Comparison of fourteen Rapid Point-of-Care Antigen Tests for SARS-CoV-2: Use & Sensitivity

Zulema Pérez-Martínez
Instituto de Investigación Sanitaria del Principado de Asturias

Gabriel Martín (✉ gabrielmartinrguez1994@gmail.com)
Instituto de Investigación Sanitaria del Principado de Asturias
https://orcid.org/0000-0003-0304-6250

Marta Sandoval
Hospital Universitario Central de Asturias

Susana Rojo-Alba
Hospital Universitario Central de Asturias

Jose Antonio Boga
Instituto de Investigación Sanitaria del Principado de Asturias

Santiago Melón
Hospital Universitario Central de Asturias

Marta Elena ÁLvarez-Argüelles
Hospital Universitario Central de Asturias

Research Article

Keywords: rapid antigen test comparation, SARS-CoV-2, COVID-19, normalized viral load, false negative

Posted Date: September 30th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-951263/v1

License: ☺ ☞ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Fast sensitive techniques are advisable for SARS-CoV-2 detection. Various rapid SARS-CoV-2 antigen detection tests have been developed, but type and quality of the sample, stage of the disease and viral load can all have an impact on their sensitivity. For this study, a total of 486 swabs were processed and checked with various commercially available tests, and then compared with q(RT)-PCR (the gold-standard method).

Total sensitivity varied considerably, for example, 42.10% (nal von minden and Tody Laboratories), 68.42% (Cahnos) and 84.78% (PCL). Sensitivity reached 100% when cycle threshold (Ct) was lower than 22 in almost all tests, although this dropped considerably when Ct was higher above 30, where only three tests identified 40% or more positive samples and in 5 cases it was 0%. What is more, only two cases were 100% accurate when viral load was higher than 5 log/103 cells and accuracy was 0% in 12 cases where viral load was lower than 4 log/103 cells.

These results, particularly taking into consideration the fact they used normalized viral load, suggest that antigen detection tests have their role in the fast triage of positive patients, but that considerable care should be taken with negative results, which is even more important if they are used for massive screening.

Introduction

Since 11 March 2020, when the WHO declared COVID-19 a pandemic, and now with over 150 million infections and more than 3 million deaths worldwide (1–2), the long term management of this disease is imperative.

Although q(RT)-PCR is the gold-standard method, it can take at least 3 hours from the point at which the sample suspected of containing SARS-CoV2 arrives at the laboratory and is properly processed for the result to be obtained (3). In contrast, with the various rapid antigen detection tests that have been developed a preliminary result can be obtained in 10-30 minutes (4–5), providing quick information for the triaging of patients.

However, the type and quality of the sample, stage of the disease and viral load can all have an impact on this latter type of test (5–8). In order to provide more information on this, here, various different antigen detection tests were compared with q(RT)-PCR.

Material & Methods

Samples

between September 2020 and January 2021, 457 positive and 29 negative nasopharyngeal samples were collected from different patients at the Hospital Universitario Central de Asturias.
Genome detection

All samples were extracted and purified using MagNa Pure 96 system (Roche, Geneva), following the manufacturer instructions.

An in-house q(RT)-PCR test able to detect two targets of the SARS-CoV2 genome (ORF1ab and N gene) as well as the human β-globin gene was performed for each sample. Briefly, 5μL of the sample was added to 10 μL of TaqMan Fast 1-Step Master Mix (Life Technologies, Carlsbad, CA) and supplemented with a mixture of primers (Thermo Fisher Scientific, Walthman, MA) and taqman MGB probes (Applied Biosystems, Foster City, CA) (Table 1).

Rapid Antigen Detection Test: for this comparative assay, 13 different immunochromatography-based and 1 immunofluorescence-based SARS-CoV2 antigen detection tests were analysed. The different tests were: Panbio Covid-19 Ag rapid test device (Abott, Germany); SIMPLE/STICK AG SARS-CoV-2 (COVID-19) (Operon, Spain); PCL COVID-19 Ag Gold Saliva (PCL, South Korea); SARS-CoV-2 Antigen Detection Kit (Assut Europe, Italy); CLINITEST Rapid COVID-19 Antigen Test (Siemens Healthineers, Germany); SARS-CoV2 Rapid Antigen test (Roche, Germany); Test Rapido de Antigenos de SARS-COV-2 (Oro coloidal) (Cahnos, Spain); Test rápido de antígenos COVID-19 (hisopado nasofaríngeo) (Beright, Spain); NADAL® COVID-19 antigen rapid test (nal von minden, Germany); Coronavirus (SARS-CoV-2) Rapid Tests Reagents (Tody Laboratories, Romania); CerTest SARS-CoV-2 Card Test (CerTest Biotec, Spain); Test Rápido COVID-19 Ag (Lambra, Spain); STANDARD F COVID-19 AG FIA (SD Biosensor, South Korea) and ESPLINE® SARS-CoV-2 (Fujirebio, Japan). All tests were performed following the manufacturer's instructions. The number of samples used for testing with each test is shown in Tables 2 and 3.

Results

For results analysis, both cycle threshold (Ct) (Table 2) and viral load (VL) (Table 3) were considered, three subgroups being established in each case: Ct ≤ 22; 23 ≤ Ct ≤ 29; and Ct ≥ 30, and VL log ≥ 5; 4 ≤ VL log ≤ 5 and VL log < 4.

With respect to Ct: total mean sensitivity was 58.36% ± 11.90 with a confidence interval (CI) of 95% (52.13 – 64.59), while this figure was 99.45% ± 2.06 with CI95% (98.37 – 100) when Ct ≤ 22; 68.48% ± 16.32 with CI95% (59.93 – 77.03) for 23 ≤ Ct ≤ 29; and 29.66% ± 20.35 with CI95% (16.37 – 42.95) when Ct ≥ 30. The full results are shown in Table 2 and Figure 1.

On the other hand, looking at normalized viral load, expressed on a logarithmic scale, total mean sensitivity was 57.72% ± 12.11 with CI95% (51.38 – 64.06). When the three different VL bands were considered, sensitivity was 77.60% ± 14.99 with CI95% (69.75 – 85.45) when VL log ≥ 5; 31.70% ± 22.72 with CI95% (18.28 – 45.12) for 4 ≤ VL log ≤ 5; and 25.38% ± 7.62 with CI95% (14.83 – 35.93) on log ≤ 4. The full results are shown in Table 3 and Figure 2.
Specificity was always 100% except for with PCL test, where there was one false positive of 4 samples tested.

Discussion

Under the current emergency measures in force in different parts of the world, and with the fourth wave rising or feared in many countries, the time it takes to process samples is crucial to triage patients, making rapid antigen detection tests can be a very useful assay. But all efforts should be made to ensure the tests used are as sensitive as possible.

When comparing the different tests examined in this study and using the Ct of the q(RT)-PCR as validation, a large range of sensitivity was found, from 42.10% using the tests by the nal von minden and Tody Laboratories to 84.78% with the COVID-19 Ag Gold Saliva from PCL.

As would be expected, we found the correlation between sensitivities on rapid antigen detection test and q(RT)-PCR for Cts under 23 to be practically complete (only the Operon test was not 100% accurate, although it did correctly identify over 90% of positives). However, as soon as Ct is higher, sensitivity decreases notably. With Cts over 23, four of the 14 tests correctly identified only 50% of positives, and just five were accurate in 80% or more of cases. The situation is even more marked when Ct is over 30, where just 2 tests correctly identified 50% or more of positives (PCL with 63.63% and Beright with 57.14%).

When the accuracy of the various tests was compared on the basis of the quantification of human β-globin, which allows the true measurement of viral load and validates the quality of the sample extraction (13–14), the results are somewhat different.

In this case, not all tests have a 100% correlation for samples with over 5 log/103 cells, as might be expected. This is very important, both clinically and epidemiologically, because it implies a not insignificant percentage of false negatives which correspond to contagious patients (15–16). This indicates, therefore, that these rapid antigen detection tests are not recommended for massive screenings.

For samples with VL of below 4 log, only two methods can detect SARS-CoV-2 antigens, and both at low rates: 31% (Operon) and 20% (PCL). This is to be expected, and is not of great epidemiological significance given that patients with low viral load are not considered to be transmitters (12), even though they may in fact be at the beginning of the infection, so could become transmitters at a relatively short later date.

To our knowledge this is the first study which compares so many rapid antigen detection tests for SARS-CoV2. We counteracted any potential bias of the low number of samples used by checking each sample with each commercial test and, despite the variance derived from the manual procedure of this kind of probes, our results for specific tests are similar to those obtained in other studies (4–5, 10–11, 17). They are, though, far from the promising results published by the manufacturers themselves, or claimed by
certain authors (17) and this emphasises that special care should be taken with the general lack of sensitivity with higher Cts (or low viral load), as results shows that the reliability of obtaining positive PCR and contagion capacity in this range are as yet not well known (15–16).

This concern is confirmed when a normalized measure of viral load is taken into account. These results also confirm that sampling procedures are very important and rapid tests using easily recovered samples can have compromised sensitivity.

In conclusion, this kind of immunoassay for antigen detection can be useful to ensure the quick isolation of positive patients, but the lack of sensitivity of some tests, even in patients with high viral load, means they miss identifying patients who are positive for SARS-CoV2 who might be infectious, so they must be used with great care.

Declarations

Funding: Not applicable

Conflict of interest statement: Authors declare no potential conflicts of interest.

Ethical approval: This study was approved by Comité de Ética de la Investigación del Principado de Asturias with code CElmPA 2021.188

Availability of data and material: Not applicable

Code Availability: Not applicable

References

1. WHO. 11 March 2020. Coronavirus disease (COVID-19) situation report. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn%201ba62e57810
2. COVID-19 situation update worldwide, as of week 11, updated 25 March 2021. https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases
3. Tang YW, Schmitz JE, Persing DH, et al. Laboratory diagnosis of COVID-19: current issues and challenges. J Clin Microbiol. 2020;58:e00512-20; doi.org/10.1128/JCM.00512-20.
4. Yamayoshi S, Sakai-Tagawa Y, Koga M, et al. Comparison of Rapid Antigen Tests for COVID-19. Viruses 2020, 12, 1420; doi: 10.3390/v12121420
5. Toptan T, Eckerman L, Pfeiffer AE, et al. Evaluation of a SARS-CoV-2 rapid antigen test: Potential to help reduce community spread?. J Clin Virol 135 (2021); doi:10.1016/j.jcv.2020.104713
6. Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020;323(18):1843–1844; doi:10.1001/jama.2020.3786
Tables

Table 1: Primers and probes
Target	Design	Function	Name	Sequence (5’-3’)	Position
SARS-CoV-2	In-house	Forward primer	CoV-2-OVI-S	ATCAAGTTAATGGTTACCCTAACATGT	
		Reverse primer	CoV-2-OVI-A	AACCCTAGCTGTAAGGTAAATTTGGTACC	ORF1ab
		MGB FAM probe	CoV-2-OVI-FAM	CCGGAAGAGCTA	
SARS-CoV-2	CDC	Forward primer	2019-nCoV_N1-F	GACCCTAAAAATCGCAAAT	
		Reverse primer	2019-nCoV_N1-R	TCTGGTTACTGCCAGTTGAATCTG	Gen N
		MGB VIC probe	2019-nCoV_N1-P-VIC	CCGCATACGTGTTGTCG	
β-globin	In-house	Forward primer	Beta-TR-S	ACACAACTGTGTTCACTAGC	
		Reverse primer	Beta-TR-A	CCAAATTCACGTCCACGTTACACC	β-globin
		MGB Cy5 probe	Beta-Cy5	TGCACTGACTCCTGAGGA	

1 Sequences published by Centers for Disease Control and Prevention (CDC) (9)
2 Due to the incorporation of MGB in the probes used for this work, the length of sequences was modified

Table 2: Sensitivity by test and cycle threshold (Ct)

Test	Samples	Sensitivity	Samples	Sensitivity	Samples	Sensitivity	Samples	Sensitivity
Abott	84	48 (57.14%)	22	22 (100%)	40	25 (62.50%)	23	1 (4.35%)
Operon	79	40 (50.63%)	13	12 (92.30%)	38	19 (50.00%)	28	9 (32.00%)
PCL	46	39 (84.78%)	11	11 (100%)	24	21 (87.50%)	11	7 (63.63%)
Assut Europe	39	23 (58.97%)	10	10 (100%)	15	10 (66.67%)	14	3 (21.43%)
Siemens	39	21 (53.84%)	6	6 (100%)	16	13 (81.25%)	17	2 (11.76%)
Roche	23	15 (65.21%)	6	6 (100%)	11	8 (72.72%)	6	1 (16.67%)
Cahnos	19	13 (68.42%)	4	4 (100%)	13	9 (69.23%)	2	0 (0%)
Beright	19	12 (63.15%)	4	4 (100%)	8	4 (50.00%)	7	4 (57.14%)
nal von	19	8 (42.10%)	5	5 (100%)	6	3 (50.00%)	8	0 (0%)
Tody	19	8 (42.10%)	5	5 (100%)	6	3 (50.00%)	8	0 (0%)
Certest	17	9 (52.94%)	4	4 (100%)	9	5 (55.56%)	4	0 (0%)
Lambra	15	10 (66.67%)	4	4 (100%)	6	5 (83.33%)	5	1 (20.00%)
SD Biosensor	12	8 (66.67%)	2	2 (100%)	5	4 (80.00%)	5	2 (40.00%)
Fujirebio	9	4 (44.44%)	2	2 (100%)	2	2 (100%)	5	0 (0%)

Table 3: Sensitivity by test and normalised viral load
Test	Total Samples	log ≥ 5 Samples	Sensitivity	log ≤ 4 Samples
Abott	84	63	47 (74.60%)	14
Operon	79	54	35 (64.81%)	12
PCL	46	35	33 (94.28%)	6
Assut Europe	39	23	19 (82.60%)	12
Siemens	39	19	17 (89.47%)	12
Roche	23	15	15 (100%)	7
Cahnos	19	13	13 (72.22%)	1
Beright	19	12	8 (66.67%)	7
nal von	19	8	7 (70.00%)	7
Tody	19	10	7 (70.00%)	7
Certest	17	9	9 (64.28%)	2
Lambra	15	10	10 (100%)	4
SD Biosensor	12	8	7 (87.50%)	3
Fujirebio	9	4	4 (50.00%)	2

Figures

Figure 1

Representation of sensitivity percentage of each test by cycle threshold.

![Figure 1](image-url)
Figure 2

Representation of sensitivity percentage of each test by viral load.