A note on the k-tuple domination number of graphs

Abel Cabrera Martínez
Universitat Rovira i Virgili, Departament d’Enginyeria Informàtica i Matemàtiques
Av. Països Catalans 26, 43007 Tarragona, Spain.
abel.cabrera@urv.cat

January 11, 2022

Abstract

In a graph G, a vertex dominates itself and its neighbours. A set $D \subseteq V(G)$ is said to be a k-tuple dominating set of G if D dominates every vertex of G at least k times. The minimum cardinality among all k-tuple dominating sets is the k-tuple domination number of G. In this note, we provide new bounds on this parameter. Some of these bounds generalize other ones that have been given for the case $k = 2$.

Keywords: k-domination; k-tuple domination.

1 Introduction

Throughout this note we consider simple graphs G with vertex set $V(G)$. Given a vertex $v \in V(G)$, $N(v)$ denotes the open neighbourhood of v in G. In addition, for any set $D \subseteq V(G)$, the degree of v in D, denoted by $\deg_D(v)$, is the number of vertices in D adjacent to v, i.e., $\deg_D(v) = |N(v) \cap D|$. The minimum and maximum degrees of G will be denoted by $\delta(G)$ and $\Delta(G)$, respectively. Other definitions not given here can be found in standard graph theory books such as [13].

Domination theory in graphs have been extensively studied in the literature. For instance, see the books [10, 11, 12]. A set $D \subseteq V(G)$ is said to be a dominating set of G if $\deg_D(v) \geq 1$ for every $v \in V(G) \setminus D$. The domination number of G is the minimum cardinality among all dominating sets of G and it is denoted by $\gamma(G)$. We define a $\gamma(G)$-set as a dominating set of cardinality $\gamma(G)$. The same agreement will be assumed for optimal parameters associated to other characteristic sets defined in the paper.

In 1985, Fink and Jacobson [5, 6] extended the idea of domination in graphs to the more general notion of k-domination. A set $D \subseteq V(G)$ is said to be a k-dominating set of G if $\deg_D(v) \geq k$ for every $v \in V(G) \setminus D$. The k-domination number of G, denoted by $\gamma_k(G)$, is the minimum cardinality among all k-dominating sets of G. Subsequently, and as expected, several variants for k-domination were introduced and studied by the scientific community. In two different papers published in 1996 and 2000, Harary and
Haynes [8, 9] introduced the concept of double domination and, more generally, the concept of k-tuple domination. Given a graph G and a positive integer $k \leq \delta(G) + 1$, a k-dominating set D is said to be a k-tuple dominating set of G if $\deg_D(v) \geq k - 1$ for every $v \in D$. The k-tuple domination number of G, denoted by $\gamma_{\times k}(G)$, is the minimum cardinality among all k-tuple dominating sets of G. The case $k = 2$ corresponds to double domination, in such a case, $\gamma_{\times 2}(G)$ denotes the double domination number of graph G.

In this note, we provide new bounds on the k-tuple domination number. Some of these bounds generalize other ones that have been given for the double domination number.

2 New bounds on the k-tuple domination number

Recently, Hansberg and Volkmann [7] put into context all relevant research results on multiple domination that have been found up to 2020. In that chapter, they posed the following open problem.

Problem 2.1. (Problem 5.8, p.194, [7]) Give an upper bound for $\gamma_{\times k}(G)$ in terms of $\gamma_k(G)$ for any graph G of minimum degree $\delta(G) \geq k - 1$.

A fairly simple solution for the problem above is given by the straightforward relationship $\gamma_{\times k}(G) \leq k\gamma_k(G)$, which can be derived directly by constructing a set of vertices $D' \subseteq V(G)$ of minimum cardinality from a $\gamma_k(G)$-set D such that $D \subseteq D'$ and $\deg_{D'}(x) \geq k - 1$ for every vertex $x \in D$. From this construction above, it is easy to check that D' is a k-tuple dominating set of G and so,

$$\gamma_{\times k}(G) \leq |D'| = |D| + |D' \setminus D| \leq |D| + (k - 1)|D| = k\gamma_k(G).$$

This previous inequality was surely considered by Hansberg and Volkmann and, in that sense, they have established the previous problem assuming that $\gamma_{\times k}(G) < k\gamma_k(G)$ for every graph G with $\delta(G) \geq k - 1$.

We next confirm their suspicions and provide a solution to Problem 2.1.

Theorem 2.2. Let $k \geq 2$ be an integer. For any graph G with $\delta(G) \geq k - 1$,

$$\gamma_{\times k}(G) \leq k\gamma_k(G) - (k - 1)^2.$$

Proof. Let D be a $\gamma_k(G)$-set. As $\gamma_{\times k}(G) \leq |V(G)|$ we assume, without loss of generality, that $|D| - (k - 1)^2 \leq |V(G)|$. Now, let $U = \{u_1, \ldots, u_{k-1}\} \subseteq V(G) \setminus D$, $D' = D \cup U$ and $D_0 = \{v \in D : \deg_{D'}(v) < k - 1\}$. The following inequalities arise from counting arguments on the number of edges joining U with D_0 and U with $D \setminus D_0$, respectively.

$$\sum_{v \in D_0} \deg_{D'}(v) \geq \sum_{i=1}^{k-1} \deg_{D_0}(u_i)$$

and

$$|D \setminus D_0|(k - 1) \geq \sum_{i=1}^{k-1} \deg_{D \setminus D_0}(u_i).$$
By the previous inequalities and the fact that D is a k-dominating set of G, we deduce that
\[
\sum_{v \in D_0} \deg_{D'}(v) + |D \setminus D_0|(k - 1) \geq \sum_{i=1}^{k-1} \deg_{D_0}(u_i) + \sum_{i=1}^{k-1} \deg_{D \setminus D_0}(u_i)
\]
\[
= \sum_{i=1}^{k-1} \deg_D(u_i)
\]
\[
\geq k(k - 1).
\]

Now, we define $D'' \subseteq V(G)$ as a set of minimum cardinality among all supersets W of D' such that $\deg_W(x) \geq k - 1$ for every vertex $x \in D$. Since $\deg_D(x) \geq k - 1$ for every $x \in D \setminus D_0$, the condition on W is equivalent to that every vertex $v \in D_0$ has at least $k - 1 - \deg_{D'}(v)$ neighbours in $W \setminus D$. Hence, by the minimality of D'' and the inequality chain above, we deduce that
\[
|D'' \setminus D'| \leq |D_0|(k - 1) - \sum_{v \in D_0} \deg_{D'}(v)
\]
\[
= |D|(k - 1) - \left(\sum_{v \in D_0} \deg_{D'}(v) + |D \setminus D_0|(k - 1) \right)
\]
\[
\leq |D|(k - 1) - k(k - 1).
\]

Moreover, it is easy to check that D'' is a k-tuple dominating set of G because each vertex in $V(G) \setminus D$ is dominated k times by vertices of $D \subseteq D''$ (recall that D is a k-dominating set of G) and the construction of D'' ensures that each vertex in D is dominated k times by vertices of D''. Hence,
\[
\gamma_{\times k}(G) \leq |D''| = |D'| + |D'' \setminus D'|
\]
\[
\leq |D| + k - 1 + |D|(k - 1) - k(k - 1)
\]
\[
= k\gamma_k(G) - (k - 1)^2,
\]
which completes the proof.

The bound above is tight. For instance, it is achieved by any complete bipartite graph $K_{k,k'}$ with $k' \geq k$, as $\gamma_{\times k}(K_{k,k'}) = 2k - 1$ and $\gamma_k(K_{k,k'}) = k$. When $k = 2$, Theorem [2,2] leads to the relationship $\gamma_{\times 2}(G) \leq 2\gamma_2(G) - 1$ given in 2018 by Bonomo et al. [1].

A set $D \subseteq V(G)$ is a 2-packing of a graph G if $N[u] \cap N[v] = \emptyset$ for every pair of different vertices $u, v \in D$. The 2-packing number of G, denoted by $\rho(G)$, is the maximum cardinality among all 2-packings of G.

The next theorem relates the k-tuple domination number with the 2-packing number of a graph. Note that the bounds given in this result are generalizations of the bounds $\gamma_{\times 2}(G) \geq 2\rho(G)$ due to Chellali et al. [3], and $\gamma_{\times 2}(G) \leq |V(G)| - \rho(G)$ due to Chellali and Haynes [2].
Theorem 2.3. Let $k \geq 2$ be an integer. For any graph G of order n and $\delta(G) \geq k$,

$$ k\rho(G) \leq \gamma_{\times k}(G) \leq n - \rho(G). $$

Proof. Let D be a $\rho(G)$-set and S a $\gamma_{\times k}(G)$-set. Since $\deg_S(v) \geq k$ for every $v \in D \setminus S$, and $\deg_S(v) \geq k - 1$ for every $v \in D \cap S$, we deduce that

$$ \gamma_{\times k}(G) = |S| \geq \sum_{v \in D \setminus S} \deg_S(v) + \sum_{v \in D \cap S} (\deg_S(v) + 1) \geq k|D| = k\rho(G), $$

and the lower bound follows.

Next, let us proceed to prove that $V(G) \setminus D$ is a k-tuple dominating set of G. Since $\delta(G) \geq k$, $N(D) \cap D = \emptyset$ and $\deg_D(x) \leq 1$ for every $x \in V(G) \setminus D$, we deduce that $\deg_{V(G) \setminus D}(v) \geq k$ for every $v \in D$ and $\deg_{V(G) \setminus D}(v) \geq k - 1$ for every $v \in V(G) \setminus D$. Hence, $V(G) \setminus D$ is a k-tuple dominating set of G, as desired.

Therefore, $\gamma_{\times k}(G) \leq |V(G) \setminus D| = n - \rho(G)$, which completes the proof. \(\square\)

Let \mathcal{H} be the family of graphs $H_{k,r}$ defined as follows. For any pair of integers $k,r \in \mathbb{Z}$, with $k \geq 2$ and $r \geq 1$, the graph $H_{k,r}$ is obtained from a complete graph K_{kr} and an empty graph rK_1 such that $V(H_{k,r}) = V(K_{kr}) \cup V(rK_1)$, $V(K_{kr}) = \{v_1, \ldots, v_{kr}\}$ and $V(rK_1) = \{u_1, \ldots, u_r\}$ and $E(H_{k,r}) = E(K_{kr}) \cup (\bigcup_{i=0}^{r-1}\{u_{i+1}v_{ki+1}, \ldots, u_{i+1}v_{ki+k}\})$.

Figure 1 shows a graph of this family. Observe that $|V(H_{k,r})| = r(k+1)$, $\gamma_{\times k}(H_{k,r}) = kr$ and $\rho(H_{k,r}) = r$ for every $H_{k,r} \in \mathcal{H}$. Therefore, for these graphs the bounds given in Theorem 2.3 are tight, i.e., $\gamma_{\times k}(H_{k,r}) = k\rho(H_{k,r}) = |V(H_{k,r})| - \rho(H_{k,r})$.

![Figure 1: The graph $H_{4,2} \in \mathcal{H}$.](image)

In [9], Harary and Haynes showed that $\gamma_{\times k}(G) \geq \frac{2km-2m}{k+1}$ for any graph G of order n and size m with $\delta(G) \geq k - 1$. The next result is a partial refinement of the bound above because it only considers graphs with minimum degree at least k.

Proposition 2.4. Let $k \geq 2$ be an integer. For any graph G of order n and size m with $\delta(G) \geq k$,

$$ \gamma_{\times k}(G) \geq \frac{(\delta(G) + k)n - 2m}{\delta(G) + 1}. $$
Proof. Let S be a $\gamma_{xk}(G)$-set and $\overline{S} = V(G) \setminus S$. Hence,
\[
2m = \sum_{v \in S} \deg_S(v) + 2 \sum_{v \in \overline{S}} \deg_S(v) + \sum_{v \in \overline{S}} \deg_{V(G)}(v)
\]
\[
= \sum_{v \in S} \deg_S(v) + \sum_{v \in \overline{S}} \deg_S(v) + \sum_{v \in \overline{S}} \deg_{V(G)}(v)
\]
\[
\geq (k - 1)|S| + k(n - |S|) + \delta(G)(n - |S|)
\]
\[
= (k - 1)|S| + (\delta(G) + k)(n - |S|)
\]
\[
= (\delta(G) + k)n - (\delta(G) + 1)|S|,
\]
which implies that $|S| \geq \frac{(\delta(G) + k)n - 2m}{\delta(G) + 1}$. Therefore, the proof is complete.

The bound above is tight. For instance, it is achieved for the join graph $G = K_k + C_k$ obtained from the complete graph K_k and the cycle graph C_k, with $k \geq 3$. For this case, we have that $\gamma_{xk}(G) = k$, $|V(G)| = 2k$, $\delta(G) = k + 2$ and $2|E(G)| = 3k^2 + k$. Also, it is achieved for the complete graph K_n ($n \geq 3$) and any $k \in \{2, \ldots, n - 1\}$.

References

[1] F. Bonomo, B. Brešar, L. N. Grippo, M. Milanič and M. D. Safe, Domination parameters with number 2: interrelations and algorithmic consequences, *Discrete Appl. Math.* **235** (2018), 23–50.

[2] M. Chellali and T. W. Haynes, On paired and double domination in graphs, *Util. Math.* **67** (2005), 161–171.

[3] M. Chellali, A. Khelladi and F. Maffray, Exact double domination in graphs, *Discuss. Math. Graph Theory* **25** (2005), 291–302.

[4] O. Favaron, On a conjecture of Fink and Jacobson concerning k-domination and k-dependence, *J. Combin. Theory Ser. B* **39** (1985), 101–102.

[5] J. F. Fink and M. S. Jacobson, n-domination in graphs, in: Graph theory with applications to algorithms and computer science, Wiley-Interscience Publ., Wiley, New York, 1985, pp. 283–300.

[6] J. F. Fink and M. S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, in: Graph theory with applications to algorithms and computer science (Kalamazoo, Mich., 1984), Wiley-Interscience Publ., Wiley, New York, 1985, pp. 301–311.

[7] A. Hansberg and L. Volkmann, Multiple Domination, in: Topics in Domination in Graphs. Developments in Mathematics, vol 64. Springer, Cham, 2020, pp. 151–203.

[8] F. Harary and T. W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, *Discrete Math.* **155** (1996), 99–105.
[9] F. Harary and T. W. Haynes, Double domination in graphs, *Ars Combin.* 55 (2000), 201–213.

[10] T. W. Haynes, S. T. Hedetniemi and M. A. Henning, Topics in domination in graphs, vol. 64 of Developments in Mathematics, Springer, Cham, 2020.

[11] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.

[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs, Advanced Topics. Marcel Dekker, New York, 1998.

[13] D.B. West, Introduction to Graph Theory, Prentice-Hall, 1996.