$W^+ W^- H$ production through bottom quarks fusion at hadron colliders

Biswajit Das

Institute of Physics, Bubaneswar, India

Phenomenology 2021 Symposium, University of Pittsburgh, May 26, 2021
Overview

1. Motivation
2. Diagrams
3. Coupling order
4. Amplitude Computation
5. Divergence issues
 - UV divergence
 - IR divergence
6. Results
 - SM prediction
 - Anomalous coupling effects
7. Summary
Motivation: \(b \bar{b} \rightarrow W^+ W^- H \)

- Higgs sector in SM is not well explored, in particular \(HHH \), \(HHHH \) and \(VVHH \) couplings are still not well measured.
- Few processes can probe the \(VVHH \) coupling.
 - VBF mechanism for HH production

At HL-LHC the bound could be \(0.55 < \kappa_{V_2H_2} < 1.65 \) at 95% confidence level. But the bound comes from both coupling \(WWHH \) and \(ZZHH \).
Motivation

- Higgs-strahlung: HHV (V=W, Z) production

At the HL-LHC the bound will be quite weak:

\[-9 < \kappa_{V_2 H_2} < 11.\]

- VVH (V=W, Z) production

We can probe two VVHH couplings separately.
Motivation

- The $b\bar{b}$ contribution is sizeable. One should probe it in QCD regime.
- One can study the polarization dependence of physical observables which will be very useful for background suppression.

$pp \rightarrow WWH$(LO)	gg	$q\bar{q}$	$b\bar{b}$
$\sigma(fb)$ at 14TeV	0.29	8.66	0.25
$\sigma(fb)$ at 27TeV	1.34	23.0	1.31
$\sigma(fb)$ at 100TeV	17.4	126.8	20.6
Feynman diagrams:
Feynman Diagrams:

- Total number of diagrams:
 - LO: 20 diagrams
 - NLO: Pentagon + Box + Triangle + Self Energy diagrams. Total 121 NLO diagrams.

- The trick is to calculate the minimum no. of diagrams, called *prototype diagrams* and then map the rest of the diagrams to those prototype diagrams.
 - LO prototype diagrams are 10
 - Loop-level prototype diagrams are 30.
\[M \sim g_w^3 M_{LO} + g_s^2 g_w^3 M_{NLO} + O(g_s^4) \]
\[|M|^2 \sim \alpha_w^3 |M_{LO}|^2 + \alpha_s \alpha_w^3 \text{Re}(M_{LO} M_{NLO}^*) + O(\alpha_s^2) \]
Techniques to compute amplitudes:

- We compute helicity amplitudes by using spinor helicity formalism at the matrix element level.

- We use four-dimensional helicity (FDH) scheme to compute the amplitudes where all the γ-matrices, momentums and spinors are taken in 4-dimensions.

- In one-loop amplitude, individual one-loop Feynman diagram will give rise to tensor integrals containing powers of the loop momentum in the numerator.

- We use an in-house routine $OVReduce$, based on Oldenborgh-Vermaseren reduction techniques to reduce tensor integrals in terms of scalar integrals.

- We use the 'OneLOop' package for scalar integrals computation.
QCD renormalizes the fermion mass.

Higgs vertex will be renormalized due to mass involved in coupling.

The Coupling strength of $Hf\bar{f}$ vertex is $-\frac{ig}{2} \frac{m_f}{m_W}$.

Counterterm for $Hf\bar{f}$ vertex is $-\frac{ig}{2} \frac{\delta m_f}{m_W}$. Where

$$\delta m_f = -\frac{\alpha_s}{4\pi} C_F \frac{6}{\epsilon}.$$
UV divergence : Self-energy CT diagrams

- Counterterm for self energy diagram : $-i(\not{p}\delta Z_2 - m_f\delta Z_m)$
- $\delta Z_2 = -\frac{\alpha_s}{4\pi} C_F \frac{2}{\epsilon}$ and $\delta Z_m = -\frac{\alpha_s}{4\pi} C_F \frac{8}{\epsilon}$.
Infrared divergence:

- IR or "mass singularities" arises from two kinds of singularities called the *collinear* and *soft* singularity. Singularities appear as $\sim \ln(m/Q)$. Where m is the mass of the particle and Q is a large scale.

For the massless case

$$\sim 1/\epsilon, \ 1/\epsilon^2 \quad [\epsilon = (4 - D)/2]$$

- Because of light quarks and gauge bosons, most of the one-loop diagrams are IR singular.

- The real emission diagrams are also IR singular in soft and collinear regimes.

- The real emission and renormalized virtual amplitudes are both divergent in 4-dimension, but the sum of these two is finite.

- Three real emission sub-process can contribute to σ^{NLO}.

 1. $b\bar{b} \rightarrow W^+W^-Hg$, 2. $g\bar{b} \rightarrow W^+W^-H\bar{b}$ and 3. $bg \rightarrow W^+W^-Hb$
The real emission sub-processes starting with gluon have t-quark resonant diagrams which jeopardize the perturbative computations.

We use b-quark tagging with 100% efficiency. We exclude these two sub-processes to avoid the t-quark resonances.

We implemented the Catani-Saymour dipole subtraction method to remove IR singularities. The l-term exactly cancel the IR singularities in virtual diagrams and dipole terms $D_{ij,k}$ exactly cancel IR singularities in real emission diagrams.
SM prediction

Results: SM predictions

We took SM parameters from PDG 2016. We use CT14lo and CT14nlo PDF set for LO and NLO cross section calculation respectively. We take \(\overline{\text{MS}} \) and On-shell renormalization scheme for massless and massive fermions respectively. The following results are in the ab unit for different CMEs with the scale uncertainties.

TeV	\(\sigma_0(\alpha^3_W) \)	\(\sigma^{NLO}_{qcd}(\alpha_s\alpha^3_W) \)	\(RE \)
14	217\,+16.1\%_{-18.9}\%	289\,+17.6\%_{-20.8}\%	33.2\%
27	1086\,+19.2\%_{-20.5}\%	1559\,+18.0\%_{-20.8}\%	43.6\%
100	15258\,+22.0\%_{-20.9}\%	23097\,+20.6\%_{-21.0}\%	51.4\%

The relative enhancement is defined as \(RE = \left(\frac{\sigma^{NLO}_{qcd} - \sigma_0}{\sigma_0} \right) \). We choose a dynamical scale as

\[
\mu_R = \mu_F = \mu_0 = \frac{1}{3} \left(\sqrt{p_{T,W+}^2 + M_W^2} + \sqrt{p_{T,W-}^2 + M_W^2} + \sqrt{p_{T,H}^2 + M_H^2} \right)
\]
Results: SM predictions

Polarization dependence of cross section:

Pol. ($W^+ W^−$)	14 TeV (ab)	100 TeV (ab)				
	σ_0	$\sigma_{\text{qcd}}^{\text{NLO}}$	$\text{RE} (%)$	σ_0	$\sigma_{\text{qcd}}^{\text{NLO}}$	$\text{RE} (%)$
++	13	18	38.5	702	1056	50.4
+−	18	25	38.9	965	1499	55.3
+0	37	49	32.4	2568	3336	29.9
−+	4	6	50.0	229	334	45.9
−−	13	18	38.5	707	1044	47.7
−0	22	28	27.3	1454	1346	−7.4
0+	22	28	27.3	1470	1216	−17.3
0−	37	49	32.4	2583	3151	22.0
00	51	67	31.4	4490	9748	117.1
\sum	217	289	32.2	15258	23097	51.4

Where $+ \equiv \frac{1}{\sqrt{2}} (\epsilon_x + i\epsilon_y)$, $− \equiv \frac{1}{\sqrt{2}} (\epsilon_x − i\epsilon_y)$ and $0 \equiv \epsilon_z$.

Here we can see that there are huge contributions and increments in ‘00’ polarization mode.
p_T-distributions:

Figure: The NLO differential cross section distribution with respect to transverse momentums (p_T) for 14 and 100 TeV CMEs.
Invariant Mass distributions:

Figure: The NLO differential cross section distribution with respect to invariant masses ($M_{ij/ijk}$) for 14 and 100 TeV CMEs.
Differential distributions:

Figure: The LO and NLO differential cross section distribution with respect to transverse momentums (p_T) and invariant masses ($M_{ij/ijk}$) for 100 TeV CME.
Differential distributions:

\[b\bar{b} \rightarrow HW^+W^- \]

\[d\sigma/dM \text{ [ab/bin]} \]

\[M_{HW^+W^-,LO} \quad M_{HW^+W^-,NLO} \]

\[\sqrt{s} = 100 \text{ TeV} \]

Figure: The LO and NLO differential cross section distribution with respect to invariant masses \(M_{WWH} \) for 100 TeV CME.
Anomalous coupling effects: \(\kappa \)-framework

CME(TeV)	\(\kappa V^2 H^2 \)	\(\sigma^{LO} [ab] \)	RI	\(\sigma^{NLO} [ab] \)	RI
14	1.0 (SM)	217		289	
	2.0	216 [−0.5%]		288 [−0.3%]	
	−2.0	222 [+2.3%]		295 [+2.1%]	
100	1.0 (SM)	15258		23097	
	2.0	14925 [−2.2%]		22607 [−2.1%]	
	−2.0	16997 [+11.4%]		25465 [+10.3%]	

Table: Effect of anomalous \(WWHH \) coupling on the total cross section at 14 and 100 TeV CMEs. Where \(RI = \frac{\sigma_{\kappa V^2 H^2} - \sigma_{SM}}{\sigma_{SM}} \).

\(\kappa V^2 H^2 \)	\(\sigma^{LO} [ab] \)	RI	\(\sigma^{NLO} [ab] \)	RI
1.0 (SM)	4490		9748	
2.0	4159 [−7.4%]		9544 [−2.1%]	
−2.0	6164 [+37.2%]		11993 [+23.0%]	

Table: Effect of anomalous \(VVHH \) coupling in ‘00’ mode at 100 TeV CME.
Anomalous coupling effects

Differential distributions:

Figure: Effect of anomalous $VVHH$ coupling on the differential cross section distribution at 100 TeV CME.
Figure: Effect of anomalous $VVHH$ coupling on the differential cross section distribution at 100 TeV CME.
We have focused on the NLO QCD correction to $b\bar{b} \rightarrow W^+ W^- H$. This process has significant dependence on $VVHH$ coupling.

The contribution of this process to $pp \rightarrow W^+ W^- H$ is only about $10 - 15\%$ of that light quark scattering. But when both W-bosons are longitudinally polarized then this fraction can increase to 50%.

At 100 TeV the NLO corrections are about 50% but the corrections are about 115%, when both W-bosons are longitudinally polarized.

Our study suggests that the measurement of the polarization of the final state W/Z-bosons can be a useful tool to measure the couplings of the vector bosons and Higgs boson.

Total cross section enhanced by 10% and cross section in ’00’ mode enhanced by $20 - 30\%$ when we set $\kappa_{V_2H_2} = -2$.

We find that the invariant mass and the p_T distributions are considerably harder for the negative values of $\kappa_{V_2H_2}$. This can also be useful to put a stronger bound on the coupling.
Thank You