Invasive Lobular Carcinoma Has Worse Outcome Compared with Invasive Ductal Carcinoma in Stage IV Breast Cancer with Bone-Only Metastasis

Yunbo Luo a Aimin Ma b Shengkai Huang c Yinghua Yu c

aDepartment of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; bDepartment of Breast Surgery, Wuming Hospital of Guangxi Medical University, Nanning, China; cDepartment of Breast Surgery, the Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China

Abstract

Background: Invasive lobular carcinoma (ILC) is more likely to have bone metastasis than invasive ductal carcinoma (IDC). However, the prognosis for bone metastasis in ILC and IDC is barely known. So, the aim of this study was to investigate the difference of prognosis between ILC and IDC accompanied by bone metastasis. Methods: We evaluated the women with bone-only metastasis of defined IDC or ILC reported to the Surveillance, Epidemiology and End Results program from 2010 to 2016. Pearson’s χ² test was used to compare the differences of clinicopathologic factors between ILC and IDC. Univariate and multivariate analyses were performed to verify the effects of histological types (IDC and ILC) and other clinicopathologic factors on the overall survival (OS) and cancer-specific survival (CSS). Results: Overall, 3,647 patients with IDC and 945 patients with ILC met the inclusion criteria and were analyzed in our study. The patients with ILC were more likely to be older and to have lower histological grade and a higher proportion of the HR+/HER2– subtype. However, less treatment was administered to ILC than IDC, such as surgery of the breast, radiation, and chemotherapy. Compared to patients with IDC, patients with ILC showed worse OS (median OS, 36 and 42 months, respectively, p < 0.001) and CSS (median CSS, 39 and 45 months, respectively, p < 0.001), especially in subgroups with HR+/HER2– subtype (OS, hazard ratio: 1.501, 95% CI 1.270–1.773, p < 0.001; CSS, hazard ratio: 1.529, 95% CI 1.281–1.825, p < 0.001), lower histological grade (I–II) (OS, hazard ratio: 1.411, 95% CI 1.184–1.683, p < 0.001; CSS, hazard ratio: 1.488, 95% CI 1.235–1.791, p < 0.001), or tumor burden, such as T0–2 (OS, hazard ratio: 1.693, 95% CI 1.368–2.096, p < 0.001; CSS, hazard ratio: 1.76, 95% CI 1.405–2.205, p < 0.001) and N1–2 (OS, hazard ratio: 1.451, 95% CI 1.171–1.799, p = 0.001; CSS, hazard ratio: 1.488, 95% CI 1.187–1.865, p = 0.001). Furthermore, older age, black race, unmarried status, higher tumor burden (T3–4 and N3), triple-negative subtype, and higher histological grade were independent risk factors for both OS and CSS. Surgery of the breast and chemotherapy could significantly improve the prognosis for patients. Conclusion: Patients with ILC have worse outcomes compared to those with IDC when associated with bone-only metastasis, especially in subgroups with lower histological grade or tumor burden. More effective treatment measures may be needed for ILC, such as cyclin-dependent kinase 4/6 inhibitors, new targeted drugs, etc.

Introduction

Breast cancer is the most common malignancy among women and is also the second cause of cancer death in women [1]. Although breast cancer screening has been widespread and people’s awareness of cancer prevention has improved significantly, 5–10% of patients might have...
distant metastasis at the diagnosis of breast cancer [2, 3]. Also, approximately 20–30% of early breast cancer patients may develop distant metastasis [4]. Therefore, metastatic breast cancer is still the main problem for the treatment of breast cancer, especially bone metastasis (BM), which is the most common form of metastasis in breast cancer. BM can trigger a series of skeletal-related events, such as pathological fractures, spinal cord compression, and the need for surgery or radiotherapy to bone, which increases patients’ suffering and consumes a lot of medical resources. Bone-only metastasis (BOM) accounts for 17–37% of metastatic breast cancer among females [5–7]. Some studies have shown that breast cancer with BOM has better prognosis than multiple metastases [8, 9]. So, it is important to understand the risk factors for BM and find the patients with BM as early as possible. Previous studies have shown that older age, larger tumor size, and more lymph nodes involvement were risk factors for BM [10–12]. In addition, hormone receptor-positive status and lower tumor grade can also significantly increase the risk of BM [10, 13].

Invasive lobular carcinoma (ILC) is the second most common histological type of breast cancer and accounts for 5–15% of breast cancers [14–16]. ILC is more likely to be hormone receptor positive and is associated with larger tumor size and older age than invasive ductal carcinoma (IDC) [14, 17]. Therefore, theoretically, ILC has a higher risk of BM than IDC, which was demonstrated by previous research [8, 17, 18]. However, the prognosis of IDC and ILC with BM has rarely been studied. A previous study [18] including 196 patients whose first metastatic site was bone showed that ILC had better outcomes than IDC. However, recent studies [8, 19] drew the opposite conclusion, demonstrating worse outcomes for ILC than IDC. So, the purpose of this study was to investigate the difference in prognosis between IDC and ILC with BOM by analyzing the Surveillance, Epidemiology and End Results (SEER) database.

Materials and Methods

Data Source and Patient Selection

We conducted a retrospective study using data from the SEER database which collects patients’ demographics, tumor characteristics, first course of treatment, and important follow-up data from 18 population-based cancer registries, representing approximately 28% of the US population. Because the records of the SEER database have contained information about distant metastasis since 2010, we used the SEER*Stat version 8.3.6 to identify potentially eligible patients based on the following inclusion criteria: female, years of diagnosis from 2010 to 2016, more than 1 month of follow-up, breast cancer with BOM as the first and only malignant cancer diagnosis, and defined histological type of IDC or ILC (Fig. 1; flowchart). Finally, 4,592 patients met the inclusion criteria, and their clinicopathologic data, including age, race, marital and insurance status, laterality, tumor and lymph node stage, histological grade, tumor subtype, treatment methods, and survival months, were collected and analyzed. Because personally identifiable information of this study cannot be reached from the SEER database, this study was deemed exempt from review by the ethics committee of our institution.

Statistical Analysis

Pearson’s χ² test was used to compare the differences of clinicopathologic factors between IDC and ILC. The endpoints of this study were overall survival (OS) and cancer-specific survival (CSS). OS was defined as the interval from the diagnosis of breast cancer to mortality from all causes or the final follow-up in censored cases. CSS was defined as the interval from the diagnosis to mortality caused by breast cancer or the final follow-up in censored cases. Kaplan-Meier analysis was performed to estimate the differences of prognosis between IDC and ILC, and also the log-rank test was applied to determine the effect of each variable on OS and CSS. A Cox proportional hazards model was used for the univariate and multivariate analyses and to estimate hazard ratios with 95% confidence intervals (CIs). SPSS Statistical software (version 25.0; IBM Corporation) was applied for all statistical analyses. The forest plot was made by Microsoft Excel (Microsoft Office Professional Plus 2010). All tests were two sided and p values <0.05 were considered statistically significant.

Results

Clinicopathologic Features

In total, 4,592 patients with BOM met the criteria and were analyzed in this study. Among them, 945 patients had ILC (20.6%) and 3,647 patients had IDC (79.4%). The age of patients ranged from 20 to 97 years, and patients with ILC were significantly older than those with IDC (median age, 65 and 59 years, respectively), while patients with IDC presented higher T stage than those with ILC (T4, 26.7% and 15.4%, respectively) and were also more often treated with surgery of the breast, chemotherapy, and radiotherapy than patients with ILC (<0.001). Patients with IDC were more often treated with surgery of the breast, chemotherapy, and radiotherapy than patients with ILC (<0.001) as shown in Table 1.

Univariate Survival Analysis for Patients with BOM

The follow-up time of this cohort ranged from 1 to 82 months, with a median of 22 months. Finally, 2,046 patients, including 1,577 (77.1%) with IDC and 469 (22.9%) with ILC, had died. Patients with ILC had a shorter OS than patients with IDC, with a median OS of 36 and 42 months, respectively (<0.001, shown in Fig. 2a). Also, the CSS of ILC patients was shorter than that of IDC patients, with a median CSS of 39 and 45 months, respectively (<0.001, shown in Fig. 2b). In addition to histo-
logical types (ILC and IDC), other clinicopathologic factors can also affect the outcomes of patients with BOM. As shown in Table 2, decreased OS and CSS were seen in those patients who were older, were of black race, had unmarried status, higher histological grade (II–IV), higher tumor burden (T 3–4 , N 3), and triple-negative subtype. However, surgery of the breast, chemotherapy, and radiation therapy could significantly improve patients’ survival.

Multivariate Survival Analysis of Patients with BOM

When multivariate survival analysis was performed by the Cox proportional hazards model (Table 3), the OS and CCS of ILC were still significantly worse than for IDC (OS, hazard ratio: 1.39, 95% CI 1.192–1.620, p < 0.001; CSS, hazard ratio: 1.428, 95% CI 1.215–1.679, p < 0.001). Then, older age (50–65 and >65 years), unmarried status, black race, later tumor stage (T 3–4), higher lymph node stage (N 3), higher histological grade (II–IV), and triple-negative subtype were independent risk factors for OS and CSS in these two groups (ILC and IDC). Surgery of the breast and chemotherapy significantly improved patients’ survival, but radiotherapy had no effect on survival.

Subgroup Survival Comparation for IDC and ILC

Furthermore, when subgroup analysis was performed (Fig. 3), the patients with ILC also showed worse outcomes than those with IDC in most subgroups. Especially in groups with lower histological grade (I–II) (OS, hazard ratio: 1.411, 95% CI 1.184–1.683, p < 0.001; CSS, hazard ratio: 1.428, 95% CI 1.215–1.679, p < 0.001). Then, older age (50–65 and >65 years), unmarried status, black race, later tumor stage (T 3–4), higher lymph node stage (N 3), higher histological grade (II–IV), and triple-negative subtype were independent risk factors for OS and CSS in these two groups (ILC and IDC). Surgery of the breast and chemotherapy significantly improved patients’ survival, but radiotherapy had no effect on survival.

Discussion

ILC is the second most common histological type of breast cancer and accounts for 5–15% of breast cancers [14–16]. Numerous previous studies [14, 17, 20, 21] have shown that ILC and IDC differ greatly in clinicopathologic features and prognosis, but most of these studies have been limited to early-stage breast cancer instead of metastatic breast cancer. Actually, the metastatic sites of ILC and IDC are very different. IDC is more prone to brain and visceral metastasis than ILC [14, 17], such as liver and lung. However, the risks of gastrointestinal tract and ovary metastasis for ILC are higher than in IDC [22]. In addition, recent studies [8, 17] have also shown that ILC is particularly prone to BM, and BM accounts for approximately 70% of metastatic breast cancers and increases the patients’ suffering by a series of skeletal-related events [23]. A retrospective study [8] analyzing the SEER database illustrated that the risk of BM for ILC is almost twice as high as for IDC (hazard ratio: 1.996, p < 0.001). However, the difference in prognosis between ILC and IDC with BM is barely known. Therefore, we used the SEER database to investigate the influence of histological
Table 1. Clinicopathologic features of patients according to histology subtypes (ILC and IDC)

Variables	Total number	IDC	ILC	p value	
	n	%	n	%	
All patients	4,592	3,647	945	20.6	
Age					
<50 years	1,043	938	105	11.1	<0.001
50-65 years	1,948	1,558	390	41.3	
>65 years	1,601	1,151	450	47.6	
Race					
White	3,557	2,779	778	82.3	<0.001
Black	683	568	115	12.2	
Others	329	283	46	4.9	
Unknowna	23	17	6	0.6	
Marital status					
Married	2,098	1,638	460	48.7	0.043
Unmarried	2,273	1,831	442	46.8	
Unknowna	221	178	43	4.5	
Insurance status					
Insured	4,366	3,450	916	96.9	0.08
Uninsured	141	120	21	2.2	
Unknowna	85	77	8	0.9	
Laterality				0.793	
Left	2,329	1,875	454	48.0	
Right	2,169	1,729	440	46.6	
Bilateral	14	11	3	0.3	
Unknowna	80	32	48	5.1	
T stage					
T0/T1	616	454	162	17.1	<0.001
T2	1,587	1,329	258	27.3	
T3	785	571	214	22.6	
T4	1,118	973	145	15.4	
T4a	486	320	166	17.6	
Nodal stage					
N0	1,106	849	257	27.2	0.003
N1	2,008	1,650	358	37.9	
N2	550	449	101	10.7	
N3	603	479	124	13.1	
Unknowna	325	220	105	11.1	
Grade					
I	407	242	165	17.5	<0.001
II	1,950	1,551	399	42.2	
III–IV	1,533	1,429	104	11.0	
Unknowna	702	425	277	29.3	
Tumor subtype					
HR+/HER2–	3,083	2,320	763	80.7	<0.001
HR+/HER2+	645	596	49	5.2	
HR–/HER2+	197	182	15	1.6	
Triple-negative	319	288	31	3.3	
Unknowna	348	261	87	9.2	
Surgery					
Yes	1,571	1,315	256	27.1	<0.001
No	2,989	2,308	681	72.1	
Unknowna	32	24	8	0.8	
Radiation				<0.001	
Yes	1,792	1,522	270	28.6	
No	2,800	2,125	675	71.4	
Chemotherapy				<0.001	
Yes	2,385	2,013	372	39.4	
No	2,207	1,634	573	60.6	

IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; HR, hormone receptor; HER2, human epidermal growth factor receptor 2. a Patients with unknown information and T4 stage were excluded from the comparative analysis.
types (ILC and IDC) and other clinicopathologic factors on the prognosis of patients with BOM.

A retrospective research [18] including 196 patients whose first metastatic site was bone showed that ILC had a better outcome compared to that of IDC (hazard ratio: 0.5, 95% CI 0.30–0.84), but merely 35 patients with ILC presented BM in that study. On the contrary, recent studies [8, 19] have shown that ILC had worse prognosis than IDC when developing BM. The reason for the opposite outcomes may be differences in the inclusion population. Firstly, the recent studies included patients with BM at the initial diagnosis of breast cancer, but the 196 patients of the previous research developed BM after receiving systematic therapy during the treatment of primary breast cancer, such as chemotherapy, endocrinotherapy, and Her2-targeted therapy. Moreover, these treatments might differ between IDC and ILC, which might have further affected the following treatment of BM in the previous research. Additionally, the first metastatic site of the 196 patients was only bone in the previous research, while the patients of the recent studies were affected not only by BM but also by brain and visceral metastasis. As previous research [8, 14, 17, 22] has illustrated, the metastatic sites of ILC and IDC are very different, which might have resulted in the differences in prognosis between ILC and IDC in recent studies. So, we excluded patients with visceral or brain metastasis and validated the differences in prognosis between IDC and ILC with BOM by analyzing the SEER database. Consistent with recent studies, the patients with ILC showed worse outcomes than those with IDC, no matter whether for OS or CSS, in our research. Especially in the lower histological grade (I–II) or tumor burden (T0–2, N1–2) groups, patients with ILC showed significantly worse outcomes than those with IDC. Part of the reason may be less treatment for ILC than for IDC in those groups, such as surgery or chemotherapy, which could improve the survival for patients with BM [5, 19, 24, 25]. Furthermore, patients with ILC had a larger proportion of the HR+/HER2– subtype than patients with IDC (80.7% and 63.6%, respectively), but had significantly worse survival than the IDC group in this subtype. In metastatic breast cancer with HR+/HER2– subtype, the 2016 American Society of Clinical Oncology recommends cyclin-dependent kinase 4/6 inhibitors (CDKs)-based treatment in the first-line or second-line protocols [26]. Also, recent research [27–29] revealed that patients with BOM or lobular histology benefited from CDK4/6 inhibitors combined with endocrine therapy. Thus, we speculate that ILC patients with BOM may be more likely to benefit from CDKs-based regimens than simple endocrine therapy, which might be proven by further studies. While ILC and IDC had the same prognosis in triple-negative subtype, the reason may be similar treatment for ILC and IDC in this group, such as the only effective systemic treatment of chemotherapy for the triple-negative subtype.

Apart from the histology types (IDC and ILC), other clinicopathologic factors can also affect the prognosis of patients with BOM. Notably, we found that patients showed worse prognosis with increasing age, which was also demonstrated by a previous study [8]. This is partly because older patients have more comorbid conditions and frailty, which makes aggressive systemic therapy inexecutable in older patients. Besides, unmarried or uninsured status increased the risk of mortality slightly, which is consistent with a previous study [8]. Higher tumor bur-
Variables	N (%)	OS median, months	p value	CSS median, months	p value
Age					
<50 years	1,043	56	<0.001	59	<0.001
50–65 years	1,948	42	44		
>65 years	1,601	30	35		
Race					
White	3,557	42	<0.001	45	<0.001
Black	683	31	35		
Others	329	43	47		
Marital status					
Married	2,098	46	<0.001	49	<0.001
Unmarried	2,273	35	38		
Insurance status					
Insured	4,366	41	0.096	44	0.041
Uninsured	141	36	38		
Laterality					
Left	2,329	41	0.057	44	0.079
Right	2,169	42	45		
Bilateral	14	13	30		
T stage					
T0/T1	616	47	<0.001	52	<0.001
T2	1,587	46	50		
T3	785	41	44		
T4	1,118	34	35		
Nodal stage					
N0	1,106	41	0.343	44	0.454
N1	2,008	43	45		
N2	550	41	43		
N3	603	42	44		
Histology type					
IDC	3,647	42	<0.001	45	<0.001
ILC	945	36	39		
Grade					
I	407	49	<0.001	56	<0.001
II	1,950	45	49		
III–IV	1,533	42	36		
Subtype					
HR+/HER2–	3,083	42	<0.001	44	<0.001
HR+/HER2+	545	56	58		
HR–/HER2+	197	73	NA		
Triple-negative	319	14	14		
Surgery					
Yes	1,571	54	<0.001	59	<0.001
No	2,989	34	37		
Radiation					
Yes	1,792	45	<0.001	47	<0.001
No	2,800	38	42		
Chemotherapy					
Yes	2,385	46	<0.001	50	<0.001
No	2,207	35	39		

OS, overall survival; CSS, cancer-specific survival; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; NA, not available.
Variables	OS hazard ratio	95% CI	p value	CSS hazard ratio	95% CI	p value
Age						
<50 years Ref	1.277	1.052–1.430	0.009	1.187	1.012–1.392	0.035
50–65 years	1.705	1.445–2.011	<0.001	1.601	1.347–1.902	<0.001
>65 years Ref						
Race						
White Ref						
Black	1.248	1.076–1.448	0.003	1.210	1.034–1.416	0.018
Others	0.999	0.793–1.258	0.99	1.022	0.805–1.298	0.86
Marital status						
Married Ref	1.251	1.113–1.405	<0.001	1.234	1.092–1.395	0.001
Unmarried						
Insurance status						
Insured Ref						
Uninsured	1.276	0.951–1.696	0.092	1.356	1.014–1.813	0.04
Laterality						
Left Ref						
Right	0.989	0.885–1.105	0.843	0.981	0.873–1.103	0.751
Bilateral	2.378	0.876–6.457	0.089	2.584	0.949–7.036	0.063
T stage						
T0/T1 Ref						
T2	1.184	0.981–1.429	0.078	1.119	0.920–1.361	0.261
T3	1.355	1.100–1.670	0.004	1.282	1.031–1.594	0.025
T4	1.478	1.216–1.796	<0.001	1.419	1.158–1.738	0.001
Nodal stage						
N0 Ref						
N1	0.919	0.789–1.059	0.242	0.985	0.825–1.114	0.581
N2	1.086	0.896–1.316	0.399	1.131	0.923–1.386	0.235
N3	1.226	1.026–1.465	0.025	1.292	1.070–1.559	0.008
Histology type						
IDC Ref						
ILC	1.390	1.192–1.620	<0.001	1.428	1.215–1.679	<0.001
Grade						
I Ref						
II	1.315	1.062–1.629	0.012	1.392	1.104–1.755	0.005
III–IV	1.809	1.443–2.267	<0.001	1.953	1.531–2.492	<0.001
Tumor subtype						
HR+/HER2− Ref						
HR+/HER2+	0.834	0.696–1.000	0.05	0.859	0.711–1.038	0.166
HR−/HER2+	0.637	0.447–0.908	0.013	0.684	0.477–0.982	0.039
Triple-negative	3.188	2.642–3.848	<0.001	3.360	2.762–4.087	<0.001
Surgery						
Yes Ref						
No	2.078	1.826–2.364	<0.001	2.057	1.796–2.356	<0.001
Radiation						
Yes Ref						
No	0.968	0.861–1.088	0.58	0.963	0.851–1.089	0.548
Chemotherapy						
Yes Ref						
No	1.343	1.182–1.525	<0.001	1.361	1.189–1.556	<0.001

OS, overall survival; CSS, cancer-specific survival; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; HR, hormone receptor; HER2, human epidermal growth factor receptor 2; CI, confidence interval; Ref, reference.
den was also significantly related to poorer survival in previous studies, such as larger tumor size and more positive lymph nodes [18, 30]. Our study revealed that later tumor stage or higher lymph node stage will significantly increase the risk of death for patients with BOM, as well. The fact that histological grade has a great impact on the prognosis of patients with breast cancer is widely recognized. Many studies [8, 31] illustrated that higher histological grade will increase the mortality of breast cancer with BM, which was also confirmed in our study.

Previous retrospective studies [32, 33] have shown that surgery of the breast can improve survival for stage IV breast cancer, especially for patients with BOM [24, 25]. This was also demonstrated in our study: the risk of death for patients without surgery was twice as high as for patients receiving surgery. Chemotherapy is the main treatment to delay the progression of advanced breast cancer and is widely applied to patients with visceral metastasis. Palliative chemotherapy has been shown to significantly improve the survival of patients with BM [5, 19]. This was also confirmed in our study, especially for patients with IDC, whose median OS increased from 36 months to 48 months, while chemotherapy extended the median OS for ILC only by 5 months, which may be due to less sensitivity to chemotherapy for ILC than IDC [20]. ILC has a higher proportion of hormone receptor-positive status and may receive more endocrine therapy in the era of standardized therapy, although no information can be acquired from the SEER database whether and which endocrine treatment was given. Therefore, ILC received less chemotherapy than IDC although both developed BM in our study. Since patients with ILC also benefited from chemotherapy in our study, chemotherapy can be used for the treatment of ILC with BM. Generally speaking, radiotherapy has the benefits to release pain and obtain satisfactory local control. Some previous studies have demonstrated that breast radiotherapy can improve survival significantly for patients with metastatic breast cancer [34]. However, radiotherapy had no impact on patients with BM in our study, which was consistent with another study [19].

Several limitations of this study must be clarified. Firstly, baseline conditions of ILC and IDC were not completely balanced due to the retrospective nature of the study, and propensity score matching failed to balance the difference. So, we applied subgroup analysis to show the difference in prognosis between IDC and ILC explicitly, and we also performed a multivariable Cox propor-
Patients with ILC have worse outcomes compared to those with IDC when associated with BOM, especially in subgroups with lower histological grade or tumor burden. Surgery of the breast and chemotherapy could improve the prognosis for both ILC and IDC. Thus, more effective treatment measures may be needed for ILC with BOM, such as more aggressive chemotherapy regimes, CDK4/6 inhibitors, new targeted drugs, etc.

Conclusion

Patients with ILC have worse outcomes compared to those with IDC when associated with BOM, especially in subgroups with lower histological grade or tumor burden. Surgery of the breast and chemotherapy could improve the prognosis for both ILC and IDC. Thus, more effective treatment measures may be needed for ILC with BOM, such as more aggressive chemotherapy regimes, CDK4/6 inhibitors, new targeted drugs, etc.

References

1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020 Jan;70(1):7–30.
2 Youlden DR, Cramb SM, Dunn NA, Muller JM, Pyke CM, Baade PD. The descriptive epidemiology of female breast cancer: an international comparison of screening, incidence, survival and mortality. Cancer Epidemiol. 2012 Jun;36(3):237–48.
3 DeSantis C, Ma J, Bryan L, Jemal A. Breast cancer statistics, 2013. CA Cancer J Clin. 2014 Jan-Feb;64(1):52–62.
4 O'Shaughnessy J. Extending survival with chemotherapy in metastatic breast cancer. Oncologist. 2005;10(Suppl 3):20–9.
5 Scheid V, Buzdar AU, Smith TL, Hortobagyi GN. Clinical course of breast cancer patients with osseous metastasis treated with combination chemotherapy. Cancer. 1986 Dec;58(12):2589–93.
6 Domchek SM, Younger J, Finkelstein DM, Seiden MV. Predictors of skeletal complications in patients with metastatic breast carcinoma. Cancer. 2000 Jul;89(2):363–8.
7 Plunkett TA, Smith P, Rubens RD. Risk of complications from bone metastases in breast cancer. Implications for management. Eur J Cancer. 2000 Mar;36(4):476–82.
8 Gong Y, Zhang J, Li P, Ling H, Hu X, Shao ZM. Incidence proportions and prognosis of breast cancer patients with bone metastases at initial diagnosis. Cancer Med. 2018 Aug;7(8):4156–69.
9 Lin Y, Huang K, Zeng Q, Zhang J, Song C. Impact of breast surgery on survival of patients with stage IV breast cancer: a SEER population-based propensity score matching analysis. PeerJ. 2020;8:e8694.
10 Koizumi M, Yoshimoto M, Kasumi F, Iwase T. An open cohort study of bone metastasis incidence following surgery in breast cancer patients. BMC Cancer. 2010 Jul;10:381.
11 Delpech Y, Bashour SI, Lousquy R, Rouzier R, Hess K, Coutant C, et al. Clinical nomogram to predict bone-only metastasis in patients with early breast carcinoma. Br J Cancer. 2015 Sep;113(7):1003–9.
12 Diessner J, Wischnewsky M, Stuber T, Stein R, Krokenberger M, Hauser S, et al. Evaluation of clinical parameters influencing the development of bone metastasis in breast cancer. BMC Cancer. 2016 May;16:307.
13 James JJ, Evans AJ, Pinder SE, Gutteridge E, Cheung KL, Chan S, et al. Bone metastases from breast carcinoma: histopathological-radiological correlations and prognostic features. Br J Cancer. 2003 Aug;89(4):660–5.
14 Pestalozzi BC, Zahrieh D, Mallon E, Gusterson BA, Price KN, Gelber RD, et al. Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. J Clin Oncol. 2008 Jun;26(18):3006–14.
15 Corben AD. Pathology of invasive breast disease. Surg Clin North Am. 2013 Apr;93(2):363–92.

Acknowledgement

We would like to thank the SEER program for providing open access to the database.

Statement of Ethics

This study used previously collected data without personally identifiable information; the need for informed consent had been waived due to the retrospective nature of the study, and the study was deemed exempt from review by the Ethics Committee of the Guangxi Medical University Cancer Hospital.

Conflict of Interest Statement

The authors declare that they have no competing interests.

Funding Sources

There are no funding sources.

Author Contributions

Y.L. and Y.Y. conceived and designed this study. Y.L., S.H., and A.M. collected and analyzed the data. Y.L. and A.M. organized the manuscript. Y.L. and Y.Y. reviewed the paper and revised the manuscript. All authors have read and approved the final manuscript.

Data Availability Statement

The data were abstracted from an open database, the Surveillance, Epidemiology, and End Results (SEER) database (https://seer.cancer.gov).

Statement of Ethics

This study used previously collected data without personally identifiable information; the need for informed consent had been waived due to the retrospective nature of the study, and the study was deemed exempt from review by the Ethics Committee of the Guangxi Medical University Cancer Hospital.

Conflict of Interest Statement

The authors declare that they have no competing interests.

Funding Sources

There are no funding sources.

Author Contributions

Y.L. and Y.Y. conceived and designed this study. Y.L., S.H., and A.M. collected and analyzed the data. Y.L. and A.M. organized the manuscript. Y.L. and Y.Y. reviewed the paper and revised the manuscript. All authors have read and approved the final manuscript.

Data Availability Statement

The data were abstracted from an open database, the Surveillance, Epidemiology, and End Results (SEER) database (https://seer.cancer.gov).
Worse Outcome for Invasive Lobular Carcinoma

16 Mamtani A, King TA. Lobular breast cancer: different disease, different algorithms. Surg Oncol Clin N Am. 2018 Jan;27(1):81–94.
17 Chen Z, Yang J, Li S, Lv M, Shen Y, Wang B, et al. Invasive lobular carcinoma of the breast: A special histological type compared with invasive ductal carcinoma. PLoS One. 2017;12(9):e0182397.
18 Purushotham A, Shamil E, Cariati M, Agbaje O, Muhidin A, Gillett C, et al. Age at diagnosis and distant metastasis in breast cancer – a surprising inverse relationship. Eur J Cancer. 2014 Jul;50(10):1697–705.
19 Wang Z, Cheng Y, Chen S, Shao H, Chen X, Wang Z, et al. Novel prognostic nomograms for female patients with breast cancer and bone metastasis at presentation. Ann Transl Med. 2020 Mar;8(5):197.
20 Lips EH, Mukhtar RA, Yau C, de Ronde JJ, Livasy C, Carey LA, et al. Lobular histology and response to neoadjuvant chemotherapy in invasive breast cancer. Breast Cancer Res Treat. 2012 Nov;136(1):35–43.
21 Garcia-Fernandez A, Lain JM, Chabrerà C, García Font M, Fraile M, Barco I, et al. Comparative long-term study of a large series of patients with invasive ductal carcinoma and invasive lobular carcinoma. Loco-regional recurrence, metastasis, and survival. Breast J. 2015 Sep-Oct;21(5):533–7.
22 Arpino G, Bardou VJ, Clark GM, Elledge RM. Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res. 2004;6(3):R149–56.
23 Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006 Oct;12(20 Pt 2):6243s–9s.
24 Rapiti E, Verkooijen HM, Vlastos G, Fioretta G, Neyroud-Caspar I, Sappino AP, et al. Complete excision of primary breast tumor improves survival of patients with metastatic breast cancer at diagnosis. J Clin Oncol. 2006 Jun;24(18):2743–9.
25 Rhu J, Lee SK, Kil WH, Lee JE, Nam SJ. Surgery of primary tumour has survival benefit in metastatic breast cancer with single-organ metastasis, especially bone. ANZ J Surg. 2015 Apr;85(4):240–4.
26 Rugo HS, Rumble RB, Macrae E, Barton DL, Connolly HK, Dickler MN, et al. Endocrine therapy for hormone receptor-positive metastatic breast cancer: American Society of Clinical Oncology Guideline. J Clin Oncol. 2016 Sep;34(25):3069–103.
27 Toss A, Venturelli M, Sperduti I, Molinaro E, Isca C, Barbieri E, et al. First-line treatment for endocrine-sensitive bone-only metastatic breast cancer: systematic review and meta-analysis. Clin Breast Cancer. 2019 Dec;19(6):e701–e16.
28 Gao JJ, Cheng J, Bloomquist E, Sanchez J, Wedam SB, Singh H, et al. CDK4/6 inhibitor treatment for patients with hormone receptor-positive, HER2-negative, advanced or metastatic breast cancer: a US Food and Drug Administration pooled analysis. Lancet Oncol. 2020 Feb;21(2):250–60.
29 Schettini F, Giudici F, Giuliano M, Cristofanilli M, Arpino G, Del Mastro L, et al. Overall survival of CDK4/6-inhibitor-based treatments in clinically relevant subgroups of metastatic breast cancer: systematic review and meta-analysis. J Natl Cancer Inst. 2020 Nov;112(11):1089–97.
30 Yavas O, Hayran M, Ozisik Y. Factors affecting survival in breast cancer patients following bone metastasis. Tumori. 2007 Nov-Dec;93(6):580–6.
31 Coleman RE, Smith P, Rubens RD. Clinical course and prognostic factors following bone recurrence from breast cancer. Br J Cancer. 1998;77(2):336–40.
32 Li X, Huang R, Ma L, Liu S, Zong X. Locoregional surgical treatment improves the prognosis in primary metastatic breast cancer patients with a single distant metastasis except for brain metastasis. Breast. 2019 Jun;45:104–12.
33 Wang R, Zhu Y, Liu X, Liao X, He J, Niu L. The Clinicopathological features and survival outcomes of patients with different metastatic sites in stage IV breast cancer. BMC Cancer. 2019 Nov;19(1):1091.
34 Choi SH, Kim JW, Choi J, Sohn J, Kim SI, Park S, et al. Locoregional treatment of the primary tumor in patients with de novo stage IV breast cancer: a radiation oncologist’s perspective. Clin Breast Cancer. 2018 Apr;18(2):e167–e78.