Effect of ulinastatin on post-operative blood loss and allogeneic transfusion in patients receiving cardiac surgery with cardiopulmonary bypass: a prospective randomized controlled study with 10-year follow-up

CURRENT STATUS: UNDER REVIEW

Journal of Cardiothoracic Surgery • BMC

Peng Zhang
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Hong Lv
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Xia Qi
People's Hospital of Ningxia Hui Autonomous Region

Wenjing Xiao
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Qinghua Xue
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Lei Zhang
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Lihuan Li
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Jia Shi shijia@fuwai.com
Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital

Corresponding Author

DOI:
10.21203/rs.2.24411/v1

SUBJECT AREAS
Hematology • Surgery

KEYWORDS
ulinastatin, tranexamic acid, blood conservation, cardiopulmonary bypass
Abstract

Background: Major bleeding and allogeneic transfusion leads to negative outcomes in patients receiving cardiac surgery with cardiopulmonary bypass (CPB). Ulinastatin, a urine trypsin inhibitor, relieves systemic inflammation and improves coagulation profiles with however sparse evidence of its effects on blood loss and allogeneic transfusion in this specific population.

Methods: In this prospective randomized controlled trial, 426 consecutive patients receiving open heart surgery with CPB were randomly assigned into three groups to receive ulinastatin (group U, n=142), tranexamic acid (group T, n=143) or normal saline (group C, n=141). The primary outcome was the total volume of post-operative bleeding and the secondary outcome included the volume and exposure of allogeneic transfusion, the incidence of stroke, post-operative myocardial infarction, renal failure, respiratory failure and all-cause mortality. A ten-year follow-up was carried on to evaluate long-term outcomes.

Results: Compared with placebo, ulinastatin significantly reduced the total volume of post-operative blood loss (801.7±460.14ml vs 1016.67±529.08ml, MD -214.98ml, p<0.001) and the volume of allogeneic erythrocyte transfusion (2.57±3.15 unit vs 3.73±4.21 unit, MD-1.16 unit, p=0.002). The bleeding and transfusion outcomes were comparable between the ulinastatin group and the tranexamic acid group. In-hospital outcomes and 10-year follow-up showed no statistical difference in mortality and major morbidity among groups.

Conclusion: Ulinastatin reduced post-operative blood loss and allogeneic erythrocyte transfusion in open heart surgery with CPB. The mortality and major morbidity was comparable among the groups shown by the 10-year follow-up.

Trial registration: The trial was retrospectively registered on February 2, 2010. Trial registration number: https://www.clinicaltrials.gov. Identifier: NCT01060189.
Background

Excessive bleeding and allogeneic transfusion is a major concern in cardiac surgical procedures leading to deteriorated overall outcomes (1, 2) and worsened long-term mortality. (3) Open heart surgery with cardiopulmonary bypass (CPB) and aortic cross-clamping produces variable systemic inflammatory reactions (4−7), which are associated with multi-organ dysfunction via the action of leucocytes, especially polymorphonuclear neutrophils (PMNs). (8) The PMNs degrade or inhibit the activity of fibrin, fibrinogen, platelets and coagulation factors, (9−11) and lead to increased blood loss and demand for transfusion. (12)

Ulinastatin is a urinary trypsin inhibitor, which is extracted and purified from fresh healthy human urine. (13) Ulinastatin decreases the release of elastase from PMNs and suppresses elastase activity. (14) An in vivo study showed that ulinastatin also stabilized lysosomal membranes and inhibited the release of lysosomal enzymes. (15) Ulinastatin ameliorated preoperative coagulopathy and normalized thromboelastography in patients with liver resection. (16) Furthermore, ulinastatin shortened activated partial thromboplastin time (aPTT) and activated coagulation time (ACT) in patients undergoing cardiopulmonary bypass. (17) Ulinastatin is a protease inhibitor, which is similar to aprotinin, therefore ulinastatin is expected to decrease post-operative bleeding. However two small-sized studies showed no improvement in blood loss and transfusion sparing in patients undergoing specific open heart surgery pretreated with ulinastatin. (18, 19)

Tranexamic acid (TXA) can effectively reduce post-operative bleeding and demand for transfusion. (20−22) TXA is a lysine analogue that prevents degradation of fibrin and dissolution of clots by inhibiting the activation of plasminogen. In 2008 aprotinin was
removed from the market23 before TXA became the mainstay of anti-fibrinolytic therapy for pharmacological blood conservation in cardiac surgery, other alternatives had been exploring for. Given that ustinastatin was a protease that was similar to aprotinin, it became a hopeful candidate. However, few studies were reported on its effect on blood conservation and short- and long-term outcomes. Therefore, the aim of the current study was to evaluate the efficacy of ustinastatin on post-operative blood loss and allogeneic transfusion in comparison with the tranexamic acid as positive control and placebo as negative control.

Methods

Trial design

The study was a prospective, randomized, double-blinded and controlled trial. It was sponsored by National Center for Cardiovascular Diseases and was conducted at Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College. The study was approved by the Ethical Review Board of Fuwai Hospital. (Ethical approval No. 2008 – 366). And written informed consent was provided by all participants.

Study population

The inclusion criteria were patients between 18 and 79 years old undergoing elective open heart surgery with cardiopulmonary bypass, including the coronary artery bypass graft, valvular repair or replacement, or repair of congenital heart deformities. The exclusion criteria included previous cardiac surgery, hematocrit level less than 33\%, platelet count less than 100 000 \times 10^3/L, allergy to tranexamic acid, and being recruited in other studies.

Randomization and blinding

The surgical procedures and peri-operative care followed the institutional routine. Aspirin
and clopidogrel, if any, were discontinued at least five days before the operation. In patients using warfarin, it was required that prothrombin time (PT) was normal before the operation. Patients were randomly assigned into three groups for the use of ulinastatin (group U), tranexamic acid (group T) or placebo (group C). Patient enrollment, randomization, and blinding were conducted and supervised by an independent committee. The participants, medical staff, and investigators were unaware of the treatment allocation until the end of the study.

Primary and secondary outcomes

The primary outcome of this study was the total volume of post-operative blood loss. The secondary outcomes included stroke, post-operative myocardial infarction, renal failure, respiratory failure, in-hospital adverse outcomes and long-term morbidities and mortalities. Stroke was stated as new focal neurologic deficit lasting more than 24 hours confirmed by a cerebral computed tomography scan and an attending neurologic consultant. Post-operative myocardial infarction was diagnosed by two of the following: prolonged (> 20 minutes) chest pain not relieved by rest or nitrates, new pathologic Q waves in more than two contiguous electrocardiograph leads, elevated enzyme levels (creatine kinase-MB > 5% of total creatinine phosphokinase or troponin T > 0.5 ng/mL), new wall motion abnormalities, or the need for revascularization. Renal failure was stated as first-time dependency on renal dialysis, an increase of post-operative creatinine of at least 2 mg/dL, or a difference of at least 0.7 mg/dL between baseline value and the maximal post-operative plasma creatinine concentration. Respiratory failure was defined as prolonged mechanical ventilation (> 48 hours), the need for continuous positive airway pressure therapy, reintubation, or tracheostomy. The in-hospital adverse outcomes were evaluated and defined as seizure, sudden cardiac arrest, readmission to intensive care unit (ICU), re-operation for surgical cause, using intra-aortic balloon pulsation (IABP) or
extracorporeal membrane oxygenation (ECMO) and deep sternal infection. The long-term morbidities included stroke, myocardial infarction, renal failure, respiratory failure, seizure and sudden cardiac arrest.

Interventions

Study and placebo medication were prepared by the hospital pharmacy. Identical syringes of 50 mL labeled with the randomization number contained transparent solution, 30 mg/Kg body weight of tranexamic acid (Jie Ning®; Changchun Tiancheng Pharmaceutical Co., Changchun, China), 1,000,000 U ulinastatin (Tian Pu Luo An®; Guangdong Tianpu Biochemistry Pharmaceutical Co., Guangzhou, China) or normal saline. Study medication was pumped intravenously over 10 minutes at two time points, after anaesthesia induction and after administration of protamine. In group T, Tranexamic acid was administrated at both time points. In group U, patients were treated with ulinastatin after induction and with normal saline after administration of protamine. Patients in group C received normal saline at both time points.

Post-operative blood loss

Postoperative blood loss was assessed via chest drain tubes every 8 hour for the first 24 hours after admittance to the ICU, and then was assessed every day beyond the first 24 hours until the chest drain tubes were withdrawn. Post-operative blood loss was defined as the total volume of drainage from the end of the operation until the removal of the chest tubes. Chest tube drainage more than 300 ml within the first post-operative hour, more than 5 ml/kg per hour consecutively for 3 hours, or any signs of pericardial tamponade justified surgical re-exploration to control bleeding.

Transfusion criteria

The criteria for the transfusion of packed red blood cells (RBC) were:

(1) bleeding caused hemodynamic instability or
(2) hemoglobin concentrations below 8.0 g/dL in the early postoperative period.

In all other situations the decision to transfuse was left to the discretion of the treating physician. The criteria for transfusion of platelet concentrates and fresh frozen plasma were:

(1) excessive bleeding and a platelet count < 50000/L or
(2) PT and/or aPTT of > 1.5 times the upper limit of normal (after heparin reversal), respectively.

Additional protamine was administered in cases of prolonged ACT (the preoperatively measured ACT served as reference).

Follow-up

All patients were followed up for ten years via reviewing outpatient records and questionnaires by mail/telephone 30 days post-operatively and annually.

Statistical analysis

The sample size was calculated based on the volume of post-operative bleeding using one-way ANOVA at an alpha level of 0.05 and effect size of 0.2 with 95% power. Assuming a dropout rate of 10%, the estimated total sample size was 426 patients (142 patients for each group). For continuous variables, normal distribution assumption was assessed. Equal variance assumption was assessed. The differences of these characteristics between groups were performed using independent two-sample t-tests and one-way ANOVA. Mean difference (MD) and its 95% confidence interval (CI) was calculated. Categorical variables were summarized using frequency and percentage and compared using Chi-square test or Fisher’s exact test. The estimated effect size and its precision were presented by the absolute risk difference (RD) and relative risk (RR) with their associated 95% CIs. The Mantel-Haenszel method was applied in the calculation of RR. Survival analysis was performed using the Kaplan-Meier method and log-rank test. All the analyses were
performed using SPSS (Version 18.0, SPSS Inc.) software. All tests were two-sided, and a probability value less than 0.05 was considered to be statistically significant. The authors had full access to the data and take responsibility for its integrity.

Results

Baseline characteristics and peri-operative data of the study subjects

From April 2008 to Dec 2008, a total of 481 patients were eligible for access in the present study. Of 481 patients, 55 patients were excluded. Twenty patients didn’t meet the inclusion criteria and 35 patients refused to participate. (Figure 1) The remained 426 patients were randomized to receiving ulinastatin (Group U, n=142), tranexamic acid (Group T, n=143), or placebo (Group C, n=141). The baseline characteristics of each group are shown in Table 1. (Table 1) There was no statistical significant difference in demographic characteristics, main diagnoses and preoperative comorbidity among the groups. Types of operations included on-pump coronary artery bypass graft (CABG), valvular procedures and congenital deformity repairs. There was no significant difference among groups in terms of the constitution of surgical procedures, CPB time and aortic cross-clamping time as seen in Table 2. (Table 2) No significant difference was found in mechanical ventilation time, chest tube removal time, ICU stay and hospital length of stay.

Bleeding and transfusion

There were significant differences among three groups regarding to the blood loss within 24 hours post-operatively, the total blood loss, major bleeding, reoperations, and the amount of RBC and plasma transfusion. (Table 3) In post hoc analyses (Table 3), blood loss within 24 hours (404.87±253.58ml vs. 527.73±300.4ml, p<0.001; MD -122.86ml, 95% CI -195.87ml to -49.86ml, for the first 8 hours post-operatively; 183.94±151.83ml vs. 205.57±129.57ml, p=0.016, MD -21.63ml, 95% CI -55.49ml to 12.22ml, for the second 8
hours post-operatively; 99.58±94.75ml vs. 121.03±101.62ml, p=0.029; MD -21.45ml, 95% CI -44.58ml to 1.68ml, for the third 8 hours post-operatively) and total blood loss (801.7±460.14ml vs. 1016.67±529.08, p<0.001; MD -214.98ml, 95% CI -338.60ml to -91.36ml) were significantly reduced in patients using ulinastatin compared with placebo. The major bleeding was comparable between group U and group C. It was a trend that there were fewer reoperations in group U than in group C (0.70% vs. 4.26%; RD -0.0355, 95% CI -0.0716 to 0.0005; RR, 0.166; 95% CI 0.0202 to 1.36; p=0.055). Patients in group U had less allogeneic erythrocyte transfusion compared to patients in group C (2.57±3.15 units vs. 3.73±4.21 units; MD -1.16; 95% CI -2.06 to -0.265; p=0.016). Ulinastatin tended to reduce exposure to RBC in contrast to placebo (58.45% vs. 69.50%; RD -0.111, 95% CI -0.222 to 0.0006; RR 0.841, 95% CI 0.705 to 1.00; p=0.053). The volume and the exposure of plasma and platelet transfusion was similar between group U and group C. Between group U and group T, there was no significant difference in all indicators (blood loss, major bleeding, re-operation, allogenic transfusion and exposure to transfusion). (Table 3)

Mortality and morbidity in-hospital

There was one in-hospital death in group U and in group C, respectively, and no in-hospital death in group T (0.70%, 0.71%, 0, respectively; p=0.602). There were significantly fewer patients who had respiratory failure post-operatively in group U (0.70%, 4.20% and 6.38% in group U, group T and group C, respectively; p=0.040). However, no significant difference was found among groups in other major morbidities, including stroke, postoperative myocardial infarction and renal failure. In all groups, duration of intensive care unit stay and hospital stay were similar. And no significant difference in adverse outcomes was found. (Table 4)

Follow-up
All patients were followed up for 10 years. There was no significant difference in long-term survival among three groups. (Figure 2) In further analyses, no significant difference in survival was found between each two groups. (data not shown) There was no difference in major morbidities between groups.

Discussion
To our knowledge, for the first time the current study demonstrated that ulinastatin effectively reduced the blood loss and the demand for RBC transfusion in patients undergoing open heart surgery with CPB, in a tertiary heart center of considerable operative quantity. Ulinastatin reduced the incidence of respiratory failure but did not have effect on in-hospital mortality. Moreover, we found that ulinastatin had neutral effect on long-term survival and incidence of morbidities compared with placebo and tranexamic acid. Also, the effect of reduced bleeding and transfusion by ulinastatin on long-term outcomes is evaluated for the first time.

This trial was mainly designed to evaluate the blood conservation effect of ulinastatin on open heart surgery with CPB, with tranexamic acid as positive control and normal saline as negative control. Over the last ten years, growing evidence showed that tranexamic acid effectively decreased post-operative blood loss and spared blood during this trial being conducted.\(^{[20, 21, 24]}\) However, tranexamic acid was associated with increased incidence of post-operative seizure,\(^{[21, 25–28]}\) which was suggested to be relevant to thrombotic stroke.\(^{[26, 29]}\) Therefore evaluation of alternative agents was justified. Since evidence showed that blood transfusions during or after coronary artery bypass operations were associated with increased long-term mortality, whether the blood conservation effect of ulinastatin can be translated into the improvement of long-term outcome became intriguing.
Ulinastatin is urinary trypsin inhibitor with a molecular weight of about 24,000 Da, and is extracted and purified from fresh human urine.\(^{(13)}\) In previous studies, the PMNs degraded or inhibited the activity of fibrin, fibrinogen, platelets and coagulation factors;\(^{(9−11)}\) ulinastatin decreased the release of elastase from PMNs and suppressed elastase activity;\(^{(14)}\) ulinastatin also lowered the level of PMNs, tumor necrosis factor-alpha, interleukin-6 and interleukin-8 after CPB,\(^{(30)}\) and shortened APTT and ACT in patients undergoing on-pump CABG.\(^{(17)}\) In the current study, we demonstrated that ulinastatin decreased total post-operative blood loss by 21% and allogeneic erythrocyte transfusion requirement by 31% compared with negative control, with similar efficacy to tranexamic acid.

In the course of this trial, there were sporadic reports with negative conclusions of ulinastatin on post-operative blood loss in specific type of open heart surgery with CPB.\(^{(18, 19)}\) Song et al found that there were no significant improvements in coagulation profile, blood loss and transfusion requirements of patients undergoing open heart surgery with CPB by using 5000 U/Kg of ulinastatin prior to aortic cross-clamping,\(^{(19)}\) with Park et al having similar conclusions in their study.\(^{(18)}\) The authors inferred that, by using relative small doses of ulinastatin (5000 U/Kg), the anti-inflammatory effect of ulinastatin was overwhelmed by the inflammatory response to CPB and that CPB-induced haemodilution reduced the efficacy of ulinastatin,\(^{(18, 19)}\) therefore causing the negative results. In the present study, 1,000,000 U of ulinastatin were administrated. It was possible that increased amount of ulinastatin used in the current study suppressed the CPB-induced inflammatory response, increased the serum concentration of ulinastatin after withdraw of CPB, and therefore improved the efficacy of ulinastatin on post-operative blood conservation.
Ulinastatin has been used in open heart surgery to relieve the systemic inflammatory response to CPB in China and in Japan,\(^{(30−37)}\) which was the important cause of post-operative organ dysfunctions. Bingyang et al found that alveolo-arterial oxygen difference was significantly decreased and the duration of mechanical ventilation was shortened by ulinastatin treatment in patients undergoing CABG with CPB.\(^{(30)}\) In a recent meta-analysis by He et al\(^{(38)}\), in which, however, all trials included were small-sized, ulinastatin was not associated with respiratory failure, but shortened the extubation time and increased the oxygen index in patients undergoing open heart surgery. In the present study, there was no significant difference in duration of mechanical ventilation. However, we observed fewer patients with post-operative respiratory failure in ulinastatin group than in other groups. Our findings added new evidence to the improvement of early post-operative pulmonary function by ulinastatin.

The study was designed to sample consecutive patients on diverse types of open heart surgeries with CPB but a specific surgical procedure, hoping to mimic the situation of everyday clinical practice. This study had by far the largest sample size in studies focused on the blood conservation effect of ulinastatin. Nevertheless, this study is medium-sized and single-centered. Further multi-centered randomized controlled clinical trials are expected to evaluate the effect of ulinastatin on blood conservation, especially in patients with continuous use of anti-platelet agents up to surgery.

There was a significant shift in the composition of cardiac procedures from the beginning of this trial to nowadays, in accordance with which happened in China. For example, the percentage of valvular surgery in Fuwai Hospital has dropped from 67% in 2008 to 30% in 2017. The population in this trial was medium- or low-risked, which resulted in a much lower observed in-hospital mortality (0.47%) in accordance with the low average in-
hospital mortality in this hospital, than would normally be expected with CPB alone (3.2–12.8%). (39) In this situation, it was difficult to compare in-hospital and long-term mortality among groups. Therefore the follow-up was prolonged, from one year originally to 10 years, to observe the time-magnified effect of different treatments on long-term survival and morbidities. However, no difference was found among groups, which, on the other hand, implied that ulinastatin treatment was safe.

Conclusion

In conclusion, we provided the first evidence that ulinastatin could significantly decrease the post-operative blood loss in patients undergoing open heart surgery with CPB with similar efficacy to tranexamic acid in this prospective randomized controlled trial.

Abbreviations

CPB (cardiopulmonary bypass), PMN (polymorphonuclear neutrophil), aPTT, (activated partial thromboplastin time), ACT (activated coagulation time), TXA (Tranexamic acid), PT (prothrombin time), ICU (intensive care unit), IABP (intra-aortic balloon pulsation), ECMO (extracorporeal membrane oxygenation), RBC (red blood cell), MD (mean difference), CI (confidence interval), RD (risk difference), RR (relative risk), CABG (coronary artery bypass graft)

Declarations

Ethics approval and consent to participate

The study was approved by the Ethical Review Board of Fuwai Hospital. (Ethical approval No. 2008-366). And written informed consent was provided by all participants.

Consent for publication

Not applicable

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests

Funding
None

Authors' contributions
PZ and HL contributed equally in writing the manuscript and took part in study design. XQ, WX, QX, LZ and LL were responsible for conducting the study and collecting data. JS were responsible for the data analysis and in charge of design and management of the study. All authors read and approved the final manuscript.

Acknowledgements
Not applicable

References
1. Brown JR, Birkmeyer NJ, O'Connor GT. Meta-analysis comparing the effectiveness and adverse outcomes of antifibrinolytic agents in cardiac surgery. Circulation. 2007;115(22):2801-13.

2. Levi M, Cromheecke ME, de Jonge E, Prins MH, de Mol BJ, Briet E, et al. Pharmacological strategies to decrease excessive blood loss in cardiac surgery: a meta-analysis of clinically relevant endpoints. Lancet. 1999;354(9194):1940-7.

3. Engoren MC, Habib RH, Zacharias A, Schwann TA, Riordan CJ, Durham SJ. Effect of blood transfusion on long-term survival after cardiac operation. The Annals of thoracic surgery. 2002;74(4):1180-6.

4. Cremer J, Martin M, Redl H, Bahrami S, Abraham C, Graeter T, et al. Systemic inflammatory response syndrome after cardiac operations. The Annals of thoracic
surgery. 1996;61(6):1714-20.

5. Doguet F, Litzler PY, Tamion F, Richard V, Hellot MF, Thuillez C, et al. Changes in mesenteric vascular reactivity and inflammatory response after cardiopulmonary bypass in a rat model. The Annals of thoracic surgery. 2004;77(6):2130-7; author reply 7.

6. Murphy GJ, Angelini GD. Side effects of cardiopulmonary bypass: what is the reality? Journal of cardiac surgery. 2004;19(6):481-8.

7. Schwartz SM, Duffy JY, Pearl JM, Nelson DP. Cellular and molecular aspects of myocardial dysfunction. Critical care medicine. 2001;29(10 Suppl):S214-9.

8. Hansen PR. Role of neutrophils in myocardial ischemia and reperfusion. Circulation. 1995;91(6):1872-85.

9. Kopec M, Bykowska K, Lopaciuk S, Jelenska M, Kaczanowska J, Sopata I, et al. Effects of neutral proteases from human leukocytes on structure and biological properties of human factor VIII. Thrombosis and haemostasis. 1980;43(3):211-7.

10. Taki M, Miura T, Inagaki M, Tomita Y, Saito N, Okada Y, et al. Influence of granulocyte elastase-like proteinase (ELP) on platelet functions. Thrombosis research. 1986;41(6):837-46.

11. Bjork P, Axelsson L, Bergenfeldt M, Ohlsson K. Influence of plasma protease inhibitors and the secretory leucocyte protease inhibitor on leucocyte elastase-induced consumption of selected plasma proteins in vitro in man. Scandinavian journal of clinical and laboratory investigation. 1988;48(2):205-11.

12. Manfredi AA, Rovere-Querini P, Maugeri N. Dangerous connections: neutrophils and the phagocytic clearance of activated platelets. Current opinion in hematology. 2010;17(1):3-8.

13. Muramatu M, Mori S, Matsuzawa Y, Horiguchi Y, Nakanishi Y, Tanaka M. Purification
and characterization of urinary trypsin inhibitor, UTI68, from normal human urine, and its cleavage by human uropepsin. Journal of biochemistry. 1980;88(5):1317-29.

14. Ogawa M, Nishibe S, Mori T, Neumann S. Effect of human urinary trypsin inhibitor on granulocyte elastase activity. Research communications in chemical pathology and pharmacology. 1987;55(2):271-4.

15. Ohnishi H, Suzuki K, Niho T, Ito C, Yamaguchi K. Protective effects of urinary trypsin inhibitor in experimental shock. Japanese journal of pharmacology. 1985;39(2):137-44.

16. Okida M, Masako O, Maruya H, Higashi T, Yukaya H. Intraoperative changes in blood coagulation and the effectiveness of ulinastatin during liver resection. Journal of anesthesia. 1991;5(1):43-7.

17. Ji HW, Chen L. [Effects of ulinastatin on coagulation and platelet function in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass]. Zhonghua yi xue za zhi. 2009;89(3):175-8.

18. Park JB, Kim SH, Lee SA, Chung JW, Kim JS, Chee HK. Effects of ulinastatin on postoperative blood loss and hemostasis in atroventricular valve surgery with cardiopulmonary bypass. Korean J Thorac Cardiovasc Surg. 2013;46(3):185-91.

19. Song JE, Kang WS, Kim DK, Yoon TG, Kim TY, Bang YS, et al. The effect of ulinastatin on postoperative blood loss in patients undergoing open heart surgery with cardiopulmonary bypass. J Int Med Res. 2011;39(4):1201-10.

20. Ker K, Edwards P, Perel P, Shakur H, Roberts I. Effect of tranexamic acid on surgical bleeding: systematic review and cumulative meta-analysis. Bmj. 2012;344:e3054.

21. Myles PS, Smith JA, Forbes A, Silbert B, Jayarajah M, Painter T, et al. Tranexamic Acid in Patients Undergoing Coronary-Artery Surgery. The New England journal of medicine. 2017;376(2):136-48.
22. Henry DA, Carless PA, Moxey AJ, O’Connell D, Stokes BJ, Fergusson DA, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2011(1):CD001886.

23. Mangano DT, Tudor IC, Dietzel C, Multicenter Study of Perioperative Ischemia Research G, Ischemia R, Education F. The risk associated with aprotinin in cardiac surgery. The New England journal of medicine. 2006;354(4):353-65.

24. Ngaage DL, Bland JM. Lessons from aprotinin: is the routine use and inconsistent dosing of tranexamic acid prudent? Meta-analysis of randomised and large matched observational studies. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2010;37(6):1375-83.

25. Murkin JM, Falter F, Granton J, Young B, Burt C, Chu M. High-dose tranexamic Acid is associated with nonischemic clinical seizures in cardiac surgical patients. Anesthesia and analgesia. 2010;110(2):350-3.

26. Manji RA, Grocott HP, Leake J, Ariano RE, Manji JS, Menkis AH, et al. Seizures following cardiac surgery: the impact of tranexamic acid and other risk factors. Canadian journal of anaesthesia = Journal canadien d’anesthesie. 2012;59(1):6-13.

27. Keyl C, Uhl R, Beyersdorf F, Stampf S, Lehane C, Wiesenack C, et al. High-dose tranexamic acid is related to increased risk of generalized seizures after aortic valve replacement. European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery. 2011;39(5):e114-21.

28. Sigaut S, Tremey B, Ouattara A, Couturier R, Taberlet C, Grassin-Delyle S, et al. Comparison of two doses of tranexamic acid in adults undergoing cardiac surgery with cardiopulmonary bypass. Anesthesiology. 2014;120(3):590-600.

29. Goldstone AB, Bronster DJ, Anyanwu AC, Goldstein MA, Filsoufi F, Adams DH, et al. Predictors and outcomes of seizures after cardiac surgery: a multivariable analysis of
2,578 patients. The Annals of thoracic surgery. 2011;91(2):514-8.

30. Bingyang J, Jinping L, Mingzheng L, Guyan W, Zhengyi F. Effects of urinary protease inhibitor on inflammatory response during on-pump coronary revascularisation. Effect of ulinastatin on inflammatory response. J Cardiovasc Surg (Torino). 2007;48(4):497-503.

31. Cao ZL, Okazaki Y, Naito K, Ueno T, Natsuaki M, Itoh T. Ulinastatin attenuates reperfusion injury in the isolated blood-perfused rabbit heart. The Annals of thoracic surgery. 2000;69(4):1121-6.

32. Kawamura T, Inada K, Akasaka N, Wakusawa R. Ulinastatin reduces elevation of cytokines and soluble adhesion molecules during cardiac surgery. Canadian journal of anaesthesia = Journal canadien d'anesthesie. 1996;43(5 Pt 1):456-60.

33. Kawamura T, Shimoda Y, Wakusawa R. The effects of urinastatin on the plasma levels of granulocyte elastase during open heart surgery under simple deep hypothermia. Journal of anesthesia. 1992;6(3):269-76.

34. Nakanishi K, Takeda S, Sakamoto A, Kitamura A. Effects of ulinastatin treatment on the cardiopulmonary bypass-induced hemodynamic instability and pulmonary dysfunction. Critical care medicine. 2006;34(5):1351-7.

35. Sato Y, Ishikawa S, Otaki A, Takahashi T, Hasegawa Y, Suzuki M, et al. Induction of acute-phase reactive substances during open-heart surgery and efficacy of ulinastatin. Inhibiting cytokines and postoperative organ injury. Jpn J Thorac Cardiovasc Surg. 2000;48(7):428-34.

36. Shibata T, Yamamoto F, Suehiro S, Kinoshita H. Effects of protease inhibitors on postischemic recovery of the heart. Cardiovasc Drugs Ther. 1997;11(4):547-56.

37. Sugita T, Watarida S, Katsuyama K, Nakajima Y, Yamamoto R, Mori A. Effect of a human urinary protease inhibitor (Ulinastatin) on respiratory function in pediatric
patients undergoing cardiopulmonary bypass. J Cardiovasc Surg (Torino). 2002;43(4):437-40.

38. He QL, Zhong F, Ye F, Wei M, Liu WF, Li MN, et al. Does intraoperative ulinastatin improve postoperative clinical outcomes in patients undergoing cardiac surgery: a meta-analysis of randomized controlled trials. Biomed Res Int. 2014;2014:630835.

39. Levin R, Degrange M, Del Mazo C, Tanus E, Porcile R. Preoperative levosimendan decreases mortality and the development of low cardiac output in high-risk patients with severe left ventricular dysfunction undergoing coronary artery bypass grafting with cardiopulmonary bypass. Experimental and clinical cardiology. 2012;17(3):125-30.

Tables

Table 1. Baseline characteristics of all patients
	Ulinastatin group (n=142)	Tranexamic acid group (n=143)	Placebo group (n=141)
Baseline demographics			
Male n,(%)	63 (44.37%)	66 (46.15%)	71 (50.35%)
Age (yrs)	49.0±14.3	48.6±12.7	50.3±12.4
Weight (kg)	61.7±11.7	61.4±12.0	61.4±12.7
Body mass index	23.1±3.6	22.9±3.4	22.8±3.7
Diagnosis			
Coronary heart disease, n(%)	17 (11.97%)	13 (9.09%)	21 (14.89%)
Valvular heart disease, n(%)			
Mitral valve lesion, n(%)	70 (49.30%)	66 (46.15%)	63 (44.68%)
Aortic valve lesion, n(%)	24 (16.90%)	23 (16.08%)	19 (13.48%)
Combined lesion, n(%)	21 (14.79%)	19 (13.29%)	19 (13.48%)
Congenital heart disease, n(%)			
Atrial septal defect, n(%)	1 (0.70%)	4 (2.80%)	6 (4.26%)
Ventricular septal defect, n(%)	4 (2.82%)	6 (4.20%)	5 (3.55%)
Other, n(%)	5 (3.52%)	12 (8.39%)	8 (5.67%)
Clinical history (%)			
Hypertension	31 (21.83%)	33 (23.08%)	37 (26.24%)
Diabetes	5 (3.52%)	4 (2.80%)	6 (4.26%)
Stroke	7 (4.93%)	3 (2.10%)	2 (1.42%)
Chronic pulmonary disease	10 (7.04%)	19 (13.29%)	15 (10.64%)
Liver dysfunction	0 (0%)	0 (0%)	0 (0%)
Renal dysfunction	0 (0%)	1 (0.70%)	2 (1.42%)
NYHA class (%)			
I	10 (7.04%)	18 (12.59%)	18 (12.77%)
II	81 (57.04%)	75 (52.45%)	78 (55.32%)
III	41 (28.87%)	36 (25.17%)	35 (24.82%)
IV	10 (7.04%)	14 (9.79%)	10 (7.09%)
Eurosore II	2.41±1.87	2.63±1.73	2.50±1.75

Table 2. Peri-operative data
Surgical procedures	Ulinastatin group (n=142)	Tranexamic acid group (n=141)	Placebo group (n=143)
On-pump coronary artery bypass grafting, n (%)	16 (11.27%)	13 (9.09%)	21 (14.89%)
Mitral valvuloplasty/replacement, n (%)	66 (46.48%)	65 (45.45%)	60 (42.55%)
Aortic valve replacement, n (%)	23 (16.20%)	21 (14.69%)	19 (13.48%)
Mitral and aortic valve replacement, n (%)	17 (11.97%)	15 (10.49%)	15 (10.64%)
Coronary bypass and valvular surgery, n (%)	10 (7.04%)	7 (4.90%)	7 (4.96%)
Repair of atrial septal defect, n (%)	1 (0.70%)	4 (2.80%)	6 (4.26%)
Repair of ventricular septal defect, n (%)	4 (2.82%)	6 (4.20%)	5 (3.55%)
Other	5 (3.52%)	12 (8.39%)	8 (5.67%)
Operative data			
Total dose of heparin (IU/kg)	28331.69±6695.96	28729.51±6612.39	28653.19±6738.07
Total dose of protamine (mg)	393.28±111.35	408.17±117.55	407.87±111.6
Heparin neutralization ratio	1.41±0.34	1.45±0.38	1.46±0.39
Aortic cross-clamp time (min)	75.23±34.8	68.77±34.56	72.32±38.09
CPB time (min)	102.87±42.74	95.60±42.07	98.69±47.76
Chest closure time (min)	66.71±30.44	64.04±24.8	67.04±30.93
Operation time (min)	216.8±64.03	206.46±62.25	205.28±65.36
Inotropic support, n (%)	141 (99.3%)	140 (97.9%)	138 (97.87%)
Operative mortality	0	0	0
Postoperative time course			
Mechanical ventilation (hrs)	15.0±7.66	14.92±10.58	16.95±20.85
ICU stay (hrs)	38.94±26.91	38.06±29.94	42.23±35.3
Chest tube removal (hrs)	50.39±25.68	49.92±18.29	48.01±23.54
Hospital length of stay (days)	8.24±3.19	8.05±2.46	8.51±2.79
	Ulinastatin group (n=142)	Tranexamic acid group (n=143)	Placebo group (n=141)
--------------------------	---------------------------	-------------------------------	----------------------
Bleeding			
Blood loss within 8 hours postoperatively (ml)	404.87±253.58	380.56±274.3	527.73±300.4
Blood loss 9-16 hours postoperatively (ml)	183.94±151.83	165.28±98.02	205.57±129.57
Blood loss 17-24 hours postoperatively (ml)	99.58±94.75	91.08±61.64	121.03±101.62
Blood loss beyond 25 hours postoperatively (ml)	113.31±108.77	111.64±97.73	162.34±176.69
Blood loss totality postoperatively (ml)	801.7±460.14	748.57±409.53	1016.67±529.08
Major bleeding, n (%)	52 (36.62%)	42 (29.37%)	66 (46.81%)
Reoperation, n (%)	1 (0.7%)	0 (0%)	6 (4.26%)
Allogenic transfusion			
Red blood cells (unit)	2.57±3.15	2.15±2.7	3.73±4.21
Plasma (unit)	279.61±439.44	172.03±298.92	382.98±530.49
Platelets (unit)	0.01±0.12	0.03±0.2	0.06±0.26
Patients exposed to allogenic blood products			
Red blood cells, n (%)	83 (58.45%)	79 (55.24%)	98 (69.50%)
Plasma, n (%)	61 (42.96%)	49 (34.27%)	71 (50.35%)
Platelets, n (%)	2 (1.41%)	3 (2.10%)	7 (4.96%)
Any, n (%)	97 (68.31%)	87 (60.84%)	104 (73.76%)
Table 3. Bleeding and transfusion outcomes (continued)			

Ulinastatin vs. Tranexamic acid			
Ulinastatin vs. Placebo			
Tranexamic acid vs. Placebo			
RD (95%CI) or MD (95%CI)			
RR (95%CI)			
P.			
RD (95%CI) or MD (95%CI)			
RR (95%CI)			
P.			
RD (95%CI) or MD (95%CI)			

Bleeding
Blood loss within 8 hours postoperatively (ml)
24.31 (-37.30,85.91)
--
0.148 -122.86 (-195.87,-49.86)
--
<0.01 -147.17 (-220.05,-74.30)
Blood loss 9-16 hours postoperatively (ml)
18.66 (-11.11,48.44)
--
0.507 -21.63 (-55.49,12.22)
--
0.016 -40.29 (-74.09,-6.50)
Blood loss 17-24 hours postoperatively (ml)
8.49 (-10.13,27.12)
--
0.913 -21.45 (-44.58,1.68)
--
0.029 -29.94 (-53.03,-6.85)
Blood loss beyond 25 hours postoperatively (ml)
1.66 (-22.44,25.77)
--
0.951 -49.03 (-83.92,-14.15)
--
0.060 -50.70 (-85.52,15.87)
Blood loss totality postoperatively (ml)
53.13 (-48.42,154.68)
--
0.463 -214.98 (-338.60,-91.36)
--
<0.01 -268.11 (-391.51,-144.70)
Major bleeding (person)
0.0725 (-0.0364,0.181)
1.25 (0.893,1.74)
0.193 -0.102 (-0.216,0.012)
0.782 (0.592,1.03)
0.082 -0.174 (-0.286,-0.063)
Reoperation (person)
0.0070 (-0.0067,0.0208)
3.02 (0.124,73.5)
0.315 -0.0355 (-0.0716,0.005)
0.166 (0.0202,1.36)
0.055 -0.0426 (-0.0759,-0.0092)
Allogenic transfusion
Red blood cells (unit)
0.42 (-0.26,1.10)
--
0.330 -1.16 (-2.06,-0.26)
--
0.016 -1.58 (-2.48,-0.69)
Plasma (unit)
107.58 (20.00,195.16)
--
0.052 -103.37 (-217.62,10.88)
--
0.113 -210.95 (-325.00,-96.90)
Platelets (unit)
-0.01(-0.05,0.02)
--
0.656 -0.04(-0.10,0.011)
--
0.088 -0.03(-0.08,0.02)
Patients exposed to allogenic blood products
Red blood cells (person)
0.0321 (-0.0829,0.147)
1.058 (0.864,1.30)
0.585 -0.111 (-0.222,0.000)
0.841 (0.705,1.00)
0.053 -0.143 (-0.254,-0.031)
Plasma (person)
0.0869 (-0.0257,0.200)
1.254 (0.933,1.69)
0.132 -0.0740 (-0.190,0.042)
0.853 (0.664,1.10)
0.212 -0.161 (-0.274,-0.048)
Platelets (person)
-0.0069 (-0.0373,0.0236)
0.671 (0.114,3.96)
0.658 -0.0356 (-0.0763,0.0052)
0.284 (0.0600,1.34)
0.088 -0.0287 (-0.0715,0.0142)
Any (person)

Table 4. In-hospital morbidity and mortality
	Ulinastatin group (n=142)	Tranexamic acid group (n=143)	Placebo group (n=141)			
	n	%	n	%	n	%
Mortality in-hospital	1	0.70%	0	0.00%	1	0.71%
Morbidity in-hospital						
Stroke	0	0.00%	2	1.40%	1	0.71%
Postoperative MI	0	0.00%	1	0.70%	2	1.42%
Renal failure	0	0.00%	2	1.40%	4	2.84%
Respiratory failure	1	0.70%	6	4.20%	9	6.38%
Adverse outcomes in-hospital						
Seizure	0	0.00%	2	1.40%	1	0.71%
Sudden cardiac arrest	0	0.00%	1	0.70%	2	1.42%
Readmission to ICU	2	1.41%	1	0.70%	3	2.13%
Reoperation for surgical cause	2	1.41%	1	0.70%	1	0.71%
IABP	1	0.70%	2	1.40%	3	2.13%
ECMO	0	0.00%	0	0.00%	0	0.00%
Deep sternal infection	1	0.70%	0	0.00%	1	0.71%
Figures

Figure 1

CONSROT flow chart
Long-term survival (10-year follow-up). There was no significant difference among three groups in long-term survival. (log-rank test, \(p = 0.844 \)). (Group T = tranexamic acid group; Group U = ulinastatin group; Group C = placebo group)