Two predicted models based on ceRNAs and immune cells in lung adenocarcinoma

Miaomiao Zhang Equal first author, 1 Peiyan Zheng Peiyan Equal first author, 2 Yuan Wang Correspond., 1, Baoqing Sun Correspond. 2

1 The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Disease, GuangZhou, China
2 Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou, china

Corresponding Authors: Yuan Wang, Baoqing Sun
Email address: YuanWangxz1992@126.com, sunbaoqing@vip.163.com

Background It is well accepted that both competitive endogenous RNAs (ceRNAs) and immune microenvironment exert crucial roles in the tumor prognosis. The present study aimed to find prognostic ceRNAs and immune cells in lung adenocarcinoma (LUAD).

Materials and Methods More specifically, we explored the associations of crucial ceRNAs with the immune microenvironment. The cancer genome atlas (TCGA) database was employed to obtain expression profiles of ceRNAs and clinical data. CIBERSORT was utilized to quantify the proportion of 22 immune cells in LUAD. Results We constructed two cox regression models based on crucial ceRNAs and immune cells to predict prognosis in LUAD. Subsequently, seven ceRNAs and seven immune cells were involved in prognostic models. We validated both predicted models via an independent cohort GSE72094. Interestingly, both predicted models proved that the longer patients were smoking, the higher risk scores would be obtained. We further investigated the relationships between seven genes and immune/stromal scores via the ESTIMATE algorithm. The results indicated that CDC14A and H1F0 expression were significantly related to stromal scores/Immune scores in LUAD. Moreover, based on the result of the ceRNA model, single-sample gene set enrichment analysis (ssGSEA) suggested that differences in immune status were evident between high- and low-risk groups.
Two predicted models based on ceRNAs and immune cells in lung adenocarcinoma

Miaomiao Zhang¹, PeiYan Zheng², Yuan Wang¹, BaoQing Sun²

¹The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Disease, 151 Yanjiang Road, Guangzhou 510120, China

²Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory health, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

Correspondence Author:

Yuan Wang, YuanWangxz1992@126.com

SunBao Qing, Sunbaoqing@vip.163.com

Keywords lung adenocarcinoma, immune microenvironment, prognosis, ceRNA (competitive endogenous RNAs).
Running Title: TWO PREDICTED MODELS in LUAD

Abstract

Background It is well accepted that both competitive endogenous RNAs (ceRNAs) and immune microenvironment exert crucial roles in the tumor prognosis. The present study aimed to find prognostic ceRNAs and immune cells in lung adenocarcinoma (LUAD). Materials and Methods More specifically, we explored the associations of crucial ceRNAs with the immune microenvironment. The cancer genome atlas (TCGA) database was employed to obtain expression profiles of ceRNAs and clinical data. CIBERSORT was utilized to quantify the proportion of 22 immune cells in LUAD. Results We constructed two cox regression models based on crucial ceRNAs and immune cells to predict prognosis in LUAD. Subsequently, seven ceRNAs and seven immune cells were involved in prognostic models. We validated both predicted models via an independent cohort GSE72094. As expected, both predicted models proved that the longer smoking time was related to the higher risk scores among cigarette smokers. We further investigated the relationships between seven genes and immune/stromal scores via the ESTIMATE algorithm. The results indicated that CDC14A and H1F0 expression were significantly related to stromal scores/Immune scores in LUAD. Moreover, based on the result of the ceRNA model, single-sample gene set enrichment analysis (ssGSEA) suggested that differences in immune status were evident between high- and low-risk groups.
Introduction

Lung cancer is considered as the most common cause of survival-associated cancer globally (Bray et al. 2018). Besides, lung adenocarcinoma (LUAD) approximately accounts for 50% of all lung cancer types (Imielinski et al. 2012). Although the improvement of diagnosis and the comprehensive treatment in the lung cancer has been made, the 5-year overall survival rate for lung cancer is still approximately 18%, mainly due to invisible early symptoms (Siegel et al. 2018). Thus, it is of great necessity to identify sensitive and accurate biomarkers in the early stage.

Competitive endogenous RNAs (ceRNAs), consisting of a group of regulatory RNA molecules, bind with the specific miRNAs and then affect the protein level (Kartha & Subramanian 2014; Phelps et al. 2016; Shukla et al. 2011). Previous studies have shown that ceRNA regulatory networks play essential roles in tumor progression and migration (Bartel 2009; Qi et al. 2015; Sanchez-Mejias & Tay 2015; Tay et al. 2014). Besides, increasing studies have demonstrated that immune microenvironment (TIME) was also associated with the prognosis in various kinds of tumors, including LUAD (Lavin et al. 2017; Liu et al. 2020a). Stromal cells and immune cells constitute the central part of TIME. Stromal cells participate in the process of tumorigenesis and metastasis and are generally conducive to the movement of cancer cells (Ni et al. 2018). Additionally, various studies revealed that immune cells exhibit large effects on clinical outcomes in many cancers. Donnem et al. summarized that different types of immune cells affected the clinical stage and prognosis in non-small lung cancer (Donnem et al. 2016; Liu et al. 2020b). As a result, to further investigate potential biomarkers based on immune cells and ceRNAs in LUAD,
we constructed Cox proportional hazards models and predicted nomograms.

However, the mechanisms of ceRNAs in the tumor microenvironment still remain unclear in LUAD. It is well accepted that cancer stem cells (CSCs) are tumorigenic cells with self-renewal ability. Besides, CSCs promote tumor immune to escape via expressing a variety of immune factors (Bruttel & Wischhusen 2014). In the current study, RNA stem scores and DNA stem scores were applied to assess tumor stem cell content (Malta et al. 2018). ESTIMATE algorithm was utilized to evaluate the stromal and immune cells in every sample (Yoshihara et al. 2013). Thus, we explored the correlation between crucial prognostic genes with RNAstem/DNAstem scores and stromal/immune scores. All in all, in this study, we comprehensively analyze the associations between crucial ceRNAs and immune infiltration landscape, crucial ceRNAs and tumor stem cells, which may offer an important perspective for early diagnosis and treatment of LUAD.

Materials and Methods

Identification of differentially expressed ceRNAs

In the present study, expression profiles of LUAD and the corresponding clinical information were derived from the TCGA database, including lncRNA, miRNA, and mRNA. The R package "DEseq2" was used to screen the differentially expressed mRNAs, miRNAs and lncRNAs (DEmRNA, DEmiRNA and DElncRNA) between normal and tumor samples (Love et al. 2014). Specifically, a false discovery rate (FDR) <0.05 and log2 |fold change | > 1 were set as cutoff criteria.
ceRNA network construction

Both lncRNA-miRNA and miRNA-mRNA interactions were predicted using miRcode and starBase (Chou et al. 2018; Jeggari et al. 2012; Li et al. 2014). DEMiRNAs, DEMRNAs, and DE lncRNAs, which presented a significant difference in hypergeometric distribution detection and correlation analysis (P<0.05), were selected to construct a lncRNA-miRNA-mRNA regulatory network and then was visualized by Cytoscape 3.80 (Shannon et al. 2003).

Construction of nomogram based on key ceRNAs

Univariate Cox analysis was employed to screen the survival-associated ceRNAs. Lasso regression analysis was applied to ensure that the Cox model was not overfitted. Eventually, the candidate ceRNAs were integrated to establish the multivariate cox regression models. Risk scores were described as following: risk score=(Exp RNA1*β1) + (Exp RNA2*β2) + ... + (Exp RNAn*βn). It is worth noting that Exp stands for the expression level, and β denotes the regression coefficient. Based on the risk scores, patients with LUAD were divided into high-risk and low-risk groups. The corresponding Kaplan-Meier survival curves were carried out to reveal the overall survival (OS) within different groups. In addition, we also performed the ROC curve to evaluate the specificity and sensitivity of the model. Finally, according to the multivariate model result, we constructed a nomogram to predict patients' prognostic values. The calibration curve was applied to evaluate the accuracy of the nomogram.

Construction of nomogram based on immune cells
With a good deconvolution performance in gene expression profiles, CIBERSORT method could estimate the proportion of particular cell types (Newman et al. 2015). In this study, CIBERSORT algorithm was utilized to estimate 22 tumour-infiltrating immune cells in LUAD by collating and calculating the genes expression in the tumor samples in the TCGA database. Samples with a CIBERSORT output of $p < 0.05$ presented that the predicted proportion of immune cells were correct.

The Wilcoxon test was conducted to examine the significant difference of immune cells between the tumor samples and healthy samples. We also performed multivariate Cox regression and produced the corresponding risk scores. Based on the multivariate Cox model results, we finally built a predicted nomogram. Similar to ceRNAs, patients were also stratified into high-risk and low-risk groups on the basis of the mean risk score. Subsequently, the prognostic model's sensitivity and specificity were examined by the ROC curve, and the calibration curve investigated the accuracy of the nomogram.

Validation of prognostic equations with GEO

To better elucidate the accuracy of both multivariate Cox models, an external validation dataset GSE72094 ($n=442$) was applied in the present study. We selected this dataset because it contained most LUAD patients with clinical data in the Gene Expression Omnibus (GEO) database. Based on the median risk score generated from TCGA, we also classified patients with high- and low-risk patients. K-M and ROC curves were applied to evaluate the prognostic efficacy of multivariate models in TCGA.
Estimation of tumor stemness and microenvironment

Stemness scores of "RNAss" and "DNAss" referred to the result based on mRNA and DNA-methylation respectively. The larger stemness scores were, the higher likelihood more stem cells were infiltrating. ESTIMATE algorithm could speculate the level of stromal cell, immune cells and tumor purity, respectively (Yoshihara et al. 2013). Correspondingly, stromal/immune/Estimate scores were significantly associated with stromal cells, immune cells and tumor purity, respectively. We utilized the "ESTIMATE" package to assess immune, stromal scores, and the sum of both in individual patients. The higher scores, the higher proportion of corresponding cells were. Additionally, the correlation of hub ceRNAs with above scores was examined by Spearman analysis. The ssGSEA method could apply expressed traits of immune cell population to individual tumor samples (Barbie et al. 2009). Based upon the results of ssGSEA, we calculated infiltrating level of immune cells and immune-associated functions in LUAD samples by using the “gsva” package (Hänzelmann et al. 2013). Furthermore, we compared the differences in these immune data sets between the high-risk group and the low-risk group.

Statistical analysis

All statistical analyses were accomplished with R software 4.0.2. The Wilcoxon rank sum tests were conducted for comparisons between two groups. Only a two-sided P-value <0.05 was recognized as statistically significant.
Results

Clinicopathological characteristics of LUAD in the TCGA database and GSE72094 are displayed in Table 1 and Table 2, respectively. In addition, complete clinical information for each patient is listed in Table S1.

Identification of DE mRNAs, DEMiRNAs and DElncRNAs

Figure 1 presents our workflow for the bioinformatic analysis. Among the whole expression profiles, totally 1645 upregulated DE mRNAs, and 1344 downregulated DE mRNA were screened out (Fig. 2A,2B). Furthermore, we also identified 163 upregulated DElncRNA, 52 downregulated DElncRNA (Fig.2C,2D), 111 upregulated DEMiRNA, and 87 downregulated DEMiRNA (Fig.3B). Specifically, the top 20 significantly upregulated- and downregulated- miRNAs were shown in Fig.3A.

Construct Nomogram of ceRNAs

To investigate the endogenously competitive relationships between the lncRNA and mRNA, we constructed an intersected ceRNA network. Seven lncRNAs (H19, AC074117.1, FBXL19-AS1, MAGL2-AS3, SNHG3, PVT1 and SNHG1), 94mRNA, and 15miRNA were involved in the network (Table.S2). Hsa-miR-130b-3p and hsa-miR-29b-3p were the top 2 regulated miRNA in the ceRNA network (Fig. 4). In addition, the initial univariate Cox regression (Fig. S1) and Lasso regression analysis were further conducted to investigate the key biomarkers (Fig. 5B,5C). Seven
survival-associated biomarkers were finally involved in a new multiple Cox regression analysis (Fig. 5A). According to the result, all biomarkers belonged to protein-coding RNAs. Consequently, the corresponding risk score was generated (Table 3): risk score = [Exp CDC14A * (-0.281888)] + (Exp LOXL2*0.114969) + (Exp CCT6A * 0.174244) + (Exp E2F7 *0.187164)+(Exp GPR37*0.099737)+(Exp H1F0 *0.197590)+(Exp SMOC1 * 0.068385).

As shown in Fig.5D, the prognostic score could be a promising indicator to distinguish the LUAD patients according to the individual prognosis (P=5.701e-8). The area under ROC reflected the predictive efficacy of the prognostic signature (AUC of 3-year survival:0.772) (Fig.5E). By the GEO validation set, the AUC of gene signature at 3-year was 0.711 (Fig. S2A). Additionally, K-M analysis further confirmed the difference between high- and low-risk groups (P=9.963e-05) (Fig. S2B). Eventually, we assessed the prognosis of patients with LUAD by a nomogram (Fig. 6A), and the accuracy of the nomogram was confirmed by the calibration curve (Fig. 6C). As shown in Fig.7A, based on this prognostic model, the risk score in the group with fewer smoking years (≦20) was lower than the group with more smoking years (> 20) (P=0.025).

Construct Nomogram of immune Cells

By applying the CIBERSORT, we estimated the percentages of 22 immune cell types in LUAD (Fig. S3B, S3C) (Chen et al. 2018). The violin plot indicated that 13 immune cell types showed a significant difference in percentages of immune cells between tumor samples and healthy samples by the Wilcoxon test (Fig. S3D). The correlation analysis of immune cells could be found in Fig.S3A. Subsequently, after the analysis of univariate cox regression and lasso regression, seven
immune cells were taken as prognostic biomarkers and eventually integrated into a new multivariate model (Fig. 8A, 8B, 8C). The formula was presented as following (Table 4): risk score

\[
\text{risk score} = \text{Exp CD8} \times (-3.425649) + \text{Exp Tregs} \times 9.175062 + \text{Exp Monocytes} \times (-5.318492) + \text{Exp M1} \times 6.134551 + \text{Exp Dendritic cells activated} \times 5.539130 + \text{Exp Mast cells activated} \times 24.611110 + \text{Exp Eosinophils} \times 37.351722.
\]

The K-M analysis results showed a significant difference in overall survival between high- and low-risk groups (P=3.342e-05) (Fig. 8D). The ROC curve (AUC of 3-years: 0.766) demonstrated that the multivariate model was recognized as a fair potential to monitor the prognostic efficacy (Fig. 8E). In the external validation set, the model also carried out adequate predicted capacity. The AUC of immune cell signature was 0.738 at 3-years (Fig. S2C). K-M curves reflected that the low-risk group had longer overall survival than the high-risk group (P=2.922e-04) (Fig. S2D). A predicted nomogram was also performed, and the discrimination was conducted to test the calibration quality (Fig. 6B, 6D). Similarly, we could also found that the longer smoking history was related to the higher the risk scores based on the predicted model of immune cells in smoking groups (P=0.0046) (Fig. 7B). The correlations of key prognostic biomarkers in the two models illustrate that the expression of E2F7 is positively related to Macrophages M1 (R=0.4) (Fig. S4).

Besides, the Univariate and multivariate survival analyses revealed that risk scores in the two models were both independent prognostic factors (Fig. S5).

Correlation of hub ceRNAs expression with tumor stemness and microenvironment
As shown in Fig.9, CCT6A, H1F0 and E2F7 were positively related to RNAss and DNAass (R=0.22 to 0.53). A significant negative association was detected between CDC14A and RNAss (R=-0.25, P=7.5e-8). Nevertheless, we did not find a significant correlation between LOXL2, GPR37 and SMOC1 with tumor stemness. In addition, H1F0 displayed a negative association with stromal scores, immune scores and estimate scores (R=-0.34 to -0.27). However, CDC14A showed a positive association with the microenvironment-related scores (R=0.31 to 0.35).

Multiple databases validation

To validate CDC14A and H1F0 expression in LUAD, we utilized multiple databases. Based on the result of UCLAN, GEPIA and TIMER, it could be concluded that H1F0 was highly expressed while CDC14A was weakly expressed in LUAD (Fig.S6). Furthermore, the CDC14A and H1F0 protein expression were obtained from The Human Protein Atlas data (HPA), indicating that H1F0 was high staining in tumor cells, while it was medium staining in normal tissues (Fig.S7A, S7B). The opposite trend was observed in CDC14A. Besides, the association of H1F0 and CDC14A with immune cells were validated in TISIDB. CDC14A expression was positively associated with Immature B cell (R=0.345), NK cell (R=0.308), Eosinophils (R=0.357), and Mast cell (R=0.332) (Fig.S8A-S8E). Controversially, H1F0 expression was negatively related to Eosinophil (R=-0.34), Macrophage(R=-0.359), NKT(R=-0.323), Tem_CD8 (R=-0.323) and Th1(R=-0.407) (Fig.S8F-S8J).

Differences in ssGSEA scores in TCGA/GEO cohort
To further elucidate the immune status in risk- and low groups of ceRNA signatures, we performed the ssGSEA algorithm to estimate the immune infiltrating between two groups (Fig.S9). Of note, low-risk group were associated with higher scores of aDCs, B_cells, CD8+_T_cells, iDCs, Mast_cells, Neutrophils, pDCs, T_helper_cells and TIL (Fig.10A,10B). Similarly, in the lower-risk group, the scores of Check-point, HLA, T_cell_co-stimulation and Type_II_IFN_Reponse in still higher in the low-risk group. Additionally, the differences above were confirmed by the GEO cohort (Fig. 10C,10D).

Discussion

With the reduced overall survival rate, lung adenocarcinoma is the most common pathological type since most patients were diagnosed at an advanced stage. Currently, there is a general consensus that both molecular and cellular characteristics play an imposing role in oncogenesis and metastasis, and thus they were suggested as underlying prognostic signatures. However, the integrative analysis of ceRNAs and microenvironments has yet to be fully explored. Previously, there were several studies that explored potential biomarkers of diagnosis and prognosis in LUAD via constructing the ceRNA model. Sui et al. constructed lncRNA-related network of LUAD with 29 lncRNAs, 24 miRNAs and 72 mRNA (Sui et al. 2016). Then, they investigated the relevance of lncRNA and clinical characteristics. Cao et al. established a ceRNA network consisting of 23 lncRNAs, 117 mRNAs and 22 miRNAs in lung cancer (Cao et al. 2020). Cao et al. also proposed a 6-lncRNA prognostic model. Li et al. constructed three ceRNA networks and a 32-ceRNA prognostic signature (Li et al. 2018). However, they did not further explore the correlation between immune microenvironment and ceRNAs comprehensively. In the present study, we not only
presented nomogram prediction models based on ceRNAs and immune cells, but also further investigated the relationships between crucial ceRNAs and immune microenvironment. GSE72094 dataset proved the feasibility of predicted equations.

Cigarette smoking is an established risk factor of lung cancer, which accounts for the leading cause of death worldwide (Ettinger et al. 2019). In recent years, the prevalence of LUAD has increased and smoking patients with LUAD constitute a certain proportion (Zhang et al. 2015).

Besides, we stratified TCGA patients with smoking history into three groups (smoking years >20, smoking years <=20 and non-smoking) and calculated risk scores in each sample via both predicted formulas, respectively. Not unexpectedly, both predicted formulas confirmed that the more extended smoking group (smoking years >20) have a higher risk than the shorter smoking group (smoking years <=20). Thus, it could be concluded that smoking was an adverse factor for prognosis in both models. Risk scores in the > 20 years-smoking group were increased when compared with non-smoking groups in both models. However, there were no significant differences between the 20 years-smoking group and the non-smoking group. It was related to that the patients with less duration of smoking were more frequently female. E2F7, a member of EF transcription factors, was known as a transcriptional repressor that influences the prognosis in a lot of tumors, such as breast cancer, endometrial carcinoma, gallbladder cancer, and colon cancer. Previous studies have proved that miR-30a-5p prevents tumor migration and metastasis by targeting E2F7 in gallbladder cancer (Ye et al. 2018). Liu et al. have revealed that E2F7 was reported significantly overexpressed in ER-positive breast cancer than healthy breast tissues and
then led to tamoxifen resistance in breast cancer cells (Liu et al. 2018). Additionally, overexpressed E2F7 could be suggested as a significant biomarker to identify the high-risk and low-risk groups of patients with lung cancer, which is also in consistence with our report (Sun et al. 2018).

SMOC1 is a cancer-associated protein, identified as an extracellular glycoprotein of the SPARC-related modular calcium-binding protein family. SMOC1 was overexpressed in brain cancer, including oligodendrogliomas, astrocytomas, and glioblastomas (Brellier et al. 2011; Fackler et al. 2011). However, till now, there is no enough evidence for the impact of SMOC1 in LUAD reported in the literature. Moreover, the current study may provide a study direction for researches of SMOC1 in the LUAD. Additionally, CCTA6 is reported to encode a molecular chaperone and play critical roles in damaged proteins repair, cytoskeletal organization, and the cell cycle (Van Hove et al. 2015; Yam et al. 2008). Ying et al. found that CCTA6 served as a SMAD2-binding protein, which could inhibit the function of SMAD2, and promote metastasis (Ying et al. 2017).

CDC14A, which is of considerable significance to regulate the actin, was reported downregulated in many tumors and then reduced CDC14A was associated with the poor clinical outcomes (Chen et al. 2016). Our results indicated that CDC14A was a protective biomarker in LUAD (HR=0.75, P=0.0066), which corresponded well with previous studies. Similarly, based on the correlation with stemness scores and immune socres, we could also draw inferences that CDC14A suppressed tumor progression.

As one of H1 histone genes, H1F0 (known as H1.0) is heterogeneous in many tumors (Di Liegro
et al. 2018). Knockdown of H1.0 influenced the differentiation of embryonic stem cells (Terme et al. 2011). Recent studies revealed that H1F0 were prognostic indicators in many cancers, such as breast cancer, liver cancer, and kidney cancer (Torres et al. 2016). In the current study, the relationships of H1F0 expression with stemness scores and Estamine scores suggested that H1F0 might promote LUAD.

T cells regulatory (Tregs) account for 5%-10% of peripheral CD4+ T cells in humans. Increasing evidence demonstrated that the immunosuppression mediated by Tregs is one of the essential mechanisms of immune evasion in tumors (Dunn et al. 2004; Shevach 2002; Zou 2005). Mast cells are increased in several tumors, and their accumulation was associated with a low survival rate in many cancers, such as pancreatic adenocarcinoma (Strouch et al. 2010) and melanoma (Ribatti et al. 2003). Macrophages M1 was historically recognized as the proinflammatory subgroup, expressing a series of chemokines and consequently play antitumor roles (Hao et al. 2012). Controversially, our results suggested that M1 was highly expressed in LUAD (Fig.8). Actually, heterogeneity of environment signals could influence TAM development, and comprehensive nomenclatures of TAM have consequently been suggested (Ostuni et al. 2015).

Additionally, our study found that there were obvious differences in immune status between high- and low- risk groups in both TCGA and GEO cohorts. This indicated that decreased risk scores of ceRNAs were related to the enhancement of antitumor immunity. Furthermore, we could say that diminished immune function is responsible for poor prognosis in LUAD patients.
However, there are inevitably some disadvantages in our study that should be taken into consideration. Firstly, considering the limit data from the TCGA and GEO, it could result in large analysis deviation and be verified by other large cohorts. Secondly, our follow-up experiment will explore the molecular mechanisms of prognostic signatures in the present study.

Conclusion

To conclude, the present study firstly provided a combined analysis of ceRNA and immune cells and then established nomograms to predict the prognosis in LUAD reliably. Based on the present study result, we will carry out the biological experiments to validate key ceRNAs and mechanisms of immune cells in the future.

Acknowledgements

The authors would like to thank TCGA, GEO, TIMER, GEPIA, HPA, UCLAN and TISIDB databases.

Disclosure Statement

No competing financial interests exist.

Funding Information

No funding was received for this article.

References

Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E,
Scholl C, Fröhling S, Chan EM, Sos ML, Michel K, Mermel C, Silver SJ, Weir BA, Reiling JH, Sheng Q, Gupta PB, Wadlow RC, Le H, Hoersch S, Wittner BS, Ramaswamy S, Livingston DM, Sabatini DM, Meyerson M, Thomas RK, Lander ES, Mesirov JP, Root DE, Gilliland DG, Jacks T, and Hahn WC. 2009. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462:108-112. 10.1038/nature08460
Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136:215-233. 10.1016/j.cell.2009.01.002
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, and Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394-424. 10.3322/caac.21492
Brellier F, Ruggiero S, Zwolanek D, Martina E, Hess D, Brown-Luedi M, Hartmann U, Koch M, Merlo A, Lino M, and Chiquet-Ehrismann R. 2011. SMOC1 is a tenascin-C interacting protein over-expressed in brain tumors. Matrix Biol 30:225-233. 10.1016/j.matbio.2011.02.001
Bruttel VS, and Wischhusen J. 2014. Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape? Front Immunol 5:360. 10.3389/fimmu.2014.00360
Cao Q, Dong Z, Liu S, An G, Yan B, and Lei L. 2020. Construction of a metastasis-associated ceRNA network reveals a prognostic signature in lung cancer. Cancer Cell Int 20:208. 10.1186/s12935-020-01295-8
Chen B, Khodadoust MS, Liu CL, Newman AM, and Alizadeh AA. 2018. Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol 1711:243-259. 10.1007/978-1-4939-7493-1_12
Chen NP, Uddin B, Voit R, and Schiebel E. 2016. Human phosphatase CDC14A is recruited to the cell leading edge to regulate cell migration and adhesion. Proc Natl Acad Sci U S A 113:990-995. 10.1073/pnas.1515605113
Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, Huang WC, Sun TH, Tu SJ, Lee WH, Chiew MY, Tai CS, Wei TY, Tsai TR, Huang HT, Wang CY, Wu HY, Ho SY, Chen PR, Chuang CH, Hsieh PJ, Wu YS, Chen WL, Li MJ, Wu YC, Huang XY, Ng FL, Buddhakosai W, Huang PC, Lan KC, Huang CY, Weng SL, Cheng YN, Liang C, Hsu WL, and Huang HD. 2018. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46:D296-d302. 10.1093/nar/gkx1067
Di Liegro CM, Schiera G, and Di Liegro I. 2018. H1.0 Linker Histone as an Epigenetic Regulator of Cell Proliferation and Differentiation. Genes (Basel) 9. 10.3390genes9060310
Donnem T, Kilvaer TK, Andersen S, Richardsen E, Paulsen EE, Hald SM, Al-Saad S, Brustugun OT, Helland A, Lund-Iversen M, Solberg S, Gronberg BH, Wahl SG, Helgeland L, Fløtten O, Pohl M, Al-Shibli K, Sandanger TM, Pezzella F, Busund LT, and Bremnes RM. 2016. Strategies for clinical implementation of TNM-Immunoscore in resected nonsmall-cell lung cancer. Ann Oncol 27:225-232. 10.1093/annonc/mdv560
Dunn GP, Old JJ, and Schreiber RD. 2004. The immunobiology of cancer immunosurveillance and immunoeediting. Immunity 21:137-148. 10.1016/j.immuni.2004.07.017
cancer. *Int J Oncol* 53:1601-1612. 10.3892/ijo.2018.4492

Liu X, Niu X, and Qiu Z. 2020a. A Five-Gene Signature Based on Stromal/Immune Scores in the Tumor Microenvironment and Its Clinical Implications for Liver Cancer. *DNA Cell Biol* 39:1621-1638. 10.1089/dna.2020.5512

Liu Z, Wan Y, Qiu Y, Qi X, Yang M, Huang J, and Zhang Q. 2020b. Development and validation of a novel immune-related prognostic model in lung squamous cell carcinoma. *Int J Med Sci* 17:1393-1405. 10.7150/ijms.47301

Li X, Li B, Ran P, and Wang L. 2018. Identification of ceRNA network based on a RNA-seq shows prognostic lncRNA biomarkers in human lung adenocarcinoma. *Oncol Lett* 16:5697-5708. 10.3892/ol.2018.9336

Love MI, Huber W, and Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* 15:550. 10.1186/s13059-014-0550-8

Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, Kamińska B, Huelsken J, Omberg L, Gevaert O, Colaprico A, Czerwińska P, Mazurek S, Mishra L, Heyn H, Krasnitz A, Godawake AL, Lazar AJ, Stuart JM, Hoadley KA, Laird PW, Noushmehr H, and Wiznerowicz M. 2018. Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. *Cell* 173:338-354.e315. 10.1016/j.cell.2018.03.034

Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, and Alizadeh AA. 2015. Robust enumeration of cell subsets from tissue expression profiles. *Nat Methods* 12:453-457. 10.1038/nmeth.3337

Ni SJ, Zhao LQ, Wang XF, Wu ZH, Hua RX, Wan CH, Zhang JY, Zhang XW, Huang MZ, Gan L, Sun HL, Dimri GP, and Guo WJ. 2018. CBX7 regulates stem cell-like properties of gastric cancer cells via p16 and AKT-NF-κB-miR-21 pathways. *J Hematol Oncol* 11:17. 10.1186/s13045-018-0562-z

Ostuni R, Kratochvill F, Murray PJ, and Natoli G. 2015. Macrophages and cancer: from mechanisms to therapeutic implications. *Trends Immunol* 36:229-239. 10.1016/j.it.2015.02.004

Phelps M, Coss C, Wang H, and Cook M. 2016. Registered report: Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. *Elife* 5. 10.7554/eLife.12470

Qi X, Zhang DH, Wu N, Xiao JH, Wang X, and Ma W. 2015. ceRNA in cancer: possible functions and clinical implications. *J Med Genet* 52:710-718. 10.1136/jmedgenet-2015-103334

Ribatti D, Ennas MG, Vacc A, Ferreli F, Nico B, Orri S, and Sirigu P. 2003. Tumor vascularity and tryptase-positive mast cells correlate with a poor prognosis in melanoma. *Eur J Clin Invest* 33:420-425. 10.1046/j.1365-2362.2003.01152.x

Sanchez-Mejias A, and Tay Y. 2015. Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics. *J Hematol Oncol* 8:30. 10.1186/s13045-015-0129-1

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, and Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res* 13:2498-2504. 10.1101/gr.1239303
Shevach EM. 2002. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2:389-400. 10.1038/nri821

Shukla GC, Singh J, and Barik S. 2011. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Mol Cell Pharmacol 3:83-92.

Siegel RL, Miller KD, and Jemal A. 2018. Cancer statistics, 2018. CA Cancer J Clin 68:7-30. 10.3322/caac.21442

Strouch MJ, Cheon EC, Salabat MR, Krantz SB, Gounaris E, Melstrom LG, Dangi-Garimella S, Wang E, Munshi HG, Khazaie K, and Bentrem DJ. 2010. Crosstalk between mast cells and pancreatic cancer cells contributes to pancreatic tumor progression. Clin Cancer Res 16:2257-2265. 10.1158/1078-0432.ccr-09-1230

Sui J, Li YH, Zhang YQ, Li CY, Shen X, Yao WZ, Peng H, Hong WW, Yin LH, Pu YP, and Liang GY. 2016. Integrated analysis of long non-coding RNA-associated ceRNA network reveals potential IncRNA biomarkers in human lung adenocarcinoma. Int J Oncol 49:2023-2036. 10.3892/ijo.2016.3716

Sun CC, Zhou Q, Hu W, Li SJ, Zhang F, Chen ZL, Li G, Bi ZY, Bi YY, Gong FY, Bo T, Yuan ZP, Hu WD, Zhan BT, Zhang Q, Tang QZ, and Li DJ. 2018. Transcriptional E2F1/2/5/8 as potential targets and transcriptional E2F3/6/7 as new biomarkers for the prognosis of human lung carcinoma. Aging (Albany NY) 10:973-987. 10.18632/aging.101441

Tay Y, Rinn J, and Pandolfi PP. 2014. The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344-352. 10.1038/nature12986

Terme JM, Sesé B, Millán-Ariño L, Mayor R, Izpisúa Belmonte JC, Barrero MJ, and Jordan A. 2011. Histone H1 variants are differentially expressed and incorporated into chromatin during differentiation and reprogramming to pluripotency. J Biol Chem 286:35347-35357. 10.1074/jbc.M111.281923

Torres CM, Biran A, Burney MJ, Patel H, Henser-Brownhill T, Cohen AS, Li Y, Ben-Hamo R, Nye E, Spencer-Dene B, Chakravarty P, Efroni S, Matthews N, Misteli T, Mesheror E, and Scaffidi P. 2016. The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science 353. 10.1126/science.aaf1644

Van Hove I, Verslegers M, Hu TT, Carden M, Arckens L, and Moons L. 2015. A proteomic approach to understand MMP-3-driven developmental processes in the postnatal cerebellum: Chaperonin CCT6A and MAP kinase as contributing factors. Dev Neurobiol 75:1033-1048. 10.1002/dneu.22272

Yam AY, Xia Y, Lin HT, Burlingame A, Gerstein M, and Frydman J. 2008. Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies. Nat Struct Mol Biol 15:1255-1262. 10.1038/nsmb.1515

Ye YY, Mei JW, Xiang SS, Li HF, Ma Q, Song XL, Wang Z, Zhang YC, Liu YC, Jin YP, Hu YP, Jiang L, Liu FT, Zhang YJ, Hao YJ, and Liu YB. 2018. MicroRNA-30a-5p inhibits gallbladder cancer cell proliferation, migration and metastasis by targeting E2F7. Cell Death Dis 9:410. 10.1038/s41419-018-0444-x

Ying Z, Tian H, Li Y, Lian R, Li W, Wu S, Zhang HZ, Wu J, Liu L, Song J, Guan H, Cai J, Zhu X, Li J, and Li M. 2017. CCT6A suppresses SMAD2 and promotes prometastatic TGF-β signaling. J Clin...
Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, Mills GB, and Verhaak RG. 2013. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612. 10.1038/ncomms3612

Zhang L, Li M, Wu N, and Chen Y. 2015. Time Trends in Epidemiologic Characteristics and Imaging Features of Lung Adenocarcinoma: A Population Study of 21,113 Cases in China. PLoS One 10:e0136727. 10.1371/journal.pone.0136727

Zou W. 2005. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5:263-274. 10.1038/nrc1586
Figure 1

Figure 1 The workflow for bioinformatic analysis

Transcriptomic profiles of 535 samples with LUAD and 59 normal samples (TCGA)

Differentially expressed gene analysis (DEmRNA, DEmiRNA, DEincRNA)

Construction of LUAD-specific ceRNA network

Construction of the predicted model based on hub ceRNAs

Comparasion of ssGSEA scores in high- and low-risk group

Estimate the proportion of immune cell in tumor samples and normal samples

Identification of survival-associated immune cells

Construction of the predicted model based on hub immune cells

External validation the prognostic models via independent dataset (GSE72094)

correlation analysis of hub genes with immune cells/immune scores

Comparasion of risk scores in ≤20 years-smoking, > 20 years-smoking and non-smoking groups
Figure 2

Figure 2 Differentially expressed mRNAs and IncRNA.

Heatmap (A) and volcano plot (B) of DEmRNA. Heatmap (C) and volcano plot (D) of DEIncRNA. Red dots and green dots represent up-regulated, down-regulated differentially expressed genes, respectively. DEmRNA and DEIncRNA represent differentially expressed mRNA and IncRNA, respectively.
Figure 3

Figure 3 Differentially expressed miRNAs.

Heatmaps of the top 20 differentially upregulated and the top 20 differentially downregulated miRNAs (A). Volcano plot (B) of DEmiRNAs. Red dots and green dots represent up-regulated, down-regulated differentially expressed genes, respectively. DEmiRNAs, differentially expressed miRNAs.
Figure 4 Construction of the ceRNA network in LUAD.

Red circles, purple squares, green diamonds represent miRNA, mRNA and IncRNA, respectively. Node sizes of miRNA indicate the number of junction nodes. The greater the node sizes, the more junction nodes.
Figure 5

Figure 5 Construction of the prognostic model involving the key RNAs of the ceRNA network in LUAD.

(A), multivariate Cox regression. (B), (C) lasso regression. (D) the Kaplan-Meier survival curve. (E) the ROC curve. ROC, the Receiver Operating Characteristic. LUAD, lung adenocarcinoma.
Figure 6

Figure 6 Nomograms based on key ceRNAs and immune cells.

Nomograms predicting 1-,2- and 3-year overall survival of ceRNAs signatures (A) and immune cells signatures (B).Calibration curves of the nomogram at the 3-year of ceRNAs (C) signatures and immune cells signatures (D).
Figure 7

Figure 7 Differences in risk scores between >20-smoking years, ≤ 20-smoking years and non-smoking based on ceRNAs (A) and immune cells models (B).
Figure 8

Figure 8 Construction of the prognostic model based on key immune cells in LUAD

(A), multivariate Cox regression. (B), (C) lasso regression. (D) the Kaplan-Meier survival curve. (E) the ROC curve. ROC, the Receiver Operating Characteristic. LUAD, lung adenocarcinoma
Figure 9

Figure 9 Correlations between crucial ceRNAs expression and stem cell index, crucial ceRNAs expression and Stromal/Immune/ESTIMATE score in LUAD

RNAss and DNAss represent RNA-based stemness score, DNA-based stemness score, respectively. The sum of Stromal score and Immune score is ESTIMATE Score.
Figure 10

Figure 10 Differences of ssGSEA scores in high- and low- risk groups in TCGA (A)(B) cohort and GEO (C)(D) cohort

(A), (C) refer to the difference in immune cells. (B), (D) refer to the difference in immune-associated functions *p < 0.05, **p < 0.01, and ***p < 0.001
Table 1 (on next page)

Clinicopathological characteristics baseline in LUAD in TCGA
Characteristics	number	(%)	
Total	522	100%	
Age			
>65	262	50.2%	
<=65	241	46.2%	
unknown	19	3.6%	
Gender			
Female	280	53.6%	
Male	242	46.4%	
Vital status			
dead	188	36.0%	
alive	334	64.0%	
Clinical stage			
I	279	53.4%	
II	114	21.8%	
III	85	16.3%	
IV	26	5.0%	
unknown	8	1.5%	
T stage			
T1	172	33.0%	
T2	281	53.8%	
T3	47	9.0%	
T4	19	3.6%	
unkown	3	0.6%	
M stage			
M0	353	67.6%	
M1	25	4.8%	
unkown	144	27.6%	
N stage			
N0	335	64.2%	
N1	98	18.8%	
N2	75	14.4%	
N3	2	0.4%	
unkown	12	0.2%	
Smoking status			
<=20	45	8.6%	
>20	139	26.6%	
Rank	Type	Value 1	Value 2
------	-----------------------	---------	---------
2	LUAD, lung adenocarcinoma	unknown	338
			64.80%
Table 2 (on next page)

Clinicopathological characteristics baseline in LUAD in GSE72094
Characteristics	number	(%)
Total	442	100%
Age		
>65	294	50.2%
<=65	127	46.2%
unknown	21	3.6%
Gender		
Female	280	53.6%
Male	242	46.4%
Smoking status		
ever	335	75.8%
never	33	7.5%
unknown	74	16.7%
Stage		
I	265	60.0%
II	69	15.6%
III	63	14.3%
IV	17	3.9%
unknown	28	6.3%
Vital Status		
Alive	298	67.4%
Dead	122	27.6%
unknown	22	5.0%
Table 3 (on next page)

Multivariate Cox proportional hazards regression model based on ceRNAs in LUAD
Table 3 Multivariate Cox proportional hazards regression model based on ceRNAs in LUAD.

Genes	Coef	HR	95%CI	P value
CDC14A	-0.282	0.754	(0.616-0.924)	0.007
LOXL2	0.115	1.122	(1.002-1.256)	0.045
CCT6A	0.174	1.190	(0.965-1.468)	0.104
E2F7	0.187	1.206	(1.071-1.358)	0.002
GPR37	0.100	1.105	(1.019-1.198)	0.015
H1F0	0.198	1.218	(0.991-1.498)	0.061
SMOC1	0.068	1.071	(1.019-1.125)	0.007

LUAD lung adenocarcinoma, HR hazard ratio, CI confidence interval.
Table 4

Multivariate Cox proportional hazards regression model based on Immune cells in LUAD.
Table 4 Multivariate Cox proportional hazards regression model based on Immune cells in LUAD.

Immune cells	Coef	HR	95%CI	P value
T cells CD8	-3.426	0.033	(5.767e-04-1.835)	0.096
T cells regulatory (Tregs)	9.175	9653.370	(0.571-1.631e+08)	0.065
Monocytes	-5.318	0.005	(1.778e-05-1.351)	0.064
Macrophages M1	6.135	461.532	(7.447-2.860e+04)	0.004
Dendritic cells activated	5.539	254.456	(3.446-1.879e+04)	0.012
Mast cells activated	24.611	4.881e+10	(1.320e+03-1.805e+18)	0.006
Eosinophils	37.352	1.66589E+16	(0.012-2.282e+24)	0.080

LUAD lung adenocarcinoma, Coef correlation coefficients, HR hazard ratio, CI confidence interval.