Rheological properties of polymer melt between rapidly oscillating plates: An application of multiscale modeling

S. Yasuda(a) and R. Yamamoto

Department of Chemical Engineering, Kyoto University - Kyoto 615-8510, Japan and CREST, Japan Science and Technology Agency - Kawaguchi 332-0012, Japan

received 5 February 2009; accepted 9 March 2009
published online 17 April 2009

PACS 83.60.Df – Nonlinear viscoelasticity
PACS 83.10.Gr – Constitutive relations
PACS 47.11.St – Multi-scale methods

Abstract – The behavior of supercooled polymer melt composed of short chains with 10 beads between rapidly oscillating plates is simulated by using a hybrid simulation of molecular dynamics and computational fluid dynamics. The flow profiles of polymer melt near an oscillating plate are quite different from those of Newtonian fluid. The viscous boundary layer of the melt is much thinner than that of the Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid when \(\omega \tau^R \ll 1 \), and the crossover between the liquid-like and solid-like regime takes place around \(\omega \tau^" \approx 1 \) (where \(\omega \) is the angular frequency of the plate, and \(\tau^R \) and \(\tau^" \) are the Rouse and \(\alpha \) relaxation times, respectively).

Due to the emergence of nano-science (or nanotechnology), a great innovation of the functional materials of soft matters is expected recently. An important property of soft matter is that there exist strong correlations between the nano-scale structure and kinetics and the macroscopic behavior of the system. In other words, the nano-scale structures and kinetics may affect the macroscopic physical properties, and the macroscopic behavior may also affect the microscopic physics. This property of the coupling of the microscopic and macroscopic physics is very useful for functional materials, but it also makes the theoretical and experimental investigations of soft matter difficult. The simulations may be useful for predicting the complex behaviors of soft matter. The difficulty in the simulation of soft matter is the coexistence of the macroscopic and microscopic scales involved. The macroscopic dynamics are usually solved by using the continuum equation, e.g., the Navier-Stokes equation, with a constitutive relation. For soft matter, however, the constitutive relation is so complicated that no explicit formulas are obtained in general. In contrast, the molecular dynamics simulations are performed without using any constitutive relations. However, the time and space to be simulated are restricted to very microscopic scales.

To overcome this difficulty, we have recently developed a hybrid simulation of the molecular dynamics (MD) and the computational fluid dynamics (CFD) based on a local sampling strategy, in which the macroscopic dynamics are solved using a CFD scheme but, instead of using any constitutive equations, a local stress is calculated by using a non-equilibrium MD simulation associated with each lattice node of the CFD computation [1]. The basic idea of the hybrid simulation method was put forward earlier by Kevrekidis et al. [2] and also by Ren and E [3].

In previous papers, the validity of the hybrid methods and their efficiencies were examined intensively for viscous fluids without memory effects. De et al. have recently proposed a new hybrid method called the scale bridging method in their paper, that can correctly reproduce the memory effect of the polymeric liquid, and performed a simulation of a non-linear viscoelastic polymeric liquid between oscillating plates [4]. They have also compared the results obtained by the scale bridging method with those obtained by a full MD simulation, thereby demonstrating the validity of the method. In this letter, we also model the behavior of polymer melt between oscillating plates by using the same strategy of multiscale modeling, but we focus on the complex rheology of a supercooled

(a)E-mail: yasuda@cheme.kyoto-u.ac.jp
polymer melt in the viscous diffusion layer that arises near an rapidly oscillating plate. The boundary layer arises if the width between plates is much larger than the thickness of viscous diffusion layer. Note that, in ref. [4], the thicknesses of viscous diffusion layers are estimated to be comparable to the widths of the plates [5], thus the boundary layers are not clearly seen.

In this problem, the macroscopic quantities are quite non-uniform, and two different characteristic length scales appear that must be resolved: one is that of a polymer chain and the other is that of a boundary layer arising near the oscillating plate. This problem constitutes an important application of multiscale modeling since it is quite difficult to solve this problem by using a full MD simulation because the length of the boundary layer is much larger than that of a polymer chain. In the following, we briefly state the problem and outline the hybrid simulation method, and then discuss the numerical results. Finally, we give a summary of our conclusions.

We consider a polymer melt with a uniform density \(\rho_0 \) and a temperature \(T_0 \) between two parallel plates (see fig. 1(a)). The upper- and lower-plate start to oscillate in opposite, parallel directions with a constant frequency \(\omega_0 \) at \(t = 0 \). The polymer melt is composed of short chains with 10 beads. All the bead particles interact with a truncated Lennard-Jones potential defined by [6]

\[
U_{\text{LJ}}(r) = 4\epsilon \left[\sigma/r \right]^{12} - 2\left[\sigma/r \right]^6 + \epsilon \quad \text{for } r \leq 2^{1/6} \sigma, \quad 0 \text{ for } r > 2^{1/6} \sigma.
\]

By using the repulsive part of the Lennard-Jones potential only, we may prevent spatial overlap of the particles. Consecutive beads on each chain are connected by an anharmonic spring potential, \(U_{\text{potential}}(r) = -k_c r^3 \ln[1 - (r/R_0)^2] \), with \(k_c = 300 \sigma^2 \) and \(R_0 = 1.5 \sigma \).

The number density of the bead particles is fixed at \(\rho_0/m = 1/\sigma^3 \), where \(m \) is the mass of the bead particle. With this number density the configuration of bead particles becomes severely jammed at a low temperature, resulting in the complicated non-Newtonian viscosity and long-time relaxation phenomena typically seen in glassy polymers. In the present letter, we fix the temperature at \(T = 0.2\epsilon/k \), where \(k \) is the Boltzmann constant [7].

We assume that the macroscopic quantities are uniform in the \(x \) - and \(z \) -directions, i.e., \(\partial/\partial x = \partial/\partial z = 0 \). Then, the macroscopic velocity \(v_0 \) is described by the equations,

\[
\rho_0 \partial v_0/\partial t = \partial \tau_{\alpha\beta}/\partial y \quad \text{and} \quad v_y = v_0 = 0,
\]

where \(\tau_{\alpha\beta} \) is the stress tensor. Here and afterward, the subscripts \(\alpha, \beta, \gamma \) represent the index in Cartesian coordinates, i.e., \(\{ \alpha, \beta, \gamma \} = \{ x, y, z \} \). We also assume the non-slip boundary condition at the oscillating plate, \(v_x = v_0 \cos \omega_0 t \) at \(y = 0 \) (where \(v_0 \) is a constant amplitude of the oscillation velocity), and the symmetric condition at \(y = H \) (i.e., \(v_x(y = H + \Delta x/2) = -v_x(y = H - \Delta x/2) \)). If the frequency \(\omega_0 \) is large enough, the thin viscous boundary layer forms over the oscillating plate. The thickness of the layer is estimated, for fluids with a constant viscosity \(\nu_0 \), as \(l_v \sim \sqrt{\nu_0/\omega_0} \). Note that the thickness of the viscous layer \(l_v \) is much smaller than the width between the plates, \(l_v \ll H \) but is usually much larger than the scale accessible to a full MD simulation, in which the characteristic length scale is the length of the polymer chain \(l_p \sim l_v \gg l_p \).

The constitutive relation of the stress tensor is quite complicated [8,9]; the temporal value of the stress tensor of a fluid element depends on the previous values of the velocity gradients of the fluid element. The relation may be written in a functional form as

\[
\tau_{\alpha\beta}(t, x, y) = F_{\alpha\beta}[\gamma(t', y)], \quad \text{with } t' \leq t,
\]

where \(\gamma_{\alpha\beta} \) is the velocity gradient, \(\kappa_{\alpha\beta} = \partial v_{\alpha}/\partial x_{\beta} \), and \(x'(t') \) represents the path line along which a fluid element has been moving. In the one-dimensional problem, however, we do not need to consider the path line of the convective fluid element since the macroscopic velocity is restricted to be only in the \(x \)-direction, where the macroscopic quantities are assumed to be uniform. Thus, the stress tensor for this problem may be written in a functional involving the local strain rate,

\[
\tau_{\alpha\beta}(t, y) = F_{\alpha\beta}[\gamma(t', y)], \quad \text{with } t' \leq t,
\]

where \(\gamma \) is the strain rate, \(\dot{\gamma} = \partial v_y/\partial y \). Note that, although eq. (2) becomes much simpler than eq. (1), the temporal value of the local stress still depends on the previous values of the local strain rate. Its dependence is quite complicated, especially for glassy materials (for which explicit formulas are unknown in general). In our hybrid simulation, instead of using any explicit formulas for the constitutive relation, the local stress is generated by the non-equilibrium MD simulation associated with each local point (see fig. 1(b)).

Here, we briefly explain our hybrid simulation method. The computational domain \(0, H + \Delta x/2 \) is divided into thirty-two slits with a constant width \(\Delta x \). We use a usual finite volume method with a staggered arrangement, where the velocity is computed at the mesh node and the stress is computed at the middle of each slit. One hundred chains are confined in each cubic MD cell with a side length \(l_{\text{MD}} = 10 \sigma \). As for the time-integration scheme, we use the simple explicit Euler method with a small time-step size \(\Delta t \). The local stress at each time step of the CFD is calculated by performing a non-equilibrium MD simulation according to the local strain rate in each MD cell. The techniques of the non-equilibrium MD simulation are the same as those in the previous paper [1]; we use the Lees-Edwards sheared
Rheological properties of polymer melt between rapidly oscillating plates

periodic boundary condition and a Gaussian iso-kinetic thermostat to maintain a constant temperature. In this problem, however, we cannot assume a local equilibrium state at each time step of the CFD simulation since the relaxation time of the stress may become much longer than the time-step size of the CFD simulation (in which the macroscopic motions of the system should be resolved). In these simulations, the simple time-average of the temporal stresses of the MD (averaged over the duration of a time step of the CFD simulation) are used as the stresses at each time step of the CFD calculation without ignoring the transient time necessary for the MD system to be in steady state. The final configuration of the molecules obtained at each MD cell is memorized as the initial configuration for the MD cell at the next time step of the CFD. Thus, we trace all the temporal evolutions of the microscopic configurations with a microscopic time step so that the memory effects can be reproduced correctly. Note that, compared with a full MD simulation, we can achieve an efficient computation with regard to the spatial integration by using MD cells that are smaller than the slit size used in the CFD simulation. The efficiency of the performance of our hybrid simulation is represented by the ratio of the slit size used in the CFD model \(\Delta x \) to the cell size of the MD simulation \(\Delta x_{\text{MD}} \). Hereafter, the quantities normalized by the units of length \(\sigma \), and time \(\tau_0 = \sqrt{\mu \sigma^2 / \varepsilon} \) are denoted with a superscript \(^* \).

In the following simulations, we fix the time-step size of the CFD simulation \(\Delta t \), sampling duration of the MD simulation \(t_{\text{MD}} \), and time-step size of the MD simulation \(\Delta \tau \) as \(\Delta t^* = t_{\text{MD}}^* = 1 \) and \(\Delta \tau^* = 0.001 \), respectively. Thus, one thousand MD steps are performed in each MD cell at each time step of the CFD computation.

We perform the hybrid simulations for two cases: Case A, in which \(\omega_0^A = 2 \pi / 256 \) and \(H^* = 578.5 \), and Case B, in which \(\omega_0^B = 2 \pi / 1024 \) and \(H^* = 1575 \). The amplitude of the oscillation velocity is fixed as \(v_0^* = 10 \) in both cases. The widths of the slits are \(\Delta x^* = 25 \) for Case A and \(\Delta x^* = 50 \) for Case B, and the ratios of the mesh size of the CFD \(\Delta x \) to the cell size of the MD \(\Delta x_{\text{MD}} \) are \(\Delta x / \Delta x_{\text{MD}} = 2.5 \) for Case A and 5 for Case B. Figure 2 shows the instantaneous velocity profiles near an oscillating plate over a period for (a) Case A and (b) a Newtonian fluid with a constant viscosity \(\nu_0 = 53 \), which corresponds to the dynamic viscosity of the model polymer melt for Case A. The dynamic viscosity is calculated via \(G_2 / \omega_0 \) (where \(G_2 \) is the loss modulus in the linear regime). It is seen that the boundary layer of the melt is much thinner than that of the Newtonian fluid. This is caused by the shear thinning; the local loss modulus near the boundary is, as we see below, much smaller than that of the linear regime, thus the thickness of the viscous diffusion layer becomes thinner than that for the Newtonian fluid.

We also measure the local viscoelastic properties in terms of the local storage modulus \(G_1(y) \) and loss modulus \(G_2(y) \). It should be noted that the local macroscopic quantities oscillate with a different phase retardation at each different point. The local moduli are calculated in the following way: The discrete Fourier transforms of the temporal evolutions of the strain \(\sigma, \gamma(t, y) = \int_0^t \gamma(t', y) dt' \), and shear stress \(\sigma_{xy} \) during the steady oscillation states are performed. The discrete Fourier transformations are written as \(\hat{g}_{nlk}^t = \frac{1}{N+1} \sum_{n=0}^N g_{nlk}^t \exp (i 2 \pi n l l^* / (N+1)) \), with \(g_{nlk}^t = g(n \Delta t, l \Delta x)(n = 0, \ldots, N \text{ and } l = 0, \ldots, 32) \), where \(g \) represents the strain or shear stress (e.g., \(g = \gamma \) or \(\sigma_{xy} \)). By using the Fourier coefficients for the mode of the oscillating plate \(k_0, k_0 = 1 + (\omega_0 / 2 \pi) N \), the time evolution of the local strain at \(y = y' \) can be expressed as a cosine function,

\[
\gamma(t) = \gamma_0^t \cos(\omega_0 t + \delta^t),
\]

with \(\gamma_0^t = \sqrt{(\gamma_1^t)^2 + (\gamma_2^t)^2} \) and \(\delta^t = \tan^{-1}(\gamma_2^t / \gamma_1^t) \). Hereafter, the superscripts \(t \) and \(\tau \) indicate the real and imaginary part of the discrete Fourier coefficients, respectively. The time evolution of the local shear stress can also be expressed as

\[
\sigma_{xy}^t(t) = \sigma_1^t \cos(\omega_0 t + \delta^t) - \sigma_2 \sin(\omega_0 t + \delta^t)
\]

with \(\sigma_1^t = \sigma_1^t k_0^t \cos \delta^t + \sigma_2^t k_0^t \sin \delta^t \) and \(\sigma_2^t = \sigma_2^t k_0^t \cos \delta^t - \sigma_1^t k_0^t \sin \delta^t \). Thus, the local storage modulus \(G_1 \) and loss modulus \(G_2 \) are written, respectively, as \(G_1(y) = \sigma_1^t / \gamma_0^t \) and \(G_2(y) = \sigma_2^t / \gamma_0^t \).

Figure 3 shows the spatial variations of the local storage modulus and loss modulus and the amplitude of the local strain for Case A. The shear thinning is seen near the plate; the strain \(\gamma_0 \) (or the strain rate \(\dot{\gamma}_0 = \omega_0 \gamma_0 \)) is quite large near the oscillating plate and both moduli are much smaller than those for the linear regimes. In the close vicinity of the oscillating plate, the storage modulus \(G_1 \) is much smaller than the loss modulus \(G_2 \) for \(y = 0 \). Hence, the melt behaves as a viscous fluid. The storage modulus rapidly grows with the distance from the oscillating plate.

Fig. 2: The velocity profiles near an oscillating plate at \(\omega_0 t = 240 \pi + \theta, \theta / \pi = 0, 1, /2, 3, 1, 3 /2, \text{ and } 7 /4, \) for \(\omega_0^A = 2 \pi / 256 \).

(a) The result for the polymer melt and (b) that for a Newtonian fluid. The vertical axis represents the height \(y \) and the horizontal axis represents the velocity \(v_x \).
Fig. 3: The spatial variations of the local moduli G_1 and G_2 (lower axis) and the amplitude of the local strain γ_0 (upper axis) for Case A. The dashed and dash-dotted lines show the values of G_1 and G_2 for the linear regime ($G_1^* = 3.1$ and $G_2^* = 1.3$), respectively. The linear moduli are calculated by the non-equilibrium MD simulations with small strains for $0.005 < \gamma_0 < 0.01$. The long-dashed line represents $\gamma_0 = 2\%$. The left arrows on the right-side vertical axis show the positions where the local Deborah numbers, shown in fig. 5, are equal to unity.

Fig. 4: The spatial variations of the local moduli G_1 and G_2 (lower axis) and the amplitude of the local strain γ_0 (upper axis) for Case B. The dashed and dash-dotted lines show the values of G_1 and G_2 for the linear regime ($G_1^* = 1.7$ and $G_2^* = 1.4$), respectively. See also the caption of fig. 3.

and the viscoelastic crossover occurs at $y^* \sim 200$. Both moduli attain their linear values that are shown as dashed and dash-dotted lines in fig. 3, for distance that is far from the oscillating plate where the local strains are less than about 2%. The overall features are also consistent with Case B, although the crossover is not as clear as that in Case A (see fig. 4). Thus, the local rheology of the melt can be divided into three regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes. These regimes may be also characterized by the two “local” Deborah numbers. One is defined by the local Rouse relaxation time τ_R of the melt and the angular frequency of the plate ω_0, $De^R = \omega_0 \tau_R$, and the other is defined by the local α relaxation time τ_α and the angular frequency ω_0, $De^\alpha = \omega_0 \tau_\alpha$. Note that the local Rouse and α relaxation times vary according to the local strain rate $\dot{\gamma}$, $\tau_\alpha = \tau (\dot{\gamma})$. Figure 5 shows the spatial variation of the Deborah number De^R and De^α, where the local relaxation times τ_R and τ_α are calculated by substituting the values of $\dot{\gamma}_0$, which are obtained via eq. (3), into the fitting functions for the relaxation times for the simple shear flows obtained in ref. [7]. In figs. 3 and 4, the positions at which the local Deborah numbers become equal to unity are shown by the left arrows. It is seen that the melt behaves as a viscous fluid, $G_2 \gg G_1$, for $De^R \leq 1$, while the viscoelastic properties become pronounced for $De^R \gtrsim 1$. This is consistent with the rheology diagram for a model polymer melt obtained in ref. [10]. It is also seen that the crossovers of the liquid-like regime, $G_2 > G_1$, and the solid-like regime, $G_1 > G_2$, take place at $De^\alpha \sim 1$.

In summary, the behavior of supercooled polymer melt between rapidly oscillating plates is simulated by using a hybrid simulation of the MD and CFD. In our simulation, the memories of molecular configurations of the fluid elements are correctly traced at the microscopic level. The efficiency of our hybrid simulation is represented by the ratio of the mesh size of the CFD simulation Δx to the cell size of the MD simulation l_{MD}. In these simulations, $\Delta x / l_{MD} = 2.5$ for Case A and 5 for Case B. The flow profiles of polymer melt are quite different from those of the Newtonian fluid with a dynamic viscosity of the model polymer melt. The shear thinning of polymer melt takes place near the oscillating plate, and thus the boundary layer of the polymer melt becomes much thinner than that for the Newtonian fluid. The local rheology of the melt also varies considerably in the viscous boundary layer, so that three different regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form between the oscillating plates. It is also found, in the viscous fluid regime, that the local Deborah number defined via the Rouse relaxation time and the angular frequency of the plate is less than about unity, $De^R \gtrsim 1$.

![Diagram showing spatial variations of local moduli and strain](image-url)
The crossover between the liquid-like and solid-like regimes takes place around the position where the local Deborah number defined via the α relaxation time and the angular frequency is equal to unity, $De^{\alpha} \sim 1$.

REFERENCES

[1] Yasuda S. and Yamamoto R., Phys. Fluids, 20 (2008) 113101.
[2] Kevrekidis I. G., Gear C. W., Hyman J. M., Kevrekidis P. G., Runborg O. and Theodoropoulos C., Commun. Math. Sci., 1 (2003) 715.
[3] Ren W. and E W., J. Comput. Phys., 204 (2005) 1.
[4] De S., Fish J., Shephard M. S., Keblinski P. and Kumar S. K., Phys. Rev. E, 74 (2006) 030801(R).
[5] Sen S., Kumar S. K. and Keblinski P., Macromolecules, 38 (2005) 650.
[6] Kremer K. and Grest G. S., J. Chem. Phys., 92 (1990) 5057.
[7] Yamamoto R. and Onuki A., J. Chem. Phys., 117 (2002) 2359.
[8] Bird R. B., Armstrong R. C. and Hassager O., Dynamics of Polymeric Liquids, Vol. 1 (John Wiley and Sons, New York) 1987.
[9] Larson R. G., Constitutive Equations for Polymer Melts and Solutions (Butterworths, Boston) 1988.
[10] Vladkov M. and Barrat J. L., Macromol. Theory Simul., 15 (2006) 252.