Level-rank duality of $SU(2)_k$ Chern-Simons theory, and of hypergraph and magic states

Howard J. Schnitzer

Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA

E-mail: schnitzr@brandeis.edu

ABSTRACT: The level-rank duality of $SU(2)_k$ Chern-Simons theory is discussed, and applied to graph, hypergraph, and magic states.
1 Introduction

Level-rank duality of Chern-Simons theory and WZW theories has a long history, [1–6] with many applications. It generally involves transposition of the Young tableaux of the representations for a pair of theories, linked by the duality. However, in general level-rank duality is not a one-to-one map between the tableaux of the two theories. For example, $SU(2)_3$ has four states, while $SU(3)_2$ has six. However, using cominimal equivalent or simple current maps relating states, [5] a one-to-one map of the representations is possible. Note that $SU(2)_3/Z_3$ and $SU(3)_2/Z_2$ have just two states related one-to-one by transposition of the respective Young tableaux. The generalization of this theme is central to this paper.

It is the purpose of this paper to discuss the level-rank duality of $SU(2)_k$ and its relationship to $SU(k)_2$. The generalized Pauli group can be defined for each side of the duality, which can then be used to construct graph and hypergraph states for the level-rank pairs. Since a sub-set of hypergraph states describe magic states, level-rank duals of magic states also results.

2 Level-rank dualities of $SU(2)_k$

The integral representations of $SU(2)_k$ Chern-Simons theory can be described by a single-row Young tableau with $0 \leq k$ boxes, while that of $SU(k)_2$ is described by a Young tableau with two columns, l_1 and l_2, where $l_1 \geq l_2$, and l_1 ranges from 0 to $k - 1$. Thus, $SU(2)_k$ has $k + 1$ states, while $SU(k)_2$ has $\frac{1}{2}k(k + 1)$ states. Therefore a transpose map between the representations of $SU(2)_k$ and $\tilde{SU}(k)_2$ is not one-to-one, where \tilde{SU} indicates the transpose of the Young tableau. However, making use of the orbits of cominimal maps or equivalently simple current maps, [5] one can obtain level-rank dual maps which are one-to-one for the Young tableaux. The two cases that we focus on are

$$SU(2)_{2k} = S\tilde{U}(2k)_2/Z_k$$ \hspace{1cm} (2.1)

which has $2k + 1$ states, and

$$SU(2)_{2k+1}/Z_2 = S\tilde{U}(2k + 1)_2/Z_{2k+1}$$ \hspace{1cm} (2.2)

which has $k + 1$ states. In the next subsection we consider the generalized Pauli group for these two cases.
2.1 Generalized Pauli group

The qudit Pauli group for a d-dimensional system, for both d odd and even, is described by Farinholt [7]. One defines the operators

$$ x = \sum_{x \in \mathbb{Z}_d} |x + 1\rangle\langle x| $$

(2.3)

and

$$ Z = \sum_{x \in \mathbb{Z}_d} \omega^x |x\rangle\langle x| $$

(2.4)

where $\omega = \exp \left(\frac{2\pi i}{d} \right)$ is a primitive root of unity. We focus on d-odd for simplicity for the dual pairs (2.1) and (2.2). For the dual pairs of (2.1), d is odd for any integer k. However, for (2.2), d odd requires k even.

With these restrictions, the operators X and Z are defined for the level-rank dual pairs (2.1) and (2.2). Given the level-rank dual pairs (2.1) and (2.2), and the restriction to d odd, identify $X = \tilde{X}$ and $Z = \tilde{Z}$ for the Pauli operators of both sides of (2.1) and (2.2). Thus the dual pairs of $X = \tilde{X}$ and $Z = \tilde{Z}$ enables one to define level-rank dual pairs of graphs and hypergraph states, which we consider in the next sub-section.

2.2 Graph and hypergraph states

Graph states There are many equivalent constructions of graph states [8–12]. We follow arxiv:1612.06418 for a definition of qudit graph states. The multigraph is $G = (V, E)$, with vertices V and edges E, where an edge has multiplicity $m_e \in \mathbb{Z}_d$. To G associate a state $|G\rangle$ such that to each vertex $i \in V$, there is a local state

$$ |+\rangle = |p_0\rangle = \frac{1}{\sqrt{d}} \sum_{q=0}^{d-1} |q\rangle $$

(2.5)

Define

$$ S^* |0\rangle = \frac{1}{\sqrt{d}} \sum_{q=0}^{d-1} |q\rangle $$

$$ = |+\rangle = |p_0\rangle. $$

(2.6)

To each edge $e = \{i, j\}$ apply the unitary

$$ Z_e^{m_e} = \sum_{q_i=0}^{d-1} |q_i\rangle\langle q_i| \otimes (Z_j^{m_e})^{q_i} $$

(2.7)
to the state

\[|+\rangle^V = \bigotimes_{i \in V} |+\rangle_i \tag{2.8} \]

The graph state is

\[|G\rangle = \prod_{e \in E} Z_{m_e} |+\rangle^V \tag{2.9} \]
\[= \prod_{e \in E} Z_{m_e} \bigotimes_{i \in V} |+\rangle_i \tag{2.10} \]

Every stabilizer state is LC equivalent to a graph state, while the Clifford group enables conversion between different multigraphs [8–12].

Hypergraph states We again follow arxiv:1612.06418 for the construction of qudit multi-hypergraph states. Given a multi-hypergraph \(H = (V, E) \), associate a quantum state \(|H\rangle \), with \(m_e \in \mathbb{Z}_d \) the multiplicity of the hyperedge \(e \). To each vertex \(i \in V \), associate a local state

\[|+\rangle = \frac{1}{\sqrt{d}} \sum_{q=0}^{d-1} |q\rangle \tag{2.11} \]

To each hyperedge \(e \in E \), with multiplicity \(m_e \), apply the controlled unitary \(Z_{m_e} \) to the state

\[|+\rangle^V = \bigotimes_{i \in V} |+\rangle_i \tag{2.12} \]

The hypergraph state is

\[|H\rangle = \prod_{e \in E} Z_{m_e} |+\rangle^V \tag{2.13} \]

and the elementary hypergraph state is

\[|H\rangle = \sum_{q=0}^{d-1} |q\rangle\langle q| \otimes \left(Z_{m_e} \right)^q |+\rangle^V \tag{2.14} \]

For \(d \) prime, all \(n \)-elementary hypergraph states are equivalent under SLOCC.

Hypergraph and graph states admit a representation in terms of Boolean functions,

\[|H\rangle = \sum_{q=0}^{d-1} \omega_f(q) |q\rangle \tag{2.15} \]
with \(f : \mathbb{Z}_d^n \to \mathbb{Z}_d \), where
\[
f(x) = \sum_{i_1, \ldots, i_k \in V} x_{i_1} \cdots x_{i_k} \tag{2.16}
\]
For graph states, \(f(x) \) is quadratic, i.e.
\[
f(x) = \sum_{i_1, i_2 \in V} x_{i_1} x_{i_2} \tag{2.17}
\]
while for \(f(x) \) cubic or higher, \(|H\rangle\) is a hypergraph state. Therefore, for quadratic \(f(x) \), one has a representation of stabilizer states, up to LC equivalence. For \(f(x) \) cubic or higher, \(|H\rangle\) represents hypergraph states which contain “magic” states. Examples of magic states are the CCZ state and Toffoli states, constructed from appropriate gates. Thus
\[
\text{CCZ}|x_1 x_2 x_3\rangle = \omega^{x_1 x_2 x_3} |x_1 x_2 x_3\rangle \tag{2.18}
\]
with
\[
|\text{CCZ}\rangle = \text{CCZ}|+^{\otimes 3}\rangle \tag{2.19}
\]
as an example of a magic hypergraph state. Similarly
\[
|\text{Toff}\rangle = \text{Toff}|+^{\otimes 3}\rangle \tag{2.20}
\]
Explicitly,
\[
\text{Toff}|i, j, k\rangle = |i, j, ij + k, \mod d\rangle \tag{2.21}
\]

2.3 Level-rank duality

The level-rank duality of the Pauli operators \(X, \tilde{X}, Z, \tilde{Z} \) in 2.1 allows one to express the graph and hypergraph states (2.7), (2.9), (2.10), (2.13), (2.14) as the level-rank duals of graph and hypergraph states for \(SU(2)_{2k} \) and for \(SU(2)_{2k+1}/\mathbb{Z}_2 \) \((k \text{ even})\). Since the hypergraph states contain magic states, there is a one-to-one map between such magic states and their level-rank duals.

It has been shown, using level-rank duality, that a universal topological quantum computer based on Chern-Simons theory for \(SU(2)_2 \) [13] also implies an analogous universal quantum computer based on \(SU(3)_2 \) [14]. However, this result depends on the level-rank duality of the Jones representation of the braid group, which differs from the duality discussed in this paper.

Acknowledgments

We thank Jonathan Harper and Isaac Cohen-Abbo for their help in preparing the manuscript.
References

[1] S.G. Naculich and H.J. Schnitzer, Duality relations between SU (N)_k and SU (k)_N WZW models and their braid matrices, Physics Letters B 244 (1990) 235.

[2] S.G. Naculich and H.J. Schnitzer, Duality between SU(N)_k and SU(k)_N WZW models, Nuclear Physics B 347 (1990) 687.

[3] A. Kuniba and T. Nakanishi, in: Proc. Int. Coll. on modern quantum field theory, Bombay, 1990.

[4] S. Naculich, H. Riggs and H. Schnitzer, Group-level duality in WZW models and Chern-Simons theory, Physics Letters B 246 (1990) 417.

[5] E.J. Mlawer, S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Group-Level duality of WZW Fusion Coefficients and Chern-Simons Link Observables, Nuclear Physics B 352 (1991) 863.

[6] S.G. Naculich, H.A. Riggs and H.J. Schnitzer, Simple-Current Symmetries, Rank Level Duality, and Linear Skein Relations for Chern-Simons graphs, Nucl. Phys. B 394 (1993) 445 [hep-th/9205082].

[7] J.M. Farinholt, An Ideal Characterization of the Clifford operators, Journal of Physics A: Mathematical and Theoretical 47 (2014) 305303 [1307.5087].

[8] F.E.S. Steinhoff, C. Ritz, N.I. Miklin and O. Gühne, Qudit hypergraph states, Physical Review A 95 (2017) [1612.06418].

[9] M. Englbrecht and B. Kraus, Symmetries and entanglement of Stabilizer states, Physical Review A 101 (2020) [2001.07106].

[10] Z.-W. Liu and A. Winter, Many-body quantum magic, [2010.13817].

[11] M. Rossi, M. Huber, D. Bruß and C. Macchiavello, Quantum hypergraph states, New Journal of Physics 15 (2013) 113022 [1211.5554].

[12] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest and H.J. Briegel, Entanglement in Graph States and its Applications, arXiv e-prints (2006) quant [quant-ph/0602096].

[13] M. Freedman, M. Larsen and Z. Wang, A modular functor which is universal for quantum computation, arXiv e-prints (2000) quant [quant-ph/0001108].

[14] H.J. Schnitzer, Level-rank duality for a universal topological quantum computer, [1811.11861].