Promoter methylation of tumor suppressor genes in esophageal squamous cell carcinoma

Ji-Sheng Li¹, Jian-Ming Ying², Xiu-Wen Wang¹, Zhao-Hui Wang³, Qian Tao³,⁴ and Li-Li Li³,⁴

Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and fatal cancer in China and other Asian countries. Epigenetic silencing of key tumor suppressor genes (TSGs) is critical to ESCC initiation and progression. Recently, many novel TSGs silenced by promoter methylation have been identified in ESCC, and these genes further serve as potential tumor markers for high-risk group stratification, early detection, and prognosis prediction. This review summarizes recent discoveries on aberrant promoter methylation of TSGs in ESCC, providing better understanding of the role of disrupted epigenetic regulation in tumorigenesis and insight into diagnostic and prognostic biomarkers for this malignancy.

Key words Tumor suppressor gene, CpG island, promoter methylation, esophageal squamous cell carcinoma, tumor marker

Esophageal cancer is the sixth most common cancer worldwide but has a unique geographic and ethnic distribution¹, with a higher incidence in Asia than in the West. In some endemic districts in northern and central China, its incidence exceeds 100 cases per 100,000 people per year, comprising 78% of annual new cases and 76% of annual deaths of total carcinoma cases⁵. Esophageal cancer has two main types with different etiologic and pathologic characteristics: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma⁶. Notably, ESCC is the predominant type and accounts for approximately 90% of esophageal cancer cases worldwide⁶. Although the overall effectiveness of surgical and medical treatments for ESCC has improved in recent years, its prognosis still remains poor, with a 5-year survival rate of less than 10% for the patients⁶. Thus, elucidating the molecular mechanisms of ESCC pathogenesis will help to identify specific tumor markers for early detection, risk assessment, and therapeutic targeting.

Both genetic and epigenetic alterations contribute to the initiation and progression of ESCC. Genetic abnormalities involved in ESCC tumorigenesis include chromosomal loss and gain, loss of heterozygosity (LOH), and gene amplification and mutation⁷. Recently, epigenetic disruptions, including promoter CpG island methylation of tumor suppressor genes (TSGs) and microRNA methylation⁸,⁹ have been recognized as key events in ESCC development. Here, we provide an overview of aberrant promoter methylation of critical TSGs in ESCC and the potential of these alterations as both tumor markers and therapeutic targets for ESCC.

TSGs Silenced by Promoter Methylation in ESCC

We briefly summarized the epigenetically silenced TSGs in ESCC according to their biological functions, such as apoptosis, cell cycle control, cell adhesion, and DNA repair (Table 1). Major functional groups are briefly reviewed below.

Cell cycle control genes

p16⁰⁰ⁱ⁶ and p14⁰⁰⁴⁶, transcripts of the cyclin-dependent kinase inhibitor 2A (CDKN2A) locus on chromosome 9p21, are two well-studied TSGs that are
Table 1. Summary of tumor suppressor genes (TSGs) silenced by promoter methylation in esophageal squamous cell carcinoma (ESCC)

Classification	Gene name	Full name	Location	Major functions	Reference(s)
Cell cycle control genes	CHFR	Checkpoint with forkhead and ring finger domains	12q24.33	Cell cycle control	[16]
	p14^{ras}/CDKN2A	Cyclin-dependent kinase inhibitor 2A	9p21	Stabilizing p53, cell cycle control	[11,19]
	CDKN2B	Cyclin-dependent kinase inhibitor 2B	9p21	Cell cycle control	[11]
	p16^{ras}/CDKN2A	Cyclin-dependent kinase inhibitor 2A	9p21	Cell cycle control	[11,19]
	RASSF1A	RAS association domain family 1A	3p21.3	Cell cycle control, apoptosis	[14]
Pro-apoptotic genes	DAPK	Death-associated protein kinase	9q34.1	Apoptosis	[19,67]
	RUNX3	Runt-related transcription factor 3	1p36	Transcription factor	[14,21,22]
	UCHL1	Ubiquitin carboxyl-terminal hydrolase L1	4p14	Cell growth inhibition, apoptosis	[23,24]
	ZNF382	Zinc finger protein 382	19q13.12	Pro-apoptotic transcription factor	[77]
Metastasis-antagonizing genes	CDH1	Cadherin 1, E-cadherin	16q22.1	Cell adhesion, proliferation, metastasis	[27–29]
	CDH11	Cadherin 11, OB-cadherin	16q21	Cell adhesion, proliferation, metastasis	[30]
	CDH13	Cadherin 13, H-cadherin	16q23.3	Cell adhesion, proliferation, metastasis	[31]
	CLDN3	Claudin 3	7q11.23	Cell-cell adhesion	[32]
	CLDN4	Claudin 4	7q11.23	Adhesion molecule	[33]
	DCC	Deleted in colorectal carcinoma	18q21.3	Cell adhesion, differentiation, apoptosis	[34]
	LRP1B	Low density lipoprotein receptor-related protein 1B	2q21.2	Migration	[35]
	PCDH10	Podocadherin	4q28.3	Cell-cell connection	[36]
	PCDH17	Podocadherin	13q21.1	Cell-cell connection	[37]
	TSLC1	Tumor suppressor in lung cancer 1	11q23.2	Cell adhesion	[38]
	UPK1A	Uroplakin 1A	19q13.13	Tetrascin cell surface receptor	[72]
DNA repair genes	FHIT	Fragile histidine triad	3p14.2	Cell cycle control, DNA-damage response	[53–55]
	MGMT	O6-methylguanine-DNA methyltransferase	10q26	DNA repair	[41–44]
	MLH1	Human mutL homolog 1	3p21.3	DNA repair, cell cycle control	[47–49]
	MSH2	Human mutS homolog 2	2p21	DNA mismatch repair, cell cycle control	[50]
Growth factor response-related genes	CRBP1	Retinol-binding protein 1, cellular	3p23	Retinol transport	[78]
	CRABP1	Cellular retinoic acid-binding protein	15q24	Differentiation and proliferation	[79]
	DAB2	Disabled homolog 2, mitogen-responsive phosphoprotein	5p13	Growth factor response, blocks Ras activity	[80]
	RARB	Retinoic acid receptor, beta	3p24	Cell growth and differentiation	[3,58–61]
	RARRES1	Retinoic acid receptor responder (tazarotene induced)	3p25.32	Retinoid signaling	[81]
	SOCS1	Suppressor of cytokine signaling 1	16p13.13	Negative regulator of JAK/STAT pathway	[78]
WNT signaling-related genes	APC	Adenomatous polyposis coli	5q21–q22	Cell polarity and chromosome segregation	[69]
	SFRP1	Secreted frizzled-related protein 1	8p11.21	Antagonist of WNT protein receptors	[19,82]
	SFRP2	Secreted frizzled-related protein 2	4q31.3	Antagonist of WNT protein receptors	[19]
	SDX17	SRY box 17	8q11.23	WNT antagonist	[83]
	WIF1	Wnt inhibitory factor 1	12q14.3	WNT-signaling pathway inhibitor	[84]
	WNT5A	Wingless-type MMTV integration site family, member 5A	3p21–p14	WNT-signaling pathway inhibitor	[85]
Other genes with tumor suppressive functions	ADAMTS9	ADAM metallopeptidase with thrombospondin type 1 motif, 9	3p14.1	Metallopeptidase activity	[86]
	ADAMTS18	ADAM metallopeptidase with thrombospondin type 1 motif, 18	16q23	Metallopeptidase activity	[87]
	BLU/ZMYND10	Zinc finger, MYND-type containing 10	3p21.3	Stress-response, transcription factor	[88]
	CACNA1G	Calcium channel, voltage-dependent, T type, alpha 1G subunit	17q22	Cell proliferation and cell death	[19]
	CDX2	Caudal type homeobox 2	13q12.3	Transcription factor activity	[89]

(To be continued)
inactivated by genetic or epigenetic alterations in multiple malignancies. In ESCC, p16INK4a was methylated in 40% – 61% of primary tumors and was less frequently inactivated due to homozygous deletion or mutation, whereas p14ARF was methylated at a low frequency (13% – 15%) and was mainly inactivated due to homozygous deletion. These results suggest that promoter methylation is the predominant mechanism for p16INK4a inactivation.

Table 1. Summary of tumor suppressor genes (TSGs) silenced by promoter methylation in esophageal squamous cell carcinoma (ESCC) (continued)

Classification	Gene name	Full name	Location	Major functions	Reference(s)
Other genes with tumor suppressive functions	CMTM3	CKLF-like MARVEL transmembrane domain containing 3	16q21	Chemokine activity	[90]
	CMTM5	CKLF-like MARVEL transmembrane domain containing 5	14q11.2	Chemokine activity	[91]
	DLEC1	Deleted in lung and esophageal cancer 1	3p22–p21.3	Signal transduction	[93]
	ECRG4	Esophageal cancer-related gene 4 protein	2q12.2	Unknown	[94]
	EDNRB	Endothelin receptor type B	13q22	G-protein-coupled receptor activity	[95]
	EMP3	Epithelial membrane protein 3	19q13.3	Unknown	[96]
	ENG	Endoglin	9q33–q34.1	Signal transduction	[97]
	GATA4	GATA-binding protein 4	8p23.1–p22	Zinc-finger transcription factor	[98]
	GATA5	GATA-binding protein 5	20q13.33	Zinc-finger transcription factor	[98]
	GPX3	Glutathione peroxidase 3	5q23	Catalyzes the reduction of hydrogen peroxide	[99]
	GSTP1	Glutathione S-transferase pi 1	11q13	Glutathione transferase activity	[100]
	HIN1/SCGB3A1	Secretoglobin, family 3A, member 1	5q35–qter	Signal transduction	[101]
	HLA-I	HLA class I	6p21.3	Immune response	[102]
	HLF	Helicase-like transcription factor	3q25.1–q26.1	Helicase and ATPase activities	[103]
	HOPX	HOP homeobox	4q12	Regulation of gene expression	[104]
	HSPB2	Heat shock 27kDa protein 2	11q22–q23	Heat shock protein activity	[105]
	ITGA4	Integrin, alpha 4	2q31.3	Cell communication, signal transduction	[29]
	IRF8	Interferon regulatory factor 8	16q24.1	Transcription factor activity	[106]
	MT1G	Metallothionein 1G	16q13	Cellular stress response	[32]
	MT3	Metallothionein 3	16q13	Growth inhibition	[107]
	NMDAR2B	Glutamate receptor, ionotropic, N-methyl D-aspartate 2B	12p12	Signal transduction	[70]
	NEFH	Neurofilament, heavy polypeptide	22q12.2	Cell growth and/or maintenance	[108]
	NELL1	NELL-like 1	11p15.1	Cell growth regulation and differentiation	[109]
	p300/EP300	E1A-binding protein p300	22q13.2	Transcription regulator activity	[110]
	PCAF/KAT2B	Klysine acetyltransferase 2B	3p24	Transcription regulator activity	[111]
	PLCD1	Phospholipase C, delta 1	3p22–p21.3	Phospholipase activity	[112]
	SST	Somatostatin	3q28	Somatostatin hormone	[113]
	TAC1	Tachykinin, precursor 1	7q21–q22	Tachykinin peptide hormone	[65]
	THSD1	Thrombospondin, type I, domain containing 1	13q14.3	Unknown	[71,114]
	TIMP3	TIMP metalloproteinase inhibitor 3	22q12.3	Metalloproteinase inhibitor	[71]
	TPEF/TMEFF2	Transmembrane protein with EGF-like and two follistatin-like domains 2	2q32.3	Transmembrane protein	[115]
	Trypsinogen 4	Trypsinogen 4	9p11.2	Proteolytic activity	[116]
	VHL	von Hippel-Lindau tumor suppressor	3p25	Ubiquitin ligase component	[117]

ADAM, disintegrin and metalloprotease domain; CKLF, chemokine-like factor; HLA, human leukocyte antigen; HOP, homeodomain-only protein; MVND, myeloid, Nervy, and DEAF-1; NEL, neural epidermal growth factor-like; SRY, sex-determining region Y; TIMP, tissue inhibitor of metalloproteinase 1.
inactivation but not p14ARF during ESCC pathogenesis [14]. As a gatekeeper for G1/S cell cycle progression, the RAS association domain family 1A (RASSF1A) gene is epigenetically inactivated in a broad spectrum of tumors [15]. In ESCC, RASSF1A was methylated in 51% of primary tumors, but rarely in matched non-cancerous tissues [16]. In addition, RASSF1A methylation was correlated with the clinical stage of ESCC [17]. Remarkably, the frequency of RASSF1A methylation in Chinese ESCC patients was relatively lower than that in Japanese ESCC patients [18], indicating that a possibly different mechanism is involved in RASSF1A methylation among these populations. Other cell cycle control genes silenced by promoter methylation have also been reported in ESCC, such as p15INK4b and checkpoint with forkhead and ring finger domains (CHFR) [11,16] (Table 1).

Pro-apoptotic genes

Death-associated protein kinase (DAPK), a gene that encodes a pro-apoptotic serine/threonine kinase, participates in various apoptotic pathways in response to tumor necrosis factor-α (TNF-α), Fas ligand, ceramide, tumor growth factor-β (TGF-β), arsenic trioxide, and detachment from the extracellular matrix [17,48]. Promoter methylation of DAPK was frequently detected in intraepithelial lesions and primary ESCC [19], but rarely in normal and non-neoplastic epithelia, suggesting a role of methylation-mediated DAPK silencing in ESCC progression.

The runt-related transcription factor 3 (RUNX3) gene encodes RUNX3, a pro-apoptotic factor in the TGF-β signaling pathway that is commonly silenced in a variety of human tumors [20]. In ESCC, RUNX3 silencing by promoter methylation [21] induced tumor progression and worsened patient prognosis [22]. As different frequencies of RUNX3 methylation were reported in ESCC, the precise CpG region at which the RUNX3 promoter is methylated for silencing needs to be further confirmed.

In addition, other novel methylated pro-apoptotic genes have been identified in ESCC. For instance, ubiquitin carboxyl-terminal hydrolase L1 (UCHL1), located on chromosome 4p14, can induce apoptosis through the intrinsic, caspase-dependent pathway [23]. Studies showed that UCHL1 was methylated in 40% of primary ESCCs but not in the paired adjacent non-tumor tissues [23]. Furthermore, UCHL1 methylation was correlated with regional lymph node metastasis [24]. These findings indicate that UCHL1 may serve as an independent prognostic factor for ESCC patient survival.

Metastasis-antagonizing genes

Cadherin 1 (CDH1), which encodes a transmembrane glycoprotein, is a classic TSG at 16q22.1 and acts as a key cell-cell adhesion molecule to maintain normal tissue architecture and inhibit tumor initiation [25]. The inactivation of CDH1 occurs at different stages of tumorigenesis, even at an early stage [26]. CDH1 silencing with promoter methylation was detected in 41%-80% of primary ESCCs, which is related with poor survival of patients with stage I and stage II ESCC [27,28]. Similarly, other genes related to cell adhesion silenced by promoter methylation, such as cadherin 11 (CDH11) [29], cadherin 13 (CDH13) [30], claudin 3 (CLDN3) [31], claudin 4 (CLDN4) [32], deleted in colorectal carcinoma (DCC) [33], low density lipoprotein receptor-related protein 1B (LRP1B) [34], protocadherin 10 (PCDH10) [35], and tumor suppressor in lung cancer 1 (TSLC1) [36], have already been determined to be involved in tumor invasion and metastasis of ESCC (Table 1).

DNA repair genes

The product of the O-6-methylguanine-DNA methyltransferase (MGMT) gene mediates a unique DNA repair pathway by removing methyl/alkyl groups from O-6-methylguanine (G) and thus protects cells from mutagenic and cytotoxic effects of alkylating agents [37]. MGMT was reported to be epigenetically silenced in about 30% of human cancers due to promoter methylation [38]. In ESCC, MGMT methylation was increased along with tumor progression [39]. Notably, MGMT methylation was associated with TP53 mutations [40] or the C677T polymorphism of 5,10-methylenetetrahydrofolate (MTHFR) in ESCC patients [41,44], suggesting a synergistic effect of both epigenetic and genetic mechanisms in ESCC pathogenesis.

Mismatch repair gene mutL homolog 1 (MLH1) was reported to be inactivated by genetic or epigenetic alterations in multiple human cancers [45,46]. Promoter methylation of MLH1, which reduced its protein expression level, was detected in 62% of ESCCs [47]. Interestingly, epigenetically silenced MLH1 was always associated with microsatellite instability in ESCC [46,47], indicating that MLH1 plays a critical role in ESCC progression. MSH2, another important DNA mismatch repair gene, was also silenced by promoter methylation in 32% of ESCCs but none of the matched normal tissues [35].

The fragile histidine triad (FHI) gene, located at 3p14.2 [48], plays an essential role in chromosomal abnormality and DNA damage [49]. FHI was methylated in 69% of ESCCs but not in the matched normal tissues, and this methylation was responsible for decreased FHI protein level [50]. Loss of FHI expression was usually observed at initial stages of ESCC [51] and thus might serve as an independent prognostic marker and as a marker for early detection of ESCC [52]. In addition, aberrant methylation of FHI can also be induced by nicotine [54], indicating its role in smoking-related ESCC tumorigenesis.
Growth factor response-related genes

Retinoids play an important role in growth arrest and apoptosis via binding to specific nuclear retinoid receptors, such as retinoic acid receptor β (RARβ) [67]. Loss of expression of RARβ, the gene encoding RARβ, was observed in 54% of ESCCs and 57% of dysplastic lesions [68], with no LOH detected [59]. Frequent promoter methylation of RARβ was detected in primary ESCC tumors (70%), dysplastic lesions (58%), and basal cell hyperplasia (43%) but rarely in normal tissues, and methylation was related with ESCC grade [60]. Moreover, RARβ expression could be reactivated by pharmacologic demethylation treatment [61]. These data suggest that RARβ silencing by promoter methylation is an early event in ESCC development.

Promoter Methylation of TSGs as Tumor Markers for ESCC

Detecting promoter methylation of TSGs has advantages compared to protein or RNA analysis. First, DNA can be released outside of the tumor mass and is more stable than RNA or protein, which makes DNA-based markers easier to obtain from distinct types of biological fluid (such as sputum, pancreatic juice, and urine), blood and tissues (including 10% formaldehyde-fixed samples) [62]. Second, PCR-based analyses of DNA methylation have relatively high sensitivity. For example, methylation-specific PCR is able to detect a single methylated allele among 1000 unmethylated alleles, even in the presence of an abundance of normal DNA [63]. Third, because DNA used for methylation analysis is chemically stabilized, sample handling requirements are not rigid [64]. Thus, DNA methylation assays can be exploited as potent noninvasive diagnostic methods for clinical applications.

Given the high mortality, early detection or diagnosis is essential for successful treatment of ESCC. Promoter methylation of multiple TSGs, including p16INK4a, p14ARF, FHIT, RARB, MGMT, and tachykinin1 (TAC1), was detected in precancerous basal cell hyperplasia or dysplastic lesions, indicating their early diagnostic values in ESCC [65,66,67]. Furthermore, a panel of four methylated genes, aryl-hydrocarbon receptor repressor (AHRR), p16INK4a, metallothionein 1G (MT1G), and CLDN3, was used to successfully screen esophageal balloon cytology samples with much better specificity and sensitivity compared with single-gene methylation [68]. Another panel of methylated genes, RARB, DAPK, CDH1, p16INK4a, and RASSF1A, had a diagnostic sensitivity of 82.2% and a specificity of 100% for ESCC in detecting serum DNA of ESCC patients [69]. These findings suggest that a cluster of methylated TSGs is more efficient for early detection of ESCC than single-gene methylation.

Since TNM staging has a limited capacity in assessing tumor prognosis, many studies have been performed to establish a reliable technique with which to predict prognosis in human cancers. Recently, the feasibility of TSG methylation as a predictor of clinical outcome after radical surgery has been studied in ESCC. For example, promoter methylation of CDH1 [39], FHIT [66], and integrin alpha 4 (ITGA4) [29] can be used to stratify patients with stage I and II ESCC. Promoter methylation of CDH1 [66] and ITGA4 [29] have been linked to tumor recurrence, and methylation of other genes including adenosomatous polyposis coli (APC) [60], N-methyl D-aspartate 2B (NMDAR2B) [65], tachykinin 1 (TAC1) [66], TIMP metalloproteinase inhibitor 3 (TIMP3) [71], UCHL1 [24], and uroplakin 1A (UPK1A) [72] have been linked to shorter survival.

Translational Applications of DNA Demethylation in ESCC Treatment

Epigenetic reagents intended to reactivate epigenetically silenced TSGs or tumor antigens are being tested for their anticancer effects. Nucleoside analogues 5-azacytidine (azacytidine) or 5-aza-2’-deoxycytidine (decitabine) can effectively reverse silencing of multiple TSGs by blocking the activity of DNA methyltransferase (DNMT) in tumor cells, thereby exhibiting significant tumor suppressive activity [72]. These drugs have been approved by the US Food and Drug Administration (FDA) for treating myelodysplastic syndrome, a pre-leukemia disease. Recently, several novel DNMT inhibitors have also been reported for future clinical use, such as 5-fluoro-2’-deoxycytidine (Zebularine), epigallocatechin-3-gallate (EGCG), and RG108 [64]. However, due to lack of specificity for target genes, more studies of demethylation therapy are currently being performed to prove the efficacy of this approach on solid tumors [74]. Although clinical trials using demethylation reagents have not been reported in ESCC yet, combining DNA demethylation agents with traditional chemotherapy drugs should be a promising prospect for ESCC treatment in future.

Conclusions

ESCC pathogenesis is a multistep process controlled by both genetic and epigenetic mechanisms. Silencing TSGs by promoter methylation plays essential roles in ESCC initiation and development. Numerous methylated genes have been identified in ESCC in recent years and thus provide new insights into the molecular mechanism...
of ESCC pathogenesis and expand the knowledge of tumor markers for clinical application. However, some issues remain to be solved in the future. For example, few methylated genes have been identified in ESCC by a single group, with the methylation frequency of some TSGs varying widely in different labs, probably due to different patient cohorts or detection methods[9]. With the use of genome-wide epigenomic approaches[9], the more reliable identification of methylated genes or gene panels might improve the early detection and prognosis of ESCC in future.

Acknowledgments

This study was supported by NSFC Joint Research Fund for Hong Kong and Macao Young Scholars (No. 30928012), National Natural Science Foundation of China (No. 81071634, 81172582, and 30801344), and Shenzhen Science Fund for Distinguished Young Scholars (No. JC201005270328A). We thank Dr. Yan Chen for valuable suggestions.

Received: 2011-12-20; revised: 2011-12-23; accepted: 2012-01-24.

References

[1] Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 2002. CA Cancer J Clin, 2005;55:74–108.
[2] Lambert R, Halpain P. Epithelial cancer: causes and causes (part I). Endoscopy, 2007;39:550–555.
[3] Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med, 2003, 349: 2241–2252.
[4] Umar SB, Fleischer DE. Esophageal cancer: epidemiology, pathogenesis and prevention. Nat Clin Pract Gastroenterol Hepatol, 2006;5:517–526.
[5] Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol, 2007;17:2–9.
[6] McCabe ML, Diamini Z. The molecular mechanisms of esophageal cancer. Int Immunopharmacol, 2005;5:1113–1130.
[7] Chen X, Hu H, Guan X, et al. CpG island methylation status of miRNAs in esophageal squamous cell carcinoma. Int J Cancer, 2012;130:1607–1613.
[8] Kong KI, Kwong DL, Chan TH, et al. MicroRNA-375 inhibits tumour growth and metastasis in esophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor. Gut, 2011;61:33–42.
[9] Kamb A. Cyclin-dependent kinase inhibitors and human cancer. Curr Top Microbiol Immunol, 1998;227:139–148.
[10] Tokugawa T, Sugihara H, Tani T, et al. Modes of silencing of p16 in development of esophageal squamous cell carcinoma. Cancer Res, 2002;62:4938–4944.
[11] Xing EP, Nie Y, Song Y, et al. Mechanisms of inactivation of p14ARF, p15INK4b, and p16INK4a genes in human esophageal squamous cell carcinoma. Clin Cancer Res, 1999;5:2704–2713.
[12] Xing EP, Nie Y, Wang LD, et al. Aberrant methylation of p16INK4a and deletion of p15INK4b are frequent events in human esophageal cancer in Linxian, China. Carcinogenesis, 1999;20:77–84.
[13] Dammann R, Li C, Yoon JH, et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumor suppressor locus 3p21.3. Nat Genet, 2000;25:315–319.
[14] Kuroki T, Trappass F, Yendamuri R, et al. Promoter hypermethylation of RASSF1A in esophageal squamous cell carcinoma. Clin Cancer Res, 2003;9:1441–1445.
[15] Wong ML, Tao Q, Fu L, et al. Aberrant promoter hypermethylation and silencing of the critical 3p21 tumour suppressor gene, RASSF1A, in Chinese esophageal squamous cell carcinoma. Int J Oncol, 2006;28:767–773.
[16] Shibata Y, Haruki N, Kuwabara Y, et al. Cflr expression is downregulated by CpG island hypermethylation in esophageal cancer. Carcinogenesis, 2002;23:1685–1690.
[17] Bialik S, Kimchi A. DAP-kinase as a target for drug design in cancer and diseases associated with accelerated cell death. Semin Cancer Biol, 2004;14:283–294.
[18] Gozuacik D, Kimchi A. DAPk family protein and cancer. Autophagy, 2008;4:74–79.
[19] Ishi T, Murakami J, Notohara K, et al. Oesophageal squamous cell carcinoma may develop within a background of accumulating DNA methylation in normal and dysplastic mucosa. Gut, 2007;56:13–19.
[20] Li OL, Ito K, Sakakura C, et al. Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell, 2002;109:113–124.
[21] Long C, Yin B, Lu Q, et al. Promoter hypermethylation of the RUNX3 gene in esophageal squamous cell carcinoma. Cancer Invest, 2007;25:685–690.
[22] Tomimoto Y, Tachibana M, Dhar DK, et al. Differential expression of RUNX genes in human esophageal squamous cell carcinoma: downregulation of RUNX3 worsens patient prognosis. Oncology, 2007;73:346–356.
[23] Yu J, Tao Q, Cheung KF, et al. Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology, 2008;48:508–518.
[24] Mandecker DL, Yamashita K, Tokumaru Y, et al. PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Res, 2005;65:4963–4968.
[25] Christofori G, Semb H. The role of the cell-adhesion molecule E-cadherin as a tumour-suppressor gene. Trends Biochem Sci, 1994;24:73–76.
[26] Strathdee G. Epigenetic versus genetic alterations in the inactivation of E-cadherin. Semin Cancer Biol, 2002;12:373 –379.
[27] Si HK, Tsoa SW, Lam KY, et al. E-cadherin expression is commonly downregulated by CpG island hypermethylation in esophageal carcinoma cells. Cancer Lett, 2001;173:71–78.
[28] Takeno S, Noguchi T, Fumoto S, et al. E-cadherin expression in patients with esophageal squamous cell carcinoma: promoter hypermethylation, Snai1 overexpression, and clinicopathologic implications. Am J Clin Pathol, 2004;122:78–84.
[29] Lee EJ, Lee BB, Han J, et al. CpG island hypermethylation of E-cadherin (CDH1) and integrin alpha4 is associated with recurrence of early stage esophageal squamous cell carcinoma. Int J Cancer, 2008;123:2073–2079.
[30] Li L, Ying J, Li H, et al. The human cadherin 11 is a pro-apoptotic tumor suppressor modulating cell stemness through Wnt/beta-catenin signaling and silenced in common carcinomas. Oncogene, 2011. [Epub ahead of print]
[31] Jin Z, Cheng Y, Oluw A, et al. Promoter hypermethylation of CDH1 is a common, early event in human esophageal adenocarcinogenesis and correlates with clinical risk factors. Int J Cancer, 2008;123:2331–2336.
[32] Roth MJ, Abnet CC, Hu N, et al. p16, MGMT, RARbeta2, CLDN3, CRBP and MT1G gene methylation in esophageal squamous cell carcinoma and its precursor lesions. Oncol Rep, 2006,15:1591–1597.

[33] Sung CO, Han SY, Kim SH. Low expression of claudin-4 is associated with poor prognosis in esophageal squamous cell carcinoma. Ann Surg Oncol, 2011,18:273–281.

[34] Park HL, Kim MS, Yamashita K, et al. DCC promoter hypermethylation in esophageal squamous cell carcinoma. Int J Cancer, 2008,122:2498–2502.

[35] Nakagawa T, Pimphaokham A, Suzuki E, et al. Genetic or epigenetic silencing of low density lipoprotein receptor-related protein 1B expression in oral squamous cell carcinoma. Cancer Sci, 2006,97:1070–1074.

[36] Liang J, Li L, et al. Functional epigenetics identifies a protocadherin PCDH11 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene, 2006,25:1070–1080.

[37] Haruki S, Iimoto O, Kozaki K, et al. Frequent silencing of protocadherin 17, a candidate tumour suppressor for esophageal squamous cell carcinoma. Carcinogenesis, 2010,31:1027–1036.

[38] Ito T, Shimada Y, Hashimoto Y, et al. Involvement of TSLC1 in progression of esophageal squamous cell carcinoma. Cancer Res, 2003,63:6320–6326.

[39] Margison GP, Povey AC, Kaina B, et al. Variability and regulation of O6-alkylguanine-DNA alkyltransferase. Carcinogenesis, 2003,24:625–635.

[40] Liu L, Gerson SL. Targeted modulation of MGMT: clinical implications. Clin Cancer Res, 2006,12:328–331.

[41] Fang MZ, Jin Z, Wang Y, et al. Promoter hypermethylation and inactivation of O(6)-methylguanine-DNA methyltransferase in esophageal squamous cell carcinomas and its reactivation in cell lines. Int J Oncol, 2005,26:615–622.

[42] Zhang L, Lu W, Mao X, et al. Inactivation of DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation and its relation to p53 mutations in esophageal squamous cell carcinoma. Carcinogenesis, 2003,24:1039–1044.

[43] Wang J, Sasco AJ, Fu C, et al. Aberrant DNA methylation of P16, MGMT, and hMLH1 genes in combination with MTHFR C677T genetic polymorphism in esophageal squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev, 2008,17:118–125.

[44] Lu C, Xie H, Wang F, et al. Diet folate, DNA methylation and genetic polymorphisms of MTHFR C677T in association with the prognosis of esophageal squamous cell carcinoma. BMC Cancer, 2011,11:91.

[45] Bignami M, Casorelli I, Karran P. Mismatch repair and response to DNA-damaging anti-tumour therapies. Eur J Cancer, 2002,39:314–319.

[46] Chung DC, Rustgi AK. DNA mismatch repair and cancer. Gastroenterology, 1995,109:1685–1699.

[47] Tzao C, Hsu HS, Sun GH, et al. Promoter methylation of the hMLH1 gene and protein expression of human mutL homolog 1 and human mutS homolog 2 in resected esophageal squamous cell carcinoma. J Thorac Cardiovasc Surg, 2005,130:1371.

[48] Vasavi M, Kiran V, Ravishankar B, et al. Microsatellite instability analysis and its correlation with hMLH1 gene hypermethylation status in esophageal pathologies including cancers. Cancer Biomark, 2010,7:1–10.

[49] Guo M, Ren J, House MG, et al. Accumulation of promoter methylation suggests epigenetic progression in squamous cell carcinoma of the esophagus. Cancer, 2006,12:4515–4522.

[50] Zhang GY, Ma CX, Liu QL, et al. Detection of methylation of hMSH2 gene promoter region of esophageal cancer. Zhonghua Jie Sheng Hu Xi Za Zhi, 2005,27:541–543. [in Chinese]

[51] Peukarsky Y, Zanesi N, Palamarchuk A, et al. FHT: from gene discovery to cancer treatment and prevention. Lancet Oncol, 2002,3:748–754.

[52] Croce CM, Sozzi G, Huebner K. Role of FHT in human cancer. J Clin Oncol, 1998,16:1618–1624.

[53] Tanaka H, Shimada Y, Harada H, et al. Methylation of the 5’ CpG island of the FHT gene is closely associated with transcriptional inactivation in esophageal squamous cell carcinomas. Cancer Res, 1998,58:3429–3434.

[54] Mori M, Mimori K, Shiraiishi T, et al. Altered expression of Fht in carcinoma and precarcinomatous lesions of the esophagus. Cancer Res, 2000,60:1177–1182.

[55] Lee EJ, Lee BB, Kim JW, et al. Aberrant methylation of Fragile Histidine Triad gene is associated with poor prognosis in early stage esophageal squamous cell carcinoma. Eur J Cancer, 2006,42:972–980.

[56] Soma T, Kaganoi J, Kawabe A, et al. Nicotine induces the fragile histidine triad methylation in human esophageal squamous epithelial cells. Int J Cancer, 2006,119:1023–1027.

[57] Xu XC. Tumor-suppressive activity of retinoic acid receptor-β expression in cancer. Cancer Lett, 2005,233:14–24.

[58] Qiu H, Zhang W, El-Naggar AK. et al. Loss of retinoic acid receptor-beta expression is an early event during esophageal squamous carcinogenesis. Am J Pathol, 1999,155:1519–1523.

[59] Qiu H, Lotan R, Lippman SM, et al. Lack of correlation between expression of retinoic acid receptor-beta and loss of heterozygosity on chromosome band 3p24 in esophageal cancer. Cancer Res, 2005,22:221–230.

[60] Wang Y, Fang MZ, Liao J, et al. Hypermethylation-associated inactivation of retinoic acid receptor beta in human esophageal squamous cell carcinoma. Clin Cancer Res, 2003,9:5257–5263.

[61] Cottrell SE, Laird PW. Sensitive detection of DNA methylation. Ann N Y Acad Sci, 2003,983:120–130.

[62] Cottrell SE. Molecular diagnostic applications of DNA methylation technology. Clin Biochem, 2004,37:595–604.

[63] Kristensen LS, Nielsen HM, Hansen LL. Epigenetics and cancer treatment. Eur J Pharmacol, 2009,625:131–142.

[64] Yang J, Z, Cui A, Yang J, et al. Hypermethylation of tachykinin-1 is a potential biomarker in human esophageal cancer. Clin Cancer Res, 2007,13:6293–6300.

[65] Adams L, Roth MJ, Abnet CC, et al. Promoter methylation in cytology specimens as an early detection marker for esophageal squamous dysplasia and early esophageal squamous cell carcinoma. Cancer Prev Res (Phila), 2008,1:357–361.

[66] Li B, Wang B, Niu LJ, et al. Hypermethylation of multiple tumor-related genes associated with DNM3Bp up-regulation served as a biomarker for early diagnosis of esophageal squamous cell carcinoma. Epigenetics, 2011,6:307–316.

[67] Li Q, Zou L, Ge MH, et al. Hypermethylation-modulated down-regulation of CDH1 expression contributes to the progression of esophageal cancer. Int J Mol Med, 2011,27:625–635.

[68] Zare M, Jazzi FR, Alivard MR, et al. Qualitative analysis of Adenomatous Polyposis Coli promoter: hypermethylation, engagement and effects on survival of patients with esophageal cancer in a high risk region of the world, a potential molecular marker. BMC Cancer, 2009,9:24.

[69] Li R, MS, Yamashita K, Baeck JH, et al. N-methyl-D-aspartate receptor type 2B is epigenetically inactivated and exhibits tumor-suppressive activity in human esophageal cancer.
CDX2 is a feature of squamous esophageal cancer. Int J Cancer, 2007, 121:1219–1226.

[90] Wang Y, Li J, Cui Y, et al. CMTM3, located at the critical tumor suppressor locus 16q22.1, is silenced by CpG methylation in carcinomas and inhibits tumor cell growth through inducing apoptosis. Cancer Res, 2009, 69:5194–5201.

[91] Shao L, Cui Y, Li H, et al. CMTM5 exhibits tumor suppressor activities and is frequently silenced by methylation in carcinoma cell lines. Clin Cancer Res, 2007, 13:5756–5762.

[92] Seng TJ, Low JS, Li H, et al. The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene, 2007, 26:934–944.

[93] Daigo Y, Nishiwaki T, Kawase T, et al. Molecular cloning of a candidate tumor suppressor gene, DLC1, from chromosome 3p21.3. Cancer Res, 1999, 59:1966–1972.

[94] Yue CM, Deng DJ, Bi MX, et al. Expression of ECRG4, a novel esophageal cancer-related gene, downregulated by CpG island hypermethylation in human esophageal squamous carcinoma. World J Gastroenterol, 2003, 9:1174–1178.

[95] Tanaka Y, Sato Y, Suzuki S, et al. Identification of a novel esophageal carcinoma tumor suppressor by methylation of the EctD1 gene in esophageal squamous cell carcinoma. Dis Esophagus, 2009, 22:55–61.

[96] Fumoto S, Hiyama K, Tanimoto K, et al. EMP3 as a tumor suppressor gene for esophageal squamous cell carcinoma. Cancer Lett, 2009, 274:25–32.

[97] Wong VC, Chan PL, Bernabeu C, et al. Identification of an invasion and tumor suppressing gene, Endoglin (ENG), silenced by both epigenetic inactivation and allelic loss in esophageal squamous cell carcinoma. Int J Cancer, 2008, 123:2816–2823.

[98] Guo M, House MG, Akiyama Y, et al. Hypermethylation of the GATA gene family in esophageal cancer. Int J Cancer, 2006, 119:2078–2083.

[99] He Y, Wang Y, Li P, et al. Identification of GPX3 epigenetically silenced by CpG methylation in human esophageal squamous cell carcinoma. Dig Dis Sci, 2011, 56:681–688.

[100] Liu R, Yin L, Pu Y, et al. Functional alterations in the glutathione S-transferase family associated with enhanced occurrence of esophageal carcinoma in China. J Toxicol Environ Health A, 2010, 73:471–482.

[101] Guo M, Ren J, Brock MV, et al. Promoter methylation of HIN-1 in the progression towards to esophageal squamous cancer. Epigenetics, 2008, 3:336–341.

[102] QiFeng S, Bo C, Xingtao J, et al. Methylation of the promoter of human leukocyte antigen class I in human esophageal squamous cell carcinoma and its histopathological characteristics. J Thorac Cardiovasc Surg, 2011, 141:806–814.

[103] Hita K, Nakayama H, Kanyama Y, et al. Methylation pattern of HLF gene in digestive tract cancers. Int J Cancer, 2003, 104:433–436.

[104] Yamashita K, Kim MS, Park HL, et al. HOP/OB1/NECC1 promoter DNA is frequently hypermethylated and involved in tumorigenic ability in esophageal squamous cell carcinoma. Mol Cancer Res, 2008, 6:31–41.

[105] Chang X, Yamashita K, Sidraneky D, et al. Promoter methylation of heat shock protein B2 in human esophageal squamous cell carcinoma. Int J Oncol, 2011, 38:1129–1135.

[106] Lee KY, Geng H, Ng KM, et al. Epigenetic disruption of interferon-gamma response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas. Oncogene, 2008, 27:5267–5276.

[107] Smith E, Drew P, Tian ZQ, et al. Methylation of 3 expression is frequently down-regulated in oesophageal squamous cell carcinoma by DNA methylation. Mol Cancer, 2005, 4:42.
[108] Kim MS, Chang X, LeBron C, et al. Neurofilament heavy polypeptide regulates the Akt-beta-catenin pathway in human esophageal squamous cell carcinoma. PLoS One, 2010;5:e9003.

[109] Jin Z, Mori Y, Yang J, et al. Hypermethylation of the nel-like 1 gene is a common and early event and is associated with poor prognosis in early-stage esophageal adenocarcinoma. Oncogene, 2007;26:6332–6340.

[110] Zhang C, Li K, Wei L, et al. p300 expression repression by hypermethylation associated with tumour invasion and metastasis in esophageal squamous cell carcinoma. J Clin Pathol, 2007;60:1249–1253.

[111] Zhu C, Qin YR, Xie D, et al. Characterization of tumor suppressive function of P300/CREB-associated factor at frequently deleted region 3p24 in esophageal squamous cell carcinoma. Oncogene, 2009;28:2821–2826.

[112] Fu L, Qin YR, Xie D, et al. Characterization of a novel tumor-suppressor gene PLC delta 1 at 3p22 in esophageal squamous cell carcinoma. Cancer Res, 2007;67:10720–10726.

[113] Jin Z, Mori Y, Hamilton JP, et al. Hypermethylation of the somatostatin promoter is a common, early event in human esophageal carcinogenesis. Cancer, 2008;112:43–49.

[114] Ko JM, Chan PL, Yau WL, et al. Monochromosome transfer and microarray analysis identify a critical tumor-suppressive region mapping to chromosome 13q14 and THSD1 in esophageal carcinoma. Mol Cancer Res, 2008;6:592–603.

[115] Zhao BJ, Tan SN, Cui Y, et al. Aberrant promoter methylation of the TPEF gene in esophageal squamous cell carcinoma. Dis Esophagus, 2008;21:582–588.

[116] Yamashita K, Mimori K, Inoue H, et al. A tumor-suppressive role for trypsin in human cancer progression. Cancer Res, 2003;63:6575–6578.

[117] Kuroki T, Trapasso F, Yendamuri S, et al. Allele loss and promoter hypermethylation of VHL, RAR-beta, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res, 2003;63:3724–3728.