Rejection of backgrounds from pileup alpha coincidences in the SNO+ detector

To cite this article: K Majumdar and SNO+ Collaboration 2015 J. Phys.: Conf. Ser. 598 012023

View the article online for updates and enhancements.
Rejection of backgrounds from pileup alpha coincidences in the SNO+ detector

K Majumdar for the SNO+ Collaboration

Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, United Kingdom

E-mail: Krishanu.Majumdar@physics.ox.ac.uk

Abstract. SNO+ is a multi-purpose neutrino detector with a number of physics goals, one of which is to investigate the existence of Neutrinoless Double Beta Decay. The potential rarity of this process means that other radioactive decays occurring in and around the detector can become major background sources. Two such backgrounds are the β decays of 214Bi and 212Bi, which are followed by the α decays of their respective daughters: 214Po and 212Po. These daughters have relatively short half-lives, and so these β-α coincidences can form pileup events in the detector. Two methods are presented here for rejecting such pileup coincidence events.

1. Introduction

SNO+ is the successor to the Sudbury Neutrino Observatory (SNO), located 2km underground in Ontario, Canada. It consists of a 6-metre radius spherical volume of liquid scintillator surrounded by 7000 tonnes of ultra-pure water and observed by over 9000 photomultiplier tubes (PMTs) that detect the light from scintillation events (a more detailed description of the experiment is given in [1]). The detector’s location, with a 6000 m.w.e. rock overburden [2], provides shielding from cosmic particle flux, and the ultra-pure water reduces the number of backgrounds entering from the surrounding rock. However, there are still backgrounds present in the scintillator itself, including the β decays of 214Bi and 212Bi, which are followed by the α decays of their respective daughters 214Po and 212Po. This β-α coincidence can occur completely within a single 400ns-wide trigger window due to the short half-lives of the Po daughters, making the coincidence a pileup event that appears very similar to a potential 130Te neutrinoless double beta decay ($\beta\beta_0\nu$) event.

The time residual, t_{res}^i of a single triggered PMT in any given event is calculated by:

$$t_{\text{res}}^i = t_{\text{pmt}}^i - t_{\text{light}}^i - t_{\text{ev}}$$

where t_{pmt}^i is the ith PMT’s trigger time, t_{ev} is the reconstructed event time, and t_{light}^i is the travel time through the varying materials between the event and PMT. Figure 1 shows the normalised t_{res} distributions for 130Te $\beta\beta_0\nu$, 214Bi β and 214Po α events (the distributions for 212Bi and 212Po look identical to their 214- counterparts).

2. Cumulative Time Residuals Method

The cumulative number of triggered PMTs up to a given value of t_{res} is a reliable way of viewing the differences between 130Te $\beta\beta_0\nu$ and BiPo events. Figure 2 shows the cumulative fraction of triggered
The normalised distributions for 130Te $\beta\beta$0ν, 214Bi β, and 214Po α events. The Te and Bi distributions are almost identical, but the Po distribution has a lower peak and longer tail, both resulting from the larger late-light component associated with scintillating α’s.

PMTs as a function of t_{res} for a typical BiPo pileup event (the fraction is used rather than the raw number of PMTs in order to correct for the slight variation in the raw number of PMTs per event).

A Kolmogorov-Smirnov test between the BiPo and CDF curves quantifies the difference, using:

$$\Gamma = \frac{1}{N_{\text{hits}}} \times \sum_{b} \left(x_{b}^{\text{ev}} - x_{b}^{\text{cdf}} \right)^2$$

where there are b bins in each distribution, and x_{b} is the normalized number of events in bin b. Figure 3 shows the distribution of Γ for 130Te $\beta\beta$0ν and 214BiPo events.

The normalised cumulative fraction of triggered PMTs as a function of t_{res} for 130Te $\beta\beta$0ν events (smooth curve, top) and a BiPo pileup event (double-shouldered curve, bottom).

The values of Γ for 130Te $\beta\beta$0ν (left-side peak) and 214BiPo (low-level spread) events. 212BiPo events have an almost identical distribution to the latter. There is a very clear separation between the Te and BiPo events.

3. Log-Likelihood Difference Method

The log-likelihood of an event being 130Te $\beta\beta$0ν based on its t_{res} distribution is given by:

$$\mathcal{L}_{\text{Te}} = \sum_{i=1}^{N} \ln \left(N_{\text{PMT}}(t_{i_{\text{res}}}) \right)$$

where N is the number of triggered PMTs and $N_{\text{PMT}}(t_{i_{\text{res}}})$ is the probability of the i^{th} PMT having the time residual $t_{i_{\text{res}}}$ based on the 130Te t_{res} distribution in Figure 1. Similarly, using the Bi and Po t_{res} distributions, the log-likelihood of the same event being a BiPo pileup is:
where \(A \) is the mean number of triggered PMTs in a Po \(\alpha \) event (different for \(^{214}\)Po and \(^{212}\)Po). The quantity \(\Delta t \) represents the delay before the \(\alpha \) emission, and is varied to maximize \(\mathcal{L}_{\text{BiPo}} \). This leads to a minimised difference:

\[
\Delta \mathcal{L} = \mathcal{L}_{\text{Te}} - \mathcal{L}_{\text{BiPo}}
\]

Figure 4 shows the distribution of \(\Delta \mathcal{L} \) for \(^{130}\)Te \(\beta\beta\)0\(\nu\) and \(^{214}\)BiPo pileup events.

4. Overall Bi-Po Rejection

Figure 5 shows the remaining BiPo pileup percentage as a function of the remaining \(^{130}\)Te \(\beta\beta\)0\(\nu\) percentage, where each point corresponds to a cut-value on either \(\Gamma \) or \(\Delta \mathcal{L} \). (The \(^{212}\)BiPo curves are limited by statistics.)

In both backgrounds, the Log-Likelihood Difference method performs better than the Cumulative \(t_{\text{res}} \) method. However, there are still a small number of BiPo events remaining. These events all have a very fast \(\alpha \), i.e. one that has been emitted <15ns after the Bi \(\beta \). In this situation, the BiPo \(t_{\text{res}} \) distribution looks identical to that of \(^{130}\)Te \(\beta\beta\)0\(\nu\), making discrimination impossible.

References
[1] SNO Collaboration 2000, *Nucl. Instrum. Methods* A 449 172-207
[2] Lozza V 2012 *J. Phys.: Conf. Series* 375 042050