the tissues is still limited, there are certainly conserved markers of Treg activation that are induced in multiple helminth-tissue settings.

Expression of CD103, a beta integrin associated with tissue residency, is shown to be upregulated on Tregs in the liver, peritoneal cavity, large intestine and small intestine during helminth infection compared with steady-state. Upregulation of CD103 on Tregs may be a conserved mechanism seen in B. malayi, H. polygyrus and S. mansoni infection. Co-inhibitory molecules are commonly upregulated by helminth infection. CTLA-4 (also referred to as CD152) is upregulated on Tregs in many infections, including B. malayi, L. sigmodontis, S. mansoni and T. spiralis. When CTLA-4, a member of the CD28 family, binds to CD80 or CD86 on DCs they become tolerogenic, and thus downstream T-cell responses are inhibited. Interestingly, the checkpoint inhibitor GITR is also upregulated during helminth infection. GITR functions as a Treg inhibitor when bound to its ligand, GITRL, which allows the activation and expansion of T effector cells. It has been shown that stimulating GITR and thus decreasing Treg responses during L. sigmodontis infection causes increased Th2 numbers and cytokine output. GITR is also upregulated during S. mansoni and L. sigmodontis infection.

Furthermore, other co-inhibitory molecules can also be found on the surface of Tregs responding to helminth infection including PD-1 and ICOS, which indicate that not only are Tregs expanded during helminth infection but are also potentially more actively suppressive.

An emerging paradigm has been that Treg co-expression of transcription factors previously associated with Th effector subsets enables them to co-migrate to the same sites and thereby fulfil their suppressive action. For example, RAR-related orphan receptor gamma (ROGR), a transcription factor that typically defines Th17 cells, is expressed on a group of Tregs found in the large intestine. A recent study has indicated that this unusual subtype is also involved in the regulation of Th2 responses, an idea that is supported by ROGR-expressing Foxp3+ mice, which were able to expel H. polygyrus more efficiently than C57BL/6 counterparts.

As discussed above, innate alarmins such as IL-33 have a major impact on the T-cell population. Hence, the report of ST2 (IL-33R) expressing Tregs in the colon is...
particularly interesting. However, ST2-deficient mice have normal Treg responses to *H. polygyrus* infection and indeed are more susceptible to the parasite, highlighting the contrasting role of IL-33 in different tissues and settings. Certainly, more investigation is required to study the dynamics of these newly identified subtypes during helminth infection, and in particular to compare and contrast the phenotypes of Tregs induced by helminths migrating through, or establishing in, different tissues such as the skin, lungs, vasculature and intestinal tract.

Therapeutic potential – epidemiological evidence in humans

As discussed above, regulatory T-cells may protect the host against the excessive immunopathological responses to helminth infection, and maintain an immunological compromise that benefits host health while tolerating some degree of parasite infestation. The promotion of regulatory T-cells by helminths may have further, albeit less expected, beneficial effects for the host by downregulating responsiveness to other coinciding antigens, and therefore reducing the impact of allergens, autoantigens and other infectious agents. This is one strand of the postulated ‘hygiene hypothesis’, which would be consistent with experimental and epidemiological evidence gathered from both mouse and human studies.

Several studies have reported that helminth-infected individuals have a lower allergic response to allergens, such as the house dust mite (HDM), as is the case for children infected with *Schistosoma haematobium* and *S. mansoni*. This effect is further supported by an...
enhancement of skin test reactivity in children following anthelmintic treatment, providing evidence of causality between helminth infection and reduced allergy. Studies in which pregnant mothers were treated with anthelmintics, in the hopes that parasite elimination would reduce maternal anaemia and enhance fetal growth, showed that there was actually a significant adverse effect with increased rates of infantile eczema. It is important to note that particular helminth species can be more strongly linked to a protection against allergy, such is the case for hookworm, and that the intensity of the infection may also be key to the protective effects. Together these studies, and others, built a body of evidence that helminths exert a protective effect against allergies and provide an environmental explanation for higher levels of eczema and asthma in the developed world.

While there has been a parallel increase in the incidence of autoimmune diseases in developed countries, there is sparse epidemiological evidence for parasite immunosuppression reducing autoimmunity. Levels of auto-reactive anti-nuclear antibodies (ANA), which are central for the diagnosis and classification of autoimmune diseases, were found to be lower in individuals infected with *S. haematobium* compared with age-matched uninfected cohabitants. Moreover, 6 months after anti-helminthic treatment, levels of ANA significantly increased, implying that the parasite is able to generate conditions in which autoimmunity is suppressed. The most striking indication of Treg involvement in helminth protection against autoimmunity was determined in a multiple sclerosis (MS) patient cohort in Argentina, in which MS patients unintentionally acquired gastrointestinal helminth infection with a variety of species. Those infected had increased TGF-β and IL-10 levels, as well as elevated Treg and Breg activity. The infected patients also showed significantly lower numbers of disease exacerbations and fewer magnetic resonance imaging (MRI) lesion changes in comparison to uninfected MS patients over the same period of time. A small number of these patients were subsequently given anti-parasitic treatment, which leads to an increase in clinical and radiological disease. This increase in MS severity was also associated with a reduction in TGF-β- and IL-10-secreting cells and reduced FOXP3 Tregs within 3 months post-anthelmintic treatment.

Although we have highlighted particular studies indicating that helminth infection may protect against inflammatory diseases, there are also instances in which worms may exacerbate disease. In a mouse model setting, *H. polygyrus* promotes colon cancer following DSS-driven inflammation and enhances colitis provoked by *Citrobacter* infection. In humans, anthelmintic treatment of individuals in an area highly prevalent for *Ascaris* resulted in an overall improvement of asthma within the population. This further highlights the double-edged nature of live parasites and the benefits of identifying individual molecular products that induce Tregs, which can then be used as a therapeutic treatment for inflammatory diseases in the future.

Evidence for a role of helminth Tregs in suppression of inflammatory disease

To clarify the role Tregs may be playing in the helminth-induced bystander immunosuppression, we look to mouse models of disease. Helminths have been used in a range of autoimmune or allergy models, showing that parasites are able to successfully suppress inflammatory diseases, as recently summarized by fellow colleagues and ourselves. These studies have determined that Tregs are an important cell type mediating helminth protection, although in some models helminth protection is Treg-, or even T-cell-independent, indicating that the mechanism of protection may be parasite and disease model specific.

In *H. polygyrus* a role for Tregs have been demonstrated for immune suppression in a range of different disease models, including allergic airway inflammation with HDM, ovalbumin (OVA)-specific airway allergy, type 1 diabetes in non-obese diabetic (NOD) mice and inflammatory bowel disease. Similarly, during *S. mansoni* infection there is evidence to suggest Tregs play a role in suppression of OVA-specific airway inflammation, and in some studies protection is both T-cell and IL-10-dependent, indicating that Tr1 cells may also be important immune regulators during helminth infection.

Human helminth therapy trials – past, present and future?

Deliberate infection of humans with helminths to dampen inflammatory disorders has been mooted for several decades, ever since a report that self-infection with *Necator americanus* hookworms abolished hay fever. Such anecdotal reports continue, with for example a colitis sufferer showing benefit from self-treating with the human whipworm *Trichuris trichiura*. More controlled trials of live helminth therapy started in 2006 using the pig whipworm, *Trichuris suis*, which establishes a transient infection in humans, and potentially less pathogenic than human-infective helminth species; furthermore, *T. suis* ova (TSO) administration successfully treated a macaque monkey colony suffering idiopathic bowel dysfunction. Notably, in neither of these studies did *Trichuris* spp. infection raise expression of FOXP3 Tregs, which were generally found to be more frequent in inflammation than in healthy tissues and controls.

Early, small-scale trials of TSO in Crohn’s disease and ulcerative colitis provided promising results followed by larger clinical trials not only for IBD, but also...
rhinitis and MS, which have recently been reviewed by a number of authors, helminth therapy has even extended to autism. The outcomes for inflammatory bowel disease (IBD) and MS remain inconclusive, with modest effects at best, and generally falling short of statistical significance. However, a significant benefit was found for hookworm treatment of patients with Coeliac disease, many of whom regained gluten tolerance, accompanied by a significant increase in FOXP3+ Tregs among the intraepithelial lymphocytes, although not in peripheral blood.

Several commentators have identified reasons why helminth therapy has been less efficacious than may have been hoped, focusing on whether early-age, longer-term and/or higher-intensity infections may be required, whether a human parasite is more appropriate than a porcine one, if the entirely enteric location of whipworms lacks a systemic presence and, perhaps most uncertain, whether the human immune system varies significantly in responses to helminth infection. As yet, there appears to be no common immunoregulatory pathway invoked by experimental human helminth infection, with the paucity of evidence for Treg involvement being perhaps the most surprising.

Overall, helminth therapy for human inflammatory disorders holds some important lessons, and some caveats, for the future. Live infection remains an imperfect art, with parasite biology dictating dose, longevity and location of the therapeutic agents; these agents, presumed to be secreted products, are themselves poorly defined as are the host targets of parasite immune modulation. Hence, while recent work has provided proof-of-concept that helminths may offer innovative anti-inflammatory treatments, further advances now require identification of helminth modulatory molecules and their modes of action, so that rational and defined new pharmaceutics can be developed for therapy.

Moving forward into the molecular era

A number of exciting parasite proteins have recently been identified as potential immune modulators for inflammatory disease; however, for the purpose of this review we will focus on molecules that exert their effects through Tregs, either directly or indirectly. HES are capable of directly inducing Tregs, either directly or indirectly. HES are capable of blocking by anti-IL-10-receptor suggesting the disease suppression seen is in part mediated through IL-10 signaling. These parasite-derived proteins could be used to induce Foxp3 expression in vivo, making them excellent candidates for use in clinical trials on inflammatory diseases in which Treg numbers are reduced or dysfunctional. Furthermore, molecules such as Hp-TGM have no structural homology to mammalian TGF-β therefore, unlike native TGF-β, may retain biological activity for a long period of time. Although the use of parasite molecules in place of the helminth itself may prove to be a fruitful venture for...
clinical therapy, the induction or expansion of Foxp3+ Tregs by parasite molecules in vitro and subsequent transplantation into diseased patients may be another path worth exploring.

Will trials with helminth-induced Treg transfer be effective?

Given that clinical trials with live parasites have shown very little consistency in inflammatory disease thus far, future studies may be directed towards the use of helminth products for Treg transfer clinical trials. Animal models have identified that adoptive transfer of Tregs from *S. mansoni-* or *H. polygyrus*-infected mice can protect against inflammatory disease, suggesting these cells can exert systemic down-modulation of bystander immunopathologies. Moreover, a major challenge in Treg therapy is to direct cells to the site of inflammation, and that they mediate the appropriate suppressive properties.

Given that some helminth products induce RA, which is important for the upregulation of gut-homing receptors such as CCR9 and integrin-α4β7, this may be advantageous for Treg therapeutics in IBD in trafficking cells to the site of inflammation. Additionally, as discussed earlier in the review, Tregs during helminth infection express high levels of CTLA-4, PD-1 and ICOS on their surface, indicating that these cells potentially represent a more active Treg population that would be efficient suppressors of inflammatory diseases.

Currently, there are several concerns about the efficacy and risks of Treg therapy in humans. An overactive Treg compartment might compromise immunity to other infections, or even permit outgrowth of tumours, in a reverse scenario to strategies targeting Tregs for cancer control. A more subtle concern for Treg therapy following ex vivo conversion and return to the same patient, is whether the injected Treg population will retain suppressor properties or if they will be converted into effector cells. Some studies have looked at the nTreg population switching to Th17 cells in the presence of IL-6, rendering them a problematic population in autoimmune diseases such as rheumatoid arthritis and MS that are characterized by auto-reactive Th17 cells. However, the pre-treatment of these cells with IL-2, TGF-β and/or RA make these cells resistant to effector cell conversion and allows them to retain suppressive properties. This therefore identifies an area in which helminth products may be used to stabilize nTreg populations ex vivo, allowing them to remain potent immunosuppressors once transplanted.

To date, Treg transfer clinical trials have focused on ex vivo expansion of pre-existing nTregs and implanting them back into patients, while very little work has been done on converting naïve T-cells, or even pro-inflammatory effector T-cells, into Tregs before implantation. This could be a new area of research for helminth products. An advantage of inducing Tregs from naïve or effector CD4+ T-cells is the generation of antigen-specific Tregs, which may be directed toward the suppression of a specific autoimmune disease, and which may be absent from the pre-existing nTreg population within the patient. Furthermore, as several inflammatory diseases are associated with a deficient number of nTregs, the ability to induce stable autologous Tregs from naïve CD4+ T-cells would be an improvement on current Treg therapeutic options.

Conclusion

The world of helminths has opened many new perspectives on immune regulation in general and Tregs in particular. Animal models have shown strong evidence that helminthic therapy can treat and/or prevent inflammatory diseases with some models dependent on Tregs; however, thus far the human clinical trials have been lacking in consistency or efficacy. Therefore we suggest that in the coming years the focus should be switched to individual helminth products as they provide a safer, more defined and directable therapeutic compared with live infection. Of particular interest are compounds that play a key role in the immunoregulatory network, either directly or indirectly inducing and expanding Tregs either ex vivo or in vivo, and with potential to stabilize and promote the function of this cell type as a future therapy across a broad range of chronic inflammatory conditions.

Acknowledgements

This work was supported by the Wellcome Trust through an Investigator Award to RMM (Ref 106122), and the Wellcome Trust core-funded Wellcome Centre for Integrative Parasitology (Ref: 104111), and through the Medical Research Council Confidence-in-Concept award and PhD Studentship.

Disclosures

The authors declare having no competing interests.

References

1. James S, Abate D, Abate KH, Ayab SM, Abubaki C, Abbas N et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392:1789–858.
2. Pullan RL, Smith JL, Jasrasaria R, Brooker S. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors 2014; 7:37.
3. Loke P, Lim YA. Helminths and the microbiota: parts of the hygiene hypothesis. Parasite Immunol 2015; 37:314–23.
4. Maizels RM, McSorley HJ, Smyth DJ. Helminths in the hygiene hypothesis: sooner or later? Clin Exp Immunol 2014; 177:36–46.
5. Schaub B, Lausen R, van Mattum E. The many faces of the hygiene hypothesis. J Allergy Clin Immunol 2006; 117:969–77, quiz 78.
M. P. J. White et al.

6 Bloomfield SF, Rook GA, Scott EA, Shanahan F, Stanwell-Smith R, Turner P. Time to abandon the hygiene hypothesis: new perspectives on allergic disease, the human microbiome, infectious disease prevention and the role of targeted vaccine. Perspect Public Health. 2016;136:211–24.

7 McSorley HJ, Hemmes PJ, Maizels RM. Immunomodulation by helminth parasites: defining mechanisms and mediators. Int J Parasitol. 2013;43:301–10.

8 Sakaguchi S, Kamik a N, Wing JB, van der Werf N, Harris A, Graham AL, Bain O, Allen JE. T regulatory cell levels decrease in people infected with Schistosoma mansoni on effective treatment. Am J Trop Med Hyg. 2007;77:676–82.

9 Metenou S, Dembele B, Konate S, Dolo H, Coulibaly SY, Coulibaly YI. Anti-inflammatory activity of human IgG4 antibodies by naturally occurring regulatory T cells. Immunol Lett. 2005;99:386–92.

10 Weisner HL, da Cunha AP, Quintana F, Wu H. Oral tolerance. Immunol Rev. 2011;241:241–59.

11 Watanabe K, Mwinzi PNM, Black CL, Muok EMO, Karanja DMS, Secor WE. Antischistosome IgG4 and IgE responses are affected differentially by chemotherapy in naturally occurring regulatory T cells in mice infected with the filarial parasite Brugia malayi. PLoS Negl Trop Dis. 2010;4:e514.

12 Metenou S, Dembele B, Konate S, Dolo H, Coulibaly SY, et al. At homeostasis filarial infections have expanded adaptive T regulatory but not classical Th2 cells. J Immunol. 2010;184:5375–82.

13 Wammers LJ, Hamid F, Wiria AE, Williow H, Santos E, Maizels RM et al. Regulatory T cells in human lymphatic filariasis: stronger functional activity in microfilaria. PLoS Negl Trop Dis. 2012;6:e1065.

14 Baha S, Bhat Puravan Kumar N, Linpas AB, Kumar S, Karthik C et al. Filarial lymphedema is characterized by antigen-specific Th1 and Th17 proinflammatory responses and a lack of regulatory T cells. PLoS Negl Trop Dis. 2009;3:e260.

15 Katowa G, Layland ED, Debruh AV, von Horn C, Batu L, Kwargart A et al. Hyperreactive oocystosis is characterized by a combination of Th17-Th2 immune responses and reduced regulatory T cells. PLoS Negl Trop Dis. 2015;9:e000414.

16 de Ruiter K, Izsoms SP, Tahapary DL, Stamm K, Konig M, van Umm V et al. Helminth infections drive heterogeneity in human type 2 and regulatory 2 cells. Sci Trans Med. 2020;12:eaw3703.

17 Satoquinia JS, Adibomery T, Arnolds K, Hoch I, Oldenburg J, Layland EU et al. Tri and naturally occurring regulatory T cells induce IgG4 in B cells through GITR/GITR-L interaction. IL-10 and TGF-b. Eur J Immunol. 2008;38:3101–13.

18 van der Neut K, Kihlhorn M, Schuurman J, Lensen M, Bleker WK, Martinez-Martinez P, Vermeulen E et al. Anti-inflammatory activity of human IgG4 antibodies by dynamic Fab arm exchange. Science. 2007;317:1554–7.

19 Turner JD, Faulkner H, Kamgno J, Kennedy MW, Behnke J, Boussinesq M et al. Allergen-specific IgG4 and IgE are markers of resistance and susceptibility in a human intestinal nematode infection. Microbes Infect. 2005;7:990–6.

20 Grosgan IL, Kremsner PG, van Dam GM, Metges W, Moordermann B, Dedeer AM et al. Anti-CD4 and IgG4 responses are affected differentially by chemotherapy in children versus adults. J Infect Dis. 1996;173:124–72.

21 Atmadja AK, Atkinson R, Sartono E, Partino F, Yazdaniakhah M, Maizels RM. Differential decline in filaria-specific IgG1, IgG4, and IgE antibodies in Brugia malayi-infected patients after diethylcarbamazine chemotherapy. J Infect Dis. 1995;172:1667–72.

22 Elias D, Britt L, Depper JF, Enner H, Akuffo H. Poor immunogenicity of BCG in helminth infected population is associated with decreased in vitro TGF-b production. Vaccine. 2008;26:8907–902.

23 Wammers LJ, Hamid F, Wiria AE, de Gier B, Santos E, Maizels RM et al. Regulatory T cells in human helminth infection suppress immune responses to BCG and Plasmodium falciparum. J Immunol. 2010;184:437–42.

24 Touala F, Tang L, Ottenhoff TH, Brown M, Deckler HM. Mycobacterium tuberculosis-specific CD4+ T cell response is increased, and Treg cells decreased, in allogeneic-treated patients with latent TB. Eur J Immunol. 2016;46:752–61.

25 Finney CAM, Taylor MD, Wilson MS, Maizels RM. Expansion and activation of CD4+CD25+ regulatory T cells in Heligmosomoides polygyrus infection. Eur J Immunol. 2007;37:1874–86.

26 McSorley HJ, Harcus YM, Murray J, Taylor MD, Maizels RM. Expansion of Foxp3+ regulatory T cells in mice infected with the filarial parasite Brugia malayi. Immunol Lett. 2008;118:656–66.

27 Rausch S, Huehn J, Kirchhoff D, Riepecka J, Schnoeller G, Pillai S et al. Functional analysis of effector and regulatory T cells in a parasitic nematode infection. Infect Immunity. 2008;76:1908–19.

28 Taylor MD, van der Werf N, Harris A, Graham AL, Bane O, Allen JE et al. Early recruitment of natural CD4+ Foxp3+ Treg cells by infective larvae determines the outcome of filarial infection. Eur J Immunol. 2009;39:192–206.

29 Blankenhaus R, Metz M, Brenderi E, Eckhardt M, Hartmann W, Haben J et al. Foxp3+ regulatory T cells delay expulsion of intestinal nematodes by suppression of IL-12-driven mast cell activation in BALB/c but not in C57BL/6 mice. PLoS Pathog. 2014;10:e1004319.

30 Sawaat DV, Gravano DM, Vogel P, Giacomini P, Ariti D, Vignali DA et al. Regulatory T cells limit induction of protective immune and promote immune pathology following intestinal helminth infection. J Immunol. 2014;192:2904–12.

31 Holm JB, Sorobutis D, Kellner P, Ramayo-Caldas Y, Estellé L, Ma T et al. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli. PLoS ONE. 2015;10:e0125495.

32 Houliden A, Hayes KS, Bankoff AJ, Worthington J, Wang P, Grecins RK et al. Chronic Trichuris muris Infection in C57BL/6 mice causes significant changes in host microbiota and metabolism: effects reversed by pathogen clearance. PLoS ONE. 2015;10:e0125945.

33 Worthington J, Klementowicz OE, Rahm S, Czajkowska BI, Smedley C, Waldmann H. Loss of the TGF-b–activating integrin alpha v beta 6 on dendritic cells protects mice from chronic intestinal parasitic infection via control of type 2 immunity. PLoS Pathog. 2013;9:e1003675.

34 Wilson MS, Taylor MD, O’Gorman MT, Balic A, Barr TA, Filbey K et al. Helminth-induced CD4+CD25+ regulatory T cells modulate experimental allergic and autoimmune inflammation. Eur J Immunol. 2007;37:1882–96.

35 Redpath SA, van der Werf N, Carema AS, Macdonald AS, Gray D, Maizels RM et al. ICOS controls Foxp3+ regulatory T cell expansion, maintenance and IL-10 production during helminth infection. Eur J Immunol. 2013;43:705–15.

36 Mosconi I, Dubey LK, Volpe B, Esen-ven Bieren J, Zaisi NM, Lebon L et al. Parasite proximity drives the expansion of regulatory T cells in Feyrer’s Patches following intestinal helminth infection. Infect Immun. 2015;83:3657–65.

37 Maizels RM, Smith HI, McSorley HJ. Modulation of host immunity by helminths: the expanding repertoire of parasite effector molecules. Immunology. 2018;49:601–18.

38 Hewitson JP, Harcus Y, Murray J, van Agtmaal M, Filbey KJ, Grainger JR et al. Protozoan analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of venom allergen-like (VAL) proteins. J Proteom. 2011;74:1573–94.

39 Grainger JR, Smith HI, Hewitson JP, McSorley HJ, Harcus Y, Filbey KJ et al. Helminth selective immune of novato T cell Foxp3 expression and regulatory function through the TGF-b pathway. J Exp Med. 2010;207:2331–41.

40 Johnston CJ, Smyth DJ, Kodali RB, White MP, Harcus Y, Filbey KJ et al. A structurally distinct TGF-b mimic from an intestinal helminth parasite potentially induces regulatory T cells. Nat Commun. 2017;8:1741.

41 Smyth DJ, Harcus Y, White MP, Gregory WF, Nahler J, Stephens T et al. TGF-b mimics proteins form an extended gene family in the murine parasite Heligmosomoides polygyrus. Int J Parasitol. 2018;48:379–85.

42 Zacccone P, Burton O, Miller N, Jones FM, Denny DW, Cooke A. Schistosoma mansoni egg antigens induce Treg that participate in diabetes prevention in NOD mice. J Exp Med. 2009;208:9088–107.

43 Kusworo R, Hu J. Role of dendritic cells in the induction of regulatory T cells. Cell Biosci. 2011;1:20.
55 Zaccone P, Burton OT, Gibbs SE, Miller N, Jones FM, Schramm G et al. The S. mansoni glycophorin mansoni glycophorin-1 induces Fos/Fos expression in NOD mouse C3D4 T-cells. *Eur J Immunol* 2011; 41:2709–18.

56 Bic N, Gruden-Marinovic A, Cvetkovic J, Tomic S, Vucicova DB, Arzamandici C et al. Trichinella spiralis excretory-secretory products induce tolerogenic properties in human dendritic cells via Toll-Like Receptors 2 and 4. *Front Immunol* 2018:9:11.

57 Segura M, Su Z, Piccirillo C, Stevenson MM. Impairment of dendritic cell function by human dendritic cells via Toll-Like Receptors 2 and 4. *Eur J Immunol* 2010; 41:289–93.

58 Nayomi MC, Lopes AA, Medeiros M, Cruz J, Sanches NC, Araujo MI, de Lima AM et al. Regulatory T cell adaptation in the intestine and skin. *J Immunol* 2014; 193:31–7.

59 Ziegler SF, Artis D. Sensing the outside world: TSLP regulates barrier immunity. *Nat Immunol* 2010; 11:289–93.

60 Nascimento DC, Melo PH, Pinheiro AI, Ferreira RG, Colin DF, Donate PB et al. IL-33 contributes to sepsis-induced long-term immunosuppression by expanding the regulatory T cell population. *Nat Commun* 2017; 8:14 919.

61 Pastielle E, Frede A, McSorley HJ, Grab I, Adamczyk A, Kollenda S et al. Intestinal helminth infection drives carcinogenesis in colitis-associated colon cancer. *PloS Pathog* 2015; 13:e1006469.

62 Walsh CM, Smith P, Fallon PG. Role for CTLA-4 but not CD25+ T cells during *Schis- tosoma mansoni* infection of mice. *Parasite Immunol* 2007; 29:293–308.

63 Baumgart M, Tempi MK, Long J, Hesse M. Naturally occurring CD4+Foxp3+ regulatory T cells are dependent upon, GITR-GITR ligand costimulation in vivo. *J Immunol* 2006; 176:5374–87.

64 Hesse M, Piccirillo CA, Beladk Y, Fuerer J, Mentink-Kane M, Lesnik M et al. The pathogenesis of schistosomiasis is controlled by cooperating IL-10-producing innate effector and regulatory T cells. *J Immunol* 2004; 172:5157–66.

65 Ahn J-B, Kang S-A, Kim D-H, Yu HS. Activation and recruitment of regulatory T cells via chemokine receptor activation in *Trichinella spiralis*-infected mice. *Korean J Parasitol* 2016; 54:163–71.

66 van der Werf N, Redeph SA, Phythian-Adams AT, Azuma M, Allen IE, Maizels RM et al. Th2 responses to helminth parasites can be therapeutically enhanced, but are not dependent upon, GTP-RXR/G protein coactivation in vivo. *J Immunol* 2011; 187:1411–20.

67 Buuryn D, Benhai M, Chai L. Regulatory T cells in nonlymphoid tissues. *Nat Immunol* 2013; 14:8007–13.

68 Whaley N, Tucci A, Poreilo F. Regulatory T cell adaptation in the intestine and skin. *Nat Immunol* 2019; 20:386–96.

69 Ohlich A, Adelmann K, Wohlfert EA et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. *Sci Immunol* 2014; 2:515.

70 Schiering C, Krauszger T, Chomka A, Frohlich A, Adelmann K, Wohlfert EA et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. *Nature* 2014; 513:564–8.

71 Coakley G, McCaskill JL, Borger JG, Simbari F, Robertson E, Millar M et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. *Nature* 2014; 513:564–8.

72 Coakley G, McCaskill JL, Borger JG, Simbari F, Robertson E, Millar M et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. *Nature* 2014; 513:564–8.

73 Cosley G, McKeil JL, Berger JC, Simbari F, Robertson E, Millar M et al. Extracellular vesicles from a helminth parasite suppress macrophage activation and constitute an effective vaccine for protective immunity. *Cell Rep* 2017; 19:1545–57.

74 Okada H, Kuhn C, Frelot H, Bach JF. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. *Clin Exp Allergy* 2010; 40:16–9.

75 Mairitz RM, Infections and allergic responses: a role for helminthic infection on allergic airway inflammation. *Ann Allergy Asthma Immunol* 2011; 127:466–70.

76 van den Biggelaar AHJ, van der Meijden AE, van der Zee JS, Hoeksma-Kruize YCM, Souvenir JM et al. Long-term treatment of intestinal helminths increases mite skin-test reactivity in Gabonese schoolchildren. *J Allergy Clin Immunol* 2018; 142:682–90.

77 Logan J, Navarro S, Roca A, Giacomin P. Helminth-induced regulatory T cells and suppression of allergic responses. *Curr Op Immunol* 2018; 54:1–6.

78 van den Biggelaar AHJ, McSorley HJ. Regulation of the host immune system by helminth parasites. *J Allergy Clin Immunol* 2016; 138:666–75.

79 Wilson MS, Taylor BD, Balic A, Finney CA, Lamb IR, Maizels RM. Suppression of allergic airway inflammation by helminth-induced regulatory T cells. *J Exp Med* 2005; 202:1199–1212.

80 Hartmann S, Schmoller C, Dalten H, Ayavgyan A, Rausch S, Lendem M et al. Gastrintestinal nematode infection interferes with experimental allergic airway inflammation but not atopic dermatitis. *Clin Exp Allergy* 2009; 39:1385–96.

81 Kitagaki K, Busina TR, Racila D, Elliott DE, Weinstock IV, Kline JN. Intestinal helminth protect in a murine model of asthma. *J Immunol* 2006; 177:1628–35.

82 Mangan NE, van Rooijen N, McKenzie AN, Fallon PG. Helminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness. *J Immunol* 2006; 176:138–47.

83 Layland LE, Straubinger K, Ritter M, Leifordro-Verde E, Garn H, Sparwasser T et al. *Schistosoma mansoni*-mediated suppression of allergic airway inflammation requires patency and Foxp3+ Treg cells. *PNAS* 2016; 113:2579.

84 Turton J, IgIgE, parasites and allergy. *Lancet* 1976; 308:686.

85 Broadhurst MI, Leung JM, Khashy V, McCune JM, Mahadevan U, McEwen B et al. IL-22+ CD4+ T cells are associated with therapeutic *Trichuris tribonchus* infection in an ulcerative colitis patient. *Sci Transl Med* 2010; 2:60ra88.

86 Broadhurst MJ, Ardeohs A, Kornbr B, Munari J, Gandra UM, Leung JM et al. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signatures and mucosal microflora. *Clin Exp Immunol* 2010; 160:9–18.

87 Correale J, Farez MF. The impact of parasite infections on the course of multiple sclerosis. *Neurology* 2011; 78:236–81.

88 Chen CC, Louie S, McCormick R, Walker WA, Shi JN. Concurrent infection with an intestinal helminth parasite impairs host resistance to enteric *Citrobacter rodentium* and enhances *Citrobacter*-induced colitis in mice. *Infect Immun* 2005; 73:5468–81.

89 Lynch PD, Nalenco M, Hagef I, Di Prisco MC. Clinical improvement of asthma after anthelmintic treatment in a tropical situation. *Am J Respir Crit Care Med* 1997; 156:50–4.

90 Smallwood TB, Giacomini PR, Loukas A, Mulvenna JP, Clark RJ, Miles JH. Helminth immunomodulation in autoimmune disease. *Front Immunol* 2017; 8:433.

91 Liu J, Morey RA, Wilson JK, Parker W. Practices and outcomes of self-treatment with anthelminths during pregnancy: what gains and what risks for the mother and child? *Parasitology* 2011; 138:1499–507.

92 Morales H, Webb EL, Muhangi L, Naidhia J, Akahule D, Nampijja M et al. Anthelminthic treatment during pregnancy is associated with increased infantile eczema: randomised-controlled trial results. *Ped Allerg Immunol* 2011; 22:305–12.
