Global dynamics of a family of 3-D Lotka–Volterra systems

A.C. Murzaa* and A.E. Teruelb

aIFISC, Institut de Física Interdisciplinaria i Sistemes Complexes (CSIC – UIB), Universitat de les Illes Balears, Crta. de Valldemossa km. 7.5, 07122 Palma de Mallorca, Spain; bDepartament de Matemàtiques i Informàtica, Universitat de les Illes Balears, Crta. de Valldemossa km. 7.5, 07122 Palma de Mallorca, Spain

(Received 21 July 2009; final version received 21 December 2009)

In this article, we analyse the flow of a family of three-dimensional Lotka–Volterra systems restricted to an invariant and bounded region. The behaviour of the flow in the interior of this region is simple: either every orbit is a periodic orbit or orbits move from one boundary to another. Nevertheless, the complete study of the limit sets in the boundary allows one to understand the bifurcations which take place in the region as a global bifurcation that we denote by focus-centre-focus bifurcation.

Keywords: Lotka–Volterra system; integrability; first integrals; flow description; limit sets; bifurcation set

AMS Subject Classifications: 34C23; 34C30; 34C15; 37G35

1. Introduction

Consider a closed chemical system composed of four coexisting chemical species denoted by \(X, Y, Z \) and \(V \), which represent four possible states of a macromolecule operating in a reaction network far from equilibrium. As discussed by Wyman [1], such a reaction can be modelled as a ‘turning wheel’ of one-step transitions of the macromolecule, which circulate in a closed reaction path involving the four possible states. The turning wheels have been proposed by Di Cera et al. [2] as a generic model for macromolecular autocatalytic interactions.

While Di Cera’s model considers unidirectional first-order interactions, Murza et al. [3] consider a closed sequence of chemical equilibria. In their approach the reaction rates are defined as functions of the time-dependent product concentrations, multiplied by their reaction rate constants. This type of reaction rates has been introduced in Wyman’s original paper [1].

Following the closed sequence of chemical equilibria in [3], the autocatalytic chemical reactions between \(X, Y, Z \) and \(V \) (Figure 1) are governed by the following 4-parameter family of nonlinear differential equations

\[
\begin{align*}
\dot{x} &= x(k_1y - k_4v), \\
\dot{y} &= y(k_2z - k_1x), \\
\dot{z} &= z(k_3v - k_2y), \\
\dot{v} &= v(k_4x - k_3z).
\end{align*}
\]

*Corresponding author. Email: amurza@ifisc.uib-csic.es

ISSN 1468–9367 print/ISSN 1468–9375 online
© 2010 Taylor & Francis
DOI: 10.1080/14689360903575196
http://www.informaworld.com
Functions $x(t)$, $y(t)$, $z(t)$ and $v(t)$ are concentrations at time t of the chemical species X, Y, Z, V, respectively. The parameters $k_i = k_i - k_i$ for $i = 1, 2, 3, 4$ are differences of pairs of reaction rate constants corresponding to each chemical equilibrium. It can be easily seen that system (1) is identical to Di Cera’s model restricted to $n = 4$, see equation (7) in [2]. In that work, Di Cera claims that this family exhibits self-sustained and conservative oscillations only when the parameter $\mathbf{k} = (k_1, k_2, k_3, k_4)$ is in the three-dimensional manifold $S = \{ \mathbf{k} \in \mathbb{R}^4 \setminus \{0\} : k_1 k_3 - k_2 k_4 = 0 \}$.

Assuming that the conservation of mass $x + y + z + v = 1$ applies to the macromolecular system (1), its kinetic behaviour is described by the three-dimensional system of polynomial differential equations

$$
\begin{align*}
\dot{x} &= x(k_1 y - k_4 (1-x-y-z)), \\
\dot{y} &= y(k_2 z - k_1 x), \\
\dot{z} &= z(-k_2 y + k_3 (1-x-y-z)),
\end{align*}
$$

restricted to the flow-invariant bounded region $T = \{ x \geq 0, y \geq 0, z \geq 0, x + y + z \leq 1 \}$.

The system (2) is a particular case of the class of three-dimensional Lotka–Volterra systems (LVS)

$$
\dot{x}_i = x_i \left(a_i + \sum_{j=1}^{3} b_{ij} x_j \right), \quad i = 1, 2, 3,
$$

which has been extensively studied starting with the pioneer works of Lotka [4] and Volterra [5]. These systems have multiple applications in biochemistry. For instance, enzyme kinetics [1], circadian clocks [6] and genetic networks [7,8] often produce sustained oscillations modelled with LVS.

Solutions of LVS cannot, in general, be written in terms of elementary functions. So that the search for invariant manifolds, first integrals or/and integrability conditions can be useful to the analysis of the flow. This approach has found increasing popularity over the last few years after the works of Christopher and Llibre [9–11], which are based on the Darboux’s theory of integrability, see for instance [12–14] and references therein.
Unfortunately, for systems of dimension greater than 2 the behaviour of the flow is not entirely known, even when the system is integrable. Of course, in the case of non-integrable LVS the lack of knowledge is higher and other tools are required. Some results concerning the existence of limit cycles for special parameter sets can be found in [15–18]. Additional results about the number of limit cycles which can appear after perturbation are presented in [19].

In this article, we deal with the global analysis of the flow of system (2) restricted to the three dimensional simplex T. Note that the boundary ∂T of the region T is invariant by the flow. This boundary is formed by the union of the following invariant subsets: the invariant faces $X=\{(0, y, z): y>0, \ z>0, \ y+z<1\}$, $Y=\{(x, 0, z): x>0, \ z>0, \ x+z<1\}$, $Z=\{(x, y, 0): x>0, \ y>0, \ x+y<1\}$ and $\Sigma=\{(x, y, z): x>0, \ y>0, \ z>0, \ x+y+z=1\}$; and the invariant edges $R_{yz}=\{(x, 0, 0): 0<x<1\}$, $R_{xz}=\{(0, y, 0): 0\leq y \leq 1\}$, $R_{xy}=\{(0, 0, z): 0<z<1\}$, $R_{px}=\{(0, y, 1-y): 0<y<1\}$, $R_{py}=\{(x, 0, 1-x): 0\leq x \leq 1\}$, and $R_{pz}=\{(x, 1-x, 0): 0<x<1\}$. We remark that the edges R_{xz} and R_{py} are closed segments formed by singular points.

In order to make the analysis easier, we consider the following subsets in the parameter space: $S^-=\{k \in \mathbb{R}^4: k_1k_3-k_2k_4<0\}$, $S^+=\{k \in \mathbb{R}^4: k_1k_3-k_2k_4>0\}$, $N\mathcal{Z}=\{k \in \mathbb{R}^4: k_1k_2k_3k_4\neq 0\}$ and $\mathcal{P}\mathcal{S}=\{k \in \mathbb{R}^4: k_1k_2>0, k_1k_3>0, k_1k_4>0\}$. We note that S^- and S^+ together with S (defined above) form a partition of the parameter space \mathbb{R}^4. We also note that the parameter set $\mathcal{P}\mathcal{S}$ is a subset of $N\mathcal{Z}$.

The main result of this article is summarized in the following theorem.

Theorem 1.1:

(a) Suppose that $k \in \mathcal{P}\mathcal{S} \cap S$.

(a-1) The open segment

$$R = \left\{ \left(\frac{k_3}{k_4}, \frac{k_4-(k_4+k_3)z}{k_4+k_1}, z \right) : 0 < z < \frac{k_4}{k_3+k_4} \right\}$$

is contained in the interior of T and every point in R is a singular point.

(a-2) Let p be a point contained in the interior of T but not in R. Then the orbit γ_p through the point p is a periodic orbit.

(a-3) Each of the two limit sets of every orbit in $Y \cup \Sigma$ is a singular point contained in the edge R_{py}. Moreover, given two orbits $\gamma_1 \subset Y$ and $\gamma_2 \subset \Sigma$ such that $\omega(\gamma_1)=\alpha(\gamma_2)$, then $\omega(\gamma_2)=\alpha(\gamma_1)$.

(a-4) Each of the two limit sets of every orbit in $X \cup Z$ is a singular point contained in the edge R_{xz}. Moreover, given two orbits $\gamma_1 \subset X$ and $\gamma_2 \subset Z$ such that $\omega(\gamma_1)=\alpha(\gamma_2)$, then $\omega(\gamma_2)=\alpha(\gamma_1)$.

(b) Suppose that $k \notin \mathcal{P}\mathcal{S} \cap S$ and $k \neq 0$. The limit sets of every orbit in T are contained in the boundary of T and these limit sets are non-periodic orbits.

From Theorem 1.1(a) it follows that when $k \in \mathcal{P}\mathcal{S} \cap S$ the behaviour of the trajectories in the whole region T is illustrated in Figure 2.

Theorem 1.1(b) is partially a corollary of a general theorem for LVS stating that no limit points are in the interior of the non-negative orthant if there is no singular points in the interior. See Theorem 5.2.1 (p. 43) in [20].

On the other hand, Theorem 1.1 completely characterizes the region in the parameter space where the corresponding system (2) exhibits self-sustained oscillations. Thus the
necessary conditions $k \in \mathcal{S}$ for the existence of such behaviour, given by Di Cera et al. [2], are here completed with the necessary and sufficient condition $k \in \mathcal{PS} \setminus \mathcal{S}$. Furthermore, this oscillating behaviour in the interior of \mathcal{T} extends to a heteroclinic behaviour at the boundary. Therefore the period function defined in the interior of \mathcal{T} is a non-constant function; it grows when approaching the boundary. As a final remark, we note that oscillations in system (2) take place in a parameter set of measure zero, and they are only ‘conservative’ ones, i.e. are not isolated in the set of all periodic orbits.

In dimension greater than 2, continuous dynamical systems may present chaotic motion, in the sense that the distance of points on trajectories starting close together increases on an exponential rate. This is not our case. The dynamic behaviour of family (2) is very simple and non-strange attractors appear. In fact, as shown in Theorem 1.1(b) in the absence of periodic orbits every orbit goes from one side of the boundary of \mathcal{T} to another. Nevertheless, we can remark certain singular situations related to the form and location of the limit sets. One of these limit set configurations is described in the next result. Before stating it we consider the following singular points in the edges \mathcal{R}_{py} and \mathcal{R}_{xz}, respectively:

$$p_{py} = \left(\frac{k_1}{k_1+k_2}, 0, \frac{k_1}{k_1+k_3}\right), \quad q_{py} = \left(\frac{k_1}{k_1+k_4}, 0, \frac{k_4}{k_3+k_4}\right),$$

$$p_{xz} = \left(0, \frac{k_2}{k_1+k_3}, 0\right), \quad q_{xz} = \left(0, \frac{k_4}{k_3+k_5}, 0\right).$$

When k is in the manifold $\mathcal{PS} \cap \mathcal{S}$, the points p_{py} and q_{py} are equal and they coincide with one of the endpoints of the segment R defined in Theorem 1.1(a-1). Similarly, the points p_{xz} and q_{xz} are also equal and they coincide with the other endpoint of R. On the other hand, when $k \in \mathcal{PS} \setminus \mathcal{S}$, we define the following segments contained in the edges \mathcal{R}_{py} and \mathcal{R}_{xz}, respectively:

$$s_{py} = \left\{p_{py} + r(q_{py} - p_{py}) : r \in [0, 1]\right\},$$

$$s_{xz} = \left\{p_{xz} + r(q_{xz} - p_{xz}) : r \in [0, 1]\right\}.$$
To clarify the exposition of the next result we introduce the subsets $PS_+ = \{ k \in \mathcal{P} : k_i > 0 \}$ and $PS_- = \{ k \in \mathcal{P} : k_i < 0 \}$ which form a partition of \mathcal{P}.

Theorem 1.2: Suppose that $k \in \mathcal{P} \setminus S$.

(a) Each of the two limit sets of every orbit in the interior of T is formed by a singular point contained in the segments s_{xz} and s_{py}, respectively. In particular, given a point p in the interior of T, if $k \in \mathcal{P}S_+ \cap S^+$ or $k \in \mathcal{P}S_- \cap S^-$, then $\alpha(y_p) \in s_{xz}$ and $\alpha(y_p) \in s_{py}$; and if $k \in \mathcal{P}S_+ \cap S^-$ or $k \in \mathcal{P}S_- \cap S^+$ then $\alpha(y_p) \in s_{xz}$ and $\alpha(y_p) \in s_{py}$.

(b) Each of the two limit sets of every orbit in $Y \cup \Sigma$ is a singular point contained in the edge R_{py}. Moreover, given two orbits $y_1 \subset Y$ and $y_2 \subset \Sigma$ such that $\alpha(y_1) = \alpha(y_2)$, then $\omega(y_2) \neq \omega(y_1)$.

(c) Each of the two limit sets of every orbit in $X \cup Z$ is a singular point contained in the edge R_{xz}. Moreover, given two orbits $y_1 \subset X$ and $y_2 \subset Z$ such that $\omega(y_1) = \omega(y_2)$, then $\omega(y_2) \neq \omega(y_1)$.

Therefore when $k \in \mathcal{P}S_+ \cap S^+$ or $k \in \mathcal{P}S_- \cap S^-$, the behaviour of the trajectories in the whole region T is represented in Figure 3. Moreover, since a change in the sign of the parameter k has the same effect than a change in the sign of the time variable, see system (2), the behaviour of the trajectories when $k \in \mathcal{P}S_- \cap S^+$ or $k \in \mathcal{P}S_+ \cap S^-$, follows by changing the direction of the flow (Figure 3).

From Theorem 1.2 we conclude that the bifurcation taking place at the manifold S is not only characterized by the behaviour of the flow in the interior of T. In addition, it must be described by taking into account the changes of the limit sets s_{xz} and s_{py} at the boundary of T. Hence when $k \in \mathcal{P}S_+ \cap S^+$, the orbits in the faces $X \cup Z$ are organized in spirals around the segment s_{xz} moving away from it, and the orbits in the faces $Y \cup \Sigma$ are organized in spirals around the segment s_{py} approaching it. When $k \in \mathcal{P}S_- \cap S$, the segment s_{xz} reduces to the singular point p_{xz} and the segment s_{py} reduces to the singular point p_{py}; furthermore the flow in the faces $X \cup Z$ and $Y \cup \Sigma$ describes heteroclinic orbits around them. Finally, when $k \in \mathcal{P}S_- \cap S^-$ the orbits in $X \cup Z$ are organized in spiral around the segment s_{xz} approaching it; and the orbits in the faces $Y \cup \Sigma$ are organized in spirals around the segment s_{py} moving away from it. From this we denote the bifurcation taking
place at the manifold $\mathcal{PS}\cap \mathcal{S}$ by a focus-centre-focus bifurcation. The bifurcation set of system (2) is drawn in Figure 4.

This article is organized as follows. In Section 2, we analyse the existence and the local behaviour of the singular points both in the interior and in the boundary of \mathcal{S}. In Section 3, we deal with the first integrals of the flow and we characterize the integrability of the flow. Using these first integrals, in Section 4 we analyse the flow at the boundary of \mathcal{T}. In Section 5 and by using again the first integrals, we analyse the flow in the interior of \mathcal{T} and we prove the main results of this article.

2. Singular points

In the following proposition, we summarize the results about the existence, location and stability of the singular points of system (2).

Proposition 2.1: The half straight lines \mathcal{R}_{py} and \mathcal{R}_{xz} are formed by singular points.

(a) If $k \in \mathbb{N} \setminus \mathbb{Z}$ there are no other singular points in the boundary of the simplex.

(a-1) Suppose that $k \in \mathcal{PS}\cap \mathcal{S}$. The open segment

$$
R = \left\{ \left(\frac{k_3}{k_4}, \frac{k_4 - (k_4 + k_3)z}{k_4 + k_1}, z \right) : 0 < z < \frac{k_4}{k_3 + k_4} \right\}
$$

is formed by all the singular points in the interior of the region \mathcal{T}. Moreover, the Jacobian matrix of the vector field evaluated at each of these points has one real eigenvalue equal to zero and two purely imaginary eigenvalues.

(a-2) Suppose that $k \in \mathbb{N} \setminus \mathbb{Z} \cup \{\mathcal{PS}\cap \mathcal{S}\}$. There are no singular points in the interior of region \mathcal{T}.

(b) Suppose that $k \notin \mathbb{N} \setminus \mathbb{Z}$ and $k \neq 0$, in this case there are no singular points in the interior of \mathcal{T}. In fact, the singular points are on the boundary of \mathcal{T} and they complete either edges or whole faces.

Figure 4. Representation of the bifurcation set in a two-dimensional parameter space.
Proof: Straightforward computations show that the half straight lines \mathcal{R}_{p_y} and \mathcal{R}_{xz} are formed by singular points.

(a-1) Now suppose that $k \in \mathcal{N} \mathcal{Z}$. Hence none of the components of the parameter k is zero. In this case the singular points are given by the solutions to the following systems:

$$
\begin{align*}
 x &= 0 \quad &-x(1-x-z) &= 0 \\
 yz &= 0 \quad &y &= 0 \\
 z(-k_2y + k_3(1-y-z)) &= 0 \quad &z(1-x-z) &= 0 \\
 x(k_1y - k_4(1-x-y)) &= 0 \quad &k_4x + (k_1 + k_4)y + k_4z &= k_4 \\
 -yx &= 0 \quad &(k_1 + k_4) y + (k_3 + k_4)z &= k_4 \\
 z &= 0 \quad &(k_2k_4 - k_1k_3)(y+z) = k_2k_4 - k_1k_3
\end{align*}
$$

where in the last one we impose $xyz \neq 0$ to avoid repetitions. From the three first systems it is easy to conclude that there are no other singular points than those in the half straight lines \mathcal{R}_{p_y} and \mathcal{R}_{xz}. With respect to the last one we distinguish two situations.

First, let us suppose that $k \notin S$, that is $k_2k_4 - k_1k_3 \neq 0$. From the third equation it follows that $y + z = 1$, and therefore $x = 0$. Since $k_1k_4 \neq 0$ from the first equation, we conclude that $y = 0$ and $z = 1$. Hence the singular point is one of the endpoints of the edge \mathcal{R}_{xz}, i.e. it does not belong to the interior of T.

Suppose now that $k \in S$, that is $k_2k_4 - k_1k_3 = 0$. Thus the linear system is equivalent to the following one:

$$
\begin{align*}
 k_4x + (k_1 + k_4)y + k_4z &= k_4 \\
 (k_1 + k_4) y + (k_3 + k_4)z &= k_4 \\
 (k_2k_4 - k_1k_3)(y+z) &= k_2k_4 - k_1k_3
\end{align*}
$$

If $k_1 + k_4 = 0$, then from the first equation we obtain $x + z = 1$. Therefore $y = 0$ and the singular point belongs to \mathcal{R}_{p_y}. On the contrary, if $k_1 + k_4 \neq 0$, then there exists a straight line of singular points parametrically defined by $x = zk_3/k_4$ and $y = (k_4 - (k_3 + k_4)z)/(k_1 + k_4)$. Since the singular points in the interior of T must satisfy that $x > 0$, $y > 0$, $z > 0$ and $x + y + z < 1$, then there exist singular points in the interior of T if and only if

$$
\begin{align*}
 k_3 &> 0, \quad \frac{k_3 + k_4}{k_1 + k_4} z < \frac{k_4}{k_1 + k_4}, \quad \frac{k_1}{k_4} \left(\frac{k_3 + k_4}{k_1 + k_4} \right) z < \frac{k_1}{k_1 + k_4}, \quad z > 0.
\end{align*}
$$

It is easy to check that the previous inequalities are equivalent to

$$
\begin{align*}
 k_3 &> 0, \quad \frac{k_3 + k_4}{k_1 + k_4} z < \frac{k_4}{k_1 + k_4}, \quad \frac{k_1}{k_4} > 0, \quad z > 0.
\end{align*}
$$

Since $k \in S$ we have $k_1/k_4 = k_2/k_3$. Therefore we conclude that there exist singular points in the interior of T if and only if all the components of k have the same sign, that is $k \in \mathcal{P}S$. In such case these singular points are given by

$$
\begin{align*}
 x &= \frac{k_3}{k_4} z, \quad y = \frac{k_4 - (k_3 + k_4)z}{k_1 + k_4}, \quad 0 < z < \frac{k_4}{k_1 + k_4},
\end{align*}
$$

which proves statement (a-1).
(a-2) The Jacobian matrix of the vector field defined by the differential equation (2) and evaluated at the singular points (4) is given by

\[
\begin{pmatrix}
k_3z & (k_2 + k_3)z & k_3z \\
-k_1y & 0 & k_2y \\
-k_3z & -(k_2 + k_3)z & -k_3z
\end{pmatrix}.
\]

The characteristic polynomial is equal to \(\lambda(\lambda^2 + b) = 0 \), where \(b = yz(k_1 + k_2)(k_2 + k_3) \). Since \(k \in \mathcal{P} \mathcal{S} \), the coefficient \(b \) is positive. Then we get one zero eigenvalue and a pair of complex conjugated eigenvalues with zero real part.

(b) If \(k \neq \sqrt{N} \mathcal{Z} \) and \(k \neq 0 \), then at least one of the coordinates of \(k \) is equal to zero and at least one is different from zero. Without loss of generality, we suppose that \(k_1 = 0 \) and \(k_2 \neq 0 \). From the second equation in (2), it follows that the coordinates of the singular points satisfy \(yz = 0 \). Therefore the singular points are contained in the boundary of \(T \). Moreover, from the remainder equations in (2) it follows that \(-k_4x(1 - x - y - z) = 0 \) and \(k_3z(1 - x - y - z) = 0 \). We conclude that, depending on whether the parameters \(k_3 \) and \(k_4 \) are zero or not, singular points complete either whole faces or edges, respectively.

In the next result we deal with the singular points located at the edges \(\mathcal{R}_{py} \) and \(\mathcal{R}_{xz} \), which are not on the segments \(s_{py} \) and \(s_{xz} \), respectively. Note that these points are not hyperbolic singular points, so that we cannot apply Hartman–Großman Theorem to describe the behaviour of the flow in a neighbourhood of them.

Proposition 2.2: If \(k \in \mathcal{P} \mathcal{S} \setminus \mathcal{S} \), then no singular point in \(\mathcal{R}_{py} \setminus s_{py} \) and \(\mathcal{R}_{xz} \setminus s_{xz} \) is the limit set of an orbit in the interior of the region \(T \).

Proof: Let \(p \) be a point in the set \(\mathcal{R}_{py} \setminus s_{py} \), that is \(p = (x_0, 0, 1 - x_0) \) where either

\[
x_0 > \max \left\{ \frac{k_2}{k_1 + k_2}, \frac{k_3}{k_3 + k_4} \right\} \quad \text{or} \quad x_0 < \min \left\{ \frac{k_2}{k_1 + k_2}, \frac{k_3}{k_3 + k_4} \right\},
\]

see expression (3). If we consider a point \(p \) in the set \(\mathcal{R}_{xz} \setminus s_{xz} \), the following arguments can be applied in a similar way.

Through the change of variables \(\tilde{x} = x - x_0, \tilde{y} = y \) and \(\tilde{z} = z - 1 + x_0 \), system (2) can be written as system \(\dot{\mathbf{x}} = A\mathbf{x} + Q(\mathbf{x}) \) where \(\mathbf{x} = (\tilde{x}, \tilde{y}, \tilde{z})^T \),

\[
A = \begin{pmatrix}
k_4x_0 & (k_1 + k_4)x_0 & k_4x_0 \\
0 & k_2 - (k_1 + k_2)x_0 & 0 \\
k_3(x_0 - 1) & (k_2 + k_3)(x_0 - 1) & k_3(x_0 - 1)
\end{pmatrix}
\]

and

\[
Q(\mathbf{x}) = \begin{pmatrix}
\tilde{x}(k_4 \tilde{x} + (k_1 + k_4)\tilde{y} + k_4\tilde{z}) \\
\tilde{y}(k_2 \tilde{z} - k_1 \tilde{x}) \\
\tilde{z}(-k_3 \tilde{x} - (k_2 + k_3)\tilde{y} - k_3 \tilde{z})
\end{pmatrix}.
\]

The eigenvalues of the matrix \(A \) are \(\lambda_1 = 0, \lambda_2 = (k_3 + k_4)x_0 - k_3 \) and \(\lambda_3 = k_2 - x_0(k_1 + k_2) \). From (5) it is easy to conclude that \(\lambda_2 \lambda_3 < 0 \). Therefore there exists a regular matrix \(P \) such that \(PAP^{-1} = \text{diag}\{0, \lambda_2, \lambda_3\} \).
Going through the change of coordinates \(x_p = P \mathbf{x} \) the system can be rewritten as

\[
\begin{align*}
\dot{x}_p &= \frac{k_2 z_p - k_3 y_p}{k_4 x_0} \left(k_4 k_1 x_p + k_1 (x_0 - 1)(k_3 + k_4) y_p + k_4 (x_0 - 1)(k_2 + k_4) z_p \right), \\
\dot{y}_p &= \frac{y_p}{k_4 k_2 x_0} \left((\lambda_2 - (k_3 + k_4) x_p) k_1 k_4 x_0 + k_1 (k_2^2 (1 - x_0) + k_4^2 x_0) y_p \right) \\
&+ k_4 (k_1 k_4 x_0 + k_2 k_3 (1 - x_0)) z_p, \\
\dot{z}_p &= \frac{z_p}{k_4 x_0} \left((\lambda_3 + (k_2 + k_1) x_p) k_1 k_4 x_0 - k_1 (k_1 k_4 x_0 + k_2 k_3 (1 - x_0)) y_p \right) \\
&- k_2 (k_2^2 (1 - x_0) + k_1^2 x_0) z_p.
\end{align*}
\]

System (6) has two invariant planes \(\{y_p = 0\} \) and \(\{z_p = 0\} \) intersecting at a straight line formed by singular points, which corresponds to the segment \(\mathcal{R}_{p_y} \). The direction of the vector field in a sufficiently small neighbourhood of the origin satisfies that

\[
\text{sign}(\dot{y}_p) = \text{sign}(y_p) \text{sign}(\lambda_2), \\
\text{sign}(\dot{z}_p) = \text{sign}(z_p) \text{sign}(\lambda_3).
\]

We conclude that the origin is neither the \(\alpha \)-limit nor the \(\omega \)-limit set of any orbit in the interior of the regions \(\{y_p > 0, z_p > 0\}, \{y_p > 0, z_p < 0\}, \{y_p < 0, z_p > 0\} \) and \(\{y_p < 0, z_p < 0\} \). From this we conclude the proposition.

\[\square \]

3. Invariant algebraic surfaces and first integrals

In 1878, Darboux showed how to construct first integrals of a planar polynomial vector field possessing sufficient invariant algebraic curves. Recent works improved the Darboux’s exposition taking into account other dynamical objects like exponential factors and independent singular points (see [8,10,11] for more details). The extension of the Darboux theory to \(n \)-dimensional systems of polynomial differential equations can be found in the work by Llibre and Rodríguez [14]. A brief introduction to the three-dimensional case can be found in [13].

Following [13], a first integral of system (2) is a real function \(F \) non-constant over the region \(T \) and such that the level surfaces \(\mathcal{F}_C = \{(x, y, z) \in T : F(x, y, z) = C\} \) are invariants by the flow; that is

\[
XF = \frac{\partial F}{\partial x} \dot{x} + \frac{\partial F}{\partial y} \dot{y} + \frac{\partial F}{\partial z} \dot{z} = 0,
\]

where \(X = \dot{x} \frac{\partial}{\partial x} + \dot{y} \frac{\partial}{\partial y} + \dot{z} \frac{\partial}{\partial z} \) is the vector field associated to the system of differential equations. Thus the existence of a first integral allows the reduction of the dimension of the problem by one. Moreover, the existence of two independent first integrals allows the integrability of the flow.

Let \(f \in \mathbb{R}[x, y, z] \) be a polynomial function. The algebraic surface \(f = 0 \) is called an invariant algebraic surface of the system (2) if there exists a polynomial \(K \in \mathbb{R}[x, y, z] \) such that \(XF = Kf \). The polynomial \(K \) is called the cofactor of \(f \). The following result is a corollary of Theorem 2 in [13].

Theorem 3.1: Suppose that the polynomial vector field (2) admits \(p \) invariant algebraic surfaces \(f_i = 0 \) with cofactors \(K_i \) for \(i = 1, 2, \ldots, p \). If there exist \(\lambda_i \in \mathbb{R} \) not all zero such that \(\sum_{i=1}^{p} \lambda_i K_i = 0 \), then the function \(f_1^{\lambda_1} f_2^{\lambda_2} \cdots f_p^{\lambda_p} \) is a first integral of the vector field (2).
Proposition 3.2: Consider the functions $f_i(x, y, z) = x$, $f_2(x, y, z) = y$, $f_3(x, y, z) = z$, and $f_4(x, y, z) = x + y + z - 1$. It is easy to check that $Xf_i = f_i K_i$, with $i = 1, 2, 3, 4$, where $K_i(x, y, z) = k_4 x + (k_1 + k_4)y + k_4z - k_4$. Therefore $f_i = 0$ is an invariant surface with cofactor K_i with $i = 1, 2, 3, 4$.

From Theorem 3.1, if there exist λ_i not all zero and such that $\sum_{i=1}^4 \lambda_i K_i = 0$, then $F = f_1^4 f_2 f_3 f_4^4$ is a first integral of system (2). Since

$$\sum_{i=1}^4 \lambda_i K_i = (\lambda_4 k_4 - \lambda_2 k_1)x + (\lambda_1 k_1 - \lambda_3 k_2)y + (\lambda_2 k_2 - \lambda_4 k_3)z + (\lambda_3 k_3 - \lambda_1 k_4)(1 - x - y - z),$$

the existence of such λ_i is equivalent to the existence of non-trivial solutions of the homogeneous linear systems

$$\begin{pmatrix} k_1 & -k_2 \\ -k_4 & k_3 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} k_2 & -k_3 \\ -k_1 & k_4 \end{pmatrix} \begin{pmatrix} \lambda_2 \\ \lambda_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}. \quad (7)$$

Note that the determinant of both previous systems is equal to $k_1 k_3 - k_2 k_4$. Therefore when k belongs to the set S, there exist Darboux-type first integrals of system (2).

Under the assumption $k \in S$ the linear system (7) has the following non-trivial solutions $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \rightarrow (k_2, 0, k_1, 0)$, $(0, k_3, 0, k_2)$, $(k_3, 0, k_4, 0)$, and $(0, k_4, 0, k_1)$. Therefore the functions $H(x, y, z) = x^{k_3} z^{k_1}$, $V(x, y, z) = y^{k_2}(1 - x - y - z)^{k_2}$, $\tilde{H}(x, y, z) = x^{k_3} z^{k_1}$, and $\tilde{V} = y^{k_3}(1 - x - y - z)^{k_1}$ are first integrals. In fact,

$$XH = x^{k_3} z^{k_1}(1 - x - y - z)(k_1 k_3 - k_2 k_4),$$
$$XV = y^{k_2}(1 - x - y - z)^{k_2} x(k_2 k_4 - k_1 k_3),$$
$$\tilde{X}H = x^{k_3} z^{k_1}(k_1 k_3 - k_2 k_4),$$
$$\tilde{X}V = y^{k_3}(1 - x - y - z)^{k_1} (k_2 k_4 - k_1 k_3), \quad (8)$$

which vanish in the whole region T only when $k \in S$.

Proposition 3.2: Consider the functions $H(x, y, z) = x^{k_3} z^{k_1}$, $\tilde{H}(x, y, z) = x^{k_3} z^{k_4}$, $V(x, y, z) = y^{k_2}(1 - x - y - z)^{k_2}$, and $\tilde{V}(x, y, z) = y^{k_3}(1 - x - y - z)^{k_4}$.

(a) If $k \in S \cap N \mathbb{Z}$, then H, V, \tilde{H} and \tilde{V} are first integrals which satisfy that $\tilde{H}^{k_1} = H^{k_4}$ and $\tilde{V}^{k_3} = V^{k_4}$. Moreover, H and V are independent.

(b) If $k \in S \setminus N \mathbb{Z}$, then two of the previous functions are first integrals and they are independent.

(c) If $k \notin S$, then none of the previous functions is a first integral in T.

Proof: (a) Consider that $k \in S \cap N \mathbb{Z}$. Since every coordinate of k is different from zero, it follows that H, V, \tilde{H} and \tilde{V} are not constant in T. Therefore all of these functions are first integrals. It is easy to check that $\tilde{H}^{k_1} = H^{k_4}$ and $\tilde{V}^{k_3} = V^{k_4}$. Moreover, since $\nabla H(x, y, z) = x^{(k_3 - 1)} z^{(k_3 - 1)} (k_2 z, 0, k_1 x)$ and $\nabla V(x, y, z) = y^{(k_4 - 1)} (1 - x - y - z)^{(k_2 - 1)} (k_3 y, k_3 (1 - x - y - z) - k_2 y, -k_2 z)$, both integrals are dependent only on points satisfying $k_3 (1 - x - y - z) = k_2 y$ and $k_3 z = k_1 x$. Taking into account that $k_2 \neq 0$ it follows that this set has zero Lebesgue measure. Then H and V are two independent first integrals.
(b) Consider now that $k \in \mathcal{S} \setminus \mathcal{N} \mathcal{Z}$. Hence k has one coordinate which is different from zero. Without loss of generality we assume that $k_1 \neq 0$, the remainder cases follow in a similar way. It is easy to check that H and \widetilde{V} are not constant in T, and therefore they are first integrals. Since $\nabla H(x, y, z) = x^{(k_2 - 1)}z^{(k_1 - 1)}(k_2z, 0, k_1x)$ and $\nabla \widetilde{V}(x, y, z) = y^{(k_1 - 1)}(1 - x - y - z)(k_1y, -k_1y)$, both integrals may be dependent only on points satisfying $k_4(1 - x - y - z) = k_1y$ and $k_2z = k_1x$. Therefore H and \widetilde{V} are independent.

(c) The statement follows straightforward from expression (8).

\[\square \]

4. Behaviour at the boundary

As we have proved in Proposition 3.2 some of the functions H, \widetilde{H}, V and \widetilde{V} are first integrals over the whole region T only when $k \in \mathcal{S}$. Nevertheless, the restriction of these functions to a particular face of T results in a first integral even when $k \notin \mathcal{S}$. In fact, denoting by $\widetilde{H}|_{\mathcal{J}_2}$ the restriction of the function \widetilde{H} to the face \mathcal{J}, from expression (8) it follows that $X\mathcal{H}|_{\mathcal{J}_2} = 0$. Therefore the level curves $\widetilde{H}|_{\mathcal{J}_2} = C^{k_4}$ are invariant by the flow.

Under the assumption $k_3k_4 > 0$, these level curves define a foliation of \mathcal{J} whose leaves are given by the arcs of hyperbolas $\{z = Cx^{-\frac{k_3}{k_4}}\}_{0 < C < C^*}$ where

\[C^* = \frac{k_4}{k_4 + k_3} \left(\frac{k_3}{k_4 + k_3} \right)^{\frac{k_2}{k_4}}. \]

Furthermore, every leaf with $0 < C < C^*$ intersects the segment \mathcal{R}_{py} at exactly two points (Figure 5a). The value $C = C^*$ leads to a unique intersection point with coordinates $x = k_3/(k_3 + k_4)$ and $z = k_4/(k_3 + k_4)$. Since in the face \mathcal{J} we have $y = 0$, it follows that the point corresponding to C^* is the point q_{py} defined in (3).

Similarly, the restriction of V, \widetilde{V} and H to the faces \mathcal{X}, \mathcal{Z} and Σ, respectively, are first integrals even when $k \notin \mathcal{S}$ (see expression (8)). Consider the changes of variables $(u, v, \alpha, \beta) \rightarrow (y, z, k_2, k_3)$, $(y, x, -k_1, -k_4)$ or (x, y, k_1, k_2). Depending on the face \mathcal{X}, \mathcal{Z} or Σ we are looking at. Under the assumption $\alpha \beta > 0$, the level curves $V|_{\mathcal{X}} = C^{k_2}$, $V|_{\mathcal{Z}} = C^{k_1}$ and $H|_{\Sigma} = C^{k_4}$ define a foliation on the corresponding face, whose leaves are given by the unimodal curves $\{v = 1 - u - Cu^{-\frac{\beta}{\alpha + \beta}}\}_{0 < C < C^*}$ where

\[C^* = \frac{\alpha}{\alpha + \beta} \left(\frac{\beta}{\alpha + \beta} \right)^{\frac{\beta}{\alpha + \beta}}. \]

Every leaf with $0 < C < C^*$ intersects the segment $\{v = 0, 0 < u < 1\}$ at exactly two points (Figure 5b). The value $C = C^*$ leads to a unique intersection point $(\beta/(\alpha + \beta), 0)$. Going back through the changes of variables and adding the variable which does not appear in such change, that intersection point coincides with q_{xz}, p_{xz} or p_{py} depending on the change of variables.

Using the geometric information of the aforementioned foliation, in the next result we summarize the behaviour of the flow of system (2) at the boundary ∂T for $k \in \mathcal{P}S$.

Lemma 4.1:

(a) If $k \in \mathcal{P}S$, then each of the two limit sets of every orbit contained in $\mathcal{J} \cup \Sigma$ (respectively, $\mathcal{X} \cup \mathcal{Z}$) is formed by a singular point contained in the edge \mathcal{R}_{py} (respectively, in the edge \mathcal{R}_{xz}).
Lemma 5.1: Let $x = f(x)$ be a planar system of differential equations and let U be a flow-invariant region in \mathbb{R}^2. Assume that both the boundary of U is formed by a heteroclinic

5. Behaviour in the interior

In this last section we deal with the proof of the main theorems of this article. The next result is a technical lemma which describes planar flows under integrability conditions.
loop and there exists exactly one singular point \(p \) contained in the interior of \(U \). If there exists a first integral \(H \) defined over \(U \) which is non-constant over open sets, then every orbit in the interior of \(U \) but the singular point is a periodic orbit.

Proof: Let \(U \) denote the interior of the region \(U \). It is easy to check that any orbit \(\gamma \) in \(U \setminus \{p\} \) has no limit sets contained in the boundary of \(U \setminus \{p\} \). Otherwise first integral \(H \) would be constant over one of the open regions limited by \(\gamma \) or over the whole open region \(U \setminus \{p\} \). Hence, there are not homoclinic orbits to the singular point \(p \). From the Poincaré–Bendixson Theorem, at least one limit set of \(\gamma \) is a periodic orbit \(\Gamma_1 \) surrounding \(p \) and contained in \(U \setminus \{p\} \).

Now applying similar arguments to the other limit set, it follows that this limit set is also a periodic orbit \(\Gamma_2 \) contained in \(U \setminus \{p\} \) and surrounding \(p \). Since \(H \) is not constant over open sets we conclude that \(\Gamma_1 \) and \(\Gamma_2 \) are the same periodic orbit and this periodic orbit coincides with \(\gamma \). Therefore every orbit in \(U \setminus \{p\} \) is a periodic orbit. \(\square \)

Proof of Theorem 1.1: (a) Under the assumption \(k \in \mathcal{PS} \cap S \), system (2) is integrable and the functions \(H \) and \(V \) are two independent first integrals (Proposition 3.2(a)). Since any level surface \(\mathcal{H}_C \) is invariant by the flow, we can consider by \(\phi^c_1 \) the restriction of the flow to each of these surfaces. Of course, this restricted flow is also integrable because the restriction of the function \(V \) to \(\mathcal{H}_C \) is a first integral. On the other hand, there exists exactly one singular point in the interior of \(\mathcal{H}_C \), which comes from the intersection of the manifold \(\mathcal{H}_C \) and the segment \(R \) defined in the Proposition 2.1(a-1).

Since the coordinates of \(k \) are not zero, the manifold \(\mathcal{H}_C \) is the graph of a differentiable function. Hence the projection \(\pi(x, y, z) = (x, y) \) is a diffeomorphism from \(\mathcal{H}_C \) to a planar compact region \(U \). Moreover, \(\tilde{\phi}^c_1 = \pi \circ \phi^c_1 \circ \pi^{-1} \) defines a flow over \(U \), which is differentially conjugate to \(\phi^c_1 \). Then there exists exactly one singular point in the interior of \(U \), the function \(V \circ \pi^{-1} \) is a first integral over \(U \) which is non-constant over open sets and the boundary of \(U \) is formed by a heteroclinic loop (Lemma 4.1(b)). From Lemma 5.1 it follows that every orbit in \(U \), but the singular point, is a periodic orbit. Therefore, every orbit over \(\mathcal{H}_C \) but the singular point is a periodic orbit. This result is independent on the level surface we are working at, hence every orbit in the interior of the region \(T \), but the singular points, is a periodic orbit.

The behaviour of the flow at the boundary of \(T \) when \(k \in \mathcal{PS} \cap S \) can be obtained from Lemma 4.1(b).

(b) Consider now that \(k \notin \mathcal{PS} \cap S \) and \(k \neq 0 \). We distinguish between two situations: first we suppose that \(k \in S \setminus \mathcal{PS} \). From Proposition 3.2 it follows that at least one of the functions \(H, V, \tilde{H} \) or \(\tilde{V} \) is a first integral. Without loss of generality we can assume that \(H \) is a first integral. Hence any level surface \(\mathcal{H}_C \) is invariant by the flow and we can consider the restriction of the flow to \(\mathcal{H}_C \). From Proposition 3.2 there are not singular points in the interior of \(\mathcal{H}_C \). Applying the Poincaré–Bendixson Theorem to the flow in the level surface \(\mathcal{H}_C \), we conclude that the flow goes from the boundary of \(\mathcal{H}_C \) to the boundary of \(\mathcal{H}_C \). Since these arguments are independent on the level surface, it follows that the limit sets of every orbit in the interior of \(T \) is contained in \(\partial T \).

Suppose now that \(k \notin S \) and \(k \neq 0 \). Since one of the coordinates of \(k \) is different from zero, the level surfaces of at least one of the functions \(H, V, \tilde{H} \) and \(\tilde{V} \) can be expressed as the graph of an explicit differentiable function. For instance, if \(k_4 \neq 0 \), then \(\mathcal{H}_{C_{k_4}} \) is the graph of the function \(z = Cx^{-\frac{1}{k_4}} \) defined over the face \(S \). Each of these level surfaces split the interior of \(T \) into two disjoint connected components. On the other hand, since \(k \notin S \),
these level surfaces are not invariant by the flow (Proposition 3.2(c)). In fact, the flow is transversal to them and the direction of the flow through them depends on $k \in S^+$ or $k \in S^-$ (expression (8)). Since C tends to 0 or to C^*, the level surfaces \mathcal{H}_{C^*} tend to the boundary of T, we conclude that the flow in the interior of T goes from one part of the boundary to another part of the boundary. That is, the limit sets of every orbit in the interior of T are contained in ∂T.

Thus, in both cases the limit sets of every orbit in the interior of T are contained in ∂T. Since there are no isolated singular points in ∂T (Proposition 2.1), we conclude that these limit sets are not periodic orbits. \[\square\]

Note that in the previous proof we have only used that trajectories cross the level surfaces of some of the functions H, V, \tilde{H} or \tilde{V}, always in the same direction. This suffices to conclude that the limit sets of the orbits in T are contained in the boundary. To prove Theorem 1.2 we need to be more precise in the location of these limit sets. To reach this goal we will control the geometry of the level surfaces.

Proof of Theorem 1.2: (a) Suppose that $k \in P_{S_+} \cap S^+$. Since $k \notin S$, the functions H and \tilde{H} are not first integrals and each level surface \mathcal{H}_C and \tilde{H}_C splits the region T into two disjoint regions in such a way that the flow goes from one to the other. In fact, since $k_3k_4 > 0$ the intersection of \mathcal{H}_C with any plane $\{y = y_0\}$, where $0 < y_0 < 1$, is an arc of a hyperbola in the (x, z)-plane (Figure 6). Similarly, since $k_1k_2 > 0$, the intersection of \mathcal{H}_C with any plane $\{y = y_0\}$, where $0 < y_0 < 1$, is an arc of a hyperbola in the (x, z)-plane. The flow through \mathcal{H}_C and through \tilde{H}_C has the same orientation as the vectors ∇H and $\nabla \tilde{H}$, respectively, see expression (8). Since $k_i > 0$, the coordinates of the gradient ∇H are non-negatives. Hence ∇H is oriented towards the region R_C which contains the point p_{py}, see the shadowed region in Figure 6. In a similar way, the gradient $\nabla \tilde{H}$ is oriented towards the region \tilde{R}_C which contains the point q_{py}. Therefore the flow evolves from the region containing the origin to the region $R_C \cup \tilde{R}_C$. Since points in $R_{py} \setminus s_{py}$ are not limit sets of orbits in the interior of T (Proposition 2.2), we conclude that the ω-limit set of any given orbit in the interior of T is contained in the segment s_{py}. On the other hand, as C grows the regions R_C and \tilde{R}_C become progressively smaller neighbourhoods around the points p_{py}

Figure 6. Representation when $k \in P_{S_+} \cap S^+$ of: the positive invariant regions R_C and \tilde{R}_C (in grey) limited by the level surfaces \mathcal{H}_C and \tilde{H}_C, respectively; the negative invariant regions N_C and \tilde{N}_C (in grey) limited by the level surfaces \mathcal{V}_C and \tilde{V}_C, respectively; the segment s_{py} formed by the ω-limit set of each orbit in the interior of T; and the segment s_{xz} formed by the α-limit set of each orbit in the interior of T.
and \(q_{py} \), respectively. Hence for every given orbit \(\gamma \) intersecting \(R_C \cup \tilde{R}_C \) there exists either a particular value \(C_1 > C \) such that \(\gamma \) does not intersect with \(R_{C_1} \) or a particular value \(\bar{C}_1 > \bar{C} \) such that \(\gamma \) does not intersect with \(\tilde{R}_{\bar{C}} \). In the first case we have a value \(C_2 < C_1 \) such that \(\gamma \cap R_C \neq \emptyset \) for every \(C < C_2 \) and \(\gamma \cap R_C = \emptyset \) for every \(C > C_2 \). This is only possible when the \(\omega \)-limit set of \(\gamma \) is contained in \(H_{C_2} \), which implies that the \(\omega \)-limit set of \(\gamma \) is a singular point contained in \(s_{py} \). The same arguments apply to the second case.

Since \(k \notin S \), the functions \(V \) and \(\bar{V} \) are not first integrals. Moreover, each level surface \(\mathcal{V}_C \) and \(\bar{V}_C \) splits the region \(T \) into two disjoint regions in such a way that the flow goes from one to the other. The flow through these surfaces has opposite direction to that of the gradients \(\nabla V \) and \(\nabla \bar{V} \) (expression (8)). Since \(k_i > 0 \) the gradient \(\nabla V \) is oriented towards the region \(\mathcal{N}_C \) containing the point \(q_{xz} \) and the gradient \(\nabla \bar{V} \) is oriented towards the region \(\bar{N}_C \) containing the point \(p_{xz} \) (Figure 6). Therefore the flow in the interior of \(T \) evolves from the region \(\mathcal{N}_C \cup \bar{N}_C \) towards the region containing the point \((0, 0, 1) \). Following arguments similar to those used in the study of the \(\omega \)-limit sets, we conclude that the \(\alpha \)-limit set of any given orbit in the interior of \(T \) is a singular point contained in the segment \(s_{xz} \).

As we have just proved when \(k \in PS_+ \cap S^+ \) the \(\omega \)-limit set and the \(\alpha \)-limit set of any given orbit in the interior of \(T \) is contained in the segments \(s_{py} \) and \(s_{xz} \), respectively. Similar arguments apply when \(k \in PS_- \cap S^- \). Note that a change of the sign of the parameter \(k \) is equivalent to a change in the sign of time in the system of differential equations (2). Therefore the behaviour of the flow in cases \(k \in PS_+ \cap S^- \) and \(k \in PS_- \cap S^+ \) follows from the cases described above by changing the orientation of the orbits.

(b,c) The behaviour of the flow at the boundary can be obtained from Lemma 4.1(c).

Acknowledgements
A.E. Teruel is partially supported by MEC grant No. MTM2005-06908-C02-1, by UIB grant No. UIB2005/6 and by CAIB grant No. CEH-064864. A.C. Murza acknowledges support from the BioSim Network, grant No. LSHB-CT-2004-005137. We thank the referees for their careful reading of our manuscript and their useful comments on the presentation of this article.

References
[1] J. Wyman, *The turning wheel: A study in steady states*, Proc. Natl. Acad. Sci. USA 72 (1975), pp. 3983–3987.
[2] Di Cera, P.E. Phillipson, and J. Wyman, *Chemical oscillations in closed macromolecular systems*, Proc. Natl. Acad. Sci. USA 85 (1988), pp. 5923–5926.
[3] A. Murza, I. Oprea, and G. Dangelmayr, *Chemical oscillations in a closed sequence of protein folding equilibria*, Libertas Math. 27 (2007), pp. 125–130.
[4] A.J. Lotka, *Analytical note on certain rhythm in relations in organic systems*, Proc. Natl. Acad. Sci. USA 6 (1920), pp. 410–415.
[5] V. Volterra, *Leçons sur la Théorie Mathématique de la Lutte Pour la vie*, Gautiers Villars, Paris, 1931.
[6] R.W. McCarley and J.A. Hobson, *Neuronal excitability modulation over the sleep cycle: A structural and mathematical model*, Science 189 (1975), pp. 58–60.
[7] S. Alizon, M. Kucera, and V.A.A. Jansen, *Competition between cryptic species explains variations in rates of lineage evolution*, Proc. Natl. Acad. Sci. USA 105 (2008), pp. 12382–12386.
[8] F. Coppex, M. Droz, and A. Lipowski, *Extinction dynamics of Lotka–Volterra ecosystems on evolving networks*, Phys. Rev. E 69 (2004), p. 061901.

[9] J. Chavarriga, J. Llibre, and J. Sotomayor, *Algebraic solutions for polynomial vector fields with emphasis in the quadratic case*, Expositions Math. 15 (1999), pp. 161–173.

[10] C.J. Christopher, *Invariant algebraic curves and conditions for a center*, Proc. R. Soc. Edin. A 124 (1994), pp. 1209–1229.

[11] C.J. Christopher and J. Llibre, *Algebraic aspects of integrability for polynomial systems*, Qualit. Theory Dynam. Syst. 1 (1999), pp. 71–95.

[12] L. Cairo, *Darboux First Integral Conditions and integrability of the 3D Lotka–Volterra system*, J. Nonlinear Math. Phys. 7 (2000), pp. 511–531.

[13] L. Cairo and J. Llibre, *Darboux integrability for 3D Lotka–Volterra systems*, J. Phys. A: Math. Gen. 33 (2000), pp. 2395–2406.

[14] J. Llibre and G. Rodríguez, *Invariant hyperplanes and Darboux integrability for d-dimensional polynomial differential systems*, Bull. Sci. Math. 124 (2000), pp. 599–619.

[15] M.W. Hirsch, *Systems of differential equations that are competitive or cooperative. III: Competing species*, Nonlinearity 1 (1998), pp. 51–71.

[16] P. Van Den Driessche and M.L. Zeeman, *Three-dimensional competitive Lotka–Volterra systems with no periodic orbits*, Siam J. Appl. Math. 58 (1998), pp. 227–234.

[17] M.L. Zeeman, *Hopf bifurcations in competitive three-dimensional Lotka–Volterra systems*, Dynam. Stability Syst. 8 (1993), pp. 189–217.

[18] M.L. Zeeman, *On Directed Periodic Orbits in Three-dimensional Competitive Lotka–Volterra Systems*, Differential Equations and Applications to Biology and to Industry, World Scientific, River Edge, NJ, 1996, pp. 563–572.

[19] M. Bobienski and H. Zoladek, *The three-dimensional generalized Lotka–Volterra systems*, Ergod. Th. Dynam. Sys. 25 (2005), pp. 759–791.

[20] J. Hofbauer and K. Sigmund, *Evolutionary Games and Population Dynamics*, Cambridge University Press, Cambridge, 1998.