Study on initial geometry fluctuations via correlation of finite distributions of secondary particles in nucleus-nucleus interactions

A I Fedosimova, A Sh Gaitinov, I A Lebedev and A T Temiraliev
Institute of Physics and Technology, Almaty 050032, Kazakhstan
E-mail: lebedev@sci.kz

Abstract. The study of the peculiarities of the distribution of secondary particles depending on the degree of centrality and the degree of asymmetry of the interacting nuclei, is performed. The number of multicharged fragments of the projectile nucleus (N_f) in interactions of sharply asymmetric nuclei depends on the centrality degree of interaction. In the majority of peripheral interactions N_f is equal to 1. In the most of the central interactions there are $N_f > 1$ or $N_f = 0$. At that, the events with $N_f = 1$ are separated clearly in the distribution of the total charge of the fragments of a projectile nucleus (Q) depending on the nature of the correlation of the number of fragments of the target nucleus (N_t) and the multiplicity of secondary particles from interaction area (n_s). The peak in the field of the maximum values of Q characterizes peripheral events with various degree of the periphery on a growing branch of average N_t-n_s curve. And the peak in the field of small Q characterizes the central events with various degree of centrality on the decreasing branch of average N_t-n_s curve.

1. Introduction
According to the present-day conceptions, the hadron substance transits within the interactions of the nuclei, at the high energies, into a state of the quark-gluon plasma (QGP), in which the quarks and gluons stay in a quasi-free state [1]. The expansion of secondary particles, formed from the QGP cluster of nuclear matter, leads to the collective nature of the formation of secondary particles. It can be detected on the basis of the correlation analysis of finite distributions of secondary particles. For the research of the multiparticle correlations different approaches and methods are used [2]-[5].

On the other hand, the dynamics of the interaction of nuclei is determined not only by the energy and mass of the interacting nuclei, but also the geometry of the nucleus-nucleus collisions. Accounting for the influence of fluctuations of the initial states in individual interactions allows to explore the true dynamic correlation of the final state of interactions of excited hadronic systems [6]-[7].

In central collisions the number of generated secondary particles is maximal. If the collision is peripheral, then the overlap of the interacting nuclei is incomplete and resulting fireball expands asymmetrically. Thus, the degree of centrality of interaction significantly affects the parameters of the spatial (angular) distribution of secondary particles [8]-[9].

The initial state, about which there is usually very little direct experimental information, leads to significant peculiarities in the distribution of fragments and the multiplicity of secondary
particles. The study of the peculiarities allows to give a physical interpretation of the results on the base of the differences in the initial states of collisions [10]-[11].

In the present work we analyze the peculiarities of the distribution of secondary particles depending on the degree of centrality and the degree of asymmetry of the interacting nuclei on the base of experimental data of interactions of gold nuclei 197Au at 10.7 AGeV with photoemulsion nuclei [12].

The nuclear emulsion represents a certain combination of light and heavy nuclei. On the one hand, it allows to analyze various types of nuclear interactions obtained in exactly the same experimental conditions. On the other hand, it introduces additional problems with the identification of the target nucleus.

Peculiarities of distribution of secondary particles and fragments in depending on the initial conditions of collisions, we analyzed in two complementary directions.

The first direction is the study of the parameters of the fragmentation of the projectile nucleus for separation of the peripheral interactions with a small number of interacting nucleons and with a large value of the total charge of the fragments of a projectile nucleus.

The second direction was based on the study of the dependence of the number of fragments of the target nucleus and the multiplicity of secondary particles to estimate the centrality degree of the interaction and to separate interactions with light and heavy emulsion nuclei.

2. The fragmentation of projectile nucleus

In interaction of huge gold nucleus with smaller nucleus of the photoemulsion the quantity of multi-charged fragments depends on centrality degree of the interaction.

Schematic visualization of events of varying degrees of centrality is presented in Figure 1. In peripheral interactions the appearance of events with one multi-charged fragment are more probably in comparison with deeply central interactions. The total remainder charge of the fragments of the projectile nucleus is less for events with larger overlap of the interacting nuclei.

Figure 1. Schematic visualization of events of varying degrees of centrality and periphery.

Figure 2. The distribution of the total charge Q of the fragments of a projectile nucleus for events with different numbers of multi-charged fragments N_f for interactions of 10.7 AGeV 197Au with emulsion nuclei.
In Figure 2 the distributions of total charge Q of projectile nucleus fragments for events with various number of multi-charged fragments N_f are presented.

From Figure 2 it follows that in interactions with one multi-charged fragment, in the most of the events large total charge of the projectile nucleus fragments, is discovered. The region of $Q > 70$ is separated visually on a low background of other events. Thus, events with one multi-charged fragment and $Q > 70$, probably, characterize the peripheral interaction.

Events with several multi-charged fragments mainly are characterized by lower values of Q and likely characterize more central collisions.

Special attention should be paid to the fact that there is a significant number of events in which multi-charged fragments are absent. That is, under certain conditions, the complete destruction of the huge gold nucleus at interaction with significantly less emulsion nuclei, is discovered.

3. The dependence of the number of fragments and the multiplicity of secondary particles

One of the most optimal parameters for estimating the centrality degree of interaction and separation of events with light and heavy emulsion nuclei, is the dependence of the number of fragments of the target nucleus and the multiplicity of secondary particles n_s. This correlation dependence is presented in Figure 3.

As it can be seen from Figure 3, events of interaction with light (CNO) and heavy ($AgBr$) emulsion nuclei can be separated quite well. Selection of interactions with light nuclei is limited to two requirements.

First, the maximum number of fragments of the target nucleus may not exceed 8, which corresponds to the charge of the largest of light emulsion nuclei - nuclei of oxygen.
Secondly, the maximal multiplicity n_s in interactions with light nuclei emulsion is significantly lower compared to the interactions with heavy emulsion nuclei. Using of this fact allows to separate $Au + AgBr$ events with large multiplicity, in which the number of fragments of the target nucleus is less than 8, from $Au + CNO$ events.

For analysis of peripheral collisions in Figure 3 the mean values of N_h for groups of interactions with heavy and light emulsion nuclei, by described above criteria, are presented separately.

In $Au + AgBr$ interactions the average dependence shows the steady growth in the field before $n_s=110$. Then it decreases and at large $n_s > 250$ it goes on the plateaus. Similar behavior shows and $Au + CNO$ dependence, but at a lower multiplicity: $n_s=40$ and $n_s > 100$, respectively. This behavior reflects the degree of peripheral interaction. This assumption is confirmed by the difference in the total charge of the fragments of a projectile nucleus for the respective areas of n_s. This distribution of Q is presented in Figure 4.

As it can be seen from Figure 4 there is a clear two-peak distribution. The peak in the region of maximal values of Q characterizes peripheral events with varying degrees of periphery on the rising branch of the average N_h-n_s curve. The peak at low values of Q characterizes the central event with varying degrees of centrality on the decreasing branch of the average N_h-n_s curve.

4. Conclusion

In summary, we formulate the following main conclusions of the study of the peculiarities of the distribution of secondary particles depending on the degree of centrality and the degree of asymmetry of the interacting nuclei.

The quantity of multi-charge fragments of projectile nucleus N_f in interactions of sharply asymmetric nuclei essentially depends on the centrality degree. In the majority of peripheral interactions N_f is equal 1. In the most of the central interactions there are $N_f > 1$ or $N_f = 0$.

$N_f = 1$ area is rather well divided in distribution of a total charge of projectile nucleus fragments Q. The peak in the field of the maximum values Q characterizes peripheral events with various degree of the periphery on a growing branch of average N_h-n_s curve, which is characterizing dependence of number of fragments of the target nucleus and multiplicity of secondary particles from interaction area. And the peak in the field of small values Q characterizes the central events with various degree of centrality on the decreasing branch of average N_h-n_s curve.

Acknowledgments

This work was supported by grant N4824/GF4 of Ministry of Education and Science of Kazakhstan Republic.

References

[1] Shuryak E 2009 Physics of strongly coupled quark-gluon plasma Prog. in Part. and Nucl. Phys. 62 48
[2] Adamovich M I et al 2000 Azimuthal correlations of secondary particles in 32S induced interactions with Ag(Br) nuclei at 4.5 GeV/c/nucleon Part. and Nucl. Lett. 101 76
[3] Adamovich M I et al 2001 Factorial Moments of 28Si Induced Interactions with Ag(Br) Nuclei APH N.S. Heavy Ion Phys. 113 213
[4] Lebedev I A and Shaikhatdenov B G 1997 J.Phys. G 23 637
[5] Kvochkina T N et al 2000 J.Phys. G 26 35
[6] Luzum M and Petersen H 2014 J. Phys. G 41 063102
[7] Adare A, Luzum M and Petersen H 2013 Physica Scripta 87 048001
[8] Jia J and Mohapatra S 2013 Eur.Phys.J. A 5 429
[9] Schenke B, Tribedy P and Venugopalan R 2014 Phys.Rev. C 89 064908
[10] Voloshin S A 2012 Prog. in Part. and Nucl. Phys. 67 541
[11] Vovchenko V, Anchishkin D and Csernai L P 2013 Phys. Rev. C. 88 014901
[12] Adamovich M I et al 1999 Eur.Phys.J. A 5 429