ON THE BIRCH AND SWINNERTON-DYER CONJECTURE FOR CM ELLIPTIC CURVES OVER \mathbb{Q}

YONGXIONG LI, YU LIU AND YE TIAN

To John Coates for his 70th birthday

1. Introduction and Main Theorems

For an elliptic curve E over a number field F, we write $L(s, E/F)$ for its complex L-function, $E(F)$ for the Mordell-Weil group of E over F, and $\text{III}(E/F)$ for its Tate-Shafarevich group. For any prime p, let $\text{III}(E/F)(p)$ or $\text{III}(E/\mathbb{Q})[p^\infty]$ denote the p-primary part of $\text{III}(E/F)$. When $F = \mathbb{Q}$, we shall simply write $L(s, E) = L(s, E/\mathbb{Q})$.

Theorem 1.1. Let E be an elliptic curve over \mathbb{Q} with complex multiplication. Let p be any potentially good ordinary odd prime for E.

(i) Assume that $L(s, E)$ has a simple zero at $s = 1$. Then $E(\mathbb{Q})$ has rank one and $\text{III}(E/\mathbb{Q})$ is finite. Moreover the order of $\text{III}(E/\mathbb{Q})(p)$ is as predicted by the conjecture of Birch and Swinnerton-Dyer conjecture.

(ii) If $E(\mathbb{Q})$ has rank one and $\text{III}(E/\mathbb{Q})(p)$ is finite, then $L(E, s)$ has a simple zero at $s = 1$.

Remark. The first part of (i) is the result of Gross-Zagier and Kolyvagin. The remaining part is due to Perrin-Riou for good ordinary primes. In this paper, we deal with odd bad primes which are potentially good ordinary. The result can be easily generalized to abelian varieties over \mathbb{Q} corresponding to a CM modular form with trivial central character.

The following theorem shows that there are infinitely many elliptic curves over \mathbb{Q} of rank one for which the full BSD conjecture hold.

Theorem 1.2. Let $n \equiv 5 \pmod{8}$ be a squarefree positive integer, all of whose prime factors are congruent to 1 modulo 4. Assume that $\mathbb{Q}(\sqrt{-n})$ has no ideal class of order 4. Then the full BSD conjecture holds for the elliptic curve $y^2 = x^3 - n^2x$ over \mathbb{Q}. In particular, for any prime $p \equiv 5 \pmod{8}$, the full BSD holds for $y^2 = x^3 - p^2x$.

Sketch of Proof. Consider the Heegner point P constructed using the Gross-Prasad test vector as the below Theorem 1.3. Using an induction argument as in [16] or [17], one can show that P is non-torsion. Thus both the analytic rank and Mordell-Weil rank of $E^{(n)} : y^2 = x^3 - n^2x$ are one.

By Perrin-Riou [12] and Kobayashi [8], we know that the p-part of full BSD holds for all primes $p \mid 2n$. The 2-part of BSD for $E^{(n)}$ is exactly the statement on 2-divisibility in Theorem 1.3 below by using explicit Gross-Zagier formula in [2] and noting that $\dim_{\mathbb{Q}} S_2(E^{(n)}/\mathbb{Q})/\text{Im}(E^{(n)}(\mathbb{Q})_{\text{tor}}) = 1$. By Theorem 1.1, the p-part of BSD always holds for all primes $p | n$, since all primes p with $p \equiv 1 \pmod{4}$ are potentially good ordinary primes for $E^{(n)}$. □

To solve the Diophantine equation $y^2 = x^3 - n^2x$ over \mathbb{Q}, we define the complex uniformization of $E^{(n)}$ by the following composition.

$$
\mathcal{H} \xrightarrow{\pi} \Gamma_0(32) \backslash \mathcal{H} \cup P^1(\mathbb{Q}) = X_0(32) \xrightarrow{f_0} E^{(1)} \xrightarrow{[2-2g]} E^{(1)} \xrightarrow{\iota} E^{(n)},
$$
where
• \(\mathcal{H} \xrightarrow{\tau} \Gamma_0(32) \setminus (\mathcal{H} \cup P^1(\mathbb{Q})) = X_0(32)(\mathbb{C}) \) is the natural quotient,
• \(f_0 : X_0(32) \to E^{(1)} \) is a degree 2 morphism over \(\mathbb{Q} \) mapping \([\infty]\) to \(\mathcal{O} \),
• \([2 - 2i]\) is the multiplication by \(2 - 2i \) on \(E^{(1)} \), where \((x, y) = (-x, iy)\),
• \(\iota : E^{(1)} \xrightarrow{\sim} E^{(n)} \) is the twist isomorphism given by \((x, y) \mapsto (-nx, -ny^{3/2})\).

The following theorem, which is equivalent to the 2-part BSD for \(E^{(n)} \) using explicit Gross-Zagier formula in [2], and can be proved exactly as in [16].

Theorem 1.3. Let \(n \equiv 5 \pmod{8} \) be a square-free positive integer as in Theorem 1.2. Then the image \(P_0 \in E^{(n)}(\mathbb{Q}) \) of \((4 - 4\sqrt{-n})^{-1} \in \mathcal{H} \) under the above complex uniformization is defined over the Hilbert class field \(\mathcal{H} \) of \(\mathbb{Q}(\sqrt{-n}) \). Moreover the Heegner point \(P := \sum_{\sigma \in \text{Gal}(\mathcal{H}/\mathbb{Q}(\sqrt{-n}))} P_0^\sigma \) actually belongs to \(E^{(n)}(\mathbb{Q}) \). Let \(\mu(n) \) be the number of prime factors of \(n \). Then \(P \in 2^{\mu(n)-1}E^{(n)}(\mathbb{Q}) + E^{(n)}(\mathbb{Q})_{\text{tor}} \) but \(P \notin 2^{\mu(n)}E^{(n)}(\mathbb{Q}) + E^{(n)}(\mathbb{Q})_{\text{tor}} \). In particular, \(P \) is of infinite order.

Moreover, the Mordell-Weil group \(E^{(n)}(\mathbb{Q}) \) is of rank one and the index of its subgroup generated by \(P \) and torsion points satisfies

\[
\left[E^{(n)}(\mathbb{Q}) : \mathbb{Z}P + E^{(n)}(\mathbb{Q})_{\text{tor}} \right] = 2^{\mu(n)-1} \cdot \sqrt{\text{III}(E/\mathbb{Q})}.
\]

Example For the prime \(p = 1493 \equiv 5 \pmod{8} \), the Mordell-Weil group \(E^{(p)}(\mathbb{Q}) \) modulo torsion has a generator

\[
\begin{bmatrix}
1674371133 \\
744769
\end{bmatrix},
\begin{bmatrix}
51224214734700 \\
642735647
\end{bmatrix},
\]

as well that Heegner point \((x, y)\) has coordinates

\[
\begin{align*}
x &= \frac{245615354991472143968975459422696932728951498371630131453}{29585011828542075719444468687561920064681205358510529}, \\
y &= \frac{-12172578066823596873618123810557983972375660184180439465365335709906981098721585260100}{160919109605479862871753246473210772682219745687839104546974117877976688892833}.
\end{align*}
\]

It follows that \(\text{III}(E^{(p)}/\mathbb{Q}) \cong (\mathbb{Z}/32)^2 \).

Let \(E \) be an elliptic curve defined over \(\mathbb{Q} \), with complex multiplication (= CM in what follows) by an imaginary quadratic field \(K \). Let \(p \neq 2 \) be a potential good ordinary prime for \(E \). Note that \(p \) must split in \(K \), and also \(p \) does not divide the number \(w_K \) of roots of unity in \(K \).

Assume that \(L(s, E) \) has a simple zero at \(s = 1 \). Choose an auxiliary imaginary quadratic field \(K \) such that (i) \(p \) is split over \(K \) and (ii) \(L(s, E/K) \) still has a simple zero at \(s = 1 \). Let \(E^{(K)} \) be the twist of \(E \) over \(K \), then \(L(1, E^{(K)}) \neq 0 \). Let \(\eta \) be the quadratic character associated to the extension \(K/\mathbb{Q} \) and \(\eta_K \) its restriction to \(K \). Let \(\mathbb{Q}_\infty \) be the cyclotomic \(\mathbb{Z}_p \)-extension of \(\mathbb{Q} \), and put \(\Gamma = \text{Gal}(\mathbb{Q}_\infty/\mathbb{Q}) \). For any finite order character \(\nu \) of \(\Gamma \), let \(\nu_K \) denote its restriction to \(\text{Gal}(K\mathbb{Q}_\infty/K) \). Consider the equality

\[
L(s, E \otimes \nu) L(s, E^{(K)} \otimes \nu) = L(s, E_K \otimes \nu_K)
\]

and its specialization to \(s = 1 \). Let \(\mathcal{L}_{E}, \mathcal{L}_{E^K} \) be the cyclotomic-line restrictions of the two Katz’s two variable \(p \)-adic \(L \)-function corresponding to \(E \) and \(E^{(K)} \), respectively. Let \(\mathcal{L}_{\varphi_E}\mathcal{L}_{\varphi_{E^K}} \) be the cyclotomic-line restriction of the \(p \)-adic Rankin-Selberg \(L \)-function for \(E \) over \(K \). The ingredients needed to prove the \(p \)-part BSD formula of \(E \) are the following.

1. Rubin’s two variable main conjecture [14] in order to relate the \(p \)-part of \(\text{III}(E/K) \) with \(\mathcal{L}_{E}(1) \). Note that \(\text{ord}_p([\text{III}(E/K)]) = 2\text{ord}_p([\text{III}(E/\mathbb{Q})]) \) for odd \(p \).
2. The complex Gross-Zagier formula [19] and the \(p \)-adic Gross-Zagier formula [4], which relate \(\mathcal{L}_{E/K}(1) \) and \(L(1, E/K) = L'(1, E/\mathbb{Q})L(1, E^{(K)}/\mathbb{Q}) \).
3. The precise relationship between \(\mathcal{L}_{E}(1) \mathcal{L}_{\varphi_{E^K}}(1) \) and \(\mathcal{L}_{E/K}(1) \), and also between \(\mathcal{L}_{\varphi_{E}}(1) \) and \(L(1, E^{(K)}) \). This follows from the above equality of \(L \)-series and the interpolation properties of these \(p \)-adic \(L \)-functions.

Suppose that \(E \) has bad reduction at \(p \) which is potential good for \(E \). Let \(p \) denote a prime of \(K \) above \(p \). There is an elliptic curve \(E' \) over \(K \) with good reduction at \(p \). In the process of proof, we need to compare periods, descend etc between \(E \) and \(E' \).
Notations. Fix a non-trivial additive character ψ : \mathbb{Q}_p \rightarrow \mathbb{C}_p^* with conductor \mathbb{Z}_p. For any character \chi : \mathbb{Q}_p^\times \rightarrow \mathbb{C}_p^\times, say of conductor \rho^n with n \geq 0, we define the root number by
\[\tau(\chi, \psi) = p^{-n} \int_{t_p(t) = -n} \chi^{-1}(t) \psi(t) dt,\]
where dt is the Haar measure on \mathbb{Q}_p such that Vol(\mathbb{Z}_p, dt) = 1. Fix embeddings \iota_\infty : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C} and \iota_p : \overline{\mathbb{Q}} \rightarrow \mathbb{C}_p such that \iota_p = \iota \circ \iota_\infty for an isomorphism \iota : \mathbb{C} \isom \mathbb{C}_p. For an elliptic curve E over a number field F and p a potential good prime for E, let (\cdot, \cdot)_\infty and (\cdot, \cdot)_p denote the normalized Néron - Tate height pairing, and the p-adic height pairing with respect to cyclotomic character. Let \(P_1, \ldots, P_r \in E(F) \) form a basis for \(E(F) \otimes_{\mathbb{Z}} \mathbb{Q} \), define the regulars by
\[R_\infty(E/F) = \frac{\det ((P_i, P_j)_\infty)_{i \neq j}}{|E(K) : \sum_i ZP_i|^2}, \quad R_p(E/F) = \frac{\det ((P_i, P_j)_p)_{i \neq j}}{|E(K) : \sum_i ZP_i|^2}. \]

For any character χ of \(\hat{K}^\times \), let \(\hat{f}_\chi \subset \mathcal{O}_K \) denote its conductor. For an elliptic curve E over K, let \(f_E \) denote its conductor. For any non-zero integral ideals \(g \) and \(a \) of K, let \(g^{(a)} \) denote the prime-to-\(a \) part of \(g \). Let \(\mathfrak{d} \) be the completion of the maximal unramified extension of \(\mathbb{Z}_p \) and \(\mathfrak{d}_\chi \) the finite extension of \(\mathfrak{d} \) generated by the values of \(\chi \). Let \(L_\infty/K \) be an abelian extension whose Galois group \(\mathcal{G} = \text{Gal}(L_\infty/K) \cong \Delta \times \Gamma \) with \(\Delta \) finite and \(\Gamma \cong \mathbb{Z}_p^\times \). Then for any \(\mathcal{O}[[\mathcal{G}]] \)-module M and character \(\chi \) of \(\Delta \), put \(M_{\chi} = M \otimes_{\mathcal{O}[[\mathcal{G}]]} \mathcal{O}[[\Gamma]] \). If \(p \nmid |\Delta| \), let \(M_{\chi} \) denote its \(\chi \)-component (as a direct summand).

Acknowledgment. The authors thank John Coates, Henri Darmon and Shouwu Zhang for their encouragement.

2. Katz’s \(p \)-adic L-function and Cyclotomic \(p \)-adic Formula

Let E be an elliptic curve defined over K with CM by K and \(\varphi \) its associated Hecke character. Let \(p \nmid w_K \) be a prime split in K and \(\mathfrak{p} \mathcal{O}_K = \mathfrak{p} \mathfrak{^*} \) with \(\mathfrak{p} \) induced by \(t_p \). In particular, \(K_\mathfrak{p} = \mathbb{Q}_p \) in \(\mathcal{O}_p \) and let \(\psi_\mathfrak{p} = \psi_p \) on \(K_\mathfrak{p} \) under this identification. Let \(\Omega_E \) be a \(p \)-minimal period of E over K. Let \(\varphi \) be the associated Hecke character of E and \(\varphi_\mathfrak{p} \) its \(\mathfrak{p} \)-component. Let \(f_E \) be the conductor of \(\varphi \).

Let F be an abelian extension over K with Galois group \(\Delta \). Assume that \(p \nmid |\Delta| \) and denote by \(f_{E/K} \) the conductor of F. Let \(\mathcal{G} \) be the Galois group of the extension \(F(E[p^{\infty}]) \) over K. Then \(\mathcal{G} \cong \mathcal{G}_{\text{tot}} \times \Gamma_K \) with \(\Gamma_K = \text{Gal}(F(E[p^{\infty}])/F(E[p])) \). Let \(\Lambda = \mathbb{Z}_p[[\mathcal{G}]] \). Let \(U_\infty \) and \(C_\infty \) denote the \(\mathbb{Z}_p[[\mathcal{G}]] \)-modules formed from the principal local units at the primes above \(p \), and the closure of the elliptic units for \(K(E[p^{\infty}]) \) (see §4 of [14] for the precise definitions.)

Theorem 2.1 (Two variable \(p \)-adic L-function). Let \(g \) be any prime-to-\(p \) non-zero integral ideal of K. Assume that \(f_{E/K}^{(p)} \nmid g \). There exists a unique measure \(\mu_g = \mu_{g,p} \) on the group \(\mathcal{G} = \text{Gal}(K(\mathfrak{g}^{p^{\infty}})/K) \) such that for any character \(\rho \) of \(\mathcal{G} \) of type \((1,0)\),
\[\rho(\mu_g) = \frac{\tau(\rho, \psi_p)}{\tau(\varphi, \psi_p)} \cdot \frac{1 - \rho(p)p^{-1}}{1 - \rho(p)p^{-1}} \cdot \frac{L^{(g^{(p)})}(s, \mathfrak{p}, 1)}{\Omega_E}. \]

Here \(L^{(g^{(p)})}(s, \mathfrak{p}, 1) \) is the primitive \(L \)-series of \(\mathfrak{p} \) with Euler factors at places dividing \(\mathfrak{p} \)-removed.

Proof. It follows from the below lemma 2.3 and construction of Katz’s two variable \(p \)-adic measure, see Theorem 4.14. \(\square \)

Theorem 2.2 (Yager). For any character \(\chi \) of \(\mathcal{G}_{\text{tot}} \), let \(f_\chi^{(p)} = f_\chi \) and \(\mu_\chi^\mathfrak{p} = \chi(\mu_\chi) \in \mathcal{D}[[\Gamma_K]] \). Then we have
\[\text{Char}(U_\infty/C_\infty)_{\chi} \otimes \mathcal{D}[[\Gamma_K]] = (\mu_\chi^\mathfrak{p}). \]

Here the measure \(\mu_\chi^\mathfrak{p} \) is defined as in Theorem 2.1.

Lemma 2.3. Let \(E/K \) be an elliptic curve associated with to a Hecke character \(\varphi \), \(p \) splits in K and write \(p \mathcal{O}_K = \mathfrak{p} \mathfrak{^*} \). Let \(\varphi_0 \) be a Hecke character over K unramified at \(p \). Let \(\Omega_E \) and \(\Omega_0 \) be \(p \)-minimal periods of E and \(\varphi_0 \), respectively. Then
\[\text{ord}_p \left(\frac{\Omega_E \cdot \tau(\varphi_0, \psi_p)}{\Omega_0} \right) = 0. \]
Proof. This follows from Stickelberger’s theorem on prime ideal decomposition of Gauss sum. In fact, for \(p \nmid w = w_K \), \(E \) has \(p \)-minimal Weierstrass equation of form
\[
E' : y^2 = x^3 + a_2 x^2 + a_4 x + a_6, \quad a_2, a_4, a_6 \in K^\times \cap \mathcal{O}_p.
\]
Note that for \(w = 4, 6 \), we may-and do- take form \(y^2 = x^3 + a_4 x, \ y^2 = x^3 + a_6 \), respectively. Then there is an elliptic curve \(E' \) over \(K \) which has good reduction at \(p \). Let \(\varphi' \) be its associated Hecke character. Then \(\epsilon = \varphi'^{-1} \colon K_F^\times /K^\times \to \mathcal{O}_K^\times \) (also viewed as a Galois character via class field theory) is of form \(\chi(\sigma) = \sigma(d^{1/w})d^{-1/w} \) for an element \(d \in K^\times /K^\times w \). Then the twist \(E' \) has \(p \)-good model
\[
E' : \begin{cases}
y^2 = x^3 + a_2 x^2 + a_4 x + a_6, & \text{if } w = 2, \\
y^2 = x^3 + a_4 x, & \text{if } w = 4, \\
y^2 = x^3 + a_6, & \text{if } w = 6.
\end{cases}
\]
It is easy to check the \(\Omega_{E_0} = d^{1/w} \cdot \Omega_E \). Let \(\omega : \mathcal{O}_p^\times \to K \) be the character characterized by \(\omega(a) \equiv a \mod p \) and let \(\chi = \omega^{-\lfloor(p-1)/w \rfloor} \). Then \(\epsilon_p = \chi^k \) for some \(k \in \mathbb{Z}/w \mathbb{Z} \). Let \(\kappa_p \cong F_p \) be the \(p \)-adic field of \(K_p \). By Stickelberger’s theorem, the Gauss sum \(g(\epsilon_p, \psi) := -\sum_{a \in \kappa_p^\times} \epsilon_p(a)\psi(a) \) has \(p \)-valuation \(\{k/w\} \). It remains to show that \(k = \ord_p(d) \). Note that for any \(u \in \mathcal{O}_p^\times \), \(K_p(u^{1/w}) \) is unramified over \(K_p \). Thus it is equivalent to show that for any uniformizer \(\pi \) of \(K_p \),
\[
\sigma_u(\pi^{1/w})/\pi^{1/w} \equiv u^{-\lfloor(p-1)/w \rfloor} \mod p, \quad \forall u \in \mathcal{O}_p^\times.
\]
But it is easy to see this by using local class field theory for formal group associated to \(x^p - px \).

For general Hecke character \(\varphi_0 \) over \(K \) unramified at \(p \) (not necessarily \(K \)-valued) and \(\Omega_0 \) its \(p \)-minimal period, it is easy to see that \(\ord_p(\Omega_0/\Omega_{E_0}) = 0 \).

Let \(\chi_{\text{cyc}, K} : \mathcal{G} \to \mathbb{Z}_p^\times \) be the \(p \)-adic cyclotomic character defined by the action on \(p \)-th power roots of unity. Define
\[
\mathcal{L}_{E,F}(s) := \mu_{1/p}(\varphi_E \chi_{\text{cyc}, K}^{1-s}), \quad \forall s \in \mathbb{Z}_p.
\]
Rubin’s two variable main conjecture implies the following theorem.

Theorem 2.4. Let \(E \) be an elliptic curve over \(K \) with CM by \(K \) and \(\varphi \) its associated Hecke character. Let \(p \nmid w_K \) be a prime split in \(K \) and \(p \mathcal{O}_K = p \mathcal{O}_K^* \). Let \(r \) be the \(\mathcal{O}_K \)-rank of \(E(K) \). Assume that \(\text{III}(E(K)/p) \) is finite and the \(p \)-adic height pairing of \(E \) over \(K \) is non-degenerate. Then

1. both \(\mathcal{L}_{E,F}(s) \) and \(\mathcal{L}_{E,F}(s) \) have a zero at \(s = 1 \) of exact order \(r \).
2. the \(p \)-adic BSD conjecture holds for \(E/K \):
\[
\ord_p(\text{III}(E(K)/p)) = \ord_p \left(\frac{\mathcal{L}_{E,F}(r)(1)}{R_p(E/K)} \prod_{v \mid p} (1 - \varphi_E(v)) \left(1 - \overline{\varphi_E(v)} \right)^{-2} \right)
\]
provided the assumption that if \(w_K = 4 \) or \(6 \) then \(E \) has bad reduction at both \(p \) and \(p^* \) or good reduction at both \(p \) and \(p^* \).

Moreover, if \(E \) is defined over \(\mathbb{Q} \), then we have
\[
\ord_p(\text{III}(E/\mathbb{Q})) = \ord_p \left(\frac{\mathcal{L}_{E,F}(r)(1)}{R_p(E/\mathbb{Q})} \prod_{v \mid p} (1 - \varphi_E(v)) \left(1 - \overline{\varphi_E(v)} \right)^{-1} \right).
\]

Proof. Let \(\epsilon \) be a Galois character over \(K \) valued in \(\mathcal{O}_K^\times \) such that \(\varphi' = \varphi \) is unramified at both \(p \) and \(p^* \). Let \(E' \) be the elliptic curve over \(K \) as \(\epsilon \)-twist of \(E \) so that \(\varphi' \) as its Hecke character. Then \(E' \) has good reduction above \(p \). Let \(F \) be the abelian extension over \(K \) cut by \(\epsilon \), then \([F : K][w_K]\). Moreover, \(E \) and \(E' \) are isomorphism over \(F \), \(E'(F)(\epsilon) \cong E(K) \), and \(\text{III}(E'(F)/p)[\mathbb{Q}^{\infty}(\epsilon)] \cong \text{III}(E(K)/p)[\mathbb{Q}^{\infty}] \). Let \(F_0 = F(E[p]) \) and \(\chi : \text{Gal}(F_0/K) \to \mathcal{O}_K^\times \) be the character giving the action on \(E[p] \).

Let \(F_{\infty} = F(E[p^{\infty}]) \). Let \(M_{\infty,p} \) be the maximal \(p \)-extension over \(F_{\infty} \) unramified outside \(p \) and \(X_{\infty,p} = \text{Gal}(M_{\infty,p}/F_{\infty}) \). Denote by \(U_{\infty} \) and \(C_{\infty} \subset U_{\infty} \) the \(\Lambda = \mathbb{Z}[[\text{Gal}(F_{\infty}/K)]]-\text{modules} \) of the principal local units at \(p \) and elliptic units for the extension \(F_{\infty} \) (defined as in [14], §4). Rubin’s two variable main conjecture, together Yager [18], says that
\[
\text{Char}_{\Lambda}(X_{\infty,p}) \otimes \text{Gal}(F_{\infty}/F_0) = \left(\mu_{1/p}^{\chi_{\text{cyc}, K}^r} \right).
\]
where for an integral ideal g of K prime to p, the measure g is given as in Theorem 2.1. Let $\text{Sel}(F_{\infty}, E[p^\infty])$ be the p-Selmer group of E over F_{∞} and $\text{Sel}(F_{\infty}, E[p^\infty])^\vee$ its Pontryagin dual. Then $\text{Sel}(F_{\infty}, E[p^\infty])^\vee$ is a finitely generated A-torsion module and
\[
\text{Char}_A(\text{Sel}(F_{\infty}, E[p^\infty])^\vee) = \iota_p \text{Char}(X_{\infty, p}),
\]
where $\iota_p : A \to \Lambda, \gamma \mapsto \kappa_p(\gamma)\gamma$ for any $\gamma \in \text{Gal}(F_{\infty}/K)$ and κ_p is the character of $\text{Gal}(F_{\infty}/K)$ giving the action on $E[p^\infty]$. Similarly, we also have that
\[
\text{Char}_A(X_{\infty, p}) \mathbb{D}[\text{Gal}(F_{\infty}/F_0)] = \left(\mu_{f_{\infty}}(p), p\right), \quad \text{Char}_A(\text{Sel}(F_{\infty}, E[p^\infty])^\vee) = \iota_p \text{Char}(X_{\infty, p}).
\]

Let F_{cyc} be the cyclotomic \mathbb{Z}_p extension, and $\Lambda_{\text{cyc}} = \mathbb{Z}_p[[\text{Gal}(F_{\text{cyc}}/K)]] \cong \Delta \times \Gamma$ where $\Delta = \text{Gal}(F/K)$ and $\Gamma = \text{Gal}(F_{\text{cyc}}/F)$. Let $\text{Sel}(F_{\text{cyc}}, E[p^\infty])$ denote the p-Selmer group of E over F_{cyc} and then its Pontryagin dual $\text{Sel}(F_{\text{cyc}}, E[p^\infty])^\vee$ is a finitely generated torsion Λ_{cyc}-module. We have
\[
\text{Sel}(F_{\text{cyc}}, E[p^\infty]) = \text{Sel}(F_{\text{cyc}}, E[p^\infty]) \oplus \text{Sel}(F_{\text{cyc}}, E[p^\infty]) = \text{Hom}(X_{\infty, p}, E[p^\infty])^\vee \oplus \text{Hom}(X_{\infty, p}^*, E(p^\infty))^\vee \text{Gal}(F_{\infty}/F_{\text{cyc}})
\]
Here the second equality is given [10] Proposition (1.3), Theorem (1.6) and Lemma (1.1), the last one is by the same reason as [14] Theorem 12.2. It follows that
\[
\text{Char}_{\Lambda_{\text{cyc}}}(\text{Sel}(F_{\text{cyc}}, E[p^\infty])^\vee) \mathbb{D}[\text{Gal}(F_{\text{cyc}}/F)] = \left(\iota_p \mu_{f_{\text{cyc}}}(p), \iota_p (\mu_{f_{\text{cyc}}}^*)(p)\right).
\]

Denote by χ_{cyc} the cyclotomic character. Let f_E be a generator of $\text{Char}_{\mathbb{Z}_p[[\Gamma]]}(\text{Sel}(F_{\text{cyc}}, E[p^\infty])^\vee)('\Delta\Delta$ and define
\[
\mathcal{L}(s) = \chi_{\text{cyc}}^s(f_E), \quad \forall s \in \mathbb{Z}_p.
\]
Then we have $\mathcal{L}(s) = u(s)\mathcal{L}_{\varphi_p}(s)\mathcal{L}_{\varphi_p}(s)$ for some function $u(s)$ valued in \mathbb{D}^\times.

Note that E over F has good reduction above p. Employing the descend argument as in [15], noting that the “descent diagram” in [15] §7 for E over F is $\Delta = \text{Gal}(F/K)$-equivariant, and taking Δ-invariant part, we have

Proposition 2.5. Let $r := \text{rank}_{\mathbb{Q}_p} E(K)$. Assume that $\text{III}(E/K)[p^\infty]$ is finite and p-adic height pairing is non-degenerate on $E(K)$. Then $\mathcal{L}(s)$ has exact vanishing order $2r$ at $s = 1$ and if let $\mathcal{L}'(1)$ denote its leading coefficient at $s = 1$,
\[
\frac{\mathcal{L}'(1)}{R_p(E/K)} \sim |\text{III}(E/K)| \cdot \prod_{v \mid p} \frac{1}{\text{H}^1(\text{Gal}(F/F_{\text{cyc}}/F_{\infty}), E(F(\mu_{p^\infty}) \otimes K_v)^\vee)^2}.
\]

Here for any $a, b \in \mathbb{C}_p^\times$, write $a \sim b$ if $\text{ord}_p(a/b) = 1$.

The follow lemma will complete the proof.

Lemma 2.6. Let $v_0 = p$ or p^*. Assume that if $w_K = 4$ or 6 then E has bad reduction at both p and p^* or good reduction at both p and p^*. Then
\[
|\text{H}^1(\text{Gal}(F(\mu_{p^\infty})/F), E(F(\mu_{p^\infty}) \otimes K_{v_0}))^\vee | \sim (1 - \varphi_E(v_0))(1 - \varphi_E(v_0)).
\]

The remain part of this section will devote to the proof of this lemma. Note that [15] handled the case where E has good reduction above p. We now assume that E has bad reduction either at p or at p^*. The isomorphism between E and E' over F gives rise to an isomorphism
\[
\text{H}^1(\text{Gal}(F(\mu_{p^\infty})/F), E(F(\mu_{p^\infty}) \otimes K_{v_0}))^\vee \sim \text{H}^1(\text{Gal}(F(\mu_{p^\infty})/F), E'(F(\mu_{p^\infty}) \otimes K_{v_0}))^\vee.
\]

We will need Proposition 2 in [15] that for any elliptic curve A over a local field k with good ordinary reduction and let \tilde{A} denote its reduction over the the residue field k of k, we have
\[
|\text{H}^1(\text{Gal}(k(\mu_{p^\infty})/k), \text{A}(k(\mu_{p^\infty})))| = |\tilde{A}(k)[p^\infty]|.
\]

Let $w|v_0$ be a place of F above v_0 and κ_w/κ_{v_0} be the residue fields of F_w and K_{v_0} respectively, we have
\[
|E'(\kappa_w)| \sim \left(1 - \varphi_{E'}(v_0)^{[\kappa_w/\kappa_{v_0}]}\right) \left(1 - \varphi_{E'}(v_0)^{[\kappa_{v_0}/\kappa_{v_0}]}\right).
\]
Proof. The claim follows from the relations as associated Hecke character. Then we have element contained in the representation (Φ, ψ) = \left| \text{Gal}(\mathbb{F}(\mu_{p^n})/\mathbb{F}_w) \right| \left| \text{Gal}(\mathbb{F}(\mu_{p^n})/\mathbb{F}_v) \right| \left| \text{Gal}(\mathbb{F}(\mu_{p^n})/\mathbb{F}_w) \right| \left| \text{Gal}(\mathbb{F}(\mu_{p^n})/\mathbb{F}_v) \right|.

If E has good reduction at v_0, then F/K is unramified at v_0. If v_0 is split over F, then F \otimes K v_0 \cong K^2 v_0 and \epsilon v_0 = 1. It is easy to see

\left| \text{Gal}(\mathbb{F}(\mu_{p^n})/\mathbb{F}), E'(\mathbb{F}(\mu_{p^n}) \otimes K v_0) \right| \sim (1 - \varphi_E(v_0))(1 - \varphi_E(v_0)).

If v_0 is inert in F, let w be the unique prime of F above v_0. Note that \varphi_{v_0} = \varphi_{v_0} \epsilon v_0 and \epsilon(v_0) = -1.

\left| \text{Gal}(\mathbb{F}(\mu_{p^n})/\mathbb{F}), E'(\mathbb{F}(\mu_{p^n}) \otimes K v_0) \right| \sim \frac{(1 - (\varphi(v_0))(1 - \varphi(v_0)))^2}{(1 - (\varphi(v_0))(1 - \varphi(v_0)))} = (1 - \varphi(v_0))(1 - \varphi(v_0)).

If w_K = 4 or 6, by our assumption, v_0 must be ramified over F and \epsilon is non-trivial on its inertia subgroup. The proof is now similar to the previous ramified case.

\square

3. \textit{∞}-adic and p-adic Gross-Zagier Formulae

Let E be an elliptic curve over Q of conductor N and let its associated newform. Let p be a prime where E is potential good ordinary or potential semi-stable. Let \alpha : Q^* \longrightarrow Z^*_p be the character contained in the representation (V_p E)^{ss} of \Gamma Q_p such that \alpha|_{Z^*_p} is of finite order.

Let K be an imaginary quadratic field such that \epsilon(E/K) = -1 and p splits in K. Let \Gamma_K be the Galois group of the Z^*_p-extension over K. Recall that [4] there exists a p-adic measure \mu_{E/K} on \Gamma_K such that for any finite order character \chi of \Gamma_K

\chi(\mu_{E/K}) = \frac{L(p)}{8\pi^2} \prod_{w \mid p} Z_w(\chi_w, \psi_w),

where (\phi, \psi) is the Petersen norm of \phi:

(\phi, \psi) = \iint_{\Gamma_{w}(N) \backslash \Gamma} |\phi(z)|^2 dx dy, \quad z = x + iy,

and for each prime w\mid p of K, let \alpha_w = \alpha \circ N_{K_w/Q_w} and \psi_w = \psi_p \circ \text{Tr}_{K_w/Q_w}, and let \varphi_w be a uniformizer of K_w, then

Z_w(\chi_w, \psi_w) = \begin{cases} (1 - \alpha_w \chi_w(\varphi_w)^{-1})(1 - \alpha_w \chi_w(\varphi_w)p^{-1})^{-1}, & \text{if } \alpha_w \chi_w \text{ is unramified}, \\ p^n \tau((\alpha_w \chi_w)^{-1}, \psi_w), & \text{if } \alpha_w \chi_w \text{ is of conductor } n \geq 1. \end{cases}

The following lemma will be used to prove our main theorem.

Lemma 3.1. Let E be an elliptic curve over Q with CM by an imaginary quadratic field K. Assume p is also split in K write p\mathcal{O}_K = pp^* with p induced by \psi, i.e. identify K_p with Q_p and the non-trivial element \tau \in Gal(K/Q) induces an isomorphism on K_p and thus \tau : K_p \longrightarrow K_p = Q_p. Let \varphi be its associated Hecke character. Then we have \alpha = \varphi_p \otimes \tau^{-1} and (\alpha^{-1}\chi_{\text{cyc}})(x) = \varphi_p(x)x^{-1} for any x \in Q^*_p. Moreover, for any place w\mid p of K, any finite order character \nu : Q^*/Q^*_p \times Z^*_p \longrightarrow \mu_{p^n} viewed as character on \Gamma_K by composition with norm

Z_w(\alpha_w \nu, \psi) = \tau(\varphi_p \nu^{-1}, \psi) \cdot \frac{1 - (\varphi_p \nu^{-1})(p)p^{-1}}{1 - (\varphi_p \nu p^{-1})(p)p^{-1}}.

Proof. The claim follows from the relations \varphi \varphi = 1_{K_p^{\infty}} and \varphi^* = \varphi.

\square
Let $\chi_{\text{cyc}, K} : \Gamma_K \to \mathbb{Z}_p^\times$ denote the p-adic cyclotomic character of G_K. Let χ be an anticyclotomic character. Define $\mathcal{L}_{E/K, \chi}$ to be the p-adic L-function

$$
\mathcal{L}_{E/K, \chi}(s) = \mu_{E/K}(\chi \chi_{\text{cyc}, K}^{s-1}), \quad s \in \mathbb{Z}_p.
$$

For trivial χ, we write $\mathcal{L}_{E/K}$ for $\mathcal{L}_{E/K, \chi}$.

Theorem 3.2 (See [19] and [4]). Let E be an elliptic curve over \mathbb{Q} and K an imaginary quadratic field. Let p be a potentially good ordinary prime for E and split over K. Assume that $\epsilon(E/K) = -1$. Then

$$
\frac{\mathcal{L}'_{E/K, \chi}(1)}{R_p(E/K, \chi)} = \frac{L_p(E/K, \chi, 1)}{\prod_{w \nmid p} Z_w(\chi_w, \psi_w)}.
$$

Here $L_p(E/K, \chi, 1)$ is the Euler factor at p. In particular, $\mathcal{L}'_{E/K}(1) = 0$ if and only if $L'(E/K, 1) = 0$.

Proof. Let B be an indefinite quaternion algebra over \mathbb{Q} ramified exactly at the places v of \mathbb{Q} where $c_v(E(\overline{K}), 1) = -1$. It is known that there exists a Shimura curve X over \mathbb{Q} (with suitable level) and a non-constant morphism $f : X \to E$ over \mathbb{Q} mapping a divisor in Hodge class to the identity of E such that its corresponding Heegner cycle $P_\chi(f)$ is non-trivial if and only if $L'(1, \phi, \chi) = 0$ by Theorem 1.2 in [19], and if and only if $\mathcal{L}'_{E/K, \chi}(1) = 0$ by Theorem B in [4]. Thus $L'(E/K, \chi, 1) = 0$ if and only if $\mathcal{L}'_{E/K, \chi}(1) = 0$.

Now assume that $L'(E/K, 1) = 0$. By an argument of Kolyvagin, we know that $(E(\overline{K}) \otimes \mathcal{O}_\chi)^!$ is of \mathcal{O}_χ-rank one,

$$
\frac{\hat{h}_\infty(P_\chi(f))}{R_p(E/K, \chi)} = \frac{\hat{h}_p(P_\chi(f))}{R_p(E/K, \chi)} \in \mathbb{Q}^\times.
$$

By [19] theorem 1.2,

$$
\frac{L'(E/K, \chi, 1)}{R_p(E/K, \chi)} = \frac{\hat{h}_p(P_\chi(f))}{R_p(E/K, \chi)} \prod_{w \nmid p} Z_w(\chi_w, \psi_w) L(1, \pi, \text{ad}) \alpha^{-1}(f, \chi),
$$

and by [4] theorem B (with our definition of $\mathcal{L}_{E/K, \chi}$),

$$
\frac{\mathcal{L}'_{E/K, \chi}(1)}{R_p(E/K, \chi)} = \frac{h_p(P_\chi(f))}{R_p(E/K, \chi)} \prod_{w \nmid p} Z_w(\chi_w, \psi_w) L(1, \pi, \text{ad}) \alpha^{-1}(f, \chi),
$$

where the $\alpha(f, \chi) \in \mathbb{Q}^\times$. The theorem follows. \hfill \square

Now we give an explicit form of p-adic Gross-Zagier formula as an application. Let c be the conductor of χ. Assume the following Heegner hypothesis holds:

1. $(c, N) = 1$, and no prime divisor q of N is inert in \mathcal{O}_c, and also q must be split in K if $q^2 | N$.
2. $\chi([q]) \neq a_q$ for any prime $q | (N, D)$, where q is the unique prime ideal of \mathcal{O}_c above q and $[q]$ is its class in $\text{Pic}(\mathcal{O}_c)$.

Let $X_0(N)$ be the modular curve over \mathbb{Q}, whose \mathbb{C}-points parametrize isogenies $E_1 \to E_2$ between elliptic curves over \mathbb{C} whose kernel is cyclic of order N. By the Heegner condition, there exists a proper ideal \mathfrak{N} of \mathfrak{o}, such that $\mathcal{O}_c/\mathfrak{N} = \mathbb{Z}/N\mathbb{Z}$. For any proper ideal \mathfrak{a} of \mathcal{O}_c, let $P_\mathfrak{a} \in X_0(N)$ be the point representing the isogeny $\mathbb{C}/\mathfrak{a} \to \mathbb{C}/\mathfrak{a}N^{-1}$, which is defined over the ring class field $H_\mathfrak{c}$ over K of conductor c, and only depends on the class of \mathfrak{a} in $\text{Pic}(\mathcal{O}_c)$. Let $J_0(N)$ be the Jacobian of $X_0(N)$. Let $f : X_0(N) \to E$ be a modular parametrization mapping the cusps ∞ at infinity to the identity $O \in E$. Denote by $\text{deg} f$ the degree of the morphism f. Define the Heegner divisor to be

$$
P_\chi(f) := \sum_{[\mathfrak{a}] \in \text{Pic}(\mathcal{O}_c)} f(P_\mathfrak{a}) \otimes \chi([\mathfrak{a}]) \in E(H_\mathfrak{c})[\mathfrak{a}].
$$

Theorem 3.3. Let E, χ be as above satisfying the Heegner conditions (1) and (2). Then

$$
L'(1, E, \chi) = 2^{-\mu(N, D)} \frac{8\pi^2(\phi, \phi)_{\Gamma_0(N)}}{u^2[\text{Disc}(E)]^2} \hat{h}_\infty(P_\chi(f)) \frac{1}{\text{deg} f},
$$

where $\mu(N, D)$ is the number of prime factors of the greatest common divisor of N and D, $u = [\mathcal{O}_c^\times : \mathbb{Z}_c^\times]$ is half of the number of roots of unity in \mathcal{O}_c, and \hat{h}_∞ is the Néron-Tate height on E over K. \hfill 7
Moreover, let \(p \) be a prime split in \(K \) and assume that \(E \) is potential ordinary at \(p \) (i.e. either potential good ordinary or potential semistable), then we have
\[
\mathcal{L}_{E/K,\chi}(1) = \prod_{w|p} Z_w(\chi_w, \psi_w) \frac{2^{-\nu(N,D)} \hat{h}_p(P_\chi(f))}{\deg f},
\]
where \(\hat{h}_p \) is the \(p \)-adic height on \(E \) over \(K \).

Proof. The explicit form of Gross-Zagier formula is proved in [2]. The explicit form of \(p \)-adic Gross-Zagier formula then follows from the relation in Theorem 4.1. \(\square \)

4. **Proof of Main Theorem 1.1**

In this section, let \(E \) be an elliptic curve over \(\mathbb{Q} \) with CM by \(K \) and \(\Omega_E \) the minimal real period of \(E \) over \(\mathbb{Q} \). Let \(p \nmid w \) be a prime split both in \(K \).

Lemma 4.1. Let \(K \) be an imaginary quadratic field where \(p \) splits, \(\eta \) the associated quadratic character, and \(\eta_K \) its base change to \(K \). Assume that \(\epsilon(E/K) = -1 \). Then there exists a \(p \)-adic unit \(u \) such that
\[
\mathcal{L}_{E/K} = \tau(\varphi_p, \psi_p)^2 \cdot \Omega_E^2 \frac{\mu_0(\varphi_p, \psi_p)}{\deg f} \cdot \mathcal{L}_{\varphi, \psi} \mathcal{L}_{\varphi, \eta_K}.
\]

Proof. It’s enough to show that for any finite order character \(\nu : \hat{Q}/\hat{Q}^\times \hat{Z}/\hat{Z}_{p, \text{tor}} \to \mathbb{C}^\times \), we have
\[

\nu_K(\mu_{E/K}) = \frac{\tau(\varphi_p, \psi_p)}{8\pi^2(\varphi, \psi)} \frac{\Omega_E^2}{\mu_0(\varphi_p, \psi_p)} \cdot \frac{\mu_0(\varphi_p, \psi_p)}{\deg f} \cdot \mathcal{L}_{\varphi, \psi} \mathcal{L}_{\varphi, \eta_K}.
\]

Note that \(K/\mathbb{Q} \) splits at \(p \) and then \(\eta_p \) is trivial, the right hand side of the formula in the lemma is
\[
\frac{L(p)(1, \phi, \nu^{-1})}{8\pi^2(\phi, \psi)} \prod_{w|p} Z_w(\alpha_w \nu_w, \psi_w),
\]
Note that \(K/\mathbb{Q} \) splits at \(p \) and then \(\eta_p \) is trivial, the right hand side of the formula in the lemma is
\[
\frac{L(p)(1, \phi, \nu^{-1})}{8\pi^2(\phi, \psi)} \prod_{w|p} Z_w(\alpha_w \nu_w, \psi_w),
\]
Then the formula follows from lemma 3.1. \(\square \)

We are ready to prove Theorem 1.1. Assume that \(L(s, E/\mathbb{Q}) \) has a simple zero at \(s = 1 \) and that \(p \) is a bad but potentially good ordinary prime for \(E \). Let \(\varphi \) be the Hecke character associated to \(E \) and \(f_0 \) its the prime-to-\(p \) conductor. We may choose an imaginary quadratic field \(K \) such that

- \(L(s, E/K) \) also has a simple zero at \(s = 1 \).
- \(p \) is splits in \(K \).
- the discriminant of \(K \) is prime to \(f_0 \).

Note that related Euler factors are trivial in this case, we then have
\[
\begin{align*}
\mathcal{L}_{\varphi_K}(1) &= \frac{L(1, E(K))}{\Omega_{E/K}}, \\
\mathcal{L}_{E/K}(1) &= \frac{L(E/K, 1)}{\Omega_{E/K}}, \\
\mathcal{L}_{E/K}(1) &= \frac{L(E/K, 1)}{\Omega_{E/K}}, \\
\text{ord}_p(\Omega_{E/K}) &= \text{ord}_p \left(\frac{L(E/K, 1)}{\Omega_{E/K}} \right), \\
\text{ord}_p \left(\frac{\mathcal{L}_{E/K}(1)}{\Omega_{E/K}} \right) &= \text{ord}_p \left(\frac{L(E/K, 1)}{\Omega_{E/K}} \right) = 0.
\end{align*}
\]
It follows that
\[
\text{ord}_p(\Omega_{E/K}) = \text{ord}_p \left(\frac{L(E/K, 1)}{\Omega_{E/K}} \right).
\]
This proves Theorem 1.1 (i). Assume that \(E(\mathbb{Q}) \) has rank one and \(\text{III}(E(\mathbb{Q}))(p) \) is finite, or equivalently, \(E(K) \) has \(\mathcal{O}_K \)-rank one and \(\text{III}(E/K) \) is finite. By [1], the cyclotomic \(p \)-adic height pairing is non-degenerate. Thus both \(\mathcal{L}_{\varphi_K} \) and \(\mathcal{L}_{\varphi_K}^\eta \) have exactly order 1 at \(s = 1 \), therefore \(\mathcal{L}_{E/K} \) has exactly order
It follows from p-adic Gross-Zagier formula that the related Heegner point is non-trivial and therefore $L(E, s)$ has a simple zero at $s = 1$. This completes the proof of Theorem 1.1.

References

[1] Daniel Bertrand, *Propriétés Arithmétiques de Fonctions Thêta à plusieurs variables*, Lect. Notes in Math., vol 1068, pp. 17-22. Berlin-Heidelberg-New York-Tokyo: Springer 1984.

[2] L. Cai, J. Shu and Y. Tian, *Explicit Gross-Zagier and Waldspurger formulae*. Algebra Number Theory 8 (2014), no. 10, 2523-2572.

[3] J. Coates and A. Wiles, *On p-adic L-functions and elliptic units*. J. Austral. Math. Soc. Ser. A 26 (1978), no. 1, 1-25.

[4] Daniel Diegni, *The p-adic Gross Zagier formula on Shimura curves*, Preprint.

[5] E. de Shalit, *The Iwasawa theory of elliptic curves with complex multiplication*, Perspect. Math. Vol.3 (1987).

[6] G. Faltings, *Crystalline cohomology and p-adic Galois-representations*. Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989.

[7] S. Friedberg and J. Hoffstein, *Nonvanishing theorems for automorphic L-functions on $GL(2)$*. Ann. of Math. (2) 142 (1995), no. 2, 385-423.

[8] Kobayashi, Shinichi, *The p-adic Gross-Zagier formula for elliptic curves at supersingular primes*. Invent. Math. 191 (2013), no. 3, 527-569.

[9] B. Mazur, J. Tate, and J. Teitelbaum, *On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer*. Invent. Math. (1986) Volume 84, no. 1, pp 1-48.

[10] B. Perrin-Riou, *Groupe de Selmer d’une courbe elliptique multiplication complexe*, Compositio Math. 43 (1981), no. 3, 387-417.

[11] B. Perrin-Riou, *Descend enfin et hauteur p-adique sur les courbes elliptiques multiplication complexe*, Invent. Math. 79 (1982/83), no. 3, 369-398.

[12] B. Perrin-Riou, *Points de Heegner et dérivées de fonctions L p-adiques*, Invent. Math. 89 (1987), no. 3, pp. 455-510.

[13] K. Rubin, *Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication*, Invent. Math. 89 (1987), no. 3, 527-559.

[14] K. Rubin, *The "main conjectures" of Iwasawa theory for imaginary quadratic fields*, Invent. Math. 103 (1991), no. 1, 23-68.

[15] P. Schneider, *Iwasawa L-functions of varieties over algebraic number fields. A first approach*, Invent. Math. 71 (1983), no. 2, 251-293.

[16] Y. Tian, *Congruent Numbers and Heegner Points*, Cambridge J. of Math. Vol. 2.1, 117-161, 2014.

[17] Y. Tian, X. Yuan and S. Zhang, *Genus Periods, Genus Points and Congruent Number Problem*, to appear in Asian Journal of Mathematics.

[18] R. Yager, *On two variable p-adic L-functions*, Ann. of Math. (2) 115 (1982), no. 2, 411-449.

[19] X. Yuan, S. Zhang, and W. Zhang, *The Gross-Zagier Formula on Shimura Curves*, Annals of Mathematics Studies Number 184, 2013.