An Investigation of Honey Bee Viruses Prevalence in Managed Honey Bees (Apis mellifera and Apis cerana) Undergone Colony Decline

Chunying Yuan1,†, Xuejian Jiang2,†, Man Liu3,†, Sa Yang4,5, Shuai Deng4,5 and Chunsheng Hou4,5,*

1Liaoning Agricultural Development Service Center, Xingcheng, China
2Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning, China
3Guizhou Institute of Biology, Guiyang, China
4Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
5Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing, China

Abstract:

Objective:
In the absence of known clinical symptoms, viruses were considered to be the most probable key pathogens of honey bee. Therefore, the aim of this study was to investigate the prevalence and distribution of honey bee viruses in managed Apis mellifera and Apis cerana in China.

Methods:
We conducted a screening of 8 honey bee viruses on A. mellifera and A. cerana samples collected from 54 apiaries from 13 provinces in China using RT-PCR.

Results:
We found that the types and numbers of viral species significantly differed between A. mellifera and A. cerana. Black Queen Cell Virus (BQCV), Chronic Bee Paralysis Virus (CBPV), Apis mellifera filamentous virus (AmFV), and Kakugo virus (DWV-A/KV) were the primary viruses found in A. mellifera colonies, whereas Chinese Sacbrood Bee Virus (CSBV) and Sacbrood Bee Virus (SBV) were the primary viruses found in A. cerana. The percentage infection of BQCV and CSBV were 84.6% and 61.6% in all detected samples. We first detected the occurrences of Varroa destructor virus-1 (VDV-1 or DWV-B) and DWV-A/KV in China but not ABPV in both A. mellifera and A. cerana.

Conclusion:
This study showed that BQCV and CSBV are the major threat to investigated A. mellifera and A. cerana colonies.

Keywords: Honey bee viruses, BQCV, CBPV, AmFV, CSBV, A. mellifera, A. cerana.

Table S1. Numbers of apiaries selected in different province.

Virus	A. mellifera	A. cerana
Zhejiang	1	1
Henan	11	3
Hubei	0	3
Anhui	1	1
Guangdong	0	2
Liaoning	13	2
Hunan	0	1
Beijing	2	1
Neimenggu	7	0
Heilongjiang	2	0

DOI: 10.2174/1874285802115010058, 2021, J5, i-iii
Table S2. Primers used for PCR detection in present study.

Virus	Forward Primer	Reverse Primer	Reference
AmFV	CAGAGAATTCCGTTTTTGTGAGTG	CATGGTGCGCAATGCTTGCT	Hartmann et al., 2015
IAPV	AGACACCAAATCCGGACCTCAG	AGATTGTCTGTTCCCAAGTGCAC	Maori et al., 2007
SBV	ATATACGTGGGCAGAAGCTGC	TCTGGTAAATAAGGCGCACTG	Hou et al., 2014
ABPV	TTATGTCTGACAGAGCTGTAT	GCTGCTATGTCGTTTTTTC	Blanchard et al., 2007
BQCV	TGGTCAGCTCCACCTACCTAAAACG	GCAACACAAACAGTAAACACCAC	Benjeddou et al., 2001
CBPV	TCAGACACCGAATCTGATTATTG	ACTACTAGAAACTCGTCGCTTCG	Berényi et al., 2006
VDV-1	CATAGCGAATTACGGTGCAA	GAGGGTGCCCTACTCTACC	Hou et al., 2014
DWV	TTATCTGCTGGCGCCCA	CCCTAGAGAAGCTTCATTCGCG	Chen et al., 2005
CSBV	CCTGGGAAGTTTGCTAGTATTTACG	CCTATCACATCCATGCTGTCAG	Ma et al., 2013
KBV	TATGCTGAAAACAGCAAAGA	ACAACACAGATGCTGGGGTTT	Stolz et al., 1995
KV	GACTGAACCAAATCCGATGTC	TCTCAAGTTCCGAGCGCATTC	Fujiyuki et al., 2009

Table S3. Results of chi-square test for all types of co-infection in *A. mellifera*.

Number of Virus	Type of Co-infection	Chi-square (df=1)	P Level
2	BQCV; KV	1.81	0.18
	BQCV; CBPV	0.22	0.64
	CBPV; DWV	0.51	0.48
	BQCV; DWV	1.82	0.18
	BQCV; AmFV	0.42	0.48
	IAPV; DWV	0.05	0.18
3	BQCV; AmFV; KV	2.56	0.11
	BQCV; CBPV; DWV	2.56	0.11
	BQCV; CBPV; AmFV	1.01	0.32
	BQCV; CSBV; CBPV	2.56	0.11
	IAPV; SBV; CSBV	1.01	0.32
	IAPV; SBV; CBPV	0.19	0.66
	IAPV; DWV; VDV-1	1.01	0.32
4	IAPV; SBV; CSBV; DWV	0.0026	0.95
	IAPV; BQCV; DWV; VDV-1	12.61	0.00038
5	IAPV; DWV; VDV-1; CBPV; AmFV	4.61	0.031
	IAPV; SBV; BQCV; DWV; CSBV	4.61	0.031
6	IAPV; BQCV; CBPV; DWV; VDV-1; AmFV	18.88	<10-5

Table S4. Results of chi-square test for all types of co-infection *A. cerana*.

Number of Viruses	Type of Co-infection	Chi-square (df=1)	P Level
2	BQCV; AmFV	0.0009	0.02
	BQCV; CSBV	0.0009	0.02
	SBV; CSBV	0.061	0.19
	BQCV; DWV	<10-5	0.004
	BQCV; CBPV	0.0009	0.02
3	BQCV; CSBV; KV	0.04	0.15
	SBV; CSBV; AmFV	0.04	0.15
	IAPV; SBV; CSBV	0.04	0.15

(Table S1 contd.....
REFERENCES

[1] Maori E, Tanne E, Sela I. Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes. Virology 2007; 362.
[2] Stolz D, Shen XR, Boggis C, Sisson G. Molecular diagnosis of Kashmir bee virus infection. J Apic Res 1995; 34.
[3] Blanchard P, et al. Evaluation of a real-time two-step RT-PCR assay for quantitation of Chronic bee paralysis virus (CBPV) genome in experimentally-infected bee tissues and in life. Appl Environ Microbiol 2007; 73.
[4] Benjeddou M, Leat N, Allsopp M, Davison S. Detection of acute bee paralysis virus and black queen cell virus from honeybees by reverse transcriptase PCR. Appl Environ Microbiol 2001; 67.
[5] Berényi O, Bakonyi T, Derakhshifar I, Kögilberger H, Nowotny N. Occurrence of six honeybee viruses in diseased Austrian apiaries. Appl Environ Microbiol 2006; 72.
[6] Chen Y, Pettis JS, Feldhauser MF. Detection of multiple viruses in queens of the honey bee Apis mellifera L. J Invertebr Pathol 2005; 90.
[7] Fujiyuki T, et al. Distribution of Kakugo virus and its effects on the gene expression profile in the brain of the worker honeybee Apis mellifera L. J Virol 2009; 22.

© 2021 Yuan et al.
This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.