Function space bases in the dune-functions module

Oliver Sander

Heidelberg, 28. 9. 2015
Discretization modules

dune-fem
- Focus on adaptivity, parallelism, and efficiency

dune-pdelab
- Very flexible and powerful
- Steep learning curve

dune-fufem
- Easy to use
- Less powerful
New module: dune-functions

The idea:
- Standardize on parts of the functionality

The team
- Carsten
- Christian
- Steffen
- Yours truly

History
- First meeting: Aug. 2013 in Münster (with Christoph Gersbacher and Stefan Girke)
- Further meetings every six months
- First actual users in March 2015
Functions

- Interface for functions $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$, differentiable functions, grid functions, etc.
- Based on callables, concepts and type erasure
- Talk by Carsten

Function space bases

- Content of this talk

Infrastructure

- Interpolation:

 function + basis \Rightarrow coefficient vector

- VTK output of grid functions
The case for bases

- Grid function spaces are *not* the right abstraction
- More than one basis for the same space
 - E.g., P2 nodal basis vs. hierarchical basis
 - Orthogonal vs. Lagrange DG basis
- Basis + coefficients = discrete function

Functionality of a basis For any given grid element

- ...get restrictions of relevant basis functions to this element
 - i.e., the shape functions
 - use dune-localfunctions interfaces
- ...get local shape function numbers
- ...get global basis function numbers
Tree representation of composite bases

Systematic construction of basis for vector-valued spaces

- Tensor products of simpler basis
- Taylor–Hood: $B_{\text{TH}} = (P_2 \otimes P_2 \otimes P_2) \otimes P_1$

Tree representation

Systematic construction of

- orderings
- multi-indices
Taylor–Hood basis: lexicographic ordering

	0	(0,0)	(0,0)	(0,0,0)
$b_{x,0}$	1	(0,1)	(0,1)	(0,0,1)
$b_{x,1}$	2	(0,2)	(0,2)	(0,0,2)
$b_{x,2}$
$b_{y,0}$	n	(0,n)	(1,0)	(0,1,0)
$b_{y,1}$	$n+1$	(0,$n+1$)	(1,1)	(0,1,1)
$b_{y,2}$	$n+2$	(0,$n+2$)	(1,2)	(0,1,2)
$b_{z,0}$	$2n$	(0,2n)	(2,0)	(0,2,0)
$b_{z,1}$	$2n+1$	(0,2$n+1$)	(2,1)	(0,2,1)
$b_{z,2}$	$2n+2$	(0,2$n+2$)	(2,2)	(0,2,2)
p_0	3n	(1,0)	n	(1,0)
p_1	3$n+1$	(1,1)	$n+1$	(1,1)
p_2	3$n+2$	(1,2)	$n+2$	(1,2)

Possible index types for a Taylor–Hood basis with lexicographic ordering of the velocity basis functions.
Orderings and indices

Taylor–Hood basis: interleaved ordering

	$b_{x,0}$	$b_{y,0}$	$b_{z,0}$	$b_{x,1}$	$b_{y,1}$	$b_{z,1}$	$b_{x,2}$	$b_{y,2}$	$b_{z,2}$	p_0	p_1	p_2
	0	1	2	3	4	5	6	7	8	3n	3n+1	3n+2
	$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$	$(0,5)$	$(0,6)$	$(0,7)$	$(0,8)$	$(1,0)$	$(1,1)$	$(1,2)$

Possible index types for a Taylor–Hood basis with interleaved ordering of the velocity basis functions
Figure: Overview of the classes making up the interface to finite element space bases
FunctionSpaceBasis

Interface

- size_type size() const
 Total number of basis functions

- size_type size(const SizePrefix& prefix) const
 Number of basis functions with a given multi-index prefix

- LocalView localView() const
 Get a local view object

- LocalIndexSet localIndexSet() const
 Get a local index object
Interface

- **void bind(const Element& e)**
 Bind the view to grid element e

- **const Tree& tree() const**
 Get the shape function tree for the current element

- **size_type size() const**
 Total number of shape functions on the current element

- **size_type maxSize() const**
 Maximum number of shape functions over all elements
Leaf nodes
- const FiniteElement& finiteElement() const
- size_type localIndex(size_type i) const

Inner nodes
- PowerNode: Combines identical subtrees
- CompositeNode: Combines differing subtrees

Node access
- tree.child(a,b,c,...)
 with a,b,c,... either int or std::integral_constant<size_type,>
- Example: tree.child(_0,0): first component of velocity basis
LocalIndexSet

Interface

- `void bind(const LocalView& localView)`
 Bind to `localView` object
- `size_type size() const`
 Total number of shape functions for the current element
- `MultiIndex index(size_type i) const`
 Get global (multi-)index for the `i`-th shape function

Open question:

- How to request *different* orderings / index types?
Example: Stokes equation

Setting
- Models a viscous incompressible fluid in a \(d\)-dimensional domain \(\Omega\).
- Unknowns: fluid velocity field \(u : \Omega \rightarrow \mathbb{R}^d\), pressure \(p : \Omega \rightarrow \mathbb{R}\).
- The pressure is therefore usually normalized such that \(\int_{\Omega} p \, dx = 0\).

Weak form
- Spaces
 \[
 H^1_D(\Omega) := \{v \in H^1(\Omega) : \text{tr } v = u_D\},
 L^2,0(\Omega) := \{q \in L^2(\Omega) : \int_{\Omega} q \, dx = 0\},
 \]
- Bilinear forms
 \[
 a(u, v) := \int_{\Omega} \nabla u \nabla v \, dx, \quad \text{and} \quad b(v, q) := \int_{\Omega} \nabla \cdot v \cdot q \, dx.
 \]
- Saddle-point problem: Find \((u, p) \in H^1_D(\Omega) \times L^2,0(\Omega)\) such that
 \[
 a(u, v) + b(v, p) = 0 \quad \text{for all } v \in H^1_0(\Omega)
 \]
 \[
 b(u, q) = 0 \quad \text{for all } q \in L^2,0(\Omega).
 \]
Example: Driven cavity

Figure: Left: setting, right: simulation result. The arrows show the normalized velocity.
Current status

Technology preview

- Most work is done
- Details of the API may still change(!)
- Go use it!

Basis implementations

- PQkNodalBasis
- LagrangeDGBasis
- TaylorHoodBasis
- BSplineBasis
- ...more to come

Further information

- www.dune-project.org/modules/dune-functions