SYNTHESIS AND CHARACTERIZATION OF 1,2-DIMETHYL IMIDAZOLIUM IONIC LIQUIDS AND THEIR CATALYTIC ACTIVITIES

Pandurangan Ganapathi and Kilivelu Ganesan
PG and Research Department of Chemistry, Presidency College (Autonomous), Chennai, India

GRAPHICAL ABSTRACT

Abstract The synthesis of substituted imidazolium-type ionic liquids via a simple method is described. Our synthesized ionic liquids are more useful in the catalytic behavior of the Mannich reaction.

Keywords Ionic liquids; Mannich reaction; metathesis; recyclable

INTRODUCTION

Salts in their liquid state at room temperature are called room-temperature ionic liquids (RTILs); they have a variety of applications including as energy storage devices[1] and solvents for nanoparticle stabilization[2] and electrode position.[3] By combining a larger organic segment with charge diffuse anion[4] it is possible to prepare ILs at room temperature. ILs are safer than other solvents because of nontoxic ions and insignificant vapor pressure. The significant properties of ILs are heat capacity and viscosity, which are easily controllable by selection of cation and anion segments.[5] An equal molar ratio of H2SO4 and IL is used as an effective chlorinating agent,[6] compared with powerful, environmentally damaging solvents and more toxic chlorinating reagents such as COCl2, PCl3, and SOCl2.[7] ILs act as product controllers to improve the stereoselectivity for the Diels–Alder reaction.[8,9] Some ILs act as
both solvent and catalyst for the Friedel–Craft reaction with effective response.[10,11] Essawy and coworkers reported that Michael adducts of \(\alpha \)-phenyl chalcone with various ketones show a variety of medicinal activities.[12] ILs are more suitable solvents for oxidation reactions because of their stability even under oxidizing conditions and their inertness.[13–19] Most of the ILs have dual functions,[20] and some of the imidazolium salts act as mild antioxidative and reducing species.[21] The solubility property of ILs with hydrophobic (or) hydrophilic solvent can be tuned by altering the cations and anions.[22–24] Ionic liquids act as electrolytes with a number of advantages when compared to conventional materials because of their high ionic conductivity and nonvolatile nature.[25–27] Room-temperature ionic liquids are considered as environmentally friendly solvents for industrial actinide extraction.[28] Convenient synthesis of bulky groups containing imidazolium/pyridinium types of ionic liquids has been reported.[29] Herein, we report the synthesis and catalytic activity of the dimethyl imidazolium type of ionic liquids.

RESULTS AND DISCUSSION

1,2-Dimethylimidazole (1.0 equiv; 1.04 \(\times \) \(10^{-2} \)) is treated with benzylbromide/4-nitrobenzylbromide (1.05 equiv; 1.092 \(\times \) \(10^{-2} \)) in the presence of dry CH\(_3\)CN under refluxing conditions for 2 to 2.5 h to give \(1a,b \) in 95–97\% yield. After \(N \)-alkylation, the anion exchange reaction is carried out with various inorganic salts in the presence of a minimum amount of deionized water, which is used as a solvent, for about 1 h to give anion-exchanged products.

The anion-exchanged product undergoes Soxhlet extraction in the presence of dry tetrahydrofuran (THF) for about 1 h to remove the metal bromide to give a pure form of imidazolium salts (\(2a-f \)) in 90–93\% yield. The reaction between 1,2-dimethylimidazole with 4-nitrobenzylbromide is much faster than with benzyl bromide due to the nitro benzyl C-Br bond, which is weaker than simple benzyl bromide. The same reaction is repeated with dimethylsulfoxide (DMSO) and we observed that the reaction is much faster than with CH\(_3\)CN, but workup is not easier due to the water-soluble nature of both solvent and imidazolium bromide, and therefore CH\(_3\)CN is the more suitable solvent for \(N \)-alkylation.

\[
\begin{align*}
\text{NCH}_3 + \text{R-} \text{Br} & \xrightarrow{i)} \text{NCH}_3 \text{Br} \quad 95-97\% \\
1a: & \text{R} = \text{H}; \quad 1b: \text{R} = \text{NO}_2 \\
& \text{CH}_3 \\
\text{NCH}_3 (1a,b) & \xrightarrow{ii)} \text{NCH}_3 (2a-f) \\
2a: & \text{R} = \text{H}; \quad \text{X} = \text{BF}_4 \\
2b: & \text{R} = \text{H}; \quad \text{X} = \text{PF}_6 \\
2c: & \text{R} = \text{H}; \quad \text{X} = \text{CF}_3\text{SO}_3 \\
2d: & \text{R} = \text{NO}_2; \quad \text{X} = \text{BF}_4 \\
2e: & \text{R} = \text{NO}_2; \quad \text{X} = \text{PF}_6 \\
2f: & \text{R} = \text{NO}_2; \quad \text{X} = \text{CF}_3\text{SO}_3
\end{align*}
\]

\textit{Reagent and conditions:} i) MeCN, reflux, 2 - 2.5 hr.; ii) MX / H\(_2\)O; 1 hr.

\textbf{Scheme 1.} Synthesis of substituted imidazolium type of ionic liquids.
CATALYTIC ACTIVITIES

One-pot multicomponent organic reactions are gaining more importance because of greater diversity and efficiency.[30] Mannich product (substituted oxazine) has more features in the area of biologically important natural residues.[31,32] Some of the substituted oxazine and its derivatives are reported in the literature.[33–35] Multicomponent preparation of some of the naphthol heterocyclic substituted compounds in the presence of ionic liquids needs more reaction time to complete with insignificant yield.[36] Deepak and coworkers reported that a one-pot, three-component condensation reaction of aldehyde, ketone, and aromatic amine in the presence of mixed oxides MgO/ZrO\textsubscript{2} in the ratio of 1:3 needs 16 h to complete, with poor yield.[37] Our synthesized ionic liquids for the Mannich reaction afforded appreciable products (Tables 1 and 2). We have tried with different concentrations of ionic liquids such as 7.299 × 10−5, 1.497 × 10−4, 2.245 × 10−4, and 2.994 × 10−4 concentrations. Among these concentrations, we have observed that 2.245 × 10−4 concentration is the optimum concentration to complete the reaction with less reaction time and greater conversion. In the Mannich reaction, we have used two types of aromatic amines (\textit{m}/\textit{p}-nitro aniline). From that we observed that \textit{m}-nitro aniline is two times faster than \textit{p}-nitro aniline with greater yields (Table 1). \textit{m}-Nitroaniline shows better nucleophilic activity than the \textit{para} isomer. Mannich products are thoroughly characterized by spectral and analytical data, which are closely matching with the literature.[38]

Table 1. One-pot synthesis of \textit{m}-nitrooxazine derivatives

No.	IL	Time	Yield (%)
1	Absence of catalyst	8 h	40
2	1a	1.5 min	90
3	2a	1.5 min	85
4	2b	1.5 min	90
5	2c	1.5 min	88
6	1b	1.5 min	87
7	2d	1.5 min	80
8	2e	1.5 min	87
9	2f	1.5 min	84

Notes. Reagents and conditions: \textit{z}-naphthol (200 mg; 1.387 × 10−3 mol/L); paraformaldehyde (85 mg; 2.843 × 10−3 mol/L); \textit{m}-nitroaniline (0.148 g; 1.387 × 10−3 mol/L); CH\textsubscript{3}CN (10 mL); IL (2.245 × 10−4 mol/L); rt.
Our synthesized ionic liquids are potential candidates to accelerate the Mannich reaction with better yield. Our synthesized ionic liquids are recycled up to four cycles and used for the Mannich reaction with the same reaction condition. Even after the fourth recycle, the product obtained was same as we observed in the fresh use shown in Table 3.

CONCLUSION

We used a simple synthetic methodology to prepare the imidazolium type of ionic liquids. Our synthesized ionic liquids are more useful for catalytic behavior in the Mannich reaction to reduce the reaction time and improve the percentage of yield. We examined the catalytic activity of synthesized ionic liquids. Among the eight ionic liquids, 1a and 1b showed better catalytic activity than the others because of better Lewis character. We have tried the catalytic activities with different concentrations (7.299 x 10^{-5} mol/L, 1.497 x 10^{-4} mol/L, 2.245 x 10^{-4} mol/L, and 2.994 x 10^{-4} mol/L) of our synthesized ionic liquids. From the result, we have concluded that 2.245 x 10^{-4} concentration is the optimum concentration to complete the Mannich reaction with greater yield and lesser reaction time. The same reaction is repeated with our recycled ILs, which showed good catalytic activity with good yields.

No.	IL	Time	Yield (%)
1	Absence of catalyst	10 h	30
2	1a	2 min	82
3	2a	2 min	78
4	2b	2 min	81
5	2c	2 min	81
6	1b	2 min	77
7	2d	2 min	72
8	2e	2 min	75
9	2f	2 min	75

Notes. Reagents and conditions: x-naphthol (200 mg; 1.387 x 10^{-3} mol/L); paraformaldehyde (85 mg; 2.843 x 10^{-3} mol/L); p-nitroaniline (0.148 g; 1.387 x 10^{-3} mol/L); CH_3CN (10 mL); IL (2.245 x 10^{-4} mol/L); rt.

Table 2. One-pot synthesis of p-nitrooxazine derivatives

No.	IL	Time	Yield (%)
1	Absence of catalyst	10 h	30
2	1a	2 min	82
3	2a	2 min	78
4	2b	2 min	81
5	2c	2 min	81
6	1b	2 min	77
7	2d	2 min	72
8	2e	2 min	75
9	2f	2 min	75

Table 3. One-pot synthesis of oxazine by using recycled ILs, fourth run

No.	IL	Yield (%)
1	1a	72-85
2	2a	70-80
3	2b	74-82
4	2c	70-75
5	1b	70-76
6	2d	66-70
7	2e	68-73
8	2f	65-70
EXPERIMENTAL

Procedure for N-Alkylation

1,2-Dimethylimidazole (1.040 × 10⁻² mol/L; 1.0 equiv) is treated with benzylbromide (1.092 × 10⁻² mol/L; 1.05 equiv) in the presence of 30 mL of dry CH₃CN under refluxing condition for about 2 h, and afforded the N-alkylated quaternary ammonium bromide 1a in 95% yield after purification.

1,2-Dimethyl(3-methylene benzene)-imidazolium Bromide 1a

Yield 2.75 g; 95% semisolid; ¹H NMR (D₂O): δ: 2.45 (s, 3H); 3.66 (s, 3H); 5.22 (s, 2H); 7.20 (d, J=1.8 Hz, 2H); 7.24 (s, 2H); 7.33 (t, J=7.2 Hz, 2H). ¹³C NMR δ: 9.19, 34.75, 51.42, 121.10, 122.37, 127.76, 129.26, 133.73, 144.58. MS: 267. Elemental analysis: Molecular formula (C₁₂H₁₅N₂Br); calculated: C: 53.93; H: 5.61; N: 10.48; found C: 53.86; H: 5.52; N: 10.40.

Procedure for Anion Exchange Reaction

N-Alkylated quaternary ammonium bromide (1.0 equiv) is treated with NaBF₄ (1.05 equiv) in the presence of 10 mL deionized water at room temperature with stirring for about 1 h to afford the anion exchanged ionic liquid. After the anion exchange reaction, we used Soxhlet extraction for separation using dry tetrahydrofuran (THF) for about 1 h followed by concentration, which gives ionic liquid 2a in 93% yield.

1,2-Dimethyl(3-methylene benzene)-imidazolium Tetrafluoroborate 2a

Yield 0.67 g; 93%; semisolid; ¹H NMR (D₂O): δ: 2.43 (s, 3H); 3.68 (s, 3H); 5.26 (s, 2H); 7.18 (d, J=1.9 Hz, 2H); 7.21 (s, 2H); 7.4 (t, J=7.4 Hz, 3H). ¹³C NMR δ: 9.17, 34.78, 51.44, 121.08, 122.35, 127.74, 129.27, 133.71, 144.55. MS: 274. Elemental analysis: Molecular formula (C₁₂H₁₅BF₄N₂); calculated: C, 52.55; H, 5.47; N, 10.22; found C, 52.48; H, 5.32; N, 10.14.

ACKNOWLEDGMENT

The author thanks R. Sundaram, assistant professor, Department of Chemistry, Presidency College, Chennai, for cooperation and moral support.

SUPPLEMENTAL MATERIAL

Experimental procedure and ¹H and C¹³ NMR spectra of new compounds for this article can be accessed on the publisher’s website.

REFERENCES

1. Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629.
2. Dupont, J.; Scholten, J. D. On the structural and surface properties of transition-metal nanoparticles in ionic liquids. *Chem. Soc. Rev.* 2010, 39, 1780–1804.

3. Endres, F.; Abbott, A. P.; MacFarlane, D. R. *Electrodeposition from Ionic Liquids*; Wiley-VCH: Weinheim, Germany, 2008.

4. Hallett, J. P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. *Chem. Rev.* 2011, 111, 3508–3576.

5. Freeman, M. Ionic liquids may boost clean technology development. *Chem. Eng. News* 1998, 76, 32–37.

6. Ren, R. X.; Wu, J. X. Mild conversion of alcohols to alkyl halides using halide-based ionic liquids at room temperature. *Org. Lett.* 2001, 3, 3727–3728.

7. Stegmann, V.; Massonne, K. WO Patent 2005 026089, 2005.

8. Janus, E.; Maciejewska, I. G.; Yozynski, M.; Pernak, J. Diels–Alder reaction in protic ionic liquids. *Tetrahedron Lett.* 2006, 47, 4079.

9. Lee, C. W. Diels–Alder reactions in chloroaluminate ionic liquids acceleration and selectivity enhancement. *Tetrahedron Lett.* 1999, 40, 2461–2462.

10. Boon, J.; ALevisky, J. A.; Pflug, J. L.; Wilkes, J. S. Friedel–Crafts reactions in ambient-temperature molten salts. *J. Org. Chem.* 1986, 51, 480–483.

11. Khan, F. A.; Dash, J.; Satapathy, R.; Upadhyay, S. K. Hydrotalcite catalysis in ionic liquid medium: A recyclable reaction system for heterogeneous Knoevenagel and nitroaldol condensation. *Tetrahedron Lett.* 2004, 45, 3055–3058.

12. Essawy, A.; Hamed, A. A. Some reactions of Michael adducts of α-phenylchalcone with ketones, ethyl phenylacetate, p-chlorobenzyl cyanide, and malononitrile. *Indian J. Chem.* 1978, 16 B, 880–883.

13. Muzart, J. Ionic liquids as solvents for catalyzed oxidations of organic compounds. *Adv. Synth. Catal.* 2006, 348, 275–295.

14. Peng, J.; Deng, Y. Cyclodaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. *New J. Chem.* 2001, 25, 639–641.

15. Zhao, D.; Wu, M.; Kou, Y.; Min, E. Ionic liquids: Applications in catalysis. *Catal. Today* 2002, 74, 157–189.

16. Sun, J.; Fujita, S. I.; Bhanage, B. M.; Arai, M. Direct oxidative carboxylation of styrene to styrene carbonate in the presence of ionic liquids. *Catal. Commun.* 2004, 5, 83–87.

17. Panchgalle, S. P.; Choudhary, S. M.; Chavan, S. P.; Kalkote, U. R. The oxidation of 4-alkyl and 4-aryl-1,4-dihydropyridines to pyridines with hydrogen peroxide in an ionic liquid. *J. Chem. Res.* 2004, 550–551.

18. Kim, D. W.; Hong, D. J.; Seo, J. W.; Kim, H. S.; Kim, H. K.; Song, C. E.; Chi, D. Y. Hydroxylation of alkyl halides with water in ionic liquid: Significantly enhanced nucleophilicity of water. *J. Org. Chem.* 2004, 69, 3186–3189.

19. Marcinek, A.; Zielonka, J.; Gebicki, J.; Gordon Dunkin, C. M. Ionic liquids: Novel media for characterization of radical ions. *J. Phys. Chem. A* 2001, 105, 9305–9309.

20. Zhao, D.; Fei, Z.; Ohlin, A.; Laurenczy, G.; Dyson, P. J Dual-functionalised ILs: Synthesis and characterisation of imidazolium salts with a nitrile-functionalised anion. *Chem. Commun.* 2004, 21, 2500.

21. D’Anna, F.; Marullo, S.; Noto, R. Ionic liquids/[bmim][N3] mixtures: Promising media for the synthesis of aryl azides by SnAr. *J. Org. Chem.* 2008, 73, 6224–6228.

22. Li, X.; Zhao, D.; Fei, Z.; Wang, L. Applications of functionalized ionic liquids. *Sci. China Ser. B: Chem.* 2006, 49, 385–401.

23. Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Chemical and biochemical transformations in ionic liquids. *Tetrahedron* 2005, 61, 1015–1060.

24. Gayet, F.; Marty, J. D.; Lauth-de Viguere, N. Palladate salts from ionic liquids as catalysts in the Heck reaction. *Arkivoc* 2008, 17, 61–76.
25. Wasserscheid, P.; Keim, W. Ionic liquids—New “solutions” for transition metal catalysis. *Angew. Chem., Int. Ed.* **2000**, *39*, 3772–3773.

26. Dupont, J.; Souza, R. F.; Suarez, P. A. Z. Ionic liquid (molten salt) phase organometallic catalysis. *Chem. Rev.* **2002**, *102*, 3667–3692.

27. Sheldon, R. A. Green solvents for sustainable organic synthesis: state of the art. *Green Chem.* **2005**, *7*, 267–278.

28. Ganapathi, P.; Ganesan, K. Synthesis and characterization of methyl substituted imidazolium dimeric ionic liquids and their catalytic activities. *Am. J. Chem. Appl.* **2014**, *1*, 40–43.

29. (a) Kumar, N.; Jai, P. J. Convenient syntheses of bulky group containing imidazolium ionic liquids. *J. Heterocycl. Chem.* **2012**, *49*, 370–374; (b) Manikandan, C.; Ganesan, K. Synthesis, characterization, and catalytic behavior of methoxy, dimethoxy substituted pyridinium-type ionic liquids. *Synth. Commun.* **2014**, *44*, 3362–3367.

30. Zhu, J.; Bienaymé, H. *Multicomponent Reactions*; Wiley-VCH: Weinheim, Germany; 2005.

31. Testa, E.; Fontanella, L.; Cristiani, G.; Gallo, G. 5,5-Disubstituted dihydro-1,3-oxazine-2,4-diones: Research on compounds active on central nervous system, XII. *J. Org. Chem.* **1959**, *24*, 1928.

32. Voruenrates, S. M.; Wit, W. F.; Tongeren, J. V.; Lange, J. M. Efavirenz: A review. *Opin. Pharmacother.* **2007**, *8*, 851–871.

33. Agag, T. Preparation and properties of some thermosets derived from allyl-functional naphthoxazines. *J. App. Poly. Sci.* **2006**, *100*, 3769–3777.

34. Burke, W. J.; Murdock, K. C.; Ec, G. Condensation of hydroxyaromatic compounds with …and primary aromatic amines. *J. Am. Chem. Soc.* **1954**, *76*, 1677–1679.

35. Mathew, B. P.; Nath, M. One-pot three-component synthesis of dihydrobenzo- and naphtho[\(e\)]-1,3-oxazines in water. *J. Heterocycl. Chem.* **2009**, *46*, 1003–1006.

36. Mukhopadhyay, C.; Rana, S.; Ray, S.; Butcher, J. An ionic liquid ([secbmim]+Br-) as a “dual reagent catalyst” for the multicomponent synthesis of (quinoliny1- and isoquinolinyl- amino) alkynaphthols, their bis- analogs, and a facile route to naphthoxazines. *Arkivoc* **2010**, *10*, 291–304.

37. Nagrik, M. D. One-pot preparation of \(\beta\)-amino carbonyl compounds by Mannich reaction using MgO/ZrO\(_2\) as effective and reusable catalyst. *Int. J. Chem.* **2010**, *2*, 98–101.

38. Kategaonkar, A. H.; Sonar, S. S.; Shelke, K. F.; Shingte, B. B.; Shingare, M. S. Ionic liquid–catalyzed multicomponent synthesis of 3,4-dihydro-3-substituted-2H-naphtho[2, 1-e][1, 3] oxazine derivatives. *Org. Commun.* **2010**, *3*, 1–7.