Deciphering the diversity of small RNAs in plants: the long and short of it

Frank Schwach, Simon Moxon, Vincent Moulton and Tamas Dalmay

Advance Access publication date 27 August 2009

Abstract

RNA silencing is a complex and highly conserved regulatory mechanism that is now known to be involved in such diverse processes as development, pathogen control, genome maintenance and response to environmental changes. Since its recent discovery, RNA silencing has become a fast moving key area of research in plant and animal molecular biology. Research in this field has greatly profited from recent developments in novel sequencing technologies that allow massive parallel sequencing of small RNA (sRNA) molecules, the key players of all RNA silencing phenomena. As researchers are beginning to decipher the complexity of RNA silencing, novel methodologies have to be developed to make sense of the large amounts of data that are currently being generated. In this review we present an overview of RNA silencing pathways in plants and the current challenges in analysing sRNA data, with a special focus on computational approaches.

Keywords: RNA silencing; bioinformatics; high-throughput sequencing; plant molecular biology

INTRODUCTION

The discovery of RNA silencing phenomena in plants and animals in the early 1990s has dramatically changed our view of RNA and its role in gene expression. RNA silencing is now well established as an important and highly sequence specific mechanism of gene regulation that represses gene-activity at the transcriptional or post-transcriptional level. The highly conserved RNA silencing machinery fulfills a multitude of functions in fungi, plants and animals, ranging from the control of protein-coding gene expression to genome-maintenance and defence against pathogens. Moreover, RNA silencing has received much attention in recent years as a tool for research and therapeutic purposes that makes it possible to manipulate gene expression with a very high degree of sequence specificity in vivo. This specificity is mediated by short non-coding RNAs, known as small RNAs (sRNAs). These 18–30 nt long molecules are, with the exception of the recently discovered Piwi-associated (pi)RNAs in animals, the products of RNAaseIII-type enzymes called Dicers. Substrates for Dicer enzymes, and therefore triggers of RNA silencing, are longer double stranded RNA molecules that may arise due to intra- or inter-molecular base pairing or as a result of an RNA-dependent RNA-polymerase (RdRp) activity. To exert its regulatory function, the double-stranded sRNA must be incorporated into a member of the Argonaute protein family, where one strand is degraded while the other anneals to its specific target by establishing Watson–Crick base pairs. So tethered to the target, the effector complex may...
induce target RNA degradation, prevention of mRNA translation into protein or DNA and histone modifications that lead to transcriptional silencing.

Ever since the groundbreaking discovery of sRNAs [1], it has been the goal of many laboratories to decipher the endogenous ‘sRNAome’ of living organisms in order to understand its biogenesis and function. Such efforts have been greatly assisted by recent developments in so-called next-generation sequencing technologies, which are ideal for high-throughput analyses of short sequences [2]. However, even before the onset of high-throughput techniques, it was recognised that plant sRNAs occur in a variety of distinct size classes and that plant genomes give rise to a particularly diverse population of endogenous sRNAs [3–7]. We present here an overview of known classes of plant sRNAs, beginning with the particularly prominent and well-characterised class known as microRNAs (miRNA), and a discussion on the challenges posed to current research by the complexity of plant sRNAomes, with a special focus on computational classification and detection problems.

miRNAs

The first miRNA to be discovered was lin-4 in the nematode worm *Caenorhabditis elegans* [1]. It was initially thought to be a biological peculiarity until a number of additional examples were reported and some of these turned out to be highly conserved from worms to mammals [7–12]. These findings firmly established miRNAs as important regulatory molecules, representing a whole new level of gene regulation that had previously been overlooked. The discovery of the first plant miRNAs in the model species *Arabidopsis thaliana* followed soon afterwards [7]. Since then, the number of reports of new miRNAs from species including multi- and unicellular plants and animals and even viruses has increased rapidly: the central miRNA repository, miRBase, has gone from 218 entries in 2002 to 9539 entries in 2009 [13]. Despite the conservation of the components of the RNA silencing machinery across kingdoms, conservation of individual miRNAs between plants and animals has only ever been reported for a single candidate miRNA family (miR854) [14]. Intriguingly though, these candidates map to transposable elements in both kingdoms and have very unusual precursors, which has led other authors to question their miRNA status [15]. Moreover, even within the clade of Viridiplantae, there is conservation of individual miRNAs between mosses and modern land plants but not between single-celled green algae and higher plants [16, 17] which would argue for multiple, independent, origins of miRNAs that all use the same highly conserved RNA silencing machinery in a similar way. In contrast, prokaryotes as well as fungi appear to lack miRNAs altogether.

The double-stranded RNA precursors from which mature miRNAs are excised are the product of intra-molecular base pairing within transcripts that contain imperfect inverted repeat regions. These miRNA precursors are thought to arise from inverted duplications of protein-coding genes [18]. Transcripts of the young miRNA gene would initially form perfectly paired long fold-back structures, giving rise to a multitude of sRNAs with perfect complementarity to the gene of origin. Progressive accumulation of small-scale mutations then leads to sequence divergence in the two arms of the fold-back (hairpin) structure. Modern land plants harbour miRNA genes at all stages of evolutionary progression, indicating that new miRNAs may arise (and be lost) frequently [19]. The more mature examples are often found to be highly conserved between species and have often spawned large families of homologous miRNAs through further duplication events. In contrast, younger miRNAs, that are not yet conserved between many species, are usually encoded by a single gene, and are often found to be expressed at lower levels than the more mature miRNAs. This is partly the reason why non-conserved miRNAs were rarely found before high-throughput sequencing of sRNAs became possible. Applying this novel technology has led to the identification of many novel miRNAs in several species [20–24].

miRNA precursors may initially be several kilobases in length in both animals and plants [25–27] and, in plants, are usually encoded in intergenic regions under the control of their own promoters and transcription factor binding sites [28–31]. The imperfect intra-molecular base pairing of the precursor transcripts appears to give important structural clues for the precise excision of the mature sRNA duplex known as the miRNA/miRNA* pair [32]. In plants, one of the Dicer enzymes (DCL1) is responsible for miRNA precursor pre-processing and excision of the mature miRNA duplex [33], but there is recent evidence for the participation of an additional complex in the precursor processing
step: HYL1 [34], possibly in cooperation with the zinc finger protein SERRATE [35, 36]. Intriguingly, HYL1 has some similarity to the ‘Microprocessor’, which guides the initial steps of miRNA precursor maturation in animals [34, 37, 38]. In plants, the excised miRNA duplex is methylated at the 3’ end by the methyltransferase HEN1 [39, 40] before being incorporated into an Argonaute protein (AGO1 in *Arabidopsis*) [41] where one strand, the miRNA*, is degraded. The remaining miRNA strand guides the sequence-specific target interference by annealing to complementary sites on mRNAs [42]. The outcome of miRNA targeting is either translational repression, i.e. blocking of the protein production machinery, or miRNA cleavage at a specific position in the miRNA/target duplex, followed by degradation of the cleaved transcript. The method of regulation is dependent on the level of complementarity between miRNA and target site [43]: a high degree of complementarity leads to mRNA cleavage and degradation, whereas poor complementarity leads to translational repression. The latter is predominant in animals, whereas target degradation has long been thought to be the exclusive mode of action of plant miRNAs. This view may change as evidence emerges for potentially widespread translational repression by miRNAs in plants too [44, 45].

Plant miRNAs have been known for a long time to target transcription factors involved in diverse developmental processes [42]. However, plants also employ miRNAs to regulate gene expression in response to environmental stress, such as pathogen attacks, oxidative stress, dehydration or phosphate and sulphate limitation [46].

HETEROCHROMATIN-ASSOCIATED sRNA

Plant sRNA profiles usually contain a small number of highly expressed 21 nt sequences, most of them miRNAs, and a predominant 24 nt size class, made up of a diverse population of sRNAs that are often individually expressed at low levels [6, 47–49]. The 24-nt sRNA-class is also referred to as heterochromatic (hc)RNA due to its frequent association with heterochromatic regions in the genome. In *Arabidopsis*, hcRNA has been shown to guide transcriptional silencing by DNA- and histone-methylation in a process that employs a number of protein components, including RNA-polymerases, members of the Argonaute and Dicer families as well as DNA and histone methyltransferases [50–52]. The exact hcRNA pathway is complex and there are variations that depend on the nature of the target locus [53–57]. Nevertheless, the following general pathway for hcRNA production and action has been emerging from recent studies: RNA-polymerases POLIV and RDR2 provide substrates for Dicer DCL3, which produces 24-nt sRNAs. A complex containing the Argonaute AGO4 and an RNA-binding protein (KTF1) is guided by the sRNAs to nascent transcripts of another RNA-polymerase, POLV, at the target locus, where it induces the recruitment of DNA methyltransferases and histone modifying enzymes [58, 59].

Once initiated, some loci are able to maintain their methylated status, even if the original trigger is removed, in a process that involves the methyltransferase MET1 [60]. In contrast, a majority of methylated sites appear to require continuous production of hcRNAs, possibly in a self-perpetuating feedback loop, to maintain methylation, as illustrated by a recent high-resolution mapping effort of methylation sites and sRNA alignments in *Arabidopsis* [49].

Repetitive sequences, including transposable elements and tandem repeats, are among the most prominent targets of RNA-directed DNA methylation but a number of protein-coding genes and their promoters have also been shown to be affected [4, 3, 6, 47, 61–63]. Transposable elements can compromise genome-integrity by moving into new insertion sites, even to the point of inducing chromosome rearrangements with far-reaching consequences [64]. It is therefore not surprising that these mobile elements are tightly controlled by the silencing machinery [53, 62, 65–71]. Intriguingly, however, recent findings indicate that the silencing constraint against transposable elements may be removed under certain conditions, such as environmental stress [72]. It is tempting to speculate that this behaviour may serve as a last resort to increase genetic diversity by the action of re-activated transposable elements in populations, confronted with a changing environment.

A largely unsolved question, and one that is difficult to address experimentally, is whether hcRNA is exclusively *cis*-acting. In yeast, an important model for transcriptional silencing phenomena, it was recently reported that a negative regulator of RNA silencing, Eri-1 [73], actively restricts the action of
hcRNAs to their locus of origin and prevents trans-silencing of homologous loci [74]. In plants, artificially introduced exogenous genetic material can certainly direct transcriptional silencing at homologous loci in trans [60, 75–77], but this may not be the case for endogenous hcRNAs. For example, sRNAs with multiple perfect matches to the genome, which should be capable of directing DNA-methylation at multiple sites, were found to be associated with observed cytosine methylation at only some of their potential match sites and are thus likely to induce silencing only at their actual loci of origin [49].

OTHER ENDOGENOUS sRNA CLASSES

Another class of endogenous sRNAs that is thought to be cis-acting are the stress-inducible natural-antisense (nat-)siRNAs, which originate from overlapping sense and antisense transcripts [78–80]. Such overlapping opposing transcript pairs are not uncommon in Arabidopsis [81, 82] and the gene-products of these pairs often participate in similar processes, which might explain the need for a common regulator [78]. While some nat-siRNAs may also be 24 nt long like the majority of hcRNAs, they differ from the latter in that they cause post-transcriptional target degradation, similar to miRNAs, rather than transcriptional inactivation. In contrast to miRNAs though, nat-siRNAs are cis-acting—they target transcripts from their own genomic region of origin.

Another class of endogenous sRNAs is more similar to miRNAs in their mode of action. The trans-acting (ta-)siRNA guide post-transcriptional degradation at remote targets. The ta-siRNA biogenesis demonstrates another layer of complexity of sRNA interactions: a miRNA-initiates ta-siRNA production by targeting a single-stranded precursor transcript, which in turn becomes a substrate for an RNA-dependent RNA-polymerase [83, 84]. In double-stranded form, the precursor becomes a substrate for a Dicer enzyme (DCL4), whose progressive cleavage in 21 nt intervals leads to the ‘phased’ pattern of mature sRNA production that is a hallmark of ta-siRNA loci [85, 86]. The complexity of the sRNA regulatory network goes even further: ta-siRNAs not only have the ability to target protein-coding genes, they can also trigger another round of ta-siRNA production in remote loci, thus orchestrating an entire cascade of gene regulation [87]. One of the functions of plant ta-siRNAs is the induction of developmental phase changes in diverse and distant lineages including mosses, lycopods and flowering plants [86, 88] and they appear to have been established already in early single-celled green algae [16].

THE CHALLENGES OF ENDOGENOUS sRNA CHARACTERISATION

In the early days after the discovery of endogenous sRNAs, efforts to detect and clone these molecules individually from biological samples were time- and labour-intensive. Within a few years though, the scene has changed dramatically, due to the rapid development of next-generation high-throughput sequencing of short sequence tags [2]. As a result, obtaining large-scale sRNA data sets in excess of a million reads has become a routine task and the focus is now on the downstream analysis of this type of data.

One way of classifying sequenced sRNAs is to exploit existing knowledge about the genetic requirements of known sRNA classes. However, obtaining mutant or knock-down plants is not always feasible, particularly when working with non-model organisms. It is therefore important to develop computational methods that may assist in the classification based on the information that is available in any particular experimental system.

Given the frequently observed association of distinct sRNA size classes with distinct silencing pathways, it may be tempting to classify endogenous sRNAs solely by this property. Unfortunately, size alone is not a reliable diagnostic attribute as illustrated by 24 nt long miRNAs [89] and the observation that transposons, under certain conditions, give rise to predominantly 21 nt, instead of 24 nt, sRNAs [49, 90, 91].

The most mature computational sRNA classification strategies today are those aiming to identify miRNAs and their targets. Most published methods use properties of already known miRNAs and their precursors to identify novel members of this class from sequenced sRNA (Figure 1A and 1B), but there are also studies that use genomic sequence data alone to predict miRNA loci ab initio, often in conjunction with cross-species conservation tests [92]. Publicly available software tools have recently appeared, which make miRNA classification and
Figure 1: Visual representation of Arabidopsis sRNA loci and their properties. Genome browser views are generated using high-throughput sequence data from Rajagopalan et al. (GEO accession numbers GSM118372 and GSM118373) [40]. Each sRNA read is represented as a single arrow, the colour of which is dependent on the length of the sRNA sequence (red: 21 nt, green: 22-23 nt, blue: 24 nt). (A) The miR166c locus shows a typical two peak pattern of sRNA alignments corresponding to miRNA (highlighted in red) and lower-abundance miRNA* (highlighted in pink). (B) Secondary structure prediction of the miRNA locus in (A), showing a characteristic hairpin-like miRNA precursor with mature miRNA (red) and miRNA* (pink) sequences highlighted. (C) The ta-siRNA locus TASIA contains predominantly 21 nt sRNAs (track 1: all sRNAs) but the characteristic phasing pattern is difficult to detect by eye. However, a statistical analysis (see main text) reveals a significant P-value ($P = 5.9 \times 10^{-6}$) for a phased pattern (track 2: phased sRNAs only). (D) A hcRNA locus, producing a diverse set of predominantly 24 nt sRNAs. The locus is highly expressed in the flower sample (highlighted in pink) but is almost inactive in the leaf sample (highlighted in yellow), which is consistent with the grouping of these sRNAs into a single functional unit.
Deciphering the diversity of small RNAs in plants

Dicer, including the characteristic 2 nt 3′-excision from the stem of the precursor hairpins by Dicer, including the characteristic 2 nt 3′-overhang between miRNA and miRNA*.

other endogenous sRNAs are often classified by target prediction from large-scale data sets more accessible to a wider audience [93–95]. miRCat is a web-based tool that was designed for plant miRNA identification from large-scale sequencing data [95], whereas miRDeep is a package for local installation that was developed to identify animal miRNAs [94], but has also recently been adapted to work with plant data sets [96]. Both programs employ a similar strategy, in that they both map sRNA sequences to putative precursors and score their properties according to observations from known miRNAs. The scoring scheme of miRDeep is based on the expected pattern of miRNA-duplex excision from the stem of the precursor hairpins by Dicer, including the characteristic 2 nt 3′-overhang between miRNA and miRNA*.

miRDeep is a package for local installation that was developed to identify animal miRNAs [94], but has also recently been adapted to work with plant data sets [96]. Both programs employ a similar strategy, in that they both map sRNA sequences to putative precursors and score their properties according to observations from known miRNAs. The scoring scheme of miRDeep is based on the expected pattern of miRNA-duplex excision from the stem of the precursor hairpins by Dicer, including the characteristic 2 nt 3′-overhang between miRNA and miRNA*.

Besides miRNAs, ta-siRNAs are another class of endogenous sRNAs that lends itself well to computational identification, due to the characteristic pattern of mature sRNA production. A popular approach is to test the statistical significance of a ‘phased’ alignment pattern of sRNA sequences at their genomic region of origin (Figure 1C) and to search for the target site of the putative initiator miRNA [87, 95, 97].

Other types of endogenous sRNAs are usually not so well defined by alignment patterns or sRNA sequence properties. It has been known for a long time that Dicer produces sRNAs from long perfect or near-perfect double-stranded precursors in a more random and unpredictable pattern [98]. If it is available, the classification may be based on genome annotation in some of these cases. For example, localisation to overlapping convergent transcript sites is diagnostic of nat-siRNAs [79]. Other endogenous sRNAs are often classified by their co-localisation with repeat elements or gene regions [48]. In fully sequenced model organisms, such as *Arabidopsis*, it is now also possible to obtain whole-genome methylation maps at high resolution, which may be used to identify hcRNAs that may direct and maintain the observed methylated state at their regions of origin [99, 100].

It is often advisable to combine sRNA alignments by assigning them to genomic loci of origin for classification and comparison purposes. Comparing expression levels of individual sRNA sequences between data sets may be possible for some classes of sRNAs, notably miRNAs, but not for highly complex sRNA loci, where many sRNA sequences are represented by single reads even in high-throughput data sets [48] (Figure 1D). Combining counts of all sequences matching a genomic locus provides a much more robust measurement of sRNA activity at the locus that may be compared between data sets after some transformations of raw counts are applied. First, as in other expression level assays, read counts must be normalised, which is typically achieved by dividing raw counts by the total or genome-matching number of reads in each sample [48, 54]. In addition, a correction for match-repetitiveness has also been suggested, for example by dividing read counts by the number of genomic matches for each sRNA sequence [48, 54].

The rationale behind this transformation is that sRNAs often match highly repetitive genomic sequences, but it is usually not possible to decide which one of its genomic matches is more likely to be the real origin of the sequenced molecule. A recent study has highlighted this problem by demonstrating that pericentromeric repeats actually give rise to relatively low amounts of sRNAs, whereas the opposite result is obtained if no correction for match-repetitiveness is applied [48, 63]. Match repetitiveness is even more problematic when working with unfinished genomes. In these cases, sRNAs or indeed entire sRNA loci may match to sequences that are present more than once in a draft assembly, which may be due to assembly errors rather than true repetitiveness of a genomic region. Vice-versa, the real repetitiveness of an sRNA locus might be underestimated because highly repetitive regions are difficult to assemble and might therefore be under-represented in the draft genome. In addition, even in fully sequenced organisms, it is often not possible to resolve whether sRNAs are actually produced from all of the genomic regions they match to.
One approach for dealing with this particular problem is to identify regions that are true originators of sRNAs by the presence of at least some uniquely-matching sRNAs [48, 54]. Another possibility is to group sRNA loci by sequence similarity and treat each group as one entity for the purpose of the downstream analysis, which has been used to avoid the problems discussed above for unfinished genome assemblies [16].

Another challenge for the identification of genomic sRNA loci is the correct placement of locus boundaries from sRNA alignments alone, which may often be scattered and spurious. One suggested method is based on thresholds of distances between neighbouring sRNA alignments and sRNA abundances [54, 63, 95, 101]. Another approach is to ‘seed’ genomic sRNA loci in fixed-size windows that exhibit significant accumulations of sRNA alignments, followed by merging windows with their neighbours if they contain sRNA alignments [48]. One problem with these methods is the dependence on static thresholds that are often difficult to choose a-priori. However, the expected increase in publicly available high-throughput sRNA sequence data in the near future may be instrumental in improving the detection algorithms and paving the way to a more robust and stable annotation of genomic sRNA-producing loci. This could be done by identifying sRNAs that align to the genome in close proximity and consistently exhibit co-expression patterns across data sets from as many different biological samples as possible, which would indicate that these sRNAs form a functional unit and are most likely derived from a common precursor (Figure 1D).

An in silico analysis of high-throughput sRNA data as described above obviously requires bioinformatics expertise and a suitable computing infrastructure, which may not be available to many laboratories. To solve this problem, publicly available software packages have now started to appear that help researchers to convert sequencer-output into accessible and manageable formats and assist in the data analysis. We have previously published one such package, the UEA plant sRNA toolkit (http://srna-tools.cmp.uea.ac.uk), which is entirely web-based and allows users to process raw large-scale sequencing data and to perform a number of downstream analyses, such as profiling and identification of known and novel miRNAs, filtering of sequences and quantification, grouping and visualisation of sRNA matches to various plant genomes [95].

Another recently published package, CASHX (http://jcclab.science.oregonstate.edu/node/view/56095) [102] has been designed for local installation. The software reads raw sequences from large-scale samples, which are matched to a user-provided genome of interest and the results are stored in a database that can be queried by the user for further downstream analyses.

OUTLOOK

In the last decade, remarkable progress has been made to reveal a previously unknown layer of gene expression regulation involving sRNAs. In plants, this layer turned out to be exceptionally diverse including several different types of sRNAs. The function of these sRNAs is also very diverse, ranging from development to response to environmental changes through genome maintenance and defence against viruses. It is worth mentioning that a similar level of complexity of endogenous sRNAs is beginning to emerge for insects and mammals and many of the approaches currently developed for plant data may be applicable to these systems as well [103–105].

The current challenge is to process these large datasets and decipher biological information from the vast amount of data. Some classes of sRNAs can be identified using existing tools but other classes are still difficult to predict with high confidence. Closely integrated wet-lab and bioinformatics efforts will become increasingly important in developing the methods that are required to decipher the enormous complexity of RNA silencing phenomena in the future.

Key Points

- RNA silencing is a highly complex and conserved regulatory mechanism.
- Novel high-throughput sequencing techniques are instrumental in deciphering the complex sRNA signature in plants.
- While data acquisition is no longer a problem, new methods must be developed to meet the challenges of analysing large-scale data sets of sequenced sRNAs.

Acknowledgements

The authors wish to thank Ericka Havecker for helpful discussions.

FUNDING

Biotechnology and Biological Sciences Research Council (BB/E004091/1).
References

1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–54.

2. Hafner M, Landgraf P, Ludvig J, et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methodol 2008;44:3–12.

3. Llave C, Kaschau KD, Rector MA, et al. Endogenous and silencing-associated small RNAs in plants. Plant Cell 2002;14:1605–19.

4. Hamilton A, Voinnet O, Chappell L, et al. Two classes of short interfering RNA in RNA silencing. EMBO J 2002;21:4671–9.

5. Sunkar R, Zhu J. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 2004;16:2001–19.

6. Xie Z, Johansen LK, Gustafson AM, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2004;2:E104.

7. Reinhart BJ, Weinberg EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev 2002;16:1616–26.

8. Lau NC, Lip NM, Weinberg EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294:858–62.

9. Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochromatin microRNAs. Nature Genet 2000;24:853–8.

10. Lee RC, Ambros V. An abundant class of small RNAs in C. elegans. Science 2001;294:862–4.

11. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–54.

12. Lagos-Quintana M, Rauhut R, Lendeckel W, et al. A family of MicroRNAs present in plants and animals. Nature Genet 2001;294:862–4.

13. Griffiths-Jones S, Saini HK, van Dongen S, et al. miRBase: tools for miRNA genomics. Nucleic Acids Res 2006;34:D154–8.

14. Arteaga-Vazquez M, Caballero-Perez J, Vielle-Calzada J. Evolution of microRNAs in plants. Trends Genet 2002;18:171–3.

15. Xie Z, Johansen LK, Gustafson AM, et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2004;2:E104.

16. Reinhart BJ, Weinberg EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev 2002;16:1616–26.

17. Lau NC, Lip NM, Weinberg EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294:858–62.

18. Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochromatin microRNAs. Nature Genet 2000;24:853–8.

19. Lee RC, Ambros V. An abundant class of small RNAs in C. elegans. Science 2001;294:862–4.

20. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–54.

21. Hafner M, Landgraf P, Ludvig J, et al. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methodol 2008;44:3–12.

22. Reinhart BJ, Weinberg EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev 2002;16:1616–26.

23. Lau NC, Lip NM, Weinberg EG, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294:858–62.

24. Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochromatin microRNAs. Nature Genet 2000;24:853–8.

25. Lee RC, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843–54.
microRNAs and short interfering RNAs. *Proc Natl Acad Sci USA* 2005;102:11928–33.

42. Rhoades MW, Reinhardt BJ, Lim LP, *et al.* Prediction of plant microRNA targets. *Cell* 2002;110:513–20.

43. Ankerman MJ, Saku H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. *Plant Cell* 2003;15:2730–41.

44. Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. *Science* 2004;303:2022–5.

45. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, *et al.* Widespread translational inhibition by plant miRNAs and siRNAs. *Science* 2008;320:1185–90.

46. Phillips JR, Dalmay T, Bartels D. The role of small RNAs in abiotic stress. *FEBS Lett* 2007;581:3592–7.

47. Kaschau KD, Fahlgren N, Chapman EJ, *et al.* Genome-wide profiling and analysis of Arabidopsis siRNAs. *PLoS Biol* 2007;5:e57.

48. Rajagopalan R, Vaucheret H, Trejo J, *et al.* A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. *Genes Dev* 2006;20:3407–25.

49. Lister R, O’Malley RC, Tonti-Filippini J, *et al.* Highly integrated single-base resolution maps of the epigenome in Arabidopsis. *Cell* 2008;133:523–36.

50. Dujedal I, Ekwall K. Epigenetics: heterochromatin meets RNAi. *Cell Res* 2009;19:282–95.

51. Chan SW. Inputs and outputs for chromatin-targeted RNAi. *Trends Plant Sci* 2008;13:383–9.

52. Henderson IR, Jacobsen SE. Epigenetic inheritance in plants. *Nature* 2007;447:418–24.

53. Huettel B, Kanno T, Daxinger L, *et al.* Highly integrated single-base resolution maps of the epigenome in Arabidopsis. *Cell* 2008;133:523–36.

54. Mosher RA, Schwach F, Studholme D, *et al.* PolIVβ influences RNA-directed DNA methylation independently of its role in siRNA biogenesis. *Proc Natl Acad Sci USA* 2008;105:3143–50.

55. Chan SW, Zhang X, Bernatavichute YV, *et al.* Two-step recruitment of RNA-directed DNA methylation to tandem repeats. *PLoS Biol* 2006;4:e363.

56. Pontier D, Yahubyan G, Vega D, *et al.* Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two direct repeat DNA polymerases IV in Arabidopsis. *Genes Dev* 2005;19:2030–40.

57. Kanno T, Huettel B, Mette MF, *et al.* Atypical RNA polymerase subunits required for RNA-directed DNA methylation. *Nat Genet* 2005;37:761–5.

58. He X, Hsu Y, Zhu S, *et al.* An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4- and RNA-binding protein. *Cell* 2009;137:498–508.

59. Wierzbicki AT, Ream TS, Haag JR, *et al.* RNA polymerase V transcription guides ARGONAUTE4 to chromatin. *Nat Genet* 2009;41:630–4.

60. Jones I, Ratchiff F, Baulcombe DC. RNA-directed transcriptional gene silencing in plants can be inherited independently of the RNA trigger and requires Met1 for maintenance. *Curr Biol* 2001;11:747–57.

61. Slotkin RK, Vaughan M, Borjes F, *et al.* Epigenetic reprogramming and small RNA transactivation of transposable elements in pollen. *Cell* 2009;136:461–72.

62. Lippman Z, Gendrel A, Black M, *et al.* Role of transposable elements in heterochromatin and epigenetic control. *Nature* 2004;430:471–6.

63. Lu C, Tej SS, Luo S, *et al.* Elucidation of the small RNA component of the transcriptome. *Science* 2005;309:1567–9.

64. Lonning W, Sardel H. Chromosome rearrangements and transposable elements. *Annu Rev Genet* 2002;36:389–410.

65. Kato M, Miura A, Bender J, *et al.* Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis. *Curr Biol* 2003;13:421–6.

66. Lippman Z, May B, Yordan C, *et al.* Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. *PLoS Biol* 2003;1:e67.

67. Singer T, Yordan C, Martienssen RA. Robertson’s mutator transposons in *A. thaliana* are regulated by the chromatin-remodeling gene decrease in DNA methylation (DDM1). *Genes Dev* 2001;15:591–602.

68. Fujimoto R, Kinoshita Y, Kawabe A, *et al.* Evolution and control of imprinted FWA genes in the genus Arabidopsis. *PLoS Genet* 2008;4:e1000048.

69. Jordan ND, West JP, Botley A, *et al.* Transcript profiling of the hypomethylated hsg1 mutant of Arabidopsis. *Plant Mol Biol* 2007;65:571–86.

70. Wierzbicki AT, Haag JR, Pikard CS. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. *Cell* 2008;135:635–48.

71. Chan SW, Henderson IR, Zhang X, *et al.* RNAi, DRD1, and histone methylation actively target developmentally important non–CG DNA methylation in Arabidopsis. *PLoS Genet* 2006;2:e83.

72. Perez-Hernaeche J, Potet F, Beaudel L, *et al.* Invasion of the Arabidopsis genome by the tobacco retrotransposon Trnl is controlled by reversible transcriptional gene silencing. *Plant Physiol* 2008;147:1264–78.

73. Kennedy S, Wang D, Ruvkun G. A conserved siRNA-degrading RNase negatively regulates RNA interference in *C. elegans*. *Nature* 2004;427:645–9.

74. Buehler M, Verdel A, Moazed D. Tethering RITS to a nascent transcript initiates RNAi- and heterochromatin-dependent gene silencing. *Cell* 2006;125:873–86.

75. Wassenegger M, Heimes S, Kiedel L, *et al.* RNA-directed de novo methylation of genomic sequences in plants. *Cell* 1994;76:567–76.

76. Luff B, Pawlowski L, Bender J. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. *Mol. Cell* 1999;3:505–11.

77. Mette MF, Aufsatz W, van der Winden J, *et al.* Transcriptional silencing and promoter methylation triggered by double-stranded RNA. *EMBO J* 2000;19:5194–201.

78. Jin H, Vacic V, GIRKE T, *et al.* Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. *BMC Mol Biol* 2008;9:6.

79. Borsani O, Zhu J, Verslues PE, *et al.* Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. *Cell* 2005;123:1279–91.
80. Katiyar-Agarwal S, Morgan R, Dahlbeck D, et al. A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA 2006;103:18002–7.
81. Henz SR, Cumbie JS, Kasschau KD, et al. Distinct expression patterns of natural antisense transcripts in Arabidopsis. Plant Physiol 2007;144:1247–55.
82. Wang X, Gaasterland T, Chua N. Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 2005;6:R30.
83. Axtell MJ, Snyder JA, Bartel DP. Common functions for diverse small RNAs of land plants. Genes Dev 2005;19:2164–75.
84. Yoshikawa M, Vaucheret H, Rajagopalan R, et al. A Two-Hit Trigger for siRNA biogenesis in plants. Cell 2006;127:565–77.
85. Chen H, Li Y, Wu S. Bioinformatic prediction and experimental validation of a microRNA-directed tandem trans-acting siRNAs in Arabidopsis. Genes Dev 2005;19:2164–75.
86. Peragine A, Yoshikawa M, Wu G, et al. SGS3 and SGS2/ SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 2004;18:2368–79.
87. Zhang Y. miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 2005;33:W701–4.
88. Pant BD, Musialak-Lange M, Nuc P, et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time PCR profiling and small RNA sequencing. Plant Physiol 2009;150:1541–55.
89. Pant BD, Musialak-Lange M, Nuc P, et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time PCR profiling and small RNA sequencing. Plant Physiol 2009;150:1541–55.
90. villalba T, Totoki Y, Toyoda A, et al. Endogenous siRNAs from deep sequencing data using miRDeep. Nat Biotechnol 2008;26:407–15.
91. Moxon S, Schwach F, Dalmay T, et al. A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 2008;24:2252–3.
92. Fahlgren N, Sullivan CM, Kasschau KD, et al. A role for RNAi in acting siRNA cascade in Arabidopsis. Proc Natl Acad Sci USA 2007;104:3318–23.
93. Zhang X, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 2006;126:1189–201.
94. Cokus SJ, Feng S, Zhang X, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008;452:215–19.
95. Zhang X, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 2006;126:1189–201.
96. Czech B, Malone CD, Zhou R, et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 2008;452:215–19.
97. Zhang X, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 2006;126:1189–201.
98. Slimak P, Sunkar R, Zhu J-K, et al. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 2008;6:e302.
99. Vazquez F, Vaucheret H, Rajagopalan R, et al. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 2008;6:e302.
100. Vazquez F, Vaucheret H, Rajagopalan R, et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis miRNAs. Mol Cell 2004;16:69–79.
101. Zhai J, Liu J, Liu B, et al. Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 2008;6:e302.
102. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001;15:188–200.
103. Zhang Y, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 2006;126:1189–201.