Out of Africa: the mite community (Arachnida: Acariformes) of the common waxbill, *Estrilda astrild* (Linnaeus, 1758) (Passeriformes: Estrildidae) in Brazil

Fabio Akashi Hernandes and Barry M. O'Connor

Abstract

Background: The common waxbill, *Estrilda astrild* (L., 1758) (Passeriformes: Estrildidae) is a small passerine bird native to Sub-Saharan Africa that has been introduced into several regions of the world.

Results: In the present paper, eight mite species (Acariformes) are reported from this host from Brazil, including three species new to science: *Montesauria caravela* n. sp., *M. conquistador* n. sp. (Proctophyllodidae), *Trouessartia transatlantica* n. sp., *T. minuscula* Gaud & Mouchet, 1958, *T. estrildae* Gaud & Mouchet, 1958 (Trouessartiidae), *Onychalges pachyphatus* Gaud, 1968 (Pyroglyphidae), *Paddacoptes paddae* (Fain, 1964) (Dermationidae) and *Neocheyletiella megaphallos* (Lawrence, 1959) (Cheyletidae). Comparative material from Africa was also studied.

Conclusions: These mites represent at least three morpho-ecological groups regarding their microhabitats occupied on the bird: (i) vane mites (*Montesauria* and *Trouessartia* on the large wing and tail feathers); (ii) down mites (*Onychalges*); and (iii) skin mites (*Paddacoptes* and *Neocheyletiella*). On one bird individual we found representatives of all eight mite species. Although the common waxbill was introduced to the Neotropical region almost two centuries ago, we demonstrate that it still retains its Old World acarofauna and has not yet acquired any representatives of typical Neotropical mite taxa.

Keywords: Acari, Feather mites, Systematics, Biogeography, Neotropics, Biodiversity

Background

The common waxbill, *Estrilda astrild* (L., 1758) (Passeriformes: Estrildidae) is a small passerine bird native to sub-Saharan Africa that has been introduced into several other regions of the world [1, 2]. Along with the helmeted guineafowl, *Numida meleagris* (Linnaeus, 1858) (Galliformes: Numididae), it is among the very few African birds that have successfully adapted to the Neotropics [1, 3]. It is the only member of the large family Estrildidae (c.140 species and subspecies) that occurs in Brazil, the remaining species being restricted to Africa and Australasia [1]. Until now, only a single feather mite species, *Onychalges pachyphatus* Gaud, 1968, has been recorded from this host [4]. In this paper, we report eight mite species (Acariformes) from *E. astrild* from Brazil, including three species new to science.

Methods

The material from Brazil was collected from two freshly dead specimens of *Estrilda astrild* found in and near the campus of the Universidade Estadual Paulista, Rio Claro, São Paulo state. Comparative material from Africa was recently collected with mistnets by teams from the Field Museum of Natural History, Chicago, USA. Additional specimens, collected from museum skins by the late Dr W.T. Atyeo, are now housed in the University of Michigan Museum of Zoology. In the Brazilian laboratory, one of us (FAH) examined the host bodies under a stereomicroscope and removed mites from them using a needle. The mites were cleared in 30% lactic acid for...
24 h at 50 °C, and mounted in Hoyer’s medium according to the standard technique for small acariform mites [5]. After 5 days at 50 °C, the slides were sealed with varnish. Recently collected African specimens were skeletonized in the field, the feathers and skins placed in individual plastic bags with 95% ethanol and transferred to the laboratory of one of us (BMOC). Mite specimens were collected and processed as above. Drawings and measurements of mites were made with a Leica DM3000 microscope equipped with differential interference contrast (DIC) optics and a camera lucida. Pencil sketches were scanned at 300 dpi grayscale, and line drawings were created with Adobe Illustrator CS6 and a Wacom Bamboo Create tablet. The chaetotaxy of the idiosoma and legs follows Griffiths et al. [6] and Atyeo & Gaud [7], respectively, with corrections of coxal setae proposed by Norton [8].

Specimens are deposited in the following collections: Collection of Acari of Department of Zoology of the Universidade Estadual Paulista, Rio Claro, São Paulo State, Brazil (DZUnesp-RC); Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia (ZISP); Field Museum of Natural History, Chicago, Illinois, USA (FMNH); Museum of Zoology, the University of Michigan, Ann Arbor, USA (UMMZ); U.S. National Museum of Natural History, Smithsonian Institution; mite collection housed with the U.S. Department of Agriculture, Systematic Entomology Laboratory, Beltsville, Maryland, USA (USNM).

Results

Eight mite species (Acariformes) belonging to five families were found on the common waxbill in Brazil: Montesauria caravela n. sp., Montesauria conquistador n. sp. (Proctophylloididae), Trouessartia transatlantica n. sp., T. minuscula Gaud & Mouchet, 1958, T. estrildae Gaud & Mouchet, 1958 (Trouessartidae), Onychalges pachy-spatus Gaud, 1968 (Pyroglyphidae), Paddacoptes paddae (Fain, 1964) (Dermationidae) and Neocheyletiella megaphallos (Lawrence, 1959) (Cheyletidae). One specimen of the common waxbill hosted all eight mite species. All except P. paddae and N. megaphallos were also recovered from the recently collected African birds. African birds also harbored an undescribed species of Xolagoides (Xolagidae). The mites are systematically arranged below.

Superorder Acariformes Zachvatkin, 1952
Order Sarcoptoptiformes Reuter, 1909
Infraorder Astigmata Canestrini, 1891
Superfamily Analgoidea Trouessart & Mégnin, 1884
Family Proctophylloididae Mégnin & Trouessart, 1884

Subfamily Pterodectinae Park & Atyeo, 1971

Genus Montesauria Oudemans, 1905

Remarks

The type-species of the genus Montesauria is Proctophylloides (Pterodectes) cylindricus Robin, 1877, by original designation, described from the Eurasian Magpie, Pica pica (Linnaeus, 1758) (Passeriformes: Corvidae). This is the most species-rich genus of the subfamily Pterodectinae, currently including 60 described species distributed almost exclusively in the Old World [9–15]. The only representative of the New World is M. reticulifera (Trouessart & Neumann, 1888), described from Eremophila alpestris (Linnaeus, 1758) (Alaudidae) of North America [10]. With the exception of two species associated with non-passerine hosts, M. centropa (Gaud & Mouchet, 1957) from African barbets (Piciformes: Lybiidae) [11] and M. raliculae (Atyeo & Gaud, 1977) from New Guinea rails (Gruiformes: Rallidae) [9, 12], all remaining species are associates of passerines (Passeriformes).

Mironov [13] divided the genus into nine species groups and provided a diagnosis for each group based mainly on the following morphological characters: presence/absence of setae f2, sclerotization of coxal fields I–II, and the position of dorsal setae c2 either on the hysteronotal shields or on the surrounding integument. Mironov et al. [14] further proposed one additional group, macronoi, to accommodate M. macronoi Mironov, Literář, Hung & Čapek, 2012 and M. pellornei Mironov, Literář, Hung & Čapek, 2012, and Mironov & Tolsteno-kov [15] added one more species to this latter group.

Montesauria caravela n. sp.

Type-host: Estrilda astrild (Linnaeus, 1758) (Passeriformes: Estrildidae).
Type-locality: Campus of UNESP (22°24′S, 47°33′W), Rio Claro, São Paulo State, Brazil.
Other localities: D.R. Congo, South Africa, Mozambique.
Type-material: Holotype male, 13 male and 14 female paratypes ex Estrilda astrild (Linnaeus, 1758) (Passeriformes: Estrildidae), BRAZIL: São Paulo State, Campus of UNESP, Rio Claro, 22°24′S, 47°33′W, 6.v.2015, M.H. Gabriel coll.; 1 female, same host species, BRAZIL: Rio Claro, São Paulo State, 13 January 2016, C.O.A. Gussoni coll.; 2 males and 5 females ex E. a. adesma Reichenow, 1916, D.R. CONGO: South Kivu, Centre de Recherche en Sciences Naturelles, Lwiro, 1702 m, 02′14″S, 28′48″E, 13.vi.2001, J.S. Hunt (JSH 031), FMNH 429841, BMOC 02–0625-011; 1 male and 1 female ex E. a. astrild (Linnaeus, 1758), SOUTH AFRICA: Western Cape Province, Mossel Bay, 34°10′59″S, 22°07′42″E, 8.xii.1953, F.
Zumpt (NU 3595); 1 male ex _E. a. cavendishi_ Sharpe, 1900, MOZAMBIQUE: Sofala Province, Búzi, NW Beira, 19°52’53”S, 34°36’03”E, 8.xi.1961 (NU 4190).

Type-depositories: Holotype (# 3774), 7 male and 9 female paratypes at DZUnesp-RC (# 3775–3790); 2 male and 2 female paratypes at each UMMZ, USNM and ZISP. African specimens in FMNH and UMMZ.

ZooBank registration: To comply with the regulations set out in article 8.5 of the amended 2012 version of the *International Code of Zoological Nomenclature* (ICZN) [16], details of the new species have been submitted to ZooBank. The Life Science Identifier (LSID) of the article is urn:lsid:zoobank.org:pub:0CE77EA6-7DAC-41D4-91CF-EEF74046677F. The LSID for the new name _Montesauria caravela_ n. sp. is urn:lsid:zoobank.org:act:C9652592-CDAA-4D5C-A699-EA5A77A0968C.

Etymology: From Portuguese _caravel_ (= caravel), the sailing ships used by fifteenth century Portuguese explorers in the Age of Discovery. The name is a noun in apposition.

Description

Male. [Holotype, range for 9 paratypes in parentheses; Figs. 1, 2 and 3.] Idiosoma length from anterior end of prodorsal shield to posterior margins of lobes 392 (376–394), greatest width of idiosoma at level of humeral shields 150 (146–157). Prodorsal shield entire, lateral margins slightly concave at level of scapular setae, posterior margin straight, length along midline 111 (102–111), greatest width 118 (111–127), surface smooth, with a circular medial darker ornamentation near posterior margin (Fig. 1a); bases of scapular setae _se_ separated by 60 (60–65). Setae _ve_ present, rudimentary. Scapular shields narrow. Humeral shields present, narrow. Setae _c2_ situated at anterolateral margins of hysteronotal shield, setae _cp_ on striated tegument. Subhumeral setae _c3_ lanceolate, 30 (29–32) × 6 (4–6). Hysteronotal shield: greatest length 274 (272–278), width at anterior margin 122 (125–133), anterior margin slightly convex, surface without lacunae. Distance between prodorsal and hysteronotal shields 7 (3–10). Posterior margins of opisthosomal lobes round. Terminal cleft shaped as an inverted V, 37 (38–41) long. Supranal concavity distinct. Setae _f2_ anterior to bases of setae _ps2_. Setae _h1_ situated at midlevel of supranal concavity. Setae _h3_ leaf-like, 55 (55–63) long; setae _ps2_ 77 (75–86) long; setae _ps1_ filament, about 8 long, situated slightly anterior to bases of setae _h3_. Distances between dorsal setae: _cl:d2_ 118 (105–120), _d2:h1_ 111 (106–117), _h2:h2_ 80 (73–80), _h3:h3_ 35 (30–36).

Coxal apodemes I (epimerites of Gaud & Atyeo [17]) fused into a Y, with sclerotization present between anterior arms (Fig. 1b). Coxal fields I-III with narrow areas of sclerotization. Rudimentary sclerites rEpIa absent.
Coxal fields I-IV open. Coxal apodemes IVa present, at level of genital arch. Genital arch 31 (26–33) in width; aedeagus 79 (73–82) long from anterior bend to tip, extending to midlevel of adanal suckers. Genital papillae not connected at bases. Posterior coxal apodemes with narrow bands of sclerotization. Genital shield as a thin sclerite medially between setae 4b and 4a; adanal shields as two small sclerites anterior to adanal suckers. Adanal suckers 16 (15–19) in diameter, distance between centers of discs 28 (21–26), corolla smooth, surrounding membranal with radial striae. Opisthoventral shields occupying lateral areas of opisthosoma; setae ps3 inserted on membranous integument. Setae 4b situated posterior to level of setae 3a. Distance between ventral setae: 1a:4b 122 (112–130), 4b:4a 45 (43–53), 4ag 34 (30–34), gps3 51 (48–51), ps3:ps3 59 (60–64).

Femora I, II without crests, other segments of legs I-IV without processes. Ambulacra rounded. Solenidion σ of genu I 9 (8–9) long, situated at midlevel of segment; solenidion σ of genu III inserted in distal half of segment. Genual setae cG I, II and mGII filiform, mGII spiculiform. Seta d of tarsus II slightly shorter than corresponding seta f (Fig. 3b); seta d of tarsus III about half of the length of corresponding seta f (Fig. 3c). Solenidion φ of tibia IV extending to apex of ambulacral disc. Tarsus IV 21 (20–24) long, without claw-like apical process; setae d and e button-like, seta d situated at basal half of segment (Fig. 3d).

Female. [Range for 8 paratypes.] Idiosoma length from anterior end of prodorsal shield to posterior margin of lobes (excluding terminal appendages) 498–513, greatest width of idiosoma at level of humeral shields 153–176. Prodorsal shield: shape as in male, length × width 106–111 × 122–129; surface smooth, with a pair of small, circular spots of ornamentation near posterior margin; bases of setae se separated by 115–130 (Fig. 2a). Setae ve present, rudimentary. Scapular shields narrowly developed dorsally. Humeral shields narrow. Setae c2 inserted...
at anterolateral margins of hysteronotal shield, setae *cp* located ventrally on integument adjacent to humeral shield. Setae *c3* lanceolate, 27–31 × 4–5. Anterior and lobar parts of hysteronotal shield fused (Fig. 2a). Distance between prodorsal and anterior hysteronotal shields 0–3. Anterior margin of hysteronotal shield straight, length from anterior margin to lobar apices (excluding terminal appendages) 386–396, greatest width at anterior part 133–142, surface without lacunae. Lobar region greatest width 78–85. Terminal cleft as a narrow, inverted U, 55–60 long. Supranal concavity distinct, at the same level of setae *h1*; setae *h1* and *f2* arranged in a low trapezium. Setae *h2* lanceolate with sharp apex, 45–51 × 4–5. Setae *h3* 12–15 long. Setae *ps1* situated near inner margins of opisthosomal lobes, closer to *h3* than to *h2*. Distances between dorsal setae: *cl:d2* 122–131, *d2:h1* 170–182, *h2:h2* 66–70, *h3:h3* 29–33.

Coxal apodemes I fused into a Y, sternum about half of the total length of these apodemes, anterior arms with small bands of sclerotization between them (Fig. 2b). Coxal fields I-IV open, with narrow areas of sclerotization. Coxal apodemes IVa small. Translobar apodemes of opisthosomal lobes present, narrow, fused to each other anterior to terminal cleft. Epignymus horseshoe-shaped, greatest width 48–58; apodemes of ovipore connected with coaxal apodemes IIIa. Primary spermaduct with thickened part near the head of spermaticca; secondary spermaducts 48–58 long (Fig. 3f). Pseudanal setae filiform, setae *ps2* situated posterior to the level of the anal opening; distance between pseudanal setae: *ps2:ps2* 30–39, *ps3:ps3* 25–37, *ps2:ps3* 24–32.

Femur II with ventral crest, other segments of legs I, II without processes. Solenidion *σ1* of genu I short, 7–10 long, situated at midlevel of segment. Solenidion *σ* of genu III inserted basally. Genual setae *cGII*, *M. cGII*, II as in male. Setae *f* of tarsi I, II slightly longer than corresponding seta *d*, setae *f* of tarsi III, IV 2–3 times longer than corresponding setae *d*. Genu IV dorsally inflated, without crest.

Differential diagnosis

Montesauria caravala n. sp. belongs to the *emberiziae* group, a group characterized by having dorsal setae *c2* inserted on anterolateral margins of hysteronotal shield, setae *f2* present, and coaxal fields I-II without large sclerotized areas [13]. Five species are currently included in this group: *M. emberiziae* Mironov & Kopij, 1997, *M. faini* Mironov, 2008, *M. stephanocaulus* (Gaud, 1953), *M. tetralobula* Mironov & Kopij, 1996, and *M. zosteropis* Mironov, Literák, Čapek & Koubec, 2010. The new species most closely resembles *M. zosteropis* in having lanceolate setae *h3* in males, but is distinguished from this and from all previously known species of the *emberiziae* group by the following features: in both sexes, humeral shields present dorsally; in males, a pair of adanal shields present anterior to adanal suckers, seta *h3* is much wider than in *M. zosteropis*; in females, anterior hysteronotal and lobar shields fused (these shields separated from each other in all previous species of the *emberiziae* group).

Montesauria conquistador n. sp.

Type-host: *Estrilda astrild* (Linnaeus, 1758) (Passeriformes: Estrildidae).

Type-locality: Campus of UNESP (22°24′S, 47°33′W), Rio Claro, São Paulo State, Brazil.

Other localities: Gabon, Burundi, Ethiopia, South Sudan, South Africa, Mozambique.

Type-material: Holotype male, 9 males and 13 female paratypes ex *Estrilda astrild* (Linnaeus, 1758) (Passeriformes: Estrildidae), BRAZIL: São Paulo State, Campus of UNESP, Rio Claro, 22°24′S, 47°33′W, 06.v.2015, M.H. Gabriel coll.; 8 males and 8 females, same host species, BRAZIL: Rio Claro, São Paulo State, 13 January 2016, C, O. A. Gussonii coll.; 2 males, 2 females and 2 nymphs ex *E. a. rubriventris* (Vieillot, 1817), GABON: Ngounié, Agouma, River Nkomi, 01°32′29″S, 10°11′14″E, 7.xii.1917, C.R. Aschemeier, USNM 255788 (UGA 3138); 5 males and 4 females ex *E. a. rubriventris*, GABON: Ngounié, Agouma, River Nkomi, 01°32′29″S, 10°11′14″E, 24.xi.1918, C.R. Aschemeier, USNM 255787 (UGA 3139); 3 females and 1 nymph ex *E. a. adesma* Reichenow, 1916, BURUNDI: Makamba, Nyanza-Lac, 04°20′08″S, 29°35′43″E, 16.iii.1920, H.C. Raven, USNM 275771 (UGA 3141); 3 males, 2 females, 3 nymphs ex *E. a. peasei* Shelley, 1903, ETHIOPIA: Oromiya, Aleta, 09°46′N, 38°45′E, 11.iii.1912, E.A. Mearns, USNM 247464 (UGA 3142); 2 males, 1 nymph ex *E. a. macmillani* Ogilvie-Grant, 1907, SOUTH SUDAN: Jebuk State, Gondokoro, 04°54′09″N, 31°39′46″E, 23.ii.1910, E.A. Mearns, USNM 217328 (UGA 3144); 2 males, 1 female ex *E. a. macmillani*, same data as previous, USNM 217329 (UGA 3145); 2 males ex *E. a. macmillani*, same data as previous, 21.ii.1910, USNM 217327 (UGA 3146); 1 male and 1 female ex *E. a. astrild* (Linnaeus, 1758), SOUTH AFRICA: Western Cape Prov., Mossel Bay, 34°10′59″S, 22°07′42″E, 8.xii.1953, F. Zumpt (NU 3595); 3 females ex *E. a. astrild*, SOUTH AFRICA: Western Cape Prov., Cape Town, Rondevlei Bird Sanctuary, 34°03′38″S, 18°29′46″E, 24.x.1955, E. Middlemiss (NU 3805); 2 females ex *E. a. cavendishi* Sharpe, 1900, MOZAMBIQUE: Sofala Prov., Buzi, NW Beira, 19°52′53″S, 34°36′03″E, 8.xi.1961, (NU 4190); 10 males, 11 females ex *E. a. cavendishi*, MALAWI: Northern Region, Rumphi dist., Khuta maji, Vwaza Marsh, Vwaza Wildlife Reserve, 1170 m, 10°52′S, 33°27′E, 1.x.2009, J.M. Bates, FMNH 489300 (BOMC 10–0503–001); 2 males ex *E. a. cavendishi*, same data
as previous, 14.x.2009, J.W. Weckstein, FMNH 489301 (BMOC 10–0503-003).

Type-depositories: Holotype (# 3791), 10 male and 15 female paratypes at D ZuNesp-RC (# 3792–3816); 2 male and 2 female paratypes at each UMMZ, USNM and ZISP. African specimens in FMNH, UMMZ and USNM.

ZooBank registration: To comply with the regulations set out in article 8.5 of the amended 2012 version of the International Code of Zoological Nomenclature (ICZN) [16], details of the new species have been submitted to ZooBank. The Life Science Identifier (LSID) of the article is urn:lsid:zoobank.org:pub:0CE77EA6-7DAC-41D4-91CF-EFF74046677F. The LSID for the new name Montesauria conquistador n. sp. is urn:lsid:zoobank.org:act:2C0E9CAE-15EC-456E-8E59-0BDAF6BA2E53.

Etymology: From Portuguese conquistador (= conqueror), an allusion to the Portuguese and Spanish “conquistadores” of the 16th–18th centuries who vastly explored the globe and founded new populations, mainly in the New World. The name is a noun in apposition.

Male. [Holotype, range for 7 paratypes in parentheses; Figs. 4, 5 and 6.] Idiosoma length from anterior end of prodorsal shield to posterior margins of lobes 368 (362–379), greatest width of idiosoma at level of humeral

Fig. 4 Montesauria conquistador n. sp., male. a Dorsal view. b Ventral view

Fig. 5 Montesauria conquistador n. sp., female. a Dorsal view. b Ventral view

Fig. 6 Montesauria conquistador n. sp., male (a-e), female (f). a-c Genu, tibia and tarsus of legs I–III. d Tarsus IV. e Opisthosomal lobe, dorsal view. f Spermatheca
shields 128 (119–138). Prodorsal shield: entire, lateral margins slightly concave at level of scapular setae, posterior margin straight, length along midline 111 (106–110), greatest width 103 (102–109), surface with faint and scarce circular lacunae distributed posterior to level of scapular setae (Fig. 4a); bases of scapular setae separated by 50 (47–52). Setae ve present, rudimentary. Scapular shields narrow. Humeral shields present as narrow ventral sclerites adjacent to bases of seta cp. Setae c2 situated on the striated integument, setae cp ventrally on striated integument. Subhumeral setae c3 lanceolate, 22 (23–25) × 6 (5–6). Hysteronotal shield: greatest length 246 (239–262), width at anterior margin 109 (105–117), anterior margin slightly convex, surface with scarce circular lacunae, anterior margin with slightly darker patch of sclerotization. Distance between prodorsal and hysteronotal shields 4 (4–7). Posterior margins of opisthosomal lobes afilate. Terminal cleft shaped as an inverted V, 27 (27–30) long. Supranal concavity distinct. Setae f2 anterior to bases of setae ps2. Setae h1 situated at the anterior level of supranal concavity. Setae h3 lanceolate, 35 (34–40) long; setae ps2 77 (74–90) long; setae ps1 filiform, about 4 long, situated slightly anterior to bases of setae h3. Distances between dorsal setae: c1d2 95 (90–100), d2h1 96 (95–101), h2:h2 44 (37–44), h3:h3 25 (18–23).

Coxal apodemes I fused into a Y, posterior end of sternum with lateral extensions not connected with coxal apodemes II, sclerotization present between anterior arms, (Fig. 4b). Coxal fields I–III with narrow areas of sclerotization. Rudimentary sclerites rEpIIa absent. Coxal fields I–IV open. Coxal apodemes IVa present, at level of genital arch. Genital arch 20 (21–26) in width; aedeagus 64 (63–69) long from anterior bend to tip, extending to the anterior level of adanal suckers. Genital papillae not connected at bases. Posterior coxal apodemes with narrow bands of sclerotization. Genital and adanal shields absent. Adanal suckers 14 (13–15) in diameter, distance between centers of discs 24 (22–25), corolla indented, surrounding membrane with radial striae. Opisthoventral shields occupying lateral areas of opisthosoma to bases of ps2; setae ps3 inserted on the margins of opisthoventral shield. Setae 4b situated posterior to level of setae 3a. Distance between ventral setae: 1a:4b 127 (124–134), 4b:aa 43 (38–45), 4a:g 33 (29–34), gps3 52 (50–58), ps3:ps3 58 (54–62).

Femora I, II with ventral crests (Fig. 4b), other segments of legs I–IV without processes. Ambulacra with pointed median axis. Solenidion σ1 of genu I 8 (7–8) long, situated at basal half of segment; solenidion σ of genu III inserted at midlevel of segment. Genual setae cGI, II and mGI, II filiform. Seta f of tarsi II about twice the length of corresponding seta d (Fig. 6b); seta f of tarsi III three times longer than corresponding seta d (Fig. 6c). Solenidion φ of tibia IV extending to midlevel of apex of ambulacral disc. Tarsus IV 25 (24–26) long, with small claw-like apical process; setae d and e button-like, seta d situated at basal half of segment (Fig. 6d).

Female. [Range for 8 paratypes.] Idiosoma length from anterior end of prodorsal shield to posterior margin of lobes (excluding terminal appendages) 459–497, greatest width of idiosoma at level of humeral shields 148–172. Prodorsal shield: shape as in male, length × width 119–129 × 116–126, surface with scarcely distributed circular lacunae posterior to the level of scapular setae, posterior margin of the shield with darker patch of sclerotization, bases of setae ve separated by 63–75 (Fig. 5a). Setae ve present, rudimentary. Scapular shields narrowly developed dorsally. Humeral shields narrow. Setae c2 inserted on the striated integument, setae cp ventrally on integument adjacent to humeral shield. Setae c3 lanceolate, 20–24 × 6–7. Anterior and lobar parts of hysteronotal shield not connected (Fig. 5b). Distance between prodorsal and anterior hysteronotal shields 0–6. Anterior margin of hysteronotal shield straight, length from anterior margin to lobar apices (excluding terminal appendages) 286–312, greatest width at anterior part 130–149, surface with a few lacunae medially. Lobar region greatest width 57–73. Terminal cleft as a narrow, inverted U, 30–36 long. Supranal concavity distinct, at the same level of setae f2, setae h1 and f2 arranged in a low trapezium. Setae h2 lanceolate with blunt apex, 34–40 × 5–6. Setae h3 14–18 long. Setae ps1 situated near inner margins of opisthosomal lobes, closer to h3 than to h2. Distances between dorsal setae: c1d2 113–134, d2h1 146–163, h2:h2 54–64, h3:h3 31–36.

Coxal apodemes I fused into a Y, sternum about half of the total length of these apodemes, anterior arms connected with sclerotized parts of coxal fields I (Fig. 5b). Coxal fields I open, coxal fields II covered with sclerotization except for longitudinal fissure, coxal apodemes III, IV with narrow areas of sclerotization. Coxal apodemes IVa small. Translobar apodemes of opisthosomal lobes present, narrow, fused to each other anterior to terminal cleft. Epigynum horseshoe shaped, greatest width 43–50; apodemes of ovipore connected with coxal apodemes IIIa. Primary spermaduct thickened in the proximal third; secondary spermaducts 38–48 long (Fig. 6f). Pseudanal setae ps3 filiform, setae ps2 button-like, situated at midlevel of anal opening; distance between pseudanal setae: ps2:ps2 50–59, ps3:ps3 20–24, ps2:ps3 2–10.

Femur II with ventral crest, other segments of legs I, II without processes. Solenidion σ1 of genu I short, 8–9 long, situated at midlevel of segment. Solenidion σ of genu III inserted basally. Genual setae cGI, II, mGI, II as in male. Seta f of tarsi I, II slightly longer than corresponding
seta d, setae f of tarsi III, IV 2–3 times longer than corresponding setae d. Genital IV dorsally inflated, without crest.

Differential diagnosis

Montesauria conquistador n. sp. belongs to the *heterocaularia* species group, which is so far restricted to the Estrildidae and is characterized by having dorsal setae c_2 off the hysteronotal shield, setae f_2 present, and coxal fields I–II with large sclerotized areas [13]. Seven species are currently recognized in this group: *M. bacillus* (Trouessart, 1885), *M. heterocaularia* (Gaud & Mouchet, 1957), *M. lanceolatus* (Sugimoto, 1941), *M. nesoharisis* Mironov & Fain, 2003, *M. olygosticta* (Gaud & Mouchet, 1957), *M. stictothyrha* (Gaud, 1953), and *M. synosterna* (Gaud & Mouchet, 1957). *Montesauria conquistador* n. sp. most closely resembles *M. heterocaularia* in the overall body shape of females (body length about three times body width). It is readily distinguished from *M. heterocaularia* in the following features: in females, setae p_2 button-like (normal, setiform in *M. heterocaularia*); in males, sclerotization between arms of coxal apomides I is absent (present in *M. heterocaularia*).

Family Trouessartiidae Gaud, 1957

Genus Trouessartia Canestrini, 1899

Remarks

The type-species of *Trouessartia* is *Dermaleichus corvinus* Koch, 1841, designated subsequently by Oudemans [18] as the type-species of *Pterocolus* Haller, 1878 (junior homonym of *Pterocolus* Schoenherr, 1833, Insecta: Curculionidae). With the exception of one species reliably reported from woodpeckers (Piciformes: Picidae) [19], all remaining species are associated with the order Passeriformes worldwide. 117 species are currently known in this genus [19–30].

Trouessartia transatlantica n. sp.

Type-host: *Estrilda astrild* (Linnaeus, 1758) (Passeriformes: Estrildidae).

Type-locality: Campus of UNESP (22°24′S, 47°33′W), Rio Claro, São Paulo State, Brazil.

Other localities: Burundi, D.R. Congo, South Sudan, South Africa, Mozambique, Malawi, Mauritius.

Type-material: Holotype male, 13 male and 14 female paratypes ex *Estrilda astrild* (Linnaeus, 1758) (Passeriformes: Estrildidae), BRAZIL: São Paulo State, Campus of UNESP, Rio Claro, 22°24′S, 47°33′W′, 06.v.2015, M.H. Gabriel coll.; 1 male and 1 female, same host species, BRAZIL: Rio Claro, São Paulo State, 13 January 2016, C.O.A. Gussoni coll.; 1 male ex *E. a. adesma* Reichenow, 1916, BURUNDI: Makamba, Nyanza-Lac, 04°20′08″S, 29°35′43″E, 16.iii.1920, H.C. Raven, USNM 275771 (UGA 3141); 4 males and 3 females ex *E. a. adesma*, D. R. CONGO: South Kivu, Centre de Recherche en Sciences Naturelles, Lwiro, 1702 m, 02°14′S, 28°48′E, 13.vi.2001, J.S. Hunt (JSH 031), FMNH 429841 (BMOC 02–0625-011); 1 male and 2 females ex *E. a. macmillani* Ogilvie-Grant, 1907, SOUTH SUDAN: Jubek State, Gondokoro, 04°54′09″N, 31°39′46″E, 23.ii.1910, E.A. Mearns, USNM 217328 (UGA 3144); 1 male ex *E. a. macmillani*, same data as previous, USNM 217329 (UGA 3145); 2 males and 1 female ex *E. a. macmillani*, same data as previous, 21.ii.1910, USNM 217327 (UGA 3146); 1 male and 1 female ex *E. a. astrild* (Linnaeus, 1758), SOUTH AFRICA: Western Cape Prov., Mossel Bay, 34°10′59″S, 22°07′42″E, 8.xii.1953, F. Zumpt (NU 3595); 1 female ex *E. a. astrild*, same data as previous (NU 3604); 3 males and 3 females ex *E. a. cavendishi* Sharpe, 1900, MOZAMBIQUE: Sofala Prov., Búzi, NW Beira, 1952′33″S, 34°36′03″E, 8.xi.1961, (NU 4190); 1 female ex *E. a. cavendishi*, MALAWI: Northern Region, Rumphi dist., Khuta maji, Vwaza Marsh, Vwaza Wildlife Reserve, 1170 m, 10°52′S, 33°27′E, 1.x.2009, J.M. Bates, FMNH 489300 (BMOC 10–0503-001); 1 male and 2 females ex *E. a. cavendishi*, same data as previous, 14.x.2009, J.W. Weckstein, FMNH 489301 (BMOC 10–0503-003); 3 males and 2 females ex *E. a. cavendishi*, MAURITIUS: Rodrigues Is., 19°42′2′S, 63°25′E, 1.x.1964, F.B. Gill, USNM 486951 (UGA 3173); 2 males ex *E. a. cavendishi*, same data as previous (UGA 3173); 4 males and 1 female ex *E. a. cavendishi*, MAURITIUS: Mauritius Is., Savanne Dist., nr. Bel Ombre, 20°30′03″S, 57°24′22″E, 15.ix.1964, F.B. Gill, USNM 487194 (UGA 3175); 3 males and 5 females ex *E. a. cavendishi*, French Overseas Department: Reunion Island, Étang-Salé les Bains, 21′16′05″S, 55′20′03″E, 19.ix.1964, F.B. Gill, USNM 487040 (UGA 3176).

Type-depositories: Holotype (# 3817), 8 male and 9 female paratypes (# 3818–3834) at DZUnesp-RC; 2 male and 2 female paratypes at each UMMZ, USNM, ZISP.

ZooBank registration: To comply with the regulations set out in article 8.5 of the amended 2012 version of the *International Code of Zoological Nomenclature* (ICZN) [16], details of the new species have been submitted to ZooBank. The Life Science Identifier (LSID) of the article is urn:lsid:zoobank.org:pub:0CE77EA6-7DAC-41D4-91CF-EEF74046677F. The LSID for the new name *Trouessartia transatlantica* n. sp. is urn:lsid:zoobank.org:act:DED231D1-9157-42B6-BA01-A5FAADB93EE2.

Etymology: The specific epithet refers to the two continents separated by the Atlantic Ocean - Africa and South America - in which the common waxbill now occurs. The species name is in the form of an adjective.

Male: [Holotype, range for 4 paratypes in parentheses; Figs. 7 and 8.] Length of idiosoma from anterior end to
bases of setae h_3 409 (401–414), greatest width of idiosoma at level of humeral shields 242 (237–242). Length of hysterosoma from sejugal furrow to bases of setae h_3 255 (247–258). Prodorsal shield: length along midline 126 (124–129), greatest width of posterior part 173 (168–177), anterior part at level of trochanters II narrowed, lateral margins fused with scapular shields, posterior margin straight, surface smooth (Fig. 7a). Vertical setae ve as microseta. Internal scapular setae si thin piliform, 27 (22–29) long, separated by 82 (75–82); external scapular setae se 158 (133–159) long, separated by 122 (121–125). Humeral shield with setae c_2 thin, 47 (31–50) long. Setae c_3 narrowly lanceolate, acute apically, 19 (19–26) long. Prohysteronotal and lobar shields connected medially. Prohysteronotal shield: length 181 (170–181), width at widest part near the anterior margin 171 (166–176), lateral margins with shallow incisions at level of trochanters III, dorsal hysterosomal apertures (DHA) present, surface smooth. Dorsal setae d_1, d_2 present, minute. Length of lobar shield excluding lamellae 81 (76–81). Opisthosomal lobes separated by parallel-sided terminal cleft, length of cleft from anterior end to apices of lamellae 71 (67–73), widest part 16 (16–18). Lamellae with margins indented (7–8 indentations) (Fig. 7). Seta h_2 233 (230–263) long, seta h_3 178 (164–197) long.

Coxal apodemes I free. Rudimentary sclerites rEpIIa as thin, oblique bands. Humeral shield ventrally fused with EpIII. Genital apparatus situated between levels of trochanters III, IV, length 37 (33–37), greatest width 12 (10–13) (Fig. 7b). Small, round epandrium present. Postgenital plaque absent, setae g thin, piliform. Adanal apodemes heavily sclerotized, with small ventral rounded apophyses. Translobar apodeme absent. Adanal shields present, bearing setae ps3. Anal suckers 16 (16–17) in diameter, distance between centers of discs 35 (32–35). Coxal apodemes IVa small, not reaching level of setae 4a. Setae 4b situated anterior to level of setae 3a, setae g anterior to 4a.

Legs IV extending by ambulacral disc to level of setae h_3. Setae s_R of trochanters III short, narrowly lanceolate, acute apically, 31 (28–31) long. Modified setae d of tarsus IV barrel-shaped, with discoid cap, situated apically; modified setae e hemispheroid, without cap, situated apically.

Female. [Range for 5 paratypes.] Length of idiosoma from anterior end to apices of lamellar lobar processes 423–442, greatest width 239–246. Length of hysterosoma from sejugal furrow to apices of lamellar lobar processes 268–282. Prodorsal shield: shaped as in male, 131–137 in length, 179–189 in width, surface as in the male (Fig. 8a). Vertical setae ve represented only by alveoli. Setae si thin piliform, 20–23 long, separated by 79–85; setae se 139–161 long, separated by 126–130. Humeral shields with setae c_2 thin, 32–42 long. Setae c_3 narrowly lanceolate, acute apically, 22–24 in length. Hysteronotal shield: length from
anterior margin to bases of setae h_3 262–269, width at largest part near anterior margin 174–186, lateral margins with incisions at level of trochanters III, DHA present, with small elongate lacunae from level of setae d_1 to d_2, and two main longitudinal rows of 3–4 large elongate lacunae between the level of setae e_1 to e_2 (Fig. 8a). Dorsal setae d_1, d_2 present. Setae h_1 thin piliform, 7–10 long, situated antero-mesal to bases of setae h_2. Width of opisthosoma at level of setae h_2 80–82. Setae ps_1 positioned dorsally on opisthosomal lobes, closer to bases of h_3 than to h_2, equidistant from outer and inner margins of lobe. Distance from bases of setae h_3 to membranous apices of lobes 16–18. Setae f_2 indistinct. Supranal concavity open posteriorly into terminal cleft. Length of terminal cleft together with supranal concavity 65–68, width of cleft at level of setae h_3 11–21. Interlobar membrane thin. External copulatory tube absent. Setae h_2 234–277 long, setae h_3 176–206 long.

Coxal apodemes I free. Epigynum 36–39 in length, 95–104 in width (Fig. 8b). Coxal apodemes IVA absent. Setae sR of trochanters III narrowly lanceolate, acute apically, 29–34 long. Legs IV extending by ambulacral disc to level slightly posterior to lobes.

Differential diagnosis

Trouessartia transatlantica n. sp. belongs to the *estrildae* species group [20] and is very close to *T. decorata* Gaud & Mouchet, 1958, in having, in males, well-separated lobes, postgenital plaque absent, and translobar apodeme absent. It can be distinguished from the latter species by the following features: in males, hysterosomal shield smooth; in females, small elongate lacunae between setae d_1 and d_2, and two distinct rows of 3–4 elongate lacunae between setae e_1 and e_2. In *T. decorata*, males have numerous circular lacunae on the hysteronotal shield, and females have large circular lacunae between d_1 and d_2 and two distinct rows of 7–8 elongate lacunae between e_1 and e_2.

Trouessartia minuscula Gaud & Mouchet, 1958

Host: *Estrilda nonnula* Hartlaub, 1883, *E. melpoda* (Vieillot, 1817), *E. astrild* (Passeriformes: Estrildidae).

Localities: Brazil, Cameroon, D.R. Congo, Ethiopia, Gabon, Malawi, Mauritius, Mozambique, South Africa, South Sudan, Uganda.

Type-material examined: Holotype male ex *Estrilda nonnula* Hartlaub, 1883 (Passeriformes: Estrildidae), CAMEROON: Yaoundé, November 1950, J. Mouchet.
col. (MRAC # 185.428); paratypes 3 females ex *Estrilda melpoda* (Vieillot, 1817), same locality and collector, November 1956, (MRAC # 185.429; 185.431). Type-specimens deposited in MRAC.

Voucher material: Material examined. 3 males and 8 females ex *Estrilda astrild* (Linnaeus, 1758) (Passeriformes: Estrildidae), BRAZIL: São Paulo State, Campus of UNESP, Rio Claro, 22°24' S, 47°33' W, 6.v.2015, M.H. Gabriel coll.; 2 females, same host species, BRAZIL: Rio Claro, São Paulo State, 13 January 2016, C.O.A. Gussoni coll.; one female ex *E. astrild*, SOUTH AFRICA: Limpopo, Haenertsburg, 26–27.xi.1961 (MRAC # 185.430); 1 male ex *E. a. rubriventris* (Vieillot, 1817), GABON: Ngounié, Agouma, River Nkomi, 01°32'29"S, 10°11'14"E, 7.xii.1917, C.R. Aschemeier, USNM 255788 (UGA 3138); 2 females ex *E. a. rubriventris*, same data as previous, 24.xi.1918, USNM 255787 (UGA 3139); 7 males and 1 female ex *E. a. peasei* Shelley, 1903, ETHIOPIA: Oromiya, Aleta, 09°46'N, 38°45'E, 11.iii.1912, E.A. Mearns, USNM 247464 (UGA 3142); 1 female ex *E. a. peasei*, same data as previous, USNM 247463 (UGA 3143); 1 male ex *E. a. macmillani* Ogilvie-Grant, 1907, SOUTH SUDAN: Jubek State, Gondokoro, 04°54’09”’S, 31°39’46”’E, 23.ii.1910, E.A. Mearns, USNM 217329 (UGA 3145); 3 males ex *E. a. macmillani*, same data as previous, 21.ii.1910, USNM 217327 (UGA 3146); 1 male ex *E. a. astrild* (Linnaeus, 1758), SOUTH AFRICA: Western Cape Prov., Mossel Bay, 34°10’59”’S, 22°07’42”’E, 8.xii.1953, F. Zumpt (NU 3595); 1 female ex *E. a. cavendishi* Sharpe, 1900, MOZAMBIQUE: Sofala Prov., Búzi, NW Beira, 1952’53”’S, 34°36’03”’E, 8.xi.1961 (NU 4190); 1 male and 1 female ex *E. a. cavendishi*, MALAWI: Northern Region, Rumphi dist., Khuta maji, Vwaza Marsh, Vwaza Wildlife Reserve, 1170 m, 10°52’S, 33°27’E, 1.x.2009, J.M. Bates, FMNH 489300 (BMOC 10–0503-001); 3 males ex *E. a. cavendishi*, same data as previous, 14.x.2009, J.W. Weckstein, FMNH 489301 (BMOC 10–0503-003); 2 males and 2 females ex *E. a. cavendishi*, MAURITIUS: Rodrigues Is. 19°42’05”’S, 55°20’30”’E, 1.x.1964, F.B. Gill, USNM 486951 (UGA 3173, 3174); 1 male and 2 females ex *E. a. cavendishi*, French Overseas Department: Reunion Island, Étang-Salé les Bains, 21°16’05”’S, 55°20’03”’E, 19.ix.1964, F.B. Gill, USNM 487040 (UGA 3176). Voucher specimens from *E. astrild* of Brazil deposited in DZUnesp-RC (# 3835–3847). African specimens in FMNH, UMMZ, USNM.

![Fig. 9 Trouessartia minuscula Gaud & Mouchet, 1958, male. a Dorsal view. b Ventral view](image-url)
Remarks

Described from *Estrilda nonnula* Hartlaub (Estrildidae) from Cameroon [29], this species is readily recognized by the conspicuous dark edges of the dorsal shields in both sexes, and by the bifurcate seta of males (Figs. 9 and 10). Santana [20] expressed doubts concerning the association between the only male from the type-host and the few females from *E. melpoda* (Vieillot, 1817). Here, in addition to the aforementioned material deposited at the MRAC, we analysed specimens from *E. astrild* from South Africa and Brazil, with males and females from this latter locality, and can confirm the association between both sexes of this species. The female of *T. minuscula* is herein illustrated for the first time, and *Estrilda astrild* represents a new host for this mite species.

Trouessartia estrildae Gaud & Mouchet, 1958

Host: *Estrilda nonnula, E. astrild*.

Localities: Cameroon, Brazil, D.R. Congo, Ethiopia, Kenya, Malawi, South Sudan, South Africa, Uganda.

Type-material examined: Holotype female ex *Estrilda nonnula* Hartlaub, 1883 (Estrildidae), Cameroon: Yaoundé, November 1950, J. Mouchet col. (MRAC # 185.292). Type-specimens deposited in MRAC.

Voucher material: 1 male and 1 female ex *Estrilda astrild* (Linnaeus, 1758) (Passeriformes: Estrildidae), BRAZIL: São Paulo State, Campus of UNESP, Rio Claro, 22°24′S, 47°33′W, 6.v.2015, M.H. Gabriel coll.; 2 males and 4 females, same host species, BRAZIL: Rio Claro, São Paulo State, 13.i.2016, C.O.A. Gussoni coll.; 2 males and 3 females ex *E. a. adesma* Reichenow, 1916, D. R. CONGO: South Kivu, Centre de Recherche en Sciences Naturelles, Lwiro, 1702 m, 02°14′S, 28°48′E, 13.vi.2001, J.S. Hunt, (JSH 031), FMNH 429841 (BMOC 02-0625-011); 1 female ex *E. a. peasei* Shelley, 1903, ETHIOPIA: Oromiya, Aleta, 09°46′N, 38°45′E, 11.iii.1912, E.G. Mearns, USNM 247464 (UGA 3142); 1 male ex *E. a. macmillani* Ogilvie-Grant, 1907, SOUTH SUDAN: Jubek State, Gondokoro, 04°54′09″N, 31°39′46″E, 23.ii.1910, E.G. Mearns, USNM 217328 (UGA 3144); 1 female ex *E. a. macmillani*, same data as previous, USNM 217329 (UGA 3145); 2 males ex *E. a. macmillani*, same data as previous, 21.ii.1910, USNM 217327 (UGA 3146); 1 male ex *E. a. astrild* (Linnaeus, 1758), SOUTH AFRICA: Western Cape Prov., Mossel Bay, 34°

![Fig. 10 Trouessartia minuscula Gaud & Mouchet, 1958, female. a Dorsal view. b Ventral view](image-url)
10°59′S, 22°07′42″E, 8.xii.1953, F. Zumpt, (NU 3604); 2 males and 3 females ex E. a. cavendishi Sharpe, 1900, MOZAMBIQUE: Sofala Prov., Búzi, NW Beira, 19°52′53″S, 34°36′03″E, 8.xi.1961 (NU 4190); 1 male and 1 female ex E. a. cavendishi, MALAWI: Northern Region, Rumphi dist., Khuta maji, Vwaza Marsh, Vwaza Wildlife Reserve, 1170 m, 10°52′S, 33°27′E, 1.x.2009, J.M. Bates, FMNH 489300 (BMOC 10–0503-001); 1 male and 1 female ex E. a. cavendishi, same data as previous, 14.x.2009, J.W. Weckstein, FMNH 489301 (BMOC 10–0503-003). Voucher specimens from E. astrild of Brazil deposited in DZUnesp-RC (# 3848–3855). African specimens in FMNH, UMMZ, USNM.

Remarks
Described from Estrilda nonnula, this species is reported on E. astrild for the first time. It is readily recognized in both sexes by the enlarged, curved setae c3 and sR-III, and by the incision on the prodorsal shield immediately posterior to setae se (Figs. 11 and 12).

Family Pyroglyphidae Cunliffe, 1958
Subfamily Onychalginae Fain, 1988
Genus Onychalges Gaud & Mouchet, 1959

Onychalges pachyspathus Gaud, 1968

Hosts: Estrilda melpoda, E. atricapilla, E. nonnula, E. astrild.

Localities: Brazil, Gabon, Mozambique, Malawi.

Type-material examined: Holotype male, 2 male and 2 female paratypes ex Estrilda melpoda (Vieillot, 1817) (Passeriformes: Estrildidae), CAMEROON, xi.1955, J. Mouchet coll. (MRAC 188.256), deposited in MRAC.

Voucher material: 2 males, 15 females and 4 nymphs ex Estrilda astrild (Linnaeus, 1758) (Passeriformes: Estrildidae), BRAZIL: Campus of UNESP, Rio Claro, São Paulo State, 22°24′S, 47°33′W, 6.v.2015, M.H. Gabriel coll.; 1 male ex E. a. rubriventris (Vieillot, 1817), GABON: Ngounié, Agouma, River Nkomi, 01°32′29″S, 10°11′14″E, 7.xii.1917, C.R. Aschemeier, USNM 255788 (UGA 3138); 1 male and 12 females ex E. a. adesma Reichenow, 1916, D. R. CONGO: South Kivu, Centre de Recherche en Sciences Naturelles, Lwiro, 1702 m, 02°14′S, 28°48′E, 13.vi.2001, J.S. Hunt (JSH 031), FMNH 429841 (BMOC 02–0625-011); 1 male and 1 female ex E. a. cavendishi Sharpe, 1900, MOZAMBIQUE: Sofala Prov., Búzi, NW Beira, 19°52′53″S, 34°36′03″E, 8.xi.1961 (NU 4190); 2 males and 1 female ex E. a. cavendishi, MALAWI: Northern Region, Rumphi dist., Khuta maji, Vwaza Marsh, Vwaza Wildlife Reserve, 1170 m, 10°52′S, 33°27′E, 1.x.2009, J.M. Bates, FMNH 489300 (BMOC 10–0503-001); 2 males ex E. a. cavendishi, same data as previous, 14.x.2009, J.W. Weckstein, FMNH 489301 (BMOC 10–0503-003). Voucher specimens from E. astrild of Brazil deposited in DZUnesp-RC (# 3856–3872) and UMMZ. African specimens in FMNH, UMMZ, USNM.

Fig. 11 Trouessartia estrildae Gaud & Mouchet, 1958, male. a Dorsal view. b Ventral view
Remarks
This species has been reported from passerines of the genus *Estrilda* (Estrildidae): *E. melpoda* (Vieillot) (type-host), *E. nonnula* Hartlaub, *E. atricapilla* Verreaux & Verreaux, and *E. astrild* (Linnaeus) [4, 31] (Figs. 13 and 14).

Family Dermationidae Fain, 1965
Subfamily Dermationinae Fain, 1965
Genus *Paddacoptes* Fain, 1964

Paddacoptes paddae (Fain, 1964)

Hosts: *Lonchura oryzivora* (Linnaeus, 1758) (type-host), *L. punctulata* (Linnaeus, 1758), *L. malacca* (Linnaeus, 1766), *L. cucullata* (Swainson, 1837), *Estrilda astrild*.

Localities: Indonesia, Java, D.R. Congo, Brazil.

Voucher material: 1 male, 28 females ex *Estrilda astrild* (Linnaeus, 1758) (Passeriformes: Estrildidae), BRAZIL: São Paulo State, Campus of UNESP, Rio Claro, 22°24′ S, 47°33′ W, 6.v.2015, M.H. Gabriel coll; specimens deposited in DZUnesp-RC (# 3873–3896) and UMMZ.

Remarks
Seven *Paddacoptes* species are known from passerines (Estrildidae, Viduidae) and pigeons (Columbidae) [33]. *Paddacoptes paddae* (Fain, 1964) (Figs. 15 and 16) was described from African and Asian passerines of the family Estrildidae: *Lonchura oryzivora* (Linnaeus, 1758) (type-host), *L. punctulata* (Linnaeus, 1758), *L. malacca* (Linnaeus, 1766), *Spermestes cucullatus* (Swainson, 1837), and *Estrilda atricapilla* (Verreaux & Verreaux, 1851) [33]. It is reported here for the first time on *Estrilda astrild*.

Order Trombidiformes Reuter, 1909
Superfamily Cheyletoidea Leach, 1815
Family Cheyletidae Leach, 1815
Genus *Neocheyletiella* Baker 1949

Neocheyletiella megaphallos (Lawrence, 1959)

Hosts: *Estrilda erythronotos* (Vieillot, 1817), *E. astrild*.

Localities: Botswana, Brazil.

Voucher material: 5 males, 9 females and 4 nymphs ex *Estrilda astrild* (Linnaeus, 1758) (Passeriformes: Estrildidae), BRAZIL: São Paulo State, Campus of UNESP, Rio Claro, 22°24′ S, 47°33′ W, 6.v.2015, M.H. Gabriel coll; specimens deposited in DZUnesp-RC (# 3897–3907) and UMMZ.

Remarks
Described from the Black-faced waxbill, *Estrilda erythronotos* (Vieillot, 1817) (Estrildidae), this species bears the longest aedeagus among the 17 species of the genus [32], being longer than half the length of the male’s idiosoma (Fig. 17a). It is recorded on *E. astrild* for the first time.
Fig. 13 *Onychalges pachyspathus* Gaud, 1968, male. **a** Dorsal view. **b** Ventral view

Fig. 14 *Onychalges pachyspathus* Gaud, 1968, female. **a** Dorsal view. **b** Ventral view
Discussion

Prior to this study, the only mite previously known from the common waxbill was Onychalges pachyspathus Gaud, 1968 [4]. Herein we add eight more mite species to the list of associates of this bird. The acarofauna found on Estrilda astrild from Brazil includes only typical Old World taxa, most of which are thus recorded for the first time in the Neotropical region. Of the nearly 60 known species of Montesauria, none is known from the Neotropics, and only one is known from North America [10], while all the remaining species are endemic to either Africa, Eurasia or Australasia. Despite Trouessartia species having been found worldwide, mostly on passerines, the three species found on E. astrild belong to the estrildae group, a group of 12 species restricted to African estrildids [20]. Of the six species of Onychalges (Pyroglyphidae), all but one are confined to African estrildids, the exception being O. nidicola Fain & Rosa, 1982 described from a nest of Passer domesticus (Linnaeus, 1758) (Passeridae) in Brazil [34]. This host, however, is believed to be accidental, and this mite may have entered South America via introduced estrildids [4].

Fig. 15 Paddacoptes paddae (Fain, 1964), male. a Dorsal view, b Ventral view

Only two of the seven species of Paddacoptes are described from New World pigeons (Columbidae), the remaining species are from African or Australasian passerines of the families Estrildidae and Viduidae [32]. As for the genus Neocheyletiella, four species occur on the Estrildidae, and N. megaphallos is the only one associated with the genus Estrilda [35–38]. Finally, despite no Xolalgoides (Xolalgidae) specimens were recovered from the Brazilian specimens, this might simply be due to the low number of waxbill specimens (2) analyzed from this country.

These mites represent at least three morpho-ecological groups regarding their microhabitats occupied on the bird: (i) vane mites, Montesauria and Trouessartia, on the ventral and dorsal surfaces of the large wing feathers, respectively, and also on the tail feathers; (ii) down mites (Onychalges); and (iii) skin mites (Paddacoptes, Neocheyletiella). The finding of eight mite species on a single host, including two and three congeners (Montesauria and Trouessartia, respectively) gives a perspective on how diverse the acariform fauna associated with passerines is. On one specimen of the Common waxbill in Brazil we found representatives of all eight mite species.

Estrilda astrild is believed to have been brought from Africa to Brazil in slave ships between 1822 and 1831, during the Atlantic slave trade [1]. It normally feeds on introduced African grasses and build their own nests (i.e. do not use cavity nests built by other birds), and thus offers limited competition to, or at least little interaction with native birds of Brazil [1]. This offers few opportunities for horizontal transfer of mites. Indeed, after almost two centuries in the new environment, the common waxbill has probably not yet acquired any representatives of typical Neotropical mite taxa.

Feather mites usually tend to remain associated only with their native or closely related hosts even when are introduced to other regions [17]. Thus, commonly introduced birds in Brazil, either reared as pets e.g. cockatiels, Nymphicus hollandicus (Kerr, 1792), budgerigars, Melopsittacus undulatus (Shaw, 1805) or poultry [e.g.
Fig. 16 *Paddacoptes paddae* (Fain, 1964), female. **a** Dorsal view. **b** Ventral view.

Fig. 17 *Neocheyletiella megaphallos* (Lawrence, 1959). **a** Male, dorsal view. **b** Male, ventral view. **c** Female, dorsal view. **d** Female, ventral view.
domestic chickens, *Gallus gallus domesticus* Linnaeus, 1758], or those now living in the wild, e.g. house sparrows, *Passer domesticus* Linnaeus, 1758 and rock pigeons, *Columba livia* Gmelin, 1789, still have the same mites as reported from their native range. In these cases *Nymphiclichus perezae* Mironov & Galloway, 2002 (Pterolichidae) persists on cockatiels, *Sideroferus lunula* (Robin, 1877) (Pterolichidae) on budgerigars, *Megania cubitalis* (Méglin, 1877) and *M. ginglymura* (Méglin, 1877) (Analgidae) on farmed chickens, *Proctophyllodes truncatus* Robin, 1877 (Proctophyllodidae) on house sparrows, and *Falculifer rostratus* (Buchholz, 1869) (Falculideridae) on rock pigeons ([39–41], FAH, pers. obs.).

The recent discovery of horizontal transfer of *Allopсорoptoides galli* from wild Guira cuckoos, *Guira guira* (Gmelin, 1788), Cuculiformes, to laying hens, *Gallus gallus domesticus* (Linnaeus, 1758) (Galliformes), in Brazil demonstrates that feather mites may occasionally colonize phylogenetically distant hosts, especially in captivity [42]. In the case of the mites from *Estrilda astrild*, we suspect that this would be a highly improbable event, given the fact that most feather mites are highly host specific, and the common waxbill remains the only representative of the family Estrildidae introduced in the Neotropics.

Conclusion

In this study, eight mites belonging to five families and two orders are reported for the first time from *Estrilda astrild* from its introduced range in Brazil, all of which are recorded for the first time in the Neotropics. We conclude that the mite community reported from this bird species contains only typical Old World taxa, despite this bird having been present in the new environment for almost two centuries. No representatives of Neotropical acarine taxa were found associated with this bird. We suspect that the horizontal transfer between these distinct acarofaunas would be quite an unlikely event, since most feather mites are highly host specific, and the common waxbill remains the only estrildid introduced in the Neotropics.

Acknowledgements

To Carlos O.A. Gussoni and Matheus H. Gabriel for collecting the dead specimens of the common waxbill from Brazil; to Jason W. Weckstein (Academy of Natural Sciences of Drexel University, Philadelphia) and John Bates (Field Museum of Natural History, Chicago) for collecting the recent birds from Africa. To Didier Van Den Spiegel (MRAC, Tervuren, Belgium) for allowing FAH to examine type-specimens in the J. Gaud Collection.

Funding

FAH was funded by the São Paulo Research Foundation (FAPESP - 2011/50145–0).

Availability of data and materials

The data supporting the conclusions of this article are included within the article. The type- and voucher specimens studied herein are deposited in the collections and institutions described under the “Methods” section.

Authors’ contributions

FAH made the illustrations, wrote the descriptions, results, and discussion. BMOC wrote the descriptions, results, and discussion. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1. Departamento de Zoologia, Universidade Estadual Paulista, Av. 24-A, 1515, Rio Claro, SP 13506-900, Brazil. 2. Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI 48109-1079, USA.

Received 23 March 2017 **Accepted** 4 June 2017

Published online 21 June 2017

References

1. Sick H. *Ornitolgia Brasileira.*, 2ed. Rio de Janeiro: Nova Fronteira; 1997.
2. Silva T, Reino LM, Borrallho R. A model for range expansion of an introduced species: the common waxbill *Estrilda astrild* in Portugal. Divers Distrib. 2002; 8:319–26.
3. Fontoura PM, Dyer E, Blackburn TM, Orsi ML. Non-native bird species of Brazil. Neotrop. Biol Conserv. 2013;8:165–75.
4. Böckhov AV, Klimov PG, Grootaert P. Revision of the subfamily Onychalginae Fain, 1988 (Acariformes: Pyroglyphidae) – ectoparasites of passerine birds. Zootaxa. 2014;3785:175–200.
5. Kranz GW, Walter DE, editors. A manual of acarology. 3rd ed. Lubbock: Texas Tech University Press; 2009. p. 807.
6. Griffiths DA, Atyeo WT, Norton RA, Lynch CA. The idiosomal chaetotaxy of astigmatid mites. J Zool. 1990;220:1–32.
7. Atyeo WT, Gaud J. The chaetotaxy of sarcoptiform feather mites (Acarina: Analgoidea). J Kans Entomol Soc. 1966;39:337–46.
8. Norton RA. Morphological evidence for the evolutionary origin of Astigmata (Acarina: Acariformes). Exp Appl Acarol. 1998;22:559–94.
9. Atyeo WT, Gaud J. Gruiformes, a new host group for pterodectine feather mites (Acarina: Analgoidea). J Parasitol. 1977;63:141–4.
10. Mironov SV, Norton RA. New feather mites of the subfamily Pterodectinae (Acarina: Proctophyllodidae) from passerines (Aves: Passeriformes). In: Norton RA. 2008;8:403–18.
11. Gaud J, Mouchet J. Acani plumicole (Analgoidea) des oiseaux du Cameroun. I. Proctophyllodidae Ann Parasit Hum Comp. 1957;32:491–546.
12. Hernandes FA, Valim MP, Mironov SV. On the identity of Pterodectes rallulace Atyeo and Gaud, 1977 (Acarina: Proctophyllodidae). J Nat Hist. 2010;44:369–77.
13. Mironov SV. Feather mites of the genus Montesaurio Oudemans (Acarina: Proctophyllodidae) associated with starlings (Passeriformes: Sturnidae) in the indomalayan region, with notes on systematics of the genus. Acarina. 2006;14:210–20.
14. Mironov SV, Literák I, Nguyen MH, Čapek M. New feather mites of the subfamily Pterodectinae (Acarina: Proctophyllodidae) from passerines and woodpeckers (Aves: Passeriformes, Piciformes) from Vietnam. Zootaxa. 2012;3401:49–54.
15. Mironov SV, Tolstenkov O. Three new feather mites of the subfamily Pterodectinae (Acarina: Proctophyllodidae) from passerines (Aves: Passeriformes) in Vietnam. Proc Zool Inst RAS. 2013;317:11–29.
16. International Commission on Zoological Nomenclature. Amendment of articles 8, 9, 10, 21 and 78 of the International Code of Zoological Nomenclature to expand and refine methods of publication. Zootaxa. 2012;3450:1–7.
17. Gaud J. Atyeo WT. Feather mites of the world (Acarina, Astigmata): the supraspecific taxa. Ann Mus Roy Afr Centr Sci Zool. 1996;27:1–193, 1–436.
18. Oudemans AC, List of Dutch Acari, 7 part: Acaridiae Latr., 1806, and Phytoidipedia Paginest., 1861, with synonymical remarks in descriptions of new species. Tijdschr Entomol. 1897;40:250–69.
19. Hernandes FA. Five new species of the feather mite genus Trouessartia Canestrini from South America (Acarina: Trouessartiidae). Zootaxa. 2014;3856:50–72.
20. Santana FJ. A review of the genus Trouessartia (Analgoidea: Allotropidae). J Med Entomol Suppl. 1976;1:1–128.
21. Gaud J, Atyeo WT. Les Trouessartia (Analgoidea, Trouessartiidae) parasites des hirondelles de l’Ancien Monde. I. Le Groupe appendiculatus. Acarologia. 1986;27(3):263–74.
22. Gaud J, Atyeo WT. Les Trouessartia (Analgoidea, Trouessartiidae) parasites des hirondelles de l’Ancien Monde. I Le Groupe minuteps. Acarologia. 1987;28(4):367–79.
23. Constantinescu IC, Cobzaru I, Mukhim DKB, Adam C. Two new species of the genus Trouessartia (Acarina, Trouessartiidae) from leiothrichid birds (Aves, Leiothrichidae). ZooKeys. 2016a;571:59–79.
24. Constantinescu IC, Cobzaru I, Mukhim DKB, Adam C. Two new species of the feather mite genus Trouessartia (Acarina: Trouessartiidae) from Asia. Zootaxa. 2016b;4137(3):357–74.
25. Constantinescu IC, Cobzaru I, Geannana NA, Mukhim DKB, Adam C. Two new species of feather mites (Acarina: Psoroptidae) from the blue-throated blue flycatcher, Gypornis rubeculoides (Passeriformes: Muscicapidae). J Nat Hist. 2017;51:277–97.
26. Hernandes FA, Valim MP. A new species of the genus Trouessartia Canestrini (Acarina: Trouessartiidae) from Neotropical passerines (Aves: Tyrannidae). Int J Acarol. 2015;41:382–8.
27. Mironov SV, Palma RL. A new feather mite of the genus Trouessartia Canestrini 1899 (Acarina: Trouessartiidae) from the Seychelles magpie-robin, Copsychus sechellarum. Acta Parasitol. 2016;61(3):629–35.
28. Mironov SV, Palma RL. A new feather mite of the genus Trouessartia Canestrini 1899 (Acarina: Trouessartiidae) from the Seychelles magpie-robin, Copsychus sechellarum. Acta Parasitol. 2016;61(3):629–35.
29. Gaud J, Atyeo WT. Les Trouessartia (Analgoidea, Trouessartiidae) parasites des hirondelles de l’Ancien Monde. I Le Groupe appendiculatus. Acarologia. 1986;27(3):263–74.
30. Hernandes FA. Two new species of the feather mite genus Trouessartia Canestrini (Acarina: Trouessartiidae) from leiothrichid birds (Aves, Leiothrichidae). ZooKeys. 2016a;571:59–79.
31. Gaud J. Acariens de la sous-famille des Dermatophagoidinae (Psoroptidae) récoltés dans les plumages d’oiseaux. Acarologia. 1968;10:292–312.
32. Fain A. A review of the family Epidermoptidae Trouessart parasitic on skin of birds (Acarina: Sarcoptiformes). Konink Acad Wetensch Let Schone Kunst. 1965;27(1):1–176. (2): 1–144
33. Mertins JW, Bochkov AV. Key to species of the genus Trouessartia Canestrini (Acarina: Trouessartiidae) from the Northern rough-winged swallow Stelgidopteryx serripennis (Passeriformes: Hirundinidae) in Pennsylvania. Acarinet. 2016;24(2):3–9.
34. Gaud J, Mouchet J. Acariens plumicoles (Analgoidea) des oiseaux du Cameroun. I Proctophyllodidae (suite). Ann Parasit Hum Comp. 1958;33:36–68.
35. Fain A. Notes on some poorly known species of the genus Trouessartia Canestrini (Acarina: Trouessartiidae) from leiothrichid birds (Aves, Leiothrichidae). J Nat Hist. 2002;42:145–60.
36. Fain A. Notes on some poorly known species of the genus Trouessartia Canestrini (Acarina: Trouessartiidae) from leiothrichid birds (Aves, Leiothrichidae). J Nat Hist. 2002;42:145–60.
37. Mironov SV, Overstreet RM. A new feather mite species of the genus Trouessartia Canestrini (Acarina: Trouessartiidae) from the Northern rough-winged swallow Stelgidopteryx serripennis (Passeriformes: Hirundinidae) in Pennsylvania. Acarinet. 2016;24(2):3–9.
38. Constantinescu IC, Cobzaru I, Mukhim DKB, Adam C. Two new species of feather mites (Acarina: Psoroptidae) from the blue-throated blue flycatcher, Gypornis rubeculoides (Passeriformes: Muscicapidae). J Nat Hist. 2017;51:277–97.
39. Hernandes FA. Five new species of the feather mite genus Trouessartia Canestrini from South America (Acarina: Trouessartiidae). Zootaxa. 2014;3856:50–72.
40. Bochkov AV, Ochoa R. Three new cheyletid species (Acari: Cheyletidae) from Neotropical passerines (Aves: Tyrannidae). Int J Acarol. 2015;41:382–8.
41. Rezende LC, Cunha LM, Martins NRS, Teixeira CM, Oliveira PR. Epidemiology of Meginini spp. in laying flocks from the state of Minas Gerais, Brazil. Braz J Vet Parasitol. 2015;24(2):198–203.
42. Hernandes FA, Pedroso LGA, Mironov SV. From cuckoo to chickens: a caught-in-the-act case of host shift in feather mites (Arachnida: Acari: Psoroptoida). Parasitol Res. 2014;113:4355–61.