Synthesis of Reduced Graphene Oxide as a Platform for loading β-NaYF$_4$::Ho$^{3+}$@TiO$_2$ Based on an Advanced Visible Light-Driven Photocatalyst

Zihong Fan1, Tianhui Wu2 & Xuan Xu2

In this paper a novel visible light-driven ternary compound photocatalyst (β-NaYF$_4$::Ho$^{3+}$@TiO$_2$-rGO) was synthesized using a three-step approach. This photocatalyst was characterized using X-ray diffraction, Raman scattering spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, Transmission electron microscopy, X-ray photoelectron spectroscopy, fluorescence spectrometries, ultraviolet-visible diffuse reflectance spectroscopy, Brunauer–Emmett–Teller surface area measurement, electron spin resonance, three-dimensional fluorescence spectroscopy, and photoelectrochemical properties. Such proposed photocatalyst can absorb 450 nm visible light while emit 290 nm ultraviolet light, so as to realize the visible light-driven photocatalysis of TiO$_2$. In addition, as this ternary compound photocatalyst enjoys effective capacity of charge separation, superior durability, and sound adsorb ability of RhB, it can lead to the red shift of wavelength of absorbed light. This novel ternary photocatalyst can reach decomposition rate of RhB as high as 92% after 10 h of irradiation by visible-light Xe lamp. Compared with the blank experiment, the efficiency was significantly improved. Recycle experiments showed that the β-NaYF$_4$::Ho$^{3+}$@TiO$_2$-rGO composites still presented significant photocatalytic activity after four successive cycles. Finally, we investigated visible-light-responsive photocatalytic mechanism of the β-NaYF$_4$::Ho$^{3+}$@TiO$_2$-rGO composites. It is of great significance to design an effective solar light-driven photocatalysis in promoting environmental protection.

Semiconductor photocatalysis has attracted worldwide attention due to its potential in resolving the energy and environmental-related problems through increasing solar energy conversion. Titanium dioxide (TiO$_2$), as one of the most promising photocatalysts, has been widely adopted for degrading inorganic and organic pollutants because of its strong oxidizing capacity under ultraviolet (UV) light, extraordinary chemical stability, sound biocompatibility and environmental friendliness. However, due to the wide bandgap of TiO$_2$ ($E_g=3.0$–3.2 eV), only the UV light with wavelength less than 387 nm, which accounts for ca. 5% of total solar energy, could produce effective photocatalytic activity. While the visible light (Vis) and near-infrared (NIR), which account for ca. 48% and ca. 45%, respectively, are not valid for photocatalysis. Furthermore, the fast recombination of charge carriers will significantly reduce the catalytic activity in practical applications. As a result, further innovative researches are needed to realize large scale practical application of TiO$_2$-based photocatalysts for solving environmental and energy problems.

To resolve this problem, many attempts have been made to improve the photocatalytic activity of TiO$_2$ by inhibiting the recombination of photogenerated electron–hole pairs and extending the absorption range of TiO$_2$ towards Vis region, so as to realize a better use of solar energy. For example, to extend the bandgap of TiO$_2$ towards Vis, conventional methods such as introduction of metals or nonmetals, surface modification, and

1. Chongqing Key Laboratory of Catalysis and Functional Organic Molecules, College of Environmental and Resources, Chongqing Technology and Business University, Chongqing, 400067, China. 2. Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China. Correspondence and requests for materials should be addressed to X.X. (email: xuxuan@cqu.edu.cn)
structure optimization have been used to extend the bandgap of TiO₂ toward Vis energies. In these processes, noble metal doping, composite semiconductor, and holes scavenger can effectively inhibit the recombination of electrons and holes. Although these methods can extend the absorption of TiO₂ to the Vis region and inhibit the recombinations of photogenerated electron–hole pairs, many new defects may occur when adjusting the internal lattice and band structure to shorten the bandgap of TiO₂ and let the electrons pass quickly. For instance, with the implementation of these methods, it will cause decreased stability and service life of TiO₂, as well as low activity under UV light. Thus, other methods must be sought to extend the absorption range of TiO₂ and thus to enhance the photocatalysis activity.

Recently, lanthanide-doped upconversion (UC) nanophosphors have attracted tremendous interest because of their narrow emission bands, long luminescence lifetime, as well as their physicochemical properties that are conductive to extending the absorption range of TiO₂ edge up to the Vis region or even to the NIR region by UC luminescence of rare earths. In order to efficiently utilize the valuable UC energy transferred from the excited UC core, a coupling model was proposed to increase the luminous efficiency, of which the core-shell structure has potential in protecting the UC core from surface quenching and in increasing the efficiency of transferring energy to the photocatalyst shell. For examples, the preparation of (α, β)-NaYF₄:Yb⁺, Tm⁺/TiO₂, YF₃:Yb⁺, Tm⁺/TiO₂, and Y₂O₃:Yb⁺ has been reported, wherein the core-shell composite of UC@TiO₂ can emit UV and Vis and show an effective photocatalysis under NIR light. However, Yb⁺, an important sensitizer, has only one excitation at 980 nm in the NIR region. Its UC efficiency is limited by NIR radiation source excitation, which is mainly due to its extremely weak absorption in the NIR wavelength range. We conducted researches on core-shell microcrystal of β-NaYF₄:Ho⁺/TiO₂ and on the use of Vis as a photocatalyst. This combination takes advantages of Vis and NIR which accounts for ca. 48% and 45% of total solar energy, respectively. However, there still remains some problems about core-shell structure efficient utilization of light is limited, because the light cannot penetrate the cores of UC nanocrystals. Moreover, the fast recombination of photogenerated electron–hole pairs of UC@TiO₂ should not be ignored as they can affect the photocatalytic efficiency. Therefore, it is needed to seek other methods to solve these problems.

Graphene (GR) and reduced graphene oxide (rGO) have emerged as attractive candidates for constructing GR-based materials because of their several valuable characteristics. First, GR materials exhibit high electron mobility (~200,000 cm²/Vs) and extended π-electron conjugation, therefore GR is a good material for transporting electrons and stabilizing extraneous electrons. In addition, GR enjoys high specific surface area (~2630 m²/g) and unique flexible sheet-like structure. Recently, great attention has been attracted by TiO₂–GR, which displays the capacity of significantly improving photoelectrochemical catalytic activity. As of now, there have been lots of reports on TiO₂–GR composites. Researches indicate that GR can not only increase the adsorption surface of the catalyst because of its high theoretical specific surface area, but also can improve the adsorption performance of TiO₂ by chemical adsorption. The TiO₂@GR composite has high light transmittance and zero-bandgap of GR. Moreover, due to the excellent electrical conductivity for electrons storing and shuttling (flexible sheet-like structure), it can inhibit the recombination of photogenerated electron–hole pairs. Moreover, the formation of Ti–O–C bonds can expand the light absorption to longer wavelengths. After absorbing photons on the surface of GR, the electrons are injected into the TiO₂ conduction band to form a reactive exciton (−OH, O₂*) for degradation of organic pollutants. Despite all the advantages, these TiO₂@GR composites are subjected to a low-usage of their narrow emission bands, long luminescence lifetime, as well as their physicochemical properties that are limited, because the light cannot penetrate the cores of UC nanocrystals. Moreover, the fast recombination of photogenerated electron–hole pairs of UC@TiO₂ should not be ignored as they can affect the photocatalytic efficiency. Therefore, it is needed to seek other methods to solve these problems.

In this paper, we integrated the above-mentioned strategies and demonstrated the rGO-assisted core–shell structure β-NaYF₄:Ho⁺@TiO₂ could act as a new Vis-driven photocatalyst for the first time. Benefiting from the high specific surface area and the flexible sheet-like structure, rGO emerged as an excellent platform on which the core–shell microcrystal β-NaYF₄:Ho⁺@TiO₂ can be load to form the ternary composite β-NaYF₄:Ho⁺@TiO₂–rGO. In this photocatalyst, it is expected to emit UV light after absorbing Vis light of the solar spectrum during the loading process of UC microcrystals, meanwhile the optical response of the β-NaYF₄:Ho⁺@TiO₂–rGO will
β at 17.2°, 30.1°, 30.8°, 43.5°, and 53.7° can perfectly match with the standard card of β without the occurrence of impurity-contained diffraction peak. This indicates that the high purity UC material characterization methods are still needed to verify the existence of rGO.

The XRD patterns of β-NaYF₄:Ho³⁺, β-NaYF₄:Ho³⁺@TiO₂, and β-NaYF₄:Ho³⁺@TiO₂–rGO were obtained. Figure 1 shows the XRD patterns of β-NaYF₄:Ho³⁺, β-NaYF₄:Ho³⁺@TiO₂, and β-NaYF₄:Ho³⁺@TiO₂-rGO, respectively. From the XRD images of the three samples in Figure 1, we can see that the diffraction peaks are very sharp. This indicates that the samples resulted from hydrothermal synthesis are of high purity and excellent crystallinity, and such excellent crystallinity plays a vital role in determining the photocatalysis efficiencies. In addition, we can see that the diffraction peaks of UC material at 17.2°, 30.1°, 30.8°, 43.5°, and 53.7° can perfectly match with the standard card of β-NaYF₄ (JCPDS no. 16–0334), without the occurrence of impurity-contained diffraction peak. This indicates that the high purity UC material β-NaYF₄ prepared using hydrothermal method is the current well-recognized substrate of the highest luminous efficiency. Through comparing with standard card, it can find the compound material β-NaYF₄:Ho³⁺@TiO₂ not only involved all diffraction peaks of β-NaYF₄, but also showed the characteristic diffraction peak of TiO₂ when 2θ = 25.4°, which was consistent with anatase standard card (JCPDS no. 21–1272). Therefore, it proved that the TiO₂ included in photocatalyst prepared by sol-gel method was anatase-type TiO₂, which enjoyed higher photocatalysis effect than rutile type TiO₂ and was more helpful in increasing the photocatalysis activity of the compound material. Moreover, β-NaYF₄:Ho³⁺@TiO₂ prepared by such method will not change the crystal form of β-NaYF₄, therefore it can be known such method has sound stability and reproducibility. Through comparing the XRD pattern between β-NaYF₄:Ho³⁺@TiO₂–rGO and the compound material, it can observe no occurrence of new peak value, and all peak values are either hexagonal or anatase-type TiO₂. It can also be noted that the diffraction peak of rGO is not reflected in such XRD pattern, which we think may be due to its low proportion in compound material and its low concentration that is under the LOD of XRD. Therefore, other characterization methods are still needed to verify the existence of rGO.

Results and Discussion

Structure and morphology characterizations. Figure 1 shows the XRD patterns of β-NaYF₄:Ho³⁺, β-NaYF₄:Ho³⁺@TiO₂, and β-NaYF₄:Ho³⁺@TiO₂–rGO, respectively. From the XRD images of the three samples in Figure 1, we can see that the diffraction peaks are very sharp. This indicates that the samples resulted from hydrothermal synthesis are of high purity and excellent crystallinity, and such excellent crystallinity plays a vital role in determining the photocatalysis efficiencies. In addition, we can see that the diffraction peaks of UC material at 17.2°, 30.1°, 30.8°, 43.5°, and 53.7° can perfectly match with the standard card of β-NaYF₄ (JCPDS no. 16–0334), without the occurrence of impurity-contained diffraction peak. This indicates that the high purity UC material β-NaYF₄ prepared using hydrothermal method is the current well-recognized substrate of the highest luminous efficiency. Through comparing with standard card, it can find the compound material β-NaYF₄:Ho³⁺@TiO₂ not only involved all diffraction peaks of β-NaYF₄, but also showed the characteristic diffraction peak of TiO₂ when 2θ = 25.4°, which was consistent with anatase standard card (JCPDS no. 21–1272). Therefore, it proved that the TiO₂ included in photocatalyst prepared by sol-gel method was anatase-type TiO₂, which enjoyed higher photocatalysis effect than rutile type TiO₂ and was more helpful in increasing the photocatalysis activity of the compound material. Moreover, β-NaYF₄:Ho³⁺@TiO₂ prepared by such method will not change the crystal form of β-NaYF₄, therefore it can be known such method has sound stability and reproducibility. Through comparing the XRD pattern between β-NaYF₄:Ho³⁺@TiO₂–rGO and the compound material, it can observe no occurrence of new peak value, and all peak values are either hexagonal or anatase-type TiO₂. It can also be noted that the diffraction peak of rGO is not reflected in such XRD pattern, which we think may be due to its low proportion in compound material and its low concentration that is under the LOD of XRD. Therefore, other characterization methods are still needed to verify the existence of rGO.

In addition, it is worth noting that it can observe no diffraction peaks of Ho³⁺ from UC material, compound material, or ternary complex in above figure, which is either because Ho is not successfully doped in, or because it is existed in other forms. The existence form of Ho is of vital significance to UC luminous mechanism, therefore it is needed to seek other characterization methods.

To determine the micromorphologies and the presence of rGO these samples, we conducted SEM and TEM characterization for β-NaYF₄:Ho³⁺, β-NaYF₄:Ho³⁺@TiO₂, and β-NaYF₄:Ho³⁺@TiO₂–rGO, respectively, and the results are shown in Figure 2. From Figure 2, it can be seen that the prepared UC materials are hexagonal prisms in uniform sizes, regular shapes, and with smooth surfaces. These hexagonal microcrystals have lengths of around 8 μm and diameters of nearly 2.4 μm, which is consistent with XRD characterization result. There is a close correlation between UC luminous efficiency and host material size. The larger the host material size is, the higher the luminous efficiency will be. This indicates that the UC host material prepared by hydrothermal method is of sound luminous efficiency. After being compounded with TiO₂ shell by sol-gel method, the UC material had not changed very much on its morphology, but still remain in shape of hexagonal prism. After coating, the surfaces become coarser (Figure 2c), showing that the microcrystals are successfully coated with a TiO₂ layer. The β-NaYF₄:Ho³⁺ microcrystals are equably coated by the TiO₂ shell. For further detailed structure analysis, the characterization of the β-NaYF₄:Ho³⁺@TiO₂ core-shell microcrystals was carried out by TEM. Figure 2d show enlarged image in which the β-NaYF₄:Ho³⁺@TiO₂ core-shell structure is clearly seen; the core of β-NaYF₄:Ho³⁺ exhibits a dark color. These images confirm that the UC microcrystals are uniformly coated by a TiO₂ layer. The average thickness of the TiO₂ shells is about 50 nm. Core-shell structure model is beneficial to realizing high efficient energy transfer between UC material and photocatalyst. The SEM image of ternary
complex β-NaYF$_4$:Ho$^{3+}$@TiO$_2$-rGO in Figure. 2e,f shows that there are massive amounts of rGO lamellas deposited on the surface of compound material. There are small amount of deciduous TiO$_2$ existing on the surfaces of some rGO lamellas; some rGO serve as substrates, on which compound materials are loaded; some rGO serve as carriers, which wrap the compound materials; The coupling between rGO and β-NaYF$_4$:Ho$^{3+}$@TiO$_2$ is positive to the high efficient transferring of charge, and thus increasing the separation efficiency of photogenerated carriers.

Composition and chemical states. Energy dispersive X-ray spectroscopy (EDS) was conducted to determine the element composition of β-NaYF$_4$:Ho$^{3+}$@TiO$_2$-rGO and to further confirm the successful doping of Ho element. Results are shown in Figure. 3. According to the scan results of EDS surface of ternary compound material in Figure. 3b–h, it can observe the existences of Y, F, Na, Ho, Ti, O and C in ternary compound material β-NaYF$_4$:Ho$^{3+}$@TiO$_2$-rGO, wherein C element is in homogeneous distribution, which indicates a sound dispersion effect of rGO. Figure 3i presents the mass percent of each element. However, EDS can only characterize the existence of in prepared sample, rather than characterizing the existence form of Ho.

XPS characterization method was used to determine the chemical states of elements on the surface of β-NaYF$_4$:Ho$^{3+}$@TiO$_2$-rGO as shown in Figure. 4. According to the full spectrum image in Figure. 4a, it shows that such sample contains Ti, O, Na, Y, F, Ho and C elements. C 1s peak (284.1 eV) is the spectrum internal reference. Figure 4b shows that the Ti2p photoemission peak of compound material consists of two sub-peaks, with binding energies of 458.3 eV and 464.1 eV, corresponds to Ti 2p$_{3/2}$ and Ti 2p$_{1/2}$, respectively, which is consistent with the XPS spectrum of TiO$_2$ as described57. As shown by the O1s in Figure. 4c, there is at least one type of oxygen in the compound material. The binding energies of two peaks are 529.9 eV and 532.3 eV, which are corresponded to the characteristics of Ti–O–Ti and H–O, respectively. The element F displays one characteristic peak at 684.3 eV because of the core level of F1s (see Figure. 4d). The C1s XPS spectrum shows two characteristic peaks, corresponding to oxygenated ring C bonds (284.7 eV for C-C, C=O and C-H,286.2 eV for C-O, and 288.6 eV for the C=O bond). These results indicate that there exist abundant oxygen-containing functional groups onrGO surface. However, in the C 1s XPS spectra of β-NaYF$_4$:Ho$^{3+}$@TiO$_2$-rGO as shown in Fig. 4e, the relative intensities of the three components associated with C-O/C=O bonds decrease significantly, indicating that some of the oxygen functional groups were reduced during the chemical reduction process58,59. Doped elements can also be detected by XPS. Figure 4f represents the characteristic peak of Ho$^{3+}$ at binding energy of 159.5 eV and 161.1 eV, respectively. XPS characterization results show that the Ho element in the sample exists in the form of Ho$^{3+}$ and has been successfully doped into the crystal lattice of the host material β-NaYF$_4$.

To further confirm the reduction of GO, we conducted FTIR analysis for the samples, and the results are shown in Figure. 5. It shows that GO contains abundant oxygen containing functional groups. The strong peak occurred at 1731 cm$^{-1}$ is mainly caused by the tensile vibration of C=O in carboxyl functional groups, while the strong peak at around 1623 cm$^{-1}$ is mainly caused due to the lack of oxidized C=C structure in graphite structure. In addition, the occurrence of peak at 1401 cm$^{-1}$ is due to the oxidized C-OH on the surface. The occurrences of peaks at 3405 cm$^{-1}$ and 1048 cm$^{-1}$ are due to the vibrations of OH and C-O60, respectively. Through comparing β-NaYF$_4$:Ho$^{3+}$@TiO$_2$-rGO and GO, it can find that C-O and C=O, at 1084 cm$^{-1}$ and 1731 cm$^{-1}$ respectively, are

![Figure 2. SEM images of (a,b) β-NaYF$_4$:Ho$^{3+}$, (c) β-NaYF$_4$:Ho$^{3+}$@TiO$_2$, and (e,f) β-NaYF$_4$:Ho$^{3+}$@TiO$_2$-rGO, (d) TEM images ofβ-NaYF$_4$:Ho$^{3+}$@TiO$_2$.](image-url)
almost disappeared, which indicates that some carboxy groups are differentially reduced according to different conditions. The functional groups at 1623 cm\(^{-1}\) and 1401 cm\(^{-1}\) are also significantly reduced. Results show that the GO can be effectively reduced into rGO using hydrothermal method, which is consistent with XPS result. \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO displays a strong and wide absorption peak, which is proved to be a combination peak caused by the stretching vibration of Ti-O-Ti and Ti-O-C\(^6\). Moreover the existence of Ti-O-C bond indicates existence of chemical bond force between rGO and TiO\(_2\), and such chemical bond is beneficial to the red shift of absorbed wavelength\(^4\), so as to better take the advantage of solar photocatalysis.

Photoluminescence properties. Figure 6a shows the UV-Vis diffuse reflection spectrum of ternary compound material \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO. Results show that the UV-Vis diffuse reflection spectrum of \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO has two distinguished features as compared with \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\), \(\beta\)-NaYF\(_4\):Ho\(^{3+}\), \(\beta\)-NaYF\(_4\), and P25, wherein one is the overall improvement of Vis light absorption property, and the other one is the red shift of absorption cross section. Both features are positive to increasing the photocatalytic activity.\(^7\) In addition, we observed that \(\beta\)-NaYF\(_4\):Ho\(^{3+}\) displayed three weak absorption peaks at 450 nm, 537 nm, and 642 nm, respectively, while \(\beta\)-NaYF\(_4\) did not show absorption peak. This indicates the UC material excited ion Ho\(^{3+}\) is of vital significance to luminescence. On the whole, the absorption peak at 450 nm is relatively stronger. As we know that the stronger the light-absorbing capacity of the absorption peak is, the more suitable the absorption peak will be serving as excitation wavelength. Therefore the absorption peak at 450 nm was finally selected as the excitation wavelength for the luminescence spectrum of UC material \(\beta\)-NaYF\(_4\):Ho\(^{3+}\). In the absorption spectrum of GO, it shows the absorption peaks of GO at 230 nm (\(\pi-\pi^*\) transitions of C=C bonds)\(^8\) referred to pure GO films shown in Figure. 6a. rGO has a characteristic absorption peak at 270 nm, compared with GO 40 nm red shift of absorption spectrum, the overall absorption intensity increases, indicating that GO in hydrothermal conditions reduction. The carbon atoms of sp\(^3\) hybridized into sp\(^2\) hybrid structure, improved GR

Figure 3. (a) SEM images of \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO, (b-h) SEM elemental distribution mappings of Y, F, Na, Ho, Ti, O, and C. (i) EDS spectrum of \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO.
was large-electron conjugated structure63. sUV-Vis characterization results show that the rGO was successfully prepared by hydrothermal synthesis.

The bandgaps of P25, β-NaYF\textsubscript{4}:Ho$^{3+}$@TiO\textsubscript{2}, and β-NaYF\textsubscript{4}:Ho$^{3+}$@TiO\textsubscript{2}-rGO can be calculated using Tauc’s formula, and the calculation results are shown in Figure 6b. The bandgap of P25 is 3.20 eV (387.5 nm), the bandgap of β-NaYF\textsubscript{4}:Ho$^{3+}$@TiO\textsubscript{2} is 3.18 eV (389.9 nm), and the bandgap of β-NaYF\textsubscript{4}:Ho$^{3+}$@TiO\textsubscript{2}-rGO is 3.09 eV (401.3 nm). From the results, it can conclude that the UC material β-NaYF\textsubscript{4}:Ho$^{3+}$ microcrystal is of limited influence to the bandgap of TiO\textsubscript{2}, while the introduced rGO is of larger influence to its absorption cross section, such as reducing its bandgap and leading to the red shift of absorbed wavelength. From Figure 6c, it can be seen that the VB edges of β-NaYF\textsubscript{4}:Ho$^{3+}$@TiO\textsubscript{2} are estimated to be 0.32 eV. According to the bandgap and the valence band (VB) position of the samples, we can draw the bandgap structures as displayed in Figure 6c inset, from which it can be clearly seen that the conduction band (CB) and VB position of β-NaYF\textsubscript{4}:Ho$^{3+}$@TiO\textsubscript{2}.

Figure 6d shows the UC Luminescence spectra of β-NaYF\textsubscript{4}:Ho$^{3+}$, β-NaYF\textsubscript{4}:Ho$^{3+}$@TiO\textsubscript{2}, and β-NaYF\textsubscript{4}:Ho$^{3+}$@TiO\textsubscript{2}-rGO respectively under 450 nm excitation. It can be seen that under 450 nm excitation, there is a emission peak at 290 nm in ultraviolet region, which corresponds to the radiative transition of Ho$^{3+}$ from $^5\text{D}_4$ to $^7\text{I}_8$. After being doped with TiO\textsubscript{2}, the emission peak wavelength location of composite material of β-NaYF\textsubscript{4}:Ho$^{3+}$ has not been changed, which indicates that the UC luminance properties remain unchanged after compounded with TiO\textsubscript{2}. In addition, we can observe that β-NaYF4:Ho$^{3+}$@TiO\textsubscript{2} shows a fairly weak luminous intensity at 290 nm under the 450 nm excitation, wherein the emission peak is almost disappeared. This may be because the UV-light

Figure 4. High-resolution XPS analyses of the β-NaYF\textsubscript{4}:Ho$^{3+}$@TiO\textsubscript{2}-rGO microcrystals: (a) Wide spectrum, (b) Ti 2p, (c) O 1s, (d) F 1s, (e) C 1s, (f) Ho 4d.
emitted from β-NaYF$_4$:Ho$^{3+}$ was absorbed by the TiO$_2$ wrapped on the surface, so that the phenomenon of photocatalysis is resulted. As it is well known that rGO is an effective material which is of high ability in absorbing light. For rGO-assisted β-NaYF$_4$:Ho$^{3+}$@TiO$_2$, there were less light emitted from the system, while more irradiated lights were absorbed in. It is reasonable that stronger irradiated light will induce higher intensity of the

Figure 5. FTIR spectra of GO, TiO$_2$, β-NaYF$_4$:Ho$^{3+}$, β-NaYF$_4$:Ho$^{3+}$@TiO$_2$, and β-NaYF$_4$:Ho$^{3+}$@TiO$_2$-rGO, respectively.

Figure 6. (a) The UV-Vis absorbance spectra of the P25, β-NaYF$_4$, β-NaYF$_4$:Ho$^{3+}$, β-NaYF$_4$:Ho$^{3+}$@TiO$_2$, GO, and the RGO prepared by hydrothermal method under the same conditions as β-NaYF$_4$:Ho$^{3+}$@TiO$_2$-rGO; inset: the enlarged spectra ranging from 400 nm to 500 nm. (b) The plot for bandgap energy E_g. (c) VB XPS; inset: schematic illustration of the band gap structures. (d) Photoluminescence (PL) spectra of samples under 450 nm excitations.
converted light. Hence, the low emission intensity detected here can be ascribed to the fact that most of the converted lights were absorbed by the composite with the help of rGO.

Raman spectra. The Raman spectra of NaYF₄:Ho³⁺, NaYF₄:Ho³⁺@TiO₂, and NaYF₄:Ho³⁺@TiO₂-rGO composite are presented in Figure 7. The Raman spectrum of rGO displayed two prominent peaks at 1355.8 and 1582.2 cm⁻¹, corresponding to the well-documented D and G bands, respectively. G band is Raman active for sp² hybridized carbon-based material, while D band is activated only if defects participate the double resonance Raman scattering near K point of Brillouin zone. The specific vibration modes are located around 140, 399, 517, and 639 cm⁻¹, indicating the presence of the anatase phase in all of these samples. The intensity ratio of D band to G band (I_D/I_G) is correlative with the average size of sp² domains. Higher I_D/I_G ratio means the smaller size of sp² domains. From Figure 6, the I_D/I_G ratios for NaYF₄:Ho³⁺@TiO₂-rGO were 1.04, further confirming the formation of rGO sheets. Raman spectroscopy is one of the most common, rapid, non-destructive and high-resolution techniques for characterizing carbon materials. Previous studies have shown that certain Raman peaks change sensitively with the number of GR layers (n). This discovery that exhibits Raman fingerprints for single-layer, bilayer, and few-layer GR can be used as identification. The position of the G (1582.2 cm⁻¹) peak of the Raman spectrum was deduced from previous studies that the number of rGO layers was within six layers.

Photoelectrochemistry measurements. Photoelectrochemical measurements were performed to investigate the excitation, separation, transfer, and recombination of photoinduced charge carriers. Figure 8 shows the characterization results of photocurrents of electrode TiO₂, β-NaYF₄:Ho³⁺@TiO₂, and β-NaYF₄:Ho³⁺@TiO₂-rGO, based on which it can deduce the electron interaction between rGO and β-NaYF₄:Ho³⁺@TiO₂. From the Figure, we can see that steady and transient photocurrents can be obtained during the process of cyclically opening and closing Vis light irradiation. Enjoying a large bandgap, the TiO₂ nanoparticle is of no influence to...
Vis light, and nearly no photocurrents were resulted. However regarding composite material \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\), the UC material within first absorbed Vis light and converts it into UV light, and then excited TiO\(_2\) to produce electron-hole pairs, so that photocurrents were produced. It is worth noting that the photocurrent resulted from electrode \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO has stronger intensity as compared with photocurrent resulted from \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\). This is owe to rGO's excellent conductivity that led to the effective separation of electron-hole pairs. The effective separation of electron-hole pairs is a key factor for the enhancement of photocatalysis activity of \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO. The results above are consistent with PL analysis results.

Photocatalytic activity and recyclability. Based on RhB as target degradation product, we researched the photocatalytic activity of \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO to Vis light. We used 500 Xe lamp coupled with 420 nm cut-off filter as the light source. The time-dependent absorption spectrogram of RhB is shown in Figure. 9a, from which we can see that RhB shows a gradual decreasing absorbance at 554 nm with the extension of time. This indicates \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO is of sound degradation effect to RhB under Vis light irradiation.

Figure 9b shows the variation curve of C/C\(_0\) with the increase of optical radiation time, wherein C\(_0\) and C respectively represent the initial concentration of RhB solution and the concentration of RhB after certain period of irradiation time. Results show that photocatalyst \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO can reach decomposition rate of RhB as 92% after 10 h of Xe lamp irradiation, which is increased by 25% as compared to the decomposition rate of RhB using \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO after 10 h of Xe lamp irradiation. The \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO exhibited the best photocatalytic efficiency, which was because its larger BET surface area and pore volume (Figure. 10 and Table 1) are beneficial for the \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO composite contacting with organic contaminants, and thus the photocatalytic performance can be enhanced after loading of the rGO sheets. In addition, the rGO facilitated the transport of electrons photogenerated in the TiO\(_2\), and therefore led to efficient separation of photogenerated carriers in the coupled \(\beta\)-NaYF\(_4\):Ho\(^{3+}\)@TiO\(_2\)-rGO system. Moreover, the photocatalytic degradation of RhB was closely dependent on the Vis light adsorption ability of TiO\(_2\), and the loading of the rGO shortened the bandgap of TiO\(_2\). This explains why there was an increased absorption of Vis light on TiO\(_2\), and thus why an increased decomposition rate of RhB was resulted in. To eliminate external factors to the degradation effect of phototacatlysis, we conducted a series of comparative tests. We found that the self-decomposition rate of RhB after 10 h of Xe lamp irradiation was only 6%, which indicates the thermal radiation of xenon lamp is of limited influence. By using UV catalyst P25, the decomposition rate of RhB after 10 h of Xe lamp irradiation was only 12%, wherein half of the decomposition rate was ascribed to adsorption degradation. To our surprise, the UC material \(\beta\)-NaYF\(_4\):Ho\(^{3+}\) reached the decomposition rate of RhB as high as 37% after 10 h of Xe lamp irradiation, which was higher than those of \(\beta\)-NaYF\(_4\), P25, and \(\beta\)-NaYF\(_4\)@TiO\(_2\). This is mainly because the non-radiative...
higher thermal energy and photosensitization effect, so that RhB can be decomposed more effectively. In addition, due to the absence of doping with Ho, the β-NaYF₄ and β-NaYF₄-TiO₂ after 10h of Xe lamp irradiation can achieve decomposition rate of RhB as 7% and 11%, respectively, which were far below the levels after doping with Ho. This indicates that suitable activator must be selected to induce photon transition before realizing effective UC luminescence.

Photocatalyst should remain unchanged photochemical stability and durability after repeated irradiation, which is of vital significance in practical application. Figure 9c shows the photocatalytic activity of the sample is insignificantly decreased from 92% to 81% and then tends to be stable. This reveals that the composite photocatalyst is of relatively better stability and reproducibility.

Table 1. Characteristics obtained from nitrogen desorption isotherms.

Sample	Mean pore size (nm)	Pore volume (cm³·g⁻¹)	Surface area (m²·g⁻¹)
NaYF₄·Ho³⁺	3.5123	0.001069	0.8938
β-NaYF₄·Ho³⁺@TiO₂	3.5915	0.016921	8.3884
β-NaYF₄·Ho³⁺@TiO₂-rGO	3.9655	0.032805	16.7511

transition of activator Ho³⁺ in UC material resulted in the UV light of short wavelength (290 nm) which is of higher thermal energy and photosensitization effect, so that RhB can be decomposed more effectively. In addition, due to the absence of doping with Ho, the β-NaYF₄ and β-NaYF₄-TiO₂ after 10h of Xe lamp irradiation can achieve decomposition rate of RhB as 7% and 11%, respectively, which were far below the levels after doping with Ho. This indicates that suitable activator must be selected to induce photon transition before realizing effective UC luminescence.

Photocatalyst should remain unchanged photochemical stability and durability after repeated irradiation, which is of vital significance in practical application. Figure 9c shows the photocatalytic activity of the sample is insignificantly decreased from 92% to 81% and then tends to be stable. This reveals that the composite photocatalyst is of relatively better stability and reproducibility.

Photocatalytic and mechanisms analysis.

DMPO-ESR spin trapping spectrum was used to detect ·OH and ·O₂⁻ in solution. As shown in Figure. 11ab, under Vis light irradiation, ·OH and ·O₂⁻ in β-NaYF₄·Ho³⁺@TiO₂-rGO can be successfully detected. Moreover, with the extension of time, the signals of both free radicals are significantly increased, which indicates the accumulation effect of both free radicals as time goes on. To illustrate the influence of the introduction of rGO to the system, we compared the signals of ·OH and ·O₂⁻ of TiO₂, β-NaYF₄·Ho³⁺@TiO₂, and β-NaYF₄·Ho³⁺@TiO₂-rGO at the same time under Vis light irradiation, shown in Fig. 11cd. After 4 min of Vis light irradiation, there are significant differences on the two free radicals of TiO₂, β-NaYF₄·Ho³⁺@TiO₂, and β-NaYF₄·Ho³⁺@TiO₂-rGO. As for TiO₂, the Vis light is not enough to excite TiO₂, so that the signals of both free radicals can hardly be detected. Since β-NaYF₄·Ho³⁺@TiO₂ is capable of converting Vis light into UV light, and excite TiO₂ to result separation of electron-hole pairs, it can detect strong signals of ·OH and ·O₂⁻. After introducing rGO, i.e. in β-NaYF₄·Ho³⁺@TiO₂-rGO system, the signals of both radicals are significantly increased, wherein the signals of ·OH and ·O₂⁻ are 3.2-fold and 2.1-fold of those in β-NaYF₄·Ho³⁺@TiO₂ system. This result indicates that β-NaYF₄·Ho³⁺@TiO₂-rGO can generate more free radicals to take part in photocatalytic reaction, so as to improve the photocatalytic activity. Owe to the super conductive performance of rGO, larger amounts of free radicals can be produced, which can effectively separate electron-hole pairs and extend the lifetime of charge carrier.

3D fluorescence spectra. Photoluminescence (PL) spectra reflect the migration, transfer, and recombination processes of the electron-hole pairs. Figure 12 shows 3D fluorescence spectra β-NaYF₄·Ho³⁺, β-NaYF₄·Ho³⁺@TiO₂, and β-NaYF₄·Ho³⁺@TiO₂-rGO composite. The plots show that UC and catalysts have a maximum fluorescence peak near (λex, λem) = (205 nm, 315 nm) and (240 nm, 315 nm), which is attributed to the recombination of holes and electrons across the band gap of β-NaYF₄·Ho³⁺. The β-NaYF₄·Ho³⁺@TiO₂ composites absorb slightly weaker than β-NaYF₄·Ho³⁺, which implies that the recombination of photogenerated electrons and holes is less in the β-NaYF₄·Ho³⁺@TiO₂ composites. The β-NaYF₄·Ho³⁺@TiO₂-rGO composites absorb more weakly than β-NaYF₄·Ho³⁺ and β-NaYF₄·Ho³⁺@TiO₂.
which implies that the recombination of photogenerated electrons and holes is much less in the β-NaYF$_4$:Ho$^{3+}$@TiO$_2$-rGO. The results above are consistent with Photoelectrochemical measurements analysis results.

A possible reaction process is proposed in Figure 13, which can be summarized in the equations below. The β-NaYF$_4$:Ho$^{3+}$ UC absorbs visible light and emits UV light (R1). The detailed process can be described as below. First Ho$^{3+}$ jumps from ground state 7I$_8$ energy level to excited state 8F$_1$ (7I$_8$ \rightarrow 8F$_1$) energy level via Ground State Absorption (GSA) under the excitation of 450 nm light source, meanwhile it jumps via nonradiative cross relaxation back to excited state 7I$_4$ energy level (8F$_1$ \rightarrow 7I$_4$), rather than back to excited state 7I$_6$ energy level. In the second stage, the Ho$^{3+}$, which locates on excited state 7I$_4$ energy level, absorbs the photon of the same energy, and then directly jumps via ESA onto excited state 7D$_4$ energy level (7I$_4$ \rightarrow 7D$_4$). Finally, Ho$^{3+}$ jumps from highly excited level 7D$_4$ back to ground state 7I$_4$ (7D$_4$ \rightarrow 7I$_4$), while emitting 288 nm UV light, so that the two-photon UC luminescence mechanism is completed. Through UV excitation, electron-hole pairs are generated on the TiO$_2$ surface (R2), which is followed by rapid transfer of photogenerated electrons to rGO sheets via percolation mechanism (R4). The excited electrons on the TiO$_2$ surface react with the absorbed oxygen, resulting in the formation of \cdotO$_2^-$ or HO$_2^\cdot$. After that, it can form hydrogen peroxide (H$_2$O$_2$; R5) through combining h^+ with \cdotO$_2^-$ or HO$_2^\cdot$. H$_2$O$_2$ reacts with the superoxide radical anion (\cdotO$_2^-$), and then reduces it into a hydroxyl radical (\cdotOH; R7). The photogenerated holes react with H$_2$O, resulting in the formation of hydroxyl radicals (•OH; R3). The conduction band of TiO$_2$ is located above the RhB redox potential, which allows TiO$_2$ to be catalytically active. Therefore, these reactive oxygen species (i.e., \cdotOH, \cdotO$_2^-$, and H$_2$O$_2$), especially \cdotOH, can oxidize the organic molecules and perform photocatalysis (R7). The entire sequence is summarized as below:

$$\text{NaYF}_4: \text{Ho}^{3+} + \text{visible light} \rightarrow \text{NaYF}_4: \text{Ho}^{3+} + \text{UV}$$

$$\text{TiO}_2 + \text{UV} \rightarrow \text{TiO}_2(h^+ + e^-)$$

$$\text{H}_2\text{O} + \text{TiO}_2(h^+) \rightarrow \cdot\text{OH} + \text{H}^+$$

$$\text{TiO}_2(e^-) + \text{rGO} \rightarrow \text{TiO}_2 + \text{rGO}(e^-)$$

$$\text{O}_2 + \text{H}^+ + \text{rGO}(e^-) \rightarrow \cdot\text{O}_2^- + \text{H}_2\text{O}_2$$

Figure 11. DMPO spin-trapping ESR spectra of β-NaYF$_4$:Ho$^{3+}$@TiO$_2$-rGO in methanol dispersion for OH (a) and in aqueous dispersion for \cdotO$_2^-$ (b); (c) superoxide radical, (d) hydroxyl radicals of TiO$_2$, β-NaYF$_4$:Ho$^{3+}$, and β-NaYF$_4$:Ho$^{3+}$@TiO$_2$-rGO after four min of Vis light irradiation.
Figure 12. 3D fluorescence spectra of NaYF4:Ho$^{3+}$ (a), NaYF4:Ho$^{3+}$@TiO2 (b), and NaYF4:Ho$^{3+}$@TiO2-rGO composite (c).

Figure 13. Photocatalytic reaction mechanism of β-NaYF4:Ho$^{3+}$@TiO2-rGO.

\[
\cdot O_2^- + H_2O_2 \rightarrow \cdot OH + OH^- + O_2 \quad (6)
\]

\[
\cdot OH (or \cdot O_2^-) + RhB \rightarrow \text{degradation products} \quad (7)
\]
Conclusions

In summary, we have successfully prepared β-NaYF₄:Ho³⁺@TiO₂-rGO composites as an advanced Vis-driven photocatalyst by using a simple hydrothermal method. We demonstrated a new strategy by integrating the Vis-to-UV UC property of β-NaYF₄:Ho³⁺ with the excellent electrical properties of GR to enhance the photocatalytic efficiency of TiO₂. Photocatalytic properties of the β-NaYF₄:Ho³⁺@TiO₂-rGO composites were evaluated by the degradation of an RhB solution. The enhanced photocatalytic activity was associated with the large extended photoresponsive range, great adsorptivity of dyes and high electron–hole separation efficiency due to the synergetic interactions among TiO₂, GR and UC material. This work is expected to promote practical applications of photocatalysts under solar irradiation in the hope of addressing various environmental issues.

Experimental Section

Materials and reagents. All chemicals were used as received without further purification. Y₂O₃ (99.999% purity), Ho₂O₃ (>99.9% purity) and GO solution (>99.85% purity) were of high purity. All other chemicals, including NaF, ethanol, ethylenediaminetetraacetic acid (EDTA), tetra-n-butyl titanate (TBOT), and polyvinylpyrrolidone K-30 (PVP) were in analytical grade. Y₂O₃, NaF, TBOT, and PVP were purchased from Chengdu Kelong Chemical Co. Ltd. (Sichuan, China). Ho₂O₃ was obtained from Shanghai Tongna Environmental Protection Co. Ltd. (China). EDTA was purchased from Chongqing Boyi Chemical Co. Ltd. (China). HNO₃ and ethanol were obtained from Chongqing Chuandong Chemical Group Co. Ltd. (China). GO solution was obtained from Shanghai HuaYiCo. Ltd. (China).

Synthesis of NaYF₄:Ho³⁺@TiO₂-rGO ternary composites. The NaYF₄:Ho³⁺@TiO₂ core-shell microcrystals were synthesized by referring preliminary work. UV-irradiation of the NaYF₄:Ho³⁺@TiO₂-graphene oxide samples was performed using a hydrothermal method. Firstly, 2 mg/mL GO (2.5 mL) was ultrasonicated in 100 mL of anhydrous ethanol solution till being well dispersed; after that, 0.1 g of NaYF₄:Ho³⁺@TiO₂ was added into the above GO solution and then keep vigorous stirring for 1 h. The resulting mixture was transferred into a 100 mL stainless Teflon-lined autoclave filled with deionized water up to 80% of its capacity. The autoclave was tightly sealed and heated at 130 °C for 4 h, after that the system was allowed to cool to room temperature naturally. The precipitate was centrifuged and washed with deionized water for two times and then dried in the vacuum oven at −60 °C for 24 h, before resulting in NaYF₄:Ho³⁺@TiO₂-rGO composites.

Photocatalytic activity measurement. The photocatalytic activity of the NaYF₄:Ho³⁺@TiO₂-rGO composites was measured via comparing the concentration of rhodamine B (RhB) after irradiation to the original concentration of RhB using a Hitachi U-3010 UV-Vis spectrophotometer (Hitachi Corp., Tokyo, Japan). The percentage of degradation is indicated as C/C₀, where C is the concentration of RhB at the irradiation time and C₀ is the concentration at adsorption equilibrium with the photocatalyst before irradiation. Typically, 50 mg of photocatalyst was suspended in 250 mL RhB aqueous solution (5 mg/L) by sonication. Prior to irradiation, the suspension was stirred in the dark for 0.5 h to establish the adsorption-desorption equilibrium. Then the solution was exposed to the irradiation of a 500 W Xenon arc lamp with a UV cutoff filter (λ > 400 nm). Every 2 h, 8 mL of the transparent, aqueous solution was collected and then centrifuged (10,000 r/min) prior to analysis with the Hitachi U-3010 UV-Vis spectrophotometer. As reference experiments, the photodegradation of RhB with P25 (Degussa P25), with β-NaYF₄:Ho³⁺, and without any catalyst were tested, respectively. All the experiments were at the same conditions for comparison.

Characterization. The crystal structures of all prepared samples were characterized by X-ray diffraction (XRD) using a Rigaku D/MAX2500pc diffractometer with Cu Kα radiation. Scanning electron microscopy (SEM) images were obtained with a Zeiss AURIGA FE microscope (EHT = 5 kV, WD = 8.8 nm; Zeiss, Oberkochen, Germany). An energy-dispersive X-ray analysis (EDS) of the samples was also performed during the SEM measurements. Transmission electron microscopy (TEM) measurements were carried out on a FEI Tecnai G20 operated at an acceleration voltage of 200 kV. The surface chemical environments were analyzed by X-ray photoelectron spectra (XPS) on a PHI5000 VersaProbe system with monochromatic Al Kα X-rays. The composite was applied with Fourier transform infrared spectroscopy analysis (FT-IR, IRPrestige-21, Shimadzu, Japan) using FT-IR spectrophotometer (KBr as the reference sample). UV-Vis diffuse-reflectance spectroscopy (UV-Vis DR) was performed using the Hitachi U-3010 UV-Vis spectrophotometer. Raman spectra were recorded on an HR Evolution instrument with an Ar+ laser source of 488 nm. The Brunauer-Emmett-Teller (BET) surface area measurements and evaluation of porosity of the samples were conducted on the basis of nitrogen adsorption isotherms measured at 400 °C using a gas adsorption apparatus (Gemini VII 2390, Micromeritics Instrument Corp, Norcross, GA, USA). The sample for electron spin resonance (ESR) measurement was prepared by mixing NaYF₄:Ho³⁺@TO-rGO samples in a 50 mM DMPO solution tank (aqueous dispersion for DMPO·-OH and methanol dispersion for DMPO–O₂⁻). Photoelectrochemical properties were evaluated using CHI Electrochemical Workstation (CHI 760E, Shanghai Chenhua, China). All the photoelectrochemical measurements were performed under Vis light of a 300 W Xe lamp coupled with 420 nm cutoff filters. Three-dimensional (3D) fluorescence spectra were obtained with a Hitachi F-7000 fluorescence spectrophotometer with a 150 W Xe lamp as excitation source. All experiments were performed at room temperature.

References

1. Honda, A. et al. Electrochemical Photolysis of water at a semiconductor electrode. Nature. 238, 37–38 (1972).
2. Reddy, K. R., Hassan, M. & Gomes, V. G. Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. ApplCatal A. 489, 1–16 (2015).
3. Fujishima, K. et al. TiO₂ Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 44, 8269–8285 (2005).
4. Kumar, S. G. & Devi, L. G. et al. Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A. 115, 13211–13241 (2011).
5. Hassan, K. R. et al. Carbon Functionalized TiO2 Nanofibers for High Efficiency Photocatalysis. Mater. Res. Exp. 1, 12–15 (2014).
6. Wen, J., Li, X. & Liu, W. et al. Photocatalysis fundamentals and surface modification of TiO2 nanomaterials[J]. Chinese J Catal 36, 2049–2070 (2015).
7. Wompong, C., Andreas, T. & Hoffmann, M. R. Effects of Metal-Ion Dopants on the Photocatalytic Reactivity of Quantum-Sized TiO2 Particles. Angew. Chem. Int. Ed. 33, 1091–1092 (1994).
8. Tang, Y. et al. NIR-Responsive Photocatalytic Activity and Mechanism of NaYF4:Yb,Tm@TiO2 Core–shell Nanoparticles. ACS Catal. 3, 405–412 (2013).
9. Kaur, N. Strategies for modification of titania to harness visible light-A review. Catal. eprints.itim.ac.in. 25, 26–38 (2014).
10. Liu, J. et al. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures, a review. Chem. Soc. Rev. 43, 6920–6937 (2014).
11. Lu, M. et al. \textit{et al}.
12. Tang, Y. et al. \textit{et al}.
13. Lu, M. et al. \textit{et al}.
14. Wang, D.
15. Lu, M. et al. \textit{et al}.
16. Tang, Y. et al. \textit{et al}.
17. Zhou, J.
18. Han, W. et al. \textit{et al}.
19. Qin, W. et al. \textit{et al}.
20. Xiao, M. et al. \textit{et al}.
21. Ding, M.
22. Guo, X.
23. Guo, X.
24. Guo, X.
25. Guo, X.
26. Guo, X.
27. Guo, X.
28. Wang, W.
29. Wu, X.
30. Ye, Q.
31. Qin, W.
32. Ye, Q.
33. Tsuibo, T. et al. Optical spectroscopy of heavily Ho3+ doped BaY2F8 crystals. J. Lumin. 131, 695–700 (2011).
34. Wu, T. H. & Long, J. et al. Synthesis and Photocatalytic Activity of Hexagonal Phase NaYF4:Ho3+@TiO2 Core–Shell Microcrystals. CrystEngComm 18, 6471–6482 (2016).
35. Ren, L. et al. Upconversion–P25 graphene composite as an advanced sunlight driven photocatalytic hybrid material. J. Mater. Chem. 22, 11765–11770 (2012).
36. Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chem Rev. 110, 132–145 (2010).
37. Imoto, K. et al. \textit{et al}.
38. Allen, M. J., Tung, V. C. & Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chem Rev. 110, 132–145 (2010).
39. Li, X., Yu, J. & Wang, L. et al. \textit{et al}.
40. Li, X., Yu, J. & Wang, L. et al. \textit{et al}.
41. Wang, D.
42. Lv, X., Zhang, G. & Fu, W. \textit{et al}.
43. Zhang, Y. et al. \textit{et al}.
44. Yadav, P. et al. Probing the electrochemical properties of TiO2/graphene composite by cyclic voltammetry and impedance spectroscopy. Mater. Sci. Eng. B. 206, 22–29 (2016).
45. Xiang, Q., Cheng, B. & Yu, J. Graphene-Based Photocatalysts for Solar-Fuel Generation[J]. Angew. Chem. Int. Ed. 54, 11350 (2015).
46. Hu, X. Y., Zhou, K. & Chen, B. Y. et al. Graphene/TiO2/2SM-5 composites synthesized by mixture design were used for photocatalytic degradation of oxytetracycline under visible light: Mechanism and biotoxicity[J]. Appl. Surf. Sci. 362, 329–334 (2016).
47. Huang, M., Yu, J. & Hu, Q. et al. Preparation and enhanced photocatalytic activity of carbon nitride/titanium(001 vs 101 facets) reduced graphene oxide (g-C3N4/TiO2/RGO) hybrids under visible light[J]. Appl. Surf. Sci. 389, 1084–1093 (2016).
48. Pham, T. T., Nguyen-Huy, C. & Shin, E. W. Facile one-step synthesis of niobium-doped titanium dioxide/graphene oxide composites: Enhancement of photodegradation under visible-irradiation[J]. Appl. Surf. Sci. 377, 301–310 (2016).
50. Cui, G. L. et al. Highly dispersive nano-TiO₂ in situ growing on functional graphene with high photocatalytic activity. J. Nano. Res. 18, 1–8 (2016).
51. Wang, W. et al. Graphene supported -NaNYF₄/Yb³⁺-Tm³⁺ and N doped P25 nanocomposite as an advanced NIR and sunlight driven upconversion photocatalyst. Appl. Surf. Sci. 282, 832–837 (2013).
52. Wang, W. et al. A NIR-driven photocatalyst based on -NaNYF₄/Yb,Tm@TiO₂ core–shell structure supported on reduced graphene oxide. Appl. Catal B 182, 184–192 (2016).
53. Zeng, J. H. et al. Synthesis and Upconversion Luminescence of Hexagonal-Phase NaNYF₄/Yb, Er³⁺ Phosphors of Controlled Size and Morphology. Adv. Mater. 17, 2119–2123 (2005).
54. Yin, B. J. Q. Z. Synthesis, crystallinity control, and photocatalysis of nanostructured titanium dioxide shells. J. Mater. Res. 28, 362–368 (2013).
55. Jang, H. K. et al. Hierarchical mesoporous nanosized TiO₂ nanostructures with efficient photocatalytic and photovoltaic performances. J. Mater. Chem. A 3, 9714–9721 (2015).
56. Shan, J. & Ju, Y. A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaNYF₄/Yb,Er upconversion nanophosphors. Nanotechnology 20, 275603–275617 (2009).
57. Xu, Z. et al. Harvesting Lost Photons: Plasmon and Upconversion Enhanced Broadband Photocatalytic Activity in Core@Shell Microspheres Based on Lanthanide-Doped NaNYF₄, TiO₂, and Au. Adv. Funct. Mater. 25, 2950–2960 (2015).
58. Zhao, Z. L. et al. Enhancement of the thermal conductivity of polymer composites with Ag–graphene hybrids as fillers. Phys. Status Solidi A. 211, 2142–2149 (2014).
59. Ye, X. L. et al. Fabrication of Highly-Aligned, Conductive, and Strong Graphene Papers Using Ultra Large Graphene Oxide Sheets. ACS Nano. 6, 10708–10719 (2012).
60. Xu, Y. et al. The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO₂ nanocomposites. Appl. Catal. B 181, 810–817 (2016).
61. Wang, Y. et al. Low-temperature solvothermal synthesis of graphene-TiO₂ nanocomposite and its photocatalytic activity for dye degradation. Mater. Lett. 134, 115–118 (2014).
62. PareDES, J. I. et al. Graphene Oxide Dispersions in Organic Solvents. Langmuir 24, 10560–10564 (2008).
63. Kuo-Chih Hsu, D. H. C. Green synthesis and synergistic catalytic effect of Ag/reduced graphene oxide nanocomposite. Nanoscale Res. Lett. 9, 484–488 (2014).
64. Padmanabhan, M. et al. Electrochemical Integration of Graphene with Light-Absorbing Copper-Based Thin Films. J. Phys. Chem. C. 6, 1–7 (2012).
65. Du Mao et al. Preparation of a Microspherical Silver-Reduced Graphene Oxide–Bismuth Vanadate Composite and Evaluation of Its Photocatalytic Activity. Materials 9, 3–14 (2016).
66. Chen, D. et al. Nanospherical-like reduced graphene oxide decorated TiO₂ nanoparticles: an advanced catalyst for the hydrogen evolution reaction. Sci. Rep. 6, 20335–20339 (2016).
67. Wang, H. & Wang, Y. et al. Vibrational properties of graphene and graphene layers. J Raman Spectros. 40, 1791–1796 (2010).
68. Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).
69. Leng, W. H. et al. Investigation of the Kinetics of a TiO₂ Photoelectrochemical Reaction Involving Charge Transfer and Recombination through Surface States by Electrochemical Impedance Spectroscopy. J. Phys. Chem. B. 109, 15008–15023 (2005).
70. Natarajan, T. S. et al. Study on UV-LED/TiO₂ process for degradation of Rhodamine B dye. Chem. Eng. J. 169, 126–134 (2011).
71. Panpranot, J. et al. Synthesis, Characterization, and Catalytic Properties of Pd and Pd-Ag Catalysts Supported on Nanocrystalline TiO₂ Prepared by the Solvothermal Method. Catal. Lett. 103, 53–58 (2005).
72. Lu, R. et al. Phosphorus Doping in Si Nanocrystals/SiO₂ mesolayers and Light Emission with Wavelength compatible for Optical Telecommunication. Sci. Rep. 6, 22888–22892 (2016).
73. Tang, J. et al. Physophysical and photocatalytic properties of AgInW₂O₇, J Phys. chem B. 107, 14265–14269 (2003).
74. Eda, G. et al. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010).

Acknowledgements

Financial support from the Science and Technology Innovation Special Projects of Social Undertakings and Livelihood Support, Chongqing (cstc2016shmsxx20009), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2017jcyjB0349), and the 111 Project (B13041) is gratefully acknowledged.

Author Contributions

Z.F. and X.X. designed the experiments. Z.F. and T.W. performed the experiments and prepared all figures. Z.F. wrote the main manuscript text paper. All authors reviewed the manuscript.

Additional Information

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017