Bootstrap equations and correlation functions
for the Heisenberg XYZ antiferromagnet
(Short title: Bootstrap equations and XYZ correlation functions)

Yas-Hiro Quano

Department of Clinical Engineering, Suzuka University of Medical Science
Kishioka-cho, Suzuka 510-0293, Japan

email: quanoy@suzuka-u.ac.jp

Abstract

Presented are two kinds of integral solutions to the quantum Knizhnik-Zamolodchikov equations
for the 2n-point correlation functions of the Heisenberg XYZ antiferromagnet. Our first integral
solution can be obtained from those for the cyclic SOS model by using the vertex-face correspon-
dence. By the construction, the sum with respect to the local height variables \(k_0, k_1, \ldots, k_{2n} \) of
the cyclic SOS model remains other than \(n \)-fold integral in the first solution. In order to perform
those summations, we improve that to find the second integral solution of \((r+1)n\)-fold integral for
\(r \in \mathbb{Z}_{>1} \), where \(r \) is a parameter of the XYZ model. Furthermore, we discuss the relations among
our formula, Lashkevich-Pugai’s formula and Shiraishi’s one.

PACS number: 02.30.I

1 Introduction

Thirty years have passed since Baxter’s papers on the eight-vertex model \([1]\) and the XYZ spin chain \([2]\)
were published. In a series of papers \([3, 4, 5]\) Baxter constructed the eigenvectors of the Hamiltonian of
the XYZ spin chain by translating the eight-vertex model to the equivalent face model, the eight-vertex
SOS model.

Though many authors have tried to extract the results on correlation functions of the eight-vertex/XYZ
model, very few results were obtained. The spontaneous polarization was conjectured by Baxter and
Kelland \([6]\), and the same results were reproduced by solving a set of difference equations, the quantum
Knizhnik-Zamolodchikov equation \((q\text{-KZ equations})\) in \([7]\). On the basis of the \(Z \)-invariance the integral
formulae of correlation functions were obtained in the special case that the eight-vertex model can be
factorized into two independent Ising model \([8]\). A free field representation of the type I \([9]\) and type II
vertex operators were constructed to express the correlation functions and the form factors of the eight-vertex/XYZ model in terms of those of the eight-vertex SOS model [1].

There are several ways to address the problem of correlation functions of integrable models. The vertex operator approach [12] provides a powerful tool to calculate the correlation functions of the six-vertex/XXZ model [13], the RSOS-type model [11, 14, 15]. The bootstrap approach [7, 16] is based on the corner transfer matrix (CTM) method [17] and enables us to derive a set of difference equations of correlation functions. Note that the CTM method can be applied to massive integrable model such as the XYZ Heisenberg chain in the antiferromagnetic regime. Kitanin et al [18, 19] developed the algebraic Bethe Ansatz method to obtain domain wall correlation functions of the XXZ model, using the determinant structure of the partition function.

In this paper we try to construct the correlation functions of the XYZ antiferromagnet by directly solving a set of difference equations, bootstrap equations. These equations are derived on the basis of CTM bootstrap in [7]. In a previous paper [20] we did the same thing for both the bulk and boundary XXZ antiferromagnet. Let us cite some results concerning the bulk XXZ case from [20].

The $2n$-point correlation functions of the bulk XXZ antiferromagnet with the spectral parameters $(\zeta) = (\zeta_1, \cdots, \zeta_{2n})$ and the spin variables $\varepsilon = (\varepsilon_1, \cdots, \varepsilon_{2n})$ can be expressed up to a scalar function of ζ’s in the following form:

$$G(n)_{\sigma}(\zeta)\varepsilon = \prod_{a \in A} \int_{C_{a}} d\zeta_{a} \frac{d\zeta_{a}}{2\pi \sqrt{-1}w_{a}} \Psi_{\sigma}(\{w_{a}\}_{a \in A}|\zeta)Q(n)(\{w_{a}\}_{a \in A}|\zeta)^{\varepsilon}, \quad (\sigma = \pm) \quad (1.1)$$

where

$$A := \{a|\varepsilon_{a} > 0, 1 \leq a \leq 2n\}. \quad (1.2)$$

The functions $Q(n)(w|\zeta)^{\varepsilon}$ is a meromorphic function defined below, and $\Psi_{\sigma}(n)(w|\zeta)$ is a kernel with appropriate transformation properties [20, eq.(2.32–33)] and recursion relations [20, eq.(2.34)]. The subscript $\sigma = \pm$ in (1.1) specifies one of two vacuums of the XXZ model in the antiferromagnetic regime. The explicit expression of $Q(n)(w|\zeta)^{\varepsilon}$ is as follows:

$$Q(n)(w|\zeta)^{\varepsilon} = \prod_{a \in A} \zeta_{a} \left(\prod_{j=1}^{a-1} (xz_{j} - w_{a}) \prod_{j=a+1}^{2n} (xw_{a} - z_{j}) \right) \prod_{a,b \in A} \prod_{a < b} (x^{-1}w_{b} - xw_{a})^{-1}, \quad (1.3)$$

where $z_{j} = \zeta_{2j}^{2}$. Here we notice the relation between our previous work [20] and [21, 22], the latter in which the correlation functions of the massless XXZ model were obtained. Since the XXZ model has only one vacuum in the massless regime, the vacuum structure of the massless XXZ model is very different from that of the XXZ antiferromagnet. Nevertheless, the structures of the integral formulae for the correlation functions in the both regime are quite similar. In order to see such similarity, let us
substitute $x = e^{-\epsilon}, \zeta_j = e^{-\epsilon \beta_j}$ and $w_a = e^{-2\epsilon \alpha_a}$ into (1.3). Then we have

$$Q^{(n)}(w|\zeta)^\epsilon = \text{const.} \prod_{a \in A} e^{(2n-1)\epsilon \alpha_a} \left(\prod_{j=1}^{a-1} \text{sh} \epsilon (\alpha_a - \beta_j - \frac{1}{2}) \prod_{j=a+1}^{2n-2} \text{sh} \epsilon (\beta_j - \alpha_a - \frac{1}{2}) \right) \left(\prod_{a \leq b \in A} \text{sh} \epsilon (\alpha_a - \alpha_b + 1) \right)^{-1}. \quad (1.4)$$

When $|x| = 1 \ (\epsilon \in \sqrt{-1}\mathbb{R})$, the expression (1.4) is equal to the meromorphic function $Q_n(\alpha|\beta)^\epsilon$ in [21], the massless analogue of $Q^{(n)}(w|\zeta)^\epsilon$, up to a trivial factor. Furthermore, we should notice here that the corresponding expression for the eight-vertex SOS model which will be given in section 2 possesses also quite similar structure to (1.4).

The XYZ Heisenberg antiferromagnet has two parameters q and p, where $p = (-q)^r$. Lashkevich and Pugai [8] wrote down the n-fold integral formulae for the $2n$-point correlation functions G in terms of those of SOS model F as follows:

$$G(u_1, \cdots, u_{2n}|u_0) = \sum_{k_0, k_1, \cdots, k_{2n}} t_{k_1}^{k_0}(u_1 - u_0) \otimes \cdots \otimes t_{k_{2n}}^{k_{2n-1}}(u_{2n} - u_0) F(u_1, \cdots, u_{2n}|u_0)^{k_0k_1\cdots k_{2n}}. \quad (1.5)$$

Here u_1, \cdots, u_{2n} are additive spectral parameters, u_0 is an auxiliary parameter, and $t_{k_{j+1}}^{k_j}(u)$ is the intertwining vectors introduced by Baxter [5, 6]. The sum with respect to $k_j \ (1 \leq j \leq 2n)$ should be taken over $k_j = k_{j-1} \pm 1$. Concerning the sum with respect to k_0, that depends on the value of r. In (1.3) $r > 1$ is supposed. When r is a rational number of the form $2r = N/N'$ (N, N' coprime), we should take the sum over $\mathbb{Z}/N\mathbb{Z}$, otherwise over \mathbb{Z}.

On the other hand, Shiraishi [23] constructed the formulae of the correlation functions of the XYZ model without using the vertex-face correspondence. There are three main differences between Lashkevich-Pugai’s formulae and Shiraishi’s ones. Shiraishi restricted himself to the case $r = \frac{3}{2}$, while $r > 1$ in (1.5). Furthermore, the 2n-point correlation functions à la Shiraishi are of the 2n-fold integral form, while n-fold in the former case. These two differences seem disadvantage of Shiraishi’s formulae in a sense, however, the third difference gives advantage. Shiraishi constructed the type I and type I vertex operators of the eight-vertex model as intertwiners of the q-deformed Virasoro algebra [24], without transforming those of SOS model via vertex-face correspondence. Thus, the sum with respect to k_j in (1.3) are not needed.

In the present paper we wish to synthesize the advantages of the two formulae. Namely, we construct $(r+1)n$-fold integral formulae for the $2n$-point correlation of the XYZ model with $r \in \mathbb{Z}_{>1}$, by using the vertex-face correspondence, and performing the sum with respect to k_j.

The rest of the present paper is organized as follows. In section 2 we formulate the XYZ antiferromagnet and the corresponding cyclic SOS model. In section 3 we present the bootstrap equations and construct integral formulae for correlation functions for the cyclic SOS model. In section 4 we further present integral formulae for correlation functions of the XYZ antiferromagnet. In section 5 we give some concluding remarks. In Appendix A we list some properties of the R-matrix of the eight-vertex model.
2 The XYZ antiferromagnet and the cyclic SOS model

2.1 The Hamiltonian and the \(R \)-matrix

The Jacobi theta functions with the characteristics \(a, b \in \mathbb{R} \) are defined by

\[
\vartheta \left[\begin{array}{c} a \\ b \end{array} \right] (u; \tau) := \sum_{m \in \mathbb{Z}} \exp \left\{ \pi \sqrt{-1}(m + a) \left[(m + a)\tau + 2(u + b) \right] \right\}.
\]

(2.1)

The \(i \)th theta functions are defined as follows:

\[
\theta_1(u; \tau) = \vartheta \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right] (u; \tau), \quad \theta_2(u; \tau) = \vartheta \left[\begin{array}{c} 1/2 \\ 0 \end{array} \right] (u; \tau),
\]

\[
\theta_3(u; \tau) = \vartheta \left[\begin{array}{c} 0 \\ 0 \end{array} \right] (u; \tau), \quad \theta_4(u; \tau) = \vartheta \left[\begin{array}{c} 0 \\ 1/2 \end{array} \right] (u; \tau).
\]

These theta functions have the infinite product forms, e.g.,

\[
\theta_1(u; \tau) = \sqrt{-1} q^{\frac{1}{4}} e^{-\sqrt{-1}\pi u} \Theta_q \left(\frac{e^{2\sqrt{-1}\pi u}}{q} \right), \quad \theta_2(u; \tau) = q^{\frac{1}{4}} e^{-\sqrt{-1}\pi u} \Theta_q \left(-e^{2\sqrt{-1}\pi u} \right),
\]

where \(q = \exp(\sqrt{-1}\pi \tau) \) and we used the standard notation

\[
\Theta_p(z) := (z;p)_\infty (pz^{-1};p)_\infty (p,p)_\infty, \quad (a;p_1, \ldots, p_n)_\infty = \prod_{k \geq 0} (1 - ap_1^{k+1} \cdots p_n^{k}).
\]

In this section we consider the XYZ spin chain in an infinite lattice \([5, 17]\)

\[
H_{\text{XYZ}} = -\frac{1}{2} \sum_{j \in \mathbb{Z}} \left(\sigma_j^x \sigma_{j+1}^x + \Gamma \sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z \right).
\]

(2.2)

Here \(\sigma_j^x, \sigma_j^y \) and \(\sigma_j^z \) denote the standard Pauli matrices acting on \(j \)-th site, and we restrict ourselves to the antiferromagnetic regime \(|\Gamma| < 1 \) and \(\Delta < -1 \), where

\[
\Gamma = \frac{1 - \gamma}{1 + \gamma}, \quad \gamma = - \frac{\theta_1^2(\frac{\sqrt{-1}r}{\pi}, \frac{2\sqrt{-1}x}{\pi})}{\theta_1^2(\frac{\sqrt{-1}r}{\pi}, \frac{2\sqrt{-1}x}{\pi})} > 0,
\]

\[
\Delta = -\frac{1}{1 + \gamma (\theta_2 \theta_3)(0; \frac{2\sqrt{-1}r}{\pi}, \frac{2\sqrt{-1}x}{\pi})} = \frac{\theta_1^2(0; \frac{\sqrt{-1}r}{\pi}, \frac{2\sqrt{-1}x}{\pi})}{\theta_1^2(\frac{\sqrt{-1}r}{\pi}, \frac{2\sqrt{-1}x}{\pi})}.
\]

The condition \(|\Gamma| < 1 \) and \(\Delta < -1 \) is equivalent to the one such that \(\epsilon > 0 \) and \(r > 1 \). The antiferromagnetic XXZ Hamiltonian can be obtained by taking the limit \(r \to \infty \). In this limit we have \(\gamma \to 0 \) and \(\Delta \to -(x + x^{-1})/2 \), where \(0 < x = e^{-\epsilon} < 1 \). As well as known, thus obtained XXZ Hamiltonian commutes with the quantum affine algebra \(U_{-x}(\widehat{sl_2}) \) \([13]\). Let \(V = \mathbb{C} v_+ + \mathbb{C} v_- \) be a vector representation of \(U_{-x}(\widehat{sl_2}) \). Then the limiting XXZ Hamiltonian formally acts on \(V^{\otimes \infty} = \cdots \otimes V \otimes V \otimes \cdots \).

In \([12]\) the space of states \(V^{\otimes \infty} \) was identified with the tensor product of level 1 highest and level \(-1\) lowest representations of \(U_{-x}(\widehat{sl_2}) \). It is very likely that the same structure survives in the nonlimiting generic case. In other words, the XYZ antiferromagnet is expected to have the symmetry described by the elliptic affine algebra \(A_{q,p}(\widehat{sl_2}) \) \([22, 23]\), where \(q = -x \) and \(p = x^2r \).
Bootstrap equations and XYZ correlation functions

The XYZ Hamiltonian (2.2) can be obtained from the transfer matrix for the eight-vertex model, by taking logarithmic derivative with respect to the spectral parameter ζ. The R-matrix $R_{SV}(\zeta) \in \text{End}(\mathbb{C}^2 \otimes \mathbb{C}^2)$ of the eight-vertex model is given as follows:

$$R_{SV}(\zeta) = \frac{1}{\kappa(\zeta)} \mathcal{R}_{SV}(\zeta),$$

$$\overline{R}_{SV}(\zeta) = w_4(u) I \otimes I + w_2(u) \sigma^x \otimes \sigma^x + w_3(u) \sigma^y \otimes \sigma^y + w_1(u) \sigma^z \otimes \sigma^z,$$

where $z = \zeta^2 = x^{2u}$ and

$$w_\alpha(u) = \frac{\theta_\alpha(\frac{u}{2r} ; \frac{u+r\sqrt{-1}}{cr})}{\theta_\alpha(\frac{1}{2r} ; \frac{r\sqrt{-1}}{cr})}.$$

In what follows we denote $R_{SV}(\zeta)$ and $\overline{R}_{SV}(\zeta)$ by $R(\zeta)$ and $\overline{R}(\zeta)$, respectively, when there is no fear of confusion. In the above expression we modify Sklyanin’s parametrization [27] such that (2.3) coincides with Baxter’s one [17] in the principal regime. The normalization factor

$$\kappa(\zeta) = \left[\frac{u+1}{1} \right],$$

$$\overline{\kappa}(\zeta) = \kappa(\zeta)^{-1},$$

is chosen such that the partition function per site is unity. In other words, the factor $\kappa(\zeta)$ is the partition function per site of the unnormalized model defined by $\overline{R}(\zeta)$. For later convenience we also introduce the symbol $\{u\}$ by

$$\{u\} = x^{\frac{u^2}{r}} \Theta_{x^{2r}}(-x^{2u}).$$

Note that

$$\theta_1(\frac{u}{r}, \frac{u+r\sqrt{-1}}{cr}) = \sqrt{\frac{2\pi}{cr}} \exp \left(-\frac{cr}{4} \right) \{u\},$$

$$\theta_1(\frac{-u}{r}, \frac{u-r\sqrt{-1}}{cr}) = \sqrt{\frac{2\pi}{cr}} \exp \left(-\frac{cr}{4} \right) \{u\}.$$

Let $\mathbb{C} = \mathbb{C}v_+ \oplus \mathbb{C}v_-$ and introduce the matrix elements of the R-matrix as follows:

$$R(\zeta)v_{e_1} \otimes v_{e_2} = \sum_{e_1' e_2'} v_{e_1'} \otimes v_{e_2'} R(\zeta)_{e_1 e_2}^{e_1' e_2'} = \frac{1}{\kappa(\zeta)} \sum_{e_1' e_2'} v_{e_1'} \otimes v_{e_2'} \overline{R}(\zeta)_{e_1 e_2}^{e_1' e_2'}.$$

Then the nonzero entries are given by

$$\overline{R}(\zeta)_{++}^{++} = R(\zeta)_{--}^{--} = a(\zeta) = \frac{(\theta_2 \theta_3)(\frac{u}{2r} ; \frac{u+r\sqrt{-1}}{cr})(\theta_1 \theta_4)(\frac{u+1}{2r} ; \frac{u+r\sqrt{-1}}{cr})}{(\theta_2 \theta_3)(0 ; \frac{r\sqrt{-1}}{cr})(\theta_1 \theta_4)(\frac{1}{2r} ; \frac{r\sqrt{-1}}{cr})},$$

$$\overline{R}(\zeta)_{+-}^{+-} = R(\zeta)_{-+}^{-+} = b(\zeta) = \frac{(-\theta_1 \theta_4)(\frac{u}{2r} ; \frac{u+r\sqrt{-1}}{cr})(\theta_2 \theta_3)(\frac{u+1}{2r} ; \frac{u+r\sqrt{-1}}{cr})}{(\theta_2 \theta_3)(0 ; \frac{r\sqrt{-1}}{cr})(\theta_1 \theta_4)(\frac{1}{2r} ; \frac{r\sqrt{-1}}{cr})},$$

$$\overline{R}(\zeta)_{++}^{-+} = R(\zeta)_{-+}^{+-} = c(\zeta) = \frac{(\theta_2 \theta_3)(\frac{u}{2r} ; \frac{u-r\sqrt{-1}}{cr})(\theta_2 \theta_3)(\frac{u+1}{2r} ; \frac{u-r\sqrt{-1}}{cr})}{(\theta_2 \theta_3)(0 ; \frac{r\sqrt{-1}}{cr})(\theta_2 \theta_3)(\frac{1}{2r} ; \frac{r\sqrt{-1}}{cr})},$$

$$\overline{R}(\zeta)_{++}^{++} = R(\zeta)_{++}^{++} = d(\zeta) = \frac{(-\theta_1 \theta_4)(\frac{u}{2r} ; \frac{u-r\sqrt{-1}}{cr})(\theta_2 \theta_3)(\frac{u+1}{2r} ; \frac{u-r\sqrt{-1}}{cr})}{(\theta_2 \theta_3)(0 ; \frac{r\sqrt{-1}}{cr})(\theta_2 \theta_3)(\frac{1}{2r} ; \frac{r\sqrt{-1}}{cr})}.$$

Assume that the parameters u, ϵ and r lie in the so-called principal regime [17]:

$$\epsilon > 0, \quad r > 1, \quad -1 < u < 0, \quad 0 < p < x < \zeta^{-1} < 1,$$

where $x = e^{-\epsilon}$, $p = x^{2r}$ and $\zeta = x^u$. The main properties of the R-matrix are listed in Appendix A.
2.2 Vertex-face correspondence

In order to construct the eigenvectors of the eight-vertex model, Baxter introduced the following intertwining vector [1, 2]:

\[
\frac{t_k}{k+1}(u) = \frac{f(u)t_k}{k+1}(u), \\
\frac{t_k}{k+1}(u) = (\sqrt{-1})^{k(\theta_1 \theta_4)} \left(\begin{array}{c} k+u \, \bar{\varepsilon} \\ 2r \\ -1 \end{array} \right) v_+ + (\sqrt{-1})^{-k}(\theta_2 \theta_3) \left(\begin{array}{c} k+u \, \bar{\varepsilon} \\ 2r \\ -1 \end{array} \right) v_-.
\]

(2.7)

The normalization factor \(f(u) \) satisfies the relation

\[
C^2[u]f(u)f(u - 1) = 1, \quad C = \frac{e^r}{\pi} \left(\frac{x^{2r}}{-x^{2r}} \right)_\infty.
\]

(2.8)

The explicit expression of \(f(u) \) is as follows:

\[
f(u) = \frac{x^{-\frac{u^2}{4} + \frac{u}{2} + \frac{1}{4}}}{C \sqrt{(x^{2r}; x^{2r})_\infty}} (x^4 z^4 x^4 x^{2r})_\infty (x^{2r+2} z^2 x^4 x^{2r})_\infty \]

(2.9)

The SOS model is a face model [1] which is defined on the square lattice with a site variable \(k_i \in \mathbb{Z} \) attached to each site \(i \). We call \(k_i \) local state or height and impose the condition that heights of adjoining sites differ by one. Local Boltzmann weight are assumed to be the function of the spectral parameter \(u \) and to be denoted by \(W \left(\begin{array}{c} c \\ d \\ b \\ a \end{array} u \right) \), which is given for a state configuration \(\begin{array}{c} c \\ d \\ b \\ a \end{array} \) round a face. Here the four states \(a, b, c \) and \(d \) are ordered clockwise from the SE corner. The Boltzmann weights of this model are assumed to be the function of the spectral parameter \(u \) and the nonzero Boltzmann weights are given as follows:

\[
W \left(\begin{array}{c} k+2 \\ k+1 \\ k \\ k \end{array} \right) u) = 1, \\
W \left(\begin{array}{c} k+1 \\ k+1 \\ k \\ k \end{array} \right) u) = 1, \\
W \left(\begin{array}{c} k+1 \\ k+1 \\ k \\ k \end{array} \right) u) = -1.
\]

(2.10)

The normalization factor \(\bar{\kappa}(u) \) given by (2.4) is chosen such that the partition function per cite is unity. Then we have the so-called vertex-face correspondence [1]:

\[
R(u_1 - u_2)t_k^a(u_1) \otimes t_k^b(u_2) = \sum_d W \left(\begin{array}{c} c \\ d \\ b \\ a \end{array} u_1 - u_2 \right) t_a^d(u_1) \otimes t_b^d(u_2).
\]

(2.11)

The RHS's of the last two equations in (2.10) contain the factors like \(\{ k \} \), while the corresponding Boltzmann weights of the ABF model [28] are expressed in terms of the factors like \([k]\). Suppose that \(r \) is a positive integer greater than 1. Then the ABF model is called a restricted SOS (RSOS) model, since \([k] = 0 \) for \(k \in r \mathbb{Z} \) and therefore the local states can be restricted as \(k = 1, \cdots, r-1 \). On the other
hand, the present face model (2.10) is a cyclic SOS model because \(\{ k + r \} = \{ k \} \). In [9] the RSOS type weights were used so that the following regularization was required. In order to avoid the pole resulting from \([k]\) in the denominator, \(k \in \mathbb{Z} + \delta \) should be assumed with some real \(\delta \), and the limit \(\delta \to 0 \) should be taken after all calculation [9]. In our case we need not such regularization because \(\{ k \} \neq 0 \) for \(k \in \mathbb{Z} \).

We also notice that the intertwining vector (2.7) is closely connected with the 2-point correlation function of the eight-vertex SOS model. Then these functions satisfy the following three CTM bootstrap equations [10]:

\[
\begin{align*}
F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n}) & = \sum_{k_j} W \left(\begin{array}{c}
k_j + 1 \\
k_j \\
k_j - 1 \\
k_j'
\end{array} \right) F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n}) \\
F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n-1}, \zeta_2) & = \sigma \frac{(k)}{(k_{n-1})} F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n}) \quad (3.1)
\end{align*}
\]

for \(|k_j - k_{j-1}| = 1 \) \((1 \leq j \leq 2n) \) and \(k_0 = k_{2n} = k \), be the 2-point correlation function of the eight-vertex SOS model. Then these functions satisfy the following three CTM bootstrap equations [10]:

\[
\begin{align*}
F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n-1}, x^2) & = \sum_{k_j} W \left(\begin{array}{c}
k_j + 1 \\
k_j \\
k_j - 1 \\
k_j'
\end{array} \right) F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n}) \\
F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n-2}, \zeta_{2n-1}) & = \frac{\delta_{k_{2n-2}, k}}{(k)} F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n}) \quad (3.2)
\end{align*}
\]

3 Bootstrap equations in the cyclic SOS model

3.1 Integral formulae for the cyclic SOS case

As preliminary, let us consider the bootstrap equations and correlation functions for the cyclic SOS model. Let

\[
F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n}) = \sigma \frac{(k)}{(k_{n-1})} F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n})
\]

for \(|k_j - k_{j-1}| = 1 \) \((1 \leq j \leq 2n) \) and \(k_0 = k_{2n} = k \), be the 2-point correlation function of the eight-vertex SOS model. Then these functions satisfy the following three CTM bootstrap equations [10]:

\[
\begin{align*}
F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n-1}, x^2) & = \sum_{k_j} W \left(\begin{array}{c}
k_j + 1 \\
k_j \\
k_j - 1 \\
k_j'
\end{array} \right) F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n}) \\
F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n-2}, \zeta_{2n-1}) & = \frac{\delta_{k_{2n-2}, k}}{(k)} F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n}) \quad (3.3)
\end{align*}
\]

\[
\begin{align*}
F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n-2}, \zeta_{2n-1}) & = \frac{1}{\sqrt{k}} F_{\sigma}^{(n)}(\zeta_1, \cdots, \zeta_{2n}) \quad (3.4)
\end{align*}
\]

Set

\[
F_{\sigma}^{(n)}(\zeta) = c_n \prod_{1 \leq j < k \leq 2n} \frac{\zeta_j^{-1}}{\zeta_j^{z_j}} g(z_j/z_k) \times T_{\sigma}^{(n)}(\zeta) \quad (3.5)
\]

Here \(c_n \) is a constant which will be determined below, and the function \(g(z) \) has the properties

\[
g(z) = g(x^{-4}z^{-1}), \quad g(z) = \zeta^x \frac{g(z)}{g(z^{-1})} \quad (3.6)
\]

The explicit form of \(g(z) \) is as follows:

\[
\begin{align*}
g(z) & = \frac{(x^6 z, x^4, x^2 z, x^2 z)^{k}}{(x^8 z, x^4, x^2 z, x^2 z)^{k}} g(z) = \frac{(x^6 z, x^4, x^2 z, x^2 z)^{k}}{(x^8 z, x^4, x^2 z, x^2 z)^{k}} \\
& = \sum_{x \in \mathbb{C}} (x^6 z, x^4, x^2 z, x^2 z)^{k} \frac{1}{(x^8 z, x^4, x^2 z, x^2 z)^{k}} g(z) = \frac{(x^6 z, x^4, x^2 z, x^2 z)^{k}}{(x^8 z, x^4, x^2 z, x^2 z)^{k}} g(z)
\end{align*}
\]

(3.7)
In order to present our integral formulae for $F_{\sigma}^{(n)}(\zeta)$ let us prepare some notation. Let

$$A := \{a | k_a = k_{a-1} + 1, \ 1 \leq a \leq 2n\}. \quad \text{(3.9)}$$

Then the number of elements of A is equal to n, because we now set $k_{2n} = k_0 = k$. We often use the abbreviations $(w) = (w_1, \cdots, w_n)$, $(w') = (w_1, \cdots, w_{n-1})$ and $(w'') = (w_1, \cdots, w_{n-2})$ for $a_j \in A$ such that $a_1 < \cdots < a_n$. Let us define the following meromorphic function

$$Q^{(n)}(w|\zeta)^{kk_1 \cdots k_{2n-1}k} = \prod_{a \in A} \left\{v_a - u_a + \frac{1}{2} - k_a\right\} \left(\prod_{j=1}^{a-1} [v_a - u_j - \frac{1}{2}] \prod_{j=a+1}^{2n} [u_j - v_a - \frac{1}{2}]\right) \prod_{j=1}^{a-1} \left\{k_j\right\}^{-1} \prod_{a,b \in A \atop a < b} \left|v_a - v_b + 1\right|^{-1}, \quad \text{(3.10)}$$

where $w_a = x^{2v_a}$. Here we should notice that the structure of the expression (3.10) is quite similar to (1.4).

We wish to find integral formulae of the form

$$F_{\sigma}^{(n)}(\zeta)^{kk_1 \cdots k_{2n-1}k} = \prod_{a \in A} \int_{C_a} \frac{dw_a}{2\pi i w_a} \Psi^{(n)}(w|\zeta)Q^{(n)}(w|\zeta)^{kk_1 \cdots k_{2n-1}k}. \quad \text{(3.11)}$$

Here, the kernel has the form

$$\Psi^{(n)}(w|\zeta) = \psi^{(n)}(w|\zeta) \prod_{a \in A, j=1}^{2n} x^{-\left\{(v_a - u_j)^2 + (v_a - u_j - \frac{1}{2})^2\right\}} \prod_{1 \leq j < k \leq 2n} x^{-\left\{(u_k - v_j)^2 + (u_k - v_j + \frac{1}{2})^2\right\}}, \quad \text{(3.12)}$$

where

$$\psi(z) = \frac{(x^{2r+3}z^2; x^4, x^{2r})_\infty (x^r z^{-1}; x^4, x^{2r})_\infty}{(xz; x^4, x^{2r})_\infty (x z^{-1}; x^4, x^{2r})_\infty}. \quad \text{(3.13)}$$

For the function $\vartheta_{\sigma}^{(n)}(w|\zeta)$ we assume that

- it is anti-symmetric and holomorphic in the $w_a \in \mathbb{C}\{0\}$,
- it is symmetric and meromorphic in the $\zeta_j \in \mathbb{C}\{0\}$,
- it has the two transformation properties

$$\frac{\vartheta_{\sigma}^{(n)}(w'|\zeta', x^2z_{2n})}{\vartheta_{\sigma}^{(n)}(w|\zeta)} = \sigma x^{-2n} \prod_{a \in A} w_a^{2n} \prod_{j=1}^{2n} \zeta_j^{-1}, \quad \text{(3.14)}$$

$$\frac{\vartheta_{\sigma}^{(n)}(w', x^4w_{2n}|\zeta)}{\vartheta_{\sigma}^{(n)}(w|\zeta)} = x^{-4n} \prod_{j=1}^{2n} \frac{z_j}{w_{2a_n}}. \quad \text{(3.15)}$$

- it satisfies the following recursion relation

$$\frac{\vartheta_{\sigma}^{(n)}(w', x^{-1}z_{2n-1}|\zeta'', z_{2n-1}, x^{-1}z_{2n-1})}{\vartheta_{\sigma}^{(n-1)}(w'|\zeta'')} = (\pm x^{-1}z_{2n-1})^{-(n-\frac{1}{2})(1-\frac{1}{k})} \prod_{j=1}^{2n-2} \zeta_j^{-1} \prod_{a \in A \atop a \neq 2n} (\pm x^{w_{2n-1}-v_a - \frac{1}{2}}) \Theta_{x^2}(x w_a / z_{2n-1}). \quad \text{(3.16)}$$
Here we also fix the constant \(c_n \) as follows:

\[
 c_n = \frac{(-1)^{n(n+1)/2}x^{n^2/2}}{(x^2; x^2)_{\infty}^{(n-3)/2} (x^{2r}; x^{2r})_{\infty}^{3n(n-1)/2}} \frac{\{x^2\}_{\infty}^{n} \{x^6\}_{\infty}^{n} \{x^{2r+2}\}_{\infty}^{n} \{x^{2r+6}\}_{\infty}^{n}}{\{x^4\}_{\infty}^{n} \{x^{8}\}_{\infty}^{n} \{x^{2r}\}_{\infty}^{n} \{x^{2r+4}\}_{\infty}^{n}}, \tag{3.17}
\]

where

\[
 \{z\}_{\infty} := (z; x^4, x^{2r})_{\infty}.
\]

The function \(\vartheta_{\sigma}^{(n)}(w|\zeta) \) is otherwise arbitrary, and the choice of \(\vartheta_{\sigma}^{(n)}(w|\zeta) \) corresponds to that of solutions to (3.2–3.5). The transformation property of \(\vartheta_{\sigma}^{(n)}(w|\zeta) \) implies

\[
 \frac{\Psi_{\sigma}^{(n)}(w|\zeta, x^2\zeta_{2n})}{\Psi_{\sigma}^{(n)}(w|\zeta)} = \sigma \prod_{j=1}^{2n} \left(\frac{\zeta_{2n}}{\zeta_j} \right)^{\frac{z_j}{2}} \prod_{a \in A} \left[\frac{v_a - u_{2n} - \frac{1}{2}}{u_{2n} - v_a + \frac{1}{2}} \right], \tag{3.18}
\]

\[
 \frac{\Psi_{\sigma}^{(n)}(w', x^4w_a|\zeta)}{\Psi_{\sigma}^{(n)}(w|\zeta)} = \prod_{j=1}^{2n} \left[\frac{u_j - v_a - \frac{1}{2}}{v_a - u_j + \frac{1}{2}} \right]. \tag{3.19}
\]

The integrand may have poles at

\[
w_a = \begin{cases}
 x^{\pm(1+4k+2rl)}z_j & (1 \leq j \leq 2n, k, l \in \mathbb{Z}_{\geq 0}), \\
 x^2w_b & (b < a), \\
 x^{-2}w_b & (b > a). \quad (3.20)
\end{cases}
\]

We choose the integration contour \(C_a \) with respect to \(w_a \) \((a \in A)\) such that \(C_a \) is along a simple closed curve oriented anti-clockwise, and encircles the points \(x^{1+4k+2rl}z_j \) \((1 \leq j \leq 2n, k, l \in \mathbb{Z}_{\geq 0})\) and \(x^2w_b \) \((b < a)\) but not \(x^{-1-4k-2rl}z_j \) \((1 \leq j \leq 2n, k, l \in \mathbb{Z}_{\geq 0})\) nor \(x^{-2}w_b \) \((b > a)\). Thus the contour \(C_a \) actually depends on \(z_j \)'s besides \(a \), so that it should be denoted by \(C_a(z) = C_a(z_1, \cdots, z_{2n}) \), precisely. The LHS of (3.3) refers to the analytic continuation with respect to \(\zeta_{2n} \). Nevertheless, once we restrict ourselves to the principal regime \(0 < p < x < \zeta^{-1} < 1 \), we can tune all \(C_a \)'s to be the common integration contour \(C : |w_a| = x^{-1} \) because of the inequality \(xz_j < x^{-1} < x^{-1}z_j \).

We are now in a position to state the following proposition regarding the correlation functions and the bootstrap equations in the cyclic SOS model case:

Proposition 1 Assume the properties of the function \(\vartheta_{\sigma}^{(n)} \) below (3.13) and the integration contour \(C_a \) below (3.20). Then the integral formulae (3.4, 3.11) with (3.3, 3.10, 3.12, 3.13) solves the three equations (3.4, 3.5).

The proof of Proposition 1 will be given in the subsequent subsections.

3.2 Proof of the W-symmetry

Let us first prove (3.3). For that purpose we have to consider four cases according as \(k_j - k_{j-1} = \pm 1 \) and \(k_{j+1} - k_j = \pm 1 \).

Suppose that \(k_j - k_{j-1} = k_{j+1} - k_j = -1 \). Then the relation (3.3) holds, because the integrand \(\Phi_{\sigma}^{(n)}(\zeta) \) is evidently symmetric with respect to \(\zeta_j \) and \(\zeta_{j+1} \).
Let \((k_{j-1}, k_j, k_{j+1}) = (m, m - 1, m)\) for some \(m\). Then the relation (3.2) reduces to

\[
\mathcal{T}_\sigma^{(n)}(\cdots, \zeta_{j+1}, \zeta_j, \cdots)\cdot m_{m-1}\ldots = \left[1\right]\frac{(m + u_j - u_{j+1})\mathcal{T}_\sigma^{(n)}(\cdots, \zeta_{j+1}, \zeta_j, \cdots)\cdot m_{m-1}\ldots}{(u_j - u_{j+1} + 1)\left(m\right)} - \frac{(u_j - u_{j+1})\left(m\right)}{(u_j - u_{j+1} + 1)\left(m\right)}\mathcal{T}_\sigma^{(n)}(\cdots, \zeta_{j+1}, \zeta_j, \cdots)\cdot m_{m-1}\ldots.
\]

Note that the set of the integration variables in the second term of the RHS is different from the other terms. Since \(w_a = x^{u_j}\)'s are integration variables, we can replace both \(v_j\) and \(v_{j+1}\) in the integrand by \(v\). After that, the relation (3.21) follows from the equality of the integrands. In this step we use

\[
\{v - u_j + \frac{1}{2} - m\}[v - u_{j+1} - \frac{1}{2}] = \left[1\right]\frac{(m + u_j - u_{j+1})\{v - u_{j+1} + \frac{1}{2} - m\}[v - u_j - \frac{1}{2}]}{(u_j - u_{j+1} + 1)\left(m\right)} - \frac{(u_j - u_{j+1})\left(m\right)}{(u_j - u_{j+1} + 1)\left(m\right)}\{v - u_{j+1} - \frac{1}{2} - m\}[v - u_j - \frac{1}{2}].
\]

Suppose that \((k_{j-1}, k_j, k_{j+1}) = (m, m + 1, m)\) for some \(m\). This case can be proved in a similar way to the previous case. Here we use

\[
\{v - u_{j+1} - \frac{1}{2} - m\}[u_j - v - \frac{1}{2}] = \left[1\right]\frac{(m - u_j + u_{j+1})\{v - u_j - \frac{1}{2} - m\}[u_{j+1} - v - \frac{1}{2}]}{(u_j - u_{j+1} + 1)\left(m\right)} - \frac{(u_j - u_{j+1})\left(m\right)}{(u_j - u_{j+1} + 1)\left(m\right)}\{v - u_{j+1} + \frac{1}{2} - m\}[v - u_j - \frac{1}{2}].
\]

Finally, let \((k_{j-1}, k_j, k_{j+1}) = (m - 1, m, m + 1)\) for some \(m\). Then the integrand of the RHS of (3.2) contains the factor

\[
I(u_j, u_{j+1}; v_j, v_{j+1}) = \frac{\{v_j - u_j + \frac{1}{2} - m\}[u_{j+1} - v_j - \frac{1}{2}]\{v_{j+1} - u_{j+1} + \frac{1}{2} - m\}[v_{j+1} - u_j - \frac{1}{2}]}{[v_j - u_{j+1} + 1]}.
\]

The corresponding factor in the LHS should be equal to \(I(u_{j+1}, u_j; v_j, v_{j+1})\). Thus the difference between both sides contains the factor

\[
I(u_j, u_{j+1}; v_j, v_{j+1}) - I(u_{j+1}, u_j; v_j, v_{j+1}) = \{m\}[u_j - u_{j+1}][v_j + v_{j+1} - u_j - u_{j+1} - m],
\]

which is symmetric with respect to \(w_j = x^{2v_j}\) and \(w_{j+1} = x^{2v_{j+1}}\). Since \(\Psi_\sigma^{(n)}(w|\zeta)\) is antisymmetric with respect to \(w_a\)'s, the relation (3.2) in this case does holds.

3.3 Proof of the cyclicity

In the proof of the cyclicity (3.3) we have to consider the two cases \(k_{2n-1} = k + 1\). First let \(k_{2n-1} = k + 1\). When the integral (3.11) is analytically continued from \(\zeta_{2n} = x^{u_{2n}}\) to \(x^2\zeta_{2n} = x^{u_{2n}+2}\), the points \(x^{1+k+2\ell}z_{2n}\) and \(x^{-1-k-2\ell}z_{2n}\) move to the points \(x^{5+k+2\ell}z_{2n}\) and \(x^{-3-k-2\ell}z_{2n}\), respectively. In the LHS of (3.3) the point \(w_a = x^3z_{2n}\) \((v_a = u_{2n} + \frac{3}{2})\) are therefore outside the integral contour \(C_a = C_a(z', x^3z_{2n})\). Nevertheless, we can deform \(C_a\) to the original one \(C_a = C_a(z)\) without crossing any poles. That is because the factor

\[
\prod_{\alpha \in A}[u_{2n} - v_a + \frac{3}{2}],
\]

contained in \(Q_\sigma^{(n)}(w|\zeta', x^2\zeta_{2n})\cdot k^{\cdots k+1k}\) cancels the singularity at \(w_a = x^3z_{2n}\). Thus the integral contours for both sides of (3.3) coincide.
Bootstrap equations and XYZ correlation functions

Furthermore, by using (3.18) we obtain
\[
\Psi_\sigma^{(n)}(w|\zeta', x^2\zeta_{2n}) \prod_{a \in A} [v_a - u_{2n} - \frac{3}{2}] = \sigma \Psi_\sigma^{(n)}(w|\zeta) \prod_{a \in A} [u_{2n} - v_a + \frac{3}{2}] \prod_{j=1}^{2n-1} \left(\frac{\zeta_j}{\zeta_{2n}} \right)^{\frac{1}{2}} ,
\]
which implies that the integrands of both sides of (3.3) coincide and therefore the relation (3.3) holds when \(k_{2n-1} = k + 1\).

Next let \(k_{2n-1} = k - 1\). In this case we make the rescale of variable \(w_{2n} \to x^4 w_{2n} (v_{2n} \to v_{2n} + 2)\) in the LHS of (3.3). Then the integral contour with respect to \(w_a (a \in A \backslash \{2n\})\) will be \(C'_a = C_a(z', x^4 z_{2n})\), and the other one will be \(\tilde{C} = C_{2n}(x^{-4} z', z_{2n})\). For \(a \in A \backslash \{2n\}\), we can deform the contour \(C'_a\) to the original \(C_a\) without crossing any poles, as the same reason as the previous case. The integral contour \(\tilde{C}\) encircles \(x^{-3+4k+2r} z_j\) and \(x^{1+4k+2r} z_{2n}\), but not \(x^{-5-4k-2r} z_j\) or \(x^{-1-4k-2r} z_{2n}\), where \(1 \leq j \leq 2n-1\), \(k, l \in \mathbb{Z}_{\geq 0}\). Since \(Q^{(n)}(w|\zeta', x^2\zeta_{2n})^{k \cdots k-1}\) contains the factor
\[
J(w' x^4 w_{2n}|\zeta', x^2\zeta_{2n}) = \{v_{2n} - u_{2n} + \frac{1}{2} - k\} \prod_{j=1}^{2n-1} [w_{2n} - u_j + \frac{3}{2}] \prod_{a \in A \backslash \{2n\}} \frac{[u_{2n} - v_a + \frac{3}{2}]}{v_a - v_{2n} - 1}, \tag{3.22}
\]
and the pole at \(w_{2n} = x^{-3} z_j (1 \leq j \leq 2n-1)\) disappears. Thus we can deform the contour \(\tilde{C}\) to the original one \(C_{2n} = C_{2n}(z)\) without crossing any poles. Thus the integral contours in both sides of (3.3) coincide.

Replace the integral variables such that \((w', w_{2n}) \to (w_{2n}, w')\) in the RHS of (3.3), and compare the integrands of both sides. Note that (3.22) describes all \(w_{2n}\)- and \(z_{2n}\)-dependence of \(Q^{(n)}(w|\zeta', x^2\zeta_{2n})^{k \cdots k-1}\). From (3.18, 3.19) and the antisymmetric property of \(\Psi_\sigma^{(n)}\) with respect to \(w_a\)'s, we have
\[
\Psi_\sigma^{(n)}(w', x^4 w_{2n}|\zeta', x^2\zeta_{2n}) J(w' x^4 w_{2n}|\zeta', x^2\zeta_{2n}) = \sigma \Psi_\sigma^{(n)}(w_{2n}, w'|\zeta) J(w_{2n}, w'|\zeta) \prod_{j=1}^{2n-1} \left(\frac{\zeta_j}{\zeta_{2n}} \right)^{\frac{1}{2}}, \tag{3.23}
\]
which implies that the integrands of both sides of (3.3) coincide and therefore the relation (3.3) holds when \(k_{2n-1} = k - 1\).

3.4 Proof of the normalization condition

Let us prove (3.4) and (3.5). The factor \(g(z_{2n-1}/z_{2n})\) has a zero at \(\zeta_{2n} = \pm x^{-1} \zeta_{2n-1}\). On the other hand, the two points \(x z_{2n}\) and \(x^{-1} z_{2n-1}\) are required to locate opposite sides of the integral contour \(C_a\), so that a pinching may occur as \(\zeta_{2n} \to \pm x^{-1} \zeta_{2n-1}\). If there is no pinching the correlation function \(F_\sigma^{(n)}(\zeta)^{k \cdots k}\) vanishes at \(\zeta_{2n} = \pm x^{-1} \zeta_{2n-1}\).

Suppose that \((k_{2n-2}, k_{2n-1}, k_{2n}) = (k+2, k+1, k)\). In this case the factor \([v_a - u_{2n-1} + \frac{3}{2}]\) contained in \(Q^{(n)}(w|\zeta)^{k \cdots k+2k+1k}\) cancel the poles of \(\psi(w_{2n}/z_{2n-1})\) at \(w_a = x^{-1} z_{2n-1}\), and therefore no pinching occurs as \(\zeta_{2n} \to \pm x^{-1} \zeta_{2n-1}\). Thus the conditions (3.4) and (3.5) hold when \((k_{2n-2}, k_{2n-1}, k_{2n}) = (k+2, k+1, k)\).

When \((k_{2n-2}, k_{2n-1}, k_{2n}) = (k - 2, k - 1, k)\), no pinching occurs for the integral contour for \(C_a\) \((a \in A \backslash \{2n - 1, 2n\})\), as the same reason as the previous case. Concerning the integral with respect to \(w_{2n-1}\) and \(w_{2n}\), there is no singularities at \(w_{2n-1} = x z_{2n}\) and \(w_{2n} = x z_{2n}\) and consequently no pinching occurs actually. In order to see such vanishing singularities, we first notice that the function
\[Q^{(n)}(w|\zeta)^{k-k-2k-1k} \text{ contains the factor:} \]
\[
q(v_{2n-1}, v_{2n}; u_{2n-1}, u_{2n}) = \frac{(v_{2n-1} - u_{2n-1} + \frac{3}{2} - k)(1 - k)(v_{2n} - u_{2n})}{(v_{2n-1} - v_{2n} + 1)}.
\]

Because of the antisymmetric property of \(q^{(n)} \) with respect to \(w \)'s, the zero of \(q^{(n)}(w'', w_{2n-1}, x z_{2n}|\zeta) \) at \(w_{2n-1} = x z_{2n} \) cancels the poles of \(\psi(w_{2n-1}/z_{2n}) \) at the same point. Furthermore, the poles of \(\psi(w_{2n}/z_{2n}) \) and \(\psi(w_{2n}/z_{2n-1}) \) at \(w_{2n} = x z_{2n} \) and \(z_{2n} = x^{-2} z_{2n-1} \) are canceled by the zeros of \(g(z_{2n-1}/z_{2n}) \) and \(Q^{(n)}(w'', w_{2n-1}, x z_{2n}|\zeta)^{k-k-2k-1k} \) at the same points. The latter cancellation can be shown as follows. Note that the integral is invariant as we replace \(Q^{(n)}(w'', w_{2n-1}, x z_{2n}|\zeta)^{k-k-2k-1k} \) by its antisymmetric part with respect to \(w_{2n-1} \) and \(x z_{2n} \). Accordingly, we can replace the factor \(q(v_{2n-1}, u_{2n} + \frac{1}{2}; u_{2n-1}, u_{2n}) \) by the following factor:
\[
q(v_{2n-1}, u_{2n} + \frac{1}{2}; u_{2n-1}, u_{2n}) - q(v_{2n} + \frac{1}{2}, v_{2n-1}; u_{2n-1}, u_{2n}) = \{v_{2n-1} - u_{2n-1} + \frac{3}{2} - k\}(1 - k)(v_{2n} - u_{2n}) + \frac{1}{(v_{2n-1} - v_{2n} + 1)}.
\]

that vanishes when \(z_{2n} = x^{-2} z_{2n-1} \) \((u_{2n} = u_{2n-1} - 1 \text{ or } u_{2n} = u_{2n-1} - 1 - \frac{\pi \sqrt{c^2}}{\epsilon}) \). Thus there is no singularity at \(w_{2n} = x z_{2n} \) as \(\zeta_{2n} \rightarrow x^{-1} \zeta_{2n-1} \). The same thing at \(w_{2n-1} = x z_{2n} \) can be easily shown in the same way. Hence the conditions (3.3) and (3.5) are verified when \((k_{2n-2}, k_{2n-1}, k_{2n}) = (k-2, k-1, k) \).

Next let \((k_{2n-2}, k_{2n-1}, k_{2n}) = (k, k-1, k) \) and consider the limit \(\zeta_{2n} \rightarrow x^{-1} \zeta_{2n-1} \). In this case there is no pinching for the integrals with respect to \(w_n \) \((n \in A \setminus \{2n\}) \). Let \(\hat{C} \) denote the integral contour with respect to \(w_{2n} \) such that \(\hat{C} \) encircles the same points as \(C_{2n} \) does but \(x z_{2n} \). Note that no pinching occurs with respect to the integral along \(\hat{C} \) because both the two points \(x^{-1} z_{2n-1} \) and \(x z_{2n} \) lie outside the contour \(\hat{C} \). Thus the integral with respect to \(w_{2n} \) along the contour \(C_{2n} \) can be replaced by the residue at \(w_{2n} = x z_{2n} \).

In order to evaluate the residue, the following formulae are useful:
\[
\lim_{z_{2n} \rightarrow x^{-2} z_{2n-1}} g \left(\frac{z_{2n-1}}{z_{2n}} \right) \psi \left(\frac{x z_{2n}}{z_{2n-1}} \right) = \frac{1}{(x^2; x^2)_\infty (x^{2r-2}; x^{2r})_\infty \{x^4\}_\infty \{x^8\}_\infty \{x^{2r+1}\}_\infty \{x^{2r+2}\}_\infty \{x^{2r+6}\}_\infty}.
\]

(3.24)

\[
\text{Res}_{w_{2n} = x z_{2n}} \frac{dw_{2n}}{w_{2n}} \psi \left(\frac{w_{2n}}{z_{2n}} \right) = \frac{1}{(x^2; x^2)_\infty (x^{2r}; x^{2r})_\infty}.
\]

(3.25)

\[
g(z)g(x^2 z)\psi(x z)[u + 1] = x^{\frac{u+1}{2}}(u+1)(x^{2r}; x^{2r})_\infty.
\]

(3.26)

(3.27)
Using these, the condition (3.4) with \((k_{2n-2}, k_{2n-1}, k_{2n}) = (k, k-1, k)\) reduces to

\[
c_{n-1} \vartheta_{\sigma}^{(n-1)}(\vartheta^\prime; \vartheta^\prime\prime) - c_{n} \vartheta_{\sigma}^{(n)}(\vartheta^\prime, x^{-1}z_{2n-1}; \vartheta^\prime\prime, \zeta_{2n-1}, x^{-1}\zeta_{2n-1}) \times \left(-1 \right)^{n} x^{-2(n-1)\left(1-\frac{1}{\vartheta}\right)} \zeta_{2n-1}^{2(n-1)\left(1-\frac{1}{\vartheta}\right)} \Theta_{x^{2}}(x_{0}^{2}; x_{0}^{2}; x_{0}^{2}) \zeta_{2n-1}^{2n-2}(x_{0}^{2}; x_{0}^{2}; x_{0}^{2})^{3n-1} \right).
\]

which is valid under the assumption of (3.14) and (3.17). The relation (3.3) with \((k_{2n-2}, k_{2n-1}, k_{2n}) = (k, k+1, k)\) can be similarly proved.

When \((k_{2n-2}, k_{2n-1}, k_{2n}) = (k, k+1, k)\), the only difference from the previous case is that the rational function \(Q^{(n)}(w|\zeta)^{k\cdot k+1}\) contains the factor

\[
\frac{\{v_{2n-1} - u_{2n-1} - \frac{1}{2} - k\}}{k+1} \frac{\{v_{2n-1} - u_{2n-1} - \frac{1}{2}\}}{w_{2n-1} = x_{2n}} = -\frac{\{u_{2n} - u_{2n-1} - k\}}{k+1}.
\]

in the present case, while the corresponding factor in the previous case is

\[
\frac{\{v_{2n} - u_{2n} + \frac{1}{2} - k\}}{k} \frac{\{v_{2n} - u_{2n} - \frac{1}{2}\}}{w_{2n} = x_{2n}} = \frac{\{u_{2n} - u_{2n-1}\}}{k+1}.
\]

Since (3.28) is equal to (3.29) as \(\zeta_{2n} = x^{-1}\zeta_{2n-1}\), the condition (3.4) with \((k_{2n-2}, k_{2n-1}, k_{2n}) = (k, k+1, k)\) follows from the previous case. The condition (3.3) with \((k_{2n-2}, k_{2n-1}, k_{2n}) = (k, k+1, k)\) can be similarly proved. After all, the conditions (3.3) and (3.4) were componentwisely proved.

3.5 Non-trivial theta function

In subsections 3.2–3.4 we proved Proposition [1]. The key point in proving (3.3) was the W-matrix symmetry of the rational function \(Q^{(n)}(w|\zeta)^{k\cdot k}\). We observed that the other two conditions (3.3) and (3.4) hold under the assumption of the transformation properties and the recursion relation of \(\vartheta_{\sigma}^{(n)}\). Actually, you can easily find that (3.14), (3.15) and (3.16) are sufficient conditions of (3.3) for \(k_{2n-1} = k+1\), (3.3) for \(k_{2n-1} = k-1\) and (3.4), respectively.

In this way we obtained the integral solutions to CTM bootstrap equations for correlation functions of the cyclic SOS model, with the freedom of the choice of \(\vartheta_{\sigma}^{(n)}\). Now we wish to present an example of \(\vartheta_{\sigma}^{(n)}\) satisfying all the properties given below (3.13).

\[
\vartheta_{\sigma}^{(n)}(w|\zeta) = \Theta_{x^{2}} \left(-\sigma x \prod_{a \neq A} w_{a}^{-1} \prod_{j=1}^{2n} \zeta_{j} \right) \prod_{j=1}^{2n} \zeta_{j}^{-\left(n-\frac{1}{2}\right)} \left(1-\frac{1}{\vartheta}\right) a \cdot b \in A \Theta_{x^{2}}(w_{a}/w_{b}).
\]

You can easily see that (3.30) satisfies all the properties of symmetry with respect to \(\vartheta_{j}\)'s, antisymmetry with respect to \(w_{a}\)'s, (3.14), (3.13) and (1.16). We also notice that there is actually no poles at \(w_{a} = x^{2}w_{b}\) \((b < a)\) and \(w_{a} = x^{-2}w_{b}\) \((b > a)\) when we fix \(\vartheta_{j}^{(n)}\) to (3.30) because of the factor \(\Theta_{x^{2}}(w_{a}/w_{b})\). Furthermore, we should like to notice that this example of the function \(\vartheta_{\sigma}^{(n)}(w|\zeta)\) is quite similar to the anti-ferromagnetic XXZ analogue [20].
4 Integral formulae for the XYZ antiferromagnet

4.1 Correlation functions and difference equations

Let us introduce the $V^{\otimes 2n}$-valued correlation functions

$$ G^{(n)}(\zeta_1, \cdots, \zeta_{2n}) = \sum_{\varepsilon_j = \pm} v_{\varepsilon_1} \otimes \cdots \otimes v_{\varepsilon_{2n}} G^{(n)}_{\sigma}(\zeta_1, \cdots, \zeta_{2n}) \varepsilon_1 \cdots \varepsilon_{2n}, $$ \hspace{1cm} (4.1)

where $\sigma = \pm$ signifies one of two vacuums of the XYZ Heisenberg antiferromagnet. Let

$$ \mathcal{O} = E^{(1)}_{\varepsilon_1} \cdots E^{(n)}_{\varepsilon_n \varepsilon_n'}, $$

where $E_{\varepsilon_j \varepsilon_j'}$ is the matrix unit on the j-th site. Then the correlation function \((4.1) \) gives the expectation value of the local operator \((4.2) \) by specializing the spectral parameters as follows:

$$ \langle \mathcal{O} \rangle_\sigma = G^{(n)}_{\sigma}(x^{-1} \zeta_1, \cdots, x^{-1} \zeta_j, \cdots, \zeta_{2n}) \varepsilon_1 \cdots \varepsilon_{2n}. $$ \hspace{1cm} (4.3)

In what follows we often use the abbreviations: (\(\zeta \)) = (\(\zeta_1, \cdots, \zeta_{2n} \)), (\(\zeta' \)) = (\(\zeta_1, \cdots, \zeta_{2n-1} \)), (\(\zeta'' \)) = (\(\zeta_1, \cdots, \zeta_{2n-2} \)), (\(\varepsilon \)) = (\(\varepsilon_1, \cdots, \varepsilon_{2n} \)), and (\(\varepsilon' \)) = (\(\varepsilon_1, \cdots, \varepsilon_{2n-1} \)), (\(\varepsilon'' \)) = (\(\varepsilon_1, \cdots, \varepsilon_{2n-2} \)). On the basis of the CTM (corner transfer matrix) bootstrap approach, the correlation functions satisfy the following three conditions [1]:

1. **R-matrix symmetry**

$$ P_{j+1} G^{(n)}_{\sigma}(\cdots, \zeta_{j+1}, \zeta_j, \cdots) = R_{j+1}(\zeta_j/\zeta_{j+1}) G^{(n)}_{\sigma}(\cdots, \zeta_j, \zeta_{j+1}, \cdots) \hspace{1cm} (1 \leq j \leq 2n - 1), $$ \hspace{1cm} (4.4)

where $P(x \otimes y) = y \otimes x$.

2. **Cyclicity**

$$ P_{12} \cdots P_{2n-12n} G^{(n)}_{\sigma}(\zeta', x^2 \zeta_{2n}) = \sigma G^{(n)}_{\sigma}(\zeta_{2n}, \zeta'). $$ \hspace{1cm} (4.5)

3. **Normalization**

$$ G^{(n)}_{\sigma}(\zeta''', \zeta_{2n-1}, \zeta_{2n})|_{\zeta_{2n} = sx^{-1} \zeta_{2n-1}} = G^{(n-1)}_{\sigma}(\zeta''') \otimes u_s \hspace{1cm} (s = \pm), $$ \hspace{1cm} (4.6)

where $u_s = v_+ \otimes v_- + sv_- \otimes v_+$.

These three conditions can be componentwisely recast as follows:

$$ G^{(n)}_{\sigma}(\cdots, \zeta_{j+1}, \zeta_j, \cdots) \varepsilon_j \varepsilon_{j+1} \cdots = \sum_{\varepsilon_j, \varepsilon_{j+1} = \pm} R(\zeta_j/\zeta_{j+1}) \varepsilon_j \varepsilon_{j+1} G^{(n)}_{\sigma}(\cdots, \zeta_j, \zeta_{j+1}, \cdots) \varepsilon_j \varepsilon_{j+1} \cdots. $$ \hspace{1cm} (4.7)

$$ G^{(n)}_{\sigma}(\zeta', x^2 \zeta_{2n}) \varepsilon_{2n} \varepsilon_{2n} = \sigma G^{(n)}_{\sigma}(\zeta_{2n}, \zeta') \varepsilon_{2n} \varepsilon'. $$ \hspace{1cm} (4.8)

$$ G^{(n)}_{\sigma}(\zeta''', \zeta_{2n-1}, sx^{-1} \zeta_{2n-1}) \varepsilon'' \varepsilon_{2n-1} \varepsilon_{2n} = \varepsilon_{2n-1}^{(1-s)/2} \delta_{\varepsilon_{2n-1} + \varepsilon_{2n}, 0} G^{(n-1)}_{\sigma}(\zeta''') \varepsilon'' \hspace{1cm} (s = \pm). $$ \hspace{1cm} (4.9)
Combining (4.7) and (4.9) we obtain another expression of the normalization condition:

\[\sum_{s=\pm} \varepsilon^{(1-s)/2} G^{(n)}_{\sigma}(\zeta', \zeta_{2n-1}, sx\zeta_{2n-1}) \varepsilon' \varepsilon - \varepsilon = G^{(n-1)}_{\sigma}(\zeta') \varepsilon', \]

where we also use

\[R(sx^{-1}) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & s & 1 & 0 \\ 0 & 1 & s & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \]

Note that the first two conditions imply the difference equation of the quantum KZ type \([31]\) of level \(-4:\)

\[T_j G^{(n)}_{\sigma}(\zeta) = R_{j-1}(x^{-2}\zeta_j/\zeta_{j-1}) \cdots R_{j-1}(x^{-2}\zeta_j/\zeta_1) \]

\[\times R_{j+1}(\zeta_j/\zeta_{j+1}) \cdots R_{j+1}(\zeta_j/\zeta_{j+1}) G^{(n)}_{\sigma}(\zeta), \quad (4.10) \]

where \(T_j\) is the shift operator such that

\[T_j F(\zeta) = F(\zeta_1, \cdots, x^{-2}\zeta_j, \cdots, \zeta_{2n}), \quad (4.11) \]

for any \(2n\)-variate function \(F\). When the definition of \(T_j\) is replaced by

\[T_j F(\zeta) = F(\zeta_1, \cdots, x^{l+2}\zeta_j, \cdots, \zeta_{2n}), \]

and all the arguments \(x^{-2}\zeta_j/\zeta_k\) in the first line of the RHS of (4.10) are also replaced by \(x^{l+2}\zeta_j/\zeta_k\), the difference equation (4.10) is called the quantum KZ equations of level \(l\).

Remark. As a result of \(\mathbb{Z}_2\)-symmetry of \(R\)-matrix, there are two ground states in the XYZ antiferromagnet. Let us specify the two ground states by \(i = 0, 1\), and denote the correlation function on the \(i\)-th ground state by \(G^{(n)}_{i}(\zeta)\). Representation theoretical speaking, the correlation function \(G^{(n)}_{i}(\zeta)\) refers to the trace of type I vertex operators on the irreducible highest weight module \(\mathcal{H}^{(i)} \otimes \mathfrak{sl}_2\) \([26]\). The CTM bootstrap approach suggest that both \(G^{(n)}_{0}(\zeta)\) and \(G^{(n)}_{1}(\zeta)\) will appear in the cyclicity condition as follows:

\[P_{12} \cdots P_{2n-12n} G^{(n)}_{i}(\zeta_1, \cdots, \zeta_{2n-1}, x^2\zeta_{2n}) = G^{(n)}_{1-i}(\zeta_2n, \zeta_1, \cdots, \zeta_{2n-1}). \]

Thus we introduce \(G^{(n)}_{\sigma}(\zeta) = G^{(n)}_{0}(\zeta) + \sigma G^{(n)}_{1}(\zeta)\) such that the second equation (4.5) involves only \(G^{(n)}_{\sigma}(\zeta)\).

Thanks to (3.7) the first two equations (4.7, 4.8) are rephrased in terms of \(\overline{G}^{(n)}_{\sigma}(\zeta)\) and \(\overline{R}(\zeta)\) as follows

\[\overline{G}^{(n)}_{\sigma}(\zeta, x^2\zeta_{2n}) \varepsilon^2 = \sigma \overline{G}^{(n)}_{\sigma}(\zeta_{2n}, \zeta') \varepsilon_{2n} \varepsilon \prod_{j=1}^{2n-1} \frac{\zeta_{2n}}{\zeta_j}, \quad (4.12) \]

\[\overline{G}^{(n)}_{\sigma}(\zeta', x^2\zeta_{2n}) \varepsilon' \varepsilon_{2n} = \sigma \overline{G}^{(n)}_{\sigma}(\zeta_{2n}, \zeta') \varepsilon_{2n} \varepsilon \prod_{j=1}^{2n-1} \frac{\zeta_{2n}}{\zeta_j}, \quad (4.13) \]
4.2 Generalized correlation functions of SOS model

For later convenience we also introduce another meromorphic function \(Q^{(n)}(w|\zeta)^{kk_1\cdots k_{2n-1}k-2l} \), where \(0 \leq l \leq n \). Since \(k_{2n} = k - 2l \), the number of elements of the following set \(A' \) is equal to \(n \):

\[
A' = A \cup \{2n + 1, \cdots, 2n + l\}.
\]

Let \(k_{2n+i} = k_{2n} + 2i = k - 2(l - i) \) for \(1 \leq i \leq l \). Then the meromorphic function \(Q^{(n)}(w|\zeta)^{kk_1\cdots k_{2n-1}k-2l} \) is defined as follows:

\[
Q^{(n)}(w|\zeta)^{kk_1\cdots k_{2n-1}k-2l} = \prod_{a \in A} \left\{ v_a - u_a + \frac{1}{2} - k_a \right\} \left(\prod_{j=1}^{a-1} [v_a - u_j - \frac{1}{2}] \prod_{j=a+1}^{2n} [u_j - v_a - \frac{1}{2}] \right)
\times (-1)^l \prod_{a'=2n+1}^{2n+l} \frac{v_{a'} - u_0 + \frac{1}{2} - k_{a'}}{[v_{a'} - u_0 - \frac{1}{2}]} \left(\prod_{j=1}^{2n} [v_{a'} - u_j - \frac{1}{2}] \right) \prod_{j=1}^{2n-1} \{k_j\}^{-1} \prod_{a, b \in A'} [v_a - v_b + 1]^{-1}. \tag{4.14}
\]

When \(l = 0 \), the meromorphic function \((4.14)\) is evidently reduced to the expression of \((3.10)\).

We further introduce the generalized correlation function of the cyclic SOS model as follows:

\[
\mathcal{F}^{(n)}(\zeta)^{kk_1\cdots k_{2n-1}k-2l} = \prod_{a \in A'} \int_{C_a} \frac{dw_a}{2\pi i w_a} \Psi^{(n)}(w|\zeta)Q^{(n)}(w|\zeta)^{kk_1\cdots k_{2n-1}k-2l}, \tag{4.15}
\]

where the integral kernel \(\Psi^{(n)}(w|\zeta) \) and the integral contour \(C_a \) are respectively the same ones in the previous section.

The formula \((4.15)\) can be used only for \(k_{2n} \leq k \). However, by noticing the fact that the Boltzmann weights of the cyclic SOS model \((2.10)\) is invariant under the shift \((a, b, c, d) \mapsto (-a, -b, -c, -d)\), we should obtain the expression for \(k_{2n} = k + 2l > k \) from \(\mathcal{F}^{(n)}(\zeta)^{k-k_1\cdots k_{2n-1}k-2l} \) as follows:

\[
\mathcal{F}^{(n)}(\zeta)^{kk_1\cdots k_{2n-1}k+2l} = \prod_{a \in A'} \int_{C_a} \frac{dw_a}{2\pi i w_a} \Psi^{(n)}(w|\zeta)Q^{(n)}(w|\zeta)^{kk_1\cdots k_{2n-1}k+2l}, \tag{4.16}
\]

where

\[
Q^{(n)}(w|\zeta)^{kk_1\cdots k_{2n-1}k+2l} = \prod_{a \in A} \left\{ v_a - u_a + \frac{1}{2} + k_{a} \right\} \left(\prod_{j=1}^{a-1} [v_a - u_j - \frac{1}{2}] \prod_{j=a+1}^{2n} [u_j - v_a - \frac{1}{2}] \right)
\times (-1)^l \prod_{a'=2n+1}^{2n+l} \frac{v_{a'} - u_0 + \frac{1}{2} + k_{a'}}{[v_{a'} - u_0 - \frac{1}{2}]} \left(\prod_{j=1}^{2n} [v_{a'} - u_j - \frac{1}{2}] \right) \prod_{j=1}^{2n-1} \{k_j\}^{-1} \prod_{a, b \in A'} [v_a - v_b + 1]^{-1}. \tag{4.17}
\]

Here

\[
A_- := \{a|k_a = k_{a-1} - 1, \ 1 \leq a \leq 2n\}, \quad A'_- = A_- \cup \{2n + 1, \cdots, 2n + l\},
\]

and \(k_{2n+i} = k_{2n} - 2i = k + 2(l - i) \) for \(1 \leq i \leq l \).
4.3 First integral formula for the XYZ correlation functions

Let

\[G^{(n)}_{\sigma}(\zeta_1, \ldots, \zeta_{2n}) = (\sqrt{1} - 1)^{-n} \sum_{k_0, k_1, \ldots, k_{2n}} t_{k_0}^{k_0}(u_1 - u_0) \otimes \cdots \otimes t_{k_{2n}}^{k_{2n} - 1}(u_{2n} - u_0) F^{(n)}_{\sigma}(\zeta_1, \ldots, \zeta_{2n})^{k_0k_1\cdots k_{2n}}. \]

(4.18)

Here \(\zeta_j = x^{u_j} \), and

\[F^{(n)}_{\sigma}(\zeta)^{kk_1\cdots k_{2n}} = c_n \prod_{1 \leq j < k \leq 2n} \zeta_j^{n - 1} g(z_j/z_k) \times F^{(n)}_{\sigma}(\zeta)^{kk_1\cdots k_{2n}}, \]

where \(F^{(n)}_{\sigma}(\zeta)^{kk_1\cdots k_{2n}} \) is defined by (4.13, 4.14) for \(k_{2n} \leq k \), otherwise by (4.14, 4.17). The sum with respect to \(k_j (1 \leq j \leq 2n) \) should be taken over \(k_j = k_{j-1} \pm 1 \). The sum with respect to \(k_0 \) should be as follows. When \(r \in \mathbb{Q} \) and \(2r = N/N' \) (\(N, N' \) are coprime), we have

\[F_{N+k, N+k+1}^{N+k+1}(u) = (-1)^{r+N'}F_{k, k+1}^{k+1}(u). \]

The cyclic SOS correlation function \(F^{(n)}_{\sigma}(\zeta)^{kk_1\cdots k_{2n}} \) is evidently invariant under the shift \((k, k_1, \ldots, k_{2n}) \rightarrow (k + N, k_1 + N, \ldots, k_{2n} + N)\). Thus the summand in (4.18) is also invariant under the same shift, so that the sum with respect to \(k_0 \) can be taken over \(\mathbb{Z}/N\mathbb{Z} \). Since there is no such invariance, the sum with respect to \(k_0 \) should be taken over \(\mathbb{Z} \) when \(r \) is irrational. From these observations we have

\[\sum_{k_0} = \begin{cases} \sum_{k_0=0}^{N-1} & \text{if } r \in \mathbb{Q}, \ 2r = N/N' \ (N, N' \text{ are coprime}); \\ \sum_{k_0 \in \mathbb{Z}} & \text{if } r \not\in \mathbb{Q}. \end{cases} \]

(4.19)

Simple observation shows that the \(R \)-matrix symmetry (4.14) follows from the \(W \)-symmetry (3.2) for (4.15, 4.16). The cyclicity for the generalized correlation functions in the cyclic SOS model does not hold but we have the following relations:

Proposition 2 For fixed \(k_0 = k, k_1, \ldots, k_{2n-2}, k_{2n-1} = k' \) with \(k_j = k_{j-1} \pm 1 \) (1 \(\leq j \leq 2n - 1 \)), the following cyclicity relations hold:

\[\sum_{s=\pm 1} t_{k' + s}^{k'}(u_{2n} - u_0 + 2) F^{(n)}_{\sigma}(\zeta_1, \ldots, \zeta_{2n-1}, x^2\zeta_{2n})^{kk_1\cdots k_{2n-2}k'k'} = \sum_{s=\pm 1} t_{k - s}^{k}(u_{2n} - u_0) F^{(n)}_{\sigma}(\zeta_{2n}, \zeta_1, \ldots, \zeta_{2n-1})^{kk_1\cdots k_{2n-2}k'}. \]

(4.20)

[Proof] Let \(k' = k - 2l + 1 \) with \(1 \leq l \leq n \). (The case \(k' = k + 2l - 1 \) can be similarly proved.) For \(\varepsilon = \pm l \) let

\[h_{\varepsilon}(u) := \theta_{2-\varepsilon} \theta_{3+\varepsilon}(\frac{w}{2r}, \frac{x\sqrt{-1}}{er}) = \begin{cases} \theta_1 \theta_4(\frac{w}{2r}, \frac{x\sqrt{-1}}{er}) & (\varepsilon > 0) \\ \theta_2 \theta_3(\frac{w}{2r}, \frac{x\sqrt{-1}}{er}) & (\varepsilon < 0) \end{cases} \]
Then from \(\text{(2.7, 2.9)}\), the relation \(\text{(4.21)}\) is reduced to
\[
(-1)^l [u_{2n} - u_0 + 1] \sum_{s = \pm 1} h_x(k' - s(u_{2n} - u_0 + 2)) F^{(n)}(\zeta', x^2 \zeta_{2n})^{kk_1 \cdots k_{2n-2} k' + s} \\
+ [u_{2n} - u_0 + 2] \sum_{s = \pm 1} s h_x(k - s(u_{2n} - u_0 + 1)) F^{(n)}(\zeta_{2n}, \zeta' k - s k) = 0. \tag{4.21}
\]

Here we used the abbreviation \(\zeta' = (\zeta_1, \cdots, \zeta_{2n-1})\) and the functional relation
\[
\frac{f(u + 2)}{f(u)} = \frac{[u + 1]}{[u + 2]}
\]

Simple calculations show that
\[
\sum_{s = \pm 1} h_x(k' - s(u_{2n} - u_0)) F^{(n)}(\zeta', \zeta_{2n})^{kk_1 \cdots k_{2n-2} k' + s} \\
= \prod_{a \in A} \int_{C_a} \frac{dw_a}{2\pi i} \Psi^{(n)}(w_1, \cdots, w_{2n+1}) F_{x, l}(v|u_0, u_1, \cdots, u_{2n}), \tag{4.22}
\]

where
\[
F_{x, l}(v|u_0, u_1, \cdots, u_{2n}) = h_x(k - 2l + 2 + u_0 + u_{2n} - 2v_{2n+1}) \\
\times \frac{[u_{2n} - u_0]}{[v_{2n+1} - u_0 - \frac{1}{2}]} \prod_{i = 2}^{l} \frac{[v_{2n+1} - u_0 + 1 - 2(k - i)]}{[v_{2n+1} - u_0 + \frac{1}{2}]} \prod_{j = a + 1}^{2n} [u_j - v_a - \frac{1}{2}] \\
\times (-1)^{l-1} \prod_{a' = 2n+1}^{2n+l} [v_{a'} - u_j - \frac{1}{2}] \prod_{j = 1}^{2n-2} [u_j - v_a + \frac{1}{2}] \prod_{a, b \in A} [v_a - v_b + 1]. \tag{4.23}
\]

It follows from the definition that \(2n \in A\) and \(A' = A \cup \{2n + 1, \cdots, 2n + l - 1\}\) when \(s = 1\), and that \(2n \notin A\) and \(A' = A \cup \{2n + 1, \cdots, 2n + l\}\) when \(s = -1\) in the LHS of \(\text{(4.22)}\). Thus we made the shift of variables \((w_{2n}, \cdots, w_{2n+l-1}) \mapsto (w_{2n+1}, \cdots, w_{2n+l})\) for \(s = 1\) in \(\text{(4.22)}\). Furthermore, in order to derive the expression of \(\text{(4.23)}\) we used the identity
\[
\frac{[v - u - \frac{1}{2}]}{[v - u_0 - \frac{1}{2}]} (v - u_0 - \frac{1}{2} - k) h_x(k + u - u_0) - \{v - u - \frac{1}{2} - k\} h_x(k - u + u_0) \\
= -\frac{[v - u_0] (k) h_x(k + 1 + u_0 + u - 2v)}{[v - u_0 - \frac{1}{2}]}.
\]

By repeating the similar calculations we find that eq. \(\text{(4.21)}\) is reduced to
\[
\prod_{a \in A'} \int_{C_a} \frac{dw_a}{2\pi i} \Psi^{(n)}(w_1, \cdots, \zeta_{2n}) A_l(v|u) B_{x, k, l}(v_{2n+1}, \cdots, v_{2n+l}|u_0, u_{2n}) = 0, \tag{4.24}
\]
Bootstrap equations and XYZ correlation functions

where

\[A_l = \prod_{a,b,c} \{ v_a - u_a + \frac{1}{2} - k_a \} \left(\prod_{j=1}^{a-1} [v_a - u_{2n} - \frac{1}{2}] \prod_{j=a+1}^{2n-1} [u_j - u_a - \frac{1}{2}] \right) \times \prod_{i=1}^{2n-l} [v_{2n+i} - u_0 + \frac{3}{2}]^{-1} \left(\prod_{j=1}^{2n-1} [u_j - v_{2n+i} - \frac{1}{2}] \right) \times \prod_{j=1}^{\{k_j\}^{-1}} \prod_{a,b,c} \{ v_a - v_b + 1 \}^{-1} \prod_{a,b',\sigma} \{ v_a - v_{a'} - 1 \}^{-1} \prod_{a,b',\sigma} \{ v_{a'} - v_{b'} + 1 \}^{-1}, \]

\[B_{e,k,l} = h_e(k - 2l + u_0 + u_{2n} - 2v_{2n+1}) \prod_{i=2}^{l-1} \{ v_{2n+i} - u_0 + \frac{5}{2} - k + 2(l - i) \} [v_{2n+i} - u_2n - \frac{1}{2}] + (-1)^l h_e(k - 2l + u_0 + u_{2n} - 2v_{2n+1}) \prod_{i=1}^{l-1} \{ v_{2n+i} - u_0 + \frac{3}{2} - k + 2(l - i) \} [v_{2n+i} - u_{2n+i} - \frac{1}{2}]. \]

It is evident that (4.24) for \(l = 1 \) holds because \(B_{e,k,l} = 0 \). In order to prove (4.24) for \(l > 1 \), we wish to show that

\[B_{e,k,l}(v|u_0, u_{2n}) = \sum_{i=1}^{l-1} [v_{2n+i} - v_{2n+i+1} + 1] B^{(i)}_{e,k,l}(v|u_0, u_{2n}), \quad (4.25) \]

where \(B^{(i)}_{e,k,l} \) is some function that is symmetric with respect to \(v_{2n+i} \) and \(v_{2n+i+1} \). Suppose that (4.25) is true. Then \(A_l B_{e,k,l} \) is the sum of \(l - 1 \) terms, each of which is symmetric with respect to \(v_{2n+i} \) and \(v_{2n+i+1} \). Correspondingly, the integral (4.24) vanishes from the antisymmetry of \(\Psi^{(n)}_\sigma \) with respect to \(\sigma \)'s. The claim of this Proposition is therefore reduced to eq. (4.25).

Let us show (4.25) by the induction for \(l > 1 \). The validity of eq. (4.25) for \(l = 2 \) follows from the following identity:

\[B_{e,k,2}(v_{2n+1}, v_{2n+2}|u_0, u_{2n}) = h_e(k - 4 + u_0 + u_{2n} - 2v_{2n+1}) [v_{2n+2} - u_0 + \frac{5}{2} - k] [v_{2n+2} - u_2n - \frac{1}{2}] + h_e(k - 2 + u_0 + u_{2n} - 2v_{2n+2}) [v_{2n+1} - u_0 + \frac{3}{2} - k] [u_{2n} - v_{2n+1} - \frac{1}{2}] = -h_e(k - 3 + u_0 - u_{2n}) [k - 3 + u_0 + u_{2n} - v_{2n+1} - v_{2n+2}] [v_{2n+1} - v_{2n+2} + 1]. \quad (4.26) \]

For \(l > 2 \), the assumption of the induction implies

\[B_{e,k,l-1}(v_{2n+1}, \ldots, v_{2n+l-1}|u_0, u_{2n}) = \sum_{i=1}^{l-2} [v_{2n+i} - v_{2n+i+1} + 1] B^{(i)}_{e,k,l-1}(v_{2n+1}, \ldots, v_{2n+l-1}|u_0, u_{2n}). \]

The validity of eq. (4.25) for general \(l \) thus follows from the relation

\[B_{e,k,l}(v_{2n+1}, \ldots, v_{2n+l}|u_0, u_{2n}) = B_{e,k,l-1}(v_{2n+1}, \ldots, v_{2n+l-1}|u_0, u_{2n}) [v_{2n+l} - u_0 + \frac{5}{2} - k] [v_{2n+l} - u_2n - \frac{1}{2}] + (-1)^l h_e(k - 2 + u_0 + u_{2n} - 2v_{2n+1}) \prod_{i=1}^{l-2} [v_{2n+i} - u_0 + \frac{3}{2} - k + 2(l - i)] [u_{2n} - v_{2n+i} - \frac{1}{2}], \]

where we again use (4.26). \(\square \)

As a Corollary of Proposition 3, we have

Corollary 3 The cyclicity (4.3) holds for the XYZ correlation functions (4.18).
4.4 Normalization in the XYZ case

Furthermore, we find that the following normalization condition holds for the generalized correlation functions in the cyclic SOS model for \(k_{2n} \equiv k \) (mod 2):

\[
F^{(n)}_\sigma(\zeta'', \zeta_{2n-1}, s\bar{x}^{-1}_2 \zeta_{2n-1}) k\pm 1 k_{2n} = \delta_{k', k_{2n}} d\left(\frac{s}{2^n}\right) F^{(n-1)}_\sigma(\zeta'') k \cdots k' (s = \pm), \tag{4.27}
\]

where

\[
d_s = \begin{cases} \frac{1}{e^{-\frac{s\pi}{2\nu}(1+r\pm 2k)}} & (s > 0); \\ e^{-\frac{s\pi}{2\nu}(1+r\pm 2k)} & (s < 0). \end{cases}
\]

Proposition 4 The normalization condition (4.4) holds for the XYZ correlation functions (4.18).

[Proof] First we notice the following identity

\[
\theta_4(\frac{k+u}{2r}, \frac{s\epsilon}{er}) = \delta_{k', k_{2n}} d\left(\frac{s}{2^n}\right) F^{(n-1)}_\sigma(\zeta'') k \cdots k' (s = \pm), \tag{4.28}
\]

where \(C \) is the same constant as the one defined in (2.8). Using (4.28) and (2.8), we have

\[
\sum_{s=\pm 1} t^{k+u}_k (u_{2n-1} - u_0)^{\pm 2n-1} t^{k+u}_k (u_{2n} - u_0)^{\pm 2n} \bigg|_{u_{2n} = u_{2n-1} - 1} = \sqrt{-1} \{k\} \delta_{2n-1 + \epsilon_{2n}, 0}. \tag{4.29}
\]

Furthermore, we also have

\[
\sum_{s=\pm 1} e^{-s\frac{\pi \epsilon}{2\nu}} t^{k+u}_k (u_{2n-1} - u_0)^{\pm 2n-1} t^{k+u}_k (u_{2n} - u_0)^{\pm 2n} \bigg|_{u_{2n} = u_{2n-1} - 1 - \frac{s\pi}{2\nu}} = \epsilon_{2n} e^{-\frac{s\pi \epsilon}{2\nu}} \{k\} \delta_{2n-1 + \epsilon_{2n}, 0}. \tag{4.30}
\]

Thus, the normalization condition (4.4) in the XYZ Heisenberg antiferromagnet follows from (4.29), (4.30) and (4.27). \(\Box \)

From Corollary 2 and Proposition 4, we have the following Theorem.

Theorem 5 The XYZ correlation function \(G^{(n)}_\sigma(\zeta) \) (4.18) solves the bootstrap equations (4.3) and (4.4).

4.5 Second integral formula for the XYZ correlation functions

In this subsection we assume that \(r \in \mathbb{Z}_{>1} \). The integral formula (4.18) remains the sum with respect to the local height variables \(k, k_1, \cdots, k_{2n} \) in the cyclic SOS model. Thus, the expression (4.18) consists of \(2r \times 2^{2n} \) terms because of (4.19) and the condition \(k_j = k_{j-1} \pm 1 \) for \(1 \leq j \leq 2n \).

Now we wish to present another integral solution to the bootstrap equations (4.3) and (4.4). Eq. (4.22) shows that the sum with respect to \(k_{2n} \) with fixed \(k, k_1, \cdots, k_{2n-1} \) can be performed to be in a simple form. In order to repeat this procedure with respect to \(k_{2n-1}, \cdots, k_1 \), we find that the number of integral variables should be greater than \(2n \) for the \(2n \)-point correlation function.
Let \(k_{2n} = k + 2n - 2l \) \((0 \leq l \leq 2n)\). Then the number of the set \(A \) is equal to \(2n - l \), where
\[
A := \{a|k_a = k_{a-1} + 1, 1 \leq a \leq 2n\}.
\]

We further introduce the set of indices
\[
A'' = A \cup \{2n + 1, \cdots, (r + 1)n + l\}.
\]

Note that the number of the set \(A'' \) is equal to \((r + 1)n\). Let \(k_{2n+1} = k_{2n} + 2i = k + 2(n - l + i) \) for \(1 \leq i \leq (r - 1)n + l \). Then the meromorphic function \(Q^{(n)}(w|\zeta)^{k_{k1} \cdots k_{2n}} \) with \(k_{2n} = k + 2n - 2l \) is defined as follows:

\[
Q^{(n)}(w|\zeta)^{k_{k1} \cdots k_{2n}} = \prod_{a \in A}(v_a - u_a + \frac{1}{2} - k_a) \left(\prod_{j=1}^{a-1} [v_a - u_j - \frac{1}{2}] \prod_{j=a+1}^{2n} [u_j - v_a - \frac{1}{2}] \right) \times (-1)^{n-l} \prod_{a'=2n+1}^{(r+1)n+l} \frac{v_{a'} - u_0 + \frac{1}{2} - k_{a'}}{[v_{a'} - u_0 - \frac{1}{2}]} \left(\prod_{j=1}^{2n} [v_{a'} - u_j - \frac{1}{2}] \right) \times \prod_{j=1}^{2n-1} \{k_j\}^{-1} \prod_{a,b \in A''} [v_a - v_b + 1]^{-1}.
\]

Set
\[
\tilde{F}^{(n)}(\zeta)^{k_{k1} \cdots k_{2n}} = \tilde{c}_n \prod_{1 \leq j < k \leq 2n} \zeta_j^{-1} g(z_j/z_k) \times \tilde{F}^{(n)}(\zeta)^{k_{k1} \cdots k_{2n}},
\]

where \(\tilde{c}_n \) is some constant, and
\[
\tilde{F}^{(n)}(\zeta)^{k_{k1} \cdots k_{2n}} = \prod_{a \in A''} \int_{C_a} \frac{dw_a}{2\pi \sqrt{-1}w_a} \tilde{\Psi}^{(n)}(w|\zeta)Q^{(n)}(w|\zeta)^{k_{k1} \cdots k_{2n}}.
\]

Here, the kernel has the form
\[
\tilde{\Psi}^{(n)}(w|\zeta) = \tilde{\psi}^{(n)}(w|\zeta) \prod_{a' \in A, a \neq a'} 2n \prod_{a' \in A, a \neq a'} (v_{a'} - w_a)^{-1} \psi\left(\frac{w_a}{z_j}\right) \prod_{1 \leq j < k \leq 2n} x^{-\frac{(v_a - u_0)^2}{z_j}}.
\]

The function \(\tilde{\psi}^{(n)}(w|\zeta) \) is a function of \((r + 1)n\) \(w \)'s and \(2n \) \(\zeta \)'s. The properties of \(\tilde{\psi}^{(n)}(w|\zeta) \) is the same as those of \(\psi^{(n)}(w|\zeta) \), but in the RHS of (3.14) the product with respect to \(a \) should be taken over \(A'' \).

The second integral formula of the XYZ correlation functions is as follows:
\[
\tilde{G}^{(n)}(\zeta) = (\sqrt{-1})^{-n} \sum_{k_0, k_1, \cdots, k_{2n}} \tilde{t}_{k_0}^{k_1}(u_1 - u_0) \otimes \cdots \otimes \tilde{t}_{k_{2n-1}}^{k_{2n}}(u_{2n} - u_0) \tilde{F}^{(n)}(\zeta)^{k_{k1} \cdots k_{2n}}.
\]

This formula essentially solves the first two of the bootstrap equations. The \(R \)-matrix symmetry (4.4) evidently holds. The modified cyclicty
\[
P_{12} \cdots P_{2n-12n} \tilde{G}^{(n)}(\zeta, x^2\zeta_{2n}) = \sigma(-1)^{(r-1)n} \tilde{G}^{(n)}(\zeta_{2n}, \zeta'),
\]

can be proved in a similar manner as in Proposition 1 and Corollary 3.
where

\[\text{Lashkevich and Pugai} [9] \]

\[\text{Lashkevich-Pugai’s formula can be obtained from the correlation function in the antiferromagnetic regime. The first solution is essentially the same as the formula given by} \]

\[\text{In this paper we have constructed two integral solutions to the bootstrap equations for the XYZ Heisen-} \]

\[\text{Yas-Hiro Quano} \]

\[\text{C} \]

\[\text{Here} \]

\[\text{This function} \]

\[\text{Finally, we have to carry out the sum with respect to} \]

\[\text{This function} \]

\[\text{In particular, you can easily find the} \]

\[\text{Furthermore, if the limit} \]

\[\text{if the limit} \]

\[\text{This function} \]

\[\text{In particular, you can easily find the} \]

\[\text{Furthermore, if the limit} \]

\[\text{Here} \]

\[\text{5 Concluding remarks} \]

\[\text{In this paper we have constructed two integral solutions to the bootstrap equations for the XYZ Heisen-} \]

\[\text{Lashkevich-Pugai’s formula can be obtained from the correlation function in the RSOS type model, by using the vertex-face correspondence. In order to avoid the pole resulting from} \]

\[\text{Lashkevich-Pugai’s formula can be obtained from the correlation function in the cyclic SOS model so that no such regularization was needed.} \]
Bootstrap equations and XYZ correlation functions

By the construction, both Lashkevich-Pugai’s formula and our first formula for 2n-point XYZ correlation function remain the sum with respect to the local height variables \(k_0, k_1, \cdots, k_{2n} \) other than \(n \)-fold integral. When \(r \in \mathbb{Z}_{>1} \) we construct another \((r+1)n\)-fold integral formula, in which the sum with respect to \(k_1, \cdots, k_{2n} \) can be carried out. The structure of our second formula is quite similar to Shiraishi’s formula \[23\], though the latter treated only the case \(r = \frac{3}{2} \).

Concerning the second formula, we have not yet proved the normalization condition. The number of integral variables in the second formula are much greater than that in the first one, so that the recursion relation for the second one is not so simple. Nevertheless, we believe that the normalization condition holds in the second integral formula. Actually, the number of integral variables in the second formula is not minimal but redundant. It is sufficient for the number of integral variables \(N \) in the second formula to satisfy \(n \leq N - n \equiv 0 \pmod{r} \). Thus, we can make an \(N(n) \)-fold integral formula, where \(N(n) = n + mr \) for \((m - 1)r < n \leq mr\) with some \(m \in \mathbb{Z}_{>0} \). If we employ this ‘minimal’ integral solution, the normalization condition holds unless \(n \equiv 1 \pmod{r} \) from the same reason as in the first formula. However, the validity of the recursion relation in the ‘minimal’ integral solution becomes again unclear for \(n = mr + 1 \) because \(N(n) - N(n - 1) = r + 1 \).

Another future problem is to consider the bootstrap equations for Belavin’s \(\mathbb{Z}/n\mathbb{Z} \)-symmetric model and to construct integral formulae of the correlation functions. We wish to address this problem in a separate paper.

Acknowledgements

I would like to thank M. Lashkevich, A. Nakayashiki and J. Shiraishi for valuable discussion. I would also like to dedicate the present paper to the memory of Sung-Kil Yang, who had been interested in Infinite Analysis projects including my studies.

A Properties of the \(R \)-matrix

The main properties of the \(R \)-matrix of the eight-vertex model are the Yang-Baxter equation

\[
R_{12}(\zeta_1/\zeta_2)R_{13}(\zeta_1/\zeta_3)R_{23}(\zeta_2/\zeta_3) = R_{23}(\zeta_2/\zeta_3)R_{13}(\zeta_1/\zeta_3)R_{12}(\zeta_1/\zeta_2); \tag{A.1}
\]

where the subscript of the \(R \)-matrix denotes the spaces on which \(R \) nontrivially acts; the initial condition

\[
R(1) = P; \tag{A.2}
\]

the unitarity relation

\[
R_{12}(\zeta_1/\zeta_2)R_{21}(\zeta_2/\zeta_1) = 1; \tag{A.3}
\]

the \(\mathbb{Z}_2 \)-parity

\[
R_{12}(-\zeta) = -\sigma_1^2 R_{12}(\zeta) \sigma_1^2; \tag{A.4}
\]
and the crossing symmetries

\[R_{21}^\dagger (\zeta_2/\zeta_1) = \sigma^x_1 R_{12} (x^{-1} \zeta_1/\zeta_2) \sigma^y_1 = -\sigma^y_1 R_{12} (-x^{-1} \zeta_1/\zeta_2) \sigma^x_1. \]

(A.5)

In (A.4, A.5) the shift \(\zeta \mapsto -\zeta \) implies the one such that \(u \mapsto u - \frac{\pi \sqrt{-1}}{e} \). The properties (A.2–A.5) hold if the normalization factor of the \(R \)-matrix satisfies the following relations:

\[\kappa(\zeta) \kappa(\zeta^{-1}) = 1, \quad \kappa(x^{-1} \zeta^{-1}) = \kappa(\zeta). \]

(A.6)

Under this normalization the partition function per lattice site is equal to unity in the thermodynamic limit [17, 12].

References

[1] Baxter R J: Partition function of the eight-vertex lattice model, *Ann. Phys. (NY)* 70 193–228.

[2] Baxter R J: One-dimensional anisotropic Heisenberg chain, *Ann. Phys. (NY)* 70 (1972) 323–337.

[3] Baxter R J: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. I. Some fundamental eigenvectors, *Ann. Phys. (NY)* 76 (1973) 1–24.

[4] Baxter R J: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice model, *Ann. Phys. (NY)* 76 (1973) 25–47.

[5] Baxter R J: Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. III. Eigenvectors of the transfer matrix and Hamiltonian, *Ann. Phys. (NY)* 76 (1973) 48–71.

[6] Baxter R J and Kelland S B: Spontaneous polarization of the eight vertex model, *J. Phys.* C7 (1974) L403-406.

[7] Jimbo M, Miwa T and Nakayashiki A: Difference equations for the correlation functions of the eight-vertex model, *J. Phys. A: Math. Gen.* 26 (1993) 2199–2209.

[8] Baxter R J: Solvable eight-vertex model on an arbitrary planar lattice, *Phil. Trans. Roy. Soc. (London)* 289A (1978) 315–346.

[9] Lashkevich M and Pugai Ya: Free field construction for correlation functions of the eight vertex model, *Nucl. Phys.* B516 (1998) 623–651.

[10] Lashkevich M: Free field construction for the eight-vertex model: representation for form factors, *Nucl. Phys.* B621 (2002) 587-621.

[11] Lukyanov S and Pugai Ya: Multi-point local height probabilities in the integrable RSOS model, *Nucl. Phys.* B473[FS] (1996) 631–658.

[12] Jimbo M and Miwa T: *Algebraic analysis of solvable lattice models, CBMS Regional Conferences Series in Mathematics*, Vol 85, AMS, Providence, RI, 1994.
Bootstrap equations and XYZ correlation functions

[13] Jimbo M, Miki K, Miwa T and Nakayashiki A: Correlation functions of the XXZ model for $\Delta < -1$, *Phys. Lett. A*, **168** 256–263, 1992.

[14] Asai Y, Jimbo M, Miwa T and Pugai Ya: Bosonization of vertex operators for the $A^{(1)}_{n-1}$ face model, *J. Phys. A: Math. Gen.* **29** (1996) 6595–6616.

[15] Konno H, An elliptic algebra $U_{q,p}(\hat{sl}_2)$ and the fusion RSOS model, *Commun. Math. Phys.* **195** (1998) 373–403.

[16] Foda O, Jimbo M, Miwa T, Miki K and Nakayashiki A: Vertex operators in solvable lattice models, *J. Math. Phys.* **35** (1994) 13–46.

[17] Baxter R J: *Exactly Solved Models in Statistical Mechanics*, Academic Press, London, 1982.

[18] Kitanine N, Maillet J M, Slavnov N A, Terras V: Spin-spin correlation functions of the XXZ-1/2 Heisenberg chain in a magnetic field, *hep-th/0201045*.

[19] Kitanine N, Maillet J M, Slavnov N A, Terras V: Correlation functions of the XXZ spin-1/2 Heisenberg chain at the free fermion point from their multiple integral representations, *hep-th/0203169*.

[20] Quano Y-H, Smirnov-type integral formulae for correlation functions of the bulk/boundary XXZ model in the anti-ferromagnetic regime, *hep-th/0104018*, to appear in *Prog. Theo. Phys.* **108** (2002).

[21] Jimbo M and Miwa T: Quantum KZ equation with $|q| = 1$ and correlation functions of the XXZ model in the gapless regime, *J. Phys. A: Math. Gen.* **29** (1996) 2923–2958.

[22] Jimbo M, Konno H and Miwa T: Massless XXZ model and deformation of the elliptic algebra $A_{Q,P}(\hat{SL}_2)$, in *Deformation Theory and Symplectic Geometry*, Eds. Sternheimer D, Rawnsley J and Gutt S, *Math. Phys. Studies* **20** pp117–138, Kluwere Acad. Pub., 1997.

[23] Shiraishi J: A talk given in *MATHPHYS ODYSSEY 2001 — Integrable Models and Beyond*, February 22, 2001, RIMS, Kyoto University, celebrating the 60th birthday of Professor Barry McCoy.

[24] Shiraishi J, Kubo H, Awata Hand Odake S: A quantum deformation of the Virasoro algebra and Macdonald symmetric functions, *Lett. Math. Phys.* **38** (1996) 33–57.

[25] Foda O, Iohara K, Jimbo M, Kedem R, Miwa T and Yan H, An elliptic quantum algebra for \hat{sl}_2, *Lett. Math. Phys.* **32** (1994) 259-268.

[26] Foda O, Iohara K, Jimbo M, Kedem R, Miwa T and Yan H, Notes on highest weight modules of the elliptic algebra $A_{Q,P}(\hat{sl}_2)$, *Prog. Theor. Phys. Suppl.* **118** (1995) 1-34.

[27] Sklyanin E V: Some algebraic structures connected with the Yang–Baxter equation, *Funct. Anal.** 16** (1982) 263–269.

[28] G. E. Andrews, R. J. Baxter and P. J. Forrester, Eight-vertex SOS model and generalized Rogers–Ramanujan identities, *J. Stat. Phys.* **35** (1984) 193-266.
[29] Sklyanin E V: Some algebraic structures connected with the Yang–Baxter equation, Representations of quantum algebras, *Funct. Anal.* 17 (1983) 273–284.

[30] Hasegawa K and Yamada Y: Algebraic derivation of broken \mathbb{Z}_n-symmetric model, *Phys. Lett.* 146A (1990) 387–396.

[31] Frenkel I B and Reshetikhin N Y: Quantum affine algebras and holonomic difference equations, *Commun. Math. Phys.* 146 (1992) 1–60.