Detection of *Dermocystidium anguillae* in imported elvers of American eel *Anguilla rostrata* in China

Dan Li, Pin Nie and Yang Liu

School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China

Abstract: In recent years, an emerging dermocystidiosis caused by *Dermocystidium anguillae* Spangenberg, 1975 has been found to pose a threat to the culture of American eel, *Anguilla rostrata* (Lesueur), as well as Chinese perch, *Siniperca chuatsi* (Basilewsky), in China. *Dermocystidium anguillae* was originally described from European eel, *Anguilla anguilla* (Linnaeus), and it is thus important to identify the possible source of this pathogen. In the present study, we compared *D. anguillae* from European eels cultured in China with those from American eels. Molecular analysis showed that the SSU rDNA of *D. anguillae* infecting European eels was identical to that of *D. anguillae* infecting American eels, suggesting their conspecificity. To investigate the source of *D. anguillae* causing dermocystidiosis in American eels cultured in China, a specific PCR assay for the detection of *D. anguillae* was developed with high sensitivity (10^+ ng/µl of *D. anguillae* genomic DNA). Using the present molecular detection method, the water and sediment of culture ponds, fish feed and American eel elvers imported from America were screened for the presence of *D. anguillae*. No amplicons were detected from the water, sediment and fish feed samples. However, positive amplicons were found in American eel elvers, indicating that *D. anguillae* has been introduced from American eel elvers to China. It is suggested that American eel elvers imported from America should be examined for the presence of *D. anguillae* before their exportation abroad to prevent the spread of this pathogen.

Keywords: Mesomyxozoea, dermocystidiosis, Anguillidae, species identification, diagnosis

The American eel, *Anguilla rostrata* (Lesueur), is a catadromous and economically important fish, which is widely distributed ranging from southern Greenland to the Gulf of Mexico and Caribbean Sea (Benchetrit and McCleave 2016, Triyanto et al. 2020). The life cycle of American eels is complex, comprising several different developmental stages (Arai 2020, Cresci 2020). After hatching in the Sargasso Sea, leptocephali of American eels migrate with oceanic currents to coastal or inland water; during the migration, leptocephali metamorphose into glass eels. Thereafter, glass eels enter inland water and become yellow eels; approximately 5–25 years later, yellow eels metamorphose into silver eels and start downstream migration back to spawning area (Vøllestad 1992, Pujolar 2013, Monteiro et al. 2020). As a cultured fish, American eels have been introduced into East Asia and Europe, such as China, Germany, Denmark and the Netherlands (Han et al. 2002, Frankowski et al. 2009, Bao 2016).

In China, due to the shortage of elvers of Japanese eel, *Anguilla japonica* Temminck et Schlegel, and European eel, *Anguilla anguilla* (Linnaeus) (Ginneken and Maes 2006), American eels have become to be a highly demanded cultured fish (Ye et al. 2019). In recent years, an emerging dermocystidiosis caused by *Dermocystidium anguillae* Spangenberg, 1975 has been found to pose a threat to the culture of American eels as well as Chinese perch, *Siniperca chuatsi* (Basilewsky), in China (Liu et al. 2021). *Dermocystidium anguillae* was originally described from European eels (Spangenberg 1975) and it is important to identify the possible source of this pathogen. Before the introduction of American eels, *D. anguillae* had not been reported in China (Chen and Xie 1960, Xiao and Chen 1993, Zhang and Wang 2005). In addition, American eel elvers cultured in China were imported from America. It is reasonable to suspect that *D. anguillae* was introduced to China by imported American eel elvers.

In order to verify the above hypothesis, we compared *D. anguillae* from European eels cultured in China with those from American eels. In addition, a specific PCR assay was developed to detect the presence of *D. anguillae* in the water and sediment of culture ponds, fish feed and American eel elvers imported from America.

MATERIALS AND METHODS

Identification of *Dermocystidium anguillae* from gills of European eels

Fish collection. Thirty-two European eels, 0.3–4.6 (1.6 ± 1.0) g in weight and 7.8–15.3 (11.7 ± 1.7) cm in length, were obtained from a fish farm in Fuzhou City, Fujian Province, China.
in November 2020. All collected fish were transported live to the laboratory of Aquatic Animal Parasitology in School of Marine Science and Engineering, Qingdao Agricultural University, and held in aquarium. The fish were anesthetised with an overdose of tricaine methanesulfonate (MS222, SIGMA; 100 mg/l) prior to the dissection.

Morphological examination. Infected gills were removed and washed by 0.65% normal saline, then the cysts were isolated from gills, some of which were immediately fixed in molecular-grade absolute alcohol. The fresh cysts were ruptured on slides to release the spores which were examined and photographed with a ZEISS Lab.A1 microscope equipped with a ZEISS Axiocam 105 color camera (ZEISS, Oberkochen, Baden-Württemberg, Germany). Morphological and morphometric analysis of the fresh cysts and spores were performed according to Liu et al. (2021). All the fish specimens used in the present study were treated in accordance with the guidelines of the Laboratory Animal Administration Law of China, with the permit number SD2007695 approved by the Ethics Committee of the Laboratory Animal Administration of Shandong Province, China.

DNA extraction, amplification, and sequencing. Genomic DNA was extracted from the ethanol-fixed cysts using Universal Genomic DNA Kit (CWBio, Beijing, China) following the manufacturer’s protocol. The SSU rDNA was amplified following the procedure of Liu et al. (2021). The PCR products were separated using a 1.0% agarose gel and sequenced in both directions with an ABI PRISM® 3730XL DNA sequencer (Applied Biosystems Inc., Foster, USA). A contiguous DNA sequence was assembled and deposited in GenBank.

Development of PCR assay for the detection of *Dermocystidium anguillae*.

DNA extraction. Genomic DNA of *D. anguillae* (from gills of American eels in Liu et al. 2021), American eel and Chinese perch were extracted as described in the above section.

Primer design. The SSU rDNA of *D. anguillae* was chosen as the PCR assay target. Primer set (DaF: TTCGCTTCTCGAAAGCGGC, DaR: TTACCCATACCTTCCGGTACAGGTG) specific for *D. anguillae* was designed based on the alignment of SSU rDNA sequences of *D. anguillae* (MT644942–MT644948), American eel (FM946071) and Chinese perch (AY452490) using Primer premier 5.0 software (Premier), expecting to produce a DNA fragment of 836 bp.

PCR assay conditions. The annealing temperature of the primer set was optimised (data not given). After optimisation, the
PCR reaction was performed with a total volume of 20 µl containing 0.5 µl (10 µM) of each primer, 1 µl (1 ng/µl) genomic DNA, 10 µl 2×Taq Plus PCR Master Mix (RuiBiotech, Beijing, China) and 8 µl distilled water. The PCR protocol consisted of 94℃ for 4 min, followed by 35 cycles of 94℃ for 30 s, 59℃ for 30 s and 72℃ for 1 min and final extension at 72℃ for 5 min. PCR products were electrophoresed on a 1% agarose gel.

PCR assay specificity. Specificity of the present PCR assay was tested with genomic DNA of *D. anguillae*, American eels and Chinese perch. Genomic DNA of American eels and Chinese perch were used as negative controls. An aliquot (5 µl) of each amplified product was electrophoresed on 1% agarose gel.

PCR assay sensitivity. Sensitivity of the present PCR assay was estimated using a mixture of 100 ng DNA of each host (American eel, Chinese perch) and serially diluted *D. anguillae* DNA (from 1 to 10⁻⁸ ng/µl). PCR products were electrophoresed on 1% agarose gel.

Molecular detection of *Dermocystidium anguillae*

Detection of *D. anguillae* in the water of culture ponds. Water samples were collected from 15 culture ponds (nine American eel culture ponds and six European eel culture ponds) in Fuzhou City, Fujian Province, China in November 2020, where dermocystidiosis caused by *D. anguillae* occurred in recent years. Three sampling points were selected for each pond and 200 ml of water was taken from each sampling point. A total of 600 ml of water was passed serially through 15 µm and 0.2 µm membrane filter, with filter membranes collected and fixed in molecular-grade absolute ethanol. Given that the 0.2 µm filter membrane was clogged frequently, one filter membrane was used for filtering 100 ml of water. Genomic DNA was extracted from filter membranes using EZNA water DNA kit (Omega, Norcross, Georgia, America) or Universal Genomic DNA Kit (CWBio, China) according to the manufacturer’s protocol. Molecular detection of *D. anguillae* in the water of culture ponds was performed using the PCR assay developed in the present study.

Detection of *D. anguillae* in the sediment of culture ponds. Sediment samples were collected from the same ponds of water samples in the above section. A total of 50 g of sediment was collected from two sampling points in each pond and stored in 50 ml tubes, which were transported to laboratory at low temperature and stored in -20℃. Genomic DNA was extracted from the sediment samples using soil Genomic DNA Kit (CWBio, China) according to the manufacturer’s protocol. Molecular detection of *D. anguillae* in the sediment of culture ponds was performed using the PCR assay developed in the present study.

Detection of *D. anguillae* in the fish feed. Fish feed comprising a naidid (*Limnodrilus* sp.) as starter feed for elvers and artificial feed for commercial fish of American eels were obtained in Fuzhou City, Fujian Province, China in November 2020, and fixed in molecular-grade absolute ethanol. Genomic DNA was extracted from fish feed using Universal Genomic DNA Kit (CWBio, China) following the manufacturer’s protocol. Molecular detection of *D. anguillae* in the fish feed was performed using the PCR assay developed in the present study.

Detection of *D. anguillae* in the American eel elvers imported from America. Sixty-six American eel elvers 0.06–0.20 (0.13 ± 0.03) g in weight and 4.8–6.5 (5.4 ± 0.4) cm in length imported from America were obtained in November 2020 (28 elvers) and April 2021 (38 elvers), and fixed in molecular-grade absolute ethanol. Genomic DNA was extracted from the head of elvers using Universal Genomic DNA Kit (CWBio, China) following the manufacturer’s protocol. Molecular detection of *D. anguillae* in the American eel elvers was performed using the PCR assay developed in the present study.

Fig. 3. Spores of *Dermocystidium anguillae* Spangenberg, 1975.

Fig. 4. Specificity and sensitivity analysis of the present primer set. A – specificity analysis. Lane 1: *Dermocystidium anguillae* Spangenberg, 1975; 2: *Anguilla rostrata* (Lesueur); 3: *Siniperca chuatsi* (Basilewsky); B – sensitivity analysis. Lanes 1–9: 10-fold dilution series of *D. anguillae* DNA ranging from 1 ng/µl to 10⁻⁸ ng/µl; 100 ng DNA of each host (American eel, Chinese perch) was added into each reaction. Lane M: DL1500™ Molecular marker (TRANS); lane –: negative control.
RESULTS

Identification of Dermocystidium anguillae from gills of European eels

Morphological description. The infected European eels showed conspicuous operculum protrusion (Fig. 1A). After removing the operculum, innumerable whitish, round or slightly bent longish cysts (189 – 2,100 µm in length) were observed in gills (Figs. 1B, 2). The cysts contained a large number of spherical spores (Fig. 3), measuring 3.9 – 5.2 (4.5 ± 0.3) µm in diameter, majority of which was dominated by a large refractile body with 2.1 – 4.0 (3.1 ± 0.3) µm in diameter.

Sequence analysis. A SSU rDNA sequence 1,691 bp long was obtained in the present study (MZ414189). Sequence analysis showed that the newly obtained sequence of D. anguillae infecting gills of European eels was identical to that of D. anguillae from gills of American eels (100% similarity with MT644944).

Development of PCR assay for the detection of Dermocystidium anguillae

Specificity of the present PCR assay was verified by that a single band with expected length was amplified from the target species, while no amplicons were found from non-target species (Fig. 4A). According to the result of agarose gel electrophoresis, the present PCR assay could detect 10^6 ng/µl of genomic DNA of D. anguillae (Fig. 4B).

DISCUSSION

Dermocystidium anguillae was first described from gills of European eels in Germany (Spangenberg 1975). Then, dermocystidiosis of European eels caused by D. anguillae was reported frequently in Europe (Wootten and McVicar 1982, Molnár and Sövényi 1984). In the present study, a Dermocystidium species infecting gills of European eels was isolated in China. When comparing cysts and spores of the present species with those of all described species
of *Dermocystidium* Pérez, 1908, the present species was most similar to *D. anguillae*. Although mean sizes were not identical, ranges of dimensions overlap (Table 1). In addition, molecular analysis showed that the SSU rDNA of the present species was identical to that of *D. anguillae* infecting gills of American eels. In summary, based on the above biological, morphological and molecular data, the present species of *Dermocystidium* isolated from gills of European eels is identified as *D. anguillae*.

According to Liu et al. (2021), *Dermocystidium fennicum* Pekkarinen, Lom, Murphy, Raagan et Dyková, 2003 infecting gills, fins and skin of common perch, *Perca fluviatilis*.
In the present study, *D. anguillae* n. sp., a parasite of *Myxozoa: Multivalvulida* in a marine finfish *Anguilla*. Acta. Hydrobiol. Sin. infecting *Anguilla anguilla* Linnaeus, was identified as synonymous with *D. anguillae* by molecular analysis, although the round and dumbbell-shaped cysts of *D. fennicum* were distinct from the elongate cysts of *D. anguillae*. In the present study, both round and elongate cysts of *D. anguillae* from European eels were observed, indicating that the cyst shape of *D. anguillae* may be variable.

Owing to the high specificity and sensitivity, a number of molecular detection methods were developed to detect parasite infections (Grossel et al. 2005, Li et al. 2017). In order to investigate the source of *D. anguillae* infecting American eels cultured in China, a specific PCR assay for the detection of *D. anguillae* was developed in the present study. To evaluate the sensitivity of the present PCR assay, 100 ng DNA of each host (American eel, Chinese perch) was added into each reaction. Sensitivity analysis showed that the present PCR assay could detect 10⁻⁶ ng/µl of the *D. anguillae* genomic DNA. In summary, the present PCR assay was an effective tool to detect *D. anguillae*.

Before a study by Liu et al. (2021), *D. anguillae* had not been reported in China. Given that American eel elvers cultured in China were imported from America, we suspect that *D. anguillae* was introduced to China by imported American eel elvers. In addition, the possibility that American eels were infected by *D. anguillae* in cultures in China could not be excluded. To investigate the source of *D. anguillae* causing dermocystidiosis of American eels cultured in China, we tried to detect *D. anguillae* in the water and sediment of culture ponds, fish feed, and American eel elvers imported from America using the PCR assay developed in this study. Whereas no amplicons were obtained from samples of water, sediment and fish feed, positive amplicons were found in American eel elvers imported from America. This indicates that *D. anguillae* has been introduced to China by imported American eel elvers. Currently, several *Dermocystidium* species have been reported to be introduced between countries along with their aquatic hosts (Shamsi et al. 2020).

Besides China, American eels have also been introduced into Germany, Denmark and the Netherlands (Han et al. 2002, Frankowski et al. 2009, Bao 2016). To prevent the spread of *D. anguillae* worldwide, it is necessary to examine American eels for the presence of this pathogen before their export from America. A hypothesis that European eel elvers had brought *D. anguillae* from their sea sites was suggested by Wootten and McVicar (1982) and Molnár and Sovényi (1984). To verify this hypothesis, it is necessary to detect *D. anguillae* in European eel elvers in the future.

Acknowledgements. We thank Mr. Wenfei Liu (Kexing Aquatic Pharmacy, China) for collecting European eels. This work was financially supported by the National Key Research and Development Program of China (2018YFD0900501), Advanced Talents Foundation of QAU (No. 1113008), China Agriculture Research System (CARS-46), and the “First Class Fishery Discipline” programme [(2018) 8] in Shandong Province, China. Pin Nie also received funding of a special top talent plan “One thing one decision (Yishi Yiyi)” [(2018) 27] in Shandong Province, China.

REFERENCES

Allamuratov B. 1965: [New parasitic protozoans of fish in waterbodies of southern Uzbekistan.] Dokl. Akad. Nauk Uzbek. 4: 60–62. (In Russian.)

Araf T. 2020. Ecology and evolution of migration in the freshwater eels of the genus Anguilla Schrank, 1798. Heliyon 6: e05176.

Bao T. 2016: [Industrial development and market outlook of Chinese Anguilla cultivation.] J. Anhui Agric. Sci. 44: 249–251. (In Chinese with English abstract.)

Bethchetrit J., McCleave J.D. 2016: Current and historical distribution of the American eel Anguilla rostrata in the countries and territories of the Wider Caribbean. Ices J. Mar. Sci. 73: 122–134.

Červinka S., Vítovec J., Lom J., Hoška J., Kurů F. 1974: Dermocystidiosis – a gill disease of the carp due to *Dermocystidium cyprini* n. sp. J. Fish Biol. 6: 689–699.

Chen Q.L., Xie X.R. 2002: Ecology and evolution of migration in the freshwater fishes Ophioccephalus maculatus and *O. argus* of China. Acta. Hydrobiol. Sin. 2: 171–196. (In Chinese with English abstract.)

Crescit A. 2020: A comprehensive hypothesis on the migration of European glass eels (*Anguilla anguilla*). Acta. Hydrobiol. Sin. 95: 1273–1286.

Davis H.S. 1947: Studies of the protozoan parasites of freshwater fishes. Fish. Bull. 51: 1–29.

Elkan E. 1962: *Dermocystidium gasterostei* n. sp., a parasite of Gasterosteus aculeatus L. and Gasterosteus pungitius L. Nature 196: 958–960.

Frankowski J., Jennerich S., Scharschmidt T., Ubl C., Jurks K., Bastrop R. 2009: Validation of the occurrence of the American eel Anguilla rostrata (Le Sueur, 1817) in free-draining European inland waters. Biol. Invasions 11: 1301–1309.

Garkavi V.L., Denisov A.I., Afanasev V.I. 1980: [A new species of Haplosporidia, *Dermocystidium erschowi* sp. n., from *Cyprinus carpio*]. Parazitologiya 14: 533–537. (In Russian.)

Ginnek V.I.T.V., Maes G.E. 2006: The European eel (*Anguilla anguilla*, Linnaeus), its life cycle, evolution and reproduction: a literature review. Rev. Fish Biol. Fisher 15: 367–398.

Grossel G.W., Handlinger J., Battaglene S.C., Munday B. 2005: Diagnostic polymerase chain reaction assay to detect *Kudoa neuropila* (Myxozoa: Multivalvulida) in a marine finfish hatchery. Dis. Aquat. Organ. 64: 141–149.

Gundrizer A.N. 1980: [A study of the parasite fauna of fish in Tuva.] In: A.V. Pegel and A.N. Gundrizer (Eds.), New Facts on the Siberian Nature. Tomsk, USSR, pp. 43–55. (In Russian.)

Han Y.S., Yu C.H., Yu H.T., Chang C.W., Liao I.C., Tseng W.N. 2002: The exotic American eel in Taiwan: ecological implications. J. Fish Biol. 60: 1608–1612.

Hassan M.A., Osman H.A.M., Mahmoud M.A. 2014: Studies on dermocystidiosis (yellow muscle disease) among some marine fishes of Arabian Gulf and Red Sea Coast, Jeddah, Saudi Arabia. Middle-East J. Sci. Res. 22: 478–487.

Hoshina T., Sahara Y. 1950: A new species of the genus *Dermocystidium*, *D. koi* sp. nov., parasitic in *Cyprinus carpio* L. Bull. Jpn. Soc. Sci. Fish. 15: 825–829.

Jirovec O. 1939: *Dermocystidium vejdoskyi* sp. n., ein neuer Parasit des Hechte, nebst einer Bemerkung über *Dermocystidium daphniae* (Rübberg). Arch. Protistenkd. 92: 379–382.

Li D., Zhai Y.H., Gu Z.M., Liu Y. 2017: Development of a multiplex PCR method for the simultaneous detection of four myx-
osporeans infecting gibel carp *Carassius auratus* gibelio. Dis. Aquat. Org. 124: 31–39.

LIU Y., LI W.X., LI D., NIE P. 2021: Identification of *Dermocystidium anguillae* Spangenberg, 1975 from the American eel *Anguilla rostrata* (Lesueur, 1817) and Chinese perch *Siniperca chuatsi* (Basiléwsky, 1855). Aquaculture 531: 735793.

MOLNÁR K., SÖVÉNYI J.F. 1984: *Dermocystidium anguillae* infection of elvers cultured in Hungary. Aquacult. Hung. 4: 71–78.

MONTEIRO R.M., DOMINGOS I., ALMEIDA P.R., COSTA J.L., ALVAREXANDRE C.M., QUINTELA B.R. 2020: Migration and escape of silver eel males, *Anguilla anguilla*, from a southwestern European river. Ecol. Freshw. Fish 29: 679–692.

PUJOLAR J.M. 2013: Conclusive evidence for panmixia in the American eel. Mol. Ecol. 22: 1761–1762.

REICHBACH-KLINKE H.H. 1956: Der Entwicklungskreis der Dermocystiden sowie Beschreibung einer neuen Haplosporidien art *Dermocystidium percae* n. sp. Verh. Deutsch. Zool. 14: 126–132.

SCHER D. 1956: Die Fischparasiten der Haplosporidien-Gattung *Dermocystidium*. In: A. Borchert (Ed.), Probleme der Parasitologie, Vortrage der II Parasitologischen Arbeitstagung, Berlin, pp. 268–276.

SHAMS S., ZHU X., BARTON D.P., DANG M., FREIRE R., NOWAK B.F. 2020: *Dermocystidium* sp. infection in farmed Murray cod, *Maccullochella peeli*. Aquaculture 528: 735596.

SPANGENBERG R. 1975: A gill disease in eel caused by *Dermocystidium anguillae* n. sp. Z. Binnenfisch. D. D. R. 22: 363–367.

STERBA G., NAUMANN W. 1970: Untersuchungen über *Dermocystidium granulosum* n. sp. bei *Tetraodon palmaisii* (Bleek., 1852). Arch. Protistenkd. 112: 106–118.

TRIYANTO T., AFANDI R., KAMAL M.M., HARYANI G.S. 2020: Stock assessment and potency of sustainable yield of glass eel (*Anguilla* spp.) in Cimandiri River Estuary, West Java. IOP Conf. Ser. Earth Environ. Sci. 535: 012049.

VOLLESTAD L.A. 1992: Geographic variation in age and length at metamorphosis of maturing European eel: environmental effects and phenotypic plasticity. Anim. Ecol. 61: 41–48.

WOOTTEN R., McVICAR A.H. 1982: *Dermocystidium* from cultured eels, *Anguilla anguilla* L., in Scotland. J. Fish Dis. 5: 215–222.

XIAO C., CHEN C. 1993: [A new species-*Dermocystidium sinensis* sp. nov. from freshwater fishes of China.] Trans. Res. Fish Dis. 1: 95–97. (In Chinese with English abstract.)

YE H., ZHENG C.M., CHI B.X. 2019: [Analysis of the development situation of eel industry in Fujian.] China Fisheries 4: 56–61. (In Chinese.)

ZHANG Q., WANG Z. 2005: *Dermocystidium* sp. infection in cultured juvenile southern catfish *Silurus meridionalis* in China. Dis. Aquat. Org. 65: 245–250.