‘Burgundy Lace’ Ornamental Hazelnut

Shawn A. Mehlenbacher¹, David C. Smith, and Rebecca L. McCluskey
Department of Horticulture, Oregon State University, 4017 Agricultural and Life Sciences Building, Corvallis, OR 97331

Additional index words. Corylus avellana, filbert, Anisogramma anomala, eastern filbert blight, cutleaf

Burgundy Lace is a new ornamental hazelnut (Corylus avellana) cultivar. It was released by the Oregon Agricultural Experiment Station in Apr. 2015. ‘Burgundy Lace’ combines the deeply dissected leaves of the cutleaf hazelnut with red leaf color and resistance to eastern filbert blight (EFB) incited by Anisogramma anomala. The tree has an upright-spreading growth habit that should be easy to manage in a landscape. The nuts are edible, although the size is smaller and yields lower than that in cultivars planted for nut production.

Origin

‘Burgundy Lace’, tested as OSU 954.076, resulted from a cross of OSU 562.034 × OSU 562.062 (Fig. 1) made in 1998 to create a new ornamental cultivar. The original cutleaf hazelnut is known as C. avellana f. heterophylla, for which the form names laciniiata, urticifolia, quercifolia, and incisa pinnatifida are also used (Kasapgil, 1972; Rehder, 1949). Until now, the cutleaf form appears to be represented by a single clone that was first described as C. urticifolia by Noisette in 1825 (Rehder, 1949) and was mentioned by (Goeschke, 1887) as ‘Geschiitzblattige Waldnuss’. Its leaves are smaller, more deeply lobed, and more sharply toothed than those of standard European cultivars. The cutleaf trait is recessive and controlled by a single locus (Mehlenbacher and Smith, 1995). OSU 562.034 is from a cross of ‘Cutleaf’ × VR6-28 and OSU 562.062 is from a cross of ‘Cutleaf’ × ‘Redleaf #3’. OSU 562.034 and VR6-28 carry a dominant allele from ‘Gasaway’ for a very high level of resistance to EFB (Mehlenbacher et al., 1991) incited by A. anomala. OSU 562.062 and ‘Redleaf #3’ carry a dominant allele for leaf anthocyanin in the heterozygous state. ‘Redleaf #3’ is an open-pollinated seedling of ‘Barcelona’; the pollen parent is believed to be the redleaf ‘Rode Zeller’ (syn. ‘Rote Zellermuss’), which was described by Beijerinck (1950). Hybrid seeds from the controlled cross were harvested in Aug. 1998, stratified, and the resulting seedlings grown in a glasshouse during the summer of 1999 using standard practices (Thompson et al., 1996). Seedlings that combined red leaf color and the cutleaf trait were preferred, and 38 of the 40 seedlings planted in the field in Oct. 1999 combined these two traits. The designation OSU 954.076 indicates the row and tree location of the original seedling. A single nut was observed on the original seedling in Sept. 2002 and a light crop was observed in Sept. 2003, but the nuts were not harvested. A light crop was again observed in 2004 and the nuts were harvested by hand, dried, and evaluated. Nuts were observed in subsequent years (2005–12) on the original seedling tree but were not harvested.

OSU 954.076 was propagated by tie-off layerage of the suckers of the original seedling in late June starting in 2005. The rooted layers from this first propagation were lined out in a nursery row the year after layerage, and two trees were planted in the guard row of a replicated yield trial in Spring 2007. The rooted layers from the second propagation (in 2006) were lined out in a nursery row in 2007 and one tree was planted in the guard row of a replicated yield trial in Spring 2008. The trials were located at the Smith Horticulture Research Farm in Corvallis, OR. Trees in the trial and guard rows were observed in the third to the seventh leaf. In 2013 and 2014, growers and nursery representatives were shown trees of OSU 954.076 and asked to comment on its suitability as a landscape plant. These comments supplemented the notes recorded by the hazelnut breeding program and led to its release as ‘Burgundy Lace’.

Description

Descriptions are based on plants 5–7 years old growing in the field. Descriptions of color for plant parts are based on comparison with the Royal Horticultural Society Color Chart, 1966 Edition (Royal Horticultural Society, 1966). Young leaves, upper and lower surfaces, are purple (RHS 187A). Leaves of ‘Burgundy Lace’ near the shoot terminals retain their purplish-red color in late summer (Fig. 2). Fully expanded leaves are light purple (RHS 183B) in spring and summer, but the color of older leaf blades fades to green (RHS 137A) as they age, and veins on the bottoms of the leaves remain purple (RHS 182B). In the fall, the leaf color changes to yellow, as do leaves of nut cultivars, although the veins on the lower leaf surface retain a slight purple color (RHS 182B). Average leaf length is ≈12 cm and average leaf width is ≈10 cm. The leaves are deeply serrated, as are those of ‘Cutleaf’ (Figs. 2 and 4). Catkin color before elongation is RHS 176B and female inflorescence style color is RHS 183B. Catkins and vegetative buds retain their dark purple color in late summer, fall, and winter.

Tree sizes in the trials and guard rows were estimated by measuring trunk diameters 30 cm above the soil line at the end of the seventh growing season, from which trunk cross-sectional area was calculated. Trees of ‘Burgundy Lace’ are moderately vigorous, similar in size to ‘Jefferson’ (Tables 1 and 3) whose size, in previous trials, was ≈70% of that of ‘Barcelona’. The upright-spreading growth habit of ‘Burgundy Lace’ trees (Fig. 3) should be easy to manage in a landscape setting. ‘Burgundy Lace’ and all selections of

Fig. 1. Pedigree of ‘Burgundy Lace’ ornamental hazelnut.
C. avellana naturally sucker from the base. These suckers need to be regularly removed if a tree form is desired.

Most nuts of ‘Burgundy Lace’ are borne in clusters of two, in husks about half as long as the nuts (Fig. 4). The nuts are slightly long and compressed. The husks open as they dry and ~98% of the nuts fall free of the husk at maturity. The shells of mature nuts are medium brown in color (RHS 166C) and have pubescence at the apical end. The harvest date is estimated to be 3 d before that of ‘Barcelona’ based on notes recorded at the time of hand-harvest in the two trials. In the 2007 trial, total nut yield per tree averaged 10.04 kg for ‘Burgundy Lace’, which is less than that of the other four cultivars (Table 1). Nut yield efficiency for ‘Burgundy Lace’ (0.122 kg·cm⁻²), which adjusts for differences in tree size, was similar to that of ‘Felix’ (0.133 kg·cm⁻²) and lower than that of ‘Jefferson’, ‘Santiam’, and ‘McDonald’. In the 2008 trial, total nut yield per tree was 11.39 kg for ‘Burgundy Lace’, which is more than that of ‘Eta’ (7.78 kg) but less than that of the other 13 genotypes (Table 3).

Table 1. Nut yield, trunk cross-sectional area (TCA), yield efficiency, and bud mite ratings of hazelnut cultivars in a trial planted in 2007, including two trees of Burgundy Lace in a guard row.

Cultivar	No. of trees	Nut yield per tree (kg)	TCAz (cm²)	Yield efficiency	Bud mite rating
Felix	4	0.06	1.04	2.91	7.93
Jefferson	4	0.55	1.97	5.63	4.60
McDonald	4	0.15	1.10	4.85	7.38
Santiam	4	0.20	1.11	4.09	5.46
Burgundy Lace	2	0.09	0.56	0.22	0.38

Table 2. Nut and kernel weight, kernel percentage, ratings for fiber and pellicle removal, and frequency of nut and kernel defects in hazelnut cultivars in a trial planted in 2007, including two trees of Burgundy Lace in a guard row.

Cultivar	No. of trees	Nut wt (g)	Kernel wt (g)	Kernel percentage	Fiber	Pellicle removalx	Good	Blanks	Brown stain	Moldy	Shriveling	Poor fill	Doubles	Black tips
Felix	4	2.71	1.37	50.8	3.0	2.2	88.9	4.2	0.2	0.4	0.2	1.1	0.3	0.4
Jefferson	4	3.76	1.67	44.5	3.0	4.3	80.1	4.3	0.3	0.4	0.3	0.4	0.3	0.3
McDonald	4	2.62	1.37	52.3	2.6	3.3	83.5	5.1	0.1	4.5	0.1	1.1	0.3	0.3
Santiam	4	2.28	1.15	50.6	3.0	4.2	68.8	2.8	0.1	1.8	0.1	0.1	0.1	0.1
Burgundy Lace	2	1.72	0.76	44.1	2.8	6.6	87.5	6.8	0.0	0.5	0.3	0.3	0.3	0.3

Table 3. Nut yield, trunk cross-sectional area (TCA), yield efficiency, and bud mite ratings of hazelnut cultivars in two trials planted in 2008, including one tree of Burgundy Lace in a guard row.

Cultivar	No. of trees	Nut yield per tree (kg)	TCAz (cm²)	Yield efficiency	Bud mite rating
EFB-resistant cultivars					
Eta	4	0.06	0.67	1.69	1.87
Gamma	4	0.15	0.78	3.31	5.13
Jefferson	4	0.22	2.65	4.79	5.88
Theta	4	0.04	1.24	4.00	4.91
Yamhill	4	0.22	2.83	4.79	6.81
Burgundy Lace	1	0.02	1.48	2.27	3.11

EFB-susceptible cultivars in an adjacent trial					
Barcelona	3	0.20	1.65	4.67	5.36
Clark	3	0.48	3.42	1.87	6.13
Lewis	3	0.37	3.35	2.21	7.64
Sacajawea	3	0.05	0.86	4.25	6.86

Table 3. Nut yield, trunk cross-sectional area (TCA), yield efficiency, and bud mite ratings of hazelnut cultivars in two trials planted in 2008, including one tree of Burgundy Lace in a guard row.

Cultivar	No. of trees	Nut yield per tree (kg)	TCAz (cm²)	Yield efficiency	Bud mite rating
EFB-resistant cultivars					
Eta	4	0.06	0.67	1.69	1.87
Gamma	4	0.15	0.78	3.31	5.13
Jefferson	4	0.22	2.65	4.79	5.88
Theta	4	0.04	1.24	4.00	4.91
Yamhill	4	0.22	2.83	4.79	6.81
Burgundy Lace	1	0.02	1.48	2.27	3.11

Fig. 2. Leaves and twigs of ‘Burgundy Lace’ hazelnut in early June.
in the trial. Although ‘Burgundy Lace’ would not be planted for nut production, its nuts show a very low frequency of defects (Tables 2 and 4). In the 2007 trial, nut weight was 1.72 g and kernel percentage 44%, fiber rating 2.8, and blanching rating 6.6, with 87.5% good nuts and very few defects. The kernels, raw or roasted, are not attractive.

The number of catkins was rated in the 2007 trial simultaneously with bud mite ratings on a scale of 1 (no catkins) to 5 (many catkins). Catkin ratings for ‘Burgundy Lace’ (3.7) and ‘Jefferson’ (3.7) were intermediate, and less than the ratings for ‘McDonald’ (4.2), ‘Santiam’ (4.1), and ‘Felix’ (3.9). Hazelnuts flower in midwinter, with few other plants. Catkins elongate in mid to late winter in response to warm temperatures, and because of their small size, ‘Burgundy Lace’ catkins would not constitute an attractive display in the garden. The catkins are purple (RHS 176B), but the pollen is yellow.

Incompatibility and Pollinizers

‘Burgundy Lace’ has incompatibility alleles S6 and S20 as determined by fluorescence microscopy. Both alleles are expressed in the females, but only S6 is expressed in the pollen because of dominance. The trees set a moderate number of catkins. The catkins are abnormal and small, slightly larger than those of ‘Cutleaf’, and shed little pollen. For practical purposes, ‘Burgundy Lace’ is male-sterile, although collection of a handful of catkins can give a trace of pollen.

Time of female receptivity and catkin elongation were observed weekly for 4 months in each of two winters, starting in Dec. 2012 and 2013. Female flower receptivity of ‘Burgundy Lace’ is late, 4 weeks later than ‘Barcelona’ and 1 week earlier than ‘Cutleaf’. Time of catkin elongation of ‘Burgundy Lace’ is also late, 3 weeks later than that of ‘Barcelona’ and 3 weeks earlier than that of ‘Cutleaf’. The date of leaf budbreak is 1 week later than that of ‘Cutleaf’ and 2.5 weeks later than that of ‘Barcelona’. Pollen of the following EFB-resistant cultivars is compatible on females of ‘Burgundy Lace’: ‘Yamhill’ (S8 S26), ‘Dorris’ (S1 S12), ‘McDonald’ (S2 S13), ‘Wepster’ (S1 S2), ‘York’ (S2 S13), ‘Gamma’ (S2 S10), ‘Jefferson’ (S1 S3), ‘Felix’ (S15 S21), and ‘Theta’ (S5 S15). By convention, alleles expressed in the pollen are underlined. Because females of ‘Burgundy Lace’ are receptive late in the season, the late-shedding pollinizers ‘Felix’ and ‘Theta’ would be most effective.

Pests and Diseases

In May 2012 and 2014, DNA was extracted from young leaves of ‘Burgundy Lace’ and several other selections and amplified with the polymerase chain reaction. Random amplified polymorphic DNA (RAPD) markers UBC 152800, UBC 268580, and AA12850 that are linked to the EFB resistance gene from ‘Gasaway’ (Mehlenbacher et al., 2004) are present in ‘Burgundy Lace’. No cankers were observed in the field in the two trials, although a heavily diseased orchard was located nearby.
EFB-resistant cultivars

Cultivar	No. of trees	Nut wt (g)	Kernel wt (g)	Kernel percentage	Fibera	Pellicle removala	Frequency (%)b
Eta	4	3.02	1.42	47.1	3.1	3.9	85.9
Gamma	4	2.41	1.24	51.7	3.0	6.4	78.8
Jefferson	4	3.65	1.65	45.2	2.9	4.5	75.6
Theta	4	2.27	1.15	50.5	2.2	2.6	89.1
Yamhill	4	2.36	1.11	47.3	1.4	5.1	76.0
Burgundy Lace	1	1.72	0.76	44.1	2.8	6.6	87.5
LSD (0.05)		0.09	0.03		0.8	0.2	3.6

EFB-susceptible cultivars in nearby trial

Cultivar	No. of trees	Nut wt (g)	Kernel wt (g)	Kernel percentage	Fibera	Pellicle removala	Frequency (%)b
Barcelona	3	3.89	1.71	44.0	2.5	4.3	68.3
Clark	3	2.47	1.24	50.0	2.6	3.1	73.1
Lewis	3	2.94	1.36	46.2	1.3	4.1	65.3
Sacajawea	3	2.81	1.46	51.9	1.3	3.1	82.7
LSD (0.05)		0.16	0.07		0.7	0.3	3.9

Notes:
aValues are means for years 4–7.
bAmount of fiber on the pellicle was rated from 1 (none) to 4 (much).
cPellicle removal (blanching) was rated from 1 (complete pellicle removal) to 7 (no pellicle removal).
LSD = least significant difference; EFB = eastern filbert blight.

Table 4. Nut and kernel weight, kernel percentage, ratings for fiber and pellicle removal, and frequency of nut and kernel defects in hazelnut cultivars in a trial planted in 2008, including one tree of Burgundy Lace in a guard row.

Availability

An application for a U.S. plant patent has been submitted for ‘Burgundy Lace’. Nurseries interested in propagating ‘Burgundy Lace’ should pursue a licensing agreement with Oregon State University’s Office for Plant Breeding. Vol. 3. Nuts. Wiley, New York.

Literature Cited

Beierinck, W. 1950. De Hazelnootenteelt (Hazel cultivation, in Dutch). Mededelingen Van de Tuinbouwvoorzichtigdienst No. 47, 71 p.
Goeschke, F. 1887. Die Haselnuss, ihre Arten und ihre Kultur (in German). Paul Parey, Berlin.
Kasapligil, B. 1972. A bibliography on Corylus (Betulaceae) with annotations. Annu. Rpt. Northern Nut Growers Assn. 63:107–162.
Mehlenbacher, S.A. and D.C. Smith. 1995. Inheritance of the cutleaf trait in hazelnut. HortScience 30:611–612.
Mehlenbacher, S.A., M.M. Thompson, and H.R. Cameron. 1991. Occurrence and inheritance of immunity to eastern filbert blight in ‘Gasaway’ hazelnut. HortScience 26:410–411.
Mehlenbacher, S.A., R.N. Brown, J.W. Davis, H. Chen, N.V. Bassil, D.C. Smith, and T.L. Kubisiak. 2004. RAPD markers linked to eastern filbert blight resistance in Corylus avellana. Theor. Appl. Genet. 108:651–656.
Rehder, A. 1949. Bibliography of cultivated trees and shrubs hardy in the cooler temperate regions of the northern hemisphere. Arnold Arboretum of Harvard Univ., Jamaica Plain, MA.
Royal Horticultural Society. 1966. RHS colour chart. Royal Hort. Soc., London, UK.
Thompson, M.M., H.B. Lagerstedt, and S.A. Mehlenbacher. 1996. Hazelnuts. p. 125–184. In: J. Janick and J.N. Moore (eds.). Fruit breeding. Vol. 3. Nuts. Wiley, New York.