Abnormal Distracter Processing in Adults with Attention-Deficit-Hyperactivity Disorder

Frank Marzinzik1,2, Michael Wahl1, Doris Krüger1, Laura Gentschow2, Michael Colla2, Fabian Klostermann1*

1 Department of Neurology, Campus Benjamin Franklin, Charité–University Medicine, Berlin, Germany, 2 Department of Psychiatry, Campus Benjamin Franklin, Charité–University Medicine, Berlin, Germany

Abstract

Background: Subjects with Attention-Deficit Hyperactivity Disorder (ADHD) are overdistractions by stimuli out of the intended focus of attention. This control deficit could be due to primarily reduced attentional capacities or, e.g., to overshooting orienting to unexpected events. Here, we aimed at identifying disease-related abnormalities of novelty processing and, therefore, studied event-related potentials (ERP) to respective stimuli in adult ADHD patients compared to healthy subjects.

Methods: Fifteen unmedicated subjects with ADHD and fifteen matched controls engaged in a visual oddball task (OT) under simultaneous EEG recordings. A target stimulus, upon which a motor response was required, and non-target stimuli, which did not demand a specific reaction, were presented in random order. Target and most non-target stimuli were presented repeatedly, but some non-target stimuli occurred only once (‘novels’). These unique stimuli were either ‘relative novels’ with which a meaning could be associated, or ‘complete novels’, if no association was available.

Results: In frontal recordings, a positive component with a peak latency of some 400 ms became maximal after novels. In healthy subjects, this novelty-P3 (or ‘orienting response’) was of higher magnitude after complete than after relative novels, in contrast to the patients with an undifferentially high frontal responsivity. Instead, ADHD patients tended to smaller centro-parietal P3 responses after target signals and, on a behavioural level, responded slower than controls.

Conclusion: The results demonstrate abnormal novelty processing in adult subjects with ADHD. In controls, the ERP pattern indicates that allocation of meaning modulates the processing of new stimuli. However, in ADHD such a modulation was not prevalent. Instead, also familiar, only context-wise new stimuli were treated as complete novels. We propose that disturbed semantic processing of new stimuli resembles a mechanism for excessive orienting to commonly negligible stimuli in ADHD.

Introduction

Subjects with attention deficit/hyperactivity disorder (ADHD) have difficulties to control attentional targets [1–3], apparently corresponding to increased distractibility by extraneous stimuli. However, it remains to be settled whether this decreased concentration on one subject is due to primarily reduced attentional resources or to increased distracter processing, possibly resulting in an arbitrary invasion of stimuli into the focus attention.

Correlates of target and distracter processing can be studied on the basis of event-related potentials (ERP), particularly so called ‘P3’ (for P300) components, peaking between 300 and 600 ms after eliciting stimuli [4–9]. The parietal P3 is mostly studied in oddball paradigms. It is of larger magnitude after target signals, instructive for the task demand, than after irrelevant non-target signals, and its expression mostly implies sustained attention in goal-directed behaviour. Correspondingly, it has been found reduced in ADHD patients [10–12]. The frontal ‘novelty P3’ reflects newness of stimuli rather than their task relevance. It mirrors neurophysiological processes underlying orienting reactions to stimuli conquering the focus of attention and, consequently, has been studied in ADHD as an index of distracter processing. However, both disease-related enhancement and reduction of the novelty P3 has been reported [11,13–16].

One factor for this variability might be that semantic stimulus properties, influencing the expression of novelty-related ERP [17–20], have not been controlled in according studies. Therefore, we were interested in whether the availability of connotations for novel events distinctly affected healthy subjects and patients with ADHD. We expected that stimuli which are virtually new were differentiated from stimuli which are unique in the ongoing context, but principally known. The rationale for this assumption was that, from a behavioural perspective, it is crucial to spend attention to information with unknown implications, whereas it...
appears advantageous to avoid shifts from the sustained focus of attention if putative distractors can be categorised as task-
irrelevant. A potential dysfunction of such stimuli weighing in
ADHD would increase orienting reactions to indeed new, but
otherwise hardly distractive events. Accordingly, we hypothesised
that whether stimulus connotations were available or not should be
a factor for the expression of the novelty P3 in healthy subjects, but
not in patients with ADHD.

In order to test this hypothesis, we analysed the ERP of patients
and matched controls in a modified oddball task (OT). Next to the
repetition of non-target and target stimuli, some non-target
stimuli were only presented once. These stimuli belonged to two
subclasses in that the participants could either associate a meaning
with them or not. On this basis, it could, first, be analysed if
novelty-related ERP were modulated by the semantic familiarity of
eliciting stimuli and, second, if such modulation was abnormal in
ADHD subjects, indicative of an impairment of implicit distracter
evaluation in this condition.

Methods

Participants

Fifteen unmedicated adult subjects with ADHD (9 females, 6
males; 32.4±7.2 years) were recruited from the outpatient clinic of
the Department of Psychiatry of the Charite´, Campus Benjamin
Franklin (CBF). All participants gave written informed consent to
the study protocol, approved by the Ethics Committee of the
Charite´.

Clinical assessment of the patients was conducted according to
the diagnostic guidelines for ADHD in adulthood as outlined by
the expert consensus of the German Society for Psychiatry,
Psychotherapy and Neurology [21]. The cornerstone of this
protocol was the semi-structured Conners’ Adult ADHD Diag-
nostic Interview for DSM-IV (CAADID).

Several standardized self-report and collateral informant rating
scales designed to quantify ADHD symptoms both currently and
retrospectively were also employed. Childhood ADHD symptoms
were self-rated with the short-version of the Wender Utah Rating
Scale (WURS-k) [22–23] including 25 items on a 3-point Likert-
scale (‘‘not at all’’ to ‘‘severe’’, cut-off score 30, maximum score
84). Severity of adulthood ADHD symptoms was self-rated with
the ADHD-Checklist [24] including 18 items on a 3-point Likert-
scale corresponding to the diagnostic criteria of DSM-IV (ranging
from ‘‘not at all’’ to ‘‘severe’’, maximum score 36). Current
comorbidities with Axis-I-disorders and lifetime history of
psychotic, bipolar and substance abuse disorder were excluded
using the SCID-I [25] and the current score for the Beck-
Depression-Inventory (BDI) was raised [26]. A diagnosis was given
to individuals fulfilling DSM-IV criteria for childhood ADHD only
under consensus of a graduate level clinical psychologist and a
board certified psychiatrist after careful review of the data
acquired via this assessment protocol.

Additionally, fifteen age-matched and healthy control subjects
(10 females, 5 males; 29.9±7.7 years) participated in the study.
They had to meet the same exclusion criteria and did not suffer
from ADHD, as determined by DSM-IV. The exploration/
examination of participants was carried out by clinical psychol-
gists and psychiatrists as detailed above. An overview of the study
cohorts is provided in Table 1.

Experimental procedure

Experimental procedures were performed in the Department of
Neurology, CBF. Patients and healthy controls engaged in a
modified oddball task, comprising 460 visual stimuli with
presentation time of 150 ms at interstimulus intervals of
2000 ms. All stimuli appeared within a quadratic frame of
6×6 cm² in the middle of a 15’’ computer screen, participants
sitting at a distance of 1.5 m. An x-like stimulus with an
occurrence probability of 13% was defined as target upon which
a right index finger button press had to be carried out as fast as
possible (Figure 1). Non-targets occurred at two probabilities, at
13% (x-like shape) and 61%, (plus sign). The remaining 13% of
stimuli were non-target ‘‘novels’’, each presented once only during
the experiment. After task completion, the participants had to
categorise the novels as to (i) whether they could associate a
meaning with the respective stimulus (in the following labelled as
‘‘familiar novel’’) or (ii) whether nothing could be associated with it
(in the following labelled as ‘‘non-familiar novel’’). The selection
of novels was based on a pilot study with 42 participants who had
classified 100 stimuli (from free fonts for Microsoft Word) with
respect to this criterion. For the present paradigm each thirty
stimuli with which most of the 42 subjects could/could not
associate a meaning were used (i. e., the most familiar and most
non-familiar novel stimuli).

With respect to behavioral task performance, reaction times and
accuracy were determined (assessing omissions of target responses
as well as responses to non-target stimuli).

Analysis

For ERP analysis, electroencephalographic recordings were
performed from 20 scalp positions over frontal (F7, F3, Fz, F4, F8),
fronto-central (FC7, FC3, FCz, FC4, FC8), central (C7, C3, Cz,
C4, C8) and parietal sites (P7, P3, Pz, P4, P8). Peristimulus
segments were averaged from the EEG, filtered from 0.05–20 Hz,
for each stimulus class, i. e. target stimuli as well as frequent, rare,
familiar novel and non-familiar novel non-target stimuli (epochs
from 150 ms before to 1500 ms after stimulus presentation). Trials
with eye movement or blink artefacts were excluded from further
analysis. Peaks of P3 components were defined as the most positive
deflection within a time window from 300 ms to 600 ms after
stimulus presentation. Amplitudes were determined with respect to
the baseline, covering 150 ms before stimulus presentation.

For statistical analysis, separate ANOVAs were run for each
region. Since the primary aim was to explore the group-specific
responsivity to familiar versus non-familiar novel stimuli, the
assessment of oddball and novelty effects per region served to
confirm that these well studied factors produced largest effects in
the expected recordings. After this data check, familiarity effects
on the regionally typical components were explored. The details of
these ANOVAs are provided in the according paragraphs of the
following chapter.

Table 1. Study Cohorts.
number (m/f)
age
education (years)
WURS-k
ADHD-checklist
BDI

Demographic data and clinical specifics of patients and controls as assessed by the Wender Utah Rating Scale (WURS-k), ADHD-checklist, Beck Depression Inventory (BDI).

doi:10.1371/journal.pone.0033691.0011

PLoS ONE | www.plosone.org
Results

Categorisation of novel stimuli

Controls categorised 33.2/26.8 of the 60 novel stimuli as familiar/non-familiar. The according numbers for the patients were 34.1/25.9. Between the groups, the number of discrepant ratings of stimulus familiarity was generally low with a difference of 1.15±1.27 per symbol, 0 meaning that all ratings corresponded between controls and patients and 15 indicating that all judgments in the ADHD group differed from the judgements of healthy controls. No statistical difference was identified between patients and healthy controls with respect to familiarity ratings of the stimuli (p = .37 by planned two-sided paired t-test). The details of the stimulus categorisation are provided in Figure 2.

Behavioral data

The error rates were calculated as the percentage of incorrect reactions referenced to the required reactions (omission of targets reaction, responses to non-targets). For statistical analysis, a two-way-ANOVA with the within-subject factor task condition (4 levels: target, frequent non-target, rare non-target, novel non-target) and the between-subject factor group (2 levels: controls/patients) was run. Post-hoc comparisons were calculated with Newman-Keuls tests. For all ANOVAs, data were Greenhouse-Geisser corrected.

A significant interaction group x task condition was identified (F[2,56] = 6.23, p < .01). Post-hoc testing revealed that the omission rate of target responses was significantly higher in patients (2.7±4.0%) than in controls (0.1±0.4%; p < .01). The groups did not differ with respect to false responses to rare, frequent and novel non-targets.

With respect to reaction time to target responses, a one-way-ANOVA with the between-subject factor group was performed (2 levels: controls/patients; here task condition was not an additional test factor since reactions were not demanded to any other stimulus category). This showed that patients responded significantly slower (501±92 ms) than controls (415±48 ms; F[1,28] = 10.24, p < .01).

Event-related potentials (ERP)

In order to test oddball effects, a three-way-ANOVA with the between-subject factor group (levels: controls/patients) and the within-subject factors task condition (levels: target, frequent non-target, rare non-target) and electrode (5 levels). To explore if the regional distribution of task effects conformed to previous findings for the ‘oddball P3’, this analysis was separately run for frontal (F7, F3, Fz, F4, F8), fronto-central (FC7, FC3, FCz, FC4, FC8), central (C7, C3, Cz, C4, C8) and parietal ERP (P7, P3, Pz, P4, P8). In line with the literature [9,27], the factor task condition was strongest in parietal recordings (F[2,56] = 56.02, p < .001). Here, post-hoc tests proved potentials to be larger upon target stimuli (14.1±9.7 μV) than upon rare (7.4±3.9 μV) and frequent non-target (4.2±3.7 μV; both comparisons: p < .001). Further, rare non-target stimuli elicited larger components than frequent non-target stimuli (p < .001, see Figure 3). Besides, there was a strong trend (F[1,28] = 4.0, p = .055) to larger P3 in controls (10.1±8.2 μV) than in patients (7.1±8.2 μV), independent from the target or non-target status of the eliciting event.

Novelty effects were analysed with the same ANOVA design (between-subject factor group [levels: controls/patients], within-subject factors task condition [levels: frequent non-target, rare non-target, novel non-target] and electrode [5 levels]). Interactions task condition x group were identified at frontal and parietal recording positions (frontal: F[1,28] = 12.34, p < .001; parietal: F[1,28] = 4.71, p < .05). For the frontal ANOVA, the post-hoc analysis revealed that this interaction was due to the fact that ERP upon non-familiar novels (5.6±5.5 μV) were larger than upon familiar novels (5.5±5.5 μV) in controls (p < .05), but that this was not the case in patients (non-familiar novels: 6.6±4.9 μV; familiar novels: 7.7±5.1 μV) and that, further, frontal ERP upon familiar novels were larger in patients than in controls (p < .05, see Figure 4). In turn, for the the parietal ANOVA the post-hoc analysis revealed that the interaction relied on larger ERP upon familiar than non-familiar novels in the patients only (familiar novels: 9.7±4.1 μV; non-familiar novels: 7.3±3.9 μV; p < .05), whereas no significant difference was obtained in controls (familiar novels: 8.7±5.1 μV; non-familiar novels: 9.1±5.2 μV; see Figure 5). A summary of these results is provided by Figure 6.

Parallel analyses of components prior to the P3 components did not yield significant results. ERP latencies did not differ between groups (Table 2).

Discussion

Healthy subjects expressed distinct frontal event-related potentials (ERP) to semantically familiar versus non-familiar stimuli, presented as unique non-target signals (novels) in an oddball task. In patients with ADHD this was not the case, but ERPs to the mentioned signal categories differed in parietal recordings. However, the ‘posteriorised’ differentiation of novels in the patients appeared opposite to the distinction in controls.

For the interpretation of these findings, some concepts of the respective ERP shall be briefly recalled. In the control group, the mentioned ERP distinction refers to the novelty P3, in frontal
Familiarity Count	Difference Count	Number of stimuli	stimuli
Controls	Patients		
15	15	0	6
15	14	1	5
14	15	1	11
14	14	0	2
14	13	1	1
13	14	1	1
13	13	0	1
13	8	5	1
12	13	1	1
11	9	2	1
6	8	2	1
6	5	1	1
5	12	7	1
5	5	0	1
5	3	2	1
4	7	3	1
4	6	2	1
4	3	1	1
4	1	3	2
3	4	1	1
3	3	0	2
2	2	1	1
2	5	3	1
2	3	1	1
2	2	0	2
2	0	2	2
1	4	3	1
1	2	1	1
1	1	0	2
0	2	2	1
0	1	1	3
0	0	0	2

Mean number of familiar novels	Mean	Total
33.20	1.15 (±1.27)	60
recordings peaking about 400 to 500 ms after unique stimuli interspersed between repeatedly presented events. This component has been allocated to networks, comprising cingulate, prefrontal, orbitofrontal and temporal sources [5,20,27–33]. According to its specificity in relation to stimulus newness and for its occurrence independent from controlled attentional targets, it is considered an electrophysiological correlate of the brain’s orienting response, automatically adapting behaviour to unpredictable ambient changes [34–36]. In healthy subjects this component was of larger magnitude after non-familiar than familiar novels, suggesting that its expression is not exclusively influenced by contextual stimulus newness, but also by signal content. Functionally, this appears reasonable, because semantic analysis of behaviourally irrelevant, new stimuli could prevent the organism from unnecessary shifts from the sustained focus of attention. In the same vein, each stimulus for which semantic information is unavailable should draw attention on itself for its unpredictable implications, compatible with larger frontal P3 upon non-familiar than familiar novels [9,37,38]. Previous findings indeed point to semantic analysis as part of novelty processing [17,18]. For example, functional imaging has demonstrated activation of the inferior frontal gyrus upon presentation of respective stimuli, interpreted as the ‘extraction of stimulus meaning, thereby enabling one to determine the significance of the environmental perturbation and take appropriate goal-directed action’ [34]. Further, concerning frontal P3 potentials in particular, amplitudes were found reduced in patients with hippocampal lesions, which has been proposed to rely on deficient automatic recall of novel-related information [39].

In this view, the frontal P3 distinction in controls reflects compound activities from a network specialised in the detection of both stimulus newness and meaning. Accordingly, the patients’ generally high frontal responsivity to novels, whether familiar or not, could be interpreted as a reflection of enhanced orienting to stimuli which, after normal semantic analysis, would eventually be less distractive.

However, in the ADHD group the category of novels influenced the expression of parietal P3 responses. This posterior component from cingulate and temporoparietal generators [40–44] reflects the salience and intentionally ascribed importance of eliciting events.

Figure 2. Categorisation of novel stimuli. Categorisation of the stimuli strongly overlapped between groups. This can be deduced from the present description, in which the sixty novel stimuli were ordered according to semantic familiarity scores in the control cohort: First and second columns provide scores per group, the highest familiarity being 15 (meaning that all group members could associate a meaning with the given stimulus), the lowest 0 (meaning that none of the group members could associate a meaning with the given stimulus). In the third column, between-group differences for stimuli with the indicated rating constellation are presented, expressed as the rating score of controls minus that of patients. In the last column, the number of stimuli with the between-group rating-constellation, specified in the respective row, is indicated. doi:10.1371/journal.pone.0033691.g002

Figure 3. Oddball P3. Grand-average of ERP from parietal electrodes (P8, P4, Pz, P3, P7) upon targets (bold line), rare (thin line) and frequent non-targets (dotted line) in controls (A1) and patients (A2). (B) shows target-P3 differences between controls (dotted line) and patients (bold line). doi:10.1371/journal.pone.0033691.g003
Becoming maximal after target stimuli in the conscious focus of attention [45–47], it probably reflects the matching of incoming with task-related target signals [9,48] and, thus, is rather related to controlled operations than the frontal novelty P3. With respect to the present data, it is noteworthy that factors of enhanced stimulus salience normally induce increases of both frontal and parietal P3. However, in controls only the frontal, but not the parietal component differed between novels, categorised as familiar versus unfamiliar, whereas in ADHD patients the opposite was the case. Further, the change direction of frontal and parietal P3 in controls and patients was inverse, inconsistent with a parallel modulation by a categorical salience difference between familiar and unfamiliar novels. Thus although an influence of uncontrolled attributes determining stimulus salience on the ERP distinction between controls and healthy subjects is theoretically possible, an alternative explanation of the results appears more likely.

Frontal and parietal P3 mirror tightly linked processes in attentional control, conceived as the alignment of environmental change (frontal P3) with ongoing behavioural demands (parietal P3) [49–51]. Thus, the shift from frontal to parietal novelty distinction in ADHD seems to indicate a disequilibrium, for example, in that deficient automatic content analysis of stimuli facilitates decreased resistance of the sustained focus of attention against irrelevant information. With this view in which abnormal frontal-parietal informational flow [49–51] results in an impairment of appropriate processing of task-relevant stimuli, also the relatively small parietal P3 to target stimuli in the patients fits in – a well known result from children with ADHD [10–12].

Figure 4. Familiarity effect on frontal P3. Grand-average of ERP from frontal electrodes (F8, F4, Fz, F3, F7) upon familiar (bold line) and unfamiliar novels (dotted line) in controls (A1) and patients (A2). B1 shows ERP-differences for familiar, B2 for unfamiliar novels between controls (dotted line) and ADHD-patients (bold line).

doi:10.1371/journal.pone.0033691.g004

Figure 5. Familiarity effect on parietal P3. Grand-average of ERP from parietal electrodes (P8, P4, Pz, P3, P7) upon familiar (bold line) and unfamiliar novels (dotted line) in controls (A1) and patients (A2).

doi:10.1371/journal.pone.0033691.g005
With respect to the concept of ADHD as a disorder of frontal inhibition [52–56], it is of note that P3 potentials are indeed thought to mirror the phasic suppression of ongoing operations in support of processing the eliciting, e.g., new event [9,50]. However, the abnormal ERP pattern in the patients does not simply point to general hypoinhibition in ADHD [57–60], but rather to imbalanced inhibitory processing prevailing in this condition.

On a behavioural level, ADHD patients and healthy subjects categorised the familiarity of stimuli almost identically, a result which comes as no surprise, given that subjects completed this debriefing procedure without any time limit so that of putative correlates to ERP differences were not expected on this level. However, patients differed from controls with respect to the proper task performance. Resembling findings in children and adolescents with ADHD [61–62], the adult patients showed increased response latency and inaccuracy. In this regard, it can – by analogy to the above notions on frontal and parietal P3 – be presumed that in ADHD novel information is undifferentially processed at the expense of attention demanding, task-related operations and, therefore, of swift and precise responding to target stimuli.

In conclusion, we propose that in ADHD the automatic recall of semantic information on new stimuli is deficient, reflected by an undifferentiated generation of high amplitude novelty-P3 potentials. In this concept, overshooting categorisation of stimuli as distracters results in excessive orienting responses to normally negligible events and shifts ADHD patients away from the sustained focus of attention and ongoing behavioural plans.

Author Contributions

Conceived and designed the experiments: FK FM MC. Performed the experiments: DK LG MW. Analyzed the data: FK FM. Contributed reagents/materials/analysis tools: FK. Wrote the paper: FK FM MW.

References

1. Adams R, Finn P, Moes E, Flannery K, Rizzo AS (2009) Distractibility in Attention/Deficit/Hyperactivity Disorder (ADHD): the virtual reality classroom. Child Neuropsychol 15: 120–135.
2. Dopheide JA, Pliszka SR (2009) Attention-deficit-hyperactivity disorder: an update. Pharmacotherapy 29: 656–679.
3. Moss SB, Nair R, Vallerino A, Wang S (2007) Attention deficit/hyperactivity disorder in adults. Prim Care 34: 445–473.
4. Cycowicz YM, Friedman D (2004) The old switcheroo: when target environmental sounds elicit a novelty P3. Clin Neurophysiol 115: 1359–1367.

Table 2. ERP peak latencies.

	novelty-P3	oddball-P3b			
	familiar	unfamiliar	target	frequent non-target	rare non-target
controls	439.8±55.7	441.4±45.9	471.7±46.3	417.6±57.0	419.6±53.8
patients	473.3±65.7	477.3±60.5	476.9±46.6	424.2±43.9	412.9±45.9

Mean peak-latencies in milliseconds (± SD) for the frontal novelty-P3 and the centro-parietal oddball-P3 for controls and patients.

Figure 6. Statistical comparison of novelty P3. Columns indicate mean novelty-P3 amplitude to familiar and unfamiliar novels, bars show the respective standard errors of mean (ns = not significant, * indicates P<.05).

doi:10.1371/journal.pone.0033691.g006

Table 2. ERP peak latencies.
5. Dehener S, Makeig S, Delorme A, Engel AK (2005) What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis. Brain Res 22: 309–321.

6. Daffner KR, Scinto LF, Calvo V, Faust R, Mesulam MM, et al. (2000) The influence of stimulus deviance on electrophysiologic and behavioral responses to novel events. J Cogn Neurosci 12: 393–406.

7. Daffner KR, Ryan KK, Williams DM, Burdton AE, Rente DM, et al. (2005) Age-related differences in novelty and target processing among cognitively high performing adults. Neurobiol Aging 26: 1203–1209.

8. Friedman D, Kazmerski VA, Cyczysz YM (1988) Effects of aging on the novelty P3 during attend and ignore oddball tasks. Psychophysiology 35: 590–598.

9. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118: 2128–2148.

10. Holcomb PJ, Ackerman PT, Dykman RA (1983) Cognitive event-related brain potentials in children with attention and reading deficits. Psychophysiology 20: 636–647.

11. Kemner C, Verhagen MN, Koelkeba HS, Buitelaar JK, van der Gaag RJ, et al. (2005) Attention in ADHD: a meta-analytic study. Dev Neuropsychol 27: 783–824.

12. Satterfield JH, Schell AM, Nicholas TW, Satterfield BT, Freese TE (1990) The Wender Utah Rating Scale: a tool for the retrospective diagnosis of childhood Attention Deficit Hyperactivity Disorder. Am J Psychiatry 147: 147–150.

13. Lynn R (1966) Attention, Arousal and the Orientation Reaction. In: Eysenck HJ, ed. International series of monographs in experimental psychology, Vol. 3. London: Pergamon. 111 p.

14. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118: 2128–2148.

15. Knight R (1990) Neurological origins of the P300. Crit Rev Neuropsychol 14: 199–224.

16. Gumenyuk V, Korzyukov O, Alho K, Escera C, Naatanen R (2004) Effects of auditory distraction on electrophysiological brain activity and performance in children aged 8–13 years. Psychophysiology 41: 30–36.

17. Mecklinger A, Opitz B, Friederici AD (1997) Semantic aspects of novelty detection in humans. Neurosci Lett 235: 65–68.

18. Polich J, Ackerman PT, Dykman RA (1986) Auditory event-related potentials in attention and reading disabled children. Int J Psychophysiol 3: 263–273.

19. Knight R (1990) Neural mechanisms of event-related potentials from human auditory stimuli: semantic analysis follows attention switching. Eur J Neurosci 12: 2401–2412.

20. Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150: 1167–1180.

21. Ebert D, Krause J, Roth-Sackenheim C (2003) ADHD in adulthood—guidelines for the treatment of adults with ADHD. Nervenarzt 74: 939–946.

22. First M, Spitzer R, eds. Structured Clinical Interview for DSM-IV AXIS I Disorders (Clinician Version) SCID-I Administration Booklet. Washington, DC: American Psychiatric Association.

23. Ward MF, Wender PH, Reimherr FW (1993) The Wender Utah Rating Scale: a tool for the retrospective diagnosis of childhood Attention Deficit Hyperactivity Disorder. Am J Psychiatry 150: 157–169.

24. Roessler M, Retz W, Retz-Junginger P, Thome J, Supprian T, et al. (2004) Tools for the diagnosis of attention-deficit/hyperactivity disorder. Biol Psychiatry 55: 879–903.

25. First M, Spitzer R, eds. Structured Clinical Interview for DSM-IV AXIS I Disorders (Clinician Version) SCID-I Administration Booklet. Washington, DC: American Psychiatric Association.

26. Biobehav Rev 25: 355–373.

27. Bledowski C, Prevalovic D, Goebl R, Zanella FE, Linden DE (2004) Attentional systems in target and distractor processing: a combined ERP and fMRI study. Neuroimage 22: 530–540.

28. First M, Spitzer R, eds. Structured Clinical Interview for DSM-IV AXIS I Disorders (Clinician Version) SCID-I Administration Booklet. Washington, DC: American Psychiatric Association.

29. Bush G, Valera EM, Seidman LJ (2005) Functional neuroimaging of attention-deficit/hyperactivity disorder: a review and suggested future directions. Biol Psychiatry 57: 1273–1284.

30. Fallgatter AJ, Ehlis AC, Retz M, Strik WK, Blocher D, et al. (2005) Electrophysiological evidence of enhanced distractibility in ADHD children. Neurosci Lett 354: 212–217.

31. Ranganath C, Paller KA (1999) Frontal brain activity during episodic and semantic retrieval: insights from event-related potentials. J Cogn Neurosci 11: 199–224.

32. Knight R (1990) Neurological mechanisms of event-related potentials from human lesion studies. In: Robbenga J, Pararasarama R, Johnson R, eds. Event-related brain potential basic issues and applications. New York: Oxford University Press. pp 3–18.

33. Polich J, Commercho MD (2003) P3a from visual stimuli: typicality, task, and topography. Brain Topogr 15: 141–152.

34. Knight R (1990) Neural mechanisms of event-related potentials from human lesion studies. In: Robbenga J, Pararasarama R, Johnson R, eds. Event-related brain potential basic issues and applications. New York: Oxford University Press. pp 3–18.

35. Lynn R (1966) Attention, Arousal and the Orientation Reaction. In: Eysenck HJ, ed. International series of monographs in experimental psychology, Vol. 3. London: Pergamon. 111 p.