A LOWER BOUND FOR PERIODS OF MATRICES

PIETRO CORVAJA, ZEEV RUDNICK AND UMBERTO ZANNIER

Abstract. For a nonsingular integer matrix A, we study the growth of the order of A modulo N. We say that a matrix is exceptional if it is diagonalizable, and a power of the matrix has all eigenvalues equal to powers of a single rational integer, or all eigenvalues are powers of a single unit in a real quadratic field.

For exceptional matrices, it is easily seen that there are arbitrarily large values of N for which the order of A modulo N is logarithmically small. In contrast, we show that if the matrix is not exceptional, then the order of A modulo N goes to infinity faster than any constant multiple of $\log N$.

1. Introduction

Let A be a $d \times d$ nonsingular integer matrix, and $N \geq 1$ an integer. The order, or period, of A modulo N is defined as the least integer $k \geq 1$ such that $A^k = I$ mod N, where I denotes the identity matrix. If A is not invertible modulo N then we set ord$(A, N) = \infty$. In this note we study the minimal growth of ord(A, N) as $N \to \infty$.

If A is of finite order (globally), that is $A^r = I$ for some $r \geq 1$, then clearly ord$(A, N) \leq r$ is bounded. If A is of infinite order, then ord$(A, N) \to \infty$ as $N \to \infty$. Moreover, in this case it is easy to see that ord(A, N) grows at least logarithmically with N, in fact if no eigenvalue of A is a root of unity then:

$$\text{ord}(A, N) \geq \frac{d}{\eta_A} \log N + O(1)$$

where $\eta_A := \sum_{|\lambda_j| > 1} \log |\lambda_j|$, the sum over all eigenvalues $\{\lambda_j\}$ of A which lie outside the unit circle (η_A is the entropy of the endomorphism of the torus $\mathbb{R}^d/\mathbb{Z}^d$ induced by A, or the logarithmic Mahler measure of the characteristic polynomial of A, and the condition that no eigenvalue of A is a root of unity is equivalent to ergodicity of the toral endomorphism).

There are cases when the growth of ord(A, N) is indeed no faster than logarithmic. For instance if we take $d = 1$, and $A = (a)$ where $a > 1$ is an integer, and $N_k = a^k - 1$ then

$$\text{ord}(A, N_k) = k \sim \frac{\log N_k}{\log a}$$

and so

$$\liminf \frac{\text{ord}(A, N)}{\log N} = \frac{1}{\log a} < \infty$$

in this case.

Date: February 9, 2004.
The same behaviour occurs in the case of 2×2 unimodular matrices $A \in \text{SL}_2(\mathbb{Z})$ which are hyperbolic, that is A has a pair of distinct real eigenvalues $\lambda > 1 > \lambda^{-1}$. Then
\[
\liminf \frac{\text{ord}(A,N)}{\log N} = \frac{2 \log \lambda}{\eta_A}
\]
See e.g. [KR2].

These cases turn out to be subsumed by the following definition: We say that A is exceptional if it is of finite order or if it is diagonalizable and a power A^r of A satisfies one of the following:

1. The eigenvalues of A^r are all a power of a single rational integer $a > 1$;
2. The eigenvalues of A^r are all a power of a single unit $\lambda \neq \pm 1$ of a real quadratic field.

We will see that if A is exceptional, then there is some $c > 0$ and arbitrarily large integers N for which $\text{ord}(A,N) < c \log N$.

Our main finding in this note is

Theorem 1. If $A \in \text{Mat}_d(\mathbb{Z})$ is not exceptional then
\[
\frac{\text{ord}(A,N)}{\log N} \to \infty
\]
as $N \to \infty$.

A special case is that of diagonal matrices, e.g. $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$. In that case Theorem 1 says that $\text{ord}(a,b;N)/\log N \to \infty$ if a,b are multiplicatively independent, in contrast with [1].

Theorem 1 is in fact equivalent to a subexponential bound on the greatest common divisor $\gcd(A^n - I)$ of the matrix entries of $A^n - I$. We shall derive it from

Theorem 2. If $A \in \text{Mat}_d(\mathbb{Z})$ is not exceptional then for all $\epsilon > 0$
\[
\gcd(A^n - I) < \exp(\epsilon n)
\]
if n is sufficiently large.

In the special case of a diagonal matrix such as $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, we have $\gcd(A^n - I) = \gcd(a^n - 1, b^n - 1)$. In [BCZ] it is shown that if a,b are multiplicatively independent then for all $\epsilon > 0$,
\[
\gcd(a^n - 1, b^n - 1) < \exp(\epsilon n)
\]
for n sufficiently large, giving Theorem 2 in that case. To prove Theorem 2 in general, we will use a version of [3] for S-units in a general number field [CZ].

We note that Theorem 2 establishes upper bounds on $\gcd(A^n - I)$. As for lower bounds, it is conjectured in [AR] that if A has a pair of multiplicatively independent eigenvalues then $\liminf \gcd(A^n - I) < \infty$.

Motivation: A natural object of study for number theorists, the periods of toral automorphisms were also investigated by a number of physicists and mathematicians interested in classical and quantum dynamics, see e.g. [HB, K, DF]. One special case of this appeared as a problem in the 54-th W.L. Putnam Mathematical Competition, 1994, see [AR, pages 82, 242]).
A lower bound for periods of matrices

reason for our own interest also lies in the quantum dynamics of toral automorphisms: It has recently been shown that any ergodic automorphism $A \in \text{SL}_2(\mathbb{Z})$ of the 2-torus admits “quantum limits” different from Lebesgue measure FNB, if one does not take into account the hidden symmetries (“Hecke operators”) found in KR1. The key behind the constructions of these measures is the existence of values of N satisfying (2), that is $\text{ord}(A, N) \sim 2\log N/\eta_A$. A higher-dimensional version of this would involve taking ergodic symplectic automorphisms $A \in \text{Sp}_{2g}(\mathbb{Z})$ of the $2g$-dimensional torus. Theorem 1 gives one obstruction to extending the construction of FNB to the higher-dimensional case.

2. Proof of Theorem 2

Assume that for a certain positive ϵ and all integers n in a certain infinite sequence $\mathcal{N} \subset \mathbb{N}$ we have

$$\gcd(A^n - I) > \exp(\epsilon n).$$

We shall prove that A is “exceptional”, in the sense of the above definition.

We let $k \subset \overline{\mathbb{Q}}$ be the splitting field for the characteristic polynomial of A, so we may put A in Jordan form over k, namely, we may write

$$A = PBP^{-1},$$

where P is an invertible $d \times d$ matrix over k and B is in Jordan canonical form.

For later reference we introduce a little notation related to the field k.

We let M (resp. M_0) denote the set of (resp. finite) places of k. We shall normalize all the absolute values with respect to k, i.e. in such a way that the product formula $\prod_{\mu \in M} |x|_\mu = 1$ holds for $x \in k^*$, and the absolute logarithmic Weil height reads $h(x) = \sum_{\mu} \log \max\{1, |x|_\mu\}$. We also let S be a finite set of places of k including the archimedean ones and we denote by \mathcal{O}_S^{*} the group of S-units in k^*, namely those elements $x \in k$ such that $|x|_\mu = 1$ for all $\mu \notin S$.

Note that $B^n - I = P^{-1}(A^n - I)P$; since the entries of P and its inverse are fixed independently of n, hence have bounded denominators as n varies, this formula shows that the entries of $B^n - I$ have a “big” g.c.d., in the sense of ideals of k, for $n \in \mathcal{N}$. Since the entries of $B^n - I$ are algebraic integers, not necessarily rational, to express their g.c.d. we shall use the formula-definition

$$\log \gcd(B^n - I) := \sum_{\mu \in M_0} \log \max_{ij} |(B^n - I)_{ij}|_\mu,$$

where $\log^-(x) := -\min(0, \log x)$; this is a nonincreasing nonnegative function of $x > 0$.

Note that this definition agrees with the usual notion in case B has rational integer entries. From (4) and the above formula $B^n - I = P^{-1}(A^n - I)P$ we immediately deduce that

$$\sum_{\mu \in M_0} \log^\max_{ij} |(B^n - I)_{ij}|_\mu > \frac{\epsilon}{2}n,$$

for large $n \in \mathcal{N}$.

In fact, each entry of $B^n - I$ is a linear combination of entries of $A^n - I$ with coefficients having bounded denominators, whence $|(B^n - I)_{ij}|_\mu \leq \max_{rs} |(A^n - I)_{rs}|_\mu$, where c_μ are positive numbers independent of n such that $c_\mu = 1$ for all but finitely many $\mu \in M$. This proves (4).
We start by showing that B must be necessarily diagonal. In fact, if not some block of B would contain on the diagonal a 2×2 matrix of the form
\[
\begin{pmatrix}
\lambda & 1 \\
0 & \lambda \\
\end{pmatrix}
\]
where λ is an (algebraic integer) eigenvalue of A. Hence $B^n - I$ would contain among its entries the numbers $\lambda^n - 1$ and $\lambda^{n-1} n$. Then, for every $\mu \in M_0$, we would have
\[
\max_{ij} |(B^n - I)_{ij}|_\mu \geq \max(\lambda^n - 1, \lambda^{n-1} n_\mu) \geq |n_\mu|,
\]
whence
\[
\log^{-} \max_{ij} |(B^n - I)_{ij}|_\mu \leq \log^{-} |n_\mu| = - \log |n_\mu|.
\]
In conclusion,
\[
\sum_{\mu \in M_0} \log^{-} \max_{ij} |(B^n - I)_{ij}|_\mu \leq \sum_{\mu \in M_0} - \log |n_\mu| = \log n
\]
the last equality holding because of the product formula. However this contradicts \((\ref{3})\) for all large $n \in \mathcal{N}$ and this contradiction proves that B is diagonal.

Therefore from now on we assume that B is a diagonal matrix formed with the eigenvalues $\lambda_1, \ldots, \lambda_d$ of A, each counted with the suitable multiplicity.

Another case now occurs when there exist two multiplicatively independent eigenvalues, denoted α, β. Now, from \((\ref{5})\) we get, for large $n \in \mathcal{N}$,
\[
\sum_{\mu \in M_0} \log^{-} \max(|\alpha^n - 1|_\mu, |\beta^n - 1|_\mu) \geq \sum_{\mu \in M_0} \log^{-} \max_{ij} |(B^n - I)_{ij}|_\mu > \frac{\epsilon}{2} n .
\]

We are then in position to apply (after a little change of notation) the following fact from \([\text{CZ}]\), stated as Proposition 2 therein:

Proposition 3 (Proposition 2 of \([\text{CZ}]\)). Let $\delta > 0$. All but finitely many solutions $(u, v) \in (\mathcal{O}_k)^2$ to the inequality
\[
\sum_{\mu \in M_0} \log^{-} \max\{|u - 1|_\mu, |v - 1|_\mu\} > \delta \cdot \max\{h(u), h(v)\}
\]
satisfy one of finitely many relations $u^n v^b = 1$, where $a, b \in \mathcal{Z}$ are not both zero.

Actually, Prop. 2 in \([\text{CZ}]\) is a little stronger, since the summation is over all $\mu \in M$ rather than the finite $\mu \in M_0$ and since it also asserts that the relevant pairs (a, b) may be computed in terms of δ.

We apply this fact with $u = \alpha^n$, $v = \beta^n$ and S containing the finite set of places of k which are nontrivial on α or β; note that \((\ref{6})\) implies the inequality of the proposition, with $\delta = \epsilon/(2 \max(h(\alpha), h(\beta)))$. We conclude that, for an infinity of $n \in \mathcal{N}$, a same nontrivial relation $\alpha^{an} \beta^{bm} = 1$ holds, contradicting the multiplicative independence of α, β.

Therefore we are left with the case when all pairs of eigenvalues are multiplicatively dependent. This means that they generate in k^* a subgroup Γ of rank ≤ 1.

If the rank is zero all the eigenvalues λ_i are roots of unity, so the matrix A has finite order and thus it is exceptional. Hence let us assume from now on that the rank is 1. Let then $\lambda \in \Gamma$ be a generator of the free part of Γ (it exists by basic theory). Then, for suitable roots of unity ζ_1, \ldots, ζ_d and rational integers a_1, \ldots, a_d we may write
\[
\lambda_i = \zeta_i \lambda^{a_i}, \quad i = 1, \ldots, d.
\]
Necessarily the ζ_i lie in k.

Let σ be an automorphism of k. Then σ fixes the set of eigenvalues, since A is a matrix defined over \mathbb{Q}; hence σ fixes the above group Γ. Let r be the order of the torsion in Γ, so the subgroup $[r]\Gamma$ of r-th powers in Γ is cyclic, generated by λ^r. (Note that automatically $\zeta_i^r = 1$ in (7)). Then σ must send λ^r to another generator of $[r]\Gamma$, whence

$$\sigma(\lambda)^r = \lambda^\pm r.$$

Therefore in particular λ^r is at most quadratic over \mathbb{Q} (in fact, recall that k/\mathbb{Q} is normal).

Let us first assume that λ^r is rational. Raising the equations (7) to the power $2r$, we see that the eigenvalues λ_i^{2r} of the matrix A^{2r} are positive rationals; since they are algebraic integers, they are therefore positive rational integers. Since they are pairwise multiplicatively dependent then are powers of a same positive integer (which can be taken $\lambda^{\pm 2r}$). We thus fall in another of the exceptional situations.

The last case occurs when λ^r is a quadratic irrational. Then some automorphism σ must send it to its inverse λ^{-r}. As before, we may raise equations (7) to the r-th power to find $\lambda_i^r = \lambda_i^{r\alpha}$. Therefore $\sigma(\lambda_i^r) = \lambda_i^{-r}$. Since the λ_i are algebraic integers, the same is true for the λ_i^{2r}, and hence we find that all the eigenvalues of A^r are units (some of them possibly equal to ± 1) in a same quadratic field.

This concludes the proof.

3. Proof of Theorem 1

The following Lemma shows that Theorems 1 and 2 are in fact equivalent:

Lemma 4. Let A be a nonsingular integer matrix of infinite order. Then the following are equivalent:

1. For all $\epsilon > 0$, we have $\gcd(A^n - I) < \exp(\epsilon n)$ if n is sufficiently large;
2. $\operatorname{ord}(A, N)/\log N \to \infty$.

Proof. Assume that $\gcd(A^n - I) < \exp(\epsilon n)$ for all $\epsilon > 0$. Fix $\epsilon > 0$. Take $n = \operatorname{ord}(A, N)$ and note that N divides all the matrix entries of $A^{\operatorname{ord}(A, N)} - I$. Since A does not have finite order and thus $\operatorname{ord}(A, N) \to \infty$ as $N \to \infty$, we have for N sufficiently large that

$$N \leq \gcd(A^{\operatorname{ord}(A, N)} - I) < \exp(\epsilon \operatorname{ord}(A, N))$$

Thus

$$\log N < \epsilon \operatorname{ord}(A, N).$$

Since this holds for all $\epsilon > 0$ we find $\operatorname{ord}(A, N)/\log N \to \infty$.

Conversely, suppose that there is some $\rho > 0$ and an infinite sequence of integers N so that $\gcd(A^n - I) > \exp(\rho n)$ for all $n \in N$. Then for the sequence $N_n := \gcd(A^n - I), n \in N$ (which is infinite since $N_n > \exp(\rho n)$) we have

$$\operatorname{ord}(A, N_n) \leq n < \log \gcd(A^n - I)/\rho = \log N_n/\rho$$

and thus $\lim \inf \operatorname{ord}(A, N)/\log N < \infty$. \qed
4. Comments

It is readily seen that exceptional cases do in fact occur, and that they give rise to powers A^k such that $\gcd(A^k - I)$ is exponentially large, and hence to arbitrarily large integers N for which $\text{ord}(A, N)$ is logarithmically small. The last case of the eigenvalues in a quadratic field of course requires that the irrational ones occur in conjugate pairs, since A is defined over \mathbb{Q}, and that the determinant of A is ± 1.

Examples of such integer matrices can be produced from the action of a fixed such 2×2 hyperbolic matrix $A_0 \in SL_2(\mathbb{Z})$ on tensor powers, or from $A_0 \otimes \sigma$ where σ is a permutation matrix.

To see that the exceptional cases lead to exponentially large gcd, consider first the case that a power of A has all eigenvalues a power of a single integer $a > 1$. As we have seen in the course of proof of Theorem 2, replacing a matrix by a conjugate (over \mathbb{Q}) does not change the asymptotic behaviour. Thus we may assume that A' is diagonal with eigenvalues a^{m_1}, \ldots, a^{m_d}. Then clearly $\text{ord}(A', N) \leq \text{ord}(a, N)$ and taking $N_a := a^n - 1$ gives $\text{ord}(a, N_a) = n \sim \log N_a / a$. Thus we find $\text{ord}(A, N_a) \leq r \log N_a / a$.

Now assume that a power A^k of A has all its eigenvalues a power of a single unit $\lambda > 1$ in a real quadratic field K. Then for some matrix P with entries in K, we have $A' = PBP^{-1}$ with B diagonal with eigenvalues $\lambda^{a_1}, \ldots, \lambda^{a_d}$, where a_i are integers which sum to zero.

Since P is only determined up to a scalar multiple, we may, after multiplying P by an algebraic integer of K, assume that P has entries in the ring of integers \mathcal{O}_K of K, and then $P^{-1} = \frac{1}{\det(P)} P^{ad}$ where P^{ad} also has entries in \mathcal{O}_K.

The entries of $A^{rk} - I$ are thus \mathcal{O}_K-linear combinations of $(\lambda^{a_1 k} - 1)/\det(P)$. We now note that

$$\lambda^{-k} - 1 = -\lambda^{-k}(\lambda^k - 1)$$

and thus the entries of $A^{rk} - I$ are all \mathcal{O}_K-linear combinations of $(\lambda^{a_1 k} - 1)/\det(P)$, which are in turn \mathcal{O}_K-multiples of $(\lambda^k - 1)/\det(P)$. In particular, $\gcd(A^{rk} - I)$, which is a \mathbb{Z}-linear combination of the entries of $A^{rk} - I$, can be written as

$$\gcd(A^{rk} - I) = \frac{\lambda^k - 1}{\det(P)} \gamma_k$$

with $\gamma_k \in \mathcal{O}_K$.

Now taking norms from K to \mathbb{Q} we see

$$|\gcd(A^{rk} - I)|^2 = \frac{|N_{K/\mathbb{Q}}(\lambda^k - 1)|}{|N_{K/\mathbb{Q}}(\det(P))|} |N_{K/\mathbb{Q}}(\gamma_k)| .$$

Since $\gamma_k \neq 0$, we have $|N_{K/\mathbb{Q}}(\gamma_k)| \geq 1$ and thus

$$|\gcd(A^{rk} - I)|^2 \geq \frac{|N_{K/\mathbb{Q}}(\lambda^k - 1)|}{|N_{K/\mathbb{Q}}(\det(P))|} \gg \lambda^k$$

which gives $|\gcd(A^{rk} - I)| \gg \lambda^{k/2}$, namely exponential growth.

References

[AR] N. Ailon and Z. Rudnick Torsion points on curves and common divisors of $a^k - 1$ and $b^k - 1$, to appear in Acta Arithmetica, preprint [math.NT/0202102]

[An] Andreescu, T., and Gelca, R. Mathematical Olympiad challenges. Birkhauser Boston, Inc., Boston, MA, 2000.
[BCZ] Bugeaud, Y., Corvaja, P. and Zannier, U. An upper bound for the G.C.D of $a^n - 1$ and $b^n - 1$, Math. Zeitschrift. 243 (2003), 79–84.

[CZ] Corvaja, P. and Zannier, U. A lower bound for the height of a rational function at S-unit points. Preprint, [math.NT/0311030]

[DF] F. J. Dyson and H. Falk, Period of a discrete cat mapping, Amer. Math. Monthly 99 (1992), no. 7, 603–614.

[FNB] F. Faure, S. Nonnenmacher, S. De Bievre. Scarred eigenstates for quantum cat maps of minimal periods. Comm. Math. Phys. 239 (2003), 449–492.

[HB] Hannay and M. V. Berry, Quantization of linear maps on the torus-fresnel diffraction by a periodic grating. Phys. D 1 (1980), no. 3, 267–290.

[K] J.P. Keating, Asymptotic properties of the periodic orbits of the cat maps, Nonlinearity 4 (1991), no. 2, 277–307;

[KR1] P. Kurlberg and Z. Rudnick. Hecke theory and equidistribution for the quantization of linear maps of the torus. Duke Math. J., 103(1):47–77, 2000.

[KR2] Kurlberg, P., Rudnick, Z., On Quantum Ergodicity for Linear Maps of the Torus, Commun. Math. Phys. 222 (2001) 1, 201–227.

A LOWER BOUND FOR PERIODS OF MATRICES

Dipartimento di Matematica e Inf., Via delle Scienze, 206, 33100 Udine, Italy (corvaja@dimi.uniud.it)

Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel (rudnick@post.tau.ac.il)

I.U.A.V. -DCA, S. Croce 191, 30135 Venezia, Italy (zannier@iuav.it)