THE ASYMPTOTIC BEHAVIOR OF A CLASS OF NONLINEAR SEMIGROUPS IN HADAMARD SPACES

MIROSLAV BAČÁK AND SIMEON REICH

Dedicated to Professor Andrzej Granas with appreciation and respect

Abstract. We study a nonlinear semigroup associated with a nonexpansive mapping on an Hadamard space and establish its weak convergence to a fixed point. A discrete-time counterpart of such a semigroup, the proximal point algorithm, turns out to have the same asymptotic behavior. This complements several results in the literature – both classical and more recent ones. As an application, we obtain a new approach to heat flows in singular spaces for discrete as well as continuous times.

1. Introduction and Main Results

Throughout this paper, the symbol \((\mathcal{H}, d)\) stands for an Hadamard space, that is, a complete geodesic metric space of nonpositive curvature. Given a nonexpansive mapping \(F : \mathcal{H} \to \mathcal{H}\), we study the asymptotic behavior of its resolvent and of the nonlinear semigroup it generates.

As a motivation, we first recall some known results concerning gradient flow theory in Hadamard spaces. Let \(f : \mathcal{H} \to (-\infty, \infty]\) be a convex lower semicontinuous (lsc) function. Given \(\lambda > 0\), we define the \emph{resolvent} of \(f\) by

\[
J_{\lambda}x := \arg\min_{y \in \mathcal{H}} \left[f(y) + \frac{1}{2\lambda} d(x, y)^2 \right], \quad x \in \mathcal{H},
\]

and put \(J_0x := x\) for each \(x \in \mathcal{H}\). The \emph{gradient flow semigroup} corresponding to \(f\) is defined by

\[
S_t x := \lim_{n \to \infty} \left(J_{\frac{t}{n}} \right)^n x, \quad x \in \text{dom } f,
\]

for every \(t \in [0, \infty)\). Gradient flow semigroups in Hadamard spaces have been studied by several authors \[18, 21, 26, 4, 5, 6\] and the theory can be extended to more general metric spaces [1].
If $C \subset H$ is a convex set, we denote the corresponding metric projection by P_C. The set of minimizers of a function $f: H \to (-\infty, \infty]$ is denoted by $\text{Min} f$.

Theorem 1.1. [17, Theorem 3.1.1] Let $f: H \to (-\infty, \infty]$ be a convex lsc function and $x_0 \in H$. Assume there exists a sequence $(\lambda_n) \subset (0, \infty)$ with $\lambda_n \to \infty$ such that $(J_{\lambda_n}x_0)$ is a bounded sequence. Then f attains its minimum and
\[
\lim_{\lambda \to \infty} J_{\lambda}x_0 = P_{\text{Min} f}(x_0).
\]

Recall that the proximal point algorithm (PPA, for short) starting at a point $x_0 \in H$ generates the sequence
\[
(3) \quad x_n := J_{\lambda_n}x_{n-1}, \quad n \in \mathbb{N},
\]
where $\lambda_n > 0$ for each $n \in \mathbb{N}$. In contrast to Theorem 1.1, it is known that the PPA converges only weakly.

Theorem 1.2. [4, Theorem 1.4] Let $f: H \to (-\infty, \infty]$ be a convex lsc function attaining its minimum on H. Then for an arbitrary starting point $x_0 \in H$ and any sequence of positive reals (λ_n) such that $\sum_1^{\infty} \lambda_n = \infty$, the sequence $(x_n) \subset H$ defined by (3) converges weakly to a minimizer of f.

It is not surprising that the gradient flow behaves in the same way.

Theorem 1.3. [4, Theorem 1.5] Let $f: H \to (-\infty, \infty]$ be a convex lsc function attaining its minimum on H. Then, given a starting point $x_0 \in \text{dom} f$, the gradient flow $x_t := S_t x_0$ converges weakly to a minimizer of f as $t \to \infty$.

In a Hilbert space H, one can define the resolvent and the semigroup for an arbitrary maximally monotone operator $A: H \to 2^H$. The situation described above then corresponds to the case $A := \partial f$ for a convex lsc function $f: H \to (-\infty, \infty]$. In particular, the semigroup in (2) provides us with a solution to the parabolic problem
\[
\dot{u}(t) \in -\partial f(u(t)), \quad t \in (0, \infty),
\]
\[
u(0) = u_0 \in H
\]
for a curve $u: [0, \infty) \to H$. Indeed, in this case $u(t) := S_t u_0$.

In the present paper, we prove analogs of the above gradient flow results which in a Hilbert space H correspond to another important instance of a maximally monotone operator, namely $A := I - F$, where $F: H \to H$ is nonexpansive (that is, 1-Lipschitz) and $I: H \to H$ is the identity operator.

Let $F: H \to H$ be a nonexpansive mapping. We now define its resolvent and the semigroup it generates as in [26]. Given a point $x \in H$ and a number $\lambda > 0$, the mapping $G_{x,\lambda}: H \to H$ defined by
\[
(4) \quad G_{x,\lambda}(y) := \frac{1}{1 + \lambda} x + \frac{\lambda}{1 + \lambda} F y, \quad y \in H,
\]
is a strict contraction with Lipschitz constant $\frac{\lambda}{1 + \lambda}$, and hence has a unique fixed point, which will be denoted $R_\lambda x$. The mapping $x \mapsto R_\lambda x$ is called the resolvent of F.
It is known that the limit
\[T_t x := \lim_{n \to \infty} \left(R_{\frac{t}{n}} \right)^n x, \quad x \in \mathcal{H}, \]
exists uniformly with respect to \(t \) on each bounded subinterval of \([0, \infty)\). Moreover, the family \((T_t)\) is a strongly continuous semigroup of nonexpansive mappings \([24]\). This definition appeared in \([24, \text{Theorem 8.1}]\) in a similar context, namely, for a coaccretive operator on a hyperbolic space.

The following result is a counterpart of Theorem 1.1. It was proved for the Hilbert ball in \([13, \text{Theorem 24.1}]\) and for a bounded Hadamard space in \([19, \text{Theorem 26}]\). The latter proof also works, however, without the boundedness assumption, as we demonstrate in Section 3 for the reader’s convenience.

Theorem 1.4. Let \(F : \mathcal{H} \to \mathcal{H} \) be a nonexpansive mapping and \(x \in \mathcal{H} \). If there exists a sequence \((\lambda_n) \subset (0, \infty)\) such that \(\lambda_n \to \infty \) and the sequence \((R_{\lambda_n} x)_{n \in \mathbb{N}}\) is bounded, then \(\text{Fix} F \) is nonempty and
\[\lim_{\lambda \to \infty} R_{\lambda} x = P_{\text{Fix} F}(x). \]
Conversely, if \(\text{Fix} F \neq \emptyset \), then the curve \((R_{\lambda} x)_{\lambda \in (0, \infty)}\) is bounded.

Our results are presented in Proposition 1.5 and Theorem 1.6 below. In Proposition 1.5 we give an algorithm which finds a fixed point of \(F \). It is a counterpart of Theorem 1.2. For a general form of this algorithm in Hilbert spaces, see \([10, \text{Theorem 23.41}]\). See also \([12, \text{Theorem 2.6}], [24, \text{Corollary 7.10}]\) and \([25, \text{Theorem 4.7}]\). The best result in Hadamard spaces works only with \(\lambda_n = \lambda > 0 \); see \([2, \text{Theorem 6.4}]\).

Proposition 1.5. Let \(F : \mathcal{H} \to \mathcal{H} \) be a nonexpansive mapping with at least one fixed point and let \((\lambda_n) \subset (0, \infty)\) be a sequence satisfying \(\sum_n \lambda_n^2 = \infty \). Given a point \(x_0 \in \mathcal{H} \), put
\[x_n := R_{\lambda_n} x_{n-1}, \quad n \in \mathbb{N}. \]
Then the sequence \((x_n)\) converges weakly to a fixed point of \(F \).

Note that the assumption \(\sum_n \lambda_n^2 = \infty \) also appears in Hilbert spaces; see \([10, \text{Theorem 23.41}]\).

We also study the asymptotic behavior of the nonlinear semigroup defined in \([5]\). A Hilbert ball version of this result appears in \([23]\).

Theorem 1.6. Let \(F : \mathcal{H} \to \mathcal{H} \) be a nonexpansive mapping with at least one fixed point and let \(x_0 \in \mathcal{H} \). Then \(T_t x_0 \) converges weakly to a fixed point of \(F \) as \(t \to \infty \).

As noted in \([9, \text{Remark, page 7}]\), there exists a counterexample in Hilbert space showing that the convergence in Theorem 1.6 is not strong in general. This counterexample is based on an earlier work of J.-B. Baillon \([8]\).

In Section 6 we apply Proposition 1.5 and Theorem 1.6 to harmonic mapping theory in singular spaces and obtain the convergence of a heat flow to a solution to a Dirichlet problem under very mild assumptions. To this end, we construct discrete and continuous
heat flows by (7) and (5), respectively, with F being the nonlinear Markov operator. To the best of our knowledge, these constructions are new and complement the existing approaches, for instance, the gradient flow of the energy functional.

2. Preliminaries

In this section we recall several basic definitions and facts regarding Hadamard spaces. More information can be found in the books [3, 11, 17].

Throughout the paper, the space (\mathcal{H}, d) is Hadamard, that is, it is a complete geodesic metric space satisfying

\[d(x, \gamma_t)^2 \leq (1-t)d(x, \gamma_0)^2 + td(x, \gamma_1)^2 - t(1-t)d(\gamma_0, \gamma_1)^2 \]

for any $x \in \mathcal{H}$, any geodesic $\gamma : [0, 1] \to \mathcal{H}$, and any $t \in [0, 1]$. Given a closed and convex set $C \subset \mathcal{H}$ and a point $x \in \mathcal{H}$, there exists a unique point $c \in C$ such that

\[d(x, c) = d(x, C) := \inf_{y \in C} d(x, y). \]

We denote this point c by $P_C x$ and call the mapping $P_C : \mathcal{H} \to C$ the metric projection of \mathcal{H} onto the set C.

Given a bounded sequence $(x_n) \subset \mathcal{H}$, put

\[\omega(x; (x_n)) := \limsup_{n \to \infty} d(x, x_n)^2, \quad x \in \mathcal{H}. \]

Then the function ω defined in (9) has a unique minimizer, which we call the asymptotic center of the sequence (x_n). We shall say that $(x_n) \subset \mathcal{H}$ weakly converges to a point $x \in \mathcal{H}$ if x is the asymptotic center of each subsequence of (x_n). We use the notation $x_n \overset{w}{\rightharpoonup} x$. Clearly, if $x_n \to x$, then $x_n \overset{w}{\rightharpoonup} x$. If there is a subsequence (x_{n_k}) of (x_n) such that $x_{n_k} \overset{w}{\rightharpoonup} z$ for some $z \in \mathcal{H}$, we say that z is a weak cluster point of the sequence (x_n).

We say that a sequence $(x_n) \subset \mathcal{H}$ is Fejér monotone with respect to a set $A \subset \mathcal{H}$ if

\[d(a, x_{n+1}) \leq d(a, x_n) \]

for each $a \in A$ and $n \in \mathbb{N}$.

Proposition 2.1. [7, Proposition 3.3] Let $C \subset \mathcal{H}$ be a closed convex set. Assume that $(x_n) \subset \mathcal{H}$ is a Fejér monotone sequence with respect to C. Then we have:

(i) (x_n) is bounded.
(ii) $d(x_{n+1}, C) \leq d(x_n, C)$ for each $n \in \mathbb{N}$.
(iii) (x_n) weakly converges to some $x \in C$ if and only if all weak cluster points of (x_n) belong to C.
(iv) (x_n) converges to some $x \in C$ if and only if $d(x_n, C) \to 0$.

For each $\lambda > 0$ and $x \in \mathcal{H}$, we have $R_\lambda x = x$ if and only if $Fx = x$. Furthermore, we have the following estimate.
Lemma 2.2. \cite{26, Lemma 3.4} Let $F : \mathcal{H} \to \mathcal{H}$ be a nonexpansive mapping. Then its resolvent satisfies
\[
d(x, R_\lambda x) \leq \lambda d(x, Fx)
\]
for every $\lambda \in (0, \infty)$.

Proof. Since $R_\lambda x$ is a fixed point of the strict contraction $G_{x,\lambda}$, it can be iteratively approximated by the Banach contraction principle. Therefore
\[
d(x, R_\lambda x) \leq \sum_{n=1}^{\infty} d\left(G_{x,\lambda}^{n-1}(x), G_{x,\lambda}^n(x)\right)
\]
\[
\leq d(x, G_{x,\lambda}(x)) \sum_{n=1}^{\infty} \left(\frac{\lambda}{1+\lambda}\right)^{n-1}
\]
\[
\leq (1+\lambda)d(x, G_{x,\lambda}(x))
\]
and we are done because the right-hand side is equal to $\lambda d(x, Fx)$.

Consequently,
\[
d\left(x, R_\lambda x\right) \leq \sum_{j=0}^{n-1} d\left(R_\lambda^j x, R_\lambda^{j+1} x\right) \leq nd\left(x, R_\lambda^n x\right) = td(x, Fx)
\]
and taking the limit on the left-hand side as $n \to \infty$, we obtain
\[
d(x, T_t x) \leq td(x, Fx).
\]

3. Proof of Theorem 1.4

Proof of Theorem 1.4. To simplify our notation, put $x_\lambda := R_\lambda x$ for each $\lambda \in (0, \infty)$. Fix now $0 < \mu < \lambda$ and let
\[
\overline{\Delta} = (\overline{\mathbf{x}}, \overline{F x_\lambda}, \overline{F x_\mu}) \subset \mathbb{R}^2
\]
be a comparison triangle for $\Delta (x, Fx_\lambda, Fx_\mu)$. We have
\[
\|F x_\lambda - F x_\mu\| = d(F x_\lambda, F x_\mu) \leq d(x_\lambda, x_\mu) \leq \|\overline{x_\lambda} - \overline{x_\mu}\|.
\]
Without loss of generality we may assume that $\overline{x} = 0 \in \mathbb{R}^2$. From this and the fact that $x_\lambda = \frac{\lambda}{1+\lambda} F x_\lambda$ and $x_\mu = \frac{\mu}{1+\mu} F x_\mu$ we further obtain
\[
\left\langle \frac{1+\lambda}{\lambda} x_\lambda - \frac{1+\mu}{\mu} x_\mu, \frac{1+\lambda}{\lambda} x_\lambda - \frac{1+\mu}{\mu} x_\mu \right\rangle \leq \|\overline{x_\lambda} - \overline{x_\mu}\|^2.
\]
A simple computation yields
\[
\left(\frac{1+\lambda}{\lambda} - \frac{1+\mu}{\mu}\right)^2 \|x_\mu\|^2 + \left(\frac{(1+\lambda)^2}{\lambda^2} - 1\right)\|\overline{x_\lambda} - \overline{x_\mu}\|^2
\]
\[
\leq 2 \left(\frac{1+\mu}{\mu} - \frac{1+\lambda}{\lambda}\right) \frac{1+\lambda}{\lambda} \langle x_\mu, x_\lambda - x_\mu \rangle.
\]
Consequently,
\[\langle x_{\mu}, x_{\lambda} - x_{\mu} \rangle \geq 0. \]
Since
\[\|x_{\lambda}\|^2 = \|x_{\mu}\|^2 + \|x_{\lambda} - x_{\mu}\|^2 + 2 \langle x_{\mu}, x_{\lambda} - x_{\mu} \rangle, \]
we have
\[\|x_{\mu}\| \leq \|x_{\lambda}\| \]
and
\[(12) \quad d(x_{\lambda}, x_{\mu})^2 \leq \|x_{\lambda} - x_{\mu}\|^2 \leq \|x_{\lambda} - x\|^2 - \|x_{\mu} - x\|^2. \]
The monotonicity of \(\lambda \mapsto \|x_{\lambda}\| \) and the boundedness of the sequence \(\{x_{\lambda}\} \) yield the boundedness of the curve \((x_{\lambda})_{\lambda \in (0, \infty)} \). Inequality \((12) \) therefore implies that
\[d(x_{\lambda}, x_{\mu})^2 \to 0 \quad \text{as} \quad \lambda, \mu \to \infty. \]
Let \(z \in \mathcal{H} \) be the limit point of \((x_{\lambda}) \). Using continuity, we obtain
\[d(z, Fz) = \lim_{\lambda \to \infty} d(x_{\lambda}, Fx_{\lambda}) = \lim_{\lambda \to \infty} \frac{1}{1 + \lambda} d(x, Fx_{\lambda}) = 0, \]
which means that \(z \in \text{Fix} \, F \).

We will now show that \(z = P_{\text{Fix} \, F}(x) \). Let \(p \in \text{Fix} \, F \) be an arbitrary fixed point of \(F \) and repeat the above argument with the triangle \(\triangle (x, p, Fx_{\mu}) \). We obtain
\[d(x, p)^2 = \|x - p\|^2 \geq \|x - x_{\mu}\|^2 + \|x_{\mu} - p\|^2 \geq d(x, x_{\mu})^2 + d(x_{\mu}, p)^2 \]
and after taking the limit on the right-hand side as \(\mu \to \infty \), we arrive at
\[d(x, p)^2 \geq d(x, z)^2 + d(z, p)^2, \]
which completes the proof that \(z = P_{\text{Fix} \, F}(x) \).

Finally, it is easy to see that if \(\text{Fix} \, F \neq \emptyset \), then \((x_{\lambda})_{\lambda \in (0, \infty)} \) is bounded. \(\square \)

4. Proof of Proposition 1.5

Proof of Proposition 1.5. Let \(x \in \mathcal{H} \) be a fixed point of \(F \). Then, for each \(n \in \mathbb{N} \), we have
\[d(x_{n-1}, x) \geq d(R_{\lambda_n}x_{n-1}, R_{\lambda_n}x) = d(x_n, x), \]
which verifies the Fejér monotonicity of \((x_n) \) with respect to \(\text{Fix} \, F \). Put
\[\beta_n := \frac{1}{1 + \lambda_n}. \]
Inequality \((3) \) yields
\[d(x, x_n)^2 \leq \beta_n d(x, x_{n-1})^2 + (1 - \beta_n)d(x, Fx_n)^2 \]
\[- \beta_n(1 - \beta_n)d(x_{n-1}, Fx_n)^2 \]
\[\leq \beta_n d(x, x_{n-1})^2 + (1 - \beta_n)d(x, x_n)^2 - \beta_n d(x_{n-1}, x_n)^2, \]
which gives
\[d(x_{n-1}, x_n)^2 \leq d(x, x_{n-1})^2 - d(x, x_n)^2 \]
and hence
\[\lambda_n^2 \frac{d(x_{n-1}, x_n)^2}{\lambda_n^2} \leq d(x, x_{n-1})^2 - d(x, x_n)^2. \]
By the triangle inequality, we have
\[d(x, x_{n+1}) + d(x_{n+1}, Fx_{n+1}) = d(x, Fx_{n+1}) \]
\[\leq d(x, Fx_n) + d(Fx_n, Fx_{n+1}) \]
\[\leq d(x, Fx_n) + d(x, x_{n+1}) \]
and therefore
\[\frac{d(x, x_{n+1})}{\lambda_{n+1}} = d(x_{n+1}, Fx_{n+1}) \leq d(x, Fx_n) = \frac{d(x_{n-1}, x_n)}{\lambda_n}. \]
Summing up (13) over \(n = 1, \ldots, m, \) where \(m \in \mathbb{N}, \) and using (14), we obtain
\[\left(\sum_{n=1}^{m} \lambda_n^2 \right) \frac{d(x_{m-1}, x_m)^2}{\lambda_m^2} \leq d(x, x_0)^2 - d(x, x_m)^2. \]
Hence
\[d(x_m, Fx_m) = \frac{1}{\lambda_m} d(x_{m-1}, x_m) \to 0 \quad \text{as} \ m \to \infty. \]
Assume now that \(z \in \mathcal{H} \) is a weak cluster point of \((x_n).\) Then
\[\limsup_{n \to \infty} d(Fz, x_n) \leq \limsup_{n \to \infty} [d(Fz, Fx_n) + d(Fx_n, x_n)], \]
\[\leq \limsup_{n \to \infty} d(z, x_n) + 0. \]
By the uniqueness of the weak limit, we get \(z = Fz. \) Finally, we apply Proposition 2.1(iii) to conclude that the sequence \((x_n)\) weakly converges to a fixed point of \(F. \) \(\square \)

5. Proof of Theorem 1.6

Proof of Theorem 1.6. We mimic the technique from [23] and adapt it to our situation. Let \(x \in \mathcal{H}. \) First observe that
\[d(R_\lambda x, FR_\lambda x) = \frac{1}{\lambda} d(x, R_\lambda x) \leq d(x, Fx) \]
by (10). Hence we have
\[d(x, Fx) \geq d(R_{\frac{x}{\pi}} x, FR_{\frac{x}{\pi}} x) \geq d(R_{\frac{x}{\pi}}^n x, FR_{\frac{x}{\pi}}^n x) \]
and after taking the limit on the right-hand side as \(n \to \infty, \) we also obtain
\[d(x, Fx) \geq d(T_t x, FT_t x). \]
The semigroup property implies (when we substitute $x := T_s x$ and $t := t - s$ in the above inequality) that

$$d(T_s x, FT_s x) \geq d(T_t x, FT_t x),$$

whenever $s \leq t$ and therefore the limit

$$\lim_{t \to \infty} d(T_t x, FT_t x)$$

exists. We will now show that this limit actually equals 0.

Let $0 \leq s \leq t$. Then inequality (11) yields

$$d(T_s x, T_t x) \leq \sum_{j=0}^{n-1} d\left(T_{s + \frac{j}{n}(t-s)} x, T_{s + \frac{j+1}{n}(t-s)} x\right) \leq \frac{t-s}{n} \sum_{j=0}^{n-1} d\left(T_{s + \frac{j}{n}(t-s)} x, FT_{s + \frac{j}{n}(t-s)} x\right)$$

and after letting $n \to \infty$, we obtain

$$d(T_s x, T_t x) \leq \int_{s}^{t} d(T_r x, FT_r x) \, dr. \quad (16)$$

Next we prove that

$$\lim_{t \to \infty} d(T_t x, FT_t x) \leq \frac{1}{h} \lim_{t \to \infty} d(T_{t+h} x, T_t x). \quad (17)$$

To this end, we repeatedly use the inequality

$$d\left(F R_\lambda^n x, R_\lambda^{n-k+1} x\right) \leq \frac{1}{1+\lambda} d\left(F R_\lambda^n x, R_\lambda^{n-k} x\right) + \frac{\lambda}{1+\lambda} d\left(R_\lambda^n x, R_\lambda^{n-k+1} x\right),$$

which is valid for each $1 \leq k \leq n$, to obtain

$$d\left(F R_\lambda^n x, R_\lambda^n x\right) \leq \frac{1}{(1+\lambda)^n} d\left(F R_\lambda^n x, x\right) + \lambda \sum_{j=1}^{n} \frac{1}{(1+\lambda)^j} d\left(R_\lambda^n x, R_\lambda^{n-j+1} x\right).$$

Put now $\lambda := \frac{t}{n}$ and take the limits on both sides of this inequality as $n \to \infty$. One arrives at

$$d(T_t x, FT_t x) \leq \int_{0}^{t} e^{-r} d(T_t x, T_{t-r} x) \, dr + e^{-t} d(FT_t x, x).$$

Applying inequality (16) and an elementary calculation, we arrive at

$$e^t d(T_t x, FT_t x) \leq \int_{0}^{t} (e^r - 1) d(T_r x, FT_r x) \, dr + d(FT_t x, x).$$
or
\[(e^t - 1) d(T_t x, FT_t x) \leq \int_0^t (e^r - 1) d(T_r x, FT_r x) \, dr + d(T_t x, x) .\]
Replacing \(t \) by \(h \) and then \(x \) by \(T_t x \), we get
\[(e^h - 1) d(T_{t+h} x, FT_{t+h} x) \leq \int_t^{t+h} (e^{r-t} - 1) d(T_r x, FT_r x) \, dr
+ d(T_{t+h} x, T_t x) .\]
By an easy calculation, we obtain
\[d(T_{t+h} x, T_t x) \geq (e^h - 1) \left[d(T_{t+h} x, FT_{t+h} x) - d(T_t x, FT_t x) \right]
+ hd(T_t x, FT_t x) ,\]
which proves (17). Now (17) and (16) yield
\[\lim_{t \to \infty} d(T_t x, FT_t x) \leq \limsup_{h \to \infty} \frac{1}{h} d(T_h x, x)
\leq \lim_{h \to \infty} \frac{1}{h} \int_0^h d(T_r x, FT_r x) \, dr
= \lim_{t \to \infty} d(T_t x, FT_t x) ,\]
and thus
\[\lim_{t \to \infty} d(T_t x, FT_t x) = \limsup_{h \to \infty} \frac{1}{h} d(T_h x, x) .\]
Let now \(y \in \mathcal{H} \). Then
\[\limsup_{h \to \infty} \frac{d(T_h x, x)}{h} \leq \limsup_{h \to \infty} \frac{1}{h} \left[d(T_h x, T_h y) + d(T_h y, y) + d(y, x) \right] \leq \limsup_{h \to \infty} \frac{d(T_h y, y)}{h} ,\]
and since \(y \) was arbitrary, the value on the left-hand side is independent of \(x \). Consequently, by virtue of (18), the limit in (15) is independent of \(x \) and is therefore equal to 0 because one may choose \(x \in \text{Fix} F \).
To finish the proof, choose a sequence \(t_n \to \infty \) and set \(x_n := T_{t_n} x_0 \). Since \(T_t \) is nonexpansive, we know that the sequence \((x_n) \) is Fejér monotone with respect to \(\text{Fix} F \). In particular, \((x_n) \) is bounded and therefore has a weak cluster point \(z \in \mathcal{H} \). It suffices to show that \(z \in \text{Fix} F \). We easily get
\[\limsup_{n \to \infty} d(F z, x_n) \leq \limsup_{n \to \infty} d(F z, F x_n) + \limsup_{n \to \infty} d(F x_n, x_n)
\leq \limsup_{n \to \infty} d(z, x_n) ,\]
which by the uniqueness of the weak limit yields \(z = F z \). Here we used, of course, the fact that the limit in (15) is 0.
It is easy to see that \(z \) is independent of the choice of the sequence \((t_n) \) and therefore \(T_t x_0 \rightharpoonup z \). \[\square\]
6. Discrete and continuous heat flows in singular spaces

There has been considerable interest in harmonic mappings between singular spaces and several (nonequivalent) approaches have been developed in the case of an Hadamard space target. See, for example, [14, 15, 16, 18, 20, 22, 27, 28, 29]. We will follow [27] and consider an \(L^2 \)-Dirichlet problem for mappings from a measure space equipped with a symmetric Markov kernel to an Hadamard space. Under the assumption that the Markov kernel satisfies an \(L^2 \)-spectral bound condition, it is shown in [27] that a Dirichlet problem has a unique solution and that an associated heat flow (defined as a gradient flow of the energy functional) converges to this solution. The \(L^2 \)-spectral bound condition is completely natural albeit rather strong, because the heat flow semigroup is then a contracting mapping and converges to the unique solution exponentially fast [27]. Since the energy functional is a convex continuous function (see [27, page 342]), one can alternatively apply Theorem 1.3 and conclude that the heat flow converges weakly to a solution to the Dirichlet problem provided there exists a solution. This, of course, does not require a spectral bound condition.

In the present paper we use a somewhat different approach than [27] to construct discrete and continuous time heat flows, namely formulae (7) and (5). Then we employ Proposition 1.5 and Theorem 1.6 to obtain the convergence of these heat flows to a solution to the Dirichlet problem. Let us first formulate the Dirichlet problem for singular spaces. For the details, see the original paper [27].

Let \((M, M, \mu)\) be a measure space with a \(\sigma\)-algebra \(M\) and a measure \(\mu\), and assume that it is complete in the sense that all subsets of a \(\mu\)-null set belong to \(M\). Given a set \(D \in M\), define

\[
L^2(D) := \{ u \in L^2(M) : u = 0 \text{ a.e. on } M \setminus D \}.
\]

Next, let \((H, d)\) be an Hadamard space, fix a measurable mapping \(h : M \to H\) and consider the nonlinear Lebesgue space \(L^2(D, H, h)\) of measurable mappings \(f : M \to H\) satisfying

\[
d(f(\cdot), h(\cdot)) \in L^2(D).
\]

The space \(L^2(D, H, h)\), when equipped with the metric

\[
d_2(f, g) := \left(\int_M d(f(x), g(x))^2 \mu(dx) \right)^{\frac{1}{2}},
\]

is again an Hadamard space.

Let \(p := p(x, dy)\) be a Markov kernel, which is symmetric with respect to \(\mu\), that is, we have \(p(x, dy)\mu(dx) = p(y, dx)\mu(dy)\) for every \(x, y \in M\). Then one can define the nonlinear Markov operator \(P : L^2(M, H, h) \to L^2(M, H, h)\) by

\[
Pf(x) := \arg\min_{z \in H} \int_M d(z, f(y))^2 p(x, dy),
\]

where \(f \in L^2(M, H, h)\). By [27, Theorem 5.2], we know that

\[
d_2(Pf, Pg) \leq d_2(f, g),
\]
for every \(f, g \in L^2(M, \mathcal{H}, h) \), that is, the nonlinear Markov operator is nonexpansive on \(L^2(M, \mathcal{H}, h) \). A fixed point of \(P \) is called a harmonic mapping.

Remark 6.1. If \(M \subset \mathbb{R}^n \) is a bounded set and \(P : L^2(M, \mathbb{R}) \to L^2(M, \mathbb{R}) \) is the usual (linear) Markov operator, then the Laplacian satisfies \(\Delta = I - P \), where \(I : L^2(M, \mathbb{R}) \to L^2(M, \mathbb{R}) \) is the identity operator, and we see that a function \(f : M \to \mathbb{R} \) is harmonic if \(\Delta f = 0 \).

Since we are concerned with the Dirichlet problem, a somewhat refined notion of a nonlinear Markov operator is needed. Given \(D \in \mathcal{M} \), define a new Markov kernel
\[
p_D(x, dy) := \chi_D(x)p(x, dy) + \chi_{M \setminus D}\delta_x(dy),
\]
for every \(x, y \in M \). Denote by \(P_D \) the nonlinear Markov operator associated with the kernel \(p_D \). Then we have
\[
P_D f(x) = \begin{cases}
P f(x) & \text{if } x \in D \\ f(x) & \text{if } x \in M \setminus D, \end{cases}
\]
and \(P_D : L^2(D, \mathcal{H}, h) \to L^2(D, \mathcal{H}, h) \) is also nonexpansive.

Definition 6.2 (\(L^2 \)-Dirichlet problem). Let \(D \in \mathcal{M} \) and \(h : M \to \mathcal{H} \) be a measurable mapping. Is there \(f \in L^2(D, \mathcal{H}, h) \) such that \(P_D f = f \)?

In [27, Theorem 6.4], the author shows that the Dirichlet problem has a unique solution provided the linear operator
\[
P_D f(x) := \int_M f(y)p_D(x, dy), \quad f \in L^2(M),
\]
satisfies the spectral bound condition \(\lambda_k > 0 \) for some \(k \in \mathbb{N} \), where
\[
\lambda_k := 1 - \|P_D^k\|_{L^2(D)}.
\]
Under this assumption, one also gets strong (and exponentially fast) convergence of an associated heat flow (defined as a gradient flow of the energy) to the (unique) solution to the Dirichlet problem [27]. In contrast, we define a heat flow by formula (5) for \(F := P_D \) and moreover do not assume any spectral bound condition. Applying Proposition 1.5 and Theorem 1.6 with \(F := P_D \), we see that if there exists a solution to the Dirichlet problem for a measurable mapping \(h : M \to \mathcal{H} \), both the proximal point algorithm (discrete time heat flow) and the semigroup (continuous time heat flow) weakly converge to a mapping \(f \in L^2(D, \mathcal{H}, h) \) such that \(P_D f = f \).

We finish our paper by making the following conjecture.

Conjecture 6.3. The heat flow semigroup \((T_t) \) defined by (5) for \(F := P_D \) coincides with the heat flow constructed in [27, Theorem 8.1].

Acknowledgment. We thank the referee for providing us with pertinent comments and helpful suggestions.
References

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Birkhäuser Verlag, Basel, 2008.
[2] D. Ariza-Ruiz, L. Leustean and G. López-Acedo, Firmly nonexpansive mappings in classes of geodesic spaces, Trans. Amer. Math. Soc. 366 (2014), 4299–4322.
[3] M. Bačák, Convex analysis and optimization in Hadamard spaces, Walter de Gruyter & Co., Berlin, to appear.
[4] M. Bačák, The proximal point algorithm in metric spaces, Israel J. Math. 194 (2013), 689–701.
[5] M. Bačák, Convergence of semigroups under nonpositive curvature, Trans. Amer. Math. Soc., to appear.
[6] M. Bačák, A new proof of the Lie-Trotter-Kato formula in Hadamard spaces, Commun. Contemp. Math., to appear.
[7] M. Bačák, I. Searston and B. Sims, Alternating projections in CAT(0) spaces, J. Math. Anal. Appl. 385 (2012), 599–607.
[8] J.-B. Baillon, Un exemple concernant le comportement asymptotique de la solution du problème du/dt + ∂ϕ(u) = 0, J. Funct. Anal. 28 (1978), 369–376.
[9] J.-B. Baillon, R. E. Bruck and S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), 1–9.
[10] H. H. Bauschke and P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Springer, New York, 2011.
[11] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer Verlag, Berlin, 1999.
[12] R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houston J. Math. 3 (1977), 459–470.
[13] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Marcel Dekker, New York and Basel, 1984.
[14] M. Gromov and R. Schoen, Harmonic maps into singular spaces and p-adic superrigidity for lattices in groups of rank one, Inst. Hautes Études Sci. Publ. Math. 76 (1992), 165–246.
[15] J. Jost, Equilibrium maps between metric spaces, Calc. Var. Partial Differential Equations 2 (1994), 173–204.
[16] J. Jost, Generalized Dirichlet forms and harmonic maps, Calc. Var. Partial Differential Equations 5 (1997), 1–19.
[17] J. Jost, Nonpositive curvature: geometric and analytic aspects, Birkhäuser, Basel, 1997.
[18] J. Jost, Nonlinear Dirichlet forms, New Directions in Dirichlet Forms, Amer. Math. Soc., Providence, RI, 1998, 1–47.
[19] W. A. Kirk, Geodesic geometry and fixed point theory, Seminar of Mathematical Analysis, Colecc. Abierta, 64, Univ. Sevilla Secr. Publ., Seville, 2003, 195–225.
[20] N. J. Korevaar and R. M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), 561–659.
[21] U. F. Mayer, Gradient flows on nonpositively curved metric spaces and harmonic maps, Comm. Anal. Geom. 6 (1998), 199–253.
[22] S. Ohta, Cheeger type Sobolev spaces for metric space targets, Potential Anal. 20 (2004), 149–175.
[23] S. Reich, The asymptotic behavior of a class of nonlinear semigroups in the Hilbert ball, J. Math. Anal. Appl. 157 (1991), 237–242.
[24] S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990), 537–558.
[25] I. Shafrir, Theorems of ergodic type for ρ-nonexpansive mappings in the Hilbert ball, Ann. Mat. Pura Appl. 163 (1993), 313–327.
[26] I. Stojkovic, *Approximation for convex functionals on non-positively curved spaces and the Trotter-Kato product formula*, Adv. Calc. Var. 5 (2012), 77–126.

[27] K.-T. Sturm, *Nonlinear Markov operators associated with symmetric Markov kernels and energy minimizing maps between singular spaces*, Calc. Var. Partial Differential Equations 12 (2001), 317–357.

[28] K.-T. Sturm, *Nonlinear Markov operators, discrete heat flow, and harmonic maps between singular spaces*, Potential Anal. 16 (2002), 305–340.

[29] K.-T. Sturm, *A semigroup approach to harmonic maps*, Potential Anal. 23 (2005), 225–277.

MIROSLAV BAČÁK, MAX PLANCK INSTITUTE, INSELSTR. 22, 04 103 LEIPZIG, GERMANY

E-mail address: bacak@mis.mpg.de

SIMEON REICH, DEPARTMENT OF MATHEMATICS, THE TECHNION – ISRAEL INSTITUTE OF TECHNOLOGY, 32000 HAIFA, ISRAEL

E-mail address: sreich@tx.technion.ac.il