Abstract

The photo-production of J/ψ mesons at low transverse momentum is studied in peripheral lead-lead collisions collected by the LHCb collaboration at a centre-of-mass energy per nucleon pair of 5 TeV, corresponding to an integrated luminosity of 210 μb$^{-1}$. The J/ψ candidates are reconstructed through the prompt decay into two muons of opposite charge in the rapidity region of $2.0 < y < 4.5$. The results significantly improve previous measurements and are compared to the latest theoretical prediction.

Submitted to Phys. Rev. C. 105 (2022) L032201

© 2022 CERN for the benefit of the LHCb collaboration.
One of the main open subjects in ultra-relativistic heavy-ion physics is the study of the quark-gluon plasma (QGP), an exotic state of hadronic matter predicted by quantum chromodynamics (QCD). Quantitative predictions of QGP properties are obtained from lattice computations [1]. Experimentally, one of the signatures of the QGP formation inside heavy-nuclei collisions is the suppression of heavy quarkonia production, such as the J/ψ particle [2]. The suppression is expected to depend on both the temperature of the medium and the binding energy of the state [3]. Cold nuclear matter effects [4] seem to influence the measurements in nuclei collisions. These effects must be understood prior to providing a sound interpretation in the QGP framework of the hadronically produced (through the interaction of two partons) quarkonia suppression observed at RHIC and the LHC [5-10].

The ALICE [11] and STAR [12] collaborations measured an excess with respect to expectations from purely hadronic production of J/ψ mesons at very low p_T (below 300 MeV/c), where p_T is the component of the J/ψ momentum transverse to the beam, in hadronic lead-lead (PbPb) collisions at the center-of-mass energy per nucleon pair $\sqrt{s_{NN}} = 2.76$ TeV and gold-gold (uranium-uranium) collisions at $\sqrt{s_{NN}} = 200$ GeV (193 GeV). It was posited that this excess is due to photo-produced J/ψ mesons, caused by the coherent interaction of the large electromagnetic fields generated by the projectile with the target nucleus [13]. These types of interactions were primarily expected to only occur in ultra-peripheral collisions (UPCs) [14], in which the impact parameter, b, is larger than the sum of the radii R_a and R_b of the two colliding nuclei, hence without nuclear break-up of the target or the projectile.

In hadronic collisions, the nucleus breaks up, so no coherent production was expected. A precise measurement of the postulated coherent J/ψ production in hadronic collisions would shed light on the coherence of the interaction and on the profile of the photon flux in peripheral PbPb collisions [15-17].

In this Letter, a measurement of prompt J/ψ production at very-low p_T in PbPb collisions at a centre-of-mass energy per nucleon pair $\sqrt{s_{NN}} = 5$ TeV is reported. For the first time at the LHC, the production yield is measured versus p_T and rapidity, y. The data were recorded by the LHCb detector in 2018 and correspond to an integrated luminosity of about 210 µb$^{-1}$.

The LHCb detector [18, 19] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the PbPb interaction region [20], a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes [21] placed downstream of the magnet. The tracking system provides a measurement of the momentum of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary PbPb collision vertex (PV), the impact parameter (IP), is measured with a resolution of $(15 + 29/p_T) \mu$m, where p_T is the component of the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors [22]. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers [23].
The trigger consists of a hardware stage, using information from the calorimeter and muon systems, followed by a software stage, which applies selections on the fully reconstructed event.

At the hardware trigger stage, events are required to have a muon with high p_T or a hadron, photon or electron with high transverse energy in the calorimeters. Two samples are selected for this analysis, a signal sample and a sample of minimum bias events used to normalise through the total number of inelastic events. They have different trigger strategies. Signal events are selected if the number of clusters in the VELO N_c, is $6000 < N_c < 10000$ or if $N_c < 6000$ and two muons with $p_T > 400\text{MeV}/c$ are reconstructed.

The hardware trigger for the minimum bias (MB) events requires a minimum energy deposit in one of the sub detectors (VELO, calorimeters, muon chambers), and only events with $N_c < 10000$ are kept. To improve the signal purity, events passing the software trigger are selected if the muon candidates have a $p_T > 700\text{MeV}/c$, the particles are consistent with originating from a primary PbPb collision vertex (PV) and are identified as muons. The prompt J/ψ candidates, which include feed-down from excited charmonium states originating from b-hadron decays, are separated from the non-prompt candidates using the requirement $t_z < 0.3\text{ps}$, where t_z is the pseudo decay-time defined as $(z_{J/\psi} - z_{PV})m_{J/\psi}/p_z$. Here, $(z_{J/\psi} - z_{PV})$ and p_z are the distance between the J/ψ candidate decay vertex and the PV, and the candidate momentum along the beam axis, respectively, and $m_{J/\psi}$ is the known J/ψ mass [24].

During data taking, neon (Ne) gas was injected into the beam pipe near the interaction point using LHCb’s SMOG system [25] to record fixed-target collisions simultaneously with the PbPb collisions. These fixed-target PbNe collisions are rejected by placing requirements on the position of the PV. In order to remove potential contamination from UPCs, which may bias the measurement especially for very low event activity, a minimal energy deposit in the electromagnetic calorimeter (ECAL) is also required ($E_{\text{tot}} > 585\text{GeV}$).

The PbPb sample is divided into intervals of N_c which correspond to different numbers of participating nucleons, N_{part}. This quantity is related to the centrality, defined as the percentile of the total inelastic hadronic PbPb cross-section as a function of the released collision energy, which can be approximated by the total energy deposit in ECAL (E_{tot}). The more central is the collision, the larger E_{tot} is and the larger N_{part} is. The percentiles are determined using the Glauber Monte Carlo (GMC) model [26,27]. The model is used to perform a binned fit to the E_{tot} distribution of the MB data sample, collected with the same detector conditions as the signal sample. The quantity N_{part} is estimated for each collision and the mean value, $\langle N_{\text{part}} \rangle$, is derived from events within a given N_c range. Results for each N_c interval are summarized in Table 1. The distribution of N_{part} in the three N_c intervals is shown in Fig. 1. More details on the centrality determination in LHCb can be found in Ref. [28] and in the supplemental material [29].

In this Letter, the J/ψ photo-production differential yield is measured, defined as

$$\frac{dY_{J/\psi}}{dy} = \frac{N_{J/\psi}^i}{B N_{\text{MB}}^i \epsilon_{\text{tot}} \Delta y}, \quad (1)$$

$$\frac{d^2Y_{J/\psi}}{dp_Tdy} = \frac{dY_{J/\psi}}{dy} \frac{1}{\Delta p_T}, \quad (2)$$
Table 1: Average number of participant nucleons, $\langle N_{\text{part}} \rangle$, along with the corresponding standard deviation of the N_{part} distribution, σ_{part}, for each of the selected N_c intervals.

N_c	$\langle N_{\text{part}} \rangle$	σ_{part}
1000 – 4000	10.6	2.9
4000 – 6000	15.7	4.1
6000 – 10000	27.8	7.2
1000 – 10000	19.7	9.2

Figure 1: Distribution of N_{part} in the three N_c intervals of the minimum bias events defined in Table 1.

where i indicates the N_c range, $N_{\text{J}/\psi}^i$ is the number of photo-produced J/ψ meson candidates reconstructed through the $J/\psi \rightarrow \mu^+\mu^-$ decay channel in the (p_T, y) interval of width $(\Delta p_T, \Delta y)$, $B = (5.961 \pm 0.033)\%$ [24] is the branching fraction of the decay $J/\psi \rightarrow \mu^+\mu^-$, N_{MB}^i is the total number of MB events, and $\varepsilon_{\text{tot}}^i$ is the efficiency to reconstruct and select the J/ψ candidates. The dimuon invariant mass, $m(\mu^+\mu^-)$, of the selected candidates is shown in Fig. 2 for a representative centrality interval for J/ψ candidates with $p_T < 15.0$ GeV/c and $2.0 < y < 4.5$. An unbinned fit of these candidates is performed using a Crystal-Ball (CB) function for the signal and a first order polynomial for the background.

Photo-produced J/ψ mesons and hadronically produced J/ψ mesons are then disentangled through an unbinned maximum likelihood fit to the dimuon p_T spectrum. The fit is performed after subtracting correlated background, i.e. arising from $\gamma\gamma \rightarrow \mu^+\mu^-$ or the Drell-Yan process, and combinatorial background from uncorrelated muon pairs which is the dominant source, using the $sPlot$ method [30] with $m(\mu^+\mu^-)$ as discriminating variable. To cross check the validity of the $sPlot$ method, the kinematic distributions (p_T, y, N_c) of the estimated background are compared to the same (normalised) distributions in two invariant mass ranges below and above the resonance peak. A very good agreement is found. The empirical fit model comprises a double-sided Crystal-Ball function [31] expressed in $\ln(p_T^2)$ for the photo-production contribution and a function for the hadronic component that typically has a larger p_T

$$f(p_T) = \frac{p_T^{n_1}}{[1 + (\frac{p_T}{p_0})^{n_2}]}^{n_3},$$

(3)
Figure 2: (Left) Invariant mass distribution of J/ψ candidates with $\langle N_{\text{part}} \rangle = 10.6 \pm 2.9$, for $p_T < 15.0$ GeV/c and $2.0 < y < 4.5$. (Right) Distribution of $\ln(p_T^2)$ of the J/ψ candidates for $\langle N_{\text{part}} \rangle = 10.6 \pm 2.9$ after background subtraction. The projections of the fit to disentangle the coherently photo-produced and hadronically produced J/ψ mesons are overlaid.

where n_1, n_2, n_3 and p_0 are parameters free to vary in the fit. The projections of the fits in the centrality interval $\langle N_{\text{part}} \rangle = 10.6 \pm 2.9$ are shown in Fig. 2 overlaid to the data distributions. A good description of the data is observed in all centrality intervals. The photo-produced J/ψ candidates are visible in the range $0 < p_T < 250$ MeV/c. The p_T distribution of the photo-produced J/ψ candidates does not rise towards vanishing p_T due to the interference caused by the negative parity of the photon as explained in Ref. [17].

Simulation is required to model the effects of the detector acceptance and of the selection requirements on the signal. The PbPb collisions are generated using EPOS [32] and the hard process is generated with PYTHIA [33] with a specific LHCb configuration [34].

An additional signal sample where the J/ψ is transversely polarised was produced using the STARlight [35] generator to study the acceptance assuming the coherent photo-production scenario. The interactions of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [36] as described in Ref. [37]. The total efficiency is determined independently in each interval of centrality, and it includes the effects of the geometrical acceptance (ϵ_{acc}), the trigger efficiency ($\epsilon_{\text{trigger}}$), the reconstruction and selection efficiency ($\epsilon_{\text{rec&sel}}$), and the efficiency of the particle identification (PID) criteria (ϵ_{PID}). The acceptance is determined using the STARlight sample in the kinematic range of the analysis. The efficiency $\epsilon_{\text{rec&sel}}$ is estimated using simulation and data calibration techniques. The main component of the reconstruction inefficiency is due to the tracking algorithms, as the performance is affected by the high occupancy in PbPb collisions. The relative reconstruction efficiency between data and simulation is evaluated using two D^0 meson decay channels ($D^0 \rightarrow K^-\pi^+$ and $D^0 \rightarrow K^+\pi^-\pi^-\pi^+$). The yields are evaluated in PbPb data and simulation and the difference of their ratio to unity is encoded in a factor $k(N_c)$. This factor depends on the event multiplicity with k ranging from 0.97 to 0.91 with increasing N_c, assuming $k(N_c)$ is the same for the π and μ tracks. The latter factor is used to correct the reconstructed J/ψ candidates in simulation. An additional correction is applied to correct discrepancies between reconstructed J/ψ kinematic distributions by weighting the variables N_c, p_T, and y of the J/ψ in simulation to match the data. The PID efficiency ϵ_{PID} is evaluated using a tag-and-probe approach with $J/\psi \rightarrow \mu\mu$ decays reconstructed in proton-proton
collisions that provides PID efficiency tables for single muons. Those efficiencies are used to perform a two-dimensional \((p_T, N_c)\) extrapolation, using first- and second-order polynomial functions, to estimate the decrease of the efficiencies for higher multiplicities seen in PbPb collisions. No extrapolation is performed based on the rapidity as no correlation is seen between \(N_c\) and \(y\).

Several sources of systematic uncertainties are considered. The uncertainty associated with the fit model used to evaluate the signal yields is determined by testing alternative fit functions. The \(p_T\) of the hadronically produced \(J/\psi\) candidates is modelled by a Tsallis function \[38\]. The background shape is also modified to account for incoherent photo-produced \(J/\psi\), defined as the interaction between one photon and a single nucleon implying the destruction of the nucleus. This contribution typically produces \(J/\psi\) mesons at higher \(p_T\) than the coherent photo-production source. Therefore, another double CB function is added to model this potential contribution. The incoherent contribution shares the shape parameters of the coherent contribution with the mean \(p_T\) and width shifted according to the differences obtained in the STARlight simulations. By computing the difference to the reference fit, a total uncertainty of about 1.3% averaged over all centrality intervals is obtained.

The systematic uncertainty associated with the evaluation of the efficiencies is divided into uncertainties due to the \(\epsilon_{\text{rec&sel}}, \epsilon_{\text{PID}},\) and \(\epsilon_{\text{trigger}}\) efficiencies. Three systematic effects are considered for the measurement of \(\epsilon_{\text{rec&sel}}\): the uncertainty on the weighting procedure, the uncertainty associated with the evaluation of the factor \(k\), and the correlation between the variables \(p_T\) and \(y\). The uncertainty on the weighting procedure is estimated by comparing \(p_T\), \(y\), and \(N_c\) of the weighted distributions of the \(J/\psi\) mesons in simulation with those in data after background subtraction. The difference between the two leads to a global uncertainty of 2%. The uncertainty on the factor \(k\) is evaluated by varying its value within its uncertainty and propagating it to the tracking efficiency. An uncertainty from 2.9% to 7.4% is found depending on the considered multiplicity interval. The uncertainty on the correlation between the variables \(p_T\) and \(y\) is estimated to be 1% using calibration samples from proton-proton collisions.

The uncertainty coming from the muon PID efficiency tables is evaluated with a smearing technique. The \(J/\psi\) PID efficiency is computed using efficiency PID tables with the values in each interval varied within their uncertainty. This procedure is repeated several times and the largest difference is taken as systematic uncertainty; the effect is smaller than 1% and considered negligible compared to the uncertainty given by the difference of the two functions used for the extrapolation.

The uncertainty on \(\epsilon_{\text{trigger}}\) is estimated by comparing the trigger efficiency measurement with another method based on data. The method consists of evaluating the efficiency using a sample selected by the same trigger algorithms but independent from those used in the selection of the signal. The difference of 3% between the two methods is taken as systematic uncertainty on the trigger efficiency. The total systematic uncertainties are obtained by summing in quadrature the different sources of uncertainties.

The differential \(J/\psi\) photo-production yields, Eq. \[1\], as a function of the rapidity for \(\langle N_{\text{part}} \rangle = 19.7 \pm 9.2\) and as a function of \(\langle N_{\text{part}} \rangle\) are shown in Fig. \[3\](top). The double-differential \(J/\psi\) photo-production yields, Eq. \[2\], as a function of the transverse momentum are as well shown in Fig. \[3\](bottom). The mean \(p_T\) of the coherent \(J/\psi\) is found to be \(\langle p_T \rangle = 64.9 \pm 2.4 \text{ MeV}/c\). The results are compared to the theoretical prediction \[17\], \[39\] and detailed results are presented in the supplemental material \[29\]. The model assumes
two scenarios in which the coherence of the \(J/\psi \) production is (overlap effect) or is not (no overlap effect) affected by interactions with the overlap region of the two colliding nuclei. Little difference is observed between the two theory scenarios. The divergence is important in more central collisions due to the increase of the photon flux with a decrease of the impact parameter. In the overlapping scenario, this effect is balanced by excluding the overlapping region from the interaction.

The measured yield of the coherent \(J/\psi \) production is higher at low rapidity than at high rapidity and it is consistent with being constant with respect to \(\langle N_{\text{part}} \rangle \) for the region considered in the analysis.

In summary, the yield of coherently photo-produced prompt \(J/\psi \) mesons at very low \(p_T \) in peripheral PbPb collisions collected at \(\sqrt{s_{NN}} = 5 \) TeV is measured with the LHCb experiment. The yields are studied as a function of rapidity and transverse momentum of the \(J/\psi \) meson in intervals of the number of participant nucleons \(\langle N_{\text{part}} \rangle \). These results are the most precise to date, and support the hypothesis of coherent \(J/\psi \) photo-production in peripheral hadronic collisions suggested by the other experiments \cite{11,12}. The shape of the results is qualitatively described by the theoretical prediction \cite{17,19}, although a normalization discrepancy is observed which could hide a possible additional contribution.
Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MICINN (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); DOE NP and NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and NERSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from ARC and ARDC (Australia); AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); A*MIDEX, ANR, IPPhU and Labex P2IO, and Région Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, CAS CCEPP, Fundamental Research Funds for the Central Universities, and Sci. & Tech. Program of Guangzhou (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Leverhulme Trust, the Royal Society and UKRI (United Kingdom).

References

[1] Y. Aoki et al., The Order of the quantum chromodynamics transition predicted by the standard model of particle physics, *Nature* **443** (2006) 675, arXiv:hep-lat/0611014.

[2] T. Matsui and H. Satz, J/ψ suppression by quark-gluon plasma formation, *Phys. Lett. B* **178** (1986) 416.

[3] L. Yan, P. Zhuang, and N. Xu, Competition between J/ψ suppression and regeneration in quark-gluon plasma, *Phys. Rev. Lett.* **97** (2006) 232301, arXiv:nucl-th/0608010.

[4] E. G. Ferreiro, F. Fleuret, J. P. Lansberg, and A. Rakotozafindrabe, Cold nuclear matter effects on J/ψ production: Intrinsic and extrinsic transverse momentum effects, *Phys. Lett. B* **680** (2009) 50, arXiv:0809.4684.

[5] ALICE collaboration, S. Acharya et al., Studies of J/ψ production at forward rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, *JHEP* **02** (2020) 041, arXiv:1909.03158.

[6] CMS collaboration, V. Khachatryan et al., Suppression of $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ quarkonium states in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, *Phys. Lett. B* **770** (2017) 357, arXiv:1611.01510.

[7] CMS collaboration, S. Chatrchyan et al., Indications of suppression of excited Υ states in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, *Phys. Rev. Lett.* **107** (2011) 052302, arXiv:1105.4894.
[8] ATLAS collaboration, M. Aaboud et al., Measurement of quarkonium production in proton–lead and proton–proton collisions at 5.02 TeV with the ATLAS detector, Eur. Phys. J. C78 (2018) 171, arXiv:1709.03089.

[9] CMS collaboration, A. M. Sirunyan et al., Suppression of excited Υ states relative to the ground state in Pb-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV, Phys. Rev. Lett. 120 (2018) 142301, arXiv:1706.05984.

[10] ALICE collaboration, B. B. Abelev et al., Production of inclusive Υ(1S) and Υ(2S) in p-Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV, Phys. Lett. B740 (2015) 105, arXiv:1410.2234.

[11] ALICE collaboration, J. Adam et al., Measurement of an excess in the yield of J/ψ at very low \(p_T \) in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV, Phys. Rev. Lett. 116 (2016) 222301, arXiv:1509.08802.

[12] STAR collaboration, Adam et al., Observation of excess J/ψ yield at very low transverse momenta in Au + Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV and U + U collisions at \(\sqrt{s_{NN}} = 193 \) GeV, Phys. Rev. Lett. 123 (2019) 132302, arXiv:1904.11658.

[13] E. J. Williams, Nature of the high energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev. 45 (1934) 729.

[14] A. BALTZ et al., The physics of ultraperipheral collisions at the lhc, Physics Reports 458 (2008) 1–171, arXiv:0706.3356.

[15] M. B. G. Ducati and S. Martins, Heavy meson photoproduction in peripheral AA collisions, Phys. Rev. D97 (2018) 116013, arXiv:1804.09836.

[16] Cepila, J. and Contreras, J. G. and Krelina, M., Coherent and incoherent J/ψ photonuclear production in an energy-dependent hot-spot model, Phys. Rev. C97 (2018) 024901, arXiv:1711.01855.

[17] W. Zha et al., Coherent J/ψ photoproduction in hadronic heavy-ion collisions, Phys. Rev. C97 (2018) 044910, arXiv:1705.01460.

[18] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.

[19] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352.

[20] LHCb collaboration, R. Aaij et al., Performance of the LHCb Vertex Locator, JINST 9 (2014) P09007, arXiv:1405.7808.

[21] d’Argent, Ph. and others, Improved performance of the LHCb Outer Tracker in LHC Run 2, JINST 12 (2017) P11016, arXiv:1708.00819.

[22] Adinolfi, M. and others, Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C73 (2013) 2431, arXiv:1211.6759.

[23] Alves Jr., A A and others, Performance of the LHCb muon system, JINST 8 (2013) P02022, arXiv:1211.1346.
[24] Particle Data Group, P. A. Zyla. et al. Review of Particle Physics, Progress of Theoretical and Experimental Physics **2020** (2020) 083C01.

[25] LHCb collaboration, R. Aaij et al., Precision luminosity measurements at LHCb, JINST **9** (2014) P12005, arXiv:1410.0149.

[26] C. Loizides, J. Kamin, and D. d’Enterria, Improved Monte Carlo Glauber predictions at present and future nuclear colliders, Phys. Rev. **C97** (2018) 054910, arXiv:1710.07098.

[27] ALICE collaboration, Centrality determination of Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV with ALICE, Phys. Rev. **C88** (2013) 044909, arXiv:1301.4361.

[28] R. Aaij et al., Centrality determination in heavy-ion collisions with the LHCb detector, LHCb-DP-2021-001, in preparation.

[29] See Supplemental Material at [URL will be inserted by publisher] for additional information on the centrality measurement and detailed results of the photo-produced J/ψ mesons measurement.

[30] M. Pivk and F. R. Le Diberder, sPlot: A statistical tool to unfold data distributions, Nucl. Instrum. Meth. **A555** (2005) 356, arXiv:physics/0402083.

[31] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.

[32] T. Pierog et al., EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. **C92** (2015) 034906, arXiv:1306.0121.

[33] T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. **178** (2008) 852, arXiv:0710.3820; T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP **05** (2006) 026, arXiv:hep-ph/0603175.

[34] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. **331** (2011) 032047.

[35] S. Klein et al., STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions, Computer Physics Communications **212** (2017) 258, arXiv:1607.03838.

[36] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. **53** (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. **A506** (2003) 250.

[37] M. Clemencic et al., The LHCb simulation application, Gauss: Design, evolution and experience, J. Phys. Conf. Ser. **331** (2011) 032023.
[38] C. Tsallis, Nonextensive statistics: theoretical, experimental and computational evidences and connections, Brazilian Journal of Physics 29 (1999) 1.

[39] W. Zha, L. Ruan, Z. Tang, Z. Xu, S. Yang, Double-slit experiment at Fermi scale: Coherent photoproduction in heavy-ion collisions, Phys. Rev. C99 (2019) 061901, arXiv:1810.10694.
LHCb collaboration

R. Aaij, C. Abellán Beteta, T. Ackernley, B. Advea, M. Adinolfi, H. Afsharnia, C.A. Aidala, S. Aiola, Z. Ajaltouni, S. Akaev, J. Albrecht, F. Alessio, M. Alexander, A. Alfonso Albero, Z. Aliouche, G. Alkhazov, P. Alvarez Cartelle, S. Amato, Y. Amhis, L. An, L. Anderlini, A. Andreiano, M. Andreotti, F. Archilli, A. Artamonov, M. Artuso, K. Arzymatov, E. Aslanides, M. Atzeni, B. Audurier, S. Bachmann, M. Bachmayer, J.J. Back, P. Baladron Rodriguez, V. Balagura, W. Baldini, J. Baptista Leite, R.J. Barlow, S. Barsuk, W. Barter, M. Bartolini, F. Baryshnikov, J.M. Basels, G. Bassi, B. Batsukh, A. Bay, M. Becker, F. Bedeschi, I. Bediaga, A. Beiter, V. Belavin, S. Belin, V. Bellec, K. Belous, I. Belov, I. Belyaev, G. Bencivenni, E. Ben-Haim, A. Berezin, R. Bernet, D. Berninghoff, H.C. Bernstein, C. Bertella, A. Bertolin, C. Betancourt, F. Bettì, Ia. Bezshyiko, S. Bhom, L. Bian, M.S. Bieker, S. Bifani, P. Billoir, M. Birch, F.C.R. Bishop, A. Bitadze, A. Bizzeti, M. Bjørn, M.P. Blago, T. Blake, F. Blanc, S. Blusk, D. Bobulská, J.A. Boelhauve, O. Boente Garcia, T. Boettcher, A. Bolyan, A. Bondar, N. Bondor, G. Borghi, M. Borisyak, M. Borsato, J.T. Bours, S.A. Bouciba, J.V. Bowcock, A. Boyer, G. Bozzi, M.J. Bradley, S. Braun, A. Brea Rodriguez, M. Brodski, J. Brodzicka, A. Brossa Gonzalo, D. Brundu, A. Buonaura, C. Burr, A. Bursche, A. Butkevich, J.S. Butter, J. Buytaert, W. Byczynski, S. Cadeddu, H. Cali, R. Calabrese, L. Calefice, L. Calero Díaz, S. Cali, R. Calladine, M. Calvi, M. Calvo, M. Camargo Magalhães, A. Cambioni, A.F. Campoverde Quezada, S. Capelli, L. Capriotti, G. Carbone, G. Carbone, R. Cardinale, A. Cardini, I. Carli, P. Carniti, L. Carus, K. Carvalho Akiba, A. Casais Vidal, G. Casse, M. Cattaneo, G. Cavallero, S. Celani, J. Cerasoli, A.J. Chadwick, M.G. Chapman, M. Charles, Ph. Charpentier, G. Chatzikonstantinidis, C.A. Chavez Barajas, M. Chefdievil, C. Chen, S. Chen, A. Chernov, V. Chobanova, S. Cholak, M. Chrzaszcz, A. Chubykin, V. Chulikov, P. Ciambrone, M.F. Cicalà, X. Cid Vidal, G. Ciezarek, P.E.L. Clarke, M. Clemencie, H.V. Cliff, J. Clovis, J.L. Cobbledick, V. Coco, J.A.B. Coelho, J. Cogan, E. Cognesas, L. Cojocariu, C.A. Chavez Barajas, M. C. Costa Sobral, B. Couturier, D.C. Craik, J. Krčovský, M. Cruz Torres, R. Currie, C.L. Da Silva, E. Dall’Occo, J. Dalseno, C. D’Ambrosio, A. Danilina, P. d’Argent, A. Davis, O. De Aguilar Francisco, K. De Bruyn, S. De Capua, M. De Cian, J.M. De Miranda, L. De Paula, M. De Serio, J. De Simone, P. De Simone, J.A. de Vries, C.T. Dean, D. Decamp, L. Del Buono, B. Delaney, H.P. Dembinski, A. Dender, V. Denysenko, D. Derkach, O. Deschamps, D. Decamp, H. Dijkstra, A. Dzyuba, S. Easo, E. Egyopychev, S. Eidelman, S. Eisenhardt, S. Ek-In, L. Eklund, S. Ely, S. Enea, E. Eppler, S. Escher, J. Escle, S. Essen, T. Evans, A. Falabella, J. Fan, B. Fang, S. Farley, D. Fazzini, M. Félo, A. Fernandez Prieto, A.D. Ference, F. Ferrari, L. Ferreira Lopes, F. Ferreira Rodrigues, S. Ferreres Sole, M. Ferrillo, M. Ferro-Luzzi, S. Filippow, R.A. Fini, M. Fiorini, M. Firlej, K.M. Fischer, D.S. Fitzgerald, C. Fitzpatrick, T. Flintowski, F. Fleuret, M. Fontana, F. Fontanelli, R. Forty, V. Franco Lima, M. Franco Sevilla, M. Frank, E. Franzoso, G. Frau, C. Frei, D.A. Friday, J. Fu, Q. Fuehring, W. Funk, E. Gabriel, T. Tainseva.
A. Vorobyev, V. Vorobyev, N. Voropaev, R. Walldi, J. Walsh, C. Wang, J. Wang, J. Wang, J. Wang, M. Wang, R. Wang, Y. Wang, Z. Wang, H.M. Warf, N.K. Watson, S.G. Weber, D. Websdale, C. Weisser, B.D.C. Westhenry, D.J. White, M. Whitehead, D. Wiedner, G. Wilkinson, M. Wilkinson, I. Williams, M. Williams, M.R.J. Williams, F.F. Wilson, W. Wislicki, M. Witek, L. Witola, G. Wormser, S.A. Wotton, H. Wu, K. Wyllie, Z. Xiang, D. Xiao, Y. Xie, A. Xu, J. Xu, L. Xu, M. Xu, Q. Xu, Z. Xu, D. Yang, S. Yang, Y. Yang, Z. Yang, Y. Yao, L.E. Yeoman, H. Yin, J. Yu, X. Yuan, O. Yushchenko, E. Zaffaroni, M. Zavertyaev, M. Zdybal, O. Zenaiev, D. Zhang, L. Zhang, S. Zhang, Y. Zhang, Y. Zhang, A. Zhleozov, Y. Zheng, X. Zhou, X. Zhu, V. Zhukov, J.B. Zonneveld, Q. Zou, S. Zucchelli, M. Zdybal, M. Zeng, X. Zhou, Z. Zhu, Y. Yang, M. Zavertyaev, S.A. Wotton, R. Waldi, M.R.J. Williams, F.F. Wilson, W. Wislicki, M. Witek, L. Witola, G. Wormser, S.A. Wotton, H. Wu, K. Wyllie, Z. Xiang, D. Xiao, Y. Xie, A. Xu, J. Xu, L. Xu, M. Xu, Q. Xu, Z. Xu, D. Yang, S. Yang, Y. Yang, Z. Yang, Y. Yao, L.E. Yeoman, H. Yin, J. Yu, X. Yuan, O. Yushchenko, E. Zaffaroni, M. Zavertyaev, M. Zdybal, O. Zenaiev, D. Zhang, L. Zhang, S. Zhang, Y. Zhang, Y. Zhang, A. Zhleozov, Y. Zheng, X. Zhou, X. Zhu, V. Zhukov, J.B. Zonneveld, Q. Zou, S. Zucchelli, D. Zuliani, G. Zunica.

1 Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
2 Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3 Center for High Energy Physics, Tsinghua University, Beijing, China
4 Institute Of High Energy Physics (IHEP), Beijing, China
5 School of Physics State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
6 University of Chinese Academy of Sciences, Beijing, China
7 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China
8 Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France
9 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
10 Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France
11 Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
12 Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
13 LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
14 I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
15 Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
16 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
17 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
18 School of Physics, University College Dublin, Dublin, Ireland
19 INFN Sezione di Bari, Bari, Italy
20 INFN Sezione di Bologna, Bologna, Italy
21 INFN Sezione di Ferrara, Ferrara, Italy
22 INFN Sezione di Firenze, Firenze, Italy
23 INFN Laboratori Nazionali di Frascati, Frascati, Italy
24 INFN Sezione di Genova, Genova, Italy
25 INFN Sezione di Milano, Milano, Italy
26 INFN Sezione di Milano-Bicocca, Milano, Italy
27 INFN Sezione di Cagliari, Monserrato, Italy
28 Universita degli Studi di Padova, Universita e INFN, Padova, Padova, Italy
29 INFN Sezione di Pisa, Pisa, Italy
30 INFN Sezione di Roma La Sapienza, Roma, Italy
31 INFN Sezione di Roma Tor Vergata, Roma, Italy
32 Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
33 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands
34 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
35 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
36 National Center for Nuclear Research (NCBJ), Warsaw, Poland
37 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
38 Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
39 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia
Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia
Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia
Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
ICCUB, Universitat de Barcelona, Barcelona, Spain
Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain
European Organization for Nuclear Research (CERN), Geneva, Switzerland
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Physik-Institut, Universität Zürich, Zürich, Switzerland
NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
University of Birmingham, Birmingham, United Kingdom
H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
Department of Physics, University of Warwick, Coventry, United Kingdom
STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Imperial College London, London, United Kingdom
Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
Department of Physics, University of Oxford, Oxford, United Kingdom
Massachusetts Institute of Technology, Cambridge, MA, United States
University of Cincinnati, Cincinnati, OH, United States
University of Maryland, College Park, MD, United States
Los Alamos National Laboratory (LANL), Los Alamos, United States
Syracuse University, Syracuse, NY, United States
School of Physics and Astronomy, Monash University, Melbourne, Australia, associated to 56
Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2
Physics and Micro Electronic College, Hunan University, Changsha City, China, associated to 7
Guangdong Provincial Key Laboratory of Nuclear Science, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Institute of Quantum Matter, South China Normal University, Guangzhou, China, associated to 3
School of Physics and Technology, Wuhan University, Wuhan, China, associated to 3
Departamento de Fisica , Universidad Nacional de Colombia, Bogota, Colombia, associated to 13
Universität Bonn - Helmholtz-Institut für Strahlen und Kernphysik, Bonn, Germany, associated to 17
Institut für Physik, Universität Rostock, Rostock, Germany, associated to 17
INFN Sezione di Perugia, Perugia, Italy, associated to 21
Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to 32
Universiteit Maastricht, Maastricht, Netherlands, associated to 32
National Research Centre Kurchatov Institute, Moscow, Russia, associated to 41
National Research University Higher School of Economics, Moscow, Russia, associated to 42
National University of Science and Technology “MISIS”, Moscow, Russia, associated to 41
National Research Tomsk Polytechnic University, Tomsk, Russia, associated to 41
DS4DS, La Salle, Universitat Ramon Llull, Barcelona, Spain, associated to 45
University of Michigan, Ann Arbor, United States, associated to 68

Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
Università di Bari, Bari, Italy
Università di Bologna, Bologna, Italy
Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Firenze, Firenze, Italy
Università di Genova, Genova, Italy
Università degli Studi di Milano, Milano, Italy
Università di Milano Bicocca, Milano, Italy
Università di Modena e Reggio Emilia, Modena, Italy
Università di Padova, Padova, Italy
Scuola Normale Superiore, Pisa, Italy
Università di Pisa, Pisa, Italy
Università della Basilicata, Potenza, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Siena, Siena, Italy
Università di Urbino, Urbino, Italy
MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Novosibirsk State University, Novosibirsk, Russia
Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
Hanoi University of Science, Hanoi, Vietnam