Extensions of the quantum Fano inequality

Naresh Sharma
Tata Institute of Fundamental Research
Mumbai 400 005, India
nsharma@tifr.res.in

October 26, 2018

Abstract

Quantum Fano inequality (QFI) in quantum information theory provides an upper bound to the entropy exchange by a function of the entanglement fidelity. We give various Fano-like upper bounds to the entropy exchange and QFI is a special case of these bounds. These bounds also give an alternate derivation of the QFI.

1 Introduction

Classical Fano inequality (CFI) in classical information theory provides an upper bound to the conditional entropy of two correlated random variables say X and Y. Suppose we wish to obtain an estimate of X when Y is known. To get an estimate of X, we compute a function of Y, denoted by \hat{X}. Let n be the cardinality of the set from which X takes values. CFI upper bounds the conditional Shannon entropy of X given Y, denoted by $H_S(X|Y)$, by a function of the probability of success defined as

$$P_s = \Pr\{\hat{X} = X\} \quad (1)$$

(see p. 37 in [1]) and is given by

$$H_S(X|Y) \leq H(P_s) + (1 - P_s) \ln(n - 1), \quad (2)$$

where

$$H(x) = -x \ln(x) - (1 - x) \ln(1 - x) \quad (3)$$

is the binary entropy function. CFI is useful in proving the converse to the Shannon’s noisy channel coding theorem (see p. 206 in Ref. [1]).

QFI provides an upper bound to the entropy exchange by a function of the entanglement fidelity, and the function is similar to the function of success used in the CFI.

More specifically, let R and Q be two quantum systems described by a Hilbert space \mathcal{H}_Q of finite dimension d, where $d \geq 2$. The joint system RQ is initially prepared in a pure entangled state

$$|\psi^{RQ}\rangle = \sum_{k=1}^{d} \sqrt{\lambda_k} |k^R\rangle |k^Q\rangle, \quad (4)$$
where $\lambda = [\lambda_1 \cdots \lambda_d]$ is a probability vector, i.e., $\lambda_k \geq 0$, $\sum_{k=1}^d \lambda_k = 1$, $\{|k^R\rangle\}$ and $\{|k^Q\rangle\}$, $k = 1, \ldots, d$, are two orthonormal bases for \mathcal{H}_Q. $|\psi^{RQ}\rangle$ is a purification of ρ, the state of system Q, and

$$\rho = \text{Tr}_R(|\psi^{RQ}\rangle\langle\psi^{RQ}|) = \sum_{k=1}^d \lambda_k |k^Q\rangle\langle k^Q|.$$ \hfill (5)

The system Q undergoes a completely positive trace-preserving transformation or quantum operation E and R is assumed to be isolated and its state remains the same. This quantum operation is also represented by $I_R \otimes E$, where I_R is the identity superoperator on R. We add subscript “1” to denote the state of the system (joint or otherwise) after this quantum operation. So the state of the joint system is denoted by ρ_{R1Q1}. Note that $\rho_{Q1} = E(\rho)$ and $\rho_{R1} = \rho_R$.

The entanglement fidelity is defined by Schumacher \cite{2} as

$$F(\rho, E) = \langle \psi^{RQ}| \rho_{R1Q1} | \psi^{RQ}\rangle$$ \hfill (6)

and the entropy exchange as

$$S(\rho, E) = S(\rho_{R1Q1}),$$ \hfill (7)

where $S(\rho_{R1Q1})$ is the von-Neumann entropy of ρ_{R1Q1}. The QFI upper bounds $S(\rho, E)$ by a function of the entanglement fidelity as \cite{2}

$$S(\rho, E) \leq H(F(\rho, E)) + (1 - F(\rho, E)) \ln (d^2 - 1).$$ \hfill (8)

More details on the QFI can be found in Ref. \cite{2}, p. 563 in Ref. \cite{3}, p. 222 in Ref. \cite{4}.

Generalization of the CFI was provided by Han and Verdú \cite{5}, where various lower bounds to the mutual information are given.

In this paper, we give extensions of the QFI and give various Fano-like upper bounds to $S(\rho, E)$. One of the bounds that we derive for any probability vector $\gamma = [\gamma_1 \cdots \gamma_d]$ is

$$S(\rho, E) \leq H(F(\rho, E)) + \ln \left(\sum_{i=1}^d \lambda_i \gamma_i \right) + (1 - F(\rho, E)) \ln \left(\frac{d}{\sum_{i=1}^d \lambda_i \gamma_i} - 1 \right) - \sum_{k=1}^d \lambda_k \ln(\gamma_k),$$ \hfill (9)

where using Eq. \cite{5}, λ_i, $i = 1, \ldots, d$, are the eigenvalues of ρ. It is easy to see that Eq. \cite{8} is a special case of Eq. \cite{9} by substituting $\gamma_i = 1/d$, $i = 1, \ldots, d$. Our approach also gives an alternate derivation of the QFI.

2 Extensions of the Quantum Fano inequality

Let R_2, Q_2 be two ancilla quantum systems, possibly entangled, described by \mathcal{H}_Q. The joint system R_2Q_2 is described by $\mathcal{H}_{RQ} = \mathcal{H}_Q \otimes \mathcal{H}_Q$, and let $\{|k^{RQ}\rangle\}$ be an orthonormal basis for \mathcal{H}_{RQ}, and we define a set of projectors as

$$P_k = |k^{RQ}\rangle\langle k^{RQ}|,$$ \hfill (10)

where we have chosen

$$|1^{RQ}\rangle = |\psi^{RQ}\rangle,$$ \hfill (11)

and the entropy exchange as

$$S(\rho, E) = S(\rho_{R1Q1}),$$ \hfill (7)

where $S(\rho_{R1Q1})$ is the von-Neumann entropy of ρ_{R1Q1}. The QFI upper bounds $S(\rho, E)$ by a function of the entanglement fidelity as \cite{2}

$$S(\rho, E) \leq H(F(\rho, E)) + (1 - F(\rho, E)) \ln (d^2 - 1).$$ \hfill (8)

More details on the QFI can be found in Ref. \cite{2}, p. 563 in Ref. \cite{3}, p. 222 in Ref. \cite{4}.

Generalization of the CFI was provided by Han and Verdú \cite{5}, where various lower bounds to the mutual information are given.

In this paper, we give extensions of the QFI and give various Fano-like upper bounds to $S(\rho, E)$. One of the bounds that we derive for any probability vector $\gamma = [\gamma_1 \cdots \gamma_d]$ is

$$S(\rho, E) \leq H(F(\rho, E)) + \ln \left(\sum_{i=1}^d \lambda_i \gamma_i \right) + (1 - F(\rho, E)) \ln \left(\frac{d}{\sum_{i=1}^d \lambda_i \gamma_i} - 1 \right) - \sum_{k=1}^d \lambda_k \ln(\gamma_k),$$ \hfill (9)

where using Eq. \cite{5}, λ_i, $i = 1, \ldots, d$, are the eigenvalues of ρ. It is easy to see that Eq. \cite{8} is a special case of Eq. \cite{9} by substituting $\gamma_i = 1/d$, $i = 1, \ldots, d$. Our approach also gives an alternate derivation of the QFI.
and \(I^{RQ} \) is the \(d^2 \times d^2 \) identity matrix. Then

\[
S(\rho, E) = S(\rho^{R_1Q_1})
= -S(\rho^{R_1Q_1}||\rho^{R_2Q_2}) - \text{Tr}(\rho^{R_1Q_1} \ln(\rho^{R_2Q_2}))
\leq -S \left(\sum_{k=1}^{d^2} P_k \rho^{R_1Q_1} P_k \left| \sum_{k=1}^{d^2} P_k \rho^{R_2Q_2} P_k \right) - \text{Tr}(\rho^{R_1Q_1} \ln(\rho^{R_2Q_2})) \right)
= -D(p||q) - \text{Tr}(\rho^{R_1Q_1} \ln(\rho^{R_2Q_2})),
\]

where

\[
S(\rho||\sigma) = \text{Tr}(\rho \ln(\rho)) - \text{Tr}(\rho \ln(\sigma))
\]

is the quantum relative entropy, in Eq. (14) we have used the fact that a trace-preserving completely positive transformation reduces the quantum relative entropy (see Refs. [6, 7], p. 47 in Ref. [8]),

\[
p = [p_1 \cdots p_{d^2}],
q = [q_1 \cdots q_{d^2}],
p_k = \langle k^{RQ}|\rho^{R_1Q_1}|k^{RQ} \rangle,
q_k = \langle k^{RQ}|\rho^{R_2Q_2}|k^{RQ} \rangle,
\]

and \(D(\cdots||\cdots) \) is the classical relative entropy given by

\[
D(p||q) = \sum_{k=1}^{d^2} p_k \ln \left(\frac{p_k}{q_k} \right).
\]

Let

\[
g(p, q) = D \{ [p, (1-p)] || [q, (1-q)] \}.
\]

Then

\[
D(p||q) - g(p_1, q_1) = \sum_{k=2}^{d^2} p_k \ln \left(\frac{p_k}{q_k} \right) - (1-p_1) \ln \left(\frac{1-p_1}{1-q_1} \right)
= \sum_{k=2}^{d^2} p_k \ln \left(\frac{p_k(1-q_1)}{q_k(1-p_1)} \right)
\geq \sum_{k=2}^{d^2} p_k \left(1 - \frac{q_k(1-p_1)}{p_k(1-q_1)} \right)
= 0,
\]

where in Eq. (25), we have used the fact that for \(x > 0 \), \(\ln(x) \geq 1 - 1/x \), with equality if and only if \(x = 1 \). Hence, the equality condition for Eq. (26) is

\[
\frac{q_k}{p_k} = \frac{1-q_1}{1-p_1}, \quad k = 2, \cdots, d.
\]
More general lower bounds to the classical relative entropy are given by Blahut in Ref. [9]. Substituting Eq. (26) into Eq. (15), we get

\[
S(\rho, \mathcal{E}) \leq -g \left[F(\rho, \mathcal{E}), q_1 \right] - \text{Tr} \left[\rho^{R_1Q_1} \ln(\rho^{R_2Q_2}) \right],
\]

(28)

where we have used the fact that \(p_1 = F(\rho, \mathcal{E}) \). There are different choices of the \(\rho^{R_2Q_2} \) possible to give different upper bounds on \(S(\rho, \mathcal{E}) \). We consider a few such choices below.

3 Special Cases

Let

\[
\rho^{R_2Q_2} = \sum_{k=1}^d \gamma_k |k^R\rangle \langle k^R| \otimes \rho^{Q_2},
\]

(29)

where \(\gamma = [\gamma_1 \cdots \gamma_d] \) is a probability vector, and we have not yet specified the state \(\rho^{Q_2} \). This choice yields

\[
q_1 = \sum_{i,j,k=1}^d \sqrt{\lambda_i \lambda_j} \gamma_k \langle i^Q | \langle i^Q \rangle (|k^R \rangle \langle k^R| \otimes \rho^{Q_2}) |j^R\rangle |j^Q \rangle
\]

\[
= \sum_{i,j,k=1}^d \sqrt{\lambda_i \lambda_j} \gamma_k \delta_{i,k} \delta_{j,k} \langle i^Q | \rho^{Q_2} | j^Q \rangle
\]

\[
= \sum_{k=1}^d \gamma_k \lambda_k \langle k^Q \rho^{Q_2} | k^Q \rangle,
\]

(30)

(31)

(32)

where \(\delta_{i,k} = 1 \) if \(i = k \) and is zero otherwise. Using Eq. (28), we get

\[
S(\rho, \mathcal{E}) \leq -g(F(\rho, \mathcal{E}), q_1) - \sum_{k=1}^d \lambda_k \ln(\gamma_k) - \text{Tr} \left(\mathcal{E}(\rho) \ln(\rho^{Q_2}) \right),
\]

(33)

where we have used \(\rho^{Q_1} = \mathcal{E}(\rho) \). Again, different choices of \(\rho^{Q_2} \) are possible. Let us consider

\[
\rho^{Q_2} = \sum_{k=1}^d \xi_k |k^Q\rangle \langle k^Q|,
\]

(34)

where \(\xi = [\xi_1 \cdots \xi_d] \) is a probability vector. With this choice and noting that

\[
- \text{Tr} \left[\mathcal{E}(\rho) \ln(\rho^{Q_2}) \right] = - \sum_k \ln(\xi_k) \langle k^Q \mathcal{E}(\rho) |k^Q \rangle
\]

\[
\leq - \ln(\min_i \{\xi_i\}).
\]

(35)

(36)
Eq. (33) reduces to
\[
S(\rho, \mathcal{E}) \leq -g \left(F(\rho, \mathcal{E}), \sum_{k=1}^{d} \lambda_k \gamma_k \xi_k \right) - \sum_{k=1}^{d} \lambda_k \ln(\gamma_k) - \ln(\min_i \{\xi_i\}) \tag{37}
\]
\[
= H(F(\rho, \mathcal{E})) + \ln \left(\frac{\sum_{i=1}^{d} \lambda_i \gamma_i \xi_i}{\min_i \{\xi_i\}} \right) + (1 - F(\rho, \mathcal{E})) \ln \left(\frac{1}{\sum_{i=1}^{d} \lambda_i \gamma_i \xi_i} - 1 \right) - \sum_{k=1}^{d} \lambda_k \ln(\gamma_k), \tag{38}
\]
where \(H(\cdots)\) is given by Eq. (3).

The QFI follows as a special case by substituting \(\gamma_k = \xi_k = 1/d, k = 1, \ldots, d\). Note that the above inequality holds for any probability vectors \(\gamma\) and \(\xi\). We get the following simpler bound than Eq. (38) by choosing \(\xi_k = 1/d, k = 1, \ldots, d\),
\[
S(\rho, \mathcal{E}) \leq H(F(\rho, \mathcal{E})) + \ln \left(\sum_{i=1}^{d} \lambda_i \gamma_i \right) + (1 - F(\rho, \mathcal{E})) \ln \left(\frac{d}{\sum_{i=1}^{d} \lambda_i \gamma_i} - 1 \right) - \sum_{k=1}^{d} \lambda_k \ln(\gamma_k). \tag{39}
\]
Eqs. (28), (33), (38), and (39) are various Fano-like bounds that can be made tighter by appropriately choosing \(\rho^{R_2Q_2}, \{\gamma, \rho^{Q_2}\}, \{\gamma, \xi\}, \) and \(\gamma\) respectively.

It might seem that one could get away from the dependence of the bounds on \(\lambda\) by making the following choice of \(\rho^{R_2Q_2}\), which is different from Eq. (29). Let \(\beta_k, k = 1, \ldots, d^2\), be the eigenvalues of \(\rho^{R_2Q_2}\) and \(|\psi^{RQ}\rangle\) be one of the eigenvectors of \(\rho^{R_2Q_2}\). Let \(\beta_{\max} = \max_k \beta_k, \beta_{\min} = \min_k \beta_k\). Since the maximum of \(g(F, x), x \in [\beta_{\min}, \beta_{\max}]\) occurs at the end-points, hence to make the bound tighter, one could choose the eigenvalue corresponding to the eigenvector \(|\psi^{RQ}\rangle\) as either \(\beta_{\min}\) or \(\beta_{\max}\). The bound in Eq. (28) can be simplified to
\[
S(\rho, \mathcal{E}) \leq -g(F(\rho, \mathcal{E}), q_1) - \ln(\beta_{\min}), \tag{40}
\]
where \(q_1 = \beta_{\max}\) or \(q_1 = \beta_{\min}\). Suppose \(q_1 = \beta_{\max}\), then to tighten the bound, one could choose \(\beta_{\min}\) as large as possible, or
\[
\beta_{\min} = \frac{1 - \beta_{\max}}{d^2 - 1}. \tag{41}
\]
Substituting in Eq. (40), we get
\[
S(\rho, \mathcal{E}) \leq H(F(\rho, \mathcal{E})) - F(\rho, \mathcal{E}) \ln \left(\frac{1}{\beta_{\max}} - 1 \right) + \ln(d^2 - 1). \tag{42}
\]
We get the tightest bound by choosing minimum value of \(\beta_{\max}\) given by \(\beta_{\max} = 1/d^2\), which reduces Eq. (42) to the QFI.

If \(q_1 = \beta_{\min}\), then Eq. (40) reduces to
\[
S(\rho, \mathcal{E}) \leq H(F(\rho, \mathcal{E})) + [1 - F(\rho, \mathcal{E})] \ln \left(\frac{1}{\beta_{\min}} - 1 \right). \tag{43}
\]
We get the tightest bound by choosing maximum value of \(\beta_{\min}\) given by \(\beta_{\min} = 1/d^2\), which reduces Eq. (43) to the QFI. Hence, this choice of \(\rho^{R_2Q_2}\) offers no improvement over the QFI.
4 An Example

We compute the QFI and the proposed inequality in Eq. (39) for the depolarizing channel for a single qubit \((d = 2)\) given by

\[
\mathcal{E}(\rho) = \left(1 - \frac{3p}{4}\right)\rho + \frac{p}{4}(X\rho X + Y\rho Y + Z\rho Z),
\]

where \(X, Y, Z\) are Pauli matrices. Let

\[
\rho = U \begin{pmatrix} \lambda & 0 \\ 0 & 1 - \lambda \end{pmatrix} U^\dagger,
\]

where \(U\) is a randomly chosen \(2 \times 2\) Unitary matrix. It is easy to show that for any choice of \(U\)

\[
F(\rho, \mathcal{E}) = 1 + p\left(\lambda^2 - \lambda - \frac{1}{2}\right),
\]

\[
S(\rho, \mathcal{E}) = H_S(\hat{\lambda}),
\]

where \(H_S(\cdots)\) is the Shannon entropy, \(\hat{\lambda} = [p\lambda/2, (1 - \lambda)p/2, -p/4 + 1/2 + \theta/4, -p/4 + 1/2 - \theta/4]\), and

\[
\theta = \sqrt{p^2 + 12p^2\lambda(1 - \lambda) + 4(1 - p) - 16p\lambda(1 - \lambda)}.
\]

In Fig. 1 we compare \(S(\rho, \mathcal{E})\) with the QFI and the inequality in Eq. (39) numerically optimized over \(\gamma\) to give the tightest bound for \(\lambda = 0.1\). The figure shows that the latter bound is tighter than the QFI. In Fig. 2 we plot the numerically computed value of \(\gamma_1\) that gives the tightest bound in Eq. (39). The QFI corresponds to \(\gamma_1 = 1/d = 0.5\).
References

[1] T. M. Cover and J. A. Thomas. *Elements of Information Theory*. Wiley, Hoboken, NJ, USA, 2nd edition, 2006.

[2] B. Schumacher. Sending entanglement through noisy quantum channels. *Phys. Rev. A*, 54:2614–2628, Oct. 1996.

[3] M. A. Nielsen and I. L. Chuang. *Quantum Computation and Quantum Information*. Cambridge University Press, Cambridge, 2000.

[4] M. Hayashi. *Quantum Information: An Introduction*. Springer, 2006.

[5] T. S. Han and S. Verdú. Generalizing the Fano inequality. *IEEE Trans. Inf. Theory*, 40:1247–1251, July 1994.

[6] G. Lindblad. Completely positive maps and entropy inequalities. *Commun. Math. Phys.*, 40:147–151, June 1975.

[7] A. Uhlmann. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. *Commun. Math. Phys.*, 54:21–32, Feb. 1977.

[8] M. Ohya and D. Petz. *Quantum Entropy and its use*. Springer-Verlag, Berlin, 1st edition, 1993.

[9] R. E. Blahut. Information bounds of the Fano-Kullback type. *IEEE Trans. Inf. Theory*, 22:410–421, July 1976.

Figure 1: Plots of $S(\rho, E)$, the tightest bound from Eq. (39), and the QFI.
Figure 2: γ_1 that gives the tightest bound in Eq. (39).