Rare Neurovascular Diseases in Korea: Classification and Related Genetic Variants

Yunsun Song¹, Boseong Kwon¹, Abdulrahman Hamed Al-Abdulwahhab², Yeo Kyoung Nam¹, Yura Ahn¹, So Yeong Jeong¹, Eul-Ju Seo³, Jong-Keuk Lee⁴, Dae Chul Suh¹

¹Division of Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; ²Department of Diagnostic and Interventional Radiology, Imam Abdulrahman Bin Faisal University, King Fahd Hospital of the University, Al-Khobar City, Eastern Province, Saudi Arabia; ³Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; ⁴Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Rare neurovascular diseases (RNVDs) have not been well-recognized in Korea. They involve the central nervous system and greatly affect the patients’ lives. However, these diseases are difficult to diagnose and treat due to their rarity and incurability. We established a list of RNVDs by referring to the previous literature and databases worldwide to better understand the diseases and their current management status. We categorized 68 RNVDs based on their pathophysiology and clinical manifestations and estimated the prevalence of each disease in Korea. Recent advances in genetic, molecular, and developmental research have enabled further understanding of these RNVDs. Herein, we review each disease, while considering its classification based on updated pathologic mechanisms, and discuss the management status of RNVD in Korea.

Keywords: Neurovascular; Rare diseases; Genetics; Classification; Diagnosis

RARE DISEASES IN KOREA

The definitions of rare diseases vary across countries, and most are based on the prevalence, which ranges from 9 to 76 per 100000 individuals (Table 1) [1]. According to Orphanet, a representative portal dealing with rare diseases, 6172 rare disorders had been registered by 2020. In Korea, according to the procedures and standards of the Ministry of Health and Welfare (Rare Disease Management Act of 2015), “rare disease” is defined as a disease in which fewer than 20000 people are affected or which has an unknown prevalence due to diagnostic difficulty. Rare disease (희귀질환, huigwi jilhwan), in addition to cancer, cardiac disease, and stroke, has been supported to receive reduced statutory coinsurance rates (oneself burden rate, legal co-payment rate, 법정본인부담율, beopjeong bonin budamryul) by applying exempted calculation of health insurance (건강보험산정특례, Keongang boheom sanjeong teukrye [keongang boheom sanjeong teukrye]) in Korea since 2009. The website “Helpline” was established in 2006 to collect and provide general information (epidemiology, diagnosis, treatment, etc.) on 1038 rare diseases in Korea (https://helpline.kdca.go.kr/).

RARE NEUROVASCULAR DISEASES

Rare neurovascular diseases (RNVDs) have some features distinct to other rare diseases. First, RNVD may not be well-recognized as a rare disease unlike other well-known metabolic diseases and syndromic disorders. Second, the mortality and morbidity are relatively severe if RNVD is not properly treated because it affects the central nervous system (CNS) [2]. Third, RNVD is often difficult to treat...
because medications and surgical treatment are ineffective in most cases. Fourth, recently, rapid advancements in neuroimaging and neurointervention and establishment of genetic and molecular mechanisms have led to a new phase in the diagnosis and treatment of RNVD [3-9].

This review focused on rare diseases that mainly involve the neurovascular, cerebrovascular, head and neck vascular, and spinal vascular systems with related genetic variants. Our goal was to establish a disease panel for RNVDs listed on representative databases worldwide and categorize the diseases based on recent advances in genetics, embryology, and molecular and developmental biology. We also estimated the current prevalence of RNVDs in Korea using the Health Insurance Review and Assessment (HIRA) data.

INCLUSION CRITERIA AND DISEASE SEARCH

In this review, RNVD is defined as any abnormality of the blood vessels within or supplying blood to the brain and spinal cord that does not exceed the global average prevalence threshold of 40 cases per 100,000 individuals. In addition, vascular anomalies and hypervascular tumors in the head and neck region that do not belong to the CNS but have close developmental and embryonic relationships are also discussed in this review. We excluded rare systemic diseases causing secondary neurovascular conditions, such as congenital cardiac disease, hereditary thrombophilia, and inflammatory and immunologically mediated conditions (Behçet's disease, sarcoidosis, granulomatosis with polyangiitis, Kawasaki disease, Churg–Strauss syndrome, microscopic polyangiitis, polyarteritis nodosa, Henoch–Schönlein purpura, and cryoglobulinemic vasculitis) and vasculitis associated with infections, drugs, malignancy, radiation, and connective tissue disorders (lupus, Sjögren's syndrome, rheumatoid arthritis, scleroderma, and dermatomyositis).

We searched the electronic database, MEDLINE/PubMed, with terms “rare” paired with “neurovascular,” “cerebrovascular,” or “vascular.” Articles were thoroughly reviewed, and reference lists were scanned for additional studies of potential relevance. We made a list of RNVDs by adding each disease and supplemented it by referring to review articles on these topics. Any case reports on CNS involvement in certain systemic disorders that involve other systems were thoroughly reviewed for selection.

Rare disease databases of Orphanet (https://www.orpha.net) in Europe, National Organization for Rare Disorders (NORD, http://rarediseases.org) in the United States, and Helpline (https://helpline.kdca.go.kr/) in Korea were reviewed, and lists of neurovascular diseases were obtained and compared among the databases. Diseases were selected using the Korean Standard Classification of Diseases (KCD). We obtained statistical data from the HIRA database using KCD codes to estimate the disease prevalence in Korea.

Table 1. Definition of Rare Diseases in Each Country or Continent

Country/Continent	Years	Definition	Prevalence Per 100000
Korea	2015	"Rare disease" refers to a disease in which fewer than 20000 people are affected or whose prevalence is unknown due to diagnostic difficulty, according to the procedures and standards of the Ministry of Health and Welfare	39.0
Japan	1995	"Rare and intractable diseases" refers to a disease of unknown etiology with no effective treatment that presents a major financial and psychological burden and that is rare, affecting fewer than 50000 patients	39.5
Taiwan	2000	"Rare diseases" refer to diseases with a prevalence lower than the standard proposed by the central government or with special circumstances, and reviewed by the “Review Committee for Rare Diseases and Orphan Drugs” as well as officially announced by the central government. The prevalence rate of rare diseases in the current public notice is lower than 1 in 10000 individuals	10.0
China	2010	Rare diseases are defined as “disorders with a prevalence of less than 1/50000 or with an incidence of less than 1/10000 among newborns”	0.2 (10 in newborn)
EU	1999	Conditions whose prevalence is not more than 50 per 100000 individuals	50.0
USA	1983	Any disease, disorder, illness, or condition affecting fewer than 200000 people in the USA is considered rare	60.4

Prevalence was calculated from the definition in each country based on the current population in 2020.
Most genetic variants associated with RNVDs are rare and cause monogenic or Mendelian disorders. These known variants were identified in the Online Mendelian Inheritance in Man (OMIM) database [10]. However, common genetic variants related to neurologic disorders, such as cerebral infarction or hemorrhage, were not included in this review [11].

COMPOSITION OF AN RNVD PANEL AND PREVALENCE OF EACH DISEASE IN KOREA

We organized the RNVD disease panel with a total of 68 diseases (Table 2) and summarized the coverage in each database as a schematic diagram (Fig. 1). The Orphanet, NORD, and Korean Helpline databases contained 62 (91%), 30 (44%), and 22 (32%) diseases, respectively. Among the 68 RNVDs, OMIM included 46 (68%); however, the related genes were identified in only 42 diseases (62%). The number of patients with RNVDs registered in the HIRA database of Korea is summarized in Figure 2. Moyamoya disease was the most prevalent, with 14,991 patients, followed by neurofibromatosis, Marfan syndrome, osteogenesis imperfecta, supravalvular aortic stenosis, Ehlers–Danlos syndrome (EDS), and hereditary hemorrhagic telangiectasia (HHT). In the remaining five categories, various diseases were classified together; hence, we could not calculate the number of patients with each disease.

After preparing an included disease pool or panel, we categorized them into vascular anomaly (malformation and tumor), connective tissue disease, small vessel disease (SVD), and others based on the pathophysiologic mechanism and neurological manifestation. The vascular anomaly group was further classified into vascular malformation and vascular tumor according to the International Society for the Study of Vascular Anomalies (ISSVA) classification [12] and included lesions involving the CNS and head and neck region. The connective tissue disease group included inherited diseases related to the synthesis and metabolism of extracellular matrix proteins, mainly collagen and elastin, leading to aneurysm, dissection, or rupture [13]. The SVD group included disorders with various pathophysiologic mechanisms involving the small vessels of the CNS and those that can potentially cause strokes, such as infarction or hemorrhage. Lastly, RNVDs with an uncertain pathology or not fitting any of the above classification were grouped into other diseases, and included vasculitis, which mainly involves the CNS, moyamoya disease, and hypervascular tumor [14].

Vascular Malformation and Tumor

Standardized nomenclature within the widely accepted ISSVA classification system serves as a foundation for the study of vascular anomalies [12]. Unlike vascular masses, vascular malformations are non-neoplastic and represent focal, defective morphogenesis. Vascular malformation is largely divided into simple, combined, malformations of major named vessels, and syndrome-associated malformations [12]. Simple and combined malformations are classified into capillary, lymphatic, venous, and arteriovenous malformation (AVM) according to the constituent malformed vessel type. Simply dividing into “high-flow” and “slow-flow” malformations depending on the presence of arterial components is also useful for diagnosis and treatment [15].

High-flow shunt lesions including AVMs and arteriovenous fistulae (AVFs) are relatively common and clinically important in the CNS. AVMs are characterized by abnormal connections between primitive arteries and veins with an intervening dysplastic microvascular bed, known as the nidus. AVFs present in a similar fashion, but without an intervening nidus.

The exact pathogenesis of the AVM is not yet known. There has been a controversy over whether AVM is a congenital or an acquired lesion that most likely involves an environmental trigger leading to increased angiogenesis compounded by an underlying genetic susceptibility involved in signaling pathways for angiogenesis and inflammation [16,17]. AVMs most commonly occur sporadically, and somatic mutations in KRAS, BRAF (brain and spine), and MAP2K1 (head and neck region) genes, associated with the Ras-MAPK pathway, have recently been discovered [18-20]. AVMs can also be associated with inherited genetic disorders such as HHT and capillary malformation–AVM (CM–AVM) [21-23]. All HHT mutations (ENG, ACVRL1, SMAD4, and GDF2) appear to cause decreased BMP-Smad signaling that may lead in turn to increased angiogenesis, otherwise CM–AVM has loss-of-function mutations in RASA1 (CM–AVM1) and EPB4 (CM–AVM2) genes, leading to activation of Ras-MAPK pathway [22,24,25]. Cerebral AVMs can also occur as a component of syndrome-associated malformations, such as the Parkes–Weber syndrome, which is characterized by multifocal CMs, high-flow shunt lesion, and limb overgrowth, or congenital lipomatous overgrowth, vascular malformations, epidermal

Table 2

Disease Category	Number of Diseases
Capillary Malformation	1
Lymphatic Malformation	2
Venous Malformation	3
Arteriovenous Malformation	20
Capillary Tumor	1
Lymphatic Tumor	1
Venous Tumor	2
Arteriovenous Tumor	4
Other Vascular Anomalies	6
Connective Tissue Disease	4
Small Vessel Disease	4
Other Diseases	49

References

[10] https://www.omim.org
[11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25]
Group	Subgroup	Disease	Gene	OMIM	Inheritance*	Neurovascular Manifestation	Prevalence† (100000)	
Vascular malformation	High flow	Arteriovenous malformation	KRAS/BRAF/MAP2K1	108010		AVM	1–9	
		Dural arteriovenous fistula				AVF	-	
		Cerebral proliferative angiopathy				AVM	-	
		Craniofacial arteriovenous metameric syndrome				Metameric AVM	1–9	
		Spinal arteriovenous metameric syndrome				Metameric AVM	< 0.1	
		Hereditary Hemorrhagic Telangiectasia	ENG/ACVRL1/GDF2/SMAD4	187300/600376/601101/610655/615506	AD	AVM/AVF	10–50	
		Capillary malformation-arteriovenous malformation	RASA1/EPHB4	608354/618196	AD	CM, AVM	-	
		Parkes-Weber syndrome	RASA1	608354	AD*	CM, AVF, limb overgrowth	-	
		CLOVES syndrome	PIK3CA	612918		CM, VM, LM, AVM	< 0.1	
		Vein of Galen aneurysmal malformation	RASA1/EPHB4/ACVRL1	618196		AVM	-	
		Dural sinus malformation				sinus malformation	-	
		Venous malformation				sinus malformation	-	
Low flow	Internal carotid agenesis					Arterial anomaly	< 0.1	
	Familial cerebral cavernous malformation	Kirit1/MALCAVERNNIN/PDCD10	116860/603284/603285	AD	VM		10–50	
	Sturge-Weber syndrome	GNAQ	185300			Metameric CM, other anomalies	1–9	
	PHACE syndrome		606519			Arterial, other anomalies	< 0.1	
	Craniofacial venous metameric syndrome					Metameric VM	1–9	
	Klippel-Trénaunay syndrome	PIK3CA	149000	AD*	CM, VM, LM, limb overgrowth	< 0.1		
	Mucocutaneous venous malformations	TEK	600195	AD	VM		< 0.1	
	Blue rubber bleb nevus	TIE2	112200	AD*	VM		-	
	Sinus pericranii					Venous anomaly	-	
Vascular tumors	Benign	Tufted angioma	GNA14	607859		Vascular tumor	-	
	Spindle cell hemangioma					Vascular tumor	-	
	Kaposiform hemangioendothelioma	GNA14	141000			Vascular tumor	< 0.1	
	Hemangioendothelioma					Vascular tumor	-	
	Papillary intralymphatic angioendothelioma					Vascular tumor	-	
	Malignant	Angiosarcoma				Vascular tumor	0.1	
	Epithelioid hemangioendothelioma					Vascular tumor	0.1	
Group	Subgroup	Disease	Gene	OMIM	Inheritance*	Neurovascular Manifestation	Prevalence†	
-------------------------------	---------------------------------	--------------------------	---	---------------	--------------------	-----------------------------	---------------------------	
Connective tissue disease	Collagen	Ehlers Danlos Syndrome	COL3A1	130050	AD/AR	Aneurysm, dissection	0.5–2	
		Autosomal dominant polycystic kidney disease	PKD1/PKD2/GANAB	173900/613095/600666	AD	Aneurysm	10–50	
		Osteogenesis imperfecta	COL1A1/COL1A2/IFITM5/SERPINF1/CRTP/P3H1/PPIB	166200/166210/166220/166230/259420/259440/610682	AD/AR	Aneurysm, dissection	10–50	
Elastin		Marfan syndrome	FBN1	154700	AD	Aneurysm, dissection	10–50	
		Loeys-Dietz syndrome	TGFBR1/TGFBR2/SMAD3/TGFBR2/TGFBR3	609192/610168/613795/614816/615582	AD	Aneurysm, dissection	-	
Generalized connective tissue disease		Pseudoxanthoma elasticum	ABC6	177850	AR	Aneurysm, stenosis	1–9	
		Arterial tortuosity syndrome	SLC2A10	208050	AR	Aneurysm, stenosis	< 0.1	
		Supravalvular aortic stenosis	ELN	185500	AD	Steno-occlusion	10–50	
		Familial bicuspid aortic valve	NOTCH1/SMAD6	109730/614823	AD	Aneurysm, dissection	-	
		Neurofibromatosis type 1	NF1	162200/162210/613675	AD	Aneurysm, stenosis	10–50	
		Spontaneous cervical artery dissection	-	-	-	Dissection	3.5–4.5	
		Grange syndrome	YY1AP1	602531	AD/AR	Steno-occlusion	< 0.1	
		Familial cerebral saccular aneurysm	ARHGEF1/ANGPTL6/ADAMTS15/RNF213/THSD1	617043/609336/607509/613768/105800	AD/AR	Aneurysm	-	
Small vessel diseases		Giant or fusiform aneurysm	-	-	-	Aneurysm	-	
		COL4A1/2-related small vessel disease	COL4A1/COL4A2	175780/614483	AD	Small vessel disease	-	
		Hereditary cerebral hemorrhage with amyloidosis	CST3/APP	105150/605714	AD	Small vessel disease	< 0.1	
		MELAS	MTL1/MTND5	540000	Mitochondrial	Small vessel disease	0.1–0.9	
		Fabry disease	GLA	301500	XR	Small vessel disease	10–50	
		CADASIL	NOTCH3	125310	AD	Small vessel disease	0.1–0.9	
		CARASIL	HTRA1	600142	AR	Small vessel disease	-	
		CARASAL	CTSA	613111	AD	Small vessel disease	-	
		Leukoencephalopathy with calcifications and cysts	SNORD118	614561	AR	Small vessel disease	< 0.1	
		Retinal vasculopathy with cerebral leukodystrophy	TREX1	192315	AD	Small vessel disease	-	
		Autosomal recessive leukoencephalopathy-ischemic stroke-retinitis pigmentosa syndrome	-	-	AR	Small vessel disease	< 0.1	
Group	Subgroup	Disease	Gene	OMIM	Inheritance*	Neurovascular Manifestation	Prevalence†	
-------------------------------	------------------------------------	--	---------------	---------------	--------------	-----------------------------	--------------	
		Small vessel diseases						
		Coats plus syndrome	CTC1/STN1	612199/617341	AR	Small vessel disease	< 0.1	
		Susac syndrome						
		Hereditary diffuse leukoencephalopathy with spheroids	CSF1R	221820	AD	Small vessel disease	< 0.1	
		Others						
		Steno-occlusive large vessel diseases						
		Sneddon syndrome	ADA2	182410	AD*	Steno-occlusion	0.4	
		Alagille Syndrome	JAG1/NOTCH2	118450/610205	AD	Steno-occlusion, aneurysm	1.5	
		Aicardi-Goutières syndrome	SAMHD1	612952	AD/AR	Steno-occlusion	10–50	
		Reversible cerebral vasoconstrictive syndrome		-	-	Steno-occlusion	-	
		Moyamoya disease	RNF213/ACTA2/GUCY1A3	252350/607151/608796/614042	AD/AR/XR	Steno-occlusion	10–90	
		Rare disorder with a moyamoya angiopathy						
		Multisystemic smooth muscle dysfunction syndrome	ACTA2	613834	AD	Steno-occlusion	< 0.1	
		Primary angiitis of the central nervous system						
		Giant cell arteritis		187360	-	Vasculitis	10–50	
		Takayasu arteritis		207600	-	Vasculitis	1–9	
		Head and neck paragangliomas			-	Hypervascular tumor	-	
		Juvenile nasopharyngeal angiofibroma			-	Hypervascular tumor	0.6	
		Hemangiopericytoma		234820	-	Hypervascular tumor	-	
		Von Hippel-Lindau disease	VHL	193300	AD	Hypervascular tumor	1–9	
		Hypermalignant tumors						

*Reported in some cases, †The data of Orphanet were referenced. AD = autosomal dominant, AR = autosomal recessive, AVF = arteriovenous fistula, AVM = arteriovenous malformation, CADASIL = cerebral autosomal dominant arteriopathy with subcortical ischemic strokes and leukoencephalopathy, CARASIL = cerebral autosomal recessive arteriopathy with subcortical ischemic strokes and leukoencephalopathy, CLOVES = congenital lipomatous overgrowth, vascular malformations, epidermal nevus, spinal/skeletal anomalies/scoliosis, CM = capillary malformation, LM = lymphatic malformation, MELAS = mitochondrial encephalopathy with lactic acidosis and stroke-like episodes, OMIM = Online Mendelian Inheritance in Man, PHACE = posterior fossa malformations, large facial hemangiomas, arterial anomalies, coarctation of the aorta and cardiac defects, and eye abnormalities syndrome, VM = venous malformation, XR = X-linked recessive
Rare Neurovascular Diseases in Korea

Fig. 1. Schematic representation of rare neurovascular diseases from the rare disease databases worldwide. CADASIL = cerebral autosomal dominant arteriopathy with subcortical ischemic strokes and leukoencephalopathy, CARASIL = cathepsin A–related arteriopathy with subcortical ischemic strokes and leukoencephalopathy, CLOVES = congenital lipomatous overgrowth, vascular malformations, epidermal nevus, spinal/skeletal anomalies/scoliosis, MELAS = mitochondrial encephalopathy with lactic acidosis and stroke-like episodes, NORD = national organization for rare disorders, OMIM = online mendelian inheritance in man, PHACE = posterior fossa malformations, large facial hemangiomas, arterial anomalies, coarctation of the aorta and cardiac defects, and eye abnormalities syndrome.

nevis, spinal/skeletal anomalies/scoliosis (CLOVES) syndrome [12]. It was once known to be sporadic and non-genetic but found to be associated with RASA1 mutations in some cases [26]. Cerebral proliferative angiopathy is a rare distinct entity from classical brain AVM characterized by the presence of normal brain tissue intermingled with abnormal vessels and a proliferative nature [27].

Dural AVF is considered to be an acquired disease and may develop by neoangiogenesis due to various etiologies, including venous sinus thrombosis, trauma, and surgery [28]. Dural AVF considering different presentations according to the lesion location and venous drainage pattern may be associated with different orientations in the development of the neural crest and mesoderm [29]. Spinal AVM and/or fistula may have similar aspects but different development compared to the intracranial dura [30]. Vein of Galen aneurysmal malformations (VGAMs) and dural sinus malformations are specific forms of dural AVFs, which are developmental anomalies accompanied by venous sinus malformation that can be found antenatally [6,31,32]. These malformations are largely sporadic, possibly due to an early insult such as somatic mutations [31]. However, recent studies reported that some of the VGAMs were associated with germline mutations in RASA1 and EPHB4, and ACVRL1 genes [33-35].

Vascular neurocutaneous syndromes are considered to be a predominant disorder of the neurovascular system with secondary neuroectodermal changes [33]. Some of these disorders may show segmental distribution, involve a specific region of the face and brain, the spinal cord, or the cutaneous involvement of the related dermomalformations [36]. Head and neck endothelial cells (ECs), as elsewhere, derive from mesoderm and the tunica media of these vessels differentiates from neural crest cells [37].

kjronline.org https://doi.org/10.3348/kjr.2020.1171 1385
crest and mesodermal cells originating from a given transverse (metameric) level of the embryo finally occupy the same territory in the head [38]. Segmental vascular neurocutaneous disorders include craniofacial arteriovenous metameric syndrome, spinal arteriovenous metameric syndrome, craniofacial venous metameric syndrome, Sturge–Weber syndrome, posterior fossa malformations, large facial hemangiomas, arterial anomalies, coarctation of the aorta and cardiac defects, and eye abnormalities (PHACE) syndrome. A somatic mutation developing in the region of the neural crest or adjacent cephalic mesoderm prior to migration could be expected to produce such malformations with a metameric distribution [36].

Slow-flow malformations that can involve the CNS or head and neck region are familial cerebral cavernous malformation (CCM), cutaneous mucosal venous malformation (VMCM), blue rubber bleb nevus syndrome (BRBN), and Klippel–Trénaunay syndrome. Most cases of CCM are sporadic and comprise a single lesion in the brain and spinal tissues, but familial cases of CCM with an autosomal dominant inheritance are rare and associated with multiple lesions [39]. Three genes (KRIT1, CCM2, and PDCD10) are known to cause familial CCM [39]. Venous malformation (VM) is relatively common in head and neck areas, which shows a good response to sclerotherapy [40–42]. Its prevalence or genetic association has not been well-recognized in Korea. Mutations in the TEK gene encoding TIE2 have been reported to cause VMs of various clinical spectrums, including inherited VMCM, sporadic unifocal VM, multifocal VM, and BRBN, according to the mode of mutation acquisition [43]. BRBN is a non-inherited disorder characterized by multiple cutaneous and gastrointestinal VMs and rarely accompanying venous anomalies in the brain [44]. Klippel–Trénaunay syndrome is a rare congenital vascular malformation syndrome characterized by a combination of capillary and lymphatic malformations, VMs, and limb overgrowth [45]. Congenital developmental anomalies include ICA agenesis and sinus pericranii, which is a rare venous anomaly abnormally connecting the intracranial dural sinuses with the epicranial veins [46].

Vascular masses included in the 2018 ISSVA classification are subsequently, broadly subdivided by their malignant potential: benign, locally aggressive or borderline, and malignant [12]. Vascular tumors commonly presented in head and neck areas in pediatric ages include tufted angioma, spindle cell hemangioma, pyogenic granuloma, kaposiform hemangioendothelioma, hemangiendothelioma, papillary intralymphatic angioendothelioma, angiosarcoma, and epithelioid hemangioendothelioma, while excluding relatively common infantile hemangioma and congenital

Fig. 2. Registered rare neurovascular diseases in Korea (from the Health Insurance Review and Assessment database). CADASIL = cerebral autosomal dominant arteriopathy with subcortical ischemic strokes and leukoencephalopathy, CARASIL = cerebral autosomal recessive arteriopathy with subcortical ischemic strokes and leukoencephalopathy, MELAS = mitochondrial encephalopathy with lactic acidosis and stroke-like episodes.
Connective Tissue Diseases

The major component of the arterial and venous walls is the extracellular matrix, which contains mainly collagens and elastin [13]. Elastin provides reversible extensibility during cyclic loading of the cardiac cycle, while collagen provides strength and prevents failure at high pressures [47]. Based on the two major constituents of the connective tissue, these disorders can be divided into “collagenopathies” and “elastinopathies” [4].

EDS type IV results from mutations in the COL3A1 gene, encoding type III procollagen [48]. Involvement of arteries of large and medium diameters, such as cervical artery dissection, intracranial aneurysms, and carotid–cavernous fistula, have been described in EDS type IV [49]. The weak and excessive collagen is suggested to play a central role in the pathogenesis of different manifestations of autosomal dominant polycystic kidney disease (ADPKD) [49]. The most frequent neurovascular complication of ADPKD is intracranial aneurysms, accounting for only 5–9% of cases but occurring three- to five-fold more often than in the general population [50]. Osteogenesis imperfecta is a heterogeneous group of inherited connective tissue disorders characterized by skeletal abnormalities. Although infrequent, ruptured intracranial aneurysm, moyamoya-like disease, carotid–cavernous fistula, and aortic and cervical artery dissections have been reported [51]. This disease is an autosomal dominant disorder caused by mutations in COL1A1 and COL1A2, coding for the α1(I) and α2(I) chains of type I collagen, respectively [52].

There are several genetic diseases with neurovascular manifestation, associated with elastic fiber system. Marfan syndrome is an autosomal dominant disease caused by FBN1 mutation which encodes the fibrillin-1 protein, an important component of the elastic fiber system [53]. The clinical signs are mainly musculoskeletal, ocular, cardiac with aortic and mitral valve anomalies, and aortic aneurysms and dissections [54]. Although proximal aortic dissection may extend into the cervical arteries, there is no evidence that spontaneous cervical artery dissection (SCAD) is prevalent in Marfan syndrome. Similarly, there is no definite evidence that cerebral aneurysms are more common in Marfan syndrome than in the general population [55]. Loeys–Dietz syndrome (LDS) is an autosomal dominant connective tissue disorder caused by mutations in several genes related to the transforming growth factor-β (TGF-β) signaling pathway. Elastic fiber fragmentation and abnormal collagen deposition were demonstrated in aortic explants from LDS patients [56]. LDS shows facial dysmorphism, aortic aneurysm, and neurovascular involvement such as arterial tortuosity, aneurysm, and dissection [57,58].

Pseudoxanthoma elasticum is a genetic metabolic disease that causes mineralization of elastic fibers of the skin, eyes, and blood vessels [59]. Arterial tortuosity syndrome is an autosomal recessive disorder characteristic by tortuosity, elongation, stenosis, and aneurysm formation in the major arteries secondary to disorganization of elastic fibers in the medial layer of the arterial wall [60]. The syndrome is caused by loss-of-function mutations in the SLC2A10 gene that is associated with elastin maturation [61].

Supravalvular aortic stenosis caused by mutations in the elastin gene (ELN), leads to disorganization of the lamellar architecture of the tunica media, irregular elastic fibers and smooth muscle (SM) cell hypertrophy [62]. Bicuspid aortic valve (BAV) is relatively common and occasionally appears as a familial form or feature of connective tissue disorders [63]. Several genes related to familial BAV have been identified, and the association between familial BAV and intracranial aneurysm has been reported [64].

In addition, although the exact pathology has not been identified, several diseases are probably caused by connective tissue dysfunction. Neurofibromatosis type I (NF1) is characterized by café-au-lait spots and dermal neurofibromas, which result from abnormalities in neural crest-derived cell types [65]. NF1-related vasculopathy may include steno-occlusion of cerebral arteries and aneurysms, resulting in hemorrhage or AVF. It possibly results from loss of neurofibromin function, participating in downregulating the Ras–MAPK pathway, causing alteration of the normal process of vascular maintenance and repair [66].

SCAD is a major cause of stroke in young adults [67]. The exact pathogenesis of SCAD has not been identified. However, the fact that various connective tissue and vascular disorders, such as Marfan syndrome, EDS, and fibromuscular dysplasia (FMD), and familial history are associated with SCAD in some cases, suggests an underlying arteriopathy possibly related to a generalized extracellular matrix defect [68]. Grange syndrome is a rare autosomal recessive syndrome caused by homozygous YY1AP1 mutations, which is involved in the pathway for DNA repair in vascular SM cells [69]. The syndrome is characterized by arterial stenosis similar to focal FMD, congenital cardiac defects, brachydactyly/syndactyly, fragile bones, and
learning disabilities [69]. FMD is not a rare disease, with a prevalence of 3–4% [69]. However, familial FMD was reported in approximately 5% of the population, in which a heterozygous variant of YY1AP1 is suggested as a cause of the inherited subgroup [70]. FMD mainly causes stenosis and occlusion of renal and cervical arteries and may lead to ischemic stroke [70].

Intracranial aneurysm is a relatively common disease with a prevalence of approximately 3% but rarely occurs as a familial or refractory giant or fusiform subtypes. Recently, five candidate genes (ARHGEF17, ANGPTL6, ADAMTS15, RNF213, and THSD1) have been identified for familial intracranial aneurysms using next-generation sequencing [71-75]. Giant or fusiform aneurysms are rare and difficult to treat so may be classified as a rare entity distinguished from general aneurysms [76].

Small Vessel Diseases

SVD is defined in various ways [77], but in this review it refers to diseases that mainly involve cerebral small arteries or arterioles. Cerebral SVDs are important causes of stroke (deep infarctions or hemorrhages), cognitive decline, and age-related disability. There are different subtypes according to their pathophysiology. Although arteriolosclerosis is a common cause of SVD, a group of rare hereditary subtypes and associated genetic mutations have been reported recently (Table 2). COL4A1 and COL4A2 mutations have been recognized as the cause of type IV collagen-related diseases such as familial porencephaly and hereditary angiopathy with nephropathy, aneurysm, and cramps syndrome [78]. The cerebrovascular manifestations such as leukoencephalopathy, lacunar infarcts, microbleeds, and intracerebral hemorrhages result from increased fragility of small vessels [78-80]. Cerebral amyloid angiopathy is a distinct group of amyloidosis that involves, exclusively or predominantly, the CNS. It may be hereditary or sporadic, and share clinical, pathological and biochemical features with Alzheimer’s disease [81]. Inflammatory SVD (vasculitis) is also an important subgroup of cerebral SVD, but it is usually part of a systemic disease [82], and will not be addressed in detail in this review.

Other rare SVDs included mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), Fabry disease, hereditary cerebral hemorrhage with amyloidosis, cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), cathepsin-A-related arteriopathy with strokes and leukoencephalopathy (CARASAL), leukoencephalopathy with calcifications and cysts, retinal vasculopathy with cerebral leukodystrophy, autosomal recessive leukoencephalopathy, ischemic stroke, retinitis pigmentosa syndrome, Coats plus syndrome, Susac syndrome, hereditary diffuse leukoencephalopathy with spheroids, and Sneddon syndrome.

Others

Others diseases which seemed to be difficult to categorize into the preceding disease categories were steno-occlusive large vessel diseases, including Alagille syndrome, Aicardi–Goutieres syndrome, reversible cerebral vasoconstriction syndrome, moyamoya disease, rare disorder with moyamoya syndrome (Down syndrome, sickle cell anemia, neurofibromatosis type 1, radiation, connective tissue disorders, or infection), and multisystemic SM dysfunction syndrome, vasculitis, and hypervascular tumors.

EMBRYOLOGICAL CONSIDERATION OF RNVDS

While reviewing the literature, databases and diseases codes, we found out that it would be necessary to make a certain process to be included in RNVDs with several guideline or criteria. Such criteria included vessel wall component from 3 germ layers (endothelium from mesoderm and others from the neural crest), relation with connective tissues (collagen or elastin) and genetics (genetic vs. non-genetic disorder). We applied recent research progress on the dysfunction in endothelium, SM cell, pericyte, neural crest development, and connective tissue components.

Failure of ECs to properly undergo arteriovenous specification may contribute to vascular malformation and dysfunction, such as in HHT and CM–AVM where abnormal vessel structures, such as large shunts lacking clear arteriovenous identity and function, form and compromise peripheral blood flow [83]. Dysregulation of angiogenesis associated with the endothelium has been studied for AVM development or progression [84]. A recent study has revealed that the activation of the ERK1/2 pathway, which is downstream of Ras, was increased in ECs derived from brain AVMs compared to the ECs derived from normal brain vessels [85].

Vascular SM cells (VSMCs), stromal cells of the blood vessels, shows a complex mosaic developmental pattern
during embryogenesis with diverse embryonic tissues including the neural crest, the proepicardium, the mesothelium, the secondary heart field, and the somites [86]. Perivascular mural cells (VSMC and pericytes) and ECs may share a common progenitor, namely, Flk1-positive embryonic stem cells [86]. In early development VSMCs in arteries and veins and pericytes in capillaries muscularized primary vessels are formed by ECs. These provide structural stability, and functionality. With the most recent mechanisms, including the role of platelet-derived growth factor-B, Notch, and TGF-β, signaling pathways that regulate SMC and pericyte lineages, embryonic origin may have a role in regulating disease development by building on clinical studies on aneurysms and dissections [87,88].

In addition to most of the skeletal tissues and the connective tissues of the facial area, brain pericytes and meninges of the telencephalon are of neural crest origin except for the blood vessel endothelium which is derived from the mesoderm. Meninges in all the other parts of the CNS are of mesodermal origin [89]. Therefore, neural crest diseases include a variety of developmental neurovascular diseases including Sturge–Weber syndrome, PHACE syndrome, ACTA2 mutation syndrome, and less frequently in the spontaneous progressive occlusion of the circle of Willis (so-called moyamoya disease) [90]. Cardiovascular lesions in these syndromes include coarctation of the aorta, persistent truncus arteriosus, patent ductus arteriosus, and coronary artery disease, and cerebrovascular lesions include agenesis and stenosis/occlusion of the internal carotid arteries, and moyamoya phenomenon.

GENETICS AND MOLECULAR PATHWAYS OF RNVDS

It is known that 88% of rare diseases can occur in children, and 72% of rare diseases are classified as genetic diseases [91]. In cases of neurovascular disease, many genetic variants associated with relatively common diseases such as atherosclerosis, ischemic or hemorrhagic strokes, have been identified so far [11]. These common variants with modest effects contribute in a multifactorial manner to confer susceptibility. Meanwhile, some rare, high-effects variants mainly contribute to the development of RNVDs, but also play a part in relatively common diseases such as familial intracranial aneurysms [71-74]. In addition, diseases previously thought to be simple aneurysms, AVMs, and strokes are increasingly being diagnosed as part of genetic disorders or syndromes owing to advancement of our understanding of RNVDs and genetic analysis [33,70,72,92-96]. With changes in diagnostic workflow

Fig. 3. Main signaling pathways involved in rare neurovascular diseases. ALK = Activin-Like Kinase Receptor, BMP = bone morphogenetic protein, BMPR = BMP receptor, CM-AVM = capillary malformation-arteriovenous malformation, CLOVES = congenital, lipomatous, overgrowth, vascular malformations, epidermal nevi and spinal/skeletal anomalies and/or scoliosis, MARK = mitogen-activated protein kinases, PDGFR = platelet-derived growth factor receptor, PI3K = phosphoinositide 3-kinase, RASA1 = Ras p21 protein activator 1, TGF-β = transforming growth factor beta, VEGFR = vascular endothelial growth factor receptors
using next generation sequencing, it is expected that more undiagnosed rare Mendelian diseases will be revealed in the future, and this can be used to guide the development of diagnostic and therapeutic options [97-100]. In addition to the germline mutation, more somatic mutation will be identified by virtue of recent development of less expensive and less time-consuming gene study like next generation sequencing. Vascular malformations generally develop as a result of somatic mosaic mutations. Somatic mutations occur during or after embryonic development and are not inherited as part of the germline DNA [101]. It has been commonly mentioned that congenital disease is present at birth and acquired disease develops after birth. However, such definition of congenital vs. acquired is not applicable in the era of genetic molecular diagnosis because phenotypic manifestation of genetic defect varies according to the age and/or triggers after birth [102].

Determining the molecular basis of vascular anomaly has also facilitated the identification of lesions with an equivocal diagnosis with similar clinical manifestation, as well as development of therapeutic agents that act on the molecular pathway [103]. The Ras-MAPK pathway is typically involved in fast-flow AVMs and some vascular tumors, whereas the PI3K-Akt pathway is typically mutated in slow-flow components (Fig. 3) [101].

NEUROIMAGING IN RNVDS

Since RNVD is rare, obtaining the diagnosis based on imaging studies can often be difficult, and knowing which diseases can involve the neurovascular system can be of great help in the diagnosis. Advanced neuroimaging techniques, which are useful in diagnosing various neurologic diseases, are also expected to play an essential role in the evaluation of RNVDs [104-106]. For example, four-dimensional magnetic resonance angiography and arterial spin labeling are useful non-invasive imaging modalities in the detection, evaluation, and follow-up of intracranial shunt diseases (Figs. 4, 5) [107-109].

Fig. 4. Imaging evaluation of the family with hereditary hemorrhagic telangiectasia.

A. A pedigree chart for the family. Clinical manifestation and genetic variation status are marked. Positive sign (+) indicates the presence of the ENG c.808C>T hetero variant; negative sign (-) indicates its absence; An arrow in the pedigree chart indicates a proband. B. Two pial arteriovenous fistulas were visualized on the right vertebral arteriography in the proband. C. Arterial spin labeling perfusion imaging represents arteriovenous shunting (arrow) as red color in the right parieto-occipital lesion. D. Four-dimensional MRA showed early filling of the nidus (long arrow) and draining veins (short arrows) on arterial phase in the proband’s sister. E. A fusion image of three-dimensional rotational angiography in both internal carotid arteries demonstrated multiple arteriovenous malformations (short arrows) and fistula (long arrow). F. A pulmonary arteriovenous fistula (arrows) was demonstrated on the chest CT (F) and confirmed on the pulmonary arteriography (G) in the proband’s father. The pedigree (A) is adapted from Kim et al. Neurointervention 2019;14:91-98 [25]. AVF = arteriovenous fistula, AVM = arteriovenous malformation, DM = diabetes mellitus, ICH = intracranial hemorrhage.
wall imaging, diffusion tensor imaging, perfusion imaging, and quantitative MRA are also helpful in understanding the pathophysiology of RNVD by evaluating the anatomical structure, microstructural integrity, and vascular malfunction [110].

RARE DISEASE MANAGEMENT SYSTEM IN KOREA

Helpline is the database and portal on rare diseases operated by the Division of Rare Disease Management of the Korea Disease Control and Prevention Agency to improve the diagnosis, care, and treatment of rare diseases. Through this online platform, detailed information on rare diseases is provided to the public. In addition, various projects, such as financial support for medical expenses, genetic testing for confirmation of rare diseases, and registration statistics are implemented.

The number of diseases currently designated as rare diseases in Helpline is 1078 (October 2020), less than 1280 of NORD and 6172 of Orphanet. Moreover, the Helpline database contains only 22 (32%) of our 68 RNVDs. This relatively small coverage can be explained by the facts that...
the prevalence, clarity of the diagnosis, severity of the disease, and expected medical expenses are all considered in designating rare diseases in Korea. Unlike other rare disease databases, there should be a limitation on the number of rare diseases in Helpline, which has to provide financial support to those with designated rare diseases. However, applications for the designation of new rare diseases are received and deliberated periodically, thereby gradually expanding the disease coverage.

In Korea, a specific code starting with ‘V’ is assigned to all rare diseases for exempted calculation of health insurance. This code allows us to estimate the number of patients with a particular rare disease registered in HIRA. However, when we investigated the prevalence of RNVDs in Korea, we encountered some difficulties. First, several diseases of the same or similar category belong to a single V code (Fig. 2). HHT, Marfan, and moyamoya diseases, which have relatively high prevalence, are the only RNVDs with a disease-specific V code. The prevalence for other diseases cannot be estimated, except for those which have a disease-specific KCD code instead, such as EDS. Second, there are duplicate V code numbers for a single disease. For example, HHT, also known as Osler–Weber–Rendu syndrome, has code numbers V297 and V235 assigned to each disease name. Third, some RNVDs do not have both V and KCD codes. These RNVDs have not been recognized as rare diseases in Korea but may be designated as rare diseases through a review at some point. However, if there is no KCD code, there will be limitations on patient tracking for the review. Furthermore, an acquired cerebral AVF shares the same I67.1 KCD code number as an unruptured cerebral aneurysm, a relatively common and completely different disease. This situation can be confusing to patients as well as to analyze epidemiological data. Therefore, the current rare diseases classification system should be reorganized through the updated definition and classification of rare diseases.

CONCLUSION

RNVDs have not been well defined and categorized into the rare disease classification in Korea. In this review, we established a disease panel of 68 RNVDs by analyzing and comparing four databases (Orphanet, NORD, OMIM and Helpline), performing a literature review, and evaluating the disease codes listed in the HIRA. To categorize vascular malformation/tumor, connective tissue diseases, SVDs and other diseases, we focused on how these diseases can be classified based on the concepts of embryology, development associated with the vessel wall component, and association with genetic disorders. Although RNVDs listed in this study could not reflect all the facets of recent development in genetic and developmental biology, they can be further defined and categorized by the virtue of genetic biology and with advances in research such as next-generation sequencing for germline and somatic mutations, and in developmental biology regarding the neural crest. Patients with RNVD may experience socioeconomic problems as well as high risks of multimodal treatment and may thus require more judicious care leading to complete cure.

Limitations

There were several limitations in our study. First, the definition of RNVDs in Korea remains unclear. We had to design a process of classifying RNVDs into rare diseases by combining the prevalence criteria of each country and converging to a prevalence threshold of 40 cases/100000 people. Second, some disease codes were not separated probably due to their unknown prevalence. In addition, it was difficult to proceed with the categorization because some diseases were interchangeably confined to a single disease code. Third, we could not reflect upon all the aspects of neurovascular and/or cerebrovascular disease classification, although we tried to include rapidly evolving disease concepts with the help of recent advances in relevant research. Some diseases may belong to multiple categories due to the mixed and complex pathogenesis of the diseases. RNVD classification is warranted for the inclusion of unidentified diseases based on new diagnostic criteria.
Rare Neurovascular Diseases in Korea

& editing: Eul-Ju Seo, Jong-Keuk Lee, Dae Chul Suh.

ORCID iDs
Yunsun Song
https://orcid.org/0000-0003-4738-0533
Boseong Kwon
https://orcid.org/0000-0002-6113-9730
Abdulrahman Hamed Al-Abdulwahhab
https://orcid.org/0000-0003-4398-7864
Yeo Kyoung Nam
https://orcid.org/0000-0002-9754-8149
Yura Ahn
https://orcid.org/0000-0002-9188-1186
So Yeong Jeong
https://orcid.org/0000-0003-4705-0008
Eul-Ju Seo
https://orcid.org/0000-0002-9188-1186
Jong-Keuk Lee
https://orcid.org/0000-0003-1125-4017
Dae Chul Suh
https://orcid.org/0000-0003-1561-5596

REFERENCES

1. Richter T, Nestler-Parr S, Babela R, Khan ZM, Tesoro T, Molsen E, et al. Rare disease terminology and definitions—a systematic global review: report of the ISPOR rare disease special interest group. Value Health 2015;18:906-914
2. Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F, Abera SF, et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1151-1210
3. Krings T, Geibprasert S. Spinal dural arteriovenous fistulas. AJNR Am J Neuroradiol 2009;30:639-648
4. Vanakker OM, Hemelsoet D, De Paepe A. Hereditary connective tissue diseases in young adult stroke: a comprehensive synthesis. Stroke Res Treat 2011;2011:712903
5. Vanaman MJ, Hervey-Jumper SL, Maher CO. Pediatric and inherited neurovascular diseases. Neurosurg Clin N Am 2010;21:427-441
6. Barbosa M, Mahadevan J, Weon YC, Yoshida Y, Ozanne A, Rodesch G, et al. Dural sinus malformations (DSM) with giant lakes, in neonates and infants: review of 30 consecutive cases. Interv Neuroradiol 2003;9:407-424
7. Lasjaunias P, Rodesch G, Pruvoit P, Laroche FG, Landrieu P. Treatment of vein of Galen aneurysmal malformation. J Neurosurg 1989;70:746-750
8. Guerrero BP, Pacheco CD, Saied A, Joshi K, Rodríguez C, Martínez-Galdámez M, et al. First human evaluation of endothelial healing after a pipeline flex embolization device with shield technology implanted in posterior circulation using optical coherence tomography. Neurointervention 2018;13:129-132
9. Liang B, Lesley WS, Robinson TM, Chen W, Benardete EA, Huang JH. Off-label application of Pipeline Embolization Device for intracranial aneurysms. Neurointervention 2019;14:116-124
10. Mckusick VA. Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 2007;80:588-604
11. Griessenauer CJ, Farrell S, Sarkar A, Zand R, Abedi V, Holland N, et al. Genetic susceptibility to cerebrovascular disease: a systematic review. J Cereb Blood Flow Metab 2018;38:1853-1871
12. ISSVA. ISSVA classification for vascular anomalies. Issva.org Web site. https://www.issva.org/classification. Accessed July 1, 2020
13. Xu J, Shi GP. Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta 2014;1842:2106-2119
14. Soun JE, Song JW, Romero JM, Schaefer PW. Central nervous system vasculopathies. Radiol Clin North Am 2019;57:1117-1131
15. Jackson IT, Carreño R, Potparic Z, Hussain K. Hemangiomas, vascular malformations, and lymphovenous malformations: classification and methods of treatment. Plast Reconstr Surg 1993;91:1216-1230
16. Morales-Valero SF, Bortolotti C, Sturiale C, Lanzino G. Are parenchymal AVMs congenital lesions? Neurosurg Focus 2014;37:E2
17. Kim H, Marchuk DA, Pawlikowska L, Chen Y, Su H, Yang CY, et al. Genetic considerations relevant to intracranial hemorrhage and brain arteriovenous malformations. Acta Neuropathol Suppl 2008;105:199-206
18. Goss JA, Huang AY, Smith E, Konczyk DJ, Smiths PJ, Sudduth CL, et al. Somatic mutations in intracranial arteriovenous malformations. PLoS One 2020;14:e0226852
19. Hong T, Yan Y, Li J, Radovanovic I, Ma X, Shao YW, et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain 2018;142:23-34
20. Couto JA, Huang AY, Konczyk DJ, Goss JA, Fishman SJ, Mulliken JB, et al. Somatic MAP2K1 mutations are associated with extracranial arteriovenous malformation. Am J Hum Genet 2017;100:546-554
21. Komiyama M. Pathogenesis of brain arteriovenous malformations. Neurol Med Chir (Tokyo) 2016;56:317-325
22. Amyere M, Revencu N, Helaers R, Pairet E, Baselga E, Cordisco M, et al. Germline loss-of-function mutations in EPHB4 cause a second form of capillary malformation-arteriovenous malformation (CM-AVM2) deregulating RAS-MAPK signaling. Circulation 2017;136:1037-1048
23. Wooderchak-Donahue W, Akay G, Whitehead K, Briggs E, Stevenson DA, O’Fallon B, et al. Phenotype of CM-AVM2

kjonline.org https://doi.org/10.3348/kjr.2020.1171
caused by variants in EPHB4: how much overlap with hereditary hemorrhagic telangiectasia (HHT)? Genet Med 2019;21:2007-2014

24. Robert F, Desroches-Castan A, Baill S, Dupuis-Giroud S, Feij JJJ. Future treatments for hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2020;15:4

25. Kim D, Seo EJ, Song YS, Suh CH, Kim JW, Kim DJ, et al. Current status of clinical diagnosis and genetic analysis of hereditary hemorrhagic telangiectasia in South Korea: multicenter case series and a systematic review. Neurointervention 2019;14:91-98

26. Revencu N, Boon LM, Mulliken JB, Enjolras O, Cordisco MR, Burrows PE, et al. Parkes Weber syndrome, vein of Galen aneurysmal malformation, and other fast-flow vascular anomalies are caused by RASA1 mutations. Hum Mutat 2008;29:959-965

27. Lasjaunias PL, Landrieu P, Rodesch G, Alvarez H, Ozanne A, Holmin S, et al. Cerebral proliferative angiopathy: clinical and angiographic description of an entity different from cerebral AVMs. Stroke 2008;39:878-885

28. Gupta A, Periakaruppan A. Intracranial dural arteriovenous fistulas: a review. Indian J Radiol Imaging 2009;19:43-48

29. Suh DC. Where did the dura mater come from? Neurointervention 2020;15:2-3

30. Tanaka M. Embryological consideration of dural AVFs in relation to the neural crest and the mesoderm. Neurointervention 2019;14:9-16

31. Bhattacharya JJ, Thammoraj J. Vein of galen malformations. J Neurol Neurosurg Psychiatry 2003;74 Suppl 1:142-144

32. Kim DJ, Suh DC, Kim BM, Kim DI. Adjuvant coil assisted glue embolization of vein of Galen aneurysmal malformation in pediatric patients. Neurointervention 2018;13:41-47

33. Vivanti A, Ozanne A, Grondin C, Saliou G, Quevarec L, Maurey H, et al. Loss of function mutations in EPHB4 are responsible for vein of Galen aneurysmal malformation. Brain 2018;141:979-988

34. Duran D, Karschnia P, Gaillard JR, Karimy JK, Youngblood MW, DiLuna ML, et al. Human genetics and molecular mechanisms of vein of Galen malformation. J Neurosurg Pediatr 2018;21:367-374

35. De Luca C, Bevilacqua E, Badr DA, Cannie MM, Sanchez TC, Segers V, et al. An ACVR1L1 gene mutation presenting as vein of Galen malformation at prenatal diagnosis. Am J Med Genet A 2020;182:1255-1258

36. Bhattacharya JJ, Luo CB, Suh DC, Alvarez H, Rodesch G, Lasjaunias P, Wyburn-Mason or Bonnet-Dechaume-Blanc as cephalofacial arteriovenous metameric syndromes (CAMS) a new concept and a new classification. Interv Neuroradiol 2001;7:5-17

37. Couly G, Coltey P, Eichmann A, Le Douarin NM. The angiogenic potentials of the cephalic mesoderm and the origin of brain and head blood vessels. Mech Dev 1995;53:97-112

38. Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 1998;82:221-231

39. Zafar A, Quadri SA, Farooqui M, Ikram A, Robinson M, Hart BL, et al. Familial cerebral cavernous malformations. Stroke 2019;50:1294-1301

40. Ahmad S. Efficacy of percutaneous sclerotherapy in low flow venous malformations—a single center series. Neurointervention 2019;14:53-60

41. De Maria L, De Sanctis P, Balakrishnan K, Tollefson M, Brinjikji W. Sclerotherapy for venous malformations of head and neck: systematic review and meta-analysis. Neurointervention 2020;15:4-17

42. Wouters V, Limaye N, Uebelhoer M, Irlthum A, Boon LM, Mulliken JB, et al. Hereditary cutaneomucosal venous malformations are caused by TIE2 mutations with widely variable hyper-phosphorylating effects. Eur J Hum Genet 2010;18:414-420

43. Sobiet J, Kangas J, Nätynki M, Mendola A, Helaers R, Uebelhoer M, et al. Blue rubber bleb nevus (BRBN) syndrome is caused by somatic TEK (TIE2) mutations. J Invest Dermatol 2017;137:207-216

44. Chung JI, Alvarez H, Lasjaunias P. Multifocal cerebral venous malformations and associated developmental venous anomalies in a case of blue rubber bleb nevus syndrome. Interv Neuroradiol 2003;9:169-176

45. Vahidnezhad H, Youssefian L, Uitto J. Klippel-Trenaunay syndrome belongs to the PIK3CA-related overgrowth spectrum (PROS). Exp Dermatol 2016;25:17-19

46. Pavanello M, Mellon I, Antichi E, Severino M, Ravegnani M, Platelli G, et al. Sinus pericranii: diagnosis and management in 21 pediatric patients. J Neurosurg Pediatr 2015;15:60-70

47. Wagensell JE, Mecham RP. Elastin in large artery stiffness and hypertension. J Cardiovasc Transl Res 2012;5:264-273

48. Pepin M, Schwarz U, Superti-Furga A, Byers PH. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med 2000;342:673-680

49. Ul Haque A, Moatasim A. Adult polycystic kidney disease: a disorder of connective tissue? Int J Clin Exp Pathol 2008;1:84-90

50. Kuo IY, Chapman A. Intracranial aneurysms in ADPKD: how far have we come? Clin J Am Soc Nephrol 2019;14:1119-1121

51. Gaberel T, Rochey A, di Palma C, Lucas F, Touze E, Emery E. Ruptured intracranial aneurysm in patients with osteogenesis imperfecta: 2 familial cases and a systematic review of the literature. Neurochirurgie 2016;62:317-320

52. Forlino A, Marini JC. Osteogenesis imperfecta. Lancet 2016;387:1657-1671

53. Robinson PN, Godfrey M. The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet 2000;37:9-25

54. De Paepe A, Devereux RB, Dietz HC, Hennekam RC, Pyeritz RE. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet 1996;62:417-426
Rare Neurovascular Diseases in Korea

55. Wityk RJ, Zanferrari C, Oppenheimer S. Neurovascular complications of marfan syndrome: a retrospective, hospital-based study. Stroke 2002;33:680-684
56. Maleszewski JJ, Miller DV, Lu J, Dietz HC, Halushka MK. Histopathologic findings in ascending aortas from individuals with Loey-Dietz syndrome (LDS). Am J Surg Pathol 2009;33:194-201
57. MacCarrick G, Black JH 3rd, Bowdin S, El-Hamamsy I, Frischmeyer-Guerrero PA, Guererro AL, et al. Loey-Dietz syndrome: a primer for diagnosis and management. Genet Med 2014;16:576-587
58. Rodrigues VJ, Elsayed S, Loey BS, Dietz HC, Yousem DM. Neuroradiologic manifestations of Loey-Dietz syndrome type I. AJNR Am J Neuroradiol 2009;30:1614-1619
59. Germain DP. Pseudoxanthoma elasticum. Orphanet J Rare Dis 2017;12:85
60. Beyens A, Albuisson J, Boel A, Al-Essa M, Al-Manea W, Bonnet D, et al. Arterial tortuosity syndrome: 40 new families and literature review. Genet Med 2018;20:1236-1245
61. Lee YC, Huang HY, Chang CJ, Cheng CH, Chen YT. Loss-of-function mutations in YY1AP1 cause of intracranial aneurysms. Circ Genom Precis Med
62. Morris CA. Genetic aspects of supravalvular aortic stenosis. Curr Opin Cardiol 1998;13:214-219
63. Freeze SL, Landis BJ, Ware SM, Helm BM. Bicuspid aortic valve: a review with recommendations for genetic counseling. J Genet Couns 2016;25:1171-1178
64. Schievink WI, Raissi SS, Maya MM, Velebir A. Screening for cervical artery dissection: a systematic review. Stroke 2016;47:1413-1415
65. Cichowski K, Jacks T. NF1 tumor suppressor gene function: mechanistic insight into arterial tortuosity syndrome. Hum Mol Genet 2010;19:3721-3733
66. Morris CA. Genetic aspects of supravalvular aortic stenosis. Curr Opin Cardiol 1998;13:214-219
67. Cichowski K, Jacks T. NF1 tumor suppressor gene function: narrowing the GAP. Cell 2001;104:593-604
68. Hamilton SJ, Friedman JM. Insights into the pathogenesis of neurofibromatosis 1 vasculopathy. Clin Genet 2000;58:341-344
69. Bae HJ, Debette S. Commentary on the cervical artery dissection in stroke study trial. Stroke 2016;47:1413-1415
70. Debette S, Markus HS. The genetics of cervical artery dissection: a systematic review. Stroke 2009;40:e459-e466
71. Guo DC, Duan XY, Regalado ES, Mellor-Crummey L, Kwartler CS, Kim D, et al. Loss-of-function mutations in YY1AP1 lead to grange syndrome and a fibromuscular dysplasia-like vascular disease. Am J Hum Genet 2017;100:21-30
72. Shivapour DM, Erwin P, Kim ESh. Epidemiology of fibromuscular dysplasia: a review of the literature. Vasc Med 2016;21:376-381
73. Yang X, Li J, Fang Y, Zhang Z, Jin D, Chen X, et al. Rho guanine nucleotide exchange factor ARHGEF17 is a risk gene for intracranial aneurysms. Circ Genom Precis Med 2018;11:e002099
74. Bourcier R, Le Scouarnec S, Bonnaud S, Karakachoff M, Bourcereau E, Heurtebise-Chrétien S, et al. Rare coding variants in ANGPTL6 are associated with familial forms of intracranial aneurysm. Am J Hum Genet 2018;102:133-141
75. Zhao S, Alamowitch S, Yamauchi Y, Hinchey J, Bourassa CV, Hincé P, et al. RNF213 is associated with intracranial aneurysms in the French-Canadian population. Am J Hum Genet 2016;99:1072-1085
76. Santiago-Sim T, Fang X, Hennessy ML, Nalbach SV, DePalma SR, Lee MS, et al. THSD1 (Thrombospondin Type 1 Domain Containing Protein 1) mutation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Stroke 2016;47:3005-3013
77. Yan J, Hitomi T, Takenaka K, Kato M, Kobayashi H, Okuda H, et al. Genetic study of intracranial aneurysms. Stroke 2015;46:620-626
78. Blondi A, Jean B, Vivas E, Le Jean L, Boch AL, Chiras J, et al. Giant and large peripheral cerebral aneurysms: etiopathologic considerations, endovascular treatment, and long-term follow-up. AJNR Am J Neuroradiol 2006;27:1685-1692
79. Pantoni L, Sarti C, Alafuzoff I, Jellinger K, Munoz DG, Ogata J, et al. Postmortem examination of vascular lesions in cognitive impairment: a survey among neuropathological services. Stroke 2006;37:1005-1009
80. Steffensen LB, Rasmussen LM. A role for collagen type IV in cardiovascular disease? Am J Physiol Heart Circ Physiol 2018;315:H610-H625
81. Alamowitch S, Plaisier E, Favrole P, Prost C, Chen Z, Van Agtmael T, et al. Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology 2009;73:1873-1882
82. Lanfranconi S, Markus HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 2010;41:e513-e518
83. Coria F, Rubio I. Cerebral amyloid angiopathies. Neuropathol Appl Neurobiol 1996;22:216-227
84. Jennette JC, Falk R. Small-vessel vasculitis. N Engl J Med 1997;337:1512-1523
85. Fang J, Hirschi K. Molecular regulation of arteriovenous endothelial cell specification. F1000Res 2019;8:1208
86. Sammons V, Davidson A, Tu J, Stoodley MA. Endothelial cells in the context of brain arteriovenous malformations. J Clin Neurosci 2011;18:165-170
87. Barbosa Do Prado L, Han C, Oh SP, Su H. Recent advances in basic research for brain arteriovenous malformation. Int J Mol Sci 2019;20:5324
88. Frismantiene A, Philippova M, Erne P, Resink TJ. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal 2018;52:48-64
89. Bochaton-Piallat ML, Bäck M. Novel concepts for the role of smooth muscle cells in vascular disease: towards a new smooth muscle cell classification. Cardiovasc Res 2018;114:477-480
90. Sinha S, Santoro MM. New models to study vascular mural cell embryonic origin: implications in vascular diseases.
89. Le Douarin NM, Dupin E. The “beginnings” of the neural crest. Dev Biol 2018;444 Suppl 1:S3-S13
90. Komiyama M. Cardio-cephalic neural crest syndrome: a novel hypothesis of vascular neurocristopathy. Interv Neuroradiol 2017;23:572-576
91. Nguengang Wakap S, Lambert DM, Olry A, Rodwell C, Gueydan C, Lanneau V, et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. Eur J Hum Genet 2020;28:165-173
92. Thomas JM, Surendran S, Abraham M, Rajavelu A, Kartha CC. Genetic and epigenetic mechanisms in the development of arteriovenous malformations in the brain. Clin Epigenetics 2016;8:78
93. Di Monaco S, Georges A, Lengelé JP, Vikkula M, Persu A. Genomics of fibromuscular dysplasia. Int J Mol Sci 2018;19:1526
94. Wooderchak-Donahue WL, Johnson P, McDonald J, Blei F, Berenstein A, Sorscher M, et al. Expanding the clinical and molecular findings in RASA1 capillary malformation-arteriovenous malformation. Eur J Hum Genet 2018;26:1521-1536
95. Giau VV, Bagyinszky E, Youn YC, An SSA, Kim SY. Genetic factors of cerebral small vessel disease and their potential clinical outcome. Int J Mol Sci 2019;20:4298
96. Brinjikji W, Mark IT, Silvera VM, Guerin JB. Cervicofacial venous malformations are associated with intracranial developmental venous anomalies and dural venous sinus abnormalities. AJNR Am J Neuroradiol 2020;41:1209-1214
97. Posey JE. Genome sequencing and implications for rare disorders. Orphanet J Rare Dis 2019;14:153
98. Posey JE, O’Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Coban Akdemir ZH, et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med 2019;21:798-812
99. Vahidnezhad H, Youssefian L, Saeidian AH, Touati A, Pajouhanfar S, Baghadi T, et al. Mutations in PLOD3, encoding lysyl hydroxylase 3, cause a complex connective tissue disorder including recessive dystrophic epidermolysis bullosa-like blistering phenotype with abnormal anchoring fibrils and type VII collagen deficiency. Matrix Biol 2019;81:91-106
100. Fernandez-Marmiesse A, Gouveia S, Couce ML. NGS technologies as a turning point in rare disease research, diagnosis and treatment. Curr Med Chem 2018;25:404-432
101. Fereydooni A, Dardik A, Nassiri N. Molecular changes associated with vascular malformations. J Vasc Surg 2019;70:314-326.e1
102. Krings T, Geibprasert S, Terbrugge K. Classification and endovascular management of pediatric cerebral vascular malformations. Neurosurg Clin N Am 2010;21:463-482
103. Greene AK, Goss JA. Vascular anomalies: from a clinicohistologic to a genetic framework. Plast Reconstr Surg 2018;141:709e-717e
104. Lee YJ. Advanced neuroimaging techniques for evaluating pediatric epilepsy. Clin Exp Pediatr 2020;63:88-95
105. Grauzde J, Srinivasan A. Advanced neuroimaging techniques: basic principles and clinical applications. J Neuroophthalmol 2018;38:101-114
106. Suh CH, Jung SC, Kim B, Cho SJ, Woo DC, Oh WY, et al. Neuroimaging in randomized, multi-center clinical trials of endovascular treatment for acute ischemic stroke: a systematic review. Korean J Radiol 2020;21:42-57
107. Hodel J, Leclerc X, Kalsoum E, Zuber M, Tamazyan R, Benadjaoût MA, et al. Intracranial arteriovenous shunting: detection with arterial spin-labeling and susceptibility-weighted imaging combined. AJNR Am J Neuroradiol 2017;38:71-76
108. Arai N, Akiyama T, Fujiwara K, Koike K, Takahashi S, Horiguchi T, et al. Silent MRA: arterial spin labeling magnetic resonant angiography with ultra-short time echo assessing cerebral arteriovenous malformation. Neuroradiology 2020;62:455-461
109. Grossberg JA, Howard BM, Saindane AM. The use of contrast-enhanced, time-resolved magnetic resonance angiography in cerebrovascular pathology. Neurosurg Focus 2019;47:E3
110. Blair GW, Hernandez MV, Thrippleton MJ, Doublin FN, Wardlaw JM. Advanced neuroimaging of cerebral small vessel disease. Curr Treat Options Cardiovasc Med 2017;19:56