Research Article

Correlation between the Treg/Th17 Index and the Efficacy of PD-1 Monoclonal Antibody in Patients with Advanced Non-Small-Cell Lung Cancer Complicated with Chronic Obstructive Pulmonary Disease

Xiaoyu Wang,1 Xinyuan She,2 Wei Gao,1 Xing Liu,1 and Bin Shi1

1Department of Respiratory Medicine, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800 Jiangsu, China
2Department of Pathology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800 Jiangsu, China

Correspondence should be addressed to Bin Shi; 142791032@st.usst.edu.cn

Received 28 April 2022; Revised 24 May 2022; Accepted 27 May 2022; Published 9 July 2022

Academic Editor: Naeem Jan

Copyright © 2022 Xiaoyu Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. It was to explore the correlation between regulatory T cells (Treg)/T helper cell 17 (Th17) and the efficacy of receiving a programmed death protein-1 (PD-1) monoclonal antibody (mAb) in patients with advanced non-small-cell lung cancer (NSCLC) complicated with chronic obstructive pulmonary disease (COPD).

Methods. The research subjects were 82 patients who were clinically evaluated and treated in the Respiratory Department of Suqian Hospital connected with Xuzhou Medical University from January to December 2021. All of the patients were given PD-1 immunotherapy, and 50 healthy people were chosen as the control group. Classification was carried out according to tumor type and tumor stage. The levels of Th17 and Treg/Th17 in the peripheral blood of patients with different tumor-node-metastasis (TNM) stages and different types were compared, and the immune function, lung function (forced expiratory volume in one second/forced vital capacity (FEV1%/FVC), FEV1%, and FVC), and changes in inflammatory factors were compared before and after treatment. The levels of interleukin (IL)-17, IL-6, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β were compared between the two groups. The correlation between Th17 cells and Treg cells in the peripheral blood of patients with NSCLC complicated with COPD was analyzed.

Results. After treatment, the levels of IL-17, IL-6, TNF-α, and TGF-β in patients with NSCLC combined with COPD were notably superior to those in the control group (P < 0.05). The immune function and lung function of the patients were improved after treatment. There were 43 cases of squamous cell carcinoma, 30 cases of adenocarcinoma, and 9 cases of large cell carcinoma. The proportion of Th17 cells to CD4+ T cells in the blood of the three types of patients and the proportion of CD4+CD25hiCD127lo regulatory T cells to CD4+ lymphocyte cells in Treg cells showed no considerable difference among the different case types (P > 0.05). No considerable difference was indicated in Treg/Th17 in peripheral blood between stage IIIIB and stage IV lung cancer patients (P > 0.05). A positive linear correlation was revealed between Th17 cells and Treg cells in the peripheral blood of patients with NSCLC combined with COPD, R = 0.26, P = 0.039. Conclusion. Treg and Th17 cells were shown to be much higher in lung cancer patients with COPD, which could lead to immunosuppression and tumor growth. PD-1 therapy for NSCLC has demonstrated efficacy and can improve patients’ immunological state while being extremely safe.

1. Introduction

Lung cancer is a respiratory malignancy with high morbidity and mortality worldwide. Eighty-five percent of lung cancer patients have non-small-cell lung cancer (NSCLC), most of whom are diagnosed at an advanced stage. In 2016, 162,510 people died of lung cancer in the United States. Lung cancer has also become the cause of death of malignant tumors in China, and its morbidity and mortality are also increasing [1, 2]. At the individual level, there are several reasons for the disease, including smoking, environmental pollution, and occupational exposure. The patient can experience dyspnea, weight loss, hemoptysis, loss of appetite, and other symptoms. The patient will have severe mental pain,
depression, anxiety, and fear, and the patient’s quality of life will be greatly reduced. The main cause of lung cancer is smoking [3, 4]. Chronic obstructive pulmonary disease (COPD) is a common respiratory condition among the elderly that is linked to lung cancer incidence and patient symptom reports. COPD is becoming more common as economic development, and people’s living standards increase at a rapid pace. According to the World Health Organization (WHO) survey, the mortality rate of COPD occupies fourth place in the time, and the prevalence in the elderly in China is roughly in the range of 6.5–8.5%, with a high patient rate of ten. Male COPD patients with moderate or heavy smoking and female COPD patients with smoking and occupation are also at high risk of lung cancer. Most elderly COPD patients with lung cancer have advanced cancer when diagnosed, and some patients cannot tolerate chemotherapy due to ventilatory dysfunction and pulmonary disease [5, 6]. COPD is an independent risk factor for lung cancer, and the incidence in lung cancer patients with COPD is five times higher than that in smokers with normal lung function [7–9]. Symptoms of many patients include dyspnea, cough, and sputum, which seriously affect patients’ lives, and these symptoms also bring great trouble to patients’ breathing [10–13].

Patients with NSCLC combined with COPD have ventilation disorders and poor lung functional reserve, and some patients are likely to lose the opportunity for surgery and chemotherapy due to delayed diagnosis, which requires many new forms of research and application in the treatment of NSCLC [14]. In addition to surgery, chemotherapy, radiotherapy, and targeted therapy, the treatment of NSCLC also includes immunotherapy. In recent years, immunotarget inhibitors have emerged as a new approach for NSCLC treatment [15, 16]. Conventional drugs for the treatment of lung cancer generally act directly on tumor cells to kill them. Immunosuppressants mainly block the inhibition and mutual ligand expressed on T cells to block the pathway at the immune checkpoint in the tumor microenvironment to stimulate the function of tumor-specific T cells [17, 18]. Endogenous antitumor immunity was enhanced, and antitumor ability was enhanced. PD-1 and programmed death-ligand 1 (PD-L1) inhibitors are used in the second-line treatment of NSCLC, and studies have shown that these inhibitors can be used as second-line treatments for advanced NSCLC [19, 20]. However, there are still some disadvantages; the side effects of drugs still exist, and the cure rate is only 18%, so it is particularly important to know which patients can benefit from immunotherapy [21]. Helper T cell 17 (Th17) is a subpopulation of CD4+ T lymphocytes other than Th1 and Th2 that are capable of independent regulation and differentiation mechanisms. Th17 cells are a new leukocyte differentiation antigen CD4 helper T cell subgroup that secretes IL-17 and plays a certain role in the process of tumor cases, infectious diseases, and autoimmune diseases [22]. Different from helper T cells, Treg cells play an inhibitory role in antitumor immunity, are responsible for the negative regulation of collective immune function, and can induce an immune response by inhibiting antitumor activity in the body. Under normal circumstances, Treg and Th17 cells maintain a balance. During differentiation, Treg and Th17 cells fight against each other. If cell differentiation of the inflammatory molecule Th17 is enhanced, Treg/Th17 imbalance will be caused, and the autoimmune system will be damaged, resulting in transplant rejection. Proinflammatory Th17 cells and anti-inflammatory Tregs work together to keep the body in balance, which is important for immune stability. An aberrant immune response results from the formation of an inflammatory response, and variations in Treg cell expression/Th17 cells alter the airway response. In recent years, it has become a hot topic to fully and deeply understand the differentiation and regulation mechanism of Treg and Th17 cells and to search for the role of these two cells in the development of related diseases. An imbalance between Treg and Th17 cells exists in autoimmune diseases and plays an important role in the immune response of cells. Treg and Th17 imbalance is closely related to the development and treatment of malignant tumors [23, 24]. In-depth study of Treg and Th17 indicators in advanced NSCLC patients could provide new methods for new anti-inflammatory analysis and immunotherapy, as well as new strategies for tumor treatment.

With the rapid development of biotechnology, the immune system has become increasingly recognized by people, and the use of immunotherapy for tumors has become a new form. In clinical application, the comprehensive tumor treatment system also occupies an important position, but the side effects after treatment have not been eliminated. It is also necessary to study Treg/Th17 and (PD-1) monoclonal antibody (mAb) in the treatment of NSCLC complicated with COPD. Based on this, qualified patients with advanced NSCLC were included to explore the efficacy of the Treg/Th17 index and (PD-1) mAb in the treatment of NSCLC, hoping to improve the recognition rate of patients with early lesions and provide a basis for screening and prediction of clinical immunotherapy.

The paper’s organization paragraph is as follows: The materials and methods is presented in Section 2. Section 3 analyzes the results and discussion of the proposed work. Section 4 discusses the discussion of the paper. Finally, in Section 5, the research work is concluded.

2. Materials and Methods

2.1. The Research Objects. A total of 82 patients clinically diagnosed and treated in the Respiratory Department of Suqian Hospital affiliated with Xuzhou Medical University from 2021 January to December 2021 were selected as the research subjects. All patients received PD-1 immunotherapy for advanced NSCLC, and their clinical data were retrospectively analyzed. There were 17 females and 65 males, ranging in age from 45 to 72 years, with an average age of 54.62 ± 9.31 years. This experiment was approved by the ethics committee of Suqian Hospital affiliated with Xuzhou Medical University, and all patients and their families gave informed consent.
2.1.1. Inclusion Criteria

(i) Long-term patients in our hospital
(ii) Detailed information of inpatients (including age, sex, previous medication history, and disease history)
(iii) Patients diagnosed with advanced NSCLC complicated with COPD by histological and imaging examinations, while disease progression cannot be tolerated after the failure of standard treatment, such as chemotherapy, targeted therapy, and immunotherapy other than targeting PD-1/PD-L1
(iv) Patients with no other mental diseases
(v) Patients with good understanding and communication skills
(vi) Advanced NSCLC patients without other treatment
(vii) Patients with measurable lesions that met the Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1)

2.1.2. Exclusion Criteria

(i) Patients who did not agree to participate in this research
(ii) Incomplete case data
(iii) Patients with long-term use of hormones or hematopoietic factors
(iv) Patients with acute or chronic inflammation (human immunodeficiency virus and hepatitis)
(v) Patients suffering from mental illness
(vi) Patients with previous or existing autoimmune disorders
(vii) Patients with pulmonary interstitial lesions

2.2. The Research Methods. Patients were divided into two groups regarding whether they were immune-related adverse reactions.

2.3. Experimental Reagents and Instruments

2.3.1. Immunohistochemical Staining

Each lung cancer patient was stained with the following reagents: SintilimAb, a 2-week cycle of 3 mg/kg drops of vein injection; ToripalimAb, a 2-week cycle of 3 mg/kg drops of vein injection; PembrolizumAb, a 3-week cycle of 2 mg/kg drops of vein injection; and NivolumAb, a 2-week cycle of 3 mg/kg drops of vein injection.

2.3.2. Flow Cytometry

The Th17 and Treg cells were detected by flow cytometry. The Th17 cell was identified as CD4+ Foxp3+ and the Treg cell was identified as CD4+ Foxp3-.

2.3.3. Statistical Analysis

The data were analyzed using the chi-square test and Student’s t-test. A p-value of <0.05 was considered statistically significant.

2.4. Th17 and Treg Cells Detected by Flow Cytometry

The Th17 and Treg cells were detected by flow cytometry. The Th17 cell was identified as CD4+ Foxp3+ and the Treg cell was identified as CD4+ Foxp3-.
were placed in an incubator with 5% CO2 at 37°C and stimulated for 6 hours.

Intracellular antibody labeling was performed as follows. The stimulated cells were fixed with 1% paraformaldehyde for 15 minutes, washed with PBS, and centrifuged for 5 min at 1,500 r/min, and the supernatant was removed. Then, phycoerythrin (PE)-labeled mouse antihuman CD8 antibody and rat antihuman CD3 antibody labeled with fluorescein isothiocyanate (FITC) were added, incubated at room temperature for 20 min in the dark, washed again with PBS, and centrifuged for 5 min at 1,500 r/min, and then the supernatant was discarded. Then, 200 μL of film breaker was added, incubated at room temperature for 20 min in the dark, centrifuged, added to APC-labeled mouse antihuman IL-17 antibody, incubated for 20 min, washed with PBS, and centrifuged for 5 min at 1,500 r/min. Then, the supernatant was superfluous. Then, 300 μL PBS was added to suspend the cells. The cells were transferred to a special flow cytometer tube, away from light standby, for analysis.

2.5. Flow Cytometry Detection of the Proportion of CD4+CD25HiCD127Lo Regulatory T Cells in CD4+ Lymphocytes. One hundred microliters of anticoagulant whole blood from patients in observation group and healthy controls was added to the flow tube. Antibodies against CD4-FITC, CD25-APC, and CD25-APC were added to each detection tube according to the operation steps and then mixed and incubated at room temperature for 20 min. Two milliliters of hemolysin was added, fully mixed, and then incubated at room temperature for 10 minutes. After the red blood cells were fully lysed, PBS was added to each tube twice for washing. The lysed red blood cells were obtained by centrifugation for 5 min at 1,500 r/min. In the detection before the machine, 200 μL PBS was added to each tube for blending. Then, CellQuest was used to analyze the results, and the percentage of CD4+CD25HiCD127Lo regulatory T cells in CD4+ lymphocyte cells in Treg cells was expressed.

2.6. Serum IL-17 Concentration Detected by ELISA. The concentration of IL-17 in serum was detected by a double-antibody sandwich. First, all reagents were restored to room temperature. Fifty milliliters of concentrated IL-17 solution was added, and 950 milliliters of double-distilled water was added and thoroughly mixed before being used. Then, 5 mL of TGF-β analysis buffer stock was added to 95 mL of double-distilled water and mixed well. For antibody preparation, 120 μL TGF-β enzyme antibody was added to 11.88 mL dilution buffer for later use. Then, 11.88 mL streptavidin-HRP was added to 120 μL streptavidin-HRP, and the solution was organized half an hour before the addition. Then, a TGF-β standard solution was prepared, 400 μL double steam water was added to the TGF-β powder, and 4,000 pg/mL TGF-β standard powder was prepared after resurgence. Seven tubes were labeled as 1-7, and 225 μL dilution analysis buffer was added to them. A standard solution of 2,000 pg/mL was prepared by adding 225 μL of 4,000 pg/mL RGF-β1 standard concentrate into a no. 1 tube. Then, it was added to a no. 2 tube, mixed evenly, and successively used to prepare standard curves with concentrations of 2,000, 1,000, 500, 250, 125, 63, and 31 pg/mL. Dilution analysis buffer was selected as a blank.

The specific operation steps are as follows. First, the 96-well plate was washed twice with buffer solution on the automatic plate washing machine and then dried. Seven standard series solutions were added to the wells, and 50 μL of analysis buffer was added to the other wells. Then, 50 μL of enzyme antibody was added to each well, shaken, incubated for 2 h at 100 r/min, and then washed 4 times. After drying, 100 μL of streptavidin-HRP was added, incubated for 1 h by shaking for 100 r/min, washed, and dried again. Then, 100 μL chromogenic agent was added to each well and incubated for 10 min at room temperature. Finally, 100 μL stop solution was added. After mixing, the optical density was determined at 450 nm using a microplate reader to calculate the concentration of IL-1. IL-6 was determined using the same method.

2.7. Serum TGF-β Concentration Detected by ELISA. TGF-β concentrations in serum were also measured using a double-antibody sandwich ELISA. All reagents were first brought to room temperature. Fifty milliliters of TGF-β concentrate were made, and 950 milliliters of double-distilled water were added and thoroughly mixed before being used. Then, 5 mL of TGF-β analysis buffer stock was added to 95 mL of double-distilled water and mixed well. For antibody preparation, 120 μL TGF-β enzyme antibody was added to 11.88 mL dilution buffer for later use. Then, 11.88 mL streptavidin-HRP was added to 120 μL streptavidin-HRP, and the solution was organized half an hour before the addition. Then, a TGF-β standard solution was prepared, 400 μL double steam water was added to the TGF-β powder, and 4,000 pg/mL TGF-β standard powder was prepared after resurgence. Seven tubes were labeled as 1-7, and 225 μL dilution analysis buffer was added to them. A standard solution of 2,000 pg/mL was prepared by adding 225 μL of 4,000 pg/mL RGF-β1 standard concentrate into a no. 1 tube. Then, it was added to a no. 2 tube, mixed evenly, and successively used to prepare standard curves with concentrations of 2,000, 1,000, 500, 250, 125, 63, and 31 pg/mL. Dilution analysis buffer was selected as a blank.

First, the sample was pretreated. The sample was diluted at a ratio of 1:10. 180 μL dilution analysis buffer was added to 20 μL sample, and 20 μL1N hydrochloric acid solution was added, mixed. After incubation for 1 h, the sample was neutralized with 20 μL of 1N NaOH in a 96-well plate. The plate was washed twice with buffer solution on an automatic plate washing machine and then patted dry. The wells were filled with seven standard series solutions, and the rest went into the analysis buffer. Then, 60 μL analytical buffer solution was added to each well, and 40 μL pretreated samples were added in turn, shaken, and incubated at 100 r/min for 2 h. The automatic plate washing machine was employed to wash it 5 times, patted dry, added to 100 μL of enzyme antibody, shaken again for 100 r/min, incubated for 1 h, washed 5 times, and patted dry again. Streptavidin-HRP (100 μL) was added to each well, shaken, incubated at 100 r/min for 1 h, washed 5 times, and patted dry again. Then, 100 μL chromogenic agent was added to each well and incubated at room temperature for 30 minutes. Then, 100 μL stop solution was added and mixed well. A
3. Results and Discussion

3.1. General Information. Among the 82 patients selected, 65 were male, accounting for 79.27%, and 17 were female, accounting for 20.73% (Table 1). There were 31 patients in stage IIIb, accounting for 37.80%, and 51 patients in stage IV, accounting for 62.20%. There were three tumor types, including 43 cases of squamous cell carcinoma (52.44%), 30 cases of adenocarcinoma (36.59%), and 9 cases of large cell carcinoma (10.98%). The 52 cases of smoking patients accounted for 63.41% higher than that of nonsmoking patients. There were 25 cases with immunotoxic reactions (30.49%) and 57 cases without immunotoxic reactions (69.51%).

3.2. Ratio of Th17 Cells in Peripheral Blood. Eighty-two patients with NSCLC combined with COPD were the observation group, and normal healthy people were the control group. Figure 1 shows that the proportion of Th17 cells in the peripheral blood of patients in observation group was notably superior to that in the controls (P < 0.01). Treg/Th17 in the peripheral blood of patients decreased remarkably versus controls (P < 0.05).

3.3. Comparison of Th17 and Treg/Th17 Cells of Patients with Different Case Types. Among the 82 subjects, there were 43 cases of squamous cell carcinoma, 30 cases of adenocarcinoma, and 9 cases of large cell carcinoma (Figure 2). There was no considerable difference among different case types in the proportion of Th17 cells in CD4+ T cells in the blood of the three types of patients and the proportion of CD4+CD25hiCD127lo regulatory T cells in CD4+ lymphocyte cells of Treg cells (P > 0.05). There was no considerable difference in Treg/Th17 in peripheral blood between stage IIIb and stage IV lung cancer patients (P < 0.05).

3.5. Correlation Analysis of Th17 Cells and Treg Cells of Lung Cancer Patients with COPD. The correlation between Th17 cells and Treg cells in the peripheral blood of patients with NSCLC complicated with COPD was analyzed. The results are shown in Figure 4, showing a positive linear correlation between the two, R = 0.26 and P = 0.039.

3.6. Comparison of Immune Function before and after Radiotherapy. The FEV1%/FVC, FEV1%, and FVC of patients before and after chemotherapy were compared and analyzed (Figure 6), and the difference was substantial one month after radiotherapy compared with that before radiotherapy (P < 0.05). There was no considerable difference in FEV1%/FVC of patients two weeks after radiotherapy compared with that before radiotherapy (P > 0.05), but there were considerable differences in FEV1% and FEV (P < 0.05). After receiving radiotherapy, the lung function of patients showed varying degrees of change, with some changes in lung function, and some indexes had considerable differences relative to those before radiotherapy (P < 0.05).

3.7. Pulmonary Function Changes before and after Radiotherapy. The FEV1%/FVC before and after radiotherapy were changed (Figure 7), and the difference was substantial two weeks after treatment compared with those before treatment, and pulmonary function improved remarkably (P < 0.05)

3.8. Comparison of MVV/MEF before and after Radiotherapy. In Figure 7, MVV and MEF were changed after two weeks and one month of treatment compared with those before treatment, and pulmonary function improved remarkably (P < 0.05).

Table 1: General clinical characteristics of the patients.

Total Proportion	P Value		
Gender	82	100%	0.812
Female	17	20.730	
Male	65	79.270	

Tumor staging	31	37.800	0.53	
Tumor types	0.624			
Adenocarcinoma	30	36.590		
Squamous cell carcinomas	43	52.440		
Large cell carcinoma	9	10.980		

Smoker	Yes	No	0.063
Immune toxicity and side effects	52	63.410	0.008
No	30	36.590	
Yes	25	30.490	
3.9. Comparison of the Peripheral Blood Cytokines IL-17, IL-6, TNF-α, and TGF-β. The levels of IL-17, IL-6, TNF-α, and TGF-β in the peripheral blood of lung cancer patients in observation group and control group were compared (Figure 8), and those in lung cancer patients with COPD were notably superior to those in control group ($P < 0.05$).
4. Discussion

COPD is a widespread respiratory disease with a high mortality rate, affecting more than 5% of the world’s population. Cough and sputum are the most common clinical symptoms of COPD and lung cancer, and misdiagnosis and missed diagnoses are common during the diagnosis and treatment process [25]. Immunosuppressants have been applied to treat NSCLC and have brought some benefits to patients. Clinically, the lung function and immune function of patients with NSCLC complicated with COPD will decline to varying degrees, as will their immunity [26, 27]. Clinical data showed that patients with NSCLC complicated with COPD had different degrees of decline in lung function after receiving radiotherapy, and patients received different doses of radiotherapy. In this study, patients with advanced NSCLC complicated with COPD were treated with PD-1 and Treg/Th17 cells. Comparative investigation of the results of patients before and after radiotherapy showed that the lung function of various patients showed different degrees of change after radiotherapy. The change in lung function was more dramatic than the change before treatment, and some lung function indicators were significantly different from those before radiotherapy, with statistical significance \(P < 0.05 \). In many studies of COPD, FEV1%/FEV1 and FEV1% are the primary evaluation indexes. Studies have shown that diagnostic rate of the lung function index of FEV1%/FVC, FEV1%, and FVC is more than 95%. There was a large difference in the therapeutic effect of NSCLC between smokers and nonsmokers. Smokers had a higher mutation load, and the response to immune target inhibitors was also enhanced. PD-1 has a poor therapeutic effect on smokers, which also shows that smoking history can be an effective predictor [28, 29].

Immunotherapy for NSCLC has taken a new turn with the introduction of immunosuppressive medicines. These medications have few side effects, are well tolerated, and are frequently utilized in the treatment of tumors. In this
study, a PD-1 mAb was used to treat NSCLC patients. CD4+ and CD4+/CD8+ were remarkably higher after treatment than before, while CD8+ was greatly inferior to before. The cellular immune indexes of patients before and after treatment were compared with those before treatment, and the difference was substantial ($P < 0.05$), indicating that PD-1 can improve the immune function of patients with NSCLC and has high clinical application value. This is consistent with many studies. PD-1 expression is one of the most widely used clinical markers for immunotherapy prediction, and the expression of PD-1 in solid tumor tissues monitored by histochemistry is associated with poor prognosis of gastric cancer, liver cancer, and cell carcinoma. Data suggest that patients with advanced NSCLC with high PD-1 expression respond better to pembrolizumAb treatment [30]. PD-1 mAb is effective in tumor immune escape due to its role in promoting tumor T cell apoptosis in both an independent and dependent manner. By altering the surrounding environment, cancer cells promote immune evasion, multiplication, and survival. PD-1 therapy’s main goal is to stimulate T cell apoptosis through PD-1/PD-L1 interaction.
lymphocytes in the tumor microenvironment in order to establish tumor resistance \[31, 32\]. Gauvain et al. \[33\] looked at patients with NSCLC brain metastases who were given nivolumAb and found that the intracerebral control rate was 51%, indicating some safety. The level of Th17 cells increases to varying degrees in a variety of solid tumor tissues. In cancer diseases, the higher the TNM stage, the more obvious the increase in the level of Th17 cells. Th17 cells can secrete IFN-\(\gamma\) to a certain extent, which can play an antitumor role. Studies have shown that TGF-\(\beta\) can inhibit Th17 production and induce Treg cell formation in ovarian cancer cells. Th17 cells in tumor patients were greatly inferior to those in normal subjects, indicating immunosuppression in the tumor microenvironment. When the Treg level increases, antitumor immunity is suppressed, resulting in an imbalance in the Th17/Treg status in tumor patients \[34\]. Li et al. \[35\] discussed the relationship between TregFoxP3(+) and Th17 cells and the occurrence of lung cancer and showed that the ratio of TregFoxP3(+) to Th17 cells in the peripheral blood of NSCLC patients was higher than that of healthy controls \(P<0.05\). The proportion of Th17 cells in NSCLC patients was positively correlated with the proportion of TregFoxP3(+) \(r = 0.81, P<0.05\). In this study, the same results were obtained, and there was a positive linear correlation between Th17 cells and Treg cells in the peripheral blood of patients with NSCLC combined with COPD by Treg/Th17 ratio analysis after treatment in NSCLC patients, \(R = 0.26, P = 0.039\). TGF-\(\beta\), IL-17, and IL-6 levels were higher in NSCLC patients than controls. Patients with stage IIIB and IV disease showed significant improvement in lung function after PD-1 immunotherapy. It was concluded that the Treg/Th17 ratio was related to the stage of NSCLC, but there was no considerable difference between TNM stages in this study, and both stage IIIB and stage IV were probably advanced, so the difference was not significant. The patients’ immunological indices improved after treatment. This also suggests that PD-1 immunotherapy influences the immune status of patients with advanced NSCLC.

5. Conclusions

The efficacy of Treg/Th17 and PD-1 monoclonal antibodies in the treatment of NSCLC in patients with NSCLC complicated with COPD was investigated. Treg and Th17 cells were remarkably higher, which may lead to immunosuppression and promote tumor formation in COPD patients with NSCLC. PD-1 treatment of NSCLC has clear efficacy and can improve the immune status of patients with high safety. The cytokine modulation of Treg and Th17 cells may be linked to the Treg/Th17 ratio imbalance in lung cancer patients. Furthermore, follow-up research can conduct in-depth studies on the imbalance of the Treg/Th17 ratio in the hopes of clarifying the relationship between many components in this process and providing more accurate data support for tumor cure.
Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2016,” CA: a Cancer Journal for Clinicians, vol. 66, no. 1, pp. 7–30, 2016.

[2] R. Luengo-Fernandez, J. Leal, A. Gray, and R. Sullivan, “Economic burden of cancer across the European Union: a population-based cost analysis,” The Lancet Oncology, vol. 14, no. 12, pp. 1165–1174, 2013.

[3] J. C. Soria, Y. Ohe, J. Vansteenkiste et al., “Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer,” The New England Journal of Medicine, vol. 378, no. 2, pp. 113–125, 2018.

[4] M. Nakao, H. Muramatsu, Y. Kagawa et al., “Immunological status may predict response to nivolumab in non-small cell lung cancer without driver mutations,” Anticancer Research, vol. 37, no. 7, pp. 3781–3786, 2017.

[5] E. Bagdonas, J. Raudoniute, I. Bruzauskaite, and R. Aldonyte, “Novel aspects of pathogenesis and regeneration mechanisms in COPD,” International Journal of Chronic Obstructive Pulmonary Disease, vol. 10, pp. 995–1013, 2015.

[6] N. A. Negewo, P. G. Gibson, and V. M. McDonald, “COPD and its comorbidities: impact, measurement and mechanisms,” Respiratory, vol. 20, no. 8, pp. 1160–1171, 2015.

[7] M. C. Smith and J. P. Wrobel, “Epidemiology and clinical impact of major comorbidities in patients with COPD,” International Journal of Chronic Obstructive Pulmonary Disease, vol. 9, pp. 871–888, 2014.

[8] R. Gloeckl, B. Marinov, and F. Pitta, “Practical recommendations for exercise training in patients with COPD,” European Respiratory Review, vol. 22, no. 128, pp. 178–186, 2013.

[9] W. S. D. Tan, H. M. Shen, and W. S. F. Wong, “Dysregulated autophagy in COPD: a pathogenic process to be deciphered,” Pharmacological Research, vol. 144, pp. 1–7, 2019.

[10] S. P. Dufly and G. J. Criner, “Chronic obstructive pulmonary disease,” The Medical Clinics of North America, vol. 103, no. 3, pp. 453–461, 2019.

[11] P. Jones, M. Miravitlles, T. van der Molen, and K. Kulich, “Beyond FEV1 in COPD: a review of patient-reported outcomes and their measurement,” International Journal of Chronic Obstructive Pulmonary Disease, vol. 7, pp. 697–709, 2012.

[12] M. Vitacca and M. Paneroni, “Rehabilitation of patients with coexisting COPD and heart failure,” COPD: Journal of Chronic Obstructive Pulmonary Disease, vol. 15, no. 3, pp. 231–237, 2018.

[13] B. M. Thomashow, D. M. Mannino, R. Tal-Singer, and J. D. Crapo, “A rapidly changing understanding of COPD: World COPD Day from the COPD Foundation,” American Journal of Physiology. Lung Cellular and Molecular Physiology, vol. 321, no. 5, pp. L983–L987, 2021.

[14] S. Bins, E. A. Basak, S. el Bouazzaoui et al., “Association between single-nucleotide polymorphisms and adverse events in nivolumab-treated non-small cell lung cancer patients,” British Journal of Cancer, vol. 118, no. 10, pp. 1296–1301, 2018.

[15] S. Jonna and D. S. Subramaniam, “Molecular diagnostics and targeted therapies in non-small cell lung cancer (NSCLC): an update,” Discovery Medicine, vol. 27, no. 148, pp. 167–170, 2019.

[16] S. S. Lee and Y. K. Cheah, “The interplay between microRNAs and cellular components of tumour microenvironment (TME) on non-small-cell lung cancer (NSCLC) progression,” Journal of Immunology Research, vol. 2019, Article ID 3046379, 2019.

[17] E. N. Imyanitov, A. G. Iyevleva, and E. V. Levchenko, “Molecular testing and targeted therapy for non-small cell lung cancer: current status and perspectives,” Critical Reviews in Oncology/Hematology, vol. 157, article 103194, 2021.

[18] Y. K. Chae, S. Chang, T. Ko et al., “Epithelial-mesenchymal transition (EMT) signature is inversely associated with T-cell infiltration in non-small cell lung cancer (NSCLC),” Scientific Reports, vol. 8, no. 1, p. 2918, 2018.

[19] D. Saraggi, F. Galuppin, A. Remo et al., “PD-L1 overexpression in ampulla of Vater carcinoma and its pre-invasive lesions,” Histopathology, vol. 71, no. 3, pp. 470–474, 2017.

[20] P. Fessas, H. Lee, S. Ikemizu, and T. Janowitz, “A molecular and preclinical comparison of the PD-1-targeted T-cell checkpoint inhibitors nivolumab and pembrolizumab,” Seminars in Oncology, vol. 44, no. 2, pp. 136–140, 2017.

[21] N. A. Pennell, M. E. Arcila, D. R. Gandara, and H. West, “Biomarker testing for patients with advanced non-small cell lung cancer: real-world issues and tough choices,” American Society of Clinical Oncology Educational Book, vol. 39, pp. 531–542, 2019.

[22] L. La Fleur, J. Botling, F. He et al., “Targeting MARCO and IL37R on immunosuppressive macrophages in lung cancer blocks regulatory T cells and supports cytotoxic lymphocyte function,” Cancer Research, vol. 81, no. 4, pp. 956–967, 2021.

[23] J. C. Liu, S. Narva, K. Zhou, and W. Zhang, “A review on the antitumor activity of various nitrogenous-based heterocyclic compounds as NSCLC inhibitors,” Mini Reviews in Medicinal Chemistry, vol. 19, no. 18, pp. 1517–1530, 2019.

[24] A. Nambirajan, V. Singh, S. Mittal, S. Kumar, and D. Jain, “SMARCA4/BRG1–deficient non-small cell lung carcinomas: a case series and review of the literature,” Archives of Pathology & Laboratory Medicine, vol. 145, no. 1, pp. 90–98, 2021.

[25] E. Redin, I. Garmendia, T. Lozano et al., “SRC family kinase (SKF) inhibitor dasatinib improves the antitumor activity of anti-PD-1 in NSCLC models by inhibiting Treg cell conversion and proliferation,” Journal for Immunotherapy of Cancer, vol. 9, no. 3, article e001496, 2021.

[26] H. Van Damme, B. Dombrecht, M. Kiss et al., “Therapeutic depletion of CCR8+ tumor-infiltrating regulatory T cells elicits antitumor immunity and synergizes with anti-PD-1 therapy,” Journal for Immunotherapy of Cancer, vol. 9, no. 2, article e001749, 2021.

[27] N. Shi, D. Feng, Y. Gu, C. Zheng, and M. Miao, “TUSC8 enhances cisplatin sensitivity of NSCLC cells through regulating VEGFA,” Journal of BUON, vol. 26, no. 2, pp. 336–344, 2021.
[28] H. Borghaei, L. Paz-Ares, L. Horn et al., “Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer,” The New England Journal of Medicine, vol. 373, no. 17, pp. 1627–1639, 2015.

[29] M. Reck, D. Rodriguez-Abreu, A. G. Robinson et al., “Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer,” New England Journal of Medicine, vol. 375, no. 19, pp. 1823–1833, 2016.

[30] M. Muller, R. D. Schouten, C. J. De Gooijer, and P. Baas, “Pembrolizumab for the treatment of non-small cell lung cancer,” Expert Review of Anticancer Therapy, vol. 17, no. 5, pp. 399–409, 2017.

[31] J. Bellmunt, T. Powles, and N. J. Vogeizang, “A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: the future is now,” Cancer Treatment Reviews, vol. 54, no. 5, pp. 58–67, 2017.

[32] V. Prasad and V. Kaestner, "Nivolumab and pembrolizumab: monoclonal antibodies against programmed cell death-1 (PD-1) that are interchangeable," Seminars in Oncology, vol. 44, no. 2, pp. 132–135, 2017.

[33] C. Gauvain, E. Vauléon, C. Chouaid et al., “Intracerebral efficacy and tolerance of nivolumab in non-small-cell lung cancer patients with brain metastases,” Lung Cancer, vol. 116, no. 15, pp. 62–66, 2018.

[34] M.-C. Duan, X.-N. Zhong, G.-N. Liu, and J.-R. Wei, “The Treg/Th17 paradigm in lung cancer,” Journal of Immunology Research, vol. 2014, Article ID 730380, 2014.

[35] S. Li, Y. Li, X. Qu, X. Liu, and J. Liang, “Detection and significance of TregFoxP3(+) and Th17 cells in peripheral blood of non-small cell lung cancer patients,” Archives of Medical Science, vol. 10, no. 2, pp. 232–239, 2014.