Images of 2-adic representations associated to hyperelliptic Jacobians

Jeffrey Yelton

October 13, 2014

Abstract

Let k be a subfield of \mathbb{C} which contains all 2-power roots of unity, and let $K = k(\alpha_1, \alpha_2, ..., \alpha_{2g+1})$, where the α_i’s are independent and transcendental over k, and g is a positive integer. We investigate the image of the 2-adic Galois action associated to the Jacobian J of the hyperelliptic curve over K given by $y^2 = \prod_{i=1}^{2g+1} (x - \alpha_i)$. Our main result states that the image of Galois in $\text{Sp}(T_2(J))$ coincides with the principal congruence subgroup $\Gamma(2) \triangleleft \text{Sp}(T_2(J))$. As an application, we find generators for the algebraic extension $K(J[4])/K$ generated by coordinates of the 4-torsion points of J.

1 Introduction

Fix a positive integer g. An affine model for a hyperelliptic curve over \mathbb{C} of genus g may be given by

$$y^2 = \prod_{i=1}^{2g+1} (x - \alpha_i),$$

with α_i’s distinct complex numbers. Now let $\alpha_1, ..., \alpha_{2g+1}$ be transcendental and independent over \mathbb{C}, and let L be the subfield of $\mathbb{C}(\alpha) := \mathbb{C}(\alpha_1, ..., \alpha_{2g+1})$ generated over \mathbb{C} by the elementary symmetric functions of the α_i’s. For any positive integer N, let $J[N]$ denote the N-torsion subgroup of $J(L)$. For each $n \geq 0$, let $L_n = L(J[2^n])$ denote the extension of L over which the 2^n-torsion of J is defined. Set

$$L_\infty := \bigcup_{n=1}^{\infty} L_n.$$

Note that $\mathbb{C}(\alpha_1, ..., \alpha_{2g+1})$ is Galois over L with Galois group isomorphic to S_{2g+1}. It is well known ([5], Corollary 2.11) that $\mathbb{C}(\alpha_1, ..., \alpha_{2g+1}) = L_1$, so $\text{Gal}(L_1/L) \cong S_{2g+1}$. Fix an algebraic closure \bar{L} of L, and write G_L for the absolute Galois group $\text{Gal}(\bar{L}/L)$.

Let C be the curve defined over L by equation (1), and let J/L be its Jacobian. For any prime ℓ, let

$$T_\ell(J) := \lim_{\ell \rightarrow n} J[\ell^n]$$

1
denote the $ℓ$-adic Tate module of J; it is a free $\mathbb{Z}_ℓ$-module of rank $2g$ (see [6, §18]). For the rest of this paper, we write $ρ_ℓ : G_L \rightarrow \text{Aut}(T_ℓ(J))$ for the continuous homomorphism induced by the natural Galois action on $T_ℓ(J)$. Write $\text{SL}(T_ℓ(J))$ (resp. $\text{Sp}(T_ℓ(J))$) for the subgroup of automorphisms of the 2-adic Tate module $T_ℓ(J)$ with determinant 1 (resp. automorphisms of $T_ℓ(J)$ which preserve the Weil pairing). Since L contains all 2-power roots of unity, the Weil pairing on $T_2(J)$ is Galois invariant, and it follows that the image of $ρ_2$ is contained in $\text{Sp}(T_2(J))$. For each $n ≥ 0$, we denote by

$$\Gamma(2^n) := \{g ∈ \text{Sp}(T_2(J)) | g \equiv 1 \pmod{2^n}\} \triangleleft \text{Sp}(T_2(J))$$

the level-2^n principal congruence subgroup of $\text{Sp}(T_2(J))$.

Our main theorem is the following.

Theorem 1.1. With the above notation, the image under $ρ_2$ of the Galois subgroup fixing L_1 is $\Gamma(2) \triangleleft \text{Sp}(T_2(J))$.

Before setting out to prove this theorem, we state some easy corollaries.

Corollary 1.2. Let G denote the image under $ρ_2$ of all of G_L. Then we have the following:

a) G contains $\Gamma(2) \triangleleft \text{Sp}(T_2(J))$, and $G/\Gamma(2) \cong S_{2g+1}$.

b) In the case that $g = 1$, $G = \text{Sp}(T_2(J)) = \text{SL}(T_2(J))$.

c) For each $n ≥ 1$, the homomorphism $ρ_2$ induces an isomorphism

$$\bar{ρ}_2^{(n)} : \text{Gal}(L_n/L_1) \rightarrow \Gamma(2)/\Gamma(2^n)$$

via the restriction map $\text{Gal}(\bar{L}/L_1) \rightarrow \text{Gal}(L_n/L_1)$.

Proof. Since $\text{Gal}(L_1/L) \cong S_{2g+1}$, part (a) immediately follows from the theorem. If $g = 1$, then fix a basis of $T_2(J)$ so that we may identify $\text{Sp}(T_2(J))$ (resp. $\text{SL}(T_2(J))$) with $\text{Sp}_2(\mathbb{Z}_2)$ (resp. $\text{SL}_2(\mathbb{Z}_2)$). Then it is well known that $\text{Sp}_2(\mathbb{Z}_2) = \text{SL}_2(\mathbb{Z}_2)$, and that $\text{SL}_2(\mathbb{Z}_2)/\Gamma(2) \cong \text{SL}_2(\mathbb{Z}/2\mathbb{Z}) \cong S_3$. Since, by part (a), $G/\Gamma(2) \cong S_3$ when $g = 1$, the linear subgroup G must be all of $\text{Sp}(T_2(J)) = \text{SL}(T_2(J))$, which is the statement of (b). To prove part (c), note that for any $n ≥ 0$, the image under $ρ_2$ of the Galois subgroup fixing the 2^n-torsion points is clearly $G \cap \Gamma(2^n)$. But $G > \Gamma(2)$, so for any $n ≥ 1$, the image under $ρ_2$ of $\text{Gal}(\bar{L}/L(2^n))$ is $\Gamma(2^n)$. Then part (c) immediately follows by the definition of $\bar{ρ}_2^{(n)}$.

In §2, we will prove the main theorem by considering a family of hyperelliptic curves whose generic fiber is C. In §3, we will use the results of the previous two sections to determine generators for the algebraic extension L_2/L (Theorem 3.1). Finally, in §4, we will generalize Theorems 1.1 and 3.1 by descending from C to a subfield $k ⊂ C$ which contains all 2-power roots of unity.
2 Families of hyperelliptic Jacobians

In order to prove Theorem 1.1, we study a family of hyperelliptic curves parametrized by all (unordered) \((2g + 1)\)-element subsets \(T = \{\alpha_i\} \subset \mathbb{C}\) whose generic fiber is \(C\). Let \(e_1 := \sum_{i=1}^{2g+1} \alpha_i, ..., e_{2g+1} := \prod_{i=1}^{2g+1} \alpha_i\) be the elementary symmetric functions of the variables \(\alpha_i\), and let \(\Delta\) be the discriminant function of these variables. Then the base of this family is the affine variety over \(\mathbb{C}\) given by

\[X := \text{Spec}(\mathbb{C}[e_1, e_2, ..., e_{2g+1}, \Delta^{-1}]).\]

This complex affine scheme may be viewed as the configuration space of \((2g+1)\)-element subsets of \(\mathbb{C}\) (see the discussion in Section 6 of [1]). More precisely, we identify each \(\mathbb{C}\)-point \(T = (e_1, e_2, ..., e_{2g+1})\) of \(X\) with the set of roots of the squarefree degree-\((2g+1)\) polynomial \(z^{2g+1} - e_1z^{2g} + e_2z^{2g-1} - ... - e_{2g+1} \in \mathbb{C}[z]\), which is a \((2g + 1)\)-element subset of \(\mathbb{C}\). Note that the function field of \(X\) is \(L\). The (topological) fundamental group of \(X\) is isomorphic to \(B_{2g+1}\), the braid group on \(2g + 1\) strands. The braid group \(B_{2g+1}\) is generated by elements \(\sigma_1, \sigma_2, ..., \sigma_{2g}\), with relations \(\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}\) for \(1 \leq i \leq 2g\) and \(\sigma_i \sigma_j = \sigma_j \sigma_i\) for \(2 \leq i + 1 < j \leq 2g\). (See section 1.4 of [2] for more details.)

We also define the complex affine scheme

\[Y := \text{Spec}(\mathbb{C}[\alpha_1, \alpha_2, ..., \alpha_{2g+1}, \{(\alpha_i - \alpha_j)^{-1}\}_{1 \leq i < j \leq 2g+1}]).\]

As a complex manifold, \(Y\) is the ordered configuration space, whose \(\mathbb{C}\)-points may be identified with \(2g + 1\)-element subsets of \(\mathbb{C}\) which are given an ordering (a \(\mathbb{C}\)-point is identified with its coordinates \((\alpha_1, \alpha_2, ..., \alpha_{2g+1})\)). There is an obvious covering map \(Y \rightarrow X\) which sends each point \((\alpha_1, \alpha_2, ..., \alpha_{2g+1})\) of \(Y\) to the point in \(X\) corresponding to the (unordered) subset \(\{\alpha_1, \alpha_2, ..., \alpha_{2g+1}\}\). The \textit{pure} braid group on \(2g + 1\) strands, denoted \(P_{2g+1}\), is defined to be the kernel of the surjective homomorphism from \(B_{2g+1}\) to the symmetric group \(S_{2g+1}\) which sends \(\sigma_i\) to \((i, i+1) \in S_{2g+1}\) for \(1 \leq i \leq 2g\) (see the proof of Theorem 1.8 in [1]). Then \(P_{2g+1} \triangleleft B_{2g+1}\) is the (normal) subgroup corresponding to the cover \(Y \rightarrow X\), and is therefore isomorphic to the fundamental group of \(Y\).

Let \(\mathcal{O}_X\) denote the coordinate ring of \(X\), and let \(F(x) \in \mathcal{O}_X[x]\) be the degree-\((2g + 1)\) polynomial given by

\[x^{2g+1} + \sum_{i=1}^{2g+1} (-1)^i e_i x^{2g+1-i}.\]

Now denote by \(\mathcal{C} \rightarrow X\) the affine scheme defined by the equation \(y^2 = F(x)\). Clearly, \(\mathcal{C}\) is the family over \(X\) whose fiber over a point \(T \in X(\mathbb{C})\) is the smooth affine hyperelliptic curve defined by \(y^2 = \prod_{z \in T} (x - z)\), and the generic fiber of \(\mathcal{C}\) is \(C/L\). Fix a basepoint \(T_0\) of \(X\), and a basepoint \(P_0\) of \(C_{T_0}\). Then we have a short exact sequence of fundamental groups

\[1 \rightarrow \pi_1(C_{T_0}, P_0) \rightarrow \pi_1(C, P_0) \rightarrow \pi_1(X, T_0) \rightarrow 1.\]

We now construct a continuous section \(s : X \to C \), following the proof of Lemma 6.1 and the discussion in [10], §6. For \(i = 1, 2 \), let \(\mathcal{E}_i \to X \) be the affine scheme given by \(\text{Spec}(O_X/x,y)/(y' - F(x))/[F(x)^{-1}] \). Then \(\mathcal{E}_1 \to X \) is clearly the family of complex topological spaces whose fiber over a point \(T \in X \) can be identified with \(\mathbb{C} \setminus T \), and there is an obvious degree-2 cover \(\mathcal{E}_2 \to \mathcal{E}_1 \). Let \(t : X \to \mathcal{E}_1 \) be the continuous map of complex topological spaces which sends a point \(T \in X \) to \(\max_{z \in T} \{ |z| \} + 1 \in \mathbb{C} \setminus T = \mathcal{E}_1.T \). This section then lifts to a section \(\tilde{t} : X \to \mathcal{E}_2 \). Define \(s : X \to C \) to be the composition of \(\tilde{t} \) with the obvious inclusion map \(\mathcal{E}_2 \hookrightarrow C \). It is easy to check from the construction of \(s \) that it is a section of the family \(C \to X \).

The section \(s \) induces a monodromy action of \(\pi_1(X, T_0) \) on \(\pi_1(C_{T_0}, P_0) \), which is given by \(\sigma \in \pi_1(X) \) acting as conjugation by \(s(\sigma) \) on \(\pi_1(C_{T_0}, P_0) \). This induces an action of \(B_{2g+1} \) on the abelianization of \(\pi_1(C_{T_0}, P_0) \), the homology group \(H_1(C_{T_0}, \mathbb{Z}) \), which is isomorphic to \(\mathbb{Z}^{2g} \). We denote this action by

\[
R : B_{2g+1} \cong \pi_1(X, T_0) \to \text{Aut}(H_1(C_{T_0}, \mathbb{Z})). \tag{6}
\]

This action respects the intersection pairing on \(C_{T_0} \), so the image of \(R \) is actually contained in the corresponding subgroup of symplectic automorphisms \(\text{Sp}(H_1(C_{T_0}, \mathbb{Z})) \).

The following theorem is proven in [1] (Théorème 1), as well as in [5] (Lemma 8.12).

Theorem 2.1. In the representation \(R : B_{2g+1} \to \text{Sp}(H_1(C_{T_0}, \mathbb{Z})) \), the image of \(P_{2g+1} \) coincides with \(\Gamma(2) \).

Let \(\hat{B}_{2g+1} \) denote the profinite completion of \(B_{2g+1} \cong \pi_1(X, T_0) \). Since \(X \) may be viewed as a scheme over the complex numbers, Riemann’s Existence Theorem yields an isomorphism between its étale fundamental group \(\pi_1^{\text{ét}}(X, T_0) \) and \(\hat{B}_{2g+1} \) ([3], Exposé XII, Corollaire 5.2). Meanwhile, \(\pi_1^{\text{ét}}(X, T_0) \) is isomorphic to the Galois group \(\text{Gal}(L^{\text{unr}}/L) \), where \(L^{\text{unr}} \) is the maximal extension of \(L \) unramified at all points of \(X \). The representation \(R : B_{2g+1} \to \text{Sp}(H_1(C_{T_0}, \mathbb{Z})) \) induces a homomorphism of profinite groups

\[
R : \text{Gal}(L^{\text{unr}}/L) = \hat{B}_{2g+1} \to \text{Sp}(H_1(C_{T_0}, \mathbb{Z}) \otimes \mathbb{Z}_\ell) \tag{7}
\]

for any prime \(\ell \). Composing this map with the restriction homomorphism \(G_L := \text{Gal}(L/L) \to \text{Gal}(L^{\text{unr}}/L) \) yields a map which we denote \(R_\ell : G_L \to \text{Sp}(H_1(C_{T_0}, \mathbb{Z}) \otimes \mathbb{Z}_\ell) \). The following proposition will allow us to convert the above topological result into the arithmetic statement of Theorem 1.1.

Proposition 2.2. Assume the above notation, and let \(\ell \) be any prime. Then there is an isomorphism of \(\mathbb{Z}_\ell \)-modules \(T_\ell(J) \cong H_1(C_{T_0}, \mathbb{Z}) \otimes \mathbb{Z}_\ell \) making the representations \(\rho_\ell \) and \(R_\ell \) isomorphic.

Proof. We proceed in five steps.

Step 1: We switch from the affine curve \(C \) to a smooth compactification of \(C \), which is defined as follows. Let \(C' \) be the (smooth) curve defined over \(L \) by
the equation
\[y'^2 = x' \prod_{i=1}^{2g+1} (1 - \alpha_i x'). \] (8)

We glue the open subset of \(C \) defined by \(x \neq 0 \) to the open subset of \(C' \) defined by \(x' \neq 0 \) via the mapping
\[x' \mapsto \frac{1}{x}, \quad y' \mapsto \frac{y}{x^{g+1}}, \]
and denote the resulting smooth, projective scheme by \(\bar{C} \). (See \[3 \], §1 for more details of this construction.) Let \(\infty \in \bar{C}(L) \) denote the “point at infinity” given by \((x', y') = (0, 0) \in C' \). The curve \(\bar{C} \) has smooth reduction over every point \(T \in X \) and therefore can be extended in an obvious way to a family \(\bar{C} \to X \) whose generic fiber is \(C/L \) and \(\bar{C}/C \). Note that \(\bar{C}_T \) is a smooth compactification of \(C_T \) for each \(T \in X \). There is a surjective map \(\pi_1(\bar{C}_T, P_0) \to \pi_1(\bar{C}_{\infty}, \infty) \) induced by the inclusion \(\bar{C} \to \bar{C} \). Note also that the section \(s : X \to \bar{C} \subset \bar{C} \) can be continuously deformed to the “constant section” \(\bar{s} : X \to \bar{C} \) sending each \(T \in X \) to the point at infinity \(\infty_T \in \bar{C}_{\infty} \). Therefore, \(\bar{s}_* : \pi_1(X, T_0) \to \pi_1(\bar{C}_{\infty}, \infty) \) is the composition of \(s_* \) with the map \(\pi_1(\bar{C}_T) \to \pi_1(\bar{C}_{\infty}) \). In this way, we may view the action of \(\pi_1(X, T_0) \) on \(\pi_1(\bar{C}_{T_0}, P_0)^{ab} = \pi_1(\bar{C}_{\infty}, \infty)^{ab} \) as being induced by \(\bar{s}_* \).

Step 2: We switch from (topological) fundamental groups to \(\acute{e}tale \) fundamental groups. Since \(X \) and \(C \), as well as \(\bar{C}_T \) for each \(T \in X \), can be viewed as a scheme over the complex numbers, Riemann’s Existence Theorem implies that the \(\acute{e}tale \) fundamental groups of \(X, C \), and each \(\bar{C}_T \) (defined using a choice of geometric base point \(T_0 \) over \(T_0 \)) are isomorphic to the profinite completions of their respective topological fundamental groups. Taking profinite completions induces a sequence of \(\acute{e}tale \) fundamental groups
\[1 \to \pi^\acute{e}t_1(C_{T_0}, 0_{T_0}) \to \pi^\acute{e}t_1(C, 0_{T_0}) \to \pi^\acute{e}t_1(X, T_0) \to 1, \] (9)
which is a short exact sequence by \[3 \], Corollaire X.2.2. Moreover, the section \(\bar{s} : X \to \bar{C} \) similarly gives rise to an action of \(\pi^\acute{e}t_1(X, T_0) \) on \(\pi^\acute{e}t_1(\bar{C}_{T_0}, \infty) \).

Step 3: We switch from \(\bar{C} \) to its Jacobian. Define \(\mathcal{J} \to X \) to be the abelian scheme representing the Picard functor of the scheme \(\bar{C} \to X \) (see \[4 \], Theorem 8.1). Note that \(\mathcal{J}_T \) is the Jacobian of \(C_T \) for each \(\bar{C} \)-point \(T \) of \(X \), and the generic fiber of \(\mathcal{J} \) is \(\bar{J}/L \), the Jacobian of \(C/L \). Let \(f_\infty : \bar{C} \to \bar{J} \) be the morphism (defined over \(L \)) given by sending each point \(P \in \bar{C}(L) \) to the divisor class \([P] - (\infty)] \) in \(\text{Pic}^0(L)(\bar{C}) \), which is identified with \(J(L) \). By \[4 \], Proposition 9.1, the induced homomorphism of \(\acute{e}tale \) fundamental groups \((f_\infty)_* : \pi^\acute{e}t_1(\bar{C}, \infty) \to \pi^\acute{e}t_1(\bar{J}, 0) \) factors through an isomorphism \(\pi^\acute{e}t_1(\bar{C}, \infty)^{ab} \cong \pi^\acute{e}t_1(\bar{J}, 0) \). This induces an isomorphism \(\pi^\acute{e}t_1(\bar{C}, \infty)^{ab} \cong \pi^\acute{e}t_1(\bar{J}, 0) \) for each \(T \in X \). Note that the composition of the section \(\bar{s} : X \to \bar{C} \) with \(f_\infty \) is the “zero section” \(o : X \to \mathcal{J} \) mapping each \(T \) to the identity element \(0_T \in \mathcal{J}_T \). Thus, the action of \(\pi^\acute{e}t_1(X, T_0) \) on \(\pi^\acute{e}t_1(\bar{C}_{T_0}, \infty)^{ab} \) coming from the splitting of \[3 \] is the same as the action of \(\pi^\acute{e}t_1(X, T_0) \) on \(\pi^\acute{e}t_1(\mathcal{J}_{T_0}, 0_{T_0}) \) coming from the splitting of \[9 \] induced by the section \(o_* : \pi^\acute{e}t_1(X, T_0) \to \pi^\acute{e}t_1(\mathcal{J}, 0_{T_0}). \)
Step 4: We now show that this action on $\pi_1^{et}(J_{\bar{T}_0},0_{\bar{T}_0})$ is isomorphic to a Galois action on $\pi_1^{et}(J_L,0)$ (and therefore on its ℓ-adic quotient $T_\ell(J)$). Let $\eta : \text{Spec}(L) \to X$ denote the generic point of X. Note that we may identify $\pi_1^{et}(L,\bar{L})$ with G_L, and that $\eta_*: G_L \to \pi_1^{et}(X,\bar{\eta})$ is a surjection (in fact, it is the restriction homomorphism of Galois groups corresponding to the maximal algebraic extension of L unramified at all points of X). Also, the point $0 \in J_L$ may be viewed as a morphism $0 : \text{Spec}(L) \to J_L$ which induces $0_* : G_L = \pi_1^{et}(L,\bar{L}) \to \pi_1^{et}(J_L,0)$. Let T_0 and $\bar{\eta}$ be geometric points over T_0 and η respectively. Then we have ([3], Corollaire X.1.4) an exact sequence of étale fundamental groups
\[\pi_1^{et}(J,0_{\bar{\eta}}) \to \pi_1^{et}(J,0_{\bar{\eta}}) \to \pi_1^{et}(X,\bar{\eta}) \to 1. \]

Changing the geometric basepoint of X from T_0 to $\bar{\eta}$ (resp. changing the geometric basepoint of J from $0_{\bar{\eta}}$ to $0_{\bar{T}_0}$) non-canonically induces an isomorphism $\pi_1^{et}(X,\bar{\eta}) \sim \pi_1^{et}(X,T_0)$ (resp. an isomorphism $\pi_1^{et}(J,0_{\bar{\eta}}) \sim \pi_1^{et}(J,0_{\bar{T}_0})$). Fix such an isomorphism $\varphi : \pi_1^{et}(X,\bar{\eta}) \sim \pi_1^{et}(X,T_0)$. Then we have the following commutative diagram, where all horizontal rows are exact:

$$
\begin{array}{cccccc}
1 & \to & \pi_1^{et}(J_{\bar{T}_0},0_{\bar{T}_0}) & \to & \pi_1^{et}(J,0_{\bar{T}_0}) & \to & \pi_1^{et}(X,T_0) & \to & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
\pi_1^{et}(J_{\bar{T}_0},0_{\bar{T}_0}) & \to & \pi_1^{et}(J,0_{\bar{T}_0}) & \to & \pi_1^{et}(X,\bar{\eta}) & \to & \pi_1^{et}(X,T_0) & \to & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
1 & \to & \pi_1^{et}(J,L,0) & \to & \pi_1^{et}(J,L,0) & \to & \pi_1^{et}(L,\bar{L}) & \to & 1
\end{array}
$$

Here the vertical arrow from $\pi_1^{et}(J,0_{\bar{\eta}})$ to $\pi_1^{et}(J,0_{\bar{T}_0})$ is a change-of-basepoint isomorphism chosen to make the lower right square commute, and $\text{sp} : \pi_1^{et}(J_{\bar{T}_0},0_{\bar{T}_0}) \to \pi_1^{et}(J_{\bar{T}_0},0_{\bar{T}_0})$ is the surjective homomorphism induced by a diagram chase on the bottom two horizontal rows. Grothendieck’s Specialization Theorem ([3], Corollaire X.3.9) states that sp is an isomorphism, which implies that the second row is also a short exact sequence. Thus, the action of $\pi_1^{et}(X,T_0)$ on $\pi_1^{et}(J_{\bar{T}_0},0_{\bar{T}_0})$ arising from the splitting of the lower row by α_* is isomorphic to the action of $\pi_1^{et}(X,\bar{\eta})$ on $\pi_1^{et}(J_{\bar{T}_0},0_{\bar{T}_0})$ arising from the splitting of the middle row by α_*, via the isomorphism $\text{sp} : \pi_1^{et}(J_{\bar{T}_0},0_{\bar{T}_0}) \to \pi_1^{et}(J_{\bar{T}_0},0_{\bar{T}_0})$. In turn, a simple diagram chase confirms that this action, after pre-composing with $\eta_* : \pi_1^{et}(L,\bar{L}) \to \pi_1^{et}(X,\bar{\eta})$, can be identified with the action of $\pi_1^{et}(L,\bar{L})$ on $\pi_1^{et}(J_L,0)$ arising from the splitting of the top row by 0_*. We denote this action by $\bar{R} : G_L = \pi_1^{et}(L,\bar{L}) \to \text{Aut}(\pi_1^{et}(J_L,0))$. Since the Tate module $T_\ell(J)$ may be identified with the maximal pro-ℓ quotient of $\pi_1^{et}(J_L,0)$, \bar{R} induces an action of G_L on $T_\ell(J)$, which we denote by $R_\ell : G_L \to \text{Aut}(T_\ell(J))$. One can identify the symplectic pairing on $\pi_1(J_{\bar{T}_0},0_{\bar{T}_0})$ with the Weil pairing on $T_\ell(J)$ via the results in [6], Chapter IV, §24. Therefore, the image of R_ℓ is a subgroup of $\text{Sp}(T_\ell(J))$. 6
By the above construction, we may identify the maximal pro-ℓ quotient of $\pi_1^{et}(\bar{J}_{T_0}, 0_{\bar{T}_0})$ with $H_1(C_{T_0}, \mathbb{Z}) \otimes \mathbb{Z}_\ell$. Note that the isomorphism $sp : \pi_1^{et}(\bar{J}_{T_0}, 0_{\bar{T}_0}) \to \pi_1^{et}(J_{T_0}, 0_{T_0})$ induces an isomorphism of their maximal pro-ℓ quotients $sp_\ell : T_1(J) \cong H_1(C_{T_0}, \mathbb{Z}) \otimes \mathbb{Z}_\ell$. By construction, the representation \tilde{R}_ℓ is isomorphic to the representation R_ℓ via sp_ℓ.

Step 5: It now suffices to show that $\tilde{R}_\ell = \rho_\ell$. To determine \tilde{R}_ℓ, we are interested in the action of G_L on the group $\text{Aut}_{\ell}(\mathbb{Z})$ for each ℓ-power-degree covering $Z \to J_L$. But each such covering is a subcovering of $[\ell^n] : J_L \to J_L$, so it suffices to determine the action of G_L on the group of translations $\{t_P | P \in J[\ell^n]\}$ for each n. Recall that $\sigma_n : G_L \to \pi_1^{et}(J_L, 0)$ is induced by the inclusion of the ℓ-point $0 \in J_L$. Thus, for any $\sigma \in G_L$, $0_\sigma(\sigma)$ acts on any connected etale cover of J_L via σ acting on the coordinates of the points. Since $\tilde{R}(\sigma)$ is conjugation by $0_\sigma(\sigma)$ on $\pi_1^{et}(J_L, 0) \lhd \pi_1^{et}(J_L, 0)$, one sees that for each n, $0_\sigma(\sigma)$ acts on $\{t_P | P \in J[\ell^n]\}$ by sending each t_P to $\sigma^{-1} t_P \sigma = t_{P^\sigma}$. Thus, G_L acts on the Galois group of the covering $[\ell^n] : J_L \to J_L$ via the usual Galois action on $J[\ell^n]$. This lifts to the usual action of G_L on $T_\ell(J)$, and we are done.

It is now easy to prove the main theorem.

Proof (of Theorem 1.1). Recall that \tilde{P}_{2g+1} is the normal subgroup of $B_{2g+1} \cong \pi_1(X, T_0)$ corresponding to the cover $Y \to X$, and the function field of Y is $\mathbb{C}(\alpha_1, ..., \alpha_{2g+1}) = L_1$. It follows that the image of $\text{Gal}(\bar{L}/L_1)$ under η_* is $\tilde{P}_{2g+1} \lhd \tilde{B}_{2g+1} \cong \pi_1^{et}(X, \bar{T}_0)$ (where \tilde{P}_{2g+1} denotes the profinite completion of P_{2g+1}). Therefore, the statement of Theorem 2.1 with $\ell = 2$ implies that the image of $\text{Gal}(\bar{L}/L_1)$ under R_2 is $\Gamma(2) \lhd \text{Sp}(H_1(C_{T_0}, \mathbb{Z}) \otimes \mathbb{Z}_\ell)$. It then follows from the statement of Lemma 2.2 that the image of $\text{Gal}(\bar{L}/L_1)$ under ρ_2 is $\Gamma(2) \lhd \text{Sp}(T_2(J))$.

3 Fields of 4-torsion

One application of Theorem 1.1 is that it allows us to obtain an explicit description of L_2. We will follow Yu’s argument in [10].

Proposition 3.1. We have

$$L_2 = L_1(\frac{1}{\sqrt{\alpha_i - \alpha_j}})_{1 \leq i < j \leq 2g+1}.$$

Proof. For $n \geq 1$, let B_n denote the set of bases of the free $\mathbb{Z}/2^n\mathbb{Z}$-module $J_{T_0}[2^n]$. Then it was shown in the proof of Theorem 1.1 that G_L acts on B_n through the map $R : \pi_1(X, T_0) \to \text{Sp}(H_1(C_{T_0}, \mathbb{Z})) = \text{Sp}(H_1(J_{T_0}, \mathbb{Z}))$ in the statement of Theorem 2.1 and the subgroup fixing all elements of B_n corresponds to $R^{-1}(\Gamma(2^n)) \lhd \pi_1(X, T_0)$. Hence, by covering space theory, there is a connected cover $X_n \to X$ corresponding to an orbit of B_n under the action of $\pi_1(X, T_0)$, and the function field of X_n is the extension of L fixed by the subgroup of G_L which fixes all bases of $J[2^n]$. Clearly, this extension is L_n.

7
Thus, the Galois cover $X_n \to X$ is an unramified morphism of connected affine schemes corresponding to the inclusion $L \to L_n$ of function fields.

Note that, setting $n = 1$, we get that X_1 is the Galois cover of X whose étale fundamental group can be identified with $R^{-1}(\Gamma(2)) \triangleleft \pi_1(X, T_0)$. Theorem 2.4 implies that $R^{-1}(\Gamma(2))$ is isomorphic to \hat{P}_{2g+1}, the profinite completion of P_{2g+1}. For $n \geq 1$, the étale morphism $X_n \to X_1$ corresponds to the function field extension $L_n \supset L_1$, which by Corollary 4.2(c) has Galois group isomorphic to $\Gamma(2)/\Gamma(2^n)$. Therefore, X_n is the cover of X_1 whose étale fundamental group can be identified with a normal subgroup of P_{2g+1} with quotient isomorphic to $\Gamma(2)/\Gamma(2^n)$.

In the proof of Corollary 2.2 of [8], it is shown that $\Gamma(2)/\Gamma(4) \cong (\mathbb{Z}/2\mathbb{Z})^{2g^2+g}$, and thus,

$$\text{Gal}(L_2/L_1) \cong \Gamma(2)/\Gamma(4) \cong (\mathbb{Z}/2\mathbb{Z})^{2g^2+g}. \quad (11)$$

It is also clear from looking at a presentation of the pure braid group P_{2g+1} (see for instance [2], Lemma 1.8.2) that the abelianization of P_{2g+1} is a free abelian group of rank $2g^2 + g$. Therefore, its maximal abelian quotient of exponent 2 is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{2g^2+g}$. Thus, \hat{P}_{2g+1} has a unique normal subgroup inducing a quotient isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{2g^2+g}$. It follows that there is only one Galois cover of X_1 with Galois group isomorphic to $\Gamma(2)/\Gamma(4)$, namely X_2. The field extension $L_1(\{\alpha_i - \alpha_j\}_{i<j}) \supset L_1$ is unramified away from the hyperplanes defined by $(\alpha_i - \alpha_j)$ with $i \neq j$ and is obtained from L_1 by adjoining $2g^2 + g$ independent square roots of elements in $L_1^\times \setminus (L_1^\times)^2$. Therefore, $L_1(\{\sqrt{\alpha_i - \alpha_j}\}_{i<j})$ is the function field of a Galois cover of $X(2)$ with Galois group isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{2g^2+g} \cong \Gamma(2)/\Gamma(4)$. It follows that this cover of X_1 is X_2, and that $L_1(\{\sqrt{\alpha_i - \alpha_j}\}_{i<j})$ is L_2, the function field of X_2.

\[\square \]

4 Generalizations

As in Section 1, let k be an algebraic extension of \mathbb{Q} which contains all 2-power roots of unity, and let K be the transcendental extension obtained by adjoining the coefficients of L to k. We will also fix the following notation. Let C_K be the hyperelliptic curve defined over K given by the equation L, and let J_K be its Jacobian. For each $n \geq 0$, let K_n be the extension of K over which the 2^n-torsion of J_K is defined. Note that, analogous to the situation with C/L, the extension K_2 is $k(\alpha_1, ..., \alpha_{2g+1})$, which is Galois over K with Galois group isomorphic to S_{2g+1}. Let $\rho_{2,K} : \text{Gal}(K_\infty/K) \to \text{Sp}(T_2(J_K))$ be the homomorphism arising from the Galois action on the Tate module of J_K. We now investigate what happens to the Galois action when we descend from working over \mathbb{C} to working over k. (In what follows, we canonically identify $T_2(J)$ with $T_2(J_K)$ and $\Gamma(2^n)$ with the level-2^n congruence subgroup of $\text{Sp}(T_2(J_K))$ for each $n \geq 0$.)

Proposition 4.1. The statements of Theorem 1.1, Corollary 1.2, and Proposition 2.1 are true when L and ρ_2 are replaced by K and $\rho_{2,K}$ respectively.
Proof. For any $n \geq 0$, let $\theta_n : \text{Gal}(L_∞/L_n) \to \text{Gal}(K_∞/K_n)$ be the composition of the obvious inclusion $\text{Gal}(L_∞/L_n) \hookrightarrow \text{Gal}(L_∞/K_n)$ with the obvious restriction map $\text{Gal}(L_∞/K_n) \to \text{Gal}(K_∞/K_n)$. Let $\bar{\rho}_2(∞)$ (resp. $\bar{\rho}_{2,K}(∞)$) be the representation of $\text{Gal}(L_∞/L)$ (resp. $\text{Gal}(K_∞/K)$) induced from ρ_2 (resp. $\rho_{2,K}$) by the restriction homomorphism of the Galois groups. It is easy to check that $\bar{\rho}_2(∞) = \bar{\rho}_{2,K}(∞) \circ \theta_0$. It will suffice to show that θ_0 is an isomorphism.

First, note that for any $n \geq 0$, θ_n is injective by the linear disjointness of $K_∞$ and L_n over K_n. Now suppose that $n \geq 1$. Then, as in the proof of Corollary 1.2, the image under $\bar{\rho}$ of $\text{Gal}(L_∞/L_n)$ is the entire congruence subgroup $\Gamma(2^n)$. Therefore, since θ_n is injective, the image under $\bar{\rho}_K$ of $\text{Gal}(K_∞/K_n)$ contains $\Gamma(2^n)$. But since K contains all 2-power roots of unity, the Weil pairing is Galois invariant, and so the image of $\text{Gal}(K_∞/K_n)$ must also be contained in $\Gamma(2^n)$. Therefore, θ_n is an isomorphism for $n \geq 1$. Now, using Corollary 1.2(a) and the fact that $\text{Gal}(K(\alpha_1, \ldots, \alpha_{2g+1})/K) \cong S_{2g+1}$, we get the commutative diagram below, whose top and bottom rows are short exact sequences.

$$
\begin{array}{cccc}
1 & \longrightarrow & \text{Gal}(L_∞/L_1) & \longrightarrow & \text{Gal}(L_∞/L) & \longrightarrow & S_{2g+1} & \longrightarrow & 1 \\
\downarrow \theta_1 & & \downarrow \theta_0 & & \downarrow & & \downarrow & & \downarrow \\
1 & \longrightarrow & \text{Gal}(K_∞/K_1) & \longrightarrow & \text{Gal}(K_∞/K) & \longrightarrow & S_{2g+1} & \longrightarrow & 1
\end{array}
$$

By the Short Five Lemma, since θ_1 is an isomorphism, so is θ_0.

\[\square\]

Remark 4.2. a) Suppose we drop the assumption that k contains all 2-power roots of unity. Then $\rho_{2,K}(G_K)$ is no longer contained in $\text{Sp}(T_2(J))$ in general. However, the Galois equivariance of the Weil pairing forces the image of $\rho_{2,K}$ to be contained in the group of symplectic similitudes

$$
\text{GSp}(T_2(J)) := \{ \sigma \in \text{Aut}(T_2(J)) \mid E_2(P^\sigma, Q^\sigma) = \chi_2(\sigma)E_2(P, Q) \ \forall P, Q \in T_2(J) \},
$$

where $E_2 : T_2(J) \times T_2(J) \to \lim_{n \to \infty} \mu_{2^n} \cong \mathbb{Z}_2$ is the Weil pairing on the 2-adic Tate module of J, and $\chi_2 : G_K \to \mathbb{Z}_2^\times$ is the cyclotomic character on the absolute Galois group of K. Galois equivariance of the Weil pairing also implies that $K_∞$ contains all 2-power roots of unity. Thus, $K_∞ \supset K(\mu_{2^n})$, and the statements referred to in Proposition 4.1 still hold when we replace K with $K(\mu_{2^n})$.

Furthermore, if K contains $\sqrt{-1}$, the Weil pairing on $J[4]$ is Galois invariant, so the image of $\text{Gal}(K_2/K_1)$ coincides with $\Gamma(2)/\Gamma(4) \subset \text{Sp}(J[4])$ and is therefore isomorphic to $\text{Gal}(L_2/L_1)$. It follows that Proposition 4.1 still holds over $K(\sqrt{-1})$; that is,

$$
K_2 = K_1(\sqrt{-1}, \{ \sqrt{\alpha_i - \alpha_j} \}_{1 \leq i < j \leq 2g+1}). \quad (12)
$$

b) In addition, suppose that k is finitely generated over \mathbb{Q} (for example, a number field). We may specialize by assigning an element of k to each coefficient of the degree-$(2g+1)$ polynomial in T, and defining the corresponding Jacobian
J_k/k and Galois representation $\rho_{2,k} : G_k \to \text{Sp}(T_2(J_k))$. Then we may use Proposition 1.3 of [7] and its proof (see also [9]) to see that for infinitely many choices of $e_1, \ldots, e_{2g+1} \in k$, $\rho_{2,k}(G_k)$ can be identified with $\rho_{2,K}(G_K)$ from part (a). We have $\rho_{2,k}(\text{Gal}(\bar{k}/k(\mu_{2^\infty}))) = \rho_{2,k}(G_k) \cap \text{Sp}(T_2(J_k))$, and therefore, the statements referred to in Proposition 4.1 still hold over $k(\mu_{2^\infty})$. Similarly, Proposition 5.1 still holds over $k(\sqrt{-1})$.

Acknowledgements

I am grateful to Yuri Zarhin for his many ideas and suggestions. I would also like to thank the referee, who suggested that this material be presented in a separate paper, and whose corrections were helpful in improving the exposition.

References

[1] Norbert A’Campo. Tresses, monodromie et le groupe symplectique. Commentarii Mathematici Helvetici, 54(1):318–327, 1979.

[2] Joan S Birman. Braids, links, and mapping class groups, volume 82. Princeton University Press, 1974.

[3] Alexander Grothendieck et al. Revêtements étalés et groupe fondamental (SGA 1), Lecture Notes in Mathematics, 224. Springer-Verlag, 1971.

[4] James S Milne. Jacobian varieties. In Arithmetic geometry, pages 167–212. Springer, 1986.

[5] David Mumford. Tata lectures on theta II: Jacobian theta functions and differential equations. Progress in Mathematics, 43, 1984.

[6] David Mumford. Abelian varieties, 2nd edition. Oxford University Press, 1974.

[7] Rutger Noot. Abelian varieties – Galois representations and properties of ordinary reduction. Compositio Mathematica, 97(1):161–172, 1995.

[8] Masatoshi Sato. The abelianization of the level d mapping class group. Journal of Topology, 3(4):847–882, 2010.

[9] J.-P. Serre. Lettres à Ken Ribet du 1/1/1981 et du 29/1/1981, Collected Papers, Vol. IV. Springer-Verlag, Berlin-Heidelberg, 1996, pp. 1-20.

[10] Jiu-Kang Yu. Toward a proof of the Cohen-Lenstra conjecture in the function field case. preprint, 1997.