A Proximal Linearization-based Decentralized Method for Nonconvex Problems with Nonlinear Constraints

Yu Yang, Student Member, IEEE, Guoqiang Hu, Senior Member, IEEE, and Costas J. Spanos, Fellow, IEEE

Abstract—Decentralized optimization for non-convex problems are now demanding by many emerging applications (e.g., smart grids, smart building, etc.). Though dramatic progress has been achieved in convex problems, the results for non-convex cases, especially with non-linear constraints, are still largely unexplored. This is mainly due to the challenges imposed by the non-linearity and non-convexity, which makes establishing the convergence conditions bewildered. This paper investigates decentralized optimization for a class of structured non-convex problems characterized by: (i) nonconvex global objective function (possibly nonsmooth) and (ii) coupled nonlinear constraints and local bounded convex constraints w.r.t. the agents. For such problems, a decentralized approach called Proximal Linearization-based Decentralized Method (PLDM) is proposed. Different from the traditional (augmented) Lagrangian-based methods which usually require the exact (local) optima at each iteration, the proposed method leverages a proximal linearization-based technique to update the decision variables iteratively, which makes it computationally efficient and viable for the non-linear cases. Under some standard conditions, the PLDM’s global convergence and local convergence rate to the ϵ-critical points are studied based on the Kurdyka-Łojasiewicz property which holds for most analytical functions. Finally, the performance and efficacy of the method are illustrated through a numerical example and an application to multi-zone heating, ventilation and air-conditioning (HVAC) control.

Index Terms—decentralized optimization, nonconvex problems, coupled nonlinear constraints, proximal linearization, augmented Lagrangian-based method.

I. INTRODUCTION

This decade has seen the unprecedented computation demand arising from large-scale networked systems. Examples arising from smart grids and smart buildings include electric vehicle charging management [1][5], peer-to-peer energy trading [6][7], energy storage sharing [8][9], and the multi-zone heating, ventilation and air-conditioning (HVAC) control [10][13] etc. The past decades have witnessed the revived interests and dramatic progress in decentralized optimization, especially for convex problems (see for examples, [14][16]). Nevertheless, the presence of complex dynamic systems and big data (see [17][18] and references therein) nowadays requests for decentralized approaches that work for non-convex and non-linear context, which still remains an open question and has not been well established. This is mainly due to the intrinsic challenges imposed by the non-linearity and non-convexity, which lead to the NP-hard complexity as the existence of multiple optima, the lack of structure properties to guarantee the presence of optima (e.g., convexity and strong convexity), and the deficit of conditions to investigate convergence (e.g., sufficient global optimality conditions).

A. Related Works

In general, the available results on (decentralized) non-convex optimization can be categorized based on the problem structures: (i) unconstrained non-convex problems, (ii) linearly constrained non-convex problem, and (iii) non-linearly constrained non-convex problems. Unless specified, we refer the constraints above to the coupled constraints among different agents. For unconstrained problems, the most straightforward approaches are (sub-)gradient methods, whose convergence has been early established for convex problems (e.g., see [19]). Recently, their extension [20] and variations, such as Frank-Wolfe algorithm [21], proximal gradient method [22], have been discussed for non-convex cases. The broad results are that some local optima (i.e., critical points) can be approached with diminishing step-sizes. Generally, the above works are mainly focused on investigating the convergence of such methods for non-convex situations rather than achieving decentralized computation. On that basis, some decentralized paradigms by combining (proximal) gradient-based methods with alternating minimization technique (i.e., Gauss-Seidel update) have been proposed, which include proximal alternating linearized minimization (PALM) [23][24], inexact proximal gradient methods (IPG) [25] and some variations [26][27].

As the noteworthy performance of the methods of multipliers (MMs) or augmented Lagrangian-based methods, such as alternating direction multiplier method (ADMM) [16], has been thoroughly observed and understood in tackling coupled (linear) constraints in convex context, their extension to linearly coupled non-convex problems seems natural. The recent years have witnessed the widespread discussions on decentralized optimization for non-convex problems subject to
coupled linear constraints under the Lagrangian-based framework, especially ADMM and its variations (see [28–30] and the references therein). A comprehensive survey of ADMM and its variants for constrained optimization is available [31]. In principle, ADMM can leverage the fast convergence feature of augmented Lagrangian methods and the separable structure of dual decomposition based on the alternating minimization technique (i.e., Gauss-Seidel update). Nevertheless, in contrast to convex cases (see [28–30]), it’s not straightforward or trivial to achieve their performance guarantee in non-convex context. Though favorable performance of ADMM and its variations have been observed and reported in various applications involving non-convexity (see for examples, [32–34]), the theoretical understandings are still fairly limited and deficient except for [35–38], where some results have been established for special structured problems.

With the prevalence of complex multi-agent dynamic systems, growing demand has been raised for decentralized non-convex optimization with coupled non-linear constraints. Such examples include the optimal power flow (OPF) control [39], and the multi-zone heating, ventilation and air-conditioning (HVAC) control in buildings [10–13], etc. The non-linear constraints generally arise from the coupled complex system dynamics, which are pivotal while designing decentralized controllers. However, such non-linear couplings further compound the difficulties and challenges to develop decentralized computing paradigms. The complexities mainly stem from (i) the lack of standard framework to deal with such general non-linear constraints; (ii) the difficulties to ensure feasibility of the coupled nonlinear constraints while performing decentralized computing; (iii) the challenges to investigate the convergence of a specific decentralized algorithm without any structure properties (e.g., convexity, strong convexity, etc). Though the augmented Lagrangian methods are appealing in deal with coupled constraints, their extension to general non-linear constraints are not straightforward or well-founded. Moreover, the existing standard augmented Lagrangian-based framework generally require the exact optimization (e.g., local optima) at each iteration, which are not viable for nonlinear and nonconvex cases practically. Surprisingly, though lack of theoretical foundations, the favorable performance of some Lagrangian-based methods also has been observed in some applications (e.g. matrix completion and factorization [33], optimal power flow [32–40]). This has inspired some recent exploratory studies on their theoretical understandings [41–43]. For example, [41] studied the direct extension of ADMM to two-block convex problems with coupled non-linear but separable constraints. [44] proposed a tailored penalty dual decomposition (PPD) method by combining penalty method and augmented Lagrangian method to tackle non-convex problems with non-linear constraints. Except those, there exist another two excellent recent works that have shed some light on such situations. One is [45] which i) thoroughly and systematically investigated the intrinsic challenges to establish convergence guarantee for ADMM in such situations; and ii) resorted to a two-level nested framework as a remedy. However, [45] generally requires the joint optimization of multi-block non-linear problem at each iteration in the inner loop, which are not viable or attainable in practice. Another noteworthy work is [45] which investigated the general conditions for Lagrangian-based framework to achieve global convergence guarantee in non-convex context. Rather than proposing a specific algorithm, [45] seems more focused on establish a general framework and leaves the algorithm design open.

Overall, two key points from the status quo that may necessitate our attention. First, the above recent progress on non-convex optimization are mainly attributed to the establishment of Kurdyka-Łojasiewicz properties hold by many analytical functions, which was first proposed in [46–47] and later extended in [48–49]. The KL properties are powerful as they make it possible to characterize sequence around critical points without convexity. Second, the key ideas to investigate the methods’ convergence are mainly twofolds: i) studying the convergence of primal and dual sequences by inspecting a tailored Lyapunov function; ii) investigating the local convergence of the algorithm based on the KL properties. However, a typical and difficult problem is that the augmented Lagrangian function generally oscillates in the non-convex context, which makes the use and design of Lyapunov functions particularly difficult [45].

B. Our Contributions

Motivated by the recent progress on non-convex optimization, this paper seeks to investigate decentralized optimization for a class of structured problems with (i) nonconvex global objective function (possibly nonsmooth) and (ii) local bounded convex constraints and coupled nonlinear constraints w.r.t. the agents.

In general, to develop a viable decentralized method, we need to overcome two main challenges. First, we need to realize the difficulties of calculating local optima of nonlinear problems at each iteration as required by most existing decentralized paradigms [44]. Second, we need to figure out the convergence conditions to achieve performance guarantee. To address such issues, this paper proposes a Proximal Linearization-based Decentralized Method (PLDM). The main ideas are twofolds. First, considering the difficulties to ensure the feasibility of the non-linear coupled constraints, we first introduce some consensus variables to eliminate the nonlinear couplings. Second, to overcome the intrinsic challenges to guarantee convergence as explained in [43], we solve a relaxed non-convex problems in a decentralized manner by combing the augmented Lagrangian-based framework, the alternating minimization (i.e., i.e, Gauss-Seidel), and proximal linearization [22–50] to approximate the solutions of the original problem. In particular, different from the traditional MMs and augmented Lagrangian-based methods where the exact local optima of the problems are required at each iteration, the proposed method leverages proximal linearization-based technique to update decision variables at each iteration, which makes it computationally efficient and viable for the nonconvex and nonlinear cases. The main contributions of this paper are outlined, i.e.,

- We propose a PLDM for a class of structured nonconvex problems subject to coupled nonlinear constraints and local bounded convex constraints.
• The global convergence and local convergence rate of the method to the \(e \)-critical points are studied by inspecting a tailored Lyapunov function and the Łojasiewicz property of the AL function.

• The performance of the decentralized method is illustrated by presenting a numeric example and an application to multi-zone heating, ventilation and air-conditioning (HVAC) control.

The remainder of this paper is structured. In Section II, the main notations and the problem are presented. In Section III, the PLDM is introduced. In Section IV, the global convergence and local convergence rate of the method are investigated. In Section V, the performance of the method is evaluated through a numeric example and an application. In Section V, we briefly conclude and discuss this paper.

II. THE PROBLEM AND MAIN NOTATIONS

A. Notations

Throughout this paper, we use \(\mathbb{N} \), \(\mathbb{R} \), \(\mathbb{R}^n \) (\(\mathbb{R}^n \)), and \(\mathbb{R}^{m \times n} \) to denote the spaces of integers, reals, \(n \)-dimensional (positive) real vectors, and \(m \times n \)-dimensional real matrices, respectively. The superscript \(T \) denotes the transpose operator. \(I_n \) and \(O_n \) denote the \(n \)-dimensional identity and zero matrices. Without specification, \(\| \cdot \| \) denotes \(\ell_2 \) norm. \(P_X[\cdot] \) represents the projection operation on the set \(X \). We use \(\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n})^T \) to denote the gradients of \(f : \mathbb{R}^n \to \mathbb{R} \) w.r.t. its entities. If \(h : \mathbb{R}^n \to \mathbb{R}^n \), i.e., \(h(x) = (h_1(x), h_2(x), \ldots, h_m(x))^T \) with \(h_i : \mathbb{R}^n \to \mathbb{R} \), we have \(\nabla h = (\nabla h_1, \nabla h_2, \ldots, \nabla h_m)^T \). \(\prod_{i=1}^N X_i \) denotes the Cartesian product of the sets \(X_i \) (\(i = 1, 2, \ldots, N \)). The other notations are standard and follow the literature \[22, 44\].

B. The Problem

This paper focuses on a class of problems given by

\[
\begin{align*}
\min_{x_i, i=1,2,\ldots,N} & \sum_{i=1}^N f_i(x_i) + \sum_{i=1}^N \phi_i(\{x_j\}_{j \in N_i}) \\
\text{s.t.} & \quad h_i(\{x_j\}_{j \in N_i}) = 0, \quad \forall i \in N, \\
& \quad x_i \in X_i, \quad \forall i \in N.
\end{align*}
\]

Fig. 1. The local and global (consensus) decision variables.

where \(i \) denotes the index of the agents from the set \(N = \{1, 2, \ldots, N\} \). Here \(x_i \in \mathbb{R}^{n_i} \) denotes the local decision component of Agent \(i \). \(N_i \) is allowed to the collection of agent \(i \) and its neighbors.

Note that problem (1) has global objective function which is composed by the separable parts \(f_i : \mathbb{R}^{n_i} \to \mathbb{R} \) and the composite parts \(\phi_i : \mathbb{R}^{n_i} \to \mathbb{R} \) (\(n_i = \sum_{j \in N_i} n_j \)) w.r.t. agents. Wherein the objective function \(f_i \) and \(\phi_i \) may be nonconvex (possibly nonsmooth). \(h_i : \mathbb{R}^{n_i} \to \mathbb{R}^{m_i} \) denotes the coupled nonlinear constraints pertaining to Agent \(i \), which are smooth and differentiable. As inequality constraints could be transformed to equality constraints by introducing slack variables, this paper only investigate equality constraints. Besides, there exist local bounded convex constraints represented by \(X_i \) (\(i \in N \)) for the agents. In addition, we make the following assumptions for problem (1) in our analysis, i.e.,

\begin{enumerate}
\item[(A1)] The equality constraints \(h_i \) are continuously differentiable over \(X_i \) (\(h_i \) and \(\nabla h_i \) are Lipschitz continuous with constants \(L_{h_i} \) and \(M_{h_i} \)).
\item[(A2)] The separable parts \(f_i \) and \(\nabla f_i \) are Lipschitz continuous with constants \(L_{f_i} \) and \(M_{f_i} \) over \(X_i \), respectively.
\item[(A3)] The coupled parts \(\phi_i \) and \(\nabla \phi_i \) are Lipschitz continuous with constants \(L_{\phi_i} \) and \(M_{\phi_i} \) over \(\prod_{j \in N_i} X_i \), respectively.
\end{enumerate}

C. Problem Reformulation

As aforementioned, it’s generally challenging to tackle problem (1) with non-linearity and non-convexity both in the objective and the constraints with performance guarantee. Therefore, this part presents some reformulations of the problem as a necessary preparation for the following study. First, to handle the coupled nonlinear couplings, we introduce a block of consensus variables \(Z = ((z_1)^T, (z_2)^T, \ldots, (z_N)^T)^T \in \mathbb{R}^{\sum_{i \in N_i} n_i} \), which represents the hypothetical copy of the collected decision components for all the agents. As displayed in Fig. 1 each Agent \(i \) will hold a local copy of the augmented decision variables denoted by \(\tilde{X}_i = (x_i, (x_j^i)_{j \in N_i \setminus \{i\}})^T \in \mathbb{R}^{n_i} \), \((n_i = \sum_{j \in N_i \setminus \{i\}} n_j) \), in which \(x_j^i \) denotes the local copy of the decision component for its neighboring Agent \(j \). Meanwhile, we assume there is a virtual Agent 0, who is obligated to manage the block of consensus decision variables \(Z \). Intuitively, for an algorithm to converge, we require

\[
\begin{align*}
& x_i = z_i, \quad x_j \to z_j, \quad (2a) \\
& z_j = z_i, \quad x_j = z_j, \quad (2b)
\end{align*}
\]

In this case, problem (1) can be restated as

\[
\begin{align*}
\min_{x_i, i=1,2,\ldots,N,Z} & \sum_{i=1}^N \tilde{f}_i(\tilde{X}_i) + \sum_{i=1}^N \phi_i(\tilde{X}_i) \\
\text{s.t.} & \quad h_i(\tilde{X}_i) = 0, \quad \forall i \in N, \\
& \quad \tilde{X}_i = E_i Z, \quad \forall i \in N, \\
& \quad Z \in \mathcal{X}.
\end{align*}
\]
\(\mathbf{X} = [\mathbf{X}_i^T]_i^{N} \) and \(\mathbf{Z} \). Nevertheless, we note that the local constraints are now not regular as \([(\nabla_{\mathbf{X}} h_i(\mathbf{X}_i))^T, \mathbf{I}_{n_i}]^T \) is not full row rank. In fact, this presents one of the intrinsic challenges to investigate the convergence of a general decentralized methods for such problems (this may be comprehended in the rigorous analysis later). Here this may be understood that even not full row rank. In fact, this presents one of the intrinsic challenges, we introduce some slack variables \((3a) \) and \((3c) \) simultaneously can be found. To address such a challenging issue, we introduce some slack variables \(\mathbf{Y}_i \in \mathbb{R}^{n_i} \) \((i \in \mathcal{N}) \) and restate problem \((3) \) as
\[
\begin{align*}
\min_{\bar{\mathbf{X}}_i, i \in \mathcal{N}, \mathbf{Z}} & \quad \sum_{i=1}^{N} \bar{f}_i(\mathbf{X}_i) + \sum_{i=1}^{N} \phi_i(\mathbf{X}_i) \\
\text{s.t.} \quad & \quad h_i(\mathbf{X}_i) = 0, \quad \forall i \in \mathcal{N}.
\end{align*}
\]
\[(4) \]
where \(\mathbf{A}_i = [\mathbf{I}_{n_i}, \mathbf{I}_{n_i}] \in \mathbb{R}^{n_i \times 2n_i} \), \(\bar{\mathbf{X}}_i = ((\mathbf{X}_i)^T, (\mathbf{Y}_i)^T)^T \) \((i \in \mathcal{N}) \) denotes the extended local decision variable hold by Agent \(i \).

Note that problem \((3) \) is equivalent to \((4) \) as the slack variables \(\mathbf{Y}_i \) are forced to be zero in the constraints. However, the local constraints \(\mathbf{w.r.t.} \) the extended local decision variables \(\bar{\mathbf{X}}_i \) \((i \in \mathcal{N}) \) are still not regular, therefore we have to resort to the following relaxed problem:
\[
\begin{align*}
\min_{\bar{\mathbf{X}}_i, i \in \mathcal{N}, \mathbf{Z}} & \quad \sum_{i=1}^{N} \bar{f}_i(\mathbf{X}_i) + \sum_{i=1}^{N} \phi_i(\mathbf{X}_i) + \sum_{i=1}^{N} M_i \|\mathbf{Y}_i\|^2 \\
\text{s.t.} \quad & \quad h_i(\mathbf{X}_i) = 0, \quad \forall i \in \mathcal{N}.
\end{align*}
\]
\[(5) \]
where \(M_i > 0 \) \((i \in \mathcal{N}) \) denotes some positive penalty parameter. In contrast of \((5) \) with \((4) \), one may note that the constraints \(\mathbf{Y}_i = 0 \) for the slack variables have been softened by appending some penalty terms \(M_i \|\mathbf{Y}_i\|^2 \) in the global objective function. As \(i \) problem \((5) \) contains all the feasible solutions of \((4) \), \(P(5)^{\ast} \leq P(4)^{\ast} \) \((P^{\ast}) \) denotes the optima of the problems), problem \((5) \) can be regarded as an relaxation of problem \((4) \). Moreover, we note that with \(M_i \rightarrow 0 \) \((i \in \mathcal{N}) \), the well-posedness optimal solutions of \((5) \) (with bounded objective value) are exactly those for the original problem \((4) \) as we will have \(\mathbf{Y}_i^* \rightarrow 0 \) \((\forall i \in \mathcal{N}) \) otherwise \(P(5)^{\ast} \rightarrow \infty \).

The main ideas of this paper are twofolds. First, we investigate decentralized method for problem \((5) \) with performance guarantee. Second, we prove that the attained solutions are the \(\epsilon \)-critical points of \((5) \) under some mild conditions. Before that, we first make the following extra assumptions. \((A4) \) \(M_i > 0 \) \((i \in \mathcal{N}) \) are sufficiently large.

\[\text{Remark 1. Generally, rigorous analysis requires } M_i \rightarrow +\infty \text{ to guarantee the equivalence of problem } (4) \text{ and } (5). \text{ However, a sufficiently large positive value is enough to guarantee the sub-optimality in practice.} \]

III. Proximal Linearization-Based Decentralized Method

This section first presents a decentralized method called PLDM for problem \((5) \) and gives the main results on its convergence. After that we prove that the attained solutions are the \(\epsilon \)-critical points of the original problem \((4) \). In particular, the proposed method is established under the general augmented Lagrangian-based framework for nonconvex context (see [45, 51] for examples) and contains the three standard steps: (i) primal update based on proximal linearization, (ii) dual update and (iii) adaptive step for penalty factors.

To handle the local nonlinear constraints \((3a) \) and the coupled linear constraints \((4b) \), we define the Augmented Lagrangian (AL) function as
\[
\mathbb{L}_p(\bar{\mathbf{X}}, \lambda, \mu) = \sum_{i=1}^{N} \bar{f}_i(\mathbf{X}_i) + \sum_{i=1}^{N} \phi_i(\mathbf{X}_i) + \sum_{i=1}^{N} M_i \|\mathbf{Y}_i\|^2 + \sum_{i=1}^{N} (\lambda_i^T h_i(\mathbf{X}_i)) + \sum_{i=1}^{N} \frac{\rho}{2} \|h_i(\mathbf{X}_i)\|^2
\]
\[(6) \]
where \(\bar{\mathbf{X}} \in [\bar{\mathbf{X}}_i]_{i \in \mathcal{N}} \in \mathbb{R}^{\sum_{i=1}^{N} 2n_i} \) denotes the augmented decision variable for the problem, \(\lambda = [\lambda_i]_{i \in \mathcal{N}} \in \mathbb{R}^{\sum_{i=1}^{N} m_i} \) and \(\mu = [\mu_i]_{i \in \mathcal{N}} \in \mathbb{R}^{\sum_{i=1}^{N} 2n_i} \) are Lagrangian multipliers. \(\rho > 0 \) denotes the penalty factor.

For given Lagrangian multipliers \(\lambda \) and \(\mu \), the primal problem needs to be solved is given by
\[
\begin{align*}
\min_{\bar{\mathbf{X}}, \mathbf{Z}} & \quad \mathbb{L}_p(\bar{\mathbf{X}}, \lambda, \mu) \\
\text{s.t.} \quad & \quad \bar{\mathbf{X}} \in \mathcal{X}.
\end{align*}
\]
\[(7) \]

Primal Update: observe that \((7) \) has two blocks of decision variables (i.e., \(\bar{\mathbf{X}} \) and \(\mathbf{Z} \)). For general MMs, a joint optimization of the two decision variable blocks is usually required [52]. However, the primal problem \((7) \) is nonlinear and nonconvex, even obtaining a local optima is difficult with existing approaches. To handle this, we achieve primal update at each iteration in a decentralized manner by performing two steps: (i) proximal linearization of the nonlinear subproblems and (ii) Gauss-seidel update w.r.t. the decision variable blocks (i.e., \(\bar{\mathbf{X}}, \mathbf{Z} \)). Observing that AL function \((6) \) is decomposable w.r.t. the agents, solving the local subproblem \(\bar{\mathbf{X}}_i (\forall i \in \mathcal{N}) \), we define the subproblems for each Agent \(i \) as
By performing **proximal linearization** on the nonlinear and nonconvex subproblems \([8]\) at each iteration \(k\), we have

\[
\min_{\tilde{X}_i} \tilde{L}_{\rho_k}(\tilde{X}_i, \tilde{X}_k^k, Z^k, X^k_l, \mu^k) = (\mu^k)^T(A_i\tilde{X}_i - E_iZ^{k+1}) + \frac{\rho_k}{2}\|A_i\tilde{X}_i - E_iZ^{k+1}\|^2 + \frac{\rho_k}{2}\|A_i\tilde{X}_i - E_iZ^{k+1}\|^2 + \frac{c_i^k}{2}\|\tilde{X}_i - X^k\|^2, \quad \forall i \in N.
\]

where \(c_i^k\) denotes the step-size for subproblem \(i\) at iteration \(k\). Besides, we define \(g_i(\tilde{X}_i, \lambda_i, \rho) = f_i(X_i) + \phi_i(X_i) + (A_i)^T h_i(X_i) + \frac{\rho}{2}\|h_i(X_i)\|^2 + M_i\|Y_i\|^2\).

Remark 3. If the objective function \(f_i\) or \(\phi_i\) is non-smooth w.r.t the local decision variable \(\tilde{X}_i\), we can remove it from \(g_i(\tilde{X}_i, \lambda_i, \rho)\) and keep them in \(\tilde{L}_{\rho_k}(\tilde{X}_i, \tilde{X}_k^k, Z^k, X^k_l, \mu^k)\).

For the consensus variable \(Z\), the subproblem is given by

\[
\min_{Z} L_{\rho}(Z, \tilde{X}, \mu) = \sum_{i=1}^{N} (\mu_i)^T(A_i\tilde{X}_i - E_iZ) + \sum_{i=1}^{N} \frac{\rho_i}{2}\|A_i\tilde{X}_i - E_iZ\|^2, \quad \text{s.t. } Z \in \mathcal{X}.
\]

We note that subproblem (9) is a quadratic programming (QP), which can be solved efficiently.

Dual update & Adaptive step: the dual variables are updated following the standard augmented Lagrangian methods (see [55] for example). However, we introduce an adaptive step to dynamically update the penalty factor \(\rho\). In particular, we pre-define a sub-feasible region regarding the non-linear constraints of problem [5], i.e.,

\[
\tilde{X}^\eta \triangleq \{ \tilde{X} \in \mathbb{R}^{\sum_{i \in \mathcal{N}}} | \sum_{i=1}^{N} \|h_i(X_i)\| \leq \eta \}.
\]

We iteratively increase \(\rho_k\) with an increment \(\delta\) until \(\tilde{X}^k\) is forced into the pre-defined sub-feasible region \(\tilde{X}^\eta\).

The main steps of the proposed PLDM method for solving problem [5] are summarized in Algorithm 1. The algorithm starts by initializing the Lagrangian multipliers, penalty factor, and decision variables. Afterwards, the main steps include the alternative update of the two decision blocks \((\tilde{X}, Z)\) (Step 3-5), the Lagrangian multipliers \((\lambda, \mu)\) (Step 6), and the penalty factor \(\rho\) (Step 7). We note that as the primal problem [7] is decomposable w.r.t the agents, the update of the primal decision variable block \((\tilde{X})\) can be performed in parallel by the agents. In Algorithm 1, the stopping criterion is defined as the residual error bound of the constraints, i.e.,

\[
R(k) = \sum_{i=1}^{N} \left\{ \|h_i(X_i^{k+1})\| + \|A_i\tilde{X}_i^{k+1} - E_iZ^{k+1}\| \right\} \leq \epsilon
\]

where \(\epsilon\) is a constant threshold.

The algorithm iterates until the stopping criterion is reached. Still, this does not mean the convergence of the algorithm. This needs to be studied in greater detail later.

Algorithm 1 Proximal Linearization-based Decentralized Method (PLDM) for Nonconvex and Nonlinear Problems

1. **Initialization:** \(X^0, \mu^0, \tilde{X}^0, Z^0\) and \(\rho_0\), and set \(k \rightarrow 0\).
2. **Repeat:**
3. **Primal Update:**
4. **Update the consensus variables \(Z\), i.e.,
5. **Update the primal decision variables \(\tilde{X}\) in parallel, i.e.,
6. **Dual update:**
7. **Adaptive step:** Update the penalty factor \(\rho\), i.e., if \(X^{k+1} \in \mathcal{X}^\eta\), set \(\rho_{k+1} = \rho_k + \delta\), otherwise \(\rho_{k+1} = \rho_k\).
8. If \(R(k) \leq \epsilon\) stop, otherwise set \(k \rightarrow k+1\) and go to Step 2.

IV. PERFORMANCE AND CONVERGENCE ANALYSIS OF PLDM

This section discusses the performance and convergence of PLDM. First, we present the additional assumptions, basic definitions and propositions required. Then we illustrate the main results in **Theorem 1 and Theorem 2.**

A. Definitions and Lemmas

Lemma 1. (Descent lemma) (see [19], Proposition A.24) Let \(h : \mathbb{R}^d \rightarrow \mathbb{R}\) be \(M_h\)-Lipschitz gradient continuous, we have

\[
h(u) \leq h(v) + \langle v - u, \nabla h(u) \rangle + \frac{M_h}{2}\|u - v\|^2, \quad \forall u, v \in \mathbb{R}^d.
\]

Lemma 2. (Sufficient decrease property) (see [23], Lemma 2) Let \(h : \mathbb{R}^d \rightarrow \mathbb{R}\) be \(M_h\)-Lipschitz gradient continuous and \(\sigma : \mathbb{R}^d \rightarrow \mathbb{R}\) be a proper and lower semicontinuous function with \(\inf_{\mathbb{R}^d} \sigma > -\infty\). If \(\text{prox}^\sigma_{\frac{1}{t}} \arg\min \{\sigma(u) + \frac{1}{2}\|u - x\|^2\}\) denotes the proximal map associated with \(\sigma\), then for any fixed \(t > M_h\), \(u \in \text{dom} \sigma\), and \(u^*\) defined by

\[
u^* = \text{prox}^\sigma_{\frac{1}{t}} \left(u - \frac{1}{t} \nabla h(u) \right)
\]

we have \(h(u^*) + \sigma(u^*) \leq h(u) + \sigma(u) - \frac{1}{2}(t - M_h)\|u^* - u\|^2\).

Definition 1. (Normal cone) (see [57]) Let \(\mathcal{X} \subseteq \mathbb{R}^d\) be a convex set, the normal cone of \(\mathcal{X}\) is the set-valued mapping

\[
\mathcal{N}_{\mathcal{X}}(\bar{x}) = \begin{cases}
\{ g \in \mathbb{R}^d | \forall x \in \mathcal{X}, g^T(x - \bar{x}) \leq 0 \}, & \text{if } \bar{x} \in \mathcal{X} \\
\varnothing, & \text{if } \bar{x} \notin \mathcal{X}.
\end{cases}
\]

Definition 2. (Critical point) (see [54,56]) Considering the following problem (P):

\[
(P) \quad \{ \min_{x \in \mathbb{R}^d} f(x) \mid g(x) \leq 0, h(x) = 0 \}.
\]
where the objective $f : \mathbb{R}^d \rightarrow \mathbb{R}$, and the constraints $g = (g_1, g_2, \cdots, g_m)$ with $g_i : \mathbb{R}^d \rightarrow \mathbb{R}$, $h = (h_1, h_2, \cdots, h_l)$ with $h_i : \mathbb{R}^d \rightarrow \mathbb{R}$ are continuously differentiable. The critical points (i.e., KKT points) of problem (P) denote its feasible points satisfying first-order optimality condition described by

$$\text{crit}(P) = \left\{ x \in \mathbb{R}^d \mid \lambda \in \mathbb{R}^m_+, \mu \in \mathbb{R}^l \right\}$$

As a direct extension, we can define the collection of ϵ-critical points $\text{crit}_\epsilon(P)$ by replacing 0 on the right-hand side of the equalities (inequalities) with ϵ.

Remark 4. For convex problems, the critical points (KKT points) are exactly the global optima. However, without convexity, a critical point can be a global optima, a local optima, or a “saddle point”. For problem (5) discussed in this paper, the critical points can be described by

$$\text{crit}(\text{problem (5)}) = \left\{ X \in \mathbb{R}^{n \times n}, \lambda \in \mathbb{R}^{n \times n}_+ \right\}$$

Definition 3. (Uniform Regularity) (see [25]) Let $X \subseteq \mathbb{R}^m$ and $h : \mathbb{R}^m \rightarrow \mathbb{R}^n$ be continuously differentiable, we claim h as uniformly regular over X with a positive constant θ if

$$\|\nabla h(x)^T v\| \geq \theta \|v\|, \forall x \in X, v \in \mathbb{R}^n$$

Remark 5. For a given $x \in X$, asserting that $\nabla h(x)$ is uniformly regular with θ ($\theta > 0$) is equivalent to

$$\gamma(F, x) = \min_{\|v\|=1} \{ \|\nabla h(x)^T v\| \} > 0.$$
Proof: Refer to Appendix D.

Remark 9. Proposition 4 provides the upper bound for the subgradients of the AL functions after primal update at each iteration.

Proposition 5. Let \(\{ \tilde{X}^k \}_{k \in \mathbb{N}, k \geq k_0} \) be the sequence generated by Algorithm \(\mathcal{A} \) we have
\[
\| \gamma_i^{k+1} - \gamma_i^k \| \leq \Omega_1 \| X_i^{k+1} - X_i^k \| + \Omega_2 \| \tilde{X}_i^k - X_i^{k-1} \|, \\
\forall i \in \mathcal{N},
\]
where \(\gamma_i = ((\lambda_i)^T, (\mu_i)^T)^T \) denoting the augmented Lagrangian multipliers for Agent \(i \). We have \(\Omega_1 = (L_g + c_i^k + L_f_i + L_p_i + M_{k_i} + M_{k_i})/\theta \) and \(\Omega_2 = (L_g + c_i^{k-1})/\theta \) \((i \in \mathcal{N}) \).

Proof: Refer to Appendix E.

Remark 10. Proposition 5 provides the upper bound for the difference of the Lagrangian multipliers over two successive iterations.

To illustrate the convergence of the proposed PLMD, we need to resort to a Lyapunov function defined as
\[
\Phi_\beta(\tilde{X}, Z, \lambda, \mu, U) = \mathbb{L}_\mu(\tilde{X}, Z, \lambda, \mu) + \beta \| \tilde{X} - U \|^2,
\]
where \(\beta > 0 \) and \(U \in \mathbb{R}^{\sum_{i \in \mathcal{N}}} \). One may note that the Lyapunov function closely relates to the AL function except for the extra term \(\beta \| \tilde{X} - U \|^2 \). For the Lyapunov function under the sequences generated by Algorithm \(\mathcal{A} \) we have the following proposition.

Proposition 6. Let \(\{ W^k = (\tilde{X}^k, Z^k, \lambda^k, \mu^k, \tilde{X}^k-1) \}_{k \in \mathbb{N}, k \geq k_0} \) be the sequence generated by Algorithm \(\mathcal{A} \) we have
\[
\Phi_{\beta_k}(W^k) - \Phi_{\beta_{k+1}}(W^{k+1}) \geq b_1^k \| \tilde{X}^{k+1} - \tilde{X}^k \|^2 + b_2^k \| \tilde{X}^k - \tilde{X}^{k-1} \|^2,
\]
where \(\Phi_{\beta_k}(W^k) = \mathbb{L}_\mu(\tilde{X}^k, Z^k, \lambda^k, \mu^k) + \beta_k \| \tilde{X}^k - \tilde{X}^{k-1} \|^2 \), with \(\beta_k \) a positive parameter. Besides, we have
\[
b_1^k = \min_i \left\{ \frac{1}{2}(c_i^k - L_{g_i}) - \frac{2(\Omega_1^i)^2}{\rho_k} - \beta_{k+1} \right\}, \quad b_2^k = \min_i \left\{ \beta_k - \frac{2(\Omega_2^i)^2}{\rho_k} \right\}.
\]

Proof: Refer to Appendix F.

Remark 11. From Proposition 1, we have \(\{ \tilde{X}_i^k \}_{k \in \mathbb{N}, k \geq k_0} \in \mathcal{X}_i^0 \). To illustrate the convergence of PLMD over \(k \geq k_0 \), we resort to the Lyaponov function \(\Phi_{\beta_k}(W^k) \). Proposition 6 provides the lower bound for the decrease of the Lyapunov function over successive iterations after iteration \(k_0 \).

Proposition 7. Let \(\{ X^k \}_{k \in \mathbb{N}} \) and \(\{ \tilde{X}^k \}_{k \in \mathbb{N}} \) be the sequence generated by Algorithm \(\mathcal{A} \) then we have
\[
\lim_{k \to +\infty} \| X^{k+1} - X^k \| = 0, \\
\lim_{k \to +\infty} \| \tilde{X}^{k+1} - \tilde{X}^k \| = 0,
\]
\[
\lim_{k \to +\infty} \| \mu^{k+1} - \mu^k \| = 0, \quad \forall i \in \mathcal{N},
\]
provided with Condition (a):
\[
b_1^k = \min_i \left\{ \frac{1}{2}(c_i^k - L_{g_i}) - \frac{2(\Omega_1^i)^2}{\rho_k} - \beta_{k+1} \right\} > 0, \quad b_2^k = \min_i \left\{ \beta_k - \frac{2(\Omega_2^i)^2}{\rho_k} \right\} > 0.
\]
is satisfied.

Proof: Refer to Appendix G.

Remark 12. Proposition 7 illustrates the boundedness of primal and dual sequences generated by Algorithm \(\mathcal{A} \) under Condition (a), which can be satisfied by selecting \(\beta_k \) that maximizes \(\{ \frac{2(\Omega_1^i)^2}{\rho_k} \} \) \(< \beta_k < \min_i \{ \frac{1}{2}(c_i^{k-1} - L_{g_i}) - \frac{2(\Omega_1^i)^2}{\rho_k} \} \).

Proposition 8. Let \(\{ W^k \}_{k \in \mathbb{N}, k \geq k_0} \) be the sequence generated by Algorithm \(\mathcal{A} \) we have
\[
\| \nabla \Phi_{\beta_k+1}(W^{k+1}) \| \leq b_3^k \sum_{i=1}^N \| \tilde{X}^{k+1}_i - \tilde{X}^k_i \| + b_4^k \sum_{i=1}^N \| \tilde{X}^k_i - \tilde{X}^{k-1}_i \|
\]
where we have \(B = \sup_{k \geq k_0} \| F_i(\tilde{X}^{k+1}_i) \| \), \(b_3^k = \max_i \left\{ L_{g_i} + c_i^k + \Omega_1^i B + 4\beta_{k+1} + \rho_k + \frac{\Omega_1^i}{\rho_k} \right\} \) and \(b_4^k = \max_i \left\{ \Omega_2^i B + \frac{\Omega_1^i}{\rho_k} \right\} \).

Proof: Refer to Appendix H.

Remark 13. Proposition 8 provides the upper bound for the subgradient of the Lyapunov function \(\Phi_{\beta_k} \).

Based on Proposition 1-9, we have the following results for the convergence of the PLDM.

Theorem 1. (Convergence) The PLDM described in Algorithm \(\mathcal{A} \) converges to the critical points of problem \(\mathcal{P} \) provided with a step-size \(c_i^k \) satisfying Condition (a) in Proposition 7.

Proof. Based on Proposition 7 and Proposition 8 we have
\[
\lim_{k \to +\infty} \| \nabla \Phi_{\beta_k+1}(W^{k+1}) \| = 0.
\]
Specifically, we have
\[
\nabla \Phi_{\beta_{k+1}}(W^{k+1}) = \nabla X_{\rho_k}^2(\hat{X}^{k+1}, Z^{k+1}, X^{k+1}, \mu^{k+1}) + 2\beta_{k+1}(\hat{X}^{k+1} - \hat{X}^{k})
\]
\[
\nabla Z_{\rho_k}^2(\hat{X}^{k+1}, Z^{k+1}, X^{k+1}, \mu^{k+1}) + N_{\chi}(Z^{k+1})
\]
\[
\nabla \gamma_{\rho_k}^2(\hat{X}^{k+1}) = \nabla \gamma_{\rho_k}^2(\hat{X}^{k+1}, Z^{k+1}, X^{k+1}, \mu^{k+1})
\]
\[
\nabla U_{\rho_k}^2(\hat{X}^{k+1}) = 2\beta_{k+1}(\hat{X}^{k+1} - \hat{X}^{k})
\]
(23)

By combining (22) with (23), we have
\[
\lim_{k \to +\infty} \nabla \Phi_{\beta_k}(\hat{X}^{k+1}, Z^{k+1}, X^{k+1}, \mu^{k+1}) = 0
\]
\[
\lim_{k \to +\infty} \nabla Z_{\rho_k}^2(\hat{X}^{k+1}, Z^{k+1}, X^{k+1}, \mu^{k+1}) + N_{\chi}(Z^{k+1}) = 0
\]
\[
\lim_{k \to +\infty} h_i(\hat{X}^{k+1}) = 0, \forall i \in N.
\]
\[
\lim_{k \to +\infty} (A_i \hat{X}^{k+1} - E_i Z^{k+1}) = 0, \forall i \in N.
\]

According to Definition 2 the above implies that PLDM will converge to the critical points of problem (4).

\[\square\]

Theorem 2. The critical points of problem (5) obtained from Algorithm 2 are the ε-critical points of problem (4).

Proof. We first denote the critical points of problem (5) as \(W^* = (\hat{X}^*, Z^*, X^*, \mu^*, \lambda^*)\). Based on Theorem 1 we have \(W^k \to W^*\) with \(k \to +\infty\). Based on the definition of ε-critical points (see Definition 2), we only need to prove \(\|Y_i^*\| \leq \epsilon\) to illustrate the results.

This can be illustrated in twofolds.

\(i)\) According to Proposition 6, we have \(\Phi_{\beta_k}(W^k)\) is non-increasing w.r.t. the iteration \(k\). Therefore, we have \(\Phi_{\beta_k}(W^0) \leq \Phi_{\beta_k}(W^0)\) with \(k \in \mathbb{N}\) (bounded), where we denote \(\beta_k \to \beta\) with \(k \to +\infty\).

\(ii)\) Based on Theorem 1 we have \(\Phi_{\beta_k}(W^*) = \frac{\sum_{i=1}^N f_i(X_i^*) + \sum_{i=1}^N \phi_i(X_i^*) + \sum_{i=1}^N M_i Y_i^* \| Y_i^* \| }{m_i} \) as \(h_i(X_i^*) = 0\) and \((A_i X_i^* - E_i Z_i^*) = 0\) \(\forall i \in N\).

Thus by combining \(i)\) and \(ii)\) we imply
\[
\|Y_i^*\| \leq \sqrt{\frac{\Phi_{\beta_k}(W^0) - \sum_{i=1}^N f_i(X_i^*) - \sum_{i=1}^N \phi_i(X_i^*)}{\min M_i \cdot N}} \leq \epsilon, \forall i \in N \text{ with } M_i \text{ sufficiently large.}
\]

\[\square\]

C. Convergence Rate

With the global convergence of the PLDM studied, this section discusses the local convergence rate of the method. Before we present the main results, we illustrate the following propositions that referred to.

Proposition 9. Let \(\{W^k\}_{k \in \mathbb{N}, k \geq k}\) be the sequence generated by Algorithm 2 then we have
\[
\|\nabla \Phi_{\beta_{k+1}}(W^{k+1}, Y_{\rho_k}) - \nabla \Phi_{\beta_k}(W^k)\|^2 \leq 2N\rho_k \|\Phi_{\beta_k}(W^k) - \Phi_{\beta_{k+1}}(W^{k+1})\|^2
\]
(24)

provided with the step-size \(c_k^*\) and the parameter \(\beta_k\) satisfying

\[\textbf{Condition (b)}: \quad \nu_k = \frac{(b_k^*)^2}{b_k^2} \leq \frac{(b_k^*)^2}{b_k^2}, \quad \text{where } \nu_k \text{ is the positive parameter that need to be decided for Algorithm 2.}\]

Remark 14. Proposition 9 gaps the subgradients of the Lyapunov function \(\Phi_{\beta_k}(W^{k+1})\) in terms of its value decrease over successive iterations. To guarantee \textbf{Condition (b)}, the step-size \(c_k^*\) and the parameter \(\beta_k\) can be selected following the procedures below:

Based on Proposition 5 and Proposition 8 we have
\[
b_k^1 = \min_i \left\{ \frac{1}{2} (c_k^* - L_{g_i}) - \frac{2(\Omega_i^1)^2}{\rho_k^2} - \beta_{k+1} \right\}
\]
\[
= \frac{1}{2} c_k^* - \min_i \left\{ \frac{1}{2} L_{g_i} + \frac{2(\Omega_i^1)^2}{\rho_k^2} + \beta_{k+1} \right\}
\]
\[
= \frac{1}{2} c_k^* - M
\]
\[
b_k^2 = \min_i \left\{ \beta_k - \frac{2(\Omega_i^2)^2}{\rho_k^2} \right\}
\]
\[
= \max_i \left\{ L_{g_i} + c_k^* + \Omega_i^1 B + 4\beta_{k+1} + \rho_k^2 \right\}
\]
\[
= c_k^* + \max_i \left\{ L_{g_i} + \Omega_i^1 B + 4\beta_{k+1} + \rho_k^2 \right\}
\]
\[
= c_k^* + L
\]
\[
b_k^4 = \max_i \left\{ (B + \frac{1}{\rho_k^2}) \Omega_i^2 \right\}
\]
where we have \(M = \max_i \left\{ \frac{1}{2} L_{g_i} + \frac{2(\Omega_i^1)^2}{\rho_k^2} + \beta_{k+1} \right\} \) and \(L = \max_i \left\{ L_{g_i} + \Omega_i^1 B + 4\beta_{k+1} + \rho_k^2 \right\} \).

We first select a large enough positive parameter \(\nu_k > 0\).

By letting \(v_k = \frac{(b_k^*)^2}{b_k^2} = \frac{\max_i \left\{ (B + \frac{1}{\rho_k^2}) \Omega_i^2 \right\}}{\min \left\{ \beta_k - \frac{2(\Omega_i^2)^2}{\rho_k^2} \right\}}\), we can set
\[
\beta_k = 2 \left(B + \frac{1}{\rho_k^2} \right)^2 \nu_k + \frac{1}{\nu_k} \frac{\max_i \left\{ (\Omega_i^2)^2 \right\}}{\max_i \left\{ (\Omega_i^2)^2 \right\}}
\]
\[
= 2 \left(1 + \frac{1}{\rho_k^2} \right)^2 \nu_k + \nu_k \frac{\max_i \left\{ (\Omega_i^2)^2 \right\}}{\max_i \left\{ (\Omega_i^2)^2 \right\}}
\]

Besides, if we select \(\nu_k = \nu_k\), we have \(\beta_k = \beta_k\) \(\forall k \geq k\).

Afterwards, by letting \(v_k \geq \frac{(b_k^*)^2}{b_k^2}\) i.e.,
\[
\nu_k \geq \frac{(c_k^* + L)^2}{b_k^2},
\]
we can select the step-size \(c_k^*\) at each iteration \(k\) as \(c_k^* \in \left[(\nu_k - 4M) \sqrt{\nu_k^2 - (8M + 16L)\nu_k} \right] \cap (0, +\infty)\). Besides, to ensure that at least one positive step-size exists, the parameter \(\nu_k\) should be selected as \(\nu_k \geq (8M + 16L) \forall k \geq k\).

Theorem 3. (Convergence rate) Suppose the Lyapunov function \(\Phi_{\beta_k}(W^k)\) satisfy the KL property\(^1\) with the desin-
gularising function of the form \(\varphi(t) = \frac{c_1}{t} \theta \) for some \(C > 0 \), \(\theta \in (0, 1) \) \((\text{[27]}\)) and \(c_1^k \), \(\beta_k \) are selected satisfying \textbf{Condition} (b) in \textbf{Proposition} 9, we have:

(i) If \(\theta = 1 \), \textbf{Algorithm} [1] terminates in finite iterations.
(ii) If \(\theta \in (0, 1/2) \), \(\exists k_0, k_1, k_2 \in \mathbb{R} \), such that \(\forall k \geq \max\{k_0, k_1\} \leq k \leq k_2 \), we have
\[
\Delta^k \leq \left(\frac{2NC^2{\nu}_{k-1}}{1 + 2NC^2{\nu}_{k-1}} \right)^{\frac{\nu}{\kappa}} \Delta^{k-1}.
\]
where \(\Delta^k = \Phi_{\beta_k}(W^k) - \Phi^* \) denotes the “suboptimality” (critical points or KKT points) at iteration \(k \), with \(\Phi^* \) as the “optimal” value of the Lyapunov function.

\textbf{Proof.} We define the set of critical points for the Lyapunov function \(\Phi_{\beta_k}(W^k) \) as \(\omega(W^0) \) with \(W^0 = (X^0, X^0, Z^0, \lambda^0, \mu^0) \) as any given start point.

According to \textbf{Theorem} [1], we conclude that the sequence \(\{W^k\}_{k \in \mathbb{N}} \) generated by \textbf{Algorithm} [1] from any given initial point \(W^0 \) will converge to the set of critical points denoted by \(\omega(W^0) \neq \emptyset \).

Based on \textbf{Proposition} 7, \(\{W^k\}_{k \in \mathbb{N}} \) is bounded (convergent), and for any given initial point \(W^0 \), \(k \in +\infty \), there exist a limit point \(\bar{W} = (\bar{X}, \bar{Z}, \bar{\mu}, \bar{X}) \).

Since the Lyapunov function is continuous, we have
\[
\lim_{k \to +\infty} \Phi_{\beta_k}(W^k) = \Phi_{\bar{\beta}}(\bar{W}) \quad (26)
\]
As illustrated, \(\Phi_{\beta_k}(W^k) \) is lower bounded, i.e., \(\lim_{k \to +\infty} \Phi_{\beta_k}(W^k) \geq \infty \) and non-increasing w.r.t the iteration \(k \) (\textbf{Proposition} 9), thus we have
\[
\lim_{k \to +\infty} \Phi_{\beta_k}(W^k) = \Phi_{\bar{\beta}}(\bar{W}) = \Phi \quad (27)
\]
where \(\Phi \) denotes the limit of \(\Phi_{\beta_k}(W^k) \) from the initial point \(W^0 \).

The above implies that \(\Phi_{\beta_k}(W^k) \) is constant on \(\omega(W^0) \).

From \textbf{Theorem} [1] we have
\[
\lim_{k \to +\infty} \text{dist}(\nabla \Phi_{\beta_k}(W^k), 0) = 0
\]
That means \(\forall \varepsilon, \exists k_0 \in \mathbb{N} \) that \(\forall k \geq k_0 \),
\[
\text{dist}(\nabla \Phi_{\beta_k}(W^k), 0) \leq \varepsilon
\]

For notation, we denote \(\Phi^* \) as the limit of \(\Phi_{\beta_k}(W^k) \) on \(\omega(W^0) \). \(\Phi_{\beta_k}(W^k) \) is non-increasing w.r.t the iteration \(k \), thus \(\forall \eta \geq 0 \), there exist \(k_1 \in \mathbb{N} \) such that \(\forall k \geq k_1 \), we have
\[
\Phi_{\beta_k}(W^k) \leq \Phi^* + \eta
\]
Further, \(\forall k \geq \max\{k_0, k_1\} \), we have
\[
W^k \in \left\{ W : \text{dist}(\nabla \Phi_{\beta_k}(W^k), 0) \leq \varepsilon \right\} \quad (28)
\]
Since the Lyapunov function \(\Phi_{\beta_k}(W^k) \) possess the KL property, based on \textbf{Definition} 4, we have
\[
1 \leq \left[\varphi' \left(\Phi_{\beta_k}(W^k) - \Phi^* \right) \right]^2 \left[\text{dist}(0, \nabla \Phi_{\beta_k}(W^k)) \right]^2
\]
By combining (29) with \textbf{Proposition} 9 we have
\[
1 \leq \left[\varphi' \left(\Phi_{\beta_k}(W^k) - \Phi^* \right) \right]^2 2N\nu_{k-1} \left[\Phi_{\beta_k}(W^{k-1}) - \Phi_{\beta_{k+1}}(W^k) \right]
\]
Rearrange (30) based on \(\Delta^k = \Phi_{\beta_k}(W^k) - \Phi^* \), we have
\[
1 \leq \left[\varphi' \left(\Delta^k \right) \right]^2 \cdot 2N\nu_{k-1} \left[\Delta^{k-1} - \Delta^k \right]
\]
Regarding the desingularising function, we have \(\varphi'(t) = Ct^{\theta-1} \). Therefore, we can derive from (31) that
\[
1 \leq 2NC^2\nu_{k-1} \left(\Delta^k \right)^{2(\theta-1)} \cdot \left[\Delta^{k-1} - \Delta^k \right]
\]
(i) If \(\theta = 1 \), we have
\[
1 \leq 2NC^2\nu_{k-1} \cdot \left[\Delta^{k-1} - \Delta^k \right] \leq 0
\]
This above inequality is a contradiction and implies that the set \(\Omega_{\epsilon, \eta} = \emptyset \). In other word, \(\forall k \geq \max\{k_0, k_1\} \), we have \(\Delta^k = 0 \), i.e., \textbf{Algorithm} [1] terminates in finite iterations.

(ii) \(\theta \in (0, 1/2) \), we have \(1 < 2 \theta < 2 \).
\[
\left[\Delta^k \right]^2 \leq 2NC^2\nu_{k-1} \cdot \left[\Delta^{k-1} - \Delta^k \right] \cdot \left(\Delta^k \right)^{20}
\]
\[
\leq 2NC^2\nu_{k-1} \Delta^{k-1} \left(\Delta^k \right)^{20} - 2NC^2\nu_{k-1} \left(\Delta^k \right)^{1+20}
\]
Thus, we have
\[
\left[\Delta^k \right]^2 + 2NC^2\nu_{k-1} \left(\Delta^k \right)^{1+20}
\leq 2NC^2\nu_{k-1} \left(\Delta^k \right)^{20}
\]
Since \(\Delta^k \) is non-increasing (\textbf{Proposition} 8), there exist \(k_3 \in \mathbb{N} \) that \(\forall k \leq k_2 \), we have \(\Delta^{k-1} \geq \Delta^k \geq 1 \).

In this case, it’s easy to figure out that
\[
1 < 1 + 2\theta < 2, \quad 0 < 2\theta < 1
\]
\[
\left(\Delta^k \right)^2 \geq \left(\Delta^k \right)^{1+20}
\]
\[
\left(\Delta^k \right)^{20} \leq \left(\Delta^k \right)^{1+20}
\]
Therefore, we can derive from (34) that
\[
(1 + 2NC^2\nu_{k-1}) \left(\Delta^k \right)^{1+20}
\leq \left[\Delta^k \right]^2 + 2NC^2\nu_{k-1} \left(\Delta^k \right)^{1+20} \leq 2NC^2\nu_{k-1} \Delta^{k-1} \left(\Delta^k \right)^{20}
\leq 2NC^2\nu_{k-1} \left(\Delta^k \right)^{1+20}
\]
In this case, \(\forall \max\{k_0, k_1\} \leq k \leq k_2 \), we have
\[
\Delta^k \leq \left(\frac{2NC^2\nu_{k-1}}{1 + 2NC^2\nu_{k-1}} \right)^{\frac{\nu}{\kappa}} \Delta^{k-1}
\]
This implies \textbf{Algorithm} [1] shows linear convergence rate.
As mentioned, \(\forall k \geq k_3 \), we have \(0 \leq \Delta^k < 1 \). In this case, it’s straight forward that
\[
1 < 1 + 2\theta < 2
\]
\[
\left(\Delta^k \right)^2 \leq \left(\Delta^k \right)^{1+20}
\]
Similarly, we can derive from (34) that
\[
(1 + 2NC^2\nu_{k-1})(\Delta^k)^2 \leq [\Delta^k]^2 + 2NC^2\nu_{k-1}(\Delta^k)^{1+2\theta}
\leq 2NC^2\nu_{k-1}\Delta^{k-1}(\Delta^k)^{2\theta}
\]
(36)

This implies that
\[
(1 + 2NC^2\nu_{k-1})(\Delta^k)^{2-2\theta} \leq 2NC^2\nu_{k-1}\Delta^{k-1}
\]
(37)

Equivalently, \(\forall k \geq \max\{k_0, k_1, k_2\}\), we have
\[
\Delta^k \leq \left(\frac{2NC^2\nu_{k-1}}{1 + 2NC^2\nu_{k-1}}\right)^{\frac{1}{1-2\theta}} (\Delta^{k-1})^{\frac{1}{1-2\theta}}
\]
(38)

(iii) \(\theta \in [1/2, 1]\), \(\forall k \geq k_\delta \in \mathbb{R}\) that \(\forall k \geq k_3\), we have
\[
(\Delta^k)^{2(1-\theta)} \geq \Delta^k
\]
Therefore, \(\forall k \geq \max\{k_0, k_1, k_2\}\), we have
\[
\Delta^k \leq 2NC^2\nu_{k-1} \cdot (\Delta^{k-1} - \Delta^k)
\]
i.e.,
\[
\Delta^k \leq \frac{2NC^2\nu_{k-1}}{1 + 2NC^2\nu_{k-1}} \cdot \Delta^{k-1}
\]
In this case, Algorithm 1 presents linear convergence rate.

According to Theorem 1, the step-size should be selected to guarantee Condition (a). Nevertheless this is a challenging task to achieve efficiently in practice. To reduce computation and facilitate implementation, we can select the step-size by the backward linesearch procedures in Algorithm 2. \(\alpha\) denotes a small positive value that can be selected adaptively according to the problems.

Algorithm 2 Backward Linesearch for Stepsize
1: Initialization: \(c^0\).
2: Repeat:
3: 3: If
\[
g_i(\hat{X}^{k+1}, \lambda, \rho_k) + \alpha\|\hat{X}^{k+1} - \hat{X}^{k}\|^2 > g_i(\hat{X}^k, \lambda, \rho_k) + \langle \nabla \hat{X}_i g_i(\hat{X}^k, \lambda, \rho_k), \hat{X}^{k+1} - \hat{X}^{k}\rangle + \frac{\alpha}{2} \|\hat{X}^{k+1} - \hat{X}^{k}\|^2
\]
(39)
set \(c^{k+1}_i = c^k_i/\delta\) and go to Step 2, otherwise stop.
4: Output \(c^*_k\).

Corollary 1. Suppose the step-size \(c^*_i\) at each iteration \(k\) is selected according to Algorithm 2, the PLDM converges to the critical points of Problem 3.

Proof. Refer to Appendix C.

V. NUMERICAL EXPERIMENTS

This section illustrates the PLDM’s performance on (i) a simple numerical example with 2 agents and (ii) the application to multi-zone HVAC control. The numerical example helps illustrate the theoretical analysis and the application demonstrates its practical capabilities.

A. A Numerical Example

We consider a nonlinear and non-convex example with 2 agents given by
\[
\begin{align*}
\min_{x_1, x_2} & \quad x_1 + x_2 + \frac{1}{2} x_1^2 \cdot x_2^2 + \frac{1}{2} x_1 \cdot x_2 \\
\text{s.t.} & \quad x_1 \cdot x_2 = 2, \\
& \quad 0 \leq x_1 \leq 4, \\
& \quad 0 \leq x_2 \leq 5.
\end{align*}
\]
(40)

The problem is well-posed with the (local) optima \((2, 1)\). The problem is solved by using PLDM in a decentralized manner and our analysis is presented here.

\[
F_i(\hat{X}_i) = \left(\begin{array}{c}
\nabla \hat{X}_i h_i(\hat{X}_i) \\
A_i
\end{array}\right)
\]
\[
= \left(\begin{array}{c}
X_i(2) \\
2X_i(1)
\end{array}\right)
\]
\[
\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), \quad i = \{1, 2\}.
\]

Note that \(F_i(\hat{X}_i)\) has row full rank and regular with \(X_i \neq 0\). This implies the satisfaction of assumption (A4), which closely related to the convergence. The trajectory of the local decision variable sequence \(\{X_i\}_{k \in \mathbb{R}}\) is shown in Fig. 2. Fig. 3 shows the subgradients of AL function, i.e., \(\|
\nabla \hat{X}_i g_i(\hat{X}^k, \lambda, \mu_k)\|\) and the Lyapunov function, i.e., \(\|
\nabla \Phi_{\lambda_k}(W^k)\|\) converging to zero w.r.t the iteration \(k\). This additionally demonstrates the PLDM’s convergence property illustrated in Theorem 1.

In addition, we study the PLDM’s convergence rate by closely inspecting the Lyapunov function \(\Phi_{\lambda_k}(W^k)\) w.r.t the iteration \(k\). As shown in Fig. 4, we see that the Lyapunov function \(\Phi_{\lambda_k}(W^k)\) approximately decrease w.r.t the iteration \(k\) until the optima \(\Phi^*\) is reached.

B. Application: Multi-zone HVAC Control

This section presents the PLDM’s application to multi-zone HVAC control, which has raised extensive discussion among the research communities. The general formulation for designing a model predictive controller (MPC) to minimize
the HVAC’s energy cost while guaranteeing thermal comfort is exhibited in (40) with constraints imposed by (i) zone thermal dynamics (coupled, nonlinear and nonconvex) (41a), (ii) comfortable temperature ranges (41b), and (iii) operation limits of the local variable air box (41c). Readers are referred to [10, 58, 59] for the detailed problem formulation and notations.

\[
\begin{align*}
\min_{m_t^+, t^i} J &= \sum_{i=0}^{H-1} \left(c_p (1 - d_r) \sum_{k=1}^{I} m^2 \left(T_{i+1}^k - T_i^k \right) + c_p d_r \sum_{k=1}^{I} m^2 \left(T_{i+1}^k - T_i^k \right) + \kappa_f \cdot \left(\sum_{k=1}^{I} m^2 \right)^3 \right) \cdot \Delta t \tag{40}
\end{align*}
\]

s.t. \(T_{i+1}^k = A_i T_i^k + \sum_{j \in N_i} A_{ij} T_j^k + C_{ii} m^2 \left(T_{i+1}^k - T_i^k \right) + D_i \), \((41a) \)

\[
T_i^k \leq T_i^k \leq T^i \tag{41b}
\]

\[
m^2 \leq m_i^2 \leq \overline{m}^2, \quad \forall i \in I, \ t = 0, 1, \ldots, H. \tag{41c}
\]

One can see that the control of the multi-zone HVAC system requires solving a nonlinear and nonconvex optimization problem with coupled nonlinear constraints. Centralized optimization methods are not scalable or computationally viable and therefore decentralized methods become imperative. However, the existing decentralized methods can not be adapted due to the non-linearity and non-convexity both from the objective function and the constraints.

In this part, we resort to the proposed PLDM. We first consider a building with \(I = 10 \) zones and randomly generate a network to denote the thermal couplings among the different zones. The comfortable zone temperature ranges and the maximum zone mass flow rate are set as [24, 26]°C and \(\overline{m}^2 = 0.5kg/s \). The other parameter settings can refer to [58]. When the PLDM method is applied, the zone temperature and zone mass flow rates for two randomly picked zones (Zone 1 and 8) are shown in Fig. 5 (a) and 5 (b). We note that both the zone temperature and zone mass flow rates are maintained within the setting ranges. This implies the feasibility of the solutions. Besides, by observing the residual error w.r.t the iterations in Fig. 5 (c), we can imply the fast convergence rate of the PLDM. Further, to evaluate the sub-optimality of local optima under the PLDM with some initial start points, we compare the results with a centralized method in case studies with \(I \in \{10, 20\} \) zones. In the centralized method, the optimal solutions can be obtained by solving the non-linear and non-convex problem (40) using Ipopt solver. As shown in Fig. 5 (d), while benchmarking the centralized method (optimal cost is 1), the sub-optimality of the local optima under the PLDM is less than 10%. This implies that the PLDM can approach a satisfactory local optima for non-linear and non-convex problems for some randomly picked initial points. In principle, the global optima for the non-linear problems can be approached by scattering enough initial points. However, some local optima with favorable performance and feasibility guarantee are generally enough in practice.

VI. CONCLUSION

This paper investigated decentralized optimization on a class of non-convex problems structured by: (i) nonconvex global objective function (possibly nonsmooth) and (ii) local bounded convex constraints and coupled nonlinear constraints. Such problems arise from a variety of applications (e.g., smart grid and smart buildings, etc), which demand for efficient and scalable computation. To solve such challenging problems, we proposed a Proximal Linearization-based Decentralized Method (PLDM) under the augmented Lagrangian-based framework. Deviating from conventional augmented Lagrangian-based methods which require exact joint optimization of different decision variable blocks (local optima), the proposed method capitalized on proximal linearization technique to update the decision variables at each iteration, which makes it computationally efficient in the presence of non-linearity. Both the global convergence and the local convergence rate of the PLDM’s to the e-critical points of the problem were discussed based on the Kurdyka-Łojasiewicz property and some standard assumptions. In addition, the PLDM’s performance was
illustrated on academic and application examples in which the convergence was observed. Applying PLDM to emerging applications and eliminating consensus variables are the future work to be explored.

APPENDIX A

PROOF OF PROPOSITION 1-8

A. Proof of Proposition 1

Proof. We illustrate the proposition by contradiction. We assume \(\forall k \in \mathbb{N} \), we have

\[
\sum_{i=1}^{N} \|h_i(X_i^k)\| > \eta > 0 \tag{42}
\]

In this case, we have \(\rho_k \) kept increasing, i.e., \(\rho_k \to +\infty \). Based on \(\lambda_i^k = \lambda_i^{k-1} + \rho_{k-1} h_i(X_i^k) \), we have

\[
\sum_{i=1}^{N} \|h_i(X_i^k)\| = \frac{1}{\rho_{k-1}} \sum_{i=1}^{N} \|\lambda_i^k - \lambda_i^{k-1}\| \leq \sum_{i=1}^{N} M_{\lambda_i} \tag{43}
\]

\(\{\lambda_i^k\}_{k \in \mathbb{N}} \) is assumed bounded, see (A6)

The above implies that

\[
\lim_{k \to +\infty} \sum_{i=1}^{N} \|h_i(X_i^k)\| \to 0 \tag{44}
\]

One may note that (42) and (43) contradict each other. Thus, we conclude that there exist \(\bar{k} \) such that

\[
\sum_{i=1}^{N} \|h_i(X_i^k)\| \leq \sum_{i=1}^{N} M_{\lambda_i} \tag{45}
\]

\(\{X_i^k\}_{k \in \mathbb{N}, k \geq \bar{k}} \in \bar{X}_i^\eta \) (i \(\in \) N).

Further, based on the adaptive procedure of PLDM, we have \(\rho_k = \rho_k, \forall k \geq \bar{k} \).\(\Box \)

B. Proof of Proposition 2

Proof. Since \(h_i \) is twice differentiable, we have \(h_i(X_i) \) and \(\nabla X_i h_i(X_i) \) are continuous and bounded over the bounded set \(\bar{X}_i^\eta \). In addition, we have \(\rho_k \leq \rho_\bar{k} \) (\(\forall k \in \mathbb{N} \)), thus

\[
\|h_i(X_i)\| \leq \rho_\bar{k} C_{h_i} \leq +\infty \quad (\forall k \in \mathbb{N})
\]

where \(C_{h_i} \) is upper bound of \(\|\nabla X_i h_i(X_i)\| \) over \(\bar{X}_i^\eta \). Besides, we have

\[
\nabla X_i g_i(X_i^k, \lambda_i^k, \rho_k) = \nabla X_i \tilde{f}_i(X_i) + \nabla X_i \phi_i(X_i)
\]

\[
+ (\nabla X_i h_i(X_i)\) \tag{46}
\]

\[
\nabla Y_i g_i(X_i^k, \lambda_i^k, \rho_k) = 2 M_i Y_i.
\]

As \(\tilde{f}_i \), \(\phi_i \) and \(h_i \) are Lipschitz continuous w.r.t \(X_i \) (or \(\bar{X}_i \)) with constant \(L_{\tilde{f}_i}, L_{\phi_i}, \) and \(L_{h_i}, \{\lambda_i^k\}_{k \in \mathbb{N}} \) upper bounded by \(M_{\lambda_i} \) (see (A6)), we conclude that

\[
\|\nabla X_i g_i(X_i^k, \lambda_i^k, \rho_k)\| \leq L_{g_i} \quad \forall k \in \mathbb{N}
\]

where we have \(L_{g_i} = \max\{L_{\tilde{f}_i}, L_{\phi_i}, M_{\lambda_i}, L_{h_i}, \rho_\bar{k} C_{h_i}, 2 M_i\} \).

That is, \(g_i(X_i^k, \lambda_i^k, \rho_k) \) (\(\forall k \in \mathbb{N} \)) is Lipschitz continuous w.r.t \(X_i \) over \(\bar{X}_i^\eta \) with constant \(L_{g_i} \).\(\Box \)

C. Proof of Proposition 3

Proof. Based on subproblem (10), it’s straightforward that

\[
\sum_{i=1}^{N} (\mu_i^k)^T (A_i \tilde{X}_i^k - E_i Z^{k+1}) + \sum_{i=1}^{N} \frac{\rho_k}{2} \|A_i \tilde{X}_i^k - E_i Z^{k+1}\|^2 \leq \sum_{i=1}^{N} (\mu_i^k)^T (A_i \bar{X}_i^k - E_i Z^k) + \sum_{i=1}^{N} \frac{\rho_k}{2} \|A_i \bar{X}_i^k - E_i Z^k\|^2 \tag{47}
\]

Subproblem (11) is equivalent to

\[
\tilde{X}_i^{k+1} \in \text{prox}_{\sigma_i^k} \left(\bar{X}_i^k - \frac{1}{c_i^k} \nabla_i g_i(\bar{X}_i^k, \lambda_i^k, \rho_i^k) \right)
\]

where we have \(\sigma_i^k(\bar{X}_i) = (\mu_i^k)^T (A_i \bar{X}_i^k - E_i Z^k) + \frac{\rho_k}{2} \|A_i \bar{X}_i^k - E_i Z^k\|^2 \).

Thus, by invoking Lemma 2 we have

\[
\sum_{i=1}^{N} g_i(\tilde{X}_i^{k+1}, \lambda_i^k, \rho_k) + (\mu_i^k)^T (A_i \tilde{X}_i^{k+1} - E_i Z^{k+1})
\]

\[
+ \frac{\rho_k}{2} \|A_i \tilde{X}_i^{k+1} - E_i Z^{k+1}\|^2 \leq \sum_{i=1}^{N} (\mu_i^k)^T (A_i \bar{X}_i^k - E_i Z^k) + \frac{\rho_k}{2} \|A_i \bar{X}_i^k - E_i Z^k\|^2 + \frac{1}{2} (c_i^k - L_{g_i}) \|\tilde{X}_i^{k+1} - \bar{X}_i^k\|^2, \forall i \in \mathbb{N}.
\]

Thus, by summing up (47) and (46) for \(\forall i \in \mathbb{N} \), we have

\[
\sum_{i=1}^{N} g_i(\bar{X}_i^{k+1}, \lambda_i^k, \rho_k) + \sum_{i=1}^{N} (\mu_i^k)^T (A_i \bar{X}_i^{k+1} - E_i Z^{k+1})
\]

\[
+ \sum_{i=1}^{N} \frac{\rho_k}{2} \|A_i \bar{X}_i^{k+1} - E_i Z^{k+1}\|^2 \leq \sum_{i=1}^{N} (\mu_i^k)^T (A_i \bar{X}_i^k - E_i Z^k) + \frac{\rho_k}{2} \|A_i \bar{X}_i^k - E_i Z^k\|^2
\]

\[
+ \sum_{i=1}^{N} \frac{\rho_k}{2} \|A_i \bar{X}_i^k - E_i Z^k\|^2 + \frac{1}{2} (c_i^k - L_{g_i}) \|\tilde{X}_i^{k+1} - \bar{X}_i^k\|^2 \tag{48}
\]

Thus, Proposition 3 can be concluded by removing the same terms from both sides of (48).\(\Box \)

D. Proof of Proposition 4

Proof. As subproblem (11) is QP, based on the first-order optimality condition and \(\mu_i^k = \mu_i^k + \rho_k (A_i \bar{X}_i^{k+1} - E_i Z^{k+1}) \), we have

\[
\nabla X_i g_i(\bar{X}_i^k, \lambda_i^k, \rho_k) + \mu_i^{k+1} + c_i^k (\bar{X}_i^{k+1} - \bar{X}_i^k) = 0 \tag{49}
\]
Besides, we have
\[\nabla_x L_{p_2}(\bar{X}^{k+1}, Z^{k+1}, \lambda^k, \mu^k) = \nabla_x g_i(\bar{X}_i^{k+1}, \lambda_i^k, \rho_{\mu_i}) + \mu_i^{k+1} \]
(49)

By combining (48) and (49), we have
\[\|\nabla_x L_{p_2}(\bar{X}^{k+1}, Z^{k+1}, \lambda^k, \mu^k)\| \leq \|\nabla_x g_i(\bar{X}_i^{k+1}, \lambda_i^k, \rho_{\mu_i}) - \nabla_x g_i(\bar{X}_i^{k+1}, \lambda_i^k, \rho_{\mu_i}) - c_i^k \|\|\lambda_i^{k+1} - \lambda_i^k\|\| \]
(50)
where the last inequality is concluded from Proposition 2.

E. Proof of Proposition 5

Proof. For notation, we define
\[\Delta_k^\lambda = (\nabla_x h_i(\bar{X}_i^{k+1}) O_{h_i})^T \lambda_i^{k+1} - (\nabla_x h_i(\bar{X}_i^{k}) O_{h_i})^T \lambda_i^k \]
\[\Delta_k^\mu = (A_i)^T \mu_i^{k+1} - (A_i)^T \mu_i^k \]

First, we have
\[\|\Delta_k^\lambda + \Delta_k^\mu\| = \|\{F_i(\bar{X}_i^{k+1})\}^T \gamma_i^{k+1} - \{F_i(\bar{X}_i^{k})\}^T \gamma_i^k\| \]
(51)
where we have \[F_i(\bar{X}_i) = \left(\begin{array}{c} \nabla_x h_i(X_i) \\ O_{h_i} \end{array}\right) \] and \[\gamma_i = ((\lambda_i)^T, (\mu_i)^T)^T \] as defined.

According to (A6), we have \[\|\gamma_i\|^2 = \|\lambda_i^k\|^2 + \|\mu_i^k\|^2 \leq \|\lambda_i^k\|^2 + \|\mu_i^k\|^2 \quad (\forall k \in N) \]
(52)
with \[M_{\gamma_i} = \sqrt{\|\lambda_i^k\|^2 + \|\mu_i^k\|^2}. \]

Besides, according to (A1), we have
\[\|F_i(X_i^{k+1}) - F_i(X_i^k)\| = \|\nabla_x h_i(X_i^{k+1}) - \nabla_x h_i(X_i^k)\| \]
(53)

Based on (52), (53) and (A5), we can derive from (51) that
\[\|\Delta_k^\lambda + \Delta_k^\mu\| \geq \theta \|\gamma_i^{k+1} - \gamma_i^k\| - M_{h_i} M_{\gamma_i} \|\bar{X}_i^{k+1} - \bar{X}_i^k\|^2 \]
(54)
Meanwhile, we have
\[\|\Delta_k^\lambda + \Delta_k^\mu\| = \|\{F_i(\bar{X}_i^{k+1})\}^T \gamma_i^{k+1} - \{F_i(\bar{X}_i^{k})\}^T \gamma_i^k\| \]
\[= \|\nabla X_i g_i(\bar{X}_i^{k+1}, \lambda_i^k, \rho_{\mu_i}) - (A_i)^T \mu_i^{k+1} \]
\[+ (\nabla X_i g_i(\bar{X}_i^{k+1}, \lambda_i^k, \rho_{\mu_i}) - (A_i)^T \mu_i^{k+1}) \]
\[+ (\nabla X_i \phi_i(\lambda_i^k) - \nabla X_i \phi_i(\lambda_i^k)) \]
\[+ (\nabla X_i \phi_i(\mu_i^k) - \nabla X_i \phi_i(\mu_i^k)) \]
\[\leq \|\nabla X_i L_{p_2}(\bar{X}_i^{k+1}, \lambda_i^k, \mu_i^k)\| \]
\[+ \|\nabla X_i L_{p_2}(\bar{X}_i^k, \lambda_i^k, \mu_i^k)\| \]
\[+ \|\nabla X_i \phi_i(\lambda_i^k) - \nabla X_i \phi_i(\lambda_i^k)\| \]
\[+ \|\nabla X_i \phi_i(\mu_i^k) - \nabla X_i \phi_i(\mu_i^k)\| \]
(55)
where the last equality is derived from Proposition 4 and (A2)-(A3).

By combining (54) and (55), we have
\[\|\gamma_i^{k+1} - \gamma_i^k\| \leq \Omega_1 \|\bar{X}_i^{k+1} - \bar{X}_i^k\| + \Omega_2 \|\bar{X}_i - \bar{X}_i^k\|^2 \]
(56)
where \[\Omega_1 = (L_{g_i} + c_i^k + L_f_i + L_{\phi_i}) \] and \[\Omega_2 = (L_{g_i} + c_i^k)/\theta \quad (i \in N). \]

F. Proof of Proposition 6

Proof. First, based on \[h_i(\bar{X}_i^{k+1}) = \frac{1}{\rho_k} (\lambda_i^{k+1} - \bar{X}_i^k) \]
and \[(A_i) \bar{X}_i^{k+1} = (E_i) (\bar{X}_i^{k+1}) \]
we have
\[\|\mu_k(\bar{X}_i^{k+1}, \lambda_i^{k+1}, \mu_i^{k+1}) - \mu_k(\bar{X}_i^{k+1}, \lambda_i^k, \mu_i^k)\| \]
\[= \frac{1}{\rho_k} \left(\sum_{i=1}^N \|\lambda_i^{k+1} - \lambda_i^k\|^2 + \sum_{i=1}^N \|\mu_i^{k+1} - \mu_i^k\|^2 \right) \]
(56)
where the last inequality is derived by invoking Proposition 5 and the Cauchy-Schwarz inequality \((a + b)^2 \leq 2(a^2 + b^2) \).

Further, by combining (10) with (56), we have
\[\|\mu_k(\bar{X}_i^{k+1}, \lambda_i^{k+1}, \mu_i^{k+1}) - \mu_k(\bar{X}_i^{k+1}, \lambda_i^k, \mu_i^k)\| \]
\[\geq \sum_{i=1}^N \left(\frac{1}{\rho_k} (\beta_k - 2(\Omega_2)^2 \rho_k) \|\bar{X}_i^{k+1} - \bar{X}_i^k\|^2 \right) \]
\[+ \sum_{i=1}^N \left(\frac{1}{\rho_k} (\beta_k - 2(\Omega_2)^2 \rho_k) \|\bar{X}_i^{k+1} - \bar{X}_i^k\|^2 \right) \]
Thus, we have
\[\Phi_{\beta_k}(W_k^k) - \Phi_{\beta_{k+1}}(W_{k+1}) \geq \sum_{i=1}^N \left(\frac{1}{\rho_k} (\beta_k - 2(\Omega_2)^2 \rho_k) \|\bar{X}_i^{k+1} - \bar{X}_i^k\|^2 \right) \]
\[+ \sum_{i=1}^N \left(\frac{1}{\rho_k} (\beta_k - 2(\Omega_2)^2 \rho_k) \|\bar{X}_i^{k+1} - \bar{X}_i^k\|^2 \right) \]
Proposition 6 is concluded.

G. Proof of Proposition 7

Proof. According to Proposition 6, for \(k \in [\bar{k}, \bar{k} - 1] \) \((k \in \mathbb{R}, \bar{k} > \bar{k}) \), we have
\[\Phi_{\beta_k}(W_k^k) - \Phi_{\beta_k}(W_{k+1}) \geq \sum_{k=\bar{k}}^{\bar{k}-1} b_k k \|\bar{X}_i^{k+1} - \bar{X}_i^k\|^2 \]
(57)

\[+ \sum_{k=\bar{k}}^{\bar{k}-1} \left(b_k k \|\bar{X}_i^{k+1} - \bar{X}_i^k\|^2 \right. \]
\[\geq \sum_{k=\bar{k}}^{\bar{k}-1} \left(b_k k \|\bar{X}_i^{k+1} - \bar{X}_i^k\|^2 \right. \]
\[+ b_k \sum_{k=\bar{k}}^{\bar{k}-1} \|\bar{X}_i^{k+1} - \bar{X}_i^k\|^2 \]
where \(b_1 = \min_{k \in \{1, \ldots, k - 1\}} b_k^k \) and \(b_2 = \min_{k \in \{1, \ldots, k - 1\}} b_k^k \).

Since \(\Phi_{\beta_k}^\kappa(W^k) \geq \inf_{x, z} \mu_k \sup_{k \in \{1, \ldots, k - 1\}} \sum_{i} \| x - z \|^2 \geq b_1 + b_2 \),

Let \(k \to +\infty \), we have

\[
\frac{b_1}{+\infty} \sum_{k=1}^{+\infty} \| X^{k+1} - X^k \|^2 + b_2 \sum_{k=1}^{+\infty} \| X^{k+1} - X^{k-1} \|^2 \leq \Phi_{\beta_k}^\kappa(W^k) - \lim_{k \to +\infty} \Phi_{\beta_k}^\kappa(W^k) < +\infty
\]

If Condition \((a) \) is satisfied, we have \(b_1, b_2 > 0 \), thus

\[
\sum_{k=1}^{+\infty} \| X^{k+1} - X^k \|^2 < \infty
\]

This above implies

\[
lm_{k \to +\infty} \| X^{k+1} - X^k \| \to 0
\]

Further, based on Proposition \(\S \) we have

\[
\lm_{k \to +\infty} \| \gamma^{k+1} - \gamma^k \| \to 0,
\]

\[
\lm_{k \to +\infty} \| \lambda^{k+1} - \lambda^k \| \to 0,
\]

\[
\lm_{k \to +\infty} \| \mu^{k+1} - \mu^k \| \to 0, \quad \forall i \in \mathcal{N}.
\]

\[\Box\]

\textbf{H. Proof of Proposition 8}

\textbf{Proof.} (i) the subgradients of \(\Phi_{\beta_k+1}(W^{k+1}) \) w.r.t. \(X_i \):

\[
\| \nabla X_i \Phi_{\beta_k+1}(W^{k+1}) \|
\]

\[
= \| \nabla X_i \mu_k \| (X^{k+1} - Z^{k+1}, X^{k+1}, \lambda^{k+1}, \mu^{k+1}) + 2\beta_k+1(X^{k+1} - X^k) \|
\]

\[
= \| \nabla X_i \mu_k \| (X^{k+1} - Z^{k+1}, X^{k+1}, \lambda^{k+1}, \mu^{k+1} + \frac{1}{N} \sum_{i=1}^{N} (E_i)^T A_i (X^{k+1} - X^k) \|
\]

\[
\leq (L_{\beta_k+1} + c_k^l) \| X^{k+1} - X^k \| + B \| \gamma^{k+1} - \gamma^k \| + 2\beta_{k+1} \| X^{k+1} - X^k \|
\]

\[
\leq (L_{\beta_k+1} + c_k^l + \lambda^k B + 2\beta_{k+1}) \| X^{k+1} - X^k \|
\]

where the first inequality is derived from Proposition \(\S \) and the definition \(B = \sup_{k \geq k} \| F_i(X^{k+1}) \| \). The second inequality is derived by invoking Proposition \(\S \).

(ii) the subgradients of \(\Phi_{\beta_k+1}(W^{k+1}) \) w.r.t. \(Z \):

\[
\nabla Z \Phi_{\beta_k+1}(W^{k+1})
\]

\[
= \nabla Z \mu_k \| (X^{k+1} - Z^{k+1}, X^{k+1}, \lambda^{k+1}, \mu^{k+1}) + N_X(Z)
\]

\[
= - \sum_{i=1}^{N} (E_i)^T A_i \mu_{k+1} + N_X(Z^{k+1})
\]

Based on the first-order optimality condition of subproblem \(\[\], we have

\[
\sum_{i=1}^{N} (E_i)^T A_i \mu_{k+1} - \sum_{i=1}^{N} \rho_k (E_i)^T (A_i X^k - E_i Z^{k+1}) + N_X(Z^{k+1}) = 0
\]

Further, based on \(\mu_{k+1}^k = \mu_k^k + \rho_k \| A_i X^k - E_i Z^{k+1} \| \) and by rearranging \((64) \), we have

\[
- \sum_{i=1}^{N} (E_i)^T \mu_{k+1} + N_X(Z^{k+1})
\]

\[
= \sum_{i=1}^{N} \rho_k (E_i)^T (A_i X^k - A_i X^k)
\]

By combining \((63) \) with \((65) \), we have

\[
\| \nabla Z \Phi_{\beta_k+1}(W^{k+1}) \|
\]

\[
= \sum_{i=1}^{N} (E_i)^T A_i (X^{k+1} - X^k) \|
\]

\[
\leq \rho_k \sum_{i=1}^{N} (E_i)^T A_i (X^{k+1} - X^k) \|
\]

where \(\lambda_{\text{max}}((E_i)^T A_i) \) denotes the maximum eigenvalue of matrix \((E_i)^T A_i \).

(iii) the subgradients of \(\Phi_{\beta_k+1}(W^{k+1}) \) w.r.t. the Lagrangian multipliers \(\lambda \) and \(\mu \):

\[
\nabla \lambda_i \Phi_{\beta_k+1}(W^{k+1}) = \rho_k h_i (X^{k+1}) - \lambda^{k+1}_i - \lambda^k_i
\]

\[
\nabla \mu_i \Phi_{\beta_k+1}(W^{k+1}) = A_i X^{k+1} - E_i Z^{k+1} - \mu^{k+1}_i - \mu^k_i
\]

Based on Proposition \(\S \) we have

\[
\| \nabla \lambda_i \Phi_{\beta_k+1}(W^{k+1}) \|
\]

\[
\leq \frac{\rho_k}{\rho_k} \| X^{k+1} - X^k \| + \frac{\rho_k}{\rho_k} \| X^k - X^{k-1} \|
\]

(iv) the subgradients of \(\Phi_{\beta_k+1}(W^{k+1}) \) w.r.t. \(U \):

\[
\| \nabla U \Phi_{\beta_k+1}(W^{k+1}) \|
\]

By combining \((62), (66), (68) \) and \((70) \), we have

\[
\| \nabla \Phi_{\beta_k+1}(W^{k+1}) \|
\]

\[
\leq \frac{\rho_k}{\rho_k} \sum_{i=1}^{N} \| X^{k+1} - X^k \| + \frac{\rho_k}{\rho_k} \sum_{i=1}^{N} \| X^k - X^{k-1} \|
\]

Proposition 8 is concluded. \(\Box \)

\textbf{APPENDIX B}

\textbf{PROOF OF PROPOSITION 9}

\textbf{Proof.} By invoking Proposition \(\S \) and the Cauchy–Schwarz inequality \((\sum_{i=1}^{N} x_i^2)^2 \leq (\sum_{i=1}^{N} x_i^2)^2 \)

\[
\left[\text{dist}(\nabla \Phi_{\beta_k+1}(W^{k+1}), 0) \right]^2 \leq 2N(b_i^{k+1})^2 \sum_{i=1}^{N} \| X^{k+1} - X^k \|^2
\]

\[
+ 2N(b_i^{k+1})^2 \sum_{i=1}^{N} \| X^k - X^{k-1} \|^2
\]

(71)
Besides, according to Proposition 6 we have
\[\Phi_{\beta_k}(W^k) - \Phi_{\beta_{k+1}}(W^{k+1}) \]
\[\geq b_k^2 \sum_{i=1}^N \|X_{i+1}^k - \check{X}_i^k\|^2 + b_2^2 \sum_{i=1}^N \|\bar{X}_i^k - X_{i-1}^k\|^2 \]
(72)

Thus, by combining (71), (72) and Condition (b), we have
\[\left[\text{dist} (\nabla \Phi_{\beta_{k+1}}(W^{k+1}), 0) \right]^2 \]
\[\leq 2N\nu_k \left(\Phi_{\beta_k}(W^k) - \Phi_{\beta_{k+1}}(W^{k+1}) \right) \]
(73)

APPENDIX C

PROOF OF COROLLARY 1

Proof. If the stepsize \(c_i^k \) is selected according to Algorithm 1, we have
\[g_i(\check{X}_i^{k+1}, \lambda^k, \rho_k) + \alpha \|\check{X}_i^{k+1} - \hat{X}_i^k\|^2 \]
\[\leq g_i(\check{X}_i^k, \lambda^k, \rho_k) + \langle \nabla X_i g_i(\check{X}_i^k, \lambda^k, \rho_k), \check{X}_i^{k+1} - \hat{X}_i^k \rangle \]
\[+ \frac{c_i^k}{2} \|\check{X}_i^{k+1} - \hat{X}_i^k\|^2 \]
(74)

Based on subproblem (a), we have
\[(\mu_i^k)^T (A_i(\check{X}_i^{k+1} - E_iZ_j^{k+1}) + \frac{\rho_k}{2} \|A_i(\check{X}_i^{k+1} - E_iZ_j^{k+1})\|^2 \]
\[g_i(\check{X}_i^{k+1}, \lambda^k, \rho_k) + \alpha \|\check{X}_i^{k+1} - \hat{X}_i^k\|^2 \]
\[\leq (\mu_i^k)^T (A_i(\check{X}_i^k - E_iZ_j^{k+1}) + \frac{\rho_k}{2} \|A_i(\check{X}_i^k - E_iZ_j^{k+1})\|^2 \]
\[+ g_i(\check{X}_i^k, \lambda^k, \rho_k) \]
(75)

By combining (74) with (75), we have
\[(\mu_i^k)^T (A_i(\check{X}_i^{k+1} - E_iZ_j^{k+1}) + \frac{\rho_k}{2} \|A_i(\check{X}_i^{k+1} - E_iZ_j^{k+1})\|^2 \]
\[+ \langle \nabla X_i g_i(\check{X}_i^k, \lambda^k, \rho_k), \check{X}_i^{k+1} - \hat{X}_i^k \rangle + \frac{c_i^k}{2} \|\check{X}_i^{k+1} - \hat{X}_i^k\|^2 \]
\[\leq (\mu_i^k)^T (A_i(\check{X}_i^k - E_iZ_j^{k+1}) + \frac{\rho_k}{2} \|A_i(\check{X}_i^k - E_iZ_j^{k+1})\|^2 \]
(76)

By summing up (76) for all \(i \in N \), we have
\[\|\rho_k(\check{X}_i^{k+1}, Z_j^{k+1}, \lambda^k, \mu^k) + \alpha \|\check{X}_i^{k+1} - \hat{X}_i^k\|^2 \]
\[\leq \|\rho_k(\check{X}_i^k, Z_j^{k+1}, \lambda^k, \mu^k) \]
(77)

In this case, the convergence of PLDM can be illustrated analogously following Theorem 1 by replacing \(\frac{1}{2} (c_i^k - L_{g_i}) \) with \(\alpha \). Also, to guarantee Condition (a): \(\alpha \) should be selected and satisfy \(\alpha \geq \frac{4\nu_1^2}{\rho_2^2} + 4\beta_{k+1} \).

REFERENCES

[1] Y. Yang, Q.-S. Jia, G. Deconinck, X. Guan, Z. Qiu, and Z. Hu, “Distributed coordination of ev charging with renewable energy in a microgrid of buildings,” IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 6253–6264, 2017.

[2] Y. Yang, Q.-S. Jia, X. Guan, X. Zhang, Z. Qiu, and G. Deconinck, “Decentralized ev-based charging optimization with building integrated wind energy,” IEEE Transactions on Automation Science and Engineering, vol. 16, no. 3, pp. 1002–1017, 2018.

[3] Y. Yang, Q.-S. Jia, and X. Guan, “Stochastic coordination of aggregated electric vehicle charging with on-site wind power at multiple buildings,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 4434–4439, IEEE, 2017.

[4] Y. Yang, Q.-S. Jia, and X. Guan, “The joint scheduling of ev charging load with building mounted wind power using simulation-based policy improvement,” in 2016 International Symposium on Flexible Automation (ISFA), pp. 165–170, IEEE, 2016.

[5] T. Long, Q.-S. Jia, G. Wang, and Y. Yang, “Efficient real-time ev charging scheduling via ordinal optimization,” IEEE Transactions on Smart Grid, vol. 12, no. 5, pp. 4029–4038, 2021.

[6] Y. Yang, Y. Chen, G. Hu, and C. J. Spanos, “Optimal network charge for peer-to-peer energy trading: A grid perspective,” arXiv preprint arXiv:2205.01945, 2022.

[7] Y. Chen, Y. Yang, and X. Xu, “Towards transactive energy: An analysis of information-related practical issues,” Energy Conversion and Economics, vol. 3, no. 3, pp. 112–121, 2022.

[8] Y. Yang, G. Hu, and C. J. Spanos, “Optimal sharing and fair allocation of community energy storage,” IEEE Transactions on Smart Grid, vol. 12, no. 5, pp. 4185–4194, 2021.

[9] Y. Yang, U. Agwan, G. Hu, and C. J. Spanos, “Selling renewable utilization service to consumers via cloud energy storage,” arXiv preprint arXiv:2012.14650, 2020.

[10] N. Radhakrishnan, Y. Su, R. Su, and K. Poolla, “Token based scheduling for energy management in building hvac systems,” Applied energy, vol. 173, pp. 67–79, 2016.

[11] Y. Yang, G. Hu, and C. J. Spanos, “Hvac energy cost optimization for a multizone building via a decentralized approach,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 1950–1960, 2020.

[12] Y. Yang, S. Srinivasan, G. Hu, and C. J. Spanos, “Distributed control of multizone hvac systems considering indoor air quality,” IEEE Transactions on Control Systems Technology, vol. 30, no. 1, pp. 376–383, 2021.

[13] Y. Yang, G. Hu, and C. J. Spanos, “Stochastic optimal control of hvac system for energy-efficient buildings,” IEEE Transactions on Control Systems Technology, vol. 29, no. 6, pp. 2586–2597, 2021.

[14] D. Yuan, D. W. Ho, and S. Xu, “Regularized primal-dual subgradient method for distributed constrained optimization,” IEEE Trans. Cybernetics, vol. 46, no. 9, pp. 2109–2118, 2016.
“Distributed optimization and statistical learning via the alternating direction method of multipliers,” *Foundations and Trends® in Machine learning*, vol. 3, no. 1, pp. 1–122, 2011.

[17] S. Maharjan, Z. Zhu, Y. Zhang, S. Gjessing, and T. Baṣar, “Demand response management in the smart grid in a large population regime,” *IEEE Transactions on Smart Grid*, vol. 7, no. 1, pp. 189–199, 2016.

[18] A. Cherukuri and J. Cortés, “Distributed coordination of ders with storage for dynamic economic dispatch,” *IEEE Transactions on Automatic Control*, vol. 63, no. 3, pp. 835–842, 2018.

[19] D. P. Bertsekas, “Nonlinear programming,” *Journal of the Operational Research Society*, vol. 48, no. 3, pp. 334–334, 1997.

[20] K. Khamaru and M. J. Wainwright, “Convergence guarantees for a class of non-convex and non-smooth optimization problems,” *arXiv preprint arXiv:1804.09629*, 2018.

[21] S. Lacoste-Julien, “Convergence rate of frank-wolfe for non-convex objectives,” *arXiv preprint arXiv:1607.00345*, 2016.

[22] J. Zeng and W. Yin, “On nonconvex decentralized gradient descent,” *IEEE Transactions on signal processing*, vol. 66, no. 11, pp. 2834–2848, 2018.

[23] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized minimization for nonconvex and nonsmooth problems,” *Mathematical Programming*, vol. 146, no. 1-2, pp. 459–494, 2014.

[24] Y. Xu and W. Yin, “A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion,” *SIAM Journal on imaging sciences*, vol. 6, no. 3, pp. 1758–1789, 2013.

[25] B. Gu, D. Wang, Z. Huo, and H. Huang, “Inexact proximal gradient methods for non-convex and non-smooth optimization,” in *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018.

[26] M. Nikolova and P. Tan, “Alternating structure-adapted proximal gradient descent for nonconvex block-regularised problems,” 2018.

[27] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, “Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-lojasiewicz inequality,” *Mathematics of Operations Research*, vol. 35, no. 2, pp. 438–457, 2010.

[28] D. Davis and W. Yin, “Convergence rate analysis of several splitting schemes,” in *Splitting methods in communication, imaging, science, and engineering*, pp. 115–163, Springer, 2016.

[29] D. Davis and W. Yin, “Faster convergence rates of relaxed peaceman-rachford and admm under regularity assumptions,” *Mathematics of Operations Research*, vol. 42, no. 3, pp. 783–805, 2017.

[30] B. He and X. Yuan, “On the $O(1/n)$ convergence rate of the douglas–rachford alternating direction method,” *SIAM Journal on Numerical Analysis*, vol. 50, no. 2, pp. 700–709, 2012.

[31] Y. Yang, X. Guan, Q.-S. Jia, L. Yu, B. Xu, and C. J.Spanos, “A survey of admm variants for distributed optimization: Problems, algorithms and features,” *arXiv preprint arXiv:2208.03700*, 2022.

[32] T. Erseghe, “Distributed optimal power flow using admm,” *IEEE transactions on power systems*, vol. 29, no. 5, pp. 2370–2380, 2014.

[33] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, “An alternating direction algorithm for matrix completion with nonnegative factors,” *Frontiers of Mathematics in China*, vol. 7, no. 2, pp. 365–384, 2012.

[34] Y. Yang, Q.-S. Jia, Z. Xu, X. Guan, and C. J. Spanos, “Proximal admm for nonconvex and nonsmooth optimization,” *arXiv preprint arXiv:2205.01951*, 2022.

[35] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems,” *SIAM Journal on Optimization*, vol. 26, no. 1, pp. 337–364, 2016.

[36] S. Magnnusson, P. C. Weeraddana, M. G. Rabbat, and C. Fischione, “On the convergence of alternating direction lagrangian methods for nonconvex structured optimization problems,” *IEEE Transactions on Control of Network Systems*, vol. 3, no. 3, pp. 296–309, 2015.

[37] N. Chatzipanagiotis and M. M. Zavlanos, “On the convergence of a distributed augmented lagrangian method for nonconvex optimization,” *IEEE Transactions on Automatic Control*, vol. 62, no. 9, pp. 4405–4420, 2017.

[38] F. Wang, W. Cao, and Z. Xu, “Convergence of multi-block bregman admm for nonconvex composite problems,” *Science China Information Sciences*, vol. 61, no. 12, p. 122101, 2018.

[39] Y. Liu, J.-H. Hours, G. Stathopoulos, and C. N. Jones, “Real-time distributed algorithms for nonconvex optimal power flow,” in *2017 American Control Conference (ACC)*, pp. 3380–3385, IEEE, 2017.

[40] S. Magnnusson, P. C. Weeraddana, and C. Fischione, “A distributed approach for the optimal power-flow problem based on admm and sequential convex approximations,” *IEEE Transactions on Control of Network Systems*, vol. 2, no. 3, pp. 238–253, 2015.

[41] J. Giesen and S. Laue, “Distributed convex optimization with many non-linear constraints,” 2018.

[42] J. Wang and L. Zhao, “Nonconvex generalizations of admm for nonlinear equality constrained problems,” *arXiv preprint arXiv:1705.03412*, 2017.

[43] K. Sun and X. A. Sun, “A two-level distributed algorithm for general constrained non-convex optimization with global convergence,” *arXiv preprint arXiv:1902.07654*, 2019.

[44] Q. Shi, M. Hong, X. Fu, and T.-H. Chang, “Penalty dual decomposition method for nonsmooth nonconvex optimization,” *arXiv preprint arXiv:1712.04767*, 2017.

[45] J. Bolte, S. Sabach, and M. Teboulle, “Nonconvex lagrangian-based optimization: monitoring schemes and global convergence,” *Mathematics of Operations Research*, vol. 43, no. 4, pp. 1210–1232, 2018.

[46] K. Kurdyka, “On gradients of functions definable in o-minimal structures,” in *Annales de l’institut Fourier*, 2005.

[47] T. Attwood, I. D. M. Ayre, and J. Arbetman, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” *Foundations and Trends® in Machine learning*, vol. 3, no. 1, pp. 1–122, 2011.
[47] S. Lojasiewicz, “Une propriété topologique des sous-ensembles analytiques réels, in “les équations aux dérivées partielles (paris, 1962)” éditions du centre national de la recherche scientifique,” 1963.

[48] J. Bolte, A. Daniilidis, and A. Lewis, “The lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems,” SIAM Journal on Optimization, vol. 17, no. 4, pp. 1205–1223, 2007.

[49] J. Bolte, A. Daniilidis, O. Ley, and L. Mazet, “Characterizations of lojasiewicz inequalities: subgradient flows, talweg, convexity,” Transactions of the American Mathematical Society, vol. 362, no. 6, pp. 3319–3363, 2010.

[50] R. I. Bot, E. R. Csetnek, and D.-K. Nguyen, “A proximal minimization algorithm for structured nonconvex and nonsmooth problems,” SIAM Journal on Optimization, vol. 29, no. 2, pp. 1300–1328, 2019.

[51] J.-H. Hours and C. N. Jones, “An augmented lagrangian coordination-decomposition algorithm for solving distributed non-convex programs,” in 2014 American Control Conference, pp. 4312–4317, Ieee, 2014.

[52] N. K. Dhingra, S. Z. Khong, and M. R. Jovanovic, “The proximal augmented lagrangian method for nonsmooth composite optimization,” IEEE Transactions on Automatic Control, 2018.

[53] N. Chatzipanagiotis, D. Dentcheva, and M. M. Zavlanos, “An augmented lagrangian method for distributed optimization,” Mathematical Programming, vol. 152, no. 1-2, pp. 405–434, 2015.

[54] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta numerica, vol. 4, pp. 1–51, 1995.

[55] C. Kanzow, D. Steck, and D. Wachsmuth, “An augmented lagrangian method for optimization problems in banach spaces,” SIAM Journal on Control and Optimization, vol. 56, no. 1, pp. 272–291, 2018.

[56] R. I. Bot, E. R. Csetnek, and D.-K. Nguyen, “A proximal minimization algorithm for structured nonconvex and nonsmooth problems,” arXiv preprint arXiv:1805.11056, 2018.

[57] H. Li and Z. Lin, “Accelerated proximal gradient methods for nonconvex programming,” in Advances in neural information processing systems, pp. 379–387, 2015.

[58] Y. Yang, G. Hu, and C. J. Spanos, “Hvac energy cost optimization for a multi-zone building via a decentralized approach,” arXiv preprint arXiv:1905.10934, 2019.

[59] Z. Wang, G. Hu, and C. J. Spanos, “Distributed model predictive control of bilinear hvac systems using a convexification method,” in Control Conference (ASCC), 2017 11th Asian, pp. 1608–1613, IEEE, 2017.