Bounds for the Generalized (Φ, f)-Mean Difference

Silvestru Sever Dragomir1,2

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia. sever.dragomir@vu.edu.au, http://rgmia.org/dragomir

2School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa

ABSTRACT

In this paper we establish some bounds for the (Φ, f)-mean difference introduced in the general settings of measurable spaces and Lebesgue integral, which is a two functions generalization of Gini mean difference that has been widely used by economists and sociologists to measure economic inequality.

RESUMEN

En este artículo establecemos algunas cotas para la (Φ, f)-diferencia media introducida en el contexto general de espacios medibles e integral de Lebesgue, que es una generalización a dos funciones de la diferencia media de Gini que ha sido ampliamente utilizada por economistas y sociólogos para medir desigualdad económica.

Keywords and Phrases: Gini mean difference, Mean deviation, Lebesgue integral, Expectation, Jensen’s integral inequality.

2010 AMS Mathematics Subject Classification: 26D15; 26D10; 94A17.
1. Introduction

Let \((\Omega, A, \nu)\) be a measurable space consisting of a set \(\Omega\), a \(\sigma\) -algebra \(A\) of subsets of \(\Omega\) and a countably additive and positive measure \(\nu\) on \(A\) with values in \(\mathbb{R} \cup \{\infty\}\). For a \(\nu\)-measurable function \(w : \Omega \rightarrow \mathbb{R}\), with \(w(x) \geq 0\) for \(\nu\)-a.e. (almost every) \(x \in \Omega\) and \(\int_{\Omega} w(x) \, d\nu(x) = 1\), consider the Lebesgue space

\[
L_w(\Omega, \nu) := \{f : \Omega \rightarrow \mathbb{R}, \text{ } f \text{ is } \nu\text{-measurable and } \int_{\Omega} w(x) |f(x)| \, d\nu(x) < \infty\}.
\]

Let \(I\) be an interval of real numbers and \(\Phi : I \rightarrow \mathbb{R}\) a Lebesgue measurable function on \(I\). For \(f : \Omega \rightarrow I\) a \(\nu\)-measurable function with \(\Phi \circ f \in L_w(\Omega, \nu)\) we define the generalized \((\Phi, f)\)-mean difference \(R_G(\Phi, f; w)\) by

\[
R_G(\Phi, f; w) := \frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y) |(\Phi \circ f)(x) - (\Phi \circ f)(y)| \, d\nu(x) \, d\nu(y) \tag{1.1}
\]

and the generalized \((\Phi, f)\)-mean deviation \(M_D(\Phi, f; w)\) by

\[
M_D(\Phi, f; w) := \int_{\Omega} w(x) |(\Phi \circ f)(x) - E(\Phi, f; w)| \, d\nu(x), \tag{1.2}
\]

where

\[E(\Phi, f; w) := \int_{\Omega} (\Phi \circ f)(y) w(y) \, d\nu(y)\]

the generalized \((\Phi, f)\)-expectation.

If \(\Phi = e\), where \(e(t) = t, t \in \mathbb{R}\) is the identity mapping, then we can consider the particular cases of interest, the generalized \(f\)-mean difference

\[
R_G(f; w) := R_G(e, f; w) = \frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y) |f(x) - f(y)| \, d\nu(x) \, d\nu(y) \tag{1.3}
\]

and the generalized \(f\)-mean deviation

\[
M_D(f; w) := M_D(e, f; w) = \int_{\Omega} w(x) |f(x) - E(f; w)| \, d\nu(x), \tag{1.4}
\]

where \(E(f; w) := \int_{\Omega} f(y) w(y) \, d\nu(y)\) is the generalized \(f\)-expectation.

If \(\Omega = [-\infty, \infty]\) and \(f = e\) then we have the usual mean difference

\[
R_G(w) := R_G(f; w) = \frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} w(x) w(y) |x - y| \, dx \, dy \tag{1.5}
\]

and the mean deviation

\[
M_D(w) := M_D(f; w) = \int_{\Omega} w(x) |x - E(w)| \, dx, \tag{1.6}
\]
where \(w : \mathbb{R} \to [0, \infty) \) is a \textit{density function}, this means that \(w \) is integrable on \(\mathbb{R} \) and \(\int_{-\infty}^{\infty} w(t) \, dt = 1 \), and

\[
E(w) := \int_{-\infty}^{\infty} xw(x) \, dx \tag{1.7}
\]
denote the \textit{expectation of} \(w \) provided that the integral exists and is finite.

The mean difference \(R_G(w) \) was proposed by Gini in 1912 [21], after whom it is usually named, but was discussed by Helmert and other German writers in the 1870's (cf. H. A. David [13], see also [26, p. 48]). It has a certain theoretical attraction, being dependent on the spread of the variate-values among themselves and not on the deviations from some central value ([26, p. 48]). Further, its defining integral (1.5) may converge when that of the variance \(\sigma(w) \),

\[
\sigma(w) := \int_{-\infty}^{\infty} (x - E(w))^2 w(x) \, dx, \tag{1.8}
\]
does not. It is, however, more difficult to compute than the standard deviation.

For some recent results concerning integral representations and bounds for \(R_G(w) \) see [5], [6], [8] and [9].

For instance, if \(w : \mathbb{R} \to [0, \infty) \) is a density function we define by

\[
W(x) := \int_{-\infty}^{x} w(t) \, dt, \quad x \in \mathbb{R}
\]
its \textit{cumulative function}. Then we have [5], [6]:

\[
R_G(w) = 2 \text{Cov}(e, W) = \int_{-\infty}^{\infty} (1 - W(y)) W(y) \, dy
\]
\[
= 2 \int_{-\infty}^{\infty} xw(x) W(x) \, dx - E(w)
\]
\[
= 2 \int_{-\infty}^{\infty} (x - E(w)) (W(x) - \gamma) w(x) \, dx
\]
\[
= 2 \int_{-\infty}^{\infty} (x - \delta) \left(W(x) - \frac{1}{2} \right) w(x) \, dx \tag{1.9}
\]
for any \(\gamma, \delta \in \mathbb{R} \) and [6]:

\[
R_G(w) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - y) [W(x) - W(y)] w(x) w(y) \, dx dy. \tag{1.10}
\]

With the above assumptions, we have the bounds [6]:

\[
\frac{1}{2} M_D(w) \leq R_G(w) \leq 2 \sup_{x \in \mathbb{R}} |W(x) - \gamma| M_D(w) \leq M_D(w), \tag{1.11}
\]
for any $\gamma \in [0,1]$, where $W(\cdot)$ is the cumulative distribution of w and $M_D (w)$ is the mean deviation.

Consider the n-tuple of real numbers $a = (a_1, ..., a_n)$ and $p = (p_1, ..., p_n)$ a probability distribution, i.e. $p_i \geq 0$ for each $i \in \{1, ..., n\}$ with $\sum_{i=1}^{n} p_i = 1$, then by taking $\Omega = \{1, ..., n\}$ and the discrete measure, we can consider from (1.1) and (1.2) that (see [7])

$$R_G (a; p) := \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} p_i p_j |\Phi (a_i) - \Phi (a_j)|,$$ \hfill (1.12)

and

$$M_D (a; p) := \frac{1}{2} \sum_{i=1}^{n} p_i \left| \Phi (a_i) - \sum_{j=1}^{n} p_j \Phi (a_j) \right|,$$ \hfill (1.13)

where $a \in I^n := I \times ... \times I$ and $\Phi : I \rightarrow \mathbb{R}$.

The quantity $R_G (a; p)$ has been defined in [7] and some results were obtained.

In the case when $\Phi = e$, then we get the special case of Gini mean difference and mean deviation of an empirical distribution that is particularly important for applications,

$$R_G (a; p) := \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} p_i p_j |a_i - a_j|,$$ \hfill (1.14)

and

$$M_D (a; p) := \frac{1}{2} \sum_{i=1}^{n} p_i \left| a_i - \sum_{j=1}^{n} p_j a_j \right|. \hfill (1.15)$$

The following result incorporates an upper bound for the weighted Gini mean difference [7]:

For any $a \in \mathbb{R}^n$ and any p a probability distribution, we have the inequality:

$$\frac{1}{2} M_D (a; p) \leq R_G (a; p) \leq \inf_{\gamma \in \mathbb{R}} \left[\sum_{i=1}^{n} p_i |a_i - \gamma| \right] \leq M_D (a; p). \hfill (1.16)$$

The constant $\frac{1}{2}$ in the first inequality in (1.16) is sharp.

For some recent results for discrete Gini mean difference and mean deviation, see [7], [11], [14] and [15].
2. General Bounds

We have:

Theorem 1. Let I be an interval of real numbers and $\Phi : I \to \mathbb{R}$ a Lebesgue measurable function on I. If $w : \Omega \to \mathbb{R}$ is a ν-measurable function with $w(x) \geq 0$ for ν-a.e. (almost every) $x \in \Omega$ and $\int_\Omega w(x) \, d\nu(x) = 1$ and if $f : \Omega \to I$ is a ν-measurable function with $\Phi \circ f \in L_w(\Omega, \nu)$, then

$$\frac{1}{2} M_D(\Phi, f; w) \leq R_G(\Phi, f; w) \leq I(\Phi, f; w) \leq M_D(\Phi, f; w),$$

(2.1)

where

$$I(\Phi, f; w) := \inf_{\gamma \in \mathbb{R}} \int_\Omega w(x) |(\Phi \circ f)(x) - \gamma| \, d\nu(x).$$

(2.2)

Demostración. Using the properties of the integral, we have

$$R_G(\Phi, f; w)$$

$$= \frac{1}{2} \int_\Omega \int_\Omega w(x) w(y) |(\Phi \circ f)(x) - (\Phi \circ f)(y)| \, d\nu(x) \, d\nu(y)$$

$$\geq \frac{1}{2} \int_\Omega w(x) |(\Phi \circ f)(x)\int_\Omega w(y) \, d\nu(y) - \int_\Omega w(y) (\Phi \circ f)(y) \, d\nu(y)| \, d\nu(x)$$

$$= \frac{1}{2} \int_\Omega w(x) |(\Phi \circ f)(x) - \int_\Omega w(y) (\Phi \circ f)(y) \, d\nu(y)| \, d\nu(x)$$

$$= \frac{1}{2} M_D(\Phi, f; w)$$

and the first inequality in (2.1) is proved.

By the triangle inequality for modulus we have

$$|(\Phi \circ f)(x) - (\Phi \circ f)(y)| = |(\Phi \circ f)(x) - \gamma + \gamma - (\Phi \circ f)(y)|$$

$$\leq |(\Phi \circ f)(x) - \gamma| + |(\Phi \circ f)(y) - \gamma|$$

(2.3)

for any $x, y \in \Omega$ and $\gamma \in \mathbb{R}$.
Now, if we multiply \((2.3)\) by \(\frac{1}{2}w(x)w(y)\) and integrate, we get

\[
R_G(\Phi, f; w) = \frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y) |(\Phi \circ f)(x) - (\Phi \circ f)(y)| \, d\nu(x) \, d\nu(y)
\]

\[
\leq \frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y) \left| |(\Phi \circ f)(x) - \gamma + (\Phi \circ f)(y) - \gamma| \right| \, d\nu(x) \, d\nu(y)
\]

\[
= \frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y) |(\Phi \circ f)(x) - \gamma| \, d\nu(x) \, d\nu(y)
\]

\[
+ \frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y) |(\Phi \circ f)(y) - \gamma| \, d\nu(x) \, d\nu(y)
\]

\[
= \frac{1}{2} \int_{\Omega} w(x) |(\Phi \circ f)(x) - \gamma| \, d\nu(x)
\]

\[
+ \frac{1}{2} \int_{\Omega} w(y) |(\Phi \circ f)(y) - \gamma| \, d\nu(y)
\]

(2.4)

for any \(\gamma \in \mathbb{R}\).

Taking the infimum over \(\gamma \in \mathbb{R}\) in (2.4) we get the second part of (2.1).

Since, obviously

\[
I(\Phi, f; w) = \inf_{\gamma \in \mathbb{R}} \int_{\Omega} w(x) |(\Phi \circ f)(x) - \gamma| \, d\nu(x)
\]

\[
\leq \int_{\Omega} w(x) \left| |(\Phi \circ f)(x) - \int_{\Omega} w(y) (\Phi \circ f)(y) \, d\nu(y)| \right| \, d\nu(x)
\]

\[
= M_G(\Phi, f; w),
\]

the last part of (2.1) is thus proved. \(\square\)

By the Cauchy-Bunyakowsky-Schwarz (CBS) inequality, if \((\Phi \circ f)^2 \in L_w(\Omega, \nu)\), then we have

\[
\left[\int_{\Omega} w(x) \left| (\Phi \circ f)(x) - \int_{\Omega} w(y) (\Phi \circ f)(y) \, d\nu(y) \right| \, d\nu(x) \right]^2
\]

\[
\leq \int_{\Omega} w(x) \left[(\Phi \circ f)(x) - \int_{\Omega} w(y) (\Phi \circ f)(y) \, d\nu(y) \right]^2 \, d\nu(x)
\]

\[
= \int_{\Omega} w(x) (\Phi \circ f)^2(x) \, d\nu(x)
\]

\[
- 2 \int_{\Omega} w(x) (\Phi \circ f)(x) \, d\nu(x) \int_{\Omega} w(y) (\Phi \circ f)(y) \, d\nu(y)
\]

\[
+ \left[\int_{\Omega} w(y) (\Phi \circ f)(y) \, d\nu(y) \right]^2 \int_{\Omega} w(x) \, d\nu(x)
\]

\[
= \int_{\Omega} w(x) (\Phi \circ f)^2(x) \, d\nu(x) - \left[\int_{\Omega} w(x) (\Phi \circ f)(x) \, d\nu(x) \right]^2.
\]
By considering the \emph{generalized} \((\Phi, f)\)-\textit{dispersion}

\[\sigma(\Phi, f; w) := \left(\int_{\Omega} w(x) (\Phi \circ f)^2(x) \, d\nu(x) - \left[\int_{\Omega} w(x) (\Phi \circ f)(x) \, d\nu(x) \right]^2 \right)^{1/2},\]

then we have

\[M_D(\Phi, f; w) \leq \sigma(\Phi, f; w) \quad (2.5)\]

provided \((\Phi \circ f)^2 \in L_w(\Omega, \nu)\).

If there exists the constants \(m, M\) so that

\[-\infty < m \leq \Phi(t) \leq M < \infty \text{ for almost any } t \in I \quad (2.6)\]

then by the reverse CBS inequality

\[\sigma(\Phi, f; w) \leq \frac{1}{2} (M - m), \quad (2.7)\]

by (2.1) and by (2.5) we can state the following result:

\textbf{Corollary 1.} Let \(I\) be an interval of real numbers and \(\Phi : I \rightarrow \mathbb{R}\) a \textit{Lebesgue measurable function} on \(I\) satisfying the condition (2.6) for some constants \(m, M\). If \(w : \Omega \rightarrow \mathbb{R}\) is a \(\nu\)-measurable function with \(w(x) \geq 0\) for \(\nu\)-a.e. \(x \in \Omega\) and \(\int_{\Omega} w(x) \, d\nu(x) = 1\) and if \(f : \Omega \rightarrow I\) is a \(\nu\)-measurable function with \((\Phi \circ f)^2 \in L_w(\Omega, \nu)\), then we have the chain of inequalities

\[\frac{1}{2} M_D(\Phi, f; w) \leq R_G(\Phi, f; w) \leq I(w) \leq M_D(\Phi, f; w) \leq \sigma(\Phi, f; w) \leq \frac{1}{2} (M - m). \quad (2.8)\]

We observe that, in the discrete case we obtain from (2.1) the inequality (1.16) while for the univariate case with \(\int_{-\infty}^{\infty} w(t) \, dt = 1\) we have

\[\frac{1}{2} M_D(w) \leq R_G(w) \leq I(w) \leq M_D(w) \leq \sigma(\Phi, f; w) \quad (2.9)\]

where

\[I(w) := \inf_{\gamma \in \mathbb{R}} \int_{-\infty}^{\infty} w(x) |x - \gamma| \, dx. \quad (2.10)\]

If \(w\) is supported on the finite interval \([a, b]\), namely \(\int_a^b w(x) \, dx = 1\), then we have the chain of inequalities

\[\frac{1}{2} M_D(w) \leq R_G(w) \leq I(w) \leq M_D(w) \leq \sigma(\Phi, f; w) \leq \frac{1}{2} (M - m). \quad (2.11)\]
3. Bounds for Various Classes of Functions

In the case of functions of bounded variation we have:

Theorem 2. Let \(\Phi : [a, b] \to \mathbb{R} \) be a function of bounded variation on the closed interval \([a, b]\). If \(w : \Omega \to \mathbb{R} \) is a \(\nu \)-measurable function with \(w(x) \geq 0 \) for \(\nu \)-a.e. \(x \in \Omega \) and \(\int_{\Omega} w(x) \, d\nu(x) = 1 \) and if \(f : \Omega \to [a, b] \) is a \(\nu \)-measurable function with \(\Phi \circ f \in L^w(\Omega, \nu) \), then

\[
R_G (\Phi, f; w) \leq \frac{1}{2} b \bigvee_a^b (\Phi),
\]

where \(\bigvee_a^b (\Phi) \) is the total variation of \(\Phi \) on \([a, b]\).

Demostración. Using the inequality (2.4) we have

\[
R_G (\Phi, f; w) \leq \int_{\Omega} w(x) |(\Phi \circ f)(x) - \gamma| \, d\nu(x)
\]

for any \(\gamma \in \mathbb{R} \).

By the triangle inequality, we have

\[
\left| (\Phi \circ f)(x) - \frac{1}{2} [\Phi(a) + \Phi(b)] \right| \\
\leq \frac{1}{2} |\Phi(a) - \Phi(f(x))| + \frac{1}{2} |\Phi(b) - \Phi(f(x))|
\]

for any \(x \in \Omega \).

Since \(\Phi : [a, b] \to \mathbb{R} \) is of bounded variation and \(d \) is a division of \([a, b]\), namely

\[
d \in D([a, b]) := \{ d := \{ a = t_0 < t_1 < ... < t_n = b \} \},
\]

then

\[
\bigvee_a^b (\Phi) = \sup_{d \in D([a, b])} \sum_{i=0}^{n-1} |\Phi(t_{i+1}) - \Phi(t_i)| < \infty.
\]

Taking the division \(d_0 := \{ a = t_0 < t < t_2 = b \} \) we then have

\[
|\Phi(t) - \Phi(a)| + |\Phi(b) - \Phi(t)| \leq \bigvee_a^b (\Phi)
\]

for any \(t \in [a, b] \) and then

\[
|\Phi(f(x)) - \Phi(a)| + |\Phi(b) - \Phi(f(x))| \leq \bigvee_a^b (\Phi)
\]

for any \(x \in \Omega \).
On making use of (3.3) and (3.4) we get

\[|(\Phi \circ f)(x) - \frac{1}{2}[\Phi(a) + \Phi(b)]| \leq \frac{1}{2} \sqrt{b - a} \tag{3.5} \]

for any \(x \in \Omega \).

If we multiply (3.5) by \(w(x) \) and integrate, then we obtain

\[\int_{\Omega} w(x) |(\Phi \circ f)(x) - \frac{1}{2}[\Phi(a) + \Phi(b)]| \leq \frac{1}{2} \sqrt{b - a} \tag{3.6} \]

Finally, by choosing \(\gamma = \frac{1}{2}[\Phi(a) + \Phi(b)] \) in (3.2) and making use of (3.6) we deduce the desired result (3.1).

In the case of absolutely continuous functions we have:

Theorem 3. Let \(\Phi : [a, b] \rightarrow \mathbb{R} \) be an absolutely continuous function on the closed interval \([a, b]\). If \(w : \Omega \rightarrow \mathbb{R} \) is a \(\nu \)-measurable function with \(w(x) \geq 0 \) for \(\nu \)-a.e. \(x \in \Omega \) and \(\int_{\Omega} w(x) \, d\nu(x) = 1 \) and if \(f : \Omega \rightarrow [a, b] \) is a \(\nu \)-measurable function with \(\Phi \circ f \in L_w(\Omega, \nu) \), then

\[R_G(\Phi, f; w) \leq \begin{cases} \|\Phi'\|_{[a,b],\infty} R_G(f; w) & \text{if } \Phi' \in L_\infty([\alpha, \beta]), \\ \frac{1}{2^{1/p}} \|\Phi'\|_{[a,b],p} R_G^1(f; w) & \text{if } \Phi' \in L_p([\alpha, \beta]), \quad \frac{1}{p} + \frac{1}{q} = 1, \end{cases} \tag{3.7} \]

where the Lebesgue norms are defined by

\[\|g\|_{[\alpha, \beta],p} := \begin{cases} \text{ess}\sup_{t \in [\alpha, \beta]} |g(t)| & \text{if } p = \infty, \\ \left(\int_{\alpha}^{\beta} |g(t)|^p \, dt \right)^{1/p} & \text{if } p \geq 1, \end{cases} \]

and \(L_p([\alpha, \beta]) := \{ g \mid g \text{ measurable and } \|g\|_{[\alpha, \beta],p} < \infty \} \), \(p \in [1, \infty] \).

Demostración. Since \(f \) is absolutely continuous, then we have

\[\Phi(t) - \Phi(s) = \int_{s}^{t} \Phi'(u) \, du \]

for any \(t, s \in [a, b] \).

Using the Hölder integral inequality we have

\[|\Phi(t) - \Phi(s)| = \left| \int_{s}^{t} \Phi'(u) \, du \right| \leq \begin{cases} \|\Phi'\|_{[a,b],\infty} |t - s| & \text{if } p = \infty, \\ \|\Phi'\|_{[a,b],p} |t - s|^{1/q} & \text{if } p > 1, \frac{1}{p} + \frac{1}{q} = 1 \end{cases} \tag{3.8} \]
for any \(t, s \in [a, b] \).

Using (3.8) we then have

\[
\int_\Omega \int_\Omega w(x)w(y) |(\Phi \circ f)(x) - (\Phi \circ f)(y)| \, dv(x) \, dv(y)
\]

\[
\leq \frac{1}{2} \|\Phi\|_{[a,b],p} \int_\Omega \int_\Omega w(x)w(y) |f(x) - f(y)| \, dv(x) \, dv(y)
\]

for any \(x, y \in \Omega \).

Using Jensen’s integral inequality for concave function \(\Psi(t) = t^s, s \in (0,1) \) we have for \(s = \frac{1}{q} < 1 \) that

\[
\int_\Omega \int_\Omega w(x)w(y) |f(x) - f(y)|^{1/q} \, dv(x) \, dv(y)
\]

\[
\leq \left(\int_\Omega \int_\Omega w(x)w(y) |f(x) - f(y)| \, dv(x) \, dv(y) \right)^{1/q},
\]

which implies that

\[
\frac{1}{2} \|\Phi\|_{[a,b],p} \int_\Omega \int_\Omega w(x)w(y) |f(x) - f(y)|^{1/q} \, dv(x) \, dv(y)
\]

\[
\leq \frac{1}{2} \|\Phi\|_{[a,b],p} \left(\int_\Omega \int_\Omega w(x)w(y) |f(x) - f(y)| \, dv(x) \, dv(y) \right)^{1/q}
\]

\[
= \|\Phi\|_{[a,b],p} \left(\frac{1}{2q-1} \int_\Omega \int_\Omega w(x)w(y) |f(x) - f(y)| \, dv(x) \, dv(y) \right)^{1/q}
\]

\[
= \frac{1}{2q-1} \|\Phi\|_{[a,b],p} \left(R_G(f;w) \right)^{1/q}
\]

and the second part of (3.7) is proved.

The function \(\Phi : [a, b] \to \mathbb{R} \) is called of \(r\)-\textit{Hölder type} with the given constants \(r \in (0,1) \) and \(H > 0 \) if

\[
|\Phi(t) - \Phi(s)| \leq H |t - s|^r
\]
for any \(t, s \in [a, b] \).

In the case when \(r = 1 \), namely, there is the constant \(L > 0 \) such that

\[
|\Phi(t) - \Phi(s)| \leq L |t - s|
\]

for any \(t, s \in [a, b] \), the function \(\Phi \) is called \(L \)-Lipschitzian on \([a, b]\).

We have:

Theorem 4. Let \(\Phi : [a, b] \to \mathbb{R} \) be a function of \(r \)-Hölder type on the closed interval \([a, b]\). If \(w : \Omega \to \mathbb{R} \) is a \(\nu \)-measurable function with \(w(x) \geq 0 \) for \(\nu \)-a.e. \(x \in \Omega \) and \(\int_\Omega w(x) \, d\nu(x) = 1 \) and if \(f : \Omega \to [a, b] \) is a \(\nu \)-measurable function with \(\Phi \circ f \in L_w(\Omega, \nu) \), then

\[
R_G(\Phi, f; w) \leq \frac{1}{2^{1-r}} H R_G^r(f; w) .
\]

(3.11)

In particular, if \(\Phi \) is \(L \)-Lipschitzian on \([a, b]\), then

\[
R_G(\Phi, f; w) \leq LR_G(f; w) .
\]

(3.12)

Demostración. We have

\[
| (\Phi \circ f)(x) - (\Phi \circ f)(y) | \leq H | f(x) - f(y) |^r
\]

(3.13)

for any \(x, y \in \Omega \).

If we multiply (3.13) by \(\frac{1}{2} w(x) w(y) \) and integrate, then we get

\[
\frac{1}{2} \int_\Omega \int_\Omega w(x) w(y)| (\Phi \circ f)(x) - (\Phi \circ f)(y) | \, d\nu(x) \, d\nu(y)
\leq \frac{1}{2} H \int_\Omega \int_\Omega w(x) w(y) | f(x) - f(y) |^r \, d\nu(x) \, d\nu(y) .
\]

(3.14)

By Jensen’s integral inequality for concave functions we also have

\[
\int_\Omega \int_\Omega w(x) w(y) | f(x) - f(y) |^r \, d\nu(x) \, d\nu(y)
\leq \left(\int_\Omega \int_\Omega w(x) w(y) | f(x) - f(y) | \, d\nu(x) \, d\nu(y) \right)^r .
\]

(3.15)

Therefore, by (3.14) and (3.15) we get

\[
R_G(\Phi, f; w) \leq \frac{1}{2} H \left(\int_\Omega \int_\Omega w(x) w(y) | f(x) - f(y) | \, d\nu(x) \, d\nu(y) \right)^r
= \frac{1}{2^{1-r}} H \left(\frac{1}{2} \int_\Omega \int_\Omega w(x) w(y) | f(x) - f(y) | \, d\nu(x) \, d\nu(y) \right)^r
= \frac{1}{2^{1-r}} H R_G^r(f; w)
\]

and the inequality (3.11) is proved. \(\square \)
We have:

Theorem 5. Let \(\Phi, \Psi : [a, b] \to \mathbb{R} \) be continuous functions on \([a, b]\) and differentiable on \((a, b)\) with \(\Psi'(t) \neq 0\) for \(t \in (a, b)\). If \(w : \Omega \to \mathbb{R}\) is a \(\nu\)-measurable function with \(w(x) \geq 0\) for \(\nu\)-a.e. \(x \in \Omega\) and \(\int_{\Omega} w(x) \, d\nu(x) = 1\) and if \(f : \Omega \to [a, b]\) is a \(\nu\)-measurable function with \(\Phi \circ f \in L_w(\Omega, \nu)\), then

\[
\inf_{t \in (a, b)} \left| \frac{\Phi'(t)}{\Psi'(t)} \right| R_G(\Psi, f; w) \leq R_G(\Phi, f; w) \leq \sup_{t \in (a, b)} \left| \frac{\Phi'(t)}{\Psi'(t)} \right| R_G(\Psi, f; w). \quad (3.16)
\]

Demostración. By the Cauchy's mean value theorem, for any \(t, s \in [a, b]\) with \(t \neq s\) there exists a \(\xi\) between \(t\) and \(s\) such that

\[
\frac{\Phi(t) - \Phi(s)}{\Psi(t) - \Psi(s)} = \Phi'\left(\xi\right) / \Psi'\left(\xi\right).
\]

This implies that

\[
\inf_{\tau \in (a, b)} \left| \frac{\Phi'(\tau)}{\Psi'(\tau)} \right| |\Psi(t) - \Psi(s)| \leq |\Phi(t) - \Phi(s)|
\]

\[
\leq \sup_{\tau \in (a, b)} \left| \frac{\Phi'(\tau)}{\Psi'(\tau)} \right| |\Psi(t) - \Psi(s)| \quad (3.17)
\]

for any \(t, s \in [a, b]\).

Therefore, we have

\[
\inf_{\tau \in (a, b)} \left| \frac{\Phi'(\tau)}{\Psi'(\tau)} \right| |\Psi(f(x)) - \Psi(f(y))| \leq |\Phi(f(x)) - \Phi(f(y))|
\]

\[
\leq \sup_{\tau \in (a, b)} \left| \frac{\Phi'(\tau)}{\Psi'(\tau)} \right| |\Psi(f(x)) - \Psi(f(y))| \quad (3.18)
\]

for any \(x, y \in \Omega\).

If we multiply (3.18) by \(w(x) w(y)\) and integrate, we get the desired result (3.16).

Corollary 2. Let \(\Phi : [a, b] \to \mathbb{R} \) be a continuous function on \([a, b]\) and differentiable on \((a, b)\). If \(w\) is as in Theorem 5 then we have

\[
\inf_{t \in (a, b)} |\Phi'(t)| R_G(f; w) \leq R_G(\Phi, f; w) \leq \sup_{t \in (a, b)} |\Phi'(t)| R_G(f; w). \quad (3.19)
\]

We also have:

Theorem 6. Let \(\Phi : [a, b] \to \mathbb{R} \) be an absolutely continuous function on the closed interval \([a, b]\). If \(w : \Omega \to \mathbb{R}\) is a \(\nu\)-measurable function with \(w(x) \geq 0\) for \(\nu\)-a.e. \(x \in \Omega\) and \(\int_{\Omega} w(x) \, d\nu(x) = 1\)
and if \(f : \Omega \rightarrow [a, b] \) is a \(\nu \)-measurable function with \(\Phi \circ f \in L_w (\Omega, \nu) \), then

\[
R_G (\Phi, f; w) \leq \begin{cases}
\|\Phi'\|_{[a,b], \infty} M (f; w) & \text{if } p = \infty, \\
\|\Phi'\|_{[a,b], p} M^{1/q} (f; w) & \text{if } p > 1, \frac{1}{p} + \frac{1}{q} = 1, \\
\frac{1}{2} (b - a) \|\Phi'\|_{[a,b], \infty} & \text{if } p = \infty, \\
\frac{1}{2} (b - a)^{1/q} \|\Phi'\|_{[a,b], p} & \text{if } p > 1, \frac{1}{p} + \frac{1}{q} = 1,
\end{cases}
\tag{3.20}
\]

where \(M (f; w) \) is defined by

\[
M (f; w) := \int_{\Omega} w (x) \left| f (x) - \frac{a + b}{2} \right| \, d\nu (x). \tag{3.21}
\]

Demostración. From the inequality (3.8) we have

\[
\left| (\Phi \circ f) (x) - \Phi \left(\frac{a + b}{2} \right) \right| \leq \begin{cases}
\|\Phi'\|_{[a,b], \infty} |f (x) - \frac{a + b}{2}| & \text{if } p = \infty, \\
\|\Phi'\|_{[a,b], p} |f (x) - \frac{a + b}{2}|^{1/q} & \text{if } p > 1, \frac{1}{p} + \frac{1}{q} = 1
\end{cases}
\tag{3.22}
\]

for any \(x \in \Omega \).

Now, if we multiply (3.22) by \(w (x) \) and integrate, then we get

\[
\int_{\Omega} w (x) \left| (\Phi \circ f) (x) - \Phi \left(\frac{a + b}{2} \right) \right| \, d\nu (x) \leq \begin{cases}
\|\Phi'\|_{[a,b], \infty} \int_{\Omega} w (x) \left| f (x) - \frac{a + b}{2} \right| \, d\nu (x) & \text{if } p = \infty, \\
\|\Phi'\|_{[a,b], p} \int_{\Omega} w (x) \left| f (x) - \frac{a + b}{2} \right|^{1/q} \, d\nu (x) & \text{if } p > 1, \frac{1}{p} + \frac{1}{q} = 1.
\end{cases}
\tag{3.23}
\]

By Jensen’s integral inequality for concave functions we have

\[
\int_{\Omega} w (x) \left| f (x) - \frac{a + b}{2} \right|^{1/q} \, d\nu (x) \leq \left(\int_{\Omega} w (x) \left| f (x) - \frac{a + b}{2} \right| \, d\nu (x) \right)^{1/q}.
\tag{3.24}
\]

On making use of (3.22), (3.23) and (3.24) we get the first inequality in (3.20).

The last part of (3.20) follows by the fact that

\[
\left| f (x) - \frac{a + b}{2} \right| \leq \frac{1}{2} (b - a)
\]

for any \(x \in \Omega \). ■
4. Bounds for Special Convexity

When some convexity properties for the function Φ are assumed, then other bounds can be derived as follows.

Theorem 7. Let $w : \Omega \to \mathbb{R}$ be a ν-measurable function with $w(x) \geq 0$ for ν-a.e. $x \in \Omega$ and $\int_\Omega w(x) \, d\nu(x) = 1$ and $f : \Omega \to [a, b]$ be a ν-measurable function with $\Phi \circ f \in L_w(\Omega, \nu)$. Assume also that $\Phi : [a, b] \to \mathbb{R}$ is a continuous function on $[a, b]$.

(i) If $|\Phi|$ is concave on $[a, b]$, then

$$R_G(\Phi, f; w) \leq |\Phi(E(f; w))|,$$

(4.1)

(ii) If $|\Phi|$ is convex on $[a, b]$, then

$$R_G(\Phi, f; w) \leq \frac{1}{b - a} \left[|(b - E(f; w))| \Phi(a) + (E(f; w) - a) \Phi(b) \right].$$

(4.2)

Demostración. (i) If $|\Phi|$ is concave on $[a, b]$, then by Jensen’s inequality we have

$$\int_\Omega w(x) |(\Phi \circ f)(x)| \, d\nu(x) \leq |\Phi \left(\int_\Omega w(x) f(x) \, d\nu(x) \right)|.$$ \hspace{1cm} (4.3)

From (4.2) for $\gamma = 0$ we also have

$$R_G(\Phi, f; w) \leq \int_\Omega w(x) |(\Phi \circ f)(x)| \, d\nu(x).$$ \hspace{1cm} (4.4)

This is an inequality of interest in itself.

On utilizing (4.3) and (4.4) we get (4.1).

(ii) Since $|\Phi|$ is convex on $[a, b]$, then for any $t \in [a, b]$ we have

$$|\Phi(t)| = \left| \Phi \left(\frac{(b - t)a + b(t - a)}{b - a} \right) \right| \leq \frac{(b - t)|\Phi(a)| + (t - a)|\Phi(b)|}{b - a}.$$ \hspace{1cm} (4.5)

This implies that

$$|(\Phi \circ f)(x)| \leq \frac{(b - f(x))|\Phi(a)| + (f(x) - a)|\Phi(b)|}{b - a}$$

for any $x \in \Omega$.

If we multiply (4.5) by $w(x)$ and integrate, then we get

$$\int_\Omega w(x) |(\Phi \circ f)(x)| \, d\nu(x) \leq \frac{1}{b - a} \left[\left(b \int_\Omega w(x) \, d\nu(x) - \int_\Omega w(x) f(x) \, d\nu(x) \right) |\Phi(a)| \\
+ \left(\int_\Omega w(x) f(x) \, d\nu(x) - a \int_\Omega w(x) \, d\nu(x) \right) |\Phi(b)| \right],$$

which, together with (4.4), produces the desired result (4.2).
In order to state other results we need the following definitions:

Definition 1 ([19]). We say that a function \(f : I \to \mathbb{R} \) belongs to the class \(P(I) \) if it is nonnegative and for all \(x, y \in I \) and \(t \in [0, 1] \) we have

\[
f(tx + (1-t)y) \leq f(x) + f(y).
\]

It is important to note that \(P(I) \) contains all nonnegative monotone, convex and quasi convex functions, i.e. functions satisfying

\[
f(tx + (1-t)y) \leq \max\{f(x), f(y)\}
\]

for all \(x, y \in I \) and \(t \in [0, 1] \).

For some results on \(P \)-functions see [19] and [28] while for quasi convex functions, the reader can consult [18].

Definition 2 ([3]). Let \(s \) be a real number, \(s \in (0, 1] \). A function \(f : [0, \infty) \to [0, \infty) \) is said to be \(s \)-convex (in the second sense) or Breckner \(s \)-convex if

\[
f(tx + (1-t)y) \leq ts f(x) + (1-t)s f(y)
\]

for all \(x, y \in [0, \infty) \) and \(t \in [0, 1] \).

For some properties of this class of functions see [1], [2], [3], [4], [16], [17], [25], [27] and [29].

Theorem 8. Let \(w : \Omega \to \mathbb{R} \) be a \(\nu \)-measurable function with \(w(x) \geq 0 \) for \(\nu \)-a.e. \(x \in \Omega \) and \(\int_\Omega w(x) \, d\nu(x) = 1 \) and \(f : \Omega \to [a, b] \) be a \(\nu \)-measurable function with \(\Phi \circ f \in L^w(\Omega, \nu) \). Assume also that \(\Phi : [a, b] \to \mathbb{R} \) is a continuous function on \([a, b]\).

(i) If \(|\Phi| \) belongs to the class \(P \) on \([a, b]\), then

\[
RG(\Phi, f; w) \leq |\Phi(a)| + \Phi(b); \tag{4.6}
\]

(ii) If \(|\Phi| \) is quasi convex on \([a, b]\), then

\[
RG(\Phi, f; w) \leq \max\{|\Phi(a)|, \Phi(b)|\}; \tag{4.7}
\]

(iii) If \(|\Phi| \) is Breckner \(s \)-convex on \([a, b]\), then

\[
RG(\Phi, f; w) \leq \frac{1}{(b-a)^s} \left[|\Phi(a)| \int_\Omega w(x)(b-f(x))^s \, d\nu(x) + \Phi(b) \int_\Omega w(x)(f(x)-a)^s \, d\nu(x) \right]
\]

\[
\leq \frac{1}{(b-a)^s} \left[|\Phi(a)| (b-E(f;w))^s \, d\nu(x) + \Phi(b)(E(f;w)-a)^s \, d\nu(x) \right]. \tag{4.8}
\]
Demostración. (i) Since \(|\Phi|\) belongs to the class \(P\) on \([a, b]\), then for any \(t \in [a, b]\) we have
\[
|\Phi(t)| = \left| \Phi \left(\frac{(b - t) a + b (t - a)}{b - a} \right) \right| \leq |\Phi(a)| + |\Phi(b)|.
\]
This implies that
\[
|\Phi \circ f(x)| \leq |\Phi(a)| + |\Phi(b)|
\] (4.9)
for any \(x \in \Omega\).

If we multiply (4.9) by \(w(x)\) and integrate, then we get
\[
\int_{\Omega} w(x) |\Phi \circ f(x)| \, dv(x) \leq |\Phi(a)| + |\Phi(b)|,
\] (4.10)
which, together with (4.4), produces the desired result (4.6).

(ii) Goes in a similar way.

(iii) By Breckner \(s\)-convexity we have
\[
|\Phi(t)| = \left| \Phi \left(\frac{(b - t) a + b (t - a)}{b - a} \right) \right| \leq \left(\frac{b - t}{b - a} \right)^s |\Phi(a)| + \left(\frac{t - a}{b - a} \right)^s |\Phi(b)|
\]
for any \(t \in [a, b]\).

This implies that
\[
|\Phi \circ f(x)| \leq \frac{1}{(b - a)^s} \left[(b - f(x))^s |\Phi(a)| + (f(x) - a)^s |\Phi(b)| \right]
\] (4.11)
for any \(x \in \Omega\).

If we multiply (4.11) by \(w(x)\) and integrate, then we get
\[
\int_{\Omega} w(x) |\Phi \circ f(x)| \, dv(x) \leq \frac{1}{(b - a)^s} \left[|\Phi(a)| \int_{\Omega} w(x) (b - f(x))^s \, dv(x)
+ |\Phi(b)| \int_{\Omega} w(x) (f(x) - a)^s \, dv(x) \right],
\] (4.12)
which, together with (4.4), produces the first part of (4.8).

The last part follows by Jensen’s integral inequality for concave functions, namely
\[
\int_{\Omega} w(x) (b - f(x))^s \, dv(x) \leq \left(b - \int_{\Omega} w(x) f(x) \, dv(x) \right)^s
\]
and
\[
\int_{\Omega} w(x) (f(x) - a)^s \, dv(x) \leq \left(\int_{\Omega} w(x) f(x) \, dv(x) - a \right)^s,
\]
where \(s \in (0, 1)\).
5. Some Examples

Let \(f : \Omega \to [0, \infty) \) be a \(\nu \)-measurable function and \(w : \Omega \to \mathbb{R} \) a \(\nu \)-measurable function with \(w(x) \geq 0 \) for \(\nu \)-a.e. \(x \in \Omega \) and \(\int_{\Omega} w(x) \, d\nu(x) = 1 \). We define, for the function \(\Phi(t) = t^p, \ p > 0 \), the \textit{generalized (p, f)-mean difference} \(R_G(p, f; w) \) by

\[
R_G(p, f; w) := \frac{1}{2} \int_{\Omega} \int_{\Omega} w(x) w(y) |f^p(x) - f^p(y)| \, d\nu(x) \, d\nu(y) \quad (5.1)
\]

and the \textit{generalized (p, f)-mean deviation} \(M_D(p, f; w) \) by

\[
M_D(p, f; w) := \int_{\Omega} w(x) |f^p(x) - E(p, f; w)| \, d\nu(x), \quad (5.2)
\]

where

\[
E(p, f; w) := \int_{\Omega} f^p(y) w(y) \, d\nu(y) \quad (5.3)
\]

is the \textit{generalized (p, f)-expectation}.

If \(f : \Omega \to [a, b] \subset [0, \infty) \) is a \(\nu \)-measurable function, then by (3.1) we have

\[
R_G(p, f; w) \leq \frac{1}{2} (b^p - a^p). \quad (5.4)
\]

By (3.7) we have

\[
R_G(p, f; w) \leq p \delta_p(a, b) R_G(f; w), \quad (5.5)
\]

where

\[
\delta_p(a, b) := \begin{cases}
 b^{p-1} & \text{if } p \geq 1, \\
 a^{p-1} & \text{if } p \in (0, 1)
\end{cases}
\]

and

\[
R_G(p, f; w) \leq \frac{p}{2^{1/\alpha}} \left[\frac{b^{\alpha(p-1)+1} - a^{\alpha(p-1)+1}}{\alpha(p-1)+1} \right]^{1/\alpha} R_G^{1/\beta}(f; w), \quad (5.6)
\]

where \(\alpha > 1, \frac{1}{\alpha} + \frac{1}{\beta} = 1 \).

From (3.20) we also have

\[
R_G(p, f; w) \leq \begin{cases}
 \delta_p(a,b) M(f; w), \\
 p \left(\frac{b^{\alpha(p-1)+1} - a^{\alpha(p-1)+1}}{\alpha(p-1)+1} \right)^{1/\alpha} M^{1/\beta}(f; w) & \text{if } \alpha > 1, \frac{1}{\alpha} + \frac{1}{\beta} = 1
\end{cases}
\]

\[
\quad \leq \begin{cases}
 \frac{1}{2} (b-a) \delta_p(a,b), \\
 \frac{1}{2^{1/\alpha}} (b-a)^{1/\beta} p \left(\frac{b^{\alpha(p-1)+1} - a^{\alpha(p-1)+1}}{\alpha(p-1)+1} \right)^{1/\alpha} & \text{if } \alpha > 1, \frac{1}{\alpha} + \frac{1}{\beta} = 1
\end{cases}
\]

\[(5.7)\]
where $M(f; w)$ is defined by (3.21).

If $p \in (0, 1)$, then the function $|\Phi(t)| = t^p$ is concave on $[a, b] \subset [0, \infty)$ and by (4.1) we have

$$R_G(p, f; w) \leq E^p(f; w). \quad (5.8)$$

For $p \geq 1$ the function $|\Phi(t)| = t^p$ is convex on $[a, b] \subset [0, \infty)$ and by (4.2) we have

$$R_G(p, f; w) \leq \frac{1}{b - a} \left((b - E(f; w)) a^p + (E(f; w) - a b^p) \right). \quad (5.9)$$

Let $f : \Omega \to [0, \infty)$ be a ν-measurable function and $w : \Omega \to \mathbb{R}$ a ν-measurable function with $w(x) \geq 0$ for ν-a.e. $x \in \Omega$ and $\int_{\Omega} w(x) \, d\nu(x) = 1$. We define, for the function $\Phi(t) = \ln t$, the generalized (\ln, f)-mean difference $R_G(\ln, f; w)$ by

$$R_G(\ln, f; w) := \frac{1}{2} \int_{\Omega} \left(\int_{\Omega} w(x)(\ln f(x) - \ln f(y)) \, d\nu(x) \, d\nu(y) \right) \quad (5.10)$$

and the generalized (p, f)-mean deviation $M_G(\ln, f; w)$ by

$$M_G(\ln, f; w) := \int_{\Omega} w(x)(\ln f(x) - E(\ln, f; w)) \, d\nu(x), \quad (5.11)$$

where

$$E(\ln, f; w) := \int_{\Omega} w(y) \ln f(y) \, d\nu(y) \quad (5.12)$$

is the generalized (\ln, f)-expectation.

If $f : \Omega \to [a, b] \subset [0, \infty)$ is a ν-measurable function, then by (3.1) we have

$$R_G(\ln, f; w) \leq \frac{1}{2} (\ln b - \ln a). \quad (5.13)$$

By (3.7) we have

$$R_G(\ln, f; w) \leq \left\{ \begin{array}{l}
\frac{1}{a} R_G(f; w), \\
\frac{1}{2^{1+p}} \left(\frac{b^{p-1} - a^{p-1}}{(p-1) b^{p-1} a^{p-1}} \right)^{1/p} R_G^{1/q}(f; w) \text{ if } p > 1, \frac{1}{p} + \frac{1}{q} = 1.
\end{array} \right. \quad (5.14)$$

By (3.20) we have

$$R_G(\ln, f; w) \leq \left\{ \begin{array}{l}
\frac{1}{a} M(f; w), \\
\left(\frac{b^{p-1} - a^{p-1}}{(p-1) b^{p-1} a^{p-1}} \right)^{1/p} M^{1/q}(f; w) \text{ if } p > 1, \frac{1}{p} + \frac{1}{q} = 1
\end{array} \right. \quad (5.15)$$

$$\leq \left\{ \begin{array}{l}
\frac{1}{2} \left(\frac{b}{a} - 1 \right), \\
\frac{1}{2^{1+q}} (b - a)^{1/q} \left(\frac{b^{p-1} - a^{p-1}}{(p-1) b^{p-1} a^{p-1}} \right)^{1/p} \text{ if } p > 1, \frac{1}{p} + \frac{1}{q} = 1.
\end{array} \right.$$
Now, observe that the function $|\Phi(t)| = |\ln t|$ is convex on $(0, 1)$ and concave on $[1, \infty)$. If $f : \Omega \to [a, b] \subset (0, 1)$ is a ν-measurable function, then by \cite{12} we have
\begin{equation}
R_G(\ln f; w) \leq \frac{1}{b-a} \left[(b - E(f;w)) |\ln a| + (E(f;w) - a) |\ln b| \right]
\end{equation}
and if $f : \Omega \to [a, b] \subset [1, \infty)$, then by \cite{11} we have
\begin{equation}
R_G(\ln f; w) \leq \ln (E(f;w)).
\end{equation}

The interested reader may state similar bounds for functions Φ such as $\Phi(t) = \exp t$, $t \in \mathbb{R}$ or $\Phi(t) = t \ln t$, $t > 0$. We omit the details.

\textbf{Acknowledgement.} The author would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.
Referencias

[1] M. Alomari and M. Darus, *The Hadamard’s inequality for s-convex function*. Int. J. Math. Anal. (Ruse) 2 (2008), no. 13-16, 639–646.

[2] M. Alomari and M. Darus, *Hadamard-type inequalities for s-convex functions*. Int. Math. Forum 3 (2008), no. 37-40, 1965–1975.

[3] W. W. Breckner, *Stetigkeitsaussagen für eine Klasse verallgemeinerter konvezer Funktionen in topologischen linearen Räumen*. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37) (1978), 13–20.

[4] W. W. Breckner and G. Orbán, *Continuity Properties of Rationally s-Convex Mappings with vValues in an Ordered Topological Linear Space*. Universitatea ”Babeș-Bolyai”, Facultatea de Matematica, Cluj-Napoca, 1978. viii+92 pp.

[5] P. Cerone and S. S. Dragomir, *Bounds for the Gini mean difference via the Sonin identity*, Comp. Math. Modelling, 50 (2005), 599-609.

[6] P. Cerone and S. S. Dragomir, *Bounds for the Gini mean difference via the Korkine identity*, J. Appl. Math. & Computing, 22 (2006), no. 3, 305–315.

[7] P. Cerone and S. S. Dragomir, *Bounds for the Gini mean difference of an empirical distribution*, Appl. Math. Lett. 19 (2006), no. 3, 283–293.

[8] P. Cerone and S. S. Dragomir, *Bounds for the Gini mean difference of continuous distributions defined on finite intervals (I)*, Appl. Math. Lett. 20 (2007), no. 7, 782–789.

[9] P. Cerone and S. S. Dragomir, *Bounds for the Gini mean difference of continuous distributions defined on finite intervals (II)*, Comput. Math. Appl. 52 (2006), no. 10-11, 1555–1562.

[10] P. Cerone and S. S. Dragomir, *A survey on bounds for the Gini mean difference*. Advances in inequalities from probability theory and statistics, 81–111, Adv. Math. Inequal. Ser., Nova Sci. Publ., New York, 2008.

[11] P. Cerone and S. S. Dragomir, *Bounds for the r-weighted Gini mean difference of an empirical distribution*. Math. Comput. Modelling 49 (2009), no. 1-2, 180–188.

[12] X.-L. Cheng and J. Sun, *A note on the perturbed trapezoid inequality*, J. Inequal. Pure & Appl. Math., 3(2) (2002), Article. 29.

[13] H. A. David, *Gini’s mean difference rediscovered*, Biometrika, 55 (1968), 573.

[14] S. S. Dragomir, *Weighted f-Gini mean difference for convex and symmetric functions in linear spaces*. Comput. Math. Appl. 60 (2010), no. 3, 734–743.
[15] S. S. Dragomir, Bounds in terms of Gâteaux derivatives for the weighted f-Gini mean difference in linear spaces. Bull. Aust. Math. Soc. 83 (2011), no. 3, 420–434.

[16] S. S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstratio Math. 32 (1999), no. 4, 687–696.

[17] S. S. Dragomir and S. Fitzpatrick, The Jensen inequality for s-Breckner convex functions in linear spaces. Demonstratio Math. 33 (2000), no. 1, 43–49.

[18] S. S. Dragomir and C. E. M. Pearce, Quasi-convex functions and Hadamard’s inequality, Bull. Austral. Math. Soc. 57 (1998), 377–385.

[19] S. S. Dragomir, J. Pečarić and L. Persson, Some inequalities of Hadamard type. Soochow J. Math. 21 (1995), no. 3, 335–341.

[20] J. L. Gastwirth, The estimation of the Lorentz curve and Gini index, Rev. Econom. Statist., 54 (1972), 305-316.

[21] C. Gini, Variabilità e Metibilità, contributo allo studio della distribuzioni e relazioni statistiche, Studi Economico-Giornalici dell’ Univ. di Coglanì, 3 (1912), art 2, 1-158.

[22] G. M. Giorgi, Bibliographic portrait of the Gini concentration ratio, Metron, XLVIII(1-4) (1990), 103–221.

[23] G. M. Giorgi, Alcune considerazioni teoriche su di un vecchio ma per sempre attuale indice: il rapporto di concentrazione del Gini, Metron, XLII(3-4) (1984), 25–40.

[24] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press.

[25] H. Hudzik and L. Maligranda, Some remarks on s-convex functions. Aequationes Math. 48 (1994), no. 1, 100–111.

[26] M. Kendall and A. Stuart The Advanced Theory of Statistics, Volume 1, Distribution Theory, Fourth Edition, Charles Griffin & Comp. Ltd., London, 1977.

[27] U. S. Kirmaci, M. Klarić Bakula, M. E Özdemir and J. Pečarić, Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193 (2007), no. 1, 26–35.

[28] C. E. M. Pearce and A. M. Rubinov, P-functions, quasi-convex functions, and Hadamard-type inequalities. J. Math. Anal. Appl. 240 (1999), no. 1, 92–104.

[29] E. Set, M. E. Özdemir and M. Z. Sarıkaya, New inequalities of Ostrowski’s type for s-convex functions in the second sense with applications. Facta Univ. Ser. Math. Inform. 27 (2012), no. 1, 67–82.