TWO SUPERCONGRUENCES RELATED TO MULTIPLE HARMONIC SUMS

ROBERTO TAURASO

(Received 24 July 2020; accepted 15 December 2020; first published online 28 January 2021)

Abstract

Let \(p \) be a prime and let \(x \) be a \(p \)-adic integer. We prove two supercongruences for truncated series of the form

\[
\sum_{k=1}^{p-1} \frac{\psi_k}{k} \sum_{1 \leq \cdots \leq \sum_{j_1, \ldots, j_r \leq k}} \frac{1}{j_1 \cdots j_r}
\]

and

\[
\sum_{k=1}^{p-1} \frac{(\psi_k - x)_k}{k} \sum_{1 \leq \cdots \leq \sum_{j_1, \ldots, j_r \leq k}} \frac{1}{j_1^2 \cdots j_r^2}
\]

which generalise previous results. We also establish \(q \)-analogues of two binomial identities.

2020 Mathematics subject classification: primary 11B65; secondary 11A07, 11B68.

Keywords and phrases: Bernoulli number, central binomial coefficient, congruence, harmonic sum.

1. Introduction and main result

In [9, Theorem 1.1] and [10, Theorem 7], we showed that for any prime \(p \neq 2 \),

\[
\sum_{k=1}^{p-1} \frac{(2k)_k}{k4^k} \equiv_p p^3 - H_{(p-1)/2} \quad \text{and} \quad \sum_{k=1}^{p-1} \frac{(2k)^2_k}{k16^k} \equiv_p 2H_{(p-1)/2},
\]

where \(H_n = \sum_{j=1}^n 1/j \) is the \(n \)th harmonic number and the notation \(a \equiv_m b \) means \(a \equiv b \pmod{m} \). Here we present two extensions of such congruences which involve the (nonstrict) multiple harmonic sums

\[
S_n(t_1, \ldots, t_r) = \sum_{1 \leq \cdots \leq \sum_{j_1, \ldots, j_r \leq n}} \frac{1}{j_1^t_1 \cdots j_r^t_r}
\]

with \(t_1, t_2, \ldots, t_r \) positive integers. For the sake of brevity, if \(t_1 = t_2 = \cdots = t_r = t \), we write \(S_n(t)^r \). Note that \(S_n(t) \) is simply the \(n \)th harmonic number of order \(t \), that is, \(H_n^{(t)} = \sum_{j=1}^n 1/j^t \).

Let \((x)_n = x(x+1) \cdots (x+n-1) \) be the Pochhammer symbol and let \(B_n(x) \) be the \(n \)th Bernoulli polynomial. For any prime \(p \), \(\mathbb{Z}_p \) denotes the ring of all \(p \)-adic integers and \((\cdot)_p \) is the least nonnegative residue modulo \(p \) of the \(p \)-integral argument.

Our main result is the following theorem.

© 2021 Australian Mathematical Publishing Association Inc.
\textbf{Theorem 1.1.} Let \(p \) be a prime, \(x \in \mathbb{Z}_p \) and \(r \in \mathbb{N} \). Let \(s = (x + (-x)_p)/p \).

(i) If \(p > r + 3 \), then
\[
\sum_{k=1}^{p-1} \frac{(x)_k}{(1)_k} \cdot \frac{S_k([1]^r)}{k} \equiv_p p^2 H^{(r+1)}_{(-x)_p} - (-1)^r spB_{p-r-2}(x).
\] (1.2)

(ii) If \(p > 2r + 3 \), then
\[
\sum_{k=1}^{p-1} \frac{(x)_k(1-x)_k}{(1)_k^2} \cdot \frac{S_k([2]^r)}{k} \equiv_p p^3 -2H^{(2r+1)}_{(-x)_p} - 2(2r + 1)spH^{(2r+2)}_{(-x)_p} + \frac{2x (1 + 3sr + 2sr^2)}{2r + 3} p^2 B_{p-2r-3}(x).
\] (1.3)

When \(r = 0 \), both (1.2) and (1.3) have been established by Sun in [7]. For the special value \(x = 1/2 \), (1.2) and (1.3) yield
\[
\sum_{k=1}^{p-1} \frac{(2k)}{k} \cdot S_k([2]^r) \equiv_p \begin{cases} -H^{(r+1)}_{(p-1)/2} & \text{if } r \equiv_2 0, \\ 2^{r+2} - 1 & \text{if } r \equiv_2 1 \end{cases}
\] (1.4)

and
\[
\sum_{k=1}^{p-1} \frac{(2k)^2}{k16^k} \cdot S_k([2]^r) \equiv_p p^3 -2H^{(2r+1)}_{(p-1)/2} \frac{r(2^{2r+3} - 1)}{2} p^2 B_{p-2r-3}.
\] (1.5)

By letting \(r = 0 \) in (1.4) and (1.5), we deduce the congruences (1.1) mentioned at the beginning of the paper, whereas for \(r = 1 \), congruence (1.5) proves the conjecture in [8, Conjecture 5.3].

The next two sections are devoted to proving (1.2) and (1.3). In the last section we establish \(q \)-analogues of the two key binomial identities which play a crucial role in the proofs of the main result.

\section{2. Proof of (1.2) in Theorem 1.1}

By taking the partial fraction expansion of the rational function
\[
x \rightarrow \frac{(x)_k}{(x)_n}
\]
with \(0 \leq k < n \),
\[
\sum_{k=0}^{n-1} \frac{(x)_k}{(1)_k} \cdot a_k = (x)_n \sum_{j=0}^{n-1} (-1)^j T_j \frac{(n-1-j)!}{j! (n-1-j)!} \cdot \frac{1}{x+j},
\] (2.1)
where T_j is the binomial transform of the sequence a_k,

$$T_j := \sum_{k=0}^{j} (-1)^k \binom{j}{k} \cdot a_k.$$

It is easy to see from (2.1) that

$$\sum_{k=0}^{p-1} \frac{(x)_k}{(1)_k} \cdot a_k \equiv_p T_{(-x)_p} \quad (2.2)$$

when $a_0, \ldots, a_{p-1}, x \in \mathbb{Z}_p$. In order to show (1.2), we introduce the function

$$G_n^{(r)}(x) := \sum_{k=1}^{n} \frac{(x)_k}{(1)_k} \cdot S_k([1]^r).$$

Then

$$G_n^{(0)}(x) = \frac{(1+x)_n}{(1)_n} - 1$$

and $S_k([1]^r) = S_{k-1}([1]^r) + S_k([1]^{r-1})/k$ leads to

$$G_n^{(r)}(x) = \frac{(1+x)_n}{(1)_n} \cdot S_n([1]^r) - \frac{G_n^{(r-1)}(x)}{x}. \quad (2.3)$$

Moreover,

$$F_n^{(r)}(x+1) - F_n^{(r)}(x) = \frac{G_n^{(r)}(x)}{x},$$

where

$$F_n^{(r)}(x) := \sum_{k=1}^{n} \frac{(x)_k}{(1)_k} \cdot \frac{S_k([1]^r)}{k}.$$

For any positive integer m,

$$F_n^{(r)}(x+m) - F_n^{(r)}(x) = \sum_{j=0}^{m-1} \frac{G_n^{(r)}(x+j)}{x+j}. \quad (2.4)$$

By (2.3), for $u = 1, \ldots, n$,

$$G_n^{(r)}(-u) = \frac{G_n^{(r-1)}(-u)}{u} = \cdots = \frac{G_n^{(0)}(-u)}{u^r} = -\frac{1}{u^r}.$$

Hence, by letting $x = -n$ and $m = n$ in (2.4), we deduce the known identity (see [1])

$$\sum_{k=1}^{n} (-1)^k \binom{n}{k} S_k([1]^r) \frac{k}{k} = -H_n^{(r+1)} \quad (2.5)$$

Thus, for $a_k = S_k([1]^r)/k$, we have $T_j = -H_j^{(r+1)}$ and, by (2.2), we already obtain the modulo p version of (1.2).
Proof of (1.2) in Theorem 1.1. Since \(sp = x + (-x)_p \),

\[
G^{(0)}_{p-1}(x) = \frac{(1 + x)_{p-1}}{(1)_p} - 1 \equiv_p \frac{sp}{x} - 1.
\]

According to [11, Theorem 1.6], \(S_{p-1}\{1\}' \equiv_p 0 \) and therefore

\[
G^{(r)}_{p-1}(x) \equiv_p \frac{G^{(r-1)}_{p-1}(x)}{x} \equiv_p \cdots \equiv_p (-1)^{r-1} \frac{G^{(0)}_{p-1}(x)}{x^{r}} \equiv_p \frac{(-1)^r sp}{x^{r+1}} - \frac{(-1)^r}{x^{r+1}}.
\]

Moreover,

\[
F^{(r)}_{p-1}(sp) = \sum_{k=1}^{p-1} \frac{(sp)_k}{(1)_k} \cdot \frac{S_k\{1\}'}{k} \equiv_p \sum_{k=1}^{p-1} \frac{sp}{k} \cdot \frac{S_k\{1\}'}{k}
\]

\[
= spS_{p-1}\{1\}'(2) \equiv_p spB_{p-r-2},
\]

where we applied \(S_{p-1}\{1\}', 2 \equiv_p B_{p-r-2} \) (see [2, Theorem 4.5]). Finally, by (2.4),

\[
F^{(r)}_{p-1}(x) \equiv_p \sum_{j=0}^{(r)-1} (-1)^r \left(\frac{(-1)^r}{x + j} \right) \frac{sp}{(x + j)^{r+1}} + spB_{p-r-2}
\]

\[
\equiv_p \sum_{j=1}^{(r)} \frac{1}{j - sp} - \frac{1}{j^{r+2}} + spB_{p-r-2}
\]

\[
\equiv_p \frac{-B^{(r+1)}_{(-x)} - (r + 2)spH^{(r+2)}_{(-x)} + spB_{p-r-2}}{spB_{p-r-2}}
\]

In the last step we used the following congruence: for \(2 \leq t < p - 1 \),

\[
H^{(t)}_{(-x)} \equiv_p \sum_{j=1}^{(x)} j^{p-1-t} = \frac{B_{p-t}((-x)_p + 1) - B_{p-t}}{p - t} \equiv_p \frac{(-1)^t B_{p-t}(x) - B_{p-t}}{x^{t}},
\]

which is an immediate consequence of [5, Lemma 3.2].

\[\square\]

3. Proof of (1.3) in Theorem 1.1

We follow a similar strategy as outlined in the previous section. We start by considering the partial fraction decomposition of the rational function

\[
x \rightarrow \frac{(x)_k(1 - x)_k}{(x)_n(1 - x)_n}
\]

with \(0 \leq k < n \). We have

\[
\sum_{k=0}^{n-1} \frac{(x)_k(1 - x)_k}{(1)_k^2} \cdot a_k = \sum_{k=0}^{n-1} \frac{(-1)^j A_j}{(n + j)! (n - 1 - j)!} \left(\frac{1}{x + j} + \frac{1}{1 - x + j} \right).
\]

(3.1)
where
\[A_j := \sum_{k=0}^{j} (-1)^k \binom{j}{k} \binom{j+k}{k} \cdot a_k. \]

For \(n \to \infty \), in case the series is convergent, the identity (3.1) becomes
\[\sum_{k=0}^{\infty} \frac{(x)_k(1-x)_k}{(1)_k^2} \cdot a_k = \frac{\sin(\pi x)}{\pi} \sum_{j=0}^{\infty} (-1)^j A_j \left(\frac{1}{x+j} + \frac{1}{1-x+j} \right). \]

In many cases the transformed sequence \(A_j \) has a nice formula. For example, if \(a_k = 1/(k+z) \), then
\[A_j = \frac{(1-z)_j}{(z)_{j+1}} \]
and, for \(x = z = 1/2 \), we recover the series representations of the Catalan constant \(G = \sum_{j=0}^{\infty} (-1)^j/(2j+1)^2 \):
\[\sum_{k=0}^{\infty} \frac{(2k)^2}{(2k+1)16^k} = \frac{1}{2} \sum_{k=0}^{\infty} \frac{(1/2)_k^2}{(1)_k^2(k+1/2)} = \frac{1}{2\pi} \sum_{j=0}^{\infty} (-1)^j \frac{4}{(1/2+j)^2} = \frac{8G}{\pi}. \]

As regards congruences, we have the following result.

Theorem 3.1. Let \(p \) be a prime and \(a_0, \ldots, a_{p-1}, x \in \mathbb{Z}_p \). Then
\[\sum_{k=0}^{p-1} \frac{(x)_k(1-x)_k}{(1)_k^2} \cdot a_k \equiv_p p^2 A_{(-x)} + s(A_{p-1-(-x)p} - A_{(-x)p}). \quad (3.2) \]

For \(x = 1/2 \) and \(p > 2 \),
\[\sum_{k=0}^{p-1} \frac{(2k)^2}{16^k} \cdot a_k \equiv_p A_{(p-1)/2}. \]

Proof. Rearranging (3.1) in a convenient way,
\[\sum_{k=0}^{p-1} \frac{(x)_k(1-x)_k}{(1)_k^2} \cdot a_k = \frac{(x)_p(1-x)_p}{(1)_p^2} \frac{2p-1}{p-1} \sum_{j=0}^{p-1} (-1)^j \binom{2p-1}{p+j} A_j \left(\frac{p}{x+j} + \frac{p}{1-x+j} \right). \]

If \(0 \leq k \leq j \leq p-1 \), then \(A_{p-1-j} \equiv_p A_j \) because
\[\binom{p-1-j}{k} \binom{p-1-j+k}{k} = \frac{(p-1-j) \cdots (p-j-k)(p-1-j+k) \cdots (p-j)}{(k)!^2} \equiv_p \frac{(j+1) \cdots (j+k)(j-k+1) \cdots j}{(k)!^2} = \binom{j+k}{k}. \]
Therefore, \(\sum_{j=0}^{p-1} (-1)^j \left(\frac{2p-1}{p+j} \right) pA_j \equiv p^2 \sum_{j=0}^{p-1} \frac{pA_j}{x+j} + (-1)^{(-x)_p} \left(\frac{2p-1}{p + (-x)_p} \right) \frac{A^{(-x)_p}}{s} + \sum_{j=0}^{p-1} \frac{pA_{p-j}}{1-x+j} \).

Therefore,

\[
\sum_{j=0}^{p-1} (-1)^j \left(\frac{2p-1}{p+j} \right) A_j \left(\frac{p}{x+j} + \frac{p}{1-x+j} \right) \equiv p^2 (-1)^{(-x)_p} \left(\frac{2p-1}{p + (-x)_p} \right) \frac{A^{(-x)_p}}{s} + \frac{A^{(-1-x)_p}}{1-s}.
\]

Finally, by using

\[
\left(\frac{2p-1}{p-1} \right) \equiv_p 1,
\]

\[
\left(\frac{2p-1}{p+j} \right) \equiv_p (-1)^j (1 - 2pH_j),
\]

\[
\frac{(x)_p(1-x)_p}{(1)_p^2} \equiv_p s(1-s)(1 + 2pH_{(-x)_p}),
\]

the proof of (3.2) is complete. For \(x = 1/2 \), it suffices to recall that

\[
\langle -x \rangle_p = \frac{p-1}{2} = p - 1 - \langle -x \rangle_p. \quad \Box
\]

As an application of the previous theorem, we notice that when \(a_k = 1 \) we have \(A_j = (-1)^j \) and, by (3.2),

\[
\sum_{k=1}^{p-1} \frac{(x)_k(1-x)_k}{(1)_k^2} \equiv_p (-1)^{(-x)_p},
\]

which has been shown in [6, Corollary 2.1].

Another noteworthy example is \(a_k = 1/k' \) for \(k \geq 1 \) (and \(a_0 = 0 \)). Then, by [4, Theorem 1],

\[
A_j = - \sum_{1:k_1+3:k_3+\cdots=r} \frac{2^{k_1+k_3+\cdots}(H^{(1)}_j)^{k_1}(H^{(3)}_j)^{k_3}}{1^{k_1}3^{k_3}\cdots k_1!k_3!}\ldots.
\]

Now we consider the case \(a_k = S_k([2]/k) \). Let

\[
G_n^{(r)}(x) : = \sum_{k=1}^{n} \frac{(x)_k(-x)_k}{(1)_k^2} \cdot S_k([2]/k).
\]
Then
\[G_n^{(0)}(x) = \frac{(1 + x)_n(1 - x)_n}{(1)_n^2} - 1 \]
and \(S_k([2]^r) = S_{k-1}([2]^r) + S_k([2]^{r-1})/k^2 \) implies that
\[G_n^{(r)}(x) = \frac{(1 + x)_n(1 - x)_n}{(1)_n^2} \cdot S_n([2]^r) + \frac{G_n^{(r-1)}(x)}{x^2}. \] (3.3)
Moreover,
\[F_n^{(r)}(x + 1) - F_n^{(r)}(x) = 2G_n^{(r)}(x), \]
where
\[F_n^{(r)}(x) := \sum_{k=1}^{n} \frac{(x)_k(1 - x)_k}{(1)_k^2} \cdot \frac{S_k([2]^r)}{k}. \]
Thus,
\[F_n^{(r)}(x + m) - F_n^{(r)}(x) = 2 \sum_{j=0}^{m-1} \frac{G_n^{(r)}(x + j)}{x + j}. \] (3.4)
The next identity is a variation of (2.5) and it appears to be new.

Theorem 3.2. For any integers \(n \geq 1 \) and \(r \geq 0 \),
\[\sum_{k=1}^{n} (-1)^k \binom{n}{k}(n + k) \binom{S_k([2]^r)}{k} = -2H_n^{2r+1}. \] (3.5)

Proof. By (3.3), for \(u = 1, \ldots, n \),
\[G_n^{(r)}(-u) = \frac{G_n^{(r-1)}(-u)}{u^2} = \cdots = \frac{G_n^{(0)}(-u)}{u^{2r}} = -\frac{1}{u^{2r}}. \]
By letting \(x = -n \) and \(m = n \) in (3.4),
\[\sum_{k=1}^{n} (-1)^k \binom{n}{k}(n + k) \binom{S_k([2]^r)}{k} = F_n^{(r)}(-n) = F_n^{(r)}(0) - 2 \sum_{j=0}^{n-1} \frac{G_n^{(r)}(-n + j)}{-n + j} \]
\[= 2 \sum_{j=0}^{n-1} \frac{1}{(-n + j)^{2r+1}} = -2H_n^{2r+1}. \]
Thus, by applying (3.2), we find a modulo \(p^2 \) version of (1.3). A more refined reasoning will lead us to the modulo \(p^3 \) congruence.

Proof of (1.3) in Theorem 1.1. Since \(sp = x + \langle -x \rangle_p \),
\[G_{p-1}^{(0)}(x) = \frac{(1 + x)_{p-1}(1 - x)_{p-1}}{(1)_{p-1}^2} - 1 \equiv_p s(1 - s)p^2 \cdot \frac{x^2}{x^2} = 1. \]
By [11, Theorem 1.6], $S_{p-1}([2]'') \equiv_p 0$ and therefore

$$G^{(r)}_{p-1}(x) \equiv_p \frac{G^{(r-1)}_{p-1}(x)}{x^2} \equiv_p \cdots \equiv_p \frac{G^{(0)}_{p-1}(x)}{x^{2r}} \equiv_p \frac{s(1-s)p^2}{x^{2r+2}} - \frac{1}{x^{2r}}.$$

It follows that

$$F^{(r)}_{p-1}(sp) - F^{(r)}_{p-1}(x) \equiv_p 2 \sum_{j=0}^{\langle x \rangle_{p}-1} \frac{G^{(0)}_{p-1}(x+j)}{(x+j)^{2r+1}} \equiv_p -2s(1-s)p^2 \sum_{j=1}^{\langle x \rangle_{p}} \frac{1}{j^{2r+3}} - 2 \sum_{j=0}^{\langle x \rangle_{p}-1} \frac{1}{(x+j)^{2r+1}}.$$

By (2.6),

$$\sum_{j=1}^{\langle x \rangle_{p}} \frac{1}{j^{2r+3}} = H^{(2r+3)}_{\langle x \rangle_{p}} \equiv_p \frac{B_{p-2r-3}(x)-B_{p-2r-3}}{2r+3}.$$

Moreover,

$$F^{(r)}_{p-1}(sp) = \sum_{k=1}^{p-1} \frac{(sp)_k(1-sp)_k}{(1)_k^2} \cdot \frac{S_k([2]''\rangle}{k} \equiv_p \sum_{k=1}^{p-1} \frac{sp(k-sp)}{k^2} \cdot \frac{S_k([2]''\rangle}{k}$$

$$= sp \sum_{k=1}^{p-1} \frac{S_k([2]''\rangle}{k^2} - p^2 s^2 \sum_{k=1}^{p-1} \frac{S_k([2]''\rangle}{k^3}$$

$$= spS_{p-1}([2]'') + p^2 s^2 S_{p-1}([2]'', 3)$$

$$\equiv_p \frac{2pB_{p-2r-3}}{2r+3} + p^2 s^2 2rB_{p-2r-3}$$

$$\equiv_p \frac{2sp^2(1 + sr(2r + 3))B_{p-2r-3}}{2r+3},$$

where we applied

$$\frac{(sp)_k(1-sp)_k}{(1)_k^2} = \frac{sp(k-sp)}{k^2} \cdot \frac{(1+s(p)_{k-1}(1-sp)_{k-1}}{(1)_{k-1}^2} \equiv_p \frac{sp(k-sp)}{k^2}$$

and the congruences

$$S_{p-1}([2]'') \equiv_p \frac{2pB_{p-2r-1}}{2r+1} \text{ and } S_{p-1}([2]'', 3) \equiv_p -2rB_{p-2r-3},$$
which have been established in [11, Theorem 1.6] and [2, Theorem 4.1], respectively. Therefore,
\[
F_p(x) = \frac{2sp^2(1 + sr(2r + 3))B_{p-2r-3}}{2r + 3} - \frac{2s(s - 1)p^2(B_{p-2r-3}(x) - B_{p-2r-3})}{2r + 3} \\
+ 2 \sum_{j=0}^{(-x)p-1} \frac{1}{(x+j)^{2r+1}} \\
\equiv p^3 \sum_{j=0}^{(-x)p-1} \frac{1}{(x+j)^{2r+1}} + \frac{2s(1 - s)}{2r + 3} p^2 B_{p-2r-3}(x) \\
+ \frac{2s^2(r + 1)(2r + 1)}{2r + 3} p^2 B_{p-2r-3}. \hspace{1cm} \square
\]

We observe that congruence (1.5) follows directly by letting \(x = 1/2 \) in (1.3). Then \((-x)_p - 1 = (p - 1)/2, \) \(B_{2n}(1/2) = (2^{1-2n} - 1)B_{2n} \) and, for \(p - 4 > t > 1, \) by [5, Theorem 5.2],
\[
H^{(t)}_{(p-1)/2} \equiv \begin{cases}
\frac{t(2t+1) - 1}{2(t+1)} pB_{p-t-1} \pmod{p^2} & \text{if } t \equiv 2 \pmod{0}, \\
- \frac{(2^t - 2)}{t} B_{p-t} \pmod{p} & \text{if } t \equiv 2 \pmod{1}.
\end{cases}
\]

4. Final remarks: \(q \)-analogues of (2.5) and (3.5)

Each of the identities (2.5) and (3.5) has an elegant \(q \)-version (which means that they return the original identities as \(q \rightarrow 1 \)).

As regards (2.5), a \(q \)-analogue was found by Prodinger (see [3]):
\[
\sum_{k=1}^{n} (-1)^k \binom{n}{k}_q q^{(1)k} = - \sum_{k=1}^{n} \frac{q^k}{1 - q^k},
\]

where \(\binom{m}{k}_q \) is the Gaussian binomial coefficient
\[
\binom{m}{k}_q = \begin{cases}
(1 - q^m)(1 - q^{m-1}) \cdots (1 - q^{m-k+1}) & \text{if } 0 \leq k \leq m, \\
0 & \text{otherwise}
\end{cases}
\]

and
\[
S_n(t_1, \ldots, t_r; q) = \sum_{1 \leq j_1 \leq \cdots \leq j_r \leq n} \frac{q^{j_1 + \cdots + j_r}}{(1 - q^{t_1})^{j_1} \cdots (1 - q^{t_r})^{j_r}}.
\]

A \(q \)-analogue of (3.5) is given in the next statement as (4.2). We encourage the interested reader to show that another proof of (4.1) can be obtained along the same lines.
Theorem 4.1. For any integers \(n \geq 1 \) and \(r \geq 0 \),
\[
\sum_{k=1}^{n} (-1)^k \binom{n+k}{k} q^{(2^r)k} \cdot S_k(\{2\}^r; q) \cdot \frac{1}{1-q^k} = - \sum_{k=1}^{n} \frac{(1+q^k)q^ru}{(1-q^u)^{2r+1}}.
\]

Proof. The procedure is quite similar to the one described earlier for the corresponding ordinary identity (3.5). Let
\[
G_n^{(r)}(u) := \sum_{k=1}^{n} (-1)^k \binom{u+k}{k} q^{(2^r)k} \cdot S_k(\{2\}^r; q).
\]

Then, for \(u = 1, \ldots, n \), \(G_n^{(0)}(u) = -1 \) and
\[
G_n^{(r)}(u) = \frac{q^u G_n^{(r-1)}(u)}{(1-q^u)^2} = \cdots = \frac{q^u G_n^{(0)}(u)}{(1-q^u)^{2r}} = - \frac{q^u}{(1-q^u)^{2r}}.
\]

Moreover,
\[
F_n^{(r)}(u) - F_n^{(r)}(u-1) = \frac{(1+q^u)G_n^{(r)}(u)}{(1-q^u)} = - \frac{(1+q^u)q^ru}{(1-q^u)^{2r+1}},
\]
\[\text{where}\]
\[
F_n^{(r)}(u) := \sum_{k=1}^{n} (-1)^k \binom{u+k}{k} q^{(2^r)k} \cdot S_k(\{2\}^r; q).
\]

Thus, since \(F_n^{(0)}(n) = 0 \),
\[
F_n^{(r)}(n) = \sum_{u=1}^{n} \frac{(1+q^u)G_n^{(r)}(u)}{(1-q^u)} + F_n^{(0)}(n) = - \sum_{u=1}^{n} \frac{(1+q^u)q^ru}{(1-q^u)^{2r+1}}
\]
and the proof is complete. \(\square\)

References

[1] V. Hernández, ‘Solution IV of problem 10490: a reciprocal summation identity’, *Amer. Math. Monthly* **106** (1999), 589–590.
[2] Kh. Hessami Pilehrood, T. Hessami Pilehrood and R. Tauraso, ‘New properties of multiple harmonic sums modulo \(p \) and \(p \)-analogues of Leshchiner’s series’, *Trans. Amer. Math. Soc.* **366** (2014), 3131–3159.
[3] H. Prodinger, ‘A \(q \)-anologue of a formula of Hernández obtained by inverting a result of Dilcher’, *Australas. J. Combin.* **21** (2000), 271–274.
[4] H. Prodinger, ‘Identities involving harmonic numbers that are of interest for physicists’, *Util. Math.* **83** (2010), 291–299.
[5] Z.-H. Sun, ‘Congruences concerning Bernoulli numbers and Bernoulli polynomials’, *Discrete Appl. Math.* **105** (2000), 193–223.
[6] Z.-H. Sun, ‘Generalized Legendre polynomials and related supercongruences’, *J. Number Theory* **143** (2014), 293–319.
[7] Z.-H. Sun, ‘Super congruences concerning Bernoulli polynomials’, *Int. J. Number Theory* **11** (2015), 2393–2404.
[8] Z.-W. Sun, ‘A new series for \(\pi^3 \) and related congruences’, *Internat. J. Math.* **26** (2015), 1550055, 23 pages.
[9] R. Tauraso, ‘Congruences involving alternating multiple harmonic sums’, *Electron. J. Combin.* **17** (2010), R16, 11 pages.

[10] R. Tauraso, ‘Supercongruences for a truncated hypergeometric series’, *Integers* **12** (2012), A45, 12 pages.

[11] J. Zhao, ‘Bernoulli numbers, Wolstenholme’s theorem, and p^s variations of Lucas’ theorem’, *J. Number Theory* **123** (2007), 18–26.

ROBERTO TAURASO, Dipartimento di Matematica, Università di Roma ‘Tor Vergata’,
via della Ricerca Scientifica 1, 00133 Roma, Italy

e-mail: tauraso@mat.uniroma2.it