Roles of the Y chromosome genes in human cancers

Tatsuo Kido, Yun-Fai Chris Lau

INTRODUCTION

Numerous studies have identified various sex differences in the risks, incidence and progression of various human diseases, such as asthma, autoimmune diseases, schizophrenia, autism spectrum disorders, cardiovascular disease and non-sex-specific cancers such as liver cancer, bladder cancer, and lung cancer. According to the report by Cook and colleagues, 32 out of 36 cancer types showed male preference of cancer mortality in United States for the years between 1977 and 2006. However, the mechanisms responsible for such sex-differences are still largely unknown. The most significant genetic differences between men and women are genes on their sex chromosomes, that is, XY as male and XX as female. Although male and female differ genetically by their respective sex chromosome composition, that is, XY as male and XX as female. Although both X and Y chromosomes evolved from the same ancestor pair of autosomes, the Y chromosome harbors male-specific genes, which play pivotal roles in male sex determination, germ cell differentiation, and masculinization of various tissues. Deletions or translocation of the sex-determining gene, SRY, from the Y chromosome causes disorders of sex development (previously termed as an intersex condition) with dysgenic gonads. Failure of gonadal development results not only in infertility, but also in increased risks of germ cell tumor (GCT), such as gonadoblastoma and various types of testicular GCT. Recent studies demonstrate that either loss of Y chromosome or ectopic expression of Y chromosome genes is closely associated with various male-biased diseases, including selected somatic cancers. These observations suggest that the Y-linked genes are involved in male health and diseases in more frequently than expected. Although only a small number of protein-coding genes are present in the male-specific region of Y chromosome, the impacts of Y chromosome genes on human diseases are still largely unknown, due to lack of in vivo models and differences between the Y chromosomes of human and rodents. In this review, we highlight the involvement of selected Y chromosome genes in cancer development in men.

Asian Journal of Andrology (2015) 17, 373–380; doi: 10.4103/1008-682X.150842; published online: 27 March 2015

Keywords: germ cell tumors; RBMY, Y-linked; somatic cancers; TSPY; Y chromosome

Group-I genes are expressed almost ubiquitously, and Group-II genes are expressed specifically/predominantly in testis (Table 1). It is postulated that Group-I MSY genes function as broadly expressed regulators for gene expression and protein stability as maintaining the ancestral dosage of homologous X-Y gene pairs, e.g., DDX3Y, EIF1AY, KDM5D, RPS4Y, TBL1Y, USP9Y, UTY, and ZFY. The ubiquitous and/or somatic expressions of MSY genes suggest that the balanced expression between MSY genes and their X homologs could be crucial to maintain the healthy condition in men. In humans, 12 of 14 functional X-Y paired genes (86%) escape X-inactivation in female, thereby maintaining the dosage balance of X-Y paired genes. On the other hand, Group-II genes, including HSFY, SRY, RNA-binding motif protein, Y-linked (RBMY), and testis-specific protein, Y-encoded (TSPY), may play diverse functions from their X homologs.

Transgenic mouse models using knockout strategies are useful tools to determine and infer the functions of respective genes in human health and diseases. However, only 9 of 17 ancestral genes in the human MSY are conserved in the mouse Y chromosome. Recent work by Soh et al. demonstrated that only 2.2% of mouse MSY sequence shares ancestry with the primate MSYs. Further, the mouse Y-chromosome long-arm harbors the highly amplified units (85–221 times) containing genes, such as Sly, Sry1, Sry2, or Sry5 that are absent on the primates Y chromosomes. Accordingly, mouse modeling of human MSY genes is difficult, and the impacts of MSY genes on human diseases are still largely unknown. Based on genetic mapping studies, three major loci have been assigned to the human MSY, that is, testis-determining factor (TDF), gonadoblastoma locus...
on Y chromosome (GBY) and azoospermia factor (AZF) (Figure 1). The SRY gene has been demonstrated to be the testis-determining gene, while a group of genes, that is, RBMY and DAZ, have been identified within the AZF locus on the long-arm. The gonadoblastoma (GBY) locus was initially mapped to a small region on the short arm of the Y chromosome proximal to the centromere, harboring a gene predisposing dysgenetic gonads of XY sex-reversed patients to develop gonadoblastoma. Subsequent studies showed that TSPY is the putative gene for this locus. The sex determination and genes for the AZF locus have recently been reviewed in details. The present review focuses on the MSY genes and their associations to human tumors, including gonadoblastoma.

Expression of Y-Linked Genes and Human Cancers

Various studies have demonstrated that TSPY and RBMY are ectopically expressed in somatic cells under disease conditions, such as cancer, although they are normally expressed preferentially in testicular germ cells (see below). To explore the changes of MSY genes in somatic cancers, we had performed a data-mining study on hepatocellular carcinoma (HCC) using the RNA-Seq gene expression data on 27 pairs of male tumor-nontumor paired samples at the Cancer Genome Atlas (TCGA) project. Our results showed that, in addition to TSPY and RBMY, other MSY genes, that is, TGF2LY and VCY, were consistently up-regulated in ~30% cases of liver cancer, while DDX3Y, ZFY, and DAZ1 were frequently down-regulated (~70%, Figure 2). Since the Y chromosome is unique to men, these observations suggest that the Y chromosome genes could potentially influence on the development, progression and outcomes of liver cancer in a male-specific manner(s).

Testis-specific protein, Y-encoded (TSPY)

The human TSPY gene was initially identified as a Y-linked gene specifically expressed in the testis. It is tandemly repeated in 20.3-kb highly homologous units, usually in the range of 21–35 copies, on the short arm of the Y chromosome. The human TSPY is expressed in gonocytes in the embryonic testis, spermatogonia, and prophase I spermatocytes at preleptotene to zygotene stages in adult testis. Deletion mapping has localized the TSPY repeat units to the critical

Figure 1: Schematic diagram of human Y chromosome indicating the protein-coding genes within the male-specific region of Y chromosome. **AZFa-c:** the deleted regions identified in azoospermia patients; **GBY:** the gonadoblastoma locus on Y chromosome; **PAR1** and **PAR2:** the pseudoautosomal regions.

Table 1: Protein coding MSY genes

Gene (Gene family)	Members of multi-copy gene	Functional domain in protein product	Expression
AMELY	BPY2, BPY-2, 2B, 2C	Winged HTH-like domain	Testis specific
CDY	CDY-1, 1B, 2A, 2B	Chromatin organization modifier	Testis specific
DAZ	DAZ-1, 2, 3, 4	RRM	Predominantly in testis
DDX3Y (DBY)		DEAD-like helicase	Ubiquitous
EFL1AY		Janus kinase family	Ubiquitous
HSFY	HSFY-1, 2	HSF	Testis specific
KDM5D (SNCY)		PHD zinc finger, jumonji domain	Ubiquitous
NLGN4Y		Carboxylesterase	Ubiquitous
PCDH11Y		Cadherin repeats	Ubiquitous
PRY	PRY, PRY2	RRM	Testis specific
RBMY	RBMY1-A1, 1B, 1C, 1D, 1E, 1F/J	S4 RNA-binding domain	Ubiquitous
RPS4Y	RPS4Y1, RPS4Y2		Testis specific
SRY		HMG	Predominantly in testis
TBL1Y		WD40 repeats (WD40)	Ubiquitous
TGF2LY		Homeodomain (Hox)	Testis specific
TMSB4Y (TB4Y)		Thymosin B-actin-binding motif	Ubiquitous
TSPY	>40 copies (copy number varies among cohort)	SET/NAP domain	Predominantly in testis
USP9Y (DDFRY)		Ubiquitin-like domain, ubiquitin C-terminal hydrolase	Ubiquitous
UTY		Jumonji domain, treble-clef zinc finger	Ubiquitous
VCY	VCY, VCY1B		Predominantly in testis
XKRY	XKRY, XKRY2		Testis specific
ZFY		Zinc fingers (ZnF_C2H2)	Ubiquitous

*Genes and gene ID are listed in Table S1. A popular alias alternatively used; Other tissue(s) also expresses, but testis expresses at the highest level. MSY: male-specific region of the Y chromosome; HTH: helix-turn-helix; CHROMO: chromatin organization modifier; RRM: RNA recognition motif; HSF: heat-shock factor; HMG: high-mobility group; NAP: nucleosome assembly protein; SET: SE translocation.
Figure 2: Gene expression profile of MYS protein-coding genes in male liver cancer cases. The case number showing either up-regulation or down-regulation in cancer specimens is indicated for each gene, according to the RNA-Seq gene expression data derived from the database of the Cancer Genome Atlas project. Twenty-seven pairs of tumor and corresponding nontumor tissue were analyzed. Each black or gray square indicates an up or down respectively the expression of the corresponding Y chromosome genes in the tumor to nontumor pairs.

region harboring the GBY locus on the short arm.

It is postulated to serve normal functions in male germ cell differentiation, mitosis, and meiosis, but could promote gonadoblastoma development in patients with disorders of sex developments (DSDs) harboring Y chromosome materials including TSPY. Indeed, TSPY expression has been observed in gonadoblastoma, and various types of germ cell tumors (GCTs), including carcinoma in situ/intratubular germ cell neoplasia unclassified (CIS/ITGCNU) (the precursor for all testicular GCTs [TGCTs]), seminoma, and extragonadal intracranial GCT. In addition to GCTs, TSPY is frequently expressed in some somatic cancers including liver cancer, melanoma, and prostate cancer, suggesting that TSPY can be considered as a cancer-testis antigen (CT-antigen). CT-antigens are group of proteins that are predominantly specifically in tests under normal conditions, but are ectopically expressed in somatic cancers. Although the biological functions of CT-antigens are currently uncertain, they have been proposed as diagnostic markers and therapeutic targets in cancers.

Molecular functions of TSPY

TSPY is a member of SE translocation/nucleosome assembly protein 1 (SET/NAP1) superfamily harboring a highly homologous SET/NAP-domain, initially identified in the SET oncoprotein (also called template-activating factor I or TAF-I) and the NAP1. X-ray crystallography showed that the SET protein forms a homodimer with a headpiece like structure, and the SET/NAP domain occupies the earmuff region, which could be important for protein-protein binding with interactive partners. The N-terminal alpha-helix region contains the binding site for the homodimerization. Members of the SET/NAP1 protein family could function as chaperones of histones. In particular, NAP1 plays crucial roles in shuttling and assembling core histones as a histone chaperone. SET forms inhibitor of histone acetyltransferase (INHAT) complex with its isoform TAF-Iα and pp32. INHAT complex associates with chromatin to inhibit the histone acetylation mediated by acetyltransferases, thereby suppressing the expression of targeted genes. SET also interacts with transactivators and enhances their respective target gene expression. These observations suggest that SET/NAP1 proteins serve a wide range of functions in many biological processes. Recently, we reported that TSPY binds the type B cyclins and enhances the kinase activity of the cyclin-B/CDK1 complex. Correlating with this function, overexpression of TSPY leads to shortening of the G2/M phase and acceleration of cell proliferation in TSPY-transfected HeLa and 3T3 cells in vitro and tumorigenicity in athymic mice in vivo. In contrast, its single-copy X-linked homolog TSPX (also termed as TSPY-like 2 [TSPYL2], differentially expressed nuclear TGF-β1 target [DENTT] or cell division autoantigen 1 [CDA1]) inhibits the kinase activity of cyclin-B/CDK1 complex. TSPX protein harbors a 250 amino acids aspartic acid/glutamic acid (D/E)-rich domain at its C-terminus, which is absent in TSPY. The inhibitory function of TSPX has been mapped on the C-terminal D/E-rich domain. Since the SET/NAP-domains of both proteins are well conserved, TSPY and TSPX could play contrasting roles on their common target molecules. Abrogated TSPX expression in lung cancer is associated with accelerated cancer progression. In vitro studies also demonstrated that overexpression of TSPX retards cell proliferation. Further, down-regulation of TSPX by nitric-oxide correlates with the glioma stem cell proliferation. These observations suggest that while TSPY and TSPX originated from the same ancestor gene, they have respectively evolved into two independent genes on the sex chromosomes, and play contrasting roles in human oncogenesis, that is, TSPY as a proto-oncogene and TSPX as a tumor suppressor gene.

Yeast-two hybrid screening using the SET/NAP-domain of TSPY as bait has identified several novel TSPY binding proteins. The first one is the translation elongation factor 1A, eEF1A. The SET/NAP domain of TSPY binds to the domain-III of eEF1A, and enhances protein synthesis. TSPY also binds to the 40S ribosomal component RPS26 (unpublished data), suggesting that TSPY could be associated with the protein synthesis machinery in the cells. Recent studies suggest...
that protein synthesis is crucial in the regulation of cell proliferation and cancer progression.76–79 TSPY may normally support protein synthesis essential for the maintenance of germ cell proliferation, but when ectopically expressed, it could promote cancer growth under diseased conditions. Interestingly, we also showed that TSPY protein binds to the exon-1 of its structural gene and enhances its own expression in prostate cancer cells,74 suggesting that TSPY could intensify its functions by amplifying its own gene expression through a positive feedback loop. Hence, TSPY could play the role of a transcription regulator, by binding to the DNA/nuclear proteins on the chromatin of target genes. Since TSPY is located in the male-only Y chromosome, its functions in the protein synthetic machinery, cell cycle progression, histone chaperone/chromatin modification gene, and regulation could shed new insights on sex disparities associated with the development, progression and treatments responses among numerous somatic cancers, e.g., liver cancer and melanoma, with ectopic TSPY expression.

Expression of TSPY in germ cell tumors

Human GCTs can be classified into five types based on various parameters including age at clinical presentation, anatomical sites and histology; e.g., type-I, teratoma/yolk sac tumor; type-II, seminomatous/nonseminomatous GCTs; type-III, spermatocytic seminoma; type-IV, dermoid cyst; type-V, hydatidiform mole.75 TSPY expression is primarily detected in type-II TGCs and type-III spermatocytic seminoma.44 Type-II TCGs are further subdivided into nonseminomatous GCTs and seminomatous GCTs, including seminoma, dysgerminoma, germinoma, and gonadoblastoma.75,76 The type-II testicular germ cell tumors (TGCTs) are the most common malignancies among young men aged 15 to 34 years in United States, and its incidence is approximately 1.38–6.31 per 100 000 (years of 1973 to 2001).77 The incidence of TGCTs is globally increased during the past 70 years, especially among men of European ancestry, and the etiologies of such preference are uncertain.78,79

TGCTs, both seminoma and nonseminoma, are derived from CIS/ITGCNU.75,76,80,81 CIS/ITGCNU cells display a close phenotype to fetal germ cells, suggesting their origin is due to a developmental delay or failure of differentiation of early germ cells (Figure 3).75,82–84 TSPY is expressed in gonocytes85 and most CIS/ITGCNU cells with some minor exceptions (Figure 3).43,44 Upon further oncogenic progression, the seminoma cells maintain TSPY expression while, nonseminoma cells do not or rarely express TSPY (Figure 3).43,44,86 It has been speculated that the development of nonseminoma TGCT requires reprogramming to embryonic carcinoma state.75 Indeed, the global gene expression analysis using microarray hybridization strategy indicated that embryonic carcinoma cells showed significant similarities with human embryonic stem cells, while seminoma closely resemble transformed primordial germ cells.87 Accordingly, TSPY expression likely correlates with the germ cell lineage even in maturation-disturbed germ cells, but not with the reprogrammed cells like embryonic carcinoma with acquired pluripotency.

Gonadoblastoma is a subclass of type-II TCGs preferentially developed in the dysgenetic gonads of XY females or individuals with DSD.75,76,88 The Y chromosome of gonadoblastoma patients frequently lacks sex determination region but retains common region of the short arm, termed GBY locus.28–30 The tandemly repeated units of TSPY gene are mapped within GBY critical region on the

![Figure 3: Schematic representation of expressions of testis-specific protein, Y-encoded (TSPY) and OCT3/4 in normal testis and type-II germ cell tumors.](image)
Y chromosome, hence TSPY is considered as a candidate gene for GBY, promoting gonadoblastoma development in the dysgenetic gonads of DSD patients.28-30 Gonadoblastoma morphologically resembles the CIS/ITGCIY in the TGCTs in the testis; gonadoblastoma cells are mixed with granulosa-like cells while TGCT cells are mixed with Sertoli cells in the seminiferous tubules enclosed by myoid cells.19 Most OCT4-positive gonadoblastoma cells strongly express TSPY as well as the germ cell/placental alkaline phosphatase (PLAP) and the proto-oncogene receptor c-Kit, similar to the testicular CIS.43,45,46,48 Noticeably, TSPY is rarely expressed in the dysgerminoma after progression from gonadoblastoma.96,98 Dysgerminoma is considered as a counterpart of seminoma based on morphology and expressed biomarkers.90-92 Loss of TSPY expression in dysgerminoma may indicate the dividing characteristics between dysgerminoma and seminoma.

Overall, TSPY is expressed differentially in a subset of GCTs positive for both OCT4 and PLAP biomarkers. Since TSPY is most frequently expressed in the CIS and gonadoblastoma, at early stages of germ cell tumorigenesis, it is postulated to play an important role in early stages of oncogenesis in the immature germ cell lineage. Accordingly, the risk of GCT development/progression is higher in TSPY positive than TSPY negative cases.79 TSPY could accelerate such progression of GCTs through its functions in cell cycle, protein synthesis, and histone/chromatin modification and gene regulation, as discussed above.

Expression of TSPY in somatic cancers

In addition to type-II and III GCTs, ectopic expression of TSPY has been frequently detected in various types of somatic cancers, including HCC,47,48 melanoma,49 and prostate cancer.50,51 Yin et al.46 reported that TSPY expression was detected in 50% cases of early stage HCC and 16% cases in undifferentiated stage (later stage of HCC). Our recent studies also demonstrated that TSPY was detected in 19.2% cases in tissue microarray and 46.9% cases in RNA samples isolated from fresh HCC specimens.47 Further immunohistochemical analysis showed that TSPY is expressed in the glypican 3-positive cells, a biomarker of the HCC.47,94 In the studies of prostate cancer, TSPY was immunohistochemically detected in the regions positive for alpha-methylacyl-CoA racemase, a biomarker of prostatic intraepithelial neoplasia and prostate cancer cells.90-92 TSPY expression was more frequently detected in clinical prostate cancer specimens (78%) than latent prostate cancer (47%) and noncancer prostate tissues (50%).90 These observations clearly indicate that TSPY is ectopically activated in somatic cancer cells.

While the correlation between TSPY expression and clinical outcome is still unclear, TSPY has been suggested as a prognostic biomarker and therapeutic target for immunotherapy.93 Further analysis incorporating clinical outcomes and TSPY expression would be important to elucidate the significance of TSPY expression on cancer progression and immunotherapy.

Rodent Tspy and human TSPY transgenic mouse models

Although TSPY is an evolutionarily conserved gene on the Y chromosomes of mammals including apes and bovines,96,97 the mouse Tspy gene is apparently nonfunctional as it contains multiple in-frame stop codons within the open reading frame.98 Rat Y chromosome harbors a single functional copy of Tspy gene,99 but its expression pattern is different from human TSPY, that is, the rat Tspy is expressed only in elongating spermatids while the human TSPY is primarily expressed in spermatogonia and spermatocytes,100 suggesting that the biological functions of the rat Tspy could be different from those of human TSPY. Accordingly, the gene knockout in rodents might not be a suitable strategy to explore the biological functions of human TSPY. To overcome this difficulty, Schubert et al.101 had generated a transgenic mouse line harboring 50 copies of human TSPY gene on Y chromosome of the mouse, designated as TgTSPY9. The 8.2-kb transgene contains 2.95-kb the promoter region, 2.8-kb structural gene and 2.45-kb 3’ flanking sequence of the human TSPY gene. It is predominantly expressed in spermatogonia and spermatocytes at early stages of spermatogenesis, similar to the pattern of TSPY in human testis.101 Expression of human TSPY transgene in testicular germ cells of TgTSPY9 mice does not show any significant effects in fertility or other physiology,100 consistent with the observation that the copy number of human TSPY gene varies among fertile men.98 By introducing the Y-located TSPY transgene of TgTSPY9 to the LADY model of prostate cancer, we have demonstrated that the Y-located TSPY could be aberrantly activated during oncogenesis in the LADY model of prostate cancer.102 However, while TSPY is expressed in FoxA1-positive epithelial cells and prostate cancer cells in human clinical prostate cancer specimens, TgTSPY9 transgene was expressed in FoxA1-negative hypercellular stroma areas in the prostate of LADY mice.102 Such differential expression patterns suggest the potential limitations of current mouse models of prostate cancer in mimicking the ectopic expression of TSPY under disease conditions, such as during prostate cancer development.
Asian Journal of Andrology

Y chromosome genes and cancer
T Kido and YFC Lau

and UTY could play comprehensive, but independent of their demethylase activities, during embryonic development.111 On the other hand, while TSPY displays proto-oncogenic properties,23,62,63,69 its X-linked homolog TSPX is a tumor suppressor and down-regulated in cancer.62,63,66 This is the first example for an MSY gene and its X-homologue possess distinct and opposing functions. Hence, it is important to establish respective in vivo models to elucidate the roles of human MSY genes in development and progression of diseases, including cancers.

Recently, an epidemiologic study reported that loss of Y chromosome (LOY) in peripheral blood cells significantly associated with shorter cancer survival and higher risk of cancer incidence in men.112 LOY in peripheral blood is frequently observed in elder men.114 According to a clinical study with >40 years of follow-up, Forsberg et al. found that LOY in peripheral blood associated with increased risk of both all-caused mortality and cancer mortality, particularly in nonhematological cancers.113 Further, transcriptome analysis of human peripheral blood samples detected the expression of some Y chromosome genes, e.g., EIF1AY, DDX3Y, KDM5D, CYorf15B, CYorf15A, and UTY.115 Although the mechanism linking LOY in human peripheral blood and cancer mortality remains to be elucidated, these observations strongly suggest that Y chromosome genes are involved in a wide variety biological processes that have not been fully explored. MSY genes play crucial roles in both hormonal regulation and the balance in biological processes that have not been fully explored. Ectopic expression of one or a few of these Y chromosome genes, such as TSPY and RBMY, could exacerbate oncogenesis in the absence of proper counter-balance from the other MSY genes (Figure 4). Further studies of Y chromosome genes from the global aspects, including both coding and noncoding RNA genes, will shed new lights on their roles in health and diseases in men.

AUTHOR CONTRIBUTIONS

TK performed the data-mining experiments. TK and YFCL co-wrote the manuscript.

COMPETING INTERESTS

All authors declare no competing interests.

ACKNOWLEDGMENTS

This study was partially supported by a Merit-Reviewed grant and a Program Project award from the Department of Veterans Affairs to YFCL. YFCL is a Research Career Scientist of the Department of Veterans Affairs.

Supplementary information is linked to the online version of the paper on the Asian Journal of Andrology website.

Figure 4: Conceptual illustration of gene balance between male-specific region of the Y chromosome genes and their X homologs in health maintenance and disease development, including cancer, in men.

REFERENCES

1. Postma DS. Gender differences in asthma development and progression. Gend Med 2007; 4 Suppl B: S133–66.
2. Townsend EA, Miller WM, Prakash YS. Sex differences and sex steroids in lung health and disease. Endocr Rev 2012; 33: 1–47.
3. Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol 2014; 35: 347–69.
4. Lockshin MD. Sex differences in autoimmune disease. Lupus 2006; 15: 753–6.
5. Goldstein JM, Cherkzarian S, Tsuang MT, Petsysen TL. Sex differences in the genetic risk for schizophrenia: history of the evidence for sex-specific and sex-dependent effects. Am J Med Genet B Neuropsychiatr Genet 2013; 162B: 698–710.
6. Wu YC, Hill RA, Gogos A, van den Bussche M, Sex differences and the role of estrogen in animal models of schizophrenia: interaction with BDNF. Neuroscience 2013; 239: 67–83.
7. Werling DM, Geschwind DH. Sex differences in autism spectrum disorders. Curr Opin Neurol 2013; 26: 146–53.
8. Barone-Schenk S, Lombardo MV, Augea B, Ashwin E, Chakrabarti B, et al. Why are autism spectrum conditions more prevalent in males? PLoS Biol 2011; 9: e1001081.
9. Luczak ED, Leinwand LA. Sex-based cardiac physiology. Annu Rev Physiol 2009; 71: 1–18.
10. Ober C, Loisel DA, Gilad Y. Sex-specific genetic architecture of human disease. Nat Rev Genet 2008; 9: 911–22.
11. Nakamura H, Ando K, Shimayo T, Morita K, Mochizuki A, et al. Female gender is an independent prognostic factor in non-small-cell lung cancer: a meta-analysis. Ann Thorac Cardiovasc Surg 2011; 17: 469–80.
12. Fajkovic H, Halpem JA, Cha EK, Bahadoni A, Chromekci TF, et al. Impact of gender on bladder cancer incidence, staging, and prognosis. World J Urol 2011; 29: 457–63.
13. Arbees KG, Ukrainets SV, Arbeeva LS, Yashin AI. Difference between male and female cancer incidence rates: how can it be explained? In: Nikulin MS, Arbeev KG, Ukraintseva SV, Arbeeva LS, Yashin AI. Male-Female differences in cancer mortality and survival. Cancer Epidemiol Biomarkers Prev 2011; 20: 1629–37.
14. Skaltsky T, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003; 423: 825–37.
15. Helena Mangs A, Morris BJ. The Human Pseudoautosomal Region (PAR): origin, function and future. Curr Genomics 2007; 8: 129–36.
16. Ginalski K, Rychlewski L, Baker D, Grishin NV. Protein structure prediction for male-specific region of the human Y chromosome. Proc Natl Acad Sci U S A 2004; 101: 2305–10.
17. Jangravi Z, Alikhani M, Arefnezhad B, Sharifi Tabar M, Taleahmad S, et al. A fresh look at the male-specific region of the human Y chromosome. J Proteome Res 2013; 12: 6–22.
18. Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science 1999; 286: 964–7.
19. The Ensemble Project. Human Body Map 2.0 data from Illumina. Available from: http://www.ensemble.org/blog/2011/05/24/human-bodymap-2-0-data-from-illumina/. [Accessed on 2014 Oct 11].
20. Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 2014; 509: 494–9.
21. Lahn BT, Page DC. Functional coherence of the human Y chromosome. Science 1997; 278: 675–80.
22. Soh YQ, Alföldi J, Pyntikova T, Brown LG, Graves T, et al. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex
Asian Journal of Andrology
in situ
2010; 57: 27–34.

Lau YF, Kido T, Li Y. The human Y-encoded testis-specific protein interacts functionally with male germ cell biology in Health and Diseases. Hackensack: World Scientific Publishers, 2007. p. 73–90.

Kandallat LE, Zudaire E, Portal-Núñez S, Cuttiltta F, Jakowlew SB. Differentially expressed nucleolar transforming growth factor-beta1 target (DENT1) exhibits an inhibitory role on tumorigenesis. Carcinogenesis 2008; 29: 1298–9.

Tu Y, Wu W, Wu T, Cao Z, Wilkins R, et al. Antiproliferative autograft CDA1 transcriptionally up-regulates p21(WAF1/Cip1) by activating p53 and MEK/ERK1/2 MAPK pathways. J Biol Chem 2007; 282: 11722–31.

Eylar CE, Wu Q, Yan K, MacSwords JM, Chandler-Milletlo D, et al. Giroma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 2011; 146: 53–66.

Debride MG, Longepied G, Depetris D, Mattei MG, Disteche CM, et al. TSPY, the candidate gonadoblastoma gene on the human Y chromosome, has a widely expressed homologue on the X chromosome. Carcinogenesis 2004; 12: 345–56.

Lau YF, Kido T, Li Y. The TSPY family. In: Lau YF, Chan WY, editors. The Y chromosome and Male Germ Cell Biology in Health and Diseases. Hackensack: World Scientific Publishers, 2007. p. 73–90.

Kandallat LE, Zudaire E, Portal-Núñez S, Cuttiltta F, Jakowlew SB. Differentially expressed nucleolar transforming growth factor-beta1 target (DENT1) exhibits an inhibitory role on tumorigenesis. Carcinogenesis 2008; 29: 1298–9.

Tu Y, Wu W, Wu T, Cao Z, Wilkins R, et al. Antiproliferative autograft CDA1 transcriptionally up-regulates p21(WAF1/Cip1) by activating p53 and MEK/ERK1/2 MAPK pathways. J Biol Chem 2007; 282: 11722–31.

Eylar CE, Wu Q, Yan K, MacSwords JM, Chandler-Milletlo D, et al. Giroma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell 2011; 146: 53–66.

Debride MG, Longepied G, Depetris D, Mattei MG, Disteche CM, et al. TSPY, the candidate gonadoblastoma gene on the human Y chromosome, has a widely expressed homologue on the X chromosome. Carcinogenesis 2004; 12: 345–56.
81 Raipjrt-De Meyts E. Developmental model for the pathogenesis of testicular carcinoma in situ: genetic and environmental aspects. *Hum Reprod Update* 2006; 12: 303–23.

82 Kristensen DM, Sonne SB, Ottesen AM, Perrett RM, Nielsen JE, et al. Origin of pluripotent germ cell tumours: the role of microenvironment during embryonic development. *Mol Cell Endocrinol* 2008; 288: 111–8.

83 Skakkebaek NE, Berthelsen GJ, Giwercman A, Müller J. Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. *Int J Androl* 1987; 10: 19–28.

84 Oosterhuis JW, Loosjenga LH, van Echten J, de Jong B. Chromosomal constitution and developmental potential of human germ cell tumors and teratomas. *Cancer Genet Cytofogenet* 1997; 95: 96–102.

85 Raipjrt-De Meyts E, Bartkova J, Samson M, Hoei-Hansen CE, Frydelund-Larsen L, et al. The emerging phenotype of the testicular carcinoma in situ germ cell. *APMIS* 2003; 111: 267–78.

86 Hoei-Hansen CE, Kraggerud SM, Abeler VM, Kaern J, Rajpert-De Meyts E, et al. Ovarian dysgerminomas are characterised by frequent KIT mutations and abundant expression of pluripotency markers. *Mol Cancer* 2007; 6: 12.

87 Spenger JM, Chen X, Draper JS, Antosiewicz JE, Chon CH, et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. *Proc Natl Acad Sci U S A* 2003; 100: 13350–5.

88 Cools M, Stoop H, Kersemaekers AM, Drop SL, Wolffsenbuttel KP, et al. Gonadoblastoma arising in undifferentiated gonadal tissue within dysgenetic gonads. *J Clin Endocrinol Metab* 2006; 91: 2404–13.

89 Raipjrt-De Meyts E, Ottesen AM, Hoei-Hansen CE, Sonne SB, Leffers H, et al. Origin of testicular germ cell neoplasia: the role of sex chromosomes. *Cancer Genet Cytogenet* 2011; 203: 115–19.

90 Schubert S, Dechend F, Skawran B, Kunze B, Winking H, et al. Silencing of the Y-chromosomal gene TSPY during murine evolution. *Mamm Genome* 2000; 11: 288–91.

91 Mazeyrat S, Mitchell MJ. Rodent Y chromosome TSPY gene is functional in rat and non-functional in mouse. *Hum Mol Genet* 1997; 7: 557–62.

92 Kido T, Lau YF. The rat Tspy is preferentially expressed in elongated spermatids and interacts with the core histones. *Biochem Biophys Res Commun* 2006; 350: 56–67.

93 Schubert S, Skawran B, Dechend F, Nayernia K, Meinhardt A, et al. Generation and characterization of a transgenic mouse with a functional human TSPY. *Biol Reprod* 2003; 69: 968–75.

94 Kido T, Schubert S, Hatakeyama S, Ohuya C, Schmidtke J, et al. Expression of a Y-localized human proto-oncogene TSPY in a transgenic mouse model of prostate cancer. *Cell Biosci* 2014; 4: 9.

95 Skriver SE, Bourgeois CF, Steff R, Grønlund SN, Kister L, et al. The testis-specific human protein RBMY recognizes RNA through a novel mode of interaction. *EMBO Rep* 2007; 8: 372–9.

96 Dreumont N, Bourgeois CF, Lejeune F, Liu Y, Ehrmann IE, et al. Human RBMY regulates germine-specific splicing events by modulating the function of the serine/arginine-rich proteins 9G8 and Tra2-beta. *J Cell Sci* 2010; 123: 40–50.

97 Elliott DJ, Millar MR, Oghene K, Ross A, Kiesewetter F, et al. Expression of RBM in the nuclei of human germ cells is dependent on a critical region of the Y chromosome long arm. *Proc Natl Acad Sci U S A* 1997; 94: 3848–53.

98 Tseite DJ, Hsu HC, Lee PH, Jeng YM, Pu YS, et al. RBMY, a male germ cell-specific RNA-binding protein, activated in human liver cancers and transforms rodent fibroblasts. *Oncogene* 2004; 23: 5815–22.

99 Tseite DJ, Lee PH, Peng HY, Lu HL, Su DS, et al. Male germ cell-specific RNA binding protein RBMY: a new oncogene explaining male predominance in liver cancer. *PLoS One* 2011; 6: e26948.

100 Nathanson KL, Kanetsky PA, Hawes R, Vaughn DJ, Letrero R, et al. The Y deletion grgr and susceptibility to testicular germ cell tumor. *Am J Hum Genet* 2005; 77: 1034–43.

101 Linger R, Dudakia D, Huddart R, Easton D, Bishop DT, et al. A physical analysis of the Y chromosome shows no additional deletions, other than GrGr, associated with testicular germ cell tumour. *Br J Cancer* 2007; 96: 357–61.

102 Graves JA. Sex chromosome specialization and degeneration in mammals. *Cell* 2006; 124: 901–14.

103 Kato T, Miyata K, Sonobe M, Yamashita S, Tamano M, et al. Production of Sry knockout mouse using TALEN via oocyte injection. *Sci Rep* 2013; 3: 3136.

104 Shiragabe KB, Sengoku T, Yokoyama S, Magnuson T. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. *PLoS Genet* 2012; 8: e1002964.

105 Forsberg LA, Rasi C, Malmqvist N, Davies H, Pasupulati S, et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. *Nat Genet* 2014; 46: 624–8.

106 Wiktor AE, Van Dyke DL, Hodneltoe JM, Eckel-Passow J, Hansen CA. The significance of isoY chromosome loss in bone marrow metaphase cells from males over age 50 years. *Leuk Res* 2011; 35: 1297–300.

107 Jansen R, Batista S, Brooks AI, Tischfield JA, Willemse G, et al. Sex differences in the human peripheral blood transcriptome. *BMC Genomics* 2014; 15: 33.
Gene/Gene family	Members of multi-copy gene	Gene name	Entrez gene ID
AMELY	amelogenin, Y-linked		266
BPY2	BPY-2, 2B, 2C	basic charge, Y-linked, 2	9083, 442867, 442868
CDY	CDY-1, 1B, 2A, 2B	chromodomain protein, Y-linked	9085, 9426
DAZ	DAZ-1, 2, 3, 4	deleted in azoosperma	1617, 57055, 57054, 57135
DDX3Y (DBY)*	DEAD (Asp-Glu-Ala-Asp) box helicase 3, Y-linked		8653
EIF1AY	eukaryotic translation initiation factor 1A, Y-linked		9086
HSFY	HSFY-1, 2	heat shock transcription factor, Y linked	86614
KDM5D (SMCY)*	lysine (K)-specific demethylase 5D		8284
NLGN4Y	neurogin 4, Y-linked		22829
PCDH11Y	protocadherin 11 Y-linked		83259
PRY	PRY, PRY2	PTPN13-like, Y-linked	9081
RBMY1	RBMY1-A1, 1B, 1C, 1D, 1E, 1F/J	RNA binding motif protein, Y-linked, family 1	5940, 378948, 5942, 378949, 378950, 159163
RPS4Y	RPS4Y1, RPS4Y2	ribosomal protein S4, Y-linked	6192, 140032
SRY	sex determining region Y		6736
TBL1Y	transducin (beta)-like 1, Y-linked		90665
TGIF2LY	TGFB-induced factor homeobox 2-like, Y-linked		90655
TMSB4Y (TB4Y)*	thymosin beta 4, Y-linked		9087
TSPY	>40 copies (varies among cohort)	testis specific protein, Y-linked	7258, 64591, 728137, 728395, 728403
USP9Y (DFFRY)*	ubiquitin specific peptidase 9, Y-linked		8287
UTY	ubiquitously transcribed tetracopeptide repeat containing, Y-linked		7404
VCY	VCY, VCY1B	variable charge, Y-linked	9084
XKRY	XKRY, XKRY2	XK, Kell blood group complex subunit-related, Y-linked	9082
ZFY	zinc finger protein, Y-linked		7544

*: alternate gene name in parenthesis