Mean-square exponential stability for the hysteretic Hopfield neural networks with stochastic disturbances

Kui Lia, Jinghui Suob and Bo Shenb

aCollege of Science, Donghua University, Shanghai, China; bCollege of Information Science and Technology, Donghua University, Shanghai, China

\textbf{ABSTRACT}

In this paper, the exponential stability problem is considered for a class of hysteretic Hopfield neural networks with stochastic disturbances. The hysteretic nonlinearities are characterized by a Lipschitz-type constraint where the internal parameters of the hysteretic function are reflected. By resorting to Lyapunov function approach and stochastic analysis, a sufficient condition has been obtained under which the underlying hysteretic Hopfield neural network is exponentially stable in the mean square. The obtained condition is expressed in terms of linear matrix inequalities (LMIs) which can be easily checked via the Matlab toolbox. Finally, an illustrative example is provided to show the effectiveness of the results derived in this paper.

\textbf{ARTICLE HISTORY}

Received 7 November 2018
Accepted 23 November 2018

\textbf{KEYWORDS}

Exponential stability; hysteretic Hopfield neural network; linear matrix inequality; stochastic disturbances

1. Introduction

For decades, neural networks have attracted much attention from researchers due primarily to their wide applications such as signal processing, combinatorial optimization, pattern recognition and associative memory (Lian, Zhang, & Feng, 2012; Liu, Wang, & Liu, 2009; Lu, Ho, & Wang, 2009). It is worth mentioning that the successes of these applications are highly dependent on the understanding of the dynamic behaviours for neural networks. As such, the dynamic analysis issues for neural networks have gained a growing research interest in the past few years, see e.g. (Chen, 2001; He, Liu, Rees, & Wu, 2007; Liu & Du, 2014; Sakthivel, Raja, & Anthoni, 2011; Song, Park, Wu, & Zhang, 2013; Wang, Shu, Fang, & Liu, 2006; Xiong & Zhang, 2018; Zhang, Han, & Wang, 2018) and the references therein. In particular, as one of the most desirable dynamic properties, the stability of neural networks has recently become a focus of research and a great many results have been reported on the stability problem for various types of neural networks, such as Hopfield neural networks (Chen, 2001), Cohen-Grossberg neural networks (Wang, Liu, Li, & Liu, 2006) and memristive neural networks (Qi, Li, & Huang, 2014; Wang, Li, Huang, & Duan, 2014).

In practice, due to the external environmental fluctuations, neural networks are often affected by disturbances and the stochastic disturbances should be adequately taken into account in the network analysis in order to avoid undesirable instability. As such, in the past decade, the stability problems for neural networks with stochastic disturbances have received considerable attention from a variety of communities and a series of results have been reported on this topic, see e.g. (Chen & Zheng, 2013; Ding, Wang, & Shen, 2012; Kan, Wang, & Shu, 2013; Liang, Lam, & Wang, 2009; Liang, Wang, & Liu, 2009, 2011, 2012; Liu, Wang, & Liu, 2008, 2012; Ren, Wang, & Lu, 2017; Shan, Zhang, Wang, & Zhang, 2018; Shen, Wang, Ding, & Shu, 2013; Wang, Liu, Liu, & Shi, 2010; Wang, Wang, & Liang, 2010) and the references therein. For example, in Shan et al. (2018), a general noise disturbance (that may be non-white) has been introduced to neural networks and the global mean-square asymptotic stability problem has been analyzed by using random field approach. In Chen and Zheng (2013), the stability analysis problem has been studied for the time-delay neural networks subject to stochastic perturbations.

As a typical kind of nonlinearities, hysteresis occurs frequently in many engineering systems. Note that, if it is not dealt with appropriately, hysteresis might deteriorate the system performance or even cause the undesirable instability of the overall system. Therefore, it is of great importance to consider the hysteresis in the modelling process of neural networks and examine its effects on the stability property of neural networks. Up to now, the investigation on the stability for hysteretic Hopfield neural networks has received some initial research interests,
see e.g. (Bharitkar & Mendel, 2000; Schonfeld, 1993). However, when the stochastic disturbances are taken into account simultaneously, the corresponding results have not been reported yet. It is, therefore, the main motivation of this paper is to shorten such a gap by studying the stability problem for the hysteretic Hopfield neural network with stochastic disturbances.

Summarizing the above discussions, the aim of this paper is to investigate the mean-square exponential stability problem for a class of hysteretic Hopfield neural networks with stochastic disturbances. The main difficulties encountered in the proposed research are outlined as follows: (1) how to develop an appropriate technique to examine the influence from the hysteretic nonlinearities on the stability performance; and (2) how to analyze the stability issue of the hysteretic Hopfield neural networks subject to hysteretic nonlinearities and stochastic disturbances.

The primary contributions of this paper can be briefly stated as follows: (1) the stability problem is addressed for hysteretic Hopfield neural networks in the presence of stochastic disturbances and (2) by using a combination of Lyapunov function approach and stochastic analysis, a stability criterion is established for hysteretic Hopfield neural networks with stochastic disturbance. Finally, a simulation example is provided to show the effectiveness of the stability criterion established in this paper.

Notation: The notation used here is fairly standard except where otherwise stated. \(\mathbb{R}^N \) and \(\mathbb{R}^{N \times M} \) denote, respectively, the \(N \) dimensional Euclidean space and the set of all \(N \times M \) real matrices. \(I \) denotes the identity matrix of compatible dimension. The notation \(X \succeq Y \) (respectively, \(X \succ Y \)), where \(X \) and \(Y \) are symmetric matrices, means that \(X - Y \) is positive semi-definite (respectively, positive definite). \(A^T \) represents the transpose of \(A \). If \(A \) is a symmetric matrix, \(\lambda_{\max}(A) \) and \(\lambda_{\min}(A) \) denote the maximum and minimum eigenvalue of \(A \), respectively. \(\mathbb{E}[x] \) stands for the expectation of the stochastic variable \(x \). \(\lVert x \rVert \) describes the Euclidean norm of a vector \(x \). In symmetric block matrices, the symbol * is used as an ellipsis for terms induced by symmetry.

2. Problem formulation and preliminaries

In this paper, the hysteretic Hopfield neural network is described as follows:

\[
\frac{dx(t)}{dt} = -Ax(t) + Wy(x(t)) + I, \tag{1}
\]

where \(x(t) = [x_1(t), x_2(t), \ldots, x_N(t)]^T \in \mathbb{R}^N \) is the state vector associated with the neurons, \(A = \text{diag}(A_1, A_2, \ldots, A_N) \) is a constant matrix, \(y(x(t)) = [y(x_1(t)), y(x_2(t)), \ldots, y(x_N(t))]^T \in \mathbb{R}^N \) is the hysteretic neuron gain function vector, \(W = (w_{ij}) \in \mathbb{R}^{N \times N} \) is the connection weight matrix of the neural network and \(I = [i_1, i_2, \ldots, i_N]^T \) is a constant external input vector.

In model (1), the hysteretic neuron gain function \(y(x(t)) \) is described as

\[
y(x(t)) = \phi(x(t) - \lambda_j(x(t) - \delta t)), \quad j = 1, 2, \ldots, N, \tag{2}
\]

where \(\phi(p) = \tanh[\gamma \|p\|] \) and

\[
\lambda_j(x(t) - \delta t)) = \begin{cases}
\gamma_{\alpha}, & \dot{x}_j(t - \delta t) \geq 0, \\
\gamma_{\beta}, & \dot{x}_j(t - \delta t) < 0,
\end{cases} \tag{3}
\]

\[
\gamma_j(x(t) - \delta t)) = \begin{cases}
-\alpha, & \dot{x}_j(t - \delta t) \geq 0, \\
\beta, & \dot{x}_j(t - \delta t) < 0,
\end{cases} \tag{4}
\]

with \(\beta > -\alpha, \gamma_{\alpha} \gamma_{\beta} > 0 \), \(\dot{x}_j(t - \delta t) \triangleq dx_j(t - \delta t)/dt = \lim_{\delta t \to 0} (x_j(t) - x_j(t - \delta t))/\delta t \) and \(\alpha, \beta, \gamma_{\alpha}, \gamma_{\beta} \) are four parameters of the hysteretic neuron’s activation function. It is seen that the neuron’s output not only depends on its input \(x \), but also depends on its derivative information, namely, \(\dot{x} \).

Suppose that the equilibrium point of system (1) is \(x^* = [x_1^*, x_2^*, \ldots, x_N^*]^T \). Letting \(e(t) = x(t) - x^* \), system (1) can be transformed into:

\[
\frac{de(t)}{dt} = -Ax(t) + Wy(e(t)) \tag{5}
\]

where \(y(e(t)) = [y(x_1(t)) - y(x_1^*), y(x_2(t)) - y(x_2^*), \ldots, y(x_N(t)) - y(x_N^*)]^T \).

Actually, the neuron states themselves are often subject to the noises. Then, we consider the following class of comprehensive hysteretic Hopfield neural networks:

\[
\frac{de(t)}{dt} = -Ax(t) + Wy(e(t)) + g(t, e(t)) \omega(t) \tag{6}
\]

where \(g(\cdot, \cdot) : \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N \) is the noise intensity function and \(\omega(t) \) is a scalar Brownian motion satisfying

\[
\mathbb{E}[d\omega(t)] = 0, \quad \mathbb{E}[(d\omega(t))^2] = dt. \tag{7}
\]

Throughout this paper, we make the following assumption.

Assumption 2.1: The noise intensity function \(g(t, e(t)) : \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N \) satisfies \(g(t, 0) = 0 \) and

\[
\text{trace}(g^T(t, e(t))g(t, e(t))) \leq \| Me(t) \|^2 \tag{8}
\]

where \(M \in \mathbb{R}^{N \times N} \) is a known matrix.
Definition 2.1: The hysteretic Hopfield neural network (6) is said to be exponentially stable in the mean square if, there exist constants $\alpha_1 > 0$ and $\alpha_2 > 0$ such that
\[
E(\|e(t)\|^2) \leq \alpha_1 e^{-\alpha_2 t}.
\] (9)

In this paper, we aim to deal with the exponential mean-square stability problem for the hysteretic Hopfield neural network (6), and establish an LMI-based sufficient condition under which the hysteretic neural network (6) is mean-square exponentially stable.

3. Main results

In this section, before stating our main results, we introduce the following important Lemmas that will be used in deriving the main results.

Lemma 3.1: If $f(\cdot)$ is a continuous differentiable function and its derivative function satisfies $\|f'(\cdot)\| \leq C$, then $f(\cdot)$ satisfies
\[
\|f(t_1) - f(t_2)\| \leq C \|t_1 - t_2\|, \quad \forall t_1, t_2 \in \mathbb{R},
\] (10)
where C is a given positive scalar.

Lemma 3.2: The activation function $y(\cdot)$ defined in (2) satisfies the following Lipschitz condition:
\[
\|y(x_1) - y(x_2)\| \leq C^* \|x_1 - x_2\|, \quad \forall x_1, x_2 \in \mathbb{R}^N,
\] (11)
where $C^* = 4(|\gamma_a| + |\gamma_\beta|) / (2 + e^{-2(|\alpha_\gamma_a| + |\beta_\gamma_\beta|)})$.

Proof: From (2)–(4), the hysteresis function on neuron i ($i = 1, 2, \ldots, N$) can be expressed as follows:
\[
y(x_i(t)) = \begin{cases} \tanh[y_a(x_i(t) + \alpha)], & x_i(t - \delta t) \geq 0, \\ \tanh[\gamma_\beta(x_i(t) - \beta)], & x_i(t - \delta t) < 0. \end{cases}
\] (12)

For the purpose of simplicity, we set $z_1 = y_a x_i(k) + \alpha y_a$, $z_2 = y_\beta x_i(l) + \alpha y_\beta$, $z_3 = y_\beta x_i(k) - \beta y_\beta$, $z_4 = y_\beta x_i(l) - \beta y_\beta$. Let’s examine the following four cases:

Case 1: $\|\tanh(z_1) - \tanh(z_2)\| \leq C_1 \|z_1 - z_2\|, \quad \dot{x}_i(k - \delta k) \geq 0, \quad \dot{x}_i(l - \delta l) \geq 0,$ (13)

Case 2: $\|\tanh(z_3) - \tanh(z_4)\| \leq C_2 \|z_3 - z_4\|, \quad \dot{x}_i(k - \delta k) < 0, \quad \dot{x}_i(l - \delta l) < 0,$ (14)

Case 3: $\|\tanh(z_1) - \tanh(z_4)\| \leq C_3 \|z_1 - z_4\|, \quad \dot{x}_i(k - \delta k) \geq 0, \quad \dot{x}_i(l - \delta l) < 0,$ (15)

Case 4: $\|\tanh(z_3) - \tanh(z_2)\| \leq C_4 \|z_3 - z_2\|, \quad \dot{x}_i(k - \delta k) < 0, \quad \dot{x}_i(l - \delta l) \geq 0,$ (16)

where C_1, C_2, C_3, C_4 are constants to be determined.

Note that the hyperbolic tangent function is continuous differentiable and its derivative function is bounded. By using Lemma 3.1, the constants C_1, C_2, C_3 and C_4 can be determined by calculating the derivation of the hyperbolic tangent functions.

For case 1, the derivative of the hyperbolic tangent function can be obtained as follows:
\[
\frac{dy(k)}{dx_i(k)} = \frac{\frac{e^{y_a(x_i(k) + \alpha)} - e^{-y_a(x_i(k) - \alpha)}}{e^{y_a(x_i(k) + \alpha)} + e^{-y_a(x_i(k) - \alpha)}}}{\frac{e^{y_\beta(x_i(k) - \beta)} - e^{-y_\beta(x_i(k) - \beta)}}{e^{y_\beta(x_i(k) - \beta)} + e^{-y_\beta(x_i(k) - \beta)}}}|y_{\alpha}| \leq \frac{4}{2 + e^{2y_a(x_i(k) + \alpha)} + e^{-2y_a(x_i(k) - \alpha)}}|y_{\alpha}| \leq \frac{4}{2 + e^{2|y_a| + |y_\beta|}}|y_{\alpha}| \leq \frac{4}{2 + e^{-2|y_a| + |y_\beta|}}|y_{\alpha}|.
\] (17)

Then, C_1 is determined by
\[
C_1 = \frac{4|y_{\alpha}|}{2 + e^{-2(|y_a| + |y_\beta|)}}.
\] (18)

For case 2, we have
\[
\frac{dy(k)}{dx_i(k)} = \frac{\frac{e^{y_a(x_i(k) - \beta)} - e^{-y_a(x_i(k) - \beta)}}{e^{y_a(x_i(k) - \beta)} + e^{-y_a(x_i(k) - \beta)}}}{\frac{e^{y_\beta(x_i(k) - \beta)} - e^{-y_\beta(x_i(k) - \beta)}}{e^{y_\beta(x_i(k) - \beta)} + e^{-y_\beta(x_i(k) - \beta)}}}|y_{\beta}| \leq \frac{4}{2 + e^{2y_\beta(x_i(k) - \beta)} + e^{-2y_\beta(x_i(k) - \beta)}}|y_{\beta}| \leq \frac{4}{2 + e^{2|y_\beta|}}|y_{\beta}| \leq \frac{4}{2 + e^{-2|y_\beta|}}|y_{\beta}|.
\] (19)

Then, C_2 is determined by
\[
C_2 = \frac{4|y_{\beta}|}{2 + e^{-2(|y_\beta|)}}.
\] (20)

For case 3, we have
\[
\frac{dy(k)}{dx_i(k)} \leq \frac{\frac{e^{y_a(x_i(k) + \alpha)} - e^{-y_a(x_i(k) - \alpha)}}{e^{y_a(x_i(k) + \alpha)} + e^{-y_a(x_i(k) - \alpha)}}}{\frac{e^{y_\beta(x_i(k) + \alpha)} - e^{-y_\beta(x_i(k) + \alpha)}}{e^{y_\beta(x_i(k) + \alpha)} + e^{-y_\beta(x_i(k) + \alpha)}}}|y_{\alpha}| \leq \frac{4}{2 + e^{2|y_a| + |y_\beta|}}|y_{\alpha}| \times (|y_{\alpha}| + |y_{\beta}|).
\]
The main result of this paper is given in the following theorem.

Theorem 3.1: The hysteretic neural networks (6) are exponentially stable in the mean square if there exist a positive definite matrix $P > 0$ and positive scalar constants $\delta_1, \delta_2, \lambda$ such that the following LMIs hold:

$$P < \lambda I,$$

$$\Omega = \begin{bmatrix} \Xi_1 & PW \\ * & \Xi_2 \end{bmatrix} < 0$$

where

$$\Xi_1 = -A^TP - PA + C^* \delta_1 I + \delta_2 P + \lambda M^TM,$$

$$\Xi_2 = -\delta_1 I,$$

$$C^* = \frac{4(|y_\alpha| + |y_\beta|)}{2 + e^{-2(|y_\alpha| + |y_\beta|)}}.$$

Proof: Consider the following Lyapunov functional candidate

$$V(t, e(t)) = e^T(t)Pe(t).$$

By using Itô differential formula, the stochastic differential of $V(t, e(t))$ along the trajectory of system (6) is obtained as

$$dV(t, e(t)) = \mathcal{L}V(t, e(t))dt + 2e^T(t)Pg(t, e(t))dw(t)$$

where

$$\mathcal{L}V(t, e(t)) = 2(-Ae(t) + Wy(e(t)))^TPe(t) + \text{trace}[g^T(t, e(t))Pg(t, e(t))].$$

It follows from Assumption 2.1 and (28) that

$$\text{trace}[g^T(t, e(t))Pg(t, e(t))] \leq \lambda \text{trace}[g^T(t, e(t))g(t, e(t))] \leq \lambda e^T(t)M^TMe(t).$$

It can be obtained from Lemma 3.2 that

$$y^T(e(t))y(e(t)) \leq C^* e^T(t)e(t)$$

which implies

$$\delta_1 C^* e^T(t)e(t) - \delta_1 y^T(e(t))y(e(t)) \geq 0.$$

From (29), (32), (33) and (35), one has

$$\mathcal{L}V(t, e(t)) \leq e^T(t)(-A^TP - PA)e(t) + 2y^T(e(t))W^TPe(t) + \lambda e^T(t)M^TMe(t) + \delta_1 C^* e^T(t)e(t) - \delta_1 y^T(e(t))y(e(t)) + \delta_2 e^T(t)Pe(t) - \delta_2 e^T(t)Pe(t)$$
\[e^T(t)(-A^T P - PA + \delta_1 C^* I + \delta_2 P \\
+ \lambda M^T M) e(t) \\
+ 2y^T(e(t))W^T Pe(t) + \delta_1 y^T(e(t)) y(e(t)) \\
- \delta_2 e^T(t) Pe(t) \\
= \xi^T(t) \Omega \xi(t) - \delta_2 e^T(t) Pe(t) \\
\leq -\delta_2 e^T(t) Pe(t) \quad (36) \]

where \(\xi(t) = [e^T(t) y^T(e(t))]^T \).

By taking the mathematical expectation on both sides of (31), it is derived from (36) that

\[\frac{d\mathbb{E}\{V(t, e(t))\}}{dt} \leq -\delta_2 \mathbb{E}\{V(t, e(t))\}, \quad (37) \]

from which, we can infer that

\[\mathbb{E}\{V(t, e(t))\} \leq V(0, e(0)) e^{-\delta_2 t}. \quad (38) \]

Then, we can derive

\[\mathbb{E}\{\|e(t)\|^2\} \leq \frac{\mathbb{E}\{V(t, e(t))\}}{\lambda \min(P)} \leq \frac{V(0, e(0))}{\lambda \min(P)} e^{-\delta_2 t} = \alpha_0 e^{-\delta_2 t} \quad (39) \]

where \(\alpha_0 = V(0, e(0))/\lambda \min(P). \)

According to Definition 2.1, the hysteretic neural network (6) is exponentially stable in the mean square and hence the proof is complete.

Remark 3.1: The hysteretic Hopfield neural network described by (6) includes hysteresis nonlinearities and stochastic disturbances, which make the stability analysis complicated. In Theorem 3.1, these two factors have both been properly handled. Furthermore, note that all the information on the addressed problem (i.e. the network parameters, hysteresis nonlinearities and external disturbances) have been reflected in the LMI-based sufficient conditions established in Theorem 3.1. In next section, the effectiveness of the established stability criterion will be verified by a numerical simulation example.

4. A numerical example

In this section, a numerical example is provided to demonstrate the effectiveness of the derived results.

The hysteretic Hopfield neural network (6) is assumed to have two neurons with the following parameters

\[A = \begin{bmatrix} 16.8 & 0 \\ 0 & 10.0 \end{bmatrix}, \quad W = \begin{bmatrix} -1 & 2.4 \\ 2.4 & -1 \end{bmatrix}, \]

\[N = 2, \quad \alpha = -0.2, \]

\[\beta = 0.3, \quad \gamma_\alpha = 0.02, \quad \gamma_\beta = 0.01, \quad C^* = 0.04. \]

The noise intensity function \(g(t, e(t)) \) is chosen as follows

\[g(t, e(t)) = \begin{bmatrix} -0.05 e_1(t) \\ -0.05 e_2(t) \end{bmatrix}^T \]

which satisfies Assumption 2.1 with \(M = 2.2I. \)

With the above parameters, by using the Matlab LMI toolbox, we can solve the LMIs (28)–(29) and obtain the

![Figure 1. State trajectories of \(e_1(t), e_2(t). \)](image)
feasible solutions as follows:

\[
P = \begin{bmatrix} 8.0709 & 0.9423 \\ 0.9423 & 7.9963 \end{bmatrix}, \quad \delta_1 = 74.3888,
\]
\[
\delta_2 = 38.7632, \quad \lambda = 35.6256.
\]

Therefore, according to Theorem 3.1, the neural network (6) with parameters given above is exponentially stable in the mean square. In simulation, the initial values are taken as \(e_1(0) = -3.4\) and \(e_2(0) = -1.3\). The state trajectories of \(e_1(t)\) and \(e_2(t)\) are plotted in Figure 1 where the hysteretic Hopfield neural network (6) is indeed exponentially stable which demonstrates our results.

5. Conclusions

In this paper, the mean-square exponential stability problem has been investigated for a class of hysteretic Hopfield neural networks with stochastic disturbances. The hysteretic nonlinearities have been characterised by a Lipschitz-type condition which includes the internal parameters of the defined hysteretic function. By employing the Lyapunov function method combined with the stochastic analysis technology, a mean-square exponential stability criterion has been established for the hysteretic Hopfield neural networks. Finally, a simulation example has been employed to show the usefulness of the derived results.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported in part by the National Natural Science Foundation of China under Grants 61873059, 61473076, and 61673103, the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning of China, and the Natural Science Foundation of Shanghai under Grant 18ZR1401500.

References

Bharitkar, S., & Mendel, J. M. (2000). The hysteretic Hopfield neural network. IEEE Transactions on Neural Networks, 11(4), 879–888.

Chen, T. (2001). Global exponential stability of delayed Hopfield neural networks. Neural Networks the Official Journal of the International Neural Network Society, 14(8), 977–980.

Chen, Y., & Zheng, W. X. (2013). Stability analysis of time-delay neural networks subject to stochastic perturbations. IEEE Transactions on Cybernetics, 43(6), 2122–2134.

Ding, D., Wang, Z., & Shen, B. (2012). \(H\infty\) state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays. IEEE Transactions on Neural Networks and Learning Systems, 23(5), 725–736.

He, Y., Liu, G. P., Rees, D., & Wu, M. (2007). Stability analysis for neural networks with time-varying interval delay. IEEE Transactions on Neural Networks, 18(6), 1850–1854.

Kan, X., Wang, Z., & Shu, H. (2013). State estimation for discrete-time delayed neural networks with fractional uncertainties and sensor saturations. Neurocomputing, 117(14), 64–71.

Lian, J., Zhang, K., & Feng, Z. (2012). Stability analysis for switched Hopfield neural networks with time delay. Optimal Control Applications and Methods, 33(4), 433–444.

Liang, J., Lam, J., & Wang, Z. (2009). State estimation for Markov-type genetic regulatory networks with delays and uncertain mode transition rates. Physics Letters A, 373(47), 4328–4337.

Liang, J., Wang, Z., & Liu, X. (2009). State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: The discrete-time case. IEEE Transactions on Neural Networks, 20(5), 781–793.

Liang, J., Wang, Z., & Liu, X. (2011). Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements. IEEE Transactions on Neural Networks, 22(3), 486–496.

Liang, J., Wang, Z., & Liu, X. (2012). Distributed state estimation for uncertain Markov-type sensor networks with mode-dependent distributed delays. International Journal of Robust and Nonlinear Control, 22(3), 331–346.

Liu, D., & Du, Y. (2014). New results of stability analysis for a class of neutral-type neural network with mixed time delays. International Journal of Machine Learning and Cybernetics, 6(4), 1–12.

Liu, Y., Wang, Z., & Liu, X. (2008). State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays. Physics Letters A, 372(48), 7147–7155.

Liu, Y., Wang, Z., & Liu, X. (2009). Asymptotic stability for neural networks with mixed time-delays: The discrete-time case. Neural Networks, 22(1), 67–74.

Liu, Y., Wang, Z., & Liu, X. (2012). Stability analysis for a class of neutral-type neural networks with Markovian jumping parameters and mode-dependent mixed delays. Neurocomputing, 94(3), 46–53.

Lu, J., Ho, D. W., & Wang, Z. (2009). Pinning stabilization of linearly coupled stochastic neural networks via minimum number of controllers. IEEE Transactions on Neural Networks, 20(10), 1617–1629.

Qi, J., Li, C., & Huang, T. (2014). Stability of delayed memristive neural networks with time-varying impulses. Cognitive Neurodynamics, 8(5), 429–436.

Ren, W., Wang, C., & Lu, Y. (2017). Fault estimation for time-varying Markovian jump system with randomly occurring nonlinearities and time delays. Journal of the Franklin Institute, 354(3), 1388–1402.

Sakthivel, R., Jaja, R., & Anthoni, S. M. (2011). Exponential stability for delayed stochastic bidirectional associative memory neural networks with Markovian jumping and impulses. Journal of Optimization Theory and Applications, 158(1), 251–273.

Schonfeld, D. (1993). On the hysteresis and robustness of Hopfield neural networks. IEEE Transactions on Circuits and System II-Analog and Digital Signal Processing, 40(11), 745–748.

Shan, Q., Zhang, H., Wang, Z., & Zhang, Z. (2018). Global asymptotic stability and stabilization of neural networks with general noise. IEEE Transactions on Neural Networks and Learning Systems, 29(3), 597–607.

Shen, B., Wang, Z., Ding, D., & Shu, H. (2013). \(H\infty\) state estimation for complex networks with uncertain inner coupling.
and incomplete measurements. *IEEE Transactions on Neural Networks and Learning Systems*, 24(12), 2027–2036.

Song, B., Park, J. H., Wu, Z., & Zhang, Y. (2013). New results on delay-dependent stability analysis for neutral stochastic delay systems. *Journal of the Franklin Institute*, 350(4), 840–852.

Wang, X., Li, C., Huang, T., & Duan, S. (2014). Global exponential stability of a class of memristive neural networks with time-varying delays. *Neural Computing and Applications*, 24(7-8), 1707–1715.

Wang, Z., Liu, Y., Li, M., & Liu, X. (2006). Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays. *IEEE Transactions on Neural Networks*, 17(3), 814–820.

Wang, Z., Liu, Y., Liu, X., & Shi, Y. (2010). Robust state estimation for discrete-time stochastic neural networks with probabilistic measurement delays. *Neurocomputing*, 74(1-3), 256–264.

Wang, Z., Shu, H., Fang, J., & Liu, X. (2006). Robust stability for stochastic Hopfield neural networks with time delays. *Nonlinear Analysis: Real World Applications*, 7(5), 1119–1128.

Wang, Y., Wang, Z., & Liang, J. (2010). On robust stability of stochastic genetic regulatory networks with time delays: A delay fractioning approach. *IEEE Transactions on Systems, Man and Cybernetics Part B: Cybernetics*, 40(3), 729–740.

Xiong, J., & Zhang, G. (2018). Improved stability criterion for recurrent neural networks with time-varying delays. *IEEE Transactions on Neural Networks and Learning Systems*, 29(11), 5756–5760.

Zhang, X., Han, Q., & Wang, J. (2018). Asymptotic stability of neural networks with time-varying delays. *IEEE Transactions on Neural Networks and Learning Systems*, 29(11), 5319–5329.