EQUIVARIANT LS-CATEGORY OF TORUS MANIFOLDS

MARZIEH BAYEH AND SOUMEN SARKAR

ABSTRACT. We study the equivariant LS-category in terms of fixed point set and also compute LS-category and equivariant LS-category of torus manifolds over nice manifolds with corner. Moreover we compute equivariant LS-category of lens spaces.

1. INTRODUCTION

Let G be a compact, Hausdorff, topological group, acting on a Hausdorff topological space X. In most cases G is a Lie group acting on a compact manifold X. The equivariant LS-category of X, denoted by $\text{cat}_G(X)$ was introduced by Marzantowicz in [17], as a generalization of classical category of a space [16], which is called Lusternik-Schnirelmann category [15]. Marzantowicz showed that for a compact Lie group G, classical cat of orbit space is a lower bound for cat_G,

$$\text{cat}(X/G) \leq \text{cat}_G(X).$$

Colman studied the $\text{cat}_G(X)$ for finite group G in [5] and gave an upper bound in terms of the dimension of orbit space and cat_G of the singular set for the action. In [14], Hurder and Töben proved that for a manifold M with a proper G-action, where G is a Lie group, the number of components of the fixed point set is a lower bound for $\text{cat}_G(M)$. Later $\text{cat}_G(X)$ is studied by Colman and Grant [6], for a compact Hausdorff topological group G, acting continuously on a Hausdorff space X.

Similar to definition of classical cat, $\text{cat}_G(X)$ is defined to be the least number of open subsets of X, which form a covering for X and each open subset is equivariantly contractible to an orbit, rather than a point (see Definition 2.2). In this paper we study $\text{cat}_G(X)$, particularly for locally standard torus manifolds, which are even dimensional smooth manifolds with locally standard action by half-dimensional compact torus action (see Definition 3.2). In Section 2 we study $\text{cat}_G(X)$ in terms of X^G and $\text{cat}_G(X^G)$, and some lower bound and upper bound for $\text{cat}_G(X)$ is given. In Section 3 some elementary results on locally standard torus manifolds are discussed. In Section 4 some results on classical cat of quasitoric manifolds are given. We show that the equivariant connected sum in quasitoric manifolds does not

\begin{flushright}
2010 Mathematics Subject Classification. 55M30, 55M99.
Key words and phrases. group action, torus manifold, (equivariant) LS-category.
\end{flushright}
affect on value of classical cat, i.e. for $2n$-dimensional quasitoric manifolds M_1 and M_2,
\[\text{cat}(M_1 \#_{\mathbb{T}^k} M_2) = \text{cat}(M_1) = \text{cat}(M_2) = n + 1 , \]
for any k, n except $k = n = 2$. Besides we examine the situations that for 4-dimensional locally standard torus manifold M, the equality holds, means $\text{cat}(M) = 3$. Moreover the explicit construction of categorical covering for M is given. In Section 5, $\text{cat}_{\mathbb{T}^n}$ of quasitoric manifolds, their equivariant connected sum, and their product with diagonal action are computed. Moreover we examined the exact value for $\text{cat}_{\mathbb{T}^2}$ of 4-dimensional locally standard torus manifolds, and the equivariant LS-category of lens spaces is computed in Section 6.

Some of the results in this paper are relevant to the work of Colman and Grant [6] in the following way. In their paper there are two statements on cat_G of product, one with diagonal action, Theorem 3.15, and another with product action, Theorem 3.16. However the hypotheses are not sufficient and counterexamples may be found in Section 6.

2. Equivariant LS-category

In this section we prove a number of results for $\text{cat}_G(X)$ in terms of the fixed point set X^G. We begin by recalling some definitions and fixing some notations. Let G be a compact Hausdorff topological group, acting continuously on a Hausdorff topological space X. In this case X is called a G-space. For each $x \in X$, the set
\[O(x) = \{ g.x \mid g \in G \} \]
is called the orbit of x, and
\[G_x = \{ g \in G \mid g.x = x \} \]
is called the isotropy group or stabilizer of x. The set X/G of all equivalence classes determined by the action, and equipped with the quotient topology is called the orbit space. The set
\[X^G = \left\{ x \in X \mid \forall g \in G, \, g.x = x \right\} \]
is called the fixed point set of X. Here X^G is endowed with subspace topology.

Definition 2.1. Let X be a topological space, and G be a topological group acting on X.

1. An open subset U of X, is called G-open set (or G-invariant) if U is stable under G-action; i.e. $GU \subseteq U$.
2. Let U be a G-invariant subset of X, the homotopy $H : U \times I \to X$ is called G-homotopy, if for every $g \in G$, $x \in U$, and $t \in I$,
\[gH(x, t) = H(gx, t). \]
(3) Let U be a G-invariant subset of X, then U is called G-categorical if there exists a G-homotopy $H : U \times I \to X$ such that $H(x,0) = x$ for each $x \in U$, and $H(U, 1)$ is a subset of an orbit.

Definition 2.2. A G-categorical covering for a G-space X is a finite number of G-categorical subsets $\{ U_i \}_{i=1}^n$ that form a covering for X. The least value of n for which such a covering exists, is called the equivariant category of X, denoted $\text{cat}_G(X)$. If no such covering exist, we write $\text{cat}_G(X) = \infty$.

Lemma 2.3. Let U be a G-categorical subset of G-space X, which contains a fixed point $x_0 \in X^G$. Then U is equivariantly contractible to x_0. In this case U is called G-contractible, and denoted by $U \simeq_G x_0$.

Proof. Let $H : U \times I \to X$ be a G-homotopy, where $H(x,0) = x$, $H(x,1) \in O(z)$ for some $z \in X$. Since $gH(x,0,t) = H(gx_0,t) = H(x_0,t)$, it is easy to see that for all $t \in I$, $H(x_0,t) \in X^G$. Therefore $H(x_0,1) \in O(z)$, which implies $O(z) = \{ H(x_0,1) \}$. Define $H' : U \times I \to X$, by

$$H'(x,t) = \begin{cases} H(x,2t) : & 0 \leq t \leq \frac{1}{2} \\ H(x_0,2 - 2t) : & \frac{1}{2} \leq t \leq 1. \end{cases}$$

Clearly H' is a G-homotopy. The lemma follows. \qed

Note that for a G-categorical set U, which contains a fixed point x_0, the following diagrams commutes:

$$
\begin{array}{ccc}
I \cong \{ x_0 \} \times I & \longrightarrow & X \\
\downarrow & & \downarrow \\
U \times I & \longrightarrow & X
\end{array}
$$

So there exists a path $\Phi : I \to X^G$, defined by $\Phi(t) = H(x_0,t)$.

Definition 2.4. $x_0 \in X^G$ is called an isolated fixed point if there exists a neighborhood U of x_0 that does not contain any other fixed points.

Lemma 2.5. Let X be a Hausdorff space, and U be a G-categorical subset that contains an isolated fixed point x_0. Then the G-homotopy $H : U \times I \to X$ fixes x_0, and x_0 is the only fixed point of U.

Proof. Let V be an open neighborhood of x_0 that does not contain any other fixed points, and $\Phi : I \to X^G$ where $\Phi(t) = H(x_0,t)$.

First we show that for all $t \in I$, $\Phi(t) \in U \cap V$, and therefore $\Phi(t) = x_0$.

Let

$$\mathcal{A} = \left\{ t \in I \mid \Phi(s) = x_0, \quad \text{for all } s \leq t \right\}.$$

\mathcal{A} is non empty, since $0 \in \mathcal{A}$. If $\mathcal{A} = I$, then we are done. If $\mathcal{A} \neq I$, because of being bounded, $\sup(\mathcal{A})$ exists. Let $a = \sup(\mathcal{A})$, so by definition

$$\forall t < a, \quad \Phi(t) = x_0.$$ \hspace{1cm} (2.1)
• If Φ(a) = x₀, because U ∩ V is open, there exists an open neighborhood W₀, such that Φ(a) ∈ W₀ ⊂ U ∩ V. Since Φ⁻¹(W₀) is open in I, therefore

 \[a ∈ (p_a, q_a) ⊂ Φ⁻¹(W₀) \]

 for some interval (p_a, q_a) in I. So for any a < b < q_a, we have

 \[b ∈ Φ⁻¹(W₀) \implies Φ(b) ∈ W₀ ⊂ U ∩ V \implies Φ(b) = x₀. \]

 So b ∈ A, that contradicts to a = sup(A).

• If Φ(a) ≠ x₀, because X is Hausdorff, there exist open neighborhoods W and W′ such that

 \[Φ(a) ∈ W', \quad x₀ ∈ W, \quad \text{and} \quad W' ∩ W = ∅. \]

 Since Φ⁻¹(W′) is open, there exists an open interval (p′, q′), where

 \[a ∈ (p′, q′) ⊂ Φ⁻¹(W′). \]

 So for any p′ < b′ < a, we have

 \[Φ(b′) ∈ W' \quad \text{and} \quad x₀ ∉ W' \implies Φ(b′) ≠ x₀ \]

 which contradicts to (2.1).

Thus for all t ∈ I, Φ(t) = x₀. So H fixes x₀.

If U contains another fixed point z₀, then there exists a path Ψ : I → X^G, where Ψ(0) = z₀ and Ψ(1) = x₀. Similarly one can show that for all t ∈ I, Ψ(t) = x₀, and therefore x₀ = z₀.

\[\Box \]

Corollary 2.6. If X^G ≠ ∅ and cat_G(X) = 1, then X is G-contractible to a point.

Note that in general case if cat_G(X) = 1, X may not be necessarily contractible. As for G = S^1, which acts on X = S^1, by product, cat_G(X) = 1, while X is not contractible.

Lemma 2.7. Let (X, x₀) and (Y, y₀) be pointed G-spaces. By pointed G-space, it means a G-space with base point such that the base point is fixed by G. Then

\[cat_G(X ∨ Y) ≤ cat_G(X) + cat_G(Y) - 1. \]

Proof. Let \{U_i\}_{i=1}^n and \{V_j\}_{j=1}^m be G-categorical covering for X and Y respectively. Let x₀ ∈ U_i and y₀ ∈ V_j for some i and j. By Lemma 2.3, U_i ~_G x₀ and V_j ~_G y₀. By identifying x₀ = y₀, one can show that U_i ∪ V_j is G-contractible to x₀ in X ∨ Y. \[\Box \]

Lemma 2.8. Let U be a G-categorical subset in X. If U' = U ∩ X^G ≠ ∅, then U' is a G-categorical subset in X^G.

Proof. It is clear that U' is G-invariant. Since U' ≠ ∅, it contains a fixed point α and by Lemma 2.3, there exits a G-homotopy H : U × I → X, such that for all x ∈ U we have H(x, 0) = x and H(x, 1) = α. Take the restriction of H to U'

\[H_{|U'} = H' : U' × I → X^G, \quad H'(x, t) = H(x, t). \]
H' is well-defined because for every $x \in U' = U \cap X^G$, we have
\[g.H'(x,t) = g.H(x,t) = H(g.x,t) = H(x,t) = H'(x,t) \]
for all $g \in G$ and $t \in I$. Therefore the inclusion of U' in X^G is G-contractible to $O(\alpha) = \{\alpha\}$. □

Corollary 2.9. Suppose $\{U_i\}_{i=1}^n$ is a G-categorical covering of X. Then $\{U_i \cap X^G\}_{i=1}^n$ is a G-categorical covering of X^G and therefore
\[|\pi_0(X^G)| \leq \text{cat}(X^G) = \text{cat}_G(X^G) \leq \text{cat}_G(X). \]

Note that the previous corollary also follows from [14].

Lemma 2.10. If $|X^G| < \infty$, then every G-categorical set contains at most one fixed point. So all fixed points are isolated fixed points and we have $|X^G| = \text{cat}_G(X^G) = \text{cat}(X^G)$.

Proof. Since X is Hausdorff and $|X^G| < \infty$, every $x \in X^G$ is an isolated fixed point. Thus the statement follows from Lemma 2.5. □

Lemma 2.11. Let α and β be two distinct fixed points belong to a path-component of X^G. If U and W be two disjoint subsets of X which are G-contractible to α and β respectively, then $U \cup W$ is G-contractible to α.

Proof. Since U and W are disjoint, it is enough to show that W is G-contractible to α. Let $F : W \times I \to X$ be a G-homotopy such that for all $w \in W$, $F(w,0) = w$ and $F(w,1) = \beta$. Let $\phi : I \to X^G$, be a path from β to α. Define $H : W \times I \to X$, by
\[H(w,t) = \begin{cases} F(w,2t), & 0 \leq t \leq \frac{1}{2} \\ \phi(2t - 1), & \frac{1}{2} \leq t \leq 1. \end{cases} \]
Clearly H is well-defined. Also it is a G-homotopy because F is a G-homotopy and for all $t \in I$ and $g \in G$ we have $g.\phi(t) = \phi(t)$. So U and W are two disjoint G-categorical subsets that are G-contractible to α. Therefore $U \cup W$ is also G-contractible to α. □

Definition 2.12. Let G be a topological group acting on a topological space X. The sequence
\[\emptyset = A_0 \subsetneq A_1 \subsetneq A_2 \subsetneq \cdots \subsetneq A_n = X \]
of open sets in X is called G-categorical sequence or simply G-cat sequence of length n if
- each A_i is G-invariant, and
- for each $1 \leq i \leq n$, there exists a G-categorical subset U_i of X, such that
\[A_i - A_{i-1} \subset U_i. \]
A G-cat sequence of length n is called minimal if there exists no G-sequence with smaller length in X.

Lemma 2.13. Let G be a topological group acting on a topological space X. Then there exists a minimal G-cat sequence of length n in X, if and only if $\text{cat}_G(X) = n$.

Proof. Suppose $\text{cat}_G(X) = n$, so there exist a G-categorical covering, $\{U_i\}_{i=1}^n$, such that each U_i is G-categorical. Take $A_0 = \emptyset$ and $A_i = \bigcup_{k=1}^i U_k$.

Note that each A_i is G-invariant, and $A_i - A_{i-1} \subset U_i$. Therefore there exist a G-cat sequence in X. To show that this sequence is minimal, it is enough to show that for any minimal G-cat sequence in X, there exists a G-categorical covering with n elements.

Suppose
\[\emptyset = B_0 \subsetneq B_1 \subsetneq B_2 \subsetneq \cdots \subsetneq B_m = X \]
is a minimal G-cat sequence, so $m \leq n$. By definition, for any $1 \leq i \leq m$, there exists a G-categorical subset of X, V_i, such that $B_i - B_{i-1} \subset V_i$.

Obviously $\{V_i\}_{i=1}^m$ is a G-categorical covering for X, and therefore $n = \text{cat}_G(X) \leq m$. Thus $n = m$. \square

Definition 2.14. A G-path from an orbit $O(x)$ to an orbit $O(y)$ is a G-homotopy $H : O(x) \times I \to X$ such that the following hold:

1. H_0 is the inclusion of $O(x)$ in X.
2. $H_1(O(x)) \subseteq O(y)$

Lemma 2.15. (Lemma 3.2, [14]) Let $H : O(x) \times I \to X$ be a G-path in X and $x_t = H(x,t)$. Then $G_x \subseteq G_{x_t}$ for all $0 \leq t \leq 1$.

Lemma 2.16. Let $O(x)$ and $O(y)$ be two distinct orbits in a G-space X. If $O(x)$ and $O(y)$ both sit inside a G-categorical subset, then there exist an orbit $O(z)$ such that there are G-paths from $O(x)$ to $O(z)$ and $O(y)$ to $O(z)$.

Proof. It is clear from the definition of G-categorical open subset. \square

Definition 2.17. A G-space X is called G-connected if for every closed subgroup H of G, X^H is path-connected.

Lemma 2.18. ([6] Lemma 3.14) Let X be a G-connected, and let $x, y \in X$ such that $G_x \subset G_y$. Then there exists a G-homotopy $F : O(x) \times I \to X$ such that $F_0 = \text{Id}_{O(x)}$ and $F_1(O(x)) \subset O(y)$.

Lemma 2.19. Let X and Y be G-connected. Then $X \times Y$ with diagonal action is G-connected.
Proof. Let \(H \) be a closed subgroup of \(G \), for all \((x, y) \in X \times Y \) and \(h \in H \) one have
\[
h(x, y) = (x, y) \iff (h.x, h.y) = (x, y) \iff h.x = x \text{ and } h.y = y.
\]
So \((X \times Y)^H = X^H \times Y^H\), and the lemma follows. \(\square \)

Lemma 2.20. Let \(X \) be a \(G \)-connected space with \(\alpha \in X^G \neq \emptyset \). Then every \(G \)-categorical subset \(U \) in \(X \) is equivariantly contractible to \(\alpha \).

Proof. Let \(F : U \times I \to X \) be a \(G \)-homotopy such that \(F(x, 0) = x \) and \(F(x, 1) \in \mathcal{O}(z) \), for some \(z \in X \). Since \(G_z \) is a subset of \(G_\alpha = G \), and \(X \) is \(G \)-connected, by Lemma 2.18, there exists a \(G \)-homotopy \(E : \mathcal{O}(z) \times I \to X \) so that \(E(y, 0) = y \) and \(E(y, 1) = \alpha \). Define the desire \(G \)-homotopy \(H : U \times I \to X \) by
\[
H(x, t) = \begin{cases}
F(x, 2t), & 0 \leq t \leq \frac{1}{2} \\
E(F(x, 1), 2t - 1), & \frac{1}{2} \leq t \leq 1
\end{cases}
\]
and the lemma follows. \(\square \)

By using Lemma 2.20 one can show that if \(X \) is a \(G \)-connected space with \(\alpha \in X^G \neq \emptyset \). Then for every two disjoint \(G \)-categorical subset \(U \) and \(W \) in \(X \), \(U \cup W \) is equivariantly contractible to \(\alpha \). Also for every \(G \)-categorical subset \(V \) in \(Y \), where \(Y \) is another \(G \)-connected space with \(\beta \in Y^G \neq \emptyset \), \(U \times V \) is equivariantly contractible to \((\alpha, \beta) \).

Definition 2.21.

- A topological space \(X \) is called completely normal if for every two subsets \(A \) and \(B \) of \(X \) with
\[
\overline{A} \cap B = \emptyset , \quad A \cap \overline{B} = \emptyset ,
\]
there exist two disjoint open subsets containing \(A \) and \(B \).
- A \(G \)-space \(X \) is called \(G \)-completely normal if for every two \(G \)-invariant subsets \(A \) and \(B \) of \(X \) with
\[
\overline{A} \cap B = \emptyset , \quad A \cap \overline{B} = \emptyset
\]
there exist two disjoint \(G \)-invariant subsets containing \(A \) and \(B \).

Note that every metric space is completely normal.

Lemma 2.22. ([6] Lemma 3.12) If \(X \) is a completely normal \(G \)-space, then \(X \) is \(G \)-completely normal.

Theorem 2.23. Let \(X \) and \(Y \) be \(G \)-connected such that \(X \times Y \) is completely normal. If \(X^G \neq \emptyset \) and \(Y^G \neq \emptyset \), then
\[
cat_G(X \times Y) \leq cat_G(X) + cat_G(Y) - 1,
\]
where \(X \times Y \) is given the diagonal \(G \)-action.
Proof. The idea of proof is similar to the proof for classical cat. Let \(\alpha \in X^G \), \(\beta \in Y^G \), \(\text{cat}_G(X) = n \), and \(\text{cat}_G(Y) = m \). So by Lemma 2.13 there exist \(G \)-cat sequences of length \(n \) and \(m \):

\[
\emptyset = A_0 \subset A_1 \subset \cdots \subset A_n = X,
\emptyset = B_0 \subset B_1 \subset \cdots \subset B_m = Y.
\]

Denote the \(G \)-categorical subsets containing the differences by

\[
A_i - A_{i-1} \subset U_i \quad \text{and} \quad B_j - B_{j-1} \subset W_j.
\]

Define subsets of \(X \times Y \) by

\[
C_0 = \emptyset, \quad C_1 = A_1 \times B_1, \quad C_k = \bigcup_{i=1}^{k} A_i \times B_{k+1-i}, \quad C_{n+m-1} = A_n \times B_m = X \times Y,
\]

where \(A_i = \emptyset \) if \(i > n \), and \(B_j = \emptyset \) if \(j > m \). Note that \(C_k \) is \(G \)-invariant and

\[
C_k - C_{k-1} = \bigcup_{t=1}^{k} (A_t - A_{t-1}) \times (B_{k+1-t} - B_{k-t}).
\]

Also for any \(k \) and \(t \),

\[
(A_t - A_{t-1}) \times (B_{k+1-t} - B_{k-t}) \subset U_k \times W_{k+1-t},
\]

where \(U_k \times W_{k+1-t} \) is a \(G \)-categorical subset of \(X \times Y \) contracting to \((\alpha, \beta)\). Although for a fixed \(k \) and varying \(t \) there may be intersections among these sets, but this issue can be resolve by using the assumption that \(X \times Y \) is \(G \)-completely normal. Denote

\[
\Sigma_i = (A_i - A_{i-1}) \times (B_{i+1-t} - B_{i-t}).
\]

Since for \(i \neq j \) we have

\[
\Sigma_i \cap \Sigma_j = \emptyset \quad \text{and} \quad \Sigma_i \cap \Sigma_j = \emptyset,
\]

and \(X \times Y \) is \(G \)-completely normal, there exist disjoint \(G \)-invariant neighborhoods about \(\Sigma_i \) and \(\Sigma_j \). By taking the intersection of those disjoint neighborhoods with \(U_i \times W_{i+1-t} \) and \(U_j \times W_{j+1-t} \), we obtain disjoint \(G \)-categorical neighborhoods of \(\Sigma_i \) and \(\Sigma_j \), for \(i \neq j \). So each \(C_k - C_{k-1} \) sits inside a \(G \)-categorical subset of \(X \times Y \), and therefore

\[
\emptyset = C_0 \subset C_1 \subset \cdots \subset C_{m+n-1} = X \times Y
\]

is a \(G \)-sequence for \(X \times Y \). Thus

\[
\text{cat}_G(X \times Y) \leq n + m - 1.
\]

We remark that in \([6]\) the authors have a similar statement (Theorem 3.15), however there the assumption on fixed point set is not enough and leads to counterexample (See Example 6.4).
3. **Locally Standard Torus Manifolds**

An n-dimensional manifold with corners is a Hausdorff second-countable topological space together with a maximal atlas of local charts onto open subsets of $\mathbb{R}_{\geq 0}^n$ such that the overlap maps are homeomorphisms which preserve codimension function. Codimension function at the point $x = (x_1, \ldots, x_n) \in \mathbb{R}_{\geq 0}^n$ is the number of x_i which are zero (see Section 6 of [8]). The boundary of an n-dimensional manifold with corners is the correspondent set of points in local charts for which the codimension function is atleast one. An n-dimensional *simple* polytope in \mathbb{R}^n is a convex polytope where exactly n bounding hyperplanes meet at each vertex. Clearly a codimension-k face is the intersection of unique collection of k many codimension-1 faces. By polytope we mean a subset of \mathbb{R}^n which is diffeomorphic as manifold with corners to a convex hull of finite number of points in \mathbb{R}^n. The codimension one faces of a manifold with corners are called *facets*. For the rest of the paper P is an n-dimensional nice (in the sense of Davis [8]) manifold with corners. We denote the set of vertices of P by $V(P)$ and the set of facets of P by $\mathcal{F}(P)$.

Definition 3.1. A smooth action of T^n on a $2n$-dimensional smooth manifold M is said to be locally standard if every point $y \in M$ has a T^n-invariant open neighborhood U_y and a diffeomorphism $\psi : U_y \to V$, where V is a T^n-invariant open subset of \mathbb{C}^n, and an isomorphism $\delta_y : T^n \to T^n$ such that $\psi(t \cdot x) = \delta_y(t) \cdot \psi(x)$ for all $(t, x) \in T^n \times U_y$.

Modifying the definition of quasitoric manifold and torus manifold in [2] and [13], we consider the following. More general torus actions are discussed in [21] by Yoshida.

Definition 3.2. A closed, connected, oriented, and smooth $2n$-dimensional T^n-manifold M is called a locally standard torus manifold over P if the following conditions are satisfied:

1. The T^n-action is locally standard.
2. $\partial P \neq \emptyset$, where ∂P is the boundary of P.
3. There is a projection map $q : M \to P$ constant on orbits which maps every l-dimensional orbit to a point in the interior of an l-dimensional face of P.

In the case that P is a polytope, M is called a quasitoric manifold.

Note that according to the Definition 3.2, the orbit space P is path-connected. Also we remark that for the definition of torus manifolds in [13], the authors assume that the torus action has fixed points. But here we do not have such restrictions.

Example 3.3. Consider the natural T^n-action on

$$S^{2n} = \{ (z_1, \ldots, z_n, x) \in \mathbb{C}^n \times \mathbb{R} : |z_1|^2 + \cdots + |z_n|^2 + x^2 = 1 \}.$$
which is defined by

\[(t_1, \ldots, t_n) \cdot (z_1, \ldots, z_n, x) \mapsto (t_1z_1, \ldots, t_nz_n, x).\]

The orbit space is given by

\[Q = \{(x_1, \ldots, x_n, x) \in S^n : x_1, \ldots, x_n \geq 0\}\] and the number of fixed points is 2.

This action is a locally standard action, so \(S^{2n}\) is a locally standard torus manifold. Note that \(S^{2n}\) is not a quasitoric manifold if \(n \geq 2\). When \(n = 2\) the orbit space is eye shape.

Example 3.4. Let \(M_1\) and \(M_2\) be two quasitoric manifolds of dimension \(2n\), and \(\mathbb{T}^k\) be the \(k\)-dimensional torus, \(0 \leq k \leq n\). Let \(\phi_i : \mathbb{T}^k \to M_i\) be the embedding onto \(k\)-dimensional orbit of \(M_i\), and let \(\tau_i\) be the invariant tubular neighborhood of \(\phi_i(\mathbb{T}^k)\) for \(i = 1, 2\). Identifying the boundary of \(\tau_1\) in \(M_1\) and \(\tau_2\) in \(M_2\) via an equivariant diffeomorphism, we get a smooth \(\mathbb{T}^n\)-manifold, which is called an equivariant connected sum of \(M_1\) and \(M_2\), denoted \(M_1 \#_{\tau_1} M_2\). Clearly \(M_1 \#_{\tau_1} M_2\) is a torus manifolds, and it is not a quasitoric manifold if \(k \geq 1\).

A more general equivariant connected sum of smooth manifolds with torus action is described in [12]. Equivariant connected sum of quasitoric manifolds at a fixed point and along a principal orbit is discussed in [3] and [20] respectively.

Definition 3.5. A function \(\lambda : F(P) \to \mathbb{Z}^n\) is called characteristic function if the submodule generated by \(\{\lambda(F_{j_1}), \ldots, \lambda(F_{j_l})\}\) is an \(l\)-dimensional direct summand of \(\mathbb{Z}^n\) whenever the intersection of the facets \(F_{j_1}, \ldots, F_{j_l}\) is nonempty.

The vectors \(\lambda_j = \lambda(F_j)\) are called characteristic vectors and the pair \((P, \lambda)\) is called a characteristic pair.

In [18] the authors show that given a torus manifold with locally standard action one can associate a characteristic pair to it up to the choice of sign of characteristic vectors. They also constructed a torus manifold with locally standard action from the pair \((P, \lambda)\). Following [18] we write the construction briefly. A more general construction is done in [21].

Let \(P\) be a nice manifold with corner and \((P, \lambda)\) be a characteristic pair. A codimension-\(k\) face \(F\) of \(P\) is a connected component of the intersection \(F_{j_1} \cap \ldots \cap F_{j_k}\) of unique collection of \(k\) facets \(F_{j_1}, \ldots, F_{j_k}\) of \(P\). Let \(Z(F)\) be the submodule of \(\mathbb{Z}^n\) generated by the characteristic vectors \(\lambda_{j_1}, \ldots, \lambda_{j_k}\). Then \(Z(F)\) is a direct summand of \(\mathbb{Z}^n\). Therefore the torus \(\mathbb{T}_F := (\mathbb{Z}(F) \otimes \mathbb{R})/\mathbb{Z}(F)\) is a direct summand of \(\mathbb{T}^n\). Define \(Z(P) = (0)\) and \(\mathbb{T}_P\) to be the proper trivial subgroup of \(\mathbb{T}^n\). If \(p \in P\), then \(p\) belongs to the relative interior of a unique face \(F(p)\) of \(P\).

Define an equivalence relation \(\sim\) on the product \(\mathbb{T}^n \times P\) by

\[(t, p) \sim (s, q) \iff p = q\] and \(s^{-1}t \in \mathbb{T}_{F(p)}\).

Let

\[M(P, \lambda) = (\mathbb{T}^n \times P) / \sim\]
be the quotient space. The group operation in \mathbb{T}^n induces a natural \mathbb{T}^n-action on $M(P, \lambda)$. The projection onto the second factor of $\mathbb{T}^n \times P$ descends to the quotient map

$$q : M(P, \lambda) \to P, \quad q([t, p]) = p$$

where $[t, p]$ is the equivalence class of (t, p). So the orbit space of this action is P. One can show that the space $M(P, \lambda)$ has the structure of a locally standard torus manifold.

Definition 3.6. Two \mathbb{T}^n-actions on $2n$-dimensional torus manifolds M_1 and M_2 are called equivalent if there is a homeomorphism $f : M_1 \to M_2$ such that

$$f(t \cdot x) = t \cdot f(x), \quad \forall (t, x) \in \mathbb{T}^n \times M_1.$$

Definition 3.7. Let $\delta : \mathbb{T}^n \to \mathbb{T}^n$ be an automorphism. Two torus manifolds M_1 and M_2 over the same manifold with corners P are called δ-equivariantly homeomorphic if there is a homeomorphism $f : M_1 \to M_2$ such that

$$f(t \cdot x) = \delta(t) \cdot f(x), \quad \forall (t, x) \in \mathbb{T}^n \times M_1.$$

When δ is the identity automorphism, f is called an equivariant homeomorphism.

Proposition 3.8. Let M be a $2n$-dimensional locally standard torus manifold over P, and $\lambda : \mathcal{F}(P) \to \mathbb{Z}^n$ be its associated characteristic function. Let $M(P, \lambda)$ be the locally standard torus manifold constructed from the pair (P, λ), and $H^2(P, \mathbb{Z}) = 0$. Then there is an equivariant homeomorphism $f : M(P, \lambda) \to M$ covering the identity on P.

This proposition is a particular case of Theorem 6.2 in [21]. We remark that this result is proved for quasitoric manifolds in [9], for torus manifolds with locally standard action in [18], and for specific 4-dimensional manifolds with effective \mathbb{T}^2-action in [19].

Lemma 3.9. Let M_1 and M_2 be $2n$-dimensional quasitoric manifolds, then $M_1 \#_{\mathbb{T}^k} M_2$ is simply connected for all n and k except $k = n = 2$.

Proof. We adhere the notations of Example 3.4. Let $q_i : M_i \to P_i$ be the orbit map, and $Q_i = P_i - q_i(\tau_i)$ for $i = 1, 2$. Then Q_i is contractible and $M_i - \tau_i = q_i^{-1}(Q_i)$. By Proposition 3.8 we have

$$M_i - \tau_i \cong (\mathbb{T}^n \times Q_i) / \sim$$

where \sim is defined in (3.1).

Let $g_i : \mathbb{T}^n \times Q_i \to M_i - \tau_i$ be the quotient map, for $i = 1, 2$. By definition of the equivalence relation \sim, $g_i^{-1}(x)$ is connected for all $x \in M_i - \tau_i$. Also $\mathbb{T}^n \times Q_i$ is locally path-connected and $M_i - \tau_i$ is semi-locally simply connected. Thus by Theorem 1.1 in [4], we get a surjective map

$$\pi_1(g_i) : \pi_1(\mathbb{T}^n \times Q_i) \to \pi_1(M_i - \tau_i).$$
Since Q_i is contractible,

$$\pi_1(\mathbb{T}^n \times Q_i) = \pi_1(\mathbb{T}^n).$$

Existence of fixed point in $M_i - \tau_i$ implies that all generator of $\pi_1(\mathbb{T}^n)$ maps to zero. So $\pi_1(M_i - \tau_i)$ is trivial. Hence $\pi_1(M_1 \#_{\mathbb{T}^k} M_2)$ is trivial by Van-Kampen theorem.

□

More generally we have,

Theorem 3.10. Let M be a locally standard torus manifold with orbit space P. If M has a fixed point and P is simply connected, then M is simply connected.

Proof. Since M is a smooth locally standard torus manifold with fixed point, the orbit space P is a nice manifold with corners and $\partial P \neq \emptyset$ (see Section 4 in [21]).

By result of Yoshida [21], M is equivariantly homeomorphic to T_P/\sim, where T_P is a principal \mathbb{T}^n-bundle over P and \sim is defined in Definition 4.9 in [21]. Since P is simply connected, the fibration

$$\mathbb{T}^n \to T_P \to P$$

induces a surjective map $i_* : \pi_1(\mathbb{T}^n) \to \pi_1(T_P)$. Let $f : T_P \to T_P/\sim : I$ be the quotient map. From Section 4 of [21], the fiber $f^{-1}(x)$ of each point $x \in T_P/\sim$ is a connected subset of \mathbb{T}^n. Hence by Theorem 1.1 in [4],

$$q_* : \pi_1(T_P) \to \pi_1(T_P/\sim : I) = \pi_1(M)$$

is surjective and therefore $q_* \circ i_*$ is surjective. Since \mathbb{T}^n-action has a fixed point, all generators of $\pi_1(\mathbb{T}^n)$ maps to identity via $q_* \circ i_*$. Thus $\pi_1(M)$ is trivial. □

4. **LS-category of Locally Standard Torus Manifolds**

The Lusternik-Schnirelmann category of a space X, denoted $\text{cat}(X)$, is the least integer n such that there exists an open covering U_1, \ldots, U_n of X with each U_i contractible to a point in the space X. If no such integer exists, we write $\text{cat}(X) = \infty$.

In this section we discuss the LS-category of locally standard torus manifolds for the following cases:

- Quasitoric manifolds.
- Locally standard torus manifold over P, where P is simply connected and a connected component of ∂P is a simple polytope.
- 4-dimensional locally standard torus manifold over P, where a connected component of ∂P is a boundary of a polygon.

Lemma 4.1. Let M be a $2n$-dimensional quasitoric manifold over a simple polytope P. Then $\text{cat}(M) = n + 1$.

Proof. By Proposition 3.10 in [9], each generator of degree 2n in the cohomology group of M is a product of n cohomology classes of lowest dimension 2. Since $\dim(M) = 2n$, cuplength of M (see Definition 1.4 of [7]) is n,

$$\text{cup}_Z(M) = n.$$

Thus by Proposition 1.5 in [7],

$$\text{cat}(M) \geq n + 1.$$

By Corollary 3.9 of [9], M is simply connected. Therefore by Proposition 27.5 in [10],

$$\text{cat}(M) \leq n + 1.$$

□

Lemma 4.2. Let M be a 2n-dimensional locally standard torus manifold over P. If a connected component of ∂P is a boundary of an n-dimensional simple polytope Q, then

$$\text{cat}(M) \geq n + 1.$$

Proof. Let v be a vertex of Q and $v = F_{i_1} \cap \cdots \cap F_{i_n}$, where F_{i_1}, \cdots, F_{i_n} are unique n-many facets of Q. Let $x_v = \pi^{-1}(v)$ and $X_j = \pi^{-1}(F_{i_j})$, for $j = 1, 2, \cdots, n$. Since T^n-action on M is locally standard, x_v is a fixed point and the intersection $X_1 \cap \cdots \cap X_n (= x_v)$ is transversal. Therefore the Poincaré dual of X_j represents a non-zero cohomology class in $H^2(X, \mathbb{Z})$ (see Section 0.4 in [11]). So by definition of cup-length, $\text{cup}_Z(M) \geq n + 1$. □

Note that Lemma 4.2 is not true for every locally standard torus manifold, see the Example 6.6.

Theorem 4.3. Let M be a 2n-dimensional locally standard torus manifold with a simply connected orbit space P. If a connected component of ∂P is the boundary of a simple polytope Q, then

$$\text{cat}(M) = n + 1.$$

Proof. By Theorem 3.10 M is simply connected, so $\text{cat}(M) \leq n + 1$. On the other hand by Lemma 4.2 $\text{cat}(M) \geq n + 1$. □

Corollary 4.4. Let M_1 and M_2 be quasitoric manifolds. Then for any k and n except $k = n = 2$, we have

$$\text{cat}(M_1 \#_{\mathbb{T}_k} M_2) = n + 1.$$

Proof. Let P be the orbit space of locally standard T^n-action on $M_1 \#_{\mathbb{T}_k} M_2$. Since M_1 and M_2 are quasitoric manifolds, ∂P contains the boundary of
a simple polytope. Also by Lemma 3.9, \(M_1 \# T_k M_2 \) is simply connected. Therefore by Theorem 4.3
\[
\text{cat}(M_1 \# T_k M_2) = n + 1.
\]

\[\square\]

Lemma 4.5. Let \(M \) be a 4-dimensional locally standard torus manifold with a fixed point \(x_0 \). Then any orbit is contractible to \(x_0 \).

Proof. Let \(P \) be the orbit space and \(\pi: M \to P \) be the orbit map. By Proposition 3.8, we may assume that \(M = M(P, \lambda) \) where \(\lambda \) is the characteristic function of \(M \). Let \(\theta \) be an orbit such that \(\pi(\theta) = x \in P \). We can choose a path \(\alpha: [0,1] \to P \) from \(x \) to \(x_0 \) such that \(\alpha \) is injective and \(\alpha(0,1) \cap P \subset P^0 \). We denote the image of \(\alpha \) by \([x, x_0]\). Then
\[
(T^2 \times [x, x_0]) / \sim \subset M.
\]
Let \(T^2_x \) be the isotropy group of \(x \). Then
\[
\theta = \pi^{-1}(x) = (T^2 \times x) / \sim \cong T^2 / T^2_x.
\]
Since the \(T^2 \)-action is locally standard, we have \(T^2 \cong T^2_x \oplus (T^2 / T^2_x) \). Observe that \((T^2 / T^2_x \times [x, x_0]) / \sim \) gives a homotopy. \[\square\]

Theorem 4.6. Let \(M \) be a 4-dimensional locally standard torus manifold over \(P \), such that a connected component of \(\partial P \) is the boundary of a polygon. Then
\[
\text{cat}(M) = 3.
\]

Proof. By Lemma 4.2 \(\text{cat}(M) \geq 3 \). Since \(T^2 \)-action on \(M \) is locally standard, \(P \) is a nice 2-dimensional manifold with corners. So every component of \(\partial P \) is either boundary of a polygon, a circle, or an eye shape (see Figure 1). Note that \(P \) can be obtained from a closed surface by removing the interior points of a finite number of non-intersecting polygons, or polygons and eye shapes, or polygons and circles, or polygons and eye shapes and circles. Thus by [1] \(P \) has a triangulation \(\Sigma \) such that vertices of \(P \) belong to the vertex set of \(\Sigma \). Let
- \(\{x_1, \ldots, x_l\} \) be the vertices of \(\Sigma \),
- \(\{E_1, \ldots, E_m\} \) be the edges of \(\Sigma \), and
- \(\{F_1, \ldots, F_n\} \) be the faces of \(\Sigma \).
Suppose \(y_j \) and \(z_k \) are interior point of \(E_j \) and \(F_k \) respectively, for \(j = 1, \ldots, m \) and \(k = 1, \ldots, n \). Regarding to the Figure 2 one can choose the neighborhoods \(X_i, Y_i, Z_k \) of \(x_i, y_j, z_k \) in \(P \) respectively such that

![Figure 1. An eye shape](image-url)
Figure 2. Choosing neighborhood X_i, Y_j, and Z_k

(1) $X_i \cap X_j = \emptyset$, $Y_i \cap Y_j = \emptyset$ and $Z_i \cap Z_j = \emptyset$ if $i \neq j$.
(2) $y_i, z_i \notin X_j$, $x_i, z_i \notin Y_j$ and $x_i, y_i \notin Z_j$ for all i, j.
(3) $X_i \cap Y_j \cap X_{i2}$ is an open neighborhood of E_j in P if x_{i1} and x_{i2} are vertices of E_j.
(4) $Z_k \cup Y_{k1} \cup Y_{k2} \cup Y_{k3} \cup X_{i1} \cup X_{i2} \cup X_{i3}$ is an open neighborhood of F_k in P if E_{i1}, E_{i2}, E_{i3} are edges of F_k and x_{i1}, x_{i2}, x_{i3} are vertices of F_k.
(5) $Z_k \subset F_k^0$ where F_k^0 is the interior of F_k.
(6) Each X_i is either homeomorphic to $\mathbb{R}^2_{\geq 0}$, or $\mathbb{R}_{\geq 0} \times \mathbb{R}$, or \mathbb{R}^2.
(7) Each Y_j is either homeomorphic to $\mathbb{R}_{\geq 0} \times \mathbb{R}$, or \mathbb{R}^2.
(8) Each Z_k is homeomorphic to \mathbb{R}^2.

(See Figure 3).

Suppose $\pi : M \to P$ is the orbit map. Let $U_i = \pi^{-1}(X_i)$, $V_j = \pi^{-1}(Y_j)$ and $W_k = \pi^{-1}(Z_k)$ for $i = 1, \ldots, l$, $j = 1, \ldots, m$ and $k = 1, \ldots, n$. Then U_i, V_j and W_k are equivariant contractible to the orbit $\pi^{-1}(x_i), \pi^{-1}(y_j)$, and $\pi^{-1}(z_k)$ respectively. By hypothesis M has a fixed point say \hat{x}_0. By Lemma 4.5 $\pi^{-1}(x_i), \pi^{-1}(y_j)$, and $\pi^{-1}(z_k)$ are contractible to \hat{x}_0. Thus U_i, V_j and W_k are equivariant contractible to \hat{x}_0. Let

$$A = \bigcup_{i=1}^{l} U_i, \quad B = \bigcup_{j=1}^{m} V_j \quad \text{and} \quad C = \bigcup_{k=1}^{n} W_k.$$

By the choice of X_i, Y_j and Z_k we get that A, B and C are contractible to \hat{x}_0. Clearly $M = A \cup B \cup C$. Therefore $\text{cat}(M) \leq 3$.

Corollary 4.7. Let M be a $2n$-dimensional locally standard torus manifold over P, such that a connected component of ∂P is the boundary of a polygon.
If there exists a triangulation for P, then

$$\text{cat}(M) = n + 1.$$

Note that Lemma 4.6 is not true for every locally standard torus manifold, see Examples 4.8 and 6.6.

Example 4.8. Consider the annulus P and characteristic function λ as in the Figure 4. Note that $P \cong C \times I$ where C is a circle and I is the closed interval $[0, 1]$. Then the following is an equivariant homeomorphism

$$\left(\mathbb{T}^2 \times C \times I\right)/\sim \cong C \times \left(\mathbb{T}^2 \times I\right)/\sim$$

where \sim is defined in (3.1). By Section 2 in [19],

$$\left(\mathbb{T}^2 \times I\right)/\sim \cong \mathbb{RP}^3.$$

Therefore

$$M(P, \lambda) \cong \left(\mathbb{T}^2 \times C \times I\right)/\sim \cong C \times \left(\mathbb{T}^2 \times I\right)/\sim \cong \mathbb{S}^1 \times \mathbb{RP}^3.$$

Since $\text{cat} \left(\mathbb{RP}^3\right) = 4$ and $\text{cat} \left(\mathbb{S}^1\right) = 2$, using categorical sequence (see Section 1.5 in [7]), one can show that

$$\text{cat} \left(\mathbb{S}^1 \times \mathbb{RP}^3\right) \leq 5.$$

On the other hand by Künneth theorem,

$$H^* \left(\mathbb{S}^1 \times \mathbb{RP}^3, \mathbb{Z}_2\right) = H^* \left(\mathbb{S}^1, \mathbb{Z}_2\right) \otimes \mathbb{Z}_2 \otimes H^* \left(\mathbb{RP}^3, \mathbb{Z}_2\right)$$
Therefore $\cup_{Z_2}(S^1 \times \mathbb{RP}^3) = 5$. Thus by Proposition 1.5 in [7],
\[
cat(S^1 \times \mathbb{RP}^3) = 5.
\]

![Figure 4. An annulus in \mathbb{R}^2.](image)

5. **Equivariant LS-category of Torus Manifolds**

In this section, we compute equivariant LS-category of some locally standard torus manifolds.

Theorem 5.1. Let M be a $2n$-dimensional quasitoric manifold with k fixed points. Then

\[
cat_{T^n}(M) = k.
\]

Proof. Since the fixed points are isolated, by Corollary 3.9 of [14] we have

\[
cat_{T^n}(M) \geq k.
\]

So it is enough to show that for any $v \in M^{T^n}$, there is a T^n-categorical subset X_v, such that

\[
M = \bigcup_{v \in M^{T^n}} X_v.
\]

Let $q : M \rightarrow P$ be the orbit map. Then P is a simple n-polytope and also M^{T^n} corresponds bijectively to $V(P)$, the vertex set of P. So we may assume

\[
M^{T^n} = V(P).
\]

For $v \in V(P)$, let

\[
C_v = \bigcup_{v \notin F} F, \quad U_v = P - C_v, \quad \text{and} \quad X_v = q^{-1}(U_v)
\]

where F is a face of P. Clearly X_v is T^n-invariant. Since U_v is a convex subset of P, it is contractible to v. So there exists a homotopy $h : U_v \times I \rightarrow P$
such that for all $x \in U_v$, $h(x, 0) = x, h(x, 1) = v$, and also for any face F of U_v we have

$$h(x, t) \in F, \quad \forall x \in F, t \in I.$$

By Lemma 1.8 of [9],

$$M \cong M(P, \lambda) \quad \text{and} \quad X_v \cong (\mathbb{T}^n \times U_v)/\sim,$$

where $\lambda, M(P, \lambda)$, and \sim are recalled in Section 2. Therefore h induces a homotopy

$$Id \times h : \mathbb{T}^n \times U_v \times I \to \mathbb{T}^n \times P$$

defined by $((t, x), r) \mapsto (t, h(x, r))$. Since for each face F of U_v, we have

$$x \in F \implies h(x, r) \in F, \quad \forall r \in I,$$

$Id \times h$ induces a homotopy $H : X_v \times I \to M$, with $([t, x], r) \mapsto [t, h(x, r)]$. Since

$$sH([t, x], r) = s[t, h(x, r)] = [st, h(x, r)] = H([st, x], r) = H(s[t, x], r),$$

therefore H is \mathbb{T}^n-homotopy. Also

$$H(x, 0) = x, \quad H(x, 1) = q^{-1}(v) = v, \quad \forall x \in X_v.$$

Thus X_v is \mathbb{T}^n-categorical subset of M. Clearly $\{X_v : v \in V(P)\}$ covers M, therefore $cat_{\mathbb{T}^n}(M) = |V(P)| = k$. \hfill \square

Lemma 5.2. Let M_i be a $2n$-dimensional quasitoric manifold over P_i, for $i=1,2$. Then

$$cat_{\mathbb{T}^n}(M_1 \#_{\mathbb{T}^k} M_2) = |V(P_1)| + |V(P_2)|, \quad \text{for } k \geq 1.$$

Proof. We adhere the notations of Example 3.4 and Theorem 5.1. By the construction of equivariant connected sum we have $M_1 \#_{\mathbb{T}^k} M_2$ is a locally standard torus manifold. Let $k \geq 1$. Then the number of fixed points of \mathbb{T}^n-action on $M_1 \#_{\mathbb{T}^k} M_2$ is $|V(P_1)| + |V(P_2)|$. So by Corollary 3.9 in [14], we have

$$cat_{\mathbb{T}^n}(M_1 \#_{\mathbb{T}^k} M_2) \geq |V(P_1)| + |V(P_2)|.$$

Let $q_i : M_i \to P_i$ be the orbit map and $q_i(\mathbb{T}^k) = x_i$, so x_i belongs to the relative interior of a k-dimensional face E_i of P_i for $i = 1, 2$. Let $L(P_i)$ be the face lattice of P_i and $v \in V(P_i)$. Define

$$C_v = \bigcup_{v \notin F \in L(P_i)} F, \quad U_v = P_i - C_v \quad \text{and} \quad X_v = q_i^{-1}(U_v).$$

Let $S_1 = \{v_{11}, \ldots, v_{1p}\}$ and $S_2 = \{v_{21}, \ldots, v_{2q}\}$ be the vertices of E_1 and E_2 respectively. For $i \in \{1, 2\}$, let

$$\alpha_{ij} : I \to P_i$$

be the simple path from x_i to v_{ij} such that:

- $\alpha_{ij}(I^0) \subset E_i^0$, where E_i^0 is the relative interior of E_i, and
- $\alpha_{i1}(I^0) \cap \alpha_{i2}(I^0) = \emptyset$,

where $1 \leq j \leq p$ for $i = 1$ and $1 \leq j \leq q$ for $i = 2$. Let

$$V_v = \begin{cases} U_v - q_i(\tau_i) & \text{if } v \in V(P_i) - S_i \text{ for } i \in \{1, 2\} \\ U_v - \{q_i(\tau_i) \cup \alpha_i(L^0)\} & \text{if } v \in S_i \text{ and } v \neq v_{il} \end{cases}$$

(5.1)

If $v \in V(P_i)$, then $Y_v = q_i^{-1}(V_v)$ is a \mathbb{T}^n-invariant subset of M_i which is equivariantly contractible to the fixed point $q_i^{-1}(v)$. From the definition of equivariant connected sum, there is a \mathbb{T}^n-homotopy from Y_v with a \mathbb{T}^n-homotopy from Y_v to Y_v. Then the collection

$$\left\{ \hat{Y}_v : v \in V(P_1) \cup V(P_2) \right\}$$

is a \mathbb{T}^n-categorical covering of $M_1 \#_{\mathbb{T}^n} M_2$. Thus

$$\text{cat}_{\mathbb{T}^n}(M_1 \#_{\mathbb{T}^n} M_2) \leq |V(P_1)| + |V(P_2)|.$$

\qed

Remark 5.3. If $k = 0$, then $M_1 \#_{\mathbb{T}^n} M_2$ is a quasitoric manifold, therefore we can apply Lemma 5.1.

Example 5.4. Let M_1 and M_2 be 4-dimensional quasitoric manifolds over triangle P_1 and rectangle P_2 respectively. Let x_i be the interior point of P_i, $i = 1, 2$. Then $q_i(\tau_i)$ is a neighborhood of x_i with the boundary C_i for $i = 1, 2$. Regarding to Lemma 5.2 here $E_1 = P_1$ and $E_2 = P_2$. So

- $V_{11} = P_1 - \{q_1(\tau_1) \cup [v_{12}, v_{13}] \cup \alpha_{12}(L^0)\}$.
- $V_{12} = P_1 - \{q_1(\tau_1) \cup [v_{11}, v_{13}] \cup \alpha_{11}(L^0)\}$.
- $V_{13} = P_1 - \{q_1(\tau_1) \cup [v_{11}, v_{12}] \cup \alpha_{11}(L^0)\}$.
- $V_{21} = P_2 - \{q_2(\tau_2) \cup [v_{22}, v_{23}] \cup [v_{23}, v_{24}] \cup \alpha_{22}(L^0)\}$.
- $V_{22} = P_2 - \{q_2(\tau_2) \cup [v_{23}, v_{24}] \cup [v_{21}, v_{24}] \cup \alpha_{21}(L^0)\}$.
- $V_{23} = P_2 - \{q_2(\tau_2) \cup [v_{21}, v_{22}] \cup [v_{21}, v_{24}] \cup \alpha_{21}(L^0)\}$.
- $V_{24} = P_2 - \{q_2(\tau_2) \cup [v_{21}, v_{22}] \cup [v_{22}, v_{23}] \cup \alpha_{21}(L^0)\}$.
Here \([v_{ij}, v_{kl}]\) is the edge joining the vertices \(v_{ij}\) and \(v_{kl}\). Clearly \(Y_{ij} = q_i^{-1}(V_{ij})\) is \(T^2\)-invariant and equivariantly contractible to the fixed point \(q_i^{-1}(v_{ij})\). Note

\[M_1 \#_{T^2} M_2 = Y_{11} \cup Y_{12} \cup Y_{13} \cup Y_{21} \cup \cdots \cup Y_{24}. \]

Thus \(\text{cat}_{T^2}(M_1 \#_{T^2} M_2) = 3 + 4 = 7\).

Lemma 5.5. Let \(M\) and \(N\) be two \(2n\)-dimensional quasitoric manifolds with \(p\) and \(q\) many fixed points respectively. Then \(\text{cat}_{T^n}(M \times N) = pq\), where \(T^n\)-action on \(M \times N\) is diagonal.

Proof. We adhere the notations of Theorem 5.1. First observe that the diagonal \(T^n\)-action on \(M \times N\) has \(pq\) many fixed points. By Corollary 3.9 of [14],

\[\text{cat}_{T^n}(M \times N) \geq pq. \]

Let \(X_u\) and \(Y_v\) be \(T^n\)-categorical open subsets of \(M\) and \(N\) respectively (as constructed in Theorem 5.1), where \(u \in M^{T^n}\) and \(v \in N^{T^n}\). Let

\(H : X_u \times I \to X_u\) and \(K : Y_v \times I \to Y_v\)

be the respective \(T^n\)-homotopy such that

\(H(x, 0) = x, H(x, 1) = u, \forall x \in X_u\) and \(K(y, 0) = y, K(y, 1) = v, \forall y \in Y_v\).

Then the \(T^n\)-homotopy

\(L : X_u \times Y_v \times I \to X_u \times Y_v\)

defined by \(L(x, y, r) = (H(x, r), K(y, r))\) implies that \(X_u \times Y_v \subset M \times N\) is \(T^n\)-categorical. Since

\[M \times N = \bigcup_{u \in M^{T^n}, v \in N^{T^n}} X_u \times Y_v, \]

\(\text{cat}_{T^n}(M \times N) \leq pq\). Thus \(\text{cat}_{T^n}(M \times N) = pq\). \(\square\)

Corollary 5.6. Let \(M_i\) be a \(2n\)-dimensional quasitoric manifold with \(p_i\) many fixed points for \(i = 1, \ldots, l\). Then \(\text{cat}_{T^n}(M_1 \times \cdots \times M_l) = p_1 \cdots p_l\), where \(T^n\) acts on \(M_1 \times \cdots \times M_l\) diagonally.

Proof. The argument is similar to the proof of Lemma 5.5. So left as an exercise. \(\square\)

Lemma 5.7. Let \(M\) be a 4-dimensional locally standard torus manifold over \(P\), and \(l\) be the number of circles in \(\partial P\) (see proof of Theorem 4.5). Then \(\text{cat}_{T^2} M \geq |M^{T^2}| + 2l\).

Proof. By Corollary 3.9 of [14]

\[\text{cat}_{T^2}(M) \geq |M^{T^2}|. \]

Let \(q : M \to P\) be the orbit map, and

\[X = q^{-1}(\bigcup_{i=1}^l C_i) = \bigcup_{i=1}^l q^{-1}(C_i), \]
where C_1, \ldots, C_l are the circles in ∂P. We claim that if a T^2-categorical open subset U contains a fixed point, then $U \cap X = \emptyset$. Suppose there is $z \in U \cap X$ and U contains a fixed point v. So $O(z) \subset U$. Since $z \in X$, $q(z) \in C_i$ for some $i \in \{1, \ldots, l\}$. Since T^2-action on M is locally standard and $C_i \subset \partial P$, $O(z)$ is homeomorphic to a circle and isotropy of z is a circle subgroup of T^2.

Suppose $H: T^2 \times I \to M$ be a T^2-path from $O(z)$ to $O(v) = v$. Then $q \circ H: z \times I \to P$ is a path from $q(z)$ to $q(v)$. Observe that $Im(q \circ H) \cap P^0 \neq \emptyset$. Since isotropy group over the interior of P^0 is trivial, it is a contradiction to Lemma 2.15. This proves our claim.

On the other hand for each $i \in \{1, \ldots, l\}$, $q^{-1}(C_i)$ is homeomorphic to $C_i \times S^1$, for some circle subgroup S^1 of T^2. So there is no equivariant homotopy from $q^{-1}(C_i)$ to any orbit, and therefore it cannot be covered by a T^2-categorical open set. Hence

$$cat_{T^2}(M) \geq \left| M^{T^2} \right| + 2l.$$

6. Examples

Example 6.1. Consider the natural T^2-action on

$$S^3 = \{(z_1, z_2) \in \mathbb{C}^2 : |z_1|^2 + |z_2|^2 = 1\},$$

which is defined by

$$(t_1, t_2) \cdot (z_1, z_2) \to (t_1 z_1, t_2 z_2).$$

The orbits $O(1, 0)$ and $O(0, 1)$ satisfy the condition of Lemma 2.16, because all the isotropy groups T^2_x, are trivial except for $x = (1, 0)$ and $x = (0, 1)$. Hence $O(1, 0)$ and $O(0, 1)$ can not belong to a same T^2-categorical subset of S^3 and therefore $cat_{T^2}(S^3) \geq 2$. Let

$$U_1 = S^3 - O(1, 0) \text{ and } U_2 = S^3 - O(0, 1).$$

Let B^2 be the open disk. Since U_1 and U_2 are equivariantly homeomorphic to $S^1 \times B^2$, there are T^2-homotopies from U_1 and U_2 onto the orbits $O(0, 1)$ and $O(1, 0)$ respectively. Thus $cat_{T^2}(S^3) = 2$.

Example 6.2. Consider the natural T^2-action on

$$S^5 = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : |z_1|^2 + |z_2|^2 + |z_3|^2 = 1\},$$

which is defined by

$$(t_1, t_2) \cdot (z_1, z_2, z_3) \to (t_1 z_1, t_2 z_2, z_3).$$

An orbit of this action is either a point, circle, or torus; And S^5 is not contractible to any of them. So $cat_{T^2}(S^5) \geq 2$. Let

$$V_1 = S^5 - \{(0, 0, -1)\} \text{ and } V_2 = S^5 - \{(0, 0, 1)\}.$$
Clearly V_1 and V_2 are equivariantly contractible to the fixed points $(0,0,1)$ and $(0,0,-1)$ respectively. So they make a T^2-categorical covering of S^5. Thus $\text{cat}_{T^2}(S^5) = 2$.

Lemma 6.3. Consider the T^2-actions defined in the Examples 6.1 and 6.2. For any subgroup H of T^2, the fixed point sets $(S^3)^H$ and $(S^5)^H$ are path-connected. Hence S^3 and S^5 are T^2-connected.

Proof. If $H = \{(1,1)\}$ is the trivial subgroup of T^2, then $(S^3)^H = S^3$, and it is path-connected.

- Assume H is non-trivial and there exist $\alpha \neq 1 \neq \beta$ such that $p_0 = (\alpha, \beta) \in H$. In this case
 $$(S^3)^H \subset (S^3)^{\{p_0\}} = \emptyset.$$

- Assume H is non-trivial and for all elements (α, β) in H, whether $\alpha = 1$ or $\beta = 1$. If all elements of H look like $(1, \beta)$, then
 $$(S^3)^H = \left\{ (z_1,0) \in S^3 \mid |z_1|^2 = 1 \right\} \cong S^1.$$

Similarly if all elements of H look like $(\alpha,1)$, then $(S^3)^H \cong S^1$.

Thus in any case $(S^3)^H$ is path-connected. Similarly one can show that $(S^5)^H$ is path-connected. \(\square\)

Note that since every compact metric space is completely normal, so by Lemma 2.22 S^3, S^5 and $S^3 \times S^5$ are T^2-completely normal spaces.

Example 6.4 (Counterexample of Theorem 3.15 in [6]). We adhere notations of Examples 6.1 and 6.2. Let $X = S^3 \times S^5$. Consider the diagonal T^2-action on X, which is defined by

$$t \cdot (p,q) \rightarrow (t \cdot p, t \cdot q).$$

Let $A_0 = \emptyset$, $A_1 = U_1$, $A_2 = S^3$ and $B_0 = \emptyset$, $B_1 = V_1$, $B_2 = S^5$. Clearly $A_0 \subset A_1 \subset A_2$ and $B_0 \subset B_1 \subset B_2$ are T^2-categorical sequences for S^3 and S^5 respectively. Consider the sequence

$$(*) \quad C_0 \subset C_1 \subset C_2 \subset C_3$$

where

$C_0 = \emptyset$, $C_1 = A_1 \times B_1$, $C_2 = A_2 \times B_1 \cup A_1 \times B_2$, and $C_3 = A_2 \times B_2 = X$.

However S^3, S^5 and X satisfy the conditions in Theorem 3.15 in [6], we show that

$$C_2 - C_1 = (A_2 - A_1) \times B_1 \cup A_1 \times (B_2 - B_1)$$

does not sit in any T^2-categorical set of X, and therefore $(* \star)$ is not a T^2-categorical sequence.

Let S^1_1 and S^1_2 be the circle subgroups of T^2 determined by the standard vectors e_1 and e_2 in \mathbb{Z}^2 respectively. Let $x = ((1,0),(0,0,1))$ and $y = ((0,1),(0,0,-1))$. Note that

$$O(x) \subset (A_2 - A_1) \times B_1 \quad \text{and} \quad O(y) \subset A_1 \times (B_2 - B_1).$$
Also for isotropy groups we have, \(T^2 \) and \(T^2_y \). Suppose there exists \(z \in X \) with \(T^2 \)-paths from \(O(x) \) to \(O(z) \) and from \(O(y) \) to \(O(z) \). By Lemma \[2.15\] \(S_1 \) and \(S_1 \) are subgroups of \(T^2 \). Thus \(z \) is a fixed point. But \(T^2 \)-action on \(X \) has no fixed point, therefore by Lemma \[2.16\] there is no \(T^2 \)-categorical subset in \(X \) containing \(C_2 - C_1 \). This contradicts the arguments in the proof of Theorem 3.15 in \[6\].

Here we show that \(\text{cat}_{T^2}(S^3 \times S^5) = 4 \). Clearly \(U_1 \times V_1, U_1 \times V_2, U_2 \times V_1 \), and \(U_2 \times V_2 \) form a \(T^2 \)-categorical cover for \(S^3 \times S^5 \). Hence \(\text{cat}_{T^2}(S^3 \times S^5) \leq 4 \). On the other hand according to orbit types of \(T^2 \)-action on \(S^3 \times S^5 \), one can show that the isotropy groups are whether trivial or homeomorphic to \(T \). So by using Theorem 3.7 in \[14\], it is enough to show that

\[
\text{cat}_{T^2}(S^1 \times S^3) \geq 2.
\]

By looking at homology groups, it is clear that \(S^1 \times S^3 \) cannot contract to an orbit. Hence \(\text{cat}_{T^2}(S^1 \times S^3) \) cannot be one. Thus

\[
\text{cat}_{T^2}(S^3 \times S^5) = \text{cat}_{T^2}(S^1 \times S^3) + \text{cat}_{T^2}(S^1 \times S^3) \geq 4.
\]

Example 6.5 (Counterexample of Theorem 3.16 in \[6\]). Let \(M \) and \(N \) be \(2m \) and \(2n \) dimensional quasitoric manifolds over the polytopes \(P \) and \(Q \) respectively. Then \(M \times N \) is a \(4mn \)-dimensional quasitoric manifold over \(P \times Q \). By Theorem \[5.1\]

\[
\text{cat}_{T^m \times T^n}(M \times N) = |V(P \times Q)| = |V(P)| \times |V(Q)| = \text{cat}_{T^m}(M) \times \text{cat}_{T^n}(N^{2n})
\]

Note that \(M \) is a \(T^m \)-manifold, \(N \) is a \(T^n \)-manifold, and \(M \times N \) is a \(T^m \times T^n \)-manifold. Also \(M \times N \) is a compact metrizable space, so it is completely normal.

Example 6.6. We adhere the notation of Example \[3.3\]. Let

\[
V_1 = S^{2n} - \{(0,0, -1)\}, \quad V_2 = S^{2n} - \{(0,0, 1)\}.
\]

Since \(V_1 \) and \(V_2 \) are equivariantly contractible to the fixed points \((0,0,1) \) and \((0,0,-1) \) respectively, so they are \(T^n \)-categorical subset of \(S^{2n} \). Thus \(\text{cat}_{T^n}(S^{2n}) = 2 \). In particular \(\text{cat}(S^{2n}) = 2 \).

Example 6.7. Let \(p > 0, q_1, \ldots, q_n \) be integers such that \(p \) and \(q_i \) are relatively prime for all \(i = 1, \ldots, n \). Consider

\[
S^{2n+1} = \{(z_1, \ldots, z_{n+1}) \in \mathbb{C}^{n+1} \mid |z_1|^2 + \cdots + |z_{n+1}|^2 = 1\}.
\]

The \((2n+1)\)-dimensional lens space \(L = L(p; q_1, \ldots, q_n) \) is the orbit space \(S^{2n+1}/\mathbb{Z}_p \) where \(\mathbb{Z}_p \)-action on \(S^{2n+1} \) is defined by

\[
\theta: \mathbb{Z}_p \times S^{2n+1} \rightarrow S^{2n+1},
\]

\[
([k], (z_1, \ldots, z_n)) \mapsto (e^{2kq_1\pi\sqrt{-1}/p}z_1, \ldots, e^{2kq_n\pi\sqrt{-1}/p}z_n, e^{2k\pi\sqrt{-1}/p}z_{n+1}).
\]

The equivalence class of \((z_1, \ldots, z_n)\) is denoted by \([z_1, \ldots, z_{n+1}]\). The \((n+1)\)-dimensional compact torus \(T^{n+1} \) acts on \(L \) by:

\[
(t_1, \ldots, t_{n+1}) \times [z_1, \ldots, z_{n+1}] \rightarrow [t_1z_1, \ldots, t_{n+1}z_{n+1}].
\]
Let \(e_1, \ldots, e_{n+1} \) be the standard vectors in \(\mathbb{C}^{n+1} \), and \([e_i]\) be the equivalence class of \(e_i \) in \(L \). The orbit of \([e_i]\) is \(O_i = \{[0, \ldots, 0, z_i, 0, \ldots, 0] : |z_i| = 1\} \). From the action in Equation (6.1) \(O_1, \ldots, O_{n+1} \) are the only orbits of dimension one and there is no orbit of dimension less than one. Suppose there are \(T^{n+1} \)-paths from \(O_i \) to \(O(z) \) and from \(O_j \) to \(O(z) \) for some \(z \in L \) with \(i \neq j \). So we get inclusion of isotropy groups,

\[
T^{n+1}_{e_i} \subset T^{n+1}_{e_j} \quad \text{and} \quad T^{n+1}_{e_j} \subset T^{n+1}_{e_i}.
\]

Thus \(T^{n+1}_{e_i} = T^{n+1} \), since \(i \neq j \). This contradicts the fact that \(T^{n+1} \)-action on \(L \) has no fixed point. By Lemma 2.16, \(O_i \) and \(O_j \) can not belong to same \(T^{n+1} \)-categorical subset of \(L \). Thus

\[
\text{cat}_{T^{n+1}}(L) \geq n + 1.
\]

Let

\[
U_i = \{[z_1, \ldots, z_{n+1}] \in L : z_i \neq 0\}, \quad \text{for} \quad i = 1, \ldots, n+1.
\]

Then \(U_i \) is invariant open subset of \(L \). It is not difficult to show that \(U_i \) is a \(T^{n+1} \)-categorical set containing \(O_i \). Since \(U_1, \ldots, U_{n+1} \) covers \(L \),

\[
\text{cat}_{T^{n+1}}(L) \leq n + 1. \Rightarrow \text{cat}_{T^{n+1}}(L) = n + 1.
\]

Acknowledgement. The authors would like to thank Professor Donald Stanley for helpful suggestions. The second author thanks Pacific Institute for Mathematical Sciences and University of Regina for financial support.

References

[1] A. Boulch, É. Colin de Verdière, and A. Nakamoto. Irreducible triangulations of surfaces with boundary. Graphs Comb., 29(6):1675–1688, 2013.
[2] V. M. Buchstaber and T. E. Panov. Torus actions and their applications in topology and combinatorics, volume 24 of University Lecture Series. American Mathematical Society, Providence, RI, 2002.
[3] V. M. Buchstaber and N. Ray. Tangential structures on toric manifolds, and connected sums of polytopes. Internat. Math. Res. Notices, (4):193–219, 2001.
[4] J. S. Calcut, R. E. Gompf, and J. D. McCarthy. On fundamental groups of quotient spaces. Topology Appl., 150(1):322–330, 2012.
[5] H. Colman. Equivariant LS-category for finite group actions. In Lusternik-Schnirelmann category and related topics (South Hadley, MA, 2001), volume 316 of Contemp. Math., pages 35–40. Amer. Math. Soc., Providence, RI, 2002.
[6] H. Colman and M. Grant. Equivariant topological complexity. Algebr. Geom. Topol., 12(4):2299–2316, 2012.
[7] O. Cornea, G. Lupton, J. Oprea, and D. Tanré. Lusternik-Schnirelmann category, volume 103 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.
[8] M. W. Davis. Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. of Math. (2), 117(2):293–324, 1983.
[9] M. W. Davis and T. Januszkiewicz. Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J., 62(2):417–451, 1991.
[10] Y. Félix, S. Halperin, and J.-C. Thomas. Rational homotopy theory, volume 205 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2001.
[11] P. Griffiths and J. Harris. *Principles of algebraic geometry*. Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics.

[12] M. D. Grossberg and Y. Karshon. Equivariant index and the moment map for completely integrable torus actions. *Adv. Math.*, 133(2):185–223, 1998.

[13] A. Hattori and M. Masuda. Theory of multi-fans. *Osaka J. Math.*, 40(1):1–68, 2003.

[14] S. Hurder and D. Töben. The equivariant LS-category of polar actions. *Topology Appl.*, 156(3):500–514, 2009.

[15] I. M. James. On category, in the sense of Lusternik-Schnirelmann. *Topology*, 17(4):331–348, 1978.

[16] L. Lyusternik and L. Schnirelmann. Topological methods in variational problems and their application to the differential geometry of surfaces. *Uspehi Matem. Nauk (N.S.),* 2(1(17)):166–217, 1947.

[17] W. Marzantowicz. A G-Lusternik-Schnirelman category of space with an action of a compact Lie group. *Topology*, 28(4):403–412, 1989.

[18] M. Masuda and T. Panov. On the cohomology of torus manifolds. *Osaka J. Math.*, 43(3):711–746, 2006.

[19] P. Orlik and F. Raymond. Actions of the torus on 4-manifolds. I. *Trans. Amer. Math. Soc.*, 152:531–559, 1970.

[20] M. Poddar and S. Sarkar. A class of torus manifolds with nonconvex orbit space. *Proc. Amer. Math. Soc.*, to appear.

[21] T. Yoshida. Local torus actions modeled on the standard representation. *Adv. Math.*, 227(5):1914–1955, 2011.

Department of Mathematics and Statistics, University of Regina, Regina S4S0A2, Canada.

E-mail address: bayeh20m@uregina.ca

Department of Mathematics and Statistics, University of Regina, Regina S4S0A2, Canada.

E-mail address: soumen.sarkar@uregina.ca