Magnetic monopole loops generated from calorons with nontrivial holonomy

Nobuyuki Fukui¹ † Kei-Ichi Kondo¹ † Akihiro Shibata² † and Toru Shinohara³ ‡

¹Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
²Computing Research Center, High Energy Accelerator Research Organization (KEK) and Graduate Univ. for Advanced Studies (Sokendai), Tsukuba 305-0801, Japan

(Dated: May 1, 2014)

We study whether or not magnetic monopoles are generated from calorons defined in the space $\mathbb{R}^3 \times S^1$ with the period β. We give numerical evidence that one-caloron solution with nontrivial holonomy generates two loops of magnetic monopole and each loop passing through one of the two poles of the caloron winds along the time direction for small β, while two loops approach each other to fuse into an unwinding loop for large β, suggesting the existence of a critical value of β separating two different phases. This work is a first step to explain quark confinement/deconfinement at finite temperature from the viewpoint of dual superconductor picture in our framework.

PACS numbers: 12.38.Aw, 21.65.Qr

I. INTRODUCTION

The dual superconductor picture [1] was proposed as a promising mechanism for explaining quark confinement due to strong interactions. In this picture, quark confinement is realized by squeezing color electric fields connecting quark and antiquark due to the dual Meissner effect which originates from condensation of magnetic monopoles. For this picture to be true, there must exist a Yang-Mills field configuration from which a magnetic monopole originated draws a trajectory of a closed loop in four-dimensional spacetime (as guaranteed from the magnetic current conservation) [2], while a magnetic monopole is a point-like object in three-dimensional spacetime. A candidate for such a Yang-Mills field configuration will be the classical solution of the Yang-Mills field equation, which is expected to give a dominant contribution to the path-integral of the Yang-Mills theory. Moreover, we look for the Yang-Mills field having a nontrivial topological invariant with a desire that it could be related to the magnetic charge in the dual description of the Yang-Mills theory.

From this viewpoint, we have studied [3–5] topological classical solutions of the Yang-Mills field equation: monomers [6, 7] and instantons, and we have shown that closed loops of magnetic monopoles are indeed generated from topological classical solutions of the Yang-Mills theory in the gauge-invariant way. In [3], it has been analytically shown that the 2-meron (dimeron) as a non-self-dual solution generates closed loops of magnetic monopole, which go through two poles of the 2-meron, see also [3] for the corresponding numerical result. This result confirms the preceding results of numerical studies for monomers performed in a specific gauge fixing [10].

According to preceding studies [11, 13] on the other hand, it was believed that instantons as self-dual solutions of the Yang-Mills field equation don’t contribute to quark confinement. In fact, one-instanton solution and multi-instanton solution of ’t Hooft type failed to detect the loop of magnetic monopole. In [3], however, we have discovered in a numerical way that a loop of magnetic monopole is generated from the two-instanton solution of the Jackiw-Nohl-Rebbi (JNR) type. Moreover, we have clarified in [14] why the two-instanton of ’t Hooft type does not generate the magnetic monopole loop, using a fact that the two-instanton of ’t Hooft type is obtained as a special limit of JNR solution.

In this paper, we proceed to study the magnetic monopole content in caloron solutions, i.e., periodic instantons, with trivial holonomy [15] and nontrivial holonomy [16, 17]. We study in a numerical way whether or not the caloron can be a source for loops of magnetic monopoles defined in the space $\mathbb{R}^3 \times S^1$ with the period β. Especially, we focus on the β dependence on the behavior of the generated loops. The physical motivation of this study is to understand the confinement/deconfinement phase transition in the Yang-Mills theory at finite temperature from the viewpoint of magnetic monopoles. This work is a first step toward this direction.

This paper is organized as follows. In section II, we review calorons with trivial holonomy and nontrivial holonomy. In section III, we set up our framework to study the gauge-invariant magnetic monopole derived from a given Yang-Mills field configuration, and explain how to perform numerical calculations on a lattice used for regularization. In section IV, we give a main result of our numerical calculations for detecting loops of magnetic monopole. In the final section, we summarize the result.

II. CALORON

A caloron is a solution of the self-dual equation for the Yang-Mills field A on $\mathbb{R}^3 \times S^1$. The self-dual equation is
given by
\[F_{\mu\nu}(x) = \mathbf{F}_{\mu\nu}(x), \]
where \(F_{\mu\nu} \) is the field strength of \(\mathbf{A}_\mu \):
\[F_{\mu\nu}(x) = \partial_\mu \mathbf{A}_\nu(x) - \partial_\nu \mathbf{A}_\mu(x) - ig [\mathbf{A}_\mu(x), \mathbf{A}_\nu(x)], \]
(2)
and \(*F_{\mu\nu} \) is the Hodge dual of \(F_{\mu\nu} \):
\[*F_{\mu\nu}(x) = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} F_{\rho\sigma}(x). \]
(3)
Here the periodic boundary condition should be understood on the gauge field \(\mathbf{A}_\mu(x) \) defined on \(\mathbb{R}^3 \times S^1 \):
\[\mathbf{A}_\mu(\vec{x}, t + \beta) = \mathbf{A}_\mu(\vec{x}, t), \]
(4)
\[\vec{x} \in \mathbb{R}^3, \ t \in S^1, \ x = (\vec{x}, t), \]
(5)
where the periodicity \(\beta \) in Eq.(4) is the circumference of \(S^1 \).

A caloron is classified by the topological charge \(Q \) with the charge density \(D \):
\[Q = \int d^3x \int_0^\beta dt \ D(\vec{x}, t) \]
\[:= \frac{1}{16\pi^2} \int d^3x \int_0^\beta dt \ \text{tr} [F_{\mu\nu}(\vec{x}, t) * F_{\mu\nu}(\vec{x}, t)], \]
(6)
just like an instanton. In addition, it is specified by a holonomy:
\[H = \lim_{|\vec{x}| \to \infty} P \exp \left\{ ig \int_0^\beta dt \mathbf{A}_4(\vec{x}, t) \right\}, \]
(7)
where \(P \) represents a path-ordered product along \(S^1 \).

The existence of the periodicity \(\beta \) and the holonomy are new aspects of calorons, compared with instantons.

A. HS caloron

The one-caloron having a unit topological charge \(Q = 1 \) and a nontrivial holonomy \(H \neq 1 \) for the gauge group \(SU(2) \) was discovered by B. J. Harrington and H. K. Shepard [13]. This solution is called the HS caloron. The HS caloron is given by
\[g\mathbf{A}_\mu = - \left(\eta^{(+)\mu}\partial_\nu \log \Phi + v \delta_{\mu 4} \right) T_3 \]
\[- \Phi \text{Re} \left[\left(\eta^{(+)\mu} - \eta^{(+)\mu} \right) (T_1 + iT_2) \partial_\nu + iv \delta_{\nu 4} \right] \zeta, \]
(10)
where \(\text{Re} M = (M + M^\dagger)/2 \) for the matrix \(M \). The used functions are
\[\Phi = \frac{\psi}{\bar{\psi}}, \]
\[\bar{\psi} = - \cos(\mu(t - t_0)) + \cosh(\nu|\vec{r}|) \cosh(\nu|\vec{s}|) \]
\[+ \frac{\vec{r} \cdot \vec{s}}{|\vec{r}||\vec{s}|} \sinh(\nu|\vec{r}|) \sinh(\nu|\vec{s}|), \]
(12)
\[\psi = \psi + \frac{\mu^2 \rho^4}{4|\vec{r}| |\vec{s}|} \sinh(\nu|\vec{r}|) \sinh(\nu|\vec{s}|) \]
\[+ \frac{\mu \rho^2}{2s} \cosh(\nu|\vec{r}|) \sinh(\nu|\vec{s}|) \]
\[+ \frac{\mu \rho^2}{2|\vec{r}|} \sinh(\nu|\vec{r}|) \cosh(\nu|\vec{s}|), \]
(13)
\[\zeta = \frac{\mu \rho^2}{2\psi} \left(e^{-in(t - t_0)} \frac{\sinh(\nu|\vec{s}|)}{|\vec{s}|} + \frac{\sinh(\nu|\vec{r}|)}{|\vec{r}|} \right), \]
(14)
\[\mu = \frac{2\pi}{\beta}, \quad v = \frac{\theta}{\beta}, \quad w = \frac{2\pi - \theta}{\beta} = \mu - v, \]
(15)
\[\vec{r} = \vec{x} - \vec{x}_0 + \frac{\rho^2}{2\beta} \vec{\theta}, \quad \vec{s} = \vec{x} - \vec{x}_0 - \frac{\rho^2}{2\beta} \vec{v}, \]
(16)
\[\vec{\theta} = (0, 0, \theta), \]
(17)
where \(x^a_0 = (\vec{x}_0, t_0) \) and \(\rho \) are respectively the center and the size parameters, and \(\theta \) is the parameter related to the holonomy. The KvBLL caloron is characterized by the parameters \(x_0, \rho, \beta, \theta \).

As \(x^a_\mu \) goes to spatial infinity, the KvBLL caloron Eq.(10) behaves
\[g\mathbf{A}_4(\vec{x}, t) \to 0, \quad g\mathbf{A}_4(\vec{x}, t) \to -v T_3 \quad (\vec{x} \to \infty). \]
(18)
Therefore, a holonomy of the KvBLL caloron reads
\[H = e^{-iv\beta v T_3} = e^{-i\theta v T_3}, \]
(19)
which reduces to the HS caloron at \(\theta = 0 \).

The KvBLL caloron has two poles at \(p_1 = (\vec{x}_0 - (\rho^2/2\beta) \vec{\theta}, t_0) \) and \(p_2 = (\vec{x}_0 + (\rho^2/2\beta) (w/v) \vec{\theta}, t_0) \). The distance between two poles is given by
\[|p_1 - p_2| = \left| \vec{x}_0 - \frac{\rho^2}{2\beta} \vec{\theta} - \left(\vec{x}_0 + \frac{\rho^2}{2\beta} \frac{w}{v} \vec{\theta} \right) \right| = \frac{\pi \rho^2}{\beta}. \]
(20)
The KvBLL caloron behaves as a dyon in the vicinity of a respective pole. The dyon is a BPS monopole specified by chromo-electric and chromo-magnetic charges in SU(2) Yang-Mills theory on \mathbb{R}^3 \cite{15}.

III. SETTING UP NUMERICAL CALCULATION

We proceed to extract magnetic monopoles from a caloron using a method which was originally formulated in the continuum by Cho \cite{19} and Duan and Ge \cite{20} independently, readressed later by Faddeev and Niemi \cite{21} and Shabanov \cite{22}, and further developed by our group \cite{23, 24, 32}. This method enables one to extract magnetic monopoles from the original Yang-Mills field without breaking the gauge symmetry. For SU(2), this method \cite{23, 24} is a gauge-invariant extension of the Abelian projection invented by ’t Hooft \cite{31}. For SU(3), this method does not necessarily reduce to the Abelian projection and there appear non-Abelian magnetic monopoles, see \cite{32} for the details.

In this method for SU(2), we introduce a color field $\mathbf{n}(x)$ with unit length into the original Yang-Mills theory:

\begin{equation}
\mathbf{n}(x) = n^A(x) T^A, \quad (T^A := \sigma_A/2),
\end{equation}

\begin{equation}
n^A(x)n^A(x) = 1,
\end{equation}

where σ_A ($A = 1, 2, 3$) are the Pauli matrices. The following field $V_\mu(x)$ defined from the original Yang-Mills field $A_\mu(x)$ and the additional color field $\mathbf{n}(x)$ plays the key role in this formulation:

\begin{equation}
V_\mu(x) := c_\mu(x)\mathbf{n}(x) - ig^{-1} [\partial_\mu\mathbf{n}(x), \mathbf{n}(x)],
\end{equation}

where

\begin{equation}
c_\mu(x) := 2\text{tr}(\mathbf{n}(x)A_\mu(x)).
\end{equation}

In fact, from the remarkable fact that the field strength of $V_\mu(x)$ is parallel to $\mathbf{n}(x)$:

\begin{equation}
F_{\mu\nu}[V] = \partial_\mu V_\nu - \partial_\nu V_\mu - ig[V_\mu, V_\nu] = \{\partial_\mu c_\nu - \partial_\nu c_\mu + 2ig^{-1}\text{tr}(\mathbf{n}[\partial_\mu\mathbf{n}, \partial_\nu\mathbf{n}])\} \mathbf{n} = G_{\mu\nu}\mathbf{n},
\end{equation}

we can define the gauge-invariant field strength

\begin{equation}
G_{\mu\nu}(x) = 2\text{tr}(\mathbf{n}F_{\mu\nu}[V]),
\end{equation}

and the gauge-invariant monopole current as

\begin{equation}
k^\mu(x) := \partial_\nu^* G^{\mu\nu}(x) = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} \partial_\nu G_{\rho\sigma}(x).
\end{equation}

In order for this method to work, the color field must be determined from the original Yang-Mills field. For this purpose, we impose a condition of minimizing the functional, which we call the reduction functional:

\begin{equation}
F_{\text{red}} := \int d^3x \int_0^\beta dt \frac{1}{2} \text{tr}[\{D_\mu[A]\mathbf{n}(x)\}^2],
\end{equation}

where $D_\mu[A] = \partial_\mu - igA_\mu$. We can obtain $\mathbf{n}(x)$ by solving a differential equation which we call the reduction differential equation (RDE):

\begin{equation}
-D_\mu[A]D_\mu[A]\mathbf{n}(x) = \lambda(x)\mathbf{n}(x).
\end{equation}

The solutions of the RDE give the local minima of the functional F_{red}. Here we impose the periodic boundary condition:

\begin{equation}
\mathbf{n}(\vec{x}, t + \beta) = \mathbf{n}(\vec{x}, t),
\end{equation}

since $\mathbf{n}(x)$ must be defined on $\mathbb{R}^3 \times S^1$.

Once the reduction condition is solved, thus, we can obtain the monopole current k^μ from the original gauge field A_μ. The gauge-invariant magnetic charge is defined by

\begin{equation}
qu_\nu := \int d^3 \sigma_\mu k^\mu(x),
\end{equation}

in a Lorentz (or Euclidean rotation) invariant way \cite{2}.

In this paper, we adopt a lattice version \cite{26, 30, 33} of the above method and we perform the procedures explained in the above in a numerical way. In the lattice regularization we use for numerical calculations, the link variable $U_{x,\mu}$ is related to a gauge field A_μ in a continuum theory by

\begin{equation}
U_{x,\mu} = P \exp \left\{ ig \int_x^{x+\alpha \hat{\mu}} dy A_\mu(y) \right\},
\end{equation}

where α is a lattice spacing and $\hat{\mu}$ represents the unit vector in the μ direction. The lattice version of the reduction functional in SU(2) Yang-Mills theory is given by

\begin{equation}
F_{\text{red}}[\mathbf{n}, U] = \sum_{x,\mu} \left\{ 1 - 4 \text{tr} \left(U_{x,\mu} \mathbf{n}_{x+\alpha \hat{\mu}} U_{x,\mu}^\dagger \mathbf{n}_x \right) / \text{tr} (1) \right\},
\end{equation}

where \mathbf{n}_x is a unit color field defined on a site x,

\begin{equation}
\mathbf{n}_x = n_x^A T^A, \quad n_x^A n_x^A = 1.
\end{equation}

We introduce the Lagrange multiplier λ_x to incorporate the constraint of unit length for the color field \cite{51}. Then the stationary condition for the reduction functional is given by

\begin{equation}
\frac{\partial}{\partial n_x^A} \left\{ F_{\text{red}}[\mathbf{n}, U] - \frac{1}{2} \sum_{x} \lambda_x (n_x^A n_x^A - 1) \right\} = 0.
\end{equation}

When F_{red} takes a local minimum for a given and fixed configurations $U_{x,\mu}$, therefore, a Lagrange multiplier λ_x satisfies

\begin{equation}
W_x^A = \lambda_x n_x^A,
\end{equation}

and the color field n_x^A satisfies

\begin{equation}
n_x^A n_x^A = 1,
\end{equation}

\begin{equation}
\lambda_x n_x^A = \frac{1}{2}
\end{equation}
Then, configuration approaches a pure gauge at spatial infinity paper \[5\]. Thus the color field configurations constructed as obtained by solving (39) in a numerical way.

Finally, the monopole current \(k_{x,\mu}\) on a lattice is constructed as

\[
k_{x,\mu} = \sum_{\nu,\rho,\sigma} \epsilon_{\mu\nu\rho\sigma} \frac{\Theta_{x+a\nu,\rho\sigma}[n,V] - \Theta_{x,\rho\sigma}[n,V]}{4\pi},
\]

through the angle variable of the plaquette variable:

\[
\Theta_{x,\mu\nu}[n,V] = a^{-2} \arg \left\{ \tr \left\{ (1+n_x)V_{x,\mu}V_{x+a\nu,\mu}V_{x+a\nu,\nu}V^\dagger_{x\nu} \right\} / \tr (1) \right\}.
\]

In this definition, \(k_{x,\mu}\) takes an integer value \(\mathbb{Z}\). To obtain the \(n_x\) configuration satisfying (39), we recursively apply (39) to \(n_x\) on each site \(x\) and update it keeping \(n_x\) fixed at a spatial boundary \(\partial V_{R^3}\) of a finite lattice

\[
V = V_{R^3} \times V_{S^1}, \quad V_{R^3} = [-aL_x, aL_x]^3, \quad V_{S^1} = [0, aL_t],
\]

until \(F_{\text{red}}\) converges. We should impose a periodic boundary condition at \(\partial V_{S^1}\). Since we calculate the \(k_{x,\mu}\) configuration for the caloron configuration in this paper, we need to decide a boundary condition of the \(n_x\) configuration in the caloron case. We recall that one-caloron configuration approaches a pure gauge at spatial infinity \(|\bar{x}| \to \infty|\):

\[
gA_\mu(\bar{x},t) \to ih^3(\bar{x},t)\partial_j h(\bar{x},t) + O(|\bar{x}|^{-2}).
\]

Then, \(n(x)\) as a solution of the reduction condition is supposed to behave asymptotically as

\[
n(\bar{x},t) \to h^\dagger(\bar{x},t)T_3 h(\bar{x},t) + O(|\bar{x}|^{-\alpha}),
\]

for a certain value of \(\alpha > 0\). Under this idea, we adopt a boundary condition:

\[
n_x^{\text{bound}} := h^\dagger(\bar{x},t)T_3 h(\bar{x},t), \quad \bar{x} \in \partial V_{R^3}.
\]

In practice, we start with an initial state of the \(\{n_x\}\) configuration: \(n_x^{\text{init}} = h^\dagger(\bar{x})T_3 h(\bar{x})\) for \(x \in V\). Then, we repeat updating \(n_x\) on each site \(x\) according to (39) except for the configuration \(n_x^{\text{bound}}\) on the boundary \(\partial V\) satisfying (40).

It should be remarked that these asymptotic forms (44) and (45) satisfy the RDE asymptotically in the sense that

\[
D_\mu[A]n(x) \to 0 \quad (|\bar{x}| \to \infty),
\]

together with

\[
\lambda(x) \to 0 \quad (|\bar{x}| \to \infty),
\]

which is necessary to obtain a finite value for the reduction functional \[3\]:

\[
F_{\text{red}} = \int d^3x \int_0^\beta dt \frac{1}{2} \lambda(x) < \infty.
\]

IV. MAIN RESULT

We focus our interest on the support of \(k_{x,\mu}\), namely, a set of links \(\{x,\mu\}\) on which \(k_{x,\mu}\) takes non-zero values \(k_{x,\mu} \neq 0\). This locates the magnetic monopole current generated for a given Yang-Mills field configuration. By the definition (41) for \(k_{x,\mu}\), the number of configurations \(k_{x,\mu}\) is equal to \((2L_x)^3 \times L_t \times 4\) for the lattice specified by (43).

We set up our numerical calculations as follows. First, we prepare a lattice with a finite volume \(V\). In this case, the function \(h(x)\) in Eq. (44) is chosen as

\[
h(x) = 1,
\]

and therefore, a boundary condition for \(n_x\) is given by

\[
n_x^{\text{bound}} = T_3.
\]

Second, in order to define the parameters \(x_0\) and \(\rho\) of the caloron on the lattice, we fix the lattice spacing:

\[
a = 0.1.
\]

Then we set

\[
\rho = 10a = 1.0,
\]

and fix the center on

\[
x_0^\rho = (0, 0, 0, 0) + \Delta,
\]

where \(\Delta\) is a small parameter introduced to avoid the pole singularities at \(x_0\). Here we have chosen:

\[
\Delta = (0.5a, 0.5a, 0.5a, 0.5a).
\]
Third, we define the caloron charge Q_V in a finite volume V calculated from the $U_{x,\mu}$ configuration as

$$Q_V = \sum_{x \in V} D_x,$$

$$D_x = \frac{1}{2^4 32\pi^2} \sum_{\mu,\rho,\sigma=\pm 1} \epsilon^{\mu\rho\sigma} U_{x,\mu\nu} U_{x,\rho\sigma},$$

$$U_{x,\mu\nu} = U_{x,\mu} U_{x,\mu\nu} U_{x,\nu\mu} U_{x,\mu\nu}^\dagger U_{x,\nu\mu}^\dagger U_{x,\mu\nu}^\dagger$$ \hspace{1cm} (56)

where D_x is the caloron charge density and ϵ is related to the usual ϵ tensor ($\text{sgn}(\mu) = \mu/|\mu|$) by

$$\epsilon^{\mu\rho\sigma} = \text{sgn}(\nu)\text{sgn}(\rho)\text{sgn}(\sigma)\epsilon^{\mu||\nu||\rho||\sigma}.$$ \hspace{1cm} (57)

A. HS caloron

First, we consider the HS caloron. The result of numerical calculations for the HS caloron are summarized in FIG. 1 and TABLE I.

L_t	β	$k_{x,\mu}$	Q_V				
(a)	10	1.0	4	13729992	4	0.952	
(b)	20	2.0	0	8	13729984	8	0.975
(c)	30	3.0	0	8	13729984	8	0.980
(d)	40	4.0	0	8	13729984	8	0.983

TABLE I: The distribution of generated configurations of $k_{x,\mu}$ and the charge Q_V for the HS caloron on the lattice with a volume $V = (2aL_s)^3aL_t$ with fixed $L_s = 35$ and various $L_t = 10, 20, 30, 40$ (with $a = 0.1$).
FIG. 2: The charge distribution D_x of the KvBLL caloron with a fixed $\rho = 10a = 1.0$ and the associated magnetic–monopole current $k_{x,\mu}$ in the three-dimensional space $x_1 = 0$ projected from the four-dimensional space, which is regularized by the lattice of a finite volume V with a fixed $L_x = 35$ and various choices of L_t: (a) $L_t = 10$, (b) $L_t = 20$, (c) $L_t = 30$, (d) $L_t = 40$. The grid shows the caloron charge density D_x on the x_2-x_3 ($x_1 = \ell = 0$) plane, together with its value being indicated in the legend on the right side. The black (thick) curve on the x_2-x_3 plane shows the loop of the magnetic current $k_{x,\mu}$ and the arrow indicates the direction of the monopole current. The colored (thin) lines on the x_2-x_3 plane show a contour plot for the equi-D_x lines. Due to the periodicity of the t direction with the period $\beta = aL_t$, the top plane $t = \beta$ should be identified with the bottom one $t = 0$. Here p_1, p_2 denote the location of the poles of the KvBLL caloron.

TABLE II shows that one-caloron is approximately constructed on the lattice with a finite volume V, which is confirmed by

$$Q_V = 0.952 \approx 1,$$

for the choice of the lattice:

$$L_x = 35, \quad L_t = 10, 20, 30, 40.$$ \hspace{1cm} (59)

For this choice, the total number of configurations for the magnetic current $k_{x,\mu}$ is $(2L_x)^2 \times L_t = 70^3 \times 10 \times 4 = 13720000$. TABLE II shows the distribution of the resulting magnetic current $k_{x,\mu}$ on the lattice, which means that the current $k_{x,\mu}$ is zero on almost all the links (x, μ) except for a small number of links, in fact, $k_{x,\mu}$ is non-zero only on 4+4 links for $L_t = 10$ and 8+8 links for $L_t = 20, 30, 40$ independently of L_t.

Next, we consider the KvBLL caloron. The result of numerical calculations for the KvBLL caloron are summarized in FIG. 2 and TABLE II.

For the KvBLL caloron, the function $h(x)$ in Eq. (44)
Here, we have calculated the magnetic monopole by

\[\rho \]

resulting magnetic monopole loop for variation of the pa-

\[\beta \]

parameters given by (51). We prepare the KvBLL caloron with the

\[L_0 = 1, \quad k_{x,\mu} = -1 \quad k_{x,\mu} = 0 \quad k_{x,\mu} = 1 \]

\[Q_\nu \]

TABLE II: The distribution of generated configurations of

\[k_{x,\mu} \] and the charge \(Q_\nu \) for the KvBLL caloron on the latt-

\[V = (2aL_x)^3aL_t \] with fixed \(L_x = 35 \) and various \(L_t = 10, 20, 30, 40 \) (with \(a = 0.1 \)).

\[
\begin{array}{|c|c|c|c|c|}
\hline
L_t & \beta & |k_{x,\mu}| & \nu \beta \quad k_{x,\mu} = -1 \quad k_{x,\mu} = 0 \quad k_{x,\mu} = 1 \quad Q_\nu \\
\hline
(a) & 10 & 1.0 & 0 & 10 & 13719980 & 10 & 0.973 \\
(b) & 20 & 2.0 & 0 & 22 & 13719956 & 22 & 0.986 \\
(c) & 30 & 3.0 & 0 & 12 & 13719976 & 12 & 0.987 \\
(d) & 40 & 4.0 & 0 & 8 & 13719984 & 8 & 0.987 \\
\hline
\end{array}
\]

FIG. 3: The magnetic-monopole loops generated from the

\[\text{KvbLL caloron wind or unwind around } \mathbb{S}^1 \text{ depending on the}

\[\rho \text{ and } \beta. \text{ The winding case is denoted by a circle, while unwinding by the cross.} \]

\[h(x) = 1, \text{ therefore, a boundary condition for } n_c \text{ is}

\[\text{given by (51). We prepare the KvBLL caloron with the parameters } \rho \text{ and } x_0 = (0, 0, 0, 0) + \Delta \text{ on a lattice with a}

\[\text{fixed lattice spacing } a = 0.1 \text{ with the size: a fixed } L_x \text{ and various choices for } L_t:} \]

\[L_x = 35, \quad L_t = 10, 20, 30, 40. \quad (60) \]

The nontrivial holonomy \(H \) is fixed by taking

\[\theta = \pi. \quad (61) \]

Here, we have calculated the magnetic monopole by

\[\beta \]

changing \(L_t \), since we are interested in behavior of the result-

\[\rho \]

ing magnetic monopole loop for variation of the period

\[\beta = aL_t = 1.0, 2.0, 3.0, 4.0. \]

First, we fix \(\rho = 1.0 \). TABLE II and FIG. 2 show the result-

\[\text{ing magnetic monopole loops generated from the}

\[\text{KvBLL caloron. FIG. 2 shows how the magnetic monopole loops behave as } \beta \text{ changes. In FIG. 2(a) for}

\[\beta = 1.0, \text{ two magnetic loops wind along } \mathbb{S}^1 \text{ and each}

\[\text{of the two loops passes through a pole of the KvBLL caloron. Here the magnetic monopole current } k_{x,\mu}\text{ runs in opposite directions.} \]

As \(\beta \) becomes larger, see (b) for \(\beta = 2.0 \), two poles \(p_1, p_2 \) get together and two loops fuse into a trivial loop

\[(\text{with a trivial winding number}) \text{ which is not winding}

\[\text{along } \mathbb{S}^1, \text{ before two currents in the opposite directions}

\[\text{collide to be annihilated. Eventually, the loop tends to}

\[\text{shrink towards the center of the caloron, as seen in (c)}

\[\text{for } \beta = 3.0 \text{ and (d) for } \beta = 4.0. \]

Our results indicate that the KvBLL caloron with non-

\[\text{trivial holonomy can be the source of the loop of magnetic}

\[\text{monopole.} \]

Next, we change \(\rho \) in the range \(\rho^2 = 1, 2, 3, 4, 5. \) FIG. 3

\[\text{shows whether the resulting magnetic loop winds or not}

\[\text{along } \mathbb{S}^1 \text{ for various choices of } L_t \text{ and } \rho. \text{ FIG. 3 indicates}

\[\text{that the critical circumference } \beta_c \text{ at which the winding}

\[\text{number of the loop varies exists and that } \beta_c \text{ depends on}

\[\rho: \beta_c \text{ and } \rho \text{ have a positive correlation, which is schemati-

\[\text{cally shown in FIG. 3. } \beta_c \text{ is approximately proportional}

\[\text{to } \rho: \]

\[\beta_c \propto \rho. \quad (62) \]

It turns out that the loop winds along \(\mathbb{S}^1 \) in smaller \(\beta \)

\[\text{for smaller } \rho \text{ and that the critical is non-zero } \beta_c > 0 \text{ for any value of } \rho. \text{ Such magnetic monopole loops as those}

\[\text{shown in this paper had been shown to exist on the lattice}

\[\text{using lattice simulations [35–37]. The } \beta \text{ dependence of}

\[\text{magnetic-monopole loops generated from the instanton}

\[\text{with trivial holonomy was studied in a different formul-

\[\text{ation, see [38].} \]

V. SUMMARY

In this paper, we have investigated the possible mag-

\[\text{nnetic monopole content in the one-caloron solution, i.e., a}

\[\text{periodic self-dual solution of the Yang-Mills field equa-

\[\text{tion with the period } \beta \text{ defined on } \mathbb{R}^3 \times \mathbb{S}^1. \text{ Using the}

\[\text{method developed in our previous paper [5], we have}

\[\text{shown in a numerical way that the one-caloron solution}

\[\text{with nontrivial holonomy, i.e., KvBLL caloron, can be a}

\[\text{source of the closed loop of magnetic monopoles, while}

\[\text{the one-caloron with trivial holonomy, i.e., HS caloron, does not generate the magnetic monopole loop.} \]

The magnetic loop generated from the KvBLL caloron changes its topological behavior depending on the mag-

\[\text{nitude of the periodicity } \beta, \text{ which is the length of the cir-

\[\text{cumference of } \mathbb{S}^1 \text{ in } \mathbb{R}^3 \times \mathbb{S}^1. \text{ Since the } \beta \text{ is identified with}

\[\text{the inverse temperature } T^{-1} \text{ in the Yang-Mills theory at}

\[\text{finite temperature, this result could be a clue to under-

\[\text{stand the phase transition from confinement phase to the}

\[\text{deconfinement phase at finite temperature from the view-

\[\text{point of magnetic monopole according to the dual super-

\[\text{conductor picture for the QCD vacuum, as studied based}

\[\text{on dyons in [39]. The detailed study from this viewpoint}

\[\text{will be given in future publications.} \]

ACKNOWLEDGEMENTS — This work is supported by

\[\text{Grant-in-Aid for Scientific Research (C) 21540256 from}

\[\text{Japan Society for the Promotion of Science (JSPS), and} \]
also in part by the JSPS Grant-in-Aid for Scientific Research (S) #22224003. The numerical calculations are supported by the Large Scale Simulation Program No.09-15 (FY2009) and No.10-13 (FY2010) of High Energy Accelerator Research Organization (KEK).

[1] Y. Nambu, Phys. Rev. D 10, 4262–4268 (1974).
[2] K.-I. Kondo, J. Phys. G 35, 085001 (2008).
[3] K.-I. Kondo, N. Fukui, A. Shibata and T. Shinohara, Phys. Rev. D 78, 065033 (2008); K.-I. Kondo, Proc. Sci., CONFERENCE78 (2008) 046 [arXiv:0812.4026].
[4] A. Shibata, K.-I. Kondo, S. Kato, S. Ito, T. Shinohara and N. Fukui, Talk given at 27th International Symposium on Lattice Field Theory (Lattice 2009), Beijing, China, 25-31 Jul 2009. [arXiv:0911.4533 [hep-lat]]
[5] N. Fukui, K.-I. Kondo, A. Shibata and T. Shinohara, Phys. Rev. D 82, 045015 (2010).
[6] V. De Alfaro, S. Fubini and G. Furlan, Phys. Lett. B 65, 163–166 (1976).
[7] V. De Alfaro, S. Fubini and G. Furlan, Phys. Lett. B 72, 203–207 (1977).
[8] A. Actor, Rev. Mod. Phys. 51, 461–525 (1979).
[9] C.G. Callan, Jr., R. Dashen and D.J. Gross, Phys. Rev. D 17, 2717–2763 (1978).
[10] A. Montero and J.W. Negele, [hep-lat/0202023], Phys. Lett. B 533, 322(2002).
[11] R.C. Brower, K.N. Orginos and C-I. Tan, [hep-th/9610101], Phys. Rev. D 55, 6313–6326 (1997).
[12] M.N. Chernodub and F.V. Gubarev, [hep-th/9506026], JETP Lett. 62, 100 (1995).
[13] F. Bruckmann, T. Heinzl, T. Vekua and A. Wipf, [hep-th/0007119], Nucl. Phys. B 593, 545–561 (2001).
[14] N. Fukui, K.-I. Kondo, A. Shibata and T. Shinohara, Preprint CHIBA-EP-193, in preparation.
[15] B. J. Harrington and H. K. Shepard, Phys. Rev. D 17, 2122(1978).
[16] C. Kraan and van Baal, Nucl. Phys. B 533, 627(1998).
[17] K. Lee and C. Lu, Phys. Rev. D 58, 025011 (1998).
[18] D. Diakonov, Nucl. Phys. B 195, 5 (2009).
[19] Y.M. Cho, Phys. Rev. D 21, 1080 (1980); Y.M. Cho, 23, 2415 (1981).
[20] Y.S. Duan and M.L. Ge, Sinica Sci. 11, 1072 (1979).
[21] L. Faddeev and A.J. Niemi, Phys. Rev. Lett. 82, 1624 (1999).
[22] S.V. Shabanov, Phys. Lett. B 458, 322 (1999); 463, 263 (1999).
[23] K.-I. Kondo, T. Murakami and T. Shinohara, Prog. Theor. Phys. 115, 201 (2006).
[24] K.-I. Kondo, T. Murakami and T. Shinohara, Eur. Phys. J. C 42, 475 (2005).
[25] K.-I. Kondo, Phys. Rev. D 74, 125003 (2006).
[26] S. Kato, K.-I. Kondo, T. Murakami, A. Shibata, T. Shinohara and S. Ito, Phys. Lett. B 632, 326 (2006).
[27] S. Ito, S. Kato, K.-I. Kondo, T. Murakami, A. Shibata and T. Shinohara, Phys. Lett. B 645, 67 (2007).
[28] A. Shibata, S. Kato, K.-I. Kondo, T. Murakami, T. Shinohara and S. Ito, Phys. Lett. B 653, 101 (2007).
[29] A. Shibata, S. Kato, K.-I. Kondo, T. Murakami, T. Shinohara, and S. Ito, Proc. Sci., LATTICE2007 (2007) 331; A. Shibata, K.-I. Kondo, S. Kato, S. Ito, T. Shinohara, T. Murakami, Proc. Sci., LATTICE2008 (2008) 268.
[30] S. Kato, K.-I. Kondo, A. Shibata, T. Shinohara, S. Ito, Proceedings of 27th International Symposium on Lattice Field Theory (Lattice 2009), Beijing, China, 2009 [arXiv:0911.0755].