Central Auditory Processing Disorder: A Comorbid Condition

Palaniappan Vinodhini, MSc; Syeda Aisha, MSc; Chambayil Susheel Swathi, MSc

Department of Audiology, All India Institute of Speech and Hearing, Manasagangothri, Mysore, Karnataka 570006, India

INTRODUCTION

Central auditory processing disorder (CAPD) is common in children. American Speech, Language and Hearing Association (ASHA)\(^1\) has described CAPD as the deficit in one or more of the central auditory processes such as discrimination of auditory stimuli, auditory pattern recognition, lateralization and localization of the sound source, auditory performance with degraded and competing acoustic signal and temporal processing. Individuals with CAPD have been reported to have normal intelligence with normal hearing sensitivity or impaired hearing. It has also been reported that individuals with CAPD may have associated neurological deficit.\(^2\)

In children, CAPD can exist independently or can co-exist. Few disorders with which CAPD co-exists are listed and described below:

1. Attention deficit hyperactive disorder
2. Autism spectrum disorder
3. Specific language impairment.\(^3,4\)

CAPD in Attention Deficit Hyperactive Disorder (ADHD)

Children with attention deficit hyperactive disorder (ADHD) are likely to present with difficulties in carrying out tasks that challenges the auditory nervous system. Their performance on central auditory processing tasks drops down in comparison with the other children. Cook et al\(^5\) found that 12 out of 15 subjects with attention disorder had associated auditory processing deficit. The core symptoms of ADHD like Fidgeting, Distractibility and poor attention and concentration are also commonly noted in children with auditory processing deficits.\(^5,6\) Many other studies have also shown that children with ADHD perform poorly on auditory processing tasks than their normally developing peer.\(^7\) Riccio\(^8\) suggested that a characteristic deficit in sustained attention could be the main cause for the auditory processing deficit in children with ADHD. Furthermore, it has been reported that children with ADHD who are under stimulated medication have shown improvement in the auditory processing abilities.\(^5,9\)

Co-occurrence of the learning disability (LD) with CAPD and LD with ADHD\(^10,11\) is given as an explanation for the co-occurrence of CAPD and ADHD. Approximately 25-40% of children with ADHD have LD.\(^12\) Gomez and Condon, 1999 suggests that the processing deficits in audition are characteristic of LD than ADHD. Hence, the poor performance in auditory processing tasks in children with ADHD\(^13,14\) can be associated to the presence of LD, rather than hyperactivity. Riccio et al\(^8\) suggested that the co morbidity observed between CAPD and ADHD could possibly reflect the limitations in accurate differential diagnosis using the present criteria and procedures.

The auditory processing deficits has also been reported in children with history of chronic otitis media\(^15,16\) suggest the presence of auditory processing deficits in children with ADHD subsequent to the presence of chronic otitis media. However, the relationship between CAPD and ADHD is complex and is not clearly understood. The explanation of one disorder as causal to another still remains unclear and more studies are needed to understand the interaction between these disorders.\(^20\)
CAPD in Autism Spectrum Disorder (ASD)

ASD is one of the common co-morbid conditions occurring in coherence with CAPD. Several authors have studied the auditory processing skills of children with ASD as it usually co-exists with CAPD. Children with ASD are more likely have CAPD than when compared to children without ASD. There are about 9% of children with CAPD who have been diagnosed to have ASD.

ASD is a neurodevelopmental disorder with impairments in reliance on the routine, communication, engaging in repetitive behavior and social interaction. The use of auditory information is affected in children with CAPD. Whereas, the other central nervous system functions like language processing, attention and memory are affected in children with ASD. However, few features of both the disorders overlap on one another like shorter attention span, poor memory for auditory information, difficulty understanding speech in quiet and difficulty understanding speech especially in the presence of noise. CAPD might be the result of processing deficit in top-down or bottom-up pathway. However, when it co-exists with ASD it has been reported that the top-down processing which is more affected.

Pitch perception of children with CAPD has been reported to be superior to their control peers. However, their ability to decode the acoustical features of the complex stimuli remains affected. This has also been reported to be one of the reasons for their impaired language abilities. Pitch discrimination ability has also been reported to be better than their control peers. Children with ASD report of hypersensitivity to certain auditory stimuli. This hyperacusis behavior could be for a sudden or any loud sound such as a door bell. Hence, the loudness perception is not constant for all sounds. When compared to their normal peers, children with ASD have good loudness perception and equal loudness discrimination. These are also been reported using other neuroimaging techniques like magnetoencephalography and electrophysiological techniques like mismatch negativity (MMN). Hence, it is clear that there is a global processing deficit even though there is a good local processing observed.

Children with ASD were reported to have poor temporal processing. This was studied with speech perception in the presence of fluctuation noise. Hence, it is clear that children with ASD are not able to use the available temporal cues for speech perception. It was also been reported that children with ASD require 2.5 to 3 dB better SNR when compared to their controls. Children with ASD have been reported to be right hemisphere dominant. This has been reported as a reason why children excel in spectral perception and vowel perception and at the same time why there is a deterioration of performance for temporal skills. Similarly, the deficits in speech perception could be attributed to the reduced activation of the right hemisphere.

As CAPD co-exists with ASD, the auditory processing deficits in different domains and the behavioral problems occurring with ASD has to be cautiously dealt with while diagnosing and intervening. The extent of deficit in each domain of auditory processing varies across children with ASD. The rehabilitation goals are to be focused on the deficits that are being diagnosed to have a better outcome.

CAPD in Specific Language Impairment (SLI)

Difficulty in speech perception is typically seen in individuals with central auditory processing disorders as also has been reported in children with specific language impairment (SLI) which is mostly expressed as deficit in phonemic hearing (eg: deficit distinguishing voiced vs. unvoiced sounds). SLI is the difficulty in acquiring spoken language and reported in approximately 3% of the child population. The children with SLI are unable to apply language rules such as syntax, semantics and vocabulary to understand and processes speech.

Younger children with SLI have weak auditory consciousness, and thus cannot employ redundant cues to understand speech. Older children with residual specific language disorder show fewer difficulties in comprehension and expression of spontaneous speech. However, they still exhibit difficulties in phonological level and on the auditory differentiation of phonemic distinctive features: they suffer from developmental learning disorders, dyslexia and dysgraphia. Children with SLI have been reported to perform poor in auditory performance tests. They have been reported to perform poor in pitch perception and pitch discrimination tasks, poor spatial perception skills, poor gap detection skills and poor performance in backward masking. However, these rapid processing of auditory information are deficit in only few children with SLI.

Tallal suggested that SLI stems from the inability in processing rapidly varying auditory stimulus (temporal processing) which results in poor representation of speech signals. For children with SLI, the temporal characteristics of auditory stimulus are crucial. Furthermore, many studies have reported that children with SLI need longer inter stimulus interval between the 2 tones to accurately tell the pattern in which the tones were presented in a pattern perception testing.

The difficulty in understanding the stimuli arises when they are rapid and/or brief. However, when the stimuli are increased in duration or when slower rate of presentation is used, this difficulty is not observed. Speech contains rapid transition within them. Hence, the perception of speech is affected in children with SLI when compared to non speech stimuli. For the recognition of phonemes and identification of similar words, distinctive features of the phonemes are important to be distinguished. Hence, there is an unstable representation of speech resulting in receptive and expressive language disorder. The development and processing of language rules is crucially dependent on the rapid processing of the auditory stimulus. Hence,
any deficit in the temporal processing of rapid stimuli would eventually lead to poor language development.

INTERVENTION OPTIONS

Proper diagnosis of CAPD and identifying the comorbid disorder has direct clinical utility in selection of the appropriate management options. The management options almost always depend upon the primary disorder. The comprehensive management paradigm is designed to improve spoken language comprehension and improve listening skills. Generally the management options focus on three main streams which includes environmental modification, Direct remediation, Compensatory strategies. Environmental modification includes appropriate seating, appropriate room acoustics and so on. Assistive listening devices like FM system can be used to improve the signal to noise ratio (SNR) and facilitate listening comprehension. Direct auditory training that focuses on the specific deficits exhibited by the child can be used. Along with these, compensatory and coping strategies like whole body listening, self-regulation and problem solving etc, should be taught to the child. Management of the comorbid disorder includes medical treatment or therapeudic training depending on the specific symptoms executed and hence it requires a multi-disciplinary approach.

CONCLUSION

Processing of the auditory information is essential for each individual to understand speech and other complex stimuli. There are about 52% of the population with CAPD has been reported to fit into SLI, Dyslexia or both. In addition, 58% of population with dyslexia also fit into the diagnosis of SLI. Similarly, 46% of population with CAPD has been reported to have hyperactivity/in attention. CAPD can co-exist with other disorder as discussed earlier. This makes it complicated, as the interaction of the disorders comes into play. Hence, care has to be taken to diagnose and rehabilitate the co-existing conditions along with the CAPD for better results. This supports the need to direct the focus towards collaboration of professionals for the diagnosis and the holistic management for these children. The management of CAPD can be using any environmental modification, direct remediation and compensatory strategies. However, in addition to this, slight modifications in treatment methods is required to meet up the specific needs in specific comorbid condition.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. ASHA. Central auditory processing: Current status of research and implications for clinical practice. Task force on central auditory processing consensus development. *Am J Audiol.* 1996; 5: 41-54. Web site. [http://www.asha.org/oa/policy/1TR1996-00241.](http://www.asha.org/policy/1TR1996-00241.)

2. Johnson CD, Benson PV, Seaton JB. *Educational Audiology Handbook.* San Diego, CA, USA: Singular Publishing Group; 1997.

3. Keller W. The relationship between attention deficit/hyperactivity disorders, central auditory processing disorders, and specific learning disorders. In: Masters M, Stecker N, Katz J, ed. *Central Auditory Processing: Mostly Management.* Boston: Allyn and Bacon; 1998: 33-47.

4. Katz J. Classification of auditory processing disorders. In: Katz J, Stecker NA, Henderson D, eds. *Central Auditory Processing: A Transdisciplinary View.* St. Louis, MO, USA: Mosby Year Book; 1992: 81-92.

5. Cook JR, Maushach T, Burd L, et al. A preliminary study of the relationship between central auditory processing disorder and attention deficit disorder. *J Psychiatry Neurosci.* 1993; 18: 130-137. web site. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1188509/. Accessed October 6, 2016.

6. Keith RW, Engineer P. Effects of methylphenidate on the auditory processing abilities of children with attention deficit-hyperactivity disorder. *J Learn Disabil.* 1991; 24: 630-636. Web site. http://ldx.sagepub.com/content/24/10/630.short. Accessed October 6, 2016.

7. Shapiro SK, Herod LA. *Combining visual and auditory tasks in the assessment of attention deficit-hyperactivity disorder.* In D. K. Routh, ed. *Disruptive behaviour disorders in childhood.* New York, NY: Plenum Press; 1994: 87-107. doi: 10.1007/978-1-4899-1501-6_4

8. Riccio CA, Hynd GW Cohen MJ, Hall J, Molt L. Co morbidity of central auditory processing disorder and attention-deficit hyperactivity disorder. *J Am Acad Child Adolesc Psychiatry.* 1994; 33: 849-857. doi: 10.1097/00004583-199407000-00011

9. Gascon GG, Johnson R, Burd L. Central auditory processing in attention deficit disorders. *J Child Neurol.* 1986; 1: 27-33. website. http://jcn.sagepub.com/content/1/1/27.short. Accessed October 6, 2016.

10. Katz J, Illmer R. Auditory perception in children with learning disabilities. In: Katz J, ed. *Handbook of Clinical Audiology.* Baltimore, MD, USA: Williams & Wilkins; 1972: 540-563.

11. Kushner D, Johnson D, Stevens J. Use of SSW/CES tests for identifying children with learning disabilities. In: *Central Auditory Assessment: The SSW Test.* Arnet D, Katz J, eds. New York: College Hill Press; 1982: 327-331.

12. Barkley RA. *Attention-deficit Hyperactivity Disorder: A*
Handbook for Diagnosis and Treatment. New York, USA: Guilford Press; 1990.

13. Jerger S, Jerger J, Alford BR, Abrams S. Development of speech intelligibility in children with recurrent otitis media. Ear Hear. 1983; 4: 138-145. Web site. http://journals.lww.com/ear-hearing/Abstract/1983/05000/Development_of_Speech_Intelligibility_in_Children.3.aspx. Accessed October 6, 2016.

14. Adesman AR, Althuler L, Lipkin P, Walco G. Otitis media in children with learning disabilities and in children with attention deficit disorder with hyperactivity. Pedia. 1990; 85:442-446. Web site. http://pediatrics.aappublications.org/content/85/3/442.short. Accessed October 6, 2016

15. Moore DR, Hutchings ME, Meyer SE. Binaural masking level differences in children with a history of otitis media. Audiol. 1991; 30: 91-101. Web site. http://www.isa-audiology.org/. Accessed October 6, 2016

16. Pillsbury HC, Grose JH, Hall JW. Otitis media with effusion in children: Binaural hearing before and after corrective surgery. Arch Otolaryngol Head Neck Surg. 1991; 117: 718-723.

17. Gravel JS, Wallace IF. Listening and language at four years of age: Effects of early otitis media. J Speech Hear Res. 1992; 35: 588-595. doi: 10.1044/jsr.3503.588

18. Hutchings ME, Meyer SE, Moore DR. Binaural masking level differences in infants with and without otitis media with effusion. Hear Res. 1992; 63: 71-78. doi: 10.1016/0378-5955(92)90075-X

19. Brown DP. Speech recognition in recurrent otitis media: Results in a set of identical twins. J Am Acad Audiol. 1994; 5: 1-6. Web site. http://www.audiology.org/sites/default/files/journal/JAAA_05_01_01.pdf. Accessed October 6, 2016.

20. Chermak GD, Musiek FE. Central Auditory Processing Disorders: New Perspectives. San Diego, CA, USA: Singular; 1997.

21. Gravells L. APD or ASD? It’s important to distinguish between auditory processing disorders and autism spectrum disorder. 2014. Web site. http://speech-language-pathology-audiology.advanceweb.com/Columns/Pediatric-Pointers/APD-or-ASD.aspx. Accessed October 6, 2016.

22. Dawes P, Bishop D. Auditory processing disorder in relation to developmental disorders of language, communication and attention: A review and critique. Int J Lang Comm Dis. 2009; 44: 440-465. Web site. http://www.tandfonline.com/doi/abs/10.1080/13682820902929073. Accessed October 6, 2016.

23. Siegal M, Blades M. Language and auditory processing in autism. Trends Cog Sci. 2003; 7: 378-380. doi: 10.1016/S1364-6613(03)00194-3

24. Alcantara JL, Weisblatt EJ, Moore BC, Bolton PF. Speech-in-noise perception in high-functioning individuals with autism or Asperger’s syndrome. J Child Psych and Psych. 2004; 45(6): 1107-1114. doi: 10.1111/j.1469-7610.2004.00303.x

25. Rosenhall U, Nordén V, Sandstrom M, Ahlsen G, Gillberg C. Autism and hearing loss. J Aut Dev Dis. 1999; 29(5): 349-357. doi: 10.1023/A:1023022709710

26. Heaton P. Interval and contour processing in autism. J Aut Dev Dis. 2005; 35(6): 787-793. doi: 10.1007/s10803-005-0024-7

27. Järvinen-Pasley A, Wallace GL, Ramus F, Happe F, Heaton P. Enhanced perceptual processing of speech in autism. Dev Sci. 2008; 11(1): 109-121. doi: 10.1111/j.1467-7687.2007.00644.x

28. Kanner L. Autistic disturbances of affective contact. Nervous Child. 1943; 2: 217-250. Web site. http://neurodiversity.com/library_kanner_1943.pdf. Accessed October 6, 2016.

29. Miller L. Musical Savants: Exceptional Skill in the Mentally Retarded. NJ, USA: Lawrence Erlbaum Associates Inc; 1989.

30. Mottron L, Peretz I, Belleville S, Rouleau N. Absolute pitch and attention deficit disorder with hyperactivity. J Autism Dev Sci. 2005; 11(1): 109-121. doi: 10.1111/j.1467-7507.2005.00644.x

31. Young RL, Nettelbeck T. The abilities of a musical savant and his family. J Autism Dev Dis. 1999; 29(5): 349-357. doi: 10.1023/A:1023022709286

32. Jones CR, Happe F, Baird G, et al. Auditory discrimination in autism: A case-study. Neurocase. 1999; 5: 485-501. doi: 10.1080/13554799908402744

33. Bertone A, Bonnel A, Burack A. Complexities in interpreting perceptual profiles among persons with autism spectrum disorder: Examples from research in auditory and visual processing. McGill J Med. 2009; 12(2): 82-86. Web site. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997262. Accessed October 6, 2016.

34. Roberts TPL, Schmid GL, Egeth M, Blaskey MMR, Edgar JC, Levy SE. Electrophysiological signatures: Magnetoencephalographic studies of the neural correlates of language impairment in autism spectrum disorders. Int J Psychophys. 2008; 68: 149-160. doi: 10.1016/j.ippsycho.2008.01.012

35. Lepistö T, Kuujala A, Vanhala R, Aiku P, Huotilainen M, Nääätänen R. The discrimination of and orienting to speech and non-speech sounds in children with autism. Brain Res. 2005;
36. Lepistö T, Kajander M, Vanhala R, et al. The perception of invariant speech features in children with autism. *Bio Psych.* 2008; 77(4): 25-31. doi: 10.1016/j.biopsycho.2007.08.010

37. Kujala T, Aho E, Lepistö T, et al. Atypical pattern of discriminating sound features in adults with Asperger syndrome as reflected by the mismatch negativity. *Bio Psych.* 2007; 75(1): 109-114. doi: 10.1016/j.biopsycho.2006.12.007

38. Haesen B, Boets B, Wagemans J. A review of behavioral and electrophysiological studies on auditory processing and speech perception in autism spectrum disorder. *Res Aut Spect Dis.* 2011; 5(2): 701-714. doi: 10.1016/j.rasd.2010.11.006

39. Cantwell DP, Baker L. *Developmental Speech and Language Disorders.* New York, USA: Guildford Press; 1987.

40. Tallal P, Piercy M. Defects of non-verbal auditory perception in children with developmental aphasia. *Nature.* 1973; 241: 468-469. doi: 10.1038/241468a0

41. Neville HJ, Coffey SA, Holcomb PJ, Tallal P. The neurobiology of sensory and language processing in language-impaired children. *J Cog Neurosci.* 1993; 5: 235-253. doi: 10.1162/jocn.1993.5.2.235

42. Visto JC, Cranford JL, Scudder R. Dynamic temporal processing of nonspeech acoustic information by children with specific language impairment. *J Speech Hear Res.* 1996; 39: 510-517. doi: 10.1044/jshr.3903.510

43. Ludlow CL, Cudahy EA, Bassich C, Brown GL. Auditory processing skills of hyperactive, language-impaired, and reading-disabled boys. In: Lasky EZ, Katz J, eds. *Central Auditory Processing Disorders: Problems of Speech, Language, and Learning.* Baltimore, MD, USA: University Park Press; 1983: 163-184.

44. Wright BA, Lombardino LD, King WM, Puranik CS, Leonard CM, Merzenich MM. Deficits in auditory temporal and spectral resolution in language-impaired children. *Nature.* 1997; 387: 176-178. doi: 10.1038/387176a0

45. Farmer ME, Klein RM. The evidence for a temporal processing deficit linked to dyslexia: A review. *Psych Bull Rev.* 1993; 2: 460-493. doi: 10.3758/BF03210983

46. Tallal P. Experimental studies of language learning impairments: From research to remediation. In: Bishop DVM, Leonard LB, eds. *Speech and Language Impairments in Children.* Hove, UK: Psychology Press; 2000: 131-156.

47. Tallal P. Rapid auditory processing in normal and disordered language development. *J Speech Hear Res.* 1976; 3: 561-571. doi: 10.1044/jshr.1903.561

48. Tallal P, Stark R, Kallman C, Mellits D. Are-examination of some nonverbal perceptual abilities of language-impaired and normal children as a function of age and sensory modality. *J Speech Hear Res.* 1981; 24: 351-357. Web site. https://www.ncbi.nlm.nih.gov/pubmed/7300276. Accessed October 6, 2016.

49. Mody M, Studdert-Kennedy M, Brady S. Speech perception deficits in poor readers: Auditory processing or phonological coding? *J Exp Child Psych.* 1997; 64: 199-231. doi: 10.1006/jecp.1996.2343

50. Chermark GD, Musiek FE. *Central Auditory Processing Disorders: New Perspectives.* San Diego, CA, USA: Singular; 1997.

51. Dawes P, Bishop DVM. Psychometric profile of children with auditory processing disorder and children with dyslexia. *Arch Dis Child.* 2010. 95(6): 432-436. doi: 10.1136/adc.2009.170118