THE EXISTENCE OF MULTI-PEAK POSITIVE SOLUTIONS FOR NONLINEAR KIRCHHOFF EQUATIONS ON \mathbb{R}^3

HONG CHEN AND QIAOQIAO HUA

Abstract. In this work, we study the following Kirchhoff equation

\[
\begin{aligned}
- (\varepsilon^2 a + \varepsilon b \int_{\mathbb{R}^3} |\nabla u|^2) \Delta u + u &= Q(x)u^{q-1}, \quad x \in \mathbb{R}^3, \\
u &\to 0, \quad \text{as } |x| \to +\infty,
\end{aligned}
\]

where $a, b > 0$ are constants, $2 < q < 6$, and $\varepsilon > 0$ is a parameter. Under some suitable assumptions on the function $Q(x)$, we obtain that the equation above has positive multi-peak solutions concentrating at a critical point of $Q(x)$ for $\varepsilon > 0$ sufficiently small, by using the Lyapunov-Schmidt reduction method. We extend the result in (Discrete Contin. Dynam. Systems 6(2000), 39–50) to the nonlinear Kirchhoff equation.

1. Introduction and main results

In this paper, we consider the following Kirchhoff equation

\[
\begin{aligned}
- (\varepsilon^2 a + \varepsilon b \int_{\mathbb{R}^3} |\nabla u|^2) \Delta u + u &= Q(x)u^{q-1}, \quad x \in \mathbb{R}^3, \\
u &\to 0, \quad \text{as } |x| \to +\infty,
\end{aligned}
\]

where $a, b > 0$ are constants, $2 < q < 6$, $\varepsilon > 0$ is a parameter and $Q(x) : \mathbb{R}^3 \to \mathbb{R}$ is a smooth bounded function.

Problem (1.1) and its variants have been studied extensively in the literature. To extend the classical D’Alembert’s wave equations for free vibration of elastic strings, Kirchhoff [1] first proposed the following time-dependent wave equation

\[
\frac{\partial^2 u}{\partial t^2} - \rho \frac{\partial^2 u}{\partial t^2} + \left(\frac{P_0}{h} + \frac{E}{2L} \int_0^L \left| \frac{\partial u}{\partial x} \right|^2 dx \right) \frac{\partial^2 u}{\partial x^2} = 0.
\]

Bernstein [2] and Pohozaev [3] studied the above type of Kirchhoff equations quite early. In order to study the problem (1.2) preferably, Lions [4] introduced an abstract functional framework to this problem. After that, many interesting results of Kirchhoff equations can be found in e.g. [5–10] and the reference therein. From a mathematical point of view, Kirchhoff equation is nonlocal, in the sense that the term $\left(\int_{\mathbb{R}^3} |\nabla u|^2 \right) \Delta u$ depends not only on Δu, but also on the integral of $|\nabla u|^2$ over the whole space. This feature brings new mathematical difficulties, which makes the study of Kirchhoff type equations particularly meaningful. We refer to e.g. [11–14] for mathematical researches on Kirchhoff type equations in bounded domains and in the whole space.
In fact, equation (1.1) is closely related to the Schrödinger equations. When \(a = 1 \) and \(b = 0 \), equation (1.1) is reduced to the perturbed Schrödinger equation. Kwong [13] considered the classical Schrödinger equation

\[
- \Delta u + u = u^p, \quad x \in \mathbb{R}^N,
\]

where \(1 < p < +\infty \) if \(N = 1, 2 \), and \(1 < p < \frac{N+2}{N-2} \) if \(N \geq 3 \). Equation (1.3) has a unique radial symmetric and nondegenerate positive solution. Based on this property, Cao, Noussair and Yan [16] proved the existence of multi-peak solutions for equation

\[
- \Delta u + \lambda^2 u = Q(x)|u|^{q-2}u, \quad x \in \mathbb{R}^N,
\]

where \(\lambda \neq 0 \), \(N \geq 3 \) and \(2 < q < 2N/(N-2) \).

Dancer and Yan [17] studied the following equation

\[
\begin{cases}
- \varepsilon^2 \Delta u + u = Q(y)u^{p-1}, & u > 0, \quad y \in \mathbb{R}^N, \\
u \to 0, & \text{as } |y| \to +\infty,
\end{cases}
\]

where \(\varepsilon > 0 \) is a parameter, \(2 < p < +\infty \) if \(N = 2 \) and \(2 < p < 2N/(N-2) \) if \(N > 2 \). They not only proved that the Schrödinger equation has positive multi-peak solutions concentrating at a designated saddle point or a strictly local minimum point of \(Q(y) \) in \(\mathbb{R}^N \), but also showed that there is no multi-peak solution concentrating at a strictly local maximum point of \(Q(y) \) in \(\mathbb{R}^N \). Besides, many interesting results of multi-peak solutions can be found in e.g. [18–26] and the reference therein.

Based on the uniqueness and nondegeneracy property of equation (1.3), the authors in [27] proved the uniqueness and nondegeneracy of positive solutions for equation

\[
- \left(a + b \int_{\mathbb{R}^3} |\nabla u|^2 \right) \Delta u + u = u^p, \quad u > 0 \quad \text{in } \mathbb{R}^3,
\]

where \(1 < p < 5 \). Then, by using Lyapunov-Schmidt reduction method, they constructed the existence and the uniqueness of single peak solutions to equation

\[
- \left(\varepsilon^2 a + \varepsilon b \int_{\mathbb{R}^3} |\nabla u|^2 \right) \Delta u + V(x)u = u^p, \quad u > 0 \quad \text{in } \mathbb{R}^3,
\]

where \(1 < p < 5 \) and \(\varepsilon > 0 \) is sufficiently small.

Luo, Peng and Wang [28] proved equation (1.7) has positive multi-peak solutions concentrating at different points if \(\varepsilon > 0 \) is sufficiently small. It should be pointed that, they constructed the multi-peak solutions of equation (1.7) based on the following systems

\[
- \left(a + b \sum_{j=1}^{k} \int_{\mathbb{R}^3} |\nabla u_j|^2 \right) \Delta u_i + V(a_i)u_i = (u_i)^p, \quad u_i > 0, \quad i = 1, \ldots, k, \quad x \in \mathbb{R}^3.
\]

They also showed that \(a_i \) (\(1 \leq i \leq k \)) are critical points of \(V \), and there exist the multi-peak solutions of the form \(u_{\varepsilon} = \sum_{i=1}^{k} u_i \left(\frac{x - y_{\varepsilon,i}}{\varepsilon} \right) + \varphi_{\varepsilon} \).

Note that in [28], they didn’t consider the existence of multi-peak solutions concentrating at the same point \((a_1 = \cdots = a_k) \) to equation (1.7). When \(a_1 = a_2 = \cdots = a_k, \ |y_{\varepsilon,i} - y_{\varepsilon,j}| \to 0 \ (i \neq j) \) as \(\varepsilon \to 0 \), but we cannot get the result of \(|y_{\varepsilon,i} - y_{\varepsilon,j}|/\varepsilon \to +\infty \ (i \neq j) \) as \(\varepsilon \to 0 \). Therefore, we must impose additional conditions on \(y_{\varepsilon,i} \).
Recently, Cui et al. [29] proved the existence and local uniqueness of normalized multi-peak solutions to the following Kirchhoff equation

\[
\begin{cases}
- (a + b \int_{\mathbb{R}^3} |\nabla u\|^2) \Delta u + (\lambda + V(x)) u = \beta \lambda u^p, \quad u > 0, \quad x \in \mathbb{R}^3, \\
u \in H^1(\mathbb{R}^3),
\end{cases}
\]

where \(a > 0, \ 1 < p < 5, \ \lambda, \ \beta \lambda > 0 \) are parameters, \(\int_{\mathbb{R}^3} u^2 = 1 \), and \(V(x) : \mathbb{R}^3 \to \mathbb{R} \) is a bounded continuous function.

Inspired by the literatures [17, 27–29], we apply the conditions of \(Q(x) \) in [17] to \(\mathbb{R}^3 \). Then, we consider the existence of positive multi-peak solutions to the equation (1.1) concentrating at a critical point of \(Q(x) \).

Now we give some definitions and assumptions.

Definition 1.1. Let \(m \in \mathbb{N}_+ \), \(a_0 \in \mathbb{R}^3 \), we say that \(u_{\varepsilon} \) is a m-peak solution of (1.1) if \(u_{\varepsilon} \) satisfies

(i) \(u_{\varepsilon} \) has \(m \) local maximum points \(y_{\varepsilon,i} \in \mathbb{R}^3, \ i = 1, \ldots, m \), satisfying

\[
y_{\varepsilon,i} \to a_0
\]
as \(\varepsilon \to 0 \) for each \(i \);

(ii) For any given \(\tau > 0 \), there exists \(R \gg 1 \), such that

\[
|u_{\varepsilon}(x)| \leq \tau, \quad x \in \mathbb{R}^3 \setminus \bigcup_{i=1}^{m} B_{R\varepsilon}(y_{\varepsilon,i});
\]

(iii) There exists \(C > 0 \) such that

\[
\int_{\mathbb{R}^3} (\varepsilon a |\nabla u_{\varepsilon}|^2 + u_{\varepsilon}^2) \leq C\varepsilon^3.
\]

We assume that \(Q(x) \) satisfies the following conditions:

(\(Q_1 \)) \(Q(x) \) is a smooth bounded function in \(\mathbb{R}^3 \).

(\(Q_2 \)) \(x_0 = 0 \) is a critical point of \(Q(x) \).

(\(Q_3 \)) \(Q(x) \) has the following expansion (after suitably rotating the coordinate system)

\[
Q(x) = Q(0) + P_1(x') - P_2(x'') + R(x), \quad x \in B_3(0),
\]

where \(Q(0) > 0, \ \delta > 0, \ x = (x', x''), \ x' = (x_1, \ldots, x_t), \ x'' = (x_{t+1}, \ldots, x_3), \ t \in \{1, 2, 3\}, \ P_1 \) and \(P_2 \) satisfy

\[
P_1(x') = \lambda |x'|^{h_1}, \quad |x'| \leq \delta, \quad (1.11)
\]

\[
|DP_2(x''), x''| \geq \lambda |x''|^h, \quad |x''| \leq \delta, \quad (1.12)
\]

\[
|D^m P_2(x'')| = O(|x''|^{h-m}), \quad m = 0, \ldots, [h], \quad |x''| \leq \delta, \quad (1.13)
\]

for some \(h_1 \geq h \geq 2 \) and some positive constant \(\lambda > 0 \), and

\[
R(x) = O(|x|^{h_1+\sigma}), \quad \text{for some } \sigma > 0 \text{ as } |x| \to 0. \quad (1.14)
\]

Remark 1.2. \(Q(x) = \sin |x|^2 + 1, \ x \in \mathbb{R}^3, \) satisfies the conditions \((Q_1)-(Q_3) \).

Assume \(u, v \in H^1(\mathbb{R}^3) \), denote

\[
u_{\varepsilon,y}(x) = u \left(x - \frac{y}{\varepsilon} \right), \ y \in \mathbb{R}^3,
\]

\[
\langle u, v \rangle_\varepsilon = \int_{\mathbb{R}^3} (\varepsilon^2 a \nabla u \nabla v + uv), \quad \|u\|_\varepsilon = \langle u, u \rangle_\varepsilon^{1/2},
\]

\[
H_\varepsilon = \{ u \in H^1(\mathbb{R}^3) : \|u\|_\varepsilon < +\infty \}.
\]
The energy functional corresponding to equation (1.1) is

\[I_\varepsilon(u) = \frac{1}{2} \|u\|^2 \varepsilon + \frac{\varepsilon b}{4} \left(\int_{\mathbb{R}^3} |\nabla u|^2 \right)^2 - \frac{1}{q} \int_{\mathbb{R}^3} Q(x) u^q, \quad u \in H_\varepsilon, \]

(1.15)

where \(u_+ = \max(u, 0) \). It is standard to verify that \(I_\varepsilon \in C^2(H_\varepsilon) \). So we just need to find a critical point of \(I_\varepsilon \in C^2(H_\varepsilon) \).

For \(k \in \mathbb{N}^+ \), let \(w \) be the unique positive radial solution (see Lemma 2.2) to equation

\[-\left(a + bk \int_{\mathbb{R}^3} |\nabla u|^2 \right) \Delta u + u = Q(0) u^{q-1}. \]

(1.16)

Then we want to construct \(k \)-peak solutions to equation (1.1) concentrating at the critical point \(x_0 = 0 \) of \(Q(x) \) by using the uniqueness and nondegeneracy property of \(w \).

Our main results are as follows.

Theorem 1.3. Assume that \(Q(x) \) satisfies \((Q_1)-(Q_3)\). Then, for any \(k \in \mathbb{N}^+ \), there exists \(\varepsilon_0 = \varepsilon(k) \) such that for \(\varepsilon \in (0, \varepsilon_0] \), equation (1.1) has at least one \(k \)-peak solution of the form

\[u_\varepsilon = \sum_{i=1}^{k} w_{\varepsilon,y_{\varepsilon,i}} + \varphi_\varepsilon, \]

where \(y_{\varepsilon,i} \in \mathbb{R}^3 \), \(i = 1, \ldots, k \), \(\varphi_\varepsilon \in H^1(\mathbb{R}^3) \), and as \(\varepsilon \to 0 \),

\[y_{\varepsilon,i} \to 0, \quad i = 1, \ldots, k, \]

\[\frac{|y_{\varepsilon,i} - y_{\varepsilon,j}|}{\varepsilon} \to +\infty, \quad i \neq j, \quad i, j = 1, \ldots, k, \]

\[\|\varphi_\varepsilon\|_\varepsilon = o(\varepsilon^{\frac{3}{4}}). \]

Remark 1.4. Theorem 1.3 extend the result got by Dancer and Yan [17] about the existence of solutions for the nonlinear Schrödinger equation to the nonlinear Kirchhoff equation (1.1).

In this paper, we prove Theorem 1.3 by using Lyapunov-Schmidt reduction method. Since there is a nonlocal term, we encounter some new difficulties which involve some complicated and technical estimates. To our knowledge, the result we obtain is new.

Our notations are standard. We use \(B_r(x) \) (and \(\overline{B}_r(x) \)) to denote open (and close) balls in \(\mathbb{R}^3 \) centred at \(x \) with radius \(r \), and \(B^c_r(x) \) to denote the complementary set of \(B_r(x) \) in \(\mathbb{R}^3 \). Unless otherwise stated, we write \(\int u \) to denote Lebesgue integrals over \(\mathbb{R}^3 \), and \(\|u\|_{L^p}, \|u\|_{H^1} \) to mean \(L^p \)-norm, \(H^1 \)-norm respectively. We will use \(C, C_j (j \in \mathbb{N}) \) to denote various positive constants, and \(O(t), o(t), o_R(1), o_R(1) \) to mean \(|O(t)| \leq C|t|, o(t)/t \to 0, o_R(1) \to 0 \) as \(t \to 0 \) and \(o_R(1) \to 0 \) as \(R \to +\infty \) respectively.

This paper is organized as follows. In section 2, we recall some definitions and lemmas. In section 3, we give the finite dimensional reduction process and in section 4, we prove Theorem 1.3.

2. Some preliminaries

In this section, we introduce some preliminaries.

Lemma 2.1. ([28], Lemma 2.1) For any \(2 \leq q \leq 6 \), there exists a constant \(C > 0 \) independent of \(\varepsilon \), such that

\[\|u\|_{L^q} \leq C \varepsilon^{\frac{3}{4} - \frac{q}{2}} \|u\|_{\varepsilon^2}, \quad \forall \ u \in H_\varepsilon. \]

(2.1)
Before stating the lemma that follows, we first give a truth that U is a unique positive radial solution to equation

$$
\begin{cases}
-\Delta u + u = u^{q-1}, \quad x \in \mathbb{R}^3, \\
u \in H^1(\mathbb{R}^3), \\
u(0) = \max_{x \in \mathbb{R}^3} u(x),
\end{cases}
$$

which satisfies

$$
\begin{align*}
\lim_{|x| \to \infty} |x| e^{||x|} U(|x|) &= C > 0, \\
\lim_{|x| \to \infty} \frac{U'(|x|)}{U(|x|)} &= -1.
\end{align*}
$$

Lemma 2.2. ([27], Theorem 1.2) For any $k \in \mathbb{N}^+, \ a, b > 0, \ 2 < q < 6$, and $Q(x)$ satisfying (Q_1)–(Q_3), there exists a unique positive radial solution $w \in H^1(\mathbb{R}^3)$ satisfying

$$- \left(a + bk \int_{\mathbb{R}^3} |\nabla u|^2 \right) \Delta u + u = Q(0) u^{q-1}.$$

(2.3)

Moreover, w is nondegenerate in $H^1(\mathbb{R}^3)$ in the sense that there holds

$$\text{Ker } L = \text{span} \{ \frac{\partial w}{\partial x_1}, \frac{\partial w}{\partial x_2}, \frac{\partial w}{\partial x_3} \},$$

where $L : H^1(\mathbb{R}^3) \to H^1(\mathbb{R}^3)$ is the linear operator defined as

$$L \varphi = - \left(a + bk \int_{\mathbb{R}^3} |\nabla \varphi|^2 \right) \Delta \varphi - 2bk \left(\int_{\mathbb{R}^3} \nabla w \nabla \varphi \right) \Delta w + \varphi - (q - 1)Q(0) w^{q-2} \varphi, \forall \varphi \in H^1(\mathbb{R}^3).$$

(2.4)

Proof. Assume u is an arbitrary positive solution to equation (2.2). Write

$$c_k = a + bk \int_{\mathbb{R}^3} |\nabla u|^2. \quad \quad (2.5)$$

Let $\tilde{u}(x) = (Q(0))^{1/2} u(\sqrt{c_k} x)$, then $\tilde{u}(x)$ satisfies

$$-\Delta \tilde{u}(x) + \tilde{u}(x) = \tilde{u}^{q-1}(x),$$

in the sense that $\tilde{u}(x)$ solves equation (2.2). Thus, by the uniqueness of U we have

$$\tilde{u}(x) = U(x - z),$$

for some $z \in \mathbb{R}^3$. The relationship between u and \tilde{u} implies that

$$u(x) = (Q(0))^{-1/2} U \left(\frac{1}{\sqrt{c_k}} x - z \right) =: \lambda_1 U \left(\frac{1}{\sqrt{c_k}} x - z \right).$$

(2.6)

By (2.6), we obtain

$$\int |\nabla u|^2 = \lambda_1^2 \sqrt{c_k} \int |\nabla U|^2. \quad \quad (2.7)$$

Combining (2.5) and (2.7) yields

$$c_k = a + bk \lambda_1^2 \| \nabla U \|_{L^2}^2 \sqrt{c_k} =: a + \tilde{b} \sqrt{c_k}. \quad \quad (2.8)$$
Since $c_k > 0$, equation (2.8) is uniquely solved by
\[
\sqrt{c_k} = \frac{\tilde{b} + \sqrt{\tilde{b}^2 + 4a}}{2},
\] (2.9)
which shows that c_k is independent of the choice of positive solutions to equation (2.3).

Additionally, since equation (2.2) has a unique positive radial solution, (2.6) implies that equation (2.3) has a unique positive radial solution w when $z = 0$.

The above proof implies that $w(x) = \lambda_1 U(\eta x)$ where $\eta = \frac{1}{\sqrt{c_k}}$. And since U decays exponentially at infinity, we infer that
\[
\nabla w(x), \ w(x) = O(|x|^{-1}e^{-\eta|x|}) \text{ as } |x| \to \infty.
\] (2.10)

Lemma 2.3. ([30], Lemma 3.7) Assume $u, u' \in \mathbb{R}^n \to \mathbb{R}$ are positive radial continuous functions satisfying
\[
u(x) \sim |x|^a e^{-b|x|}, \ u'(x) \sim |x|^a e^{-b'|x|} \ (|x| \to \infty),
\]
where $a, a' \in \mathbb{R}$, $b, b' > 0$. Let $\xi \in \mathbb{R}^n$ tend to infinity and $u_\xi(x) = u(x - \xi)$. Then the following asymptotic estimates hold:

(i) If $b < b'$, then
\[
\int_{\mathbb{R}^n} u_\xi u' \sim e^{-b|\xi|}|\xi|^a.
\]

If $b > b'$, then replace a and b with a' and b'.

(ii) If $b = b'$, suppose, for simplicity, that $a \geq a'$, then
\[
\int_{\mathbb{R}^n} u_\xi u' \sim \begin{cases}
 e^{-b|\xi|}|\xi|^{a+a'+\frac{n+1}{2}}, & a' > -\frac{n+1}{2}; \\
 e^{-b|\xi|}|\xi|^a \log|\xi|, & a' = -\frac{n+1}{2}; \\
 e^{-b|\xi|}|\xi|^a, & a' < -\frac{n+1}{2}.
\end{cases}
\]

Combining (2.10) and Lemma 2.3 yields, for any $r, s > 0$ with $r \neq s$, we have, as $\varepsilon \to 0$,
\[
\int_{\mathbb{R}^3} w^r_{\varepsilon, y_i} w^s_{\varepsilon, y_j} = O\left(\varepsilon^2 e^{-\min\{r, s\} \frac{|y_i - y_j|}{\varepsilon}} \frac{|y_i - y_j|}{\varepsilon}^{-\min\{r, s\}}\right),
\] (2.11)
\[
\int_{\mathbb{R}^3} |\nabla w_{\varepsilon, y_i} \nabla w_{\varepsilon, y_j}| = O\left(\varepsilon^2 e^{-\frac{|y_i - y_j|}{\varepsilon}}\right).
\] (2.12)

Particularly, there exists some constants $C > 0$, such that
\[
\int_{\mathbb{R}^3} w^r_{\varepsilon, y_i} w^s_{\varepsilon, y_j} \leq C \varepsilon^2 e^{-\min\{r, s\} \frac{|y_i - y_j|}{\varepsilon}},
\] (2.13)
\[
\int_{\mathbb{R}^3} |\nabla w_{\varepsilon, y_i} \nabla w_{\varepsilon, y_j}| \leq C \varepsilon e^{-\frac{|y_i - y_j|}{\varepsilon}}.
\] (2.14)

In the following sections, we will use inequality (2.1), (2.13) and (2.14) repeatedly. When $r = s$, the situation is complicated. But when $r = s \geq 1$, inequality (2.13) still holds.

Definition 2.4. ([31], Definition B.1) Let Y and A be closed subsets of a topological space X. Then $\text{Cat}_X(A, Y)$ is the least integer k such that $A = \bigcup_{j=0}^k A_j$, where, for $0 \leq j \leq k$, A_j is closed, and there exists $h_j \in C([0, 1] \times A_j, X)$ such that

(i) $h_j(0, x) = x$ for $x \in A_j$, $0 \leq j \leq k$;

(ii) $h_0(1, x) \in Y$ for $x \in A_0$ and $h_0(t, x) = x$ for $x \in A_0 \cap Y$ and $t \in [0, 1]$;
(iii) \(h_j(1, x) = x_j \) for \(x \in A_j \) and some \(x_j \in X, \ 1 \leq j \leq k. \) Particularly, if \(Y \) is empty, then write \(\text{Cat}_X(A) = \text{Cat}_X(A, \emptyset). \)

From the Definition 2.4, we see \(\text{Cat}_X(A, Y) \geq 1 \) if \(A \) can not be deformed into a subset of \(Y \) within \(X. \)

Lemma 2.5. (31, Proposition 2.2) Suppose that \(F(x) \) is a \(C^2 \) function defined in a bounded domain \(\Omega \subset \mathbb{R}^k. \) If \(F \) satisfies either \(F(x) > c \) or \(\frac{\partial F(x)}{\partial n} > 0 \) at each \(x \in \partial \Omega, \) where \(n \) is the outward unit normal of \(\partial \Omega \) at \(x, \) then

\[
\# \{ x : DF(x) = 0, \ x \in F^c \} \geq \text{Cat}_{F^c}(F^c),
\]

(2.15) where \(F^c = \{ x : x \in \Omega, \ F(x) \leq c \}. \) In particular, \(F(x) \) has at least one critical point in \(F^c. \)

Lemma 2.6. (31, Proposition 2.3) Suppose that \(F(x) \) is a \(C^2 \) function defined in a bounded domain \(\Omega \subset \mathbb{R}^k. \) Let \(c_1, c_2 \) be two constants such that neither \(c_2 \) nor \(c_1 \) is a critical value of \(F(x). \) If \(F \) satisfies either \(F(x) < c_1 \) or \(\frac{\partial F(x)}{\partial n} > 0 \) for each \(x \in \partial \Omega, \) then

\[
\# \{ x : DF(x) = 0, \ x \in F^{c_2}\setminus F^{c_1} \} \geq \text{Cat}_{F^{c_2}}(F^{c_2}, F^{c_1}).
\]

(2.16) In particular, if \(F^{c_2} \) cannot be deformed into \(F^{c_1}, \) \(F \) has at least one critical point in \(F^{c_2}\setminus F^{c_1}. \)

Lemma 2.7. (32, Proposition B.1) Suppose that \(X \) and \(\Gamma \) are two compact sets in \(\mathbb{R}^3 \) satisfying \(\Gamma \subset X. \) Let

\[
K = X \times \cdots \times X,
\]

(2.17)

\[
L_1 = \Gamma \times X \times \cdots \times X \cup X \times \Gamma \times \cdots \times X \cup X \times \cdots \times X \times \Gamma,
\]

(2.18)

\[
L_2 = L_1 \cup D, \quad D = \{ Y = (y_1, \ldots, y_k) : y_i = y_j \text{ for some } i \neq j \},
\]

(2.19)

If \(H^m(X, \Gamma) \neq 0 \) for some \(m \geq 1, \) then \(H_*(K, L_2) \neq 0. \) In particular, \(K \) cannot be deformed into \(L_2. \)

3. Finite dimensional reduction

In this section we complete Step 1 as mentioned in Section 1. Denote

\[
Y = (y_1, \ldots, y_k) \in \mathbb{R}^k \times \cdots \times \mathbb{R}^k, \quad W_{\epsilon, Y} = \sum_{i=1}^{k} \epsilon w_{\epsilon, y_i},
\]

\[
D_{\epsilon, \delta}^k = \left\{ Y : y_i \in B_\delta(0), \ \frac{\eta |y_i - y_j|}{\epsilon} \geq R_1, \ i, j = 1, \ldots, k, \ i \neq j \right\},
\]

where \(R_1 > 0 \) is a fixed large constant. Let

\[
E_{\epsilon, Y}^k = \left\{ \varphi \in H_\epsilon : \left(\varphi, \frac{\partial w_{\epsilon, y_i}}{\partial y_{ij}} \right)_\epsilon = 0, \ i = 1, \ldots, k, \ j = 1, 2, 3 \right\},
\]

and define

\[
J_{\epsilon}(Y, \varphi) = I_\epsilon(W_{\epsilon, Y} + \varphi), \ \forall (Y, \varphi) \in D_{\epsilon, \delta}^k \times E_{\epsilon, Y}^k.
\]

Expand \(J_{\epsilon}(Y, \varphi) \) near \(\varphi = 0 \) for each fixed \(Y: \)

\[
J_{\epsilon}(Y, \varphi) = J_{\epsilon}(Y, 0) + l_{\epsilon, Y}(\varphi) + \frac{1}{2} Q_{\epsilon, Y}(\varphi) + R_{\epsilon, Y}(\varphi),
\]

(3.1)
where
\[I_{\varepsilon,Y}(\varphi) = \langle I_{\varepsilon}'(W_{\varepsilon,Y}), \varphi \rangle = \langle W_{\varepsilon,Y}, \varphi \rangle_{\varepsilon} + \varepsilon b \int |\nabla W_{\varepsilon,Y}|^2 \int \nabla W_{\varepsilon,Y} \nabla \varphi - \int Q(x)W_{\varepsilon,Y}^{q-1} \varphi, \] (3.2)

\[Q_{\varepsilon,Y}(\varphi) = \langle I_{\varepsilon}''(W_{\varepsilon,Y}), \varphi \rangle = \langle \varphi, \varphi \rangle_{\varepsilon} + 2\varepsilon b \int |\nabla W_{\varepsilon,Y} \nabla \varphi|^2 + \varepsilon b \int |\nabla \varphi|^2 - (q - 1) \int Q(x)W_{\varepsilon,Y}^{q-2} \varphi^2, \] (3.3)

and
\[R_{\varepsilon,Y}(\varphi) = \frac{\varepsilon b}{4} \left(\int |\nabla \varphi|^2 \right)^2 + \varepsilon b \int \nabla W_{\varepsilon,Y} \nabla \varphi \int |\nabla \varphi|^2 - \frac{1}{q} \int Q(x)(W_{\varepsilon,Y} + \varphi)^q + \frac{1}{q}(q - 1) \int Q(x)W_{\varepsilon,Y}^{q-2} \varphi^2. \] (3.4)

In terms of \(Q_{\varepsilon,Y}(\varphi), L_{\varepsilon,Y}: E_{\varepsilon,Y}^k \rightarrow E_{\varepsilon,Y}^k \) is a bounded linear mapping defined by:
\[\langle L_{\varepsilon,Y}\varphi_1, \varphi_2 \rangle_{\varepsilon} = \langle \varphi_1, \varphi_2 \rangle_{\varepsilon} + \varepsilon b \int |\nabla W_{\varepsilon,Y}|^2 \int \nabla \varphi_1 \nabla \varphi_2 + 2\varepsilon b \int \nabla W_{\varepsilon,Y} \nabla \varphi_1 \int \nabla W_{\varepsilon,Y} \nabla \varphi_2 - (q - 1) \int Q(x)W_{\varepsilon,Y}^{q-2} \varphi_1 \varphi_2, \quad \forall \varphi_1, \varphi_2 \in E_{\varepsilon,Y}^k. \] (3.5)

The following result shows that \(L_{\varepsilon,Y} \) is invertible when restricted on \(E_{\varepsilon,Y}^k \).

Lemma 3.1. There exist \(\rho > 0, \varepsilon_0 > 0 \) and \(\delta_0 > 0 \), such that for every \(\varepsilon \in (0, \varepsilon_0] \) and \(\delta \in (0, \delta_0] \), there holds
\[\|L_{\varepsilon,Y}\varphi\|_{\varepsilon} \geq \rho\|\varphi\|_{\varepsilon}, \quad \forall \varphi \in E_{\varepsilon,Y}^k, \]
uniformly with respect to \(Y \in D_{\varepsilon,\delta}^k \).

Proof. We use a contradiction argument. Assume that there exist \(\varepsilon_n \rightarrow 0, \delta_n \rightarrow 0, Y_n \in D_{\varepsilon_n,\delta_n}^k \) and \(\varphi_n \in E_n \equiv E_{\varepsilon_n,Y_n}^k \) such that
\[\langle L_{\varepsilon_n,Y_n}\varphi_n, h_n \rangle_{\varepsilon_n} = o_n(1)\|\varphi_n\|_{\varepsilon_n}\|h_n\|_{\varepsilon_n}, \quad \forall h_n \in E_n. \] (3.6)

With no loss of generality, we assume that \(\|\varphi_n\|_{\varepsilon_n}^2 = \varepsilon_n^3 \), and denote
\[\varphi_{n,i_0}(x) = \varphi_n(\varepsilon_n x + y_{n,i_0}), \quad i_0 = 1, 2, \ldots, k; \]
\[E_n = \{h_{n,i_0}(x) : h_n(x) \in E_n, 1 \leq i_0 \leq k\}. \]
Substituting (3.5) into (3.6), we obtain
\[
\int \left(a \nabla \varphi_{n,i_0} \nabla h_{n,i_0} + \varphi_{n,i_0} h_{n,i_0} \right) \\
+ b \int \left(k |\nabla w|^2 + \sum_{i \neq j} \nabla w \left(x + \frac{y_{n,i_0} - y_{n,j}}{\varepsilon_n} \right) \nabla w \left(x + \frac{y_{n,i_0} - y_{n,j}}{\varepsilon_n} \right) \right) \nabla \varphi_{n,i_0} \nabla h_{n,i_0} \\
+ 2b \int \sum_{i=1}^k \nabla w \left(x + \frac{y_{n,i_0} - y_{n,i}}{\varepsilon_n} \right) \nabla \varphi_{n,i_0} \nabla h_{n,i_0} \\
- (q-1) \int Q(\varepsilon_n x + y_{n,i_0}) \left(\sum_{i=1}^k w \left(x + \frac{y_{n,i_0} - y_{n,i}}{\varepsilon_n} \right) \right)^{q-2} \varphi_{n,i_0} h_{n,i_0} \\
= o_n(1) \left(\int \left(a |\nabla h_{n,i_0}|^2 + (h_{n,i_0})^2 \right) \right)^{\frac{1}{2}}.
\]

(3.7)

Since

\[
\|\varphi_n\|_n^2 = \varepsilon_n^3 \Rightarrow \int \left(a |\nabla \varphi_{n,i_0}|^2 + (\varphi_{n,i_0})^2 \right) = 1,
\]

we infer that \{\varphi_{n,i_0}\} is a bounded sequence in \(H^1(\mathbb{R}^3)\) for any \(1 \leq i_0 \leq k\). Hence, up to a subsequence, there exists \(\varphi \in H^1(\mathbb{R}^3)\) such that

\[
\varphi_{n,i_0} \rightharpoonup \varphi \quad \text{in} \quad H^1(\mathbb{R}^3),
\]

\[
\varphi_{n,i_0} \rightarrow \varphi \quad \text{in} \quad L^p_{\text{loc}}(\mathbb{R}^3), \quad 1 \leq p < 6,
\]

\[
\varphi_{n,i_0} \rightarrow \varphi \quad \text{a.e. in} \quad \mathbb{R}^3.
\]

Next, we will prove that \(\varphi \equiv 0\). For any \(i = 1, \ldots, k, \ j = 1, 2, 3\),

\[
\int \left(\varepsilon_n^2 a \nabla \varphi_n \nabla \left(\frac{\partial w_{\varepsilon,y}}{\partial y_{ij}} \right) + \varphi_n \frac{\partial w_{\varepsilon,y}}{\partial y_{ij}} \right) = 0
\]

is equivalent to

\[
\int \left(a \nabla \varphi_{n,i_0} \nabla \left(\frac{\partial w}{\partial x_j} \right) + \varphi_{n,i_0} \frac{\partial w}{\partial x_j} \right) = 0.
\]

(3.8)

Thus, we can define an equivalent norm \(\|u\|_1^2 = \int (a |\nabla u|^2 + u^2)\) in \(H^1(\mathbb{R}^3)\), then

\[
\varphi_n \in E_n
\]

is equivalent to

\[
\varphi_{n,i_0} \in (\ker \mathcal{L})^\perp.
\]

(3.9)

Since \(w\) is radially symmetric, we obtain

\[
\left\langle \frac{\partial w}{\partial x_i}, \frac{\partial w}{\partial x_j} \right\rangle_1 = 0, \quad \forall \ i \neq j.
\]

For every \(h \in C_0^\infty(\mathbb{R}^3)\), define

\[
h_{n,i_0} = h - \sum_{j=1}^3 a_{n,j} \frac{\partial w}{\partial x_j},
\]

(3.10)
where \(a_{n,j} = \frac{(h, \partial_{x_j} w)_1}{(\partial_{x_j} w, \partial_{x_j} w)_1} \), then \(h_n \in E_n \). Substituting (3.10) into (3.7) and let \(n \to \infty \), we obtain
\[
\langle L\varphi, h \rangle - \left(\langle L\varphi, \sum_{j=1}^3 a_{n,j} \partial_{x_j} w \rangle \right) = 0.
\]
Since \(\partial_{x_j} w \in \text{Ker} L \),
\[
\langle L\varphi, h \rangle = 0, \quad \forall \ h \in C_0^\infty (R^3),
\]
which implies that
\[
\varphi \in \text{Ker} L. \tag{3.11}
\]
Note that \(\varphi_n \in E_n \), letting \(n \to \infty \) in (3.8), we obtain
\[
\int \left(a \nabla \varphi \nabla \left(\frac{\partial w}{\partial x_j} \right) + \varphi \frac{\partial w}{\partial x_j} \right) = 0, \quad j = 1, 2, 3.
\]
Then
\[
\varphi \in (\text{Ker} L)^\perp. \tag{3.12}
\]
Combining (3.11) and (3.12), we claim that \(\varphi \equiv 0 \).

Now we deduce contradiction. Note that \(\varphi_{n, i_0} \to 0 \) in \(L^p_{\text{loc}} (R^3) \) \((1 \leq p < 6)\), so there exists \(R > 0 \) sufficiently large such that
\[
\int_{R^3} w^{q-2}(x)(\varphi_{n, i_0})^2 = \int_{B_R(0)} w^{q-2}(x)(\varphi_{n, i_0})^2 + \int_{B_R^c(0)} w^{q-2}(x)(\varphi_{n, i_0})^2 = o_n(1) + o_R(1).
\]
Then
\[
\left| (q - 1) \int_{R^3} Q(x) W_{\varepsilon_n, Y_n}^{q-2} \varphi_n^2 \right| \\
\leq C \varepsilon_n^3 \int_{R^3} \left(\sum_{i=1}^k w \left(x + \frac{y_{n, i_0} - y_{n, i}}{\varepsilon_n} \right) \right)^{q-2} (\varphi_{n, i_0})^2 \\
\leq C \varepsilon_n^3 \int_{R^3} w^{q-2}(x)(\varphi_{n, i_0})^2 + C \varepsilon_n^3 \sum_{i \neq i_0} \int_{R^3} w^{q-2} \left(x + \frac{y_{n, i_0} - y_{n, i}}{\varepsilon_n} \right) (\varphi_{n, i_0})^2 \\
\leq \frac{1}{2} \varepsilon_n^3.
\]
However,
\[
o_n(1) \| \varphi_n \|_{\varepsilon_n}^2 = \langle L_{\varepsilon_n, Y_n} \varphi_n, \varphi_n \rangle \\
\geq \| \varphi_n \|_{\varepsilon_n}^2 - (q - 1) \int_{R^3} Q(y) W_{\varepsilon_n, Y_n}^{q-2} \varphi_n^2(y) \\
\geq \frac{1}{2} \| \varphi_n \|_{\varepsilon_n}^2.
\]
We reach a contradiction. The proof is complete. \(\square \)

To apply contraction mapping principle to find a critical point of \(J_\varepsilon(Y, \varphi) \), we first need to estimate \(l_\varepsilon(Y, \varphi) \) and \(R_{\varepsilon, Y}^{(i)}(\varphi) \) for \(i = 0, 1, 2 \).
Lemma 3.2. There exists a constant $C > 0$, independent of ε, δ, such that for any $Y \in D^k_{\varepsilon, \delta}$ and $\varphi \in H_{\varepsilon}$, there holds

$$|l_{\varepsilon, Y}(\varphi)| \leq C \varepsilon^{3/2} \left(\sum_{i=1}^{k} |Q(y_i) - Q(0)| + \sum_{i=1}^{k} \sum_{m=1}^{[h]} \varepsilon^m |D^m Q(y_i)| + \varepsilon^{[h]+1} + \sum_{i \neq j} \frac{e^{-\varrho |y_i - y_j|}}{\varepsilon} \right) \|\varphi\|_{\varepsilon},$$

where $\varrho = \min\{\frac{\alpha-1}{2}, 1\}$.

Proof. Since w is the solution of (2.3), we obtain that w_{ε, y_i} ($1 \leq i \leq k$) satisfies

$$-\left(\varepsilon^2 \Delta + \varepsilon b k \int |\nabla w_{\varepsilon, y_j}|^2 \right) \Delta w_{\varepsilon, y_i} + w_{\varepsilon, y_i} = Q(0) w_{\varepsilon, y_i}^{q-1}, \quad j = 1, \ldots, k.$$

We sum from $i = 1$ to k and get

$$-\left(\varepsilon^2 a + \varepsilon b k \int |\nabla w_{\varepsilon, y_j}|^2 \right) \Delta W_{\varepsilon, Y} + W_{\varepsilon, Y} = Q(0) \sum_{i=1}^{k} w_{\varepsilon, y_i}^{q-1}.$$

Multiplying φ on both sides of above equation and integrating, we obtain

$$\left(\varepsilon^2 a + \varepsilon b k \int |\nabla w_{\varepsilon, y_j}|^2 \right) \int \nabla W_{\varepsilon, Y} \nabla \varphi + \int W_{\varepsilon, Y} \varphi = \int Q(0) \sum_{i=1}^{k} w_{\varepsilon, y_i}^{q-1} \varphi.$$

Then

$$\langle W_{\varepsilon, Y}, \varphi \rangle_{\varepsilon} = \int \left(\varepsilon^2 a \nabla W_{\varepsilon, Y} \nabla \varphi + W_{\varepsilon, Y} \varphi \right)$$

$$= -\varepsilon b k \int |\nabla w_{\varepsilon, y_j}|^2 \int \nabla W_{\varepsilon, Y} \nabla \varphi + \int Q(0) \sum_{i=1}^{k} w_{\varepsilon, y_i}^{q-1} \varphi.$$ (3.14)

Substituting (3.14) into (3.2), we obtain

$$l_{\varepsilon, Y}(\varphi) = \varepsilon b \int \nabla W_{\varepsilon, Y} \nabla \varphi \left(\int |\nabla W_{\varepsilon, Y}|^2 - \int \sum_{j=1}^{k} |\nabla w_{\varepsilon, y_j}|^2 \right)$$

$$- \left(\int Q(x) W_{\varepsilon, Y}^{q-1} \varphi - \int Q(0) \sum_{i=1}^{k} w_{\varepsilon, y_i}^{q-1} \varphi \right)$$

$$= l_1 - l_2.$$
To estimate l_1, combining Hölder inequality and (2.14) yields
\[
|l_1| = \left| \varepsilon b \int \nabla W_{\varepsilon,Y} \nabla \varphi \left(\int |\nabla W_{\varepsilon,Y}|^2 - \int \sum_{j=1}^{k} |\nabla w_{\varepsilon,y_j}|^2 \right) \right|
\leq \varepsilon b \left(\sum_{i=1}^{k} \int |\nabla w_{\varepsilon,y_i} \nabla \varphi| \right) \left(\sum_{i \neq j} \int |\nabla w_{\varepsilon,y_i} \nabla w_{\varepsilon,y_j}| \right)
\leq \varepsilon^2 b \sum_{i \neq j} e^{-\eta|y_i-y_j|} \left(\sum_{i=1}^{k} \|\nabla w_{\varepsilon,y_i} \|_{L^2} \|\nabla \varphi\|_{L^2} \right)
\leq \varepsilon^2 b \sum_{i \neq j} e^{-\eta|y_i-y_j|} \left(k \varepsilon^2 \|\nabla w\|_{L^2} \frac{1}{\sqrt{\varepsilon}} \|\varphi\|_{L^2} \right)
\leq C \varepsilon^3 \sum_{i \neq j} e^{-\eta|y_i-y_j|} \|\varphi\|_{L^2}.
\] (3.15)

Next, we split l_2 into two parts:
\[
l_2 = \int Q(x) \left(\sum_{i=1}^{k} w_{\varepsilon,y_i}
ight)^{q-1} \varphi - \int Q(0) w_{\varepsilon,y_i}^{q-1} \varphi
= \int Q(x) \left(\sum_{i=1}^{k} w_{\varepsilon,y_i}
ight)^{q-1} \varphi - \int Q(0) \sum_{i=1}^{k} w_{\varepsilon,y_i}^{q-1} \varphi
\] (3.16)

To estimate l_{21}, for $2 < q \leq 3$, by the following inequality
\[
|a + b|^{q-1} - |a|^{q-1} - |b|^{q-1} \leq \begin{cases}
C|a|^{q-2}, & \text{if } |a| \leq |b|, \\
C|b|^{q-2}, & \text{if } |b| \leq |a|,
\end{cases}
\leq C|a|^{\frac{q-2}{2}} |b|^{q-1},
\]
we obtain
\[
|l_{21}| = \left| \int Q(x) \left(\left(\sum_{i=1}^{k} w_{\varepsilon,y_i}
ight)^{q-1} - \sum_{i=1}^{k} w_{\varepsilon,y_i}^{q-1} \right) \varphi \right|
\leq C \int \sum_{i \neq j} \frac{q-1}{2} w_{\varepsilon,y_i}^{q-2} w_{\varepsilon,y_j} \varphi \leq C \sum_{i \neq j} \left(\int w_{\varepsilon,y_i}^{q-1} w_{\varepsilon,y_j}^{q-1} \right)^{\frac{1}{2}} \|\varphi\|_{L^2}
\leq C \varepsilon^3 \sum_{i \neq j} e^{-\eta|y_i-y_j|} \|\varphi\|_{L^2}.
\] (3.17)

For $q > 3$, we have
\[
|l_{21}| = \left| \int Q(x) \left(\left(\sum_{i=1}^{k} w_{\varepsilon,y_i}
ight)^{q-1} - \sum_{i=1}^{k} w_{\varepsilon,y_i}^{q-1} \right) \varphi \right|
\leq C \int \sum_{i \neq j} w_{\varepsilon,y_i}^{q-2} w_{\varepsilon,y_j} \varphi \leq C \varepsilon^3 \sum_{i \neq j} e^{-\eta|y_i-y_j|} \|\varphi\|_{L^2}.
\] (3.18)
Combining (3.17) and (3.18) yields
\[
|l_{21}| \leq C \varepsilon^{\frac{3}{2}} \sum_{i \neq j} e^{-\min\left(\frac{m-1}{2}, \frac{n|m|-n|y_i|}{\varepsilon}\right)} \|\varphi\|_\varepsilon. \tag{3.19}
\]

To estimate \(l_{22}\), we split \(l_{22}\) into two parts:
\[
|l_{22}| = \int \sum_{i=1}^{k} (Q(x) - Q(0)) w_{\varepsilon,y_i}^{q-1}\varphi
\]
\[
= \int \sum_{i=1}^{k} (Q(x) - Q(y_i)) w_{\varepsilon,y_i}^{q-1}\varphi + \int \sum_{i=1}^{k} (Q(y_i) - Q(0)) w_{\varepsilon,y_i}^{q-1}\varphi
\]
\[
= l_{221} + l_{222}.
\]

Estimating \(l_{221}\), we have
\[
|l_{221}| \leq \sum_{i=1}^{k} \int |Q(x) - Q(y_i)| w_{\varepsilon,y_i}^{q-1} |\varphi|
\]
\[
\leq \sum_{i=1}^{k} \left(\int |Q(x) - Q(y_i)|^2 w_{\varepsilon,y_i}^{2(q-1)} \right)^{\frac{1}{2}} \|\varphi\|_{L^2}
\]
\[
= \sum_{i=1}^{k} \left(\int_{|y| < \frac{\varepsilon}{2}} |Q(x) - Q(y_i)|^2 w_{\varepsilon,y_i}^{2(q-1)} + \int_{|y| \geq \frac{\varepsilon}{2}} |Q(x) - Q(y_i)|^2 w_{\varepsilon,y_i}^{2(q-1)} \right)^{\frac{1}{2}} \|\varphi\|_{L^2}
\]
\[
\leq C \varepsilon^{\frac{3}{2}} \sum_{i=1}^{k} \left(\sum_{m=1}^{[h]} C_1 \varepsilon^{m} |D^m Q(y_i)| \right) \|\varphi\|_{L^2}
\]
\[
\leq C \varepsilon^{\frac{3}{2}} \sum_{i=1}^{k} \left(\sum_{m=1}^{[h]} \varepsilon^{m} |D^m Q(y_i)| + C_2 \varepsilon^{[h]+1} + C_3 \varepsilon^{-(q-1)\frac{2\varepsilon}{2q}} \right) \|\varphi\|_{L^2}
\]
\[
\leq C \varepsilon^{\frac{3}{2}} \left(\sum_{i=1}^{k} \sum_{m=1}^{[h]} \varepsilon^{m} |D^m Q(y_i)| + \varepsilon^{[h]+1} \right) \|\varphi\|_{L^2}.
\]

Finally, to estimate \(l_{222}\), combining Hölder inequality and Lemma [2.1] we obtain
\[
|l_{222}| = \left| \int \sum_{i=1}^{k} (Q(y_i) - Q(0)) w_{\varepsilon,y_i}^{q-1}\varphi \right|
\]
\[
\leq \sum_{i=1}^{k} |Q(y_i) - Q(0)| \int w_{\varepsilon,y_i}^{q-1} |\varphi| \leq \sum_{i=1}^{k} |Q(y_i) - Q(0)| \left(\int w_{\varepsilon,y_i}^{q} \right)^{\frac{q-1}{q}} \left(\int |\varphi|^q \right)^{\frac{1}{q}} \tag{3.20}
\]
\[
\leq C \varepsilon^{\frac{3}{2}} \sum_{i=1}^{k} |Q(y_i) - Q(0)| \|\varphi\|_{L^2}.
\]

Combining (3.15) and (3.19), (3.20) yields (3.13).
Lemma 3.3. There exists a constant $C > 0$, independent of ε, δ, such that for any $\varphi \in H_\varepsilon$, there holds
\[\|R_{\varepsilon,Y}^{(i)}(\varphi)\| \leq C\varepsilon^{-\frac{3}{2}}(1 + \varepsilon^{-\frac{3}{2}}\|\varphi\|_\varepsilon)\|\varphi\|_\varepsilon^{3-i} + C\varepsilon^{\frac{3(q-2)}{2}}\|\varphi\|_\varepsilon^{2-i}, \quad i = 0, 1, 2. \] (3.21)

Proof. By (3.24),
\[R_{\varepsilon,Y}(\varphi) = A_1(\varphi) - A_2(\varphi), \]
where
\[A_1(\varphi) = \frac{\varepsilon b}{4} \left(\int |\nabla \varphi|^2 \right)^2 + \varepsilon b \int \nabla W_{\varepsilon,Y} \nabla \varphi \int |\nabla \varphi|^2, \] (3.22)
and
\[A_2(\varphi) = \frac{1}{q} \int Q(x) \left((W_{\varepsilon,Y} + \varphi)_+^q - W_{\varepsilon,Y}^q - qW_{\varepsilon,Y}^{q-1}\varphi - \frac{q(q-1)}{2}W_{\varepsilon,Y}^{q-2}\varphi^2\right). \] (3.23)

For $\forall \psi, \xi \in H_\varepsilon$, we obtain
\[\langle A_1^{(1)}(\varphi), \psi \rangle = \varepsilon b \left(\int |\nabla \varphi|^2 \int \nabla \nabla \varphi \psi + \int |\nabla \varphi|^2 \int \nabla W_{\varepsilon,Y} \nabla \psi \right) + 2\varepsilon b \int \nabla W_{\varepsilon,Y} \nabla \varphi \int \nabla \nabla \psi, \] (3.24)
\[\langle A_2^{(1)}(\varphi), \psi \rangle = \int Q(x) \left((W_{\varepsilon,Y} + \varphi)_+^q - W_{\varepsilon,Y}^{q-1} - (q-1)W_{\varepsilon,Y}^{q-2}\varphi\right)\psi, \] (3.25)
\[\langle A_1^{(2)}(\varphi), \xi \rangle = \varepsilon b \left(2 \int \nabla \varphi \nabla \xi \int \nabla \nabla \varphi \psi + \int |\nabla \varphi|^2 \int \nabla \xi \nabla \psi \right) + 2\varepsilon b \left(\int \nabla W_{\varepsilon,Y} \nabla \xi \int \nabla \nabla \varphi \psi + \int \nabla W_{\varepsilon,Y} \nabla \varphi \int \nabla \xi \nabla \psi \right), \] (3.26)
\[\langle A_2^{(2)}(\varphi), \xi \rangle = (q-1) \int Q(x) \left((W_{\varepsilon,Y} + \varphi)_+^{q-2} - W_{\varepsilon,Y}^{q-2}\right)\psi. \] (3.27)

Next, we estimate $A_1^{(i)}(\varphi)$, $i = 0, 1, 2$. Note that
\[\|\nabla \varphi\|_{L^2} \leq \frac{1}{\sqrt{\varepsilon} \alpha} \|\varphi\|_\varepsilon, \] (3.28)
and
\[\int |\nabla W_{\varepsilon,Y}|^2 \leq k \sum_{i=1}^{k} |\nabla w_{\varepsilon,yi}|^2 = k^2 \varepsilon \int |\nabla w|^2, \]
we have
\[\|\nabla W_{\varepsilon,Y}\|_{L^2} \leq C_1 \varepsilon^{\frac{1}{2}}, \] (3.29)
where $C_1 = k\|\nabla w\|_{L^2}$. Combining (3.28) and (3.29), we obtain that for $\forall \psi, \xi, \nu \in H_\varepsilon$, there hold
\[\int |\nabla \varphi \nabla \psi| \int |\nabla W_{\varepsilon,Y} \nabla \xi| \leq C\varepsilon^{-\frac{3}{2}}\|\varphi\|_\varepsilon\|\psi\|_\varepsilon\|\xi\|_\varepsilon, \] (3.30)
\[\int |\nabla \varphi \nabla \psi| \int |\nabla \nu \nabla \xi| \leq C\varepsilon^{-4}\|\varphi\|_\varepsilon\|\psi\|_\varepsilon\|\nu\|_\varepsilon\|\xi\|_\varepsilon. \] (3.31)
Combining (3.22), (3.24), (3.26), (3.30) and (3.31) yields
\[
\|A_1^{(i)}(\varphi)\| \leq C\varepsilon^{-\frac{3}{2}}\|\varphi\|_{e,i}^2 + C\varepsilon^{-3}\|\varphi\|_{e,i}^4.
\]
(3.32)

Then, we estimate \(A_2^{(i)}(\varphi)\), \(i = 0, 1, 2\). For \(2 < q \leq 3\), we apply the following elementary inequalities: for \(e, f \in \mathbb{R}\), there exist constants \(C_1(q), C_2(q), C_3(q) > 0\) such that
\[
|(e + f)^q - e^q - q\varepsilon^{-1}f - \frac{q(q - 1)}{2}e^q - f^2| \leq C_1(q)|f|^q,
\]
\[
|(e + f)^q - e^q - (q - 1)e^q - f^2| \leq C_2(q)|f|^{q-1},
\]
and
\[
|(e + f)^q - e^q| \leq C_3(q)|f|^{q-2}.
\]

Combining the above inequalities and Lemma 2.1 yields
\[
|A_2(\varphi)| \leq C\varepsilon^{-\frac{3(q-2)}{2}}\|\varphi\|_{e}^q,
\]
(3.33)
\[
\|A_2^{(1)}(\varphi)\| \leq C\varepsilon^{-\frac{3(q-2)}{2}}\|\varphi\|_{e}^{q-1},
\]
(3.34)
\[
\|A_2^{(2)}(\varphi)\| \leq C\varepsilon^{-\frac{3(q-2)}{2}}\|\varphi\|_{e}^{q-2}.
\]
(3.35)

Similarly, for \(3 < q < 6\) and \(e, f \in \mathbb{R}\), there exist constants \(C_1'(q), C_2'(q), C_3'(q) > 0\) such that
\[
|(e + f)^q - e^q - q\varepsilon^{-1}f - \frac{q(q - 1)}{2}e^q - f^2| \leq C_1'(q)|e|^{q-3} + |f|^{q-3}||f|^3
\]
\[
|(e + f)^q - e^q - (q - 1)e^q - f^2| \leq C_2'(q)|e|^{q-3} + |f|^{q-3}||f|^2,
\]
and
\[
|(e + f)^q - e^q| \leq C_3'(q)|e|^{q-3} + |f|^{q-3}||f||f|.
\]

Combining the above inequalities and Lemma 2.1 yields
\[
|A_2(\varphi)| \leq C_1'(q)\int \left(|W_{e,Y}|^{q-3} + |\varphi|^{q-3}\right)\|\varphi\|_{e}^3
\]
\[
\leq C\left(\int |W_{e,Y}|^{2(q-3)}\right)^{\frac{1}{2}}\varepsilon^{-3}\|\varphi\|_{e}^3 + C\varepsilon^{-\frac{3(q-2)}{2}}\|\varphi\|_{e}^q
\]
(3.36)
\[
\leq C\left(e^{-\frac{3}{2}}\|\varphi\|_{e}^3 + e^{-\frac{3(q-2)}{2}}\|\varphi\|_{e}^{q-1}\right).
\]

By the same token, we obtain
\[
\|A_2^{(1)}(\varphi)\| \leq C(e^{-\frac{3}{2}}\|\varphi\|_{e}^2 + e^{-\frac{3(q-2)}{2}}\|\varphi\|_{e}^{q-1}),
\]
(3.37)
\[
\|A_2^{(2)}(\varphi)\| \leq C(e^{-\frac{3}{2}}\|\varphi\|_{e} + e^{-\frac{3(q-2)}{2}}\|\varphi\|_{e}^{q-2}).
\]
(3.38)

Combining (3.32)–(3.38) yields (3.21).

To state the lemma that follows, we define
\[
N_{\varepsilon} = \left\{ \varphi \in E_{e,Y}^h : \|\varphi\|_{e}^3 \leq \varepsilon^{3}\left(\sum_{i=1}^{k} |Q(y_i) - Q(0)|^{1-\tau} + \sum_{i=1}^{k} \sum_{m=1}^{[h]} \varepsilon^{m-\tau} |D^m Q(y_i)|^{1-\tau}
\]
\[
+ \varepsilon^{[h]+1-\tau} + \sum_{i \neq j} \varepsilon^{-(\theta-\tau)}Y_{Y_s-y_{Y_s}}^3 \right)\right\},
\]
(3.39)
where $0 < \tau < \min\{1, \tilde{\theta}\}$.

Lemma 3.4. There exist ε_0, δ_0 sufficiently small such that for every $\varepsilon \in (0, \varepsilon_0]$ and $\delta \in (0, \delta_0]$, there exists a C^1 map $\varphi_\varepsilon : D^k_{\varepsilon, \delta} \to N_{\varepsilon}; Y \mapsto \varphi_{\varepsilon, Y}$ satisfying

$$\left\langle \frac{\partial J_\varepsilon(Y, \varphi_{\varepsilon, Y})}{\partial \varphi}, \psi \right\rangle = 0, \quad \forall \psi \in H_\varepsilon, \forall Y \in D^k_{\varepsilon, \delta}. \tag{3.40}$$

Moreover, we can choose $0 < \tau < \min\{1, \tilde{\theta}\}$ sufficiently small, such that

$$\|\varphi_{\varepsilon,Y}\| \leq \varepsilon^{\frac{1}{2}} \left(\sum_{i=1}^k |Q(y_i) - Q(0)|^{1-\tau} + \sum_{i=1}^k \sum_{m=1}^h \varepsilon^{m-\tau} |D^m Q(y_i)|^{1-\tau} + \sum_{i \neq j} e^{-(\bar{\theta}-\tau)\frac{|y_i - y_j|}{\varepsilon}} \right). \tag{3.41}$$

Proof. Recall that

$$J_\varepsilon(Y, \varphi) = J_\varepsilon(Y, 0) + \langle I_\varepsilon'(W_{\varepsilon,Y}), \varphi \rangle + \frac{1}{2} \langle I_\varepsilon''(W_{\varepsilon,Y})[\varphi], \varphi \rangle + R_{\varepsilon,Y}(\varphi),$$

so we have

$$\left\langle \frac{\partial J_\varepsilon}{\partial \varphi}, \psi \right\rangle = \langle I_\varepsilon'(W_{\varepsilon,Y}), \psi \rangle + \langle I_\varepsilon''(W_{\varepsilon,Y})[\varphi], \psi \rangle + \langle R_{\varepsilon,Y}(\varphi), \psi \rangle, \quad \forall \psi \in H_\varepsilon,$n

i.e.

$$\frac{\partial J_\varepsilon}{\partial \varphi} = I_\varepsilon'(W_{\varepsilon,Y}) + I_\varepsilon''(W_{\varepsilon,Y})[\varphi] + R_{\varepsilon,Y}(\varphi) \tag{3.42}$$

Then $\frac{\partial J_\varepsilon}{\partial \varphi}$ is a bounded linear functional in N_{ε}. Denote

$$\mathcal{W} = \{f : f \text{ is a bounded linear functional defined on } H_\varepsilon\}.$$

For $\forall f \in \mathcal{W}$, by Riesz representation theorem, there exists a unique $\hat{f} \in H_\varepsilon$ such that

$$f(\psi) = \langle \hat{f}, \psi \rangle_\varepsilon, \quad \forall \psi \in H_\varepsilon.$$

So we can define a map $\sigma : \mathcal{W} \to H_\varepsilon; f \mapsto \hat{f}$.

Let $\mathcal{W}^* = \sigma(\mathcal{W})$. Next, we prove σ is a linear isomorphic map from \mathcal{W} to \mathcal{W}^*. In fact, if $\sigma(f_1) = \sigma(f_2)$, in the sense that $\hat{f}_1 = \hat{f}_2$, we obtain

$$f_1(\psi) = \langle \hat{f}_1, \psi \rangle_\varepsilon = \langle \hat{f}_2, \psi \rangle_\varepsilon = f_2(\psi), \quad \forall \psi \in H_\varepsilon.$$

Then $f_1 = f_2$ and σ is injective. Besides, for $\forall f_1, f_2 \in \mathcal{W}$,

$$\langle f_1 + f_2, \psi \rangle_\varepsilon = \langle f_1, \psi \rangle_\varepsilon + \langle f_2, \psi \rangle_\varepsilon = \langle \hat{f}_1, \psi \rangle_\varepsilon + \langle \hat{f}_2, \psi \rangle_\varepsilon = \langle \hat{f}_1 + \hat{f}_2, \psi \rangle_\varepsilon,$$

which implies $\hat{f}_1 + \hat{f}_2 = \hat{f}_1 + \hat{f}_2$, in the sense that $\sigma(f_1 + f_2) = \sigma(f_1) + \sigma(f_2)$.

And for $\forall k \in \mathbb{R}$, $f \in \mathcal{W}$, we obtain

$$\langle k\hat{f}, \psi \rangle_\varepsilon = k\langle f, \psi \rangle_\varepsilon = k\langle \hat{f}, \psi \rangle_\varepsilon = \langle k\hat{f}, \psi \rangle_\varepsilon.$$

Thus, $\hat{k}\hat{f} = k\hat{f}$ and $\sigma(kf) = k\sigma(f)$.

Therefore, (3.42) is equivalent to

$$\frac{\partial J_\varepsilon}{\partial \varphi} = \tilde{l}_{\varepsilon,Y} + \tilde{L}_{\varepsilon,Y}(\varphi) + \hat{R}_{\varepsilon,Y}(\varphi). \tag{3.43}$$
Since $L_{\epsilon,Y}$ is invertible in $E_{\epsilon,Y}^k$ by Lemma 3.1, it is sufficient to find $\varphi \in N_\epsilon$ that satisfies
\begin{equation}
\varphi = -L_{\epsilon,Y}^{-1}(\hat{\ell}_{\epsilon,Y}) - L_{\epsilon,Y}^{-1}(\hat{R}_{\epsilon,Y}(\varphi)) =: A_{\epsilon,Y}(\varphi).
\end{equation}

Next, we prove that $A_{\epsilon,Y}$ is a contraction map on N_ϵ. First, for $\forall \varphi \in N_\epsilon$, we have
\begin{equation}
\|A_{\epsilon,Y}(\varphi)\|_\epsilon \leq \frac{1}{\rho} \|\hat{\ell}_{\epsilon,Y}\|_\epsilon + \frac{1}{\rho} \|\hat{R}_{\epsilon,Y}(\varphi)\|_\epsilon
= \frac{1}{\rho} \|\hat{\ell}_{\epsilon,Y}\| + \frac{1}{\rho} \|R_{\epsilon,Y}(\varphi)\|.
\end{equation}

By Lemma 3.2, we obtain
\begin{equation}
\|\hat{\ell}_{\epsilon,Y}\| \leq C_\epsilon \frac{3}{2} \left(\epsilon \|Q(y_i) - Q(0)\| + \sum_{i=1}^{k} \sum_{m=1}^{[h]} e^{m} |D^m Q(y_i)| + \sum_{i \neq j} e^{-(\theta - \frac{3}{2})} \frac{|y_i - y_j|}{\epsilon} \right).
\end{equation}

Choose ε, δ sufficiently small such that
\begin{align*}
C\varepsilon^\tau &< \frac{\rho}{2}, \\
C\varepsilon |Q(y_i) - Q(0)|^\tau &< \frac{\rho}{2}, \quad i = 1, \ldots, k, \\
C\varepsilon^\tau |D^m Q(y_i)|^\tau &< \frac{\rho}{2}, \quad i = 1, \ldots, k, \ m = 1, \ldots, [h], \\
C\varepsilon^{-\tau} \frac{|y_i - y_j|}{\epsilon} &< \frac{\rho}{2}, \quad i \neq j,
\end{align*}

then
\begin{equation}
\|\hat{\ell}_{\epsilon,Y}\| \leq \frac{\rho}{2} \frac{3}{2} \left(\sum_{i=1}^{k} \|Q(y_i) - Q(0)\|^{1-\tau} + \sum_{i=1}^{k} \sum_{m=1}^{[h]} \varepsilon^{m-\tau} |D^m Q(y_i)|^{1-\tau} \right)
= \frac{\rho}{2} \frac{3}{2} \left(\varepsilon^{[h]+1-\tau} + \sum_{i \neq j} e^{-(\theta - \frac{3}{2})} \frac{|y_i - y_j|}{\epsilon} \right).
\end{equation}

As $\varphi \in N_\epsilon$,
\begin{equation}
\varepsilon^{-\frac{3}{2}} \|\varphi\|_\epsilon = o_\epsilon(1) + o_\delta(1).
\end{equation}

So for ε, δ sufficiently small, by Lemma 3.3, we have
\begin{equation}
\|R_{\epsilon,Y}(\varphi)\| = (o_\epsilon(1) + o_\delta(1)) \|\varphi\|_\epsilon \leq \frac{\rho}{2} \|\varphi\|_\epsilon.
\end{equation}

Combining (3.45)–(3.47) yields
\begin{equation}
\|A_{\epsilon,Y}(\varphi)\|_\epsilon \leq \frac{\rho}{2} \frac{3}{2} \left(\sum_{i=1}^{k} \|Q(y_i) - Q(0)\|^{1-\tau} + \sum_{i=1}^{k} \sum_{m=1}^{[h]} \varepsilon^{m-\tau} |D^m Q(y_i)|^{1-\tau} \right)
= \frac{\rho}{2} \frac{3}{2} \left(\varepsilon^{[h]+1-\tau} + \sum_{i \neq j} e^{-(\theta - \frac{3}{2})} \frac{|y_i - y_j|}{\epsilon} \right).
\end{equation}

Hence, $A_{\epsilon,Y}(N_\epsilon) \subset N_\epsilon$. On the other hand, for every $\varphi, \psi \in N_\epsilon$,
\begin{align*}
\|A_{\epsilon,Y}(\varphi) - A_{\epsilon,Y}(\psi)\|_\epsilon & = \|L_{\epsilon,Y}^{-1}(\hat{R}_{\epsilon,Y}(\varphi)) - L_{\epsilon,Y}^{-1}(\hat{R}_{\epsilon,Y}(\psi))\|_\epsilon \\
& \leq \frac{1}{\rho} \|R_{\epsilon,Y}(\varphi) - R_{\epsilon,Y}(\psi)\| \\
& = \frac{1}{\rho} \|R_{\epsilon,Y}(\xi \varphi + (1 - \xi)\psi)\|_\epsilon, \quad 0 < \xi < 1.
\end{align*}
By Lemma 3.3, we obtain
\[
\|R''_\varepsilon(Y, \xi \varphi + (1 - \xi) \psi)\| \leq C\varepsilon^{\frac{3(q-2)}{2}}\|\xi \varphi + (1 - \xi) \psi\|^{q-2}_2 \\
+ Cb\varepsilon^{-\frac{3}{2}}(1 + \varepsilon^{-\frac{3}{2}}\|\xi \varphi + (1 - \xi) \psi\|_\varepsilon)\|\xi \varphi + (1 - \xi) \psi\|_\varepsilon \\
= o_\varepsilon(1).
\]
Thus, for \(\varepsilon\) sufficiently small, we have
\[
\|A_\varepsilon(Y, \varphi) - A_\varepsilon(Y, \psi)\|_\varepsilon \leq \frac{1}{2}\|\varphi - \psi\|_\varepsilon.
\]
So \(A_\varepsilon(Y)\) is a contraction map on \(N_\varepsilon\). By contraction mapping principle, we infer that (3.44) has a unique solution. Finally, by similar arguments as that of Cao, Noussair and Yan [16], we can deduce that \(\varphi_\varepsilon\) belongs to \(C^1\).

4. Proof of Theorem 1.3

In this section, without loss of generality, we assume \(Q(0) = 1\). By Lemma 3.4, we can define a \(C^1\) function on \(D_{k,\varepsilon}\), in the sense that
\[
K(Y) = J_\varepsilon(Y, \varphi_\varepsilon(Y)), \quad Y \in D_{k,\varepsilon}.
\]
Define
\[
c_{\varepsilon,1} = \varepsilon^3(kA - k^2B + T\varepsilon^{\alpha h}), \quad c_{\varepsilon,2} = \varepsilon^3(kA - k^2B + \mu),
\]
where \(A = \frac{q-2}{2q}\|w\|_{L_2}^q, \quad B = \frac{k}{4}\|\nabla w\|_{L_2}^2, \mu, T\) are positive constants, \(\varepsilon^\alpha \leq \frac{\alpha}{2}\) and \(\alpha \in (0,1)\) is a fixed constant close to 1.

Denote
\[
\Omega_\gamma = \{Y = (y_1, \ldots, y_k) : y_i \in B_{\varepsilon}^3(0) \times B_{\frac{R_1}{\varepsilon}}^3(0), \quad i = 1, \ldots, k, \quad \frac{\|y_i - y_j\|}{\varepsilon} \geq R_1, \quad i \neq j\},
\]
where \(B_{\tau}^3(0) = \{y \in \mathbb{R}^3 : |y| \leq \tau\}, \quad R_1 > 0\) is a large constant, and
\[
K^e = \{Y : \ Y \in \Omega_{e^\alpha}, \ K(Y) \leq c\}.
\]

Lemma 4.1. For any \(\varphi \in E_{\varepsilon,Y}^k\), there holds
\[
\langle L_{\varepsilon,Y} \varphi, \varphi \rangle_\varepsilon = O(\|\varphi\|_\varepsilon^2).
\]

Proof. By the definition of \(L_{\varepsilon,Y}\), we have
\[
\langle L_{\varepsilon,Y} \varphi, \varphi \rangle_\varepsilon = \langle \varphi, \varphi \rangle_\varepsilon + \varepsilon b \int |\nabla W_{\varepsilon,Y}|^2 \int |\nabla \varphi|^2 \\
+ 2\varepsilon b \left(\int |\nabla W_{\varepsilon,Y} \nabla \varphi|^2 - (q - 1) \int Q(x) W_{\varepsilon,Y}^{q-2}_\varphi^2. \right)
\]
Calculating directly yields
\[
\varepsilon b \int |\nabla W_{\varepsilon,Y}|^2 \int |\nabla \varphi|^2 \leq \varepsilon b \int k \sum_{i=1}^k |\nabla w_{\varepsilon,Y_i}|^2 \int |\nabla \varphi|^2 \leq C\|\varphi\|_\varepsilon^2.
\]
By Hölder inequality, we obtain
\[
\varepsilon b \left(\int |\nabla W_{\varepsilon,Y} \nabla \varphi|^2 \right)^2 \leq \varepsilon b \int |\nabla W_{\varepsilon,Y}|^2 \int |\nabla \varphi|^2 \leq C\|\varphi\|_\varepsilon^2.
\]
Finally, as $Q(x)$ is bounded, we have
\[
\int Q(x) W_{\varepsilon,Y}^{q-2} \varphi^2 \leq C \left(\int W_{\varepsilon,Y}^q \right)^{\frac{q-2}{q}} \left(\int |\varphi|^q \right)^{\frac{2}{q}} \leq C \|\varphi\|^2_{\varepsilon}. \tag{4.5}
\]
Combining (4.2)–(4.5) yields (4.1).

\textbf{Lemma 4.2.} There exist constants $\varepsilon_0, \delta_0 > 0$, such that for any $\varepsilon \in (0, \varepsilon_0)$ and $\delta \in (0, \delta_0]$, (Y, φ) is a critical point of J_{ε} on $D_{\varepsilon,\delta}^{k} \times E_{\varepsilon,Y}^{k}$ is equivalent to
\[
u = \sum_{i=1}^{k} w_{\varepsilon,Y_i} + \varphi
\]
is a critical point of I_{ε}.

\textit{Proof.} This lemma can be proved by the same arguments as that of [16, 33] with minor modifications. We omit the details.

\textbf{Lemma 4.3.} For every $Y \in \partial \Omega_{\varepsilon,\alpha}$, we have either $K(Y) < c_{\varepsilon,1}$ or $\frac{\partial K(Y)}{\partial n} > 0$, where n is the outward unit normal of $\partial \Omega_{\varepsilon,\alpha}$ at Y.

\textit{Proof.} We divide the proof of this lemma into two steps.

Step 1: Suppose that $|y_i - y_j| = R_1$ for some $i \neq j$, or $y_i \in \partial B_{\ell}(0) \times B_{3\alpha} - \varepsilon^{\alpha}(0)$ for some $i \in \{1, \ldots, k\}$. We claim that $Y \in K_{c_{\varepsilon,\alpha}}$.

In fact, since $\varphi_{\varepsilon,Y} \in N_{\varepsilon}$, by Lemma 3.2, we obtain
\[
|l_{\varepsilon,Y}(\varphi_{\varepsilon,Y})| = O(\|\varphi_{\varepsilon,Y}\|_{\varepsilon}^2). \tag{4.6}
\]
And by Lemma 3.3 we have
\[
|R_{\varepsilon,Y}(\varphi_{\varepsilon,Y})| = o_{\varepsilon}(1)\|\varphi_{\varepsilon,Y}\|_{\varepsilon}^2. \tag{4.7}
\]
Combining (3.1), (4.1), (4.6) and (4.7) yields
\[
J_{\varepsilon}(Y, \varphi_{\varepsilon,Y}) = J_{\varepsilon}(Y, 0) + O(\|\varphi_{\varepsilon,Y}\|_{\varepsilon}^2). \tag{4.8}
\]
Then combining (3.1) (4.8) and (3.41) yields
\[
K(Y) = \varepsilon^3 \left(kA - k^2B \right) - \frac{2}{q-2} A\varepsilon^3 \sum_{i=1}^{k} (Q(y_i) - 1) - \int \sum_{i=1}^{k-1} w_{\varepsilon,y_i} \left(\sum_{j=i+1}^{k} w_{\varepsilon,y_j} \right)^{q-1} + O(\varepsilon^{4+|h|})
\]
\[
+ O \left(\sum_{i=1}^{k} \sum_{m=1}^{[h]} \varepsilon^{3+m} |D^m Q(y_i)| + \varepsilon^3 \sum_{i \neq j} e^{-\frac{|y_i - y_j|}{\varepsilon}} \right) \tag{4.9}
\]
\[
+ \varepsilon^3 O \left(\sum_{i=1}^{k} |Q(y_i) - 1|^{2(1-\tau)} + \sum_{i=1}^{k} \sum_{m=1}^{[h]} \varepsilon^{2(m-\tau)} |D^m Q(y_i)|^{2(1-\tau)} + \sum_{i \neq j}^{[h] + 1-\tau} + \sum_{i \neq j} e^{-2(\theta-\tau)\frac{|y_i - y_j|}{\varepsilon}} \right).
\]
Choose τ sufficiently small such that

$$2([h] + 1 - \tau) > [h] + 1, \ 2(m - \tau) > m, \ 2(\theta - \tau) > 1.$$

Then by (4.9), we have

$$K(Y) = \varepsilon^3 (kA - k^2B) - \frac{2}{q-2} A\varepsilon^3 \sum_{i=1}^{k} (Q(y_i) - 1)$$

$$- \int \sum_{i=1}^{k-1} w_{\varepsilon,y_i} \left(\sum_{j=i+1}^{k} w_{\varepsilon,y_j} \right)^{q-1} + O\left(\varepsilon^{4 + |h|} \right)$$

$$+ O\left(\sum_{i=1}^{k} \sum_{m=1}^{[h]} \varepsilon^{3+m}|D^m Q(y_i)| + \varepsilon^3 \sum_{i \neq j} e^{-\eta |y_i - y_j|/\varepsilon} \right).$$

(4.10)

Combining the above equality and the condition (Q_3) yields

$$K(Y) \leq \varepsilon^3 \left(kA - k^2B - C \sum_{i=1}^{k} P_i(y'_i) - C \sum_{i < j} e^{-\eta |y_i - y_j|/\varepsilon} \right) + O(\varepsilon^4).$$

(4.11)

If $\frac{\eta |y_i - y_j|}{\varepsilon} = R_1$ for some $i \neq j$, taking $R_1 = \frac{\alpha h_1 ln \frac{4}{T - ln T}}{2}$, by (4.11) we obtain

$$K(Y) \leq \varepsilon^3 \left(kA - k^2B - T \varepsilon^{\alpha h_1} \right) - C \varepsilon^3 \sum_{i=1}^{k} P_i(y'_i) + O(\varepsilon^4) < c_{\varepsilon,1}.$$

(4.12)

If $y_i \in \partial B^i_{\theta}(0) \times B^{3-i}_{\varepsilon^{\alpha h_1}}(0)$ for some $i \in \{1, \ldots, k\}$, combining (4.11) and (4.11) yields

$$K(Y) \leq \varepsilon^3 \left(kA - k^2B - C \sum_{i=1}^{k} |y'_i|^{h_1} \right) - C \varepsilon^3 \sum_{i < j} e^{-\eta |y_i - y_j|/\varepsilon} + O(\varepsilon^4)$$

$$\leq \varepsilon^3 \left(kA - k^2B - C \varepsilon^{\alpha h_1} \right) - C \varepsilon^3 \sum_{i < j} e^{-\eta |y_i - y_j|/\varepsilon} + O(\varepsilon^4).$$

Let T sufficiently small such that $T < C\lambda$, then we have $K(Y) < c_{\varepsilon,1}$.

Step 2: Suppose $t \in \{1, 2\}$ and $y_j \in B^1_{\theta}(0) \times \partial B^{3-i}_{\varepsilon^{\alpha h_1}}(0)$ for some $j \in \{1, \ldots, k\}$. Without loss of generality, we assume $j = 1$. We claim that either $K(Y) < c_{\varepsilon,1}$ or $\frac{\partial K(Y)}{\partial n} > 0$, where n is the outward unit normal of $B^1_{\theta}(0) \times \partial B^{3-i}_{\varepsilon^{\alpha h_1}}(0)$ at y_1.

In fact, for any $y_i \in B^1_{\theta}(0) \times B^{3-i}_{\varepsilon^{\alpha h_1}}(0)$, and $m \geq 1$, we have

$$\varepsilon^m |D^m Q(y_i)| = O\left(\varepsilon^m |y'_i|^{h_1-m} + \varepsilon^m |y''_i|^{h-m} \right)$$

$$= O\left(\varepsilon^m |y'_i|^{h_1-m} + \varepsilon^{\alpha h + m(1-\alpha)} \right),$$

(4.13)
By Lemma A.2, we obtain
\[
\frac{\partial K}{\partial y_{11}} = -C\varepsilon^3 D_1 Q(y_1) - (q - 1) \sum_{i=2}^{k} \int w_{\varepsilon, y_1}^q w_{\varepsilon, y_1} \frac{\partial w_{\varepsilon, y_1}}{\partial y_{11}} \\
+ O\left(\sum_{i=1}^{k} \sum_{m=2}^{[h]} \varepsilon^{2+m-\tau} |D^m Q(y_i)|^{1-\tau} + \varepsilon^{3+[h]-\tau}\right) \\
+ O\left(\varepsilon^{2} \sum_{i \neq j} O(Q(y_i) - 1)^{1-\tau} + O\left(\varepsilon^2 \sum_{i \neq j} e^{-(\bar{\theta} - \tau)\eta|y_i - y_j|}\right)\right).
\]
(4.14)

Denote \(\bar{\eta} = \min_{i \neq j} \eta|y_i - y_j|\). We divide it into two cases.

(i) Suppose that \(e^{-\frac{2}{\varepsilon}} > L e^{\alpha h}\) or \(|y_i'| > L e^{\alpha h}/h_1\) for some \(i \in \{1, \ldots, k\}\), where \(L > T\) is a large constant. We claim that \(K(Y) < c_{e, 1}\).

In fact, combining (4.10) and (4.11) yields
\[
K(Y) \leq \varepsilon^3 (kA - k^2 B) - C_1 \varepsilon^3 \sum_{i=1}^{k} |y_i'| h_1 - C_1 \varepsilon^3 e^{-\frac{\bar{\eta}}{\varepsilon}} + O\left(\sum_{i=1}^{k} \sum_{m=1}^{[h]} \varepsilon^{2+m} |y_i'| h_1^{1-m} + \varepsilon^{3+\alpha h}\right)
\]
\[
\leq \varepsilon^3 (kA - k^2 B) - (C_1 - \tau') \varepsilon^3 \sum_{i=1}^{k} |y_i'| h_1 - C_1 \varepsilon^3 e^{-\frac{\bar{\eta}}{\varepsilon}} + C_{\tau'} \varepsilon^{3+\alpha h},
\]
where \(\tau' > 0\) is a constant. When \(L > T\) is large enough, we have \(K(Y) < c_{e, 1}\).

(ii) Suppose that \(e^{-\frac{2}{\varepsilon}} \leq L e^{\alpha h}\) and \(|y_i'| \leq L e^{\alpha h}/h_1, i = 1, \ldots, k\). We claim that \(\frac{\partial K(Y)}{\partial n} > 0\).

First, we can see
\[
|1 - Q(y_i)| = O(e^{\alpha h}),
\]
\[
|D^m Q(y_i)| \varepsilon^m = O(\varepsilon^{\alpha h(h_1-m)/h_1} \varepsilon^m + e^{\alpha h + m(1-\alpha)}) = O(\varepsilon^{\alpha h + m(1-\alpha)}),
\]
\[
\varepsilon^2 e^{-\frac{\bar{\eta}}{\varepsilon}} = O(\varepsilon^{2+\bar{\eta} h}).
\]
(4.15)

Since for any \(i \neq 1\),
\[
\int w_{\varepsilon, y_1}^q w_{\varepsilon, y_1} \frac{\partial w_{\varepsilon, y_1}}{\partial y_{11}} = (C + o(1)) \varepsilon^2 w\left(\left|\frac{y_i - y_1}{\varepsilon}\right| y_{11} - y_{11}, \left|\frac{y_i - y_1}{\varepsilon}\right| y_{11} - y_{11}\right),
\]
(4.19)

\[
\langle \frac{y_i - y_1}{|y_i - y_1|}, n \rangle \leq 0, \forall y_i \in B_3^{\alpha}(0) \times B_3^{3-\alpha}(0),
\]
(4.20)

where
\[
n = \begin{cases}
(0, \frac{y_{1,2}}{(y_{1,2}^2 + y_{1,3}^2)^{\frac{1}{2}}}, \frac{y_{1,3}}{(y_{1,2}^2 + y_{1,3}^2)^{\frac{1}{2}}}), & t = 1, \\
(0, 0, \frac{y_{1,3}}{|y_{1,3}|}), & t = 2,
\end{cases}
\]
(4.16)

combining (4.11), (4.14) and (4.16)–(4.20) yields
\[
\frac{\partial K(Y)}{\partial n} \geq C \varepsilon^3 (-DQ(y_1), n) + O(\varepsilon^{3+\alpha h+\tau'})
\]
\[
\geq C \varepsilon^3 |y_1'| h_1^{-1} + O(\varepsilon^{3+\alpha h+\tau'})
\]
\[
> 0,
\]
(4.21)
where $\tau'' > 0$ is a constant.

Combining Steps 1 and 2 we complete the proof of this lemma. □

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3: Combining Lemma 2.6 and 4.3, we just need to prove $K^{c_\varepsilon,2}$ cannot be deformed into $K^{c_\varepsilon,1}$. Then K has at least one critical point in $K^{c_\varepsilon,2}\setminus K^{c_\varepsilon,1}$. Finally, by Lemma 4.2, we obtain that $u = \sum_{i=1}^k w_{\varepsilon_i} y_{\varepsilon_i} + \varphi_{\varepsilon,Y}$ is a critical point of I_{ε_i}, in the sense that it is a solution of equation (1.1).

Next, we prove $K^{c_\varepsilon,2}$ cannot be deformed into $K^{c_\varepsilon,1}$. It’s easy to know $K^{c_\varepsilon,2} = \Omega_{c_\varepsilon}$. Denote

$$M = B_{\varepsilon}^0(0) \times B_{\varepsilon}^{3-\varepsilon}(0),$$

(4.22)

$$\Gamma_i = \{(y', y'') \in M, |y'| \geq \varepsilon\},$$

(4.23)

$$T_{\gamma} = \cup_{i \neq j}\{y|y_i - y_j| \leq \gamma, y_i, y_j \in M\},$$

(4.24)

$$L_{i, \gamma} = (\Gamma_i \times M \times \cdots \times M) \cup (M \times \Gamma_i \times \cdots \times M) \cup \cdots \cup (M \times \cdots \times M \times \Gamma_i) \cup T_{\gamma}. \quad (4.25)$$

Step 1: We claim that there exist constants $C, \ c'$ with $C > c' > 0$, such that

$$L_{\delta/2, c' \varepsilon \ln \varepsilon^{-1}} \setminus T_{\varepsilon R_1} \subset K^{c_\varepsilon,1} \subset L_{c' \varepsilon^{ah}/h_1, C \varepsilon \ln \varepsilon^{-1}} \setminus T_{\varepsilon R_1}. \quad (4.26)$$

In fact, for any $Y \in K^{c_\varepsilon,1}$, we have $K(Y) < c_{\varepsilon,1}$. Then by (4.10), we obtain

$$c_{\varepsilon,1} = \varepsilon^3(kA - k^2B - T_{\varepsilon^{ah}})$$

$$K(Y)$$

$$> \varepsilon^3(kA - k^2B - c' \varepsilon^3 \sum_{i=1}^k |y_i|^{h_1} - c' \varepsilon^3 \sum_{i \neq j} \frac{\eta|y_i - y_j|}{\varepsilon} + O(\varepsilon^{3+ah}). \quad (4.27)$$

Thus, $|y_i'| \geq c' \varepsilon^{ah/h_1}$ or $\eta|y_i - y_j| \leq C \varepsilon \ln \varepsilon^{-1}$ for some $i \neq j$. Hence,

$$K^{c_\varepsilon,1} \subset L_{c' \varepsilon^{ah}/h_1, C \varepsilon \ln \varepsilon^{-1}} \setminus T_{\varepsilon R_1}. \quad (4.28)$$

On the other hand, choose $c' > 0$ sufficiently small. When $|y_i'| \geq \frac{\delta}{2}$ or $\eta|y_i - y_j| \leq c' \varepsilon \ln \varepsilon^{-1}$ for some $i \neq j$, by (4.11), we have $K(Y) < c_{\varepsilon,1}$. Then

$$L_{\delta/2, c' \varepsilon \ln \varepsilon^{-1}} \setminus T_{\varepsilon R_1} \subset K^{c_\varepsilon,1}. \quad (4.29)$$

So the claim follows.

Step 2: Since $L_{c' \varepsilon^{ah}/h_1, C \varepsilon \ln \varepsilon^{-1}} \setminus T_{\varepsilon R_1}$ can be deformed into $L_{\delta/2, c' \varepsilon \ln \varepsilon^{-1}} \setminus T_{\varepsilon R_1}$, then $K^{c_\varepsilon,1}$ can be deformed into $L_{\delta/2, c' \varepsilon \ln \varepsilon^{-1}} \setminus T_{\varepsilon R_1}$. Suppose $K^{c_\varepsilon,2}$ can be deformed into $K^{c_\varepsilon,1}$, then we see that $\Omega_{c_\varepsilon} = K^{c_\varepsilon,2}$ can be deformed into $L_{\delta/2, c' \varepsilon \ln \varepsilon^{-1}} \setminus \cup_{i \neq j} \Gamma_i$. Hence, $\bigcup_{i \neq j} \Gamma_i$ can be deformed into $L_{\delta/2, c' \varepsilon \ln \varepsilon^{-1}}$. However,

$$H^t(M, \Gamma_{\delta/2}) = H^t(B^0, \partial B^0(0)) \neq 0,$$

By Lemma 2.7, we obtain

$$H_s(M \times \cdots \times M, L_{\delta/2, c' \varepsilon \ln \varepsilon^{-1}}) \neq 0,$$
Then $M \times M \times \cdots \times M$ cannot be deformed into $L_{t/2}^{-1}$. This is a contradiction. □

APPENDIX

A. Energy estimates

Lemma A.1. For ε sufficiently small and any $Y \in D^{k}_{\varepsilon, \delta}$, we have

$$J_{\varepsilon}(Y, 0) = \varepsilon^{3}(kA - k^{2}B - \frac{2}{q-2}A \sum_{i=1}^{k} (Q(y_{i}) - 1))$$

$$- \int \sum_{i=1}^{k-1} w_{\varepsilon, y_{i}} \left(\sum_{j=i+1}^{k} w_{\varepsilon, y_{j}} \right)^{q-1} + O\left(\sum_{i=1}^{k} \sum_{m=1}^{[h]} \varepsilon^{3+m} |D^{m}Q(y_{i})| \right)$$

$$+ O\left(\varepsilon^{3} \sum_{i \neq j} e^{-\frac{|y_{i} - y_{j}|}{\varepsilon}} + \varepsilon^{4+[h]} \right),$$

where $A = \frac{2^{2/3}}{2q} \|w\|_{L^{q}}$, $B = \frac{b}{4} \|\nabla w\|_{L^{2}}^{2}$.

Proof. By the definition of $J_{\varepsilon}(Y, \varphi)$, we obtain

$$J_{\varepsilon}(Y, 0) = I_{\varepsilon}(W_{\varepsilon,Y})$$

$$= \frac{1}{2} \|W_{\varepsilon,Y}\|_{\varepsilon}^{2} + \frac{b}{4} \left(\int |\nabla W_{\varepsilon,Y}|^{2} \right)_{\varepsilon} - \frac{1}{q} \int Q(x)W_{\varepsilon,Y}^{q}$$

$$= \frac{1}{2} \sum_{i=1}^{k} \left(\varepsilon^{2} a |\nabla w_{\varepsilon, y_{i}}|^{2} + w_{\varepsilon, y_{i}}^{2} \right) + \frac{1}{2} \sum_{i \neq j} \left(\varepsilon^{2} a |\nabla w_{\varepsilon, y_{i}} \nabla w_{\varepsilon, y_{j}}| + w_{\varepsilon, y_{i}} w_{\varepsilon, y_{j}} \right)$$

$$+ \frac{b}{4} \left(\sum_{i=1}^{k} \int |\nabla w_{\varepsilon, y_{i}}|^{2} \right)_{\varepsilon} + \frac{b}{4} \left(\sum_{i \neq j} \int |\nabla w_{\varepsilon, y_{i}} \nabla w_{\varepsilon, y_{j}}| \right) - \frac{1}{q} \int Q(x)W_{\varepsilon,Y}^{q},$$

(A.2)

As $Q(0) = 1$ and w is the solution of (2.3), we obtain that $w_{\varepsilon, y_{i}} (1 \leq i \leq k)$ satisfies

$$- \left(\varepsilon^{2} a + \varepsilon b k \int |\nabla w_{\varepsilon, y_{j}}|^{2} \right) \Delta w_{\varepsilon, y_{i}} + w_{\varepsilon, y_{i}} = w_{\varepsilon, y_{i}}^{q-1}, \quad j = 1, \ldots, k.$$

Multiplying $w_{\varepsilon, y_{j}}$ on both sides of the above equality and integrating, we have

$$\left(\varepsilon^{2} a + \varepsilon b k \int |\nabla w_{\varepsilon, y_{j}}|^{2} \right) \int |\nabla w_{\varepsilon, y_{i}}|^{2} + \int w_{\varepsilon, y_{i}}^{2} = \int w_{\varepsilon, y_{i}}^{q}.$$

Sum i from 1 to k, we obtain

$$\sum_{i=1}^{k} \left(\varepsilon^{2} a + \varepsilon b k \int |\nabla w_{\varepsilon, y_{j}}|^{2} \right) \int |\nabla w_{\varepsilon, y_{i}}|^{2} + \sum_{i=1}^{k} \int w_{\varepsilon, y_{i}}^{2} = \sum_{i=1}^{k} w_{\varepsilon, y_{i}}^{q}.$$
Then
\[\sum_{i=1}^{k} (\varepsilon^2 a |\nabla w_{\varepsilon,y_i}|^2 + w_{\varepsilon,y_i}^2) = -\varepsilon b k \int |\nabla w_{\varepsilon,y_j}|^2 \int \sum_{i=1}^{k} |\nabla w_{\varepsilon,y_i}|^2 + \int \sum_{i=1}^{k} w_{\varepsilon,y_i}^2. \]
Substituting it into (A.2) yields
\[J_{\varepsilon}(Y,0) = \frac{1}{2} \sum_{i=1}^{k} \int w_{\varepsilon,y_i}^2 - \frac{\varepsilon b}{4} \left(\sum_{i=1}^{k} \int |\nabla w_{\varepsilon,y_i}|^2 \right)^2 - \frac{1}{q} \int Q(x) W_{\varepsilon,Y}^q + O\left(\varepsilon^3 \sum_{i \neq j} e^{-\frac{|y_i-y_j|}{\varepsilon}} \right) \]
Next, we estimate the third and fourth term of the right side of (A.3) respectively. First, to estimate the third term, we use the following inequalities
\[|a+b|^q - a^q - b^q - qa^{q-1}b - qab^{q-1}| \leq \begin{cases} C|b|^{q-2}|a|^2, & |b| \leq |a|; \\ C|a|^{q-2}|b|^2, & |a| \leq |b|, \end{cases} \]
\[\leq C|a|^{q-2}|b|^2, \quad (2 < q \leq 3), \]
\[|a+b|^q - a^q - b^q - qa^{q-1}b - qab^{q-1}| \leq C(a^{q-2}b^2 + a^2b^{q-2}), \quad (q > 3). \]

Thus,
\[\left(\sum_{i=1}^{k} w_{\varepsilon,y_i}^q \right)^q - w_{\varepsilon,Y_1}^q - \left(\sum_{i=2}^{k} w_{\varepsilon,y_i}^q \right)^q - qw_{\varepsilon,Y_1}^{q-1} \left(\sum_{i=2}^{k} w_{\varepsilon,y_i}^q \right) - qw_{\varepsilon,Y_1} \left(\sum_{i=2}^{k} w_{\varepsilon,y_i}^q \right)^{q-1} \]
\[\leq \begin{cases} Cw_{\varepsilon,Y_1}^q \left(\sum_{i=2}^{k} w_{\varepsilon,y_i}^q \right)^{q-2}, & 2 < q \leq 3, \\ Cw_{\varepsilon,Y_1}^{q-2} \left(\sum_{i=2}^{k} w_{\varepsilon,y_i}^q \right)^2 + Cw_{\varepsilon,Y_1}^2 \left(\sum_{i=2}^{k} w_{\varepsilon,y_i}^q \right)^{q-2}, & q > 3. \end{cases} \]
If 2 < q \leq 3, by (2.13), we have
\[\int \sum_{i=2}^{k} w_{\varepsilon,y_i}^q \leq C \int \sum_{i=2}^{k} w_{\varepsilon,y_1}^q w_{\varepsilon,y_i}^q \leq C \sum_{i=2}^{k} \varepsilon^{3} e^{-\frac{|y_i-y_j|}{\varepsilon}}. \]
If $q > 3$, by (2.13), we have
\[
\int \left(w^{q-2}_{\epsilon, y_1} \left(\sum_{i=2}^{k} w^{q}_{\epsilon, y_i} \right)^2 + w^2_{\epsilon, y_1} \left(\sum_{i=2}^{k} w^{q}_{\epsilon, y_i} \right)^{q-2} \right) \leq \begin{cases}
C \varepsilon^3 \sum_{i=2}^{k} e^{-\left(q-2 \right) \frac{|y_1 - y_i|}{\varepsilon}}, & 3 < q \leq 4; \\
C \varepsilon^3 \sum_{i=2}^{k} e^{-2 \frac{|y_1 - y_i|}{\varepsilon}}, & q > 4.
\end{cases}
\] (A.6)

Denote
\[
1 + \bar{\sigma} = \begin{cases}
\frac{q}{2}, & 2 < q \leq 3, \\
q - 2, & 3 < q \leq 4, \\
2, & q > 4.
\end{cases}
\]

Combining (A.4)–(A.6) yields
\[
\int \left(\left(\sum_{i=1}^{k} w^{q}_{\epsilon, y_i} \right)^{q} - \sum_{i=1}^{k} w^{q}_{\epsilon, y_i} \right) = q \int \sum_{i<j} \sum_{i=1}^{k} w^{q-1}_{\epsilon, y_i} w_{\epsilon, y_j} + q \int \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \sum_{i=1}^{k} w^{q}_{\epsilon, y_i} \left(\sum_{j=i+1}^{k} w^{q}_{\epsilon, y_j} \right)^{q-1}
+ O\left(\varepsilon^3 \sum_{i<j} e^{-(q-2) \frac{|y_i - y_j|}{\varepsilon}} \right) \right)
= q \int \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \sum_{i=1}^{k} w^{q}_{\epsilon, y_i} \left(\sum_{j=i+1}^{k} w^{q}_{\epsilon, y_j} \right)^{q-1}
+ O\left(\varepsilon^3 \sum_{i<j} e^{\frac{-|y_i - y_j|}{\varepsilon}} \right).
\] (A.7)

Secondly, to estimate the fourth term of (A.3), we have
\[
\int (Q(x) - 1) \left(\sum_{i=1}^{k} w^{q}_{\epsilon, y_i} \right)^{q} = \sum_{i=1}^{k} \int (Q(x) - 1) w^{q}_{\epsilon, y_i} + O\left(\varepsilon^3 \sum_{i \neq j} e^{\frac{-|y_i - y_j|}{\varepsilon}} \right). \] (A.8)

Estimating the first term of the right side of (A.8), we obtain
\[
\int_{\mathbb{R}^3} (Q(x) - 1) w^{q}_{\epsilon, y_i} = \int_{B_{\delta}(y_i)} (Q(x) - Q(y_i)) w^{q}_{\epsilon, y_i} + \int_{B_{\delta}^c(y_i)} (Q(x) - Q(y_i)) w^{q}_{\epsilon, y_i}
+ \int_{\mathbb{R}^3} (Q(y_i) - 1) w^{q}_{\epsilon, y_i}, \] (A.9)

\[
\left| \int_{B_{\delta}^c(y_i)} (Q(x) - Q(y_i)) w^{q}_{\epsilon, y_i} \right| \leq \int_{B_{\delta}^c(y_i)} |Q(x) - Q(y_i)||w^{q}_{\epsilon, y_i}| \leq C \varepsilon^3 \int_{|y| \geq \frac{\delta}{2}} w^{q}(y)
\leq C \varepsilon^3 \int_{|y| \geq \frac{\delta}{2}} e^{-q \eta |y| |y|^{-q}} \leq C \varepsilon^3 e^{-\frac{2 \eta \delta}{\varepsilon}}, \] (A.10)
where \(\bar{q} = q - \bar{\theta} \) with \(\bar{\theta} > 0 \) is a small constant, and

\[
\int_{B_{\delta}(y_i)} (Q(x) - Q(y_i)) w_{\bar{q}, y_i}^q \leq C \varepsilon^3 \int_{|y_i| < \delta} \left(\sum_{m=1}^{[h]} \varepsilon^m |y_i|^m |D^m Q(y_i)| + \varepsilon^{[h]+1} |y_i|^{[h]+1} \right) w^q(y) \leq C \left(\sum_{m=1}^{[h]} \varepsilon^{3+m} |D^m Q(y_i)| + \varepsilon^{4+[h]} \right).
\]

Combining (A.9)–(A.11) yields

\[
\int (Q(x) - 1) w_{\bar{q}, y_i}^q = (Q(y_i) - 1) \int w_{\bar{q}, y_i}^q + \varepsilon^3 O(e^{-\frac{\bar{q}t}{\varepsilon}} + \varepsilon^{[h]+1}) + \varepsilon^3 O \left(\sum_{m=1}^{[h]} \varepsilon^m |D^m Q(y_i)| \right)
\]

\[
= (Q(y_i) - 1) \varepsilon^3 \|w\|_{L^q} + O(\varepsilon^{4+[h]}) + O \left(\sum_{m=1}^{[h]} \varepsilon^{3+m} |D^m Q(y_i)| \right).
\]

Combining (A.3), (A.7), (A.8) and (A.12) yields (A.11).

\[\square\]

Lemma A.2. For any \(Y \in D_{\varepsilon, \delta}^k \), there holds

\[
\frac{\partial K}{\partial y_{il}} = -C \varepsilon^3 D_i Q(y_i) - (q - 1) \sum_{j=1, j \neq i}^k w_{\bar{q}, y_i}^{q-2} w_{\bar{q}, y_i} \frac{\partial w_{\bar{q}, y_i}}{\partial y_{il}}
\]

\[+ O \left(\sum_{i=1}^k \sum_{m=2}^{[h]} \varepsilon^{2+m-\tau} |D^m Q(y_i)|^{1-\tau} + \varepsilon^{3+[h]-\tau} \right) \]

\[+ O \left(\varepsilon^2 \sum_{i=1}^k |Q(y_i) - 1|^{1-\tau} + O \left(\varepsilon^2 \sum_{i \neq j} e^{-\frac{\bar{\theta} - \bar{\theta}}{\varepsilon}} \right) \right),
\]

where \(i = 1, \ldots, k \) and \(l = 1, 2, 3 \).

Proof. By the definition of \(K(Y) \), we have

\[
\frac{\partial K}{\partial y_{il}} = \frac{\partial J_\varepsilon}{\partial y_{il}} + \left(\frac{\partial J_\varepsilon}{\partial \varphi_{\varepsilon, Y}}, \frac{\partial \varphi_{\varepsilon, Y}}{\partial y_{il}} \right).
\]

First, estimating the first term of (A.14), we obtain

\[
\frac{\partial J_\varepsilon}{\partial y_{il}} = \int \varepsilon^2 a \nabla (W_{\varepsilon, Y} + \varphi_{\varepsilon, Y}) \nabla \frac{\partial W_{\varepsilon, Y}}{\partial y_{il}} + \int (W_{\varepsilon, Y} + \varphi_{\varepsilon, Y}) \frac{\partial W_{\varepsilon, Y}}{\partial y_{il}}
\]

\[+ \varepsilon b \int |\nabla (W_{\varepsilon, Y} + \varphi_{\varepsilon, Y})|^2 \int |\nabla (W_{\varepsilon, Y} + \varphi_{\varepsilon, Y})| \frac{\partial W_{\varepsilon, Y}}{\partial y_{il}} - \int Q(x) (W_{\varepsilon, Y} + \varphi_{\varepsilon, Y})^{q-1} \frac{\partial W_{\varepsilon, Y}}{\partial y_{il}}
\]

\[= \left(I_{\varepsilon}' (W_{\varepsilon, Y}), \frac{\partial W_{\varepsilon, Y}}{\partial y_{il}} \right) + \left(I_{\varepsilon}'' (W_{\varepsilon, Y}) [\varphi_{\varepsilon, Y}], \frac{\partial W_{\varepsilon, Y}}{\partial y_{il}} \right) + \left(R_{\varepsilon,Y} (\varphi_{\varepsilon, Y}), \frac{\partial W_{\varepsilon, Y}}{\partial y_{il}} \right)
\]

\[= l_{\varepsilon,Y} \left(\frac{\partial W_{\varepsilon, Y}}{\partial y_{il}} \right) + \left(I_{\varepsilon}'' (W_{\varepsilon, Y}) [\varphi_{\varepsilon, Y}], \frac{\partial W_{\varepsilon, Y}}{\partial y_{il}} \right) + \left(R_{\varepsilon,Y} (\varphi_{\varepsilon, Y}), \frac{\partial W_{\varepsilon, Y}}{\partial y_{il}} \right).
\]

(A.15)
To estimate the first term of the right side of \((A.15)\), since \(Q(0) = 1\) and \(w\) is the solution of \((2.3)\), we obtain \(w_{\varepsilon,y_j}(1 \leq j \leq k)\) satisfies
\[
-\left(\varepsilon^2 a + \varepsilon bk \int |\nabla w_{\varepsilon,y_j}|^2\right) \Delta w_{\varepsilon,y_j} + w_{\varepsilon,y_j} = w_{q-1}^{\varepsilon,y_j}, \quad t = 1, \ldots, k.
\]
Sum \(j\) from 1 to \(k\), we obtain
\[
-\left(\varepsilon^2 a + \varepsilon bk \int |\nabla w_{\varepsilon,y_j}|^2\right) \Delta W_{\varepsilon,Y} + W_{\varepsilon,Y} = \sum_{j=1}^{k} w_{q-1}^{\varepsilon,y_j}.
\]
Multiplying \(\frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}}\) on both sides of the above equality and integrating, we have
\[
\left(\varepsilon^2 a + \varepsilon bk \int |\nabla w_{\varepsilon,y_j}|^2\right) \int \nabla W_{\varepsilon,Y} \frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}} + \int W_{\varepsilon,Y} \frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}} = \int \sum_{j=1}^{k} w_{q-1}^{\varepsilon,y_j} \frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}}.
\]
Then
\[
\langle W_{\varepsilon,Y}, \frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}} \rangle = \int \left(\varepsilon^2 a \nabla W_{\varepsilon,Y} \frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}} + W_{\varepsilon,Y} \frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}}\right)
\]
\[
= -\varepsilon bk \int |\nabla w_{\varepsilon,y_j}|^2 \int \nabla W_{\varepsilon,Y} \frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}} + \int \sum_{j=1}^{k} w_{q-1}^{\varepsilon,y_j} \frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}},
\]
Hence,
\[
l_{\varepsilon,Y} \left(\frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}}\right) = \varepsilon b \int \nabla W_{\varepsilon,Y} \frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}} \left(\int |\nabla W_{\varepsilon,Y}|^2 - \int \sum_{t=1}^{k} |\nabla w_{\varepsilon,y_t}|^2\right)
\]
\[
- \left(\int Q(x) W_{\varepsilon,Y}^{q-1} \frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}} - \int \sum_{j=1}^{k} w_{q-1}^{\varepsilon,y_j} \frac{\partial W_{\varepsilon,Y}}{\partial y_{i,l}}\right)
\]
\[
=: \tilde{l}_1 - \tilde{l}_2,\]
By similar estimates of \(l_1\) as that of Lemma \((3.2)\), we have
\[
|\tilde{l}_1| \leq C \varepsilon^2 \sum_{i \neq j} e^{-\frac{\bar{\theta} |y_i - y_j|}{\varepsilon}}.\]
(A.17)
Next, to estimate \(\tilde{l}_2\), we have
\[
\tilde{l}_2 = \int Q(x) \left(\sum_{j=1}^{k} w_{\varepsilon,y_j}^{q-1} \frac{\partial w_{\varepsilon,y_j}}{\partial y_{i,l}} - \int \sum_{j=1}^{k} w_{q-1}^{\varepsilon,y_j} \frac{\partial w_{\varepsilon,y_j}}{\partial y_{i,l}}\right)
\]
\[
= \int \left(\left(\sum_{j=1}^{k} w_{\varepsilon,y_j}\right)^{q-1} - \sum_{j=1}^{k} w_{q-1}^{\varepsilon,y_j} \frac{\partial w_{\varepsilon,y_j}}{\partial y_{i,l}} + \int (Q(x) - 1) \left(\sum_{j=1}^{k} w_{\varepsilon,y_j}\right)^{q-1} \frac{\partial w_{\varepsilon,y_i}}{\partial y_{i,l}}\right)
\]
\[
=: \tilde{l}_{21} + \tilde{l}_{22}.
\]
Since
\[
\tilde{l}_{21} \leq (q - 1) \sum_{j=1, j \neq i}^{k} \int w_{\varepsilon,y_j}^{q-2} \frac{\partial w_{\varepsilon,y_j}}{\partial y_{i,l}} + O\left(\varepsilon^2 \sum_{i \neq j} e^{-\frac{\bar{\theta} |y_i - y_j|}{\varepsilon}}\right),
\]
(A.19)
and

\[l_{22} = \sum_{j=1}^{k} \int (Q(x) - 1) w_{\varepsilon, y_j}^{q-1} \frac{\partial w_{\varepsilon, y_j}}{\partial y_{il}} + O\left(\varepsilon^2 \sum_{i \neq j} e^{-\frac{\beta|u_{\varepsilon, y_j} - y_j|}{\varepsilon}}\right) \]

\[= \int (Q(x) - 1) w_{\varepsilon, y_l}^{q-1} \frac{\partial w_{\varepsilon, y_l}}{\partial y_{il}} + O\left(\varepsilon^2 \sum_{i \neq j} e^{-\frac{\beta|u_{\varepsilon, y_l} - y_l|}{\varepsilon}}\right) \]

\[= \frac{1}{q} \int \frac{\partial Q(x)}{\partial x_l} w_{\varepsilon, y_l}^q + O\left(\varepsilon^2 \sum_{i \neq j} e^{-\frac{\beta|u_{\varepsilon, y_l} - y_l|}{\varepsilon}}\right) \quad (A.20) \]

\[= C\varepsilon^3 D_l Q(y_l) + O\left(\sum_{i=1}^{k} \sum_{m=2}^{[h]} \varepsilon^{2+m} |D^m Q(y_l)| + \varepsilon^{3+[h]} \right) \]

\[+ O\left(\varepsilon^2 \sum_{i \neq j} e^{-\frac{\beta|u_{\varepsilon, y_l} - y_l|}{\varepsilon}}\right), \]

combining \(A.17\) and \(A.20\) yields

\[l_{\varepsilon,Y} \left(\frac{\partial W_{\varepsilon,Y}}{\partial y_{il}}\right) = -C\varepsilon^3 D_l Q(y_l) - (q - 1) \sum_{j=1, j \neq i}^{k} w_{\varepsilon, y_j}^{q-2} w_{\varepsilon, y_j} \frac{\partial w_{\varepsilon, y_j}}{\partial y_{il}} + O(\varepsilon^{3+[h]} \]

\[+ O\left(\sum_{i=1}^{k} \sum_{m=2}^{[h]} \varepsilon^{2+m} |D^m Q(y_l)| \right) + O\left(\varepsilon^2 \sum_{i \neq j} e^{-\frac{\beta|u_{\varepsilon, y_l} - y_l|}{\varepsilon}}\right). \quad (A.21) \]

Next, we estimate the second term of the right side of \(A.15\). We have

\[\left\langle L_\varepsilon^n \left(W_{\varepsilon,Y}\right), \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \right\rangle = \left\langle \varphi_{\varepsilon,Y}, \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \right\rangle + \varepsilon b \int |\nabla W_{\varepsilon,Y}|^2 \int \nabla \varphi_{\varepsilon,Y} \nabla \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \]

\[+ 2\varepsilon b \int \nabla W_{\varepsilon,Y} \nabla \varphi_{\varepsilon,Y} \int \nabla W_{\varepsilon,Y} \nabla \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \]

\[- (q - 1) \int Q(x) W_{\varepsilon,Y}^{q-2} \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \varphi_{\varepsilon,Y}. \quad (A.22) \]

Since \(\varphi_{\varepsilon,Y} \in E_{\varepsilon,Y}^k\),

\[\left\langle \varphi_{\varepsilon,Y}, \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \right\rangle_\varepsilon = 0. \quad (A.23) \]

By Hölder inequality, we obtain

\[\varepsilon b \int |\nabla W_{\varepsilon,Y}|^2 \int \nabla \varphi_{\varepsilon,Y} \nabla \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \leq \varepsilon b k \sum_{i=1}^{k} |\nabla w_{\varepsilon,y_i}|^2 \|\nabla \varphi_{\varepsilon,Y}\|_{L^2} \left\| \nabla \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \right\|_{L^2} \]

\[\leq C\varepsilon^2 \|\varphi_{\varepsilon,Y}\|_{\varepsilon}, \quad (A.24) \]

\[\varepsilon b \int \nabla W_{\varepsilon,Y} \nabla \varphi_{\varepsilon,Y} \int \nabla W_{\varepsilon,Y} \nabla \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \leq \varepsilon b \|\nabla W_{\varepsilon,Y}\|_{L^2} \|\nabla \varphi_{\varepsilon,Y}\|_{L^2} \left\| \nabla \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \right\|_{L^2} \]

\[\leq C\varepsilon^2 \|\varphi_{\varepsilon,Y}\|_{\varepsilon}, \quad (A.25) \]
\[
\int Q(x) W_{\varepsilon,Y}^{-q-2} \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \varphi_{\varepsilon,Y} \leq C \left(\int W_{\varepsilon,Y}^{-q} \left(\int \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \right)^{\frac{q}{q-2}} \left(\int |\varphi_{\varepsilon,Y}|^q \right)^{\frac{1}{q}} \right) \leq C \varepsilon^{\frac{2}{q}} \|\varphi_{\varepsilon,Y}\|_{\varepsilon}. \tag{A.26}
\]

Combining (A.22)–(A.26) yields

\[
\left\langle I_{\varepsilon}^{''} (W_{\varepsilon,Y}) [\varphi_{\varepsilon,Y}], \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \right\rangle = O(\varepsilon^{\frac{1}{q}} \|\varphi_{\varepsilon,Y}\|_{\varepsilon}). \tag{A.27}
\]

Besides, by Lemma 3.3 we have

\[
\left\langle R_{\varepsilon,Y}^{\ast} (\varphi_{\varepsilon,Y}), \frac{\partial W_{\varepsilon,Y}}{\partial y_{il}} \right\rangle = o_{\varepsilon}(1) \|\varphi_{\varepsilon,Y}\|_{\varepsilon}. \tag{A.28}
\]

By Lemma 3.4 we have

\[
\left\langle \frac{\partial J_{\varepsilon}}{\partial \varphi_{\varepsilon,Y}}, \frac{\partial \varphi_{\varepsilon,Y}}{\partial y_{il}} \right\rangle = 0. \tag{A.29}
\]

Combining (A.21) and (A.27)–(A.29) yields (A.13). \qed

Acknowledgments The authors would like to thank Chunhua Wang from Central China Normal University for the helpful discussion with her. This paper was supported by NSFC grants (No.12071169).

References

[1] G. Kirchhoff, Mechanik [M]. Teubner, Leipzig, 1883.

[2] S. Bernstein, Sur une classe d’équations fonctionnelles aux dérivées partielles [J]. *Bull. Acad. Sci. URSS. Sér.* 4 (1940), 17–26.

[3] S. I. Pohozaev, A certain class of quasilinear hyperbolic equations [J]. *Mat. Sb. (N.S.)* 96(138)(1975), 152–166, 168 (in Russian).

[4] J. L. Lions, On some questions in boundary value problems of mathematical physics. Contemporary Developments in Continuum Mechanics and Partial Differential Equations [M]. North-Holland Math. Stud., Vol. 30, North-Holland, Amsterdam–New York, 1978, pp. 284–346.

[5] A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string [J]. *Trans. Amer. Math. Soc.* 348(1996), 305–330.

[6] X. M. He, W. M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in \mathbb{R}^3 [J]. *J. Differ. Equ.* 252(2012), 1813–1834.

[7] G. M. Figueiredo, N. Ikoma, J. R. Santos Júnior, Existence and concentration result for the Kirchhoff type equations with general nonlinearities [J]. *Arch. Rational Mech. Anal.* 213(2014), 931–979.

[8] Z. Guo, Ground states for Kirchhoff equations without compact condition [J]. *J. Differ. Equ.* 259(2015), 2884–2902.

[9] Y. Deng, S. Peng, W. Shuai, Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \mathbb{R}^3 [J]. *J. Funct. Anal.* 269(2015), 3500–3527.

[10] S. Xu, C. Wang, Local uniqueness of a single peak solution of a subcritical Kirchhoff problem in \mathbb{R}^3 [J]. (Chinese. English) *Acta Math. Sci. Ser. A (Chinese Ed.)* 40 (2020), 432–440.

[11] K. Perera, Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index [J]. *J. Differ. Equ.* 221(2006), 246–255.

[12] Y. He, G. Li, S. Peng, Concentrating bound states for Kirchhoff type problems in \mathbb{R}^4 involving critical Sobolev exponents [J]. *Adv. Nonlinear Stud.* 14(2014), 483–510.

[13] Y. He, G. Li, Standing waves for a class of Kirchhoff type problems in \mathbb{R}^3 involving critical Sobolev exponents [J]. *Calc. Var. Partial Differ. Equ.* 54(2015), 3067–3106.

[14] Y. He, Concentrating bounded states for a class of singularly perturbed Kirchhoff type equations with a general nonlinearity [J]. *J. Differ. Equ.* 261(2016), 6178–6220.
[15] M. K. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p = 0$ in \mathbb{R}^N [J]. *Arch. Rational Mech. Anal.* **105**(1989), 243–266.

[16] D. Cao, E. S. Noussair, S. Yan, Solutions with multiple peaks for nonlinear elliptic equations [J]. *Proc. Roy. Soc. Edinburgh Sect. A* **129**(1999), 235–264.

[17] E. N. Dancer, S. Yan, On the existence of multiple peak solutions for nonlinear field equations on \mathbb{R}^N [J]. *Discrete Contin. Dyn. Systems* **6**(2000), 39–50.

[18] J. Wang, L. Tian, J. Xu and F. Zhang, Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth [J]. *J. Differ. Equ.* **253**(2012), 2314–2351.

[19] G. M. Figueiredo and J. R. Santos Júnior, Multiplicity and concentration behavior of positive solutions for a Schrödinger-Kirchhoff type problem via penalization method [J]. *ESAIM Control Optim. Calc. Var.* **20**(2014), 389–415.

[20] D. Cao, S. Li, P. Luo, Uniqueness of positive bound states with multi-bump for nonlinear Schrödinger equations [J]. *Calc. Var. Partial Differ. Equ.* **54**(2015), 4037–4063.

[21] C. Gui, Existence of multi-bump solutions for nonlinear Schrödinger equations via variational method [J]. *Commun. Part. Differ. Equ.* **21**(1996), 787–820.

[22] M. del Pino, P. L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations [J]. *Ann. Inst. H. Poincaré C Anal. Non Linéaire* **15**(1998), 127–149.

[23] A. Floer, A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential [J]. *J. Funct. Anal.* **69**(1986), 397–408.

[24] W. Liu, C. Wang, Multi-peak solutions of a nonlinear Schrödinger equation with magnetic fields [J]. *Adv. Nonlinear Stud.* **14**(2014), 951–975.

[25] E. S. Noussair, S. Yan, On positive multipeak solutions of a nonlinear elliptic problem [J]. *J. London Math. Soc. (2)* **62**(2000), 213–227.

[26] Y. G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential [J]. *Commun. Math. Phys.* **131**(1990), 223–253.

[27] G. Li, P. Luo, S. Peng, C. Wang, C. Xiang, Uniqueness and Nondegeneracy of positive solutions to Kirchhoff equations and its applications in singular perturbation problems [J]. *J. Differ. Equ.* **268**(2020), 541–589.

[28] P. Luo, S. Peng, C. Wang, C. Xiang, Multi-peak positive solutions to a class of Kirchhoff equations [J]. *Proc. Roy. Soc. Edinburgh Sect. A* **149**(2019), 1097–1122.

[29] L. Cui, G. Li, P. Luo and C. Wang, Existence and local uniqueness of normalized multi-peak solutions to a class of Kirchhoff type equations [J]. *Minimax Theory Appl.* **7**(2022), 207–252.

[30] A. Ambrosetti, E. Colorado, D. Ruiz, Multi-bump solitons to linearly coupled systems of nonlinear Schrödinger equations [J]. *Calc. Var. Partial Differential Equations.* **30**(2007), 85–112.

[31] E. N. Dancer, K. Y. Lam, S. Yan, The effect of the graph topology on the existence of multi-peak solutions for nonlinear Schrödinger equations [C]. *Abstr. Appl. Anal.* **3**(1998), 293–318.

[32] E. N. Dancer, S. Yan, Interior and boundary peak solutions for a mixed boundary value problem [J]. *Indiana Univ. Math. J.* **48**(1999), 1177–1212.

[33] T. Bartsch, S. Peng, Semiclassical symmetric Schrödinger equations: existence of solutions concentrating simultaneously on several spheres [J]. *Z. Angew. Math. Phys.* **58**(2007), 778–804.

(Hong Chen) School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

Email address: chenhongcwh@163.com

(Qiaoqiao Hua) School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

Email address: hqq@mails.ccnu.edu.cn