Multispectral time-resolved energy-momentum microscopy using high-harmonic extreme ultraviolet radiation

Michael Heber,¹,² Nils Wind,²,³,⁴ Dmytro Kutnyakhov,¹,¹ Federico Pressacco,¹ Tiberiu Arion,⁴ Friedrich Roth,⁵,⁶ Wolfgang Eberhardt,⁴ and Kai Rossnagel³,⁷

¹) Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
²) Institut für Experimentalphysik, Universität Hamburg, 22761 Hamburg, Germany
³) Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
⁴) Centre for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
⁵) Institute of Experimental Physics, TU Bergakademie Freiberg, 09599 Freiberg, Germany
⁶) Center for Efficient High Temperature Processes and Materials Conversion (ZeHS), TU Bergakademie Freiberg, 09599 Freiberg, Germany
⁷) Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany

A 790-nm-driven high-harmonic generation source with a repetition rate of 6 kHz is combined with a toroidal-grating monochromator and a high-detection-efficiency photoelectron time-of-flight momentum microscope to enable time- and momentum-resolved photoemission spectroscopy over a spectral range of 23.6–45.5 eV with sub-100-fs time resolution. Three-dimensional (3D) Fermi surface mapping is demonstrated on graphene-covered Ir(111) with energy and momentum resolutions of ≲100 meV and ≲0.1 Å⁻¹, respectively. The table-top experiment sets the stage for measuring the k_z-dependent ultrafast dynamics of 3D electronic structure, including band structure, Fermi surface, and carrier dynamics in 3D materials as well as 3D orbital dynamics in molecular layers.

I. INTRODUCTION

Angle-resolved photoemission spectroscopy (ARPES) is the standard method to determine how electrons behave at surfaces of solid materials. Monochromatic photons having ultraviolet (UV) energies or higher eject electrons from a material’s surface, and the photocurrent is measured as a function of electron kinetic energy, emission direction, and photon energy. Direction is encoded in two emission angles or, equivalently, in the two components of the surface-parallel momentum (k_x, k_y). Since the four measurement parameters can be straightforwardly related to the energy relative to the Fermi level (E - E_F) and three-dimensional (3D) momentum (k_x, k_y, k_z) of the electrons inside the material before photoexcitation, the measured intensity distributions readily provide multidimensional images of the electronic structure in portions of four-dimensional (4D) energy-momentum space. Band structures and Fermi surfaces, but also momentum-dependent band renormalization and lifetime effects, can thus be accessed directly. Another intriguing application is orbital tomography, which can provide reconstructed real-space tomograms of molecular orbitals on solid surfaces. Depending on whether emission angles or surface-parallel momentum components are imaged onto the detector, the technique is referred to as ARPES or momentum microscopy, respectively.

In this energy-momentum imaging, the photon energy is an important parameter in at least three different ways. First, the photon energy determines the maximum detectable electron kinetic energy and 3D momentum, and thus the volume of the probed portion in energy-momentum space. Second, scanning the photon energy allows to retrieve the surface-perpendicular momentum component k_z, hence to perform full 4D energy-momentum imaging. And third, tunability in the photon energy can also be useful to enhance the contrast of specific features in ARPES data by exploiting excitation resonances, escape-depth variation, or matrix-element effects.

In principle, the same relevance of the probing photon energy and its tunability also applies to time-resolved ARPES (trARPES) or time-resolved momentum microscopy (trMM), in which time, or more precisely the time delay (t_D) between femtosecond-scale pump and probe pulses, is added as a fifth measurement parameter. Over the past fifteen years, trARPES has evolved into a powerful ARPES modality providing direct dynamical information on electronic structure at the fundamental time scales of electronic and atomic motion, particularly on photoinduced transient changes of electronic states and their population. trARPES is now routinely performed using table-top laser sources based on fourth and higher harmonic generation (HHG) in solids and gases, respectively, as well as using free-electron lasers (FELs) based on the self-amplification of spontaneous emission (SASE) of free electrons in undulators. The corresponding probe photon energies in trARPES range from the far UV to soft x-rays where a sweet spot currently is the intermediate extreme ultraviolet (XUV) regime.

In the XUV, HHG-based trARPES can optionally provide high time, energy, momentum, and spin resolution in conjunction with kHz-to-MHz repetition rates and a sufficiently wide detection window of the surface-parallel momentum (k_x, k_y) to fully cover typical Brillouin-zone (BZ) dimensions. Moreover, HHG sources combined with monochromators enable multispectral measurements as they can deliver an use-
FIG. 1. (a) Schematic layout of the experimental setup for XUV multispectral time-resolved momentum microscopy, including the laser system, optics, and diagnostics, the Ar-filled capillary for HHG, the toroidal-grating monochromator, and the ToF momentum microscope for photoelectron detection. For details, see text. BS: beam splitter, R: reflective, ND: neutral density. (b) Exemplary 3D momentum microscopy data set representing photoemission intensity as a function of energy \(E \) and surface-parallel momentum \((k_x, k_y) \). Data were measured with the 27th harmonic (42.2 eV) from graphene/Ir(111) at room temperature and symmetrized by three-fold rotation. The hexagonal Brillouin zone of graphene is indicated.

II. EXPERIMENTAL SETUP

Our multispectral-HHG trARPES setup, as schematically illustrated in Fig. 1, measures a 5D photoemission data hypercube \(I(E, k_x, k_y, k_z, t_D) \). The laser system gives the tuning of \(k_z \) and \(t_D \), via adjustability of the probe photon energy and pump–probe delay, respectively, and the ToF momentum microscope provides the basic parallel 3D measurement of \(I(E, k_x, k_y) \).

A. Multispectral photon source

The schematic layout of the laser system is shown in Fig. 1(a). A Ti:Sa laser amplifier (Wyvern 1000, KM-Labs), operated at an output power of \(\approx 12 \) W and a repetition rate of 6 kHz, delivers laser pulses at a center wavelength of \(\approx 790 \) nm, pulse duration of \(\approx 50 \) fs (FWHM, full width at half maximum), and pulse energy of \(\approx 2 \) mJ. A quarter of the amplifier output is coupled into the pump branch, propagated through a delay stage, and focused onto the sample in the ultrahigh vacuum (UHV) photoemission chamber. The spot size of the pump beam on the sample is typically about \((100 \times 400) \) µm\(^2\). The available pump-pulse energy of \(500 \) µJ can be used for frequency conversion or attenuated to the mid-nJ to low-µJ level for 790-nm excitation of the sample below the space-charge limit.

The remaining 75\% (\(\approx 50 \) fs, \(\approx 1.5 \) mJ/pulse) of the amplifier output is coupled into the probe branch and propagated through a delay stage, and focused onto the sample in the ultrahigh vacuum (UHV) photoemission chamber. The spot size of the pump beam on the sample is typically about \((100 \times 400) \) µm\(^2\). The available pump-pulse energy of \(500 \) µJ can be used for frequency conversion or attenuated to the mid-nJ to low-µJ level for 790-nm excitation of the sample below the space-charge limit.

The remaining 75\% (\(\approx 50 \) fs, \(\approx 1.5 \) mJ/pulse) of the amplifier output is coupled into the probe branch and focused with a lens (focal length \(f = 500 \) mm) into an Ar-filled waveguide capillary (XUUS, KMLabs), where higher harmonics in the XUV are generated. During operation, the Ar pressure inside the capillary is \(\approx 60 \) mbar, while the pressure outside stays below \(\approx 5 \times 10^{-3} \) mbar. A ZrO\(_2\)-coated toroidal mirror...
The harmonic spectrum contains all eight odd harmonics from (see central panel of Fig. 4). The practically useable part of the brightest harmonics, which are usually the 23rd, remaining 790-nm light is blocked using few-100-nm thick Al filters. Differential pumping is used to maintain a 5-orders-of-magnitude pressure difference between the HHG source and the monochromator chamber. A rotatable Au-coated toroidal grating (f = 163 mm) with 550 lines/mm (TGM300, Horiba Jobin Yvon SAS) images the entrance slit onto the exit slit with the selected higher harmonic light. For the 25th harmonic, the footprint on the monochromator grating is estimated to be (1 × 1.7) mm² translating into a nominal temporal probe-pulse broadening of 57 fs. A second toroidal mirror (f = 520 mm) focuses the selected and monochromatized XUV light onto the sample at an angle of 22° with respect to the surface. This mirror is rotatable and can alternatively direct the beam to a gas-phase experiment with combined ion- and electron-ToF spectroscopy. Behind the re-focusing mirror, the pump and probe beams propagate almost collinearly to the sample. At the sample, the XUV beam has a spot size of (70 × 800) μm² and a flux of 3 × 10⁸ photons/s in the brightest harmonics, which are usually the 23rd and 25th (see central panel of Fig. 4). The practically useable part of the harmonic spectrum contains all eight odd harmonics from the 15th to the 29th, corresponding to a photon energy range of 23.6–45.5 eV. According to ray-tracing simulations, the temporal probe pulse broadening due to the monochromator lies in the range of 50–100 fs for all harmonics, independent of the slit size. The spectral resolution of the monochromator and the beamline is in the range of 100–240 meV under measurement conditions with slit sizes of 150 μm. In particular, for the higher harmonics, the monochromator selects only a given harmonic rather than clipping the harmonic’s spectral bandwidth. The overall high stability of the HHG source enables pump-probe experiments over several days, with the temporal overlap (time zero) remaining within the experimental time resolution. Average drifts in HHG intensity stay within 30% over a week of continuous operation (with the possibility to retune and restore reduced intensity).

B. Electron momentum microscope

The ToF momentum microscope employed in our laboratory-based setup is the same instrument used for FEL-based photoemission spectroscopy at the PG2 beamline of FLASH (DESY, Hamburg). The high photoelectron detection efficiency of the instrument, which compensates for the moderate repetition rate of the photon pulses, results from a combination of three separate capabilities: (i) direct 2D momentum imaging with a field of view of ±2.4 Å⁻¹ in both surface-parallel momentum directions, (ii) simultaneous ToF energy recording in an energy window of 7 eV, and (iii) multi-hit detection of up to 3 electrons per pulse. The underlying principle of slit-less 3D photoelectron energy-momentum detection is implemented as follows. The photocurrent emitted from the surface is imaged into an achromatic surface-parallel momentum image at the back-focal plane of the cathode objective lens; this hyperspectral image is subsequently magnified and high-pass-filtered by two lens systems, before it is spectrally dispersed in a field-free drift tube and finally captured on a delay-line detector (DLD). The 8-segment DLD (DLD6060-8s, Surface Concept) used in the current setup consists of two stacked 4-quadrant DLDs rotated by 45° with respect to each other. This novel detector provides improved multi-hit detection capability compared to a single 1- or 4-quadrant DLD, as well as improved resolution of hits occurring near segment boundaries. The length of the drift tube (800 mm) and temporal resolution of the detector (∼150 ps) translate into a nominal energy resolution of <40 meV for typical electron drift energies of 10–30 eV. The nominal momentum resolution is <0.01 Å⁻¹, as given by the momentum field of view, active detector area (60 mm diameter), and the spatial resolution of the detector (∼80 μm).

The 3D energy-momentum measurement system, based on single-event detection, fills in the photoemission data cube I(E, kₓ, kᵧ) over energy and momentum intervals with a characteristic width of 7 eV and 4.8 Å⁻¹, respectively, at a repetition rate of 6 kHz. When delay-time scanning is added, the resulting size of a typical 4D data hypercube is ≈100 GB. An efficient data acquisition and data processing workflow is implemented using an open-source software package developed for high-throughput multidimensional photoemission...
spectroscopy experiments. Figure 1(b) shows a 3D representation of an exemplary data set taken from graphene/Ir(111).

Four different 2D cuts through this data set are shown in Fig. 2, including the Fermi surface map \(I(E_F, k_x, k_y) \) [Fig. 2(a)] and selected band maps \(I(E, k_x, k_y) \) [Fig. 2(b)] and \(I(E, k_x, k_0) \) [Figs. 2(c) and 2(d)] for different constant values of \(k_0 \) corresponding to lines passing through high-symmetry points of the graphene BZ, as indicated in Fig. 2(a). In these maps, the strongest signal stems from the \(\pi \)-band of graphene, with its linear dispersion toward \(E_F \) and point-like Fermi surface at the \(K \) and \(K' \) points. The Ir 5d bands appear as much weaker features. Their interaction with the \(\pi \)-band, however, leads to distinct kinks in the \(\pi \)-band dispersion. The presented data vividly illustrate the efficiency and completeness of the ToF momentum microscopy approach to photoelectron detection.

III. PERFORMANCE

We have characterized the performance of the experimental system by measuring the near-\(E_F \) electronic structure and the above-\(E_F \) carrier dynamics of graphene-covered and pristine Ir(111), respectively. Standard Ir(111) cleaning procedures and graphene growth recipes were applied. Surface quality was checked by low-energy electron diffraction. All photoemission measurements were done at room temperature.

A. Experimental resolutions

We estimated the effective experimental energy and momentum resolutions from the Fermi-level crossing of the graphene \(\pi \)-band in the graphene/Ir(111) sample. Figure 3(a) shows a room-temperature \(E-k \) photoemission intensity map, which was measured in the vicinity of the \(K \) point with a photon energy of 33.4 eV (21st harmonic) using probe-only photoemission. Also shown are the momentum distribution curve (MDC) extracted at \(E_F \) (top panel) and an energy distribution curve (EDC) obtained by the MDC method (right panel), representing the energy distribution of fitted MDC peak areas.

The EDC was fitted with a room-temperature Fermi-Dirac distribution function convoluted with a Gaussian resolution function [Fig. 3(a), right panel]. The resulting Gaussian FWHM, corresponding to the total energy resolution, is (96 ± 4) meV. This value includes a contribution of the photon source and monochromator of about 90 meV. The contribution of the electron spectrometer including space-charge broadening is estimated to be 30 meV. Over the entire usable spectral range of \(\approx 24-46 \) eV, the effective energy resolution varied between 80 and 135 meV, where the photon-energy dependence of the grating resolution at fixed slit widths makes the dominant contribution. Note that these values are better than those given above for photon resolution because the field aperture of the momentum microscope typically acts as a virtual exit slit, selecting an effective field of view on the sample of \(\approx 70 \) µm.

The Gaussian FWHM determined from the momentum distribution curve at \(E_F \) is (0.096 ± 0.003) Å⁻¹ [Fig. 3(a), top panel]. After subtracting the intrinsic \(\pi \)-band momentum width of 0.031 Å⁻¹ [67,68], the remaining effective momentum resolution is (0.091 ± 0.003) Å⁻¹. We attribute the deterioration with respect to the nominal momentum resolution to less than optimal sample quality, electronic noise, and timing jitter in the position measurement on the detector. With varying probe photon energy, no noticeable changes of the momentum resolution were detected.

To estimate the temporal cross-correlation between pump and probe pulses, we performed pump-probe photoemission measurements on pristine Ir(111) using pump and probe photon energies of 1.57 eV and 36.1 eV (23rd harmonic), respec-
FIG. 4. Multispectral Fermi surface mapping of graphene/Ir(111) using higher-harmonic-generation-based time-of-flight momentum microscopy. Central panel: Higher harmonic spectra as given by photon flux (black line) and electron count rate (red line). Spectra were measured with an XUV-sensitive photodiode behind the exit slit of the monochromator and with the momentum microscope from a graphene-covered Ir(111) sample, respectively. The photon flux at the sample position was calculated, accounting for beamline transmission and beam attenuation. For the scans, the slit sizes of the monochromator were adjusted to a monochromator resolution of 150 meV at the 23rd harmonic. Surrounding panels: Full series of Fermi-surface maps taken at room temperature over the photon-energy tuning range from 23.6 to 45.5 eV (15th to 29th harmonic; energy integration window: $\Delta E = \pm 0.1$ eV). The hexagonal Brillouin zone of graphene is indicated.

B. Multispectral energy-momentum mapping

The key novel characteristic of our experimental setup is the combination of highly efficient 3D photoemission intensity $I(E, k_x, k_y)$ imaging with a discrete tunability of the probe photon energy, thus making the energy-momentum mapping in trARPES k_z-dependent and 4D. Figure 4 illustrates this experimental advance.

The central panel of Fig. 4 displays two typical XUV spectra as a function of the monochromator energy. The spectrum indicated by the black line gives the calculated photon flux at the sample position. This signal was measured by a calibrated XUV-sensitive Si photodiode behind the exit slit of the monochromator and corrected for beamline transmission, including Al-filter attenuation to prevent photocurrent saturation. The second spectrum (red line) represents the electron count rate at the detector, as measured from an electrically biased graphene/Ir(111) sample by the ToF momentum microscope under otherwise typical measurement settings. The practically usable photon-energy tuning range is 23.6–45.5 eV, at a spacing of ≈ 3.1 eV, corresponding to the odd harmonic orders 15 to 29. The cutoff at ≈ 48 eV is typical for Ar gas as a generating medium.

The panels surrounding the XUV spectra in Fig. 4 show Fermi surface maps taken from graphene/Ir(111) with all eight harmonics. These 2D intensity maps are extracted from the...
Under the assumption of free-electron-like final states, we attribute this effect to a decrease in the electron escape within the direct-transition model of ARPES, constant-energy maps, such as the ones displayed in Fig. [4] map onto a spherical surface in 3D momentum space. The kinematic equation relating the surface-perpendicular momentum component to the other measurement parameters is [5]

$$k_z = \sqrt{\frac{2m^*}{\hbar^2} \left[(E - E_F) + h\nu + V_0^* \right] - (k_x^2 + k_y^2)},$$ \hspace{1cm} (1)$$

where \(h\nu \) is the photon energy and \(m^* \) and \(V_0^* \) are the effective electron mass and inner potential (referenced to \(E_F \)) of the nearly-free-electron final-state parabola, respectively. The empirical parameters for Ir(111) are \(m^* = 1.07m_e \) and \(V_0^* = 10\,\text{eV} \). Using equation (1) and exploiting point symmetry about the center of the BZ (\(\Gamma \) point), a tomogram of the 3D Fermi surface can be reconstructed from the stack of Fermi surface maps shown in Fig. [4].

Figure [5] displays the reconstructed portion of the 3D Fermi surface for graphene/Ir(111). Three sets of isosurfaces can be identified: the non-\(k_z \)-dispersive graphene Fermi rods centered at the corners of the hexagonal graphene BZ as well as an inner hexagon-shaped Fermi surface sheet and an outer star-shaped Fermi surface sheet derived from Ir 5\(d \) bulk states. The reconstructed Ir 5\(d \) Fermi surface sheets are in good agreement with a 3D Fermi surface tomogram obtained from pristine Ir(111) by soft x-ray momentum microscopy [21]. The available photon-energy range translates into a finite \(k_z \) probing interval of \(\Delta k_z = 0.9\,\text{Å}^{-1} \), smaller than the characteristic \(k_z \) dimension (\(\Gamma L = 1.42\,\text{Å}^{-1} \)) of the fcc BZ of Ir(111). Thus, our tomographic data cover \(\approx39\% \) of the BZ volume. For crystalline materials with smaller \(k \) dimensions, particularly layered 3D electron materials [20–22], larger portions of the bulk BZ or entire bulk BZs can be scanned. Similarly, for layers of 3D molecules, [22] 3D orbital momentum tomograms can be recorded.

IV. CONCLUSIONS

In conclusion, by combining a 790-nm-driven kHz-repetition-rate HHG source with a toroidal-grating monochromator and a high-detection-efficiency ToF momentum microscope, we have realized an experimental setup for probe photon energy-dependent time-resolved XUV-ARPES with good data collection efficiency and sub-100-fs time resolution. The photon energy tuning range is \(\approx24–46\,\text{eV} \), sufficient to map band structures and Fermi surfaces as well as molecular orbital densities over an \(k_z \) interval of \(\approx1\,\text{Å}^{-1} \). The system thus specifically enables \(k_z \)-selective probing of ultrafast electronic structure dynamics in 3D materials as well as ultrafast 3D orbital tomography of molecular layers [23,24]. Moreover, the setup complements time-resolved momentum microscopy in the XUV to soft x-ray regime at the FEL FLASH, for which the same ToF momentum microscope is used [22]. The two complementary probe photon sources particularly enable a unique merging of trARPES with time-resolved x-ray photoelectron spectroscopy [24] and diffraction [27] for combined investigations of ultrafast electronic, chemical, and geometric structure dynamics.
ACKNOWLEDGMENTS

This work is dedicated to the late Wilfried Wurth. The work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project ID 491245950 and via the Collaborative Research Center (CRC) 925—Project ID 170620586 (project B2). We thank Holger Meyer and Sven Gieschen for support with the instrumentation. We also thank former members of Wolfgang Eberhardt’s group, particularly Daniel Ramm, for help with the design and initial installation of the HHG source.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

1. A. Damascelli, “Probing the electronic structure of complex systems by ARPES,” Physica Scripta T109, 61 (2004).
2. B. Lv, T. Qian, and H. Ding, “Angle-resolved photoemission spectroscopy and its application to topological materials,” Nature Reviews Physics 1, 609–626 (2019).
3. P. D. C. King, S. Piccozzi, R. G. Eg dell, and G. Panaccione, “Angle, spin, and depth resolved photoelectron spectroscopy on quantum materials,” Chemical Reviews 121, 2816–2856 (2021). PMID: 33346644, https://doi.org/10.1021/acs.chemrev.0c00616.
4. J. A. Sobota, Y. He, and Z.-X. Shen, “Angle-resolved photoemission studies of quantum materials,” Rev. Mod. Phys. 93, 025006 (2021).
5. T. Chiang, J. A. Knapp, M. Aono, and D. E. Eastman, “Angle-resolved photoemission, valence-band dispersions ϵ(k), and electron and hole lifetimes for gases,” Phys. Rev. B 21, 3513–3522 (1980).
6. K. Medjani k, O. Fedchenko, S. Chernov, D. Kutnyakhov, M. Ellguth, A. Oelsner, B. Schön hense, T. R. F. Peixoto, P. Lutz, C.-H. Min, F. Reinert, S. Däster, Y. Acremann, J. Vie fhaus, W. Hurth, J. J. Elmers, and G. Schönhense, “Direct 3d mapping of the fermi surface and fermi velocity,” Nature Materials 16, 615–621 (2017).
7. S. Hütten, R. Claessens, F. Reinert, T. Straub, V. Strolov, and P. Steiner, “Photoemission spectroscopy in metals:: band structure-fermi surface–spectral function,” Journal of Electron Spectroscopy and Related Phenomena 100, 191–213 (1999).
8. T. Valla, A. V. Fedorov, P. D. Johnson, and S. L. Hultberg, “Many-body effects in angle-resolved photoemission: Quasiparticle energy and lifetime of a mo(110) surface state,” Phys. Rev. Lett. 83, 2085–2088 (1999).
9. E. E. Krasovskii, K. Rossnagel, A. Fedorov, W. Schattke, and L. Kipp, “Determination of the hole lifetime from photoemission: Ti 3d states in tit2,” Phys. Rev. Lett. 98, 217604 (2007).
10. M. D. Watson, O. J. Clark, F. Mazzola, I. Marković, V. Sunko, T. K. Kim, K. Rossnagel, and P. D. C. King, “Orbital- and k+-selective hybridization of se 4p and d 3d states in the charge density wave phase of tit2,” Phys. Rev. Lett. 122, 076404 (2019).
11. P. Puschke, S. Berkebile, A. J. Fleming, G. Koller, K. Em tsev, T. Seyller, J. D. Riley, C. Ambrosch-Draxl, F. P. Net zer, and M. G. Ramsey, “Reconstruction of molecular orbital densities from photoemission data,” Science 326, 702–706 (2009). https://www.science.org doi/10.1126/science.1176105.
12. M. Graus, C. Metzer, M. Grimm, P. Nigge, V. Feyer, A. Schöll, and F. Reinert, “Three-dimensional tomographic imaging of molecular orbitals by photoelectron momentum microscopy,” The European Physical Journal B 92, 80 (2019).
13. B. Wannberg, “Electron optics development for photo-electron spectrometers,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT 601, 182–194 (2009) special issue in honour of Prof. Kai Siegbahn.
14. M. Kotsugi, W. Kuch, F. Offi, L. I. Chelaru, and J. Kirschner, “Microspectroscopic two-dimensional fermi surface mapping using a photoelectron emission microscope,” Review of Scientific Instruments 74, 2754–2758 (2003). https://doi.org/10.1063/1.1569404.
15. G. Schön hense, K. Medjani k, and H.-J. Elmers, “Space-, time- and spin-resolved photoemission,” Journal of Electron Spectroscopy and Related Phenomena 200, 94 – 118 (2015) special Anniversary Issue: Volume 200.
16. S. Babenkov, K. Medjani k, D. Vasilyev, S. Chernov, C. Schucker, A. Gloskovskiy, Y. Matveyev, W. Drube, B. Schönhense, K. Rossnagel, H.-J. Elmers, and G. Schönhense, “High-accuracy bulk electronic bandmapping with eliminated diffraction effects using hard x-ray photoelectron momentum microscopy,” Communications Physics 2, 107 (2019).
17. K. Rossnagel, L. Kipp, M. Skibowski, C. Sollerbeck, T. Strasser, W. Schattke, D. Voß, P. Krüger, A. Mazur, and J. Pollmann, “Three-dimensional fermi surface determination by angle-resolved photoelectron spectroscopy,” Phys. Rev. B 63, 125104 (2001).
18. M. B. Nielsen, Z. Li, S. Lizzit, A. Goldoni, and P. Hofmann, “Bulk fermi surface mapping with high-energy angle-resolved photoemission,” Journal of Physics: Condensed Matter 15, 6919–6930 (2003).
19. V. N. Strocov, M. Kobayashi, X. Wang, L. L. Lev, J. Krempasky, V. V. Rogalev, T. Schmitt, C. Canelierri, and M. L. Reine-Schmitt, “Soft-x-ray arpes at the swiss light source: From 3d materials to buried interfaces and impurities,” Synchrotron Radiation News 27, 31–40 (2014). https://doi.org/10.1080/08940886.2014.889550.
20. S. Moser, “An experimentalist’s guide to the matrix element in angle resolved photoemission,” Journal of Electron Spectroscopy and Related Phenomena 214, 29–52 (2017).
21. D. Kutnyakhov, R. P. Xian, M. Dendzik, M. Heber, F. Pressacco, S. Y. Aug losttson, W. Wenthaus, H. Meyer, S. Gieschen, G. Mercurio, A. Benz, K. Bühman, S. Däster, R. Gort, D. Curcio, K. Volckert, M. Bianchi, C. Sanders, A. J. Miwa, S. Ustrup, A. Oelsner, C. Tusche, Y.-J. Chen, D. Vasilyev, K. Medjani k, G. Brenner, S. Dziarzhtyski, H. Redlin, B. Manschwet t, S. Dong, J. Hauer, L. Rettig, F. Diekmann, K. Rossnagel, J. Demsar, H.-J. Elmers, P. Hofmann, R. Ernstorfer, G. Schönhense, Y. Acremann, and W. Hurth, “Time- and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser,” Review of Scientific Instruments 91, 013109 (2020). https://doi.org/10.1063/5.0006531.
22. M. Keunecke, C. Mollers, D. Schmitt, H. Nolte, G. S. M. Jansen, M. Reutzel, M. Guterler, G. Halasi, D. Steil, S. Steil, and S. Mathias, “Time-resolved momentum microscopy with a 1 mhz high-harmonic extreme ultraviolet beamline,” Review of Scientific Instruments 91, 063905 (2020). https://doi.org/10.1063/5.0006531.
23. F. Schmitt, P. S. Kirchmann, U. Bovensiepen, R. G. Moore, L. Ret tig, M. Kre nzi, J.-H. Chu, N. Ru, L. Perfetti, D. H. Lu, M. Wolf, I. R. Fisher, and Z.-X. Shen, “Transient electronic structure and melting of a charge density wave in bct-csub3b,” Science 321, 1649–1652 (2008). https://www.science.org doi/10.1126/science.1180778.
24. T. Rohwer, S. Hellmann, M. Wiesenmayer, C. Sohrt, A. Stange, B. Slomski, A. Carr, Y. Liu, L. M. Avila, M. Kallàne, S. Mathias, K. Rossnagel, and M. Bauer, “Collapse of long-range charge order tracked by time-resolved photoemission at high momenta,” Nature 471, 490–493 (2011).
25. C. L. Smallwood, J. P. Hinton, C. Joziwak, W. Zhang, J. D. Koralek, H. Eisaki, D.-H. Lee, J. Orenstein, and A. Lanzara, “Tracking cooper pairs in a cuprate superconductor by ultrafast angle-resolved photoemission,” Science 336, 1137–1139 (2012).
26. I. Gierz, J. C. Petersen, M. Mittrano, C. Cacho, I. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cava lier, “Snapshots of nonequilibrium dirac carrier distributions in graphene,” Nature Materials 12 1119–1124 (2013).
39. Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, “Observation of floquet-bloch states on the surface of a topological insulator,” *Science* **342**, 453–457 (2013) https://www.science.org/doi/pdf/10.1126/science.1239834

40. F. Mahmood, C.-K. Chan, Z. Alipishchev, D. Gardner, Y. Lee, P. A. Lee, and N. Gedik, “Selective scattering between floquet-bloch and volkov states in a topological insulator,” *Nature Physics* **12**, 306–310 (2016)

41. C. W. Nicholson, A. Lucke, W. G. Schmidt, M. Puppin, L. Rettig, R. Ernstorfer, and M. Wolf, “Beyond the molecular movie: Dynamics of bands and bonds during a photoinduced phase transition,” *Science* **362**, 821–825 (2018) https://www.science.org/doi/pdf/10.1126/science.aar1418

42. M. X. Na, A. K. Mills, F. Boschini, M. Michiardi, B. Nosarewski, R. P. Day, E. Razzoli, A. Sheyerman, M. Schneider, G. Levy, S. Zhdanovich, T. F. Devereaux, A. F. Kemper, D. J. Jones, and A. Damascelli, “Direct determination of mode-projected electron-phonon coupling in the time domain,” *Science* **366**, 1231–1236 (2019) https://www.science.org/doi/pdf/10.1126/science.aaw1662

43. R. Wallauer, M. Raths, K. Stallburg, L. Münster, D. Brandstetter, X. Yang, J. Güde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, S. Zhdanovich, T. P. Devereaux, A. F. Kemper, D. J. Jones, and M. X. Na, A. K. Mills, F. Boschini, M. Michiardi, B. Nosarewski, R. P. Day, E. Razzoli, A. Sheyerman, M. Schneider, G. Levy, S. Zhdanovich, T. F. Devereaux, A. F. Kemper, D. J. Jones, and A. Damascelli, “Direct determination of mode-projected electron-phonon coupling in the time domain,” *Science* **366**, 1231–1236 (2019) https://www.science.org/doi/pdf/10.1126/science.aaw1662

44. A. Gauthier, J. A. Sobota, N. Gauthier, K.-J. Xu, H. Pfau, C. R. Rotundu, J. Güdde, P. Puschnig, S. Soubatch, C. Kumpf, F. C. Bocquet, F. S. Tautz, https://www.science.org/doi/pdf/10.1126/science.aaw1662

45. E. J. Sie, T. Rohwer, C. Lee, and N. Gedik, “Time-resolved XUV arpes with tunable 24–33 ev laser pulses at 30 mev resolution,” *Nature Communications* **10**, 3535– (2019)

46. A. K. Mills, S. Zhdanovich, M. X. Na, F. Boschini, E. Razzoli, M. Michiardi, A. Sheyerman, M. Schneider, T. J. Hammond, V. Süss, C. Felsner, A. Damascelli, and D. J. Jones, “Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy,” *Review of Scientific Instruments* **90**, 083001 (2019) https://doi.org/10.1063/1.5090507

47. Y. Liu, J. E. Beeer, M. M. Hosen, G. Dhakal, C. Sims, F. Kabir, M. B. Etienne, K. Dimitri, S. Regmi, Y. Liu, A. K. Pathak, D. Kaczorowski, M. Neu, and M. Chini, “Extreme ultraviolet time- and angle-resolved photoemission spectroscopy with 21.5 mev resolution using high-order harmonic generation from a turn-key yb:kgw amplifier,” *Review of Scientific Instruments* **91**, 013102 (2020) https://doi.org/10.1063/1.5121425

48. E. J. Sie, T. Rohwer, C. Lee, and N. Gedik, “Time-resolved XUV arpes with tunable 24–33 ev laser pulses at 30 mev resolution,” *Nature Communications* **10**, 3535– (2019)

49. A. K. Mills, S. Zhdanovich, M. X. Na, F. Boschini, E. Razzoli, M. Michiardi, A. Sheyerman, M. Schneider, T. J. Hammond, V. Süss, C. Felsner, A. Damascelli, and D. J. Jones, “Cavity-enhanced high harmonic generation for extreme ultraviolet time- and angle-resolved photoemission spectroscopy,” *Review of Scientific Instruments* **90**, 083001 (2019) https://doi.org/10.1063/1.5090507
of the vacuum space-charge effect in fs-photoemission by a retarding electrostatic front lens.” Review of Scientific Instruments 92, 053703 (2021) https://doi.org/10.1063/5.0046567
38 D. L. Wood and K. Nassau, “Refractive index of cubic zirconia stabilized with yttria,” Appl. Opt. 21, 2978–2981 (1982).
39 M. N. Polyanskyi, “Refractive index database,” https://refractiveindex.info/?shelf=main&book=ZrO2&page=Wood accessed on 2022-05-24.
40 B. Henke, E. Gullikson, and J. Davis, “X-ray interactions: Photoabsorption, scattering, transmission, and reflection at $\varepsilon = 50$–30,000 ev, z = 1–92,” Atomic Data and Nuclear Data Tables 54, 181–342 (1993)
41 N. C. Gerken, XIV Multiphoton Excitation and Charged State Dynamics in Small Quantum Systems (Verlag Dr. Hut, 2014).
42 N. Gerken, S. Klumpp, A. A. Sorokin, K. Tiedtke, M. Richter, V. Bürk, K. Mertens, I. Pletikosić, M. Petrović, P. Pervan, M. Milun, A. T. N’Diaye, J. Fujii, and I. Vobornik, “Graphene on ir(111) to 30 keV range,” Surface and Interface Analysis 43, 689–713 (2011) https://onlinelibrary.wiley.com/doi/pdf/10.1002/sia.3522.
43 H. J. Elmers, D. Kutnyakov, S. V. Chernov, K. Medjanik, O. Fedchenko, A. Zaporozenchko-Zymakova, M. Ellguth, C. Tusche, J. Viehhaus, and G. Schönhense, “Hosting of surface states in spin–orbit induced projected bulk band gaps of w(110) and ir(111),” Journal of Physics: Condensed Matter 29, 255001 (2017).
44 N. Haag, D. Lüftner, F. Haag, J. Seidel, L. L. Kelly, G. Zamborlini, M. Jugovac, V. Feyer, M. Aeschlimann, P. Puschning, M. Cincotti, and B. Stadtmüller, “Signatures of an atomic crystal in the band structure of a c60 thin film,” Phys. Rev. B 101, 165422 (2020)
45 K. Baumgärtner, M. Reuner, C. Metzger, D. Kutnyakov, M. Heber, F. Pressacco, C.-H. Min, T. R. F. Peixoto, M. Reiser, C. Kim, W. Lu, R. Shayduk, M. Izquierdo, G. Brenner, F. Roth, A. Schöll, S. Molodtsov, W. Wurth, F. Reinert, A. Madsen, D. Popova-Gorelova, and M. Scholz, “Ultrafast orbital tomography of a pentacene film using time-resolved momentum microscopy at a femtosecond scale,” [Nature Communications 13, 2741 (2022)]
46 S. Hellmann, M. Beye, C. Solfré, T. Köhrer, F. Sorgenfrei, H. Redlin, M. Kalläne, M. Marczynski-Bühlow, F. Hennies, M. Bauer, A. Föhlisch, L. Kipp, W. Wurth, and K. Rossnagel, “Ultrafast melting of a charge-density wave in the mott insulator IrFe_2AsS_2,” Phys. Rev. Lett. 115, 187401 (2010).
47 M. Dendzik, R. P. Xian, E. Perfetto, D. Sangalli, D. Kutnyakov, S. Dong, S. Beaulieu, T. Pinelli, F. Pressacco, D. Curcio, S. Y. Agustsson, M. Heber, J. Hauer, W. Wurth, G. Brenner, Y. Acremann, P. Hofmann, M. Wolf, A. Marin, G. Stefanucci, L. Rettig, and R. Ernstorfer, “Observation of an excitonic mott transition through ultrafast core-cum-conduction photoemission spectroscopy,” Phys. Rev. Lett. 125, 096401 (2020).
48 F. Pressacco, D. Sangalli, V. Uhlif, D. Kutnyakov, J. A. Arregi, S. Y. Agustsson, G. Brenner, H. Redlin, M. Heber, D. Vasilyev, J. Demsar, G. Schönhense, M. Gatt, A. Marin, W. Wurth, and F. Sirota, “Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics,” Nature Communications 12, 5088 (2021).
49 D. Curcio, S. Pakdel, K. Volckraut, J. A. Miwa, S. Ulstrup, N. Lanatà, M. Bianchi, D. Kutnyakov, F. Pressacco, G. Brenner, S. Dziarzhynski, H. Redlin, S. Y. Agustsson, K. Medjanik, D. Vasilyev, H.-J. Elmers, G. Schönhense, C. Tusche, Y.-J. Chen, F. Speck, T. Seyller, K. Bühlmann, R. Gott, F. Diekmann, K. Rossnagel, Y. Acremann, J. Demsar, W. Wurtz, D. Lizitiz, L. Bignardi, F. Laczog, S. Lizitiz, C. E. Sanders, and P. Hofmann, “Ultrafast electronic linewidth broadening in the c 1 s core level of graphene,” Phys. Rev. B 104, L161101 (2021)