Third order renormalization group applied to the attractive one–dimensional Fermi gas

Paolo Carta

Dipartimento di Fisica Università di Cagliari,
Cittadella Universitaria 09042, Monserrato, Italy
and INFN, sezione di Cagliari.

Abstract

We consider a Callan–Symanzik and a Wilson renormalization group (RG) approach to the infrared problem for interacting fermions in one dimension with backscattering. We compute the third order (two–loop) approximation of the beta function using both methods and compare it with the well known multiplicative Gell–Mann Low approach. We point out a previously unnoticed strong instability of the third order fixed point with respect to an arbitrary dimensionless parameter, which suggests a RG flow toward a strong coupling phase.

71.10.Pm, 71.10.Hf
I. INTRODUCTION

The problem of the one-dimensional Fermi gas model of a metallic conductor, in the low energy approximation, has been approached using three methods: conventional many-body techniques and, mainly, the bosonization and the renormalization group (RG) methods. In this paper we will be concerned with the latter approach. A formulation of the Gell–Mann Low multiplicative RG for this problem was introduced in Ref. The model considered was the \textit{g-ological model}, which describes a weakly interacting one-dimensional fermion system with Tomonaga–type ($g_2$, $g_4$) and backscattering ($g_1$) interactions. Phonons are neglected. That method provided a satisfactory understanding of the infrared behavior in the case of a weak repulsive (effective) interaction. A short list of the most relevant results in this case may be the following (for extensive reviews see e.g. Refs. [6,8]): i) the RG flows toward the Luttinger liquid fixed point; ii) there is a line of nontrivial fixed points; iii) in the infrared limit the system is not asymptotically free, as in the Fermi liquid case, but is described by anomalous exponents. These results were recovered and rigorously proved also in the case of periodic potential using the Wilson RG.

Things change considerably if we consider a weak attractive interaction. Since in this case there is not a second order (one loop) finite fixed point, in Ref. [6] the computation of the beta function was carried to third order (two loops). It was found a $O(1)$ third–order fixed point. This result, if reliable, would be of extreme physical interest because it would signal a behavior completely different from the Luttinger liquid paradigm. One should expect the opening of a gap in the dispersion relations, while Luttinger spectrum is gapless, and an exponential decay of the correlation functions, while in the Luttinger case there is only a power low decay with increasing distance. The problem is, of course, how seriously one should take the very existence of an attractive perturbative fixed point on the basis of the third order result. The computation of the fourth order (three–loop) approximation of the beta function was discussed in Refs. [20–22]. A smaller but still $O(1)$ fixed point was found. Moreover only the first two terms of the beta function are universal. The computation of the third term is useful provided there is some evidence of a perturbatively tractable phase interacting attractively. In this case a precise determination of the renormalized couplings would be important to compute the response functions.

It it useful to make a comparison with the results obtained with the bosonization method. With bosonization it is meant the bosonic representation of fermion field operators. This method is in some sense the inverse of the one used to solve exactly the Luttinger model, where bosonic degrees of freedom are expressed in terms of fermionic operators. Probably the most important result of the bosonization is the exact solution of the model with backscattering ($g_1$ and $g_2$ terms, see below) in the particular case where $g_1 = -\frac{\pi}{5}$. Actually the decoupling between charge and spin degrees of freedom, crucial for the exact solution, is open to question. Moreover there are problems in the limiting procedure employed and the ladder operators restoring the correct occupation numbers are not discussed. (A version of the bosonization free from this problems has been proposed. It should be noted that this version does not deal with the crucial backscattering interaction term: in Ref. [27] only the Luttinger model is considered). Anyway, taking for granted the Luther–Emery solution, the RG method should fill the missing information for value of $g_1$ in the neighborhood of the exact solution. From the bosonized representation of the
interaction it is not difficult to derive the third order scaling equations and the response functions calculated in Ref. are in good agreement with the results of Ref.

From these considerations one may be tempted to give a heuristic meaning to the large but finite fixed point. In this paper we want to show that this is not the case. The main point is that even the sign of the third order fixed point depends on small variations of a parameter whose value can be arbitrarily chosen, provided . We will show this both using the Gell–Mann Low (GML) and the Wilson RG.

The paper is organized as follows. In section II we briefly review the multiplicative GML approach. We explain why it is useful to check the results of this approach using other methods. Recasting the multiplicative procedure into discrete steps, instead of considering the usual Lie equation, we reach our main conclusion. In section III we formulate a Callan–Symanzik (CS) approach to the problem and compute the beta function in two–loop approximation. The same computation is proposed in section IV employing the Wilson RG in the multiscale formulation. Finally in section V we come to the conclusions.

II. THE GELL–MANN LOW APPROACH

We briefly recall the GML multiplicative RG for one dimensional interacting fermions. We will follow closely Refs. with the only difference that we find it convenient to adopt a Euclidean formalism. We consider the g–ological model, defined as follows. The kinetic term is taken linear around the Fermi surface defined by the two points and :

\[ H_0 = \sum_{k,\omega,\sigma} (\omega k - k_F) \psi_+^{k,\omega,\sigma} \psi_-^{k,\omega,\sigma}, \]

where are creation and annihilation operators for right moving and left moving fermions with momentum and spin . We choose units such that . The ultraviolet (u.v.) stability is imposed by bandwidth cutoffs: the momenta are restricted to the intervals for . We define . The interaction Hamiltonian is

\[ H_{\text{int}} = \frac{1}{2L} \sum_{k,p,\omega,\sigma,\sigma'} \left( g_1|1\delta_{\sigma,\sigma'} + g_1\uparrow \delta_{\sigma,-\sigma'} \right) \psi_+^{k_1,\omega,\sigma} \psi_+^{k_2,-\omega,\sigma'} \psi_-^{k_2+2k_F+p,\omega,\sigma'} \psi_-^{k_1-2k_F-p,-\omega,\sigma} + \frac{1}{2L} \sum_{k,p,\omega,\sigma,\sigma'} \left( g_2|1\delta_{\sigma,\sigma'} + g_2\uparrow \delta_{\sigma,-\sigma'} \right) \psi_+^{k_1,\omega,\sigma} \psi_+^{k_2,-\omega,\sigma'} \psi_-^{k_2+p,-\omega,\sigma'} \psi_-^{k_1-p,\omega,\sigma} + \frac{1}{2L} \sum_{k,p,\omega,\sigma,\sigma'} \left( g_4|1\delta_{\sigma,\sigma'} + g_4\uparrow \delta_{\sigma,-\sigma'} \right) \psi_+^{k_1,\omega,\sigma} \psi_+^{k_2+2\omega,\sigma'} \psi_-^{k_2+p,\omega,\sigma'} \psi_-^{k_1-p,\omega,\sigma}. \]  

(1)

is the length of the line. The umklapp interaction term is neglected since it is important only in the half–filled band case, which will be excluded. Since it is always possible to take , reducing the independent couplings to , , . For the sake of simplicity it is possible to neglect, at least as a first approximation, we know from the Mattis model that does not change the essence of the problem.

In the Euclidean formalism the free propagator in momentum space is given by
where \( k_0 \) is the energy, \( k_1 \) the momentum (measured from the Fermi surface), \( k = (k_0, k_1) \) and \( \omega = 1 (-1) \) for right (left) moving fermions. The renormalization procedure is a prescription that defines new couplings for a theory with a lowered u.v. cutoff \( E_0 \). In the limit \( E_0 \to 0 \) we obtain the renormalized couplings. If \( G_R^\omega \) is the interacting propagator, the \( d \) function is defined by the relation

\[
G_R^\omega(k) = d \left( \frac{k_1}{k_{uv}}, \frac{k_0}{E_0} \right) G_\omega(k).
\]

The multiplicative constants \( z \) and \( z_i \) (\( i = 1 \parallel, 1 \perp, 2 \)) that relate \( d \) and the adimensional vertex functions \( \tilde{\Gamma}_i \) for different values of the cutoff are definite by:

\[
d \left( \frac{k_1}{k_{uv}}, \frac{k_0}{E_0}, g' \right) = z \left( \frac{E'_0}{E_0}, g \right) d \left( \frac{k_1}{k_{uv}}, \frac{k_0}{E_0}, g \right)
\]

\[
\tilde{\Gamma}_i \left( \frac{k_j}{k_{uv}}, \frac{w_j}{E_0}, g' \right) = z_i^{-1} \left( \frac{E'_0}{E_0}, g \right) \tilde{\Gamma}_i \left( \frac{k_j}{k_{uv}}, \frac{w_j}{E_0}, g \right)
\]

\[
g'_i = g_i z_i^{-2} \left( \frac{E'_0}{E_0}, g \right) z_i \left( \frac{E'_0}{E_0}, g \right).
\]

where \( E'_0 < E_0 \) is the lowered cutoff, \( g \) and \( g' \) denote respectively the old and the new couplings. The invariant couplings \( g^R_i \) are defined by:

\[
g^R_i \left( \frac{E}{E'_0}, g \right) = g_i z_i^{-2} \left( \frac{E}{E'_0}, g \right) z_i \left( \frac{E}{E'_0}, g \right).
\]

The \( g^R_i \) are invariant in the sense that

\[
g^R_i \left( \frac{E}{E'_0}, g' \right) = g^R_i \left( \frac{E}{E'_0}, g \right).
\]

The couplings \( g'_i \) for the theory with u.v. cutoff \( E'_0 \) are defined by

\[
g'_i = g^R_i \left( \frac{E'_0}{E_0}, g \right).
\]

A differential equation for \( g^R_i \) is readily derived and is the standard Lie equation:

\[
\frac{d}{dx} g^R_i(x, g) = \frac{1}{x} \frac{d}{d\xi} g^R_i \left( \xi, g^R(x, g) \right) \bigg|_{\xi=1}
\]

where \( x = E'_0/E_0 \). We are interested in the scaling limit \( x \to 0 \). The two–loop result is

\[
\begin{align*}
\frac{dg^R_{1\parallel}}{dx} &= \frac{1}{x} \left[ \frac{1}{\pi} g_{1\perp}^{R2} + \frac{1}{2\pi^2} g_{1\parallel}^R g_{1\perp}^R \right], \\
\frac{dg^R_{1\perp}}{dx} &= \frac{1}{x} \left[ \frac{1}{\pi} g_{1\parallel}^R g_{1\perp}^R + \frac{1}{4\pi^2} (g_{1\parallel}^R g_{1\perp}^R + g_{1\perp}^R g_{1\parallel}^R) \right], \\
\frac{dg^R_2}{dx} &= \frac{1}{x} \left[ \frac{1}{2\pi} g_{1\perp}^{R2} + \frac{1}{4\pi^2} g_{1\parallel}^R g_{1\perp}^R \right].
\end{align*}
\]
For spin independent interaction \((g_{1\parallel} = g_{1\perp} = g_1)\) the nontrivial fixed point is found for \(g_1^* = -2\pi\).

We now want to recover this result iterating by discrete steps the procedure that defines the new couplings when the cutoff is lowered: we aim to study the dependence on the scaling parameter. Let \(\gamma > 1\). In proper units we put \(E_0 = \gamma^0\) and \(g_{i,0} = g_i(E_0)\) for \(i = 1 \parallel, 1 \perp, 2\). \(g_{i,-1}\) is defined as (see Eq. (5))

\[
g_{i,-1} = g_i^R\left(\frac{\gamma^{-1}}{\gamma_0}, g_{j,0}\right) = g_i^R\left(\frac{\gamma^{-1}}{E_0}, g\right)
\]

where \(g_{(0)} = g(E_0) = g\). The procedure is iterated in the following way: for \(n < 0\) we define

\[
g_{i,n-1} = g_i^R\left(\frac{\gamma^{n-1}}{\gamma_n}, g_{j,n}\right) \quad i = 1 \parallel, 1 \perp, 2.
\]

From Eqs. (4) e (5) we have that the \(g_{i,n}\) for \(n = -1, -2 \ldots\) are the couplings corresponding to the cutoff sequence \(\{\gamma^n\}\):

\[
g_i^R\left(\frac{\gamma^{n-1}}{\gamma_n}, g_{j,n}\right) = g_i^R\left(\frac{\gamma^{n-1}}{\gamma_0}, g_{j,0}\right) = g_i(\gamma^{n-1}).
\]

In the limit \(n \to -\infty\) we get the renormalized couplings. We have:

\[
g_{1\parallel,n-1} = g_{1\parallel,n} - \frac{g_{1\parallel,n}^2}{\pi \ln \gamma} + \frac{1}{\pi^2} g_{1\parallel,n} g_{1\perp,n} \left(\ln^2 \gamma - \frac{1}{2} \ln \gamma\right)
\]

\[
g_{1\perp,n-1} = g_{1\perp,n} - \frac{1}{\pi} g_{1\perp,n} g_{1\parallel,n} \ln \gamma + \frac{1}{2\pi^2} \left(g_{1\parallel,n}^2 g_{1\perp,n} + g_{1\perp,n}^3\right) \left(\ln^2 \gamma - \frac{1}{2} \ln \gamma\right)
\]

\[
g_{2,n-1} = g_{2,n} - \frac{1}{\pi} g_{2,n} g_{1\parallel,n} \ln \gamma + \frac{1}{2\pi^2} g_{1\parallel,n} g_{2,n}^2 \left(\ln^2 \gamma - \frac{1}{2} \ln \gamma\right).
\]

(7)

It is easily checked that in the limit \(\gamma \to 1^+\) Eqs. (8) are recovered. In general the fixed point depends on \(\gamma\) (let’s remember that it is a third order fixed point). For \(\gamma \neq \sqrt{e}\), if \(g_{1\parallel} = g_{1\perp} = g_1\), we have:

\[
g_1^* = \frac{\pi}{(\ln \gamma - 1/2)}.
\]

(8)

When \(\gamma \to 1\) we obtain the previous result \(g_1^* = -2\pi\). The Lie equations (5) should not be fundamental and we find no reason to use the continuous RG instead of its discrete version. The dependence on \(\gamma\) will be discussed in section V.

As a final comment on this method we note that Eqs. (3) rely on neglecting small contributes that would not allow one to set multiplicative relations where the \(z\) factors do
not depend on the external momenta. For example in the case of the one–loop approximation of the four–point vertex function, proportional to

\[-\frac{1}{2\pi} \ln \left( \frac{k_0}{E_0} \right) + \frac{1}{4\pi} \ln \left( 1 + \frac{k_0^2}{E_0^2} \right),\]

\((k_0\) is the external energy, see figure[4]), the second term is neglected. That is to say that the vertex functions can be divided in scaling and not scaling terms. The first ones are taken into account while the second are not discussed in[5,6]. For this reason we find useful to check Eqs. (6) using other methods.

### III. THE CALLAN–SYMANZIK APPROACH

Within the framework of the multiplicative RG, it is not difficult to formulate a Callan–Symanzik approach for our problem. We follow a common procedure: first we renormalize the theory in the u.v. with a fixed (renormalized ) i.r. cutoff \(m\), then we will compute the beta function and study the i.r. behavior for \(m \to 0\). This approach, devised for a Field Theory, in our case may be considered unnecessary. Nevertheless we consider it a way to support the GML result.

The i.r. regularized free propagator is defined by inserting a bare mass \(m_0\) in the propagator (2):

\[G_\omega(k, m_0^2) = \frac{ik_0 + \omega k_1}{k^2 + m_0^2},\]

where \(k^2 = k_0^2 + k_1^2\) and again \(\omega = 1 (-1)\) for right (left) moving fermions. We know that the Luttinger model with a local interaction is not renormalizable in the u.v.[31] (this is also seen from the exact solution[19]). In order to impose the u.v. stability we choose a nonlocal interaction whose strength decreases with increasing distance. The interaction Hamiltonian of the model is

\[H_{\text{int}} = \sum_{\omega, \sigma \neq \sigma'} \int d^2x d^2y \psi^+_{x,\omega,\sigma} \psi^+_{y,\omega',\sigma'} V_{1\parallel}(x-y) \psi^+_{\bar{y},\omega',\sigma'} \psi^+_{\bar{x},\omega,\sigma},\]

\[+ \sum_{\omega, \sigma \neq \sigma'} \int d^2x d^2y \psi^+_{x,\omega,\sigma} \psi^+_{y,\omega',\sigma'} V_{1\perp}(x-y) \psi^+_{y,\omega,\sigma} \psi^+_{\bar{x},\omega',\sigma},\]

\[+ \sum_{\omega, \sigma \neq \sigma'} \int d^2x d^2y \psi^+_{x,\omega,\sigma} \psi^+_{y,\omega',\sigma'} V_{2}(x-y) \psi^+_{y,\omega',\sigma} \psi^+_{\bar{x},\omega,\sigma},\]

\[+ \sum_{\omega, \sigma \neq \sigma'} \int d^2x d^2y \psi^+_{x,\omega,\sigma} \psi^+_{y,\omega',\sigma'} V_{4}(x-y) \psi^+_{y,\omega,\sigma} \psi^+_{\bar{x},\omega',\sigma},\]

where \(\psi^+_{x,\omega,\sigma}\) are the fermion field operators in coordinate space. The potentials \(V_i\) may be chosen for instance as follows:

\[V_i(x) = \frac{g_i}{4} pe^{-|x|_1} \delta(x_0), \quad i = 1 \parallel, 1 \perp, 2, 4,\]  \hspace{1cm} (9)
where $p > 0$ is fixed; $x_0$ and $x_1$ are the time and space coordinates. In momentum space the model is the same as (10) with the only difference that the bandwidth cutoffs are replaced by the nonlocal couplings

$$g_i \rightarrow g_i \frac{p^2}{k_1^2 + p^2},$$

where $k_1$ is the exchanged momentum in the given interaction vertex and $p$ is introduced in Eq. (9). In the limit $p \rightarrow \infty$ we recover the local couplings of Eq. (1).

Fermion loops are logarithmically divergent. The theory is regularized introducing a cutoff $\Lambda$ by the means of the standard Schwinger parametrization:

$$\int_0^\infty \frac{d\alpha e^{-\alpha(k^2 + m_0^2)}}{k^2 + m_0^2} = \int_0^\infty \frac{d\alpha e^{-\alpha(k^2 + m_0^2)}}{\Lambda^2}.$$

In order to renormalize the theory we find it convenient to follow the scheme for the local ($p = \infty$) case, even if when $p$ is finite we make more subtractions than strictly necessary. It is a simple exercise of standard power counting to find the superficial degree of divergence $D$ for the $n$–point vertex functions in the local case:

$$D(\Gamma_n) = 2 - \frac{n}{2}.$$

We renormalize the couplings ($g_i \rightarrow g_i^R$), the mass ($m_0 \rightarrow m$) and the wave function ($\psi^\pm \rightarrow \psi^\pm_R$). The multiplicative constant $Z$ is formally introduced by the relation $\psi^\pm = Z^{1/2}\psi^\pm_R$.

Let $\Gamma_n^R$ be the renormalized proper $n$–point vertex functions. The relation between bare and renormalized vertex functions is:

$$\Gamma_n(q, m_0, g, \Lambda) = Z^{-n/2} \Gamma_n^R(q, m, g^R),$$

where $q$ denotes the $n$ – 1 independent external momenta of $\Gamma_n$ and $g = \{g_1^\parallel, g_1^\perp, g_2, g_4\}$. Of course the $\Gamma_n$ are functions of the spin and $\omega$ indices attached to the external fields. For simplicity we have not indicated this explicitly in Eq. (10). For the four–point functions the different possible cases are labeled by a single index $i = 1 \parallel, 1 \perp, 2, 4$. It should be noted that while $\Gamma_4,i$ do not depend on the value of $\omega$, $\Gamma_2$ does, so we need an $\omega$ label for this vertex function. It proves useful to introduce the reduced two–point vertex function $\hat{\Gamma}_2^\parallel(k)$:

$$\hat{\Gamma}_2(k) = (ik_0 + \omega k_1)\Gamma_2(\omega).$$

In the local case $\hat{\Gamma}_2(k)$ does not depend on $\omega$. In the non local case the non vanishing terms in the infrared limit will be $\omega$ independent, so we will neglect the $\omega$ dependence of $\hat{\Gamma}_2(k)$. The normalization conditions, which define $g_i^R$, $m$ and the finite part (zero–loop term) of $Z$, are:

$$\Gamma_4^R(0) = g_1^R$$

$$\hat{\Gamma}_2^R(0) = m^2$$

$$\frac{1}{2k_0} \frac{\partial}{\partial k_0}\hat{\Gamma}_2^R(k)\Big|_{k=(0,0)} = 1.$$
The CS equations are derived considering insertions of operators related to the derivatives of the vertex functions respect to the i.r. cutoff \( m_0 \). To this end we introduce the operator \( O \):

\[
O(z) = \sum_{\omega, \sigma} \int \frac{d^2x}{2\pi} \frac{\psi^+_{x,\omega,\sigma} \psi^-_{z,\omega,\sigma}}{x_0 - z_0 - i\omega(x_1 - z_1)}.
\]

The corresponding source term in the action has the form \( \int d^2x \psi(x)O(x) \) with \( [\psi] = 2 \). In momentum space the operator \( O \) is

\[
\tilde{O}(q) = \sum_{\omega, \sigma} \int \frac{d^2k}{(2\pi)^2} \frac{\psi^+_{k+q,\omega,\sigma} \psi^-_{k,\omega,\sigma}}{i(k_0 + q_0) + \omega(k_1 + q_1)},
\]

where \( \psi_{k,\omega,\sigma} \) are the field operators in momentum space, and \( q \) is the external momentum of the inserted \( \tilde{O} \) operators. When \( O \) is inserted in a vertex function \( \Gamma_n \), the value of \( D \) for \( \Gamma_{n,O} \) is

\[
D(\Gamma_{n,O}) = 2 - \frac{n}{2} + (|O| - 2) = -\frac{n}{2}.
\]

The previous relation means that no new u.v. divergences appear due to \( O \) insertions (we do not consider \( \Gamma_{0,O} \)). We remember that the vertex functions with insertions are defined as usual by the Legendre transformation on the field source only and not on the source of the inserted operators. Since \( O \) does not introduce new divergences, we have \( O = ZO^R \). The insertion of a operator \( O \) in a vertex function \( \Gamma_n \) will be denoted with \( \Gamma_{n,s} \). In analogy with Eq. (11) we define \( \tilde{\Gamma}_{2,s}(q, k) \) and \( \tilde{\Gamma}_{2,s}^R(q, k) \), where \( k \) denotes the \( s \) external momenta of the \( s \) inserted \( \tilde{O} \) operators. Equation (10) generalizes into

\[
\Gamma_{n,s}(q, k, m_0, g, \Lambda) = Z^{-n/2}Z^*\Gamma_{n,s}^R(q, k, m, g^R).
\]

It is easily deduced that

\[
\frac{\partial}{\partial m_0^2}\Gamma_n(q) = \Gamma_{n,1}(q, 0),
\]

where the insertion of \( \tilde{O} \) in the r.h.s. is made at zero momentum, as indicated. From (13), (14) and (11) we have

\[
\tilde{\Gamma}_{2,1}^R(0) = 1
\]

\[
m^2 = Zm_0^2,
\]

where the second relation follows from \( \tilde{\Gamma}_2^R(0) = Z\tilde{\Gamma}_2(0) \). From Eq. (14) we have:

\[
m \frac{\partial}{\partial m} \Gamma_n(q, m_0, g, \Lambda) \bigg|_{g, \Lambda} = m \frac{\partial m_0^2}{\partial m} \bigg|_{g, \Lambda} \Gamma_{n,1}(q, 0, m_0, g, \Lambda).
\]

From equations (14) and (13), with the definitions

\[
\gamma_1 = \frac{1}{Z} m \frac{\partial Z}{\partial m} \bigg|_{g, \Lambda}
\]

\[
\beta_s = m \frac{\partial g^R}{\partial m} \bigg|_{g, \Lambda},
\]
(γ₁, defined in the previous equations should not be confused with the RG rescaling factor γ) we obtain:

\[
\left( m \frac{\partial}{\partial m} + \sum_i \beta_i (g^R_i) \frac{\partial}{\partial g^R_i} - \frac{n}{2} \gamma_1 \right) \Gamma^R_n(q, m, g^R) =
\]

\[
Z \left( m \frac{\partial m_0^2}{\partial m} \bigg|_{g_0, \Lambda} \right) \Gamma^R_{n,1}(q, 0, m, g^R).
\]

(17)

It is easy to eliminate any reference to the bare theory. From Eq. (17) written for \( n = 2 \) we have:

\[
\left( m \frac{\partial}{\partial m} + \sum_i \beta_i (g^R_i) \frac{\partial}{\partial g^R_i} - \gamma_1 \right) \hat{\Gamma}_2^R(q, m, g^R)
\]

\[
Z \left( m \frac{\partial m_0^2}{\partial m} \bigg|_{g_0, \Lambda} \right) \hat{\Gamma}_{2,1}(q, 0, m, g^R).
\]

From Eqs. (12b) and the first of (15) we conclude

\[
Z \left( m \frac{\partial m_0^2}{\partial m} \bigg|_{g_0, \Lambda} \right) = (2 - \gamma_1)m^2,
\]

so that Eq. (17) can be written as

\[
\left( m \frac{\partial}{\partial m} + \sum_i \beta_i (g^R_i) \frac{\partial}{\partial g^R_i} - \frac{n}{2} \gamma_1 \right) \Gamma^R_n(q, m, g^R) =
\]

\[
(2 - \gamma_1)m^2 \Gamma^R_{n,1}(q, 0, m, g^R).
\]

The generalization of Eq. (17) to the case of \( s \) insertions is immediate:

\[
\left( m \frac{\partial}{\partial m} + \sum_i \beta_i (g^R_i) \frac{\partial}{\partial g^R_i} + \left( -\frac{n}{2} + s \right) \gamma_1 \right) \Gamma^R_{n,s}(q, k, m, g^R)
\]

\[
= (2 - \gamma_1)m^2 \Gamma^R_{n,s+1}(q, k, 0, m, g^R).
\]

Having set the general definitions and relations of the CS approach we can proceed. We will limit ourselves to the computation of the beta function, which is our problem. The normalization conditions (12) fix the zero–loop terms in the loop–wise expansion of \( g_i, m_0 \) and \( Z \):

\[
g^R_i = g_i^{(0)}
\]

\[
m^2 = m_0^{2 \,(0)}
\]

\[
Z^{(0)} = 1.
\]

One–loop calculations are easily done. Of course \( m_0^{2 \,(1)} = 0 \) and \( Z^{(1)} = 0 \). This implies that up to one loop \( \gamma_1 = 0 \) (that is \( \gamma_1 = O(g^2) \)). It is convenient to write down the results for the couplings in terms of \( g_4, g_{1,\perp}, g_2 \) and \( \tilde{g} \equiv g_2 - g_{1\parallel} \). We find:
\[ g_{1,\perp}^{(1)} = -\frac{1}{\pi} \left[ \ln m - (\ln 2 + \ln p - 1) \right] g_{1\perp}^R g_2^R \]

\[ + \frac{1}{\pi} \left[ \ln m - \left( \ln 2 + \ln p - \frac{1}{2} \right) \right] g_{1\perp}^R g_2^R - \frac{1}{2\pi} g_{1\perp}^R g_1^R \]

\[ g_2^{(1)} = -\frac{1}{2\pi} \left[ \ln m - (\ln 2 + \ln p - 1) \right] g_{1\perp}^{R2} \]

\[ \hat{g}^{(1)} = \frac{1}{2\pi} \left[ \ln m - \ln \Lambda + \frac{1}{2} (1 + C + \ln 2) \right] g_{1\perp}^{R2} \]

\[ g_4^{(1)} = -\frac{1}{4\pi} g_{1\perp}^{R2}, \]

where \( C \) is the Euler constant. In Eq. (18) we note the presence of \( p \). However simply on the basis of dimensional analysis we can exclude that \( p \) will appear in the final result. Two-loop calculations are tedious and we will omit the details. We calculate only the singular terms in \( m \) since we do not plan to go beyond the two-loop approximation. We report the results for \( Z \) and \( g_{1\perp} \):

\[ Z^{(2)} = \frac{1}{2\pi^2} \ln m \left( g_{1\perp}^{R2} + g_{1\parallel}^{R2} + 2g_2^{R2} - 2g_{1\perp}^{R} g_2^R \right) \quad (19) \]

\[ g_{1,\perp}^{(2)} = \frac{1}{2\pi^2} \left[ \ln^2 m - 2 \ln m (\ln 2 + \ln p - 1) \right] g_{1\perp}^{R2} g_2^R \]

\[ + \left\{ \frac{1}{2\pi^2} \ln m - \frac{1}{\pi^2} \left[ \ln^2 m - 2 \ln m \left( \ln 2 + \ln p - \frac{3}{4} \right) \right] \right\} g_{1\perp}^R g_2^R g_4^R \]

\[ + \frac{1}{2\pi^2} \ln m \left[ g_{1\perp}^{R} g_2^R g_4^R - \frac{1}{2\pi^2} \ln m \right] \left[ g_{1\perp}^R g_4^R + \frac{1}{2\pi^2} \left[ \ln^2 m - 2 \ln m \left( \ln 2 + \ln p - \frac{3}{4} \right) \right] g_{1\perp}^R \right] \]

\[ + \frac{1}{2\pi^2} \left[ \ln^2 m - 2 \ln m (\ln 2 + \ln p - \frac{1}{2}) \right] g_{1\perp}^{R2} - \frac{1}{2\pi^2} \ln m \left( g_{1\perp}^{R2} + g_{1\parallel}^{R2} + 2g_2^{R2} - 2g_{1\parallel}^{R} g_2^R \right) \quad (20) \]

From Eqs. (21) and (18) we derive \( \beta_{1\perp}^{(2)}(g^R) \). The final result is

\[ \beta_{1\perp}(g^R) = \frac{1}{\pi} g_{1\parallel}^{R2} + \frac{1}{4\pi^2} (g_{1\parallel}^{R2} g_{1\perp}^{R2} + g_{1\perp}^{R3}) + O(g^4). \quad (21) \]

It can be noted that \( p \) does not appear in Eq. (21), as expected. A crucial use in deriving Eq. (21) is made of Eq. (19), which is responsible for the cancellations expected from the exact solutions of the Luttinger and Mattis models, and for the anomalous behavior of the theory. Of course the anomalous exponent \( \eta = \gamma_1(g^*) \) derived from Eq. (19) when \( 0 < g_1 \ll 1 \) is in agreement with the exact solution of the Luttinger model, where \( g_1 = 0, g_4 = 0 \).

Equation (21) is the same as Eq. (5) for the \( g_{1\perp} \) coupling. For \( g_2 \) and \( g_{1\parallel} \) the same conclusion holds: the beta function of the GML method is recovered. The present CS approach, admittedly too involved, has perhaps the only value in that no use is made of approximate multiplicative relations.

**IV. THE WILSON APPROACH**

The multiscale formulation of the Wilson RG is particularly well suited to study the running of the coupling constants by discrete steps. The application of this method to
interacting one–dimensional fermionic systems started with Refs. 9, 11 and was thoroughly
developed and applied to various problems 14–17. Here we give a short and simplified account
of the method and refer to the cited papers for the details.

In the coordinate space the free propagator \( G_\omega(x) \) for \( \omega \) particles (again \( \omega = \pm 1 \) and \( v_F = 1 \)) is:

\[
G_\omega(x) = \frac{1}{(2\pi)^2} \int dk_0 dk_1 e^{-i(k_0 x_0 + k_1 x_1)} - i k_0 + \omega k_1.
\]

Actually it is not necessary to start with a kinetic term linearized around the Fermi surface:
the RG can deal with realistic quadratic dispersion relations 9. This simplification is however
inessential for our purposes. Let \( p \) be an arbitrary momentum scale which for instance may
be chosen equal to the inverse of the range of the potential. The propagator is decomposed
in the sum

\[
G_\omega(x) = \sum_{h=-\infty}^1 G^{(h)}_\omega(x),
\]

with

\[
G^{(1)}_\omega(x) = \frac{1}{(2\pi)^2} \int dk e^{-ikx} \frac{1-e^{-p^{-2}(k_0^2 + k_1^2)}}{-ik_0 + \omega k_1},
\]

\[
G^{(h)}_\omega(x) = \frac{1}{(2\pi)^2} \int dk \frac{e^{-ikx}}{-ik_0 + \omega k_1} \times \left[ e^{-p^{-2} \gamma^{-2h}(k_0^2 + k_1^2)} - e^{-p^{-2} \gamma^{-2h+2}(k_0^2 + k_1^2)} \right],
\]

where \( h \leq 0, \gamma > 1 \) and \( kx = k_0 x_0 + k_1 x_1 \). This decomposition divides the u.v. from the
i.r. singularity of the propagator: \( G^{(1)}_\omega \) is singular in the u.v. while \( \sum_{h=-\infty}^0 G^{(h)}_\omega = G^{i.r.}_\omega \)
is singular in the i.r. It is important to note that \( G^{(h)}_\omega(x) \), the propagator on scale \( h \), for
\( h \leq 0 \) has an u.v. and an i.r. cutoff: \( G^{(h)}_\omega(x) \) is essentially different from 0 only for \( x \sim \gamma^{-h} \)
(\( k \sim \gamma^h \) in momentum space).

One imagines that this decomposition stems from a similar decomposition of the fields:

\[
\psi_{x,\omega,\sigma} = \sum_{h=-\infty}^1 \psi^{(h)}_{x,\omega,\sigma}
\]

such that the pairings in the Grassmannian Wick rule are

\[
\int \mathcal{P}(d\psi^{(h)}_{x,\omega,\sigma}) \psi^{+(h)}_{x,\omega,\sigma} \psi^{-+(h')}_{y,\omega',\sigma'} \equiv \langle \psi^{+(h)}_{x,\omega,\sigma} \psi^{-+(h')}_{y,\omega',\sigma'} \rangle \equiv \delta_{\omega,\omega'} \delta_{\sigma,\sigma'} \delta_{h,h'} G^{h}_{\omega}(x-y).
\]

We are interested to study the i.r. effective potential \( V^{(0)} \) arising from the integration of the
u.v. component \( \psi^{(1)}_\omega \) from the effective potential \( V_{\text{eff}}(\varphi) \) defined by:

\[
e^{-V_{\text{eff}}(\varphi)} = \frac{1}{\mathcal{N}} \int \mathcal{P}(d\psi) e^{-V(\psi+\varphi)},
\]

where \( \mathcal{N} \) is a normalization constant and \( V \) is the interaction potential. The ultraviolet
integration was actually performed for the spinless model 11. In the following we suppose to
start directly with \( V^{(0)} \).
The core of the method consists of a procedure that, integrating out the fields from the higher to the lower scales $h$ ($h \to -\infty$), constructs a well defined dynamical system of running coupling constants $g_h$, whose iteration map is the beta functional.

The operators $\mathcal{L}$ and $\mathcal{R} = 1 - \mathcal{L}$ are introduced. $\mathcal{R}$ is the usual renormalization operator of the BPHZ scheme: its action on a given vertex $\Gamma$, in momentum space for instance, is given by $\mathcal{R}(\Gamma) = \Gamma - t^\Gamma(\Gamma)$, where $t^\Gamma$ denotes the Taylor series with respect to the external momenta of $\Gamma$ up to order $D(\Gamma)$, if $D(\Gamma)$ is the $\Gamma$ superficial degree of divergence. Of course $\mathcal{L}(\Gamma) = t^\Gamma(\Gamma)$.

The couplings $g_h$ on a given scale $h$ are defined by an inductive scheme. Let us assume we have constructed the effective potential $V^{(h)}(\psi^{(\leq h)}, g_{h+1}, \ldots, g_0)$ on scale $h$, where $\psi^{(\leq h)} = \sum_{n \leq h} \psi^{(n)}$ and $g_{h+1}, \ldots, g_0$ are the previously defined couplings on scales $h+1, \ldots, 0$. We define

$$\mathcal{T}^{(h)}(\psi^{(\leq h)}, g_h) \equiv \mathcal{L}V^{(h)}(\psi^{(\leq h)}, g_{h+1}, \ldots, g_0).$$

The previous relation introduces the $g_h$ and relates them to the $g_{h+1}, \ldots, g_0$ through the beta functional $B_h$: $g_h = g_{h+1} + B_h(g_{h+1}, \ldots, g_0)$. The effective potential $V^{(h-1)}$ on scale $h-1$ is defined by

$$e^{-V^{(h-1)}(\psi^{(\leq h-1)})} \equiv \frac{1}{\mathcal{N}} \int P(d\psi^{(h)}) e^{-\mathcal{L}V^{(h)}(\psi^{(\leq h)}) - \mathcal{R}V^{(h)}(\psi^{(\leq h)})}, \quad (23)$$

Of course $V^{(h-1)} = V^{(h-1)}(\psi^{(\leq h-1)}, g_{h}, \ldots, g_0)$. The procedure is then iterated. The starting point is given by the couplings $g_0$ of $\mathcal{L}V^{(0)}$. The final goal is to find a region in the space of parameters $g_0$ where each initial value generates a trajectory $g_h = g_{h+1} + B_h(g_{h+1}, \ldots, g_0)$ such that the Schwinger functions are analytic in the $g_h$.

Unfortunately this scheme in our problem requires emendation. From the second order result it becomes clear that $\alpha_h$ and $\zeta_h$ grow too fast independently on the initial conditions. The point is that we know that the interacting propagator has an anomalous behavior: asymptotically for large distances it decays faster than the free propagator. The wave-function renormalization necessary to cure this problem is accomplished by an inductive procedure that redefines step by step the free measure of the functional integral and the couplings by the means of a sequence of parameters $Z_h$ with $h = 0, -1, \ldots$. Let us assume we have introduced $Z_h, Z_{h+1}, \ldots, Z_0$ and applied our procedure integrating out the scales from 0 to $h+1$ ($h < 0$). We get an effective potential $\hat{V}^{(\leq h)}$ (different from $V^{(\leq h)}$), defined by Eq. (23). We denote with $P_{Z_h}(\psi^{(h)})$, $P_{Z_h}(\psi^{(\leq h-1)})$ and $\tilde{P}_{Z_h}(\psi^{(h)})$ the free measures with propagators, respectively, $G^{(h)}/Z_h$, $G^{(\leq h-1)}/Z_h$ and $\tilde{G}^{(h)}/Z_h$, where the last one is the modified propagator on scale $h$ and $G^{(\leq h-1)} = \sum_{i \leq h-1} G^{(i)}$. $\hat{V}^{(h-1)}$ is defined by

$$\int P_{Z_h}(d\psi^{(\leq h-1)}) e^{-\hat{V}^{(h-1)}(\sqrt{Z_h}\psi^{(\leq h-1)})} =$$

$$\int P_{Z_h}(d\psi^{(\leq h-1)}) \tilde{P}_{Z_h}(d\psi^{(h)}) e^{-\hat{V}^{(h)}(\sqrt{Z_h}\psi^{(\leq h)})}. \quad (24)$$

$\hat{V}^{(h-1)}(Z_h^{1/2}\psi^{(\leq h-1)})$ has the form:

$$\hat{V}^{(\leq h-1)}(Z_h^{1/2}\psi^{(\leq h-1)}) = (\mathcal{L} + \mathcal{R})\hat{V}^{(\leq h-1)}(Z_h^{1/2}\psi^{(\leq h-1)})$$
\[ \begin{align*}
&= Z_h \left\{ \nu_{h-1} \sum_{\omega, \sigma} \int \frac{d^2 k}{(2\pi)^2} \psi^{(\leq h-1)}_{k, \omega, \sigma} + \psi^{(\leq h-1)}_{k, \omega, \sigma} - 
&+ \zeta_{h-1} \sum_{\omega, \sigma} \int \frac{d^2 k}{(2\pi)^2} \psi^{(\leq h-1)}_{k, \omega, \sigma} + (-ik_0) \psi^{(\leq h-1)}_{k, \omega, \sigma} - 
&+ \alpha_{h-1} \sum_{\omega, \sigma} \int \frac{d^2 k}{(2\pi)^2} \psi^{(\leq h-1)}_{k, \omega, \sigma} + (\omega k_1) \psi^{(\leq h-1)}_{k, \omega, \sigma} \right\} + \ldots
\end{align*} \]

Now we add and subtract from \( \hat{V}^{(h-1)} \) the term \( \propto Z_h \zeta_{h-1} \psi^{(\leq h-1)}_{k, \omega, \sigma} \psi^{(\leq h-1)}_{k, \omega, \sigma} \) and insert the term \( \propto Z_h \zeta_{h-1} \psi^{(\leq h-1)}_{k, \omega, \sigma} (-ik_0 + \omega k_1) \psi^{(\leq h-1)}_{k, \omega, \sigma} \) in the free measure. Let \( P_{Z_h} (\psi^{(\leq h-1)}_{\omega}) \) be the measure changed this way. We define \( Z_{h-1} = Z_h (1 + \zeta_{h-1}) \) and write:

\[ \int P_{Z_h} (d\psi^{(\leq h-1)}_{\omega}) e^{-\hat{V}^{(h-1)} (\sqrt{Z_h} \psi^{(\leq h-1)}_{\omega})} = \int P'_{Z_h} (d\psi^{(\leq h-1)}_{\omega}) e^{-\hat{V}^{(h-1)} (\sqrt{Z_h} \psi^{(\leq h-1)}_{\omega})} \]  

(25)

\[ \begin{align*}
&= \int P_{Z_{h-1}} (d\psi^{(\leq h-2)}_{\omega}) P_{Z_{h-1}} (d\psi^{(h-1)}_{\omega}) e^{-\hat{V}^{(h-1)} (\sqrt{Z_{h-1}} \psi^{(\leq h-1)}_{\omega})} 
&= \int P_{Z_{h-1}} (d\psi^{(\leq h-2)}_{\omega}) P_{Z_{h-1}} (d\psi^{(h-1)}_{\omega}) e^{-\hat{V}^{(h-1)} (\sqrt{Z_{h-1}} \psi^{(\leq h-1)}_{\omega})}.
\end{align*} \]  

(26)

(27)

In Eq. (27) \( V^{(h-1)} \) is obtained from \( \hat{V}^{(h-1)} \) dropping the \( \zeta_{h-1} \) term and substituting \( \alpha_{h-1} - \zeta_{h-1} \) for \( \alpha_{h-1} \). In Eq. (26) \( P_{Z_{h-1}} (d\psi^{(h-1)}_{\omega}) \) is the free measure with propagator \( \tilde{G}_\omega^{(h-1)} / Z_{h-1} \) defined such that the remaining part of the free measure is exactly \( P_{Z_{h-1}} (d\psi^{(\leq h-2)}_{\omega}) \). Finally Eq. (27) defines \( \hat{V}^{(h-1)} \) and the r.h.s has the same structure of the r.h.s. of Eq. (24) so the procedure may be reiterated. The starting point are \( Z_0 = 1 \) and \( G_\omega^{(0)} = G_\omega^{(0)} \). The relations between the couplings of \( \mathcal{L} \hat{V}^{(h-1)} (\psi^{(\leq h-1)}_{\omega}) \), \( g'_{i,h-1} (i = 1, 2, 4) \), \( \alpha_{h-1} \) and \( \zeta_{h-1} \), and the couplings of \( \mathcal{L} \hat{V}^{(h-1)} (\psi^{(\leq h-1)}_{\omega}) \), \( g_{i,h-1} \) and \( \delta_{h-1} \), are easily found:

\[ \delta_{h-1} = \frac{Z_h}{Z_{h-1}} (\alpha_{h-1} - z_{h-1}) \]

\[ g_{i,h-1} = \left( \frac{Z_h}{Z_{h-1}} \right)^2 g'_{i,h-1} \quad i = 1, 2, 4. \]

Of course \( \zeta_{h-1} \) is no more present in \( \hat{V}^{(\leq h-1)} (\psi^{(\leq h-1)}_{\omega}) \), but \( Z_{h-1} \) is introduced. The replacement \( \alpha_h \to \delta_h \) drastically improves the convergence properties in the limit \( h \to -\infty \).

Now we have the full recipe to proceed. Needless to say a crucial use of the linked cluster theorem will be made. For brevity only the calculation for the \( g_1 \) coupling is sketched (we take \( g_{1,1} = g_{1,1} = g_1 \)).

Let \( C_{i,j} \) denote the loop of figure 2:

\[ C_{i,j} = C_{i-j} = \int \frac{d^2 k}{(2\pi)^2} G_\omega^{(i)} (k) G_{-\omega}^{(j)} (k), \]  

(28)

where \( i, j \leq 0 \) and \( G_\omega^{(i)} \) is the propagator in momentum space on scale \( i \). It is immediate to verify that the r.h.s. of (28) does not depend on \( \omega \) nor on the scale \( p \) (see (22)) and that it is a function only of the difference \( i - j \). In particular \( C_{i,i} = C_{0, i \leq 0} \). The second order calculation gives for \( g_1 \):

13
\[ g_{1,h-1} = g_{1,h} + \frac{1}{2} K \left( C_{h,h} g_{1,h}^2 + 2 \sum_{h<j \leq 0} C_{h,j} g_{1,j}^2 \right). \] (29)

\( K \) is a combinatorial factor: \( K = 4 \). The previous relations give the second order approximation for the beta functional. Since we are interested in the beta function, in Eq. (29) we write the \( g_{1,j} \) for \( j > h \) as functions of \( g_{1,h} \). This inversion generates a correction to the higher orders, in particular to the third order. We have (up to \( O(g_{1}^4) \) terms):

\[ g_{1,h-1} = g_{1,h} + \frac{1}{2} K \left( C_{h,h} + 2 \sum_{h<j \leq 0} C_{h,j} \right) g_{1,h}^2 \]

\[ -K^2 \sum_{h<i \leq 0} C_{h,i} \left( \sum_{h<j \leq i} C_{j,j} + 2 \sum_{h<k \leq i} \sum_{k<j \leq 0} C_{k,j} \right) g_{1,h}^3. \] (30)

Using Eq. (22) for \( C^{(h)}_\omega \) we find:

\[ C_{h,h} + 2 \sum_{h<j \leq 0} C_{h,j} = \frac{1}{2\pi} \left[ + \ln \gamma - \ln \left( 1 + \gamma^{2-2h} \right) + \ln \left( 1 + \gamma^{-2h} \right) \right] - \frac{1}{2\pi} \ln \gamma + O(\gamma^{2h}). \] (31)

From Eqs. (30) and (31) we get the second order discrete beta function, up to \( \gamma^{2h} \) terms (let’s remember that \( \gamma > 1 \) and that we are interested in the \( h \to -\infty \) limit):

\[ g_{1,h-1} = g_{1,h} - \frac{\ln \gamma}{\pi} g_{1,h}^2 + O(g_{1,h}^3). \]

The second line of Eq. (30) gives the corrections to the third order result. We find:

\[ \sum_{h<i \leq 0} C_{h,i} \left( \sum_{h<j \leq i} C_{j,j} + 2 \sum_{h<k \leq i} \sum_{k<j \leq 0} C_{k,j} \right) = \frac{1}{2\pi} \sum_{h<i \leq 0} C_{h,i} \left[ - \ln \left( 1 + \gamma^{2i} \right) + (i - h) \ln \gamma \right], \]

where the r.h.s. is easily calculated:

\[ \left| \sum_{h<i \leq 0} C_{h,i} \ln \left( 1 + \gamma^{2i} \right) \right| \leq A \gamma^h \sum_{h<i \leq 0} 1, \] (32)

\[ \sum_{h<i \leq 0} (i - h) C_{h,i} = \frac{\ln 2}{4\pi}. \] (33)

\( A \) is a constant. We neglect the r.h.s of Eq. (32). Equation (33) too is derived neglecting terms exponentially vanishing with \( h \). Putting all together we find a correction \( c \) to the third order given by:

\[ c = -\frac{2 \ln 2 \ln \gamma}{\pi^2} g_{1,h}^3. \]

The computation of the third order is tedious. We will limit ourselves to note that exists a contribution \( \propto \ln 2 \ln \gamma \) of two–loop diagrams that cancels exactly \( c \). This is important
because there is no such term in Eqs. (6), (7) or (21). It comes from the diagrams $D_1$ and $D_2$ of figure 3, which are related by $D_1 = -2D_2$. We will consider the simpler $D_1$. The contributions to $D_1$ given by

$$
\sum_{h<i \leq 0} C_{h,h} 2C_{h,i} + \sum_{h<i \leq 0} \sum_{h<j<i} 2C_{h,i} 2C_{h,j}
$$

$$
+ \sum_{h<i \leq 0} \sum_{h<j,h<k} 2C_{h,i} 2C_{j,k} + \sum_{h<i \leq 0} \sum_{h<j<i} \sum_{h<k \leq j} 2C_{h,j} 2C_{k,i}
$$

amount to

$$\frac{1}{(2\pi)^2} \ln 2 \ln \gamma - \frac{1}{2\pi} \sum_{h<i < 0} 2C_{i,h} \ln (1 + \gamma^{2i}). \quad (34)$$

The second term of Eq. (34) can be neglected as for Eq. (32) and the first one gives the desired cancellation (taking into account the combinatorial factors). The final result is the same as Eq. (7) or (21) with $g_{1\parallel} = g_{1\perp} = g_1$. Again we find the fixed point $g_1^\star$ of Eq. (8) and we recover Eqs. (8) in the limit $\gamma \to 1$.

V. CONCLUSIONS

We have computed the third order (two–loop) approximation of the beta function for a one dimensional model of interacting fermions, aiming in particular to study the case of attractive interaction. An existing result\textsuperscript{6,7}, derived making use of tacitly assumed approximations, pointed out a $O(1)$ fixed point. We tried to support this conclusion setting a Callan–Symanzik approach and using the Wilson RG formulated as in Refs. 29,9,11. In each case we recovered the aforementioned result.

An attempt to pursue further the examination of the problem was made in Refs. 20–22 where the fourth–order approximation, which is by no means universal, was computed. We propose a different approach focused on the study of the dependence on $\gamma$, the rescaling factor of the RG group. A similar idea was discussed in Ref. 22, where the dependence of the fixed points on the parameters of the RG was analyzed. Our simple idea is that the stability of the result with respect to $\gamma$ should indicate how reliable one should consider the perturbative result. It was expected a third order result dependent on $\gamma$ but we found a too strong dependence: the fixed point happens to change sign if $\gamma > \sqrt{e}$, which is still $\sim 1$ (of course taking $\gamma \gg 1$ and, at the same time, truncating at the third order would be questionable). Nothing similar happens to the nontrivial fixed points for repulsive interaction \{$g_1^\star = 0, g_2^\star$\}, which are in some sense insensitive to the value of $\gamma$.

Which conclusions can be drawn? It is useful to compare the one dimensional interacting Fermi Gas with the well known Kondo problem. It can be noted that the scaling equation for $g_1$ (Fermi Gas) and the one for the impurity coupling $\lambda$ (Kondo model) have the same structure (see e.g. Ref. 33 for a review in the modern language of Conformal Field Theory). The Kondo effect was thoroughly investigated. The ferromagnetic case corresponds to the Fermi gas with repulsive interaction ($g_1 > 0$): the RG flow is such that $\lambda \to 0$. If the coupling is antiferromagnetic the system flows toward a strong coupling phase ($\lambda \to \infty$)\textsuperscript{34}. Moreover the infrared divergences induce a scale, the Kondo temperature $T_K$, characterizing the low energy physics.
In our case the particular instability of the perturbative result with respect to $\gamma$, a dimensionless parameter without a physical meaning, should indicate that the RG flow does not actually stop at a finite value and suggests a conclusion similar to the previous one. In our case the characteristic scale should be a gap $\Delta$ for the spin degrees of freedom, whose expression, according to Ref. 35, should have for small coupling an expression of the type $\Delta \propto \sqrt{g_1} \exp(-1/g_1)$.

ACKNOWLEDGMENTS

This work received support from the INFN, section of Cagliari, and from the “Dipartimento di Scienze Fisiche” of Cagliari University. We are deeply indebted with Prof. G. Gallavotti, from whom we learned the multiscale formulation of the RG, for having originated the theme of this research as well as for many discussions. We acknowledge useful discussions with Prof. E. Marinari, Dr. V. Mastropietro, Prof. G. Benfatto and Dr. M. Lissia.
REFERENCES

* Electronic address: paolo.carta@ca.infn.it

1 I. E. Dyaloshinskiı́ and A. I. Larkin, Sov. Phys. JETP 38, 202 (1974).
2 K. D. Schotte and U. Schotte, Phys. Rev. 182, 64 (1969).
3 A. Luther and V. J. Emery, Phys. Rev. Lett. 33, 589 (1974).
4 A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).
5 N. Menyárd and J. Sólyom, J. Low Temp. Phys. 12, 529 (1973); 21, 431 (1975).
6 J. Sólyom, Adv. Phys. 28, 201 (1979).
7 J. Sólyom, J. Phys. F 4, 2269 (1975).
8 H. J. Schulz, G. Cuniberti and P. Pieri, cond–mat/9808093.
9 G. Benfatto and G. Gallavotti, J. Stat. Phys. 59, 541 1990.
10 G. Benfatto and G. Gallavotti, Phys. Rev. B 42, 9967 1990.
11 G. Benfatto, G. Gallavotti, A. Procacci and B. Scoppola, J. Stat. Phys. 160, 93 1994.
12 F. D. M. Haldane, J. Phys. C 14, 2585 (1981).
13 F. Bonetto and V. Mastropietro, Commun. Math. Phys. 172, 17 (1995).
14 G. Benfatto, G. Gallavotti, V. Mastropietro, Phys. Rev. B 45, 5468 (1992).
15 F. Bonetto, V. Mastropietro, Math. Phys. Electron. J. 2, 1 (1996).
16 F. Bonetto, V. Mastropietro, Nucl.Phys. B 497, 541 (1997).
17 F. Bonetto, V. Mastropietro, Phys. Rev. B 56, 1296 (1997).
18 J. M. Luttinger, Phys. Rev. 150, 202 (1966).
19 D. C. Mattis and E. H. Lieb, J. Math. Phys. 12, 304 (1965).
20 C. S. Ting, Phys. Rev. B 13, 4029 (1976).
21 E. H. Rezayi, J. Sak and S. Talukdar, Phys. Rev. B 19, 4757 (1979).
22 C. S. Ting, X. Dai and B. Hu, Phys. Rev. B 27, 4384 (1983).
23 D. C. Mattis, Phys. Rev. 32, 714 (1974).
24 D. C. Mattis, J. Math. Phys. 15, 609 (1974).
25 F. D. M. Haldane, J. Phys. C 12, 4791 (1979).
26 A. Theumann, Phys. Rev. B 15, 4524 (1977).
27 R. Heidenreich, R. Seiler and D. A. Uhlenbrock, J. Stat. Phys. 22, 27 (1980).
28 S. T. Chui and P. A. Lee, Phys. Rev. Lett. 35, 315 (1975).
29 G. Gallavotti, Rev. Mod. Phys. 57, 471 (1985).
30 D. C. Mattis, Physics 1, 183 (1964).
31 G. Gentile and B. Scoppola, Commun. Math. Phys. 154, 135 (1993).
32 T. Bell and K. Wilson, Phys. Rev. B 10, 3935 (1975).
33 I. Affleck, Acta Phys. Polon. B 26, 1869 (1995).
34 K. Wilson, Rev. Mod. Phys. 47, 773 (1975).
35 A. I. Larkin and J. Sak, Phys. Rev. Lett. 39, 1025 (1977).
FIGURES

FIG. 1. One loop diagram contributing to the four-point vertex function. The full (dashed) lines represent right (left) moving fermions. The value of the graph is proportional to
\[-\frac{1}{2\pi} \ln \left( \frac{k_0}{E_0} \right) + \frac{1}{4\pi} \ln \left( 1 + \frac{k_0^2}{E_0^2} \right).\]

FIG. 2. One–loop contribution defining $C_{i,j}$. $k$ is the internal momentum. The two propagators are on scales $i$ and $j$.

FIG. 3. Two–loop graphs contributing to the beta function: $D_1$ diagrams (a) and $D_2$ (b) give simply related contributes: $D_1 = -2D_2$. 
