Properties of Q-Type Calcium Channels in Neostriatal and Cortical Neurons are Correlated with β Subunit Expression

Paul G. Mermelstein, Robert C. Foehring, Tatiana Tkatch, Wen-Jie Song, Gyitis Baranauskas, and D. James Surmeier

Department of Physiology/NUIN, Northwestern University Medical School, Chicago, Illinois 60611, and Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis, Tennessee 38163

In brain neurons, P- and Q-type Ca$^{2+}$ channels both appear to include a class A α1 subunit. In spite of this similarity, these channels differ pharmacologically and biophysically, particularly in inactivation kinetics. The molecular basis for this difference is unclear. In heterologous systems, alternative splicing and ancillary β subunits have been shown to alter biophysical properties of channels containing a class A α1 subunit. To test the hypothesis that similar mechanisms are at work in native systems, P- and Q-type currents were characterized in acutely isolated rat neostriatal, medium spiny neurons and cortical pyramidal neurons using whole-cell voltage-clamp techniques. Cells were subsequently aspirated and subjected to single-cell RT-PCR (scRT-PCR) analysis of calcium channel α1 and β (β1–4) subunit expression. In both cortical and neostriatal neurons, P- and Q-type currents were found in cells expressing class A α1 subunit mRNA. Although P-type currents in cortical and neostriatal neurons were similar, Q-type currents differed significantly in inactivation kinetics. Notably, Q-type currents in neostriatal neurons were similar to P-type currents in inactivation rate. The variation in Q-type channel biophysics was correlated with β subunit expression. Neostriatal neurons expressed significantly higher levels of β2a mRNA and lower levels of β1b mRNA than cortical neurons. These findings are consistent with the association of β2a and β1b subunits with slow and fast inactivation, respectively. Analysis of α1A splice variants in the linker between domains I and II failed to provide an alternative explanation for the differences in inactivation rates. These findings are consistent with the hypothesis that the biophysical properties of Q-type channels are governed by β subunit isoforms and are separable from toxin sensitivity.

Key words: striatum; cortex; cerebellum; medium spiny neurons; pyramidal neurons; single-cell RT-PCR; voltage clamp; calcium channels; α subunits; β subunits; patch-clamp

Neuronal calcium channels are heteromeric transmembrane proteins consisting of α1, α2δ, β, and γ subunits (Tsien et al., 1995; Letts et al., 1998). By controlling Ca$^{2+}$ entry, these channels regulate a wide variety of cellular functions including spike patterning, neurotransmitter release, and gene transcription (Holliday et al., 1991; Lancaster et al., 1991; Llano et al., 1991; Wheeler et al., 1994; Mintz et al., 1995; Bito et al., 1997; Hernandez-Lopez et al., 1997). The α1 subunit forms the pore of the channel and determines ion selectivity, voltage dependence, and toxin sensitivity (Snutch and Reiner, 1992). Attempts to match the properties of native Ca$^{2+}$ channels with α1 subunits identified in cloning studies have generally met with success. P- and Q-type channels are a notable exception to this rule. P-type calcium channels were initially described in cerebellar Purkinje neurons (Llinas et al., 1989, 1992; Usowicz et al., 1992). These very slowly inactivating channels are believed to possess a class A α1 (α1A) subunit, because α1A mRNA is expressed in high abundance within the cerebellum and Purkinje neurons (Mori et al., 1991; Starr et al., 1991; Stea et al., 1994). This conjecture has been strengthened by the localization of α1A protein in Purkinje neurons (Westenbroek et al., 1995) and the ability of antisense α1A cDNA to knock down P-type currents in Purkinje neurons and cerebellar granule cells (Gillard et al., 1997; Piedras-Renteria and Tsien, 1998). However, heterologous expression of α1A subunits results in calcium currents that are different from P-type currents in at least two respects (Sather et al., 1993; Niidome et al., 1994). One difference is in toxin sensitivity: heterologous α1A channels display a reduced sensitivity to ω-agatoxin-IVA (AgTX) while exhibiting a higher sensitivity to ω-conotoxin-MVIIC (CTX MVIIIC) (Hillyard et al., 1992; Sather et al., 1993). Another mismatch is in inactivation rate: heterologous α1A channels display significantly more inactivation at depolarized potentials than do P-type channels. These differences do not appear to be expression system artifacts because channels with pharmacological and biophysical properties similar to those seen in Xenopus oocytes after α1A cRNA injection have been found in several neuronal types (Eliot and Johnston, 1994; Wheeler et al., 1994; Diochot et al., 1995; Randall and Tsien, 1995; Foehring and Armstrong, 1996; McDonough et al., 1996; Desmadryl et al., 1997; Wang et al., 1997). This latter group of channels has been referred to as Q-type (Randall and Tsien, 1995).

There are several possible explanations for the variation in channel properties. One is that P- and Q-type channels are reflections of α1A splice variants (Mori et al., 1991; Starr et al., 1991; Stea et al., 1994). This conjecture has been strengthened by the localization of α1A protein in Purkinje neurons (Westenbroek et al., 1995) and the ability of antisense α1A cDNA to knock down P-type currents in Purkinje neurons and cerebellar granule cells (Gillard et al., 1997; Piedras-Renteria and Tsien, 1998). However, heterologous expression of α1A subunits results in calcium currents that are different from P-type currents in at least two respects (Sather et al., 1993; Niidome et al., 1994). One difference is in toxin sensitivity: heterologous α1A channels display a reduced sensitivity to ω-agatoxin-IVA (AgTX) while exhibiting a higher sensitivity to ω-conotoxin-MVIIC (CTX MVIIIC) (Hillyard et al., 1992; Sather et al., 1993). Another mismatch is in inactivation rate: heterologous α1A channels display significantly more inactivation at depolarized potentials than do P-type channels. These differences do not appear to be expression system artifacts because channels with pharmacological and biophysical properties similar to those seen in Xenopus oocytes after α1A cRNA injection have been found in several neuronal types (Eliot and Johnston, 1994; Wheeler et al., 1994; Diochot et al., 1995; Randall and Tsien, 1995; Foehring and Armstrong, 1996; McDonough et al., 1996; Desmadryl et al., 1997; Wang et al., 1997). This latter group of channels has been referred to as Q-type (Randall and Tsien, 1995).
Acute dissociation. Neostriatal and cortical pyramidal neurons from 1-4-week-old rats were acutely dissociated using previously described protocols (Bargus et al., 1994; Lorenzon and Foehring, 1995). Rats were decapitated, and their brains were removed after being anesthetized with methoxyflurane (Mallinckrodt Veterinary, Mundelein, IL). The brains were then block and sliced on a DSK microlicer (Ted Pella, Redding, CA) in a cold solution (in mM): 254 sucrose, 2.5 KCl, 1 Na-HPO4, 11 glucose, 4 MgSO4, 0.1 CaCl2, and 15 HEPES, pH 7.35, 300 mosm/L. Unless stated otherwise, all chemicals were obtained from Sigma (St. Louis, MO). Coronal slices (400 μm) were incubated 0.5–6 h at room temperature in a sodium bicarbonate-buffered, Earle’s balanced salt solution bubbled with 95% O2 and 5% CO2, and containing (in mM) 1 kynurenic acid, 1 pyruvic acid, 0.1-N-nitroarginine, and 0.005 glutathione. pH 7.4, 300 mosm/L. Individual slices were then placed in a Ca2+-free buffer (in mM): 140 Na-isethionate, 2 KCl, 4 MgCl2, 23 glucose, 15 HEPES, pH 7.4, 300 mosm/L, and under a dissecting microscope, the neostriatum or cortex was isolated. For experiments using neostriatal tissue, sections were limited to regions rostral to the decusation of the anterior commissure to avoid contamination from the globus pallidus. For experiments using cortical neurons, only frontal cortex areas 1 and 3 and the forelimb area of cortex 0.2–1.7 mm anterior to bregma were used.

Whole-cell recordings. Whole-cell recordings were performed using standard techniques (Hamill et al., 1981; Bargus et al., 1994). Corning 7052 glass electrodes were pulled (Flaming-Brown P-87 puller; Sutter Instrument Company, Novato, CA) and fire-polished (MF-83 microscope; Narishige, Hempstead, NY) just before use. The intracellular solution contained (in mM): 135 NaCl, 10 HEPES, 1 MgCl2, 2 CaCl2, 5 BaCl2, and 0.001 tetrodotoxin (TTX), pH 7.35, 300 mosm/L. ATP and kynurenic acid, 1 pyruvic acid, 0.1-N-nitroarginine, 4 MgSO4, 0.1 CaCl2, and 15 HEPES; pH 7.35, 300 mosm/L contained diethylpyrocarbonate (DEPC)-treated water. Gloves were worn by the experimenter at all times during the procedure.

For second round, 2 μl of RT template was added to a thin-walled PCR tube containing 4 μl 10× PCR buffer (100 mM Tris-HCl, 500 mM KCl), 4 μl MgCl2 (25 mM), 0.8 μl dTTPs (25 mM), 2 μl upstream primer for either enkephalin or substance P (20 μM), 2 μl downstream primer (20 μM), 23 μl autoclaved water, and 0.5 μl Taq polymerase (5000 U/ml). The thermal cycling program for peptide amplification was 94°C for 1 min, 59°C for 1 min, and 72°C for 1.5 min for 45 cycles. Because of the apparent low abundance of mRNA for calcium channel α1 subunits, two-round PCR was necessary. For the first round, 4 μl of template was added to a thin-walled PCR tube containing 3.6 μl 10× PCR buffer (100 mM Tris-HCl, 500 mM KCl), 3.6 μl MgCl2 (25 mM), 0.8 μl dTTPs (25 mM), 1 μl upstream primer for α1A (20 μM), 1 μl downstream primer (20 μM), 23 μl autoclaved water, and 0.5 μl Taq polymerase (5000 U/ml). The thermal cycling program for the first round was 94°C for 1 min, 59°C for 1 min, and 72°C for 1.5 min for 15 cycles. For the second round PCR, 2 μl of the first round PCR solution was added to another thin-walled PCR tube containing 3.8 μl 10× PCR buffer (100 mM Tris-HCl, 500 mM KCl), 3.8 μl MgCl2 (25 mM), 0.8 μl dTTPs (25 mM), 2 μl upstream primer for α1A (20 μM), 2 μl downstream primer (20 μM), 25 μl autoclaved water, and 0.5 μl Taq polymerase (5000 U/ml). The thermal cycling program for peptide cDNA amplification was 94°C for 1 min, 59°C for 1 min, and 72°C for 1.5 min for 40 cycles. For amplification of calcium channel β subunits, 4 μl of RT template was added to a PCR tube containing 3.6 μl 10× PCR buffer (100 mM Tris-HCl, 500 mM KCl), 3.6 μl MgCl2 (25 mM), 0.8 μl dTTPs (25 mM), 2 μl upstream primer for either β1a, β2a, β3a, or β4a (20 μM), 2 μl downstream primer (20 μM), 20.5 μl autoclaved water, and 0.5 μl Taq polymerase (5000 U/ml). The thermal cycling program for β subunit cDNA amplification was 94°C for 1 min, 59°C for 1 min, and 72°C for 1.5 min for 40 cycles. Detection thresholds for each transcript were estimated from serial dilutions of the total cellular cDNA; 10, 5, 2.5, 1.25, 0.613, and 0.32 μl of total cDNA were used as a template. PCR products were separated by electrophoresis in 1.5% agarose gels and visualized by staining with ethidium bromide. Gels were digitally imaged using a Molecular Dynamics (Sunnyvale, CA) NIH Image program. PCR images were processed using Kodak Image Analysis software to determine whether amplitudes at the expected size were present at levels above background.

To verify working solutions were DNA-free, water was used as a
RT-PCR template. Consistently, this control produced DNA-free products. Typical amplicons from single neostriatal neurons were sequenced with a dye termination procedure and found to match published sequences.

The PCR primers were developed from calcium channel and peptide GenBank sequences using Oligo software (National Biosciences, Plymouth, MN). Primers were synthesized by Life Technologies. The primers for enkephalin and substance P cDNA have been published previously (Surmeier et al., 1996). Primers for the calcium channel α1A subunit cDNA (GenBank accession number M6437; Starr et al., 1991) were 5'-ATG GGA ACT GAT GGC TAC TCA GAC-3' (nucleotides 6064–6087) and 5'-TCC TCA GGT GGT ACC CGC TCT A-3' (nucleotides 6275–6296), yielding a predicted PCR product of 233 bp. The primers for β1b cDNA (GenBank accession number X61394) (Pragnell et al., 1991) were 5'-AGA CCC CAC AGA CGC GAT GTC AG-3' (nucleotides 1808–1831), yielding a predicted PCR product of 387 bp. The primers for β2a cDNA (GenBank accession number M80854) (Perez-Reyes et al., 1992) were 5'-ATA ACC ACA GAG AGA GCC ACA-3' (nucleotides 1970–1993) and 5'-TAT ACA TCC CTG TTC CAC TCG CCA-3' (nucleotides 2154–2177), yielding a predicted PCR product of 208 bp. The primers for β3 cDNA (GenBank accession number M83070) (Castellano et al., 1993a) were 5'-GCC ACA-3' (nucleotides 1337–1359), yielding a predicted PCR product of 370 bp. The primers for β4 (nucleotides 1993–2015), yielding a predicted PCR product of 58 bp. PCR was as described above and included an exogenous internal control of primers for GAPDH, yielding a predicted PCR product of 208 bp. The primers for β5 (nucleotides 2178–2199), yielding a predicted PCR product of 85 bp. PCR was as described above except as follows. The thermal cycling program for the first round was 94°C for 1 min, 59°C for 1 min, and 72°C for 1.5 min for 30 cycles. α1A inner primers were used in second-step PCR (20 cycles, annealing temperature 54°C). Afterward, PCR products were separated by electrophoresis in 15% polyacrylamide gels and visualized using ethidium bromide.

To examine splice variants in the linker region between domains I and II in the α1A transcript, nested primers were designed. The outer primers were 5'-CGA TCC CCT GCC GAC TGG CTA GAG-3' (nucleotides 990–1113) and 5'-AGA CCC CAC AGA GAG GCC AGA AGC-3' (nucleotides 1337–1359), yielding a predicted PCR product of 370 bp. The inner primers were 5'-AGG GCC AGA CAG-3' (nucleotides 1245–1259) and 5'-GGA ACT GAT GGC TAC TCA GAC-3' (nucleotides 6064–6087), yielding a predicted PCR product of 58 bp. PCR was as described above except as follows. The thermal cycling program for the first round was 94°C for 1 min, 59°C for 1 min, and 72°C for 1.5 min for 30 cycles. α1A inner primers were used in second-step PCR (20 cycles, annealing temperature 54°C). Afterward, PCR products were separated by electrophoresis in 15% polyacrylamide gels and visualized using ethidium bromide.

Single-cell RT-PCR profiling of neostriatal medium spiny neurons express α1A mRNA. Single-cell RT-PCR profiling of neostriatal medium spiny neurons demonstrates that neurons, which express substance P (SP) and/or enkephalin (ENK), also express α1A. In 36 neostriatal neurons, >90% expressed detectable levels of α1A. Similar results were found in cortical pyramidal neurons in which α1A was observed in 94% of the neurons (n = 18).

RESULTS

Cortical pyramidal and neostriatal medium spiny neurons express α1A mRNA

Single-cell RT-PCR profiling of neostriatal medium spiny neurons dissociated from dorsal neostriatum (Fig. 1A) consistently revealed the presence of α1A mRNA. To insure that all major subpopulations of medium spiny neurons were sampled in these experiments, neurons were divided into three major classes on the basis of substance P (SP) and enkephalin (ENK) expression (Gerfen, 1992; Surmeier et al., 1996). As shown in Figure 1B, neurons in each major class of medium spiny neuron were found to express detectable levels of α1A mRNA. More than 90% of all medium spiny neurons profiled had detectable levels of α1A mRNA (n = 36), suggesting that it was ubiquitously expressed. Similarly, cortical pyramidal neurons dissociated from sensorimotor cortex (Fig. 1A) consistently had detectable levels of α1A mRNA (94%, n = 18).

P-type currents in cortical and neostriatal neurons are slowly inactivating

P-type currents were isolated by the bath application of 20–25 nM AgTx. This concentration of AgTx is several times the IC50 of P-type channels (2–10 nM) (Mintz et al., 1992a) but well below that of Q-type channels (~150 nM) (Sather et al., 1993). Within minutes, this concentration of AgTx reduced evoked currents in approximately half of all neostriatal medium spiny neurons (n = 36) (Fig. 2A) and in all cortical pyramidal cells (n > 25) (Fig. 2C). P-type currents were isolated by subtracting the currents evoked before toxin application from those after 3–5 min of toxin exposure (Fig. 2A). Similar results were found in cortical pyramidal neurons in which α1A was observed in 94% of the neurons (n = 18).

Q-type currents in cortical and neostriatal neurons differed in inactivation kinetics

Two strategies were used to isolate Q-type currents. First, L- and N-type currents were blocked with a combination of nifedi-
pine (5 μM), CTx GVIA (2 μM), and AgTx (100 nM). Previous work had shown that these concentrations of nifedipine and CTx GVIA rapidly block L- and N-type channels in these cell types (Bargas et al., 1994; Lorenzon and Foehring, 1995). At 100 nM, AgTx rapidly blocks P-type channels while leaving a significant fraction of Q-type channels unblocked (Randall and Tsien, 1995). Q-type currents were subsequently blocked by either the application of CTx MVIIIC or higher concentrations of AgTx (Randall and Tsien, 1995). As shown in Figure 3, A and B, CTx MVIIIC (1 μM) produced a slow, partial block of the residual current. The kinetics of the block in neostriatal medium spiny neurons (Fig. 3A, inset) were similar to those previously described for Q-type currents (Sather et al., 1993; Stea et al., 1994; Randall and Tsien, 1995; McDonough et al., 1996). The blocking kinetics in cortical pyramidal neurons were indistinguishable from those of neostriatal medium spiny neurons (n = 8; p > 0.05; Fig. 3A, inset).

The AgTx (1 μM) block of the residual currents in neostriatal medium spiny neurons was faster than that of CTx MVIIIC, but well within the range reported for the block of Q-type currents by AgTx at this concentration (Fig. 3C, inset) (Randall and Tsien, 1995). Again, the kinetics of the block in cortical pyramidal neurons was indistinguishable from neostriatal medium spiny neurons (n = 13; p > 0.05; Fig. 3C, inset), suggesting that Q-type channels in these two cell types were pharmacologically similar. To verify that Q-type channels were effectively blocked by the higher concentration of AgTx, CTx MVIIIC had been applied after the block by AgTx had stabilized. In both cortical (n = 5) and neostriatal neurons (n = 4), CTx MVIIIC had little or no additional effect after the response to AgTx had stabilized (Fig. 3C,D) (Eliot and Johnston, 1994; Randall and Tsien, 1995; cf., McDonough et al., 1996).

Although the Q-type channels in cortical and neostriatal neurons were pharmacologically indistinguishable, their rates of inactivation were different. Q-type channels in cortical pyramidal neurons exhibited a prominent, rapidly inactivating phase (Fig. 4A,B), much like what has been described previously in heterologous and native expression systems (Sather et al., 1993; Zhang et al., 1993; Randall and Tsien, 1995). In contrast, Q-type channels in neostriatal medium spiny neurons typically displayed little or no inactivation during a 400 msec step to 0 mV (Fig. 4C,D). In this regard, neostriatal Q-type channels were similar to P-type channels. In a subset of neostriatal medium spiny neurons, Q-type currents exhibited a modest rapidly inactivating component, but the percent inactivation during a 400 msec test step was significantly smaller than that seen in cortical pyramidal neurons (Fig. 4E,F).

Figure 2. P-type calcium currents slowly inactivate in both cortical and neostriatal neurons. A, Patch-clamp recording from a neostriatal neuron in which application of 20 mM AgTx produced a significant block of the whole-cell current. The P-type current is isolated by subtracting the residual current after toxin administration from the control current. B, An exponential fit of the decay of the P-type current (expressed as absolute current vs time) demonstrates P-type currents in neostriatal neurons inactivate slowly (i.e., τ = 2 sec). C, Isolation of the P-type current in a cortical neuron. D, As in neostriatal neurons, P-type calcium currents in cortical neurons inactivate slowly. Inset, Statistical summary of the inactivation of P-type currents in neostriatal (n = 11) and cortical (n = 12) neurons.

P- and Q-type currents differ in activation voltage dependence

To determine whether currents could be distinguished on the basis of activation voltage dependence, P- and Q-type currents were isolated, and voltage ramps were applied. As we have previously shown, ramps of the appropriate speed can rapidly give an accurate picture of the current–voltage relationship of Ca$^{2+}$ conductances (Bargas et al., 1994). This relationship can then be used in conjunction with the Goldman–Hodgkin–Katz constant current equation to estimate changes in permeability as a function of voltage. These estimates can readily be fit with a Boltzmann equation that provides a short-hand description of the gating process. Representative ramp currents for a neostriatal neuron before and after isolation by subtraction are shown in Figure 5A,B. Conversion of the ramp currents between −80 and +20 mV to permeability estimates are shown in Figure 5C along with Boltzmann fits. In this neuron, the Q-type current activated at more hyperpolarized potentials (V$_h$ = −15.2 vs −7.2 mV) and exhibited a smaller slope factor (V$_{1/2}$ = 4 vs 6.3 mV) than the P-type current. A statistical summary from a sample of 13 neurons is shown in Figure 5D. The median half-activation voltage of
P-type currents was \(~6\) mV more positive than Q-type currents (Fig. 5D). This difference was statistically significant \((p < 0.005)\). The slope factor of the fits to P-type currents was also significantly larger than that of Q-type currents \((p < 0.005)\). Similar experiments were carried out in cortical neurons (data not shown). Interestingly, on average Q-type currents activated at significantly more negative potentials \((-18)\) than their neostriatal counterparts \((-18.6 \pm 1.6\) mV; \(n = 13;\) Fig. 5D \(p < 0.05)\). It is unlikely that this difference was caused by inactivation of Q-type cortical currents during the voltage ramps because previous work has shown that ramp and step protocols yield very similar data (Lorenzon and Foehring, 1995).

Neostriatal and cortical neurons differentially express \(\beta\) subunit mRNA

In heterologous systems, the inactivation kinetics of \(\alpha_{1A}\)-type channels can be influenced by alternative splicing of the \(\beta\)-subunit \(\alpha_{1A}\)-type channel subunit (Bourinet et al., 1999) or by ancillary \(\beta\) subunits (Stea et al., 1994; De Waard et al., 1996). To determine whether alternative splicing of the \(\alpha_{1A}\)-type subunit could account for the slow inactivation rate observed in neostriatal medium spiny neurons, scRT-PCR experiments targeting the linker region between domains I and II were performed. Three splice variants of this region at the beginning of exon 3 have been described, and two of them have been functionally characterized in *Xenopus* oocytes (Bourinet et al., 1999). A nested priming strategy was used to isolate a 58 base pair amplicon spanning the splice site. Sequencing of the amplicon derived from a single neostriatal medium spiny neuron is shown in Figure 6A. The sequence corresponds to the “a” splice variant. Similar results were obtained in five other neurons. Examination of cortical pyramidal neurons also only revealed the presence of the “a” splice variant \((n = 4;\) data not shown). When expressed in heterologous systems, this splice variant gives rise to a rapidly inactivating, Q-type current (Bourinet et al., 1999).

An alternative explanation for the slowly inactivating Q-type currents in neostriatal neurons revolves around \(\beta\) subunits. In *Xenopus* oocytes, coexpression of \(\beta_2\) and \(\alpha_{1A}\)-subunit yield slowly inactivating currents, much like P-type currents (Stea et al., 1994; De Waard et al., 1996). Coexpression of \(\beta_2\) or \(\beta_{1A}\) subunits with those of \(\alpha_{1A}\) subunits yields more rapidly inactivating currents. In addition, \(\beta_3\) subunits shift the activation voltage dependence of \(\alpha_{1A}\) channels toward more negative membrane potentials. To determine whether the \(\beta\) subunit expression in cortical and neostriatal neurons was consistent with this pattern, single-cell RT-PCR experiments were performed in which the coordinated expression of \(\beta_{1A}\), \(\beta_{2A}\), \(\beta_3\), and \(\beta_4\) mRNAs were examined.

As a test of primer specificity and amplification efficiency, RT-PCR experiments were performed initially with whole brain cDNA and cDNA derived just from the cerebral cortex or neostriatum. In agreement with *in situ* hybridization studies (Tanaka et al., 1995), these experiments revealed that all four \(\beta\) subunit mRNAs were expressed at detectable levels in both neostriatum \((\text{Fig. 5B})\) and cerebral cortex (data not shown). Optimization of the PCR conditions led to the production of single amplicons for each primer set. Sequencing of the amplicons yielded the predicted products (Perez-Reyes et al., 1992; Castellano et al., 1993a,b; Pragnell et al., 1994).

Although all four mRNAs were detected in pooled cDNA, at the single-cell level differences in the expression of \(\beta\) subunit isofrom mRNAs were found when using one-quarter of the total cellular cDNA in the detection reaction. In neostriatal medium spiny neurons, \(\beta_{2A}\) mRNA was the most consistently detected. \(\beta_4\) mRNA was also relatively common, whereas \(\beta_{1A}\) mRNA was less
frequently detected, and β_3 was never seen. A photograph of a gel in which the PCR amplicons derived from a single medium spiny neuron have been separated by electrophoresis is shown in Figure 6C. Amplicons for β_2 and β_4 mRNA are evident. A summary of these experiments is shown in Figure 6C (right panel). In cortical pyramidal neurons, β_4 mRNA was the most commonly detected. However, both β_{2a} and β_{1b} mRNA were seen in a substantial subset of neurons. A representative gel from a single cortical pyramidal neuron is shown in Figure 6D. A summary of the profiling experiments in pyramidal neurons is shown in the right panel.

The variation in detection probabilities for β subunit mRNA we observed in single cells could be attributed to either low template abundance or the existence of neuronal subpopulations with distinctive expression patterns (Surmeier et al., 1996). Our working hypothesis was the former, that detection probability for a particular mRNA was directly correlated with mRNA abundance. To test this hypothesis, single-cell serial dilution experiments were performed (Song et al., 1998; Tkatch et al., 1998). The total cellular cDNA derived from individual neurons was serially diluted (by 23), and the greatest dilution producing a detectable amplicon was determined. As shown in Figure 6E, the detection thresholds in neostriatal and cortical neurons were unimodal and quasi-normally distributed, arguing that each consisted of a phenotypically homogeneous population. In agreement with the detection experiments, β_4 mRNA appeared to be of similar abundance in neostriatal and cortical neurons, with detection threshold modes of $\sim 1/8$ the total cellular cDNA ($p > 0.05$) (data not shown). On the other hand, the abundance of β_{1n} and β_{2a} mRNAs were significantly different in cortical and neostriatal neurons. From a quantitative standpoint, β_{2a} mRNA was relatively abundant in neostriatal medium spiny neurons, with a modal detection threshold of $\sim 1/8$ of the total cellular cDNA. In cortical pyramidal neurons, the detection threshold for β_{2a} mRNA was roughly twice that of neostriatal neurons ($p < 0.05$), suggesting that β_{2a} mRNA abundance was roughly half that found in neostriatal neurons. The differences in the abundance of β_{1n} mRNA appeared to be even more profound between cortical and neostriatal neurons ($p < 0.05$). β_{1n} mRNA was rarely detected in neostriatal neurons, regardless of how much cellular cDNA was used (up to $1/2$ the total cellular cDNA). In contrast, β_{1n} mRNA was readily detected in the majority of cortical pyramidal neurons, although the modal detection threshold was $1/2$ the cellular cDNA.

DISCUSSION

Neostriatal and cortical neurons express Q-type channels with distinctive biophysical features

Our results show that neostriatal medium spiny and cortical pyramidal neurons coexpress P- and Q-type Ca$^{2+}$ channels. In agreement with previous work arguing that both channel types
Figure 5. Neostriatal P- and Q-type calcium currents differ in voltage dependence. A. Block of P- and Q-type currents in a neostriatal neuron with 10 nM and 1 µM AgTx. B. Isolation of P- and Q-type currents with trace subtraction. C. To determine permeability as a function of voltage, the currents in B were divided by an estimation of the driving force using the Goldman–Hodgkin–Katz constant current equation. The resulting traces were then fit with a Boltzmann equation to generate estimates of half-activation (V₁/₂) and slope factor (B). D. For neostriatal neurons, Q-type currents (n = 13) activated at more hyperpolarized potentials and exhibited smaller slope factors than P-type currents (n = 16) (p < 0.005; Kruskal–Wallis).

Possess α₁A subunits (Stea et al., 1994; Moreno et al., 1997; Piedras-Renteria and Tsien, 1998; Pinto et al., 1998), α₁A mRNA was found in essentially every neuron subjected to RT-PCR analysis. Furthermore, the coexpression of P- and Q-type channels in individual cells argues that the differences between them cannot simply be ascribed to cell-type specific differential post-transcriptional or post-translational processing of a common α₁A transcript (Randall and Tsien, 1995).

The properties of the P-type currents isolated by exposure to low nanomolar concentrations of ω-AgTx IVA were similar to those described in Purkinje neurons and several other brain neurons (Mintz et al., 1992a; Usowicz et al., 1992; cf., Tottene et al., 1996). In both neostriatal and cortical neurons, these currents inactivated very slowly and were activated only by strong depolarization. The inactivation time constant of P-type currents at 0 mV was on the order of seconds in both cell types. Current inactivation was well described by a Boltzmann function having a half-activation voltage of ~5 mV in neostriatal medium spiny neurons and ~10 mV in cortical pyramidal neurons (with 5 mM Ba²⁺ as the charge carrier).

In contrast, Q-type currents in neostriatal medium spiny and cortical pyramidal neurons typically differed significantly in inactivation kinetics. In cortical neurons, Q-type currents displayed inactivation properties similar to those of α₁A currents in oocytes with 50% or more of the current inactivating during a 400 msec step (Stea et al., 1994). In this regard, cortical Q-type currents were similar to those found previously in other neuron types (Diochot et al., 1995; Randall and Tsien, 1995). On the other hand, Q-type currents in neostriatal medium spiny neurons typically displayed much less inactivation (~0–15%) during similar duration steps. In fact, the inactivation kinetics of Q-type currents in neostriatal neurons were similar to those of P-type currents.

Is it possible that P-type currents were misidentified as Q-type in these cells? This seems highly unlikely. In these experiments, cells were exposed to 100 nM AgTx for several minutes before exposure to a high concentration (1 µM) of AgTx or CTx MVIIC. Because 100 nM is several orders of magnitude above the estimated Kᵦ of P-type channels for AgTx (1–3 nM), this pre-exposure should have effectively blocked any P-type channels that were present (Mintz et al., 1992a; Randall and Tsien, 1995). This concentration of AgTx will also block some Q-type channels, but this is unimportant to the interpretation of our results. Our goal was simply to unequivocally isolate a group of Q-type channels.

Differences in the steady-state voltage dependence of P- and Q-type channels in neostriatal medium spiny neurons also argues that Q-type channels were not misidentified by this pharmacological regimen. Although both were high-voltage activated, Q-type channels had significantly less positive half-activation voltages than P-type channels in these cells, having half-activation voltages near ~10 mV. This difference is consistent with the differences in inactivation rates based on work in heterologous systems (see below). Taken together, these findings argue that the pharmacological properties of P- and Q-type channels can be dissociated from their biophysical properties. The determinants of the pharmacological properties may reside in other subunits (e.g., β₁B) (Walker and De Waard, 1998), splicing (Bourinet et al., 1999), or in post-translational modifications (Gurnett et al., 1996). This proposition is consistent with the heterologous expression literature showing wide variation in the biophysical properties of pharmacologically defined Q-type channels (Sather et al., 1993; Stea et al., 1994; Moreno et al., 1997).
channels with fast (Q-like), whereas the Xenopus al., 1999). In
rapidly, pyramidal neurons, in which Q-type currents inactivated more
constants similar to those seen in heterologous systems. In cortical
matically twofold more abundant than in cortical pyramidal
containing medium spiny neurons (and cortical pyramidal neurons) exclusively
slower (P-like) inactivation kinetics. However, neostriatal me-
found in both neostriatal and cortical pyramidal neurons express-
kinetics are attributable to subunits. Several studies (Stea et al.,
are slowly inactivating (P-like) (cf., Moreno et al., 1997). Our results are largely in
and slow components, suggesting channel heterogeneity. Analysis of subunit interactions with subunits suggests that although all four \(\beta \) subunits are capable of binding to the principal interaction domain in the I-II linker, \(\beta_4 \) and \(\beta_{1b} \) subunits have a higher affinity for this site than \(\beta_2 \) or \(\beta_3 \) subunits (Liu et al., 1996). A similar affinity difference has been found in a C-terminal interaction domain of the subunit (Walker et al., 1998). However, because our scRT-PCR analysis does not allow us gauge absolute mRNA levels, little can be concluded from our results about the abundance of \(\beta_4 \) mRNA relative to that of \(\beta_2 \) or \(\beta_{1b} \) subunit mRNAs in single cells. Differences in RT or PCR
the \(\alpha_1A \) subunit give rise to P- and Q-like channels (Bourinet et al.,
In Xenopus oocytes, the \(\alpha_1Aa \), splice variant produced
channels with fast (Q-like), whereas the \(\alpha_1Ab \), variant produced
slower (P-like) inactivation kinetics. However, neostriatal med-
pyramidal neurons (and cortical pyramidal neurons) exclusively
expressed the “a” and not the “b” or “c” splice variant (\(\alpha_1Ab \)). So,
although this may account for differences in other cell types, it
cannot account for the slow inactivation kinetics of Q-type cur-
rents in neostriatal neurons.

An alternative hypothesis is that the differences in inactivation kinetics are attributable to \(\beta \) subunits. Several studies (Stea et al.,
D and E). The expression in a single cortical pyramidal neuron. This
particular cell expressed detectable levels of \(\beta_2 \) and \(\beta_4 \) mRNAs. The expression in a single cortical pyramidal neuron. This
particular cell expressed detectable levels of \(\beta_1b \) and
\(\beta_2 \) mRNAs. On the right is a summary of data from 16 neurons. D, The
expression in a single cortical pyramidal neuron. This
particular cell expressed detectable levels of \(\beta_1b \), \(\beta_2 \), and
\(\beta_4 \) mRNAs. On the right is a summary of data from 15
pyramidal neurons. E, Summaries of serial dilution experi-
ments designed to generate semiquantitative estimates of
mRNA abundance. Note that the abundance of \(\beta_1b \) was
significantly higher (\(p < 0.05 \); Kruskal–Wallis) in cortical
pyramidal neurons than medium spiny neurons. Note also that \(\beta_2a \) mRNA was approximately twofold more abundant in medium spiny neurons than cortical neurons
(\(p < 0.05 \); Kruskal–Wallis). \(\beta_4 \) mRNA appeared to be of similar abundance in both cell types (\(p > 0.05 \);
Kruskal–Wallis).

Figure 6. Neostriatal and cortical neurons differ in \(\beta \) subunit expression. A, Results of dye termination se-
quencing of the scRT-PCR amplicon encompassing the
splice site in the I-II linker region. The amplicon was
derived from an individual medium spiny neuron. The
signal at each wavelength is represented by a different line
type; immediately above the peaks is the base call. Above
the cDNA sequence is the predicted mRNA sequence and
the corresponding amino acid. The splice site is marked.
The sequence corresponds to the \(\alpha_{1Aa} \) variant. B, Gel
showing the amplicons produced by RT-PCR analysis of
pooled neostriatal mRNA. Note that mRNA for all four \(\beta \) subunits was amplified. Similar results were found with
cortical mRNA (data not shown). C, The left panel shows
a gel in which the amplicons from a single neostriatal
neuron have been separated. This particular cell ex-
pressed detectable levels of \(\beta_1b \) and \(\beta_4 \) mRNAs. On the right is a summary of data from 16 neurons. D, The
expression in a single cortical pyramidal neuron. This
particular cell expressed detectable levels of \(\beta_1b \), \(\beta_2 \), and
\(\beta_4 \) mRNAs. On the right is a summary of data from 15
pyramidal neurons. E, Summaries of serial dilution experi-
ments designed to generate semiquantitative estimates of
mRNA abundance. Note that the abundance of \(\beta_1b \) was
significantly higher (\(p < 0.05 \); Kruskal–Wallis) in cortical
pyramidal neurons than medium spiny neurons. Note also that \(\beta_2a \) mRNA was approximately twofold more abundant in medium spiny neurons than cortical neurons
(\(p < 0.05 \); Kruskal–Wallis). \(\beta_4 \) mRNA appeared to be of similar abundance in both cell types (\(p > 0.05 \);
Kruskal–Wallis).
efficiency of the β templates can have dramatic effects on estimates of abundance (Zamorano et al., 1996). Quantitative studies at the single-cell level employing cRNA standards will be required to provide an answer to this question. Nevertheless, our results argue that the ratio of β2α/β2 mRNA ratio is higher in neostriatal medium spiny neurons that in cortical pyramidal neurons, favoring the hypothesis that β2α association with α1A subunits is responsible for the slow inactivation kinetics of Q-type currents.

It should also be noted that it is highly likely that other factors impact channel assembly and subunit composition. For example, α1 and β subunit isoforms may be localized to particular subcellular compartments, restricting potential interactions. In cerebellar Purkinje neurons β2a (and β1α) protein is found primarily in the soma, whereas β1 protein is found primarily in the dendrites (Volson et al., 1997). This difference may be a consequence in part of β2a subunit palmitoylation (Chien et al., 1995; Qin et al., 1998). Evidence for β subunit chaperoning of α1 subunits to the cell surface (Berrow et al., 1995; Brice et al., 1997) also suggests that assembly decisions may be regulated by targeted interactions, rather than simply mass action. Both neostriatal and cortical neurons also express class B, C, D, and E α1 subunit mRNA and their corresponding channels (Bargas et al., 1994; Lorenzo and Foehring, 1995; Mermelstein and Surmeier, 1997; our unpublished observations), providing a variety of partners for β subunit assembly. In neostriatal medium spiny neurons, both N- and R-type Ca2+ currents display pronounced voltage-dependent inactivation (our unpublished observations), suggesting that α1H and α1E subunits may preferentially assemble with β2α subunits. Because these channel types constitute a large fraction of all the Ca2+ channels in the somatodendritic membrane of neostriatal neurons, they may restrict the assembly of β2a subunits with α1A subunits simply by reducing β4 availability.

Functional implications

What are the potential functional consequences of variation in β subunit expression and Q-type channel biophysics? Biochemical and physiological studies of Q-type channels has revealed their involvement in a variety of cellular functions, many of which would be affected by alterations in inactivation rates and voltage dependence. For example, Q-type channels have been implicated in transmitter release (Lovinger et al., 1994; Wheeler et al., 1994; Wu and Saggau, 1995). Acceleration of inactivation rates should result in decreased terminal Ca2+ entry in response to repetitive terminal spiking. Conversely, the elimination of inactivation should make Q-type channels relatively frequency-insensitive. Although a clear functional role for dendritic Q-type channels has not been established, they should contribute to active processes regulating synaptic integration (Magee et al., 1998). They have also been implicated in the regulation of slow afterhyperpolarizations and spike frequency adaptation in cortical pyramidal neurons (Pineda and Foehring, 1998). This contribution could be minimized or eliminated by maintained synaptic depolarization or dendritic spiking in cortical pyramidal neurons but not in neostriatal medium spiny neurons.

REFERENCES

Bargas J, Howe A, Eberwine J, Cao Y, Surmeier DJ (1994) Cellular and molecular characterization of Ca2+ currents in acutely-isolated, adult rat neostriatal neurons. J Neurosci 14:6667–6686.
Berrow NS, Campbell V, Fitzgerald EM, Brickley K, Dolphin AC (1995) Antisense depletion of β-subunits modulates the biophysical and pharmacological properties of neuronal calcium channels. J Physiol (Lond) 482:481–491.
Bito H, Deisseroth K, Tsien RW (1997) Ca2+-dependent regulation in neuronal gene expression. Curr Opin Neurobiol 7:419–429.
Bourinet E, Soong TW, Sutton K, Slaymaker S, Mathews E, Monteil A, Zamponi GW, Nargeot J, Smutch TP (1999) Splicing of α1A subunit gene generated phenotypic variants of P- and Q-type calcium channels. Nat Neurosci 2:407–415.
Brice NL, Berrow NS, Campbell V, Page KM, Brickley K, Tedder I, Dolphin AC (1997) Importance of the different β subunits in the membrane expression of the α1A and α2 calcium channel subunits: studies using a depolarization-sensitive α1A antibody. Eur J Neurosci 9:749–759.
Castellano A, Wei X, Birnbaumer L, Perez-Reyes E (1993a) Cloning and expression of a third calcium channel β subunit. J Biol Chem 268:3450–3455.
Castellano A, Wei X, Birnbaumer L, Perez-Reyes E (1993b) Cloning and expression of a neuronal calcium channel β subunit. J Biol Chem 268:12359–12366.
Chien AJ, Zhao X, Shiromok RE, Puri TS, Chang CF, Sun D, Rios E, Hosey MM (1995) Roles of a membrane-localized β subunit in the formation and targeting of functional L-type Ca2+ channels. J Biol Chem 270:30036–30044.
De Waard M, Campbell KP (1995) Subunit regulation of the neuronal α1A/Ca2+ channel expressed in Xenopus oocytes. J Physiol (Lond) 485:619–634.
De Waard M, Gurnett CA, Campbell KP (1996) Structural and functional diversity of voltage-activated calcium channels. Ion Channels 4:41–87.
Desmadryl G, Chambard JM, Valmier J, Sans A (1997) Multiple voltage-dependent calcium currents in acutely isolated mouse vestibular neurons. Neuroscience 78:511–522.
Diochot S, Richard S, Valmier J (1995) Diversity of voltage-gated calcium currents in large diameter embryonic mouse sensory neurons. Neuroscience 69:627–641.
Eliot LS, Johnston D (1994) Multiple components of calcium current in acutely dissociated dentate gyrus granule neurons. J Neurophysiol 72:762–777.
Foehring RC, Armstrong WE (1996) Pharmacological dissection of high-voltage-activated Ca2+ current types in acutely dissociated rat supraoptic magnocellular neurons. J Neurophysiol 76:977–983.
Gerfen C (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320.
Gillard SE, Volson SG, Smith W, Beattie RE, Bleakman D, Lodge D (1997) Identification of pore-forming subunit of P-type calcium channels: an antisense study on rat cerebellar Purkinje cells in culture. Neupharmacology 36:405–409.
Gurnett CA, De Waard M, Campbell KP (1996) Dual function of the voltage-dependent Ca2+ channel α2 β subunit in current stimulation and subunit interaction. Neuron 16:431–440.
Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100.
Henschler-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E (1997) D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 17:3334–3342.
Hille B (1992) Ionic channels of excitable membranes. Sunderland, MA: Sinauer.
Hilliard DR, Monje VD, Mintz IM, Bean BP, Nadasdi L, Ramachandran J, Miljanich G, Azimi-Zoonooz A, McIntosh JM, Cruz LJ, Imperial JS, Olivera BM (1992) A new Conus peptide ligand for mammalian pre-synaptic Ca2+ channels. Neuron 9:69–77.
Holliday J, Adams RJ, Sejnowski TJ, Spitzer NC (1991) Calcium-induced release of calcium regulates differentiation of cultured spinal neurons. Neuron 7:787–796.
Lancaster B, Nicoll RA, Perkel D (1991) Calcium activates two types of potassium channels in rat hippocampal neurons in culture. J Neurosci 11:23–30.
Letts VA, Felix R, Biddlecome GH, Arikath J, Mahaffey CL, Valenzuela A, Bartlett FS, 2nd, Mori Y, Campbell KP, Frankel WN (1998) The mouse stargazer gene encodes a neuronal Ca2+ -channel gamma subunit. Nat Genet 19:340–347.
Liu H, De Waard M, Scott VS, Gurnett CA, Lennon VA, Campbell KP (1996) Identification of three subunits of the high affinity ω-conotoxin MVIIIC-sensitive Ca2+ channel. J Biol Chem 271:13804–13810.
Llano I, Leresche N, Marty A (1991) Calcium entry in response to repetitive entry in response to repetitive
Llinas R, Sugimori M, Lin JW, Cherksy B (1989) Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc Natl Acad Sci USA 86:1689–1693.

Llinas R, Sugimori M, Hillman DE, Cherksy B (1992) Distribution and functional significance of the P-type, voltage-dependent Ca²⁺ channels in the mammalian central nervous system. Trends Neurosci 15:640–646.

Lorenzen NM, Foehrung RC (1995) Characterization of pharmacologically identified voltage-gated calcium channel currents in acutely isolated rat neocortical neurons. I. Adult neurons. J Neurophysiol 73:1430–1442.

Lövinger DM, Merritt A, Reyes D (1994) Involvement of N-and non-N-type calcium channels in synaptic transmission at corticostriatal synapses. NeuroReport 5:631–634.

Magee J, Hoffman D, Colbert C, Johnston D (1998) Electrical and calcium signaling in dendrites of hippocampal pyramidal neurons. Annu Rev Physiol 60:327–346.

McDonough SL, Swartz KJ, Mintz IM, Boland LM, Bean BP (1996) Inhibition of calcium channels in rat central and peripheral neurons by ω-conotoxin MVIIC. J Neurosci 16:2612–2623.

Mermelstein PG, Surmeier DJ (1997) A calcium channel reversibly blocked by ω-conotoxin GVIA lacking the class D α1 subunit. NeuroReport: 8485–489.

Mintz IM, Adams ME, Bean BP (1992a) P-type calcium channels in rat central and peripheral neurons. J Neuro 9:85–95.

Mintz IM, Venema VJ, Swi derek KM, Lee TD, Bean BP, Adams ME (1992b) P-type calcium channels blocked by the spider toxin ω-Aga-1VA. Nature 355:827–829.

Mintz IM, Sabatini BL, Regehr WG (1995) Calcium control of transmitter release at a cerebellar synapse. Neuron 15:675–688.

Moreno H, Rudy B, Llinas R (1997) β subunits influence the biochemical and pharmacological differences between P- and Q-type calcium currents expressed in a mammalian cell line. Proc Natl Acad Sci USA 94:14042–14047.

Mori Y, Friedrich T, Kim M, Mikami A, Nakai J, Ruth P, Bosse E, Hofmann F, Flockerzi V, Furuchi T, Mikowshiba K, Imoto K, Tanabe T, Numa S (1991) Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350:398–402.

Niidome T, Teramoto T, Murata Y, Tanaka O, Sakagami H, Kondo H (1995) Localization of mRNAs of voltage-dependent Ca(2⁺)-channels: four subtypes of α1- and β-subsunits in developing and mature rat brain. Brain Res Mol Brain Res 30:1–16.

Tkatch T, Baranauskas G, Surmeier DJ (1998) Basal forebrain neurons adjacent to the globus pallidus co-express GABAergic and cholinergic marker mRNAs. NeuroReport 9:1935–1939.

Tottene A, Moretti A, Pietrobon D (1996) Functional diversity of P-type and R-type calcium channels in rat cerebellar neurons. J Neurosci 16:6353–6363.

Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP (1995) Reflections on Ca(2⁺)-channel diversity, 1988–1994. Trends Neurosci 18:52–54.

Usowicz MJ, Sugimori M, Cherskey B, Llinas R (1992) P-type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells. Neuron 9:1185–1199.

Vosken SG, Day NC, McCormak AL, Smith W, Craig PJ, Beattie RC, Smith D, Ince PG, Shaw PJ, Ellis SB, Mayne N, Burnett JP, Gillespie A, Harpold MM (1997) The expression of voltage-dependent calcium β subunits in human cerebellum. Neuroscience 80:161–174.

Walker D, De Waard M (1998) Subunit interaction sites in voltage-dependent Ca²⁺ channels: role in channel function. Trends Neurosci 21:148–154.

Walker D, Bichet D, Campbell KP, De Waard M (1998) A β isoform-specific interaction site in the carboxyl-terminal region of the voltage-dependent Ca²⁺ channel α1A subunit. J Biol Chem 273:2361–2367.

Wang G, Dayanithi G, Kim S, Hom D, Nadasdi L, Kristipati R, Ramachandran J, Stuenkel EL, Nordmann JF, Newcomb R, Lemos JR (1997) Role of Q-type Ca²⁺ channels in vasopressin secretion from neurohypophysial terminals of the rat. J Physiol (Lond) 502:351–363.

Walker D, Catterall WA (1995) Immunoochemical visualization of subcellular distribution of the α1A subunits of brain calcium channels. J Neurosci 15:6403–6418.

Wheeler DB, Randall A, Tsien RW (1994) Roles of N-type and Q-type Ca²⁺ channels in supporting hippocampal synaptic transmission. Science 264:107–111.

Wu LG, Saggu P (1995) Block of multiple presynaptic calcium channel types by ω-conotoxin- MVIIIC at hippocampal CA3 to CA1 synapses. J Neurophysiol 73:1965–1972.

Wang G, Dayanithi G, Kim S, Hom D, Nadasdi L, Kristipati R, Ramachandran J, Stuenkel EL, Nordmann JF, Newcomb R, Lemos JR (1997) Role of Q-type Ca²⁺ channels in vasopressin secretion from neurohypophysial terminals of the rat. J Physiol (Lond) 502:351–363.

Catterall WA (1995) Immunoochemical visualization of subcellular distribution of the α1A subunits of brain calcium channels. J Neurosci 15:6403–6418.

Wheeler DB, Randall A, Tsien RW (1994) Roles of N-type and Q-type Ca²⁺ channels in supporting hippocampal synaptic transmission. Science 264:107–111.

Wu LG, Saggu P (1995) Block of multiple presynaptic calcium channel types by ω-conotoxin- MVIIIC at hippocampal CA3 to CA1 synapses. J Neurophysiol 73:1965–1972.

Yan Z, Song WJ, Surmeier J (1997) D2 dopamine receptors reduce N-type Ca²⁺ currents in rat neostriatal cholinergic interneurons through a presynaptic effect. J Neurosci 17:7397–7407.

Zamorano PL, Mahesh VB, Brann DW (1996) Quantitative RT-PCR for neuroendocrine studies. A minireview. Neuroendocrinology 63:397–407.

Zhang JF, Randall AD, Ellinor PT, Horsen WA, Sather WA, Tanabe T, Schwarz TL, Tsien RW (1995) Distinctive pharmacology and kinetics of cloned neuronal Ca²⁺ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 32:1075–1088.