Quantum Zeno Effect in Cavity QED: Experimental Proposal
with Non Ideal Cavities and Detectors

R. Rossi Jr. and M. C. Nemes
Departamento de Física, Instituto de Ciências Exatas,
Universidade Federal de Minas Gerais, C.P. 702,
30161-970, Belo Horizonte, MG, Brazil

A. R. Bosco de Magalhães
Departamento Acadêmico de Ciências Básicas,
Centro Federal de Educação Tecnológica de Minas Gerais,
30510-000, Belo Horizonte, MG, Brazil

Abstract

We propose an experiment with two coupled microwave cavities and a “tunneling” photon observed by the passage of Rydberg atoms. We model the coupled cavities as in Ref. [1] and include dissipative effects as well as limited detection efficiency. We also consider realistic finite atom-field interaction times and provide for a simple analytical expression for the photon “tunneling” probability including all these effects. We show that for sufficiently small dissipation constants the effect can be observed with current experimental facilities.

PACS numbers:

Keywords:
I. INTRODUCTION

The success of physical theories is intimately connected to its potentiality to describe existing empirical data and to predict new, yet to be observed, phenomena [2]. However the interpretation of empirical data is not completely independent of the proposed theory. Therefore in natural sciences the measurement process plays a double role: it is at the same time a testing tool of theories and also a physical process in itself, subjected to theoretical analysis. In the quantum domain theoretical descriptions of the measurement process are a matter of innumerous discussions.

In 1932, in his famous treatise [3], J. von Neumann proposed a quantum measurement theory, which became quickly well known. An initial premise of this theory is the postulate that the measurement of a given observable always yields one of the eigenvalues of this observable and, after the measurement, the system collapses to the corresponding eigenvector. This working hypothesis is known as “projection postulate” and is responsible for several counterintuitive aspects of the theory. It has led to the formulation of several paradoxes.

The “Quantum Zeno Paradox” was presented in a mathematically rigorous fashion in 1977 by B. Misra and E. C. Sudarshan [4]. In this formulation the authors show that a sequence of projective measurements on a system inhibits its time evolution. The paradoxical character of this conclusion becomes explicit when one continuously observes the state of an unstable particle. When the Quantum Zeno Effect (QZE) was first formulated, it has been associated to two factors: an initially quadratic time decay and the projection postulate.

In the 90ies, after the realization of the pioneer experiment [5] on the effect, which showed the interruption of the time evolution of a decaying system by means of continuous observations, the QZE became the center of fervorous debates [6, 7]. The role attributed to the projection postulate was at the center of the discussions. New approaches have been proposed [6, 8] and the strong association between the QZE and the projection postulate was no longer a necessary ingredient. Nowadays the literature on the subject is vast and range from experimental proposals to fundamental theoretical questions [9, 10, 11, 12].

In the present contribution we will study the dynamics of the QZE in a (apparently feasible [1, 13, 14]) experiment involving two coupled microwave cavities, one photon and Rydberg atoms as probes. The novel aspects explored here are the effect of a lossy environment and of limited efficiency detection on the visibility of the QZE.
In Section II, we describe the main elements of the proposed experiment and their interaction. In Section III, the QZE is investigated in the situation where several atoms interact with one cavity mode and next with ionization detectors. In Section IV, we show that these measurements of several atomic states are not essential for the QZE; the effects of finite atom-field interaction times and of field dissipation are also studied in this section. In Section V we draw the conclusions.

II. THE MODEL FOR AN EXPERIMENT

Let us consider two cavity modes coupled by a conducting wire (wave guide), as proposed in [1]. The Hamiltonian for the system is given by

\[H_{AB} = \hbar \omega a^{\dagger}a + \hbar \omega b^{\dagger}b + \hbar g(a^{\dagger}b + b^{\dagger}a), \]

where \(a^{\dagger} \) and \(b^{\dagger} \) are creation (annihilation) operators for modes \(M_A \) and \(M_B \), \(\omega \) their frequency and \(g \) a coupling constant [1]. The situation we shall consider concerning the electromagnetic degree of freedom will always involve the following initial state

\[\rho_F(0) = |1_A, 0_B\rangle\langle 1_A, 0_B| = |1, 0\rangle\langle 1, 0|, \]

where the bra (ket) \(|n, m\rangle \) (\(\langle n, m| \)) refers to \(n \) excitations in mode \(M_A \) and \(m \) excitations in mode \(M_B \). The evolution of this state according to (1) in a time interval \(T \) is given by

\[\rho_F(T) = |c_1(T)|^2|1, 0\rangle\langle 1, 0| + |c_2(T)|^2|0, 1\rangle\langle 0, 1| + (c_1(T)c_2^*(T)|1, 0\rangle\langle 0, 1| + h.c.), \]

where \(c_1(T) = \cos(gT) \), \(c_2(T) = \sin(gT) \) and \(h.c. \) stands for Hermitian conjugate. Thus, due to the coupling between the cavities, a photon initially in cavity \(A \) may be found at time \(T \) in cavity \(B \) with probability \(|c_2(T)|^2 \). At \(T = \pi/2g \) the photon has performed a complete transition from mode \(M_A \) to mode \(M_B \): \(\rho_C(T) = |0, 1\rangle\langle 0, 1| \).

In order to experimentally verify the occurrence of this transition, one can measure the number of photons in cavity \(B \): if the value found is zero we know for sure that the transition did not occur. This may be realized by sending an effectively two level atom [15] in its lowest state through cavity \(B \). The atom prepared in its lowest state works as a probe for the field state. In order to realize this “two level atom” one uses a Rydberg atom whose relevant transition may be tuned to the field quanta \(\hbar \omega \). We denote by \(|e\rangle \) (\(|g\rangle \)) the higher (lower)
energy atomic states. This tuning may be effected by using a quadratic Stark effect, as in Ref. [16]. The control of the atom-field interaction time may be performed by this method with a precision of $1\mu s$. Since this time is small compared to the other relevant times in the experiment, we will not consider imperfections in the atom-field interaction time. The interaction of the atom with the field mode in cavity B may be described by the Jaynes-Cummings model, which gives $\tau_\pi = \pi/\Omega_0$, where Ω_0 is the vacuum Rabi frequency, for the π pulse time, the time in which one excitation moves from mode M_B to the atom. If the atom-field coupling is much stronger than the coupling between modes M_A and M_B, τ_π may be disregarded [24], and we may write the density operator for the system composed by the atom an the field modes, after the atom-field interaction, as

$$\rho_{AF}(T) = |c_1(T)|^2|1, 0, g\rangle\langle1, 0, g| + |c_2(T)|^2|0, 0, e\rangle\langle0, 0, e| + (c_1(T)c_2^*(T)|1, 0, g\rangle\langle0, 0, e| + h.c.).$$

(3)

Since the atom-field state is maximally entangled, to measure the atomic level in an ionization detector is equivalent to measuring the number of photons in each cavity before the atom-field interaction.

III. THE DETECTION PROCESS

In this section we will consider the measurement of the atomic state by ionization detectors D_e and D_g constructed in such a way as to ionize the atom in states $|e\rangle$ and $|g\rangle$ respectively.

A. Perfect Detectors

If one has perfect detectors, each atom sent through cavity B will produce a click either in D_e or D_g. Thus the probability $p_{1,0}$ that a photon initially in mode M_A did not reach cavity B is equal to the probability $p_{\text{click}D_g}$ of one click in detector D_g:

$$p_{1,0} = p_{\text{click}D_g} = |c_1(T)|^2.$$

(4)

If we send N atoms, one at each time $t = iT_0/N$ ($i = 1$ to N), during the fixed time interval $T_0 = \pi/2g$, we can in principle monitor the photon transition from mode M_A to mode M_B. The temporal evolution of the system under such conditions consists of N steps
composed by a free evolution during a time interval $\tau_{A,B} = T_0/N$, followed by an atom-field interaction.

If in one of these steps we observe one click in D_e, we must conclude that the photon was found in cavity B. As may be seen in Eq. (3), after this click the field state becomes $\rho_F = |0,0\rangle\langle 0,0|$, and all the subsequent atoms will be detected in $|g\rangle$ state.

Let us now consider an experimental sequence where no clicks in D_e are observed. At time $t = 0$, the state of the atom-field system is given by

$$\rho_{AF}(0) = |1,0,g\rangle\langle 1,0,g|,$$

and during the period $\tau_{A,B} = T_0/N$ the system evolves under the Hamiltonian (1):

$$\rho_{AF}(\tau_{A,B}) = |c_1(\tau_{AB})|^2|1,0,g\rangle\langle 1,0,g| + |c_2(\tau_{AB})|^2|0,1,g\rangle\langle 0,1,g| + (c_1(\tau_{AB})c_2^*(\tau_{AB}))|1,0,g\rangle\langle 0,1,g| + h.c.).$$

(6)

At time $\tau_{A,B}$, the atom and the mode M_B perform a π pulse (regarded as instantaneous), what leads to

$$\bar{\rho}_{AF}(\tau_{A,B}) = |c_1(\tau_{AB})|^2|1,0,g\rangle\langle 1,0,g| + |c_2(\tau_{AB})|^2|0,0,e\rangle\langle 0,0,e| + (c_1(\tau_{AB})c_2^*(\tau_{AB}))|1,0,g\rangle\langle 0,0,e| + h.c.).$$

(7)

If we observe a click in D_g, the state of the system ends up in

$$\rho_{AF}(\tau_{AB}) = |1,0,g\rangle\langle 1,0,g| = \rho_{AF}(0).$$

(8)

The probability of such a click in the first step is $|c_1(\tau_{AB})|^2$, and in this case the system is reprepared in state $|1,0,g\rangle\langle 1,0,g|$. If all atoms are detected in $|g\rangle$ state, the evolution will be composed by N identical steps to the one just described. Thus the probability of N clicks in D_g is

$$p^{(N)}_{\text{click}D_g} = (|c_1(\tau_{AB})|^2)^N,$$

(9)

which is equal to the probability $p^{(N)}_{1,0}$ that the photon is still in cavity A at time T_0, after the interaction between the field and the N atoms. If we consider the limit $N \to \infty$,

$$\lim_{N \to \infty} p^{(N)}_{1,0} = \lim_{N \to \infty} p^{(N)}_{\text{click}D_g} = 1.$$

(10)

Zeno effect becomes explicit: the continuous measuring of the number of photons in cavity B inhibits the transition of the photon from cavity A to cavity B.

5
B. Inefficient Detectors

In order to take the limited efficiency of the detectors into account we need a model for the detection process. In what follows we consider a schematic model for the atom-detector interaction [17]:

\[H_D = \hbar \epsilon_g |g\rangle\langle g| + \hbar \epsilon_e |e\rangle\langle e| + \hbar \int dk \epsilon_k |k\rangle\langle k| + \hbar v_g \int dk (|g\rangle\langle k| + |k\rangle\langle g|) + \hbar v_e \int dk (|e\rangle\langle k| + |k\rangle\langle e|), \]

(11)

where \(|e\rangle\) and \(|g\rangle\) represent the same atomic levels as in previous sections, and the set \(|k\rangle\) concerns the continuum of atomic levels related to the ionization of the atom. We next consider several possibilities.

1. Only Detector \(D_g\) is Present

This case corresponds to the Hamiltonian (11) with \(v_e = 0\). The atom-field system starts in the state

\[\rho_{AF}(0) = |1, 0, g\rangle\langle 1, 0, g| \]

(12)

and evolves to

\[\rho_{AF}(\tau_{AB}) = |c_1(\tau_{AB})|^2|1, 0, g\rangle\langle 1, 0, g| + |c_2(\tau_{AB})|^2|0, 1, g\rangle\langle 0, 1, g| + (c_1(\tau_{AB})c_2^*(\tau_{AB})|1, 0, g\rangle\langle 0, 1, g|) + h.c. \]

(13)

Now the system performs a \(\pi\) Rabi pulse, regarded as instantaneous,

\[\rho_{AF}(\tau_{AB}, \tau_g) = |c_1(\tau_{AB})|^2|1, 0, g\rangle\langle 1, 0, g| + |c_2(\tau_{AB})|^2|0, 0, e\rangle\langle 0, 0, e| + (c_1(\tau_{AB})c_2^*(\tau_{AB})|1, 0, g\rangle\langle 0, 0, e|) + h.c. \]

(14)

Next the atom interacts with \(D_g\) during a time interval \(\tau_g\),

\[\rho_{AF}(\tau_{AB}, \tau_g + \tau_g) = |c_1(\tau_{AB})|^2|1, 0, \rangle\langle 1, 0| \left(\int d\mu |\psi^{g}_\mu\rangle\langle g| e^{-i\epsilon^{g}_\mu \tau_g} |\psi^{g}_\mu\rangle \right) \left(\int d\mu |\psi^{g}_\mu\rangle\langle g| e^{i\epsilon^{g}_\mu \tau_g} |\psi^{g}_\mu\rangle \right) + (c_1(\tau_{AB})c_2^*(\tau_{AB})|1, 0\rangle \left(\int d\mu |\psi^{g}_\mu\rangle\langle g| e^{-i\epsilon^{g}_\mu \tau_g} |\psi^{g}_\mu\rangle \right) \langle 0, 0, e| + h.c.) + |c_2(\tau_{AB})|^2|0, 0, e\rangle\langle 0, 0, e|, \]

where \(|\psi^{g}_\mu\rangle\) and \(\epsilon^{g}_\mu\) correspond to the set of eigenvectors and eigenvalues of \(H_D\) with \(v_e = 0\). This atom-detector interaction time will be considered to have the same order magnitude of
the \(\pi \) Rabi pulse time, and will be disregarded: \(\tau_{A,B} + \tau_g \simeq \tau_{A,B} \). A click in \(D_g \) means the atom was ionized, \(i.e. \), its state is described by the set \(\{ |k\rangle \} \); hence the probability of such a click is given by

\[
p_{\text{click}D_g} = \int dk Tr \{ |k\rangle\langle k| \rho_{AF}(\tau_{A,B} + \tau_g) \} = |c_1(\tau_{AB})|^2 p_g,
\]

(15)

where \(p_g \) is the efficiency of the detector \(D_g \):

\[
p_g = \int dk \left| \int d\mu \langle \psi_\mu |g\rangle \langle k| \psi_\mu \rangle e^{-i\epsilon_\mu \tau_g} \right|^2.
\]

(16)

If one observes a click in \(D_g \), the state of the cavity field collapses to

\[
\rho_A(\tau_{A,B}) = |1,0\rangle \langle 1,0|,
\]

returning to its initial state; thus the probability that \(D_g \) clicks for the \(N \) atoms is

\[
P_{\text{click}D_g}^{(N)} = \left(|c_1(\tau_{AB})|^2 p_g \right)^N.
\]

(18)

Of course in the limit \(p_g = 1 \) one recovers the result of the previous section:

\[
\lim_{N \to \infty} P_{\text{click}D_g}^{(N)} = 1.
\]

The effect of having an inefficient measurement, \(i.e. \), having a detection efficiency \(p_g < 1 \), will change this scenario. This is illustrated in Fig.1, where we plot the probability of \(N \) consecutive clicks in \(D_g \) as a function of \(N \) for different values of \(p_g \). In this case the limit \(N \to \infty \) yields

\[
\lim_{N \to \infty} P_{\text{click}D_g}^{(N)} = 0.
\]

(19)

This does not mean that Zeno effect is not present. Given the detector’s inefficiency one can not associate the effect to the statistics of \(D_g \) clicks: no click in \(D_g \) does not necessarily mean that the photon in fact decayed from cavity \(A \) to \(B \). The intrinsic detection inefficiency limits the experimental visibility of the Zeno effect in the present experimental scheme.

2. Only Detector \(D_e \) is Present

Another possibility of investigating the limited detection efficiency in the same experimental scheme consists in having only detector \(D_e \) present. This corresponds to the Hamiltonian (11) with \(v_g = 0 \).
FIG. 1: Probability of consecutive clicks in D_g as a function of N, for $T = \frac{\pi}{2g}$ and different values of p_g: $p_g = 1$ (dashed), $p_g = 0.9$ (dotted) and $p_g = 0.5$ (continuous).

Note that in this case one click in D_e projects the cavity state to $|0, 0\rangle\langle 0, 0|; thus, in order to observe the effect we must study sequences of events which do not give rise to any click in D_e. In the first step of such a sequence the initial atom-field state is given by

$$\rho_{AF}(0) = |1, 0, g\rangle\langle 1, 0, g|,$$

which evolves to

$$\rho_{AF}(\tau_{A,B}) = |c_1(\tau_{AB})|^2|1, 0, g\rangle\langle 1, 0, g| + |c_2(\tau_{AB})|^2|0, 1, g\rangle\langle 0, 1, g| + (c_1(\tau_{AB})c_2^*(\tau_{AB})|1, 0, g\rangle\langle 0, 1, g| + h.c.),$$

and next performs an instantaneous π Rabi pulse, leading to the state

$$\bar{\rho}_{AF}(\tau_{A,B}) = |c_2(\tau_{AB})|^2|1, 0, g\rangle\langle 1, 0, g| + |c_2(\tau_{AB})|^2|0, 0, e\rangle\langle 0, 0, e| + (c_1(\tau_{AB})c_2^*(\tau_{AB})|1, 0, g\rangle\langle 0, 0, e| + h.c.).$$

In the sequence the atom interacts with the detector according to Eq. (11) with $v_g = 0$, leading to the state

$$\rho_{AF}(\tau_{A,B}) = |c_2(\tau_{AB})|^2|0, 0, 0\rangle\langle 0, 0, 0| \left(\int d\mu \langle \psi^e_\mu | e^{-i\epsilon^e_\mu \tau_e} | \psi^e_\mu \rangle \right) \left(\int d\mu \langle e | e^{i\epsilon^e_\mu \tau_e} | e \rangle \right) + |c_1(\tau_{AB})|^2|1, 0, g\rangle\langle 1, 0, g| + (c_2c_1^*|0, 0\rangle \left(\int d\mu \langle \psi^e_\mu | e^{-i\epsilon^e_\mu \tau_e} | \psi^e_\mu \rangle \right) \langle 1, 0, g| + h.c.$$.

8
where \(\{|\psi^e_\mu\rangle\} \) and \(\epsilon^e_\mu \) correspond to the set of eigenvectors and eigenvalues of \(H_D \) with \(v_g = 0 \). \(\tau_e \) is the atom-detector interaction time which will be neglected as in the previous section. If no click in \(D_e \) is observed, the state of the cavity field ends up in

\[
\rho_F(\tau_{AB}) = \frac{|c_1(\tau_{AB})|^2|1,0\rangle\langle 1,0| + |c_2(\tau_{AB})|^2(1 - p_e)(1 + |c_1(\tau_{AB})|^2)|0,0\rangle\langle 0,0|}{|c_1(\tau_{AB})|^2 + |c_2(\tau_{AB})|^2(1 - p_e)}.
\]

This statistical mixture is the initial state of the next step, whose final state can be calculated in an analogous way as above, giving

\[
\rho_F(2\tau_{AB}) = \frac{(|c_1(\tau_{AB})|^2)^2|1,0\rangle\langle 1,0| + |c_2(\tau_{AB})|^2(1 - p_e)(1 + |c_1(\tau_{AB})|^2)|0,0\rangle\langle 0,0|}{(|c_1(\tau_{AB})|^2)^2 + |c_2(\tau_{AB})|^2(1 - p_e)(1 + |c_1(\tau_{AB})|^2)}.
\] (23)

All subsequent steps will present distinct final states, but always statistical mixtures of \(|1,0\rangle\langle 1,0|\) and \(|0,0\rangle\langle 0,0|\). Since the part related to \(|0,0\rangle\langle 0,0|\) does not vary with time, only the part concerning \(|1,0\rangle\langle 1,0|\) will be responsible for changes in the state, which will be the same in every step, and may be expressed as

\[
|1,0\rangle\langle 1,0| \rightarrow |c_1(\tau_{AB})|^2|1,0\rangle\langle 1,0| + |c_2(\tau_{AB})|^2(1 - p_e)|0,0\rangle\langle 0,0|.
\] (24)

Consequently, it is easy to obtain the state of the fields after \(i \) no clicks in \(D_e \):

\[
\rho_F^{(i)}(i\tau_{AB}) = \frac{(|c_1(\tau_{AB})|^2)^i|1,0\rangle\langle 1,0| + |c_2(\tau_{AB})|^2(1 - p_e)(\sum_{k=1}^{i} |c_1(\tau_{AB})|^{k-1})|0,0\rangle\langle 0,0|}{(|c_1(\tau_{AB})|^2)^i + |c_2(\tau_{AB})|^2(1 - p_e)(\sum_{k=1}^{i} |c_1(\tau_{AB})|^{k-1})}.
\] (25)

The probability of no click in \(D_e \) in the \(i \)-th step may be calculated as

\[
P_{\text{no click}D_e}^{(i)} = \int d\mu Tr \left\{ (|g\rangle\langle g| + |e\rangle\langle e|)\rho_F^{(i)} \right\}.
\] (26)

Where \(\rho_{F,A}^{(i)} \) is the state of the system at the N-th step immediately before the interaction between atom and detector. This state operator can be calculated from \(\rho_F^{(i-1)} \). The probability of \(N \) consecutive no clicks in \(D_e \) may be computed as the product

\[
P_{\text{no click}D_e}^{(N)} = \prod_{i=1}^{N} P_{\text{no click}D_e}^{(i)} = (|c_1(\tau_{AB})|^2)^N + |c_2(\tau_{AB})|^2(1 - p_e)(\sum_{k=1}^{N} |c_1(\tau_{AB})|^{k-1}),
\] (27)

where \(p_e \), the efficiency of the detector, is given by

\[
p_e = \int d\mu |\langle \psi_{\mu}| e\rangle|^2 |\langle k | \psi_\mu \rangle e^{-i\mu k_e}|^2.
\]

In the limit \(N \to \infty \),
FIG. 2: Probability of consecutive no-clicks in D_e as a function of N, for $T = \frac{\pi}{2g}$ and different values of p_e: $p_e = 1$ (dashed), $p_e = 0.8$ (dotted) and $p_e = 0.5$ (continuous).

$$\lim_{N \to \infty} P_{\text{n click}D_e}^{(N)} = 1.$$

In Fig.2 we show the probability of N consecutive no-clicks in D_e for different values of p_e. For $p_e = 1$ the curve is the same as the one for $p_g = 1$, since no clicks in a perfect D_e is equivalent to clicks in a perfect D_g. For inefficient detectors, the probability of N consecutive no-clicks must be larger than this probability for perfect detectors. This is illustrated in Fig.2, where the curves representing smaller p_e tend to reach the asymptotic value 1 faster as $N \to \infty$. Note that for inefficient detectors no-click in D_e does not necessarily mean that the photon is for sure in cavity A: the monitoring of the photon transition is not perfect. However, the asymptotic behavior of $P_{\text{n click}D_e}^{(N)}$, tending to 1 for any value of p_e, is most certainly a consequence of the Zeno effect.

IV. NO INTERMEDIATE MEASUREMENTS

In the experimental set ups discussed in the previous sections the photon transition was monitored by N probe atoms and a macroscopic signal was generated. We were interested in the probability of occurrence of selected sequences, namely, N consecutive clicks in D_g or
N consecutive no-clicks in D_e, which would be associated to the permanence of the photon in cavity A. Obviously, a complete correlation can not be achieved due to the inefficiency of the detectors.

Pascazio and Namiki propose in Ref. [8] a dynamical approach to QZE and show the essential role of the \textit{generalized spectral decomposition}. They propose that QZE occurs even in the absence of intermediate measures, what explains Itano results in [7]. For the system composed by two coupled cavity modes, the generalized spectral decomposition is brought about by the interaction between the two level probe atom and the cavity B mode. As we will see, the classical signals generated by the ionization detectors in each step (intermediate measures) are not necessary for inhibiting the photon transition and, accordingly with the approach in [8], are not essential for the characterization of the QZE.

The idea now is to send atoms through cavity B, also in T_0/N intervals, and not to measure the outcome of the atom-cavity interaction each time. After N such interactions one atom is sent through cavity A and measured by a detector D_e.

As in the previous schemes, the first step of the evolution starts with the atom-fields state given by

$$\rho_{AF}(0) = |1, 0, g\rangle\langle 1, 0, g|,$$

which evolves to

$$\rho_{AF}(\tau_{AB}) = |c_1(\tau_{AB})|^2|1, 0, g\rangle\langle 1, 0, g| + |c_2(\tau_{AB})|^2|0, 1, g\rangle\langle 0, 1, g| + (c_1(\tau_{AB})c_2^*(\tau_{AB})|1, 0, g\rangle\langle 0, 1, g| + h.c.),$$

and then to

$$\rho_{AF}(\tau_{AB}) = |c_1(\tau_{AB})|^2|1, 0, g\rangle\langle 1, 0, g| + |c_2(\tau_{AB})|^2|0, 0, e\rangle\langle 0, 0, e| + (c_1(\tau_{AB})c_2^*(\tau_{AB})|1, 0, g\rangle\langle 0, 0, e| + h.c.).$$

Since this atom is not measured, the field state must be represented in the end of the step by

$$\rho_F(\tau_{AB}) = Tr_A \{ \rho_{AF}(\tau_{AB}) \}$$

$$= |c_1(\tau_{AB})|^2|1, 0\rangle\langle 1, 0| + |c_2(\tau_{AB})|^2|0, 0\rangle\langle 0, 0|,$$

where Tr_A is the trace over the variables of the atom, and accounts for the lack of information about the atomic state.
In order to calculate the final state of the following steps, we must observe that only the part of ρ_A related to $|1,0\rangle\langle 1,0|$ changes with time, in a way that may be described by

$$|1,0\rangle\langle 1,0| \longrightarrow |c_1(\tau_{AB})|^2|1,0\rangle\langle 1,0| + |c_2(\tau_{AB})|^2|0,0\rangle\langle 0,0|.$$ \hfill (33)

Thus, it is easy to see that the state operator for the fields in the cavities, after the interaction of M_B with N atoms, can be written as

$$\rho_F(T_0) = (|c_1(\tau_{AB})|^2)^N|1,0\rangle\langle 1,0| + |c_2(\tau_{AB})|^2 \sum_{k=1}^{N}(|c_1(\tau_{AB})|^2)^{k-1}|0,0\rangle\langle 0,0|.$$ \hfill (34)

The probability that the photon transition from cavity A to cavity B has not occurred is

$$P_{1,0}^{(N)} = (|c_1(\tau_{AB})|^2)^N,$$ \hfill (35)

and, in the limit $N \to \infty$,

$$\lim_{N\to\infty} P_{1,0}^{(N)} = 1.$$ \hfill (36)

This, according to the dynamical approach in [8], characterizes Zeno effect. The measurement of this probability can be done by using one probe atom prepared in $|g\rangle$ state and sent through cavity A immediately after the interaction of M_B with the N-th atom. If this probe atom and mode M_A perform a π Rabi pulse, the atom-fields state will be given by

$$\rho_{AF}(T_0) = (|c_1(\tau_{AB})|^2)^N|0,0,e\rangle\langle 0,0,e| + |c_2(\tau_{AB})|^2 \sum_{k=1}^{N}(|c_1(\tau_{AB})|^2)^{k-1}|0,0,g\rangle\langle 0,0,g|,$$ \hfill (37)

and measuring the energy level of the atom with an ionization detector tells us about the field state. The inefficiency of the detector enters just as a multiplicative factor in the data.

A. Finite Interaction Times and Lossy Cavities

The problems related to the inefficiency of the ionization detectors, which imposed important limitations for the observation of Zeno effect in the proposals of Sec. III, have been overcome by the experimental proposal of the present section. However there are other limitations if a realistic experiment is to be performed. Firstly the cavity is not perfect and dissipation/decoherence will also affect the visibility of the effect. And secondly the interaction time is finite. We consider all these effects in the present section.

Fig.3 sketches the time evolution, divided in N steps, each one composed by two parts: no atom is present and the cavities are coupled (clear zones), the atom interacts with mode
FIG. 3: Sketch of the total time of one experimental sequence.

M_B during a π Rabi pulse (dark zones). Each clear zone corresponds to the time interval $\tau_{AB} = T_0/N$, where T_0 is, as in previous sections, the time during which a photon passes from cavity A to cavity B if no atom is present: $T_0 = \pi/2g$. Since our goal here is to study the inhibition (due to intermediate interactions) of such a photon transition, the cavities will be uncoupled during the atom-field interactions, in order to keep the total interaction time between modes M_A and M_B fixed in T_0 [26]. For the Rubydium atoms used in the experiment [18], the π Rabi pulse time is $\tau_\pi \simeq 10^{-5}s$, and the increase in the number of probe atoms, N, may turn the total time of atom-field interactions, $N\tau_\pi$, quantitatively important. In order to take this time into account, we must consider

$$T'_0 = T_0 + N\tau_\pi$$

as the total time of one experimental sequence.

Let us start by modeling the environment as a large set of harmonic oscillators linearly coupled to the system of interest (modes M_A and M_B) [19]. This model has been used to calculate the time evolution of two microwave modes constructed in a single cavity, and the theoretical results showed good agreement with experimental ones [20]. In Ref. [21] it is shown that, for identical cavities and zero temperature, the model leads to the master equation

$$\frac{d}{dt}\rho_F(t) = k (2a\rho_F(t)a^\dagger - \rho_F(t)a^\dagger a - a^\dagger a\rho_F(t)) - i\omega [a^\dagger a, \rho_F(t)]$$

+$$k (2b\rho_F(t)b^\dagger - \rho_F(t)b^\dagger b - b^\dagger b\rho_F(t)) - i\omega [b^\dagger b, \rho_F(t)]$$

-$$ig [b^\dagger a + a^\dagger b, \rho_F(t)],$$

where ω is the frequency of the modes of interest, g is their coupling constant and k gives the decay rate of the cavities; cross decay rates and shifts in ω and g, which tend to be small [23], were disregarded. Using this master equation, we calculate the time evolution of the
state
\[\rho_F(0) = \ket{1_A, 0_B} \bra{1_A, 0_B} = \ket{1, 0} \bra{1, 0} \] (39)
as
\[\rho_F(t) = (f_1(t)\ket{1, 0} + l_2(t)\ket{0, 1})(h.c.) + (1 - |f_1(t)|^2 - |l_2(t)|^2)\ket{0, 0} \bra{0, 0}, \] (40)
where
\[f_1(t) = \exp \left[- (k + i\omega) t \right] \cosh \left[-igt \right], \]
\[l_2(t) = \exp \left[- (k + i\omega) t \right] \sinh \left[-igt \right]. \] (41)
The probability of finding the photon in cavity \(A \), in this case, is given by
\[|f_1(t)|^2 = e^{-2kt} \cos^2(gt). \] (42)

If the field state has evolved from \(t = 0 \) to \(t = \tau_{AB} \) in the manner described above, and at time \(t = \tau_{AB} \) an atom prepared in \(|g\rangle \) state begins its interaction with mode \(M_B \), the state of the whole system will be given by
\[\rho_{AF}(\tau_{AB}) = (f_1(\tau_{AB})\ket{1, 0, g} + l_2(\tau_{AB})\ket{0, 1, g})(h.c.) + (1 - |f_1(\tau_{AB})|^2 - |l_2(\tau_{AB})|^2)\ket{0, 0, g} \bra{0, 0, g}. \] (43)
During the atom-field interaction, the field modes evolve independently, since they are uncoupled. The evolution of state (43) is described by the master equation
\[
\frac{d}{dt}\rho_{AF}(t) = k \left(2a\rho_{AF}(t)a^\dagger - \rho_{AF}(t)a^\dagger a - a^\dagger a\rho_{AF}(t) \right) + i\omega \left[a^\dagger a, \rho_{AF}(t) \right] + \frac{\Omega_0}{2} \left[b^\dagger \sigma_-, b \sigma_+ + b^\dagger b\rho_{AF}(t) \right],
\] (44)
where \(\Omega_0 \) is vacuum Rabi frequency, and \(\sigma_- = \sigma_+^\dagger = \ket{g} \bra{e} \). The first line of Eq. (44) describes the dissipation of mode \(M_A \); the second line describes the interaction of the atom with mode \(M_B \) according to the dissipative Jaynes-Cummings model [23]. In previous calculations, \(\tau_\pi \) was the time spent by an atom to absorb the excitation of mode \(M_B \). Here, \(\tau_\pi \) plays an analogous role, and will be defined as
\[\tau_\pi = \frac{1}{\sqrt{\Omega_0^2 - k^2}} \arccos \left(\frac{2k^2 - \Omega_0^2}{\Omega_0^2} \right). \] (45)
This time, which depends not only on the vacuum Rabi frequency, but also on the dissipation constant, is the time for a complete transfer of the excitation of mode \(M_B \), to the atom or
to the environment. This definition coincides with the previous one if no dissipation is considered \((k = 0)\). Using master equation (44) to describe the evolution of the system from \(t = \tau_{AB}\) to \(t = \tau_{AB} + \tau_{\pi}\), we get

\[
\rho_{AF}(\tau_{AB} + \tau_{\pi}) = |f_1(\tau_{AB})|^2 e^{-2k\tau_{\pi}} |1, 0, g\rangle \langle 1, 0, g| + |l_2(\tau_{AB})|^2 e^{-k\tau_{\pi}} |0, 0, e\rangle \langle 0, 0, e| \tag{46}
\]

\[
\ + (1 - |f_1(\tau_{AB})|^2 e^{-2k\tau_{\pi}} - |l_2(\tau_{AB})|^2 e^{-k\tau_{\pi}})|0, 0, g\rangle \langle 0, 0, g|.
\]

The state of the fields after the interaction with the first atom is obtained by taking the trace over the atomic variables:

\[
\rho_F(\tau_{AB} + \tau_{\pi}) = \text{Tr}_A \{ \rho_{AF}(\tau_{AB} + \tau_{\pi}) \}
\]

\[
= |f_1(\tau_{AB})|^2 e^{-2k\tau_{\pi}} |1, 0\rangle \langle 1, 0| + (1 - |f_1(\tau_{AB})|^2 e^{-2k\tau_{\pi}})|0, 0\rangle \langle 0, 0|.
\]

Observing that the part of the density operator associated to \(|0, 0\rangle \langle 0, 0|\) does not change with time, it is easy to calculate the probability to find the photon in cavity \(A\) after the interaction with \(N\) atoms:

\[
P^{(N)}_{1,0} = (|f_1(\tau_{AB})|^2 e^{-2k\tau_{\pi}})^N \tag{47}
\]

\[
= e^{-2k(T_0 + N\tau_{\pi})} \left(\cos^2 \left(\frac{gT_0}{N} \right) \right)^N.
\]

This equation explicitates the effect of \(N\) intermediate interactions over two kinds of temporal dependencies. The term \(\left(\cos^2 \left(\frac{gT_0}{N} \right) \right)^N\) represents no transition of the photon from cavity \(A\) to cavity \(B\). It grows when \(N\) increases, tending to 1 when \(N \to \infty\). The term \(e^{-2k(T_0 + N\tau_{\pi})}\), related to the probability that the photon has not decayed to the environment, decreases to zero when \(N \to \infty\). Of course this decrease is due to the enhancement of the total time in which the field is exposed to the environment, not being related to any kind of anti-Zeno effect. Since the dynamics of dissipation is exponential, it is not affected by intermediate measures. The role played by the finite interaction time \(\tau_{\pi}\) is also explicatized and will become quantitatively important as \(N \to \infty\).

In order to observe the dependence of \(P^{(N)}_{1,0}\) on \(N\), an atom prepared in \(|g\rangle\) state is sent into cavity \(A\) just after the interaction of the \(N\)-th atom with mode \(M_B\). The atom then performs a \(\pi\) Rabi pulse, and passes through a \(D_e\) detector. If the efficiency of \(D_e\) is \(p_e\), the probability of a click will be given by

\[
P^{(N)}_{D_e\text{click}} = p_e e^{-2k(T_0 + N\tau_{\pi})} \left(\cos^2 \left(\frac{gT_0}{N} \right) \right)^N. \tag{48}
\]
FIG. 4: Probability of one click in D_e as a function of N, for $T = \frac{\pi}{2g}$, $\Omega_0 = 10^5 s^{-1}$, $p_e = 1$, $g = 10^3 s^{-1}$ and different values of k: $k = 10^3 s^{-1}$ (continuous) and $k = 10 s^{-1}$ (dashed).

This is the empirical quantity to be measured in the present proposal.

There will be no problems associated to the efficiency p_e, since it enters just as a multiplicative factor that does not depend on N. However, the term $e^{-2k(T_0 + N\tau_s)}$ depends on N, and may prevent the observation of Zeno effect if the decay constant k is not small enough. In Fig.4, we may observe the competition between the tendencies of $p_{D_e \text{click}}^{(N)}$ when N grows: the increasing one, due to Zeno effect, and the decreasing one, due to dissipation. In the continuous curve $k = 10^3 s^{-1}$, corresponding to the cavities used in several experiments [16]. In this case it would be very difficult to observe Zeno effect, since dissipation dominates even for small values of N. For the dashed curve $k = 10 s^{-1}$; this value corresponds to the cavity described in [13, 14], and turns the observation of Zeno effect possible.
V. CONCLUSION

We consider some realistic aspects related to the observation of the QZE in Cavity QED. They are: the effect of a lossy environment, of limited detection efficiency and finite atom-field interaction time. The calculations are fully analytical and the experiment is apparently feasible \[13, 14\]. Our main result is the equation for the probability of a no-click detection as a function of the number of incoming atoms, the cavities dissipation constants, the probability of a click in detector \(D_e\) and a finite atom-field interaction time \(\tau_\pi\),

\[
 p_{D_e,\text{click}}^{(N)} = p_e e^{-2k(T_0 + N\tau_\pi)} \left(\cos^2 \left(\frac{g T_0}{N} \right) \right)^N.
\]

This is the main result of the present contribution. It explicitates, within the context of the present model the role played on the visibility of the QZE by a realistic apparatus and realistic detectors. We hope this result may encourage the experimental realization of the present proposal.

[1] J. M. Raimond, M. Brune, and S. Haroche, Phys. Rev. Lett. 79, 1964 (1997).
[2] B. C. Van Fraassen, The Scientific Image, Clarendon Press, Oxford, 1980.
[3] J. von Neumann, Die Mathematische Grundlangen der Quantenmechanik, Springer Verlag, Berlin, 1932, Mathematical Foundations of Quantum Mechanics Princeton University Press, 1955.
[4] B. Misra, E.C. G. Sudarshan, J. Math. Phys. 18, 765 (1977).
[5] Wayne M. Itano, D. J. Heinzen, J. J. Bollinger, D. J. Wineland, Phys. Rev. A 41, 2295 (1990).
[6] L. E. Ballentine Phys. Rev. A 43, 5165 (1991).
[7] Wayne M. Itano, D. J. Heinzen, J. J. Bollinger, D. J. Wineland, Phys. Rev. A 43, 5168 (1991).
[8] Saverio Pascazio, Mikio Namiki Phys. Rev. A 50, 4582 (1994).
[9] Kazuki Koshino Phys. Rev. A 71, 034104 (2005).
[10] J. Ruseckas and B. Kaulakys Phys. Rev. A 69, 032104 (2004).
[11] Julius Ruseckas, Phys. Rev. A 66, 012105 (2002).
[12] B. Kaulakys and V. Gontis Phys. Rev. A 56, 1131 (1997).
[13] Sébastien Gleyzes, Stefan Kuhr, Christine Guerlin, Julien Bernu, Samuel Deléglise, Ulrich Busk Hoff, Michel Brune, Jean-Michel Raimond and Serge Haroche, Nature 446, 297 (2007)
[14] S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deléglise, S. Osnaghi, M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin, Applied Physics Letters 90, 164101 (2007).

[15] R. G. Hulet, and D. Kleppner, Phys. Rev. Lett. 51, 1430 (1983).

[16] A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, Phys. Rev. A 64, 050301(R) (2001).

[17] R. Rossi Jr., M. C. Nemes and J. G. Peixoto de Faria, Phys. Rev. A 75, 063819 (2007).

[18] M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 76, 1800 (1996).

[19] A. O. Caldeira, and A. J. Leggett, Ann. Phys. (N. Y.) 149, 374 (1983).

[20] A. R. Bosco de Magalhães, and M. C. Nemes, Phys. Rev. A 70, 053825 (2004).

[21] A. R. Bosco de Magalhães, S. G. Mokarzel, M. C. Nemes, and M. O. Terra Cunha, Physica A: Stat. Mech. Appl. 341, 234 (2004).

[22] R. Rossi Jr., A. R. Bosco de Magalhães, and M. C. Nemes, Physica A 365, 402 (2006).

[23] J. G. Peixoto de Faria and M. C. Nemes, Phys. Rev. A 59, 3918 (1999).

[24] In Section (IV) we will consider the effects of τ_π, taking its value from experimental data.

[25] On the other hand, it is easy to see that, since the atom and the fields are not interacting after $t = \tau_{A,B}$, taking the value of τ_g into account will have no effect on the following probabilities in this section.

[26] We must put a piezoelectric element acting in the waveguide, in order to interrupt the cavities coupling during atom-field interaction.