Materials Research Express

PAPER

Evolution of texture and precipitates in Al–Cu–Li alloy during deformation and heat treatment and its effect on anisotropy

Shengli Yang, Lele Liu, Fuyang Gao, Zhe Xu, Dejun Song and Peng Jiang
Luoyang Ship Material Research Institute, Luoyang, 471039, Henan, People’s Republic of China
E-mail: yangshengli37@126.com

Keywords: Al–Cu–Li alloys, rolling, texture, precipitates, anisotropy

Abstract

Al–Li alloy offers a great advantage over traditional alloys and it is the ideal material for today’s aerospace industry. Therefore, here we examined the Al–Cu–Li alloy as the third generation of Al–Li alloy. Deformation and heat treatment on the texture and precipitate type and distribution of Al–Cu–Li alloy were studied by mechanical properties test, XRD, and TEM analysis. The effect of texture and precipitate on the plane anisotropy of yield strength was discussed. The results showed that Brass texture was mainly formed in the deformation process. On the one hand, increase the pass deformation or cross rolling, the total volume fraction of the texture (S{1 1 2} {6 3 4}, G{0 1 1} {1 0 0}, {0 1 1} {0 1 1}) was increased, which lowered the sheet anisotropy. While on the other hand, the δ′ phase precipitated rapidly during solution treatment and easily caused a coplanar slip, increasing plane anisotropy. However, owing to the difference distribution of the aged precipitated T1 on the two group of [1 1 1] habit plane, the strengthening effect of the Al–Cu–Li alloy sheet was weak at 45° direction, but stronger at the rolling direction (0°) and transverse direction (90°).

1. Introduction

Compared with traditional 2xxx and 7xxx aluminum alloys, Al–Li alloy is blessed with astonishing properties including its low density, high elastic modulus, high specific strength and stiffness, and good resistance against damage [1–5]. It is one of the most ideal structural materials for the modern aerospace industry [6, 7]. The current research is mainly on the Al Cu Li alloy which is the third generation of Al–Li alloy. Although its properties are superior to the previous generations, it still exhibits anisotropy. Anisotropic behavior is the most critical shortcoming in the Al–Li alloy because it has a critical negative effect on the final product quality and causes various problems, such as earing [8]. The crystallographic texture is one of the key factors affecting the anisotropy of mechanical properties, particularly the yield strength anisotropy [9–11]. Besides the grain size, morphology, and distribution of precipitates, the orientation relationship between precipitates and matrix is another significant aspect influencing the anisotropy of mechanical properties for Al–Cu–Li alloy [12–14]. Previous findings revealed that the strong brass texture is easier to develop in the hot deformation Al–Li alloy sheet than other aluminum alloys, which boosts the anisotropy of mechanical properties [15–19]. Recently, some studies reported that the effect of crystallographic texture, pre-stretching before artificial ageing, precipitates on the anisotropic degree [20]. Engler [21] and Vasudevan [22] examined that the texture evolution is related to δ′ phase (Al3Li), T1 phase (Al2CuLi), and T2 phase (Al6CuLi3) in Al–Li alloy. The plane slip produced by δ′ phase is the reason for the development of a strong brass texture. However, the literature is not sufficient on the evolution of texture, precipitates, and their effect on anisotropy during rolling and heat treatment of the third generation Al–Li alloy. T Dorin [23] quantitative analyzed the T1 phase (Al3CuLi) morphology and strengthening mechanism in an age-hardenable Al–Cu–Li alloy. Z Ye [24] studied the effect of the T6 and T8 treatment on the T1 phase, δ′ phase precipitation state, and mechanical properties. J Sun et al [25–27] systematically studied the mechanical properties and microstructure evolution of the Al–Cu–Li alloy under T6 or T8 condition. And J Sun [25] analyzed the effect texture and T1 (Al3CuLi) phases distributed on strength of the
alloy. X Wang [28] examined that effects of coarse T1 (Al2CuLi) phase on the hot deformation behavior of Al–Li alloy. The morphology of main precipitates such as δ′ phase (Al3Li) [29–31], θ′ phase (Al2Cu) [32–34] and T1 phase (Al2CuLi) [35–37] in Al–Cu–Li alloy and their habitual relationship with matrix reflected a clear understanding, which provides a basis for in-depth analysis of texture, precipitation evolution and its effect on the anisotropy of mechanical properties of the alloy during hot working and heat treatment.

The leading goal of this research is to assess the effects of rolling and heat treatment processes on the texture, type, and distribution of precipitates of alloy sheets, and explore the effects of texture and precipitates on the plane anisotropy of the yield strength of alloy sheets, in order to provide a theoretical basis for the microstructure and anisotropy regulation of Al–Cu–Li alloys.

2. Materials and methods

The chemical composition of the alloy was: Cu 2.42, Li 1.49, Mn 0.28, Mg 0.032, Ti 0.026, Zr 0.092, Si 0.015, Al bal (mass fraction, %). The alloy ingot was homogenized at 460 °C for 20h followed by 525 °C for 24h in a resistance furnace to eliminate dendrite segregation. The plate rolling has consisted of two high irreversible rolling mills, the starting rolling temperature was 430 °C, and the plate was rolled from 40mm to 11mm. Three rolling processes were designed, as presented in table 1.

The heat treatment was carried out in a resistance furnace, and the temperature difference was controlled as ±2 °C. After Solution treatment (at 490 °C for 1.5 h and then water cooled), the rolled sheet followed by T6 (175 °C) and T8 (160 °C), in which the pre-deformation of T8 was 2%, 6%, and 8%, respectively. The texture was measured by an X-ray diffractometer with Co-Kα radiation and a Fe filter. The tube voltage was 35kV and the tube current was 20 mA. The three-pole diagrams {111}, {200} and {220}, and the corresponding ODF diagram and orientation distribution function were measured. The test plane was the center layer of the plate. The tensile examination was conducted on a universal testing machine at room temperature. The tensile properties were tested in three directions: 0° (rolling direction), 45° and 90° (transverse direction), and an

No.	Number of passes	Pass deformation	Reversing or not
A	4	20%~32%	No
B	8	10%~20%	No
C	4	20%~32%	Yes

Table 2. Tensile properties and anisotropy index of hot rolled plate.

Method	Direction	Rm (MPa)	Rp0.2 (MPa)	δ (%)	Deviation (Rp0.2)	IPA (Rp0.2)
A	0°	274	151	14.0	0.74	3.59
	45°	261	144	18.2	1.51	
	90°	270	147	16.6	1.01	
B	0°	303	199	14.6	0.90	4.37
	45°	290	189	13.9	0.36	
	90°	295	192	13.8	2.57	
C	0°	283	153	13.0	0.75	2.75
	45°	272	146	19.0	2.07	
	90°	282	151	15.3	1.04	

Table 3. Tensile properties and anisotropy index of solid solution quenched state plate.

Method	Direction	Rm (MPa)	Rp0.2 (MPa)	δ (%)	Deviation (Rp0.2)	IPA (Rp0.2)
A	0°	271	121	21.4	1.69	4.87
	45°	253	114	22.3	2.05	
	90°	262	117	23.3	1.49	
B	0°	272	126	19.7	1.59	5.41
	45°	251	117	23.7	1.24	
	90°	262	121	22.8	2.01	
C	0°	269	123	20.8	1.45	3.95
	45°	257	115	22.9	1.38	
	90°	271	125	17.4	0.50	
average of eight tested samples per state were taken. JEM-2010 high-resolution transmission electron microscope was used to observe the transmission. The transmission sample was sliced to 3 mm by wire cutting, then mechanically ground to 50–60 μm, and punched into a Φ3 mm disc. Later, the MTP-1 double jet electrolysis instrument was used for thinning and the parameters were set as: volume ratio of double jet liquid: HNO₃:CH₃OH = 1:3, thinning voltage: 20 mV, current: 50–60 mA, temperature: −35∼−30 °C.

3. Results and discussion

3.1. The evolution of yield strength anisotropy index in Al–Cu–Li alloy

The tensile properties and plane anisotropy index (IPA) of yield strength in Al–Cu–Li alloy after hot-rolling, solution treatment, and T6 treatment are shown in tables 2–4. IPA [38] was measured by the following equation:

$$IPA = \left(\frac{2X_{\text{max}} - X_{\text{mid}} - X_{\text{min}}}{2X_{\text{max}}} \right) \times 100\%$$

where X_{max}, X_{mid} and X_{min} are the maximum, middle and minimum of the three tested directions respectively.

Table 4 displays the tensile properties and yield strength plane anisotropy index of the sheet rolled by a process after T8 treatment. With the increase of pre-deformation from 2% to 8%, IPA($R_{p0.2}$) of the alloy increased from 2.64% to 6.01%.
3.2. The texture and microstructure evolution in Al–Cu–Li alloy

3.2.1. Texture evolution

To analyze the influence of rolling and heat treatment on the anisotropy of the alloy, metallographic structure and texture were investigated on the solid solution plates of different rolling processes, as shown in figures 2–4.
The ODF diagram and α, β grain orientation line distribution of hot rolled plates after solution quenching treatment are described in both figures. The difference between A, B, and C rolling processes are not visible clearly, as shown in figure 2. Figure 3 illustrates that the plates prepared by the A/B/C process mainly formed the Brass texture. Also, S[123]{634}, C[112]{111} texture and a small amount of G{011}{100} texture were formed in the A and B process, and a small amount of G texture and {011}{011} texture were formed in C process. Figure 4 indicates that increasing pass deformation (A) or reversing rolling (C) changes the orientation density of the main texture components of α and β grain orientation line. Moreover, the total volume fraction of the texture (S[123]{634}, G{011}{100}, {011}{011}) was increased, which greatly reduced the anisotropy of the sheet. This is one of the leading causes for the decline of the plane anisotropy index of yield strength.

Figure 4. Grain orientation distribution of Al–Cu–Li alloy after solution treatment under different hot deformation conditions: (a) A process; (b) B process; (c) C process.
3.2.2. Microstructure evolution

The alloy was hot rolled at 430 °C and immediately cooled down by water and the images were taken by TEM and are presented in figure 5. It can be seen from figure 5 that a large amount of T1 phase has been precipitated, and δ′ and θ′ phases were not present in larger amounts. The content of brass texture in a hot rolled plate of Al–Cu–Li alloy is closely related to the T1 phase \[39, 40\]. The precipitation of the T1 phase during hot deformation may cause the formation of brass texture.

Figures 6 and 7 are the TEM images and selected area electron diffraction in the Al–Cu–Li alloy after solution-treated at 490 °C for 1.5 h and aged at 175 °C for 48 h (T6 treatment). In figure 6 all T1 phase precipitated during hot rolling has been dissolved back to the alloy matrix, only δ′ phase precipitated in the solution-treated alloy. The δ′ phase and matrix have a low mismatch, about 0.08 ~ 0.3%, and the interfacial energy between them is about 14 mJm \(^{-2}\). Thus, the δ′ phase was precipitated easily in the solution stage due to the low mismatch and interfacial energy. However, the δ′ phase, which is coherent with the matrix, was sliced by dislocations and induces coplanar slip, which limits the deformation of the alloy to a few movable slip surfaces. The slip surfaces were softened and the anisotropy of the alloy plate was raised. After T6 treatment, a large number of T1 and θ′ phases precipitate as exhibited in figure 6, and thus consume a large number of Li atoms in the Al solid solution, which results in an increase in number density of δ′ precipitates. Compared with δ′ precipitates, T1 and θ′
Precipitates can impede the dislocation movement more efficiently, and exhibit a stronger strengthening effect. Thus the precipitation of the \(T_1, \theta' \) and \(\delta' \) phase results in the decrease of the coplanar slip compared with the solid-solution-treated alloy, reducing the anisotropy index of the alloy, as shown in tables 3 and 4.

Table 6. Schmid factor of \{111\} \langle 110 \rangle slip system only containing \{110\} \langle 112 \rangle texture.

Calssification of crystal planes	Slip plane	Slip direction	0°	45°	90°
Vertical plane	1–11	110	0	0	0
	011	-101	0.272	0.337	0.272
	-111	110	0	0.433	0
	0–11	-101	0	0.433	0
Inclined plane	111	1–10	0.272	0.096	0.272
	0–11	0.408	0.060	0	
	-101	0.136	0.036	0.272	
	11–1	1–10	0.272	0.096	0.272
	011	0.136	0.036	0.272	
	101	0.408	0.060	0	

Figure 8. TEM images of Al–Cu–Li alloys after T8 treatment: (a) 2% + 160 °C × 24 h; (b) 6% + 160 °C × 24 h; (c) 8% + 160 °C × 24 h; (d) Selected area electron diffraction, \(B = [\{110\}]_Al \).

Figure 9. Orientation relationship of between \{111\} and Brass texture (\{011\} \langle 211 \rangle).

precipitates can impede the dislocation movement more efficiently, and exhibit a stronger strengthening effect. Thus the precipitation of the \(T_1, \theta' \) and \(\delta' \) phase results in the decrease of the coplanar slip compared with the solid-solution-treated alloy, reducing the anisotropy index of the alloy, as shown in tables 3 and 4.
The results of TEM analysis of the plate prepared by a process after T8 treatment are demonstrated in figure 8. After T8 treatment, the strengthening phases were still δ', θ' and T1 phases, but T1 phase was the main strengthening phase. With the increase of pre-deformation, the size of the T1 phase gradually decreased, but the number and density were expanded, and the distribution becomes more dispersed. The number and distribution of T1 phase nucleation on the four $\{111\}$ planes depend on the density and distribution of dislocation defects [41, 42]. According to the difference of critical shear stress, four $\{111\}$ faces can be divided into two groups: 'Vertical plane' and 'Inclined plane', as shown in table 6. The two groups of $\{111\}$ planes exhibit large difference in dislocation distribution due to the pre-deformation before aging, which led to the discrepancy of the T1 phase on the four $\{111\}$ planes. The texture component of the three processes was mainly brass texture. If the only brass texture is assumed in Al–Cu–Li alloy, the relationship between $\{111\}$ four crystal planes and Brass texture is shown in figure 9 [43]. Two $\{111\}$ planes are perpendicular to the rolling surface, and the other two $\{111\}$ planes are at an angle of 35.3° with the rolling surface. This orientation relationship urged different $\{111\}$ faces to obtain inconsistent shear stress during the pre-deformation. The faces with higher shear stress have higher dislocation density and provided more nucleation sites for the T1 phase; on the contrary, the nucleation sites were less.

If there is only Brass texture in the plate, the Schmid factors of the slip systems at different orientations are displayed in table 6. The [111] plane inclined to the rolling plane achieved greater critical shear stress than the vertical plane, which causes the formation of a higher density T1 phase in the aging process of the inclined plane after pre-deformation. The higher the pre-deformation degree, the larger the T1 phase distribution difference on two groups of $\{111\}$ planes. T1 precipitates shown in figures 10(a), (c) (when the foil plane is parallel to rolling plane) can be regarded as the ones perpendicular to the rolling plane (designated as 'Vertical plane' type) and

T8 treatment	Vertical plane	Inclined plane	
2% + 160 °C × 24 h	T1 density	15	20
8% + 160 °C × 24 h	Length of T1 (nm)	220.2	87.4
	T1 density	26	41
	Length of T1 (nm)	94.7	78.5

Figure 10. TEM images of Al–Cu–Li alloys after T8 treatment: (a), (b) 2% + 160 °C × 24 h; (c), (d) 8% + 160 °C × 24 h; (a), (c) TEM foil plane parallel to rolling direction and (b), (d) TEM foil plane perpendicular to rolling direction.
those shown in figures 10(b), (d) (when the foil plane is perpendicular to rolling plane) as the ones inclined to rolling plane (designated as ‘Inclined plane’ type). As can be seen in figure 10 and table 7, there are large differences in the size and density of T1 precipitates between the ‘Vertical plane’ and ‘Inclined plane’ types. The density of T1 precipitate formed on the ‘inclined plane’ {111} planes is higher than that formed on the ‘Vertical plane’ {111} planes. It is indicated that the T1 precipitates exhibits a more uniformly distribution on the ‘inclined plane’ {111} planes.

In the process of stretching along the rolling direction (0°), the deformation is mainly concentrated on the inclined plane, and the high-density T1 phase precipitated on the inclined plane. T1 phase can effectively hinder the dislocation movement, resulting in relatively uniform deformation on the plane, and the transverse (90°) stretching also has a similar effect. However, when the stretching occurred along the 45° direction, the shear stress on the vertical {111} plane was higher than that on the inclined plane, and the deformation was concentrated on the vertical plane. Meanwhile, the T1 phase was the main barrier for the dislocation movement on the vertical {111} plane. But, due to the limited number of T1 phases on the vertical {111} plane, there was a coplanar slip. This also revealed that the strengthening effect of T1 is weaker in the 45° direction but stronger in the rolling direction (0°) and transverse direction (90°). As presented in table 5, the tensile strength was lower in the 45° direction, but higher in the 0° and 90° direction. With the rise of pre-deformation, the anisotropy index of yield strength was elevated.

4. Summary

In the current research work, we explored the evolution of texture and precipitates in Al–Cu–Li alloy sheets during different rolling processes (A/B/C) and heat treatment. The mechanism of the effect of texture and precipitation on the plane anisotropy of yield strength was assessed. The main findings of our study are as follows.

1. Increasing pass deformation (A) or cross rolling (C) changed the orientation density of main texture components of α and β grain orientation lines, and increased the total volume fraction of the texture (S {123} (634), G{011} (100), {011} (011)), which causes to decrease the sheet anisotropy.

2. A large amount of T1 phase was precipitated during hot rolling and δ′ phase precipitates rapidly during solution treatment. The δ′ phase was easily sliced by dislocation, which resulted in a coplanar slip and heightened the plane anisotropy of yield strength.

3. The T6 strengthening phase was mainly δ′, θ′ and T1 phase. The T8 strengthening phase was mainly the T1 phase, and the larger the amount of pre-deformation, the more conducive to the fine precipitation of the T1 phase. The discrepancy distribution of the T1 phase in two group of {111} habit plane causes the weak strengthening effect in 45° direction and the stronger in the 0° and 90° direction.

Acknowledgments

The present work is financially supported by the ‘Sponsored by Natural Science Foundation of Henan’) (Grant No.202300410005).

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Shengli Yang @ https://orcid.org/0000-0001-5569-8483

References

[1] Gupta R K, Niran N and Nagasireesha G 2019 Development and characterization of Al–Li alloys Mater. Sci. Eng. A 420 228–34
[2] Gao W L, Yan H, Feng Z H and Lu Z 2014 Effect of aging treatment on microstructure and mechanical properties of 2A97 Al–Li alloy T. Nonferr. Metal. Soc. 24 1206–11
[3] Vicente A P, Baptiste G, Frederic D G, Alexis D and Julie M C 2014 Microstructural evolution during ageing of Al–Cu–Li–X alloys Acta Mater 66 199–208
[4] Rojia R J 1998 Fabrication methods to manufacture isotropic Al–Li alloys and products for space and applications Mater. Sci. Eng. A 257 100–7
[5] Rojia R J and Liu J 2012 The evolution of Al–Li base products for aerospace and space applications Metall. Mater. Trans. A 43 3325–37
[6] Dursun T and Soutis C 2014 Recent developments in advanced aircraft aluminumalloys Mater Des. (1980–2015) 56 862–71
[7] Vanhill R J H and Bray G H 2014 Aerostuctural Design and Its Application to Aluminium–Lithium Alloys (Oxford: Butterworth-Heinemann, Elsevier Ltd) pp 27–38
[8] Roters F, Eisenlohr P, Hanterlli R, Tjahjanto D, Bieler T and Raabe D 2010 Overview on constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticityfinite-element modeling: theory, experiments, applications Acta Mater. 58 1152–211
[9] Hu W 2003 Characterized behavior and corresponding yield criterion of anisotropic sheet metal Mater. Sci. Eng. A 345 139–44
[10] Jata K V, Panchanadewaran S and Vassudevan A K 1998 Evolution of texture, microstructure and mechanical property anisotropy in an Al–Li–Cu alloy Mater. Sci. Eng. A 257 37–46
[11] Singh R K, Singh A K and Eswara Prasad N 2000 Textured and mechanical property anisotropy in an Al-Mg-Si-Cu alloy Mater. Sci. Eng. A 277 114–22
[12] Bois-Brochu A, Blais C and Tchitembo Goma F A 2016 Modelling of anisotropy for Al–Li 2099 T83 extrusion and effect of precipitate density Mater. Sci. Eng. A 673 581–6
[13] Gumbmann E, De Guenser F and Sigli C 2017 Influence of Mg, Ag and Zn minor solute addition on the precipitation kinetics and strengthening of an Al–Cu–Li alloy Acta Mater. 133 172–85
[14] Garmestani H et al 2002 Modeling the evolution of anisotropy in Al–Li–Cu alloys: application to Al–Li 2090–T8E41 Int. J. Plasticity 18 1373–93
[15] Contrepois Q, Maurice C and Driver J H 2010 Hot rolling textures of Al–Cu–Li and Al–Zn–Mg–Cu aeronautical alloys: experiments and simulations to high strains Mater. Sci. Eng. A 527 7305–12
[16] El-Aty A A, Xu Y, Shi H, Zhang Y and Ma D Y 2017 Experimental investigation of tensile properties and anisotropy of 1420, 8090 and 2060 Al–Li alloys sheet undergoing different strain rates and fibre orientation: a comparative study Proceeding 207 13–8
[17] Vanhill R and Bray G 2014 Aerostuctural Design and Its Application to Aluminium–Lithium Alloys. In Aluminium–Lithium Alloys: Processing, Properties, and Applications. ed E Prasad et al (Oxford: Butterworth-Heinemann, Elsevier Ltd) pp 28–56
[18] Srivatsan T, Lavermia E, Eswara Prasad N and Kutumbamaran V 2014 Quasi-Static Strength, Deformation, and Fracture Behavior of Aluminium-Lithium Alloys. In Aluminium–Lithium Alloys: Processing, Properties, and Applications. ed E Prasad et al (Oxford: Butterworth-Heinemann, Elsevier Ltd) pp 305–39
[19] Jata K V and Singh A K 2014 Texture and Its Effects on Properties in Aluminium-Lithium Alloys, In Aluminium-Lithium Alloys: Processing, Properties, and Applications, ed E Prasad et al (Oxford: Butterworth-Heinemann, Elsevier Ltd) pp 139–63
[20] El-Aty A A, Xu Y, Guo X, Zhang S, Ma Y and Chen D 2017 Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al–Li alloys: a review J. Adv. Res. 10 49–67
[21] Engler G and Lucke K 1991 Influence of the precipitation state on the cold-rolling texture in 8090 Al–Li material Mater. Sci. Eng. A 148 15–23
[22] Vassudevan A K, Przystupa M A and Fricker W G Jr 1996 Effect of composition on crystallographic texture in hot-rolled Al–Cu–Li alloys Mater. Sci. Eng. A 208 172–80
[23] Dorin T, Deschamps A, Geuser F D and Weyland M 2016 Quantitative description of the T1 morphology and strengthening mechanisms in an age-hardenable Al–Li–Cu alloy ICMA13 Pittsburgh 2016 (Manhattan: Wiley)
[24] Ye Z, Zhu K, Li J, Chen Y and Zhang X 2018 Microstructure and mechanical properties of a 2050 Al–Li alloy sheet Rare Met. Mater. Eng. 47 1192–8
[25] Sun J W et al 2020 Role of Cu on the mechanical properties and microstructures evolution of Al–xCu–1Li–0.4Mg–1Zn–0.1Zr alloys Mater. Sci. Eng. A 792 139833
[26] Li C et al 2020 Microstructure evolution and mechanical properties of Al–3.6Cu–1Li alloy via cryorolling and aging Trans. Nonferrous Met. Soc. China 30 2904–14
[27] Lv K et al 2019 Precipitation of T1 phase in 2198Al–Li alloy studied byatomic-resolution HAADF-STEM J. Mater. Res. 1361 1–10
[28] Wang X Y et al 2019 Effects of coarse Al3CuLi phase on the hot deformation behavior of Al–Li alloy J. Alloys Compd. 815 152469
[29] Poduri R and Chen L Q 1998 Computer simulation of morphological evolution and coarsening kinetics of Al3Li precipitation in Al–Li alloys Acta. Mater. 46 3915–28
[30] Meng P L, Chai Z G and Wang Y M 2000 The determination of the interfacial characteristics between 6H phase and matrix in 1420 alloy by SAXS J. Mater. Sci. Lett. 18 1387–8
[31] Sun L Y, Chen Z, Wang Y, Zhang J and Zhong H 2009 Microscopic phase-field simulation of antisite defect evolution of Al3Li phase Rare Metal Mat. Sci. 38 86–9
[32] Zhang S F, Zeng W D, Yang W H, Shi C L and Wang H J 2014 Ageing response of an Al–Cu–Li 2198 alloy Mater. Des. 63 368–74
[33] Jiang B, Cao F, Wang H, Yi D and Liu H 2019 Effect of ageing on the microstructure evolution and mechanical property in an Al–Li alloy sheet Mater. Sci. Eng. A 740 157–64
[34] Chen X, Ma X, Xi H, Zhao G and Xu X 2020 Effects of heat treatment on the microstructure and mechanical properties of extruded 2196 Al–Cu–Li alloy Mater. Des. 192 108746
[35] Donnadieu P, Shao Y, de Geuser F, Botton G A, Lazar S and Cheynet M 2011 Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADF-STEM imaging and small-angle x-ray scattering Acta Mater. 59 462–72
[36] Buchheit R G, Moran J P and Stoner G E 2012 Electrochemical behavior of the T1 (Al3CuLi) intermetallic compound and its role in localized corrosion of Al–2% Li–3% Cu alloys Corros. Houston Tex 50 120–30
[37] Noble B and Thompson G E 2013 T1 (Al3CuLi) precipitation in Aluminium–Copper–Lithium Alloys Met. Sci. 6 167–74
[38] Jata K V, Hopkins A K and Rojia R J 1996 The anisotropy and texture of Al–Li alloys Met. Sci. Forum 217 647–52
[39] Delacrcois J, Bulliere J Y, Fourny S, Danieliou A and Dean S W 2010 Effects of microstructure on the incipient fatigue and fretting crack processes in Al–Cu–Li alloy J. ASTM. Int. 7 3519–21
[40] Xie Y et al 2020 Effect of asymmetric rolling and subsequent ageing on the microstructure, texture and mechanical properties of the Al–Cu–Li alloy J. Alloy. Compd. 836 155445
[41] Cassada W A, Shiflet G J and Starke E A 1991 Mechanism of Al3CuLi (T1) nucleation and growth Metall. Mater. Trans. A 22 287–97
[42] Kim J D and Park J K 1993 Effect of stretching on the precipitation kinetics of an Al–2.0Li–2.8Cu–0.5Mg (−0.13Zr) alloy Metall. Mater. Trans. A 24 2613–21
[43] Wei Q L, Chen Z and Wang R X 2002 The contribution of T1 phase to the anisotropy of Al–Li alloy Nonferr. Metal. 54 4–8