Link between metformin and the peroxisome proliferator-activated receptor γ pathway in the uterine tissue of hyperandrogenized prepubertal mice

Chronic hyperandrogenism alters the peroxisome proliferator-activated receptor γ (PPARγ) pathway in the uterine tissue of prepubertal mice. The gene and protein expression of PPARγ is not modified, but the gene and protein expression of 12-lipoxygenase (12-LOX), an enzyme that synthesizes PPARγ ligands, is decreased. The antihyperglycemic drug metformin can prevent this adverse effect. (Fertil Steril® 2011;95:2534–7. ©2011 by American Society for Reproductive Medicine.)

Key Words: Lipoxigenases, metformin, peroxisome proliferator activated receptor gamma, polycystic ovary syndrome, uterus

Polycystic ovary syndrome (PCOS) is a disease characterized by hyperandrogenism, hirsutism, oligomenorrhea or amenorrhea, and anovulation (1). The excess of androgens has a detrimental effect on endometrial function, which can lead to infertility (2–4) and even endometrial cancer (5–8). By the use of a hyperandrogenized murine model, we previously found that the excess of androgens induced embryo resorption of early pregnant mice (9–11) and promoted the development of uterine structures that were closely related to precancerous structures (7, 8).

\[N^2 \text{-dimethylbiguanide metformin} \]

Evelin M. Eliaa
Carolina Pustovrh, Ph.D.b,c
Sabrina Amalfita
Luigi Devoto, Ph.D.c
Alicia Beatriz Motta, Ph.D.a
a Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
b Instituto de Fisiología, Biología Molecular y Neurociencia (IFIBYNE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
c Instituto de Investigaciones Materno Infantil, Hospital Clínico San Borja-Arriarán, Facultad de Medicina, Universidad de Chile, Santiago, Chile

Received November 9, 2010; revised and accepted February 2, 2011; published online March 5, 2011.

E.M.E. has nothing to disclose. C.P. has nothing to disclose. S.A. has nothing to disclose. L.D. has nothing to disclose. A.B.M. has nothing to disclose.

Supported by the Agencia Nacional de Promoción Científica y Tecnológica (grants PICTR 32529/05 and PICT 949/06), the Consejo Nacional de Investigación Científica y Técnica (grant 185), the Fundación Alberto Roemmers, and the Programa Latinoamericano de Investigación en Salud Sexual y Reproductiva (PLISSER).

Reprint requests: Alicia Beatriz Motta, Ph.D., CEFYBO, CONICET, Paraguay 2155, Buenos Aires, Argentina. (E-mail: aliciamotta@yahoo.com.ar).

Peroxisome proliferator-activated receptors (PPARs) are a family of transcriptional nuclear factors with three isoforms, α, β, and γ, which regulate the expression of multiple genes (21). Lipoxigenase (LOX) metabolizes arachidonic and linoleic acids, producing eicosanoids (22, 23). The primary metabolites of arachidonic acid generated by 1-LOX are the leukotrienes and lipoxines, whereas those produced by 12-LOX and 15-LOX are hydroxyeicosatetraenoic acids (HETEs) (24, 25). It is known that the uterine PPARγ pathway regulates implantation in mice by modulating the 12/15 LOX system (26). These findings, together with the fact that metformin and the PPAR system have been related in a synergistic action (27, 28), led us to study the expression of PPARγ, 12-LOX, and 15-LOX in uterine tissue from hyperandrogenized mice and their relationship with the metformin treatment.

The animal model (7–11) consisted of female prepubertal (25-day-old) mice of the BALB/c strain. The dehydroepiandrosterone (DHEA) group consisted of animals injected daily with DHEA (6 mg/100 g body weight, dissolved in 0.10 mL sesame oil) for 20 consecutive days, and the DHEA + M group consisted of animals injected with DHEA and given metformin orally (50 mg/100 g body weight in 0.05 mL of water, given orally with a cannula) for 20 days. The controls consisted of two groups: [1] animals injected with oil (0.1 mL) and given water orally (0.05 mL) for 20 consecutive days (C group) and [2] the metformin-alone group which consisted of mice treated orally with 50 mg metformin/kg body weight in 0.05 mL of water for 20 days (M group). Mice (10 per group) were housed under...
controlled temperature (22°C) and illumination (14 hours light, 10 hours dark, with lights on at 05:00 hours), and they were allowed free access to Purina rat chow and water. All the procedures involving animals were approved by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) according to the Animal Care and Use Committee Statement of CONICET, 1996. After 20 days of treatment, the animals were killed by cervical dislocation, and freshly dissected uteri from each group were immediately frozen at −70°C until both the messenger RNA (mRNA) and protein determinations.

The content of proteins corresponding to the PPAR γ1 and γ2 isoforms were evaluated in uterine tissue by Western blot analysis. Each sample was applied to 12% sodium dodecyl sulfate (SDS)-polyacrylamide gel, and separated proteins were transferred onto nitrocellulose membranes. After blocking, the membranes were incubated with rabbit polyclonal antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) against PPARγ using β-actin (1:500) as an internal control. The analysis was performed by densitometry, and freshly dissected uteri from each group were immediately frozen at −70°C until both the messenger RNA (mRNA) and protein determinations.

We found that both PPAR γ1 and γ2 isoforms were present in uterine tissue. We also found that neither DHEA nor DHEA + M treatment modified the expression of PPARγ protein when compared with controls (Table 1). To study whether the gene expression of PPARγ1 and PPARγ2 isoforms was modified by DHEA or DHEA + M treatments, the mRNA contents were measured by reverse-transcriptase polymerase chain reaction (RT-PCR) analysis. Total mRNA from each group of uterine tissue was extracted using TRI Reagent (Invitrogen, Buenos Aires, Argentina). The products were separated on 2% agarose and visualized with ethidium bromide staining. The 18S protein gene was used as an internal control. The analysis was performed by densitometry scanning by use of an ImageQuant RT ECL (GE Life Sciences, Piscataway, NJ). Bands were compared with internal control by scanning by use of an ImageQuant RT ECL (GE Life Sciences, Piscataway, NJ). Bands were compared with internal control by densitometry by use of ImageJ software (http://rsweb.nih.gov/ij/).

We found that both PPAR γ1 and γ2 isoforms were present in uterine tissue. We also found that neither DHEA nor DHEA + M treatment modified the expression of PPARγ protein when compared with controls (Table 1). To study whether the gene expression of PPARγ1 and PPARγ2 isoforms was modified by DHEA or DHEA + M treatments, the mRNA contents were measured by reverse-transcriptase polymerase chain reaction (RT-PCR) analysis. Total mRNA from each group of uterine tissue was extracted using TRI Reagent (Invitrogen, Buenos Aires, Argentina). The products were separated on 2% agarose and visualized with ethidium bromide staining. The 18S protein gene was used as an internal control. The analysis was performed by densitometry scanning by use of an ImageQuant RT ECL (GE Life Sciences, Piscataway, NJ). Bands were compared with internal control by densitometry by use of ImageJ software (http://rsweb.nih.gov/ij/).

Group	Control	Metformin	DHEA	DHEA + metformin
12-LOX/18S actin	0.74 ± 0.06	0.77 ± 0.08	0.78 ± 0.04	0.92 ± 0.07
PPAR-1/18S actin	0.51 ± 0.09	0.63 ± 0.09	0.66 ± 0.08	0.65 ± 0.05
PPAR-2/18S actin	0.74 ± 0.06	0.77 ± 0.08	0.78 ± 0.04	0.92 ± 0.07

Note: Each value is expressed in arbitrary units and represents the mean ± standard error of the mean of 10 measurements from different animals. DHEA = dehydroepiandrosterone; LOX = lipoxygenase; PPAR = peroxisome proliferator-activated receptor; TCG = triethylene glycol tartrate; GAG = glycerolglycerolamine; GAT = glycerolamine; GCT = glycerolglycerolamine; TAC = triethylene glycol tartrate. *P < 0.05; **P < 0.01; ***P < 0.001 by analysis of variance between control, metformin, DHEA, and DHEA + metformin groups.

Elia. Correspondence. Fertil Steril 2011.
described earlier, for amplification of 12-LOX complementary DNA (cDNA) the primers were sense 5'-TGATCAGGTAGTGAGCAGGAGGTC-3' and antisense 5'-CCCTCACAATCCGTGGCAGTGAA-3'. For amplification of 15-LOX, the primers were sense 5'-TAGCCATCCAGCTCGAACTG and antisense 5'-GGTTGAGGATGAGTGGAGGAACTA-3'.

Table 1 shows that DHEA decreased the gene expression of 12-LOX when compared with controls and that metformin was not able to prevent this effect. We also found that neither DHEA nor metformin modified the gene expression of 15-LOX (see Table 1 and Supplementary Fig. 1 [available online]).

The detrimental effects of the excess of androgens in the endometrial function contribute to the infertility of women with PCOS (2–4). We had previously reported that the excess of androgens induced the development of uterine structures closely related to the development of precancerous structures (7, 8). These adverse effects are mediated by a proinflammatory status characterized by an increased production of prostaglandins by the uterus (7, 8). We also found that metformin partially prevented these adverse effects (7, 8). These findings, together with the fact that the activation of the PPAR system is related to the uterine function? An in vitro study. Fertil Steril 2000;74: 771–9.

4. Sir-Petermann T, Malagueo M, Angel B, Lara HE, Perez-Bravo F, Recabarren SE. Maternal serum androgens in pregnant women with polycystic ovary syndrome: possible implications in prenatal androgenization. Hum Reprod 2002;17:2573–9.

5. Balem AH, Tan SL, McDougall J, Jacobs HS. Miscarriage rates following in-vitro fertilization are increased in women with polycystic ovary syndrome and reduced by pituitary desensitization with buserelin. Hum Reprod 1993;8:959–64.

6. Pillay OC, Te Fong LF, Crow JC, Benjamin E, Mould T, Atiomo W, et al. The association between polycystic ovaries and endometrial cancer. Hum Reprod 2006;21:924–9.

Because the expression of PPARγ was not affected by hyperandrogenism, we studied whether hyperandrogenism altered the ligands of PPARγ and consequently the activation of PPARγ. Here we demonstrated for the first time that protein and mRNA corresponding to the enzymes 12-LOX and 15-LOX, which are responsible for synthesizing ligands of PPARγ (26, 34, 35), are present in uterine tissue from prepubertal mice. In fact, this metabolic pathway of PPARγ activation has been described in other systems, such as monocytes (36), macrophages (34), fibroblasts (35), and uteri (26). However, only the 12-LOX enzyme was susceptible to the adverse action of hyperandrogenism and responded to metformin treatment, thus suggesting that 15-LOX could be a constitutive enzyme in the synthesis of PPARγ ligands. The excess of androgens decreased both the gene and protein expression of 12-LOX, but metformin was able to prevent the decrease in the protein expression, although not the gene expression, of 12-LOX. These findings suggest that metformin might be contributing with a posttranscriptional mechanism in the regulation of 12-LOX expression. However, experiments are being addressed to clarify this point.

The fact that rosiglitazone (synthetic PPARγ ligand) activates the PPARγ system by increasing PPARγ mRNA levels (37) together with data presented here that metformin can modulate the enzyme that synthesizes PPARγ ligand could explain why the combined treatment with glitazones and metformin is more effective in preventing abortions than each separate treatment (28, 30, 31). It appears that the direct relationship between 12-LOX activity and implantation (26, 38) is due to the fact that 12-LOX regulates the expression of progesterone receptor in uterine tissue during implantation (38). We suggest that hyperandrogenism reduces uterine receptivity, in part, by altering the PPARγ pathway, an alteration that seems to be focused on the enzyme 12-LOX. Metformin is able to prevent the adverse effect of an excess of androgens by modulating the protein expression of 12-LOX.

REFERENCES

1. Franks S. Polycystic ovary syndrome. N Engl J Med 1995;333:853–61.

2. Okon MA, Laird SM, Tuckerman EM, Li TC. Serum androgen levels in women who have recurrent miscarriages and their correlation with markers of endometrial function. Fertil Steril 1998;69:682–90.

3. Tuckerman EM, Okon MA, Li T, Laird SM. Do androgens have a direct effect on endometrial function? An in vitro study. Fertil Steril 2000;74: 771–9.

4. Sir-Petermann T, Malagueo M, Angel B, Lara HE, Perez-Bravo F, Recabarren SE. Maternal serum androgens in pregnant women with polycystic ovary syndrome: possible implications in prenatal androgenization. Hum Reprod 2002;17:2573–9.

5. Balem AH, Tan SL, McDougall J, Jacobs HS. Miscarriage rates following in-vitro fertilization are increased in women with polycystic ovary syndrome and reduced by pituitary desensitization with buserelin. Hum Reprod 1993;8:959–64.

6. Pillay OC, Te Fong LF, Crow JC, Benjamin E, Mould T, Atiomo W, et al. The association between polycystic ovaries and endometrial cancer. Hum Reprod 2006;21:924–9.

7. Elia E, Vighi S, Lombardi E, Motta AB. Detrimental effects of hyperandrogenism on uterine functions. Int Immunopharmacol 2008;8:1827–34.

8. Elia E, Belgorosky D, Faut M, Vighi S, Postorini C, Devoto L, et al. The effects of metformin on uterine tissue of hyperandrogenized BALB/c mice. Mol Hum Reprod 2009;15:421–32.

9. Vighi S, Elia E, Luchetti CG, Di Girolamo G, Gonzalez C, et al. The influence of dehydroepiandrosterone on early pregnancy in mice. Neuroimmunomodulation 2005;12:285–92.

10. Vighi S, Elia E, Luchetti CG, Di Girolamo G, Gonzalez C, et al. Metformin prevents embryonic resorption induced by hyperandrogenization with dehydroepiandrosterone in mice. Reprod Biol 2006;18:533–44.

11. Luchetti CG, Mikol E, Szereres-Bartho J, Paz DA, Motta AB. Dehydroepiandrosterone and metformin modulate progesterone induced blocking factor (P1BF), cyclooxygenase 2 (COX2) and cytokines in early pregnant mice. J Steroid Biochem Mol Biol 2008;111:200–7.

12. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyl-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001;108:1167–74.

13. Fryer LG, Parbu-Patel A, Carling D. The anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 2002;12: 25226–32.

14. Zou MH, Kirkpatrick SS, Davis BJ, Nelson JS, Wiles WG, Schlatter U, et al. Activation of the AMP-activated protein kinase by the anti-diabetic drug metformin in vivo. J Biol Chem 2004;279: 43940–51.

15. Diamantis-Kandarakis E, Koulis C, Tsianateli T, Bergiea A. Therapeutic effects of metformin on insulin resistance and hyperandrogenism in polycystic ovary syndrome. Eur J Endocrinol 1998;138:269–74.

16. Glueck CJ, Fontaine RN, Wang P, Subbiah MT, Weber K, Ilig E, et al. Metformin reduces weight, centripetal obesity, insulin, leptin, and low-density lipoprotein cholesterol in nondiabetic, morbidly obese subjects with body mass index greater than 30. Metabolism 2001;50:856–61.

17. Jakubowicz DJ, Seppal€a M, Jakubowicz S, Rodri€uez-Armas O, Rivas-Santiago A, Koistinen H, et al. Insulin reduction with metformin increases luteal phase serum glycoaidins and insulin-like growth factor-binding protein 1 concentrations.
and enhances uterine vascularity and blood flow in the polycystic ovary syndrome. J Clin Endocrinol Metab 2001;86:1126–33.

18. La Marca A, Morgante G, Palumbo M, Cianci A, Petraglia F, De Leo V. Insulin-lowering treatment reduces aromatase activity in response to follicle-stimulating hormone in women with polycystic ovary syndrome. Fertil Steril 2002;78:1234–9.

19. Velázquez E, Acosta A, Mendoza SG. Menstrual cyclicity after metformin therapy in polycystic ovary syndrome. Obstet Gynecol 1997;90:392–5.

20. Glueck CJ, Goldenberg N, Wang P, Lotspring M, Sherman A. Metformin during pregnancy reduces insulin, insulin resistance, insulin secretion, weight, testosterone and development of gestational diabetes: prospective longitudinal assessment of women with polycystic ovary syndrome from preconception throughout pregnancy. Hum Reprod 2004;19:510–21.

21. Issemann I, Green S. Activation of a member of the steroid hormonal receptor superfamily by peroxisome proliferators. Nature 1990;347:645–50.

22. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB. Arachidonic acid and metabolism. Annu Rev Biochem 1986;55:69–102.

23. Kuhn H, Borngraber S. Mammalian 15-lipoxygenases: enzyme properties and biological implications. In: Nigam S, Pace-Asciak CR, eds. Lipoxygenases and their metabolites. New York: Plenum, 1999:447–52.

24. Brash AR. Lipoxigenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 1999;274:23679–82.

25. Conrad DJ. The arachidonate 12/15 lipoxigenases: a review of tissue expression and biologic function. Clin Rev Allergy Immunol 1999;17:71–89.

26. Li Q, Cheon YP, Kannan A, Shanker S, Bagchi IC, Bagchi MK. A novel pathway involving progesterone receptor, 12/15-lipoxigenase-derived eicosanoids, and peroxisome proliferator-activated receptor gamma regulates implantation in mice. J Biol Chem 2004;279:11570–81.

27. Pan QR, Li WH, Wang H, Sun Q, Xiao XH, Brock B, et al. Glucose, metformin, and AICAR regulate the expression of G protein-coupled receptor members in INS-1 beta cell. Horm Metab Res 2009;41:799–804.

28. Prabhaakar PK, Doble M. Synergistic effect of phytochemicals in combination with hypoglycemic drugs on glucose uptake in myotubes. Phytomedicine 2009;16:1119–22.

29. Sung B, Park S, Yu BP, Chung HY. Amelioration of age-related inflammation and oxidative stress by PPARγ activator: suppression of NF-κB by 2,4-thiazolidinedione. Exp Gerontol 2006;41:590–9.

30. Glueck CJ, Moriera A, Goldenberg N, Sieve L, Wang P. Pioglitazone and metformin in obese women with polycystic ovary syndrome not optimally responsive to metformin. J Clin Endocrinol Metab 2003;87:1105–10.

31. Legro RS. Pregnancy considerations in women with polycystic ovary syndrome. Clin Obstet Gynecol 2007;50:295–304.

32. Subbaramaiah K, Lin DT, Hart JC, Dannenberg AJ. Peroxisome proliferator-activated receptor gamma ligands suppress the transcriptional activation of cyclooxygenase-2: evidence for involvement of activator protein-1 and CREB-binding protein/p300. J Biol Chem 2001;276:12440–8.

33. Sander VA, Facorro GB, Piehl L, Rubin de Celis E, Motta AB. Effect of dehydroepiandrosterone and metformin on corpus luteum in mice. Reproduction 2009;138:571–9.

34. Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, et al. Interleukin-4-dependent production of PPARγ ligands in macrophages by 12/15-lipoxigenase. Nature 1999;400:378–82.

35. Schild RL, Schaff WT, Carlson MG, Cronbach EJ, Nelson DM, Sadovsky Y. The activity of PPARγ in primary human trophoblasts is enhanced by oxidized lipids. J Clin Endocrinol Metab 2002;87:1105–10.

36. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 1998;93:229–40.

37. Chen Q, Sun X, Chen J, Cheng L, Wang J, Wang Y, Sun Z. Direct rosiglitazone action on steroidogenesis and proinflammatory factor production in human granulose-lutein cells. Reprod Biol Endocrinol 2009;7:147–52.

38. Cheon YP, Li Q, Xu X, DeMayo FJ, Bagchi IC, Bagchi MK. A genomic approach to identify novel progesterone receptor regulated pathways in the uterus during implantation. Mol Endocrinol 2002;16:2853–71.
(A) A representative gel corresponding to the protein of peroxisome proliferator-activated receptors type γ (PPAR γ1 and 2). (B) A representative gel corresponding to the mRNA expression of PPAR γ. The graphs correspond to the integrated optical density of bands, ***P < 0.001 by analysis of variance. (C) A representative gel corresponding to the protein of 12 lipoygenase (12-LOX). (D) A representative gel corresponding to the mRNA expression of 12 lipoygenase (12-LOX). The graphs correspond to the integrated optical density of bands, *P < 0.05 by analysis of variance. (E) A representative gel corresponding to the protein of 15 lipoygenase (15-LOX). (F) A representative gel corresponding to the mRNA expression of 15 lipoygenase (15-LOX). The graphs correspond to the integrated optical density of bands, **P < 0.01 by analysis of variance.

Elia. Correspondence. Fertil Steril 2011.