ENTOMOLOGY | RESEARCH ARTICLE

Determination of most effective insecticides against maize fall armyworm, Spodoptera frugiperda in South Western Ethiopia

Addisu Sileshi1*, Mulueta Negeri3, Thangavel Selvaraj3 and Amsalu Abers3

ABSTRACT: Maize FAWs, S. frugiperda, are economically important pests of maize plants in the field and cause considerable damage of up to 50% in Ethiopia. A total of six insecticides (Malathion 50 EC, Diazinon 48% EC, Alpha-cypermethrin, Deltamethrin, Lambda-cyhalothrin and Dimethoate 40% EC) were tested at laboratory, plot trails (using irrigation System) and farmers maize field (using 3 Delta-type traps) during 2019 to 2020 cropping season. Our result showed that, significant mortality of S. frugiperda was observed in the laboratory bioassay. Alpha-Cypermethrin and Deltamethrin at 24HAT and 72HAT account 76.67% and 100% and 96.67 and 100% of mortality. Highest number of larval mortalities was recorded on the treatment plot treated with Alpha-Cypermethrin (40%) at day one after insecticide application. Dimethoate and Alpha-cypermethrin (5%), Deltamethrin (3.67%) and Lambda-cyhalothrin (7.33%) significantly reduced FAWs infestation at farmers maize farm compared to that of non-treated control group/and plot (27%) at day one after insecticide application respectively. Therefore, the current finding proves that the pyrethroid class of the selected insecticides reduced the damage and infestation level of S. frugiperda in the maize field conditions. Based on the number

ABOUT THE AUTHORS

Addisu Sileshi, PhD Candidate, Program in Agricultural Entomology, Department of Plant Science, College of Agriculture and Veterinary Sciences, Ambo University, Ethiopia. P.O. Box 19 E-mail: addisusileshi@yahoo.com

Mulueta Negeri Tulu Asst. Prof. Dr., Department of plant sciences, College of Agriculture and Veterinary Sciences, Ambo University, Ethiopia. His study interests major in Fungicides, Bio agents. He published 26 articles in many journals and the articles are informative and got good citations. E-mail: negerimulugeta@yahoo.com

Thangavelu Selvaraj Prof., (Plant Pathology), Department of plant sciences, College of Agriculture and Veterinary Sciences, Ambo University, Ethiopia. E-mail: tselvaraj_1956@yahoo.com

Amsalu Abers Asst. Prof. Dr., Department of plant sciences, College of Agriculture and Veterinary Sciences, Ambo University, Ethiopia. He is delivering plant pathology (Mycology, bacteriology & nematology) Courses to post graduate students. His current area of research interest are coffee, fruits and vegetables pathology.

PUBLIC INSTEREST STATEMENT

Fall army worm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a real threat to food security in Africa including Ethiopia. About 20–100% of yield losses caused by maize fall army worms were reported in several part of Africa. Currently management is relayed on the use of synthetic pesticides, which are often economically unviable and are extremely hazardous to the environment.

Producers in Africa have a limited knowledge and information on recently developed insecticide against maize FAWs. Therefore, this study examined the efficacy of the newly advanced pyrethroid class of the insecticides against S. frugiperda at laboratory and field condition for two years of cropping season. The insecticide, Lambda-cyhalothrin, resulted reducing maize fall army worm infestation quickly from 21.33 to 7.33% only at one spray time during 2020 cropping season.
of maize fall armyworm (the moth group) captured per pheromone traps, the percent of damaged plant and whorl infestations were significantly lowered, and the tools were appropriate to develop IPM programs in Ethiopia.

Subjects: Zoology; Entomology; Entomology

Keywords: Maize fall army worm; Insecticides; Invasive; S. frugiperda; voracious

1. Introduction

The maize fall armyworm, *Spodoptera frugiperda* (Lepidoptera: Noctuidae), is an insect pest that attacks a wide range of agricultural crops in the field, but maize is the most preferred (Rod et al., 2007; Gabriela et al., 2009; Juliana et al., 2012 Milena et al., 2014; Jarrod et al., 2015). This insect pest was a native to tropical and subtropical region of western America and recently invaded all regions of African continent in 2016 (Midega et al., 2018; Siazemo & Simfukwe, 2020).

The spreading and reproduction of this insect pest are native American to distribution of Africa and continuing to devastate maize crops even during dry seasons on the irrigated crops and/active when weather environmental condition is favorable (Hruska & Gladstone, 1988; Etienne et al., 2019). In Ethiopia, the insect was a new invasive alien species and the outbreak was recorded for the first time in early 2017 (Wondimu et al., 2021).

Despite of economic importance, *S. frugiperda* (J.E. Smith) is an economically important insect pest of various crops in Africa (Clark et al., 2007; Wilmar et al., 2016; Bariw et al., 2020; De Groote et al., 2020; Maruthadurai & Ramesh, 2020; Sharon et al., 2020). The capability of migrating long distance and feed on different host plant makes the insect was active at any of ecological variations especially due to climate change and very difficult to manage in the large scale of maize plant of high production (Belay et al., 2012; Balla et al., 2019).

Several maize damages with 20–100% yield losses caused by FAWs were reported in Africa and various researchers were strongly intensified to use selective insecticide to take urgent actions to tackle this insect pest in timely bases in the large-scale maize farm in Africa (Cruz et al., 2012; Hardke et al., 2014; Burtet et al., 2017; Early et al., 2018; Kumela et al., 2019; Kassie et al., 2020).

Several monitoring measures were testified in various countries but still difficult to overcoming the effect of maize FAWs among small scale farmers maize field. Recently, some developed insecticide against *S. frugiperda* was continuously reported in different locations of African contents and but, very slight amount is known about the efficacy of each insecticide to manage even the stages of fall army worm infestation was not demarcated (Bateman et al., 2018).

For these, Ethiopian government distributed about 100,000 liters of insecticide, Malathion 50% EC for the management of fall army worms in 2017 maize cropping season for the urgency response (FAO, 2019). However, rate and time of application practices exploit the rescue of biodiversity and environmental pollutions (Kansiime et al., 2019). Nevertheless, for the development of IPM approach, it is impervious to determine the present ecology, application practices and degree of damaged crops were taken in account before control decision making was decided (Almeida et al., 2017; Goergen et al., 2016; Montezano et al., 2018).

Consequently, it needs to be sorting and legalize effective insecticide that have relatively less impacts on/and associated with no target organisms. Therefore, objective of the present study was to determine the most effective pesticides and screening their efficacy against maize fall armyworm and at the same times to measure the infestation levels, populations density and damage levels reaches to economic threshold of the insect. And to develop the suitability of the pyrethroid class of the insecticide used as integrated pest management components in Ethiopia.
Table 1. Insecticide and rate of application used for the management of maize fall armyworm during the experimental period

Treatment Insecticide	Trade Name	Class	Dos of a. I (L/ha)
Malathion 50EC	Ethiolathion 50% EC	Organophosphate	1 L
Diazinon 48% EC	Ethiozinon 60% EC	Organophosphate	1.2 L
Alpha cypermethrin	Fasted 10% EC	Pyrethroid	0.4 L
Deltamethrin	Ethiodemethrin 2.5% EC	Pyrethroid	15,000 mL
Lambda-cyhalothrin	Karate 2.5% EC	Pyrethroid	200 mL
Dimethoate 40%	Agro-Thoate 40%EC	Organophosphate	900 mL

2. Materials and methods

2.1. Laboratory experiment

2.1.0.1. Study area. The first experiments were conducted under laboratory condition of Ambo University-College of Agriculture and Veterinary Sciences, Guder campus in January 2019. The college was found in west Shewa, Oromia, Ethiopia at 110 km from Addis Ababa with 80°240 N latitude, 39°210 E longitude, and 1550 m a. s. l.

2.1.0.2. Establishing larvae of S. frugiperda. Matching neonate larvae was collected from untreated infested maize field of Guder area using a camel hair brush and maintained under controlled laboratory condition (25 ± 2 °C, 70–75% RH, and a photoperiod of 14h10 ± 2 [L: D]). Ten fall armyworms larvae (second to third instar larvae) were released in to 30-mL plastic cups. Collected fresh maize leaves (Early stage of fresh maize leaves) prior to growing at greenhouse were soaked in 4% of sodium hypochlorite, cleaned using sterile distilled water, prepare in 50 g and placed per cups in daily basis.

2.1.0.3. Preparation of tested chemicals. There are six insecticide were used in the bioassay: Malathion 50 EC, Diazinon 48 EC, Alpha cypermethrin, Deltamethrin, Lambda-cyhalothrin (Karate 5EC), Dimethoate 40% (Agro-Thoate 40% EC), and control (treated with sterile distilled water). These insecticides were collected from various sources and preserved in a safe area until the experiments were conducted.

Each insecticide was mixed with sterile distilled water according to the manufacturer recommendation (Table 1). Randomized block design with seven treatments and three replications were used during the experiment. The insecticides were applied with using small medical syringes (5 ml). The control treatments were sprayed with sterile distilled water to avoid the effect of moisture variabilities in the plastic cups. The treatment was placed in a shelf of growth chamber separately. Insect mortality were evaluated at 24 hrs, 48 hrs, 72 hrs and 96 hrs after exposure.

2.2. Field experiment using irrigation system

Study area: The second experiment, screening of insecticide, was carried out at the experimental site of Ambo University-College of Agriculture and Veterinary Sciences, Guder-experiential site in January to April 2019. The plot land was located in (latitude 8°57’ 58”, longitude 37°51’ 33” and Elevation 2175 m), the summer average temperature and RH of the area was 23 °C and 77% respectively.

2.2.1. Plant establishment

2.2.1.1 Sourcing of maize cultivars. Limmu, Shone, Argane, Wencii, Kulani, Jibat and BH-540 were collected from Ambo Agricultural research center and Oromia seed enterprise in Feb.7. 2019. Each maize cultivar was sown at College of Agriculture Guder experimental area, on a plot size of 2 m x 2.5 m, with a spacing between rows of 70 cm, 25 cm between plants and 50 cm between plot. The plot was irrigated daily until reproductive stage (3 to 4th week). All recommended agronomic practices, application of fertilizer with DAP at knees stages and hand weeding were carried out.
2.2.1.2. Scouting and detection. Plots were monitored starting of one-week seedling emergence (VE; Early Whorl), with the aim of detecting egg masses and/or small larvae (<0.5 cm) and continued for four weeks until tasseling. Two weeks after emergence, presence of egg mass, newonet larvae and early-instar FAW damage on maize leaves in the form of pinholes /damage severity or small window panes were observed (i.e., number of larvae, number damaged plant (damage severity) per plot were recorded for three days before any insecticide applications. The resultant insecticide tested at laboratory condition was again tested in the controlled experiment and field conditions.

2.2.1.3. Design of the experiment. Randomized Complete Block Design (RCBD) with three replications was used for the experiment. Damage severity caused by FAWs and number of larvae per plot was recorded based on rating scale and treatment efficacy was determined after 3 and 4-days treatment application (DAT). Also, the ability of each cultivars was assessed based on damage rating (no damages to the ear ≈ high resistant, damages on kernel (LS) or less than 5% damages ≈ resistant, damage few kernel (6-15%) or less than 10% damages to an ear ≈ resistance, damages to 16–30% kernel or less than 15% damages to an ear ≈ partially resistant.

2.2.1.4. Treatment application. Insecticide application were made after the first week of infestation and 30 days after plantation. Each insecticide was then sprayed using small hand spray (100 ml) after 30 days maize plantation. Number of larvae was recorded before (DBT) and after treatment application (DAT).

2.3. Farmers field experiment

2.3.0.4. Study area. The third experiments were tested under various farmers field condition at Bako Tib, Sibu Sire and Bilo Boshe locations in May-July 2020 cropping season. Bako Tibe district was found in the west Shewo zone of Oromia, Ethiopia. It is located at 250 km from Addis Ababa, capital city of Ethiopia with the average elevation is 1610 M.a.s.l. The location was share annual rainfall ranges 1200–1300 mm and temperature of 13.8–27.8°C respectively.

The altitude of Sibu sire district was ranges between 1360 to 2500 m a. l. It is located 281 Km in West from Addis Ababa. It lies between 8°56’- 9°23 N latitudes and 36°35’-36°56 E longitudes. The altitude of the district ranges between 1360masl to 2500masl. The average temperature of the locations was 27.30°C to 22.55°C. And Bilo Boshe district were located at 307 km West of Addis Ababa, at 08054’045”N latitude and 037° 00’136” E longitudes with an altitude ranging from 1613–1641 m. a. s. l.

2.3.0.5. Experimental design and treatment. The experiment was carried out at farmers maize field of different locations to know the level of infestation at large scale. Field location were randomly selected based on agroecological variation, which plays a vital role of spreading and quickly distribution of insect pests across large geographical areas.

Potential maize growing district locations were randomly selected across the region. In each location three district were purposely assigned for the experiment. Soon after maize seed germination, infestation was assessed using Synthetic compounds that mimic natural FAW pheromone Lure were brought from Feed the Future organization and installed at five kebeles in the centre of the experimental area (1 ha).

Moths that are caught per pheromone lure were then counted. According to (Cruz et al., 2010) assumption; cumulative number of three adults trapped per trap were enough to produce larvae to cause infestation at least in 10% of the plants and causes significant economic damages if an appropriate management measure is not taken. Number of adult fall army worm per sex pheromone and infested whorls were recorded for three consecutive days before insecticide application. Number of infested maize plants were recorded and examine the percentage of infestation using the following equation:

\[
\text{%FAW infestation} = \frac{\text{Infested plants}}{\text{Total plants}} \times 100
\]
2.3.0.6. Determination of insecticide against *S. frugiperda*. Recently developed insecticides were conducted at large scale, on the farmers field at two agro-ecological regions, West Shewa, Bako Tibe district of Gara Gona, Tulu Sangota-a, and Tulu Sangota-b kebele and East Wollega, Bilo Boshe of Sodu Berama kebele and Sibu Sire of Jalale kebele. Treatment experiments: Jalale × Plot without insecticide application, Gara Gona × Alpha cypermethrin, Tulu Sangota (b) × Deltamethrin, Bilo Boshe × Lambda-cyhalothrin (Karate5EC), Tulu Sangota (a) × Dimethoate 40% (Agro-Thoate40% EC).

Knowingly, after 28-day old maize in each location was severely damaged with maize fall army worm. Before this period the larvae are too young to cause significant damage to the plant and susceptible to the action of different species of natural enemies. The insecticide was thoroughly mixed with water according to manufacturer’s instruction and directly sprayed on to maize leaves and whorls using a pressurized knapsack sprayer.

2.3.0.7. Data management. Treatment efficacy was determined for 4 days after insecticide treatment or after spray. Within each group /plot, number of maize fall armyworm moths captured per pheromone traps and damaged plant or/and fall armyworm infested maize whorls (visual observation) were randomly selected and counted in daily basis.

2.4. Statically analysis

Data were analyzed by PROC GLM and means separated according to Turkey’s Studentized Range Test (SAS Institute 2004).

3. Results

3.1. Laboratory study of insecticide against fall army worm

The study shows, significant larval mortality of maize fall army worm was registered from (77–97%) after treatment application on 24h exposure when compared with the control group (Table 2). Deltamethrin caused 96.67% mortality followed by Dimethoate 40% and Diazinon (86.67%), Malathion and Lambda-cyhalothrin 83.33% respectively.

Deltamethrin caused the highest (97% mortality) after 24hrs treatment application, while Deltamethrin, Alpha-Cypermethrin, Diazinon caused 100% mortality after 48h treatment application. Alpha-Cypermethrin was less effective, causing 76.67% mortality after 24 h after treatments. All selected insecticide causes 100% mortality on larval of *S. frugiperda* after day three treatment exposure.

Letters sharing with the same means are not significantly different from one another.

Table 2. Percent mean mortality of maize FAWs treated with different insecticide at laboratory condition (n = 10)
Treatment
Deltamethrin
Malathion
Alpha-Cypermethrin
Dimethoate
Diazinon
Lambda-cyhalothrin
Control
LSD
CV
Table 3. Mean larval population of *S. frugiperda* on different maize cultivars grown under plot experiment using irrigation system

Treatment	Mean no. of larval population/Plot (±SME)		
	Day 1 BIA	Day 2 BIA	Day 3 BIA
Argane	1.33 cd	4.00b	9.67b
BH-540	5.00b	9.33a	9.33b
Jibat	0.67d	2.33bc	5.67bc
Kulani	1.00 cd	2.00bc	5.00c
Limmu	2.33c	1.67c	4.33c
Shone	6.67d	11.33a	14.33a
Wenchii	5.00b	4.00b	5.00c
LSD (0.05)*	1.49	3.63	4.11
CV	26.59	25.69	30.33

Mean in which the same letters are not significantly different from one another. BIA = Before Insecticide application

3.2. Irrigated plot result

3.2.1. Recognize the prevalence of *S. frugiperda* and maize whorl damage under irrigated plot experiment

Highest mean larval population of FAWs was recorded on four weeks age of Shone cultivar (6.67) followed by BH-540 (5.00) and Wanchi (5.00) cultivar in one day pre-application of insecticide respectively. Lowest population of maize FAW larvae was registered in Jibat (0.67), Kulani (1.00) and Argane (1.33) cultivar during same sampling date.

Besides, the highest larval occurrence of maize fall army worms was reached on Shone cultivar (14.33) and least was registered in Limmu (4.33) cultivar during the third day of pre-insecticide applications (Table 3). The population of maize FAWs larvae on treatment cultivars was amazingly increased with time when any control option was not taking in an account.

During the study period, different egg mass of *S. frugiperda* and larval stage, mainly the 1st instar was highly observed within the plant aged two weeks. All maize cultivars at the knee stage was highly invaded and vulnerable to larvae of FAWs and dissimilar size of egg mass was observed across the whole plot experiment.

There was a significant variation of maize plant damages were observed under all maize cultivars (Table 4). Highest infestation of maize plant by larvae of maize fall army worm were recorded on Shone cultivars (6.00%) before day one pre-application of insecticide. Lowest infestation was accounted in Jibat and kulani (3.33%) maize cultivars on the same day.

During day three before insecticide application, shone cultivars was highly (11.67%) affected than the other cultivars. The lowest damages with less infestation were recorded in Argane (9.33%) cultivar during third day before insecticide application. The level of damaged treatment cultivars was increased before any control measures were reserved. Initial sign of infestation with first instar (L1-L3) of *S. frugiperda* were observed on to shone cultivars and major damages was recorded during thirteenth days before chemical control was conducted at plot experiment. Jibat and Kulani cultivars were less susceptible maize cultivars during one month after EIL was conducted.

3.2.1. Efficacy testing of selected insecticide under plot Experiment. The plot experiments sprayed with Alpha-Cypermethrin, Deltamethrin and Lambda-cyhalothrin significantly reduce the existence of maize fall army worm larvae after three day with compared to control treatment
Table 4. Mean percent of damaged maize cultivars (leaf, and whorls) against S. frugiperda under plot experiment, pre-insecticide applications

Treatment	Mean no. of damaged maize plant/Plot	Mean % of damaged maize plant/Plot		
	Day 1 BIA	Day 2 BIA	Day 3 BIA	
Argane	4.33^ab	8.00^bc	9.33^b	7.22
BH-540 (control)	3.33^b	9.33^ab	15.33^ab	9.33
Jibat	3.00^b	9.00^bc	14.00^bc	8.67
Kulani	3.00^b	9.67^bc	10.33^b	7.67
Limmu	4.33^ab	10.67^bc	14.67^bc	9.89
Shone	6.00^a	11.67^a	18.67^a	12.11
Wenchis	3.67^b	5.67^c	10.33^b	6.56
LSD (0.05) *	2.01	3.49	6.28	
CV	24.69	19.95	26.67	

Mean in which the same letters are not significantly different from one another. BIA = Before Insecticide application.

(Table 5). Significantly highest number of FAW larval population was recorded on non-insecticide treated plot (11.67) day three after insecticide application and cause extreme damages compared to insecticide treated maize cultivar during both sampling date. There was a significant difference were observed among treatments. The Pyrethroid class of insecticide; Deltamethrin (4.00) and Alpha Cypermethrin (3.33) was accounts significant suppression of FAW larvae and typically minimize maize plant damages after 3 days treatment application. However, Lambda-cyhalothrin (1.33), Diametot and Diazinon (1.67) was slightly weak to minimize larvae of maize fall army worms during the study season.

Alpha-Cypermethrin (9.00), Deltamethrin (6.67) and Diazinon (2.33) significantly control maize fall army worm larvae at whorl stages after 4-day treatment application and Diametot and Malathion provided a significantly suppress maize plant damaged but were a little week to suppress larvae of S. frugiperda. Not in general but tested pyrethroid insecticides were effective for the management of maize fall army worm when the crops were cultivated with irrigations system in the study area.

Table 5. Mean infestation reduction/Plot of maize plant against larvae of S. frugiperda after spraying of insecticide under irrigated plot experiment

Treatment	Rate a.i (mL/m²)	Mean% Infestation reduction/Plot	Average infested maize plant /Plot	
		Day 3 AIA	Day 4 AIA	
Argane* Dimethoate	2.43 ml	1.67^a	1.33^c	1.5
Jibat*Malathion	2.7 ml	2.00 cd	1.00^c	1.5
Kulani*Diazinon	3.24 ml	1.67^c	2.33^a	2
Limmu * Deltamethrin	40.5 ml	4.00^a	6.67^ab	5.2
Shone* Alpha Cypermethrin	1.08 ml	3.33^bc	9.00^b	6.2
Wenchis* Lambda-cyhalothrin	0.81 ml	1.33^d	1.67^c	1.5
BH-540* Check	-	11.67^bc	14.00^a	12.81
LSD (0.05) *		1.7	2.65	
CV		24.66	28.99	

Numbers within columns followed by the same letter are not statistically different (LSD; P = 0.05). AIA = After Insecticide Application
3.2.1.2. Effect of selected insecticides under irrigation system. The effect of selected insecticides on larvae of maize fall army worm was investigated using correlation and regression method. Each of insecticide had significantly cause mortality on larvae of maize fall army worms during irrigation season (Figure 1). There was a highest significant positive correlation between FAW infestations were observed before insecticide application and the pyrethroid class of insecticide Alpha Cypermethrin significantly ($r^2 = 0.44465$; $p = 0.025$) decrease FAWs infestation; Figure 1d).

While the rest of the five cultivars showed negatively correlated with FAW infestation after insecticide applications. Argane and Jibt cultivar were the least susceptible to fall army worm larvae, after the plot was treated with Diametot and Malathion the average fall army worm infestation ($r^2 = 0.1402$; $p = 0.005$ and $r^2 = 0.4465$; $p = 0.024$) was decreased respectively (Figure 1b.c).

Among the cultivars were assessed; Wenchi, Limmu and Kulani were more susceptible to S. frugiperda larvae before treatment application while the plot experiment sprayed with Lambda-cyhalothrin, Deltamethrin and Diazinon were non-significantly decreased ($R^2 = 0.2141$; $P = 0.0035$, $R^2 = 0.2935$; $P = 0.005$ and $R^2 = 0.0318$; $P = 0.0024$) fall army worm infestations (Figure 1d.e.f).

3.2.1.3. Efficacy of selected insecticides under irrigation system. Mean larval mortality of S. frugiperda with different insecticides was significant different at day 3 after treatment
application (LSD = 1.50; CV = 37; P = 0.05; Table 6). The highest number of larval mortalities was recorded on the treatment plot treated with Alpha Cypermethrin (40%) at day one after insecticide application. The lowest mortality of FAW larvae were accounted from the treatment treated with control *BH-540 (1%) at 3 days after insecticide applications.

The Organophosphates class; Diazinon and Malathion was less effective and may make drying of the cultivars during study Period. But, there was no egg, larvae and Adult of S. frugiperda was looked on treated cultivars after a week of insecticide application and the maize leaves were slowly recovered.

3.3. Farmers field survey result

3.3.0.4. Occurrence. The prevalence of maize FAWs was assessed in major maize growing locations (Bako Tibe, Sibu Sire and Bilo Boshe districts) of western Ethiopia. Among the province, the highest percent of FAWs were recorded in Tulu Sangota (b) (33%) and there are no significance differences was detected across all farmers maize field experiments during July.30.2020 sampling date (Table 7).

While the lowest percent of S. frugiperda was accounted from Bilo Boshe (21%), Tulu Sangota (a) (23%), Gara Gona (24%) and Jalale (25%) before insecticide treatment respectively. Mean number of male FAW moth captured with Delta-type trap, Pherocon 1C at Tulu Sangota (b) (36%) was decreased and there was no significant variation was noticed among districts of Bilo Boshe (20%) and Tulu Sangota (a) (24%) at the end of sampling date respectively.

However, there was a significant difference was detected in all districts of the location. This management option can limit the reproduction system of the insects during regular cropping seasons in the location.

3.3.0.5. Estimation of S. frugiperda infestation level in maize growing study area. The result on the infestation level showed that, all maize field location was infested by S. frugiperda in the study areas, but diverse level of the infestation was observed across district locations (Figure 2). The highest infestation of maize plant caused by fall army worm was recorded from Tulu Sangota (b) (39.63%) and the lowest were accounted in the location of Bilo Boshe 20.75 % during maize crop planted in 2020 cropping period.

3.3.0.6. Efficacy of selected insecticide against maize FAWs at large scale of farmers field. Treatment application was made 10 days after the first day of fall army worm moth captured per 1 hektar of maize plant at 4th week of crop emergence in location. Mean infestation redaction
Table 7. Mean number of S. frugiperda captured (pest density) and infestation level before the application of selected insecticide in the farmers maize field

Location (treatment)	Mean number of FAW adult captured (± SEM)		
	July. 30. 2020 *D1st 28d	August. 4. 2020 *D1st 32d	August. 8. 2020 *D1st 36d
Tulu Sangota (b)	33.00b	38.33a	36.00a
Gara Gona	24.67b	26.00b	30.67ab
Jalale	25.00b	24.33b	25.33bc
Tulu Sangota (a)	23.67b	29.00ab	24.33c
Bilo Boshe	21.33b	21.00b	20.00b
LSD (0.05) *	4.99	12.10	6.50
CV	10.39	23.19	12.67

Mean with a same letter were sharing significantly different at (P < 0.05) using Tukey's test. *D1st 30d = during the 1st 28 days.

data recorded after day one treatment application revealed that there are no significant effects were observed among each treatment locations (Table 8).

Dimethoate 40% and Alpha-Cypermethrin (5%), Deltamethrin (3.67%) and Lambda-cyhalothrin (7%) were significantly reduce the infestation of maize leaf and whorl caused by FAWs compared to that of non-treated control group/plot (27%) at day one after insecticide application respectively. Deltamethrin also significantly reduce maize plant infestation below that in the Lambda-cyhalothrin treated location (18%).

No significant treatment effect was also detected compared to the non-treated control at 4th day after insecticide application (ATA). However, the new pyrethroid insecticide; alpha cypermethrin, were not tested in Ethiopia and but significantly reduce FAW infestation by more than 9% below that in non-treated control at farmers maize fields in South Western Oromia-Ethiopia.

Infestation stage of farmers maize fields due to maize fall army worm after treated with insecticide were effectively decreased at 4 days after treatment application and all selected chemicals showed lower plant damage by larvae of maize fall army worm when compared with untreated control (Table 8). Similarly, the average number of leaf and whorl injury was varied from 5.1 to 28.1 percent / location with percent reduction of 50 to 65.1%.

Figure 2. Infestation and severity of maize fall army worm, S. frugiperda in various locations of south western Ethiopia.
Table 8. Mean % reduction of maize leaf and whorl damage by S. frugiperda in the farmers maize plot exposed to insecticides

TRT	Dose (L/ha)	Mean % reduction of maize leaf and whorl damage (mean ± SE)		
		Day 1 1ATA*	Day 2 1ATA*	Day 3 1ATA*
Bila Boshe—Lambda-cyhalothrin	320 ml	18 ± 7.33\(^{ab}\)	15.67 ± 7.00\(^{b}\)	7 ± 4.67\(^{b}\)
Tulu Sangota (a)- Dimethoate	1.5 L	8 ± 5.00\(^{b}\)	4.67 ± 4.00\(^{c}\)	3 ± 2.67\(^{b}\)
Tulu Sangota (b)- Deltamethrin	20–25 ml	5 ± 3.67\(^{ab}\)	6.33 ± 4.67\(^{bc}\)	6.33 ± 4.33\(^{b}\)
Gara Gona -Alpha-Cypermethrin	25 ml	8 ± 5.00\(^{b}\)	6 ± 4.00\(^{c}\)	9.33 ± 5.67\(^{b}\)
Jalale—Control (no chemical trt)	-	231 ± 27.00\(^{ab}\)	217.33 ± 26.33\(^{ab}\)	258 ± 28.33\(^{ab}\)

Mean

LSD (0.05) * 54 50 56.7

CV 21.52 16.72 25.21

Means within columns followed by a common letter are not significantly different (P ≤ 0.05 Tukey’s Studentized Range Test). 1ATA* (after treatment application)

4. Discussion

Nowadays, S. frugiperda was one of the most exciting factors that depressing maize production and commonly known to acquire economic threats, yield losses and attain high costs for its management (Kwamina et al., 2019). Globally, the insect was highly accountable for the threat to stable food security and timely management of the insect was a crucial aspect.

The present study was conducted during 2019/2020 in two different growing seasons (the summer and typical cropping seasons). Significant maize fall army worm infestations were observed in all the study locations. All tested insecticides cause acute toxicity, and accountable to cause larval mortality of S. frugiperda under laboratory, controlled plot experiment. The laboratory bioassay showed that, Deltamethrin cause the highest 96.67% larval mortality after 24hrs treatment application (Table 2).

Efficiency of some recently developed insecticide against larvae of fall army worm was investigated at laboratory condition. The effect showed that, 90% of larval mortality was recorded from the treatment sprayed to lambda-cyhalothrin after 72 hrs of exposure (Sisay et al., 2019). The present study confirms that, among tested insecticide; Lambda-cyhalothrin accounts 96.67% larval mortality after 48 hrs treatment application.

Malathion register less mean mortality (10.00) when compared to other tested insecticide in the plot experiment. Alpha-Cypermethrin were accounts 40% mortality of S. frugiperda after day one treatment application in the plot experiments during summer season of 2019.

Field efficacy of lambda-cyhalothrin was also assessed in the plot irrigation. The result reveals that, the larval density of S. frugiperda were significantly lower (40%) among the treatment. This finding was confirmed, the lambda-cyhalothrin treated (45.0%) plot after day 3 treatment applications were significantly reduced fall army worm infestation (Jarrod et al., 2011).

In this finding more focused on efficiency, application practice, degree of damaged maize plant and management of maize fall army worm infestation at different growth stages were assessed during 2020 usual cropping seasons in the location. One day before insecticide applications, mean number of maize infestations caused by maize fall army worm among treatment location were ranged from 21.00 to 38.33% during July 30, 2020.
After the first day of treatment applications the mean percent plant infestation reduction ranged from 3.67 to 27.00. The present finding was confirmed with the result of (Kumari et al., 2020; Mintesnot & Ebabuye, 2020) who found that spraying of insecticide reduce the larval population of FAWs at vegetative growth stage. Age based, and/or dependent of maize fall army worm infestation were reported by (Murua et al., 2009).

The level of infestation and damage on different developmental stage of the plant was also evaluated using rating scale (Hartnik et al., 2008; Makirita et al., 2019). Other study confirms 3 fall army worm moth captured per trap produce 10% infestation and economic threshold levels were measured in maize fields (Cruz et al., 2010). In this research work, highest mean number (33.00) of fall army worm moth recorded from Tulu Sangota (b) and 21.33 were accounted from Bilo Boshe district location during 1st 28 days after plant emergence (Table 7).

Likewise, percent of maize fall army worm infestation level and damaged maize plants in the surveying district were varied from 20.75 to 39.63% during 2020 regular cropping season in the area (Figure 2). Most probably, such variation of infestation between locations were due to agroecological differences of the locations. Maize fall army worm damages were reported at all stages of maize developments in the field (Goergen et al., 2016; Prasanna et al., 2018), but the insect was clearly serious at early whorl stage of the maize plant (Sonali & Nandita, 2018).

Various researchers were also reported that, 20 to 50% infestation were recorded at early whorl stage, particularly when the plant ages of 20 to 45 days after the crop emergence (Dal Pogetto et al., 2012; Matti & Patil, 2019). During these developmental stages, the insect was extremely destroyed the meristematic tissues of the maize plants, which consequences breaking the growth pathway of the plant and/or finally causing dead heart of the plant (Roger et al., 2017). Finally, significant level of infestation and damages of *S. frugiperda* were undoubtedly reducing the yield of maize crop (Ayala et al., 2013).

In this study considerable infestation of maize farm caused by *S. frugiperda* were documented in both agroecological locations at the vegetative stage (during the first 28 days); But there were no existed documents were adopted on maize FAW infestations in the surveyed district locations. Since, several studies suggested that, action threshold of fall army worm was primarily necessitating the control action were taken using selective insecticide in the maize fields based on economic effect (Canico et al., 2020; Jander et al., 2013; Santos et al., 2003).

Hence, in this work first spray of selected insecticide against *S. frugiperda* was made after 40 days plant emergence or/and early whorl stages. The Pyrethroid class of the insecticide; Lambda-cyhalothrin reducing *S. frugiperda* infestation quickly from 21.33 to 7.33% only at one spray time during 2020 cropping season. Such insecticides were efficient to managing maize fall army worm in the farmers maize field with minimum financial threat.

Among the pyrethroid class of synthetic insecticides used in the experiment; lambda-cyhalothrin were more convenient to harmonized for the development of IPM strategies and this result were agreed with the result obtained by (Igyuve et al., 2018); who reported that lambda-cyhalothrin was effective to manage *S. frugiperda* and reduce maize FAW infestation at large scale of farmers maize fields at early whorl stage.

This finding strongly introducing, only one-time application of insecticide was enough to manage at appropriate time and reduce *S. frugiperda* infestation of maize crop in the field. Thus, weekly basis of scouting provides accurate population density of the pest and number of insecticide application.

Due to substantial feeding of the insects, farmers in the study area were use un registered insecticides for six years. This study gives clue on the efficiency of currently developed synthetic insecticide and at the same time undertake the appropriate stage of *S. frugiperda* damage and application time during maize
production seasons in the area. Each insecticide reducing the population density of maize fall army worm in all district location and clearly mitigate damage caused by *S. frugiperda* at all experimental locations but, only Alpha-Cypermethrin was slightly reduce maize damage in the farmers field.

Our study adapted that, all tested insecticide was effective to manage maize fall army worm at early stages in the farmers maize field condition. Ones after efficient insecticides were identified, further research were needed to develop applicable, harmonized and dynamic approaches of maize fall army worm management in the field conditions. All tested maize cultivars were significantly susceptible to *S. frugiperda* at typical cropping season and summer season using irrigation system. So, research work was needed to test oviposition preference of *S. frugiperda* host cultivars at each study locations.

5. Conclusion
All tested insecticides were effective to manage maize fall armyworms based on their life cycle of the insect and growth stages of the maize plants without repeated application efforts, which may minimize the development of pesticide resistance. These chemicals were important when used in an integrated pest management program. Further research was needed to testing *S. frugiperda* develop resistance to each of the selected insecticide for five years.

Effectiveness of the selected insecticide during the study periods showing an interesting result for the management of FAWs, in the farmers maize field. Before insecticide spraying decision, farmers visit their maize plants frequently two wise a week. Investors also consider number of fall armyworm moth captured per trap, economic cost, the right product, biodiversity implications and damage levels were reaches to economic thresholds beyond 15%.

Author details
Addisu Sileshi¹
E-mail: addissusileshi@yahoo.com
Mulugeta Negeri¹
Thangavel Selvaraj¹
Amsalu Abera¹
¹ Department of Plant Sciences (Agricultural Entomology), College of Agriculture and Veterinary Sciences, Ambo University, Ambo, P.O. Box 19, Ethiopia.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
The authors received no direct funding for this research.

Significance statement
The study has focused on the role of monitoring and thresholds level, rather than the use of insecticide application as a preventative measure of *S. frugiperda* and highlighted harmless and soft insecticide class against fall army worm in the country of large-scale maize plant. Therefore, the result helped to uncover the critical area of the need to pay attention on screening of newly recommended insecticides against *S. frugiperda* under controlled conditions and possible to exploit each insecticide at farmers field condition that some of the academician researcher not take consideration in the large scale of maize farm.

Citation information
Cite this article as: Determination of most effective insecticides against maize fall armyworm, Spodoptera frugiperda in South Western Ethiopia, Addisu Sileshi, Mulugeta Negeri, Thangavel Selvaraj & Amsalu Abera, Cogent Food & Agriculture (2022), 8: 2079210.

References
Almeida, W. A., Silva, I. H. L., Santos, C. V., Junior, A. P. B., & Sousa, A. H. (2017). Potentiation of COPAIBA OIL-RESIN with Synthetic Insecticides to control of Fall Armyworm. Revista Coatinga, 30(4), 1064. https://doi.org/10.1590/1983-2125
Avala, O. R., Navarro, F., & Viria, E. G. (2013). Evaluation of the attack rates and level of damages by the fall armyworm, *Spodoptera frugiperda* (Lepidoptera: Noctuidae), affecting corn crops in the northeast of Argentina. Fca Uncuyo, 45(2), 1–12. http://hdl.handle.net/11336/971
Bolla, A., Bhaskar, M., Bagode, P., & Rawal, N. (2019). Yield losses in maize (Zea mays) due to fall armyworm infestation and potential IoT-based interventions for its control. Journal of Entomology and Zoology Studies, 7(5), 926. https://doi.org/10.22271/j.ento
Barir, A. S., Kudadze, S., Azawla, W., & Yildiz, F. (2020). Prevalence, effects and management of fall armyworm in the Nkoranza South Municipality, Bono East region of Ghana. Cogent Food & Agriculture, 6(1), 1. https://doi.org/10.1080/23311932.1800239
Bateman, M. L., Day, R. K., Luke, B., Edgington, S., Kuhlmann, U., & Cock, M. J. W. (2018). Assessment of potential biopesticide options for managing fall armyworm (*Spodoptera frugiperda*) in Africa. Journal of Applied Entomology, 142(1), 805. https://doi.org/10.1111/j.1439-0418.2015.12565
Belal, D. K., Huckabo, R. M., & Foster, J. E. (2012). Susceptibility of the fall armyworm, *spodoptera frugiperda* (Lepidoptera: Noctuidae) at santa isabel, Puerto Rico, to different Insecticides. Florida Entomologist, 95(2), 476. https://doi.org/10.1653/024.095.0232
Burtet, L. M., Bernardi, O., Melo, A. A., Pes, M. P., Strahl, T. T., & Guedes, J. V. (2019). Managing fall armyworm, *Spodoptera frugiperda* (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. Pest Management Science, 73(12), 2569. https://doi.org/10.1002/ps.465702
Canico, A., Mexia, A., & Santos, L. (2020). Seasonal dynamics of the alien invasive insect pest *spodoptera frugiperda* Smith (Lepidoptera: Noctuidae) in Manica.
province. Central Mozambique, 1(1512), 1. https://doi.org/10.3390/insects11080512

Clark, P. L., Molina-Ochoa, J., Martinelli, S. R., Skoda, S. R., Isenhour, D. J., Lee, D. J., Krumm, J. T., & Foster, J. E. (2007). Population variation of the fall armyworm, Spodoptera frugiperda, in the Western Hemisphere. *Journal of Insect Science*, 7(5), 1.

Cruz, I., Figueiredo, C. L. M., Silva, B. R., & Foster, J. E. (2010). Efficiency of chemical pesticides to control Spodoptera frugiperda and validation of pheromone trap as a pest management tool in maize crop. *Revista Brasileira de Milho e Sorgo*, 9(2), 107. https://doi.org/10.1590/S1806-64772010000200008

Cruz, I., Figueiredo, M. D. L. C., Do Silva, R. B., Do Silva, I. F., Paula, C. D., & Foster, J. E. (2012). Using sex pheromone traps in the decision-making process for pesticide application against fall armyworm (Spodoptera frugiperda (Smith) [Lepidoptera: Noctuidae] larvae in maize. *International Journal of Pest Management*, 58(1), 83. https://doi.org/10.1080/09670874.2012.655702

Dal Pogetto, M. H. F. A., Prado, E. P., Gimenes, M. J., Christovam, R. S., Rezende, D. T., Aguilar-Jun, H. O., Couto, S. I. A., & Ratoano, C. G. (2013). Corn yield with reduction of insecticidal sprays against fall armyworm (Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize. *Journal of Agronomy*, 11(17). 1812-5417/DOI:10.3933/ja.2012.17.21

Day, R., Abrahom, B., Bateman, M., Beale, T., Clotey, V., Cock, M., Colmenares, Y., Corniani, N., Early, R., Godwin, J., Gomez, J., Moreno, P. G., Murphy, S. T., Oppong-Mensah, B., Phihi, N., Pratt, C., Silvestri, S., & Witt, A. (2017). Fall armyworm: Impacts and implications for Africa. *Outlook on Pest Management*, 28(2), 199. https://doi.org/10.15644/2v8_oct_02

De Groote, H., Kimenju, S. C., Muhuyu, B., Palmas, S., Kassie, M., & Bruce, A. (2020). Spread and impact of fall armyworm (Spodoptera frugiperda J.E. Smith) in maize production areas of Kenya. *Agric. Ecosyst. Environ.*, 15(292), 1. https://doi.org/10.1016/106804

Early, R., Gonzalez-Moreno, P., Murphy, S. T., & Day, R. (2019). Forecasting the global extent of invasion of the cereal pest Spodoptera frugiperda, the fall armyworm. *Neo Biota*, 40(40), 25. https://doi.org/10.3897/neobio.40.28165

Etienne, T., Babacar, L., Mamadou, D., Salou, D., & Karamoko, D. (2019). The fall armyworm Spodoptera frugiperda (J.E. Smith), a new pest of maize in Africa: Biology and first native natural enemies detected. *International Journal of Biological and Chemical Sciences*, 13(2), 1011. https://doi.org/10.4314/ijbcs.v13i2.35

FAO, 2019. *Emergency Assistance to obtain the spread of fall armyworm outbreak*. Reporting to fsoa.org. Pp. 2.

Gabriela, M., Molina-Ochoa, M. J., & Fidalgo, P. (2009). Natural Distribution of Parasitoids of Larvae of the Fall Armyworm, S. frugiperda, in Argentina. *Journal of Insect Science*, 9(20), 3. https://doi.org/10.1673/031.009.2001

Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A., Tam, M., & Luthe, D. S. (2016). First report of outbreaks of the fall armyworm spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a New Alien Invasive Pest in West and Central Africa. *PLOS ONE*, 11(10), 5. https://doi.org/10.1371/journal.pone.0167935

Hardke, J. T., Jackson, R. E., & Leonar, R. B. (2014). Opportunities to manage fall armyworm (Lepidoptera: Noctuidae) on Bolgillard II® cotton with reduced rates of insecticides. *Journal of Cotton Science*, 18(1), 59. http://journal.cotton.org

Hartnik, T., Sverdrup, L. E., & Jensen, J. (2008). Toxicity of the pesticide alpha-cypermethrin to four soil non-target invertebrates and Implications for risk assessment. *Environmental Toxicology and Chemistry*, 27(6), 1408-1415. https://doi.org/10.1897/07-385.1

Hruska, A., & Gladstone, S. (1988). Effect of period and level of infestation of the fall armyworm, spodoptera frugiperda, on irrigated Maize Yield. *The Florida Entomologist*, 71(3), 249. https://doi.org/10.2307/3495428

Igyuwe, T. M., Ojo, G. O. S., Ugbo, M. S., & Ochigbo, A. E. (2018). Fall army worm (spodoptera frugiperda); It’s biology, impact and control on maize production in Nigeria. *Nigerian Journal of Crop Science*, 5(1), 78. https://doi.org/10.11111/ijcsc.2012355057

Jander, R. S., Gerald, A. C., Alexandre, P. M., Marcelo, H. G. C., & Jader, B. M. (2013). Impact of insecticides used to control Spodoptera frugiperda (J. E. Smith) in corn on survival, sex ratio, and reproduction of Trichogramma pretiosum Riley offspring. *Chilean Journal of Agricultural Research*, 73(1), 122. https://doi.org/10.4067/S0718-539220130001000200006

Jarrod, T. H., Joshua, H. T., Leonard, B. R., & Jackson, R. E. (2011). Laboratory toxicity and field efficacy of selected insecticides against fall armyworm (lepidoptera: Noctuidae). *The Florida Entomologist*, 94(2), 276. https://doi.org/10.1673/031.094.276

Jarrod, T. H., Lorenz, G. M., & Leonard, B. R. (2015). Fall armyworm (Lepidoptera: Noctuidae) ecology in Southeastern Cotton. *Journal of Integrated Pest Management*, 6(11), 10. https://doi.org/10.1093/jipm/pm009

Juliana, D. M. S., Deferrari, M. S., Yamazaki, L. R., Salvadori, J. R., & Carlini, C. R. (2012). Characterization of entomopathogenic nematodes and symbiotic bacteria active against Spodoptera frugiperda (Lepidoptera: Noctuidae) and contribution of bacterial urease to the insecticidal effect. *B. Control*, 63(3), 253. https://doi.org/10.1016

Kansilme, M. K., Mugambi, J., Rwomushana, L., Njeda, W., Lamontagne-Godwin, J., AWARE, H., Aphiiri, N., Chipka, G., Ndlovu, M., & Day, R. (2019). Farmer perception of fall armyworm (Spodoptera frugidera J.E. Smith) and farm-level management practices in Zambia. *Pest Management Science*, 75(10), 2840. https://doi.org/10.1002/ps.5506

Kassie, M., Wossen, T., De Groote, H., Tefera, T., Sevgan, S., & Bolew, S. (2020). Economic impacts of fall armyworm and its management strategies: evidence from southern Ethiopia. *European Review of Agricultural Economics*, 47(4), 1473. https://doi.org/10.1093/erae/bjz048.

Kumar, M. D., Sonal, J., & Tiwar, S. (2018). Field efficacy of selected insecticides against fall armyworm on maize crop. *International Journal of Chemical Studies*, 8(6), 255-259. SP. https://doi.org/10.22271/chemi.v8i6d.11164

Kumela, T., Simiyu, J., Sisay, B., Likhaya, P., Mendesil, E., Gohole, L., & Tefera, T. (2019). Farmers’ knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. *International Journal of Pest Management*, 65(1), 1. https://doi.org/10.1080/09670874.2017.1423129

Kwamino, E. B., Daniel, K. A., Fidelis, D. D., Kwadwo, B. A. B., Moses, A., & Lourees, E. A. (2019). Impact of fall armyworm on farmer’s Maize: Systemic approach. *Systemic Practice and Action Research*, 33(2), 237. https://doi.org/10.1007/s11213-019-09489-6
Makirita, E. W., Chacha, M., Ndakidemi, P., & Mbega, E. (2019). Fall armyworm infestation and management practices on maize fields of smallholder farmers in Northern Tanzania. *Journal of Biodiversity and Environmental Sciences (UBES)*, 15(6), 10. http://www.innspub.net

Maruthadurai, R., & Ramesh, R. (2020). Occurrence, damage pattern and biology of fall armyworm, *Spodoptera frugiperda* (J.E. Smith) (Lepidoptera: Noctuidae) on fodder crops and green amaranth in Goa, India. *Phytotaxa*, 48(1), 15. https://doi.org/10.1007/s12600-019-00771-w

Matti, P. V., & Patil, S. B. (2019). Occurrence of invasive species of armyworm, *Spodoptera frugiperda* on sugarcane in Belgaum, Karnataka, India. *International Journal of Plant Protection*, 12(1), 36. https://doi.org/10.17548/HAS/IJPP/12.1/36-39

Midega, C. A. O., Pittchar, J. D., Pickett, J. A., Hollu, G. W., & Khan, Z. R. (2018). A climate-adapted push-pull system effectively controls fall armyworm, *Spodoptera frugiperda* (J.E. Smith), in maize in East Africa. *Crop Protection*, 105(15), 10. https://doi.org/10.1016/j.cropro.2017.11.003

Milena, G. C., Caccia, M. G., Del Valle, E., Doucet, M. E., & Lax, P. (2014). Susceptibility of *Spodoptera frugiperda* and *Helicoverpa gelotopoeon* (Lepidoptera: Noctuidae) to the entomopathogenic nematode *Steinernema diaprepesi* (Rhabditida: Steinernematidae) under laboratory conditions. *Chilean Journal of Agricultural Research*, 74(1), 123. https://doi.org/10.4067/S0718-58392014000100019

Mintesnot, W., & Ebabuye, Y. (2020). Evaluation of efficacy of insecticides against the fall army worm *Spodoptera frugiperda*. *Indian Journal of Entomology*, 81(1), 9. https://doi.org/10.5958/0974-8172.2019.00076.2

Montezano, D. G., Specht, A., Sosa-Gómez, D. R., Roque-Specht, V. F., Sousa-Silva, J. C., Paula-Moraes, S. V., Peterson, J. A., & Hunt, T. (2018). Host plants of *spodoptera frugiperda* (Lepidoptera: Noctuidae) in the Americas. *African Entomology*, 26(2), 286. https://doi.org/10.4001/003.026.0286

Murua, G., Molino-Ochoa, J., & Covilea, C. (2009). Population dynamics of the fall armyworm, *Spodoptera frugiperda* (Lepidoptera: Noctuidae) and its parasitoids in northwestern Argentina. *Florida Entomologist*, 89(2), 178. https://doi.org/10.1653/0015-4040

Prasanna, B. M., Joseph, E. H., Regina, E., & Virginia, M. P. (2018). Fall armyworm in Africa: A guide for integrated pest management (First ed.). pp 18. CIMMYT.

Rodney, N. N., Pierre, J. S., Robert, L. M., Juan, D. L., & Vilmar, M. (2007). Identification and Comparison of Fall Armyworm (Lepidoptera: Noctuidae) Host Strains in Brazil, Texas, and Florida. *Annals of the Entomological Society of America*, 100(3), 394. https://doi.org/10.1603/0013-8746

Santos, L. M., Redaelli, L. R., Diefenbach, L. M. G., & Efrom, C. F. S. (2003). Larval and pupal stage of *spodoptera frugiperda* (J. E. Smith) (LEPIDOPTERA: NOCTUIDAE) in sweet and field corn genotypes. *Brazilian Journal of Biology*, 63(4), 625. https://doi.org/10.1590/S1519-69842003000400009

SAS. (2004). Statistical Version, 7th ed. Statistical Analysis System, User’s Guide. SAS Inst. Inc. Cary, N.C. USA.

Sharon, B., Michael, M., & Bwaya, M. F. (2020). Severity and prevalence of the destructive fall armyworm on maize in Uganda: A case of Bulambuli District. *Afr. J. Agric. Res.*, 16(6), 777. https://doi.org/10.5897/AJR20.2060

Siãozemo, M. K., & Simfukwe, P. (2020). An evaluation of the efficacy of botanical pesticides for fall armyworm control in maize production. *Open Access Library Journal*, 7(e6746), 1. https://doi.org/10.4243/oolib

Sisay, B., Tefera, T., Wakgari, M., Ayalew, G., & Mendesil, E. (2019). The efficacy of selected synthetic insecticides and botanicals against fall armyworm, *spodoptera frugiperda* in maize. *Insects*, 10(4), 1. [PMCID: 30717302](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410260/)

Sonali, D., & Nandita, P. (2018). First report of fall army worm, *Spodoptera frugiperda* (J.E. Smith), their nature of damage and biology on maize crop at Raipur, Chhattisgarh. *Journal of Entomology and Zoology Studies*, 6(6), 220. https://dx.doi.org/10.22271/jento

Wilmar, D. L. R., Rojas, J. C., Cruz-Lopez, L., Castillo, A., & Mato, E. A. (2016). Attraction, feeding preference and Performance of *Spodoptera frugiperda* Larvae (Lepidoptera: Noctuidae) eared on two varieties of maize. *Environmental Entomology*, 45(2), 384. https://doi.org/10.1093/ee/mnv229

Wondimu, A., Petros, B., Asfaw, Z., & Woldehawariat, Y. (2021). Prevalence and impacts of fall army worms (*Spodoptera frugiperda*) on maize (*Zea mays*) productivity in Ethiopia. *ISABB. J. Food Agric. Sci.*, 10(2), 21. https://doi.org/10.5897/isabb-jfas2020.0133
