Alterations of neocortical pyramidal neurons: turning points in the genesis of mental retardation

Alberto Granato* and Andrea De Giorgio

Department of Psychology, Catholic University, Milan, Italy

Pyramidal neurons (PNs) represent the majority of neocortical cells and their involvement in cognitive functions is decisive. Therefore, they are the most obvious target of developmental disorders characterized by mental retardation. Genetic and non-genetic forms of intellectual disability share a few basic pathogenetic signatures that result in the anomalous function of PNs. Here, we review the key mechanisms impairing these neurons and their participation in the cortical network, with special focus on experimental models of fetal exposure to alcohol. Due to the heterogeneity of PNs, some alterations affect selectively a given cell population, which may also differ depending on the considered pathology. These specific features open new possibilities for the interpretation of cognitive defects observed in mental retardation syndromes, as well as for novel therapeutic interventions.

Keywords: apoptosis, dendrites, calcium spikes, fetal alcohol spectrum disorders, dendritic spines

Pyramidal neurons (PNs) represent the majority of neocortical cells and their involvement in cognitive functions is decisive. Therefore, they are the most obvious target of developmental disorders characterized by mental retardation. Genetic and non-genetic forms of intellectual disability share a few basic pathogenetic signatures that result in the anomalous function of PNs. Here, we review the key mechanisms impairing these neurons and their participation in the cortical network, with special focus on experimental models of fetal exposure to alcohol. Due to the heterogeneity of PNs, some alterations affect selectively a given cell population, which may also differ depending on the considered pathology. These specific features open new possibilities for the interpretation of cognitive defects observed in mental retardation syndromes, as well as for novel therapeutic interventions.

Keywords: apoptosis, dendrites, calcium spikes, fetal alcohol spectrum disorders, dendritic spines
We have briefly outlined the laminar and regional heterogeneity of PNs. However, the reader should bear in mind that, even if neocortical PNs were homogeneous across cortical areas and layers, nonetheless each of them would represent the most complex neuron of the mammalian brain. Let us consider, for example, the L5 PN. Its apical dendrite extends through most of cortical thickness and is thus ideally suited for translaminal integration. In addition, the long, apparently homogeneous dendritic arbor of these neurons features specific functional properties: basal dendrites and the apical tufts are dominated by NMDA spikes, while \(\text{Ca}^{2+} \) spikes sustained by voltage-gated channels prevail in the distal apical trunk (23). Finally, dendritic, axon, and somatic domains of L5 PNs are targeted by different types of inhibitory interneurons (24). In summary, even the single PN is a complex world itself, able to integrate feedforward ascending input and feedback connections to generate the cognitive performance (25).

APOPTOSIS

Early exposure to alcohol, whose effects are globally referred to as fetal alcohol spectrum disorders (FASD), are well known causes of mental retardation. There are manifold factors involved in the neurodevelopmental toxicity of ethanol, which is critically dependent on the dose and time of exposure [see Ref. (26), for review]. Experimental models of FASD allow a tight control of alcohol exposure and help to dissect out the mechanisms operant at different developmental stages. When rodents are exposed during prenatal life, alcohol is more likely to interfere with the proliferation of neuron precursors and/or with the migration of cortical cells (27, 28). By contrast, when rodents are given alcohol during the first two postnatal weeks [corresponding to the third trimester of gestation in humans, see Ref. (29)], a massive apoptosis occurs in several brain structures, including the cerebral cortex (30). The third trimester equivalent is characterized by intense synaptogenesis and the alcohol-induced apoptosis is thought to be caused by the simultaneous blockade of NMDA receptors and activation of GABA receptors (31). The apoptosis observed in the neocortex after postnatal alcohol exposure in rodents seems to affect mainly infragranular PNs, as demonstrated by the selective presence of molecular markers of apoptotic susceptibility, such as caspase 3 and the low-affinity neurotrophin receptor (p75 NTR), in L5 cells [(3, 32); see Figure 2]. The prevailing involvement of infragranular PNs is also suggested by the increased ratio between supragranular and infragranular PNs sustaining the cortico-cortical associative projections (4). Notably, the vulnerability of these neurons to apoptosis outlasts the alcohol exposure, since an increased immunoreactivity for p75 NTR is observed several days after withdrawal (3). In a different experimental model of MR, reproducing the congenital hypothyroidism, the increased apoptosis is associated to upregulation of p75 NTR (33). In this case, however, the apoptotic cells are confined to supragranular instead of infragranular layers (33).

The unbalanced weights of supragranular and infragranular layers, as observed in different types of MR, can yield important functional consequences. For instance, sensory and memory processing carried out by the same cortical area are mediated by opposite flows of interlaminar signals [supragranular \(\rightarrow \) infragranular and infragranular \(\rightarrow \) supragranular, respectively; see Ref. (34)].
It is worth noting here that experimental models mimicking other types of MR are characterized by a reduced rate of naturally occurring cell death, rather than by increased apoptosis. This is the case for FMR1 mutants (reproducing the fragile X syndrome) and for the Rett syndrome as well (35, 36). Thus, it appears that both the excess of apoptosis and the lack of programed cell death can equally lead to an impairment of the cortical network and to cognitive defects.

DENDRITES AND CONNECTIVITY

The dendritic tree of PNs, with its long and extensively ramified branches, must be considered the main computational device of the neocortex (37). Therefore, it is not surprising that dendritic alterations are recognized as the key anatomical counterpart of MR (38). In experimental models of FASD based on early postnatal exposure, the basal dendritic arbor of PNs is more affected, as compared to the apical dendrite [(4, 5); see Figure 2]. Basal dendrites of L2/3 associative PNs in alcohol-treated rats display fewer dendritic branches than in controls, suggesting a defect of branching rather than of terminal dendrite elongation (6). This dissociation can be justified by the different molecular machinery involved in the two distinct phenomena of branching and terminal elongation (39). In the Ts65Dn mouse model of Down syndrome, the basal dendrites of L2/3 PNs, similarly to what observed in FASD, display a reduced complexity of the branching pattern (40). However, in humans affected by Down syndrome, dendritic alterations follow a complex temporal sequence, resulting in a simplification that is more dramatic for apical dendrites (41). A Golgi study by Armstrong and coworkers (42) provides a direct comparison between the dendritic anomalies of Rett and Down syndrome, pointing out that basal dendrites of the frontal cortex in individuals affected by Rett syndrome are strongly impaired both in supra- and infragranular layers, while apical dendrites are affected only in supragranular layers. In experimental models of early-onset hypothyroidism, finally, both apical and basal dendrites of PNs appear to be strongly reduced (43).

Understanding which dendritic domain of PNs is preferentially targeted by disorders associated to MR is not trivial. In fact, basal and apical dendrites not only display different branching patterns, but are also characterized by different functional properties and are likely to play distinctive roles in the cortical network. Apical dendrites receive long-range feedback input from higher order cortical areas (44) and display both Ca\(^{2+}\) and NMDA spikes, whereas basal dendrites support only NMDA spikes (45).

Another central issue concerning the relationship between dendrites and MR is represented by the density and distribution of dendritic spines. Most inputs synapsing upon PNs occur on these small protrusions, which are essential for the linear summation of excitatory potentials (46). Almost all disorders associated with MR feature alterations of the number and/or shape of dendritic spines (38). Although a systematic review of dendritic spine anomalies is beyond the aim of the present paper, it is worth mentioning that both a decreased and an increased number of spines can lead to MR. While a reduction of dendritic spines has been observed in experimental models of FASD [e.g., Ref. (47)], their number is significantly higher in fragile X mice (48). Once again, as already pointed out for neuronal populations (see above), also the dendritic spines seem to ensure the good functioning of PNs only if they reach an optimal number. Fewer or more spines, conversely, can equally lead to defective function.

Since each spine is thought to represent the site of at least one synaptiic contact, quantitative and/or qualitative spine anomalies are likely to reflect alterations of cortical connectivity. Thus, dendritic alterations can be accompanied by a defect of axon outgrowth or pruning, as demonstrated for early exposure to ethanol (49, 50), for mouse models of Rett syndrome (51), and fragile X syndrome (52). The obvious consequence is a modified intracolumnar (53) and long-range connectivity (4). The main alterations observed in experimental models of MR are summarized in Table S1 in Supplementary Material.

PN EXCITABILITY

The excitability of PNs (i.e., the ability of generating action potentials in response to depolarizing current) depends primarily on the intrinsic membrane properties and, to some extent, on the cited complexity of the dendritic tree. In fact, PN dendrites are not merely passive cables, but they are also endowed with a great variety of active conductances (54). Dendritic voltage-gated channels, in turn, can influence the axo-somatic firing pattern of PNs (55).

We have demonstrated that exposure to ethanol during the third trimester equivalent leads to a long-lasting reduction of excitability in L5 PNs (5). Such an impairment represents the consequence of decreased spikes in the Ca\(^{2+}\) electrogensis zone of the apical dendrite. These spikes are usually mediated by voltage-gated Ca\(^{2+}\) channels and are accompanied by their somatic counterpart, consisting of a prominent afterdepolarization. Interestingly and in agreement with our observation, Sánchez-Alonso et al. (56), in a mouse model of congenital hypothyroidism, noted that hippocampal PNs showed a decreased afterdepolarization.

An alteration of Ca\(^{2+}\) signaling has been also observed in experimental models of fragile X syndrome (57). This condition, however, is rather characterized by hyperexcitability (58). Besides affecting the neuron excitability, the unreliability of Ca\(^{2+}\) signals can alter the neural plasticity, as consistently observed in experimental models of MR (57, 59, 60).

CONCLUDING REMARKS

It seems pretty clear that the different etiological factors involved in different types of MR converge upon a few basic mechanisms, regardless of the vast variety of molecular pathways leading to such disturbances. Most of these alterations impair the functional properties of the major cell type of the neocortex, i.e., the PN. Here, we have briefly described some of the main mechanisms at the basis of MR, concerning the number, the dendritic tree, the connections, and the excitability of PNs. However, the picture can be complicated by the possibility that some of the described alterations affect selectively discrete populations of PNs, or even discrete subregions of the same cell.

A further contribute to the complexity derives from the obvious consideration that, despite their high number, PNs are not the only determinant of cortical network properties. In fact, the interplay between PNs and GABAergic interneurons is a key element of cortical physiology (24). Early exposure to alcohol results in a change of cortical interneurons, with a significant increase...
of calretinin cells (7). These neurons usually co-express VIP and contact other interneurons, thus mediating disinhibition of PNs, possibly driven by feedback input from higher cortical areas (61). Therefore, the decreased intrinsic excitability of the distal apical dendrite observed in Fasd (5) can be counterbalanced under certain circumstances by a relative increase of the network-mediated disinhibitory pathway.

Another puzzling issue is the apparently opposite tendency of some anatomical and electrophysiological properties in different forms of MR, as is the case for hypo- and hyperexcitability. However, this is not necessarily a contradiction, at least in terms of the functional outcome. In fact, both hypo- and hyperexcitability can equally contribute to flatten the current-frequency curve, with a reduction of the dynamic range of PNs and a consequent impairment of the ability to encode relevant information (62).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at http://www.frontiersin.org/10.3389/fped.2014.00086/abstract

REFERENCES

1. Cajal SR. Recuerdos de mi vida. Part 2. Historia de mi labor científica. Madrid: Pueblo (1923).
2. Moore CI, Carlen M, Knoblich U, Cardin JA. Neocortical interneurons: from diversity, strength. Cell (2010) 142:189–93. doi:10.1016/j.cell.2010.07.005
3. Toeca A, Giannetti S, Granato A. Overexpression of the p57Ntr6protein receptor in the somatosensory motor cortex of rats exposed to ethanol during early postnatal life. Neurosci Lett (2003) 342:89–92. doi:10.1016/S0304-3940(03)00258-1
4. Granato A, Di Rocco F, Zumbo A, Toeca A, Giannetti S. Organization of corticocortical associative projections in rats exposed to ethanol during early postnatal life. Brain Res Bull (2003) 60:339–44. doi:10.1016/S0361-9230(03)00052-2
5. Granato A, Palmer LM, De Giorgio A, Tavan D, Larkum ME. Early exposure to alcohol leads to permanent impairment of dendritic excitability in neocortical pyramidal neurons. J Neurosci (2012) 32:1377–82. doi:10.1523/JNEUROSCI.5520-11.2012
6. Granato A, Van Pelt J. Effects of early ethanol exposure on dendrite growth of neocortical pyramidal neurons: inferences from a computational model. Dev Brain Res (2003) 142:225–7. doi:10.1016/S0165-3806(03)00094-4
7. Granato A. Altered organization of cortical interneurons in rats exposed to ethanol during neonatal life. Brain Res (2006) 1099:23–30. doi:10.1016/j.brainres.2005.11.024
8. Lubke J, Feldmeyer D. Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct (2007) 212:3–17. doi:10.1007/s00429-007-0144-2
9. Larkum ME, Waters J, Sakmann B, Helmchen F. Dendritic spikes in apical dendrites of neocortical layer 2/3 pyramidal neurons. J Neurosci (2007) 27:9899–9008. doi:10.1523/JNEUROSCI.1717-07.2007
10. Bureau I, von Saint Paul F, Svoboda K. Interdigitated paralemniscal and Y osimura Y, Dantzker JL, Callaway EM. Excitatory cortical neurons form fine-
mouse model of Down syndrome: effects of environmental enrichment. *Cereb Cortex* (2003) 13:758–64.

41. Becker LE, Armstrong DL, Chan F. Dendritic atrophy in children with Down's syndrome. *Ann Neurol* (1986) 20:520–6.

42. Armstrong DD, Dunn K, Antalffy B. Decreased dendritic branching in frontal, motor and limbic cortex in Rett syndrome compared with trisomy 21. *J Neuropathol Exp Neurol* (1998) 57:1013–7. doi:10.1097/00005072-199811000-00003

43. Ipira SL, Ruiz-Marcos A, Escobar del Rey F, Moraleze de Escobar G. Pyramidal cortical cell morphology studied by multivariate analysis: effects of neocortical thyroidectomy, ageing and thyroxine-substitution therapy. *Brain Res* (1987) 465:219–29.

44. Cauller LJ, Clancy B, Connors BW. Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. *J Comp Neurol* (2001) 396:297–310. doi:10.1002/(SICI)1096-9861(19980112)396:2<297::AID-CNED11>3.0.CO;2-0

45. Nevian T, Larkum ME, Polsky A, Schiller J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. *Nat Neurosci* (2007) 10:206–14. doi:10.1038/nn1826

46. Araya R, Eisenthal KB, Yuste R. Dendritic spines linearize the summation of excitatory potentials. *Proc Natl Acad Sci U S A* (2006) 103:18799–804. doi:10.1073/pnas.0609225103

47. Cui ZJ, Zhao KB, Zhao HJ, Yu DM, Niu YL, Zhang JS, et al. Prenatal alcohol exposure induces long-term changes in dendritic spines and synapses in the mouse visual cortex. *Alcohol Alcohol* (2010) 45:312–9. doi:10.1093/age/alp036

48. Comery TA, Harris JR, Willems PJ, Oostra BA, Irwin SA, Weiler JS, et al. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. *Proc Natl Acad Sci U S A* (1997) 94:5401–4. doi:10.1073/pnas.94.10.5401

49. Larkum ME, Zhu JJ. Signaling of layer 1 and whisker-evoked Ca^{2+} and Na^{+} channel inhibition in developing CA3 hippocampal pyramidal neurons. *J Neurosci* (2010) 30:6776–81. doi:10.1523/JNEUROSCI.2742-10.2010

50. Chen S, Charness ME. Ethanol disrupts axon outgrowth stimulated by netrin-1, a role in mouse model of Down syndrome: effects of environmental enrichment. *Cereb Cortex* (2003) 13:758–64.

51. Belichenko PV, Wright EE, Belichenko NP, Masliah E, Li HH, Mobley WC, et al. Widespread changes in dendritic and axonal morphology in MeCP2-mutant mice: implications for neuronal network dysfunction. *J Comp Neurol* (2009) 514:240–58. doi:10.1002/cne.22209

52. Patel AB, Loerswald KW, Huber KM, Gibson JR. Postsynaptic FMRP promotes the pruning of cell-to-cell connections among pyramidal neurons in the LSA neocortical network. *J Neurosci* (2014) 34:3413–8. doi:10.1523/JNEUROSCI.2921-13.2014

53. Dani VS, Nelson SB. Intact long-term potentiation but reduced connectivity between neocortical layer 5 pyramidal neurons in a mouse model of Rett syndrome. *J Neurosci* (2009) 29:11263–70. doi:10.1523/JNEUROSCI.0109-09.2009

54. Migliore M, Shepherd GM. Emerging rules for the distributions of active dendritic conductances. *Nat Rev Neurosci* (2002) 3:362–70. doi:10.1038/nrn8110

55. Larkum ME, Zhu JJ. Signaling of layer 1 and whisker-evoked Ca^{2+} and Na^{+} action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. *J Neurosci* (2002) 22:6991–7005.

56. Sánchez-Alonso JL, Muñoz-Cuevas J, Vicente-Torres MA, Colino A. Role of low-voltage-activated calcium current on the firing pattern alterations induced by hypothyroidism in the rat hippocampus. *Neuroscience* (2010) 171:993–1005. doi:10.1016/j.neuroscience.2010.10.003

57. Meredith RM, Holmncrd MD, Weidum M, Burnashev N, Manswelder HD. Increased threshold for spike-timing-dependent plasticity is caused by unreliable calcium signaling in mice lacking fragile X gene FMR1. *Neuron* (2007) 54:627–38. doi:10.1016/j.neuron.2007.04.028

58. Gibson JR, Bartley AF, Hays SA, Huber KM. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. *J Neurophysiol* (2008) 100:2615–26. doi:10.1152/jn.90752.2008

59. Zucca S, Valenzuela CE. Low concentrations of alcohol inhibit BDNF-dependent GABAergic plasticity via L-type Ca^{2+} channel inhibition in developing CA3 hippocampal pyramidal neurons. *J Neurosci* (2010) 30:6776–81. doi:10.1523/JNEUROSCI.0540-10.2010

60. Medina AE. Fetal alcohol spectrum disorders and abnormal neuronal plasticity. *Neuroscientist* (2011) 17:274–87. doi:10.1177/1073858410383336

61. Lee S, Kruglikov I, Huang ZL, Fishell G, Rudy B. A disinhirbatory circuit mediates motor integration in the somatosensory cortex. *Nat Neurosci* (2013) 16:1862–70. doi:10.1038/nn.3544

62. Pouille F, Martin-Burgin A, Adesnik H, Atallah BV, Scanziani M. Input normalization by global feedforward inhibition expands cortical dynamic range. *Nat Neurosci* (2009) 12:1577–85. doi:10.1038/nn.2441

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 02 July 2014; paper pending published: 19 July 2014; accepted: 25 July 2014; published online: 11 August 2014.

Citation: Granato A and De Giorgio A (2014) Alterations of neocortical pyramidal neurons: turning points in the genesis of mental retardation. *Front. Pediatr.* 2:68. doi: 10.3389/fped.2014.00086

This article was submitted to Child and Neurodevelopmental Psychiatry, a section of the journal Frontiers in Pediatrics.

Copyright © 2014 Granato and De Giorgio. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.