Long non-coding RNA Fer-1-like protein 4 suppresses oncogenesis and exhibits prognostic value by associating with miR-106a-5p in colon cancer

Ben Yue, Bo Sun, Chenchen Liu, Senlin Zhao, Dongyuan Zhang, Fudong Yu and Dongwang Yan

1Department of General Surgery, Shanghai Jiao Tong University Affiliated First People’s Hospital, Shanghai; 2Department of Pharmacy, Shanghai Jiao Tong University Affiliated First People’s Hospital, Shanghai, China

Key words
colon cancer, FER1L4, MiR-106a-5p, prognosis, tumor marker

Correspondence
Dongwang Yan, Department of General Surgery, Shanghai Jiao Tong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080, China.
Tel: +86-21-63240090-3102; Fax: +86-21-63241377; E-mail: yandw70@aliyun.com

A new long non-coding RNA (lncRNA) that is called Fer-1-like protein 4 (FER1L4) has been confirmed to play crucial regulatory roles in tumor progression. It exerts an impact on tumor suppression and functions as a competing endogenous RNA (ceRNA) by sponging miR-106a-5p in gastric cancer. However, its clinical significance in colon cancer is completely unknown. The aim of the present study was to annotate the role of FER1L4 and its clinical value in colon cancer. The results showed the aberrant expression of FER1L4 and miR-106a-5p in colon cancer tissues. In addition, significant negative correlation between FER1L4 and miR-106a-5p expression levels was observed. Among the colon cancer cell lines, FER1L4 levels were relatively lower, with concurrent high levels of miR-106a-5p. Restoration of FER1L4 decreased the expression of miR-106a-5p, and had a significant influence on colon cancer cell proliferation, migration and invasion. The FER1L4 expression was correlated with depth of tumor invasion, lymph node metastasis, vascular invasion and clinical stage. Moreover, striking differences in overall survival and disease-free survival were observed for the cases with both low FER1L4 expression and high miR-106a-5p expression compared with cases with high FER1L4 expression and low miR-106a-5p expression. Circulating FER1L4 and miR-106a-5p levels were decreased and increased, respectively, in colon cancer patients after surgery. Our findings indicated that FER1L4 could exert a tumor suppressive impact on colon cancer, which at least, in part, through suppressing miR-106a-5p expression, and depletion of FER1L4, alone or combined with overexpression of miR-106a-5p, is predictive of poor prognosis in colon cancer and may play a crucial role in cancer prevention and treatment.
are one pair of ceRNA that show reciprocal repression to each other, there are currently no published investigations on the possible association of their expression with colon cancer progression. In the present study, the expression levels of FER1L4 and miR-106a-5p in colon cancer tissues and cell lines were determined. Then, the colon cancer cells were treated with pcDNA3.1-FER1L4, and cell proliferation, migration and invasion were analyzed. The correlations between FER1L4 and miR-106a-5p and their clinicopathological significance in colon cancer were investigated. Finally, in human plasma, the expression level of FER1L4 was examined.

Material and Methods

Specimens. A total of 176 tissue samples were collected from Shanghai Jiao Tong University Affiliated First People’s Hospital, China, from October 2005 to June 2007. The 70 fresh colon cancer tissues and matched adjacent nontumorous tissues and another 36 lymph node metastatic tissues were obtained from the Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (Shanghai, China). The remaining samples were obtained from the Shanghai Institute of Biochemistry and Cell Biology. A total of 176 tissue samples were collected from Shanghai Jiao Tong University Affiliated First People’s Hospital. The 70 fresh colon cancer tissues and matched adjacent nontumorous tissues and another 36 lymph node metastatic tissues were obtained from the Shanghai Institute of Biochemistry and Cell Biology. A total of 176 tissue samples were collected from Shanghai Jiao Tong University Affiliated First People’s Hospital, China, from October 2005 to June 2007. The 70 fresh colon cancer tissues and matched adjacent nontumorous tissues and another 36 lymph node metastatic tissues were obtained from the Shanghai Institute of Biochemistry and Cell Biology. The remaining samples were obtained from the Shanghai Institute of Biochemistry and Cell Biology.

Serological tumor marker analysis. Serum carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) were measured using an Elecsys 2010 machine (Roche Diagnostics, Basel, Switzerland). The cutoff values for CEA and CA19-9 were 5 ng/mL and 35 U/mL, respectively.

Statistical analysis. All statistical analyses were set with a significance level of \(P < 0.05 \). Data were performed using Statistical Program for Social Sciences (SPSS) 19.0 software (SPSS, Chicago, IL, USA). The paired \(t \)-test, the two-independent sample \(t \)-test, one-way ANOVA, the \(\chi^2 \)-test and the Kruskal–Wallis test were used as appropriate. All graphs were plotted using GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA, USA).

Results

Expression of Fer-1-like protein 4 and miR-106a-5p in colon cancer. The expression levels of FER1L4 and miR-106a-5p were examined in 70 pairs of colon cancer and matched adjacent normal tissues by qRT-PCR, and the results showed that FER1L4 was downregulated in 60.3% (44/70) of colon cancer tissues compared with the matched adjacent normal tissues (\(P < 0.001 \), Fig. 1a). Inversely, the levels of miR-106a-5p were increased in 60.1% (43/70) of cancer tissues. Furthermore, miR-106a-5p levels were increased with concurrent decreased levels of FER1L4 in 31 paired colon cancer tissues (\(P < 0.001 \), Fig. 1a). An inverse correlation between FER1L4 and miR-106a-5p was also observed in colon cancer tissues (\(P < 0.01 \), \(R^2 = 0.318 \), Fig 1b). In addition, FER1L4 and miR-106a-5p expression levels were assayed in five colon cancer cell lines, RKO, Lovo, HCT116, SW480 and SW620, and all the levels were normalized to the level in NCM460, a normal colon mucosal epithelial cell line. Among all the cancer cell lines, FER1L4 levels were lower with concurrent high levels of miR-106a-
5p (Fig. 1c), consistent with the expression of FER1L4 and miR-106a-5p in colon cancer tissues. It is noteworthy that FER1L4 was downregulated in 86.1% (31/36) of lymph node metastatic tissues, with significant means between lymph node metastatic tissues and primary cancer tissues (Table 1).

Fer-1-like protein 4 inhibits proliferation, migration and invasion of colon cancer cells. According to the findings that

Table 1. Expression of FER1L4 and miR-106a-5p in colon cancer tissues and lymph node metastatic tissues

	FER1L4	miR-106a-5p			
	High n (%)	Low n (%)	High n (%)	Low n (%)	
Cancer tissue	70	26 (37.1)	44 (62.9)	43 (61.4)	27 (38.6)
Lymph node metastatic tissue	36	5 (13.9)	31 (86.1)	29 (80.6)	7 (19.4)

*P < 0.05 indicates a significant difference in the expression of Fer-1-like protein 4 (FER1L4) and miR-106a-5p between primary colon cancer and lymph node metastatic tissues.
Fig. 2. Confirmation of FER1L4 transfection and its effect on colon cancer cell proliferation, migration and invasion. (a) FER1L4 transfection was validated by quantitative RT-PCR and the empty vector pcDNA3.1 transfected cells were used as controls. Reduction of MiR-106a-5p was consequent upon FER1L4 reintroduction. (b) Compared with control, FER1L4 exhibited a significant inhibition of colon cancer cell proliferation by CCK-8 assay, (c) migration and (d) invasion by Transwell assays. The experiments were repeated in triplicate. Data represent means and SD. Differences among the two groups were analyzed by ANOVA. Graphics were the representative presentations of cell migration and invasion from three independent experiments. *P < 0.05, **P < 0.01.
Expression of FER1L4 and miR-106a-5p in HCT116 and RKO cells were more significantly downregulated than in the other colon cancer cell lines, the HCT116 and RKO cells were treated with pcDNA3.1-FER1L4, respectively. As a result, FER1L4 expression levels were effectively restored; meanwhile, the FER1L4 reintroduction-induced reduction of miR-106a-5p was also observed (Fig. 2a). Using the Cell Counting Kit-8 assay, FER1L4-enhanced cells exhibited a significant proliferation inhibition compared with the control (Fig. 2b). Moreover, in the Transwell migration assay, pcDNA3.1-FER1L4 impeded the migratory ability of HCT116 and RKO cells effectively when compared to cells treated with pcDNA3.1 normal control (Fig. 2c). Similar results were observed in the invasion assay (Fig. 2d).

Correlation between Fer-1-like protein 4 expression and clinicopathological characteristics in colon cancer. Based on the above findings, whether FER1L4 and miR-106a-5p expression levels were associated with the clinicopathological features of patients with colon cancer were further analyzed. As in a previous report in which IncRNA FENDRR in tumor tissues were categorized as high or low according to the median value of FENDRR expression, \(^{(17)}\) in the present study, the colon cancer patients of this study were divided into two groups in relation to the median value of relative FER1L4 and miR-106a-5p expression levels. As shown in Table 2, the FER1L4 expression level demonstrated a negative association with depth of tumor invasion (pT stage, \(P = 0.011\)), lymph node metastasis (pN stage, \(P = 0.003\)), vascular invasion (\(P = 0.019\)) and AJCC stage (\(p < 0.001\)). MiR-106a-5p was positively associated with pT stage (\(P = 0.013\)), pN stage (\(P = 0.009\)), AJCC stage (\(P < 0.001\)) and vascular invasion (\(P = 0.010\)).

Downregulation of Fer-1-like protein 4 alone or combined with overexpression of miR-106a-5p predicts poor prognosis. A total of 48 of the 70 (68.6\%) patients who underwent curative operations experienced recurrent disease. The Kaplan–Meier plot showed that striking differences in OS and DFS were observed between the low FER1L4 expression group and the high FER1L4 expression groups (Fig. 3a). Meanwhile, miR-106a-5p showed no correlation with OS but was significantly associated with DFS (Fig. 3b). Notably, the patient group with both low FER1L4 and high miR-106a-5p expression exhibited a significant difference in prognosis compared with the patient group with high FER1L4 and low miR-106a-5p expression (Fig. 3c). Univariate and multivariate analysis demonstrated that decreased tumor FER1L4 expression was a significant independent prognostic factor for decreased survival and increased disease recurrence. In contrast, miR-106a-5p alone was not a prognostic indicator; however, it appeared to be an independent prognostic factor for OS and DFS when combined with FER1L4 in colon cancer (Table 3).

Expression of Fer-1-like protein 4 and miR-106a-5p in human plasma. Using the blood samples, the existence of FER1L4 and miR-106a-5p in human plasma was observed in the present study, and then the relationship between their expression levels with colon cancer patients was analyzed. From a total of 150 blood samples, including 50 preoperative colon cancer blood samples, 50 postoperative colon cancer blood samples one month after surgery and 50 healthy blood samples, we found that there was no difference of circulating FER1L4 between preoperative patients and healthy persons, and decreased levels of circulating FER1L4 in 70% (35/50) of colon cancer patients one month after surgery (\(P < 0.01\), respectively). As a result, FER1L4 expression levels were effectively restored; meanwhile, the FER1L4 reintroduction-induced reduction of miR-106a-5p was also observed (Fig. 2a). Using the Cell Counting Kit-8 assay, FER1L4-enhanced cells exhibited a significant proliferation inhibition compared with the control (Fig. 2b). Moreover, in the Transwell migration assay, pcDNA3.1-FER1L4 impeded the migratory ability of HCT116 and RKO cells effectively when compared to cells treated with pcDNA3.1 normal control (Fig. 2c). Similar results were observed in the invasion assay (Fig. 2d).

Table 2. Association between clinicopathologic features and FER1L4 or miR-106a-5p expression

Feature	Expression of FER1L4	P-value	Expression of miR-106a-5p	P-value
Age (years)				
<65	12 23	0.621	24 11	0.220
≥65	14 21		19 16	
Gender				
Male	17 25	0.480	23 19	0.160
Female	9 19		20 8	
Location				
Right	16 20	0.193	21 15	0.584
Others	10 24		22 12	
pT stage				
T1	9 5	0.011*	4 10	0.013*
T2	8 7		8 7	
T3	6 14		14 6	
T4	3 18		17 4	
pN stage				
N0	14 8	0.003*	10 12	0.009*
N1	7 15		11 11	
N2	5 21		22 4	
AJCC stage				
I	14 4	-0.001*	5 13	-0.001*
II	5 9		6 8	
III	4 18		19 3	
IV	3 13		13 3	
Differentiation				
Well	11 13	0.371	12 12	0.350
Moderate	8 12		13 7	
Poor	7 19		18 8	
Vessel invasion				
No	17 16	0.019*	15 18	0.010*
Yes	9 28		28 9	
Serum CA19-9				
Negative	13 26	0.459	22 17	0.333
Positive	13 18		21 10	
Serum CEA				
Negative	15 19	0.241	19 15	0.354
Positive	11 25		24 12	

*P < 0.05 indicates a significant association among the variables.
AJCC, American Joint Committee On Cancer; CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; FER1L4, Fer-1-like protein 4.

Discussion

In the present study, we verified for the first time the association of FER1L4 and miR-106a-5p expression with colon cancer progression. As a tumor suppressor, FER1L4 exhibits its clinical significance in colon cancer. We find that FER1L4
Fig. 3. Kaplan–Meier curves based on FER1L4, miR-106a-5p and their combined expression levels of 70 colon cancer patients. (a) The overall survival (OS) and disease-free survival (DFS) of the FER1L4 low group (n = 44) was significantly shorter than that of the high expression group (n = 26). (b) The DFS of the miR-106a-5p high group (n = 43) was significantly shorter than that of the low expression group (n = 27), but the OS was no different. (c) The OS and DFS of the FER1L4 low combined with the miR-106a-5p high expression group (FER1L4 low/miR-106a-5p high, n = 30) was significantly shorter than that of the FER1L4 high/miR-106a-5p low group (n = 15).
exerts tumor suppressive effects on colon cancer by mediating miR-106a-5p repression, and might serve as a novel biomarker for prognosis of colon cancer when evaluated with miR-106a-5p expression.

Although over the past decade research on microRNA in maintaining malignant disorders has dominated the field of non-coding RNA regulation, the effects of lncRNA on the tumorigenesis of colon cancer are still not completely known. A growing number of reports suggest that plenty of lncRNA could be used as diagnostic biomarkers and therapeutic targets in human cancers and play oncogenic or tumor suppressor roles in human cancer pathogenesis. For instance, colon cancer-associated transcript-1 (CCAT 1) was upregulated in gallbladder cancer tissues and cell lines, and suppression of CCAT

Table 3. Univariate and multivariate analysis of overall survival and disease-free survival after surgery

	Overall survival		Disease-free survival					
	Univariate	Multivariate	Univariate	Multivariate	Univariate	Multivariate	Univariate	Multivariate
	HR (95% CI)	P-value						
Age								
<65	–		–		–		–	
≥65	0.83 (0.44, 1.55)	0.558	1.06 (0.52, 2.07)	0.611	–		–	
Gender								
Male	–		–		–		–	
Female	0.95 (0.51, 1.80)	0.684	1.16 (0.63, 1.98)	0.475	–		–	
Location								
Right	–		–		–		–	
Other	1.03 (0.81, 1.96)	0.711	1.21 (0.68, 1.92)	0.536	–		–	
T stage								
T1	1.16 (0.81, 1.68)	0.419	1.27 (0.73, 1.81)	0.504	–		–	
T2	0.91 (0.54, 1.46)	0.206	0.94 (0.49, 1.51)	0.323	–		–	
T3	0.68 (0.29, 1.19)	0.015*	0.72 (0.31, 1.35)	0.032*	–		–	
T4	–		–		–		–	
N stage								
N0	–		–		–		–	
N1	3.28 (1.97, 5.48)	<0.001*	2.82 (0.81, 4.83)	0.007*	3.05 (1.65, 4.96)	<0.001*	2.34 (0.63, 4.26)	0.019*
N2	14.37 (6.83, 25.88)	<0.001*	7.25 (2.52, 33.89)	<0.001*	14.64 (7.44, 28.67)	<0.001*	5.56 (1.72 30.88)	<0.001*
AJCC stage								
I	–		–		–		–	
II	3.32 (0.75, 11.01)	0.404	2.59 (0.66, 9.98)	0.357	3.01 (0.63, 9.25)	0.335	2.38 (0.51, 8.40)	0.406
III	9.12 (2.28, 37.46)	0.009*	7.81 (1.97, 32.69)	0.024*	8.27 (1.84, 30.55)	0.006*	6.41 (1.56, 29.77)	0.029*
IV	26.21 (11.32, 101.43)	<0.001*	21.83 (8.95, 89.24)	<0.001*	22.56 (9.57, 98.27)	<0.001*	20.55 (8.18, 82.40)	<0.001*
Differentiation								
Well	–		–		–		–	
Moderate	1.17 (0.75, 1.93)	0.703	0.89 (0.40, 1.75)	0.682	–		–	
Poor	1.59 (1.03, 2.98)	0.425	1.13 (0.87, 2.59)	0.303	–		–	
Vascular invasion								
No	–		–		–		–	
Yes	3.06 (1.54, 5.85)	0.014*	3.48 (1.77, 6.12)	0.004*	–		–	
FER1L4								
Low	10.25 (5.09, 24.04)	<0.001*	3.99 (1.67, 9.01)	0.021*	8.87 (4.39, 19.65)	<0.001*	4.51 (1.99, 9.02)	0.032*
High	–		–		–		–	
miR-106a-5p								
Low	–		–		–		–	
High	2.07 (1.22, 3.85)	0.073	2.21 (1.46, 4.11)	0.034*	–		–	
FER1L4/miR-106a-5p								
High/Low	–		–		–		–	
Low/High	13.31 (4.86, 37.23)	<0.001*	7.39 (3.13, 18.45)	<0.001*	12.30 (4.96, 33.55)	<0.001*	9.09 (3.75, 25.88)	<0.001*

*P < 0.05 indicated that 95% CI of HR was not including. HR, hazard ratio; 95% CI, 95% confidence interval.
Fer-1-like protein 4 is a novel long non-coding RNA which was first published as occurring in gastric cancer tissues. In the current study, attenuation of FER1L4 was a frequent event in colon cancer tissues. It is noticeable that miR-106a-5p has recently been reported in several cancers; however, it has a controversial role and exerts oncogenic or suppressive impacts on different tumors. Our findings indicated that increased expression of miR-106a-5p was assessed in 60.1% (43/70) of colon cancer tissues, and its levels were found to be negatively correlated with FER1L4 expression. To our knowledge, it is the first study analyzing miR-106a-5p levels in colon cancer tissues. In addition, FER1L4 levels were lower in concurrent upregulation of miR-106a-5p in colon cancer cell lines, which is consistent with the results in cancer tissues.

Recent evidence demonstrated that some clinicopathological characteristics such as tumor clinical stage, histologic grade and distant metastasis can be used to predict tumor progression and as an independent prognostic factor on survival; however, optimal prognostic biomarkers for colon cancer have not been established until now. Therefore, the relationships among FER1L4, miR-106a-5p expression levels and clinicopathological characteristics were further explored. In our study, FER1L4 expression was significantly associated with tumor invasion depth, lymph node metastasis, distant metastasis and AJCC stage. Moreover, we found that colon cancer patients

miR-106a-5p free to bind to other targets, such as RB1 mRNA. However, whether there exist some other target genes except for RB1 participating in the FER1L4–miR-106a-5p ceRNA network in colon cancer needs to be further explored.

FER1L4 mediated miR-106a-5p repression in colon

Fig. 4. The comparison of FER1L4 and miR-106a-5p expression in plasma of preoperative and postoperative colon cancer patients (n = 50) and healthy controls (n = 50). (a) Plasma FER1L4 was significantly decreased (70%, 35/50) and (b) plasma miR-106a-5p was significantly increased (56%, 28/50) in postoperative blood samples compared with the matched preoperative ones. The different levels of plasma FER1L4 and miR-106a-5p were also obvious between the postoperative groups and healthy controls, but there were no differences between preoperative groups and healthy controls. The quantitation was calculated by using the ΔCt method and higher ΔCt means lower expression levels. *P < 0.05, **P < 0.01.
with low tumor FER1L4 expression were strongly linked to increased risk of poor survival and tumor recurrence. Univariate and multivariate analysis indicated that FER1L4 expression alone or combined with miR-106a-5p expression could be served as an independent prognostic factor for OS and DFS in colon cancer.

Recent studies demonstrated that some biomarkers, including lncRNA and microRNA, exist in human plasma. Therefore, FER1L4 and miR-106a-5p expression levels were detected in human plasma, among preoperative patients, postoperative patients and healthy persons. Although there was no difference in circulating FER1L4 between preoperative patients and healthy persons, it is noteworthy that circulating FER1L4 was significantly decreased in 70% (35/50) of colon cancer patients in the 1 month following surgery. In contrast, circulating miR-106a-5p revealed no statistical difference between healthy blood samples and preoperative blood samples; however, its levels had increased after surgery in 56% (28/50) of postsurgical patients. Based on this truth, we assumed that circulating FER1L4 expressed poorly in postsurgical colon cancer patients and its attenuation may be due to some oncogenic factors which could be secreted by micrometastatic circulating tumor cells (CTC), and miR-106a-5p, which might be released into peripheral blood by CTC mainly rather than primary tumor cells in view of the level changes among preoperative patients, postoperative patients and healthy persons. All these findings underscored the predictive potential of circulating FER1L4 and miR-106a-5p in colon cancer. It is possible that attenuation of circulating FER1L4 in colon cancer correlates with disease recurrence and metastasis, which needs to be verified in a larger prospective clinical investigation.

Collectively, based on the evidence that FER1L4 suppresses carcinogenesis via interaction with miR-106a-5p in colon cancer, we confirmed that colon cancer patients who had low FER1L4 expression and high miR-106a-5p expression tended to have a poor prognosis. It is possible that the reciprocal modulation of FER1L4 and miR-106a-5p may also involve other factors and signaling pathways. Thus, further investigations are warranted to advance our understanding of their effects in colon cancer. FER1L4 plays a crucial regulatory role in colon cancer, at least in part, by suppressing miR-106a-5p expression, and restoration of FER1L4 may provide a promising therapeutic option for suppressing colon cancer progression.

Acknowledgments

We thank Chenchen Liu and Fudong Yu for their excellent technical assistance and Senlin Zhao for providing clinical samples and patient data.

Disclosure Statement

The authors have no conflict of interest to declare.

References

1. Ferlay J, Shin HR, Bray F et al. Estimates of worldwide burden of cancer in 2008. GLOBOCAN 2008. Int J Cancer 2010; 127: 2893–917.
2. emal A, Siegel R, Xu J et al. Cancer statistics, 2010. CA: A Cancer J Clin 2010; 60: 277–300.
3. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol 2011; 21: 354–61.
4. Clark MB, Johnston RL, Inostroza-Ponta M et al. Genome-wide analysis of long noncoding RNA stability. Genome Res 2012; 22: 885–98.
5. Rimm JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81: 145–66.
6. Gibb EA, Brown CJ, Lam WL. The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011; 10: 38.
7. Mitra SA, Mitra AP, Triche TJ. A central role for long non-coding RNA in cancer. Front Genet 2012; 3: 17.
8. Khalil AM, Guttman M, Huarte M et al. Many human large intergenic non-coding RNAs associate with chromatin modifying complexes and affect gene expression. Proc Natl Acad Sci USA 2009; 106: 11667–72.
9. Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature 2012; 482: 339–46.
10. Tang JY, Lee JC, Chang YT et al. Long noncoding RNAs-related diseases, cancers, and drugs. Sci World J 2013; 2013: 943539.
11. Shao Y, Chen H, Jiang X et al. Low expression of lncRNA-Hm1lineRNAS717 in human gastric cancer and its clinical significances. Tumour Biol 2014; 35: 9591–5.
12. Li J, Chen Z, Tian L et al. LncRNA profile study reveals a three-lncRNA signature associated with the survival of patients with oesophageal squamous cell carcinoma. Gut 2014; 63: 1700–07.
13. Ji P, Diederichs S, Wang W et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003; 22: 8031–41.
14. Gupta RA, Shah N, Wang KC et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1077–81.
15. Tsaic MC, Spittle RC, Chang HY. Long intergenic noncoding RNAs: New links in cancer progression. Cancer Res 2011; 71: 3–7.
16. Xia T, Liao Q, Jiang X et al. Long noncoding RNA associated-competent endogenous microRNAs in gastric cancer. Sci Rep 2014; 4: 6088.
17. Xu X, Huang MD, Xia R et al. Decreased expression of the long non-coding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. J Hematol Oncol 2014; 7: 63.
18. Borel F, Konstantinova P, Jansen PL. Diagnostic and therapeutic potential of miRNA signatures in patients with hepatocellular carcinoma. J Hepatol 2012; 56: 1371–83.
19. Ma MZ, Chu BF, Zhang Y et al. Long non-coding RNA CCAT1 promotes gallbladder cancer development via negative modulation of miRNA-218-5p. Cell Death Dis 2015; 6: e1583.
20. Yuan JH, Yang F, Fang F et al. Long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 2014; 25: 666–81.
21. Wu W, Zhang XL, Tang HM et al. Long non-coding RNA HOTAIR is a powerful predictor of metastasis and poor prognosis and is associated with epithelial-mesenchymal transition in colon cancer. Oncol Rep 2014; 32: 395–402.
22. Liu Q, Huang J, Zhou N et al. LncRNA loc825194 is a p53-regulated tumor suppressor. Nucleic Acids Res 2013; 41: 4976–87.
23. Song H, Sun W, Ye G et al. Long non-coding RNA expression profile in human gastric cancer and its clinical significances. J Transl Med 2013; 11: 225.
24. Salmena L, Poliseno L, Tay Y et al. A cellRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011; 146: 353–8.
25. Jalali S, Bhartiya D, Lalwani MK et al. Systematic transcriptome wide analysis of IncRNA-miRNA interactions. PLoS ONE 2013; 8: e53823.
26. Wang J, Liu X, Wu H et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 2010; 38: 5366–83.
27. Kallen AN, Zhou XB, Xu J et al. The imprinted H19 IncRNA antagonizes let-7 microRNAs. Mol Cell 2013; 52: 101–12.
28. Liu XH, Sun M, Nie FQ et al. LncRNA HOTAIR functions as a competing endogenous RNA to sponging miR-331-3p in gastric cancer. Mol Cancer 2014; 13: 92.
29. Ye SB, Li ZL, Luo DH et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget 2014; 5: 5439–52.
30. Müller S, Nowak K. Exploring the microRNA-mRNA regulatory network in clear cell renal cell carcinomas by next-generation sequencing expression profiles. Biomed Res Int 2014; 2014: 948408.
31. Zhu F, Zhou G, Shao N et al. miR-106a-5p inhibits the proliferation and migration of astrocytoma cells and apoptosis by targeting FASTK. PLoS ONE 2013; 8: e72390.
32 Zhi F, Shao N, Wang R et al. Identification of 9 serum microRNAs as potential noninvasive biomarkers of human astrocytoma. Neuro Oncol 2015; 17: 383–91.
33 Foltran L, Maglio GD, Pella N et al. Prognostic role of KRAS, NRAS, BRAF and PIK3CA mutations in advanced colorectal cancer. Future Oncol 2015; 11: 629–40.
34 Jiang Y, Zhang C, Chen K et al. The clinical significance of DC-SIGN and DC-SIGNR, which are novel markers expressed in human colon cancer. PLoS ONE 2014; 9: e114748.
35 Han Y, Yang YN, Yuan HH et al. UCA1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pathology 2014; 46: 396–401.
36 Liu Z, Shao Y, Shi H et al. Clinical significance of the low expression of FER1L4 in gastric cancer patients. Tumour Biol 2014; 35: 9613–7.
37 Aherne ST, Madden SF, Huqhes DJ et al. Circulating miRNAs miR-34a and miR-150 associated with colorectal cancer progression. BMC Cancer 2015; 15: 329.
38 Zhang L, Chen X, Su T et al. Circulating miR-499 are novel and sensitive biomarker of acute myocardial infarction. J Thorac Dis 2015; 7: 303–8.
39 Zhang YH, Xia LH, Jin JM et al. Expression level of miR-155 in peripheral blood. Asian Pac J Trop Med 2015; 8: 214–9.

Supporting Information

Additional supporting information may be found in the online version of this article:

Table S1. Relationship of circulating FER1L4 and miR-106a-5p level changes (ΔΔCt) after surgery with clinicopathological factors of colon cancer patients.