Cortical Surface Area Correlates with STON2 Gene Ser307Pro Polymorphism in First-Episode Treatment-Naïve Patients with Schizophrenia

Bo Xiang1,2, Jun-yao Wu1,2, Qiang Wang1,2, Ming-Li Li1,2, Li-Jun Jiang1,2, Wei Deng1,2, Zhuang-Fei Chen1,2, Zong-Ling He1,2, Cao-Hua Huang1,2, Yuan-yuan Han1,2, Yin-fei Li1,2, Yin Lin1,2, Xiang Liu2, Ying-cheng Wang3, Xiao-Hong Ma1,2, Qi-yong Gong9, Tao Li1,2, Xun Hu1,4

1 State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 2 The Mental Health Center and the Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 3 Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 4 Huaxi Biobank, West China Hospital, Sichuan University, Chengdu, Sichuan, China

Abstract

Background: Evidence shows that STON2 gene is associated with synaptic function and schizophrenia. This study aims to explore the relationship between two functional polymorphisms (Ser307Pro and Ala851Ser) of STON2 gene and the cortical surface area in first-episode treatment-naïve patients with schizophrenia and healthy controls.

Methodology/Principal Findings: Magnetic resonance imaging of the whole cortical surface area, which was computed by an automated surface-based technique (FreeSurfer), was obtained from 74 first-episode treatment-naïve patients with schizophrenia and 55 healthy controls. Multiple regression analysis was performed to investigate the effect of genotype subgroups on the cortical surface area. A significant genotype-by-diagnosis effect on the cortical surface area was observed. Pro-allele carriers of Ser307Pro polymorphism had larger right inferior temporal surface area than Ser/Ser carriers in the patients with schizophrenia; however, no significant difference was found in the same area in the healthy controls. The Ala851Ser polymorphism of STON2 gene was not significantly associated with the cortical surface area in patients with schizophrenia and healthy controls.

Conclusions/Significance: The present study demonstrated that the functional variant of the STON2 gene could alter cortical surface area on the right inferior temporal and contribute to the pathogenesis of schizophrenia.

Introduction

Schizophrenia is a complex psychiatric disorder characterized by various clinical symptoms, including delusions, hallucinations, and cognitive impairments. Studies suggested that genetic factors influence the pathophysiology of schizophrenia with heritability as high as 80% [1,2]. During the last two decades, association analysis results, including recent genome-wide association studies, have provided evidence for a substantial polygenic component to the risk of schizophrenia, with a minimal effective size [3,4,5,6,7]. Despite numerous findings mainly based on statistical evidence, the genetic mechanisms in schizophrenia remain largely unknown [8]. Potential factors such as allelic heterogeneity, variation in population substructure, and phenotypic heterogeneity have hindered progress in this field. Considerable interest has been demonstrated in reducing the effect of phenotypic heterogeneity by integrating endophenotypes such as neurocognitive deficits or neuroimaging-based phenotypes into molecular genetic analysis [9,10,11,12].

Studies showed that some gene expression domains, as well as several transcription factors and signaling molecules, were involved in establishing area boundaries in the mouse neocortex. These findings suggested that genetic patterning based on the cortical divisions of cortical surface area and anteroposterior gradient was found in mouse models and human cortex [17], and the expansion of region-specific cortical areal in humans was involved with specific genetic polymorphisms [18,19]. Chen et al. recently reported that the human cortical surface area was a hierarchical genetic organization [20]. At birth, surface area is influenced by the number of cortical columns and cortical thickness, and which...
continue to grow until ~8 to 10 years after birth [21,22]. Thus for, the human cortical surface area may be entirely related with genetic, rather than a priori functional or structural information, and cortical surface area may represent potential endophenotype of psychiatric disorders in investigating the potential association of genetic variants and brain morphology as well as in providing novel insights into the pathophysiology of schizophrenia and other related disorders.

The STON2 gene is located on chromosome 14q, which is a candidate region implicated in linkage studies of schizophrenia [23,24]. The STON2 gene encodes a human homolog of Drosophila stoned B–stonin2. Studies demonstrated that stoned B is related to schizophrenia-related disorders.

A total of 129 subjects were recruited, including 74 first-episode, treatment-naïve patients with schizophrenia and 55 healthy controls. All patients were recruited from the Mental Health Centre of the West China Hospital, Sichuan University, China. These patients were assessed by trained psychiatrists according to the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) Axis I Disorders [34]. The healthy controls were recruited from the local area by advertisement and were screened for a lifetime absence of psychiatric illnesses by using the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition-Non Patient Edition [35]. Subjects with significant physical illnesses, pregnancies, or psychiatric disorders other than schizophrenia were excluded. All controls were interviewed to assure that no first-degree relatives had a history of psychiatric illness. The study was approved by the Ethics Committee of the West China Hospital of Sichuan University. All next of kin, carer takers or guardians consented on behalf of participants to provide written informed consent for their participation.

Materials and Methods

Samples

A total of 129 subjects were recruited, including 74 first-episode, treatment-naïve patients with schizophrenia and 55 healthy controls. All patients were recruited from the Mental Health Centre of the West China Hospital, Sichuan University, PR China. These patients were assessed by trained psychiatrists according to the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) Axis I Disorders [34]. The healthy controls were recruited from the local area by advertisement and were screened for a lifetime absence of psychiatric illnesses by using the Structured Clinical Interview for DSM-IV-TR Axis I Disorders-Non Patient Edition [35]. Subjects with significant physical illnesses, pregnancies, or psychiatric disorders other than schizophrenia were excluded. All controls were interviewed to assure that no first-degree relatives had a history of psychiatric illness. The study was approved by the ethics committee of the West China Hospital of Sichuan University. All next of kin, carer takers or guardians consented on behalf of participants to provide written informed consent for their participation.

Imaging

Data acquisition: A total of 129 participants underwent magnetic resonance imaging (MRI) scans in the Department of Radiology at West China Hospital with a 3 Tesla MRI system (EXCITE, General Electric, Milwaukee, USA) with an eight-channel phased-array head coil. High-resolution T1 images were obtained by three-dimensional spoiled gradient echo sequence from all participants. The sets used in this protocol included the following: TR = 8.5 ms; TE = 3.93 ms; dip angle = 12°; thickness of slice = 1 mm; single shot; field of view = 24 cm × 24 cm; matrix = 256 × 256; size of voxel = 0.47 × 0.47 × 1 mm³. A total of 156 slices of axial images were collected from a brain. All scans were inspected for motion artifacts, and the absence of gross pathological findings was confirmed by a neuroradiologist.

MRI preprocessing

We used the FreeSurfer software (http://surfer.nmr.mgh.harvard.edu/fswiki), which includes a set of automated tools, to reconstruct the brain cortical surface from the T1-weighted MRIs [36]. This method involved intensity normalization and used a skull-stripping algorithm to remove the extracerebral tissues as well as a connected component algorithm for image segmentation. The output at this stage consists of a single-filled white matter to estimate the gray–white matter interface. The gray–white matter assessment was used as the starting point of a deformable surface algorithm to examine the pial surface. The surface area was obtained according to the shortest distance between equivalent vertices in the pial and gray–white matter surfaces [37] by using a Gaussian smoothing kernel with a full width at half maximum of 10 mm to smooth the surface.

Genotyping

DNAs were obtained using a standard phenol–chloroform isolation method from whole blood [38]. Ser307Pro and Ala851Ser polymorphisms in STON2 gene were genotyped by GoldenGate genotyping assay according to the manufacturer’s instructions (Illumina Beadstation 500; Illumine, San Diego). All genotypes were tested according to the following quality control criteria: SNPs were removed if more than 10% genotypes across samples were missing, minor allele frequency of SNP < 5%, and

Variables	Schizophrenic patients (N = 74)	Healthy controls (N = 55)	p value
Age (years)	25 (8.3)	25 (8.8)	0.981
Sex (male/female)	30/44	25/30	0.094
Education attainment (years)	12.7 (2.9)	12.4 (3.0)	0.622
PANSS-P	24.26 (6.59)	24.26 (6.59)	0.622
PANSS-N	18.7 (7.7)	18.7 (7.7)	0.622
PANSS-G	47.6 (9.7)	47.6 (9.7)	0.622
PANSS-T	88.94 (17.19)	88.94 (17.19)	0.622

Values of all variables are mean (S.D.) except sex.
PANSS, Positive and Negative Syndrome Scale; PANSS-P, subscales for positive symptoms; PANSS-N, subscales for negative symptoms; PANSS-G, subscales for general psychopathological symptoms; PANSS-T, total score of PANSS.

doi:10.1371/journal.pone.0064090.t001
SNPs failed the Hardy–Weinberg equilibrium test in healthy controls (i.e., p value < 10^{-5}) by PLINK [39].

Statistical analyses

We performed intergroup averaging and inference on the cortical surface data generated by the FreeSurfer processing stream. Patients with schizophrenia and healthy controls were divided into subgroups according to SNP genotypes, respectively: 2 \times Ser/Ser, 2 \times Ser/Pro and Pro/Pro (Pro-allele carriers) for Ser307Pro polymorphism; and 2 \times Ala/Ala, 2 \times Ser/Ala and Ser/Ser (Ser-allele carriers) for Ala851Ser polymorphism. A general linear model was used to explore the differences in the cortical surface area between the subgroups divided according to genotypes of above two polymorphisms separately in patients at each vertex of the surface, with age and sex as covariance. We also investigated the relationship between cortical surface and PANSS score, and age and sex as covariance. For comparison among the subgroups, the results in the group mapping analysis were saved to a specific file and imported into the label. The mean region of interest (ROI) values were extracted for subsequent calculation for each subject. These values were further analyzed using SPSS version 13.0 for Windows (SPSS Inc., USA). The right and left hemispheres were tested separately. We also used the Monte Carlo cluster wise multiple correction with p $<$ 0.05 across the whole brain to reduce the possibility of obtaining false positives. The χ^2 test and t-test were used to compare the sex, age, and educational attainment years between patients with schizophrenia and healthy controls.

Results

The demographic characteristics of the sample are summarized in Table 1. No significant difference was indicated in age, sex, and educational years between patients with schizophrenia and healthy controls.

Ser307Pro and Ala851Ser polymorphisms of the STON2 gene did not deviate from Hardy–Weinberg expectations in healthy controls (p = 0.295 and 0.45, respectively). The genotypic and allelic distributions of both polymorphisms are presented in Table 2. No significant difference was indicated in the frequencies of polymorphisms, both genotype-wise and allele-wise, between patients with schizophrenia and healthy controls.

No significant difference was indicated in the cortical surface area between patients with schizophrenia and healthy controls. We found a significant difference between Ser/Ser and Pro-allele carriers in the right inferior temporal cortical surface area in patients with schizophrenia (P $<$ 0.05 after correction for multiple comparisons across the whole brain) (Figure 1). The mean cortical surface area values obtained from all participants were then extracted in the right inferior temporal cortical surface area. We found that the Ser/Ser carriers with schizophrenia had a

Table 2. Genotype distributions and allele frequencies of Ser307Pro and Ala851Ser polymorphisms of STON2 gene among patients with schizophrenia and healthy controls.

Genotypes	Allele frequency			
	Ser	Pro		
Ser307Pro	Ser/Ser	16 (0.22)	40 (0.54)	18 (0.24)
Patients	Ser/Pro	72 (0.49)	76 (0.51)	
Controls	Pro/Pro	17 (0.31)	30 (0.55)	8 (0.14)
	Ser	Pro		
Ala851Ser	Ala/Ala	28 (0.38)	38 (0.51)	8 (0.11)
Patients	Ser/Ala	75 (0.68)	75 (0.68)	
Controls	Ser/Ser	26 (0.47)	23 (0.42)	6 (0.11)
	Ala	Ser		
	Ser/Pro	64 (0.58)	46 (0.41)	
	Pro/Pro	72 (0.49)	76 (0.51)	
	Ser	Pro		

doi:10.1371/journal.pone.0064090.t002

![Figure 1. The statistical map of Cortical indicating the significant difference between Ser/Ser and Pro-allele carriers on the right inferior temporal cortical surface area in schizophrenic patients.](image)

The labeled cluster represents the right hemisphere region that survived Monte Carlo clusterwise correction at p $<$ 0.05. Color bar scaled in negative log of p values.

doi:10.1371/journal.pone.0064090.g001
significantly smaller cortical surface area on the right inferior temporal hemisphere compared with the Pro-allele carriers with schizophrenia. However, no significant difference was indicated in the same area in healthy controls (Table 3; Figure 2). No association between Ala851Ser and the cortical surface area observed in patients with schizophrenia and healthy controls. There also have no correlation between the cortical surface and the PANSS score.

Table 3. Right inferior temporal surface area by groups of patients and controls and by genotypes of Ser307Pro polymorphism in STON2 gene.

Subgroups by genotypes	Ser/Ser	Pro car*	F**	p value
Patients (mm² ± SD)	166.1±39.3	174.1±34.6	3.256	0.027
Controls (mm² ± SD)	201.7±41.1	189.4±36.9	0.830	0.483

*Pro car indicates Ser/Pro and Pro/Pro.
**Sex and age were included as covariates.

doi:10.1371/journal.pone.0064090.t003

Discussion

In this study, we used the imaging genetics approach to examine the effects of Ser307Pro and Ala851Ser polymorphisms of the STON2 gene on the cortical surface area in patients with schizophrenia and healthy controls. Our results showed that the Pro-allele carriers of Ser307Pro polymorphism have significant increased right inferior temporal cortical surface area in patients with schizophrenia only.

Schizophrenia has been hypothesized to exhibit an abnormal neurodevelopmental process, which results in reduced brain lobe surface area (e.g., left temporal lobe) [40,41] and abnormal asymmetry patterns of cortical and subcortical structures [42,43]. This altered brain lobe surface area and asymmetry patterns in schizophrenic patients may be an endophenotype related to schizophrenia.

In the present study, we identified the occurrence of group-by-genotype interactions in the cortical surface area. However, the mechanism by which the STON2 Ser307Pro variant affects the cortical surface area remained unclear. Stonin2 is the first endocytic protein, which dedicates specifically to SV recycling by acting as a sorting adaptor for synaptotagmin-1 and serves as a link between the endocytic proteins AP-2 and Eps15 and the calcium-sensing SV protein synaptotagmin 1 [44]. This protein facilitates synaptotagmin-1 redistribution into SVs in primary neurons [45,46]. The clathrin-mediated endocytosis may be the...
major mechanism for recycling of fully fused SVs, as well as a major mechanism of dopaminergic signaling attenuation [47,40]. Studies suggested that dopamine 2 receptors D2 (D2Rs), which plays an important role in the dopaminergic system, are related to the N-methyl-D-aspartate receptor (NMDAR) [49,50]. NMDAR is essential for synaptic plasticity [51]. Thus, stonin2 may be involved in regulating the internalization of D2R and NMDAR. Some studies

Luan et al. found the positive association of Ser307Pro and Ala851Ser polymorphisms with schizophrenia in a Chinese population. Pro307Ser polymorphism is adjacent to an Asn-Pro-Phe or NPF motif, which may mediate the interaction of stonin2 with intersectin and Eps15, as well as the haplotype C-C of Ser307Pro and Ala851Ser polymorphisms (Pro307-Ala851), which affects the stonin2 function that mediates the etiopathogenesis of schizophrenia [33]. In the present study, no significant difference was found in the frequencies of both Ser307Pro and Ala851Ser polymorphisms in STON2 gene, either genotype-wise or allele-wise, between patients with schizophrenia and healthy controls. However, we identified that the Ser307Pro variant significantly affected the right inferior temporal cortical surface area in schizophrenic patients, and Anand A et al. has found that the smaller deficits in right inferior temporal cortices in nonpsychotic siblings of patients with childhood-onset schizophrenia [52], Cabeza R et al. found the inferior temporal gyri are involved in several cognitive processes [53] (such as visual perception [54,55]) and the functional deficit in this cognitive domain has been reported in schizophrenia [56]. Previous study has found Stonin2 was interacted with synaptotagmin 1 which was greater association with large projection neurons to participate in synaptic vesicle recycling, and projection neurons which were related with cortical expression [44,57]. So this finding partially supports the positive association of the human STON2 gene with schizophrenia, as indicated in the study by Luan.

In summary, our study provided preliminary evidence that the functional variant of the STON2 gene altered the right inferior temporal cortical surface area and contributed to the pathogenesis of schizophrenia. However, the function of STON2 Ser307Pro remains to be further explored. The mechanism by which the variant influences SV recycling and relates to mental disorders such as schizophrenia must be investigated in the future.

Author Contributions

Conceived and designed the experiments: TL, BH. Performed the experiments: BX J-YW, TD WD. Analyzed the data: BX QW TL. Contributed reagents/materials/analysis tools: TL XH Q-YG. Wrote the paper: TL BX QW XH. Making the gentype of SNP and Finishing Form: BX J-YW TL XH.

References

1. Gottesman II, McGuffin P, Farmer AE (1987) Clinical genetics as clues to the “red” genetics of schizophrenia (a decade of modest gains while playing for time). Schizophrenia Bulletin 13: 23–47.
2. McGuffin P, Gottesman II, Sweffrow RH, Binder D, Parker WD, et al. (1999) Risk factors for schizophrenia. New England Journal of Medicine 341: 570–572.
3. Stefanussen H, Ophofl RA, Steinberg S, Andreasen OA, Cichon S, et al. (2009) Common variants conferring risk of schizophrenia. Nature 460: 744–747.
4. Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, et al. (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460: 733–737.
5. Stefanussen H, Petrusson H, Sigurdsson E, Steinhrorstovit T, Bjurnsdottit S, et al. (2002) Neurogin 1 and Susceptibility to Schizophrenia. The American Journal of Human Genetics 71: 877–892.
6. Chen CH, Lee YR, Liu MY, Wei FC, Koong FJ, et al. (1996) Identification of a Bigl polymorphism of Catechol-O-methyltransferase (COMT) gene, and association study with schizophrenia. American journal of medical genetics 67: 536–539.
7. Hryhorijczuk OA, Goldman D, Jaeger J, Peraud S, Kan JK, et al. (2004) Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. The American Journal of Human Genetics 75: 862–872.
8. Hindorff LA, Selupatney P, Junkska HA, Ramos EM, Melo JP, et al. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences 106: 9362.
9. Bakken TE, Ross CS, Reddy JC, Joyner AH, Rimel LM, et al. (2011) Association of genetic variants on 15q12 with cortical thickness and cognition in schizophrenia. Arch Gen Psychiatry 68: 781–790.
10. Potkin SG, Turner JA, Guffanti G, Lakatos A, Fallon JH, et al. (2009) A genome-wide association study of schizophrenia using brain activation as a phenotype. Schizophrenia Research 106: 9362.
11. Lien YJ, Liu CM, Faaronse S, Tsang M, Hou HG, et al. (2010) A genome-wide quantitative trait loci scan of neurocognitive performances in families with schizophrenia. Genes, Brain and Behavior 9: 655–702.
12. Xiang B, Wu J, Ma X, Wang Y, Deng W, et al. (2012) Genome-wide association study with memory measures as a quantitative trait locus for schizophrenia. Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics 29: 253.
13. Fraser S, Keynes R, Lamden A (1990) Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 341: 411–413.
14. Wilkinson DG, Bhatt S, Cook M, Boncini E, Krumlauf R (1989) Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain. Nature 341: 405.
15. Bishof KM, Gonzalez G, O’Leary DDM (2000) Regulation of area identity in the mammalian neocortex by E2f3 and Pax6. Science 288: 344–349.
16. Fukasaka-Shimosgor T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294: 1071–1074.
17. O’Leary DD, Chou SJ, Sahara S (2007) Area patterning of the mammalian cortex. Neuron 56: 252–269.
18. Rimol LM, Agartz I, Djirovic S, Brown AA, Roddey JC, et al. (2010) Sex-dependent association of common variants of microcephaly genes with brain structure. Proceedings of the National Academy of Sciences 107: 304–308.
19. Joyner AH, Reinberg S, Bakken TE, Rimel LM, Melle I, et al. (2009) A common MEC2P haplotype associates with reduced cortical surface area in humans in two independent populations. Proceedings of the National Academy of Sciences 106: 13403–13408.
20. Chen CH, Gutierrez E, Thompson W, Panizzon MS, Jernigan TL, et al. (2012) Hierarchical genetic organization of human cortical surface area. Science 335: 1634–1636.
21. Rakic P (1988) Specification of cerebral cortical areas. Science 241: 170–176.
22. Courchesne E, Chiaum HJ, Townsend J, Cowles A, Covington J, et al. (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy Volunteers. Radiology 216: 672–682.
23. Chiu Y, McGrath J, Thornquist M, Wolynce P, Nestadt G, et al. (2002) Genetic heterogeneity in schizophrenia II: conditional analyses of affected schizophrenia sibling pairs provide evidence for an interaction between markers on chromosomes 1p and 1q. Molecular psychiatry 7: 658–664.
24. Bailey U, Leisch F, Mexarezo K, Lenzinger E, Willinger U, et al. (2000) Genome scan for susceptibility loci for schizophrenia. Neuropsychobiology 42: 175–182.
25. Andrews J, Smith M, Merzakovski J, Coulson M, Hannan F, et al. (1996) The stoned locus of Drosophila melanogaster produces a dicistronic transcript and encodes two distinct polypeptides. Genetics 143: 1699.
26. Walther K, Krauss M, Dril MK, Lemke S, Ricotta D, et al. (2003) Human stoned B interacts with AP-2 and synaptotagmin and facilitates clathrin-coated vesicle uncoating. EMBO reports 2: 634–640.
27. Fergetag T, Davis WS, Broadie K (1999) The stoned proteins regulate synaptic vesicle recycling in the presynaptic terminal. The Journal of Neuroscience 19: 5847–5857.
28. Fergetag T, Broadie K (2001) Interaction of stoned and synaptotagmin in synaptic vesicle endocytosis. The Journal of neuroscience 21: 1218–1227.
29. Martina JA, Bonangello CJ, Aguilar RC, Bonifacino JS (2001) Stonin 2. The Journal of cell biology 153: 1311–1320.
30. Smith SM, Renken R, von Gersdorff H (2008) Synaptic vesicle endocytosis: fast and slow modes of membrane retrieval. Trends in neurosciences 31: 559–568.
31. Dittman J, Ryan TA (2009) Molecular circuitry of endocytosis at nerve terminals. Annual Review of Cell and Developmental Biology 25: 133–160.
32. Snidow TC (2004) The synaptic vesicle cycle. Annual review of neuroscience 27: 569.
33. Luan Z, Zhang Y, Lu T, Ruan Y, Zhang H, et al. (2011) Positive association of the human STON2 gene with schizophrenia. Neuroreport 22: 208.
34. First MB (1997) User’s guide to the Structured clinical interview for DSM-IV axis I disorders SCID-IV: clinician version. Amer Psychiatr Pub Inc.
35. Association AP, DSM-IV, APATFo (2000) Diagnostic and statistical manual of mental disorders: DSM-IV-TR: American Psychiatric Publishing, Inc.
36. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences 97: 11050.

37. Dale AM, Fischl B, Sereno MI (1999) I. Segmentation and Surface Reconstruction. Neuroimage 9: 179–194.

38. Ciulla TA, Sklar RM, Hauser SL (1988) A simple method for DNA purification from peripheral blood. Analytical biochemistry 174: 485–488.

39. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81: 559–575.

40. Johnstone EC, Owens D, Crow TJ, Frith C, Alexandropoulou K, et al. (1989) Temporal lobe structure as determined by nuclear magnetic resonance in schizophrenia and bipolar affective disorder. Journal of Neurology, Neurosurgery & Psychiatry 52: 736–741.

41. Rossi A, Stratta P, D’Albenzo L, Tartaro A, Schiazza G, et al. (1990) Reduced temporal lobe areas in schizophrenia: preliminary evidences from a controlled multiplanar magnetic resonance imaging study. Biological psychiatry 27: 61–68.

42. Rapoport J, Giedd J, Gogtay N (2012) Neurodevelopmental model of schizophrenia: Update 2012. Molecular psychiatry.

43. Qiu A, Wang L, Younes L, Harms MP, Ratnakar JT, et al. (2009) Neuranatomical asymmetry patterns in individuals with schizophrenia and their non-psychotic siblings. Neuroimage 47: 1221–1229.

44. Maritzen T, Podulfal J, Haucke V (2010) Stonin—Specialized Adaptors for Synaptic Vesicle Recycling and Beyond? Traffic 11: 8–15.

45. Diril MK, Wienisch M, Jung N, Klingauf J, Haucke V (2006) Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling. Developmental cell 10: 233–244.

46. Walther K, Diril MK, Jung N, Haucke V (2004) Functional dissection of the interactions of stonin 2 with the adaptor complex AP-2 and synaptotagmin. Proceedings of the National Academy of Sciences of the United States of America 101: 964.

47. Xiao MF, Xu JC, Tereshchenko Y, Novak D, Schachner M, et al. (2009) Neural cell adhesion molecule modulates dopaminergic signaling and behavior by regulating dopamine D2 receptor internalization. The Journal of neuroscience 29: 14752–14763.

48. Ji Y, Yang F, Papadel F, Wang HX, Gao WJ, et al. (2009) Role of dysbindin in dopamine receptor trafficking and cortical GABA function. Proceedings of the National Academy of Sciences 106: 19593–19598.

49. Centonze D, Usiello A, Costa C, Picconi B, Erbs E, et al. (2004) Chronic haloperidol promotes corticostriatal long-term potentiation by targeting dopamine D2L receptors. The Journal of neuroscience 24: 8214–8222.

50. Tseng KY, O’Donnell P (2004) Dopamine–glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. The Journal of neuroscience 24: 5131–5139.

51. Matthew KE, Balantew T, Friston KJ (2005) Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry 59: 929–939.

52. Mantia AA, Weisiger B, Greenstein D, Studd R, Claser L, et al. (2011) Normalization of cortical gray matter deficits in nonpsychotic siblings of patients with childhood-onset schizophrenia. Journal of the American Academy of Child & Adolescent Psychiatry 50: 697–704.

53. Cabeza R, Nyberg L (2000) Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of cognitive neuroscience 12: 1–47.

54. Ishai A, Ungerleider LG, Martin A, Schouten JL, Hadby JV (1999) Distributed representation of objects in the human ventral visual pathway. Proceedings of the National Academy of Sciences 96: 9379–9384.

55. Hersat P, Kinomura S, Roland PE (2001) Visual recognition: evidence for two distinctive mechanisms from a PET study. Human brain mapping 12: 110–119.

56. Tek C, Gold J, Bixton T, Wilk C, McMahon RP, et al. (2002) Visual perceptual and working memory impairments in schizophrenia. Archives of general psychiatry 59: 146.

57. Chowdhury D, Travis GH, Gregor Sutcliffe J, Burton FH (1995) Synaptotagmin I and IB4 are identical: implications for Synaptotagmin distribution in the primate brain. Neuroscience letters 190: 9–12.