In Vitro Site Selection of a Consensus Binding Site for the Drosophila melanogaster Tbx20 Homolog Midline

Nima Najand, Jae-Ryeon Ryu, William J. Brook*

Genes and Development Research Group, Alberta Children’s Hospital Research Institute, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada

Abstract

We employed in vitro site selection to identify a consensus binding sequence for the Drosophila melanogaster Tbx20 T-box transcription factor homolog Midline. We purified a bacterially expressed T-box DNA binding domain of Midline, and used it in four rounds of precipitation and polymerase-chain-reaction based amplification. We cloned and sequenced 54 random oligonucleotides selected by Midline. Electromobility shift-assays confirmed that 27 of these could bind the Midline T-box. Sequence alignment of these 27 clones suggests that Midline binds as a monomer to a consensus sequence that contains an AGGTGT core. Thus, the Midline consensus binding site we define in this study is similar to that defined for vertebrate Tbx20, but differs from a previously reported Midline binding sequence derived through site selection.

Introduction

The T-box family of transcription factors plays numerous developmental roles in metazoans [1]. Recent evidence shows that T-box genes are an ancient family of transcription factors that predate the appearance of the Metazoa [2]. The unifying domain in this gene family is a highly conserved ~180 amino acid DNA binding domain, called the T-box, named after the founding member Brachyury (T). The Mouse T gene was also the first T-box transcription factor for which the DNA binding motif was determined the Midline binding motif by incubating oligonucleotides or the T half-site which consists of only half of the palindrome [4]. Since then, several reports have shown that other T-box family members have some affinity for the full T-site, or the T half-site which consists of only half of the palindromic [4]. Site selection experiments have also been performed on Tbx5 [5,6], Tbx6 [7], Xbra [8], Eomesoderm [8], VegT [9], Spt [9], Ntl [9], and Tbx20 [6]. Every one of these T-box proteins has a strong preference for oligonucleotides that contain a GGTTGT core with some variability in the nucleotides flanking this core.

In Drosophila melanogaster Midline (Mid) (Tbx20 in vertebrates) is involved in several aspects of development including segmentation, cardiogenesis, neurogenesis, and limb formation [10,11,12,13,14,15,16,17]. However, the mechanisms by which Mid regulates these developmental processes is not well understood. To date, only four direct targets of Mid have been identified. These include components of the axon guidance pathway: Frazzled, Slit, and Robo [18]; and the segment polarity gene Wingless [19]. The direct regulation of Frazzled, Slit and Robo by Mid was discovered through identification of the Mid binding motif using site selection [18]. In that study, Liu et al. determined the Mid binding motif by incubating oligonucleotides with crude embryonic nuclear lysates and used an anti-Mid antibody to co-precipitate native Mid protein and the bound oligonucleotides. This experiment suggested that Mid selectively binds a 5’ GGAAGTAGGTCAAG consensus sequence (Figure 1B). The AGGT at positions 7–10 of this sequence (in bold) resembles the core AGGT found in the classic T-site. However, outside of this similarity many of the nucleotides within the core or flanking nucleotides do not match the T-site or other site selected T-box motifs, including the motif of the vertebrate homologue Tbx20 (Figure 1B). Strikingly, the nucleotide sequence GGTAAG was present in 100% of the oligonucleotides selected by Mid, suggesting that there is an absolute requirement for the binding motif. However, no other T-box factors have displayed either a requirement or a preference for this sequence.

Through a site-selection experiment with bacterially expressed Mid T-box domain (Figure 1A) we identify a sequence similar to typical T-half sites but different from the site reported by Liu et al.

Results and Discussion

Mid T-box Domain does not Bind a GGTTCAAG Motif in vitro

To investigate whether Mid is able to bind the novel T-box motif in vitro [18], we performed electro-mobility shift assays (EMSAs) using 5’ biotin-labeled oligonucleotides incubated with bacterially expressed, purified, C-terminal 6xHis-tagged Mid T-box domain (MidTbx) (Figure 1A). We used a 196 amino acid fragment of the full length Mid protein which contains the T-box domain because we were unable to express soluble, full length Mid. Research on other T-box transcription factors such as Tbx20 has been able to generate bona fide binding motifs using the DNA binding domain [6]. We found that MidTbx was able to bind and
Identification of a Drosophila Tbx20 Binding Site

A)

B)

C)

mid (Liu) GGAATGTCAG
mid (Liu) GGAATGTCAG + Tbox
T-palindrome
T-palindrome + Tbox
Tbx20 (Macindoe) GGAGTGTAGGCAA
Tbx20 (Macindoe) GGAGTGTAGGCAA + Tbox
parameters were set such that all 27 sequences were used to generate a binding motif using MEME software and verified using SCOPE [21] and MochiView [22] (data not shown). Since MidTbx was incubated with the motif identified by Liu et al. (Figure 1B) we were unable to detect the presence of a lower mobility band (Figure 1C). This demonstrates that our bacterially expressed protein is capable of binding to DNA in vitro and that MidTbx has an affinity for the full T-site and the Tbx20 site but is unable to bind to the motif identified by Liu et al.

The MidTbx Binding Motif Resembles a Classic T-half-site

In order to determine the preferred sequences bound by Mid, we performed a site selection experiment. Using buffer conditions nearly identical to those described by Liu et al., we incubated double-stranded oligonucleotides containing a random 26 bp core flanked by 25 bp primer sequences with purified MidTbx. Following precipitation of the nucleo-protein complex using nickel beads and magnets, we washed off the unbound oligonucleotides, eluted the MidTbx-DNA complexes, and PCR amplified the selected fragments through 4 rounds of selection. We then cloned and sequenced 54 different oligonucleotides (Figure 2A). To reduce the background of oligonucleotides precipitated due to weak or non-specific binding, each cloned oligonucleotide was used to generate a biotin-labelled probe and tested by EMSA. Probes were considered unshifted if they failed to produce a visible band at least once in a minimum of three independent EMSAs (Figure 2B). MidTbx was able to shift 27 of the 54 cloned fragments in an EMSA (Figure 2B). Most (24/27) of the remaining probes displayed some evidence for binding to MidTbx such as the appearance of streaks along the edges of the gel lanes (Figure 2B arrows). However, this transient or weak binding was considered insufficient to include the sequence of those probes in our analysis.

The corresponding sequences of the shifted probes were used to generate a binding motif using MEME software [20] and verified using SCOPE [21] and MochiView [22] (data not shown). Since all the probes were positive for an interaction with MidTbx, the parameters were set such that all 27 sequences were used to generate a motif. Our results show that MidTbx selects a 15 bp motif corresponding to the sequence [CG][ATG][AG][GA][GTG][TA][CGT][AG][GAGGCG] or SDRRGTGWBRARGCG (Figure 3A). A similar analysis of the remaining sequences that do not shift MidTbx could not generate a binding motif using MEME (data not shown). However, manual inspection of the sequences showed that most had sequences that resemble consensus T-box sites, suggesting that they may have been included in the selected oligonucleotides because of weak affinity for MidTbx.

The most frequent nucleotide at each position results in a CG at positions 14 and 15. The two regions are separated by 5 bases where there is a less strict requirement for particular nucleotides. The nucleotides in region 1 (3–8) resemble the T-half-site that MidTbx is able to bind specifically (Figure 1C). Furthermore, region 1 is similar to sites selected by other T-box family members [5,6,7,9,10]. In region 1, MidTbx has a strong requirement for a GTG at positions 5–7 with the T at position 6 occasionally being substituted for a C. This substitution is not correlated to the presence of another nucleotide at other positions within the motif. Positions 3 and 4 appear to be more variable, most commonly consisting of purines while position 8 is often a T or A. This demonstrates that MidTbx binds to a motif recognized by other members of the T-box family.

Region 2, consisting of CG at positions 14 and 15 has not yet been found in the binding motif of other T-box genes. We considered whether the presence of the CG was an artifact since it often appears in the primer sequence included in our analysis (Figure 3B). Two lines of evidence demonstrate that this is likely not the case. First, analysis of the same 27 clones without the primer sequences using MEME still produces a motif with a CG at positions 14 and 15 (not shown). This demonstrates that MidTbx selects a CG dinucleotide at positions 14 and 15 within the random 26 nucleotide core or primer sequence. Second, the number of nucleotides between region 2 and region 1 is invariant between the clones. If region 2 was not specifically selected by MidTbx, we would expect region 1 to vary in its location with respect to the primer sequence. However, since the spacing between region 1 and 2 is always exactly 5 nucleotides, we argue that there is a real preference for a CG dinucleotide at positions 14 and 15. However, there is not an absolute requirement for a CG in region 2 since MidTbx can bind to clones 43, 50 and 72 which lack it (Figure 3). In addition, MidTbx can bind the T-site and the Tbx20 motif, which both lack a CG (Figure 1C). The mouse Tbx20 site does contain a CG dinucleotide (GGAGGTGTGAGGCGA), but it is not as frequently represented as the CG in the Mid consensus and it is shifted over by one position such that it corresponds to nucleotides 13 and 14 numbered with respect to the Mid motif. Furthermore, the CG in the mouse Tbx20 motif is likely an artifact since it falls in the primer region.

In order to test whether region 2 is necessary for binding, we generated a 15 base oligonucleotide corresponding to our consensus (CAGGTGTCAAGGCG). The bases in region 1 or region 2 (underlined) were mutated in order to assess their effect on binding (Figure 3C). We found that mutating region 1 disrupted binding of MidTbx, on an EMSA, suggesting that region 1 is necessary and region 2 is not sufficient. Mutating the CG of region 2 did not appear to affect binding on an EMSA, suggesting that region 1 is necessary and region 2 is not.

There is no strong requirement for specific nucleotides between regions 1 and 2, as most nucleotides are represented at each position. Three of the four possible nucleotides are permitted while one is excluded at each position except at position 10, where MidTbx seems to favoue a purine.
MidTbx Binds as a Monomer to the Identified Motif

Previous studies on members of the T-box transcription factor family have shown that T-box genes such as human Tbx2 [23], Tbx3 [24,25], Tbx5 [5], and mouse T [3,26], T-bet [27], Tbx2 [28], Tbx6 [7] and Tbx20 [6] bind as monomers. Examples of T-box factors that bind DNA as dimers include human Tbx1 [23], Tbx6 [29] and Xbra [8,23,30]. Our data suggests that MidTbx binds DNA as a monomer. On EMSAs we only observe one band when Mid is bound to the palindromic T-site which consists of two potential binding sites (Figure 1C). Transcription factors that bind DNA as a homodimer often display two bands on an EMSA - a higher mobility band belonging to a single protein bound to the DNA, and a lower mobility band representing a homodimer bound DNA. Some examples of T-box proteins displaying multiple EMSA bands on oligonucleotides with more than one binding site include T, Tbx5 and Tbx6 [5,29,31]. It is unlikely that the single band present in our study is due to an inability of MidTbx to bind DNA as a monomer, since the single band appears at the same mobility as MidTbx bound to the Tbx20 motif which contains only a single potential T-site (Figure 1C). Furthermore, we observe that MidTbx is able to bind a Tbx20 motif that consists of only a “half-site” suggesting that a “full-site” containing two potential binding motifs is not necessary and thus MidTbx is not an obligate dimer. Finally, 22 out of 27 oligonucleotides selected in our study only contain one apparent T-site while five others (clones 2, 8, 42, 74 and 75) have two sites present in different orientations and spacing (Figure 3B). This suggests that each site was selected by a MidTbx monomer rather than a dimer, which would impose strict requirements on orientation and spacing. The five oligonucleotides with more than one potential binding site show only a single band on EMSAs. Because this band has the same mobility as MidTbx bound to the Tbx20 motif which contains only a single potential T-site (Figure 1C). Furthermore, we observe that MidTbx is able to bind a Tbx20 motif that consists of only a “half-site” suggesting that a “full-site” containing two potential binding motifs is not necessary and thus MidTbx is not an obligate dimer. Finally, 22 out of 27 oligonucleotides selected in our study only contain one apparent T-site while five others (clones 2, 8, 42, 74 and 75) have two sites present in different orientations and spacing (Figure 3B). This suggests that each site was selected by a MidTbx monomer rather than a dimer, which would impose strict requirements on orientation and spacing. The five oligonucleotides with more than one potential binding site show only a single band on EMSAs. Because this band has the same mobility as oligonucleotides with more than one single binding site show only a single band on EMSAs. Because this band has the same mobility as oligonucleotides with only a single binding site, it suggests that either the two MidTbx monomers bound to a single oligonucleotide are not sufficiently stable to resolve on a gel, or that one monomer sterically hinders the binding of another, or

Figure 2. Site selection workflow and EMSAs on cloned fragments. A) Outline of the selection procedure carried out to determine the DNA binding motif of Mid. In the first round, oligonucleotides consisting of a random 26 nucleotide core flanked by primer sequences were incubated with midTbx. After purification and PCR amplification of co-precipitated fragments, the PCR amplified fragments were used in subsequent rounds of selection. B) All 54 oligonucleotide fragments were cloned and used as a template to create probes for EMSAs. Each probe was tested for recognition by MidTbx. Probes positive for shifts, such as 2, 4, 57, 67 and 57 were tested a minimum of two times. Probes negative for shifts, such as 5, 10, 22, 48, and 64 were tested 3–5 times to exclude the possibility of false negatives. Arrows point to streaks often seen in probes that were weakly bound. Probes that did not display a noticeable, shifted band were considered to be unrecognized.

doi:10.1371/journal.pone.0048176.g002

MidTbx Binds as a Monomer to the Identified Motif

Previous studies on members of the T-box transcription factor family have shown that T-box genes such as human Tbx2 [23], Tbx3 [24,25], Tbx5 [5], and mouse T [3,26], T-bet [27], Tbx2 [28], Tbx6 [7] and Tbx20 [6] bind as monomers. Examples of T-box factors that bind DNA as dimers include human Tbx1 [23], Tbx6 [29] and Xbra [8,23,30]. Our data suggests that MidTbx binds DNA as a monomer. On EMSAs we only observe one band when Mid is bound to the palindromic T-site which consists of two potential binding sites (Figure 1C). Transcription factors that bind DNA as a homodimer often display two bands on an EMSA - a higher mobility band belonging to a single protein bound to the DNA, and a lower mobility band representing a homodimer bound DNA. Some examples of T-box proteins displaying multiple EMSA bands on oligonucleotides with more than one binding site include T, Tbx5 and Tbx6 [5,29,31]. It is unlikely that the single band present in our study is due to an inability of MidTbx to bind DNA as a monomer, since the single band appears at the same mobility as MidTbx bound to the Tbx20 motif which contains only a single potential T-site (Figure 1C). Furthermore, we observe that MidTbx is able to bind a Tbx20 motif that consists of only a “half-site” suggesting that a “full-site” containing two potential binding motifs is not necessary and thus MidTbx is not an obligate dimer. Finally, 22 out of 27 oligonucleotides selected in our study only contain one apparent T-site while five others (clones 2, 8, 42, 74 and 75) have two sites present in different orientations and spacing (Figure 3B). This suggests that each site was selected by a MidTbx monomer rather than a dimer, which would impose strict requirements on orientation and spacing. The five oligonucleotides with more than one potential binding site show only a single band on EMSAs. Because this band has the same mobility as oligonucleotides with more than one single binding site show only a single band on EMSAs. Because this band has the same mobility as oligonucleotides with only a single binding site, it suggests that either the two MidTbx monomers bound to a single oligonucleotide are not sufficiently stable to resolve on a gel, or that one monomer sterically hinders the binding of another, or
that there is enough excess probe that the proteins always bind to a unique probe.

The sequences necessary for dimerization in other T-box factors are not conserved in Mid, which is also consistent with Mid binding as a monomer (Figure 4). Xbra homodimerizes through a relatively small interface of 250 Å² found near the centre of the T-box domain [30]. The small polar N129 residue in Xbra is replaced with a large hydrophobic F281 in Mid and F130 in Xbra is replaced by S282 in Mid. Likewise Xbra M85 is substituted with R235, and Xbra V173 corresponds to L326 in Mid. Overall, 4 of the 8 dimerization residues are not conserved in *Drosophila* Mid.

Furthermore, Tbx20 also differs from both Mid and Xbra at these same 4 positions (Figure 4). The crystal structure of Tbx3 bound to a palindromic T-site shows that the two monomers are rotated with respect to one another on the DNA strand and use different residues (238–241 on Tbx3) to contact one another [25]. These residues fall within a poorly conserved region of the T-box domain. Comparison to the corresponding Mid residues (327–330) shows that none of these amino acids are conserved (Figure 4). Similarly, only Tbx3 D239 is identical to the corresponding Tbx20 residue. The small monomer-monomer contacts defined in the Tbx3 crystal structure are thought to be insufficient to facilitate dimerization and as such, Tbx3 is believed to bind as a monomer [25]. Finally, the crystal structure of Tbx5 bound to a half-site shows that the regions responsible for monomer-monomer contacts in Tbx3 have low electron density suggesting that these domains are conformationally flexible and thus are unlikely to be involved in dimerization [32].

Taken together, the site selection data and the comparison of the Mid amino acid sequence with evidence from the crystal structures of the Xbra, Tbx3 and Tbx5 suggest that Mid binds DNA as a monomer. We have also found that Mid is able to directly regulate the transcription of the *wingless* gene, *in vivo*, by binding to sequences within the *wg* enhancer [19]. The sequences Mid binds in order to regulate *wg* resemble the motif we present in this study (Figure 3). These *in vivo* Mid binding sites provide additional evidence that Mid is acting as a monomer.

Discrepancy with Previously Reported Mid Binding Motif

The motif we identified does not contain the AGGTCAAG sequence identified by Liu et al. [18]. Furthermore, the AGGTCAAG motif was not detected in any of the oligonucleotides recovered in our site selection (Figure 3), nor was our purified protein able to shift the Liu et al. sequence on an EMSA (Figure 1C). The striking difference between the two motifs could arise for a number of reasons. First, in our study we used a bacterially expressed, C-terminally 6xHis-tagged Mid T-box
domain (Figure 1A) whereas the previous motif was identified using a full-length protein purified from Drosophila nuclear lysates. It is possible that the full-length protein has different binding properties compared to the T-box domain. However, our motif resembles those from other studies which have used either full-length or the T-box domain of T-box genes to generate a binding motif [3,5,7,8,9,33,34]. This suggests that using the Mid DNA-binding domain should produce a valid binding motif.

Purification of native protein from nuclear lysates has the additional caveats that the purified protein may be post-translationally modified and that additional co-factors may be co-purified. While little is known about their post-translational modification, T-box factors have been shown to bind a variety of transcriptional co-factors. For example, Mid can bind the cardiac transcription factors Tinman and Pannier [35] while TbxB2 can bind the vertebrate homologue of Mid, Tbx20 [6]. It does not, however, resemble the motif previously identified for Mid (Figure 1B) [18].

Figure 4. Protein sequence alignment of the T-box domain of select T-box genes.

Conclusions

T-box transcription factors have been shown to bind variations of the 24 bp palindromic Brachyury DNA binding motif called the T-site. It has been suggested that the specificity of T-box proteins for particular binding sites arises from the spacing and orientation of the two half-sites as well as the nucleotides flanking the core AGGTGT of each half-site [8]. We employed a site selection technique and identified DRRGTGWRARGCG as the DNA binding motif for the Drosophila melanogaster Mid protein (Figure 3). The CG found at positions 14 and 15 in this motif appear to be specifically selected by Mid but are not essential for binding in an EMSA (Figure 3C). The motif identified in Figure 3 resembles that of most other T-box transcription factors and in particular is very close to the motif identified for the vertebrate homologue of Mid, TbxB2 [6]. It does not, however, resemble the motif previously identified for Mid (Figure 1B) [18].

Based on our results and analysis we propose that Mid binds DNA targets as a monomer. Five lines of evidence support this hypothesis: 1) Most oligonucleotides had a single site and when two half-sites were found (4/27 oligonucleotides) they were oriented and spaced randomly with respect to one another; 2) Mid is able to bind oligonucleotides containing only a single binding site; 3) EMSAs using oligonucleotides containing two potential binding sites only display a single band that runs at approximately the same mobility as Mid bound to a half-site; 4) The residues required for dimerization of Xbra and the non-stabilizing monomer-monomer contacts of Tbx3 are not conserved in Mid; 5) in vivo binding sites responsive to Mid are half-sites [19]. The possibility that region 2 in our motif is a variant of the T-site is thus not excluded.

Materials and Methods

Expression of Mid T-box Domain

Drosophila melanogaster Midline: T-box domain (residues 171–393), containing the T-box domain, were PCR amplified from clone RE27439 using 5′GGGGCCGGATCCCATATGGCACC−9′ GGGGCCGGATCCCATATGGCACC−3′
Identification of a Drosophila Tbx20 Binding Site

Motif Generation

The 27 clones which tested positive for binding to Mid in an EMSA were entered into MEME to generate a motif [10]. The relevant parameters were set such that every sequence was used once to generate a motif with a length of 6–26 nucleotides. The sequences of primer F and primer R were used as negative sequences. Motifs in.

Figure 1B were generated using WebLogo [41]. Sequences for the Tbx20 motif were obtained from MacIndoe et al. [6], while those for Mid were generated from data from Liu et al. [18].

Non-Radioactive Electro-mobility Shift Assays

Probes used for EMSAs were generated from pCRII or pCR2.1 clones by PCR amplification of the cloned oligonucleotide using 5'-biotin-labelled primer F and primer R (see above for sequence). The PCR product was phenol/chloroform extracted and ethanol precipitated in the presence of glycogen. The T-site probe corresponding to the Bs.p palindrome (AATTTCACC-TAGGGTGAANATT) was obtained as a self-complimentary primer with 5' biotin labels. Tbx20.MacIndoe (GGAGGTGTG-GAGGGCA and TCGGCTCACCACCTC), mid.Liu (GGAGG-TAGGGTCAG and CTTGACCTACTTCC), mid.Najand Region 1 (CAACCCCCCAAGGGC and CGCGCTTGGGAGGTTG) and mid.Najand Region 2 (CAAGGTGCTAAGGAA and TTCCTTGACACCTTG) were ordered as 5' biotin-labelled primers and annealed to their complement in 1X Taq polymerase buffer. A 10 μl reaction containing 15 fmol of each biotin-labeled probe, 375 ng of purified 6x-His MidTbx and binding buffer (20 μM HEPES pH 7.9, 100 mM KCl, 0.2 mM EDTA, 0.2 mM EGTA, 20% glycerol, 0.1% nonidet P40, 0.5 mM DTT, 10 mg/ml BSA, 8 ng/μl poly(dI-dC)poly(dI-dC)) was assembled and incubated at room temperature for 1 hr. The sample was run on a 10% polyacrylamide gel at 4°C for 6 hr. The oligonucleotide was electrophoresed and visualized using the chemiluminescent nucleic acid detection module (Pierce) according to the manufacturer's directions. All probes were run with a minimum of 2 times to confirm that Mid could be used to detect and retard their mobility.

Acknowledgments

We would like to thank Ingrid MacIndoe for providing us with the raw data from her site selection experiments on mouse Tbx20.

Author Contributions

Conceived and designed the experiments: NN JRR WJB. Performed the experiments: NN. Analyzed the data: NN. Contributed reagents/materials/analysis tools: NN JRR. Wrote the paper: NN WJB.

References

1. Papaoioannou VE (2001) T-box genes in development: from Hydra to humans. Int Rev Cytol 207: 1–70.
2. Sché-Pedros A, de Mendoná A, Lang BF, Degnan BM, Ruiz-Trillo I (2001) Unexpected Repertoire of Metazoan Transcription Factors in the Unicellular Holozoan Capsaspora owczarzaki. Molecular biology and evolution 28: 1241–1254.
3. Kispert A, Herrmann BG (1993) The Brachyury gene encodes a novel DNA binding protein. Embo J 12: 3211–3220.
4. Naiche LA, Harrelson Z, Kelly RG, Papaoioannou VE (2005) T-box genes in vertebrate development. Annu Rev Genet 39: 219–239.
23. Sinha S, Abraham S, Gronostajski RM, Campbell CE (2000) Differential DNA
22. Homann OR, Johnson AD (2010) MochiView: versatile software for genome
21. Carlson JM, Chakravarty A, DeZiel CE, Gross RH (2007) SCOPE: a web server
20. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization
19. Formaz-Preston A, Ryu JR, Svendsen PC, Brook WJ (2012) The Tbx20
17. Buescher M, Svendsen PC, Tio M, Miskolczi-McCallum C, Tear G, et al. (2004)
15. Buescher M, Tio M, Tear G, Overton PM, Brook WJ, et al. (2006) Functions of
13. Brook WJ, Cohen SM (1996) Antagonistic interactions between wingless and
12. Leal SM, Qian L, Lacin H, Bodmer R, Skeath JB (2009) Neuromancer1 and
11. Qian L, Liu J, Bodmer R (2005) Neuromancer Tbx20-related genes (H15/
10. Miskolczi-McCallum CM, Scavetta RJ, Svendsen PC, Soanes KH, Brook WJ
9. Garnett AT, Han TM, Gilchrist MJ, Smith JC, Eisen MB, et al. (2009)
8. Conlon FL, Fairclough L, Price BM, Casey ES, Smith JC (2001) Determinants
7. White PH, Chapman DL (2005) Dll1 is a downstream target of Tbx6 in the
6. Macindoe I, Glockner L, Vukasin P, Stennard FA, Costa MW, et al. (2009)
5. Ghosh TK, Packham EA, Bosner AJ, Robinson TE, Cross SJ, et al. (2001)
4. Coulon FL, Fairenough L, Price BM, Casey ES, Smith JC, et al. (2001) Determinants
3. Miesfeldt KM, Prestidge AJ, Cregg JM, Vodegel AR, et al. (2000) Conformational
2. Min-Chul H, Park YW, Lee JW, Kwon T, et al. (2009) Identification of T-box
1. Chen KY, Griffith MA, Namba M, O'Brian D, et al. (2000) The Drosophila T-box

Identification of a Drosophila Tbx20 Binding Site