The fungus “Fuling” has been used in Chinese traditional medicine for more than 2000 years, and its sclerotia have a wide range of biological activities including antitumour, immunomodulation, anti-inflammation, antioxidation, anti-aging etc. This prized medicinal mushroom also known as “Hoelen” is resurrected from a piece of pre-Linnean scientific literature. Fries treated it as Pachyma hoelen Fr. and mentioned that it was cultivated on pine trees in China. However, this name had been almost forgotten, and Poria cocos (syn. Wolfiporia cocos), originally described from North America, and known as “Tuckahoe” has been applied to “Fuling” in most publications. Although Merrill mentioned a 100 years ago that Asian Pachyma hoelen and North American P. cocos are similar but different, no comprehensive taxonomical studies have been carried out on the East Asian Pachyma hoelen and its related species. Based on phylogenetic analyses and morphological examination on both the sclerotia and the basidiocarps which are very seldomly developed, the East Asian samples of Pachyma hoelen including sclerotia, commercial strains for cultivation and fruiting bodies, nested in a strongly supported, homogeneous lineage which clearly separated from the lineages of North American Wolfiporia cocos and other species. So we confirm that the widely cultivated “Fuling” Pachyma hoelen in East Asia is not conspecific with the North American Wolfiporia cocos. Based on the changes in Art. 59 of the International Code of Nomenclature for algae, fungi, and plants, the generic name Pachyma, which was sanctioned by Fries, has nomenclatural priority (ICN, Art. F.3.1), and this name well represents the economically important stage of the generic type. So we propose to use Pachyma rather than Wolfiporia, and subsequently Pachyma hoelen and Pachyma cocos are the valid names for “Fuling” in East Asia and “Tuckahoe” in North America, respectively. In addition, a new combination, Pachyma pseudococos, is proposed. Furthermore, it seems that Pachyma cocos is a species complex, and that three species exist in North America.

Keywords: Poria cocos, Daedalea extensa, Macrohyporia, Hoelen, phylogeny, nomenclature
INTRODUCTION

In the subkingdom Dikarya, many fungi can produce dense aggregations called sclerotia to survive challenging environmental conditions and to provide reserves for fungi to germinate (Coley-Smith and Cooke, 1971; Willets and Bullock, 1992; Smith et al., 2015). Sclerotia, as persistent fungal structures commonly contain biologically active secondary metabolites, are used as a functional food (Wong and Cheung, 2009; Lau and Abdullah, 2016). Large subterranean sclerotia of different mushroom species are traditionally consumed by indigenous people around the world (Oso, 1977; Aguiar and Sousa, 1981; Bandara et al., 2015; Lau et al., 2015). In North America, the hypogeous sclerotia of a mushroom species, known as “Tuckahoe” or “Indian bread,” are utilized as a traditional food by native Americans (Gore, 1881; Weber, 1929). The first valid scientific description of this fungal sclerotia was given by Schweinitz (1822), who named it Sclerotium cocos Schwein. This name was accepted by Fries (1822), when he proposed the genus Pachyma Fr. Subsequently, the name Pachyma cocos (Schwein.) Fr. became the most popular binomial of the Tuckahoe mushroom (e.g., Currey and Hanbury, 1860; Gore, 1881; Prilleaux, 1889; Elliot, 1922). However, the sexual stage of P. cocos had remained unknown for a 100 years, until its whitish resupinate poroid fruiting body was discovered by Wolf (1922). At that time, the generic name Poria Pers. was widely used for all light-colored and resupinate polypores (Murrill, 1920, 1923), thus the sexual stage was named as Poria cocos (Schwein.) F. A. Wolf by Wolf (1922). The classification of Poria cocos was revised by Johansen and Ryvarden (1979), who transferred this species to their new genus Macrohyporia I. Johans. & Ryvarden, typified by M. dictyopora (Cooke) I. Johans. & Ryvarden. Later, Ryvarden and Gilbertson (1984) established the genus Wolfiporia Ryvarden & Gilb. typified by Poria cocos, based on its different spore morphology similar to M. dictyopora. However, Ginns and Lowe (1983) placed Poria cocos in synonymy with the earlier teleomorphic name Daedalea extensa Peck, and transferred this species to Macrohyporia. Subsequently, Ginns (1984) accepted the generic revision of Ryvarden and Gilbertson (1984) and corrected the name of the species by publishing the binomial, Wolfiporia extensa (Peck) Ginns. Nevertheless, because of the research and the preference of the traditional medical community to continue using the familiar name “cocos,” Redhead and Ginns (2006) proposed to conserve the name Poria cocos (syn. Wolfiporia cocos) over Daedalea extensa (syn. Wolfiporia extensa). Finally, the conservation of Poria cocos was recommended by the Nomenclature Committee for Fungi (Norrvell, 2008).

The name Poria cocos is also commonly applied to a fungal sclerotium, known as “Fuling” in China, which has been used in Chinese traditional medicine for more than 2000 years for relieving coughs, inducing diuresis, alleviating anxiety, relieving fever, antitumor; adjustment of intestinal bacterial flora, antihyperlipidemic activity, antioxidant, anti-hepatitis B virus, anti-inflammation, anti-metastasis, anti-tyrosinase, hypoglycemic activity, improvement of cardiac function, improvement of learning and memory abilities, improvement of liver fibrosis, prevention of diabetic nephropathy, and sedative and hypnotic activities (Wang et al., 2013; Wu et al., 2019). Pharmacological studies have confirmed these properties (e.g., Sun, 2014; Zhang et al., 2018; Li et al., 2019). The edible sclerotia of “Fuling” is widely cultivated in China (Wang et al., 2013), and the products are exported to more than 40 countries (Chi et al., 2018). This prized medicinal mushroom is also known as “Hoelen” (e.g., Xu et al., 2014; Li et al., 2016; Sun et al., 2016), a name erected from a piece of pre-Linnean scientific literature published posthumously by Rumphius. Merrill (1917) noted that Pachyma hoelen as a little-known medicinal species from China, under the genus Pachyma. Merrill (1917) noted that Pachyma hoelen Fr. was cultivated on pine trees in various parts of China and that it had been referred to as Poria cocos. In order to clarify the identity of P. hoelen, he sent a Chinese specimen (received from a drug store) for examination to W. A. Murrill. Murrill stated that the Chinese sclerotia showed similarity to the samples collected from different localities in America, but he thought “that Pachyma hoelen Fries is distinct from P. cocos Fries” (Merrill, 1917).

In recent years, molecular studies have shown that several traditionally used and widely cultivated East Asian medicinal mushrooms (e.g., Auricularia hemuer F. Wu, B.K. Cui & Y.C. Dai, Flammulina filiformis (Z.W. Ge, X.B. Liu & Zhu L. Yang) P.M. Wang, Y.C. Dai, E. Horak & Zhu L. Yang, Ganoderma lingzhi Sheng H. Wu, Y. Cao & Y.C. Dai) are different at the species level from their European or North American relatives (Cao et al., 2012; Wu et al., 2014; Dai et al., 2017; Wang et al., 2018). Currently, “Fuling” is widely identified with Poria cocos (syn. Wolfiporia cocos, syn. Pachyma cocos), a species originally described from North America, and no comprehensive taxonomical studies have been carried out on the East Asian Pachyma hoelen since it was described by Fries almost 200 years ago. Therefore, in this study we aim to typify the forgotten species P. hoelen and clarify the taxonomy of the “Fuling” mushroom, based on morphological features and phylogenetic evidence.

MATERIALS AND METHODS

Morphological Studies

Specimens and isolates of Pachyma “cocos” originating from East Asia (China, Japan) and North America were examined, including wild collections and commercially cultivated strains. Voucher specimens are deposited at the herbarium of the Institute of Microbiology, Beijing Forestry University (BJFC) and Herbarium Mycologium, Chinese Academy of Sciences, Beijing, China (HMAS). The designated neotype of Pachyma hoelen (Dong 897, HMAS 248370) is registered in MycoBank (Robert et al., 2013). Macro-morphological descriptions are based on field notes and dry herbarium specimens. Microscopic measurements and drawings were made from slide preparations of dried specimens stained with Cotton Blue and Melzer’s reagent following Dai (2010). In presenting spore size variation, 5% of measurements were excluded from each end of the range and this value is given in parentheses. The following abbreviations were
used: KOH = 2% potassium hydroxide, CB– = acyanophilous,
KI– = neither amyloid nor dextrinoid in Melzer's reagent, L = mean
spore length (arithmetic average of all spores), W = mean
spore width (arithmetic average of all spores), Q = variation
in the L/W ratios between specimens studied, n (a/b) = number
of spores (a) measured from given number of specimens (b).

Molecular Phylogenetic Study

Total genomic DNA was extracted from dried specimens
using a CTAB rapid plant genome extraction kit (Aidlab
Biotechnologies Company, Limited, Beijing, China) according
to the manufacturer’s instructions. To generate PCR amplicons,
the following primer pairs were used: ITS4 and ITS5 (White et al.,
1990) for the internal transcribed spacer (ITS), and 983F and
1567R (Rehner and Buckley, 2005) for a region of the translation
ellongation factor alpha-1 (tef1), LR0R and LR7 (Vilgalys and
Hester, 1990) for the 28S gene region (LSU) and bRPB2-6F
and bRPB2-7.1R (Matheny, 2005) for partial RNA polymerase
II, second largest subunit (rpb2). The PCR procedures followed
Song and Cui (2017). PCR products were purified and sequenced
at the Beijing Genomics Institute with the same primers. The
sequences generated during this study are deposited in NCBI
GenBank under the accession numbers MW251858-MW251879
(ITS and LSU), MW250253-MW250273 (tef1 and rpb2) and
listed in Table 1.

Two datasets were used in the phylogenetic analyses.
The multigene dataset was used to gain information about
the phylogenetic position of the genus. The second ITS
dataset represented sequences of only Wolfiporia cocos-related
specimens. In the multigene phylogenetic analyses, the highly
divergent ITS regions of the Wolfiporia s. str. (syn. Pachyma)
specimens were removed. Sequences were aligned with the online
version of MAFFT v. 7 using the E-INS-i algorithm (Katoh
and Standley, 2013), under default settings. Each alignment
was checked separately and edited with SeaView 4 (Gouy
et al., 2010). Subsequently, the concatenated ITS + LSU +
tef1 + rpb2 dataset alignment was subjected to Maximum
Likelihood (ML) and Bayesian Inference (BI) phylogenetic
alyses, which were performed in RaxmlGUI (Silvestro and
Michalak, 2012) and MrBayes 3.1.2 (Ronquist and Huelsenbeck,
2003), respectively. ML analysis was done using 1,000 rapid
ML bootstrap searches. Four partitions (ITS, LSU, tef1, rpb2)
were set and the GTR+Γ model of nucleotide substitution model
was selected for each partition. Rapid bootstrap analysis with
1,000 replicates was applied for testing branch support. BI was
performed with the GTR + I model of evolution. The same
partition scheme was used as for the ML analysis (see above).
The BI settings were: four Markov chain Monte Carlo (MCMC)
over 5 million generations, sampling every 1000th generation,
two independent runs, and burn-in of 20% (the first 1,000
trees were discarded). Post burn-in trees were used to compute a 50%
majority rule consensus phylogram. Phylogenetic trees from both
ML and BI analyses resulted in largely congruent topologies. The
best scoring ML tree from the RAxML analysis was edited with
MEGA6 (Tamura et al., 2013). ML bootstrap values (BS) > 70%
and Bayesian posterior probabilities (PP) > 0.9 were considered
evidence for statistical branch support.

RESULTS

Molecular Phylogeny

The multigene and ITS phylogenetic analyses were carried out
using two datasets comprising 46 taxa and 3,160 characters,
and 19 taxa and 1,698 characters including gaps, which were
treated as missing data. The phylogenetic tree topology of the
concatenated ITS-LSU-tef1-rpb2 dataset (Figure 1) is largely
congruent with previously published phylogenies (e.g., Ortiz-
Santana et al., 2013; Justo et al., 2017; Hussein et al., 2018) and
the genus Pachyma (syn. Wolfiporia) clustered in the Laetiporaceae
Jülich (syn. Phaeolaceae Jülich) within the antrodia clade. At
the species level, the neotype of Pachyma hoelen (Dong 897,
HAMAS 248370) and other studied specimens from East Asia
(incl. Dong 750, which is the widely cultivated strain now in
China) represent a well-supported (ML/BA 100/1.00), relatively
homogeneous clade. Analysis of ITS sequences (Figure 2) also
shows that all newly sequenced strains from East Asia are nested
in a strongly supported clade (ML/BA 100/1.00). This clade is
clearly separated from the other clades in the phylogeny where
P. cocos strains from North America and the holotype of W.
 pseudococos (GenBank no. KX354451) are nested (Figure 2). In
the ITS phylogenetic tree, the Wolfiporia cocos and Macrohyporia
cocos samples from the United States separated into three distinct
clades and they are not closely related to Pachyma hoelen
in phylogeny. Our phylogenetic reconstruction of the ITS sequences
indicates that the North American samples identified as W.
cocos and deposited in GenBank cover more than one species.
The newly sequenced P. cocos isolate (CBS 279.55), originating
from South Carolina (Southeastern United States), forms a
well-supported (ML/BA 100/1.00) lineage with two sequences
originating from the United States (GenBank no. MT241733 and
KT693239). The W. cocos specimen collected from hardwood
species (Alnus) from the United States (Lindner and Banik, 2008)
formed a separate lineage within a moderately supported clade
(ML/BA 63/0.91) and grouped with the type of W. pseudococos
and two unpublished sequences of Macrohyporia cocos (GenBank
no. MN392911 and MN392912). Based on the above single-
locus and multigene molecular data, the forgotten East Asian
species, Pachyma hoelen, which is widely cultivated in China and
Japan, is not conspecific with the North American P. cocos (syn.
Wolfiporia cocos).

TAXONOMY

Pachyma Fr., Syst. mycol. 2(1): 242 (1822)

Synonyms. Gemmularia Raf. per Steud., Nomencl. bot. P1.
crypt.: 183 (1824); Tucathus Raf., Anal. Nat. Tabl. Univ. 2: 270
(1830) nom. illegit. (ICN; Art. 52.); Rugosaria Raf., Anal. Nat.
Tabl. Univ. 1: 181 (1833) nom. illegit. (ICN; Art. 52.).

Wolfiporia Ryvarden and Gilb., Mycotaxon 19: 141 (1984)

Generic type species: Pachyma cocos (Schwein.) Fr., Syst.
mycol. 2(1) 242 (1822) (Basionym. Sclerotium cocos Schwein.,
Schr. naturf. Ges. Leipzig 1: 56. 1822), selected by Donk
(1962: 94).

Description. Sclerotium globose or irregularly shaped, when
fresh, outer crust reddish brown, inner context white and corky;
Species name	Collection number	Origin	ITS	LSU	tef1	rpb2	References
Antrodia serpens	Dai 7465	China	KR605813	KR605752	KR610742	KR610832	Han et al., 2016
Antrodia serpens	Rivoire 3576 (LY)	France	KC543169	–	KC543191	–	Spirin et al., 2013
Antrodia tanakae	Kajander 270 (H)	Finland	KC543165	–	KC543190	–	Spirin et al., 2013
Antrodia tanakae	Spirin 3968 (H)	Russia	KC543164	–	KC543193	–	Spirin et al., 2013
Antrodia heteromorpha	Dai 12755	USA	KP715306	KP715322	KP715336	KR610828	Chen and Cui, 2015
Antrodia heteromorpha	Gaarder 1665 (O)	Norway	KC543150	–	KC543186	–	Spirin et al., 2013
Antrodia heteromorpha	CBS 200.91	Canada	DG491415	–	–	DG491388	Kim et al., 2007
Fomitopsis betulina	Dai 11449	China	KR605798	KR605737	KR610726	KR610816	Han et al., 2016
Fomitopsis betulina	Miettinen 12388	Finland	JX109856	JX109856	JX109913	JX109884	Binder et al., 2013
Fomitopsis pinicola	Dai 11449	China	KR605798	KR605737	KR610726	KR610816	Han et al., 2016
Fomitopsis pinicola	Miettinen 12388	Finland	JX109856	JX109856	JX109913	JX109884	Binder et al., 2013
Fomitopsis durescens	Overholt’s 4215	USA	KF937293	KF937293	–	–	Han et al., 2014
Fomitopsis durescens	O 10796	Venezuela	KF937292	KF937294	KR610669	KR610766	Han et al., 2014
Kusaghiporia usambarensis	JV 1109/31	USA	KF951929	KF951306	KX354630	KX354671	Song and Cui, 2017
Kusaghiporia usambarensis	CA 13	USA	EU402549	EU402527	AB472666	–	Lindner and Banik, 2008
Laetiporus montanus	Dai 15888	China	KX354466	KX354494	KX354619	KX354662	Song and Cui, 2017
Laetiporus sulphureus	JV 1106/15	Czech Republic	KF951296	KF951303	KX354609	KX354654	Song and Cui, 2017
Pachyma cocos	MD-106	USA	EU402594	EU402527	AB472666	–	Lindner and Banik, 2008
Pachyma cocos**	JV0506_4J	USA	MN392911	MN392911	–	–	unpublished
Pachyma cocos**	JV1608_23J	USA	MN392912	MN392912	–	–	unpublished
Pachyma cocos**	CFMR-MD-275	USA	KU689964	–	–	–	unpublished
Pachyma cocos**	Batch3_14064_14098	USA	K769329	–	–	–	Raja et al., 2017
Pachyma cocos***	MR011	USA	MT241733	–	–	–	unpublished
Pachyma hoelen	CGMCC 5.908	China	MW251870	MW251859	MW250253	MW250264	This study
Pachyma hoelen	Dai 20041	China	MW251878	MW251867	MW250262	MW250273	This study
Pachyma hoelen	Dai 20036	China	MW251877	MW251866	MW250261	MW250272	This study
Pachyma hoelen	Dai 20034	China	MW251879	MW251868	MW250263	–	This study
Pachyma hoelen	Dong 750	China	MW251873	MW251862	MW250257	MW250268	This study
Pachyma hoelen	Dong 830	China	MW251874	MW251863	MW250258	MW250269	This study
Pachyma hoelen	Dong 829	China	MW251875	MW251864	MW250259	MW250270	This study
Pachyma hoelen	Dong 897	China	MW251871	MW251860	MW250255	MW250266	This study
Pachyma hoelen	Dong 906	China	MW251872	MW251861	MW250256	MW250267	This study
Pachyma hoelen	KCTC6480	Japan	MW251876	MW251865	MW250260	MW250271	This study
Pachyma hoelen*	XJ-28	China	KX268225	–	–	–	unpublished
Pachyma hoelen*	Taikong	China	KX268226	–	–	–	unpublished
Pachyma hoelen*	CBK-1	China	KX354453	KX354889	KX354888	KX354685	Song and Cui, 2017
Pachyma pseudococos	Dai 15269, type	China	KX354451	–	–	–	Tibpromma et al., 2017
Phaeolus schweinitzi	AF07-ID 702	USA	–	DQ028602	–	DQ408119	Matheny et al., 2007
Phaeolus schweinitzi	OKM-4435-T	USA	–	KCS85199	–	–	Ortiz-Santana et al., 2013
Rhodofomes cajanderi	Cui 9879	China	KS07157	KS07167	KR610663	KR610763	Han et al., 2016

(Continued)
outer crust becomes hard corky and inner context becomes fragile when dry. Basidiocarp annual, resupinate; pore surface cream to ash gray when fresh; hyphal system dimitic, generative hyphae with simple septa, skeletal hyphae thick-walled, distinctly thicker than generative hypha; cystidia absent, but cystidioles occasionally present; basidia clavate, with four sterigmata and a simple basal septum; basidiospores cylindrical, ellipsoid, hyaline, thin-walled, IKI–, CB–.

Nomenclatural remarks. Fries (1822) described the anamorphic genus *Pachyma* and distinguished three species. Later, Donk (1962) designated the first species, *P. cocos* (Schwein.) Fr. (syn. *Sclerotium cocos* Schwein.) as the generic type of *Pachyma*. The teleomorphic genus *Wolfiporia* was typified with *Poria cocos* F. A. Wolf by Ryvarden and Gilbertson (1984), which was a species derived from *Sclerotium cocos* Schwein., hence it was cited as a basionym by Wolf (1922). Therefore, both *Pachyma* and *Wolfiporia* are typified with *Sclerotium cocos* Schwein., thus these genera are considered as synonyms. Based on the changes in Art. 59 of the International Code of Nomenclature for algae, fungi, and plants (ICN; Turland et al., 2018), all legitimate fungal names are treated equally for the purposes of establishing priority, regardless of the life history stage of the type (Art. F.8.1). In the case that the sexually typified generic name does not have priority it is recommended that it can either be formally conserved (e.g., Braun, 2013), or included on a list of protected names (Rossman, 2014). The generic names *Pachyma* and *Wolfiporia* are both listed by Kirk et al. (2013) for protection as a result of changes in Art. 59. However, the earlier name *Pachyma* is sanctioned by Fries (ICN, Art. F.3.1) and well represents the economically important stage of the generic type. For this reason, currently we consider that it is unnecessary to conserve the name *Wolfiporia* over *Pachyma*. Consequently, based on nomenclatural priority, the use of the earlier and sanctioned generic name *Pachyma* is recommended over *Wolfiporia*.

Pachyma hoelen Fr., Syst. mycol. (Lundae) 2(1): 243 (1822) (Figures 3, 4).

Description. Sclerotia globose, subglobose, oval to irregularly shaped, up to 28 cm long and 22 cm wide, weighing up to 20 kg; when fresh, outer crust reddish brown, inner context white and corky; outer crust becomes hard corky and inner context becomes fragile when dry. Basidiocarp annual, resupinate, soft corky and without odor or taste when fresh, hard corky to fragile when dry, up to 20 cm long, 10 cm wide, 5.5 mm thick at center. Margin thin, usually pores extend to the very edge. Pore surface cream to ash gray when fresh, becoming pinkish buff to cinnamon buff when dry, not glancing; pores round, angular or sinuous, 1–2 per mm; dissepiments thick, slightly lacerate to distinctly dentate. *Subiculum* cinnamon buff, hard corky, up to 1.5 mm; tubes hard corky to fragile, buff, up to 4 mm long. *Hyphal system* dimitic in all parts, generative hyphae with simple septa, skeletal hyphae dominant, all hyphae IKI–, CB–, weakly inflated in KOH. *Subicular hyphal structure* homogeneous, hyphae strongly interwoven; generative hyphae occasionally present, hyaline, thin-walled, occasionally branched, frequently simple septate, 4–6 μm in diam.; *skeletal hyphae* dominant, hyaline, thick-walled with a distinct wide lumen, usually flexuous, frequently branched, occasionally simple septate, 6–12 μm in diam. *Tramal generative hyphae* frequent, hyaline, thin-walled, occasionally branched, frequently simple septate, 3–5 μm in diam.; *tramal skeletal hyphae* frequent, hyaline, thick-walled with a wide lumen, flexuous, occasionally frequently branched.

TABLE 1 | Continued

Species name	Collection number	Origin	ITS	LSU	tef1	rpb2	References
Rhodofomes cajanderi	JV 0410/14a,b-J	USA	KF605768	KF605707	KF610664	–	Han et al., 2016
Rhodofomes rosea	JV 1110/9	Czech Republic	KF605783	KF605722	KF610694	KF610785	Han et al., 2016
Rhodofomes rosea	Cui 10633	China	KF605782	KF605721	KF610693	KF610784	Han et al., 2016
Wolfiporia cartilaginea	Dai 3764	China	KX354456	–	–	–	Ortiz-Santana et al., 2013
Wolfiporia cartilaginea	13122	Japan	KC885405	–	–	–	Ortiz-Santana et al., 2013
Wolfiporia cartilaginea	O 913120	Japan	KX354455	–	–	–	unpublished
Wolfiporia dilatohypha	S.D. Russell MycoMap 7010	USA	MK564607	–	–	–	unpublished
Wolfiporia dilatohypha	FP94089	USA	EU402554	EU402516	–	–	Lindner and Banik, 2008
Wolfiporia dilatohypha	CS-63	USA	KC885401	KC885236	–	–	Ortiz-Santana et al., 2013
Wolfiporia dilatohypha	FP-94089-R	USA	KC885401	KC885236	–	–	Ortiz-Santana et al., 2013
Wolfiporia dilatohypha	CS-63-59-13-A-R	USA	KC885400	KC885234	–	–	Ortiz-Santana et al., 2013
Trametes suaveolens	Cui 11586	China	KF605823	KF605766	KF610759	KF610848	Han et al., 2016
Polyporus tuberaster	Dai 11271	China	KU189769	KU189800	KU189914	KU189983	Zhou et al., 2016

* as *Wolfiporia cocos*; ** as *Macrohyporia cocos*; *** as *Wolfiporia aff. extensa*.

Sequences produced in this study are indicated in bold.
FIGURE 1 | Phylogeny of the genus Pachyma (syn. Wolfiporia) within the antrodia clade inferred from RAxML and MrBayes analyses of the combined ITS–LSU–tef1–rpb2 sequences. Topology is from the best scoring Maximum Likelihood (ML) tree. *Polyporus tuberaster* and *Trametes suaveolens* served as the outgroup. Bayesian Posterior Probabilities (BPP) > 0.9 and ML bootstrap values > 70% are shown above or below branches. The bar indicates 0.05 expected change per site per branch.
and simple septate, 4–8 μm in diam. Cystidia and cystidioles absent; basidia clavate, with four sterigmata and a simple basal septum, 25–32 × 7–8 μm, basidia in shape similar to basidia but slightly smaller. Basidiospores oblong-ellipsoid to cylindrical, tapering at apiculus, hyaline, thin-walled, IKI−, CB−, (6–)7–9.6(−11) × (2.5–)2.9–4(−4.1) μm, L = 8.24 μm, W = 3.2 μm, Q = 2.49–2.66 (n = 90/3). Rot type brown.

Specimens examined. China, Yunnan Province, Yongsheng County, Renhe, Yina, 21 Dec 2018, CH Dong 897 (HMAS 248370, neotype, designated here, MycoBank MBT394794); Guangxi Auto Region, Baise, Baise Park, on stump of *Pinus massoniana* 1 July 2019, Dai 20034 (BJFC031708), Dai 20036 (BJFC031710), Dai 20041 (BJFC031715).

Nomenclatural remarks. The name “Hoelen” is derived from Rumphius (1750), and frequently cited as *Pachyma hoelen* Rumph. in scientific literature (e.g., Saccardo et al., 1889; Hino and Katô, 1930; Takeda, 1934). In the work of Rumphius (1750) it is mentioned under the species *Tuber regium* Rumph. [nom. inval., Art. 32.1(a); current name is *Pleurotus tuber-regium* (Fr.) Singer], but without the name *Pachyma*, the genus which was introduced by Fries (1822). Although, Fries (1822) presumably adopted the description of *P. hoelen* from Rumphius (1750), this work was not cited by him. Therefore, the names *P. hoelen* Rumph. and *P. hoelen* Rumph. ex Fr. are incorrect interpretations. However, “Hoelen” formally was not clearly discussed by Fries (1822) as a binomial like the other two taxa, i.e., *P. cocos* (Schwein.) Fr. and *P. tuber-regium* Fr. (see also Donk, 1962). This nomenclatural uncertainty is supported by the index of the same work (Fries, 1822, p. 608), where *P. hoelen* was not listed under the genus *Pachyma* like the other two species. However, in his later work Fries (1832) clearly indicated that he accepted *P. hoelen* as a distinct species in the genus *Pachyma*. When Fries (1822) proposed the new genus *Pachyma*, he noted that “Hoelen” is a little-known species and marked it with a separate serial number (like the other two species) under the genus. Given that the epithet “Hoelen” can be assigned to the generic name *Pachyma*, and the species has a short diagnosis, the name *Pachyma hoelen* Fr. was published validly by Fries (1822) and sanctioned by the ICN (Art. F.3.1).

Pachyma pseudococos (F. Wu, J. Song & Y.C. Dai) F. Wu, Y.C. Dai & V. Papp, **comb. nov.**
FIGURE 3 | Sclerotia and basidiome of Pachyma hoelen. (a,b) Dry sclerotium of P. hoelen (neotype Dong 897, HMAS 248370). (c–e) Fresh sclerotia of P. hoelen. (f) Basidiome of P. hoelen (Dai 20036). Photos (a,b): SJ. Li, (c–f): Y.C. Dai.

Basionym. Wolfiporia pseudococos F. Wu, J. Song & Y.C. Dai, Fungal Diversity 83: 237 (2017)

MycoBank MB838018.

Description. For the description, see Tibpromma et al. (2017) Specimen examined. CHINA, Hainan Province, Ledong County, Jianfengling Nature Reserve, on dead angiosperm tree, 1 June 2015, Dai 15269 (BJFC019380, holotype).

Remarks. New combination is proposed for Wolfiporia pseudococos in Pachyma based on molecular data and morphological features of the basidiocarp. Ecologically, P. pseudococos grows on angiosperm trees in tropical China, while P. hoelen has a distribution in temperate areas and usually grows on conifers. Phylogenetically, the two species are closely related, but P. pseudococos forms a separate lineage based on the analyses of ITS sequences (Figure 2). The basidiocarps of P. hoelen shares similar morphological characteristics with P. pseudococos, but differs by the absence of cystidioles, and longer and thinner basidia (25–32 × 7–8 µm vs. 16–25 × 10–14 µm in P. pseudococos).

DISCUSSION

Before the introduction of the One Fungus-One Name (1F1N) concept, the correct name was the earliest legitimate name typified by the perfect state (= teleomorph). However, based on the changes in Art. 59 of the ICN (Turland et al., 2018), the legitimate generic names typified by anamorphic fungal stages are treated equally for the purposes of establishing priority. The generic names Pachyma and Wolfiporia have types that represent the same species and are thus synonyms. Since Pachyma is the
samples of these taxa were studied, so we currently treat them as *Pachyma cocos* I, *Pachyma cocos* II and *Pachyma cocos* III. Further studies are needed to clarify the taxonomy of this species.

The other two validly described species formerly discussed in *Pachyma* are excluded from the genus, namely *P. tuber-regium* Fr. and *P. woermannii* J. Schrötr. (Fries, 1822; Cohn and Schröter, 1891). The current name of the former species is *Pleurotus tuber-regium* (Fr.) Singer, a well-known edible and medicinal mushroom (Dai et al., 2009, 2010; Wu et al., 2019) native to the tropics, including Africa, Asia, and Australasia (Karunarathna et al., 2016). *Pachyma woermannii* presumably represents the same species and is identical with *Pleurotus tuber-regium*. The sclerotia (as *Pachyma woermannii*) and the lamellate basidiocarps (as *Lentinus woermannii* Cohn and J. Schröt.) of the same fungus were described at the same time by Cohn and Schröter (1891), based on specimens collected from Cameroon (Central Africa). Further study is needed to confirm if the both are interspecific.

The teleomorphic genus *Wolfiporia* contains eight legitimate names (Index Fungorum 2020), from which six species are accepted (He et al., 2019; Wijayawardene et al., 2020). However, amongst these, only two species (*Pachyma hoelen* and *P. pseudococos*) are confirmed in *Pachyma* by phylogenetic data so far (Figures 1, 2). Therefore, further phylogenetic and type studies are needed to clarify the systematic position of those *Wolfiporia* species, which are currently not accepted in *Pachyma*. *Wolfiporia castanopsis* Y.C. Dai was described by Dai et al. (2011) from Southwest China (Yunnan Province, Zixishan Nature Reserve), based on a specimen growing on the wood of *Castanopsis orthacantha* Franch. Morphologically, this species is closely related to *Pachyma cocos*, the type species of the genus *Pachyma*. The two species have similar poroid and resupinate basidiocarps, but *Wolfiporia castanopsis* has broadly ellipsoid basidiospores (7.6–10 × 5–7 µm, Dai et al., 2011). *Wolfiporia curvispora* Y. C. Dai was described from Northeast China (Jilin Province), based on a single collection growing on *P. koriensis* Siebold & Zucc. Morphologically, *W. curvispora* differs from other species in *Wolfiporia* by its biennial habit, small pores (4–5 per mm), small, curved and cylindrical basidiospores (3.3–4.1 × 1.2–1.8 µm, Dai, 1998). *Wolfiporia cartilaginea* Ryvarden was described from Northeast China (Jilin Province, Changbaishan National Nature Reserve) (Ryvarden et al., 1986) and phylogenetically found to be closely related to *W. dilatohypha* Ryvarden & Gilb. (syn. *Poria inflata* Overh.); these two species formed a separate lineage that is closely related to, but distinct from the core *Laetiporus* clade (Banik et al., 2010; Hussein et al., 2018; Figure 1). *Wolfiporia sulphurea* (Burt) Ginns (syn. *Merulius sulphureus* Burt) has similar morphological characteristics to *Pachyma cocos*, but it causes a white rot (Ginns, 1968; Ginns and Lowe, 1983).

The primary fungal barcoding marker, ITS, is quite useful to separate most fungal species (Xu, 2016), but it is not enough for some groups if we only use ITS in their phylogeny (Lücking et al., 2020). Unusually, the ITS sequence of *Pachyma* is at least twice as long as the sequences for most taxa in the antrodia clade, which is presumably due to the insertions in the ITS1 and ITS2 regions (Lindner and Banik, 2008). Although, in general the thresholds ranging from 97.0 to 99.5% sequence
similarly were the most optimal values for delimiting species in the Agaricomycetes (Blalid et al., 2013; Garnica et al., 2016; Nilsson et al., 2019). Raja et al. (2017) believed that a larger threshold value (~97%) is acceptable in the case of P. cocos specimens, due to the presence of introns. The difference in the sequences of the neotype of P. hoelen compared with the P. cocos specimen from the USA (CBS 279.55) was 8.0% for ITS. In the comparison of P. hoelen and P. cocos secondary barcoding markers (incl. protein-coding genes) we found moderate, but significant differences between the two species: tef1 (97.8%), rpb2 (98%). Therefore, both nuclear ribosomal RNA genes (ITS) and protein-coding genes (tef1, rpb2) showed remarkable differences between P. cocos and P. hoelen with low intragroup heterogeneity in the later. This confirms the separation of the two species and suggests that the inclusion of additional markers (i.e., protein-coding genes) should be necessary for further studies on the genus Pachyma.

In conclusion, Poria cocos (syn. Wolfiporia cocos) has been applied to the prized Chinese medicinal mushroom “Fuling,” according to changes in Art. 59 of the International Code of Nomenclature for algae, fungi and plants, its correct binomial name is Pachyma hoelen Fr. which was validly published by Fries and sanctioned by the ICN. The wild teleomorphic stage (basidiocarps) of Pachyma hoelen is found and collected as the first time in China, and both tested wild specimens and commercial cultivars known as “Fuling” represent a single species. The illustrated description of Pachyma hoelen is given based on wild fruiting bodies and cultivated sclerotia, and its neotype is designated. The Chinese “Fuling” Pachyma hoelen is different from North American “Tuckahoe” Pachyma cocos (syn. Wolfiporia cocos), and Pachyma is recommended over Wolfiporia because it is the earliest and sanctioned generic name. Accordingly, Pachyma cocos (Schwein.) Fr. is the valid name for “Tuckahoe” in North America, and three taxa are existed among Pachyma cocos sensu lato. Currently five taxa are accepted in Pachyma: P. hoelen, P. pseudococos, P. cocos I, P. cocos II and P. cocos III. The phylogeny of other taxa previously described or combined in Wolfiporia are not analyzed, and their taxonomy is uncertain without molecular data.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repositories and accession numbers can be found in the article materials.

AUTHOR CONTRIBUTIONS

Y-CD and VP designed the experiments. FW, S-JL, and CH-D prepared the samples. VP conducted the molecular experiments and analyzed the data. FW, S-JL, CH-D, Y-CD, and VP revised the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This study was supported by the Second Tibetan Plateau Scientific Expedition and Research Program (2019QZKK0503), the National Key Research and Development Program of China (2017YFC1703003), and the National Natural Science Foundation of China (Project No. 31530002).

ACKNOWLEDGMENTS

The authors thank Dr. Shi-Liang Liu (Beijing, China) for the line drawings.

REFERENCES

Aguiar, I. J. A., and Sousa, M. A. (1981). Polyporus indigenus I. Araújo and M.A. Sousa, nova especie da Amazônia. Acta Amazônica 11, 449–455. doi: 10.1590/1809-43921981113449
Bandara, A. R., Rapier, S., Bhat, D. J., Kakumyan, P., Chamyuang, S., Xu, J., et al. (2015). Polyporus umbellatus, an edible-medicinal cultivated mushroom with multiple developed health-care products as food, medicine and cosmetics: a review. Cryptogam. Mycol. 36, 3–42. doi: 10.7872/crym.v36.iss1.2015.3
Banik, M. T., Lindner, D. L., Ota, Y., and Hattori, T. (2010). Relationships among North American and Japanese Laetiporus isolates inferred from molecular phylogenetics and single-spore incompatibility reactions. Mycologia 102, 911–917. doi: 10.3852/09-044
Bernicchia, A., and Gorjón, S. P. (2020). Polypores of the Mediterranean Region. Romar: Segrate, 904.
Binder, M., Justo, A., Riley, R., Salamov, A., Lopez-Giraldez, F., Sjokvist, E., et al. (2013). Phylogenetic and phylogenomic overview of the Polyporales. Mycologia 105, 1350–1373. doi: 10.3852/12/003
Blalid, R., Kumar, S., Nilsson, R. H., Abarenkov, K., Kirk, P. M., and Kauserud, H. (2013). ITS versus ITS2 as DNA barcodes for fungi. Mol. Ecol. Resour. 13, 218–224. doi: 10.1111/j.1755-0998.12065
Braun, U. (2013). (2210-2232) Proposals to conserve the teleomorph-typified name Blumeria against the anamorph-typified name Oidium and twenty-two teleomorph-typified powdery mildew species names against competing anamorph-typified names (Ascomycota: Erysipheaceae). Taxon 62, 1328–1331. doi: 10.12705/626.20
Cao, Y., Wu, S. H., and Dai, Y. C. (2012). Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers. 56, 49–62. doi: 10.1007/s13225-012-0178-5
Chen, Y. Y., and Cui, B. K. (2015). Phylogenetic analysis and taxonomy of the Antrodia heteromorpha complex in China. Mycoscience 57, 1–10. doi: 10.1016/j.myc.2015.07.003
Chi, X. L., Yang, G., Ma, S., Cheng, M., and Que, L. (2018). Analysis of characteristics and problems of international trade of Poria cocos in China. China J. Chinese Materia Medica 43, 191–196. [in Chinese] doi: 10.19540/j.cnki.cnki.cjcm.20171030.004
Cohn, F. and Schröter, J. (1891) Untersuchungen über Pachyma und Mylitta, Vol. 11. Abhandlungen des Naturwissenschaftlichen Vereins in Hamburg, 1–16.
Coley-Smith, J. R., and Cooke, R. C. (1971). Survival and germination of fungal sclerotia. Annu. Rev. Phytopathol 9:65492. doi: 10.1146/annurev.ph.09.090171.000433
Currey, F., and Hanbury, D. (1860). Remarks on Sclerotium stipitatum. Berk. et Curr., Pachyma cocos, Fries, and some similar productions. Trans. Linnean Soc. Lond. 23, 93–97. doi: 10.1111/j.1096-3642.1860.tb00122.x
Dai, Y. C. (1998). Changbai wood-rotting fungi 9. Three new species and other species in Rigidoporus, Skeletocutis and Wolfiporia (Basidiomycota, Aphyllophorales). Ann. Bot. Fenn. 33, 143–154.
Rehner, S. A., and Buckley, E. (2005). *A Beauveria* phylogeny inferred from nuclear ITS and EF-1a sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97, 84–98. doi: 10.3852/mycologia.97.i.18

Robert, V., Yu, D., Amor, A. B. H., Wiele, N., van de, Brouwer, C., Jabas, B., et al. (2013). MycoBank gearing up for new horizons. IMA Fungus 4, 371–379. doi: 10.5598/imafungus.2013.04.02.16

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. doi: 10.1093/bioinformatics/btg180

Rossman, A. Y. (2014). Lessons learned from moving to one scientific name for fungi. IMA Fungus 5, 81–89. doi: 10.5598/imafungus.2014.05.01.10

Rumphius, G. E. (1750). “Herbarium amboinense,” in ed J. Burmann. (Amsterdam: Fransicum Changuion and Henricum Utterw.).

Ryvarden, L., and Gilbertson, R. L. (1984). Type studies in the Polyporaceae. 15. Mycologia 76, 226–234. doi: 10.2307/375803

Rossini, R., Menkis, A., Lim, Y. W., Seok, S., Tomosovski, M., Jankovsky, L., et al. (2009). Genetic variation and relationships in *Laetiporus sulphureus* s. lat., as determined by ITS rDNA sequences and in vitro growth rate. Mycol. Res. 113, 326–336. doi: 10.1016/j.mycres.2008.11.009

Vilgalys, R., and Hester, M. (1990). Rapid genetic identification and map- ping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. J. Bacteriol. 172, 4238–4246. doi: 10.1128/JB.172.8.4238-4246.1990

Wang, P. M., Liu, X. B., Dai, Y. C., Horak, E., Steffen, K., and Yang, Z. L. (2018). Phylogeny and species delimitation of *Flammulina*: taxonomic status of winter mushroom in East Asia and a new European species identified using an integrated approach. Mycol. Progress 17, 1013–1030. doi: 10.1007/s11557-018-1409-2

Yang, Z. Y., Zhang, J., Zhao, Y. L., Li, T., Shen, T., Li, J. O., et al. (2013). Mycology, cultivation, traditional uses, phytochemistry and pharmacology of *Wolfiporia cocos* (Schwein.). Mycorden et Gilb.: a review. J. Ethnopharmacol. 147, 265–276. doi: 10.1016/j.ymjep.2013.03.027

Weber, G. F. (1929). The occurrence of Tuckahoes and *Poria* cocus in Florida. Mycologia 21, 113–130. doi: 10.1080/00275514.1929.12016943

White, T. J., Bruns, T. D., Lee, S., and Taylor, J. (1990). “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in *PCR Protocols: A Guide to Methods and Applications*, eds M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (New York, NY: Academic Press), 315–322.

Wijayawardene, N. N., Hyde, K. D., Al-Ani, K. T., Tedersoo, L., Haelewaters, D., Rajeshkumar, K. C., et al. (2020). Outline of fungi and fungus-like taxa. Mycosphere 11, 1060–1456. doi: 10.5943/mycosphere/11/1/8

Willets, H. J., and Bullock, S. (1992). Developmental biology of sclerotia. Mycol. Res. 96, 801–816. doi: 10.1017/S095375620100015X

Wolf, F. A. (1922). The fruiting stage of the tuckahoe *Pachyphytum cocus*. J. Elisha Mitchell Sci. Soc. 38, 127–137. doi: 10.1385/scientificamerican.0722-38

Wong, K. H., and Cheung, P. C. K. (2009). “Sclerotia: emerging functional food derived from mushrooms,” in *Mushrooms as Functional Foods*, ed P. C. K. Cheung (Hoboken: JohnWiley & Sons, Inc.), 111–146.

Wu, F., Yuan, Y., Malysheva, V. F., Du, P., and Dai, Y. C. (2014). Species clarification of the most important and cultivated *Auricularia* mushroom “Heimuer”: evidence from morphological and molecular data. Phytotaxa 186, 241–253. doi: 10.11646/phytotaxa.186.1.5

Wu, F., Zhou, L. W., Yang, Z. L., Bau, T., Li, T. H., and Dai, Y. C. (2019). Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. *Fungal Divers.* 98, 1–76. doi: 10.1007/s13225-019-00432-7

Xu, J. P. (2016). Fungal DNA barcoding. Genome 59, 913–932. doi: 10.1139/gen-2016-0046

Xu, Z., Meng, H., Xiong, H., and Bian, Y. (2014). Biological characteristics of teleomorph and optimized in vitro fruiting conditions of the Hoelen medicinal mushroom, *Wolfiporia extensa* (higher Basidiomycetes). Int. J. Med. Mushrooms 16, 421–429. doi: 10.1615/IntMedMushrooms.v16.i5.20

Xiong, Y. L., Zhang, W., Chen, H., and Cui, B. K. (2016). Taxonomy and phylogeny of *Poria* group *Melanopus* (Polyporales, Basidiomycota) from China. *PLoS ONE* 11:E0159495. doi: 10.1371/journal.pone.0159495

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Wu, Li, Dong, Dai and Papp. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.