Fatty Acids Profile, Atherogenic (IA) and Thrombogenic (IT) Health Lipid Indices in *Leiognathusbindus* and *Upeneussulphureus*

Mansoreh Ghaeni, Khadijeh Nabi Ghahfarokhi* and Ladan Zaheri*

*1 Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
2 Fisheries Scientific Association, Islamic Azad University, Ahvaz, Iran

Abstract

In this study, the fatty acids composition and the related health lipid indices (IA, atherogenic and IT thrombogenic) of Orange fin pony fish (*Leiognathusbindus*) and sulphur goatfishes (*Upeneussulphureus*) were studied in fall and spring in Mahshahr port in south of Iran. Fatty acids were analyzed by Gas Chromatograph (FID). The fatty acid composition of *Leiognathusbindus* and *Upeneussulphureus* showed a relevant proportion (26.95% and 25.34% respectively) of poly-unsaturated fatty acids (PUFAs) with a prevalence of the n – 3 series. The IA and IT indices resulted comparable in fall and spring. The ratio of W3/W6 was different in fall and spring for both species.

Keywords:

Leiognathusbindus; Upeneussulphureus; Atherogenic; Thrombogenic

Introduction

Recently great interest has been devoted to the study of the lipid composition of fish and fish products which are recognized as important sources of n-3 fatty acids. In fact a wide class of health beneficial fatty acids characterizes their nutritional value and their therapeutic effects are raising the commercial interest of this food mainly for its high content of healthy fatty acids [1,2].

The lipids of marine fish have gained attention because they are rich in fatty acids, especially docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), which are predominant. Among the essential fatty acids are important for the human health. Most fatty acids can be synthesized in the body, however a human body lacks the enzymes required to produce the two essential fatty acids EPA and DHA. These fatty acids must be taken from the diet [3].

The lipid content of fish is highly variable between and within species. Many factors appear to contribute to this variability, including food availability; catch location, fish size, and maturity stage, biological variations, sampled tissue, ration size and starvation [4].

In this study we selected two marine fish; goat fish and pony fish because they are trash fish in our trawlers and the world total catch of them is 31757 and 217506 ton respectively [5]. They were distributed in many country and those species commonly used as Surimi raw materials, their production trends and their abundance in the Southeast Asian waters were identified [6] Even though these species have less demand in fresh condition, there is considerable market for dry fish and also as fishmeal especially in poultry industry. *Upeneussulphureus* (sulphur goatfishes) is from Mullidae family in the order Perciformes [7] that distributed from Red Sea, Persian Gulf, Madagascar, Seychelles, Réunion, Pakistan, India, Sri Lanka, Andaman Sea, Indonesia, New Guinea, Fiji, New Caledonia, Philippines and southern Japan [8].

Leiognathusbindus (Orange fin pony fish) known as slip mouths or slimy are a small family, Leioagnathidae, of fishes in the order Perciformes [9]. They reported in the Red Sea (Port Sudan), Persian Gulf, coasts of India and Sri Lanka, and elsewhere in the eastern Indian Ocean; eastward to the western Central Pacific [5].

Fishery, distribution, biology and population dynamics of them have been studied in detail [10-20]. Since no detailed information is available on fatty acid profile from these species so the objective of this study was to determine fatty acid profiles goatfish and pony fish and to compare their nutritional content in fall and spring season in Mahshahr port.

Materials and Methods

Samples

Goat fish and pony fish were obtained from Fishermen at Mahshahr port randomly in spring and fall season. Number of fish was 30 from each species. The fishes were caught the night before the procedure, kept in ice and transferred to the laboratory for analyses. The fishes were weighed, deheaded, eviscerated and cleaned prior to freezing. In an attempt to obtain a homogenous sample from each species, their flesh were removed from their backbones, minced, blended and immediately extracted. The mean weights and total length of the fishes were: 78.25 g and 17 cm for goat fish and 13.25 g and 6.5 cm for pony fish.

Lipid extraction

Lipid extractions were performed on minced fish samples (25 g each) using the extraction methods and chloroform-methanol. Methylene chloride (100 μL) and 1 mL 0.5 M NaOH in methanol were added to oil extracts in a test-tube and heated in a water bath at 90°C for 10 min. The test tubes were removed from the water bath and allowed to cool before addition of 1 mL 14% BF3 in methanol. The test tubes are heated again in a water bath for 90°C for 10 min, and cooled to room temperature. One mL distilled water and 200-500 μL hexane was added to the test tubes and then FAME was extracted by vigorous shaking for about 1 min. Following centrifugation, the top layer was transferred into a sample bottle for GC analysis [21].

Corresponding author: Khadijeh Nabi Ghahfarokhi, Fisheries Scientific Association, Islamic Azad University, Ahvaz, Iran, E-mail: gonomwo@yahoo.com

Received July 26, 2013; **Accepted** November 22, 2013; **Published** November 28, 2013

Citation: Ghaeni M, Ghahtfarokhi KN, Zahirer L (2013) Fatty Acids Profile, Atherogenic (IA) and Thrombogenic (IT) Health Lipid Indices in *Leiognathusbindus* and *Upeneussulphureus*. J Marine Sci Res Dev 3: 138. doi: 10.4172/2155-9910.1000138

Copyright: © 2013 Ghaeni M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Fatty acids analysis

Fatty acid analyses were carried out using the IUPAC II.D.19 method. Fatty acids were analyzed using a HP Agilent 5890 system Gas Chromatograph equipped with SP-2330 and a flame ionization detector (FID). Separation of fatty acid methyl esters was achieved by using fused silica capillary column (30 m×0.25 mm×0.20 μm film thickness). The oven temperature was set at 120°C for 2 min then reached to 220°C with a ramp rate of 5°C/min, and then held for 15 min. The injector and detector temperatures were maintained at 155°C and 260°C, respectively. The carrier gas was helium 10 psi with a split ratio of 1/50. The air and hydrogen of pressure were 338 ml/min and 45 ml/min respectively. Results were expressed as the percentage of each fatty acid with respect to the total fatty acids [22,23].

Indexes of lipid quality

The saturated/unsaturated fatty acids (SFA/UFA) ratios were calculated including trans fatty acids in the UFA group. The atherogenicity (AI) and thrombogenicity (TI) indices were also calculated according to the following equations [22,23].

IA = \left[\frac{4 \times C14:0 + C16:0 + C18:0}{\sum \text{MUFA} + \sum \text{PUFA} - n6 + \sum \text{PUFA} - n3} \right]

IT = \frac{(C14:0 + C16:0 + C18:0)/(0.5 \times \text{MUFA} + 0.5 \times \text{PUFA} - n6 + 3 \times \text{PUFA} - n3 + \text{PUFA} - n3/\text{PUFA} - n6)}

Statistical Analysis

Data were subjected to analysis of variance (ANOVA) and mean comparison was carried out using Duncan's test. Statistical analysis was performed with SPSS. Significance was established at P<0.05.

Results

Fatty acid profile

The fatty acid composition of goatfish and pony fish are shown in Table 1. The amount and number of fatty acids were different in fall and spring for each species (Figure 1). A total of 24 fatty acids in goatfish and 26 fatty acids for pony fish were identified in this study in fall. The determination of the fatty acid compositions of goatfish and pony fish were performed by GC. The composition of saturated (SFA), monounsaturated (MUFA), polyunsaturated fatty acid (PUFA) and high unsaturated fatty acid (HUFA) of goatfish were found to be 52.4%, 23.5%, 18.9% and 15.47% in fall, while those of pony fish were found to be 50.004%, 24.919%, 17.27% and 14.62%, respectively. Accordingly, the SFA level in gold band goatfish and the MUFA level in striped red mullet were the highest among the other fatty acid groups. The PUFA/SFA ratios for goatfish and pony fish were 0.36 and 0.34 respectively in fall.

Lipid quality indices

Table 2 and Figure 2 show total lipids IA and IT values for Leiongnathus bindus and Upeneus sulphureus in fall and spring.

Table 1: Fatty acid profile (%) of Leiongnathus bindus and Upeneus sulphureus in fall and spring.

Fatty acid	Leiongnathus bindus	Upeneus sulphureus		
fall	spring	fall	spring	
(12:0)	0.1	--	0.25	--
(14:0)	5.49	5.95	2.9	2.45
(15:0)	0.47	--	0.34	--
(16:0)	29.57	33.97	27.49	39.7
(17:0)	1.04	1.36	0.92	1.76
(18:0)	10.75	10.25	16.41	11.97
(20:0)	0.15	1.78	1.97	--
(21:0)	0.43	--	0.53	--
(22:0)	0.6	1.06	--	1.8
(23:0)	0.084	--	--	--
(24:0)	1.32	--	1.59	--
(14:1)	1.57	1.08	1.36	0.89
(16:1)	9.59	13	5.27	6.97
(18:1)	12.09	18.4	15.40	24.45
(20:1)	0.71	1.11	0.83	--
(22:1)	0.080	--	0.35	--
(24:1)	0.87	--	0.29	--
(18:2)	0.66	0.8	1.12	0.85
(20:2)	0.29	--	0.25	--
(18:3)	0.36	0.61	0.29	0.33
(18:3)	1.07	0.47	1.54	0.5
(20:3)	0.27	--	0.23	--
(20:4)	2.99	--	4.58	--
(22:5)	0.7	1.66	1.74	0.46
EPA	3.35	3.78	4.5	4.53
DHA	50.04	54.37	52.4	57.68
MUFA	24.919	33.59	23.5	33.31
PUFA	17.27	11.95	18.9	8.9
HUFA	14.62	10.07	15.47	7.22

Figure 1: Fatty acid profile (%) of Leiongnathus bindus and Upeneus sulphureus in fall and spring.

Citation: Ghaeni M, Ghahfarokhi KN, Zaheri L (2013) Fatty Acids Profile, Atherogenic (IA) and Thrombogenic (IT) Health Lipid Indices in Leiongnathusbindus and Upeneus sulphureus. J Marine Sci Res Dev 3: 138. doi: 10.4172/2155-9910.1000138

J Marine Sci Res Dev
ISSN:2155-9910 JMSRD an open access journal

Volume 3 • Issue 4 • 1000138
demand for fish with a growing concern for the health aspects of the authorities, not only for its high-quality protein content, but also for reared and wild sharp snout sea bream, help prevent diseases. Inclusion in the formulation of highly unsaturated low-fat diets and to acid (EPA) was found in appreciable amounts and would be suitable for which is primarily docosahexaenoic acid (DHA) and eicosapentaenoic extensively in both types of fishes. The n-3 polyunsaturated fatty acid fall and spring. Polyunsaturated fatty acids (PUFA) are found to be one of the year or the season, reared fish could be more suitable than wild fish for human consumption.

IA=Index of Athero-genicity; IT=Index of Thrombogenicity

Discussion
Fish consumption is increasingly recommended by health authorities, not only for its high-quality protein content, but also for being a source of fatty acids considered highly beneficial for human health (n3 and n6). Therefore, it is not surprising that there is higher demand for fish with a growing concern for the health aspects of the diet [25].

In conclusion Leiongathus bindus and Upeneus sulphureus showed a considerable amount of saturated and unsaturated fatty acids in both fall and spring. Polyunsaturated fatty acids (PUFA) are found to be one of the highest compounds found in these fishes and n-3 PUFA is studied extensively in both types of fishes. The n-3 polyunsaturated fatty acid which is primarily docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) was found in appreciable amounts and would be suitable for inclusion in the formulation of highly unsaturated low-fat diets and help to prevent diseases.

The AI and IT values obtained are higher than those reported for reared and wild sharp snout sea bream, Diplodus puntazzo [4].

In view of the tissue fatty acid composition, depending on the time of the year or the season, reared fish could be more suitable than wild fish for human consumption.

References
1. Garrafio MA, Vassallo-Agius R, Nengas Y, Lembo E, Rando R, et al. (2011) Fatty Acids Profile, Atherogenic (IA) and Thrombogenic (IT) Health Lipid Indices, of Raw Roe of Blue Fin Tuna (Thunnus thynnus L.) and Their Salted Product “Bottarga”. Food Nutr Sci 2: 736-743.
2. Sanfilippo M, Reale A, Zino M, Romeo V, Lembo E, et al. (2011) Chemical Composition and Nutritional Value of Engraulis encrasicolus (Linnaeus, 1758) Caught by Driftnet “Menaide” along Sicilian Coast: a Natural Food for Mediterranean Diet. World Journal of Fish and Marine Sciences 3: 44-50.
3. Öksüz A, Özylmaiz A, Köver Ş (2011) Fatty Acid Composition and Mineral Content of Upeneus moluccensis and Mullus surmuletus. Turkish Journal of Fisheries and Aquatic Sciences 11: 69-75.
4. Rueda FM, Hernández MD, Egea MA, Aguado F, Garci’a B, et al. (2001) Differences in tissue fatty acid composition between reared and wild sharpnose sea bream, Diplodus puntazzo (Cetti, 1777). Br J Nutr 86: 617-622.
5. Woodland DJ, Premcharoen S, Cabanban AS (2001) Bony fish: leiocephalidae. www.FAO.org.
6. (2009) End-of-Project Meeting of the Working Party on Information Collection for Economically Important Species as Surimi Raw Materials in the Southeast Asian Region, SEAFDEC.
7. Randall JE, Kulbicki M (2005) A Review of the Goatfishes of the Genus Upeneus (Perciformes: Mullidae) from New Caledonia and the Chesterfield Bank, with a New Species and Four New Records. Zoological Studies 45: 298-307.
8. Ublein F, Heemstra PC (2010) A taxonomic review of the Western Indian Ocean goatfishes of the genus Upeneus (Family Mullidae), with descriptions of four new species. Smithsiana Bulletin 11: 35-71.
9. Froese R, Pauly D (2006) “Leiocephalidae” in FishBase.
10. Rajkumar U (2006) Fishery and population dynamics of silverbellies off Visakhapatnam. J Mar Biol Ass India 48: 213-219.
11. Shadi A, Dehghan Medishe S, kouchianian P, Gandomi Y (2011) Length-Weight Relationships for 6 Fish Species from Khuzestan (North of Persian Gulf), Iran. World J Fish Marine Sci 3: 129-131.
12. Sparks JS (2006) A New Species of Ponyfish (Teleostei: Leiocephalidae:Photoplagios) from Madagascar, with a Phylogeny for Photoplagios and Comments on the Status of Equula lineolata Valenciennes; The American Museum of Natural History Central Park West at 79th Street, New York, NY 10024 Number 3526: 20.
13. Kwak SN, Klump DW (2004) Temporal variation in species composition and abundance of fish and decapods of a tropical seagrass bed in Cockle Bay, North Queensland, Australia. Aquatic Botany 78: 119-134.
14. Ra HK, Choi Y, Lim H (2005) Taxonomic review of the genus Liognathus from Korea. Journal of Ichthyology 17: 91-97.
15. Golani D, Fricke R, Golani BA (2011) First record of the Indo-Pacific slender ponyfish Equetus elongatulus (Günther, 1874) (Perciformes: Leiocephalidae) in the Mediterranean. Aquatic Invasions 5: S75-S77.
16. Murty VS (1986) Studies on the growth and population dynamics of silverbelly LEIOGNATHUS BINDUS (VALENCIENNES) in the trawling grounds off Kakinada. Indian Journal of Fisheries 33: 3.
17. Abraham KJ, Joshi KK, Murty VSR (2011) Taxonomy of the fishes of the family Leiocephalidae (Pisces, Teleostei) from the West Coast of India. Zoologia 286: 1-16.
18. Chakrabarty P, Amarasinge Th, Sparks JS (2008) Rediscription of ponyfishes of Sri Lanka and the status of Aurigequa fowler 1918. Cey J Sci 37: 143-161.
19. Gholami M, Zoriastain N (2005) Identification and evaluation of Leiohanidae family in Persian Gulf. 6th conference of science and marine technology, Tehran.
20. Chukwuemeka U, Ndukwe GI, Audu TO (2008) Comparison of Fatty Acids Profile of Some Freshwater and Marine Fishes. Internet Journal of Food Safety 10: 9-17.
21. Turan H, Sonmez G, Kaya Y (2007) Fatty acid profile and proximate composition of the thornback ray (Raja clavata, L. 1758) from the Sinop coast in the Black Sea. J Fisheries Sci 1: 97-103.
22. Kaya Y, Turan H (2008) FATTY ACIDS COMPOSITION OF ANCHOVY (Engraulis encrasicolus L. 1758) OIL PRODUCED IN SINOP-TURKEY. Journal of Fisheries Sciences 2: 693-697.
23. Larque E, Garaulet M, Pérez-Llamas F, Zamora S, Tebar FJ, (2003) Fatty acid composition and nutritional relevance of most widely consumed margarines in Spain. Grasas y Aceites 54: 65-70.
24. Senso L, Susa’ez MD, Ruiz-Cara T, Garci’a-Gallego M (2007) On the possible effects of harvesting season and chilled storage on the fatty acid profile of the fillet of farmed gilthead sea bream (Sparus aurata). Food Chemistry 101: 298-307.
25. Muhamed NA, Mohamad J (2012) Fatty Acids Composition of Selected Malaysian Fishes. Sains Malaysiana 41: 81-94.