Optimal Design and Modelling of an Innovated Structure of DC Current Motor with Concentrated Winding

Souhir Tounsi

National School of Electronics and Telecommunications of Sfax, SETIT-Research Unit, Sfax University, Sfax, Tunisia

Email address:
souhir.tounsi@enetcom.rnu.tn

To cite this article:
Souhir Tounsi. Optimal Design and Modelling of an Innovated Structure of DC Current Motor with Concentrated Winding. International Journal of Electrical Components and Energy Conversion. Vol. 2, No. 1, 2016, pp. 1-7. doi: 10.11648/j.ijecec.20160201.11

Abstract: In this paper we presented the structure and methodology of designing of an innovated DC motor with permanent magnets and axial flux. Progress in the field of sliding contacts manufacturing, the simplicity of the structure of the engine as the control simplicity of DC motors make this structure an attractive solution to the problem of electric cars drive. In this context, a dimensioning model of this engine structure is developed. This model is based on the analytical design method of electric actuators. The overall design approach is based on justified simplifying assumptions, leading to a simplification of the resolution of the sizing problem. Finally, this paper provides a comprehensive tool for sizing and modeling of this type of actuator.

Keywords: DC Motor, Permanent Magnets, Design, Analytical Method, Modelling, Optimization

1. Introduction

DC motors are the first engines used in industrial applications. These engines have many advantages including:

- Simplicity of the structure.
- Variable excitation for engines with wound inductor.
- Simple and easy control.
- By consequence, these engines have been somewhat neglected in the near past for they present drawbacks, namely:
 - Significant induced magnetic reaction making it impossible to overcome current.
 - Cost of maintenance of sliding contact.
 - Significant copper losses in the inductor.

Nowadays permanent magnet motors have taken the relief to motors with wound inductor. For this reason we are led to seek solutions combining the advantages of DC motors with wound inductor and those with permanent magnets particularly in light of interesting advances in the field of sliding contacts manufacturing. In this context, a spindle motor structure with permanent magnets and simple to perform combining the advantages of structures with wound inductor and those of permanent magnets is sought. A design and modeling program based on analytical method of this structure is developed and presented in this paper [1-7].

2. Motor Structure

An engine innovated structure with DC permanent magnet axial flux to one pole pair is illustrated in figure 1 and another with two pairs of poles is shown in figure 2.

These two structures are simple to manufacture, compact and with concentrated winding. They have the following advantages:

- High power density.
- Low manufacturing cost.
- High efficiency (Absence of copper losses to the inductor).
- Modular design: possibility of overcoming power by adding additional modules perpendicular to the axis of the motor.
- Ease of control.
- Possibility of automation of the manufacturing process of these motor structures, especially the coils are concentrated type which facilitates the procedure for their insertions in a single block.
- The slots are straight and semi open.
3. Modelling and Sizing of the Motor

Electric motors sizing problem is usually solved by the finite element method [1-5]. A series of simulations is necessary in this case to solve the design problem. This method is accurate, but it is heavy and therefore it is not compatible with optimizations approaches. However, the analytical method provides solutions quickly and without iterations and provides a comprehensive design tool for electrical machines since it is based on simplifying assumptions justified. This method leads to design programs highly parameterized of electrical devices. So our choice is focused on the analytical method to solve the design problem of the studied engine structures [1-6].

3.1. Modeling of the Back Electromotive Force

Elementary back electromotive forces in the terminals of each two diametrically opposite coils are illustrated in figure 3. All rotor coils should be connected in series with a reversal of the direction of coil so as to have a continuous resulting electromotive force (Figure 3) [5].

Flux received by a coil is expressed by the following relationship [5]:

$$\Phi = \theta \times \theta \times \int \frac{B_e}{\pi \theta}$$

Relation (1) can be converted to the following equation [5]:

$$\Phi_b = B_e \times s_d - 2 \times B_e \times \left(\frac{D_e^2 - D_t^2}{4} \right) \times \frac{\theta}{2}$$

(2)

Where B_e is the flux density in the air-gap, θ is the mechanical angle, s_d is the heads teeth section, D_e and D_i are respectively the internal and external diameters of the motor and s is the surface element through which the magnetic flux.

The back electromotive force can be derived from the following relationship:

$$E = -2 \times P \times N_{sb} \times \frac{d\Phi_b}{dt}$$

(3)

Where P is pole pair number and N_{sb} is the number of turns per coil.

The expression of the induced back electromotive force takes the following form:

$$E = P \times N_{sb} \times \frac{(D_e^2 - D_t^2)}{2} \times B_e \times \Omega$$

(4)

where Ω the angular speed of the motor.

This leads to the general expression of back electromotive force:

$$E = K_e \times \Omega$$

(5)
3.2. Sizing of the Motor

The rotor slot width is given by the following relationship:

\[
L_{encr} = \frac{D_e + D}{2} \times \sin \left(\frac{1}{2} \times \frac{2 \times \pi}{N_b} - A_{dentrm} - A_{dentrim} \right) \tag{6}
\]

where \(A_{dentrm} \) is the average angular width of the rotor tooth, \(A_{dentrim} \) is the average angular width of the rotor inserted tooth and \(N_b \) number of coils.

The lower angular width of a slot is expressed by the following relationship:

\[
A_{encr1} = 2 \times \frac{L_{encr}}{D_e + D} \tag{7}
\]

The upper angular width of a slot is expressed by the following relationship:

\[
A_{encr2} = 2 \times \frac{L_{encr}}{D_e + D} \tag{8}
\]

The average angular width of a rotor tooth is given by the following relationship:

\[
A_{dentrm} = \frac{2 \times \pi \times \alpha}{N_b} \tag{9}
\]

where \(\alpha \) is the opening ratio of a rotor tooth (\(\alpha < 1 \)).

The average angular width of an interposed rotor tooth is given by the following relationship:

\[
A_{dentrim} = r_{did} \times A_{dentrm} \tag{10}
\]

where \(r_{did} \) is the ratio between the average angular width of an inserted tooth and that of a tooth.

The average angular width of a slot is given by the following relationship:

\[
A_{encrm} = \frac{1}{2} \times \left(\frac{2 \times \pi}{N_b} - A_{dentrm} - A_{dentrim} \right) \tag{11}
\]

The lower angle of a tooth is given by the following relationship:

\[
A_{dentr1} = A_{dentrm} - A_{encrm} - A_{mcr1} \tag{12}
\]

The upper angle of a tooth is given by the following relationship:

\[
A_{dentr2} = A_{dentrm} - A_{encrm} - A_{mcr2} \tag{13}
\]

The lower angle of an inserted tooth is given by the following relationship:
The upper angle of an inserted tooth is given by the following relationship:

\[\theta_{\text{dentin}} = \frac{2\pi}{N_b} - \theta_{\text{dent1}} - 2\theta_{\text{aenc1}} \]

The angle of dental development \((A_d) \) is given by the following equation:

\[A_d = \frac{2\pi}{N_b} \beta \]

where \(\beta \) is the fulfillment of a rotor tooth coefficient \((\alpha < \beta < 1) \).

The height of the teeth is expressed as follows:

\[I_{\text{dim}} = \varepsilon \frac{R_r \times M_s \times V_b}{t_d} + g \times \sin(\lambda) \]

Where \(\varepsilon \approx 1 \) it is usually close to 0.9, and \(R_r \) the radius of the wheel of the car, \(M_s \) is the mass of the car, \(t_d \) is the reduction ratio, \(t_d \) is the car's start time from speed equal 0 to the base speed \((V_b) \) of the car, \(g \) is the gravity acceleration and \(\lambda \) is the angle with the horizontal road.

4. Electric Parameters of the Motor

The inductance of the rotor winding is given by the following relationship [11]:

\[L = \mu_0 \times N_b \times \left(\frac{s_d}{2} \times \frac{D_e - D_i}{2} + \frac{2}{2\times(e+H_e)} \times H_d \times \frac{2}{N_b \times A_d} \times \frac{D_e + D_i}{4} \right) \times \mu_0 \times N_{eb}^2 \]

The magnetic induction due to the power of the rotor winding by the demagnetization current of the magnet \((I_d) \) is given by the following relationship:

\[B_{ci} = \frac{\mu_0 \times N_{eb} \times I_d}{H_s + e} \]

The demagnetization of the magnets is provided that:

\[B_c - B_{ci} = B_c \]

where \(B_c \) is the demagnetization magnetic induction of the magnets.

The height of the rotor yoke is calculated by applying the flux conservation theorem for a maximum flux position in the cylinder head:

\[H_{cr} = \frac{B_c}{B_{cr}} \times \frac{s_d}{D_e - D_i} \]

The tooth height of the heads is calculated by applying the flux conservation theorem to avoid saturation:

\[H_{de} = \frac{B_d}{B_e} \times \frac{(s_{de} - s_d)}{D_e + D_i} \]

Where \(B_d \) is the flux density in the tooth and \(s_{de} \) is the heads teeth section.

The height of the inductor head is calculated by applying the flow conservation theorem for a maximum flux position in the cylinder head:

\[H_{eh} = \frac{B_e}{B_{eh}} \times \frac{s_d}{D_e - D_i} \]

4. Electric Parameters of the Motor

The inductance of the rotor winding is given by the following relationship [11]:

\[L = \mu_0 \times N_b \times \left(\frac{s_d}{2} \times \frac{D_e - D_i}{2} + \frac{2}{2\times(e+H_e)} \times H_d \times \frac{2}{N_b \times A_d} \times \frac{D_e + D_i}{4} \right) \times \mu_0 \times N_{eb}^2 \]

The demagnetization current is to not exceeded to avoid demagnetization of the magnets. It is expressed by the following relationship:

\[I_d = \left(\frac{H_e \times B_c}{H_s + \mu_0 \times e} \right) \times \left(\frac{H_e + e}{\mu_0 \times N_{eb}} \right) \]

where \(B_c \) is the residual inductionet and \(\mu_0 \) is the relative permeability of magnets.

The length of one turn is expressed by the following relationship:
The resistivity of copper is expressed by the following relationship:

\[\rho = \rho_c \times (1 - \alpha_c \times (T_b - 20)) \] \hspace{1cm} (28)

where \(T_b \) is the temperature of copper and \(\alpha_c \) is the temperature coefficient at 20 °C.

Hence the expression for the resistance of the rotor winding is deduced by the following equation:

\[R = \rho \times L_p \times N_{ib} \times N_b \times \frac{I_{sm}}{\delta} \] \hspace{1cm} (29)

The motor electrical constant is deduced from the equations (4) and (5).

\[K_c = P \times N_{ab} \times \left(\frac{D_b^2 - D_s^2}{2} \right) \times B_s \] \hspace{1cm} (30)

The DC bus voltage is calculated in such a way that the vehicle can reach a maximum speed with a low torque undulation and without weakening. This voltage is calculated assuming that the engine runs at a stabilized maximum speed. At this operating point (Figure 4) the electromagnetic torque to be developed by the motor is expressed by the following equation [10-31]:

\[T_{ade} = \frac{P_f}{\Omega_{max}} + T_d + (T_b + T_{sh} + T_p) + \frac{T_r + T_u + T_L}{r_d} \] \hspace{1cm} (31)

The different torques are expressed by the following equations:

\[T_b = s \times \frac{V}{N} \] \hspace{1cm} (32)

\[T_{sh} = \chi \times v \] \hspace{1cm} (33)

\[T_v = k \times v \times v \] \hspace{1cm} (34)

\[T_s = R_s \times f_s \times M_s \times g \] \hspace{1cm} (35)

\[T_e = R_e \times \left(\frac{M_s \times C_s \times A_s}{2} \right) \times V^2 \] \hspace{1cm} (36)

\[T_r = M_s \times g \times \sin(\lambda) \] \hspace{1cm} (37)

Figure 4 shows the evolution of useful torque (\(T_u \)) and load torque (\(T_R \)) for operation at maximum speed (\(\Omega_{max} \)).

From figure 4, we deduce the expression of the DC bus voltage:

\[U_{de} = K_c \times \Omega_{max} + R \times I_{de} \] \hspace{1cm} (38)

where \(I_{de} \) is the current drawn by the motor at maximum stabilized speed.
where s is the dry friction coefficient, ν is the viscous friction coefficient and k is the fluid friction coefficient.

6. Motor Efficiency Optimization Problem

The motor efficiency is expressed by the following relation:

$$\eta = \frac{u \times i - R \times i^2 - P_a - P_m}{u \times i}$$ \hspace{1cm} (46)

The efficiency can be optimized by Genetic Algorithms method. The formalization of the optimization problem is summarized as follow [6-12]:

Maximiser η

100 mm $\leq D_1 \leq 250$ mm

300 mm $\leq D_e \leq 700$ mm

$U_{st} \leq 150$ V

$5A / \text{mm}^2 \leq \delta \leq 7A / \text{mm}^2$

10 $\leq N_{sh} \leq 200$

0.4 Tesla $\leq B_1 \leq 1.6$ Tesla

0.4 Tesla $\leq B_{sh} \leq 1.6$ Tesla

(47)

7. Torque Ripple Minimization

The torque ripple is directly related to the ripple of the resultant back electromotive force. Two parameters strongly influence the torque ripple are namely:

- The α parameter close to 1. This parameter should be the maximum possible, but for values of α very close to 1 a triggering of short circuits is activated between magnetic heads teeth, for that we are going to offer to optimize this parameter by finite element method.

- The β parameter ($\alpha < \beta < 1$). This parameter affects the ripple torque, the length in the axial direction of the engine and also leads to local saturation at levels of teeth. This parameter setting is also optimized by the finite element method.

A series of simulations of the evolution of the electromagnetic torque and saturations at the teeth were allowed to set $\alpha = 0.7$ and $\beta = 0.9$ as optimal values minimizing torque ripple and local saturations.

8. Conclusion

In this paper we presented and studied an innovated DC engine structure with permanent magnet and axial flux with reduced production cost and high power density. A sizing and modeling program highly parameterized is developed. This program has led to joint optimization problems of performance, torque ripple and local saturations.

As prospects, this study can be validated by the finite element method and experimentally on a realized prototype.

References

[1] Stephen W. MOORE, Khwaja M. RAHMAN and Mehrdad EHSANI: Effect on Vehicle Performance of Extending the Constant Power Region of Electric Drive Motors, SAE TECHNICAL PAPER SERIES 1999-01-1152 International Congress and Exposition Detroit, Michigan March 1-4, 1999. Reprinted From: Advances in Electric Vehicle Technology (SP-1417).

[2] C. PERTUZA: Contribution à la définition de moteurs à aimants permanents pour un véhicule électrique routier. Thèse de docteur de l’Institut National Polytechnique de Toulouse, Février 1996.

[3] Tounsi, S. (2013): Losses modelling of the electromagnetic and IGBTs converters, Int. J. Electric and Hybrid Vehicles, Vol. 5, No. 1, pp. 54–68.

[4] S. Tounsi, R. Neji, F. Sellami: Modélisation des Pertes dans la Chaîne de Traction du Véhicule Electrique. CTGE 2004 (Conférence Tunisienne de Génie Electrique), 19-21 Février, Tunis, Tunisie, pp. 291-297.

[5] R. NEJI, S. TOUNSI et F. SELLAMI: Contribution to the definition of a permanent magnet motor with reduced production cost for the electrical vehicle propulsion, European Transactions on Electrical Power (ETEP), 2006, 16: pp. 437-460.

[6] Chaithongsuk, S., Nahid-Mobarakeh, B., Caron, J., Takorabet, N., & Meibody-Tabar, F.: Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives. Industrial Electronics, IEEE Transactions on, vol 59 no 6, p. 2484-2494, 2012.

[7] S. TOUNSI, R. NEJI and F. SELLAMI: Mathematical model of the electric vehicle autonomy. ICEM2006 (16th International Conference on Electrical Machines), 2-5 September 2006 Chania-Greece, CD: PTM4-1.

[8] D-H. Cho, J-K. Kim, H-K. Jung and C-G. Lee: Optimal design of permanent-magnet motor using autotuning Niching Genetic Algorithm, IEEE Transactions on Magnetics, Vol. 39, No. 3, May 2003.

[9] Lee, S., Kim, K., Cho, S., Jang, J., Lee, T., & Hong, J.: Optimal design of interior permanent magnet synchronous motor considering the manufacturing tolerances using Taguchi robust design. Electric Power Applications, IET, vol 8 no 1, 23-28, 2014.

[10] TOUNSI, R. NEJI and F. SELLAMI: Electric vehicle control maximizing the autonomy: 3rd International Conference on Systems, Signal & Devices (SSD’05), SSD-PES 102, 21-24 March 2005, Sousse, Tunisia.

[11] S. TOUNSI et R. NEJI: Design of an Axial Flux Brushless DC Motor with Concentrated Winding for Electric Vehicles, Journal of Electrical Engineering (JEE), Volume 10, 2010 - Edition: 2, pp. 134-146.

[12] F. MOHAMMADI and H. Afraakhte: Optimal Load Restoration in Distribution Network Using Intentional Islanding, Journal of Electrical Engineering (JEE), Volume 12, 2012 - Edition: 4, pp. 108-113.
[13] Aicha Khlissa, Houcine Marouani, Souhir Tounsi, Systemic Design and Modelling of a Coiled Rotor Synchronous Motor Dedicated to Electric Traction, American Journal of Electrical Power and Energy Systems. Special Issue: Design, Optimization and Control of Electric Vehicles: (DOCEV). Vol. 4, No. 2-1, 2015, pp. 1-15. doi: 10.11648/j.epes.s.2015040201.11.

[14] Souhir Tounsi, Methodology for Electrothermal Characterization of Permanent Magnet Motor and Its Equivalent to Coiled Rotor, American Journal of Electrical Power and Energy Systems. Special Issue: Design, Optimization and Control of Electric Vehicles: (DOCEV). Vol. 4, No. 2-1, 2015, pp. 8-16. doi: 10.11648/j.epes.s.2015040201.12.

[15] Aicha Khlissa, Houcine Marouani, Souhir Tounsi, Trapezoidal Control of a Coiled Synchronous Motor Optimizing Electric Vehicle Consumption, American Journal of Electrical Power and Energy Systems. Special Issue: Design, Optimization and Control of Electric Vehicles: (DOCEV). Vol. 4, No. 2-1, 2015, pp. 17-25. doi: 10.11648/j.epes.s.2015040201.13.

[16] Moez Hadj Kacem, Souhir Tounsi, Rafik Neji, Determination of the Parameters of the Synchronous Motor with Dual Excitation, American Journal of Electrical Power and Energy Systems. Special Issue: Design, Optimization and Control of Electric Vehicles: (DOCEV). Vol. 4, No. 2-1, 2015, pp. 26-32. doi: 10.11648/j.epes.s.2015040201.14.

[17] Souhir Tounsi, Modelling and Control of Electric Vehicle Power Train, American Journal of Electrical Power and Energy Systems. Special Issue: Design, Optimization and Control of Electric Vehicles: (DOCEV). Vol. 4, No. 2-1, 2015, pp. 33-41. doi: 10.11648/j.epes.s.2015040201.15.

[18] Mariem Ben Amor, Souhir Tounsi, Mohamed Salim Bouhlel, Design and Optimization of Axial Flux Brushless DC Motor Dedicated to Electric Traction, American Journal of Electrical Power and Energy Systems. Special Issue: Design, Optimization and Control of Electric Vehicles: (DOCEV). Vol. 4, No. 2-1, 2015, pp. 42-48. doi: 10.11648/j.epes.s.2015040201.16.

[19] Souhir Tounsi, Design and Optimization of Axial Flux Brushless DC Generator Dedicated to Generation of Renewable Energy, American Journal of Electrical Power and Energy Systems. Special Issue: Design and Monitoring of Renewable Energy Systems (DMRES). Vol. 4, No. 3-1, 2015, pp. 1-5. doi: 10.11648/j.epes.s.2015040301.11.

[20] Wiem Nhidi, Souhir Tounsi, Mohamed Salim Bouhlel, Design and Modeling of a Synchronous Renewable Energy Generation System, American Journal of Electrical Power and Energy Systems. Special Issue: Design and Monitoring of Renewable Energy Systems (DMRES). Vol. 4, No. 3-1, 2015, pp. 6-11. doi: 10.11648/j.epes.s.2015040301.12.

[21] Souhir Tounsi, Systemic Design of Electric Vehicles Power Chain Optimizing the Autonomy, Accepted for publication by Journal of Electrical Engineering (JEE), Indexed in SCOPUS.

[22] Souhir Tounsi, Systemic Design and Optimization Improving Performances of Permanent Magnet Motors, International Journal of Electrical Components and Energy Conversion. Vol. 1, No. 1, 2015, pp. 1-15. doi: 10.11648/j.ijecec.20150101.11.

[23] Ajmia Belgacem, Mariem Ben Amor, Souhir Tounsi, Trapezoidal Control Based on Analytical and Finite Element Identification of Axial Flux Brushless DC Motor Dedicated to Electric Traction, International Journal of Electrical Components and Energy Conversion. Vol. 1, No. 1, 2015, pp. 16-23. doi: 10.11648/j.ijecec.20150101.12.

[24] Mariem Ben Amor, Ajmia Belgacem, Souhir Tounsi, Optimal Design and Control of Electric Vehicles Power Chain with Electromagnetic Switch, International Journal of Electrical Components and Energy Conversion. Vol. 1, No. 1, 2015, pp. 24-35. doi: 10.11648/j.ijecec.20150101.13.

[25] Amal Suilah, Nadia Graja, Amal Boudaya, Souhir Tounsi, Modelling of Synchronous Generation System for Renewable Energy, International Journal of Electrical Components and Energy Conversion. Vol. 1, No. 1, 2015, pp. 36-43. doi: 10.11648/j.ijecec.20150101.14.

[26] Marwa Sellami, Souhir Tounsi, Control of Axial Flux DC Motor with Permanent Magnet Dedicated to Electric Traction, International Journal of Electrical Components and Energy Conversion. Vol. 1, No. 1, 2015, pp. 44-48. doi: 10.11648/j.ijecec.20150101.15.

[27] Moez Hadj Kacem, Souhir Tounsi, Rafik Neji, Losses Modeling of the Electric Vehicles Power Chain, International Journal of Electrical Components and Energy Conversion. Vol. 1, No. 2, 2015, pp. 49-54. doi: 10.11648/j.ijecec.20150102.11.

[28] Zaineb Gorbel, Yamina Chihaoui, Nader Barg, Mounir Yahyaoui, Souhir Tounsi, Modelling Approach of Electric Cars Autonomy, International Journal of Electrical Components and Energy Conversion. Vol. 1, No. 2, 2015, pp. 55-62. doi: 10.11648/j.ijecec.20150102.12.

[29] Souhir Tounsi. Electro-thermal Modeling of Permanent Magnet Synchronous Motor. International Journal of Electrical Components and Energy Conversion. Vol. 1, No. 2, 2015, pp. 63-68. doi: 10.11648/j.ijecec.20150102.13.

[30] Houcine MAROUANI and Souhir TOUNSI: Design of a Coiled Rotor Synchronous Motor Dedicated to Electric Traction. Journal of Electrical Systems (JES), Volume 10, Issue 3, (September 2014), Indexed in SCOPUS.

[31] Souhir TOUNSI, Ibrahim BEN SALAH and Mohamed Salim BOUHLEL: Design and control of axial flux Brushless DC motor dedicated to Electric traction. Journal of Automation & Systems Engineering (JASE), Volume 8, Issue 2, (June 2014).