Clinical Utility of Arterial Blood Gas Test in an Intensive Care Unit: An Observational Study

Jagadish Chandran1, Carol D’Silva2, Sampath Sriram3, Bhuvana Krishna4

ABSTRACT

Background: Arterial blood gas (ABG) analysis is a common test ordered in critically ill patients. Often, it is performed very frequently without influencing patient care. Hence, we decided to check the utility of the ABG test in our intensive care unit (ICU).

Materials and methods: The data of the previous day ABGs were captured by reviewing the chart in an online pro forma which was filled by the authors. Data relating to patient’s details, who ordered ABGs, reason for ordering ABGs, and did the ABG influence patient’s management were entered. A total of 985 ABGs were performed in 173 patients for 2 months which was analyzed.

Results: Out of 985 ABGs, in 259 instances (26.29%), interventions were done after reviewing an ABG. The major interventions among these ABGs were ventilator settings adjustment in 134 ABGs (13.6%). A total of 790 ABGs were done routinely with no specific indication (80.20%), while doctors ordered one following an event for 195 ABGs (19.80%).

Conclusion: Our data suggest that 80% of ABG tests were ordered as part of a routine test.

Keywords: Arterial blood gas, Arterial cannula, Clinical utility.

Indian Journal of Critical Care Medicine (2021): 10.5005/jp-journals-10071-23719

INTRODUCTION

Arterial blood gas (ABG) analysis is one of the most common tests ordered in the ICU. Ideally, an ABG sample should be obtained, when the results are likely to influence patient management.1 Common indication for the ABG sample is the need to evaluate the adequacy of patient ventilation, the need to quantify the response to therapeutic or diagnostic interventions, monitoring of severity and progression of a documented disease process, and the assessment of acid–base status.2 Repeated ABG measurements are associated with increased costs, blood loss, introduce or spread infection, and patient discomfort.3 In patients who do not have an intra-arterial catheter, the need for repeated and uncomfortable punctures can be associated with substantial blood loss.4 According to a study in a large academic hospital, only 26.4% of ABG tests were ordered after an acute respiratory event.5 Similarly, other researchers have found that between 42.7 and 66% of ABG measurements were not clinically justified in their intensive care units (ICUs).6–7 In our ICU, ABG tests are performed once in the morning and at fixed intervals, for example, 4th hourly, 6th hourly at the doctor’s discretion, irrespective of the patient’s condition at that time. Because of the large volume of ABGs performed in our ICU, we decided to examine the utilization of these routine ABGs.

AIM

To assess the clinical utility of routine ABG tests in our ICU.

OBJECTIVES

Primary: To assess whether the ABG tests are clinically justified. Secondary: To assess the cost-effectiveness of ABGs in the ICU.

© Jaypee Brothers Medical Publishers. 2021 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and non-commercial reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
of intra-arterial catheter prior, who ordered the ABGs, reasons for ordering ABGs, whether the results were expected, and did the ABG influence patient’s management. Interventions were done after an ABG was assessed by reviewing the patient’s chart two hours before or after the ABG was performed. Answers were entered in the pro forma by the principal and co-principal investigator. ABGs of patient’s age less than 18 years and which were done outside ICU was excluded. All ABGs which were done in the first 24 hours of ICU admission were also excluded in the study because multiple ABGs may be warranted during the initial resuscitation of the patient.

Statistical Analysis

Results were expressed as median ± interquartile range for continuous variables and the number (percentage) for dichotomous variables. The association between a number of ABGs and interventions done was analyzed by the chi-square test. A p-value of <0.05 was considered significant. The analysis was performed using STATA v14 (StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP).

Results

A total of 985 ABGs were performed in 173 patients for 2 months (June 2018–July 2018). Out of 985 ABGs, in 259 instances (26.29%), interventions were done after reviewing an ABG. The major interventions among these ABGs were ventilator settings adjustment in 134 ABGs (13.6%), correction of dyselectrolytemia in 73 ABGs (7.41%), correction of hypoglycemia in 20 ABGs (2.03%), oxygen administration in 8 ABGs (0.81%), and other interventions like fluid administration, intubation, extubation, and blood transfusion in 21 ABGs (2.14%) (Fig. 1). In a total of 985 ABGs, 790 ABGs were done based on protocol with no specific indication (80.20%), while 195 ABGs (19.80%) were ordered on case to case basis by the treating doctors (Table 1).

The initial primary diagnosis was classified based on the organ system involved using ICD-10 chapters and it was seen that 257 ABGs (26.09%) were done in patients having a primary disorder of the respiratory system, followed by primary central nervous system (CNS) disease (199, 20.2%), disease of the digestive system (138, 14.01%), certain infectious and parasitic diseases (102, 10.36%), injury, poisoning and certain other consequences of an external cause (75, 7.61%), disease of the genitourinary system (78, 7.92%), and others (97, 9.85%) (Fig. 2).

Regarding the time of ABGs performed, 501 ABGs were done between 6 am and 12 pm (50.86%), 186 ABGs between 12 pm and 6 pm (18.88%), 195 ABGs between 6 pm and 12 am (19.8%), and 103 ABGs between 12 am and 6 am (10.46%) (Fig. 3).

Patients who were on invasive ventilation had 729 ABGs (74.01%), patients on supplemental oxygen had 160 ABGs (16.24%), spontaneously breathing patients had 65 ABGs (6.6%), and those who were on NIV/BiPAP support had 31 ABGs (3.15%) (Fig. 4).

Out of 985 ABGs performed, 488 ABGs (49.54%) were performed in patients who had an invasive arterial cannula (Table 2).

Fig. 1: Distribution of most common interventions performed following an ABG

Fig. 2: Number of ABGs performed according to patient diagnosis based on ICD-10 chapters classification

Fig. 3: Time of performing ABGs

Table 1: Frequency of ABGs ordered and intervened

Order of ABG	Any Intervention performed	Numbers (%)
Protocol based	No	615 (77.85)
	Yes	175 (22.15)
	Total	790
Case to case basis	No	111 (56.92)
	Yes	84 (43.08)
	Total	195
Total	No	726 (73.71)
	Yes	259 (26.29)
	Total	985
have observed that the maximum numbers of ABGs were done grouped the ABGs into four groups with 6 hours intervals. We and intervened objectively hence to prevent the Hawthorne effect. As we want to check the number of ABG tests that were performed treating doctors to fill the pro forma prior to performing an ABG test. or guidelines intervention, our study did not educate or asked the Balzano et al. influence on ABG results. Additionally, as per Liou et al., indication is questionable in current practice as it is not considered a change in ventilator settings. The validity of such an intervention and this may give an impression of ABGs not being useful in those subsets of patients. However, a normal ABG does allow the treating physician to know that patient management is on track. As this study was done objectively, the data collected from ICU charts may be prone to typographical errors.

LIMITATIONS

This was a single-center, observational study. All ABG parameters were not recorded, rather we assessed the outcomes of conducting routine ABGs. A total of 73.71% of ABGs were not followed by an intervention and this may give an impression of ABGs not being useful in those subsets of patients. However, a normal ABG does allow the treating physician to know that patient management is on track. As this study was done objectively, the data collected from ICU charts may be prone to typographical errors.

CONCLUSION

Arterial blood gas analysis is often ordered as a routine test and the ABG results do not change patient management in most cases, which results in increased cost and resources. As most of the routine ABGs go non-intervened, an individualized approach may reduce the number of inappropriate ABGs.

REFERENCES

1. Melanson SE, Szymanski T, Rogers SO, Jarolim P, Frenkl G, Raw J D, et al. Utilization of arterial blood gas measurements in a large tertiary care hospital. Am J Clin Pathol 2007;127(4):604–609. DOI: 10.1309/ELHSBPQQT17RRKOM.

2. AARC clinical practice guideline. Sampling for arterial blood gas analysis. American Association for Respiratory Care. Respir Care 1992;37(8):913–917.

3. Andrews T, Waterman H, Hillier V. Blood gas analysis: a study of blood loss in intensive care. J Adv Nurs 1999;30(4):851–857. DOI: 10.1046/j.1365-2658.1999.01155.x.

4. Smoller BR, Kurskall MS. Phlebotomy for diagnostic laboratory tests in adults. Pattern of use and effect on transfusion requirements. N Engl J Med 1986;314(19):1233–1235. DOI: 10.1056/NEJM198605083141906.

5. Merlani P, Garrenin P, Diby M, Ferring M, Ricou B. Quality improvement report: linking guideline to regular feedback to increase appropriate requests for clinical tests: blood gas analysis in intensive care [published correction appears in BMJ 2001 Oct 27;323(7319):993]. BMJ 2001;323(7313):620–624. DOI: 10.1136/bmj.323.7313.620.

6. Browning JA, Kaiser DL, Durbin CG. The effect of guidelines on the appropriate use of arterial blood gas analysis in the intensive care unit. Respir Care 1989;34(4):269–276.

Table 2: Frequency of ABGs basis the presence of invasive arterial cannula

Invasive arterial cannula	Frequency (%)
No	497 (50.46)
Yes	488 (49.54)

Among the metabolic causes for performing an ABG, such as monitoring/follow-up of electrolytes, glucose, lactate clearance, fluid administration, 921 ABGs (93.5%) did not have any cause to monitor/follow-up of electrolytes, glucose, lactate clearance, and intervened objectively hence to prevent the Hawthorne effect. As we want to check the number of ABG tests that were performed treating doctors to fill the pro forma prior to performing an ABG test. or guidelines intervention, our study did not educate or asked the Balzano et al. influence on ABG results. Additionally, as per Liou et al., indication is questionable in current practice as it is not considered a change in ventilator settings. The validity of such an intervention and this may give an impression of ABGs not being useful in those subsets of patients. However, a normal ABG does allow the treating physician to know that patient management is on track. As this study was done objectively, the data collected from ICU charts may be prone to typographical errors.

LIMITATIONS

This was a single-center, observational study. All ABG parameters were not recorded, rather we assessed the outcomes of conducting routine ABGs. A total of 73.71% of ABGs were not followed by an intervention and this may give an impression of ABGs not being useful in those subsets of patients. However, a normal ABG does allow the treating physician to know that patient management is on track. As this study was done objectively, the data collected from ICU charts may be prone to typographical errors.

CONCLUSION

Arterial blood gas analysis is often ordered as a routine test and the ABG results do not change patient management in most cases, which results in increased cost and resources. As most of the routine ABGs go non-intervened, an individualized approach may reduce the number of inappropriate ABGs.

REFERENCES

1. Melanson SE, Szymanski T, Rogers SO, Jarolim P, Frenkl G, Raw J D, et al. Utilization of arterial blood gas measurements in a large tertiary care hospital. Am J Clin Pathol 2007;127(4):604–609. DOI: 10.1309/ELHSBPQQT17RRKOM.

2. AARC clinical practice guideline. Sampling for arterial blood gas analysis. American Association for Respiratory Care. Respir Care 1992;37(8):913–917.

3. Andrews T, Waterman H, Hillier V. Blood gas analysis: a study of blood loss in intensive care. J Adv Nurs 1999;30(4):851–857. DOI: 10.1046/j.1365-2658.1999.01155.x.

4. Smoller BR, Kurskall MS. Phlebotomy for diagnostic laboratory tests in adults. Pattern of use and effect on transfusion requirements. N Engl J Med 1986;314(19):1233–1235. DOI: 10.1056/NEJM198605083141906.

5. Merlani P, Garrenin P, Diby M, Ferring M, Ricou B. Quality improvement report: linking guideline to regular feedback to increase appropriate requests for clinical tests: blood gas analysis in intensive care [published correction appears in BMJ 2001 Oct 27;323(7319):993]. BMJ 2001;323(7313):620–624. DOI: 10.1136/bmj.323.7313.620.

6. Browning JA, Kaiser DL, Durbin CG. The effect of guidelines on the appropriate use of arterial blood gas analysis in the intensive care unit. Respir Care 1989;34(4):269–276.

Table 2: Frequency of ABGs basis the presence of invasive arterial cannula

Invasive arterial cannula	Frequency (%)
No	497 (50.46)
Yes	488 (49.54)

Among the metabolic causes for performing an ABG, such as monitoring/follow-up of electrolytes, glucose, lactate clearance, fluid administration, 921 ABGs (93.5%) did not have any cause to monitor/follow-up of electrolytes, glucose, lactate clearance, and intervened objectively hence to prevent the Hawthorne effect. As we want to check the number of ABG tests that were performed treating doctors to fill the pro forma prior to performing an ABG test. or guidelines intervention, our study did not educate or asked the Balzano et al. influence on ABG results. Additionally, as per Liou et al., indication is questionable in current practice as it is not considered a change in ventilator settings. The validity of such an intervention and this may give an impression of ABGs not being useful in those subsets of patients. However, a normal ABG does allow the treating physician to know that patient management is on track. As this study was done objectively, the data collected from ICU charts may be prone to typographical errors.

LIMITATIONS

This was a single-center, observational study. All ABG parameters were not recorded, rather we assessed the outcomes of conducting routine ABGs. A total of 73.71% of ABGs were not followed by an intervention and this may give an impression of ABGs not being useful in those subsets of patients. However, a normal ABG does allow the treating physician to know that patient management is on track. As this study was done objectively, the data collected from ICU charts may be prone to typographical errors.

CONCLUSION

Arterial blood gas analysis is often ordered as a routine test and the ABG results do not change patient management in most cases, which results in increased cost and resources. As most of the routine ABGs go non-intervened, an individualized approach may reduce the number of inappropriate ABGs.

REFERENCES

1. Melanson SE, Szymanski T, Rogers SO, Jarolim P, Frenkl G, Raw J D, et al. Utilization of arterial blood gas measurements in a large tertiary care hospital. Am J Clin Pathol 2007;127(4):604–609. DOI: 10.1309/ELHSBPQQT17RRKOM.

2. AARC clinical practice guideline. Sampling for arterial blood gas analysis. American Association for Respiratory Care. Respir Care 1992;37(8):913–917.

3. Andrews T, Waterman H, Hillier V. Blood gas analysis: a study of blood loss in intensive care. J Adv Nurs 1999;30(4):851–857. DOI: 10.1046/j.1365-2658.1999.01155.x.

4. Smoller BR, Kurskall MS. Phlebotomy for diagnostic laboratory tests in adults. Pattern of use and effect on transfusion requirements. N Engl J Med 1986;314(19):1233–1235. DOI: 10.1056/NEJM198605083141906.

5. Merlani P, Garrenin P, Diby M, Ferring M, Ricou B. Quality improvement report: linking guideline to regular feedback to increase appropriate requests for clinical tests: blood gas analysis in intensive care [published correction appears in BMJ 2001 Oct 27;323(7319):993]. BMJ 2001;323(7313):620–624. DOI: 10.1136/bmj.323.7313.620.

6. Browning JA, Kaiser DL, Durbin CG. The effect of guidelines on the appropriate use of arterial blood gas analysis in the intensive care unit. Respir Care 1989;34(4):269–276.
Clinical Utility of ABG Test in an Intensive Care Unit

7. Pilon CS, Leathley M, London R, McLean S, Phang PT, Priestley R, et al. Practice guideline for arterial blood gas measurement in the intensive care unit decreases numbers and increases appropriateness of tests. Crit Care Med 1997;25(8):1308–1313. DOI: 10.1097/00003246-199708000-00016.

8. Al Ashry HS, Richards JB, Fisher DF, Sankoff J, Seigel TA, Angotti LB, et al. Emergency department blood gas utilization and changes in ventilator settings. Respir Care 2018;63(1):36–42. DOI: 10.4187/respcare.05590.

9. Blum FE, Lund ET, Hall HA, Tachauer AD, Chedrawy EG, Zilberstein J. Reevaluation of the utilization of arterial blood gas analysis in the Intensive Care Unit: effects on patient safety and patient outcome. J Crit Care 2015;30(2):438.e1–438.e5. DOI: 10.1016/j.jcrc.2014.10.025.

10. Liou CM, Lin CH, Kang HM, Liu YC, Tso HS. The influence of position and PEEP on arterial blood gas during operation. Ma Zui Xue Za Zhi 1993;31(2):103–112.

11. Martínez-Balzano CD, Oliveira P, O’Rourke M, Hills L, Sosa AF; Critical Care Operations Committee of the UMass Memorial Healthcare Center. An educational intervention optimizes the use of arterial blood gas determinations across ICUs from different specialties: a quality-improvement study. Chest 2017;151(3):579–585. DOI: 10.1016/j.chest.2016.10.035.

12. Muakkassa FF, Rutledge R, Fakhry SM, Meyer AA, Sheldon GF. ABGs and arterial lines: the relationship to unnecessarily drawn arterial blood gas samples. J Trauma 1990;30(9):1087–1095.