Reporting and Analysis of Trial-Based Cost-Effectiveness Evaluations in Obstetrics and Gynaecology

Mohamed El Alili1 • Johanna M. van Dongen1 • Judith A. F. Huirne2 • Maurits W. van Tulder1 • Judith E. Bosmans1

Published online: 3 July 2017
© The Author(s) 2017. This article is an open access publication

Abstract
Background and Objectives The aim was to systematically review whether the reporting and analysis of trial-based cost-effectiveness evaluations in the field of obstetrics and gynaecology comply with guidelines and recommendations, and whether this has improved over time.

Data Sources and Selection Criteria A literature search was performed in MEDLINE, the NHS Economic Evaluation Database (NHS EED) and the Health Technology Assessment (HTA) database to identify trial-based cost-effectiveness evaluations in obstetrics and gynaecology published between January 1, 2000 and May 16, 2017. Studies performed in middle- and low-income countries and studies related to prevention, midwifery, and reproduction were excluded.

Results The electronic search resulted in 5482 potentially eligible studies. Forty-five studies fulfilled the inclusion criteria, 22 in obstetrics and 23 in gynaecology. Twenty-seven (60%) studies did not adhere to 50% (n = 10) or more of the reporting quality items and 32 studies (71%) did not meet 50% (n = 4) or more of the statistical quality items. As for the statistical quality, no study used the appropriate method to assess cost differences, no advanced methods were used to deal with missing data, and clustering of data was ignored in all studies. No significant improvements over time were found in reporting or statistical quality in gynaecology, whereas in obstetrics a significant improvement in reporting and statistical quality was found over time.

Limitations The focus of this review was on trial-based cost-effectiveness evaluations in obstetrics and gynaecology, so further research is needed to explore whether results from this review are generalizable to other medical disciplines.

Conclusions and Implications of Key Findings The reporting and analysis of trial-based cost-effectiveness evaluations in gynaecology and obstetrics is generally poor. Since this can result in biased results, incorrect conclusions, and inappropriate healthcare decisions, there is an urgent need for improvement in the methods of cost-effectiveness evaluations in this field.
1 Background

To inform decisions about the allocation of scarce healthcare resources, decision makers need information on the relative efficiency of alternative healthcare interventions, which can be provided by cost-effectiveness evaluations [1]. These cost-effectiveness evaluations are increasingly being conducted alongside controlled clinical trials (i.e. so-called trial-based cost-effectiveness evaluations) [2]. Failure to adequately conduct, analyse and/or report such cost-effectiveness evaluations can lead to biased conclusions, resulting in inappropriate healthcare decision making, and thus a possible waste of scarce resources.

A growing number of cost-effectiveness evaluations in obstetrics and gynaecology are being conducted. To illustrate, a basic MEDLINE search combining search terms related to ‘obstetrics’ and ‘gynaecology’ and the MeSH term ‘cost-benefit analysis’ showed an increase in the number of published cost-effectiveness evaluations per year, from 32 in 2000 to 112 in 2015. A large share of these cost-effectiveness evaluations were conducted alongside a clinical trial. Interventions compared in these trials often concern induction of labour, hysterectomy (i.e. surgical removal of the uterus) and care arrangement (e.g. specialist nurse providing treatment vs physician providing treatment). Outcomes of these cost-effectiveness evaluations are usually expressed in clinical outcomes; for example, the number of caesarean sections or admission to intensive care. Costs associated with these interventions usually consist of materials used and occupation of caregiver or labour/operating room. Properly conducted cost-effectiveness evaluations in obstetrics and gynaecology can help to prevent wastage of scarce resources. This is important since obstetrics/gynaecology is a major contributor to total healthcare costs. For example, in a Dutch economic analysis comparing methods of induction, the costs of this specific obstetric procedure were estimated to be €1.4 million [3].

Reviews on the reporting and statistical methodology of trial-based cost-effectiveness evaluations show that major deficiencies are generally present in the way in which such evaluations are reported [4–7] and analysed [8–10]. This led Doshi et al. [8] to conclude that the results of trial-based cost-effectiveness evaluations need to be interpreted with caution due to the poor quality of the statistical approach. The majority of these reviews, however, only evaluated reporting quality [4–7] of trial-based cost-effectiveness evaluations and the only reviews that evaluated the statistical quality [8–10] were conducted over a decade ago. In the meantime, however, guidelines and recommendations [11–14] for trial-based cost-effectiveness evaluations have been updated and more researchers have been trained in the conduct of cost-effectiveness evaluations. In the field of obstetrics and gynaecology, methodological reviews showed similar characteristics (i.e. only evaluated reporting quality) [15, 16].

1.1 Objectives

This study aimed to explore whether the quality of reporting and the statistical methods of trial-based cost-effectiveness evaluations in obstetrics and gynaecology are in accordance with the most recent guidelines and recommendations, and whether both have improved over the past 16 years.

2 Methods

This systematic review, conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [17], included trial-based cost-effectiveness evaluations in the field of obstetrics and gynaecology that were published from January 1, 2000 up to May 16, 2017. A search was conducted in MEDLINE, the National Health Service Economic Evaluation Database (NHS EED), and the Health Technology Assessment (HTA) database. The development of the earliest guidelines took place in 1996 [18], therefore the year 2000 was used as the start date to allow for implementation of the guidelines.
2.1 Search Strategy

Databases were searched with terms related to the research field (e.g. ‘gynaecology’, ‘obstetrics’ or ‘pregnancy’) and study design (e.g. ‘cost-utility analysis’, ‘economic evaluation’, ‘cost effectiveness’ or ‘economic analysis’) in the title, abstract, and MeSH headings or keywords. The full PubMed search is available in Appendix S1 (see electronic supplementary material [ESM]). The electronic search was supplemented by searching reference lists of relevant review articles and of the retrieved full texts. During the search, a search log was kept consisting of keywords used, searched databases and search results. Titles and abstracts of the retrieved studies were stored in an electronic database using EndNote X7.4® (Thomson Reuters, New York, NY, US).

2.2 Study Selection

Two reviewers (ME and JMvD) independently screened titles and abstracts of identified studies for eligibility. Studies were included if they reported an economic evaluation alongside a controlled trial in obstetrics or gynaecology and concerned a cost-effectiveness analysis (CEA) and/or a cost-utility analysis (CUA). Cost-benefit analyses and cost-minimization analyses were excluded since healthcare decision makers are typically interested in CEAs and CUAs, and because statistical methods may differ across these kinds of economic evaluations [1]. Both randomized and non-randomized studies were included in the review. Papers had to be published as full papers and written in English. Furthermore, this systematic review focused on therapeutic procedures (e.g. surgical treatments, induction of labour, etc.) in obstetrics and gynaecology. Therefore, studies describing interventions related to prevention and screening as well as training of healthcare staff were excluded. Moreover, studies related to reproductive medicine (i.e. fertility) were also excluded. Finally, we specifically focused on high-income countries (e.g. countries in Europe and North America) as we expected cost-effectiveness evaluations from low-/middle-income countries to systematically be of lower quality and therefore result in significantly lower scores, whereas cost-effectiveness evaluations are mostly conducted in high-income countries (i.e. 83% of the total published cost-effectiveness evaluations) [19]. Methodological issues are typically present in cost-effectiveness evaluations from low-/middle-income countries, such as scarcity and quality of the data used, trials that do not prioritize economics and absence of cost accounting systems [20], which makes it difficult to compare evaluations between high-income and low-income countries.

Full texts were retrieved when studies fulfilled the inclusion criteria or if uncertainty remained about the inclusion of a specific study. All full texts were read and checked for eligibility by two independent reviewers (ME and JMvD). To resolve disagreement between the two reviewers, a consensus procedure was used. A third reviewer (JEB) was consulted when disagreements persisted.

2.3 Data Extraction

Two reviewers (ME and JMvD) independently extracted data from the included studies using a standardized extraction form. Agreement between the reviewers was checked during a face-to-face meeting, and a consensus procedure was used involving a third reviewer (JEB) if necessary. The first part of the extraction form focused on general study characteristics (e.g. year of publication, country), healthcare delivery (i.e. primary or secondary care), medical discipline (i.e. obstetrics or gynaecology), and the design of the trial (i.e. non-randomized study [NRS] or randomized controlled trial [RCT]). The second part focused on cost-effectiveness evaluation design aspects: type of evaluation (i.e. CEA or CUA), study perspective (e.g. healthcare perspective, societal perspective), study population, follow-up period, comparator and outcome measures. The third part focused on the statistical approach of the trial-based cost-effectiveness evaluation and is described in Sect. 2.5.

2.4 Reporting Quality of Trial-Based Cost-Effectiveness Evaluations

Reporting quality was assessed using the Consolidated Health Economic Evaluation Reporting Standard (CHEERS) statement [11] that provides concrete recommendations to optimize the reporting of cost-effectiveness evaluations. Recommendations are subdivided into six main categories: (1) title and abstract, (2) introduction, (3) methods, (4) results, (5) discussion and (6) other. For a detailed description of the CHEERS statement, the reader is referred to Husereau et al. [11]. The full CHEERS statement is provided in Appendix S2 (see ESM). As the focus of this study was to evaluate trial-based cost-effectiveness evaluations, modelling-related criteria in the statement were omitted (i.e. items 15, 16 and 18). This resulted in a modified CHEERS statement with 21 items that were answered by ‘yes/no’. Studies fulfilling the criteria mentioned in the items were scored ‘yes’ and assigned a score of 1 per correct item (‘no’ was scored as 0). Answers were compared between the two reviewers and disagreements were discussed until consensus was reached. An overall reporting quality score ranging from 0 to 21 was
2. Analysis of cost-effectiveness: This category consisted of three sub-domains. First, we assessed whether the cost difference was presented (‘yes/no’). Studies presenting cost differences were scored as handling this sub-domain appropriately (score = 1); all others as inappropriate (score = 0). Second, we assessed how the statistical uncertainty surrounding the cost difference was accounted for. Studies using non-parametric bootstrapping or a gamma distribution in combination with multivariable regression methods were scored as handling this sub-domain appropriately (score = 1); all others as inappropriate (score = 0) [14, 21–23]. Third, trial-based cost-effectiveness evaluations are typically underpowered for economic outcomes [24]. Consequently, researchers are recommended to use estimation (i.e. confidence intervals) rather than hypothesis testing (i.e. p values) [25]. Therefore, studies presenting confidence intervals were scored as handling this sub-domain appropriately (score = 1); all others as inappropriate (score = 0). An overall domain score was calculated by adding up the studies’ scores per sub-domain (1 point per correct sub-domain, maximum score = 3).

2.5 Quality of the Statistical Approach of Trial-Based Cost-Effectiveness Evaluations

To evaluate the quality of the statistical approach, four quality domains were identified based on existing guidelines [12–14]. These domains, including their subdomains, are described below.

1. Analysis of incremental costs: This domain consisted of three sub-domains. First, we assessed whether the cost difference was presented (‘yes/no’). Studies presenting cost differences were scored as handling this sub-domain appropriately (score = 1); all others as inappropriate (score = 0). Second, we assessed the method for estimating the statistical uncertainty surrounding the cost difference, while accounting for the skewed distribution of cost data. Studies using non-parametric bootstrapping or a gamma distribution in combination with multivariable regression methods were scored as handling this sub-domain appropriately (score = 1); all others as inappropriate (score = 0) [14, 21–23]. Third, trial-based cost-effectiveness evaluations are typically underpowered for economic outcomes [24]. Consequently, researchers are recommended to use estimation (i.e. confidence intervals) rather than hypothesis testing (i.e. p values) [25]. Therefore, studies presenting confidence intervals were scored as handling this sub-domain appropriately (score = 1); all others as inappropriate (score = 0). An overall domain score was calculated by adding up the studies’ scores per sub-domain (1 point per correct sub-domain, maximum score = 3).

2. Analysis of cost-effectiveness: This category consisted of three sub-domains. First, we assessed whether the authors presented an incremental cost-effectiveness ratio (ICER) (‘yes/no’). Studies presenting an ICER were scored as handling this sub-domain appropriately (score = 1); all others as inappropriate (score = 0). Second, we assessed whether the authors performed at least one of the three types of sensitivity analyses: parameter uncertainty (i.e. uncertainty due to variables that might influence results, such as unit costs), methodological uncertainty (i.e. uncertainty due to different methods for analysis) and subgroup uncertainty (i.e. uncertainty due to possible differences across subgroups of participants) [33, 34]. To assess the impact of these types of uncertainty on the robustness of the results, sensitivity analyses should be undertaken [25]. Studies performing at least one of the three types of sensitivity analyses were classified as handling this domain appropriately (score = 1); all others as inappropriate (score = 0). An overall quality score of the statistical approach, ranging from 0 to 8, was calculated per study by adding up the number of overall sub-domains that were scored ‘yes’.
See Table 1 for a summary of appropriate methods per domain.

2.6 Statistical Analysis

To describe the included studies’ reporting and statistical quality, descriptive statistics were used. To explore whether quality improved over time, linear regression analyses were performed; one with the overall reporting quality score as dependent variable and one with the overall quality score of the statistical approach as dependent variable stratified for medical discipline (i.e. obstetrics and gynaecology). The year of publication was used as an independent variable resulting in the regression model described below. Analyses were conducted using STATA 14.6.

\[
\text{Score} = \beta_0 + \beta_1 \cdot (\text{Publication year}) + \varepsilon
\]

3 Results

3.1 Literature Search and Study Selection

The electronic search identified 5482 potentially eligible studies. After removing 246 duplicates, 5236 studies were screened on title and abstract. The reviewers disagreed on the inclusion of 112 (2%) studies, resulting in an inter-rater agreement of 98%. Seventy-one studies were retrieved for full-text screening. In four cases, consensus was reached by asking a third reviewer. After the full-text screening, 44 studies [35–78] were included. One study [79] was identified through reference checking and was also included in the review (Fig. 1). This resulted in 45 studies included for review.

3.2 Study Characteristics

Study characteristics are reported in Table 2. Just over half of the studies were conducted in gynaecology (56%; \(n = 23 \)). Most studies conducted a CEA (87%; \(n = 39 \)), and five (11%) studies [46, 49, 52, 69, 77] conducted a CUA. One (2%) study [79] conducted both a CEA and a CUA. The hospital perspective was used in 28 (62%) studies [35, 38–41, 48, 50, 52, 54, 55, 57, 58, 61–66, 69–77, 79] and 17 (41%) [36, 37, 42–47, 49, 51, 53, 56, 59, 60, 67, 68, 78] alongside an NRS. Sample sizes ranged from 35 [55] to 9996 participants [71] and the duration of follow-up ranged from 24 hours [66] to 36 months [47]. The majority of studies were conducted in Europe (66%; \(n = 27 \)) [35, 37, 39–41, 43, 47, 50–52, 57–59, 61–65, 67–70, 74–76, 78, 79, 80] and North America (29%; \(n = 12 \)) [36, 38, 42, 44–46, 48, 49, 53, 56, 60, 66]. Two (4%) studies [54, 71] were conducted over multiple countries and one (2%) study [55] did not report the country where the study was conducted, but the authors’ affiliation was from the Republic of Ireland.

Table 1 Summary of appropriate methods per domain

Domain	Subdomain	Appropriate methoda
Analysis of incremental costs	Presenting cost differences	Presented cost differences
	Estimating statistical uncertainty around cost differences	Non-parametric bootstrapping or gamma distribution combined with multivariable regression methods
	Presentation of uncertainty around cost differences	Presented confidence intervals
Analysis of cost effectiveness	Presenting ICER	Presented ICER
	Dealing with sampling uncertainty	Non-parametric bootstrapping
	Presentation of uncertainty around ICER	Present CE plane and CEAC without confidence intervals around ICER
Handling of missing data	Parameter uncertainty	Multiple imputation and EM algorithm
	Methodological uncertainty	
Addressing uncertainty	Subgroup analysis	At least one of these sensitivity analyses performed

* CE plane cost-effectiveness plane, CEAC cost-effectiveness acceptability curve, EM expectation-maximization, ICER incremental cost-effectiveness ratio
* a If the appropriate method was used, a score of 1 was rewarded. All other methods resulted in a score of 0
3.3 Reporting Quality of the Trial-Based Cost-Effectiveness Evaluations

Results of the reporting quality assessment are presented in Table 3. The overall reporting quality score (with a maximum of 21) ranged from 1 to 17 (mean 8.8; SD 4.8; median 8). Twenty-seven (60%) studies [35–39, 42–47, 49–51, 53, 55, 56, 58–62, 66–68, 72, 78] did not adhere to ≥50% of the items (i.e. having a score ≤10) of the CHEERS statement; one (2%) study [76] had a score of 17 (81% of the items were scored positively). Criteria that were often adequately described in the studies were the title (n = 40; 89%), the target population (n = 30; 67%) and the comparators (n = 33; 73%). Criteria that were least appropriately described were the abstract (n = 4; 9%), setting and location (n = 4; 9%) and choice of health outcomes (n = 6; 13%).

Fig. 1 Flow chart for inclusion of studies. CEA cost-effectiveness analysis, CUA cost-utility analysis, HTA Health Technology Assessment database, NHSEED NHS Economic Evaluation Database
References	Publication year	Data collection	Geographical area	Healthcare delivery	Medical discipline	Type of EE	Perspective	Study design	Sample size (n)	Population	Follow-up	Comparison between	Outcome measures
Bernitz et al. [35]	2012	2006–2010 Norway	Secondary care	Obstetrics	CEA	Hospital	RCT	1110	Women assessed to be at low risk at spontaneous onset of labour	From the women’s admission to the hospital at onset of spontaneous labour until discharge	Midwife-led birth unit vs standard obstetric unit	Proportions of caesarean sections, instrumental vaginal deliveries, complications requiring treatment in the operating room, epidural analgesia and augmentation with oxytocin	
Bienstock et al. [36]	2001	1994–1996 USA	Secondary care	Obstetrics	CEA	Hospital inferred (not reported)	NRS	260	Patients with a history of preterm labour	Not reported	Inner-city hospital house staff vs inner city managed care organization	Primary outcomes: rate of recurrent preterm delivery	Secondary outcomes: rate of NICU admission, NICU length of stay and perinatal mortality
Brooten et al. [38]	2001	1992–1996 USA	Secondary care	Obstetrics	CEA	Hospital	RCT	173	Women with high-risk pregnancies	12 months	Specialist nurse care at home vs standard prenatal care	Primary outcome: maternal effects and infant effects	Secondary outcome: patient satisfaction
Eddama et al. [41]	2009	2005–2006 UK	Secondary care	Obstetrics	CEA	Hospital	RCT	350	Nulliparous women with a singleton pregnancy, cephalic presentation >37 weeks’ gestation, requiring cervical ripening prior to induction of labour	From randomization until hospital discharge	Isosorbide mononitrate vs placebo	Elapsed time interval from hospital admission to delivery	
Eddama et al. [40]	2010	2004–2008 UK	Secondary care	Obstetrics	CEA	Hospital	RCT	500	Women before 20 weeks’ gestation with a twin pregnancy	From randomization until hospital discharge	Vaginal progesterone gel vs placebo	Number of preterm births prevented	
References	Publication year	Data collection	Geographical area	Healthcare delivery	Medical discipline	Type of EE	Perspective	Study design	Sample size (n)	Follow-up	Comparison between	Outcome measures	
------------	-----------------	-----------------	-------------------	---------------------	-------------------	------------	-------------	-------------	----------------	------------	-------------------	------------------	
Guo et al. [48]	2011	2001–2004	Canada	Secondary care	Obstetrics	CEA	Hospital	RCT	153	Women with clinical preterm labour	Transdermal nitroglycerine vs placebo	Primary outcome: NICU admission Secondary outcomes: gestational age at delivery, length of NICU stay	
Jakovljevic et al. [51]	2008	2004–2006	Serbia and Montenegro	Secondary care	Obstetrics	CEA	Healthcare (Republic Institute for Health Insurance in Serbia)	NRS	235	Pregnant women with threatened preterm labour	Fenoterol vs ritodrine for treatment of preterm labour	Primary outcomes: length of pregnancy, prolongation of the pregnancy, and score on modified Flanagan’s quality-of-life scale for chronic diseases Secondary outcomes: quality-adjusted pregnancy weeks gained, adverse drug reactions and pregnancy outcome (neonatal health)	
Lain et al. [54]	2017	2004–2013	11 countries	Secondary care	Obstetrics	CEA	Healthcare	RCT	1892	Women with a singleton pregnancy with ruptured membranes between 34 and 36 weeks’ gestation	Planned immediate birth vs delayed birth	Primary outcome: neonatal sepsis Secondary outcome: respiratory distress syndrome	
Liem et al. [57]	2014	2009–2012	Netherlands	Secondary care	Obstetrics	CEA	Societal	RCT	813	Women with a multiple pregnancy	Cervical pessary vs standard care (no pessary)	Poor perinatal and health outcomes	
References	Publication year	Data collection	Geographical area	Healthcare delivery	Medical discipline	Type of EE	Perspective	Study design	Sample size (n)	Population	Follow-up	Comparison between	Outcome measures
------------------	------------------	-----------------	-------------------	---------------------	--------------------	-------------	-------------	-------------	----------------	---	------------------------------------	-----------------------------------	-----------------------------------
Morrison et al. [60]	2003	2001	USA	Secondary care	Obstetrics	CEA	NRS		60	Women with recurrent preterm labour at <32 weeks’ gestation	Not reported	Continuous subcutaneous terbutaline vs standard care	Amount of terbutaline infused and associated side effects, the gestational age at delivery, reason for birth as well as pregnancy prolongation after discharge from the sentinel recurrent preterm labour event. Maternal hospital days, route of delivery and neonatal parameters
Niinimaki et al. [61]	2009	2003–2004	Finland	Secondary care	Obstetrics	CEA	Unclear	RCT	98	Women with a diagnosed miscarriage	2 months	Medical treatment for miscarriage vs surgical treatment for miscarriage	Success rate/ uncomplicated treatment
Petrou et al. [63]	2011	2005–2006	UK	Secondary care	Obstetrics	CEA	Healthcare (NHS)	RCT	165	Pregnant women presenting as cephalic between 36 and 41 weeks’ gestation, for whom induction of labour was deemed necessary	From randomization until hospital discharge	Prostaglandin gel vs prostaglandin tablets	Time prevented between induction and delivery
Petrou et al. [64]	2006	1997–2001	UK	Secondary care	Obstetrics	CEA	Societal	RCT	1200	Women with a confirmed pregnancy of <13 weeks’ gestation with a diagnosis of incomplete miscarriage or missed miscarriage	8 weeks	Expectant management vs medical or surgical management	Gynaecological infection avoided
References	Publication year	Data collection	Geographical area	Healthcare delivery	Medical discipline	Type of EE	Perspective	Study design	Sample size (n)	Population	Follow-up	Comparison between	Outcome measures
---------------------	------------------	-----------------	-------------------	---------------------	-------------------	-------------	-------------	--------------	----------------	---	-----------	-------------------	---
Prick et al. [65]	2014	2004–2011	Netherlands	Secondary care	Obstetrics	CEA	Hospital	RCT	519	Women with acute anaemia after postpartum haemorrhage	6 weeks	Red blood cell transfusion vs non-intervention	Primary outcome: physical fatigue
Ramsey et al. [66]	2003	1996–1997	USA	Secondary care	Obstetrics	CEA	Hospital	RCT	111	Women with an unfavourable cervix who underwent labour induction	24 hours	Misoprostol vs dinoprostone gel or dinoprostone insert	Complete dilatation within the first 24 hours of treatment
Simon et al. [71]	2006	1998–2001	33 low-, middle- and high-income countries	Secondary care	Obstetrics	CEA	Hospital	RCT	9996	Women with pre-eclampsia	From randomization until 6 weeks, discharge from hospital after delivery or death	Magnesium sulphate vs placebo	The number of cases of eclampsia prevented or death
Sjostrom et al. [72]	2016	2011–2012	Sweden	Secondary care	Obstetrics	CEA	Unclear	RCT	1068	Healthy women seeking treatment for abortion	3 weeks	Medical abortion by physician vs medical abortion by nurse-midwife	Complete abortion without need for surgical intervention
Ten Eikelder et al. [73]	2017	2012–2013	Netherlands	Secondary care	Obstetrics	CEA	Hospital	RCT	1845	Women with a viable term singleton pregnancy in cephalic presentation, intact membranes, and unfavourable cervix without previous caesarean section	Not reported	Labour induction with oral misoprostol vs labour induction with Foley catheter	Composite safety outcome and caesarean section

Table 2 continued
References	Publication year	Data collection	Geographical area	Healthcare delivery	Medical discipline	Type of EE	Perspective	Study design	Sample size (n)	Population	Follow-up	Comparison between	Outcome measures
Van Baaren et al. [75]	2013	2009–2010	Netherlands	Secondary care	Obstetrics	CEA	Hospital	RCT	819	Pregnant women at term with an unfavourable cervix	6 weeks	Induction of labour with Foley catheter vs induction of labour with prostaglandin E2 gel	Caesarean section rate (yes/no)
Van Baaren et al. [74]	2016	2009–2013	Netherlands	Secondary care	Obstetrics	CEA	Hospital	RCT	703	Women with hypertensive disorder between 34 and 37 weeks' gestation	From randomization to hospital discharge	Immediate delivery vs expectant monitoring	Composite score of adverse maternal outcomes
Vijgen et al. [76]	2010	2005–2008	Netherlands	Secondary care	Obstetrics	CEA	Societal	RCT	756	Women diagnosed with gestational hypertension or pre-eclampsia between 36 and 41 weeks' gestation	12 months	Induction of labour vs expectant monitoring	Difference in proportion of maternal complications
Walker et al. [77]	2017	2013–	UK	Secondary care	Obstetrics	CUA	Healthcare (NHS)	RCT	241	Nulliparous women aged ≥35 years on their expected due date, with a singleton live fetus in a cephalic presentation	1 month	Induction of labour vs expectant monitoring	QALY
Bijen et al. [79]	2011	Unclear	Netherlands	Secondary care	Gynaecology	CEA/CUA	Societal	RCT	279	Patients with early-stage endometrial cancer	3 months	Total laparoscopic hysterectomy vs TAH	Primary outcome CEA: major complication-free rate Primary outcome CUA: QALY
Bogliolo et al. [37]	2011–2014	Italy	Secondary care	Gynaecology	CEA	Hospital inferred (not reported)	NRS	104	Women who underwent robotically assisted hysterectomy and bilateral salpingo-oophorectomy	12 months for effects and 6 months for costs	Robotic single-site hysterectomy vs multiport robotic hysterectomy	Postoperative pain, intraoperative complications, and postoperative complications	
References	Publication year	Data collection	Geographical area	Healthcare delivery	Medical discipline	Type of EE	Perspective	Study design	Sample size (n)	Population	Follow-up	Comparison between	Outcome measures
----------------------------	------------------	-----------------	-------------------	---------------------	-------------------	-------------	-------------	--------------	----------------	-------------------	------------	--------------------	--
Dawes et al. [39]	2007	2003–2004	UK	Secondary care	Gynaecology	CEA	Healthcare (NHS)	RCT	111	Women scheduled for major abdominal or pelvic surgery for benign gynaecological disease	6 weeks	Specialist nurse care vs standard care	Primary outcome: SF-36 health survey questionnaire Secondary outcomes: complications, length of hospital stay, readmission, information on discharge, support and satisfaction of women
El Hachem et al. [42]	2016	2013–2014	USA	Secondary care	Gynaecology	CEA	Hospital	NRS	92	Women undergoing RSS or CL	Not reported	RSS vs CL	Operative time and various perioperative outcomes
El-Sayed et al. [43]	2011	2009–2010	UK	Secondary care	Gynaecology	CEA	Hospital inferred (not reported)	NRS	140	Women with acute gynaecology conditions	Not reported	Ultrasound-based model of care vs traditional model of care	Hospital length of stay
Eltabbakh et al. [44]	2000	1998–1999	USA	Secondary care	Gynaecology	CEA	Hospital inferred (not reported)	NRS	80	Obese women with early-stage endometrial carcinoma	24 months	Laparoscopic-assisted VH vs total abdominal hysterectomy	Surgical outcome, hospital stay, recall of postoperative pain control, time to return to full activity and to work, and overall satisfaction among patients
Eltabbakh et al. [45]	2001	1998–1999	USA	Secondary care	Gynaecology	CEA	Hospital inferred (not reported)	NRS	147	Women with early-stage endometrial carcinoma	24 months	Laparoscopic-assisted VH vs total abdominal hysterectomy	Surgical outcome, hospital stay, recall of postoperative pain control, time to return to full activity and to work, and overall satisfaction among patients
Evans [46]	2000	Unclear	USA	Secondary care	Gynaecology	CU/A	Healthcare (Medicare)	NRS	100	Patients with dysfunctional uterine bleeding	12 months	Sonohysterography vs hysteroscopic evaluation	Utility value

Table 2 continued
References	Publication year	Data collection	Geographical area	Healthcare delivery	Medical discipline	Type of EE	Perspective	Study design	Sample size (n)	Population	Follow-up	Comparison between	Outcome measures	
Fernandez et al. [47]	2003	1995–1997	France	Secondary care	Gynaecology	CEA	Hospital inferred (not reported)	NRS	147	Patients who had undergone one of the three surgical interventions for menorrhagia	24–36 months	Thermo-coagulation vs VH or endometrial ablation	Primary outcome: failure rate of the method for menorrhagia	Secondary outcomes: satisfaction with the procedure and ongoing pain
Horowitz et al. [49]	2002	1997–1998	USA	Secondary care	Gynaecology	CUA	Hospital inferred (not reported)	NRS	Not reported	Women undergoing gynaecological and surgical procedures	Not reported	Pre-operative autologous blood donation vs no blood donation	QALY	
Jack et al. [50]	2005	2001–2002	UK	Secondary care	Gynaecology	CEA	Hospital	RCT	197	Women complaining of excessive menstrual loss	12 months	Outpatient microwave endometrial ablation vs standard microwave endometrial ablation	Primary outcomes: satisfaction with treatment and acceptability of treatment	Secondary outcomes: menstrual outcomes and quality of life
Kilonzo et al. [52]	2010	2003–2005	UK	Secondary care	Gynaecology	CUA	Healthcare (NHS)	RCT	314	Women complaining of heavy menstrual bleeding	12 months	Microwave endometrial ablation vs thermal balloon endometrial ablation	QALY	
Kovac [53]	2000	1988–1993	USA	Secondary care	Gynaecology	CEA	Hospital inferred (not reported)	NRS	4595	Women undergoing hysterectomy	Not reported	Decision-directed hysterectomy vs nondecision-directed hysterectomy	Primary outcome: length of stay	Secondary outcomes: complications
Lakhandani et al. [55]	2005	1999–2001	Not reported (Ireland and UK in authors’ affiliation)	Secondary care	Gynaecology	CEA	Hospital	RCT	35	Women with minimal to moderate endometriosis	12 months	Helium thermal coagulator therapy vs medical therapy using gonadotropin-releasing hormone analogues	Mean operating time	
References	Publication year	Data collection area	Healthcare delivery	Medical discipline	Type of EE	Perspective	Study design	Sample size (n)	Population	Follow-up	Comparison between	Outcome measures		
------------	------------------	----------------------	---------------------	--------------------	------------	-------------	-------------	----------------	------------	-----------	-----------------	-----------------		
Lenihan et al. [56]	2004	2001–2003 USA	Secondary care	Gynaecology	CEA	Societal inferred (not reported)	NRS	268	Patients that have undergone a hysterectomy	Not reported	Laparoscopic-assisted VH vs TAH or total VH	Incidence of complications, time to normal activity and return to work		
Lumsden et al. [58]	2000	Unclear UK	Secondary care	Gynaecology	CEA	Healthcare (NHS)	RCT	200	Women scheduled for an abdominal hysterectomy for benign gynaecological disease	12 months	Laparoscopic-assisted hysterectomy vs abdominal hysterectomy	Conversion rate laparoscopic-assisted VH to TAH, complication rate and quality of life		
Marino et al. [59]	2015	2007–2010 France	Secondary care	Gynaecology	CEA	Hospital	NRS	306	Women referred for gynaecologic oncologic indications	24 months	Robotic-assisted laparoscopy vs standard laparoscopy	Surgical outcomes		
Palomba et al. [62]	2006	2001–2003 Italy	Secondary care	Gynaecology	CEA	Hospital inferred (not reported)	RCT	80	Postmenstrual women with severe midline pelvic pain persisting for >6 months and unresponsive to common medical treatment	12 months	Laparoscopic uterine nerve ablation vs vaginal uterosacral ligament resection	Cure rate, severity of CPP and deep dyspareunia		
Relph et al. [67]	2014	2010–2012 UK	Secondary care	Gynaecology	CEA	Hospital	NRS	90	Women undergoing VH	Not reported	ERAS vs standard care (before ERAS)	Length of inpatient stay		
Sarlos et al. [68]	2010	2007–2009 Switzerland	Secondary care	Gynaecology	CEA	Hospital	NRS	80	Women needing a hysterectomy	Not reported	Robotic hysterectomy	Laparoscopic hysterectomy		
Sculpher et al. [69]	2004	1999–2000 UK	Secondary care	Gynaecology	CUA	Healthcare (NHS)	RCT	487/571*	Women requiring a hysterectomy for reasons other than malignancy	52 weeks	Laparoscopic hysterectomy vs VH or abdominal hysterectomy	QALY		
Sculpher et al. [70]	2000	1992–1994 UK	Secondary care	Gynaecology	CEA	Healthcare	RCT	160	Pre-menopausal women with dysfunctional uterine bleeding	From randomization to 2 years after intervention	Goserelin vs danazol	Differential rate of amenorrhoea		
3.4 Quality of the Statistical Approach of Trial-Based Cost-Effectiveness Evaluations

Results of the quality assessment of the statistical approach are presented in Table 4. The overall quality score of the statistical approach per study ranged from 0 to 6 (see Table 4 and Appendix S3 in ESM for scores per sub-domain). Six (15%) studies [36, 37, 46, 56, 60, 78] did not use any of the recommended methods (i.e. overall quality score = 0). Furthermore, 32 (71%) studies [35–40, 42–51, 53, 55, 56, 58–62, 65–68, 70, 72, 76, 78] did not adhere to ≥ 50% of the statistical quality items (i.e. having a score ≤4). None of the studies (see appendix S3, ESM) used the recommended statistical method to assess the cost differences between interventions. Furthermore, no study used more advanced methods for handling missing data (i.e. multiple imputation or maximum likelihood approaches). When there was <10% missing data, more simple techniques were used in 16 (36%) studies [39, 45, 48, 49, 54, 55, 57–59, 62, 63, 66, 68, 73, 75]. Of note, no study looked into the clustered nature of the data by using methods that correct for clustering.

3.5 Improvement in Quality Over Time

Exploratory analyses showed that the reporting and statistical quality score of studies in gynaecology did not significantly improve over time. However, the statistical quality and reporting quality scores in obstetric studies did significantly improve over time. Goodness-of-fit estimates showed that the amount of variance in quality scores explained by time was only limited (Table 5).

4 Discussion

4.1 Main Findings

The majority of cost-effectiveness evaluations in obstetrics and gynaecology do not comply with current reporting guidelines and recommendations for statistical methods in trial-based cost-effectiveness evaluations. Furthermore, exploratory analyses indicated that there have not been significant improvements over time in reporting and statistical quality of trial-based cost-effectiveness evaluations in gynaecology. In obstetrics, the quality of reporting and analysis slightly improved over time.

4.2 Interpretation of the Findings

None of the included studies fully complied with the CHEERS statement’s reporting criteria [11] and the median reporting quality score of the included studies was...
References	Title	Abstract	Background and objectives	Target population and subgroups	Setting and location	Study perspective	Comparators	Time horizon	Discount rate	Choice of health outcomes	Measurement of effectiveness
Bernitz et al. [35]	Yes	No	Yes	No	No	Yes	Yes	No	No	No	Yes
Bienstock et al. [36]	No	No	Yes	Yes	No	No	No	No	No	No	No
Brooten et al. [38]	Yes	No	Yes	Yes	No	No	Yes	No	No	Yes	No
Eidama et al. [41]	Yes	No	Yes	No	No	Yes	Yes	No	No	Yes	No
Eidama et al. [40]	Yes	No	No	Yes	No	Yes	Yes	No	No	Yes	No
Guo et al. [48]	Yes	yes	No	Yes	No	No	Yes	No	No	Yes	No
Jakuljevic et al. [51]	Yes	No	No	Yes	No	Yes	No	No	No	No	No
Lain et al. [54]	Yes	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes
Liem et al. [57]	Yes	No	Yes	Yes	No	Yes	No	No	Yes	Yes	No
Morrison et al. [60]	No	No	Yes	Yes	No	Yes	No	No	No	No	No
Nånnimaki et al. [61]	Yes	No	No	Yes	No	No	Yes	No	No	Yes	No
Petrou et al. [63]	Yes	Yes	No	Yes	No	Yes	No	No	Yes	No	No
Petrou et al. [64]	Yes	No	No	Yes	No	Yes	Yes	No	No	Yes	Yes
Prick et al. [65]	Yes	No	Yes	Yes	No	Yes	No	No	No	No	No
Ramsey et al. [66]	Yes	No	No	Yes	No	Yes	No	No	No	No	No
Simon et al. [71]	Yes	No	Yes	Yes	No	Yes	No	Yes	No	Yes	Yes
Sjostrom et al. [72]	Yes	No	No	No	No	No	Yes	No	Yes	No	Yes
Ten Eikelder et al. [73]	Yes	No	No	No	No	Yes	No	Yes	No	Yes	Yes
Van Baaren et al. [75]	Yes	No	No	Yes	Yes	Yes	No	No	Yes	No	Yes
Van Baaren et al. [74]	Yes	No	Yes	Yes	No	Yes	No	No	No	Yes	Yes
Vijgen et al. [76]	Yes	No	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes
Walker et al. [77]	Yes	No	No	No	No	Yes	Yes	No	Yes	Yes	Yes
Bijen et al. [79]	Yes	No	No	Yes	No	No	No	No	Yes	No	Yes
Bogliao et al. [37]	Yes	No	Yes	No	No	Yes	No	No	No	Yes	Yes
Dawes et al. [39]	Yes	No	Yes	Yes	No	Yes	No	No	No	Yes	Yes
El Hachem et al. [42]	Yes	No	No	Yes	No	Yes	No	No	No	No	No
El-Sayed et al. [43]	Yes	No	No	Yes	No	Yes	No	No	No	No	No
El Abbadi et al. [44]	No	No	Yes	No	No	Yes	No	No	No	No	No
El Abbadi et al. [45]	No	No	Yes	No	No	Yes	No	No	No	No	No
Evans [46]	Yes	No	Yes	No	No	Yes	Yes	Yes	Yes	No	No
Fernandez et al. [47]	Yes	No	Yes	Yes	No	Yes	No	No	No	No	No
Horowitz et al. [49]	Yes	No	No	No	No	No	No	No	Yes	No	No
Jack et al. [50]	Yes	No	No	Yes	No	Yes	Yes	No	No	Yes	No
Kilonzo et al. [52]	Yes	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Kovac [53]	Yes	No	No	No	No	No	No	No	No	No	No
References	Title	Abstract	Background and objectives	Target population and subgroups	Setting and location	Study perspective	Comparators	Time horizon	Discount rate	Choice of health outcomes	Measurement of effectiveness
-----------------------------------	----------------	----------	---------------------------	---------------------------------	-----------------------	-------------------	---------------	--------------	----------------	--------------------------	----------------------------
Lalchandani et al. [55]	Yes	No	No	No	No	Yes	No	No	No	No	Yes
Lenihan et al. [56]	Yes	No	No	No	No	No	No	No	No	No	No
Lumsden et al. [58]	Yes	No	No	Yes	No	Yes	No	No	Yes	No	Yes
Marino et al. [59]	Yes	No	No	Yes	No	Yes	No	No	No	No	No
Palomba et al. [62]	No	No	No	Yes	No	No	No	No	No	No	No
Relph et al. [67]	Yes	No	No	No	No	No	No	No	No	No	No
Sarlos et al. [68]	Yes	No	No	Yes	No	No	No	No	No	No	No
Sculpher et al. [69]	Yes	No	No	Yes	No	Yes	No	No	Yes	No	Yes
Sculpher et al. [70]	Yes	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	Yes
Yoong et al. [78]	Yes	No	No	Yes	No	No	No	No	No	No	No

Studies complying with reporting criteria (%) 89 9 36 67 9 51 73 20 40 13 62

References	Measurement and valuation of preference-based outcomes	Estimating resources and costs	Currency, price date and conversion	Analytical methods	Incremental costs and outcomes	Characterizing uncertainty	Characterizing heterogeneity	Study findings, limitations, generalizability and current knowledge	Source of funding	Conflicts of interests	Score on CHEERS checklist (n yes)
Bernitz et al. [35]	NA	No	No	Yes	No	No	No	Yes	Yes	9	
Bienstock et al. [36]	NA	No	No	No	No	No	No	No	No	2	
Brooten et al. [38]	NA	No	No	No	No	No	No	Yes	No	8	
Eddama et al. [41]	NA	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	13	
Eddama et al. [40]	NA	Yes	No	Yes	No	Yes	No	Yes	No	11	
Guo et al. [48]	NA	Yes	No	Yes	No	Yes	Yes	Yes	Yes	11	
Jakovljevic et al. [51]	NA	No	No	Yes	No	Yes	No	Yes	No	7	
Lain et al. [54]	NA	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	14	
Liem et al. [57]	NA	No	Yes	No	Yes	Yes	Yes	Yes	Yes	14	
Morrison et al. [60]	NA	No	No	Yes	No	Yes	Yes	Yes	Yes	14	
Ninimaki et al. [61]	NA	Yes	No	Yes	No	Yes	Yes	No	Yes	10	
Petrou et al. [63]	NA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15	
Petrou et al. [64]	NA	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	14	
Prick et al. [65]	NA	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	13	
Ramsey et al. [66]	NA	No	No	Yes	No	Yes	No	Yes	No	6	
Simon et al. [71]	NA	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	14	
Sjostrom et al. [72]	NA	No	Yes	No	Yes	Yes	Yes	Yes	Yes	8	
Ten Eikelder et al. [73]	NA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	14	
Van Baaren et al. [75]	NA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	15	
References	Measurement and valuation of preference-based outcomes	Estimating resources and costs	Currency, price date and conversion	Analytical methods	Incremental costs and outcomes	Characterizing uncertainty	Characterizing heterogeneity	Study findings, limitations, generalizability and current knowledge	Source of funding	Conflicts of interests	Score on CHEERS checklist (n yes)
-------------------------------	--	-------------------------------	-----------------------------------	-------------------	-------------------------------	---------------------------	----------------------------	--	----------------	----------------------	-----------------------------
Van Baaren et al. [74]	NA	Yes	Yes	No	Yes	No	Yes	Yes	Yes	Yes	14
Vigren et al. [76]	NA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	17
Walker et al. [77]	Yes	Yes	No	Yes	Yes	No	Yes	Yes	Yes	Yes	14
Bijen et al. [79]	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes	13
Bogliolo et al. [37]	NA	Yes	No	No	No	No	No	Yes	No	Yes	6
Dawes et al. [39]	NA	Yes	No	Yes	No	No	No	No	Yes	Yes	5
El Hachem et al. [42]	NA	Yes	No	No	No	No	Yes	No	Yes	Yes	6
El-Sayed et al. [43]	NA	No	No	No	No	No	No	Yes	Yes	Yes	2
El-Habbah et al. [44]	NA	Yes	No	No	No	No	No	No	No	Yes	4
El-Habbah et al. [45]	NA	Yes	No	No	No	No	No	No	No	Yes	3
Evans [46]	No	No	No	No	No	No	No	No	No	Yes	6
Fernandez et al. [47]	NA	No	No	Yes	No	No	No	No	No	Yes	5
Horowitz et al. [49]	No	No	No	No	Yes	Yes	No	Yes	Yes	Yes	9
Jack et al. [50]	NA	Yes	No	Yes	No	No	No	No	Yes	Yes	2
Kilonzo et al. [52]	Yes	Yes	No	Yes	No	Yes	Yes	Yes	Yes	Yes	14
Kovac [53]	NA	No	No	No	No	No	No	Yes	No	Yes	2
Lakhandani et al. [55]	NA	No	No	Yes	No	No	No	No	No	Yes	4
Lemanian et al. [56]	NA	No	No	No	No	No	No	No	No	Yes	1
Lumsden et al. [58]	NA	No	No	No	No	No	No	Yes	Yes	Yes	7
Marino et al. [59]	NA	Yes	No	Yes	No	Yes	No	No	No	Yes	5
Palomba et al. [62]	NA	Yes	No	Yes	No	Yes	No	No	No	Yes	7
Relph et al. [67]	NA	No	No	No	No	Yes	No	Yes	Yes	Yes	2
Sarlou et al. [68]	NA	Yes	No	Yes	No	No	No	Yes	Yes	Yes	7
Sculpher et al. [69]	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes	15
Sculpher et al. [70]	NA	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes	15
Yoong et al. [78]	NA	No	No	No	No	No	No	No	No	Yes	2

Studies complying with reporting criteria (%) | 9 | 60 | 24 | 49 | 40 | 47 | 24 | 42 | 60 | 53

Compliance with reporting criteria: italic values: ≥75% of reporting criteria correct; bold values: 51–74% of reporting criteria correct; underlined values: 26–50% of reporting criteria correct, bold italic values ≤25% of reporting criteria correct

CHEERS Consolidated Health Economic Evaluation Reporting Standard, NA not available
Table 4 Statistical approach of included studies

References	Analysis of incremental costs	Analysis of cost effectiveness	Handling missing data	Dealing with uncertainty	Overall quality score of statistical approach						
	Cost difference presented	Statistical assessment of cost differences	Presentation ICER Method sampling uncertainty	Presentation sampling uncertainty	Parameter uncertainty Methodological uncertainty Subgroup analysis						
Bernitz et al. [35]	No	T test p value	Yes	Not reported, non-parametric bootstrap (1000 replications) in the sensitivity analysis	CE plane	Not reported	No	Yes, non-parametric bootstrap (1000 replications) in the sensitivity analysis	No	2	
Bienstock et al. [36]	No	T test p value	No	Not reported	No presentation	Not reported	No	No	No	No	0
Brooten et al. [38]	Yes	T test p value	No	Not reported	No presentation	Not reported	No	No	Yes	2	
Eddama et al. [41]	Yes	T test with bootstrap (1000 replications) 95% CI and p value	Yes	Non-parametric bootstrap (1000 replications)	CE plane and CEAC	Not reported	Yes	No	No	6	
Eddama et al. [40]	Yes	T test with bootstrap (1000 replications) 95% CI and p value	No	Non-parametric bootstrap (1000 replications)	CE plane	Not reported	Yes	No	No	4	
Guo et al. [48]	Yes	Not reported p value	No presentation	Not reported	CE plane	Complete-case analysis <5% missing data	Yes	No	No	1	
Jakovljevic et al. [51]	No	T test p value	Yes	T test p value	Complete-case analysis >5% missing data	Yes	No	No	2		
Lain et al. [54]	Yes	T test with bootstrap (5000 replications) 95% CI	No	Non-parametric bootstrap (5000 replications)	CE plane	Complete-case analysis <5% missing data	Yes	Yes	Yes		
Liem et al. [57]	Yes	Mann–Whitney test	Yes	Non-parametric bootstrap (1000 replications)	CE plane and CEAC	Complete-case analysis <5% missing data	Yes	No	Yes	5	
Morrison et al. [60]	No	T test p value	No	Not reported	No presentation	Not reported	No	No	No	0	
Niinimaki et al. [61]	Yes	Not reported p value	Yes	Not reported	No presentation	Not reported	No	No	No	2	
References	Analysis of incremental costs	Analysis of cost effectiveness	Handling missing data	Dealing with uncertainty	Overall quality score of statistical approach						
---------------------	-------------------------------	-------------------------------	-----------------------	--------------------------	---						
	Cost difference presented	Statistical assessment of cost differences	Presentation ICER	Method sampling uncertainty	Parameter uncertainty	Methodological uncertainty	Subgroup analysis				
Petrou et al. [63]	Yes	T test with bootstrap (1000 replications)	95% CI and p value	Yes	Non-parametric bootstrap (1000 replications)	CE plane and CEAC	Complete-case analysis <5% missing data	Yes	No	No	7
Petrou et al. [64]	Yes	T test with bootstrap (1000 replications)	95% CI and p value	Yes	Non-parametric bootstrap (1000 replications)	CE plane and CEAC	Lin et al. [88] method	Yes	No	No	6
Prick et al. [65]	No	Not reported	No presentation	Yes	Not reported	No presentation	Mean imputation	Yes	No	Yes	2
Ramsey et al. [66]	No	Wilcoxon rank sum test	p value	Yes	Not reported	No presentation	No missing data	No	No	No	2
Simon et al. [71]	Yes	T test with bootstrap (? replications)	95% CI	Yes	Non-parametric bootstrap (? replications)	CEAC and 95% CI for ICER	Mean imputation	Yes	Yes	Yes	5
Sjostrom et al. [72]	Yes	Unclear	No presentation	Yes	Not reported	No presentation	Complete-case analysis >5% missing data	No	No	No	2
Ten Eikelder et al. [73]	Yes	T test with bootstrap (? replications)	95% CI	Yes	Non-parametric bootstrap (1000 replications)	CE plane and CEAC	Complete-case analysis <5% missing data	Yes	Yes	Yes	7
Van Baaren et al. [75]	Yes	T test with bootstrap (1000 replications)	95% CI	Yes	Non-parametric bootstrap (1000 replications)	CE plane and CEAC	Complete-case analysis <5% missing data	Yes	No	Yes	7
Van Baaren et al. [74]	Yes	T test with bootstrap (1000 replications)	95% CI	No	Non-parametric bootstrap (1000 replications)	CE plane (CEAC in appendix)	Change of the perspective of the analysis	Yes	No	Yes	5
Vijgen et al. [76]	Yes	T test with bootstrap (1000 replications)	95% CI	No	Non-parametric bootstrap (1000 replications)	CE plane	Extrapolation	Yes	Yes	Yes	4
Table 4 continued

References	Analysis of incremental costs	Analysis of cost effectiveness	Handling missing data	Dealing with uncertainty	Overall quality score of statistical approach						
	Cost difference presented	Statistical assessment of cost differences	Presentation ICER Method sampling uncertainty	Presentation sampling uncertainty	Parameter uncertainty Methodological uncertainty Subgroup analysis						
Walker et al. [77]	Yes	T test with bootstrap (1000 replications)	95% CI Yes	Non-parametric bootstrap (1000 replications)	CE plane and CEAC	Complete-case analysis >5% missing data Yes No No 6					
Bijen et al. [79]	Yes	Mann–Whitney test	p value Yes	Non-parametric bootstrap (5000 replications)	CE plane and CEAC	Complete-case analysis <5% missing data Yes No No 6					
Bogliolo et al. [37]	No	Mann–Whitney test	p value No	Not reported No presentation	Not reported	No No No 0					
Dawes et al. [39]	Yes	Mann–Whitney test	p value No	Not reported No presentation	No presentation	Complete-case analysis <5% missing data Yes No Yes 3					
El Hachem et al. [42]	Yes	T test or Mann–Whitney test	p value No	Not reported No presentation	No presentation	Complete-case analysis >5% missing data No No No 1					
El-Sayed et al. [43]	Yes	Not reported No presentation	No Not reported No presentation	No presentation	Not reported	No No No 1					
Eltabbakh et al. [44]	Yes	T test	p value No	Not reported No presentation	No presentation	Complete-case analysis <5% missing data No No No 2					
Eltabbakh et al. [45]	Yes	T test	p value No	Not reported No presentation	No presentation	Complete-case analysis >5% missing data No No No 2					
Evans [46]	No	Not reported No presentation	No Not reported No presentation	No presentation	Not reported	No No No 0					
Fernandez et al. [47]	Yes	Not reported No presentation	No Not reported Yes	No presentation	No presentation	Not reported	No No No 2				
Honwitz et al. [49]	No	Not reported No presentation	Yes Not reported Yes	No presentation	No missing data No No Yes 3						
Jack et al. [50]	Yes	T test with bootstrap (?) replications	No Non-parametric bootstrap (?) replications	No presentation	No presentation	Complete-case analysis >5% missing data No No No 2					
References	Analysis of incremental costs	Analysis of cost effectiveness	Handling missing data	Dealing with uncertainty	Overall quality score of statistical approach						
---------------------	-------------------------------	--------------------------------	-----------------------	--------------------------	---						
	Cost difference presented	statistical assessment of cost differences	ICER	Method sampling uncertainty	Parameter uncertainty						
	Statistical assessment of cost differences	Presentation	CEAC	CE plane and CEAC	Methodological uncertainty	Subgroup analysis					
Kilonzo et al. [52]	Yes	T test with bootstrap (1000 replications)	95% CI	No	Non-parametric bootstrap (1000 replications)	Complete-case analysis >5% missing data	Yes	Yes	No	5	
Kovac [53]	Yes	Not reported	No	Not reported	Non-parametric bootstrap (1000 replications)	Not reported	No	No	No	1	
Lalchandani et al. [55]	No	Mann–Whitney test	p value	No	Not reported	Complete-case analysis with >5% missing data	No	No	No	1	
Lenihan et al. [56]	No	ANOVA (Kruskal-Wallis)	p value	No	Not reported	Complete-case analysis with <5% missing data	No	No	No	0	
Lumsden et al. [58]	Yes	Not reported	95% CI	No	Not reported	Complete-case analysis with <5% missing data	Yes	No	No	3	
Marino et al. [59]	Yes	Wilcoxon rank sum test	p value	No	Not reported	Complete-case analysis with <5% missing data	Yes	No	No	2	
Palomba et al. [62]	No	Mann–Whitney test	p value	No	Not reported	Complete-case analysis with <5% missing data	No	No	Yes	2	
Relph et al. [67]	Yes	Mann–Whitney test	No	Not reported	No presentation	Not reported	No	No	No	1	
Sarlos et al. [68]	No	Mann–Whitney test	p value	No	Not reported	No missing data	No	No	No	1	
Sculpher et al. [69]	Yes	T test with bootstrap (1000 replications)	95% CI	Yes	Non-parametric bootstrap (1000 replications)	CEAC	Lin et al. [88] method	Yes	No	No	5
relatively low (i.e. median 8, scale 0–21). This indicates that essential reporting components were missing, which can lead to faulty conclusions by researchers and healthcare decision makers. In particular, the failure to describe the setting in which the studies were performed (i.e. the place and setting in which the resource allocation decision needs to be made such as country, primary or secondary care and healthcare system) makes it difficult to assess the relevance or transferability of cost-effectiveness evaluation results [80].

None of the included studies fully complied with the statistical recommendations extracted from existing guidelines [12–14]. Various statistical pitfalls of the included studies are noteworthy. First, some studies presented an analysis based on median costs instead of mean costs, yet the median is a measure that is not easily interpretable or usable for healthcare decision makers [25, 81, 82]. Second, ICERs were only reported by less than half of the studies. Moreover, since ICERs have well known interpretation problems, reporting 95% confidence interval surrounding ICERs is not recommended [26, 28] and presentation of uncertainty using CE planes and/or CEA curves is preferred. Nonetheless, only a small number of studies adequately presented the statistical uncertainty around the ICERs. Last, one third of the included studies relied on naïve and outdated statistical techniques for dealing with missing data (e.g. mean imputation, last observation carried forward) rather than using more advanced and valid methods such as multiple imputation and maximum likelihood approaches [83, 84]. These shortcomings in the quality of the included studies may result in either under- or overestimated cost-effectiveness outcomes.

4.3 Strengths and Limitations

A strength of this review is the systematic way in which studies were included and assessed, increasing the validity of the review. Also, to the best of our knowledge, this is the first review that combined the assessment of reporting quality with a comprehensive and in-depth evaluation of the statistical methods based on up-to-date national and international recommendations. However, several limitations need to be mentioned as well. First, in order to keep this review manageable, we focused on trial-based cost-effectiveness evaluations in obstetrics and gynaecology. Further research is needed to assess whether these results are representative of trial-based cost-effectiveness evaluations in other clinical areas. Second, reviewers may have been subjective in their judgements of quality, because they were not blinded for authors, authors’ affiliations and journals. However, the quality assessments were done using objective criteria [11–14] by two independent
reviewers. Third, considering the large developments in the methods of trial-based cost-effectiveness evaluations, early studies may be at a disadvantage. However, reporting guidelines have been available since 1996 [18, 85] and have not changed substantially since. Nonetheless, lower statistical quality scores may be the result of a lack of concrete, up-to-date statistical recommendations [86, 87]. Last, some of the included studies lacked transparency in how they designed and conducted their trial-based cost-effectiveness evaluations (i.e. poor reporting quality). This made it difficult to extract some of the data necessary to appropriately evaluate the quality of included studies, which affected the overall quality score negatively.

4.4 Comparison with the Literature

Our study adds to existing reviews in several ways. First, the majority of the previous reviews only assessed reporting quality and only a small number of reviews [8–10], which were conducted over a decade ago, evaluated the statistical quality of the included studies. Since then, however, statistical methods have improved considerably. Moreover, compared with previously conducted reviews in obstetrics and gynaecology, we performed an in-depth evaluation of the statistical methods.

Regardless, results of this systematic review are in line with those of previously conducted reviews, which concluded that the reporting and quality of the statistical approach of trial-based cost-effectiveness evaluations are typically poor [4–7] [8, 9] [15, 16]. However, these earlier methodological reviews in the field of obstetrics and gynaecology concluded that their quality improved over the last decades. This is in contrast with our exploratory analyses, which only showed a significant quality improvement over time in obstetrics and not in gynaecology. This discrepancy may be explained by our strict assessment of quality based on the most up-to-date evidence. All in all, our review suggests that, even though various efforts have been made during the last decade to improve the reporting and statistical quality of trial-based cost-effectiveness evaluations, there is still substantial room for improvement in the area of obstetrics and gynaecology. Further research should indicate whether this applies to other medical disciplines as well.

4.5 Implications for Further Research and Practice

Future trial-based cost-effectiveness evaluations should increase their adherence to available guidelines and recommendations to improve their credibility. Up to now, however, no criteria list of statistical quality has been available. For this review, we developed a criteria list based on current evidence, but items were not weighed in terms of their opportunity cost; that is, the risk of taking the wrong decision. For example, failure to adequately handle missing data will affect the decisions more than evaluating cost differences using a Mann–Whitney U test. Therefore, we urgently recommend the development of a criteria list including a weighing system that can be used by researchers, policy makers, reviewers and journal editors. Also, none of the most frequently used statistical software packages (e.g. SPSS, STATA, SAS, R) includes easy to use scripts for performing state-of-the-art trial-based cost-effectiveness evaluations. As such, authors are encouraged to (publicly) share their ‘advanced’ trial-based cost-effectiveness evaluations scripts.

5 Conclusion

This study indicated that the reporting and statistical quality of trial-based cost-effectiveness evaluations in obstetrics and gynaecology is generally poor. Since this can result in biased results, incorrect conclusions, and inappropriate healthcare decisions, there is an urgent need for improvement in the methods of cost-effectiveness evaluations in this field.
Data Availability Statement The authors provide the readers of this article with a data extraction sheet in which information about all included studies is summarized. This file is added as electronic supplementary material.

Authors’ contributions ME: study rationale and design, literature selection, data extraction, interpretation and reflection, writing the manuscript. JvD: study rationale and design, literature selection, data extraction, interpretation and reflection, reviewing the manuscript. JH: interpretation and reflection, reviewing the manuscript. MvT: extraction, interpretation and reflection, reviewing the manuscript. JEB: study rationale and design, literature selection, interpretation and reflection, reviewing the manuscript.

Compliance with Ethical Standards

Disclosure of potential conflict of interests ME reports no conflict of interest. JvD reports no conflict of interest. JAF reports no conflict of interest. JMvD reports no conflict of interest. JEB reports no conflict of interest. MvT reports no conflict of interest. JMvD reports no conflict of interest.

Funding None.

Open Access This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Drummond MF, Sculper MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programmes. 4th ed. Oxford: Oxford University Press; 2015.
2. Glick H, Doshi JA, Sonnad SS, Polsky D. Economic evaluation in clinical trials. 2nd ed. Oxford: Oxford University Press; 2015.
3. Vijgen SM, Boers KE, Opmeer BC, Bijlenga D, Bekedam DJ, Bloemenkamp KW, et al. Economic analysis comparing induction of labour and expectant management for intrauterine growth restriction at term (DIGITAT trial). Eur J Obstet Gynecol Reprod Biol. 2013;170(2):358–63.
4. Neumann PJ, Fang CH, Cohen JT. 30 years of pharmaceutical cost-utility analyses: growth, diversity and methodological improvement. Pharmacoeconomics. 2009;27(10):861–72.
5. Neumann PJ, Greenberg D, Olchanski NV, Stone PW, Rosen AB. Growth and quality of the cost-utility literature, 1976–2001. Value Health. 2005;8(1):3–9.
6. Neumann PJ, Stone PW, Chapman RH, Sandberg EA, Bell CM. The quality of reporting in published cost-utility analyses, 1976–1997. Ann Intern Med. 2000;132(12):964–72.
7. Rosen AB, Greenberg D, Stone PW, Olchanski NV, Neumann PJ. Quality of abstracts of papers reporting original cost-effectiveness analyses. Med Decis Mak. 2005;25(4):424–8.
8. Doshi JA, Glick HA, Polsky D. Analyses of cost data in economic evaluations conducted alongside randomized controlled trials. Value Health. 2006;9(5):334–40.
9. Barber JA, Thompson SG. Analysis and interpretation of cost data in randomised controlled trials: review of published studies. BMJ. 1998;317(7167):1195–200.
10. Udvarhelyi IS, Colditz GA, Rai A, Epstein AM. Cost-effectiveness and cost-benefit analyses in the medical literature—are the methods being used correctly. Ann Intern Med. 1992;116(3):238–44.
11. Huseureau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. Value Health. 2013;16(2):e1–5.
12. National Institute for Health and Care Excellence (NICE). Guide to the methods of technology appraisal London, United Kingdom: NICE UK; 2013 [updated 04/04/13; cited 2016 20/04/16]. https://www.nice.org.uk/article/pmg9/resources/non-guidance-guide-to-the-methods-of-technology-appraisal-2013-pdf.
13. Zorginstituut Nederland. Richtlijn voor het uitvoeren van economische evaluaties in de gezondheidszorg. Diemen: Zorginstituut Nederland; 2015.
14. Ramsey SD, Willke RJ, Glick H, Reed SD, Augustovski F, Jonsson B, et al. Cost-effectiveness analysis alongside clinical trials II—an ISPOR Good Research Practices Task Force report. Value Health. 2015;18(2):161–72.
15. Subak LL, Caughey AB, Washington AE. Cost-effectiveness analyses in obstetrics and gynecology. Evaluation of methodologic quality and trends. J Reprod Med. 2002;47(8):631–9.
16. Vijgen SM, Opmeer BC, Mol BW. The methodological quality of economic evaluation studies in obstetrics and gynecology: a systematic review. Am J Perinatol. 2013;30(4):253–60.
17. Moher D, Liberati A, Tetzlaff J, Altman DG, Group Prisma. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.
18. Drummond MF, Jefferson TO. Guidelines for authors and peer reviewers of economic submissions to the BMJ. Br Med J. 1996;313(7052):275–83.
19. Pitt C, Goodman C, Hanson K. Economic evaluation in global perspective: a bibliometric analysis of the recent literature. Health Econ. 2016;25:9–28.
20. Pitt C, Vassall A, Teerawattananon Y, Griffiths UK, Guinness L, Walker D, et al. Foreword: health economic evaluations in low- and middle-income countries: methodological issues and challenges for priority setting. Health Econ. 2016;25(Suppl 1):1–5.
21. Thompson SG, Barber JA. How should cost data in pragmatic randomised trials be analysed? BMJ. 2000;320(7243):1197–200.
22. Manning WG, Basu A, Mullany J. Generalized modeling approaches to risk adjustment of skewed outcomes data. J Health Econ. 2005;24(3):465–88.
23. Barber J, Thompson S. Multiple regression of cost data: use of generalised linear models. J Health Serv Res Policy. 2004;9(4):197–204.
24. Briggs A. Economic evaluation and clinical trials: size matters. BMJ. 2000;321(7273):1362–3.
25. van Dongen JM, van Wier MF, Tompa E, Bongers PM, van der Beek AJ, van Tulder MW, et al. Trial-based economic evaluations in occupational health: principles, methods, and recommendations. J Occup Environ Med. 2014;56(6):563–72.
26. Black WC. The CE plane: a graphic representation of cost-effectiveness. Med Decis Mak. 1990;10(3):212–4.

27. Fenwick E, O’Brien BJ, Briggs A. Cost-effectiveness acceptability curves—facts, fallacies and frequently asked questions. Health Econ. 2004;13(5):405–15.

28. Briggs AH, O’Brien BJ, Blackhouse G. Thinking outside the box: recent advances in the analysis and presentation of uncertainty in cost-effectiveness studies. Annu Rev Public Health. 2002;23:377–401.

29. Oostenbrink JB, Al MJ. The analysis of incomplete cost data due to dropout. Health Econ. 2005;14(8):763–76.

30. Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.

31. Rubin DB. Multiple imputation for nonresponse in surveys. New York: Wiley; 1987.

32. Eekhout I, de Vet HC, Twisk JW, Brand JP, de Boer MR, Heymans MW. Missing data in a multi-item instrument were best handled by multiple imputation at the item score level. J Clin Epidemiol. 2014;67(3):335–42.

33. Briggs A, Sculpher M, Buxton M. Uncertainty in the economic evaluation of health care technologies: the role of sensitivity analysis. Health Econ. 1994;3(2):95–104.

34. Sculpher M. Subgroups and heterogeneity in cost-effectiveness analysis. Pharmacoeconomics. 2008;26(9):799–806.

35. Bernitz S, Aas E, Oian P. Economic evaluation of birth care in low-risk women. A comparison between a midwife-led birth unit and a standard obstetric unit within the same hospital in Norway. A randomised controlled trial. Midwifery. 2012;28(5):591–9.

36. Bienstock JL, Ural SH, Blakemore K, Pressman EK. University hospital-based prenatal care decreases the rate of preterm delivery and costs, when compared to managed care. J Matern-Fetal Med. 2001;10(2):127–30.

37. Bogliolo S, Ferrero S, Cassani C, Musacchi V, Zanellini F, Dominini M, et al. Single-site versus multiport robotic hysterectomy in benign gynecologic diseases: a retrospective evaluation of surgical outcomes and cost analysis. J Minim Invas Gynecol. 2016;23(4):603–9.

38. Brooten D, Youngblut JM, Brown L, Finkler SA, Neff DF, Madigan E. A randomized trial of nurse specialist home care for women with high-risk pregnancies: outcomes and costs. Am J Manag Care. 2001;7(7):793–803.

39. Dawes HA, Docherty T, Traynor I, Gilmore DH, Jardine AG, Knill-Jones R. Specialist nurse supported discharge in gynaecology: a randomised comparison and economic evaluation. Eur J Obstet Gynecol Reprod Biol. 2007;130(2):262–70.

40. Eddama O, Petrou S, Regier D, Norrie J, MacLennan G, Mackenzie F, et al. Study of progesterone for the prevention of preterm birth in twins (STOPPIT): findings from a trial-based cost-effectiveness analysis. Int J Technol Assess Health Care. 2010;26(2):141–8.

41. Eddama O, Petrou S, Schroeder L, Bolla pragada SS, Mackenzie F, Norrie J, et al. The cost-effectiveness of outpatient (at home) cervical ripening with isosorbide mononitrate prior to induction of labour. BJOG Int J Obstet Gynaecol. 2009;116(9):1196–203.

42. El Hachem L, Andikyan V, Mathews S, Friedman K, Poeran J, Shieh K, et al. Robotic single-site and conventional laparoscopic surgery in gynecology: clinical outcomes and cost analysis of a matched case-control study. J Minim Invas Gynecol. 2016;23(5):760–8.

43. El-Sayed MM, Mohamed SA, Jones MH. Cost-effectiveness of ultrasound use by on-call registrars in an acute gynaecology setting. J Obstet Gynaecol. 2011;31(8):743–5.

44. Eltabbakh GH, Shamonki MI, Moody JM, Garafano LL. Hysterectomy for obese women with endometrial cancer: laparoscopy or laparotomy? Gynecol Oncol. 2000;78(3 Part 1):329–35.

45. Eltabbakh GH, Shamonki MI, Moody JM, Garafano LL. Laparoscopy as the primary modality for the treatment of women with endometrial carcinoma. Cancer. 2001;91(2):378–87.

46. Evans KD. A cost utility analysis of sonohysterography compared with hysteroscopic evaluation for dysfunctional uterine bleeding. J Diagn Med Sonogr. 2000;16(2):68–72.

47. Fernandez H, Kobelt G, Gervaise A. Economic evaluation of three surgical interventions for menorrhagia. Hum Reprod. 2003;18(3):583–7.

48. Guo Y, Longo CJ, Xie R, Wen SW, Walker MC, Smith GN. Cost-effectiveness of transdermal nitroglycerin use for preterm labor. Value Health. 2011;14(2):240–6.

49. Horowitz NS, Gibb RK, Menegakis NE, Mutch DG, Rader JS, Herzog TJ. Utility and cost-effectiveness of preoperative autologous blood donation in gynecologic and gynecologic oncology patients. Obstet Gynecol. 2002;99(5 Pt 1):771–6.

50. Jack SA, Cooper KG, Seymour J, Graham W, Fitzmaurice A, Perez J. A randomised controlled trial of microwave endometrial ablation without endometrial preparation in the outpatient setting: patient acceptability, treatment outcome and costs. BJOG Int J Obstet Gynaecol. 2005;112(8):1109–16.

51. Jakovljevic M, Varjacic M, Jankovic SM. Cost-effectiveness of ritodrine and fenoterol for treatment of preterm labor in a low-middle-income country: a case study. Value Health. 2008;11(2):149–53.

52. Kilonzo MM, Sambrook AM, Cook JA, Campbell MK, Cooper KG. A cost-utility analysis of microwave endometrial ablation versus thermal balloon endometrial ablation. Value Health. 2010;13(5):528–34.

53. Kovac SR. Decision-directed hysterectomy: a possible approach to improve medical and economic outcomes. Int J Gynecol Obstet. 2000;71(2):159–69.

54. Lain SJ, Roberts CL, Bond DM, Smith J, Morris JM. An economic evaluation of planned immediate versus delayed birth for preterm prelabour rupture of membranes: findings from the PPROMT randomised controlled trial. BJOG: Int J Obstet Gynaecol. 2017;124(4):623–30.

55. Lalchandani S, Baxter A, Phillips K. Is helium thermal coagulator therapy for the treatment of women with minimal to moderate endometriosis cost-effective: a prospective randomised controlled trial. Gynecol Surg. 2005;2(4):255–8.

56. Lenihan JP, Kovanda C, Cammarano C. Comparison of laparoscopic-assisted vaginal hysterectomy with traditional hysterectomy for cost-effectiveness to employers. Am J Obstet Gynecol. 2004;190(6):1714–20.

57. Lien SJ, van Baaren GJ, Delemarre FM, Evers IM, Kleiverda G, Liem SM, et al. Comparison of laparoscopic-assisted vaginal hysterectomy with traditional hysterectomy for cost-effectiveness in low-risk women. A comparison between a midwife-led birth unit and a standard obstetric unit within the same hospital in Norway. A randomised controlled trial. Midwifery. 2012;28(5):591–9.

58. Lumsden MA, Twaddle S, Hawthorn R, Traynor I, Gilmore D, Madigan E. A randomized trial of nurse specialist home care for women with high-risk pregnancies: outcomes and costs. Am J Manag Care. 2001;7(7):793–803.

59. Madigan E. A randomized trial of nurse specialist home care for women with high-risk pregnancies: outcomes and costs. Am J Manag Care. 2001;7(7):793–803.

60. Marzo P, Housseinageh G, Narducci F, Boyer-Chammard A, Ferron G, Uzan C, et al. Cost-effectiveness of conventional vs robotic-assisted laparoscopy in gynecologic oncologic indications. Int J Gynecol Cancer: Off J Int Gynecol Cancer Soc. 2015;25(6):1102–8.

61. Morris J, Chauhan SP, Carroll CS Sr, Bofill JA, Magann EF. Continuous subcutaneous terbutaline administration prolongs pregnancy after recurrent preterm labor. Am J Obstet Gynecol. 2003;188(6):1460–5 (discussion 5–7).

62. Niinimaki M, Karinen P, Hartikainen AL, Pouta A. Treating miscarriages: a randomised study of cost-effectiveness in medical and surgical choice. BJOG: Int J Obstet Gynaecol. 2009;116(7):984–90.
72. Sjostrom S, Kopp Kallner H, Simeonova E, Madestam A, Simon J, Gray A, Duley L. Cost-effectiveness of prophylactic Sculpher M, Thompson E, Brown J, Garry R. A cost effectiveness analysis of prostaglandin E2 gel for the induction of labour at term. BJOG Int J Obstet Gynaecol. 2011;118(6):726–34.

68. Sarlos D, Kots L, Stevanovic N, Schaer G. Robotic hysterectomy versus conventional laparoscopic hysterectomy: outcome and cost analyses of a matched case-control study. Eur J Obstet Gynecol Reprod Biol. 2006;129(1):84–91.

70. Sculpher M, Manca A, Abbott J, Fountain J, Mason S, Garry R. Economic evaluation of prostaglandin analogs dinoprostone and misoprostol as labor preinduction agents. Am J Obstet Gynecol. 2003;188(2):560–5.

64. Petrou S, Trinder J, Brocklehurst P, Smith L. Economic evaluation of alternative management methods of first-trimester miscarriage based on results from the MIST trial. BJOG Int J Obstet Gynaecol. 2006;113:879–89.

59. van Baaren GJ, Broekhuijsen K, van Pampus MG, Ganzevoort MB, Duvekot JJ, van der Moer PE, van Gemund N, van der Gemzell-Danielsson K. Medical abortion provided by nurse-midwives or physicians in a high resource setting: a cost-effectiveness analysis of the Magpie Trial. BJOG: Int J Obstet Gynaecol. 2006;113:879–89.

62. Palomba S, Russo T, Falbo A, Manguso F, D’Alessandro P, Mattei A, et al. Laparoscopic uterine nerve ablation versus vaginal uterosacral ligament resection in postmenopausal women with intractable midline chronic pelvic pain: a randomized study. Eur J Obstet Gynaecol Reprod Biol. 2006;129(1):84–91.

73. ten Eikelder MLG, van Baaren G-J, Rengerink KO, Jozwiak M, Sjostrom S, Kopp Kallner H, Simeonova E, Madestam A, Simon J, Gray A, Duley L. Cost-effectiveness of prophylactic Sculpher M, Thompson E, Brown J, Garry R. A cost effectiveness analysis of prostaglandin E2 gel for the induction of labour at term. BJOG Int J Obstet Gynaecol. 2011;118(6):726–34.

65. Prack BW, Duvekot JJ, van der Meoer PE, van Gemund N, van der Salm PC, Iansen AI, et al. Cost-effectiveness of red blood cell transfusion vs. non-intervention in women with acute anaemia after postpartum haemorrhage. Vox Sanguinis. 2014;107(4):381–8.

60. Ramsey PS, Harris DY, Ogburn PL Jr, Heise RH, Magtibay PM, Prick BW, Duvekot JJ, van der Moer PE, van Gemund N, van der Lloyd PS, Harris DY, Ogburn PL Jr, Heise RH, Magtibay PM, Ramin KD. Comparative efficacy and cost of the prostaglandin analogs dinoprostone and misoprostol as labor preinduction agents. Am J Obstet Gynecol. 2003;188(2):560–5.

69. Sculpher M, Manca A, Abbott J, Fountain J, Mason S, Garry R. Cost effectiveness analysis of laparoscopic hysterectomy compared with standard hysterectomy: results from a randomised trial. BMJ. 2004;328:134–7.

71. Sjostrom S, Kopp Kallner H, Simeonova E, Madestam A, Simon J, Gray A, Duley L. Cost-effectiveness of prophylactic Sculpher M, Thompson E, Brown J, Garry R. A cost effectiveness analysis of goserelin compared with danazol as endometrial thinning agents. Br J Obstet Gynaecol. 2000;107(3):340–6.

63. Petrou S, Taher SE, Abangma G, Eddama O, Bennett P. Cost-effectiveness of inducing labour at term with a Foley catheter compared to vaginal prostaglandin E(2) gel (PROBAAT trial). BJOG: Int J Obstet Gynaecol. 2013;120(8):987–95.

74. van Baaren G-J, Broekhuijsen K, van Pampus MG, Ganzevoort MB, Duvekot JJ, van der Moer PE, van Gemund N, van der van Dongen JM. Economic evaluations of worksite health promotion programs [Doctoral dissertation]. Amsterdam: Vrije Universiteit Amsterdam; 2014.

75. van Baaren GJ, Jozwiak M, Opmeer BC, Oude Rengerink K, Benthem J, Dijksterhuis MG, et al. Cost-effectiveness of induction of labour at term with a Foley catheter compared to vaginal prostaglandin E(2) gel (PROBAAT trial). BJOG: Int J Obstet Gynaecol. 2013;120(8):987–95.

76. Vijgen SM, Koopmans CM, Opmeer BC, Groen H, Bijlenga D, Aarnoudse JG, et al. An economic analysis of induction of labour and expectant monitoring in women with gestational hypertension or pre-eclampsia at term (HYPITAT trial). BJOG: Int J Obstet Gynaecol. 2010;117(13):1577–85.

55. van der Gemzell-Danielsson K. Medical abortion provided by nurse-midwives or physicians in a high resource setting: a cost-effectiveness analysis of the Magpie Trial. BJOG: Int J Obstet Gynaecol. 2006;113(2):144–51.

77. Walker BF, Dritsaki M, Bugg G, Macpherson M, McCormick C, Grace N, et al. Labour induction near term for women aged 35 or over: an economic evaluation. BJOG Int J Obstet Gynaecol. 2017;124(6):929–34.

78. Yoong W, Fadel MG, Walker S, Williams S, Subba B. Retrospective cohort study to assess outcomes, cost-effectiveness, and patient satisfaction in primary vaginal ovarian cystectomy versus the laparoscopic approach. J Minim Invas Gynecol. 2016;23(2):252–6.

79. Bijen CB, Vermeulen KM, Mourits MJ, Arts HJ, Ter Brugge HG, van der Sijde R, et al. Cost-effectiveness of laparoscopy versus laparotomy in early stage endometrial cancer: a randomised trial. Gynecol Oncol. 2011;121(1):76–82.

80. van Dongen JM. Economic evaluations of worksite health promotion programs [Doctoral dissertation]. Amsterdam: Vrije Universiteit Amsterdam; 2014.

81. Barber JA, Thompson SG. Analysis of cost data in randomized trials: an application of the non-parametric bootstrap. Stat Med. 2000;19(23):3219–36.

82. Briggs AH, Gray AM. Handling uncertainty when performing economic evaluation of healthcare interventions. Health Technol Assess. 1999;3(2):1–134.

83. Burton A, Billingham LJ, Bryan S. Cost-effectiveness in clinical trials: using multiple imputation to deal with incomplete cost data. Clin Trials. 2007;4(2):154–61.

84. MacNeil Vroomen J, Eekhof I, Dijkgraaf MG, van Hout H, de Rooij SE, Heymans MW, et al. Multiple imputation strategies for zero-inflated cost data in economic evaluations: which method works best? Eur J Health Econ. 2016;17(8):939–50.

85. Evers S, Goossens M, de Vet H, van Tulder M, Ament A. Criteria list for assessment of methodological quality of economic evaluations: Consensus on Health Economic Criteria. Int J Technol Assess Health Care. 2005;21(2):240–5.

86. Norwegian Medicines Agency. Guidelines on how to conduct Pharmacoeconomic Analyses. Oslo, Norway: Norwegian Medicines Agency; 2012. p. 77.

87. Colle`ge des Economistes de la Sante´. French Guidelines for the Economic Evaluation of Healthcare Technologies. Paris, France: Colle`ge des Economistes de la Sante´; 2004. p. 90.

88. Lin DY, Feuer EJ, Etzioni R, Wax Y. Estimating Medical Costs from Incomplete Follow-Up Data. Biometrics. 1997;53(2):419.