Subjective assessment of participants in education programs on clinical practice guidelines in the field of psychiatry

Kazuyoshi Ogasawara1 | Shusuke Numata2 | Naomi Hasegawa3 | Masahito Nakataki4 | Manabu Makinodan5 | Kazutaka Ohi6 | Masahiro Takeshima7 | Takashi Tsuboi8 | Naoki Hashimoto9 | Toshiaki Onitsuka10 | Hiroyuki Muraoka11 | Hikaru Hori12 | Kayo Ichihashi13 | Takahiko Inagaki14,15 | Norio Yasui-Furukori16 | Akitoyo Hishimoto17 | Nobuhiro Sugiyama18 | Kentaro Fukumoto19 | Tatsuya Nagasawa20 | Junya Matsumoto3 | Yoshikazu Takaesu21 | Ryuji Furihata22 | Kiyotake Nemoto23 | Toshinori Nakamura18 | Masahide Usami24 | Kenichiro Miura3 | Michiko Fujimoto25 | Hiromi Tagata26 | Hisashi Yamada27 | Hiroshi Komatsu28 | Shinichiro Ochi29 | Kiyokazu Atake30 | Eiichi Katsumoto31 | Mikio Kido32,33 | Taishiro Kishimoto34 | Taro Suwa35 | Satoshi Yamamura36 | Jun-ichi Iga29 | Hitoshi Iida12 | Ken Inada11 | Koichiro Watanabe8 | Ryota Hashimoto3 |

1Center for Postgraduate Clinical Training and Career Development, Nagoya University Hospital, Aichi, Japan
2Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
3Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
4Department of Psychiatry, Tokushima University Hospital, Tokushima, Japan
5Department of Psychiatry, Faculty of Medicine, Nara Medical University, Nara, Japan
6Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
7Department of Neuropsychiatry, Akita University Graduate School of Medicine, Akita, Japan
8Department of Neuropsychiatry, Kyorin University School of Medicine, Tokyo, Japan
9Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
10Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
11Department of Psychiatry, Tokyo Women's Medical University, Tokyo, Japan
12Department of Psychiatry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
13Department of Neuropsychiatry, University of Tokyo Hospital, Tokyo, Japan
14Adolescent Mental Health Service, Biwako Hospital, Shiga, Japan
15Department of Psychiatry, Shiga University of Medical Science, Shiga, Japan
16Department of Psychiatry, Dokkyo Medical University School of Medicine, Tochigi, Japan
17Department of Psychiatry, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
18Department of Psychiatry, Shinsu University School of Medicine, Nagano, Japan
19Department of Neuropsychiatry, Iwate Medical University School of Medicine, Iwate, Japan
20Department of Neuropsychiatry, Kanazawa Medical University, Ishikawa, Japan
21Department of Neuropsychiatry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
22Kyoto University Health Service, Kyoto, Japan
23Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
24Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Chiba, Japan

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

© 2022 The Authors. Neuropsychopharmacology Reports published by John Wiley & Sons Australia, Ltd on behalf of The Japanese Society of Neuropsychopharmacology.
INTRODUCTION

Clinical practice guidelines (CPGs) that give medical practitioners and patients reasonable treatment recommendations are important in “evidence-based medicine,” which is the standard manner of today’s medical practices. The Effectiveness of Guideline for Dissemination and Education in psychiatric treatment (EGUIDE) project, which is a nationwide dissemination and implementation program for clinical practice guidelines (CPGs) in the field of psychiatry, is currently ongoing. In the current study, a subjective assessment of the participants in the EGUIDE programs was assessed using a questionnaire. Then, the relationships between the subjective assessment, the characteristics of the participants, and the clinical knowledge of the CPGs were evaluated. More than 90% of the participants gave a high rating for the components of content, recommendation, knowledge, skill, and adherence, but not for the component of confidence. A positive correlation was found between years of professional experience and the score of confidence. These results suggest that it may be necessary to apply the knowledge and skills of CPGs obtained in the education programs into practice to increase confidence in the proper use of psychiatric therapies based on CPGs.

KEYWORDS
clinical practice guidelines, depression, dissemination, education, implementation, schizophrenia, subjective assessment
2 | METHOD

2.1 | Participants

Psychiatrists were recruited from October 2016 to March 2018. Four sets of data, the subjective assessments of schizophrenia (SCZ) and major depressive disorder (MDD) programs and the clinical knowledge of the CPGs of SCZ and MDD, were available for a total of 344 participants. The mean age of the participants was 33.8 ± 6.9 years (mean ± SD), and the mean years of professional experience were 5.1 ± 6.1 years.

2.2 | Subjective assessment of EGUIDE programs

The subjective assessment of each guideline program was evaluated using a questionnaire following the EGUIDE programs. It is a self-administered questionnaire that consists of the following six components on a scale of 1-5, with higher scores indicating a higher evaluation: (1) How would you rate the content of this course? The abbreviation for this question is “Content,” with 5 = very satisfactory; 4 = moderate satisfaction; 3 = I cannot say I was either satisfied or dissatisfied; 2 = dissatisfied; and 1 = very dissatisfied; (2) How would you rate your recommendation of this course to a colleague or junior colleague? The abbreviation for this question is “Recommendation,” with 5 = strong recommendation; 4 = moderate recommendation; 3 = I cannot say that I would or would not recommend; 2 = no recommendation; and 1 = no recommendation at all; (3) How would you rate your clinical knowledge of treatment after attending this course? The abbreviation for this question is “Knowledge,” with 5 = very increased; 4 = increased; 3 = I cannot say increased or confused; 2 = confused; and 1 = very confused; (4) How would you rate your future choice of treatment according to the guidelines after attending this course? The abbreviation for this question is “Adherence,” with 5 = will always choose; 4 = will mostly choose; 3 = I cannot say I would choose or not; 4 = no consideration of guidelines; 1 = no consideration of guidelines at all.

2.3 | Assessment of clinical knowledge of CPGs

Working knowledge of the CPGs of SCZ and MDD was evaluated using a questionnaire both at baseline and after each of the programs. Each self-administered questionnaire consists of 37 questions, with a total score of 37 points (see Tables S1 and S2).

2.4 | Statistical analysis

The relationships between the demographic characteristics of the participants (age and professional experience), the total score of clinical knowledge following the programs, and each component score of subjective assessment (the aforementioned content, recommendation, knowledge, skill, confidence, and adherence) were analyzed using Spearman’s rank correlation coefficient. All statistical analyses were performed using IBM SPSS 27.

3 | RESULTS

In the subjective assessment, more than 90% of the participants gave a high rating of 4 or 5 for the five components of content.
(98.8% and 97.7%), recommendation (95.3% and 97.1%), knowledge (98.3% and 98.5%), skill (92.4% and 91.0%), and adherence (95.3% and 96.5%), respectively, in both the SCZ and MDD programs, but not for the component of confidence (42.2% and 44.8%, respectively, Figure 1). When we examined the relationships between age, professional experience, and the individual component scores of the subjective assessment, a positive correlation was found between years of professional experience and the score of confidence both in the SCZ and MDD programs (r = .249, P = 2.97 × 10^{-6} and r = .151, P = .005, respectively; Table 1). This correlation reached statistical significance when corrected for the multiple testing of the six components in each program (P < .0083). When the relationships between each component score of the subjective assessment and the total score of clinical knowledge of the CPGs were assessed following the programs, no significant association was found in either the SCZ or MDD programs (P > .05; Table S3).

4 | DISCUSSION

To our knowledge, this is the first study that assessed the subjective effect of educational program and the related factors in the field of psychiatric CPGs. The subjective assessment of participants in the EGUIDE programs was performed using a questionnaire. High rating scores of content and recommendation suggest that the CPG programs were highly regarded by the participants. High ratings of knowledge and skill suggest that most participants had a better understanding of CPGs. These results are consistent with the previous results of the objective improvement of the participants’ clinical knowledge of the CPGs. Although knowledge of the guidelines may not be necessarily linked to treatment outcomes, a high rating score of adherence may lead to future proper treatment choices based on the CPGs.

A high rating for confidence was not achieved in either the SCZ or MDD programs. Most participants might be cautious rather than focusing on building their confidence. While the score of confidence was associated with years of professional experience, it was not associated with clinical knowledge of CPGs following the programs. On the contrary, an education program using case-based learning and supervision over time increased confidence as well as knowledge. Evidence-based medicine, which the CPGs are intended to support, relies on the expertise of medical practitioners. In other words, clinical experience is a prerequisite for the optimal use of the probabilistic recommendations provided by the CPGs in practice. It may be that an application of the clinical knowledge of CPGs acquired in the program in daily practice will lead to the acquisition of confidence in the appropriate use of psychiatric therapies. A longitudinal study of changes in adherence to CPGs and confidence of the proper therapies based on CPGs is currently planned.

The limitations of this study are the number of participants and potential sampling bias, such as years of professional experience. Future researches with increased participants are needed.

5 | CONCLUSION

The educational programs on CPGs contributed to a high subjective assessment of therapy knowledge and skills, as well as guideline-based treatment choices, but did not lead to an increased confidence in the appropriate use of therapies based on CPGs. To increase confidence, it may be necessary to apply the knowledge and skills obtained in the educational programs to real-world clinical practice.

TABLE 1. Correlations between subjective assessments and age/years of professional experience. Spearman’s rank correlation coefficient: The statistical significance level was set at P < .0083 for the correction of the multiple testing of six components in each program.

	Content	Recommendations	Knowledge	Skills	Confidence	Compliance	
Schizophrenia							
Age (y)	r	.040	.107	-.102	-.115	.126	.058
P value		.455	.048	.060	.033	.019	.287
Professional experience (y)	r	-.008	.088	-.142	-.165	.249	.069
P value		.882	.104	.009	.002	2.97 × 10^{-6}	.202
Major depressive disorder							
Age (y)	r	.019	.118	-.073	-.066	.093	-.007
P value		.725	.029	.175	.224	.085	.898
Professional experience (y)	r	-.030	.072	-.181	-.127	.151	.058
P value		.574	.181	.001	.019	.005	.287

Note: Bold value indicates significant positive correlations are observed between “Confidence” and years of professional experience in either the schizophrenia or major depressive disorder program.
CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
KOg and SN were involved in data collection and data analysis and wrote the first draft of the manuscript. NHase, JM, KM, and MN were involved in the data analysis and contributed to the interpretation of the data and writing of the manuscript. MM, KOh, MT, TT, NHash, TO, HM, HH, Klc, Ti, NY-F, AH, NS, KF, TNag, YT, RF, KN, TNak, MU, MF, HT, HY, HK, SO, KA, EK, MK, TK, TS, SY, JI, and HI contributed to the interpretation of the data and data collection. Kin and KW were involved in the study design and contributed to the interpretation of the data. RH supervised the entire project, collected the data, and was involved in the design, analysis, and interpretation of the data. All authors contributed to and approved the final article.

APPROVAL OF THE RESEARCH PROTOCOL BY AN INSTITUTION REVIEWER BOARD
This study was approved by the ethics committees of the National Center of Neurology and Psychiatry (A2017-105) and each participating university, hospital and clinic.

INFORMED CONSENT
All participants provided their written informed consent. Public availability of raw data was not planned in the research protocol approved by an Institution Reviewer Board. We did not obtain informed consent of the public availability.

REGISTRY AND THE REGISTRATION NO. OF THE STUDY/TRIAL
The protocol of this study was registered in the University Hospital Medical Information Network registry (UMIN000022645).

ANIMAL STUDIES STATEMENT
Not applicable.

DATA AVAILABILITY STATEMENT
The data are not publicly available due to privacy and ethical restrictions (ie, we did not obtain informed consent on the public availability of raw data).

ORCID
Kazuyoshi Ogasawara https://orcid.org/0000-0003-2911-0708
Masahiro Takeshima https://orcid.org/0000-0003-0614-7524
Norio Yasui-Furukori https://orcid.org/0000-0002-4414-3770
Junya Matsumoto https://orcid.org/0000-0003-4228-3208
Yoshikazu Takaesu https://orcid.org/0000-0002-9169-3249
Kenichiro Miura https://orcid.org/0000-0002-3722-7837
Kiyokazu Atake https://orcid.org/0000-0003-4532-0254
Jun-ichi Iga https://orcid.org/0000-0003-4409-3096
Ken Inada https://orcid.org/0000-0002-3073-4588
Ryota Hashimoto https://orcid.org/0000-0002-5941-4238

REFERENCES
1. Japanese Society of Mood Disorders. Treatment Guidelines II. Major Depressive Disorder 2016. 2019 (in Japanese). https://www.secretariat.ne.jp/jsmd/inkai/katsoudou/data/20190724-02.pdf (Accessed 31 July 2021)
2. Japanese Society of Neuropsychopharmacology. Guideline for pharmacological therapy of schizophrenia. Neuropsychopharmacol Rep. 2021;41:266–324.
3. Numata S, Nakataki M, Hasegawa N, Takaesu Y, Takeshima M, Onitsuka T, et al. Improvements in the degree of understanding the treatment guidelines for schizophrenia and major depressive disorder in a nationwide dissemination and implementation study. Neuropsychopharmacol Rep. 2021;41:199–206.
4. Ichihashi K, Hori H, Hasegawa N, Yasuda Y, Yamamoto T, Tsuibo T, et al. Prescription patterns in patients with schizophrenia in Japan: first-quality indicator data from the survey of “Effectiveness of Guidelines for Dissemination and Education in psychiatric treatment (EGUIDE)”. Neuropsychopharmacol Rep. 2020;40:281–6.
5. Iida H, Iga J, Hasegawa N, Yasuda Y, Yamamoto T, Miura K, et al. Unmet needs of patients with major depressive disorder—findings from the ‘Effectiveness of Guidelines for Dissemination and Education in Psychiatric Treatment (EGUIDE)’ project: a nationwide dissemination, education, and evaluation study. Psychiatry Clin Neurosci. 2020;74:667–9.
6. Takaesu Y, Watanabe K, Numata S, Iwata M, Kudo N, Oishi S, et al. Improvement of psychiatrists’ clinical knowledge of the treatment guidelines for schizophrenia and major depressive disorders using the ‘Effectiveness of Guidelines for Dissemination and Education in Psychiatric Treatment (EGUIDE)’ project: a nationwide dissemination, education, and evaluation study. Psychiatry Clin Neurosci. 2019;73:642–8.
7. Hashimoto N, Yasui-Furukori N, Hasegawa N, Ishikawa S, Numata S, Hori H, et al. Characteristics of discharge prescriptions for patients with schizophrenia or major depressive disorder: real-world evidence from the Effectiveness of Guidelines for Dissemination and Education (EGUIDE) psychiatric treatment project. Asian J Psychiatr. 2021;63:102744.
8. McLeod D, Esplen MJ, Wong J, Hack TF, Fillion L, Howell D, et al. Enhancing clinical practice in the management of distress: the Therapeutic Practices for Distress Management (TPDM) project. Psycho-Oncol. 2018;27:2289–95.
9. Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson WS. Evidence based medicine: what it is and what it isn’t. BMJ. 1996;312:71–2.
10. Haynes RB, Devereaux PJ, Guyatt GH. Physicians’ and patients’ choices in evidence based practice. BMJ. 2002;324:1350.

SUPPORTING INFORMATION
Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Ogasawara K, Numata S, Hasegawa N, Nakataki M, Makinodan M, Ohi K, et al. Subjective assessment of participants in education programs on clinical practice guidelines in the field of psychiatry. Neuropsychopharmacol Rep. 2022;42:221–225. https://doi.org/10.1002/npr2.12245