ggroups: an R package for pedigree and genetic groups data

Mohammad Ali Nilforooshan1* and Luis Antonio Saavedra-Jiménez2

Abstract

Background: R is a multi-platform statistical software and an object oriented programming language. The package archive network for R provides CRAN repository that features over 15,000 free open source packages, at the time of writing this article (https://cran.r-project.org/web/packages, accessed in October 2019). The package ggroups is introduced in this article. The purpose of this package is providing functions for checking and processing the pedigree, calculation of the additive genetic relationship matrix and its inverse, which are used to study the population structure and predicting the genetic merit of animals. Calculation of the dominance relationship matrix and its inverse are also covered. A concept in animal breeding is genetic groups, which is about the inequality of the average genetic merits for groups of unknown parents. The package provides functions for the calculation of the matrix of genetic group contributions (Q). Calculating Q is computationally demanding, and depending on the size of the pedigree and the number of genetic groups, it might not be feasible using personal computers. Therefore, a computationally optimised function and its parallel processing alternative are provided in the package.

Results: Using sample data, outputs from different functions of the package were presented to illustrate a real experience of working with the package.

Conclusions: The presented R package is a free and open source tool mainly for quantitative geneticists and ecologists, who deal with pedigree data. It provides numerous functions for handling pedigree data, and calculating various pedigree-based matrices. Some of the functions are computationally optimised for large-scale data.

Keywords: Pedigree, Relationship matrix, Inverse, Genetic groups, Dominance, R

Background

Pedigree information provides the principles of the traditional as well as modern animal breeding today. It provides key information about inheritance, rate of kinship between relatives, heritability and segregation of the phenotypic variance to genetic and non-genetic components, inbreeding, effective population size, population structure, and mating patterns. Pedigree information fitted into the pedigree relationship matrix (A) is used in the best linear unbiased prediction (BLUP) animal models [1]. BLUP is a mixed model equation system involving fixed and random (including animal genetic) effects for the prediction of animals’ breeding values. With genomic information and genomic relationship matrices becoming available, A is still needed in recent genetic evaluation models, such as single-step genomic BLUP [2, 3] and single-step marker effect model [4]. The inverse of A is needed in BLUP, and matrix inversion is computationally challenging. Inverting a matrix has a cubic computational cost relative to the dimension of the matrix. Henderson [5] and Quaas [6] invented a method for indirect inversion of A, with a linear computational cost.

Another concept in the genetic evaluation of animals is genetic groups (also called phantom parent groups). Genetic groups are for taking into account for the fact that unknown parents belong to different groups with dif-
ferent averages of genetic merit, depending on the birth year and the genetic background of the unknown parents. The recommended grouping strategy [7] is based on the 4 pathways of selection (sire of sons, sire of daughters, dam of sons, and dam of daughters), and the birth year of the progeny of the unknown parent. Sufficient number of unknown parents are required in each group to make accurate inferences about the group effects. Therefore, subsequent years might be merged. For some species, grouping might involve the breed and regions within a country [7]. With international genetic trade of genetic materials, country of origin should be considered in forming genetic groups (e.g., in dairy cattle populations open to foreign genetic materials).

The aim of this study is to introduce an R package (ggroups [8]) for pedigree processing, obtaining pedigree-based parameters and matrices (including additive and dominance relationship matrices and their inverses), the contribution of genetic groups to the genetic merit of animals, and its correspondence matrix (Q).

There are a few R packages that have functions similar to some of the functions in ggroups. However, these packages also provide different functionalities for different user needs. Therefore, the aim is not putting these R packages into comparison. Some packages are written in C or C++ to increase the speed. R package ggroups is written in R for better readability in a high-level language, which can be more helpful for educational purposes.

Implementation and results

In this section, the implementation of ggroups functions is explained with examples. This R package is available on CRAN (https://cran.r-project.org) and can be installed in R, using the command install.packages("ggroups"). The convention of package::function was used to address functions from other R packages. For presenting most of the functions, the example pedigree in Quaas [9] was used:

ped	data.frame(ID =c("g1","g2", "A", "B", "C","D"), SIRE=c(0, 0,"g1", "A", "g1","B"), DAM =c(0, 0,"g2","g2", "g2","C"))
ID	G1
SIRE	G2
DAM	G3
ID	G4
SIRE	G5
DAM	G6

The output is a list of 2 data frames. The first is the renumbered pedigree, and the second is the cross-reference with columns corresponding to the original and renumbered ID. To get each data.frame separately, use renum(ped) $newped and renum(ped) $xrf.

Function orderPed from R package pedigree [10] (pedigree::orderPed) and AGHmatrix: :datatreat [11] order the pedigree, but do not do renumbering. Applying pedigree::orderPed to the ped object above shows that ped does not need ordering.
> identical(pedigree::orderPed(ped),
1:nrow(ped))
[1] TRUE

Function AGHmatrix::datatreat returns three lists for chronologically ordered individuals, their corresponding sires, and corresponding dams.

> AGHmatrix::datatreat(ped)
Your data was chronologically organized with success.

$sire
[1] 0 0 1 3 1 4

dire
[1] 0 0 2 2 2 5

$ind.data
[1] "g1" "g2" "A" "B" "C" "D"

Loop(s) in the pedigree (an individual being ascendant to itself) would fail renum. Loops would appear among duplicated IDs in the pedigree with different parent information. If IDs are assigned so that parent ID is less than progeny ID, a duplicated row for the animal causing loop in the pedigree would show the opposite.

Pedigree check
Function pedcheck performs basic checks on numeric pedigree. It is highly recommended to check the pedigree object with this function, before proceeding to other functions. The pedigree object is a data.frame with integer columns corresponding to the ID of animal, sire, and dam. Missing parents are set to 0. As an example, performing pedcheck on a faulty pedigree:

> set.seed(127)
> faulty = data.frame(ID=c(1:50,NA,0,1:3), SIRE=c(0,sample(c(0,10:25),53, replace=TRUE),51), DAM=c(0,NA,52, sample(c(0,20:35), 52,replace=TRUE),52,replace=TRUE)))
> pedcheck(faulty)

Found duplicates in the first column:
1 2 3
Found zeros in the first column, in the following rows:
5 2
Found missing values in the following rows:
2 5 1
Found parents represented as both sire and dam:
20 21 22 23 24 25
Found sires not available in the first column:
51
Found dams not available in the first column:
52

All in and order the pedigree
Function gghead looks for possible parents missing in the first column of the pedigree, inserts them to the head of the pedigree, and orders the pedigree. Considering a pedigree with all missing parents replaced with the corresponding genetic groups, this function appends the genetic groups to the head of the pedigree as the only IDs with missing parents. For example,

> ped = data.frame(ID=3:6, SIRE=c(1,1,3,5), DAM=c(2,2,2,4))
> (ped2 = gghead(ped))

In comparison with R package pedigree [10], gghead function works similar to:

> test = pedigree::add.Inds(ped)
> test[pedigree::orderPed(test),]

Pedigree pruning
Pedigree pruning reduces memory usage and the time to reach convergence in the genetic evaluation. Usually, there are uninformative animals in the pedigree, which do not contribute or pass any information from descendants to ancestors. All those animals can be deleted
from the pedigree for variance components estimation. In BLUP, some of those animals might be needed. Even though, they are uninformative, they might receive a predicted genetic merit from the information contributed by their informative relatives. Function prunedPed has two modes, strict and loose. The strict mode is recommended for variance components estimation, and the loose mode is recommended for BLUP. In the strict mode, animals without progeny and phenotype are deleted iteratively. Then, animals without known parents and progeny (if any) are deleted from the pedigree. In the loose mode, pedigree is upward extracted from phenotyped animals to their founders, and then pedigree is downward extracted from those founder animals. This less strict pruning leaves non-phenotyped animals with phenotyped relatives in the pedigree. Thus, they can receive a predicted genetic merit from BLUP. To test this function in both modes, consider animals 4, 5, and 6 are phenotyped, and animals 7 and 8 added to ped2:

```r
> pheno = 4:5
> ped3 = rbind(ped2, c(7,0,0), c(8,7,0))
> pruneped(ped3, pheno, mode="strict")
```

ID	SIRE	DAM
1	0	0
2	0	0
3	1	2
4	1	2
5	5	3
6	6	4

```r
> pruneped(ped3, pheno, mode="loose")
```

ID	SIRE	DAM
1	0	0
2	0	0
3	1	2
4	1	2
5	5	3
6	6	4

Function pedigree::trimPed [10] can be used to obtain the same output as function pruneped in the strict mode:

```r
> ped3 = pedigree::trimPed(ped3, ped3$ID %in% pheno),]
```

ID	SIRE	DAM
1	0	0
2	0	0
3	1	2
4	1	2
5	5	3

Additive relationship matrix

Functions buildA and tabA create matrix A from the pedigree data.frame, in matrix and tabular-sparse formats, respectively. Function buildA is faster, but tabA is more memory-efficient (Table 1). Usually, relationship matrices and their inverses are saved in a tabular-sparse format. It reduces the memory usage and the size of the output file, as only the non-zero upper/lower triangular elements are saved. Considering the renumbered pedigree without genetic groups:

```r
> ped4 = data.frame(ID=3:6, SIRE=c(0,0,3,5), DAM=c(0,0,0,4))
> buildA(ped4)
```

ID	SIRE	DAM
3	4	5
4	0.00	0.0 0.25
5	0.50	0.0 1.0 0.50
6	0.25	0.5 0.5 1.00

Table 1 Runtime\(^d\) of different functions with two pedigree data

package:::function	Time\(^b\)	Time\(^c\)
ggroups::tabA	–	13m:56s
pedigree::makeA	–	37s
ggroups::buildA	–	2s
ggroups::makeAinv	5m:28s	1s
ggroups::buildD	2s	1s
ggroups::buildDinv	7m:27s	4s
ggroups::qmatL	3m:31s	5s
ggroups::qmatXL	41s\(^e\)	4s\(^e\)
ggroups::rg	35s\(^e\)	3s\(^e\)
ggroups::inb	1m:29s	1s
ggroups::tabD	31s\(^f\)	3s\(^f\)
ggroups::tab2mat	–	4s\(^f\)

\(^a\) Measured on an octa-core Intel(R) Core(TM) i7-8650U with 16 Gb of RAM, and runtimes shorter than 1s are presented as 1s

\(^b\) A pedigree of 57,341 Mexican Braunvieh cattle (2,746 sires, 27,015 dams, and 8 genetic groups)

\(^c\) A subset of 3,000 animals (482 sires, and 1,855 dams) from 6

\(^d\) Dominance=TRUE

\(^e\) 100 repetitions on random samples

\(^f\) For the additive genetic relationship matrix
1 3 3 1.00
3 3 5 0.50
5 3 6 0.25
2 4 4 1.00
6 4 6 0.50
4 5 5 1.00
7 5 6 0.50
8 6 6 1.00

Functions `pedigree::makeA` [10], `pedigreemm::getA` [12] and `AGHmatrix::Amatrix` [11] also create matrix A.

```r
> pedigree::makeA(ped4, which=rep(TRUE, nrow(ped4)))
[1] TRUE
> read.table("A.txt")
V1 V2 V3
1 1 1 1.00
2 2 1 0.00
3 2 2 1.00
4 3 1 0.50
5 3 2 0.00
6 3 3 1.00
7 4 1 0.25
8 4 2 0.50
9 4 3 0.50
10 4 4 1.00
```
> ped4mm = pedigreemm::pedigree(label=ped4$ID, sire=ped4$SIRE, dam=ped4$DAM)
> pedigreemm::getA(ped4mm)
4 x 4 sparse Matrix of class "dsCMatrix"
3 4 5 6
3 1.00 . 0.5 0.25
4 . 1.0 . 0.50
5 0.50 . 1.0 0.50
6 0.25 . 0.5 1.00
>
> AGHmatrix::Amatrix(ped4)
Verifying conflicting data...
Organizing data...
Your data was chronologically organized with success.
Constructing matrix A using ploidy = 2
Completed! Time = 0 minutes
3 4 5 6
3 1.00 0.0 0.5 0.25
4 0.00 1.0 0.0 0.50
5 0.50 0.0 1.0 0.50
6 0.25 0.5 0.5 1.00

Please note that the first two columns in A.txt written by pedigree::makeA are the order of animals in the pedigree, not animal IDs. Table 1 provides runtime measures for buildA, tabA, pedigree::makeA, pedigreemm::getA, and AGHmatrix::Amatrix.

Relationship coefficient
Whereas, functions buildA and tabA give relationship coefficients between all pairs of individuals, using these functions is computationally expensive (memory for buildA and runtime for tabA) if only the relationship coefficient between a pair of individuals is required, especially in a large pedigree. Instead, function rg can be used. For example, to get the relationship coefficient between individuals 3 and 6 in ped4, rg(ped4, 3, 6) results in: [1] 0.25. The same result can be obtained using function pedigree::makeA, but with less convenience.

```r
> pedigree::makeA(ped4, which=c(ped4$ID%in%c(3,6)))
[1] TRUE
```
> A = read.table("A.txt")
> A[A[,1]!=A[,2],]
V1 V2 V3
2 4 1 0.25

Calculating relationship coefficient between a pair of individuals using rg, information from their common parents are used only. Runtime of 100 reiterations of rg on random pairs of individuals is provided in Table 1.

Inbreeding coefficient
If the inbreeding coefficient of an individual is of interest, using functions buildA and tabA is computationally expensive, especially in a large pedigree. Instead, function inb can be used. For example, to calculate the inbreeding coefficient of individual 6 in ped2, inb(ped2, 6) results in: [1] 0.25. Calculating inbreeding coefficient for an individual, information from parents’ common ancestors are used only. Runtime of 100 reiterations of inb on randomly chosen individuals is provided in Table 1.

Using package ggroups [8], there are 3 ways of obtaining inbreeding coefficients for all animals in the pedigree:

```r
inbr = c(); for(i in ped2$ID) inbr = c(inbr, inb(ped2, i))
inbr = diag(buildA(ped2)) - 1
inbr = tabA(ped2); inbr = inbr[inbr[,1]==inbr[,2],]$a - 1
```

Functions `pedigree::calcInbreeding` [10] and `pedigreemm::inbreeding` [12] use fast and efficient algorithms [13] to compute inbreeding coefficients in large populations. Run time measures for `pedigree::calcInbreeding` and `pedigreemm::inbreeding` are provided in Table 1.
Inverse of the additive relationship matrix

Function `tabAinv` builds A^{-1} in a tabular-sparse format. Compared to matrix data, handling tabular data takes a longer runtime. However, it is more memory-efficient for large pedigree. The pedigree object and inbreeding coefficients are required for `tabAinv`. None of the animals in `ped4` were inbred. For example,

```r
> inbr = rep(0, 4)
> (Ai = tabAinv(ped4, inbr))
```

```
ID1 ID2 ai
1 3 3 1.3333333
2 4 4 1.5000000
3 3 5 -0.6666667
4 4 5 0.5000000
5 5 5 1.8333333
6 4 6 -1.0000000
7 5 6 -1.0000000
8 6 6 2.0000000
```

Function `tabAinv` performs similar to functions `pedigree::makeAinv` [10] and `pedigreemm::getAInv` [12].

```r
> pedigree::makeAinv(ped4) [1] TRUE
> read.table("Ainv.txt")
V1 V2 V3
1 1 1 1.333330
2 2 2 1.500000
3 3 1 -0.666667
4 3 2 0.500000
5 3 3 1.833333
6 4 2 -1.000000
7 5 6 -1.000000
8 6 6 2.000000
```

```r
> pedigreemm::getAInv(ped4mm)
4 x 4 Matrix of class "dgeMatrix"
3 4 5 6
3 1.3333333 0.0 -0.6666667 0
4 0.0000000 1.5 0.5000000 -1
5 -0.6666667 0.5 1.8333333 -1
6 0.0000000 -1.0 -1.0000000 2
```

Please note that the first two columns in `Ainv.txt` written by `pedigree::makeAinv` are animal orders in the pedigree, not animal IDs. Table 1 provides runtime measures for `tabAinv`, `pedigree::makeAinv`, and `pedigreemm::getAInv`.

Tabular to matrix and vice versa

Function `tab2mat` converts matrices from tabular-sparse format to matrix format. For example, A^{-1} created in the previous example is converted to matrix format:

```r
> tab2mat(Ai)
3 4 5 6
3 1.3333333 0.0 -0.6666667 0
4 0.0000000 1.5 0.5000000 -1
5 -0.6666667 0.5 1.8333333 -1
6 0.0000000 -1.0 -1.0000000 2
```

Function `mat2tab` converts matrices from matrix format to tabular-sparse format. For example, `mat2tab` (`tab2mat(tabA(ped4))`) returns `tabA(ped4)`. Runtime records for converting a pedigree relationship matrix to tabular-sparse format (`mat2tab`) and `vice versa` (`tab2mat`) are provided in Table 1.

R package reshape2 [14] is a popular tool used for reshaping and transforming data. For example, it can be simply used for transforming a matrix to a tabular data.frame:

```r
> (test = matrix(0:8, nrow=3, + dimnames=list(letters[1:3], letters[1:3])))
a b c
a 0 3 6
b 1 4 7
c 2 5 8
```

```r
> (mtest = reshape2::melt(test))
Var1 Var2 value
1 a a 0
2 b a 1
3 c a 2
4 a b 3
5 b b 4
6 c b 5
7 a c 6
8 b c 7
9 c c 8
```

or to transform a tabular data.frame to a matrix:

```r
> reshape2::dcast(mtest, Var1 ~ Var2)
Var1 abc
1 a 0 3 6
2 b 1 4 7
3 c 2 5 8
```

Unlike `reshape2::melt` and `reshape2::dcast` functions used above, `mat2tab` and `tab2mat` functions are specifically designed for symmetric matrices and tabular-sparse data, which reduces the number of rows in the `data.frame` to be read/written and kept in the memory.

Genetic group contributions matrix

Function `qmat` creates matrix Q, which is the matrix of genetic group contributions to animals. According to Quaas [9], $Q = (I - P)^{-1}P_bQ_b$, where $(I - P)^{-1}P_b$ is equal to the genetic relationship matrix between animals
(rows) and unknown parents (columns), and Q is the incidence matrix of unknown parents (rows) and genetic groups (columns). Function qmatL is the computation-ally optimised version of qmat. It calculates each column of Q (each genetic group) separately, by calculating relationship coefficients between the genetic group of interest with animals that receive contribution from the genetic group (excluding missing parents, which receive full contribution).

The input pedigree should contain genetic groups (not unknown parents) as the only IDs with unknown parents, similar to the output from ped2 = gghead(ped). For example,

```r
> qmat(ped2)
Found 2 genetic groups
 1 2
3 0.500 0.500
4 0.500 0.500
5 0.250 0.750
6 0.375 0.625
```

Function nadi::ggcontrib [15] also returns matrix Q for pedigree and genetic groups. Using the Mexican Braunvieh pedigree on Sys.i7-8650U.16, both qmat and nadi::ggcontrib aborted with "Error: cannot allocate vector of size 25.6 Gb" message. Function qmatL could even return Q on a machine with 4 Gb RAM (not all of it available). Functions qmat and nadi::ggcontrib were tested on a server with 526 Gb of RAM. Function qmat returned Q after 17m:51s, and function nadi::ggcontrib aborted with the following message:

```r
*** caught segfault *** address
0x7eef50f9b890, cause 'memory not mapped'
```

With the pedigree subset of 3,000 animals, function nadi::ggcontrib successfully returned matrix Q on Sys.i7-8650U.16. Runtimes of qmat, qmatL, and nadi::ggcontrib are provided in Table 1.

Parallel computation of genetic group contributions matrix

In order to further speed up the calculation of Q, the process can take advantage of multicore processors and parallel computing. Function qmatXL is the parallelised version of qmatL. It requires a pedigree object as described for ped2, and the number of user-defined computational nodes. If the number of user-defined nodes was greater than the number of genetic groups, the number of genetic groups is considered for the number of nodes. This function requires R packages doParallel [16] and foreach [17], otherwise, an on-screen message will notify the user to install doParallel. Package foreach is a dependency for package doParallel. Thus, installing doParallel with its dependencies (i.e., install.packages("doParallel", dependencies=TRUE)) would automatically install foreach. The command for testing qmatXL with ped2 and 2 nodes is: qmatXL(ped2, 2).

Table 1 provides runtime records for qmatXL. The benefit from parallel processing is expected to increase with the greater number of genetic groups and computational nodes. For small pedigree, qmat and qmatL are fast enough that parallel processing from qmatXL shows no benefit (Table 1). This might be due to a small parallel processing overhead.

Summing genetic merits and genetic group contributions

There are two main alternatives of introducing genetic groups in BLUP [9]:

\[
\begin{bmatrix}
X^{-1}X & X^{-1}Z & X^{-1}Q \\
Z^{-1}X & Z^{-1}Z + G^{-1} & Z^{-1}Q \\
QZ^{-1}X & QZ^{-1}Z & QZ^{-1}Q
\end{bmatrix}
\begin{bmatrix}
\hat{b} \\
\hat{u} \\
\hat{g}
\end{bmatrix}
= \begin{bmatrix}
X^{-1}y \\
Z^{-1}y \\
Q^{-1}y
\end{bmatrix},
\]

where \hat{b}, \hat{u} and \hat{g} are the vectors for the predictions of fixed, genetic merit, and genetic group effects, respectively, with the corresponding matrices X, Z, and QZ. Matrix R, and vector y correspond to the residuals and phenotypes. Using Quaas and Pollak [18] transformation, the equation system is transformed to:

\[
\begin{bmatrix}
X^{-1}X & X^{-1}Z & 0 \\
Z^{-1}X & Z^{-1}Z + G^{-1} & -G^{-1}Q \\
0 & -Q^{-1}G & Q^{-1}Q
\end{bmatrix}
\begin{bmatrix}
\hat{b} \\
Q\hat{g} + \hat{u} \\
\hat{g}
\end{bmatrix}
= \begin{bmatrix}
X^{-1}y \\
Z^{-1}y \\
0
\end{bmatrix}.
\]

If the genetic evaluation software applies Eq. (1) (e.g., MTDFREML [19]), function Qgpu can be used to obtain $Q\hat{g} + \hat{u}$. Function Qgpu requires 2 arguments, the Q matrix and a data.frame with 2 columns for IDs and solutions [\hat{g}, \hat{u}], respectively. The order of solutions must be the order of columns and then the order of rows in Q. For example,

```r
> ghat = c(0.1, -0.2)
> uhat = seq(-1.5, 1.5, 1)
> sol = data.frame(ID=1:6, EBV=c(ghat, uhat))
> Qgpu(Q, sol)
[,1]
3 -1.5500
4 -0.5500
5 0.3750
6 1.4125
```

Dominance relationship matrix

Whereas, additive genetic effects are inherited directly through individuals, inheritance of dominance effects are through pairs of mating individuals [20]. Hoeschele and VanRaden [20] defined pedigree-based dominance relationships by partitioning dominance effects into sire ×
dam subclass effects and within subclass deviations from within subclass average of dominance effects.

Functions `buildD` and `tabD` create matrix `D` from the pedigree `data.frame`, in matrix and tabular-sparse formats, respectively. Calculations are done for animals with both parents known. Other animals would only receive a diagonal value of 1. Below, functions `buildD` and `tabD` are shown in practice.

```r
> buildD(ped2, buildA(ped2))
  1 2 3 4 5 6
1 1 0 0.000 0.000 0.0000 0.0000
2 0 1 0.000 0.000 0.0000 0.0000
3 0 0 1.000 0.250 0.1250 0.1250
4 0 0 0.250 1.000 0.1250 0.1250
5 0 0 0.125 0.125 1.0000 0.1875
6 0 0 0.125 0.125 0.1875 1.0000

> tabD(ped2, tabA(ped2))
Found 4 generations
ID1 ID2 d
7 1 1 1.00000000
8 2 2 1.00000000
9 3 3 1.08424908
10 4 4 1.08424908
11 5 5 1.05494505
12 6 6 1.05494505
```

Function `AGHmatrix::Amatrix` [11] has a functionality similar to `buildD`.

```r
> AGHmatrix::Amatrix(ped2, dominance = TRUE)
 Verifying conflicting data...
 Organizing data...
 Your data was chronologically organized with success.
 Constructing matrix A using ploidy = 2
 Constructing dominance relationship matrix
 Completed! Time = 0 minutes
  1 2 3 4 5 6
1 1 0 0.000 0.000 0.0000 0.0000
2 0 1 0.000 0.000 0.0000 0.0000
3 0 0 1.000 0.250 0.1250 0.1250
4 0 0 0.250 1.000 0.1250 0.1250
5 0 0 0.125 0.125 1.0000 0.1875
6 0 0 0.125 0.125 0.1875 1.0000
```

Inverse of the dominance relationship matrix
Function `tabDinv` is used for obtaining `D^{-1}` in a tabular-sparse format from a pedigree object. For example,

```r
> tabDinv(ped2, tabA(ped2))
Found 4 generations
ID1 ID2 val
1 1 1 1.00000000
2 2 2 1.00000000
3 3 3 1.08424908
4 3 4 -0.24908425
5 3 5 -0.08791209
6 3 6 -0.08791209
7 4 4 1.08424908
8 4 5 -0.08791209
9 4 6 -0.08791209
10 5 5 1.05494505
11 5 6 -0.17582418
12 6 6 1.05494505
```

Runtime record of `tabDinv` is provided in Table 1.

Other functions
There are other functions included in package `ggroups`, and possibly more functions will be added in the future. Some of the existing functions are `offspring`, `pedup`, and `peddown`. Function `offspring` reports the number of descendants from an individual, in each generation following that individual. Providing a list of animals such as the list of phenotyped or genotyped animals, the number of descendants from that list per generation is also provided. Function `pedup` extracts the pedigree for one or a group of individuals, by tracing their ancestors, for a defined or maximum possible number of generations. Similarly, function `peddown` extracts the pedigree for a group of individuals, by tracing their descendants down the pedigree.

Conclusions
The R package `ggroups` is a useful, free and open source tool for animal breeders, researchers, and students, who work with pedigree data and R. It provides functions for the most important tasks related to working with pedigree, including creating the additive genetic relationship matrix and its inverse, and the matrix of genetic group contributions. The advantage of this package over other packages that also calculate the matrix of genetic group contributions, is that it has computationally optimised functions for large pedigree, which also can take advantage of multicore processors. In addition, R package `ggroups` provides other helpful functions such as functions for pedigree checking, renumbering and extraction, forming the dominance relationship matrix and its inverse, and converting tabular-sparse data to matrix, and vice versa. The results showed that functions dealing with
data in matrix format are faster than functions dealing with data in tabular-sparse format. However, where memory of most personal computers fail forming large matrices for large pedigree, dealing with tabular-sparse data reduces the memory demand.

Availability and requirements

- **Project name:** R package ggroups
- **Project homepage:** https://cran.r-project.org/package=ggroups
- **Operating system(s):** Platform independent
- **Programming language:** R
- **Other requirements:** doParallel (≥ 1.0.14) and foreach (≥ 1.4.4) are required for function qmatXL.
- **License:** GPL-3

Abbreviations

BLUP: Best linear unbiased prediction

Authors' contributions

MAN wrote the R package and the manuscript. LAS-J took part in writing the manuscript, testing the R package, and applying it to real data. Both MAN and LAS-J took part in revising the manuscript. The author(s) read and approved the final manuscript.

Funding

No funding was received to conduct this project.

Availability of data and materials

https://cran.r-project.org/package=ggroups

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Livestock Improvement Corporation, Private Bag 3016, 3240 Hamilton, New Zealand. 2Universidad Autónoma Chapingo, Departamento de Zootecnia, C. P. 56230 México-Texcoco, Chapingo, Mexico.

Received: 27 October 2019 Accepted: 6 March 2020

Published online: 04 May 2020

References

1. Henderson CR. Estimation of changes in herd environment [abstract]. J Dairy Sci. 1949;32:706.
2. Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci. 2010;93(2):743–52. https://doi.org/10.3168/jds.2009-2730.
3. Christensen OF, Lund MS. Genomic prediction when some animals are not genotyped. Genet Sel Evol. 2010;42(1):2. https://doi.org/10.1186/1297-9686-42-2.
4. Fernando RL, Cheng H, Golden BL, Garrick DJ. Computational strategies for alternative single-step bayesian regression models with large numbers of genotyped and non-genotyped animals. Genet Sel Evol. 2016;48(1):96. https://doi.org/10.1186/s12711-016-0273-2.
5. Henderson CR. Rapid method for computing the inverse of a relationship matrix. J Dairy Sci. 1975;58(11):1727–30. https://doi.org/10.3168/jds. S0022-0302(75)84776-X.
6. Quaas RL. Computing the diagonal elements and inverse of a large numerator relationship matrix. Biometrics. 1976;32(4):949–53. https://doi.org/10.2307/2529279.
7. Schaeffer LR. Phantom parent groups. In: The Animal Models. Ontario: Volumes; 2019. p. 69–74.
8. Nilforooshan MA. ggroups. Pedigree and genetic groups. R package version 2.0.0. 2020 https://CRAN.R-project.org/package=ggroups. Accessed 28 Oct 2019.
9. Quaas RL. Additive genetic model with groups and relationships. J Dairy Sci. 1988;71(5):1338–45. https://doi.org/10.3168/jds.S0022-0302(88)79691-5.
10. Coster A. Project pedigree. 2013. https://CRAN.R-project.org/package=projectpedigree. Accessed 28 Oct 2019.
11. Amadeu RR, Cellon C, Olmedo JW, Garcia AA, Resende MF, Muñoz PR. Aghmatrix: R package to construct relationship matrices for autotetraploid and diploid species: A blueberry example. Plant Genome. 2016;9(3):1–10. https://doi.org/10.3835/plantgenome2016.01.0009.
12. Vazquez AI, Bates DM, Rosa GJ, D G, Weigel KA. Technical note: an r package for fitting generalized linear mixed models in animal breeding. J Anim Sci. 2010;88(2):497–504. https://doi.org/10.2527/jas.2009-1952.
13. Sargolzaei M, Iwaisaki H. Comparison of four direct algorithms for computing inbreeding coefficients. Anim Sci J. 2005;76(5):401–406. https://doi.org/10.1111/j.1740-0929.2005.00282.x.
14. Wickham H. Reshaping data with the reshape package. J Stat Soft. 2007;21(2):1–20. https://doi.org/10.18637/jss.v021i02.
15. Wolak ME, Reid JM. Accounting for genetic differences among unknown parents in microevolutionary studies: how to include genetic groups in quantitative genetics animal models. J Anim Ecol. 2017;86(1):7–20. https://doi.org/10.1111/1365-2656.12597.
16. Microsoft Corporation, Weston S. doParallel: Foreach parallel adaptor for the ‘parallel’ package. R package version 1.4.4. 2018. https://CRAN.R-project.org/package=doParallel. Accessed 28 Oct 2019.
17. Microsoft Corporation, Weston S. foreach: Provides foreach looping construct for R. R package version 1.4.4. 2018. https://CRAN.R-project.org/package=foreach. Accessed 28 Oct 2019.
18. Quaas RL, Pollak EJ. Modified equations for sire models with groups. J Dairy Sci. 1981;64(9):1868–72. https://doi.org/10.3168/jds.S0022-0302(81)82778-6.
19. Boldman KGL, Kriese A, Van Vleck LD, Van Tassell CP, Kachman SD. A manual for use of MTDFREML, a set of programs to obtain estimates of variances and (co)variances. Nebraska: USDA, Clay Center, 1995.
20. Hoeschele I, VanRaden PM. Rapid inversion of dominance relationship matrices for noninbred populations by including sire by dam subclass effects. J Dairy Sci. 1991;74(2):537–69. https://doi.org/10.3168/jds.S0022-0302(91)78205-9.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.