Prevalence and risk factors of abnormal left ventricular geometrical patterns in untreated hypertensive patients

Hui Li1, Fei Pei3, Liying Shao1, Jingzhou Chen2, Kai Sun2, Xinyu Zhang2, Channa Zhang2, Jibing Liu2, Chuanshi Xiao1* and Rutai Hui2*

Abstract

Background: The various prevalence of LVH and abnormal LV geometry have been reported in different populations. So far, only a few reports are available on the prevalence of LV geometric patterns in a large Chinese untreated hypertensive population.

Methods: A total of 9,286 subjects (5167 men and 4119 women) completed the survey and 1641 untreated hypertensive patients (1044 males and 597 females) enrolled in the present study. The LV geometry was classified into four patterns: normal; abnormal, defined as concentric remodeling; concentric or eccentric hypertrophy based on the values of left ventricular mass index (LVMI) and relative wall thickness (RWT). Logistic regression model was applied to determine the odds ratio (OR) and 95% confidence intervals (CI) of the risk factors of left ventricular hypertrophy.

Results: The prevalence of LVH was 20.2% in untreated hypertensive patients, much higher in women (30.8%) than in men (14.2%) (P < 0.01). The prevalence of LV geometrical patterns was 34.9%, 11.1%, 9.1% for concentric remodeling, concentric and eccentric hypertrophy, respectively. After adjustment by using Logistic regression model, the risk factors for LVH and abnormal LV geometry were age, female, systolic blood pressure, and body mass index. And low high density lipoprotein maybe a positive factor.

Conclusions: The prevalence of LVH and abnormal LV geometric patterns was higher in women than in men and increased with age. It is crucial to improve the awareness rate of hypertension and control the risk factors of CV complications in untreated hypertensive population.

Keywords: Left ventricular hypertrophy, Left ventricular geometry, Risk factors, Untreated hypertension

Background

In hypertensive patients, an adaptive myocardial response to increased cardiac afterload results in left ventricular hypertrophy (LVH) [1]. Hypertensive LVH is a powerful independent predictor for sudden cardiac death [2], ventricular arrhythmias [3], myocardial ischemia [4], coronary heart disease [5], heart failure [6], as well as ischemic stroke [7].

Echocardiography is more sensitive and specific than electrocardiography in the detection of LVH [8]. Classification of patients based on whether left ventricular mass index (LVMI) and relative wall thickness (RWT) are normal or abnormal yields four left ventricular (LV) geometric patterns: normal, concentric remodeling, concentric hypertrophy and eccentric hypertrophy [9]. Previous studies have reported that echocardiographically determined LV geometry can independently predict major cardiovascular events [10], and the worst is concentric hypertrophy, followed by eccentric hypertrophy, concentric remodeling and normal...
geometry [11]. In addition, LV geometric pattern is closely related to stroke risk [12].

The various prevalence of LVH and abnormal LV geometry have been reported in different populations [13,14]. So far, only a few reports are available on the prevalence of LV geometric patterns in a large Chinese untreated hypertensive population. Therefore, we conducted a cross-sectional study to survey the prevalence of LVH and LV geometric patterns in untreated hypertension population in northern China.

Methods

Study population

This community-based cross-sectional study was conducted in the Rizhao City and Hong Xing Long County, in the northern region of China from 2009 to 2010. A multi-stage cluster sampling method was used. A total of 9,286 subjects (5167 men and 4119 women) completed the survey, yielding a response rate of 97.48%. Among them, 2984 hypertensive patients were identified and thoroughly examined. Hypertension was defined as diastolic blood pressure (DBP) of ≥90 mmHg, and/or systolic blood pressure (SBP) of ≥140 mmHg, physician diagnosis, or current medication for hypertension (as defined by WHO 1999). Untreated hypertension was defined as never receiving any antihypertensive treatment before the study.

Patients were excluded if they had hypertrophic cardiomyopathy, ischemic heart disease, congenital heart disease, or other organic heart disease including valvular disease. Patients with secondary hypertension, either suspected or established, were excluded as well.

The study was governed under the most recent (2007–2008) version of the World Medical Association’s Declaration of Helsinki. The study protocol was reviewed and approved by the ethical committees of the Fuwai Hospital and local hospitals. Participation is voluntary; informed consent was obtained from each participant. All investigators were trained at the Cardiovascular Institute, Chinese Academy of Medical Sciences (Beijing, China) and qualified for the clinical investigation.

Data collection

We identified eligible individuals according to their age and documents of residence and invited them to a community clinic by telephone. Each participant was interviewed and completed a standardized questionnaire that included a range of demographic factors, medical history, history of medications, and lifestyle.

Physical examination

Anthropometric measurements of subjects who wore light clothing and were in bare feet were conducted by experienced research staff. Height was measured once to the nearest 0.1 cm, and weight was measured in the upright position to the nearest 0.1 kg.

BP was measured by trained professionals with a standardized mercury sphygmomanometer, and one of three cuff sizes (regular adult, large, or small) was chosen on the basis of the circumference of the participant’s right arm. All participants were advised to avoid alcohol, cigarette smoking, coffee/tea, and exercise for at least 30 minutes before their BP measurement. Three BP readings were recorded at least 1 minute apart in the sitting position after at least 5-minute rest and averaged for further analysis.

Echocardiography

Transthoracic echocardiography was performed according to standard protocol [15] with M-mode, 2-dimensional (2D), and color Doppler recordings from the parasternal long-axis and short-axis windows, as well as 2D and color Doppler evaluations from the apical window to yield 2-, 3-, and 4-chamber images with an HP 5500 (Phillips Medical System, Boston, Massachusetts, USA). The transducer frequency was 2.5 to 3.5 MHz. Optigo echocardiographic recorders (Agilent, Boston, Massachusetts, USA) were used occasionally to screen subjects who could not reach the local study center. The echocardiographic examination was supervised by 2 physician-echocardiographers with at least 2 years of experience. Before the study, they were trained in the echocardiographic protocol at the Cardiovascular Institute, Chinese Academy of Medical Sciences.

Calculation of derived variables

Left ventricular mass (LVM) was calculated using the equation:

\[LVM = 0.8 \times 1.04 \times [(IVSd + LVIDD + PWTd)^3 - LVIDD^3] + 0.6, \]

which yields values closely related (\(R = 0.90 \)) to necropsy LV weight [16], where IVSd is septal wall thickness at end diastole, PWTd is posterior wall thickness at end diastole, and LVIDD is left ventricular end-diastolic diameter.

LVM was divided by height^{2.7} and body surface area (BSA) to obtain left ventricular mass index (LVM_{Ih2.7} and LVM_{IBSA}). BSA was calculated by using the Du Bois formula [17]: 0.0 071 843 \times (weight (kg))^{0.4253} \times (height (cm))^{0.725}.

LV hypertrophy was diagnosed by using the criteria of the LVM_{Ih2.7} more than 49.2 g/m^{2.7} and 46.7 g/m^{2.7} for males and females, respectively [18]. Relative wall thickness (RWT) [19] was calculated by 2 \times PWTd/LVIDD.

The LV geometry was classified into four patterns based on LVM and RWT [20] values:

1. Normal geometry: LVM was normal and RWT was < 0.43;
2. Concentric hypertrophy: LVM was increased and RWT was ≥ 0.43;
(3) Eccentric hypertrophy: LVMI was increased and RWT was < 0.43;
(4) Concentric remodeling: LVMI was normal and RWT was ≥ 0.43.

Statistical analysis
Data are reported as mean ± standard deviation (SD) for continuous variables and as frequency for categorical variables. Differences in continuous variables between two groups were compared with a Student t-test and differences in categorical variables were measured with a chi-square test. Differences between multiple groups were performed by analysis of variance (ANOVA). Logistic regression was used to calculate odds ratios (ORs) and their 95% confidence intervals (CIs). Potential confounders were adjusted. A 2-tailed value of P < 0.05 was considered significant. Analyses were performed with SPSS 11.0 (SPSS Inc, Chicago, USA) for Windows (Microsoft Corp, Redmond, USA). The authors had full access to the data and take full responsibility for its integrity.

Results
Clinical and echocardiographic characteristics of untreated hypertensive population
A total of 1641 untreated hypertensive patients (1044 males and 597 females) with integrated clinical and echocardiographic data enrolled in the present study (Table 1 and Table 2).

LVIDD as well as PWTd were larger in men than in women, so did LV mass (158.1 ± 48.04 g vs. 142.5 ± 41.69 g, P < 0.001). The trend was opposite after indexed by height2.7 (37.8 ± 12.24 vs. 42.0 ± 12.79, P < 0.001), and by BSA (83.5 ± 25.13 vs. 86.2 ± 23.84, P =0.027). Moreover, RWT was higher in women, but this difference did not attain statistical significance.

Table 1 Clinical characteristics of 1641 untreated hypertensive patients

Variables	Whole group (n = 1641)	Male (n = 1044)	Female (n = 597)	p value
Age (years)	50.4 ± 12.18	47.8 ± 12.26	55.1 ± 10.53	<0.001
Height (cm)	165.6 ± 8.76	170.3 ± 6.47	157.5 ± 5.90	<0.001
Weight (kg)	73.5 ± 12.97	78.7 ± 11.76	65.6 ± 9.75	<0.001
BMI (kg/m²)	26.7 ± 3.38	27.1 ± 3.28	26.0 ± 3.50	<0.001
BSA (m²)	1.8 ± 0.19	1.9 ± 0.16	1.7 ± 0.13	<0.001
SBP (mmHg)	139.5 ± 15.29	138.8 ± 14.69	140.7 ± 16.23	0.013
DBP (mmHg)	92.0 ± 9.34	93.7 ± 8.83	88.9 ± 9.43	<0.001
PP(mmHg)	47.5 ± 15.52	45.1 ± 14.19	51.8 ± 16.79	<0.001
MAP (mmHg)	107.8 ± 9.09	108.7 ± 8.90	106.2 ± 9.19	<0.001
Plasma glucose (mmol/L)	5.5 ± 1.86	5.4 ± 1.98	5.7 ± 1.59	<0.001
Cholesterol (mmol/L)	5.4 ± 1.05	5.5 ± 1.05	5.3 ± 1.03	0.017
Triglyceride (mmol/L)	2.0 ± 1.54	2.2 ± 1.78	1.7 ± 0.97	<0.001
High density lipoprotein (mmol/L)	1.5 ± 0.36	1.4 ± 0.37	1.5 ± 0.35	<0.001
Low density lipoprotein (mmol/L)	3.0 ± 1.02	3.0 ± 1.08	3.0 ± 0.91	0.727
Diabetes (%)	94(5.7)	46(4.4)	48(8.1)	0.003
Obesity (%)	252(15.4)	176(16.9)	76(12.7)	0.027

BMI = Body Mass Index, BSA = Body Surface Area, SBP = Systolic Blood Pressure, DBP = Diastolic Blood, PP = Pulse Pressure, MAP = Mean Arterial Blood Pressure.

Table 2 Echocardiographic characteristics of 1641 untreated hypertensive patients

Variables	Whole group (n = 1641)	Male (n = 1044)	Female (n = 597)	p value
IVSd (mm)	10.6 ± 2.14	10.5 ± 2.20	10.7 ± 2.03	0.053
PWTd (mm)	9.4 ± 1.54	9.5 ± 1.46	9.1 ± 1.64	<0.001
LVIDD (mm)	44.4 ± 5.25	45.3 ± 4.97	42.9 ± 5.37	<0.001
LV mass (g)	152.5 ± 46.43	158.1 ± 48.04	142.5 ± 41.69	<0.001
LVMI-BSA (g/m²)	84.5 ± 24.70	83.5 ± 25.13	86.2 ± 23.84	0.027
LVMI-height2.7 (g/m²2.7)	39.4 ± 12.60	37.8 ± 12.24	42.0 ± 12.79	<0.001
RWT(cm)	0.43 ± 0.092	0.43 ± 0.085	0.44 ± 0.102	0.117

IVSd: end-diastolic interventricular septal thickness; PWTd: end-diastolic posterior wall thickness; LVIDD: end-diastolic LV internal dimension; LVMI-BSA: left ventricular mass index divided by body mass index; LVMI-height2.7: left ventricular mass index divided by height2.7; RWT: relative wall thickness.
Prevalence of LVH in untreated hypertensive population
Of 1641 untreated hypertensive patients, 20.2% (n = 332) was found to be LVH, 14.2% in men and 30.8% in women respectively. Sex-specific prevalence of LVH increased with ageing (Figure 1).

The distribution of LV geometric patterns
The total distribution of LV geometric patterns was concentric hypertrophy (11.1%), eccentric hypertrophy (9.1%), concentric remodeling (34.9%) and normal geometric (44.9%). Concentric remodeling was the most common abnormal LV geometric pattern in men (35.9%), also, in women (33.0%). The LV geometric abnormality increased steadily with ageing (from 43.8% to 71.0%) (Table 3).

The risk factors of LVH in untreated hypertensive patients
After adjusted for age, sex, systolic blood pressure, diastolic blood pressure, body mass index, cholesterol, triglyceride, high density lipoprotein cholesterol, low density lipoprotein cholesterol, smoking history, drinking history, history of diabetes by using Logistic regression model for confounders, the risk factor of concentric remodeling was only age. The risk factors of concentric hypertrophy were age, female, SBP, BMI. The risk factors of eccentric hypertrophy were age, female, SBP, BMI, and high density lipoprotein and drinking history was found as protective factors for eccentric hypertrophy (Table 5).

Discussion
In the present study, the prevalence of LVH was 20.2% in the untreated hypertensive patients, while the prevalence of echocardiographic LVH was 42.8% among community-based hypertensive population previously reported by our group [21]. In other studies, the prevalence of LVH in untreated hypertensive cohorts was quite different, from 19% to 48% [18,22,23]. The distribution of abnormal LV geometric patterns was 34.9%, 11.1% and 9.1% for concentric remodeling, concentric hypertrophy and eccentric hypertrophy in this study, respectively, while our group found the distribution was shown to be 24.7%, 22.6%, 20.2% respectively in hypertensive patients [21]. Concentric remodeling was the most prevalent type of abnormal LV geometry in both sexes. Concentric hypertrophy, a LV geometric pattern related to a worse CV prognosis [24,25], was more prevalent than eccentric hypertrophy, while lots of studies had come to the opposite conclusion [26-30]. The variation might result from the differences in age, gender, geographical region, diagnostic criteria, and risk factors.

It is worth noting that female was strongly associated with the prevalence of LVH and abnormal LV geometry

![Figure 1](image-url)

Figure 1 Prevalence of left ventricular hypertrophy (LVH) in different age and sex groups. The prevalence was much higher in women than in men in the age groups of 45-60 and ≥60 (p < 0.01), and increasing with ageing.

Subgroup	Normal geometry [n (%)]	Concentric remodeling [n (%)]	Concentric hypertrophy [n (%)]	Eccentric hypertrophy [n (%)]	Abnormal geometry [n (%)]
Sex					
Male	521(49.9)	375(35.9)	74(7.1)	74(7.1)	523(50.1)
Female	216(36.2)	197(33.0)	108(18.1)	76(12.7)	381(63.8)
Age group (years)					
<45	305(56.2)	197(36.3)	20(3.7)	21(3.9)	238(43.8)
45-60	317(45.2)	241(34.4)	75(10.7)	68(9.7)	384(54.8)
≥60	115(29.0)	134(33.8)	87(21.9)	61(15.4)	282(71.0)
Total	737(44.9)	572(34.9)	182(11.1)	150(9.1)	904(55.1)
Table 4 The risk factors of LVH

Variables	Odds ratio	95% CI	P
Age, year	1.06	1.05-1.07	<0.001
Sex (0 = male, 1 = female)	1.94	1.38-2.74	<0.001
SBP, mmHg	1.02	1.01-1.03	<0.001
BMI, kg/m²	1.19	1.14-1.24	<0.001
Cholesterol, mmol/L	0.876	0.759-1.010	0.069
HDL, mmol/L	0.66	0.42-1.05	0.079
Drinking history (0 = no, 1 = yes)	0.69	0.47-1.02	0.060

Odds ratio was relative to no LVH. Adjusted for age, sex, systolic blood pressure, diastolic blood pressure, body mass index, cholesterol, triglyceride, high density lipoprotein, low density lipoprotein, smoking history, drinking history, history of diabetes. P value for variables to enter or stay in the model was set at <0.10. CI, confidential interval.

Table 5 The risk factors of abnormal left ventricular geometric patterns

Variables	Concentric remodeling	Concentric hypertrophy	Eccentric hypertrophy						
	Odds ratio	95% CI	P	Odds ratio	95% CI	P	Odds ratio	95% CI	P
Age, year	1.02	1.01-1.03	<0.001	1.07	1.05-1.09	<0.001	1.06	1.04-1.08	<0.001
Sex (0 = male, 1 = female)	1.20	0.93-1.55	0.158	2.51	1.70-3.71	<0.001	1.76	1.07-2.87	0.025
SBP, mmHg	1.00	0.99-1.01	0.615	1.03	1.02-1.04	<0.001	1.02	1.00-1.03	0.020
BMI, kg/m²	0.99	0.95-1.03	0.567	1.17	1.11-1.24	<0.001	1.21	1.14-1.29	<0.001
HDL, mmol/L	0.92	0.64-1.31	0.651	0.95	0.54-1.69	0.865	0.37	0.18-0.73	0.004
Drinking history (0 = no, 1 = yes)	1.00	0.75-1.33	0.974	0.76	0.44-1.31	0.321	0.53	0.31-0.94	0.028

Odds ratio was relative to normal geometry pattern. Adjusted for age, sex, systolic blood pressure, diastolic blood pressure, body mass index, cholesterol, triglyceride, high density lipoprotein, low density lipoprotein, smoking history, drinking history, history of diabetes. P value for variables to enter or stay in the model was set at <0.10. CI, confidential interval.
SBP: Systolic blood pressure; DBP: Diastolic blood pressure; BSA: Body surface area; CV: Cardiovascular.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
HL: first author of this work, has made substantial contributions to the conception and design of the paper and the analysis and interpretation of data, and been involved in drafting the manuscript. FP, LYS, JBL have participated in patient evaluations, data collection, and report writing. KS was involved in statistical analysis. CSX has made contributions to the conception and design of the paper, and been involved in revising the manuscript. RTH: was involved in supervisory role in study concept, manuscript writing and critical review of the work at all stages. All authors read and approved the final manuscript.

Acknowledgements
This work was supported by the Key Project in the National Science & Technology Pillar Program during the 12th 5-Year Plan Period (2011BAI11B04 to Dr Hui Rutai and Dr Xiao Chuanshi).

Author details
1Department of Cardiology, The First Hospital Affiliated to Shanxi Medical University, 85 Jiefang South Road, Taiyuan City, Shanxi Province 030001, China. 2Siino-German Laboratory for Molecular Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishilu, Beijing 100037, China. 3Department of Cardiology, Bethune First Hospital of Jilin University, 71 Xinmin Street, Changchun City, Jilin Province 130021, PR China.

Received: 16 December 2013 Accepted: 29 September 2014
Published: 4 October 2014

References
1. Levy D, Anderson KM, Savage DD, Kannel WB, Christiansen JC, Castelli WP: Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study. Am Intern Med 1988, 108(1):7–13.
2. Kannel WB, Doyle JT, McNamara PM, Quickenton P, Gordon T: Precursors of sudden coronary death. Factors related to the incidence of sudden death. Circulation 1975, 51(4):606–613.
3. McNerchan JM, Henderson E, Morris KJ, Dargie HJ: Ventricular arrhythmias in patients with hypertensive left ventricular hypertrophy. N Engl J Med 1987, 317(13):787–792.
4. Dunn FG, Pringle SD: Left ventricular hypertrophy and myocardial ischemia in systemic hypertension. Am J Cardiol 1987, 60(17):191–221.
5. Liao Y, Cooper RS, McGee DL, Mensah GA, Ghalir JK: The relative effects of left ventricular hypertrophy, coronary artery disease, and ventricular dysfunction on survival among black adults. JAMA 1995, 273(20):1592–1597.
6. Kannel WB, Castelli WP, McNamara PM, McPeake PA, Feinlieb M: Role of blood pressure in the development of congestive heart failure. The Framingham study. N Engl J Med 1972, 287(16):781–787.
7. Fox ER, Alnabban N, Penman AD, Butler KR, Taylor HA Jr, Skelton TN, Mosley TH Jr: Echocardiographic left ventricular mass index predicts incident stroke in African Americans: Atherosclerosis Risk in Communities (ARIC) Study. Stroke 2007, 38(10):2686–2691.
8. Leese PJ, Viera AJ, Hindelliter AL, Steen WA: Cost-effectiveness of electrocardiography vs. electrocardiography plus limited echocardiography to diagnose LVH in young, newly identified hypertensives. Am J Hypertens 2010, 23(6):592–598.
9. Gaina A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, Vargiu P, Simonetti I, Laragh JH: Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol 1992, 19(7):1550–1558.
10. Koen MJ, Devereux RB, Casale PN, Savage DD, Laragh JH: Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Am Intern Med 1991, 114(5):345–352.
11. Krumholz HM, Larson M, Levy D: Prognosis of left ventricular geometric patterns in the Framingham Heart Study. J Am Coll Cardiol 1995, 25(4):879–884.
12. Di Tullio MR, Zwas DR, Sacco RL, Siciaro RR, Homans MA: Left ventricular mass and geometry and the risk of ischemic stroke. Stroke 2003, 34(1):2380–2384.
13. Fox E, Taylor H, Andrew M, Han H, Mohamed E, Garrison R, Skelton T: Body mass index and blood pressure influences on left ventricular mass and geometry in African Americans: The Atherosclerotic Risk In Communities (ARIC) Hypertension 2004, 44(1):55–60.
14. Lorber R, Gidding SS, Davilis LS, Colargelo LA, Liu K, Gardin JM: Influence of systolic blood pressure and body mass index on left ventricular structure in healthy African-American and white young adults: the CARDIA study. J Am Coll Cardiol 2003, 41(6):955–960.
15. Chetlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davis JL, Douglas PS, Faxon DP, Gillam LD, Kimball TR, Kussmaul WG, Pearman AS, Philbrick JT, Rakowski H, Thys DM, Antman EM, Smith SC Jr, Alpert JS, Gregoratos G, Anderson JL, Hiratzka LF, Faxon DP, Hunt SA, Fuster V, Jacobs AK, Gibbons RJ, Russell RD, ACC; AHA; ASE; ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Circulation 2003, 108(19):1146–1162.
16. Devereux RB, Alonso DR, Lutas EM, Gottlieb GI, Campo E, Sachs I, Reichel N: Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986, 57(6):450–458.
17. Du Bois D, Du Bois EF: A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1978, 5(3):303–311. discussion 312–303.
18. de Simone G, Izzo R, Chinall M, De Marco M, Cusano Guzzo R, Rizzoli D, Loiino GL, Ternarco B, De Luca N: Does information on systolic and diastolic function improve prediction of a cardiovascular event by left ventricular hypertrophy in arterial hypertension? Hypertension 2010, 56(1):99–104.
19. Li L, Shimazawa Y, Hamada M, Hiwada K: Relative wall thickness is an independent predictor of left ventricular systolic and diastolic dysfunctions in essential hypertension. Hypertens Res 2001, 24(3):493–499.
20. Gerdts E, Cramariuc D, De Simone G, Wachtell K, Dahlof B, Devereux RB: Impact of left ventricular geometry on prognosis in hypertensive patients with left ventricular hypertrophy (the LIFE study). Eur J Echocardiogr 2008, 9(6):809–815.
21. Wang SX, Xue H, Zou YB, Sun K, Fu CY, Wang H, Hui RT: Prevalence and risk factors for left ventricular hypertrophy and left ventricular geometric abnormality in the patients with hypertension among Han Chinese. Chin Med J (Engl) 2012, 125(1):21–26.
22. Schilli G, Pirro M, Pucci G, Mannarino MR, Gemelli F, Sappi D, Vaudo G, Mannarino E: Different impact of the metabolic syndrome on left ventricular structure and function in hypertensive men and women. Hypertension 2006, 47(5):881–886.
23. Mule G, Cusimano P, Nardi E, Cottone S, Geraci C, Palermo A, Costanzo M, Fotaci AC, Cerazola G: Relationships between metabolic syndrome and left ventricular mass in hypertensive patients: does sex matter? J Hum Hypertens 2008, 22(11):788–795.
24. Mueslan ML, Salvetti M, Monteduro C, Bonzi B, Paini A, Vida S, Poisa P, Rizzoni D, Castellano M, Agabiti-Rosei E: Left ventricular concentric geometry during treatment adversely affects cardiovascular prognosis in hypertensive patients. Hypertension 2004, 43(4):711–758.
25. Milani RV, Lajie CJ, Mehra MR, Ventura HO, Kertz JD, Messerli FH: Left ventricular geometry and survival in patients with normal left ventricular ejection fraction. Am J Cardiol 2006, 97(9):959–963.
26. Saba MM, Ibrahim MM, Rick HH: Gender and the relationship between resting heart rate and left ventricular geometry. J Hypertens 2001, 19(3):367–373.
27. Cipriano C, Gosse P, Bemurat L, Mas D, Lemetayer P, Nella G, Clementy J: Prognostic value of left ventricular mass and its evolution during treatment in the Bordeaux cohort of hypertensive patients. Am J Hypertens 2004, 17(6 Pt 1):524–529.
28. Curpilici C, Ambrosioni E, Mancia G, Pesina AC, Trimarco B, Zanchetti A: Role of echocardiography and carotid ultrasonography in stratifying risk in patients with essential hypertension: the assessment of prognostic risk observational survey. J Hypertens 2003, 20(7):1307–1314.
29. Glorioso N, Filigheddu F, Parpaglia PP, Soro A, Troffa C, Argiolas G, Mulatero P: 11β-Hydroxysteroid dehydrogenase type 2 activity is associated with left ventricular mass in essential hypertension. *Eur Heart J* 2005, 26(5):498–504.

30. Cuspidi C, Giudici V, Lonati L, Sala C, Valerio C, Mancia G: Left ventricular hypertrophy detection and body mass index in essential hypertension. *Blood Press* 2010, 19(6):337–343.

31. Gerdts E, Olin PM, de Simone G, Cramariuc D, Wachtell K, Roman K, Devereux RB: Gender differences in left ventricular structure and function during antihypertensive treatment: the Losartan Intervention for Endpoint Reduction in Hypertension Study. *Hypertension* 2008, 51(4):109–1114.

32. Conradi AO, Rudomanov OG, Zaharov DV, Krutikov AN, Vahrameeva NV, Yakovleva OL, Alexeeva NP, Shilyakhto EV: Prevalence and determinants of left ventricular hypertrophy and remodelling patterns in hypertensive patients: the St. Petersburg study. *Blood Press* 2004, 13(2):101–109.

33. de Simone G, Daniels SR, Kimball TR, Roman MJ, Romano C, Chinali M, Galderisi M, Devereux RB: Evaluation of concentric left ventricular geometry in humans: evidence for age-related systematic underestimation. *Hypertension* 2005, 45(1):64–68.

34. Burke GL, Arcilla RA, Culpepper WS, Webber LS, Chiang YK, Berenson GS: Blood pressure and echocardiographic measures in children: the Bogalusa Heart Study. *Circulation* 1987, 75(1):106–114.

35. Kuch B, Hense HW, Gneiting B, Doring A, Muscholl M, Brockel U, Schunkert H: Body composition and prevalence of left ventricular hypertrophy. *Circulation* 2000, 102(4):405–410.

doi:10.1186/1471-2261-14-136

Cite this article as: Li et al.: Prevalence and risk factors of abnormal left ventricular geometrical patterns in untreated hypertensive patients. *BMC Cardiovascular Disorders* 2014 14:136.