Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii

Setsuko Wakao¹, Brian L Chin†, Heidi K Ledford‡, Rachel M Dent§, David Casero²¶, Matteo Pellegrini²³, Sabeeha S Merchant³⁴, Krishna K Niyogi¹⁵⁶*

¹Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, United States; ²Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, United States; ³Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, United States; ⁴Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, United States; ⁵Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States; ⁶Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States

Abstract Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.

DOI: 10.7554/eLife.02286.001

Introduction Growth of photosynthetic organisms depends on light energy, which in turn can cause oxidative damage to the cell if not managed properly (Li et al., 2009). Light intensity is highly dynamic in terrestrial and aquatic environments, and the cell must constantly control the dissipation of light energy to avoid photo-oxidative stress while maximizing productivity. In addition to being the site of photosynthesis, the chloroplast houses many essential biochemical reactions such as fatty acid and amino acid biosynthesis, but most of its proteins are encoded in the nucleus and must be imported after translation. Therefore the nucleus must monitor the status of the chloroplast and coordinate gene expression and synthesis of proteins to maintain healthy chloroplast functions.

It is known that signals originating from a stressed or dysfunctional chloroplast modulate nuclear gene expression, a process that is called retrograde signaling (Nott et al., 2006; Chi et al., 2013). In Arabidopsis thaliana the gun mutants have helped to define the field of chloroplast retrograde signaling, leading to the identification of UN1, a pentatricopeptide repeat protein that is a regulator of this process (Koussevitzky et al., 2007), and pointing to the involvement of the tetrapyrrole biosynthetic pathway (Vinti et al., 2000; Mochizuki et al., 2001; Larkin et al., 2003; Strand et al., 2003; Woodson and Chory, 2008). A role for heme in retrograde signaling has been shown in Chlamydomonas...
eLife digest Plants, algae and some bacteria use photosynthesis to extract energy from sunlight and to convert carbon dioxide into the sugars needed for growth. One by-product of photosynthesis is a highly toxic molecule called singlet oxygen. Typically, organisms deal with stressful events such as the presence of toxic molecules by producing new proteins. However, protein production is generally initiated in the nucleus of the cell, and photosynthesis is carried out in structures called chloroplasts. Cells must therefore be able to alert the nucleus to the presence of toxic levels of singlet oxygen in the chloroplasts.

Like some plants that can withstand a gradual decrease in temperature, but not a sudden cold snap, the alga *Chlamydomonas reinhardtii* is capable of resisting high doses of singlet oxygen if it has previously been exposed to low doses of the molecule. Wakao et al. exploited this ability to hunt for algae that are unable to acclimate to singlet oxygen, and found that these cells are unable to produce a protein called SAK1.

Wakao et al. reveal that many factors involved in the algae’s cellular response to singlet oxygen depend on the presence of SAK1. In addition, the response of the algae cells to singlet oxygen differs to the one seen in the model plant *Arabidopsis thaliana*, suggesting that the two organisms have found different ways to deal with the same problem.

The location of a protein in a cell can give clues to its function. SAK1 is present in the fluid surrounding cellular compartments—the cytosol—which is consistent with it acting as a signaling molecule between the chloroplast and the nucleus. Wakao et al. present further evidence for this hypothesis by demonstrating that the number of phosphate groups attached on SAK1 changes when exposed to singlet oxygen—a feature often seen in signaling proteins. In addition, part of SAK1 resembles proteins that can bind to DNA, which indicates that SAK1 may be directly involved in initiating protein production.

The discovery of SAK1 represents a starting point for understanding how the site of photosynthesis, the chloroplast, communicates with the nucleus. It also has implications for developing plants and algae that have a higher tolerance to environmental stress conditions for agriculture and biofuel production.

DOI: 10.7554/eLife.02286.002

reinhardtii as well (*von Gromoff et al., 2008*). Many of the *gun* studies were conducted in context of a dysfunctional chloroplast treated with norflurazon, an inhibitor of carotenoid biosynthesis. More recently a number of exciting advances have shed light on small molecules playing roles in retrograde stress signaling, including methyerythritol cyclodiphosphate, an intermediate of isoprenoid biosynthesis in the chloroplast (*Xiao et al., 2012*), 3-phosphoadenosine 5-phosphate (PAP) (*Estavillo et al., 2011*), as well as a chloroplast envelope transcription factor PTM (*Sun et al., 2011*). Plastid gene expression involving sigma factors has been implicated in affecting nuclear gene expression, although the mechanism is unknown (*Coll et al., 2009; Woodson et al., 2012*).

Activation of gene expression by reactive oxygen species (ROS) has been well documented (*Apel and Hirt, 2004; Mittler et al., 2004; Gadjev et al., 2006; Li et al., 2009*). Thus ROS have been proposed as a means for chloroplasts to signal stress to the nucleus and many examples of global gene expression changes in response to ROS have been described (*Desikan et al., 2001; Vandenabeele et al., 2004; Vanderauwera et al., 2005*). Singlet oxygen (\(^1\)O\(_2\)) is a highly toxic form of ROS that can be formed in all aerobic organisms through photosensitization reactions in which excitation energy is transferred from a pigment molecule to O\(_2\). For example, porphyria in humans is caused by defects in tetrapyrrole metabolism that can lead to accumulation of photosensitizing intermediates, which generate \(^1\)O\(_2\) in the light (*Straka et al., 1990*). In oxygensic photosynthetic organisms, \(^1\)O\(_2\) is mainly generated at the reaction center of photosystem II, when triplet excited chlorophyll transfers energy to O\(_2\) (*Krieger-Liszkay, 2005*). \(^1\)O\(_2\) is the predominant cause of lipid oxidation during photo-oxidative stress (*Triantaphylidès et al., 2008*) and is associated with damage to the reaction center (*Trebst et al., 2002*). Because of the abundance and proximity of the two elements of \(^1\)O\(_2\) generation, the photosensitizer chlorophyll and O\(_2\), it was hypothesized that oxygenic photosynthetic organisms must have evolved robust means to cope with this ROS (*Knox and Dodge, 1985*). In *Arabidopsis*, the EX1 and EX2 proteins in the chloroplast are required for the execution of a \(^1\)O\(_2\)–dependent response: growth...
arrest in plants and programmed cell death in seedlings, that is distinct from cell damage (op den Camp et al., 2003; Wagner et al., 2004; Lee et al., 2007). Different players in 'O'2 signaling have emerged recently, such as β-cycloclotal, an oxidation product of β-carotene in Arabidopsis (Ram et al., 2012), a bZIP transcription factor (SOR1) responding to reactive electrophiles generated by 'O'2 (Fischer et al., 2012), and a cytosolic zinc finger protein conserved in Arabidopsis and Chlamydomonas, MBS (Shao et al., 2013). In the anoxygenic photosynthetic bacterium Rhodobacter sphaeroides, a σ factor is responsible for the elicitation of the gene expression response to 'O'2 (Anthony et al., 2005).

The unicellular green alga Chlamydomonas reinhardtii is an excellent model organism for investigation of retrograde 'O'2 signaling. Chlamydomonas exhibits an acclimation response to 'O'2, in which exposure to a sublethal dose of 'O'2 leads to changes in nuclear gene expression that enable cells to resist a subsequent challenge with higher levels of 'O'2 (Ledford et al., 2007). We hypothesized that acclimation mutants should include regulatory mutants that are defective in sensing and responding to 'O'2. Here we describe the isolation of such a mutant and identification of a cytosolic phosphoprotein SAK1 that is critical for the acclimation and transcriptome response to 'O'2.

Results

Isolation of a singlet oxygen-sensitive mutant that is defective in acclimation

Chlamydomonas acclimates to singlet oxygen ('O'2) generated by the exogenous photosensitizing dye rose bengal (RB) in the light (Ledford et al., 2007). As shown in Figure 1A, wild-type (WT) cells that were pretreated with RB in the light were able to survive a challenge treatment with much higher concentrations of RB, unlike cells pretreated with RB in the dark. By screening an insertional mutant population (Dent et al., 2005) for strains that were sensitive to 'O'2, we isolated a mutant called singlet oxygen acclimation knocked-out1 (sak1) that is defective in acclimation to 'O'2 (Figure 1A). We have previously shown that Chlamydomonas WT cells can also acclimate to RB following pretreatment with high light (Ledford et al., 2007), indicating that high light and RB induce overlapping responses to 'O'2. When subjected to the same conditions (high light pretreatment followed by challenge with RB), sak1 demonstrated less robust cross-acclimation (Figure 1B). We also tested conversely whether pretreatment with RB can acclimate the cells to growth in high light or in the presence of norflurazon. No increase in resistance to high light or norflurazon was induced by pretreatment with RB in either WT or sak1 (Figure 1—figure supplement 1). The viability phenotypes after RB treatment shown in Figure 1A were paralleled by changes in Fm/Fm' values, a chlorophyll fluorescence parameter representing photosystem II efficiency (Figure 1C). In both WT and sak1, pretreatment did not cause an inhibition of photosystem II, as demonstrated by unchanged Fm/Fm' values after 30 min. However, pretreatment increased resistance of photosystem II to the RB challenge only in WT and not in sak1 cells (Figure 1C). The pretreatment protected the cells only transiently, as by 90 min of challenge treatment both genotypes appeared to have experienced similar inhibition of photosystem II (Figure 1C), consistent with the hypothesis that sak1 is disrupted in early sensing and/or initiation of 'O'2 response rather than its direct detoxification.

In contrast to its RB sensitivity, sak1 exhibited wild-type resistance to high light, various photosynthetic inhibitors and generators of other ROS, suggesting its defect is specific to 'O'2 (Figure 1D). When tested for the gene expression response of the known 'O'2-specific gene GPXS (Leisinger et al., 2001) during acclimation, WT cells showed a 20- to 30-fold induction, whereas a known H2O2-responsive ascorbate peroxidase gene (APX1) in Chlamydomonas (Urzica et al., 2012) and a catalase gene (CAT1), known to be H2O2 responsive in Arabidopsis (Davletova et al., 2005; Vanderwaevera et al., 2005), were unchanged. The mutant sak1 showed attenuated GPXS induction, as expected for a mutant defective in the 'O'2 response (Figure 1B).

The global gene expression response to 'O'2 in Chlamydomonas is distinct from that in Arabidopsis

To obtain insight into the cellular processes and the genes involved in 'O'2 acclimation, we used RNA-seq to define the transcriptome of WT cells during acclimation. The sequences were mapped to the Chlamydomonas reinhardtii genome version 4 (v4), and 16476 transcripts corresponding to gene models were detected (Wakao et al., 2014). We validated the data by quantitative reverse transcriptase PCR (qRT-PCR) for some of the differentially expressed genes during acclimation (Figure 2).
Basal expression of some of the genes was elevated in sak1 compared to WT (Cre16.g683400 and GST1, Figure 2). Comparisons of the fold change (FC) values obtained by RNA-seq and qRT-PCR for the genes tested in Figure 2 are shown in Figure 2. The FC values are comparable between the two methods, although genes with FC greater than 20 (detected by RNA-seq) showed FC values (estimated by qRT-PCR) that were two to three times higher (Cre06.g281250.t1.1, Cre13.g566850.t1.1, Cre06.g263550.t1.1, Cre14.g623650.t1.2). Some of the genes were also induced by a transition from low light to high light, although not as strongly (Table 1), indicating that the 1O$_2$ response elicited by addition of RB partly overlaps with that caused by increased light intensity. To examine whether the transcriptome changes were specific to 1O$_2$, we examined the expression of several previously identified H$_2$O$_2$-responsive genes (Urzica et al., 2012) (Table 2). Two of the seven genes, VTC2 (3.4-fold) and DHAR1 (twofold) were induced during 1O$_2$ acclimation, whereas the other five genes were not differentially expressed (induced more than twofold) in our data. For these two genes, their magnitude of induction by 1O$_2$ was smaller than that of H$_2$O$_2$-treated cells (both genes were ∼ninefold induced by 1 mM H$_2$O$_2$ treatment for 60 min) (Urzica et al., 2012). These differences suggest that our treatment with 1O$_2$ did not lead to a large-scale induction of H$_2$O$_2$-responsive genes, and it is likely that the two above-mentioned genes involved in ascorbate metabolism respond to both H$_2$O$_2$ and 1O$_2$.

During acclimation of WT to 1O$_2$, 515 genes were up-regulated at least twofold with a false discovery rate (FDR) smaller than 1% (Supplementary file 1, C1), and 33% of these could be categorized into functional classes based on MapMan (Thimm et al., 2004) using the Algal Functional Annotation Tool (Lopez et al., 2011) (Figure 3A,B). The enriched classes are marked with asterisks, and the genes within those classes are listed in Table 3. Genes involved in sterol/squalene/brassinosteroid metabolism (in the hormone and lipid metabolism functional classes) were notably enriched (Table 3). A sterol methyltransferase was also detected to display differential expression in our previous microarray analysis (Ledford et al., 2007). Brassinosteroids are not known to exist in Chlamydomonas, and in plants increasing evidence indicates sterols have a signaling role independent of brassinosteroids (Lindsey et al., 2003; Boutté and Grebe, 2009).

Two cyclopropane fatty acid synthases (CFAs) were among the up-regulated lipid metabolism...
values were measured after each time point indicated. Pretreatment (PreT) with 0.5 μM RB was applied for 30 min with (+PreT) or without (−PreT) light. After the pretreatment, RB was added to both dark and light samples to a final concentration of 3.75 μM RB (challenge), and F_/F_m was measured for 90 min at 30 min intervals (total 120 min). First arrow: addition of pretreatment; second arrow: addition of challenge. (D) sak1 has wild-type sensitivity to other photo-oxidative stresses. Serial dilutions of WT and sak1 were spotted onto minimal (HS) plates at the indicated light intensity or on TAP plates containing the indicated inhibitor. DCMU, 3-(3,4-dichlorophenyl)-1,1-dimethylurea; low light (LL), 80 μmol photons m⁻² s⁻¹; high light (HL), 450 μmol photons m⁻² s⁻¹. (E) Gene expression of a known O₂-responsive gene, GPX5, is induced during acclimation, while two genes associated with H₂O₂ response, APX7 and CAT1, are not. WT cells were mock-pretreated without RB (white bars) or pretreated with RB in the light (black bars).

DOI: 10.7554/eLife.02286.004

The following figure supplements are available for figure 1:

Figure supplement 1. Pretreatment with RB does not increase resistance to high light or norflurazon in cells grown on plates.

DOI: 10.7554/eLife.02286.003

A smaller number of 219 genes was down-regulated during acclimation in WT (Supplementary file 1, C1), only 21% of which had functional annotation. The most enriched classes of down-regulated genes were nucleotide metabolism and transport, the latter including a distinct type of transporter for small metabolites and ions, different from those found among up-regulated genes that included many MDR- and PDR-type transporters (Figure 3B; Table 3).

Although only 33% of the up-regulated genes have a functional annotation (Figure 3B), it is interesting that the O₂ response in Chlamydomonas involves genes and biological processes that appear to be distinct from those that respond specifically to O₂ in Arabidopsis (op den Camp et al., 2003). A total of 70 O₂-response genes have been defined using a microarray with the flu mutant in Arabidopsis (op den Camp et al., 2003). These genes include the following classes (number of genes): metabolism (11), transcription (5), protein fate (4), transport (2), cellular communication/signal transduction (17), cell rescue/defense in virulence (4), subcellular localization (2), binding function or cofactor requirement (1), transport facilitation (5) and others (19). From this list of 70 genes we found four similarly annotated genes within our 515 genes induced by O₂ in Chlamydomonas: a Myb transcription factor, a mitochondrial carrier protein, an amino acid permease, and an ATPase/aminocephalopid translocase. None of these genes in Chlamydomonas was the closest ortholog of the corresponding Arabidopsis gene. Conversely, genes similar to those strongly up-regulated in a SAK1-dependent manner such as CFAs, SOUL proteins, GPX, and sterol biosynthetic enzymes were not found among the Arabidopsis O₂-specific genes despite having clear counterparts in Arabidopsis. Taken together, these results suggest that these two organisms may deploy distinct mechanisms in their responses to O₂.

The sak1 mutant is defective in the global gene expression response during acclimation to O₂

In the sak1 mutant, 1020 genes were up-regulated, whereas 434 genes were down-regulated during acclimation (Supplementary file 1, C2). 350 of the 515 genes up-regulated in WT overlapped with the set of up-regulated genes in the mutant (Figure 3A). Comparing the fold changes of genes in WT and
sak1 during acclimation, we defined 104 genes as SAK1-dependent genes that displayed moderate to strong attenuation in their response (fold change ratio <0.5) (Table 5). Some of the genes that belong to enriched biological classes found among WT up-regulated genes are indicated in Table 3. Interestingly, the most strongly induced genes in WT were found among this group; 37 out of 104...
Plant biology

Table 1. Moderate induction of \(^{1}\text{O}_2\) genes during high light exposure

Gene name or ID	Fold change (SD)*
GPX5	2.86 (1.06)
CFA1	3.75 (0.99)
SOUL2	3.45 (1.25)
MRP3	3.10 (0.39)
Cre14.g613950	1.42 (0.53)
LHCSR1†	14.91 (4.25)

*Fold change values are the average of biological triplicates and their standard deviations are indicated in parentheses.
†Known to have elevated expression in high light grown cells (Peers et al., 2009). DOI: 10.7554/eLife.02286.006

SAK1-dependent genes were among the top 10% most strongly induced genes (Table 5). 33 out of these 37 most strongly induced SAK1-dependent genes displayed strong disruption in their up-regulation; reduced to 0.01–0.25 of magnitude of fold change in sak1 as compared to WT (Table 5). These results indicate SAK1 is required for the induction of the most strongly induced genes during acclimation reflecting its critical role in regulating the cellular acclimation response to \(^{1}\text{O}_2\).

Classes of up-regulated genes in sak1 were distinct from those of WT and included secondary metabolism of isoprenoids (Figure 3C; Table 6), precursors to photoprotective pigments such as carotenoids and tocopherols (Li et al., 2009). Phenylpropanoids, a group of metabolites associated with defense against stresses such as ultraviolet light and herbivores (Maeda and Dudareva, 2012), also represented a larger part of the response in sak1 as compared to WT (Figure 3C). Another mutant-specific class of genes was cell vesicular transport, suggesting alteration in cell organization in response to the loss of SAK1 (Figure 3C, Table 6). There were 434 genes that were down-regulated by \(^{1}\text{O}_2\) in the sak1 mutant (Supplementary file 1, C2), none of which overlapped with the set of down-regulated genes in WT, in contrast to the overlap of up-regulated genes in the two genotypes (Figure 3A). Enriched classes of genes included those involved in DNA, nucleotide metabolism, hormone metabolism (not of brassinosteroid) and tetrapyrrole metabolism (Figure 3C, Table 6).

To better understand the physiology of sak1, including the primary and secondary effects of lacking SAK1, we also focused on changes in transcript levels at the basal level, that is, without \(^{1}\text{O}_2\) treatment. At basal level 699 genes were induced, and 737 genes were repressed in the mutant compared to WT (Supplementary file 1, C3), displaying the genome-wide response to the loss of SAK1 function despite the mutant’s wild-type appearance under normal lab growth conditions (Figure 1D). The enriched classes of genes that are differentially expressed are shown in Figure 3D. Genes induced in the mutant at basal level were enriched for those annotated to be involved in nucleotide metabolism, DNA, and RNA (Figure 3D; Table 7). Interestingly genes involved in tetrapyrrole and photosynthesis were enriched both in elevated and repressed genes at the basal level in sak1. There was no overall trend of these two pathways being up- or down-regulated, since these genes were at different steps of the pathway or encoded a select isoform of an enzyme or a subunit of a complex (Figure 3D; Table 7).

Table 2. Expression of \(\text{H}_2\text{O}_2\) response genes during \(^{1}\text{O}_2\) acclimation

Gene name ID	Gene ID	RPKM*	Fold change†				
v4	v5	WT-mock	WT-RB	sak1-mock	sak1-RB	WT	sak1
APX1	Cre02.g087700.t1.1	49.70	36.22	79.65	58.83	0.73	0.74
Cre02.g087700.t1.2							
MSD3	Cre16.g676150.t1.1	0.30	0.18	0.70	0.17	0.60	0.25
Cre16.g676150.t1.2							
MDAR1	Cre17.g712100.t1.1	35.95	38.30	33.53	51.34	1.07	1.53
Cre17.g712100.t1.2							
DHAR1	Cre10.g456750.t1.1	20.40	40.93	25.69	42.18	2.01	1.64
Cre10.g456750.t1.2							
GSH1	Cre02.g077100.t1.1	28.27	26.91	40.42	49.95	0.95	1.24
Cre02.g077100.t1.2							
GSHR1	Cre04.g262100.t1.1	19.17	19.02	19.39	22.41	0.99	1.16
Cre04.g262100.t1.3							
VTC2	Cre13.g588150.t1.1	18.16	62.53	35.10	103.12	3.44	2.94
Cre13.g588150.t1.2							

*Average of RPKM obtained from two sequencing lanes as described in ‘Material and methods’.
†Calculated as ratio of (RPKM-RB) / (RPKM-mock).
DOI: 10.7554/eLife.02286.007
We observed that some of the genes more strongly dependent on SAK1 had repressed transcript levels (e.g., CFA1 and SOUL2), indicating that SAK1 is required for their basal expression, while others had elevated basal levels (GPX5), suggesting that expression of these genes is controlled also by other pathways. As is discussed in the following section, SAK1 expression monitored by qRT-PCR followed the latter trend as the 5'UTR of the gene was elevated in the mutant (Figure 4E), which may be a result of response to other factors such as a possible oxidization product of 1'O2. The SAK1-dependent genes induced by 1'O2 and repressed at basal level in the mutant (i.e., those that require SAK1 for basal expression) are indicated in Table 5.

The sak1 mutant identifies a single nuclear gene that is itself induced during acclimation to 1'O2

The sak1 mutant was generated by insertional mutagenesis using a plasmid that confers resistance to zeocin (Dent et al., 2005). Progeny obtained from a backcross of sak1 with WT showed that the mutation causing the RB sensitivity phenotype was linked to zeocin resistance (Figure 4A). The site of insertion was identified by thermal asymmetric interlaced (TAIL)-PCR (Liu et al., 1995) as the second exon of the annotated gene Cre17.g741300 on chromosome 17 (Figure 4B). To test whether this gene is responsible for the mutant phenotype, a genomic fragment containing the gene with an additional ∼500 bp region upstream of the predicted transcription start site was cloned and introduced into the mutant by co-transformation. Among the approximately 300 transformants screened, two clones appeared to have recovered the RB acclimation phenotype (Figure 4C). Furthermore, induction of genes we found attenuated in sak1 (Figure 2) was restored in these transformants (Figure 4D), confirming that Cre17.g741300 is the SAK1 gene required for acclimation and the gene expression response to 1'O2.

In WT, the SAK1 gene itself was induced by 6- to 10-fold during acclimation when probed for the 5’- and 3’-UTR of the transcript by qRT-PCR (Figure 4E). The mutant displayed elevated basal level and induction of the 5’-UTR during acclimation, whereas the 3’-UTR of the transcript was undetectable, indicating that the full-length transcript was absent in sak1 (Figure 4E). An antibody raised against an epitope of the SAK1 protein detected a single band in basal conditions, whereas the SAK1 protein appeared as multiple bands with higher molecular weight in acclimated WT cells, all of which were absent in the mutant (Figure 4F). SAK1 transcript was induced...
Table 3. Enriched functional classes among differentially expressed genes in WT during \(^1\)O\(_2\) acclimation

Primary MapMan class	Secondary MapMan class	Gene ID (v4)	Gene ID (v5)	Gene name	Annotation
transport	ABC transporters and multidrug resistance systems	Cre03.g169300.t1.1	Cre03.g169300.t2.1	ABC transporter (ABC-2 type)	
		Cre04.g220850.t1.1	Cre04.g220850.t1.2	ABC transporter (ABC-2 type)	
		Cre11.g474600.t1.1	Cre02.g095151.t1	ABC transporter (ABC-2 type)	
		Cre03.g151400.t1.2	Cre03.g151400.t1.3	ABC transporter (subfamilyA member3)	
		Cre14.g618400.t1.1	Cre14.g618400.t1.2	ABC transporter	
		Cre09.g395750.t1.2	Cre09.g395750.t1.3	ABC transporter (plant PDR pleitropic drug resistance)	
		Cre14.g613950.t1.1	Cre14.g613950.t2.1	ABC transporter, Lipid exporter ABCA1 and related proteins	
		Cre17.g725150.t1.1	Cre17.g725150.t1.2	ABC transporter	
		Cre04.g224400.t1.2	Cre04.g224400.t1.3	ABC transporter (plant PDR pleitropic drug resistance)	
		Cre13.g564900.t1.1	Cre13.g564900.t1.2	MRP3 ABC transporter, Multidrug resistance associated protein	
		Cre17.g721000.t1.1	Cre17.g721000.t1.2	ABC transporter (ABCA)	
		Cre04.g224500.t1.2	Cre04.g224500.t1.3	ABC transporter (plant PDR pleitropic drug resistance)	
		Cre01.g007000.t1.1	Cre01.g007000.t1.2	ABC transporter (ABC-2 type)	
unspecified anions		Cre13.g574000.t1.2	Cre13.g574000.t1.3	Chloride channel 7	
		Cre17.g729450.t1.1	Cre17.g729450.t1.2	Chloride channel 7	
amino acids		Cre04.g226150.t1.2	Cre04.g226150.t1.3	AOC1 Amino acid carrier 1; belongs to APC (amino acid polyamine organocation) family	
misc		Cre16.g683400.t1.1	Cre16.g683400.t1.2	CRAL/TRIO domain (Retinaldehyde binding protein-related)	
		Cre17.g718100.t1.1	Cre17.g718100.t1.2	Phosphatidylinositol transfer protein SEC14 and related proteins (CRAL/TRIO)	
calcium		Cre06.g311000.t1.2	Cre06.g311000.t1.3	FBT2 Folate transporter	
potassium		Cre09.g410050.t1.1	Cre09.g410050.t1.2	Ca\(^{2+}\) transporting ATPase	
phosphate		Cre07.g329882.t1.2	Cre07.g329882.t1.3	Ca\(^{2+}\)-activated K\(^{+}\) channel proteins	
metal		Cre16.g686750.t1.1	Cre16.g686750.t1.2	PTA3 Proton/phosphate symporter	
metabolite transporters at the mitochondrial membrane		Cre13.g570600.t1.1	Cre13.g570600.t1.2	CTR1 CTR type copper ion transporter	
hormone metabolism*		Cre06.g267800.t1.2	Cre06.g267800.t2.1	Mitochondrial carrier protein	
		Cre16.g663950.t1.1	Cre16.g663950.t1.2	Sterol C5-desaturase	

Table 3. Continued on next page
Table 3. Continued

Primary MapMan class	Secondary MapMan class	Gene ID (v4)	Gene ID (v5)	Gene name	Annotation
jasmonate		Cre19.g756100.t1.1	Cre03.g210513.t1	12-oxophytodienoic acid reductase	
auxin		Cre14.g609900.t1.1	Cre14.g609900.t1.1	Predicted membrane protein, contains DoH and Cytochrome b-561/terrific reductase transmembrane domains	
stress	biotic	Cre01.g057050.t1.1§	Cre03.g144324.t1	Leucine Rich Repeat	
abiotic		Cre12.g501500.t1.1§	Cre01.g016200.t1	Mlo Family	
lipid metabolism	phospholipid synthesis	Cre13.g604700.t1.2	Cre13.g604700.t1.3	PCT1	CDP-alcohol phosphatidyltransferase/Phosphatidylglycerol-phosphate synthase
		Cre06.g281250.t1.1§	Cre06.g281250.t1.2	CFA1	Cyclopropane fatty acid synthase
		Cre09.g398700.t1.1§	Cre09.g398700.t1.2	CFA2	Cyclopropane fatty acid synthase
	'exotics' (steroids,	Cre01.g061750.t1.1	Cre03.g146507.t1	SPT2	Serine palmitoyltransferase
	squalene etc)	Cre83.g796250.t1.1	Cre09.g400516.t1	SPT1	Serine palmitoyltransferase
		Cre02.g137850.t1.1	Cre09.g400516.t1	TRAM (translocating chain-associating membrane) superfamily	
	FA synthesis and	Cre03.g182050.t1.1	Cre03.g182050.t1	Long-chain acyl-CoA synthetases (AMP-forming)	

Table 3. Continued on next page
Primary MapMan class	Secondary Mapman class	Gene ID (v4)	Gene ID (v5)	Gene name	Annotation
misc	short chain dehydrogenase/reductase (SDR)	Cre06.g256750.t1.1	Cre06.g256750.t1.2	Acyl-ACP thioesterase	
misc	short chain dehydrogenase/reductase (SDR)	Cre12.g556750.t1.2	Cre12.g556750.t1.3	Short chain dehydrogenase	
misc	short chain dehydrogenase/reductase (SDR)	Cre27.g775000.t1.1	Cre12.g549852.t1	Short chain dehydrogenase	
misc	short chain dehydrogenase/reductase (SDR)	Cre17.g731350.t1.2	Cre17.g731350.t1.2	Short chain dehydrogenase	
Cre08.g381510.t1.1	NF†	Short chain alcohol dehydrogenase			
UDP glucosyl and glucuronyl transferases	Cre02.g144050.t1.1	Cre02.g144050.t2.1	Acetylglucosaminyltransferase EXT1/exostosin 1		
Cre16.g659450.t1.1	Cre16.g659450.t1.2	Lactosylceramide 4-alpha-Galactosyltransferase			
Cre03.g173300.t1.1	Cre03.g173300.t1.2	Lactosylceramide 4-alpha-Galactosyltransferase			
dynamin	Cre02.g079550.t1.1	Cre02.g079550.t1.2	Dynamin-related GTPase, involved in circadian rhythms		
misc2	Cre06.g258600.t1.1§	Cre06.g258600.t2.1	Predicted hydrolase related to dienelactone hydrolase		
acid and other phosphatases	Cre06.g249800.t1.1	Cre06.g249800.t1.2	Sphingomyelin synthase		
Down-regulated genes	nucleotide salvage metabolism	Cre13.g573800.t1.1	Cre13.g573800.t1.2	Phosphoribulokinase / Uridine kinase family	
synthesis	Cre12.g503300.t1.1	Cre12.g503300.t1.2	Phosphoribosylamidomimidazole-succinocarboxamide synthase		
Carbohydrate transporters and multidrug resistance systems	Cre06.g308500.t1.1	Cre06.g308500.t1.2	CMP2		
Carbohydrate transporters and multidrug resistance systems	Cre14.g614300.t1.1	Cre14.g614300.t1.2	Inosine-5-monophosphate dehydrogenase		
metal	Cre17.g720400.t1.2	Cre17.g720400.t1.3	HMA1	Heavy metal transporting ATPase	
P- and V-ATPases	Cre10.g459200.t1.1	Cre10.g459200.t1.2	ACA4	Plasma membrane H + transporting ATPase	
phosphate	Cre02.g144650.t1.1	Cre02.g144650.t1.2	PTB12	Na+/Pi symporter	
potassium	Cre06.g278700.t1.2	Cre06.g278700.t1.2		Myotrophin and similar proteins	

*Functional terms are inferred by homology to the annotation set of Arabidopsis thaliana (Lopez et al., 2011). †Corresponding gene model was not found in v5. ‡No functional annotations found on v5 but defined by MapMan on Algal Functional Annotation Tool (Lopez et al., 2011). §Induction during ‘O₂ acclimation dependent on SAK1 (Table 5). DOI: 10.7554/eLife.02286.009
Table 4. \(^{1}\)O\(_2\) response genes are not induced when RB is added in the dark

Gene name or ID	WT	sak1
GPX5	1.13 (0.33)	0.87 (0.31)
SAK1	1.38 (0.08)	1.29 (0.19)
CFA1	0.90 (0.04)	1.44 (0.22)
SOUL2	1.17 (0.25)	1.11 (0.19)
MRP3\(\dagger\)	1.13 (0.12)	1.07 (0.25)
Cre12.g503950\(\dagger\)	0.93 (0.06)	1.20 (0.12)
Cre14.g613950\(\ddagger\)	0.65 (0.06)	0.79 (0.15)
Cre04.g220850\(\ddagger\)	1.00 (0.09)	1.29 (0.04)
Cre09.g395750\(\ddagger\)	1.05 (0.10)	1.29 (0.12)

*Average of fold change and standard deviation (SD) of biological triplicates.
†Annotated as transport function.
‡ABC transporter.
§Sec14-like phosphatidylinositol transfer protein.
DOI: 10.7554/eLife.02286.010

hits and seven were below the threshold for significance but recognizable by Pfam (Figure 5). One protein contained a mitochondrial (transcription) termination factor (mTERF) domain (Figure 5), defined by its three leucine zipper domains required for DNA binding (Fernandez-Silva et al., 1997). Proteins with more distantly related SAK1 domains were found by PSI-BLAST in plants, many of which were hypothetical or unknown proteins but also included bZIP transcription factors.

Amino acid positions 900 to 1089 of SAK1, corresponding to the region aligned with other proteins in Figure 5—figure supplement 1, were searched for secondary structure using PHYRE, and this region was predicted to consist of mostly alpha helices with some disordered intervals. The top hit was a cobalt/nickel-binding resistance protein cnrr, and 44% of the residues were modeled with 73.6% confidence (Figure 5—figure supplement 2).

SAK1 contains an uncharacterized domain conserved in chlorophytes and found in some bZIP transcription factors

The predicted SAK1 protein consists of 1141 amino acid residues and has no domains with functional annotation. Only a ~150-residue region at the C-terminus, designated the SAK1 domain, has similarity to other proteins. Many predicted proteins within chlorophytes (Volvox carteri [8 proteins], Coccomyxa subellipsoidea [3 proteins], Chlamydomonas [14 proteins], Chlorella variabilis [9 proteins] and Micromonas [3 proteins]) (Table 8) contain this domain as shown in the alignment in Figure 5—figure supplement 1. Among the 37 members of the chlorophyte SAK1 domain family, 13 have possible bZIP transcription factor domains (six were significant Pfam hits and seven were below the threshold for significance but recognizable by Pfam) (Figure 5). One protein contained a mitochondrial (transcription) termination factor (mTERF) domain (Figure 5), defined by its three leucine zipper domains required for DNA binding (Fernandez-Silva et al., 1997). Proteins with more distantly related SAK1 domains were found by PSI-BLAST in plants, many of which were hypothetical or unknown proteins but also included bZIP transcription factors.

Amino acid positions 900 to 1089 of SAK1, corresponding to the region aligned with other proteins in Figure 5—figure supplement 1, were searched for secondary structure using PHYRE, and this region was predicted to consist of mostly alpha helices with some disordered intervals. The top hit was a cobalt/nickel-binding resistance protein cnrr, and 44% of the residues were modeled with 73.6% confidence (Figure 5—figure supplement 2).

SAK1 resides mainly in the cytosol and is phosphorylated during induction by \(^{1}\)O\(_2\)

To obtain insight into the function of SAK1, we isolated subcellular fractions enriched for chloroplast, ER, cytosol, and mitochondria from WT cells. The Chlamydomonas cell contains a single large chloroplast that is physically connected to other organelles such as the ER, making it particularly challenging to fractionate. The patterns of markers specific for chloroplast, ER, cytosol, and mitochondria showed that each target fraction was enriched as expected, although with some cross contamination (Figure 6A,B). The distribution of SAK1 in these fractions resembled most closely that of the cytosolic marker NAB1 (Mussgnug et al., 2005), although the SAK1 signal was not as enriched as NAB1 in the cytosolic fraction, possibly due to partial degradation of SAK1 during the fractionation. The localization was the same in cells with and without RB treatment (Figure 6A). Because SAK1 was required for the induction of many genes during acclimation to \(^{1}\)O\(_2\) and the list of proteins with similarity to SAK1 included those predicted to be bZIP transcription factors, we tested whether SAK1 protein was dually targeted to the nucleus and cytosol, which would account for the lack of enrichment of SAK1 in the cytosolic fraction (Figure 6A). As shown in Figure 6C although a faint SAK1 signal was detected in nuclear fraction, there was no enrichment as seen for the nuclear marker histone H3 (H3). The distribution of the cytosolic marker NAB1 indicated the contamination of the nuclear fraction by cytosolic proteins (Figure 6C). Therefore we conclude that the low signal of SAK1 in the nuclear fraction is likely to be due to cytosolic contamination. Attempts to detect the protein by immunofluorescence using anti-SAK1 antibodies as well as anti-FLAG and anti-HA antibodies against tagged proteins in transgenic lines were unsuccessful due to a very low signal-to-noise ratio even in bleached cells.
Gene ID (v4)	Gene ID (v5)	Gene name	Annotation	FC WT* (log_2)	FC sak1 (log_2)	Attenuation (FC-sak1/FC-WT)†	Basal repression in sak1 (log_2)
Cre02.g137700.t1.1†	Cre09.g400404			6.49	1.80	0.04	−3.35
Cre06.g281250.t1.1†	Cre06.g281250	CFA1	Cyclopropane fatty acid synthase	5.92	1.16	0.04	−2.10
Cre27.g779500.t1.2	Cre12.g557928			5.83	0.81	0.03	
Cre01.g033300.t1.1	Cre01.g033300			5.72	−0.39	0.01	
Cre13.g568500.t1.1†	Cre13.g568500	SOUL2	SOUL heme-binding protein	5.53	1.33	0.05	−2.60
Cre14.g623650.t1.1	Cre14.g623650		Alcohol dehydrogenase	4.89	1.67	0.11	
Cre13.g600650.t1.1	Cre06.g278245		Rieske 2Fe-2S domain	4.76	1.64	0.12	
Cre06.g263550.t1.1	Cre06.g263550	LC17	R53.5-related protein	4.46	1.77	0.15	
Cre07.g342100.t1.1	Cre07.g342100			4.43	1.40	0.12	
Cre06.g299700.t1.1†	Cre06.g299700	SOUL1	SOUL heme-binding protein	4.32	0.43	0.07	−1.13
Cre09.g398700.t1.1†	Cre09.g398700	CFA2	Cyclopropane fatty acid synthase	4.05	0.18	0.07	−1.00
Cre12.g492650.t1.1†	Cre12.g492650	FAS2	Fasciclin-like protein	4.01	0.07	0.07	−1.24
Cre08.g381510.t1.1	NF			3.94	0.73	0.11	
Cre11.g458450.t1.2	Cre10.g458450	GPX5	Glutathione peroxidase	3.91	2.06	0.28	
Cre11.g447600.t1.1	Cre02.g095151		ABC transporter (ABC-2 type)	3.90	0.44	0.09	
Cre13.g600700.t1.1	Cre06.g278246			3.78	1.48	0.20	
Cre14.g613950.t1.1	Cre14.g613950			3.65	1.38	0.21	
Cre06.g269300.t1.1	Cre06.g269300	DUF1365		3.50	0.40	0.12	
Cre08.g380300.t1.2	Cre08.g380300	MSRA3	Peptide methionine sulfoxide reductase	3.45	0.66	0.14	
Cre28.g776450.t1.1	Cre08.g358573	TRP7	Transient receptor potential ion channel	3.31	−0.79	0.06	
Cre01.g031650.t1.2	Cre01.g031650	CGLD12	Potential galactosyl transference activity	3.30	0.67	0.16	
Cre14.g629061.t1.1	NF	DUF2177		3.25	0.08	0.11	
Cre12.g503950.t1.1	Cre12.g503950	CRAL/TRIO domain		3.24	0.31	0.13	

Table 5. Continued on next page
Gene ID (v4)	Gene ID (v5)	Gene name	Annotation	FC WT* (log$_2$)	FC sak1 (log$_2$)	Attenuation (FC-sak1/FC-WT)†	Basal repression in sak1 (log$_2$)
Cre13.g564900.t1.1	Cre13.g564900	ABC transporter transmembrane region	3.22	0.34	0.14		
Cre02.g139500.t1.1	Cre09.g401701		3.04	−0.16	0.11		
Cre14.g618400.t1.1	Cre14.g618400		2.97	1.15	0.28		
Cre17.g715150.t1.1	Cre17.g715150		2.89	0.13	0.15		
Cre17.g741300.t1.2†	Cre17.g741300	SAK1	2.88	0.66	0.21	−2.77	
Cre01.g007300.t1.1	Cre01.g007300		2.85	−1.15	0.06		
Cre16.g648700.t1.2†	Cre16.g648700		2.79	0.26	0.17	−1.26	
Cre13.g566900.t1.2	Cre13.g566900		2.76	−0.38	0.11		
Cre02.g137750.t1.2	Cre09.g400441	JmjC domain	2.72	−0.31	0.12		
Cre06.g263500.t1.1	Cre06.g263500	Archease protein family (DUF101)	2.67	1.02	0.32		
Cre01.g016150.t1.1†	Cre01.g016150	ADP-ribosylglycohydrolase	2.65	0.17	0.18	−1.26	
Cre08.g380000.t1.1	Cre08.g380000	Formylglycine-generating sulfatase enzyme	2.59	1.53	0.48		
Cre14.g615600.t1.1	Cre14.g615600	Putative serine esterase (DUF676)	2.53	−0.54	0.12		
Cre11.g472900.t1.2	Cre02.g095113	CAP-Gly domain	2.45	−0.05	0.18		
Cre06.g269250.t1.1	Cre06.g269250		2.44	0.55	0.27		
Cre02.g120600.t1.1	Cre09.g403071	Sterol desaturase	2.44	0.94	0.35		
Cre06.g261200.t1.1	Cre06.g261200	ERG25	2.42	0.64	0.29		
Cre16.g683400.t1.1	Cre16.g683400	CRAL/TRIO domain	2.40	0.08	0.20		
Cre22.g765150.t1.1	Cre11.g467725	hypothetical protein	2.30	0.46	0.28		
Cre13.g571800.t1.2	Cre13.g571800		2.27	0.72	0.34		
Cre13.g579450.t1.2	Cre13.g579450	Membrane transporter	2.27	1.23	0.49		
Cre08.g380350.t1.1	Cre08.g380350		2.21	−0.01	0.21		
Cre16.g649250.t1.2	Cre16.g649250		2.08	0.58	0.35		
Gene ID (v4)	Gene ID (v5)	Gene name	Annotation	FC WT* (log2)	FC sak1 (log2)	Attenuation (FC-sak1/FC-WT)†	Basal repression in sak1 (log2)
-------------	-------------	-------------------	--------------------------------------	---------------	---------------	-------------------------------	--------------------------------
Cre11.g476250.t1.1	Cre11.g476250	sak1	Attenuation (FC-sak1/FC-WT)†	2.08	0.49	0.33	0.15
Cre02.g10800.t1.2	Cre02.g10800			2.08	1.03	0.49	0.18
Cre13.g583300.t1.1	Cre13.g583300			1.98	−0.48	0.18	0.22
Cre04.g215300.t1.2	NF			1.97	0.57	0.38	0.43
Cre02.g139450.t1.1	Cre09.g401663	DUF947		1.95	−0.62	0.17	0.14
Cre03.g194750.t1.2	Cre03.g194750			1.95	0.73	0.43	0.38
Cre06.g258600.t1.1	Cre06.g258600			1.91	−0.95	0.14	0.27
Cre10.g418700.t1.1	Cre10.g418700			1.87	−0.03	0.27	0.41
Cre10.g444550.t1.1	Cre10.g444550	SPP1A	Signal peptide peptidase	1.81	0.51	0.41	0.27
Cre01.g060050.t1.2	Cre03.g145807			1.78	−0.11	0.27	0.42
Cre09.g410050.t1.1	Cre09.g410050			1.76	0.51	0.42	0.26
Cre03.g163400.t1.2	Cre03.g163400			1.76	−0.17	0.26	0.21
Cre01.g008450.t1.1	Cre01.g008450	Nuf2 family		1.73	−0.54	0.21	0.39
Cre12.g536650.t1.1	Cre12.g536650			1.72	0.35	0.39	0.32
Cre02.g114900.t1.2	Cre02.g114900	ANK23	predicted protein	1.71	0.08	0.32	0.32
Cre16.g661850.t1.2	Cre16.g661850		Calcium/calmodulin dependent protein kinase association	1.69	0.03	0.32	0.32
Cre14.g615500.t1.2	Cre14.g615500		Glycoprotease family	1.68	−0.76	0.18	0.22
Cre11.g483100.t1.2	Cre11.g483100		Protein kinase	1.66	−0.49	0.22	0.40
Cre28.g776650.t1.1	Cre08.g358569			1.64	0.33	0.40	0.24
Cre07.g340250.t1.2	Cre07.g340250		Protein kinase	1.63	−0.41	0.24	0.48
Cre06.g296250.t1.2	Cre06.g296250	SYK1	tRNA synthetase, class II	1.60	0.54	0.48	0.38
Cre06.g310500.t1.1	Cre06.g310500			1.57	0.18	0.38	0.44
Cre07.g342800.t1.2	Cre07.g342800	CGL16	Predicted protein	1.49	0.32	0.44	0.44
Gene ID (v4)	Gene ID (v5)	Gene name	Annotation	FC WT* (log2)	FC sak1 (log2)	Attenuation (FC-sak1/FC-WT)†	Basal repression in sak1 (log2)
-------------	-------------	--------------------------------	---	---------------	---------------	-------------------------------	-------------------------------
Cre03.g181450.t1.2	Cre03.g181450	DUF1619		1.47	0.35	0.46	
Cre66.g793601.t1.1	Cre35.g759497			1.47	0.03	0.37	
Cre14.g614050.t1.2	Cre14.g614050	MAP65	Microtubule associated protein	1.43	0.06	0.39	
Cre04.g217500.t1.1	Cre04.g217500		Inosine-uridine preferring nucleoside hydrolase	1.42	0.19	0.43	
Cre06.g292950.t1.1	Cre06.g292950	DNA polymerase delta, subunit 4		1.38	-0.12	0.35	
Cre16.g661750.t1.1	Cre16.g661750		Calcium/calmoduline dependent protein kinase association	1.38	-0.12	0.35	
Cre01.g007000.t1.1	Cre01.g007000	ABC transporter (ABC-2 type)		1.35	0.21	0.45	
Cre04.g224400.t1.2	Cre04.g224400	ABC transporter (ABC-2 type)		1.34	-0.13	0.36	
Cre01.g068400.t1.2	Cre16.g680790			1.33	0.16	0.45	
Cre05.g237400.t1.1	Cre05.g237400	DAE1	Diaminopimelate epimerase	1.32	0.22	0.47	
Cre14.g609600.t1.2	Cre14.g609600			1.32	-0.58	0.27	
Cre05.g234850.t1.2	Cre05.g234850	Ubiquitin carboxyl-terminal hydrolase		1.29	0.16	0.46	
Cre03.g179200.t1.1	Cre03.g179200			1.28	-0.48	0.30	
Cre10.g417730.t1.1	Cre10.g417730			1.27	0.17	0.47	
Cre03.g159700.t1.2	Cre03.g159700			1.26	-0.14	0.38	
Cre12.g540150.t1.2	Cre12.g540150			1.19	-0.24	0.37	
Cre01.g006550.t1.2†	Cre01.g006550	No annotation		1.17	-0.49	0.32	-1.60
Cre03.g159950.t1.2	Cre03.g159950			1.17	-0.17	0.40	
Cre27.g775900.t1.2	Cre12.g557503			1.14	-0.70	0.28	
Cre02.g121600.t1.1	Cre09.g387208	Protein kinase		1.14	0.00	0.46	
Cre14.g609550.t1.1	NF			1.13	-0.84	0.26	
Cre07.g315050.t1.2	Cre07.g315050			1.12	-0.03	0.45	
Cre04.g218800.t1.2	Cre04.g218800	THB3	Truncated hemoglobin	1.11	-0.50	0.33	

Table 5. Continued on next page
Table 5. Continued

Gene ID (v4)	Gene ID (v5)	Gene name	Annotation	FC WT* (log2)	FC sak1 (log2)	Attenuation (FC-sak1/FC-WT)†	Basal repression in sak1 (log2)
Cre02.g133300.t1.1	Cre09.g396624			1.11	−0.43	0.34	
Cre01.g060650.t1.2	Cre03.g146067			1.10	−0.42	0.35	
Cre01.g057050.t1.1	Cre03.g144324			1.10	0.04	0.48	
Cre06.g304950.t1.1	Cre06.g304950			1.07	−0.65	0.30	
Cre08.g358200.t1.2	Cre08.g358200	A4	Protein kinase	1.07	−0.82	0.27	
Cre16.g689550.t1.2	Cre16.g689550	PTK8	Putative tyrosine kinase	1.06	−0.17	0.43	
Cre17.g720950.t1.1	Cre17.g720950		3-oxo-5-alpha-steroid 4-dehydrogenase	1.05	−0.26	0.40	
Cre02.g090950.t1.2	Cre02.g090950			1.05	−0.27	0.40	
Cre16.g683350.t1.1	Cre16.g683350			1.03	−0.67	0.31	
Cre02.g109450.t1.1	Cre02.g109450			1.01	−0.03	0.48	
Cre16.g652750.t1.1	Cre16.g652750			1.01	−0.29	0.41	
Cre03.g190000.t1.1	Cre03.g190000			1.00	−0.99	0.25	

*Data were ordered by FC in WT.
†Of the 52 most highly induced genes in WT (the top 10%), 37 were SAK1-dependent, and the induction of 33 of these genes was strongly attenuated to only 0.01-0.25 of magnitude of FC found in the WT. Dashed line indicates cutoff of FC for the top 10% most strongly induced genes.
‡Genes that are repressed at basal level in sak1.
NF, not found in v5.
DOI: 10.7554/eLife.02286.011
Table 6. Enriched functional classes among differentially expressed genes in sak1 during \(^1 \text{O}_2 \) acclimation

Primary Mapman class	Secondary Mapman class	Gene ID (v4)	Gene name	Annotation
Up-regulated genes				
	isoprenoids	Cre13.g565650.t1.1	Geranylgeranyl pyrophosphate synthase/Polyprenyl synthetase	
		Cre06.g267600.t1.1	Lycopene epsilon cyclase	
		Cre09.g407200.t1.1	Phytoene desaturase	
		Cre06.g267600.t1.1	Lycopene epsilon cyclase	
		Cre01.g011100.t1.1	Prenyltransferase and squalene oxidase repeat, Oxidosqualene-lanosterol cyclase and related proteins	
	N misc	Cre08.g381707.t1.1	NF*	
	phenylpropanoids	Cre03.g207800.t1.1	Alcohol dehydrogenase, class V	
		Cre14.g623650.t1.1	Alcohol dehydrogenase, class V (Zinc-binding)	
		Cre01.g039350.t1.1	Cytochrome P450 reductase, possibly CYP505B family	
	sulfur-containing	Cre06.g299400.t1.1	NF*	
	wax	Cre17.g722150.t1.1	PKS3 Type III polyketide synthase	
		Cre07.g318500.t1.2	FAE1/Type III polyketide synthase-like protein, Chalcone and stilbene synthases	
	'exotics' (steroids, squalene etc)	Cre01.g061750.t1.1	serine palmitoyltransferase	
	FA synthesis and FA elongation	Cre06.g256750.t1.1	Acyl carrier protein thioesterase	
		Cre03.g182050.t1.1	Long-chain acyl-CoA synthetases (AMP-forming)	
		Cre02.g074650.t1.1	Kelch repeat-containing proteins, Acyl-CoA binding protein	
	glycerol metabolism	Cre01.g053000.t1.1	GPD2 Glycerol-3-phosphate dehydrogenase/dihydroxyacetone-3-phosphate reductase	
	glycolipid synthesis	Cre13.g583600.t1.1	DGD1 Digalactosyldiacylglycerol synthase	
	lipid degradation	Cre01.g057450.t1.2	NF*	
		Cre02.g126050.t1.1	NF*	
	phospholipid synthesis	Cre06.g281250.t1.1	CFA1 Cyclopropane fatty acid synthase	
		Cre01.g038250.t1.1	SDC1 Serine decarboxylase	
		Cre11.g472700.t1.1	NF*	
		Cre13.g604700.t1.2	CDP-alcohol phosphatidyltransferase/Phosphatidylglycerol-phosphate synthase	

Table 6. Continued on next page
Primary Mapman class	Secondary Mapman class	Gene ID (v4)	Gene name	Annotation
Cell	vesicle transport	Cre18.g744100.t1.1	NF*	
Cell	vesicle transport	Cre17.g721900.t1.1	COG5	Component of oligomeric golgi complex
Cell	vesicle transport	Cre01.g003050.t1.1	SEC8	Component of the Exocyst Complex
Cell	vesicle transport	Cre04.g224800.t1.1		Endosomal R-SNARE protein, Vamp7/Nyv1-family
Cell	vesicle transport	Cre17.g728150.t1.1		Endosomal R-SNARE protein, Ysk6-family
Cell	vesicle transport	Cre12.g507450.t1.1		Trans-Golgi network Qa-SNARE protein, Syntaxin16/Syx16/Tlg2/ Syp4-family
Cell	vesicle transport	Cre03.g210600.t1.1	NF*	
Cell	vesicle transport	Cre04.g225900.t1.1		Endosomal R-SNARE protein, Vamp7/Nyv1-family
Cell	vesicle transport	Cre02.g101400.t1.1	CHC1	Clathrin Heavy Chain
Cell	vesicle transport	Cre17.g709350.t1.1		Late endosomal Qc-SNARE protein, Syx8/Syntaxin8-family
Cell	vesicle transport	Cre07.g342050.t1.1		Endosomal Qb-SNARE, Npsn-family
Cell	vesicle transport	Cre16.g692050.t1.1		ER-Golgi Qa-SNARE protein, Syntaxin5/Syx5/Sed5/Syp3-family
Cell	vesicle transport	Cre16.g676650.t1.1	AP1G1	Gamma1-Adaptin
Cell	vesicle transport	Cre02.g099000.t1.1		Late endosomal Qc-SNARE protein, Syx6/Tlg1/Syp5/6-family
Cell	vesicle transport	Cre12.g554200.t1.2		ER-Golgi Qb-SNARE, Memb/GS35/ Bos1-family
Cell	vesicle transport	Cre06.g310000.t1.1	AP4E1	Epsilon4-Adaptin
Cell	vesicle transport	Cre10.g421250.t1.1	EXO70	Hypothetical Conserved Protein. Similar to Exo70, a subunit of the exocyst complex
Cell	vesicle transport	Cre07.g330950.t1.1	AP4S4	Sigma4-Adaptin
Cell	vesicle transport	Cre12.g488850.t1.2		Adaptin, alpha/gamma/epsilon
division		Cre06.g269950.t1.1	CDC48	Protein involved in ubiquitin-dependent degradation of ER-bound substrates
organisation		Cre08.g359200.t1.2		Regulator of chromosome condensation (RCC1)
organisation		Cre13.g588600.t1.2		Kinesin (SMY1 subfamily)
organisation		Cre12.g513450.t1.1	TUH7	Eta-Tubulin
organisation		Cre01.g010950.t1.2		26S proteasome regulatory complex, subunit PSMD10 (Ankyrin repeat)
organisation		Cre16.g679650.t1.2		Fimbrin/Plastin
organisation		Cre06.g261950.t1.1		Myotrophin and similar proteins (Ankyrin repeat)
organisation		Cre06.g291700.t1.1	RSP3	Radial spoke protein 3
organisation		Cre10.g446700.t1.1	ANK28	Ankyrin repeat and DHHC-type Zn-finger domain containing proteins

Table 6. Continued on next page
Table 6. Continued

Primary Mapman class	Secondary Mapman class	Gene ID (v4)	Gene name	Annotation
Hormone metabolism†	abscisic acid	Cre16.g657800.t1.2	CCD3	Carotenoid cleavage dioxygenase
	auxin	Cre14.g609900.t1.1		Predicted membrane protein, contains DoH and Cytochrome b-561/ferric reductase transmembrane domains
	brassinosteroid	Cre16.g663950.t1.1		Sterol 5 desaturase
		Cre02.g092350.t1.1		Cytochrome P450, CYP51 superfamily; sterol 14 desaturase
		Cre12.g557900.t1.1	CDI1	C-8,7 sterol isomerase
		Cre02.g076800.t1.1		Delta14-sterol reductase, mitochondrial
	ethylene	Cre12.g500500.t1.2		24-methylenesterol C-methyltransferase
	jasmonate	Cre19.g756100.t1.1		NF*
Misc	acid and other	Cre09.g396900.t1.1		NADH pyrophosphatase I of the Nudix family of hydrolases
	phosphatases	Cre06.g259650.t1.1		Calcineurin-like phosphoesterase, Acid-phosphatase-related
	cytchrome P450	Cre05.g234100.t1.1		Cytochrome P450, CYP197 superfamily
	dynamin	Cre02.g079550.t1.1	DRP2	Dynamin-related GTPase, involved in circadian rhythms
		Cre05.g245950.t1.1	DRP1	Dynamin-related GTPase
	glutathione S	Cre03.g154950.t1.1		Glutathione S-transferase
	transferases	Cre12.g538450.t1.1	EPT1	CDP-Etn DAG Ethanolamine phosphotransferase
	short chain	Cre12.g556750.t1.2		Short-chain dehydrogenase/reductase
	dehydrogenase/	Cre08.g384864.t1.1		SH3 domain, protein binding
	reductase (SDR)	Cre27.g775000.t1.1		NF*
	UDP glucosyl and	Cre17.g731350.t1.2		Short chain dehydrogenase
	glucoronyl transferases	Cre02.g111150.t1.2	ELG26	Exostosin-like glycosyltransferase
		Cre02.g144050.t1.1		Acetylglucosaminyltransferase EXT1/exostosin 1
		Cre03.g204050.t1.2	ELG6	Exostosin-like glycosyltransferases
		Cre11.g474450.t1.1		NF*
		Cre03.g173300.t1.1		Lactosylceramide 4-alpha-galactosyltransferase (alpha-1,4-galactosyltransferase)
		Cre02.g116600.t1.1	ELG23	Exostosin-like glycosyltransferase
Down-regulated genes	cytokinin	Cre18.g744950.t1.2		NF*

Table 6. Continued on next page
By SDS-PAGE and immunoblot analysis, SAK1 appeared in multiple forms with higher molecular weight during acclimation compared to that observed in control cells (Figures 4F and 6A,C). When the extracted protein samples were treated with phosphatase, the diffuse pattern of multiple forms collapsed into a single band detected by immunoblot analysis that had an even higher mobility than that of untreated cells (Figure 6D). This result indicates that SAK1 is a phosphorylated protein during basal conditions, and it is further phosphorylated upon exposure of cells to 1O_2.

Discussion

SAK1 is necessary for acclimation of Chlamydomonas cells to 1O_2

To understand the retrograde signal transduction pathway involved in the cellular response to 1O_2, we focused on the unique ability of *Chlamydomonas* to acclimate to 1O_2 stress (Ledford et al., 2007), and
Table 7. Enriched functional classes among differentially expressed genes in sak1 at basal level

Primary Mapman class	Secondary Mapman class	Gene ID (v4)	Gene name	Annotation
nucleotide metabolism	deoxynucleotide metabolism	Cre12.g491050.t1.1	RIR2	Ribonucleotide reductase (RNR), small subunit
		Cre12.g492950.t1.1	RIR1	Ribonucleotide reductase (RNR), large subunit, class I
		Cre16.g667850.t1.1	dUTP pyrophosphatase	
phosphotransfer and pyrophosphatases		Cre02.g122450.t1.1	NF*	
		Cre02.g093950.t1.1	PYR5	Uridine 5'- monophosphate synthase/orotate phosphoribosyltransferase
		Cre12.g519950.t1.1	Flagellar Associated Protein similar to adenylate/guanylate kinases	
synthesis		Cre26.g772450.t1.1	NF*	
		Cre65.g793400.t1.1	NF*	
		Cre02.g079700.t1.1	PYR2	Aspartate carbamoyltransferase
		Cre01.g048950.t1.1	dUTP pyrophosphatase	
		Cre07.g318750.t1.1	Phosphoribosylformylglycinamidine cyclo-ligase.	
DNA repair		Cre07.g314650.t1.1	Chloroplast RecA recombination protein	
synthesis/chromatin structure		Cre04.g214350.t1.2	Eukaryotic DNA polymerase alpha, catalytic subunit	
		Cre07.g314900.t1.2	ATP-dependent RNA helicase (DEAD/DEAH)	
		Cre04.g223850.t1.1	Cytoplasmic DExD/H-box RNA helicase	
		Cre01.g015250.t1.1	Eukaryotic DNA polymerase delta, catalytic subunit	
		Cre07.g342506.t1.1	Ubiquitin-protein ligase	
		Cre07.g338000.t1.1	Minichromosome maintenance protein	
		Cre03.g178650.t1.1	MCM6 DNA replication protein	
		Cre07.g312350.t1.2	DNA polymerase alpha, primase subunit	
		Cre01.g009250.t1.2	DNA topoisomerase II	
		Cre26.g772150.t1.1	NF*	
		Cre07.g316850.t1.1	Minichromosome maintenance protein 4	
		Cre06.g263800.t1.2	tRNA-splicing endonuclease positive effector (SEN1)	
		Cre06.g295700.t1.2	MCM3 DNA replication factor C complex subunit 4	
		Cre06.g251800.t1.1	DNA repair helicase of the DEAD superfamily	
		Cre17.g718100.t1.1	Phosphatidylinositol transfer protein SEC14 and related proteins (CRAL/TRIO)	

Table 7. Continued on next page
Table 7. Continued

Primary Mapman class	Secondary Mapman class	Gene ID (v4)	Gene name	Annotation
Tetrapyrrole synthesis	Glu-tRNA reductase	Cre07.g342150.t1.1	HEM1	Glutamyl-tRNA reductase
	Glu-tRNA synthetase	Cre44.g788000.t1.1		Glutamyl-tRNA reductase
	magnesium chelatase	Cre06.g306300.t1.1	CHLI1	Magnesium chelatase subunit I
	protochlorophyllide reductase	Cre01.g015350.t1.1	POR1	Light-dependent protochlorophyllide reductase
Photosynthesis	Calvin-Benson cycle	Cre05.g234550.t1.1		Fructose-biphosphate aldolase
	light reaction	Cre07.g330250.t1.1	PSAH	Subunit H of photosystem I
	photorespiration	Cre06.g261000.t1.1	PSBR	10 kDa photosystem II polypeptide
		Cre12.g542300.t1.1	GYK1	Glycerate kinase
		Cre06.g253350.t1.1	GCSH	Glycine cleavage system, H-protein
		Cre06.g293950.t1.1	SHMT2	Serine hydroxymethyltransferase 2
Transport	ABC transporters and multidrug resistance systems	Cre04.g222700.t1.1		ATPase component of ABC transporters with duplicated ATPase domains/Translation elongation factor EF-3b
		Cre17.g728400.t1.2		ABCtransporter (ABC-2 type)
		Cre05.g241350.t1.2		ABCtransporter (ABC-2 type)
		Cre03.g169300.t1.1		ABCtransporter (ABC-2 type)
		Cre11.g474600.t1.1	NF*	
	amino acids	Cre04.g226150.t1.2	AOC1	Amino acid carrier 1; belongs to APC (Amino acid Polyamine organo Cation) family
	calcium	Cre09.g388850.t1.1	ACA1	P-type ATPase/cation transporter, plasma membrane
	metabolite transporters at the envelope membrane	Cre06.g263850.t1.2	TPT2	Triose phosphate/phosphate translocator
	metabolite transporters at the mitochondrial membrane	Cre10.g449100.t1.1		Mitochondrial oxodicarboxylate carrier protein
		Cre01.g069350.t1.1	NF*	
		Cre15.g641200.t1.1		Mitochondrial fatty acid anion carrier protein/Uncoupling protein
		Cre09.g396350.t1.1		Mitochondrial carrier protein PET8
	misc	Cre06.g311000.t1.2	FBT2	Folate transporter
		Cre17.g718100.t1.1		Phosphatidylinositol transfer protein SEC14 and related proteins (CRAL/TRIO)
	phosphate	Cre16.g686750.t1.1	PTA3	Proton/phosphate symporter
	potassium	Cre12.g553450.t1.2	NF*	
	sulphate	Cre17.g723350.t1.1	SUL2	Sulfate anion transporter
	unspecified cations	Cre13.g573900.t1.1		Na+::iodide/myo-inositol/multivitamin symporters

Table 7. Continued on next page
Primary Mapman class	Secondary Mapman class	Gene ID (v4)	Gene name	Annotation
sugars		Cre16.g675300.t1.2	Sodium-dependent phosphate transporter, major facilitator superfamily	
RNA processing		Cre10.g427700.t1.1	ATP-dependent RNA helicase, DEAD/DEAH box helicase	
	Cre12.g538750.t1.1	LSM1	U6 snRNA-associated Sm-like protein LSm1, RNA cap binding, (SMP6d)	
	Cre10.g433750.t1.2	PAP1	Nuclear poly(A) polymerase	
	Cre03.g182950.t1.1	NF*		
	Cre06.g375128.t1.1	NF*		
regulation of		Cre17.g728200.t1.2	YL-1 protein (transcription factor-like 1)	
transcription	Cre06.g275500.t1.1	AP2 Transcription factor		
	Cre28.g777500.t1.2	NF*		
	Cre13.g572450.t1.1	Response regulator receiver domain (sensor histidine kinase-related, regulation of transcription)		
	Cre14.g620500.t1.1	AP2 Transcription factor		
	Cre16.g673150.t1.1	Histone deacetylase complex, catalytic component RPD3		
	Cre02.g078700.t1.2	DNA damage-responsive repressor GIS1/RPH1, jumonji superfamily		
	Cre03.g198800.t1.1	Myb-like DNA-binding domain		
	Cre04.g218050.t1.2	RWP-RK domain		
	Cre07.g324400.t1.1	VPS24	Subunit of the ESCRT-III complex, vacuolar sortin protein	
	Cre11.g481050.t1.1	SWI/SNF-related chromatin binding protein		
	Cre02.g101950.t1.1	TMU2	tRNA (uracil-5)-methyltransferase	
	Cre10.g459600.t1.2	CAATT-binding transcription factor/60S ribosomal subunit biogenesis protein		
	Cre01.g018650.t1.2	NF*		
	Cre01.g012200.t1.2	NF*		
	Cre02.g129750.t1.1	NF*		
	Cre10.g461750.t1.2	DNA (cytosine-5)-methyltransferase		
	Cre01.g004600.t1.2	RWP12	Putative RWP-RK domain transcription factor	
	Cre09.g400100.t1.1	Predicted Zn-finger protein, zinc and DNA binding domains		
	Cre07.g335150.t1.2	SBP domain		
RNA binding	Cre16.g662700.t1.1	NF*		
	Cre07.g330300.t1.1	RNA-binding protein musashi/mRNA cleavage and polyadenylation factor I complex, subunit HRP1		

Table 7. Continued on next page
Table 7. Continued

Primary Mapman class	Secondary Mapman class	Gene ID (v4)	Gene name	Annotation
	Cre06.g275100.t1.1	RNA-binding protein musashi/mRNA cleavage and polyadenylation factor I complex, subunit HRP1		
transcription	Cre07.g322200.t1.1	NF*		
Repressed in sak1				
Transport	ABC transporters and multidrug resistance systems	Cre02.g097800.t1.2	ABC transporter (MDR)	
	Cre17.g725200.t1.1	ABC transporter, peptide exporter		
	Cre13.g580300.t1.1	ABC transporter family protein		
	Cre10.g439000.t1.2	Long-chain acyl-CoA transporter, ABC superfamily (involved in peroxisome organization and biogenesis)		
amino acids	Cre06.g292350.t1.1	AOC4	Amino acid carrier	
calcium	Cre06.g263950.t1.2	Sodium/potassium-transporting ATPase subunit alpha		
	Cre16.g681750.t1.2	Calcium transporting ATPase		
metabolite transporters at the mitochondrial membrane	Cre03.g172300.t1.1	Mitochondrial phosphate carrier protein		
	Cre09.g394800.t1.2	Mitochondrial substrate carrier protein		
metal	Cre03.g189550.t1.2	ZIP3	Zinc transporter, ZIP family	
	Cre11.g479600.t1.2	Sodium/calcium exchanger NCX1 and related proteins		
	Cre06.g281900.t1.1	ZIP7	Zinc transporter and related ZIP domain-containing proteins	
misc	Cre02.g089900.t1.1	Secretory carrier membrane protein		
	Cre10.g448050.t1.1	Retinaldehyde binding protein-related (CRAL/TRIO domain)		
	Cre03.g177750.t1.2	Multidrug resistance pump		
NDP-sugars at the ER	Cre02.g112900.t1.1	GDP-fucose transporter (Triose-phosphate transporter family)		
P- and V-ATPases	Cre01.g027800.t1.1	ATPvH	Vacuolar ATP synthase subunit H	
	Cre10.g446550.t1.1	ATPvF	Vacuolar ATP synthase subunit F	
	Cre03.g176250.t1.1	ATPvD1	Vacuolar ATP synthase subunit D	
	Cre06.g250250.t1.1	ATPvC	Vacuolar ATP synthase subunit C	
	Cre10.g459200.t1.1	ACA4	P-type ATPase/cation transporter, plasma membrane (Low CO2 inducible gene)	
phosphate	Cre12.g515750.t1.2	Sodium-dependent phosphate transporter-related		
	Cre08.g379550.t1.2	Sodium-dependent phosphate transporter, major facilitator superfamily		
	Cre12.g489400.t1.1	PTB7	Putative phosphate transporter, sodium/phosphate transporter	

Table 7. Continued on next page
Table 7. Continued

Primary Mapman class	Secondary Mapman class	Gene ID (v4)	Gene name	Annotation
Sodium/phosphate symporter	unspecified anions	Cre02.g144650.t1.1	PTB12	Sodium/phosphate symporter
Cl- channel CLC-7 and related proteins (CLC superfamily)		Cre09.g404100.t1.1		
Cl- channel CLC-7 and related proteins (CLC superfamily)		Cre17.g729450.t1.1		
Voltage-gated chloride channel activity	sugars	Cre01.g037150.t1.2		
Hexose transporter	P- and V-ATPases	Cre03.g206800.t1.2	HXT1	
		Cre03.g176250.t1.1	ATPvD1	Vacuolar ATP synthase subunit D
		Cre10.g446550.t1.1	ATPvF	Vacuolar ATP synthase subunit F
		Cre01.g027800.t1.1	ATPvH	Vacuolar ATP synthase subunit H
Mitochondrial electron transport / ATP synthesis	cytochrome c reductase	Cre01.g051900.t1.1	RIP1	Rieske iron-sulfur protein of mitochondrial ubiquinol-cytochrome c reductase (complex III)
		Cre06.g262700.t1.2		Ubiquinol cytochrome c reductase, subunit 7
	F-ATPase	Cre02.g116750.t1.2	F0F1-type ATP synthase, alpha subunit	
		Cre01.g018800.t1.1	ATP6	Mitochondrial F1F0 ATP synthase subunit 6
		Cre10.g420700.t1.1	Mitochondrial F1F0 ATP synthase, subunit epsilon/ATP15	
		Cre16.g680000.t1.1	ATP5	Mitochondrial ATP synthase subunit 5, OSCP subunit
	NADH-DH	Cre10.g434450.t1.1	NUOA9	Putative NADH:ubiquinone oxidoreductase (Complex I) 39 kDa subunit
		Cre08.g379900.t1.1	NUO3	NADH:ubiquinone oxidoreductase ND3 subunit
		Cre10.g450400.t1.1	NUO5	NADH:ubiquinone oxidoreductase (Complex I) 24 kDa subunit
Lipid metabolism	‘exotics’ (steroids, squalene etc)	Cre14.g615050.t1.1		3-oxo-5-alpha-steroid 4-dehydrogenase, Steroid reductase required for elongation of the VLCFAs (enoyl reductase)
		Cre12.g530550.t1.2	KDG2	Diaclyglycerol kinase, sphingosine kinase
		Cre02.g137850.t1.1		NF*
FA desaturation		Cre17.g711150.t1.1		Omega-6 fatty acid desaturase (delta-12 desaturase)
glyceral metabolism		Cre13.g577450.t1.2		Glycerol-3-phosphate dehydrogenase
glycolipid synthesis		Cre13.g583600.t1.1	DGD1	Digalactosyldiacylglycerol synthase
		Cre16.g656400.t1.1	SQD1	UDP-sulfoquinovose synthase
lipid degradation		Cre06.g252801.t1.2	CGI-141-related/lipase containing protein (TAG lipase)	
		Cre03.g164350.t1.2		Lyso phospholipase, putative drug exporter of the RND superfamily

Table 7. Continued on next page
Primary Mapman class	Secondary Mapman class	Gene ID (v4)	Gene name	Annotation
Photosynthesis	Calvin-Benson cycle	Cre12.g511900.t1.1	RPE1	Ribulose phosphate-3-epimerase
		Cre02.g120100.t1.1	RBCS1	Ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit 1
light reaction	Cre05.g243800.t1.1	CPLD45	Photosystem II Psb27 protein	
	Cre10.g420350.t1.1	PSAE	Photosystem I reaction center subunit IV	
	Cre01.g671450.t1.2	NF*		
	Cre06.g291650.t1.1	Ferredoxin		
	Cre05.g242400.t1.1	No functional annotation		
photorespiration	Cre09.g411900.t1.2	SHMT3	Serine hydroxymethyltransferase 3	
	Cre06.g295450.t1.1	HPR1	Hydroxyypyruvate reductase	
Major CHO metabolism	degredation	Cre09.g415600.t1.2	Starch binding domain	
	Cre11.g473500.t1.2	NF*		
	Cre09.g415600.t1.2	Starch binding domain		
synthesis	Cre06.g289850.t1.2	SBE1	Starch Branching Enzyme	
	Cre17.g721500.t1.1	Granule-bound starch synthase I		
misc	acid and other phosphatases	Cre13.g568600.t1.2	Multiple inositol polyphosphate phosphatase-related, Acid phosphatase activity	
	alcohol dehydrogenases	Cre13.g569350.t1.1	Sterol dehydrogenase-related, Flavonol reductase/cinnamoyl-CoA reductase	
	cytochrome P450	Cre07.g356250.t1.2	Cytochrome P450 CYP4/CYP19/CYP26 subfamilies, beta-carotene 15,15'-monooxygenase	
		Cre07.g356250.t1.2	Cytochrome P450 CYP4/CYP19/CYP26 subfamilies, beta-carotene 15,15'-monooxygenase	
dynamin		Cre17.g724150.t1.1	DRP3	Dynamin-related GTPase
GCN5-related	N-acetyltransferase	Cre16.g657150.t1.2	N-acetyltransferase activity (GNAT) family	
gluco-, galacto- and	mannosidases	Cre03.g171050.t1.2	GHL1	Glycosyl hydrolase
misc2		Cre14.g614100.t1.1	GTR26	Dolichyl-diphosphooligosaccharide-protein glycosyltransferase
rhodanese		Cre07.g352550.t1.1	RDP3	Putative rhodanese domain phosphatase
short chain	dehydrogenase/	Cre07.g352450.t1.1	Corticosteroid 11-beta-dehydrogenase and related short chain-type dehydrogenases, 3-hydroxybutyrate dehydrogenase	

Table 7. Continued on next page
we isolated a regulatory mutant that is unable to acclimate. Several previous genetic screens aimed at dissecting the mechanisms of \(\text{O}_2 \) signaling have concentrated on the nuclear gene expression response to \(\text{O}_2 \), often relying on the response of a single marker gene (Baruah et al., 2009a; Brzezowski et al., 2012; Fischer et al., 2012; Shao et al., 2013). In contrast, our screen exploited a physiological response to sublethal levels of \(\text{O}_2 \), which induces the wild type to survive a subsequent, otherwise lethal treatment with the \(\text{O}_2 \) generator RB (Ledford et al., 2007). The \(\text{sak}1 \) mutant completely lacks this ability to acclimate to \(\text{O}_2 \) (Figure 1A). An analogous phenotype is exhibited by the \(\text{yap}1 \Delta \) mutant of \(\text{Saccharomyces cerevisiae} \), which is unable to acclimate to hydrogen peroxide stress (Stephen et al., 1995).

In contrast to the complete loss of acclimation to RB, \(\text{sak}1 \) acclimates (but less effectively than WT) when pretreated with high light and challenged with RB (Figure 1B). This result suggests that the high light pretreatment induces a broader response than that elicited by RB and that \(\text{sak}1 \) is still able to respond to other signals besides \(\text{O}_2 \) (e.g., plastoquinone redox state, \(\text{H}_2\text{O}_2 \), and/or superoxide) that are involved in the response to high light. When tested on TAP agar plates for photoheterotrophic growth in the presence of various photosynthetic inhibitors, the \(\text{sak}1 \) mutant displayed sensitivity to RB but not to other inhibitors (Figure 1D). In particular, \(\text{sak}1 \) is not more sensitive than WT to high light or norflurazon (an inhibitor of the biosynthesis of carotenoids, which function as quenchers of \(\text{O}_2 \)). We speculate that the lack of \(\text{O}_2 \)-sensitive phenotype in these plate experiments is attributable to the time-scale of the treatments involved. \(\text{O}_2 \) generated by RB or during a transfer to higher light intensity is transient, whereas NF requires longer time to exert its effect because it needs to enter the cell, inhibit biosynthesis, and deplete cells of existing carotenoids. During this time, the cell is likely able to acclimate by detoxifying and reducing the generation of \(\text{O}_2 \) by various means such as changing the composition of the photosynthetic apparatus. We have previously shown that acclimation to \(\text{O}_2 \) is transient and is dissipated by 24 hr post-treatment (Ledford et al., 2007). Consistent with this, pretreatment with RB does not acclimate the cells to stresses such as growth in high light or norflurazon that require a period of days to assess an effect on viability (Figure 1-figure supplement 1). We have also observed that under our experimental conditions, the induction of target gene expression upon exposure to \(\text{O}_2 \) lasts up to 90 min and then declines. We conclude that SAK1 functions mainly during transient perturbations that generate \(\text{O}_2 \). However, during steady-state growth under high light or norflurazon, the cell is able to cope by other means that do not involve SAK1.
Figure 4. Genetic and molecular analysis of sak1. (A) The insertion of a zeocin resistance gene and the RB sensitivity phenotype are linked. Twelve complete tetrads from a backcross of sak1 to wild type are shown. Numbers indicate independent tetrads, and letters (a-d) indicate the individual progeny from tetrads. (B) Gene

Continued on next page
SAK1 is necessary for a subset of the genome-wide response to \(^{1}O_2 \) in *Chlamydomonas*

A physiological acclimation response that results in such an evident growth phenotype (Figure 1A) likely involves large-scale changes in gene expression, and transcriptome analysis of wild-type cells showed that hundreds of nuclear genes are up- or down-regulated during acclimation to \(^{1}O_2 \) (Figure 3A,B; Supplementary file 1, C1). The sak1 mutant is specifically impaired in regulation of a notable subset of these genes, that is, those that are most strongly induced in the wild type (Table 5), suggesting that these genes play a key role in the acclimation response to \(^{1}O_2 \).

In particular, many genes involved in sterol and lipid metabolism were induced by \(^{1}O_2 \) in *Chlamydomonas* (Figure 3B; Table 3). For example, two genes encoding putative cyclopropane fatty acid synthase (CFA1 and CFA2) exhibited SAK1-dependent induction (Figure 2). Cyclopropane fatty acids have been found in large amounts in the seeds of *Sterculia foetida* (Bao et al., 2002), although its biological function is unknown. In bacteria, it has been implicated in oxidative stress responses (Guerzoni et al., 2001; Kim et al., 2005) and particularly in the anoxygenic photosynthetic bacterium *Rhodobacter sphaeroides*, CFA gene expression is induced during \(^{1}O_2 \) stress by a \(\sigma^A \) factor (Ziegelhoffer and Donohue, 2009). Interestingly CFA mutants of *R. sphaeroides* are compromised in the induction of genes in response to \(^{1}O_2 \), suggesting a regulatory role of the gene, protein, or the product of its enzymatic function (cyclopropane fatty acids, Bao et al., 2002) in gene expression rather than solely a biochemical stress response (Nam et al., 2013).

Another intriguing class of up-regulated genes enriched during \(^{1}O_2 \) acclimation in WT and not in sak1 was a group of genes encoding transporters, especially ABC transporters related to the MDR and PDR types. This was not surprising considering that \(^{1}O_2 \) exists in aquatic and terrestrial environments, where it is generated by photosensitizing humic substances (Frimmel et al., 1987; Steinberg et al., 2008), which are known to affect microbial populations including phytoplankton (Glaeser et al., 2010, 2014). Assuming that some of these transporters function to export photosensitizing molecules from the cell, our results suggest that removal of photosensitizers is an integral part of the \(^{1}O_2 \) response in *Chlamydomonas*, rather than simply a response to the presence of a xenobiotic compound such as RB (Table 4). It is likely that *Chlamydomonas*, a soil-dwelling microalga, needs to respond to \(^{1}O_2 \) that is generated not only in the chloroplast, but also in other compartments. In this context, it is noteworthy that a recent study has demonstrated light-independent \(^{1}O_2 \) generation in multiple organelles other than the chloroplast under various biotic and abiotic stresses in plants (Mor et al., 2014).

Two proteins with SOUL heme-binding domains were among SAK1-dependent up-regulated genes (SOUL2 and Cre06.g299700.t1.1, formerly annotated as SOUL1 in v4). Aside from their ability to bind various porphyrins (Blackmon et al., 2002; Sato et al., 2004), SOUL heme-binding proteins have been described in diverse biological functions in mice, such as in apoptosis by interacting with a mitochondrial anti-apoptotic factor Bcl-xl (Ambrosi et al., 2011) or an isoform-specific role in retina and pineal gland (Zylka and Reppert, 1999). The latter form is suggested to play a role in transporting heme or by binding free heme to prevent oxidative stress (Sato et al., 2004). In *Arabidopsis* a chloroplast-localized SOUL5 protein has been shown to interact with a heme oxygenase, HY1, and mutation of the gene encoding SOUL5 causes oxidative stress (Lee et al., 2012). *Chlamydomonas* contains five putative SOUL heme-binding proteins, only one of which contains an amino-terminal chloroplast transit peptide. The two SOUL protein genes induced by \(^{1}O_2 \) in our study do not seem to be targeted to the chloroplast, and they may function in the cytosol where SAK1 resides. It would be interesting to test whether these proteins bind porphyrins and are required for \(^{1}O_2 \) acclimation.
Table 8. SAK1 domain containing proteins in chlorophytes

Number in alignment	Organism	Transcript/Protein IDa	Transcript/Protein ID*
1	Volvox carteri	Vocar20009235	
2	Volvox carteri	Vocar20002437	
3	Volvox carteri	Vocar20002672	
4	Volvox carteri	Vocar20004923	
5	Volvox carteri	Vocar20012349	
6	Volvox carteri	Vocar20005988	
7	Volvox carteri	Vocar20007158	
8	Volvox carteri	Vocar20007883	
9	Coccomyxa subellipsoidea	57405	
10	Coccomyxa subellipsoidea	59655	
11	Coccomyxa subellipsoidea	57694	
12	Chlamydomonas reinhardtii	Cre16.g652650.t1.3	
13	Chlamydomonas reinhardtii	Cre06.g271000.t1.2	
14	Chlamydomonas reinhardtii	Cre06.g285800.t1.2	
15	Chlamydomonas reinhardtii	Cre06.g275600.t1.2	
16	Chlamydomonas reinhardtii	Cre06.g285750.t1.3	
17	Chlamydomonas reinhardtii	Cre06.g270950.t1.2	
18	Chlamydomonas reinhardtii	g9774.t1	
SAK1	Chlamydomonas reinhardtii	KF985242	
20	Chlamydomonas reinhardtii	Cre03.g179150.t1.2	
21	Chlamydomonas reinhardtii	g3701.t1	
22	Chlamydomonas reinhardtii	Cre03.g179250.t1.2	
23	Chlamydomonas reinhardtii	Cre03.g179200.t1.2	
24	Chlamydomonas reinhardtii	Cre01.g004800.t1.2	
25	Chlamydomonas reinhardtii	Cre01.g048550.t1.3	
26	Chlorella variabilis	EFNS1260	
27	Chlorella variabilis	EFNS5496	
28	Chlorella variabilis	EFNS5618	

A recent study reported the role of bilins in retrograde signaling in Chlamydomonas through characterization of heme oxygenase mutants disrupted in bilin biosynthesis and transcriptome analyses during dark to light transitions (Duanmu et al., 2013). The transcriptome changes indicated that much of the cell’s response during a dark-to-light transition (DL) involves photodisequilibrium. Interestingly, among the 515 genes up-regulated in WT during ‘O₂/acclimation, 144 genes overlapped with those that are induced during DL (Table 9). Focusing on the 104 genes that we defined as SAK1-dependent (Table 5), 31 genes overlapped (Table 9). CFA1, CFA2, and SOUL2 were among these genes, suggesting that a part of the gene expression response to DL in Chlamydomonas is a response to ‘O₂. SAK1 itself was also up-regulated during DL as was SOR1, which encodes a more broadly oxidative stress-responsive bZIP transcription factor (Fischer et al., 2012). We found that 64 of the genes induced during acclimation to ‘O₂ were also up-regulated in the gain-of-function sor1 mutant (Fischer et al., 2012). However, the most strongly induced SAK1-dependent genes were not among these genes, except for GPX5. This is consistent with the idea that SAK1 and SOR1 function in different pathways.

SAK1 is a key intermediate component in the retrograde signaling pathway for ‘O₂ acclimation

Cloning of the SAK1 gene revealed that it encodes a large previously uncharacterized phosphoprotein located primarily in the cytosol (Figure 6A,D), suggesting that it functions as an intermediate in the retrograde signaling pathway from the chloroplast to the nucleus that leads to ‘O₂ acclimation. Previous genetic screens in Arabidopsis have identified proteins in the chloroplast, such as EX1 and EX2 (Wagner et al., 2004; Lee et al., 2007), and in the nucleus, such as PLEITROPIC RESPONSE LOCUS 1 (Baruah et al., 2009b) and topoisomerase VI (Símková et al., 2012), that are involved in ‘O₂ signaling. By screening for mutants that are unable to induce a ‘O₂-responsive reporter gene (HPS70A) in Chlamydomonas, a small zinc finger protein (Cre09.g416500.t1.2) called MBS was recently identified as having a role in ROS signaling in both Chlamydomonas and Arabidopsis (Shao et al., 2013). Like SAK1, MBS in Chlamydomonas is located in the cytosol, raising a question about the relationship of these two proteins in ‘O₂ signaling. As expected, we found HSP70A among the genes induced by RB...
treatment of *Chlamydomonas* (Table 3) however in *sak1* it was not significantly induced above the twofold threshold, suggesting that SAK1 might function in the same signaling pathway as MBS. The MBS gene itself is not induced by 'O₂ (Shao et al., 2013), and we will investigate the genetic and biochemical relationship of SAK1 and MBS in future research.

SAK1 contains a novel domain of ~150 amino acid residues that is found in several chlorophyte species (Table 8). The sequence of this domain is not highly conserved (Figure 5—figure supplement 1), and is even less conserved among land plant proteins, although it is detectable by PSI-BLAST, indicating that it has diverged in sequence in plants and algae. We identified 37 proteins that have the SAK1 domain, 13 of which also contained a bZIP transcription factor domain, consistent with a function in regulating gene expression. Under our standard laboratory growth conditions, SAK1 appears to have a relatively low level of phosphorylation, but it becomes hyperphosphorylated during 'O₂ acclimation (Figure 6D). Phosphorylation prediction software NetPhos 2.0 (http://www.cbs.dtu.dk/services/NetPhos/) predicted 24 serine, 9 threonine, and one tyrosine residue as possible sites throughout the protein (Figure 5—figure supplement 3). One of these serine residues is within the conserved SAK1 domain and is relatively conserved for polar amino acids. At this position, 18 SAK1 family members had threonine, and three had serine residues including SAK1 (Figure 5—figure supplement 1). We speculate that phosphorylation of SAK1 in the cytosol is a necessary intermediate step in 'O₂ acclimation. Through further analysis of the transcriptome data, isolation of proteins that physically interact with SAK1, and characterization of additional, non-allelic *sak* mutants, we hope to identify the kinase that is responsible for the direct modification of SAK1 as well as other upstream and downstream components of this retrograde signaling pathway in *Chlamydomonas*.

Material and methods

Chlamydomonas strains and culture conditions

The *sak1* mutant was generated by insertional mutagenesis as described previously (Dent et al., 2005) from WT strain 4A+. Cells were grown at 22°C phototrophically in Tris-acetate phosphate media (TAP) unless otherwise stated (Harris, 2009).

RB sensitivity screen and acclimation assays

For systematic screening of large number of strains for increased or decreased resistance to RB, individual strains were inoculated into 180-200 μl TAP medium in 96-well plates, grown for at least 3 days to saturation under light intensity of 60–80 μmol photons m⁻² s⁻¹, spotted onto TAP plates with 2.7, 3.0, or 3.3 μM RB, and scored for their growth compared to WT and *sak1*. For more quantitative evaluation of RB sensitivity, the cells were grown to saturation in 1 ml of TAP medium because we have observed rapidly growing cells to have more variable sensitivity to RB (data not shown). The cells were counted and adjusted to equal cell density then dispensed into aliquots in duplicate 96-well plates. One of the duplicates was pretreated in dark while the other was placed in light for 40 min with 1 μM RB. For challenge treatments, 4.5, 5.1, 5.7, 6.3, 6.9, and 7.5 μM RB was added to both plates, which were placed under light for 1 hr and then spotted onto TAP agar media with no RB. All treatments were applied under light intensity of 60–80 μmol photons m⁻² s⁻¹, which is the light intensity described as low light unless stated otherwise.
Pretreatment and challenge with RB and Fv/Fm measurement

Cells were grown under 100 μmol photons m⁻² s⁻¹, adjusted to 2 x 10⁶ cells ml⁻¹, and treated with RB at a final concentration of 0.5 μM for 30 min (pretreatment) in light (+) or dark (−). After the pretreatment all the cultures were exposed to an additional 3.75 μM RB (challenge) in low light and collected for measurement of Fv/Fm at 30, 60, and 90 min. The cells were dark-acclimated for at least 30 min before applying a saturating light pulse of 2000 μmol photons m⁻² s⁻¹ and measuring the chlorophyll fluorescence yield using an FMS2 fluorometer (Hansatech Instruments, Norfolk, UK).

Culture conditions for gene expression analyses by qRT-PCR and RNA-seq

Cultures were grown for at least two light–dark cycles (12 hr light-12 hr dark), and then cell density was adjusted to 2–2.5 x 10⁶ cells ml⁻¹ and split into two flasks (one control and the other for RB treatment) at least an hour prior to adding RB to a final concentration of 1 μM. An equal volume of H₂O was added to the control. RB was added ~6 hr after the start of the light cycle under light intensity of ~100 µmol photons m⁻² s⁻¹ and the treatment lasted for an hour before harvest. The cells were cooled and harvested by centrifugation at 1200×g for 3 min at 4°C, frozen with liquid nitrogen and stored at −80°C until extraction of RNA. For low light to high light transfer experiment, cultures were grown in continuous light in minimal (HS) medium for 3 days to cell density of 3 × 10⁶ cells ml⁻¹ at 45 µmol photons m⁻² s⁻¹. The light intensity was increased to 500 μmol photons m⁻² s⁻¹ for 1 hr before harvest.

Gene expression analysis by qRT-PCR

RNA was extracted with TRIzol (Life Technologies, Carlsbad, CA) following manufacturer’s instructions and treated with DNaseI (Promega, Madison, WI), then cleaned up using Qiagen RNeasy columns (Qiagen, Germantown, MD). cDNA was synthesized using Omniscript (Qiagen, Germantown, MD) starting with 2–3 μg DNA-free RNA per 20 μl reaction. qPCR was performed using a 7300 FAST qPCR machine (Life Technologies, Carlsbad, CA). The primers were designed with a Tₘ of 60°C using Primer3 or PrimerExpress (Life Technologies, Carlsbad, CA) (Table 10). All primer pairs described in this study were confirmed as having 90–105% amplification efficiency and linear amplification within their dynamic range in experimental samples using serial dilutions of cDNA prior to the experiments. Relative transcript levels were calculated by ΔΔCt method (Livak and Schmittgen, 2001) using CβLP as internal reference.

RNA-seq library preparation and analysis

RNA was extracted (Schmollinger et al., 2014) and the quality was determined using a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). The triplicate RNA was pooled and 10 μg total...
RNA was used to prepare RNA-seq library according to the manufacturer’s protocol (Illumina, San Diego, CA). The quality of the library was assessed using a 2100 Bioanalyzer before sequencing with Genome Analyzer (Illumina, San Diego, CA). Each sample was run in replicates on two lanes. RNA-Seq data was analyzed as before (Duanmu et al., 2013). On average, 75% of the sequences could be assigned unambiguously to Augustus v10.2 gene models to generate the matrix of counts per gene. This matrix was used for differential expression analysis using DESeq (Anders and Huber, 2010) using per-condition dispersion estimates and variance stabilization to compute moderate fold changes. Genes were classified as differentially expressed based on a (moderate) twofold regulation and a false discovery rate (FDR) <1%.

Amplification of cDNA and genomic region of SAK1 and transformation of sak1
Near full-length cDNA was isolated by RT-PCR (described in above section; Gene expression analysis by qRT-PCR) and rapid amplification of cDNA ends (RACE) using GeneRACER (Life Technologies, Carlsbad, CA) as previously described (Molnar et al., 2009). Despite multiple attempts the 5′ end of the transcript could not be amplified by 5′-RACE. Because the experimentally obtained CDS differed from the most current v5, it has been deposited to genbank (accession KF985242). Though some differences exist at the nucleotide level, the protein sequence of the resulting CDS was identical to that of au5.g7871_t1. Genomic DNA containing SAK1 was amplified using primers 5′-CAGGACCGGGCACTGAGTGAAGGTTA-3′ (+) and 5′-ATGATGCACTGTGGGACACGCTGAGT-3′ (−) using PrimeStar HS with GC buffer (Takara/Clontech, Palo Alto, CA) and cloned into pGEM-Teasy after adding an adenine. The resulting plasmid was co-transformed with pBC1 and selected with 1 μM paromomycin. Transformation of sak1 was performed as described previously (Kindle et al., 1989).

SAK1 antibody generation and protein detection by immunoblotting
To raise antibodies against SAK1, an epitope at the N-terminus of the translated coding sequence of SAK1 (DTLTLTPLREDATAESGGDA) was designed, synthesized and injected into rabbits, and the
Table 9. Genes up-regulated during both 18O$_2$ acclimation and dark to light transition

Gene ID (v4)	Gene name	Annotation	RB (log$_2$)	DL (log$_2$)
Cre02.g137700.t1.1*	CFA1	cyclopropane fatty acid synthase	6.49	2.34
Cre06.g281250.t1.1*	SOUL2	SOUL heme-binding protein	5.92	4.49
Cre01.g033300.t1.1*	RC3.5-related protein	5.72	3.62	
Cre13.g668850.t1.1*	LCI7	RS3.5-related protein	5.53	2.25
Cre13.g600650.t1.1*	4.76	3.26		
Cre06.g263550.t1.1*	4.46	5.27		
Cre07.g342100.t1.1*	4.43	1.84		
Cre09.g398700.t1.1*	CPLD27	coelaurine N-methyltransferase	4.05	1.36
Cre12.g492650.t1.1*	FAS2	fasciclin-like protein	4.01	9.24
Cre08.g381150.t1.1*	3.94	3.27		
Cre10.g458450.t1.2*	GPX5	glutathione peroxidase	3.91	3.08
Cre11.g474600.t1.1*	3.90	1.99		
Cre13.g600700.t1.1*	3.78	5.79		
Cre14.g613950.t1.1*	3.65	2.68		
Cre06.g269300.t1.1*	3.50	1.99		
Cre08.g380300.t1.2*	MSRA3	peptide methionine sulfoxide reductase	3.45	1.79
Cre01.g031650.t1.2*	CGLD12	protein with potential galactosyl transferase activity	3.30	4.90
Cre14.g629061.t1.1*	3.25	1.88		
Cre13.g564900.t1.1*	3.22	3.38		
Cre13.g586450.t1.1*	3.21	3.50		
Cre02.g139500.t1.1*	3.04	2.12		
Cre19.g756100.t1.1	3.04	6.53		
Cre01.g036000.t1.2	3.02	1.16		
Cre14.g618400.t1.1*	2.97	2.16		
Cre17.g741300.t1.2*	2.88	1.92		
Cre16.g648700.t1.2*	2.79	2.35		
Cre17.g729950.t1.1	2.77	2.61		
Cre17.g721000.t1.1	2.70	2.12		
Cre06.g263500.t1.1*	2.67	3.37		
Cre01.g016150.t1.1*	2.65	2.92		
Cre08.g380000.t1.1*	2.59	3.74		
Cre04.g224800.t1.1	VAMP74	R-SNARE protein, VAMP72-family	2.58	3.34
Cre03.g210150.t1.1	2.57	3.44		
Cre14.g615600.t1.1*	2.53	2.40		
Cre06.g293100.t1.1	Qc-SNARE SYP6-like protein	2.48	4.90	
Cre08.g368950.t1.1	DHQS	3-dehydroquinate synthase	2.39	2.49
Cre10.g424350.t1.2	metalloprotease	2.37	3.18	
Cre12.g537225.t1.1	2.34	3.39		
Cre07.g336900.t1.2	2.32	2.31		
Cre16.g664050.t1.1	2.31	1.88		
Cre16.g677750.t1.1	2.04	2.22		
Cre12.g537227.t1.1	2.00	3.46		

Table 9. Continued on next page
Gene ID (v4)	Gene name	Annotation	RB (log₂)	DL (log₂) (Duanmu et al., 2013)
Cre17.g737050.t1.1	RabGAP/TBC protein		1.99	2.32
Cre06.g297450.t1.1			1.93	1.46
Cre06.g258600.t1.1*			1.91	3.63
Cre16.g663950.t1.1	SCSD, C-5 sterol desaturase		1.89	2.03
Cre13.g588150.t1.1			1.86	6.21
Cre17.g722150.t1.1	PKS3 type III polyketide synthase		1.85	1.61
Cre16.g688550.t1.1	GST51 glutathione-S-transferase		1.84	1.20
Cre03.g207800.t1.1			1.84	7.09
Cre10.g444550.t1.1*	SPP1A signal peptide peptidase		1.81	5.33
Cre13.g602500.t1.2			1.76	1.59
Cre03.g163400.t1.2*			1.76	2.15
Cre10.g450000.t1.1			1.74	2.18
Cre01.g015500.t1.1			1.72	1.55
Cre02.g105750.t1.2			1.71	3.23
Cre01.g061750.t1.1	SPT2 serine palmitoyltransferase		1.71	2.29
Cre83.g796250.t1.1			1.68	1.59
Cre16.g656150.t1.1			1.67	3.55
Cre01.g002050.t1.2			1.66	3.15
Cre12.g556750.t1.2	Tic32-like 1 Short-chain dehydrogenase, classical family, similar to PsTic32		1.66	3.15
Cre12.g559100.t1.1			1.66	3.11
Cre09.g411750.t1.2			1.61	1.96
Cre11.g482650.t1.2			1.57	3.40
Cre06.g310500.t1.1*			1.57	6.23
Cre09.g397900.t1.1	transmembrane protein		1.56	2.02
Cre04.g215600.t1.1			1.53	2.64
Cre02.g093800.t1.1			1.51	4.99
Cre02.g093750.t1.1	NRX2 Nucleoredoxin 2		1.50	6.26
Cre01.g004350.t1.1			1.50	2.29
Cre01.g034600.t1.1			1.50	2.22
Cre11.g472600.t1.2			1.48	2.00
Cre12.g500500.t1.2	SMT1 sterol-C24-methyltransferase		1.46	3.05
Cre13.g577950.t1.1	VP56 subunit of the ESCRT-III complex		1.45	2.36
Cre02.g118200.t1.1			1.44	2.79
Cre01.g012500.t1.1	PRA1 prenylated rab acceptor family protein		1.43	2.46
Cre12.g521600.t1.2			1.42	2.89
Cre03.g179100.t1.1	ubiquitin fusion degradation protein		1.41	3.38
Cre09.g413150.t1.2			1.39	4.31
Cre13.g572200.t1.1	tyrosine/tryptophan transporter protein		1.39	2.57
Cre03.g185850.t1.2	PfkB-type carbohydrate kinase		1.37	3.05
Cre18.g743600.t1.1			1.37	1.65
Cre02.g076800.t1.1			1.36	2.41
Cre06.g256750.t1.1	FAT1 acyl carrier protein thioesterase		1.35	1.67

Table 9. Continued on next page
Gene ID (v4)	Gene name	Annotation	RB (log$_2$)	DL (log$_2$) (Duanmu et al., 2013)
Cre17.g729450.t1.1			1.34	1.90
Cre11.g471550.t1.1			1.34	3.29
Cre09.g395750.t1.2			1.33	2.87
Cre14.g617100.t1.1			1.33	3.33
Cre16.g691500.t1.1	Sec14p-like lipid-binding protein		1.33	2.28
Cre02.g079550.t1.1	DRP2	Dynamic-related GTPase	1.32	2.34
Cre02.g079300.t1.1	VPS4	AAA-ATPase of VPS4/SKD1 family	1.32	1.96
Cre05.g231700.t1.2			1.31	2.40
Cre02.g132300.t1.2	DNU12	DnaJ-like protein	1.30	2.24
Cre09.g794101.t1.1			1.30	2.65
Cre13.g565600.t1.2			1.29	3.42
Cre13.g593700.t1.1	monooxygenase, DBH-like		1.29	1.81
Cre12.g498000.t1.2			1.28	3.88
Cre06.g292900.t1.2			1.28	2.16
Cre08.g372100.t1.1	HSP70A	Heat shock protein 7A	1.27	2.28
Cre01.g039350.t1.1	NCR2	NADPH-cytochrome P45 reductase	1.26	2.19
Cre03.g211100.t1.1			1.26	2.11
Cre17.g731800.t1.1			1.25	1.78
Cre17.g730650.t1.1			1.25	2.28
Cre02.g123000.t1.2			1.24	1.42
Cre05.g247700.t1.2			1.24	2.71
Cre08.g360800.t1.2	haloacid dehalogenase-like hydrolase		1.23	4.39
Cre07.g350750.t1.1	PTOX1	alternative oxidase	1.22	3.32
Cre17.g703750.t1.1			1.20	2.21
Cre06.g306041.t1.1			1.20	2.90
Cre02.g116650.t1.1			1.20	2.83
Cre08.g379400.t1.2			1.18	3.04
Cre16.g677000.t1.1	HSP70E	Heat shock protein 7E	1.18	2.50
Cre06.g283900.t1.1			1.18	5.24
Cre14.g626750.t1.1			1.17	4.12
Cre01.g010700.t1.1			1.16	2.10
Cre01.g002000.t1.2	predicted protein		1.15	1.68
Cre04.g213150.t1.1			1.15	2.78
Cre16.g694250.t1.1			1.15	2.92
Cre05.g246400.t1.1			1.15	2.74
Cre02.g128450.t1.1			1.13	2.82
Cre03.g180250.t1.1	Myo-inositol-1-phosphate synthase		1.13	2.05
Cre03.g186150.t1.1			1.13	1.78
Cre02.g137800.t1.1			1.13	2.00
Cre11.g471500.t1.1	MFT10	predicted protein	1.11	1.40
Cre10.g435200.t1.1			1.10	2.13
Cre13.g593850.t1.2			1.10	3.91

Table 9. Continued on next page
Table 9. Continued

Gene ID (v4)	Gene name	Annotation	RB (log₂)	DL (log₂)
Cre19.g754000.t1.2			1.10	2.33
Cre13.g593869.t1.1			1.10	3.90
Cre08.g377300.t1.2			1.09	3.27
Cre04.g225050.t1.2		predicted protein	1.09	3.55
Cre07.g330300.t1.1			1.08	2.22
Cre12.g500450.t1.2			1.08	3.00
Cre06.g262000.t1.1			1.08	1.87
Cre10.g441550.t1.2	MAM3B	predicted protein	1.07	1.54
Cre06.g249800.t1.1		unknown conserved protein	1.07	2.08
Cre01.g038250.t1.1	SDC1	serine decarboxylase	1.06	1.92
Cre44.g788200.t1.1			1.06	2.13
Cre08.g359200.t1.2			1.03	2.69
Cre05.g245950.t1.1	DRP1	Dynamin-related GTPase	1.03	2.15
Cre05.g234100.t1.1	CYP745A1	cytochrome P45	1.01	2.61
Cre07.g328700.t1.2			1.01	1.56
Cre10.g440250.t1.2			1.01	2.14
Cre17.g725200.t1.1	MDR-like ABC transporter	1.01	3.30	
Cre82.g796100.t1.1			1.01	2.49

*Genes defined as SAK1-dependent in Table 4.
DOI: 10.7554/eLife.02286.021

resulting crude serum was affinity purified (Open Biosystems/Thermo Scientific, Waltham, MA). For immunoblot detection of SAK1, proteins were separated with NuPAGE 3–8% Tris Acetate gels (Life Technologies, Carlsbad, CA) and transferred to nitrocellulose membranes. All other blots were prepared from running the protein on 10–20% Tris-glycine gels and transferring to a PVDF membrane. The membranes were blocked for several hours in 5% milk in TBS-T, incubated with the primary antibody overnight, then with secondary antibody for several hours in 1% milk TBS-T before washing and developing with a chemiluminescence detection kit. Commercial antibodies were anti-histone H3 (ab1791; Abcam, Cambridge, UK) and anti-KDEL (ab12223; Abcam, Cambridge, UK). Other antibodies were generous gifts from Jean-David Rochaix (anti-PSAD), Olaf Kruse (anti-NAB1), and Patrice Hamel (anti-cytochrome c).

Subcellular fractionation and protein quantification

Nuclear fractions were prepared from 450 ml of synchronized cultures with ~2 × 10⁶ cells ml⁻¹ that had been incubated with or without 2 μM RB under light for 40 min. The cells were collected and treated with autolysin for 40 min and examined for the removal of cell walls by addition of 1 volume of 0.1% Triton-X. Nuclear extract was prepared as described previously (Winck et al., 2011) using CellLytic PN kit (Sigma-Aldrich, St. Louis, MO). Because there were bands detected in the nuclear extract close to the size of SAK1, nuclear extract was prepared from WT (4A+) and sak1 rather than a cell wall-deficient strain (cw15). Chloroplasts were isolated from cell wall-less strain cw15 as described previously (Klein et al., 1983). Mitochondria were isolated as described (Eriksson et al., 1995). After unbroken cells, chloroplasts, and mitochondria were collected, the ER fraction was collected by centrifugation at 100,000×g for 90 min at 4°C. The remaining supernatant was enriched for cytosol. Protein was extracted and prepared for SDS-PAGE as described (Calderon et al., 2013) with minor modifications. Protein was quantified by using BCA1 kit (Sigma-Aldrich, St. Louis, MO) after extraction with the methanol-chloroform method (Wessel and Flügge, 1984).
v4 ID	v5 ID	Gene name	Forward	Reverse
Cre01.g007300.t1.1	Cre01.g007300.t1.2	SOUL1†	AGCATGTGCCTGTTGGAGTAG	CTTACCATTAGGCGCTGACCA
au5.g10700.t1a	Cre03.g177600.t1.3	CFA1	CTGGATGGGTTGCTCACTAA	GCTCATGCTGACTCCACAGA
Cre06.g263550.t1.1	Cre06.g263550.t1.2	LC17	TTTTGCTGCTTGCAGTAT	TCAACCGGTGTCACACTCC
Cre06.g281250.t1.1	Cre06.g281250.t1.2	AOT4	CCGTGTCACAGATCCGCAA	CACACACGCCCTTCACTCA
Cre08.g358200.t1.2	Cre08.g358200.t1.2	SOUL1*	TGTCGATCAAGGTTGTTG	AAACCCACCCCTGCTT
Cre09.g39700.t1.2	Cre09.g39700.t1.2	CFA2	CGACCTGCTGCTTACCTC	GTGTAAGCGGTGTGCAA
Cre10.g458450.t1.2	Cre10.g458450.t1.2	GPX5	AACCAATCGCCAACTCCG	CATGGCTAGCCAGTCCCA
Cre12.g503950.t1.2	Cre12.g503950.t1.2	SOUL2	CCCTCCCTCTCTCAGACTA	CCGGCGTACCGGCAGGT
Cre13.g564900.t1.2	Cre13.g564900.t1.2	MRP3	TCAATCAGCTACGTACCTC	AGGGAAATGTAAGCCACACTT
au5.g4402.t1*	Cre13.g566800.t1.2		TGGTTGGAAGACCCCTTTTT	GACCTGAGTTGGCTAGTG
Cre13.g566850.t1.1	Cre13.g566850.t1.2	SOUL2	CCCTCCCTCTCTCAGACTA	CGTACGCTGCGCATTTT
Cre14.g613950.t1.1	Cre14.g613950.t1.2	SOUL2	CCCTCCCTCTCTCAGACTA	CGGCAACCTGACCTGGTG
Cre16.g683400.t1.2	Cre16.g683400.t1.2	SOUL2	CCCTCCCTCTCTCAGACTA	GACCCCGGTCAAATCACCTT
Cre16.g688550.t1.1	Cre16.g688550.t1.2	GST1	AGTGGCAGGAGGACTGTAAG	GTAAAAGACGTCGCTGAA
g6364.t1	g6364.t1	CBL1(3RCK1)	AGGTAACACTGCCTGACTGC	GGTGGCTAGCCAGACCAG
Cre14.g623650.t1.1	Cre14.g623650.t1.1	MKS1	GCTTGAGCGGAGACGAA	CGCTGAAAGCTTGCAGA
au5.g2281.t1*	g16723.t1	MKS1	GCTTGAGCGGAGACGAA	CGCTGAAAGCTTGCAGA
Cre08.g380300.t1.2	Cre08.g380300.t1.2	SAUT1(5'UTR)	ACCACCGATCACGTAGCTGCC	CGCTCAATGAAAGCTTGAGAG
au5.g7811.t1†	(Cre17.g41300.t1.2)†	SAK1(3'UTR)	TCAACCGGTGTCAGGACTGCAA	ACCCTACCCAGTCCACATCC
Cre08.g365900.t1.1	Cre08.g365900.t1.2	LHCSR1	CACACAACTTGCAGCAAGC	ATCTGTCTACGGTTGTGCT
Cre04.g220850.t1.1	Cre04.g220850.t1.2		TAATGGATAGGAGGCTGCA	ACTGCCAGTTATGGGCTGCTG
Cre09.g395750.t1.2	Cre09.g395750.t1.3		ACGCGTCAACCTGACTGCTG	CGCAAACAGCTCCTCAAGAAGA

*Was originally mapped and identified as augustus version 5 models within Chlamydomonas genome v4.
†SOUL1 was given the name in v4 but not v5.
‡Primers were designed against experimentally obtained cDNA (Genbank accession KF985242) and differs from v5. Closest gene model is au5.g7811.t1.
Acknowledgements
We would like to thank Deqiang Duanmu and Cinzia Formighieri for discussions on subcellular fractionation, David Lopez, Ian Blaby, and Simon Prochnik for guidance on functional analysis of RNA-seq data and gene ID identification, Attila Molnar for advice on RACE, and Olaf Kruse, Patrice Hamel, and Jean-David Rochaix for gifts of antibodies. This project was supported by Award Number R01GM071908 from the National Institute of General Medical Sciences and by the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation (through Grant GBMF3070) to KKN and National Institutes of Health R24 GM092473 for RNA Seq data analysis. The content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Institute of General Medical Sciences or the National Institutes of Health.

Additional information

Funding

Funder	Grant reference number	Author
Howard Hughes Medical Institute		Krishna K Niyogi
Gordon and Betty Moore Foundation	GBMF3070	Krishna K Niyogi
National Institutes of Health	R24 GM092473	Matteo Pellegrini, Sabeeka S Merchant
National Institute of General Medical Sciences	R01 GM071908	Krishna K Niyogi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions

SW, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; BLC, RMD, Acquisition of data, Drafting or revising the article; HKL, Acquisition of data; DC, Acquisition of data, Analysis and interpretation of data, Drafting or revising the article; MP, Acquisition of data, Analysis and interpretation of data; SSM, Analysis and interpretation of data, Drafting or revising the article; KKN, Conception and design, Analysis and interpretation of data, Drafting or revising the article.

Additional files

Supplementary file

- Supplementary file 1. Genes that display significant differential expression by pair-wise comparisons. DOI: 10.7554/eLife.02286.023

Major dataset

The following dataset was generated:

Author(s)	Year	Dataset title	Dataset ID and/or URL	Database, license, and accessibility information
Wakao S, Chin BL, Ledford HK, Dent RM, Casero D, Pellegrini M, Merchant SS, Niyogi KK	2014	Data from: Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii	http://dx.doi.org/doi:10.5061/dryad.h7pm2	Available at Dryad Digital Repository under a CC0 Public Domain Dedication.

References

Ambrosi E, Capaldi S, Bovi M, Saccomani G, Perduca M, Monaco HL. 2011. Structural changes in the BH3 domain of SOUL protein upon interaction with the anti-apoptotic protein Bcl-xL. *The Biochemical Journal* **438**:291–301. doi: 10.1042/BJ20110257.
Brezezowski P, Wilson KE, Gray GR. 2012. The PSBP2 protein of Chlamydomonas reinhardtii is required for singlet oxygen-dependent signaling. *Planta* 236:1289–1303. doi: 10.1007/s00425-012-1683-1

Calderon RH, Garcia-Cerdán JG, Malnóe A, Cook R, Russell JJ, Gaw C, Dent RM, de Vitry C, Niyogi KK. 2013. A conserved rubredoxin is necessary for photosystem II accumulation in diverse oxygenic photautotrophs. *The Journal of Biological Chemistry* 288:26688–26696. doi: 10.1074/jbc.M113.478629

Chi W, Sun X, Zhang L. 2013. Intracellular signaling from plastid to nucleus. *Annual Review of Plant Biology* 64:559–582. doi: 10.1146/annurev-arplant-050312-120147

Coll NS, Danon A, Meurer J, Cho WK, Apel K. 2009. Characterization of soldat8, a suppressor of singlet oxygen-induced cell death in Arabidopsis seedlings. *Plant & Cell Physiology* 50:707–718. doi: 10.1093/pcp/pcp036

Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R. 2005. Cytosolic Ascorbate Peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. *The Plant Cell* 17:268–281. doi: 10.1105/tpc.104.026971

Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK. 2005. Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of *Chlamydomonas reinhardtii*. *Plant Physiology* 137:545–556. doi: 10.1104/pp.105.055244

Desikan R, Mackerness SAH, Hancock JT, Neill SJ. 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. *Plant Physiology* 127:159–172. doi: 10.1104/pp.127.1.159

Duanmu D, Casero D, Dent RM, Gallaher S, Yang W, Rockwell NC, Martin SS, Pellegrini M, Niyogi KK, Merchant SS, Grossman AR, Lagarias JC. 2013. Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival. *Proceedings of the National Academy of Sciences of the United States of America* 110:3621–3626. doi: 10.1073/pnas.1222375110

Eriksson M, Gardestrom P, Samuelsson G. 1995. Isolation, purification, and characterization of mitochondria from *Chlamydomonas reinhardtii*. *Plant Physiology* 107:479–483.

Estavillo GM, Crisp PA, Pornsiriwong W, Wirtz D, Collinge D, Carrie C, Giraud E, Neill SJ, Bajaj P, Bowyer C, Huber W. 2007. Single oxygen-resistant 1 links reactive electrophile signaling to singlet oxygen acclimation in *Chlamydomonas reinhardtii*. *Proceedings of the National Academy of Sciences of the United States of America* 104:E1302–E1311.

Frimmer FH, Bauer H, Putzien J, Mersecke P, Braun AM. 1987. Laser flash photolysis of dissolved aquatic humic matter and the sensitized production of singlet oxygen. *Environmental Science & Technology* 21:541–545. doi: 10.1021/es00160a002.

Gadjev I, Vandreauwera S, Gechev TS, Laiolo C, Minkov IN, Shulaev V, Apel K, Inzé D, Mittler R, Van Breusegem F. 2006. Transcriptional footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. *Plant Physiology* 141:436–445. doi: 10.1104/pp.106.078717

Glaeser SP, Grossart H-P, Glaeser J. 2010. Singlet oxygen, a neglected but important environmental factor: short-term and long-term effects on bacterioplankton composition in a humic lake. *Environmental Microbiology* 12:3124–3136. doi: 10.1111/j.1462-2920.2010.02285.x

Glaeser SP, Berghoff BA, Stratmann V, Grossart H-P, Glaeser J. 2014. Contrasting effects of singlet oxygen and hydrogen peroxide on bacterial community composition in a humic lake. *PLoS ONE* 9:e92518. doi: 10.1371/journal.pone.0092518.

Guerzoni ME, Lanciotti R, Cocconcelli PS. 2001. Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in *Lactobacillus helveticus*. *Molecular Microbiology* 41:2255–2264.
Harris EH. 2009. The chlamydomonas Sourcebook. Burlington, MA: Academic Press, Elsevier. 2nd edition.

Kim BH, Kim S, Kim HG, Lee J, Lee IS, Park YK. 2005. The formation of cyclopropane fatty acids in Salmonella enterica serovar Typhimurium. Nature Reviews Microbiology 151:209–218. doi: 10.1093/micr.0.27265-0.

Kindle KL, Schnell RA, Fernández E, Lefebvre PA. 1989. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. The Journal of Cell Biology 109:2589–2601. doi: 10.1083/jcb.109.6.2589.

Klein U, Chen C, Gibbs M, Platt-Aloia KA. 1983. Cellular fractionation of Chlamydomonas reinhardtii with emphasis on the isolation of the chloroplast. Plant Physiology 107:479–483.

Knox JP, Dodge AD. 1985. Singlet oxygen and plants. Phytochemistry 24:889–896. doi: 10.1016/S0031-9422(00)83147-7.

Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J. 2007. Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715–719. doi: 10.1126/science.1140516.

Krieger-Liszkay A. 2005. Singlet oxygen production in photosynthesis. Journal of Experimental Botany 56:337–346. doi: 10.1093/jxb/erh237.

Larkin RM, Alonso JM, Ecker JR, Chory J. 2003. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science 299:902–906. doi: 10.1126/science.1079978.

Ledford HK, Chin BL, Niyogi KK. 2007. Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryotic Cell 6:919–930. doi: 10.1089/EC.000207-06.

Lee H-J, Mochizuki N, Masuda T, Buckhout TJ. 2012. Disrupting the bimolecular binding of the haem-binding protein 5 (AtHBP5) to haem oxygenase 1 (HY1) leads to oxidative stress in Arabidopsis. Journal of Experimental Botany 63:5975–5978. doi: 10.1093/jxb/erz242.

Lee KP, Kim C, Landgraf F, Apel K. 2007. EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 104:10270–10275. doi: 10.1073/pnas.0702061104.

Leisinger U, Rüfenacht K, Fischer B, Pesaro M, Spengler A, Zehnder AJB, Eggen RIL. 2001. The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. Plant Molecular Biology 43:395–408. doi: 10.1023/A:1010601442452.

Li Z, Wakao S, Fischer BB, Niyogi KK. 2009. Sensing and responding to excess light. Annual Review of Plant Biology 60:239–260. doi: 10.1146/annurev.arplant.58.032806.103844.

Lindsey K, Pullen ML, Topping JF. 2003. Importance of plant sterols in formation and hormone signalling. Trends in Plant Science 8:521–525. doi: 10.1016/j.tplants.2003.09.012.

Liu YG, Mitsukawa N, Oosumi T, Whittier RF. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The Plant Journal 8:457–463. doi: 10.1046/j.1365-313X.1995.0030457.x.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. doi: 10.1006/meth.2001.1262.

Lopez D, Casero D, Cokus SJ, Merchant SS, Pellegrini M. 2011. Algal Functional Annotation Tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data. BMC Bioinformatics 12:282. doi: 10.1186/1471-2105-12-282.

Maeda H, Dudareva N. 2012. The shikimate pathway and aromatic amino Acid biosynthesis in plants. Annual Review of Plant Biology 63:73–105. doi: 10.1146/annurev-arplant-042111-105349.

Mittler R, Vanderwaera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9:490–498. doi: 10.1016/j.tplants.2004.08.009.

Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J. 2001. Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proceedings of the National Academy of Sciences of the United States of America 98:2053–2058. doi: 10.1073/pnas.98.4.2053.

Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D. 2009. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. The Plant Journal 58:165–174. doi: 10.1111/j.1365-313X.2008.03767.x.

Mor A, Koh E, Weiner L, Rosenwater S, Sibony-Ben亚马mi H, Fluhr R. 2014. Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses. Plant Physiology 165:249–261. doi: 10.1104/pp.114.236380.

Mussgnug JH, Wobbe L, Elles I, Claus C, Hamilton M, Fink A, Kahmann U, Kapazoglou A, Mullineaux CW, Hippler M, Nickelsen J, Nixon PJ, Kruse O. 2005. NAB1 is a RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. The Plant Cell 17:3409–3421. doi: 10.1105/tpc.105.035774.

Nam T-W, Ziegelhoffer EC, Lemke RAS, Donohue TJ. 2013. Proteins needed to activate a transcriptional response to the reactive oxygen species singlet oxygen. Mbio 4:e00541–12. doi: 10.1128/mBio.00541-12.

Nott A, Jung H-S, Koussevitzky S, Chory J. 2006. Plastid-to-nucleus retrograde signaling. Annual Review of Plant Biology 57:739–759. doi: 10.1146/annurev.plant.57.032905.105310.

op den Camp RGL, Ochsenbein D, Przybyla C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Gobel C, Feussner J, Nater M, Apel K. 2003. Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. The Plant Cell 15:2320–2332. doi: 10.1101/tpc.014662.

Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, Hippler M, Niyogi KK. 2009. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462:518–521. doi: 10.1038/nature08587.
Plant biology

Ramela FF, Birtic SS, Genies CC, Soubigou-Taconnat LL, Triantaphyllides CC, Hauxav MM. 2012. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. *Proceedings of the National Academy of Sciences of the United States of America* **109**:5535–5540. doi: 10.1073/pnas.1115982109.

Sato E, Sagami I, Uchida T, Sato A, Kitagawa T, Igarashi J, Shimizu T. 2004. SOUL in mouse eyes is a new hexameric heme-binding protein with characteristic optical absorption, resonance Raman spectral, and heme-binding properties. *Biochemistry* **43**:14189–14198. doi: 10.1021/bi048742i.

Schmollinger S, Muilhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, Moseley JL, Kropat J, Sommer F, Strenkert D, Hemme D, Pellegrini M, Grossman AR, Stitt M, Schröda M, Merchant M, SS. 2014. Nitrogen-sparing mechanisms in *Chlamydomonas* affect the transcriprome, the proteome, and photosynthetic metabolism. *The Plant Cell* **26**:1410–1435. doi: 10.1105/tpc.113.122523.

Shao N, Duan GY, Bock R. 2013. A mediator of singlet oxygen responses in *Chlamydomonas reinhardtii* and *Arabidopsis* identified by a luciferase-based genetic screen in algal cells. *The Plant Cell* **25**:4209–4226. doi: 10.1105/tpc.113.117390.

Simková K, Moreau F, Pawlak P, Vriet C, Baruah A, Alexandre C, Hennig L, Apel K, Laloi C. 2012. Integration of stress-related and reactive oxygen species-mediated signals by Topoisomerase VI in *Arabidopsis thaliana*. *Proceedings of the National Academy of Sciences of the United States of America* **109**:16360–16365. doi: 10.1073/pnas.1202041109.

Steinberg C, Meinelt T, Timofeyev MA, Bittner M, Menzel R. 2008. Humic substances. Part 2: interactions with organisms. *Environmental Science and Pollution Research International* **15**:128–135. doi: 10.1007/esr2007.07.434.

Stephen DW, Rivers SL, Jamieson DJ. 1995. The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of *Saccharomyces cerevisiae*. *Molecular Microbiology* **16**:415–423. doi: 10.1111/j.1365-2958.1995.tb02407.x.

Straka JG, Rank JM, Bloomer JR. 1990. Porphyria and porphyrin metabolism. *Annual Review of Medicine* **41**:457–469. doi: 10.1146/annurev.me.41.020190.002325.

Strand A, Asami T, Alonso J, Ecker JR, Chory J. 2003. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. *Nature* **421**:79–83. doi: 10.1038/nature01204.

Sun X, Feng P, Xu X, Guo H, Ma J, Chi W, Lin R, Lu C, Zhang L. 2011. A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. *Nature Communications* **2**:477–486. doi: 10.1038/ncomms1486.

Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M. 2004. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. *The Plant Journal* **37**:914–939. doi: 10.1111/j.1365-313X.2004.02016.x.

Trebst A, Depka B, Holländer-Czytko H. 2002. A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in *Chlamydomonas reinhardtii*. *FEBS Letters* **516**:156–160. doi: 10.1016/S0014-5793(02)02526-7.

Triantaphyllides C, Krischke M, Hoeberichts FA, Kas B, Greser G, Havaux M, Van Breusegem F, Mueller MJ. 2008. Singlet oxygen is the major reactive oxygen species Involved in photooxidative damage to plants. *Plant Physiology* **148**:960–968. doi: 10.1104/pp.108.125690.

Urzica EI, Adler LN, Page MD, Linster CL, Arbing MA, Casero D, Pellegrini M, Merchant SS, Clarke SG. 2012. Impact of oxidative stress on ascorbate biosynthesis in *Chlamydomonas* via regulation of the VTC2 gene encoding a GDP-L-galactose phosphorylase. *The Journal of Biological Chemistry* **287**:14234–14245. doi: 10.1074/jbc.M112.341982.

Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombouts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F. 2004. Catalase deficiency drastically affects gene expression induced by high light in *Arabidopsis thaliana*. *The Plant Journal*(39):45–58. doi: 10.1111/j.1365-313X.2004.02015.x.*

Vanderauwera S, Zimmermann P, Rombouts S, Vandenabeele S, Langebartels C, Grusswem W, Inzé D, Van Breusegem F. 2005. Genome-wide analysis of hydrogen peroxide-regulated gene expression in *Arabidopsis* reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. *Plant Physiology* **139**:806–821. doi: 10.1104/pp.105.065896.

Vinti G, Hills A, Campbell S, Bowyer JR, Mochizuki N, Chory J, López-Juez E. 2000. Interactions between hy1 and gun mutants of *Arabidopsis*, and their implications for plastid/nuclear signalling. *The Plant Journal* **24**:883–894. doi: 10.1046/j.1365-313X.2000.00936.x.

von Gromoff ED, Alawady A, Meinecke L, Grimm B, Beck CF. 2008. Heme, a plastid-derived regulator of nuclear gene expression in *Chlamydomonas*. *The Plant Cell* **20**:552–567. doi: 10.1105/tpc.107.054650.

Wagner D, Przybyla D, op den Camp RGL, Kim C, Landgraf F, Lee KP, Wursch M, Laloi C, Nater M, Hideg E, Apel K. 2004. The genetic basis of singlet oxygen-induced stress responses of *Arabidopsis thaliana*. *Science* **306**:1183–1185. doi: 10.1126/science.1103178.

Wakao S, Chiu BL, Ledford HK, Dent RM, Casero D, Pellegrini M, Merchant SS, Niyogi KK. 2014. Data from: Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in *Chlamydomonas reinhardtii*. 10.5061/dryad.h7pm2. Available at Dryad Digital Repository under a CCO Public Domain Dedication.

Wessel D, Flügge UJ. 1984. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. *Anal. Biochemistry* **138**:141–143.

Winck FV, Kwansiewski M, Winkelkoop S, Mueller-Roeber B. 2011. An optimized method for the isolation of nuclei from *Chlamydomonas reinhardtii* (chlorophyceae). *Journal of Physiology* **47**:333–340. doi: 10.1111/j.1529-8817.2011.00967.x.
Woodson JD, Perez-Ruiz JM, Schmitz RJ, Ecker JR, Chory J. 2012. Sigma factor-mediated plastid retrograde signals control nuclear gene expression. *The Plant Journal* 73:1–13. doi: 10.1111/tpj.12011.

Woodson JDJ, Chory JJ. 2008. Coordination of gene expression between organelar and nuclear genomes. *Nature Reviews Genetics* 9:383–395. doi: 10.1038/nrg2348.

Xiao Y, Savchenko T, Baidoo EKEK, Chehab WE, Hayden DM, Tolstikov V, Corwin JA, Kliebenstein DJ, Keasling JD, Dehesh K. 2012. Retrograde signaling by the plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. *Cell* 149:1525–1535. doi: 10.1016/j.cell.2012.04.038.

Ziegelhoffer EC, Donohue TJ. 2009. Bacterial responses to photo-oxidative stress. *Nature Reviews Microbiology* 7:856–863. doi: 10.1038/nrmicro2237.

Zylka MJ, Reppert SM. 1999. Discovery of a putative heme-binding protein family (SOUL/HBP) by two-tissue suppression subtractive hybridization and database searches. *Brain Research Molecular Brain Research* 74:175–181. doi: 10.1016/S0169-328X(99)00277-6.