Differences in the Slope of the QT-RR Relation Based on 24-Hour Holter ECG Recordings between Cardioembolic and Atherosclerotic Stroke

Akira Fujiki¹ and Masao Sakabe²

Abstract

Objective Detecting paroxysmal atrial fibrillation in patients with ischemic stroke presenting in sinus rhythm is difficult because such episodes are often short, and they are also frequently asymptomatic. It is possible that the ventricular repolarization dynamics may reflect atrial vulnerability and cardioembolic stroke. Hence, we compared the QT-RR relation between cardioembolic stroke and atherosclerotic stroke during sinus rhythm.

Methods The subjects comprised 62 consecutive ischemic stroke patients including 31 with cardioembolic strokes (71.8±12.7 years, 17 men) and 31 with atherosclerotic strokes (74.8±10.8 years, 23 men). The QT and RR intervals were measured from ECG waves based on a 15-sec averaged ECG during 24-hour Holter recording using an automatic QT analyzing system. The QT interval dependence on the RR interval was analyzed using a linear regression line for each subject ([QT]=A[RR]+B; where A is the slope and B is the y-intercept).

Results The mean slope of the QT-RR relation was significantly greater in cardioembolic stroke than in atherosclerotic stroke (0.187±0.044 vs. 0.142±0.045, p<0.001). The mean QT, RR, or QTc during 24-hour Holter recordings did not differ between them. An increased slope (>0.14) of the QT-RR regression line could predict cardioembolic stroke with 97% sensitivity, 55% specificity and a positive predictive value of 64%.

Conclusion The increased slope of the QT-RR linear regression line based on 24-hour Holter ECG in patients with ischemic stroke presenting in sinus rhythm may therefore be a simple and useful marker for cardioembolic stroke.

Key words: atherosclerotic stroke, cardioembolic stroke, paroxysmal atrial fibrillation, QT-RR relation

Introduction

In patients with acute ischemic stroke presenting in sinus rhythm, it is sometimes difficult to detect the association of paroxysmal atrial fibrillation (AF) because such episodes of paroxysmal AF are often short, and they are also frequently asymptomatic (1). The ventricular repolarization dynamics are considered to be a marker of ventricular vulnerability (2). The same channel as the determinants of ventricular repolarization could affect part of atrial repolarization (3). Hence, the ventricular repolarization dynamics may also reflect atrial vulnerability. Several previous studies have reported that QTc prolongation is associated with an increased risk of AF and stroke independent of the traditional stroke risk factors (4, 5). It is proposed that a prolonged QT existed before and after cardioembolic stroke episodes and the presence of a prolonged QT may be used as a marker for cardioembolic stroke. However, heart rate correction using the Bazett formula has serious limitations for evaluating the QT interval at lower and higher heart rates (6, 7). We have previously demonstrated the usefulness of the QT-RR slope and intercept assessment in ventricular repolarization dynamics using 24-hour Holter ECG recordings (8).
Materials and Methods

This retrospective study consisted of 62 consecutive patients who had acute ischemic stroke including 31 patients (17 men, 14 women, average age 71.8±12.7 years) with cardioembolic stroke and 31 patients (23 men, 8 women, average age 74.8±10.8 years) with atherosclerotic stroke. Any patients with persistent or permanent AF were excluded. All patients who had acute ischemic stroke including 31 patients (17 men, 14 women, average age 71.8±12.7 years) with atherosclerotic stroke.

We hypothesized that the assessment of the QT-RR relation can be used as a marker of cardioembolic stroke. In this study, we retrospectively evaluated the QT-RR relation based on a 15-sec averaged ECG during 24-hour Holter ECG recordings in patients who had acute ischemic stroke and compared the QT-RR regression line between cardioembolic and atherosclerotic stroke.

Table 1. Clinical Characteristics and the QT-RR Regression Line Slope and Intercept in Cardioembolic and Atherosclerotic Stroke.

	Cardioembolic Stroke	Atherosclerotic Stroke	p value
n	31	31	
Age (years)	71.8±12.7	74.8±10.8	0.344
male/female	17/14	23/8	0.184
HT	20	23	0.582
DL	12	11	0.783
DM	3	10	0.059
CHADS2 score	3.29±0.82	3.65±0.71	0.074
LVEF (%)	65.3±6.6	64.4±6.0	0.580
LAD (mm)	32.8±8.3	34.4±4.5	0.370
Mean RR (sec)	0.897±0.149	0.911±0.149	0.735
Mean QT (sec)	0.407±0.048	0.397±0.032	0.358
Mean QTc	0.431±0.032	0.417±0.033	0.105
Slope of QT-RR	0.187±0.044	0.142±0.045	<0.001
Intercept of QT-RR	0.241±0.045	0.270±0.036	<0.05

Data presented as mean±SD.

HT: hypertension, DL: dyslipidemia, DM: diabetes mellitus, LVEF: left ventricular ejection fraction, LAD: left atrial dimension

The results are presented as the mean ± standard deviation (SD). Unpaired data were analyzed using the Student’s t-test for continuous variables and the chi-square analysis for categorical variables. A receiver operating characteristic (ROC) curve analysis for predicting cardioembolic stroke was performed to calculate the optimal cutoff value for the slope of the QT-RR regression line. Statistical significance was set at p<0.05. Data were analyzed using the SPSS software program for Windows.

Results

Patients with cardioembolic stroke consisted of 12 patients having episodes of paroxysmal AF and 19 patients without significant stenosis of both the carotid artery and intracranial artery. The number of patients with frequent episodes of premature atrial contraction (>1,000/24 hours) did not differ between the cardioembolic and atherosclerotic stroke groups (5 vs. 3). There was no significant difference in terms of the patient clinical characteristics between cardioembolic stroke and atherosclerotic stroke (Table 1). A representative QT-RR relationship in a 65-year-old woman with cardioembolic stroke is shown in Fig. 1. She had right hemiplegia and aphasia on admission and showed no episodes of paroxysmal AF. Continuous ECG monitoring revealed an episode of paroxysmal AF. The slope and intercept of the QT-RR regression was 0.19 and 0.25. Fig. 2 shows a 73-year-old man with atherosclerotic stroke. On admission he had aphasia. ECG monitoring revealed no episode of paroxysmal AF, but ultrasound showed 92% stenosis of left carotid artery. The slope and intercept of the QT-RR
regression was 0.10 and 0.28. A scatter diagram of the QT-RR linear regression line slope and intercept in acute ischemic stroke patients showed similar negative linear correlations to the control subjects (7) (ischemic stroke: B=
Figure 3. Scatter plots of the QT-RR regression line slope and intercept in healthy subjects (466) and ischemic stroke patients (62).

Figure 4. Scatter plots of the QT-RR regression line slope and intercept in cardioembolic stroke (CS, brown triangle) and atherosclerotic stroke (AS, blue circle).

Table 2. Clinical Characteristics and the QT-RR Regression Line Slope and Intercept in Cardioembolic Stroke Patients with and without Episodes of Paroxysmal Atrial Fibrillation (AF).

Episodes of AF	No episode of AF	p value	
n			
Age (years)	75.5±9.4	70.3±13.8	ns
male/female	7/5	10/9	ns
HT	7	13	ns
DL	4	8	ns
DM	2	1	ns
CHADS2 score	3.33±1.07	3.26±0.65	ns
LVEF (%)	67.5±8.3	64.2±5.4	ns
LAD (mm)	33.5±5.2	32.4±9.7	ns
Mean RR (sec)	0.894±0.122	0.884±0.163	ns
Mean QT (sec)	0.405±0.052	0.404±0.044	ns
Mean QTc	0.429±0.043	0.432±0.023	ns
Slope of QT-RR	0.195±0.048	0.183±0.042	ns
Intercept of QT-RR	0.231±0.040	0.244±0.043	ns

Data presented as mean ± SD.

HT: hypertension, DL: dyslipidemia, DM: diabetes mellitus, LVEF: left ventricular ejection fraction, LAD: left atrial dimension, ns: no significant

Discussion

The major findings of the present study were as follows: (1) the mean slope of the QT-RR relation was significantly greater in cardioembolic stroke than in atherosclerotic stroke; (2) the mean RR, the mean QT, or the mean QTc during 24-hour Holter ECG recordings did not differ between cardioembolic and atherosclerotic stroke; (3) an in-

-0.67A+0.36, r=-0.77; control subjects: B=-0.62A+0.34, r=-0.79 (Fig. 3). The distribution of the scatter diagram in cardioembolic stroke shifted to the right lower area compared to that in atherosclerotic stroke (Fig. 4). The mean slope of the QT-RR regression line was significantly greater in cardioembolic stroke than in atherosclerotic stroke (0.187±0.044 vs. 0.142±0.045, p<0.001) and the mean intercept was significantly smaller in cardioembolic stroke than in atherosclerotic stroke (0.241±0.045 vs. 0.270±0.036, p<0.05, Table 1). The mean QT, the mean RR, or the mean QTc using Bazett formula during 24-hour Holter ECG recording did not differ between cardioembolic and atherosclerotic stroke. In cardioembolic stroke there were no differences in the clinical characteristics and the QT-RR relations between the patients with and those without documented episodes of

paroxysmal AF (Table 2).

An ROC curve analysis for predicting cardioembolic stroke was performed to calculate the optimal cutoff value for the slope of QT-RR regression line. The area under the curve of the slope of QT-RR regression line was 0.775 and the optimal cutoff value to predict cardioembolic stroke was 1.40 yielding 97% sensitivity, 55% specificity, a positive predictive value of 64%, and a negative predictive value of 93% (Fig. 5).
increased slope (≥0.14) of the QT-RR regression line could predict cardioembolic stroke with 97% sensitivity, 55% specificity, and a 63% positive predictive value. We speculate that the QT-RR regression line slope during the 24-hour Holter ECG may therefore be a new useful marker for cardioembolic stroke.

Slope and intercept relationship of the QT-RR regression line

The QT-RR dynamics were affected both by the QT-RR slope and by the QT-RR intercept. We evaluated the relationship between the slope and the intercept using a scatter plot and we found a statistically significant negative correlation between the QT-RR slope and intercept among a large number of healthy subjects (8). This distribution may be related to the differences in background repolarization in each subject. A combination of the rapid component of the delayed rectifier potassium current (IKr) and the slow component of the delayed rectifier potassium current (IKs) may play an important role in the modulation of ventricular repolarization to heart rate (9). It is possible that the suppression of IKr mainly increases the QT-RR slope and decreases the intercept; on the other hand, the suppression of IKs is known to mainly decrease the QT-RR slope and increase the intercept (10).

An analysis of the QT-RR slope from the 24-hour Holter ECG is commonly used to evaluate the QT dynamics. An increased slope of the QT-RR regression line was observed in patients with post-myocardial infarction (11), long QT syndrome (10), dilated cardiomyopathy (2), congestive heart failure (12, 13), and diabetic patients with autonomic dysfunction (14). Watanabe et al. reported that the QT-RR slope >0.17 was associated with sudden death in patients with stable chronic heart failure (12). A QT-RR slope >0.19 was proposed to be an independent risk marker for sudden death in patients with dilated cardiomyopathy (2). Cygankiewicz et al. demonstrated that a QT-RR slope of >0.22 was associated with increased total mortality in patients with chronic heart failure (13). Shimon et al. showed an inverse relationship between the high frequency component of the heart rate variability and the slope of QT-RR regression in diabetic patients and suggested an association between a steeper slope of QT-RR regression and diabetic neuropathy (14).

QT interval and cardioembolic stroke

Several previous studies have reported that QTc prolongation is associated with an increased risk of incident AF independent of traditional AF risk factors (5, 15). An increased risk of AF in patients with long QT syndrome has also been reported (3). A prolonged QT interval may be related to enhanced activity of the late Na current which increases intracellular Ca and triggered automaticity in the atrium. QT prolongation is a well-known predictor of cardiovascular mortality and is also a marker of cardiac disease. Hence, it is possible that a prolonged QT is associated with cardiac disease in itself and is not associated with AF directly. On the other hand, Nielsen demonstrated not only a longer QT, but also a shorter QT to be a risk marker of lone AF having no underlying structural heart disease (J-shaped association) (5).

A prolonged QTc also has been reported to be a risk marker of ischemic stroke and the post-stroke prognosis (4). Hoshino et al. assessed the predictive value of a prolonged QTc in paroxysmal AF detection after acute ischemic stroke (16). They found the QTc to be significantly longer in patients with paroxysmal AF than in those without.

Conclusion

The slope of the QT-RR regression line during 24-hour...
Holter ECG may thus be a simple and useful marker for cardioembolic stroke.

The authors state that they have no Conflict of Interest (COI).

Acknowledgement
We gratefully acknowledge the valuable technical assistance of Ms. Kumiko Kobayashi.

References
1. Sanna T, Diener HC, Passman RS, et al; CRYSTAL AF Investigators. Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 370: 2478-2486, 2014.
2. Iacoviello M, Forfeo C, Guida P, et al. Ventricular repolarization dynamicity provides independent prognostic information toward major arrhythmic events in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 50: 225-231, 2007.
3. Johnson JN, Tester DJ, Perry J, Salisbury BA, Reed CR, Ackerman MJ. Prevalence of early-onset atrial fibrillation in congenital long QT syndrome. Heart Rhythm 5: 704-709, 2008.
4. Soliman EZ, Howard G, Cushman M, et al. Prolongation of QTc and risk of stroke: The REGARDS (Reasons for geographic and racial differences in stroke) study. J Am Coll Cardiol 59: 1460-1467, 2012.
5. Nielsen JB, Graff C, Pietersen A, et al. J-shaped association between QTc interval duration and the risk of atrial fibrillation: results from the Copenhagen ECG study. J Am Coll Cardiol 61: 2557-2564, 2013.
6. Indik JH, Pearson EC, Fried K, Woosley RL. Bazett and Fridericia QT correction formulas interfere with measurement of drug-induced changes in QT interval. Heart Rhythm 3: 1003-1007, 2006.
7. Malik M, Färhom P, Batchvarov V, Hnatkova K, Camm AJ. Relation between QT and RR intervals is highly individual among healthy subjects: implications for heart rate correction of the QT interval. Heart 87: 220-228, 2002.
8. Fujiki A, Yoshioka R, Sakabe M. Evaluation of repolarization dynamics using the QT-RR regression line slope and intercept relationship during 24-h Holter ECG. Heart Vessels 30: 235-240, 2015.
9. Suto F, Zhu W, Chan A, Gross GJ. IKr and IKs remodeling differentially affects QT interval prolongation and dynamic adaptation to heart rate acceleration in bradycardic rabbits. Am J Physiol Heart Circ Physiol 292: H1782-H1788, 2007.
10. Takenaka K, Ai T, Shimizu W, et al. Exercise stress test amplifies genotype-phenotype correlation in the LQT1 and LQT2 forms of the long-QT syndrome. Circulation 107: 838-844, 2003.
11. Smetana P, Pueyo E, Hnatkova K, Batchvarov V, Laguna P, Malik M. Individual patterns of dynamic QT/RR relationship in survivors of acute myocardial infarction and their relationship to antiarrhythmic efficacy of amiodarone. J Cardiovasc Electrophysiol 15: 1147-1154, 2004.
12. Watanabe E, Arakawa T, Uchiyama T, et al. Prognostic significance of circadian variability of RR and QT intervals and QT dynamicity in patients with chronic heart failure. Heart Rhythm 4: 999-1005, 2007.
13. Cygankiewicz I, Zareba W, Vazquez R, et al. Prognostic value of QT/RR slope in predicting mortality in patients with congestive heart failure. J Cardiovasc Electrophysiol 19: 1066-1072, 2008.
14. Shimon o M, Fujiki A, Asahi T, Inoue H. Alteration in QT-RR relationship in diabetic patients with autonomic dysfunction. Ann Noninvasive Electrocardio 4: 176-181, 1999.
15. Mandyam MC, Soliman EZ, Alonso A, et al. The QT interval and risk of incident atrial fibrillation. Heart Rhythm 10: 1562-1568, 2013.
16. Hoshino T, Nagao T, Shiga T, et al. Prolonged QTc interval predicts poststroke paroxysmal atrial fibrillation. Stroke 46: 71-76, 2015.