An intrinsic characterization of semi-normal operators

L. Z. Gevorgyan
State Engineering University of Armenia,
Department of Mathematics, E-mail: levgev@hotmail.com

Key words: Semi-normal operator, numerical range, extreme point.
AMS MSC 47A12, {Primary}, 51N15, {Secondary}.

Abstract

Two necessary and sufficient conditions for an operator to be semi-normal are revealed. For a Volterra integration operator the set where the operator and its adjoint are metrically equal is described.

Let A be a linear bounded operator, acting in a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ and $W(A)$ denote the numerical range of A. If $C(A) = A^*A - AA^*$ is semi-definite, the operator A is said Putnam [1967] to be semi-normal, particularly, if $C(A) \geq 0$, then A is hyponormal. The well-known and important class of normal operators is characterized by the equality $AA^* = A^*A$. It is easy to see that the last condition is equivalent to the equality $\|Ax\| = \|A^*x\|$ for any $x \in \mathcal{H}$, meaning that any normal operator is metrically equal to its adjoint on all \mathcal{H}. For hyponormal operator in Stampfli [1966] is proved that conditions

$$\|Ax\| = \|A^*x\| \quad \text{and} \quad A^*Ax = AA^*x$$

are equivalent. Note that the set of points, satisfying the second condition is the null space of the self-commutator- $N(C(A))$. As the both conditions are symmetric, Stampfli’s result remains valid for semi-normal operators. Using this property, Stampfli has shown that any extreme point of the numerical range of a hyponormal operator A is a reducing eigenvalue.

Denote

$$E(A) = \{x : \|Ax\| = \|A^*x\| \}$$
and

\[M_\lambda (A) = \{ x : \langle Ax, x \rangle = \lambda \| x \| ^2 \} \]

Evidently conditions \(\lambda \in W (A) \) and \(M_\lambda (A) \neq \{ \theta \} \) are equivalent.

Proposition 1. For any operator \(A \) one has

\[\| Ax \| ^2 - \| A^* x \| ^2 = \langle C (A) x, x \rangle , \]

particularly,

\[E (A) = M_0 (C (A)). \]

Proof. As \(\| Ax \| ^2 = \langle Ax, Ax \rangle = \langle A^* Ax, x \rangle \) and \(\| A^* x \| ^2 = \langle AA^* x, x \rangle \), the conditions \(\| Ax \| = \| A^* x \| \) and \(\langle (C (A)) x, x \rangle = 0 \) are equivalent.

Proposition 2. The operator \(A \) is semi-normal if and only if 0 is an extreme point of the closure of \(W (C (A)) \).

Proof. Let first 0 be an extreme point of the closure of \(W (C (A)) \). As the numerical range of any self-adjoint operator is a convex subset of \(\mathbb{R} \) this condition implies that \(W (C (A)) \) is the segment of the form \([a; b] \), where \(ab = 0 \).

Let now \(A \) be semi-normal. According to a result of Radjavi (Radjavi [1966], Corollary 1) if \(B \) is a selfadjoint operator such that \(B \geq \alpha I \ (B \leq -\alpha I) \) for some positive number \(\alpha \), then \(B \) is not a self-commutator. Thus \(\alpha = 0 \) and \(A \) is semi-normal.

Proposition 3. The equivalence (1) is true if and only if the operator \(A \) is semi-normal.

Proof. Only the necessity of this condition should be proved. Let (1) be true. If \(E (A) = \{ \theta \} \), then \(0 \notin W (C (A)) \), hence it lies entirely in the positive or negative semi-axis. Let now \(x \) and \(y \) be two elements from \(E (A) \). Then from \(\| Ax \| = \| A^* x \| , \| Ay \| = \| A^* y \| \) follows \(AA^* x = A^* Ax, AA^* y = A^* Ay \) and \(AA^* (x + y) = A^* A (x + y) \), implying \(\| A (x + y) \| = \| A^* (x + y) \| \). According to Embry [1970] the linearity of \(M_\lambda (A) \) is equivalent to the condition that \(\lambda \) is an extreme point of \(W (A) \). Thus 0 is an extreme point of \(W (C (A)) \), completing the proof.

Remark. The principal reason in the proof above was the linearity of \(M_0 (C (A)) \). If the last condition is satisfied, then \(A \) is semi-normal and by Stampfii’s result \(E (A) = N (C (A)) \).

The situation is more interesting for non semi-normal operators. The example below exhibits the situation for a non semi-normal quasinilpotent compact operator.
Example. Consider the Volterra integration operator V

$$\mathcal{V} f (x) = \int_{0}^{x} f(t) dt, f \in L^2 (0; 1).$$

We have $V 1 = x, V^* 1 = 1 - x$, implying $\| V 1 \| = \| V^* 1 \|$. Let now $f \perp 1$. As

$$\int_{0}^{x} f(t) dt + \int_{0}^{x} f(t)dt = \int_{0}^{x} f(t)dt,$$

we have $V f = -V^* f$ and $\| V f \| = \| V^* f \|$, therefore $\{1, L^2 (0; 1) \ominus 1\} \subset E(A)$.

The self-commutator of V

$$(C(V)f)(x) = \int_{0}^{1} f(t) dt - x \int_{0}^{1} f(t) dt - \int_{0}^{1} tf(t) dt$$

or

$$(C(V)f)(x) = \left(\frac{1}{2} - x\right) \int_{0}^{1} f(t) dt + \int_{0}^{1} \left(\frac{1}{2} - t\right) f(t) dt.$$

Denoting $e_1 = 1, e_2 = \sqrt{3} (1 - 2x)$ (they are two first $L^2 (0; 1)$-orthonormal polynomials) we get

$$C(V)f = \frac{1}{2\sqrt{3}} (\langle f, e_1 \rangle e_2 + \langle f, e_2 \rangle e_1).$$

Now we introduce two orthonormal elements

$$u_1 = \frac{1}{\sqrt{2}} (e_1 + e_2) = \sqrt{2 + \sqrt{3} - \sqrt{6}x},$$

$$u_2 = \frac{1}{\sqrt{2}} (e_1 - e_2) = \sqrt{6}x - \sqrt{2 - \sqrt{3}},$$

and arrive at the canonical form of the self-commutator of V

$$C(V)f = \frac{1}{2\sqrt{3}} (\langle f, u_1 \rangle u_1 - \langle f, u_2 \rangle u_2).$$

Note that the product $u_1 u_2$ defines the third orthogonal polynomial $6x^2 - 6x + 1$.

From (2) follows that the spectrum of $C(V)$ is the set $\{-\frac{\sqrt{n}}{2}, 0; \frac{\sqrt{n}}{2}\}$, hence $W(C(V)) = \left[-\frac{\sqrt{n}}{2}, \frac{\sqrt{n}}{2}\right]$. The null-space of $C(V)$ consists of functions orthogonal to the first-order polynomials $L^2(0; 1) \ominus \{1, x\}$, where \ominus denotes the linear span of the set. As

$$\langle C(V) f, f \rangle = \frac{1}{2\sqrt{3}} \left(|\langle f, u_1 \rangle|^2 - |\langle f, u_2 \rangle|^2\right),$$

we get $E(V) = \{f : |\langle f, u_1 \rangle| = |\langle f, u_2 \rangle|\}$, i.e.

$$E(V) = \bigcup_{\varphi \in [0;2\pi)} L_\varphi$$

where L_φ is the orthocomplement to the subspace, generated by the element $u_1 - e^{i\varphi}u_2$.

References

Mary R. Embry. The numerical range of an operator. *Pacific J. Math.*, 32: 647–650, 1970. ISSN 0030-8730.

C. R. Putnam. *Commutation properties of Hilbert space operators and related topics*. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 36. Springer-Verlag New York, Inc., New York, 1967.

Heydar Radjavi. Structure of $A^*A - AA^*$. *J. Math. Mech.*, 16:19–26, 1966.

J. G. Stampfli. Extreme points of the numerical range of a hyponormal operator. *Michigan Math. J.*, 13:87–89, 1966. ISSN 0026-2285.