Asymptotic solution for deep bed filtration with small deposit

Ludmila I. Kuzmina, Yuri V. Osipovb*

a National Research University Higher School of Economics, 20, Myasnitskaya st., Moscow, 101000, Russia
b Moscow State University of Civil Engineering, 26, Yaroslavskoe Shosse, Moscow, 129337, Russia

Abstract

Filtering the suspension in a porous soil is important for long-term evaluation of soil strength in the construction of underground and hydrotechnical structures. A size-exclusion model of solid particle capture for a flow of suspension in a porous media is considered: particles pass freely through the large pores and get stuck at the inlet of small pores whose diameter is less than the particle size. The asymptotic solution for the concentrations of suspended and retained particles is constructed under the assumption that the limit deposit is small.

Keywords: Suspension; Porous media; Deep bed filtration; Filtration coefficient; Size exclusion; Asymptotic solution.

1. Introduction

Filtration of suspension in a porous media is an important problem of the underground fluid mechanics, which is often found in nature and technology [1-3]. The design and construction of tunnels, underground and hydraulic structures must take into account the movement of groundwater and its influence on the structure and strength of the soil. In various wastewater and liquid industrial waste cleaning systems solid particles are retained by porous filters [4, 5].

Capture of particles in a porous media can be determined by different physical mechanisms: the electrostatic and mechanical forces, viscosity, diffusion, etc. The paper deals with mechanical-geometric model of particle capture by the filter pores [6, 7]. It is assumed that the particles pass freely through the large pores and get stuck in the entrance of pores smaller than the particle size. One small pore is clogged by a single particle; the retained particle can not leave the pore inlet to join the fluid flow (Fig. 1).

* Corresponding author. Tel.: +7-495-183-5994; fax: +7-495-183-5994.
E-mail address: yuri-osipov@mail.ru
Classical stochastic model of the suspension transport in porous media includes balance equation of suspended and retained particles and the kinetic equation for the retained particles. In this paper we consider the system of equations obtained by macro-averaging of micro-stochastic equations for particles of the same size and pores of different sizes [8]. After a long period of filtration all small pores are clogged by deposit while the large pores are free and pass the suspended particles, so the maximum deposit limit is proportional to a number of small pores. Assuming that the deposit limit is small the asymptotic solution of the filtration problem is constructed.

2. Governing Equations

In the domain \(\Omega = \{0 < x < 1, t > 0\} \) concentrations of suspended \(C(x,t) \) and retained \(S(x,t) \) particles satisfy quasilinear hyperbolic system of equations ([9])

\[
\frac{\partial (a(S)C + S)}{\partial t} + \frac{\partial (b(S)C)}{\partial x} = 0; \quad \frac{\partial S}{\partial t} = \Lambda(S)C; \quad (1)
\]

where \(\Lambda(S) \) is a filtration coefficient, \(a(S), b(S) \) are given functions dependent on the porosity and permeability of the media, \(\Lambda(S), a(S), b(S) \) are positive for \(S > 0 \).

The boundary conditions for the system (1) are placed at the filter inlet \(x = 0 \) and at the initial moment \(t = 0 \)

\[
C(x,t)|_{t=0} = p, \quad p > 0; \quad (2)
\]

\[
C(x,t)|_{x=0} = 0; \quad S(x,t)|_{x=0} = 0. \quad (3)
\]

At the initial moment the porous media does not contain any particles. During the filtration process the concentration front of suspended and retained particles moves through the filter with a speed \(b(0)/a(0) \) along the characteristic line \(t = \alpha x, \quad \alpha = a(0)/b(0) \). Ahead of the front the two concentrations are zero.

The initial conditions (3) can be replaced by one condition on the characteristic line

\[
S(x,t)|_{x=0} = 0. \quad (4)
\]

In the domain \(\Omega' = \{0 < x < 1, t > \alpha x\} \) the solutions of the problems (1) - (3) and (1), (2), (4) are identical [10].

A simple system with constant coefficients \(a(S) = a_0, \quad b(S) = b_0 \) and linear filtration coefficient \(\Lambda(S) = \lambda(S_M - S) \) has an exact solution [11]

\[
C(x,t) = \begin{cases}
0, & t < \alpha x \\
pe^{\lambda(\frac{t}{t-\alpha})} \frac{t}{e^{\lambda(\frac{t}{t-\alpha})} + \lambda - 1}, & t > \alpha x
\end{cases}; \quad S(x,t) = \begin{cases}
0, & t < \alpha x \\
S_M(e^{\lambda(\frac{t}{t-\alpha})} - 1) \frac{t}{e^{\lambda(\frac{t}{t-\alpha})} + \lambda - 1}, & t > \alpha x
\end{cases}; \quad k = \frac{\lambda S_M}{b_0}, \quad (5)
\]
where \(S_M \) is a limit concentration of the deposited particles at \(t \to \infty \).

In the general case, the solution of (1) - (3) cannot be expressed analytically. In [10] an asymptotic solution is constructed near the concentration front, an asymptotic solution at the filter inlet is found in [12]. Below an asymptotic solution in the form of a series in powers of a small parameter \(S_M \) is constructed.

3. Asymptotic Solution

Let the functions \(a(S), b(S), \Lambda(S) \) are regular in a neighborhood of \(S = 0 \) and

\[
\begin{align*}
a(S) &= a_0 + a_1 S + a_2 S^2 + \ldots; \\
b(S) &= b_0 + b_1 S + b_2 S^2 + \ldots; \\
\Lambda(S) &= \lambda_1 (S_M - S) + \lambda_2 (S_M - S)^2 + \ldots
\end{align*}
\]

(6)

In \(\Omega' \) for \(S_M \to 0 \) the asymptotics can be found in the form

\[
\begin{align*}
S(x,t) &= s_1(x,t) S_M + s_2(x,t) S_M^2 + \ldots; \\
C(x,t) &= p + c_1(x,t) S_M + \ldots.
\end{align*}
\]

(7)

Substituting (6), (7) into (1), (2), (4) and equating the expressions of the same powers \(S_M \) we obtain recurrence equations for the terms of the asymptotic expansions (8). Finally,

\[
\begin{align*}
S(x,t) &= (1 - e^{\lambda_1 p(t-x)}) S_M + (e^{\lambda_1 p(t-x)} - e^{2\lambda_1 p(t-x)}) \frac{\lambda_2}{\lambda_1} \frac{\alpha_1}{b_0} x S_M^2 + \ldots; \\
C(x,t) &= p - e^{\lambda_1 p(t-x)} \frac{\lambda_2}{\lambda_1} \frac{\alpha_1}{b_0} x S_M + \ldots,
\end{align*}
\]

(8)

where \(\alpha_1 = p(a_1 - \alpha b_1) + 1 \).

The figures below show the graphs of the suspended and deposited particle concentrations for \(a(S) = 1 + 3S \), \(b(S) = 1 + 2S \), \(\Lambda(S) = S_M - S \) when \(S_M = 0.2 \), \(p = 1 \) at the outlet of the filter \(x = 1 \) (fig. 2 a, b) and at the moments \(t = 0.5 \) and \(t = 2 \) (fig. 3 a, b). Each figure shows the numerical calculations (solid line), linear (points) and quadratic (dotted line) asymptotic expansions.
4. Conclusions

The asymptotics (8), (9) has the following important properties.

- The asymptotic solution of the problem (1), (2), (4) is applicable in the entire domain Ω' and is in good agreement with numerical calculations.
- For $t \to \infty$ the concentration limits are equal to the given values
 \[
 \lim_{t \to \infty} C(x, t) = p ; \quad \lim_{t \to \infty} S(x, t) = S_M ; \quad 0 \leq x \leq 1
 \]
 \[
 \tag{10}
 \]
- For a simple system asymptotic solution (8), (9) is an expansion of the exact solution (5).
- At the filter inlet $x = 0$ the asymptotics (8) is an expansion of the exact solution [9].
- At the concentration front $t = \alpha x$, $0 < x < 1$ the asymptotics (9) is an expansion of the exact solution [10].

References

[1] D. C. Mays and J. R. Hunt, Hydrodynamic aspects of particle clogging in porous media, Environmental Science and Technology, 39 (2005), 577–584.
[2] I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Theory of fluid flows through natural rocks, Dordrecht: Kluwer Academic Publishers, 1990.
[3] K. C. Khilar and H. S. Fogler, Migrations of fines in porous media, Dordrecht: Kluwer Academic Publishers, 1998.
[4] C. Tien and B. V. Ramarao, Granular Filtration of Aerosols and Hydrosols, 2nd ed. Amsterdam: Elsevier, 2007.
[5] P. Baveye, P. Vandevivere, B. L. Hoyle, P. C. DeLeo, and D. Sanchez De Lozada, Environmental impact and mechanisms of the biological clogging of saturated soils and aquifer materials, Critical Reviews in Environmental Science and Technology, 28(1998), 123-191.
[6] A. Santos, P. Bedrikovetsky, A stochastic model for particulate suspension flow in porous media, Transport in Porous Media, 62(2006), 23-53.
[7] V. Gitis, I. Rubinstein, M. Livshits, G. Ziskind, Deep-bed filtration model with multistage deposition kinetics, Chemical Engineering J., 163(2010), 78-85.
[8] P. Bedrikovetsky, Upscaling of Stochastic Micro Model for Suspension Transport in Porous Media, Transport in Porous Media, 75(2008), 335–369.
[9] Z. You, P. Bedrikovetsky, L. Kuzmina, Exact Solution for Long-Term Size Exclusion Suspension-Colloidal Transport in Porous Media, Abstract and Applied Analysis, 2013, iss. Mathematical and Computational Analyses of Flow and Transport Phenomena, 9 p.
[10] Z. You, Y. Osipov, P. Bedrikovetsky, L. Kuzmina, Asymptotic model for deep bed filtration, Chemical Engineering J., 258(2014), 374-385.
[11] J. P. Herzig, D. M. Leclerc, and P. Legoff, Flow of suspensions through porous media - application to deep filtration, Industrial and Engineering Chemistry, 62(1970), 8-35.
[12] L. I. Kuzmina, Yu. V. Osipov, Particle transportation at the filter inlet, Int. J. for Computational Civil and Structural Engineering, 10(2014), iss. 3, 17-22.