ANTIHYPERGLYCEMIC AND ANTI-OXIDANT POTENTIAL OF ETHANOL EXTRACT OF VITEX THYRSIFLORA LEAVES ON DIABETIC RATS

Theodora Kopa Kowa1, Nyemb Nyunai2, Armelle Deout Tchamgoue1

1Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), P. O. Box 13033 Yaoundé, Cameroon.

2Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies (IMPM), P. O. Box 13033 Yaoundé, Cameroon.

ABSTRACT

Objective: Vitex thyrsiflora Baker (Verbenaceae) is a glabrous under shrub that is widely distributed in Cameroon. Diabetes is characterized by chronic hyperglycemia, a source of increased oxidative stress and tissue oxidative damage. The objective of current study was to estimate the antihyperglycemic and anti-oxidant potential of ethanol extract of Vitex thyrsiflora leaves on diabetic rats.

Methods: The antihyperglycemic effect of an ethanol extract of Vitex thyrsiflora leaves was investigated in normal male rats and streptozotocin induced diabetic male rats and its antioxidant potential was evaluated. After preparation of the extract, it was subjected to a phytochemistry screening, and tested on male rats made hyperglycemic in the Oral Glucose Tolerance Test (OGTT) and in streptozotocin diabetic rats. Glibenclamide (10 mg/Kg) was served as a positive control in both experiments. The evaluation of the antioxidant potential was done through the determination of the total polyphenols and total flavonoid contents, and by using the ferric reducing antioxidant power assay and the free radical scavenging activity on DPPH method.

Results: The results show that the extract contains alkaloids, flavonoids, steroids, saponins and phenolic compounds. The test on hyperglycemic rats in OGTT showed that, the extract was effective (at a dose of 200 mg/Kg) to significantly decreased glucose-induced hyperglycemia (**p < 0.01). The extract was ineffective on streptozotocin induced diabetic rats. The study of the antioxidant potential showed that, polyphenols and flavonoids increase with the concentration of the extracts. IC50 value was found to be 65.97, based on the log (inhibitor) vs. normalized response-Variable slope.

Conclusion: FRAP appears to be significantly highly correlated with total polyphenols content and total flavonoids content. This shows that the ethanol extract of V. thyrsiflora leaves could be served to prevent acute hyperglycemia, but not a chronic hyperglycemic state.

Keywords: Antihyperglycemic, antioxidant, diabetic rats, Vitex thyrsiflora.

INTRODUCTION

The genus Vitex (Verbenaceae) is constituted by 250 species of small trees and shrubs which occur in tropical and subtropical regions5. Vitex thyrsiflora Baker (Verbenaceae) is a glabrous under shrub that is widely distributed in Cameroon7. This plant is reported to be useful in the treatment of orchitis2. The root barks are used in the treatment of stomach pains, sexual sterility and wounds5. Previous chemical investigations on the leaves and fruits resulted in the isolation of phytoestrogens5. However, the investigation of some other Vitex species have resulted in the isolation of iridoids4,5,6, diterpenes7,8, steroids9, flavonoids4 and triterpenoids5. Several of previous compounds isolated from Vitex genus have shown antioxidants activities10,11. Among all secondary metabolites, phenolic antioxidants appear to be the most important since they have shown promising antioxidant activity in both in vivo and in vitro investigations. Plant phenolics are mainly classified into five major groups, phenolic acids, flavonoids, lignans, stilbenes and tannins12,13,14. The antioxidant activities of these compounds have been attributed to various mechanisms which have been established by various
antioxidant activity has a fundamental role in cellular protection during an inflammation process. The identification of phytochemical compounds in plant species has been exploited in recent years, due to the growing popularity of herbal medicines and consumers growing enthusiasm for foods with bioactive characteristics that aid in preventing and fighting disease. Diabetes is characterized by chronic hyperglycemia, a source of increased oxidative stress and tissue oxidative damage. In particular, hyperglycemia promotes the glycation of proteins resulting in the formation of advanced glycation products (AGE). Thus antioxidant molecules appear as an opportunity for a strategy to fight not only against hyperglycemia, but also against complications related to diabetes mellitus. Then, the objectives of this study based on these findings, was first to evaluate the antihyperglycemic effect of an ethanol extract of *V. thyrsiflora* leaves in glucose loaded rats and in STZ-diabetic rats and second to determine the Total Polyphenols Content (TPC), Total Flavonoids Content (TFC), the Ferric Reducing Antioxidant Power Assay (FRAP), and the DPPH free radical scavenging assay of this extract.

MATERIALS AND METHODS

Experimental

Drugs and Chemicals

Streptozotocin, quercetin and catechin were obtained from Sigma Chemicals (St. Louis, MO). Glibenclamide (Glycomin®) was obtained from Strides Arcolat Ltd. Bangalore, India. All other chemicals used were of analytical grade. Spectrophotometric measurements were done using the equipment available at Institute of Medical Research and Medicinal Plant Studies.

Plant material

The leaves of *V. thyrsiflora* Baker (Verbenaceae) were collected at Melong, in the Littoral Region of Cameroon in November 2009, authentification was performed by Mr. Nana who compared it with a Voucher Specimen (No 34861 HNC), in the Cameroon National Herbarium, Yaoundé.

Extraction

The extract was obtained by maceration of air-dried and powdered leaves of *V. thyrsiflora* (3.0 Kg) with EtOH (3x15 L, 72 h) at room temperature, to obtain a crude extract (150 g).

Phytochemical screening of secondary metabolites

The *V. thyrsiflora* leaves ethanol extract was also subjected to phytochemical analysis according to the methods of Harborne and Evans.

Experimental Animal

Healthy adult male *Wistar* rats weighing 200-250 g were used in the present study. The animals were housed in clean grill cages and maintained in a well ventilated temperature controlled room at the animal house of Institute of Medical Research and Medicinal Plants studies, Yaoundé, Cameroon, with a constant 12h light/dark schedule. The animals were fed with standard rat pellet diet and clean drinking water was made available ad libitum.

Induction of diabetes

Rats were fasted overnight (16h) before inducing diabetes with streptozotocin. Streptozotocin was prepared in freshly prepared sodium chloride solution 0.9% and was injected intraperitoneally at a concentration of 55 mg/Kg body weight in a volume of saline of about 500µl/200g body weight by applying the protocol of Szkudelski. Control rats were injected with saline solution only. The diabetic state was confirmed 72h after streptozotocin injection. Threshold value of fasting blood glucose was taken as ≥200mg/dl. Diabetic rats were weighed, matched for body weight and divided into 5 groups consisting of 5 animals each.

Antihyperglycaemic effect of ethanol extract of *V. thyrsiflora* leaves on diabetic rats

The approval of the Institutional Animal Ethics Committee was obtained before starting the study. An International protocol for conducting experiments on animals were followed.

Experimental design

The Diabetic rats were divided into 5 groups with five rats each: (A, B, C and D). Group A rats received DMSO 3%, those of group B and C were treated with ethanol extract of *V. thyrsiflora* at the doses of 200 and 300 mg/Kg body weight respectively, and Group D received glibenclamide (10 mg/Kg body weight).

Blood samples were collected before the commencement of treatment with the extract and then after, at 1h, 3h and 5h intervals.

Oral Glucose Tolerance Test on normoglycemic rats

This study was carried out on normal male rats with normal blood glucose level, according to the method of Schoenfelder et al. The animals were fasted for 16 h prior to the study. Five groups with 5 animals each were constituted and the animals received a dose of 3 g/Kg of glucose by oral route 60 min after the extract was administered with the extract as follows:

- **Group I**: vehicle (DMSO 3%; 10 ml/Kg b. w, negative control),
- **Group II**: water-ethanol extract (200 mg/Kg b.w),
- **Group III**: ethanol extract (300 mg/Kg b.w),
- **Group IV**: ethanol extract (400 mg/Kg b. w)
- **Group V**: glibenclamide (10 mg/Kg b. w), was served as positive control.

Blood was collected from the animals before administration of the extract (-60 min), and then after at 0, 30, 60, 90 and 150 min post administration.

Blood Glucose Estimation

Blood samples were obtained by tail prick and fasting blood glucose levels were estimated with a One Touch Ultra glucometer (Life Scan, Inc., Milpitas, CA, USA) in all animals. Blood glucose levels were expressed in mg/dL.

Dosage of phenolic compounds and antioxidants evaluation

Determination of Total phenolic content (TPC)

The ability of the extracts to reduce the phosphomolybdic-tungstate chromatone in *Folin Ciocalteu* with maximum absorbance at 760 nm (Total phenolic content, TPC) was assessed as earlier described by Vinson et al... Data were reported as mean±SD for triplicate measurements. Catechin was...
used as control and the results were expressed as mg Catechin equivalent/g (mg CE/g).

Determination of Total flavonoid content (TFC)

The Total Flavonoid Content (TFC) was measured as earlier described\(^25\). Total Flavonoid Content of the extract were expressed as mg Quercetin Equivalent/g (mg QE/g) through the calibration curve with quercetin. Data were reported as mean±SD for triplicate measurements.

Figure 1: a. Effect of ethanol extract of *V. thyrsiflora* leaves on glycaemia during Oral Glucose Tolerance Test (OGTT) and b. Area under curve associated with this effect of ethanol extract of *V. thyrsiflora* leaves. Data are expressed as means ± S.D (n = 5). *p ≤ 0.05 compared with the corresponding value for vehicle control rats. VT200: *V. thyrsiflora* (200 mg/Kg); VT300: *V. thyrsiflora* (300 mg/Kg); Glib10: Glibenclamide (10 mg/Kg).

RESULTS

Phytochemical screening revealed that the ethanol extract of *V. thyrsiflora* leaves contained alkaloids, flavonoids, steroids, phenolics compound, saponosids, catechic tanins and anthraquinones (Table 1). The Area Under Curve (AUC) associated with the effect of ethanol extract of *V. thyrsiflora* leaves on Oral Glucose Tolerance Test (OGTT) in normoglycemic male rats was significantly decreased (**p ≤ 0.01) at 200mg/Kg, when compared to vehicle control group (474±26.93 to 388.60±16.05), as well as in the group receiving glibenclamide at 10mg/Kg, where the AUC was decreased from 474±26.93 to 392.50±19.45 (Figure 1b).

Table 1: Phytochemical screening of ethanol extract of *V. thyrsiflora* leaves

Phytochemical constituents tested	Results
Alkaloids	+
Flavonoids	+++
Tri Terpenoids	-
Steroids	+++
Phenolics compound	+++
Saponosids	+ +
Catechic tanins	+++
Anthraquinones	++
Glucosides	-

(+) = indicates presence of phytochemicals and (+) = indicates absence of phytochemicals. +++ = shows high concentration; ++ = shows moderate concentration; + = shows small concentration.

Statistical Analysis

Results were expressed as mean± SD. Statistical analysis were carried out using one way Analysis of variance (ANOVA) followed by Dunnet test for comparison to vehicle control or followed by Newman-Keuls Multiple Comparison Test for antioxidant parameters, using GraphPad Prism 5.03 software. A value of p≤0.005. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001 was considered to be significant.
The administration of ethanol extract of *V. thyrsiflora* leaves at 200mg/Kg or 300mg/Kg to diabetic rats didn’t show any difference in the blood glucose level, according to the AUC associated with each group tested. Even glibenclamide didn’t show a significant effect on lowering the high blood glucose level state induces by streptozotocin (Figure 2).

The Total Polyphenol Content (TPC) appears to be significantly dose dependent on the concentrations of the extract, until 40 mg/Kg (79.36±0.3717 mg Catechin/g), where the TPC became stable and not different to that of 50 mg/Kg (Figure 3). The Total Flavonoid Content (TFC) evaluated in *V. thyrsiflora* ethanol extract showed a significant dose dependent increase when compared to 2.5mg/Kg. The content was the same at doses of 5mg/Kg and 10 mg/Kg (Figure 4). The correlation between Ferric Reducing Antioxidant Power (FRAP) and Total Flavonoid Content (TFC) showed a very strong positive correlation (Pearson r = 0.9223 with R²=0.8507, p** = 0.0088) (Figure 5). The correlation between FRAP and TPC was significantly high (p**=0.0010) (Figure 6).

DISCUSSION

The aim of this work was to evaluate the antioxidant and the antihyperglycemic potential of the ethanol extract of *V. thyrsiflora* leaves. The phytochemical screening reveals that the ethanol extract of *V. thyrsiflora* leaves possesses alkaloids, flavonoids, steroids, phenolic compounds, catechic stanins, anthraquinones and saponinos in traces.

The evaluation of the effect of *V. thyrsiflora* ethanol leaves extract on hyperglycemic normal rats in OGTT showed that, the 200mg/Kg dose was the most active to lower the AUC induced by glucose loaded in normal rats male (**p ≤ 0.01**). Glibenclamide (10 mg/Kg), a widely used antidiabetic drug was effective to decrease the AUC observed in the vehicle group (**p ≤ 0.01**). The results of OGTT in normal rats could be correlated with the ability of the extract to probably enhance the secretion of insulin in the likely manner of sulfonylureas and inhibit α- glucosidases present in the border brush of the small intestine**28,29**. Enhanced tissue uptake of blood glucose induced by *V. thyrsiflora* might also be taken into consideration as an alternative possibility. In current study, the decrease in blood glucose at 200 mg/Kg and not at 300 mg/Kg could be explained by the presence of hyperglycemic compounds which have become the majority at this dose.

Some studies showed that, antagonistic relationship among phytochemicals would affect the efficacy of crude extracts as used in traditional medicine, like observed by Milugo *et al.*30 on antagonistic effect of alkaloids and saponin.
Furthermore, the results show that administration of the extract is associated with no effect on blood glucose level in STZ-diabetic rats. Since streptozotocin selectively destroys β-cells of the pancreas, we would expect the extract to exert no effect on plasma glucose concentrations in STZ diabetic rats if the mode of action is mediated through insulin production.

CONCLUSION

Based on the results of the present study, we conclude that the plant extract possesses antioxidant potential. The findings of the present study also suggest that V. thyrsiflora ethanol leaf extract could be a potential natural source of antioxidants and could have greater importance as therapeutic agent in preventing or slowing oxidative stress related degenerative diseases. However, this work is the first report which evaluates antihyperglycemic effect of ethanol extract of V. thyrsiflora leaves and its antioxidant potential. Further studies should be carried out to evaluate α-amylase inhibitory and beta-glucosidase inhibitory activities isolate and identify active compounds, to understand the mechanism of action against hyperglycemia.

AUTHOR'S CONTRIBUTION

The manuscript was carried out, written, and approved in collaboration with all authors.

CONFLICT OF INTEREST

No conflict of interest associated with this work.

REFERENCES

1. Mabberley DJ. The plant-Book: A portable Dictionary of the Vascular Plants, 2nd Edition. Cambridge University Press: Cambridge, U.K. 1997, 749.
2. Adjanohoun JE, Aboubakar N, Dramane K, Ebot ME, et al. Traditional Medicinal Pharmacopoeia: Contribution to ethnobotanical and floristics studies in Cameroon. CNPMS (Centre National de Production de Manuels Scolaires), Porto-Novo. 1996; 409.
3. Kubo I, Matsumoto A, Hanke FJ Ayafor JF. Analytical droplet counter-current chromatography isolation of 20-hydroxyecdysone from Vitex thyrsiflora (Verbenaceae). J Chromat 1984; 321: 246-248. https://doi.org/10.1016/S0031-9007(01)09442-X
4. Kuruzum-Uz A, Stroch K, Demirezer LO, Zeeck A. Glucosides from Vitex agnus-castus. Phytochemistry 2003; 63: 959-964.https://doi.org/10.1016/S0031-9422(03)00285-1
5. Ono M, Nishida Y, Masuoka C, Li J-C, Okawa M, Ikeda T, Nohara T. Lignan Derivatives and a Nortriterpene from the seed of Vitex negundo. J Nat Prod 2004; 67: 2073-2075. https://doi.org/10.1021/nl040102t
6. Chencughari S, Karumanchi VR, Gottumukkala VS. Flavonoids, triterpenoids and a lignans from Vitex altissima. Phytorechemistry 2005; 66: 1707-1712. https://doi.org/10.1016/j.phytochem.2005.05.008
7. Ono M, Yamamoto M, Yanaka T, Ito Y, Nohara T. Ten new labdane diterpenes from the fruit of Vitex rotundifolia. Chem. Pharm. Bull 2001; 49: 82-86.
8. Rasamison S, Cunhaiw-Hampanana L, Cao S, Pan E, Ratovoson F, Randriantafika F, Rakotondrajona R, Rakotonandrasana S, Andriantsiferana R, Kingston D. A new labdane diterpene from Vitex cauliflora Moldenke from the Madagascar rainforest. Fitoterapia 2010; 81: 55-58. https://doi.org/10.1016/j.fitote.2013.06.018
9. Kopa TK, Tane P, Wabo HK, Tala MF, Tchinda AT, Zofou D, Tan N-H, Tittanji VPK. In vitro antiplasmodial activity of the isolated compounds from the stem barks of Vitex thyrsiflora. Comptes Rendus Chimie 2016; 7: 807-811. https://doi.org/10.1016/j.jep.2006.07.027
10. Devi PR, Kumari SK, Kokilavani C. Effect of Vitex negundo leaf extract on the free radicals scavengers in complete Freund's adjuvant induced arthritic rats. Indian J Clin Biochem 2013; 28: 143-147. https://doi.org/10.1007/BF02912899
11. Rabeta MS, An Nabil Z. Total phenolic compounds and scavenging activity in Clitoria ternatea and Vitex negundo Linn. Int Food Res J 2013; 20(1): 495-500.
12. Duthie GG, Duthie SJ, Kyle JA. Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev 2000; 13: 79-106. https://doi.org/10.1079/095442200107829016
13. Blokhina O, Virloinen E, Fagerstelt KV. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 2003; 91: 179-94. https://doi.org/10.1093/aob/mcf118
14. Myburgh KH. Polyphenol supplementation: benefits for exercise performance or oxidative stress? Sports Med 2014; 1: 57 - 70. https://doi.org/10.1007/s40279-014-0151-4
15. Bors, W, Michel, C. Antioxidant capacity of flavonols and gallate esters: pulse radiolysis studies. Free Radiic Biol Med 1999; 27(11), 1413-1426. https://doi.org/10.1016/S0308-4019(99)00187-2
16. Sousa CMM, ReSH, MC, Minka CSM. Antiioxidante activity (IUPAC Technical Report) as a measure of antioxidant power: The FRAP assay. Anal Biochem 1996; 239: 70-76. https://doi.org/10.1006/abio.1996.0292
17. Bouis MS. Antioxidant Determinations by the use of a stable free radical. Nature 1958; 181: 1199-1200.
18. Tang LQ, Wei W, Chen LM, Li XD. Effects of berberine on diabetes induced by alloxan and a high-fat/high cholesterol diet in rats. J Ethnopharmacol 2006; 108(1): 109-115. https://doi.org/10.1016/j.jep.2006.04.019
19. Leinen S. The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetology 2008; 51(2): 216-226. https://doi.org/10.1007/s00125-007-0886-7
20. Milugo TK, Omosa I.K, Ochanda JO, Owaor BO, Wamanyokol FA, Oyugi JO, Ochieng JW. Antagonistic effect of alkaloids and saponins on bioactivity in the quinine tree (Rauvolfia caffraison).: further evidence to support biotechnology in traditional medicinal plants. BMC Complement Altern Med 2013; 13: 285. https://doi.org/10.1186/1472-6882-13-285
21. Ivirona MD, Paya M, Villarr A. Hypoglycaemic and insulin release effects of tormentic acid: A new hypoglycaemic natural product. Planta Med 1988; 54: 282-286. https://doi.org/10.1055/s-2006-962433
22. Sharma SR, Dwiwedi SK, Swarup D. Hypoglycaemic potential of Mangifera indica leaves in rats. Int J Pharmacogn 1997; 35 (2): 130-133. https://doi.org/10.1080/00210355.130.13276
23. Apak R, Gorinstein S, Böhm V, Schaich KM, Özyür A, Güçlü K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl Chem 2013; 85-957-998. https://doi.org/10.1351/PAC-REP-12-07-15
24. Nyunai N, Yaya ALG, Tabi TGN, Tchamouge AD, Ngondé MC, Minka CSN. Anti-hyperglycaemic and Antioxidant Potential of Water-Ethanol Extract of Musanga cecropioides Stem Bark. Int J Pharm Sci Drug Res 2016; 8(1): 43-49. https://doi.org/10.25054/IJPSDR.2016.080107
25. Karagözler AA, Erdğ B, Emek YÇ, Uygun DA. Antioxidant activity and proline content of leaf extracts from Doryystocoeus hastata. Food Chem 2008; 111 (2): 400-407. https://doi.org/10.1016/j.foodchem.2008.03.089
26. Surinat P, Kaewsutthi S, Surakarnkul R. Radical scavenging activity in fruit extracts. Acta Horticulturae 2005; 679, 201-203. https://doi.org/10.17660/ActaHortic.2005.679.25