2-elementary subgroups of the space Cremona group

Yuri Prokhorov

Abstract We give a sharp bound for orders of elementary abelian 2-groups of birational automorphisms of rationally connected threefolds.

1 Introduction

Throughout this paper we work over k, an algebraically closed field of characteristic 0. Recall that the Cremona group $\text{Cr}_n(k)$ is the group of birational transformations of the projective space \mathbb{P}_k^n. We are interested in finite subgroups of $\text{Cr}_n(k)$. For $n = 2$ these subgroups are classified basically (see [DH09] and references therein) but for $n \geq 3$ the situation becomes much more complicated. There are only a few, very specific classification results (see e.g. [Pr12], [Pr11], [Pr13c]).

Let p be a prime number. A group G is said to be p-elementary abelian of rank r if $G \cong \left(\mathbb{Z}/p\mathbb{Z}\right)^r$. In this case we denote $r(G) := r$. A. Beauville [Be07] obtained a sharp bound for the rank of p-elementary abelian subgroups of $\text{Cr}_2(k)$.

Theorem 1.1 ([Be07]). Let $G \subset \text{Cr}_2(k)$ be a 2-elementary abelian subgroup. Then $r(G) \leq 4$. Moreover, this bound is sharp and such groups G with $r(G) = 4$ are classified up to conjugacy in $\text{Cr}_2(k)$.

The author [Pr11] was able to get a similar bound for p-elementary abelian subgroups of $\text{Cr}_3(k)$ which is sharp for $p \geq 17$.

In this paper we improve this result in the case $p = 2$. We study 2-elementary abelian subgroups acting on rationally connected threefolds. In particular, we obtain
a sharp bound for the rank of such subgroups in $\text{Cr}_3(k)$. Our main result is the following.

Theorem 1.2. Let Y be a rationally connected variety over k and let $G \subset \text{Bir}_k(Y)$ be a 2-elementary abelian group. Then $r(G) \leq 6$.

Corollary 1.3 Let $G \subset \text{Cr}_3(k)$ be a 2-elementary abelian group. Then $r(G) \leq 6$ and the bound is sharp (see Example 3.4).

Unfortunately we are not able to classify all the birational actions $G \hookrightarrow \text{Bir}_k(Y)$ as above attaining the bound $r(G) \leq 6$ (cf. [Be07]). However, in some cases we get a description of these “extremal” actions.

The structure of the paper is as follows. In Sect. 3 we reduce the problem to the study of biregular actions of 2-elementary abelian groups on Fano-Mori fiber spaces and investigate the case of non-trivial base. A few facts about actions of 2-elementary abelian groups on Fano threefolds are discussed in Sect. 4. In Sect. 5 (resp. 6) we study actions on non-Gorenstein (resp. Gorenstein) Fano threefolds. Our main theorem is a direct consequence of Propositions 3.2, 5.1, and 6.1.

Acknowledgments. The work was completed during the author’s stay at the International Centre for Theoretical Physics, Trieste. The author would like to thank ICTP for hospitality and support.

2 Preliminaries

Notation.

- For a group G, $r(G)$ denotes the minimal number of generators. In particular, if G is an elementary abelian p-group, then $G \simeq (\mathbb{Z}/p\mathbb{Z})^{r(G)}$.
- $\text{Fix}(G,X)$ (or simply $\text{Fix}(G)$ if no confusion is likely) denotes the fixed point locus of an action of G on X.

Terminal singularities. Recall that the index of a terminal singularity $(X \ni P)$ is a minimal positive integer r such that K_X is a Cartier divisor at P.

Lemma 2.1 Let $(X \ni P)$ be a germ of a threefold terminal singularity and let $G \subset \text{Aut}(X \ni P)$ be a 2-elementary abelian subgroup. Then $r(G) \leq 4$. Moreover, if $r(G) = 4$, then $(X \ni P)$ is not a cyclic quotient singularity.

Proof. Let m be the index of $(X \ni P)$. Consider the index-one cover $\pi: (X^\sharp \ni P^\sharp) \to (X \ni P)$ (see [Re87]). Here $(X^\sharp \ni P^\sharp)$ is a terminal point of index 1 (or smooth) and π is a cyclic cover of degree m which is étale outside of P. Thus $X \ni P$ is the quotient of $X^\sharp \ni P$ by a cyclic group of order m. If $m = 1$, we take π to be the identity map. We may assume that $k = \mathbb{C}$ and then the map $X^\sharp \setminus \{P^\sharp\} \to X \setminus \{P\}$ can be regarded as the topological universal cover. Hence there exists a natural lifting $G^\sharp \subset \text{Aut}(X^\sharp \ni P^\sharp)$ fitting to the following exact sequence
where \(C_m \simeq \mathbb{Z}/m\mathbb{Z} \). We claim that \(G^2 \) is abelian. Assume the converse. Then \(m \geq 2 \).

The group \(G^1 \) permutes eigenspaces of \(C_m \). Let \(T_{\mathfrak{p}}^{\mathfrak{e}, X^2} \) be the tangent space and let \(n := \dim T_{\mathfrak{p}, X^2} \) be the embedded dimension. By the classification of three-dimensional terminal singularities \([\text{Mo85}], \text{Re87}\) we have one of the following:

1. \(\frac{1}{m}(a, -a, b), \quad n = 3, \quad \gcd(a, m) = \gcd(b, m) = 1; \)
2. \(\frac{1}{m}(a, -a, b, 0), \quad n = 4, \quad \gcd(a, m) = \gcd(b, m) = 1; \) \quad (**)
3. \(\frac{1}{4}(a, -a, b, 2), \quad n = 4, \quad \gcd(a, 2) = \gcd(b, 2) = 1, \quad m = 4, \)

where \(\frac{1}{n}(a_1, \ldots, a_n) \) denotes the diagonal action

\[
x_k \mapsto \exp(2\pi i a_k/m) \cdot x_k, \quad k = 1, \ldots, n.
\]

Put \(T = T_{\mathfrak{p}, X^2} \) in the first case and denote by \(T \subset T_{\mathfrak{p}, X^2} \) the three-dimensional subspace \(x_4 = 0 \) in the second and the third cases. Then \(C_m \) acts on \(T \) freely outside of the origin and \(T \) is \(G^2 \)-invariant. By (*) we see that the derived subgroup \([G^2, G^2]\) is contained in \(C_m \). In particular, \([G^2, G^2]\) is abelian and also acts on \(T \) freely outside of the origin. Assume that \([G^2, G^2]\) \(\neq \{1\} \). Since \(\dim T = 3 \), this implies that the representation of \(G^2 \) on \(T \) is irreducible (otherwise \(T \) has a one-dimensional invariant subspace, say \(T_1 \), and the kernel of the map \(G^2 \to GL(T_1) \simeq \mathbb{R}^* \) must contain \([G^2, G^2]\)). In particular, the eigenspaces of \(C_m \) on \(T \) have the same dimension. Since \(T \) is irreducible, the order of \(G^2 \) is divisible by \(3 = \dim T \) and so \(m > 2 \). In this case, by the above description of the action of \(C_m \) on \(T_{\mathfrak{p}, X^2} \) we get that there are exactly three distinct eigenspaces \(T_i \subset T \). The action of \(G^2 \) on the set \(\{T_i\} \) induces a transitive homomorphism \(G^2 \to \mathfrak{S}_3 \) whose kernel contains \(C_m \). Hence we have a transitive homomorphism \(G \to \mathfrak{S}_3 \). Since \(G \) is a 2-group, this is impossible.

Thus \(G^2 \) is abelian. Then

\[
r(G) \leq r(G^2) \leq \dim T_{\mathfrak{p}, X^2}.
\]

This proves our statement. \(\square \)

Remark 2.2. If in the above notation the action of \(G \) on \(X \) is free in codimension one, then \(r(G) \leq \dim T_{\mathfrak{p}, X^2} - 1 \).

For convenience of references, we formulate the following easy result.

Lemma 2.3 Let \(G \) be a 2-elementary abelian group and let \(X \) be a \(G \)-threefold with isolated singularities.

(i) If \(\dim \operatorname{Fix}(G) > 0 \), then \(\dim \operatorname{Fix}(G) + r(G) \leq 3 \).

(ii) Let \(\delta \in G \setminus \{1\} \) and let \(S \subset \operatorname{Fix}(\delta) \) be the union of two-dimensional components. Then \(S \) is \(G \)-invariant and smooth in codimension 1.

Sketch of the proof. Consider the action of \(G \) on the tangent space to \(X \) at a general point of a component of \(\operatorname{Fix}(G) \) (resp. at a general point of \(\operatorname{Sing}(S) \)). \(\square \)
3 **G-equivariant minimal model program.**

Definition 3.1. Let G be a finite group. A G-variety is a variety X provided with a biregular faithful action of G. We say that a normal G-variety X is $G\mathbb{Q}$-factorial if any G-invariant Weil divisor on X is \mathbb{Q}-Cartier.

The following construction is standard (see e.g. [Pr12]). Let Y be a rationally connected three-dimensional algebraic variety and let $G \subset \text{Bir}(Y)$ be a finite subgroup. Taking an equivariant compactification and running an equivariant minimal model program we get a G-variety X and a G-equivariant birational map $\theta : Y / \text{axis} \rightarrow X$, where X has a structure a G-Fano-Mori fibration $f : X \rightarrow B$. This means that X has at worst terminal $G\mathbb{Q}$-factorial singularities, f is a G-equivariant morphism with connected fibers, B is normal, $\dim B < \dim X$, the anticanonical Weil divisor $-K_X$ is ample over B, and the relative G-invariant Picard number $\rho(X)^G$ equals to one. Obviously, in the case $\dim X = 3$ we have the following possibilities:

- **(C)** B is a rational surface and a general fiber $f^{-1}(b)$ is a conic;
- **(D)** $B \simeq \mathbb{P}^1$ and a general fiber $f^{-1}(b)$ is a smooth del Pezzo surface;
- **(F)** B is a point and X is a $G\mathbb{Q}$-Fano threefold, that is, X is a Fano threefold with at worst terminal $G\mathbb{Q}$-factorial singularities and such that $\text{Pic}(X)^G \simeq \mathbb{Z}$. In this situation we say that X is G-Fano threefold if X is Gorenstein, that is, K_X is a Cartier divisor.

Proposition 3.2. Let G be a 2-elementary abelian group and let $f : X \rightarrow B$ be a G-Fano-Mori fibration with $\dim X = 3$ and $\dim B > 0$. Then $r(G) \leq 6$. Moreover, if $r(G) = 6$ and $Z \simeq \mathbb{P}^1$, then a general fiber $f^{-1}(b)$ is a del Pezzo surface of degree 4 or 8.

Proof. Let $G_f \subset G$ (resp. $G_B \subset \text{Aut}(B)$) be the kernel (resp. the image) of the homomorphism $G \rightarrow \text{Aut}(B)$. Thus G_B acts faithfully on B and G_f acts faithfully on the generic fiber $F \subset X$ of f. Clearly, G_f and G_B are 2-elementary groups with $r(G_f) + r(G_B) = r(G)$. Assume that $B \cong \mathbb{P}^1$. Then $r(G_B) \leq 2$ by the classification of finite subgroups of $\text{PGL}_2(k)$. By Theorem 1.1 we have $r(G_f) \leq 4$. If furthermore $r(G) = 6$, then $r(G_f) = 4$ and the assertion about F follows by Lemma 3.3 below. This proves our assertions in the case $B \cong \mathbb{P}^1$. The case $\dim B = 2$ is treated similarly. \[\Box\]

Lemma 3.3 (cf. [Be07]) Let F be a del Pezzo surface and let $G \subset \text{Aut}(F)$ be a 2-elementary abelian group with $r(F) \geq 4$. Then $r(F) = 4$ and one of the following holds:

- (i) $K^2_F = 4$, $\rho(F)^G = 1$;
- (ii) $K^2_F = 8$, $\rho(F)^G = 2$.

Proof. Similar to [Be07] §3. \[\Box\]
Example 3.4. Let $F \subset \mathbb{P}^4$ be the quartic del Pezzo surface given by $\sum x_i^2 = \sum \lambda_i x_i^2 = 0$ with $\lambda_i \neq \lambda_j$ for $i \neq j$ and let $G_f \subset \text{Aut}(F)$ be the 2-elementary abelian subgroup generated by involutions $\sigma \mapsto -\sigma$. Consider also a 2-elementary abelian subgroup $G_B \subset \text{Aut}(\mathbb{P}^1)$ induced by a faithful representation $Q_8 \to GL_2(\mathbb{Z})$ of the quaternion group Q_8. Then $r(G_f) = 4$, $r(G_B) = 2$, and $G := G_f \times G_B$ naturally acts on $X := F \times \mathbb{P}^1$. Two projections give us two structures of G-Fano-Mori fibrations of types (D) and (C). This shows that the bound $r(G) \leq 6$ in Proposition 3.2 is sharp. Moreover, X is rational and so we have an embedding $G \subset \text{Cr}_3(\mathbb{C})$.

4 Actions on Fano threefolds

Main assumption. From now on we assume that we are in the case (F), that is, X is a $G\mathbb{Q}$-Fano threefold.

Remark 4.1. The group G acts naturally on $H^0(X, -K_X)$. If $H^0(X, -K_X) \neq 0$, then there exists a G-semi-invariant section $s \neq 0 \in H^0(X, -K_X)$ (because G is an abelian group). This section defines an invariant member $S \in |-K_X|$.

Lemma 4.2 Let X be a $G\mathbb{Q}$-Fano threefold, where G is a 2-elementary abelian group with $r(G) \geq 5$. Let S be an invariant effective Weil divisor such that $-(K_X + S)$ is nef. Then the pair (X, S) is log canonical (lc). In particular, S is reduced. If $-(K_X + S)$ is ample, then the pair (X, S) is purely log terminal (plt).

Proof. Assume that the pair (X, S) is not lc. Since S is G-invariant and $\rho(X)^G = 1$, we see that S is numerically proportional to K_X. Hence S is ample. We apply quite standard connectedness arguments of Shokurov [Sho93] (see, e.g., [MP09 Prop. 2.6]): for a suitable G-invariant boundary D, the pair (X, D) is lc, the divisor $-(K_X + D)$ is ample, and the minimal locus V of log canonical singularities is also G-invariant. Moreover, V is either a point or a smooth rational curve. By Lemma 2.1 we may assume that G has no fixed points. Hence, $V \cong \mathbb{P}^1$ and we have a map $\zeta : G \to \text{Aut}(\mathbb{P}^1)$. By Lemma 2.3 $r(\ker \zeta) \leq 2$. Therefore, $r(\zeta(G)) \geq 3$. This contradicts the classification of finite subgroups of $PGL_2(\mathbb{Z})$.

If $-(K_X + S)$ is ample and (X, S) has a log canonical center of dimension ≤ 1, then by considering $(X, S' = S + \varepsilon B)$, where B is a suitable invariant divisor and $0 < \varepsilon \ll 1$, we get a non-lc pair (X, S'). This contradicts the above considered case.

Corollary 4.3 Let X be a $G\mathbb{Q}$-Fano threefold, where G is a 2-elementary abelian group with $r(G) \geq 6$ and let S be an invariant Weil divisor. Then $-(K_X + S)$ is not ample.

Proof. If $-(K_X + S)$ is ample, then by Lemma 4.2 the pair (X, S) is plt. By the adjunction principle [Sho93] the surface S is irreducible, normal and has only quotient singularities. Moreover, $-K_S$ is ample. Hence S is rational. We get a contradiction by Theorem 1.1 and Lemma 2.3(i).
Lemma 4.4 Let S be a K3 surface with at worst Du Val singularities and let $\Gamma \subset \text{Aut}(S)$ be a 2-elementary abelian group. Then $r(\Gamma) \leq 5$.

Proof. Let $\tilde{S} \to S$ be the minimal resolution. Here \tilde{S} is a smooth K3 surface and the action of Γ lists to \tilde{S}. Let $\Gamma_s \subset \Gamma$ be the largest subgroup that acts trivially on $H^{2,0}(\tilde{S}) \simeq \mathbb{C}$. The group Γ/Γ_s is cyclic. Hence, $r(\Gamma/\Gamma_s) \leq 1$. According to [Ni80, Th. 4.5] we have $r(\Gamma_s) \leq 4$. Thus $r(\Gamma) \leq 5$. □

Corollary 4.5 Let X be a $G\mathbb{Q}$-Fano threefold, where G is a 2-elementary abelian group. Let $S \in |-K_X|$ be a G-invariant member. If $r(\Gamma) \geq 7$, then the singularities of S are worse than Du Val.

Proposition 4.6 Let X be a $G\mathbb{Q}$-Fano threefold, where G is a 2-elementary abelian group with $r(\Gamma) \geq 6$. Let $S \in |-K_X|$ be a G-invariant member and let $G_\bullet \subset G$ be the largest subgroup that acts trivially on the set of components of S. One of the following holds:

(i) S is a K3 surface with at worst Du Val singularities, then $S \subset \text{Fix}(\delta)$ for some $\delta \in G \setminus \{1\}$ and $G/\langle \delta \rangle$ faithfully acts on S. In this case $r(G) = 6$.

(ii) The surface S is reducible (and reduced). The group G acts transitively on the components of S and G_\bullet acts faithfully on each component $S_i \subset S$. There are two subcases:

(a) any component $S_i \subset S$ is rational and $r(G_\bullet) \leq 4$.

(b) any component $S_i \subset S$ is birationally ruled over an elliptic curve and $r(G_\bullet) \leq 5$.

Proof. By Lemma 4.2 the pair (X, S) is lc. Assume that S is normal (and irreducible). By the adjunction formula $K_S \sim 0$. We claim that S has at worst Du Val singularities. Indeed, otherwise by the Connectedness Principle [Sho93, Th. 6.9] S has at most two non-Du Val points. These points are fixed by an index two subgroup $G' \subset G$. This contradicts Lemma 2.1. Taking Lemma 4.4 into account we get the case (i).

Now assume that S is not normal. Let $S_i \subset S$ be an irreducible component (the case $S_i = S$ is not excluded). If the action on components $S_i \subset S$ is not transitive, there is an invariant divisor $S' \subset S$. Since X is $G\mathbb{Q}$-factorial and $\rho(X)^G = 1$, the divisor $-\langle K_X + S' \rangle$ is ample. This contradicts Corollary 4.3 By Lemma 2.3(ii) the action of G_\bullet on each component S_i is faithful.

If S_i is a rational surface, then $r(G_\bullet) \leq 4$ by Theorem 1.1. Assume that S_i is not rational. Let $\nu: S' \to S_i$ be the normalization. Write $0 \sim \nu^*(K_X + S) = K_{S'} + D'$, where D' is the different, see [Sho93] [3]. Here D' is an effective reduced divisor and the pair is lc [Sho93, 3.2]. Since S is not normal, $D' \neq 0$. Consider the minimal resolution $\mu: \tilde{S} \to S'$ and let \tilde{D} be the crepant pull-back of D', that is, $\mu_*\tilde{D} = D'$ and

$$K_S + \tilde{D} = \mu^*(K_{S'} + D') \sim 0.$$

Here \tilde{D} is again an effective reduced divisor. Hence \tilde{S} is a ruled surface. Consider the Albanese map $\alpha: \tilde{S} \to C$. Let $\tilde{D}_1 \subset \tilde{D}$ be an α-horizontal component. By the
adjunction formula \(D_1 \) is an elliptic curve and so \(C \) is. Let \(\Gamma \) be the image of \(G_* \) in \(\text{Aut}(C) \). Then \(r(\Gamma) \leq 3 \) and so \(r(G_*) \leq 5 \). So, the last assertion is proved. \(\square \)

5 Non-Gorenstein Fano threefolds

Let \(G \) be a 2-elementary abelian group and let \(X \) be \(G\mathbb{Q} \)-Fano threefold. In this section we consider the case where \(X \) is non-Gorenstein, i.e., it has at least one terminal point of index \(\geq 1 \). We denote by \(\text{Sing}'(X) = \{P_1, \ldots, P_M\} \) the set of non-Gorenstein points and by \(B = B(X) \) the basket of singularities \([\text{Re87}]\). By \(B(X, P_i) \) we denote the basket of singularities at a point \(P_i \in X \).

Proposition 5.1 Let \(X \) be a non-Gorenstein Fano threefold with terminal singularities. Assume that \(X \) admits a faithful action of a 2-elementary abelian group \(G \) with \(r(G) \geq 6 \). Then \(r(G) = 6 \), \(G \) transitively acts on \(\text{Sing}'(X) \), \(\{-K_X\} \neq \emptyset \), and the configuration of non-Gorenstein singularities is described below:

1. \(M = 8 \), \(B(X, P_i) = \{ \frac{1}{3}(1,1,1) \} \);
2. \(M = 8 \), \(B(X, P_i) = \{ \frac{1}{4}(1,1,2) \} \);
3. \(M = 4 \), \(B(X, P_i) = \{ 2 \times \frac{1}{4}(1,1,1) \} \);
4. \(M = 4 \), \(B(X, P_i) = \{ 2 \times \frac{1}{4}(1,1,2) \} \);
5. \(M = 4 \), \(B(X, P_i) = \{ 3 \times \frac{1}{6}(1,1,1) \} \);
6. \(M = 4 \), \(B(X, P_i) = \{ \frac{1}{3}(-1,1), \frac{1}{2}(1,1,1) \} \).

Proof. Let \(P^{(1)}, \ldots, P^{(n)} \in \text{Sing}'(X) \) be representatives of distinct \(G \)-orbits and let \(G_i \) be the stabilizer of \(P^{(i)} \). Let \(r := r(G), r_i := r(G_i) \), and let \(m_{i,1}, \ldots, m_{i,v_i} \) be the indices of points in the basket of \(P^{(i)} \). We may assume that \(m_{i,1} \geq \cdots \geq m_{i,v_i} \). By the orbifold Riemann-Roch formula \([\text{Re87}]\) and a form of Bogomolov-Miyaoka inequality \([\text{Ka92}],[\text{KM2T}]\) we have

\[
\sum_{i=1}^{n} 2^{r-r_i} \sum_{j=1}^{v_i} \left(m_{i,j} - \frac{1}{m_{i,j}} \right) < 24. \tag{***}
\]

If \(P \) is a cyclic quotient singularity, then \(v_i = 1 \) and by Lemma 2.1, \(r_i \leq 3 \). If \(P \) is not a cyclic quotient singularity, then \(v_i \geq 2 \) and again by Lemma 2.1, \(r_i \leq 4 \). Since \(m_{i,j} - 1/m_{i,j} \geq 3/2 \), in both cases we have

\[
2^{r-r_i} \sum_{j=1}^{v_i} \left(m_{i,j} - \frac{1}{m_{i,j}} \right) \geq 3 \cdot 2^{r-4} \geq 12.
\]

Therefore, \(n = 1 \), i.e. \(G \) transitively acts on \(\text{Sing}'(X) \), and \(r = 6 \).

If \(P \) is not a point of type \(eAx/4 \) (i.e. it is not as in (3) of (**)), then by the classification of terminal singularities \([\text{Re87}]\) \(m_{1,1} = \cdots = m_{1,v_i} \) and (***) has the form
\[24 > 2^{6-r_1} v_1 \left(m_{1,1} - \frac{1}{m_{1,1}} \right) \geq 8 \left(m_{1,1} - \frac{1}{m_{1,1}} \right). \]

Hence \(r_1 \geq 3, v_1 \leq 3, m_{1,1} \leq 3, \) and \(3 \cdot 2^{r_1-3} \geq v_1 m_{1,1}. \) If \(r_1 = 3, \) then \(v_1 = 1. \) If \(r_1 = 4, \) then \(v_1 \geq 2 \) and \(v_1 m_{1,1} \leq 6. \) This gives us the possibilities (1)-(5).

Assume that \(P \) is a point of type \(cAx/4. \) Then \(m_{1,1} = 4, v_1 > 1, \) and \(m_{1,j} = 2 \) for \(1 < j \leq v_1. \) Thus (***) has the form

\[24 > 2^{6-r_1} \left(\frac{15}{4} + \frac{3}{2} (v_1 - 1) \right) = 2^{4-r_1} (9 + 6v_1). \]

We get \(v_1 = 2, r_1 = 4, \) i.e. the case (6).

Finally, the computation of \(\dim |-K_X| \) follows by the orbifold Riemann-Roch formula [Re87]

\[\dim |-K_X| = -\frac{1}{2} K_X^3 + 2 - \sum_{p \in B(X)} \frac{b_p(m_p - b_p)}{2m_p}. \]

6 Gorenstein Fano threefolds

The main result of this section is the following:

Proposition 6.1 Let \(G \) be a 2-elementary abelian group and let \(X \) be a (Gorenstein) \(G \)-Fano threefold. Then \(r(G) \leq 6. \) Moreover, if \(r(G) = 6, \) then \(\text{Pic}(X) = \mathbb{Z} \cdot K_X \) and \(-K_X^3 \geq 8. \)

Let \(X \) be a Fano threefold with at worst Gorenstein terminal singularities. Recall that the number

\[t(X) := \max \{ i \in \mathbb{Z} \mid -K_X \sim iA, A \in \text{Pic}(X) \} \]

is called the *Fano index* of \(X. \) The integer \(g = g(X) \) such that \(-K_X^3 = 2g - 2 \) is called the *genus* of \(X. \) It is easy to see that \(\dim |-K_X| = g + 1 \) [IP99, Corollary 2.1.14]. In particular, \(|-K_X| \neq 0. \)

Notation. Throughout this section \(G \) denotes a 2-elementary abelian group and \(X \) denotes a Gorenstein \(G \)-Fano threefold. There exists an invariant member \(S \in |-K_X| \) (see 4.1). We write \(S = \sum_{i=1}^{N} S_i, \) where the \(S_i \) are irreducible components. Let \(G_\bullet \subset G \) be the kernel of the homomorphism \(G \to \mathfrak{S}_N \) induced by the action of \(G \) on \(\{ S_1, \ldots, S_N \}. \) Since \(G \) is abelian and the action of \(G \) on \(\{ S_1, \ldots, S_N \} \) is transitive, the group \(G_\bullet \) coincides with the stabilizer of any \(S_i. \) Clearly, \(N = 2^{r(G)} - r(G_\bullet). \) If \(r(G) \geq 6, \) then by Proposition 4.6 we have \(r(G_\bullet) \leq 5 \) and so \(N \geq 2^{r(G)} - 5. \)

Lemma 6.2 Let \(G \subset \text{Aut}(\mathbb{P}^n) \) be a 2-elementary subgroup and \(n \) is even. Then \(G \) is conjugate to a diagonal subgroup. In particular, \(r(G) \leq n. \)
Lemma 6.4
Let $G \subset SL_{n+1}(k)$ be the lifting of G and let $G' \subset G^2$ be a Sylow 2-subgroup. Then $G' \simeq G$. Since G' is abelian, the representation $G' \to SL_{n+1}(k)$ is diagonalizable.

Corollary 6.3
Let $Q \subset \mathbb{P}^4$ be a quadric and let $G \subset \text{Aut}(Q)$ be a 2-elementary subgroup. Then $r(G) \leq 4$.

Lemma 6.4
Let $G \subset \text{Aut}(\mathbb{P}^3)$ be a 2-elementary subgroup. Then $r(G) \leq 4$.

Proof. Assume that $r(G) \geq 5$. Take any element $\delta \in G \setminus \{1\}$. By Lemma 2.1 the group G has no fixed points. Since the set $\text{Fix}(\delta)$ is G-invariant, $\text{Fix}(\delta) = L_1 \cup L_2$, where $L_1, L_2 \subset \mathbb{P}^3$ are skew lines.

Let $G_1 \subset G$ be the stabilizer of L_1. There is a subgroup $G_2 \subset G_1$ of index 2 having a fixed point $P \in L_1$. Thus $r(G_2) \geq 3$ and the “orthogonal” plane Π is G_2-invariant. By Lemma 6.2 there exists an element $\delta' \in G_2$ that acts trivially on Π, i.e. $\Pi \subset \text{Fix}(\delta')$. But then δ' has a fixed point, a contradiction. □

Lemma 6.5
If $Bs|−K_X| \neq \emptyset$, then $r(G) \leq 4$.

Proof. By [Shi89] the base locus $Bs|−K_X|$ is either a single point or a rational curve. In both cases $r(G) \leq 4$ by Lemmas 2.1 and 2.3. □

Lemma 6.6
If $−K_X$ is not very ample, then $r(G) \leq 5$.

Proof. Assume that $r(G) \geq 6$. By Lemma 6.3 the linear system $|−K_X|$ is base point free. It is easy to show that $|−K_X|$ defines a double cover $\phi : X \to Y \subset \mathbb{P}^{g+1}$ (cf. [Is80] Ch. 1, Prop. 4.9)). Here Y is a variety of degree $g−1$ in \mathbb{P}^{g+1}, a variety of minimal degree. Let G be the image of G in $\text{Aut}(Y)$. Then $r(G) \geq r(G) − 1$. If $g = 2$ (resp. $g = 3$), then $Y = \mathbb{P}^3$ (resp. $Y \subset \mathbb{P}^4$ is a quadric) and $r(G) \leq 5$ by Lemma 6.4 (resp. by Corollary 6.3). Thus we may assume that $g \geq 4$. If Y is smooth, then according to the Enriques theorem (see, e.g., [Is80] Th. 3.11) Y is a rational scroll $\mathbb{P}_{1}([\delta])$, where $[\delta]$ is a rank 3 vector bundle on \mathbb{P}^1. Then X has a G-equivariant projection to a curve. This contradicts $\rho(X)^G = 1$. Hence Y is singular. In this case, Y is a projective cone (again by the Enriques theorem). If its vertex $O \in Y$ is zero-dimensional, then $\dim T_O Y \geq 5$. On the other hand, X has only hypersurface singularities. Therefore the double cover $X \to Y$ is not étale over O and so G has a fixed point on X. This contradicts Lemma 2.1. Thus Y is a cone over a curve with vertex along a line L. As above, L must be contained in the branch divisor and so $L' := \phi^{-1}(L)$ is a G-invariant rational curve. Since the image of G in $\text{Aut}(L')$ is a 2-elementary abelian group of rank ≤ 2, by Lemma 2.3 we have $r(G) \leq 4$. □

Remark 6.7.
Recall that for a Fano threefold X with at worst Gorenstein terminal singularities one has $r(X) \leq 4$. Moreover, $r(X) = 4$ if and only if $X \simeq \mathbb{P}^3$ and $r(X) = 3$ if and only if X is a quadric in \mathbb{P}^4 [IP92]. In these cases we have $r(G) \leq 4$ by Lemma 6.4 and Corollary 6.3 respectively. Assume that $r(X) = 2$. Then X is so-called del Pezzo threefold. Let $A := −\frac{1}{2}K_X$. The number $d := A^3$ is called the degree of X.
Lemma 6.8 Assume that the divisor $-K_X$ is very ample, $r(G) \geq 6$, and the action of G on X is not free in codimension 1. Let $\delta \in G$ be an element such that $\dim \text{Fix}(\delta) = 2$ and let $D \subset \text{Fix}(\delta)$ be the union of all two-dimensional components. Then $r(G) = 6$ and D is a Du Val member of $|-K_X|$. Moreover, $r(X) = 1$ except, possibly, for the case where $r(X) = 2$ and $-\frac{1}{2}K_X$ is not very ample.

Proof. Since G is abelian, $\text{Fix}(\delta)$ and D are G-invariant and so $-K_X \sim \lambda D$ for some $\lambda \in \mathbb{Q}$. In particular, D is a \mathbb{Q}-Cartier divisor. Since X has only terminal Gorenstein singularities, D must be Cartier. Clearly, D is smooth outside of $\text{Sing}(X)$. Further, D is ample and so it must be connected. Since D is a reduced Cohen-Macaulay scheme with $\dim \text{Sing}(D) \leq 0$, it is irreducible and normal.

Let $X \hookrightarrow \mathbb{P}^{g+1}$ the anticanonical embedding. The action of δ on X is induced by an action of a linear involution of \mathbb{P}^{g+1}. There are two disjointed linear subspaces $V_+, V_- \subset \mathbb{P}^{g+1}$ of δ-fixed points and the divisor D is contained in one of them. This means that D is a component of a hyperplane section $S \subset -K_X$ and so $\lambda \geq 1$. Since $r(G) \geq 6$, by Corollary 4.3 we have $\lambda = 1$ and $-K_X \sim D$ (because $\text{Pic}(X)$ is a torsion free group). Since D is irreducible, the case (i) of Proposition 4.6 holds.

Finally, if $r(X) > 1$, then by Remark 6.7 we have $r(X) = 2$. If furthermore the divisor A is very ample, then it defines an embedding $X \hookrightarrow \mathbb{P}^N$ so that D spans \mathbb{P}^N. In this case the action of δ must be trivial, a contradiction. □

Lemma 6.9 If $\rho(X) > 1$, then $r(G) \leq 5$.

Proof. We use the classification of G-Fano threefolds with $\rho(X) > 1$ [Pr13b]. By this classification $\rho(X) \leq 4$. Let G_0 be the kernel of the action of G on $\text{Pic}(X)$.

Consider the case $\rho(X) = 2$. Then $|G : G_0| = 2$. In the cases (1.2.1) and (1.2.4) of [Pr13b] the variety X has a structure of G_0-equivariant conic bundle over \mathbb{P}^2. As in Proposition 3.2 we have $r(G_0) \leq 4$ and $r(G) \leq 5$ in these cases. In the cases (1.2.2) and (1.2.3) of [Pr13b] the variety X has two birational contractions to \mathbb{P}^3 and a quadric $Q \subset \mathbb{P}^4$, respectively. As above we get $r(G) \leq 5$ by Lemma 6.4 and Corollary 6.3.

Consider the case $\rho(X) = 3$. We show that in this case $\text{Pic}(X)^G \not\cong \mathbb{Z}$ (and so this case does not occur). Since G is a 2-elementary abelian group, its action on $\text{Pic}(X) \otimes \mathbb{Q}$ is diagonalizable. Since $\text{Pic}(X)^G = \mathbb{Z} \cdot K_X$, the group G contains an element τ that acts on $\text{Pic}(X) \simeq \mathbb{Z}^3$ as the reflection with respect to the orthogonal complement to K_X. Since the group G preserves the natural bilinear form $\langle x_1, x_2 \rangle := x_1 \cdot x_2 \cdot K_X$, the action must be as follows

$$\tau : x \mapsto x - \lambda K_X, \quad \lambda = \frac{2x \cdot K_X^2}{K_X^3}.$$

Hence λK_X is an integral element for any $x \in \text{Pic}(X)$. This gives a contradiction in all cases (1.2.5)-(1.2.7) of [Pr13b] Th. 1.2. For example, in the case (1.2.5) of [Pr13b] Th. 1.2 our variety X has a structure (non-minimal) del Pezzo fibration of degree 4 and $-K_X^2 = 12$. For the fiber F we have $F \cdot K_X^2 = K_F^2 = 4$ and λK_X is not integral, a contradiction.
Finally, consider the case \(\rho(X) = 4 \). Then according to \(\text{[Pr13a]} \) \(X \) is a divisor of multidegree \((1, 1, 1, 1)\) in \(\mathbb{P}^1_X. \) All the projections \(\varphi_i : X \to \mathbb{P}^1, i = 1, \ldots, 4 \) are \(G_0 \)-equivariant. We claim that natural maps \(\varphi_i : G_0 \to \text{Aut}(X) \) are injective. Indeed, assume that \(\varphi_{i}(\vartheta) \) is the identity map in \(\text{Aut}(X) \) for some \(\vartheta \in G. \) This means that \(\vartheta \circ \varphi_i = \varphi_i. \) Since \(\text{Pic}(X)^G = \mathbb{Z} \), the group \(G \) permutes the classes \(\varphi_i^* \mathcal{O}_{\mathbb{P}^1}(1) \in \text{Pic}(X) \). Hence, for any \(i = 1, \ldots, 4 \), there exists \(\sigma_i \in G \) such that \(\varphi_i = \varphi_i \circ \sigma_i. \) Then
\[
\vartheta \circ \varphi_i = \vartheta \circ \varphi_i \circ \sigma_i = \varphi_i \circ \sigma_i = \varphi_i.
\]
Hence, \(\varphi_i(\vartheta) \) is the identity for any \(i. \) Since \(\varphi_1 \times \cdots \times \varphi_4 \) is an embedding, \(\vartheta \) must be the identity as well. This proves our claim. Therefore, \(r(G_0) \leq 2 \). The group \(G/G_0 \) acts on \(\text{Pic}(X) \) faithfully. By the same reason as above, an element of \(G/G_0 \) cannot act as the reflection with respect to \(K_X. \) Therefore, \(r(G/G_0) \leq 2 \) and \(r(G) \leq 4. \)

Lemma 6.10 If \(t(X) = 2 \), then \(r(G) \leq 5. \)

Proof. By Lemma 6.9 we may assume that \(\rho(X) = 1. \) Let \(d \) be the degree of \(X. \) Since \(\rho(X) = 1 \), we have \(d \leq 5 \) (see e.g. \(\text{[Pr13a]} \)). Consider the possibilities for \(d \) case by case. We use the classification (see \(\text{[Shi89]} \) and \(\text{[Pr13a]} \)).

If \(d = 1 \), then the linear system \(|A| \) has a unique base point. This point is smooth and must be \(G \)-invariant. By Lemma 2.1 \(r(G) \leq 3. \) If \(d = 2 \), then the linear system \(|A| \) defines a double cover \(\varphi : X \to \mathbb{P}^3. \) Then the image of \(G \) in \(\text{Aut}(\mathbb{P}^3) \) is a 2-elementary group \(\hat{G} \) with \(r(\hat{G}) \geq r(G) - 1, \) where \(r(\hat{G}) \leq 4 \) by Lemma 6.4. If \(d = 3 \), then \(X = X_3 \subset \mathbb{P}^4 \) is a cubic hypersurface. By Lemma 6.2 \(r(G) \leq 4. \) If \(d = 5 \), then \(X \) is smooth, unique up to isomorphism, and \(\text{Aut}(X) \simeq \text{PGL}_2(k) \) (see \(\text{[IP99]} \)).

Finally, consider the case \(d = 4. \) Then \(X = Q_1 \cap Q_2 \subset \mathbb{P}^3 \) is an intersection of two quadrics (see e.g. \(\text{[Shi89]} \)). Let \(\mathcal{Q} \) be the pencil generated by \(Q_1 \) and \(Q_2. \) Since \(X \) has a isolated singularities and it is not a cone, a general member of \(\mathcal{Q} \) is smooth by Bertini’s theorem and for any member \(Q \in \mathcal{Q} \) we have \(\dim \text{Sing}(Q) \leq 1. \) Let \(D \) be the divisor of degree 6 on \(\mathcal{Q} \simeq \mathbb{P}^1 \) given by the vanishing of the determinant. The elements of \(\text{Supp}(D) \) are exactly degenerate quadrics. Clearly, for any point \(P \in \text{Sing}(X) \) there exists a unique quadric \(Q \in \mathcal{Q} \) which is singular at \(P. \) This defines a map \(\pi : \text{Sing}(X) \to \text{Supp}(D). \) Let \(Q \in \text{Supp}(D). \) Then \(\pi^{-1}(Q) = \text{Sing}(Q) \cap X = \text{Sing}(Q) \cap Q', \) where \(Q' \in \mathcal{Q}, Q' \neq Q. \) In particular, \(\pi^{-1}(Q) \) consists of at most two points. Hence the cardinality of \(\text{Sing}(X) \) is at most 12.

Assume that \(r(G) \geq 6. \) Let \(S \in | - K_X | \) be an invariant member. We claim that \(S \supset \text{Sing}(X) \) and \(\text{Sing}(X) \neq \emptyset. \) Indeed, otherwise \(S \cap \text{Sing}(X) = \emptyset. \) By Proposition 4.7 \(S \) is reducible: \(S = S_1 + \cdots + S_N, N \geq 2. \) Since \(t(X) = 2, \) we get \(N = 2 \) and \(S_1 \sim S_2, \) i.e. \(S_i \) is a hyperplane section of \(X \subset \mathbb{P}^5. \) As in the proof of Corollary 4.3 we see that \(S_i \) is rational. This contradicts Proposition 4.6(ii). Thus \(\emptyset \neq \text{Sing}(X) \subset S. \)

By Lemma 6.8 the action of \(G \) on \(X \) is free in codimension 1. By Remark 2.2 for the stabilizer \(G_P \) of a point \(P \in \text{Sing}(X) \) we have \(r(G_P) \leq 3. \) Then by the above estimate the variety \(X \) has exactly 8 singular points and \(G \) acts on \(\text{Sing}(X) \) transitively.

Note that our choice of \(S \) is not unique: there is a basis \(S^{(1)}, \ldots, S^{(x+2)} \in H^0(X, - K_X) \) consisting of eigensections. This basis gives us \(G \)-invariant divisors \(S^{(1)}, \ldots, S^{(x+2)} \) generating \(| - K_X |. \) By the above \(\text{Sing}(X) \subset S^{(i)} \) for all \(i. \) Thus \(\text{Sing}(X) \subset \cap S^{(i)} = B S | - K_X |. \) This contradicts the fact that \(- K_X \) is very ample. \(\square \)
Example 6.11. The bound \(r(G) \leq 5 \) in the above lemma is sharp. Indeed, let \(X \subset \mathbb{P}^3 \) be the variety given by \(\sum x_i^2 = \sum \lambda_i x_i^2 = 0 \) with \(\lambda_i \neq \lambda_j \) for \(i \neq j \) and let \(G \subset \text{Aut}(X) \) be the 2-elementary abelian subgroup generated by involutions \(x_i \mapsto -x_i \). Then \(r(G) = 5 \).

From now on we assume that \(\text{Pic}(X) = \mathbb{Z} \cdot K_X \). Let \(g := g(X) \).

Lemma 6.12 If \(g \leq 4 \), then \(r(G) \leq 5 \). If \(g = 5 \), then \(r(G) \leq 6 \).

Proof. We may assume that \(-K_X \) is very ample. Automorphisms of \(X \) are induced by projective transformations of \(\mathbb{P}^{g+1} \) that preserve \(X \subset \mathbb{P}^{g+1} \). On the other hand, there is a natural representation of \(G \) on \(H^0(X, -K_X) \) which is faithful. Thus the composition

\[
\text{Aut}(X) \hookrightarrow GL(H^0(X, -K_X)) = GL_{g+2}(k) \to PGL_{g+2}(k)
\]

is injective. Since \(G \) is abelian, its image \(\tilde{G} \subset GL_{g+2}(k) \) is contained in a maximal torus and by the above \(\tilde{G} \) contains no scalar matrices. Hence, \(r(G) \leq g + 1 \). \(\square \)

Example 6.13. Let \(G \) be the 2-torsion subgroup of the diagonal torus of \(PGL_2(k) \). Then \(X \) faithfully acts on the Fano threefold in \(\mathbb{P}^6 \) given by the equations \(\sum x_i^2 = \sum \lambda_i x_i^2 = \sum \mu_i x_i^2 = 0 \). This shows that the bound \(r(G) \leq 6 \) in the above lemma is sharp. Note however that \(X \) is not rational if it is smooth \([Be77]\). Hence in this case our construction does not give any embedding of \(G \) to \(\text{Cr}_3(k) \).

Lemma 6.14 If in the above assumptions \(g(X) \geq 6 \), then \(X \) has at most 29 singular points.

Proof. According to \([Na97]\) the variety \(X \) has a smoothing. This means that there exists a flat family \(X \to \mathcal{X} \) over a smooth one-dimensional base \(\mathcal{X} \) with special fiber \(X = \mathcal{X}_0 \) and smooth general fiber \(X_1 = \mathcal{X}_1 \). Using the classification of Fano threefolds \([Is80]\) (see also \([IP99]\)) we obtain \(h^{1,2}(X_i) \leq 10 \). Then by \([Na97]\) we have

\[
\#\text{Sing}(X) \leq 21 - \frac{1}{2} \text{Eu}(X_i) = 20 - \rho(X_i) + h^{1,2}(X_i) \leq 29.
\]

Proof of Proposition 6.1 Assume that \(r(G) \geq 7 \). Let \(S \in |-K_X| \) be an invariant member. By Corollary 4.5 the singularities of \(S \) are worse than Du Val. So \(S \) satisfies the conditions (ii) of Proposition 4.6. Write \(S = \sum_{i=1}^N S_i \). By Proposition 4.6 the group \(G_\bullet \) acts on \(S_i \) faithfully and

\[
N = 2^{r(G) - r(G_\bullet)} \geq 4.
\]

First we consider the case where \(X \) is smooth near \(S \). Since \(\rho(X) = 1 \), the divisors \(S_i \)’s are linear equivalent to each other and so \(t(X) \geq 4 \). This contradicts Lemma 6.10.

Therefore, \(S \cap \text{Sing}(X) \neq \emptyset \). By Lemma 6.8 the action of \(G \) on \(X \) is free in codimension 1 and by Remark 2.2 we see that \(r(G_F) \leq 3 \), where \(G_F \) is the stabilizer
of a point $P \in \text{Sing}(X)$. Then by Lemma 6.14 the variety X has exactly 16 singular points and G acts on $\text{Sing}(X)$ transitively. Since $S \cap \text{Sing}(X) \neq \emptyset$, we have $\text{Sing}(X) \subset S$. On the other hand, our choice of S is not unique: there is a basis $s_i^{(1)}, \ldots, s_i^{(g+2)} \in H^0(X, -K_X)$ consisting of eigensections. This basis gives us G-invariant divisors $S_i^{(1)}, \ldots, S_i^{(g+2)}$ generating $|-K_X|$. By the above $\text{Sing}(X) \subset S_i^{(i)}$ for all i. Thus $\text{Sing}(X) \subset \cap S_i^{(i)} = Bs|^{-K_X}$. This contradicts Lemma 6.6. □

References

Be77. A. Beauville. Variétés de Prym et jacobienes intermédiaires. *Ann. Sci. École Norm. Sup.* (4), 10(3):309–391, 1977.

Be07. A. Beauville. p-elementary subgroups of the Cremona group. *J. Algebra*, 314(2):553–564, 2007.

DI09. I. Dolgachev and V. Iskovskikh. Finite subgroups of the plane Cremona group. In *Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I*, Progr. Math., 269, 443–548. Birkhäuser Boston Inc., Boston, MA, 2009.

IP99. V. Iskovskikh and Y. Prokhorov. *Fano varieties. Algebraic geometry V.*, Encyclopaedia Math. Sci. 47 Springer, Berlin, 1999.

Is80. V. A. Iskovskikh. Anticanonical models of three-dimensional algebraic varieties. *J. Sov. Math.*, 13:745–814, 1980.

Ka92. Y. Kawamata. Boundedness of Q-Fano threefolds. In *Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989)*, Contemp. Math., 131, 439–445, Providence, RI, 1992. Amer. Math. Soc.

KM2T. J. Kollár, Y. Miyaoka, S. Mori, and H. Takagi. Boundedness of canonical Q-Fano 3-folds. *Proc. Japan Acad. Ser. A Math. Sci.*, 76(5):73–77, 2000.

Mo85. S. Mori. On 3-dimensional terminal singularities. *Nagoya Math. J.*, 98:43–66, 1985.

MP09. S. Mori and Y. Prokhorov. Multiple fibers of del Pezzo fibrations. *Proc. Steklov Inst. Math.*, 264(1):131–145, 2009.

Na97. Y. Namikawa. Smoothing Fano 3-folds. *J. Algebraic Geom.*, 6(2):307–324, 1997.

Ni80. V. Nikulin. Finite automorphism groups of Kähler K3 surfaces. *Trans. Mosc. Math. Soc.*, 2:71–135, 1980.

Pr11. Y. Prokhorov. p-elementary subgroups of the Cremona group of rank 3. In *Classification of algebraic varieties*, EMS Ser. Congr. Rep., 327–338. Eur. Math. Soc., Zürich, 2011.

Pr12. Y. Prokhorov. Simple finite subgroups of the Cremona group of rank 3. *J. Algebraic Geom.*, 21:563–600, 2012.

Pr13a. Y. Prokhorov. G-Fano threefolds, I. *Adv. in Geom.*, 13(3):389–418, 2013.

Pr13b. Y. Prokhorov. G-Fano threefolds, II. *Adv. in Geom.*, 13(3):419–434, 2013.

Pr13c. Y. Prokhorov. On birational involutions of \mathbf{P}^3. *Izvestiya Math. Russian Acad. Sci.*, 77(3):627–648, 2013.

Re87. M. Reid. Young person’s guide to canonical singularities. In *Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985)*, Proc. Sympos. Pure Math., 46, 345–414. Amer. Math. Soc., Providence, RI, 1987.

Shi89. K.-H. Shin. 3-dimensional Fano varieties with canonical singularities. *Tokyo J. Math.*, 12(2):375–385, 1989.

Sho93. V. Shokurov. 3-fold log flips. *Russ. Acad. Sci., Izv., Math.*, 40(1):95–202, 1993.