REDUCIBLE FAMILIES OF CURVES WITH ORDINARY MULTIPLE POINTS ON SURFACES IN \mathbb{P}^3 \\
THOMAS KEILEN \\

Abstract. In [Kei03], [Kei05a] and [Kei05b] we gave numerical conditions which ensure that an equisingular family is irreducible respectively T-smooth. Combining results from [GLS01] and an idea from [ChC99] we give in the present paper series of examples of families of irreducible curves on surfaces in \mathbb{P}^3 with only ordinary multiple points which are reducible and where at least one component does not have the expected dimension. The examples show that for families of curves with ordinary multiple points the conditions for T-smoothness in [Kei05b] have the right asymptotics.

Throughout this article Σ will denote a smooth projective surface in \mathbb{P}^3 of degree $n \geq 2$, and H will be a hyperplane section of Σ. For a positive integer m we denote by M_m the topological singularity type of an ordinary m-fold point, i.e. the singularity has m smooth branches with pairwise different tangents. And for positive integers d and r we denote by $V_{|dH|}^{\text{irr}}(rM_m)$ the family of irreducible curves in the linear system $|dH|$ with precisely r singular points all of which are ordinary m-fold points. $V_{|dH|}^{\text{irr}}(rM_m)$ is called T-smooth if it is smooth of the expected dimension

$$ \expdim \left(V_{|dH|}^{\text{irr}}(rM_m) \right) = \dim |dH| - r \cdot \frac{m^2 + m - 4}{2}. $$

Theorem 1

For $m \geq 18n$ there is an integer $l_0 = l_0(m, \Sigma)$ such that for all $l \geq l_0$ the family $V_{|dH|}^{\text{irr}}(rM_m)$ with $d = 2lm + l$ and $r = 4l^2n$ has at least one T-smooth component and one component of higher dimension.

Moreover, the T-smooth component dominates $\text{Sym}^r(\Sigma)$ under the map

$$ V_{|dH|}^{\text{irr}}(rM_m) \longrightarrow \text{Sym}^r(\Sigma) : C \mapsto \text{Sing}(C) $$

sending a curve C to its singular locus, and the fundamental group $\pi_1(\Sigma \setminus C)$ of the complement of any curve $C \in V_{|dH|}^{\text{irr}}(rM_m)$ is abelian.

Before we prove the theorem let us compare the result with the conditions for T-smoothness in [Kei05b] and for irreducibility in [Kei05a].

Date: September, 2003.

1991 Mathematics Subject Classification. Primary 14H10, 14H15, 14H20; Secondary 14J26, 14J27, 14J28, 14J70.

Key words and phrases. Algebraic geometry, singularity theory.

The results were obtained during a research visit at the universities of Siena and Torino supported by the EAGER-node of North Italy.
Here we have given examples of non-T-smooth families $V_{dH}(rM_m)$ where

$$r \cdot m^2 \equiv n \cdot d^2,$$

if we neglect the terms of lower order in ml. If $n \geq 4$ and the Picard number of Σ is one, then according to [Kei05b] Corollary 2.3 respectively Corollary 2.4 – neglecting terms of lower order in m and d –

$$r \cdot m^2 < \frac{1}{2n - 6} \cdot n \cdot d^2$$

would be a sufficient condition for T-smoothness. Similarly, if $n = 2$, then Σ is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$ and we may apply [Kei05b] Theorem 2.5 to find that

$$r \cdot m^2 < \frac{1}{8} \cdot n \cdot d^2$$

implies T-smoothness. Since the families fail to satisfy the conditions only by a constant factor we see that asymptotically in d, m and r the conditions for T-smoothness are proper.

For irreducibility the situation is not quite as good. The conditions in [Kei05a] Corollary 2.4 for irreducibility if $n \geq 4$ and the Picard number of Σ is one is roughly

$$r \cdot m^2 < \frac{24}{n^2m^2} \cdot n \cdot d^2,$$

and similarly for $n = 2$ [Kei05a] Theorem 2.6 it is

$$r \cdot m^2 < \frac{1}{6m^2} \cdot n \cdot d^2.$$

Here the “constant” by which the families fail to satisfy the condition depends on the multiplicity m, so that with respect to m the asymptotics are not proper. However, we should like to point out that it does not depend on the number r of singular points which are imposed.

The families in Theorem 1 thus exhibit the same properties as the families of plane curves provided in [GLS01], which we use to construct the non-T-smooth component. The idea is to intersect a family of cones in \mathbb{P}^3_c over the plane curves provided by [GLS01] with Σ and to calculate the dimension of the resulting family. Under the conditions on m and l requested this family turns out to be of higher dimension than the expected one. The same idea was used by Chiantini and Ciliberto in [ChC99] in order to give examples of nodal families of curves on surfaces in \mathbb{P}^3_c which are not of the expected dimension. We then combine an asymptotic h^1-vanishing result by Alexander and Hirschowitz [AlH00] with an existence statement from [KeT02] to show that there is also a T-smooth component, where actually the curves have their singularities in very general position.

Proof of Theorem 1: Fix a general plane P in \mathbb{P}^3_c and a general point p. By [GLS01] there is an integer $l_1 = l_1(m)$ such that for any $l \geq \max\{l_1, m\}$ the family
of curves in P of degree $2lm + l$ with $4l^2$ ordinary m-fold points as only singularities has a component W of dimension
\[
\dim(W) \geq (m + 1) \cdot \frac{(l + 1) \cdot (l + 2)}{2} + (2l + 1) \cdot (2l + 2) - 4
\]
\[
= \frac{l^2m + 9l^2 + 3lm + 15l + 2m - 4}{2}.
\]
Let W be the family of cones with vertex p over curves C in W, then $\dim(W) = \dim(W)$, since a cone is uniquely determined by the curve C and the vertex p. Moreover, any cone in W has precisely $4l^2$ lines of multiplicity m, so that when we intersect it with Σ we get in general an irreducible curve in Σ with $4l^2n$ ordinary m-fold points. In particular, $V_{[[l^2m+l]]}^{irr}(4l^2nM_m)$ must have a component W' of dimension
\[
\dim(W') \geq \frac{l^2m + 9l^2 + 3lm + 15l + 2m - 4}{2}.
\]
However, since the dimension of the linear system $|dH|$ is
\[
\dim |dH| = \binom{d + 3}{3} - \binom{d + 3 - n}{3} - 1,
\]
and since
\[
\tau^{es}(M_m) = \frac{m \cdot (m + 1)}{2} - 2
\]
is the expected number of conditions imposed by an ordinary m-fold point, the expected dimension of $V_{[[l^2m+l]]}^{irr}(4l^2nM_m)$ is
\[
\expdim\left(V_{[[l^2m+l]]}^{irr}(4l^2nM_m)\right) = \dim |(2lm + l)H| - 4l^2n\tau^{es}(M_m)
\]
\[
= \frac{17l^2n + (4n - n^2) \cdot l \cdot (2m + 1)}{2} + \frac{n^3 - 6n^2 + 11n}{6}.
\]
Due to the conditions on m and l this number is strictly smaller than the dimension of W'. It remains to show that $V_{[[l^2m+l]]}^{irr}(4l^2nM_m)$ also has a T-smooth component, after possibly enlarging l_1.
For $z = (z_1, \ldots, z_r) \in \Sigma^r$ we denote by $X(m; z)$ the zero-dimensional scheme with ideal sheaf $\mathcal{J}_{X(m; z)}$ given by the stalks
\[
\mathcal{J}_{X(m; z)} = \begin{cases}
\mathfrak{m}^m_{\Sigma, z}, & \text{if } z \in \{z_1, \ldots, z_r\}, \\
\mathcal{O}_{\Sigma, z}, & \text{else},
\end{cases}
\]
where $\mathcal{O}_{\Sigma, z}$ denotes the local ring of Σ at z and $\mathfrak{m}_{\Sigma, z}$ is its maximal ideal.
By [AlH00] Theorem 1.1 there is an integer $l_2 = l_2(m, \Sigma)$ such that for $l \geq l_2$ and $z \in \Sigma^r$ in very general position the canonical map
\[
H^0(\Sigma, \mathcal{O}_{\Sigma}((2lm + l - 1)H)) \to H^0(\Sigma, \mathcal{O}_{X(m; z)}((2lm + l - 1)H))
\]
has maximal rank. In particular, since $h^1(\Sigma, \mathcal{O}_{\Sigma}((2lm + l - 1)H)) = 0$ we have
\[
h^1(\Sigma, \mathcal{J}_{X(m; z)}(2lm + l - 1)H)) = 0,
\]
once $\deg \left(X(m; \mathfrak{Z}) \right) \leq h^0(\Sigma, \mathcal{O}_{\Sigma}((2lm + l - 1)H))$, which is equivalent to

$$\frac{4l^2 n \cdot m \cdot (m + 1)}{2} \leq \binom{2lm + l + 2}{3} - \binom{2lm + l + 2 - n}{3},$$

or alternatively

$$\frac{nl \cdot (l - (n - 2) \cdot (2m + 1))}{2} + \frac{n^3 - 3n^2 + 2n}{6} \geq 0.$$

The latter inequality is fulfilled as soon as $l \geq (n - 2) \cdot (2m + 1)$. Moreover, under this hypothesis we have

$$(2lm + l) \cdot H^2 - 2g(H) = (2lm + l) \cdot n - (n - 1) \cdot (n - 2) \geq 2m,$$

where $g(H)$ denotes the geometric genus of H, and

$$(2lm + l)^2 \cdot H^2 > 4l^2 nm^2. \quad (1)$$

Thus [KeT02] Theorem 3.3 (see also [Kei01] Theorem 1.2) implies that the family $V_{(2lm + l)H}^{\text{irr}}(4l^2 nm_m)$ has a non-empty T-smooth component, more precisely it contains a curve in a T-smooth component with singularities in z_1, \ldots, z_r. In particular, since there is only a finite number of components and \mathfrak{Z} is in very general position, some T-smooth component must dominate $\text{Sym}^r(\Sigma)$. Actually, due to [Los98] Proposition 2.1 (e) and since $h^1(\Sigma, \mathcal{O}_{\Sigma}) = 0$ every T-smooth component dominates $\text{Sym}^r(\Sigma)$.

Thus the statement follows with

$$l_0(m, \Sigma) := \max \{l_1(m), l_2(m, \Sigma), (\deg(\Sigma) - 2) \cdot (2m + 1), m\}.$$

It just remains to show that the fundamental group of the complement of a curve $C \in V_{(2lm + l)H}^{\text{irr}}(rM_m)$ is abelian. Note first of all that by the Lefschetz Hyperplane Section Theorem Σ is simply connected. But then $\pi_1(\Sigma \setminus C)$ is abelian by [Nor83] Proposition 6.5 because of (1).

\[\square \]

References

[AlH00] James Alexander and André Hirschowitz, An asymptotic vanishing theorem for generic unions of multiple points, Inventiones Math. 140 (2000), no. 2, 303–325.

[ChC99] Luca Chiantini and Ciro Ciliberto, On the severi varieties of surfaces in \mathbb{P}^3, J. Algebraic Geom. 8 (1999), no. 1, 67–83.

[GLS01] Gert-Martin Greuel, Christoph Lossen, and Eugenii Shustin, The variety of plane curves with ordinary singularities is not irreducible, Intern. Math. Res. Notes 11 (2001), 542–550.

[Kei01] Thomas Keilen, Families of curves with prescribed singularities, Ph.D. thesis, Universität Kaiserslautern, 2001, http://www.mathematik.uni-kl.de/~keilen/download/Thesis/thesis.ps.gz.

[Kei03] Thomas Keilen, Irreducibility of equisingular families of curves, Trans. Amer. Math. Soc. 355 (2003), no. 9, 3485–3512, http://www.mathematik.uni-kl.de/~keilen/download/Keilen001/Keilen001.ps.gz.

[Kei05a] Thomas Keilen, Irreducibility of equisingular families of curves – improved conditions, Comm. in Algebra 33 (2005), no. 2, 455–466, http://www.mathematik.uni-kl.de/~keilen/download/Keilen002/Keilen002.ps.gz.
[Kei05b] Thomas Keilen, *Smoothness of equisingular families of curves*, Trans. Amer. Math. Soc. 357 (2005), no. 6, 2467–2481, http://www.mathematik.uni-kl.de/~keilen/download/Keilen003/Keilen003.ps.gz.

[KeT02] Thomas Keilen and Ilya Tyomkin, *Existence of curves with prescribed singularities*, Trans. Amer. Math. Soc. 354 (2002), no. 5, 1837–1860, http://www.mathematik.uni-kl.de/~keilen/download/KeilenTyomkin001/KeilenTyomkin001.ps.gz.

[Los98] Christoph Lossen, *The geometry of equisingular and equianalytic families of curves on a surface*, Phd thesis, FB Mathematik, Universität Kaiserslautern, Aug. 1998, http://www.mathematik.uni-kl.de/~lossen/download/Lossen002/Lossen002.ps.gz.

[Nor83] Madhav V. Nori, *Zariski’s conjecture and related problems*, Ann. scient. Éc. Norm. Sup. 16 (1983), 305–344.

Universität Kaiserslautern, Fachbereich Mathematik, Erwin-Schrödinger-Strasse, D – 67663 Kaiserslautern

E-mail address: keilen@mathematik.uni-kl.de

URL: http://www.mathematik.uni-kl.de/~keilen