Identification and Classification of Libyan Rosmarinus Officinalis Essential Oil Components by GC-MS and Predication of Its Antioxidant Activity

Wessal Hassan El-Ageeli, Bubaker M.B Hamed Al-Mansori, Seham Hamad Mohammed Alsagheer, Faheem A. F. Ben-Khayal

1 Department of Food Science and Technology, Faculty of Agriculture, Omar Al-Mukhtar University, Beida, Libya.
2 Department of Chemistry, Faculty of Education, Omar Al-Mukhtar University, Beida, Libya.

Received: 06 October 2020/ Accepted: 30 November 2020
© Al-Mukhtar Journal of Sciences 2020
Doi: https://doi.org/10.54172/mjsc.v35i3.255

Abstract: The aim of this investigation is identification and classification of Rosmarinus Officinalis essential oil components by GC-MS and prediction of their antioxidant activity. GC-MS analysis of Libyan Rosemary essential oil indicated that in total, 44 compounds were detected comprising 98.3% of compounds in the oil. The results also revealed that the oil contained some constituents with great antioxidant activity such as eugenol (0.04%), diethylphalate (0.28%), myrtenol (0.46%), γ-Terpinene (2.2%), α – Terpenolene (1.96%), with total percentage of (4.94%) which was considered to be very small. However, about the half of the essential oil contained of constituents with very weak antioxidant activity. These include trans-β-caryophinen (2.2%), α- humulene (0.34%), 1.8- cineol (6.15%), 1.8 – cineol isomer (11.8%), linalool (3.29%), 4-terpinol (5.65%), 1α – terpine (7.93%), isoborneol (0.29%), perillaldehyde (0.09%), β- citronellal (0.03%), α – pinene (3.4%), comphen (3.04%) and β-pinene(4.21 %), our result shows that the essential oil of Libyan Rosemary might have a weak antioxidant activity.

Keywords: Rosmarinus Officinalis, essential oils, GC-MS analysis of essential oil, antioxidants.

INTRODUCTION

Essential oil yield and chemical composition vary, considerably due to different factors, both intrinsic and extrinsic (Stahl-Biskup, 2002). Intrinsic factor includes genetic and sexual variations, plant organ (roots, leaves, stem, etc.), age and vegetative cycle stage. On the other hand, extrinsic factors and described by ecological and environmental aspects such as attitude, soil composition, climate and light, all these factors can drastically affect the chemical composition of essential oils (Stahl-Biskup, 2002). Thus, these variations are of distinct important when studying the biological activity, such as, antioxidant capacity of essential oils as the degree of activity has to be related to its chemical composition (Panizzi et al, 1993; Lahlou and Berrada, 2003; Alvarez et al., 2019).

Essential oils are commercially important especially for the pharmaceutical, cosmetic, perfume industries and medical properties, as well as in food and beverages, as flavoring agents and preservatives (Van De Braak and Leijen, 1999; Burt, 2004; Fitsiou et al., 2016). Nowadays, essential oils and their components are gaining increasing attention, because of their relatively safe status, their wide acceptance by customers, and the possi-
bility of their exploitation for potential multi-purpose functional uses (Ormancey et al., 2001). In this context, many essential oils and constituents have been studied (Ruberto and Barata, 2000; Nieto et al., 2018). For natural antioxidants with the virtue of being non-toxic has given rise to a large number of studies on the potential of the essential oils of several aromatic plants, among them, Rosemary. (Miura et al, 2002; Wang et al, 2008; Ojeda et al., 2013; Alvaraz et al., 2019).

In Libya, the Al-Jabal Al-Akhdar mountain, which is a region located in the North-East of Libya, is a rich habitat of many aromatic plants that grow wild, among them *Rosemary Officinalis*. These aromatic plants are used fresh or dry as spicy herbs, in many Libyan dishes, and for medical purposes (Jafri and El-Gadi, 1985). So, the aim of this study is extraction of the essential oils of Libyan *Rosemary Officinalis* by hydro-distillation, identification and classification of its chemical constituents by using gas chromatography coupled to mass spectroscopy (GC-MS) and the prediction of its antioxidant activity.

MATERIALS AND METHODS

Chemical and reagent: All chemicals and reagents were highly pure which purchased from Fisher scientific (Loughborough, UK) and Sigma-Aldrich (Pool, Dorset, UK).

Plant material: Leaves of wiled plant *Rosmarinus Officinalis* (Rosemary) were collected during the flowering stage in April 2019) at Al-Jabal Al-Akhdar region in North-East of Libya, specimens of collected plant were confirmed and deposited at the Herbarium of the department of Biology, University of Tripoli, Libya. The fresh sample were frozen in sealed sample bags at -18°C till extraction.

Essential oil extraction: The classic methodology of hydro-distillation using Clevenger-type apparatus was used for the isolation of the essential oil from rosemary (*Rosmarinus Officinalis*). The fresh leaves of the aromatic plants (100 g) were blended with water (1500 ml) in a blender. The mixture was transferred into the hydro-distillation unit for 3-4 hours, until no more essential oil was obtained. The essential oil was separated from water, dried over anhydrous sodium sulphate and stored in sealed airtight amber glass flasks at 4°C until analyzed (Daferera et al, 2003).

Identification of essential oil by gas chromatography mass spectroscopy (GC-MS): Essential oil of Libyan Rosemary obtained by hydro-distillation was analyzed, and their constituents identified using GC-MS. The analysis was performed using a Shimadzu GC-MS-QP 5050 A, software class 5000, with a DBI column (30m x 0.53 m i.d), 1.5 µm film thickness. The carrier gas was helium (flow rate 1ml/min). For GC-MS detection, an electron ionization mode (EI) with ionization energy 70ev was used. The temperature program as follows: 30°C (static, for 2 min) then gradually increasing (at a rate of 2°C/min) up to 250°C (static for 5 min). Injector temperature was 280°C. Qualitative identification of the essential oil constituents was achieved using a willey 299 LIB database, and by comparing mass fragmentation patterns with those from the available published data. Quantitative estimation of the volatile constituents was determined by computerized peak are measurements using an internal normalization method. This analysis was carried out on the Regional Center for Mycology and Biotechnology, Al-Azhar university, Cairo (Egypt).

RESULTS AND DISCUSSION

The yield of the essential oil from *R. Officinalis* growing wild in Libya was 0.47% ± 0.18%, on a dry weight basis. This yield is slightly higher than those obtained from the wild Portuguese *R. Officinalis* 0.3% (Mata et al., 2007). However, it was lower than these obtained from Egyptian cultivated *R. Officinalis* 1.2% (Viud-Martos et al., 2010). Serbian
R. Officinalis 1.18% (Bozi n et al., 2007) and also Tunisian wild R. Officinalis 1.2% (Hosni et al., 2013). It is quite often that the yield of essential oil is affected by many factors, among them the species of the plant, the part of the plant and geographical and climate conditions (Sthl-Biskup, 2002).

GC-MS analysis of Libyan essential oils from R. Officinalis To rationalise the antioxidant activity of Libyan endemic plant R. Officinalis, it is necessary to address composition, which to the best of our knowledge has not been studied before. Compound identification was carried out using GC-MS. GC-MS analysis of the Libyan essential oil indicated that in total, 44 compounds were detected in rosemary oil comprising more than 98.3% of total compounds in the oil. The pattern of chemical contents of R. officinalis essential oils indicated that this oil were complex mixtures of several compounds. For this reason, the components were divided into six classes, namely monoterpenes hydrocarbons, oxygenated monoterpenes, sesquiterpenes hydrocarbons, oxygenated sesquiterpenes, heterogeneous hydrocarbons and oxygenated heterogeneous hydrocarbons.

GC-MS analysis of Libyan R. officinalis essential oil

1. **Monoterpene hydrocarbons**
 The results showed that the monoterpene hydrocarbons group of the R. officinalis oil from Libya consisted of eight compounds (table 1) and represented 25.5% of the contents. The highest content was of the β-pinene isomer and the lowest content was of γ-terpinene. Although the monoterpene hydrocarbons group makes up about a quarter of the total contents of the oil, the compounds in this group were found in small concentration. In addition, this group of compounds contained some constituents that could be considered to be active as antioxidants, ranging from very weak to very strong (Ruberto and Baratta, 2000; Wang et al., 2008). γ-Terpinene and α-terpinolene, which are known to be strong antioxidant compounds, were found in small quantities, whereas α-pinene, camphene and β-pinene were found in measurable amounts in this group, but they are characterized by their very weak antioxidant activity.

Retention time (min)	Molecular ion	Base Peak	Chemical compound	Molecular formula	Percentage %
13.15	136	93	α-pinene	C10H16	3.4
13.44	136	93	α-pinene isomer	C10H16	3.17
13.59	136	93	camphene	C10H16	3.04
13.82	136	93	camphene isomer	C10H16	2.87
14.28	136	93	1-β-pinene	C10H16	4.29
14.47	136	93	1-β-pinene isomer	C10H16	4.61
15.93	136	93	γ-terpinene	C10H16	2.2
16.96	136	93	α-terpinolene	C10H16	1.96
Number of identified compounds	8				
Percentage of the total composition	25.54%				

2. **Oxygenated monoterpenes**
 The oxygenated monoterpenes group (table 2) was found to be the most representative group of the compounds present in the Libyan rosemary oil, representing 66.33% and containing 23 compounds. Camphor was at the highest level (16.07%) in rosemary oil followed by the 1, 8-cineol isomer (11.8%). On the other hand, only a very small amount of thymol was identified (0.2%) and there was a complete absence of carvacrol. Thymol and carvacrol are considered to be the most powerful members of this group responsible for the antioxidant activity of most essential oils (Youdim et al., 2002; Lee et al., 2005). Furthermore, the results showed that this group (oxygenated monoterpenes) also contained a reasonable number and amount of compounds with very weak antioxidant
activity. Such components are 1, 8-cineol, 1,8-
cineol isomer, 4-terpineol, 1-α-terpineol, and
very small amount of isoborneol and β-
citronellall.

These results correspond well with the results
obtained by Okoh et al. (2010) who found
oxygenated monoterpenes and monoterpenes
were the major constituents in R. officinalis
oil. In plant essential oils, oxygenated
monoterpenes and monoterpenes are mainly
responsible for most of the antioxidant
activities (Ruberto and Baratta, 2000).

Table:(2). Oxygenated monoterpenes identified by GC-
MS analysis of Libyan R. officinalis essential oil.

Number	Retention time (min)	Molecular ion M+	Base Peak	Chemical compound	Molecular formula	Percentage
1	15.39	154	43	1,8-cineole	C10H18 O	6.15
2	16.06	154	43	1,8-cineole isomer	C10H18 O	11.8
3	16.81	154	93	linalool	C10H18 O	3.29
4	18.04	152	108	α-pinene oxide	C10H16 O	0.42
5	18.38	152	95	camphor	C10H16 O	16.07
6	19.39	152	95	camphor isomer	C10H16 O	2.01
7	19.55	150	81	pinocarvone	C10H14 O	4.35
8	19.85	152	55	bicyclomonomote		
pene ketone	C10H16 O	2.11				
9	20.15	154	71	4-terpineol	C10H18 O	5.65
10	20.46	154	59	1-α-terpineol	C10H18 O	7.93
11	20.93	150	95	monoterpane ketone	C10H14O	3.49
12	21.91	152	95	camphor isomer	C10H16 O	0.22
13	22.18	152	79	myrenol	C10H16 O	0.46
14	22.60	152	69	aldehyde	C10H16 O	0.16
15	22.72	150	95	unsaturated ketone	C10H14 O	0.42
16	23.27	154	95	isoborneol	C10H18 O	0.29
17	23.87	196	95	endobornyl acetate	C12H2O2	0.95
18	24.18	150	135	thymol	C10H14 O	0.2
19	25.07	154	41	dihydrocarvacrol	C10H18 O	0.12
20	25.43	150	67	prillaldehyde	C10H14 O	0.09
21	25.77	150	121	aldehyde	C10H14 O	0.11
22	26.32	156	41	β-citronellall	C10H2O2	0.03
23	27.83	164	43	monoterpane oxide	C10H12O2	0.11

Percentage of the total composition: 66.33%

3. Sesquiterpene hydrocarbons
The sesquiterpene hydrocarbons group (Table
3) comprised of 3 compounds at a low
percentage (2.62%) of the oil constituents.
This group contained two weak antioxidant
compounds, trans-β-caryophyllene and
humulene.

Table:(3). Sesquiterpene hydrocarbons identified by GC-MS analysis of Libyan R. officinalis essential oil.

Number	Retention time (min)	Molecular ion M+	Base Peak	Chemical compound	Molecular formula	Percentage
1	32.1	204	41	trans-β-caryophyllene	C15H24	2.2
2	33.93	204	93	α-humulene	C15H24	0.34
3	37.37	204	161	α-amorphene	C15H24	0.08
	Number of identified compounds	3				
	Percentage of the total composition	2.62%				

4. Oxygenated sesquiterpene and heterogeneous hydrocarbon
The oxygenated sesquiterpene and
heterogeneous hydrocarbon groups (table 4)
consisted of two compounds each, spathulenol
and δ-cadinol, and nonane and 3,4-octadiene-
7-me respectively.

Table:(4). Oxygenated sesquiterpenes and
heterogeneous hydrocarbons identified by GC-MS
analysis of Libyan R. officinalis essential oil.

Number	Retention time (min)	Molecular ion M+	Base Peak	Chemical compound	Molecular formula	Percentage
1	41.65	220	41	spathulenol	C15H24 O	trace
2	46.63	222	161	δ-cadinol	C15H26 O	0.21
3	Number of identified compounds	2				
4	Percentage of the total composition	0.21				

Oxygenated sesquiterpenes
41.65 220 41 spathulenol C15H24 O trace
46.63 222 161 δ-cadinol C15H26 O 0.21
Number of identified compounds 2
Percentage of the total composition 0.21
Heterogeneous hydrocarbons
9.43 128 43 nonane C9 H2O trace
11.87 124 67 3,4-octadiene-7-me C9 H16 0.02
Number of identified compounds 2
Percentage of the total composition 0.02 %

© 2020 Bubaker M.B Hamed Al-Mansori et al. This open access article is distributed under a Creative Commons Attribution (CC-
BY) 3.0 license.
ISSN: online 2617-2186 print 2617-2178
5. Oxygenated heterogeneous hydrocarbons

The final group is the oxygenated heterogeneous hydrocarbons (table 5) consisting of 7 compounds representing 3.6% of the oil. This group contained very important compounds with very high antioxidant activity, namely eugenol and diethyl phthalate, present in relatively small amounts but probably affecting the overall antioxidant activity of this oil.

Table: (5). Oxygenated heterogeneous hydrocarbons identified by GC-MS analysis of Libyan R. officinalis essential oil.

Retention time (min)	Molecular weight	Base peak	Chemical compound	Molecular formula	Percentage %
5.68 14.8 26.9 28.53 40.05 68.20 74.87	86 128 164 178 222 278 390	41 57 64 178 149 149 149	3-me-butanol 1-octen-3-ol me eugenolate diethyl phthalate 1,2-benzenedicarboxylic acidbutyl-2-methylpyrolyl ester 1,2-benzenedicarboxylic acid bis (2-ethylhexyl ester)	C5H10 O C8H16O C11H14O2 C12H14O2 C16H22O4 C24H38O4	0.02 2.13 0.04 0.53 0.28 0.54 0.03
Number of identified compounds	7				
Percentage of the total composition	3.51				

Several reports have been published (Wang et al., 2008; Viuda-Martos et al., 2010) concerning the composition of R. officinalis essential oil; these reports have emphasized the extent of marked chemical differences among essential oils extracted from the same species. These differences in the chemical composition of R. officinalis oil can be attributed to the part of the plant extracted, the season of harvesting, the geographical origin and the method of extraction (Ravid and Putrisky, 1986; Mueller-Riebau et al., 1997; Jordan et al., 2006; Bakkali et al., 2008).

The results of the GC-MS analysis in the current study were in good agreement with the results obtained by Soliman et al. (1994), who found that rosemary oil comprised 43% compounds. However, some differences were noticed with regards to the number and quantity of some compounds in rosemary oils studied from different regions, such as the cultivated Egyptian rosemary oil, when analysed 27 compounds were identified representing 90.2% of the total oil, the major constituents were 1,8-cineole (23.59%), camphor (20.70%) and α-pinene (18.21%) (Viuda-Martos et al., 2010), and the Spanish southern R. officinalis oil when investigated by Tomeia et al. (1995), they found the main components to be camphor (32.33%), 1,8-cineole (14.41%), and α-pinene (11.56%). The geographical location of where the plant grows can contribute to the content and quality of essential oils (Stahl-Biskup, 2002).

Earlier data pertaining to the rosemary essential oils has pointed out the difference between the Morocco/Tunisian chemotype (containing 38-55% of 1, 8-cineol) and the Spanish chemotype characterized by high amount of the monoterpenic hydrocarbons, α-pinene (18-26%), camphene (8-12%) and 1,8-cineol (16-25%) (Bozin et al., 2007). However, the essential oil obtained from rosemary growing wild in Libya investigated here, has a specific chemical composition, 1, 8-cineol (6.15%), α-pinene (3.4%) and camphene (3.04%) that could not be categorized in one of the two previously described chemotypes.

Finally, the differences in the number and type of the compounds in the essential oils of R. officinalis could lead to differences in their antioxidant activities and should be taken into consideration when studying the antioxidant potential of the essential oil. In addition, the results of the essential oil composition give us, to some extent, a prediction about whether an
oil has a strong or weak antioxidant activity. The oil under investigation contained some constituents with great antioxidant activity such as eugenol, (0.04%), diethyl phthalate (0.28%), myrteol (0.46%), γ-terpinene (2.2%), α-terpenolene (1.96%), with a total percentage of (4.94%) which was considered to be very small. However, about half of the essential oil contained constituents with a predicted very weak antioxidant activity. These included trans-β-caryophlene (2.2%), α-humulene (0.34%), 1,8-cineol (6.15%), 1,8-cineol isomer (11.8%), linalool (3.29%), 4-terpineol (5.65%), 1-α-terpine (7.93%), isoborneol (0.29%), prillaaldehyde (0.09%), β-citronellal (0.03%), α-pinene (3.4%), camphene (3.04%) and β-pinene (4.29%). Based on the data published by Ruberto and Baratta (2000), Youdim et al., (2002) and Wang et al. (2008) the essential oil of Libyan rosemary oil might have a weak antioxidant activity.

CONCLUSION

Rosmarinus Officinalis essential oil grow wild in Libya, is a mixture of 44 compounds, including a group of six classes namely, Monoterpenes Hydrocarbons, Oxygenated Monoterpenes, Sesquiterpenes Hydrocarbons, Oxygenated Sesquiterpenes, Heterogeneous Hydrocarbons. This oil might have a weak antioxidant activity according to its chemical constituents, where the content of the phenolic compounds which are considered being strong antioxidants too low, (Thymol, 0.2% and the absent of Carvacrol, 0.0%). However, attention should be paid to study its extracts of Rosmarinus Officinalis plant using different solvents for extraction.

ETHICS

The authors declare no conflict of interest.

REFERENCES

Alvarez, María & Ortega Ramirez, Luis & Silva-Espinoza, Brenda & Aguilar, Gustavo & Ayala-Zavala, J. Fernando. (2019). Antimicrobial, antioxidant, and sensorial impacts of oregano and rosemary essential oils over broccoli florets. Journal of Food Processing and Preservation. e13889. 10.1111/jfpp.13889.

Bakkali, F., Averbeck, S., Averbeck, D. and Waomar, M. (2008). Biological effects of essential oils - A review. Food and Chemical Toxicology, 46, 446-475.

Bozin, B., Mlmica-Dukic, N., Samojlik, I. and Jovin, E. (2007). Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., lamiaceae) essential oils. Journal of Agricultural and Food Chemistry, 55, 7879-7885.

Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods - a review. International Journal of Food Microbiology, 94, 223-253.

Daferera, D. J., Ziogas, B. N. and Polissiou, M. G. 2003. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp and Clavibacter michiganensis subsp michiganensis. Crop Protection, 22, 39-44.

Fitsiou, Eleni & Anestopoulous, Ioannis & Chlichlia, Katerina & Galanis, Alex & Kourkoutas, Yiannis & Panayiotidis, Mihalis & Pappa, Aglaia. (2016). Antioxidant and Antiproliferative Properties of the Essential Oils of Satureja thymbra and Satureja parnassica and their Major Constituents. Anticancer Research.
essential oils from thyme (*Thymus capitatus* L.) and rosemary (*Rosmarinus officinalis* L.): Impact on yield, chemical composition and antimicrobial activity. *Industrial Crops and Products*, 47, 291-299.

Jafri, S. M. H. and El-Gadi, A. 1985. Flora of Libya., Tripoli, Libya, Department of Botany, Al- Faateh Univ.

Jordan, M. J., Martinez, R. M., Goodner, K. L., Baldwin, E. A. and Sotomayor, J. A. (2006). Seasonal variation of *Thymus hyemalis* Lange and Spanish *Thymus vulgaris* L. essential oils composition. *Industrial Crops and Products*, 24, 253-263.

Lahlou, M. and Berrada, R. (2003). Composition and niticidal activity of essential oils of three chemotypes of *Rosmarinus officinalis* L. acclimatized in Morocco. *Flavour and Fragrance Journal*, 18, 124-127.

Lee, S. J., Umano, K., Shibamoto, T. and Lee, K. G. (2005). Identification of volatile components in basil (*Ocimum basilicum* L.) and thyme leaves (*Thymus vulgaris* L.) and their antioxidant properties. *Food Chemistry*, 91, 131-137.

Mata, A. T., Proenca, C., Ferreira, A. R., Serralheiro, M. L. M., Nogueira, J. M. F. and Araujo, M. E. M. (2007). Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. *Food Chemistry*, 103, 778-786.

Miura, K., Kikuzaki, H. and Nakatani, N. (2002). Antioxidant activity of chemical components from sage (*Salvia officinalis* L.) and thyme (*Thymus vulgaris* L.) measured by the oil stability index method. *Journal of Agricultural and Food Chemistry*, 50, 1845-1851.

Mueller-Riebau, F. J., Berger, B. M., Yegen, O. and Cakir, C. (1997). Seasonal variations in the chemical compositions of essential oils of selected aromatic plants growing wild in Turkey. *Journal of Agricultural and Food Chemistry*, 45, 4821-4825.

Nieto, Gema & Id, Gaspar & Ros, Gaspar & Castillo, Julián. (2018). medicines. Antioxidant and Antimicrobial Properties of Rosemary (*Rosmarinus officinalis*, L.): A Review. *Medicines*. 5. 10.3390/medicines5030098.

Okoh, O. O., Sadimenko, A. P. and Afolayan, A. J. 2010. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. *Food Chemistry*, 120, 308-312.

Ojeda, Adriana & Van Baren, Catalina & Elechosa, Miguel & Juárez, Miguel & Moreno, Silvia. (2013). New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. *Food Control*, 31. 189–195. 10.1016/j.foodcont.2012.09.022.

Ormancey, X., Sisalli, S. and Coutiere, P. 2001. Formulation of essential oils in functional perfumery *Parfums, Cosmetiques, Actualites.*, 157, 30-40.

Panizzi, L., Flamini, G., Cioni, P. L. and Morelli, I. (1993). Composition and
antimicrobial properties of essential oils of four Mediterranean Lamiaceae. *Journal of Ethnopharmacology*, 39, 167-170.

Ravid, U. and Putievsky, E. (1986). Carvacrol and thymol chemotypes of East Mediterranean wild Labiatae herbs. In: Brunke, E. J. (ed.) *Progress in Essential Oil Research*. New York: de Gruyter, Berlin.

Ruberto, G. and Baratta, M. T. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. *Food Chemistry*, 69, 167-174.

Stahl-Biskup, E. (2002). Essential oil chemistry of the genus Thymus – a global view. In: Stahl-Biskup, E. and Sáez, F. (eds.) *The genus thymus*. New York: CRC Press

Soliman, F. M., El-Kashoury, E. A., Fathy, M. M. and Gonaid, M. H. (1994). Analysis and biological activity of the essential oil of *Rosmarinus officinalis* L. from Egypt. *Flavour and Fragrance Journal*, 9, 29-33.

Tomeia, P. E., Cionib, P., Flaminib, G. and Stefanic, A. (1995). Evaluation of the Chemical Composition of the Essential Oils of Some Lamiaceae from Serrania de Ronda (Andaluçia, Spain). *Journal of Essential Oil Research*, 7, 279-282.

Van De Braak, S. a. a. J. and Leijten, G. C. J. J. (1999). Essential oils and oleoresins: a survey in the Netherlands and other major markets in the European Union. *CBI, Centre for the Promotion of Imports from Developing Countries*, pp. 116.

Villiere, A., Viau, M., Bronnec, I., Moreau, N. and Genot, C. (2005). Oxidative stability of bovine serum albumin- and sodium caseinate-stabilized emulsions depends on metal availability. *Journal of Agricultural and Food Chemistry*, 53, 1514-1520.

Wang, W., Wu, N., Zu, Y. G. and Fu, Y. J. (2008). Antioxidative activity of *Rosmarinus officinalis* L. essential oil compared to its main components. *Food Chemistry*, 108, 1019-1022.

Youdim, K. A., Deans, S. G. and Finlayson, H. J. (2002). The antioxidant properties of thyme (*Thymus zygis* L.) essential oil: an inhibitor of lipid peroxidation and a free radical scavenger. *Journal of Essential Oil Research*, 14, 210-215.
تعريف وتصنيف المركبات الكيميائية لزيت نبات الإكليل النامي طبيعياً من منطقة الجبل الأخضر والتكهن بالتأثير المضاد للاكسدة لموكنته

وصل حسن العجيلي، بوبكر المبروك المنصوري، سهام حمد الصغير، فهيم عبدالكريم بن خيال

قسم علوم وتقنية الأغذية، كلية الزراعة، جامعة عمر المختار، البيضاء، ليبيا

قسم الكيمياء، كلية التربية، جامعة عمر المختار، البيضاء، ليبيا

تاريخ الاستلام: 06 أكتوبر 2020 / تاريخ القبول: 30 نوفمبر 2020

© مجلة المختار للعلوم 2020

Doi: https://doi.org/10.54172/mjsc.v35i3.255

المستخلص: يهدف هذا البحث إلى التعرف وتصنيف المكونات الكيميائية لزيت الطيار لنبات الإكليل (Rosmarinus Officinalis)، النامي طبيعيًّا من منطقة الجبل الأخضر - ليبيا. باستخدام كروماتوجرافيا الغاز المدمج بتطبيق الكتلة (GC-MS)، وكذلك التكهن بالنشاط المضاد للاكسدة لهذه المكونات. أوضحت النتائج أن الزيت الطيار لنبات الإكليل يحتوي على 44 مركب كيميائي، شكلت حوالي 98.3% من إجمالي المركبات الموجودة في الزيت. كما بينت النتائج وجود بعض المكونات ذات النشاط العلجي كمضادات للاكسدة. شملت كل من مركب myrtenol (0.28%)، diethylphalate (0.04%)، eugenol (1.96%)، α – Terpenolene (2.2%)، γ-Terpinene (0.46%)، Mكوتات الزيت المعترف عليها. وهي تُعتبر نسبة ضئيلة جداً، ومن الناحية الأخرى، شكلت المركبات ذات النشاط الضعيف trans-β-caryophinen كمضادات للاكسدة حوالي 50% من إجمالي المركبات المعترف عليها. وهذه شملت مركبات كل من: linalool (11.8%)، 1.8 – cineol isomer (6.15%)، 1.8- cineol (0.34%)، α- humulene (2.2%)، β- citronellal (0.09%)، perillaldehyde (0.29%)، isoborneol (7.93%)، α – terpine (5.65%)، 4-terpinol (4.21 %)، β- pinene (3.04%)، α – pinene (3.4%)، و 4-terpinol (0.03%).

النتائج أن الزيت الطيار لنبات الإكليل النامي طبيعيًّا من منطقة الجبل الأخضر ربما يكون له تأثير ضعيف كمضاد للاكسدة.

الكلمات المفتاحية: نبات الإكليل، الزيت الطيار، تحليل GC-MS، مضادات الأكسدة.