Assessment of the application for renewal of authorisation of Levucell® SC (Saccharomyces cerevisiae CNCM I-1077) as a feed additive for dairy ewes and dairy goats

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), Vasileios Bampidis, Giovanna Azimonti, Maria De Lourdes Bastos, Henrik Christensen, Birgit Dusemund, Maryline Kouba, Mojca Kos Durjava, Marta López-Alonso, Secundino López Puente, Francesca Marcon, Baltasar Mayo, Alena Pechová, Mariana Petkova, Fernando Ramos, Yolanda Sanz, Roberto Villa, Ruud Woutersen, Andrew Chesson, Pier Sandro Cocconcelli, Robert John Wallace, Guido Rychen, Rosella Brozzi and Maria Saarela

Abstract

Levucell® SC is the trade name for a feed additive based on viable cells of a strain Saccharomyces cerevisiae. The product is currently authorised for use in feed for horses, lambs, dairy sheep, dairy goats, dairy cows and cattle for fattening. This opinion concerns the renewal of the authorisation of Levucell® SC as a zootechnical additive for dairy ewes and dairy goats. S. cerevisiae is considered by EFSA to be suitable for the Qualified Presumption of Safety (QPS) approach to establishing safety for the target species, consumers and the environment. The identity of the strain present in the additive was established. Accordingly, this strain is presumed safe for the target species, consumers of products from animals fed the additive and the environment. Since no concerns are expected from other components of the additive, Levucell® SC is considered safe for the target species, consumers of products from animals fed the additive and the environment. The applicant has provided data demonstrating that the additive currently in the market complies with the conditions of authorisation. Furthermore, according to the information provided in the technical dossier, no new evidence has been identified that would make the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) reconsider the previous conclusions on the safety of the product for target species, consumers and the environment under the authorised conditions of use.

© 2018 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: zootechnical additives, Levucell® SC, Saccharomyces cerevisiae CNCM I-1077, safety, QPS, ewes, goats

Requestor: European Commission

Question number: EFSA-Q-2016-00298

Correspondence: feedap@efsa.europa.eu
Panel members: Giovanna Azimonti, Vasileios Bampidis, Maria De Lourdes Bastos, Henrik Christensen, Birgit Dusemund, Maryline Kouba, Mojca Kos Durjava, Marta López-Alonso, Secundino López Puente, Francesca Marcon, Baltasar Mayo, Alena Pečová, Mariana Petkova, Fernando Ramos, Yolanda Sanz, Roberto Villa, Ruud Woutersen.

Legal notice: Relevant information or parts of this scientific output have been blackened in accordance with the European Commission decision on the confidentiality requests formulated by the applicant. A previous, provisional version of this output which had been made publicly available pending the adoption of the decision has been replaced by this version. The full output has been shared with the European Commission, EU Member States and the applicant.

Acknowledgements: The EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed) wishes to thank the following for the support provided to this scientific output: Jaume Galobart, Lucilla Gregoretti, Orsolya Holczknecht and Paola Manini.

Suggested citation: EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), Bampidis V, Azimonti G, Bastos ML, Christensen H, Dusemund B, Kouba M, Kos Durjava M, López-Alonso M, López Puente S, Marcon F, Mayo B, Pečová A, Petkova M, Ramos F, Sanz Y, Villa R, Woutersen R, Chesson A, Cocconcelli PS, Wallace RJ, Rychen G, Brozzi R and Saarela M, 2018. Scientific Opinion on the assessment of the application for renewal of authorisation of Levucell® SC (Saccharomyces cerevisiae CNCM I-1077) as a feed additive for dairy ewes and dairy goats. EFSA Journal 2018;16(7):5385, 12 pp. https://doi.org/10.2903/j.efsa.2018.5385

ISSN: 1831-4732

© 2018 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.
Table of contents

Abstract .. 1
1. Introduction ... 4
1.1. Background and Terms of Reference .. 4
1.2. Interpretation of the Terms of Reference .. 4
1.3. Additional information ... 4
2. Data and methodologies ... 4
2.1. Data .. 4
2.2. Methodologies ..5
3. Assessment .. 5
3.1. Characterisation ... 5
3.1.1. Characterisation of the additive ... 5
3.1.2. Characterisation of the active agent ... 6
3.1.3. Conditions of use ... 6
3.2. Safety ... 6
3.2.1. Safety for the target species, consumers and the environment .. 6
3.2.2. Safety for the user ... 6
3.2.3. Further evidence of safety .. 6
3.3. Post-market monitoring ... 7
4. Conclusions .. 7
Documentation provided to EFSA ... 7
Chronology ... 7
References .. 7
Abbreviations .. 8
Appendix A – List of references retrieved from the literature search provided by the applicant to support safety of the additive ... 9
1. Introduction

1.1. Background and Terms of Reference

Regulation (EC) No 1831/2003\(^1\) establishes the rules governing the Community authorisation of additives for use in animal nutrition. In particular, Article 14 of that Regulation specifies that for products authorised according to Article 9, an application for renewal shall be submitted in accordance with Article 7, at the latest one year before the expiry date of the authorisation.

The European Commission received a request from Lallemand SAS\(^2\) for renewal of the authorisation of the product Levucell\(^\circledR\) SC (\textit{Saccharomyces cerevisiae} CNCM I-1077), when used as a feed additive for dairy ewes and dairy goats (category: zootechnical additive; functional groups: gut flora stabiliser).

According to Article 7(1) of Regulation (EC) No 1831/2003, the Commission forwarded the application to the European Food Safety Authority (EFSA) as an application under Article 14(1) (renewal of an authorised feed additive). EFSA received directly from the applicant the technical dossier in support of this application. The particulars and documents in support of the application were considered valid by EFSA as of 1 June 2016.

According to Article 8 of Regulation (EC) No 1831/2003, EFSA, after verifying the particulars and documents submitted by the applicant, shall undertake an assessment in order to determine whether the feed additive complies with the conditions laid down in Article 5. EFSA shall deliver an opinion on the safety for the target animals, consumer, user and the environment and on the efficacy of the product Levucell\(^\circledR\) SC (\textit{Saccharomyces cerevisiae} CNCM I-1077), when used under the proposed conditions of use (see Section 3.1.3).

1.2. Interpretation of the Terms of Reference

The application for renewal of the authorisation does not include a proposal for amending or supplementing the conditions of the original authorisation that would have an impact on the efficacy of the additive; therefore, efficacy is not assessed. The present opinion will focus only on the safety aspects.

1.3. Additional information

The Scientific Committee on Animal Nutrition (SCAN) issued an opinion on the safety of this product for beef and dairy cattle, including the safety for the user, the consumer and the environment (European Commission, 1997/2003). EFSA issued several opinions on the safety and efficacy of this product for dairy goats and dairy ewes (EFSA, 2006a), leisure horses (EFSA, 2006b, 2009), lambs for fattening (EFSA, 2008) and dairy cows, cattle for fattening, minor ruminant species and camelids (EFSA FEEDAP Panel, 2017).

The product is currently authorised for use in horses,\(^3\) lambs,\(^4\) dairy sheep, dairy goats,\(^5\) dairy cows and cattle for fattening.\(^6\)

2. Data and methodologies

2.1. Data

The present assessment is based on data submitted by the applicant in the form of a technical dossier\(^7\) in support of the request for the renewal of the authorisation for the use of Levucell\(^\circledR\) SC (\textit{Saccharomyces cerevisiae} CNCM I-1077) as a feed additive. The technical dossier was prepared

\(^1\) Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. OJ L 268, 18.10.2003, p. 29.

\(^2\) Lallemand SAS. 137, 19 Rue des Briquets, BP 31702. 59700 Blagnac, France.

\(^3\) Commission Regulation (EC) No 910/2009 of 29 September 2009 concerning the authorisation of a new use of the preparation of \textit{Saccharomyces cerevisiae} CNCM 1-1077 as a feed additive for horses (holder of authorisation Lallemand SAS). OJ L 257, 30.9.2009, p. 7.

\(^4\) Commission Regulation (EC) No 1293/2008 of 18 December 2008 concerning the authorisation of a new use of \textit{Saccharomyces cerevisiae} CNCM 1-1077 (Levucell SC20 and Levucell SC10 ME) as a feed additive. OJ L 340, 19.12.2008, p. 38, plus amendments.

\(^5\) Commission Regulation (EC) No 226/2007 of 1 March 2007 concerning the authorisation of \textit{Saccharomyces cerevisiae} CNCM I 1077 (Levucell SC20 and Levucell SC10 ME) as a feed additive. OJ L 64, 2.3.2007, p. 26, plus amendments.

\(^6\) Commission Regulation (EC) No 1200/2005 of 26 July 2005 concerning the permanent authorisation of certain additives in feedingstuffs and the provisional authorisation of a new use of an additive already authorised in feedingstuffs. OJ L 195, 27.7.2005, p. 6, plus amendments.

\(^7\) FEED dossier reference: FAD-2016-0024.
following the provisions of Article 7 of Regulation (EC) No 1831/2003, Regulation (EC) No 429/2008 and the applicable EFSA guidance documents.

The European Union Reference Laboratory (EURL) considered that the conclusions and recommendations reached in the previous assessments are valid and applicable for the current application.8

2.2. Methodologies

The approach followed by the EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) to assess the safety and the efficacy of Levucell® SC (Saccharomyces cerevisiae CNCM I-1077) is in line with the principles laid down in Regulation (EC) No 429/20089 and the relevant guidance documents: Guidance on the renewal of the authorisation of feed additives (EFSA FEEDAP Panel, 2013).

3. Assessment

The additive Levucell® SC is a preparation consisting of dried cells of Saccharomyces cerevisiae CNCM I-1077, with no excipients, intended for use as a zootechnical additive (gut flora stabiliser) in feed for dairy goats and dairy ewes.

3.1. Characterisation

3.1.1. Characterisation of the additive

The product is authorised in two forms:

- Levucell® SC2010, a fine, granulated free-flowing powder with a minimum concentration of viable yeast cells of 2×10^{10} colony forming units (CFU)/g of additive (granulated form),
- Levucell® SC10 ME11, with a minimum concentration of viable yeast cells of 1×10^{10} CFU/g of additive (coated or microencapsulated form).

The applicant is requesting the authorisation of a third form, Levucell® SC ME Titan12. For practical purposes, the two coated forms are considered equivalent.

The applicant states that no changes in the manufacturing process or composition of the additive have been introduced since the authorisation (other than the production of the SC10ME Titan form, see above). This was confirmed by the analysis of three batches of each form produced in 2015, which showed compliance with specifications (2.7×10^{10}–2.9×10^{10} CFU/g for SC20; 1.5×10^{10}–1.8×10^{10} CFU/g for SC10 ME; 1.3×10^{10}–2.3×10^{10} CFU/g for SC10 ME Titan).14

Microbiological purity was also confirmed by the analysis of three production batches of each form of the additive produced in 2015. Measurements for the SC20 form included aerobic bacteria (1.6×10^{3}–2.6×10^{3} CFU/g), total coliforms ($< 10^{3}$ CFU/g), Escherichia coli (absent), Staphylococcus (absent) and Salmonella (absence in 25 g).15 For the other forms, values were provided for enterobacteria ($< 10^{3}$ CFU/g), E. coli (< 10 CFU/g), Staphylococcus (< 10 CFU/g) and Salmonella (absence in 25 g).16

8 The reports linked to the previous dossiers are available on the EURL website: https://ec.europa.eu/jrc/en/eurl/feed-additives/evaluation-reports/fad-2005-0016?search&form-return and https://ec.europa.eu/jrc/en/eurl/feed-additives/evaluation-reports/fad-2010-0120?search&form-return
9 Commission Regulation (EC) No 429/2008 of 25 April 2008 on detailed rules for the implementation of Regulation (EC) No 1831/2003 of the European Parliament and of the Council as regards the preparation and the presentation of applications and the assessment and the authorisation of feed additives. OJ L 133, 22.5.2008, p. 1.
10 Levucell® SC20 may be marketed with other tradenames: Levupro SC20/SC10 ME/SC10 ME Titan.
11 Levucell® SC10 ME may be marketed with other tradenames: Proficell SC20/SC10 ME/SC10 ME Titan.
12 Levucell® SC Titan may be marketed with other tradenames: Lallemand SC20/SC10 ME/SC10 ME Titan.
13 The applicant claims that 'the Standing Committee on the Food Chain and Animal Health in its meeting of 18 February 2010 concluded that Levucell® SC ME Titan falls within the description as provided for in the authorisation Regulation'.
14 Technical dossier/Section II/Annex II 3a to Annex II 3c.
15 Technical dossier/Section II/Annex II 3a.
16 Technical dossier/Section II/Annex II 3b and 3c.
Chemical contamination was measured in three 2015 batches of the SC2017 and SC10 ME Titan18 forms. Data were provided for heavy metals (cadmium < 0.05 mg/kg, mercury ≤ 0.12 mg/kg, lead < 0.2 mg/kg), mycotoxins (aflatoxin B1 < 0.1 μg/kg, aflatoxin B2 (only for SC20) < 1.0 μg/kg, aflatoxin G1 (only for SC20) < 1.0 μg/kg, aflatoxin G2 (only for SC20) < 1.0 μg/kg, ochratoxin A < 0.25 μg/kg and zearelenone < 10 μg/kg); dioxins (≤ 0.28 pg/kg) and dioxin-like polychlorinated biphenyls (PCBs, only for SC20, ≤ 0.04 pg/kg). For the SC10 ME form, data on three batches from 2014 were provided, showing similar values.19 Although the batches dated from more than one year prior to the submission, given that the product is obtained downstream from the SC20 form, they are considered acceptable.

3.1.2. Characterisation of the active agent

The active agent is a \textit{S. cerevisiae} strain deposited at the National Culture Collection of Microorganisms (CNCM, France) with the accession number CNCM I-1077.20

3.1.3. Conditions of use

Levucell® SC20 and Levucell® SC10 ME are currently authorised at a minimum level of 1.2×10^9 CFU/kg of complete feed for dairy sheep and 5×10^8 CFU/kg of complete feed for dairy goats, with no maximum level. The applicant proposes to keep these conditions.

Under other provisions the regulation foresees that storage temperature, storage life and stability to pelleting be indicated in the directions for use of the additive and premixtures.

3.2. Safety

3.2.1. Safety for the target species, consumers and the environment

The species \textit{S. cerevisiae} is considered by EFSA to be suitable for the Qualified Presumption of Safety (QPS) approach to safety assessment (EFSA, 2007, EFSA BIOHAZ Panel, 2017). This approach requires the identity of the strain to be conclusively established. In the view of the FEEDAP Panel, the identity of the active agent was confirmed as \textit{S. cerevisiae}. Accordingly, it is considered by EFSA to be suitable for the QPS approach to safety and is presumed safe for the target species, consumers of products from animals fed the additive and the environment. Since no concerns are expected from other components of the additive, Levucell® SC is considered safe for the target species, consumers of products from animals fed the additive and the environment.

3.2.2. Safety for the user

In a previous opinion, the FEEDAP Panel concluded that Levucell® SC is not a skin irritant or sensitiser but is an eye irritant. Inhalation exposure is unlikely. Encapsulation is not expected to introduce hazards for users (EFSA FEEDAP Panel, 2017).

3.2.3. Further evidence of safety

The applicant states that no adverse effects or specific interactions or incompatibilities have been reported for the additive.22

The applicant conducted a literature search on the safety of Levucell® SC using several databases: CAB Abstracts, Agris, Scopus, Google Scholar, Bielefeld Academic Search Engine (BASE) and the Liège University library.23 The search included the terms: CNCM I-1077, Levucell SC, \textit{Saccharomyces cerevisiae}, safe*, tox*, tolerance, adverse effects, epidemiology, feed, incompatib* and interact*. The search covered the period 2006–2018. The search identified 74 relevant publications (Appendix A). None was designed to assess the safety \textit{per se} of the additive, but the effects of Levucell® SC on the

17 Technical dossier/Section II/Annex II 4a and 4b.
18 Technical dossier/Section II/Annex II 4d and 4e.
19 Technical dossier/Section II/Annex II 4c.
20 Technical dossier/Section II/Annex II 6b.
21 Technical dossier/Section III.
22 Technical dossier/Supplementary information March 2018.
performance of animals. However, some studies investigated or included some health end-points (i.e. blood biochemistry). None of these studies reported safety issues with the additive under assessment. Therefore, the FEEDAP Panel concludes that there is no new evidence that would lead the Panel to reconsider its previous conclusions on the safety of the product for target species, consumers and the environment under the authorised conditions of use.

3.3. Post-market monitoring

The FEEDAP Panel considers that there is no need for specific requirements for a post-market monitoring plan other than those established in the Feed Hygiene Regulation\(^\text{24}\) and Good Manufacturing Practice.

4. Conclusions

The applicant has provided evidence that the additive currently in the market complies with the existing conditions of authorisation.

The FEEDAP Panel confirms its previous conclusion that Levucell\(^\text{®} \) SC is safe for the target species, consumers of products from animals fed the additive, users and the environment.

Documentation provided to EFSA

1) Levucell SC. *Saccharomyces cerevisiae* CNCM I-1077 for dairy goats and dairy ewes. March 2016. Submitted by Lallemand SAS.

2) Application for renewal of the authorisation of *Saccharomyces cerevisiae* CNCM I-1077 (Levucell SC) for dairy goats and dairy ewes under Article 14 of Regulation (EC) No 1831/2003. Supplementary Information. March 2018. Submitted by Lallemand SAS.

Chronology

Date	Event
23/3/2016	Dossier received by EFSA
14/4/2016	Reception mandate from the European Commission
1/6/2016	Application validated by EFSA – Start of the scientific assessment
15/12/2017	Request of supplementary information to the applicant in line with Article 8(1)(2) of Regulation (EC) No 1831/2003 – Scientific assessment suspended. *Issues: safety for target species, consumer, user and environment*
1/9/2016	Comments received from Member States
10/2/2016	Reception of the Evaluation report of the European Union Reference Laboratory for Feed Additives
22/3/2018	Reception of supplementary information from the applicant – Scientific assessment re-started
5/7/2018	Opinion adopted by the FEEDAP Panel. End of the Scientific assessment

References

European Commission, 1997/2003. Scientific Committee on Animal Nutrition. Opinion on the use of certain microorganisms as additives in feedingstuffs. Available online: http://ec.europa.eu/food/fs/sc/scan/out93_en.pdf

EFSA (European Food Safety Authority), 2006a. Opinion of the Panel on additives and products or substances used in animal feed (FEEDAP) on the safety and efficacy of the product “Levucell SC20/Levucell SC10ME”, a preparation of Saccharomyces cerevisiae, as a feed additive for dairy goats and dairy ewes in accordance with Regulation (EC) No 1831/2003. EFSA Journal 2006;370, 1–10. https://doi.org/10.2903/j.efsa.2006.370

EFSA (European Food Safety Authority), 2006b. Opinion of the Panel on additives and products or substances used in animal feed (FEEDAP) on the safety and efficacy of the product “Levucell SC20/Levucell SC10ME”, a preparation of *Saccharomyces cerevisiae*, as a feed additive for leisure horses. EFSA Journal 2006;4(9):385, 9 pp. https://doi.org/10.2903/j.efsa.2006.385

EFSA (European Food Safety Authority), 2007. Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA – Opinion of the Scientific Committee. EFSA Journal 2007;5(12):587, 16 pp. https://doi.org/10.2903/j.efsa.2007.587

\(^{24}\) Regulation (EC) No 183/2005 of the European Parliament and of the Council of 12 January 2005 laying down requirements for feed hygiene. OJ L 35, 8.2.2005, p. 1.
EFSA (European Food Safety Authority), 2008. Scientific Opinion of the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) on a request from the European Commission on the safety and efficacy of Levucell SC20/Levucell SC10ME, a preparation of Saccharomyces cerevisiae, as feed additive for lambs for fattening. EFSA Journal 2008;772, 1–11.

EFSA (European Food Safety Authority), 2009. Opinion of the Panel on additives and products or substances used in animal feed (FEEDAP) on the efficacy of the product Levucell SC20/Levucell SC10ME (Saccharomyces cerevisiae) as feed additive for leisure horses. EFSA Journal 2009;1040, 1–7.

EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Girones R, Herman L, Koutsoumanis K, Lindqvist R, Nærrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlin B, Wolters J, Coconcelli PS, Klein G (deceased), Prieto Maradona M, Querol A, Peixe L, Suarez JE, Sundh I, Vlak JM, Aguillera-Gomez M, Barizzone F, Brozzi R, Correia S, Heng L, Istance F, Lythgo C and Fernández Escaméz PS, 2017. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA Journal 2017;15(3):4664, 177 pp. https://doi.org/10.2903/j.efsa.2017.4664

EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2013. Guidance on the renewal of the authorisation of feed additives. EFSA Journal 2013;11(10):3431, 8 pp. https://doi.org/10.2903/j.efsa.2013.3431. Available online: www.efsa.europa.eu/efsajournal

EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos ML, Bories G, Chesson A, Coconcelli PS, Flachowsky G, Gropp J, Kolar B, Kouba M, López Puente S, López-Alonso M, Mantovani A, Mayo B, Ramos F, Villa RE, Wallace RJ, Wester P, Brozzi R and Saarela M, 2017. Scientific Opinion on the safety and efficacy of Levucell® SC (Saccharomyces cerevisiae CNCM I-1077) as a feed additive for dairy cows, cattle for fattening, minor ruminant species and camels. EFSA Journal 2017;15(7):4944, 16 pp. https://doi.org/10.2903/j.efsa.2017.4944

Abbreviations

Abbreviation	Description
BIOHAZ	EFSA Panel on Biological Hazards
CFU	colony forming unit
EURL	European Union Reference Laboratory
FEEDAP	EFSA Panel on additives and products or substances used in animal feed
PCBs	polychlorinated biphenyls
PCR	polymerase chain reaction
QPS	Qualified Presumption of Safety
SCAN	Scientific Committee on Animal Nutrition
Appendix A – List of references retrieved from the literature search provided by the applicant to support safety of the additive

Agazzi A, Invernizzi G, Ferroni M, Vandoni S, Sgoifo Rossi C, Savoini G, Dell’Orto V and Chevaux E, 2009. Effects of live yeast on growth performances and meat quality of beef cattle fed fast or slow fermentable diets. Journal of Animal Science, 87, E-Suppl. 2/J. Dairy Sci. Vol. 92, E-Suppl. 1.

Ahmadzadeh L, Hosseinkhani A and Kia HD, 2018. Effect of supplementing a diet with monensin sodium and *Saccharomyces cerevisiae* on reproductive performance of Ghezel ewes. Animal Reproduction Science, 188, 93–100.

Bach A, Guasch I, Elcoso G, Chaucheyras-Durand F, Castex M, Fàbregas F, Garcia-Frutos E and Aris A, 2018. Changes in gene expression in the rumen and colon epithelia during the dry period through lactation of dairy cows and effects of live yeast supplementation. Journal of Dairy Science, 101, 1–10.

Bagheri M, Ghorbani GR, Rahmani HR, Khorvash M, Nili N and Südekum KH, 2009. Effect of live yeast and mannan-oligosaccharides on performance of early lactation Holstein dairy cows. Asian-Australasian Journal of Animal Sciences, 22, 812–818.

Blank R and Wolffram S, 2009. Effects of live yeast cell supplementation to high concentrate diets on the toxicokinetics of ochratoxin A in sheep. Food Additives and Contaminants: Part A, 26, 119–126.

Bach A, Iglesias C and Devant M, 2007. Daily rumen pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation. Animal Feed Science and Technology, 136, 146–153.

Bhandari BM, 2012. Effect of supplementing probiotics on ruminal profiles and milk yield in dairy animals. PhD thesis, 2012 University Anand - 388 110 (Gujarat) India, 222 pp.

Bhandari BM, Pamerkar S, Aggarwal A, Shankpal S, Thube H and Pathan S, 2016a. Effect of supplementing two different commercial strains of yeast cultures on milk production, milk composition and feed conversion efficiency in crossbred cows in India. Livestock Research International, 4, 29–35.

Bhandari BM, Pamerkar S, Aggarwal A, Shankpal S, Thube H and Pathan S, 2016b. Effect of supplementing two different commercial strains of yeast cultures on rumen fermentation, nutrient digestibility and bio-chemical profile in kankrej cows. International Journal of Advanced Research, 4, 756–772.

Bitencourt L, 2008. Desempenho e eficiência alimentar de vacas leiteiras suplementadas com levadura viva. Master thesis, Federal University of Lavras, Lavras, Brasil, 70 pp.

Bitencourt LL, Silva JR, Oliveira BM, Dias Junior GS, Lopes F, Siécola Júnior S, Zacaroni OD and Pereira MN, 2011. Diet digestibility and performance of dairy cows supplemented with live yeast. Scientia Agricola (Piracicaba, Braz.), 68, 301–307.

Brossard L, Chaucheyras-Durand F, Michalet-Doreau B and Martin C, 2006. Dose effect of live yeasts on rumen microbial communities and fermentations during butyric latent acidosis in sheep: new type of interaction. Animal Science, 2006, 82, 829–836.

Chaucheyras-Durand F, Faqir F, Ameilbonne A, Rozand C and Martin C, 2010. Fates of acid-resistant and non-acid-resistant shiga toxin-producing *Escherichia coli* strains in ruminant digestive contents in the absence and presence of probiotics. Applied and Environmental Microbiology, 3, 640–647.

Chaucheyras-Durand F, Ameilbonne A, Bichat A, Mosoni P, Ossa F and Forano E, 2015. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. Journal of Applied Microbiology, 120, 560–570.

Chung YH, Walker ND, McGinn SM and Beauchemin KA, 2011. Differing effects of 2 active dried yeast (*Saccharomyces cerevisiae*) strains on ruminal acidosis and methane production in nonlactating dairy cows. Journal of Dairy Science, 94, 2431–2439.

Coetzee C, 2011. Effect of live yeast supplementation on performance parameters of Jersey cows grazing ryegrass/kiikuyu pasture. Master thesis, 2011. University of Pretoria, South Africa.

Commun L, Mialon MM, Martin C and Veissier I, 2012. Behavioural adaptations of sheep to repeated acidosis challenges and effect of yeast supplementation. Animal, 6, 2011–2022.

Coronel-Robles U, Ortega-Cerrilla ME, Mendoza-Martinez GD, Zetina-Córdoba P, Torres-Esqueda MT, Munguia-Ameca G and Teco-Jácome MV, 2016. Productive response and progesterone concentration in Holstein heifers supplemented with *Saccharomyces cerevisiae* 1077 or *Saccharomyces boulardii* 1079. The Journal of Animal and Plant Sciences, 26, 17–24.

Der Bedrosian MC, 2009. The effect of sodium bicarbonate or live yeast culture (*Saccharomyces cerevisiae*) on the metabolism and production of lactating dairy cows. Master Thesis, Faculty of the University of Delaware, USA, 68 pp.

Devries TJ and Chevaux E, 2014. Modification of the feeding behavior of dairy cows through live yeast supplementation. Journal of Dairy Science, 97, 6499–6510.
Ding G, Chang Y, Zhao L, Zhou Z, Ren L and Meng Q, 2014. Effect of *Saccharomyces cerevisiae* on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios. *Journal of Animal Science and Biotechnology*, 5, 24, 9 pp.

Doležal P, Dvoráček J, Dvoráčková J, Poštulka R, Doležal J and Szwedziak K, 2010. Využití kvasínkové kultury ve výžive laktujících dojník. *Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis*, 58, 75–82.

Doležal P, Dvoráček J, Doležal J, Čermáková J, Zeman L and Szwedziak K, 2011. Effect of feeding yeast culture on ruminal fermentation and blood indicators of Holstein dairy cows. *Acta Veterinaria Brno*, 80, 139–145.

Doreau M, Laverroux S, Chaucheyras-Durand F and Poncet C, 2010. Effect of N source (soybean meal vs. whole lupin) and of yeast addition on digestion and ruminal N metabolism in sheep. 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition, Parma, Italy, 6–10 September, 2010 *Wageningen Wageningen Academic Publishers*, 2010, 569–570.

Faubladier C, Chaucheyras-Durand F, da Veiga L and Julliand V, 2013. Effect of transportation on fecal bacterial communities and fermentative activities in horses: impact of *Saccharomyces cerevisiae* CNCM I-1077 supplementation. *Journal of Animal Science*, 91, 1736–1744.

Frohdeová M, Mlejnková V, Lukesová K and Doležal P, 2014. Effect of prepartum supplementation of yeast culture (*Saccharomyces cerevisiae*) on biochemical parameters of dairy cows and their newborn calves. *Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis*, 62, 897–904.

Fustini M, Palmonari A, Durand H, Formigoni A and Grilli E, 2013. Effect of *Saccharomyces cerevisiae* CNCM I-1077 (Levucell SC) on rumen pH and milk production during heat stress. *Journal of Animal Science* 91(E-suppl 2/J) – abstract 750.

Geng CY, Meng QX, Ren LP, Zhou ZM, Zhang M and Yan CG, 2016a. Comparison of ruminal fermentation parameters, fatty acid composition and flavour of beef in finishing bulls fed active dry yeast (*Saccharomyces cerevisiae*) and yeast culture. *Animal Production Science*, 19;58, 841–847.

Geng CY, Ren LP, Zhou ZM, Chang Y and Meng QX, 2016b. Comparison of active dry yeast (*Saccharomyces cerevisiae*) and yeast culture for growth performance, carcass traits, meat quality and blood indexes in finishing bulls. *Animal Science Journal*, 87, 982–988.

Golder HM, Celi P, Rabiee AR and Lean IJ, 2014. Effects of feed additives on rumen and blood profiles during a starch and fructose challenge. *Journal of Dairy Science*, 97, 985–1004.

Gomes MJ, Guedes C, Chevaux E, Loureiro N, Brizida E and Dias-da-Silva A, 2015a. Efeito da estirpe de levedura *Saccharomyces cerevisiae* cnmc i-1077 na degradabilidade in situ de silagens de erva. Proceedings of XIX Congresso de zootecnia “Diversidade na produção”, Ponte de Lima – 16 to 18 April 2015, pp. 172–175.

Gomes M.J. et al., 2015b. Efeito da estirpe de levedura Saccharomyces cerevisiae CNCM I-1077 nos parâmetros de fermentação no rumen de vacas alimentadas com uma dieta à base de silagem de erva. Proceedings of XIX Congresso de zootecnia “Diversidade na produção”, Ponte de Lima – 16 to 18 April 2015, pp. 208–211.

Guedes CM, Goncalves D, Rodrigues MA and Dias-da-Silva A, 2008. Effects of a *Saccharomyces cerevisiae* yeast on ruminal fermentation and fibre degradation of maize silages in cows. *Animal Feed Science and Technology*, 145, 27–40.

Holtshausen L and Beauchemin KA, 2010. Supplementing barley-based dairy cow diets with *Saccharomyces cerevisiae*. The Professional Animal Scientist, 26, 285–289.

Kayser W, Parsons IL, Carstens GE, Jenks ML, Cupples AG, Sawyer JE, Barling K, and Chevaux E, 2017. Effects of *Saccharomyces cerevisiae* CNCM I-1077 supplementation on feeding behaviors and growth efficiency in crossbred beef steers fed a high-grain diet. *Journal of Animal Science*, 95, 45.

Kowalik B, 2008. The effect of supplementing cows with live yeast, *Saccharomyces cerevisiae*, on ciliate fauna and ruminal fermentation. *Journal of Animal and Feed Sciences*, 17, 157–165.

Kowalik B, Michałowski T, Pajak JJ, Taciak M and Zalewska M, 2011. The effect of live yeast, *Saccharomyces cerevisiae*, and their metabolites on ciliate fauna, fibrolytic and amylolytic activity, carbohydrate digestion and fermentation in the rumen of goats. *Journal of Animal and Feed Sciences*, 20: 526–536.

Kowalik B, Skomiał J, Pajak JJ, Taciak M, Majewska M and Belzecki G, 2012. Population of ciliates, rumen fermentation indicators and biochemical parameters of blood serum in heifers fed diets supplemented with yeast (*Saccharomyces cerevisiae*) preparation. *Animal Science Papers and Reports*, 30, 329–338.

Kowalik B, Skomiał J, Mitkó R and Majewska M, 2016. The effect of live *Saccharomyces cerevisiae* yeast in the diet of rams on the digestibility of nutrients, nitrogen and mineral retention, and blood serum biochemical parameters. *Turkish Journal of Veterinary and Animal Sciences*, 40, 534–539.

Kumar DS, Prasad JR, Rao ER and Rao KS, 2010. Effect of yeast culture supplementation on nutrient utilization in Graded Murrah buffalo bull calves. *Livestock Research for Rural Development*, 22, 125, 3 pp.

Kumar DS, Prasad JR and Rao ER, 2011a. Effect of dietary inclusion of yeast culture (*Saccharomyces cerevisiae*) on growth performance of graded murrah buffalo bull calves. *Buffalo Bulletin*, 30, 63–66.
Kumar DS, Prasad JR and Rao ER, 2011b. Effect of supplementation of yeast culture in the diet on milk yield and composition in graded Murrah buffaloes. Buffalo Bulletin, 30, 100–104.

Kumar DS, Prasad JR and Rao ER, 2011c. Influence of diet supplementation with Saccharomyces cerevisiae on intake and nutrient utilization in Graded Murrah buffaloes. Veterinary World, 4, 22–24.

Kumar DS, Prasad JR and Rao ER, 2011d. Rumen fermentation pattern in graded Murrah buffalo bulls fed on Leuvell SC 20 yeast (Saccharomyces cerevisiae CNCM I-1077) culture. Animal Science Reporter, 5, 43–49.

Kumar DS, Prasad JR and Rao ER, 2013. Effect of yeast culture (Saccharomyces cerevisiae) on ruminal microbial population in buffalo bulls. Buffalo Bulletin, 32: 116–119.

Loncke C, Van Nespen L, Launay E, Sulmont E, Pichon P and Demey V, 2012. Evaluation de l’impact de la fermentation en Saccharomyces cerevisiae CNCM I-1077 sur les performances zootechniques et le comportement alimentaire de taurillons laitiers en début d’engraissement et Effect of Saccharomyces cerevisiae CNCM I-1077 supplementation on zootechnical performances and feeding behavior of dairy bull calves during the growing period. Conference proceeding, Rencontre Recherche Ruminants, 2012, 19.

Marden JP, 2007. Contribution à l’étude du mode d’action de la levure Saccharomyces cerevisiae sc 47 chez le ruminant: approche thermodynamique chez la vache laitière. PhD thesis, Institut National Polytechnique de Toulouse.

Martins JM, Litz FH, Castilhano H and Campos DF, 2012. Utilização da levadura (Saccharomyces cerevisiae) na dieta de vacas lactantes. Publicações em Medicina Veterinária e Zootecnia, 6, 161–165.

Milton R, Kowalik B, Majewska M, Belezecki G and Skomial J, 2015. The influence of supplementing heifer diets with Saccharomyces cerevisiae yeast on the activity of polysaccharidases in the rumen. Journal of Animal and Feed Sciences, 24, 260–264.

Mosoni P, Chaucheys-Durand F, Béra-Maillet C and Forano E, 2007. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive. Journal of Applied Microbiology, 103, 2676–2685.

Muñoz C, Wills DA and Yan T, 2016. Effects of dietary active dried yeast (Saccharomyces cerevisiae) supply at two levels of concentrate on energy and nitrogen utilisation and methane emissions of lactating dairy cows. Animal Production Science, 57, 656–664.

Obeidat BS, 2017. The effects of feeding olive cake and Saccharomyces cerevisiae supplementation on performance, nutrient digestibility and blood metabolites of Awassi lambs. Animal Feed Science and Technology, 231, 131–137.

Ouellet DR and Chiquette J, 2016. Effect of dietary metabolizable protein level and live yeasts on ruminal fermentation and nitrogen utilization in lactating dairy cows on a high red clover silage diet. Animal Feed Science and Technology, 220, 73–82.

Palagi M, Feltre K, Gonzaga IV, de Lima Costa R, de Moraes Filho LA, de Carvalho Balieiro JC and de Oliveira Gobesso AA, 2017. Supplementation with live yeasts and essential oils does not alter blood, fecal and digestible parameters in horses. Livestock Science, 206, 161–165.

Pantaya D, Morgavi DP, Silberberg M, Chaucheys-Durand F, Martin C, Wiriyawan KG and Boudra H, 2016. Bioavailability of aflatoxin B1 and ochratoxin A, but not fumonisin B1 or deoxynivalenol, is increased in starch induced low ruminal pH in non lactating dairy cows. Journal of Dairy Science, 99, 9759–9767.

Pienaar GH, Einkamerer OB, Van der Merwe HJ, Hugo A, Scholtz GD and Fair DM, 2012. The effects of an active live yeast product on the growth performance of finishing lambs. South African Journal of Animal Science, 42, 464–468.

Pienaar GH, Einkamerer OB, Van der Merwe HJ, Hugo A and Fair MD, 2015. The effect of an active live yeast product on the digestibility of finishing diets for lambs. Small Ruminant Research, 123, 8–12.

Pinós-Rodriguez JM, Robinson PH, Ortega ME, Berry SL, Mendoza G and Barcena R, 2008. Performance and rumen fermentation of dairy calves supplemented with Saccharomyces cerevisiae 1077 or Saccharomyces boulardii 1079. Animal Feed Science and Technology, 140, 223–232.

Poonooru RR, Dhulipala RK, Eleneni RR and Kancharana AR, 2015. Rumen fermentation patterns in buffalo bulls fed total mixed ration supplemented with exogenous fibrolytic enzyme and/or live yeast culture. Journal of Advanced. Veterinary and Animal Research, 2, 310–315.

Rihema E, Kart O, Mihejev K, Henno M, Joudu I and Kaart T, 2007. Effect of dietary live yeast on milk yield, composition and coagulation properties in early lactation of Estonia Holstein cows. Agraarteadus, 18, 37–41.

Row CA, 2015. Corn plant maturity effect on yield and nutritional quality; corn silage inoculation on performance of cattle fed silage with or without live yeast added. Master thesis, 2015, University of Nebraska – Lincoln, USA, 133 pp.

Row CA, Bittner CJ, Harding JL, MacDonald JC, Klopfenstein TJ, Aguilar AA, Schmidt RJ and Erickson GE, 2016. Impact of inoculating corn silage with Buchneri 500 on feedlot cattle performance with or without added yeast product at time of feeding. Nebraska Beef Cattle Reports Animal Science Department, 2016, 5 pp.
Santos FA, Carmo CA, Martinez JC, Pires AV and Bittar CM, 2006. Desempenho de vacas em lactação recebendo dietas com diferentes teores de amido total, acrescidas ou não de levedura (Saccharomyces cerevisiae). Revista Brasileira de Zootecnia, 35, 1568–1575.

Stella AV, Paratte R, Valnegri L, Cigalino G, Soncini G, Chevaux E, Dell’Orto V and Savoini G, 2007. Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Ruminant Research, 67, 7–13.

Silberberg M, Chaucheyras-Durand F, Richard-Mialon MM, Martin C and Morgavi DP, 2009. Repeated ruminal acidic challenges in sheep: effects on pH and microbial ecosystem and influence of activity of dry yeasts. Journal of Animal Science, 87(E-suppl) 2/J.

Silberberg M, Chaucheyras-Durand F, Mialon MM, Monteil V, Mosoni P, Morgavi DP and Martin C, 2013. Repeated acidosis challenges and live yeast supplementation shape rumen microbiota and fermentations and modulate inflammatory status in sheep. Animal, 7, 1910–1920.

Sousa DO, Oliveira CA, Velasquez AV, Souza JM, Chevaux E, Mari LJ, Silva LF, 2018. Live yeast supplementation improves rumen fibre degradation in cattle grazing tropical pastures throughout the year. Animal Feed Science and Technology, 236, 149–158.

Sykes B, Sykes KM and Hallowell GD, 2014. Efficacy of a combination of apolectol, live yeast (Saccharomyces cerevisiae [CNCM I-1077]), and magnesium hydroxide in the management of equine gastric ulcer syndrome in thoroughbred racehorses: a blinded, randomized, placebo-controlled clinical trial. Journal of Equine Veterinary Science, 34, 1274–1278.

Temim S, Boudjenah A, Djellout B, Bouzerd S, Atif ME, Hafsi F, Ghozlane F and Baziz HA, 2009. Effet de la complementation alimentaire en levure Saccharomyces cerevisiae sur les performances zootechniques et les parametres sanguins de la vache laitiere en peripartum. Livestock Research for Rural Development, 21, 16 pp.

Terré M, Maynou G, Bach A and Gauthier M, 2015. Effect of Saccharomyces cerevisiae CNCM I-1077 supplementation on performance and rumen microbiota of dairy calves. The Professional Animal Scientist, 31, 153–158.

Thrune M, Bach A, Ruiz-Moreno M, Stern MD and Linn JG, 2009. Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows: yeast supplementation on rumen fermentation. Livestock Science, 124, 261–265.

Turney A, Clay A and Waldron L, 2017. The effect of feeding Levucell SC™ rumen specific live yeast on feed intake and weight gain performance of calves during weaning. Journal of Applied Animal Nutrition, 5: E9, 5 pp.

Zelvyte R, Monkevičienė I, Balsytė J, Sederevičius A, Laugalis J and Oberauskas V, 2006. Probiotikio Levucell SC įtaka karvių didžiojo prieskrandžio fermentacinio procesų aktyvumui ir produkcijai. Veterinarija ir Zootekhnika, 36, 91–96.

Zelvyte R, Monkevičienė I, Juozaitienė V, Laugalis J, Sederevičius A, Stankevičius R and Baltušnikiienė A, 2012. Mieliu Saccharomyces cerevisiae priedo įtaka lakiųjų riebalų rūgščių koncentracijai ir bakterijų skaičiui karvių didžiojo prieskrandžio turinpyje. Veterinarija ir Zootekhnika, 57, 77–82.