Constraints on ultralight scalar bosons within black hole spin measurements from LIGO-Virgo’s GWTC-2

Ken K. Y. Ng,1,* Salvatore Vitale,1 Otto A. Hannuksela,2,3 and Tjonnie G. F. Li4

1LIGO Lab, Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139, USA
2Nikhef – National Institute for Subatomic Physics, Science Park, 1098 XG Amsterdam, The Netherlands
3Department of Physics, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
4Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

(Dated: November 13, 2020)

Clouds of ultralight bosons - such as axions - can form around a rapidly spinning black hole, if the black hole radius is comparable to the bosons' wavelength. The cloud rapidly extracts angular momentum from the black hole, and reduces it to a characteristic value that depends on the boson's mass as well as on the black hole mass and spin. Therefore, a measurement of a black hole mass and spin can be used to reveal or exclude the existence of such bosons. Using the black holes released by LIGO and Virgo in their GWTC-2, we perform a simultaneous measurement of the black hole spin distribution at formation and the mass of the scalar boson. We find that the data strongly disfavors the existence of scalar bosons in the mass range between 1.3×10^{-13} eV and 2.7×10^{-13} eV for a decay constant $f_a \gtrsim 10^{14}$ GeV. The statistical evidence is mostly driven by the two binary black holes systems GW190412 and GW190517, which host rapidly spinning black holes. The region where bosons are excluded narrows down if these two systems merged shortly ($\sim 10^6$ years) after the black holes formed.

INTRODUCTION

Ultralight bosons are hypothetical particles with masses smaller than $\sim 10^{-11}$ eV. Their existence, if verified, would help solving open problems in particle physics and cosmology [1–8]. In fact, the name ultralight boson is commonly used to refer to multiple possible candidates, including fuzzy dark matter [8–10], dilatons [11–13] and axions [1–4, 14, 15]. Searches for ultralight bosons using table-top experiments as well as astrophysical observations have been ongoing for years, covering decades of boson mass [16–43]. To date, multiple constraints have been reported from non-detections [44], together with a potential axion candidate from the XENON1T experiment [38]. Gravitational-wave (GW) measurements of black holes in binaries (BBHs) provide a unique opportunity to detect or rule out the existence of these ultralight bosons in a mass range which is commensurate to the black holes masses and not accessible by lab-based experiment. If such bosons exist and if their Compton wavelengths are comparable to the radius of a rapidly spinning black hole, boson superradiance may take place and generate a hydrogen-atom-like cloud around the spinning black hole [6, 45–49]. The cloud efficiently spins down the black hole to a characteristic critical spin, which depends on the boson mass, through a process called superradiant instability [6, 48–50]. Accessing tens or hundreds of BBHs thus allows for statistical tests on the existence of ultralight bosons, in a boson mass range that depends on the mass range of the population of black holes being probed [6, 31–35, 37, 48, 49, 51–61]. For example, the stellar mass (~ 5 to ~ 100 M$_\odot$) black holes that have been discovered by the ground-based GW detectors LIGO [62] and Virgo [63] can be used to probe boson masses in the range 3×10^{-14} eV $\lesssim \mu_s \lesssim 10^{-11}$ eV [32]. Supermassive black holes, such as M87, can be used to probe much lighter bosons, with $\mu_s \sim 10^{-21}$ eV [39]. Roughly speaking, if a dearth of highly spinning black holes is observed for some range of black hole masses, that could be suggestive of the existence of ultralight bosons which have spun down the black holes. Conversely, the discovery of highly spinning black holes could rule out the existence of boson in an appropriate mass range. This simple idea is made more complicated by a few factors. First, one must take into account that some black holes may be slowly spinning when they form. The small spin measurements inferred from the BBH mergers observed by LIGO/Virgo could be due to either the superradiant growth of the boson cloud or an astrophysical distribution favoring small spins at the formation. Ref. [64] presented a Bayesian analysis where both the distribution of black hole spins at formation and the mass of the boson are considered, thus properly accounting for their correlation. Using the 10 black hole binaries detected by LIGO and Virgo in their first two observation runs [65], Ref [64] showed that one could not confirm nor rule out the existence of scalar bosons in the mass range 10^{-13} eV $\leq \mu_s \leq 10^{-12}$ eV. That null result was driven by the limited black hole sample size and by their small spins. In this Letter we repeat the analysis of Ref. [64] by including the 35 new binary black holes reported by the LIGO-Virgo-Kagra
collaboration at high significance in Ref. [67]. We find the probability a scalar boson with masses in the range $1.3 \times 10^{-13} \text{eV} \leq \mu_s \leq 2.7 \times 10^{-13} \text{eV}$ to be smaller than 0.01%. The evidence against the existence of bosons with this mass arises mainly from two highly spinning black holes found in the new data set, namely GW190412 and GW190517.

CONSTRAINTS FROM GWTC-2

We apply the Bayesian hierarchical method presented in Ref. [64] to all of the black holes reported by the LIGO/Virgo collaboration in GWTC-1 and GWTC-2 [65, 67–69]. A detailed description of the method can be found in Ref. [64] and here we only summarize the main points. The main outcome of this analysis is a joint posterior for the distribution of the boson mass and of the distribution of black hole spins at formation. It is important to take into account the distribution of spins at formation, since the superradiant extraction of the spin angular momentum depends on the black hole properties and the boson mass. Therefore, the fraction of black holes in the population that can undergo superradiance depends on the spin distribution at formation.

Another important factor to assess if black holes will be spun down by boson clouds is the time interval between the formation of the black hole and the merger: if a black hole merges too quickly after being born it might not have the time to undergo superradiance, even if bosons of the appropriate mass exist. As in Ref. [64], we assume an inspiral timescale of 10 Myr from the time the binary black hole system is formed to the time the black holes merge. This timescale is a conservative lower bound in light of population-synthesis studies [70–81]. Since the inspiral timescale is usually much larger than the time it takes for a giant star to form a black hole, we assume that the two black holes in the binary are born simultaneously, and thus that the inspiral timescale is a good probe for the lifetime of the individual black holes in the binary.

For the priors on black hole masses, we fix the BBH mass distribution to a power law for the mass of primary (heavier) black hole $M_1^{1.25}$ within $[5, 75] M_\odot$ and a uniform distribution for the mass ratio $0.125 < M_2/M_1 < 1$, consistent with the latest inferred population properties reported by the LIGO/Virgo collaboration [66].

Figure 1 shows the marginalized posterior distribution for the boson mass inferred from the full BBH catalog (blue solid line). A region with vanishing posterior support is clearly visible between $1.3 \times 10^{-13} \text{eV}$ and $2.7 \times 10^{-13} \text{eV}$: less than 0.01% of the overall posterior is contained in this region, suggesting that the GWTC data strongly disfavour the existence of boson within this narrow mass range. Since large black hole spins at merger are at odds with the formation of axions clouds, this exclusion region must be caused by highly spinning black holes in the catalog. Indeed, there are two primary black holes in GWTC-2 which are consistent with having large spin values: GW190412 [82] and GW190517. To check if the drop of posterior support evident in Fig. 1 is caused by these two systems, we repeat the analysis by excluding them. This is shown by the solid orange line in Fig. 1: indeed the posterior of the boson mass using all sources but GW190412 and GW190517 does not show the same feature, and is instead much closer to the Bayesian prior we used (black dashed line).

To better understand how the spin measurements of GW190412 and GW190517 help exclude the existence of bosons, we overlay the joint mass-spin posteriors of the primary black hole in these two systems on the exclusion region generated by a boson with $\mu_s = 2 \times 10^{-13} \text{eV}$, Fig. 2. The black solid line indicates the maximum post-superradiance spin that a black hole could have as a function of its mass if a boson of mass $\mu_s = 2 \times 10^{-13} \text{eV}$ existed: values of spins above the line (i.e in the gray region) are forbidden.

We see that both of the primary black hole mass-spin posteriors have large overlaps with the exclusion region. In particular, the 95% credible contour of GW190517 is entirely contained in the exclusion region for $\mu_s = 2 \times 10^{-13} \text{eV}$, meaning that the primary black hole of GW190517 is inconsistent with having been spun down by...
the boson of this mass, hence heavily down-weighting the existence of boson with mass $\mu_s = 2 \times 10^{-13}$ eV. Different boson masses result in different exclusion regions: for example in Fig. 2 we report the exclusion regions for a boson with mass $\mu_s = 10^{-12}$ eV with a black dashed-dotted line. In this case, there is a non-negligible fraction of the each posterior ($\sim 50\%$ and $\sim 5\%$ for GW190412 and GW190517, respectively) lying outside the exclusion region of $\mu_s = 10^{-12}$ eV. This is why Fig. 1 shows that the posterior for the boson mass is non-zero, in fact positive, for this value of the boson mass. To quantify the Bayesian significance of the excess around 10^{-12} eV, we repeat the model selection analysis described in Ref. [64] and calculate the Bayes factor between the “boson model” and “astrophysical model”. Using a log-uniform prior on μ_s between 3×10^{-12} eV and 10^{-11} eV (that is, above the gap visible in Fig. 1), we find a Bayes factor of 2.39 ± 0.16 in favor of the boson model. While positive, this is much smaller than the threshold usually invoked for a strong statistical claim, i.e., ≥ 100 [83]. Hence, we cannot draw any conclusions about the existence of bosons with mass $\mu_s > 2.7 \times 10^{-13}$ eV. Using the full prior range $[3 \times 10^{-13}, 10^{-11}]$ eV, we find the Bayes factor favoring the existence of boson is 1.95 ± 0.15.

The appearance of a posterior excess around 10^{-12} eV in Fig. 1 can be explained as follows. If a boson of this mass existed, one would thus expect clustering of black hole spins along the critical spin curve (e.g. the solid and dot-dashed lines in Fig. 2), as well as a dearth of spins above the line. The exact distribution depends on the boson mass, which select the critical spin curve, and the spin distribution at formation, which determines the amount of black holes that can undergo superradiant spin-down. Therefore, as mentioned above, the posteriors on the spin distribution at formation and the boson mass are correlated (cfr. Ref. [64]). The peak at 10^{-12} eV can thus be explained because for that value of the boson mass one would obtain black hole spins at merger which are similar (within a rather large uncertainty) to what is measured in the BBH dataset without invoking the existence of a boson. With the current dataset, the algorithm cannot distinguish between a situation where black hole spins at formation are small and bosonic clouds do not form and one where black holes spins at formation can be large, and a boson with mass 10^{-12} eV exists and spins the black holes down.

Owing to the lack of extensive numerical simulations on boson self-interaction, we do not allow for that possibility in our boson model. Self-interaction would introduces nonlinear effect such as level-mixing and “Bosenova” [48, 84, 85], and, if sufficiently large, it would stop the cloud growth before the saturation of superradiance (i.e. before the black hole spin has reached the critical spin). As a result, the postsuperradiance spin might not decrease to the critical spin and be consistent with a large spin measurement. The extent of the self-interaction is inversely proportional to the decay constant of the boson, f_a, and nonlinear effects becomes significant when the boson field reaches a maximum amplitude which depends on the black hole mass, the boson mass and f_a [84, 85]. Thus, we may use the mass measurement of the black holes that yield the μ_s constraint to estimate the value of f_a above which the self-interaction is negligible [48, 85]. Taking for example GW190517 (GW190412 has a similar primary mass and would thus yield a similar number) – i.e. $M_1 \sim 35 M_\odot$ – and using the nonlinear condition in Eq. (7) of Ref. [85] with a typical energy for the boson cloud ($\sim 10\%$ of the host black hole mass), we obtain that our analysis is certainly valid for $f_a \gtrsim 10^{14}$ GeV, which roughly includes the Grand-Unification-Theories energy scale for the constrained boson mass $\mu_s \approx 2 \times 10^{-13}$ eV [48].

DISCUSSION

In this Letter, we have shown that the BBHs observed by LIGO/Virgo strongly disfavour the existence of scalar ultralight bosons with masses in the range 1.3×10^{-13} eV $\leq \mu_s \leq 2.7 \times 10^{-13}$ eV. The statistical evidence is entirely contributed by the two highly spinning primaries in the systems GW190412 and GW190517.

Our method consistently accounts for the uncertainty of the black hole spin distribution at formation, which is marginalized to obtain a posterior on the boson mass, Fig. 1. However, caution is required in interpreting the results, since there are astrophysical scenarios that may explain the observed data without ruling out the existence of a boson in that mass range.

The first caveat is related to the timescale between the formation of the black hole(s) and the merger of the binary, which has to be larger than superradiant timescale.
for a boson cloud to form and spin down the black hole in the first place. As mentioned above, we assumed that the black holes lifetime is the same as the inspiral timescale, and took that to be 10 Myr, as suggested by simulation studies [70–81]. This choice may not be valid if either of the GW190412 or GW190517 binaries was formed with an extremely high eccentricity $1 - e \lesssim 0.01$ shortly after the birth of the component black holes, such that their inspiral timescales are reduced by few orders of magnitude [86, 87]. In this scenario, there would not be time for black holes to lose their spin to superradiance, and they may retain large spins even if a boson exists, reducing the significance of our constraints. Production of extremely eccentric BBHs is possible in dense stellar clusters or active galactic nuclei (AGN), but these channels are expected to have low merger rates [88–90]. The AGN environment may also enhance the production of hierarchical binaries, i.e., binaries made of previous merger remnants, that merge in a very short timescale $\sim 10^5$ yr [91, 92]. Assuming this shorter timescale as the black hole lifetime, we find that the range of boson masses which are excluded narrows to 2.2×10^{-13} eV $\leq \mu_s \leq 2.7 \times 10^{-13}$ eV.

The second caveat is related to the possible gas accretion onto the black holes, which we have ignored in this work. The black hole spin gradually increases when the materials of the rotating accretion disk keep falling into the black hole. The evolution of the black hole spin thus depends on the how significant the accretion can be. If the spin-up rate due to accretion is much faster than the spin-down rate due to superradiance, then the black holes may end up having a large spin, inside the exclusion region, even if bosons exist. In the opposite case, superradiant spin-down dominates and the black holes should still ends life with a spin around the critical spin curve. For the stellar mass black holes relevant for ground-based GW detectors, even an accretion rate at the Eddington limit is expected to be much smaller than the typical superradiant rate [32, 41, 49]. Therefore, our results are still robust unless the accretion rate is indeed drastically and continuously super-Eddington throughout the black hole lifetime. This is unlikely to be the case even in gas rich astrophysical environments [92–94], but not strictly impossible.

The gravitational potential of the companion in a BBH may alter the superradiant growth due to tidal interaction. However, as discussed in Ref. [64], the tidal disruption excites the in-falling modes with opposite angular momentum and is likely to enhance the spin-down of the host black hole [57, 59, 60, 95]. We also note that the mass loss due to superradiance is ignored, which contributes to a few percent overestimation of the boson mass constraints [33, 64].

ACKNOWLEDGEMENTS

We thank Juan Calderon Bustillo, Will Far, Hartmut Grote, Max Isi and Lilli Sun for valuable discussions and suggestions. KKYN and SV acknowledge support of the National Science Foundation through the NSF award PHY-1836814. KKYN and SV are members of the LIGO Laboratory. LIGO was constructed by the California Institute of Technology and Massachusetts Institute of Technology with funding from the National Science Foundation and operates under cooperative agreement PHY-1764464. OAH is supported by the research program of the Netherlands Organization for Scientific Research (NWO). TGFL was partially supported by grants from the Research Grants Council of Hong Kong (Project No. CUHK14306218, CUHK14310816 and CUHK24304317), Research Committee of the Chinese University of Hong Kong and the Croucher Foundation in Hong Kong. The authors are grateful for computational resources provided by the LIGO Lab and supported by the National Science Foundation Grants PHY-0757058 and PHY-0823459. This research has made use of data, software and/or web tools obtained from the Gravitational Wave Open Science Center (https://www.gw-openscience.org), a service of LIGO Laboratory, the LIGO Scientific Collaboration and the Virgo Collaboration.

* kenkyng@mit.edu

[1] R. D. Peccei and H. R. Quinn, CP conservation in the presence of pseudoparticles, Phys. Rev. Lett. 38, 1440 (1977).
[2] S. Weinberg, A new light boson?, Phys. Rev. Lett. 40, 223 (1978).
[3] F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40, 279 (1978).
[4] R. D. Peccei, The strong cp problem and axions, in Axions (Springer, 2008) pp. 3–17.
[5] G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405, 279 (2005), arXiv:0404175 [hep-ph].
[6] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, String Axiverse, Phys. Rev. D81, 123530 (2010), arXiv:0905.4720 [hep-th].
[7] D. J. E. Marsh, Axion Cosmology, Phys. Rept. 643, 1 (2016), arXiv:1510.07633 [astro-ph.CO].
[8] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D95, 043541 (2017), arXiv:1610.08297 [astro-ph.CO].
[9] W. Hu, R. Barkana, and A. Gruzinov, Fuzzy cold dark matter: the wave properties of ultralight particles, Physical Review Letters 85, 1158 (2000).
[10] H.-Y. Schive, T. Chiuhe, and T. Broadhurst, Cosmic Structure as the Quantum Interference of a Coherent Dark Wave, Nature Phys. 10, 496 (2014), arXiv:1406.6586 [astro-ph.GA].
[11] S. Dimopoulos and G. F. Giudice, Macroscopic forces from supersymmetry, *Physics Letters B* **379**, 105 (1996), arXiv:hep-ph/9602350 [hep-ph].

[12] T. Damour and J. F. Donoghue, Equivalence principle violations and couplings of a light dilaton, *Phys. Rev. D* **82**, 084033 (2010).

[13] A. Arvanitaki, J. Huang, and K. Van Tilburg, Searching for dilaton dark matter with atomic clocks, *Phys. Rev. D* **91**, 015015 (2015), arXiv:1405.2925 [hep-ph].

[14] R. D. Peccei and H. R. Quinn, Constraints imposed by CP conservation in the presence of pseudoparticles, *Phys. Rev. D* **16**, 1791 (1977).

[15] V. Cardoso, O. J. C. Dias, G. S. Hartnett, M. Middleton, P. Pani, and J. E. Santos, Constraining the mass of dark photons and axion-like particles through black-hole superradiance, *JCAP* **1803** (03), 043, arXiv:1801.01420 [gr-qc].

[16] A. Wagner et al., Search for hidden sector photons with the adnx detector, *Phys. Rev. Lett.* **105**, 171801 (2010).

[17] S. J. Asztalos et al., Squid-based microwave cavity search for dark-matter axions, *Phys. Rev. Lett.* **104**, 041301 (2010).

[18] G. Rybka et al., Search for chameeleon scalar fields with the axion dark matter experiment, *Phys. Rev. Lett.* **105**, 051801 (2010).

[19] M. Arik, S. Aune, K. Barth, A. Belov, S. Borghi, A. Arvanitaki, J. Huang, and K. Van Tilburg, Searching for violations and couplings of a light dilaton, *Phys. Rev. D* **16**, 1791 (1977).

[20] C. Abe et al., Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields, *Phys. Rev. X* **7**, 041034 (2017), arXiv:1708.06367 [hep-ph].

[21] R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin, A. Klein, and P. Pani, Stochastic and resolvable gravitational waves from ultralight bosons, *Phys. Rev. Lett.* **119**, 131101 (2017), arXiv:1706.05097 [gr-qc].

[22] R. Brito, S. Ghosh, E. Barausse, E. Berti, V. Cardoso, I. Dvorkin, A. Klein, and P. Pani, Gravitational wave searches for ultralight bosons with LIGO and LISA, *Phys. Rev. D* **99**, 064050 (2019), arXiv:1706.06311 [gr-qc].

[23] M. Isi, L. Sun, R. Brito, and A. Melatos, Directed searches for gravitational waves from ultralight bosons, *Phys. Rev. D* **99**, 049901 (2019), arXiv:1810.03812 [gr-qc].

[24] O. A. Hannuksela, K. W. Wong, R. Brito, E. Berti, and T. G. Li, Probing the existence of ultralight bosons with a single gravitational-wave measurement, *Nature Astron.* **3**, 447 (2019), arXiv:1804.09659 [astro-ph.HE].

[25] L. Tsukada, T. Callister, A. Matas, and P. Meyers, First search for a stochastic gravitational-wave background from ultralight bosons, *Phys. Rev. D* **99**, 103015 (2019), arXiv:1812.09622 [astro-ph.HE].

[26] H. Grote and Y. Stadnik, Novel signatures of dark matter in laser-interferometric gravitational-wave detectors, *Phys. Rev. Res.* **1**, 033187 (2019), arXiv:1906.06193 [astro-ph.IM].

[27] N. Fernandez, A. Ghalsasi, and S. Profumo, Superradiance and the Spins of Black Holes from LIGO and X-ray binaries, arXiv e-prints, arXiv:1911.07862 (2019), arXiv:1911.07862 [hep-ph].

[28] E. Aprile et al. (XENON), Excess electronic recoil events in XENON1T, *Phys. Rev. D* **102**, 072004 (2020), arXiv:2006.09721 [hep-ex].

[29] H. Davoudiasl and P. B. Denton, Ultralight Boson Dark Matter and Event Horizon Telescope Observations of M87*, *Phys. Rev. Lett.* **123**, 021102 (2019), arXiv:1904.09242 [astro-ph.CO].

[30] P. V. Cunha, C. A. Herdeiro, and E. Radu, EHT constraint on the ultralight scalar hair of the M87 supermassive black hole, *Universe* **5**, 220 (2019), arXiv:1909.08039 [gr-qc].

[31] L. Sun, R. Brito, and M. Isi, Search for ultralight bosons in Cygnus X-1 with Advanced LIGO, *Phys. Rev. D* **101**, 063020 (2020), arXiv:1909.11267 [gr-qc].

[32] D. Martinov and H. Miao, Quantum-enhanced interferometry for axion searches, *Phys. Rev. D* **101**, 095034 (2020), arXiv:1911.00429 [physics.ins-det].

[33] J. Calderón Bustillo, N. Sanchis-Gual, A. Torres-Forné, J. A. Font, A. Vajpeyi, R. Smith, C. Herdeiro, E. Radu, and S. H. Leong, The (ultra) light in the dark: A potential vector boson of 8.7×10^{-13} eV from GW190521, Arxiv e-print (2020), arXiv:2009.05376 [gr-qc].
[80] M. Dominik, K. Belczynski, C. Fryer, D. E. Holz, E. Berti, T. Bulik, I. Mandel, and R. O'Shaughnessy, Double compact objects. ii. cosmological merger rates, The Astrophysical Journal 779, 72 (2013).
[81] S. S. Bavera, T. Fragos, Y. Qin, E. Zapartas, C. J. Neijssel, I. Mandel, A. Batta, S. M. Gaebel, C. Kimball, and S. Stevenson, The origin of spin in binary black holes: Predicting the distributions of the main observables of Advanced LIGO, Astron. Astrophys. 779, A97 (2020), arXiv:1906.12257 [astro-ph.HE].
[82] R. Abbott et al. (LIGO Scientific, Virgo), GW190412: Observation of a Binary-Black-Hole Coalescence with Asymmetric Masses, Phys. Rev. D 102, 043015 (2020), arXiv:2004.08342 [astro-ph.HE].
[83] A. Ly, J. Verhagen, and E.-J. Wagenmakers, Harold jeffreys's default bayes factor hypothesis tests: Explanation, extension, and application in psychology, Journal of Mathematical Psychology 72, 19 (2016).
[84] H. Yoshino and H. Kodama, Bosonova collapse of axion cloud around a rotating black hole, Prog. Theor. Phys. 128, 153 (2012), arXiv:1203.5070 [gr-qc].
[85] H. Yoshino and H. Kodama, Probing the string axiserve by gravitational waves from Cygnus X-1, PTEP 2015, 061E01 (2015), arXiv:1407.2030 [gr-qc].
[86] P. C. Peters, Gravitational Radiation and the Motion of Two Point Masses, Phys. Rev. 136, B1224 (1964).
[87] L.-q. Wen and J. R. Gair, Detecting extreme mass ratio inspirals with LISA using time-frequency methods, Class. Quant. Grav. 22, S445 (2005), arXiv:gr-qc/0502100.
[88] C. L. Rodriguez, P. Amaro-Seoane, S. Chatterjee, K. Kremer, F. A. Rasio, J. Samsing, C. S. Ye, and M. Zevin, Post-Newtonian Dynamics in Dense Star Clusters: Formation, Masses, and Merger Rates of Highly-Eccentric Black Hole Binaries, Phys. Rev. D 98, 123005 (2018), arXiv:1811.04926 [astro-ph.HE].
[89] M. Gröbner, W. Ishibashi, S. Tiwari, M. Haney, and P. Jetzer, Binary black hole mergers in AGN accretion discs: gravitational wave rate density estimates, Astron. Astrophys. 638, A119 (2020), arXiv:2005.03571 [astro-ph.GA].
[90] J. Samsing, I. Bartos, D. D'Orazio, Z. Haiman, B. Kocsis, N. Leigh, B. Liu, M. Pessah, and H. Tagawa, Active Galactic Nuclei as Factories for Eccentric Black Hole Mergers, Arxiv e-print (2020), arXiv:2010.09765 [astro-ph.HE].
[91] I. Bartos, B. Kocsis, Z. Haiman, and S. Márka, Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei, Astrophys. J. 835, 165 (2017), arXiv:1602.03831 [astro-ph.HE].
[92] Y. Yang et al., Hierarchical Black Hole Mergers in Active Galactic Nuclei, Phys. Rev. Lett. 123, 181101 (2019), arXiv:1906.09281 [astro-ph.HE].
[93] S.-X. Yi and K. Cheng, Where Are the Electromagnetic-wave Counterparts of Stellar-mass Binary Black Hole Mergers?, Astrophys. J. Lett. 884, L12 (2019), arXiv:1909.08384 [astro-ph.HE].
[94] L. van Son, S. de Mink, F. Broekgaarden, M. Renzo, S. Justham, E. Laplace, J. Moran-Fraile, D. Hendriks, and R. Farmer, Polluting the pair-instability mass gap for binary black holes through super-Eddington accretion in isolated binaries, Astrophys. J. 897, 100 (2020), arXiv:2004.05187 [astro-ph.HE].
[95] G. Ficarra, P. Pani, and H. Witek, Impact of multiple modes on the black-hole superradiant instability, Phys. Rev. D 99, 104019 (2019), arXiv:1812.02758 [gr-qc].