Two new brown rot polypores from tropical China

Meng Zhou¹, Chao-Ge Wang¹, Ying-Da Wu², Shun Liu¹, Yuan Yuan¹

¹ Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
² China Fire and Rescue Institute, Beijing 102202, China

Corresponding author: Yuan Yuan (yuanyuan1018@bjfu.edu.cn)

Abstract
Brown-rot fungi are types of fungi that selectively degrade cellulose and hemicellulose from wood and are perhaps the most important agents involved in the degradation of wood products and dead wood in forest ecosystem. Two new brown-rot species, collected from southern China, are nested within the clades of *Fomitopsis* sensu stricto and *Oligoporus* sensu stricto, respectively. Their positions are strongly supported in the Maximum Likelihood phylogenetic tree of the concatenated the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nLSU), the small subunit of nuclear ribosomal RNA gene (nuSSU), the small subunit of mitochondrial rRNA gene (mtSSU), the largest subunit of RNA polymerase II (RPB1), the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor 1-α gene (TEF1) sequences. *Fomitopsis bambusae*, only found on bamboo, is characterised by its resupinate to effused-reflexed or pileate basidiocarps, small pores (6–9 per mm), the absence of cystidia, short cylindrical to oblong-ellipsoid basidiospores measuring 4.2–6.1 × 2–2.3 μm. *Oligoporus podocarpi* is characterised by white to pale cream pore surface, round or sometimes angular pores (5–6 per mm), broadly ellipsoid to reniform basidiospores measuring 3.8–4.2 × 2–2.3 μm and growing on *Podocarpus*. Illustrated descriptions of these two novel species, *Fomitopsis bambusae* and *Oligoporus podocarpi*, are provided.

Keywords
Brown-rot fungi, multi-gene phylogeny, phylogeny, taxonomy

Introduction
Wood-inhabiting basidiomycota can be grouped into two categories, white-rot and brown-rot fungi, according to their ability for decaying or decomposing wood. Brown-rot fungi selectively degrade cellulose and hemicellulose from wood and decayed mate-
rial becomes reddish-brown or tan, crisp, causing massive cracks in the middle of a longitudinal crisscross. However, white-rot fungi can degrade all the components of wood and decayed material, become white or pale-yellow or light reddish-brown and expose the fibrous structure. The number of brown rot fungi is remarkably smaller compared to white rot fungi (Zhang 2003; Wu et al. 2020). Gilbertson (1981) has estimated that approximately 6% of the wood-rotting basidiomycetes in North America give a brown rot. On the other hand, Dai (2012) demonstrated that 14% of Chinese polypores in northern China can cause a brown rot (Cui et al. 2019). Brown-rot fungi are perhaps the most important agents involved in the degradation of wood products and in the degradation of dead wood in forest ecosystems. It is worth emphasising that the diversity of brown rot fungi is higher in high-latitude areas than in low-latitude areas and the number of brown rot fungi decreases from north to south in China (Zhou and Dai 2012; Dai et al. 2015), so that brown-rot fungi are infrequent in tropical areas.

As a cosmopolitan brown-rot genus of polypores, *Fomitopsis* P. Karst., was established by Karsten, based on *F. pinicola* (Sw.) P. Karst. (Karsten 1881). The genus was classified in the Fomitopsidaceae morphologically (Jülich 1981) and belonged to the *Antrodia* clade phylogenetically (Binder et al. 2005; Ortiz-Santana et al. 2013; Han et al. 2016). Han et al. (2016) confirmed that species, previously belonging to *Fomitopsis* sensu lato, were embedded in seven lineages and eleven species form the core group of *Fomitopsis*. In addition, four species *Fomitopsis caribensis* B.K. Cui & Shun Liu, *F. eucalypticola* B.K. Cui & Shun Liu, *F. ginkgonis* B.K. Cui & Shun Liu and *F. roseoalba* A.M.S. Soares, Ryvarden & Gibertoni were introduced as new species and *F. bondartsevae* (Spirin) A.M.S. Soares & Gibertoni was proposed as a new combination (Soares et al. 2017; Tibpromma et al. 2017; Liu et al. 2019). In the latest study, ten species have been recognised in the *Fomitopsis pinicola* complex (Haight et al. 2019; Liu et al. 2021). So far, 25 species have been accepted in *Fomitopsis* sensu stricto (s. str.).

Oligoporus Bref. (Polyporales, Basidiomycetes) was typified with *O. farinosus* Bref., 1888 (Syn. *O. rennyi* (Berk. & Broome) Kotl.) (Brefeld 1888). Recent phylogenetic analyses have demonstrated that *Oligoporus* and *Tyromyces* belong to different clades and that they were grouped within families Dacryobolaceae Jülich and Incrustoporiaceae Jülich (Binder et al. 2013; Floudas and Hibbett 2015; Justo et al. 2017). Shen et al. (2019) have proved *Oligoporus* s. str. is different from *Postia* s. str. in morphology and molecular phylogenetic analysis. Meanwhile, species in *Postia* s. str. have a broad host range growing both on angiosperm and gymnosperm wood, but *Oligoporus* s. str. grows only on gymnosperm wood (Donk 1971; Ryvarden and Melo 2014; Shen et al. 2019). So far, only two species have been accepted in *Oligoporus* s. str. (Shen et al. 2019).

During our investigations of brown-rot fungi in China, eight specimens were collected from Hainan Province in tropical China. Morphological examination shows these collections to represent two brown-rot polypores, corresponding to *Fomitopsis* s.s.s. and *Oligoporus* s.s.s. After phylogenetic analyses of the internal transcribed spacer (ITS) regions, the large subunit of nuclear ribosomal RNA gene (nLSU), the small subunit of nuclear ribosomal RNA gene (nuSSU), the small subunit of mitochondrial rRNA gene (mtSSU), the largest subunit of RNA polymerase II (RPB1), the second largest
Two new brown rot polypores from tropical China

subunit of RNA polymerase II (RPB2) and the translation elongation factor 1-α gene (TEF1) sequences, two new species were confirmed as belonging to *Fomitopsis* s.s. and *Oligoporus* s.s.. In this paper, we describe and illustrate these two new species.

Materials and methods

Morphological studies

The examined specimens were deposited in the herbarium of the Institute of Microbiology, Beijing Forestry University (BJFC) in Beijing, China. Macro-morphological descriptions were based on the field notes and measurements of herbarium specimens. Colour terms followed Petersen (1996). Micro-morphological data were obtained from the dried specimens and observed under a light microscope following Chen et al. (2017) and Shen et al. (2019). Sections were studied at a magnification up to 1000× using a Nikon Eclipse 80i microscope with phase contrast illumination (Nikon, Tokyo, Japan). Drawings were made with the aid of a drawing tube. Microscopic features, measurements and drawings were made from slide preparations stained with Cotton Blue and Melzer’s Reagent. Spores were measured from sections cut from the tubes. To present the variation of spore size, 5% of measurements were excluded from each end of the range and are given in parentheses. The following abbreviations are used: IKI = Melzer’s Reagent, IKI– = neither amyloid nor dextrinoid, KOH = 5% potassium hydroxide, CB = Cotton Blue, CB– = acyanophilous, L = mean spore length (arithmetic average of all spores), W = mean spore width (arithmetic average of all spores), Q = variation in the L/W ratios between the specimens studied, n (a/b) = number of basidiospores (a) measured from given number (b) of specimens.

DNA extraction and sequencing

A cetyltrimethylammonium bromide rapid plant genome extraction kit (Aidlab Biotechnologies Co., Ltd, Beijing, China) was used to extract the total genomic DNA from dried specimens according to the manufacturer’s instructions with some modifications (Song and Cui 2017; Xing et al. 2018). The ITS regions were amplified with the primer pairs ITS5 (GGA AGT AAA AGT CGT AAC AAG G) and ITS4 (TCC TCC GCT TAT TGA TAT GC) (White et al. 1990). The nLSU regions were amplified with the primer pairs LR0R (ACC CGC TGA ACT TAA GC) and LR7 (TAC TAC CAC CAA GAT CT) (http://www.biology.duke.edu/fungi/mycolab/primers.htm). The nuSSU regions were amplified with the primer pairs NS1 (CCG GAG AGG GAG CCT GAG AAA C) and NS4 (CCC GTG TTG AGT CAA ATT A) (White et al. 1990). The mtSSU regions were amplified with the primer pairs MS1 (CAG CAG TCA AGA ATA TTA GTC AAT G) and MS2 (GCG GAT TAT CGA ATT AAA TAA C) (White et al. 1990). RPB1 was amplified with the primer pairs RPB1-Af (GAR TGY CCD GGD CAY TTY GG) and RPB1-Cr (CCN GCD ATN TCR TTR TCC
ATR TA) (Matheny et al. 2002). RPB2 was amplified with the primer pairs fRPB2-5F (GAY GAY MGW GAT CAY TTY GG) and fRPB2-7CR (CCC ATR GCT TGY TTR CCC AT) (Matheny 2005). TEF1 was amplified with the primer pairs EF1-983F (GCY CCY GGH CAY CGT GAY TTY AT) and EF1-1567R (ACH GTR CCR ATA CCA CCR ATC TT) (Rehner and Buckley 2005). The PCR procedure followed that of Liu et al. (2019). The PCR products were purified with a Gel Extraction and PCR Purification Combo Kit (Spin-column) in Beijing Genomics Institute, Beijing, P.R. China. The purified products were then sequenced on an ABI-3730-XL DNA Analyzer (Applied Biosystems, Foster City, CA, USA) using the same primers as in the original PCR amplifications. The sequence quality was checked following Nils-son et al. (2012). All newly-generated sequences were submitted to GenBank and were listed in Tables 1 and 2.

Phylogenetic analyses

New sequences, deposited in GenBank (http://www.ncbi.nlm.nih.gov/genbank/) (Table 1), were aligned with additional sequences retrieved from GenBank (Table 1) using BioEdit 7.0.5.3 (Hall 1999) and ClustalX 1.83 (Thompson et al. 1997), followed by manual adjustment. Sequence alignment was deposited at TreeBase (http://purl.org/phylo/treebase/; submission ID 28131). In phylogenetic reconstruction, sequences of *Laetiporus zonatus* B.K. Cui & J. Song, obtained from GenBank, were used as outgroups in the phylogeny of *Fomitopsis* (Fig. 1) while sequences of *Antrodia serpens* (Fr.) P. Karst. were used as outgroups in the phylogeny of *Oligoporus* (Fig. 2).

Maximum Parsimony (MP) analysis was applied to those two phylogenies and trees construction procedure were performed in PAUP* version 4.0b10 (Swofford 2002). Settings for phylogenetic analyses in this study followed the approach of Zhu et al. (2019) and Song and Cui (2017). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1000 random sequence additions. Max-trees were set to 5000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap (BT) analysis with 1000 replicates (Felsenstein 1985). Descriptive tree statistics tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC) and homoplasy index (HI) were calculated for each Maximum Parsimonious Tree (MPT) generated.

Maximum Likelihood (ML) analysis was conducted with RAxML-HPC252 on Abe through the CIPRES Science Gateway (www.phylo.org) and involved 100 ML searches. All model parameters were estimated by the programme. Only the best Maximum Likelihood tree from all searches was kept. The Maximum Likelihood bootstrap values (ML-BS) were performed using a rapid bootstrapping with 1000 replicates. The phylogenetic tree was visualised using Treeview (Page 1996).

MrModeltest 2.3 (Posada and Crandall 1998; Nylander 2004) was used to determine the best-fit evolution model for two combined matrices to reconstruct phylogenetic analyses as a 6-gene dataset (ITS+nLSU+nuSSU+mtSSU+RPB2+TEF1) and a 7-gene dataset
Two new brown rot polypores from tropical China

Table 1. A list of species, specimens and GenBank accession numbers of sequences used in the phylogeny of *Fomitopsis*.

Species	Sample no.	GenBank accessions	References
Astrodia heteromorpha	Dai 12755	KP715306 KP715322 KR605908 KR606009 KP715536 KR610828	Chen and Cui (2015)
Astrodia serpen	Dai 14850	MG787582 MG787624 MG787731 MG787674 MG787849 MG787798	Chen et al. (2018)
Bulgosporus quercinus	JV 1406/1	KR605801 KR605740 KR605899 KR606002 KR610730 KR610820	Han et al. (2016)
Bulgosporus quercinus	LY BR 2030	KR605799 KR605738 KR605897 KR606000 KR610728 KR610818	Han et al. (2016)
Daedalea quercina	Dai 2260	KR605792 KR605731 KR605885 KR605988 KR610718 KR610808	Han et al. (2016)
Daedalea quercina	Dai 12659	KP171208 KP171230 KR605887 KR605990 KR610719 KR610810	Han et al. (2015)
Fomitopsis bambusae	Dai 22110	MW937874 MW937881 MW937867 MW937888 MZ082980 MZ082974	Present study
Fomitopsis bambusae	Dai 22114	MW937875 MW937882 MW937868 MW937889 MZ082981 MZ082975	Present study
Fomitopsis bambusae	Dai 22116	MW937876 MW937883 MW937869 MW937890 — —	Present study
Fomitopsis bambusae	Dai 21942	MW937873 MW937880 MW937866 MW937887 MZ082979 —	Present study
Fomitopsis betulina	Cai 10756	KR605797 KR605756 KR605894 KR605997 KR610725 KR610815	Han et al. (2016)
Fomitopsis betulina	Dai 11449	KR605798 KR605737 KR605895 KR605998 KR610726 KR610816	Han et al. (2016)
Fomitopsis bondartseae	X 1207	JQ700277 JQ700277 — — — —	Soares et al. (2017)
Fomitopsis bondartseae	X 1059	JQ700275 JQ700275 — — — —	Soares et al. (2017)
Fomitopsis caena	Cai 6239	JX435777 JX435777 KR605826 KR605934 KR610661 KR610761	Li et al. (2013)
Fomitopsis caena	Dai 9611	JX435776 JX435774 KR605825 KR605935 KR610660 KR610762	Li et al. (2013)
Fomitopsis caribenensis	Cai 16871	MK852559 MK860108 MK860124 MK860116 MK900482 MK900474	Liu et al. (2019)
Fomitopsis durescens	Overhols 4215	KP937299 KP937295 KR605835 KR605941 — —	Han et al. (2014)
Fomitopsis durescens	O 10796	KP937292 KP937294 KR605834 KR605940 KR610669 KR610766	Han et al. (2014)
Fomitopsis eucalypticola	Cai 16594	MK852560 MK860110 MK860126 MK860118 MK900483 MK900476	Liu et al. (2019)
Fomitopsis eucalypticola	Cai 16598	MK852562 MK860113 MK860129 MK860121 MK900484 MK900479	Liu et al. (2019)
Fomitopsis ghignonis	Cai 17170	MK852563 MK860114 MK860130 MK860122 MK900485 MK900480	Liu et al. (2019)
Fomitopsis ghignonis	Cai 17171	MK852564 MK860115 MK860131 MK860123 MK900486 MK900481	Liu et al. (2019)
Fomitopsis hemiepiphrpha	O 10808	KR605770 KR605709 KR605841 KR605947 KR610675 —	Han et al. (2016)
Fomitopsis ibericus	O 10810	KR605771 KR605710 KR605842 KR605948 KR610676 KR610771	Han et al. (2016)
Fomitopsis ibericus	O 10811	KR605772 KR605711 KR605843 — KR610677 KR610772	Han et al. (2016)
Fomitopsis meliae	Dai 10035	KR605774 KR605713 KR605847 KR605952 KR610683 —	Han et al. (2016)
Fomitopsis mounceae	Ryvarden 16893	KR905776 KR905715 KR605849 KR605954 KR610681 KR610775	Han et al. (2016)
Fomitopsis mounceae	DR-366	KF160624 — — — KF178349 KF160903	Haight et al. (2019)
Fomitopsis mounceae	JAG-08-19	KF160626 — — — KF178351 KF160905	Haight et al. (2019)
Fomitopsis niveus	JV 0509/52 X	KR605779 KR605718 KR605853 KR605957 KR610686 KR610777	Han et al. (2016)
Fomitopsis niveus	Man 09	MF589766 MF590166 — — — —	Liu et al. (2019)
Fomitopsis ochracea	ss5	KF160609 — — — KF178334 KF160678	Haight et al. (2016)
Fomitopsis ochracea	ss7	KF160910 — — — KF178335 KF160679	Haight et al. (2016)
Fomitopsis ostreiformis	IRET 22	KY449363 — — — — —	Thangamalai et al. (2018)
Fomitopsis ostreiformis	LDCMY 21	KY111252 — — — — —	Thangamalai et al. (2018)
Bayesian Inference was calculated with MrBayes 3.2.6 (Ronquist et al. 2012), with a general time reversible (GTR) model of DNA substitution and a gamma distribution rate variation across sites. Four Markov chains were run for two runs from random starting trees for one million generations and trees were sampled every 100 generations. The burn-in was set to discard 25% of the trees. A majority rule consensus tree of all remaining trees was calculated. Branches that received bootstrap support for Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Posterior Probabilities (BPP) greater than or equal to 75% (MP and ML) and 0.95 (BPP) were considered as significantly supported.

Results

Molecular phylogeny

The phylogeny of *Fomitopsis*, based on a combined 6-gene (ITS, nLSU, nuSSU, mtSSU, RPB2, TEF1) dataset, included sequences from 64 fungal samples repre-
Figure 1. Maximum Likelihood phylogenetic tree of the new *Fomitopsis* species, based on multi-genes sequences data. Branches are labelled with bootstrap values (MP/ML) higher than 50% and posterior probabilities (BI) more than 0.90, respectively. Bold names: New species.
Species	Sample no.	GenBank accessions	References
Amaropostia		ITS: nLSU nuSSU mtSSU TEF1 RPB2 RPB1	
stiptica	Cui 10043	KX900906 KX900976 KX901119 KX901046 KX901219 KX901167	Shen et al. (2019)
stiptica	Cui 10981	KX900907 KX900977 KX901120 KX901047 KX901220 KX901168	Shen et al. (2019)
Amylocystis	HHB-13400	KC585237 KC585059	
lapponica	OKM-4118	KC585238 KC585060	
Antrodia		FR605813 FR605752 FR605913 FR610742 FR610832	Han et al. (2016)
serpens	Dai 7465	MG787582 MG787624 MG787731 MG787849 MG787798	Chen et al. (2018)
Calcipostia	Cui 10028	KF727433 KJ684979 KX901139 KX901066 KX901237 KX901182	Shen et al. (2019)
guttulata	KHL 11739(GB)	EU118650 EU118650	
Cyanosporus		KX900883 KX900953 KX901096 KX901021 KX901206 KX901159	Shen et al. (2019)
caesius	Dai 12605	KX900884 KX900954 KX901097 KX901022 KX901258 KX901207 KX901160	Shen et al. (2019)
subcaesius	KA12-1375	KR673585	
Cystidiopostia		K(M)32713 AY599576	
hibernica	Cui 2658	KX900905 KX900975 KX901118 KX901045 KX901218	Shen et al. (2019)
Cystidiopostia	K(M)17352	AJ006665	
hibernica	Cui 5721	KF699127 KX900960 KX901121 KX901049 KX901268 KX901221 KX901169	Shen et al. (2019)
Cystidiopostia	Cui 10034	KX900908 KX900956 KX901122 KX901050 KX901269 KX901222 KX901170	Shen et al. (2019)
pileata	Cui 10366	KF699124 KJ684975 KR605927 KR606026 KR610755 KR610844 KX901173	Han et al. (2016)
Fuscopostia	Dai 13411	KF699125 KJ684976 KR605928 KR606027 KR610756 KR610845 KX901174	Han et al. (2016)
duplicata	Cui 10020	KX900912 KX900982 KX901126 KX901054 KX901270 KX901226	Shen et al. (2019)
fragilis	Cui 10088	KF699120 KJ684977 KX901127 KT893749 KT893745	Han et al. (2016)
Oligoporus	Dai22042	MW937877 MW937884 MW937870 MW937891 MZ082982 MZ082976 MZ005579	Present study
podocarpi	Dai22043	MW937878 MW937885 MW937871 MW937892 MZ082983 MZ082977 MZ005580	Present study
Oligoporus	Dai22044	MW937879 MW937886 MW937872 MW937893 MZ082984 MZ082978 MZ005581	Present study
renyi	KEW 57	AY218416 AF287876	
Oligoporus	MR 10497	JX090117	
sericeomollis	Cui 9560	KX900919 KX900989 KX901140 KX901067 KX901183	Shen et al. (2019)
sericeomollis	Cui 9870	KX900920 KX900990 KX901141 KX901068 KX901184	Shen et al. (2019)
Two new brown rot polypores from tropical China

Senting 29 taxa. They were downloaded from GenBank and generated in the present study (Table 1). The dataset had an aligned length of 4718 characters, including gaps (680 characters for ITS, 1343 characters for nLSU, 1013 characters for nuSSU, 547 characters for mtSSU, 648 characters for RPB2, 487 characters for TEF1), of which 3346 characters were constant, 1860 were variable and parsimony-uninformative, and 1212 were parsimony-informative. Maximum parsimony analysis yielded one equally-parsimonious tree (TL = 3802, CI = 0.544, RI = 0.787, RC = 0.428, HI = 0.456) and the MP tree is shown in Fig. 1. The best model for the combined ITS+nLSU+nuSSU+mtSSU+RPB2+TEF1 sequence dataset was estimated and applied in the Bayesian analysis was GTR+I+G with equal frequency of nucleotides, lset nst = 6 rates = invgamma; prset statefreqpr = dirichlet (1,1,1,1). Bayesian analysis resulted in a concordant topology with an average standard deviation of split frequencies = 0.008975.

The phylogeny of Oligoporus, combined 7-gene (ITS, nLSU, nuSSU, mtSSU, RPB1, RPB2, TEF1) dataset, included sequences from 43 fungal samples representing 21 taxa. They were downloaded from GenBank and generated in the present study (Table 2). The dataset had an aligned length of 5772 characters,
including gaps (612 characters for ITS, 1302 characters for nLSU, 1009 characters for nuSSU, 491 characters for mtSSU, 1231 characters for RPB1, 648 characters for RPB2, 479 characters for TEF1), of which 4127 characters were constant, 129

Figure 2. Maximum Likelihood phylogenetic tree of the new Oligoporus species, based on multi-genes sequences data. Branches are labelled with bootstrap values (MP/ML) higher than 50% and posterior probabilities (BI) more than 0.90, respectively. Bold names: New species.
Table 3. A comparison of species in the *Fomitopsis*.

Species	Holotype	Basidiocarp	Pileal surface	Pore surface	Pore (per mm.)	Hyphal system	Cystidia/cystidioles	Basidiospores	Reference	
F. abieticola	China	Annual to perennial; pileate	Cream to pinkish buff	Cream to pinkish buff when fresh, becoming buff to curry-yellow when dry	Round to angular, 2–4	Trimitic	Cystidia absent; fusoid cystidioles occasionally present, 17.5–50.2 × 4.3–9.5 μm	Oblong-ellipsoid to ellipsoid, 7–9 × 4–5 μm	Liu et al. (2021)	
F. bambusae	China	Annual; resupinate to effused-reflexed or pileate	Plush grey to pale mouse-grey to greyish-sepia when dry	Blush-grey to pale mouse-grey to greyish-sepia when fresh, becoming mouse-grey to dark grey when dry	Round to angular, 6–9	Dimitic	Cystidia absent; fusoid cystidioles present, 11–18 × 2.5–4 μm	Cylindrical to oblong ellipsoid, 4.2–6.1 × 2–2.3 μm	Present study	
F. betulina	Norway	Annual; pileate	White to pale brownish	White to pale brownish	Round to angular, 3–5	Di-trimitic	Absent	Cylindrical, slightly allantoid, 5–6 × 1.5–1.7 μm	Ryvarden and Melo (2014)	
F. bondartsevae	Russia	Annual; effused-reflexed to pileate	Pale mouse-grey to dark grey, azonate	Cream to straw coloured turning mouse-grey to dark grey	Angular, 5–8	Trimitic	Cystidia absent; fusoid cystidioles present, 18–26 × 4.5–6 μm	Cylindrical, 6–7.2 × 2.2–2.5 μm	Spirin (2002)	
F. cana	China	Annual; resupinate to effused-reflexed or pileate	Pale mouse-grey to dark grey, azonate	Cream to straw coloured turning mouse-grey to dark grey	Angular, 5–8	Trimitic	Cystidia absent; fusoid cystidioles present, 9–16 × 3–5 μm	Cylindrical to oblong ellipsoid, 5–6.2 × 2.1–3 μm	Li et al. (2015)	
F. caribensis	Puerto Rico	Annual; pileate, sessile	White to cream buff when fresh, cream buff to curry-yellow at base	White to cream when fresh, becoming cream to pinkish-buff when dry	Round to angular, 6–9	Dimitic	Cystidia absent; fusoid cystidioles occasional, hyaline, thin-walled, 12.5–23.5 × 2.5–4 μm	Cylindrical to oblong ellipsoid, 6–7.5 × 2.3–3.1 μm	Liu et al. (2019)	
F. durenmii	USA	Annual; sessile	Cream coloured to pale buff, drying tan	White to cream coloured, ochraceous on drying	Round to angular, 4–5	Trimitic	Cystidia absent; fusoid cystidioles present, 14–16 × 5–6 μm	Narrowly cylindrical, 6–8 × 1.5–2.5 μm	Gilbertson and Ryvarden (1986)	
F. eucalypticola	Australia	Annual to biennial; effused-reflexed to pileate	Cream to salmon-coloured when young, straw yellow to clay-pink	Cream to yellow when fresh, buff to clay-buff when dry	Round to angular, 3–5	Trimitic	Cystidia absent; fusoid cystidioles occasionally present, 15–36 × 2–5.3 μm	Cylindrical to oblong ellipsoid, 5.8–9.1 × 2.7–5 μm	Liu et al. (2019)	
F. gigasenii	China	Annual; pileate, imbricate	Dirty greyish-brown to mouse-grey	Pinkish-buff to cinnamon-buff	Round to angular, 3–6	Trimitic	Cystidia absent; fusoid cystidioles occasionally present, 12.5–27.6 × 2.8–4.1 μm	Cylindrical, 7.2–9 × 2.2–3 μm	Liu et al. (2019)	
F. hemitrapha	New Zealand	Perennial; solitary, attached by a broad lateral base	Tobacco brown or fuscous	White or straw to isabelline	Round or slightly angular, 6–7	Trimitic	Cystidia absent; cystidioles, 6–8 × 3.5–4 μm	Elliptic-oblong, 4–6 × 2–2.5 μm	Cunningham (1965)	
Species	Holotype	Basidiocarps	Pileal surface	Pore surface	Pore (per mm.)	Hyphal system	Cystidia/cystidioles	Basidiospores	Radiospores	References
-------------	----------	--------------	----------------	--------------	----------------	---------------	--------------------	---------------	-------------	--
F. bengduanensis	China	Annual to perennial; pileate	Pale dark grey to reddish-brown at base and cream to flesh-pink towards the margin	White to cream when fresh, becoming buff to straw-yellow	Round to angular, 6–8	Trimitic	Cystidia absent; fusoid cystidioles occasionally present, 13.2–36.5 × 2.5–5.4 μm	Oblong-ellipsoid to ellipsoid, 5.2–6 × 3.2–3.6 μm	Liu et al. (2021)	
F. ibérica	Portugal	Annual; sessile, diminuate, single or imbricate	White to cream when young, drying honey-coloured to brown	Pale, white, cream to straw-coloured	Round to angular, 3–4 per mm	Trimitic	Cystidia absent; pointed cystidioles present, 20–27 × 4–5–5 μm	Cylindrical to distinctly fusoid, 6–8 × 2.8–3.7 μm	Melo and Ryvarden (1989)	
F. keizae	Vietnam	Annual; pileate	Buff yellow to orange-yellow buff	White to cream when fresh, cream to buff	Round to angular, 6–8	Trimitic	Cystidia absent; fusoid cystidioles occasionally present, 11.5–30.4 × 2.6–6 μm	Oblong-ellipsoid, 4.8–5.3 × 3–3.5 μm	Liu et al. (2021)	
F. massoniana	China	Annual; effused-reflexed to pileate	Buff-yellow to apricot-orange	White to cream when fresh, olivaceous buff to cinnamon-buff when dry	Round, 5–7	Dimitic	Cystidia absent; fusoid cystidioles occasionally present, 14.8–36 × 3.8–6 μm	Oblong-ellipsoid, 6.2–7.3 × 3–4 μm	Liu et al. (2021)	
F. meliae	USA	Annual or biennial; sessile, pilei single to imbricate, diminiate	Ivory to tan or cinerous	Ochraceous	Round to angular, 5–7	Trimitic	Cystidia absent; fusoid cystidioles present, 15–23 × 4–5 μm	Cylindrical, slightly fusiform, tapering to the apex, 6–8 × 2.5–3 μm	Gilbertson (1981)	
F. mounceae	Canada	Perennial; pileate	Brownish-orange to black at base and pale orange to greyish-orange towards the margin	Yellowish-white, greyish-yellow, pale orange to light ochraceous buff, bright reddish-brown when dry	Round, 3–5	Dimitic	Cystidia obclavate to sub fusiform with subacute or rounded apices, 16–35 × 3–6.5 μm	Ellipsoid to cylindrical, 5.8–6.6 × 3.4–4 μm	Haight et al. (2019)	
F. nitens	Brazil	Annual to biennial; sessile, diminiate, single to imbricate	Cream to pale sordid brown or tan	Cream to pale sordid brown or tan	Round to angular, 6–8	Trimitic	Cystidia absent; cystidioles broadly rounded, subapically contracted, 12–15 × 4–5 μm	Cylindrical, 6–9 × 2–3 μm	Gilbertson and Ryvarden (1986)	
F. ochracea	Canada	Perennial; pileate	Brownish-grey to greyish-brown at base and orange white to pale orange towards the margin	Pale yellow, pale orange, light ochraceous buff, reddish-brown when dry	Round, 4–5	Trimitic	Cystidia absent; fusoid cystidioles occasionally present, 20–40 × 4–6.5 μm	Broadly ellipsoid, 5.1–5.9 × 3.6–4 μm	Stokland and Ryvarden (2008); Haight et al. (2019)	
F. ostreiformis	Singapore	Annual; sessile or effuse-reflexed	Greyish pileal surface	White or greyish-white	Round to angular, 3–4	Trimitic	Cystidia absent; cystidioles present, 10–17 × 2.8–4 μm	Cylindrical, 4.2–5.6 × 1.4–2.6 pm	Do (1981); Hattori (2003)	
Two new brown rot polypores from tropical China

Species	Holotype	Basidiocarps	Pileal surface	Pore surface	Pore (per mm)	Hyphal system	Cystidia/cystidioles	Basidiospores	Radiospores	References
F. palustris	USA	Perennial; sessile, horizontal, applanate	Dimgy ochraceous to ochraceous buff, suffused dimgy brownish-vinaceous	Vinaceous drab to brownish-vinaceous but pallid ochraceous near the margin	Angular, 7–9	Dimitic	absent	Cylindrical, 3.7–4.7 × 2–2.5 μm.	Corner (1989); Hattori (2003)	
F. pinicola	Europe	Perennial; pileate	Brownish-orange to black at base and buff-yellow to cinnamon towards the margin	Cream coloured becoming citric yellow when bruised	Round, 4–6	Trinitic	Cystidia present, 18–90 × 3–9 μm	Cyldrical-ellipsoid, 6–9 × 3–4.5 μm	Ryyvarden and Mello (2014); Haight et al. (2019)	
F. rosenalba	Brazil	Annual; pileate, resupinate to effused-reflexed	White to pink when fresh, cream to greyish when dry	White to cream when fresh and ochraceous when dried	Round to angular, 4–6	Trinitic	absent	Ellipsoid to sub-cylindrical, 3–4.9 × 1.8–2 μm	Tibpromma et al. (2017)	
F. schrenkii	USA	Perennial; effused-reflexed to pileate	Greyish-orange to olive brown at base and greyish-orange to greyish-yellow towards the margin	Pale yellow, pale orange, cream buff, reddish-brown when dry	Round, 3–4	Dimitic	Cystidia cylindrical, subulate, or subfusiform with subacutes, 16–30 × 3–8 μm	Ellipsoid to broadly cylindrical, 5.7–6.7 × 3.7–4.2 μm	Haight et al. (2019)	
F. subtropic	China	Annual; pileate	Apricot-orange, scarlet to fuscous	White to cream when fresh, turning buff yellow to buff when dry	Round, 6–8	Dimitic	Cystidia absent; fusoid cystidioles occasionally present, 14.5–34.6 × 3.2–7.2 μm	Oblong-ellipsoid to ellipsoid, 4.3–5.5 × 2.7–3.3 μm	Liu et al. (2021)	
F. tianshanensis	China	Annual to perennial; effused-reflexed to pileate	Straw-yellow when young, becoming pale mouse-grey to flesh-pink with age	Cream to straw coloured or pale pinkish	Angular, 6–9	Trinitic	Cystidia absent; fusoid cystidioles occasionally present, 9–15 × 3–4 μm	Cylindrical to oblong-ellipsoid, 3.2–4 × 1.8–2.1 μm	Li and Cui (2013)	

Bayesian analysis resulted in a concordant topology with an average standard deviation of split frequencies = 0.008567.
In our phylogenies (Figs 1 and 2), five samples on bamboo formed an independent lineage in the *Fomitopsis* s.s. clade with strong support (100% ML, 100% MP, 1.00 BPPs) and are distant from other taxa in the genus. Both morphology and rDNA sequence data confirmed that the five samples represent a new species in *Fomitopsis*. Meanwhile, three samples on *Podocarpus* were nested in the *Oligoporus* s.s. clade and formed an independent lineage with a robust support (100% ML, 100% MP, 1.00 BPPs). Both morphology and rDNA sequence data confirmed that the three samples represent a new species in *Oligoporus*.

Taxonomy

Fomitopsis bambusae Y.C. Dai, Meng Zhou & Yuan Yuan, sp. nov.

MycoBank No: 839359

Figs 3, 4

Diagnosis. *Fomitopsis bambusae* is characterised by resupinate to effused-reflexed or pileate, soft corky basidiocarps with bluish-grey pores, small pores measuring 6–9 per mm, cylindrical to oblong ellipsoid basidiospores measuring 4.2–6.1 × 2–2.3 μm and growing on dead bamboo.

Type. China. Hainan, Haikou, Jinniuling Park, on dead bamboo, 18.XI.2020, Yu-Cheng Dai leg., Dai 22116 (holotype BJFC036008).

Etymology. *Bambusae* (Lat.): refers to the species growing on bamboo.

Fruiting body. Basidiocarps annual, resupinate to effused-reflexed or pileate, separable from the substrate, without odour or taste and soft corky when fresh, corky and light in weight when dry. Pilei semicircular, projecting up to 1 cm, 1.5 cm wide and 5 mm thick at base; resupinate part up to 14 cm long, 6 cm wide and 2 mm thick at centre. Pileal surface bluish-grey when fresh, pale mouse-grey to greyish-sepia when dry, glabrous to slightly velutinate, rough, azonate; margin acute, incurved when dry. Pore surface bluish-grey to pale mouse-grey when fresh, becoming mouse-grey to dark grey when dry; sterile margin up to 1 mm wide; pores round to angular, 6–9 per mm; dissepiments thin, entire. Context white to cream, corky, up to 3.5 mm thick. Tubes paler than pore surface, corky, up to 1.5 mm long.

Hyphal structure. Hyphal system dimitic; generative hyphae bearing clamp connections; skeletal hyphae IKI–, CB–; tissue unchanged in KOH.

Context. Generative hyphae hyaline, thin- to slightly thick-walled, occasionally branched, 1.5–3 μm in diam.; skeletal hyphae dominant, hyaline, thick-walled with a narrow lumen to subsolid, occasionally branched, interwoven, 2–4.5 μm in diam.

Tubes. Generative hyphae hyaline, thin- to slightly thick-walled, rarely branched, 1.5–2.5 μm in diam.; skeletal hyphae dominant, hyaline, thick-walled with a narrow lumen to subsolid, occasionally branched, flexuous, interwoven, 2–3 μm in diam. Cystidia absent; fusoid cystidioles present, hyaline, thin-walled, 11–18 × 2.5–4 μm. Basidia short clavate to barrel-shaped, bearing four sterigmata and a basal clamp connection, 13–19 × 4.5–5.5 μm; basidioles dominant, in shape similar to basidia, but smaller.
Spores. Basidiospores cylindrical to oblong ellipsoid, hyaline, thin-walled, smooth, IKI–, CB–, (4–)4.2–6.1(–6.5) × (1.9–)2–2.3(–2.6) μm, L = 4.917 μm, W = 2.109 μm, Q = 2.26–2.41 (n = 90/3).
Type of rot. Brown rot.

Additional specimens (paratypes) examined. China. Hainan, Haikou, Jinniuling Park, on dead bamboo, 7.XI.2020, Yu-Cheng Dai leg., Dai 21942 (BJFC035841), 18.XI.2020, Dai 22104 (BJFC035996), Dai 22110 (BJFC036002) and Dai 22114 (BJFC036006).

Figure 4. Microscopic structures of *Fomitopsis bambusae* (drawn from the holotype) a basidiospores b basidia c basidioles d cystidioles e hyphae from context f hyphae from trama.
Two new brown rot polypores from tropical China

Table 4. A comparison of species in the *Oligoporus.*

Species	Basidiocarps	Pore (per mm)	Pore surface	Cystidia	Cystidiales	Basidiospores size (μm)	Basidiospores shape	Reference
Oligoporus podocarpi	Resupinate	Round to angular, 5–6	White to pale cream	Thick-walled with apically encrusted	Absent	3.8–4.2 x 2–2.5	Allantoid to oblong ellipsoid	Present study
O. rennyi	Resupinate	Angular, 2–4	White or cream, then pale brown	Absent	Absent	4.8–6 x 2.5–3.5	Oblong ellipsoid	Ryvarden and Melo (2014); Shen et al. (2019)
O. sericeomollis	Resupinate	Round and angular, 4–6	White or discoloured yellowish or tan	Thick-walled with apically encrusted	Present, thin-walled	4–5 x 2–2.5	Oblong cylindrical to ellipsoid	Ryvarden and Melo (2014); Shen et al. (2019)

Oligoporus podocarpi Y.C. Dai, Chao G. Wang & Yuan Yuan, sp. nov.
MycoBank No: 839360
Figs 5, 6

Diagnosis. *Oligoporus podocarpi* is characterised by soft fresh basidiocarps, becoming rigid upon drying, a monomitic hyphal system with hyaline clamped generative hyphae, the presence of apically encrusted cystidia, broadly ellipsoid to reniform, dextrinoid, cyanophilous basidiospores measuring 3.8–4.2 x 2–2.3 μm, and growing on rotten wood of *Podocarpus.*

Type. China. Hainan, Changjiang, Hainan Tropical Rainforest National Park, Bawangling, rotten wood of *Podocarpus imbricatus*, 10.XI.2020, Yu-Cheng Dai leg., Dai 22042 (holotype BJFC035938).

Etymology. *Podocarp* (Lat.): referring to the species growing on wood of *Podocarpus imbricatus.*

Fruiting body. Basidiocarps annual, resupinate, adnate, soft corky, with mushroom odour when fresh, becoming rigid when dry, mild taste, up to 3 cm long, 2 cm wide and 2.3 mm thick at the centre. Pore surface snow white when fresh, becoming cream to buff upon drying, somewhat glancing; sterile margin indistinct, thinning out, up to 0.3 mm wide; pores round to angular, 5–6 per mm; dissepi-ments thin, entire. Subiculum white, fibrous to soft corky when dry, up to 0.3 mm thick. Tubes concolorous with the pore surface, hard corky to brittle when dry, up to 2 mm long.

Hyphal structure. Hyphal system monomitic; generative hyphae with clamp connections, smooth, hyaline, IKI–, CB–; tissues unchanged in KOH.

Subiculum. Generative hyphae thick-walled with a wide lumen, occasionally branched, flexuous, interwoven, 2.5–3.8 μm in diam.

Tubes. Generative hyphae thin- to thick-walled, occasionally branched, subparallel along the tubes to loosely interwoven, 2–3.1 μm in diam. Cystidia present, ventricose, very thick-walled, some apically encrusted. Basidia short clavate, sometimes with an intermediate constriction, with four sterigmata and a basal clamp connection, 12.5–16 x 4–5 μm; basidioloe in shape similar to basidia, but smaller.
Spores. Basidiospores broadly ellipsoid to reniform, hyaline, thin- to slightly thick-walled, smooth, often with one guttule, dextrinoid, CB+, (3.5–)3.8–4.2(–4.5) × 2–2.3(–2.5) μm, L = 3.98 μm, W = 2.14 μm, Q = 1.82–1.90 (n = 90/3).

Type of rot. Brown rot.

Additional specimens (paratypes) examined. China. Hainan, Changjiang, Hainan Tropical Rainforest National Park, Bawangling; rotten wood of *Podocarpus imbricatus*, 10.XI.2020, Yu-Cheng Dai leg., Dai 22043 (BJFC035939) and Dai 22044 (BJFC035940).

Discussion

In this study, two new species, *Fomitopsis bambusae* and *Oligoporus podocarpi*, are described, based on morphological features and molecular data. The phylogenetic analysis of *Fomitopsis* (Fig. 1), inferred from ITS+nLSU+nuSSU+mtSSU+PRB2+TEF1 sequences, provides strong support (100% ML, 100% MP, 1.00 BPPs) for the placement of *F. bambusae* in *Fomitopsis* s.s. Besides, *Fomitopsis bambusae* formed a distinct and independent lineage, which is clearly distinguishable phylogenetically from all other known species of the genus. *Fomitopsis roseoalba* A.M.S. Soares and *F. subtropica* B.K. Cui & Hai J. Li are potentially the most closely related. Meanwhile, *F. roseoalba* is distinguished from *F. bambusae* by its larger pores (4–6 per mm vs. 6–9 per mm) and smaller basidiospores (3–4.9 × 1.8–2 μm vs. 4.2–6.1 × 2–2.3 μm, Tibpromma et al. 2017); *F. subtropica* is different from *F. bambusae* by smaller basidiospores (3.2–4 × 1.8–2.1 μm vs. 4.2–6.1 × 2–2.3 μm, Li et al. 2013).

Morphologically, *Fomitopsis bambusae*, *F. cana* (Blume & T. Nees) Imazeki, *F. caribenensis*, *F. hemitephra* (Berk.) G. Cunn. and *F. nivosa* (Berk.) Gilb. & Ryvarden share approximately the same-sized pores (6–9 per mm). However, *Fomitopsis cana* differs from *F. bambusae* by its trimitic hyphal system, slightly larger basidiospores (5–6.2 × 2.1–3 μm, L = 5.81 μm, W = 2.6 μm vs. 4.2–6.1 × 2–2.3 μm, L = 4.917 μm, W = 2.109 μm) and grows on angiosperm wood rather than bamboo (Li et al. 2013). *Fomitopsis caribenensis* differs from *F. bambusae* by larger basidiospores (6–7.5 × 2.3–3.1 μm vs. 4.2–6.1 × 2–2.3 μm, Liu et al. 2019). *Fomitopsis hemitephra* is distinguished from *F. bambusae* by its perennial habitat, woody hard basidiocarps (Cunningham 1965). *Fomitopsis nivosa* differs from *F. bambusae* by having longer basidiospores (6–9 × 2–3 μm vs. 4.2–6.1 × 2–2.3 μm, Gilbertson and Ryvarden 1986). In addition, *Fomitopsis bambusae* may be confused with *F. ostreiformis* (Berk.) T. Hatt. in having similar-sized basidiospores and also growing on bamboo, but *F. ostreiformis* differs from *F. bambusae* by the larger pores (3–4 per mm vs. 6–9 per mm) and trimitic hyphal system (De 1981).

Our phylogeny of *Oligoporus* (Fig. 2), based on ITS+nLSU+nuSSU+mtSSU+PRB1+PRB2+TEF1 sequence, demonstrated *Oligoporus* s.s. formed a monophyletic lineage with a robust rating (100% ML, 100% MP, 1.00 BPPs), which is distant from *Postia* s.s. Though *Oligoporus* and *Postia* are similar to each other in morphological characteristics, some significant differences remain. For instance, *Postia* s.s. has effuse-
Two new brown rot polypores from tropical China

reflexed to pileate basidiocarps, thin-walled and acyanophilous basidiospores (Donk 1971; Ryvarden and Melo 2014; Shen et al. 2019), while *Oligoporus* s.s. has resupinate basidiocarps, slightly thick-walled and cyanophilous basidiospores (Shen et al. 2019). Figure 5. Basidiocarps of *Oligoporus podocarpi* (holotype Dai 22042). Scale bar: 1.0 cm.
2019). Phylogenetically, *Oligoporus podocarpi* is nested in the *Oligoporus* s.s. clade with a strong support (100% ML, 100% MP, 1.00 BPPs) and related to *O. rennyi* (Berk. & Broome) Donk and *O. sericeomollis* (Romell) Bondartseva (Fig. 2). These three species, representing *Oligoporus* s.s., have resupinate basidiocarps, white to cream pore

Figure 6. Microscopic structures of *Oligoporus podocarpi* (drawn from the holotype) a basidiospores b Basidia and basidioles c cystidia d hyphae from subiculum e hyphae from trama.
Two new brown rot polypores from tropical China

surface and thick-walled, dextrinoid, cyanophilous basidiospores. However, Oligoporus rennyi differs from O. podocarpi in the very fragile dry basidiocarps, the lack of cystidia and the presence of chlamydospores (Donk 1971; Ryvarden and Melo 2014). Oligoporus sericeomollis is different from O. podocarpi by fragile dry basidiocarps, longer basidiospores (4–5 × 2–2.5 μm vs. 3.8–4.2 × 2–2.3 μm) and the extremely bitter taste (Núñez and Ryvarden 2001; Ryvarden and Melo 2014). Morphologically, Oligoporus podocarpi is similar to Postia simanii (Pilát) Jülich, Cystidiopostia hibernica (Berk. & Broome) B.K. Cui, L.L. Shen & Y.C. Dai and Rhodonia rancida (Bres.) B.K. Cui, L.L. Shen & Y.C. Dai by resupinate basidiocarps, white to cream pore surface (Jülich 1982; Núñez and Ryvarden 2001; Ryvarden and Melo 2014; Shen et al. 2019). However, Postia simanii has smaller pores (6–8 per mm) and allantoid, thin-walled basidiospores measuring 4–5.3 × 0.8–1.2 μm (Jülich 1982; Ryvarden and Melo 2014). Cystidiopostia hibernica and Rhodonia rancida are different from Oligoporus podocarpi by larger pores (2–3 per mm in C. hibernica, 2–4 per mm in R. rancida) and allantoid, thin-walled basidiospores (4.3–6 × 1.4–1.9 μm in C. hibernica, 5–7 × 2–2.5 μm in R. rancida) (Ryvarden and Melo 2014; Shen et al. 2019).

Acknowledgements

The research is supported by the National Natural Science Foundation of China (Project No. 32000010).

References

Binder M, Hibbett DS, Larsson KH, Larsson E, Langer E, Langer G (2005) The phylogenetic distribution of resupinate forms across the major clades of mushroom forming fungi (Homobasidiomycetes). Systematics Biodiversity 3: 113–157. https://doi.org/10.1017/S1477200005001623

Binder M, Justo A, Riley R, Salamov A, López-Giraldez F, Sjökvist E, Copeland A, Foster B, Sun H, Larsson E, Larsson KH, Townsend J, Grigoriev IV, Hibbett DS (2013) Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105: 1350–1373. https://doi.org/10.3852/13-003

Brefeld O (1888) Basidiomyceten 3. Autobasidiomyceten. Untersuchungen aus dem Gesammtgebiete der Mykologie 8: 1–184.

Chen YY, Wu F, Wang M, Cui BK (2017) Species diversity and molecular systematics of Fibrroporia (Polyporales, Basidiomycota) and its related genera. Mycological Progress 16: 521–533. https://doi.org/10.1007/s11557-017-1285-1

Corner EJH (1989) Ad Polyporaceas V. Beihefte zur Nova Hedwigia 96: 1–218.

Cui BK, Li HJ, Ji X, Zhou JL, Song J, Si J, Dai YC (2019) Species diversity, taxonomy and phylogeny of Polyporaceae (Basidiomycota) in China. Fungal Diversity 97: 137–302. https://doi.org/10.1007/s13225-019-00427-4
Cui BK, Vlasák J, Dai YC (2014) The phylogenetic position of *Osteina obducta* (Polyporales, Basidiomycota) based on samples from Northern Hemisphere. Chiang Mai Journal of Science 41: 838–845.

Cunningham GH (1965) Polyporaceae of New Zealand. Bulletin of the New Zealand Department of Scientific and Industrial Research 164: 1–304. https://doi.org/10.1017/S0267190500002877

Dai YC (2012) Polypore diversity in China with an annotated checklist of Chinese polypores. Mycoscience 53: 49–80. https://doi.org/10.1007/s10267-011-0134-3

Dai YC, Wei YL, Zhou LW (2015) Polypore richness along an elevational gradient: A case study in Changbaishan Nature Reserve, Northeastern China. Fungal Ecology 13: 226–228. https://doi.org/10.1016/j.funeco.2014.07.002

De AB (1981) Taxonomy of *Polyporus ostreiformis* in relation to its morphological and cultural characters. Canadian Journal of Botany-revue Canadienne de Botanique 59: 1297–1300. https://doi.org/10.1139/b81-174

Donk MA (1960) The generic names proposed for Polyporaceae. Persoonia 1: 173–302.

Donk MA (1971) Notes on European polypores 8. Persoonia 6: 201–218.

Felsenstein J (1985) Confidence intervals on phylogenetics: An approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

Floudas D, Hibbett DS (2015) Revisiting the taxonomy of *Phanerochaete* (Polyporales, Basidiomycota) using a four gene dataset and extensive ITS sampling. Fungal Biology 119: 679–719. https://doi.org/10.1016/j.funbio.2015.04.003

Gilbertson RL (1981) North American wood-rotting fungi that cause brown rots. Mycotaxon 12: 372–416. https://doi.org/10.1007/BF00575090

Gilbertson RL, Ryvarden L (1986) North American polypores 1. *Abortiporus – Lindmeria*. Fungiflora, Oslo.

Gilbertson RL, Ryvarden L (1987) North American Polypores 2. *Megasporoporia – Wrightoporia*. Fungiflora, Oslo.

Haight JE, Laursen GA, Glæser JA, Taylor DL (2016) Phylogeny of *Fomitopsis pinicola*: A species complex. Mycologia 108: 925–938. https://doi.org/10.3852/14-225R1

Haight JE, Nakasone KK, Laursen GA, Redhead SA, Taylor DL, Glæsera JA (2019) *Fomitopsis mounceae* and *F. schrenkii* – two new species from north America in the *F. pinicola* complex. Mycologia 111: 1–19. https://doi.org/10.1080/00275514.2018.1564449

Hall TA (1999) Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98. https://doi.org/10.1021/bk-1999-0734.ch008

Han ML, Chen YY, Shen LL, Song J, Vlasák J, Dai YC, Cui BK (2016) Taxonomy and phylogeny of the brown-rot fungi: *Fomitopsis* and its related genera. Fungal Diversity 80: 343–373. https://doi.org/10.1007/s10267-016-0364-y

Hattori T (2003) Type studies of the polypores described by E.J.H. Corner from Asia and West Pacific Areas. V. Species described in Tyromyces (2). Mycoscience 44: 265–276. https://doi.org/10.1007/S10267-003-0114-3

Jülich W (1981) Higher taxa of Basidiomycetes. Bibliography of Systematic Mycology 85: 1–485.
Two new brown rot polypores from tropical China

Jülich W (1982) Notes on some Basidiomycetes (Aphyllophorales and Heterobasidiomycetes). Persoonia 11: 421–428.

Justo A, Miettinen O, Floudas D, Ortiz-Santana B, Sjökvist E, Lindner D, Nakasone K, Niemelä T, Larsson KH, Ryvarden L, Hibbett DS (2017) A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biology 121: 798–824. https://doi.org/10.1016/j.funbio.2017.05.010

Karsten PA (1881) Symbolae ad mycologiam Fennicam. 8. Meddelanden af Societas pro Fauna et Flora Fennica 6: 7–13.

Kim CS, Jo JW, Kwag YN, Lee S-g, Kim S-Y, Shin C-H, Han S-K (2015) Mushroom flora of Ulleung-gun and a newly recorded Bovista species in the Republic of Korea. Mycobiology 43: 239–257. https://doi.org/10.3389/fmicb.2021.644979

Liu S, Song CG, Cui BK (2019) Morphological characters and molecular data reveal three new species of Fomitopsis (Basidiomycota). Mycological Progress 18: 1317–1327. https://doi.org/10.1007/s11557-019-01527-w

Matheny PB, Liu YJ, Ammirati JF, Hall BD (2002) Using RPB1 sequences to improve phylogenetic inference among mushrooms (Inocybe, Agaricales). American Journal of Botany 89: 688–698. https://doi.org/10.3732/ajb.89.4.688

Melo I, Ryvarden L (1989) Fomitopsis iberica Melo & Ryvarden sp. nov. Boletim da Sociedade Broteriana 62: 227–230.

Nilsson RH, Tedersoo L, Abarenkov K, Ryberg M, Kristiansson E, Hartmann M, Schoch CL, Nylander JAA, Bergsten J, Porter TM, Jumpponen A, Vaishampayan P, Ovaskainen O, Hallenberg N, Bengtsson-Palme J, Eriksson KM, Larsson KH, Larsson E, Köljalg U (2012) Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys 4: 37–63. https://doi.org/10.3897/mycokeys.4.3606

Núñez M, Ryvarden L (2001) East Asian Polypores, Synopsis Fungorum 14, vol 2. Fungiflora, Oslo, Norway, 229–231.

Nylander JAA (2004) MrModeltest v.2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Ortiz-Santana B, Lindner DL, Miettinen O, Justo A, Hibbett DS (2013) A phylogenetic overview of the Antrodia clade (Basidiomycota, Polyporales). Mycologia 105: 1391–1411. https://doi.org/10.3852/13-051

Page RMD (1996) Treeview: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12: 357–358. https://doi.org/10.1093/bioinformatics/12.4.357
Pegler DN, Saunders EM (2014) British poroid species formerly placed in the genus *Tyromyces* (Coriolaceae). Mycologist 8: 24–31. https://doi.org/10.1016/S0269-915X(09)80678-2

Petersen JH (1996) Farvekort. The Danish Mycological Society’s color-chart. Foreningen til Svampekundskabens Fremme, Greve.

Pildain MB, Rajchenberg M (2013) The phylogenetic position of *Postia* s.l. (Polyporales, Basidiomycota) from Patagonia, Argentina. Mycologia 105: 357–367. https://doi.org/10.1016/j.mycol.2015.06.010

Posada D, Crandall KA (1998) Modeltest: Testing the model of DNA substitution. Bioinformatics 14: 817–818. https://doi.org/10.1093/bioinformatics/14.9.817

Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97: 84–98. https://doi.org/10.3852/mycologia.97.1.84

Renvall P (1992) Basidiomycetes at the timberline in Lapland 4. *Postia lateritian* sp. and its rust-coloured relatives. Karsternia 32: 43–60. https://doi.org/10.29203/ka.1992.291

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Ryvarden L (1981) Type studies in the Polyporaceae13. Species described by J.H. Léveillé. Mycotaxon 13: 175–186.

Ryvarden L (1991) Genera of polypores, nomenclature and taxonomy. Synopsis Fungorum 5: 1–363.

Ryvarden L, Gilbertson RL (1993) European polypores 1. *Abortiporus-Lindneria*. Synopsis Fungorum 6: 1–387.

Ryvarden L, Melo I (2014) Poroid fungi of Europe. Synopsis Fungorum 31: 1–455.

Shen LL, Wang M, Zhou JL, Xing JH, Cui BK, Dai YC (2019) Taxonomy and phylogeny of *Postia*. Multi-gene phylogeny and taxonomy of the brown-rot fungi: *Postia* (Polyporales, Basidiomycota) and related genera. Persoonia 42: 101–126. https://doi.org/10.3767/persoonia.2019.42.05

Soares AM, Nogueira-Melo G, Plautz Jr HL, Gibertoni TB (2017) A new species, two new combinations and notes on Fomitopsidaceae (Agaricomycetes, Polyporales). Phytotaxa 331: e75. https://doi.org/10.11646/phytotaxa.331.1.5

Song J, Cui BK (2017) Phylogeny, divergence time and historical biogeography of *Laetiporus* (Basidiomycota, Polyporales). BMC Evolutionary Biology 17: e102. https://doi.org/10.1186/s12862-017-0948-5

Spirin VA (2002) The new species from the genus *Antrodia*. Mikologiya i fitopatologiya 36: 33–35.

Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland. https://doi.org/10.1111/j.0014-3820.2002.tb00191.x

Thangamalai MS, Alwin P, Packiaraj J, Rajaiah S (2018) Bioprospection of Basidiomycetes and molecular phylogenetic analysis using internal transcribed spacer (ITS) and 5.8S rRNA gene sequence. Scientific Reports 8: e10720. https://doi.org/10.1038/s41598-018-29046-w

Thompson JD, Gibson TJ, Plewniak F, Franois J, Higgins DG (1997) The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality
Two new brown rot polypores from tropical China

analysis tools. Nucleic Acids Symposium Series 25: 4876–4882. https://doi.org/10.1093/nar/25.24.4876

Tibpromma S, Hyde KD, Jeewon R, Maharachchikumbura SSN, Liu JK, Bhat DJ, Jones EBG, McKenzie EHC, Camporesi E, Bulgakov TS, Doilom M, Santiago ALCMA, Das K, Manimohan P, Gibertoni TB, Lim YW, Ekanayaka AH, Thongbai B, Lee HB, Yang JB, Kirk PM, Sysoouthanthong P, Singh SK, Boonmee S, Dong W, Raj KNA, Latha KPD, Phookamsak R, Phukhamsakda C, Konta S, Jayasiri SC, Norphanphoun C, Tennakoon DS, Li J, Dayarathe MC, Perera RH, Xiao Y, Wanasinghe DN, Senanayake IC, Goonasekara ID, Silva NI, Mapook A, Jayawardena RS, Dissanayake AJ, Manawasinghe IS, Chethana KWT, Luo ZL, Hapuarachchi KK, Baghela A, Soares AM, Vizzini A, Ottoni AM, Mešic A, Dutta AK, Souza CAF, Richter C, Lin CG, Chakrabarty D, Daranagama DA, Chakraborty DXLD, Ercole E, Wu F, Simonini G, Vasquez G, Silva GA, Plautz Jr HL, Ariyawansa HA, Lee H, Kušan I, Song J, Sun J, Karmakar J, Hu K, Semwal KC, Thambugala KM, Voigt K, Acharya K, Rajeshkumar KC, Ryvarden L, Jadan M, Hosen M, Mikšík M, Samarakoon MC, Wijayawardene NN, Kim NK, Matočec N, Singh PN, Tian Q, Bhatt RP, Oliveira RJV, Tulloss RE, Aamir S, Kaewchai S, Marathe SD, Khan S, Hongsanan S, Adhikari S, Mehmood T, Bandyopadhyay TK, Svetasheva TY, Nguyen TTT, Antonin V, Li WJ, Wang Y, Indoliya Y, Tkalčec Z, Elgorban AM, Bahkali AH, Tang AMC, Su HY, Zhang H, Promputtha I, Luangsa-ard J, Xu J, Yan J, Karmakar J, Mortimer PE, Chomnunti P, Zhao Q, Phillips AJL, Nontachaiyapoom S, Wen TC, Karunarathna SC (2017) Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity 83: 1–261. https://doi.org/10.1007/s13225-017-0378-0

Walker J (1996) An opinion on the validity of the generic name Postia Fries 1874 (Eumycota: Aphylllophorales). Australasian Mycological Society Newsletter 15: 23–26.

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: InnisMA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols: A guide to methods and applications. Academic, San Diego, 315–322.

Wu F, Yuan HS, Zhou LW, Yuan Y, Cui BK, Dai YC (2020) Polypore diversity in South China. Mycosistema 39: 653–681.

Xing JH, Sun YF, Han YL, Cui BK, Dai YC (2018) Morphological and molecular identification of two new Ganoderma species on Casuarina equisetifolia from China. MycoKeys 34: 93–108. https://doi.org/10.3897/mycokeys.34.22593

Yao YJ, Pegler DN, Chase MW (2005) Molecular variation in the Postia caesia complex. FEMS Microbiology Letters 242: 109–116. https://doi.org/10.1016/j.femsle.2004.10.046

Zhang DZ (2003) Three brown rot polypores new to Taiwan and their cultural studies. Taiwania 48: 1–5. https://doi.org/10.6165/ta.2003.48(1).1

Zhou LW, Dai YC (2012) Recognizing ecological patterns of wood-decaying polypores on gymnosperm and angiosperm trees in northeast China. Fungal Ecology 5: 230–235. https://doi.org/10.1016/j.fungene.2011.09.005

Zhu L, Ji X, Si J, Cui BK (2019) Morphological characters and phylogenetic analysis reveal a new species of Phellinus with hooked hymenial setae from Vietnam. Phytotaxa 1: 91–99. https://doi.org/10.11646/phytotaxa.356.1.8