Construciton of analytic functions, which determine bounded Toeplitz operators on H^1 and H^∞

Peyo Stoilov

Abstract

For $f \in H^\infty$ we denote by T_f the Toeplitz operator on H^p, defined by

$$T_fh = \int_T T(\zeta)h(\zeta) \frac{dm(\zeta)}{1 - \zeta z}, \quad h \in H^p.$$

In this paper we prove some sufficient conditions for the sequences of numbers $\alpha = (\alpha_n)_{n \geq 0}$ in which the functions

$$f * \alpha \overset{def}{=} \sum_{n \geq 1} f(n) \alpha_n z^n$$

determine bounded Toeplitz operators $T_{f*\alpha}$ on H^1 and H^∞ for all $f \in H^\infty$.

1 Introduction

Let A be the class of all functions analytic in the unit disk $\mathbb{D} = \{ \zeta : \ |\zeta| < 1 \}$, $m(\zeta)$ - normalized Lebesgue measure on the circle $\mathbb{T} = \{ \zeta : \ |\zeta| = 1 \}$. Let H^p $(0 < p \leq \infty)$ is the space of all functions analytic in \mathbb{D} and satisfying

$$\|f\|^p_{H^p} = \sup_{0 < r < 1} \int_\mathbb{T} |f(r\zeta)|^p dm(\zeta) < \infty, \quad 0 < p < \infty,$$
\[\|f\|_{H^\infty} = \sup_{z \in \mathbb{D}} |f(z)| < \infty, \quad p = \infty. \]

Let \(M \) is the space of all finite, complex Borel measures on \(\mathbb{T} \) with the usual variation norm.

For \(\mu \in M \), the analytic function on \(\mathbb{D} \)

\[K_\mu(z) = \int_\mathbb{T} \frac{1}{1 - \zeta z} \, d\mu(\zeta) \]

is called the Cauchy transforms of \(\mu \) and the set of functions

\[K = \{ f \in A : f = K_\mu, \ \mu \in M \} \]

is called the space of Cauchy transforms.

For \(d\mu(\zeta) = \varphi(\zeta) \, dm(\zeta), \ 1 \leq p \leq \infty \), we denote \(K_\mu(z) = K_\varphi(z) \) and

\[K^p = \{ f \in A : f = K_\varphi, \ \varphi \in L^p \}, \ \ 1 \leq p \leq \infty. \]

By the theorem of M. Riez \(K^p = H^p \) for \(1 < p < \infty \), however \(H^1 \subsetneq K^1 \), \(H^\infty \subsetneq K^\infty \).

We note that \(K^\infty = BMOA \) (the space of analytic functions of bounded mean oscillation)[1].

For \(f \in H^\infty \) we denote by \(T_f \) the Toeplitz operator on \(H^p \), defined by

\[T_f h = K_{f^*}(z) = \int_\mathbb{T} \frac{f(\zeta)h(\zeta)}{1 - \zeta z} \, dm(\zeta), \quad h \in H^p. \]

By the theorem of M. Riez for \(1 < p < \infty \) the operator \(T_f \) is bounded on \(H^p \) for all \(f \in H^\infty \). But if \(p = 1 \) and \(p = \infty \) not every function \(f \in H^\infty \) gives rise to bounded Toeplitz operator \(T_f \) on \(H^1 \) and \(H^\infty \).

There is also an interesting connection between multipliers of the spaces \(K \) and \(K^p \), \(p = 1, \infty \) and the Toeplitz operators.

Let \(\mathcal{M} \) and \(\mathcal{M}^p \) be the class to all multipliers of the spaces \(K \) and \(K^p \):

\[\mathcal{M} = \{ f \in A : \ f g \in K, \ \forall g \in K \}, \]

\[\mathcal{M}^p = \{ f \in A : \ f g \in K^p, \ \forall g \in K^p \}. \]

Since \(K^p = H^p \) for \(1 < p < \infty \), then \(\mathcal{M}^p = H^\infty \) for \(1 < p < \infty \).

However

\[\mathcal{M} = \mathcal{M}^1 \subsetneq H^\infty, \quad \mathcal{M}^\infty \subsetneq H^\infty \]

and

\[\mathcal{M} = \mathcal{M}^1 = \{ f \in H^\infty : \ \|T_f\|_{H^\infty} < \infty \} [3], \]
Construction of analytic functions, which determine Toeplitz operators

\[\mathcal{M}^\infty = \{ f \in H^\infty : \|T_f\|_{H^1} < \infty \} \] [2].

Let’s note, that more information, bibliography and review of results for the spaces \(K \) and \(\mathcal{M} \) contains the new monograph [5].

Since \(\mathcal{M} = \mathcal{M}^1 \subsetneq H^\infty \), \(\mathcal{M}^\infty \subsetneq H^\infty \) i.e. not all function \(f \in H^\infty \) give rise to bounded Toeplitz operators on \(H^1 \) and \(H^\infty \), then naturally arises the following task:

To describe these sequences of numbers \(\alpha = (\alpha_n)_{n \geq 0} \), for which the functions

\[f \ast \alpha \overset{\text{def}}{=} \sum_{n \geq 1} \hat{f}(n) \alpha_n z^n, \quad z \in \mathbb{D} \]

give rise to bounded Toeplitz operators \(T_{f \ast \alpha} \) on \(H^1 \) and \(H^\infty \) for all \(f \in H^\infty \).

In this paper we prove some sufficient conditions for the sequences \(\alpha = (\alpha_n)_{n \geq 0} \) in which Toeplitz operator \(T_{f \ast \alpha} \) is bounded on \(H^1 \) and \(H^\infty \) for all \(f \in H^\infty \).

Further we will use the following important theorem:

Theorem of Smirnov.

Let \(0 < p < q \), \(f \in H^p \) and has \(L^q \) boundary values (\(f \in L^q(\mathbb{T}) \)). Then \(f \in H^q \).

We include also its proof for convenience of the reader.

Proof. Since \(f \in H^p \), then \(f = Bg \), where \(B \) is a Blaschke product, \(g \in H^p \) and \(g \neq 0 \) in \(\mathbb{D} \).

The function \(g^p \in H^1 \) and applying the formula of Poisson to the function \(g^p \) we have

\[g^p(z) = \int_{\mathbb{T}} g^p(\zeta) P_z(\zeta) \, dm(\zeta), \quad P_z(\zeta) = \frac{1-|z|^2}{|\zeta-z|^2}, \quad \zeta \in \mathbb{T}, \quad z \in D. \]

From this formula, taking into account that

\[|f(z)| \leq |g(z)| \quad \text{in} \ \mathbb{D}, \quad |f(\zeta)| = |g(\zeta)| \quad \text{for almost every} \ \zeta \in \mathbb{T}, \]

follows

\[|f(z)|^p \leq \int_{\mathbb{T}} |f(\zeta)|^p P_z(\zeta) \, dm(\zeta). \]

If \(q = \infty \), then \(f \in L^\infty(\mathbb{T}) \) and \(\|f\|_{H^\infty} \leq \|f\|_{L^\infty(\mathbb{T})} < \infty. \)

If \(q < \infty \), then applying the Holder’s inequality we have

\[|f(z)|^p \leq \int_{\mathbb{T}} |f(\zeta)|^p (P_z(\zeta))^{p/q} (P_z(\zeta))^{1-p/q} \, dm(\zeta) \leq \]

\[\left(\frac{1}{p/q} \int_{T} |f(\zeta)|^q P_{\zeta}(\zeta) dm(\zeta) \right)^{p/q} \left(\int_{T} P_{\zeta}(\zeta) dm(\zeta) \right)^{1-p/q} = \]

\[= \left(\frac{1}{p/q} \int_{T} |f(\zeta)|^q P_{\zeta}(\zeta) dm(\zeta) \right)^{p/q} \Rightarrow \]

\[|f(z)|^q \leq \int_{T} |f(\zeta)|^q P_{\zeta}(\zeta) dm(\zeta). \]

Integrating on the circle \(|z| = r, 0 < r < 1\) we obtain

\[\int_{T} |f(r\eta)|^q dm(\eta) \leq \int_{T} \int_{T} |f(\zeta)|^q \frac{1-r^2}{|\zeta - r\eta|^2} dm(\zeta) dm(\eta) \leq \| f \|_{L^q(\mathbb{T})} < \infty. \]

Consequently \(f \in H^q. \)

2 Main results

Let \(\mathfrak{N} \) is the class of all functions \(f \in H^\infty \) for which

\[\Lambda(f) \overset{\text{def}}{=} \text{ess sup} \int_{\mathbb{T}} \frac{|f(\zeta) - f(\eta)|}{|\zeta - \eta|} dm(\zeta) < \infty. \]

For \(f \in \mathfrak{N} \) we denote \(\| f \|_{\mathfrak{N}} \overset{\text{def}}{=} \| f \|_{H^\infty} + \Lambda(f). \)

Theorem 1. If \(f \in \mathfrak{N} \), then Toeplitz operator \(T_f \) is bounded on \(H^p \) \((p = 1, \infty) \) and

\[\| T_f \|_{H^p} \leq \| f \|_{\mathfrak{N}}. \]

Proof. The case \(p = \infty \) is proved in [3,4] and is generalized in [6] for the multipliers of the integrals of Cauchy-Stieltjes type in domains with closed Jordan curve.

We shall prove the case \(p = 1 \).

Let \(f \in \mathfrak{N}, h \in H^1 \). Let \(E \) be a subset with total measure \((m(E) = 1) \) lying on \(\mathbb{T} \) so that

\[\| f \|_{H^\infty} = \sup_{\eta \in E} |f(\eta)|. \]

Then

\[\| T_f h \|_{H^1} = \sup_{0 < r < 1} \int_{T} \left| \int_{T} \frac{\overline{f}(\zeta)h(\zeta)}{\zeta - r\eta} \zeta dm(\zeta) \right| dm(\eta) = \]
Construction of analytic functions, which determine Toeplitz operators

\[
= \sup_{0 < r < 1} \int_T \left| \int_T \overline{f(\zeta) - f(r\eta)} \frac{h(\zeta) \zeta dm(\zeta)}{\zeta - r\eta} + \overline{f(r\eta)} \int_T \frac{1}{\zeta - r\eta} h(\zeta) \zeta dm(\zeta) \right| dm(\eta) \leq \\
\leq \sup_{0 < r < 1} \left\{ \int_T \int_T \left| \frac{f(\zeta) - f(r\eta)}{\zeta - r\eta} \right| \left| h(\zeta) \right| dm(\zeta) dm(\eta) + \int_T \left| \overline{f(r\eta)h(r\eta)} \right| dm(\eta) \right\} \leq \\
\leq \sup_{0 < r < 1} \sup_{\zeta \in E} \left(\int_T \frac{f(\zeta) - f(z)}{\zeta - z} \left| dm(\eta) + \left\| f \right\|_{H^\infty} \right) \right\| h \right\|_{H^1}.
\]

We denote for \(\zeta \in E \)

\[
F_\zeta(z) = \frac{f(\zeta) - f(z)}{\zeta - z}, \quad z \in \mathbb{D}.
\]

Then

\[
\left\| T_fh \right\|_{H^1} \leq \sup_{\zeta \in E} \left(\left\| F_\zeta \right\|_{H^1} + \left\| f \right\|_{H^\infty} \right) \left\| h \right\|_{H^1}.
\]

To end the proof is necessary to show

\[
f \in \mathfrak{M} \Rightarrow \sup_{\zeta \in E} \left\| F_\zeta \right\|_{H^1} < \infty.
\]

Since

\[
\frac{1}{\zeta - z} \in H^p \quad (0 < p < 1)
\]

and \(f \in H^\infty \), then \(F_\zeta(z) \in H^p \quad (0 < p < 1) \).

Furthermore

\[
f \in \mathfrak{M} \Rightarrow \sup_{\zeta \in E} \left\| F_\zeta \right\|_{L^1(T)} \leq \Lambda(f) < \infty
\]

and according to the Theorem of Smirnov

\[
F_\zeta(z) \in H^1, \quad \left\| F_\zeta \right\|_{H^1} = \left\| F_\zeta \right\|_{L^1(T)} \leq \Lambda(f) < \infty.
\]

Consequently

\[
\left\| T_f \right\|_{H^1} \leq \sup_{\zeta \in E} \left(\left\| F_\zeta \right\|_{H^1} + \left\| f \right\|_{H^\infty} \right) \leq \Lambda(f) + \left\| f \right\|_{H^\infty} = \left\| f \right\|_{\mathfrak{M}} < \infty. \square
\]
Remark. We note that from the Theorem of Stegenga [2] characterizing a class of bounded Toeplitz operators on H^1 does not follow Theorem 1 for $p = 1$.

Lemma 1.[3] If p_n is a polynomial of degree n, then
\[
\|p_n\|_\mathfrak{M} \leq 3 \|p_n\|_{H^\infty} \log(n + 2).
\]

Definition. A sequence $\alpha = (\alpha_n)_{n \geq 0}$ of positive numbers is called concave if
\[
\alpha_{n+2} - \alpha_{n+1} \geq \alpha_{n+1} - \alpha_n \Leftrightarrow \alpha_n - 2\alpha_{n+1} + \alpha_{n+2} \geq 0.
\]

Theorem 2. Let $\alpha = (\alpha_n)_{n \geq 0}$ be a monotone decreasing, concave sequence of positive numbers and
\[
\|\alpha\| \overset{\text{def}}{=} \sum_{n \geq 0} \frac{\alpha_n}{n + 1} < \infty.
\]

Then $f * \alpha \in \mathfrak{M}$, Toeplitz operator $T_{f * \alpha}$ is bounded on H^1 and H^∞ for all $f \in H^\infty$ and
\[
\|T_{f * \alpha}\|_{H^p} \leq \|f * \alpha\|_\mathfrak{M} \leq 12 \|f\|_{H^\infty} \|\alpha\|, \quad p = 1, \infty.
\]

Proof. Using Abel’s formula two times we obtain
\[
\sum_{n \geq 0} \frac{\alpha_n}{n + 1} = \sum_{n \geq 0} (\alpha_n - \alpha_{n+1}) \sum_{k=0}^n \frac{1}{k + 1} \geq \sum_{n \geq 0} (\alpha_n - \alpha_{n+1}) \log(n + 2) = \sum_{n \geq 0} (\alpha_n - 2\alpha_{n+1} + \alpha_{n+2}) \sum_{k=0}^n \log(k + 2).
\]

Since
\[
\sum_{k=0}^n \log(k + 2) \geq \sum_{k=\lfloor n/2 \rfloor}^n \log(k + 2) \geq (n/2 + 1) \log([n/2] + 2) \geq \frac{1}{4} (n + 1) \log(n + 2),
\]

then
\[
4 \sum_{n \geq 0} \frac{\alpha_n}{n + 1} \geq \sum_{n \geq 0} (\alpha_n - 2\alpha_{n+1} + \alpha_{n+2})(n + 1) \log(n + 2).
\]

Further let $f \in H^\infty$ and
Construction of analytic functions, which determine Toeplitz operators

\[S_n(f) = \sum_{k=0}^{n} \hat{f}(k) z^k; \quad \sigma_n(f) = \frac{1}{n+1} \sum_{k=0}^{n} S_k(f). \]

Applying the Abel’s formula we obtain

\[f * \alpha = \sum_{n \geq 0} \hat{f}(n) \alpha_n z^n = \sum_{n \geq 0} (\alpha_n - \alpha_{n+1}) S_n(f) = \sum_{n \geq 0} (\alpha_n - 2\alpha_{n+1} + \alpha_{n+2})(n+1) \sigma_n(f). \]

Since by Lemma 1.

\[\|\sigma_n(f)\|_{\mathcal{R}} \leq 3 \|\sigma_n(f)\|_{H^\infty} \log(n+2) \leq 3 \|f\|_{H^\infty} \log(n+2), \]

then

\[\|f * \alpha\|_{\mathcal{R}} \leq \sum_{n \geq 0} (\alpha_n - 2\alpha_{n+1} + \alpha_{n+2})(n+1) \|\sigma_n(f)\|_{\mathcal{R}} \leq \]

\[\leq 3 \|f\|_{H^\infty} \sum_{n \geq 0} (\alpha_n - 2\alpha_{n+1} + \alpha_{n+2})(n+1) \log(n+2) \leq \]

\[\leq 12 \|f\|_{H^\infty} \sum_{n \geq 0} \frac{\alpha_n}{n+1} = 12 \|f\|_{H^\infty} \|\alpha\| < \infty. \square \]

The following proposition follows at once from Theorem 2.

Theorem 3. Let \(\alpha \) denote one of the sequences \((\varepsilon > 0)\):

\[\left(\frac{1}{(n+1)^\varepsilon} \right)_{n \geq 0}; \]

\[\left(\frac{1}{\log^{1+\varepsilon}(n+2)} \right)_{n \geq 0}; \]

\[\left(\frac{1}{\log(n+2) \log^{1+\varepsilon}(n+3)} \right)_{n \geq 0}, \ldots. \]

Then \(f * \alpha \in \mathfrak{N} \), Toeplitz operator \(T_{f * \alpha} \) is bounded on \(H^1 \) and \(H^\infty \) for all \(f \in H^\infty \).
Remark. Theorem 3 was proved by another method in [3] (Theorem 7.) for the bounded Toeplitz operators $T_{f,\alpha}$ on H^∞.

Theorem 4. Let the sequence $\alpha = (\alpha_n)_{n \geq 0}$ satisfy the conditions of Theorem 3. If the sequence $a = (a_n)_{n \geq 0} \in \ell^2$, then there exists a function $f \in \mathcal{N}$, satisfying

$$|\hat{f}(n)| \geq \alpha_n |a_n|, \quad \|f\|_{\mathcal{N}} \leq c_0 \|\alpha\| \|a\|_{\ell^2},$$

where c_0 is an absolute constant.

Proof. By the Theorem of Kislyakov [7] if $a = (a_n)_{n \geq 0} \in \ell^2$, then there exists a function $f \in H^\infty$, satisfying

$$|\hat{g}(n)| \geq |a_n|, \quad \|g\|_{H^\infty} \leq B \|a\|_{\ell^2},$$

where B is an absolute constant. By Theorem 2.3 $f = g * \alpha \in \mathcal{N}$ and

$$\|f\|_{\mathcal{N}} \leq 12 \|\alpha\| \|g\|_{H^\infty} \leq 12B \|\alpha\| \|a\|_{\ell^2}. \Box$$

References

[1] J. B. Garnett. *Bounded analytic functions*. Academic Press, Inc., New York-London, 1981. MR0628971 (83g:30037)

[2] D. A. Stegenga. *Bounded Toeplitz operators on H^1 and applications of the duality between H^1 and the functions of bounded mean oscillation*. Amer. J. Math., 98, 1976, no. 3, 573-589. MR0420326 (54 #8340)

[3] S. A. Vinogradov. *Properties of multipliers of Cauchy - Stieltjes integrals and some factorization problems for analytic functions*. Amer. Math. Soc. Transl. (2) vol. 115, 1980, 1-32. MR0586560 (58 #28518)

[4] S. V. Hruscev, S. A. Vinogradov. *Inner functions and multipliers of Cauchy type integrals*. Ark. mat, 19, 1981, 23-42. MR0625535 (83c:30027)

[5] J. A. Cima, A. L. Matheson, T. W. Ross. *The Cauchy transform*. American Mathematical Society, Providence, RI, 2006. MR2215991 (2006m:30003)

[6] P. Stoilov. *Multipliers of integrals of Cauchy - Stieltjes type*. Mathematics and mathematical education, Publ. House Bulgar. Acad. Sci., Sofia, 1986, 316 - 319. (Russian) MR0872936 (88e:30104)
[7] S. V. Kislyakov. *Fourier coefficients of boundary values of functions that are analytic in the disc and bidisc.* Trudy Mat. Inst. Steklov. vol. 155, 1981, 77–94. (Russian) MR0615566 (83a:42005)