Serial high-sensitivity cardiac troponin testing for the diagnosis of myocardial infarction: a scoping review

Hirotaka Ohtake,1 Teruhiko Terasawa,1 Zhivko Zhelev,2 Mitsunaga Iwata,1 Morwenna Rogers,3 Jaime L Peters,4 Chris Hyde5

INTRODUCTION

Acute coronary syndrome (ACS) is considered a major cause of death worldwide.1 2 Acute myocardial infarction (AMI) is a form of ACS, which represents permanent cellular damage in the affected myocardium due to ischaemia. AMI is clinically subcategorised into ST-segment elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI). Each type of AMI has a unique prognosis, and their managements differ substantially. Since STEMI is an acute life-threatening condition, prompt reperfusion therapy is essential. In contrast, because the prognosis of NSTEMI varies depending on its aetiology, accurate diagnosis and risk stratification based on medical history, ECG findings and cardiac biomarker concentrations are of paramount significance in patients suspected of ACS.3-4

For the clinical management of NSTEMI, cardiac troponin (cTn) has been used as the mainstay of clinical diagnosis since 2000.3-8 To avoid unnecessary hospital admissions and expedite the diagnostic process, high-sensitivity cardiac Tn (hs-cTn), a group of more sensitive cTn assays, has been introduced into clinical practice since 2010. Although several primary studies and meta-analyses on the single measurement of hs-cTn reported their high sensitivity and specificity,10-12 several challenges persist. First, blood concentrations of hs-cTn troponin take...
2–3 hours to increase, and they may not be detectable within 3 hours from the onset of AMI. Second, despite its high sensitivity, elevated concentrations of hs-cTn are often observed in several clinical conditions other than AMI, including acute myocardial infarction (eg, acute heart failure and tachyarrhythmia) and chronic myocardial infarction (eg, structural heart disease and chronic heart failure). To differentiate these conditions, serial measurements of hs-cTn, that is, assessing the absolute and/or relative changes of repeated measurements, were proposed to increase the specificity for diagnosing acute MI. Based on several studies on serial hs-cTn testing algorithms with high sensitivity and high negative predictive value, the current clinical guidelines on NSTE-ACS recommend serial measurements of hs-cTn at presentation and after 1–3 hours.

However, the comparative effectiveness of management strategies based on serial hs-cTn measurements has not been fully elucidated, because several alternative assays are clinically available and existing reports are from studies with different designs and inconsistent testing algorithms. Thus, this study aimed to explore the diversity of the methodologies used in primary studies on serial hs-cTn measurements in patients suspected of having ACS in the emergency department (ED). We constructed an evidence map of existing studies on serial hs-cTn testing for diagnosing NSTEMI and predicting 30-day clinical outcomes. We critically appraised the currently available evidence and highlighted the issues that need to be addressed in future research.

METHODS

This study is a focused analysis performed in conjunction with a registered systematic review project (PROSPERO registration number CRD42018106379). The protocol for the original systematic review is available at https://bmjopen.bmj.com/content/9/3/e026012.long. This report followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Extension for Scoping Reviews.

Data search

We searched Ovid MEDLINE, EMBASE, Science Citation Index and Cochrane Database of Systematic Reviews for studies published between 1 January 2006 and 17 November 2021 with no restrictions of language or publication status. The search terms included “chest pain”, “acute coronary syndrome,” “myocardial infarction,” “cardiac troponin”, “emergency room” and their synonyms. The full search strategy is available in online supplemental appendix. We excluded editorials, letters, comments, conference abstracts, review articles and meta-analyses. Also, we excluded studies assessing clinical prediction rules (eg, Global Registry of Acute Coronary Events (GRACE) Risk Score).

Study eligibility

We included prospective and retrospective studies that evaluated patients aged ≥18 years who were suspected of having NSTEMI in an ED and had two or more serial troponin measurements using an hs-cTn assay. Eligible were studies that reported the diagnostic accuracy of AMI and/or 30-day clinical outcomes. We only included single-arm or multiple studies, that is, studies that consisted of a single group of subjects based on a single eligibility criteria. Studies that included mixed populations of patients—with suspected STEMI and NSTEMI—were included only when data for the patients with suspected NSTEMI was separately extractable. Studies that exclusively assessed patients with suspected STEMI were excluded. Two investigators double-screened the titles and abstracts and examined the full-text articles to assess eligibility. We defined hs-cTn as assays that satisfied the requirements of the International Clinical Federation of Clinical Chemistry and Laboratory Medicine (ie, <10% coefficient of variation at the 99th percentile and ≥50% measurable concentrations above the limit of detection for both males and females). Discrepancies were resolved by consensus.

Data extraction

The following data were extracted: (1) publication and study characteristics: authors, journal name, publication year, enrolment years, number of eligible and included patients, study design, the name of the study cohort(s), geographical region(s), participant age and use of ECG to exclude patients; (2) test characteristics: assays, the timing of blood sampling, cut-off values, algorithms adopted (binary testing algorithms for ruling out MI vs three-strata testing algorithms for stratifying patients into three different risk groups, ie, high-risk, intermediate-risk and low-risk groups commonly referred to as ‘rule-in,’ ‘observational zone,’ and ‘rule-out’ for MI diagnosis) and (3) reference standard characteristics: specific diagnostic criteria of MI, such as those defined in clinical guidelines and/or versions of the universal definition of MI, and the assessors of the final diagnoses.

Operationalisation

Our target population was a group of patients suspected of having NSTEMI who presented at the ED. We recorded the numbers of patients suspected of having NSTEMI who presented at the ED, patients who completed one or more study-specific serial testing algorithm(s), and patients who were assessed for test accuracy and/or 30-day clinical outcomes. A testing algorithm was specified based on the number and timing of hs-cTn measurements. The results for the algorithm were typically reported as a single value measured at presentation, together with an absolute or a relative difference between specific measurement time points (typically at presentation and a few hours later), which was categorised as delta or percent change in the hs-cTn concentrations. We classified the studies that involved two hs-cTn measurements into three groups, namely, 0 and 1 hour, 0 and 2 hours, and 0 and 3 hours, based on the blood sampling timing (in hours) of the first and second samples. Other algorithms involving
three or more blood samples were grouped into a separate category, labelled as ‘others.’ Assays were classified by specific manufacturers, that is, Abbott (Abbott Laboratories, Illinois, USA), Roche (Roche Diagnostics, Basel, Switzerland), Siemens (Siemens Healthcare, Erlangen, Germany) and Beckman (Beckman Coulter, California, USA). Assays by other manufacturers were categorised as ‘miscellaneous.’

To assess the evidence, we used the study with the largest sample to avoid double-counting when multiple studies reported (partially) overlapping patient populations. For the study locations, we assumed that each specific research institution involved in the study assessed patients residing within its geographical region only. Comparative studies were defined as studies that adopted a paired design to assess multiple assays on the same study participants and directly compared the diagnostic accuracy for AMI or 30-day clinical outcomes. This review did not standardise the definition of AMI or the 30-day clinical outcomes and adopted the study-reported outcome definitions as specifically reported.

Analyses
We considered each publication to be the unit of analysis and performed descriptive analyses by using percentages or medians and ranges. We combined data as a weighted average only if the pertinent data were available for specific subgroups. The assessed design specifications included the regions and sources of studies, characteristics of targeted participants and their study flow, specific troponin assays used, sampling algorithms with their operational characteristics, direct comparisons of two or more algorithms and/or assays, and definitions of the index MI and 30-day outcomes.

The volume of clinical evidence was assessed with graphs and tables using Stata V.17.0 (Stata). The graphical presentation of the study locations was constructed using Google Maps (Google, Mountain View, California, USA) and Mapcustomizer (available at https://www.mapcustomizer.com/).

Patient and public involvement
We did not involve patients or the public in the preparation of this scoping review.

RESULTS
Inclusion of primary studies
Figure 1 shows the PRISMA flow diagram for this scoping review. Our search yielded 6838 articles; 6230 of them were excluded after examining the titles and abstracts. After excluding 549 perused full-text articles, we finally included 86 publications, including 72 reports on test accuracy and 52 on 30-day clinical outcomes (online supplemental appendix table 1). The most commonly assessed assays were manufactured by Abbot (n=41) and Roche (n=53), followed by those manufactured by Siemens (n=10) and Beckman (n=6). Three studies assessed point-of-care assays that met the definition of hs-cTn. Serial hs-cTn testing was predominantly assessed in Europe and North America and the participating institutions were limited to specific research centres (online supplemental appendix table 1, online supplemental appendix table 3 and online supplemental appendix figure 1). In contrast, only a few research centres per country from Australasia and Asia participated and provided pertinent data.

Of the 86 cohorts that reported accuracy and/or 30-day outcome data using a specific assay and a sampling algorithm, only 42 (49%) were considered unique, which included 78,606 non-overlapping patients (online supplemental appendix table 3). Of the 42 studies, 12 (29%) studies that assessed the assays manufactured by Abbott involved unique cohorts (seven, three and eight reports on the 0 and 1-hour, 0 and 2-hours, and 0 and 3-hours protocols, respectively). Similarly, data from 25 of 42 studies (60%) that assessed the assays manufactured by Roche involved unique cohorts (16, 5 and 4 protocols on the 0 and 1-hour, 0 and 2-hours, and 0 and 3-hours protocols, respectively).

Nineteen studies compared two or more assays using a paired design (table 1). The most commonly reported comparison was between the assays by Abbott and Roche (17 studies on test accuracy and six on 30-day outcomes). A few studies have performed head-to-head comparisons involving the same patients. Two studies compared hs-cTn with an earlier generation non-hs cTn assay.

Typically, the studies reported only the number of enrolled patients (ie, patients suspected of having...
NSTEMI who were eligible for and agreed to participate in the study, and the complete data on all clinically relevant patients (ie, the number of all patients suspected of having NSTEMI who presented at the ED) were missing. Fifty-two studies (60%) reported quantitative data on patients who failed to complete a study-specific serial testing algorithm(s) or patients whose diagnosis or 30-day clinical outcomes could not be established (online supplemental appendix table 1). Various proportions (median 20%; range, 0%–90%) of enrolled patients were excluded from the analysis, typically due to missing blood samples or the lack of a final diagnosis.

Patient characteristics

The mean or median participant age ranged from 53 to 73 years, and most studies involved patients in their 40s–70s (online supplemental appendix table 1). Only one study specifically focused on 0 and 1-hour protocol for a subgroup of elderly patients derived from three cohorts, specifically, patients aged 70 years or older. Of 86 studies, 17 (20%) excluded patients with chronic kidney disease (CKD) or those requiring regular haemodialysis. In contrast, only four studies specifically focused on 0 and 1-hour, 3-hours or 6–12 hours protocol for a subgroup of patients with renal dysfunction, which were derived from four cohorts. Only a single study specifically focused on 0 and 3-hour protocol for a subgroup of female patients only derived from three cohorts. No further studies that focused on these subpopulations have been found through the update search and manual search based on the reference lists.

Testing algorithms

Forty-seven studies (55%) assessed the three-strata algorithms. These studies stratified patients into ‘rule-out (low-risk),’ ‘observation zone (intermediate-risk)’ and ‘rule-in (high-risk)’ groups according to two sets of diagnostic criteria based on the concentrations of hs-cTn at baseline, 1–3 hours, and/or the difference between the hs-cTn concentrations of the two samples. Other studies conventionally categorised the patients into two strata (ie, ‘rule-out (low-risk)’ and ‘rule-in (high-risk)’ groups) based on a single set of criteria. The majority of data were based on assays manufactured by either Abbott or Roche, and the 0 and 1-hour algorithm was the most frequently reported (figure 2).

Outcomes

Eighty-four studies (98%) adopted the universal definition of MI (versions 2007, 2012 and/or 2018) to...
establish a diagnosis of AMI. A few of these studies also followed the guidelines proposed by the American College of Cardiology (ACC) (1/86, 1%), the ACC and the American Heart Association (AHA) guidelines (1/86, 1%), ACC and the European Society of Cardiology (ESC), and the ACC/AHA and ESC guidelines (4/86, 5%) in addition to either version of the universal definition. Two studies relied on the ACC guidelines alone. The adjudicators of the clinical diagnosis of AMI were cardiologists in 72 studies (84%). The studies variably reported 30-day outcomes; of the 51 studies that reported one or more 30-day outcomes, 11 (22%) reported all-cause mortality and 41 (80%) reported cardiac death, whereas 36 (68%) reported major adverse cardiac events, a composite outcome including AMI, as well as cardiac death or death from all causes. Other reported clinical outcomes observed within 30 days included urgent revascularisation, percutaneous coronary intervention, coronary artery bypass graft (19/51, 37%) and ventricular arrhythmia (11/51, 22%). Twenty-seven studies (53%) also reported long-term clinical outcomes, which included events that developed within up to 2 years.

Discussion

To the best of our knowledge, this is the first scoping review to comprehensively assess the reports on testing with serial high-sensitivity cardiac troponin measurements in patients with suspected NSTEMI in the ED. We summarised how studies measured serial hs-cTn and assessed its diagnostic accuracy for AMI and the 30-day clinical outcomes. Our results showed that most existing data were based on the Abbott cTnI or Roche cTnT assays, and the timing of the blood measurements and the diagnostic algorithms varied. The number of studies assessing these two assays using the 0 and 1-hour, 0 and 2 hours, and 0 and 3 hours protocols has been continuously increasing since 2011 when guidelines recommended serial hs-cTn measurements; fewer studies have assessed other assays and/or alternative algorithms. Limited data on patients with CKD or older adults, as well as data stratified by sex, were reported, which were deemed still under evaluation. Most studies followed the
universal definition to diagnose the index MI. However, in addition to North America or Europe, only a limited number of research teams involving several specialty institutions in specific countries have contributed to the current evidence. Most importantly, the studies excluded variable proportions of eligible patients from the analysis due to missing blood samples or concrete final diagnoses.

Strengths

We comprehensively explored the existing evidence, focusing on how the studies were designed, analysed and reported and, the implications for clinical practice of the identified limitations and concerns. Previously reported systematic reviews focused on a two-strata rule-out strategy using unique serial measurements of hs-cTnT assay only, or the 0 and 1-hour three-strata strategy regardless of the assays assessed, and they did not perform a comprehensive field synopsis covering all relevant information. The objective of our scoping review is to describe the diversity in the adopted study methodologies together with their potential limitations following the standard scoping review methods. Therefore, this review should be an additional view that follows the recently published critical appraisal of the current evidence base, both of which will help identify the current evidence gaps as well as help design future studies.

Limitation

This scoping review performed a focused analysis on the reported study methodologies and did not address the primary objectives of the originally planned systematic review. Therefore, several limitations need to be discussed. First, we did not assess the quantitative results on accuracy and other clinical outcomes because this was beyond the scope of the present scoping review. Second, we focused on studies that assessed only test accuracy and measuring samples and applying the results to clinical practices. Therefore, the optimal sample timings and cut-off values need to be validated on an individualised basis and account for age, sex and renal function under the appropriate quality control. Second, our review found that the existing data were largely based on two assays by two manufacturers (ie, assays manufactured by Abbott and Roche); the evidence is sparse for the others. Furthermore, evidence on hs-cTnT and hs-cTnI has limited data concerning direct comparative studies of assays. Therefore, comparative studies are needed since systematic differences between hs-cTnT and hs-cTnI as well as among hs-cTnI methods have been reported. Third, most of the included studies were conducted in specialised centres in Europe, North America or Australasia. A recent meta-analysis of diagnostic accuracy that focused on only the 0 and 1-hour algorithm pointed out that sensitivity was not universally high across cohorts, as reported in the primary studies in these specialised centres; reproducibility of the excellent results appeared to be limited for the studies from Asia. Given this observation, validation in these regions is required. Fourth, the studies included in our review missed variable proportions of clinically relevant patients who presented at EDs with suspected NSTEMI. This appears to stem, at least in part, from convenience sampling. The failure to apply gold-standard tests to all participants may also have been responsible for the excluded cases without an established diagnosis of the cause of chest pain, which is inevitable in real-life clinical settings. These methodological weaknesses would have distorted, at least to some extent, the typical disease spectrum of clinically relevant populations. Our review failed to address how this patient loss affected the study results.

CONCLUSIONS

Data on diagnostic test accuracy and short-term outcomes by serial hs-cTnT measurements were largely derived from
particular research institutions in Europe, North America or Australasia and based mainly on two specific assays. The exclusion of variable proportions of eligible patients, which was inevitable even in well-conducted prospective studies, raised concerns regarding the studies’ generalisability and direct applications in real-world ED clinical practice.

Acknowledgements The authors thank Drs Chihiro Kato and Jun Shinohara for assisting with data extraction.

Contributors TT and ZZ lead the protocol development. HO, TT, ZZ, MI, MR, JLP and CH drafted and revised the protocol. MR performed the literature searches. HO, TT, ZZ, JLP determined the eligibility of primary studies and acquired the data. HO and TT analysed the data. HO, TT, ZZ, MI, MR, JLP and CH interpreted the findings. HO and TT drafted the first version of the report. HO, TT, ZZ, MI, MR, JLP and CH critically read the manuscript and provided feedback for revision. HO, TT, ZZ, MI, MR, JLP and CH read and approved the final manuscript. HO and TT are the guarantors of this scoping review.

Funding This study was supported in part by a research grant from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (18K08902) and by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula (NIHR CLAHRC South West Peninsula; grant no, N/A).

Disclaimer The funders had no involvement in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The views expressed in this publication are those of the author(s) and not necessarily those of MEXT in Japan, the National Institute for Health Research, or the Department of Health and Social Care.

Map disclaimer The inclusion of any map (including the depiction of any boundaries therein), or of any geographic or locational reference, does not imply the expression of any opinion whatsoever on the part of BMJ concerning the legal status of any country, territory, jurisdiction or area or of its authorities. Any such boundaries therein, or of any geographic or locational reference, does not imply

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs Tsuruhiro Terasawa http://orcid.org/0000-0002-0975-391X Zhivko Zhelev http://orcid.org/0000-0002-0106-2401 Morvenna Rogers http://orcid.org/0000-0002-6039-238X Jaime L Peters http://orcid.org/0000-0003-1778-3518

REFERENCES
1 Organization WH. Cardiovascular diseases (CVDs): key facts, 2017. Available: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) [Accessed 10 May 2020].
2 Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. The Lancet 2017;389:197–210.
3 Collet J-P, Thiele H, Barbato E, et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021;42:1289–367.
4 Amsterdam EA, Wenger NK, Brindis RG. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American heart association Task force on practice guidelines. J Am Coll Cardiol 2014;64:139–228.
5 Alpert JS, Thygesen K, Antman E, et al. Myocardial infarction redefined--a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000;36:959–69.
6 Thygesen K, Alpert JS, White HD, et al. Universal definition of myocardial infarction. Circulation 2007;116:263–45.
7 Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition of myocardial infarction. Circulation 2012;126:2010–35.
8 Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J 2019;40:237–69.
9 High-Sensitivity cardiac troponin T assay--an analytical characteristics designated by manufacturer IFCC Committee on clinical applications of cardiac Bio-Markers. Available: https://www.ifcc.org/media/477656/high-sensitivity-cardiac-troponin-i-and-t-assay-analytical-characteristics-designated-by-manufacturer-v012019.pdf
10 Zhelev Z, Ohtake H, Iwata M, et al. Diagnostic accuracy of contemporary and high-sensitivity cardiac troponin assays used in serial testing, versus single-sample testing as a comparator, to triage patients suspected of acute non-ST-segment elevation myocardial infarction: a systematic review protocol. BMJ Open 2019;9:e026012.
11 Pickering JW, Than MP, Cullen L, et al. Rapid Rule-out of acute myocardial infarction with a single high-sensitivity cardiac troponin T measurement below the limit of detection: a collaborative meta-analysis. Ann Intern Med 2017;166:715–24.
12 Chapman AR, Lee KK, McAllister DA, et al. Association of high-sensitivity cardiac troponin I concentration with cardiac outcomes in patients with suspected acute coronary syndrome. JAMA 2017;318:1913–24.
13 Weber M, Bazzino O, Navarro Estrada JL, et al. Improved diagnostic and prognostic performance of a new high-sensitivity troponin T assay in patients with acute coronary syndrome. Am Heart J 2011;162:81–8.
14 Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018;169:467–73.
15 Fox KAA, Dabbous OH, Goldberg RJ, et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: prospective multinational observational study (grace). BMJ 2006;333:1091.
16 Rutjes AWS, Reitsma JB, Vandenvoorde JP, et al. Case-Control and two-stage designs in diagnostic accuracy studies. Clin Chem 2005;51:1335–41.
17 Aldous SJ, Flikowksi CM, Czorzyk IG, et al. Comparison of high sensitivity and contemporary troponin assays for the early detection of acute myocardial infarction in the emergency department. Ann Clin Biochem 2011;4:248–28.
18 Aldous SJ, Richards AM, Cullen L, et al. Early dynamic change in high-sensitivity cardiac troponin T in the investigation of acute myocardial infarction. Clin Chem 2011;57:1154–60.
19 Keller T, Zeller T, Ojeda F, et al. Serial changes in highly sensitive troponin I assay and early diagnosis of myocardial infarction. JAMA 2011;306:2684–93.
20 Reichlin T, Irfan A, Twerenbold R, et al. Utility of absolute and relative changes in cardiac troponin concentrations in the early diagnosis of acute myocardial infarction. Circulation 2011;124:136–45.
21 Aldous S, Pemberton C, Richards AM, et al. High-Sensitivity troponin T for early rule-out of myocardial infarction in recent onset chest pain. Emerg Med J 2012;29:805–10.
22 Reichlin T, Schindler C, Drewler B, et al. One-Hour rule-out and rule-in of acute myocardial infarction by high-sensitivity cardiac troponin T. Arch Intern Med 2012;172:1211–8.
infarction and 30-
myocardial infarction using absolute and relative changes in cardiac
diagnosing myocardial infarction.

Aldous S, Mark Richard
2014;47:321–6.

2014;35:2303–11.

early diagnosis of acute myocardial infarction.

comparison of high-
symptoms on the diagnostic performance of high-
Biener M, Mueller M, V

coronary syndrome.

Eggers KM, Aldous S, Gr

Clin Chim Acta
2015;445:19–24.

cardi

and rule-
Pickering JW

2015;128:861–70.

cardi
cardiperfect.
Chapman AR, Fujisawa T, Lee KK, et al. Novel high-sensitivity cardiac troponin I assay in patients with suspected acute coronary syndrome. Heart 2019;105:616–22.

Chew DP, Lambakis K, Blyth A, et al. A randomized trial of a 1-hour troponin T protocol in suspected acute coronary syndromes: the rapid assessment of possible acute coronary syndrome in the emergency department with high-sensitivity troponin T study (RAPID-TnT). Circulation 2019;140:1543–56.

Lin Z, Lim SH, Chua SJT, et al. High-sensitivity troponin T and long-term adverse cardiac events among patients presenting with suspected acute coronary syndrome in Singapore. Singapore Med J 2019;60:418–26.

Mueller-Hennens M, Lindahl B, Giannitiss E, et al. Combined testing of copeptin and high-sensitivity troponin T at presentation in comparison to other algorithms for rapid rule-out of acute myocardial infarction. Int J Cardiol 2019;276:261–7.

Nestelberger T, Boeddinghaus J, Wussler D, et al. Predicting major adverse events in patients with acute myocardial infarction. J Am Coll Cardiol 2019;74:842–54.

Nestelberger T, Boeddinghaus J, Greenslade J, et al. Two-hour algorithm for rapidriage of suspected acute myocardial infarction using a high-sensitivity cardiac troponin I assay. Clin Chem 2019;65:1437–47.

Neumann JT, Sörensen NA, Rübsamen N, et al. Evaluation of a new ultra-sensitivity troponin I assay in patients with suspected myocardial infarction. Int J Cardiol 2020;283:35–40.

Nestelberger T, Boxbaum C, Ojeda F, et al. Diagnostic evaluation of a high-sensitivity troponin I point-of-care assay. Clin Chem 2019;65:1592–601.

Twenendorf R, Costabel JP, Nestelberger T, et al. Outcome of applying the ESC 0/1-hour algorithm in patients with suspected myocardial infarction. J Am Coll Cardiol 2019;74:483–94.

Wildi K, Boeddinghaus J, Nestelberger T, et al. Comparison of fourteen rule-out strategies for acute myocardial infarction. Int J Cardiol 2019;284:41–7.

Andruchow JE, Boyne T, Seiden-Long I, et al. Prosp ective comparative evaluation of the European Society of cardiology (ESC) 1-hour and a 2-hour rapid diagnostic algorithm for myocardial infarction using high-sensitivity troponin T. CJEM 2020;22:712–20.

Boeddinghaus J, Nestelberger T, Koechlin L, et al. Early diagnosis of myocardial infarction with point-of-care high-sensitivity cardiac troponin I. J Am Coll Cardiol 2020;75:1111–24.

Kavask PA, Mondoux SE, Ma J, et al. Comparison of two biomarker only algorithms for early risk stratification in patients with suspected acute coronary syndrome. Int J Cardiol 2020;319:140–3.

Kavask PA, Mondoux SE, Sherbino J, et al. Clinical evaluation of ortho clinical diagnostics high-sensitivity cardiac troponin I assay in patients with symptoms suggestive of acute coronary syndrome. Clin Biochem 2020;80:48–51.

Kim JW, Kim H, Yun Y-M, et al. Absolute change in high-sensitivity cardiac troponin I assay two hours after presentation is useful for diagnosing acute myocardial infarction in the emergency department. Ann Lab Med 2020;40:474–80.

Nowak RM, Christensen RH, Jacobsen G, et al. Performance of novel high-sensitivity cardiac troponin I assays for 0/1-Hour and 0/2 to 3-hour evaluations for acute myocardial infarction: results from the HIGH-US study. Ann Emerg Med 2020;76:1–13.

Peacock WF, Christerson R, Diercks DB, et al. Myocardial infarction can be safely excluded by high-sensitivity troponin I testing 3 hours after emergency department presentation. Acad Emerg Med 2020;27:571–80.

Sandoval Y, Smith SW, Schulz K, et al. Comparison of 0/3-Hour rapid Rule-Out strategies using high-sensitivity cardiac troponin I in a US emergency department. Circ Cardiovasc Qual Outcomes 2020;13:e006655.

Shiozaki M, Inoue K, Suwa S, et al. Implementing the European Society of cardiology 0/2h1-algorithm in patients presenting very early after chest pain. Int J Cardiol 2020;320:1–6.

Allen BR, Christenson RH, Cohen SA, et al. Diagnostic performance of high-sensitivity cardiac troponin T algorithms and clinical variables in a multistate US cohort. Circulation 2021;143:1659–72.

Andersen OF, Bønder C, Lauridsen KG, et al. External validation of a high-sensitive troponin I algorithm for rapid evaluation of acute myocardial infarction in a Danish cohort. Eur Heart J Acute Cardiovasc Care 2021;10:1056–64.

Dongxu C, Yannan Z, Yilin Y, et al. Evaluation of the 0 h/1 h high-sensitivity cardiac troponin T algorithm of the European Society of cardiology for non-ST-segment elevation myocardial infarction (NSTEMI) in Han population. Clin Chem Lab Med 2021;59:757–64.

Dupuy AM, Badiou S, Montagnon V, et al. Analytical performance and presentation of the 0/3h algorithm with novel high sensitivity cardiac troponin I. Clin Chim Acta 2021;519:111–7.

Kavask PA, Hewitt MK, Mondoux SE, et al. Diagnostic performance of serial high-sensitivity troponin I measurements in the emergency setting. J Cardiovasc Dev Dis 2021;8:10.3390/jcd8080007. [Epub ahead of print: 13 Aug 2021].

Koechlin L, Boeddinghaus J, Nestelberger T, et al. Performance of the ESC 0/2h-algorithm using high-sensitivity cardiac troponin I in the early diagnosis of myocardial infarction. Am Heart J 2021;242:132–7.

Lopez-Ayala P, Nestelberger T, Boeddinghaus J, et al. Novel criteria for the Observe-Zone of the ESC 0/1-hs-cTnT algorithm. Circulation 2021;144:773–87.

McCorriston J, Hana A, Cook B, et al. The role of cardiac testing with the 0/1-hour high-sensitivity cardiac troponin algorithm evaluating for acute myocardial infarction. Am Heart J 2021;233:68–77.

Olsson P, Khoshnood A, Mokhtari A, et al. Glucose and high-sensitivity troponin T predict a low risk of major adverse cardiac events in emergency department chest pain patients. Scand Cardiovasc J 2021;55:354–61.

Ruangsomboon T, Thirawatansoot N, Chakorn T, et al. The utility of the 1-hour high-sensitivity cardiac troponin T algorithm compared with and combined with five early rule-out of high-acuity chest pain emergency patients. Int J Cardiol 2021;322:23–8.

Sörensen NA, Neumann JT, Ojeda F, et al. Differences in measurement of high-sensitivity troponin in an on-demand and batch-wise setting. Eur Heart J Acute Cardiac Care 2021;10:302–9.

Sörensen NA, Gölling A, Neumann JT, et al. Diagnostic validation of a high-sensitivity cardiac troponin I assay. Clin Chem 2021;67:1230–9.

Steiro O-T, Tjora HL, Langergren J, et al. Clinical risk scores identify more patients at risk for cardiovascular events within 30 days as compared to standard ASCVD risk criteria: the WESTCOP study. Eur Heart J Acute Cardiac Care 2021;10:287–301.

Wildi K, Lopez-Ayala P, Koechlin L, et al. Validation of the novel European Society of cardiology 0/2-hour algorithm using Hs-cTnT in the early diagnosis of myocardial infarction. Am J Cardiol 2021;154:128–30.

Nestelberger T, Boeddinghaus J, Giménez MR, et al. Direct comparison of high-sensitivity cardiac troponin T and I in the early differentiation of type 1 vs. type 2 myocardial infarction. Eur Heart J Acute Cardiac Care 2022;11:62–74.

Cannon CP, Battler A, Brindis RG, et al. American College of cardiology key data elements and definitions for measuring the clinical management and outcomes of patients with acute coronary syndromes. A report of the American College of cardiology Task force on clinical data standards (acute coronary syndromes writing Committee). J Am Coll Cardiol 2001;38:971–98.

Andersen JL, Adams CD, Antman EM, et al. ACC/AHA 2007 guidelines for the management of patients with unstable angina/ non-ST-Elevation myocardial infarction: a report of the American College of Cardiology/American heart association Task force on practice guidelines (writing Committee to revise the 2002 guidelines for the management of patients with unstable Angina/Non-ST-Elevation myocardial infarction) developed in collaboration with the American College of emergency physicians, the Society for cardiovascular angiography and interventions, and the Society of thoracic surgeons endorsed by the American association of cardiovascular and pulmonary rehabilitation and the Society for academic emergency medicine. J Am Coll Cardiol 2007;50:e1–157.

Apple FS, Wu AHB, Jaffe AS. European Society of cardiology and American College of cardiology guidelines for redefinition of myocardial infarction: how to use existing assays clinically and for clinical trials. Am Heart J 2002;144:981–6.

Andersen JL, Adams CD, Antman EM, ACC/AHA focused update incorporated into the ACC/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-Elevation myocardial infarction: a report of the American College of cardiology/Foundation/American heart association Task force on practice guidelines. J Am Coll Cardiol 2012;60:1:1–28.

Hamm CW, Bassand J-P, Agewall S, et al. ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the task force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of cardiology (ESC). Eur Heart J 2011;32:3099–3054.

Aslanian M, et al. Accuracy of diagnostic troponin T measurements to rule out acute myocardial infarction and a single high baseline measurement for swift rule-in: a
systematic review and meta-analysis. Eur Heart J Acute Cardiovasc Care 2020;9:14–22.

109 Chiang C-H, Chiang C-H, Lee GH, et al. Safety and efficacy of the European Society of cardiology 0/1-hour algorithm for diagnosis of myocardial infarction: systematic review and meta-analysis. Heart 2020;106:985–91.

110 Apple FS, Collinson PO, Kavasak PA, et al. Getting cardiac troponin right: appraisal of the 2020 European Society of cardiology guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation by the International Federation of clinical chemistry and laboratory medicine Committee on clinical applications of cardiac Bio-Markers. Clin Chem 2021;67:730–5.

111 Giannitsis E, Blankenberg S, Christenson RH, et al. Critical appraisal of the 2020 ESC guideline recommendations on diagnosis and risk assessment in patients with suspected non-ST-segment elevation acute coronary syndrome. Clin Res Cardiol 2021;110:1353–68.

112 Six AJ, Backus BE, Kelder JC. Chest pain in the emergency room: value of the heart score. Neth Heart J 2008;16:191–6.

113 Than M, Flaws D, Sanders S, et al. Development and validation of the emergency department assessment of chest pain score and 2 H accelerated diagnostic protocol. Emerg Med Australas 2014;26:34–44.

114 Fox CS, Muntner P, Chen AY, et al. Use of evidence-based therapies in short-term outcomes of ST-segment elevation myocardial infarction and non-ST-segment elevation myocardial infarction in patients with chronic kidney disease: a report from the National cardiovascular data acute coronary treatment and intervention outcomes network registry. Circulation 2010;121:357–65.

115 Bhatnagar P, Wickramasinghe K, Williams J, et al. The epidemiology of cardiovascular disease in the UK 2014. Heart 2015;101:1182–9.

116 Apple FS, Sandoval Y, Jaffe AS, et al. Cardiac troponin assays: guide to understanding analytical characteristics and their impact on clinical care. Clin Chem 2017;63:73–81.

117 Neumann JT, Twerenbold R, Ojeda F, et al. Application of high-sensitivity troponin in suspected myocardial infarction. N Engl J Med 2019;380:2529–40.

118 Wu AHB, Christenson RH, Greene DN, et al. Clinical laboratory practice recommendations for the use of cardiac troponin in acute coronary syndrome: expert opinion from the Academy of the American association for clinical chemistry and the task force on clinical applications of cardiac Bio-Markers of the International Federation of clinical chemistry and laboratory medicine. Clin Chem 2018;64:846–55.

119 Twerenbold R, Wildi K, Jaeger C, et al. Optimal cutoff levels of more sensitive cardiac troponin assays for the early diagnosis of myocardial infarction in patients with renal dysfunction. Circulation 2015;131:2041–50.

120 Dubin RF, Li Y, He J, et al. Predictors of high sensitivity cardiac troponin T in chronic kidney disease patients: a cross-sectional study in the chronic renal insufficiency cohort (CRIC). BMC Nephrol 2013;14:229.

121 Clerico A, Ripoli A, Zaninotto M, et al. Head-To-Head comparison of plasma cTnI concentration values measured with three high-sensitivity methods in a large Italian population of healthy volunteers and patients admitted to emergency department with acute coronary syndrome: a multi-center study. Clin Chim Acta 2019;496:25–34.