The effect of luteolin 7-glucoside, apigenin 7-glucoside and *Succisa pratensis* extracts on NF-κB activation and α-amylase activity in HepG2 cells*

Ewa Witkowska-Banaszczak1✉, Violetta Krajka-Kuźniak2 and Katarzyna Papierska2

1Department of Pharmacognosy, Poznan University of Medical Sciences, Poznań, Poland; 2Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Poznań, Poland

The chemical composition of *Succisa pratensis* is not well known. The existing data indicate a substantial content of flavonoids, which include luteolin and apigenin 7-glucosides. The aim of this study was to elaborate the isolation protocol of these flavonoids from flowers and leaves of *S. pratensis*, to carry out their characterization, as well as to evaluate the effect of *S. pratensis* extracts or isolated flavonoids in moderate reduction in NF-κB transcription factor activation evaluated in terms of translocation of its active subunits from cytosol into nucleus and subsequently diminished expression of the COX-2 gene. Expression of NF-κB was also reduced. The most significantly diminished NF-κB activation and expression, as well as COX-2 expression, was found to result from treatment with isolated flavonoids and ethyl acetate extract of *S. pratensis* leaves. These results indicate that *S. pratensis* flavonoids may modulate the metabolic and signaling pathways whose deregulation is related to pathogenesis of liver cancer. Further studies are required to confirm these observations and assess the chemopreventive and/or therapeutic potential of the *S. pratensis* herb.

Key words: *Succisa pratensis*, apigenin 7-glucoside, luteolin 7-glucoside, α-amylase inhibitory activity, NF-κB

Received: 21 October, 2019; revised: 10 February, 2020; accepted: 11 February, 2020; available on-line: 04 March, 2020

✉ e-mail: banewit@wp.pl

Acknowledgements of Financial Support:
The costs of the article published as a part of the 44th FEBS Congress Kraków 2019 – From molecules to living systems block are financed by the Ministry of Science and Higher Education of the Republic of Poland (Contract 805/P-DUN/2019).

This work was supported by the Poznan University of Medical Sciences of Poland (502-01-33094190-02578 and 502-14-33024030-11106).

Abbreviations: (1), luteolin 7-glucoside; (2), apigenin 7-glucoside; COX-2, cyclooxygenase-2; NF-κB, nuclear factor-kappa B; HCC, hepatocellular carcinoma; HepG2 cells, human hepatocellular carcinoma cells; SK1, methanolic extract of *S. pratensis* flowers; SK2, ethyl acetate extract of *S. pratensis* flowers; SL1, methanolic extract of *S. pratensis* leaves; SL2, ethyl acetate extract of *S. pratensis* leaves

INTRODUCTION

Flavonoids are commonly found in plants and they are widely used in medicine, either as isolated compounds or in the form of extracts from plants in which they are abundantly present. Several studies had shown that flavonoids, such as apigenin and luteolin, have antioxidant, anticancer, and anti-inflammatory activities ([Choi et al., 2007; Shukla & Gupta, 2010; Bouzaïene et al., 2016; Xue et al., 2017; Yan et al., 2017]). Moreover, in vitro studies demonstrated that anti-inflammatory properties of luteolin may be mediated by inhibition of the nuclear factor-κB (NF-κB). This transcription factor is a regulator of cell survival, immunity and inflammation. NF-κB p50-p65 subunits represent the major active complex in most of the cells. Normally, NF-κB is sequestered in the cytosol by its inhibitor, the IκB protein. NF-κB stimulation leads to activation of the IκB kinase (IKK) and subsequently activation of gene transcription, such as COX-2, encoding cyclooxygenase-2 ([Hwang et al., 2011; Chung et al., 2012]). Numerous reports indicated that the observed effect of luteolin on COX-2 and inducible nitric oxide synthase (iNOS) suppression is due to inhibition of NF-κB ([Hu & Kitts, 2004; Chung et al., 2012; Kiraly et al., 2016]). Moreover, luteolin 7-glucoside and apigenin 7-glucoside also inhibit the α-amylase activity. This effect depends on the amount and substitution position of hydroxyl groups in the molecule and the presence of sugar substituents ([Han et al., 2003; Tadera et al., 2006; Asgharia et al., 2015; Zhang et al., 2017]).

Inhibition of α-amylase limits the availability of glucose, which might affect the cancer cell survival ([Palorini et al., 2016]).

In our earlier report we showed that in *Succisa pratensis* herb’s methanolic extract, there is a substantial amount of flavonoids, including luteolin and apigenin 7-glucosides (Witkowska-Banaszczak & Długaszewska, 2017).

The aim of this study was isolation and identification of flavonoids from *S. pratensis* flowers and leaves, and comparison of the effect of isolated luteolin and apigenin 7-glucosides with different plant extracts containing the whole flavonoids’ fraction on the α-amylase activity in a cell-free system. Moreover, the influence of these preparations on activation and expression of NF-κB in human hepatocellular carcinoma cells (HepG2 cells) was evaluated.

MATERIALS AND METHODS

Plant material. *S. pratensis* was cultivated in the field of the Department of Medical and Cosmetic Natural
Products, Poznan University of Medical Sciences, Nowowiecka 33, 60-623 Poznan. The leaves were collected in July 2016 and dried. The voucher number of the plant was 1104.

Preparation of extracts. The dried (10 g) leaves or flowers of *S. pratensis* were extracted with 200 mL of methanol and ethyl acetate for 30 min using an ultrasonic bath. The extraction was carried out at 50°C, 1000 W ultrasonic power, frequency of 37 kHz (Elma S180 H). The methanolic and ethyl acetate extracts were concentrated to dry mass and used to prepare concentration suitable for the α-amylase inhibitory test and HepG2 cells’ exposure.

Isolation and identification of flavonoids. The flavonoids were isolated from a methanol-water (1:1) *S. pratensis* flower extract using column chromatography.

The column was filled with cellulose Wathman CF11 (Whatman, Germany) and eluted with ethyl acetate-methanol-water (100:5:5) as a solvent system, and next, the eluate was transferred on the Sephadex LH-20 column (25–100 µm, Sigma-Aldrich, Germany) and subsequently eluted with methanol.

Thin-layer chromatography (TLC) was used to control the isolation process [cellulose plates (Merck, Germany) with CH₃COOH·H₂O (15:85); silica gel 60 plates (Merck, Germany) with EtOAc·HCOOH·H₂O (100:11:12:26)]. The flavonoid compounds were observed under UV at 366 nm before and after visualization by 1% Naturstofffreigang A in MeOH (NA).

The identification of the compounds was performed on the basis of UV, ESI-MS¹ and ESI-MS¹/MS² NMR analyses. The NMR spectra (1H, 13C NMR) were recorded using a Bruker NMR Avance II 400 MHz spectrometer, CD₃OD with TMS as an internal standard. The ESI – MS mass spectra were measured on a Waters/Micromass (Manchester, UK) ZQ mass spectrometer. The obtained data were comparable to the published values (Giang & Son, 2004; Gohari *et al.*, 2011; Peng *et al.*, 2016). The UV spectra were recorded on a UV/VIS Perkin Elmer Lambda 35 spectrophotometer in MeOH, and also after addition of specific reagents (NaOAc/H₂BO₃, AlCl₃, HCl, NaOMe, NaOAc), according to Mabry and co-workers (Mabry *et al.*, 1970).

For the biological assay, the methanolic or ethyl acetate extracts from the flowers (SK1, SK2) and leaves (SL1, SL2) were applied.

Pancreatic α-amylase (EC.3.2.1.1) activity inhibition assay. The α-amylase inhibition assay was performed by the procedure of Keharom and co-workers (Keharom *et al.*, 2016). Pancreatic α-amylase was purchased from Sigma–Aldrich.

The dry mass extracts from 10 g of leaves or flowers were used to prepare different concentrations ranging from 40 µg/mL to 140 µg/mL. Luteolin 7-glucoside (1) and apigenin 7-glucoside (2) were tested at concentrations ranging from 0.25 µg/mL to 15 µg/mL.

The starch solution (1%) used as a substrate was prepared by boiling and stirring 0.5 g of starch in 50 mL of sodium phosphate buffer for 5 min. The pancreatic α-amylase solution was prepared by mixing 0.01 g of the enzyme in 10 mL of the sodium phosphate buffer. The color reagent was a solution containing 3,5-dinitrosalicylic acid (0.1 g), sodium potassium tartrate (2.99 g), sodium hydroxide (0.16 g) and the phosphate buffer (completed to 10 mL).

Twenty-five microliters of each plant extract and 25 µL of the enzyme were mixed in a 96-well plate and incubated for 10 min at 25°C. Then, 25 µL of the starch solution were added and the mixture was incubated under the same conditions. The reaction was stopped by adding 50 µL of a dinitrosalicylic color reagent. The mixture was incubated for 20 min at 85°C (Incubator CLN32STD POL-eko Aparration, Poland). After cooling this mixture to room temperature, the absorbance was measured at 540 nm (Spectrophotometer Thermo Fisher SCIENTIFIC Multiskan Go, Finland). In the control, well dimethyl sulfoxide (DMSO, St. Louis, MO, USA) replaced the plant extract.

The blank sample in which the enzyme was replaced with the buffer solution was used to correct the absorption of the mixture. An acarbose solution at concentrations of 0.25 µg/mL to 1.0 µg/mL was used as a positive control. The inhibition percentage of α-amylase was assessed by the formula:

\[\%\text{Inhibition} = \frac{\Delta A_{\text{control}} - \Delta A_{\text{sample}}}{\Delta A_{\text{control}}} \times 100 \]

Percent inhibition of the enzyme activity at the concentration range of 0.25–15 µg/mL (isolated flavonoids) and 40–140 µg/mL (extracts) were calculated and IC₅₀ values were estimated by linear regression.

Cell culture and treatment. HepG2 (ATCC HB 8065) was purchased from American Type Culture Collection (Rockville, MD, USA). Liver cancer cells were maintained in Dulbecco’s Modified Eagle’s Medium (St. Louis, MO, USA) containing 10% fetal bovine serum (St. Louis, MO, USA) and antibiotics solution (St. Louis, MO, USA). The cells were grown in a humidified incubator at 37°C in the atmosphere of 5% CO₂. To assess the effect of luteolin 7-glucoside (1), apigenin 7-glucoside (2), methanolic and ethyl acetate extracts of *S. pratensis* flowers and leaves on the measured parameters, 5×10³ cells were seeded per 100 mm culture dish. After 24 hours of initial incubation, the cells were treated with 2.5 µg/mL, 5 µg/mL and 10 µg/mL luteolin 7-glucoside (1), apigenin 7-glucoside (2), methanolic and ethyl acetate extracts of *S. pratensis* flowers (SK1, SK2) and leaves (SL1, SL2) or 0.1% vehicle DMSO as a control. Incubation was continued for subsequent 24 hours and then cells were harvested.

Viability assay. The effect of studied compounds on cell viability was assessed by the MTT assay, according to standard protocols described previously (Krajka-Kuźniak *et al.*, 2013). Briefly, 10⁴ HepG2 cells were seeded per well in a 96-well plate. After 24 hours of preincubation in complete medium, flavonoids or extracts were added to the culture medium at various concentrations, and cells were incubated for subsequent 24 hours. DMSO concentration did not exceed 0.1%. After 24 hours, cells were washed twice with warm PBS buffer and fresh medium containing the MTT salt (0.5 mg/mL) was added. After 4 hours of incubation, formazan crystals were dissolved in acidic isopropanol and absorbance was measured at 570 nm and 690 nm. All of the experiments were repeated three times.

Nuclear and cytosolic preparation. The cytosol and nuclear extracts from HepG2 were prepared using the Nuclear/Cytosol Fractionation Kit (BioVision Research, CA USA).

RNA isolation. The extraction of total RNA from cells was performed using GeneMatrix Universal RNA Purification Kit (EurX, Gdańsk, Poland) according to the manufacturer’s instructions.

Quantitative PCR. Total RNA was subjected to reverse transcription using the RevertAid Kit (Fermentas, Burlington, Canada), followed by quantitative real-time PCR. For real-time analyses, the Max-
Table 1. Primers used in RT-PCR.

Primer	Forward primer	Reverse primer
NF-kB p50	5′ATATCCACACCTTCTTAC	5′AAATCCACACATCTTTCC
NF-kB p65	5′CCCGTCTCTTCTTAC	5′ACCTCCATGGCTTCTTG
COX-2	5′GCCGTCCTAGTAC	5′GAGTCTGTCGTG
PBGD	5′TCAGTTACCATACACAGACC	5′CTGGAATTTAGGACACGT
TBP	5′GGCCACCTCCACCTGTTATC	5′GGGATTATATTCGGCGTTTCG

Table 2. Spectral analysis results of luteolin 7-glucoside (1) and apigenin 7-glucoside (2) isolated from S. pratensis flowers.

Compound	Identification results
1	UV λnm: MeOH 250, 335; MeOH/NaOAc 252, 267sh, 360sh, 401; MeOH/NaOAc/H2O, 258, 359; MeOH/NaOMe 263, 268, 300sh; MeOH/AlCl3, 274, 297sh, 360, 429; MeOH/AlCl3/HCl 382 ESIMS m/z: 447 (M+H)
2	UV λnm: MeOH 270, 280, 312; MeOH/NaOAc 273, 310, 368; MeOH/NaOAc/H2O, 269, 309; MeOH/NaOMe 272, 310, 368; MeOH/AlCl3, 273, 308, 354; MeOH/AlCl3/HCl 273, 305, 353 ESIMS m/z: 447 (M+H)

RESULTS

Chemical analysis

The applied protocol described above allowed for isolation of luteolin 7-glucoside (1) and apigenin 7-glucoside (2). The chemical structure of the compounds was determined on the basis of 1H and 13C NMR, ESI-MS and UV-spectroscopy analysis (Table 2) and by comparison with the data from the literature (Giang et al., 2004; Mabry et al., 1970; Gohari et al., 2011, Ashghar et al., 2015; Peng et al., 2016). For comparison, in further studies, extract containing the flavonoid fraction was applied.

The effect of luteolin 7-glucoside (1), apigenin 7-glucoside (2) and S. pratensis extracts on the α-amylase activity

The isolated flavonoids, and methanolic and ethyl acetate extracts from S. pratensis leaves (SL1, SL2) and flowers (SK1, SK2) were examined for their α-amylase inhibitory activity. The results are presented in Table 3. Luteolin 7-glucoside (1) showed stronger activity against α-amylase than apigenin 7-glucoside (2). Both glucosides (1, 2) had a moderate inhibitory effect on α-amylase, with the IC50 value of 13.2 µg/mL and 26.1 µg/mL, respectively, while the IC50 value for acarbose was 0.69 µg/mL. High inhibitory potency was demonstrated for the methanolic extract from S. pratensis leaves (SL1), with the IC50 value of 88.5 µg/mL. A similar activity was shown by the ethyl acetate extracts from the leaves (SL2) and methanol from the flowers (SK1) (IC50=120.0 µg/mL and 119.1 µg/mL, respectively). The ethyl acetate extract from the flowers (SK2) showed the weakest activity (IC50=211.3 µg/mL).
The effect of luteolin 7-glucoside (1), apigenin 7-glucoside (2) and methanolic and ethyl acetate extracts from S. pratensis leaves and flowers on HepG2 cells' viability

The MTT test was used to evaluate the effect of luteolin 7-glucoside (1), apigenin 7-glucoside (2) and S. pratensis extracts on cell viability. Within the concentration range of 0.1–50 µg/mL the tested compounds and extracts reduced the viability of the HepG2 cells in a dose-dependent manner (Fig. 1). Luteolin and apigenin 7-glucosides were more cytotoxic than the extracts.

On the basis of the above results of the MTT test, in further studies, the tested flavonoids and S. pratensis extracts were used at the concentrations of 2.5 µg/mL, 5 µg/mL and 10 µg/mL.

The effect of luteolin 7-glucoside (1), apigenin 7-glucoside (2) and S. pratensis extracts on NF-κB activation, and NF-κB and COX-2 expression

Activation of NF-κB was evaluated in terms of translocation of its active subunits from cytosol into the nucleus. As is shown in Fig. 2, luteolin and apigenin 7-glucosides decreased the nuclear level of p50 and p65 subunits by about 21–23%, at concentration of 10 µg/mL. Ethyl acetate extract from leaves (SL2), had significantly diminished the nuclear level of NF-κB p50 and the cytosolic level of COX-2, by about 29% and 21%, respectively.

The effect of isolated luteolin, apigenin 7-glucosides and S. pratensis extracts on NF-κB and COX-2 mRNA levels in HepG2 cells is shown in Table 4. At the concentration of 10 µg/mL, both glucosides and all studied extracts reduced the mRNA of p65 subunit level by about 23–36% in comparison to the result obtained in the control group. A similar effect was observed for expression of NF-κB p50. Moreover, SK1 and SK2 diminished the level of NF-κB p50 mRNA at a concentration of 5 µg/mL. At the same concentration, SL1 and apigenin 7-glucoside had decreased the transcript level of NF-κB p65. Expression of COX-2 was decreased after incubation with both glucosides and extracts, but the difference was not statistically significant.

Table 3. α-Amylase inhibitory activities and IC50 values of luteolin 7-glucoside (1), apigenin 7-glucoside (2) and S. pratensis extracts.

C (µg/mL)	Inhibitory percentage (±S.D.)	C (µg/mL)	Inhibitory percentage (±S.D.)					
SL1	SL2	SK1	SK2					
40	37.16±0.17	32.62±0.29	20.57±0.14	19.27±0.31	0.25	9.54±0.23	5.21±0.10	31.44±0.14
80	48.14±0.30	48.14±0.22	33.78±0.07	30.70±0.18	1.0	10.75±0.11	8.64±0.23	61.05±0.17
120	51.61±0.07	51.61±0.25	45.61±0.09	33.21±0.24	1.5	81.11±0.11		
140	53.41±0.30	53.47±0.15	69.00±0.37	37.43±0.02	2.0	12.15±0.13	11.15±0.47	
100	43.66±0.43	43.66±0.43	24.72±0.27		5.0	20.32±0.27	16.19±0.15	
15.0	54.15±0.12	30.35±0.22			10.0	43.66±0.43	24.72±0.27	
Acarbose				13.23	26.09	0.69		
IC50	88.52	119.97	119.10	211.28	13.23	26.09		

Figure 1. The effect of luteolin 7-glucoside (1), apigenin 7-glucoside (2) and S. pratensis extracts on the HepG2 cell line viability. Data are expressed as means ± S.E.M. from three separate experiments.
NF-κB, α-amylase modulation by *S. pratensis* extracts in HepG2 cells

Figure 2. The effect of luteolin 7-glucoside (1), apigenin 7-glucoside (2) and *S. pratensis* extracts on NF-κB and COX-2 protein level in HepG2 cells.

Data (means ± S.E.M.) of Western blot analysis of the cytosolic and the nuclear content of p50 and p65, and the cytosolic content of COX-2 from three separate experiments; representative immunoblots are shown. The sequence of the bands corresponds to the sequence of bars in the graph. The results of Western blot analysis are compared with the control level, which equals 100%. The asterisk (*) above the bar denotes a statistically significant difference from the control group, *p* < 0.05.
The results of our study confirmed inhibition of the α-amylase activity by luteolin and apigenin 7-glucosides (Kim et al., 2000; Funke & Melzing, 2006; Li et al., 2018). Moreover, luteolin 7-glucoside isolated from S. pratensis showed a stronger inhibitory effect on α-amylase activity than apigenin 7-glucoside. Since the biological activity of flavonoids depends on the number of hydroxyl residues in the core molecule, it may be concluded that the presence of an additional OH group in the B ring of luteolin 7-glucoside makes this compound a more potent inhibitor of α-amylase. These studies have confirmed earlier reports about the influence of hydroxyl substituents and sugar molecules in the flavonoids on inhibition of α-amylase (Tadera et al., 2006; Sales et al., 2012; Azghari et al., 2015).

Comparison of the effect of isolated luteolin and apigenin 7-glucosides with herb extracts indicated a stronger inhibitory potential of S. pratensis leaves’ extract. A high content of flavonoids in this preparation (1.18%) in comparison with the flowers extract (0.23%) may be responsible for this effect (Witkowska-Banaszczak & Długaszewska, 2017). Thus, in this study we also evaluated the effect of luteolin and apigenin 7-glucosides, and methanolic and ethyl acetate extracts from S. pratensis leaves and flowers on the NF-κB transcription factor activation and expression. Luteolin and apigenin 7-glucosides decreased expression of NF-κB and COX-2. The expression of the latter is controlled by NF-κB. A similar effect was observed after treatment of HepG2 cells with extracts from S. pratensis leaves and flowers. However, activation of NF-κB evaluated in terms of translocation of its active subunits from the cytosolic to the nuclear fraction was significantly affected only by isolated flavonoids and not by the extracts containing the whole flavonoid fraction obtained from flowers or plant leaves. Thus, the methanolic extract seems to be the most potent inhibitor of α-amylase activity.

The chemical composition of the S. pratensis herb was not well described so far. Our earlier study showed a substantial amount of polyphenolic compounds in the leaves’ extracts from this plant (Witkowska-Banaszczak & Długaszewska, 2017). Thus, the aim of this study was further characterization of these components and evaluation of their biological activity. Two flavonoid glucosides, luteolin and apigenin were isolated. Their effect on the α-amylase activity and NF-κB activation was compared with that exerted by the extracts containing the whole flavonoid fraction obtained from flowers or plant leaves.

The results of this study also indicated that the methanolic extracts are more efficient than the ethyl acetate in α-amylase activity inhibition. Thus, such preparation should be recommended for further studies. Additional research into the chemical profile of the extracts will probably allow determining the compounds or groups of compounds affecting amylase inhibition.

α-Amylases catalyze the specific cleavage of α-1,4 glycosidic bonds in polysaccharides, such as starch and glycogen. Human α-amylase is one of the major secretory products of the pancreas (P-amylase) and salivary glands (S-amylases). Human S- and P-amylases are encoded by AMY-1 and AMY-2A genes, respectively. The AMY-2B gene encodes α-amylases with a very similar amino acid sequence to the S- and P-amylases (Yokouchi et al., 1990), which are expressed in the lung carcinoid tissue (Doi et al., 1991; Tomita et al., 1989). It was shown that human liver amylase is encoded by the same gene. Thus, this α-amylase isoform may be related to hepatocellular carcinoma (HCC) (Koyama et al., 2001). Chronic inflammation plays an important role in pathogenesis of HCC. The key element of this process is activation of NF-κB (Hwang et al., 2011).

Thus, in this study we also evaluated the effect of luteolin and apigenin 7-glucosides, and methanolic and ethyl acetate extracts from S. pratensis leaves and flowers on the NF-κB transcription factor activation and expression. Luteolin and apigenin 7-glucosides increased expression of NF-κB and COX-2. The expression of the latter is controlled by NF-κB. A similar effect was observed after treatment of HepG2 cells with extracts from S. pratensis leaves and flowers. However, activation of NF-κB evaluated in terms of translocation of its active subunits from the cytosolic to the nuclear fraction was significantly affected only by isolated flavonoids and ethyl acetate extracts from S. pratensis leaves. Thus, the effect of S. pratensis preparation on NF-κB signaling was moderate.

However, luteolin 7-glucoside isolated from this herb seems to be the most potent inhibitor of α-amylase activity, as well as of NF-κB p50 and NF-κB p65. Our research into the chemical profile of the extracts will probably allow determining the compounds or groups of compounds affecting amylase inhibition. Therefore, luteolin 7-glucoside isolated from this herb seems to be the most potent inhibitor of α-amylase activity.
sults confirmed the observation made by other authors on luteolin potential as an anti-inflammatory agent acting through downregulation of NF-κB and subsequently downregulation of COX-2 expression.

In this regard, Xue and others (Xue et al., 2017) showed that luteolin and apigenin downregulate COX-2 expression in HepG2 cells. Similar observations in the case of luteolin appeared in the paper of Hwang and others (Hwang et al., 2011). They showed that luteolin inhibits NF-κB signaling pathways in HepG2 cells. Additionally, other studies using pancreatic carcinoma cells (PANC-1, CoLo-357 and BxPC-3 cells) confirmed the inhibitory effect of luteolin on NF-κB (Cai et al., 2012).

Overall, the results of this study indicate that S. pratensis flavonoids may modulate the metabolic and signaling pathways whose deregulation is related to progression of liver cancer. Further studies are required to confirm these observations and assess the chemopreventive and/or therapeutic potential of the S. pratensis herb.

Conflicts of Interest

Authors declare that they have no conflict of interest to disclose.

Acknowledgments

The authors thank Prof. Wanda Baer-Dubowska for helpful advice in completion of the revised manuscript.

REFERENCES

Asgharia B, Salehi P, Sonboli A, Ebrahimib SN (2015) Flavonoids from Salsola vermiculata with α-amylase and α-glucosidase inhibitory effect. Iran J Pharm Res 14: 609–615.

Bouzaiane NN, Chabane F, Sassi A, Chekir-Ghedira L, Ghedira K (2016) Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci 144: 80–85. https://doi.org/10.1016/j.lfs.2015.11.030

Cai X, Lu W, Ye T, Lu M, Wang J, Huo J, Quian S, Wang X, Cao P (2012) The molecular mechanism of luteolin-induced apoptosis is potentially related to inhibition of angiogenesis in human pancreatic cancer cells. Oncol Rep 28: 1353–1361. https://doi.org/10.3829/ or.2012.1914

Choil SI, Jeong ChiS, Cho SY, Lee YS (2007) Mechanism of apoptosis induced by apigenin in HepG2 human hepatoma cells: involvement of reactive oxygen species generated by NADPH oxidase. Arch Pharm Res 30: 1328–1335. https://doi.org/10.1007/BF02980274

Chung MP, Jin KS, Cho CW, Lee IW, Huh GH, Cha YS, Song YS (2012) Luteolin inhibits inflammatory responses by downregulating the JNK, NF-κB, and AP-1 pathways in TNF-α-stimulated RAW 264.7 cells. Nutr Res Pract 7: 423–429. https://doi.org/10.4162/ nrp.2013.7.6.423

Peng HY, Zhang X, Xu J (2016) Apigenin-7-β-D-glucoside isolation from the highly tolerant-plant Echinochloa crusgalli. J Zhejiang Univ Sci B (Biomed & Biotechnol) 17: 447–454. https://doi.org/10.1631/jzus.B1500249

Sales PM, Souza PM, Simoeni LA, Magalhães OP, Silveira D (2012) α-amylase inhibitors: A review of raw material and isolated compounds from plant source. J Pharm Pharmaceut Sci 15: 141–183. https://doi.org/10.18433/J35S3K-11095-0108-0020.0036

Shukla S, Gupta S (2010) Apigenin: a promising molecule for cancer prevention. Pharm Res 27: 962–978. https://doi.org/10.1007/s11188-010-0889-7

Takeda T, Minami Y, Takamatsu K, Matsuoka T (2006) Inhibition of α-glucosidase and α-amylase by flavonoids. J Natr Sci Vitamin 52: 149–153. https://doi.org/10.17177/nsv.52.149

Tomita N, Horii A, Doi S, Yokouchi H, Shiosaki K, Higashiyama M, Matsubara K, Ogawa M, Mouri T, Matsubara K (1989) A novel type of human α-amylase produced in lung carcinoid tumor. Genes 76: 11–18. https://doi.org/10.12788/jsg.76.7603

Witkowski-Baszczek E, Dlugaszewska J (2017) Essential oils and hydrophilic extracts from the leaves and flowers of Scutellaria baicalensis: cytotoxic activities of selected flavonoids. 3rd International Conference on Green Materials and Environmental Engineering (GMEE 2017). https://doi.org/10.12783/dteees/gmee2017/16624

Yokouchi H, Horii A, Tomita N, Doi S, Ogawa M, Morii T, Matsubara K (1990) The Systematic Identification of Flavonoids for the ultraviolet spectral analysis of flavonoids. In Identification of Flavonoids: the assign-score method. https://doi.org/10.18433/J35S3K-nrp.2013.7.6.423

Zhang BW, Li X, Sun W, XingY, Xiu Z, Zhuang Ch, Dong Y (2017) Identification of Flavonoids from S. pratensis extracts in HepG2 cells. J Agric Food Chem 65: 8319–8330. https://doi.org/10.1021/acs.jfc5.0b2531

Xue et al., 2017, Comparison of β-glucosidase and α-amylase modulation by S. pratensis extracts in HepG2 cells.