Pigment Epithelium-Derived Factor (PEDF) Inhibits Wnt/β-catenin Signaling in the Liver

Petr Protiva,1,2,* Jingjing Gong,1,* Bharath Sreekumar,2 Richard Torres,3 Xuchen Zhang,2 Glenn S. Belinsky,1 Mona Cornwell,4 Susan E. Crawford,4 Yasuko Iwakiri,1 and Chuhan Chung1,2

1Department of Medicine, Yale University School of Medicine, New Haven, Connecticut; 2VA CT Healthcare System, West Haven, Connecticut; 3Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut; 4Department of Pathology, St. Louis University School of Medicine, St. Louis, Missouri

SUMMARY

The absence of pigment epithelium-derived factor (PEDF) in hepatocellular carcinoma (HCC) enhances Wnt/β-catenin signaling. Genomic profiling of PEDF knockout livers correlates with gene expression signatures of human HCC associated with aberrant Wnt/β-catenin signaling. PEDF is an endogenous inhibitor of Wnt/β-catenin signaling.

BACKGROUND & AIMS: Pigment epithelium-derived factor (PEDF) is a secretory protein that inhibits multiple tumor types. PEDF inhibits the Wnt coreceptor, low-density lipoprotein receptor-related protein 6 (LRP6), in the eye, but whether the tumor-suppressive properties of PEDF occur in organs such as the liver is unknown.

METHODS: Wnt-dependent regulation of PEDF was assessed in the absence and presence of the Wnt coreceptor LRP6. Whole genome expression analysis was performed on PEDF knockout (KO) and control livers (7 months). Interrogation of Wnt/β-catenin signaling was performed in whole livers and human hepatocellular carcinoma (HCC) cell lines after RNA interference of PEDF and restoration of a PEDF-derived peptide. Western diet feeding for 6 to 8 months was used to evaluate whether the absence of PEDF was permissive for HCC formation (n = 12/group).

RESULTS: PEDF levels increased in response to canonical Wnt3a in an LRP6-dependent manner but were suppressed by noncanonical Wnt5a protein in an LRP6-independent manner. Gene set enrichment analysis (GSEA) of PEDF KO livers revealed induction of pathways associated with experimental and human HCC and a transcriptional profile characterized by Wnt/β-catenin activation. Enhanced Wnt/β-catenin signaling occurred in KO livers, and PEDF delivery in vivo reduced LRP6 activation. In human HCC cells, RNA interference of PEDF led to increased levels of activated LRP6 and β-catenin, and a PEDF 34-mer peptide decreased LRP6 activation and β-catenin signaling, and reduced Wnt target genes. PEDF KO mice fed a Western diet developed sporadic well-differentiated HCC. Human HCC specimens demonstrated decreased PEDF staining compared with hepatocytes.

CONCLUSIONS: PEDF is an endogenous inhibitor of Wnt/β-catenin signaling in the liver. (Cell Mol Gastroenterol Hepatol 2015;1:535–549; http://dx.doi.org/10.1016/j.ccmgh.2015.06.006)

Keywords: Extracellular Matrix; PEDF; Wnt/β-Catenin.

Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide.1 Genomic profiling has classified HCC based on molecular “signatures” that correlate with biological characteristics and clinical outcomes.2,3 One finding from these studies is the role of the extracellular matrix (ECM) in determining tumor behavior.4-6 For instance, modulators of the ECM can activate developmental pathways such as Wnt/β-catenin signaling, thereby connecting liver fibrosis to a signaling pathway that drives hepatocarcinogenesis.3

Pigment epithelium-derived factor (PEDF) is a circulating 50-kDa protein with ECM binding domains and broad tumor suppressive properties.7-10 In PEDF knockout (KO) mice, stromal abnormalities occur in multiple organs including the prostate, pancreas, and liver.11-15 Endogenous liver levels of PEDF decline in experimental and human cirrhosis, and PEDF delivery ameliorates experimental liver fibrosis.14,16 PEDF null mice crossed with the KrasG12D mice resulted in marked stromal changes in the pancreas and an invasive malignant phenotype not seen in the KrasG12D mutant mouse alone.15 These results indicate that PEDF regulates tissue matrix quiescence and its absence is permissive for malignant transformation.

The antitumor properties of PEDF are typically attributed to an antiangiogenic effect.10,17 PEDF, however, inhibits tumor cells in culture, indicating other mechanisms.17,18 Park et al19 identified PEDF’s ability to inhibit

*P.P. and J.G. contributed equally to this work.

Abbreviations used in this paper: BABB, benzyl alcohol/benzyl benzoate; CM, conditioned medium; ECM, extracellular matrix; ERK, extracellular signal-regulated kinase; FDR, false-discovery rate; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GO, Gene Ontology; GSEA, gene set enrichment analysis; GSK, glycogen synthase kinase; HCC, hepatocellular carcinoma; KO, knockout; LRP6, low-density lipoprotein receptor-related protein 6; PCR, polymerase chain reaction; PEDF, pigment epithelium-derived factor; SHG, second harmonic generation; siRNA, small interfering RNA; WT, wild type.

© 2015 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.ccmgh.2015.06.006

Most current article

2362-345X

http://dx.doi.org/10.1016/j.ccmgh.2015.06.006
Wnt/β-catenin signaling in the eye with avid binding to the Wnt coreceptor, low-density lipoprotein receptor-related protein 6 (LRP6). Whether PEDF has systemic effects beyond the eye and inhibits tumor development through an inhibitory effect on Wnt/β-catenin signaling is unclear. Because PEDF is most highly expressed by the liver, a finding recently confirmed in the Human Protein Atlas,10,21 and modulates Wnt/β-catenin signaling,19,22 we asked whether PEDF functions as an LRP6 antagonist in the liver.

We establish that canonical Wnt3a ligand directly regulates PEDF levels. PEDF, in turn, inhibits Wnt/β-catenin signaling. Consistent with this, livers from PEDF KO mice have a transcriptional profile closely aligned with murine models of hepatocarcinogenesis and human HCC characterized by aberrant Wnt/β-catenin signaling. Knockout and knock-in experiments demonstrate that PEDF inhibits Wnt/β-catenin signaling in murine livers and human HCC cells through its ability to inhibit LRP6 and β-catenin activity. Finally, a chronic Western diet elicited sporadic HCC formation in PEDF KO mice, while the human HCC specimens demonstrated diminished PEDF staining.

Materials and Methods

Human Hepatocellular Carcinoma, Animals, and Liver Tumor Induction

Archival human HCC tissues and their corresponding adjacent livers from 14 patients were obtained from the VA Connecticut Healthcare System according to an approved institutional review board protocol. The PEDF KO mice were bred with age-matched wild-type (WT) littermates on the C57BL/6J background to generate heterozygous breeding pairs, and then PEDF KO and WT offspring were backcrossed for more than 10 generations.11 The mice were genotyped using a commercially available polymerase chain reaction (PCR) kit (Sigma-Aldrich, St. Louis, MO). All procedures were approved by the Institutional Animal Care and Use Committee of VA CT Healthcare System. A commercial Western diet—TestDiet 4342 (TestDiet, St. Louis, MO): energy (% kcal) from fat (40%), carbohydrate (44%), protein (16%)—or standard chow was given for 26 to 32 weeks to PEDF KO and age-matched controls (n = 12/group) starting at 8 to 12 weeks of age.

RNA Extraction and Gene Arrays

Frozen whole liver tissue from five PEDF KO animals and WT controls were maintained in liquid nitrogen until total RNA extraction using the TRIzol method (Invitrogen, Carlsbad, CA). TRIzol-extracted RNA was further purified using the Qiagen RNeasy kit (Qiagen, Valencia, CA), yielding high-quality RNA suitable for microarray analyses (RNA integrity number >9). The RNA quality was verified using Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA), and the RNA was quantified by NanoDrop (NanoDrop Technologies, Wilmington, DE). For gene expression analysis, 500 ng of total RNA was used to generate biotin-labeled cRNA using the Illumina Total RNA amplification and labeling kit (Ambion, Austin, TX) according to the manufacturer’s instructions. The biotinylated cRNA was labeled with fluorescent dye at the Yale Keck Genomic Core Facility (West Haven, CT), hybridized onto a MouseRef-8 v2.0 Expression BeadChip expression array bead chip (Illumina, San Diego, CA) and scanned.

Expression data were analyzed by Genespring GX12 software (Agilent Technologies) after normalization by 75th percentile shift. Only genes with a present signal (signal above background noise) in more than 50% of samples were included in the analysis. Group samples with gene expression correlation coefficients ≤0.95 were excluded (one KO sample). For the statistical analysis, replicate samples were averaged. Differences in gene expression were determined using a moderated t test, and multiple hypothesis testing adjustment was made using Benjamini–Hochberg method at a false-discovery rate (FDR) ≤.05 and by adding a fold expression cutoff of 1.3. Genes differentially expressed in KO mice versus WT were subjected to Gene Ontology (GO) (http://www.geneontology.org) and WikiPathways (http://www.wikipathways.org) enrichment analysis using the hypergeometric test corrected by Benjamini–Yekutieli method at FDR q ≤.05.

To further extend the analysis, gene set enrichment analysis (GSEA) was used (http://www.broadinstitute.org/gsea). GSEA is a computational method that determines whether an a priori defined set of genes shows statistically significant differences between two phenotypes.23 To identify the gene sets that were statistically significantly enriched, we created a rank-order list by gene expression differences between KO and WT sets. Gene Ontology, KEGG pathways (http://www.genome.jp), Reactome (http://www.reactome.org), Biocarta (http://www.biocarta.org), Pathway interaction database (http://pid.nci.nih.gov), and curated gene sets reflecting changes induced by various chemical and genetic perturbances were used to interpret results. FDR q value was used to rank the results. Gene sets enriched at FDR q value ≤.05 and nominal P < .05 were considered statistically significant. Gene array data were deposited at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63643.

PEDF and PEDF Peptide Restoration

Human full-length PEDF was generated in human embryonic kidney cells as described elsewhere, and its purity confirmed using Coomassie and silver staining (Invitrogen).12 PEDF was administered (25 μg/kg bwt) by intraperitoneal injection on alternate days for a period of 4 weeks.24 A 34-mer of human PEDF corresponding to amino acids 44–77 has been previously shown to inhibit neovascularization and inhibit tumor growth, but its role in Wnt signaling is unclear.17,25 We interrogated Wnt signaling with a 34-mer that was commercially obtained (NeoBiolab, Cambridge, MA) and used at a concentration of 100μM to evaluate Wnt/β-catenin signaling in vitro.

Cell Culture

The human HCC cell lines HepG2 and Huh7 were obtained from the American Type Culture Collection (Manassas, VA), propagated, and kept at the Yale Liver
Center (P30DK034989). To obtain conditioned medium (CM), the cells were grown to 80% confluence, washed twice with serum-free media, and then incubated with serum-free media overnight. The CM was obtained after 18–20 hours and was concentrated approximately 40-fold using Amicon Ultra centrifugal filters (Millipore, Billerica, MA) with a 10-kDa cutoff. For PEDF peptide experiments, the medium was removed, washed three times with serum medium, and PEDF 34-mer was added for 2 hours before the lysates were obtained. For the lysates, the cells were scraped in radioimmunoprecipitation assay buffer containing protease and phosphatase inhibitors, incubated on ice, and centrifuged at 10,000g for 10 minutes.

Silencing of PEDF and LRP6 With RNAi in Hepatocellular Carcinoma Cells

To reduce PEDF levels in human HCC cells, commercial small interfering RNA (siRNA) constructs targeting PEDF (cat. no. 4392420, 4390771) or scrambled (cat. no. 4390843) sequences (Ambion) were transfected according to the manufacturer’s instructions. After 6 hours, the transfection medium was replaced with fresh medium lacking siRNA. After an additional 48 hours, the medium was changed to serum-free medium for 24 hours. CM and cell lysates were obtained as described earlier. The HepG2 cells stably transfected with small-hairpin RNA constructs targeting LRP6 were a gift of Dr. Arya Mani (Yale University School of Medicine). The integrity of PEDF and LRP6 KO was assessed in conditioned medium and in lysates. Measurement of PEDF levels in culture was performed with a commercial enzyme-linked immunosorbent assay kit (Bio-Products, Frederick, MD).

RNA Analysis and Quantitative Polymerase Chain Reaction

The RNA was isolated using the RNAEasy mini kit (Qia- gen). The primer probe sets were obtained from a commercial source (Applied Biosystems, Foster City, CA), and quantitative reverse-transcription PCR was performed on a TaqMan ABI 7500 system (Applied Biosystems) as described elsewhere. Target gene expression was normalized against β-actin.

Immunoblotting

Immunoblotting was performed as described elsewhere. Protein content was determined by Bradford assay. Lysates (20–30 μg total protein) were separated under denaturing conditions on a gradient gel (Bio-Rad Laboratories, Hercules, CA), and transferred to poly(vinylidene fluoride) membranes. After they were blocked in a 5% milk solution, the membranes were incubated overnight with antibodies. Primary antibodies used were PEDF from Chemicon (Temecula, CA); transforming growth factor-β1 (TGF-β1; 3711S), phospho-LRP6 (2568), total LRP6 (2560), nonphosphorylated (active) β-catenin and total β-catenin, phospho-glycogen synthase kinase-3β (p-GSK3β), total GSK3β, phospho-extracellular-signal-regulated kinase (p-ERK), total ERK (4370), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (5174S) from Cell Signaling Technology (Beverly, MA); collagen I (ab6308) from Abcam (Cambridge, MA); collagen III (15946) from Novus
Biologicals (Oakville, ON, Canada); and β-actin from Sigma-Aldrich.

Collagen I blots were run under reducing and nonreducing conditions. After washing in Tris-buffered saline and 0.05% Tween, the primary antibody was labeled using a peroxidase-conjugated secondary antibody specific for the primary antibody species. Samples were resolved on a gradient gel and transferred to nitrocellulose membranes. Equivalence of loading was confirmed using β-actin or GAPDH for lysates, or Coomassie stains for CM. Densitometry was performed using the National Institutes of Health ImageJ software (http://imagej.nih.gov/ij/).

Hydroxyproline Assays
Hydroxyproline assays were performed using a commercial kit (BioVision Research, Mountain View, CA). Measurements were performed on four separate occasions using three different sets (n = 3–4/group) of age-matched PEDF KO and control livers.

Second Harmonic Generation Imaging
Second harmonic generation (SHG) imaging preferentially detects type I, and to a lesser extent type III, fibrillar collagen.26 Multiphoton stimulation combined with tissue clearing was used to visualize fibrillar collagen deposition in volume sections of both WT and KO liver specimens measuring approximately 5 × 5 × 1 mm. Tissue clearing was performed on formalin-fixed organs using benzyl alcohol/benzyl benzoate (BABB) in 2:1 ratio as previously described elsewhere.27 Briefly, tissue specimens were then dehydrated by graded methanol incubations in 30-minute intervals and then incubated overnight with BABB. SHG was measured on a TriM Scope II multiphoton microscope (LaVision BioTec, Bielefeld, Germany) with 780 nm excitation and 390 nm band pass emission filter using a 0.95 NA, 25× objective (Leica Microsystems GmbH, Wetzlar, Germany) designed specifically for BABB immersion. Tissue volume was determined using intrinsic fluorescence with 960 nm excitation and 600–620 nm band pass filter detection. The SHG signal was collected in reflection: the specimen was placed on a deep-well slide, and a mirror was placed underneath to improve collection efficiency. The imaging parameters were kept constant among the specimens, including laser power and scanning speed as well as detector distance from the specimen. Data were collected in 16-bit depth, and contrast was adjusted using identical intensity thresholds for all images, allowing for direct intensity comparison.

Histology
Immunohistochemical analysis was performed as described on 14 sequentially obtained human HCC specimens. Sections were deparaffinized, treated to inhibit endogenous peroxidase, and subjected to antigen retrieval. After incubation with primary antibody, sections were washed and then incubated with biotinylated anti-mouse antiserum. Streptavidin complexed with horseradish peroxidase was added, and labeling was detected using diaminobenzidine. Semiquantitative scoring of the immunohistochemical labeling was evaluated by a pathologist (S.E.C.) using a numerical grading score (1, no staining; 2, focal positivity; 3, moderate; 4, diffuse, strong immunostaining) on 10 nonoverlapping fields per case with normal hepatocytes distant to the tumor margin assessed as “NI liver.”

Statistical Analysis
The P values were calculated, assuming equal sample variance, using a two-tailed Student t test on Prism software. P < .05 was considered statistically significant. Values were stated as mean ± standard deviation (SD) or standard error of the mean.

Results
PEDF Secretion Is Wnt3a-Responsive and Depends on the Wnt Coreceptor LRP6
We evaluated PEDF regulation by Wnt ligands and dependence upon LRP6. The integrity of the LRP6 KO and the stimulatory effects of high (25 mM) versus low (1 mM) glucose on LRP6 and its effector active (nonphosphorylated) β-catenin were shown (Figure 1A). Canonical Wnt3a (50 ng/mL) led to a greater than twofold increase in PEDF levels that was LRP6 dependent (Figure 1B, P < .01). In the absence of the LRP6, Wnt3a had no effect on PEDF levels. Similarly, Wnt3a had no effect on PEDF levels under 1 mM glucose conditions, likely reflecting markedly suppressed LR6 levels seen in this condition. Thus, Wnt3a-stimulated induction of PEDF levels are LRP6 dependent.

The noncanonical Wnt pathway includes the Wnt5a ligand and its orphan receptor, ROR2 (receptor tyrosine kinase-like orphan receptor 2), and counters the effects of the canonical pathway.28 To determine whether PEDF could be modulated by the noncanonical pathway, Wnt5a was added to HepG2 cells with and without LRP6. Wnt5a did not alter PEDF levels under high-glucose conditions in the presence of the LRP6 receptor. When the canonical receptor LRP6 was deleted, Wnt5a significantly suppressed PEDF protein levels (Figure 1C, P < .01). Thus, deletion of LRP6 favors the noncanonical pathway and lowers PEDF under high-glucose conditions.

Similarly, the 1 mM glucose condition leads to a functional depletion of the LRP6 receptor (Figure 1A) without genetic manipulation. Here, the Wnt5a ligand significantly decreased PEDF under scrambled and LRP6 KO conditions indicating that the noncanonical Wnt ligands can decrease PEDF in the setting of diminished LRP6 levels (Figure 1C, P < .01 for low glucose with and without LRP6). Thus, canonical Wnt3a and the noncanonical Wnt5a differentially regulate PEDF levels.

PEDF Knockout Livers Resemble Experimental and Human Hepatocellular Carcinoma Marked by Wnt/β-Catenin Signaling
To explore PEDF’s role in the liver, gene expression profiling was done in KO versus WT livers. There were 1113
gene entities differentially expressed between WT and KO animals at FDR < .05 and 1.3-fold expression cutoffs. Out of 1113 genes 344 were up-regulated in KOs, and 769 were down-regulated (Supplementary Table 1). Grouping these genes by GO categories using hypergeometric model showed that most up-regulated GO categories were related to extracellular matrix function, lipid metabolism, immune response, DNA replication, phase I and II enzymes (FDR < .05). Most down-regulated GO categories were related to ribosomal and mitochondrial function and numerous

Gene Set Name	FDR q Value	Gene Set Description
LEE_LIVER_CANCER_ACOX1_UP	<.001	Genes up-regulated in HCC of ACOX1 knockout mice
LEE_LIVER_CANCER_E2F1_UP	<.001	Genes up-regulated in HCC induced by overexpression of E2F1
LEE_LIVER_CANCER_MYC_E2F1_UP	<.001	Genes up-regulated in HCC from MYC and E2F1 double transgenic mice
LEE_LIVER_CANCER_MYC_TGFA_UP	<.001	Genes up-regulated in HCC tissue of MYC and TGFA double transgenic mice
ICHIBA_GRAFT_VERSUS_HOST_DISEASE_35D_UP	<.001	Hepatic graft versus host disease day 35: genes up-regulated in allogeneic vs syngeneic bone marrow transplant
KHETCHOUMIAN_TRIM24_TARGETS_UP	<.001	Retinoic acid-responsive genes up-regulated in HCC samples of TRIM24 knockout mice
LEE_LIVER_CANCER_CIPROFIBRATE_UP	<.001	Genes up-regulated in HCC induced by ciprofibrate
LEE_LIVER_CANCER_DENA_UP	<.001	Genes up-regulated in HCC induced by diethylnitrosamine
WIELAND_UP_BY_HBV_INFECTION	<.001	Genes induced in the liver during hepatitis B viral clearance in chimpanzees
BORLAK_LIVER_CANCER_EGF_UP	<.001	Genes up-regulated in HCC developed by transgenic mice overexpressing a secreted form of epidermal growth factor

Note: Gene set enrichment analysis showed that expression signatures in PEDF knockout mouse livers resembled those found in genetic and chemical models of HCC. Of the top 10 enriched chemical and genetic perturbation gene sets, eight represented rodent models of HCC, and two (Ichiba and Wieland) sets are related to inflammatory liver conditions. HCC, hepatocellular carcinoma.

Table 2. Up-Regulated Gene Sets From PEDF KO Livers Matching Gene Expression Signatures Associated With Aberrant Wnt/β-Catenin Signaling

Name	FDR	Description, Web Link, and PubMed ID
HOSHIDA LIVER CANCER SUBCLASS S1	<.001	Gene signature from HCC subset with aberrant Wnt activation [Link](http://www.broadinstitute.org/gsea/msigdb/cards/HOSHIDA_LIVER_CANCER_SUBCLASS_S1) PUBMED ID: 19723656
KENNY CTNNB1 TARGETS UP	.002	Genes up-regulated in mammary epithelial cells with constitutively active mutant β-catenin gene [Link](http://www.broadinstitute.org/gsea/msigdb/cards/KENNY_CTNNB1_TARGETS_UP.html) PUBMED ID: 15642117
CAVARD LIVER CANCER MALIGNANT VS BENIGN	.003	Genes identified by subtractive hybridization to compare gene expression between malignant and benign components of a human HCC occurring from pre-existing adenoma with activated β-catenin [Link](http://www.broadinstitute.org/gsea/msigdb/cards/CAVARD_LIVER_CANCER_MALIGNANT_VS_BENIGN.html) PUBMED ID: 16314847
CHIANG LIVER CANCER SUBCLASS CTNNB1 UP	.031	Genes up-regulated in the subclass of HCC characterized by activated β-catenin (CTNNB1) gene [Link](http://www.broadinstitute.org/gsea/msigdb/cards/CHIANG_LIVER_CANCER_SUBCLASS_CTNNB1_UP.html) PUBMED ID: 18701503
CAIRO HEPATOBLASTOMA UP	.050	Gene signature from human hepatoblastoma characterized by Wnt/β-catenin activation [Link](http://www.broadinstitute.org/gsea/msigdb/cards/CAIRO_HEPATOBLASTOMA_UP.html) PUBMED ID: 19061838

FDR (false-discovery rate): adjusted P value (FDR q value).
primary metabolic processes such as nitrogen compound metabolism, glutamine family amino acid metabolic process, urea cycle, and carboxylic acid metabolism, and peptidase inhibitory activity (FDR < .05).

To further characterize the gene expression changes in KO mice, GSEA using curated pathways as well as GO categories were performed. Consistent with analysis by moderated t test, the GSEA showed that most up-regulated...
pathways were related to cell proliferation, inflammatory responses, collagen expression, extracellular matrix function, and phase I and phase II enzymatic activity (Supplementary Table 2). Subsequently, another GSEA was performed to test for similarities between gene expression profiles in PEDF KO mouse livers and curated gene sets representing expression signatures of genetic and chemical perturbation. This analysis showed that the most significantly enriched gene sets represented rodent models and human samples of HCC tissues and various...

Figure 3. PEDF inhibits LRP6 phosphorylation in murine livers. (A) Increased phospho-LRP6 and nonphosphorylated (active) β-catenin in 7-month-old PEDF knockout (KO) mice and corresponding quantification of immunoblots (P < .02). (B) Younger 2 month-old PEDF KO mice also show increased phosphorylation of LRP6 (P < .05). (C) PEDF restoration in vivo reduces LRP6 activation (P = .05). (D) Gene expression of Ccnd1 and c-Jun in murine control and PEDF KO livers. Representative data from duplicate experiments conducted with n = 3–4/group for immunoblots. Quantitative reverse-transcription polymerase chain reaction data, n = 6/group. Data are presented as mean ± SD.
inflammatory liver conditions, suggesting that loss of PEDF leads to gene expression changes similar to those found in HCC (Table 1, Supplementary Table 3). In fact, eight out of top 10 enriched gene sets represented rodent models of HCC (Table 1).

PEDF Knockout Livers Display a Genomic Signature Resembling Hepatocellular Carcinoma Categorized by Wnt/β-Catenin Signaling

Comparison of liver-specific gene expression signatures of genetic and chemical perturbation to PEDF KO livers
showed a striking resemblance to various human HCC subsets marked by overactive Wnt/β-catenin signaling (Table 2).

Furthermore, PEDF KO liver expression profiles also correlated with the gene expression patterns of nonliver tissue experimental models where constitutively active mutant β-catenin was overexpressed (Table 2). Additionally, we observed overexpression of both Fzd 1 and 7, Wnt coreceptors that have been reported to be induced in human HCC specimens and cell lines (Figure 2).

Downstream targets of Wnt/β-catenin signaling, such as Ccnd1, Ccnd3, and c-Jun, were also found to be up-regulated in PEDF KO livers.

PEDF Inhibits Activation of the Wnt Coreceptor LRP6 In Vivo

To evaluate concordance with the genomic analysis, we interrogated components of the Wnt/β-catenin signaling pathway in PEDF KO livers before and after PEDF reconstitution. PEDF KO livers showed enhanced phospho-LRP6 levels and active β-catenin compared with WT controls in 7-month-old mice (Figure 3A, P < .05). A similar activation of LRP6 was seen in 2-month-old mice (Figure 3B, P < .05). Restoration of PEDF in KO mice resulted in decreased LRP6 phosphorylation without affecting total LRP6 levels (Figure 3C, P = .05). Moreover, gene expression of downstream canonical Wnt signaling pathway targets Ccnd1 and c-Jun was increased in PEDF KO livers versus controls (Figure 3D, P < .05). These results indicate that PEDF functions as an antagonist of hepatic LRP6 activation in vivo and that exogenous PEDF can inhibit LRP6 activation in vivo.

PEDF Loss Is Associated With Increased Fibrogenic Markers and Enhanced Cellular Proliferation

PEDF expression is reduced in human cirrhosis, and its restoration in two different models of experimental liver cirrhosis mitigates fibrotic changes. Consistent with this finding, the GSEA revealed an induction of pathways related to extracellular matrix deposition in PEDF KO liver tissue (Figure 4A, Supplementary Table 1). Biochemical assessment of collagen content and specific collagen subtypes, however, revealed a more complex picture of the matricellular changes in the absence of PEDF.

Confirmation of fibrogenic cytokines with quantitative PCR showed that tgfβ1 and pdgfa were significantly increased, and thbs1, an activator of transforming growth factor-β, showed a trend toward increased expression (Figure 4B). Angiogenic factors play a role in promoting fibrogenesis and can be regulated by Wnt pathway activation. Enhanced expression of vegfa was present in PEDF KO livers (Figure 4B). Similarly, expression of colla1 was increased but not that of other fibrillar collagen types such as colla5a1. Surprisingly, the total hydroxyproline content of PEDF KO livers was 75% of the control livers (Figure 4C), indicating that overall the collagen content was decreased. However, SHG imaging revealed visual evidence of increased fibrillar collagen in PEDF KO livers (Figure 4D). Consistent with the SHG imaging, the fibrillar collagen types I and III levels in PEDF KO livers were higher than in the controls (Figure 4E). Thus, a preferential induction of fibrillar collagen occurs in PEDF KO livers, but it is accompanied by an overall decrease in other collagen or structural proteins that contain hydroxyproline residues.

PEDF Is a Secreted Antagonist of Wnt/β-Catenin Signaling in Hepatocellular Carcinoma Cells

Findings in murine livers were extended to human HCC cells to determine whether PEDF functions as a Wnt antagonist. Both HepG2 and HuH7 cells secreted PEDF into the CM (Figure 5A and C). In HepG2 cells, siRNA-mediated PEDF knockdown led to increased phospho-LRP6 and active β-catenin levels (Figure 5A and B, P < .01). Similar results were observed in HuH-7 cells after PEDF knockdown (Figure 5C and D, P < .01).

A 34-mer sequence within PEDF mediates its well-documented antiangiogenic effects. Because angiogenesis requires Wnt signaling, we surmised that the PEDF 34-mer is responsible for its effects on Wnt/β-catenin signaling. Adding the PEDF 34-mer decreased the levels of active phospho-LRP6 and active β-catenin (Figure 5E, P < .01). Downstream regulators and targets of Wnt signaling such as GSK3β and phospho-ERK levels corresponded to the effects of Wnt blockade with PEDF 34-mer (Figure 5F). Levels of phospho-GSK3β (inactive form) were diminished consistent with increased intracellular active GSK3β and enhanced degradation of β-catenin seen with Wnt blockade. The downstream targets of β-catenin such as phospho-ERK were decreased. Moreover, transcriptional targets of canonical Wnt signaling such as ccdn1 and c-Jun were suppressed with the 34-mer (Figure 5G). These results demonstrate that PEDF antagonizes Wnt/β-catenin signaling in human HCC.
Figure 5. PEDF inhibits canonical Wnt/β-catenin signaling in human hepatocellular carcinoma (HCC) cells. (A) PEDF knockdown in HepG2 cells results in increased LRP6 phosphorylation and increased active β-catenin. (B) Corresponding quantification of phospho-LRP6 and active β-catenin after RNA interference of PEDF in HepG2 cells ($P < .01$). (C) Huh-7 cells display increased LRP6 phosphorylation and active β-catenin after depletion of endogenous PEDF. (D) Quantification of phospho-LRP6 and active β-catenin after RNA interference of PEDF in Huh-7 cells ($P < .01$). (E) A PEDF 34-mer peptide decreased LRP6 phosphorylation and active β-catenin levels in Huh-7 cells ($P < .01$). (F) Changes in the levels of downstream targets of canonical Wnt signaling such as phospho-GSK3β/total GSK3β and phospho-ERK/total ERK reflect inhibition of Wnt signaling with the PEDF 34-mer. (G) Gene targets of the Wnt pathway, ccnd1 and c-Jun, were significantly suppressed with PEDF 34-mer ($P < .05$ and $P < .01$, respectively). Representative data are shown from three separate experiments conducted with n = 3/group for siRNA experiments. Data from 34-mer peptide experiments were performed in duplicate and n = 3/group. Data are presented as mean ± SD.
cells and point to a 34-amino-acid peptide fragment derived from PEDF that mediates LRP6 blockade.

Induction of Liver Fibrosis and Sporadic Hepatocellular Carcinoma in PEDF Knockout Mice After Western Diet Feeding

Genomic profiling of PEDF KO livers corresponded to various human HCC subsets marked by overactive Wnt/β-catenin, but spontaneous HCC did not develop in PEDF KO mice up to 1 year of age (data not shown). To test whether diet-induced obesity could induce HCC formation in the absence of PEDF, a Western diet (40% fat, 44% carbohydrate, 16% protein) was given to PEDF KO and WT mice for 6 to 8 months. A Western diet increased fibrosis in WT and PEDF KO mice as shown by trichrome staining and hydroxyproline measurements (Figure 6A). Increased fibrillar collagen deposition as seen with SHG imaging was more apparent in PEDF KO than WT livers (Figure 6B). Three-dimensional reconstructed images from SHG imaging revealed an increase in fibrillar collagen adjacent to vessels, outlining their structures (Figure 6B). A subset of PEDF KO mice (3 of 12) developed macroscopic tumor formation compared with none (0 of 12) in the control mice (Figure 6C) after chronic Western diet feeding. Histologic examination showed features consistent with a well-differentiated HCC with the increased presence of unpaired blood vessels (Figure 6C, arrows). In contrast to the diet-induced HCC, a one-time diethylnitrosamine injection did not result in HCC formation in either the WT or KO mice at 6 months (data not shown). Thus, PEDF deficiency combined with a chronic Western diet led to sporadic HCC formation.

PEDF Expression Is Reduced in Human Hepatocellular Carcinoma Specimens

A previous study of embryonic and adult human tissue sites demonstrated that the liver has the highest
expression levels of the PEDF gene, and the recent tissue-based map of the human proteome confirmed this finding. Relative to the high endogenous levels in the normal liver, we asked whether PEDF levels in HCC specimens were diminished. Staining of PEDF showed diffuse and strong immunoreactivity for PEDF in normal liver tissue (Figure 7A, left). In contrast, PEDF immunolabeling was statistically significantly reduced in HCC compared with the adjacent liver (Figure 7A, middle and right, and B; P < .01). Thus, human HCC specimens demonstrated decreased PEDF expression compared with the adjacent nontransformed hepatocytes.

Discussion

Aberrant Wnt/β-catenin signaling underlies a number of malignancies, including HCC. Our study has identified PEDF as an endogenous inhibitor of LRP6 activation that is

Figure 6. A Western diet induces liver fibrosis and sporadic hepatocellular carcinoma (HCC) in PEDF knockout (KO) mice. (A) Six months of Western diet feeding induced liver fibrosis in wild-type (WT) and PEDF KO mice as demonstrated by trichrome staining (magnification 20×; size bars: 100 μM) and measured by hydroxyproline content. (B) Second harmonic generation (SHG) imaging shows increased fibrillar type I/III collagen deposition in PEDF KO mice livers (bottom panels) compared with WT (top panels) mice fed a Western diet. Magnification: left 4×; right 20×. Three-dimensional reconstruction of serial SHG images reveals prominence of fibrillar collagen around blood vessels in PEDF KO livers. (C) PEDF KO mice showing macroscopic tumor in mice fed the Western diet versus control diet. Bottom panel shows histology of a well-differentiated HCC arising in KO mouse fed a Western diet. L, liver; T, tumor; magnification 10×, arrow at demarcation between liver and HCC; 20×, arrows highlighting unpaired blood vessels in HCC.
secreted in response to canonical Wnt ligands. Enhanced LRP6 and β-catenin activation was seen in the livers of PEDF KO mice and in two human HCC cell lines where PEDF was depleted. Further, adding a PEDF 34-mer inhibited LRP6, active β-catenin, and downstream targets of Wnt signaling, thereby identifying the region on PEDF that mediates Wnt inhibitory effects. These data support the idea that PEDF functions as a part of a negative feedback loop to modulate Wnt signaling. Gene enrichment data supported this interaction. Further, biochemical analyses of PEDF KO murine livers before and after PEDF reconstitution in vivo confirmed that PEDF can block Wnt signaling in the liver. PEDF knockdown in two human HCC cell lines led to increased Wnt/β-catenin signal transduction with a specific 34-amino-acid region mediating these effects. Thus, PEDF is regulated by and inhibits the canonical Wnt/β-catenin pathway in the murine liver and in two human HCC cell lines.

The genomic analysis in this study correlated with genetic profiles of murine hepatocarcinogenesis and human HCC subsets marked by overactive Wnt/β-catenin signaling, but PEDF deficiency alone did not result in HCC formation. A prolonged nutritional challenge induced only a fraction of animals to develop a well-differentiated HCC. These results are consistent with models of hepatic overexpression of normal and mutant β-catenin that do not result in spontaneous HCC. Paradoxically, deletion of β-catenin from the liver is permissive for HCC formation after injection with diethylnitrosamine. This surprising effect of β-catenin deletion conferring an increased rate of HCC development in murine models, rather than its overexpression, reflects the importance of this pathway for liver tissue homeostasis. In its absence, the liver is prone to injury from oxidative stress and enhanced fibrosis. Thus, findings from β-catenin transgenic mice are at odds with those from genomic and immunohistochemical studies in human HCC, which point to Wnt/β-catenin signaling as a significant driver in a subset of HCC. The absence of HCC found in transgenic models of β-catenin overexpression and the occurrence of HCC with β-catenin deletion highlights the limitations of constitutively active or deletion of β-catenin, where temporal and context-specific activity of β-catenin may more accurately capture its role in human disease.

Absence of PEDF led to complex changes to the ECM of the liver. Despite lower total hydroxyproline levels, type I/III collagen content and SHG imaging demonstrated increased deposition of fibrillar collagen in PEDF KO livers. In experimental and human cirrhosis specimens, PEDF levels are also depleted. Restoration of PEDF in

Figure 7. PEDF expression is reduced in human hepatocellular carcinoma (HCC). (A) Immunostaining for PEDF in human livers (top) and human HCC specimens (bottom). (B) Semiquantitative scoring of PEDF staining demonstrates increased labeling in normal liver compared with HCC specimens (P < .01; n = 14). NL, normal.
experimental models of CCl4 [chemokine (C-C motif) ligand 4] and bile-duct ligated cirrhosis ameliorates tissue fibrosis, suggesting an important role for endogenous PEDF in maintaining quiescence of the liver ECM.14, 16 These findings are consistent with studies that demonstrate Wnt/β-catenin signaling as a regulator of the fibrotic response in diverse organs.32–39 Further, examination of the PEDF null state in humans, osteogenesis imperfecta type VI, points to abnormalities in the extracellular matrix.24, 40 These findings suggest that PEDF may regulate matricellular content in multiple organ sites.

This study provides further evidence to support the role of PEDF in Wnt/β-catenin signaling. The discovery through exome sequencing that null mutations in PEDF cause osteogenesis imperfecta type VI implicated PEDF’s role in modulating Wnt/β-catenin signaling in human disease.22, 41 We and others have shown that PEDF could induce differentiation of progenitor cells and that these effects were LRP6 dependent.22, 42 In the eye, PEDF inhibited Wnt3a-mediated β-catenin nuclear translocation, and recent studies showed that PEDF directly suppressed other Wnt modulators such as sclerostin.19, 41 Exogenous PEDF protein and a peptide derived from PEDF demonstrate inhibitory effects on Wnt signaling in the liver and in two HCC cell lines, thereby pointing to its role in attenuating Wnt signaling in a negative feedback loop.

Interestingly, PEDF appears to promote Wnt/β-catenin signaling in stem cell populations but inhibits Wnt signaling in differentiated cells.22, 41 Differential effects are also seen in Wnt ligands and Wnt-related proteins such as Wnt5a and Dickkopf2, and stem from selective expression patterns of Wnt coreceptors.28, 43, 44 Future studies detailing the expression patterns of different Fzd species should allow identification of the receptor combination that directs PEDF’s different functional outcomes as they pertain to Wnt signaling.

In summary, PEDF functions as an endogenous inhibitor of Wnt/β-catenin signaling in the liver and in human HCC cells. These findings provide a framework for understanding the antitumor properties of PEDF in other cancer types.

References
1. El-Serag HB. Hepatocellular carcinoma. N Engl J Med 2011;365:1118–1127.
2. Lee JS, Chu IS, Heo J, et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 2004;40:667–676.
3. Hoshida Y, Nijman SM, Kobayashi M, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 2009;69:7385–7392.
4. Hoshida Y, Villanueva A, Kobayashi M, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 2008;359:1995–2004.
5. Tsuchiya M, Parker JS, Kono H, et al. Gene expression in nontumoral liver tissue and recurrence-free survival in hepatitis C virus-positive hepatocellular carcinoma. Mol Cancer 2010;9:74.
6. Chiodoni C, Colombo MP, Sangaletti S. Matricellular proteins: from homeostasis to inflammation, cancer, and metastasis. Cancer Metastasis Rev 2010;29:295–307.
7. Yasui N, Mori T, Morito D, et al. Dual-site recognition of different extracellular matrix components by anti-angiogenic/neurotrophic serpin, PEDF. Biochemistry 2003;42:3160–3167.
8. Uehara H, Miyamoto M, Kato K, et al. Expression of pigment epithelium-derived factor decreases liver metastasis and correlates with favorable prognosis for patients with ductal pancreatic adenocarcinoma. Cancer Res 2004;64:3533–3537.
9. Fitzgerald DP, Subramanian P, Deshpande M, et al. Opposing effects of pigment epithelium-derived factor on breast cancer cell versus neuronal survival: implication for brain metastasis and metastasis-induced brain damage. Cancer Res 2012;72:144–153.
10. Becerra SP, Notario V. The effects of PEDF on cancer biology: mechanisms of action and therapeutic potential. Nat Rev Cancer 2013;13:258–271.
11. Doll JA, Stellmach VM, Bouck NP, et al. Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med 2003;9:774–780.
12. Chung C, Shugrue C, Nagar A, et al. Ethanol exposure depletes hepatic pigment epithelium-derived factor, a novel lipid regulator. Gastroenterology 2009;136:331–340.e2.
13. Schmitz JC, Protiva P, Gattu AK, et al. Pigment epithelium-derived factor regulates early pancreatic fibrotic responses and suppresses the profibrotic cytokine thrombospondin-1. Am J Pathol 2011;179:2990–2999.
14. Ho TC, Chen SL, Shih SC, et al. Pigment epithelium-derived factor is an intrinsic antibiosis factor targeting hepatic stellate cells. Am J Pathol 2010;177:1798–1811.
15. Gripp PJ, Fitchev PS, Bentrem DJ, et al. Concurrent PEDF deficiency and Kras mutation induce invasive pancreatic cancer and adipose-rich stroma in mice. Gut 2012;61:1454–1464.
16. Meijas M, Coch L, Berzigotti A, et al. Antiangiogenic and antifibrogenic activity of pigment epithelium-derived factor (PEDF) in bile duct-ligated portal hypertensive rats. Gut 2015;64:657–666.
17. Filleur S, Volz K, Nelius T, et al. Two functional epitopes of pigment epithelial-derived factor block angiogenesis and induce differentiation in prostate cancer. Cancer Res 2005;65:5144–5152.
18. Crawford SE, Stellmach V, Ranalli M, et al. Pigment epithelium-derived factor (PEDF) in neuroblastoma: a multifunctional mediator of Schwann cell antitumor activity. J Cell Sci 2001;114:4421–4428.
19. Park K, Lee K, Zhang B, et al. Identification of a novel inhibitor of the canonical Wnt pathway. Mol Cell Biol 2011;31:3038–3051.
20. Tombran-Tink J, Mazuruk K, Rodriguez IR, et al. Organization, evolutionary conservation, expression and unusual Alu density of the human gene for pigment epithelium-derived factor, a unique neurotrophic serpin. Mol Vis 1996;2:11.
21. Uhlen M, Fagerberg L, Hallstrom BM, et al. Proteomics: Tissue-based map of the human proteome. Science 2015;347:1260419.

22. Gattu AK, Swenson ES, Iwakiri Y, et al. Determination of mesenchymal stem cell fate by pigment epithelium-derived factor (PEDF) results in increased adiposity and reduced bone mineral content. FASEB J 2013;27:4384–4394.

23. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545–15550.

24. Gattu AK, Birkenfeld AL, Iwakiri Y, et al. Pigment epithelium-derived factor (PEDF) suppresses IL-1beta-mediated c-Jun N-terminal kinase (JNK) activation to improve hepatocyte insulin signaling. Endocrinology 2014;en20131785.

25. Amaral J, Becerra SP. Effects of human recombinant PEDF protein and PEDF-derived peptide 34-mer on reduced bone mineral content. FASEB J 2013;27:4384.

26. Cox G, Kable E, Jones A, et al. 3-dimensional imaging of uncut, unembedded tissue biopsy samples. Arch Pathol Lab Med 2014;138:395–402.

27. Torres R, Vesuna S, Levene MJ. High-resolution, 2- and 3-dimensional imaging of collagen using second harmonic generation. J Struct Biol 2003;141:53–62.

28. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 2006;4:e115.

29. Cairo S, Armengol C, De Reynies A, et al. Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer. Cancer Cell 2008;14:471–484.

30. Chiang DY, Villanueva A, Hoshida Y, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 2008;68:6779–6788.

31. Cavard C, Terris B, Grimmer G, et al. Overexpression of regenerating islet-derived 1 alpha and 3 alpha genes in human primary liver tumors with beta-catenin mutations. Oncogene 2006;25:599–608.

32. Kenny PA, Enver T, Ashworth A. Receptor and secreted targets of Wnt-1/beta-catenin signalling in mouse mammary epithelial cells. BMC Cancer 2005;5:3.

33. Merle P, de la Monte S, Kim M, et al. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology 2004;127:1110–1122.

34. Fernandez M, Semela D, Bruix J, et al. Angiogenesis in liver disease. J Hepatol 2009;50:604–620.

35. Nejak-Bowen KN, Monga SP. Beta-catenin signaling, liver regeneration and hepatocellular cancer: sorting the good from the bad. Semin Cancer Biol 2011;21:44–58.

36. Zhang XF, Tan X, Zeng G, et al. Conditional beta-catenin loss in mice promotes chemical hepatocarcinogenesis: role of oxidative stress and platelet-derived growth factor receptor alpha/phosphoinositide 3-kinase signaling. Hepatology 2010;52:954–965.

37. Brack AS, Conboy MJ, Roy S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 2007;317:807–810.

38. Cheng JH, She H, Han YP, et al. Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2008;294:G39–49.

39. DiRocco DP, Kobayashi A, Taketo MM, et al. Wnt4/beta-catenin signaling in medullary kidney myofibroblasts. J Am Soc Nephrol 2013;24:1399–1412.

40. Becker J, Semler O, Gilissen C, et al. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 2011;88:362–371.

41. Li F, Song N, Tombran-Tink J, Niyibizi C. Pigment epithelium derived factor suppresses expression of Sost/sclerostin by osteocytes: implication for its role in bone matrix mineralization. J Cell Physiol 2015;230:1243–1249.

42. Li F, Song N, Tombran-Tink J, Niyibizi C. Pigment epithelium-derived factor enhances differentiation and mineral deposition of human mesenchymal stem cells. Stem Cells 2013;31:2714–2723.

43. Cruciat CM, Niehrs C. Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2013;5:a015081.

44. Brott BK, Sokol SY. Regulation of Wnt/β-catenin signaling by distinct domains of Dickkopf proteins. Mol Cell Biol 2002;22:6100–6110.
Supplementary Table 1

List of Statistically Significant Differentially Expressed Gene Entities in PEDF Knockout Animals Versus Wild-Type (FDR < 0.05 and Expression Cutoff of 1.3-Fold)

Symbol	Fold Up	Symbol	Fold Down
Cyp2b9	6.730	Serpinf1 (KO GENE)	-143.796
Gsta1	4.853	Serpina1e	-8.049
Cyp2b23	4.285	Hsd3b5	-5.549
Ly6d	4.166	Lpin1	-3.815
Gsta2	3.822	Serpina4-ps1	-3.642
Tubb2b	3.390	Nnmnt	-3.193
Lcn2	3.346	C6	-3.023
Anxa2	2.943	Egfr	-3.080
Mod1	2.733	Aatk	-2.871
Cidec	2.654	C8b	-2.749
S100a11	2.579	Cpa3	-2.437
Bcl6	2.524	Sds	-2.380
Orn2	2.467	Cyp7b1	-2.578
Wfdc2	2.254	C6	-2.577
Aqp8	2.222	Cyp7a1	-2.553
Ins2g	2.192	Cyp4a12b	-2.465
Tceal8	2.169	Clca3	-2.437
Lgals3	2.167	Sds	-2.380
Spon2	2.165	Scl38a2	-2.378
Aqp8	2.127	Ela1	-2.333
Ubd	2.079	2200001H15Rik	-2.305
H2-Ab1	2.062	Cyp7a1	-2.302
Apoa4	2.056	Fbxo31	-2.246
Cbr3	2.053	EG13909	-2.223
Hsd17b6	1.980	Selenbp2	-2.181
Lpl	1.978	Socs2	-2.177
Cd74	1.972	Upp2	-2.167
Rael1b	1.967	Fbxo31	-2.165
Egr1	1.965	Tsc22d3	-2.161
Pdk4	1.927	C8a	-2.142
Ttc39a	1.900	Cyp4f14	-2.136
Slc17a4	1.878	2810439F02Rik	-2.120
Gstm2	1.850	Scl29a1	-2.110
Sqe	1.829	F11	-2.106
Spp1	1.793	Sit9	-2.095
Cnd1	1.788	Mup4	-2.095
H2-Aa	1.786	LOC100047762	-2.070
Sepp1	1.785	Cish	-2.065
H2-Ab1	1.780	Ptpre	-2.059
Ins2g	1.735	Por	-2.055
Cd74	1.734	Ccm4l	-2.022
Ins2g	1.734	Hpd	-2.013
Aqp4	1.724	Upp2	-1.984
Vdilr	1.724	Pre4	-1.980
Srxn1	1.722	F11	-1.978
Elovl6	1.711	Prodh	-1.961
Slpi	1.707	Zap70	-1.960
Symbol	Fold Up	Symbol	Fold Down
-----------	---------	-----------	-----------
Ccnd1	1.560	Mlxipl	-1.706
Gadd45a	1.559	Gcgr	-1.703
Samd9l	1.556	Agpat6	-1.697
Gas6	1.555	Cyp4f15	-1.693
Esd	1.549	Plg	-1.692
Cyp3a11	1.548	Cyp1a2	-1.687
Sparc	1.547	Serpina3k	-1.676
LOC1000437934	1.542	D4Bwg0951e	-1.675
Ctsa	1.538	Nfic	-1.673
Ppic	1.536	Hhex	-1.671
Nipsnap3a	1.536	Ush2a	-1.670
Mcm6	1.533	Ang	-1.668
Axl	1.531	Hyl1	-1.666
Tmem43	1.530	Pgls	-1.663
Plscr1	1.528	Itlh3	-1.662
Lrn	1.526	Rnase4	-1.659
2410004L22Rik	1.526	Ttc36	-1.655
Cdkn1a	1.523	1700019G17Rik	-1.651
Arl8a	1.521	Cps1	-1.650
Acot4	1.519	Rps5	-1.646
Laptm5	1.515	9530058B02Rik	-1.643
St5	1.515	2310076L09Rik	-1.642
Gbp2	1.515	Il6ra	-1.638
Sirpa	1.513	Mbd1	-1.638
Ifi27	1.512	Atp5sl	-1.635
Sqle	1.511	Kcnk5	-1.635
Acot3	1.509	Gnat1	-1.634
Spc25	1.505	Abcg8	-1.629
B9300041F14Rik	1.504	Tmem160	-1.622
Tgfb2	1.502	Hist1h2bm	-1.621
Tgm2	1.502	Hes6	-1.619
Cbr3	1.500	Asl	-1.618
Aldh1a7	1.500	Acaca2	-1.617
Hprt1	1.497	Zfp259	-1.617
Entpd5	1.497	Klf13	-1.612
Cyba	1.497	Hist2h2aa1	-1.607
Tpm1	1.496	Ccb1	-1.593
Acx1	1.495	Npr2	-1.593
Cyp4a31	1.493	Map1c3a	-1.592
Atp5a1	1.492	Ephpx2	-1.590
Col6a1	1.489	Tmem183a	-1.587
Dusp6	1.488	Scnn1a	-1.586
Tmem77	1.486	Afrmid	-1.586
Fos	1.483	Igflas	-1.582
LOC1000437934	1.483	Fgfl	-1.582
Ifi3	1.482	Cnpy2	-1.582
Ctscl	1.480	0610012D14Rik	-1.582
Serpina7	1.480	Tspan31	-1.581
Pex11a	1.478	Rbm5	-1.580
Ccdc80	1.475	Ugt2b1	-1.580
Symbol	Fold Up	Symbol	Fold Down
------------	---------	------------	-----------
Mcm6	1.420	Tsku	-1.510
Khk	1.417	Cyp2c37	-1.508
Fam110a	1.416	Rp34	-1.508
Mme	1.416	Rbm4b	-1.507
LOC677317	1.415	Bmp1	-1.506
4931406C07Rik	1.414	Wdr45l	-1.506
Klf6	1.412	Amid	-1.505
Ywhah	1.411	Ppp1r10	-1.505
LOC100047963	1.409	Amid	-1.504
Nampt	1.409	Pop5	-1.504
Hist1h2af	1.408	4833421E05Rik	-1.502
Emr1	1.406	OTTMUSG0000000231	-1.502
Dapk2	1.405	Pscd1	-1.500
S100a8	1.404	Vgl1	-1.499
Hprt1	1.403	F7	-1.499
1810023F06Rik	1.401	Tmem42	-1.499
Ndufa5	1.401	Gm129	-1.497
Bmp4	1.399	Saps3	-1.496
Akrt1c14	1.397	Cyp2c67	-1.496
Cyp2c39	1.395	Oat	-1.495
Vldir	1.395	1110001J03Rik	-1.494
Nqo1	1.394	Glyctk	-1.494
Jun	1.394	Srm2	-1.492
LOC100048733	1.394	Tst	-1.492
Trm4s4	1.393	Sdsl	-1.492
Rtn4	1.391	F2	-1.491
Igkap1	1.391	Hist1h2bk	-1.490
Arhgdib	1.391	Klf1	-1.490
Rcan2	1.389	F2	-1.492
Palmd	1.388	Elovli	-1.487
Hist1h2an	1.387	Ctdsp2	-1.485
Rcan2	1.386	Cbs	-1.485
Tmem49	1.385	Ppm1k	-1.483
Entpd5	1.384	Cyp1a2	-1.483
Id1	1.382	Hsp105	-1.482
Nsdhl	1.381	1110032A13Rik	-1.481
Slamf9	1.381	H2afy	-1.480
Trim2	1.380	Dnajb6	-1.480
Lip1	1.377	Keg1	-1.480
6330409N04Rik	1.376	Slc35b2	-1.480
9030625A04Rik	1.376	Tmem19	-1.479
Cxadr	1.376	Fam125a	-1.478
Ptp	1.375	Gde1	-1.478
Agpat9	1.375	Gpr182	-1.477
Zfp608	1.375	D9Wsu20e	-1.477
Gale	1.375	Gpr108	-1.475
Rasl11b	1.374	Rps8	-1.475
Tpm4	1.374	Lman1	-1.475
Saa2	1.374	Rpl23	-1.474
BC005537	1.372	Zfp91-cntf	-1.474
Symbol	Fold Up	Symbol	Fold Down
------------	---------	------------	-----------
Rnd3	1.329	Sil1	−1.445
Nit2	1.328	9430029K10Rik	−1.445
Cxadr	1.328	Giltpd2	−1.445
Cot1	1.323	Cxxc1	−1.444
2900064A13Rik	1.323	Trp531np2	−1.443
Lrc39	1.323	Serinc3	−1.443
Did	1.322	Trak1	−1.443
Pmpcb	1.321	Arfgap2	−1.443
Rab34	1.320	lyd	−1.442
Fas	1.320	Trc6c	−1.442
Hist1h2ah	1.320	Hint2	−1.442
Fen1	1.320	0610012G03Rik	−1.442
Hsd17b11	1.320	Coq5	−1.441
Tnxb	1.319	Gls2	−1.441
Saa1	1.319	Rpain	−1.439
Tnfrsf12a	1.317	Surf1	−1.438
Acot2	1.317	Ube3b	−1.437
Cd33	1.317	Mrps21	−1.437
Entpd2	1.316	Eif4g1	−1.436
Ermp1	1.315	Hamp	−1.435
Cd86	1.315	Os9	−1.435
Tapbp	1.315	Ganab	−1.434
Cyp2c55	1.315	Mcm10	−1.432
2610305D13Rik	1.314	Rab43	−1.432
Ccl4	1.314	Rshl2a	−1.431
1700047I17Rik	1.314	Sgpl20	−1.431
Snx3	1.313	Josd2	−1.430
Mcm6	1.312	Cyp2c70	−1.430
Ccdc120	1.310	Aldh16a1	−1.428
Slc16a6	1.310	Vkorc1	−1.428
Nipa1	1.308	Gorasp1	−1.428
Arl2bp	1.308	Dap	−1.427
1190002N15Rik	1.308	Pim3	−1.426
Cry1	1.308	Aox3	−1.425
Lltaf	1.307	Rps15	−1.425
Jak1	1.306	Cyp27a1	−1.425
Cdkn2c	1.306	2310007F21Rik	−1.425
Rhod	1.306	Acy1	−1.424
Bcl2I3	1.306	Mug2	−1.424
Acot10	1.305	Stk11	−1.424
Alfm1	1.303	Yilf1b	−1.424
Phca	1.303	Irf3	−1.423
Arcn1	1.303	Fbx1l10	−1.423
Esr1	1.303	Rapgef4	−1.423
Palid	1.301	Tm2d2	−1.422
Ldlr	1.301	Serpinf2	−1.422
Rab8b	1.300	Ceacam1	−1.422
Csnk1g2			−1.422
Hnrpc			−1.421
Gpld1			−1.421

Hist1h2bh	−1.421
Sar4	−1.421
Bst2	−1.421
Acox2	−1.421
Sra1	−1.420
Cyp2c37	−1.420
Ef4ebp2	−1.420
Atp13a1	−1.420
Abat	−1.420
Per2	−1.419
Polr2f	−1.419
Slic1a2	−1.419
Bckdcb	−1.418
Itih1	−1.418
Pbid	−1.418
Fam134a	−1.417
Lgals4	−1.416
LOC100047856	−1.416
LOC100044324	−1.416
2900010M23Rik	−1.415
Rnase4	−1.415
Vtn	−1.415
Mrpl17	−1.414
Stat3	−1.414
Ankzf1	−1.414
5133401N09Rik	−1.414
Prpf8	−1.414
Bckdha	−1.413
Sirt7	−1.413
C1r	−1.413
Ndufb10	−1.413
EG13909	−1.413
Mug4	−1.412
Gmnt	−1.412
Bloc1s1	−1.411
Cuta	−1.411
Vrk3	−1.411
Fetub	−1.410
Lim2	−1.409
Tm7sf2	−1.407
Giltpd2	−1.407
Ppap2b	−1.407
Prei4	−1.407
Aal3	−1.407
A430005L14Rik	−1.406
Rpl36a	−1.406
Dnajc7	−1.406
Map2k2	−1.405
Dym	−1.405
Wdr45l	−1.404
Supplementary Table 1. Continued

Symbol	Fold Up	Symbol	Fold Down
Plekhg3	1.404	Als2	–1.387
Rps21	1.404	Kikb1	–1.387
Ghr	1.403	MGC18837	–1.386
Bmp1	1.403	Dcxr	–1.386
Tie1	1.403	1700029P11Rik	–1.386
Ppargc1b	1.402	Gaa	–1.385
Acad10	1.402	1700012H05Rik	–1.385
Rpl12	1.402	Gnl3	–1.385
Pnpo	1.401	Hdgf	–1.385
Ddx3y	1.401	Atf1	–1.385
Galt	1.401	Tcf25	–1.384
Smoc1	1.401	Sdc2	–1.384
Cyp27a1	1.399	Atf2	–1.384
Clmn	1.399	Cyp2c67	–1.383
3110056O03Rik	1.399	Eef2	–1.383
Tex264	1.399	Mrp2	–1.383
Nat6	1.398	Usp2	–1.382
Pla2g12a	1.397	Timm10	–1.382
Srm	1.396	Fkbp8	–1.382
LOC100048020	1.396	0610012D14Rik	–1.382
Bat3	1.396	3300001P08Rik	–1.382
Tsc22d3	1.396	F12	–1.381
Mupcdh	1.396	2010100O12Rik	–1.381
Acat1	1.396	Slc26a1	–1.381
Cib1	1.396	Paox	–1.380
Exosc5	1.396	Afmid	–1.380
1300007L22Rik	1.396	Dpp3	–1.380
Sort1	1.394	Dpm2	–1.379
LOC545056	1.394	St3gal3	–1.378
Gtf3c1	1.392	Serpina1a	–1.378
Myo18a	1.392	281042815Rik	–1.377
LOC100048105	1.392	Akr7a5	–1.377
Csnk2a2	1.391	6430527G18Rik	–1.377
Csnk1g3	1.391	D19Wsu162e	–1.376
SerpinC1	1.391	Phb2	–1.376
Mrps28	1.391	Trabd	–1.376
Aamp	1.391	Txl14a	–1.376
Tha1	1.391	Macrod1	–1.376
Aars	1.390	Gamt	–1.375
Cope	1.390	Lgsn	–1.374
Br3	1.390	Atp5g2	–1.374
Nme3	1.389	JmjD6	–1.373
Pppl3b	1.389	Cyp27a1	–1.373
Ccde84	1.389	Cno	–1.373
Sir3	1.388	Naprt1	–1.372
1500032D16Rik	1.388	Hpn	–1.372
Mrps26	1.388	Il1rap	–1.371
Icl1	1.387	Rnf6	–1.370
TpST1	1.387	Atp1a1	–1.370
Prpf38b	1.387		
Supplementary Table 1. Continued

Symbol	Fold Up	Symbol	Fold Down
Yeats4	-1.370	Dph2	-1.356
Lmf1	-1.370	Nr1h2	-1.356
Bcas3	-1.370	Dcxr	-1.355
Echdc2	-1.370	Arg1	-1.355
Acot12	-1.370	Per1	-1.355
Kng1	-1.369	Cox4i1	-1.355
Hsd17b10	-1.369	1700021F05Rik	-1.354
Upb1	-1.369	Masp2	-1.354
D17Wsu92e	-1.369	St3b5	-1.353
Taf10	-1.369	Ctdsp1	-1.353
Keap1	-1.368	Akap8l	-1.352
Pcdcd5	-1.368	Slc37a4	-1.351
Plekhb1	-1.368	Rab18	-1.351
Mthfd1	-1.368	Mrps34	-1.351
Nr1h4	-1.367	Mfsd2	-1.350
BC0311181	-1.366	Ext2	-1.350
Fpgs	-1.366	Tlyh2	-1.350
Gphn	-1.366	Dnajb2	-1.350
Ccar1	-1.366	Lsm12	-1.349
Stard5	-1.366	Ddx24	-1.349
Slc25a38	-1.365	Tmem201	-1.349
Ccdc21	-1.365	Fh1	-1.348
Psmc5	-1.364	Cpn1	-1.348
C130074G19Rik	-1.364	Cxxc1	-1.348
0610007P22Rik	-1.364	Isy1	-1.347
Daird3	-1.364	Srm	-1.347
Mib2	-1.363	Ythdf1	-1.347
Tsc2	-1.363	Derl2	-1.346
Sec63	-1.363	Csrp2	-1.346
Myo6	-1.362	Gmnt	-1.346
Abbr1	-1.362	Mfn1	-1.346
1110008F13Rik	-1.362	Igfbp4	-1.345
Tspan33	-1.362	Rnf166	-1.345
Metti7b	-1.361	LOC100048105	-1.345
LOC100048445	-1.361	2700038C09Rik	-1.345
BC021381	-1.361	Herpud1	-1.345
H13	-1.361	Trf2	-1.344
Zfp91	-1.361	BC056474	-1.343
Arfl4	-1.360	Mon1a	-1.343
1810008A18Rik	-1.359	Itih4	-1.343
Tlc2d	-1.359	Upf1	-1.342
Ube2/3	-1.359	Rpl19	-1.342
6430706D22Rik	-1.359	Gdi1	-1.342
Prpf6	-1.359	Echdc2	-1.341
Cebp-a	-1.358	573045316Rik	-1.340
Tsta3	-1.358	Elf3g	-1.340
Aspscr1	-1.358	Dgcr2	-1.340
Gphn	-1.357	Fbxo34	-1.340
Ccnt1	-1.357	Mett11d1	-1.340
Prox1	-1.357		
Supplementary Table 1. Continued

Symbol	Fold Up	Symbol	Fold Down		
Ngef	–1.340	1110007A13Rik	–1.326		
Fastk	–1.340	Ctmn8	–1.326		
Pex6	–1.340	Wip2	–1.326		
Dexi	–1.340	1110007L15Rik	–1.326		
Bclaf1	–1.339	Vkorc1	–1.326		
Use1	–1.339	Elf3eip	–1.325		
Zifp607	–1.338	1810020D17Rik	–1.325		
EG545056	–1.338	DEXI	–1.325		
Ugt2a3	–1.338	Rpl28	–1.325		
Usp1	–1.337	SLC6A9	–1.324		
Cope	–1.337	Jmd3	–1.324		
Arrdc2	–1.337	130000101Rik	–1.324		
C1rl	–1.336	Cog8	–1.324		
Rabac1	–1.336	Ir3	–1.324		
Anp32a	–1.336	Chmp2a	–1.324		
Rlip	–1.336	D19Bwlg1357e	–1.323		
Prr14	–1.336	Itp2	–1.323		
620807	–1.336	LOC100047935	–1.323		
Limd1	–1.335	H2-K6	–1.323		
Ctsf	–1.335	Mrp3	–1.322		
Lemd2	–1.335	Mrp34	–1.322		
Lamp2	–1.335	Slc25a39	–1.322		
Cldn3	–1.335	Spcs3	–1.321		
Nol5	–1.335	Dhrs4	–1.321		
Man2c1	–1.334	Ppp1r9a	–1.321		
Scarb2	–1.333	Nags	–1.321		
Igf1	–1.333	Keap1	–1.321		
S100a13	–1.333	Cox7a2l	–1.320		
LOC100047937	–1.333	Moca1	–1.320		
Zbtb7a	–1.332	Sap30l	–1.320		
Ogfox2	–1.332	C63002BN24Rik	–1.319		
B3gnt1	–1.332	Zfand2b	–1.319		
Zbtb22	–1.331	LOC100045697	–1.319		
Atp6v0a1	–1.331	Pdcd2	–1.318		
Pnpla2	–1.331	Yipf3	–1.318		
Ptg	–1.331	Ctdsp1	–1.318		
Sdhb	–1.330	Mrps9	–1.318		
Cdo1	–1.329	Pig	–1.317		
Ilvbl	–1.329	Upb1	–1.317		
6720456B07Rik	–1.329	B020018G12Rik	–1.317		
Map1ic3b	–1.329	I1rap	–1.317		
Smarca2	–1.328	Gchfr	–1.316		
Fars2	–1.328	Rab3gap1	–1.316		
Whdc1	–1.328	Stc35e3	–1.316		
1110032A13Rik	–1.327	Rufy3	–1.316		
Dmwd	–1.327	Tmem63b	–1.316		
Morc3	–1.327	Nduv2	–1.316		
Myg1	–1.327	Pde4dip	–1.315		
Scap	–1.327	Avpr1a	–1.315		
Itfg3	–1.327	Ogfr	–1.315		
Symbol	Fold Up	Symbol	Fold Down		
-------------	---------	-------------	-----------		
Tec	1.314	Golga2	1.314		
Acads	1.314	Tnrc6a	1.314		
Sfb1	1.314	Faah	1.314		
1810026J23Rik	1.314	Arl3	1.313		
Tmem14c	1.313	Brms1	1.313		
Qprt	1.313	Atp5d	1.312		
Slc2a9	1.312	Sdc4	1.312		
Elf1b	1.311	Prdx4	1.311		
Dmtf1	1.311	Il6st	1.311		
Tmem204	1.311	Rnaseh2c	1.311		
Aldh111	1.310	Fis1	1.310		
Clcn2	1.310	Impdh2	1.310		
Cdk8	1.309	Wdr45	1.309		
Creb3L3	1.308	Aes	1.308		
Riolk3	1.308	Mta2	1.308		
Slc12a2	1.308	Morf4l1	1.307		
Trpc4ap	1.307	Tmem53	1.307		
2310044H10Rik	1.307	Snrpd2	1.307		
Cxcl12	1.306	Lcat	1.306		
Depdc6	1.306	Imp3	1.306		
2610003J06Rik	1.306	Proc	1.306		
Fbxo34	1.305	Dbp	1.305		
Ettb	1.305	Mrpl27	1.305		
Bola2	1.305	Elof1	1.305		
Cmtm8	1.305	Enpp1	1.305		
2410015M20Rik	1.304	Polr1a	1.304		
Pih1d1	1.304	Xrcc6	1.304		
Mbl2	1.304	Naca	1.304		
F12	1.304	2310003H01Rik	1.303	Tacc1	1.303
Gemin4	1.303	Slc1a2	1.303		
Tnx2	1.302	Gpt2	1.302		
LOC100045782	1.302	Slc9a3r1	1.302		
Elavl1	1.302	AA415398	1.301		
Sox5	1.301	Tmem143	1.300		
Rab8a	1.300	Atg2a	1.300		
Supplementary Table 2. Full List of Significantly Enriched Canonical Pathways and Gene Ontology Categories Modulated in PEDF Knockout Mice Livers

Up-Regulated Canonical Pathways [DATABASE_PATHWAY NAME]

Name	NES	FDR q Value
KEGG_GLUTATHIONE_METABOLISM	2.329	<.001
PID_INTEGRIN1_PATHWAY	2.221	.003
REACTOME_COLLAGEN_FORMATION	2.168	.006
REACTOME_GLUTATHIONE_CONJUGATION	2.136	.008
REACTOME_NCAM1_INTERACTIONS	2.089	.013
PID_SYNDECAN_1_PATHWAY	2.080	.013
PID_FOXM1PATHWAY	2.099	.014
REACTOME_EXTRACELLULAR_MATRIX_ORGANIZATION	2.057	.016
KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450	2.010	.020
KEGG(ECM RECEP)INTERACTION	2.029	.021
KEGG_HEMATOPOIETIC_CELL_LINEAGE	2.013	.022
PID_AVB3_INTEGRIN_PATHWAY	1.986	.024
PID_NFAT_TFPATHWAY	1.979	.024
REACTOME_INTERFERON_ALPHA_BETA_SIGNALING	1.966	.024
KEGG_DRUG_METABOLISM_CYTOCHROME_P450	1.971	.025
KEGG_CELL_CYCLE	1.915	.032
KEGG_DNA_REPLICATION	1.918	.033
REACTOME_DNA_STRAND_ELONGATION	1.923	.033
PID_TOLL_ENDOGENOUS_PATHWAY	1.928	.034
PID_FRA_PATHWAY	1.879	.046
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION	1.864	.049

Down-Regulated Canonical Pathways [DATABASE_PATHWAY NAME]

Name	NES	FDR q Value
REACTOME_PEPTIDE_CHAIN_ELONGATION	-2.878	<.001
REACTOME_TRANSLATION	-2.873	<.001
REACTOME_INFLUENZA_VIRAL_RNA_TRANSCRIPTION_AND_REPLICATION	-2.840	<.001
REACTOME_3_UTR_MEDIATED_TRANSLATIONAL_REGULATION	-2.827	<.001
KEGG_RIBOSOME	-2.821	<.001
REACTOME_NONSENSE_MEDIATED_DECAY_ENHANCED_BY_THE_EXON_JUNCT_COMPLEX	-2.797	<.001
REACTOME_SRP_DEPENDENT_COTRANSLATIONAL_PROTEIN_TARGETING_TO_MEMBRANE	-2.718	<.001
REACTOME_INFLUENZA_LIFE_CYCLE	-2.571	<.001
REACTOME_METABOLISM_OF_MRNA	-2.565	<.001
REACTOME_METABOLISM_OF_AMINO_ACIDS_AND_DERIVATIVES	-2.433	.005
REACTOME_METABOLISM_OF_RNA	-2.434	.005
REACTOME_ACTIVATION_OF_the_MRNA_UPON_BINDING_OF_THE_CAP_BINDING_COMPLEX	-2.416	.005
REACTOMEFORMATION_OF_THE_TERNARY_COMPLEX	-2.419	.005
KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM	-2.232	.049
Up-Regulated Gene Ontology Categories

Database Web Link: http://www.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=C5

Name	NES	FDR q Value
GLUTATHIONETRANSFERASE_ACTIVITY	2.041	.039
COLLAGEN	2.049	.071
CYTOKINE_ACTIVITY	1.907	.109

Down-Regulated Gene Ontology Categories

Database Web Link: http://www.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=C5

Name	NES	FDR q Value
STRUCTURAL_CONSTITUENT_OF_ribosome	-2.790	<.001
MITOCHONDRIAL_PART	-2.287	.048
AMINO_ACID_AND_DERIVATIVE_METABOLIC_PROCESS	-2.185	.050
MITOCHONDRIAL_MATRIX	-2.173	.051
PROTEASE_INHIBITOR_ACTIVITY	-2.162	.051
CARBOXYLIC_ACID_METABOLIC_PROCESS	-2.244	.052
REGULATION_OF_ANGIOGENESIS	-2.198	.053
NITROGEN_COMPOUND_CATABOLIC_PROCESS	-2.186	.053
MITOCHONDRION	-2.292	.054
NITROGEN_COMPOUND_METABOLIC_PROCESS	-2.215	.054
MITOCHONDRIAL_LUMEN	-2.200	.056
SERINE_TYPE_ENDOPEPTIDASE_INHIBITOR_ACTIVITY	-2.224	.056
ANATOMICAL_STRUCTUREFORMATION	-2.248	.056
MITOCHONDRIAL_ENVELOPE	-2.023	.057
ORGANELLE_INNER_MEMBRANE	-2.026	.059
AMINO_ACID_CATABOLIC_PROCESS	-2.005	.059
RIBOSOME	-2.031	.060
MITOCHONDRIAL_RIBOSOME	-2.047	.060
RIBOSOMAL_SUBUNIT	-2.250	.062
SPliceOSOME	-1.977	.062
DNA_DIRECTED_RNA_POLYMERASEII_HOLOENZYME	-1.939	.062
MITOCHONDRIAL_MEMBRANE	-2.048	.063

Note: FDR (false-discovery rate), FDR q value; NES, normalized enrichment score.
Supplementary Table 3. Full List of Chemical and Genetic Perturbations That Were Significantly Enriched in PEDF KO Mice Livers

Up-Regulated Chemical and Genetic Perturbation Datasets
Up-Regulated List Truncated at FDR < .005

Database Web Link: http://www.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=CGP

Name	NES	FDR q Value
LEE_LIVER_CANCER_ACOX1_UP	3.117	.000
LEE_LIVER_CANCER_E2F1_UP	3.017	.000
LEE_LIVER_CANCER_MYC_E2F1_UP	2.984	.000
LEE_LIVER_CANCER_MYC_TGFA_UP	2.911	.000
ICHIBA_GRAFT_VERSUS_HOST_DISEASE_35D_UP	2.892	.000
KHECHOUUMIAN_TRIM24_TARGETS_UP	2.891	.000
LEE_LIVER_CANCER_CIPROFIBRATE_UP	2.858	.000
LEE_LIVER_CANCER_DENA_UP	2.780	.000
WIELAND_UP_BY_HBV_INFECTION	2.772	.000
BORLAK_LIVER_CANCER_EGF_UP	2.742	.000
SERVITJA_LIVER_HNF1A_TARGETS_UP	2.742	.000
SHETH_LIVER_CANCER_VS_TXNIP_LOSS_PAM3	2.697	.000
SHETH_LIVER_CANCER_VS_TXNIP_LOSS_PAM2	2.635	.000
HESS_TARGETS_OF_HOXA9_AND_MEIS1_DN	2.622	.000
DEMAGALHAES_AGING_UP	2.605	.000
POOLA_INVASIVE_BREAST_CANCER_UP	2.580	.000
HECKER_IFNB1_TARGETS	2.516	.000
BOYault_LIVER_CANCER_SUBCLASS_G5_DN	2.507	.000
MCLACHLAN_DENTAL_CARIES_DN	2.476	.000
LE_EGR2_TARGETS_UP	2.445	.000
HOSHIDA_LIVER_CANCER_SUBCLASS_S1	2.403	.000
KIM_GLIS2_TARGETS_UP	2.390	.000
ICHIBA_GRAFT_VERSUS_HOST_DISEASE_D7_UP	2.385	.000
ALTEMEIER_RESPONSE_TO_LPS_WITH_MECHANICAL_VENTILATION	2.374	.000
JOHANSSON_GLIOMAGENESIS_BY_PDGFB_UP	2.373	.000
MCBRYAN_PUBERTAL_TGFBI_TARGETS_DN	2.366	.000
STEARMAN_TUMOR_FIELD_EFFECT_UP	2.361	.000
BURTON_ADIPogenesis_3	2.357	.000
FLECHNER_BIOPSY_KIDNEY_TRANSPLANT_REJECTED_VS_OK_UP	2.355	.000
MCBRYAN_PUBERTAL_BREAST_4_5WK_UP	2.340	.000
ONDER_CD1H1_TARGETS_2_DN	2.328	.000
MCBRYAN_PUBERTAL_BREAST_6_7WK_DN	2.322	.000
ISHIDA_E2F_TARGETS	2.297	.000
KORKOLA_TERATOMA	2.292	.000
LIU_VAV3_PROSTATE_CARCINOGENESIS_UP	2.290	.000
PASINI_SUZ12_TARGETS_DN	2.262	.001
MIKKelsen_NPC_HCP_WITH_H3K27ME3	2.253	.001
CHANG_CYCLING_GENES	2.253	.001
MOSELEIFNA_RESPONSE	2.252	.001
ZHOU_CELL_CYCLEGENES_IN_IR_RESPONSE_24HR	2.250	.001
BOYLAN_MULTIPLE_MYELOMA_C_D_DN	2.244	.001
PICCALUGA_ANGIOIMMUNOBLASTIC_LYMPHOMA_UP	2.233	.001
WENG_PPRTARGETS_LIVER_UP	2.233	.001
KANG_DOXORUBICIN_RESISTANCE_UP	2.232	.001
ACEVEDO_FGFR1_TARGETS_IN_PROSTATE_CANCER_MODEL_UP	2.231	.001
Supplementary Table 3. Continued

Name	NES	FDR
MCLACHLAN_DENTAL_CARIES_UP	2.229	.001
LENAOUR_DENDRITIC_CELL_MATURATION_UP	2.226	.001
BROWN_MYELOID_CELL_DEVELOPMENT_UP	2.222	.001
YAGI_AML_FAB_MARKERS	2.216	.001
NAKAYAMA_SOFT_TISSUE_TUMORS_PCA1_UP	2.214	.001
JECHLINGER_EPITHELIAL_TO_MESENCHYMAL_TRANSITION_UP	2.212	.001
TONKS_TARGETS_OF_RUNX1_RUNX1T1_FUSIONERYTHROCYTE_UP	2.209	.001
YAMASHITA_METHYLATED_IN_PROSTATE_CANCER	2.195	.001
STEARMAN_LUNG_CANCER_EARLY_VS_LATE_DN	2.193	.001
GAL_LEUKEMIC_STEM_CELL_DN	2.193	.001
ODONNELL_TARGETS_OF_MYC_AND_TFRC_DN	2.188	.001
TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_10D_UP	2.186	.001
CHIANG_LIVER_CANCER_SUBCLASS_PROLIFERATION_UP	2.163	.001
WALLACE_PROSTATE_CANCER_RACE_UP	2.163	.001
WHITFIELD_CELL_CYCLE_LITERATURE	2.162	.001
MORI_IMMATURE_B_LYMPHOCYTE_UP	2.159	.001
SMID_BREAST_CANCER_LUMINAL_B_DN	2.159	.001
CROONQUIST_NRAS_SIGNALING_DN	2.155	.001
TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_8D_DN	2.154	.001
CROONQUIST_IL6_DEPRIVATION_DN	2.151	.001
DELYS_THYROID_CANCER_UP	2.149	.001
MURATA_VIRULENCE_OF_H_PILORI	2.148	.001
LI_INDUCED_T_TO_NATURAL_KILLER_UP	2.144	.001
SERVITJA_ISLET_HNF1A_TARGETS_UP	2.131	.001
HAN_JNK_SINGALING_DN	2.129	.001
WIEDERSCHAIN_TARGETS_OF_BMI1_AND_PCGF2	2.122	.001
BERENJENO_ROCK_SIGNALING_NOT_VIA_RHOA_DN	2.119	.001
GOLDRATH_ANTIGEN_RESPONSE	2.119	.001
ZHOU_CELL_CYCLEGENES_IN_IR_RESPONSE_6HR	2.115	.001
YU_MYC_TARGETS_UP	2.114	.001
SCHUETZ_BREAST_CANCER_DUCTAL_INVASIVE_UP	2.113	.001
RODWELL_AGING_KIDNEY_NO_BLOOD_UP	2.107	.001
LIAN_LIPA_TARGETS_3M	2.097	.002
TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_16D_UP	2.097	.002
SWEET_KRAS_TARGETS_UP	2.096	.002
TSAI_RESPONSE_TO_RADIOATION_THERAPY	2.094	.002
MIKKELEN_MC6_HCP_WITH_H3K27ME3	2.094	.002
MARTORIATI_MDM4_TARGETS_NEUROEPITHELIUM_DN	2.093	.002
RHODES_UNDIFFERENTIATED_CANCER	2.092	.002
CHIARADONNA_NEOPLASTIC_TRANSFORMATION_KRAS_CDC25_DN	2.090	.002
HAN_JNK_SINGALING_UP	2.089	.002
AMIT_SERUM_RESPONSE_40_MCF10A	2.088	.002
WORSCECHEM_TUMOR_EVASION_AND_TOLEROCERICITY_UP	2.087	.002
LIAN_LIPA_TARGETS_6M	2.086	.002
AKL_HTLV1_INFECTION_UP	2.081	.002
OKAMOTO_LIVER_CANCER_MULTICENTRIC_OCCURRENCE_UP	2.081	.002

Database Web Link: http://www.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=CGP
Supplementary Table 3. Continued

Up-Regulated Chemical and Genetic Perturbation Datasets

Up-Regulated List Truncated at FDR < .005

Name	NES	FDR q Value
LEE_EARLY_T_LYMPHOCYTE_UP	2.080	.002
LABBE_TARGETS_OF_TGFBI1_AND_WNT3A_DN	2.080	.002
KATSANOU_ELAVL1_TARGETS_UP	2.079	.002
VANHARANTA_UTERINE_FIBROID_UP	2.074	.002
CHICAS_RB1_TARGETS_GROWING	2.073	.002
RODWELL_Aging_KIDNEY_UP	2.072	.002
VECCHI_GASTRIC_CANCER_ADVANCED_VS_EARLY_UP	2.067	.002
ABRAHAM_ALPC_VS_MULTIPLE_MYELOMA_UP	2.067	.002
LIM_MAMMARY_LUMINAL_MATURE_DN	2.066	.002
KENNY_CTNNB1_8TARGETS_UP	2.050	.002
BASAKI_YBX1_TARGETS_UP	2.046	.002
LIANG_SILENCED_BY_METHYLATION_UP	2.045	.002
CAVARD_LIVER_CANCER_MALIGNANT_VS_BENIGN	2.038	.003
KEEN_RESPONSE_TO_ROSIGLITAZONE_DN	2.036	.003
DAUER_STAT3_TARGETS_DN	2.035	.003
KAMMINGA_EZH2_TARGETS	2.032	.003
CHANG_IMMORTALIZED_BY_HPV31_DN	2.031	.003
KOBAYASHI_EGFR_SIGNALING_24HR_DN	2.027	.003
JEON_SMAD6_TARGETS_UP	2.022	.003
IGLESIAS_E2F_TARGETS_UP	2.017	.004
DAZARD_RESPONSE_TO_UV_SCC_UP	2.016	.004
SENGUPTA_ANDRAVYNGEAL_CARCIOMA_UP	2.008	.004
ROSS_AML_WITH_CBFB_MYH11_FUSION	2.007	.004
URS_ADIPOCYTE_DIFFERENTIATION_DN	2.006	.004
DAZARD_RESPONSE_TO_UV_SCC_UP	2.006	.004
VERHAAK_AML_WITH_NPM1_MUTATED_UP	2.006	.004
GOBERT_Oligoendocytosome_DIFFERENTIATION_UP	2.004	.004
MEISSNER_BRAIN_HCP_WITH_H3K27M3	2.001	.004
KAMIKUBO_MYOELID_CEBPA_NETWORK	1.998	.004
VERHAAK_GIOBLASTOMA_NEURAL	1.997	.004
LIANG_SILENCED_BY_METHYLATION_2	1.992	.004
TURASHVILI_BREAST_LOBULAR_CARCINOMA_VS_LOBULAR_NORMAL_DN	1.989	.005
TAKEDA_TARGETS_OF_NUP98_HOXA9_FUSION_3D_UP	1.980	.005
MCDOWELL_ACUTE_LUNG_INJURY_UP	1.974	.005

Down-Regulated Chemical and Genetic Perturbation Data Sets

Database Web Link: http://www.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=CGP

Name	NES	FDR q Value
HSIAO_LIVER_SPECIFIC_GENES	−2.829	.000
LEE_LIVER_CANCER_SURVIVAL_UP	−2.743	.000
OHGUCHI_LIVER_HNF4A_TARGETS_DN	−2.645	.000
BILANGES_SERUM_AND_RAPAMYCINSensitive_GENES	−2.596	.000
CAIRO_HEPATOBLASTOMA_DN	−2.601	.000
CHIANG_LIVER_CANCER_SUBCLASS_PROLIFERATION_DN	−2.526	.001
BOYAULT_LIVER_CANCER_SUBCLASS_G3_DN	−2.529	.001
Supplementary Table 3. Continued

Down-Regulated Chemical and Genetic Perturbation Data Sets

Database Web Link: http://www.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=CGP

Name	NES	FDR q Value
CHNG_MULTIPLE_MYELOMA_HYPERPLOID_UP	-2.483	.003
SU_LIVER	-2.408	.011
SHETH_LIVER_CANCER_VS_TXNIP_LOSS_PAM4	-2.351	.025
BOYault_LIVER_CANCER_SUBCLASS_G123_DN	-2.327	.028
HOSHIDA_LIVER_CANCER_SUBCLASS_S3	-2.331	.030
SERVITJA_LIVER_HNF1A_TARGETS_DN	-2.310	.030
WOO_LIVER_CANCER_RECURRENT_DN	-2.314	.030
CAIRO_LIVER_DEVELOPMENT_DN	-2.279	.039
LEE_LIVER_CANCER_ACOX1_DN	-2.241	.051

Note: FDR (false-discovery rate) q value: adjusted P value; NES, normalized enrichment score.