Macrophages in malignant pleural effusions – alternatively activated tumor associated macrophages

Mariusz Kaczmarek, Jan Sikora
Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Poland

Pleural macrophages

Macrophages are phagocytic cells of myeloid origin that possess the ability of antigen presentation. They can be classified as resident (attached to a particular tissue), or migrating (free) cells. Resident macrophages adapt to the local environment in order to carry out specific functions, e.g. control inflammation or restore damaged tissue [1]. Despite heterogeneity resulting from the settlement of various organs, these cells also show diversity within a single organ. Pulmonary macrophages, according to location, can be divided into alveolar, airway, interstitial, and those present in the vessels of pulmonary circulation. Other mediastinal macrophage populations include pleural macrophages residing in the pleural space and macrophages resident in the local lymph nodes that collect lymph from the lungs. In humans, macrophages constitute over a half of all cells in the pleural fluid (Figure). Pleural macrophages differentiate from peripheral blood monocytes migrating through the lining of the pleural mesothelium. Their increased influx occurs during the parenchymal inflammatory response [2]. Normally, they proliferate locally to maintain a constant number in the pleura. Presumably, similarly to the peritoneum, a constant pool of macrophages resides on the edge of the pleura. These macrophages are believed to accumulate in the pleural fluid during inflammation associated with cancer. Rat pleural macrophages are less frequent in numbers than the alveolar macrophages, have limited capacity of Fcγ receptor-dependent phagocytosis and weaker non-specific esterase activity. They express fewer surface antigens, which conforms them to peritoneal macrophages [3]. Like monocytes, pleural macrophages show an intermediate level of expression of CD16 and increased expression of CD14 antigens. The level of expression of CD11b, CD33 and CD64 is similar to that observed for CD14++ monocytes, while expression of CD32, CD54 and HLA-DR is higher [4]. Due to the high density of HLA-DR and ICAM-1 molecules, pleural macrophages exhibit enhanced ability to present antigens. They participate in the local defense against environmental pollution, bacteria and neoplastic cells. Inside the pleural space, they are the active helper cells of the immune response. Through cytokine secretion, they participate in generating an inflammatory and fibrotic response. In comparison to monocytes they live longer, show more efficient phagocytosis and perform more diverse functions, and their biological activity depends mainly on the microenvironment in which they are located [5]. Macrophages contribute to maintaining tissue homeostasis, and their main function is phagocytosis of degenerated mesothelial cells. They also phagocytose biotic material penetrating into the pleural space, and granulocytes which previously absorbed particles [2]. In response to deposition of foreign particles in the lungs, the number of pleural macrophages increases, which is related to increased concentrations of chemotactic factors and mitogens potentiating the penetration of alveolar macrophages into the pleural space [6]. After lipopolysaccharide (LPS) stimulation, pleural macrophages secrete

Key words: pleural macrophages, malignant pleural effusion, M1/M2, tumor associated macrophages, TAM.
greater amounts of tumor necrosis factor α (TNF-α) and interleukin 10 (IL-10) than monocytes, although the expression of mRNA encoding the IL-10 in non-stimulated cells remains constantly high. By secreting IL-1β, TNF-α, IL-6, and GRO-β, macrophages support pleural neutrophils influx [7]. Inflammatory cytokines produced by macrophages that reside in the pleura, e.g. TNF-α and IL-1β, are necessary for the secretion of chemokines of CXC (e.g. GRO-β, IL-8) and CC (e.g. MCP-1) families by mesothelial cells [8].

Two models of macrophage activation: M1 vs. M2

A polarized model of macrophages activation differentiates functionally macrophages formed in response to various inflammatory environmental factors. According to the proposed mechanism, macrophages secrete either IL-12 necessary for the synthesis of interferon γ (IFN-γ) and induction of the Th1 response in lymphocytes, or IL-10 enhancing production of IL-4/IL-13 and inducing the Th2 response. Macrophage phenotype M1 is characterized by IL-12high IL-23high IL-10low. Its development is dependent on IFN-γ, IL-12 and IL-18[9,10]. Macrophages type M1 have increased expression of HLA-DR, CD80, CD86, TLR2, TLR4 and TLR6 molecules on their surface [11]. They secrete significant amounts of pro-inflammatory cytokines (i.e. IFN-γ, TNF-α, IL-1α, IL-β, IL-6, IL-18) and produce increased amounts of cytokotoxic reactive oxygen and nitrogen species (ROS and RNS) [12].

At the same time they demonstrate a reduced ability to absorb apoptotic cells [13]. Inside the M1 population, two subtypes, M1a and M1b, can be distinguished. Unlike the typical M1, M1b macrophages exhibit reduced phagocytic properties and their main marker is the receptor MARCO [14].

Macrophages type M2 are activated by IL-4, IL-10, IL-13, immune complexes, glucocorticoids (GC) or secosteroid hormones (i.e. vitamin D3). They exhibit a common phenotype, IL-12low IL-23low IL-10high, but differ in the ability to produce pro-inflammatory cytokines. They have immunoregulatory functions and participate in the Th2 response [15]. Macrophages are activated in the direction of M2 during parasitic infections, development of cancer, atherosclerosis, and central nervous system repair. They participate in wound healing, removing dead tissue, fibroblast activation, as well as in growth and tissue remodeling during angiogenesis [10]. Macrophages M2 predominantly express nonopsonic receptors, mainly scavenger receptors (e.g., SR-A, SR-B) and membrane C-type lectin receptors [16]. These cells exhibit increased expression of CD62L, an adhesion molecule involved in the process of colonization of secondary lymphoid organs [17]. They induce signals that inhibit expression of proinflammatory chemokines and secrete post-inflammatory chemokines associated with an alternative type of immune response (e.g. MCP-4, HCC-1, TARC) [15]. Three variants of M2 polarization can be distinguished: M2a (alternative activation) induced by IL-4 or IL-13; M2b (activation of type II; innate activation) resulting from activation of Fcy receptors in the presence of Toll-like receptor (TLR) stimulants; and M2c (deactivation), which includes a variety of stimuli-induced inactivation of macrophages, e.g. IL-10, transforming growth factor β (TGF-β) or GC. M2a macrophages do not express inducible nitric oxide synthase (iNOS) but are characterized by high expression of arginase 1 (ARG1), and thereby stimulate cell growth, collagen formation and tissue repair. Macrophages type M2b secrete chemokine I-309, stimulate the CCR8 receptor present on eosinophils, Th2 and T-regulatory lymphocytes (T-reg), and thus enhance Th2 polarization and immunoregulation [10,12,18]. However, expression of sphingosine kinase 1 (SPHK1) assimilates them to type M1 [16]. In contrast to M2a, M2b macrophages, despite large amounts of IL-10, also produce TNF-α, IL-1β and IL-6 [19]. M2c macrophages are distinguished by reduced expression of proinflammatory cytokines and increased cleaning of tissue and cell residues. On their surface, they exhibit increased expression of CD14 antigen, which indicates a return from the activated status to equilibrium [20]. Macrophages from malignant and non-malignant pleural effusions differ from each other. The phenotype of macrophages isolated from malignant effusions moved in the direction of M2 activation profile [21].

Tumor-associated macrophages

Tumor-associated macrophages (TAMs) are a major component of the inflammatory infiltrate in most cancers. In breast cancer, their proportion reaches up to 80% of all leukocytes [22]. The number of macrophages present in infiltrates of esophageal, breast, pancreatic and ovarian cancers as well as melanoma has been correlated with the level of CCL2 [23–25]. A relationship between infiltration of macrophages, expression of colony stimulating factor 1 (CSF-1), and late phase breast cancer or the formation of lung metastases, has also been reported [26]. In vitro, TAMs exhibit a reduced ability to lyse tumor cells, impaired function of presenting tumor-associated antigens to T cells, and expression of cytokines inducing antitumor activity of T lymphocytes and natural killer (NK) cells. Tumor microenvironment rich in IL-4, IL-6, IL-10, TGFβ1 and CSF-1 polarizes them toward the M2 phenotype. Interleukin-10 induces features of TAMs related to phenotype M2c, such as phagocytosis of cell residues, participation in angiogenesis and tissue repair and remodeling [27]. Their phenotype depends on the type and stage of cancer development. In areas of chronic inflammation associated with less mature cancer they exhibit a phenotype similar to M1, while in areas of mature and more diverse cancer they exhibit a phenotype similar to M2. They may also exhibit a mixed phenotype of both M1 and M2 [28]. TAMs exhibit defective activation of NFκB transcription factor associated with its constitutive translocation of the inhibitor to the nucleus [29]. Their numbers in the specific tissue also depend on tumor hypoxia (low tissue oxygen concentration). In-situ environment demonstrating insufficient oxygen concentration reduces the mobility of TAMs and causes their immobilization. Tumor hypoxia also enhances the secretion of HIF-1 dependent proteins associated with the angiogenic, invasive and immunosuppressive phenotype [e.g. vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), angiotropin 1, cyclooxygenase 2 (COX-2)] [30]. TAM accumulation in hypoxic/necrotic areas correlates with increased risk of metastasis and poor prognosis in breast and endometrial cancers [31,32]. Depending on the type of secret-
Macrophages in malignant pleural effusions – alternatively activated tumor associated macrophages

Macrophages derived from pleural effusions are a convenient material to conduct the evaluation of existing relationships between immune cells and tumor cells. Pleural effusion constitutes a microenvironment rich in soluble factors devoid of connective barriers, which makes interactions between cells much easier. During the inflammatory response associated with infiltration of a primary bronchial cancer in pleura, macrophages from exudate and transudate fluids release IL-10, TNF-α, and IL-8. Thereby, they affect T cell proliferation, enhance their accumulation and clonal expansion, and stimulate them to release local cytokines. Additionally, a relationship between a decrease in expression of TCRζ molecules on T cells, and an increase in the number of monocytes/macrophages in malignant effusions has been reported. In this case, cells with reduced expression of the ζ chain were the main subpopulation of T cells undergoing apoptosis. The pivotal role of pleural macrophages is to phagocytose degenerated mesothelial cells. The phagocytosis of apoptotic cells changes classically activated macrophages from histotoxic inflammatory cells into alternatively activated anti-inflammatory cells that are similar to macrophages type M2c. After the uptake of apoptotic cells, TAMs secrete mediators facilitating growth of cancer cells, and thereby their cytotoxicity is reduced. The impairment of natural cytotoxic activity and the ability to kill autologous tumor cells shown by macrophages isolated from malignant pleural effusions has been demonstrated. Carcinogenesis is a multistep process in which cells undergo malignant transformation, autonomously promote their growth, produce their own circulation and resistance to apoptosis, escape from immune surveillance, and finally acquire the capacity for metastasis. IL-4, IL-10, PGE2, and TGFβ secreted by TAMs affect the increased expression of anti-apoptotic proteins c-FLIP and BclXL, MMP7 digests the FasL molecules from the cell surface, thereby weakening the sensitivity of tumors to chemotherapeutic agents (i.e. doxorubicin) and cytotoxicity of CTLs and NK cells. Soluble phosphatidylserine (sPS) exfoliated by TAM activity induces an

Fig. 1. Pleural effusion macrophages
inflammatory response of falsely activated TAMs. This process enhances tumor cell proliferation and escape of developing tumor cells from immune surveillance [56]. Conditioned media obtained from in vitro culture of macrophages isolated from malignant pleural effusions increase the proliferative activity of selected human cancer cell lines. Breast cancer (MDA-MB231), lung (A549), colon (HT29, HCT116, SW620) and hematopoietic (Jurkat, HL60) cell lines manifested an increased percentage of cells in S phase of the cell cycle when cultured in the conditioned media. Assessment of annexin V binding and TUNEL reaction demonstrated that pleural macrophages may protect cancer cells from apoptosis. The antiapoptotic properties of conditioned media correlated with their effect on the expression and activity of proteins regulating apoptosis (reduction in the expression of Fas receptor, expression and activity of caspase-3, and increased expression of Bcl2 and survivin) [64].

Tumor-associated macrophages in diagnosis and therapy

Macrophages are a significant component of the link between chronic inflammation and cancer development. Understanding their biology may largely benefit the knowledge of tissue reconditioning to a normal, pre-pathogenic state. Full determination of the mode of action in the tumor microenvironment requires precise information on specific areas of macrophage activity. Signals responsible for their polarization, identification of genes regulating their activation, determination of signals processed by them within the damaged tissue leading to their polarity, and development of systems for their manipulation in vivo are the most crucial elements [65]. Therapeutic strategies using TAMs involve inhibition of their recruitment and survival in locations of tumor development (e.g. trabectedin, brand name Yondelis), inhibition of their effects on angiogenesis and extracellular matrix remodeling (e.g. Linomid, zoledronic acid bisphosphate), and the reversal of immunosuppression and restoration of anticancer cytotoxicity [66–68]. Because of the correlation between the number of macrophages and the development of various types of cancer, TAM evaluation may be important for clinical or diagnostic purposes. Reducing the number of macrophages in glomerulonephritis decreased kidney damage, while in breast cancer it slowed pre-invasive change to full tumor, with simultaneous reduction of the formation of lung metastases [26]. Elimination of macrophages decreased the density of vascularity of advanced cancer by 50% [69]. Macrophage depletion may also be important due to their strong tendency to migrate to places of hypoxia, which may affect formation of relapses. Resulting from different therapy (e.g. radiotherapy, photodynamic therapy, antiangiogenic therapy), hypoxic areas associated with necrosis attract macrophages to these places [70–72]. In such situations, macrophages can switch their phenotype toward promalignant and instead of destroying cancer cells, promote revascularization and reoxygenation, and therefore re-contribute to tumor growth after therapy. Macrophages can be used in cellular immunotherapy, recovering autologous mononuclear cells from patients, activating them in vitro and switching back to the patient [73, 74]. Alternatively activated macrophages can be used to reduce injuries and promote repair processes (e.g. stabilization of atherosclerotic plaques) [10]. There has been an attempt to shift M2 polarization of TAMs into the M1 direction to restore inflammatory antitumor activity [75]. On the other hand, the natural ability of macrophages to migrate toward areas of hypoxia has been used for direct delivery of a cytotoxic during tumor development, to serve as hypoxia-induced vectors for genes encoding cytotoxic proteins [76]. Macrophages were transfected with the IFN-γ gene [77] and a hypoxia-induced gene encoding a pro-drug which activated cytochrome P450 [69].

The symbiotic relationship between cancerous disease and macrophages in the environment of a tumor, where cancer cells can affect the survival of macrophages by producing factors that cause tumor growth and angiogenesis, is highly unfavorable for therapeutic purposes. However, accurate characterization of this relationship may help to reverse this trend and enable the introduction of innovative diagnostic and therapeutic strategies.

References

1. Gordon S. The role of the macrophage in immune regulation. Res Immunol 1998; 149: 685-688.
2. Lehner BE. Pulmonary and thoracic macrophage subpopulations and clearance of particles from the lung. Environ Health Perspect 1992; 97: 17-46.
3. Gjomarkaj M, Pace E, Melis M, Spatafora M, Profitta M, Vignola AA, Bonsignore G, Toews GB. Phenotypic and functional characterization of normal rat pleural macrophages in comparison with autologous peritoneal and alveolar macrophages. Am J Respir Cell Mol Biol 1999; 20: 135-42.
4. Frankenberger M, Passlick B, Hofer T, Siebeck M, Maier KL, Ziegler-Heitbrock LH. Immunologic characterization of normal human pleural macrophages. Am J Respir Cell Mol Biol 2000; 23: 419-26.
5. Wu HM, Jin M, Marsh CB. Toward functional proteomics of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2005; 288: L585-95.
6. Adamson IY, Bowden DH. Chemoattractant and mitogenic components of the alveolar macrophage response to particles ad neutrophil chemoattractant. Am J Pathol 1982; 109: 71-7.
7. Mural N, Nagai K, Fujisawa H, Hatanaka K, Kawamura M, Harada Y. Concurrent evolution and resolution in an acute inflammatory model of rat carrageenin-induced pleurisy. J Leukoc Biol 2003; 73: 456-63.
8. Calliher JF, Sawatzky DA, Kipari T, et al. Resident pleural macrophages are key orchestrators of neutrophil recruitment in pleural inflammation. Am J Respir Crit Care Med 2006; 173: 540-7.
9. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci 2008; 13: 453-61.
10. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3: 23-35.
11. Biswas A, Banerjee P, Mukherjee G, Biswas T. Porin of Shigella dysenteriae activates mouse peritoneal macrophage through Toll-like receptors 2 and 6 to induce polarized type I response. Mol Immunol 2007; 44: 812-20.
12. Mosser DM. The many faces of macrophage activation. J Leukoc Biol 2003; 73: 209-12.
13. Enwig LP, Kluft DC, Walsh GM, Rees AJ. Initial cytokine exposure determines function of macrophages and renders them unresponsive to other cytokines. J Immunol 1998; 161: 1983-8.
14. Muhkopadhyay S, Chen Y, Sankala M, Peiser L, Pikkarainen T, Kraal G, Tryggvason K, Gordon S. MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for Neisseria meningitidis. Eur J Immunol 2006; 36: 940-9.
15. Mantovani A, Sica A, Sozzi S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25: 677-86.

16. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006; 177: 7530-11.

17. Patarno M. Adhesion molecules mediating recruitment of monocytes to inflamed tissue. Immunobiology 1994; 191: 474-7.

18. Munder M, Eichmann K, Modolell M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 1998; 160: 5347-54.

19. Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005; 5: 953-64.

20. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S. Macrophage receptors and immune recognition. Annu Rev Immunol 2005; 23: 901-44.

21. Kaczmarek M, Nowicka A, Kozłowska M, Zurawski J, Batura-Jamrozik A. Macrophage polarization: new molecules and patterns of gene expression. J Exp Med 2001; 193: 727-40.

22. Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 2001; 193: 727-40.

23. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumor progression: implications for anti-cancer therapies. J Pathol 2002; 196: 254-65.

24. Negus RP, Stamp GW, Relf MG, et al. The detection and localization of monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells. J Immunol 2001; 166: 6483-90.

25. Monti P, Leone BE, Marchesi F, et al. The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity. Cancer Res 2003; 63: 7451-61.

26. Hanada T, Nakagawa M, Emoto A, Nomura T, Nishino Y. Prognostic value of tumor-associated macrophage count in human bladder cancer. Int J Urol 2000; 7: 263-9.

27. Tsutsui S, Yasuda K, Suzuki K, Tahara K, Higashi H, Era S. Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep 2005; 14: 425-31.

28. Lissbrant IF, Stattin P, Wikstrom P, Damber JE, Egevad L, Bergh A. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol 2000; 17: 445-51.

29. Makitie T, Summanen P, Tarkkanen A, Kivelä T. Tumor-infiltrating macrophages (CD68(+) cells) and prognosis in malignant uveal melanoma. Invest Ophthalmol Vis Sci 2001; 42: 1414-21.

30. Fairinha P, Masoudi H, Skinnider BF, et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood 2005; 106: 2169-74.

31. Goswami S, Sahai E, Wycoff JB, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 2005; 65: 5278-83.

32. Mor G, Yue W, Santen RJ, et al. Macrophages, estrogen and the microenvironement of breast cancer. J Steroid Biochem Mol Biol 1998; 67: 403-11.

33. Ishikawa S, Egami H, Kurizaki T, Akagi J, Tamori Y, Yoshida N, Tan X, Hayashi N, Ogawa M. Identification of genes related to invasion and metastasis in pancreatic cancer by cDNA representational difference analysis. J Exp Clin Cancer Res 2003; 22: 299-306.

34. Hildenbrand R, Dörger I, Horlin A, Stuttte HL. Urokinase and macrophages in tumour angiogenesis. Br J Cancer 1995; 72: 818-23.

35. Hume DA. The mononuclear phagocyte system. Curr Opin Immunol 2006; 18: 49-53.

36. Ellis LM, Liu W, Ahmad SA, Fan F, Jung YD, Shaheen RM, Reinmuth N. Overview of angiogenesis: Biologic implications for antiangiogenic therapy. Semin Oncol 2001; 28: 94-104.

37. Nishie A, Ono M, Shono T, et al. Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 1999; 5: 1107-13.

38. Kim R, Eri M, Tanabe K. Cancer cell immune escape and tumor progression by exploitation of anti-inflammatory and pro-inflamatory responses. Cancer Biol Ther 2005; 4: 924-33.

39. Elderg KD, Allegra DG, Mullins DW. Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 1998; 64: 275-90.

40. Park JS, Kim YS, Lee YK, Myong NH, Lee KY. Interleukin-8 production in tuberculous pleurisy: role of mesothelial cells stimulated by cytokine network involving tumour necrosis factor-alpha and interleukin-1 beta. Scand J Immunol 2003; 57: 463-9.

41. Sikora J, Dworacki G, Giersz R, Zeromski J. The role of monocytes/macrophages in TCR-zeta chain downregulation and apop-
tosis of T lymphocytes in malignant pleural effusions. J Biol Regul Homeost Agents 2004; 18: 26-32.
60. Yanagawa E, Uchida A, Moore M, Micksche M. Autologous tumor killing and natural cytotoxic activity of tumor-associated macrophages in cancer patients. Cancer Immunol Immunother 1985; 19: 163-7.
61. España L, Fernández Y, Rubio N, Torregrosa A, Blanco J, Sierra A. Overexpression of Bcl-xL in human breast cancer cells enhances organselective lymph node metastasis. Breast Cancer Res Treat 2004; 87: 33-44.
62. Jung YJ, Kim JY, Park JH. TGF-beta1 inhibits Fas-mediated apoptosis by regulating surface Fas and cFLIP expression in human leukaemia/lymphoma cells. Int J Mol Med 2004; 13: 99-104.
63. Mitiadies N, Yu WH, Poulaki V, Tsokos M, Stamenkovic I. Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res 2001; 61: 577-81.
64. Kaczmarek M, Frydrychowicz M, Nowicka A, et al. Influence of pleural macrophages on proliferative activity and apoptosis regulating proteins of malignant cells. J Physiol Pharmacol 2008; 59 Suppl 6: 321-30.
65. Wilson HM, Wallbaum D, Rees AJ. Macrophages and the kidney. Curr Opin Nephrol Hypertens 2004; 13: 285-90.
66. Allavena P, Sica A, Salinas G, Porta C, Mantovani A. The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 2008; 66: 1-9.
67. Sessa C, De Braud F, Perotti A, et al. Trabectedin for women with ovarian carcinoma after treatment with platinum and taxanes fails. J Clin Oncol 2005; 23: 1867-74.
68. Giraudo E, Inoue M, Hanahan D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J Clin Invest 2004; 114: 623-33.
69. Lewis C, Murdoch C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 2005; 167: 627-35.
70. Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 2005; 65: 3437-46.