Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

Citation for published version:
Hadler, KS, Huber, T, Cassady, Al, Weber, J, Robinson, J, Burrows, A, Kelly, G, Guddat, LW, Hume, DA, Schenk, G & Flanagan, JU 2008, 'Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?' BMC Research Notes, vol 1, pp. 78.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
BMC Research Notes

Publisher Rights Statement:
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 24. Jul. 2018
Short Report

Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

Kieran S Hadler1, Thomas Huber1, A Ian Cassady2, Jane Weber2, Jodie Robinson2, Allan Burrows2, Gregory Kelly2, Luke W Guddat1, David A Hume2,3, Gerhard Schenk*1 and Jack U Flanagan*3

Address: 1School of Molecular and Microbial Sciences, The University of Queensland, St. Lucia, 4072, Australia, 2Cooperative Research Centre for Chronic Inflammatory Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia and 3ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, 4072, Australia

Email: Kieran S Hadler - k.hadler@uq.edu.au; Thomas Huber - t.huber@uq.edu.au; A Ian Cassady - i.cassady@imb.uq.edu.au; Jane Weber - j.weber@imb.uq.edu.au; Jodie Robinson - j.robinson@imb.uq.edu.au; Allan Burrows - a.burrows@imb.uq.edu.au; Gregory Kelly - g.kelly@imb.uq.edu.au; Luke W Guddat - luke.guddat@uq.edu.au; David A Hume - d.hume@imb.uq.edu.au; Gerhard Schenk* - schenk@uq.edu.au; Jack U Flanagan* - j.flanagan@auckland.ac.nz

* Corresponding authors

Abstract

Background: Tartrate-resistant acid phosphatases (TRAcPs), also known as purple acid phosphatases (PAPs), are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics.

Findings: A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine.

Conclusion: The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism.

Background

Purple acid phosphatases (PAPs) are a diverse group of metalloenzymes that catalyse the hydrolysis of phosphate esters and anhydrides [1]. PAPs are resistant to inhibition by L(+)-tartrate, a potent inhibitor of other acid phosphatases, and as such are also known as tartrate-resistant acid phosphatases (TRAcPs; alternative names include ACP5, TRAP) [1]. They contain a bimetallic active site...
TRAcPs have been isolated from a range of plants, mammals and fungi, and TRAcP-like sequences have also been identified in a number of bacteria [1]. Structural and biochemical characterisation of the TRAcPs from the red kidney bean, Phaseolus vulgaris, and sweet potato, Ipomoea batatas, have demonstrated their existence as homodimers with subunits of ~55 kDa [1,5]. The plant isoforms may also exist as heterodimers of 57 and 63 kDa subunits [1]. The catalytic centres of the red kidney bean, soybean and one isoform from sweet potato enzyme contain an Fe(III)–Zn(II) complex, whereas Fe(III)–Mn(II) is present in the other sweet potato form [1]. Plant TRAcPs have been shown to exhibit an amino acid sequence similarity of > 70% [2]. Mammalian TRAcPs have been characterised from multiple species including human, pig, cow, mouse and rat, and all exist as monomers of ~35 kDa, that share > 80% sequence identity and contain redox-active Fe(III)–Fe(II) centers [2,10]. A number of distinct TRAcP isoforms were identified in plants and bacteria, clearly illustrating the existence of multiple TRAcP genes in different kingdoms [1,2]. This is further supported by the existence of a plantlike TRAcP in animals [1].

The design of such chemotherapeutics necessitates a high degree of specificity, in particular since enzymes closely related to TRAcPs may function in completely different roles in metabolism. We have thus extended our previous work on investigation of TRAcP and TRAcP-like protein content in animal genomes and identified a new gene product that is a remote homolog to both TRAcPs and Ser/Thr protein phosphatases.

Findings

Homolog identification and characterisation

The human TRAcP (ACP5) sequence (accession number NP_001602; unless stated otherwise accession codes are NCBI reference sequence numbers) was used to perform a five iteration PSI-BLAST search of the non-redundant database (the search conditions were the same as described previously [14]). This search identified a distantly related human sequence with the accession number NP_060810, that had 15% sequence identity and 29% similarity to the original acp5 query sequence. Related gene products from other eukaryotes were identified in the NCBI Homologene database [http://www.ncbi.nlm.nih.gov/sites/entrez?db=homologene] and ENSEMBL resources [http://www.ensembl.org] and included Bos taurus (NP_001026941) Pan troglodytes (XP_001145620), Canis familiaris (XP_536969), Mus musculus (NP_666179), Rattus norvegicus (NP_001013985), Gallus gallus (XP_414732) and Plasmodium falciparum (XP_001348209) indicating that this new gene product is evolutionarily conserved. The new human sequence was used to query the nr database to search for the closest relative with known structure, and identified the catalytic domain of TRAcPs from red kidney bean (P. vulgaris), 4KBP [6], and sweet potato (I. batatas), 1XZW [8]. Although sequence identities were low (18% across 246 residues as determined by PSI BLAST analysis) the E-values for the profile based search were 2×10^{-72} and 8×10^{-68} respectively, clearly indicating a significant relationship between these proteins and the novel sequence. Alternative transcripts for the mouse and human sequences were also included.

The sequences identified here were aligned using T-coffee, as shown in Figure 1[15]. As can be seen from the alignment, the sequence conservation across species is high, with the G. gallus gene product 70% identical to the human, dropping to approximately 32% for the P. falciparum. Illustrated within this figure are five motifs, that are reminiscent of known TRAcP sequences that contain the metal coordinating ligands and can be represented by the patterns (1) DxG, (2) GDx2Y, (3) GNH [E, D], (4) Vx2H, (5) GHxH, where x represents any amino acid [2]. The notable difference is the concerted substitution of the Tyr in motif 2 by a His in the new sequences. This Tyr is essential for the purple color and the presence of an iron

...
Multiple sequence alignment of the eukaryotic aTRACP gene products. Alternative transcripts identified in mouse and human are appended. The five motifs containing the seven metal coordinating residues observed in TRAcPs have been superimposed on the alignment (Me_motif_1XZW). The position is based on the WURST generated pairwise alignment between the human gene product and the sweet potato enzyme. For comparison the sequence of human TRAcP (Hsa_TRAcP) is also included, together with its secondary structure elements (h: helix; s: β-sheet; sheet 14 is omitted). Species identifiers: Hsa, Homo sapiens; Ptr, Pan troglodytes; Mmu, Mus musculus; Rno, Rattus norvegicus; Cfa, Canis familiaris; Bta, Bos Taurus; Gga, Gallus gallus; Pfa, Plasmodium falciparum.

Figure 1

Multiple sequence alignment of the eukaryotic aTRACP gene products. Alternative transcripts identified in mouse and human are appended. The five motifs containing the seven metal coordinating residues observed in TRAcPs have been superimposed on the alignment (Me_motif_1XZW). The position is based on the WURST generated pairwise alignment between the human gene product and the sweet potato enzyme. For comparison the sequence of human TRAcP (Hsa_TRAcP) is also included, together with its secondary structure elements (h: helix; s: β-sheet; sheet 14 is omitted). Species identifiers: Hsa, Homo sapiens; Ptr, Pan troglodytes; Mmu, Mus musculus; Rno, Rattus norvegicus; Cfa, Canis familiaris; Bta, Bos Taurus; Gga, Gallus gallus; Pfa, Plasmodium falciparum.
in the trivalent oxidation state in the active site of TRAcPs (see above), whereas a His residue in this position is seen in other binuclear metallohydrolases including the Ser/Thr protein phosphatases [1]. Based on the identity of the amino acid residues that are likely to line the active site pocket in the novel gene product it is probably that this protein is a non-purple enzyme with phosphatase activity. We have thus labelled it Hsa_aTRAcP (aTRAcP: alternative TRAcP).

A large number of phosphatases are present in eukaryotic organisms. Many acid phosphatases, including the mammalian TRAcPs, are lysosomal enzymes and have signal peptides and lysosomal targeting sequences. No such sequences are evident in this new protein. To test the location within the cell, we constructed a mammalian expression plasmid with a V5 epitope tag (Figure 2). When this tagged protein is expressed in RAW264 macrophages, the predominant location is diffuse cytoplasmic with no evident membrane association. It is thus likely that the biological role of Hsa_aTRAcP is different from that of its purple counterparts.

The intron-exon structure of the gene encoding this putative phosphatase (C530044N13Rik; ENSEMBL Gene ENSMUSG00000065979) comprises only 4 exons, spread over more than 100 kb of genomic DNA, a structure that is widely conserved in vertebrates. From analysis of RIKEN transcriptome data for the mouse homolog (GeneID 223978) using the CAGE analysis viewer http://fan tom.gsc.riken.go.jp/, it is evident that the gene locus is actively transcribed in almost all tissues examined, including embryonic tissue as well as adult liver, lung, macrophages and neural tissue with little variation in CAGE Tag frequency (an index of gene expression). The promoter is conserved between mice and human, is relatively GC-rich, and initiates transcription at multiple sites in a 100 bp window around the site of the largest CAGE tag cluster, features consistent with a possible "housekeeping" gene function.

Structure prediction of Hsa_aTRAcP

To further assess the novel sequences as non-purple binuclear metallohydrolases, a structural model of Hsa_aTRAcP was constructed by comparative modelling using the sweet potato TRAcP coordinates [8]. The only proteins with known structure identified from the PSI-BLAST search were the plant TRAcPs and the phosphodiesterase from Mycobacterium tuberculosis (Rv0805, 2HY1 [16]). An additional phosphodiesterase was identified from Enterobacter aerogenes (2dxn [17]), using the threading based approach mGenThresher [18]. The prediction reliability scores for the bacterial diesterases were 114.5 and 105.8, respectively, with corresponding p-values (probabilities of false positives) of 1×10^{-10} and 1×10^{-9}. These values are similar to those obtained for the closest TRAcP homologue, the enzyme from sweet potato (1XZW, with a reliability score of 87.3 and a p-value of 8×10^{-8}). This strongly implies that Hsa_aTRAcP will adopt a fold similar to these proteins.

Due to the low sequence identity between the Hsa_aTRAcP and the sweet potato enzyme, the sequence-to-structure alignment method WURST was used to generate an alignment (Figure 3), that was subsequently used as input into MODELLER for coordinate generation.

In general, TRAcPs typically consist of two β-sheets each with seven strands and flanked by two α-helices, and is illustrated in Figure 4A for both the plant template structure, and the smaller mammalian isoform. Five of the beta strands position loop structures that contain metal coordinating ligands [7]. Inspection of the model indicates that Hsa_aTRAcP has both sheets conserved, however, one has only six strands and the second, three (Figure 4A and 4B). Notably, the strands contributing the metal coordinating ligands are all conserved in Hsa_aTRAcP. Furthermore, loops contributing to substrate binding in
TRAcPs and TRAcP-like proteins are partially conserved in our model structure. The I-TASSER server was used to produce alternative predicted structures, and gave a top ranked model that appeared to be a composite of the plant PAP and bacterial Rv0805 structures, and that has a confidence score of 0.24 [19]. This model predicted that the second sheet may have two additional strands, similar to the sheet composition of the bacterial enzyme, while the active site loop conformations were highly similar to the plant TRAcP rather than the bacterial metallohydrolase.

The model of Hsa_aTRACP reveals that the side chains of seven metal coordinating residues are likely to be spatially conserved in comparison to other binuclear metallohydrases. The identity of six of the seven residues in Hsa_aTRACP are identical to that in TRAcPs with the exception that Tyr166 (sweet potato TRAcP numbering) is replaced by His93 in Hsa_aTRACP (Figure 5). Closer inspection of the model indicates that although Tyr219, 220 and 292 are located within a putative substrate binding site, they are not likely to form a charge transfer interaction with the metal ions in the active site. This places Hsa_aTRACP into a separate, nonpurple class of binuclear metallohydrases with two soft metal binding sites that are likely to favor the coordination of two divalent metal ions. A similar active site structure was reported for other members of the binuclear metallohydrase family, notably Ser/Thr type protein phosphatases (PPs) such as the ones from bacteriophage λ (λPP) [20] and several mammalian organisms, i.e. one from rabbit (PP1) [21,22] and cow (PP2B) [23] and two from human (PP2B and PP5) [24], and more recently the Rv0805 cyclic nucleotide phosphodiesterase from M. tuberculosis [16].

Figure 3
Sequence to structure alignment generated by WURST for the query sequence, Hsa_aTRACP (Accession number Hsa_NP_060810), and the template structure from sweet potato TRAcP, pdb code 1XZW.
known as calcineurin and plays a major role in the signal transduction cascade in T-cell activation [25]. The in vivo metal ion contents of PPs is not certain, but all are reported as M(II)-M(II) forms, where M = Fe, Zn or Mn [1].

Conclusion

Previously we identified a high molecular weight human TRAcP [14]. Here we have extended this study through the characterisation of a second transcript, *Hsa_aTRACP*, that is a remote relative of the PAPs, sharing 18% sequence identity with the plant enzymes as the closest relatives with known structure. Analysis of the active site of *Hsa_aTRACP* indicates that it is not likely to be a purple protein due to the absence of an essential tyrosine ligand (Figure 5). In this respect, *Hsa_aTRACP* resembles some cyclic nucleotide phosphodiesterases and novel Ser/Thr PPs. This may therefore represent an event of divergent evolution in the binuclear metallohydrolase family. Based upon the pattern of expression and putative cytoplasmic location, we speculate that *Hsa_aTRACP* is another member of the cytoplasmic protein phosphatase family that is likely to have a role in the regulation of signalling.

Figure 4

(A) Cartoon diagrams of the high molecular weight sweet potato TRAcP template structure, 1XZW, the low molecular weight human TRAcP (Acp5), 1WAR, and the query sequence, *Hsa_aTRACP*. Secondary structure elements not shared between the known structures and *Hsa_aTRACP* model are colored magenta. The Fe(III) Fe(II) atoms in the active site are represented as spheres. (B) Comparison of topologies for the low molecular weight human TRAcP and *Hsa_aTRACP*. Secondary structure elements that are common to both proteins are colored yellow (for β-strands) and red for (α-helices). Secondary structure regions that are only observed in human TRAcP are colored blue. For *Hsa_aTRACP* the regions of secondary structure are S1(residues 49–51), H1 (67–74), S2(85–87), H2(102–110), S3(121–122), H3(127–130), H4(141–144), S5(151–155), S6(158–162), H6(180–191), S7(199–203), H7(225–238), S8(242–245), S9(256–258) and S10(280–284). For human TRAcP (*Hsa_TRAcP*; see also Fig. 1) the regions of secondary structure are S1(5–10), H1(24–39), S2(44–47), H2(64–68), S3(83–85), H3(91–93), H4(96–104), S4(109–110), S5(116–121), S6(128–133), H5(136–145), H6(157–173), S7(178–182), H7(197–209), S8(214–217), S9(223–227), S10(233–237), H8(250–252), S11(258–262), S12 (270–276), S13 (280–287) and S14(292–299).
Abbreviations
PAP: purple acid phosphatase; PP: Ser/Thr protein phosphatase; TRAcP: tartrate-resistant acid phosphatase; rmsd: root mean square deviation.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KSH generated homology model, performed database searches and contributed to manuscript writing. TH performed structure alignments. IC, LWG and DAH were interpreting data, designed experiments and provided critical feedback on the manuscript. JW, JR, AB and GK carried out cloning and expression experiments. GS and JUF were responsible for the conceptualization of experiments, analysis and interpretation of data, and drafting and critical review of manuscript.

Acknowledgements
This work was funded by a grant from the Australian Research Council (DP0558652).

References
1. Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G: The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 2006, 106:3338-3363.
2. Schenk G, Guddat LW, Ge Y, Carrington LE, Hume DA, Hamilton S, de Jersey J: Identification of mammalian-like purple acid phosphatases in a wide range of plants. Gene 2000, 250:117-125.
3. del Pozo JC, Allona I, Rubio V, Leyva A, de la Pena A, Aragoncillo C, Paz-Ares J: A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. Plant J 1999, 19:579-589.
4. Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M, Wang D: Purple acid phosphatases of Arabidopsis thaliana. Comparative analysis and differential regulation by phosphate deprivation. J Biol Chem 2002, 277:27772-27781.
5. Schenk G, Ge Y, Carrington LE, Wynne CJ, Searle IR, Carroll BJ, Hamilton S, de Jersey J: Binuclear metal centers in plant purple acid phosphatases. Fe-Mn in sweet potato and Fe-Zn in soybean. Arch Biochem Biophys 1999, 370:183-189.
6. Sträter N, Klabunde T, Tucker P, Witzel H, Krebs B: Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site. Science 1995, 268:1489-1492.
7. Guddat LW, McAlpine AS, Hume D, Hamilton S, de Jersey J, Martin JL: Crystal structure of mammalian purple acid phosphatase. Structure 1999, 7:757-767.
8. Schenk G, Gahan LR, Carrington LE, Mitić N, Valizadeh M, Hamilton SE, de Jersey J, Guddat LW: Phosphate forms an unusual tridimensional complex with the Fe-Mn center of sweet potato purple acid phosphatase. Proc Natl Acad Sci USA 2005, 102:273-278.
9. Sträter N, Jasper B, Scholte M, Krebs B, Duff AP, Langley DB, Han R, Averill BA, Freeman HC, Guss M: Crystal structures of recombinant human purple acid phosphatase with and without an
inhibitory conformation of the repression loop. J Mol Biol 2005, 351:233-246.

10. Mitic N, Valizadeh M, Leung EWWW, de Jersey J, Hamilton S, Hume DA, Cassidy Al, Schenk G. Human tartrate-resistant acid phosphatase becomes an effective ATPase upon proteolytic activation. Arch Biochem Biophys 2005, 439:154-164.

11. Angel NZ, Walsh N, Forwood MR, Ostrowski MC, Cassidy Al, Hume DA. Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. J Bone Mineral Res 2000, 15:103-110.

12. Hayman AR, Jones SJ, Boyde A, Foster D, Colldege VH, Carlton MB, Cox TM. Mice lacking tartrate-resistant acid phosphatase (ACP5) have disrupted endochondral ossification and mild osteoporosis. Development 1996, 122:3151-3162.

13. Valizadeh M, Schenk G, Nash K, Oddie GW, Guddat LW, Hume DA, de Jersey J, Burke TR, Hamilton S. Phosphotyrosyl peptides and analogues as substrates and inhibitors of purple acid phosphatases. Arch Biochem Biophys 2004, 424:154-162.

14. Flanagan JU, Cassady AI, Schenk G, Guddat LW, Hume DA. Identification and molecular modeling of a novel, plant-like, human purple acid phosphatase. Gene 2006, 377:12-20.

15. Notredame C, Higgins DG, Herings J: T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 2000, 302:205-217.

16. Shenoy AR, Capuder M, Draskovic P, Lamba D, Viswesvariah SS, Podobnik M. Structural and Biochemical Analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis. J Mol Biol 2007, 365:211-225.

17. Jackson CJ, Carr PD, Liu J-W, Watt SJ, Beck JL, Ollis DL. The structure and function of a novel glycerophosphodiesterase from Enterobacter aerogenes. J Mol Biol 2007, 367:1047-1062.