Insights into virulence factors determining the pathogenicity of Cronobacter sakazakii

Niharika Singh, Gunjan Goel*, and Mamta Raghav

Department of Biotechnology and Bioinformatics; Jaypee University of Information Technology; Waknaghat, Solan, India

Keywords: Cronobacter sakazakii, powdered infant formula, pathogenesis, virulence

*Correspondence to: Gunjan Goel; Email: gunjanmicro@gmail.com
Submitted: 01/16/2015; Revised: 03/25/2015; Accepted: 03/26/2015
http://dx.doi.org/10.1080/21505594.2015.1036217

Cronobacter sakazakii is an opportunistic pathogen associated with outbreaks of life-threatening necrotizing enterocolitis, meningitis and sepsis in neonates and infants. The pathogen possesses an array of virulence factors which aid in tissue adherence, invasion and host cell injury. Although the identification and validation of C. sakazakii virulence factors has been hindered by availability of suitable neonatal animal model, various studies has reported outer membrane protein A (ompA) as a potential virulence marker. Various other plasmid associated genes such as filamentous hemagglutinin (fhaBC), Cronobacter plasminogen activator (cpa) and genes responsible for iron acquisition (eitCBAD and iucABD/iutA) have been reported in different strains of C. sakazakii. Besides these proposed virulence factors, several biophysical growth factors such as formation of biofilms and resistance to various environmental stresses also contributes to the pathogenic potential of this pathogen. This review provides an update on virulence determinants associated with the pathogenesis of C. sakazakii. The potential reservoirs of the pathogen, mode of transmission and epidemiology are also discussed.

Introduction

The genus Cronobacter (previously known as Enterobacter sakazakii) is recognized as an emerging opportunistic pathogen causing life-threatening infections in neonates and immune-compromised infants.1–5 Urmenyi and Franklin6 firstly, reported severe C. sakazakii induced systemic infection in neonates in England. Since then, there have been around 150 reported cases of this contagion with 26 deaths worldwide.7–9 The pathogen received world-wide attention after an outbreak of meningitis in Tennessee in 2001.10 It was Farmer et al.11 who foremost established the taxonomic position of novel species named C. sakazakii which was initially referred to as Gram negative, facultative anaerobe yellow-pigmented Enterobacter cloacae. Till the date, the Cronobacter consists of 11 species that include C. sakazakii, C. malonaticus, C. dublinensis, C. turicensis, C. muytjensii, C. condimenti, C. universalis, C. helvetica, C. zurichensis, C. pulveris and C. colletii.12–15 The species C. sakazakii, C. turicensis and C. malonaticus are reported to cause neonatal infections.12 Although the incidence of disease is very low, the fatality rates range between 40 to 80% and survivors often have severe neurological and developmental disorders.8,16,17,18 It is worth mentioning that premature birth and/or low birth weight are often cited as highest risk individuals for Cronobacter infection because they lack normal gut microflora and established gut epithelial lining which makes them more susceptible to increased mucosal permeability.19 Reconstituted powdered infant formula (PIF) is reported to be the most associated vehicle for transmission of pathogen. Voluntary recalls of PIF contaminated with Cronobacter in the United States, Europe and Asia-Pacific region suggested the need of a collective effort among PIF manufacturers, health-care facilities and governing bodies to develop hygienic practices and maintain higher microbiological standards.20

The application of genome sequencing data and multilocus sequence typing (MLST) validated the revision of the taxonomic position of the 11 identified Cronobacter species.21–31 The MLST utilizing 7 (atpD, fusA, gltS, glnB, gyrB, infB, ppsA) is a more successful typing method for the Cronobacter genus and has exhibited a high caliber of discrimination between the isolates.32–36 The Cronobacter PubMLST database curated by Stephen Forsythe comprised the entries for 1193 Cronobacter isolates reported worldwide. The MLST database of 739 C. sakazakii isolates indicates clonal complex 4 (CC4) as stable and predominantly coupled with neonatal meningitis. The ribosomal-MLST (53-loci) and Clusters of Orthologous Groups–core genome (COG-cg) MLST (1865 loci) has also confirmed CC4 as dominant lineage.37 However, due to limited information on the virulence characteristics of CC4, its association with neonatal meningitis is unclear.34 Therefore, unveiling the virulence characteristics of this pathogen would contribute toward underpinning the association of the pathogen to infant foods and to develop mitigation strategies.

The little information on the ecology, pathogenesis and virulence of C. sakazakii warrants an update on this enteric pathogen with special emphasis on virulence factors associated with the pathogenesis of C. sakazakii.

Reservoir and mode of transmission

The bacterium is ubiquitous and has been isolated from a wide variety of foods, including cheese products, infant cereal, dried foods, fruits, vegetables, meats, water, medicinal plants, herbs and spices, bread, rice and PIF.38–50 Moreover, the Cronobacter spp. has also been reported from clinical sources, including

www.tandfonline.com Virulence 433–440; July 2015; © 2015 Taylor and Francis Group, LLC
Table 1. Powdered Infant Formula (PIF) implicated in worldwide outbreaks of Cronobacter infection

Country	Year	No. of cases / No. of deaths	Reference(s)
New Mexico	2008	2/2	106
France	2004	4/2	107
USA	2004	1/0	108
New Zealand	2004	1/1	109
Tennessee	2001	10/1	55
Israel	1999–2000	2/0	2
Belgium	1998	12/2	16
India	1992	1/1	110
Maryland	1990	1/0	111
Tennessee	1998	4/0	36
Iceland	1986–1987	3/1	112,113
Denmark	1983	1/1	114

The presence of the pathogen as vaginal microflora has been neglected by several studies however, babies delivered through birth canal or Caesarean section (C-section) have been contracted with the pathogen few days after birth.4,22,65

Epidemiology

The epidemiology of Cronobacter species is incomplete and poorly described because of its rare infections and often underreported cases due to missing or different reporting criteria in developed and some developing countries.66 Feeding with reconstituted PIF has been epidemiologically implicated in numerous clinical cases (Table 1).2,16,38,55-64 The limited information on its epidemiology necessitates that the researchers should record consistent and sufficiently informative data of invasive neonatal Cronobacter infections as developed under PubMLST database.

Pathogenicity and virulence factors

The high mortality and fatality rate caused by C. sakazakii is still poorly understood, and the list of virulence factors (Table 2) is probably far from complete. The specific virulence factors associated with the pathogenesis are discussed in this section.

Outer membrane proteins (OMPs)

Outer membrane proteins (OMPs) are of peculiar interest, owing to their cell-surface exposure and contribution in export of extracellular virulence factors, and in anchoring the structures that mediate adhesion and motility.

Several studies put forward that outer membrane protein A (ompA), contributes significantly to the virulence potential of Cronobacter spp by invading various epithelial and endothelial cells of human and animal origin. The invasion studies with human intestinal (INT407) cells showed the contribution of

Table 2. Characteristics of major known virulence factors of Cronobacter sakazakii

Factors	Genes	Potential role	Reference(s)
Outer membrane proteins (OMPs)	ompXompA	Involved in the basolateral invasion of enterocyte-like human epithelial cells	59,60-62
Enterotoxin	Not known A	Heat stable toxin elaborated by the pathogen	63,64
Outer membrane protease	cpa	Provides resistance against bactericidal activity of serum; activates plasminogen and inactivates α2-AP	65,66
Sialic acid utilization	nanAKT	Confers in pathogenesis	71
Iron acquisition system	luc	Encodes an iron-uptake system mediated by the active siderophorethata play a role in iron transport and regulation	67,73
Efflux system	ibeB	Encodes copper and silver resistance cation efflux system facilitating invasion of brain microvascular endothelial cells (BMEC)	23
Proteolytic enzymes	zpx	Cause cell deformation and rounding of cells	83
Lipopoysaccharides	Chromosomal encoded genes	Disrupt epithelial tight junctions and Hemolytic activity	91,102,66,90
Type III hemolysin	hly		
both microfilaments and microtubules from host and bacterial ompA.69–71 Mittal and co-workers72 reported that OmpA-positive isolates breach blood-brain barrier and invade central nervous system (CNS) causing clinical manifestations. In addition to ompA, Kim et al.73 reported that ompX also played vital roles in the invasion not only the apical side, but also the basolateral side of the host cells and can translocate into the deeper organs (spleen and liver) of rats (Fig. 1).

![Proposed model for Cronobacter sakazakii infection and pathogenesis. The pathogen encodes several illustrated pathogenicity-associated factors engaged in imperative processes including adhere to host surfaces, transmigration across, invasion into and disrupt the intestinal barrier within intestinal epithelial cells.]

Figure 1. Proposed model for *Cronobacter sakazakii* infection and pathogenesis. The pathogen encodes several illustrated pathogenicity-associated factors engaged in imperative processes including adhere to host surfaces, transmigration across, invasion into and disrupt the intestinal barrier within intestinal epithelial cells.
Enterotoxin

Pagotto et al.\(^74\) were the first to study the dose-response of \textit{C. sakazakii} in suckling mouse and reported a minimum lethal dose of \(10^6\) colony-forming units (cfu) in neonatal mouse suggesting the possibility of enterotoxin analog in infections. The function of this toxin may act in a parallel fashion to lipopolysaccharide (LPS), mediating toll-like receptor 4 (TLR4) activation and stimulating a host inflammatory response.\(^74\) However, later it was Raghav and Aggarwal\(^75\) who identified a thermostable putative toxin with molecular mass of 66 kDa. The potent activity of the toxin (LD\(_{50}\) = 56 pg) emphasizes the emerging risk to neonates fed reconstituted PIF contaminated with \textit{C. sakazakii}. The implication of the enterotoxin is still blurred as the genes encoding the putative toxin and the protein itself remain unidentified. Further studies using functional genomics and system biology might help in characterization of toxin-related genes.

\textit{Cronobacter} plasminogen activator (\textit{cpa})

Recently, the study on \textit{C. sakazakii} BAA-894 reported presence of a plasmid (pESA3) encoding an outer membrane proteases (\textit{cpa}) that has significant identity to proteins that belong to Psa subfamily of omptins. This protease has an ability to render serum resistance by cleaving complement components, activating plasminogen and inactivating the plasmin inhibitor \(\alpha\)-2-AP.\(^76\) Franco et al. and Cruz et al. also portray the prevalence and distribution of plasmid-encoded virulence genes \textit{cpa}, a type 6 secretion system (T6SS, also encoded on pESA3) and a filamentous haemagglutinin/adhesion (FHA) gene locus (located on pCTU1) among 231 \textit{Cronobacter} strains.\(^77,78\)

Sialic acid utilization

Sialic acid is found in human milk and in infant formulae in the form of sialyloligosaccharides.\(^79\) These oligosaccharides remain undigested in neonates and infants, therefore the intestinal microvilli of neonates have increased sialic acid and N-acetylglucosamine residues leading to proliferation of gut microbiota.\(^80,81\) Recently, Joseph et al.\(^82\) explained a plausible linkage between sialic acid metabolism and the pathogenicity of \textit{C. sakazakii} as it is the only \textit{Cronobacter} species possessing the \textit{nanAKT} gene cluster encoding for sialic acid utilization.

Iron acquisition gene system

Iron is an essential micro element for bacterial growth and metabolism and a vital factor for bacterial pathogenesis.\(^83\) In \textit{Cronobacter}, Franco et al.\(^78\) reported that plasmid pESA3 contain 2 clusters of genes, a homolog of an ABC transport-mediated iron uptake siderophore system (\textit{eitCBAD} operon) and a siderophore-mediated iron acquisition system (\textit{iucABCD} operon). This characteristic may contribute to the systemic survival of \textit{C. sakazakii} and subsequent invasion of the CNS to cause diseases. It was later, Grim et al.\(^84\) who identified both the \textit{feo} and \textit{efe} systems for acquisition of ferrous iron. They confirmed that 98% of the plasmid-harboring \textit{Cronobacter} strains have the aerobactin-like siderophore, cronobactin, for transport of ferric iron in \textit{Cronobacter}. Cruz et al.\(^77\) have also revealed that \textit{C. sakazakii} isolates harbour siderophore-interacting protein (\textit{sip}) gene. The \textit{sip} gene has a ferredoxin-reductase domain with binding sites to FAD and NAD(P), capable of transfer an electron from reduced ferrodoxin to FAD and then convert NAD\(^+\) to NADPH.\(^85\)

Efflux system

Active efflux system is a recognized virulence mechanism contributing to survival of members of Enterobacteriaceae in the host’s gastrointestinal tract.\(^86\) Interestingly, \textit{ibeB} (a gene synonymous with \textit{cuaQ} in \textit{C. sakazakii} has been reported, belonging to constellation of genes encoding a copper and silver resistance cation efflux system, ultimately allowing the invasion to brain microvascular endothelial cells (BMEC) cells.\(^23,87\) When assessed by Kucerova et al.\(^23\) it was discovered that the entire cation efflux operon (\textit{cuaA, cuB and cuC}) and its regulatory gene \textit{cuaR} were present in isolates colligated with neonatal infections (including \textit{C. sakazakii} ATCC 29544\(^7,696,701,767, C. malonicicus} and \textit{C. turicensis}) and absent in the other strains evaluated (\textit{C. sakazakii} B894, ATCC 12868, 20, \textit{C. dublinensis} and \textit{C. muytjensii}).

Biofilm formation

Biofilms are interface-associated consortia of microorganisms embedded in an endogenous slimy matrix referred to as extracellular polysaccharides (EPS) and are well-known to contribute to survival and increased resistance to antimicrobial treatments.\(^88–90\) Two hypothetical proteins have been newly described as possible adhesins engaged in biofilm formation in \textit{Cronobacter} (\textit{ESA_00281} and \textit{ESA_00282}).\(^91\) Iverson et al.\(^22\) reported that \textit{Cronobacter} was able to adhere to silicon, stainless steel, polycarbonate and latex with apparently greater attachment occurring with EPS producing bacteria. Colanic acid (CA) was identified as an EPS component in \textit{Cronobacter} spp. contributing to adherence to various surfaces and increased resistance to environmental stresses thermal, desiccation and pH.\(^95\)

Other potential factors

Among the minor but important virulent factors, the proteolytic enzymes of \textit{Cronobacter} strains have been found to cause deformation of the tissue cells in mice.\(^74\) Kothary et al.\(^94\) isolated and characterized a cell-bound zinc-containing metalloprotease encoded by a nucleotide sequence (\textit{zpx}), unique among all the 135 \textit{Cronobacter} strains tested. The protease was active in against azocasein, caused rounding of Chinese's hamster ovarian cells. It is hypothesized that proteolytic enzymes may permit the organism to cross the blood–brain barrier or cause extensive cellular destruction in neonates with NEC.

Recently, Hamby et al.\(^95\) investigated the genomes of \textit{C. sakazakii} and \textit{C. turicensis} and reported that the gene for inositol monophosphatase is also associated with virulence of this pathogen.

Current studies revealed that the plasmid-encoded methyl-accepting chemotaxis protein (MCP) sequences present in \textit{C. sakazakii} sequence type 8 (ST8) lineage are involved in virulence, invasion/adhesion, motility and biofilm formation.\(^96\) It was also observed that this sequence was not found in any other lineages, implying that the MCP association with virulence is probably specific to the ST8 lineage.
LysR-type transcriptional regulator (LTTRs) are known to regulate a range of regulons involved in quorum sensing and virulence of bacteria. Recently, Choi et al. (2012) characterized LysR-type transcriptional regulator (LTTR) gene (ESA_01081 homolog) as a potential regulator for C. sakazakii ATCC 29544 pathogenesis. They reported that the putative LysR-type protein plays a role in regulating genes involved in a host cell invasion, but not in adhesion.

In another study, Cruz et al. in addition to sip and cpa identified putative virulence genes, including type III haemolysin (hly) in Cronobacter isolated from human and non-human sources. The type III hemolysin, a virulence factor in numerous pathogenesis, is an integral outer membrane protein with hemolytic activity.

Lipopolysaccharides (LPS) is an outer membrane virulence factor of C. sakazakii, which interacts with enterocytes through LPS mediated binding to TLR4 inducing NEC in animals. In the NEC patients, the elevated level of LPS in serum and stools has been reported. Altogether, these findings raise the intriguing possibility that LPS may engage in the pathogenesis of NEC and the role of TLR4 within the intestinal epithelium seeks detailed consideration. It has been also reported that PIF is frequently contaminated with elevated levels of LPS, which disrupts tight junctions thereby increasing the permeability of the host cell membrane. The genome study of Cronobacter has revealed the presence of gene for type IV pili in addition to P pilus homologous to other pathogens such as E. coli. Additionally the role of fibronectin, a glycoprotein in an extracellular matrix of Cronobacter has been postulated in the adherence to intestinal epithelial or endothelial cells. However, the implications from these findings in pathogenesis and virulence have not been fully understood.

Recently, the role of hly in pathogenesis of C. sakazakii ATCC 29544 has been demonstrated by generating the mutants using lambda red recombination where the mutants indicated defects in survival and invasion within host cells and exhibited low resistance to hydrogen peroxide. Hfq, identified as RNA chaperone, is considered as a post-transcriptional regulator engaged in the biogenesis of quorum sensing, OMPs and various stress responses. The studies in other Gram negative pathogens i.e. Escherichia coli, Listeria monocytogenes, Salmonella typhimurium, Yersinia pseudotuberculosis, and Francisella tularensis have also expressed the importance of Hfq in the pathogenesis.

Limited studies regarding the effect of Cronobacter invasion on immune response have been done. The pathogen is reported to persist within human macrophages indicating that the Cronobacter possessed virulence properties that make it to tolerate the intracellular environment of macrophages.

Conclusions and future perspectives

Cronobacter spp is a newly classified genus and more research is yet to be completed for better understanding this unique group of organism. As a virulent species, it causes high mortalities in the neonates, therefore, it is important to understand which gene products are responsible for the pathogenicity of the bacteria and how the expression of these virulence factors is regulated. Work is therefore required to address better understanding of the progression and pathogenesis of Cronobacter spp. related diseases, particularly using *in vitro* cell-based assays combined with animal models.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

The authors are thankful to Department of Science and Technology (DST) and Department of Biotechnology (DBT), Government of India, for providing financial support.

References

1. Anonymous. Milk and Milk Products – Detection of *Enterobacter sakazakii* Technical Specification. ISO/TS 22964 ISO/TS 22964, 2006(E) and IDF / RM 210, 2006(E), 1st edn Geneva, International Organization for Standardization

2. Bar-Oz B, Preminger A, Pelog O, Block C, Arad I. *Enterobacter sakazakii* infection in the newborn. Acta Paediatr 2001; 90:356-358; PMID:1132182; http://dx.doi.org/10.1038/05325100300167857

3. Centers for Disease Control and Prevention (CDC). *Enterobacter sakazakii* infections associated with the use of powdered infant formula—Tennessee. MMWR Morb Mortal Wkly Rep 2002; 51:297-300; PMID:12092167

4. Block C, Pelog O, Minster N, Bar-Oz B, Simhon A, Arad I, Shapiro M. Cluster of neonatal infections in Jerusalem due to unusual biochemical variant of *Enterobacter sakazakii*. Eur J Clin Microbiol Infect Dis 2002; 21:1277-1283; PMID:12062446; http://dx.doi.org/10.1007/s10096-009-0779-4

5. Iversen C, Forsythe SJ. Risk profile of *Enterobacter sakazakii*, a new species of *Enterobacteriaceae* isolated from clinical specimens. Int J Syst Evol Microbiol 2012a; 62:1277-1283; PMID:22661070; http://dx.doi.org/10.1099/ijs.0.032292-0

6. Urmenyi AMC, Franklin AW. Neonatal death from pigmented coliform infection. Lancet 1961; 1:313-315; PMID:13779326

7. Gurtler JB, Kornacki JL, Beuchat LR. *Enterobacter sakazakii* and *Kosakonia* sp, an emerging pathogen associated with neonatal infections in neonates of extremely low birth weight. J Food Prot 2004; 67:1211-1218; PMID:15409150

8. Friedrich M. Epidemiology of invasive neonatal *Cronobacter* (Enterobacter sakazakii) infections. Eur J Clin Microbiol Infect Dis 2009; 28:1297-1304; PMID:19662446; http://dx.doi.org/10.1007/s10096-009-0779-4

9. Yan Q, Power KA, Cooney S, Fox E, Gopinath GR, Grim CJ, Tall BD, McCusker MP, Fanning S. Complete genome sequence and phenotype microarray analysis of *Cronobacter sakazakii* SP291: a persistant isolate cultured from a powdered infant formula production facility. Front Microbiol 2013; 4:236; PMID:24023028; http://dx.doi.org/10.3389/fmicb.2013.00256

10. Iversen C, Forsythe SJ. Risk profile of *Enterobacter sakazakii*, an emerging pathogen associated with infant milk formula. Trends Food Sci Technol 2003; 14:443-454; http://dx.doi.org/10.1016/S0924-2244 (03)00155-9

11. Farmer JJ III, Ashby MA, Hickman FW, Brenner DJ. The Enterobacteriaceae Study Group (USA) *Enterobacter sakazakii*, a new species of *“Enterobacteriaceae”* isolated from clinical specimens. Int J Syst Bacteriol 1980; 30:569-584; http://dx.doi.org/10.1099/00207713-30-3-5-6

12. Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ, Fonytse SJ. *Cronobacter condimenti* sp nov, isolated from spaced meat and *Cronobacter universalis* sp nov, a novel species designation for *Cronobacter* sp *genus novospec* 1, recovered from a leg infection, water, and food ingredients. Int J Syst Evol Microbiol 2012a; 62:1277-1283; PMID:22661070; http://dx.doi.org/10.1099/ijs.0.032292-0

13. Brady C, Glennwerck I, Venter S, Coutinho T, De Vos P. Taxonomic evaluation of the genus *Enterobacter* based on multilocus sequence analysis (MLSA): proposal to reclassify *E. nimipressuralis* and *E. annigera* into *Legionella* gen. nov. as *Legionella nimipressuralis* comb. nov. and *Legionella annigera* comb. nov., respectively. *E. gossowae* and *E. pyrini* into *Pluralibacter* gen. nov. as *Pluralibacter gosowae* comb. nov. and *Pluralibacter pyrini* comb. nov., respectively. *E. cowani*, *E. radiicinicum*, *E. oryzae* and *E. arachidis* into *Kosakonia* gen. nov. as *Kosakonia cowani* comb. nov., *Kosakonia radiicinicum* comb. nov., *Kosakonia
18. Forsythe SJ. Enterobacter sakazakii Enterobacter sakazakii. J Clin Microbiol 2001; 39:293-297; PMID:11136786; http://dx.doi.org/10.1128/JCM.39.1.293-297.2001

22. Yan Q, Power KA, Cooney S, Fox E, Gopinath GR, Grim CJ, Tall BD, Mccasker MP, Fantidis G. Complete genome sequence and phenotype microarray analysis of Enterobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility. Front Microbiol 2013; 4(2):203; doi: 10.3389/fmicb.2013.00203

23. Massod N, Moore K, Farbou A, Hariri S, Block C, Paulkiewicz K, McNally A, Forsythe S. Draft Genome Sequence of a Meningitic Isolate of Enterobacter sakazakii Clonal Complex 4, Strain 8399. Genome Announce 2013; 2(1): doi: 10.1101/gm.65577-0

52. Hamilton JV, Lehane MJ, Braig HR. Isolation of Enterobacter sakazakii from medicinal plants and spices in Syria. J Infect Dev Ctries 2013; 17:82-89; PMID:23416653

4. Virulence

14. Ores D. C. Cronobacter genomospecies 1 subsp. nov., and Proposal of Cronobacter pulveris sp. nov., respectively, and Reevaluation of Cronobacter genomospecies 1 subsp. nov., and Proposal of Cronobacter pulveris sp. nov., respectively, and Proposal of Cronobacter pul...
Baida GE, Kuzmin NP. Mechanism of action of hemolysin III from Bacillus cereus. Biochim Biophys Acta 1996; 1284:122-124; PMID:8962879; http://dx.doi.org/10.1016/S0005-2736(96)00168-X

Chen YC, Chang MC, Chuang YC, Jeang CL. Char-acterization and virulence of hemolysin III from Vibrio vulnificus. Curr Microbiol 2004; 49:175-179; PMID:15386100; http://dx.doi.org/10.1007/s00284-004-4288-5

Hunter CJ, Singamsetty VK, Chokshi NK, Boyle P, Cerriniti V, Grishin AV, Upperman JS, Ford HR, Prasadov VN. Enterobacter sakazakii enhances epithelial cell injury by inducing apoptosis in a rat model of necrotizing enterocolitis. J Infect Dis 2008; 198:586-593; PMID:18588483; http://dx.doi.org/10.1086/590186

Hotta T, Yoshiha N, Yoshikawa T, Sugino S, Kondo M. Lipopolysaccharide induced colitis in rabbits. Res Exp Med (Berl) 1986; 186:61-69; PMID:3961278; http://dx.doi.org/10.1007/BF01851834

Feng J, El-Assal ON, Besner GE. Heparin-binding EGF-like growth factor (HB-EGF) and necrotizing enterocolitis. Semin Pediatr Surg 2005; 10:176-184; PMID:15694396; http://dx.doi.org/10.1053/j.sempedsurg.2005.05.005

Feng J, Besner GE. Heparin-binding epidermal growth factor-like growth factor promotes enterocyte migration and proliferation in neonatal rats with necrotizing enterocolitis. J Pediatr Surg 2007; 42:214-220; PMID:17208569; http://dx.doi.org/10.1016/j. jpsedurg.2006.09.055

Kruit W, Schusler P, Weinzierl M, Galanos C, Eisen- burg J. Circulating lipid A antibodies despite absence of systemic endotoxemia in patients with Crohn’s disease. Dig Dis Sci 1984; 29:502-507; PMID:6144475; http://dx.doi.org/10.1007/BF01296269

Caradonna L, Amati L, Lella P, Jirillo E, Caccavo D. Phagocytosis, killing, lymphocyte-mediated antibacte-rial activity, serum autoantibodies, and plasma endo-toxins in inflammatory bowel disease. Am J Gastroenterol 2000; 95:1495-1502; PMID:10958326; http://dx.doi.org/10.1111/j.1572-0241.2000.00285.x

Noer B. Current controversies in the understanding of necrotizing enterocolitis. Adv Neonatal Care 2003; 3:107-120; PMID:12891835; http://dx.doi.org/10.1016/S1536-0903(03)00072-9

Sharma R, Tepas JJ III, Hudak ML, Mollin DL, Wha-dyka PS, Teng RJ, Premachandra BR. Neonatal gut barrier and multiple organ failure: role of endotoxin and proinflammatory cytokines in sepsis and necrotiz-ing enterocolitis. J Pediatr Surg 2007; 42:454-461; PMID:17336180; http://dx.doi.org/10.1016/j. jpsedurg.2006.10.038

Duffy L.C., Zwaan, M.A., Carrison, V., Griffiths, E., Dryja, D., Hilty, M., Rook, C., Motin, F. III. Concordance of bacterial cultures with endotoxin and inter-leukin-6 in necrotizing enterocolitis. Dig Dis Sci 1997; 42:359-365; PMID:9052520; http://dx.doi.org/10.1002/(SICI)1097-0118(199704)42:4<359::AID-DDIS359>3.0.CO;2-2

Leaphart CL, Cavado JC, Gribar SC, Cetin S, Li J, Branca MF, Dubowski TD, Siddhi CP, Hackam DJ. A critical role for TLR4 in the pathogenesis of necrotizing enterocolitis by modulating intestinal injury and repair. J Immunol 2007; 177:4808-4820; PMID:17878380; http://dx.doi.org/10.4049/jimmunol.177.7.4808

Townsend S, Barron JC, Loc-Carrillo C, Foxsrye S. The presence of endonuclease in powdered infant formula milk and the influence of endotoxin and Enterobacter sakazakii on bacterial translocation in the infant rat. Food Microbiol 2007; 24:67-74; PMID:16934936; http://dx.doi.org/10.1016/j. foodmicro.2006.03.009

Moriez R, Salvador-Carrier C, Theodorou V, Fiora-moni J, Eutamene H, Bueno L. Myosin light chain kinase is involved in lipopolysaccharide-induced disrup-tion of colonic epithelial barrier and bacterial translocation in rats. Am J Pathol 2005; 267:1071-1079; PMID:16192642; http://dx.doi.org/10.1016/S0002-9440(03)11619-0

Mange JP, Stephan R, Borel N, Wild P, Kim KS, Pospisilch A, Lehner A. Adhesive properties of Enterobacter sakazakii enterococcal infection in premature infants. J Surg Res 2012; 172:18-28; PMID:21601887; http://dx.doi.org/10.1016/j. jso.2011.04.019

Vibrio harveyi and Vibrio cholerae. Cell 2004; 118:69-82; PMID:15242645; http://dx.doi-org/10.1016/j.cell.2004.06.009

Repopila F, Majdalani N, Gottesman S. 2003. Small non-coding RNAs, co-ordinatons of adaptation pro- cesses in Escherichia coli: the RpoS paradigm. Mol Microbiol 2003; 48:855-861; PMID:12753181; http://dx.doi.org/10.1046/j.1365-2958.2003.03454.x

Christiansen JK, Larsen MH, Ingmer H, Sogaard-Anderson L, Kallipoliti BH. The RNA-binding pro-tein Hfq of Listeria monocytogenes: role in stress toler-ance and virulence. J Bacteriol 2004; 186:3355-3362; PMID:15150220; http://dx.doi.org/10.1128/ JB.186.11.3355-3362.2004

Schiano CA, Bellows LE, Latham WW. The small RNA chaperone Hfq is required for the virulence of Yersinia pseudotuberculosis. Infect Immun 2010; 78:2054-2044; PMID:20251416; http://dx.doi.org/10.1128/IAI.01046-09

Melhorn KL, Frysland AU, Koppa K, Allikwar K, Dubail I, Dupuis M, Forsberg A, Charbit A. Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun 2009; 77:1866-1880; PMID:19223477; http://dx.doi.org/10.1128/IAI.01496-08

Sinka A, Pfeiffer V, Tedin K, Vogel J. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol 2007; 63:193-217; PMID:17163975; http://dx.doi.org/10.1111/j.1365-2958.2006.05489.x

Kulesus RR, Diaz-Perez K, Slecha ES, Eto DS, Mul-vey MA. Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli. Infect Immun 2008; 76:3019-3026; PMID:18458066; http://dx.doi.org/10.1128/IAI.00222-08

Townsend SM, Hurrell E, Gonzalez-Gomez I, Lowe J, Frye JG, Foxsrye S, Badger JT. Enterobacter sakazakii and Salmonella typhimurium: roles in the pathogenesis of necrotizing enterocolitis caused by Cronobacter sakazakii. J Surg Res 2012; 172:18-28; PMID:21601887; http://dx.doi.org/10.1016/j.jso.2011.04.019