On dendrites, generated by polyhedral systems and their ramification points.

Mary Samuel Andrey Tetenov ∗ Dmitry Vaulin

May 7, 2018

Abstract

The paper considers systems of contraction similarities in \(\mathbb{R}^d \) sending a given polyhedron \(P \) to polyhedra \(P_i \subset P \), whose non-empty intersections are singletons and contain the common vertices of those polyhedra, while the intersection hypergraph of the system is acyclic. It is proved that the attractor \(K \) of such system is a dendrite in \(\mathbb{R}^d \).

The ramification points of such dendrite have finite order whose upper bound depends only on the polyhedron \(P \), and the set of the cut points of the dendrite \(K \) is equal to the dimension of the whole \(K \) iff \(K \) is a Jordan arc.

2010 Mathematics Subject Classification. Primary: 28A80.

Keywords and phrases. self-similar set, dendrite, polyhedral system, ramification point, Hausdorff dimension.

1 Introduction

Though the study of topological properties of dendrites from the viewpoint of general topology proceed for more than three quarters of a century \[5,11,12\], the attempts to study the geometrical properties of self-similar dendrites are rather fragmentary.

In 1985 M. Hata \[8\] studied the connectedness properties of self-similar sets and proved that if a dendrite is an attractor of a system of weak contractions in a complete metric space, then the set of its endpoints is infinite.

In 1990 Ch. Bandt showed in his unpublished paper \[2\] that the Jordan

*Supported by Russian Foundation of Basic Research project 16-01-00414
arcs connecting pairs of points of a post-critically finite self-similar dendrite are self-similar, and the set of possible values for dimensions of such arcs is finite. Jun Kigami in his work [9] applied the methods of harmonic calculus on fractals to dendrites; on a way to this he developed effective approaches to the study of structure of self-similar dendrites. D. Croydon in his thesis [6] obtained heat kernel estimates for continuum random tree and for certain family of p.c.f. random dendrites on the plane. D. Dumitru and A. Mihail [7] made an attempt to get a sufficient condition for a self-similar set to be a dendrite in terms of sequences of intersection graphs for the refinements of the system S.

There are many papers [4, 3, 15] discussing examples of self-similar dendrites, but systematic approach to the study of self-similar requires to find the answer to the following questions: What kind of topological restrictions characterise the class of dendrites generated by systems of similarities in \mathbb{R}^d? What are the explicit construction algorithms for self-similar dendrites? What are the metric and analytic properties of morphisms of self-similar structures on dendrites?

To approach these questions, we start from simplest and most obvious settings, which were used by many authors [2, 13]. We consider systems S of contraction similarities in \mathbb{R}^d defined by some polyhedron $P \subset \mathbb{R}^d$, which we call contractible P-polyhedral systems.

We prove that the attractor of such system S is a dendrite K in \mathbb{R}^d (Theorem 14), and there is a dense subset of K such that punctured neighbourhoods of its points split to a finite disjoint union of subsets of solid angles Ω_l, equal to the solid angles of P (Theorem 10); we show that the orders of points $x \in K$ have an upper bound, depending only on P (Theorem 20); and that Hausdorff dimension of the set $CP(K)$ of the cut points of K is strictly smaller than the dimension of the set $EP(K)$ of its end points unless K is a Jordan arc (Theorem 21).

1.1 Preliminaries

Dendrites. A dendrite is a locally connected continuum containing no simple closed curve.

In the case of dendrites the order $Ord(p, X)$ of the point p with respect to X is equal to the number of components of the set $X \setminus \{p\}$. the points of order 1 are called end points in X, and cut points are called usual points if $Ord(p, X) = 2$ and ramification points, if $Ord(p, X) \geq 3$.

We will use the following statements selected from [3, Theorem 1.1]:

Theorem 1 For a continuum X the following conditions are equivalent:
(a) X is dendrite;
(b) every two distinct points of X are separated by a third point;
(c) each point of X is either a cut point or an end point of X;
(d) each nondegenerate subcontinuum of X contains uncountably many cut points of X.
(e) for each point $p \in X$ the number of components of the set $X \setminus \{p\} = \text{ord}(p,X)$ whenever either of these is finite;
(f) the intersection of every two connected subsets of X is connected;
(g) X is locally connected and uniquely arcwise connected.

Self-similar sets. Let (X, d) be a complete metric space. A mapping $F : X \to X$ is a contraction if $\text{Lip} F < 1$. The mapping $S : X \to X$ is called a similarity if
\[d(S(x), S(y)) = rd(x,y) \]
for all $x, y \in X$ and some fixed r.

Definition 2 Let $S = \{S_1, S_2, \ldots, S_m\}$ be a system of (injective) contraction maps on the complete metric space (X, d). A nonempty compact set $K \subset X$ is said to be invariant with respect to S, if $K = \bigcup_{i=1}^{m} S_i(K)$.

We also call the subset $K \subset X$ self-similar with respect to S.

Throughout the whole paper, the maps $S_i \in S$ are supposed to be similarities and the set X to be \mathbb{R}^d.

Notation. $I = \{1, 2, \ldots, m\}$ is the set of indices, $I^* = \bigcup_{n=1}^{\infty} I^n$ - is the set of all finite I-tuples, or multiindices $j = j_1 j_2 \ldots j_n$, where ij is the concatenation of the corresponding multiindices;
we say $i \sqsubset j$, if $i = i_1 \ldots i_n$ is the initial segment in $j = j_1 \ldots j_{n+k}$ or $j = ik$ for some $k \in I^*$; if $i \not\sqsubset j$ and $j \not\sqsubset i$, i and j are incomparable;
we write $S_j = S_{j_1 j_2 \ldots j_n} = S_{j_1} S_{j_2} \ldots S_{j_n}$ and for the set $A \subset X$ we denote $S_j(A)$ by A_j; we also denote by $G_S = \{S_j, j \in I^*\}$ the semigroup, generated by S;
$I^\infty = \{\alpha = \alpha_1 \alpha_2 \ldots, \ \alpha_i \in I\}$ - index space; and $\pi : I^\infty \to K$ is the index map, which sends α to the point $\bigcap_{n=1}^{\infty} K_{\alpha_1 \ldots \alpha_n}$.

Definition 3 The system S satisfies the open set condition (OSC) if there exists a non-empty open set $O \subset X$ such that $S_i(O), \{1 \leq i \leq m\}$ are pairwise disjoint and all contained in O.
We say the self-similar set K defined by the system S satisfies the one-point intersection property if for any $i \neq j$, $S_i(K) \cap S_j(K)$ is not more than one point.

We use the following convenient criterion of connectedness of the attractor of a system S [8, 10].

Theorem 4 Let K be the attractor of a system of contractions S in a complete metric space (X,d). Then the following statements are equivalent:

1) for any $i, j \in I$ there are $\{i_0, i_1, \ldots, i_n\} \subset I$ such that $i_0 = i, i_n = j$ and $S_{i_k}(K) \cap S_{i_{k+1}}(K) \neq \emptyset$ for any $k = 0, 1, \ldots, n - 1$.

2) K is arcwise connected.

3) K is connected.

Proposition 5 If a self-similar set K is connected, it is locally connected.

Zippers and multizippers. The simplest way to construct a self-similar curve is to take a polygonal line and then replace each of its segments by a smaller copy of the same polygonal line; this construction is called zipper and was studied by Aseev, Tetenov and Kravchenko [1].

Definition 6 Let X be a complete metric space. A system $S = \{S_1, \ldots, S_m\}$ of contraction mappings of X to itself is called a zipper with vertices $\{z_0, \ldots, z_m\}$ and signature $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_m), \varepsilon_i \in \{0, 1\}$, if for $i = 1 \ldots m$,

$$S_i(z_i) = z_{i-1} + \varepsilon_i, \quad S_i(z_{m-i}) = z_{m-i-1},$$

More general approach for building self-similar curves and continua is provided by a graph-directed version of zipper construction [14]:

Definition 7 Let $\{X_u, u \in V\}$ be a system of spaces, all isomorphic to \mathbb{R}^d. For each X_u let a finite array of points be given $\{x^{(u)}_0, \ldots, x^{(u)}_{m_u}\}$. Suppose for each $u \in V$ and $0 \leq k \leq m_u$ we have some $v(u,k) \in V$ and $\varepsilon(u,k) \in \{0, 1\}$ and a map $S^{(u)}_k : X_u \to X_u$ such that $S^{(u)}_k(x^{(v)}_0) = x^{(u)}_{k-1}$ or $x^{(u)}_k$ and $S^{(u)}_k(x^{(v)}_{m_v}) = x^{(u)}_{k}$ or $x^{(u)}_{k-1}$, depending on the signature $\varepsilon(u,k)$.

The graph directed iterated function system (IFS) defined by the maps $S^{(u)}_k$ is called a multizipper Z.

The attractor of multizipper Z is a system of connected and arcwise connected compact sets $K_u \subset X_u$ satisfying the system of equations

$$K_u = \bigcup_{k=1}^{m_u} S^{(u)}_k(K_{v(u,k)}), \quad u \in V.$$
We call the sets K_u the components of the attractor of \mathcal{Z}.

The components K_u of the attractor of \mathcal{Z} are Jordan arcs if the following conditions are satisfied:

Theorem 8 Let $\mathcal{Z}_0 = \{S_k^{(u)}\}$ be a multizipper with node points $x_k^{(u)}$ and a signature $\varepsilon = \{(v(u,k),\varepsilon(u,k)), u \in V, k = 1, \ldots, m_u\}$. If for any $u \in V$ and any $i, j \in \{1, 2, \ldots, m_u\}$, the set $K_{(u,i)} \cap K_{(u,j)} = \emptyset$ if $|i - j| > 1$ and is a singleton if $|i - j| = 1$, then any linear parametrization $\{f_u : I_u \to K_u\}$ is a homeomorphism and each K_u is a Jordan arc with endpoints $x_0^{(u)}$, $x_m^{(u)}$.

2 Contractible polyhedral systems.

Let $P \subset \mathbb{R}^d$ be a finite polyhedron homeomorphic to a d-dimensional ball and let $V_P = \{A_1, \ldots, A_{n_P}\}$ be the set of its vertices, and $\Omega(P, A_i)$ be the solid angles at the vertices of P.

Consider a system of similarities $S = \{S_1, \ldots, S_m\}$, which define polyhedra $P_i = S_i(P)$ and satisfy the following conditions:

(D1) For any $i \in I$, $P_i \subset P$;

(D2) For any $i \neq j$, $i, j \in I$, the intersection $P_i \cap P_j$ is either empty, or is a common vertex of P_i and P_j;

(D3) $V_P \subset \bigcup_{i \in I} S_i(V_P)$;

(D4) The set $\tilde{P} = \bigcup_{i=1}^m P_i$ is contractible.

Definition 9 A system S, satisfying D1-D4, is called P-polyhedral system of similarities.

The similarities $S_i \in S$ are contractions, therefore the system S has the attractor K; the system S generates the semigroup $G_S = \{S_j, j \in I^*\}$ and therefore defines the set of polyhedra $G_S(P) = \{P_j, j \in I^*\}$. The properties of this system of refining polyhedra define the geometric properties of the invariant set K. First we focus on those properties, which follow from D1—D3 only, which corresponds to a class of point connected self-similar sets, as they were defined by R.Strichartz [13]. The relative position of solid angles of polyhedra P_j will be our special interest:

Theorem 10 Let S be a P-polyhedral system of similarities.

(a) The system S satisfies (OSC).

(b) $P_j \subset P_i$ iff $j \supset i$.

5
(c) If $i \subset j$, then $S_i(V_P) \cap P_j \subset S_j(V_P)$.
(d) For any incomparable $i, j \in I^*$, $\#(P_i \cap P_j) \leq 1$ and $P_i \cap P_j = S_i(V_P) \cap S_j(V_P)$.
(e) The set $G_S(V_P)$ of vertices of polyhedra P_j is contained in K.
(f) If $x \in K\setminus G_S(V_P)$, then $\#\pi^{-1}(x) = 1$.

Proof: (a) It follows from D1, D2 that the interior of P is the desired open set for (OSC); (b) follows from (OSC):

(c) Notice that D2, D3 imply the condition (D3a): for any $i \in I$, $P_i \cap V_P \subset S_i(V_P)$:

Indeed, if $x \in P \setminus V_P$ and $S_i(x) = A \in V_P$, then, since there is $j \in I$, such that $A \in S_j(V_P)$, $P_i \cap P_j \notin S_i(V_P)$, which contradicts D3.

Using induction, we derive from D3a, that for any $k \in I^*$, $P_k \cap V_P \subset S_k(V_P)$:

Let now $j = ik$ and $A \in S_i(V_P) \cap S_k(P_k)$. It means that $S_i^{-1}(A) \in V_P \cap P_k$, and therefore $S_i^{-1}(A) \subset S_k(V_P)$, or $A \in S_i(V_P)$.

(d) Represent a pair of incomparable multiindices as ik, kj, where $i_1 \neq j_1$.

Since $P_{ki} \cap P_{kj} \neq \emptyset$, $P_i \cap P_j \neq \emptyset$. But $P_i \cap P_j \subset P_{ki} \cap P_{kj}$. The last set is nonempty and therefore it consists solely of a common vertex of P_i and P_j; by (c), this point is also a common vertex of P_i and P_j; therefore $P_{ki} \cap P_{kj} = S_{ki}(V_P) \cap S_{kj}(V_P)$.

(e) For any vertex $A \in V_P$ there are $A_1 \in V_P$ and $\alpha_1 \in I$ such that $S_{\alpha_1}(A_1) = A$. By induction we get that for any n there are such $A_n \in V_P$ and $\alpha_1 \ldots \alpha_n \in I^n$, that $S_{\alpha_1 \ldots \alpha_n}(A_n) = A$. In this case, $\bigcap_{n=1}^\infty S_{\alpha_1 \ldots \alpha_n}(P) = \{A\}$ and $A \in K$. Thus, $V_P \subset K$, and therefore $G_S(V_P) \subset K$.

(f) If $\pi^{-1}(x)$ contains non-equal $\alpha, \beta \in I^\infty$, then for some $n, \alpha_1 \ldots \alpha_n$ and $\beta_1 \ldots \beta_n$ are incomparable; therefore $x \in P_{\alpha_1 \ldots \alpha_n} \cap P_{\beta_1 \ldots \beta_n}$, so $x \in G_S(V_P)$.

(g) First let $\alpha \in I^\infty$ and $\pi(\alpha) = A \in V_P$. As in (e), for any n, $S_{\alpha_1 \ldots \alpha_n}(A_n) = A$ and $S_{\alpha_1 \ldots \alpha_n}(\Omega(P, A_n)) \subset \Omega(P, A)$. Moreover, the solid angles $S_{\alpha_1 \ldots \alpha_n}(\Omega(P, A_n))$ form a nested sequence. Since the set $\{\Omega(P, B), B \in V_P\}$ is finite, there is a solid angle Ω_α and a number $N \in \mathbb{N}$, such that if $n > N$, then $S_{\alpha_1 \ldots \alpha_n}(\Omega(P, A_n)) = \Omega_\alpha$. At the same time, $S_{\alpha_1 \ldots \alpha_n}(P) \subset \Omega_\alpha$. If for some $\beta \in I^\infty, \beta \neq \alpha, \pi(\beta) = A$, then, according to (d), $\Omega_\alpha \cap \Omega_\beta = \{A\}$. Thus, the set $\pi^{-1}(A)$ can be mapped bijectively to the family of disjoint solid angles Ω_k with common vertex A.

6
The measure $\theta(\Omega_k)$ is greater or equal to $\theta_{\min} = \min\{\theta(\Omega(P,A)), A \in V_P\}$, therefore the set of different $\alpha \in I^\infty$ such that $\pi(\alpha) = A$, does not exceed $\theta(\Omega(P,A))/\theta_{\min}$, if $A \in V_P$, and θ_F/θ_{\min}, if $A \in \tilde{P}$, where θ_F is the measure of complete solid angle in \mathbb{R}^d. \hfill \blacksquare

Now we discuss some properties of S which follow from the condition D4.

Applying Hutchinson operator $T(A) = \bigcup_{i \in I} S_i(A)$ of the system S to the polyhedron P, we get the set $\tilde{P} = \bigcup_{i \in I} P_i$. We define $\tilde{P}^{(1)} = T(P)$, $\tilde{P}^{(n+1)} = T(\tilde{P}^{(n)})$. Thus we get a nested family of sets $\tilde{P}^{(1)} \supset \tilde{P}^{(2)} \supset \ldots \supset \tilde{P}^{(n)} \supset \ldots$, whose intersection is K.

The composition of two contractible P-polyhedral systems is also of the same type:

Lemma 11 Let S and S' be contractible P-polyhedral systems of similarities. Then $S'' = \{ S_i \circ S'_j, S_i \in S, S_j \in S' \}$ is also contractible P-polyhedral system of similarities.

Proof: (D1) is obvious since $S_i \circ S'_j(P) \subset S_i(P) \subset P$.

(D2) Let $Q_1 = S_{i_1} \circ S'_{j_1}(P)$ and $Q_2 = S_{i_2} \circ S'_{j_2}(P)$ be two polyhedra for the system S''; consider their intersection:
if $i_1 \neq i_2$, then $Q_1 \cap Q_2 \subset P_{i_1} \cap P_{i_2}$, where the right part is either empty, or for some $A_1, A_2 \in V_P$, $P_{i_1} \cap P_{i_2} = \{ S_{i_1}(A_1) \} = \{ S_{i_2}(A_2) \}$. Since $A_1 \in S'_{j_1}(V_P)$, $A_2 \in S'_{j_2}(V_P)$, $Q_1 \cap Q_2 = S_{i_1} \circ S'_{j_1}(V_P) \cap S_{i_2} \circ S'_{j_2}(V_P)$; if $i_1 = i_2$, then $Q_1 \cap Q_2 = S_{i_2}(P_{j_1} \cap P_{j_2})$ where the right part is either empty or a singleton contained in $S'_{j_1}(V_P) \cap S'_{j_2}(V_P)$.

(D3) holds, because for any vertex $A \in V_P$, there are $A_1 \in V_P$ and $S_{i_1} \in S$ such that $S_{i_1}(A_1) = A$; also there are $S'_{i_2} \in S'$ and $A_2 \in V_P$ such that $S'_{i_2}(A_2) = A_1$; therefore $S_{i_1} \circ S'_{i_2}(A_2) = A$. If $x \in P$ and $S_{i_1} \circ S'_{i_2}(x) = A$, then $S'_{i_2}(x) \in V_P$, therefore $x \in V_P$.

(D4) The sets $\tilde{P} = \bigcup_{i=1}^{m} P_i$ and $\tilde{P}' = \bigcup_{i=1}^{m'} P'_i$ are strong deformation retracts of P, containing the set V_P. Let $\varphi'(X,t) : P \times [0,1] \to P$ be the deformation retraction from P to $\bigcup_{i=1}^{m'} P'_i$. The map φ' satisfies the following conditions: $\varphi'(x,0) = Id$, $\varphi'(x,1)(P) = \tilde{P}'$ and for any $t \in [0,1]$, $\varphi'(x,t)|_{\tilde{P}'} = Id_{\tilde{P}'}$.

Define the map $\varphi'_i : P_i \times [0,1] \to P_i$ by a formula $\varphi'_i(x,t) = S_i \circ \varphi'(S_i^{-1}(x),t)$.

7
Each map φ'_i is a deformation retraction from P_i to $S_i(P')$.
Observe that the map φ'_i keeps all the vertices $S_i(A_k)$ of the polyhedron P_i fixed. Therefore we can define a deformation retraction $\tilde{\varphi}(x,t) : \tilde{P} \times [0,1] \to \bigcup_{i=1}^m S_i(P') = \tilde{P}$ by a formula

$$\tilde{\varphi}(x,t) = \varphi'_i(x,t), \quad \text{if } x \in P_i$$

The map $\tilde{\varphi}$ is well-defined and continuous because if $P_i \cap P_j = \{S_i(A_k)\} = \{S_j(A_l)\}$ for some k and l, then $\varphi'_i(S_i(A_k),t) \equiv \varphi'_j(S_j(A_l),t) \equiv S_i(A_k)$.
Moreover, $\tilde{\varphi}(x,0) = x$ on \tilde{P}, and $\tilde{\varphi}(\tilde{P},1) \equiv \bigcup_{i=1}^m S_i(P')$ and $\tilde{\varphi}(x,t)|_{P''} \equiv Id$.
So $\tilde{\varphi}(x,t)$ is a deformation retraction from \tilde{P} to P''.
Therefore, the set $P'' = \bigcup S_i \circ S'_j(P)$ is contractible.\[\blacksquare\]

Corollary 12 If S is a contractible P-polyhedral system, the same is true for $S^{(n)} = \{S_j, j \in P^n\}$. \[\blacksquare\]

The contractibility of the set \tilde{P} and the condition **D2** imply, that any simple closed curve in \tilde{P} lies in one of the polyhedra P_i; this can be derived from the following Lemma:

Lemma 13 Let $B_i, i = 1, \ldots, n$ be a finite family of topological balls, such that for any i, j the intersection $B_i \cap B_j$ contains no more than one point and the set $X = \bigcup_{i=1}^n B_i$ is simply-connected. Then any simple closed curve in X lies in some B_i.

Proof: Choose in each of B_i a point $O_i \in \dot{B}_i$ and for each $\{p_{ij}\} = B_i \cap B_j$ take a Jordan arc γ_{ij} with endpoints O_i and p_{ij} so that $\gamma_{ij} \cap \gamma_{ij'} = \{O_i\}$ if $j' \neq j$. Let Γ be a topological graph with vertices $O_i, i = 1, \ldots, n$ and p_{ij} whose edges are γ_{ij}. Since for any i the union $\bigcup_{j} \gamma_{ij}$ is a strong deformation retract of the ball B_i, Γ is a strong deformation retract of the set X and therefore the graph Γ is a tree.
Let l be some Jordan arc in X. Suppose l is in general position in the sense that $p_{ij} \in l$ if $l \cap \dot{B}_i \neq \varnothing$ and $l \cap \dot{B}_j \neq \varnothing$. Each point p_{ij} splits X to no less than 2 components. Therefore if $l \ni p_{ij}$, the arc l is not closed. Thus, any simple closed curve in X lies completely in one of the balls B_i. \[\blacksquare\]

Theorem 14 The attractor K of contractible P-polyhedral system of similarities S is a dendrite.
Proof: By Corollary 12 the sets $\tilde{P}^{(n)}$ are contractible, compact and satisfy $\tilde{P}^{(1)} \supset \tilde{P}^{(2)} \supset \tilde{P}^{(3)} \ldots$. The diameter of components of the interior of any of $\tilde{P}^{(n)}$ does not exceed $\text{diam} P \cdot q^n$, where $q = \max \text{Lip}(S_i)$. Thus the set $K = \bigcap \tilde{P}^{(n)}$ is connected and has empty interior. Since K is connected, it is locally connected and arcwise connected [10], Theorem 1.6.2, Proposition 1.6.4.

Let l be some Jordan arc in K. For any $n \in \mathbb{N}$, $l \subset \tilde{P}^{(n)}$, so it follows from Lemma 13 that if l has non-zero diameter, it is not closed. Therefore K is a dendrite. ■

The dendrite K is contained in the polyhedron P; in general, its intersection with the boundary of P may be uncountable or it can contain even some whole edges of P. The same is also true for the intersection of the dendrite K with each polyhedron $S_j(P_j), j \in I^*$. Nevertheless it follows from D2 that a subcontinuum $L \subset K$ can "penetrate" to a polyhedron $S_j(P_j)$ only through its vertices, namely:

Proposition 15 Let $j \in I^*$ be a multiindex. For any continuum $L \subset K$, whose intersection with both P_j and its exterior $\tilde{C}P_j$ is nonempty, the set $L \setminus \tilde{P}_j \cap P_j \subset S_j(V_P)$.

Proof: Observe that for any polyhedron $P_j, j \in I^k$ the set $\tilde{P}^{(k)} \setminus S_j(V_P)$ is disconnected, and $P_j \setminus S_j(V_P)$ is its connected component, whose intersection with K is equal to $S_j(K \setminus S_j(V_P))$. Therefore $L \setminus S_j(V_P)$ is also disconnected. ■

2.1 The main tree and ramification points

Since K is a dendrite, by Theorem 1 for any vertices $A_i, A_j \in V_P$ there is unique Jordan arc $\gamma_{ij} \subset K$ connecting A_i, A_j. As it was proved by C. Bandt [2], these arcs are the components of the attractor of a graph-directed system of similarities. We show that this system is a Jordan multizipper [14]:

Theorem 16 The arcs γ_{ij} are the components of the attractor of some Jordan multizipper \mathcal{Z}.

Proof: We say, that polyhedra $P_{i_1}, \ldots, P_{i_s}, i_k \in I$ form a chain, connecting x and y, if $x \in P_{i_1}, y \in P_{i_s}$ and the intersection $P_{i_k} \cap P_{i_l}$ is empty, if $|l - k| > 1$ and is a common vertex of P_k and P_l, if $|l - k| = 1$.

For the vertices A_i, A_j, there is unique chain of polyhedra in the P-polyhedral system \mathcal{S}, which consists of those P_k, for which $\#P_k \cap \gamma_{ij} \geq 2$; we denote the polyhedra forming the chain and corresponding maps as $P'_{ij} = S'_{ij}(P), k = 1, \ldots, m_{ij}$, keeping in mind that all $S'_{ijk} \in \mathcal{S}$.

9
Let \(u(i, j, k) \) \(v(i, j, k) \) be the indices of vertices \(P \), for which
\[
S'_{ijk}(A_u) = P'_{ij(k-1)} \cap P'_{ij(k+1)} = z_{ijk}, \quad \text{if } 1 < k < m_{ij},
\]
and if \(k = 1 \) or \(k = m_{ij} \), \(u(i, j, 1) = A_i = z_{ij0} \) and \(v(i, j, m_{ij}) = A_j = z_{ijm_{ij}} \).

Thus for any triple \((i, j, k), 1 \leq k \leq m_{ij}\), such \(u, v \in \{1, \ldots, n_P\} \) are specified, that \(S'_{ijk}(z_{uv0}) = z_{ij(k-1)} \) and \(S'_{ijk}(z_{uvm_{uv}}) = z_{ijk} \).

Therefore the system \(\{S'_{ijk}\} \) is a multizipper \(Z \) with node points \(z_{ijk} \).

Since the relations:
\[
\gamma_{ij} = \bigcup_{i=1}^{m_{ij}} S'_{ijk}(\gamma_{u(i,j,k), v(i,j,k)}) = \bigcup_{i=1}^{m_{ij}} \gamma_{ijk}
\]
are satisfied, the arcs \(\gamma_{ij} \) form a complete set of the components of the attractor of the multizipper \(Z \).

Since each arc \(\gamma_{ijk} \) lies in \(P_{ijk} \),
\[
\gamma_{ijk} \cap \gamma_{ijl} = \emptyset,
\]
if \(|k - l| > 1 \) and
\[
\gamma_{ijk} \cap \gamma_{ijl} = \{z_{ijk}\},
\]
and \(l = k \pm 1 \). Therefore \(Z \) satisfies the conditions of the Theorem \(\S \) and is a Jordan multizipper. \(\blacksquare \)

The set \(\hat{\gamma} = \bigcup_{i \neq j} \gamma_{ij} \) is a subcontinuum of the dendrite \(K \) and therefore is a dendrite. Since all the end points of \(\hat{\gamma} \) are contained in \(V_P \), \(\hat{\gamma} \) is a finite dendrite or topological tree [5, A.17]. Let \(n_E \) be the number of end points of \(\hat{\gamma} \). As it was pointed out by Kigami [9], \(\hat{\gamma} \) may be represented as union of at most \((n_E - 1)\) Jordan arcs having disjoint interiors.

Definition 17 The union \(\hat{\gamma} = \bigcup_{i \neq j} \gamma_{ij} \) is called the main tree of the dendrite \(K \). The ramification points of \(\hat{\gamma} \) are called main ramification points of the dendrite \(K \).

The following statement establishes the relations between the sets of vertices \(V_P \), end points \(EP(\hat{\gamma}) \) and cut points \(CP(\hat{\gamma}) \) of the main tree \(\hat{\gamma} \):

Proposition 18 Let \(x \in K \).

(a) \(\hat{\gamma} \subset \bigcup_{A_j \in V_P} \gamma_{A_j x} \); besides, if \(\hat{\gamma} = \bigcup_{A_j \in V_P} \gamma_{A_j x} \), then \(x \in \hat{\gamma} \);
(b) \(EP(\hat{\gamma}) = V_P \setminus CP(\hat{\gamma}) \);
(c) \(x \in CP(\hat{\gamma}) \) iff there are vertices \(A_i, A_j \), belonging to different components of \(K \setminus \{x\} \);
(d) for \(x \in CP(K) \), \(Ord(x, K) = Ord(x, \hat{\gamma}) \) iff for any component \(C_i \) of the set \(K \setminus \{x\} \), \(C_i \cap V_P \neq \emptyset \).

Proof: For any \(A_i, A_j \in V_P \), \(\gamma_{A_iA_j} \subset \gamma_{A_i} \cup \gamma_{A_j} \), which gives (a). To get (b), notice that if \(x \in \hat{\gamma} \) is not a vertex then \(x \) is the inner point of some arc \(\gamma_{A_iA_j} \), therefore it is a cut point of \(\hat{\gamma} \) and therefore \(x \notin EP(\hat{\gamma}) \).

(c): Since \(\gamma_{A_i} \cap \gamma_{A_j} = \{x\} \), we have \(\gamma_{A_i} \cup \gamma_{A_j} = \gamma_{A_iA_j} \). So \(x \) is a cut point of \(\gamma_{A_iA_j} \), and therefore of \(\hat{\gamma} \).

(d): Necessity is obvious, so we prove sufficiency. By (c), \(x \in CP(\hat{\gamma}) \). The number of components of \(K \setminus \{x\} \) is no greater than \(n_P \), so \(Ord(x, K) \) is finite. Let \(C_i, l = 1, \ldots, k, k = Ord(x, K) \) be the components of \(K \setminus \{x\} \). It also follows from (c) that \(x \in \hat{\gamma} \) and that the two vertices \(A_i \) and \(A_j \) lie in the same component \(C_i \) iff \(x \notin \gamma_{A_iA_j} \). Therefore all the vertices of \(P \), belonging to the same component \(C_i \) of the set \(K \setminus \{x\} \), lie also in the same component of \(\hat{\gamma} \setminus \{x\} \), which implies \(Ord(x, \hat{\gamma}) = Ord(x, K) \). \(\blacksquare \)

To evaluate the order \(Ord(x, K) \) of the points \(x \in K \), first we have to evaluate the order of the vertices \(A \in V_P \), which is related to the number of preimages \(n_A = \#\pi^{-1}(A) \) of the point \(A \) in \(I^\infty \), and we evaluate it using measures \(\theta_A \) of solid angles at the vertices of \(P \).

Let \(\theta_A = \theta(\Omega(P, A)) \) be the \((d - 1)\)-dimensional measure of solid angle of \(P \) at \(A \), \(\theta_{\max} = \max\{\theta_A, A \in V_P\} \), and \(\theta_{\min} = \min\{\theta_A, A \in V_P\} \).

For \(t \in \mathbb{R} \), \([t]\) means \(\text{Ceil}(t) \), i.e. minimal integer, less or equal to \(t \).

Proposition 19 Let \(A \in V_P \).

(a) If \(\#\pi^{-1}(A) = 1 \), then there are \(i \in I^* \), \(A' \in V_P \), such that \(A = S_i(A') \) and \(Ord(A, K) = Ord(A', \hat{\gamma}) \); then \(Ord(A, K) \leq n_P - 1 \);
(b) If \(n_A = \#\pi^{-1}(A) > 1 \), then there are \(i_k \in I^* \), \(A'_k \in V_P \), where \(k = 1, \ldots, n_A \), such that \(A_k = S_{i_k}(A'_k) \) and \(Ord(A, K) = \sum_{k=1}^{n_A} Ord(A'_k, \hat{\gamma}) \); then

\[
Ord(A, K) \leq (n_P - 1) \left(\left\lceil \frac{\theta_A}{\theta_{\min}} \right\rceil - 1 \right) \leq (n_P - 1) \left(\left\lceil \frac{\theta_{\max}}{\theta_{\min}} \right\rceil - 1 \right) \quad (1)
\]

Proof: Let \(\#\pi^{-1}(A) = 1 \) and \(\{C_l, l = 1, \ldots, k\} \) be some finite set of components of \(K \setminus \{A\} \). Since \(\{A\} \) is the intersection of unique sequence of polyhedra \(P_{j_1} \supset P_{j_1j_2} \supset \cdots \supset P_{j_1 \cdots j_s} \cdots \), there is such \(s \), that \(\text{diam} P_{j_1 \cdots j_s} < \text{diam} C_l \) for
any \(l = 1, \ldots, k \). Then, by Proposition \([15]\) each component \(C_l \) contains a vertex of a polyhedron \(P_{j_1\ldots j_s} \), different from \(A \). Therefore \(k \leq n_P - 1 \), and \(\text{Ord}(A, K) \leq n_P - 1 \).

Since \(\text{Ord}(A, K) \) is finite, we have the right to suppose that \(k = \text{Ord}(A, K) \), and \(\{C_1, \ldots, C_k\} \) is a complete set of components of \(K \setminus \{A\} \).

Let \(j = j_1\ldots j_s \) and \(A = S_j(A') \). The sets \(C_l \cap P_j, l = 1, \ldots, k \) are the components of \(K \setminus \{A\} \). Since \((K \cap P_j) \setminus \{A\} = S_j(K \setminus \{A'\}) \), the set \(K \setminus \{A'\} \) consists of \(k \) components \(C_l' \), such that \(S_j(C_l') = C_l \cap P_j \). Since each component \(C_l' \) contains vertices of \(P \), by Proposition \([15]\)(d), \(\text{Ord}(A', \hat{\gamma}) = \text{Ord}(A', K) = \text{Ord}(A, K) \leq n_P - 1 \).

Suppose that \(n_A = \#\pi^{-1}(A) > 1 \). By Theorem \([10]\)(g) there is a family \(\{\Omega_1, \ldots, \Omega_{n_A}\} \) of disjoint solid angles with the same vertex \(A \), and of respective polyhedra \(P_{j} \ni A \), such that \(P_{j} \subset \Omega_k \) and \(\Omega(P_{j_k}, A) = \Omega_k \).

Let \(A_k \in V_P \) and \(S_{j_k}(A_k) = A \). Keeping in mind that \(\#\pi^{-1}(A) = 1 \) and following the argument of the part (a) we can choose such \(j_k \) and \(A_k' \) that \(\text{Ord}(A', K) = \text{Ord}(A_k, \hat{\gamma}) \); therefore \(\text{Ord}(A, K_{j_k}) = \text{Ord}(A_k, K) \leq n_P - 1 \) and \(\text{Ord}(A, K) \leq n_A(n_P - 1) \). Taking into account the inequality \(n_A \leq \left| \frac{\theta_A}{\theta_{\min}} \right| - 1 \leq \left| \frac{\theta_{\max}}{\theta_{\min}} \right| - 1 \), we get the inequality (1). \[\square \]

Theorem 20
(i) \(CP(K) \subset G_S(\hat{\gamma}) \);
(ii) If \(y \notin G_S(V_P) \), then there are \(j \in I^* \), \(x \in CP(\hat{\gamma}) \), such that \(y = S_j(x) \) and \(\text{Ord}(y, K) = \text{Ord}(x, \hat{\gamma}) \leq n_P \).
(iii) If \(y \in G_S(V_P) \), then there are multiindices \(j_k, k = 1, \ldots, s \) and vertices \(A_1', \ldots, A_s' \), such that for any \(k \), \(S_{j_k}(A_k') = y \), and any \(l \neq k \), \(S_{j_k}(P) \cap S_{j_l}(P) = \{y\} \);

in this case, \(\text{Ord}(y, K) = \sum_{k=1}^{s} \text{Ord}(A_k', \hat{\gamma}) \leq (n_P - 1) \left(\left| \frac{\theta_F}{\theta_{\min}} \right| - 1 \right) \), where \(\theta_F \) is the measure of full angle in \(\mathbb{R}^d \).

Proof. (ii) Let \(\{C_1, \ldots, C_k\} \) be some set of components of \(K \setminus \{y\} \), and \(\rho = \min_{l=1, \ldots, k} \text{diam}(C_l) \). Suppose \(j \in I^* \) is such that \(y \in P_j \) and \(\text{diam}(P_j) < \rho \).

By Proposition \([15]\) for any \(l \), \(C_l \cap S_j(V_P) \neq \emptyset \), therefore \(k \leq n_P \). Thus, \(\text{Ord}(y, K) \leq n_P \).

So we can suppose that \(k = \text{Ord}(y, K) \) and \(\{C_1, \ldots, C_k\} \) is the set of all components of \(K \setminus \{y\} \).

Let \(x = S_j^{-1}(y) \). Then the sets \(C_l' = S_j^{-1}(C_l \cap P_j), l = 1, \ldots, k \), form a full set of components of \(K \setminus \{x\} \), while for any \(l \), \(C_l' \cap V_P \neq \emptyset \). Then, by Proposition \([15]\) \(\text{Ord}(x, \hat{\gamma}) = \text{Ord}(x, K) = \text{Ord}(y, K) \leq n_P \).
Let \(n_y = \# \pi^{-1}(y) \). By Theorem 10(g) there is a family \(\{\Omega_1, \ldots, \Omega_{n_y}\} \) of disjoint solid angles with vertex \(y \), and of respective polyhedra \(P_{j_k} \ni y \), such that \(P_{j_k} \subset \Omega_k \). Using the argument of Proposition 19(b), we obtain that \(\text{Ord}(y, K) \leq n_y(n_P - 1) \) and therefore, choosing the polyhedra \(P_{j_k} \) of sufficiently small diameter, we obtain that for any \(k, y \in S_{j_k}(\hat{\gamma}) \), \(\text{Ord}(y, K_{j_k}) = \text{Ord}(y, S_{j_k}(\hat{\gamma})) \).

This gives the estimate

\[
\text{Ord}(y, K) \leq (n_P - 1) \left(\left\lceil \frac{\theta_F}{\theta_{\text{min}}} \right\rceil - 1 \right)
\]

(i) follows from (ii) and (iii).

Theorem 21 Let \((P, S) \) be a contractible \(P \)-polyhedral system and \(K \) be its attractor. (i) \(\dim_H(CP(K)) = \dim_H(\hat{\gamma}) \leq \dim_H EP(K) = \dim_H(K) \); (ii) \(\dim_H(CP(K)) = \dim_H(K) \) iff \(K \) is a Jordan arc.

Proof: Since \(CP(K) = G_\delta(\hat{\gamma}) \), \(\dim_H(CP(K)) = \dim_H(\hat{\gamma}) \). If \(K \) is not a Jordan arc, the set \(EP(K) \) is infinite \([3]\) Theorem 5.2] and contains a point \(x \notin \hat{\gamma} \). Let \(\varepsilon < d(x, \hat{\gamma})/2 \). Take such \(n \) that for any \(j \in I^n \), \(\text{diam}(P_j) < \varepsilon \). Then the set \(J = \{ j \in I^n : P_j \cap \hat{\gamma} \neq \emptyset \} \) is a proper subset of \(I^n \), because \(x \notin P_j \) for any \(j \in J \). Let \(S' = \{ P_j, j \in J \} \) and \(K' \) be the attractor of the system \(S' \). Since the sets \(\{ S_j, j \in J \} \) cover \(\hat{\gamma}, K' \supset \hat{\gamma} \). At the same time, the similarity dimension \(\dim_s(S') \) of the system \(S' \) is strictly smaller than that of \(S^{(n)} \) which is equal to \(\dim_s(S) = \dim_H(K) \) in its turn. Therefore, \(\dim_H(\hat{\gamma}) \leq \dim_H(K') < \dim_H(K) \). Since \(EP(K) = K \setminus CP(K) \), \(\dim_H(EP(K)) = \dim_H(K) \).

References

[1] Aseev V. V., Tetenov A. V., Kravchenko A. S., On Self-Similar Jordan Curves on the Plane, Siberian Mathematical Journal, May/Jun 2003, Vol. 44, Issue 3, p. 379-386.

[2] C. Bandt and J. Stahnke, Self-similar sets 6. Interior distance on deterministic fractals, preprint, Greifswald 1990.

[3] C. Bandt and K. Keller, Self-similar sets 2. A simple approach to the topological structure of fractals, Math. Nachrichten 154 (1991), pp. 27-39.
[4] Barnsley M. F. Fractals Everywhere, Academic Press, 1988, 394 p.

[5] Charatonik J., Charatonik W., Dendrites, Aportaciones Mat. Comun. 22 (1998), 227–253.

[6] Croydon D., Random fractal dendrites, Ph.D. thesis, St. Cross College, University of Oxford, Trinity, 2006.

[7] Dumitru D. and Mihail A., Attractors of iterated function systems and associated graphs, Kodai Math. J., 37, (2014), 481-491.

[8] Hata M., On the structure of self-similar sets. Japan. J. Appl. Math. 3(1985), 381-414.

[9] Kigami J., Harmonic calculus on limits of networks and its application to dendrites. J. Funct. Anal., 128(1):48-86, 1995.

[10] Kigami J., Analysis on fractals. Cambridge Tracts in Mathematics 143, Cambridge University Press, 2001.

[11] Kuratowski K., Topology, Volumes 1 and 2, Academic Press and PWN, New York, 1966.

[12] S. B. Nadler, Jr., Continuum theory: an introduction, M. Dekker 1992.

[13] R. S. Strichartz, Isoperimetric estimates on Sierpinski gasket type fractals, Trans. Amer. Math. Soc. 351 (1999), pp. 1705-1752

[14] Tetenov A. V., Self-similar Jordan arcs and graph-oriented IFS, Siberian Math. Journal, 47, No. 5, (2006), 1147-1153.

[15] Zeller. R., Branching Dynamical Systems and Slices through Fractals, Ph.D. thesis, University of Greifswald, 2015.

Mary Samuel
Department of Mathematics
Bharata Mata College, Kochi, India
marysamuel2000@gmail.com

Andrei Tetenov
Gorno-Altaisk State University and
Novosibirsk State University, Russia
atet@mail.ru
Dmitry Vaulin
Gorno-Altaisk State University
Gorno-Altaisk, Russia
d_warrant@mail.ru