Study of electronic states of a pyrochlore-type molybdate (Sm$_2$Mo$_2$O$_7$) at low temperature by means of hard x-ray photoemission spectroscopy

A Higashiya, S Imada, H Fujiwara, A Sekiyama, S Suga, A Yamasaki, Y Taguchi, M Iwama, K Ohgushi, Y Tokura and T Ishikawa

SPRING-8/RIKEN XFEL Joint Project, Kouto 1-1-1, Sayo-cho, Hyogo 679-5148, Japan
2 Department of Physical Science, College of Science and Engineering, Ritsumeikan University, 1-1 Nojiigashi, Kusatsu, Shiga, 525-8577, Japan
3 II. Physikalisches Institut, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
4 Department of Material Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
5 Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
6 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
7 Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
8 Wako/RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
9 CERC, AIST, Tsukuba 305-8562, Japan
E-mail: codbelo@spring8.or.jp

Abstract. We have carried out the measurement for a pyrochlore-type Mo oxide (Sm$_2$Mo$_2$O$_7$) by means of hard-x-ray and soft-x-ray photoemission spectroscopy (PES) with high energy resolution. The PES spectrum obtained with the hard x-ray clearly shows a coherent part and an incoherent part. And its boundary is relatively distinguishable. The ratio of the coherent part to the incoherent part is more enhanced in the hard-x-ray PES compared to the soft-x-ray PES. The results indicate that hard-x-ray photoemission spectroscopy (HAXPES) is powerful method for investigating the bulk electronic state.

1. Introduction

Pyrochlore $A_2B_2O_7$ is one of oxides included 3d, 4d and 5d electron systems. It has a cubic structure with the space group Fd3m, in which A, B, O(1) and O(2) occupy the sites 16d, 16c, 48f and 8b, respectively [1]. The A (B) site forms a three-dimensional network of corner-sharing tetrahedra and formally takes A^{3+} (B^{4+}) state. Various phenomena closely related to its characteristic crystal structure have been reported.

The pyrochlore-type Mo oxide $R_2Mo_2O_7$ ($R =$ rare-earth element) shows the metal-insulator (M-I) transition with changing the rare-earth element and has been reported to exhibit a systematic variation in transport and magnetic properties with changing R [2, 3]. The M-I transition seems to take place around Gd, namely the systems with $R =$Nd and Sm are ferromagnetic metal. Those with $R =$ Tb-Yb and $R =$ Y are spin-glass insulator, whereas the
system with \(R = \text{Gd} \) becomes either metallic or insulating depending on sample preparation conditions [4]. M-T transition is thought to originate that both the Mo-O bond length and the Mo-O-Mo bond angle decrease with changing \(R \) in the order through \(R = \text{Nd}, ..., \text{Tb}, \text{and Y} \) [3].

Since \(R \) is likely to become trivalent, Mo becomes tetravalent. Therefore, each Mo atom has two 4\(d \) electrons. The Mo atom is surrounded by six O atoms octahedrally, which makes the Mo 4\(d \) state split into doubly degenerate \(e_g \) and triply degenerate \(t_{2g} \) states. The \(t_{2g} \) states are split into the nondegenerate \(a_{1g} \) state and the doubly degenerate \(e'_g \) states because the octahedron is distorted leading to a trigonal symmetry [5]. In the high-spin Mo\(^{4+}\) state, the \(a_{1g} \) and \(e'_g \) states are occupied by one electron each and the \(a_{1g} \) electron acts as a local spin and the \(e'_g \) electron is potentially itinerant.

Photoemission spectroscopy (PES) is a powerful tool to probe electronic structures of various solids. Generally, the photoelectron in the conventional PES below photon energy (\(h\nu \)) of 100 eV has the short inelastic mean free path (IMFP) and then this method provides rather surface sensitive information. Soft x-ray photoemission spectroscopy (SXPES) is inevitable for studying strongly correlated electron systems [6]. Namely, the electronic structures in the surface region is much different from those in the bulk in the systems. In the soft x-ray PES around \(h\nu=500 \) - 800 eV, the relative spectral weight of the bulk is still in the range of 50\(\sim \)70 % in many strongly correlated electron systems. Therefore higher bulk sensitivity by means of hard x-ray PES (HAXPES) is thought to be inevitable[7]. In the HAXPES around \(h\nu=8 - 10 \) keV, the IMFP is about 100 \(\text{\AA} \) and the relative spectral weight of the bulk is more than 90 %.

In order to investigate the bulk electronic states for \(\text{Sm}_2\text{Mo}_2\text{O}_7 \), we have carried out the HAXPES measurement at \(T=20 \) K. By comparing the result with spectra, which are measured with soft-x-ray, we report the difference of electronic state of between in the bulk and on the surface.

2. Experiment

For measurements, single crystals were employed. HAXPES was performed at BL19LXU in SPring-8 with MB Scientific A1-HE spectrometer. Since the photoionization cross sections decreases exponentially with increasing photon energy, high photon flux is required for the HAXPES experiment. This beamline is equipped with the in-vacuum 27 m long planar undulator[8] and therefore the required high photon flux is available. Figure 1 shows the PES spectrum around Fermi level (\(E_F \)) of Au measured with \(h\nu=7940 \) eV at about 20 K. In the figure, the black circle and the red line indicate the obtained spectrum and the fitting curve for estimating the total energy resolution (\(\Delta E \)). This result shows the best energy resolution of about 60 meV at this photon energy. The energy resolution for measurements is set to about 120 meV. The other PES experiments were carried out with SCIENTA SES 200 analyzer for \(h\nu=900 \) eV and 270 eV (soft-x-ray) at BL25SU [9] of SPring-8 and SES 2002 analyzer using ultraviolet light of \(h\nu=40.8 \) eV (VUV) produced by the He RF discharge lamp. The \(\Delta E \) for valence band PES spectra at \(h\nu=40.8, 270 \) eV and 900 eV was set to 40 meV, 75 meV and 140 meV, respectively. The clean surfaces were obtained by fracturing the samples \textit{in situ} in

Figure 1. The PES spectrum around \(E_F \) of Au at \(h\nu=7940 \) eV. The red line is fitting curve for estimating the total energy resolution.
ultrahigh vacuum just before the measurements at 20 K and the samples were kept at the same temperature during the measurements. The base pressure in the PES measurement chamber was better than 3×10^{-8} Pa.

3. Results and discussion

Figure 2 shows the valence band spectra of Sm$_2$Mo$_2$O$_7$ in the lower binding energy (E_B) region ($E_B \leq 3$ eV) measured at $h\nu=900$ eV, 270 eV and 40.8 eV. In these spectra, two structures are mainly recognized, namely the structures around $E_B=0.5$ eV and 1.5 eV as shown by broken and dotted lines. The structure around 0.5 eV increases with $h\nu$ and becomes prominent for $h\nu=900$ eV. On the other hand, the structure around 1.5 eV becomes prominent for $h\nu=40.8$ eV and is observed as broad hump for $h\nu=900$ eV. The intensity of those structures seems to be same at $h\nu=270$ eV. Also, only spectrum at $h\nu=900$ eV seems to have a shoulderlike structure around 0.2 eV (by a down arrow in Fig. 2). Furthermore, the spectral intensity at E_F increases at $h\nu=900$ eV. In general, there are two main origins for the significant $h\nu$ dependence of PES spectra: one is the $h\nu$ dependence of the photoionization cross section, and the other is the $h\nu$ dependence of the photoelectron’s escape depth in solids. The ratio of the photoionization cross-section between the O 2p electron and the Mo 4d electron is about 1 : 8 at $h\nu=900$ eV, 1 : 3 at $h\nu=270$ eV and 1 : 1 at $h\nu=40.8$ eV.

According to the local-spin-density approximation (LSDA) band calculation, the Mo 4d t_{2g} bands locate in the region of $E_B \leq 1$ and well separate from O 2p band that spreads from $E_B \sim 8.5$eV to $E_B \sim 2.5$eV. The Mo 4d e_g bands are located on the unoccupied side and the splitting energy between the e_g and the t_{2g} states is about 4 eV. Furthermore, the t_{2g} states are split into the nondegenerate Mo 4d a_{1g} bands and the degenerated Mo 4d e'_{g} bands because the octahedron is further trigonally distorted. The center of gravity of the a_{1g} band locates around 0.5 eV. The e'_{g} band spreads in the region between E_F and $E_B \sim 1[5]$. Judging from these ratios and the band calculation results that Mo 4d states dominate near E_F, the spectra shown in Fig. 2 originate almost exclusively from the Mo 4d states. Therefore, the prominent difference with changing $h\nu$ should be attributed to the difference of Mo 4d electronic structures between in the bulk and on the surface.

In order to clarify the bulk electronic state for $R = $ Sm, we have carried out the measurement by means of HAXPES, which one can obtain more bulk sensitive information than in the SXPS. Figure 3 shows the valence band PES spectrum at $h\nu=7940$ eV and the comparison with the spectrum at $h\nu=900$ eV. These spectra are normalized by the integrated intensity between $E_B=3$ eV and E_F after subtracting the background of the integral type. In the HAXPES spectrum, the ratio of the photoionization cross section between the O 2p electron and the Mo 4d electron is about 1 : 14. Therefore the spectral shape is thought to reflect the mainly Mo 4d states. In the spectrum, the peak structure around 0.5 eV is more prominent than that at 900 eV. The spectral intensity of the hump structure around 1.5 eV at 7940 eV is as same as that at $h\nu=900$ eV. However, the region between $E_B \sim 0.7$ eV and $E_B \sim 1.2$ eV has the difference of both the spectral shape and its intensity. Furthermore, the intensity of the shoulderlike structure around $E_B=0.2$ eV becomes rather stronger than that at 900 eV.

By comparing the calculated LSDA band structure with the spectra, the structure between E_F and $E_B \sim 0.5$ eV is corresponding to the coherent part. Because the LSDA results predict no band in the region between $E_B \sim 1$eV and $E_B \sim 2.5$eV, the hump structure around 1.5 eV corresponds to the incoherent part which reflects the strongly correlated character of Mo 4d t_{2g} electrons[10]. For more detail, the prominent peak around 0.5 eV and the shoulderlike structure near E_F correspond to the Mo 4d a_{1g} state and the Mo 4d e'_{g} state, respectively. At 7940 eV, the coherent part and the incoherent part are more clearly discernible than that at 900 eV. The ratio of the coherent part to the incoherent part increases at HAXPES spectrum. In order to investigate the mechanism for M-I transition in these systems, we will study the other
compositions, which R element is Gd and Tb, by means of HAXPES.

4. Summary

We have carried out the HAXPES measurement at $h\nu = 7940$ eV for the pyrochlore-type Mo oxide with $R = \text{Sm}$. The relative spectral weight and their shapes of the coherent part and the incoherent part change dramatically compared to the SX and VUV results. Especially, the increase of the coherent part intensity corresponding to a_{1g} state relative to others was thought to reflect the bulk electronic state.

The results indicated that HAXPES is powerful method for investigating the bulk electronic structures of strongly correlated electron system.

5. Acknowledgments

We are grateful to I. V. Solveyev for fruitful discussion and offering of band calculation results. We are grateful to D. Miwa (deceased), T. Muro and Y. Saitoh for their experimental supports in SPring-8. This experiment was performed at BL25SU in SPring-8 under the proposal of 2000A0055, 2001A0160, and 2001B0153.

References

[1] Yasui Y, Kondo Y, Kanada M, Ito M, Harashina H, Sato M and Kakurai K 2001 J. Phys. Soc. Jpn. 70 284
[2] Greedan J E, Sato M, Ali N and Datars W R 1987 J. Solid State Chem. 68 300
[3] Katsufuji T, Hwang H Y and Cheong S-W, 1999 Phys. Rev. Lett. 84 1998
[4] Kezsmarki I, Hanasaki N, Hashimoto D, Iguchi S, Taguchi Y, Miyasaka S and Tokura Y, 2004 Phys. Rev. Lett. 93 266401
[5] Solovyev I V, 2003 Phys. Rev. B 67 174406
[6] Sekiyama A, Iwasaki T, Matsuda K, Saitoh Y, Onuki Y and Suga S 2000 Nature (London) 403 396
[7] Yamashita K et al. 2007 Phys. Rev. Lett. 98 156402
[8] Yabashi M, Tamasaku K and Ishikawa T 2001 Phys. Rev. Lett. 87 140801
[9] Saitoh Y et al. 1998 J. Synchrotron Rad. 5 542
[10] Fujimori A et al. 1992 Phys. Rev. Lett. 69 1796