Effect of heavy metals on in vitro growth and development of the *Momordica cymbalaria* Fenzl

G. Chaitanya1 · Ch. Pavani1,2 · T. Shasthree1

Received: 4 March 2021 / Revised: 20 June 2022 / Accepted: 13 July 2022 / Published online: 27 July 2022

© The Author(s) under exclusive licence to Iranian Society of Environmentalists (IRSEN) and Science and Research Branch, Islamic Azad University 2022

Abstract

Heavy metals have played a great role in the genesis of the present-day civilization. Human beings are affected when these metals are added to the food chain. Although these are the most important plant nutrients, they are phytotoxic at high concentrations. Heavy metals at super optimal concentrations affect different metabolic pathways in plants and result in their ceased growth and development. They may enter plants either by their root system or through foliar uptake; stunted growth, chlorosis, necrosis, and reddish-brown discoloration are visible symptoms of severe metallic phytotoxicity. The study of heavy metal stress tolerance on *Momordica cymbalaria* shows the effect on the plant growth and metabolism. All heavy metals treated with high concentrations affect the overall plant growth. The Murashige and Skoog (MS) basal medium with ZnSO₄ at 100 µM concentration resulted in healthy shoot development (9) with a maximum shoot length of 7.2 cm. MS basal medium with low concentration of CuSO₄ (50 µM) achieved a maximum shoot number (7) with healthy leaves and shoots. MS basal medium with higher concentration of CdCl₂ (150 µM) affects plant growth and reduced the regeneration capability completely.

Keywords *Momordica cymbalaria* · ZnSO₄ · CuSO₄ and CdCl₂ · Chlorophyll · UV-Spectrophotometer

Introduction

Heavy metal contamination in soils is caused by either natural processes or by human activities (Fidalgo et al. 2013). Heavy metals such as Ag, As, Be, Ni, Zn, Cu, Cr, Mn, Cd, Hg, Pb, Sb, Ti, etc., are responsible for the pollution of the environment (Sparks 2005). Plants are known to accumulate heavy metals from soil and deposit them in various parts of the plant body depending on their affinity to a particular metal (Bhat et al. 2010; Celik et al. 2010; Haribabu and Sudha 2011). Plants are the main bridge for the transfer of heavy metals from contaminated soil to humans (Shin et al. 2013; Souri et al. 2019). Heavy metal contamination of herbal remedies has previously been reported in many Asian, South American and African herbal products in various countries (Dghaim et al. 2015).

The ability of plants to absorb metals from the soil also depends on several other non-soil factors including cationic characteristics and metabolic processes (Steve et al. 2018). Among several heavy metals, Ni, Mn, Cr, Zn, Cu, Hg, As and Cd are common toxic metals regularly entering the food chain (Singh and Kalamdhad 2011; Wong and Selvam 2006). Bioremediation is a modern thought and safe practice in the elimination of heavy metals from the environment (Rahman and Singh 2020; Song et al. 2017). For example, it has been reported that water hyacinth is used in pollution treatment systems for the removal of heavy metals. It also serves as a structural component in ribosomes and appears to stabilize the ribosome particles for protein synthesis (Mary lissy and Madhu 2011).

The availability of heavy metals to plants is influenced by soil temperature, soil pH and ion exchange, soil organic matter and heavy metal concentration in soil. The ability of plants to absorb metals also depends on several other non-soil factors including cationic characteristics and metabolic processes (Dalvi et al. 2013). Among the several heavy metals, Ni and Cd are common toxic metals regularly entering...
the food chain, whereas Cu and Zn are essential for plant growth and development but can be toxic at high concentrations (Van Hoof et al. 2001; Hall 2002). Heavy metal analysis of medicinal plants should be prioritized so that the contamination cannot accumulate up to the finished products (Singh et al. 2014). In vitro plant tissue culture enables the selection of plants that are resistant to certain metal ions. However, the previous report on *M. charantia* revealed the accumulation and distribution of these heavy metals in different plant parts like Ni, Cu, Pb, Cr, Cd, Co, Fe and Al in roots; Zn in branches and stem; and Mn in leaves (Savsatliet al. 2016).

Momordica cymbalaria belongs to the Cucurbitaceae family and contains many bioactive compounds in different plant parts. These plants originated in the tropical regions of India and South East Asia. The plant has synonyms named *Momordica tuberosa* Roxb or *Luffa tuberosa* Roxb. It is commonly known as Athalakkai in Tamil and Kasarakaya in Telugu. It is used as an edible vegetable and also in various therapeutic treatments. *Momordica cymbalaria* arise from a small perennial tuber; it is an herbaceous climber and climbs on supports with the aid of tendrils or allowed to grow on the boundary of fields, fences and in the crop fields.

Previous studies on *M. cymbalaria* plant reported the anti-cancer (Jeevanantham et al. 2011), anti-diabetic (Firdous et al. 2009), neuroprotective and anti-ulcer (Bharathi Dasan et al. 2010), anti-ovulatory, abortifacient and cardioprotective (Raju et al. 2008), antioxidant (Prashanth et al. 2013), hypolipidemic (Ezra et al. 2014), anti-diarrheal and protective (Raju et al. 2008), antioxidant (Prashanth et al. 2016). In vitro plant tissue culture enables the nodal propagation of *M. cymbalaria*. Hence, the current study refers to be initial report on the assessment of the heavy metal effect on in vitro nodal propagation of *M. cymbalaria*.

Materials and methods

Momordica cymbalaria healthy young nodes were collected, rinsed with fresh water for 15 min, subsequently washed with 10% tween 20 (liquid soap) for 5 min and then washed thrice with sterilized double-distilled water. Afterward, the explants were sterilized with 0.1% bavistin (a fungicide) for 5 min, followed by 0.1% mercuric chloride (HgCl₂) for 1–3 min in an aseptic environment. Then, the explants were washed with double sterile distilled water to vanish HgCl₂. These disinfected explants were inoculated on culture medium (Murashige and Skoog 1962) under aseptic conditions (Chaitanya et al. 2020).

Heavy metal stocks

All the heavy metal chemicals were purchased from Merck India Ltd., Mumbai. The heavy metal stock solutions (1000 µM) were prepared as per the molecular weight of the chemicals (CdCl₂.2H₂O–183.32 g/mol, CuSO₄·5H₂O–249.69 g/mol, ZnSO₄·H₂O–179.45 g/mol) using sterile distilled water, and different concentrations (50 µM, 100 µM and 150 µM) of these heavy metals were prepared accordingly from these stock solutions.

Culture media and conditions

MS medium augmented with vitamins, myo-inositol (100 mg/l), sucrose (30 g/l), agar (8 g/l) and different concentrations of heavy metals like CuSO₄/ZnSO₄/CdCl₂ (50 µM, 100 µM and 150 µM). The basal MS medium without any hormones and heavy metals was also prepared accordingly as per the standard protocol. The pH was set to 5.6–5.8 with 0.1 N NaOH or 0.1 N HCl and autoclaved at 121 °C for 15 min. The cultures were maintained in a sterilized culture room and incubated at 26±2 °C with a relative humidity of 60±10% and 16 h photoperiod and 8-h dark conditions (Perveen et al. 2012).

Estimation of chlorophyll content

The chlorophyll content of the test samples was estimated by Arnon (1949) method. According to this method, 1 gr of the matured leaf sample was taken and blended with 20 ml of acetone (80%) in a pre-chilled motor and pestle. Later a pinch of MgCO₃ was added to the above leaf sample and blended again. The resultant mixture was maintained at 4 °C for about 3 h, followed by centrifugation at 3000 rpm for 5 min. The supernatant was collected in a 100-ml conical flask, and the volume was made up to 100 ml using 80% acetone. The absorbance of this test solutions was measured at 645 and 663 nm using a UV–Vis spectrophotometer, and the amount of chlorophyll was estimated by using the below formula.

\[
\text{Chlorophyll a (mg/g FW)} = \frac{12.7 \times A_{663} - 2.69 \times A_{645} \times V}{1000 \times W}
\]

\[
\text{Chlorophyll b (mg/g FW)} = \frac{12.9 \times A_{663} - 4.68 \times A_{645} \times V}{1000 \times W}
\]

\[
\text{Total Chlorophyll content (mg/g)} = \frac{20.2 \times A_{663} - 8.02 \times A_{645} \times V}{1000 \times W}
\]
Data collection and interpretation

The inoculated nodal explants were observed every week and noted down the changes/responses of explants toward each heavy metal under study. The data on the frequency of explants responded for callus formation, the average number of shoots and the length of shoots and roots were recorded regularly at weekly intervals. The data were analyzed statistically using analysis of variance (ANOVA). All the experiments were conducted with 30 explants and each was repeated thrice (Fig. 1).

Fig. 1 Node based in vitro plant regeneration of *Momordica cymbalaria* Fenzl with different concentrations of heavy metals. a Formation of shoots and leaves from node (Control). b Induction of shoots formation and leaves with ZnSO₄ (50 µm). c Formation of shoots and leaves with CuSO₄ (50 µm). d Green callus and shoot formation with CdCl₂ (50 µm). e Increasing number of leaves and shoots with ZnSO₄ (100 µm). f Increasing number of leaves and shoots with CuSO₄ (100 µm). g Shrinkening of shoots with CdCl₂ (100 µm). h Root initiation and shrinking leaves and shoots with ZnSO₄ (150 µm). i Root formation and shrinking leaves and shoots with CuSO₄ (150 µm). j Fully shrink dead shoot with no leaves with CdCl₂ (150 µm).
Results and discussion

Nodal explants of *Momordica cymbalaria* cultured on a basal MS medium with or without heavy metals were observed after 15, 30 and 45 days (Fig. 2). Plant growth on the basal medium (control) was found to be normal (Fig. 1a). MS basal medium was amended with heavy metals like ZnSO₄, CuSO₄ and CdCl₂ which showed great differentiation in in vitro regeneration. The percentage of response exhibited is more in nodal explants cultured on ZnSO₄ when compared to control and other heavy metals tested. The increase in the heavy metals concentration over the optimal concentration showed the detrimental growth of the explants cultured (Fig. 1).

Effect of ZnSO₄

The amount of ZnSO₄ supplemented in the basal MS medium promotes normal growth of the cultured explants. The enhancement of ZnSO₄ in the medium promotes enhanced growth. Among the tested concentrations of ZnSO₄, nodal explants cultured on MS medium amended with 100 µM ZnSO₄ exhibited high response with regard to the mean shoot number (9) and shoot length (7.2) after 45 days of culture (Fig. 1e; Table 1). As the concentration of ZnSO₄ increased from 50 µM to 100 µM, there is a drastic increase in the growth of the cultured explants (Fig. 1b). Further increase in the concentration of ZnSO₄ resulted in the root formation but shoot growth and proliferation declined (Fig. 1h).

The total chlorophyll content of the cultured explants ranged from 2.834 to 1.578 mg/g (Table 1). Among all the concentrations and combinations tested, 50 µM ZnSO₄ exhibited maximum chlorophyll content than the control and other heavy metals tested (Table 1). The amount of total chlorophyll content was found to gradually decrease as the concentration of ZnSO₄ increased.

Effect of CuSO₄

The nodal explants cultured on MS medium amended with 50 µM CuSO₄ showed a better response with an average shoot number (7) and shoot length (6.2 cm) per explant after 45 days of incubation (Fig. 1c). Further increase in the concentration of CuSO₄ beyond 50 µM resulted in the growth reduction of the cultured explants (Fig. 1f, i).

The chlorophyll content of regenerants was also found to gradually decrease with an increase in concentration of CuSO₄. The total chlorophyll content in all CuSO₄-treated samples showed a decrease from 2.743 to 1.405 mg/g over the control samples (Table 1).

![Fig. 2](image-url) In vitro regeneration from nodal explants at different time intervals
Among the different concentrations of CdCl\textsubscript{2} tested, the nodal explants cultured on MS medium with 50 µM CdCl\textsubscript{2} developed only callus without any signs of growth and development after 45 days (Fig. 1d). Further increase in the concentration of the CdCl\textsubscript{2}, resulted in the slowdown of growth and eventually led to the death of the explants, clearly indicating the toxicity of Cd at high concentration on in vitro regeneration studies (Fig. 1g, j).

The total chlorophyll content of explants cultured on CdCl\textsubscript{2} (50 µM) was found to be 0.853 mg/g. Among all the samples tested, the lowest amount of chlorophyll content was exhibited by the cultures on CdCl\textsubscript{2} (50 µM) (Table 1).

Discussion

In plants, the induction of secondary metabolites is triggered by both biotic and abiotic stresses. Metal stress can affect the plant growth performance and the yield of biomolecules. Bioactive molecule quercetin, found in the roots of *M. cymbalaria*, is used for the prevention or treatment of COVID-19 and other respiratory tract infections in humans (Aucoin et al. 2020). The quercetin concentration was reported to increase at 200 µM ZnSO\textsubscript{4} or 150 µM CuSO\textsubscript{4} in in vitro regenerated plantlets of *Pluchea lanceolata* (Kumar et al. 2004).

Metals are usually required in tiny quantities during plant growth and development, but at high concentrations, they become phytotoxic (Sarkar et al. 2010). Metals (Zn, Cu, Cd) present at adequate levels in the regeneration medium enhanced the growth and shoot regeneration of *M. cymbalaria* under in vitro study. Virginia Sarropoulou and Eleni Maloupa (2017) examined similar results at elevated levels of 3 different MS medium micronutrients CuSO\textsubscript{4}, MnSO\textsubscript{4} and ZnSO\textsubscript{4} on in vitro shoot proliferation of *Sideritis raeseri*.

Among the heavy metals tested, ZnSO\textsubscript{4} induced optimal response of growth. Zn plays a major role in protein synthesis, metabolism of carbohydrates, lipids and nucleic acids and maintains membrane integrity and detoxifies superoxide radicals (Tamta et al. 2021). Zinc promotes the formation of chlorophyll and carotenoids (Broadley et al. 2007). The optimal Zn concentrations in the regeneration medium have a good influence on the growth of the chloroplast membrane system and chlorophyll content (Ahmad et al. 2015). These findings were consistent with those obtained in *Pluchea lanceolata*, where ZnSO\textsubscript{4}
exhibits a positive response up to 150 μM. Thereafter, a further increase in the concentration resulted in the slowdown of the growth and proliferation (Kumar et al. 2004). Similar findings of the effect of ZnSO₄ were reported in Rauvolfia serpentina (Ahmad et al. 2015), Holarrhena antidysenterica (Agrawal and Sharma 2006); Withania somnifera (Fathima et al. 2011). Similar results were found in Jatropha curcas; when the explants were treated with a lower concentration of nickel (Ni), it may initiate growth and regeneration; however, as the concentration increased, it affected plant regeneration (Sarkar et al. 2010). The chlorophyll content of regenerants was also greatly influenced by the heavy metal stress. Similar effect of decrease in chlorophyll content of the heavy metal treated samples with the increasing heavy metal concentration was found in Albizia lebbeck (Perveen et al. 2012), Rauvolfia serpentina (Ahmad et al. 2015).

However, the concentration of copper across their optimal level brings about drastic changes clearly specifying the toxic effect of elevated copper. Kumar et al. (2004) also reported a similar result that an increase in the concentration of CuSO₄ beyond the optimum level resulted in the reduction of callus weight and growth. Such a stimulatory effect of CuSO₄ was also reported in Stevia rebaudiana (Jain et al. 2009); Capsicum annuum (Joshi and Kothari 2007). In contrast, an increase in the copper level resulted in the high regeneration of wheat and barley (Dahleen 1995). Addition of ZnSO₄ and CuSO₄ to the media promoted higher regeneration capacity when compared to control plants in many different species like Populus (Kalisova et al. 2003); Holarrhena antidysenterica (Agrawal and Sharma 2006); Withania somnifera (Fathima et al. 2011); Rauvolfia tetraphylla (Shahid et al. 2016).

Basically, Cu is involved in respiration, photosynthesis, synthesis of cell wall and protection against oxidative stress (Tamta et al. 2021). Elevated levels of Cu become toxic and inhibit the growth and regeneration of explants (Naik et al. 2015; Javed et al. 2017). This may be resulted due to oxidative stress generated by plants and reduced uptake of other essential metals (Javed et al. 2017). Copper may inhibit pigment production, photosynthesis, and harm to plasma membrane permeability in some species (Macnair 1992). In our investigation, lower copper concentrations (50 μM) increased chlorophyll content. When the CuSO₄ concentration was raised to 150 μM, the total chlorophyll content of the samples treated was found to decrease compared to the control samples. Cu is known to damage chloroplasts, disrupt their structure, functions and hinder chlorophyll production. It also prevents the uptake and transport of other elements such as Mn, Zn, and Fe, resulting in leaf necrosis (Liu et al. 2004). These might be the primary causes of the reduced chlorophyll content at high Cu concentrations in the regeneration medium. Similar findings have been observed in other species, notably Stevia rebaudiana (Jain et al. 2009) and Withania somnifera (Fathima et al. 2011). The concentration of CuSO₄ and ZnSO₄ above the optimum levels resulted in the decrease in regeneration capacity and the amount of chlorophyll content (Perveen et al. 2012; Ahmad et al. 2015; Das et al. 2018; Alam et al. 2020).

Cadmium is toxic for all living organisms including plants. However, plant species may show different tolerance to the presence of cadmium in their root system (Hatamian et al. 2020). The toxicity of CdCl₂ was clearly observed in plant regeneration at higher concentration. These findings are in agreement with the results obtained in Bacopa monniera, where the concentration of CdCl₂ beyond 50 μM resulted in the death of the regenerants (Ali et al. 1998). The inhibition of growth is sign of Cd-induced stress (Fernández et al. 2008). Prolonged treatment of high concentration of Cd resulted in the death of the tissue (Yemets et al. 2021). A similar inhibitory effect of CdCl₂ was also reported in different plant species like Holarrhena antidysenterica (Agrawal and Sharma 2006); woody species (Almeida et al. 2007); Vigna species (Ratheesh Chandra et al. 2010); Albizia lebbeck (Perveen et al. 2012); Rauvolfia tetraphylla (Shahid et al. 2016); Celtis australis (Hatamian et al. 2020). Similar effect of Cd on the reduction of the chlorophyll content was reported earlier by Iqbal et al. (2015).

Correspondingly, chromium also exhibited similar toxic effects of growth and yield reduction and decrease in chlorophyll content as the concentration increased and was reported earlier in several plant species like Lycopersicon esculentum (Shekar et al. 2013), blackgram (Lakshmi and Sundaramoorthy 2003), tomato and brinjal (Purohit et al. 2003), blackgram, soybean and paddy (Ganesh et al. 2006).

Conclusion

The present investigation was undertaken with a view to gain a deep insight into the effect of heavy metals like Zn, Cu and Cd on in vitro regeneration of Momordica cymbalaria. The study of heavy metal stress tolerance showed the effect on plant growth and metabolism of M. cymbalaria. All treated heavy metals at higher concentrations above 100 μM affected the plant growth and development. ZnSO₄ and CuSO₄ at optimal concentrations exhibited the profound growth, whereas CdCl₂ at a higher concentration affected plant growth and development and reduced the regeneration capability completely. This is a model experiment and helps to evaluate the effect of different heavy metals on different crop systems.

Acknowledgements The authors are thankful to the Department of Biotechnology, Kakatiya University, Warangal, Telangana State, India, for providing facilities, and also authors would like to express their sincere thanks to UGC-SAP-DRS-II, New Delhi, India, for their financial support.
Author Contributions G. Chaitanya and T. Shashthree contributed to the design and implementation of the research, to the analysis of the results, and to the writing of the manuscript. Ch. PAVani designed the table and analyzed the data.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

Agrawal V, Sharma K (2006) Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarhenna antisynerceta. Biol Plant 50(2):307–310. https://doi.org/10.1007/s10535-006-0027-z

Ahmad N, Alatar AA, Faisal M, Khan MI, Fatima N, Anis M, Hegazy AK (2015) Effect of copper and zinc on the in vitro regeneration of Rauwolfia serpentina. Biol Plant 59(1):11–17. https://doi.org/10.1007/s10535-014-0479-5

Alam N, Anis M, Javed SB, Alatar AA (2020) Stimulatory effect of copper and zinc sulphate on plant regeneration, glutathione-S-transferase analysis and assessment of antioxidant activities in Mucuna pruriens L. (DC). Plant Cell Tissue Organ Cult 141:155–166. https://doi.org/10.1007/s12229-020-01776-8

AliG SPS, Igbal M (1998) Effect ofcadmium and copper on growth of Bacopa monniera regenerants. Biol Plant 41:635–639. https://doi.org/10.1023/A:1001869122253

Almeida AAFD, Valle RR, Mielke MS, Gomes FP (2007) Tolerance and prospection of phytoremediator woody species of Cd, Pb, Cu and Cr. Braz J Plant Physiol 19(2):83–98. https://doi.org/10.1590/S1677-04202007000200001

Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase 24(1):1. https://doi.org/10.1104/pp.24.1.1

Aucoin M, Cooley K, Saunders PR, Cardozo V, Remy D, Cramer MS (2008) Cadmium accumulation and its effect on the in vitro growth of woody fleaban and mycorrhized white birch. Environ Pollut 152:522–529. https://doi.org/10.1016/j.envpol.2007.07.011

Fidalgo F, Azenha M, Silva AF, de Sousa A, Santiago A, Ferraz P, Teixeira J (2013) Copper-induced stress in S olanum nigrum L. and antioxidant defense system responses. Food Energy Secur 2(1):70–80. https://doi.org/10.1007/s12423-013-0000-0

Firdous M, Koneri R, Sarvaruadiu CH (2009) NIDDM Antidiabetic activity of saponins of Momordica cymbalaria in steptozotocin–nicotinamide NIDDM mice. JCDR 2(3):1460–1465

Ganesh KS, Sundaramoorthy P, Chidambaram AA (2006) Chromium toxicity effect on blackgram, soybean and paddy. Pollut Res 25(4):257–261

Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. Jex Bot 53(566):1–11. https://doi.org/10.1023/A:1015300727452

Haribabu TE, Sudha PN (2011) Effects of heavy metals copper and cadmium exposure on the antioxidants properties of the plant cleome gynandra. Int J Plant Animal Env Sci 1(2):80–87

Hatamian M, Nejad AR, Kafi M, Souri MK, Shahbaz K (2020) Nitrate reductase activity of aqueous extract of fruits of M. cymbalaria in wistar rats. Pharmacognosy Res 2(1):58–61. https://doi.org/10.4103/0974-8490.65075

Bhat R, Kiran K, Arun AB, Karim AA (2010) Determination of mineral composition and heavy metal content of some nutraceutically valued plant products. Food Anal Methods 3:181–187. https://doi.org/10.1007/s12169-009-9107-y

Broady MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173(4):677–702. https://doi.org/10.1111/j.1469-8137.2007.01996.x

Celik Sh, Yucel E, Celik S, Gucer S, Ozturk M (2010) Carolina poplar (Populus x canadensis Moench) as a biomonitor of trace elements in the West Black Sea region of Turkey. J Environ Biol 31:225–232

Chaitanya G, Suvarchala V, Ramakrishna D, Sunitha D, Shashthree T (2020) In vitro plant regeneration of Momordica cymbalaria Fenzl and assessment of genetic fidelity using ISSR primers. Res J Biotech 15(2):103–110

Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(9):362–368

Das K, Dang R, Sivaraman G, Ellath RP, Roopa D, Subbaiyam B (2018) Effect of plant hormones and Zinc sulphate on root and callus induction in in vitro propagated Coscinium fenestratum (Gaertn., Colebr. stem and their role in estimation of secondary metabolites. Ann Phytomed 7(1):87–95. https://doi.org/10.21276/ap.2018.7.1.10

Dghaim R, Khatib SA, Rasool H, Khan MA (2015) Determination of heavy metals concentration in traditional herbs commonly consumed in the United Arab Emirates. J Environ Public Health 2015:1–6. https://doi.org/10.1155/2015/973878

Ezra Y, Muneer S, Mansoor M, Srinivasa Rao D (2014) In vitro antioxidant and hyoplipidemic activity of Momordica cymbalariaFenzl in wistar rats. J Pharm Res 3(8):172–175

Fatima N, Ahmad N, Anis M (2011) Enhanced in vitro regeneration and change in photosynthetic pigments, biomass and proline content in Withania somnifera L. (Dunal) induced by copper and zinc ions. Plant Physiol Biochem 49(12):1465–1471. https://doi.org/10.1016/j.plaphy.2011.08.011

Fernandez R, Bertrand A, Casares A, Garcia R, Gonzalez A, Tamés RS (2008) Cadmium accumulation and its effect on the in vitro growth of woody fleaban and mycorrhized white birch. Environ Pollut 152:522–529. https://doi.org/10.1016/j.envpol.2007.07.011

Firdous M, Koneri R, Sarvaruadiu CH (2009) NIDDM Antidiabetic activity of saponins of Momordica cymbalaria in steptozotocin–nicotinamide NIDDM mice. JCDR 2(3):1460–1465

Ganesh KS, Sundaramoorthy P, Chidambaram AA (2006) Chromium toxicity effect on blackgram, soybean and paddy. Pollut Res 25(4):257–261

Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. Jexp Bot 53(566):1–11. https://doi.org/10.1093/jexbot/53.366.1

Haribabu TE, Sudha PN (2011) Effects of heavy metals copper and cadmium exposure on the antioxidants properties of the plant cleome gynandra. Int J Plant Animal Env Sci 1(2):80–87

Hatamian M, Nejad AR, Kafi M, Souri MK, Shahbaz K (2020) Nitrate improves hackberry seedling growth under cadmium application. Heliyon 6(1):e03247. https://doi.org/10.1016/j.heliyon.2020.e03247

Igbal M, Ahmad A, Ansari MK, Qureshi MI, Aref IM, Khan PR, Hegazy SS, El-Atta H, Husen A, Hakeem KR (2015) Improving the phytoextraction capacity of plants to scavenge metal (loid)-contaminated sites. Environ Rev 23(1):44–65. https://doi.org/10.1139/er-2014-0043

Jain P, Kachhawa S, Kothari SL (2009) Improved micropropagation protocol and enhancement in biomass and chlorophyll content in Stevia rebaudiana (Bert.) by using high copper levels in the culture medium. Sci Hortic 119:315–319. https://doi.org/10.1016/j.scienta.2011.07.011

Javed SB, Alatar AA, Basahi R, Anis M, Faisal M, Husain FM (2017) Copper induced suppression of systemic microbial contamination in Erythrina variegata L. during in vitro culture. Plant Cell Tissue Organ Cult (PCTOC) 128(2):249–258. https://doi.org/10.1007/s11240-016-1104-4

Jeevanantham P, Vincent S, Balasubramaniam A, Jayalakshmi B, Senith Kumar BN (2011) Anti-cancer activity of methanolic extract of aerial parts of Momordica cymbalaria Hook F against Ehrlich ascites carcinoma in mice. J Pharm Sci 3(8):1408–1411

Joshi A, Kothari SL (2007) High copper levels in the medium improves hackberry seedling growth under cadmium application. Environ Pollut 152:522–529. https://doi.org/10.1016/j.envpol.2007.07.011

Rhaknavut T (2020) In vitro plant regeneration of Erythrina variegata L. during in vitro culture. Plant Cell Tissue Organ Cult (PCTOC) 128(2):249–258. https://doi.org/10.1007/s11240-016-1104-4

Jeevanantham P, Vincent S, Balasubramaniam A, Jayalakshmi B, Senith Kumar BN (2011) Anti-cancer activity of methanolic extract of aerial parts of Momordica cymbalaria Hook F against Ehrlich ascites carcinoma in mice. J Pharm Sci 3(8):1408–1411
cotyledons of *Capsicum annuum* L. Plant Cell Tissue Organ Cult 88(2):127–133. https://doi.org/10.1007/s11240-006-9171-6

Kalivova-Spirochova I, Puncocharova J, Kafka Z, Kubal M, Soudek P, Vanek T (2003) Accumulation Of Heavy metals by in vitro Cultures of Plants. Water Air Soil Pollut Focus 3(3):269–276. https://doi.org/10.1023/A:102393902452

Kumar S, Narula A, Sharma MP, Srivastava PS (2004) *In vitro* propagation of *Plectranthus lanceolatus*, a medicinal plant, and effect of heavy metals and different aminopurines on quercetin content. In Vitro Cell Dev Biol Plant 40(2):171–176. https://doi.org/10.1079/IVP2003490

Lakshmi S, Sundaramoorthy P (2003) Effect of chromium on antioxidative enzymes. *In vitro* and biochemical changes in blackgram. Jecobiol 15(1):7–12

Liu J, Xiong Z, Li T, Huang H (2004) Bioaccumulation and ecophysiological responses to copper stress in two populations in *Rumex dentatus* L from Cu contaminated and non-contaminated sites. Environ Exp Bot 52(1):43–51. https://doi.org/10.1016/j.envexpbot.2004.01.005

Macnair MR (1992) The genetics of metal tolerance in vascular plants. New Phytol 124(4):541–559. https://doi.org/10.1111/j.1469-8137.1993.tb03846.x

Mary Lissy PN, Madhu G (2011) Removal of heavy metals from waste water using water hyacinth. Int J Trans Urban Dev 1(1):48–52

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

Naik PM, Godbole M, Praveen M, Murthy HN (2015) The effects of heavy metals on *in vitro* adventitious shoot production and bacoside A content in *Bacopa monnieri* (L.). Mapana J Sci 14(4):1–10

Perveen S, Anis M, Aref IM (2012) *In vitro* morphogenic response and metal accumulation in *Albizia lebbeck* (L.) cultures grown under metal stress. Eur J for Res 105:43–55. https://doi.org/10.1016/j.envijent.2017.05.001

Prashanth SJ, Suresh D, Sadananda Maiya P (2013) *In vitro* antioxidant studies of *Momordica cymbalaria*. Asian J Biol Sci 8(1):107–116

Purohit S, Varghese TM, Kumari ME (2003) Effect of chromium on morphological features of tomato and brinjal. Indian J Plant Physiol 8(1):17–22

Rahman Z, Singh VP (2020) Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environ Sci Pollut Res 27(22):27563–27581. https://doi.org/10.1007/s11356-020-08903-0

Raju K, Balaraman R, Vinoth KM, Hariprasad (2001) Cardioprotective effect of *Momordica cymbalaria* L in Rats With Isoproterenol-Induced Myocardial Injury. Jclin Diagnostic Res 5(2):699–705

Ratheesh Chandra P, Abdussalam AK, Nabeesa S (2010) Distribution of Bio-accumulated Cd and Cr in two Vigna species and the Associated Histological Variations. J Stress Physiol Biochem 6(1):4–12

Rout GR, Das P (2009) Effect of metal on plant growth and metabolism: I. Zinc. In: Sustainable agriculture. Springer, Dordrecht 2009: 873–884. Doi:https://doi.org/10.1007/978-90-481-2666-8_53

Sarkar T, Vijay Anand KG, Reddy MP (2010) Effect of nickel on regeneration in *Jatropha curcas* L. and assessment of genotoxicity using RAPD markers. Biometals 23:1149–1158. https://doi.org/10.1007/s10534-010-9364-7

Sarropoulou V, Maloupa E (2017) Elevated levels of 3 different MS medium micronutrients CuSO4, MnSO4 and ZnSO4 on invitro shoot proliferation of *Sideritis raeseri* Boiss & Heldr–hellenic mountain tea of velouchi or parnassius. J Med Plants Stud 5(5):86–93

Savsatli Y, Ozcan A, Catal MI, Seysis F, Akbulut M, Turumtay EA (2016) Trace elements in bitter melon (*Momordica charantia* L.) and their distribution in different plant parts. ARPN J Agric Biol Sci 11(11):437–443

Shahid A, Ahmad N, Anis M, Alatar AA, Faisal M (2016) Morphogenic responses of *Rauvolfia tetraphylla* L cultures to Cu, Zn and Cd ions. Rend Lincei 27(2):369–374. https://doi.org/10.1007/s12210-015-0491-5

Shekar CH, Sammiah D, Ujjwala D, Shasthree T, Reddy KJ (2013) Chromium toxicity in tomato (*Lycopersicon esculenum* Mill). Int J Uniwers Pharm Life Sci 3(3):115–121

Shin MY, Cho YE, Park C, Sohn HY, Lim JH, Kwon IS (2013) The contents of heavy metals (Cd, Cr, As, Pb, Ni, and Sn) in the selected commercial yam powder products in South Korea. Prev Nutr Food Sci 18(4):249. https://doi.org/10.3746/pnfs.2013.18.4.249

Singh J, Kalamdhad AS (2011) Effects of heavy metals on soils, plants, human health and aquatic life. Int J Res Chem Environ 1(2):15–21

Singh KP, Bhattacharya S, Sharma P (2014) Assessment of heavy metal contents of some Indian medicinal plants. American-Eurasian J Agric Environ Sci 14(10):1125–1129. https://doi.org/10.5829/doi.ajaes.2014.10.12447

Song B, Zeng G, Gong J, Liang J, Xu P, Liu Z (2017) Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ Int 105:43–55. https://doi.org/10.1016/j.envint.2017.05.001

Souri MK, Hatamian M, Tesfamariam T (2019) Plant growth stage influences heavy metal accumulation in leafy vegetables of garden cress and sweet basil. Chem Biol Technol Agric 6(1):1–7. https://doi.org/10.1186/s40538-019-0170-3

Sparks DL (2005) Toxic metals in the environment: the role of surfaces. Elements 1(4):193–196. https://doi.org/10.2113/gselements.1.4.193

Steve ON, Edith AO (2018) Effects of sludge on the concentration of heavy metals in soil and plants in Obungra slum, Kisumu county, Kenya. Int J Environ Sci Nat Res 15(2):40–44. https://doi.org/10.19080/IJESNR.2018.15.555907

Tamtam T, Kumar A, Kumar R, Shankhdhar SC, Shankhdhar D (2021) Influence of zinc and copper on morphological characters for improving herbage yield of vegetatively propagated Bacopa monnieri (L.). J Pharm Innov 10(11):1171–1176

Van Hoof NALM, Koevoets LM, Hakvoort HWJ, Ten Bookum WM, Schat H, Verkleij JAC, Ernst WHO (2001) Enhanced ATP-dependent copper efflux across the root cell plasma membrane in copper-tolerant *Silene vulgaris*. PhysiolPlant 113(2):225–232. https://doi.org/10.1034/j.1399-3054.2001.1130210.x

Vrushabendra-Swamy BM, Jayaveera KN, Ravindra Reddy K, Bharathi T (2008) Anti-diarrhoeal activity of fruit extract of *Bacopa monnieri* (L.) cress and sweet basil. Chem Biol Technol Agric 6(1):1–7. https://doi.org/10.1186/s40538-019-0170-3

Yemets A, Horinova I, Blume Y (2021) Cadmium, nickel, copper, and zinc influence on microfilament organization in Arabidopsis root cells. Cell Biol Int 45(1):211–226. https://doi.org/10.1002/cbin.11485