Antifertility activity of *Cryptolepis sanguinolenta* leaf ethanolic extract in male rats

ABSTRACT

BACKGROUND: Complementary medicine has grown over time with more botanicals emerging and remaining integral parts of medicare. Such botanicals include *Cryptolepis sanguinolenta*. **AIM:** This study investigated the effect of *Cryptolepis sanguinolenta* leaf ethanolic extract on male reproductive system using rat model. **MATERIALS AND METHODS:** Control and treated rats were maintained on control diet. Treated rats also received graded doses of the extract. **RESULTS:** When compared with the controls, *Cryptolepis sanguinolenta* treatment led to significant testosterone suppression associated with consequent significant rise in luteinizing hormone (LH) and decrease in sperm count. Treatment with *Cryptolepis sanguinolenta* did not result in significant attenuation of follicular stimulating hormone (FSH) levels and testicular morphometry. Sperm viability, motility, and morphology were also comparable in all groups. **CONCLUSION:** These results suggest that *Cryptolepis sanguinolenta* possesses anti-androgenic and anti-spermatogenic properties with potential anti-aphrodisiac activity.

KEY WORDS: *Cryptolepis sanguinolenta*, FSH, LH, sperm, testes, testosterone

INTRODUCTION

The use of plants in the management of illnesses has been since time antiquity, and has continuously grown over time. Though western medicine has influenced the use of herbal remedies, most rural communities still practice complementary medicine as they are readily and cheaply available healthcare alternatives.[1] Complementary medicine co-exists with the medicare of most societies and is based on the use of natural and local products related to the people's perspective on the world and life.[2,3] Plants thus remain a major constituent of life in many communities in the world[4,5] and their utilization in medicare is still well-disseminated around the world.[6,9]

Cryptolepis sanguinolenta is one of the commonly used plants for its anti-malarial[10-16] and anti-diabetic activities, particularly in Nigeria and Ghana.[17-20] It has also been reported to have anti-cancer,[21] anti-microbial,[22-28] anti-thrombotic,[29] and anti-inflammatory potentials.[30,31] The biological activities of its different morphological parts have been attributed to its alkaloid constituents. Cryptolepine, an alkaloid, is the major bioactive principle of the plant.[32] In addition to cryptolepine, other minor alkaloids and their salts that have been isolated include the hydrochloride and the 11-hydroxy derivatives of cryptolepine, cryptoheptine, iso- and neo-cryptolepine, quindoline, bis-cryptolepine, cryptoquinidine, cryptospirepine, cryptosanguinolentine, cryptotakienine, and cryptomisrine.[33-37]

Though the therapeutic efficacy of *C. sanguinolenta* extract in the treatment of a plethora of human illnesses has been established, it is pertinent to evaluate its effects on other systems. This study consequently sought to determine the effect of ethanolic extract of *C. sanguinolenta* leaf on male reproductive profile in experimental paradigm.

MATERIALS AND METHODS

Plant material

Fresh leaves of *C. sanguinolenta* were obtained from Womirere, Iresi, Osun state and identified by Ugboagu A, Chukwuma E.C,
Manufacturers' instructions.

Preparation of extract

C. sanguinolenta leaves air-dried and milled. 526 g of the milled leaves was extracted in 65% v/v ethanol. After the 3rd day, the leaf extract was separated from the leaf with a cloth sieve. For absolute separation of the leaf from the extract, filter paper was used to sieve the extract into a bottle. The extract was then taken to the laboratory for the process of evaporation. The evaporation process involved the total removal of ethanol and water with which the extraction took place from the extract. The extract was concentrated using a rotary evaporator at 40°C. 0.1 g/ml stock solution was then used for the experiment.

Animal

Experiment was performed with male albino rats of Wistar strain of comparable weight. The animals were allowed to acclimatize to the laboratory condition (12:12h light/dark cycle at 25°C ± 2) for 2 weeks and fed on rat chow and water without restriction. The study was approved by the ethical committee of the department, and all procedures were in accordance to the National Institute of Health Guidelines for the Care and Use of Laboratory Animals (NIH, department of Health and Human services publication no. 85-23, revised 1985).

Experimental design

Rats were randomly divided into 4 equal groups. The control was given 1 ml of distilled water (vehicle for extract). Group I, II, and III were given 50, 150, and 250 mg/kg of the extract, respectively. The vehicle and extract were administered orally for 21 days. After the experimental period, blood samples were collected from each rat into plain bottles via cardiac puncture for hormonal assays, and testes were removed from post-euthanized rats.

Ethics

This study was approved by the ethics committee. All animals received humane care in compliance with the institution’s guideline and criteria for humane care as outlined in the National Institute of Health Guidelines for the Care and Use of Laboratory Animals.

Determination of testicular morphometry

The testes were excised, blotted with tissue paper, and weighed. The length and diameter were also measured.

Determination of FSH, LH, and testosterone

Serum FSH, LH, and testosterone concentrations were estimated by the enzyme-linked immunosorbent assay (ELISA) using standard assay kits following the manufacturers’ instructions.

Results

FSH was statistically similar in all groups while LH was significantly raised in the treated groups when compared with the control. On the other hand, testosterone was significantly reduced in the treated groups when compared with the control in a dose-related manner. The rise in LH and fall in testosterone observed in the treated groups were statistically comparable across the treated groups [Figure 2].

Sperm motility, viability, and morphology was not statistically different across all groups, however, sperm count was statistically reduced in the treated groups when compared with the control in a dose-related manner.

Histological study

Testicular tissues were transferred into 10% formalin after being fixed in Bouin’s fluid for 6h. They were dehydrated with varying percentage of ethanol; sections were cleared in xylene and embedded in molten wax. Thin sections were cut (5 μm), stained with hematoxylin and eosin, and microscopically analyzed.

Statistical analysis

Results are expressed as Mean ± SEM (n = 6). The difference between the means was determined by one-way Analysis of Variance (ANOVA) complemented with unpaired t-test. In all statistical tests, a value of P < 0.05 was considered significant.

RESULTS

Testicular morphology was comparable in all groups. Though testicular weight, length, and diameter were altered following Cryptolepis sanguinolenta leaf extract administration, the morphometric changes were not statistically significant [Figure 1].
compared with the control. Similar to LH and testosterone changes, sperm count was reduced in a dose-dependent manner in the treated groups. Treatment of animals with 50 mg/kg of the extract showed the highest reduction in testosterone level, sperm count and a higher rise in LH concentration. However, hormonal and sperm count changes observed across the treated groups were not statistically different [Figure 3].

Histomorphological observations revealed that administration of the extract did not cause any alteration in the testicular tissues of rats treated with 50 and 150 mg/kgBW of the extract though rats treated with 250 mg/kgBW of the extract showed mild distortion of the seminiferous tubules.

DISCUSSION

Plants and their products are integral parts of medicare. They are also a major source of most formulated drugs in western medicine. None of these forms of therapy are, however, without side effects ranging from mild to severe. Though the side effects of a drug could be used for therapeutic purposes in other conditions, it is necessary to evaluate the effects of medicinal plants, their products, and formulated drugs commonly used in the treatment of
The results from this study demonstrate that administration inconsistency seen in this study could be dose-dependent. Though this feedback seems to be maintained (GnRH), do not function correctly when testosterone levels synthesis and release of gonadotropin-releasing hormone seen in association with testosterone suppression suggests production of more testosterone. The normal level of FSH expected to be consequently accompanied with increase in testosterone suppression. Suppression of testosterone is treated rats is in attendant with the normal FSH level. The increase in LH observed in the testosterone level, and a rise in LH concentration, but a...
32. Gellert E, Raymond-Hamet, Schlittler E. Die Konstitution des Alkaloids
31. Olajide OA, Ajayi AM, Wright CW. Anti-inflammatory properties of
29. Oyekan AO, Okafor JP. Effects of cryptolepine alone and in combination
28. Sawer IK, Berry MI, Brown MW, Ford JL. Antimicrobial activity of
25. Boakye-Yiadom K, Herman Ackah SM. Cryptolepine hydrochloride:
24. Silva O, Duarte A, Cabrita J, Pimentel M, Diniz A, Gomes E. Antimicrobial
22. Boakye-Yiadom K. Antimicrobial properties of some West African
21. Charles A, Gooderham Nigel J. The Popular Herbal Antimalarial,
20. Ajayi AF, Akhigbe RE, Adewumi OM, Okeleji LO, Mujaidu KB, Olaleye SB.
19. Luo J, Fort DM, Carlson TJ, Noamesi BK, nii-Amon-Kotei D, King SR,
18. Bierer DE, Dubenko LG, Zhang P, Lu Q, Imbach PA, Garofalo AW,
17. Bierer DE, Fort DM, Mendez CD, Luo J, Imbach PA, Dubenko LG,
16. Noamesi BK, Paine A, Kirby GC, Warhurst DC, Phillipson JD.
15. Kirby GC, Paine A, Warhurst DC, Noamesi BK, Phillipson JD. In vitro
and in vivo antimalarial activity of cryptolepine, a plant-derived indoloquinoline. Phytother Res 1995;9:339-63.
14. Noamesi BK, Paine A, Kirby GC, Warhurst DC, Phillipson JD. In vitro
antimalarial activity of cryptolepine, an indoloquinoline. Trans Roy Soc Trop Med Hyg 1991;85:315.
13. Bierer DE, Fort DM, Mendez CD, Luo J, Imbach PA, Dubenko LG, et al. Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: Its isolation from Cryptolepis sanguinolenta, synthesis, and in vitro and in vivo activities. J Med Chem 1998;41:894-901.
12. Bierer DE, Dubenko LG, Zhang P, Lu Q, Imbach PA, Garofalo AW, et al. Antihyperglycemic activities of cryptolepine analogues: An ethnobotanical lead structure isolated from Cryptolepis sanguinolenta. J Med Chem 1998;41:2754-64.
11. Luo J, Fort DM, Carlson TJ, Noamesi BK, nii-Amon-Kotei D, King SR, et al. Cryptolepine sanguinolenta: An ethnobotanical approach to drug discovery and the isolation of a potentially useful new antihyperglycemic agent. Diabet Med 1998;15:367-74.
10. Ajayi AF, Akhigbe RE, Adewumi OM, Okeleji LO, Mujaidu KB, Olaleye SB. Effect of ethanolic extract of Cryptolepis sanguinolenta stem on in vivo and in vitro glucose absorption and transport: Mechanism of its anti-diabetic activity. Indian J Endocr Metab 2012; 16:591-6.
9. Charles A, Gooderham Nigel J. The Popular Herbal Antimalarial, Extract of Cryptolepis sanguinolenta, Is Potently Cytotoxic. Toxicol Sci 2002;70:245-51.
8. Boakye-Yiadom K. Antimicrobial properties of some West African medicinal plants II. Antimicrobial activity of aqueous extracts of Cryptolepis sanguinolenta (Lindl.) Schlechter. Quart J Cruade Drug Res 1979;17:78-80.
7. Paulo A, Duarte A, Gomes ET. In vitro antibacterial screening of Cryptolepis sanguinolenta alkaloids. J Ethnopharmacol 1994;44:127-30.
6. Silva O, Duarte A, Cabrita J, Pimentel M, Diniz A, Gomes E. Antimicrobial activity of Guinea-Bissau traditional remedies. J Ethnopharmacol 1996;50:55-9.
5. Boakye-Yiadom K, Herman Ackah SM. Cryptolepine hydrochloride: Effect on Staphylococcus aureus. J Pharm Sci 1979;68:1510-4.
4. Cimanga K, De Bruyne T, Pieters L, Totte J, Tona L, Kambu K, et al. Antibacterial and antifungal activities of neocryptolepine, biscryptolepine and cryptoquindoline, alkaloids isolated from Cryptolepis sanguinolenta. Phytomed 1998;5:209-14.
3. Paulo A, Pimentel M, Viegas S, Pires I, Duarte A, Cabrita J. Gomes Cryptolepis sanguinolenta activity against diarrhoeal bacteria. J Ethnopharmacol 1994;44:73-7.
2. Sawer I, Berry MI, Brown MW, Ford JL. Antimicrobial activity of cryptolepine. J Pharm Pharmacol 1993;45:1088-11.
1. Oyekan AO, Okafor JP. Effects of cryptolepine alone and in combination with dipyriramole on a mouse model of arterial thrombosis. J Ethnopharmacol 1989;27:141-8.

Source of Support: Nil. Conflict of Interest: None declared.

How to cite this article: Ajayi AF, Akhigbe RE. Antifertility activity of Cryptolepis sanguinolenta leaf ethanolic extract in male rats. J Hum Reprod Sci 2012;5:43-7.