Predictor Naïve Temporal Baseline Hazard of Recurrent Ischemic Stroke

Marwa Elsaeed Elhefnawy
School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, USM 11800

Siti Maisharah Sheikh Ghadzi
School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, USM 11800

Orwa Albitar
School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, USM 11800

Balamurugan Tangiisuran
National Poison Centre, Universiti Sains Malaysia, Penang, USM 11800

Hadzliana Zainal
School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, USM 11800

Irene Looi
Clinical Research Center, Hospital Seberang Jaya

Norsima Sidek
Clinical Research Centre, Hospital Sultanah Nur Zahirah, Terengganu

Zariah Abdul Aziz
Clinical Research Centre, Hospital Sultanah Nur Zahirah, Terengganu

Sabariah Noor Harun (✉️ Sabariahnoor@usm.my)
School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, USM 11800

Research Article

Keywords: ischemic stroke, recurrence, pharmacometrics, time to event model

Posted Date: January 3rd, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1181102/v1

License: ☺️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

There are established correlation between risk factors and the recurrence of ischemic stroke (IS), however does the hazard of recurrent IS change although without the influence of established risk factors? This study aimed to quantify the hazard of recurrent IS at different time points after the index IS. This was a population cohort study extracted data of 7697 patients with a history of first IS attack registered with National Neurology Registry of Malaysia. A repeated time to recurrent IS model was developed using NONMEM version 7.5. Three baseline hazard models were fitted into the data. The best model was selected using maximum likelihood estimation, clinical plausibility and visual predictive checks. Three hundred and thirty-three (4.32%) patients developed at least one recurrent IS within the maximum 7.37 years follow-up. In the absence of significant risk factors, the hazard of recurrent IS was predicted to be 0.71 within the first month after the index IS and reduced to 0.022 between the first to third months after the index attack. The hazard of IS recurrence accelerated with the presence of typical risk factors such as hyperlipidaemia (HR, 2.64 [2.10-3.33]), hypertension (HR, 1.97 [1.43-2.72], and ischemic heart disease (HR, 2.21 [1.69-2.87]). In conclusion, the absence of significant risk factors, predicted hazard of recurrent IS was prominent in the first month after the index IS and was non-zero even three months after the index IS or later. Optimal secondary preventive treatment should incorporate the ‘nature risk’ IS recurrence.

Introduction

Stroke is the world's second leading cause of death and mortality (1–4). The risk of recurring strokes is much greater for survivors of acute ischemic stroke (IS). For survivors of acute ischemic stroke (IS), the risk of repeated strokes is significantly larger (5–7). Nearly 33% of the IS population experienced a recurring stroke in Malaysia (8). Recurrence neurological damage is usually severe, harder to deal with and higher mortality compared with the first stroke (9). Therefore, secondary prevention is crucial to reduce IS recurrence events (9).

The prognosis of recurrent IS has been widely studied. The probability of recurrent IS after the index attack was predicted to varies over time which was predicted to occur by 11.2–30% within the first 24 months(10, 11) and 9.5% within 5 years after the IS attack (12). While the most recent study reported IS recurrence rate was 1.2% in the first 30 days, 3.4% within 90 days, 7.4% within one year, and 19.4% within 5 years (13). Moreover, the reported risk factors of recurrent stroke vary (14–16) in which hypertension (HTN), atrial fibrillation (AF), diabetes mellitus (DM), hyperlipidaemia (HPLD), ischemic heart diseases (IHD), and smoking were the most common reported predictors of recurrent stroke (17, 18). Despite improvement in recurrent IS risk classification and prevention measures of recurrent IS over the last decades, IS remains a devastating disease. Currently, most of the secondary prevention of IS are focusing on reducing and controlling the risk factors lead to recurrent IS. Nevertheless, does the probability of recurrent IS different in the absence of these risk factors influence?

The majority of the previous prognosis studies of recurrent stroke involved the use of the most common semi-parametric survival analysis method; Cox-regression analysis. The Cox model incorporates the
effect of covariates on the hazard without quantifying the form of recurrent stroke hazard at baseline and
distribution of hazard function. The hazard of event at baseline is defined as the hazard of having the
interest event when all the risk factors or covariates are set to zero. Thus, in the case of recurrent IS, the
baseline hazard should be defined as the hazard of having recurrent IS after the index event in the
absence of risk factors. While distribution hazard function quantifies the probability of IS recurrence
during a very small-time interval, assuming that the individual has survived to the beginning of the
interval. Nevertheless, unlike cox regression, the parametric approach of survival analysis quantifies the
baseline hazard and distribution hazard function of the event. This permits more time-dependent
prognostic information that better reflects the expected ‘natural history’ of the disease. Moreover,
information on the recurrent IS distribution after the index IS is limited and the studies using the
parametric approach on this topic are still lacking (19, 20). Moreover, validated prognostic model of
recurrent IS is limited. Thus, this study aimed to quantify the hazard of recurrent IS at different time
points after the index IS when the influence of significant risk factors was absent and to develop a
validated parametric prognostic model of recurrent IS.

Method

Patients and data acquisition

This was a population cohort study involves a secondary analysis of data from the National Neurology
Registry (NNEUR) of Malaysia. Data of all Malaysian patients with a history of index IS from August 2009
to December 2016 were extracted from the NNEUR of Malaysia. The details on the National Stroke
Registry of Malaysia were published previously (21-23). The stroke was diagnosed according to the World
Health Organization’s criteria (24). All diagnoses were confirmed using brain computed tomography or
magnetic resonance imaging. Index IS was defined as the first stroke registered into the NNEUR for the
patients from 2009 to 2016. Recurrent IS was defined as any IS event recorded by involving hospitals
after the index IS for a specific patient in the NNEUR database. Malaysian adults aged above 18 years
with the history of IS and registered with NNEUR was included. Non-Malaysian citizen and diagnosis
other than IS was excluded from the study. Minimum events needed to develop this prognostic model
was calculated as 228. Sample size – Survival analysis | Sample Size Calculators (sample-size.net)

Stroke Registry in Malaysia

The NNEUR in Malaysia was established in 2009. The NNEUR has recorded data from multi-ethnic
involving stroke cases from 13 states in the country. The NNEUR aims to provide comprehensive
epidemiological data on the country’s stroke statistics, trends, and management, representing a
 multicentre, hospital-based registry. The registry development is funded by the Ministry of Health,
Malaysia (MOH). A comprehensive explanation of the NNEUR has been previously published(25).
Ethics Approval

Ethical approval for this study was obtained from the Medical Research and Ethics Committee (MREC), Ministry of Health, Malaysia (Research ID: NMRR-08-1631-3189). All methods were performed according to the guidelines of the Declarations of Helsinki. Informed consent was obtained from all subjects that included into this study.

Collected variables

Demographic data and concomitant diseases including DM, HTN, HPLD, IHD, and hyperuricemia were tested. They were defined either by physician diagnosis, patients’ electronic records, or deduced from the medication history, and the medications prescribed during discharge.

Data for external validation

Data on demographic and significant covariates identified in the final model of all Malaysian patients with a history of index IS registered in NNEUR from January 2017 until December 2020, were extracted to perform external validation of the developed model.

Analysis

Repeated time to the recurrent events of IS and factors predicting the recurrent IS were quantified and determined using NONMEM version 7.5 software and Perl speaks NONMEM (PsN) version 4.1.0. The event was described as having recurrent IS events after the index IS. All event times were treated as exact time models, in which the event assumed to occur at the time of observation time. Three models, which were exponential, Gompertz, and Weibull investigated for the baseline hazard model.

Model development

The model was developed in the following two steps: (i) a base model without any explanatory factors and (ii) exploration of covariates.

Development of the base model

A parametric survival function according to Equation 1 was used to describe the repeated time to the recurrent IS.

\[S(t) = e^{-\int_0^t h(t) dt} \]

(1)
where $S(t)$ is the time course of the probability of survival, or the survivor function calculated from the time-varying hazard $h(t)$. The hazard is $h(t)$, and the survival $S(t)$ is a function of the cumulative hazard within the time interval between the time zero and the time t describing the probability of not experiencing any recurrent IS within this interval.

The base model was developed by exploring different functions for the hazard $h(t)$, starting from a simple time-independent constant hazard and then gradually progressing to more complex functions, including Gompertz and Weibull according to Equations (2), (3), and (4) respectively (26).

\[
h = \lambda_0 \times e^0 \tag{2}
\]

\[
h(t) = \lambda_0 \times e^{\beta t} \tag{3}
\]

\[
h(t) = \lambda_0 \times e^{\beta \ln(t)} \tag{4}
\]

Hazard of recurrent IS at baseline or baseline hazard function at different time point after the index was quantified based on Equation 5. Equation 5 gives an example of the baseline hazard $h_0(t)$ changes depending during different time t intervals.

\[
h_0(t) = \begin{cases}
\theta_1, & \text{if } 0 < t < t_1 \\
\theta_2, & \text{if } t_1 < t \leq t_2 \\
\ldots & \ldots \\
\theta_n, & \text{if } t(n-1) < t \leq t_n
\end{cases} \tag{5}
\]

Between-subject variability around the hazard was estimated, assuming an exponential distribution for the random effect.

Development of the covariate model

Possible explanatory variables that may influence or predict the changes in hazard were explored by including each explanatory variable in the hazard function. A parameter, β_n, for each of the n explanatory variables, X_n, was estimated using the following equation.

\[
h(t) = h_0(t) \ast exp(\beta_1x_1 + \beta_2x_2 + \ldots + \beta_nx_n)
\]

Where h_0 is the baseline hazard, β_n is the coefficient for the explanatory variable, X_n, describing how the hazard varies with the explanatory variable. Exponentiation of the explanatory variable coefficient
provides the hazard ratio (HR), which reflects the influence of the explanatory variables relative to the hazard when the explanatory variable is not present.

Initially, the covariates were tested in a univariate manner, i.e. each covariate relationship was evaluated on the base hazard individually. Then, based on the results, covariate relationships were identified for a systematic covariate search by applying stepwise analysis approach, i.e. with stepwise forward inclusion followed by backward elimination (27).

In the forward inclusion, the statistical significance level was set to $P < 0.05$, which corresponds to a reduction of the OFV of at least 3.84, for one degree of freedom (addition of one covariate parameter). While in the backward deletion, the significant value was set to $P < 0.01$, corresponding to an increase of the OFV of at least 6.64 to be kept in the model for one degree of freedom.

Model evaluation

Parameters were estimated using the LAPLACE method (ADVAN=6 TOL=9 NSIG=3) in NONMEM to obtain maximum likelihood estimates of time-to-event parameters. The parametric repeated time-to-event (RTTE) analysis was performed using NONMEM v7.5, and Perl speaks NONMEM (PsN) version 4.1.0.7. Model selection was based on comparing the OFV between models, bootstrap confidence intervals for parameter estimates, and biological plausibility. The improvement in the fit was measured by a decrease (28) in the OFV generated by NONMEM. The difference in OFV between two hierarchical models is approximately χ^2 distributed and can be tested for significance with $\chi^2_{1,0.052} = 3.84$

To evaluate the predictive performance of the model throughout model building, Kaplan-Meier visual predictive checks (VPCs) for internal and external validation, Xpose4 (version 4.7.1) function (29, 30) in RStudio software (version 1.1.456, RStudio, Inc., Boston, MA, http://www rstudio.com/) was utilized. The plots were based on simulations of 1000 simulated dataset. To enable simulations for time points where no clinical observations had been made, extra dummy time points were added to the dataset until 7.37 years in all individuals for the to allow for VPC simulation. The parameter certainty was evaluated through relative standard error (RSE) produced from the sampling importance resampling (SIR) method (31).

External validation

Data from 2692 patients with and without recurrent IS were used to validate the developed final model externally. The parameters estimate obtained from the final model were used to simulate 1000 replicates of the dataset and to plot the VPC. The predictive performance of the final developed model was then evaluated on the ability of the model to predict the probability of not having recurrent IS from the validation data by overlaying the VPC plot on the Kaplan-Meier curve of the validation data.
Clinical application of the developed model

An online prognosis IS recurrent risk calculator was developed based on the developed final model. The probability of early (within a year) and late (2-year, and after 4-years after the index IS) IS recurrent for two clinical scenarios were predicted using the calculator. The scenarios were as the following:

Scenario 1: A patient with a history of IHD, HTN and HPLD had the first IS attack. The probability of recurrent IS was calculated.

Scenario 2: A patient with no concomitant diseases had the first IS attack. The probability of recurrent IS was calculated.

Results

Out of 7697 subjects, 333 patients (4.32%) developed a recurrent IS within the maximum 7.37 years follow-up. The median time to the first recurrent IS was 1.2 years, while the time to the 2nd recurrent IS was 2.2 years. The study population included all age groups from young to elderly, with a median age of 63.47 years at the time of index IS. As shown in Table 1, most of the patients were females (4289, 55.72%). The percentage of smokers in this study population was 48%. Of 7697 subjects, 3493 (45.38%) were diabetics before index IS, while patients with HTN before index IS were 5506 (71.5%). The number of subjects with HPLD before index IS was 2028 (26.34%), patients who had IHD before index IS was (879, 11.4%), and patients who had AF before index IS was 3.4%.

Baseline hazard model

The hazard function that gave the best result with regard to OFV, clinical plausibility, and Kaplan–Meier plots was a Gompertz model, defining the hazard for four-time intervals (Table 2). Without the influence of any significant predictors, the risk of having recurrent IS within a month, between 1-3 months after the index were IS 0.71, 0.0224 respectively, while the risk of having a recurrent IS after 3 months of index IS was small but non-zero (0.0002) (Figure 1).

Table 3 represented the required half-life for developing recurrent IS after the index IS during different time intervals. The risk of IS recurrence increased 2-folds at 0.4 month after the index IS. This risk further increased steadily by 2-folds at 7-month, 1.2-year, 2.4-year, and 4-year time-points, after the index IS.

Concurrent diseases influencing the risk of having recurrent IS after index IS.
Table 4 showed the final covariates retained in the final model. These results reported that the recurrent IS rate in those with HPLD before index IS was 2.65 times higher than that in those without HPLD prior to index IS (HR, 2.64; 95% CI [2.10-3.33]). While having HTN prior to index IS increased the rate of recurrent IS by 97.9% compared to the patients without HTN prior index IS (HR, 1.97; 95% CI [1.43-2.72]). The recurrent IS rate in those with IHD before index IS was 121% of that in those without HTN prior to index IS (HR, 2.21; 95% CI [1.69-2.87]) (Figure 2). Kaplan-Meier VPCs for recurrent IS after index IS showed good predictions (Figure 3). Recurrent IS events shown in Figure 3 indicated that the final model described the observed data adequately for the internal (a) and external (b) validation. While (c), (d), and (e) compared the VPCs between IS patients who had HPLD, IHD, HTN respectively, versus those who did not have these concurrent diseases.

Clinical application of the developed model

A calculator tool (MyReCuRIS) has been developed for this model and can be accessed via this link https://www.calconic.com/calculator-widgets/recurrent-stroke cal/60e3a89aa17c7c002c61f655? layouts=true. The probability of IS recurrent after a certain period was estimated using the calculator based on the two clinical scenarios.

Scenario 1: A patient with a history of IHD, HTN and HPLD had the first IS attack. The probability of IS recurrence was calculated as 2.48%, 6.32%, and 3.23% after 1, 2 and 4 years of first IS, respectively.

Scenario 2: A patient with no concomitant diseases had the first IS attack. The probability of IS recurrence was calculated as 0.2%, 0.5%, and 0.28% after 1, 2 and 4 years of first IS, respectively.

Discussion

To our knowledge, this is the first study incorporating the predicted hazard of recurrent IS in the absence of risk factor at different time points after the first IS as one of component of recurrent IS prognostic model. Previous study (32) reported a constant baseline hazard of recurrent IS over time which assuming the hazard of recurrent IS in the absence of risk factors constant throughout the study period. In our population, after the first IS attack, the baseline hazard of recurrent IS was predicted as non-zero even three months after the first IS attack. This indicates that, in the absence of any risk factors, the hazard of recurrent IS present and change at different time-points after the first attack. The ‘natural history’ of the stroke is postulated to play a role in the recurrent IS. In addition to reducing the risk factor of recurrent IS, the factor of this ‘natural history’ of IS should be taken into consideration when identifying an optimal secondary preventive treatment.

In addition to baseline hazard of recurrent IS, influence of time was incorporated to predict the recurrent IS. The hazard of having recurrent IS during the first 30 days after index IS was nearly twice the subsequent intervals. These results are consistent with previous findings reported that the maximum incidence of recurrent stroke occurred in the first 30 days after the initial stroke (33, 34).
Recurrent stroke is associated with increased disability and mortality compared to the index stroke (35). Even with appropriate secondary prevention, the risk of recurrence after IS is high, especially in the early phase after stroke (36). It has been reported that within the first year after the initial stroke, the risk of stroke recurrence is higher (between 6-14%) as opposed to risk in subsequent years (4% annually) (37-39). A more recent study showed that the incidence of stroke recurrence was the highest during the first year after index stroke, 12.8% with a declining annual rate, 6.3% during the second year and 5.1% (95% CI, 4.0-6.5) during the third year after the index stroke (15). In the current model, the hazard of recurrent IS was estimated as increasing exponentially with time, which is in concordance with previous reports (13). This may suggest the disease progression over time may influence the prognosis and other risk factors, which require further studies to investigate any preventive measures to alter the progression over time and minimise the hazard of recurrent IS.

Moreover, this study reported also that the recurrent hazard increased by half in the first 6 months after index IS. These findings may guide the clinicians to keep close monitoring and intervention, especially for the first month, and suggest a need for more intensive patients follow up to ensure adherence and efficacy of secondary preventive drugs given for IS patients during the first 6 months after index IS.

In this study, IHD, HPLD, and HTN were identified as independent predictors for recurrent IS. These findings are consistent with data reported previously (20-23). Additionally, this model quantified the hazard of having recurrent IS between the patients who have a history of HPLD, IHD, and HTN. Having HPLD, IHD or HTN were found to increase the hazard of developing recurrent IS by 2.64, 2.21, 1.97, respectively. Effective management of these co-morbidities is necessary to reduce the risk of recurrent IS.

The developed TTE model for the hazard of having recurrent IS during different time intervals after index IS may allow comprising a description of hazard during different time intervals and with the presence of concurrent diseases, as well as the simulation of RTTE data based on the final model. The developed tool may aid physician to stratify patients at high risk of recurrent stroke through the estimated risk, which may help in planning a personalised care post index IS to prevent recurrence.

Limitations

This study was a retrospective study based on the available data from the National Stroke Registry of Malaysia. Therefore, the first stroke captured from the NNEUR from 2009 to 2016 was assumed to be the first-ever stroke experienced by the patient. Any data on the prior TIA or stroke before the NNEUR establishment was not available and not considered in the current study. Due to the nature of the data captured from registry database, the comorbidities were analysed independently. Nevertheless, this study was a population-based study and large samples representing various ethnic groups across the country. This model may provide and insight on the importance of frequent follow up especially in the early days (examples within the first 6 months to one year), thus perhaps may made a positive shift in Malaysian population follow up schedules during the management to prevent recurrent IS.
Conclusion

Incorporating time in predicting the risk of recurrent IS may attribute positively in predicting the prognosis of recurrent IS. In the absence of significant risk factors, predicted hazard of recurrent IS was prominent in the first month after the index IS and was non-zero even three months after the index IS or later. Optimal secondary preventive treatment should not be only focusing on reducing the common established risk factors yet should incorporate the 'nature risk' IS recurrence. Future study determines which secondary prevention alter the baseline hazard of IS recurrence is vital. In addition to concomitant diseases, time also plays a vital predictor of the risk of recurrent IS population. Future studies are required to determine drugs that could alter the changes in hazard of recurrent IS over time. These results may add to the knowledge related to patient follow up schedules during the management to prevent recurrent IS.

Declarations

Acknowledgement

The authors would like to acknowledge the Director-General of Health Malaysia for his permission to publish this work as well as MyPharmetrix Group for NONMEM license. This study has been supported by the Universiti Sains Malaysia Short Term Grant, 304/PFARMASI/6315188.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Zheng S, Yao B. Impact of risk factors for recurrence after the first ischemic stroke in adults: A systematic review and meta-analysis. Journal of Clinical Neuroscience. 2019;60:24-30.

2. Oza R, Rundell K, Garcellano M. Recurrent ischemic stroke: strategies for prevention. American family physician. 2017;96(7):436-40.

3. Putaala J, Liebkind R, Gordin D, Thorn L, Haapaniemi E, Forsblom C, et al. Diabetes mellitus and ischemic stroke in the young: clinical features and long-term prognosis. Neurology. 2011;76(21):1831-7.

4. Jin P, Matos Diaz I, Stein L, Thaler A, Tuhrim S, Dhamoon MS. Intermediate risk of cardiac events and recurrent stroke after stroke admission in young adults. International Journal of Stroke. 2018;13(6):576-84.

5. Varona JF. Long-term prognosis of ischemic stroke in young adults. Stroke research and treatment. 2011;2011.

6. Donnan G, Fisher MM. M. Davis, SM. Lancet. 2008;371(9624):1612-23.

7. Davis SM, Donnan GA. Secondary prevention after ischemic stroke or transient ischemic attack. New England Journal of Medicine. 2012;366(20):1914-22.
8. Kooi CW, Peng HC, Aziz ZA, Looi I. A review of stroke research in Malaysia from 2000–2014. Med J Malaysia. 2016;71(June):58-69.

9. Zhuo Y, Wu J, Qu Y, Yu H, Huang X, Zee B, et al. Clinical risk factors associated with recurrence of ischemic stroke within two years: A cohort study. Medicine. 2020;99(26).

10. Kolominsky-Rabas PL, Weber M, Gefeller O, Neundoerfer B, Heuschmann PU. Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study. Stroke. 2001;32(12):2735-40.

11. Grau AJ, Weimar C, Buggle F, Heinrich A, Goertler M, Neumaier S, et al. Risk factors, outcome, and treatment in subtypes of ischemic stroke: the German stroke data bank. Stroke. 2001;32(11):2559-66.

12. Amarenco P, Lavallée PC, Monteiro Tavares L, Labreuche J, Albers GW, Abboud H, et al. Five-year risk of stroke after TIA or minor ischemic stroke. New England Journal of Medicine. 2018;378(23):2182-90.

13. Stahmeyer JT, Stubenrauch S, Geyer S, Weissenborn K, Eberhard S. The frequency and timing of recurrent stroke: an analysis of routine health insurance data. Deutsches Ärzteblatt International. 2019;116(42):711.

14. Xu G, Liu X, Wu W, Zhang R, Yin Q. Recurrence after ischemic stroke in Chinese patients: impact of uncontrolled modifiable risk factors. Cerebrovascular diseases. 2007;23(2-3):117-20.

15. Buenafor FG. Recurrence rate of Ischemic stroke: A single center experience (P4. 308). AAN Enterprises; 2017.

16. Lee M, Wu Y-L, Ovbiagele B. Trends in incident and recurrent rates of first-ever ischemic stroke in Taiwan between 2000 and 2011. Journal of stroke. 2016;18(1):60.

17. Modrego PJ, Mainar R, Turull L. Recurrence and survival after first-ever stroke in the area of Bajo Aragon, Spain. A prospective cohort study. Journal of the neurological sciences. 2004;224(1-2):49-55.

18. Lee T, Lindgren A, Petersson J, Von Arbin M. Risk factors and treatment at recurrent stroke onset: results from the Recurrent Stroke Quality and Epidemiology (RESQUE) Study. Cerebrovascular Diseases. 2008;25(3):254-60.

19. Foulkes M, Sacco R, Mohr J, Hier D, Price T, Wolf P. Parametric modeling of stroke recurrence. Neuroepidemiology. 1994;13(1-2):19-27.

20. Palomeras Soler E, Casado Ruiz V. Epidemiology and risk factors of cerebral ischemia and ischemic heart diseases: similarities and differences. Current cardiology reviews. 2010;6(3):138-49.

21. Aziz S, Sheikh Ghadzi SM, Abidin NE, Tangiisuran B, Zainal H, Looi I, et al. Gender Differences and Risk Factors of Recurrent Stroke in Type 2 Diabetic Malaysian Population with History of Stroke: The Observation from Malaysian National Neurology Registry. Journal of diabetes research. 2019;2019.

22. Albitar O, Harun SN, Abidin NE, Tangiisuran B, Zainal H, Looi I, et al. Predictors of Recurrent Ischemic Stroke in Obese Patients With Type 2 Diabetes Mellitus: A Population-based Study. Journal of Stroke and Cerebrovascular Diseases. 2020;29(10):105173.
23. Elhfnawy ME, Ghadzi SMS, Tangiisuran B, Zainal H, Looi I, Ibrahim KA, et al. Population-based Study Comparing Predictors of Ischemic Stroke Recurrence After Index Ischemic Stroke in Non-elderly Adults with or without Diabetes. International Journal of General Medicine. 2021;14:1205.

24. Truelsen T, Heuschmann P, Bonita R, Arjundas G, Dalal P, Damasceno A, et al. Standard method for developing stroke registers in low-income and middle-income countries: experiences from a feasibility study of a stepwise approach to stroke surveillance (STEPS Stroke). The lancet neurology. 2007;6(2):134-9.

25. Aziz ZA, Lee YY, Sidek NN, Ngah BA, Looi I, Hanip MR, et al. Gender disparities and thrombolysis use among patient with first-ever ischemic stroke in Malaysia. Neurological research. 2016;38(5):406-13.

26. Holford N. A time to event tutorial for pharmacometricians. CPT: pharmacometrics & systems pharmacology. 2013;2(5):1-8.

27. Katsube T, Khandelwal A, Hooker AC, Jonsson EN, Karlsson MO, editors. Characterization of Stepwise Covariate Model Building Combined with Cross-Validation. PAGE Abstracts of the Annual Meeting of the Population Approach Group in Europe; 2012.

28. Keizer R, Karlsson M, Hooker A. Modeling and Simulation Workbench for NONMEM: Tutorial on Pirana, PsN, and Xpose. CPT: pharmacometrics & systems pharmacology. 2013; 2: e50. Epub 2013/07/10. doi: 10.1038/psp. 2013.24 PMID: 23836189.

29. Hooker A, Karlsson M, Jonsson E. Xpose4: tools for nonlinear mixed-effect model building and diagnostics. R package version 4.6. 1. 2014.

30. Jonsson E, MO K. Xpose—an S-PLUS based model building aid for population analysis with NONMEM. The Population Approach: Measuring and Managing Variability in Response, Concentration, and Dose. 1997.

31. Dosne A-G, Bergstrand M, Harling K, Karlsson MO. Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling. Journal of pharmacokinetics and pharmacodynamics. 2016;43(6):583-96.

32. Lim HS, Bae KS. Modeling and simulation analysis of the relationship between lesion recurrence on brain images and clinical recurrence in patients with ischemic stroke. The Journal of Clinical Pharmacology. 2015;55(4):458-66.

33. Association S. State of the Nation. Stroke statistics. January 2016. London, UK: Author. 2016.

34. Mohan KM, Wolfe CD, Rudd AG, Heuschmann PU, Kolominsky-Rabas PL, Grieve AP. Risk and cumulative risk of stroke recurrence: a systematic review and meta-analysis. Stroke. 2011;42(5):1489-94.

35. Khanevski AN, Bjerkreim AT, Novotny V, Naess H, Thomassen L, Logallo N, et al. Thirty-day recurrence after ischemic stroke or TIA. Brain and behavior. 2018;8(10):e01108.

36. Lovett J, Coull A, Rothwell P. Early risk of recurrence by subtype of ischemic stroke in population-based incidence studies. Neurology. 2004;62(4):569-73.

37. Burn J, Dennis M, Bamford J, Sandercock P, Wade D, Warlow C. Long-term risk of recurrent stroke after a first-ever stroke. The Oxfordshire Community Stroke Project. Stroke. 1994;25(2):333-7.
38. de la Cámara AG, Arche JFV, Vivas PF, Guzmán JD, del Pozo SVF, Cuadrado AR, et al. Recurrence after a first-ever ischemic stroke development of a clinical prediction rule. Res Neurol Int J. 2013;2013:13.

39. Dhamoon M, Sciacca R, Rundek T, Sacco R, Elkind M. Recurrent stroke and cardiac risks after first ischemic stroke: the Northern Manhattan Study. Neurology. 2006;66(5):641-6.

Tables

Table 1. Characteristic of patients with recurrent IS during different time intervals that included into the study ($N = 333$)
Variable	Patients with recurrent IS within 1st month after index IS N=19(%)	Patients with recurrent IS within the 1st to 3rd month after index IS N=37(%)	Patients with recurrent IS within the 3rd months to 3 years after index IS N=215(%)	Patients with recurrent IS 3 years after the index IS N=62(%)
Age group				
<60	7 (36.84)	17 (45.94)	99 (46.04)	27 (43.54)
≥60	12 (63.15)	20 (54.05)	116 (53.95)	35 (56.45)
Female	7 (36.84)	21 (60)	121 (56.27)	37 (59.67)
2nd Recurrent stroke	-	-	24 (11.16)	12 (19.35)
Ethnicity				
Malay	9 (52.94)	12 (32.43)	86 (40)	48 (77.41)
Chinese	-	1 (2.70)	5 (2.32)	2 (3.22)
Indian	-	-	2 (0.93)	1 (1.61)
Others	10 (58.8)	24 (64.86)	122 (56.74)	11 (17.74)
Smoker	11 (64.7)	22 (59.45)	127 (59.06)	42 (67.74)
DM	11 (64.7)	21 (56.75)	124 (57.67)	39 (62.90)
Duration of diabetes (years)				
<1	1 (5.88)	-	9 (4.18)	2 (3.22)
1-5	2 (11.76)	11 (29.72)	69 (32.09)	19 (30.64)
6-10	5 (29.41)	4 (10.81)	27 (12.55)	7 (26.92)
>10	4 (23.52)	6 (16.21)	21 (9.76)	13 (20.96)
Unknown	7 (36.84)	16 (43.24)	89 (41.39)	21 (33.87)
Family history of stroke	-	1 (2.70)	22 (10.23)	4 (6.45)
HTN	17 (100)	29 (78.37)	184 (85.58)	58 (93.54)
HTN Duration (years)	6 (35.29)	20 (54.05)	107 (49.76)	30 (48.38)
≤5	11 (64.7)	9 (24.32)	77 (35.81)	28 (45.16)
	2(11.76)	8(21.62)	31(14.41)	4(6.45)
----	----------	----------	-----------	---------
IHD	2(11.76)	9(24.32)	45(20.93)	21(33.87)
HPLD	8(47.05)	17(45.94)	106(49.30)	28(45.16)
Atrial fibrillation	1(5.88)	1(2.70)	1(0.46)	1(1.61)
Hyperuricemia	-	3(8.10)	9(4.18)	4(6.45)

Abbreviations; DM: Diabetes mellitus; IHD: Ischemic heart disease; HTN: Hypertension; HPLD: Hyperlipidemia N: Number of patients.

Table 2. Baseline hazard during different time intervals after index IS.

Parameter (Years)	Description	Typical value	RSE%
λ (<0.08)	Baseline hazard during first month	0.71	27.77
λ (≥0.08-<0.25)	Baseline hazard after first month until 3months	0.0224	24.14
λ (≥0.25-<3)	Baseline hazard after 3months until 3years	0.0002	27.43
λ (≥3)	Baseline hazard after 3yrs	0.0001	27.05

Abbreviations: λ, baseline hazard; ∆OFV, change in objective function value; RSE, relative standard error; 95% CI, 95% confidence intervals.

Table 3. Time for developing recurrent IS after index IS during different time intervals.

Parameter	Description	Typical value	Half-life (Ln2/λ)	RSE%
γ (<0.5)	Shape parameter (<0.5 year)	19.7	0.035	3.31
γ (≥0.5-<1)	Shape parameter (0.5-1 year)	8.27	0.083	4.34
γ (≥1-<2)	Shape parameter (1-2 year)	3.55	0.195	4.76
γ (≥2-<3)	Shape parameter (2-3 year)	1.97	0.351	6.36
γ (≥3)	Shape parameter (≥3 year)	0.681	1.017	7.93

Abbreviations: γ, shape parameter; RSE, relative standard error.

Table 4. Significant covariates after backward elimination.
Parameter	Description	∆OFV	Typical value	aHR 95%CI	RSE%
Θ HPLD	Effect of baseline HPLD on hazard	47.418	0.974	2.648 (2.1-3.33)	10.94
Θ HTN	Effect of baseline HTN on hazard	27.145	0.683	1.979 (1.43-2.72)	22.25
Θ IHD	Effect of baseline IHD on hazard	26.846	0.793	2.21 (1.69-2.87)	15.25

Abbreviations: ∆OFV, change in objective function value; aHR, adjusted hazard ration; HPLD, hyperlipidemia; HTN, hypertension; IHD, ischemic heart disease; RSE, relative standard error; 95% CI, 95% confidence intervals.

Figures

Figure 1
Baseline hazard during different time intervals after index IS; First month, after first month until 3 months, after 3 months until 3 years, after 3 years.

![Baseline hazard during different time intervals](image)

Figure 2

Effect of concurrent diseases on hazard of having recurrent IS after index IS.
Figure 3

Kaplan-Meier plots showing the IS survivor function (probability of not having recurrent ischemic stroke) throughout different time intervals. (a) the final time-to-event model of the internal data, (b) external validation of the final time-to-event model. The final time-to-event for patients (c) with hyperlipidaemia (HPLD) versus non HPLD, (d) with ischemic heart disease (IHD) versus non IHD, and (e) with hypertension (HTN) versus non HTN. The observed data survivor function is described by a solid blue line with 95%
confidence interval (CIs). Shaded areas represent the 95% prediction interval from 1000 simulated datasets.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- supplementary2.docx