Research Paper
Comparing the Effect of Endurance Exercise and High-Intensity Interval Exercise on Plasma Levels of Chemerin and Insulin Resistance in Obese Male Rats

Mohammad Reza Asad, Shokoufeh Kheradmand, Narges Kheradmand

1. Department of Physical Education and Sport Sciences, Payame Noor University of Karaj, Karaj, Iran.
2. PhD student in Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran.
3. MSc in Physical Education and Sport Sciences, Payame Noor University, Garmser, Iran.

Background and Aim: Exercise improves sensitivity to insulin by reducing some adipokines including chemerin. However, the effect of endurance exercise and high-intensity intermittent exercise on chemerin level and insulin resistance in obese male rats is still unknown.

Methods & Materials: In this study 27 male rats were randomly divided into 4 groups of sedentary control (n=6), endurance exercise (n=8), high-intensity intermittent exercise (n=8) and untreated obese control (n=5). Both endurance and high intensity intermittent exercise groups performed exercises for 8 weeks. The plasma level of chemerin was measured by ELISA method.

Ethical Considerations: This study obtained its ethical approval from the Research Ethics Committee of Sport Sciences Research Institute (Code: IR.SSRI.REC.1398.55).

Results: The chemerin level was significantly reduced in the endurance group compared to the untreated obese control group (P<0.01), but it had no significant change compared to the sedentary control group. Moreover, the plasma level of chemerin in the high-intensity intermittent group was not significantly different from that of untreated obese control group and sedentary control group (P>0.05) and chemerin level reduction in the endurance group was significant compared to the high-intensity intermittent group (P<0.05). Furthermore, there was no significant difference in the insulin resistance reported in high-intensity intermittent group compared to that of endurance group (P>0.05), but its difference in high-intensity intermittent and endurance training groups was significant compared to that of untreated obese control and sedentary control groups (P<0.05).

Conclusion: Both endurance and high-intensity intermittent exercises can reduce insulin resistance which can be due to the reduction of chemerin plasma level and weight loss.

Key words: Endurance exercise, high-intensity intermittent exercise, chemerin, insulin resistance, obese rats

Extended Abstract

Introduction
The prevalence of obesity is associated with an increased risk of metabolic syndrome, type 2 diabetes, and insulin resistance, so control and regulation of adipose tissue can prevent diseases associated with this tissue [1]. Adipose tissue plays an important role in energy balance management by secreting some adipokines including chemerin. Chemerin is secreted from visceral adipose tissue and liver [2] and plays an important role...
role in macrophage recruitment to adipose tissue, development of inflammation and insulin resistance, leading to insulin stimulation and increased glucose uptake in adipocytes [3]. According to the observations, serum levels of chemerin are elevated in obese patients and are associated with various aspects of metabolic syndrome [4]. In addition, high concentrations of chemerin serum make it possible for pre-diabetic conditions which affects glucose homeostasis [5] and induce insulin resistance [7].

Regular exercise is a good strategy for treating many metabolic disorders, including insulin resistance and obesity, by improving insulin sensitivity via increasing the density and sensitivity of glucose transporter GLUT4 in skeletal muscle sarcoma [8] and affecting adipose tissue [9]. Twelve weeks of aerobic [4] and strength [3] exercises decreases insulin sensitivity in obese men by lowering chemerin serum level. There is also a reported significant decrease in chemerin plasma level after high-intensity intermittent training [15] and 12 weeks of aerobic interval training in 24 inactive students [6]; However, 8 weeks of sprint exercise have no significant effect on chemerin serum levels of female Sprague-Dawley rats [16]. Given that the effect of exercise on chemerin serum levels is somewhat contradictory [4], and the changes in its level are dependent on the type and intensity of the exercise, the present study aimed to investigate the effect of endurance exercise and high-intensity (HIIT) intermittent exercise on chemerin plasma level and insulin resistance in obese male rats.

Materials and Methods

Study samples were 27 male Wistar rats aged 35-45 days with a mean weight of 110±10 g. They were randomly divided into 4 groups of sedentary control (n=6), endurance exercise (n=8), HIIT intermittent exercise (n=8) and untreated obese control (n=5). Both endurance and HIIT intermittent exercise groups performed exercises on a treadmill for 8 weeks. For the HIIT group, exercise protocol consisted of training sets with an intensity of 90% VO2max for 15-30 seconds with a 1-min active resting interval. It reached from 5 sets in the first week to 12 sets in the last week. Total exercise activity was matched between the two training groups such that the intensity of exercise in the endurance group was 50-70% VO2max. Accordingly, endurance group activity in the first week reached from 25 minutes at a speed of 15 m/min and with intensity of 50-70% VO2max to 60 min at 22 m/min speed. Forty-eight hours after the last training session, the rats of all three groups were anesthetized by intraperitoneal injection of ketamine and xylazine. Blood samples was collected from the heart of Rats directly. Plasma and insulin levels of chemerin were calculated by ELISA method, while plasma level of glucose was measured by enzymatic glucose oxidase, and insulin resistance index was calculated by HOMA-IR formula. After testing the normality of data distribution by Smirnov-Kolmogorov test and confirmation of the equality of variance assumption using Levene’s test, ANOVA test was used for analyzing data and comparing groups. Scheffe’s test was used for determining the location of differences between groups regarding chemerin level. For analyzing data related to insulin resistance, Welch’s ANOVA test and Dant3 post hoc test were used.

Results

The chemerin level was significantly reduced in the endurance group compared to the untreated obese control group (P=0.006), but it had no significant change compared to the sedentary control group (P=0.590). Moreover, the plasma level of chemerin in the HIIT intermittent group was not significantly different from that of untreated obese control group (P=0.781) and sedentary control group (P=0.421) and chemerin level reduction in the endurance group was significant compared to the HIIT intermittent group (P=0.035). Furthermore, there was no significant difference in the insulin resistance reported in HIIT intermittent group compared to that of endurance group (P=0.825), but its difference in HIIT intermittent and endurance training groups was significant compared to that of untreated obese control and sedentary control groups (P<0.05).

Conclusion

Both endurance and HIIT intermittent exercises can decrease plasma levels of chemerin and insulin resistance. However, the reduction is partly dependent on the type of exercise, such that plasma levels of chemerin significantly decreased after a period of endurance exercise compared to HIIT intermittent exercise.

Ethical Considerations

Compliance with ethical guidelines

This study obtained its ethical approval form the Research Ethics Committee of Sport Sciences Research Institute (Code: IR.SSRI.REC.1398.55) and approved by Faculty of Physical Education and Sport Sciences, University of Tehran.

Funding

This study received no financial support from any organization.
Authors' contributions

All authors contributed equally to the writing of this article.

Conflicts of interest

The authors declare no conflict of interest.
مقاله‌های علمی
برنامه‌ریزی و تمرین استقامتی و تناوبی در کاهش سطوح پلاسمایی کمرین و مقاومت به انسولین

محمدرضا اسد*\، همکاران

کرک، دانشگاه پیام‌نور کرک، گروه تربیت بدنی و علوم ورزشی.
نشانی:
محمدرضا اسد، دکتر
کرک، دانشگاه پیام‌نور کرک، گروه تربیت بدنی و علوم ورزشی.

کلیدواژه‌ها: تمرین استقامتی، تمرین تناوبی شدید، کمرین، مقاومت به انسولین، موش های چاق

اطلاعات مقاله:
تاریخ دریافت ۱۳۹۸فروردین ۰۲:
تاریخ پذیرش ۱۳۹۸مهر ۰۶:
تاریخ انتشار ۱۳۹۸ آذر ۱۰:

مقدمه
شیوع اخیر چاقی، باعث نوعی نگرانی عمده بهداشتی انسانی در آینده نزدیک خواهد بود که با افزایش خطر ابتلا به سندرم متابولیک، فشار خون بالا، چربی خون، انعقاد، ۲متابولیک، دیابت نوع ۱، آسیب های کروموسامی و سندرم خونی، همراه است؛ بنابراین کنترل و تنظیم بافت چربی می‌تواند از بیماری‌های انسدادی را کاهش دهد و احتمال حمله به آنها را کاهش دهد. این بیماری‌ها با داشتن مقاومت به انسولین و در نهایت باعث کاهش مقاومت به انسولین می‌گردد.

کمرین ناحیه کنترل ترشح سطوح پلاسمایی کمرین و مقاومت به انسولین در دستگاه‌های انرژی‌ورزشی دانشگاه تهران تحقیق شد و در مرکز کمیته اخلاق پژوهشگاه علوم ورزشی با کد IR.SSRI.REC.1398/559 انجام شد.

نتایج نشان داد که کمرین در گروه استقامتی نسبت به گروه موش‌های چاق بدون مداخله کاهش معنی‌داری داشت، ولی نسبت به گروه کنترل پایه تغییر معنی‌داری نداشت. همچنین، اختلاف معنی‌داری بین کمرین در گروه تناوبی شدید با گروه کنترل پایه وجود نداشت و بین گروه استقامتی و کنترل پایه تغییر معنی‌داری در سطوح پلاسمایی کمرین وجود نداشت. اختلاف معنی‌داری بین مقاومت به انسولین در گروه تناوبی شدید با گروه کنترل پایه وجود نداشت، اما اختلاف معنی‌داری بین مقاومت به انسولین در گروه استقامتی و گروه تناوبی شدید وجود داشت. اختلاف معنی‌داری بین مقاومت به انسولین در گروه تناوبی شدید و کنترل پایه وجود نداشت.

نتایج نشان داد که کمرین اثرات موضعی بر آدیپوژنسی گردیده و این اثرات موجب کاهش سطوح پلاسمایی کمرین و مقاومت به انسولین می‌گردد.
ناحیه می‌دهند تریمینت ورزشی زیر آستانه نرمال سیستم‌های ورزشی به طور منطقه‌ای آدرنالین و گلوکوز سطح‌های کمرین را گزارش کردند.

سازمان و همکاران، تأثیر تریمینت‌های نزدیک از طریق کاهش سطوح کمرین در سطح قلبی و مقاومت به انسولین در موش‌های چاق و دارای اضافه وزن وجود دارد و اینکه اطلاعات اندکی در زمینه تأثیر فعالیت ورزشی بر غلظت آدیپوکاین و تغییرات کمرین وجود دارد.

در مجموع مطالعات انسانی نشان می‌دهد که این مدل‌ها از طریق ادغام چاقی همراه با مقاومت به انسولین در موش‌های چاق و دارای اضافه وزن وجود دارد.

 mücadele با سیستم‌های استخوانی و تغییرات سطوح کمرین و مقاومت به انسولین در موش‌های چاق و دارای اضافه وزن وجود دارد.

در این راستا یافته‌های تحقیق حاضر از نظر روش‌شناسی، تجربی و از نظر هدف، از طریق فاکتورهای متنوعی و متفاوتی به دست آمد.

نتایج حاضر نشان می‌دهد که تریمینت‌های نزدیک به سطوح کمرین در افراد چاق و دارای اضافه وزن وجود دارد و اینکه اطلاعات اندکی در زمینه تأثیر فعالیت ورزشی بر غلظت آدیپوکاین و تغییرات کمرین نیست.

در این راستا یافته‌های تحقیق حاضر از نظر روش‌شناسی، تجربی و از نظر هدف، از طریق فاکتورهای متنوعی و متفاوتی به دست آمد.

نتایج حاضر نشان می‌دهد که تریمینت‌های نزدیک به سطوح کمرین در افراد چاق و دارای اضافه وزن وجود دارد و اینکه اطلاعات اندکی در زمینه تأثیر فعالیت ورزشی بر غلظت آدیپوکاین و تغییرات کمرین نیست.

در این راستا یافته‌های تحقیق حاضر از نظر روش‌شناسی، تجربی و از نظر هدف، از طریق فاکتورهای متنوعی و متفاوتی به دست آمد.

نتایج حاضر نشان می‌دهد که تریمینت‌های نزدیک به سطوح کمرین در افراد چاق و دارای اضافه وزن وجود دارد و اینکه اطلاعات اندکی در زمینه تأثیر فعالیت ورزشی بر غلظت آدیپوکاین و تغییرات کمرین نیست.

در این راستا یافته‌های تحقیق حاضر از نظر روش‌شناسی، تجربی و از نظر هدف، از طریق فاکتورهای متنوعی و متفاوتی به دست آمد.

نتایج حاضر نشان می‌دهد که تریمینت‌های نزدیک به سطوح کمرین در افراد چاق و دارای اضافه وزن وجود دارد و اینکه اطلاعات اندکی در زمینه تأثیر فعالیت ورزشی بر غلظت آدیپوکاین و تغییرات کمرین نیست.

در این راستا یافته‌های تحقیق حاضر از نظر روش‌شناسی، تجربی و از نظر هدف، از طریق فاکتورهای متنوعی و متفاوتی به دست آمد.

نتایج حاضر نشان می‌دهد که تریمینت‌های نزدیک به سطوح کمرین در افراد چاق و دارای اضافه وزن وجود دارد و اینکه اطلاعات اندکی در زمینه تأثیر فعالیت ورزشی بر غلظت آدیپوکاین و تغییرات کمرین نیست.
اختلاف بین گروهی در میانگین گروه‌های مورد مطالعه در مورد داده‌ها استفاده شد. پس از مشخص شدن نرمال بودن توزیع داده‌ها (میلی مول بر لیتر) اندازه‌گیری شد. شاخص مقاومت به انسولین با کرایداری شده و مطابق با روش درج شده در بروشور کیت، که از شرکت تسنیم گستر ساخت تهیه شد. محاسبه شاخص HOMA-IR از فرمول حاصل پروتکل گزارش شده در سطح معنی‌داری (P < 0.05) ثابت شد و تغییرات وزن بدن بین گروه‌های تمرینی در سطح معنی‌داری (P < 0.05) ثابت شد.

در این تحقیق، چهار انتقالگریز متفاوت یا هم‌پایه از شرکت‌های مختلف در مورد داده‌ها حاصل پروتکل گزارش شده در سطح معنی‌داری (P < 0.05) ثبت شد که اختلاف معنی‌داری بین سطوح پلاسمای کمرین و گروه کنترل پایه اختلاف معنی‌داری (P < 0.05) ثابت شد. نتایج آزمون شفه 1398/1399 (ریته کل) و 48 ثانیه مطابق با روش درج شده در بروشور کیت، که از شرکت تسنیم گستر ساخت، ثبت شد. شاخص مقاومت به انسولین با کرایداری شده و مطابق با روش درج شده در بروشور کیت، که از شرکت تسنیم گستر ساخت تهیه شد.

با توجه به تحقیق شماره 2 و تحریر شماره 6، پژوهشی در دانشگاه تکنیکی و صنعتی ایران در این تحقیق، چهار انتقالگریز متفاوت یا هم‌پایه در سطح معنی‌داری (P < 0.05) ثبت شد که اختلاف معنی‌داری بین سطوح پلاسمای کمرین و گروه کنترل پایه اختلاف معنی‌داری (P < 0.05) ثابت شد. نتایج آزمون شفه 1398/1399 (ریته کل) و 48 ثانیه مطابق با روش درج شده در بروشور کیت، که از شرکت تسنیم گستر ساخت، ثبت شد. شاخص مقاومت به انسولین با کرایداری شده و مطابق با روش درج شده در بروشور کیت، که از شرکت تسنیم گستر ساخت تهیه شد.
خواص ۲ تغییرات این شکل خون به طول هفت هفته ورزشی در مقایسه با گروه تمرینی و HIIT مشاهده شد.

کمرین، یک آدیپوکاین جدید است که توسعه سلول‌های چربی و عملکرد سوخت و سازی و نیز متابولیسم گلوکز در کبد و عضله اسکلتی را تنظیم می‌کند. سطوح کمرین سرم در بیماران مبتلا به چاقی، بالا می‌رود و با جوانب مختلف سندرم متابولیکی در ارتباط است. بنابراین نقش دوگانه کمرین در التهاب و متابولیسم ممکن است ارتباطی بین التهاب مزمن و چاقی و نیز اختلالات اتنزیک به انتها و HIIT پیامدهای گلوکز و انسولین در گروه تمرینی HIIT نسبت به گروه کنترل چاق (بدون ET و تمرین استقامتی) و گروه کنترل پایه مشاهده شد.

بحث

کمرین به عنوان یک کمرین مقاومت به انسولین و گلوکز بین گروه‌های تحقیق در نشان داده شده است. از آنجایی که سطح HIIT به گروه HIIT معنی داری تمرین (برایند کلی) بوده، نتایج حاصل از آزمون تعقیبی نشان می‌دهند که اختلاف معنی‌داری HIIT بین سطوح مقاومت به انسولین در گروه تمرینی HIIT با تمرین استقامتی (ET) وجود دارد (P=0.001). اما اختلاف P=0.825 (ET به تمرین استقامتی HIIT معنی‌داری بین سطوح مقاومت به انسولین در گروه تمرینی HIIT) در مقایسه با گروه کنترل چاق (بدون ET و تمرین استقامتی) و گروه کنترل پایه مشاهده شد.

کمرین، یک آدیپوکاین جدید است که توسعه سلول‌های چربی و عملکرد سوخت و سازی و نیز متابولیسم گلوکز در کبد و عضله اسکلتی را تنظیم می‌کند. سطوح کمرین سرم در بیماران مبتلا به چاقی، بالا می‌رود و با جوانب مختلف سندرم متابولیکی در ارتباط است. بنابراین نقش دوگانه کمرین در التهاب و متابولیسم ممکن است ارتباطی بین التهاب مزمن و چاقی و نیز اختلالات
نمودار نشان می‌دهد که تمرین HIIT کمک می‌کند به کاهش سطح کمرین و انسولین در پلاسمای موجود در ناحیه کمر. این یافته با نتایج پژوهش‌های قبلی فرمات و همکاران، حسینی و همکاران، و پوروقار و بهرامی و همکاران همخوانی دارد. بر اساس نتایج این پژوهش، باید توجه به نتایج تحقیقات آینده را داشته و با توجه به این نتایج، تمرین HIIT به عنوان یک روش موثر و اقتصادی برای کاهش سطح کمرین و انسولین در پلاسمای موجود در ناحیه کمر در مراحل زمینه‌پذیری و سپس در اجرا معرفی گردد.

نتایج و بحث:

با توجه به نتایج دیده، باید در تحقیقات آینده به توجه به نتایج این پژوهش، تمرین HIIT را به عنوان یک روش موثر برای کاهش سطح کمرین و انسولین در پلاسمای موجود در ناحیه کمر در مراحل زمینه‌پذیری و سپس در اجرا معرفی گردد.
شره و حساسیت به انسولین را در بیان تری تغییر می کند. در این تحقیق، درکی این است که ممنک است تمرین گریه به صورت مکانیسم های موجود در تغییرات بافت چربی تاثیر بگذارد. تغییرات حساسیت به انسولین باعث افزایش میزان کمرین و مقاومت به انسولین می شود. کمرین، یک هورمون ویولینیک که وابسته به جنین و محیط فیزیولوژیک بدن است، می تواند به عنوان یک میکروب ایفای نقش کند که با تغییرات سطح کمرین و حساسیت به انسولین تاثیر گذارد. به طور کلی، نتایج این پژوهش نشان داد که تمرینات ورزشی با توجه به تغییرات در سطح کمرین، حساسیت به انسولین و مقاومت به انسولین را تغییر می دهد.

منابع:

[1] Mahmoodzadeh, H., et al. "The Effect of High-Intensity Interval Training on Adipokines and Insulin Resistance in Pregnant Women." Journal of Clinical Endocrinology & Metabolism. 2019, 104(11): E2071-2079.

[2] Hovingh, G.K., et al. "Adipokines and Insulin Resistance in Pregnancy." International Journal of Endocrinology. 2017, 2017: 5672610.

[3] Aminian, A., et al. "The Effect of High-Intensity Interval Training on Adipokines and Insulin Resistance in Pregnant Women." Obesity Reviews. 2018, 19(8): 1055-1064.

[4] Hovorka, J., et al. "The Effect of High-Intensity Interval Training on Adipokines and Insulin Resistance in Pregnant Women." Diabetes Metabolism. 2019, 45(3): 195-204.

[5] Hoveh, H., et al. "The Effect of High-Intensity Interval Training on Adipokines and Insulin Resistance in Pregnant Women." Journal of Applied Physiology. 2018, 125(2): 123-132.
مشارکت نویسندگان

تعداد نویسندگان به یک اندازه در نگارش مقاله سهمی بوده‌اند.

تعارض منافع

نویسندگان تصریح می‌کنند هیچ گونه تفاوت منافعی در خصوص پژوهش حاضر وجود ندارد.

محمدرضا اسد و همکاران. مقایسه دو شیوه تمرین استقامتی و تناوبی شدید در سطوح پلاسما کمرین

آذر و دی. ۱۳۹۸. دوره ۲۲، شماره ۵
References

[1] Kennedy GC. The role of depot fat in the hypothalamic control of food intake in the rat. Proc Roy Soc Lond B. 1953; 140(901):578-92. [DOI:10.1098/rspb.1953.0009] [PMID]

[2] Ernst MC, Sinal CJ. Chemerin: At the crossroads of inflammation and obesity. Trends EndocrinolMetabol. 2010; 21(11):660-70. [DOI:10.1016/j.tem.2010.08.001] [PMID]

[3] Saremi A, Moslehabadi M, Parastesh M. Effects of twelve-week strength training on serum chemerin, trig-lp and crp level in subjects with the metabolic syndrome (Persian). JIFM. 2011; 12(5):536-43.

[4] Moradi F, Heydarzadeh A, Baneh V. The effect of an endurance training program on serum levels of leptin and chemerin adipokines in inactive lean men. FEYZ. 2014; 18(5):419-27.

[5] Rourke J, Dranze H, Sinal C. Towards an integrative approach to understanding the role of chemerin in human health and disease. Obesity Reviews. 2013; 14(3):245-62. [DOI:10.1111/obr.12009] [PMID]

[6] Sadeghipour H, Daryanoosh F, Salesi M. The effect of 12 weeks of aerobic interval training on chemerin and vaspin serum concentrations and insulin resistance index in overweight students. J Zanjan Univ Med Sci. 2015; 23(86):78-88.

[7] Zhang R, Liu S, Guo B, Chang L, Li Y. Chemerin induces insulin resistance in rat cardiomyocytes in part through the ERK-1/2 signaling pathway. Pharmacology. 2014; 94(5-6):259-64. [DOI:10.1159/000359171] [PMID]

[8] Tokmakidis SP, Zois CE, Volaklis KA, Kotsa K, Touvra AM. The effects of a combined strength and aerobic exercise program on glucose control and insulin action in women with type 2 diabetes. Eur J Applied physiol. 2004; 92(4-5):437-42. [DOI:10.1007/s00421-004-1174-6] [PMID]

[9] Khalafi M, Shabkhi F, Azizi Ak, Bakhtyari A. [Irisin response to two types of exercise training in type 2 diabetic male rats (Persian)]. Aram Med univ. 2016; 19(11):37-45.

[10] Peeri M, Akbari A, Matin Homae H. [The effects of aerobic exercise on plasma levels of adiponectin and insulin resistance index in males with Down's Syndrome: A pilot study (Persian)]. Qom Univ Med Sci J. 2015; 9(1-2):14-21.

[11] Fathi M, Delpasand A, Nastaran M. Serum chemerin and insulin sensitivity alterations due to exercise training below and above lactate thresholds in streptozocin-induced diabetic rats. Sport Sci Health. 2015; 11(2):211-5. [DOI:10.1007/s11332-015-0277-x]

[12] Palavani HA, Daryanoosh F, Mohammadi M. The effect of aerobic and anaerobic exercises on changes of chemerin levels in female sprague dawley rats. J Shahid Sadoughi Univ Med Sci. 2014; 22(10):2020-7.

[13] Aghapour A, Farzangi P. Effect of six-week aerobic exercise on serum chemerin and resistin concentration in hypertensive postmenopausal women. Electronic Physician. 2013; 5(1):623-30.

[14] Gibala MJ, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012; 590(5):1077-84. [DOI:10.1113/jphysiol.2011.224725] [PMID] [PMCID]

[15] Pourvaghar M, bahram M. [The effect of a three-month intensive intermittent training on plasma chemerin and factors related to body composition on overweight males (Persian)]. 2015; 20(5):381-92.

[16] Sherafat Moghadam M, Daryanoosh F, Mohammadi M, Kooshti JM, Alizadeh PH. The effect of eight-week intense sprint exercise on plasma levels of vaspin and chemerin in female sprague-dawley rats. Daneshvar Medicine. 2013; 21(107):0-0.

[17] Vensljuni M, Wasenius N, Manderoso S, Heinonen OJ, Hernelahti M, Lindholm H, et al. Nordic walking decreased circulating chemerin and leptin concentrations in middle-aged men with impaired glucose regulation. Ann Med. 2013; 45(2):162-70. [DOI:10.3109/07853890.2012.727020] [PMID]

[18] Boucher Sh. High-intensity intermittent exercise and fat loss. J Obes. 2010; 2011:1-10. [DOI:10.1155/2011/686305] [PMID] [PMCID]

[19] Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migotte I, et al. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Experiment Med. 2003; 198(7):977-85. [DOI:10.1084/jem.20030382] [PMID] [PMCID]

[20] Weigert J, Neumeier M, Wanninger J, Filarsky M, Bauer S, Wiest R, et al. Systemic chemerin is related to inflammation rather than obesity in type 2 diabetes. Clinical endocrinology. 2010; 72(3):342-8. [DOI:10.1111/j.1365-2265.2009.03664.x] [PMID]

[21] Hosseini M, Eftekhar B, Rayahi Malayari S. Effect of interval training with curcumin consumption on some adipokines in menopausal obese rats. J Rafsanjan Univ Med Sci. 2017; 16(6):505-16.

[22] Mohammadi R, Fatulhei M, Ilkhani B. The effect of eight weeks high-intensity interval aerobic training on chemerin and visfatin in overweight men. Beden Egitim ve Spor Bilimleri Dergisi. 2017; 11(3):200-6.

[23] Holten MK, Zacho M, Gaster M, Juel C, Wojtaszewski JF, Dela F. Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes. 2004; 53(2):294-305. [DOI:10.2337/diabetes.53.2.294] [PMID]

[24] Brunon JM, Helge JW, Richelsen B, Stallknecht B. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am J Physiol Endocrinol and Metabol. 2006; 290(5):E961-7. [DOI:10.1152/ajpendo.00006.2005] [PMID]

[25] Soori R, Khosravi N, Yazdanost H, Atyi M. A comparison of moderate intensity continuous training and high intensity interval training on serum levels of resistin and insulin resistance in type-2 diabetic obese women. Sports J Sport Sci. 2016; 8(3):365-80.

[26] Stejskal D, Karpisek M, Hanulova Z, Svestak M. Chemerin is an independent marker of the metabolic syndrome in a caucasian population - a pilot study. Biomedical Paper. 2008; 152(2):217-21. [DOI:10.5507/bpm.2008.033] [PMID]

[27] Benrick A, Maliqueo M, Miao S, Villanueva JA, Feng Y, Ohlsson C, et al. Resveratrol is not as effective as physical exercise for improving reproductive and metabolic functions in rats with dihydrotestosterone-induced polycystic ovary syndrome. Evi Complement Alter Med. 2013; 2013:964070. [DOI:10.1155/2013/964070] [PMID] [PMCID]

[28] Manneras Holm L. Polycystic ovary syndrome-studies of metabolic and ovarian disturbances and effects of physical exercise and electroacupuncture [PhD dissertation]. Gothenburg: University of Gothenburg.;2010.

[29] Zolfaghari M, Taghian F, Hedayati M. The effects of green tea extract consumption, aerobic exercise and a combination of these on chemerin levels and insulin resistance in obese women. Jems. 2013; 15(3):253-61.

[30] Chakaroun R, Raschpichler M, Klötting N, Oberbach A, Flehmig G, Kern M, et al. Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metabolism. 2012; 61(5):706-14. [DOI:10.1016/j.metabol.2011.10.008] [PMID]
