THE HYPERMETRIC CONE ON 8 VERTICES AND SOME GENERALIZATIONS

MICHEL DEZA AND MATHIEU DUTOUR SIKIRIĆ

Abstract. The lists of facets – 298, 592 in 86 orbits – and of extreme rays – 242, 695, 427 in 9, 003 orbits – of the hypermetric cone $\text{HY P}_8$ are computed. The first generalization considered is the hypermetric polytope $\text{HY P}_n$ for which we give general algorithms and a description for $n \leq 8$. Then we shortly consider generalizations to simplices of volume higher than 1, hypermetric on graphs and infinite dimensional hypermetrics.

1. Introduction

Metric, cut and hypermetric cones are among central objects of Discrete Mathematics. For example, finite metrics and $l_1$-metrics can be studied by polyhedral cones or polytopes; see, for example, [15]. The hypermetric cone $\text{HY P}_n$ is the set of all hypermetrics on $n$ points, i.e., the functions $d : \{1, \ldots, n\}^2 \to \mathbb{R}$, such that

$$H(b, d) = \sum_{1 \leq i < j \leq n} b_i b_j d(i, j) \leq 0 \text{ for all } b \in \mathbb{Z}^n, \sum_i b_i = 1.$$  

If $b$ is $\{0, \pm 1\}$-valued and has $k + 1$ ones, the inequality is called $(2k + 1)$-gonal inequality. In fact, the case of general $b$ can be seen as some such $\{0, \pm 1\}$-valued $b$ on a multiset of $\sum_{i=1}^n |b_i|$ points, in which different points occur $|b_1|, \ldots, |b_n|$ times.

The metric cone $\text{MET}_n$ is the set of all semimetrics on $n$ points, i.e., those of above functions $d$, which satisfy all triangle (i.e., all 3-gonal) inequalities.

For a set $S \subseteq \{1, \ldots, n\}$ the cut (or split) semimetric $\delta_S$ is a vector defined as

$$\delta_S(x, y) = \begin{cases} 1 & \text{if } |S \cap \{x, y\}| = 1 \\ 0 & \text{otherwise.} \end{cases}$$

Clearly, $\delta_S = \delta_S$, and $\delta_S$ is also can be seen as the adjacency matrix of a cut (into $S$ and $\overline{S}$) subgraph of $K_n$. The cut cone $\text{CUT}_n$ is the positive span of the $2^{n-1} - 1$ non-zero cut semimetrics; the cut polytope $\text{CUT P}_n$ is the convex hull of all $2^{n-1}$ cut semimetrics.

We have the evident inclusions $\text{CUT}_n \subseteq \text{HY P}_n \subseteq \text{MET}_n$ with $\text{CUT}_n = \text{MET}_n$ only for $3 \leq n \leq 4$; also, $\text{CUT}_n = \text{HY P}_n$ only for $3 \leq n \leq 6$ ([15]). So, the first proper $\text{HY P}_n$ is $\text{HY P}_7$; it was described in [15]. While $\text{CUT}_n$ is important in Analysis and Combinatorics, the cone $\text{HY P}_n$ is related to Voronoi-Delaunay theory in Geometry of Numbers.

Given a polyhedral cone $C$, let $e_C$ denote the number of extreme rays of $C$, while $f_C$ denote the number of facets of $C$. The Table gives $e_C$ and $f_C$ for $C = \text{CUT}_n, \text{HY P}_n, \text{MET}_n$ with $n = 3, 4, 5, 6, 7, 8$. The enumeration of orbits of facets of $\text{CUT}_n$ for $n \leq 7$ was done in [32] for $n = 5, 6$ and 7, respectively.

Second author gratefully acknowledges support from the Alexander von Humboldt foundation.
Table 1. The number of extreme rays and facets in cones $\text{HYP}_n$, $\text{CUT}_n$ and $\text{MET}_n$ for $3 \leq n \leq 8$; the numbers of orbits under the symmetric group $\text{Sym}(n)$ are given in parentheses. Also, the number of vertices and facets in the hypermetric polytope $\text{HYPP}_n$, see Section 4, is given for $3 \leq n \leq 8$, with number of orbits under $\text{Sym}(n)$ and $2^n - 1$ switchings.

| $n$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ |
|-----|-----|-----|-----|-----|-----|-----|
| $\text{CUT}_n, e$ | (1) | (7) | (15) | (31) | (63) | (127) |
| $\text{CUT}_n, f$ | (3) | (12) | (40) | (210) | (38,780) | (49,604,520) |
| $\text{HYP}_n, e$ | (3) | (7) | (15) | (31) | (37,170) | (242,695,427) |
| $\text{HYP}_n, f$ | (3) | (12) | (40) | (210) | (3,773) | (298,592) |
| $\text{MET}_n, e$ | (3) | (7) | (25) | (296) | (55,226) | (119,269,588) |
| $\text{MET}_n, f$ | (3) | (12) | (30) | (60) | (105) | (168) |
| $\text{HYPP}_n, v$ | (4) | (8) | (16) | (32) | (113,152) | (1,388,383,872) |
| $\text{HYPP}_n, f$ | (4) | (16) | (56) | (68) | (10,396) | (1,374,560) |

For $\text{CUT}_8$ and $\text{CUTPP}_8$, sets of facets were found in [7]; completeness of these sets was shown in [13]. The enumeration of orbits of extreme rays of $\text{MET}_n$ for $n \leq 8$ was done in [24, 9, 10].

In Section 2 the facets of the hypermetric cone $\text{HYP}_8$ are determined with the help of the connection with geometry of numbers and the list of simplices of dimension 7. In Section 3 we list the extreme rays of $\text{HYP}_8$ by using the list of extreme Delaunay polytopes in dimension 7.

In Section 4 we define the hypermetric polytope and give algorithms for computing with it. This is then used to compute the vertices and facets of the hypermetric polytope $\text{HYPP}_7$ and $\text{HYPP}_8$. In Section 5 we give the list of facets of the cone that come from simplices of volume greater than 1. Those are direct analogues of the hypermetric cone. In Section 6 we define an analogue of hypermetric inequality for the cut-polytope of a graph $G$. This directly generalizes the corresponding definitions of the metric polytope of a graph and allows to find new facet inequality in some cases. In Section 7 the notion of infinite hypermetric is briefly considered.

2. Computation of facets of $\text{HYP}_8$

While $\text{HYP}_n$ is defined by an infinity of inequalities, it is proved in [13, 12, 15] that this cone is, in fact, polyhedral for all $n$. The proof relies on a connection with Geometry of Numbers that we now explain.

Given a quadratic form $q$, one can define the induced Delaunay tessellation with point set $\mathbb{Z}_n$ ( [33, 30, 20, 21] ). It is well known, that in this context there are only a finite number of possible tessellations, up to the action of the group $\text{GL}_n(\mathbb{Z})$.

For a generic quadratic form, the tessellation is formed by simplices only; but, importantly, when it is not, this induces linear conditions on the coefficients of the form. There are a finite number of simplices, up to $\text{GL}_n(\mathbb{Z})$ action, and they have been classified in [11] for $n = 7$, extending previous classification for $n \leq 6$ ( [28, 6, 20] ). There are 11 orbits of such simplices and their volume is at most 5.
Given a simplex $S$, one can consider all Delaunay polytopes containing it. We consider the set $\text{Bar}_S$ of quadratic forms, for which $S$ is contained in a Delaunay polytope of the Delaunay tessellation. It is a polyhedral cone, called a Baranovskii cone in [30].

For a quadratic form inside $\text{Bar}_S$, the Delaunay tessellation contains $S$ as a simplex. For a quadratic form on a facet of $\text{Bar}_S$, the simplex $S$ is a part of a repartitioning polytope, i.e., a Delaunay polytope with $n + 2$ vertices.

If the simplex $S$ has volume 1, then it is equivalent to the simplex formed by the vertices $v_1 = 0, v_2 = e_1, \ldots, v_{n+1} = e_n$. The quadratic form $q$ is described uniquely by the distance function $d(i, j) = q(v_i - v_j)$ on the vertices $v_i$. For a given positive definite quadratic form $q$, denote by $c(q)$ the center of the sphere, circumscribing $S$, and by $r(q)$ the radius of this sphere. Since $S$ is of volume 1, a given point $v \in \mathbb{Z}^n$ can be uniquely expressed in barycentric coordinates as $v = \sum_i b_i v_i$ with $1 = \sum_i b_i$ and $b_i \in \mathbb{Z}$. In [15], the following formula is proved:

$$H(b, d) = \|v - c(q)\|^2 - r(q)^2.$$ 

So, the distance function $d$ corresponds to a quadratic form $q$ having $S$ a part of the Delaunay tessellation if and only if it belongs to $\text{HYP}_{n+1}$. Therefore, in order to classify the facets of $\text{HYP}_7$, we need to classify the repartitioning polytopes of dimension 7.

A repartitioning polytope $R$ is defined by its $n + 2$ vertices $w_1, \ldots, w_{n+2}$. There exists a unique linear relation among the vertices. It is expressed as

$$\sum_{i=1}^{n+2} \alpha_i w_i = 0 \text{ with } \sum_{i=1}^{n+2} w_i = 0.$$ 

It turns out, that $R$ admits exactly two triangulations into simplices. Define

$$S_+ = \{1 \leq i \leq n + 2 \text{ s.t. } w_i > 0\} \text{ and } S_- = \{1 \leq i \leq n + 2 \text{ s.t. } w_i < 0\}.$$ 

The first triangulation is defined by taking all simplices with vertices $\{1, \ldots, n+2\} - \{i\}$ for $i \in S_+$ and the second one similarly from $S_-$. Going from one triangulation to another is called a bistellar flips [29].

A $L$-type domain is the specification of the full tessellation by Delaunay polytopes of $\mathbb{Z}^n$. The $L$-type form a tessellation of the cone of positive definite quadratic forms. When one moves from one $L$-type to another adjacent one then the operation that is done is a change from one triangulation $T$ to another $T'$. This change can be described in the following way:

1. Some of the simplices of the triangulation $T$ are grouped to form repartitioning polytopes
2. Each repartitioning polytope has two triangulations. We go from one to another.
3. The triangulation $T'$ is obtained from all the new triangulations and the simplices that did not belong to any repartitioning polytope.

As a consequence, all simplices occurring in a repartitioning polytope, are also lattice polytopes.

Now we explain our strategy for enumerating the repartitioning polytopes, which is rather similar to the one of [19]:

**Theorem 1.** There are exactly 67 types of repartitioning polytopes for $n = 7$. 
Proof. Our classification is based on a computer assisted case distinction. The full list can be obtained from the web-page [17]. Here, we briefly describe the necessary ingredients and our computational steps.

Let us write the vertices of a repartitioning polytope $R$ as $v_1, \ldots, v_9$. Without loss of generality, assume that $v_1, \ldots, v_8$ are linearly independent.

For any $1 \leq i \leq n$, we define $S_i = \{v_1, \ldots, v_9\} - \{v_i\}$ and denote by $\text{vol}(S_i)$ its volume multiplied by $n!$. If the points of $S_i$ are linearly dependent, then $\text{vol}(S_i) = 0$; otherwise, $S_i$ is a realizable simplex and so, by the classification of [18], of volume at most 5. In addition, one can assume that $\text{vol}(S_9)$ is maximal among all $\text{vol}(S_i)$ and denote it by $i(R) \leq 5$. By using exterior algebra product, one can find vectors $w_i$ such that $\text{vol}(S_i) = |\langle w_i, v_9 \rangle|$.

Since either $\text{vol}(S_i) = 0$, or $\text{vol}(S_i) \leq \text{vol}(S_9) = i(R)$, we have the inequalities:

$$-i(R) \leq \langle w_i, v_9 \rangle \leq i(R).$$

Geometrically, these conditions define a polytope, for which we are searching its integral points. One can use, for instance, the program zsolve from [1] to enumerate those integral points. The polytope thus defined is a little more complicated than a parallelepiped; but, as $i(R)$ increases, the condition $\text{vol}(S_9) = i(R)$ imposes some strong restriction on the solution set, which, so, does not increase too much.

Hence, we obtain a finite list of possible candidates for the repartitioning polytopes. Then we need to check whether there exist an adequate quadratic form realizing it. This is done by an adaptation of Algorithm 1 of [25]. That is, we use the integral symmetries of the repartitioning polytopes and iterate until an adequate quadratic form is found.

After obtaining the list of 67 repartitioning polytopes, we look at all the simplices of volume 1 in it and at the corresponding barycentric coordinates of the remaining vertex. Therefore, we get:

**Theorem 2.** The hypermetric cone $\text{HYP}_8$ has 298,592 facets in 86 orbits.

Note that [16] gave 86 as lower bound on the number of orbits of facets, which is therefore an exact bound.

The 86 orbits $O_i$ of facets are presented in Tables 2, 3. The first representatives of each (of 22) switching equivalence classes of facets are boldfaced there. The orbits of simplicial facets are marked by *. About 92% of the total number of facets (60 orbits) are simplicial; they polish the cone. On the other hand, each triangle facet contains about 18.8 millions of extreme rays.

For facets in $\text{HYP}_n$, gcd of orbit sizes is 56 if $n = 8$ and 3, 12, 10, 30, 7 if $n = 3, 4, 5, 6, 7$, respectively.

3. Extreme rays of $\text{HYP}_8$

A $n$-dimensional Delaunay polytope $D$ is called extreme if up to scalar multiple there is a unique quadratic form $q$ having $D$ as Delaunay polytopes. For a Delaunay polytope $D$ an integral affine generating set $S_{aff}$ is a set $v_1, \ldots, v_m$ of vertices of $D$ such that for each vertex $v$ of $D$ there exist $\lambda_i \in \mathbb{Z}$ such that

$$v = \sum_{i=1}^{m} \lambda_i v_i \text{ and } 1 = \sum_{i=1}^{m} \lambda_i.$$
Table 2. The orbits of facets of the cone $HY_{P_5}$: part 1

| $F_{i,j}$ | Representative | $\frac{\mu_{\alpha}}{26}$ | $CUT_5$-rank | Inc.([0, 1], 2_{21}, 3_{21}, ER_7) |
|-----------|----------------|--------------------------|--------------|----------------------------------|
| $F_{1,1}$ | $(0, 0, 0, 0, -1, 1, 1)$ | 3 | 27 | (95, 329734, 737128, 17725428) |
| $F_{2,1}$ | $(0, 0, -1, -1, 1, 1, 1)$ | 10 | 27 | (79, 93978, 176058, 3780630) |
| $F_{3,1}$ | $(0, 0, -1, -1, 1, 1, 2)$ | 30 | 27 | (59, 10460, 13052, 209644) |
| $F_{3,2}$ | $(0, 0, -1, 1, 1, 1, -2)$ | 15 | 27 | (59, 10460, 13052, 209644) |
| $F_{4,1}$ | $(0, -1, -1, -1, 1, 1, 1, 1, 1)$ | 5 | 27 | (69, 36816, 60480, 1207584) |
| $F_{5,1}$ | $(0, -1, -1, -1, -1, 1, 1, 3)$ | 15 | 27 | (41, 400, 240, 620) |
| $F_{5,2}$ | $(0, -1, 1, 1, 1, 1, -3)$ | 6 | 27 | (41, 400, 240, 620) |
| $F_{6,1}$ | $(0, -1, -1, 1, 1, 1, -2, 2)$ | 60 | 27 | (51, 3567, 3288, 46176) |
| $F_{6,2}$ | $(0, -1, -1, -1, -1, 1, 2, 2)$ | 15 | 27 | (51, 3560, 4680, 64400) |
| $F_{6,3}$ | $(0, 1, 1, 1, 1, 1, -2, -2)$ | 3 | 27 | (51, 3560, 4680, 64400) |
| $F_{7,1}$ | $(0, -1, -1, -1, -1, -2, 2, 3)$ | 120 | 26 | (39, 311, 220, 1479) |
| $F_{7,2}$ | $(0, -1, -1, 1, 1, 2, -3)$ | 90 | 26 | (39, 325, 172, 1461) |
| $F_{7,3}$ | $(0, -1, 1, 1, 1, -2, -3)$ | 60 | 26 | (39, 325, 172, 1461) |
| $F_{7,4}$ | $(0, 1, 1, 1, 1, 1, -2, -3, -3)$ | 30 | 26 | (39, 311, 220, 1479) |
| $F_{8,1}$ | $(-1, -1, -1, -1, -1, 1, 1, 1, 2)$ | 5 | 27 | (55, 6840, 8526, 141642) |
| $F_{8,2}$ | $(-1, -1, 1, 1, 1, 1, -1, 1)$ | 3 | 27 | (55, 6840, 8526, 141642) |
| $F_{9,1}$ | $(-1, -1, -1, -1, -1, 1, 1, 1, 4)$ | 3 | 27 | (27, 0, 0, 0)* |
| $F_{9,2}$ | $(-1, 1, 1, 1, 1, 1, -1, 1, 4)$ | 1 | 27 | (27, 0, 0, 0)* |
| $F_{10,1}$ | $(-1, -1, -1, 1, 1, 1, 1, 1, 1, 2)$ | 20 | 27 | (41, 645, 282, 3021) |
| $F_{10,2}$ | $(-1, -1, 1, 1, 1, 1, 1, 2)$ | 15 | 27 | (41, 645, 282, 3021) |
| $F_{10,3}$ | $(-1, -1, -1, -1, -1, 1, 1, 2, 3)$ | 6 | 27 | (41, 495, 828, 5094) |
| $F_{10,4}$ | $(1, 1, 1, 1, 1, 1, 1, -2, -3)$ | 1 | 27 | (41, 495, 828, 5094) |
| $F_{11,1}$ | $(-1, -1, -1, 1, 1, -1, 1, 2, 2)$ | 30 | 27 | (45, 1646, 1390, 18310) |
| $F_{11,2}$ | $(-1, 1, 1, 1, 1, 1, -2, -2)$ | 15 | 27 | (45, 1646, 1390, 18310) |
| $F_{11,3}$ | $(-1, -1, 1, 1, 1, 1, 1, 2, 2)$ | 1 | 27 | (45, 2070, 1458, 34956) |
| $F_{12,1}$ | $(-1, -1, 1, 1, 1, 1, -2, 2, 3)$ | 90 | 27 | (37, 293, 166, 1638) |
| $F_{12,2}$ | $(-1, 1, 1, 1, 1, 1, -2, 2, -3)$ | 60 | 27 | (37, 293, 166, 1638) |
| $F_{12,3}$ | $(-1, -1, -1, 1, 1, 2, 2, 3)$ | 20 | 27 | (37, 306, 279, 2616) |
| $F_{12,4}$ | $(-1, 1, -1, -1, -1, -2, 2, 3)$ | 15 | 27 | (37, 306, 279, 2616) |
| $F_{12,5}$ | $(1, 1, 1, 1, 1, 1, -2, -2, 3)$ | 5 | 27 | (37, 306, 279, 2616) |
| $F_{13,1}$ | $(-1, -1, -1, -1, -1, 1, 1, 2, 4)$ | 30 | 26 | (31, 35, 31, 31) |
| $F_{13,2}$ | $(-1, -1, 1, 1, 1, -1, -2, 2, 4)$ | 30 | 26 | (31, 45, 3, 24) |
| $F_{13,3}$ | $(-1, -1, 1, 1, 1, 2, 2, 4)$ | 30 | 26 | (31, 45, 3, 24) |
| $F_{13,4}$ | $(1, 1, 1, 1, 1, 1, -2, 2, 4)$ | 6 | 26 | (31, 35, 31, 31) |
| $F_{14,1}$ | $(-1, -1, 1, 1, 1, 1, 1, 2, -3, 3)$ | 60 | 26 | (35, 142, 46, 268) |
| $F_{14,2}$ | $(-1, 1, 1, 1, 1, 1, 2, -3, 3)$ | 30 | 26 | (35, 142, 46, 268) |
| $F_{14,3}$ | $(-1, -1, -1, -1, -1, -2, 3, 3)$ | 15 | 26 | (35, 110, 142, 404) |
| $F_{14,4}$ | $(1, 1, 1, 1, 1, 1, 2, 3, -3)$ | 3 | 26 | (35, 110, 142, 404) |
| $F_{15,1}$ | $(-1, -1, -1, 1, 1, 1, 1, 3, 3, 4)$ | 30 | 26 | (26, 0, 0, 1)* |
| $F_{15,2}$ | $(-1, -1, -1, -1, 1, 1, 1, 3, 3, -4)$ | 30 | 26 | (26, 0, 0, 1)* |
| $F_{15,3}$ | $(-1, 1, 1, 1, 1, 1, -3, 3, 4)$ | 15 | 26 | (26, 0, 0, 1)* |
| $F_{15,4}$ | $(1, 1, 1, 1, 1, 1, -3, 3, -4)$ | 6 | 26 | (26, 0, 0, 1)* |
Table 3. The orbits of facets of the cone $HYP_5$: part 2

| $F_{i,j}$ | Representative | $|F_{i,j}|$ | $CU_{S}$-rank | Inc.$([0, 1], 2_{21}, 3_{21}, ER_7]$ |
|-----------|----------------|----------|----------------|----------------------------------|
| $F_{16.1}$ | $(-1, -1, 1, -2, 2, -3, 3)$ | 180 | 26 | (32, 63, 36, 177) |
| $F_{16.2}$ | $(1, 1, 1, -2, -2, -3, 3)$ | 60 | 26 | (32, 63, 36, 177) |
| $F_{16.3}$ | $(-1, 1, 1, 2, 2, -3, 3)$ | 30 | 26 | (32, 82, 38, 272) |
| $F_{16.4}$ | $(-1, 1, 1, -2, -2, -3, 3)$ | 30 | 26 | (32, 82, 38, 272) |
| $F_{16.5}$ | $(-1, -1, -1, -2, -2, 3, 3)$ | 30 | 26 | (32, 94, 26, 266) |
| $F_{17.1}$ | $(-1, -1, 1, 1, -2, 2, -3, 4)$ | 180 | 25 | (30, 41, 6, 51) |
| $F_{17.2}$ | $(-1, 1, 1, 1, -2, 2, -3, 4)$ | 120 | 25 | (30, 41, 6, 51) |
| $F_{17.3}$ | $(-1, -1, -1, 1, 2, 2, -3, 4)$ | 60 | 25 | (30, 40, 22, 74) |
| $F_{17.4}$ | $(-1, -1, -1, 1, -2, -3, 4)$ | 60 | 25 | (30, 30, 32, 74) |
| $F_{17.5}$ | $(1, 1, 1, 1, -2, -2, -3, 4)$ | 15 | 25 | (30, 40, 22, 74) |
| $F_{17.6}$ | $(1, 1, 1, 1, 2, 2, -3, 4)$ | 15 | 25 | (30, 30, 32, 74) |
| $F_{17.7}$ | $(-1, -1, -1, 1, -2, 2, -3, 4)$ | 15 | 25 | (30, 40, 22, 72) |
| $F_{18.1}$ | $(-1, -1, -1, -2, 2, 3, 3, -4)$ | 180 | 25 | (27, 13, 9, 20) |
| $F_{18.2}$ | $(-1, 1, 1, 1, 2, 2, -3, 3, 4)$ | 180 | 25 | (27, 15, 3, 15) |
| $F_{18.3}$ | $(-1, 1, 1, -2, -2, -3, 3, 4)$ | 180 | 25 | (27, 15, 3, 15) |
| $F_{18.4}$ | $(-1, -1, -1, -2, 2, -3, 3, 4)$ | 120 | 25 | (27, 13, 9, 18) |
| $F_{18.5}$ | $(-1, -1, -1, 2, 2, -3, 3, 4)$ | 90 | 25 | (27, 21, 1, 22) |
| $F_{18.6}$ | $(1, 1, 1, 1, -2, -2, -3, 4)$ | 60 | 25 | (27, 13, 9, 20) |
| $F_{18.7}$ | $(1, 1, 1, 1, -2, -2, 3, 3, 4)$ | 30 | 25 | (27, 21, 1, 22) |
| $F_{19.1}$ | $(-1, -1, -1, 1, -2, -2, 2, 5)$ | 60 | 24 | (24, 2, 1, 0)* |
| $F_{19.2}$ | $(-1, -1, 1, 1, 2, 2, -2, 5)$ | 30 | 24 | (24, 3, 0, 0)* |
| $F_{19.3}$ | $(-1, 1, 1, -1, -2, -2, -5)$ | 20 | 24 | (24, 3, 0, 0)* |
| $F_{19.4}$ | $(1, 1, 1, 1, -2, 2, 2, -5)$ | 15 | 24 | (24, 2, 1, 0)* |
| $F_{20.1}$ | $(-1, -1, -1, -1, 2, -3, 3, 5)$ | 120 | 24 | (24, 1, 1, 1)* |
| $F_{20.2}$ | $(-1, -1, 1, 1, 2, -3, 3, 5)$ | 90 | 24 | (24, 2, 0, 1)* |
| $F_{20.3}$ | $(-1, -1, 1, 1, 2, 3, 3, 5)$ | 60 | 24 | (24, 2, 0, 1)* |
| $F_{20.4}$ | $(-1, 1, 1, 1, -2, 3, 3, 5)$ | 60 | 24 | (24, 2, 0, 1)* |
| $F_{20.5}$ | $(1, 1, 1, 1, 2, -3, 3, 5)$ | 30 | 24 | (24, 1, 1, 1)* |
| $F_{20.6}$ | $(1, 1, 1, 1, -2, -3, 3, 5)$ | 15 | 24 | (24, 2, 0, 1)* |
| $F_{21.1}$ | $(-1, -1, -2, 2, 2, -3, 3, 5)$ | 180 | 23 | (23, 2, 1, 1)* |
| $F_{21.2}$ | $(-1, -1, -2, -2, -3, 3, 5)$ | 180 | 23 | (23, 3, 0, 1)* |
| $F_{21.3}$ | $(-1, -1, 2, 2, -3, 3, 5)$ | 120 | 23 | (23, 2, 1, 1)* |
| $F_{21.4}$ | $(1, 1, -2, -2, 3, 3, 5)$ | 90 | 23 | (23, 2, 1, 1)* |
| $F_{21.5}$ | $(1, -1, -2, 2, 2, 3, 3, 5)$ | 90 | 23 | (23, 3, 0, 1)* |
| $F_{21.6}$ | $(1, -1, -2, -2, 2, 3, 3, 5)$ | 60 | 23 | (23, 2, 1, 1)* |
| $F_{22.1}$ | $(-1, -1, -1, -2, 2, 3, 4, -5)$ | 360 | 23 | (23, 2, 1, 1)* |
| $F_{22.2}$ | $(-1, -1, -1, -2, -2, -3, 4, 5)$ | 180 | 23 | (23, 2, 1, 1)* |
| $F_{22.3}$ | $(-1, 1, -1, -2, -2, -3, 4, 5)$ | 180 | 23 | (23, 3, 0, 1)* |
| $F_{22.4}$ | $(-1, 1, 1, 2, 2, -3, 4, 5)$ | 180 | 23 | (23, 3, 0, 1)* |
| $F_{22.5}$ | $(-1, -1, 1, 2, 2, -3, 4, 5)$ | 180 | 23 | (23, 3, 0, 1)* |
| $F_{22.6}$ | $(1, 1, 1, -2, -2, 3, 4, 5)$ | 120 | 23 | (23, 2, 1, 1)* |
| $F_{22.7}$ | $(-1, -1, -1, -2, 2, 3, 4, 5)$ | 120 | 23 | (23, 2, 1, 1)* |
| $F_{22.8}$ | $(1, 1, 1, 2, 2, -3, 4, 5)$ | 60 | 23 | (23, 2, 1, 1)* |
| $F_{22.9}$ | $(1, 1, 1, -2, -2, 3, 4, 5)$ | 60 | 23 | (23, 3, 0, 1)* |
In the special case $m = n + 1$ the set $S_{aff}$ is called an "affine basis." Given an extreme Delaunay polytope $D$ of associated quadratic form $q$ and an integral affine generating set $S_{aff} = \{v_1, \ldots, v_m\}$ the distance function $d(i, j) = q(v_i - v_j)$ defines an extreme ray of $HY P_m$. It is proved in [15] that all extreme rays of $HY P_n$ are obtained in this way. Thus in order to classify the extreme rays of $HY P_n$ we need the list of extreme Delaunay polytopes of dimension at most $n - 1$ and their integral affine generating sets.

The perfect Delaunay polytopes of dimension at most 6 are determined in [13]. The ones of dimension 7 are determined in [18]. In summary, we obtain the following:

1. The 1-dimensional polytope $[0, 1]$. It has 4 orbits of 8-points integral affine generating sets and this yields 127 extreme rays of $HY P_8$.

2. The 6-dimensional Schlafli polytope $2_{21}$. It has 195 orbits of 8 points integral affine generating sets. This gives a total of 231,596 extreme rays in $HY P_8$.

3. The 7-dimensional Gosset polytope $3_{21}$. It has 374 orbits of affine basis and gives a total of 7,126,560 extreme rays of $HY P_8$.

4. The 7-dimensional Erdahl-Rybnikov polytope $ER_7$. It has 8,430 orbits of affine basis and gives a total of 235,337,144 extreme rays of $HY P_8$.

For $P = 3_{21}$ or $ER_7$, it suffices to enumerate the orbits of 8 vertices in $P$. We keep the ones that determine a simplex of volume 1 and thus are integral affinely generating. We found 374 and 8,430 orbits.

For $P = 2_{21}$, the integral affine generating sets can have 7 points with one repeated or 8 points. In the 7-points case we enumerate the affine basis of $2_{21}$ and consider all ways to duplicate points. In the 8-points case we enumerate all orbits of 8-points and check the ones that integrally affine generates $2_{21}$. This gives 195 orbits.

For the interval $[0, 1]$, we simply have to look at the number $2^n - 1$ of non-zero cut semimetrics on $n$ vertices.

So, altogether $HY P_8$ has 242,695,427 vertices in 9,003 orbits.

### 4. Hypermetric Polytope

For both, the metric cone and the cut cone, there are polytope analogs. The cut polytope $CUT P_n$ is defined as the convex hull of all $2^n - 1$ cut semimetrics. The metric polytope $MET P_n$ is defined by the same $3 \binom{n}{3}$ triangle inequalities, as $MET_n$, and $\binom{n}{3}$ additional perimeter inequalities

$$d_{ij} + d_{jk} + d_{ki} \leq 2 \text{ for } 1 \leq i < j < k \leq n.$$

The polytopes $CUT P_n$ and $MET P_n$ are invariant under the following switching operation $U_S$ on semimetrics:

$$U_S(d) = \begin{cases} 
\{1, \ldots, n\}^2 & \to \mathbb{R} \\
(i, j) & \mapsto \begin{cases} 
1 - d(i, j) & \text{if } |S \cap \{i, j\}| = 1 \\
\quad d(i, j) & \text{otherwise}.
\end{cases}
\end{cases}$$

By analogy with above, we proceed in the following way for hypermetrics. Given a vector $b = (b_1, \ldots, b_n) \in \mathbb{Z}^n$ with $\sum_{i=1}^n b_i = 2s + 1$ and $s \in \mathbb{Z}$, we define the hypermetric polytope $HY P P_n$ by the inequalities

$$\sum_{1 \leq i < j \leq n} b_i b_j d(i, j) \leq s(s + 1).$$
One obtains $MET_P^n$ using only $b$ of the form $(1, 1, -1, 0^{n-3})$ and $(1, 1, 0^{n-3})$.

**Theorem 3.** Given a distance function $d$, there is an algorithm for testing if
(i) $d \in HYP_n$
(ii) $d \in HYPP_n$

**Proof.** To check if $d \in HYP_n$ is to check if for all $b \in \mathbb{Z}^n$ with $1 = \sum b_i$ we have
$$\sum_{1 \leq i < j \leq n} b_i b_j d_{ij} \leq 0$$
while to check if $d \in HYPP_n$ is to check if for all $b \in \mathbb{Z}^n$ with $\sum b_i$ odd we have
$$\sum_{1 \leq i < j \leq n} b_i b_j d_{ij} \leq s(s+1)$$
with $2s+1 = \sum b_i$.

Both questions can be reframed in terms of quadratic functions, i.e., functions that are sum of a quadratic form, linear form, and constant term. Given a quadratic function $f$, we need to check if there exist a point $x \in \mathbb{Z}^n$ such that $f(x) < 0$. By standard linear algebra rewriting the question becomes to check if $f$ or a positive definite quadratic form $A$, vector $c \in \mathbb{R}^n$ and distance $d$ there exist a vector $x \in \mathbb{Z}^n$ such that $A[x - c] < d$. This is a Closest Vector Problem and there are algorithms for solving such questions [22]. □

The skeletons of $HYPP_n, HYP_n$ contain a clique consisting of all cuts or all non-zero cuts. We expect that any vertex is adjacent to a cut vertex (it holds for $n \leq 8$); if true, it will imply that each of above skeletons have diameter 3. The ridge graphs (i.e., skeletons of the duals) of the triangle/perimeter facets of $MET_P^n, MET_n$ with $n \geq 4$ have diameter 2 [8]. We expect that any facet of $HYPP_n, HYP_n$ is adjacent to a triangle/perimeter facet (it holds for $n \leq 7$); if true, it will imply that the ridge graphs of $HYPP_n, HYP_n$ have diameter 4.

**Theorem 4.** The entries of Table 1 for the hypermetric polytopes $HYPP_7$ and $HYPP_8$ are valid.

**Proof.** The hypermetric cone $HYP_8$ has 9,003 orbits of extreme rays and 86 orbits of facets under $Sym(8)$. We consider the group of order $2^78!$, denote it by $ARes(K_8)$, generated by $Sym(8)$ and the switchings. Under the group $ARes(K_8)$ the facets of $HYP_8$ generate 22 orbits of facets of $HYPP_8$. The extreme rays of $HYP_8$ are of the form $\lambda v$ with $v$ a generator. For each extreme ray, we choose $\lambda$ to be the maximal value which defines a vertex of the hypermetric polytope $HYPP_8$ by using Theorem 3. After elimination of isomorphic pairs, this gives 581 orbits of vertices of $HYPP_8$.

However, there could be more facets of $HYPP_8$: In principle it could happen that a vector $(b_1, \ldots, b_n)$ is not incident to any cut and yet defines a facet of $HYPP_8$. There could be more vertices as well: If a vertex of $HYPP_8$ is not adjacent to any cut, then it does not appear from the list of extreme rays of $HYP_8$. For each of the 581 orbits of vertices we compute the adjacent vertices by using the list of 22 orbits that we have. All the vertices found belong to the 581 orbits, which proves that both lists are complete.

The same method applies as well to $HYPP_7$. □

The hypermetric polytope $HYPP_8$ has 581 orbits of vertices, which are in details:
- 1 orbit $V_C$ of 128 cuts. The stabilizer of a cut is isomorphic to $Sym(8)$; the number of classes is 4. $V_C$ forms a clique; the cone of facets incident to a
Table 4. Orbits of facets of the hypermetric polytope $HYPP_8$

| $F_i$ | Representative | $\frac{F_i}{\mathbb{Q}}$ | #classes | Inc.([0, 1], {221, 321}, $ER_7$) |
|------|---------------|-----------------|----------|--------------------------------|
| $F_1$ | (0, 0, 0, 0, 0, 1, 1, 1) | 7 | 2 | (96, 1598784, 80836608) |
| $F_2$ | (0, 0, 0, 1, 1, 1, 1) | 28 | 3 | (80, 383040, 14300640) |
| $F_3$ | (0, 1, 1, 1, 1, 1, 1) | 16 | 4 | (70, 131712, 3975552) |
| $F_4$ | (0, 0, 1, 1, 1, 1, 1, 2) | 168 | 6 | (60, 32160, 590960) |
| $F_5$ | (0, 1, 1, 1, 1, 1, 2, 2) | 336 | 9 | (52, 9600, 122160) |
| $F_6$ | (1, 1, 1, 1, 1, 1, 2) | 32 | 8 | (56, 19656, 370272) |
| $F_7$ | (0, 1, 1, 1, 1, 1, 3) | 112 | 7 | (42, 840, 1120) |
| $F_8$ | (1, 1, 1, 1, 1, 2, 2) | 224 | 12 | (46, 3528, 39906) |
| $F_9$ | (0, 1, 1, 1, 1, 2, 2, 3) | 1,680 | 15 | (40, 656, 2686) |
| $F_{10}$ | (1, 1, 1, 1, 1, 2, 2, 3) | 224 | 14 | (42, 1323, 6489) |
| $F_{11}$ | (1, 1, 1, 1, 1, 1, 4) | 32 | 8 | (28, 0, 0)* |
| $F_{12}$ | (1, 1, 1, 1, 2, 3, 3) | 672 | 18 | (36, 252, 464) |
| $F_{13}$ | (1, 1, 1, 1, 2, 2, 2, 3) | 1,120 | 20 | (38, 585, 3210) |
| $F_{14}$ | (1, 1, 1, 1, 2, 2, 4) | 672 | 18 | (32, 66, 36) |
| $F_{15}$ | (1, 1, 1, 2, 2, 3, 3) | 2,240 | 24 | (33, 120, 302) |
| $F_{16}$ | (1, 1, 1, 2, 2, 3, 4) | 3,360 | 30 | (31, 62, 62) |
| $F_{17}$ | (1, 1, 1, 1, 2, 2, 2, 5) | 1,120 | 20 | (25, 3, 0)* |
| $F_{18}$ | (1, 1, 1, 1, 1, 3, 3, 4) | 672 | 18 | (27, 0, 1)* |
| $F_{19}$ | (1, 1, 1, 2, 2, 3, 3, 4) | 6,720 | 36 | (28, 22, 22) |
| $F_{20}$ | (1, 1, 1, 1, 2, 3, 3, 5) | 3,360 | 30 | (25, 2, 1)* |
| $F_{21}$ | (1, 1, 2, 2, 3, 3, 5) | 6,720 | 36 | (24, 3, 1)* |
| $F_{22}$ | (1, 1, 1, 2, 2, 3, 4, 5) | 13,440 | 48 | (24, 3, 1)* |

- Cuts are the only vertices of $HYPP_n$, having all coordinates integral.
- 24 orbits corresponding to the Delaunay polytopes $2_{21}$ and $3_{21}$. Details on those orbits are given in Table 5. The denominator of the coordinates is 3 for all vertices.
- 556 orbits corresponding the extreme Delaunay polytope $ER_7$. The denominator of the coordinates is 12 for all vertices. The number of incident inequalities and adjacent vertices is 28 for each of them.

5. Structure for all simplices

The hypermetric cone $HYPP_{n+1}$ describes the possible ways, in which the simplex $S$ on vertices $0, e_1, \ldots, e_n$ can be embedded in a Delaunay polytope. In particular, we saw in Section 2 how the facets of $HYPP_{n+1}$ correspond to the repartitioning polytopes, in which $S$ can be embedded.

In dimension $n \geq 5$ there are other simplices, necessarily of volume higher than 1, that can define Delaunay polytopes. In [3], it was determined that the possible volumes of 5-dimensional Delaunay simplices are 1 and 2. In [4, 6], it was determined that the volumes of 6-dimensional Delaunay simplices are 1, 2 and 3. Then, in [27], the facets of the corresponding Baranovskii cones $Bar_S$ were found.
Table 5. Orbits of vertices of the hypermetric polytope $HYPP_8$ originating from extreme Delaunay polytopes $2_{21}$ and $3_{21}$. Column 2 is the order of the stabilizer; column 5 is number of orbits of type $2_{21}$ and $3_{21}$ that merged into single orbit $V_i$ in $HYPP_8$; columns 6, 7 are the number of facets, containing the orbit representative, and the number of vertices of $HYPP_8$ adjacent to it.

| $V_i$ | $|Stab|$ | $\frac{\nu_i}{10,752}$ | $\#orbits$ | $Sym(8)$ | Merging $23_{21}$ | Incidence | Adjacency |
|-------|--------|-----------------|-----------|----------|------------------|-----------|-----------|
| $V_1$ | 24     | 20              | 36        | $2_{21}(8), 3_{21}(12)$ | 112       | 848        |
| $V_2$ | 48     | 10              | 30        | $2_{21}(7), 3_{21}(10)$ | 104       | 799        |
| $V_3$ | 96     | 5               | 23        | $2_{21}(5), 3_{21}(8)$  | 94        | 701        |
| $V_4$ | 12     | 40              | 48        | $2_{21}(11), 3_{21}(16)$ | 94        | 758        |
| $V_5$ | 8      | 60              | 46        | $2_{21}(10), 3_{21}(16)$ | 94        | 804        |
| $V_6$ | 12     | 40              | 40        | $2_{21}(8), 3_{21}(16)$  | 92        | 979        |
| $V_7$ | 240    | 2               | 18        | $2_{21}(2), 3_{21}(5)$  | 86        | 926        |
| $V_8$ | 12     | 40              | 48        | $2_{21}(11), 3_{21}(16)$ | 86        | 709        |
| $V_9$ | 8      | 60              | 54        | $2_{21}(12), 3_{21}(18)$ | 86        | 728        |
| $V_{10}$ | 4    | 120             | 72        | $2_{21}(16), 3_{21}(24)$ | 86        | 774        |
| $V_{11}$ | 16   | 30              | 33        | $2_{21}(6), 3_{21}(13)$  | 84        | 1,070      |
| $V_{12}$ | 4    | 120             | 60        | $2_{21}(12), 3_{21}(24)$ | 84        | 963        |
| $V_{13}$ | 48   | 10              | 26        | $2_{21}(4), 3_{21}(8)$   | 82        | 1,023      |
| $V_{14}$ | 12   | 40              | 48        | $2_{21}(7), 3_{21}(18)$  | 81        | 1,080      |
| $V_{15}$ | 4    | 120             | 60        | $2_{21}(9), 3_{21}(30)$  | 79        | 935        |
| $V_{16}$ | 20   | 24              | 24        | $2_{21}(5), 3_{21}(8)$   | 78        | 734        |
| $V_{17}$ | 16   | 30              | 33        | $2_{21}(7), 3_{21}(12)$  | 78        | 679        |
| $V_{18}$ | 8    | 60              | 46        | $2_{21}(10), 3_{21}(16)$ | 78        | 690        |
| $V_{19}$ | 4    | 120             | 56        | $2_{21}(12), 3_{21}(20)$ | 78        | 716        |
| $V_{20}$ | 4    | 120             | 56        | $2_{21}(9), 3_{21}(25)$  | 78        | 1,050      |
| $V_{21}$ | 60   | 8               | 16        | $2_{21}(2), 3_{21}(6)$   | 76        | 1,070      |
| $V_{22}$ | 4    | 120             | 48        | $2_{21}(9), 3_{21}(20)$  | 76        | 941        |
| $V_{23}$ | 16   | 30              | 29        | $2_{21}(5), 3_{21}(11)$  | 74        | 1,032      |
| $V_{24}$ | 4    | 120             | 48        | $2_{21}(8), 3_{21}(22)$  | 74        | 920        |

Table 6. Incidence between the orbits $V_i$ of vertices and the orbits $F_j$ of facets of $HYPP_7$. For each representative of orbit $V_i$, the number of incident facets is given.

| $V_i$ | $F_1$ | $F_2$ | $F_3$ | $F_4$ | $F_5$ | $F_6$ | $F_7$ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| $V_1$ | 105   | 210   | 35    | 630   | 546   | 147   | 2100  |
| $V_2$ | 8     | 6     | 0     | 4     | 2     | 0     | 1     |
| $V_3$ | 11    | 6     | 1     | 2     | 1     | 0     | 0     |
| $V_4$ | 12    | 7     | 0     | 2     | 0     | 0     | 0     |
| $V_5$ | 15    | 5     | 1     | 0     | 0     | 0     | 0     |
| $V_6$ | 14    | 7     | 0     | 0     | 0     | 0     | 0     |
Table 7. All types of Delaunay simplices in $\mathbb{R}^7$, their volume, size of automorphism group and the number of facets of the cones $\text{Bar}_S$

| $S_i$ | $\text{vol}(S_i)$ | $|\text{Aut}|$ | $\#\text{facets Bar}_S$ |
|-------|-------------------|---------------|-------------------|
| $S_1$ | 1                 | 40,320        | 298,592(86)      |
| $S_2$ | 2                 | 40,320        | 5,768(9)         |
| $S_3$ | 2                 | 1,440         | 6,590(62)        |
| $S_4$ | 3                 | 540           | 966(9)           |
| $S_5$ | 3                 | 1,152         | 728(9)           |
| $S_6$ | 3                 | 240           | 640(39)          |
| $S_7$ | 4                 | 1,440         | 28(3)            |
| $S_8$ | 4                 | 240           | 153(11)          |
| $S_9$ | 4                 | 144           | 131(10)          |
| $S_{10}$ | 5               | 72            | 28(6)            |
| $S_{11}$ | 5               | 48            | 28(8)            |

In [18], the list of all possible 7-dimensional Delaunay simplices has been determined and from that we can get for each simplex its associated Baranovskii cone $\text{Bar}_S$. There are 11 types of such simplices and, in contrast to the lower dimensional cases, two simplices can have the same volume and yet be inequivalent. Key information about those Delaunay simplices are given in Table 7.

6. Hypermetrics on graphs

Given a graph $G=(V,E)$, the notion of cut is well defined. It suffices to restrict the cut semimetric on the edges of the graph and one obtains the cut polytope of the graph $\text{CUTP}(G)$. The notion of $\text{MET}_n$ can also be extended to the graph setting but requires more work: for a cycle $C$ and an odd sized set $F$ of edges in $C$, the cycle inequality $m_{C,F}$ is defined as

$$\sum_{e \in C-F} x_e - \sum_{e \in F} x_e \leq |F| - 1.$$ 

The metric polytope of the graph $\text{METP}(G)$ is defined as the polytope defined by all cycle inequalities $m_{C,F}$ and the non-negativity inequalities $x_e \in [0,1]$. In fact, it is the projection of $\text{MET}_n$ on $\mathbb{R}^{|E|}$, indexed by the edges of $G$. It is known that $\text{METP}(G) = \text{CUTP}(G)$ if and only if $G$ has no $K_5$-minor.

**Proposition 1.** Let us take a valid inequality on $\text{CUTP}_n$ of the form

$$f(x) = \sum_{1 \leq i < j \leq n} a_{ij} x_{ij} \leq C.$$ 

Suppose that we have $n$ vertices $v_1, \ldots, v_n$ of $G$ with any two vertices $v_i, v_j$ being joined by a such path $P_{ij}$ that:

- the edge set of all paths $P_{ij}$ are disjoint;
- if $a_{ij} > 0$, then $P_{ij}$ is reduced to an edge.
Then, the following inequality

$$i_{f,G}(x) = \sum_{1 \leq i < j \leq n} a_{ij} \left( \sum_{e \in P_{ij}} x_e \right) \leq C$$

is valid on $\text{CUTP}(G)$.

**Proof.** Let us take a cut of $G = (V, E)$ defined by $S \subset V$. If $S$ cuts the paths $P_{ij}$ in at most one edge, then the inequality on $\text{CUTP}(G)$ reduces to the one on $\text{CUTP}_n$ and so, is valid.

In the general case, we will create a new cut $S'$, which will allow us to prove the required inequality. If $S$ cuts $P_{ij}$ in more than one edge, then $a_{ij} \leq 0$. If both $v_i$ and $v_j$ are in the same part of the partition $(S, V - S)$, then we set all vertices of $P_{ij}$ to be in the same part of the partition $(S', V - S')$. Otherwise, there exists an edge $e = \{w_i, w_j\} \in P_{ij}$ cut by $S$. If $w_j \in S'$, then we set the vertices between $w_j$ and $v_j$ to belong to $S'$ and we set the vertices from $w_i$ to $v_i$ not to belong to it.

Due to the sign condition on $a_{ij}$, one obtains

$$i_{f,G}(\delta_S) \leq i_{f,G}(\delta_{S'})$$

Then, from $S'$ we can obtain very simply a cut $S''$ on $K_n$ and this gives

$$i_{f,G}(\delta_{S''}) = f(\delta_{S''}) \leq C,$$

which proves the required inequality. \qed

When applied to the metric inequalities of $K_n$ and taking switchings, the above proposition gives us the metric polytope $\text{METP}(G)$. Therefore, it is tempting to define the hypermetric polytope $\text{HYPP}(G)$ as the polytope defined by the switchings of the extension of all hypermetric inequalities obtained from above Proposition. What is not clear is when $\text{CUTP}(G) = \text{HYPP}(G)$ and whether there is a nice characterization of such hypermetrics. Above discussion is applied also to cones.

Any $K_n$ subgraph of $G$ will satisfy the hypothesis and the facets of $\text{CUTP}_n$ will give facets of $\text{CUTP}(G)$. Proposition\footnote{I} gives valid inequality induced by a class of homeomorphic $K_n$. (A graph $H$ is homeomorphic to a subgraph of $G$ if $H$ can be mapped to $G$ so that the edges of $H$ are mapped to disjoint paths in $G$.) A graph $H$ is a minor of $G$ if $H$ can be obtained from $G$ by deleting edges and vertices and contracting edges. An homeomorphic graph $K_n$ is a special case of a $K_n$ minor. In \cite{11} it is proved that $\text{CUTP}(G) = \text{METP}(G)$ if and only if $G$ has no $K_5$ as a minor. However, the proof appears nonconstructive and does not seem to be able to give hypermetric inequalities, or their generalization, in a straightforward way.

### 7. Infinite hypermetrics

Another interesting question is to define infinite hypermetric cones. One way to do that is to define $\text{HYPP}_\infty$ by imposing that for all $b \in \mathbb{Z}^\infty$ with finite support (i.e., the set $\{i : b_i \neq 0\}$) and $\sum_i b_i = 1$ it holds

$$\sum_{i < j} b_i b_j d_{ij} \leq 0.$$ 

For example, the path metric of the skeleton of the infinite hyperoctahedron $K_{2,\ldots,2,\ldots}$ is an infinite hypermetric, which does not embed isometrically into $l_1$. In general, it is easy to build infinite hypermetrics; it basically suffices to use Delaunay...
polytopes of infinite lattices. For example, above $\infty$-dimensional hyperoctahedron can be considered a Delaunay polytope in the $\infty$-dimensional root lattice $D_\infty$.

However, as far as we know, there is no general theory of Delaunay polytopes in infinite dimensional lattices.

References

[1] 4ti2 team, 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces, URL: [http://www.4ti2.de/](http://www.4ti2.de/).

[2] D. Avis and Mutt, All the facets of the six-point Hamming cone, European J. Combin. 10 (1989), no. 4, 309–312, URL: [http://dx.doi.org/10.1016/S0195-6698(89)80002-2](http://dx.doi.org/10.1016/S0195-6698(89)80002-2).

[3] E. P. Baranovskii, Volumes of L-simplexes of five-dimensional lattices, Mat. Zametki 13 (1973), 771–782.

[4] E. P. Baranovskii, About l-simplexes of 6-dimensional lattices (in russian), Second International conference “Algebraic, Probabilistic, Geometrical, Combinatorial and Functional Methods in the theory of numbers, 1995.

[5] E. P. Baranovskii, The conditions for a simplex of 6-dimensional lattice to be l-simplex (in russian), Ivan. Univ. 2 (1999), no. 3, 18–24.

[6] E. P. Baranovskii, The conditions for a simplex of 6-dimensional lattice to be l-simplex (in russian), Nauch. Trud. Ivan. (1999), no. 2, 18–24.

[7] T. Christof and G. Reinelt, Combinatorial optimization and small polytopes, Top 4 (1996), no. 1, 1–64, With discussion, URL: [http://dx.doi.org/10.1007/BF02568602](http://dx.doi.org/10.1007/BF02568602).

[8] A. Deza and M. Deza, The ridge graph of the metric polytope and some relatives, Polytopes: abstract, convex and computational (Scarborough, ON, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 440, Kluwer Acad. Publ., Dordrecht, 1994, pp. 359–372.

[9] A. Deza, M. Deza, and K. Fukuda, On skeletons, diameters and volumes of metric polyhedra, Combinatorics and computer science (Brest, 1995), Lecture Notes in Comput. Sci., vol. 1120, Springer, Berlin, 1996, pp. 112–128, URL: [http://dx.doi.org/10.1007/3-540-61576-8_78](http://dx.doi.org/10.1007/3-540-61576-8_78).

[10] A. Deza, K. Fukuda, T. Mizutani, and C. Vo, On the face lattice of the metric polytope, Discrete and computational geometry, Lecture Notes in Comput. Sci., vol. 2866, Springer, Berlin, 2003, pp. 118–128, URL: [http://dx.doi.org/10.1007/978-3-540-44400-8_12](http://dx.doi.org/10.1007/978-3-540-44400-8_12).

[11] M. Deza, V. P. Grishukhin, and M. Laurent, Extreme hypermetrics and L-polytopes, Sets, graphs and numbers (Budapest, 1991), Colloq. Math. Soc. János Bolyai, vol. 60, North-Holland, Amsterdam, 1992, pp. 157–209.

[12] M. Deza, V. P. Grishukhin, and M. Laurent, Hypermetrics in geometry of numbers, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 20, Amer. Math. Soc., Providence, RI, 1995, pp. 1–109.

[13] M. Deza and M. Dutour, The hypermetric cone on seven vertices, Experiment. Math. 12 (2003), no. 4, 433–440, URL: [http://projecteuclid.org/euclid.em/1087568019](http://projecteuclid.org/euclid.em/1087568019).

[14] M. Deza and M. Dutour Sikirić, Enumeration of the facets of cut polytopes over some highly symmetric graphs, preprint at [arxiv:arXiv:1501.05407](http://arxiv.org/abs/1501.05407), March 2013.

[15] M. Deza and M. Laurent, Geometry of cuts and metrics, Algorithms and Combinatorics, vol. 15, Springer, Heidelberg, 2010, First softcover printing of the 1997 original [MR1460488], URL: [http://dx.doi.org/10.1007/978-3-642-04295-9](http://dx.doi.org/10.1007/978-3-642-04295-9).

[16] M. Dutour, Adjacency method for extreme Delaunay polytopes, Proceedings of “Third Voronoï Conference of the Number Theory and Spatial Tesselations”, 2009, pp. 94–101.

[17] M. Dutour Sikirić, Delaunay polytopes classifications, URL: [http://mathieudutour.altervista.org/PerfectCones/](http://mathieudutour.altervista.org/PerfectCones/).

[18] M. Dutour Sikirić, Enumeration of inhomogeneous perfect forms, in preparation.

[19] M. Dutour Sikirić, K. Hulek, and A. Schürrmann, Smoothness and singularities of the perfect form and the second voronoi compactification of $\gamma_g$, preprint at [arxiv:arXiv:1303.5846](http://arxiv.org/abs/1303.5846), March 2013.

[20] M. Dutour Sikirić, A. Schürrmann, and F. Vallentin, A generalization of Voronoï’s reduction theory and its application, Duke Math. J. 142 (2008), no. 1, 127–164.
[21] M. Dutour Sikirić, A. Schürmann, and F. Vallentin, *Complexity and algorithms for computing Voronoi cells of lattices*, Math. Comp. **78** (2009), no. 267, 1713–1731, URL: [http://dx.doi.org/10.1090/S0025-5718-09-02224-8](http://dx.doi.org/10.1090/S0025-5718-09-02224-8), doi:10.1090/S0025-5718-09-02224-8.

[22] U. Fincke and M. Pohst, *Improved methods for calculating vectors of short length in a lattice, including a complexity analysis*, Math. Comp. **44** (1985), no. 170, 463–471, URL: [http://dx.doi.org/10.2307/2007966](http://dx.doi.org/10.2307/2007966), doi:10.2307/2007966.

[23] V. P. Grishukhin, *All facets of the cut cone $C_n$ for $n = 7$ are known*, European J. Combin. **11** (1990), no. 2, 115–117, URL: [http://dx.doi.org/10.1016/S0195-6698(13)80064-9](http://dx.doi.org/10.1016/S0195-6698(13)80064-9).

[24] V. P. Grishukhin, *Computing extreme rays of the metric cone for seven points*, European J. Combin. **13** (1992), no. 3, 153–165, URL: [http://dx.doi.org/10.1016/0195-6698(92)90021-Q](http://dx.doi.org/10.1016/0195-6698(92)90021-Q).

[25] W. Keller, J. Martinet, and A. Schürmann, *On classifying Minkowskian sublattices*, Math. Comp. **81** (2012), no. 278, 1063–1092, With an appendix by Mathieu Dutour Sikirić, URL: [http://dx.doi.org/10.1090/S0025-5718-2011-02528-7](http://dx.doi.org/10.1090/S0025-5718-2011-02528-7).

[26] S. S. Ryshkov and E. P. Baranovskii, *Repartitioning complexes in $n$-dimensional lattices (with full description for $n \leq 6$)*, Voronoi impact on modern science, Institute of Mathematics, Kyiv, 1998, pp. 115–124.

[27] S. S. Ryshkov and E. P. Baranovskii, *Repartitioning complexes in $n$-dimensional lattices (with full description for $n \leq 6$)*, Proceedings of conference "Voronoi impact on modern science", Book 2, 1998, pp. 115–124.

[28] S. S. Ryškov and E. P. Baranovskii, *C-types of $n$-dimensional lattices and 5-dimensional primitive parallelohedra (with application to the theory of coverings)*, Proc. Steklov Inst. Math. (1978), no. 4, 140, Cover to cover translation of Trudy Mat. Inst. Steklov 137 (1976), Translated by R. M. Erdahl.

[29] F. Santos, *Geometric bistellar flips: the setting, the context and a construction*, International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, pp. 931–962.

[30] P. D. Seymour, *Matroids and multicommodity flows*, European J. Combin. **2** (1981), no. 3, 257–290, URL: [http://dx.doi.org/10.1016/0195-6698(81)80033-9](http://dx.doi.org/10.1016/0195-6698(81)80033-9), doi:10.1016/0195-6698(81)80033-9.

[31] G. Voronoi, *Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième Mémoire. Recherches sur les parallelépipèdes primifités*, J. Reine Angew. Math 134 (1908), no. 1, 198–287.