Exactly solvable models for multiatomic molecular Bose–Einstein condensates

G Santos
Instituto de Física da UFRGS, Av. Bento Gonçalves, 9500, Agronomia, Porto Alegre, RS, Brazil
E-mail: gfilho@if.ufrgs.br and gfilho@cbpf.br

Received 7 January 2011
Published 3 August 2011
Online at stacks.iop.org/JPhysA/44/345003

Abstract
I introduce two families of exactly solvable models for multiatomic hetero-nuclear and homo-nuclear molecular Bose–Einstein condensates through the algebraic Bethe ansatz method. The conserved quantities of the respective models are also shown.

PACS numbers: 02.30.Ik, 03.65.Fd, 03.65.+w, 03.75.Nt, 05.30.Jp

1. Introduction
One of the most interesting recent experimental achievements in physics is the one that led to realizations of Bose–Einstein condensates (BEC), by taking dilute alkali gases to extremely low temperatures [1, 2]. Since then, much effort has been devoted to the comprehension of new phenomena involving this state of matter as well as its properties, either experimentally or theoretically. On the experimental side, I briefly mention that a molecular BEC compound has been obtained combining different techniques [3], leading this kind of research also in the direction of a chemistry of BEC, where, for instance, by Feshbach resonances [4–6] or photo-association [7, 8] the atomic constituents may form molecules.

Many compounds of diatomic homo-nuclear molecular BECs [9–11] have been produced since the first realization [12]. Also, diatomic hetero-nuclear molecular BECs have been detected using these techniques [13–19]. In fact, due to the rapid technological developments in the field of ultra-cold systems, it is believed that some of these experiments may be just the dawn of the study of multiatomic molecules [20, 21]. More recently, the experimental evidence for Efimov states in an ultra-cold cesium gas [22–24] and a mixture of ultra-cold potassium and rubidium gases [25] provides a physical ground for the investigation of triatomic and tetratomic homo-nuclear and triatomic hetero-nuclear molecular BECs.

These results boosted the search for solvable models that could describe some of the BEC properties [26–42]. The rationale behind these studies is that through exactly solvable models, it is possible to fully take into account quantum fluctuations, going beyond the usual mean-field approximations. Therefore, I expect that this approach may provide some impact in this area, as well as a contribution to the field of integrable systems itself [43, 44]. In this paper I will
use the algebraic Bethe ansatz method. The algebraic formulation of the Bethe ansatz, and
the associated quantum inverse scattering method (QISM), was primarily developed by
the group of mathematical physicists in St Petersburg [45–49]. The QISM could be used to study
the one-dimensional spin chains, quantum field theory in one-dimensional bosons interacting
systems [50] and two-dimensional lattice models [51], systems of strongly correlated electrons
[52, 53], conformal field theory [54], as well as precipitated the notion of quantum algebras
(deformations of universal enveloping algebras of Lie algebras) [55–58]. For a pedagogical
and historical review see [59].

Owing to recent insights into the understanding of the construction of Lax operators, it is
possible to obtain solvable models suitable for the effective description of the interconversion
interactions occurring in the BEC. Inspired by some of these ideas I present, in this paper, the
construction of two complete families of Bethe ansatz solvable models for both homo-nuclear
and hetero-nuclear molecular BECs obtained through a combination of three Lax operators
constructed using special realizations of the $su(2)$ Lie algebra and of the Heisenberg–Weyl Lie
algebra, as well as a multibosonic representation of the $sl(2)$ Lie algebra, discussed recently
in [60]. Notice that the models obtained through this construction do not have spatial degrees
of freedom.

The paper is organized as follows. In section 2, I will review briefly the algebraic
Bethe ansatz method and present the Lax operators and the transfer matrix for both
models. In section 3, I present a family of multiatomic homo-nuclear models and their
solutions. In section 4, I present a family of multiatomic hetero-nuclear models and their
solutions. In section 5, I make my remarks.

2. Algebraic Bethe ansatz method

In this section, we briefly review the algebraic Bethe ansatz method and present the transfer
matrix used to obtain the solution of the models [28, 61]. We begin with the $gl(2)$-invariant
R-matrix, depending on the spectral parameter u,

$$R(u) = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & b(u) & c(u) & 0 \\
0 & c(u) & b(u) & 0 \\
0 & 0 & 0 & 1
\end{pmatrix},$$

with $b(u) = u/(u+\eta)$ and $c(u) = \eta/(u+\eta)$. Above, η is an arbitrary parameter, to be chosen
later. It is easy to check that $R(u)$ satisfies the Yang–Baxter equation

$$R_{12}(u-v)R_{13}(u)R_{23}(v) = R_{23}(v)R_{13}(u)R_{12}(u-v).$$

Here, $R_{jk}(u)$ denotes the matrix acting non-trivially on the jth and the kth spaces and as the
identity on the remaining space.

Next, we define the monodromy matrix $T(u)$,

$$T(u) = \begin{pmatrix} A(u) & B(u) \\ C(u) & D(u) \end{pmatrix},$$

that satisfies the Yang–Baxter algebra

$$R_{12}(u-v)T_1(u)T_2(v) = T_2(v)T_1(u)R_{12}(u-v).$$

In what follows, we will choose different realizations for the monodromy matrix $\pi(T(u)) = L(u)$
to obtain solutions of two families of models for multiatomic hetero-nuclear and homo-
nuclear molecular BECs. In this construction, the Lax operators $L(u)$ have to satisfy the relation

$$R_{12}(u-v)L_1(u)L_2(v) = L_2(v)L_1(u)R_{12}(u-v).$$
where we use the notation,

\[L_1 = L(u) \otimes I \quad \text{and} \quad L_2 = I \otimes L(u) \]

Then, defining the transfer matrix, as usual, through

\[t(u) = tr \pi(T(u)) = tr(A(u) + D(u)), \]

it follows from (4) that the transfer matrix commutes for different values of the spectral parameter, i.e.

\[[t(u), t(v)] = 0, \quad \forall \ u, v. \]

Consequently, the models derived from this transfer matrix will be integrable. Another consequence is that the coefficients \(C_k \) in the transfer matrix

\[t(u) = \sum_k C_k u^k, \]

are conserved quantities or simply c-numbers, with

\[[C_j, C_k] = 0, \quad \forall \ j, k. \]

If the transfer matrix \(t(u) \) is a polynomial function in \(u \), with \(k \geq 0 \), it is easy to see that

\[C_0 = t(0) \quad \text{and} \quad C_k = \frac{1}{k!} \left. \frac{d^k t(u)}{du^k} \right|_{u=0}. \]

We will use three solutions of equation (5).

(i) The \(L^S(u) \) Lax operator

\[L^S(u) = \frac{1}{u} \begin{pmatrix} u - \eta S^- & -\eta S^+ \\ -\eta S^+ & u + \eta S^- \end{pmatrix} \]

in terms of the \(su(2) \) Lie algebra with generators \(S^\pm \) subject to the commutation relations

\[[S^+, S^-] = +S^\pm, \quad [S^+, S^-] = 2S^c. \]

(ii) The \(L^J(u) \) Lax operator

\[L^J(u) = \begin{pmatrix} u + \eta N_j \cdot j^{-1} \\ j \cdot \eta^{-1} \end{pmatrix} \]

in terms of the Heisenberg–Weyl Lie algebra with generators \(N_j, j \) and \(I \), subject to the commutation relations

\[[N_j, j] = -j, \quad [N_j, j^\dagger] = +j, \quad [j, j^\dagger] = I \quad \text{and} \quad [I, \ast] = 0, \]

where \(\ast \) means \(N_j \), \(j \) or \(j^\dagger \).

(iii) The \(L^A(u) \) Lax operator

\[L^A(u) = \begin{pmatrix} u + \frac{\eta}{2} A_0 \quad \eta A_- \\ -\eta A_+ \quad u - \frac{\eta}{2} A_0 \end{pmatrix} \]

in terms of the \(sl(2) \) Lie algebra with generators \(A_0 \) and \(A_\pm \), subject to the commutation relations

\[[A_-, A_+] = A_0, \quad [A_0, A_\pm] = \pm 2A_\pm. \]

Using the co-multiplication properties of the Lax operator and the \(gl(2) \) invariance of the \(R \)-matrix, we can obtain different realizations for the monodromy matrix.
(i) **Multiatomic homo-nuclear.** For the multiatomic homo-nuclear molecular BEC model, we choose

\[\pi(T(u)) = L(u) = \eta^{-1}GL^\alpha(u - \delta - \eta^{-1})L^\alpha(u + \omega), \]

with \(G = \text{diag}(-, +) \), from which we find the following transfer matrix:

\[t(u) = \eta^{-1}(u + \omega + \frac{\eta}{2}A_0) (u - \delta - \eta^{-1} + \eta N_b) \]
\[+ \eta^{-2}(u + \omega - \frac{\eta}{2}A_0) + bA_+ + b^\dagger A_-, \]

with

\[t(0) = \eta^{-1}\omega(\delta + 2\eta^{-1}) - \omega N_b + \frac{1}{2}(\delta - \eta N_b)A_0 + bA_+ + b^\dagger A_- \]

and, discarding \(c \)-number terms, the conserved quantities are

\[C_0 = t(0), \]
\[C_1 = \frac{1}{2}A_0 + N_b. \]

(ii) **Multiatomic hetero-nuclear.** For the multiatomic hetero-nuclear molecular BEC models, we choose

\[\pi(T(u)) = L(u) = \eta^{-1}u^-GL^\alpha(u^-)L^\alpha(u^+), \]

with \(u^\pm = u \pm \omega \), \(G = \text{diag}(+, -) \), from which we find the following transfer matrix:

\[t(u) = u^-A_0 - 2u^+S^- + \eta(S^+A_+ + S^-A_-) \]

and the conserved quantities

\[C_0 = t(0), \]
\[C_1 = A_0 - 2S^- \]

In the following sections, we will describe the models and its integrability by the algebraic Bethe ansatz method, using different realizations of the algebras (12), (14) and (16). The Hamiltonians are written in the Fock space using the standard notation. We are considering the coupling parameters real, such that the Hamiltonians are Hermitian. In the diagonal part of the Hamiltonians, the \(U_j \) parameters describe the atom–atom, atom–molecule and molecule–molecule \(S \)-wave scatterings and the \(\mu_j \) parameters are the external potentials. The operators \(N_j \) are the number operators of atoms or molecules. In the off-diagonal part of the Hamiltonians, the parameter \(\Omega \) is the amplitude for interconversion of atoms and molecules.

3. Multiatomic homo-nuclear molecular models

In this section, we present the integrability of a new family of Hamiltonians describing multiatomic homo-nuclear molecular BEC. The Hamiltonians that describe the interconversion of homogeneous molecules labelled by \(b \) with \(l \) atoms of type \(a \) are given by

\[H = U_aN_a^2 + U_bN_b^2 + U_{ab}N_aN_b + \mu_aN_a + \mu_bN_b \]
\[+ \Omega((a^\dagger b)^l b^\dagger (N_a) + \alpha-(N_a) \ b^\dagger (a^\dagger)^l), \]

where \(\alpha-(N_a) \) is a function of \(N_a \) that controls the amplitude of interconversion \(\Omega \). This indicates that the density of atoms \(N_a \) has some influence on the generation of a bound state composed of \(l \) identical atoms. The \(l = 3 \) case was studied in [35]. The total number of particles \(N = N_a + lN_b \) is a conserved quantity.
There is a multibosonic realization of the \(\mathfrak{sl}(2) \) Lie algebra [60]:

\[
A_0 = \alpha_0(N), \quad A_- = \alpha_-(N)a^\dagger, \quad A_+ = (a^\dagger)^\dagger \alpha_-(N),
\]

with

\[
\alpha_0(N) = \frac{2}{l}(N - R) + \alpha_0(R),
\]

\[
\alpha_-(N) = \sqrt{\frac{N!}{(N + l)!}} \left(\frac{1}{l}(N - R) + \alpha_0(R) \right) \left(\frac{1}{l}(N - R) + 1 \right).
\]

where \(N = a^\dagger a \) and \(l \in \mathbb{N} \). The operator \(R \) is

\[
R = \begin{cases}
0 & \text{for } l = 1, \\
\frac{l - 1}{2} + \sum_{m=1}^{l-1} e^{-(2\pi m/\Omega)} / e^{(2\pi m/\Omega) - 1} & \text{for } l > 1,
\end{cases}
\]

and acts on the states \(|\eta\rangle\) as \(R|\eta\rangle = n \mod |\eta\rangle \). The function \(\alpha_0(R) \) is a positive function of the spectrum of \(R \) defined by initial conditions. For \(n = r < l \), we have

\[
\frac{1}{l}(N - R)|r\rangle = 0|r\rangle,
\]

with \(A_0 = \alpha_0(R) \) such that \(\alpha_0(R)|r\rangle = \alpha_0(r)|r\rangle \) and \(R|r\rangle = r|r\rangle \).

Now we will use this realization to show how to construct the Hamiltonian (26) from the transfer matrix (18) and present their exact Bethe ansatz solution. It is straightforward to check that the Hamiltonian (26) is related to the transfer matrix

\[
H = \Omega t(0),
\]

where we have the following identification:

\[
\eta = \frac{l^2U_a - lU_{ab} + U_b}{\Omega},
\]

\[
\theta = 2lU_{ab} - 4U_b, \quad \xi = 2l^2\mu_a - 2l\mu_b,
\]

\[
2l^2\Omega = (2\Omega\eta + \theta)N - \Omega\rho\eta + \xi,
\]

\[
4l^2\Omega\rho\eta + 8l^2\Omega = \eta^2[\Omega\rho^2\eta + 4U_bN^2 - \theta\rho^2N + 4l(\Omega\omega + \mu_b)N + (2l\Omega\omega - \xi)\rho],
\]

with \(\rho = \rho(R) = l\alpha_0(R) - 2R \).

It is easy to see that \(\rho \) is a conserved quantity using the total number of atoms, \(N \), to write the conserved quantity \(C_1 \) (21) as

\[
C_1 = \frac{1}{l}N + \frac{1}{2l}\rho.
\]

We can apply the algebraic Bethe ansatz method, using the product state as the pseudo-vacuum \(|0\rangle = |0\rangle_b \otimes |r\rangle_A \), with \(|0\rangle_b \) denoting the Fock vacuum state and \(|r\rangle_A \) denoting the lowest weight state of the \(\mathfrak{sl}(2) \) Lie algebra, where \(r = 0, 1, \ldots, l - 1 \), are the eigenvalues of \(R \) for \(N = nl + r \), with \(n \in \mathbb{N} \), to find the Bethe ansatz equations (BAE)

\[
(1 - \eta v_i + \eta \delta)(v_i + \omega + \eta \alpha_0(r)) = \prod_{i \neq j}^M v_i - v_j - \eta, \quad i, j = 1, \ldots, M,
\]

\[
(1 - \eta v_i + \eta \delta)(v_i + \omega - \xi \alpha_0(r)) = \prod_{i \neq j}^M v_i - v_j + \eta, \quad i, j = 1, \ldots, M,
\]
and the eigenvalues of the Hamiltonian (26),

\[E = \Omega \eta^{-1} (\delta + \eta^{-1}) \left(\omega + \frac{\eta}{2} \alpha_0(r) \right) \prod_{i=1}^{M} \frac{v_i - \eta}{v_i} + \Omega \eta^{-2} \left(\omega - \frac{\eta}{2} \alpha_0(r) \right) \prod_{i=1}^{M} \frac{v_i + \eta}{v_i}. \]

(39)

The parameters \(\delta \) and \(\omega \) are arbitrary and can be chosen conveniently. In the limit without scatterings, \(U_j \to 0 \), the BAE (38) can be written as

\[\sum_{i=1}^{M} \frac{1}{v_i + \omega} = \frac{1}{\alpha_0(r)} \sum_{i=1}^{M} \frac{v_i}{\alpha_0(r)} \delta \]

(40)

and for \(\omega = 0 \) the eigenvalues (39) become

\[E = \left(\frac{1}{2} \alpha_0(r) + M \right) \Omega \delta - \Omega \sum_{i=1}^{M} v_i. \]

(41)

Now, the relation between the interconversion parameter and the external potentials is simply

\[\Omega = \frac{l \mu_a - \mu_b}{\delta}. \]

(42)

4. Multiatomic hetero-nuclear molecular models

In this section, we present the integrability of a new family of Hamiltonians describing multiatomic hetero-nuclear molecular BEC. The Hamiltonians that describe the interconversion of heterogeneous molecules labelled by \(c \) with \(l \) atoms of type \(a \) and one atom of type \(b \) are given by

\[H = U_a N_a^2 + U_b N_b^2 + U_c N_c^2 + U_{ab} N_a N_b + U_{ac} N_a N_c + U_{bc} N_b N_c + \mu_a N_a + \mu_b N_b + \mu_c N_c + \Omega (a^\dagger b^\dagger c \alpha_- (N_a) + \alpha_- (N_b) c^\dagger b (a^\dagger)), \]

(43)

where \(\alpha_- (N_a) \) is a function of \(N_a \) that controls the amplitude of interconversion \(\Omega \). In the same way as the Hamiltonians (26), these indicate that the density of atoms \(N_a \) has some influence on the generation of a bound state composed of \(l \) identical atoms.

The imbalance between the number of atoms \(a \) and the number of atoms \(b \),

\[\mathcal{J}_{ab} = N_a - l N_b, \]

(44)

is a conserved quantity and the total number of atoms, \(N = N_a + N_b + (l + 1) N_c \), can be written with the other two conserved quantities as

\[I_{ac} = N_a + l N_c, \]

(45)

\[I_{bc} = N_b + N_c. \]

(46)

Using \(\mathcal{J}_{ab} \) and \(N \), the S-wave diagonal part of the Hamiltonian (43) can be written as

\[\alpha \mathcal{J}_{ab}^2 + \beta N^2 + \gamma N \mathcal{J}_{ab}, \]

(47)

where we have used the following identification for the coupling constants:

\[U_a = \alpha + \beta + \gamma, \quad U_b = \alpha l^2 + \beta - \gamma l, \quad U_c = \beta (l + 1)^2, \]

(48)

\[U_{ab} = -2 \alpha l + 2 \beta - \gamma (l - 1), \quad U_{ac} = 2 \beta (l + 1) + \gamma (l + 1), \]

(49)

\[U_{bc} = 2 \beta (l + 1) - \gamma l (l + 1). \]

(50)
Now, using the realization for the \(su(2) \) Lie algebra,
\[
S^+ = b^i c^i, \quad S^- = c^i b^i, \quad S^z = \frac{N_b - N_c}{2},
\]
and the multibosonic realization of the \(sl(2) \) Lie algebra (27),
\[
A_0 = \alpha_0(N), \quad A_- = \alpha_-(N) a^i, \quad A_+ = (a^i)^j \alpha_-(N),
\]
with
\[
\alpha_0(N) = \frac{2}{I}(N - R) + \alpha_0(R), \quad \alpha_-(N) = \left(\frac{N!}{(N + I)!} \right) \left(\frac{1}{I}(N - R) + \alpha_0(R) \right) \left(\frac{1}{I}(N - R) + 1 \right).
\]
where \(N = a^i a \) and \(I \in \mathbb{N} \), it is straightforward to check that the Hamiltonian (43) is related to the transfer matrix \(t(u) \) (23), or to the conserved quantity \(\mathcal{C}_0 \) (24) if \(u = 0 \), through
\[
H = \sigma + \alpha J^2_{ab} + \beta N^2 + \gamma N J_{ab} + t(u),
\]
where the following identification has been made for the parameters:
\[
\mu_a = \frac{2}{I} u^-, \quad \mu_b = \mu^+, \quad \Omega = \eta, \quad \sigma = -\frac{u^-}{I} \rho, \quad \rho = \rho(R) = i \alpha_0(R) - 2R.
\]
We can also use the conserved quantities \(J_{ab} \) and \(\mathcal{I}_{ac} \) to write the conserved quantity \(\mathcal{C}_1 \) (25) as
\[
\mathcal{C}_1 = \frac{1}{I}(J_{ab} + \mathcal{I}_{ac}) + \frac{1}{I} \rho,
\]
showing that \(\rho \) is also a conserved quantity.

We can apply the algebraic Bethe ansatz method, using the product state as the pseudo-vacuum \((|0\rangle) = |r\rangle_B \otimes |\phi\rangle\), with \(|r\rangle_B \) denoting the lowest weight state of the \(sl(2) \) Lie algebra where \(r = 0, 1, \ldots, I - 1 \), are the eigenvalues of \(R \) for \(N = nI + r \), with \(n \in \mathbb{N} \) and \(|\phi\rangle \) denoting the highest weight state of the \(su(2) \) Lie algebra with weight \(m_z \), to find the BAE
\[
-(v_i - \omega - \eta m_z) (v_i + \omega + \frac{\eta}{2} \alpha_0(R)) = \prod_{i \neq j}^{M} \frac{v_i - v_j - \eta}{v_i - v_j + \eta}, \quad i, j = 1, \ldots, M.
\]
and the eigenvalues of the Hamiltonian (43),
\[
E = \sigma + \alpha J^2_{ab} + \beta N^2 + \gamma N J_{ab} + (u - \omega - \eta m_z) \left(u + \omega + \frac{\eta}{2} \alpha_0(R) \right) \prod_{i=1}^{M} \frac{u - v_i + \eta}{u - v_i}
\]
\[
- (u + \omega + \eta m_z) \left(u + \omega + \frac{\eta}{2} \alpha_0(R) \right) \prod_{i=1}^{M} \frac{u - v_i - \eta}{u - v_i}.
\]
The eigenvalues (59) are independent of the spectral parameter \(u \) and the parameter \(\omega \), which are arbitrary.

5. Summary
I have introduced two new families of multiatomic molecular BEC models for homo-nuclear and hetero-nuclear molecules and derived the Bethe ansatz equations and the eigenvalues. The conserved quantities have also been derived. The multiatomic homo-nuclear and hetero-nuclear molecular BEC models were obtained through a combination of Lax operators constructed using special realizations of the \(su(2) \) Lie algebra and Heisenberg–Weyl Lie algebra, as well as a multibosonic representation of the \(sl(2) \) Lie algebra. The dependence of the parameters on the size of the molecules is explicit.
Acknowledgments

The author acknowledges support from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). The author also would like to thank A Foerster and I Roditi for interesting discussions.

References

[1] Cornell E A and Wieman C E 2002 Rev. Mod. Phys. 74 875
[2] Anglin J R and Ketterle W 2002 Nature 416 211
[3] Zoller P 2002 Nature 417 493
[4] Inouye S, Andrews M R, Stenger J, Miesner H-J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151
[5] Kohler T, Goral K and Julienne P S 2006 Rev. Mod. Phys. 78 1311
[6] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[7] Jones K M, Tiesinga E, Lett P D and Julienne P S 2006 Rev. Mod. Phys. 78 483
[8] Menegatti C R, Marangoni B S and Marcassa L G 2008 Laser Phys. 18 1305
[9] Herbig J et al 2003 Science 301 1510
[10] Durr S et al 2004 Phys. Rev. Lett. 92 020406
[11] Chin C, Kraemer T, Mark M, Herbig J, Walther P, Nägele H-C and Grimm R 2005 Phys. Rev. Lett. 94 123201
[12] Donley E A, Claussen N R, Thompson S T and Wieman C E 2002 Nature 417 529
[13] Damski B, Santos L, Tiemann E, Lewenstein M, Kotochigova S, Julienne P and Zoller P 2003 Phys. Rev. Lett. 90 110401
[14] Mancini M W, Telles G D, Caires A R L, Bagnato V S and Marcassa L G 2004 Phys. Rev. Lett. 92 133203
[15] Hämmerle C, Kleinert J, Bhattacharya M and Bigelow N P 2004 Phys. Rev. A 70 021402
[16] Sage J M, Sainis S, Bergeman T and DeMille D 2005 Phys. Rev. Lett. 94 203001
[17] Papp S B and Wieman C E 2006 Phys. Rev. Lett. 97 180404
[18] Weber C, Barontini G, Catani J, Thalhammer G, Inguscio M and Minardi F 2008 Phys. Rev. A 78 061601
[19] Pilch K, Lange A D, Prantner A, Kerner G, Ferlaino F, Nägele H-C and Grimm R 2009 Phys. Rev. A 79 042718
[20] Braaten E and Hammer H-W 2007 Ann. Phys. 322 120
[21] Esry B D and Greene C 2006 Nature 440 289
[22] Kraemer T et al 2006 Nature 440 315
[23] Knoop S, Ferlaino F, Berninger M, Mark M, Nägele H-C and Grimm R 2009 J. Phys.: Conf. Ser. 194 012064
[24] Ferlaino F, Knoop S, Berninger M, Harm W, D’Incao J P, Nägele H-C and Grimm R 2009 Phys. Rev. Lett. 102 140401
[25] Barontini G, Weber C, Rabatti F, Catani J, Thalhammer G, Inguscio M and Minardi F 2009 Phys. Rev. Lett. 103 043201
[26] Zhou H-Q, Links J, Gould M and McKenzie R 2003 J. Math. Phys. 44 4690
[27] Zhou H-Q, Links J and McKenzie R H 2003 Int. J. Mod. Phys. B 17 5819
[28] Links J, Zhou H-Q, McKenzie R H and Gould M D 2003 J. Phys. A: Math. Gen. 36 R63
[29] Foerster A, Links J and Zhou H-Q 2003 Classical and Quantum Nonlinear Integrable Systems: Theory and Applications ed A Kundu (Bristol: Institute of Physics Publishing) pp 208–33
[30] Dukelsky J, Dussel G, Essebag C and Pittel S 2004 Phys. Rev. Lett. 93 050403
[31] Ortiz G, Somma R, Dukelsky J and Rombouts S 2005 Nucl. Phys. B 707 421
[32] Kundu A 2007 Theor. Math. Phys. 151 831
[33] Foerster A and Ragnoux E 2007 Nucl. Phys. B 777 373
[34] Links J, Foerster A, Tonel A P and Santos G 2006 Ann. Henri Poincaré 7 1591
[35] Santos G, Foerster A, Roditi I, Santos Z V T and Tonel A P 2008 J. Phys. A: Math. Theor. 41 295003
[36] Santos G, Tonel A, Foerster A and Links J 2006 Phys. Rev. A 73 023609
[37] Santos G, Foerster A, Links J, Mattei E and Dahmen S R 2010 Phys. Rev. A 73 023609
[38] Tonel A P, Kuhn C C N, Santos G, Foerster A, Roditi I and Santos Z V T 2009 Phys. Rev. A 79 013624
[39] Zhou L, Zhang W, Ling H Y, Jiang L and Pu H 2007 Phys. Rev. A 75 043603
[40] Zhou L, Qian J, Pu H, Zhang W and Ling H Y 2008 Phys. Rev. A 78 053612
[41] Vardi A, Yurovsky V A and Anglin J R 2001 Phys. Rev. A 64 063611
[42] Duncan M, Foerster A, Links J, Mattei E, Oelkers N and Tonel A 2007 Nucl. Phys. B 767 227
[43] Héritier M 2001 Nature 414 31
[44] Batchelor M T 2007 Phys. Today 60 36
[45] Faddeev L D, Sklyanin E K and Takhtajan L A 1979 Theor. Math. Phys. 40 688
[46] Kulish P P and Sklyanin E K 1982 Lect. Notes Phys. 151 61
[47] Takhtajan L A 1990 Lect. Notes Phys. 370 3
[48] Korepin V E, Bogoliubov N M and Izergin A G 1993 Quantum Inverse Scattering Method and Correlation Functions (Cambridge: Cambridge University Press)
[49] Faddeev L D 1995 Int. J. Mod. Phys. A 10 1845
[50] Izergin A G and Korepin V E 1982 Lett. Math. Phys. 6 283
[51] Izergin A G and Korepin V E 1982 Nucl. Phys. B 205 401
[52] Essler F H L and Korepin V E (ed) 1994 Exactly Solvable Models of Strongly Correlated Electrons (Singapore: World Scientific)
[53] Essler F H L, Frahm H, Göhmann F, Klümper A and Korepin V E 2005 The One-Dimensional Hubbard Model (Cambridge: Cambridge University Press)
[54] Bazhanov V, Lukyanov S and Zamolodchikov A B 1996 Commun. Math. Phys. 177 381
[55] Jimbo M 1985 Lett. Math. Phys. 10 63
[56] Jimbo M 1986 Lect. Notes Phys. 246 335
[57] Drinfeld V G 1986 Quantum groups in Proc. Int. Congress of Mathematicians ed A M Gleason (Providence, RI: American Mathematical Society) p 798
[58] Reshetikhin N Yu, Takhtajan L A and Faddeev L D 1990 Leningrad Math. J. 1 193
[59] Faddeev L D 1995 40 Years in Mathematical Physics World Scientific Series in 20th Century Mathematics vol 2 (Singapore: World Scientific)
[60] Golinski T, Horowski M, Odzijewicz A and Sliżewska A 2007 J. Math. Phys. 48 023508
[61] Roditi I 2000 Braz. J. Phys. 30 357