Non-Markovian Persistence and Nonequilibrium Critical Dynamics

Klaus Oerding1,2, Stephen J. Cornell3, and Alan J. Bray3

1 Department of Physics, University of Oxford OX1 3NP, UK.
2 Institute for Theoretical Physics, University of Düsseldorf, D-40225 Düsseldorf, Germany.
3 Department of Physics and Astronomy, The University, Manchester M13 9PL, UK.

(February 21, 1997)

The persistence exponent θ for the global order parameter, $M(t)$, of a system quenched from the disordered phase to its critical point describes the probability, $p(t) \sim t^{-\theta}$, that $M(t)$ does not change sign in the time interval t following the quench. We calculate θ to $O(\epsilon^2)$ for model A of critical dynamics (and to order ϵ for model C) and show that at this order $M(t)$ is a non-Markov process. Consequently, θ is a new exponent. The calculation is performed by expanding around a Markov process, using a simplified version of the perturbation theory recently introduced by Majumdar and Sire [Phys. Rev. Lett. \textbf{77}, 1420 (1996)].

The ‘persistence exponent’, θ, which characterizes the decay of the probability that a stochastic variable exceeds a threshold value (typically its mean value) throughout a time interval, has attracted a great deal of recent interest \cite{MS}. One of the most surprising properties of this exponent is that its value is highly non-trivial even in simple systems. For example, θ is irrational for the $q > 2$ Potts model in one dimension \cite{MS} (where the fraction of spins that have not changed their state in the time t after a quench to $T = 0$ decays as $t^{-\theta}$) and is apparently not a simple fraction for the diffusion equation \cite{MS} (where the fraction of space where the diffusion field has always exceeded its mean decays as $t^{-\theta}$).

A recent study of non-equilibrium model A critical dynamics, where a system coarsens at its critical point starting from a disordered initial condition, looked at the probability $P(t_1, t_2)$ that the global magnetization does not change sign during the interval $t_1 < t < t_2$ \cite{MS}. The persistence exponent for this system is defined by $P(t_1, t_2) \sim (t_1/t_2)^\theta$ in the limit $t_2/t_1 \to \infty$. Explicit results were obtained for the 1D Ising model, the $n \to \infty$ limit of the $O(n)$ model, and to order $\epsilon = 4 - d$ near dimension $d = 4$. For these systems it was found that the value of θ was related to the dynamic critical exponent z, the static critical exponent η, and ‘nonequilibrium’ exponent λ (which describes the decay of the autocorrelation with the initial condition, $\langle \phi(x,t)\phi(x,0) \rangle \sim t^{-\lambda/z}$) by the scaling relation $\theta \equiv \lambda - d + 1 - \eta/2$. This relation may be derived from the assumption that the dynamics is Markovian, which is indeed the case for all of the cases considered in that paper.

From a consideration of the structure of the diagrams which appear at order ϵ^2 (and higher order), however, it was argued that the dynamics of the global order parameter should not be Markovian to all orders, implying that the exponent θ does not obey exactly that ‘Markovian scaling relation’ \cite{MS}. This means that θ is a new exponent. Monte-Carlo simulations in 2 dimensions indeed suggest weak violation of the Markov scaling relation \cite{MS}.

In this Rapid Communication we present an explicit calculation of the non-Markovian properties of the global order parameter. The nonequilibrium magnetization-magnetization correlation function is calculated to order ϵ^2, and this is then used to calculate θ to the same order, using a perturbative method proposed by Majumdar and Sire (MS) \cite{MS}, valid in the vicinity of a Markov process. The Markov scaling relation is shown explicitly to be violated at order ϵ^2, so θ is indeed a new independent exponent.

Before discussing the calculation of θ, however, we provide first a simpler, and more transparent, formulation of the perturbation theory than that given in MS. In particular the final result, Eq. (40), does not appear explicitly in MS [12].

Let $y(t)$ be a Gaussian stochastic process with zero mean, whose correlation function obeys dynamical scaling, i.e. $\langle y(t_1)y(t_2) \rangle = t_1^{\alpha} \Phi(t_1/t_2)$. Let $T = \ln t$ and $x(T) = y(t)/\langle y^2(t) \rangle^{1/2}$. Then $x(t)$ is a Gaussian stationary process with zero mean, i.e. its correlation function is translationally invariant, $\langle x(T_1)x(T_2) \rangle = A(T_2 - T_1)$. Notice that $A(0) = 1$ by construction, which convention we shall adopt throughout this Communication (in contrast to that of ref. \cite{MS}). If the persistence probability of y decays algebraically in t, then the persistence probability of $x(T)$ decays as $\sim \exp(-\theta T)$ for $T \to \infty$.

The persistence probability may be expressed as the ratio of two path integrals, as follows \cite{MS}:

$$P(x(T') > 0; 0 < T' < T) = \int_{x(0)}^{x(T')} Dx(T) \exp(-S) \int Dx(T) \exp(-S),$$

where

$$S = \frac{1}{2} \int_0^T dT_1 \int_0^T dT_2 x(T_1)G(T_1, T_2)x(T_2).$$

Here $G(T_1, T_2)$ is the matrix inverse of the correlation matrix $\langle x(T_1)x(T_2) \rangle = A(T_2 - T_1)$. Notice that G is not
simply a function of $T_2 - T_1$ (unless we impose periodic boundary conditions).

In MS this path-integral formalism was used to map the Markov process onto a quantum harmonic oscillator in imaginary time, developing the perturbation theory in the formalism of quantum mechanics. We shall merely use path integrals as a convenient notation, performing all our calculations within the natural framework of stochastic processes.

Let $x^0(T)$ be a stationary Gaussian Markov process, i.e. one defined by

$$\frac{dx^0}{dT} = -\mu x^0 + \xi(T),$$

where ξ is a Gaussian white noise, with $\langle \xi(T)\xi(T') \rangle = 2\mu \delta(T - T')$. The noise strength has been chosen so that the autocorrelation function is $A^0(T) = \exp(-\mu T)$.

Suppose the process $x(T)$ is perturbatively close to a Markov process, in the sense that $G = G^0 + \epsilon g$. Then we can expand the exponentials in the path integrals in (4) and re-expONENTiate, so that to $O(\epsilon)$ the numerator becomes

$$\int_C Dx(T)e^{-S} = \int_C Dx(T) \exp \left(-S^0 - \frac{\epsilon}{2} \gamma(T) + O(\epsilon^2) \right),$$

where the subscript C represents the constraint $x(T') > 0$ (0 < $T' < T$) on the paths in the integral in the numerator of (4), and

$$\gamma(T) = \int_0^T dT_1 \int_0^T dT_2 g(T_1, T_2) A^0_\epsilon(T_1, T_2),$$

where

$$A^0_\epsilon(T_1, T_2) \equiv \frac{\int_C Dx(T) x(T_1) x(T_2) e^{-S^0}}{\int_C Dx(T) e^{-S^0}}$$

is the correlation function for the Markov process, averaged (and normalized) only over the paths consistent with the constraint C. The denominator in (4) is given by an identical expression, except that A^0_ϵ is replaced by A^0, the unconstrained correlation function.

By virtue of the constraint, A^0_ϵ will not be strictly translationally invariant for finite T. In the limit $T \to \infty$, however, the double time-integral in (4) reduces to T times an infinite integral over the relative time $T_2 - T_1$, with $A^0_\epsilon(T_1, T_2)$ replaced by its stationary limit $A^0_\epsilon(T_2 - T_1)$. Similarly, g will be translationally invariant in this regime, giving

$$\gamma(T) \to T \int_{-\infty}^{\infty} (d\omega/2\pi) \tilde{g}(\omega) \tilde{A}^0_\epsilon(\omega),$$

where we have used the translational invariance to write the final result in Fourier space \tilde{A}^0_ϵ. Note that the zeroth-order result

$$\int_{x>0} Dx(T) \exp(-S^0) / \int Dx(T) \exp(-S^0)$$

is just the persistence probability of the stationary Gaussian Markov process $x^0(T)$, which decays as $\exp(-\mu T)$ as $T \to \infty$.

Using (4), (5) and (7), we find that the persistence exponent may be written in the form

$$\theta \equiv \lim_{T \to \infty} \frac{1}{T} \log \left[\frac{P(x(T') > 0; 0 < T' < T)}{1} \right] = \mu + \epsilon \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \tilde{g}(\omega) \left[\tilde{A}^0_\epsilon(\omega) - \tilde{A}^0(\omega) \right] + O(\epsilon^2).$$

Similarly, A^0_ϵ is the correlation function for the Markov process, averaged only over paths where $x(T)$ is always positive, we consider a path starting at (x_1, T_1), passing through (x_1, T_1) and (x_2, T_2) without ever crossing the origin. Then the required stationary limit is

$$P^+(x_1, T_1; x_2, T_2) = \lim_{T_1 \to \infty, T_1 \to \infty} \frac{Q^+(f; 2; 1|i)}{Q^+(f;i)},$$

where we have adopted an obvious shorthand notation for the arguments of Q^+.

To calculate the joint probability $P^+(x_1, T_1; x_2, T_2)$ that the process goes through (x_1, T_1) and x_2 at T_2, averaged only over paths where $x(T)$ is always positive, we consider a path starting at (x_1, T_1), passing through (x_1, T_1) and (x_2, T_2) without ever crossing the origin. Then the required stationary limit is

$$P^+(x_1, T_1; x_2, T_2) = \frac{2}{\pi} \left[1 - e^{-2\mu T} \right]^{-1/2} x_1 x_2 e^{\mu T} \sinh \left(\frac{x_1 x_2}{2 \sinh \mu T} \right).$$

It is now straightforward to evaluate the autocorrelation function:

$$A^0_\epsilon(T) = \int_0^\infty dx_1 \int_0^\infty dx_2 x_1 x_2 P^+(x_1, 0; x_2, T)$$

$$= \frac{2}{\pi} \left[3 \left(1 - e^{-2\mu T} \right)^{1/2} + (e^{\mu T} + 2e^{-\mu T}) \sin^{-1} e^{-\mu T} \right].$$
Eq. (8) for \(\theta \) can now be expressed as a real-time integral as follows. We first write \(A(T) = A^0(T) + \alpha(T) \), and we note that in Fourier space \(\hat{A}(\omega)^{-1} = \hat{G}(\omega) = \hat{G}^0(\omega) + \hat{g}(\omega) \). Using \(A^0 = \exp(-\mu T) \) gives \(\hat{g}(\omega) = -\hat{a}(\omega)(\omega^2 + \mu^2)/4\mu^2 \). Inserting this in (8), and transforming to real time, gives

\[
\theta = \mu - \frac{\epsilon}{4\mu^2} \int_0^\infty dT a(T) \left(\mu^2 - \partial_T^2 \right) \left[A^0(T) - A^0(0) \right]
\]

\[
= \mu \left\{ 1 - 2\mu \int_0^\infty \frac{a(T)}{1 - \exp(-2\mu T)^{3/2}} dT \right\}.
\]

(16)

The final result is remarkably compact. Since \(a(T) \) is just the perturbation to the Markov correlator \(A^0(T) = e^{-\mu T} \), the normalization \(A(T) = 1 \) forces \(a(0) = 0 \). This is sufficient to converge the integral in (16). Provided \(a(T) \) vanishes more rapidly than \(T^{1/2} \). Eq. (16) has recently been used to calculate persistence exponents for interface growth in a class of generalized Edwards-Wilkinson models [13].

As was remarked earlier, the problem of non-equilibrium critical dynamics is Markovian to first order in \(\epsilon = 4 - d \). In the thermodynamic limit the global order parameter is Gaussian because, at time \(t \), it is the sum of \([L/\xi(t)]^d \) (essentially) statistically independent contributions, where \(L \) is the system size and \(\xi \sim t^{1/2} \) is the length scale over which critical correlations have been established. Corrections to the Gaussian distribution can be expressed in terms of higher cumulants of the normalized total magnetization \(M(t)/\langle M^2(t) \rangle^{1/2} \). Using the translational invariance of the system with respect to space it is easy to show that for large \(L \) the 2N-point cumulant is smaller by a factor \((1^{1/2}/L)^{(N-1)d} \) compared to the Gaussian part of the 2N-point correlation function. The perturbative approach discussed in the first part of this Communication can therefore be applied. To calculate the lowest non-Markovian term in \(\theta \), we need to calculate the autocorrelation function of the total magnetization \(M(t) \) to order \(\epsilon^2 \), i.e. we need to calculate the autocorrelation function \(A(t_1, t_2) = \langle M(t_1) M(t_2) \rangle/\langle M^2(t_1) \rangle^{1/2} \langle M^2(t_2) \rangle^{1/2} \), which in the scaling regime depends only on the ratio \(t_2/t_1 \). The necessary techniques of dynamical field-theory, incorporating the extra renormalization associated with the random initial condition (and responsible for the nonequilibrium exponent \(\lambda \)), have been developed by Janssen et al [13,14]. We first consider ‘model A’ dynamics [14] for a nonconserved \(O(n) \) model (where ‘per-
than the measured value $\theta_z = 0.505 \pm 0.020$ (the finite-size scaling method used in [11] naturally determines the combination $\theta = 2\mu$). The non-Markov correction factor in $A(T)$ is, for $n = 1$, $(1 + 0.007543\ldots\epsilon^2) \approx 1.030$ for $\epsilon = 2$. The ‘improved’ estimate for θ_z becomes 0.474 ± 0.006, closer to, but still somewhat smaller than, the numerical estimate.

For $d = 3$, one has $z = 2.032 \pm 0.004$, $\lambda = 2.789 \pm 0.006$ [21] and $\eta = 0.032 \pm 0.003$, giving $\mu = 0.380 \pm 0.003$. Multiplying by the non-Markov correction factor for $\epsilon = 1$, i.e. 1.0075, gives $\theta = 0.383 \pm 0.003$, compared to the numerical result $\theta \approx 0.41$ [15]. A direct expansion to order ϵ^2 using the known expansions for z, λ, and η, gives (specializing to $n = 1$) $\theta = 1/2 - \epsilon/12 + \alpha - 2\ln 3)\epsilon^2/72 - 2\epsilon^2/81 + O(\epsilon^3)$, i.e. $\theta \approx 0.365$ for $d = 3$, slightly lower than that obtained using the best numerical estimates of z, λ and η and only using the ϵ-expansion for the non-Markov correction.

A similar approach can be applied to ‘model C’ critical dynamics [3], in which a nonconserved order parameter field is coupled to a conserved density. In this case, one obtains non-Markovian corrections already at order ϵ.

The autocorrelation function is given by (for $n = 1$)

$$A(T) = \exp(-\mu T) \left[1 - \frac{\epsilon}{6} F_C(e^T) + O(\epsilon^2) \right]$$

(19)

$$F_C(x) = \ln 2 - \frac{x - 1}{2x} + x \ln x - \frac{x - 1}{2} \ln(x - 1) - \frac{x + 1}{2} \ln(x + 1).$$

(20)

Again, $F_C(e^T)$ vanishes like $T \ln T$ for $T \to 0$, while $F_C(\infty) = \ln 2 - 1/2$. Inserting $\alpha = A(T) = A(T) - \exp(-\mu T)$ from (19) into (19) gives

$$\theta = \mu \left[1 + \frac{7 - 4\sqrt{2}}{12} \epsilon + O(\epsilon^2) \right],$$

(21)

where $\mu = (\lambda - d + 1 - \eta/2)/z$ as before, but now the dynamical exponents z and λ take their model-C values [17,18].

In summary, we have computed to order ϵ^2 the persistence exponent θ for the global order parameter $M(t)$ of models A and C. At this order, the dynamics of $M(t)$ are non-Markovian, and θ is a new exponent, not related to the usual static and dynamic exponents. The calculation was performed by expanding around a Markov process, using a simplified form of the perturbation theory introduced by Majumdar and Sire.

The work of SC and AB was supported by EPSRC grants GR/K53208 and GR/J24782 and the work of KO was supported by grant Oe199/1-1 of the DFG.

[1] B. Derrida, A. J. Bray, and C. Godrèche, J. Phys. A 27, L357 (1994).
[2] A. J. Bray, B. Derrida, and C. Godrèche, Europhys. Lett. 27, 175 (1994).
[3] D. Stauffer, J. Phys. A 27, 5029 (1994).
[4] E. Ben-Naim, P. L. Krapivsky, and S. Redner, Phys. Rev. E 50, 2474 (1994).
[5] B. Derrida, P. M. C. de Oliveira, and D. Stauffer, Physics A 224, 604 (1996).
[6] B. Derrida, V. Hakim, and V. Pasquier, Phys. Rev. Lett. 75, 751 (1995).
[7] E. Ben-Naim, L. Frachebourg, and P. L. Krapivsky, Phys. Rev. E 53, 3078 (1996).
[8] S. N. Majumdar and C. Sire, Phys. Rev. Lett. 77, 1420 (1996).
[9] S. N. Majumdar, C. Sire, A. J. Bray, and S. Cornell, Phys. Rev. Lett. 77, 2867 (1996).
[10] B. Derrida, V. Hakim, and R. Zeitak, Phys. Rev. Lett. 77, 2971 (1996).
[11] S. N. Majumdar, A. J. Bray, S. J. Cornell, and C. Sire, Phys. Rev. Lett. 77, 3704 (1996).
[12] The result (14) can be deduced after some algebra from Eqs. (4), (5) and (7) of ref. [21].
[13] J. Krug, H. Kallabis, S. N. Majumdar, S. Cornell, A. J. Bray, and C. Sire, unpublished.
[14] Note that $A_0^0(\infty) > 0$ [see Eq. (13)], so $A_0^0(\omega)$ implicitly contains a term proportional to $\delta(\omega)$.
[15] H. K. Janssen, B. Schaub, and B. Schmittman, Z. Phys. 73, 539 (1989).
[16] H. K. Janssen, in From Phase Transitions to Chaos, Topics in Modern Statistical Physics, edited by G. Györgyi, I. Kondor, L. Sasvári, and T. Tél (World Scientific, Singapore, 1992), pp. 68–91.
[17] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435 (1977).
[18] K. Oerding and H. K. Janssen, J. Phys. A 26, 3369 (1993).
[19] D. Stauffer, Int. J. Mod. Phys. C 7, 753 (1996).
[20] L. Schiüle and B. Zheng, preprint, have recently measured θ directly for the Ising model in $d = 2$. Their result $\theta = 0.237 \pm 0.003$ is consistent with $\theta_z = 0.505 \pm 0.020$ [21] for z in the accepted range 2.13–2.17.
[21] F. Grassberger, Physica 214A, 547 (1995).