Lymphomatoid gastropathy mimicking extranodal NK/T cell lymphoma, nasal type: A case report

Tomohiro Terai, Mitsushige Sugimoto, Hiroki Uozaki, Tetsushi Kitagawa, Mana Kinoshita, Satoshi Baba, Takanori Yamada, Satoshi Osawa, Ken Sugimoto

Abstract
Extranodal natural killer (NK)/T-cell lymphoma, nasal type, exhibits aggressive tumor behavior and carries a poor prognosis. Recently, lymphomatoid gastropathy with NK/T cell infiltration into gastric mucosa has been recognized as a pseudo-malignant disease which regresses without treatment. Because the conventional immunohistochemical criteria of lymphomatoid gastropathy is similar to that of extranodal NK/T-cell lymphoma nasal type, it is difficult to distinguish between the two conditions by histopathological evaluation only. Here, we report a rare case of lymphomatoid gastropathy in a 57-year-old female. Gastroendoscopy on routine check-up revealed elevated reddish lesions < 1 cm in diameter in the gastric fornix and body. Histological examination of endoscopic biopsy specimens at 12 mo showed atypical NK cell infiltration with CD3+, CD4-, CD5-, CD7+, CD8-, CD20-, CD30-, CD56+, CD79a and T-cell-restricted intracellular antigen-1 into gastric mucosa. After treatment for Helicobacter pylori (H. pylori) eradication, the lesions disappeared in all locations of the gastric fornix and body over the subsequent 12 mo. Here, we report a case of H. pylori-positive lymphomatoid gastropathy with massive NK-cell proliferation, and also review the literature concerning newly identified lymphomatoid gastropathy based on comparison of extranodal NK/T-cell lymphoma nasal type. In any case, these lesions are evaluated with biopsy specimens, the possibility of this benign entity should be considered, and excessive treatment should be carefully avoided. Close follow-up for this case of lymphomatoid gastropathy is necessary to exclude any underlying malignancy.

Key words: Gastric lymphomatoid gastropathy; Gastric natural killer/T-cell lymphoma nasal type; Helicobacter pylori; Eradication

Peer reviewer: Jian-Zhong Zhang, Professor, Pathology and Laboratory Medicine, Beijing 306 Hospital, 9 North Anxiang Road, PO Box 9720, Beijing 100101, China

INTRODUCTION
Extranodal natural killer (NK)/T-cell lymphoma, nasal...
type, has the distinctive morphologic features of an angiocentric and angiodestructive growth pattern with frequent necrosis and apoptosis[3], NK/T cell lymphoma frequently presents as a disease of infiltrative and ulcerative lesions around the nasal cavity, "nasal" and other midline structures, such as skin, gastrointestinal tract, salivary gland and testis, "nasal type"[2]. Characteristic immunohistochemical findings include CD56+ (NK cell marker), sCD3+, cCD3+, and Epstein-Barr virus (EBV) in situ hybridization[3]. Long-term outcomes of NK/T cell lymphoma are generally poor due to frequent systemic relapses, and only 40% of patients survive longer than 5 years[4]. Primary NK/T cell lymphoma nasal type in the stomach is rare, and the etiology, pathogenesis, and clinical characteristics are unclear[5,6].

Recently, several cases of NK-cell proliferation in gastric mucosa were reported as lymphomatoid gastropathy or NK-cell enteropathy. Newly identified lymphomatoid gastropathy has been characterized as self-limited pseudomalignant NK-cell proliferation in gastric mucosa, and to have a good prognosis irrespective of a good prognosis even when left untreated. Histological findings reveal diffuse infiltrations of medium-sized to large atypical NK/T cells in the lamina propria and glandular epithelium. The cells were CD2+, CD3+, sCD3+, CD4, CD5+, CD7+, CD8+, CD16+, CD20+, CD45+, CD56+, CD117+, CD158a+, CD161 and granzyme B+. Previously, most cases of lymphomatoid gastropathy were expected to be diagnosed as extranodal NK/T-cell lymphoma nasal type, because of their similar histopathologic findings, and to be treated with chemotherapy, surgery or both[2].

Here, we report a case of Helicobacter pylori (H. pylori)-positive lymphomatoid gastropathy with massive NK-cell proliferation in the stomach, and also review the literature concerning newly identified lymphomatoid gastropathy based on comparison of extra nodal NK/T-cell lymphoma nasal type.

CASE REPORT

A 57-year-old Japanese female without symptoms such as epigastric discomfort, nausea or heart burn showed an erythematous dish-like elevated lesion less than 1 cm in diameter in the greater curvature of the lower body of the stomach and atrophic gastritis with H. pylori infection at check-up gastroendoscopy (Figure 1A and B). However, histological findings were no atypical lymphoid cell infiltrations or atypical glands of the gastric mucosa. Follow-up at 1 and 6 mo showed that the elevated erythematous lesion had resolved without treatment (Figure 1C and D).

Twelve months later, repeated endoscopy revealed a similar erythematous elevated lesion < 1 cm in diameter in the anterior wall of the middle body and an erythematous lesion in the fornix (Figure 1E-H). Histological examination of biopsy specimens of the two lesions showed massive atypical medium- to large-sized NK lymphocyte infiltrations with slightly irregular nuclear contours, a dispersed chromatin pattern, and clear cytoplasm (Figure 2A and B). Immunohistochemical stains of NK cells showed CD3+, CD4+, CD5+, CD7+, CD8+, CD16+, CD20+, CD30+, CD56+, CD79a+ (Figure 2C-I). Cytotoxic molecule-associated proteins of T-cell restricted intracellular antigen-1 (TIA-1) and granzyme B were both positive (Figure 2J and K). In situ hybridization for EBV-encoded RNA was negative (Figure 2L). There was no evidence of the involvement of tumor cells in peripheral blood or bone marrow, or of the involvement of small intestine, colon or other organs by computed tomography and positron emission tomography.

A diagnosis of extranodal NK/T-cell lymphoma nasal type was initially considered based on the atypical NK/T-cell infiltrations into gastric mucosa. However, owing to the negative hematological evaluation for EBV infection, including Epstein-Barr anti-viral capsid antigen immunoglobulin M (< 10 times) and anti-Epstein-Barr nuclear antigen (< 10 times), lack of any evidence of the involvement of other organs, stage IE according to the Ann Arbor classification, and lack of aggressive tumor behavior during observation period, the diagnosis was changed to lymphomatoid gastropathy. The patient was not treated with chemotherapy or gastrectomy but rather H. pylori eradication therapy consisting of rabeprazole 10 mg bid, clarithromycin 200 mg bid and amoxicillin 750 mg bid for 7 d. After eradication, no further manifestation of lymphomatoid gastropathy occurred endoscopically and pathologically during 12 mo of follow-up.

DISCUSSION

CD16+/CD56+ NK cells are a subset of lymphocytes which are associated with innate immunity and cytotoxic function against viruses and tumor cells in peripheral blood, lymphoid tissue, spleen and extranodal sites, such as gastrointestinal mucosa[9]. Nevertheless, little is known about the presence and function of these or other NK cells in gastric mucosa. Here, we reported a rare case of self-limited lymphomatoid gastropathy mimicking extranodal NK/T-cell lymphoma, nasal type, in the stomach. Microscopic observation showed sheets of large peculiar cells with indented nuclei and clear cytoplasm with eosinophilic granules. Immunohistochemical analysis of these atypical cells showed CD3+, CD4+, CD5+, CD7+, CD8+, CD16+, CD20+, CD30+, CD56+, CD79a+, TIA-1+ and granzyme B+. In general, although NK cells in gastric mucosa have no cytotoxic function and low levels of TIA-1 and Granzyme B[10], the relatively high TIA-1 and Granzyme B expression of gastric mucosal NK cell infiltrates in this case suggested that these cells did in fact have a cytotoxic function in this patient, most probably in responding to local inflammation or autoimmunity.

The most important differential diagnosis of lymphomatoid gastropathy is to distinguish it from extranodal NK/T cell lymphoma, nasal type, in stomach. In the present case, a diagnosis of “extranodal NK/T cell lymphoma nasal type” was suspected from the immunohistochemical finding of a strong expression of CD56
Extranodal NK/T-cell lymphoma, nasal type, is rarely seen in Western countries but is relatively common in Asia and Central-South American countries, where it accounts for <2% of all newly diagnosed lymphoma in Japan, 6% in Hong Kong, 8% in Korea, and 5% in Taiwan. Histologically, the lymphoma often shows an angiocentric and angiodestructive infiltrate of atypical lymphocytes leading to extensive necrosis. The differential diagnosis of gastrointestinal NK-cell and T-cell lymphomas includes enteropathy-associated T-cell...
Table 1 Characteristics of cases of lymphomatoid gastropathy in the stomach and duodenum

Patient	Ref	Age/sex	Symptom	H. pylori	Location	Endoscopic findings	Follow-up
1	[7]	52/M	UN	-	Stomach	UN A (145)	
2	[7]	58/M	UN	+	Stomach	UN A (50)	
3	[7]	51/M	UN	+	Stomach	UN A (60)	
4	[7]	90/F	UN	+	Stomach	UN A (46)	
5	[7]	55/M	UN	+	Stomach	UN A (53)	
6	[7]	46/M	UN	+	Stomach	UN A (60)	
7	[7]	65/F	UN	+	Stomach	UN A (56)	
8	[7]	56/F	UN	+	Stomach	UN A (29)	
9	[7]	59/F	UN	+	Stomach	UN A (18)	
10	[7]	75/F	UN	+	Stomach	UN A (12)	
11	[8]	31/M	NA	UN	Stomach	Superficial erythema-tous lesion A/P (84)	
12	[8]	27/F	Abd pain	UN	Stomach	Multiple, superficial ulcer A/P (23)	
13	[8]	53/M	NA	UN	Stomach	Gastric lesion A/P (30)	
14	[8]	46/F	UN	Duodenum, colon	Superficial ulcer A/P (36)		
15	[8]	61/F	UN	Duodenum, colon	Multiple ulcers A/P (120)		
This case		57/F	NA	+	Stomach	Multiple, erythema-tous dish-like elevated lesions A (16)	

H. pylori: Helicobacter pylori; M: Male; F: Female; A/P: Alive with persistent disease but without progression; A: Alive; UN: Unknown; NA: Not available.

Table 2 Immunophenotypic findings in cases of lymphomatoid gastropathy in the stomach and duodenum

Patient	Ref	cCD3	CD56	TIA- GRZB	CD7	CD5	CD4	CD8	CD20	EBER
1	[7]	+	+	+	+	-	-	-	-	-
2	[7]	+	+	+	+	-	-	-	-	-
3	[7]	+	+	+	+	-	-	-	-	-
4	[7]	+	+	+	+	-	-	-	-	-
5	[7]	+	+	+	+	-	-	-	-	-
6	[7]	+	+	+	+	-	-	-	-	-
7	[7]	+	+	+	+	-	-	-	-	-
8	[7]	+	+	+	+	-	-	-	-	-
9	[7]	+	+	+	+	-	-	-	-	-
10	[8]	+	+	+	+	-	-	-	-	-
11	[8]	+	+	+	+	-	-	-	-	-
12	[8]	+	+	+	+	-	-	-	-	-
13	[8]	+	+	+	+	-	-	-	-	-
14	[8]	+	+	+	+	-	-	-	-	-
15	[8]	+	+	+	+	-	-	-	-	-

cCD3: Cytoplasmic CD3; TIA: T-cell restricted intracellular antigen; GRZB: Granzyme B; EBER: Epstein-Barr virus-encoded RNA; +: Positive; -: Negative; NA: Not available.

In lymphomatoid gastropathy (Table 2)[32]

NK cells function as cytokine-producing effectors and can act as regulatory cells during inflammation and influence subsequent adaptive immune responses[22]. In acute/chronic inflammation or autoimmune reactions, localization of NK cells has been observed at various subatomic sites, including skin and gastrointestinal tract[18]. H. pylori infection is characterized by marked neutrophil, lymphocyte, monocyte and plasma cell infiltration of gastric mucosa[12]. Chronic H. pylori gastric mucosal infection leads to chronic gastritis with severe inflammatory cell infiltration, which results in progressive gastric mucosal atrophy and intestinal metaplasia with higher potential for the development of gastric tumors[21,23]. Mucosa-associated lymphoid tissue (MALT) lymphoma (70%-80%) is well known to be caused by chronic H. pylori infection into gastric mucosa and after eradication therapy H. pylori-positive MALT lymphoma regresses.

Therefore, we have led to the hypothesis that the pathogenesis of lymphomatoid gastropathy is associated with the gastric mucosal inflammation produced by chronic H. pylori infection. Takeuchi et al[3] reported that 90% cases of lymphomatoid gastropathy were positive for H. pylori infection and that lymphomatoid gastropathy in several patients receiving eradication therapy regressed during follow-up observation. In our case, no further manifestation of lymphomatoid gastropathy was seen for 12 mo after H. pylori eradication. However, other patients have also shown complete resolution without treatment for H. pylori eradication[7,8]. Although lymphomatoid gastropathy may be related with H. pylori infection, a better understanding of lymphomatoid gastropathy and its relationship with H. pylori infection awaits further study.

As shown in Table 1, endoscopic characteristics may include raised ulcers or reddish and congestive flat eleva-
tions with a shallow depression[5]. In all cases, multiple lesions of reddish flat elevations were seen. While some cases may resemble early gastric carcinoma, the endoscopic characteristics of lymphomatoid gastropathy are not clearly understood.

In conclusion, we experienced the rare case of lymphomatoid gastropathy, in which eradication treatment for H. pylori appeared to be effective. Differentiation of extranodal NK/T-cell lymphoma, nasal type and lymphomatoid gastropathy is difficult, and biological and endoscopic characteristics, prognosis and treatment of lymphomatoid gastropathy are unclear. Therefore, it will be better to clarify those characteristics by further case studies or basic research in feature. In any case, at the time these lesions are evaluated with biopsy specimens, the possibility of this benign entity should be closely considered, and excessive treatment should be carefully avoided. In finally, close follow-up for this case of lymphomatoid gastropathy is necessary to exclude any underlying malignancy, because nobody knows etiology of this NK-cell lymphomatoid gastropathy.

REFERENCES

1 Chan JK, Sin VC, Wong KF, Ng CS, Tsang WY, Chan CH, Cheung MM, Lau WH. Nonnalosal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood 1997; 89: 4501-4513

2 Chan JK, Yip TT, Tsang WY, Ng CS, Lau WH, Poon YF, Wong CC, Ma VW. Detection of Epstein-Barr viral RNA in malignant lymphomas of the upper aerodigestive tract. Am J Surg Pathol 1994; 18: 938-946

3 Jaffe ES, Chan JK, Su JI, Frizzera G, Mori S, Feller AC, Ho FC. Report of the Workshop on Nasal and Related Extranodal Angiocentric T/Natural Killer Cell Lymphomas. Definitions, differential diagnosis, and epidemiology. Am J Surg Pathol 1996; 20: 103-111

4 Kim GE, Cho JH, Yang WI, Chung EJ, Suh CO, Park KR, Hong WP, Park YI, Hahn JS, Roh JK, Kim BS. Angiocentric lymphoma of the head and neck: patterns of systemic failure after radiation treatment. J Clin Oncol 2000; 18: 54-63

5 Zhang YC, Sha Zhao JB, Lei Shi MX, Zhang HY, Liu WP. Gastric involvement of extranodal NK/T-cell lymphoma, nasal type: a report of 3 cases with literature review. Int J Surg Pathol 2008; 16: 450-454

6 Kobold S, Merz H, Tiemann M, Mahaud C, Bokemeyer C, Koop I, Fiedler W. Primary NK/T-cell lymphoma nasal type of the stomach with skin involvement: a case report. Rare Tumors 2009; 1: e58

7 Takeuchi K, Yokoyama M, Ishizawa S, Terui Y, Nomura K, Marutaka K, Ninomura M, Fukushima N, Yagyuu T, Nakamine H, Akiyama F, Hoshi K, Matsue K, Hatake K, Oshimi K. Lymphomatoid gastropathy: a distinct clinicopathologic entity of self-limited pseudomalignant NK-cell proliferation. Blood 2010; 116: 5631-5637

8 Mansoor A, Pittalagua S, Beck PL, Wilson WH, Ferry JA, Jaffe ES. NK-cell enteropathy: a benign NK-cell lymphoproliferative disease mimicking intestinal lymphoma: clinicopathologic features and follow-up in a unique case series. Blood 2011; 117: 1447-1452

9 Tagliabue A, Befus AD, Clark DA, Bienenstock J. Characteristics of natural killer cells in the murine intestinal epithelium and lamina propria. J Exp Med 1982; 155: 1785-1796

10 Long EO. Ready for prime time: NK cell priming by dendritic cells. Immunity 2007; 26: 385-387

11 Oshimi K. Progress in understanding and managing natural killer-cell malignancies. Br J Haematol 2007; 139: 532-544

12 Suzuki R, Takeuchi K, Ohshima K, Nakamura S. Extranodal NK/T-cell lymphoma: diagnosis and treatment cues. Hematol Oncol 2008; 26: 66-72

13 Lymphoma Study Group of Japanese Pathologists. The world health organization classification of malignant lymphomas in Japan: incidence of recently recognized entities. Pathol Int 2000; 50: 696-702

14 Au WY, Ma SY, Chim CS, Choy C, Loong F, Lie AK, Lam CC, Leung AY, Tse E, Yau CC, Liang RK, Kwong YL. Clinicopathologic features and treatment outcome of mature T-cell and natural killer-cell lymphomas diagnosed according to the World Health Organization classification scheme: a single-center experience of 10 years. Ann Oncol 2005; 16: 206-214

15 Ko YH, Kim CW, Park CS, Jang HK, Lee SS, Kim SH, Ree HJ, Lee JD, Kim SW, Huh JR. REAL classification of malignant lymphomas in the Republic of Korea: incidence of recently recognized entities and changes in clinicopathologic features. Hematolymphoreticular Study Group of the Korean Society of Pathologists. Revised European-American lymphoma. Cancer 1998; 83: 806-812

16 Chen CY, Yao M, Tang JL, Tsay W, Wang CC, Chou WC, Su JJ, Lee FY, Liu MC, Tien HF. Chromosomal abnormalities of 200 Chinese patients with non-Hodgkin's lymphoma in Taiwan: with special reference to T-cell lymphoma. Ann Oncol 2004; 15: 1091-1096

17 Sugimoto M, Kajimura M, Hanai H, Shiraishi N, Tanioka F, Kaneko E. G-CSF-producing gastric anaplastic large cell lymphoma complicating esophageal cancer. Dig Dis Sci 1999; 44: 2035-2038

18 Kim JH, Lee JH, Lee J, Oh SO, Chang DK, Rhee PL, Kim JJ, Rhee JC, Lee J, Kim WS, Ko YH. Primary NK-/T-cell lymphoma of the gastrointestinal tract: clinical characteristics and endoscopic findings. Endoscopy 2007; 39: 156-160

19 Ko YH, Cho EY, Kim JE, Lee SS, Huh JR, Chang HK, Yang WI, Kim CW, Kim SW, Ree HJ. NK and NK-like T-cell lymphoma in extranasal sites: a comparative clinicopathological study according to site and EBV status. Histopathology 2004; 44: 480-489

20 Sasaki M, Matsue K, Takeuchi M, Mitome M, Hirose Y. Successful treatment of disseminated nasal NK-/T-cell lymphoma using double autologous peripheral blood stem cell transplantation. Int J Hematol 2000; 71: 75-78

21 Harabuchi Y, Yamanaka N, Kataura A, Imai S, Kinoshita T, Mizuno F, Osato T. Epstein-Barr virus in nasal T-cell lymphomas in patients with lethal midline granuloma. Lancet 1990; 335: 128-130

22 Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol 2008; 9: 503-510

23 Sugimoto M, Ohno T, Graham DY, Yamaoka Y. Gastric mucosal interleukin-17 and -18 mRNA expression in Helicobacter pylori-induced Mongolian gerbils. Cancer Sci 2009; 100: 2152-2159

24 Watanabe T, Tada M, Nagai H, Sasaki S, Nakao M. Helicobacter pylori infection induces gastric cancer in mongolian gerbils. Gastroenterology 1998; 115: 642-648

25 Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamauchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001; 345: 784-789