Contrasting the Interaction Structure of an Email and a Telephone Corpus: A Machine Learning Approach to Annotation of Dialogue Function Units

Jun Hu
Rebecca Passonneau
Owen Rambow
Columbia University – CCLS
rambow@ccls.columbia.edu
Interaction Structure

Origins in face-to-face spoken interaction

- Adjacency Pairs (Sacks, Schegloff, Jefferson 74)
- Speech Acts (Austen)

- RequestInformation → Inform
- RequestAction → Commit

- A: Will you marry me?
- B: <silence>
Email Example

- From: Melinda Solata
 To: Kevin Glick, Gio diStefano
 When did the package to DX go out? I am worried about them, they have hinted to me that they may switch providers. Who is in charge of that account?
 Melinda

- From: Kevin Glick
 To: Melinda Solata
 The package went out last week, I think.

- From Gio diStefano
 To: Melinda Solata, Kevin Glick
 I am not sure who is in charge of the account, perhaps Ram. The package to DX went out yesterday.
 GdS
Broader Notion of Interactive Communications: General Issues

Issue: underlying commonalities versus distributional differences

• Multiparty interactions
• No physical co-presence
• Asynchronous communication
• Non-linear discourse structure (tree, dag)
• Non-adjacent adjacency pairs
• Unanswered questions (or other openers)
• Answers to unasked questions (or other “volunteered” closings)
Outline

- Annotation Scheme: Dialog Function Units (DFU)
 - Dialog Acts
 - Links
 - Segments
- Corpora
- Automatic Prediction
Annotation Scheme: Dialog Acts (DAs)

- **Inventory: Reduced**
 - Goal: study interaction comparatively
 - Avoid massive data skew (and domain-specific labels)
 - Easier to generalize
 - Segmentation not given but determined by dialog act; therefore: too fine-grained DAs mean segments that are too small

- **Our set (n=8):** Request-Information, Inform, Request-Action, Commit, Conventional, Perform, Backchannel, Other
Annotation Scheme: Links

- Related segments are:
 - Not necessarily adjacent
 - Not necessarily predicted by dialog acts
 - Not necessarily complete
 - Don’t know where responding act will be
 - 1-to-many links
 - Discourse flow not necessarily linear: can be tree or dag

- Need explicit links between segments
 - Link: between request for information or action and its response
 - Secondary link: between any other DA pair
 - Dangling link
Annotation Scheme:
Segmentation

• Dialog Function Units: defined *functionally*

• Longest segment which has a single discourse purpose:
 – Same DA tag
 – Same link structure

• Note: subsequent responses can alter segmentation!

• Also content requirement: generally same topic
Corpus 1: Loqui
Telephone Conversation

- Recorded phone conversations at New York City's Heiskel Library
- Dialogs: 175 collected, 82 transcribed, 48 annotated
- Annotated dialogues pertain to one or more book requests by customers
- Annotators worked from combination of transcription and audio.
Corpus 2: Enron
Corporate Email

- 122 email threads of the Enron email corpus (with missing messages restored)
- Mostly information exchange, scheduling meetings, and solving problems, also purely social emails.
Corpora: Procedure

• Annotation developed looking at Enron, Switchboard, Dover Trial court transcripts
• Six people have been trained to annotate using our guidelines
• Most annotation used in experiments done by single annotator
• Guidelines have been under development and may be revised again (and data re-annotated)
• Have no inter-annotator agreement data for now
Corpus: Size and Dialog Acts

Dialog Act Labels	Tel.	Email
Words	21,097	17,924
Segments	3,845	1,400
Inform	50%	61%
Request-Information	20%	11%
Request-Action	1%	3%
Commit	9%	0%
Conventional	7%	25%
Backchannel	13%	0%
Corpus: Links

	Tel.	Enron
Segments by Link		
Part of a Paired Links	32%	14%
Links by Type		
Link	54%	28%
Secondary Link	39%	37%
Dangling	7%	33%
Outline

- Annotation Scheme: Dialog Function Units
- Corpora
- Automatic Prediction
Automatic Tagging

• 2 Tasks
 – Dialog Act Tagging: Choose DA for given segment
 – Link Choice: decide if two DFUs with DA tags are linked

• 3 Methods
 – Baseline
 • DA tagging: majority baseline
 • Link prediction: next plausible DFU (Serious baseline!)
 – Regular SVM: binary classifier (extended to n-ary)
 • Yamcha
 – Structured SVM: chooses among structure
Automatic Tagging: Corpora

- 5-fold cross-validation
- Telephone: 3845 segments
- Email: 1400 segments
Structured SVM

• Learns discriminant function F: inputs x outputs $\rightarrow R$
• DA tagging:
 – Input = structure of segments
 – Output = sequence of DA tags
• Link prediction:
 – Input = structure of segments + (predicted) DA tags + link consideration space
 • At most 1 link starts or ends in any given segment
 • No crossing links
 – Output = chosen links
 – Constraints on link consideration space limit accuracy of prediction!
Results for DA Prediction (Accuracy)

	Baseline	Regular SVM	Structured SVM
Telephone	50%	68%	70%
Email	61%	88%	89%

Conclusions:
- Task harder for Telephone than for Email
- Regular SVM does as well as Structured SVM; no surprise
Results for Link Prediction
(Recall, Precision, F-Measure)

	Baseline						
	R	P	F	R	P	F	R
Tel.	30	56	39	44	61	51	44
Email	17	40	24	19	55	28	31
	30	56	39	44	61	51	44
	17	40	24	19	55	28	31

Conclusions:
- Task harder for Email than for Telephone
- Structured SVM paying off for Email corpus only!
Future Work

• Continue annotating Telephone and Email
• Start annotating web forum or similar
• Redo link prediction without restrictions (only one link per segment, no crossing links)
Corpus: Links

	Tel.	Enron
Segments by Link		
Part of a Paired Links	32%	14%
Links by Type		
Link	54%	28%
Secondary Link	39%	37%
Dangling	7%	33%
Links By Dialog Act		
Inform	50%	61%
Request-Information	20%	11%
Request-Action	1%	3%
Commit	9%	0%
Conventional	7%	25%
Backchannel	13%	0%