\(B - L \) heavy neutrinos and neutral gauge boson \(Z' \) at the LHC

A. A. Abdelalim\(^1\), A. Hannam\(^1\) and S. Khalil\(^1,3\)

\(^1\) Center for Fundamental Physics, Zewail City for Science and Technology,
\(^2\) Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt.
\(^3\) Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt.

(Dated: February 16, 2015)

We explore possible signatures for heavy neutrinos and neutral gauge boson, \(Z' \), in TeV scale \(B - L \) extension of the Standard Model (BLSM) with inverse seesaw mechanisms at the Large Hadron Collider. We show that due to new decay channels of \(Z' \) into heavy/inert neutrinos, the LHC stringent bounds imposed on \(Z' \) mass can be significantly relaxed. We analyze the pair production of heavy neutrinos decaying to four leptons plus two neutrinos, four jets plus two leptons, or three leptons plus two jets and one neutrino. We show that the \(4l + 2\nu \) is the most promising decay channel for probing both \(Z' \) and heavy neutrinos at the LHC.

The solid evidence for neutrino oscillation, pointing towards non-vanishing neutrino masses, is one of the firm hints for physics beyond the Standard Model (SM). Neutrinos are strictly massless in the SM due to two main reasons: (i) the absence of right-handed neutrinos, (ii) the SM has an exact global Baryon minus Lepton (B-L) number conservation. The minimal extension of the SM, based on the gauge group SU(3)\(_C\) \(\times \) SU(2)\(_L\) \(\times \) U(1)\(_Y\) \(\times \) U(1)\(_{B-L}\), can account for the light neutrino masses through either Type-I seesaw or Inverse seesaw (IS) mechanism \(^2\)\(^3\). In type-I seesaw mechanism right-handed neutrinos acquire Majorana masses at the \(B - L \) symmetry breaking scale, which can be related to the supersymmetry breaking scale, \(\mathrm{O}(1) \text{ TeV} \) \(^4\). While in IS, these Majorana masses are not allowed by \(B - L \) gauge symmetry and another pair of SM gauge singlet fermions with tiny masses (\(\mathrm{O}(1) \text{ keV} \)) must be introduced. One of these two singlets fermions couples to right handed neutrino and is involved in generating the light neutrino masses. The other singlet (is usually called inert neutrino) is completely decoupled and interacts only through the \(B - L \) gauge boson, therefore it may account for Warm Dark Matter\(^5\)\(^6\). In both scenarios, this model predicts several testable signals at the LHC through the new predicted particles: \(Z' \) (neutral gauge boson associated with the \(U(1)_{B-L} \)), extra Higgs (an additional singlet state introduced to break the gauge group \(\mathrm{SU}(3)_C \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_{Y} \times \mathrm{U}(1)_{B-L} \), \(\chi \)), and three (type-I) or six (IS) heavy neutrinos, \(\nu_h \), that are required to cancel the associated anomaly and are necessary for the consistency of the model.

In this paper we aim to provide a comprehensive analysis for the LHC potential discovery of \(Z' \) and \(\nu_h \)'s predicted in BLSM with IS neutrino mechanisms. We show that the possibility \(Z' \) decay into a pair of heavy/inert neutrinos is salient feature of this class of model and provides a very important signature for probing both \(Z' \) and \(\nu_h \) of BLSM at the LHC. Due to the presence of these channels, one finds that the branching ratio of \(Z' \to l^+l^- \) is suppressed with respect to the one in other models of \(Z' \), like what is called Sequential SM (SSM), which is usually considered as bench mark in experimental searches for \(Z' \) gauge boson \(^7\)\(^8\). Therefore, the recent LHC stringent bounds imposed on \(Z' \) mass can be relaxed in BLSM. We also investigate the LHC discovery potential for the heavy neutrinos in BLSM through its decay into leptonic, hadronic and semi-leptonic decay channels. We provide a phenomenological study for the decay channels with four leptons plus two SM–like neutrinos, four jets plus two leptons, and three leptons plus two jets and one \(SM \)-like neutrino. We show that the decay of \(Z' \) into two heavy neutrinos that decay to four hard leptons and large missing energy due to the associated neutrinos is very clean with negligible SM background. It is important to mention that our analysis is a completion of the previous work on Type-I BLSM \(^9\)\(^10\) and the first of its kind in analyzing the phenomenological implications of inverse seesaw BLSM.

In BLSM with IS mechanism, one assumes that the SM singlet scalar \(\chi \), which spontaneously breaks \(U(1)_{B-L} \), has \(B - L \) charge = -1. Also, three pairs of SM singlet fermions: \(S_{1,2} \) with \(B - L \) charge = \(\mp \), respectively, are introduced. Therefore, the corresponding Lagrangian of leptonic sector is given by \(^3\)

\[
\mathcal{L}_{B-L} = - \frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu} + i \bar{\ell}_L D_\mu \gamma^\mu \ell_L + i \bar{\nu}_R D_\mu \gamma^\mu \nu_R \\
+ i \bar{\nu}_R D_\mu \gamma^\mu \nu_R + i \bar{S}_1 D_\mu \gamma^\mu S_1 + i \bar{S}_2 D_\mu \gamma^\mu S_2 \\
+ (D_\mu \phi) \Gamma D_{\mu} \phi + (D^\mu \chi) \Gamma D_{\mu} \chi - V(\phi, \chi) \\
- \left(\lambda_c \bar{\ell}_L \phi \nu_R + \lambda_c \bar{\nu}_L \bar{\phi} \nu_R + \lambda_S \bar{\phi} \bar{\nu}_R S_2 \right) + h.c. \tag{1}
\]

After the \(B - L \) and the EW symmetry breaking, through non-vanishing vacuum expectation values (VEVs) of \(\chi \): \(\langle \eta \rangle = v'/\sqrt{2} \) and \(\phi \): \(\langle h \rangle = v/\sqrt{2} \), one finds that the neutrino Yukawa interaction terms lead to the following mass
the BR is an odd particle. Also other discrete symmetry may be used to avoid other possible non-renormalizable terms [11].

and \(\bar{\nu} \) Dirac neutrino mass matrix possibility of eigenvalues of the light neutrino mass matrix \(M \) SM-singlet fermion, \(\mu \) where generate very small Majorana masses for \(S \) V finally, the Lagrangian of neutrino masses, in the flavor basis, is given by

\[
\mathcal{L}_m^\nu = \mu_s \bar{S}_2^c S_2 + (m_D \bar{\nu}_L \nu_R + M_N \bar{\nu}_R S_2 + h.c.),
\]

where \(\mu_s = \frac{\nu^2}{M} \lesssim 10^{-6} \) GeV. Therefore, the neutrino mass matrix can be written as \(\mathcal{M}_\nu \bar{\psi}^c \psi \) with \(\psi = (\bar{\nu}_L, \nu_R, S_2) \) and \(\mathcal{M}_\nu \) is given by

\[
\mathcal{M}_\nu = \begin{pmatrix}
0 & m_D & 0 \\
m_D^T & 0 & M_N \\
0 & M_N^T & \mu_s
\end{pmatrix}.
\]

Note that in order to avoid a possible large mass term \(m S_1 S_2 \) in the Lagrangian Eq. (11), that would spoil the above inverse seesaw structure, one assumes that the SM particles, \(\nu_R, \chi \), and \(S_2 \) are even under a \(Z_2 \)-symmetry, while \(S_1 \) is an odd particle. Also other discrete symmetry may be used to avoid other possible non-renormalizable terms [11].

The diagonalization of the mass matrix Eq. (4) leads to the following light and heavy neutrino masses, respectively:

\[
m_{\nu_l} = m_D M_R^{-1} \mu_s (M_R^T)^{-1} m_D^T,
\]

\[
m_{\nu_R}^2 = m_{\nu_R}^2 = M_R^2 + m_D^2.
\]

Thus, one finds that the light neutrino masses can be of order eV, with a TeV scale \(M_R \) if \(\mu_s \ll M_R \) and order one Yukawa coupling \(\lambda_v \). Such large coupling is crucial for testing the BLSM with inverse seesaw and probing the heavy neutrinos at the LHC. From Eq. (11) one finds that the \(9 \times 9 \) neutrino mass matrix \(\mathcal{M}_\nu \) can be diagonalized by the matrix \(V \), i.e., \(V^T \mathcal{M}_\nu V = \mathcal{M}_\nu^{\text{diag}} \) [11], where

\[
V = \begin{pmatrix}
V_{3\times 3} & V_{3\times 6} \\
V_{6\times 3} & V_{6\times 6}
\end{pmatrix},
\]

with \(V_{3\times 3} \) is given by

\[
V_{3\times 3} \simeq \left(1 - \frac{1}{2} F F^T \right) U_{\text{MNS}}.
\]

The matrix \(V_{3\times 6} \) is defined as

\[
V_{3\times 6} = (0_{3\times 3}, F) V_{6\times 6}, \quad F = m_D M_R^{-1}.
\]

Finally, \(V_{6\times 6} \) is the matrix that diagonalize the \(\{\nu_R, S_2\} \) mass matrix. In order to grantee that the first three eigenvalues of the light neutrino mass matrix \(\mathcal{M}_\nu \) are consistent with the physical light neutrinos, one writes the Dirac neutrino mass matrix \(m_D \) as:

\[
m_D = U_{\text{MNS}} \sqrt{m_{\nu_l}^{\text{diag}}} R \sqrt{\mu_s^{-1} M_N},
\]

where \(R \) is an arbitrary orthogonal matrix.

As shown in reference [11], the mixings between light and heavy neutrinos are of order \(\mathcal{O}(0.01) \). Therefore, the decay width of these heavy neutrinos into SM fermions are sufficiently large. It is worth to mention that the second SM-singlet fermion, \(S_1 \), remains light with mass given by

\[
m_{S_1} = \mu_s \simeq \mathcal{O}(1) \) keV.
\]

where \(S_1 \) is a kind of inert neutrinos that has no mixing with active neutrinos. It can be a good candidate for warm dark matter as emphasized in Ref. [6].

Now we study the signatures of the extra neutral gauge boson Z' in BLSM with IS mechanisms at LHC. The possibility of Z' decay into a pair of heavy/inert neutrinos would enlarge the total decay width of Z'. Therefore, the \(BR(Z' \rightarrow l^+ l^-) \) is suppressed with respect to the prediction of the Sequential Standard Model (SSM), which is
both electron and muon channels. In this respect, the experimental limits: \(\sigma \ll \) 0. Lowering to 0, the Type I BSM scenario like Type I BSM, the branching ratios of \(Z \) decays can be simply rescaled by a factor of \(\left(\frac{g}{g^B - L} \right) \). Considering the scaling of cross-sections, the current \(Z \) mass limit could be simply rescaled by a factor of \(\left(\frac{g}{g^B - L} \right) \)

\[\sum_l BR(Z' \rightarrow l\bar{l} + v\bar{v}) \sim 20.4\% \]

\[\sum_q BR(Z' \rightarrow q\bar{q}) \sim 9.2\% \]

\[\sum_{\nu_h} BR(Z' \rightarrow \nu_h\bar{\nu}_h) \sim 24\% \]

\[\sum_{\nu_s} BR(Z' \rightarrow \nu_s\bar{\nu}_s) \sim 41.4\%. \] (12)

where \(l = e \) or \(\mu \), \(q = u, d, s \), or \(c \), while \(\nu_h \) refers to the six heavy neutrinos, and \(\nu_s \) refers to the three inert neutrinos.

It is worth noting that in our model the \(Z' \) mass scale was set to 1000 GeV for definiteness. \(g^B - L = g^B \) and \(BR(Z' \rightarrow new channels) = 0 \), this reproduces the SSM cross-sections that were used by ATLAS and CMS. Considering the scaling of cross-sections, the current \(Z' \) mass limits will be lowered by a factor of \(\sigma_{B - L}(Z' \rightarrow ll) / \sigma_{SSM}(Z' \rightarrow ll) \). This result is consistent with the conclusion of Ref. [12].

If \(g^B - L = 1000 \text{GeV} \) were considered, \(BR(Z' \rightarrow l^+l^-) \sim 14\% \) and the \(\sigma \times BR = 16 \text{fb} \) when \(g^B - L = g^B = 0.188 \) and the \(\sigma \times BR = 82 \text{fb} \) when \(g^B - L = 0.5 \), while in the SSM the \(BR(Z' \rightarrow l^+l^-) \sim 7.6\% \) that gives \(\sigma \times BR = 340 \text{fb}^{-1} \) for both electron and muon channels. In this respect, the experimental limits: \(M_{Z'} \gtrsim 2.5 \text{ TeV} \). \(\sigma \times BR = 814 \text{fb} \) that leads to increasing the current mass limit at \(g^B - L = 0.5 \). Such a lower \(Z' \) mass is sticking signature of BLSM with IS. In other scenario like Type I BLSM, the \(BR(Z' \rightarrow l^+l^-) \sim 28.6\% \) and \(\sigma \times BR = 814 \text{fb} \) that leads to increasing the current mass limit at \(g^B - L = 0.5 \). Table I gives \(\sigma \times BR(Z' \rightarrow ee) \) for SSM and BLSM with IS at different \(g^B - L \). Fig. 2 shows the invariant mass of the di-lepton from \(Z' \) decay to lepton pair in IS BLSM (blue) and in SSM (red) with 20 \(fb^{-1} \) at \(\sqrt{s} = 8 \text{ TeV} \), where lepton here refer to electron only and considering \(Z' \) mass of 1000 GeV as a benchmark point.

TABLE I: \(Z' \rightarrow ee \) cross sections times branching ratios at different masses.

\(M_{Z'} \) [GeV]	\(\sigma_{SSM} \) [fb]	\(\sigma_{B - L} \) [fb] with IS		
	\(g^B - L = g^B \)	\(g^B - L = 0.5 \)	\(g^B - L = 0.8 \)	
1000	170	6	41	105.7
1500	21.7	0.58	4.5	13.2
2000	3.4	0.087	0.72	2.3
2500	0.8	0.015	0.15	0.58
3000	0.21	0.003	0.04	0.19

FIG. 1: Branching Ratios of \(Z' \) decays in BLSM with IS as function of \(M_{Z'} \).
The dominant production mode for the heavy neutrinos at the LHC would be through the Drell-Yan mechanism, with Z'. The mixing between light and heavy neutrinos generates new couplings between the heavy neutrinos, the weak gauge boson W and Z, and the associate leptons. These couplings are crucial for the decay of the heavy neutrinos. The main decay channel is through W gauge boson, which may decay leptonically or hadronically, a Feynman diagram is given in Fig. 3. In case of multi-leptons final state one ends with four leptons plus missing energy ($4l + 2\nu$), while in case of multi-hadronic final state states one ends with four jets plus two leptons ($4J + 2l$). In addition, it is also possible to have mixed final with ($3l + 2j + \nu$). If two flavors of the heavy neutrinos are assumed to be degenerate in mass, one gets the same final states for the produced heavy neutrino pair with similar event rates. This will double the number of final state events but on the other hand, it makes it difficult to distinguish between final state leptons. Therefore throughout the current study, we considered the non-degenerate heavy neutrino masses considering the interference between every two different flavor.

In our analysis we have used SARAH\[13\] and SPheno\[14\] to build the model. The matrix-element calculation and events generation are derived by MadGraph\[15\]. Finally we used Pythia\[16\] to simulate the initial and final state radiation, fragmentation and hadronization effects. We considered the following bench mark: $M_{Z'} = 1000\text{ GeV}$, $M_{\nu_4} = M_{\nu_5} = 287\text{ GeV}$, $M_{\nu_6} = M_{\nu_7} = 435\text{ GeV}$, and $M_{\nu_8} = M_{\nu_9} = 652\text{ GeV}$. In addition, the following cuts are assumed: A lower transvers-momentum, p_T, cut of 20 GeV (10 GeV) was set on final state jets (electrons) and a higher pesudo-rapidity, η, cut of 4 (2) was set on jets (electrons), finally the separation between two jets (electrons), R_{jj} (R_{ll}) was set to be 0.4 (0.2).

i) $4 l + 2 \nu$ Final State: the main advantage of this channel is that it is almost background free. The main SM background comes from the three gauge boson WWZ production with $\sigma(WWZ) \sim 200\text{ fb}$ at 14 TeV\[1\]. In Fig. 4 we show the generator level invariant mass of 4-leptons plus 2 light neutrinos from Z' with WWZ background and also the invariant mass of 2-leptons plus light neutrino from heavy neutrino decay. In the right plot, it is clear that the heaviest two neutrinos (ν_8 and ν_9) are decayed off-shell when the $M_{Z'} = 1000\text{ GeV}$. These figures indicate that the decay channel $4 l + 2 \nu$ is the quite clean channel and quite promising for probing both Z' and ν_h using only few cuts to extract signals from background. The number of event left after set of cuts mentioned above are 270 signal events and 10 background events.

In Fig. 5 (left panel) we display the Integrated Luminosity of the data need for 1-7 σ Statistical Significance discovery for $g_{B-L} = 0.5$ and $M_{Z'}=1000$, 1500 and 2000 GeV. In the right panel while the left plot we plot the
Integrated Luminosity of the data need for a 5 \(\sigma\) discovery as a function of \(M_{Z'}\) for \(g_{B-L} = 0.5\) and \(g_{B-L} = 0.8\). If one consider the case of \(g_{B-L} = 0.188\), which corresponds to the case of SSM, he finds that the Luminosity needed for a 5 \(\sigma\) discovery is of order 390 \(fb^{-1}\) for \(M_{Z'} = 1000\) GeV and about \(8.4 \times 10^5\) for \(M_{Z'} = 2500\) GeV. This value of Luminosity is incredibly high and far beyond the expected data of the LHC experiments during the foreseen Run II. Therefore, one may conclude that the scenario of SSM is rather unfavored not only for the reason of using \(Z'\) decays to di-leptons channel only, but also for using SM like value for coupling.

![Graphs showing the invariant mass of 4-leptons plus 2 light neutrinos and 2-leptons plus 1 light neutrino distributions.](image)

FIG. 4: (Left) The invariant mass of the 4-leptons plus 2 light neutrinos distribution from \(Z'\) decay. (Right) The invariant mass of 2-leptons plus 1 light neutrino from heavy neutrino decay. Expected SM background is included as well.

![Graphs showing the luminosity discovery potential as a function of significance.](image)

FIG. 5: For the \(4 \ell + 2\nu\) final state, the Integrated Luminosity of the data need for (Left) 1-7 \(\sigma\) Statistical Significance discovery at \(g_{B-L} = 0.5\) for different \(M_{Z'}\), (Right) a 5 \(\sigma\) discovery as a function of Mass \(Z'\) at \(g_{B-L} = 0.188\), \(g_{B-L} = 0.5\) and \(g_{B-L} = 0.8\).

ii) 4 \(j\) + 2 \(\ell\) Final State: here both \(W\)’s decay hadronically and because of the higher branching ratio of \(W \rightarrow jj' \sim 60\%\), we expect higher number of events than the previous channel (\(4 \ell + 2\nu\)). The irreducible SM background is due to \(ZZ + jj\), where one of the \(Z\) decays to two leptons while the other \(Z\) decays two quark anti-quark (\(Z \rightarrow \ell\bar{\ell}, Z \rightarrow jj\)). The contribution due to \(Z + jets\) could be neglected. In addition, there are two reducible background coming from \(\ell\bar{\ell}\) and \(WW\). In figure [we present invariant mass of \(4j + 2\ell\) (left) and also that of \(2j + l\) from signal and background, after applying an additional \(p_T\) cut of 150 GeV on the two \(p_T\)-leading leptons. As in the \(4\ell + 2\nu\) channel, the heaviest two neutrinos (\(\nu_8\) and \(\nu_9\)) are decayed off-shell when the \(M_{Z'} = 1000\) GeV. The number of event left after cuts for signal and backgrounds are listed in table [II]. The Integrated Luminosity of the data need for 1-7 \(\sigma\) Statistical Significance discovery is shown in Fig. [left panel] at \(g_{B-L} = 0.5\) and \(M_{Z'} = 1000, 1500, 2000\) and \(2500\) GeV. The presence of four jets in the final state of the signal, makes SM backgrounds highly contributed. With a cut \(p_T > 150\) GeV, the signal is fully enhanced over SM backgrounds which make the 5 \(\sigma\) discovery predictable in the near future at LHC as shown in Fig. [right panel].
$M(4j+2l)$

![Graphs](image)

FIG. 6: (Left) The invariant mass of the 4 jets plus 2 leptons distribution from for signal as well as expected SM background. (Right) The invariant mass of 2 jets plus 1 lepton from heavy neutrino decay.

TABLE II: Number of events after initial set of cuts, in case $Z' \rightarrow 4j + 2l$

Cut	Signal $ZZjj$	tt	WW	
Initial No events a	2042	28913	650000	80000
$p_T > 150 GeV$	1088	102	0	0

aWeighted events, the initial generated number of events is 10 K events in signal and 100 K events for background sample

iii) $3l + 2j + \nu_l$ **Final State:** in the semi-leptonic case where one of W’s decays hadronically and the other decays to $l + \nu_l$. The main background is $WZ + jj$. In the case of $WZ + jj$ associated production, three leptons can be generated from the subsequent leptonic decays of the two gauge bosons. In Fig. 8 we show the invariant mass of $3l + 2j + \nu_l$ (left) for both of signal and background. Also the invariant mass of $2l + \nu_l$ (middle) and that of $2j + \nu_l$ (right). Again an additional $p_T > 150 GeV$ cut was set on the two p_T-leading leptons. Table III lists the number of event left after cuts for signal and backgrounds. In Fig. 9 (left panel) we plot the Integrated Luminosity of the data need for 1-7 σ Statistical Significance discovery at $g_{B-L} = 0.5$ and $M_{Z'} = 1000, 1500$ and 2000 GeV. In the right panel, we show the Integrated Luminosity of the data need for a 5 σ discovery as a function of $M_{Z'}$ at $g_{B-L} = 0.5$ and $g_{B-L} = 0.8$.

TABLE III: Number of events after initial set of cuts, in case $Z' \rightarrow 3l + 2j + \nu_l$

Cut	Signal $WZjj$	
Initial No events a	769	37975
$p_T > 150 GeV$	475	910

aWeighted events, the initial generated number of events is 10 K events in signal and 100 K events for background sample

In summary, we have analysed the striking signatures of probing the heavy neutrinos, ν_h, and neutral gauge boson, Z', in TeV scale $B - L$ extension of the standard model with inverse seesaw mechanism at the LHC. We have emphasised that in this type of models, where Z' may decay into new channels of heavy and light-inert neutrinos, the current experimental limits on Z' mass from LHC are relaxed. For instance, the limit on Z' mass can be lowered to 0.247 of the current experimental value if $g_{B-L} = 0.5$. We provided detailed analysis for the pair production of heavy neutrinos and their possible decay to four leptons and missing energy, due to two light neutrinos or to four jets and two leptons or two jets and missing energy due to one light-neutrino. In our analysis we have considered the following bench mark: $M_{Z'} = 1$ TeV, $M_{\nu_4} = M_{\nu_5} = 287$ GeV, $M_{\nu_6} = M_{\nu_7} = 435$ GeV, $M_{\nu_8} = M_{\nu_9} = 652$ GeV. In addition the following cuts have been used: transverse-momentum $p_T \gtrsim 20(10)$ GeV on final state jets (leptons), pesudo-rapidity $\eta \gtrsim 4(2)$ on jets (leptons), and separation between two jets (leptons) $R_{ij} (R_{ll}) \sim 0.4(0.2)$. In $4j + 2l$ channel and $3l + 2j + \nu_l$ channel an additional p_T cut of 150 GeV on the two p_T-leading leptons is also applied. We showed that the $4l + 2\nu$ channel is almost free from the SM background, therefore it is the most promising decay channel for probing both Z' and heavy neutrinos at the
FIG. 7: For the $4j + 2l$ final state, the Integrated Luminosity of the data need (Left) for 1-7 σ Statistical Significance discovery at $g_{B-L} = 0.5$ for different $M_{Z'}$, (Right) for a 5 σ discovery as a function of $Mass_{Z'}$ at $g_{B-L} = 0.188$, $g_{B-L} = 0.5$ and $g_{B-L} = 0.8$.

FIG. 8: (Top) the invariant mass of $3l + 2j + \nu_l$ distribution for both signal and expected background. (Bottom) The invariant mass of heavy neutrino which decay to $2l + \nu$ (bottom-left) or to $2j + l$ (bottom-right) and its background LHC. We showed also the Z' discovery potential at 14 TeV center of mass energy for the 3 decay channels under study.
FIG. 9: For the $3\ell + 2j + \nu_l$ final state, the Integrated Luminosity of the data need (Left) for 1-7 σ Statistical Significance discovery at $g_{B-L} = 0.5$ for different $M_{Z'}$, (Right) for a 5 σ discovery as a function of Mass$_{Z'}$ at $g_{B-L} = 0.188$, $g_{B-L} = 0.5$ and $g_{B-L} = 0.8$.

Acknowledgments

This work was partially supported by ICTP grant AC-80. The work of A. A. Abdelalim was supported by EENP2 FP7-PEOPLE-2012-IRSES grant. We would like also to acknowledge Florian Staub for the useful discussion.

[1] V. D. Barger and T. Han, Phys. Lett. B 212, 117 (1988); V. Hankele and D. Zeppenfeld, Phys. Lett. B 661, 103 (2008);
[2] S. Khalil, J. Phys. G 35, 055001 (2008);
[3] S. Khalil, Phys. Rev. D 82, 077702 (2010);
[4] S. Khalil and A. Masiero, Phys. Lett. B 665, 374 (2008);
[5] Lorenzo Basso, Oliver Fischer, J.J. van der Bij Phys. Rev. D 87, 035015 (2013).
[6] A. El-Zant, S. Khalil and A. Sil, arXiv:1308.0836.
[7] The ATLAS Collaboration, ATLAS-CONF-2013-017, http://cds.cern.ch/record/1525524.
[8] The CMS Collaboration, CMS-EXO-12-015, arXiv:1212.6175v2.
[9] Lorenzo Basso, Alexander Belyaev, Stefano Moretti, Claire H. Shepherd-Themistocleous Phys. Rev. D 80, 055030 (2009).
[10] Katri Huitu, Shaaban Khalil, Hiroshi Okada, Santosh Kumar Rai Phys. Rev. Lett. 101, 181802 (2008).
[11] W. Abdallah, A. Awad, S. Khalil, H. Okada Eur. Phys. J. C 72:2108 (2012).
[12] G. Arcadi, Y. Mambrini, M. H. G. Tytgat and B. Zaldívar, JHEP 1403, 194 (2014).
[13] Florian Staub arXiv:1309.7223 [hep-ph].
[14] W. Porod, F. Staub arXiv:1104.1374 [hep-ph].
[15] Johan Alwall, Michel Herquet, Fabio Maltoni, Olivier Mattelaer, Tim Stelzer, MadGraph 5: Going Beyond, arXiv:1106.0522v1 [hep-ph].
[16] Torbjørn Sjstrand, Stephen Mrenna, Peter Skands arXiv:0710.3820 [hep-ph].