Synthesis of Some N-(4-(Aryl)-2-Thioxo-1,3-Thiazol-3(2H)-yl)Pyridine-4-Carboxamide as Antimicrobial and Anti-inflammatory Agents

Vikas G Rajurkar*, Sujata V Lambe and Vinayak K Deshmukh

Department of Pharmaceutical Chemistry, MES’s College of Pharmacy, Sonai, Newasa Taluka, Ahmednagar Dist, Maharashtra-414105, India

Abstract

A series of potential bioactive compounds, N-(4-aryl-2-thioxo-1,3-thiazol-3(2H)-yl)pyridine-4-carboxamide has been synthesized and screened for antibacterial, antifungal, anti-inflammatory activity by minimum inhibitory concentration and protein denaturation method respectively. The compounds Iic and IIj were found to be broad spectrum antimicrobial agents at minimum inhibitory concentration value against E. coli, K. pneumonia, S. aureus, B. subtilis, A. nigra, and S. cerevisiae respectively. In anti-inflammatory activity, compounds Iic, IIf, Iih, and IIj at 100 mg/ml and compound III at 200 mg/ml were found significant active agent.

Keywords: Antimicrobial; Anti-inflammatory; MIC; Thiazol

Introduction

There has been a constant battle between humans and the multitude of microorganisms that cause infections and diseases; the treatment of bacterial infections remains a challenging job because of the increasing number of multidrug-resistant microbial pathogens. Despite the many chemotherapeutics available, the emergence of old and new antibiotic-resistant bacterial strains, mutations in microbial genomes, the incorrect use of antibiotics has been thoroughly demonstrated to greatly increase the development of resistant genotypes has generated a substantial need for new classes of anti-bacterial agents [1-2]. Various antibacterial agents greatly increase the development of resistant genotypes has generated a substantial need for new classes of anti-bacterial agents [1-2], hypoglycemic [4], anti-inflammatory and analgesic agents [5], anti-diabetic [6], antihyperglycemic [7]. Above mentioned facts prompted us to synthesis a series of N-(4-(aryl)-2-thioxo-1,3-thiazol-3(2H)-yl)pyridine-4-carboxamide compounds having antimicrobial and anti-inflammatory activity. The structures of the compounds were confirmed by FT-IR, 1H-NMR, GC-mass spectroscopy and elemental analysis data studies; their antibacterial, antifungal, and anti-inflammatory activities were performed by MIC (Minimum Inhibitory Concentration) method.

Experimental

Material and methods

All reagents and solvents used in the present study were of analytical grade and procured from Loba Chemie (India). The progress of the reactions were monitored by TLC using Merck silica gel precoated plate, with appropriate mobile phase, visualization by iodine vapour and UV chamber and product are purified by recrystallization technique. All the melting points recorded on a Veego apparatus (Mumbai, India) and the IR spectra were recorded on FT-IR spectrophotometer, Varian, Model: 600. The NMR spectra were recorded on Bruker′s 200 MHz spectrometer and spectral data are recorded in ppm downfield to TMS (tetramethylsilane), GC Mass were recorded on GCMS-QP-5050 Shimadzu (Japan), and Perkin Elmer 2400 Series II CHN Elemental Analyzer. The standard drugs norfloxacin, ketocazole, and ibuprofen were obtained as gift sample from Wockhardt Ltd., Aurangabad, India.

Synthesis of potassium-pyridine-dithiocarbazate (I)

In a 250 ml round bottom flask, isoniazide (0.075 mol, 10.28 g) was dissolved in a solution of potassium hydroxide (0.075 mol, 4.2 g) in 100 ml of absolute ethanol and carbon disulphide (0.075 mol). The reaction mixture was agitated overnight and diluted with 200 ml of dry ether. The solid obtained was filtered and washed with dry ether, yield 15.05 g (80%) [8].

General procedure for synthesis of N-(4-(aryl)-2-thioxo-1,3-thiazol-3(2H)-yl)pyridine-4-carboxamide (II)

In a 250 ml round bottom flask, potassium-pyridine-dithiocarbazate I (0.01 mol, 2.51 g) was dissolved in a solution of α-bromo ketone (0.01 mol) in 100 ml of absolute ethanol and was refluxed for 8 h. The resultant solution was concentrate, and precipitate obtained after cooling was collected, washed with cold water, dried and recrystallized from ethanol to give good yield [9,10]. All the compounds were obtained in good yield, TLC mobile phase - benzene:pet ether (6:4). Scheme 1 and Table 1.

N-(4-biphenyl-4-yl-2-thioxo-1,3-thiazol-3(2H)-yl)pyridine-4-carboxamide IIa: FT-IR ν max (KBr, cm⁻¹): 1368 (C=S), 1402(C=C), 1651 (O-C), 1661(C=N), 2235(C=N), 3150(N-H), 1H-NMR (DMSO, 400 MHz) δ: 5.20 (s, 1H, NH), 7.41-7.59 (m, 9H, aromatic), 8.11 (s, 1H, sec. amide), 8.89-7.81 (m, 4H, pyridine), MS: [M⁺] at m/z 389.

N-[4-(2-hydroxyphenyl)-2-thioxo-1,3-thiazol-3(2H)-yl]pyridine-4-carboxamide IIb: FT-IR ν max (KBr, cm⁻¹): 1000 (C-O), 1370 (C=S), 1453 (C=C), 1636 (O=C), 1665 (C=N), 2250 (C-N), 3120 (N-H), 3645 (OH). 1H-NMR (DMSO, 400 MHz) δ: 5.15 (s, 1H, ethylene), 8.0 (s, 1H, sec. amide), 8.00 (s, 1H, pyridine), 6.80-7.50 (m, 4H, aromatic), 4.90 (s, 1H, OH). MS: [M⁺] at m/z 329.

N-[4-(4-chlorophenyl)-2-thioxo-1,3-thiazol-3(2H)-yl]pyridine-4-carboxamide IIc: FT-IR ν max (KBr, cm⁻¹): 750 (C-Cl), 1360 (C-S), 1600 (C-C), 1610 (O=C), 1709 (C=N), 2275 (C-N), 3160 (N-H). 1H-NMR (DMSO, 400 MHz) δ: 5.20 (s, 1H, ethylene), 7.38-7.50 (m, 5H, aromatic), 7.90 (s, 1H, sec. amide), 8.70-7.95 (m, 4H, pyridine), MS: [M⁺] at m/z 347.

*Corresponding author: Vikas Gopalrao Rajurkar, MES’s College of Pharmacy, Sonai, Newasa Taluka, Ahmednagar Dist, Maharashtra-414105, India, Tel: +91-9860482926; Fax: 02427-230948; E-mail: vikas_rajurkar_1973@yahoo.co.in

Received May 19, 2015; Accepted June 22, 2015, Published June 24, 2015

Citation: Rajurkar VG, Lambe SV, Deshmukh VK (2015) Synthesis of Some N-(4-(Aryl)-2-Thioxo-1,3-Thiazol-3(2H)-yl)Pyridine-4-Carboxamide as Antimicrobial and Anti-inflammatory Agents. Med chem 5: 285-289. doi: 10.4172/2161-0444.1000276

Copyright: © 2015 Rajurkar VG, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
N-[4-(4-bromophenyl)-2-thioxo-1,3-thiazol-3(2H)-yl]pyridine-4-carboxamide IIc: FT-IR ν max (KBr, cm⁻¹): 995 (C-Br), 1393 (C=S), 1453 (C=S), 1540 (C=C), 1636 (O=C), 1734 (C=N), 1755 (C=O), 1793 (C=O). 1H-NMR (DMSO, 400 MHz) δ: 5.21 (s, 1H, ethylene), 7.72-7.54 (m, 4H, aromatic), 8.16 (s, 1H, sec. amide), 8.82-7.61 (m, 4H, pyridine). MS: [M]+ at m/z 327.

N-[4-(4-methylphenyl)-2-thioxo-1,3-thiazol-3(2H)-yl]pyridine-4-carboxamide II: FT-IR v max (KBr, cm⁻¹): 1444(C=S), 1490 (C=CH), 1448(C=S), 1635(O=C), 1675(C=N), 2240(C-N), 3210(N-H).

1H-NMR (DMSO, 400 MHz) δ: 2.38 (s, 3H, CH₃), 5.57 (s, 1H, ethylene), 7.18-7.26 (m, 4H, aromatic), 8.20 (s, 1H, sec. amide), 8.95-7.61 (m, 4H, pyridine). MS: [M]+ at m/z 328.

N-[4-(4-methoxyphenyl)-2-thioxo-1,3-thiazol-3(2H)-yl]pyridine-4-carboxamide II: FT-IR v max (KBr, cm⁻¹): 1444(C=S), 1587(C=C), 2252(C=N), 1490(C=O), 1636(O=C) 1675(C=N), 2220(C-N), 3208 (N-H), 3.85 (s, 3H, OCH₃). MS: [M]+ at m/z 328.

H-NMR (DMSO, 400 MHz) δ: 3.85 (s, 3H, OCH₃), 5.65 (s, 1H, ethylene) 7.27-7.36 (m, 4H, aromatic), 7.96 (s, 1H, sec. amide), 8.99-7.76 (m, 4H, pyridine). MS: [M]+ at m/z 328.

Isoniazide

Citation: Rajurkar VG, Lambe SV, Deshmukh VK (2015) Synthesis of Some N-[4-(Aryl)-2-Thioxo-1,3-Thiazol-3(2H)-yl]pyridine-4-Carboxamide as Antimicrobial and Anti-inflammatory Agents. Med chem 5: 285-289. doi: 10.4172/2161-0444.1000276

Table 1: Physicochemical characterization of N-[4-(aryl)-2-thioxo-1,3-thiazol-3(2H)-yl]pyridine-4-carboxamide (II).

Comp	R	Mole. formula	M.W	M.P. (°C)	Yield (%)
IIA	Br–Ph	C₈H₅N₂O₂S₃	389	240-242	60
IIb	o-HO-Ph	C₇H₆N₂O₂S₃	329	125-126	57
IIc	p-Cl-Ph	C₇H₆N₂O₂S₃	347	240-241	60
IID	p-Br-Ph	C₇H₅BrN₂O₂S₃	392	139-140	59
IEEE	Chromene	C₃H₄N₂O₃S	381	130-131	67
IIF	p-OCH₃-Ph	C₇H₅N₂O₂S₃	343	95-101	55
IIG	p-NH₃-Ph	C₇H₅N₂O₂S₃	328	160-161	72
IIH	m-NH₂-Ph	C₇H₆N₂O₂S₂	328	160-161	72
IIJ	p-OH-Ph	C₇H₆N₂O₂S₃	329	90-91	50
IIK	Ph	C₇H₅N₂O₂S₃	315	137-138	78
IIL	p-NO₂-Ph	C₇H₅N₂O₂S₂	358	120-121	72
IIM	m-NO₂-Ph	C₇H₆N₂O₂S₃	358	132-133	45

Scheme 1: Scheme of synthesis for N-[4-(aryl)-2-thioxo-1,3-thiazol-3(2H)-yl]pyridine-4-carboxamide (II).
The relationship between chemical structure and antimicrobial, anti-inflammatory activity is summarized as follows.

The aryl ring should contain one substituent. Some substituents that seem to enhance antimicrobial, anti-inflammatory activity are chloro, methyl, methoxy, hydroxyl, amino and nitro groups. Compounds containing the p-Cl or -OH substituent are orders of broad spectrum than the original (first generation) compounds. It is believed that the high activity of these compounds is a function of the electron withdrawing group substitution on aryl ring at position no. 4 on thiazol ring. Among these compounds, it is thought that the spatial relationship between the electron donating groups contain compounds are less or inactive.

Results and Discussion

The synthesis of N-(4-(aryl)-2-thioxo-1,3-thiazol-3(2H)-yl)pyridine-4-carboxamide derivatives are depicted in Scheme 1. The IR spectra, reveals that functional groups present in the molecule appeared at their characteristic frequency characteristic frequency C=O, str. between 1661-1755 cm$^{-1}$, str. between 1344-1348 cm$^{-1}$, str. between 1360-1456 cm$^{-1}$, C=N, str. between 2357-2370 cm$^{-1}$, C-NO$_2$, str. between 1597-1666 cm$^{-1}$, C-Cl, str. between 1402-1456 cm$^{-1}$, C-CH$_3$, str. between 2920-2930 cm$^{-1}$, C-H, str. between 2955-2985 cm$^{-1}$, C-NH, str. between 1661-1755 cm$^{-1}$, C-H, str. between 1402-1607 cm$^{-1}$, O-H, str. between 3545-3647 cm$^{-1}$, C-Cl, str. between 750 cm$^{-1}$, C-Br, str. between 880-950 cm$^{-1}$, C-N, str. between 1490-1940 cm$^{-1}$, C=N, str. between 3548-3556 cm$^{-1}$, C-NO$_2$, str. between 1342-1344 cm$^{-1}$, C=O, str. between 1597-1677 cm$^{-1}$, C-O-C, str. at 1711 cm$^{-1}$, C-CH$_3$, str. at 1490 cm$^{-1}$ etc. The chemical shift (δ) for sec. amide hydrogen was observed in the range of 9.70-9.85 ppm, δ value for methyl hydrogen was observed at 2.38 ppm, δ value for methoxy hydrogen was observed at 3.85 ppm, δ value for ethylene hydrogen was observed in the range of 5.15-5.69 ppm, δ value for hydroxyl hydrogen was observed in the range of 4.90-5.68 ppm, δ value for amino hydrogen was observed in the range of 5.41-5.42 ppm, δ value for aromatic hydrogen was observed in the range of 6.25-8.24 ppm, δ value for pyridine hydrogen was observed in the range of 7.61-8.99 ppm. The m/e value was observed, e.g., in case of Ia-Ilm at 313-392 (M$^+$). So, from the physical and spectral data, we can conclude that the desired compounds synthesized successfully.

Antimicrobial activity

From in *vivo* antibacterial activity. In case of *E. coli, K. pneumonia*, *S. aureus* and *B. subtilis* compounds IIC, IId, IIg and Ilm (p-Cl-PH, p-OCH$_3$-PH, p-CH$_3$, p-OH, m-NO$_2$-PH) were found to have significant anti-inflammatory activity which is 1 folds less than the standard drug nirfloxacin, while in *vitro* antifungal activity. In case of *A. niger* and *S. cerevisiae* compounds IIC, III, IIIf and IId (p-Cl-PH, p-CH$_3$, p-OH, m-NO$_2$-PH) found to have significant activity which is 1 folds less than the standard drug ketoconazole. In anti-inflammatory activity, compounds IIC, III, IIIf, and IIg at 100 mg/mL (p-Cl-PH, p-OH, p-NH$_2$-PH, and p-OH) were found to have significant activity which is 1 folds less than the standard drug ibuprofen and at 200 mg/mL compound III (p-NO$_2$-PH) found significant active which is 1/10th less than standard drug ibuprofen (Tables 2 and 3). Thus from the obtained antibacterial, antifungal and anti-inflammatory activity data we could conclude that the electron withdrawing groups substituted at specific position on phenyl ring i.e., (p-Cl-PH, p-OCH$_3$-PH, p-OH, m-NO$_2$-PH, p-CH$_3$-PH, p-NH$_2$-PH and p-NO$_2$-PH) are contributing positively for antibacterial and anti-inflammatory activity.

Conclusion

A series of N-(4-(aryl)-2-thioxo-1,3-thiazol-3(2H)-yl)pyridine-4-carboxamide had been synthesized in quantitative yields with the use of conventional method and evaluated for their *in vitro* antimicrobial and anti-inflammatory activity result are shown in Tables 2 and 3.

Citation: Rajurkar VG, Lambe SV, Deshmukh VK (2015) Synthesis of Some N-(4-(Aryl)-2-Thioxo-1,3-Thiazol-3(2H)-yl)Pyridine-4-Carboxamide as Antimicrobial and Anti-inflammatory Agents. Med chem 5: 285-289. doi: 10.4172/2161-0444.1000276
Citation: Rajurkar VG, Lambe SV, Deshmukh VK (2015) Synthesis of Some N-(4-(Aryl)-2-Thioxo-1,3-Thiazol-3(2H)-yl)Pyridine-4-Carboxamide as Antimicrobial and Anti-inflammatory Agents. Med chem 5: 285-289. doi: 10.4172/2161-0444.1000276

Table 2: Minimum inhibitory concentration values (µg/ml) of derivatives (IIa-IIm) against microbes.

Comp	E. Coli	K. pneumoniae	S. aureus	B. subtilis	A. niger	S. cerevisiae
Ila	45	68	49	33	59	57
IIb	48	45	38	36	32	36
Iic	27	39	31	27	36	25
IId	52	62	74	37	37	61
Ile	67	69	49	45	52	77
IIf	58	68	77	43	31	27
IIf	24	38	30	25	56	57
III	76	88	82	67	72	72
Ilj	60	70	55	62	61	46
Ilk	22	36	28	23	29	23
Ill	63	69	58	41	90	58
IIm	51	88	79	52	47	68
IIg	27	51	47	34	60	48
IIh	48	51	47	34	60	48
IIi	60	70	55	62	61	46
IJf	63	69	58	41	90	58
IIg	27	51	47	34	60	48
IIl	48	51	47	34	60	48
Norfloxacin		--	--	--	--	--
Ketoconazole		--	--	--	--	--

Table 3: Anti-inflammatory activity by % inhibition of protein denaturation for derivatives (IIa-IIm).

Comp	Anti-inflammatory effect (%)	Inhibition (%)		
	100 µg/ml	200 µg/ml	100 µg/ml	200 µg/ml
Ila	0.042 ± 0.00108	0.0467 ± 0.00039	55.78	48.73
IIb	0.031 ± 0.00083	0.0423 ± 0.00080	66.63	55.47
Iic	0.021 ± 0.00082	0.0321 ± 0.00193	77.15	66.21
IId	0.033 ± 0.00086	0.0473 ± 0.00102	64.73	50.21
Ile	0.028 ± 0.00100	0.0362 ± 0.00095	69.89	59.78
IIf	0.025 ± 0.00097	0.0332 ± 0.00116	72.94	65.05
IIg	0.048 ± 0.00047	0.0528 ± 0.00140	49.26	44.42
IIh	0.017 ± 0.00396	0.0495 ± 0.00285	80	48.21
III	0.049 ± 0.00030	0.0558 ± 0.00186	48.42	41.26
Ilj	0.023 ± 0.00045	0.0318 ± 0.00017	75.78	66.52
IIk	0.036 ± 0.00023	0.0481 ± 0.00039	62.1	49.36
III	0.037 ± 0.00029	0.0216 ± 0.00084	60.42	70.26
IIm	0.029 ± 0.00037	0.0317 ± 0.00062	69.26	66.63
Ibuprofen	0.018 ± 0.00039	0.0225 ± 0.00010	80.42	76.31
Control	0.095 ± 0.00023	0.0950 ± 0.00023	---	---

The results are expressed as mean ± SDM (n=6). Significance was calculated by using one-way ANOVA with Dunnet’s t-test.

References
1. Yurttas L, Ozkay Y, Kaplanclikli ZA, Tunali Y, Karaca H (2013) Synthesis and antimicrobial activity of some new hydrazone-bridged thiazole-pyrrole derivatives. J Enzyme Inhib Med Chem 28: 830-835.
2. Parkhomenko O, Kovalenko SM, Chernykh VP, Osolodchenko TP (2005) Synthesis and antimicrobial activity of 5-oxo-1-thioxo-4,5-dihydro[1,3]thiazolo[3,4-a]quinazolines. ARKIVOC B: 82-88.
3. Patel KH, Mehta AG (2012) Synthesis and antifungal activity of [(4-(2-naphthalenyl)- thiazol-2-yl)-2-(substituted phenyl)-2-phenyl- 4-thioxo-1,3,5-oxadiazine] derivatives. Der Chemica Sinica 3: 1410-1414.
4. Hui-peng S, Kang T, Lei L, Zhu-fang S, Shou-xin L, et al. (2011) Novel N-(pyrimidin-4-yl)thiazol-2-aminederivatives as dual-action hypoglycemic agents that activate GK and PPARc. Acta Pharmaceutica Sinica B 1: 166-171.

5. Baheti KG, Thore SN, Gupta SV (2012) Synthesis and pharmacological evaluation of 5-methyl-2-phenylthiazole-4-substituted heteroazoles as a potential anti-inflammatory and analgesic agent. J Saudi Chem Soc (in press).

6. Tegginamath G, Kamble RR, Kattimani PP, Margankop SB (2011) Synthesis of 3-aryl-4-[[2-[4-[(6-substituted-coumarin-3-yl)-1,3-thiazol-2-yl]hydrazinylidene]methyl]ethyl]-3-sydrones using silica sulfuric acid and their anti diabetic, DNA cleavage activity. Arabian J Chem (in press).

7. Khan SA, Lamba HS, Alam O, Mohd I (2008) Synthesis and antihyperglycemic activity of [2-(substituted phenyl)-3-[4-(1-naphthyl)-1,3-thiazol-2-yl]amino]-4-oxo-1,3-thiazolidin-5-yl]Acetic Acid. Asian J Chem 20: 4987-4993.

8. Bhanojirao ME, Rajurkar VG (2009) Synthesis and biological evaluation of 5-pyridine-4-aryl idine amino)-3-mercaptop-4-(H)-1,2,4-triazole. Asian J Chem 21: 4733-4736.

9. Reza S, Yasin MS, Tahereh Y, Maryam K (2012) Synthesis, NMR, Vibrational and Mass Spectroscopy with DFT/HF Studies of 4-(4/-Bromophenyl)-2-Mercaptothiazole Structure. Oriental J Chem 28: 627-638.

10. Abolfath A, Reza S, Milad T, Halimeh R, Mehdi D (2013) Synthesis and Studies of Potential Antifungal and Antibacterial Agents New Aryl Thiazolyl Mercury (II) Derivatives Compounds. J Chem 186531: 6.

11. Khloia P, Kumar P, Mittal A, Aggarwal NK, Sharma PK (2013) Synthesis of some novel 4-arylidene pyrazoles as potential antimicrobial agents. Org Med Chem Lett 3: 9.

12. Geronikaki A, Hadjiiovliou-Litina D, Zablotskaya A, Segal I (2007) Organosilicon-containing thiazole derivatives as potential lipoxgenase inhibitors and anti-inflammatory agents. Bioinorg Chem Appl 2007: 92145.