The dynamics of the total output of the fishery sector: The case of Indonesia

Ubaidillah Zuhdi
Faculty of Management and Economics, Gdansk University of Technology, Gdansk 80-233, Poland
zuhdi@zie.pg.gda.pl

Abstract. The purpose of this study is to analyze the dynamics of the total output of the Indonesian fishery industry when the changes of the final demand occur. This study employs a demand-pull Input-Output (IO) quantity model, one of the calculation tools in the IO analysis, as an analysis instrument. Two conditions are noticed in calculations and analysis parts, namely (1) “whole sector change”, and (2) “pure change”. An initial period in this study is 2008. The results show that, in both conditions, the discussed sector has similar patterns, namely this industry receives the positive impacts from scenarios 1 and 3 while the negative impact is obtained from scenario 2. The results also explain that, in both conditions, the biggest positive impact for the analyzed sector is given by scenario 3, the change of households and non-profit private institutions consumptions.

1. Introduction

[1] explained the role of fisheries in the society through the following statements:

“Directly and indirectly, fisheries provide employment for hundreds of millions of people. The vast majority of these people are in developing countries where the sector often plays a key role in preventing and reducing poverty; it is likely that millions more people are involved in fishing activities than appear in official statistics.”

The following exposure, which was given by [2], confirms the role:

“Around 140 million tonnes of fish and seafood per year are used for human consumption. Set against the global production of cereals of around 2.2 billion tonnes, that figure is comparatively low. Owing to its unique combination of nutrients, fish makes a major contribution to a healthy diet. It supplies proteins, healthy fatty acids, vitamins and other elements essential for health such as iodine and selenium. Furthermore, in developing countries fish is often the only affordable and relatively easily available source of animal protein. In some regions on Earth fish can provide up to 50 per cent of the total animal protein in people’s diets. This is the case, for example, in Bangladesh, Cambodia and Ghana.”

On the other hand, [3] mentioned the importance of the fishery industry in the society through the following explanation:

“To those involved in fisheries, the importance of the industry to the economy is obvious: (i) exports of fish and fish products earn foreign exchange which helps provide the resources needed to pay for crucial imports; (ii) it provides employment for a substantial number of people; (iii) the catch of commercial and
 conduct the study in order to get a deeper understanding of the relationships between *octofasciatus* distribution and behavior. [12] did the comparison of the estimated life history parameters for deployed at the water surface, attached to the surface trawl headrope, in their study in monitoring fish two temperate reservoirs. They used a SIMRAD EK60 (38 kHz) split-beam echosounder with the transducer utilizing an underwater stereo camera. [11] addressed the fish behavior at the mouth of a midwater trawl in tested the impact of the three types of the underwater lighting on observable rockfish density and behavior by fishing in the major Italian fishing fleets, and (3) the catch per unit of the effort from 1950 to 2010. [10] imagination and wallet of the angler, they do not influence CPUE or hooking injury in bass but appear to use by stock assessment scientists and fishery managers in their works. They compared industry-generated reports of landed catch to independent observer estimates in their study. [6] explored the crisis involving the Europe Union (EU), Iceland, Norway, and the Faroe Islands regarding the relative allocation and size of Total Allowable Catches (TACs) in the mackerel fishery in the Northeast Atlantic. They employed simple non-cooperative and cooperative game theory in their study. [7] developed a method to objectively measure and characterize the location and size of the patterns of discoloration which are currently appeared in the fillets of commercially harvested yellowtail flounder (*Limanda ferruginea*) on the east coast of Canada. Further, they developed an image processing program to analyze the patterns of the fillet discoloration in order to achieve the goal of their study. [8] assessed the effects of lure color on catch-per-unit-effort (CPUE), size selectivity and hooking injury of largemouth bass, *Micropterus salmoides*, by employing artificial 12.7 cm unscented soft-plastic worms. Their study expressed that while different lure colors might capture the imagination and wallet of the angler, they do not influence CPUE or hooking injury in bass but appear to have a small effect on the size of the captured fish.

Meanwhile, [9] provided the estimations of (1) catches for all marine fishing sectors, (2) the effort of fishing in the major Italian fishing fleets, and (3) the catch per unit of the effort from 1950 to 2010. [10] tested the impact of the three types of the underwater lighting on observable rockfish density and behavior by utilizing an underwater stereo camera. [11] addressed the fish behavior at the mouth of a midwater trawl in two temperate reservoirs. They used a SIMRAD EK60 (38 kHz) split-beam echosounder with the transducer deployed at the water surface, attached to the surface trawl headrope, in their study in monitoring fish distribution and behavior. [12] did the comparison of the estimated life history parameters for *Hyporthodus octofasciatus* from the south-eastern Indian Ocean with the one from the western central Pacific Ocean. [13] conducted the study in order to get a deeper understanding of the relationships between *Doryteuthis gahi* immigrations and size distributions during the seasons of fishing, and related wind, temperature, and geostrophic current conditions. The focused area of their study was Falkland Islands.

The study analyzes the fishery sector of the specific Asian country, from above literatures, however, is still limited. On the other hand, the readers are presented the previous studies discussed the other industrial sectors of Asian countries. For example, [14] investigated the dynamics of Indonesian creative industries. More specifically, the purposes of his study were (1) to obtain the other perspective about the role of creative industry sectors in the Indonesian national economy, and (2) to inquire about the strategies to improve these industries. He employed the Input-Output (IO) analysis in order to achieve these goals. His study focused on the period between 1990 and 2005. Besides, [15] conducted a deeper analysis regarding the impacts of the changes of final demands on the total outputs of Japanese energy sectors. His study focused on two industries, namely (1) petroleum refinery products, and (2) non-ferrous metals.

Meanwhile, [16] forecasted the influences of the Information and Communication Technology (ICT) on the structural changes of the national economics of Japan. They employed IO and statistical approaches as analysis instruments. [17] analyzed the role of ICT sectors on the Japanese national economy using simple household income multiplier, one of the analysis tools in the IO analysis. The analysis period of his study was from 1995-2005. On the other hand, using this multiplier, [18] analyzed this role on the Indonesian national economy. The analysis period of his study was from 1990-2005. [19] investigated the influences of Gross Domestic Product (GDP) and ICT on the structural changes of Indonesian industrial sectors on the period between 1990 and 2005. They employed the statistical tool in analyzing these influences, namely the Constrained Multivariate Regression (CMR) model. [20] exposed the impacts of the modifications of final
demands on the total outputs of Indonesian ICT sectors by using the IO analysis as an analysis tool. [21] applied a simple output multipliers method in order to get the other perspective regarding the role of ICT sectors in the Indonesian national economy from 1990-2005. The study investigated the other perspective regarding this role for the Japanese case was conducted by [22]. His analysis focused on the period from 1995-2005. Besides, using the Structural Decomposition Analysis (SDA), [23] compared the role for the cases of Indonesia and Japan.

The study focuses on the analysis of the fishery sector of the specific Asian country is important because it will describe the characteristics of the sector. Further, this analysis can also open the opportunity in observing this sector from an economic point of view. This study is conducted in order to (1) fulfill the gap of the study in the fishery topic, (2) get the characteristics, and (3) open the opportunity.

The purpose of this study is to analyze the dynamics of the fishery industry of the specific Asian country. In other words, the following research question, “how to describe the dynamics of the fishery sector of the specific Asian country?”, is tried to be solved by this study. This study focuses on the case of Indonesia. This country is chosen because their ocean area is wide. Using the previous studies as references, this study employs the IO analysis as an analysis tool. The dynamics are represented by the amendments of the total output of the sector. The trigger of these amendments is the changes of the final demand of the sector.

2. Methodology

The methodology of this study refers to the previous study which was conducted by [24]. The methodology of this study is described as follows. The first step is to elaborate the data used. This study uses the IO table of Indonesia for 2008. This table consists of 66 industries. These industries are explained in Appendix.

The second step is to define the Indonesian fishery sector used. This sector is described in Table 1. The third step is to conduct the calculations in order to know the impacts of the changes of the final demand on the total output of the analyzed sector. A demand-pull IO quantity model, one of the calculation tools in the IO analysis, is used in the calculations. [25] described that the following equation is a representation of this model:

\[
x^1 = L^0 f^1
\]

where \(x\), \(L\), and \(f\) are the matrices of the total outputs of sectors, the Leontief inverse, and the final demands of sectors, respectively. 0 and 1 explain initial and future periods, respectively. An initial period in this study is 2008. Table 2 exposes the final demand modification scenarios used. These scenarios, compared with the previous ones, are slightly different. One of the differences can be seen on the name of the scenario 3. The name is changed from “The change of outside households consumption” to “Households and non-profit private institutions consumptions modification”.

The conditions of “whole sector change” and “pure change” are included in above calculations. The former situation explains the condition which the changes of the components of the final demand are addressed to all Indonesian industrial sectors while the latter one only focuses on the discussed sector. In this study, the former situation will be called “condition A” while the term of “condition B” is applied to explain the latter one. The analysis regarding above impacts is discussed on the next step. Conclusions of this study and suggestions for further researches are exposed on the final step.

Table 1. Indonesian fishery sector used in this study.
Sector Number

23
Table 2. The final demand modification scenarios used in this study.

The Component of the Final Demand	Scenario 1	Scenario 2	Scenario 3
Exports Modification	Increase 30%	Constant	Constant
Imports Modification	Constant	Increase 30%	Constant
Households and Non-profit Private Institutions Consumptions Modification	Constant	Constant	Increase 30%

(Source: [26], with the slight modifications)

3. Results and analysis

Table 3 exposes the total output of the discussed sector for each scenario on condition A. Figure 1 explains in more details the dynamics of the total output of the sector on this condition. Based on the results, one can argue that, on the condition, the biggest positive impact on the total output of the analyzed sector is given by scenario 3, households and non-profit private institutions consumptions modification. Meanwhile, the negative impact is given by scenario 2, the change of imports.

On the other hand, Table 4 describes the total output of the analyzed sector for each scenario on condition B. Figure 2 exposes in more details the dynamics of the sector’s total output on this condition. Based on the results, one can say that, on the condition, the biggest positive impact on the total output of the discussed sector is given by scenario 3, households and non-profit private institutions consumptions change. On the contrary, the negative impact is delivered by scenario 2, the imports modification.

Above phenomena show that, in both conditions, the discussed sector has similar patterns, namely this industry receives the positive impacts from scenarios 1 and 3 while the opposite impact is obtained from scenario 2. Above phenomena also explain that, in both conditions, the biggest positive impact for the analyzed sector is given by scenario 3, the change of households and non-profit private institutions consumptions. Based on these results, one can argue that, the effective way to enhance the total output of the Indonesian fishery sector in the future are to increase the rate of households and non-profit private institutions in terms of consuming the products of the industry. Besides, to restrict import activities for these products also will be a good step.

The availability of the sector’s products in the especially domestic market is a key point in order to achieve above enhancement. Therefore, the obstacles of the goal should be eliminated. One of the serious obstacles is an illegal fishing activity. This activity can be omitted by executing the strict punishment for the perpetrators. On the other hand, this punishment can be smoothly executed if the law in terms of the activity is clear and enforced. The other essential point in order to achieve the goal is every party who has a relationship with the fishing should notice the importance of the marine ecosystem balance. This balance will ensure that the products are available for long periods of time.

Table 3. The total output of the discussed sector for each scenario on condition A (100 million Rupiah).

Sector Number	Sector Name	X_t, t = 2008	X_t+1, Scenario 1	X_t+1, Scenario 2	X_t+1, Scenario 3
23	Fishery	1,837,672.86	1,878,964.00	1,807,693.94	2,384,981.80
Figure 1. The dynamics of the total output of the Indonesian fishery sector (condition A).

Table 4. The total output of the discussed sector for each scenario on condition B (100 million Rupiah).

Sector Number	Sector Name	X_t, t = 2008	X_{t+1}, Scenario 1	X_{t+1}, Scenario 2	X_{t+1}, Scenario 3
23	Fishery	1,837,672.86	1,847,278.01	1,836,979.96	2,217,310.86

Figure 2. The dynamics of the total output of the Indonesian fishery sector (condition B).
4. Conclusions and further researches

This study investigated the dynamics of the total output of the Indonesian fishery industry when the changes of the final demand occurred. This study employed a demand-pull IO quantity model, one of the calculation tools in the IO analysis, as an analysis instrument. Two conditions were noticed in calculations and analysis parts, namely (1) “whole sector change”, and (2) “pure change”. An initial period in this study was 2008. One of the differences between current and previous studies could be seen on the name of the scenario 3, households and non-profit private institutions consumptions modification.

The results showed that, in both conditions, the discussed sector had similar patterns, namely this industry received the positive impacts from scenarios 1 and 3 while the negative impact was obtained from scenario 2. The results also explained that, in both conditions, the biggest positive impact for the analyzed sector was given by scenario 3, the change of households and non-profit private institutions consumptions. Based on the results, the suggestions from this study regarding the effective ways to enhance the total output of the fishery sector of Indonesia in the future were to increase the rate of households and non-profit private institutions in terms of consuming the products of the industry, and to restrict import activities for these outputs.

The dynamics of the total output of the Indonesian fishery sector could be investigated from this study. This study, however, did not conduct the deep analysis about how to effectively increase the output in the future. This analysis is needed in order to concretely map out the strategies for achieving the goal. Therefore, as a further research, this study proposes the analysis.

This study also did not conduct the investigations in order to know the dynamics of the total outputs of other Indonesian sectors. The results of these investigations will be good insights especially in order to know the characteristics of these sectors. Hence, this study also suggests the investigations as a further research.

The role of the fishery industry on the Indonesian economy, however, could not be observed from this study. The information about this role is needed in order to sharpen the strategies for increasing the total output of this industry in the future. Based on this reason, this study suggests the exploration in order to know the role as one of the future researches. This exploration will be more interesting if the other data are also included.

The other suggested future research from this study is to conduct the international comparison on the current discussion. This comparison will describe the characteristics of the fishery industries of analyzed countries when the changes of final demands occur. One of the examples is to compare developed and developing countries.
Appendix. Indonesian Industrial Sectors (66 Sectors)

No.	Sector Name
1	Paddy
2	Beans
3	Maize
4	Root crops
5	Vegetables and fruits
6	Other food crops
7	Rubber
8	Sugarcane
9	Coconut
10	Oil palm
11	Tobacco
12	Coffee
13	Tea
14	Clove
15	Fiber crops
16	Other estate crops
17	Other crops
18	Livestock
19	Slaughtering
20	Poultry and its products
21	Wood
22	Other forest products
23	Fishery
24	Coal and metal ore mining
25	Crude oil, natural gas, and geothermal mining
26	Other mining and quarrying
27	Industry of food processing and preservation
28	Industry of oil and fat
29	Industry of rice milling
30	Industry of all kinds of flour
31	Industry of sugar
32	Industry of other food products
33	Industry of beverages
34	Industry of cigarettes
35	Industry of yarn spinning
36	Industry of textile, wearing apparel, and leather
37	Industry of bamboo, wood, and rattan
38	Industry of paper and the products of cardboard
39	Industry of fertilizer and pesticide
40	Industry of chemicals
41	Petroleum refinery
42	Industry of rubber products and plastic
43	Industry of non-metallic mineral products
44	Industry of cement
45	Industry of basic iron and steel
46	Industry of non-ferrous basic metal
	Description
---	---
47	Industry of fabricated metal products
48	Industry of machine, electrical apparatus, and
	equipment of electric
49	Industry of transportation equipment and its
	repairment
50	Industry of other products
51	Electricity, gas, and water supply
52	Construction
53	Trade
54	Restaurant and hotel
55	Railway transport
56	Road transport
57	Water transport
58	Air transport
59	Services for supporting the transports
60	Communication
61	Financial institutions
62	Real estate and services of offices
63	General government and defense institutions
64	Social and community services
65	Other services
66	Activities not elsewhere classified

(Source: [27], with the slight modifications)
References

[1] The Prince’s Charities’ International Sustainability Unit 2012 Towards Global Sustainable Fisheries: The Opportunity for Transition [online] http://www.pcfisu.org/wp-content/uploads/2012/01/ISUMarineprogramme-towards-global-sustainable-fisheries.pdf (accessed 4 January 2016) [2] The maribus gGmbH 2013 World Ocean Review 2: The Future of Fish-The Fisheries of the Future [online] http://worldoceanreview.com/wp-content/downloads/wor2/WOR2_english.pdf (accessed 4 January 2016) [3] Gillett R and Lightfoot C 2001 The Contribution of Fisheries to the Economies of Pacific Island Countries [online] http://www.adb.org/sites/default/files/publication/28819/contribution-fisheries.pdf (accessed 5 January 2016) [4] The Environment Agency 2009 Economic Evaluation of Inland Fisheries: Managers Report from Science Project SC050026/SR2 [online] https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/291109/scho0109bgi-e-e.pdf (accessed 5 January 2016) [5] Faunce C H, Cahalan J, Bonney J and Swanson R 2015 Can observer sampling validate industry catch reports from trawl fisheries? Fisheries Research 172 34–43 [6] Jensen F, Frost H, Thøgersen T, Andersen P and Andersen J L 2015 Game theory and fish wars: the case of the Northeast Atlantic mackerel fishery Fisheries Research 172 7–16 [7] Kenney J L, Rahman T, Manuel H and Winger P D 2015 Bruising pattern in commercially harvested yellowtail flounder (Limanda ferruginea) Fisheries Research 172 79–84 [8] Moraga A D, Wilson A D M and Cooke S J 2015 Does lure colour influence catch per unit effort, fish capture size and hooking injury in angled largemouth bass? Fisheries Research 172 1–6 [9] Piroddi C, Gristina M, Zylich K, Greer K, Ulman A, Zeller D and Pauly D 2015 Reconstruction of Italy’s marine fisheries removals and fishing capacity, 1950-2010 Fisheries Research 172 137–47 [10] Rooper C N, Williams K, Robertis A D and Tuttle V 2015 Effect of underwater lighting on observations of density and behavior of rockfish during camera surveys Fisheries Research 172 157–67 [11] Sajdlová Z et al 2015 Fish behaviour in response to a midwater trawl footrope in temperate reservoirs Fisheries Research 172 105–13 [12] Wakefield C B, Williams A J, Newman S J, Bunel M, Boddington D K, Vourey E and Fairclough D V 2015 Variations in growth, longevity and natural mortality for the protogynous hermaphroditic eightbar grouper Hyporthodus octofasciatus between the Indian and Pacific Oceans Fisheries Research 172 26–33 [13] Winter A and Arkhipkin A 2015 Environmental impacts on recruitment migrations of Patagonian longfin squid (Doryteuthis gahi) in the Falkland Islands with reference to stock assessment Fisheries Research 172 85–95 [14] Zuhdi U 2015 The dynamics of Indonesian creative industry sectors: an analysis using input-output approach Journal of the Knowledge Economy 6 1177–90 [15] Zuhdi U 2015 An application of input-output analysis in analyzing the impacts of final demands changes on the total outputs of Japanese energy sectors: a further study Journal of Physics: Conference Series 622 012041 [16] Zuhdi U, Mori S and Kamegai K 2015 Forecasting the influences of information and communication technology on the structural changes of Japanese industrial sectors: a study using statistical analysis International Journal of Social, Behavioral, Educational, Economic and Management Engineering 9 531–7 [17] Zuhdi U 2015 An analysis of the role of information and communication technology sectors on Japanese national economy from 1995 through 2005: an application of multiplier analysis IOP Conference Series: Earth and Environmental Science 23 012014 [18] Zuhdi U 2015 An application of multiplier analysis in analyzing the role of information and communication technology sectors on Indonesian national economy: 1990-2005 IOP Conference Series: Earth and Environmental Science 23 012015 [19] Zuhdi U, Mori S and Kamegai K 2014 Analysis of influences of GDP and ICT on Indonesian industrial structural changes using statistical analysis: 1990-2005 Journal of Finance and Accountancy 17 1–19
[20] Zuhdi U 2014 The impacts of final demand changes on total output of Indonesian ICT sectors: an analysis using input-output approach IOP Conference Series: Materials Science and Engineering 58 012011

[21] Zuhdi U 2014 Using multipliers analysis in order to get another perspective related to the role of ICT sectors in national economy of Indonesia: 1990-2005 Journal of Physics: Conference Series 495 012051

[22] Zuhdi U 2014 The other perspective related to the role of information and communication technologies sectors in national economy: the case of Japan Advanced Science Letters 20 483–6

[23] Zuhdi U, Mori S and Kamegai K 2012 Analyzing the role of ICT sector to the national economic structural changes by decomposition analysis: the case of Indonesia and Japan Procedia-Social and Behavioral Sciences 65 749–54

[24] Zuhdi U 2014 The dynamics of total output of Indonesian information and communication technology sector when final demand changes occur: an analysis using input-output approach Advanced Science Letters 20 2254–7

[25] Miller R E and Blair P D 2009 Input-Output Analysis: Foundations and Extensions (Cambridge: University Press)

[26] Zuhdi U, Prasetyo A D and Sianipar C P M 2013 Analyzing the dynamics of total output of Japanese creative industry sectors: an input–output approach Procedia Economics and Finance 5 827–35

[27] Zuhdi U 2014 The role of information and communication technology sectors in Indonesian national economy from 1990 through 2008: an analysis using input-output approach Advanced Science Letters 20 1932–5