A CLINICAL STUDY ON CARCINOMA BREAST IN RELATION TO ER AND PR STATUS
N. V. Ramanaiah1, P. Theja2

HOW TO CITE THIS ARTICLE:
N. V. Ramanaiah, P. Theja. "A Clinical Study on Carcinoma Breast in Relation to ER and PR Status". Journal of Evidence based Medicine and Healthcare; Volume 2, Issue 39, September 28, 2015; Page: 6472-6486, DOI: 10.18410/jebmh/2015/886

ABSTRACT: INTRODUCTION: Breast carcinoma is the most common malignant tumor and the leading cause of death in women worldwide. It accounts for 15% of all cancer deaths. According to the World Health Organisation (WHO), approximately 70% of breast cancers occur in women with none of the known risk factors. Only about 5% of breast cancers are inherited. Various protocols are in use for the assessment of prognosis, and also to assist further management of these cases. Of various parameters, expression of hormonereceptors Estrogen receptor (ER) and Progesterone receptor (PR) are significant.

AIMS AND OBJECTIVES: To study the occurrence of ER and PR status in breast cancer patients attending S.V.R.R.G.G. Hospital. To correlate the expression of prognostic factors like age at presentation menarche, menopause, parity, tumor size, number of lymph nodes, metastasis histology, grading with ER and PR status.

MATERIALS AND METHODS: This clinicopathological study of carcinoma breast was carried out in patients admitted to SVRRGG Hospital, Tirupati during the period from September 2011 to August 2013 after obtaining approval from scientific committee and ethical committee. Forty cases of breast carcinoma were taken into study. The clinical study done by interviewing, detailed examination and subjecting to relevant investigations and surgeries depending upon the stage of the disease. Excised specimen is sent for Histopathological examination in 10% formaline Reports of light microscopy (Hematoxilin and Eosin) and immunohistochemistry on tumor histology including MBR (Modified Bloom Richardson) grading and Estrogen and Progesterone status is analysed.

CONCLUSION: In conclusion, ER and PR status correlates well with histopathological grading and other clinico-pathological parameters. Higher grade is associated with ER PR negativity. Hence. Immunohistochemical assessment of ER and PR status should be incorporated as a routine investigation. This along with histopathological grading will guide the clinicians to make correct choice of treatment protocols and helps in providing improved quality of life.

KEYWORDS: Breast carcinoma, Estrogen receptor (ER), Progesterone receptor (PR).

INTRODUCTION: AIMS AND OBJECTIVES: To study the occurrence of ER and PR status in breast cancer patients attending S.V.R.R.G.G. Hospital. To correlate the expression of prognostic factors like age at presentation menarche, menopause, parity, tumor size, number of lymph nodes, metastasis histology, grading with ER and PR status.

MATERIALS AND METHODS: This clinicopathological study of carcinoma breast was carried out in patients admitted to SVRRGG Hospital, Tirupati during the period from September 2011 to August 2013 after obtaining approval from scientific committee and ethical committee. Forty cases of breast carcinoma were taken into study. The clinical study done by interviewing, detailed examination and subjecting to relevant investigations and surgeries depending upon the stage of the disease. Excised specimen is sent for Histopathological examination in 10% formaline Reports of light microscopy (Hematoxilin and Eosin) and immunohistochemistry on tumor histology including MBR (Modified Bloom Richardson) grading and Estrogen and Progesterone status is analysed.
examination and subjecting to relevant investigations and surgeries depending upon the stage of the disease. Excised specimen is sent for Histopathological examination in 10% formalin. Reports of light microscopy (Hematoxilin and Eosin) and immunohistochemistry on tumor histology including MBR (Modified Bloom Richardson) grading and Estrogen and Progesterone status is analysed.

RESULTS: Clinicopathological data of the case were analysed using epi info software and SPSS software. Data, graphs and tables were generated from Microsoft word and Microsoft excel.

Immunohistochemistry Markers:

ER STATUS	FREQUENCY	PERCENT
NEGATIVE	26	65
POSITIVE	14	35
TOTAL	40	100

TABLE 1: DISTRIBUTION OF ER STATUS

Estrogen receptor positivity seen in 35% of cases where as receptor negativity seen in 65% of cases.

PR STATUS	FREQUENCY	PERCENT
NEGATIVE	26	65
POSITIVE	14	35
TOTAL	40	100

TABLE 2: DISTRIBUTION OF PR STATUS

Progesterone receptor positivity seen in 35% of cases whereas 65% of cases show progesterone receptor negativity.

HER2/NEU STATUS	FREQUENCY	PERCENT
NEGATIVE	19	47.5
POSITIVE	21	52.5
TOTAL	40	100

TABLE 3: DISTRIBUTION OF HER2/NEU STATUS

Her2/neu receptor positivity seen in 52.5% cases receptor negativity seen in remaining 47.5% cases.

DISTRIBUTION OF ESTROGEN AND PROGESTERONE RECEPTOR STATUS:

(+, +)	(+, -)	(-, +)	(-, -)
13	1	1	25

ER Status & PR Status
25 out of 40 patients were both ER and PR negative constituting 62.5% cases, 13 patients were both positive constituting 32.5% cases, 1 patient positive for ER receptor alone and remainder 1 patient positive for PR receptor alone constituting 2.5% each.

TABLE 4: DISTRIBUTION OF HORMONE RECEPTOR AND HER2/NEU

(+, +)	(+, -)	(-, +)	(-, -)
2	12	19	7

ER Status & Her2 neu Status

(+, +)	(+, -)	(-, +)	(-, -)
1	13	20	16

PR Status & Her2 neu Status

MARKERS	FREQUENCY	PERCENT
ER-/PR-/Her2neu-	6	15
ER+/PR+/Her2neu-	12	30
ER-/PR-/Her2neu+	19	47.5
ER+/PR+/Her2neu+	1	2.5
ER-/PR+/Her2neu-	1	2.5
ER+/PR-/Her2neu+	1	2.5
TOTAL	40	100

TABLE 5: DISTRIBUTION OF COMBINED HORMONE RECEPTOR AND HER2/NEU RECEPTOR STATUS

Majority of patients have ER and PR negativity and Her2neu positivity constituting 47.5% of the cases. Triple negative tumors constitute 15% of cases. There is only one Triple positive tumor, constituting 2.5% of cases. HER2/neu receptor status is inversely related to hormone receptor status.

AGE	FREQUENCY
21-30	1
31-40	19
41-50	13
51-60	7
61-70	9
71+	1
TOTAL	40

TABLE 6: AGE DISTRIBUTION

Patients who took part in the study were from 30 to 72 yrs of age. Majority of people were in the age group of 41-50 yrs (31.25%). Followed by 31-40 yrs and 61-70 yrs. The mean age of the patients in the study is 50.9 yrs.
Majority of ER positivity seen in elderly age group i.e., between 61 – 70 yrs. Patients between 31-40 and 41-50 form second most common ER positive age groups. Majority of ER negativity seen between 41-50 yrs. Second most common ER negative age group is between 31 and 40yrs. The statistical analysis is done using fischer exact test according to which the p value is 0.3068 which is not significant.

Majority of PR positivity seen in elderly age group i.e., between 61 – 70yrs. Second most common PR positive age group is 31-40yrs. Majority of PR negativity seen between 41-50 yrs. Patients between 31-40yrs and 51-60 yrs form second most common PR negative age group. The statistical analysis is done using fischer exact test according to which the p value is 0.1722 which is not significant.
HER 2 positivity is most common in patient’s between 41-50. HER2 negativity is most common in 61-70yrs age group.

AGE AT MENARCHE	ER ST (-)	ATUS (+)	TOTAL
12	4	0	4
Percentage	100	0	100
13	14	7	21
Percentage	66.67	33.33	100
14	5	6	11
Percentage	45.45	54.55	100
15	3	0	3
Percentage	100	0	100
16	0	1	1
Percentage	0	100	100
Total	26	14	40
Percentage	65.00	35.00	100

TABLE 10: AGE AT MENARCHE

There is no significant correlation of age at menarche to that of receptor status since the p value is 0.117.

PARITY	FREQUENCY	PERCENT
<=0	2	5
1-3	30	75
4+	8	20
Total	40	100

TABLE 11: PARITY STATUS

5% patients are nulliparous. 20% has more than 4 children. 75% has less than 4 children.

BREAST FEEDING	FREQUENCY	PERCENT
Non pregnant	2	5
Yes	33	82.5
No	5	12.5
Total	40	100

TABLE 12: BREAST FEEDING STATUS

Majority of patients (82.5%) breast fed their children. 12.5% did not breast feed.

BREAST FEEDING	ER (-)	STATUS (+)	TOTAL
N	6	1	7
Percentage	85.71	14.29	100.00
Y	20	13	33
Percentage	60.61	39.39	100.00
92.86% of ER positive cases had breast feeding history. 76.9% of ER negative cases had breast feeding history. P value is 0.208 hence not significant. Compared to non-breast feeding status, breast feeding status has more PR positivity. But in both groups ER negative tumors predominate. p value is 0.208 hence not significant.

MENOP	AUSE	TOTAL	
ER status	A	NA	27
(-)	16	10	26
(+)	11	3	14
TOTAL	27	13	40

TABLE 14: DISTRIBUTION ER STATUS ACCORDING TO MENOPAUSE

76% of patients who didn’t attained menopause showed ER negativity. 60% of postmenopausal women had ER negative tumors. 40% of postmenopausal patients showed ER positivity. Only 23% of premenopausal patients showed ER positivity showed ER positivity. Only 23% of premenopausal patients showed ER positivity Statistical test applied is Fisher exact test. p value is 0.23 hence insignificant.

MENOP	AUSE	TOTAL	
PR status	A	NA	27
(-)	17	9	26
(+)	10	4	14
TOTAL	27	13	40

TABLE 15: DISTRIBUTION PR STATUS ACCORDING TO MENOPAUSE

70% of premenopausal showed PR negativity. 62.9% of postmenopausal women had PR negative tumors. 37% of postmenopausal patients showed ER positivity. Only 30% of premenopausal patients showed ER positivity. Statistical test applied is Fisher exact test. p value is 0.49 hence insignificant.

TUMOR SIZE	ER (-)	STATUS (+)	TOTAL
T1	0	1	1
T2	7	6	13
T3	8	5	13
T4	9	2	11
Tis	1	0	1
TX	1	0	1
TOTAL	26	14	40

TABLE 16: DISTRIBUTION OF ER STATUS ACCORDING TO TUMOR SIZE
32.5% patients presented with T2 and T3 tumors each. 27.5% presented with T4. 2.5% cases presented with T1, Tis, Tx each. 81% of T4 tumors are ER negative 61% of T3 tumors are ER negative. 53% of T2 tumors are ER negative. chi square is 3.65. p value =0.17 hence not significant

TUMOR SIZE	PR (-)	STATUS (+)	TOTAL
T1	0	1	1
T2	6	7	13
T3	8	5	13
T4	10	1	11
Tis	1	0	1
TX	1	0	1
TOTAL	**26**	**14**	**40**

TABLE 17: DISTRIBUTION OF PR STATUS ACCORDING TO TUMOR SIZE

90% of T4 tumors are PR negative. 61% T3 tumors are PR negative. 46% of T2 tumors are PR negative. One patient had T1 tumor it is PR positive. p value is0.13 hence not significant

NODAL STATUS	ER (-)	STATUS (+)	TOTAL
N0	12	9	21
N1	13	3	16
N2	1	1	2
N3	0	1	1
TOTAL	**26**	**14**	**40**

TABLE 18: ER NODAL STATUS

Among node negative patients 57% had ER negative tumors. Among N1 patients 81% had ER negative tumors. 50% of N2 cases had ER-ve tumors. Single patient who had N3 was ER positive. p value is 0.2 hence insignificant.

METASTASIS	ER	STATUS	TOTAL
M0	25	14	39
M1	1	1	1
TOTAL	**26**	**14**	**40**

TABLE 19: DISTRIBUTION OF ER STATUS ACCORDING TO METASTASIS

64%of patients without metastasis had ER-ve status. 36% patients without metastasis had ER positive status.ER –ve status is seen in patient having metastasis. p value is 0.56 hence insignificant. Similar results are seen with distribution of PR status.
Predominant stage group is III B followed by IIA and IIIA
In stage 1A ER positive status is seen. In 2A, 3A, 3B ER-ve status predominates. In 2B distribution of receptor status is similar. In 3c ER+ve status is seen. In stage 4 receptor negativity is seen.

TABLE 20: DISTRIBUTION STATUS OF ACCORDING TO HISTOLOGY

Histological type	Frequency	% occurrence
IDC + ILC	1	2.50%
IDC comedone	1	2.50%
IDC NOS	32	80%
Lobular	1	2.50%
medullary	2	5%
Mucinous	1	2.50%
NEC	1	2.50%
NHL, NEC, Undifferentiated	1	2.50%

In stage IA PR positive status is seen. Distribution of receptor status is similar. In negativity is seen. This is similar to that of ER. In IIa, IIIa, IIIa PR -ve status predominates. In IIb In IIIc PR +ve status is seen. In stage IV receptor status.
The most common histologic type of breast carcinoma was Invasive Ductal carcinoma (NOS) type. 32 patients out of total 40 (80%) had IDC (NOS) type. Next in frequency is Medullary carcinoma constituting 5% of total cases. This is followed by IDC with ILC (Invasive Lobular carcinoma) component, IDC with comedone necrosis, Lobular carcinoma, Mucinous, Neuroendocrine/undifferentiated carcinoma Neuroendocrine carcinoma -2.5% each.

HISTOLOGICAL TYPE	ER STATUS – Ve	ER STATUS +ve	Total
IDC	20(62.5%)	12(37.5%)	32
IDC+ILC	1(100%)	0(100%)	1
IDC COMEDONE	1(100%)	0(100%)	1
LOBULAR	1(100%)	0(100%)	1
MEDULLARY	2(100%)	0(100%)	2
MUCINOUS	0(100%)	1(100%)	1
NEC	0(100%)	1(100%)	1
NHL/UNDIFFERENTIATED	1(100%)	0(100%)	1

TABLE 21: DISTRIBUTION OF ER STATUS ACCORDING TO HISTOLOGY

62.5% of IDC are ER -ve. 37.5% of IDC are ER+ve. IDC with lobular component, IDC comedone, lobular, medullary, undifferentiated carcinomas are ER-ve. Mucinous, neuroendocrine carcinomas are ER +ve.

HISTOLOGICAL TYPE	PR STATUS – Ve	PR STATUS +ve	Total
IDC	20(62.5%)	12(37.5%)	32
IDC+ILC	1(100%)	0(100%)	1
IDC COMEDONE	1(100%)	0(100%)	1
LOBULAR	1(100%)	0(100%)	1
MEDULLARY	2(100%)	0(100%)	2
MUCINOUS	0(100%)	1(100%)	1
NEC	0(100%)	1(100%)	1
NHL/UNDIFFERENTIATED	1(100%)	0(100%)	1

TABLE 22: DISTRIBUTION OF PR STATUS ACCORDING TO HISTOLOGY

62.5% of IDC are PR -ve. 37.5% of IDC are PR+ ve. IDC with lobular component, IDC comedone, lobular, medullary, undifferentiated carcinomas are PR- ve. Mucinous, neuroendocrine carcinomas are PR +ve.

LYMPHATIC INVASION	FREQUENCY	PERCENT
Yes	16	40
No	24	60
Total	40	100

TABLE 23: LYMPHATIC INVASION STATUS

Lymphatic invasion is seen in 60% of cases.
TABLE 24: DISTRIBUTION OF ER STATUS ACCORDING TO LYMPHATIC INVASION

LYMPHATIC INVASION	ER STATUS	TOTAL
(-)	7	16
(+)	19	24
TOTAL	**26**	**40**

79% patients with lymphatic invasion has ER negative status. 56% of patients without lymphatic invasion has ER positive status. p value is 0.02 hence significant.

TABLE 25: DISTRIBUTION OF PR STATUS ACCORDING TO LYMPHATIC INVASION

LYMPHATIC INVASION	PR STATUS	TOTAL
(-)	6	16
(+)	20	24
TOTAL	**26**	**40**

83% patients with lymphatic invasion has PR negative status. 62% of patients without lymphatic invasion has PR positive status. p value is 0.004 hence significant.

DISCUSSION: The present study consisted of analysis of 40 patients of breast cancer attending S.V.R.R.G.G. Hospital, Tirupati. The clinical characteristics along with histologic typing, grading and immunohistochemical staining for estrogen and progesterone receptors were studied. The objectives of this study were to document the oestrogen and progesterone receptor (ER & PR) status of breast cancer in the present study population and correlate the steroid receptor status of breast cancer with all relevant patient and tumour characteristics.

Patients who took part in the study were from 30 to 72yrs of age. Majority of people were in the age group of 41-50yrs (31.25%). The mean age of the patients in the study is 50.9yrs which is much lower than the mean age of 62 year reported in study by Adedayo A et al, in Wisconsin. The incidence rates in India begin to rise in the early thirties and peak at ages 50–64 years. The reasons are not entirely clear but a major factor could be under-diagnosis and under-reporting amongst the elderly population in India. (Raina et al.)
Receptor positivity is seen in only 35% cases much lower than that of reported in western literature.

Study	Year	Receptor Positive (%)
Lakmini K.B Mudduwa,4	2009	45.7%
Raina V et al,1	2005	53.7%
Redkar AA et al,5	1992	43.9%
Adedayo A. Otitilo,2	2009	77.9%
Gulam Nabi Sofi,3	2012	66.3%
Present study	2013	35%

TABLE 27: COMPARISON OF ESTROGEN RECEPTOR POSITIVE STATUS

Progesterone Receptor positivity is seen in only 35% cases much lower than that of reported in western literature.

Study	Year	Receptor Positive (%)
Rusiecki JA,6	2005	33%
Redkar AA,5	1992	26.2%
Gulam Nabi Sofi,3	2012	60.4%
Present study	2013	32.5%

TABLE 28: COMPARISON OF PROGESTERONE RECEPTOR POSITIVE STATUS

Combined receptor positivity is seen in 32.5% which is similar to that of Rusiecki JA et al.6

Study	Year	Receptor Positive (%)
Rusiecki JA,6	2005	34%
Redkar AA,5	1992	53.3%
Gulam Nabi Sofi,3	2012	30.7%
Present study	2013	62.5%

TABLE 29: COMPARISON OF COMBINED RECEPTOR STATUS: (ER +VE, PR +VE)

The high proportion of receptor negative cases can be partially explained by the younger age of our patients or due to real racial differences. Majority of ER and PR positivity seen in elderly age group between 61 – 70 yrs. ER and PR immunoreactivity increased with advancing age in a study by Desai et al.7

Study	Year	Receptor Positive (%)
Raina V et al,1	2005	49.7% premenopausal
Gulam Nabi Sofi,3	2012	59.1% premenopausal
Present study	2013	22.5% premenopausal

TABLE 31: COMPARISON OF MENOPAUSAL STATUS
Majority of the females in the present study were postmenopausal (67.5%). F. De Waard et al, 103 from their study have concluded that after 60 years of age, the age specific breast cancer risk is on the increase due to postmenopausal hormonal stimulus. While studying the relationship of menstrual status with hormone receptor status in our patients, we observed higher positivity of ER and PR in postmenopausal patients, though the difference is not statistically significant. Our results show that the proportion of both ER and PR positive tumors increase with age and in postmenopausal women and the same observations are very well reported in literature.9

Raina V et al,1	2005	Lump 96%
Gulam Nabi Sofi,3	2012	Lump 85.3%
Present study	2013	Lump 72.5%

TABLE 32: COMPARISON OF MOST COMMON FORM OF PRESENTATION

Lakmini K.B Mudduwa,4	2009	2-5cm (74%)
Raina V et al,1	2005	2-5cm (86.4%)
Adedayo A. Onitilo,2	2009	<2cm (71.4%)
Gulam Nabi Sofi,3	2012	2-5 (65.1%)
Present study	2013	>5cm (65%)

TABLE 33: COMPARISON OF TUMOUR SIZE

Lakmini K.B Mudduwa,4	2009	57.7% positive
Adedayo A. Onitilo,2	2009	31% positive
Gulam Nabi Sofi,3	2012	65.2% positive
Present study	2013	47.5% positive

TABLE 34: COMPARISON OF AXILLARY NODE STATUS

Adedayo A. Onitilo	2009	IDC NOS 72.7%
Gulam Nabi Sofi	2012	IDC NOS-80.3%
Present study	2013	IDC NOS -80%

62.5% of IDC are ER -ve.37.5% of IDC are ER+ ve. IDC with lobular component, IDC comedone, lobular, medullary, undifferentiated carcinomas are ER –ve. Mucinous, neuroendocrine carcinomas are ER +ve. In a study by Desai et al,7 Infiltrating lobular carcinoma, mucinous carcinoma, and mixed tumours were more frequently ER & PR positive. High-grade infiltrating duct carcinomas, pure comedo ductal carcinoma, and medullary carcinoma were predominantly ER & PR negative.
In our study Grade II tumors were more common followed by grade I. This is in contrast to the reported observations in studies from developed countries where well differentiated breast cancers are more common than poorly differentiated because of the use of routine screening mammography which has led to the detection of very early lesions.

In the present study as the grade increased, the rate of ER and PR positivity decreased.

Grade	ER positivity	PR expression
1	60%	66%
2	20%	20%
3	20%	0%

Statistically significant correlation present between grade and hormone receptor status in the present study Lakmini KB et al., Desai SB et al. and Pathak TB et al., all had similar findings when ER was compared with histologic grade of the tumour.

Comparison of Lymphatic Invasion: 79% patients with lymphatic invasion has ER negative status. 56% of patients without lymphatic invasion has ER positive status. P value is 0.02 hence significant. Similar results were observed in a study by Desai et al., they conclude that the presence of lymphovascular invasion showed an inverse relationship with ER and PR reactivity.

CONCLUSION: In the recent years there has been outstanding advances in breast cancer diagnosis and management leading to earlier detection of disease and the development of more effective treatment. This has resulted in improved quality of life with significant decline in breast cancer deaths for those women living with the disease.

Prognosis and management of breast cancer are influenced by classic variables such as histologic type and grade, tumor size, lymph node status, status of hormone receptors - ER and PR.

In this study an attempt was made to understand the correlation of ER and PR status with histopathological grading and clinicopathological parameters. In conclusion, ER and PR status correlates well with histopathological grading and other clinicopathological parameters. Higher grade is associated with ER PR negativity. Hence, immunohistochemical assessment of ER and PR status should be incorporated as a routine investigation. This along with histopathological grading will guide the clinicians to make correct choice of treatment protocols and helps in providing improved quality of life.
REFERENCES:
1. Biganzoli L CT, Bruning P, et al. Doxorubicin and paclitaxel versus doxorubicin and
cyclophosphamide as first-line chemotherapy in metastatic breast cancer: The European
Organization for Research and Treatment of Cancer 10961 Multicenter Phase III Trial. . J
Clin Oncol 2002;20:3114-21
2. O'Shaughnessy J MD, Vukelja S, et al. Superior survival with capecitabine plus docetaxel
combination therapy in anthracycline-pretreated patients with advanced breast cancer:
phase III trial results. . J Clin Oncol 20 (12): 2812-232002 2002; 20: 2812-23.
3. Serin D VM, Jones A, et al. Vinorelbine alternating oral and intravenous plus epirubicin in
first-line therapy of metastatic breast cancer: results of a multicentre phase II study. . Br J
Cancer 2005;92:1989-96
4. Thomas ES GH, Li RK, et al. Ixabepilone plus capecitabine for metastatic breast cancer
progressing after anthracycline and taxane treatment. . J Clin Oncol 2007;25:5210-7
5. Venturini M MA, Del Mastro L, et al. Multicenter randomized controlled clinical trial to
evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving
epirubicin chemotherapy for advanced breast cancer. . J Clin Oncol 1996;14:3112-20
6. Hortobagyi GN FD, Buzdar AU, et al. Decreased cardiac toxicity of doxorubicin administered
by continuous intravenous infusion in combination chemotherapy for metastatic breast
carcinoma. . Cancer 1989; 63: 37-45.
7. Look M vPW, Duffy M, et al. Pooled analysis of prognostic impact of uPA and PAI-1 in breast
cancer patients. Thromb Haemost 2003;90:538-48
8. KS. DBK. Estrogen receptors and human disease. . J Clini Invest2006; 116: 561-67.
9. C. G-SSCRGSGP. Progesterone -receptors: various forms aid functions in reproductive
tissues. Front Biosci 2005:10:2 1 18-30 2005; 10: 2118-30.
10. Coussensl Y-FT, Liao YC, Chen E, Gray A, McGrath J et al. (MANAVI DANG). Tyrosine kinase
receptor with extensive homology to EGF receptor shares chromosomal location with neu
oncogene. Science 1985; 230: 1132-39.
11. Desai SB MM, Gill AK, Punia RS, Naresh KN, Chinoy RF. Hormone receptor status of breast
cancer in India: a study of 798 tumors. Breast 2000; 9: 267-70.

AUTHORS:
1. N. V. Ramanaiah
2. P. Theja

PARTICULARS OF CONTRIBUTORS:
1. Professor & HOD, Department of
 General Surgery, S. V. Medical College
 and SVRRGGH, Tirupati.
2. Senior Resident, Department of General
 Surgery, S. V. Medical College and
 SVRRGGH, Tirupati.

NAME ADDRESS EMAIL ID OF THE
CORRESPONDING AUTHOR:
Dr. N. V. Ramanaiah,
18-2-73F, Korlagunta Main Road,
Near new municipal office
Tirupati, Andhra Pradesh.
E-mail: dr.nannam.vp@gmail.com

Date of Submission: 15/09/2015.
Date of Peer Review: 16/09/2015.
Date of Acceptance: 19/09/2015.
Date of Publishing: 25/09/2015.