QRS alternans during right ventricular pacing while ablating a concealed left sided accessory pathway

Raghav Bansala a, Ramalingam Vadivelub,* Eduardo Back Sternickc, Yash Lokhandwalad

a Assistant Professor Cardiology, All India Institute of Medical Sciences, New Delhi, India
b Assistant Professor Cardiology, Velammal Medical College Hospital and Research Institute, Madurai, India
c Department of Arrhythmia and Electrophysiology, Biocor Institute, NovaLima, Brazil
d Department of Cardiology, Holy Family Hospital and Research Centre, Bandra West, Mumbai, India

A 16-year-old boy was referred for an electrophysiological study for documented regular narrow complex tachycardia. A diagnosis of a concealed left lateral accessory pathway was made with an eccentric atrial activation sequence both during tachycardia and right ventricular (RV) pacing. The pathway was mapped at the left posterior mitral vestibule during RV pacing (Fig. 1, left-hand panel), performed through the distal tip of the His bundle catheter, which was pushed deeper into the right ventricle (Fig. 1, right-hand panel). Intracardiac electrograms at the start of radiofrequency (RF) energy are depicted in the left-hand panel of Fig. 2. As the energy continues, as shown in the right-hand panel of Fig. 2, there is an alternation of QRS complex width and morphology. How is this explained?

The right-hand panel in Fig. 1 depicts the site of ablation of a concealed left free-wall accessory pathway (red arrow) via a retrograde transaortic approach. Ablation during ventricular pacing is preferable compared to during sustained tachycardia in view of the advantage of catheter stability, especially after elimination of the pathway during ablation. Notably, pacing was performed just below the RV basal outflow tract with the His bundle catheter pushed distally (white arrowhead, right-hand panels of Fig. 1). The ablation signal in the left panel of Fig. 2 marks the ‘A’ with an arrow, the small potential just after the ventricular electrogram in the RF distal channel. The early atrial activation along with the absence of isoelectric interval between V and A suggest that it is likely to be a successful ablation site.

With initiation of RF energy, there was an increase in the ventriculo-atrial (VA) interval in the distal coronary sinus (CS12) and RF distal channels with a change in atrial activation sequence (Fig. 2, left panel). During continuation of ablation, the alternate wide and narrow QRS beats have the same retrograde concentric atrial activation pattern with a constant VA interval, as depicted in Fig. 3. The narrower QRS complexes are associated with a reversal of the ventricular activation sequence in the coronary sinus channels. This may occur due to one of the following mechanisms: i)
alternate His bundle capture and non-capture; ii) capture of the antero-basal left ventricle (which might occur with trans-septal activation due to its close proximity to the right ventricular outflow tract) along with the RV on alternate beats; this possibility is remote; iii) RF catheter induced premature ventricular complexes (PVCs), causing fusion and narrowing of the alternate beats. His bundle capture is unlikely in this case as the catheter was placed deeper in the RV base and there was no His signal in the His distal channel at baseline. Furthermore, the relatively long VA intervals during concentric atrial activation and the early left free wall activation during narrow QRS complexes (Fig. 2, right panel) are points against His bundle capture. Capture of the antero-basal left ventricle on alternate beats resulting in narrow QRS is a possibility; however, the ventricular electrogram in the RF catheter would not

Fig. 1. Left hand panel. Mapping during right ventricular pacing revealing left lateral accessory pathway with eccentric atrial activation noted in the CS channels. Right hand panel. Fluoroscopic view demonstrating position of catheters in RAO 30° view (upper figure) and LAO 40° view (lower figure). The red arrow marks the tip of radiofrequency ablation catheter and the white arrow marks the position of the pacing catheter inside the right ventricle.

Fig. 2. Left hand panel. Intracardiac electrograms at the start of radiofrequency energy application. Note that the atrial activation pattern changes on the 2nd beat after initiation of energy, suggesting a successful ablation. Also note, the last QRS complex is narrower. Right hand panel. Note the alternating wide and narrow QRS morphology.
be coincident with the pacing stimulus, seeing the large distance between the RF catheter and the His catheter (Fig. 1, right-hand panel). Catheter induced PVCs have been reported to occur in a bigeminal pattern [1] due to cardiac motion during tachycardia or ventricular pacing and then fuse with the paced beat, resulting in a narrower QRS complex. The earliest ventricular activation in the RF distal channel followed by ventricular activation wave front from distal to proximal in the CS suggests catheter induced PVCs as a putative mechanism in this case.

The change in the atrial activation pattern from eccentric to concentric is consistent with elimination of accessory pathway conduction. However, residual accessory pathway conduction may be missed by RV pacing. Interestingly, the phenomenon of alternating narrow and wide QRS complexes allows insight into the assessment of the success of RF ablation in this case. The atrial activation pattern and the stimulus to atrial activation interval remains exactly the same despite early left ventricular free wall capture. Note in the RF distal signal in Fig. 3, the presence of four different potentials: the first immediately following the pacing spike is the local ventricular potential (V), followed by a likely artefact, followed by an atrial potential (A) and another potential (*). This additional electrogram marked by an asterisk is possibly a split atrial electrogram. Rarely, radiofrequency energy application might convert a rapidly conducting accessory pathway into a decremental accessory pathway [2]. This might uncover a second pathway with variable fusion between the conduction from two pathways and the conduction system, and thus lead to multiple potentials. This may also be seen in case of electrical disconnection of the coronary sinus from the left atrium.

The present case highlights that while focusing on atrial activation for retrograde conduction during pacing, one should not lose sight of variations in QRS width and ventricular activation patterns, especially in the coronary sinus. An early ventricular activation in the RF catheter during pacing from a remote site may suggest catheter induced PVCs.

Declaration of competing interest

There are no conflicts of interest to state.

References

[1] Bhargava K, Jindal R, Kler TS. Narrow QRS tachycardia with alternate wide QRS beats: what is the mechanism? Indian Pacing Electrophysiol J 2008;8(3):234–7.

[2] Sternick EB, Correa FS, Rego S, Santos DM, Damascena F, Scarpelli R, Gerken LM, Wellens HJ. Postablation-acquired short atrioventricular Mahaim-type fibers: observations on their clinical, electrocardiographic, and electrophysiologic profile. Heart Rhythm 2012;9(6):850–8.