Reduction of Frequent Itemsets Mining in Big Data with the Help of FP Algorithm and Msegt-Tree

Srinivasa Rao Divvela, V Sucharita

Abstract: Frequent itemset mining is very crucial to minimize the cost and time of executions but when considering multiple distributed data streams in big data the frequent itemset mining has been a little cost consuming and taking more space and time complexity. In this paper we reduce the load and minimize the cost while minimizing the space and time complexities of the process by using reduction mechanism and indexing structures for preserving complexities. A 2-level architecture modal which will be helpful in handling the distributed data streams where the root node will be in level-0 and local nodes at level-1 is proposed. Each local node will evaluate the patterns in their specific data stream using the algorithm ‘FP’ which will help in lessening the burden on the root node and will be sent to root. With help of the patterns received from local nodes the root will generate a global pattern set.

Key Words: Frequent Itemset Mining, Distributed Data Streams, Indexing Structures, Space and Time Complexity.

I. INTRODUCTION

With technology upgrading day to day field that is used to analyze and extract information from too large or complex datasets by using data processing application software called big data is vastly used. Big data is characterized by 3V’s: Volume, Variety and Velocity of data must be processed. By analyzing the past and the real time data can be used to improve their marketing strategies to satisfy the customer needs. Different branches of information found in the big data include: Comparative analysis which means compare the one company products with those of its competition. The uncertain data in an organization is accounted before it is used in big data analytics. Information technology also needs to ensure that they have enough accurate data available to produce correct results. Big data brings new and existing opportunities to companies who utilize the platforms available. Processing large datasets when coupled with hadoop distributed file systems can be used to handle big data is the programming methodology of the map reduction in big data. It has the capability to handle structured as well as unstructured data. Knowledge identification through data mining technique is a kind of technique for learning from databases. At the end of the day Data Mining is extraction of fascinating examples or learning’s from enormous quantity of information. Fundamentally, it manages information recovery from vast databases relying upon the particular goal shown by every customer in a conceivable situation. Information Mining is to find learning in huge social database that finds coordinating outcomes in enormous number of datasets.

II. RELATED WORK

S.No	Algorithm Name	Author Name	Year	Disadvantage
1.	A-CLOSE	Nicolas Pasquier	1999	Costly when mining long patterns or with low minimum support thresholds in large databases
2.	CHARM (Closed Association Rule Mining)	Mohammed Jawed Zaki, Chung-Ju Hsiao	1999	It does not work well in higher support of order of magnitude.
3.	CLOSET	Jian Pei, Jawei Han, Runying Mao	2000	It does not work well in lower support of order of magnitude.
4.	CLOSET+	Wang J, Han J, Pei J	2003	Work well for datasets with small average row length.
5.	CARPENTER (Combining Columns and Row)	Pan F, Cong G, Tung AKH, Yang J, Zaki M	2003	Encounters problem for datasets that have large number of rows and features
6.	COBBLER (Combining Columns and Row)	Pan F, Cong G, Xu X	2004	It cannot make full use of the minimum support threshold to prune search space. As a result, experiments

III. PROBLEM & PROCEDURE

When we look upon a distributed system it has N number of data streams in it which are over looked by their corresponding local nodes and the overall performance is looked up by the root node. Let L1,L2,……Ln are the local nodes for D1,D2,……Dn data streams. The calculation of the frequent items is done at the root node which is the union of all the sets from the local nodes which is D1 U D2 U…..Dn. Let F = {f1,f2,……,fn} are the obtained sets of items from their respective nodes. The below figure depicts a 2-level architecture modal which will be helpful in handling the distributed data streams where the root node will be in level-0 and local nodes at level-1. Each local node will evaluate the patterns in their specific data stream using the algorithm ‘FP’ which will help in lessening the burden on the root node and will be sent to the root node. The root node with help of the patterns received from local nodes will generate a global pattern set. If a change happens in any of the local node then immediately the updated set will be sent to the root node for updating. This will significantly reduce the load on root node and minimize the communication cost along with maintaining the root node updated all the times.

Revised Manuscript Received on February 06, 2020.

Srinivasa Rao Divvela, Assistant Professor, Department of CSE, Lakireddy Bali Reddy College of Engineering, Mylavaram, srinumtechcse07@gmail.com

Dr V Sucharita, Professor, Department of CSE, Narayana Engineering College Gudur, India. jsuchita78@yahoo.com

Published By: Blue Eyes Intelligence Engineering & Sciences Publication
IV. ALGORITHMS & IMPLEMENTATION

Processing at local node:
Each local node will evaluate the patterns in their specific data stream using the algorithm ‘FP’ which will help in lessening the burden on the root node and will be sent to the root node. If a change happens in any of the local node then immediately the updated set will be sent to the root node for updating.

Algorithm ‘FP’
1. START ‘FP’
2. In descending order arrange all the itemsets FIS (frequent itemsets) with respect to their sizes.
3. If FIS of size n then
 4. RFIS ← FISn
 5. Where n is the largest FIS &RFIS is the reduced set to forward to root
 6. End if
 7. If remaining FISi , i<n-1 then
 8. If FISi not in Subset (RFIS) then
 9. RFIS ← FISi
 10. End if
 11. End if
 12. Return RFIS
 13. END ‘FP’

The root node with help of the patterns received from local nodes will generate a global pattern set. We implement the indexing algorithms for obtaining the global set of frequent items. Let’s see two indexing algorithms best suited for the extraction. They are as follows:

I-List Algorithm:
This algorithm stores data in the form a linked list where the index value and frequent item value will be stored in the list.
1. procedure L_list (new local itemset pi)
2. H=H-list(pj)
3. mpre0 ← φ
4. for n:=H do
 5. mprep = mprep + n_i; count = 1; n_i = n_p;
 6. while count < p_i.length do
 7. flag=false; count++;
 8. for n_i : N_c do
 9. if n_i == H.next() then
 10. mprep = mprep + n_c; n_i = n_c
 11. flag=true;
 12. break;
 13. end if
 14. end for
 15. if flag=false then
 16. break;
 17. end if
 18. end while
 19. if mprep < mprep.size then
 20. mprep = mprep
 21. end if
22. end for
23. return MsegT after p_i being inserted.
24. end procedure

Seg-Tree Modified Algorithm:
There are 3 steps for the calculation of the patterns required at the root node which are
1. Prefix matching – to identify local node itemsets sent to root.
2. Attribute value updation – for every new set inserted the value has to be updated for processing.
3. Final global frequent itemset extraction – this again has 2 stages
 i. Global sets extraction
 ii. Global frequent sets extraction
1. procedure MsegT-GFI(H) → where H is pointer to H-list
2. gfi ← φ, GFI ← φ → where gfi and GFI are the sets of global frequent items and itemsets respectively
3. for each item i in H-list do
 4. Traverse the list by ref
 5. ζ_totali ← φ
 6. for each node in ref list of i do
 7. if |ζ_totali| ≥ θ then
 8. break;
 9. else
 10. ζ_totali = ζ_totali ∪ ζ
 11. end if
 12. end for
 13. if ζ_totali ≥ θ then
 14. gfi ∪ [i]
 15. end if
 16. end for
17. SubSeq ← SUBSEQUENCE(gfi)
18. Sort the SubSeq in decreasing order of size of their itemset.
V. EVALUATIONS

The evaluation is done on the basis of the performance exhibited by the proposed methodology and some of the existing models. The evaluation shows that the FP algorithm gives us relatively high compression ratio and minimizes the communication cost. The both space and time complexity is greatly minimized with the help of Seg-Tree modified algorithm.

VI. CONCLUSION

In real-time distributed relational data streams data summarization is very crucial and impractical situation. So that for an outstanding data summarization on uncertain data streams an efficient system is needed to helps in continuously growing data environment. The proposed model solved the problem of global frequent itemset extraction when a union of data streams are involved. FP algorithm maximizes process speed as the load on root node is cut off and also it minimizes the communication cost for the nodes. Seg-Tree reduces the space and time complexities for the calculation of the itemsets. Further implications can be brought by using these approached in Utility mining and increasing the security factors.

REFERENCES

1. R. Aggarwal & R. Srikant, “Fast algorithms for mining association rules,” VLDB 1994, pp. 487–399.
2. M. Cannataro, A. Cuzzocrea, A. Pugliese, “A probabilistic approach to model adaptive hypermedia systems”, WebDyn 2001, pp. 50–60.
3. A. Cuzzocrea, G. Fortino, O. Rana, “Managing data and processes in cloud-enabled large-scale sensor networks: state-of-the-art and future research directions”, IEEE/ACM CCGrid 2013, pp. 583–588.
4. A. Cuzzocrea, F. Jiang, W. Lee, & C.K. Leung, “Efficient frequent itemset mining from dense data streams,” APWeb 2014, pp. 593–601.
5. J. Dean & S. Ghemawat, “MapReduce: simplified data processing on large clusters,” CACM 51(1), Jan. 2008, pp. 107–113.
6. P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu, & V. S. Tseng, “SPMF: a Java open-source pattern mining library,” Journal of Machine Learning Research 15(1), 2014, pp. 3389–3393.
7. J. Han, J. Pei, & Y. Yin, “Mining frequent patterns without candidate generation,” ACM SIGMOD 2000, pp. 1–12.
8. D. Jailatly, D. Grigori, & K. Bellahajame, “Mining business process activities from email logs,” IEEE ICC 2017, pp. 112–119.
9. Y. Lei, S. Chen, & P. S. Yu, “Heterogeneous service information mining based on parallel computing,” IEEE ICC 2017, pp. 120–123.
10. C. K. Leung, “Big data analysis and mining,” Encyclopedia of Information Science and Technology, 4E, 2018, pp. 338–348.
11. C. K. Leung, F. Jiang, T. W. Poon, & P. Crevier, “Big data analytics of social network data: who cares most about you on Facebook?” Highlighting the Importance of Big Data Management and Analysis for Various Applications, 2018, pp. 1-15.
12. C. K. Leung & R. K. MacKinnon, “Balancing tree size and accuracy in fast mining of uncertain frequent patterns,” DaWaK 2015, pp. 57-69.
13. H. Li, Y. Wang, D. Zhang, M. Zhang, & E. Y. Chang, “PPF: parallel FP-growth for query recommendation,” ACM RecSys 2008, pp. 107–114.
14. Y. Li, M. Muthiah, A. Routh, & C. Dorai, “Cognitive computing in action to enhance invoice processing with customized language translation,” IEEE ICC 2017, pp. 136–139.
15. J. Liu, J. Li, S. Xu, & B. C. M. Fung, “Secure outsourced frequent pattern mining by fully homomorphic encryption,” DaWaK 2015, pp. 70–81.
16. J. Liu, Y. Wu, Q. Zhou, B. C. M. Fung, F. Chen, & B. Yu, “Parallel Eclat for opportunistic mining of frequent itemsets,” DEXA 2015, pp. 401–415.
Reduction of Frequent Itemsets Mining in Big Data with the Help of FP Algorithm and MsegT-Tree

17. S. Moens, E. Aksehirli, & B. Goethals, “Frequent itemset mining for big data,” IEEE BigData 2013, pp. 111-118.
18. Z. Pan, Y. Ge, Y. C. Zhou, J. C. Huang, Y. L. Zheng, N. Zhang, X. X. Liang, P. Gao, G. Q. Zhang, Q. Wang, & S. Shi, “Cognitive acoustic analytics service for Internet of Things,” IEEE ICCC 2017, pp. 96-103.
19. J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, & D. Yang, “HMine: hyperstructure mining of frequent patterns in large databases,” IEEE ICDM 2001, pp. 441–448.

AUTHORS PROFILE

Divvela Srinivasa Rao, is currently working as Sr. Assistant Professor, CSE Department in Lakireddy Bali Reddy College of Engineering, Mylavaram. He is a Research scholar in Koneru Lakshmaiah Educational Foundation, Guntur. His area of interest is Data Mining and Knowledge Engineering, Artificial Intelligence. He has total 13 years of teaching experience in various Engineering colleges in Andhra Pradesh. He has published 10 papers in various national and international Journals, conference proceedings and Conferences.

Dr. V. Sucharita, is currently working as Professor in the Department of Computer Science and Engineering in Narayana Engineering College, Gudur. She has obtained her Ph.D degree in the faculty of Computer Science with Data Mining and Neural Networks as specialization from Sri Padmavati Mahila Visvavidyalayam, Tirupathi. She has 18 years of Teaching Experience in various Engineering colleges in Andhra Pradesh. Prior to joining Narayana Engineering College, She worked as Professor in Koneru Lakshmaiah Educational Foundation, Guntur. She published 20 papers in various national and international Journals, conference proceedings and Conferences.