Step-by-step powder composite mechanoynthesis for functional nanoceramics

A O Polyakov¹, T Yu Kiseleva¹, A A Novakova¹, T F Grigoryeva² and A P Barinova²

¹Moscow M.V.Lomonosov State University, Department of Physics, Vorob’evy Gory, Russia
²Institute of solid state chemistry and mechanochemistry SO RAS, Novosibirsk, Kutateladze st.

E-mail: alexpol.msu@gmail.com

To study the possibility of Fe_2O_3 mechanochemical reduction by preliminary mechanically alloyed Fe+20%Al compound their powder mixture was subjected to high-energy ball-milling in Ar atmosphere, with the milling time varying between 2 and 12 minutes. The milled samples obtained at various times of milling were characterized by X-ray diffraction and Mössbauer spectroscopy. As a result gradual α-Fe_2O_3 reduction via formation of intermediate Fe-Al-O oxides was observed. The presence of the intermediate Fe$_2$AlO$_4$ spinel phases stable over long milling time is stated. Mechanocomposite Fe+20%Al transformation to α-Fe(Al) solid solutions which evolve peculiarly with the milling time, was observed also. The kinetics of α-Fe_2O_3 reduction process was analyzed in comparison with the same processes in the systems: α-Fe_2O_3 + Al and α-Fe_2O_3 + Al + Fe.

1. Introduction

The possibility of taking the advantage of particular properties of the constituent materials to meet specific demands is the most important motivation for the development of composites. In this way we are working on varying the mechanosynthesised composites final structure for different purposes. Recently, we have studied the processes of Al$_2$O$_3$/Fe-Al [1], Fe$_2$O$_3$/Fe$_3$O$_4$/Fe [2] nanocomposites mechanochemical formations. The thermite solid state reduction reaction of α-Fe_2O_3 with metallic reductant (Al, Fe) was realized in those processes. α-Fe_2O was consistently reduced to Fe through intermediate binary and ternary oxides. Reduced Fe subsequent alloying with reductant surplus resulted in Al$_2$O$_3$/intermetallic phases composites formation. The metal-reductant surplus in the mixture leads to deceleration of Fe_2O_3 reduction and incapsulated structures formation. Fe as additional reductant caused some shift of the activation barrier of Fe_2O_3 reduction. The ordering-disordering phenomena led to amorphous iron-based magnetic phase formation in grain-boundary regions. This phase is stable for a long milling time and after heating up to 500°C [2]. Its formation creates the additional competitive process to Fe_2O_3 destruction. To study the possibility of Fe_2O_3 mechanochemical reduction, alloyed Fe-Al intermetallic compounds in high energy planetary ball mill activation of pre-milled Fe+20%Al mixture with Fe_2O_3 have been performed.

2. Experimental

Ball milling of 8 g Fe powder with 2 g of Al powder was performed in AGO-2 planetary ball mill for 20 minutes in a vial sealed under Ar. Then 3 g of α-Fe_2O_3 powder was added into 5 g of pre-milled Fe-Al mixture and again subjected to 2, 6 and 12 minute ball milling. Vial volume was 250 cm3. Balls diameter and mass were 5 mm and 200 g respectively. The speed of drums rotation was ~1000 rpm.
The 57Fe Mössbauer spectra (MS) were recorded at room temperature with 57Co(Rh). X-ray diffraction (XRD) of as-milled and annealed powder samples was performed at Rigaku DX/Max diffractometer with Cu Kα radiation.

3. Results and discussion

X-ray diffraction image of Fe+20%Al powder mixture milled for 20 min is shown in Fig. 1 (a). The broadened peaks with maxima at the angles of FeAl may correspond not only to disordered (or even amorphous) FeAl phase and its solid solution but also to structural reflections of FeAl$_2$ and Fe$_2$Al$_5$ intermetallics also. The presence of well resolved narrow Al peaks on the diffraction pattern indicate unreacted Al.

Mössbauer (Fig. 2a) analysis of pre-milled Fe+20%Al presented in bar diagram shows that after 20 min of milling interaction between Fe and Al leads to the formation of highly disordered composite consisted of FeAl, Fe$_2$Al$_5$ and FeAl$_2$ intermetallic phases and disordered Fe(Al) solid solution. We observed isomer shifts and quadrupole splittings change to some extent, increased linewidths of subspectra and even additional subspectra appearence in the case of FeAl phase. As was observed [4] FeAl disordering leads to the magnetically split component being resolved in addition to the non-magnetic singlet. Thus, after 20 minutes of high energy ball milling of Fe+20%Al we obtain intermetallic phase composite.
The XRD pattern (Fig. 1b) and Mössbauer spectrum (Fig. 2b) of simple mixture: Fe$_2$O$_3$ and pre-activated Fe-Al composite correspond to mixed components contributions in the ratio 1:2. The percent of intermetallics component is about 60% that indicate metallic component prevalence.

As is seen from XRD pictures (Fig. 1 c,d,e) the subsequent milling of this mixture results in phase transformations arising from the Fe$_2$O$_3$ and Fe-Al composite interaction. Fe$_2$O$_3$ destruction after 2 min. is reflected in its intensity decrease and structure peaks widening is observed. The main wide composite intermetallic peak becomes narrow. Al peaks disappeared fully. According to Mössbauer data (Fig. 2c) the mixture after 2 min contains Fe$_2$O$_3$, Fe$_3$O$_4$, Fe and 42 % of a disordered intermetallics mixture. Milling for 6 min (Fig. 1 d; Fig. 2) reveals Fe$_2$O$_3$ peaks disappearance on XRD pattern and wide Fe$_3$O$_4$ maxima rise. Mössbauer data confirm that the mixture is composed of Fe$_2$O$_3$, Fe$_3$O$_4$ and disordered intermetallics mixture. It is interesting that at this time of milling traces of ternary compound FeAl$_2$O$_4$ were detected. Finally, after 12 min. (Fig. 1 e) the XRD pattern consists of only wide and asymmetric maxima which reflect the bcc α-Fe(Al) solid solution formation. Mössbauer spectrum (Fig. 2) analysis reveal not only α-Fe(Al) formation but also disordered intermetallics and ternary oxide. Generally, analyzing Mössbauer data of different milling time gradually Al rich intermetallic phases decrease in accordance with hematite reduction and bcc α-Fe(Al) solid solution formation.

Figure 2. Mössbauer spectra and phase diagrams of pre-milled Fe+20%Al (a), pre-milled Fe+20%Al simply mixed with Fe$_2$O$_3$(b), mechanoactivated during 2(c), 6(d) and 12(e) minutes.
formation is clearly detected. It should be noted that no oxide phases of aluminum were detected on XRD pattern which is assumed due to possible X-ray amorphous modification of it. Evaluation of aluminum concentration in α-Fe(Al) solid solution was performed by analysis of hyperfine fields distribution of the corresponding Mössbauer spectrum component (Fig. 2 (e)) and reveals the value 7 at%.

Fig. 3 demonstrates the kinetics of Fe₂O₃ destruction in different powder mixture with equal surplus of metal reductant component subjected to high energy ball milling. Amorphous phase formation in the presence of iron compounds leads to the slowing down the oxide reduction process.

4. Conclusions
Mössbauer spectroscopy and X-ray diffraction study of subsequent interaction of α-Fe₂O₃ with pre-mechanoactivated Fe+20%Al composite powder mixture reveal gradual α-Fe₂O₃ reduction via formation of iron binary and ternary oxides up to Fe. On the other hand Fe-Al mechanocomposite transformations lead to disordered α-Fe(Al) solid solution and Fe-based amorphous phase formation. Complete amorphous phase formation on the iron surface decreases its reductant ability and slows down the process of α-Fe₂O₃ reduction in comparison with the analogous systems.

References
[1] A.A.Novakova, T.Yu.Kiseleva, et al 14th Int.Symp. on Metastable and Nano-Mater.ISMANAM-2007, Corfu, Greece, Proceed., 179, (2007)
[2] T.Yu.Kiseleva, A.A.Novakova, M.I.Chystyakova, A.O.Polyakov, et al. Solid State Phenomena 152-153, 25-28, (2009)
[3] T.Yu.Kiseleva, A.A.Novakova, T.F.Grigorieva et al. Advanced materials 6, 1-10 (2008)
[4] S.Gialanella, X.Amils et al. Acta mater. 46, 3305 (1998).