Correlated hopping in the 1D Falicov-Kimball model

Z. Gajek and R. Lemański

Institute of Low Temperatures and Structure Research, Polish Academy of Sciences, P.O.Box 1410, 50-950 Wrocław, Poland

Abstract

Both canonical and grand canonical phase diagrams of the one-dimensional Falicov-Kimball model (FKM) with correlated hopping are presented for several values of the model parameters. Using the method of restricted phase diagrams the system has been studied in the thermodynamic limit. As compared to the conventional FKM, the diagrams exhibit a loss of the particle-hole symmetry.

PACS D5.30.Fk, 71.30+h

As the simplest, still non-trivial model of highly correlated electron systems, the Falicov-Kimball model (FKM) attracts growing attention among solid state physicists. It can describe variety of the most intriguing cooperative phenomena, as metal-insulator transition, mixed-valence phenomenon etc. (see e.g. the review [1]).

The model deals with itinerant particles (electrons) that can hop between nearest-neighbor sites. Some of lattice sites are occupied by non-movable particles, playing a role of ions or localized electrons; we call them "ions". The only interaction in the system is the on-site, Coulomb-type interaction between the electrons and the ions. The interaction generates long-range correlations between the ions.

The model has been investigated thoroughly in nineties. Numerous approximate results supplemented with some exact and rigorous statements reported up to now provide a good basis for further extensions of the model towards more realistic physical situations. These include the discussed here model with correlated hopping, according to which the electron hopping rate depends on occupations of relevant sites.

The Hamiltonian of the FKM with correlated hopping reads:

\[H = -t \sum_x (c^+_x c_{x+1} + c^+_x c_{x+1}) \{ 1 - \alpha [w(x) + w(x+1) - \gamma w(x) w(x+1)] \} \]

\[-U \sum_x w(x) c^+_x c_x, \]

(1)
where \(w(x) \) denotes the ion occupation number at site \(x \) (it takes a value 0 or 1), \(c^+_x , c_x \) are the operators that create and annihilate an electron at site \(x \), respectively. The electron-ion coupling constant \(U \) is chosen to be positive, what corresponds to the attraction between the ions and the electrons. Note that with the parametrization given in (1) the hopping amplitudes can take the three following values: \(t_{00} = t \) if an electron hops between two empty sites, \(t_{01} = t(1 - \alpha) \) if it hops between one site occupied by an ion and the other empty (obviously \(t_{01} = t_{10} \)), and finally \(t_{11} = t[1 - \alpha(2 - \gamma)] \) if it hops between two sites occupied by ions. For \(\alpha = 0 \) the Hamiltonian (1) reduces to the conventional FKM without correlated hopping.

The meaning of the correlated hopping parameters \(\alpha \) and \(\gamma \) depends on a particular physical situation to be modeled. For instance, the \(\alpha \) parameter may originate from bond-charge repulsion, the mechanism originally discussed in the frames of the extended Hubbard model [2, 3]. Within the same microscopic picture the parameter \(\gamma \) depends strongly on the effective nuclear charge \(Z \) and apparently decreases for larger \(Z \) [3].

In general, recognition and understanding the mechanisms leading to the correlated hopping, as well as its consequences are far from being satisfactory. In particular, this concerns the problem of formation of stable phases. The present work turns towards this direction for the simplest, one-dimensional case.

Various approaches known for the ordinary FK model have been adopted to its extended version [4]. Here we used the method of restricted phase diagrams, where infinite systems of periodic phases, whose period does not exceed some \(r_{\text{max}} \) (here we took \(r_{\text{max}} = 7 \)), as well as their mixtures were considered. The Gibbs potentials of all these periodic phases were calculated exactly [5], so we were able to get the ground state phase diagrams (in a \((\mu_e, \mu_i)\) plane) with a high precision. Then we mapped them onto the \((\rho_e, \rho_i)\) plane, thus obtaining canonical phase diagrams. Details of the method and the calculation procedures were published previously (see [6, 7]).

Our results are presented in Figs. 1 and 2, where we took the intermediate value of \(U \) being equal to 1.6, \(\alpha = 0, 0.1, 0.2 \) and \(\gamma = 0.0, 0.5 \). In Fig. 1 the restricted grand canonical phase diagrams are displayed, whereas in Fig. 2 the corresponding canonical phase diagrams are shown. Figs. 1(a) and 2(a) correspond to the simplest FKM, with no correlated hopping terms \((t_{00} = t_{01} = t_{11} = t) \). In this case the diagram is symmetric with respect to exchange between sites occupied by the ions and those unoccupied (it has the particle-hole symmetry). An extended analysis of that case was given previously [7]; here we included the diagram only as a reference one.

If one ”turns on” the correlated hopping in such a way that \(\alpha \neq 0 \) and \(\gamma = 0 \) – see Fig 1(b), (c) and 2(b), (c), then with an increasing \(\alpha \) the diagrams become more and more asymmetric. For \(\alpha = 0.2 \) \((t_{00} = t, t_{01} = 0.8t \) and \(t_{11} = 0.6t) \) all periodic phases laying on the left from the \(\rho_i + \rho_e = 1 \) line disappear and their place take mixtures of periodic neutral phases with the ”empty” one (with free electrons and no ions). Instead the the so-called three-molecular periodic phases
develop on the right hand side from the \(\rho_i + \rho_e = 1 \) line.

On the other hand, if we increase the electron hopping amplitude between two occupied sites \(t_{11} \) from 0.6\(t \) to 0.7\(t \) (what corresponds \(\alpha = 0.2 \) and \(\gamma = 0.5 \) – see Figs. 1(d) and 2(d)), then those three-molecular phases are suppressed.

A very brief analysis of the displayed phase diagrams show their considerable sensitivity to a variation of the correlated hopping parameters. In particular, the regions enclosed within the triangles close to the lower-left and upper-right corners of the canonical diagrams, where the segregated phase (a mixture of an empty lattice with free electrons and the fully occupied lattice with a number of electrons) is stable, clearly depends on values of the correlated hopping amplitudes (see Fig. 2). The above preliminary results confirm conjectures already published several years ago (e.g. [3]), that the correlated hopping plays an important role and should be taken into account if one intends describe properly physical properties of the systems.

Acknowledgements. We thank Janusz Jędrzejewski for valuable and fruitful discussions. Support from the Polish Research Committee (KBN) under the Grant No. 2 P03B 131 19 is greatly acknowledged.

References

[1] Gruber, Ch., Macris, N., Helv. Phys. Acta 69, 851 (1996).
[2] Hubbard J., Proc. Roy. Soc. London A 276, 238 (1963).
[3] Hirsch, J.E. Physica C 158, 326 (1989); Hirsch, J.E., Physica B 199-200, 366 (1994).
[4] Kollar, M. and Vollhardt, Phys. Rev. B 63, 45107 (2001); Schiller, A. Phys. Rev. B 60 15660 (1999); Ovchinnikov, A.A., J. Phys.: Condens. Matter 6, 11057 (1994); Farkasovsky, P., Hudakova, N., arXiv:cond-mat/0107103 v2 7 Jul 2001; Thanh-Hai, D., Minh-Tien, T., J. Phys.: Condens. Matter 13, 5625 (2001); Schadschneider, A., Gang, Su, Zittartz, J., Z. Phys. B 102, 393 (1997); Michielsen, K., Phys. Rev. B 50, 4283 (1994); Michielsen, K., De Raedt, Hans, Phys. Rev. B 59, 4565 (1999); J. Wojtkiewicz, R. Lemański, arXiv:cond-mat/0106201 v2 28 Jun 2001.
[5] Lyżwa, R., Phys. Lett. A 134, 319 (1992); Physica A 192, 231 (1993).
[6] Jędrzejewski, J., Lach, J. and Lyżwa, R., Physica A 154, 529 (1989); Lach, J., Lyżwa, R., Jędrzejewski, J., Acta Phys. Pol. A 84, 327 (1993); Lach, J., Lyżwa, R., Jędrzejewski, J., Phys. Rev. B 48, 10783 (1993); Watson, G. I., Lemański, R., J. Phys.: Condens. Matter 7, 9521 (1995).
[7] Gajek, Z., Jędrzejewski, J., Lemański, R., Physica A 223, 175 (1996); Gajek, Z., Jędrzejewski, J., Lemański, R., Phase Transitions 57, 139 (1996).
Figure captions

Fig. 1. The restricted grand canonical phase diagrams for $U = 1.6t$ and the following four sets of correlated hopping parameters: (a) $\alpha = 0$ and $\gamma = 0$; (b) $\alpha = 0.1$ and $\gamma = 0$; (c) $\alpha = 0.2$ and $\gamma = 0$; (d) $\alpha = 0.2$ and $\gamma = 0.5$. Areas displayed on the diagrams are shadowed according to ion densities of representing them phases. Each line in an upper part of the segment (a), (b), (c) or (d) of Figure 1 contains three characteristics of those phases, that appear in the diagram: the ratios in the square brackets stand for their ion densities (while the denominators are equal to the periods of corresponding phases); the sequences of circles and dots (corresponding to the ions and empty sites, respectively) represent their unit cells; shadowed stripes show energy intervals where density of states of the phases are positive.

Fig. 2. The restricted canonical phase diagrams for $U = 1.6t$ and for the same sets of correlated hopping parameters as those given in Fig. 1. The black spots represent the periodic phases (whose period is at least 2). The straight line segments join those spots whose corresponding phases touch each other on the ground canonical phase diagram. The points located on a segment represent the mixtures of the two periodic phases that correspond to the ends of the segment. The black spots located on the lines $\rho_i = 0$ or $\rho_i = 1$ show the minimal and maximal electron densities of the full phases that form mixtures with the same periodic phase.
This figure "Fig1a.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cond-mat/0211231v1
This figure "Fig1b.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cond-mat/0211231v1
This figure "Fig1c.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cond-mat/0211231v1
This figure "Fig1d.jpg" is available in "jpg" format from:

http://arxiv.org/ps/cond-mat/0211231v1
(a) \[\alpha = 0\]
\[\gamma = 0\]

(b) \[\alpha = 0.1\]
\[\gamma = 0\]
(c) \(\alpha = 0.2 \)
\(\gamma = 0 \)

(d) \(\alpha = 0.2 \)
\(\gamma = 0.5 \)