We present our recent results on the scattering length of 4He–4He$_2$ collisions. These investigations are based on the hard-core version of the Faddeev differential equations. As compared to our previous calculations of the same quantity, a much more refined grid is employed, providing an improvement of about 10%. Our results are compared with other \textit{ab initio}, and with model calculations.

PACS numbers (2001): 21.45.+v, 34.50.-s, 02.60.Nm

I. INTRODUCTION

Weakly bound small 4He clusters attracted considerable attention in recent years, in particular because of the booming interest in Bose-Einstein condensation of ultra-cold gases [1, 2].

Experimentally, helium dimers have been observed in 1993 by Luo \textit{et al.} [3], and in 1994 by Schöllkopf and Toennies [4]. In the latter investigation the existence of helium trimers has also been demonstrated. Later on, Grisenti \textit{et al.} [5] measured a bond length of 52 4Å for 4He$_2$, which indicates that this dimer is the largest known diatomic molecular ground state. Based on this measurement they estimated a scattering length of $10^4 \pm 8^{+1}_{-18}$ 4Å and a dimer energy of $1.1 \pm 0.3 \pm 0.2$ mK [5]. Further investigations concerning helium trimers and tetramers have been reported in Refs. [6, 7], but with no results on size and binding energies.

Many theoretical calculations of these systems were performed for various interatomic potentials [8, 9, 10, 11]. Variational, hyperspherical and Faddeev-type techniques have been employed in this context (see, e.g., [12]–[28] and references therein). For the potentials given in [9, 10] it turned out that the Helium trimer has two bound states of total angular momentum zero: a ground state of about 126 mK and an excited state of about 228 mK. The latter was shown to be of Efimov nature [13, 15, 21]. In particular, it was demonstrated in [21] how the Efimov states emerge from the virtual ones when decreasing the strength of the interaction. High accuracy has been achieved in all these calculations.

While the number of papers devoted to the 4He$_3$ bound-state problem is rather large, the number of scattering results is still very limited. Phase shifts of 4He–4He$_2$ elastic scattering at ultra-low energies have been calculated for the first time in [17, 18] below and above the three-body threshold. An extension and numerical improvement of these calculations was published in [24]. To the best of our knowledge, the only alternative \textit{ab initio} calculation of phase shifts below the three-body threshold was performed in [28]. As shown in [29, 30], a zero-range model formulated in field theoretical terms is able to simulate the scattering situation.

Though being an ideal quantum mechanical problem, involving three neutral bosons without
complications due to spin, isospin or Coulomb forces, the exact treatment of the 4He triatomic system is numerically quite demanding at the scattering threshold. Due to the low energy of the Helium dimer, a very large domain in configuration space, with a characteristic size of hundreds of Ångstroems, has to be considered. As a consequence, the accuracy achieved in [19, 24] for the scattering length appeared somewhat limited. To overcome this limitation, we have enlarged in the present investigation the cut-off radius ρ_{max} from 600 to 900 Å and employed much more refined grids.

II. FORMALISM

Besides the complications related to the large domain in configuration space, the other source of complications is the strong repulsion of the He–He interaction at short distances. This problem, however, was and is overcome in our previous and present investigations by employing the rigorous hard-core version of the Faddeev differential equations developed in [31, 32].

Let us recall the main aspects of the corresponding formalism (for details see [19, 24]). In what follows we restrict ourselves to a total angular momentum $L = 0$. In this case one has to solve the two-dimensional integro-differential Faddeev equations

$$\frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial y^2} + l (l + 1) \frac{1}{x^2} + \frac{1}{y^2} \quad E \quad \Phi_l (x; y) = \begin{cases} V (x) \Psi_l (x; y); & x > c \\ 0; & x < c \end{cases},$$

(1)

Here, x, y stand for the standard Jacobi variables and c for the core range. The angular momentum l corresponds to a dimer subsystem and a complementary atom; for an S-wave three-boson state, l is even ($l = 0, 2, 4; \ldots$); $V(x)$ is the He-He central potential acting outside the core domain. The partial wave function $\Psi_l (x; y)$ is related to the Faddeev components $\Phi_l (x; y)$ by

$$\Psi_l (x; y) = \Phi_l (x; y) + \sum_{l_0}^{x, y} \frac{d \eta (x; y; \eta)}{h_{l l_0} (x; y; \eta)} \Phi_{l_0} (x; y),$$

(2)

where

$$x^0 = \frac{1}{4} x^2 + \frac{3}{4} y^2 - \frac{3}{2} x y \eta; \quad y^0 = \frac{3}{4} x^2 + \frac{1}{4} y^2 + \frac{3}{2} x y \eta;$$

and $1 \eta 1$. The explicit form of the function $h_{l l_0}$ can be found in Refs. [33, 34].

The functions $\Phi_l (x; y)$ satisfy the boundary conditions

$$\Phi_l (x; y) \big|_{x=0} = \Phi_l (y; x) \big|_{y=0} = 0,$$

(3)

Moreover, in the hard-core model they are required to satisfy the condition

$$\Phi_l (x; y) + \sum_{l_0}^{x, y} \frac{d \eta (x; y; \eta)}{h_{l l_0} (x; y; \eta)} \Phi_{l_0} (x; y) = 0,$$

(4)

This guarantees the wave function $\Psi_l (x; y)$ to be zero not only at the core boundary $x = c$ but also inside the core domains.

The asymptotic boundary condition for the partial wave Faddeev components of the two-fragment scattering states reads, as $\rho ! \infty$ and/or $y ! \infty$,

$$\Phi_l (x; y) \rho = \delta_{l0} \psi_l (x) \sin (py) + \exp (py) a_0 (p) + o \quad y \leftarrow \infty,$$

$$+ \exp \left(\frac{\rho p}{\rho} \right) A_i (\theta) + o \quad \rho \leftarrow \infty,$$

(5)
Here, $\psi_d(x)$ is the dimer wave function, E stands for the scattering energy given by $E = \varepsilon_d + p^2$ with ε_d the dimer energy, and p for the relative momentum conjugate to the variable y. The variables $p = \sqrt{x^2 + y^2}$ and $\theta = \arctan \frac{y}{x}$ are the hyperradius and hyperangle, respectively. The coefficient $a_0(p)$ is nothing but the elastic scattering amplitude, while the functions $A_l(\theta)$ provide us, at $E > 0$, with the corresponding partial-wave Faddeev breakup amplitudes. The $^4\text{He} - ^4\text{He}_2$ scattering length γ_{sc} is given by

$$\gamma_{\text{sc}} = \frac{3}{\lim_{p \to 0} a_0(p)} :$$

Surely we only deal with a finite number of equations (1)–(4), assuming $l \leq l_{\text{max}}$, where l_{max} is a certain fixed even number. As in [19, 24] we use a finite-difference approximation of the boundary-value problem (1)–(5) in the polar coordinates ρ and θ. The grids are chosen such that the points of intersection of the arcs $\rho = \rho_i, i = 1; 2; \ldots; N_\rho$ and the rays $\theta = \theta_j, j = 1; 2; \ldots; N_\theta$ with the core boundary $x = c$ constitute the knots. The value of the core radius is chosen to be $c = 1$ Å by the argument given in [24]. We also follow the same method for choosing the grid radii ρ_i (and, thus, the grid hyperangles θ_j) as described in [19, 24].

III. RESULTS

Our calculations are based on the semi-empirical HFD-B [8] and LM2M2 [9] potentials by Aziz and co-workers, and the more recent, purely theoretically derived TTY [10] potential by Tang, Toennies and Yiu. For the explicit form of these polarization potentials we refer to the Appendix of Ref. [24]. As in our previous calculations we choose $\hbar^2 = m = 12.12$ K Å2, where m stands for the mass of the ^4He atom. The ^4He dimer binding energies and $^4\text{He} - ^4\text{He}$ scattering lengths obtained with the HFD-B, LM2M2, and TTY potentials are shown in Table I. Note that the inverse of the wave number $\frac{\varepsilon_d}{2} = \frac{\varepsilon_d}{3}$ lies rather close to the corresponding scattering length.

Potential	ε_d (mK)	1_{sc} (Å)	γ_{sc} (Å)
Exp. [5]			
	$1\pm 0.3_{0.2}$	104_{18}^{+8}	
LM2M2	130348	96.43	100.23
TTY	130962	96.20	100.01
HFD-B	168541	84.80	88.50

Unlike the trimer binding energies, the $^4\text{He} - ^4\text{He}_2$ scattering length is much more sensitive to the grid parameters. To investigate this sensitivity, we take increasing values of the cut-off hyperradius ρ_{max}, and simultaneously increase the dimension of the grid $N = N_\theta = N_\rho$. Surely, in such an analysis we can restrict ourselves to $l_{\text{max}} = 0$. The results obtained for the TTY potential are given in Table II and Fig. I. Inspection of this figure shows that, when increasing the dimension N of the grid, convergence of the $^4\text{He} - ^4\text{He}_2$ scattering length γ_{sc} is essentially achieved, however, with different limiting values of γ_{sc} for different choices of ρ_{max}. This concerns, in particular, the...
TABLE II: The 4He–4He$_2$ scattering length λ_{sc} (Å) for $\lambda_{\text{max}} = 0$ in case of the TTY potential as a function of the grid parameters ρ_{max} and $N = N_\rho = N_\theta$.

ρ_{max}	1005	1505	2005	2505	3005	3505
600	162.33	159.80	158.91	158.61	158.31	
700	164.13	159.99	158.57	157.99	157.65	157.48
800	167.15	160.98	158.90	158.03	157.46	
900	171.19	162.52	159.66	158.40	157.66	

TABLE III: The 4He–4He$_2$ scattering length λ_{sc} (Å) obtained for a grid with $N_\rho = N_\theta = 2005$ and $\rho_{\text{max}} = 700$ Å.

Potential	l_{max}	This work	Ref. [24]	Ref. [23]	Ref. [28]	Ref. [35]	Ref. [30]
	0	158.2	168				
LM2M2	2	122.9	134				
	4	118.7	131	126	115.4	114.25	113.1
TTY	0	158.6	168				
	2	123.2	134				
	4	118.9	131	115.8	114.5		
HFD-B	0	159.6	168				
	2	128.4	138				
	4	124.7	135	121.9	120.2		

transition from $\rho_{\text{max}} = 600$ Å to $\rho_{\text{max}} = 700$ Å, while the transition to 800 Å or even 900 Å has practically no effect.

Bearing this in mind, we feel justified to choose $\rho_{\text{max}} = 700$ Å when going over from $l_{\text{max}} = 0$ to $l_{\text{max}} = 2$ and 4. The corresponding results are presented in Table III. There we also show our previous results [24] where, due to lack of computer facilities, we had to restrict ourselves to $\rho_{\text{max}} = 460$ Å and $N = 605$. We see that an improvement of about 10% is achieved in the present calculations, as indicated already by the trends in Fig. I.

Table III also contains the fairly recent results by Blume and Greene [23] and Roudnev [28]. The treatment of Ref. [23] is based on a combination of the Monte Carlo method and the hyperspherical adiabatic approach. The one of Ref. [28] employs the three-dimensional Faddeev differential equations in the total angular momentum representation. Our results agree rather well with these alternative calculations.

This gives already a good hint on the quality of our present investigations. A direct confirmation is obtained by extrapolating the curves in Fig. I. According to this figure, convergence of λ_{sc} as a function of N is essentially, but not fully, achieved. A certain improvement, thus, is still to be expected when going to higher N. In order to estimate this effect we approximate the curves of
Clearly, $\gamma_{sc}(\infty) = \alpha$. The constants α, β, and γ are fixed by the values of γ_{sc} at $N = 1005, 2005,$ and 3005. In this way we get the corresponding optimal scattering lengths $\gamma_{sc}(\infty) = 157.5, 156.4, 155.4,$ and 154.8 Å for $\rho_{\text{max}} = 600, 700, 800,$ and 900 Å, respectively. Comparing with Table III shows that the differences between these asymptotic values and the ones for $N = 3005$ lie between 1 to 3 Å.

For $l_{\text{max}} = 4, \rho_{\text{max}} = 700$ Å and the LM2M2 potential the scattering length has been calculated for $N = 1005, 1505,$ and 2005. Employing again the extrapolation formula (7) with α, β, γ being chosen according to these values, we find $\gamma_{sc}(\infty) = 117.0$ Å. The difference between the scattering length obtained for $N = 2005$ and the extrapolated value, hence, is 1.7 Å. A direct calculation for higher N should lead to a modification rather close to this result. Following this argumentation, we conclude that the true value of γ_{sc} for the LM2M2 and TTY potentials lies between 115 and 116 Å.

For completeness we mention that besides the above ab initio calculations there are also model calculations, the results of which are given in the last two columns of Table III. The calculations of [35] are based on employing a Yamaguchi potential that leads to an easily solvable one-dimensional integral equation in momentum space. The approach of [30] (see also [29] and references therein) represents intrinsically a zero-range model with a cut-off introduced to make the resulting one-dimensional Skornyakov-Ter-Martirosian equation well defined. The cut-off parameter in [29,30] as well as the range parameter of the Yamaguchi potential in [35] are adjusted to the three-body binding energy obtained in the ab initio calculations. In other words, these
approaches are characterized by a remarkable simplicity, but rely essentially on results of the ab initio three-body calculations.

Acknowledgments

We are indebted to Prof. V. B. Belyaev and Prof. H. Toki for providing us with the possibility to perform calculations at the supercomputer of the Research Center for Nuclear Physics of Osaka University, Japan. This work was supported by the Deutsche Forschungsgemeinschaft (DFG), the Heisenberg-Landau Program, and the Russian Foundation for Basic Research.

[1] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).
[2] T. Köhler, T. Gasenzer, P. S. Julienne, and K. Burnett, Phys. Rev. Lett. 91, 23401 (2003).
[3] F. Luo, G. C. McBane, G. Kim, C. F. Giese, and W. R. Gentry, J. Chem. Phys. 98, 3564 (1993).
[4] W. Schöllkopf and J. P. Toennies, Science 266, 1345 (1994).
[5] R. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeld, T. Köhler, and M. Stoll, Phys. Rev. Lett. 85, 2284 (2000).
[6] W. Schöllkopf and J. P. Toennies, J. Chem. Phys. 104, 1155 (1996).
[7] L. W. Bruch, W. Schöllkopf, and J. P. Toennies, J. Chem. Phys. 117, 1544 (2002).
[8] R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, Mol. Phys. 61, 1487 (1987).
[9] R. A. Aziz and M. J. Slaman, J. Chem. Phys. 94, 8047 (1991).
[10] K. T. Tang, J. P. Toennies, and C. L. Yiu, Phys. Rev. Lett. 74, 1546 (1995).
[11] A. R. Janzen and R. A. Aziz, J. Chem. Phys. 107, 914 (1997).
[12] S. Nakaichi-Maeda and T. K. Lim, Phys. Rev. A 28, 692 (1983).
[13] Th. Cornelius and W. Glöckle, J. Chem. Phys. 85, 3906 (1986).
[14] J. Carbonell, C. Gignoux, and S. P. Merkuriev, Few–Body Systems 15, 15 (1993).
[15] B. D. Esry, C. D. Lin, and C. H. Greene, Phys. Rev. A 54, 394 (1996).
[16] M. Lewerenz, J. Chem. Phys. 106, 4596 (1997).
[17] E. A. Kolganova, A. K. Motovilov and S. A. Sofianos, Phys. Rev. A. 56, R1686 (1997) (arXiv: physics/9802016).
[18] A. K. Motovilov, S. A. Sofianos, and E. A. Kolganova, Chem. Phys. Lett. 275, 168 (1997) (arXiv: physics/9709037).
[19] E. A. Kolganova, A. K. Motovilov, and S. A. Sofianos, J. Phys. B. 31, 1279 (1998) (arXiv: physics/9612012).
[20] E. Nielsen, D. V. Fedorov, and A. S. Jensen, J. Phys. B 31, 4085 (1998) (arXiv: physics/9806020).
[21] E. A. Kolganova and A. K. Motovilov, Phys. Atom. Nucl. 62, 1179 (1999) (arXiv: physics/9808027).
[22] V. Roudnev and S. Yakovlev, Chem. Phys. Lett. 328, 97 (2000).
[23] D. Blume and C. H. Green, J. Chem. Phys. 112, 8053 (2000).
[24] A. K. Motovilov, W. Sandhas, S. A. Sofianos, and E. A. Kolganova, Eur. Phys. J. D 13, 33 (2001) (arXiv: physics/9910016).
[25] P. Barletta, and A. Kievsky, Phys. Rev. A 64, 042514 (2001).
[26] R. Guardiola, and J. Navarro, Phys. Rev. Lett. 89, 193401 (2002).
[27] M. T. Yamashita, T. Federico, A. Delfino, and L. Tomio, Phys. Rev. A 66, 052702 (2002).
[28] V. Roudnev, Chem. Phys. Lett. 367, 95 (2003).
[29] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Nucl. Phys. A \textbf{646}, 444 (1999).
[30] E. Braatem and H.-W. Hammer, Phys. Rev. A \textbf{67}, 042706 (2003).
[31] A. K. Motovilov, Vestnik Leningradskogo Universiteta, \textbf{22}, 76 (1983) (Russian).
[32] S. P. Merkuriev and A. K. Motovilov, Lett. Math. Phys. \textbf{7}, 497 (1983).
[33] L. D. Faddeev and S. P. Merkuriev, \textit{Quantum scattering theory for several particle systems} (Kluwer Academic Publishers, Doderecht, 1993).
[34] S. P. Merkuriev, C. Gignoux, and A. Laverne, Ann. Phys. (N.Y.) \textbf{99}, 30 (1976).
[35] F. M. Pen’kov, JETP \textbf{97}, 536 (2003).
[36] G. V. Skorniakov and K. A. Ter-Martirosian, Sov. Phys. JETP \textbf{4}, 648 (1956).