Relativistic corrections to decays of heavy baryons in the quark model

Ahmad Jafar Arifi, Daiki Suenaga, and Atsushi Hosaka

1 Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
2 Asia Pacific Center for Theoretical Physics (APCTP), Pohang, Gyeongbuk 37673, Republic of Korea
3 Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

(Dated: May 13, 2021)

We investigate relativistic corrections of an order $1/m^2$, where m is the constituent quark mass, to heavy baryon decays by emitting one pseudoscalar meson in the quark model. This work is motivated by shortcomings in the previous studies in the nonrelativistic quark model for decays of the Roper-like states such as $\Lambda_c(2765)$. We find that the relativistic corrections due to the internal motion of quarks are essential ingredients in improving their decay properties such that the decay widths are significantly increased. In addition, such corrections can explain a phenomenological suppression of the quark axial-vector coupling constant g_A^q for the $\Sigma_c(2455)$ and $\Sigma_c(2520)$ decays.

In this work, we investigate relativistic corrections in the constituent quark model primarily to solve the problem in the decays of the Roper-like states. At the same time, we also study the corrections to other low-lying states. For this purpose, we will use the Foldy-Wouthuysen-Tani (FWT) transformation. This method was employed long ago by Kubota and Ohta in analyzing the photoexcitation amplitudes of nucleon resonances [19]. They emphasized that such corrections are crucial to give the correct sign of the photoexcitation amplitude of $N(1440)$, leading to better agreement with the data. The relativistic effects in the photoexcitation amplitudes are also confirmed by other computations [20]. Furthermore, the relativistic treatments give better agreement for the mass of $N(1440)$ [21]. Motivated by these observations, we expect that the relativistic corrections will also play important roles for heavy baryons.

II. NONRELATIVISTIC QUARK MODEL

The quark model computation of heavy baryon decays follows Refs. [22, 24]. The harmonic oscillator wave functions of baryons are formed in the heavy quark basis. They are denoted as $Y_Q(nl_\xi, J^P)$, where nl stand for the node and orbital angular momentum quantum numbers, and $\xi = \lambda$ or ρ indicate the two internal excitation

![FIG. 1. Schematic picture of one-pion emission decay of heavy baryon Y_Q in the quark model, where the pion is regarded as a Nambu-Goldstone boson.](image)
where we define $g = g^A_A/2f_\pi$ with $g^A_A = 1$ the quark axial-vector coupling constant and $f_\pi = 93$ MeV the pion decay constant. Here we denote the energy and momentum of the outgoing pion as (ω_π, q). For kaon emission decays, the parameters such as the kaon decay constant ($f_K = 111$ MeV), energy and momentum should be changed accordingly. The initial and final momenta of the light quark are denoted by p_i and p_f.

In the previous works [22–24], decay widths of heavy baryons were investigated by using the interaction in Eq. (2). However, the resulting decay widths turned out to be too small for the Roper-like states, e.g. $\Lambda_c(2765)$ baryons shown in the column denoted as Γ_{NR} of Table I.

III. RELATIVISTIC CORRECTIONS OF ORDER $1/m^2$

To estimate them properly, we perform the FWT transformation [33] for the Lagrangian in Eq (1). After

State	Multiplet	Channel	Γ_{NR}	$\Gamma_{\text{NR+RC}}$	Γ_{Exp}	Ref
$\Sigma_c(2555)^{++}$	$\Sigma_c(1S, 1/2(1)^+)$	$\Lambda_c\pi$	4.27 - 4.34	0.36 - 1.95	1.84 ± 0.04	Belle [29]
$\Sigma_c(2520)^{++}$	$\Sigma_c(1S, 3/2(1)^+)$	$\Lambda_c\pi$	29.8 - 31.4	2.70 - 14.1	14.77 ± 0.25	Belle [29]
$\Lambda_c(2595)^+$	$\Lambda_c(1P, 1/2(1)^-)$	$\Sigma_c(2455)\pi$	1.35 - 3.16	1.36 - 3.20	2.6 ± 0.6	CDF [30]
$\Lambda_c(2625)^+$	$\Lambda_c(1P, 3/2(1)^-)$	$\Sigma_c(2455)\pi$	0.08 - 0.15	0.01 - 0.06	< 0.97	CDF [30]
$\Lambda_c(2765)^+$	$\Lambda_c(2S, 1/2(0)^+)$	$\Sigma_c(2455)\pi$	0.71 - 2.66	5.56 - 26.1	73 ± 5	Belle [31]
$\Lambda_c(3136)^+$	$\Lambda_c(2S_{\rho\rho}, 1/2(0)^+)$	$\Sigma_c(2455)\pi$	2.22 - 42.0	106 - 657	2.01 - 4.50	...

State	Multiplet	Channel	Γ_{NR}	$\Gamma_{\text{NR+RC}}$	Γ_{Exp}	Ref
Ξ_c^+	$\Xi_c(1S, 1/2(1)^+)$	$\Xi_c\pi$... b
$\Xi_c(2645)^+$	$\Xi_c(1S, 3/2(1)^+)$	$\Xi_c\pi$	5.16 - 5.26	0.93 - 2.75	2.06 ± 0.13	Belle [32]
$\Xi_c(2790)^+$	$\Xi_c(1P, 1/2(1)^-)$	$\Xi_c\pi$	4.24 - 11.6	4.33 - 11.7	8.9 ± 1.0	Belle [32]
$\Xi_c(2815)^+$	$\Xi_c(1P, 3/2(1)^-)$	$\Xi_c\pi$	0.18 - 0.34	0.04 - 0.12	84 ± 0.6	Belle [32]
$\Xi_c(2970)^+$	$\Xi_c(2S, 1/2(0)^+)$	$\Xi_c\pi$	0.16 - 0.87	1.62 - 8.36	17.6 - 133	Belle [32]
$\Xi_c(3138)^+$	$\Xi_c(2S_{\rho\rho}, 1/2(0)^+)$	$\Xi_c\pi$	0.00 - 7.58	17.6 - 133	84 ± 0.6	Belle [32]

| Masses are estimated in the quark model for the ρ-mode Roper-like state. |
| The null results for the decay width are due to insufficient phase space. |
some calculations, we obtain
\[H_{RC} = \frac{g}{8m^2} \left[m_\pi^2 \sigma \cdot q + 2 \sigma \cdot (q - 2p_i) \times (q \times p_i) \right] , \] (3)
where \(m_\pi \) is the pion mass. Note that \(m_\pi \) should be replaced by \(m_K \) for the kaon emission decay. What we found in this work is that the term proportional to \(p_i^2 \) in the second term of Eq. (3) plays an important role not only for the Roper-like state but also for \(\Sigma_i \)’s. This term is due to the internal motion of the quarks inside a heavy baryon. In the electromagnetic interaction, such a term appears as the spin-orbit coupling in the relativistic correction [19].

IV. MODEL PARAMETERS

In the quark model, there are three parameters: the light quark mass \(m \), the heavy quark mass \(M \), and the spring constant \(k \). Following our previous study [24], for \(\Lambda_b \) and \(\Lambda_b \) baryons we will use the constituent quark masses as \(m_{ud} = 0.35 \pm 0.05 \) GeV, \(m_c = 1.5 \pm 0.1 \) GeV, and \(M_b = 5.0 \pm 0.1 \) GeV. For \(\Xi_c \) and \(\Xi_b \) baryons they consist of three different quarks so that we use the averaged mass \(m = 0.40 \pm 0.05 \) GeV for the \(u, d \), and \(s \) quarks. Here we have used the strange quark mass as \(m_s = 0.45 \pm 0.05 \) GeV. In this work, the spring constant is adjusted as \(k = 0.03 \pm 0.01 \) GeV\(^3\) in order to get the level spacing around \(\omega_\Lambda = \sqrt{k(2m + M)/(mM)} = 0.35 \pm 0.05 \) GeV which is the typical excitation energy of the first excited state of heavy baryons. We will use the same value of the spring constant for various quark flavors contents. From the above parameters, we obtain the range parameter of the harmonic oscillator wave functions as \(a_\lambda = \sqrt{m_\lambda \omega_\lambda} = 0.40 \pm 0.04 \) GeV and \(a_\rho = \sqrt{m_\rho \omega_\rho} = 0.29 \pm 0.03 \) GeV for \(\Lambda_b \) baryons where we define \(m_\lambda = 2mM/(2m + M) \), \(m_\rho = m/2 \), and \(\omega_\rho = \sqrt{3k/m} \). The values of the range parameters slightly vary for \(\Xi_c, \Lambda_b \) and \(\Xi_b \).

TABLE II. Similar to Table I, but for bottom baryons.

State	Multiplet	Channel	\(\Gamma_{NR} \)	\(\Gamma_{NR+RC} \)	\(\Gamma_{Exp.} \)	Ref
\(\Sigma_b(5810)^- \)	\(\Sigma_b(1S, 1/2(1)^- \)	\(\Lambda_b \pi \)	11.9 - 12.3	0.62 - 5.11	4.83 ± 0.31	LHCb [35]
\(\Sigma_b(5830)^- \)	\(\Sigma_b(1S, 3/2(1)^- \)	\(\Lambda_b \pi \)	20.4 - 21.4	1.08 - 8.80	9.34 ± 0.47	LHCb [35]
\(\Lambda_b(5912)^0 \)	\(\Lambda_b(1P_3, 1/2(1)^- \)	\(\Sigma_b \pi \)	0.001 - 0.003	0.001 - 0.003	< 0.25	LHCb [2]
\(\Lambda_b(5920)^0 \)	\(\Lambda_b(1P_3, 3/2(1)^- \)	\(\Sigma_b \pi \)	0.004 - 0.008	0.004 - 0.009	< 0.19	LHCb [2]
\(\Lambda_b(6072)^0 \)	\(\Lambda_b(2S_{\Lambda}, 1/2(0)^+ \)	\(\Sigma_b \pi \)	0.72 - 2.17	4.97 - 20.8	72 ± 11	LHCb [2]
\(\Lambda_b(6469)^0 \)	\(\Lambda_b(2S_{\rho}, 1/2(0)^+ \)	\(\Sigma_b \pi \)	3.29 - 51.6	107 - 725	40 - 74	LHCb [2]
\(\Xi_b(5935)^- \)	\(\Xi_b(1S, 1/2(1)^+ \)	\(\Xi_b \pi \)	0.25 - 0.25	0.04 - 0.13	< 0.08	LHCb [36]
\(\Xi_b(5945)^- \)	\(\Xi_b(1S, 3/2(1)^+ \)	\(\Xi_b \pi \)	2.87 - 2.90	0.43 - 1.43	1.65 ± 0.31	LHCb [36]
\(\Xi_b(6096)^- \)	\(\Xi_b(1P_3, 1/2(1)^- \)	\(\Xi_b \pi \)	2.40 - 5.49	2.41 - 5.50
\(\Xi_b(6100)^- \)	\(\Xi_b(1P_3, 3/2(1)^- \)	\(\Xi_b \pi \)	0.91 - 1.93	0.63 - 1.36
\(\Xi_b(6255)^- \)	\(\Xi_b(2S_{\Lambda}, 1/2(0)^\pm \)	\(\Sigma_b \pi \)	0.19 - 0.72	1.49 - 6.33
\(\Xi_b(6675)^- \)	\(\Xi_b(2S_{\rho}, 1/2(0)^\pm \)	\(\Xi_b \pi \)	0.28 - 14.7	36.3 - 261

\(a \) Masses are estimated in the quark model for the \(\rho \)-mode Roper-like state.
\(b \) Masses are taken from Ref [34].
\(c \) Mass is taken from the latest result [37].
V. GROUND STATES

Let us start from the $\Sigma_c(2455)$ and $\Sigma_c(2520)$. These states are regarded as ground states because the quarks are in the lowest S-wave orbit. However, they have an energy excess due to the spin-one (bad) diquark that can decay into the spin-zero (good) diquark by emitting one pion.

The nonrelativistic quark model of order $1/m$ overpredicts the decay widths of Σ_c states and their siblings by a factor of two as shown in the column denoted as Γ_{NR} of Tables I and II. In our previous study [24], the discrepancy has led to the discussion of the suppression factor of about 3/4 for the quark axial-vector coupling constant g_A^q. In the literature, the universal suppression parameter is introduced to explain the experimental data [23]. The necessity of the suppression factor for g_A^q has been known for long time for the nucleon g_A; in the nonrelativistic quark model $g_A = 5/3$, about 30% larger than the observed value $g_A \sim 1.25$ [38]. The situation is essentially the same for the decay of $\Sigma_c \to \Lambda_c \pi$.

Now, let us see the suppression mechanism by including the relativistic corrections in more detail. The matrix element of the leading term of order $1/m^0$ is the spin-isospin factor of $\sigma_i \tau_a$ times the overlap of the common ground state wave functions for Σ_c and Λ_c which is unity in the long-wavelength limit of the pion momentum. For the term of order $1/m$, the matrix elements of $\sigma \cdot p_i$ and $\sigma \cdot q$ cancel each other giving only a small contribution of around 0.1% of the total width by using the interaction in Eq. (2). The cancellation can be understood since the ratio $R_{p/q} = \langle \sigma \cdot p_i \rangle / \langle \sigma \cdot q \rangle$ is around 0.42 for this case. In the relativistic corrections of order $1/m^2$, the matrix element of p_i^2 in Eq. (3) gives a factor proportional to the square of the range parameter a^2. This term appears with the opposite sign to the leading term of $1/m^0$. This explains the reduction of the quark axial-vector coupling constant g_A^q. As shown in Tables I and II, it is fair to say that the agreement with the data is improved when observing that the data marginally fall into the calculated range.

VI. NEGATIVE PARITY STATES

These are the first excited states of quark orbital motion in the P wave ($1P$ state). We expect that they are dominated by the lower Λ modes. We assume that this is the case not only for the $1P$ states, but also for the $2S$ Roper-like states in the following.

The relativistic correction is found to be insignificant for the negative parity states. For instance, the correction to the decay of $\Lambda_c(2595)$ with $J^P = 1/2^-$ is negligible and the interaction in Eq. (2) is sufficiently good in explaining the experimental data. For this decay, the leading term of order $1/m^0$ with $\sigma \cdot q$ is negligible because it results in a term proportional to q^2 which is vanishing in the long-wavelength limit. Meanwhile, for the term of order $1/m$, the matrix element of $\sigma \cdot p_i$ gives a finite term of order q^0. As a result, the $\sigma \cdot p_i$ becomes the dominant term. This is in the line with the S-wave decay of $\Lambda_c(2595) \to \Sigma_c(2455)\pi$. For the relativistic correction terms of order $1/m^2$ as in Eq. (3), the matrix element is found to give only a term proportional to q^2 resulting in a small contribution. For the case of $\Lambda_c(2625)$ with $J^P = 3/2^-$, the relativistic correction is found to be sizable for $\Sigma_c(2455)\pi$ channel. However, because of the D-wave nature, the actual value is relatively small and the agreement with the data is still good. This behavior applies to other siblings such as $\Xi_c(2790)$ and $\Xi_c(2815)$ as given in Tables I and II.

Very recently, CMS collaboration observed the new $\Xi_b(6100)$ state with a narrow width $\Gamma < 1.9$ MeV [37]. It is found that our prediction of the decay width agrees well with the data as shown in Table II, when the spin and parity are identified as $3/2^-$.

VII. ROPER-LIKE STATES

Now, let us come to the main result of the present work. Here we found that the relativistic correction is essential for the Roper-like states. As discussed earlier, the nonrelativistic quark model predicts narrow widths around a few MeV that are smaller than the experimental data by one order of magnitude. However, by taking into account the relativistic corrections in Eq. (3), the decay widths are significantly improved and have better agreement with the data as shown in the column denoted as Γ_{NR+RC} of Tables I and II.

It is also worth mentioning that there are other decay modes, e.g., $f_0(500)$ contribution in a two-pion emission decay, that may contribute to the total width of the Roper-like state. However, from the experimental observations, such a contribution is insignificant as discussed in our previous studies [3, 22].

The shortcoming in the nonrelativistic quark model can be understood from the orthogonality of the wave functions. The leading term of order $1/m^0$ with $\sigma \cdot q$, which is the spin-flip transition process, contains a vanishing overlap of the orthogonal orbital wave functions in the long-wavelength limit. In contrast, the $\sigma \cdot p_i$ term of order $1/m$ in Eq. (2) provides a finite contribution. However, the odd power of the quark momentum operator will translate into the pion momentum q and always come with the pion energy ω_q, which makes the role of $\sigma \cdot p_i$ term not very important resulting in only small decay widths up to order $1/m$ [24]. On the other hand, in the relativistic correction of $1/m^2$, the matrix elements consist of the higher terms of the quark momentum of p_i^2 as given in Eq. (3). The even power of the quark momentum operator will translate into the square of the range parameter a^2 giving considerable contributions. Together with the $\sigma \cdot p_i$ term of order $1/m$ with the same sign, the corrections of order $1/m^2$ lead to a large increase of the total decay widths.
From the above discussion, it is essential to include the next leading order term ($1/m^2$ term) especially when the leading term is suppressed. In other words, the $1/m^2$ term is the leading term for the decay of the Roper-like states. In contrast to other cases such as the ground states and the negative parity states, the leading order term play the dominant role.

As anticipated earlier, we have so far discussed the λ-mode excited states. To complete our discussions, we also mention the results for ρ-mode ones. The excitation energies of the ρ modes are expected to be larger; in the harmonic oscillator base, we expect that the mass of the ρ-mode Roper-like state is about 1 GeV above the ground state. In more realistic calculations with a linear confinement potential, this energy is somewhat lowered [39]. We expect that the mass of the ρ-mode Roper-like state is about 850 MeV above the ground state $\Lambda_c(2286)$. In Tables I and II, results are shown by using this value. The resulting widths are largely increased. Note that there are also other possible decay modes such as D meson emission decay, that make the width even larger. Therefore, we consider that this could be the reason that the ρ-mode Roper-like state is not likely to be observed.

For the $\Lambda_c(2765)$ and $\Lambda_b(6072)$ baryons, the computed decay widths are found to be similar. This behavior follows the heavy-quark flavor symmetry [40]; i.e., the dynamics of charmed and bottom baryons are similar. Also, the branching ratio $R = \Gamma(\Sigma_c(2520)\pi)/\Gamma(\Sigma_c(2455)\pi)$ is not significantly changed with the inclusion of the relativistic corrections and still consistent with the prediction from the heavy-quark spin symmetry [41]. For the case of Roper-like $\Xi_{c(b)}$ baryons, the decay widths are found to be smaller than Roper-like $\Lambda_{c(b)}$ baryons despite having a similar phase space. This can be understood by the fact that the $\Xi_{c(b)}$ baryons have only one light quark that couples to a pion.

For the case of Σ_c, the $\Sigma_c(2455)K$ channel is open. In this case, the relativistic correction for the kaon emission decay is not large as compared to the pion emission decay because of the smaller phase space volume. As a result, the ratio of $\Sigma_c(2455)^{++}K^- \to \Xi_c(2645)^0\pi^+$ becomes smaller around 10% when the relativistic correction is included as compared to the case without it, which is around 40%. This prediction can be tested in the experiment to further clarify the role of relativistic effects for the Roper-like states.

VIII. SUMMARY

We have investigated relativistic corrections up to order $1/m^2$ to the decays of low-lying heavy baryons through pseudoscalar meson emission in the quark model. As a result, we have found that the agreement with the data is significantly improved. In particular, the decay widths of the $\Lambda_c(2765)$ and other Roper-like states are greatly increased by one order of magnitude as compared to the previously calculated values up to order $1/m$. Our present work implies that a better relativistic approach is desired in analyzing baryon decays, which is a challenging problem.

It is emphasized that we do not need a suppression of the quark axial-vector coupling constant g_A^q by hand [42], but rather it is naturally explained by the relativistic effect. The fact that we can consistently use $g_A^q = 1$ supports the discussion by Weinberg on the mended symmetry for the quark axial-vector coupling constant [43, 44].

ACKNOWLEDGEMENTS

A. J. A thanks Research Center for Nuclear Physics (RCNP) for the hospitality during his stay in completion of this work. A. J. A is also supported by the YST Program at the APCTP through the Science and Technology Promotion Fund and Lottery Fund of the Korean Government and also by the Korean Local Governments - Gyeongsangbuk-do Province and Pohang City. We also thank Kiyoshi Tanida for useful discussions. A. H. is supported in part by Grants-in Aid for Scientific Research, Grant No. 17K05441(C) and by Grants-in Aid for Scientific Research on Innovative Areas (Grant No. 18H05407).

[1] A. M. Sirunyan et al. (CMS Collaboration), Study of excited Λ_b^0 states decaying to $\Lambda_b^0\pi^+\pi^-$ in proton-proton collisions at $\sqrt{s} = 13$ TeV, Phys. Lett. B 803, 135345 (2020).
[2] R. Aaij et al. (LHCb Collaboration), Observation of a new baryon state in the $\Lambda_c^0\pi^+\pi^-$ mass spectrum, JHEP 06, 136 (2020).
[3] A. J. Arifi, H. Nagahiro, A. Hosaka and K. Tanida, Roper-like resonances with various flavor contents and their two-pion emission decays, Phys. Rev. D 101, 111502(R) (2020).
[4] K. Azizi, Y. Sarac and H. Sundu, New $\Lambda_b(6072)^0$ state as a $2S$ bottom baryon, Phys. Rev. D 102, 034007 (2020).
[5] L. D. Roper, Evidence for a P_{11} pion-nucleon resonance at 556 MeV, Phys. Rev. Lett. 12, 340 (1964).
[6] T. J. Moon et al. (Belle Collaboration), First determination of the spin and parity of a charmed-strange baryon, $\Xi_c(2970)^+$, arXiv:2007.14700 [hep-ex].
[7] P. A. Zyla et al. (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[8] I. G. Aznauryan et al. (CLAS Collaboration), Electroexcitation of nucleon resonances from CLAS data on single pion electroproduction, Phys. Rev. C 80, 055203 (2009).
[9] B. Julia-Diaz and D. O. Riska, The role of $qqqq$ anti-q components in the nucleon and the $N(1440)$ resonance, Nucl. Phys. A780, 175 (2006).
T. Kubota and K. Ohta, Relativistic corrections to
V. D. Burkert and C. D. Roberts, Colloquium: Roper
N. Suzuki, B. Julia-Diaz, H. Kamano, T. S. H. Lee,
S. J. Brodsky, H. C. Pauli and S. S. Pinsky, Quantum
T. Gutsche, V. E. Lyubovitskij and I. Schmidt, Elec-
G. E. Brown, J. W. Durso and M. B. Johnson, Zero point
S. Capstick and B. D. Keister, Baryon current matrix
H. Nagahiro, S. Yasui, A. Hosaka, M. Oka, and H. Noumi,
L. H. Liu, L. Y. Xiao, and X. H. Zhong, Charm-strange
L. Glozman and D. Riska, The spectrum of the nucle-
G. E. Brown, J. W. Durso and M. B. Johnson, Zero point motion in the bag description of the nucleon, Nucl. Phys. A397, 447 (1983).
T. Gutsche, V. E. Lyubovitskij and I. Schmidt, Electromagnetic structure of nucleon and Roper in soft-wall AdS/QCD, Phys. Rev. D 97, 054011 (2018).
S. J. Brodsky, H. C. Pauli and S. S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rep. 301, 299 (1998).
N. Suzuki, B. Julia-Diaz, H. Kamano, T. S. H. Lee, A. Matsuyama, T. Sato, Disentangling the Dynamical Origin of P-11 Nucleon Resonances, Phys. Rev. Lett. 104, 042302 (2010).
V. D. Burkert and C. D. Roberts, Colloquium: Roper resonance: Toward a solution to the fifty year puzzle, Rev. Mod. Phys. 91, 011003 (2019).
T. Kubota and K. Ohta, Relativistic corrections to the baryon resonance photoexcitation amplitudes in the quark model, Phys. Lett. B 65, 374 (1976).
S. Capstick and B. D. Keister, Baryon current matrix elements in a light front framework, Phys. Rev. D 51, 3598 (1995).
S. Capstick and N. Isgur, Baryons in a relativized quark model with chromodynamics, Phys. Rev. D 34, 2809 (1986).
A. J. Arifi, H. Nagahiro, A. Hosaka, and K. Tanida, Three-body decay of $\Lambda^+_c(2765)$ and determination of its spin-parity, Phys. Rev. D 101, 094023 (2020).
X. H. Zhong and Q. Zhao, Charmed baryon strong decays in a chiral quark model, Phys. Rev. D 77, 074008 (2008).
H. Nagahiro, S. Yasui, A. Hosaka, M. Oka, and H. Noumi, Structure of charmed baryons studied by pionic decays, Phys. Rev. D 95, 014023 (2017).
L. H. Liu, L. Y. Xiao, and X. H. Zhong, Charm-strange baryon strong decays in a chiral quark model, Phys. Rev. D 86, 034024 (2012).
W. Liang and Q. F. Lü, The newly observed $\Lambda_c(6072)^0$ structure and its ρ-mode nonstrange partners, Eur. Phys. J. C 80, 690 (2020).
J. J. Guo, P. Yang and A. Zhang, Strong decays of observed Λ_c baryons in the $3P_0$ model, Phys. Rev. D 100, 014001 (2019).
D. Suegawa and A. Hosaka, Novel pentaquark picture for singly heavy baryons from chiral symmetry, arXiv:2101.09764 [hep-ph].
S. H. Lee et al. (Belle Collaboration), Measurements of the masses and widths of the $\Sigma_c(2455)^{0/++}$ and $\Sigma_c(2520)^{0/++}$ baryons, Phys. Rev. D 89, 091102 (2014).
T. Aaij et al. (CDF Collaboration), Measurements of the properties of $\Lambda_c(2595)$, $\Lambda_c(2625)$, $\Sigma_c(2455)$, and $\Sigma_c(2520)$ baryons, Phys. Rev. D 84, 012003 (2011).
R. Mizuk et al. (Belle Collaboration), Experimental constraints on the spin and parity of the $\Lambda_c(2880)^+$, Phys. Rev. Lett. 98, 262001 (2007).
J. Yelton et al. (Belle Collaboration), Study of excited Ξ_c states decaying into Ξ^0_c and Ξ^+_c baryons, Phys. Rev. D 94, 052011 (2016).
W. Greiner, Relativistic quantum mechanics: Wave equations, (Springer, New York, 1990).
B. Chen, K. W. Wei, X. Liu and A. Zhang, Role of newly discovered $\Xi_c(6227)^-$ for constructing excited bottom baryon family, Phys. Rev. D 98, 031502(R) (2018).
R. Aaij et al. (LHCb Collaboration), Observation of two resonances in the $\Lambda_c^0\pi^\pm$ systems and precise measurement of Σ_b^{\pm} and $\Sigma_b^{*\pm}$ properties, Phys. Rev. Lett. 122, 012001 (2019).
R. Aaij et al. (LHCb Collaboration), Observation of two new Ξ_c^0 baryon resonances, Phys. Rev. Lett. 114, 062004 (2015).
A. M. Sirunyan et al. (CMS Collaboration), Observation of a new excited beauty strange baryon decaying to $\Xi_c^0\pi^+\pi^-$, arXiv:2102.04524 [hep-ex].
Y. Yamaguchi, A. Hosaka, S. Takeuchi and M. Takizawa, Heavy hadronic molecules with pion exchange and quark core couplings: a guide for practitioners, J. Phys. G 47, 053001 (2020).
T. Yoshida, E. Hiyama, A. Hosaka, M. Oka and K. Sadato, Spectrum of heavy baryons in the quark model, Phys. Rev. D 92, 114029 (2015).
A. V. Manohar and M. B. Wise, Heavy quark physics, (Cambridge University Press, Cambridge, England, 2000).
N. Isgur and M. B. Wise, Spectroscopy with heavy quark symmetry, Phys. Rev. Lett. 66, 1130 (1991).
T. M. Yan, H. Y. Cheng, C. Y. Cheung, G. L. Lin, Y. C. Lin and H. L. Yu, Heavy quark symmetry and chiral dynamics, Phys. Rev. D 46, 1148 (1992); 55, 5851(E) (1997).
S. Weinberg, Mended symmetries, Phys. Rev. Lett. 65, 1177 (1990).
S. Weinberg, Why do quarks behave like bare Dirac particles?, Phys. Rev. Lett. 65, 1181 (1990).