Case Report

Recurrence of internal carotid artery dissection associated with elongated styloid process: A case report

Shigeomi Yokoya¹, Hidesato Takezawa², Hideki Oka¹, Akihiko Hino¹

Departments of ¹Neurosurgery, ²Neurology, Saiseikai Shiga Hospital, Imperial Gift Foundation Inc., Ritto, Shiga, Japan.

E-mail: *Shigeomi Yokoya - yokoya@ks.kyorin-u.ac.jp; Hidesato Takezawa - takezawa.kyoto@gmail.com; Hideki Oka - hidekiokajp@yahoo.co.jp; Akihiko Hino - hinolab2@yahoo.co.jp

*Corresponding author:
Shigeomi Yokoya,
Department of Neurosurgery,
Saiseikai Shiga Hospital,
Imperial Gift Foundation Inc.,
Ritto, Shiga, Japan.
yokoya@ks.kyorin-u.ac.jp

INTRODUCTION

The elongated styloid process is one of the causative diseases of stroke, where ischemic neurologic symptoms are caused by the compression of the cervical internal carotid artery (ICA) because of the elongated styloid process or calcification of the stylohyoid ligament. ICA dissection or compression due to elongated styloid process is a rare condition; therefore, it is often misdiagnosed as idiopathic ICA dissection.

Most with ICA dissection due to elongated styloid process have been treated conservatively and have been reported to have a good course; however, there are no long-term follow-up reports, and the long-term prognosis is unknown.

We present a case of cervical ICA dissection due to elongated styloid process which recurred over a long period and repeatedly showed symptoms. We also review articles on the management
of these uncommon lesions, particularly to the recurrence or deterioration of the lesions after conservative or endovascular treatment.

CASE DESCRIPTION

A 59-year-old man with a history of medically treated hypertension and hyperlipidemia had a transient ischemic attack (TIA) and was transferred to another hospital 10 years ago; however, the details about the case were unknown. Six years ago, he had a left transient amurosis attack and magnetic resonance angiography (MRA) revealed a decreased signal of the left ICA [Figure 1a]; however, no detailed examination was performed. Four years ago, he experienced another transient amurosis attack on the left side and visited our hospital. Although MRA showed a further decreased signal of the ICA [Figure 1b], conservative therapy with an antiplatelet was delivered for a few months since an embolic source was not detected at the origin of the ICA using carotid duplex ultrasonography examination, and he was diagnosed with idiopathic cervical ICA.

Recently, the left amurosis fugax reappeared, and the patient was referred to our hospital. Oral administration of clopidogrel (75 mg/day) and cilostazol tablets (100 mg/day) managed the amurosis fugax. Due to repeated amurosis attacks, with the ophthalmic assessments to exclude other ocular or retinal pathology, and gradually decreasing left ICA on MRA [Figure 1c], we performed computed tomography angiography (CTA) and digital subtraction angiography (DSA). CTA demonstrated that the left elongated styloid process was directly impinged on the ICA [Figure 2a]. The DSA and cone-beam computed tomography (CT) demonstrated that the bilateral styloid process was elongated, and the left cervical ICA had an irregular lumen and stenosis with false lumen [Figure 2b and c]. Because of proximity between the ICA stenosis site and tip of the elongated styloid process, the patient was finally diagnosed with repeat left cervical ICA dissection caused by the compression of the left elongated styloid process.

The patient underwent left styloid resection through transcervical approach. In the surgery, we confirmed that the tip of the styloid process was very close to the ICA [Figure 3a], and we removed the 2 cm tip of the styloid process [Figure 3b and c]. Post the removal of the styloid process, no contact was verified on the image study between the styloid process and cervical ICA [Figure 2d].

In addition, the patient underwent stent placement (Stent: Precise 6 × 20) since we considered that the residual severe stenosis caused by the left cervical ICA dissection could lead to further ischemic events [Figure 2e and f]. He was discharged without any complications associated with surgery. Postoperatively, he experienced no ischemic attack, and the MRA 3 months after these procedures showed improvement of the left MRA signal [Figure 1d].

DISCUSSION

We present a case of recurrent ischemic symptoms after 10 years caused by cervical ICA dissection due to elongated styloid process, although without an accurate diagnosis. To the best of our knowledge, 15 cases of progression or recurrence after initial therapy due to elongated styloid process have been described so far [Table 1]. Some clinical suggestions from our case are as below.

First, clinicians must distinguish between “idiopathic” ICA dissection and “traumatic” ICA dissection caused by the elongated styloid process. Otherwise, preventable embolic stroke may reoccur. Several reported cases of ICA dissection with elongated styloid process have recurred or worsened even after diagnosis and administration of oral antithrombotic agents [Table 1]. The recurrence of ischemic events or progression of the dissection are rare in idiopathic cervical ICA dissection, and the recurrence rate in the same vessel after remission was reported to be 0–0.0135%.[2,3,11,14] ICA dissection due to the elongated styloid process was determined to have higher recurrence risk than that of idiopathic ICA dissection.[7,18] Conversely, the possibility of elongated styloid process when ischemic event recurs should be considered. Moreover, some cases of ischemic event recurrence have led us to identify the underlying etiology of elongated styloid process.[4,6,8,20]
Cervical ICA dissection due to the elongated styloid process can cause recurrent ischemic events in the long term, and long-term follow-up may be necessary, even if conservative treatment does not cause a short-term recurrence. Although...
most cases of ICA dissection recurrence due to elongated styloid process occur in the acute phase [Table 1], our patient exhibited symptoms over a long period even in the remote phase of dissection.

Many reports have indicated that conservative treatments such as antithrombotic therapy, with or without cervical rest, are effective. However, we consider that it is impossible to lead a normal life with a resting neck, and recurrence is unavoidable over a long period. Our intraoperative findings show the proximity of the styloid process tip and ICA and indicate that they can come in contact by mild cervical movement. The longer the styloid process is and the closer it is to the ICA, the higher is the risk of ICA dissection. In addition, cervical ICA was reported to move from the front to the back by 19.8 mm when the head was rotated to the left or right, although we could not demonstrate occurrence of this movement in our case.

Second, considering the risk of recurrence, it may be justified to consider surgical treatment aggressively – especially for elongated styloid process resection – when diagnosing a patient with ICA dissection associated with the elongated styloid process. Most acute treatments for the progression have been performed by carotid artery stenting (CAS); however, the few complications followed by CAS may be due to the stent being affected by elongated styloid process such as stent fracture, intrastent thrombosis, and stent displacement [Table 1]. Therefore, it would be beneficial to perform styloid process resection before CAS for the treatment of stroke due to elongated styloid process, when possible. Another reason, we consider, to remove styloid process first before CAS is the requirement for antiplatelet agents after CAS which may increase risk of bleeding with surgery.

CONCLUSION

Clinicians should take into consideration the possibility of elongated styloid process when diagnosing spontaneous cervical ICA dissection to prevent the occurrence of future ischemic events.

Table 1: Previous reports of internal carotid artery dissection caused by elongated styloid process that demonstrates symptom recurrence or image deterioration.

Age/sex	Side	Initial treatment	Exacerbation period*	Exacerbation event, reason	Treatment after recurrence	Postoperative follow-up period	Author	Year
57/M	Bil.	AG	1 day	ICO (Lt.) Intrastent thrombosis	ET, CAS	1 year	Todo T	2012
38/M	Lt.	ET (M1), CAS	4 months	ICO (Lt.)	ET(M1), CAS (additional), RSP	6 months	Sveinsson O	2013
55/M	Bil.	AG	4 days	ICO (Lt.)	RSP (Bil.), CAS (Rt.)	3 months	Ogura T	2014
55/M	Bil.	AG	NA	ICO (Lt.)	RSP (Bil.), CAS (Rt.)	3 months	Naito Y	2014
41/M	Rt.	AG	5 months	ICO	ET (ICA terminus), CAS, RSP	12 months	Miyata	2016
64/M	Lt.	CAS	1 year	ICO, Stent fracture	None (as asymptomatic) RSP (Rt.), CAS (Rt.)	NA	Hooker	2016
49/M	Bil.+	None	3 years	Contralateral ICA dissection	RSP (Rt.), CAS (Rt.)	NA	Dewan	2016
47/F	Rt.	CAS	NA	TIA	CAS	NA	Subedi	2016
60/M	Rt.	AG	1 day	New infarct	CAS	3 weeks	Smoot TW	2017
39/W	Rt.	AG	3 months	Image deterioration	CAS (additional)	5 years	Mann	2017
48/M	Rt.	ET (M2), CAS	6 months	Stent displacement	CAS (Rt.), CAS (Bil.)	21 months	Shimozato	2018
45/M	Lt.	None	5 weeks	Aneurysm formation	CAS, Coil embolization	4 months	Torikoshi	2019
46/M	Bil.	CAS (Lt.)/AG (Rt.)	4 days	Image deterioration (Rt.)	CAS (Rt.), CAS (Bil.)	3 years	Yano	2019
58/M	Lt.	ET (M2), CAS	3 months	Stent fracture, aneurysm formation (Rt.)	Coil embolization*, SP fracture	1 years	Horio Y	2020
46/F	Bil.	CAS (Bil.)	5 day	ICO, Intrastent thrombosis (Rt.)	RSP (Lt.)	NA	Present case	
59/M	Lt.	AG	4 years	TIA, Image deterioration	CAS, RSP	3 months	Present case	2019

AG: Antithrombotic agents, Bil.: Bilateral, CAS: Carotid artery stenting, ET: Endovascular thrombectomy, Lt.: Left, M1: Sphenoidal segment of the middle cerebral artery, M2: Insular segment of the middle cerebral artery, NA: Not available, RSP: Resection of styloid process, Rt.: Right, TIA: Transient ischemic attacks, *: Interval from first event or previous treatment to recurrence of symptom or deterioration on imaging, #: First pathogenesis is Lt. ICO due to ICA dissection, *: Stent-assisted coil embolization
Declarations of patient consent
Institutional Review Board (IRB) permission obtained for the study.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Aldakkan A, Dunn M, Warsi NM, Mansouri A, Marotta TR. Vascular eagle's syndrome: Two cases illustrating distinct mechanisms of cerebral ischemia. J Radiol Case Rep 2017;11:1-7.
2. Atkinson JL, Piepgras DG, Huston J 3rd, Mokri B. Cervical artery dissections: Evidence for redissection in previously dissected arteries: Report of three cases. Neurosurgery 2002;51:797-801; discussion 801-3.
3. Bassetti C, Carruzzo A, Sturzenegger M, Tuncdogan E. Recurrence of cervical artery dissection. A prospective study of 81 patients. Stroke 1996;27:1804-7.
4. Dewan MC, Morone PJ, Zuckerman SL, Mummareddy N, Ghiassi M, Ghiassi M. Paradoxical ischemia in bilateral Eagle syndrome: A case of false-localization from carotid compression. Clin Neurol Neurosurg 2016;141:30-2.
5. Hooker JD, Joyner DA, Farley EP, Khan M. Carotid stent fracture from stylocarotid syndrome. J Radiol Case Rep 2016;10:1-8.
6. Horio Y, Fukuda K, Miki K, Hirao N, Iwaasa M, Abe H, et al. Dynamic assessment of internal carotid artery and elongated styloid process in a case of bilateral carotid artery dissection. Surg Neurol Int 2020;11:163.
7. Ikenouchi H, Takagi M, Nishimura A, Yamaguchi E, Koge J, Saito K, et al. Bilateral carotid artery dissection due to eagle syndrome in a patient with vascular ehlers-danlos syndrome: A case report. BMC Med 2020;25:1-8.
8. Miyata H, Nakahara I, Ohta T, Matsumoto S, Sadamasa N, Ishibashi R, et al. A case of internal carotid artery dissection caused by an elongated styloid process: Successful treatment with carotid artery stenting and partial resection of the styloid process. Surg Cereb Stroke 2016;44:145-50.
9. Muthusami P, Kesavadas C, Sylaja PN, Thomas B, Harsha KJ, Kapilamooorthy TR. Implicating the long styloid process in cervical carotid artery dissection. Neuroradiology 2013;55:861-7.
10. Ohara N, Sakaguchi M, Okazaki S, Nagano K, Kitagawa K. Internal carotid artery dissection caused by an elongated styloid process: Usefulness of transoral ultrasonography. J Stroke Cerebrovasc Dis 2012;21:918.e7-8.
11. Ohta T, Hotta J, Yamauchi T, Ozawa H, Kubokura T. Recurrence of bilateral spontaneous cervical internal carotid artery dissection after a 12-year-interval: A case report. No To Shinkei 2004;56:705-9.
12. Raser JM, Mullen MT, Kasner SE, Cucchiara BL, Messé SR. Cervical carotid artery dissection is associated with styloid process length. Neurology 2011;77:2061-6.
13. Renard D, Azakri S, Arquizan C, Swinnen B, Labauge P, Thijs V. Styloid and hyoid bone proximity is a risk factor for cervical carotid artery dissection. Stroke 2013;44:2475-9.
14. Schievink WI, Mokri B, O’Fallon WM. Recurrent spontaneous cervical-artery dissection. N Engl J Med 1994;330:393-7.
15. Shindo T, Ito M, Matsumoto J, Miki K, Fujihara F, Terasaka S, et al. A case of juvenile stroke due to carotid artery dissection from an elongated styloid process: revisiting conservative management. J Stroke Cerebrovasc Dis 2019;28:104307.
16. Sook KO, Chan YL, Wong KS. Carotid artery dissection after prolonged head tilting while holding a newborn baby to sleep. Neurology 2004;62:1647-8.
17. Sveinsson O, Kostulas N, Herrman L. Internal carotid dissection caused by an elongated styloid process (eagle syndrome). BMJ Case Rep 2013;2013:bcr2013009878.
18. Torikoshi S, Yamao Y, Ogino E, Taki W, Sunohara T, Nishimura M. A staged therapy for internal carotid artery dissection caused by vascular eagle syndrome. World Neurosurg 2019;129:129-9.
19. Yamamoto S, Todo K, Kawamoto M, Kohara N. Carotid artery dissection associated with an elongated styloid process. Intern Med 2013;52:1005-6.
20. Yano T, Sasaki I, Kiyohara K, Kawanishi M. Carotid stent fracture due to eagle syndrome after endovascular stenting for the treatment of acute ischemic stroke caused by internal carotid artery dissection: Case report. J Neuroendovasc Ther 2019;13:454-61.
21. Zuber M, Meder JR, Mas JL. Carotid artery dissection due to elongated styloid process. Neurology 1999;53:1886-7.

How to cite this article: Yokoya S, Takezawa H, Oka H, Hino A. Recurrence of internal carotid artery dissection associated with elongated styloid process: A case report. Surg Neurol Int 2021;12:473.