Resources of Iranian agarics (Basidiomycota) with an outlook on their antioxidant potential

Masoomeh Ghobad-Nejhad1,*, Vladimir Antonín2, Mohaddeseh Moghaddam1 and Ewald Langer3,*

1Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran, 2Department of Botany, Moravian Museum, Zelný trh 6, Brno, Czechia, 3Department of Ecology, University of Kassel, Kassel, Germany

Agaric fungi are an important group of macromycetes with diverse ecological and functional properties, yet are poorly studied in many parts of the world. Here, we comprehensively analyzed 558 agaric species in Iran to reveal their resources of edible and poisonous species as well as their ecological guilds and luminescence potential. We also made a thorough survey of the antioxidant activity of the species. Phylogenetic relationships were reconstructed based on nuclear ribosomal LSU and ITS sequences. Our results reveal that agarics of Iran comprise about 189 edible, 128 poisonous, 254 soil saprotrophic, 172 ectomycorrhizal, 146 wood-inhabiting, 18 leaf/litter-inhabiting, 9 parasitic, and 19 luminescent species. Twenty percent of the Iranian agaric species possess antioxidant activity, phylogenetically distributed in four orders and 21 agaric families. About 5% of the antioxidant species can be considered strong antioxidants, many of which are also edible and could be utilized to develop functional foods. This is the first study combining phylogeny and antioxidant potential of agaric mushrooms in a large scale, and the obtained results would guide the selection of agaric taxa to be examined in the future for taxonomic revisions, biotechnological applications, and applied phylogeny studies.

KEYWORDS
basidiomycetes, diversity, gilled mushrooms, ABTS assay, phylogeny

Introduction

Agarics are mushroom-forming fungi also called euagarics and their hymenium is formed on gills. They belong to the subdivision Agaricomycotina, class Agaricomycetes (Moncalvo et al., 2002; Bauer et al., 2006). They produce important natural substances used in agriculture (e.g., strobilurines), medicine (e.g., pleuromutilines), and biotechnology (e.g., polysaccharides; Pointing et al., 2001; Webster and Weber, 2007; Kück et al., 2014; Hyde et al., 2019; Sandargo et al., 2019). Agaricales is the largest fungal order of agaric mushrooms comprising ca. 13,000 known species (Kirk et al., 2008). Thorough investigations of the agarics phylogeny have recently been provided by He et al. (2019) and Varga et al. (2019). Some agarics are important model organisms for research in genetics and basidiome development such as Coprinopsis cinerea and Cyclocebe cylindrica (Herzog et al., 2019).
Among agarics, there are some of the most poisonous mushrooms such as Amanita phalloides, Cortinarius Subgen. Oreliani, and Inosperma erubescens, frequently mixed up with edible mushrooms during culinary collecting and thus causing severe fatalities. Nevertheless, there is a large number of edible agaric mushrooms highly prized for culinary purposes such as Agaricus campestris, Coprinus comatus, Cyclocybe cylindrica, Macrolepia procula, and the worldwide cultivated white button mushroom Agaricus bisporus. Several edible agaric species are saprotrophs and possible to cultivate, but there are also many edible species such as Russula spp. and Lactarius spp. which belong to the ectomycorrhizal ecological guild and thus not cultivable in artificial synthetic media. A number of species such as Lentinula edodes and Flammulina velutipes have culminated as functional mushrooms for developing mushroom-based functional foods and other valued mycochemicals (Chang, 1996; Cateni et al., 2022; Rodríguez-Seoane et al., 2022).

Numerous agarics have also been recognized as sources of antioxidant compounds (e.g., Ferreira et al., 2009; Asatiani et al., 2010; Guo et al., 2012; Wang and Xu, 2014; Sánchez, 2017; Islam et al., 2019; Thu et al., 2020). Antioxidant properties, or the ability to defend against and scavenge/reduce excess free radicals in biological systems, is among the important properties of living organisms and crucial for their survival (Xiao et al., 2020). Mushrooms as one of the most diverse natural antioxidant resources, have received attention in recent decades and are advantageous compared to plants because of their high diversity, fast growth, and culture possibilities (Gargano et al., 2017; Buswell, 2018).

A preliminary checklist of Iranian mushrooms appeared by Ghobad-Nejhad et al. (2020) listing 556 agaric and 29 bolete species. However, the species remain largely unexplored in terms of various important properties. Information about the edible, poisonous, and mycorrhizal agarics in Iran is principally lacking and currently, the antioxidant properties of Iranian agarics have remained largely unexplored.

Due to the lack of knowledge about the diversity of edible, poisonous, and mycorrhizal agarics in Iran, as well as their antioxidant properties, our study aimed to: (i) investigate Iranian agarics and reveal their resources of edible and poisonous species, (ii) present their ecological guilds and bioluminescence potential, and to (iii) explore the antioxidant properties of Iranian agarics and combine it with phylogenetic reconstructions. We believe our results would benefit a wide range of researchers involved in the study of agaric mushrooms.

Materials and methods

Sampling and molecular study

Taxon sampling for the molecular study was primarily done based on the list by Ghobad-Nejhad et al. (2020), supplemented by additional data in the present study. Species current names and species authorities follow Index Fungorum¹ and MycoBank.² Microscopy and morphological studies followed Ghobad-Nejhad et al. (2020). Sequences of the 28S rRNA (nLSU) and the ITS region (covering ITS1, 5.8, and ITS2) were carefully selected from GenBank, with special attention to the quality-controlled sequences (Nilsson et al., 2012) as well as to the authentic sequences obtained from Iranian specimens. For DNA extraction, we sampled more than 20 specimens and 12 samples were successfully sequenced and used in this paper. Genomic DNA was extracted from dried basidiomata using the DNA Extraction Mini Kit (FAVORGEN, Taiwan). The primers used for the amplification cycles were ITS1F/ITS4B or ITS1F/ITS4 (White et al., 1990; Gardes and Bruns, 1993) for the ITS region and LR0R/LR7 or LR0R/LR5 (Hopple and Vilgalys, 1999) for partial nLSU region. All sequences used in the phylogenetic analyses are listed in Table 1.

Two concatenated datasets of nLSU + ITS were constructed, one representing the taxa belonging to the order Agaricales (dataset 1), and the other dataset for taxa of Cantharellales, Polyporales, and Russulales (dataset 2). Contumyces rosellus, the single Iranian agaric Hymenochaetales, was used as an outgroup for both datasets.

Sequences were aligned using MUSCLE (Madeira et al., 2019). To optimize the alignment, problematic columns were reduced with Noisy 1.5.12 (Dress et al., 2008) and were further identified and removed after careful visual inspection. Special attention was paid to excluding the poorly aligned columns of the ITS region and keeping the finely aligned parts. (Sequences of Amanita eliae, Mycena xantholeuca, Pluteus semibulbosus, and Tricholoma ustale were deleted from the final dataset due to poor alignment.)

Phylogenetic analyses

The sequence datasets were analyzed using Bayesian inference (BI) executed in MrBayes v. 3.2.7a (Ronquist et al., 2012). MrModeltest 2.3 was implemented to infer the best-fit model of nucleotide evolution for each alignment partition in each dataset (Nylander, 2004). Bayesian analyses were run for 40 (dataset 1) and 20 (dataset 2) million generations for four Markov chain Monte Carlo simulations, in two independent runs at the CIPRES Science Gateway (Miller et al., 2010), with the trees and parameters sampled every 5,000 generations, and the first 25% of the generations were discarded as burn-in. Posterior probabilities (PPs) were calculated from the posterior distribution of the retained trees. Maximum likelihood analyses were executed in raxmlGUI v.1.3 (Silvestro and Michalak, 2010) with the same parameters as used by Ghobad-Nejhad et al. (2021). The Bayesian phylograms were retained for tree visualizations and annotations.

1. www.indexfungorum.org
2. www.mycobank.org
TABLE 1 Resources of agarics of Iran and their edibility (☺, edible; ☹, poisonous based on own observation in Iran; ☠*, edible if well-cooked but poisonous if raw; ☑, inedible; ○, uncertain or unknown), ecological guild (♠, soil saprotroph; ☼, ectomycorrhizal; ☐, wood-inhabiting; ♣, leaf/litter-inhabiting; ◙, parasitic), luminescence, and antioxidant potential (S, strong; M, moderate; W, weak; ND, not determined; full details provided in the text).

Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.
Agaricus arvensis Schaeff.	☺	♠	–	S	MT535720 MH872779
Agaricus bisporus (J.E. Lange) Imbach	☺	♠	–	SM	ON952490 DQ071710
Agaricus bitorquis (Quël.) Sac.	☺	♠	–	SM	MT535709 MT554302
Agaricus brendelanus Bobus	☺	♠	–	MW	DQ185569 MK277477
Agaricus brunneolus (J.E. Lange) Pilát	☺	♠	–	ND	KU975082 KX083997
Agaricus campestris L.	☺	♠	–	SM	NR_151745.1 MH866030
Agaricus depauperatus (F.H. Møller) Pilát	☺	♠	–	ND	DQ182530 –
Agaricus devoniensis P.D. Orton	☺	♠	–	ND	EU363036 AF059225
Agaricus gennadii (Chatin & Boud.) P. D. Orton	☺	♠	–	ND	KT951318 KR006606
Agaricus iodosmus Heinem.	☹	♠	–	S	MT535702 MT554295
Agaricus iranicus Mahdizadeh, Safaie, Golhapih, L.A. Parra & Callac	☽	♠	–	ND	KY474556 KY474559
Agaricus langei (F.H. Møller) F.H. Møller	☻	♠	–	ND	JF797181 –
Agaricus litoralis (Wakef. & A. Pearson) Pilát	☻	♠	–	ND	MT535711 MT554304
Agaricus moelleri Wasser	☺	♠	–	ND	KX083997
Agaricus nevsi Wasser	☺	♠	–	ND	MH173866 –
Agaricus phaeolepidotus (F.H. Møller) F.H. Møller	☸	♠	–	ND	MH862921 MH874494
Agaricus pseudoplatanus (G. Moreno, Esteve-Rav., Illana & Heykoop) G. Moreno, L.A. Parra, Esteve-Rav. & Heykoop	☺	♠	–	ND	KT951329 KT951453
Agaricus pseudoplatanus (Bobus) Wasser	☹	♠	–	S	ON952491 MT554325
Agaricus pseudoplatanus (Peck) Peck	☺	♠	–	M	KT951461
Agaricus subrufescens Peck	☺	♠	–	ND	KT9824789 KR006612
Agaricus xanthodermus Genev.	☹	♠	–	ND	MN860126 MK277500
Agrocybe acericola (Peck) Singer	☾	♠	–	S	MT535714 MT554306
Agrocybe dura (Bolton) Singer	☾	♠	–	S	MT535701 MT554306
Agrocybe ochracea Nauta	☽	♠	–	ND	–
Agrocybe pallidus (J.E. Lange) Kühner & Romagn. ex Bon	☽	♠	–	ND	–
Agrocybe pediades (Fr.) Fayo	☾	♠	–	M	ON952487 AY293582
Agrocybe praecox (Pers.) Fayo	☽	♠	–	W	MT535701 MT554294
Agrocybe pusiola (Fr.) R. Heim	☽	♠	–	ND	DQ389732 MK277505

(Continued)
TABLE 1 (Continued)

Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.
Agrocybe tabacina (DC.) Konrad & Maubl.	X	♠	–	ND	MW425942 MK277506
Agrocybe vervacti (Fr.) Singer	X	♠	–	ND	MW243076
Alnicola escharioides (Fr.) Romagn.	○	○	–	ND	MZ868014 MK277560
Amanita atkinsoniana Coker	○	○	–	ND	MH508267 MH486389
Amanita battarrea (Boud.) Bon	○	○	–	M	MH505548 AF04443
Amanita caesarea (Scop.) Pers.	○	○	–	ND	OK299150 OK299170
Amanita crocea (Quel.) Singer	○	○	–	M	KJ638266 –
Amanita eliae Quel.	○	–	ND	–	KF780872 –
Amanita excelsa (Fr.) Bertill.	○	–	ND	–	MW258873 MW258922
Amanita gemmata (Fr.) Bertill.	○	–	ND	–	MK580689 AF044457
Amanita lividopallescens (Secr. ex Boud.)	◄	☹	–	ND	MT535691 MW013165
Amanita pantherina (DC.) Krombh.	○	♠	–	M	FR832274 MH486743
Amanita phalloides (Fr.) Link	○	○	–	ND	KX449212 KX449230
Amanita rubescens Pers.	○	○	–	S	FR852273 MH486816
Amanita streniformis (Paulet ex Vittad.) Bertill.	○	X	–	ND	MH508614 MH486895
Amanita umbrinoluta (Secr. ex Gillet)	○*	♠	–	ND	MH508641 MH486937
Bataille	○*	♠	–	ND	MH508641 MH486937
Amanita vaginata (Bull.) Lam. s.l.	○*	♠	–	M	JF907756 –
Amanita verna (Bull.) Lam.	○	–	ND	–	EU909448 HQ539755
Ampulloclitocybe clavipes (Pers.) Redhead,	○	♠	–	ND	AF789808 AY639881
Lutzoni, Moncalvo, and Vilgalys	○	♠	–	ND	AF789808 AY639881
(seems to be toxic after consumption with alcohol)					
Armillaria borealis Marxm. & Korhonen	○*	♠	–	ND	KF960524 FJ618728
Armillaria cepistipes Velen.	○*	♠	–	ND	FJ903313 KY488767
Armillaria gallica Marxm. & Romagn.	○*	♠	–	ND	MW418538 AM269818
Armillaria mellea (Vahl) P. Kumm.	○*	♠	–	ND	AF163583 AM269819
Arrenia griseopallida (Desm.) Watling	○	♠	–	ND	–
Asterotheca lycoperdoides (Bull.) Ditmar	X	♠	–	ND	MZ159455 MK277604
Atheloffia flavoalba (Fr.) Redhead,	X	♠	–	ND	MH857185 MH867232
Moncalvo, Vilgalys, Desjardin, and B.A. Perry					
Baeopora myosura (Fr.) Singer	X	♠	–	ND	MH856301 MH867849
(on conifer cones)					
Battarrea steventi (Libosch.) Fr.	X	♠	–	ND	AF215648 –
Bolbitius reticulatus (Pers.) Ricken	X	–	ND	–	JX968249 JX968366
Bolbitius titubans (Bull.) Fr.	X	♠	–	ND	KR425522 KR425552
Calocybe carneea (Bull.) Donk	○	♠	–	ND	AF357028 MK277666
Calocybe chrysenteron (Bull.) Singer	X	♠	–	ND	KP885639 KP885628
Calocybe gambona (Fr.) Donk	○	♠	–	W	MZ159691 AM946414
Calocybe simulans (Bull.) Donk	○	♠	–	ND	JF907780 MK277668

(Continued)
Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.
Callocybe persicolor (Fr.) Singer	X	♠	–	ND	KP192564
					AF223176
Candellicybe candolleanus (Fr.) D. Wächt. & A. Melter	X	♠	–	S	MT535718
					MT534309
Cantharellus alborufescens (Malençon) Papetti & S. Alberti	♠		–	M	MH463257
					MH463258
Cantharellus cibarius Fr.	X	♠	–	SM	KX907204
					KX828805
Cantharellus ferruginascens PD. Orton	X	♠	–	ND	MH463294
					MH463295
Chlorophyllum brunneum (Farl. & Burt) Vellinga	☹	♠	–	ND	MG742013
					MG742022
Chlorophyllum rhacodes (Vittad.) Vellinga	☹	♠	–	M	AY081236
					AY176345
Clitocybe angustissima (Lasch) P. Kumm. Clitocybe barbularum (Romagn.) P.D. Orton	☹	♠	–	ND	–
					–
Clitocybe diatreta (Fr.) P. Kumm.	☹	♠	–	ND	–
					–
Clitocybe metachroa (Fr.) P. Kumm.	X	♠	–	ND	–
					–
Clitocybe nubicolor (Batsch) P. Kumm.	☹	♠	–	S	–
					–
Clitocybe phyllephila (Pers.) P. Kumm.	☹	♠	–	ND	–
					–
Clitocybe rufodolatracea Métrod ex Bon	☹	♠	–	ND	–
					–
Clitocybe vibescus (Fr.) Quel.	X	♠	–	ND	–
					–
Clitopaxillus alexandri (Gillet) G. Moreno, Vizzini, Consiglio & P. Alvarado	☹	♠	–	W	MG321345
					MG321393
Clitopilus prunulus (Scop.) P. Kumm.	☹	♠	–	M	–
					–
Collybia tuberosa (Bull.) P. Kumm.	X	♠	–	ND	–
					–
Conocybe albipes (G.H. Orth) Hauskn.	X	♠	–	ND	–
					–
Conocybe apala (Fr.) Arnolds	♠	♠	–	ND	–
					–
Conocybe dunensis T.J. Wallace	X	♠	–	ND	–
					–
Conocybe juniana (Velen.) Hauskn. & Svrček	X	♠	–	ND	–
					–
Conocybe leucopus Kühner ex Kühner & Watling	X	♠	–	ND	–
					–
Conocybe macrocephala Kühner & Watling	X	♠	–	ND	–
					–
Conocybe microspora Kühner ex Singer	X	♠	–	ND	–
					–
Conocybe ochracea Kühner ex Singer	X	♠	–	ND	–
					–
Conocybe olivaceopleaitea E.F. Malysheva*	X	♠	–	ND	–
					–
Conocybe pilisella (Pers.) Kühner	X	♠	–	ND	–
					–
Conocybe rickenii (Jul. Schaff.) Kühner	X	♠	–	ND	–
					–
Conocybe subovalis Kühner & Watling	X	♠	–	ND	–
					–
Conocybe tenera (Schaeff.) Fayod	☹	♠	–	M	–
					–
Contumyces rosellus (M.M. Moser) Redhead, Moncalvo, Vilgalys, and Lutzoni	☹	♠	–	ND	–
					–
Coprinellus angulatus (Peck) Redhead	X	♠	–	ND	–
					–

(Continued)
Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.	ITS	nLSU
Coprinellus disseminatus (Pers.) J.E. Lange	X			ND	MK050584	AY207180	
Coprinellus domesticus (Bolton) Vilgalys, Hopple & Jacq. Johnson	X ☉			S	MH856480	MH868019	
Coprinellus flocculosus (DC.) Vilgalys, Hopple & Jacq. Johnson	X			ND	FN396138	FN396208	
Coprinellus impatiens (Fr.) J.E. Lange	X			ND	MH856810	MH868327	
Coprinellus micaceus (Bull.) Vilgalys, Hopple & Jacq. Johnson	X ☉			S	ON952489	MT554289	
Coprinellus radians (Desm.) Vilgalys, Hopple & Jacq. Johnson	X			ND	KU375662	KM272009	
Coprinellus silvaticus (Peck) Gminder	X			ND	HQ846986	HQ847072	
Coprinellus subimpatiens (M. Lange & A.H. Sm.) Redhead, Vilgalys, and Moncalvo	X			ND	MH857001	MH868522	
Coprinellus truncorum (Scop.) Redhead, Vilgalys, and Moncalvo	X			S	FM878007	FM876263	
Coprinellus xanthothrix (Romagn.) Vilgalys, Hopple & Jacq. Johnson	X			ND	JN943112	JN159595	
Coprinopsis atramentaria (Bull.) Redhead, Vilgalys, and Moncalvo (toxic after consumption with alcohol)	☀ ☀			SM	MH259864	FN396172	
Coprinopsis brumaeolirosa (Dennis) Redhead, Vilgalys, and Moncalvo	X			ND	JX118664	JX118817	
Coprinopsis cinerea (Schaeff.) Redhead, Vilgalys, and Moncalvo	X			M	MF161131	KM272007	
Coprinopsis ephemeroides (DC.) G. Moreno	X			ND	--	--	
Coprinopsis friesi (Quel.) P. Karst.	X			ND	--	FN396191	
Coprinopsis gonophylla (Quel.) Redhead, Vilgalys & Moncalvo	X			ND	MH856188	MH867714	
Coprinopsis lagopodi (P. Karst.) Redhead, Vilgalys & Moncalvo	X			ND	MN892574	AF041488	
Coprinopsis lagopus (Fr.) Redhead, Vilgalys & Moncalvo	X			ND	MH856194	MH867720	
Coprinopsis macrocephala (Berk.) Redhead, Vilgalys & Moncalvo	X			ND	FN396126	FN396175	
Coprinopsis marcesciblitis (Britzelm.) Orstadius & E. Larss.	X			ND	ON952484	FM876278	
Coprinopsis martensii (P.D. Orton) Redhead, Vilgalys & Moncalvo	X			ND	GU234126	--	
Coprinopsis niveo (Pers.) Redhead, Vilgalys & Moncalvo	X			ND	HQ847032	HQ847117	
Coprinopsis patouillardii (Quel.) Gminder	X			ND	FN396150	FN396197	
Coprinopsis pisana (Bull.) Redhead, Vilgalys & Moncalvo	X ☉			S	JN943110	JQ45885	
Coprinopsis sclerotiger (Watling) Redhead, Vilgalys & Moncalvo	X			ND	MF161091	MF161132	

(Continued)
TABLE 1 (Continued)

Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.
Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.
Coprinopsis scobicola (P.D. Orton) Redhead, Vilgalys & Moncalvo	X	♦	–	ND	HQ847021 HQ847106
Coprinopsis ursicola (Berk. & Broome) Redhead, Vilgalys & Moncalvo	X	♣	–	ND	MH300615 HQ847101
Coprinus comatus (O.F. Müll.) Pers.	(considered edible in Europe and also cultivated)				
Coprinus sterquilinus (Fr.) Fr.	X	♠	–	ND	MH854689
Cortinarius bivelus (Fr.) Fr.	X	☀	–	ND	FR852016
Cortinarius caesiocortinatus Jul. Schäff.	X	☀	–	ND	FR852020
Cortinarius casimirii (Velen.) Huijsman	X	☀	–	ND	FR851999
Cortinarius cinnabarinus Fr.	X	☀	–	ND	HE687043
Cortinarius cinnamomeus (L.) Gray	□	☀	–	ND	NR_131816 KC842483
Cortinarius cotonus Fr.	☀	☀	–	ND	KC842423 KC842493
Cortinarius decipiens Fr.	X	☀	–	ND	HE687042
Cortinarius diasemospermus Lamoure	X	☀	–	ND	NR_131875 MK277631
Cortinarius ferrugineovelatus Kytöv., Limmat. & Niskanen	X	☀	–	ND	
Cortinarius fluvi (M.M. Moser) M.M. Moser	□	☀	–	ND	
Cortinarius hildegardiae Schmidt-Stohn, Brandrud & Dima	□	☀	–	ND	MT535704 MT554297
Cortinarius hornuca Fr.	X	☀	–	ND	
Cortinarius infractus (Pers.) Fr.	X	☀	–	ND	
Cortinarius olivaceofuscus Kühner	□	☀	–	ND	
Cortinarius paracaphehilitous Böhus	X	☀	–	ND	
Cortinarius parvannulatus Kühner	X	☀	–	ND	
Cortinarius persoonianus Bidaud	□	☀	–	ND	
Cortinarius plururion Jul. Schäff. ex M.M. Moser	X	☀	–	ND	
Cortinarius uraceonemoralis Niskanen, Limmat., Dima, Kytöv., Bojantchev & H. Lindstr.	□	☀	–	ND	
Cortinarius vulgus Fr.	X	☀	–	ND	MT935583
Cortinarius versius H. Lindstr. & Melot	X	☀	–	ND	MW263848 MW263545
Cortinarius vespertinus (Fr.) Fr.	X	☀	–	ND	KC842457 KC842527
Cortinarius vibratilis (Fr.) Fr.	X	☀	–	ND	KC842440 KC842510
Crepidotus violaceus (L.) Gray	□	☀	–	W	NR_173726 MK277758
Craterellus cinereus (Pers.: Fr.) Maire	□	☀	–	ND	
Craterellus cornucopioides (L.) Pers.	□	☀	–	SM	JF907967 MN227282
Craterellus tubaeformis (Fr.) Quél.	□	☀	–	S	HM468493 MT797698
Crepidotus applanatus (Pers.) P. Kumm.	X			ND	MH855941 MH867439
Crepidotus caeputi Velen.	X			ND	MW722982 AF205678
Crepidotus cesati (Rabenh.) Sac.	X			ND	JF907962 MK277881
Crepidotus crocophyllus (Berk.) Sac.	X			ND	FJ598825 AF367939
Crepidotus mollis (Schaeff.) Staude	X			ND	AM882996 AM882996

(Continued)
Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.
Crepidotus subverrucisporus Pilát	X		–	ND	MT535745 AF67948
Crinellis scabella (Alb. & Schwein.) Murrill	X		–	ND	MH857177 MH868716
Capnocybe virgineus (Wulfen) Kovalenko	☀	☀	–	ND	MT535688 MT554284
Cyepcybe cyliniata (DC.) Vizzini & Angelini	☀		–	MW	ON952480 ON930146
Cystoderma aereus (Matt.) Kühner & Romagn.	☀ X	☀	–	ND	MH864957 MH876401
(generally edible, but some health problems described after eating)					
Deconica cappella (Bull.) P.Karst.	☀ X	☀	–	ND	MH855878 MH867388
Deconica cymbula (Fr.) Romagn.	X	☀	–	ND	MT535747 MH867478
Delicatula integella (Pers.) Fayod	X	☀	–	ND	MZ159362 MK277924
Dermoloma cuneiformum (Fr.) Singer ex Bon	X	☀	–	ND	MW193843 –
Echinoderma asperum (Pers.) Bon	☀	☀	–	W	MH856136 MH867652
(frequently eaten in the Czech Republic, considered poisonous in China)					
Entoloma griseorubellum (Lasch)	☀ ⊙	⊙	–	ND	KC710059 KC710136
Entoloma hirtipes (Schumach. M.M. Moser	X	☀	–	ND	MN088710 MN088715
Entoloma hirtipes (Schumach. M.M. Moser	⊙	⊙	–	ND	– –
Entoloma majalesis P.D. Orton	X	☀	–	ND	MW633049 MW633049
Entoloma mammosum (L.) Moser	⊙	⊙	–	ND	– –
Entoloma niphoides Noordel.	X	☀	–	ND	– –
Entoloma rhidophillum (Fr.) P. Kumm.	☀	⊙	–	ND	– –
Entoloma sericellum (Fr.) P. Kumm.	X	☀	–	ND	KC898453 GQ289190
Entoloma sinuatum (Bull. ex Pers.) P. Kumm.	⊙	⊙	–	ND	KC710116 KC710134
Entoloma vernum (S. Lundell)	⊙	⊙	–	ND	MF476911 MF487802
Flammula abnica (Fr.) P. Kumm.	⊙ ⊙	⊙	–	ND	MH862103 MH873792
(considered edible in the Czech Republic)			–	ND	– –
Flammula alnicola (Pers.) P. Kumm.	☀ ⊙	⊙	–	ND	– –
(considered edible in the Czech Republic)			–	ND	– –
Flammula eumutis (Curtis) Singer	☀ ⊙	⊙	–	ND	MH453494 –
Galerina hypnorum (Schrank) Kühner	☀	☀	–	ND	OL717128 MK299406
Galerina marginata (Batsch) Kühner	☀ ⊙	⊙	–	ND	MK3462103 MK346279

(Continued)
Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.	nLSU
Galerina mniophila (Lasch) Kühner	X	♣	–	ND	AJ585456	AJ71514
Galerina pumila (Pers.) M. Lange	X	♣	–	ND	AJ585477	AJ71546
Galerina sphagnorum (Pers.) Kühner	X	♣	–	ND	AJ585455	AJ71510
Gymnopus penetrans (Fr.) Murrill	☹	♣	–	W	KR011987	KR011988
(considered inedible in the Czech Republic)						
Gymnopus spectabilis (Weinm.) A.H. Sm.	☹	♣	–	S	MT535703	MT554296
(considered inedible in the Czech Republic)						
Gymnopilus androsaceus (L.) J.L. Mata & R.H. Petersen	X	☹	–	ND	MH657176	MH686715
Gymnopilus aquosus (Bull.) Antonin & Noordel.	☹	♣	–	ND	MT535700	MT554293
Gymnopilus brassicolenus (Romagn.) Antonin & Noordel.	X	☹	–	ND	MZ088117	MK278106
Gymnopilus dryophilus (Bull.) Murrill	☹	♣	–	W	MH589967	MH589985
(considered poisonous in China)						
Gymnopilus erythropus (Pers.) Antonin, Halling & Noordel.	☹	♣	–	ND	JX536136	AY207167
Gymnopilus foetidus (Sowerby) J.L. Mata & R.H. Petersen	X	☹	–	ND	KY026682	KY026682
Gymnopilus fusipes (Bull.) Gray	☹	♣	–	W	KY026727	KY026727
(only young basidiomata edible)						
Gymnopilus hybridus (Kühner & Romagn.) Antonin & Noordel.	X	☹	–	ND	MT535705	MT554299
Gymnopilus inodorus (Pat.) Antonin & Noordel.	X	☹	–	ND	–	–
Gymnopilus tergeus (Fr.) Antonin & Noordel.	X	☹	–	ND	–	MK278118
Hebeloma birrus (Fr.) Gillet	☹	♣	–	ND	JF908029	–
Hebeloma crustuliniforme (Bull.) Quél.	☹	♣	–	ND	MH865615	MH867674
Hebeloma hiemale Bres.	☹	♣	–	ND	KT591536	KT591556
Hebeloma incarnatum A.H. Sm.	☹	♣	–	ND	KX687211	–
Hebeloma mesophacum (Pers.) Quél.	☹	♣	–	ND	NR_173705	MK880553
Hebeloma sinapizans (Paullet) Gillet	☹	♣	–	M	KT391542	KT591562
(most frequently wood-inhabiting)						
Hemimycena cuscullata (Pers.) Singer	X	☹	–	ND	DQ484066	DQ457679
Hidrophilus hymenozgicus (A.H. Sm. & Heder) Birkebak & Adamčík	X	☹	–	ND	KU355304	KU355389
Hohenbuehelia atrocoerulea (Fr.) Singer	X	☹	–	ND	KU525860	KU534052
Hohenbuehelia auriscalpum (Maire) Singer	X	☹	–	ND	–	–
Hohenbuehelia petroleides (Bull.) Schulzer	☹	♣	–	ND	NR_173155	KU355402
Homophoron spadiceum (P. Kumm.) Singer	X	☹	–	ND	MK968340	MN028523
Oistadus & E. Larss.	☹	♣	–	ND	DQ490627	DQ457674
(Continued)						
TABLE 1 (Continued)

Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.
					ITS
					nLSU
Hygrophorus acutoconica (Clem.) Singer	☑	♦	–	ND	OK157438 MK278174
Hygrophorus chlorophana (Fr.) Wünsche	☑	♦	–	ND	JF908052 MK278164
Hygrophorus esereus (Bull.) Fr.	☑	♦	–	S	MK088116 AF430279
Hygrophorus mesotephrus Berk. & Broome	☑	♦	–	ND	MT981695 –
Hygrophorus persoonii Arnolds	☑	♠	–	ND	JF907808 –
Hymenoliceps radiatus (Relhan) R.H. Petersen	☑	♣	–	W	FJ967808 AY207211
Hygrophorus eburneus (Bull.) Fr.	☑	☼	–	SM	MT535706 MT554300
Hygrophorus mesotephrus Berk. & Broome	☑	☼	–	SM	MH856121 MH866989
Hygrocybe acutoconica (Clem.) Singer	☑	☼	–	ND	OK157438 MK278174
Hygrocybe chlorophana (Fr.) Wünsche	☑	☼	–	ND	JF908052 MK278164
Hygrocybe esereus (Bull.) Fr.	☑	☼	–	S	MK088116 AF430279
Hygrocybe mesotephrus Berk. & Broome	☑	☼	–	ND	MT981695 –
Hygrocybe persoonii Arnolds	☑	♠	–	ND	JF907808 –
Hymenoliceps radiatus (Relhan) R.H. Petersen	☑	♣	–	W	FJ967808 AY207211
Hygrophorus eburneus (Bull.) Fr.	☑	☼	–	SM	MT535706 MT554300
Hygrophorus mesotephrus Berk. & Broome	☑	☼	–	SM	MH856121 MH866989

(Continued)
TABLE 1 (Continued)

Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.	ITS	nLSU
Inosperma bongardii (Weinm.) Matheny & Esteve-Rav.	☹	☀	–	ND	FN550943		
Inosperma cookei (Bres.) Matheny & Esteve-Rav.	☹	☀	–	ND	AM882956		
Inosperma erubescens (A. Blytt) Matheny & Esteve-Rav.	☹	☀	–	ND	AM882951		
Inosperma maculatum (Boud.) Matheny & Esteve-Rav.	☹	☀	–	ND	MH578017		
Laccaria amethystina Cooke	☀	☀	–	W	KU685654		
Laccaria bicolor (Maire) P.D. Orton	☀	☀	–	ND	KM067831		
Laccaria laccata (Scop.) Cooke	☀	☀	–	W	KM067835		
Laccaria tortilis (Bolton) Cooke	☀	☀	–	ND	MG519533		
Lacrymaria lacrymabunda (Bull.) Pat.	☹ ☒	☀	–	ND	MK968341		
Lactarius acris (Bolton) Gray	X	☀	–	ND	JQ446084		
Lactarius circellatus Fr.	X	☀	–	ND	FR852038		
Lactarius delicious (L.) Gray	☹	☀	–	W	KI769672		
Lactarius fulvissimus Romagn.	X	☀	–	ND	FR852027		
Lactarius rubrocinctus Fr.	X	☀	–	ND	UDB005472		
Lactarius scrobiculatus (Scop.) Fr.	☹ ☒	☀	–	ND	KX441098		
Lactarius serifulus (DC.) Fr.	☹	☀	–	ND	KT165294		
Lactarius subulicus (Pers.) Gray	☹ ☒	☀	–	ND	KX395722		
Lactarius tabidus Fr.	☹	☀	–	ND	KT165309		
Lactarius zonarius (Bull.) Fr.	☹ ☒	☀	–	ND	FR852035		
Lactatius glaucescens (Crossl.) Verbeken	X	☀	–	ND	MT533681		
Lactatius piperatus (L.) Roussel	☹ ☒	☀	–	SM	KF220122		
Lactatius vellereus (Fr.) Kuntze	☹ ☒	☀	–	SM	KF220123		
Lactatius velemus (Fr.) Kuntze	☹	☀	–	W	JQ343936		
Lentinellus cochleatus (Pers.) P. Karst.	☹	☀	–	ND	AF506417		
Lentinellus serinus (Fr.) Kühner	☹	☀	–	ND	MI857168		
Lentinellus vulpinus (Sowerby) Kühner & Maire	☹	☀	–	ND	AS51R230		
Lentinus cyathiformis (Schaeff.) Bres.	☹	☀	–	ND	KM411461		
Lentinus lepideus (Fr.) Fr. (inedible in Europe)	☹	☀	–	M	KM411454		
Lentinus sajor-caju (Fr.) Fr. (inedible in Europe)	☹	☀	–	MW	OL771731		
Lentinus tigrinus (Bull.) Fr. (inedible in Europe)	☹	☀	–	SM	ON952481		
Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.		
--------------------------------------	-----------	------------------	-------------	-----------------------	----------------------		
Lepiota anthomyces (Berk. & Broome)	○	♠	–	ND	–		
L. brunneoincarnata Chodat & C. Martin	○	♠	–	ND	MK651615 MK685374		
L. castanea Quail.	○	♠	–	ND	MK685380 MK651688		
L. cristata (Bolton) P. Kamm.	X	♠	–	ND	LT716026 KY418841		
L. echinella Quail. & G.E. Bernard	X	♠	–	ND	AY176366 AY176367		
L. felina (Pers.) P. Karst.	○	♠	–	ND	MK685381 MK278264		
L. helveola Bres.	○	♠	–	ND	MH979466 –		
L. leprca (Berk. & Broome) Sacc.	○	♠	–	ND	–		
L. blaceae Bres.	○	♠	–	ND	AY176379 AY176380		
L. metulipora (Berk. & Broome)	○	♠	–	ND	EU681778 MK651673		
L. micropholis (Berk. & Broome)	X	♠	–	ND	–		
L. subalba Kühner ex P.D. Orton	X	♠	–	ND	AY176489 –		
L. subincarnata J.E. Lange	○	♠	–	ND	U85329 U85294		
L. irina (Fr.) H.E. Bigelow	○	♠	–	ND	–		
(edible/inedible in the Europe)							
L. nuda (Bull.) Cooke	○	♠	–	SM	KU215619 DQ071713		
L. saeva (Fr.) P.D. Orton	○	♠	–	ND	MK785234 MH878430		
L. squamosus (Pers.) Bridge & Spooner	○	♠	–	ND	MH043620 MH036179		
Leucoagaricus americanus (Peck) Vellinga	○	♠	–	ND	MT573394 AF482891		
Leucoagaricus badhamii (Berk. & Broome) Singer	○	♠	–	ND	GQ329056 –		
Leucoagaricus carneifolius (Gillet) Wasser	X	♠	–	ND	–		
Leucoagaricus heliospilotus (Berk. & Broome) Bon	○	♠	–	ND	–		
Leucoagaricus leucothites (Vittad.) Wasser	○	♠	–	SM	MT535726 MT554316		
(reported edible in Turkey by Aslim and Oztrak (2011); edible but sometimes caused health problems)							
Leucoagaricus nympharum (Kalchbr.) Bon	○	♠	–	ND	EU416310 EU416311		
Leucoagaricus roseafulbus (Henn.) Heinem.	○	♠	–	ND	–		
Leucoagaricus serenus (Fr.) Bon & Bouffard	○	♠	–	ND	AY176420 AF482893		
Leucocoprinus bennonianus (Corda) Singer	○	♠	–	ND	MH861267 MH873036		
Leucocoprinus brebissonii (Godey) Locq.	○	♠	–	ND	AF482859 AY176446		
Leucocoprinus cepistipes (Sowerby) Pat.	X	♠	–	ND	LT716023 KY418838		
Leucocoprinus magnusianus (Henn.) Singer	○	♠	–	ND	–		

(Continued)
TABLE 1 (Continued)

Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.
					ITS
					nLSU
Leucocybe candicans (Pers.) Vizzini, P. Alvarado, G. Moreno & Consiglio	☀️	♠️	–	ND	KJ681027
					KJ681051
Leucocybe houghtonii (W. Phillips) Halama & Pencakowski	X	♠️	–	ND	KY474108
Leucopaxillus compactus (P. Karst.) Neuhoff	X	♠️	–	ND	–
Leucopaxillus giganteus (Sowerby) Singer	☀️	♠️	–	M	JQ639151
					JQ639152
Leucopaxillus piniola J. Favre	☀️	♠️	–	ND	–
Lyophyllum atratum (Fr.) Singer	X	♠️	–	ND	KJ461896
					KJ461895
Lyophyllum baceaspernum Romagn.	X	♠️	–	ND	–
Macrolepiota gigantea (Massoe) Pegler & Lodge	☀️	♠️	–	S	MG867660
					AF042591
Macrolepiota excoriata (Schaeff.) Wasser	☀️	♠️	–	MW	U85313
					U85278
Macrolepiota mastoida (Fr.) Singer	☀️	♠️	–	MW	HM125532
					MH867678
Macrolepiota permixta (Barla) Pacioni	☀️	♠️	–	ND	HQ412661
					–
Macrolepiota procera (Scop.) Singer	☀️	♠️	–	SM	ON952483
					AM946456
Marasmiellus candidus (Fr.) Singer	☀️	♠️	–	ND	–
Marasmiellus confluens (Pers.) J.S. Oliveira	X	♠️	–	ND	–
					–
Marasmiellus peronatus (Bolton) J.S. Oliveira	X	♠️	–	S	AY256706
					–
Marasmiellus ramealis (Bull.) Singer	X	⬜️	–	ND	–
Marasmius atroabens (Berk.) Mont.	X	⬜️	–	ND	–
Marasmius corrugiformis Singer	X	⬜️	–	ND	–
Marasmius epiphyllus (Pers.) Fr.	X	⬜️	–	ND	–
Marasmius favoloides Henn.	X	⬜️	–	ND	–
Marasmius ferruginieus Berk. & M.A. Curtis	X	⬜️	–	ND	–
Marasmius haematocephalus (Mont.) Fr.	X	⬜️	–	ND	–
Marasmius oreades (Bolton) Fr.	☀️	♠️	–	SM	LT716048
Marasmius rotula (Scop.) Fr.	X	⬜️	–	ND	JN943598
Marasmius rubriflavus (Theiss.) Singer	X	⬜️	–	ND	JN941147
Marasmius wynneae Berk. & Broome	☀️	♠️	–	ND	FJ904979
Megacollybia platyphylla (Pers.) Kotl. & Mair	☀️	♠️	–	ND	MT535698
					MT554291
Melanoleuca cognata (Fr.) Konrad & Maubl.	☀️	♠️	–	ND	–
Melanoleuca excissa (Fr.) Singer	☀️	♠️	–	S	MT535742
Melanoleuca gramminicola (Velen.) Kühner & Maire	☀️	♠️	–	ND	JN616438

(Continued)
Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.	ITS	nLSU
Melanoleuca grammopodia (Bull.) Fayod	☺	♠	–	ND	JF908351	MH868277	
Melanoleuca strictipes (P. Karst.) Jul. Schäff.	☺	♠	–	ND	JX429116	JX429162	
Melanoleuca subpulverulenta (Pers.) Métrod	☺	♠	–	ND	JN616473	–	
Note: synonym to M. friesii (Bres.) Bon (Antonín et al., 2022) but identification probably tentative.							
Montagnea arenaria (DC.) Zeller	☺	♠	–	ND	NR_173482	MK278380	
Montagnea hausknorchtii Rabenh.	X	♠	–	ND	–	–	
Mycena acicula (Schaef.) P. Kumm.	X	♠	–	ND	MW540677	MK278389	
Mycena clarvicularis (Fr.) Gillet	X	♠	–	ND	MW540674	AF042637	
Mycena crocata (Schrad.) P. Kumm.	X	♠	–	ND	JF908492	MH868172	
Mycena filopes (Bull.) P. Kumm.	X	♠	–	ND	OM473731	–	
Mycena galericulata (Scop.) Gray	☺	♠	–	ND	DQ404392	MH866154	
Mycena galeopsis (Pers.) P. Kumm.	X	♠	Treu and Agerer (1990)	ND	FR846482	AY207250	
Mycena haematopus (Pers.) P. Kumm.	☹	X	-	ND	LT716053	KY148869	
Mycena inclinata (Fr.) Quél.	X	-	-	Desjardin et al. (2008)	MK532829	MK278392	
Mycena metata (Fr.) P. Kumm.	X	-	-	ND	MZ315004	–	
Mycena pearsoniana Dennis ex Singer	☺	-	-	ND	FN394614	FN394633	
Mycena pelianthina (Fr.) Quél.	☺	-	-	ND	FN394549	FN394626	
Mycena politanii (Bull.) P. Kumm.	X	-	Treu and Agerer (1990)	ND	MH856239	MH867768	
Mycena pura (Pers.) P. Kumm.	☺	♠	Treu and Agerer (1990)	ND	KF913023	FN394630	
Mycena rapiculis J. Favre	X	-	-	ND	–	–	
Mycena sanguinolenta (Alb. & Schwein.) P. Kumm.	X	-	Desjardin et al. (2008)	ND	MH856662	AY207257	
Mycena xantholeuca Kühner	X	♠	-	ND	MT535719	MT554310	
Myxomphalia maura (Fr.) Hora	X	-	Treu and Agerer (1990)	ND	MH856673	MH868189	
Myxomphalia maura (Fr.) Hora	X	-	Treu and Agerer (1990)	ND	MH856673	MH868189	
Neofavolus adhaerens (Alb. & Schwein.)	☺	♠	-	ND	HM356096	KJ141188	
Ossicaulis lignatilis (Pers.) Redhead & Ginns	X	-	-	ND	MZ159333	–	
Ophiobolister asterosporus (J.E. Lange) Lamoure	X	-	-	ND	FJ770399	–	
Ophiobolister asterosporus (J.E. Lange) Lamoure	X	-	-	ND	MF319071	MF318927	
Ophiobolister asterosporus (J.E. Lange) Lamoure	X	-	-	ND	AF525061	AF042610	
Ophiobolister asterosporus (J.E. Lange) Lamoure	X	-	-	ND	DQ825426	AF261397	

(Continued)
Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.	
Ossicaulis salomii Siquier & Bellanger	☀			–	ND	MT535738 MT554327
Panaeolus acuminatus (P. Kumm.) Quél.	☀			–	ND	MH856251 MH86783
Panaeolus campanulatus (L.) Quél.	☀			–	ND	JF908522
Panaeolus fimicola (Fr.) Quél.	☀			–	ND	JF908519 MK278431
Panaeolus olivaceus F.H. Moller	☀			–	ND	MH285992 MK278433
Panaeolus papilionaceus (Bull.) Quél.	☀			–	ND	MH100681 MK278435
Panaeolus plantaginiformis (Lebedeva)	☀			–	ND	MK397579 MK397601
E.F. Malysheva						
Panaeolus rickenii Hora	☀			–	ND	JF908523
Panaeolus semiovatus (Sowerby) S. Lundell & Nannf.	☀ X			–	ND	MH856675 MH868191
Panaeolus speciosus P.D. Orton	☀			–	ND	–
Panaeolus texutonicus Bride & Métrod	☀			–	ND	–
Panellus stipicus (Bull.) P. Karst.	☀ X			–	ND	–
Panus conchatus (Bull.) Fr.	☀️			–	M	OL477381 OL477382
Parmygotus perforans (Hoffm.) J.S. Oliveira	X			–	ND	MOL477381 JA406586
Paraspleistia flaccida (Sowerby) Vizzini	☀️			–	M	MZ159662 MZ675572
Parasola auricoma (Pat.) Redhead, Vilgalys & Hopple	☀️ X			–	ND	MZ859772 MH867468
Parasola hemeroba (Fr.) Redhead, Vilgalys & Hopple	X	☀️		–	DM163189 FM160720	
Parasola leiocephala (P.D. Orton) Redhead, Vilgalys & Hopple	X	☀️		–	JN943113 JQ045887	
Parasola miser (P. Karst.) Redhead, Vilgalys & Hopple	X	☀️		–	KY828619 KY928638	
Parasola plicatilis (Curtis) Redhead, Vilgalys & Hopple	X	☀️		–	KY828625 KY928643	
Parasola scamba (Maire) Petersen	☀️			–	ND	OL707198 AM946473
Phaeomarasmius erinaceus (Fr.) Scherff. ex Romagn.	X	☀️		–	MH856667 MH868183	
Phaeomematoloma myosotis (Fr.) Bon	X			–	ND	AF195599 AF195599
Phellorinum herculana (Pers.) Kreisel	X			–	ND	JX984569
Phleomana specerae (Fr.) Redhead	X			–	ND	MH856159 MK278448
Pholiota adiposa (Batsch) P. Kumm.	☀️			–	SM	MT353689 MT354285
Pholiota astragalina (Fr.) Singer	X			–	ND	MT187979 MT228845
Pholiota gummiosa (Lasch) Singer	☀️ X			–	ND	MH861987 MH873679
Pholiota highlandensis (Peck) A.H. Sm. & Heleser	X	☀️		–	MH148872 MH867483	
Pholiota jahnii Tjall.-Beuk. & Bas	X			–	ND	MT535737 MT554326
Pholiota populnea (Pers.) Kürper & Tjall.	☀️ X			–	ND	MG735315
Pholiota scamba (Fr.) M.M. Moser	X			–	ND	JF908585
Pholiota spumosa (Fr.) Singer	☀️ X			–	ND	MN209776 MN251159

(Continued)
Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.
Pholiota squarrosa (Oeder) P. Kumm.	☺ (edible but very tough; considered poisonous in China)			ND	MN209778 MN251161
Pholiota squarrosoides (Peck) Sacc.	X (considered edible/poisonous in China)			ND	JF908591 AF261641
Pholiotoxina aporos (Kits van Wav.) Clémençon	X	♠		ND	JX968260 JX968376
Pholiotina arrhenii (Fr.) Singer	X	♠		ND	JX968261 JX968377
Pholiotina dryinoides (Cooke) M.M. Moser	X	♠		ND	JX968150 JX968267
Pholiotina vexans (P.D. Orton) Bon	X	♠		ND	JX968265 JX968380
Pholiotina striipes (Cooke) M.M. Moser	X	♠		ND	JX968150 JX968267
Pholiotina vexans (P.D. Orton) Bon	X	♠		ND	JX968265 JX968380
Pleurotus ostreatus (Jacq.) P. Kumm.	☺	♦		SM	MT535734 MT554324
Pleurotus djamor (Rumph. ex Fr.) Boedijn	X	♦		SM	EU424306 EU365661
Pluteus umbrosus (Pers.) P. Kumm.	X	♦		ND	JX968261 JX968377
Pluteus pellitus (Pers.) P. Kumm.	X	♦		ND	JX968261 JX968377
Pluteus petasatus (Fr.) Gillet	X	♦		ND	JX968261 JX968377
Pluteus exiguus (Pat.) Sacc.	X	♦		ND	JX968261 JX968377
Pluteus lentinus (Schaeff.) P. Kumm.	X	♦		ND	JX968261 JX968377
Pluteus semibulbosus (Lasch) Gillet	X	♦		ND	JX968261 JX968377
Pluteus thomsonii (Berk. & Broome) Dennis	X	♦		ND	JX968261 JX968377
Pluteus umbrosus (Pers.) P. Kumm.	X	♦		ND	JX968261 JX968377
Pogonoloma macrocephalum (Schulz.) Sánchez-García	X	♦		ND	JX968261 JX968377
Psathyrella bivelata Contu	X	♦		S	MT535693 MT554288
Psathyrella clavennis (Berk. & Broome) P.D. Orton	X	♦		ND	DQ389683 DQ389683

(Continued)
Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.	Notes
Psathyrella fatua (Fr.) Konrad & Maubl.	X	✗	–	ND	MT535695 MT554290	
Psathyrella helleboresensis D. Deschuyteneer & A. Melzer	X	✗	–	ND	MT535716 MT554308	
Psathyrella laevissima (Romagn.) Singer	X	✗	–	ND	– –	
Psathyrella microrhiza (Lasch) Konrad & Maubl.	X	✗	–	ND	MH856265 MH867801	
Psathyrella multipedata (Peck) A.H. Sm.	X	✗	–	ND	GQ249282 GQ249291	
Psathyrella pennata (Fr.) A. Pearson & Dennis	X	✗	–	ND	AM712259 AM712259	
Psathyrella piluliformis (Bull.) P.D. Orton	☺	✗	–	ND	FN396136 FN396185	
Psathyrella prona (Fr.) Gillet	X	✗	–	ND	MH856268 MH867805	
Psathyrella pseudogracilis (Romagn.) M.M. Moser	X	✗	–	ND	MH856200 MH867728	Edibility unknown by Heleno et al. (2012)
Pseudoclitocybe cyathiformis (Bull.) Singer	☺	☺	–	ND	MT535721 MT554311	
Pseudosperma perlatum (Cooke) Matheny & Esteve-Rav.	☹	☼	–	ND	JQ408767 JQ319698	
Pseudosperma rimosum (Bull.) Matheny & Esteve-Rav.	☹	☼	–	ND	MF278770 EU600853	
Resupinatus applicatus (Batsch) Gray	X	✗	–	ND	JF908672 JF908667	
Resupinatus spinulatus (Peck) A.H. Sm.	☺	☺	–	ND	MW172321 MW182481	
Rhodocollybia acetolens Rauschert	☺	☼	–	ND	– –	
Rhodocollybia alutacea (Pers.) Fr.	☺	☼	–	ND	SM JF908676 –	
Rhodotus palmatus (Bull.) Maire	X ☼	✗	–	ND	MK287617 MK287618	(maybe poisonous; edibility considered unknown by Heleno et al. (2012))
Russula acetales Rauschert	☺	☼	–	ND	– –	
Russula atropurpurea Peck [non R. atropurpurea (Krombh.) Britzelm. (= R. undulata Velen.)]	☺	☼	–	ND	JF908691 KU237550	
Russula atrovirens Quél.	X	☺	–	ND	KX579812 KX812877	
Russula brunneoviolacea Crawshay	☺	☼	–	ND	AM113956 –	
Russula carminipes J. Blum	☺	☼	–	ND	– KU237523	

(Continued)
Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.	ITS	nLSU
Russula claroflava Grove	☺	☺	–	ND	KT933997	KT933858	
Russula cyanoxantha (Schaeff.) Fr.	☺	☺	(chemiluminescence: Bondar et al., 2012; Gitelson et al., 2012)	S	MW646981	MW646993	
Russula delica Fr.	☺	☺	(chemiluminescence: Bondar et al., 2012; Gitelson et al., 2012)	W	KX812842	KX812864	
Russula emetica (Schaeff.) Pers.	☺ ☺	☺	–	M	KX813352	KX812896	
(European R. emetica extremely pungent and inedible/toxic; reported by Kaewnarin et al. (2016) as popular edible mushroom in Thailand)							
Russula emeticolor J. Schaeffer	☺	☺	–	S	MT533680	MT554277	
Russula farinipes Romell	X	☺	–	ND	KY800361	KU237561	
(edible/poisonous in China)							
Russula foetens Pers.	☺ ☺	☺	(chemiluminescence: Gitelson et al., 2012)	ND	KT934016	KT933877	
(may cause health problems)							
Russula gravolens Romell	☺	☺	–	ND	KU205298	–	
Russula grisea Fr.	☺	☺	–	ND	MT738286	MT738262	
Russula heterophylla (Fr.) Fr.	☺	☺	–	ND	AF418609	AF325309	
Russula integra (L.) Fr.	☺	☺	–	M	KYS82682	KX812899	
Russula ionochlora Romagn.	☺	☺	–	ND	MW683795	KU237508	
Russula lilacea Quél.	☺	☺	–	ND	JN944005	JN940592	
Russula luteotacta Rea	X	☺	–	ND	JF908652	KU237512	
(edible/poisonous in China)							
Russula magnificans Fr.	☺	☺	–	S	–	–	
Russula ochroleuca Pers.	☺	☺	(chemiluminescence: Bondar et al., 2012; Gitelson et al., 2012)	ND	HM189900	KU237519	
(may cause health problems)							
Russula ochroleucoides Kauffman	X	☺	–	ND	–	–	
Russula olivacea Pers.	☺	☺	–	M	AF418635	KU237492	
Russula pectinata Fr.	X	☺	–	ND	MW355005	–	
Russula pectinatoides Peck	☺ ☺	☺	(edible only when very young)	ND	EU599815	KU237462	
Russula persicina Krombh.	X	☺	–	ND	HE687094	KU237494	
Russula perlecta Marrill	☺	☺	–	ND	–	–	
Russula puellaris Fr.	☺	☺	–	ND	AF418628	KU237515	
Russula quelert Fr.	☺	☺	–	ND	KT934007	KT933868	
Russula risigallina (Ratsch) Sac.	☺	☺	–	ND	JF908685	–	
Russula rosea Maire	☺	☺	–	ND	KT933987	KT933848	
Russula rosea Pers.	☺	☺	–	S	JN944003	JN940602	

(Continued)
Species	Edibility	Ecological guild	Luminescent	Antioxidant potential	GenBank accession no.
Russula silvestris (Singer) Reumaux	X	☀	–	ND	KX579800
Russula solis Fed. & Winge	X	☀	–	ND	AF418627 JN940606
Russula sororia (Fr.) Romell	X	☀	–	ND	KF318053
Russula torulosa Bro.	X	☀	–	ND	MZ005531
Russula versicolor Jul. Schaff.	☀	☀	–	ND	JN944009 JN940594
Russula verna Reumaux Fr.	☀	☀	–	ND	FR852104 AF325321
Russula vinosophorpesa Jul. Schaff.	X	☀	–	ND	FR852115
Russula violacea (Schaeff.) Fr.	☀	☀	–	ND	SMW
Russula saxempelina (Schaeff.) Fr.	☀	☀	–	ND	W
Saproamanita codinae (Maire) Redhead, Vizzini, Drehmel & Contu	☀	☀	–	ND	– MK277524
Sarcomyxa serotina (Pers.) V. Papp	☀ ☀	☀	–	ND	MH856703 MH866220
Simocybe centunculosa (Fr.) P. Karst.	☀	☀	–	ND	MT535746 KTT15786
Sphaugarus paluster (Peck) Redhead & V. Hofst.	X	☀	–	ND	KP192547 MH873802
Strophilurus eaeulentus (Wolfen) Singer	☀	☀	–	W	MH104094 AY207299
Strophilurus tenacellus (Pers.) Singer	X	☀	–	ND	MF063146 MF063102
Stropharia aeruginosa (Curtis) Quel.	☀ ☀ X	☀	–	ND	MW492534 MW492637
(edible in the Czech Republic)					
Stropharia coronilla (Bull.) Quel.	☀	☀	–	ND	MH856747 MH868269
Stropharia melanosperma (Bull.) Quel.	☀	☀	–	ND	– –
Tricholoma acerbum (Bull.) Quel.	☀ ☀ X	☀	–	M	MH628231 MK278598
(inedible in the Czech Republic)					
Tricholoma argyracae (Bull.) Gillet	☀	☀	–	ND	GU060278 MK278614
Tricholoma caligatum (Win.) Ricken	☀	☀	–	ND	KU058510 KU058548
Tricholoma cingulatum (Alm. et ex Fr.) Jacobasch	☀	☀	–	ND	MH207811 AY207308
Tricholoma equestre (L.) P. Kumm.	☀ ☀	☀	–	SM	EU186278 AM946471
(considered poisonous last years, but may include more species)					
Tricholoma fulvum (Fr.) Bigeaz & H. Guill.	☀ ☀ X	☀	–	ND	KU058514 KU058552
(inedible in the Czech Republic)					
Tricholoma laccatum (Fr.) Gillet	☀	☀	–	ND	LT000131 –
(considered edible in China)					
Tricholoma orisubens Quel.	☀	☀	–	ND	DQ389724 DQ389734
Tricholoma psamomopus (Kalchbr.) Quel.	X	☀	–	ND	AF377241
Tricholoma robustum (Alb. & Schwein.) Ricken	☀ ☀ X	☀	–	ND	AB696699
(inedible in southern Europe)					
Tricholoma scalpturatum (Fr.) Quel.	☀	☀	–	ND	JN389305 JN389350
(considered poisonous in China)					
Tricholoma sulphureum (Bull.) P. Kumm.	☀	☀	–	M	AY462032 AY462040
Tricholoma terreum (Schaeff.) P. Kumm.	☀	☀	–	MW	EU653301 EU653305

(Continued)
Edibility, ecological guild and luminescence

The edibility rank of the species (edible, poisonous, inedible) and the ecological guilds (soil saprotrophic, ectomycorrhizal, leaf/litter-inhabiting, wood-inhabiting, parasitic) were assigned based on published literature as well as authors’ knowledge. The edibility of many species is highly subjective and evaluated differently in various countries. Here, the majority of our data are based on central and southern European literature, but even this literature was not necessarily confirmative. Therefore, for some species, more than one rank assignment was inevitably used. Besides the categories “edible” or “poisonous,” category “inedible” was also recognize (noted with symbol X in Table 1) for the species with an unpleasant taste, very small and tiny basidiomata and not usually collected for culinary purposes. Luminescence (bio/chemiluminescent) data were extracted from published literature as mentioned in Table 1 for each species.

Antioxidant properties

Antioxidant properties of the species were obtained via published references as well as own experiments performed in the present study (Tables 1, 2; Supplementary Table 1). A thorough literature survey was performed to extract and summarize the available data on the antioxidant properties of the agaric species. Published references were searched via Google Scholar, PubMed, and other standard repositories. Each literature was scrutinized carefully, avoiding poor quality and ambiguous data. Disqualified literature, unpublished data, and papers published in non-standard journals were removed from our analyses. In total, ca. 300 literature were surveyed and ca. 170 references were cited in this work and in Supplementary material. The majority of studies reported the antioxidant potential as EC₅₀ values, i.e., half maximal effective concentration, based on DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) assays. To have an approximate comparison of the antioxidant potential of the species, we tentatively categorized the EC₅₀ values as strong, moderate, and weak. For this, the EC₅₀ values reported in different studies. We preferred to keep the data as is for any future reference so that we assigned more than one code to classify the antioxidant potential of these species (e.g., SM standing for strong to moderate). (In a number of studies the EC₅₀ values less than 1 mg/ml were considered as “strong” (S), EC₅₀ values ranging from 1 to 10 mg/ml as “moderate” (M), and EC₅₀ values more than 10 mg/ml were tentatively considered as “weak” (W) antioxidants (Table 1). For several species, we found different EC₅₀ values reported in different studies. We preferred to keep the data as is for any future reference so that we assigned more than one code to classify the antioxidant potential of these species (e.g., SM standing for strong to moderate).
antioxidant potential had been expressed only as radical scavenging activity% (RSA %). For these, the RSAs >80% were hesitantly considered as strong, RSA 50%–80% as moderate, and RSA < 50% were tentatively considered as weak, paying careful attention also to the values from the antioxidant standards; see Supplementary Table 1). In the cases where the antioxidant potential values were contrasting in different studies, we preferred to keep the data as is for any future reference, and therefore the antioxidant potential of the corresponding species are shown here with the combined codes SM, MW, and SMW, where applicable (Table 1).

Dried basidiomata from 24 species were sampled and examined for their antioxidant potential via ABTS assay following Re et al. (1999). Voucher samples were deposited at the Iranian Cryptogamic Herbarium (ICH) herbarium (acronym by Index Herbariorum) or at MG personal collection. The ABTS solution (7 mM) was prepared in 2.45 mM potassium sulfate and was kept at room temperature in the dark for 16 h. The mixture was then mixed with phosphate-buffered saline (PBS) as a control, and the absorbance reached 0.7 ± 0.02 at 734 nm. The extract samples with final concentrations of 0.01, 0.025, 0.05, 0.075, and 0.1 mg/ml were mixed with 980 μl of Trolox.

Table 2: The EC50 values and the percentage of radical scavenging activity (RSA) obtained by ABTS assays in this study.

Species	Voucher	RSA % at different concentrations	EC50 mg/ml				
		0.01 mg/ml	0.025 mg/ml	0.05 mg/ml	0.075 mg/ml	0.1 mg/ml	
Agaricus arvensis	Ghobad-Nejhad 4295	14.22	22.07	32.35	43.63	54.92	0.10 ± 0.003
Agaricus bitorquis	Ghobad-Nejhad 4284	16.60	22.75	35.67	47.58	59.10	0.08 ± 0.003
Agaricus todomasus	Ghobad-Nejhad 4277	26.85	29.78	37.33	43.88	50.43	0.09 ± 0.021
Agaricus pseudoplatensis	Ghobad-Nejhad 4278	38.94	39.54	43.20	45.86	48.13	0.11 ± 0.004
Agrocybe dura	Ghobad-Nejhad 4299	26.32	27.48	30.41	31.34	33.27	0.31 ± 0.004
Armillaria mella	Ghobad-Nejhad 4394	14.25	15.25	16.79	18.53	20.11	0.55 ± 0.016
Cantharellus alborufescens	Ghobad-Nejhad 4408	11.45	12.07	12.83	13.79	14.66	1.09 ± 0.06
Coprinopsis atramentaria	Ghobad-Nejhad 4406	7.54	9.42	12.15	15.68	18.81	0.34 ± 0.021
Coprinopsis comatus	Ghobad-Nejhad 4407	8.17	10.15	13.45	16.74	19.03	0.34 ± 0.028
Cortinarius persoonianus	Ghobad-Nejhad 4206	17.44	19.24	23.25	25.25	28.26	0.27 ± 0.019
Gymnopilus spectabilis	Ghobad-Nejhad 4207	18.76	21.13	25.62	29.91	33.20	0.20 ± 0.001
Hymenopellis radicata	Ghobad-Nejhad 4204	20.19	20.70	21.50	22.09	22.78	1.05 ± 0.06
Hypholoma fasciculare	Ghobad-Nejhad 4201a	29.47	35.57	48.41	60.25	72.09	0.05 ± 0.007
Lentinus tigrinus	Ghobad-Nejhad 4397	7.14	8.09	9.68	11.26	12.16	0.75 ± 0.01
Leucogaricus leucothites	Ghobad-Nejhad 4279	19.46	20.80	22.90	25.10	27.50	0.35 ± 0.001
Melanoleuca exscissa	Ghobad-Nejhad 4375	28.27	29.61	31.50	34.07	36.90	0.24 ± 0.009
Pholiota aurivella	Ghobad-Nejhad 600	38.83	39.48	40.61	41.54	42.84	0.26 ± 0.016
Pleurotus cornucopiae	Ghobad-Nejhad 4308	24.75	25.60	27.23	28.77	30.32	0.41 ± 0.001
Pleurotus eryngii	Ghobad-Nejhad 1086	32.30	33.14	35.26	37.11	38.40	0.26 ± 0.011
Pleurotus ostreatus	Ghobad-Nejhad 4403	6.66	8.20	10.58	12.85	15.33	0.46 ± 0.003
Pleurotus cervinus	Ghobad-Nejhad 4271	13.14	18.16	27.11	34.96	44.83	0.11 ± 0.002
Panaeolus bivelata	Ghobad-Nejhad 4303	36.34	37.11	38.40	39.69	40.18	0.31 ± 0.062
Russula emetica	Ghobad-Nejhad 4149	44.45	45.19	46.42	47.66	48.01	0.14 ± 0.028
Xerula pudens	Sohrabi 30619	31.78	33.55	35.80	37.55	39.55	0.22 ± 0.002
Trolox						0.023 ± 0.011	
ABTS solution. The absorbance at 734 nm was measured after 6 min. The percentage of radical scavenging activity was calculated by the following equation, where A stands for absorbance (Öztürk et al., 2011):

\[
\text{Scavenging activity (\%)} = \frac{(A \text{ control} - A \text{ sample})}{A \text{ control}} \times 100
\]

The EC_{50} values were obtained through interpolation from linear regression analysis (Supplementary Figure 1). Trolox was used as a positive control at different concentrations (0.005, 0.01, 0.015, 0.02, 0.025, and 0.03 mg/ml).

Results

The results of our survey on the resources of agaric species in Iran are summarized in Table 1. Altogether, 558 agaric species from five orders were surveyed for their resources of edible and poisonous species, their ecological guilds, bioluminescence, and antioxidant potential. The two species Conocybe olivaceopileata and Inocybe ionolepis were added here to the Iranian mycota (see Table 1).

Phylogeny

The Agaricales dataset consisted of 428 taxa and 1,341 characters of which, 243 characters were constant, 144 variable, and 954 characters were informative. The best-fit evolutionary model suggested by MrModeltest was GTR + I + G for each of the LSU and ITS partitions. The Agaricales phylogram is shown in Figure 1. Nineteen families were phylogenetically retrieved with moderate to good posterior probabilities (PPs) and were shown in colored boxes, while the rest of the taxa were incertae sedis or received low to moderate branch support.

The species with antioxidant data were distributed in all the families shown in colored boxes except for the two families Entolomataceae and Inocybaceae (Figure 1). For some families such as Bolbitiaceae, Marasmiaceae, and Tubariaceae, there was only a single species with antioxidant activity, while other families such as Agaricaceae, Psathyrellaceae, and Pleurotaceae contained several antioxidant species.

Dataset 2 (Cantharellales, Polyporales, Russulales) consisted of 71 taxa and 1,528 characters of which, 279 characters were constant, 347 variable, and 902 characters were informative. The best-fit evolutionary model as suggested by MrModeltest was GTR + G for each of the LSU and ITS partitions. The phylogram obtained from the analyses of dataset 2 is presented in Figure 2. The orders Polyporales, Russulales, and Cantharellales were retrieved as moderate to well-supported monophyletic clades (PPs 0.75, 0.94, and 1.00, respectively). (For Polyporales, the two families Panaceae and Polyopaceae were not retrieved. Moreover, Panellus stipitatus found a position close to the outgroup Contumyces rosellus, and we could not solve this.) The species with antioxidant data were distributed within the three orders in the phylogram (Figure 2). Out of six Cantharellales agaric members in Iran (Ghobad-Nejhad et al., 2020), four species have antioxidant data (Figure 2; Craterellus cinereus had no good LSU/ITS, so is missing in the phylogeny here). Polyporales has nine agaric species in Iran, four of which possess antioxidant activity (Figure 2). Russulales has 60 agaric species in Iran (Ghobad-Nejhad et al., 2020) from which, 16 species have antioxidant data (Figure 2; Table 1). Contumyces rosellus is the only Hymenochaetales agaric in Iran and has no antioxidant data.

Altogether, there were 50 agaric species lacking both ITS and LSU sequences and so did not appear in the phylogenetic analyses (Table 1); these species also lacked antioxidant data, except for Russula nigricans which was scored as a “strong” antioxidant species (Table 1).

Edibility, ecological guild, and luminescence

Results of the survey on edibility, ecological guilds, and luminescence of agaric species occurring in Iran are shown in Table 1 and Figures 3, 4. It is revealed that about 189 species of agars in Iran can be classified as edible, 128 species as poisonous, and 271 species as inedible (Table 1; Figure 3). Moreover, 10 species can be assigned as edible only if well-cooked, whereas the edibility of 30 species is uncertain or unknown.

Concerning ecological guilds, our results show that about 254 species of agars in Iran are soil saprotrophic, 172 species ectomycorrhizal, 146 species wood-inhabiting, 18 species leaf/litter-inhabiting, and nine species are parasitic (Table 1; Figure 4). Parasitic species include Armillaria borealis, A. cepistipes, A. gallica, Collybia tuberosa, Pleurotus eryngii, P. nebrodensis which are sapro-parasitic, Gymnopus fusipes which is wood-inhabiting parasitic, and Asterophora lycoperdoides which grows on basidiomata of Lactarius and Russula species (Table 1).

Among 558 agaric species in Iran, 19 species are categorized as luminescent (Table 1). These include Armillaria (four spp.), Collybia tuberosa, Flammulina velutipes, Mycena (six spp.), Omphalotus olearius, Panellus stipitatus, and Russula (five spp.). The six species with chemiluminescence include Russula anthracina, R. cyanoxantha, R. delica, R. foetens, R. ochroleuca, as well as Panellus stipitatus.

Antioxidant potential

Results of our survey on the antioxidant potential of agaric species occurring in Iran are shown in Table 1 and Figure 5 (see also Supplementary Table 1 for details on the antioxidant potential of the species and the corresponding references). According to the results, antioxidant activity data is available for 113 species phylogenetically distributed in four orders (Agaricales, Cantharellales, Russulales, Polyporales).
and 21 agaric families including 17 families in the Agaricales (Strophariaceae, Hymenogastraceae, Tubariaceae, Bolbitiaceae, Cortinariaceae, Lyophyllaceae, Tricholomataceae, Psathyrellaceae, Agaricaceae, Omphalotaceae, Marasmiaceae, Physalacriaceae, Amanitaceae, Pluteaceae, Mycenaceae, Pleurotaceae, Hydnangiaceae; Figure 1), as well as Hydnaceae (=Cantharellaceae), Russulaceae, Polyporaceae, and Panaceae (Figure 2, families not shown on the tree). However, 445 species still lack information on their antioxidant potential (for a handful of species, the available antioxidant values in the literature had been expressed only by other methods such as TEAC and FRAP; as far as these cases were very few, they were not taken into account here, to keep the rest of the data comparable). The antioxidant potential of 24 species was assayed in this study and their EC_{50} values are reported in Table 2. Species assayed for the first time in this study included: Agaricus iodosmus, A. pseudopratensis, Agrocybe dura, Cantharellus alborufescens, Cortinarius persoonianus, Hymenopellis radicata, Melanoleuca excissa, Psathyrella bivelata, Russula emeticolor, and Xerula pudens (Table 2; Supplementary Table 1). In general, the EC_{50} values of the agaric species ranged between 0.0015 mg/ml (for Psathyrella candolleana) up to 31.42 mg/ml (for Tricholoma terreum).

Among the 113 species having antioxidant data, 27 species could roughly be classified as “strong,” 25 species as “strong to moderate,” 27 species as “moderate,” nine species as “moderate to weak,” and 20 species could be tentatively regarded as “weak” antioxidants (Figure 5). Some of the species in the S category are Agaricus arvensis, Agrocybe dura, Amanita rubescens, Cantharellomyces candolleanus, Clitocybe nebularis, Coprinellus micaceus, Coprinopsis picaea, Craterellus tubaeformis, Gymnopilus spectabilis, Hygrophorus eburneus, Hypsizygus ulmarius, Macrocybe gigantea, Marasmiellus peronatus, Mycenastrum corium, Russula anthracina, Russula cyanoxantha, Russula

![Phylogram from the combined nLSU+ITS sequence dataset representing the phylogenetic relationships of Iranian Agaricales. Posterior probabilities (PPs) ≥0.8 are shown as light lilac dots on the nodes. Terminals in red are species with antioxidant activity and the letters inside brackets are the tentative antioxidant codes: S, strong; M, moderate; W, weak (see the text for full details).](image-url)
emeticolor, Russula nigricans, Russula rosea, and Xerula pudens (Table 1).

The overall phylogenetic distribution of the agaric species with antioxidant data is shown in Figures 1, 2. Russula nigricans was the only species in our dataset with antioxidant data but lacked LSU/ITS DNA sequences in GenBank, so could not be used in our phylogenetic analyses.

Discussion

In this study, we comprehensively investigated the resources of agarics in Iran. Indeed, no published data have yet been available on number of recorded edible, poisonous, and other agarics in Iran, so the present work fills in these gaps. It is shown that there are currently about 189 edible, 128 poisonous, 254 soil
saprotrophic, 172 ectomycorrhizal, 146 wood-inhabiting, 19 leaf/litter-inhabiting, 9 parasitic, and 19 luminescent agaric species in the country. The two species Conocybe olivaceopileata and Inocybe ionolepis were newly added to the Iranian mycota, new DNA sequences were obtained from Iranian samples, and the first phylogenetic reconstruction was provided for agarics of Iran. Evidently, this work is not final and therefore further studies of Iranian fungal diversity would add new species to the list presented here. About 500 agaric species belonging to the five orders Agaricales, Cantharellales, Polyporales, Russulales, and Hymenochaetales were phylogenetically analyzed based on nLSU + ITS sequence datasets. Thorough analyses with additional gene regions and vouched samples must be utilized in the future to resolve the phylogenetic relationships of Iranian agarics. Yet, the preliminary phylogenetic analysis of agaric species presented here would help to inspire the investigation of many taxa in need of taxonomic revision. Phylogeny backbones can be used for visualization of the phylogenetic distribution of species possessing particular characteristics, herein, antioxidant potential, but also other features in the future. For instance, phylogenetic assessments have been used to screen the pleuromutilin-producing basidiomycete species (Harley et al., 2009), fungal strains capable of degrading industrial compounds (Navarro et al., 2021), or other natural products (Adamek et al., 2019).

For a few species, the edibility assignment was based on own observation in Iran, but as stated earlier, most of the species were categorized based on available knowledge on central and southern European species. (It might be relevant to note that a number of previous studies have shown a high similarity of the Iranian mycota to that of Europe, e.g., Ghobad-Nejhad et al., 2012; Ghobad-Nejhad and Bernicchia, 2019.) Basically, edibility assignments should always be regarded with caution and it is generally recommended to avoid consuming raw or insufficiently identified mushrooms. There are still noticeable gaps in the knowledge of edible/poisonous mushrooms identification in Iran and the level of education, public awareness, and citizen science is far from medium standards. Concerning usage of edible fungi in Iran, published references are lacking, and our available data is fragmentary. In the reports and statistics on mushroom poisoning in Iran, there is no proper documentation of the species involved or at best, the species are only ambiguously characterized (Kiarsi et al., 2019).

The present work calculated as many as about 172 ectomycorrhizal agaric species for Iran. Ectomycorrhizal fungi are essential components of forest ecosystems to supply the symbiont trees with water and nutrients such as phosphorus and nitrogen, and therefore are highly important in forest sustainability (Varma and Hock, 2013). A large number of ectomycorrhizal agarics are also edible and may be harvested in the wild for culinary use, so they are in need of immediate conservation actions (Vaario and Matsushita, 2021); this is the case, especially with the Cantharellus species in northern Iran (Parad et al., 2018, 2020).

In this study, we listed 146 wood-inhabiting agaric species for Iran. There have been several studies on the diversity and taxonomy of wood-inhabiting aphylophoroid fungi in Iran (e.g., Hallenberg, 1981; Ghobad-Nejhad and Hallenberg 2012; Amoopour et al., 2016; Ghobad-Nejhad and Langer, 2017; Nazari Mahroo et al., 2018; Ghobad-Nejhad and Bernicchia, 2019) but agarics growing on wood in Iran have not been studied...
systematically. Wood rotting fungi play a key role in terrestrial carbon cycling and have high potential in biotechnology, enzyme industry, biorefinery, and bioremediation of waste material and recalcitrant compounds (Gadd, 2001; Nguyen et al., 2018; Mäkelä et al., 2021). While Polyporales members are best known for their wood decomposition ability, genomic studies have revealed that several Agaricales taxa have evolved the enzymatic machinery comparable to the white-rot Polyporales (Floudas et al., 2020; Ruiz-Dueñas et al., 2020).

Another aspect surveyed in this study for the Iranian agaric species was bioluminescence. Bioluminescence, i.e., the ability of organisms to emit visible light, has been developed independently in the evolution of different organisms. Concerning fungi, 109 fungal taxa are known to exhibit bioluminescence all of which (except one Xylariales) are white-spored saprotrophic Basidiomycota distinguished in four phylogenetic lineages (Chew et al., 2015; Ke and Tsai, 2022) all sharing the same type of luciferin and luciferase (Oliveira et al., 2012). Interestingly, it has been shown that luminescence could be linked to the antioxidant/radical scavenging defense mechanism against some environmental stress factors (Vydryakova and Bissett, 2016; Oba et al., 2017). Moreover, the fungal bioluminescence capacity can be used in environmental biomonitoring of metals or organic compounds and to develop toxicity tests (Ke and Tsai, 2022).

In this work, a thorough survey was done to reveal the antioxidant potential of 558 agaric species and a new approach was used to combine antioxidant data with phylogeny of the species. Ten species were subjected to antioxidant analyses for the first time, belonging to the genera Agaricus, Agrocybe, Cantharellus, Cortinarius, Hymenopellis, Melanoleuca, Psathyrella, Russula, and Xerula. ABTS assay is one of the most frequently used methods for quantification of antioxidant activity of mushrooms. Numerous antioxidant assays have been introduced which are usually classified into two groups based on the mechanism of action: single electron transfer and hydrogen atom transfer (Tan and Lim, 2015; Xiao et al., 2020). Compared to other methods, ABTS has the advantage of involving more or less both mechanisms (Prior et al., 2005). Yet, more examinations are required to fully investigate the antioxidant capacity of the species studied here, and to quantify and characterize the underlying bioactive compounds. Here, we could roughly assume antioxidant data for 20% of agaric species (113 spp.), but noted that 80% of the species (445 spp.) have no antioxidant data. This is noteworthy compared to the fact that antioxidant tests are among the most popular bioactivity assays and it may show that macrofungi have remained little studied in this regard. The highest antioxidant capacities (the lowest EC\textsubscript{50} values) were shown by the species categorized as S (27 spp.) and then as SM (25 spp.; Table 1; Figure 5). As noted earlier, in several cases, various EC\textsubscript{50} values had been reported in different studies for some species, so that we assigned more than one code for them. We emphasize that such classification is approximate and for detailed comparisons, more precise methods are recommended to be applied. For five species, the EC\textsubscript{50} measures ranged significantly, in a way that the code assignment could only be expressed as SM: Pleurotus djamor, P. eringii, P. ostreatus, P. pulmonarius, and Russula virescens. Of course, differences in the solvents, standards, modifications in the assays procedures, and even identification issues can account for the different measures under the same species name. Ideally, the identity of the voucher specimens should be fully characterized and the species should be assayed with exactly the same procedure so as to be able to have the best quality comparisons. In general, for the studies where both ABTS and DPPH assays had been conducted, ABTS values seemed to slightly outperform the DPPH values, showing lower EC\textsubscript{50} measures. Many of the species in the S or “strong” antioxidant category are edible: Agaricus arvensis, Agrocybe dura, Amanita rubescens, Candolleomyces candolleanus, Clitocybe nebularis, Craterellus tubaeformis, Hygrophorus eburneus, Hymenogastrum, Macrocybe gigantea, Russula anthracina, R. cyanoxantha, R. emeticolor, R. nigricans, R. rosea, and Xerula pudens (Table 1). Oxidative stress is the root of a cascade of numerous acute and chronic human diseases (Kosanic et al., 2013). Diets rich in natural antioxidants enforce the native defense system and protect against oxidative damage (Ferreira et al., 2009). Mushroom species that are edible and possess high level of biological activities with perspectives on promoting human health are considered noteworthy candidates for developing functional foods and nutra-pharmaceutical products (Kozarski et al., 2015; Lu et al., 2020; Niego et al., 2021; Shaffique et al., 2021; El Sheikh, 2022). It is evident that thorough analyses are needed to fully characterize the mycochemical constitutes of such species and their various bioactivities.

Our results pave the avenue for advanced studies on edible, poisonous, saprotrophic, ectomycorrhizal, wood-inhabiting, parasitic, luminescent, and antioxidant species of agarics of Iran. Twenty percent of the Iranian agaric species possess antioxidant activity, phylogenetically distributed in four orders and 21 agaric families. About 5% of the antioxidant species can be considered strong antioxidants, many of which are also edible and could be utilized for the development of functional foods. Various edible agaric species are grown commercially in the world, while only 1–2 are commonly grown in Iran (personal comm.). Ectomycorrhizal and wood-inhabiting species are important components of forest sustainability. Forests in Iran are very scanty, comprising less than 10% of the total country area, and are on the verge of severe depletion due to numerous anthropological and environmental threats. Yet, Iranian old-growth forests, categorized as part of the northern hemisphere glacial refugia (Ghobad-Nejhad et al., 2012, 2020), harbor a rich reservoir of agaric fungi with diverse characteristics and beneficial aspects. Resources of Iranian agarics provide valuable opportunities for biotechnology and mycochemistry, and should be regarded for preservation and habitat conservation. Our preliminary phylogenetic trees would guide the selection of agaric taxa to be examined in the future for taxonomic revisions, biotechnological applications, and
applied phylogeny studies. The thorough survey of antioxidant data of 558 agaric species would provide the state of the knowledge on agarics examined so far and the remaining gaps to be filled in the future.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary material.

Author contributions

MG-N conceptualized and designed the study, performed the molecular study and provided the first draft. VA contributed to the trait assignments. MG-N, VA, and EL wrote the manuscript. MG-N and MM performed the experiments. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by the Center for International Scientific Studies & Collaboration (CISSC), Ministry of Science, Research, and Technology of Iran. The studies of VA were enabled by the support provided to the Moravian Museum by the Ministry of Culture of the Czech Republic as part of its long-term conceptual development program for research institutions (DKRVO, ref. MK000094862).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2022.1015440/full#supplementary-material

References

Adamek, M., Alaniyari, M., and Ziemert, N. (2019). Applied evolution: phylogeny-based approaches in natural products research. Nat. Prod. Rep. 36, 1295–1312. doi: 10.1039/C9NP00027E

Amoozpour, M., Ghobad-Nejhad, M., and Khodaparast, S. A. (2016). New records of polyopes from Iran, with a checklist of polyopes for Gilan province. Czeh Mycol. 68, 139–148. doi: 10.33585/cmy.68203

Antonín, V., Dvorská, O., Jančovičová, S., Pata, R., Kudláček, T., and Tomšíkovič, M. (2022). Multiflous phylogeny and taxonomy of European Melanoleuca subgenus Melanoleuca. Mycologia 114, 114–143. doi: 10.1080/00275514.2021.1966246

Asatiani, M. D., Eliajashvili, V., Songulashvili, G., Reznick, A. Z., and Wasser, S. P. (2010). “Higher basidiomycetes mushrooms as a source of antioxidants” in Progress in Mycology. eds. M. Rai and G. Kövics (Springer: Dordrecht), 311–326.

Ashm, B., and Ozturk, S. (2011). Phenolic composition and antimicrobial and antioxidant activities of Leucangicurus leucotites (Vittad.). Water J. Med. Food, 14, 1419–1424. doi: 10.1089/jmf.2010.0259

Bauer, R., Begerow, D., Sampato, J. P., Weiss, M., and Oberwinkler, F. (2006). The simple-septate basidiomycetes: a synopsis. Mycol. Prog. 5, 41–66. doi: 10.1007/s11557-006-0502-0

Bermudes, D., Petersen, R. H., and Neilson, K. H. (1992). Low-level bioluminescence detected in Mycena haematopus basidiocarps. Mycologia 84, 799–802. doi: 10.2307/3760392

Bondar, V. S., Shimomura, O., and Gitelson, J. I. (2012). Luminescence of higher mushrooms. J. Siberian Univ. Biol. 5, 331–351. doi: 10.17516/1997-1389-0127

Buswell, J. A. (2018). “Mushroom-mediated protection from oxidative damage to DNA” in Biol. Macromol. eds. B. Singh, Lallawmsanga and A. Passari (Cham: Springer), 115–127.

Cateni, F., Gargano, M. L., Procida, G., Venturella, G., Cirlincione, F., and Ferraro, V. (2022). Mycotoxins in wild and cultivated mushrooms: nutrition and health. Phytochem. Rev. 21, 339–383. doi: 10.1007/s11101-021-09748-2

Chang, R. (1996). Functional properties of edible mushrooms. Nutr. Rev. 54, S91–S93. doi: 10.1111/j.1753-4887.1996.tb03825.x

Chew, A. L. C., Desjardin, D. E., Tan, Y. S., Musa, M. Y., and Saharanam, V. (2015). Bioluminescent fungi from peninsular Malaysia – a taxonomic and phylogenetic overview. Fung. Divers. 70, 149–187. doi: 10.1007/s11225-014-0302-9

Crous, P. W., Cowan, D. A., Maggs-Kollong, G., Yilmaz, N., Larsson, E., Angelini, C., et al. (2020). Fungal planet description sheets: 1112–1181. Persoonia 45, 251–409. doi: 10.3767/persoonia.2020.45.10

Desjardin, D. E., Oliveira, A. G., and Stevani, C. V. (2008). Fungi bioluminescence revisited. Photosom. Photobiol. Sci. 7, 170–182. doi: 10.1039/B71328F

Dogon, H. H., and Aydin, S. (2013). Some biological activities of Lactarius vellereus (Fr.) Fr. In Turkey. Pakistan J. Biol. Sci. 16, 1279–1286. doi: 10.3923/pjbs.2013.1279.1286

Dress, A. W., Flamm, C., Fritzsch, G., Grünewald, S., Kuspe, M., Prohaska, S. J., et al. (2008). Noisy: identification of problematic columns in multiple sequence alignments. Algorithms Mol. Biol. 3, 1–10. doi: 10.1186/1748-7188-3-7

El Sheikha, A. F. (2022). Nutritional profile and health benefits of Ganoderma lucidum “Lingzhi, Reishi, or Maitake” as functional foods: current scenario and future perspectives. Foods 11:1030. doi: 10.3390/foods11071030

Ferreira, I. C., Barros, L., and Abreu, R. (2009). Antioxidants in wild mushrooms. Carr. Chem. Med. 16, 1543–1560. doi: 10.2174/0929867097878909587

Floudas, D., Bentzer, J., Ahrén, D., Johansson, T., Persson, P., and Tunlid, A. (2020). Uncovering the hidden diversity of litter-decomposition mechanisms in mushroom-forming fungi. ISME J. 14, 2046–2059. doi: 10.1038/s41396-020-0667-6

Gadd, G. M. (2001). Fungi in Bioremediation. eds. B. Gardes, M., and Bruns, T. D. (1993). ITS primers with enhanced specificity for fungi. In PCR protocols: a guide to methods and applications (pp. 105–110). Humana Press.

Gobad-Nejhad, M. (2016). New records of basidiomycetes from Iran, with a checklist of basidiomycetes for Gilan province. Czeh Mycol. 68, 139–148. doi: 10.33585/cmy.68203

Gobad-Nejhad, M., and Khodaparast, S. A. (2016). New records of basidiomycetes mushrooms as a source of antioxidants in Mycology (2010). “Higher basidiomycetes mushrooms as a source of antioxidants” in Progress in Mycology. eds. M. Rai and G. Kövics (Springer: Dordrecht), 311–326.
Prior, R. L., Wu, X., and Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4259–4302. doi: 10.1021/jf0502698

Re, R., Pellegrini, N., Proteggente, A., Panza, A., Yang, M., and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237. doi: 10.1016/S0891-5849(98)00315-3

Rodríguez-Seoane, P., Torres Perez, M. D., Fernández de Ana, C., Sinde-Stompel, E., and Dominguez, H. (2022). Antirradical and functional properties of subcritical water extracts from edible mushrooms and from commercial counterparts. Int. J. Food Sci. Technol. 57, 1420–1428. doi: 10.1111/jifs.15383

Renquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. doi: 10.1093/sysbio/sys029

Ruiz-Dueñas, E. J., Barrasa, J. M., Sánchez-Garcia, M., Camarero, S., Miyazuchi, S., Serrano, A., et al. (2020). Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Mol. Biol. Evol. 38, 1428–1446. doi: 10.1093/molbev/msaa301

Sánchez, C. (2017). Reactive oxygen species and antioxidant properties from mushrooms. Synth. Syst. Biotechnol. 2, 13–22. doi: 10.1016/j.synbio.2016.12.001

Sandargoh, B., Chepkirui, C., Cheng, T., Chaverra-Muñoz, L., Thongbai, B., Stadler, M., et al. (2019). Biological and chemical diversity go hand in hand: basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol. Adv. 37:107344. doi: 10.1016/j.biotechadv.2019.01.011

Shafligue, S., Kang, S. M., Kim, A. Y., Imran, M., Aaqil Khan, M., and Lee, I. J. (2021). Current knowledge of medicinal mushrooms related to antioxidant properties. Sustainability 13:7948. doi: 10.3390/su13147948

Shimomura, O. (1991). Superoxide-triggered chemiluminescence of extract of luminous mushroom Panellus stipticus after treatment with methylamine. J. Exp. Bot. 42, 555–560. doi: 10.1093/jxb/42.4.555

Silvestro, D., and Michalak, I. (2010). raxmlGUI: a graphical front-end for RAxML. Available at: http://sourceforge.net/projects/raxmlgui/ (Accessed July 15, 2022).

Tan, J. B., and Lim, Y. Y. (2015). Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chem. 172, 814–822. doi: 10.1016/j.foodchem.2014.09.141

Tha, Z. M., Myo, K. K., Aung, H. T., Clericuzio, M., Armijos, C., and Vidari, G. (2020). Bioactive phytochemical constituents of wild edible mushrooms from Southeast Asia. Molecules 25:1972. doi: 10.3390/molecules25081972

Treu, R., and Agerer, R. (1990). Culture characteristics of some Mycena species. Mycotaxon 38, 279–309.

Vaario, L. M., and Matsushita, N. (2021). Conservation of edible ectomycorrhizal mushrooms: understanding of the ECM fungi mediated carbon and nitrogen movement within forest ecosystems. Nitrogen Agric. Physiol. Agric. Ecol. Aspects. doi: 10.5772/intechopen.95399

Varga, T., Krizsán, K., Foldi, C., Dima, B., Sánchez-Garcia, M., Sánchez-Ramírez, S., et al. (2019). Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 3, 668–678. doi: 10.1038/s41559-019-0834-1

Varma, A., and Heck, B. (2013). Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology. Germany: Springer Science & Business Media.

Vydryakova, G. A., and Bissett, J. (2016). Differential regulation of proteins and a possible role for manganese superoxide dismutase in bioluminescence of Panellus stipticus revealed by suppression subtractive hybridization. Adv. Microbiol. 06, 613–626. doi: 10.4236/aim.2016.69061

Wang, Y., and Xu, B. (2014). Distribution of antioxidant activities and total phenolic contents in acetone, ethanol, water and hot water extracts from 2 edible mushrooms via sequential extraction. Austin J. Nutr. Food Sci. 2:5.

Webster, J., and Weber, R. W. S. (2007). Introduction to Fungi. Cambridge University Press: Cambridge.

White, T. J., Bruns, T., Lee, S., and Taylor, J. W. (1990). “Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics” in PCR Protocols: A Guide to Methods and Applications, eds. M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White (New York, NY: Academic Press), 315–322.

Wu, F., Zhou, L. W., Yang, Z. L., Bau, T., Li, T. H., and Dai, Y. C. (2019). Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fung. Divers. 98, 1–76. doi: 10.1007/s13225-019-00432-7

Xiao, F., Xu, T., Lu, B., and Liu, R. (2020). Guidelines for antioxidant assays for food components. Food Front. 1, 60–69. doi: 10.1002/fidf.10