Comparison of Experimental Protocols of Physical Exercise for mdx Mice and Duchenne Muscular Dystrophy Patients

Janek Hyzewicz, Urs T. Ruegg and Shin’ichi Takeda

Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry

University of Geneva, Switzerland

Abstract

Duchenne Muscular Dystrophy (DMD) is caused by mutations in the gene coding for dystrophin and leads to muscle degeneration, wheelchair dependence and death by cardiac or respiratory failure. Physical exercise has been proposed as a palliative therapy for DMD to maintain muscle strength and prevent contractures for as long as possible. However, its practice remains controversial because the benefits of training may be counteracted by muscle overuse and damage.

The effects of physical exercise have been investigated in muscles of dystrophin-deficient mdx mice and in patients with DMD. However, a lack of uniformity among protocols limits comparability between studies and translatability of results from animals to humans. In the present review, we summarize and discuss published protocols used to investigate the effects of physical exercise on mdx mice and DMD patients, with the objectives of improving comparability between studies and identifying future research directions.

Keywords: Duchenne muscular dystrophy, mice, mdx, exercise

ABBREVIATIONS

Abbreviation	Definition
ACC	Acetyl-CoA carboxylase
β-HAD	β-Hydroxy acyl-CoA dehydrogenase
DIAPH	Diaphragm
DMD	Duchenne muscular dystrophy
EDL	Extensor digitorum longus
ERK1/2	Extracellular signal-regulated kinase 1/2
GAST	Gastrocnemius muscle
HIF-1	Hypoxia-inducible factor-1
JNK	c-Jun N-terminal kinase
MAPK	Mitogen-activated protein kinase
MHC2a	Myosin heavy chain 2a
NADPH oxidase	Nicotinamide adenine dinucleotide phosphate-oxidase
PGC-1α	Peroxisome proliferator-activated receptor gamma coactivator 1α
PPAR-γ	Peroxisome proliferator-activated receptor gamma
QUAD	Quadriceps muscle
ROS	Reactive oxygen species
SDH	L-Sorbose 1-dehydrogenase
Sirt1	Sirtuin 1

INTRODUCTION

Duchenne muscular dystrophy (DMD) is an X-linked muscular disease caused by mutations in the DMD gene, which codes for dystrophin, a cytoskeletal scaffolding protein important in signalling and muscle stability. An absence of dystrophin results in muscle degeneration and death by cardiac or respiratory failure. Symptoms usually appear in boys at 2–5 years of age, manifesting as difficulty standing, with muscle wasting progresses, patients...
experience increasing difficulty in performing daily activities, become wheelchair-dependent between 11 and 13 years of age [1], and die before age 30 [2]. Therapeutic approaches for DMD include reducing inflammatory symptoms with glucocorticoids [3], correcting scoliosis by surgical intervention [4] and aiding respiratory function using mechanical ventilation [5]. Recently, restoration of dystrophin expression has been achieved by ribosomal readthrough of premature stop codons [6] and exon-skipping therapy [7].

Regular physical exercise stimulates muscle protein synthesis and mitochondrial biogenesis [8]. Exercise has therefore been proposed as treatment for DMD, to maintain muscle strength and prevent contractures [9, 10]; however, this recommendation has not been unanimously accepted because exercise might damage dystrophic muscles [11]. The five mechanisms rendering dystrophin-deficient muscles vulnerable to exercise (reviewed elsewhere [12]) are the weakening of the sarcolemma, increased calcium influx and oxidative stress, recurrent muscle ischemia and aberrant signalling to surrounding tissues such as nerves or cells of the immune system. A mechanistic basis for exercise intolerance [13] and recommendations for the management of DMD [9, 14] have also been reviewed. The lack of uniformity between protocols for exercise of dystrophin-deficient muscles, however, has been pointed out [15], but not reviewed.

Here, we summarize and discuss studies addressing physical training in the context of DMD. We focus on articles describing the effects of exercise in dystrophin-deficient *mdx* mice and in patients with DMD (Fig. 1A).

EXPERIMENTAL PROCEDURES FOR THE STUDY OF EXERCISE IN MDX MICE

A murine model for DMD: The *mdx* mouse

The dystrophin-deficient *mdx* mouse is the most common animal model for DMD. This mutant bears a spontaneous nonsense mutation in exon 23 of the dystrophin gene [16]. Its phenotype is mild compared to the symptoms of DMD in patients. This difference in disease severity between mice and humans arises from differences in size, mechanical loading and lifespan [17, 18]. First, the size difference between mice and humans is 2000–3000 folds. According to the square/cube rule, the mechanical stress experienced by an organism increases with the cube of the linear size; therefore, the difference in mechanical stress experienced by mice and humans is not linear but exponential [18]. Second, humans have a bipedal posture, meaning that the body weight is distributed between the lower limbs and the backbone [17], rather than across four limbs. Third, the difference in lifespan means that humans endure more degeneration–regeneration cycles than mice, resulting in extended muscle deterioration [17].

Compared to DMD patients, *mdx* mice recover from the progressive muscle wasting and show much less accumulation of connective and adipose tissue. The necrotic process persists throughout their life, but the regenerative capacity does not decline until an advanced age (>65 weeks) [19, 20]. These differences must be considered in investigations of physical exercise on dystrophic muscle across species.

Exercise studies in mdx mice

A literature search in PubMed, using the keywords “*mdx* mice” and “exercise” was performed on 25 May 2015. A total of 175 articles were examined, of which 57 investigated the effects of physical exercise, and were selected to form the basis of this part of the review. Of these studies, 37 reported only the negative effects of physical exercise, 15 only beneficial effects, and 5 both negative and positive effects. Studies were classified according to experimental protocol and are listed in Table 1.

The purpose of exercise studies in mdx mice

Physical training of *mdx* mice served three purposes: assessing the physical capacities of the mice; investigating the effects of training on dystrophic muscles; worsening the phenotype before assessing the effects of a drug (Fig. 1B). Depending on the study goals, researchers used acute exercise protocols to reveal immediate effects (Table 1A), or chronic protocols to study long term effects (Table 1B). The mildest methods used included swimming, voluntary and brief (<30 min per session) exercise of young mice (<8 weeks old) was defined as low intensity training [30, 59], whereas exercise of older mice, or under intensive or prolonged conditions (>30 min), was defined as high intensity training [63].

Assessment of the physical capacities of *mdx* mice

Measuring the running capabilities of *mdx* mice using voluntary wheel or downhill running is a simple
Fig. 1. Frequency of publications reporting the effects of physical exercise in mdx mice and DMD patients. (A) Publications describing the effects of physical exercise on mdx mice and DMD patients per 5 years. (B) Publications describing the effects of physical exercise on mdx mice per year, as a function of research objective.

way to assess their physical abilities. All studies using voluntary wheel running followed the same protocol, namely measuring the total running distance. High inter-individual variability was reported: 4-week-old mdx mice ran 0.5 [38] to 9 km [36] per day; 6-week-old mice ran 2 km/day [36], while 10-week-old mice ran 0.03 ± 0.005 to 4.48 ± 0.96 km/day [49]. Performance of mdx mice peaked at 8 weeks of age (5.8 [39] to 9 km [36] per day) and decreased to 2.6 km/day at 14 weeks of age [36]. In consequence, a large number of animals should be used when performing experiments with mdx mice. The downhill exercise study [76] adapted the 6 minute walking test, used for patients with DMD, to allow comparison of performance between 10-week-old wild type and mdx mice. Results show that wild type mice run an average of 500 m in 6 minutes, but mdx mice run only 300 m.

Measuring ex vivo the properties of specific muscles is another way to assess physical capacity in mice. However, muscle type and choice of protocol varied too much between studies to allow comparison (Table 1). The parameters assessed after voluntary wheel running included tetanic stress and stiffness of the extensor digitorum longus [36], grip strength and specific tetanic force of the soleus [38], maximal isometric torque and fatigue resistance of the plantar flexor [39] or specific and absolute maximal force of the tibialis anterior muscle [41]. Overall experiments reported that phenotype of hind limb and diaphragm of mdx mice improved when training began before 7 weeks old [45], but worsened if exercise began later period [47]. However, worsening of heart phenotype was observed when training started at 4 weeks old mdx mice [41] In spite of these general considerations, important differences in outcome can be observed between the studies, corroborating the need for a common protocol for measurements in individual muscles after exercise.

Different muscles in mdx mice, such as the hindlimb muscles or the diaphragm, are not equally affected by an absence of dystrophin; for example, hindlimb muscles show more necrotic events than the diaphragm, but less fibrosis, following regeneration [78]. Conse-
Effects of physical exercise on mdx mice

Table 1	Effects of physical exercise on mdx mice				
1. A Acute exercise	Age	Period	Protocol	Effects	Reference
Swimming exercise	4 weeks	1 time	20 min	Mol. ↑ Membrane breakdown in TA	Bouchentouf et al., 2006 [21]
	4 weeks	24 hours	At will	Mol. ↑ Membrane leak in QUA, GAST, TA and DIA	Archer et al., 2006 [22]
	12 weeks	16 hours	At will	Mol. ↑ Membrane leak in FA, QUA, GAST, DIA. ↑ Apoptosis of endothelial cells. ↑ Expression of Bax, Bcl-2, Fas, ICE family and ubiquitin in TA	Podbielska-Cholewa et al., 1998 [23]
Voluntary running					
	4 weeks	24 hours	At will	Mol. ↑ Membrane leak in QUA, GAST, TA and DIA	Archer et al., 2006 [22]
	12 weeks	16 hours	At will	Mol. ↑ Membrane leak in FA, QUA, GAST, DIA. ↑ Apoptosis of endothelial cells. ↑ Expression of Bax, Bcl-2, Fas, ICE family and ubiquitin in TA	Podbielska-Cholewa et al., 1998 [23]
Treadmill running	12 weeks	1 time	30 min, 12m/min	Clin. ↑ Serum Creatine Kinase	Terrill et al., 2011 [24]
				Mol. ↑ Necrosis; ↑ Thiol oxidation; ↑ IL-6 mRNA in QUA	
Downhill running	7 weeks	1 time	10°: 90 min, 8-16 m/min	Mol. ↑ Membrane breakdown in recto femoris	Quinlan et al., 2006 [25]
	7 – 10 weeks	1 time	17°: 45 min, 10 m/min	Clin. ↓ Isometric force of EDL	Whitehead et al., 2006 [26]
	12 weeks	1 time	16°: 5 min, 0.6 m/min	Mol. ↑ Expression of FGF in recto femoris	Clarke et al., 1993 [27]
	32 – 56 weeks	1 time	16°: 5 min, 10 m/min	Clin. ↑ Serum Creatine kinase level 1 hour after exercise	Vlajic et al., 1998 [28]
				Mol. ↑ Membrane breakdown in EDL	
	60 weeks	1 time	14°: 45 min, 10 m/min	Clin. ↑ Transverse relaxation time constant (T2) in lower hind limbs	Muller et al., 2011 [29]
1. B Chronic exercise	Age	Period	Protocol	Effects	Reference
Swimming exercise	4 weeks	4 weeks	30 min	Clin. ↑ Grip strength	Hyzewicz et al., 2015 [30]
				Mol. ↓ Carbonylation and ↑ Expression of proteins of contraction and energy metabolism. ↑ Expression of slow and fast type Tropomin T and Myosin binding protein C in GAST	
	4 weeks	56 weeks	30 min	Clin. ↓ Fatiguability of EDL	Winerger et al., 1998 [31]
	5 weeks	15 weeks	5 min +5 min/day to 2 hour	Mol. ↓ Sensitivity of soleus in Ca2+ and Sr2+ in EDL	Lynch et al., 1993 [32]
	5 weeks	15 weeks	5 min +5 min/day to 2 hour	Mol. ↓ Tension, relaxation and fatigue resistance of soleus and EDL	Hayes et al., 1993 [33]
	6 – 8 weeks	1 week	30 min	Mol. ↑ Fiber I type in EDL	Matuska et al., 2013 [34]
	96 weeks	10 weeks	Until exhaustion	Clin. ↑ Relative tetanic tension of soleus and EDL	Hayes et al., 1998 [35]
	Age	Period	Protocol	Effects	Reference
Table 1 (continued)

Voluntary running	Duration	Intensity	Clinical Changes	Molecular Changes
3 weeks	3 weeks	At will	Clin. ↑ Tetanic stress; ↑ Stiffness of EDL.	Call et al., 2008 [36]
			Mod. ↑ I and IIa fiber type; ↓ IIb fiber type; ↑ Total contractile proteins in EDL.	
			↑ Anti-oxidant capacities; ↑ Activity citrate synthase in heart; ↑ Activity (hydroxy acyl-CoA dehydrogenase (β-HAD)) in QUAD and heart	
4 weeks	4 weeks	At will	Clin. ↑ Soleus muscle mass	Landisch et al., 2008 [37]
			Mod. ↑ I and IIa fiber type; ↓ IIb fiber type	
4 weeks	12 weeks	At will	Clin. ↑ Grip strength; ↑ Specific tetanic force of soleus	Call et al., 2010 [38]
			Mod. ↑ Expression of vinculin in soleus; ↑ Expression of β-dystroglycan in GAST	
4 weeks	12 weeks	At will	Clin. ↑ Heart mass; ↑ Maximal isometric torque and fatigue resistance of plantar flexor	Balgāvis et al., 2012 [39]
			Mod. ↑ Activity of citrate synthase and β-HAD; ↑ Expression of COX IV in GAST	
4 weeks	12 weeks	At will	Clin. ↑ Expression of α-sarcomeres in soleus; ↑ Expression of utrophin in QUAD	Gordon et al., 2014 [40]
			Mod. ↑ mRNA expression of MHC2a in TA	
4 weeks	16 weeks	At will	Clin. ↑ Specific and absolute maximal force of TA. ↑ Left ventricular function, ejection and shortening fractions in heart.	Houde et al., 2013 [41]
			Mod. ↑ mRNA expression of MHC2a in TA	
4 weeks	16 weeks	At will	Clin. ↑ Force output of soleus and plantaris; ↑ EDL fatigue resistance	Hayen et al., 1996 [42]
			Mod. ↓ Fiber type IIa; ↑ Fiber type I in EDL	
4 weeks	52 weeks	At will	Clin. ↑ Absolute force of plantar flexor; ↑ Mass of GAST and soleus; ↑ Tetanic force of soleus; ↑ Left ventricular functions, end-diastolic, systolic volume in heart; ↓ Specific tension of DIAPH	Selby et al., 2013 [43]
4 weeks	52 weeks	At will	Clin. ↑ Normalized active tension in DIAPH	Dupont-Versteegden, 1996 [44]
6-7 weeks	7 weeks	At will	Clin. ↑ Expression of PGCl-a, LC3; ↑ Activity of citrate synthase, SDH, cytochrome C in GAST	Hulmi et al., 2013 [45]
Table 1 (continued)

Age	Period	Protocol	Clinical	Molecular	Reference
7 weeks	4 weeks	At will	↑ Dilatation of ventricles; ↓ Size lateral ventricular wall; ↑ Sign of dystrophin-related cardiomyopathy and cardiac fibrosis in heart	↑ Cross sectional area in triceps brachialis	Costas et al., 2010 [46]
8 weeks	4 weeks	At will	↑ Intestinum space; ↓ Size lateral ventricular walls; ↑ Sign of dystrophin-related cardiomyopathy and cardiac fibrosis in heart	↑ p-AMPK and p-ACC/ACC ratios in triceps brachialis	Bueno Junior et al., 2012 [47]
8 weeks	4 weeks	At will	↓ Interstitium space; ↑ Cross sectional area in triceps brachialis	↑ Ubiquitinated proteins; ↑ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	Bueno Junior et al., 2012 [47]
10 weeks	2 weeks	At will	↑ Necrosis in QUA	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	Hunt et al., 2011 [48]
10 – 12 weeks	1 weeks	At will	↑ Necrosis in QUA and GAST; Insufficient resting increases damages	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	Hunt et al., 2011 [48]
12 weeks	4 weeks	At will	↑ Kyphosis	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	Breton et al., 2012 [50]
24 weeks	12 weeks	At will	↑ Cross sectional area of soleus	↑ Necrosis in QUA and GAST; Insuffisant resting increases damages	Manger et al., 2012 [51]
28 weeks	4 weeks	At will	↑ Absolute maximal force of female mdx mice; No sign of cardiomyopathy	↑ Necrosis in QUA and GAST; Insuffisant resting increases damages	Ferry et al., 2015 [52]
24 weeks	4 weeks	At will	↑ Absolute maximal force of female mdx mice; No sign of cardiomyopathy	↑ Necrosis in QUA and GAST; Insuffisant resting increases damages	Ferry et al., 2015 [52]
24 weeks	4 weeks	At will	↑ Absolute maximal force of female mdx mice; No sign of cardiomyopathy	↑ Necrosis in QUA and GAST; Insuffisant resting increases damages	Ferry et al., 2015 [52]
30 weeks	12 weeks	At will	↑ Absolute maximal force of female mdx mice; No sign of cardiomyopathy	↑ Necrosis in QUA and GAST; Insuffisant resting increases damages	Ferry et al., 2015 [52]
4 weeks	4 – 8 weeks	30 min, 12m/min	↓ Forelimb strength; ↑ Degenerative area in GAS	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	De Luca et al., 2005 [53]
4 weeks	4 – 8 weeks	30 min, 12m/min	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	↑ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	De Luca et al., 2003 [54]
4 weeks	4 – 8 weeks	30 min, 12m/min	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	Burdi et al., 2006 [55]
4 weeks	4 – 8 weeks	30 min, 12m/min	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	Burdi et al., 2006 [55]
4 weeks	4 – 8 weeks	30 min, 12m/min	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	Burdi et al., 2006 [55]
4 weeks	4 – 8 weeks	30 min, 12m/min	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	↓ Cl− conductance of DIA and EDL; ↓ voltage threshold for contraction of EDL; ↑ necrotic fibers in TA	Burdi et al., 2006 [55]
4 weeks	6 weeks	30 min, 9u/min	↓ Mitochondrial oxygen consumption; ↑ Lipid peroxidation; ↑ Lysophosphatidyl glycerol production; ↓ Quantity of vitamin E; ↓ Activity glutathione peroxidase in QUA and GAS	↓ Mitochondrial oxygen consumption; ↑ Lipid peroxidation; ↑ Lysophosphatidyl glycerol production; ↓ Quantity of vitamin E; ↓ Activity glutathione peroxidase in QUA and GAS	Foss et al., 2001 [58]
4 weeks	8 weeks	30 min, 9u/min	↓ Mitochondrial oxygen consumption; ↑ Lipid peroxidation; ↑ Lysophosphatidyl glycerol production; ↓ Quantity of vitamin E; ↓ Activity glutathione peroxidase in QUA and GAS	↓ Mitochondrial oxygen consumption; ↑ Lipid peroxidation; ↑ Lysophosphatidyl glycerol production; ↓ Quantity of vitamin E; ↓ Activity glutathione peroxidase in QUA and GAS	Foss et al., 2001 [58]
4 weeks	8 weeks	30 min, 9u/min	↓ Mitochondrial oxygen consumption; ↑ Lipid peroxidation; ↑ Lysophosphatidyl glycerol production; ↓ Quantity of vitamin E; ↓ Activity glutathione peroxidase in QUA and GAS	↓ Mitochondrial oxygen consumption; ↑ Lipid peroxidation; ↑ Lysophosphatidyl glycerol production; ↓ Quantity of vitamin E; ↓ Activity glutathione peroxidase in QUA and GAS	Foss et al., 2001 [58]
4 weeks	12 weeks	30 min, 9u/min	↓ Mitochondrial oxygen consumption; ↑ Lipid peroxidation; ↑ Lysophosphatidyl glycerol production; ↓ Quantity of vitamin E; ↓ Activity glutathione peroxidase in QUA and GAS	↓ Mitochondrial oxygen consumption; ↑ Lipid peroxidation; ↑ Lysophosphatidyl glycerol production; ↓ Quantity of vitamin E; ↓ Activity glutathione peroxidase in QUA and GAS	Foss et al., 2001 [58]
4 weeks	12 weeks	30 min, 9u/min	↓ Mitochondrial oxygen consumption; ↑ Lipid peroxidation; ↑ Lysophosphatidyl glycerol production; ↓ Quantity of vitamin E; ↓ Activity glutathione peroxidase in QUA and GAS	↓ Mitochondrial oxygen consumption; ↑ Lipid peroxidation; ↑ Lysophosphatidyl glycerol production; ↓ Quantity of vitamin E; ↓ Activity glutathione peroxidase in QUA and GAS	Foss et al., 2001 [58]
Table 1 (continued)

Age	Period	Protocol	Clin.	Mol.	Reference
8 weeks	4 weeks	30 min, 12m/min	↓ Forelimb strength	↑ Necrosis; ↑ B-If, IL-6 mRNA; ↑ Thiol oxidation in QUA, triceps, DIA and TA	Rallo-Crabb et al., 2011 [63]
8 weeks	5 weeks	30 min, 12m/min	↑ Collagen III, fibronectin deposition in GAS, perivascular, TA, DIA, QUA and triceps	Morales et al., 2013 [65]	
8 weeks	24 weeks	30 min, 12m/min	↓ Net force	↑ Necrosis in plantaris	Rocco et al., 2014 [64]
10 – 77 weeks	10 weeks	60 min, 9m/min	↑ Collagen, fibronectin deposition in GAS	Zeman et al., 2000 [66]	
12 weeks	4 weeks	30 min, 12m/min	↑ Collagen, fibronectin deposition in GAS, Triceps, DIA and TA; ↑ Thiol oxidation; ↑ INF-α mRNA in QUA	Terrill et al., 2011 [24]	
12 – 20 weeks	4 – 12 weeks	30 min, 12m/min	↑ Fibrosis; ↑ Collagen III, fibronectin deposition; ↑ Expression of P-Smad2/3; ↑ TGFβ1, CTGF mRNA in TA	Pessina et al., 2014 [67]	
Rota-rod training	8 weeks	–	↓ Necrotic area in GAS and QUA	French et al., 2014 [68]	
Age	Period	Protocol	Effects	Reference	
Dowhill running	3 weeks	18°; 25 min, 4 m/min	↓ Twitch tension, tension development and relaxation of soleus	Fowler et al., 1990 [69]	
4 weeks	3 days	10°; 10 min, 10 m/min	↓ Muscle damages in TA	Anderson et al., 2006 [70]	
4 weeks	6 weeks	16°; 20 min, 12 m/min	↓ Grip strength	Bizzarri et al., 2009 [71]	
8 weeks	3 days	15°; 10 min, 10 m/min	↓ Membrane breakdown in lower limb and D2APH	Rosenow et al., 1997 [72]	
6 weeks	10 weeks	7°; 60 min, 23 m/min	↑ IGF-1 mRNA in soleus, GAS, TA and QUA	Okano et al., 2006 [73]	
6 weeks	10 weeks	7°; 60 min, 23 m/min	↑ Phosphorylation of ERK1/2, p38 and JNK2 in GAS	Nakamura et al., 2004 [74]	
6 weeks	10 weeks	7°; 60 min, 23 m/min	↑ Heart weight	Nakamura et al., 2002 [75]	

Note: ↑ indicates an increase, ↓ indicates a decrease, and – indicates no change.
Table 1 (continued)

Time	Duration	Speed	Force	Reference	
10 weeks	2 weeks	15’	10 min, 15 m/min	Clin. ↓ Strength of EDL	Kobayashi et al., 2011 [76]
24 weeks	7 weeks	15’	60 min, 17 m/min	Clin. ↓ Grip strength	Tantutti et al., 2011 [77]

Normal words signal a positive effect of exercise. Underscored words signal a neutral effect of exercise. Italics words signal a negative effect of exercise. Clin. signals an observation at the physiological/clinical level. Mol. signals an observation at the molecular level. Description of experimental protocol with duration of exercise, speed or slope value if appropriate. Abbreviations: DIA Diaphragm; EDL Extensor Digitorum Longus; FGF Fibroblast Grown Factor; GAST Gastrocnemius; QUA Quadriceps; ROS Reactive Oxygen Species; TA Tibialis Anterior.

Quently, studies should investigate different muscles simultaneously. However, most studies focused on the effects of exercise on hindlimbs; others investigated the diaphragm [43, 44, 77] or the heart [38, 39, 41, 43, 46, 75]. The hindlimbs and the diaphragm of 4-week-old mdx mice tolerate the effects of voluntary running well (Table 1B), whereas necrosis and fibrosis occur after 10 weeks of age. Conversely, cardiac complications appear after voluntary running in 4-week-old mdx mice, with increased cardiac mass [39] and impaired function [41, 43]. Effects of swimming on cardiac function have only been investigated preliminarily. Our own results have shown that 30 minutes daily swimming from 8 to 16 weeks of age had no influence on cardiac weight (Hyzewicz, unpublished data), but further investigations are necessary.

The studies cited above were performed using male mdx mice. Studies using female mdx mice at 24–28 weeks of age did not reveal signs of cardiomyopathy after voluntary running [52]. Interestingly, female mdx mice were more susceptible than males to develop cardiac problems [79]. Further studies must be conducted to determine whether voluntary running can protect female hearts from complications.

Investigations of physical exercise on mdx mouse muscle

Acute exercise (Table 1A) leads to membrane leakiness, even under mild conditions such as swimming using 4-week-old mice [21]. Voluntary running in 10-week-old mdx mice also causes apoptotic events in the tibialis anterior muscle [23]. Necrosis, thiol oxidation and increased expression of interleukin (IL)-6 mRNA have been reported in quadriceps muscle of 12-week-old mice after 30 minutes of treadmill running at 12 m/min [24]. These results show that even single bouts of exercise can cause muscle damage in mdx mice.

In wild type mice, adaptation to chronic exercise leads to large changes in signal transduction mechanisms [8], including subfamilies of the mitogen-activated protein kinase (MAPK) signalling pathways, namely: extracellular signal-regulated kinase (ERK) 1/2, c-Jun N-terminal kinase (JNK), and p38 MAPK [80]. These signalling pathways are activated by reactive oxygen species and lead to activation of genes involved in mitochondrial adaptation, such as PGC1-α, and muscle differentiation [81]. In mdx skeletal muscle, production of such species is abnormally elevated, owing to either mitochondrial Ca2+ overload [82] or over-activation of membrane-bound NADPH oxidase 2 [83]. Chronic exercise studies using 6–8-week-old mdx mice that performed 10 weeks of downhill running on a 7° slope at 23 m/min for 1 hour showed that proteins downstream of MAPK were over-phosphorylated [74, 75]. This protocol also resulted in infiltration of immune cells, fibrosis, and deposits of adipose tissues in skeletal muscle and heart. Chronic treadmill running at 12 m/min for 30 min caused downregulation of Sirt1, PGC1-α, PPARγ and myogenin in 4-week-old animals [62].

In contrast, low intensity training is beneficial. Expression of mitochondrial [39, 45] and muscle differentiation [41] genes was increased after voluntary wheel running in 4–8-week-old animals (Table 1B). Low intensity swimming and running in young mdx mice also stimulated a switch from fast glycolytic muscle (type IIB) to oxidative (type IIA) and slow (type I) muscle [34, 37]. Despite this switch, protein expression in slow and fast skeletal muscle increased after low intensity swimming in 4-week-old mice [30].
Comparison of wild type and mdx muscle following low intensity swimming also pointed to higher protein expression levels in mdx fibres [30]. This observation suggests that dystrophic muscles could benefit from smaller quantities of training than wild type muscles. The fact that hypoxia is more severe in muscles of mdx mice than in wild types could explain this phenomenon, since stimulation of HIF-1 initiates adaptation to training via the MAPK signalling pathway [34].

Exercise as a means to worsen the dystrophic phenotype

The mild disease phenotype in mdx mice causes a bias when assessing effectiveness of potential drugs for DMD therapy. To worsen the mdx phenotype, researchers increase the mechanical stress using voluntary wheel running [50], treadmill [24, 53–56, 65, 66] or downhill running [70, 71, 73, 77] (Table 1). We compared these protocols to determine which types of exercise are likely to make mdx muscles become more like those in patients with DMD.

Voluntary running in 10–12-week-old animals caused a suitable worsening of the mdx phenotype, showing fibrosis, kyphosis [50] and necrosis of quadriceps muscle [48]. Similar results were obtained with treadmill running in 4-week-old mice for 4 weeks at 12 m/min, leading to fibrosis [61], gastrocnemius degeneration [59], decreased forelimb strength [24, 55] and elevated levels of reactive oxygen species in plasma [56]. Twelve weeks of training also caused downregulation of Sir1, PGC1-α and PPARγ mRNA expression [62]. However, the acute damaging effects of exercise tended to disappear 96 hours after training, as shown by decreased levels of mRNA coding for pro-inflammatory IL-1β and IL-6 [63].

Downhill running was reported to result in increased muscle damage and decreased grip strength [70, 71], but no information about fibrosis or inflammation was available in these reports. The most complete studies on downhill running showed evidence of fibrosis, adipose tissue and infiltration of immune cells in the hearts of 18-week-old mice after 10 weeks of running on a 7° slope at 23 m/min [75], or decreased muscle strength, increased myoglobinuria and inflammation in 12-week-old mice after 2 weeks of training on a 15° slope at 15 m/min [76].

Based on these observations, we conclude that to worsen the phenotype of mdx mice, a minimum of 4 weeks of voluntary exercise from 10 weeks of age, or at least 4 weeks of treadmill running at 12 m/min from 4 weeks of age, is required. Furthermore, in order to avoid the bias due to acute exercise effects, the ability of drugs to prevent exercise-induced damage should be ideally measured with a proper lag time (around 2-3 days) after last exercise bout [54].

TREAT-NMD protocols for exercise in mdx mice

TREAT-NMD is a network for research on neuromuscular diseases that proposes standard operating procedures (SOPs) for experiments with the aim of improving comparability between studies [84]. Two exercise protocols were proposed for mdx mice: one to worsen the phenotype [85] and the other to assess the progression of the dystrophic state [86]. Both are based on previous publications on wheel [21, 32, 35, 36] or treadmill [53, 54, 56] running.

The first protocol advised that 3–4-week-old mice perform voluntary wheel running 1–7 days/week, or treadmill exercise at 12 m/min for 30 minutes twice per week. Based on our review (section 2.3.3), treadmill exercise in mice aged 3–4 weeks is suitable for worsening the mdx phenotype, but voluntary wheel running requires the mice to be at least 10 weeks old; in younger mice, the benefits of exercise counteract the aggravation of the dystrophic phenotype [36–38].

The second protocol also suggested voluntary wheel running 1–7 days/week, or treadmill exercise at 9 or 12 m/min for 30 minutes twice a week, in young mice. Authors recommended avoiding downhill running since mdx mice barely tolerate this exercise. They also pointed out that all mice should perform the same amount of exercise, especially during voluntary wheel running. We agree with these recommendations.

SOPs are an important tool for harmonizing experiments between laboratories. We suggest adding protocols for swimming training based on previous publications [21, 30–35].

Experimental procedures for exercise in patients with DMD

We performed a literature search in PubMed, using the keywords “DMD” and “exercise”, which was completed on 25 May 2015. A total of 167 articles were examined. Twenty-five of them reported effects of exercise in patients with DMD and described the protocol or results; these formed the basis of this part of the review. They were classified according to the type of muscle performing the exercise and are listed in Table 2.
Age (years)	Period	Protocol	Effects	Reference
8 – 10	1 time	Bicycle ergometer and isokinetic limb strength measurements	Clin. Exercise in DMD is limited by reduced cardiorespiratory capacities, leg strength and peripheral oxygen utilization	Sockolov et al., 1977 [87]
6 – 10	1 time	15 minutes of exercise in water	↑ Myoglobinuria; ↑ Serum creatine kinase	Poche et al., 1997 [88]
or 11 – 16 or Early stage (<12)	1 time	50-60 lengthening contractions of calf muscle	↓ Muscle injury at the end of exer.	Barbiroli et al., 1993 [89]
Early stage (<12)	1 time	Aerobic exercise on forearm flexor digitorum superficialis	↑ Intracellular pH at the end of exercise	Kemp et al., 1993 [90]
5 – 10	1 time	Maximum voluntary contraction of tibialis anterior for 4 min	↑ Less central fatigue of TA	Sharma et al., 1995 [91]
10.8 ± 0.5	1 time	20 handgrips/min for 5 min	↑ No vasoconstrictor response to exercise	Sander et al., 2000 [92]
6 to 8	1 time	Playing football or running	↑ Myoglobinuria	Garraud et al., 2008 [93]
8.2 ± 2.6	1 time	20 steps on a 20 cm high-bench	↑ Contrast enhancement in TA	Garraud et al., 2009 [94]
Early stage (<12)	8 weeks	Training with arm ergometer	↑ Ambulation scores; ↑ Endurance and arm functions; ↑ Proximal muscle strength	Alemdaroğlu et al., 2014 [95]
Late stage (>12)	28 weeks	↑	↑ Muscle strength; ↑ Contracture; ↑ Performance of daily activities	Abramson, Rogoff, 1952 [96]
Early stage (<12)	48 weeks	Full extension of knee using Cybex isokinetic exerciser 5 days/week	↑ Isokinetic strength	de Lateur, Giaroni, 1979 [97]
10 ± 3	96 weeks	Bicycle training of arm and legs	Stabilisation of motor function for the duration of the training	Jansen et al., 2013 [98]
Exercise of masticatory muscles	16 – 24	5 minutes jaw clenchs. Open jaw 5 times. Move tongue 5 times.	↑ Biting force; ↑ Latency of jaw-jerk reflex; ↑ Masticatory performance of masseter	Kawazoe et al., 1982 [99]
Table 2 (continued)

Age	Period	Exercise of respiratory muscles	Protocol*	Effects	Reference
20	24 weeks	Massage of masseter 10 min and jaw training 5 min per day	Clin. ↑ Greatest occlusal force; ↑ Satisfaction to eat		Nozaki et al., 2010 [100]
≈ 11.4	2.5 weeks	Teflon II inspirometer, 20 inspirations/day	Clin. No benefit of exercise		Rodillo et al., 1989 [101]
Late stage (>12)	5 weeks	Video game ajusted to respiratory efforts, 10 min/day	↑ Maximum voluntary respiration; ↑ Maximal achieved respiration; ↑ Duration of progressive isocapnic hyperventilation manœuvre		Vilomeni et al., 1994 [102]
14.4 ± 5	6 weeks	Inspiratory resistance 15 min, twice/day	Clin. ↑ Maximum resistance and maximum duration of ventilation		Dibacco et al., 1985 [103]
18	6.5 weeks	Inspiratory muscle training 5 to 30 min/day	Clin. ↑ Vital capacity; ↑ Maximal inspiratory airway pressure		Aldrich, Uhrlau, 1987 [104]
14.7 ± 4.5	6 weeks	Breathing through a valve 10 min, twice/day	Clin. ↑ Endurance of respiratory muscles		Topin et al., 2002 [105]
14.5 ± 3.8	24 weeks	Breathing through a valve 10 min, twice/day	↑ Maximal sniff assessed esophageal and transdiaphragmatic pressure; ↑ Inspiratory muscle endurance		Wankle et al., 1994 [106]
12	24 weeks	Resistive inspiration and expiratory loads	Clin. ↑ Maximal static inspiratory and expiratory pressures; ↓ Decreased respiratory load perception		Goral, Thiriet, 1999 [107]
8 – 29	36 weeks	Force training thoracic endurance training 10 times, twice/day	Clin. ↑ Maximal inspiratory mouth pressure; ↑ 12-s maximum voluntary ventilation		Winkler et al., 2000 [108]
9.5 ± 2.3	40 weeks	Yoga training: [fast pelvic contractions, forced-apnea after expiration] and [maximal contraction followed by apnea]	Clin. ↑ Increased of force vital capacity; ↑ Forced expiratory volume in 1 second		Rodrigues et al., 2014 [109]
12.5 ± 2.3	96 weeks (2 years)	Breathing through a valve 10 min, twice/day	Clin. ↑ Maximal inspiratory mouth pressure; ↑ 12-s maximum voluntary ventilation		Kocsole et al., 2001 [110]
16.5 ± 4	19 ± 5				

Normal words signal a positive effect of exercise. Underscored words signal a neutral effect of exercise. Italic words signal a negative effect of exercise. Clin. signals an observation at the physiological/clinical level. Mol. signals an observation at the molecular level. "Description of experimental protocol with duration of exercise, speed and other parameters. Abbreviations: TA Tibialis Anterior."
The purpose of exercise studies in DMD patients

Physical training was mainly used to assess therapeutic methods for improving dystrophic muscle capacity in wheelchair-dependent patients with DMD, measuring the effects of exercise on respiratory or masticatory muscles. Several studies investigated the effects of acute exercise (Table 2A). Studies assessing therapeutic exercises at early stages of the disease (before 10 years of age) were rare, and mainly used chronic training of upper and lower limbs (Table 2B).

Therapeutic training in patients with DMD before wheelchair dependence

Only three studies focused on improving ambulation in young patients by arm and leg training [95, 97, 98] (Table 1B). Interestingly, documentation for parents of DMD patients recommends physical exercise during the early stages of the disease [10, 111] based on observations in mdx mice [111]. Moderate exercise is recommended, without pushing the child, and stopping before the threshold of exhaustion, switching to cycling or swimming when difficulties become apparent.

Bicycle [98] or ergometer [95, 97] training in young DMD patients confirmed the benefit of long-term physical exercise from early stages of the disease. However, two studies showed that running or step exercise damaged the tibialis anterior muscle and caused myoglobinuria immediately after training in patients aged 6–10 years [93, 94]. Theoretically, damage induced by short-term exercise does not prevent long-term improvement in muscle status. But the benefits of training have been demonstrated on bicycle and ergometer, whereas studies reporting short-term negative effects have involved running or step exercises without equipment. The long-term benefits of non-assisted leg training remain to be demonstrated.

Swimming is often recommended for DMD patients [98, 112], but only one study has investigated its effects, and found that myoglobin and creatine kinase levels were elevated after training [88].

Therapeutic training in patients with DMD after wheelchair dependence

The first demonstration that muscle training could improve the daily life of late-stage DMD patients was in 1952 [98], but used no control, and was therefore hard to interpret [113]. Subsequent studies demonstrated that appropriate training could improve the capacity of masticatory and respiratory muscles in wheelchair-dependent patients with DMD.

For masticatory muscles, two studies showed that jaw and tongue training for 24 weeks, accompanied by massage of the masseter muscle, could improve jaw performance and ease of eating [99, 100] (Table 2B).

For respiratory muscles, two approaches were followed: non-assisted or assisted training. Non-assisted training involved resistive inspiratory muscle training [103, 104] or yoga [109]. Assisted training involved the use of special apparatus [101, 108], video games [102], breathing through a valve [105, 106, 110] or resistance to a load [107] (Table 2B).

All studies except one [101] reported an improvement in patients’ respiratory capacity. Non-assisted training improved maximal resistance, duration of ventilation [103], inspiratory airway pressure [104], forced expiratory volume in 1 s [109], and vital capacity [104, 109]. Assisted training improved maximal voluntary respiration, maximal achieved respiration [102], maximal sniff assessed oesophageal and transdiaphragmatic pressure [105], static inspiratory/inspiratory pressures [107] and inspiratory mouth pressure, as well as 12 s maximal voluntary ventilation [108, 110], duration of progressive isocapnic hyperventilation manoeuvre [102] and respiratory muscle endurance [105, 106].

Non-assisted and assisted respiratory training data are not comparable because different parameters were measured. Only one study compared the effects of non-assisted and load-assisted training and concluded that non-assisted training had no effect [107].

In conclusion, training of respiratory muscles successfully delays the need for mechanical ventilation [104], but there is a lack of studies comparing non-assisted and assisted respiratory training to determine whether training equipment is useful for therapeutic purposes or could be replaced by non-assisted inspiratory training.

Investigating acute exercise in patients with DMD

An early ergometer study showed that DMD patients have limited adaptation to exercise owing to reduced cardiopulmonary capacity, weaker leg strength and limited use of peripheral oxygen [87] (Table 2A). Arm muscle training studies revealed that the intracellular pH at the end of the exercise was higher in DMD muscle fibres than in healthy patients and that inorganic phosphate and pH recovery rates were lower [89, 90]. These differences were explained in part by the fact that the vasoconstritor response of dystrophic muscles is not blunted in response to exercise [92]. In contrast, DMD patients feel less fatigue and have less muscle injury at the end of most types of exercise [89, 91].
DIFFERENCES IN RESEARCH APPROACHES BETWEEN MICE AND HUMANS

Research in animal models is commonly the first step before clinical trials in patients. However, because the mdx mouse was discovered only in 1984 [16], much after the first report in humans in 1868 [114], experiments investigating the effect of physical exercise on dystrophic muscles began in DMD patients 40 years before the first studies in mdx mice. Here, we have reviewed 80 articles and found none reporting results from both the murine model and patients. The consequence is a large number of differences between results of studies in mice and humans.

Research focusing on respiratory function in patients with DMD

The majority of investigations in patients with DMD aimed to improve respiratory function alone, and recruited mainly wheelchair-dependent patients [101–110]. In comparison, only three studies documented results of investigations of respiratory function in exercised mdx mice [43, 44, 77]. However, limb and diaphragm muscles were investigated together in mdx mice, but separately in patients with DMD.

Effect of exercise on cardiac function in patients with DMD

Since the development of mechanical ventilation, cardiac failure has become the primary cause of death of DMD patients. Experiments in exercised mdx mice demonstrated a vulnerability of cardiac muscle with running, even with low intensity training [39, 41, 43]. However, no study in patients with DMD has ever investigated the impact of exercise on the heart. The limits of exercise for DMD patients should be adjusted by taking into account the limits of the cardiac muscle, especially because experiments in mice have shown that voluntary training can also damage the heart. This aspect is important because it suggests that children with DMD might exercise over their limit, without considering the damage occurring in their heart.

Swimming is recommended for patients, but without evidences

Swimming exercise appears intuitively to be beneficial for DMD patients, because water supports a large part of the patient’s weight and thus reduces mechanical stress. However, benefits of water training have never been assessed in patients and scarcely investigated in mice. Vulnerability of the mdx heart has been observed with running [39, 41, 43], but results from preliminary studies of swimming (Hyzewicz, unpublished data) suggest that this exercise might spare the cardiac muscle. If further studies confirm the harmlessness of swimming, then it should become a research priority in patients with DMD.

CONCLUSIONS

We have reviewed here the present state of research into the effects of physical exercise on dystrophic muscles, and suggested further investigations to establish evidence-based recommendations regarding optimal training modes. The main conclusions we have drawn are summarized in Fig. 2 and outlined below.

Studies in mdx mice have demonstrated that voluntary running exercise in 4-week-old animals improves hindlimb and diaphragm capacity but is harmful for the heart. The effects of swimming on cardiac tissue have not yet been studied. Forced treadmill running of at least 4-week-old mice at 12 m/min for 4 weeks renders the mdx phenotype closer to that of DMD patients.

Studies in human have shown that respiratory and masticatory muscle training successfully improves functional capacity in patients aged 12 years or older. However, further comparisons between machine-assisted respiratory training and non-assisted training are necessary. Bicycle training can also delay the impairment of motor function in young patients, although the effects of exercise on cardiac function have not yet been investigated. There is also a lack of studies investigating the effect of running and swimming in DMD.

In order to fill these knowledge gaps, we suggest the following approaches for future research regarding the effects of physical exercise on mdx mice and DMD patients:

1. As DMD causes degeneration of respiratory, cardiac and limb muscles, future studies should assess the effects of exercise on these three types of muscle simultaneously.
2. Running has a negative effect on the heart in mdx mice. It is crucial to determine whether a similar effect occurs in the hearts of patients with DMD after running.
3. Effects of exercise on young DMD patients (4–12 years old) should be investigated.
Fig. 2. Schematic summarizing the effects of physical exercise on dystrophin-deficient muscles. Results from studies investigating the effects of physical exercise on muscles in mdx mice (left panel) and DMD patients (right panel). Dotted lines represent open questions.

4. Even though swimming is recommended, its cardiac consequences have not been studied in mdx mice or patients. This should be performed using appropriate technology, such as MRI and biomarker measurement.

5. Studies should compare non-assisted respiratory training with machine-assisted training.

CONFLICT OF INTEREST

The authors have no conflict of interest to report.

REFERENCES

[1] Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. DMD Care Considerations Working Group: Diagnosis and management of Duchenne muscular dystrophy, part 2: Implementation of multidisciplinary care. Lancet Neurol. 2010;9(2):177-89. doi: 10.1016/S1474-4422(09)70272-8.

[2] Matsumura T, Saito T, Fujimura H, Shinno S, Sakuda S. A longitudinal cause-of-death analysis of patients with Duchenne muscular dystrophy. Rinsho Shinkeigaku. 2011;51(10):743-50.

[3] Biggar WD, Harris VA, Elkousy L, Alman B. Long-term benefits of deflazacort treatment for boys with Duchenne muscular dystrophy in their second decade. Neuromuscul Disord. 2006;16:249-55.

[4] Kinali M, Messi S, Mercari E, Lebovsky J, Edgo G, Manzur AY, et al. Management of scoliosis in Duchenne muscular dystrophy: A large 10-year retrospective study. Dev Med Child Neurol. 2006;48(6):513-8.
[41] Houridi C, Joanne P, Medida F, Mounet N, Jacquet A, Mouillet E, et al. Voluntary physical activity protects from susceptibility to skeletal muscle contraction-induced injury but worsens heart function in mdx mice. Am J Physiol. 2013;304(2):L509-18.

[42] Haynes A, Williams DA. Beneficial effects of voluntary wheel running on the properties of dystrophic mouse muscle. Appl Physiol Nutr Metab. 1996;21(3):679-97.

[43] Selby JT, Acosta P, Sleeper MM, Barton ER, Sweeney HL. Long-term wheel running compromises diaphragm function but improves cardiac and plantarflexor function in the mdx mouse. J Appl Physiol (1985). 2013;115(5):660-6.

[44] Dupont-Versteegden EE. Exercise and clenbuterol as strategies to decrease the progression of muscular dystrophy in mdx mice. J Appl Physiol (1985). 1996;80(3):734-41.

[45] Hulmi JJ, Oliveira BM, Silvestrini M, Hoogaars WM, Pautemaak A, Kamalam Z, et al. Exercise reverses decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activityblocked mdx mice. Am J Physiol Endocrinol Metab. 2013;305(2):E171-82.

[46] Costas JM, Nye DJ, Hindsley JB, Phoscohki J. Voluntary exercise induces structural remodeling in the hearts of dystrophin-deficient mice. Muscle Nerve. 2010;42(6):881-5.

[47] Burdo JF, Patallacos LC, Voltzrtli VA, Brus LH, Brum PC, Zais M. Combined effect of AMPK/PAR agonists and exercise training in mdx mice functional performance. PLoS One. 2012;7(9):e45699.

[48] Hunt LC, Anthea Coles C, Gorman CM, Tudor EM, Smythe GM, White JD. Alterations in the expression of leukemia inhibitory factor following exercise: Comparisons between wild-type and mdx muscles. PLoS Curr. 2011;3:e4ffdff160de8b.

[49] Smythe GM, White JD. Voluntary wheel running in dystrophin-deficient mice: Relationships between exercise parameters and exacerbation of the dystrophic phenotype. Version 3. PLoS Curr. 2011;3:e4ffdff160de8b.

[50] De Repentigny Y, Cifelli C, Marshall P, Grounds M. A single 30min treadmill exercise session is suitable for ‘proof-of-concept studies’ in adult mdx mice. A comparison of the early consequences of two different treadmill protocols. Neurobiol Dis. 2012;42(2):170-82.

[51] Rocco AB, Leavally JC, Eldridge JA, Miran SA, Rodgers BD. A novel protocol for assessing exercise performance and dystrophinopathology in the mdx mouse. Muscle Nerve. 2010;41(5):541-8.

[52] Camenino GM, Cammen M, Guadino A, Massari AM, Capogrosso RF, Cozzoli A, et al. Gene expression in mdx mouse muscle in relation to age and exercise: Aberrant mechanical-metabolic coupling and implications for pre-clinical studies in Duchenne muscular dystrophy. Hum Mol Genet. 2014;23(21):5720-32.

[53] Radley-Crab JJ, Terrell J, Shavlakadze T, Tonkin J, Arthur C. Exercise decreases selected markers of oxidative stress and fibrosis in dystrophic mdx mouse muscle. PLoS One. 2012;7(2):e31937.

[54] Rocco AB, Leavally JC, Eldridge JA, Miran SA, Rodgers BD. A novel protocol for assessing exercise performance and dystrophinopathology in the mdx mouse. Muscle Nerve. 2010;41(5):541-8.

[55] Morales MG, Cabrera D, Cespedes C, Vio CP, Vazquez Y, Rocco AB, Leavally JW, Miran SA, Rodgers BD. A novel protocol for assessing exercise performance and dystrophinopathology in the mdx mouse. Muscle Nerve. 2010;41(5):541-8.

[56] Burdi R, Rolland JF, Frayre B, Livinova K, Cozzoli A, Giannuzzi V, et al. Multiple pathological events in exercised dystrophic mdx mice are targeted by a new muscle-derived compound acting in vitro and in vivo. J Clin Pathol. 2009;62(7):1311-24.

[57] Frayre B, Liantonio A, Cetrone M, Burdi R, Pierno S, Fregeri A, et al. The alteration of calcium homeostasis in adult dystrophic mdx mouse muscle fibres is worsened by a chronic exercise in vivo. Neuromuscul Disord. 2004;14(7-2):144-54.

[58] Faist V, König J, Higier I, Elmadfa I. Decreased mitochondrial oxygen consumption and antioxidant enzyme activities in skeletal muscle of dystrophic mice after low-intensity exercise. Am J Nutr Metab. 2003;48(2):58-66.

[59] Kaczor JJ, Hall JE, Payne E, Tarnopolsky MA. Low intensity training decreases markers of oxidative stress in skeletal muscle of mdx mice. Free Radic Biol Med. 2007;43(1):145-54.

[60] Hall JE, Kaczor JJ, Hettings BP, Inman R Jr, Tarnopolsky MA. Effects of a CERES agonist and exercise on mdx and wild-type skeletal muscle. Muscle Nerve. 2007;36(3):336-41.

[61] van Putten M, Huber M, Nadarajah VD, vanHeiningen SH, van Huizen E, van Iterson M, et al. The effects of low levels of dipherion on muscle function and pathology. PLoS One. 2012;7(2):e31937.

[62] Camenino GM, Cammen M, Guadino A, Massari AM, Capogrosso RF, Cozzoli A, et al. Gene expression in mdx mouse muscle in relation to age and exercise: Aberrant mechanical-metabolic coupling and implications for pre-clinical studies in Duchenne muscular dystrophy. Hum Mol Genet. 2014;23(21):5720-32.

[63] Radley-Crab JJ, Terrell J, Shavlakadze T, Tonkin J, Arthur C. Exercise decreases selected markers of oxidative stress and fibrosis in dystrophic mdx mouse muscle. PLoS One. 2012;7(2):e31937.

[64] Rocco AB, Leavally JC, Eldridge JA, Miran SA, Rodgers BD. A novel protocol for assessing exercise performance and dystrophinopathology in the mdx mouse. Muscle Nerve. 2010;41(5):541-8.

[65] Morales MG, Cabrera D, Cespedes C, Vio CP, Vazquez Y, Rocco AB, Leavally JW, Miran SA, Rodgers BD. A novel protocol for assessing exercise performance and dystrophinopathology in the mdx mouse. Muscle Nerve. 2010;41(5):541-8.

[66] Zeman RJ, Peng H, Danon MJ, Etlinger JD. Clenbuterol reduces degeneration of exercised or aped dystrophic (mdx) muscle. Muscle Nerve. 2000;23(4):521-8.

[67] Perosini!P, Cabedo!M, Morales MG, Riquelme!C, Gutiérrez!J, Serrano AL, et al. Novel and optimized strategies for inducing fibrosis in vivo: Focus on Duchenne Muscular Dystrophy. Skelet Muscle. 2014;4:7.

[68] Frinchi M, Maciocco F, Luciani A, Pericavalle V, Cocco M, Belluardo N, et al. Recovery of damaged skeletal muscle in mdx mice through low-intensity endurance exercise. Int J Sports Med. 2014;35(5):388-97.

[69] Fowler WM, Jr Abroshc RT, Larson DB, Sherman RB, Entrikin RK. High-repetitive submaximal treadmill exercise training: Effect on normal and dystrophic mdx. Arch Phys Med Rehabil. 1990;71(4):552-7.

[70] Anderson CH, De Repentigny Y, Cifelli C, Marshall P, Renaud JM, Worton RG, et al. The mouse dystrophin muscle promoter/enhancer drives expression of mini-dystrophin in transgenic mdx mice and rescues the dystrophy in these mice. Mol Ther. 2006;14(5):724-34.
Barbiroli B, McCully KK, Iotti S, Lodi R, Zaniol P, Ploche H, Hopfenmuller W, Hoffmann M. Detection and Sockolov R, Irwin B, Dressendorfer RH, Bernauer http://www.treat-nmd.eu/downloads/file/sops/dmd/MDX/

Taniguti AP, Pertille A, Matsumura CY, Santo Neto H, Mar-

Kobayashi YM, Rader EP, Crawford RW, Campbell KP. Nakamura A, Yoshida K, Takeda S, Dohi N, Ikeda

Nakamura A, Yoshida K, Ueda H, Takeda S, Ikeda S. Okano T, Yoshida K, Nakamura T, Sasazuka F, Oide

B. Further impairment of muscle phosphate kinetics by Allen DG, Whitehead NP, Yeung EW. Mechanisms of

Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Kramer HF, Goodyear LJ. Exercise, MAPK, and NF-

Loubinou JP, Fichter-Gagnepain V, Theron E, Fardeau M. Morphometric analysis of mdx diaphragm muscle fibres. Comparison with hindlimb muscles. Neuroumal Disord 1993;3(3-4):465-9.

Bronck T, Yue T, Dean D. Gender influences cardiac func-

Kramer HF, Goodyear LJ. Exercise, MAPK, and NF-

Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PR, Williams RS, Yan Z. Exercise stimulates gene expression in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 2005;280(20):19587-93.

Allen DG, Whitehead NL, Yeung EW. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: Role of tonic changes. J Physiol. 2005;570(Pt 1):75-71.

Shishkova N, Niggi E. Studies of RyR function in etm Methods. 2008;46(3):183-93.

http://www.zeit-mnd.de/downloads/files/etm/etm/DMD/M/DJM2.1.050.pdf

http://www.zeit-mnd.de/downloads/files/etm/etm/DMD/M/DJM2.1.001.pdf

Stockley R, Irwin B, Dressendorfer RH, Bernauer EM. Exercise performance in 6-to-11-year-old boys with Duchenne muscular dystrophy. Arch Phys Med Rehabil. 1997;78(5):195-201.

Piche H, Hofpenninger W, Hoffmann M. Detection and identification of myoglobin in serum by immunoblotting. Effect of exercise on patients with Duchenne muscular dystrophy. Clin Physiol Biochem. 1987;5(2):105-11.

Barbieri B, McCully KK, Iotti S, Lodi R, Zaniol P, Chance B. Further impairment of muscle phosphate kinetics by lengthening exercise in DMD/BMD carriers. Ann Clin Res 31P-

Kemp GJ, Taylor DL, Dunn IF, Feistick SP, Radda GK. Cellular energetics of dystrophic muscle. J Neurol Sci. 1993;116(2):104-6.

Sharma KR, Mynsheer MA, Miller RG. Muscular fatigue in Duchenne muscular dystrophy. Neurology. 1995;45(2):306-9.

Sander M, Chovanov B, Harris SA, Iamamoto ST, Stall JT, Thomas GD, et al. Functional muscle ischemia in neaural nitric oxide-synthese-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2000;97(25):13818-23.

Garrod P, Eagle M, Jardine PE, Bushby K, Straub V. Myoglobinuria in boys with Duchenne muscular dys-

trophy on corticosteroid therapy. Neuroumal Disord. 2008;18(1):71-3.

Garrod P, Hollingsworth KG, Eagle M, Arbiskala BS, Bir-

Chall D, Bushby K, et al. MR imaging in Duchenne muscular dystrophy: Quantification of T1-weighted signal, contrast uptake, and the effects of exercise. J Magn Reson Imaging. 2000;30(5):1130-8.

Alembari ˘glu I, Karahamam Yitz ’OT, Topa ˘ci H. Different types of upper extremity exercise training in Duchenne muscular dystrophy. Effects on functional perform-

strength, endurance, and ambulation. Muscle Nerve. 2015;51(5):697-705.

Abramson AS, Rogoff J. Physical treatment in muscular dystrophy. Proc Second Medical Conference of Muscular Dystrophy Assoc of America. 1952;223-4.

dela Larue BG, Giacomi BM. Effect on maximal strength of submaxerial exercise in Duchenne muscular dystrophy. Am J Phys Med. 1979;58(1):26-36.

Jarem M, van Allen N, Geurts AC, de Groot D. Assisted bicycle training delays functional deterioration in boys with Duchenne muscular dystrophy: The randomized con-

rolled trial “no use is loss”. Neuroumal Rehab. 2015;17(9):816-27.

Kawazoe Y, Kobayashi M, Taitsa T, Tamamoto M. Effects of therapeutic exercise on masticatory function in patients with progressive muscular dystrophy. J Neurol Neurosurg Psychiatry. 1982;45(4):343-7.

Nozaki S, Kawa M, Shimoyma R, Fatamura N, Matsumura T, Adachi K, et al. Range of motion exercise of temporomandibular joint with hot packs increases occlusal force in patients with Duchenne muscular dystrophy. Acta Myol. 2010;29(3):392-7.

Rodillo E, Noble-Jamieson CM, Apwe V, Heckmatt JZ, Muntoni F, Dubowitz V. Respiratory muscle train-

ing in Duchenne muscular dystrophy. Arch Dis Child. 1996;70(5):376-80.

Valena D, Bar-Yishay E, Gur L, Shapiro Y, Meyer S, Got-

ssey S. Computerized respiratory muscle training in children with Duchenne muscular dystrophy. Neuroumal Disord. 1994;4(3):249-55.

DeMarco AS, Kelling JS, DiMarco MS, Jacobs I, Shields R, Altose MD. The effects of inspiratory resistive training on respiratory muscle function in patients with muscular dystrophy. Muscle Nerve. 1985;8(4):244-90.

Aldrich TK, Uhrlass RM. Weaning from mechanical ventila-

tion: Successful use of modified inspiratory resistive training in muscular dystrophy. Crit Care Med. 1987;15(3):247-

9.

Topin N, Matecki S, Le Bris S, Rivier F, Echenne B, Prefaut C, et al. Dose-dependent effect of individualized respiratory
muscle training in children with Duchenne muscular dystrophy. Neuromuscul Disord. 2002;12(6):576-83.

[106] Wanke T, Toifl K, Menkle M, Formanek D, Lahrmann H, Zwick H. Inspiratory muscle training in patients with Duchenne muscular dystrophy. Chest. 1994;105(2):475-82.

[107] Gozal D, Thurne P. Inspiratory muscle training in neuromuscular disease. Long-term effects on strength and load perception. Med Sci Sports Exerc. 1999;31(11):1522-7.

[108] Winkler G, Zizzo U, Nader A, Frank W, Zwick H, Toifl K, et al. Dose-dependent effects of inspiratory muscle training in neuromuscular disorders. Muscle Nerve. 2000;23(8):1257-66.

[109] Rodrigues MR, Carvalho CR, Santiello DF, Lorenzi-Filho G, Maris SK. Effects of yoga breathing exercises on pulmonary function in patients with Duchenne muscular dystrophy: An exploratory analysis. J Bras Pneumol. 2014;40(2):126-33.

[110] Koessler W, Wanke T, Winkler G, Nader A, Toifl K, Knez H, et al. 2 Years’ experience with inspiratory muscle training in patients with neuromuscular disorders. Chest. 2001;120(3):765-9.

[111] http://www.nchpad.org/119/928/Duchenne Muscular Dystrophy

[112] http://support.cureduchenne.org/site/PageServer?pagename=aug2014page11

[113] Gianola S, Pecoraio V, Lambiasi S, Gatti R, Bardi G, Moja L. Efficacy of muscle exercise in patients with muscular dystrophy: A systematic review showing a missed opportunity to improve outcomes. PLoS One. 2013;8(6):e65414.

[114] Duchenne GBA. Recherches sur la paralysie musculaire pseudo-hypertrophique ou paralysie myo-sclerosique. Arch Gen Med. 1868;11:5-23.