The effects of nuclear isospin asymmetry on α decay lifetimes of heavy nuclei are investigated within various phenomenological models of nuclear potential for the α particle. We consider the widely used simple square well potential and Woods-Saxon potential, and modify them by including an isospin asymmetry term. We then suggest a model for the potential of the α particle motivated by a microscopic phenomenological approach of the Skyrme force model, which naturally introduce the isospin dependent form of the nuclear potential for the α particle. The empirical α decay lifetime formula of Viola and Seaborg is also modified to include isospin asymmetry effects. The obtained α decay half-lives are in good agreement with the experimental data and we find that including the nuclear isospin effects somehow improves the theoretical results for α decay half-lives. The implications of these results are discussed and the predictions on the α decay lifetimes of superheavy elements are also presented.

PACS numbers: 23.60.+e, 21.30.-x, 21.65.Ef, 27.90.+b
microscopic approach. Along this direction, the authors of Refs. [11]–[13] parameterized the α particle potential using three Yukawa-type finite range forces that are modified by nuclear density. In this approach, it is assumed that the core nucleus follows the Fermi density profile and the α particle has the Gaussian density profile.

In the present work, we explore the nuclear isospin asymmetry effects in α decay half-lives of heavy nuclei. The α potential depth depends on isospin asymmetry [14]–[15] and the potential depth from isospin asymmetry effects is naturally embedded when double folding model is employed [11]–[13]. The effects of the nuclear symmetry energy, i.e., the nuclear isospin asymmetry effects, were also considered in the computation of the Q value of the emergent α particle in Refs. [16]–[17]. But the nuclear symmetry energy can affect the α decay lifetimes also through the nuclear potential of the α particle. Therefore, it would be legitimate to investigate the effects of the nuclear symmetry energy on α decay lifetimes through the modifications of the effective potential of the α particle, which may affect, in particular, the α decay half-lives of neutron-rich nuclei. We will address this issue in the present work.

Recent progress shows that the nuclear symmetry energy is well constrained both by experimental data and theoretical calculations at least near the normal nuclear density, and its effects have been investigated widely in various physical quantities of systems from nuclei to neutron stars [5]–[18]–[22]. Since far neutron-rich nuclei play a crucial role in understanding of exotic nuclear structure, it is important to see how the nuclear symmetry energy affects the α decay lifetimes [5]. In principle, therefore, the nuclear symmetry energy should be considered in developing the effective α potential. Instead of invoking a complex microscopic calculation, however, we revisit the simple cluster model and modify the α particle potential by including the isospin asymmetry term. The model parameters are then fitted to the existing experimental data and they are used to predict the lifetimes of unknown elements. For a model based on more microscopic approach we also suggest a potential as a functional of proton and neutron densities relying on the Skyrme force model. In this approach, the isospin asymmetry effects affect both in nuclear potential and proton distribution so the penetration length depends on the unequal number of neutrons and protons. Compared with Yukawa type finite-range double folding model [11]–[13], our approach is based on zero-range nuclear force (see Appendix). Finally, we will discuss the modification of the empirical formula of Viola and Seaborg for α decay lifetimes by explicitly including the isospin asymmetry term.

This paper is organized as follows. In Sec. II we discuss the general features of the potential model for nuclear α decay. To investigate the nuclear isospin asymmetry effects, we first consider the square well potential and the Woods-Saxon potential, and then suggest a potential motivated by the Skyrme force model before we discuss the modification of the empirical Viola-Seaborg formula. The computed α decay lifetimes of heavy nuclei of $Z = 106–118$ are compared with existing experimental data in Sec. III. We also present the predictions of α decay half-lives for superheavy elements in the range of $Z = 117–122$. Section IV contains the summary and discussion.

II. MODELS OF α DECAY

In this section, we briefly review and introduce potential models for the α particle. The fitting process to find the values of the potential parameters is also shortly described.

A. General features

In the present work, with a given model potential, we make use of the Wentzel-Kramers-Brillouin (WKB) approximation to calculate the α decay half-lives of heavy nuclei. In the α cluster model, the α particle interacts with the core nucleus, which becomes the daughter nucleus after decay, through the strong nuclear interaction and Coulomb interaction. Even though the α particle has a finite size ($r_\alpha \sim 2.0$ fm), it is negligibly small since its volume fraction to the decaying nucleus, or mother nucleus, is less than 1/25 if $A \geq 100$. This justifies the approximation of treating the α particle as an elementary particle, and the α decay can be described by the quantum tunneling of a pointlike particle. The potential of the α particle produced by the core nucleus can be written as

$$V_\alpha(r) = V_N(r) + V_C(r) + V_L(r),$$

where $V_N(r)$ is the nuclear potential, $V_C(r)$ is the Coulomb potential, and $V_L(r)$ is the centrifugal barrier. The explicit forms of each potential are model-dependent and will be discussed later in this section.

In the semi-classical approximation [6], the half-life is computed as

$$T_{1/2} = \frac{\hbar \ln 2}{\Gamma}$$

with

$$\Gamma = \mathcal{P} \frac{\hbar^2}{4m_\mu} \exp \left[-2 \int_{r_2}^{r_3} dr k(r) \right],$$

where m_μ is the reduced mass of the system and \mathcal{P} is the α particle preformation probability. It is the probability that an α particle is formed inside a nucleus, so that the α decay is described as the emission of the preformed α particle. It is understood to be similar to the spectroscopic factor of protons in the case of proton emission process [24]. Since our purpose is to see the effects of nuclear isospin asymmetry in the nuclear potential of the α
particle and the parameters of the potential will be fitted by experimental data, we simply assume $P = 1$ throughout this work. The normalization factor \mathcal{F} is defined by

$$\mathcal{F} = \frac{1}{\int_{r_1}^{r_2} dr' \cos^2 \left[\int_{r_1}^{r_2} dr' k(r') - \frac{\pi}{4} \right]} = 1. \quad (4)$$

Physically, \mathcal{F} is the assaulting frequency of the α particle to the potential well by the core nucleus. Here, r_1, r_2, and r_3 denote classical turning points at the centrifugal barrier, inner and outer barriers of the Coulomb potential, respectively. The wave number of the α particle is given by

$$k(r) = \sqrt{\frac{2m_\mu}{\hbar^2}} |Q_\alpha - V(r)|, \quad (5)$$

where Q_α is the energy of the system during the decay process. It is known that the α decay half-lives are very sensitive to the value of Q_α.

To compute the α decay half-life, one has to model the potential appearing in Eq. (1). The potentials to model the interaction between the α particle and the core nucleus are parameterized and these parameters are determined by the Monte Carlo method with which we minimize the root-mean-square (rms) deviation σ defined as

$$\sigma = \sqrt{\frac{1}{N_{\text{data}} - 1} \sum \left(\log_{10} \frac{T_{1/2}^{\text{theor}}}{T_{1/2}^{\exp}} \right)^2}, \quad (6)$$

where N_{data} is the total number of data. In the present work, we consider three models for the potential and explore a possible modification of the empirical Viola-Seaborg formula for α decay half-lives.

B. Square well potential for α particle

We first consider the square well potential as the simplest choice for the nuclear potential of the α particle. In Ref. [6], it was found that the square well potential approach is quite successful to explain the α decay half-lives considering its simplicity. The square well potential assumes that nuclei have sharp edges as in the liquid drop model. Since a uniform density is assumed, the nuclear potential for the α particle is constant and attractive. Therefore, we have

$$V_N(r) = \begin{cases} V_0 & \text{for } r < R, \\ 0 & \text{for } r \geq R, \end{cases} \quad (7)$$

where R is the radius of the core nucleus and $V_0 < 0$. Since our aim is to explore the effects of the nuclear isospin asymmetry, we just follow the square well potential model of Refs. [6, 7], which assumes the Coulomb potential of the surface charge form as

$$V_C(r) = \begin{cases} \frac{Z_1Z_2e^2}{R} & \text{if } r < R, \\ \frac{Z_1Z_2e^2}{r} & \text{if } r \geq R, \end{cases} \quad (8)$$

where $Z_1 = 2$ and $Z_2 = Z - 2$ in our case. The radius R of the core nucleus is found from the Bohr-Sommerfeld quantization condition:

$$\int_{r_1}^{r_2} dr k(r) = \left(n + \frac{1}{2}\right) \pi = (G - \ell + 1) \frac{\pi}{2}, \quad (9)$$

where the value of G depends on the neutron number N as [6, 7]

$$G = \begin{cases} 20 & \text{for } N \leq 82, \\ 22 & \text{for } 82 < N \leq 126, \\ 24 & \text{for } 126 < N. \end{cases} \quad (10)$$

The centrifugal barrier is written as

$$V_L = \frac{\hbar^2}{2m_\mu r^2} \ell(\ell + 1), \quad (11)$$

where ℓ is the relative orbital angular momentum between the core nucleus and the α particle. In this calculation, $\ell = 0$ is assumed as in Refs. [6, 7] and thus there is no contribution from V_L.

On top of this model, we consider the effects of the nuclear symmetry energy. In order to take into account the isospin asymmetry effects, we modify the α particle nuclear potential for $r < R$ as

$$V_N(r) = V_0 + V_1 I + V_2 I^2, \quad (12)$$

where

$$I = (N - Z)/A = (N - Z)/(N + Z) \quad (13)$$

with Z being the number of protons so that $A = N + Z$. The constants V_1 and V_2 control the dependence of the nuclear potential on the isospin asymmetry.

C. Woods-Saxon potential for α particle

More realistic potentials than the simplest square well potential can be constructed by considering nonuniform distribution of nucleons in the core nucleus. One typical example is the Woods-Saxon potential [25] which assumes Fermi or logistic function distribution of the nucleon density profile. This leads to the nuclear potential in the Woods-Saxon form:

$$V_N(r) = \frac{V_0}{1 + \exp \left[(r - R)/a \right]}, \quad (14)$$

where R is the rough radius of the nucleus and a is diffuseness parameter. As in the case of the square well potential model in the previous subsection, the radius R is

\[\text{[1]}\] However, as will be discussed in Sec. III, the assumption of $\ell = 0$ is too crude and gives reasonable results only for even-even nuclei.
determined by the quantization condition of Eq. (9). To take into account isospin asymmetry, we modify $V_N(r)$ as

$$V_N(r) = \frac{1}{1+\exp{(r-R)/a}} \left(V_0 + V_1 I + V_2 I^2\right).$$

The value of a obtained from the least σ fitting is found to be $a = 0.4 \text{ fm}$.

In this model, the core nucleus is assumed to have a uniform charge distribution. Therefore, unlike the square well potential model, we have

$$V_C(r) = \begin{cases} \frac{Z_1 Z_2 e^2}{2R} \left[3 - (\frac{r}{R})^2\right] & \text{for } r < R, \\ \frac{Z_1 Z_2 e^2}{r} & \text{for } r \geq R. \end{cases}$$

Furthmore, it is known that the proper application of the WKB formula needs to replace V_L by the modified centrifugal barrier of Langer [28], which reads

$$V_L(r) = \frac{\hbar^2}{2m_p r^2} \left(\ell + \frac{1}{2}\right)^2.$$}

In the present study, we vary the angular momentum in the effective α potential to obtain the best fit with the experimental data, but with the constraint of parity conservation. This completes our second model for the α potential and the parameters are determined by minimizing the rms deviation defined in Eq. (6).

D. Potential based on the Skyrme energy density functional

While the previous two models are based on macroscopic approaches to the nuclear potential of the α particle, the phenomenological Skyrme force model gives a tool based on a more microscopic background to understand the form of the nuclear potential. Within this approach the potentials of protons and neutrons in nuclei are expressed as functions of proton and neutron densities [29].

As in the previous models, we assume that the α particle is small enough to be treated as a pointlike particle. Then a pointlike α particle in a decaying nucleus interacts with pointlike nucleons in the core nucleus. At the leading-order approximation, two-body interactions describe the interactions between the α particle and the nucleons of the core nucleus. Employing the standard form of the energy density functional (EDF) of the Skyrme force, we write the interaction of α particle as

$$v_{N\alpha}(\mathbf{k}, \mathbf{k}') = s_0 \left(1 + v_0 P_{\sigma}\right) \delta(r_{N\alpha})$$

$$+ \frac{s_1}{2} \left(1 + v_1 P_{\sigma}\right) \delta(r_{N\alpha}) \mathbf{k}^2 + \mathbf{k'}^2 \delta(r_{N\alpha})$$

$$+ s_3 \mathbf{k} \cdot (\mathbf{\sigma} \times \mathbf{k}) \delta(r_{N\alpha})$$

$$+ \frac{s_3}{6} \left(1 + v_3 P_{\sigma}\right) \rho_N \delta(r_{N\alpha}),$$

where $r_{N\alpha} = r_N - r_\alpha$, $\rho_N = \rho_n + \rho_p$ is the nucleon density, P_{σ} is the spin exchange operator, and s_i, v_i, W_0 and ϵ are the parameters of the potential. The momenta \mathbf{k} and $\mathbf{k'}$ are defined as $[3]\$

$$\mathbf{k} = \frac{1}{2i} (\nabla_N - \nabla_\alpha), \quad \mathbf{k}' = -\frac{1}{2i} (\nabla_N' - \nabla'_\alpha).$$

Evaluating the matrix elements of Eq. (18) leads to a form of the α particle potential as a functional of the proton and neutron densities as

$$V_N = \alpha \rho_N + \beta \left(\rho_n^{5/3} + \rho_p^{5/3}\right) + \gamma \rho_N^2 + 2 \rho_n \rho_p$$

$$+ \delta \frac{\rho_n'}{r} + \eta \rho_p'^2,$$

where $\rho_n' = d\rho_n/dr$ and $\rho_p' = d^2\rho_p/dr^2$. Details for the derivation of Eq. (20) are described in Appendix.

As for the density profiles of protons and neutrons, we assume the Fermi distribution, i.e., the form of the logisitc function as

$$\rho_n = \frac{\rho_0^0}{1 + \exp{(r - R_n)/a_n}},$$

$$\rho_p = \frac{\rho_0^p}{1 + \exp{(r - R_p)/a_p}},$$

where R_n, R_p are to be determined not from the quantization condition but from the number of neutrons and protons in the core nucleus. We use the values of $\rho_0^0, \rho_0^p, a_n, a_p$ from the Thomas-Fermi calculation using the SLy4 force. Since the proton distribution is given explicitly, the Coulomb potential can be calculated as

$$V_C(r) = 4\pi Z_1 e^2 \left[\frac{1}{r} \int_0^r r'^2 \rho_p(r') \, dr' + \frac{1}{r} \int_r^\infty r' \rho_p(r') \, dr'\right],$$

where $Z_1 = 2$ in the case of α decay.

2 We thank the referee for pointing out that the nuclear potential may also include the linear term of I.

3 In Fermi density distribution, the surface diffuseness a is roughly $t_{90-10}/4.4$, where t_{90-10} is the radial distance between 90% and 10% of the density peak. For example, t_{90-10} thickness for $^{208}{\text{Pb}}$ from SLy4 Hartree-Fock calculation is about 2.60 fm, which then gives $a \approx 0.59 \text{ fm}$ [27]. This value differs from the fitted value by a factor of 1.5.

4 As usual, it is understood that $\mathbf{k'}$ operates to the left bra-space, while \mathbf{k} operates to the right ket-space.
In the effective potential of Eq. (20), the isospin asymmetry effects are accounted for through the β and γ interaction terms. The parameter ϵ is introduced to account for the nuclear many-body effects in nuclei, but we found that the results are not sensitive to the value of ϵ, so we set $\epsilon = \frac{1}{6}$ throughout this study. The interaction parameters $\alpha, \beta, \gamma, \delta,$ and η are fitted by minimizing the rms deviation. In this model, we also use the centrifugal barrier as given in Eq. (17), and this completes our model for α nuclear potential based on the Skyrme EDF.

E. Empirical formula for α decay half-lives with isospin effects

The Geiger-Nuttall law gives a simple relationship of α decay lifetimes to the proton number and the Q_α value \cite{32}. The Viola-Seaborg (VS) empirical formula, which is an improved form of the Geiger-Nuttall law, is widely used to estimate the α decay lifetimes, and it reads \cite{33}

$$\log_{10}(T_{1/2}/s) = \frac{aZ + b}{\sqrt{Q_\alpha/\text{MeV}}} + cZ + d,$$

where a, b, c, and d are parameters to be fitted to the experimental data. In its original form, Eq. (23) contains an h_{\log} term that takes into account the difference between the even and odd nuclei. In this work, we allow different values of the parameters for even or odd numbers of Z and N, so introducing the blocking factor for odd nucleus h_{\log} is not necessary in our formula.

The subsequent efforts to improve this relation can be found, e.g., in Refs. \cite{34-38}. Since the primary aim of the present work is to look for the effects of nuclear isospin asymmetry, we simply modify the above formula as

$$\log_{10}(T_{1/2}/s) = \frac{aZ + b}{\sqrt{Q_\alpha/\text{MeV}}} + cZ + d + e_1I + e_2I^2,$$

where I is defined in Eq. (13).

III. RESULTS

In this section, we perform the fitting procedure described in Sec. II A and present the fitted parameters. We then compare our results with the available experimental data and give our predictions on the α decay lifetimes of superheavy elements.

A. Fitted parameters

We begin with the simple square well (SW) potential model whose fitted parameters are presented in Table II and III for four different cases of α decays, namely, even-even (e-e), even-odd (e-o), odd-even (o-e), and odd-odd (o-a), where the former refers to the neutron number and the latter to the proton number of the decaying nucleus. For the fitting process, the AmE2012 experimental data compiled in Refs. \cite{30,31} are used. Numbers in parentheses denote the values obtained without the I and I^2 terms. Comparing the rms deviations σ for the cases with and without the isospin asymmetry terms, we notice a slight improvement due to the I and I^2 terms. The rms deviation σ value has the lowest value for the case of e-e nuclei and larger values for other nuclei. The main reason for this behavior is the assumed value ($\ell = 0$) of the orbital angular momentum. To verify this, we allow the variation of ℓ for each nucleus. It is then found that $\ell = 0$ gives a reasonable description of the decays of even-even nuclei but $\ell \neq 0$ is definitely needed to have a better fit for the other nuclei. Since $\ell = 0$ is assumed for all nuclei in the SW potential model, there is a limit to reduce the σ values for even-odd, odd-even, and odd-odd nuclei. But we do not further pursue to find a better parameter set by varying the value of ℓ in this model, as our purpose is to see the role of the isospin asymmetry terms compared with the model of Refs. \cite{6,7}.

Unlike the SW potential model discussed above, the $\ell = 0$ constraint is released in the Woods-Saxon (WS) potential model following the prescription of Ref. \cite{8}. Table IV, V, and VI show the fitted parameters of the WS potential. We can see that the rms deviation in the case of even-even nuclei is similar in quality to that of the SW potential model. But the results for other nuclei are improved a lot. The main reason is that, as was mentioned above, we allow the variation of ℓ in the fitting process. Namely, we change the ℓ value for each nucleus so that it reproduces the best result of rms deviation, while the condition of parity conservation is satisfied. As a result, we obtain a better result for the α decay deviation. Inclusion of isospin asymmetry term slightly improves the results of even-even nuclei, but leaves the rms deviation almost unchanged for odd-N or odd-Z nuclei, which implies that, in this model, the angular momentum effect is much stronger than the isospin asymmetry effect.

Presented in Table VII are the parameters of the α nuclear potential from the Skyrme EDF. For the fitting process, we use the data only for even-even nuclei since the formula already includes the isospin dependence explicitly and the parameters should be the same for the four cases of the proton and neutron numbers. Table VII also displays the rms deviation values with the fitted parameters for four cases of nuclei. As in the WS potential model, we assume $\ell = 0$ for even-even nuclei, but allow the change of ℓ for other nuclei, which results in smaller deviations for odd-N or odd-Z nuclei. The overall agreement with the measured data is as satisfactory as the WS potential model. More detailed comparison will be presented in the next subsection.

In order to see the model dependence of the results, we plot the obtained nuclear potentials of the α particle for the nucleus $^{294}_{118}$Uuo in Fig. 1. We find that the three models provide similar potentials but the structure of the potential in the inner region ($r < 10$ fm) shows...
TABLE I. Parameters of the SW potential fitted to the experimental data of Refs. [30, 31]. The numbers in parentheses denote the fitted values without the V_1 and V_2 terms. The rms deviation σ is defined in Eq. (6).

Type	Number of events	V_0 (MeV)	V_1 (MeV)	V_2 (MeV)	σ
e-e	178	-140.035 (-132.415)	+57.567	-71.601	0.304 (0.319)
e-o	110	-175.980 (-140.416)	+524.995	-1737.533	0.596 (0.616)
o-e	137	-158.767 (-142.700)	+308.787	-1163.721	0.607 (0.630)
o-o	70	-152.100 (-144.250)	+56.482	-63.256	0.604 (0.609)

TABLE II. Parameters of the SW potential fitted to the experimental data of Refs. [30, 31]. The numbers in parentheses denote the fitted values without the V_1 term. The rms deviation σ is defined in Eq. (6).

Type	Number of events	V_0 (MeV)	V_1 (MeV)	σ
e-e	178	-138.523 (-132.415)	+35.644	0.304 (0.319)
e-o	110	-135.823 (-140.416)	+25.727	0.614 (0.616)
o-e	137	-134.579 (-142.700)	-46.412	0.620 (0.630)
o-o	70	-150.740 (-144.250)	+37.035	0.604 (0.609)

FIG. 1. (Color online) The α particle nuclear potential in the nucleus $^{294}_{118}$Uuo of the three models considered in the present work.

rather strong model dependence. Namely, the WS potential gives the deepest potential, while the depths of SW and EDF potentials are similar to each other. Roughly speaking, the depth of the WS potential is bigger than those of the SW and EDF potentials by about 20%. On the other hand, the barrier width for a given value of Q_α takes the largest value for the WS potential and the smallest for the EDF one, but the difference is only less than 1 fm. Since the half-life is mostly determined by the quantum tunneling effects, the major factor that determines the lifetime is the potential width where the α particle should penetrate. Therefore, in the case of $^{294}_{118}$Uuo, we have the hierarchy of $T_{1/2}^{SW} \simeq T_{1/2}^{WS} > T_{1/2}^{EDF}$ that is confirmed by numerical calculation.\(^5\) This is so because a shorter penetration barrier gives a shorter lifetime. However, the inner part of the potential may affect the lifetime through the assaulting frequency F determined by the Q_α value. The results shown in Tables I–VII suggest that the isospin asymmetry effects in SW and WS models are mostly involved in assaulting frequencies and the penetration lengths are almost unaffected. Therefore, the rms deviations are not improved much by the isospin asymmetry effect.

In the present work, we also investigate the modified VS formula for the α decay lifetimes. Table VIII–X show our results on the fitted parameters for the modified VS formula and the corresponding rms deviation. The numbers in parentheses represent the results without the isospin asymmetric terms. Compared to the SW and WS potential models, inclusion of the isospin asymmetric term considerably improves the rms deviation. However, the obtained rms deviations are larger than the WS model which may indicate some missed structure in the VS formula. Firstly, in the (modified) VS formula, there is no room to incorporate the contribution of the angular momentum ℓ, i.e., the centrifugal barrier, so this may limit the application of the VS formula. Secondly, the α decay lifetimes may have a more complicated dependence on isospin asymmetry other than the I and I^2 terms. Such effects could be accounted for through more realistic microscopic approaches.

B. Comparison with data

We present our results for α decay half-lives of several heavy nuclei in Table XI which shows the results from the SW potential model, WS potential model, Skyrme...
TABLE III. Parameters of the SW potential fitted to the experimental data of Refs. [30, 31]. The numbers in parentheses denote the fitted values without the V_2 term. The rms deviation σ is defined in Eq. (6).

Type	Number of events	V_0 (MeV)	V_1 (MeV)	V_2 (MeV)	σ
e-e	178	-135.933	-132.415	+111.431	0.305 (0.319)
e-o	110	-136.899	-140.416	-105.036	0.612 (0.616)
o-e	137	-136.969	-142.700	-175.735	0.616 (0.630)
o-o	70	-148.022	-144.250	+116.513	0.604 (0.609)

TABLE IV. Fitted parameters of the WS potential. Notation is the same as in Table I.

Type	V_0 (MeV)	V_1 (MeV)	V_2 (MeV)	σ
e-e	-190.845	+54.851	56.370	0.302 (0.326)
e-o	-173.564	+64.534	-38.600	0.211 (0.212)
o-e	-187.018	+36.494	+127.714	0.248 (0.251)
o-o	-180.316	-16.653	+86.544	0.254 (0.256)

TABLE V. Fitted parameters of the WS potential. Notation is the same as in Table I.

Type	V_0 (MeV)	V_1 (MeV)	σ
e-e	-191.785	+70.737	0.302 (0.326)
e-o	-174.860	-2.514	0.212 (0.212)
o-e	-182.293	+0.965	0.251 (0.251)
o-o	-176.844	-5.644	0.256 (0.256)

EDF potential model, and the VS formula, where the SW, WS, and VS models include the isospin asymmetry terms. The experimental Q_α values and measured half-lives of heavy nuclei are also given for comparison. The rms deviation σ given in this table is the value obtained with the listed 27 nuclei. All the models give half-lives consistent with the experimental data and, at least, they are in the correct order of magnitude. Very few exceptional cases are the SW and VS models for the $(Z, A) = (111, 279)$ nucleus and WS model for the cases of $(107, 270)$ and $(109, 274)$, where the theoretical values are smaller than the measured data by an order of magnitude. On the other hand, Skyrme EDF model reproduces the experimental data fairly well, giving the ratio of theory to experiment in the range from 0.40 for $(109, 276)$ to 2.53 for $(116, 291)$.

Excellence of the EDF approach for the listed 27 heavy nuclei can be verified by the small value of the rms deviation as shown in the last row of Table XI. For the SW potential and the VS formula, the σ values are significantly larger than the values given in Tables I and IV that are obtained in the fitting. This may indicate the limitation of these models to describe α decays of heavy nuclei. As was mentioned earlier, the orbital angular momentum ℓ is set to be zero in the SW and VS models regardless of the type of decaying nuclei. On the other hand, this restriction is released for the WS and Skyrme EDF models, and consequently, they lead to better fittings. Nevertheless, it should be mentioned that the rms deviation value of the Skyrme EDF model in Table XI is even smaller than those in Table VII and this indicates the usefulness of this model for describing α decays of heavy nuclei.

We also compare our results with those obtained in the unified fission model (UFM) of Ref. [43]. For this end we take Table I in Ref. [43] as a benchmark for our calculation to have one-to-one comparison possible. For most nuclei UFM also gives a good agreement with the experimental data except for several cases such as $(Z, A) = (107, 270), (109, 274), (111, 279)$, and $(113, 282)$, where the UFM predictions are smaller than the measured data by a factor of 10 or more. On the other hand, the Skyrme EDF model of the present work gives quite reasonable description for these cases. The main reason is attributed to the fact that, in the Skyrme EDF model, the shape of the potential changes depending on the values of Z and A. By changing the values of Z and/or A, the parameters of the density profiles of protons and neutrons in Eq. (21) need to be re-adjusted to find the minimum energy condition, which leads to the modification of the potential and thus the penetration length. Although the SW and WS potentials are somehow dependent on the neutron number through the quantization condition of Eq. (6), the resulting half-lives indicate that the EDF model treats

6 Our fitted parameters determined in this section without the isospin term are consistent with those of Refs. [17, 32] for even-even nuclei considering the different sets of data used in the fitting procedure. In the present work, for the SW and WS potentials, we carry out the fitting separately for even-even, even-odd, odd-even, and odd-odd nuclei.

7 A part of the isospin asymmetry effects of α decay comes from
the modification of potential in a more proper way. This again suggests that microscopic treatments of nuclear potential are needed for more realistic approaches for understanding nuclear phenomena.

C. Predictions on undiscovered α decay lifetimes of superheavy elements

The information on the α decay lifetime can help experimentally confirm the synthesis of unknown superheavy elements. In this subsection we present our predictions on α decays of such elements. In this case, however, we do not have reliable information on the value of Q_α, so we have to rely on the predictions of theoretical models on nuclear structure. Since the α-decay lifetime is sensitive to the value of Q_α, this causes uncertainties in our estimates. In our calculation, we use the recent Weizsäcker-Skyrme4 (WS4) model of Ref. [44], which gives a good description for the nuclei of $Z \geq 100$. (See, for example, Refs. [45–47] for other models.) With nuclei masses the Q_α values can be calculated by [48]

$$Q_\alpha = \Delta M(Z, A) - \Delta M(Z - 2, A - 4) - \Delta M_\alpha + 10^{-6} k [Z^{\beta} - (Z - 2)^{\beta}],$$

(25)

where ΔM is the atomic mass-excess, $\Delta M_\alpha = 2.4249$ MeV, and $(k = 8.7$ eV, $\beta = 2.517$) for nuclei of $Z \geq 60$ and $(k = 13.6$ eV, $\beta = 2.408$) for nuclei of $Z < 60$.

The obtained Q_α values for heavy nuclei of $Z = 117$–122 are listed in Table XI together with their α decay half-lives predicted by the SW, WS, Skyrme EDF potential models, and the VS formula. Here, VS and VS0 denote the VS formula with and without the isospin term, respectively. The nuclei listed in Table XII are along the valley of small Q_α values. Because of the absence of the detailed information on their structure and quantum numbers, we simply assume $\ell = 0$. Graphs shown in Fig. 2 visualize the half-lives listed in Table XI. For a given value of Z, the α-decay lifetime actually depends on the Q_α value, and a longer lifetime is associated with a smaller Q_α value. Comparing the results of the VS and VS0 formulas, we can see that the inclusion of the isospin term increases lifetimes a little bit, but does not make significant difference.

Among the nuclei in Table XI, the lifetime of the (117, 294) nucleus was reported very recently [49]. The reported experimental value of its lifetime is 54^{+94}_{-20} ms, which is about 20 times larger than our prediction of the Skyrme EDF model that gives 2.446 ms. We found that this discrepancy may be related to the difference of the Q_α value between the theoretical prediction and the measured value. The WS4 model predicts $Q_\alpha = 11.346$ MeV [44], but the measured value is 11.20 MeV [49]. The difference is only about 1.3%, but as can be seen in the Geiger-Nutall law or the VS formula of Eq. (25), the lifetime is very sensitive to the value of Q_α and one percent difference in Q_α could result in a factor of 10 difference in the lifetime. This shows the sensitivity of the α decay lifetime to the nuclear structure and the important role carried by Q_α in determination of nuclear half-lives.

In fact, if we use the measured Q_α value in our calculation, the obtained lifetimes are in good agreement with the measured lifetime as shown in Table XIII which also summarizes the half-lives of the nuclei in the decay chain of the $^{294}_{117}$ nucleus. In most cases the models we use in this work reproduce the experimental data as good as in Table XI. However, we note that the theoretical predictions overestimate the lifetime of the (113, 286) nucleus by one or two orders of magnitude, which is similar to the observation mentioned in Ref. [50]. More rigorous
and complex analysis would be required to understand this discrepancy. At the bottom of Table XII, therefore, we provide two sets of rms deviation values. The upper and lower rows represent the rms deviation values with and without the (113, 286) nucleus, respectively. Advantage of including the isospin-dependent term is evident when we compare the results of the VS and VS0 formulas except the isotope of (113, 286).

IV. CONCLUSION

The phenomenological potential for the α particle inside a nucleus and the WKB approximation are the two key concepts to investigate α decay half-lives of nuclei in the cluster model. In the present work, we propose to modify the nuclear potential of the α particle by explicitly including the isospin-dependent terms containing $I = (N - Z)/A$ and we calculated the α decay half-lives of nuclei with the value of I as large as 0.2. We also suggest a new effective potential of the α particle based on the Skyrme energy density functional, which contains the isospin asymmetry contribution in a more natural way. Finally, we modified the empirical VS formula by including the I and I^2 terms.

Although the α decay half-lives are mostly determined by the value of Q_α, we found that the isospin effects may improve the results to some extent as shown by our results. Together with the results of Ref. [16], which shows the importance of nuclear symmetry energy in Q_α values, our findings indicate the important role of nuclear isospin asymmetry effects in neutron-rich nuclei.

The potential model based on the Skyrme EDF suggests a form of the interaction between the α particle and nucleon in the lowest order. The parameters of this approach are then obtained by fitting the α-decay half-lives. In addition, the density profile of the core nucleus was found by the Thomas-Fermi approximation. The proposed EDF approach for α decay was found to explain successfully the decay events of heavy nuclei even better than the square well potential and Wood-Saxon potential approaches, which may be ascribed to the realistic density profile of the core nucleus based on a microscopic approach. This indicates that the isospin asymmetry may alter the penetration length of the potential barrier as well.

In the present work, we first parameterize the nuclear potential of the α particle and fit the parameters to the data. Therefore, in this process, we cannot take into account the specific properties of each nucleus. As a result, the effects which come from, for example, shell structure, deformation, preformation factor of α particle could not be properly taken into account. Therefore, improving the present model calculations along this direction and inclusion of isospin asymmetry effects in microscopic models would be desired to better understand nuclear α decay of neutron-rich nuclei.

ACKNOWLEDGMENTS

We are grateful to N. Itagaki for fruitful discussions. This work was supported in part by the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Education under Grant Nos. NRF-2013R1A1A2A10007294, NRF-2014R1A1A2054096, and NRF-2015R1D1A1A01059603. The work of Y.L. was supported by the Rare Isotope Science Project funded by the Ministry of Science, ICT and Future Planning (MSIP) of the Korean Government and the National Research Foundation (NRF) of Korea under Grant No. 2013M7A1A1075766.
TABLE XI. Results for α decay half-lives of heavy nuclei. The upper and lower bounds of theoretical calculations are from the experimental errors of $Q_α$ values.

(Z, A)	$Q_α^{Exp.}$ (MeV)	$T_0^{Exp.}$	T_0^{SW}	T_0^{WS}	T_0^{EFD}	T_0^{VS}	Ref.
(118, 294)	11.81 ± 0.06	0.89±0.10	1.46±0.15	1.26±0.45	0.40±0.15	0.31±0.12	39
(116, 293)	10.67 ± 0.06	53±19	163±48	104±31	52±23	181±57	40
(116, 292)	10.80 ± 0.07	18±16	78±26	69±23	25±13	207±10	40
(116, 291)	10.89 ± 0.07	6.3±11.6	47±19	31±15	16±8	461±25	39
(116, 290)	11.00 ± 0.08	7.1±14.1	25.9±14.5	23.2±13.2	8.9±5.0	7.2±4.2	39
(115, 288)	10.61 ± 0.06	87±105	115±34	139±69	43±19	676±279	41
(115, 287)	10.74 ± 0.09	32±14	55±27	50±26	21±8	131±55	41
(114, 289)	9.96 ± 0.06	2.7±1.7	2.8±1.9	3.1±1.5	1.1±0.3	4.8±1.6	40
(114, 288)	10.09 ± 0.07	8.3±12.1	1.2±0.8	1.1±0.3	0.4±0.27	39±0.22	40
(114, 287)	10.16 ± 0.06	4.8±10.6	0.8±0.36	0.5±0.17	0.3±0.10	1.2±0.41	39
(114, 286)	10.33 ± 0.06	1.3±10.4	0.2±0.11	0.2±0.08	0.1±0.04	10±0.03	39
(113, 284)	10.15 ± 0.06	4.9±10.8	0.4±0.18	0.5±0.23	0.2±0.13	2.1±0.74	41
(113, 283)	10.26 ± 0.09	100±145	209±122	62±45	91±39	563±248	41
(113, 282)	10.83 ± 0.08	73±134	84±29	52±30	75±44	52±29	42
(112, 286)	9.92 ± 0.06	34±14.7	50±27	34±18	23±12	133±76	40
(112, 285)	9.67 ± 0.06	3.8±11.2	3.9±1.5	4.4±1.8	1.8±0.8	8.4±4.9	39
(111, 280)	9.87 ± 0.06	3.6±10.7	0.5±0.16	3.1±0.7	6.0±1.5	2.4±0.7	40
(111, 279)	9.52 ± 0.16	170±180	10±6	62±37	110±67	23±14	41
(111, 278)	10.89 ± 0.08	4.2±7.5	1.4±0.7	2.7±1.5	2.7±1.6	8.2±4.9	42
(110, 279)	9.84 ± 0.06	0.20±0.05	0.28±1.3	0.58+0.10	0.59±0.39	41	
(109, 276)	9.85 ± 0.06	0.72±0.02	0.12±0.05	0.88±0.41	0.29±0.14	0.52±0.16	41
(109, 275)	10.48 ± 0.09	3.3±10.7	3.0±0.9	3.0±0.7	6.7±2.7	6.3±2.6	41
(109, 274)	9.95 ± 0.10	440±170	67±36	480±220	172±80	353±152	42
(108, 275)	9.44 ± 0.06	0.19±0.22	0.75±0.23	0.48±0.24	0.39±0.20	2.12±1.12	39
(107, 272)	9.15 ± 0.06	9.8±31.7	2.3±1.2	5.3±1.8	7.6±3.7	3.9±2.9	41
(107, 270)	9.11 ± 0.08	61±292	31±23.3	25±19	60±46	14±10	42
(106, 271)	8.67 ± 0.08	1.9±24	0.51±0.41	2.06±1.71	1.67±1.41	2.28±2.01	39

| σ | - | - | 0.616 | 0.290 | 0.238 | 0.513 | - |

Appendix

In microscopic approaches, the α particle bound state with a nucleus can be studied by solving the Hartree-Fock equation. As given in Eq. (10), we start with the potential in the form of

\[
v_{\alpha \alpha}(k, k') = s_0 (1 + v_0 P_\alpha) \delta(r_{\alpha \alpha}) + \frac{s_1}{2} (1 + v_1 P_\alpha) \left[\delta(r_{\alpha \alpha}) k^2 + k^2 \delta(r_{\alpha \alpha}) \right] + s_2 k' \cdot \delta(r_{\alpha \alpha}) k + i W^{\alpha \alpha}_0 (\sigma \times k) \cdot \delta(r_{\alpha \alpha}) + \frac{s_3}{6} (1 + v_3 P_\alpha) \rho_{\alpha \alpha} \delta(r_{\alpha \alpha}).
\]

(A.1)

When kinetic energy is included, the above interaction leads to the Hamiltonian for α particle as

\[
H_\alpha = \frac{\hbar^2}{2m_\alpha} \tau_\alpha + s_0 \left(1 + \frac{v_0}{2} \right) \rho_{\alpha \alpha} + \frac{1}{4} (s_1 + s_2) (\tau_\alpha \rho_{\alpha \alpha} + \tau_{\alpha \alpha} \rho_\alpha) + \frac{1}{4} (3s_1 - s_2) (\nabla \rho_{\alpha \alpha} \cdot \nabla \rho_\alpha) + \frac{1}{4} s_3 \rho_{\alpha \alpha} (\rho_{\alpha \alpha}^2 + 2 \rho_{\alpha \alpha} \rho_\alpha) + \frac{1}{2} W^{\alpha \alpha}_0 (\nabla \rho_{\alpha \alpha} \cdot J_\alpha + \nabla \rho_\alpha \cdot J_N),
\]

(A.2)

where τ and J are expressed as

\[
\tau_\alpha(r) = \sum_i |\nabla \varphi_i|^2, \quad J_\alpha(r) = \sum_i \varphi_i^\dagger (-i \nabla \times \sigma) \varphi_i.
\]

(A.3)
for the nucleon \((A = N)\) and the \(\alpha\) particle \((A = \alpha)\). The single particle wave function \(\varphi(r)\) of the \(\alpha\) particle can be obtained by solving the Hartree-Fock equation. In the spherically symmetric case, the wave function can be written as

\[
\varphi_\ell(r) = \frac{R_{n\ell j}(r)}{r} \langle l m_\ell s \sigma | j m \rangle Y_\ell^m(\hat{r}),
\]

and the Schrödinger equation becomes

\[
\left[-\frac{d}{dr} \frac{\hbar^2}{2m_\alpha} \frac{d}{dr} + \frac{\hbar^2}{2m_\alpha} \frac{\ell(\ell + 1)}{r^2} + V_N(r) \right] R_{n\ell j}(r) = e_{n\ell j} R_{n\ell j}(r),
\]
where the potential for the α particle reads

$$V_N(r) = s_0 \left(1 + \frac{1}{2} v_0 \right) \rho_N + \frac{1}{4} (s_1 + s_2) (\tau_p + \tau_n) - \frac{1}{4} (3s_1 - s_2) \rho''_N - \left(\frac{5}{4} s_1 - \frac{3}{4} s_2 \right) \frac{\rho'_N}{r} + \frac{1}{4} s_3 \rho'_N \left(\rho_N^2 + 2 \rho_n \rho_p \right) - \frac{1}{2} W_0^2 \frac{\rho'_N}{r} \left[j(j + 1) - l(l + 1) - \frac{3}{4} \right], \quad (A.6)$$

where $\rho_N = \rho_p + \rho_n$ with $\rho'_N = d\rho_N/dr$ and $\rho''_N = d^2\rho_N/dr^2$. The effective mass m^*_α is defined by

$$\frac{\hbar^2}{2m^*_\alpha} = \frac{\hbar^2}{2m_\alpha} + \frac{1}{4} (s_1 + s_2) \rho_N. \quad (A.7)$$

Since the total spin of the α particle is zero, i.e., $\langle \sigma_\alpha \rangle = 0$, the spin-orbit coupling between the α particle and the daughter nucleus may be neglected. This process leads to the form of the effective potential of the α particle as

$$V_N = \alpha \rho_N + \beta \left(\rho^5_n + \rho^5_p \right) + \gamma \rho_N (\rho^2_n + 2 \rho_n \rho_p).$$
TABLE XIII. Half-lives of nuclides in the decay chain of the nucleus $^{294}\text{C}
abla^{117}$. The experimental data are from Ref. [10].

(Z, A)	Q_0 (MeV)	$T^{\exp}_{1/2}$	$T^{SW}_{1/2}$	$T^{EFD}_{1/2}$	$T^{WS}_{1/2}$
(117,294)	11.20 ± 0.04	51.24 ms	17.43 ms	34.49 ms	22.54 ms
(115,290)	10.45 ± 0.04	1.372 ms	0.290 ms	2.60 ms	2.356 ms
(113,286)	9.4 ± 0.3	2.91 ± 1.8 s	53.408 s	71 ± 52 s	24 ± 191 s
(111,282)	9.18 ± 0.03	3.11 ± 5.7 min	0.81 ± 0.19 min	1.91 ± 0.48 min	1.96 ± 0.38 min
(109,278)	9.59 ± 0.03	3.6 ± 6.5 s	0.61 ± 0.11 s	4.70 ± 0.84 s	1.44 ± 0.32 s
(107,274)	8.97 ± 0.03	30 ± 12 s	8.0 ± 1.5 s	18.8 ± 3.6 s	22.9 ± 4.5 s
(105,270)	8.0 ± 0.03	1.0 ± 0.9 h	0.57 ± 0.16 h	0.89 ± 0.23 h	0.39 ± 0.11 h

$\sigma = 0.769, 0.592, 0.486, 0.773, 0.790, 0.625, 0.185, 0.340, 0.173, 0.241$

$+ \delta \rho_N^p + \eta \rho_N^n$, \hspace{1cm} (A.8)

where we have used that $\tau_{p,n} \simeq \frac{3}{5}(3\pi^2/2)^{1/3} \rho_{5/3}$ within the Thomas-Fermi approximation.

[1] H. J. Mang, Alpha decay, Ann. Rev. Nucl. Sci. 14, 1 (1964).
[2] Facility for Antiproton and Ion Research in Europe GmbH, \url{http://www.fair-center.eu}
[3] FRIB Users Organization, \url{http://fribusers.org/frib/science.html}
[4] S. Hofmann and G. Munzenberg, The discovery of the heaviest elements, Rev. Mod. Phys. 72, 733 (2000).
[5] B.-A. Li, L.-W. Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rep. 464, 113 (2008).
[6] B. Buck, A. C. Merchant, and S. M. Perez, Ground state to ground state alpha decays of heavy even-even nuclei, J. Phys. G 17, 1223 (1991).
[7] B. Buck, A. C. Merchant, and S. M. Perez, Favoured alpha decays of odd-mass nuclei, J. Phys. G 18, 143 (1992).
[8] B. Buck, A. C. Merchant, and S. M. Perez, α decay calculations with a realistic potential, Phys. Rev. C 45, 2247 (1992).
[9] G. Royer, Alpha emission and spontaneous fission through quasi-molecular shapes, J. Phys. G 26, 1149 (2000).
[10] J. Dong, H. Zhang, Y. Wang, W. Zuo, and J. Li, Alpha-decay for heavy nuclei in the ground and isomeric states, Nucl. Phys. A 832, 198 (2010).
[11] P. Roy Chowdhury, C. Samanta, and D. N. Basu, α decay half-lives of new superheavy elements, Phys. Rev. C 73, 014612 (2006).
[12] C. Samanta, P. R. Chowdhury, and D. N. Basu, Predictions of alpha decay half lives of heavy and superheavy elements, Nucl. Phys. A 789, 142 (2007).
[13] P. Roy Chowdhury, C. Samanta, and D. N. Basu, Search for long lived heaviest nuclei beyond the valley of stability, Phys. Rev. C 77, 044603 (2008).
[14] V. Yu. Denisov and H. Ikezoe, α-nucleus potential for α-decay and sub-barrier fusion, Phys. Rev. C 72, 064613 (2005).
[15] L.-L. Li, S.-G. Zhou, E.-G. Zhao, and W. Scheid, A new barrier penetration formula and its application to alpha-decay half-lives, Int. J. Mod. Phys. E 19, 359 (2010).
[16] J. Dong, W. Zuo, and W. Schied, Correlation between α-decay energies of superheavy nuclei involving the effects of symmetry energy, Phys. Rev. Lett. 107, 012501 (2011).
[17] J. Dong, W. Zuo, and J. Gu, Origin of symmetry energy in finite nuclei and density dependence of nuclear matter symmetry energy from measured α-decay energies, Phys. Rev. C 87, 014303 (2013).
[18] C.-Y. Ryu, C. H. Hyun, and C.-H. Lee, Hyperons and nuclear symmetry energy in neutron star matter, Phys. Rev. C 84, 035809 (2011).
[19] S. Gandolfi, J. Carlson, and S. Reddy, Maximum mass and radius of neutron stars, and the nuclear symmetry energy, Phys. Rev. C 85, 032801(R) (2012).
[20] M. B. Tsang et al., Constraints on the symmetry energy and neutron skins from experiments and theory, Phys. Rev. C 86, 015803 (2012).
[21] J. M. Lattimer and Y. Lim, Constraining the symmetry parameters of the nuclear interaction, Astrophys. J. 771, 51 (2013).
[22] C. Drischler, V. Somà, and A. Schwenk, Microscopic calculations and energy expansions for neutron-rich matter, Phys. Rev. C 89, 025806 (2014).
[23] S. A. Gurvitz and G. Kalbermann, The decay width and the shift of a quasistationary state, Phys. Rev. Lett. 59, 262 (1987).
[24] S. Åberg, P. B. Semmes, and W. Nazarewicz, Spherical proton emitters, Phys. Rev. C 56, 1762 (1997), Phys. Rev. 58, 3011(E) (1998).
[25] R. D. Woods and D. S.axon, Diffuse surface optical model for nucleon-nucleus scattering, Phys. Rev. 95, 577 (1954).
[26] R. L. Varner, W. J. Thompson, T. L. McAbee, E. J. Ludwig, and T. B. Clegg, A global nucleon optical model potential, Phys. Rep. 201, 57 (1991).
[27] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, A Skyrme parametrization from subnuclear to neutron star densities Part II. Nuclei far from stabilities, Nucl. Phys. A 635, 231 (1998).
[28] R. E. Langer, On the connection formulas and the solutions of the wave equation, Phys. Rev. 51, 669 (1937).
[29] D. Vautherin and D. M. Brink, Hartree-Fock calculations with Skyrme’s interaction. I. Spherical nuclei, Phys. Rev. C 5, 626 (1972).
[30] G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, The AME2012 atomic mass evaluation (I). Evaluation of input data, adjustment procedures, Chin. Phys. C 36, 1287 (2012).
[31] M. Wang, G. Audi, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, The AME2012 atomic mass evaluation (II). Tables, graphs and references, Chin. Phys. C 36, 1603 (2012).
[32] H. Geiger and J. M. Nuttall, The ranges of the α particles from various substances and a relation between range and period of transformation, Phil. Mag. Ser. 6 22, 613 (1911).
[33] V. E. Viola, Jr. and G. T. Seaborg, Nuclear systematics of the heavy elements - II. Lifetimes for alpha, beta and spontaneous fission decay, J. Inorg. Nucl. Chem. 28, 741 (1966).
[34] Z. Ren, C. Xu, and Z. Wang, New perspective on complex cluster radioactivity of heavy nuclei, Phys. Rev. C 70, 034304 (2004).
[35] G. Royer and H. F. Zhang, Recent α decay half-lives and analytic expression predictions including superheavy nuclei, Phys. Rev. C 77, 037602 (2008).
[36] D. Ni, Z. Ren, T. Dong, and C. Xu, Unified formula of half-lives for α decay and cluster radioactivity, Phys. Rev. C 78, 044310 (2008).
[37] A. Sobiczewski, Z. Patyk, and S. ´Cwiok, Deformed superheavy nuclei, Phys. Lett. B 224, 1 (1989).
[38] K. P. Santhosh, I. Sukumar, and B. Priyanka, Theoretical studies on the alphas decay of $^{178-220}$Pb isotopes, Nucl. Phys. A 935, 28 (2015).
[39] Yu. Ts. Oganessian et al., Synthesis of the isotopes of elements 118 and 116 in the 233,238U, 242Pu, and 248Cm + 48Ca fusion reactions, Phys. Rev. C 70, 064609 (2004), 71, 029902(E) (2005).
[40] Yu. Ts. Oganessian et al., Experiments on the synthesis of element 115 in the reaction 243Am(48Ca, xn)$^{291-x}$115, Phys. Rev. C 69, 021601(R) (2004), 69, 029902(E) (2004); Yu. Ts. Oganessian et al., Synthesis of elements 115 and 113 in the reaction 243Am + 48Ca, Phys. Rev. C 72, 034611 (2005).
[41] Yu. Ts. Oganessian et al., Synthesis of the isotope 282113 in the 237Np + 48Ca fusion reaction, Phys. Rev. C 76, 011601(R) (2007).
[42] J. Dong, W. Zuo, J. Gu, Y. Wang, and B. Peng, α-decay half-lives and Q_α values of superheavy nuclei, Phys. Rev. C 81, 064309 (2010).
[43] N. Wang, M. Liu, X. Wu, and J. Meng, Surface diffuse-ness correction in global mass formula, Phys. Lett. B 734, 215 (2014).
[44] P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, Nuclear ground-state masses and deformations, Atom. Data Nucl. Data Tabl. 59, 185 (1995).
[45] J. Duflo and A. P. Zuker, Microscopic mass formulae, Phys. Rev. C 52, 23 (1995).
[46] S. Goriely, N. Chamel, and K. M. Pearson, Further exploration of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII: Stiffness and stability of neutron-star matter, Phys. Rev. C 82, 035804 (2010).
[47] E. L. Medeiros, M. M. N. Rodrigues, S. B. Duarte, and O. A. P. Tavares, Systematics of alpha-decay half-life: New evaluations for alpha-emitter nuclides, J. Phys. G 32, B23 (2006).
[48] J. Khuyagbaatar et al., 48Ca + 249Bk fusion reaction leading to element Z = 117: Long-lived α-decaying 270Db and discovery of 266Lr, Phys. Rev. Lett. 112, 172501 (2014).
[49] Y. Qian and Z. Ren, Half-lives of α decay from natural nuclides and from superheavy elements, Phys. Lett. B 738, 87 (2014).