An RNA-centered view of eukaryotic cells

Emmanuel Tannenbaum

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138

Emerging evidence suggests that the introns and intergenic sequences of the genomes of higher eukaryotes (the “junk” DNA) codes for a vast, RNA-based, genetic regulatory network. It is believed that this network is responsible for the variety and complexity of terrestrial life. We conjecture that this regulatory network is more properly viewed as an RNA “community”, composed of a rich and largely unexplored biochemical web of RNA interactions. Viewed as an RNA-community, we hypothesize that the RNA regulatory network of higher eukaryotes can re-wire itself, and employ various evolutionary and developmental strategies in response to external pressures. Thus, we argue that much evolutionary change is due to intracellular, RNA-mediated learning processes. Successful strategies and pathways are then recorded (hard-wired) into the DNA genome via reverse transcriptase. We present evidence which is consistent with this viewpoint, and make specific predictions which could be used to test the utility of our framework. If essentially correct, the RNA-community view of eukaryotic cells could reconcile measured point mutation and gene duplication rates with actual rates of evolutionary change. Furthermore, the RNA-community view of eukaryotic cells suggests that agent-based modeling techniques, used in mathematical economics, game theory, and neuroscience, will likely be as useful in understanding the functioning of eukaryotic cells as the pathway-based approaches of systems biology. We conclude this paper by arguing that a sufficient amount of biological knowledge has been accumulated to initiate a systematic program of experimental and computational studies of the origins and macroevolution of terrestrial life.

Keywords: Introns, reverse transcriptase, retrotransposons, RNA-mediated DNA evolution, neural networks, agent-based modeling

I. INTRODUCTION

One of the most striking differences between prokaryotic and eukaryotic organisms is in the organization of their respective genomes. Prokaryotic genomes are relatively simple, in that a given DNA base-pair can generally be assigned as part of a codon for an amino acid. A considerably smaller fraction of the genome codes for a handful of RNAs which are generally involved in protein synthesis. Eukaryotic genomes, by contrast, are much more complex. In general, the base-pair DNA sequence of a eukaryotic gene cannot be directly translated into the corresponding polypeptide for which it codes. The reason for this is that eukaryotic genes are usually interrupted by noncoding regions known as introns, which need to be spliced from the transcribed mRNA before it is carried to a ribosome for translation. Furthermore, the genes themselves are often separated by large non-protein-coding regions of the genome, known as intergenic sequences.

In the simpler eukaryotes, such as Saccharomyces cerevisiae (Baker’s yeast), the fraction of non-protein-coding DNA is relatively small, similar in this regard to prokaryotes. Evidently, the relatively high replication rates of such organisms drives the removal of most non-essential components of the genome. However, in more complex, slower replicating organisms, the fraction of non-coding regions (introns and intergenic sequences) is quite high. For example, in humans, it is estimated that only 1.1 – 1.4% of the genome actually codes for proteins (introns constitute approximately 24% of the human genome, while the remaining 75% consists of intergenic sequences). For a time, it was not known whether the 99% of the so-called non-coding regions of the genome is simply “junk” DNA, or whether it is involved in some unknown regulatory function.

Recent evidence, however, suggests that much of the intronic DNA in eukaryotic genomes does in fact play a regulatory function. That is, it is believed that the bulk of the DNA codes for a collection of RNAs that are never translated into proteins, but rather are part of a massive regulatory network involving DNA-RNA, RNA-RNA, DNA-Protein, and RNA-Protein interactions. It is believed this massive regulatory network is responsible for the variety and complexity of terrestrial life.

It has therefore become apparent that a proper understanding of RNA biochemistry is crucial for understanding the functioning of living cells. Indeed, RNA is generally regarded as the basis for early terrestrial life, a conjecture known as the RNA World Hypothesis.

In this paper, we argue that the massive RNA regulatory network inside eukaryotic cells is not best seen as an extraordinarily complex, highly regulated biochemical machine, but rather as an RNA “community” (or “brain”) which directed the construction of various cellular components as a collective survival strategy. The DNA genome is then best regarded as a repository for long-term information storage of useful survival tools. An appropriate analogy for a eukaryotic cell is therefore an organized society such as a city-state or country, with
the RNA-community playing the role of a “think tank” or “brain.”

In the following section, we present what the implications of such an RNA-community model would be, and what the available biochemical evidence is to suggest that the picture we present might be correct. We also make a number of predictions which could be used to test the validity of our hypothesis. We continue by discussing what we regard as the essential differences between pathway-based and agent-based approaches to reverse engineer complex systems, and why we believe that independent agents acting under selection pressures is a general principle leading to the formation of complex systems. For the sake of completeness, we conclude with some speculations on the origins of life.

II. EVIDENCE FOR, AND PREDICTIONS OF, THE RNA-CENTERED MODEL

This section presents evidence supporting the RNA-community picture of eukaryotic cells, and makes specific predictions which provide testable hypotheses for testing this viewpoint.

To begin, we may note that in a society, the general mechanism by which technological advances are made is via innovations developed in relatively small subgroups of the population. If these innovations are useful to the society, then they can be imitated, spread, and standardized. However, in order for the activities of a given subpopulation to become permanent, generally these activities must be recorded.

Thus, the RNA-community model for a eukaryotic cell suggests that the RNA population inside a cell is capable of recording itself into the DNA genome, a process which we term RNA-mediated DNA evolution. This hypothesized ability of the RNA population inside a eukaryotic cell to record itself into the DNA genome was previously discussed in [8], where the author coined the term ribotype to describe what we call the RNA-community.

RNA-mediated DNA evolution (otherwise known as retrotransposition) is only possible assuming that reverse transcriptase is active in eukaryotic cells. There is evidence that this is indeed the case:

1. Telomerases, the enzyme responsible for restoring the telomeres of eukaryotic chromosomes, is nothing more than a reverse transcriptase which carries its own RNA template [11].

2. The Class II introns, which are believed to be the ancestors of all modern introns [9], code for proteins resembling reverse transcriptases [1, 10]. Specifically, the Class II introns code for enzymes known as maturases, which have both strand cleaving and reverse transcription functions [1, 11], thereby facilitating intron movement into various portions of the genome.

The RNA-community view of eukaryotic cells also suggests that RNA-mediated DNA evolution is the dominant mechanism for eukaryotic genome evolution. This is consistent with the consensus view that gene duplication events are what drive evolutionary change [12]. It is also consistent with the consensus view that retrotransposition is the primary gene duplication mechanism in eukaryotes [1]. It is known, for instance, that eukaryotic genomes contain numerous retrotranspositional repeats. For instance, the most retrotransposon in yeast is the Ty1 transposon, which has approximately 35 copies comprising ≈ 13% of the yeast genome [1].

The RNA-community view also holds that retrotransposons are the source of retroviruses. Since DNA was built by retrotransposons, then retrotransposons existed before retroviruses. Retroviruses may be viewed as protein-coding retrotransposons which carry their own reverse transcriptase. One scenario is that retroviruses evolved from “cancerous” retrotransposons that replicated uncontrollably in the first emerging RNA biochemical networks.

There is some initial evidence to suggest that retroviruses may have indeed evolved from retrotransposons [13]. We also make the following prediction, which follows from the retrotransposons-first theory, which is a direct test of the RNA-community viewpoint:

Prediction 1: Retroviruses and riboviruses can and do emerge from non-viral RNAs inside eukaryotic cells.

If, as we hypothesize, DNA was essentially built by RNA as a vehicle for more permanent information storage, then it should follow that the enzyme for “reading” the DNA (transcription), and the enzyme for “writing” to the DNA (reverse transcription), should have appeared around the same time. While this has not been definitively established, there is evidence in support of this hypothesis [14, 15].

In [14], the authors provide evidence that RNA-directed RNA polymerase and reverse transcriptase evolved from a common ancestor. In [15], the authors presented the results of genetic analyses of certain microsporidia that belong to one of the deepest branching lineages of the eukaryotic line of descent. BLAST analysis revealed a number of gene sequences with high levels of sequence similarity, including a reverse transcriptase and a DNA-dependent RNA polymerase.

The hypothesis that DNA was constructed by RNA as a result of retrotranspositional “bombardments” leads us to make our second prediction:

Prediction 2: It should be possible to spontaneously create DNA molecules in vitro using reverse transcriptase, RNA molecules, and any additional necessary cofactors.

Finally, the RNA-community view of eukaryotic cells suggests that much of the RNA in eukaryotic cells is involved in complex networks of various biochemical interactions (splicing, replication, and so forth), where the individual RNAs generally make highly indirect and minimal contributions to the overall fitness of the cell.
As initial evidence for this hypothesis, we should point out that, in addition to mRNA, and tRNA, there is rRNA (ribosomal RNA), sRNA (from the spliceosome), snoRNA (small nucleolar RNA), and iRNA (interference RNA) [1]. It appears that the number of different types of RNA in the cell is steadily growing.

III. EVOLUTION AND LEARNING

Another system which is believed to be a self-organizing community of independent agents is the brain [16, 17]. It is believed that the brain may in many ways be regarded as a “neuron community” [16, 17], whereby pathways are formed via a selection process driven by an endorphin-adrenaline reward-punishment system. In this way, the brain is in many respects similar to a free-market economy, where competition for money amongst individual agents drives growth and innovation [16, 17].

In the neuron community view of the brain, external threats to the organism are translated into an internal stress response, triggered by the release of adrenaline. The presence of adrenaline triggers the breaking and reformation of synapses. If a pathway is found which causes the organism to behave in a way which removes the threat, the adrenaline-triggering inputs stop, and the result is a release of endorphins which “lock” the proper pathways into place. This selection process is therefore similar in many ways to the process of clonal selection in immune response [1].

Of course, for such an adrenaline-endorphin reward-punishment system to confer a selective advantage to the organism, external threats to the organism have to trigger a stress response. This is equivalent to the statement that the organism must recognize the threat, or, more precisely, replicative selection of the organism must be coupled to the adrenaline-endorphin-based selection processes at work in the brain.

Given our hypothesis that eukaryotic cells may be viewed as RNA communities, and given that learning is driven by independent agents acting under a reward-punishment system, we further conjecture that the RNA “community” inside eukaryotic cells may be viewed as a kind of “brain” which is capable of learning. We conjecture that eukaryotic cells have evolved the ability to recognize certain external factors as threats to organism survival, and have evolved internal mutational stress responses to deal with such threats. Thus, gene duplication events are not random, but may rather be seen as the end result of an RNA-based “immune” response to certain environmental pressures, analogous to the formation of memory cells following the immune response to antigenic agents [1].

We further claim that an immune-like mutational response is only the first level of nonrandom mutational response which occurs in eukaryotic cells. That is, we conjecture that the RNA “community” is capable of various nontrivial mutational strategies, strategies which make use of memory and associative learning. Evolution as a learning process is therefore the necessary framework for reconciling observed point mutation and gene duplication rates with actual timescales of macroevolutionary changes.

In addition to the predictions made in the previous section, there are a number of predictions that follow from conjectured ability of the RNA “community” to learn. First of all, as mentioned previously, because learning is based on a reward-punishment system, a learning system must first have the ability to trigger the reward-punishment systems via a recognition mechanism. The RNA “community” must therefore exhibit a mutational stress response as a result of certain external threats. This leads us to

Prediction 3: Individual RNA molecules can be induced to self-splice, recombine, and recombine with other RNAs in response to environmental conditions (pH changes, radiation, various chemicals).

There is some evidence that this happens [18].

Furthermore, one of the main characteristics of a neuron “community” is its ability to re-wire itself. We conjecture that the RNA “community” is also able to re-wire itself. It is known, for instance, that RNAs in the cell are often associated with the microtubule cytoskeleton [19, 20, 21, 22]. It is also known that the microtubule cytoskeleton is responsible for much intracellular transport [1, 19, 20, 21, 22]. It is also known that the microtubule cytoskeleton has considerable plasticity, and may re-wire itself. It is interesting to note in this vein that there is speculation that microtubules play a central role in thought processes and the emergence of consciousness [23]. In any event, if the RNA “community” is indeed capable of re-wiring itself using the microtubule cytoskeleton, then we predict that it should be possible to observe this process in vitro.

Prediction 4: It should be possible to construct an in vitro RNA-microtubule network which is capable of re-wiring itself in response to environmental conditions.

IV. IMPLICATIONS

A. Pathways versus agent-based modeling

The goal of systems biology is to reverse engineer biological systems. This is done by determining the various components of biological systems, their interactions, and then reconstructing the underlying biochemical pathways and feedback loops.

The pathway approach has been extremely successful in understanding the structure of a variety of biological networks, such as metabolism, replication, repair, and hormonal regulation in higher organisms [1]. Concepts from control and systems theory have been useful in inferring the existence of previously undiscovered hormones, as in the regulation of calcium levels in cows [24].
In general, if a system is composed of components which are constrained to a relatively fixed set of interactions, then we may say that the interactions amongst the system components are hard-wired, so that the system defines a “pathway.”

However, if the individual components of a system are capable of a wide range of interactions with other system components, and if there is a considerable degree of plasticity in the possible interaction networks that the system components can form, then it will difficult (if not impossible) to directly construct the final, “hard-wired” interaction network. The only recourse becomes to treat the individual system components as independent agents, which are capable of “choosing” from various courses of action. Then, for a system to be assembled by the action of independent agents, there must exist a selection principle which drives the self-organization of the system.

B. Selection as a general principle

If the agent-based approach becomes a parallel approach to pathway-based methods for understanding biological systems, then it suggests that agents acting under various selection pressures is a general principle guiding the construction of complex systems. The most important implication is that there are likely many parallels amongst agent-built systems at various length scales. Thus, by examining structures and behaviors at one length scale (say, in an economy), it may be possible to infer the existence of analogous structures and behaviors at another length scale. We list a number of examples:

1. The emergence of multicellularity

While a major unsolved problem in evolutionary biology, parallels with animal and human societies can reveal the general mechanisms at work. Thus, the prerequisite to multicellularity is the emergence of cooperative behavior, which is driven by the selective pressure of one or more limiting resources. The two types of cooperative behaviors which drive the emergence of multicellularity are division of labor, and kin selection.

With division of labor, each agent still retains the ability to replicate. However, due to the shortage of one or more resources, it becomes advantageous for each agent to specialize and cooperate with other agents. With kin selection, the shortage of one or more resources (or external threats) induces some agents to forgo replication (and even to sacrifice themselves) in order to increase the survival probability of other agents. In this case, the individual agents no longer become the fundamental replicating units, but rather it is a multiagent strategy upon which replicative selection acts.

If the selective pressures driving cooperative behavior are maintained for a sufficiently long amount of time, then through genetic drift the individual agents may lose the ability to function independently, resulting in the creation of a larger superstructure constituting a new fundamental replicating unit upon which replicative selection acts.

We also speculate whether the emergence of sexual reproduction evolved along lines similar to the specialization mechanisms responsible for generating multicellular structures. That is, in adverse environments, genetic recombination among relatively fit organisms provides a selective advantage, though presumably at a cost to replication rate. However, the fitness cost of recombination should decrease with decreasing replication rate (since the fraction of time devoted to recombination becomes a smaller fraction of the average time intervals between replications), so that at sufficiently low replication rates, genetic drift and selection will eliminate the pathways for asexual reproduction.

2. Cancer

As mentioned previously, one may regard retroviral and riboviral evolution as a “cancer” emerging from an RNA biochemical network. Similarly, the emergence of addictions and obsessive-compulsive behaviors in large-brained organisms may be regarded as “cancerous” pathways within the neuron “community.” That is, addictions may be regarded as the result of neuronal pathways which induce the organism to seek inputs which trigger an endorphin response stimulating the pathway. Because such pathways are self-reinforcing, if not tightly controlled they can lead to dysfunctional behaviors.

3. Punctuated equilibrium

A major feature of the macroevolutionary history of terrestrial life is the phenomenon of punctuated equilibrium. Instead of evolution happening at a more or less constant rate, there are typically long periods of relatively slow changes followed by short bursts of intense activity. Punctuated equilibrium often also characterizes the dynamical behavior of a number of features in societies and economies. Perhaps the best known mathematical model which exhibits punctuated equilibrium is the Bak-Sneppen model, though quasispecies approaches have been recently applied as well.

As a result, we conjecture that punctuated equilibrium has characterized the evolution of life from the earliest stably self-replicating biochemical networks, to the first cells, and then to multicellular organisms. We also conjecture that the emergence of addictions and obsessive-compulsive disorders also exhibits threshold behavior, which is a direct consequence of an underlying selection mechanism for pathway formation. The existence of relatively long periods of apparent stasis makes the reconstruction of a system’s history extraordinarily difficult. The reason for this is that the apparent stasis is only
an illusion. Rather, under the action of various selective pressures, the system is undergoing a variety of internal changes which are moving it from one critical point to another.

4. Emergence of ATP and other biochemicals

An interesting feature of living systems is the ubiquity of ATP as the chemical for energy transport in the cell. ATP is therefore analogous to the money supply in an economy. Since money is a means of exchange that emerged from barter systems of direct trade, we conjecture that ATP also emerged from more primitive biochemical networks which did not have a common energy exchange mechanism. We also speculate whether the adrenaline-endorphin reward-punishment system emerged in a similar manner (this of course assumes that neurons need a minimal supply of endorphins to exchange for necessary materials to survive).

A corollary of the existence of scale-free features in agent-built systems is that tools which are useful in understanding the self-organization of systems at one length scale will be useful in understanding the self-organization of systems at other length scales. Thus, tools from molecular evolution theory, such as quasispecies and hypercycles [27, 28, 29, 30, 31], will be useful in modeling brain development (and possibly even societal organization). Similarly, tools from mathematical economics, game theory, and population genetics will be useful in understanding molecular and cellular evolution (indeed, it has been shown that a number of evolutionary dynamics models are formally equivalent [32]).

V. THE CHICKEN OR THE EGG

A. An agent-system cascade

The picture of eukaryotic cells as an RNA-community leads us to view the emergence of complexity in terrestrial life as a series of agent-built, selection driven organizations to higher complexity scales. At every stage, selection pressures drive a fraction of agents into complex differentiated structures. As long as these differentiated structures do not replicate as a whole, and are not readily capable of truly collective behavior, then such structures may be viewed as agent-built systems. However, if through additional selection pressures the agents evolve collective reproductive behaviors, so that the multiagent systems become new replicating units, then the multiagent systems themselves become agents upon which selection processes act. The result is that the emergence of complexity may be seen as a cascade through \[\cdots \Rightarrow \text{Agent} \Rightarrow \text{System} \Rightarrow \text{Agent} \Rightarrow \cdots \] levels, whereby at each stage, any new reward-punishment system (adrenaline-endorphins, money) must be coupled to the reward-punishment system of a previous level in order for it to emerge.

The pathway-based approach therefore seeks to study the underlying systems leading to agent-like behavior at the next level. For example, the emerging field of neuroeconomics is analogous in many ways to systems biology, since it seeks to determine what are the features of brain anatomy and physiology which leads to basic human behaviors assumed by game theoretic economic models. In contrast, the agent-based approach seeks to study the underlying agent behaviors which leads to the construction of systems at the next level.

Two natural questions that emerge from this alternating agent-system cascade are (1) whether the process terminates and (2) at what point does the process begin. Regarding the first question, the central issue is whether there is a maximal length scale beyond which self-organization to larger, multiagent, truly new replicating units is impossible. Such a length scale could be dictated by physical constraints, such as planet size, which in turn may be dictated by the basic physical laws and constants of nature. As to where the complexification process begins, clearly, at some point along the agent-system chain, one must postulate objects which are treated as systems or as agents, and presumably the emergence of higher complexity follows.

B. Two perspectives on the origins of life

A long-standing problem in studies of the origin of life concerns the primacy of nucleic acids versus proteins in early prebiotic chemistry. The consensus view is that nucleic acids, specifically RNA, came first. The central reason for this is that unlike proteins, RNA is capable of Watson-Crick base-pairing, and therefore is able to store and transmit genetic information. Furthermore, it is known that a number of key cell functions, such as protein synthesis, are catalyzed by RNA catalysts (ribozymes) [33, 34]. Thus, RNA can simultaneously play the role of a catalyst and a replicating unit.

The main objection to the RNA world hypothesis is the relative difficulty in producing nucleic acids in prebiotic synthesis experiments, as compared with amino acids. Furthermore, because RNA is capable of catalyzing its own hydrolysis, RNA chains are considerably less stable in aqueous environments than polypeptide chains. As a result, a number of researchers have explored nucleic acid chains with different backbones [35, 36]. In any event, it has been suggested that the relative instability of polynucleic acids indicated that once the conditions were right, the first self-replicating molecules emerged fairly rapidly on the early Earth [37]. Nevertheless, the objection still persists [38].

The RNA-community view of eukaryotic cells does not in any way resolve the nucleic acids - proteins debate. However, via the analogies to a brain and a community, the RNA-community view suggests differing frameworks.
in which to place the two origin-of-life models, and therefore may be used to infer tests to strengthen one hypothesis or the other.

In the nucleic acids first picture, the RNA community may be viewed as having constructed proteins and various other cellular structures as a collective survival strategy. The emergence of prokaryotes then occurred because proteins are generally more efficient catalysts than nucleic acids, which, when coupled with replicative selection, drove the elimination of much of the RNA biochemistry to produce highly efficient biochemical machines.

In the proteins-first picture, the emergence of RNA may be viewed as analogous to the emergence of big-brained organisms. RNA may have first been useful to early replicating protein networks because its self-splicing ability meant that in adverse circumstances, it could generate novel sequences with differing catalytic functions. Initial natural polynucleic acid-polypeptide associations could have then evolved into the modern genetic code (in analogy to hieroglyphic characters predating the development of modern alphabets).

The divergence in prokaryotes and eukaryotes may thus be seen as a divergence between fast replication and “big-brained” survival strategies.

C. Possible tests

There are a number of ways to test the two different hypotheses. In the RNA-first picture, RNA molecules constituted the first self-replicating units. Thus, discovery or synthesis of self-replicating RNAs would make a strong case for the RNA-first picture. In the protein-first picture, proteins constituted the first self-replicating units. While autoreplicating polypeptide chains have been found [48], this does not preclude the existence of autoreplicating RNAs.

Phylogenetic analyses will also be important. Protein phylogenetic trees are used to infer evolutionary relationships amongst various amino acid sequences, while nucleic acid phylogenetic trees are used to infer evolutionary relationships amongst various polynucleotide sequences. While the modern genetic code makes such trees formally equivalent, if possible it would be important to develop hybrid protein-nucleic acid phylogenetic trees.

A key set of proteins and nucleic acid sequences for such phylogenetic analysis are the RNA and DNA polymerases, the reverse transcriptases, the amino-acyl-tRNA synthetases (aaRSs), and the prion proteins. Because it is known that RNA polymerases can synthesize polynucleotide sequences from individual nucleotides without an a priori RNA template [49], it is necessary to determine whether these polymerases predate the corresponding mRNAs. If RNA polymerases preceded the corresponding mRNAs, then it is likely that RNA first emerged from replicating protein networks that evolved the ability to catalyze polynucleotide synthesis. Similarly, because aaRSs catalyze the information flow from nucleic acid to protein [1], then if the aaRS proteins precede their corresponding mRNA transcripts, it is likely that aaRSs emerged directly from earlier proteins capable of catalyzing early nucleic acid-peptide associations.

Prion proteins are also an important target of phylogenetic studies related to the origin of life. While some prions are virulent, others play essential roles in living organisms. Because of their “imprinting” ability, they are key to memory formation and storage in the brain [11, 12]. Prions have also been found to play important roles in a number of free-living eukaryotic organisms, such as yeast [13, 14]. It is interesting to note that there are strong similarities between prion replication and the formation of microtubules and amyloid fibers [15, 40].

It is therefore possible that prions have mRNA precursors coding for them. However, an intriguing alternate possibility is that prions function as an independent, self-replicating entity which are involved in a symbiotic relationship inside eukaryotic cells. If this turns out to be correct, then prions may very well be remnants of early, protein-based life.

We should point out that there are theories concerning the origin of life in which prions play a central role [17]. Another theory, which presupposes an RNA world, nevertheless assumes the existence of a catalytic protein which was responsible for initially generating the first RNAs [43].

VI. CONCLUDING REMARKS

A. Neurons as a source of biochemical information

We believe that neurons will likely be a rich source of biochemical data for clues as to the origins of life. This guess stems from our claim that the RNA community inside eukaryotic cells is capable of learning, re-wiring itself via the microtubule cytoskeleton, and finally, because of the role that prions play in memory formation. Thus we believe that prions are key to developing the sophisticated mutational strategies responsible for generating the diversity of terrestrial life.

B. Experimental studies of the origin of life and macroevolution

Finally, we believe that a sufficient amount of biological knowledge has been obtained to begin rigorous, systematic, level-by-level experimental studies of the transitions to the various stages of complexity observed in terrestrial life. By analogies with human societies and other complex structures, it should be possible to infer the existence of currently unknown pathways and biological compounds, and to guess which of the structures in modern biological systems most closely resemble them. Such studies should include various prebiotic
experiments (say in a chemostat) to create the first self-replicating molecules (polypeptides, RNA, etc.). Other studies should start with self-replicating molecules, and attempt to find the right combination of selection pressures and ingredients leading to cooperative behavior and complex autocatalytic reaction networks (e.g. RNA, Protein, or RNA-Protein hypercycles). Still other studies should explore the emergence of initial cooperative behaviors leading to multicellular structures. We believe that mathematical and computational modeling could prove useful in such studies, both to help drive new experiments, as well as to aid in interpolating between various levels of complexity.

Acknowledgments

This research was supported by the National Institutes of Health. The author would like to thank Profs. Allen Tannenbaum, Rina Tannenbaum, and Prof. Loren Williams (Georgia Institute of Technology) for helpful conversations.

[1] D. Voet and J.G Voet, Biochemistry: 3rd edition (John Wiley and Sons, Inc., Hoboken, NJ, 2004).
[2] J.S. Mattick, Scientific American October, 60 (2004).
[3] C. Dennis, Nature 418, 122 (2002).
[4] W. Gilbert, Nature 319, 618 (1986).
[5] G.F. Joyce, Nature 418, 214 (2002).
[6] L.E. Orgel, Trends Biochem. Sci. 23, 491 (1998).
[7] I.A. Chen, R.W. Roberts, and J.W. Szostak, Science 305, 1474 (2004).
[8] A. Herbert and A. Rich, Nat. Gen. 21, 265 (1999).
[9] F. Michel and J.L. Ferat, Annu. Rev. Biochem. 64, 435 (1995).
[10] G. Mohr and A.M. Lambowitz, Nucl. Acids Res. 31, 647 (2002).
[11] H. Wank, J. SanFilippo, R.N. Singh, M. Matsuura and A.M. Lambowitz, Mol. Cell 4, 239 (1999).
[12] P. Baldi and S. Brunak, Bioinformatics: The Machine Learning Approach, Second Edition (The MIT Press, Cambridge, MA, 2001).
[13] H. Malik, S. Henikoff, and T.H. Eickbush, Genome Res. 10, 1307 (2000).
[14] Y. Xiong, and T.H. Eickbush, EMBO J. 9, 3353 (1990).
[15] G. Hinkle, H.G. Morrison, and M.L. Sogin, Biol. Bull. 193, 250 (1997).
[16] A. Clark, Being There: Putting Brain, Body, and World Together Again (The MIT Press, Cambridge, MA, 1997).
[17] I. Morocz, private communication.
[18] A.S. Sjogren, R. Stromberg, and B.M. Sjoberg, Nuc. Acids. Res. 25, 3543 (1997).
[19] L. Luo, Annu. Rev. Cell. Dev. Biol. 18, 601 (2002).
[20] S. Kaech, B. Ludin, and A. Matus, Neuron 17, 1189 (1996).
[21] P. Jin, R.S. Alisch, and S.T. Warren, Nature Cell Biology 6, 1048 (2004).
[22] A.M. Krichevsky and K.S. Kosik, Proc. Natl. Acad. Sci. USA 99, 11926 (2002).
[23] S. Hagan, S.R. Hameroff, and J.A. Tuszynski, Phys. Rev. E 65, 061901 (2002).
[24] H. El-Samad and M. Khammash, BIBE, 365 (2000).
[25] P. Bak and K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993).
[26] K. Jain and J. Krug, q-bio.PE/0501028 (2005).
[27] M. Eigen, Naturwissenscappen 55, 465 (1971).
[28] M. Eigen and P. Schuster, Naturwissenscappen 64, 541 (1977).
[29] M. Eigen and P. Schuster, Naturwissenscappen 65, 7 (1978).
[30] M. Eigen and P. Schuster, Naturwissenscappen 65, 341 (1978).
[31] M. Eigen, W.C. Gardiner, and P. Schuster, J. Theor. Biol. 85, 407 (1980).
[32] K.M. Page and M.A. Nowak, J. Theor. Biol. 219, 93 (2002).
[33] N. Ban, P. Nissen, J. Hansen, P.B. Moore and T.A. Steitz, Science 289, 905 (2000).
[34] A. Yonath, Annu. Rev. Biophys. Biomol. Struct. 31, 257 (1997).
[35] J.C. Chaput and J.W. Szostak, J. Am. Chem. Soc. 125, 9274 (2003).
[36] P.E. Nielsen, M. Egholm, R.H. Berg, and O. Buchardt, Science 254, 1497 (1991).
[37] L.D. Williams, private communication.
[38] R. Shapiro, Origins: A Skeptic’s Guide to the Creation of Life on Earth (Summit Books, New York, NY, 1986).
[39] D.H. Lee, J.R. Granja, K. Severin, and M.R. Ghadri, Nature 382, 525 (1996).
[40] http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=stryer.section.3769
[41] K. Si, S. Lindquist, and E.R. Kandel, Cell 115, 879 (2003).
[42] K. Si, M. Giustetto, A. Etkin, R. Hsu, A.M. Janisiewicz, M.C. Miniaci, J.H. Kim, H.X. Zhu, and E.R. Kandel, Cell 115, 893 (2003).
[43] J.R. Glover, A.S. Kowal, E.C. Schirmer, M.M. Patino, J.J. Liu, and S. Lindquist, Cell 89, 811 (1997).
[44] H.L. True and S. Lindquist, Nature 407, 478 (2000).
[45] P. Friedhoff, M. von Bergen, S. Linden, E.M. Mandelkow, P. Davies, and E. Mandelkow, Proc. Natl. Acad. Sci. USA 95, 15712 (1998).
[46] L. Boussot, N.H. Thomson, S.E. Radford, and R. Melki, EMBO J. 21, 2903 (2002).
[47] A. Ogayar and M. Sanchez-Perez, Internatl. Microbiol. 1, 183 (1998).
[48] A.W.J. Muller, q-bio.PE/0501013 (2005).