Characterization of a highly diverged mitochondrial ATP synthase F_0 subunit in *Trypanosoma brucei*

Caroline E. Dewar1, Silke Oeljeklaus2, Christoph Wenger3 Bettina Warscheid2,3 *
and André Schneider1*

Running title: Highly diverged F_0 subunit of *T. brucei*

1Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland

$^2)$ Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, 97074 Würzburg, Germany

$^3)$ CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany

* To whom correspondence should be addressed: bettina.warscheid@biologie.uni-freiburg.de, andre.schneider@unibe.ch

Keywords: ATP synthase, mitochondria, Trypanosoma brucei, proteomics, protozoan

Supporting Information:

Figure S1: Further proteins that interact with Tb927.8.3070

Figure S2: *In silico* analysis of Tb927.8.3070

Table S1: Tb927.8.3070 SILAC-IP data

Table S2: Tb927.8.3070 SILAC RNAi data

Table S3: List of proteins found more than 5-fold enriched in the Tb927.8.3070-myc SILAC CoIP and those found more than 1.5-fold downregulated in Tb927.8.3070 SILAC RNAi experiment.
Fig. S1. Further proteins that interact with Tb927.8.3070

A volcano plot depicting of the SILAC-IP analysis of crude mitochondrial extracts from Tb927.8.3070-myc expressing cells as shown in Fig 1C. Proteins more than 10-fold enriched are labelled with either their name or accession numbers.
A

No	Hit	Score	Template Hit	Matched Hits
1	408_D DNA polymerase process5	51.6	37.47	51.6
2	688_H RSA-10: Polymyeloma f-1	51.1	6.06	51.6
3	3CN_A HaeIII-recognize prot-3	48.0	3.88	3.88
4	468D_D RrI1 complex subunit 9	46.1	103-155	103-155
5	610D_C LrI-like protease C-55	45.3	35-119	35-119
6	20QG_A H4B4 designed peptide	43.7	22-101	22-101
7	3CV_B Cernovin 4, 7x bundle 41	41.7	103-155	103-155
8	3SNW_D Oppax-tongue-containing 40	40.2	30-119	30-119
9	769D_D Protein transport protein 36.9	39.6	103-155	103-155
10	3S0S_D DNA damage checkpoint p	38.8	35-119	35-119
11	6KPL_F Cannabinoid receptor 1	34.2	35-119	35-119
12	6KTY_F High temperature lethal 33.9	34.6	35-119	35-119
13	6KQO_D ATP synthase subunit 3	33.2	35-119	35-119
14	3MPL_A Proteosome-associated 32.8	32.1	35-119	35-119
15	6888_D ATP synthase subunit 9	32.6	35-119	35-119
16	3MPZ_F Uncharacterized protein 32.3	32.2	35-119	35-119
17	592F_C Leptin alpha; Cytokins 30.9	32.0	35-119	35-119
18	610H_A Hypothyroid protein SP 20.6	21.9	35-119	35-119
19	100D_A LPHI-CMTHY; four-hel 30.5	21.8	35-119	35-119
20	605G_D Tall-arched protein I 25.6	21.2	35-119	35-119
21	4K5A_B Receptor-interacting sp 28.2	20.2	35-119	35-119
22	2N1S_B Fast-contracting protein 20.0	19.4	35-119	35-119
23	6H5C_F RrI1 complex subunit 10	20.0	35-119	35-119
24	2C9P_A Unconventional myosin-X 26.1	18.9	35-119	35-119
25	306E_B Calcium load-activated 26.0	17.7	35-119	35-119
26	266A_C Calcium unoproteor 26.0	17.7	35-119	35-119
27	27SA_D Alpha-carotene-like prot 25.8	17.7	35-119	35-119
28	4CAW_D Protein Y90875; Metal 25.7	17.7	35-119	35-119
29	6K2Q_F Virusence protein prot 25.6	17.6	35-119	35-119
30	358C_C DnaA-like single; Co 25.5	17.6	35-119	35-119
31	73G_A ATP synthase subunit b 25.4	17.6	35-119	35-119
32	3ZS1_b General control protein 25.2	17.6	35-119	35-119
33	3N92_F Mitotic transcription 24.1	17.3	35-119	35-119
34	1092_F Mitotic checkpoint sp 23.1	17.3	35-119	35-119
35	3599_F Intraconal protein 24.3	17.3	35-119	35-119
36	2N0A_B Trimmer collin coll 23.1	17.3	35-119	35-119
37	4H9A_A GrpE chaperonin 24.1	17.3	35-119	35-119
38	6K3D_B Viscosia transport CMD 23.0	17.3	35-119	35-119
39	6V9L_F Mitotyly peptide L 22.8	17.3	35-119	35-119
40	346S_F Signal peptide 22.8	17.3	35-119	35-119
41	4G22_F Spc45; SSM1_2, Dmp (pres 22.5	17.3	35-119	35-119
42	267A_D alpha antigen-like prot 22.5	17.3	35-119	35-119
43	4N6O_F Uncharacterized protein 21.0	17.3	35-119	35-119
44	13O_A Early Endosmal Antiun 20.7	17.2	35-119	35-119
45	462B_D ATP synthase subunit b 20.7	17.2	35-119	35-119

B

C

S-3
Fig. S2. *In silico* analysis of Tb927.8.3070

(A) List of HHpred results using Tb927.8.3070 as the input sequence. The hits related to ATP synthase subunit b are highlighted in blue. (B) The sequence of Tb927.8.3070 that displays secondary structure homology to regions in the ATP synthase subunit b of spinach (*Spinacia oleracea*) chloroplasts, yeast (*S. cerevisiae*) and Bacillus species using HHpred. (C) Sequence alignment between Tb927.8.3070 and its orthologs in Kinetoplastid species using Clustal Omega (84). TcCLB *T. cruzi*, TM *T. theileri*, TcIL *T. congolense*, Baya *B. ayalai*, EMOLV *E. monterogeii*, LENLEM *L. enriettii*, Lbr *L. braziliensis*, Lta *L. tarentolae*, LAMA *L. amazonensis*, Lmx *L. mexicana*, LARLEM *L. arabica*, Ld *L. donovani*, LINF *L. infantum*, LAEL *L. aethiopica*, Lmj *L. major*, Lsey *L. seymouri*, CFAC *C. fasciculata*.
Table S3. List of proteins found more than 5-fold enriched in the Tb927.8.3070-myc SILAC CoIP and those found more than 1.5-fold downregulated in Tb927.8.3070 SILAC RNAi experiment.

ORF and TritrypDB annotation1	MW (kDa)	Predicted TMD2	Tryptag localisation3	Enrichment in Tb927.8.3070-myc SILAC CoIP4	Downregulation in Tb927.8.3070 SILAC RNAI4	Associated with MCU5	Importome6	IM protein7	PSI-BLAST8	HHpred hit9
Tb927.2.5930	60.5	N	Mito	21.4x	1.73x	Y	Y	Y	-	Sec31 *S. cerevisiae* (#1) (137/1273AA) Probability 64.08%, p-value 0.0009
Tb927.2.5140	17.4	Y	Mito	18.4x	1.48x	Y	Y	nd	-	Sestrin *H. sapiens* (#1) (26/415AA) Probability 34.92%, p-value 0.0013
Tb927.10.9120	27.3	N	Mito	16.8x	1.61x	nd	Y	nd	-	Acetaldehyde dehydrogenase *Pseudomonas sp.* (#1) (84/312AA) Probability 48.0%, p-value 0.00015
Tb927.5.2150	60.1	N	Mito	12.1x	1.07x	Y	Y	nd	-	Cyt c biogenesis protein *B. fragilis* (#1) (41/172AA) Probability 90.11%, p-value 1.5E-05
Tb927.4.1760 CLDP17 [46]	17.4	N	Mito	11.4x	1.04x	nd	Y	Y	-	ATPTG4 *T. gondii* (#14) (130/267AA) Probability 99.5%, p-value 2E-17
Tb927.6.590	12.3	N	Mito	nd	2.23x	Y	Y	Y	-	ATPEG3 *E. gracilis* (#1) (76/116AA) Probability 97.3%, p-value 1.6E-09
Tb927.9.7980	15.8	N	Non mito	nd	2.01x	nd	nd	nd	-	ATPTG9 *T. gondii* (#7) (35/166AA) Probability 97.3%, p-value 1.6E-09
Tb927.11.9940	20.6	N	na	nd	1.69x	nd	nd	nd	-	Autophagy related protein 16 *H. sapiens* (#1) (125/301) Probability 82.66%, p-value 0.00037
Tb927.10.1430	27.3	N	na	nd	1.67x	nd	nd	N	-	Elongation factor P *N. meningitidis* (#1) (44/70) Probability 35.3%, p-value 0.0035

1 Functional predictions were performed using InterPro and BLAST analysis.
2 TMD were predicted using TMHMM.
3 Localisation as assessed from images in the Tryptag database [85], C terminal tag only, na = image not available
4 In this work, nd = protein not detected in this analysis.
5 Proteins found in associated with TbMCU in this publication. Y= protein found associated, nd = protein not detected in this analysis.
6 Proteins listed in the mitochondrial importome defined in this publication. Y= protein listed, nd = protein not detected in this analysis.
7 Proteins found in IM fraction in this publication. Y= protein found in IM, N= protein not in IM, nd = protein not detected in this analysis.
8 Protein sequence similarity assessed by PSI-BLAST against sequences in *S. cerevisiae* databases
9 The top HHpred hit was recorded, unless one of the hits was a known F1Fo ATP synthase subunit. Also recorded was the hit number (#), the number of amino acids covered by the structural homology and the total number of amino acids of the protein hit in question (x/y), the probability of the hit in % and the p-value of the hit.
41. Peikert, C. D., Mani, J., Morgenstern, M., Käser, S., Knapp, B., Wenger, C., Harsman, A., Oeljeklaus, S., Schneider, A., and Warscheid, B. (2017) Charting organellar importomes by quantitative mass spectrometry. *Nat. Commun.* 10.1038/ncomms15272

42. Niemann, M., Wiese, S., Mani, J., Chanfon, A., Jackson, C., Meisinger, C., Warscheid, B., and Schneider, A. (2013) Mitochondrial Outer Membrane Proteome of Trypanosoma brucei Reveals Novel Factors Required to Maintain Mitochondrial Morphology. *Mol. Cell. Proteomics* 12, 515–528

46. Schädeli, D., Serricchio, M., Ben Hamidane, H., Loffreda, A., Hemphill, A., Beneke, T., Gluenz, E., Graumann, J., and Bütkofer, P. (2019) Cardiolipin depletion-induced changes in the Trypanosoma brucei proteome. *FASEB J.* 10.1096/fj.201901184RR

63. Huang, G., and Docampo, R. (2020) The mitochondrial calcium uniporter interacts with subunit c of the ATP synthase of trypanosomes and humans. *MBio*. 10.1128/mBio.00268-20

84. Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J.D., and Higgins, D.G. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Mol. Syst. Biol.*, 7, 539

85. Dean, S., Sunter, J. D., and Wheeler, R. J. (2016) TrypTag.org: A Trypansome Genome-wide Protein Localisation Resource. Trends in Parasitology. 10.1016/j.pt.2016.10.009