Stomata Size in Relation to Ploidy Level in North American Hawthorns (Crataegus, Rosaceae)

Author(s): Brechann V. McGoey Kelvin Chau Timothy A. Dickinson
Published By: California Botanical Society
Source: Madroño, 61(2):177-193. 2014.
DOI: http://dx.doi.org/10.3120/0024-9637-61.2.177
URL: http://www.bioone.org/doi/full/10.3120/0024-9637-61.2.177
The impacts of ploidy level changes on plant physiology and ecology present interesting avenues of research, and many questions remain unanswered. Here, we examine the connections between cytotype, taxon, stomata characteristics, and environmental variables in black-fruited hawthorns of the Pacific Northwest (*Crataegus* ser. *Douglasianae*; Maleae, Amygdaloideae, Rosaceae). We explore the extent to which stomatal measurements can be used to predict ploidy level and how differences in ploidy level and stomata characteristics relate to geographic distributions. We sampled trees from across the geographic ranges of the putative sister taxa *Crataegus suksdorfii* (Sarg.) Kruschke (diploids and autotriploids) and *C. douglasii* Lindl. (tetraploids). We found that stomata differed between the two species, with tetraploid *C. douglasii* having larger average stomata sizes than diploid and triploid *C. suksdorfii*. We also obtained climatological and elevation data for the sites at which these samples were collected, and examined the associations between taxon, ploidy level, stomatal size and density, elevation, and environmental parameters. Our analyses indicate positive associations between stomatal size and latitude, and between ploidy level and elevation. Negative associations were found between temperature and precipitation variables and both ploidy level and stomatal size, particularly for the fall and winter quarters. There appeared to be no significant association between stomatal density and any of the environmental variables. Tetraploid *C. douglasii* occupied a wider range of environmental conditions than did either the diploids or the autotriploids.

Key Words: Agamospermy, climate, *Crataegus douglasii*, *Crataegus gaylussacia*, *Crataegus suksdorfii*, geographical parthenogenesis, polyploidy, stomata.
Polyploidy is frequently associated with gametophytic apomixis, notably in Ranunculus L. species (Hörandl 2008) and in many Asteraceae, Poaceae, and Rosaceae (Nogler 1984). In these cases the wider range of apomicts may be related not only to polyploidy but also to the ability to set seed in the absence of other conspecific individuals (Hörandl 2006; Lo et al. 2013).

Investigations of the distribution and frequency of polyploidy typically depend on the availability of tissue from which chromosome counts can be made or, increasingly, from which stainable, intact nuclei can be extracted and passed through a flow cytometer. Neither of these approaches offers much chance of success with existing specimens from museum collections. Taxonomic recognition of major morphological differences between ploidy levels may be sufficient in some cases, as in the contrast between diploid hawthorns, all of which have 20 stamens per flower, while almost all tetraploid hawthorns have 10 stamens per flower (Talent and Dickinson 2005). Unfortunately, this pattern is confounded by intraspecific variation in ploidy level (e.g., Crataegus suksdorfii [Sarg.] Kruschke [Dickinson et al. 2008]), and morphological variation among closely related tetraploids (e.g., C. crus-galli L. sensu lato [Dickinson and Phipps 1986]). In addition, flowering traits may not always be visible on herbarium specimens.

Considering these issues, researchers may seek proxies for direct measurements of chromosome number or nuclear DNA content. Cell size is one such proxy, since polyploids typically have larger cells than diploids (Stebbins 1950; Levin 1983; Otto 2007; Beaulieu et al. 2008). In plants, the size of pollen grains and of stomatal guard cell pairs may both be accessible with herbarium material and work on a variety of taxa, including Crataegus (Marshall 1978) and other Rosaceae (Joly and Bruneau 2007), has shown how these traits can be used to predict ploidy level in herbarium specimens (Buechler 2000; Joachimiak and Grabowska-Joachimiak 2000; Saltonstall et al. 2007; Chen et al. 2009). Relatively simple methods for light microscopy may have the potential to reveal the ploidy level of long dead individuals from which herbarium specimens of historical interest were collected. However, in hawthorns the variation in pollen grain size within ploidy levels is so great that, while overall size increases with nuclear DNA content measured in leaves, no prediction from pollen measurements to ploidy level is possible; only stainability differentiates the pollen of diploids (highly stainable) from that of polyploids (Dickinson, unpublished data).

Importantly, features such as stomatal size and density have been recognized as varying not only with ploidy level, but also with environmental factors, such as temperature and water availability (Wang and Clarke 1993). The links between cytotype, stomata, and environmental variables have important implications for the realized ranges of plant species, and could help explain the differences in the breadth and characteristics of habitats occupied by congeners. Here, we investigate the way in which ploidy level, stomatal dimensions, and stomatal density vary with each other, and in relation to geographic distribution and the environment, as indexed by latitude, elevation, and climate parameters. We ask the following questions: (1) does size or some other readily measurable characteristic of cells with a fixed ontogenetic trajectory like stomata vary with ploidy level in such a way that this parameter can be used to predict ploidy level? (2) does size or some other characteristic of stomata vary between taxa even when ploidy level is kept constant?, and finally (3) is cell size or other morphological variation between ploidy levels and taxa associated in any way with differences in geographic distribution?

MATERIALS AND METHODS

Crataegus L. is a genus of approximately 200 species of woody plants, part of a mostly fleshy-fruit clad (tribe Maleae Small) within an expanded subfamily Amygdaloideae Arn. (Rosaceae) (Potter et al. 2007; McNeill et al. 2012). *Crataegus* is taxonomically complex because, while the subgeneric classification of the genus into taxonomic sections and series (Phipps et al. 1990; Phipps and O’Kennon 2002) is broadly supported by morphology, not all subgeneric groups have been shown to be monophyletic (Lo et al. 2007, 2009). Moreover, species circumscriptions often inadequately reflect the occurrence of hybridization, gametophytic apomixis, and polyploidy. Black-fruited *Crataegus* series *Douglasianae* (Loud.) Rehder is one example of an apparently monophyletic group (Lo et al. 2007, 2009). This group is widespread in the Pacific Northwest of the United States and Canada and includes two well-known species, *Crataegus suksdorfii* (Sarg.) Kruschke and *C. douglasii* Lindl. *Crataegus suksdorfii* is restricted to the mesic conifer forest region of the Pacific Northwest (Brunsfeld and Johnson 1990), while *C. douglasii* can grow in more xeric areas and so has a much wider distribution, extending from the eastern slopes of the Cascades to the Rocky Mountains, with disjunct populations east of the continental divide (Hargrove and Luxmoore 1998; Dickinson et al. 2008).

Diploid, triploid, tetraploid, and pentaploid *C. suksdorfii* are now known (Dickinson et al. 2008; Lo et al. 2010a, 2013; Coughlan 2012), although only one of these cytotypes has, as yet, been given
taxonomic recognition. *Crataegus gaylussacia* A. Heller was described from Sonoma County, California, and has been shown to be triploid (Coughlan 2012, Dickinson et al. unpublished data), and to correspond more or less to the morphology of autotriploid individuals found elsewhere that would otherwise be referred to *C. suksdorfii* (Lo et al. 2010a). *Crataegus gaylussacia* has priority over the name *C. suksdorfii* if these names are applied to all 20-stamen, black-fruited hawthorns of the Pacific Northwest without regard to ploidy level (Phipps 2012, VASCAN 2013). In view of the variation in ploidy level documented for these plants (Talent and Dickinson 2005; Lo et al. 2013), we will retain the older usage of these names here (i.e., as referring to different biological entities). A publication clarifying the use of these names is currently in preparation (T. A. Dickinson, unpublished manuscript).

In contrast to *C. suksdorfii*, individuals of *C. douglasii* are almost exclusively tetraploid (Talent and Dickinson 2005; Lo et al. 2013), and distinctive morphotypes that have received taxonomic recognition (Phipps and O’Kennon 1998, 2002) appear to be of hybrid origin (Zarrei et al. 2012). Introgression from *C. douglasii* appears to be responsible for the allopolyploid cytotypes of *C. suksdorfii* (Lo et al. 2010a). The wider geographic distribution of tetraploid *C. douglasii* is associated with an apparently almost complete reliance on asexual seed production (Talent and Dickinson 2005; Coughlan 2012; Lo et al. 2013), as is also the case in polyploid *C. suksdorfii* (Dickinson et al. 1996; Lo et al. 2013). Diploid *C. suksdorfii*, on the other hand, appears to produce exclusively biparental, sexual seeds (Coughlan 2012; Lo et al. 2013).

Sampling

Sampling for this study draws on a large collection of mainly Pacific Northwest and Ontario specimens of *Crataegus* series *Douglasianae*, assembled and georeferenced for studies of morphological, breeding system, and ploidy level variation, that are housed for the most part in the Green Plant Herbarium (TRT) of the Royal Ontario Museum (Table 1). Many, but not all of these, are vouchers for studies of DNA sequence variation in the group (Lo et al. 2007, 2009; Coughlan 2012; Zarrei et al. 2012). To more fully sample the continental United States range of *C. douglasii*, permission was obtained to remove leaf material from two borrowed specimens from Michigan (Table 1). Specimens were selected that had sufficient mature leaves to permit removal of some for destructive sampling. In the geographic study, specimen selection had the further criterion that only *C. douglasii* and *C. suksdorfii* (both diploids and autotriploids) would be compared, unconfounded by being combined as in allopolyploid *C. suksdorfii* (Lo et al. 2009, 2010a). Locations of the individuals and populations studied were mapped using SimpleMappr (Shorthouse 2010).

Ploidy level determination. Most specimens studied are vouchers for flow cytometric ploidy level determinations (Talent and Dickinson 2005). However, because *C. douglasii sensu lato* has been found to be almost exclusively tetraploid (Talent and Dickinson 2005, Talent and Dickinson unpublished data), we have included some specimens of this taxon for which flow cytometric or chromosome count data are unavailable, and for our purposes have assumed that they are tetraploid (Table 1).

Stomatal Size – Population Level Comparison

Specimens for this study were selected to compare population samples of diploid (two populations, *n* = 7 and *n* = 10, Table 1), autotriploid, allotriploid, and allotetraploid (one population each, *all n* = 10) *C. suksdorfii* with two samples (each *n* = 10) of tetraploid *C. douglasii*, each of the latter sympatric with one of the allopolyploid *C. suksdorfii* populations Table 1 (Dickinson et al. 1996; Lo et al. 2009, 2010a).

Two leaves, randomly chosen from both short and long shoots were removed from each specimen, and two approximately 1 cm × 1 cm segments were excised from each leaf. For each leaf a random number from one to six was obtained and used to select a sampling position on the leaf (Fig. 1). Leaf segments were softened for 30–40 min in 70% ethanol, rinsed in tap water for 15–20 min, and then submerged overnight in 100% Drano® (S. C. Johnson & Son, Inc., Racine, WI) to clear the leaf segments (Buechler 2000). The following day, the samples were rinsed in water for 15–20 min, mounted in water on a microscope slide, and examined under Nomarski differential interference contrast at 800× magnification. Using MorphoSys v. 1.29 (Meacham and Duncan 1991), stomatal outlines were captured in order to calculate their length, width, area, and perimeter. In each leaf segment, five stomates were measured in five different quadrants of the leaf fragment: upper left, upper right, bottom left, bottom right, and middle, giving a total of 25 stomates measured per segment. To avoid counting a stomate more than once, the same counting sequence was used consistently (i.e., after the first stomate, go up, skip one, measure the following one; next, go left, skip one, count the following one; then up again and so on).

Stomatal Size and Density – Geographic Study

Specimens for this study were selected to compare diploid and autotriploid *C. suksdorfii*
Table 1. Site and Voucher Data for Population and Geographic Studies of Cell Size Variation in Relation to Ploidy Level in *Crataegus* Series *Douglassianae* (All 2004- Collections by TAD, E. Y. Y. Lo, and S. Nguyen; D1619 at MT02 Collected 2001 by TAD, F. Gervais, and J. S. Dickinson). Sites are numbered as in Fig. 7, and labeled as in previous studies. Ploidy level determinations based on flow cytometry (Talent and Dickinson 2005; Lo et al. 2013). Except as noted, all vouchers are from the continental USA, and are housed at TRT. Some ploidy levels, where known, were determined by N. Talent from embryo (*), rather than leaf, tissue. Collector is TAD unless indicated otherwise (TAD = T. A. Dickinson; RED = R. E. Dotterer; EL = E. Y. Y. Lo; RML = R. M. Love).

State	Taxon	County	Site	Lat. N, Long. W	Elev. (m)	Site notes	Vouchers (population study)	Vouchers (geographic study)	Ploidy
California	*C. douglasii*	Plumas	(1) CAR1, Crescent Mills	40.094, 120.911	1068	within 120 m, and 11 m above, Indian Cr.	RED-CAR036		4x*
	Lindl. *sensu lato*	Shasta	(2) CAR2, Dana	41.114, 121.567	1017	within 100–110 m of, and at about the same level as, Dana Cr.	2006-12		4x
Idaho	*C. suksdorfii*	Marin	(3) CA5, 1 km W of Tomales	38.247, 122.913	87	on banks of seasonal watercourses	2010-5		3x*
	(Sarg.) *Kruschke*	Siskiyou	(4) CAR5, Scott Valley	41.397, 122.838	872	Scott R. floodplain			2x
		Sonoma	(5) CA7, Sebastopol	38.36, 122.8	180	Cunningham Marsh			3x
									4x
Idaho	*C. douglasii*	Adams	(6) ID06, Last Chance Campground	44.989, 116.19	1425	within 10 m of Goose Cr.	2005-05, 2005-06, 2005-07, 2005-08, 2005-11, EL-166, EL-179, EL-180, EL-181, EL-183		4x
	Lindl. *sensu lato*								
Idaho			(7) ID06a, Last Chance Road and Goose Creek	44.964, 116.206	1293	within 10 m of Goose Cr.	2001-82		4x*
Idaho		(8) White Bird	45.758, 116.306	476		roadside, above Whitebird Cr.	RML-9504		4x*
Lemhi	(9) ID16, Salmon	45.367, 113.952	1130			within 70 m, and 7 m above, Salmon R.	EL-190		4x
	River								
Nez Perce	(10) ID20, Highway 3	46.522, 116.733	291			within 300 m, and 5-10 m above, Little Potlatch Cr.	EL-121		4x
Idaho	*C. suksdorfii*	Adams	(11) ID06, Last Chance Campground	44.9989, 116.19	1425	within 10 m of Goose Cr.	EL-162, EL-163, EL-164, EL-167, EL-168, EL-172, EL-173, EL-179, EL-182, EL-184		3x
	(Sarg.) *Kruschke*								

Rows with * indicate that the ploidy levels were determined from embryos.
Table 1. Continued.

State	Taxon	County	Site Notes	Lat. N, Long. W	Elev. (m)	Site notes	Vouchers (population study)	Vouchers (geographic study)	Ploidy
Michigan	*C. douglasii* Lindl.	Houghton	within 50 m, and less than 1 m above, Crow Cr.	47.033, 88.617	200		Richards 2575 (CM)	-	4x
	sensu lato	Keweenaw		47.37, 88.303	330		Richards s.n. (DAO 591508)	-	
Montana	*C. douglasii* Lindl.	Lake	Cooper Lake Rd., within 50 m, and less than 1 m above, Rock Cr.	47.486, 114.113	923		D1611, EL-24, EL-31, EL-32, EL-34, EL-35, EL-38, EL-39, EL-40, EL-46	2001-31	4x*
	sensu lato	Powell		47.02, 112.946	1319		D1619, EL-29, EL-30, EL-33, EL-36, EL-37, EL-41, EL-43, EL-44, EL-45	EL-40	4x
	C. suksdorfii (Sarg.)	Powell	Cooper Lake Rd., within 50 m, and less than 1 m above, Rock Cr.	47.02, 112.946	1319		D1619, EL-29, EL-30, EL-33, EL-36, EL-37, EL-41, EL-43, EL-44, EL-45	EL-40	4x
	Kruschke								
Oregon	*C. douglasii* Lindl.	Grant	within 50 m, and 5 m above, the South Fork, John Day R.	44.372, 119.547	836		RML C2003-20	4x	4x
	sensu lato	Multnomah	within 300 m, and 20 m above, the Columbia R.	45.604, 122.04	29		RML-8521	-	
		Umatilla	roadside within 100 m, and 17 m above, tributary of Pine Cr.	45.795, 118.359	896		2008-81	4x	
	C. suksdorfii (Sarg.)	Columbia	beach ridge within approx. 30 m of the Columbia R.	45.734, 122.767	4		2005-16, EL-103, EL-104, EL-105, EL-106, EL-107, EL-109	2x	2x
	Kruschke	OR11, Sauvie Island							
		Umatilla	beach ridge within approx. 30 m of the Columbia R.						
		OR04, Upper Elk Meadows Research Natural Area							

2014] MCGOEY ET AL.: PLOIDY LEVEL AND STOMATA SIZE IN CRATAEGUS
State	Taxon	County	Site	Lat. N, Long. W	Elev. (m)	Site notes	Vouchers (population study)	Vouchers (geographic study)	Ploidy	
Josephine	(21) OR20, Deer Creek Center			42.277, 123.647	387	banks of Deer Cr.	2010-11		2x	
Lane	(22) OR06, Patterson Mountain Prairie			43.767, 122.619	1307	open seep	EL-48, EL-49, EL-50, EL-51, EL-52, EL-53, EL-54, EL-56, EL-57, EL-63		2010-12	2x
							EL53		3x	
							EL56		3x	
Linn	(23) OR01, Cogwell-Foster Reserve			44.334, 123.122	88	vernally moist Willamette Valley prairie, within 500 m and 2 m above, Little Muddy Cr. (Love and Feigen 1978)	EL-68, EL-72, EL-75		2x	
							EL-68, EL-72, EL-75		3x	
							RML-8712		2x	
Washington	(24) Hillsboro			45.557, 122.888	72	Edge of second-growth woods, powerline clearing	P. Zika 18483		2x	
Kittitas	(25) WA20, Ronald			47.24, 121.032	725	roadside hedgerow, within 100 m, and 5–10 m above, tributary of Cle Elum R.	2005-21		4x	
Thurston	(26) WA21, Mound Prairie, E side of Scatter Creek Rest Area on Interstate 5			46.837, 122.984	65	dry disturbed meadow, within 900 m, and 6 m above, Scatter Cr.	P. Zika 18438		4x	
Clark	(27) Ridgefield			45.855, 122.718	73	thicket at edge of meadow, within 500 m, and 70 m above, Mud Lake	P. Zika 18486 (same individual as P. Zika 18918)		2x	
Lewis	(28) Drews Prairie			46.467, 122.884	90	wet prairie remnant	P. Zika 189918 (same individual as P. Zika 18486)		2x	
							P. Zika 18995		2x	
with tetraploid *C. douglasii* across their continental United States ranges (Fig. 2, Dickinson et al. 2008). Leaf samples were examined from 15 *C. suksdorfii*, including eight diploids and seven autotriploids, and 17 tetraploid *C. douglasii* trees (Table 1).

The methods were the same as for the population-level study above, with the following exceptions. Softening the leaves was deemed unnecessary, and leaves were submerged in Drano® for 72 hr. Since the results of the previous study demonstrated that the sampling location on the leaf (Fig. 1) affected stomata size significantly (see Results), we restricted this study to leaf sections in the middle right of the leaf (section four in Fig. 1). Within each 1 cm² leaf section we examined an areole in each of four different, spatially separated regions (areoles are areas bounded by quaternary veins on all sides). We captured images of an areole at different focal depths using an Infinity 1 digital camera and the Infinity Analyze program supplied with it (Lumenera Corporation, Ottawa, ON). The images were stacked using Combine Z image software (Hadley 2010), and the stacked images were then imported back to the Infinity Analyze program. This was used to delimit individual areoles, determine their area, and count all the stomata found within an areole. We also used the program to measure the length and width of each stomata (Fig. 3). All measurements were automatically stored in an M.S. Access™ database (Microsoft, Redmond, WA).

Environmental data. Latitude and longitude for each collection site (Table 1) were used to obtain climate data (1971–2000 monthly normals for precipitation, and maximum and minimum temperature) using the online PRISM Data Explorer (PRISM Climate Group 2012). The geographic coordinates were also used to ascertain the elevation at each site using Google Earth (Version 7.1.2.2041 [software] available from http://www.google.com/earth/). Google Earth was also employed to estimate the proximity of sampling sites to bodies of water. The analyses described below used seasonal (quarterly) averages of the monthly normal values (Q1, winter, December–February; Q2, spring, March–May; Q3, summer, June–August; and Q4, fall, September–November). Some analyses also included the average minimum and maximum temperatures for the year, and total normal precipitation. Analyses of just the quarterly averages also included site elevation and latitude.

Statistical analyses. Statistical analyses were performed using R (R Development Core Team 2004). Normality of the size measurements was checked using qq plots and the Shapiro-Wilks test. Measurements found to be lognormally distributed were log-transformed. When analyz-

Table 1. Continued.

State	Taxon	County	Site	Lat. N, Long. W	Elev. (m)	Site notes	Ploidy
Wyoming	*C. douglasii*	Teton	(29) Targhee National Forest	43.277, 110.795	1782	Snake River floodplain	4x
Ontario, Canada	*C. douglasii* lato						
ing the stomata size data, two different methods were used to avoid the pseudoreplication problem of having many stomata measurements from the same leaves and trees. First, the mean values for each tree were calculated, and then compared. In the second analysis, we used a linear mixed effects model to determine the effect of ploidy and taxonomic group while accounting for the replication within leaves and trees. To analyze the relationship between stomatal traits, ploidy level, and climate variables we conducted a MANOVA and principal component analysis. We used the fourth-corner function in R from the ade4 package (Legendre et al. 1997, Dray and Legendre 2008) in order to infer relationships between our morphological data (stomata size and density; nuclear DNA content) and the environmental features of the sites referred to above.

RESULTS

While examining our *C. douglasii* and *C. suksdorfii* leaves, we made basic observations on the leaf surface characteristics (Fig. 3). The outlines of epidermal cells were wavy and cells surrounding the stomata appeared anomocytic. This is consistent with Metcalfe and Chalke’s (1979) description of Rosaceae epidermis, but not with observations of other *Crataegus* species studied by Ganeva et al. (2009).
Stomatal Size – Population-Level Study

Variation in stomatal size. The stomata ranged in length from 21 μm to 54 μm and their total areas ranged from 264 μm2 to 1486 μm2. As expected, stomata from tetraploid individuals were the largest (mean length 36 μm, compared to the overall mean of 34 μm). These results are consistent with analyses on the other size measures (width, perimeter, and area). Diploids had slightly larger average sizes than triploids, which were the smallest of the three ploidy groups. This is surprising, since triploids did have higher DNA content than diploids, which is expected to be correlated with cell size. We tested for such a relationship between DNA content and stomata size within each ploidy level, but there were no significant correlations (all P > 0.05).

The mean values for each leaf were determined and found to be normally distributed. Average stomata characteristics were consistently different between ploidy levels (all P values <0.001, see Fig. 4 for length), but not in a proportional manner (see below). Using an ANOVA to assess which factors affected stomatal characteristics, we found that both ploidy level and section of the leaf (Fig. 1) were significant (ploidy level and stomata length, P < 0.001; ploidy level and area, P < 0.001; leaf section and stomata length P < 0.001; leaf section and stomata area P < 0.001).

The mixed effects model of all the individual stomatal measurements was consistent with the analysis using size means. When examining the length of stomata, we found that ploidy was a significant factor (P < 0.001), and that the location measured on the leaf was as well (P < 0.001). In addition there was a significant interaction between ploidy level and measured location (P = 0.0071). The same was true when examining stomata area, with both ploidy level (P < 0.001) and leaf section (P < 0.001) being significant factors, the interaction term was also significant (P = 0.0124). Within tetraploids (C. douglasii, 4x C. suksdorfii; Fig. 4; Table 1), species was not a significant factor for stomata size (all P values >0.05).

Stomatal Size – Geographic Study

Variation in stomatal size. Stomata ranged in length from 15 μm to 57 μm, and the widths ranged from 9.8 μm to 38 μm. As was true in the population-level study, tetraploid C. douglasii had the largest stomata, and autotriploid C. suksdorfii had the smallest, although they were not significantly different from their diploid conspecifics (Fig. 5).

Again, two analyses were conducted to avoid pseudoreplication. Tree means were used to examine the effect of ploidy on stomata length and width. Ploidy level was a significant factor for both length and width. The second analysis, using the full data set while accounting for pseudoreplication within leaves and trees by including them as random factors, confirmed these findings, as the linear mixed effect models showed that ploidy was a significant factor for both stomata length (P < 0.001) and width (P < 0.001).

Variation in stomatal density. Stomatal density ranged from 88 stomates/mm2 to 323 stomates/mm2.

Fig. 3. Panels show Crataegus douglasii stomatal measurements: (A) Stomata width (i) and length (ii) were measured as the distances between the midpoints; (B) Crataegus douglasii stomata shown under 80× magnification. Stomata density was estimated by counting the number of stomata within an areole, and dividing by the total area of the areole.
Note that the densities are reported here in stomates/mm2 for ease of interpretation, but the areoles were 0.16 mm2 on average. The *C. douglasii* had an average stomata density of 166, while the diploid and triploid *C. suksdorfii* had average densities of 169 and 214 respectively. When all data were included in a simple ANOVA model, there was a significant difference between *C. douglasii* and *C. suksdorfii* ($P = 0.0215$), but this difference was driven by the higher density in triploids, so that when tree and leaf were included as random effects, the species difference was no longer significant ($P = 0.21$). Likewise, an ANOVA on tree means showed that there was not a significant difference in stomata density between ploidy levels ($P = 0.16$) or species ($P = 0.24$).

Environmental correlates. Comparisons between sites occupied by tetraploid *C. douglasii* and those occupied by *C. suksdorfii* (both diploids and autotriploids) showed the former to be cooler and more xeric (Figs. 6, 7). It is important to note that the environmental data were atmospheric, and may not be a precise reflection of water relations on the ground at each site. Nevertheless, except for the two Michigan sites for which hydrological conditions are unknown, each of the samples studied here are on flood plains, adjacent lakeshores, or on slopes down which water moves at or below the surface in response to local atmospheric conditions (Table 1). The results of the MANOVA analysis demonstrated a significant relationship between three climatological variables (annual precipitation, minimum and maximum temperature) and the *Crataegus* species at a site ($P = 0.0058$). Fourth-corner analyses demonstrated a significant relationship between several environmental factors and some but not all of the features of the hawthorn stomata (Fig. 8). Stomatal length and width covaried significantly with latitude, precipitation, and temperature, although the direction of the relationship depended on the quarter of the year examined (Fig. 8). Ploidy level was positively associated with elevation and negatively associated with precipitation and temperature (Fig. 8). There were no significant relationships between stomatal density and any of the environmental factors (Fig. 8).
Predicting Ploidy Level from Stomatal Measurements

Data from the population-level study and the geographical one were pooled in order to depict the predictive relationship between nuclear DNA content and stomatal size. Plotting nuclear DNA content against stomatal length (Fig. 9) demonstrates the way in which variation at the levels of leaf, individual, and sampling site vitiates any attempt to predict ploidy level from stomatal size: the ranges in size for each ploidy level overlap so much that any given size except the very smallest or the largest might correspond any one of the three ploidy levels studied here (Fig. 9). Similar relationships were observed by Marshall (1978) in Manitoba *Crataegus chrysocarpa* and *C. succulenta*. Although Marshall was probably incorrect in his inference that the smaller stomata of *C. succulenta* meant that this taxon is diploid (Ontario specimens have been shown to be triploid; Talent and Dickinson 2005), their size relative to those of *C. chrysocarpa* (tetraploid; Talent and Dickinson 2005) demonstrates the same trend we have observed.
The taxonomic complexity of the genus *Crataegus* has long been recognized (Camp 1942), as has the connection between this complexity and the occurrence of gametophytic apomixis, hybridization, and polyploidy (Dickinson and Phipps 1985, 1986; Lo et al. 2010b). This connection makes knowing the ploidy level and breeding system critical in order to make clear taxonomic judgments regarding *Crataegus* species. Determining ploidy level from chromosome counts is difficult because the tissues in which meiotic metaphases can be accumulated are available for less than a week, annually, at any given locality. Flow cytometry is an extremely valuable tool when studying *Crataegus*, but this method works mainly on living tissue, making it nearly useless especially with older herbarium material (e.g., type specimens). The only exception to this is the ability to obtain flow cytometric data from seeds (Table 1; Talent and Dickinson 2007). This approach has been shown to work on decades-old seeds, provided they have been stored in the cold (Talent personal communication). The only exception to this is the ability to obtain flow cytometric data from seeds (Table 1; Talent and Dickinson 2007). This approach has been shown to work on decades-old seeds, provided they have been stored in the cold (Talent personal communication).

Although the largest stomata in our study were from the tetraploid *C. douglasii* trees, stomata from autotriploid *C. suksdorfii* individuals were generally smaller than those of diploids (Fig. 5). In addition, there was wide variation in size within a ploidy level, and too much overlap between ploidy levels to make a comparison of average stomata size useful for assessing ploidy (Fig. 9). The relationship between genome and cell size is weaker in trees than in other plants (Beaulieu et al. 2008). The lack of a difference between *C. suksdorfii* cytotypes in stomata size may be a reflection of this. Stomata size is not solely controlled by genome size; environmental or physiological factors may select for smaller cell size, or specifically for smaller stomata. Note that we deliberately excluded allopolyploid *C. suksdorfii* from the geographic comparison in order to focus on the contrast between diploid and autotriploid *C. suksdorfii* and tetraploid *C. douglasii* (Fig. 5).

There seemed to be more of a taxonomic grouping with respect to stomata size than a difference between ploidy levels (Fig. 5). The difference in stomata size between *C. douglasii* and *C. suksdorfii* could prove useful in determining the identity of previously collected specimens. This might be of use in the case of sterile specimens, where per flower stamen numbers are unavailable. Other factors affect stomata size, and the relationship between environmental...
characteristics and stomata traits illustrate such an example. For C. douglasii and C. suksdorfii, spring and summer precipitation averages are positively correlated with stomata size (Figs. 7, 8). There are a limited number of triploid sites, and there is much environmental heterogeneity between those in California (presumptively autotriploid C. gaylussacia) and those in Oregon (autotriploid C. suksdorfii). However, these sites are representative of the known, and quite limited, distribution of C. gaylussacia on the one hand, and of autotriploid C. suksdorfii on the other.

Despite large strides in polyploidy research, we still know very little about the ecological implications of polyploidy (Soltis et al. 2010; Manzaneda et al. 2012). Past researchers have hypothesized that genome duplication confers advantages that lead to an increased or novel range for the polyploid species. However, little empirical work has been done to test this idea (Soltis et al. 2010). Stebbins addressed the uncertainty surrounding the effect of polyploidy on species ranges decades ago and suggested that clarification could be gained by carefully studying the morphological traits and habitats of increasing numbers of species groups (Stebbins 1950). In the years since, many different taxonomic groups have been examined. This research has demonstrated that polyploids often tolerate more extreme conditions than their diploid relatives (Lewis 1980), and one ecological difference that does seem common across many taxa is that plants with higher ploidy levels are found in more xeric conditions than their diploid relatives (Levin 2002). In our study group, tetraploid C. douglasii is found in more xeric conditions (in terms of mean annual precipitation) than diploid and triploid C. suksdorfii (Fig. 6). This is consistent with studies on other plants, where taxa with higher ploidy levels grow in drier conditions than their lower ploidy-level relatives, including in Achillea L. (Ramsey 2011), Chamerion (Raf.) Raf. ex Holub (Maherali et al. 2009), etc.
and *Brachypodium* P. Beauv. (Manzaneda et al. 2012). Sites at which *C. douglasii* occurs are also, on the average, colder than those occupied by *C. suksdorfii* (Fig. 6). When the climate data are broken down into quarterly values, we see that while there is some overlap between the environments in which diploid *C. suksdorfii* and tetraploid *C. douglasii* occur, the tetraploid occupies a much wider range of environments than does the diploid (Fig. 7). Combined with the variation in breeding systems, this pattern of apomictic polyploids distributed over a wider range of environments than closely related sexual diploids (hence exhibiting a larger geographic range; Fig. 2) is what is referred to as geographical parthenogenesis (Hörandl 2006; Lo et al. 2013).

As seen in our study, a higher ploidy level tends to lead to larger cells and stomata. In many taxa this increase in stomata size is accompanied by a significant decrease in stomata density. Nevertheless, by using the fourth-corner method to infer the association between nuclear DNA content and features of stomata, and quarterly climate parameters and elevation, we have shown that stomata density does not vary significantly in relation to any of the environmental factors we examined (Fig. 8). In other groups it does not seem advantageous to have larger stomata in more xeric conditions, but in many cases, the decreased density more than compensates, so that the total pore space on a leaf is lower in higher cytotypes (Levin 2002). Polyploidy may confer other advantages on plants that enable them to tolerate dry environments. Polyploids tend to grow more slowly than diploid congers, which could be an advantage when resources are scarce (Grant 1981; Levin 1983; Deng et al. 2011). In addition, some polyploids have increased leaf water content and transpiration efficiency (Chen and Tang 1945; Tal and Gardi 1976). In *Crataegus*, allopolyploid *C. suksdorfii* occurs in drier areas, where no diploid populations occur. Perhaps this is due to the contribution from the *C. douglasii* genomes in these individuals. It is also important to consider effects separate from cytotype; genetic divergence driven by natural selection will occur between lineages after a polyploidization event. More research on the magnitude and mechanism for increased tolerance to dry environments in polyploids is needed.

As noted above, environmental descriptors like “drier” or “wetter,” not to mention the precipitation data used in our analyses, relate to atmospheric conditions. In fact all of our sites except possibly Hillsboro, Washington, and the two Michigan ones, are within a kilometer (usually much less) of at least seasonally running or standing water, and the topography of many of these sites is such that ground water likely flows through the root zone most or all of the year (Table 1; e.g., Curtis 1986). Hawthorns are frequently found in riparian zones and this fact may help to explain the lack of correlation between stomatal size and growing season precipitation (Fig. 8). Figure 8 also documents the way in which diploid *C. suksdorfii* and autotriploid *C. gaylussacia* are restricted to a region of Mediterranean climate (high winter precipitation, summer drought) where stomatal size is negatively correlated with Q2 temperatures, and positively correlated with Q3 precipitation.

Conclusions

The interplay between cytotype, physiology and ecology is complex. Our study demonstrates that neither stomatal density nor stomatal size can be used to determine ploidy level in the *Crataegus* series *Douglasianae*. However, stomata size may be useful in differentiating between *C. douglasii* and *C. suksdorfii*. The two species occur in distinctive environments, and some climatological (precipitation, temperature) and geographic traits (latitude) are significantly related to stomata size. Polyploidy is a unique mechanism of speciation in its immediacy, and its propensity to cause speciation in sympathy. The ecological implications of polyploidization continue to be an important avenue of research.

Acknowledgments

We are greatly indebted to Eugenia Lo and especially Nadia Talent for sharing flow cytometry data with us;
also to Nadia Talent for advice on nomenclature. We also thank Rebecca Dotterer, Rhoda Love, and Peter Zika for plant collections and collecting site information, and Annabel Drover, Jenny Bull, Cheying Ng, and the many Green Plant Herbarium volunteers and 2011 summer staff for helping to organize and database the vouchers for this study. The late Steve Brunsfeld suggested several of our Idaho study sites to TAD. We are grateful to Doreen Smith, Walter Earle, Margaret Graham, Bill Jensen, Gene Cooley, Rocky Thompson, John Herrick, Ralph Johnson, and Marcia Johnson, for information about and access to California hawthorn collecting sites. The Siksiyoy Field Institute & Deer Creek Center, Selma, Oregon, kindly permitted us to collect on their property. Data on pollen size and stainability were collected by undergraduate project students Yi-Min Chun, Jason Lee, Jennifer Shiller, and Jurgena Tusha. Adam Dickinson did the initial GIS comparison of climate variables at C. douglasii and C. sikkimensis collecting sites. Many thanks to the Royal Botanical Gardens Science Department, especially Natalie Ivanycki, for their support of this project. Financial support from a Natural Sciences and Engineering Research Council of Canada Undergraduate Student Research Award to KC and Discovery Grant A3430 to TAD, the Department of Ecology & Evolutionary Biology of the University of Toronto, and the Royal Ontario Museum is gratefully acknowledged.

LITERATURE CITED

ANGERT, A. L., AND D. W. SCHEMKS. 2005. The evolution of species’ distributions: reciprocal transplants across the elevation ranges of Mirabilis cardinalis and M. lewisii. Evolution 59:1671–1684.

BEAULIEU, J. M., I. J. LEITCH, S. PATEL, A. PENDHARKAR, AND C. A. KNIGHT. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975–986.

BROWN, J. H., G. C. STEVENS, AND D. M. KAUFMAN. 1996. The geographic range: size, shape, boundaries, and internal structure. Annual Review of Ecology and Systematics 27:597–623.

BRUNSFELD, S. J. AND F. D. JOHNSON. 1990. Cytological, morphological, ecological and phenological support for specific status of Crataegus sikkimensis (Rosaceae). Madroño 37:274–282.

BUECHLER, W. K. 2000. Estimating polyploid levels using cell size in Salix leaves. American Journal of Botany 87:238.

CAMP, W. 1942. The Crataegus problem. Castanea 7:51–55.

CHEN, G., W.-B. SUN, AND H. SUN. 2009. Morphological characteristics of leaf epidermis and size variation of leaf, flower and fruit in different ploidy levels in Buddleja macrostachya (Buddlejaceae). Journal of Systematics and Evolution 47:231–236.

CHEN, S.-L. AND P. S. TANG. 1945. Studies on colchicine-induced autotetraploid barley. III. Physiological studies. American Journal of Botany 32:177–179.

COUGHLAN, J. 2012. Mechanisms for range size and distribution variation in the polyploid complex black-fruited hawthorn (Crataegus series Douglastanae): biogeographic implications for the maintenance of cytotype diversity. M.Sc. thesis, University of Toronto, Canada.

COYNE, J. A. AND H. A. ORR. 2004. Speciation. Sinauer Associates, Sunderland, MA.

CURTIS, A. B. 1986. Upper Elk Meadows Research Natural Area. USDA, Forest Service, Pacific Northwest Forest and Range Experiment Station 1–20.

DENG, X., W. DU, C. LIU, W. SUN, S. TIAN, AND H. DONG. 2011. Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: low resource requirement confers polytolerance in polyploids? Plant Growth Regulation 66:37–47.

DICKINSON, T., S. BELAUSOFF, R. LOVE, AND M. MUNCHIAM. 1996. North American black-fruited hawthorns: I. Variation in floral construction, breeding system correlates, and their possible evolutionary significance in Crataegus sect. Douglassii Loudon. Folia Geobotanica et Phytotaxonimica 31:355–371.

DICKINSON, T. A. AND J. PHIPPS. 1985. Studies in Crataegus L. (Rosaceae: Maloideae). XIII. Degree and pattern of phenotypic variation in Crataegus sect. Crus-galli in Ontario. Systematic Botany 10:322–337.

AND ——. 1986. Studies in Crataegus (Rosaceae: Maloideae) XIV. The breeding system of Crataegus crus-galli sensu lato in Ontario. American Journal of Botany 73:116–130.

AND ——. 2008. Black-fruited hawthorns of western North America — one or more agamic complexes? Botany 86:846–865.

DRAY, S. AND P. LEGENDRE. 2008. Testing the species traits-environment relationships: the four-corner problem revisited. Ecology 89:3400–3412.

GANEVA, T., K. UZUNOVA, AND D. KOLEVA. 2009. Comparative leaf epidermis investigation in species of genus Crataegus L. (Rosaceae) from Bulgaria. Feddes Repertorium 120:169–184.

GRANT, V. 1981. Plant Speciation, 2nd ed. Columbia University Press, New York, NY.

HADLEY, A. 2010. Combine Z. http://www.hadleyweb.pwp.blueyonder.co.uk/CZP/News.htm

HARGROVE, W. AND R. LUXMOORE (eds.). 1998. A new high-resolution national map of vegetation eco-regions produced empirically using multivariate spatial clustering. Oak Ridge National Laboratory. Website http://www.geobabble.org/~hwn/esri98/ (accessed August 2011).

HORANDL, E. 2006. The complex causality of geographical parthenogenesis. New Phytologist 171:525–538.

AND ——. 2008. Evolutionary implications of self-compatibility and reproductive fitness in the apomictic Ranunculus auricomus polyploid complex (Ranunculaceae). International Journal of Plant Sciences 169:1219–1228.

JOACHIMIAK, A. AND A. GRABOWSKA-JOACHIMIAK. 2000. Stomatal cell length and ploidy level in four taxa belonging to the Phleum sect. Phleum. Acta Biologica Cracoviensia Series Botanica 42:103–107.

JOLY, S. AND A. BRUNEAU. 2007. Delimiting species boundaries in Rosa sect. Cinnamomeae (Rosaceae) in eastern North America. Systematic Botany 32:819–836.

KREBS, C. 2001. Ecology: the experimental analysis of distribution and abundance. Benjamin Cummings, San Francisco, CA.
AND

B. C. HAWKSWORTH

native and naturalized (Rosaceae, Pyr-

S. E. L, D. L. HERR

T. M (Rosaceae) in western Oregon. Madron.

2007. Phylogeny and N. J. T

REUTER and T. A. D

C. okennonii ——. 2010a. Reconstructing

˚EISS W. H. Lewis (ed.), Polyploidy: ——. 2009. Population genetic

B. M. Johri (ed.), Embryology of angio-
in C. okanagenensis M. F

MITH ——, ———, K. R

T. D T RASKIN

Jepson Flora Project

B. C. H

32:596–616.

2010b. Fine-scale comparisons of genetic variabil-

ty in seed families of asexually and sexually

reproducing Crataegus (Rosaceae). American Journal of Botany 97:

15–20.

Lo, E. Y. Y., S. STEFANOVIC, and T. A. DICKINSON.

2007. Molecular reappraisal of relationships be-

between Crataegus and Mespilus (Rosaceae, Pyr-

cae)—Two genera or one? Systematic Botany

32:596–616.

——, ———, and ———. 2009. Population genetic

structure of diploid sexual and polyploid apomictic

hawthorns (Crataegus; Rosaceae) in the Pacific

Northwest. Molecular Ecology 18:1145–1160.

——, ———, and ———. 2010a. Reconstructing

reticulation history in a phylogeographic framework and the potential of allopatric speciation driven by polyploidy in an agamic complex in Crataegus (Rosaceae). Evolution 64:3593–3608.

——, ———, and ———. 2013. Geographical

parthenogenesis in Pacific Northwest hawthorns (Crataegus; Rosaceae). Botany 91:107–116.

LOVE, R. M. and M. FEIGEN. 1978. Interspecific

hybridization between native and naturalized

Crataegus (Rosaceae) in western Oregon. Madroño 25:211–217.

LOWRY, E. and S. E. LESTER. 2006. The biogeography

of plant reproduction: potential determinants of species’ range sizes. Journal of Biogeography 33: 1975–1982.

MAHERALI, H., A. E. WALDEN, and B. C. HUSBAND.

2009. Genome duplication and the evolution of physiological responses to water stress. New Phytologist 184:721–731.

MANZANEDA, A., P. REY, J. BASTIDA, C. WEISS-

LEHMAN, E. RASKIN, and T. MITCHELL-OLDS.

2012. Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytologist 193:797–805.

MARSHALL, H. H. 1978. Identification of Crataegus species native to Manitoba. The Canadian Field-Naturalist 92:321–326.

MARTIN, S. L. and B. C. HUSBAND. 2009. Influence of phylogeny and ploidy on species ranges of North American angiosperms. Journal of Ecology 97: 913–922.

MCINTYRE, P. J. 2012. Polyploidy associated with altered and broader ecological niches in the Claytonia perfoliata (Portulacaceae) species complex. American Journal of Botany 99:655–662.

McNEILL, J., F. R. BARRIE, W. R. BUCK, V. DEMOULIN, W. GREUTER, D. L. HAWKSWORTH, P. S. HERENDEEN, S. KNAPP, K. MARHOLD, J. PRADO, W. F. PRUD’HOMME VAN REINE, G. F. SMITH, J. H. WIERSEMA, and N. J. TÜRLAND. 2012. International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011. Regnum Vegetabile 154. Koeltz Scientific Books, Koenigstein, Germany.

MEACHAM, C. and T. DUNCAN. 1991. MorphoSys: an automated morphometric system. Version 1.29. University of California, Berkeley, Regents of the University of California, Berkeley, CA.

METCALFE, C. and L. CHALK. 1979. Anatomy of the dicotyledons, 2nd ed. Clarendon Press, Oxford, U.K.

NOGLER, G. A. 1984. Gametophytic apomixis. Pp. 475–518 in B. M. Johri (ed.), Embryology of angiosperms. Springer-Verlag, Berlin.

OTTO, S. P. 2007. The evolutionary consequences of polyploidy. Cell 131:452–462.

PARISOD, C., R. HOLDeregger, and C. BROCHMANN. 2010. Evolutionary consequences of autopolyploidy. New Phytologist 186:5–17.

Phipps, J. 2012. Crataegus, in Jepson Flora Project (eds.), Jepson eFlora. Website http://ucjeps.berkeley.edu/cgi-bin/get_IJM.pl?tid=91319 (accessed on 9 June 2013).

—— and R. O’Kennon. 1998. Three new species of Crataegus (Rosaceae) from western North America: C. okennoni, C. okanagenensis, and C. phippsii. Sida 18:169–191.

—— and ———. 2002. New taxa of Crataegus (Rosaceae) from the northern Okanangan-southwestern Shuswap diversity center. Sida 31:355–371.

Phipps, J. B., K. R. Robertson, P. G. Smith, and J. R. Rohrer. 1990. A checklist of the subfamily Maloideae (Rosaceae). Canadian Journal of Botany 68:2209–2269.

Potter, D., T. Eriksson, R. C. Evans, S. OH, J. E. E. Smedmark, D. R. Morgan, M. Kerr, K. R. Robertson, M. Arsenault, T. A. Dickinson, and C. S. Campbell. 2007. Phylogeny and classification of Rosaceae. Plant Systematics and Evolution 266:5–43.

PRISM CLIMATE GROUP. 2012. PRISM Data Explorer. Oregon State University. Website http://www.prism.oregonstate.edu/ (accessed August 2011).

R Development Core Team. 2004. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Website http://www.r-project.org/ (accessed 15 April 2011).

RAMSEY, J. 2011. Polyploidy and ecological adaptation in wild yarrow. Proceedings of the National Academy of Sciences of the United States of America 108:7096–7101.

Saltonstall, K., K. Glennon, A. Burnett, R. B. Hunter, and K. L. Hunter. 2007. Comparison of morphological variation indicative of ploidy level in Phragmites australis (Poaceae) from eastern North America. Rhodora 109:415–429.

Shorthouse, D. P. 2010. SimpleMappr, an online tool to produce publication-quality point maps. Web-
SOLTIS, D. E., R. J. A. BUGGS, J. J. DOYLE, AND P. S. SOLTIS. 2010. What we still don’t know about polyploidy. Taxon 59:1387–1403.

STEBBINS, G. L. 1950. Variation and evolution in plants. Columbia University Press, New York, NY.

TAL, M., AND I. GARDI. 1976. Physiology of polyploid plants: water balance in autotetraploid and diploid tomato under low and high salinity. Physiologia Plantarum 38:257–261.

TALENT, N., AND T. A. DICKINSON. 2005. Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): evolutionary inferences from flow cytometry of nuclear DNA amounts. Canadian Journal of Botany 83:1268–1304.

——— AND ———. 2007. Endosperm formation in aposporous Crataegus (Rosaceae, Spiraeoideae, tribe Pyreae): parallels to Ranunculaceae and Poaceae. New Phytologist 173:231–249.

VASCAN. 2013. Crataegus gaylussacia A. Heller. Database of Vascular Plants of Canada (VASCAN). Website http://data.canadensys.net/vascan/taxon/20019 (accessed on 7 June 2013).

WANG, H., AND J. CLARKE. 1993. Genotypic, intra-plant, and environmental variation in stomatal frequency and size in wheat. Canadian Journal of Plant Science 73:671–678.

ZARREI, M., N. TALENT, J. COUGHLAN, S. STEFANOVIC, AND T. A. DICKINSON. 2012. Nuclear ribosomal ITS2 DNA sequences illuminate hybridization in a diploid-polyploid agamic complex of Crataegus (Rosaceae). Presented at Botany 2012, Columbus, OH.