Original Article

18-Fluoride labeled sodium fluoride positron emission tomography with computer tomography: the impact of pretreatment staging in intermediate- and high-risk prostate cancer

Simon JD. Harley
Richard Hoffmann
Dylan Bartholomeusz
Peter Sutherland
Barry Chatterton
Michael Kitchener
Prab Takhar
Chris Tsopelas
Andrew Fuller
Richard Wells
Raj Singh-Rai
John Bolt

1 Department of Urology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
2 Department of Urology, Lyell McEwin Hospital, Adelaide, South Australia, Australia
3 Department of Surgery, University of Adelaide, South Australia, Australia
4 Department of Nuclear Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
5 Dr Jones and Partners, Tennyson Centre, Adelaide, South Australia, Australia
6 South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia

1. Introduction

Aside from skin cancers, prostate cancer is the most commonly diagnosed cancer in Australia. Since the era of prostate specific antigen (PSA) screening, there has been an increasing incidence of organ-confined disease. Locally advanced and metastatic prostate cancer is still found in up to 22% of men at initial diagnosis, and bony metastases (BM) are detected in 4% of all men with current staging modalities. For patients with metastatic disease, treatment is focused on systemic therapies such as androgen-deprivation therapy, androgen blockage, and chemotherapy. This contrasts significantly to organ-confined disease which may be treated with...
Positron emission tomography with computer tomography (PET/CT) has become the gold-standard imaging modality for staging many cancers. The most common tracer, fluorodeoxyglucose (18F-FDG), has, however, failed to afford the same benefits in staging prostate cancer as it has with other nonprostate malignancies. The use of 68Ga-prostate-specific membrane antigen (PSMA) PET/CT and related radiopharmaceuticals for the detection of metastatic prostate cancer is increasing but access and cost remains a barrier in many parts of the world.

18-Fluoride labeled sodium fluoride (Na-18-F) is a bone-seeking tracer with similar biological properties to Tc-bisphosphonates used in WBBS. It is the greater accumulation of Na-18-F around rapidly metabolizing bone (such as metastatic deposits) that forms the basis for the detection of metastatic disease. Na-18-F is more readily available than other tracers and has been used in PET imaging for metastatic cancers such as sarcoma, breast, and non–small-cell lung cancer and in these malignancies; it has been shown to be highly sensitive and specific. The improved image quality and intrinsic 3D information that PET imaging provides along with the anatomical localization of the simultaneous CT scan may be expected to provide superior diagnostic information to WBBS in prostate cancer.

The value that a new imaging modality provides needs to be weighed against the potential risks and cost to the patient. Hicks et al examined the use of Na-18-F PET/CT in restaging non–small-cell lung cancer. In this seminal study, they described “levels of impact” that the modality had on the patient’s care and found a significant difference in subsequent management and survival. It remains unclear whether Na-18-F PET/CT could play an added role in prostate cancer staging. While improved sensitivity and specificity has been demonstrated in other cancers, these favorable characteristics have not been shown to translate into changes in management and improved patient outcomes in prostate cancer.

18-Fluoride labeled sodium fluoride (Na-18-F) is a bone-seeking tracer with similar biological properties to Tc-bisphosphonates used in WBBS. It is the greater accumulation of Na-18-F around rapidly metabolizing bone (such as metastatic deposits) that forms the basis for the detection of metastatic disease. Na-18-F is more readily available than other tracers and has been used in PET imaging for metastatic cancers such as sarcoma, breast, and non–small-cell lung cancer and in these malignancies; it has been shown to be highly sensitive and specific. The improved image quality and intrinsic 3D information that PET imaging provides along with the anatomical localization of the simultaneous CT scan may be expected to provide superior diagnostic information to WBBS in prostate cancer.

The value that a new imaging modality provides needs to be weighed against the potential risks and cost to the patient. Hicks et al examined the use of Na-18-F PET/CT in restaging non–small-cell lung cancer. In this seminal study, they described “levels of impact” that the modality had on the patient’s care and found a significant difference in subsequent management and survival. It remains unclear whether Na-18-F PET/CT could play an added role in prostate cancer staging. While improved sensitivity and specificity has been demonstrated in other cancers, these favorable characteristics have not been shown to translate into changes in management and improved patient outcomes in prostate cancer.

We conducted a pilot study directly comparing the impact that Na-18-F PET/CT had on the management plans of men with newly diagnosed intermediate- and high-risk prostate cancer.

2. Materials and Methods

Men aged 18 years and above with newly diagnosed, untreated, biopsy-confirmed intermediate- and high-risk prostate cancer were eligible for this study. Risk stratification was based on D’Amico’s classification of prostate cancer: intermediate risk (Gleason score ≥ 6, PSA <10, and <20 ng/ml) and high risk (≥ 3, Gleason score ≥ 8, or PSA level >20 ng/ml). Men were ineligible if they had a history of other cancers (except for non–melanoma skin cancer), had undergone previous treatment for prostate cancer, or were unable to provide informed consent.

Subjects were recruited prospectively from a single private institution in Adelaide, South Australia. Men who met the inclusion criteria were identified by the treating urologist and recruitment was performed in a sequential manner. Funding for this pilot study was provided for 20 Na-18-F PET/CT scans and this defined our subject number. Ethics approval was provided by the local hospital Human Research Ethics Committee.

All subjects were assessed with a medical history, physical examination including digital rectal exam, PSA level, and transrectal ultrasound guided prostate biopsy. Subjects underwent Na-18-F PET/CT (Siemens Biograph or Philips Gemini PET/CT scanner), 99mTc-MDP WBBS, and a serum PSA concentration test within one week of each other. All men received a standard 200MBq intravenous dose of Na-18-F and underwent a predetermined, standardized field of view analysis from cranium to feet PET/CT. Participants were observed for any medical or procedural complications of the Na-18-F injection. The bone scan followed standardized local protocols already in existence with whole body sweeps and multiple localized views.

The Na-18-F generated from the study was manufactured under Good manufacturing practice (GMP) at the South Australian Health and Medical Research Institute and sold as Na-18-F Fluoride (18F) Solution for radiolabelling (Ph Eur monograph 2309). Equipment used was validated and tested in adherence to regulations stated in Pharmaceutical Inspection Co-operation Scheme (PIC/S) guide.

Images from both the PET/CT and WBBS were interpreted by two experienced nuclear medicine specialists. Scans were de-identified and reported in real time to avoid delay in management decisions by the treating urologists. At no stage the PET/CT and WBBS from the same patient was reported by the same physician. Criteria for malignancy were of the opinion of the reporting doctor. A final opinion was designated as: definite metastatic disease, probably metastatic disease, probably not metastatic disease, and normal.

After reviewing the subject’s history and WBBS, urologists documented the TNM stage and detailed their proposed management plan and intent. This was recorded as the pre-PET management plan. Following this, the results of the PET/CT were reviewed, and a final TNM stage and management decision was documented. This was recorded as the post-PET management plan.

The level of impact that the Na-18-F PET/CT had on the patient’s management was measured by a validated scoring system. (see Table 1).

We examined the level of impact that the additional imaging modality had on the subsequent management plan and treatment intent of the treating urologist. Results are described in narrative and table form, and for continuous data, mean and standard deviation were calculated.

Impact level	Example
High impact	When the treatment intent or modality was changed (e.g., from curative to palliative treatment or from surgery to radiotherapy or from treatment to no treatment).
Medium impact	When the method of treatment delivery was changed (e.g., a change in radiation treatment volume, radiation modality, radiation field).
Low impact	When the PET results did not indicate a need for change
No impact	When the management chosen conflicted with post-PET disease extent and was believed to be inappropriate on the basis of a synthesis of all available information.

PET, positron emission tomography.
3. Results

Twenty men were recruited for this pilot study. Twelve men had intermediate-risk prostate cancer and eight men had high-risk prostate cancer. The mean age of men was 66.5 years (range: 55–73). The mean PSA was 7.5 (range: 3.1–19). The majority of men with intermediate-risk disease had Gleason 3 + 4 prostate cancer, whilst the majority of men with high-risk disease had Gleason 4 + 4 prostate cancer. Subset analysis by risk category is found in Table 2.

There were no medical or technical complications associated with the additional Na-18-F PET/CT, and all images were deemed of high quality by those reporting.

In 18 men (90%), the WBBS and Na-18-F PET/CT were both reported as normal. In one man (5%), the WBBS demonstrated definite metastatic disease which was similarly reported on the Na-18-F PET/CT. One man (5%) had a normal WBBS reported; however, the Na-18-F PET/CT was reported as definite metastatic disease. Subsequently, in 19 men (95%), the results of the two scans were congruent and the addition of the Na-18-F PET/CT scan demonstrated a low impact on their management. In one man (5%), the addition of the Na-18-F PET/CT had a high impact as treatment type changed from surgery to systemic therapy and intent was altered from potentially curative to potentially palliative (Fig. 1).

4. Discussion

The importance of staging prostate cancer is well established, and the current use of WBBS is accepted as category A level of evidence. However, with its wide range of reported sensitivities and specificities and the development of newer technologies it is unclear whether this remains the most appropriate staging modality. It is likely that WBBS will be superseded by seemingly superior imaging modality such as Na-18-F or 68Ga-PSMA PET/CT, but too often newer technologies are accepted as the new orthodox without the supporting evidence for change. Buxton's Law states “it is always too early (for rigorous evaluation) until, unfortunately, it is too late”. This pilot study aimed to assess the feasibility of a larger study to examine whether a change to newer technology

Table 2

Age, PSA, and Gleason score of men enrolled.
All men
Age (mean, SD)
PSA (mean, SD)
Gleason score
Gleason 7 (3 + 4)
Gleason 7 (4 + 3)
Gleason 8

Age, PSA, and Gleason score of men with high risk prostate cancer
n = 8
Age (mean, SD)
PSA (mean, SD)
Gleason score
Gleason 7 (3 + 4)
Gleason 7 (4 + 3)
Gleason 8

Age, PSA, and Gleason score of men with intermediate risk prostate cancer
n = 12
Age (mean, SD)
PSA (mean, SD)
Gleason score
Gleason 7 (3 + 4)
Gleason 7 (4 + 3)

PSA, prostate specific antigen; SD, standard deviation.

Fig. 1. Flow diagram demonstrating the level of impact that Na-18-F PET/CT had on the management of men with medium- and high-risk prostate cancer. BM, bony metastasis; PET/CT, positron emission tomography with computer tomography; WBBS, whole body bone scan.
results in a significant change of management in men being staged for prostate cancer.

To the best of our knowledge, this is the first study that has prospectively enrolled men with both intermediate- and high-risk prostate cancer to undergo Na-18-F PET/CT and WBBS imaging during their initial staging. Even Sapir et al assessed the detection of bone metastases in patients with high-risk prostate cancer (PSA > 20 or Gleason score ≥8 or nonspecific sclerotic lesions on CT) against 99mTc-MDP planar bone scintigraphy, single and multi field-of-view Single-photon emission computed tomography (SPECT), Na-18-F PET, and Na-18-F PET/CT. Of 44 men recruited, 25 were newly diagnosed cases. Eleven men were found to have BM on staging; 5 (45.4%) of them did not have BM detected on 99mTc-MDP planar bone scintigraphy. This resulted in a change of management in 20% of men suggesting the additional imaging modality added value and may beneficially impact the management of men with high-risk prostate cancer.

The sensitivity, specificity, positive, and negative predictive value of Na-18-F PET/CT has been reported as up to 100% although this number should be viewed with some skepticism. In a retrospective multicentre audit of 8328 Na-18-F PET/CT scans, 1024 of this number should be viewed with some skepticism. In a retrospective multicentre audit of 8328 Na-18-F PET/CT scans, 1024 of this number should be viewed with some skepticism. In a retrospective multicentre audit of 8328 Na-18-F PET/CT scans, 1024 of this number should be viewed with some skepticism. In a retrospective multicentre audit of 8328 Na-18-F PET/CT...
Acknowledgment

The authors acknowledge Kari Hughes and the entire staff at the Department of Nuclear Medicine, PET, and Bone Densitometry Unit, Royal Adelaide Hospital.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.prnil.2017.12.002

References

1. Australian Institute of Health and Welfare. Cancer in Australia: An overview 2012. Canberra: AIHW and AACR; 2012.

2. Ryan CJ, Elkin EP, Small EJ, DuChane J, Carroll P. Reduced incidence of bony metastases in patients with prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol 2010 Apr;57(4):551–8.

3. Briganti A, Passoni N, Ferrari M, Capitanio U, Suardi N, Gallina A, et al. When to perform bone scan in patients with newly diagnosed prostate cancer: external validation of the currently available guidelines and proposal of a novel risk stratification tool. Eur Urol 2010 Apr;57(4):551–8.

4. Wondemerg M, van der Zant FM, van der Ploeg T, Knol RJ. A literature review of 18F-fluoride PET/CT and 18F-choline or 11C-choline PET/CT for detection of bone metastases in patients with prostate cancer. Nucl Med Commun 2013 Oct;34(10):936–45.

5. Prostate Cancer [Internet]. Arnhem, The Netherlands: European Association of Urology. [cited 12/7/16]. Available from: https://uroweb.org/guidelines/.

6. James ND, Spears MR, Clarke NW, Deenaley DP, De Bono JS, Gale J, et al. Survival with Newly Diagnosed Metastatic Prostate Cancer in the “Docetaxel Era”: data from 917 Patients in the Control Arm of the STAMPEDE Trial (MRC PR08, CRUK/06/019). Eur Urol 2015 Jun;67(6):1028–38.

7. Mottet N, Bellmunt J, Briers E, van den Bergh RCN, Bolla M, van Casteren NJ, et al. Guidelines on Prostate Cancer. Eur Assoc Urol 2015 Chapter 5. Diagnostic Evaluation. Available from: http://uroweb.org/guideline/prostate-cancer/#5.

8. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006 Feb;47(2):287–97.

9. Poulsen MH, Petersen H, Houlsd-Carlsen PF, Jakobsen JS, Gerke O, Karstoft J, et al. Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [18]F-choline positron emission tomography(PET)/computed tomography (CT) and [(18)F]NaF PET/CT. BJU Int 2014 Dec;114(6):818–23.

10. Vali R, Loidl W, Pirch C, Langesteger W, Beheshti M. Imaging of prostate cancer with PET/CT using (18)F-Fluorocholine. Am J Nucl Med Mol Imaging 2015;5(2):96–108.

11. Afshar-Oromieh A, Haberkorn U, Schlemmer HP, Fenchel M, Eder M, Eisenhut M, et al. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience. Eur J Nucl Med Mol Imaging 2014 May;41(5):887–97.

12. Jackson T, Mosci C, von Eyben R, Mittra E, Ganjoo K, Biswal S, et al. Combined 18F-NaF and 18F-FDG PET/CT in the evaluation of Sarcoma patients. Clin Nucl Med 2015 Sep;40(9):720–4.

13. Bastawrous S, Bhragava P, Behnia F, Djang DS, Haseley DR. Newer PET application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic practice. Radiographics 2014 Sep-Oct;34(5):1295–316.

14. Sampath SC, Sampath SC, Mosci C, Lutz AM, Willmann JK, Mittra ES, et al. Detection of osseous metastasis by 18F-NaF/18F-FDG PET/CT versus CT alone. Clin Nucl Med 2015 Mar;40(3):e173–7.

15. Hicks RJ, Kalf V, MacManus MF, Ware RE, McKenzie AF, Matthews JP, et al. The utility of 18F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy: impact on management and prognostic stratification. J Nucl Med 2001 Nov;42(11):1605–13.

16. Hillner BE, Siegel BA, Hanna L, Duan F, Shields AF, Coleman RE. Impact of 18F-fluoride PET in patients with known prostate cancer: initial results from the National Oncologic PET Registry. J Nucl Med 2014 Apr;55(4):574–81.

17. D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick GA, et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998 Sep 16;280(11):969–74.

18. Ramsay CR, Grant AM, Wallace SA, Garthwaite PH, Monk AF, Russell JT. Statistical assessment of the learning curves of health technologies. Health Technol Assess 2001;5(12):1–79.

19. Barrio M, Czernin J, Fanti S, Ambrosini V, Binse I, Du L, et al. The impact of SSTR-directed PET/CT on the management of patients with neuroendocrine tumor: a systematic review and meta-analysis. J Nucl Med 2015 May;56(5):756–61.

20. Taghipour M, Marcus C, Sheikhbahaei S, Mena E, Prasad S, Jha AK, et al. Clinical indications & impact on management: fourth and subsequent post-therapy follow-up FDG-PET/CT scans in oncology patients. J Nucl Med 2017 May;58(5):737–43.