Supplementary Materials to
“Bootstrap methods for
multivariate hypothesis testing”

ŁUKASZ SMAGA
Faculty of Mathematics and Computer Science, Adam Mickiewicz University
Umultowska 87, 61-614 Poznań, Poland, ls@amu.edu.pl

Journal: Communications in Statistics – Simulation and Computation

1 Results of simulation studies

Tables 1–14 contain the results of the Monte Carlo simulation studies considered in Section 5 of the paper. Empirical sizes (as percentages) of all testing procedures are given in Tables 1–8 for all distributions of e_i under consideration. Tables 9–14 contain empirical powers (as percentages) of all tests for Laplace and χ^2_{20} distributions of e_i. Since the asymptotic tests based on $Q_n(S_{n,B,\varepsilon}^{-2})$, $Q_n(S_{n,B,\varepsilon}^{-3})$ and $Q_n(S_{n,\varepsilon}^+)\text{ are usually too liberal,}$ their empirical powers are not really comparable, but they are included for illustration and completeness. In Tables 1–14, the three methods for approximating the null distribution of test statistics based on the asymptotic distribution, the nonparametric and parametric bootstrap are labeled as AD, NB and PB, respectively. Table 15 presents the numbers of rejected nonparametric bootstrap samples for which $\text{rank}(S_n^*) \neq \text{rank}(S_n)$ per 1000 for some data generated similarly as in Section 5 of the paper.
Table 1: Empirical sizes (as percentages) of the tests versus different covariance matrices and numbers of observations under normal distribution of errors ($\mu_0 = 0_p$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $nr = 1000$).

Σ	n	Method	$Q_n(I_p)$	$Q_n(S_{n,B,\varepsilon}^{-1})$	$Q_n(S_{n,B,\varepsilon}^{-2})$	$Q_n(S_{n,B,\varepsilon}^{-3})$	$Q_n(S_{n,\varepsilon}^+)$
$\Sigma_{(1)}$	7	AD	6.7	2.9	11.8	18.3	44.5
		NB	24.2	12.5	17.7	13.3	2.5
		PB	7.6	3.4	5.9	3.5	4.8
	10	AD	6.6	2.7	10.9	15.0	30.6
		NB	7.5	3.7	4.8	2.3	0.1
		PB	6.3	3.7	5.4	5.0	5.1
	14	AD	6.0	3.6	8.0	9.6	20.5
		NB	6.3	4.6	4.0	2.1	1.0
		PB	6.0	4.7	4.5	3.7	5.1
	20	AD	7.3	2.6	10.1	10.4	15.2
		NB	7.7	3.6	6.4	4.3	3.1
		PB	7.0	3.6	7.5	6.1	6.0
$\Sigma_{(2)}$	7	AD	8.3	7.3	11.8	26.1	48.5
		NB	21.2	12.7	15.1	13.5	3.4
		PB	8.6	5.0	4.6	6.1	5.7
	10	AD	7.2	7.2	10.4	18.9	28.9
		NB	8.3	3.9	3.4	1.8	0.1
		PB	7.5	4.7	5.1	4.8	5.2
	14	AD	6.9	6.5	8.2	14.1	20.0
		NB	6.3	3.6	3.7	2.1	0.4
		PB	6.7	4.6	5.2	5.1	4.2
	20	AD	8.0	7.6	8.1	11.3	15.3
		NB	7.9	5.4	4.2	2.8	1.9
		PB	7.8	6.2	5.9	5.0	5.1
$\Sigma_{(3)}$	7	AD	8.6	7.9	10.9	25.5	49.6
		NB	21.7	13.4	14.5	14.9	3.1
		PB	8.7	4.9	3.6	5.7	5.4
	10	AD	8.5	8.2	10.0	17.9	30.3
		NB	9.0	5.8	5.0	2.1	0.1
		PB	8.3	6.4	6.2	5.8	5.6
	14	AD	6.2	6.0	7.3	13.4	20.0
		NB	6.4	3.4	2.7	2.8	0.5
		PB	6.3	4.9	4.2	4.1	4.3
	20	AD	5.8	5.8	6.7	10.3	13.9
		NB	6.0	4.4	4.3	3.7	1.6
		PB	5.9	4.8	5.1	5.3	4.3
Table 2: Empirical sizes (as percentages) of the tests versus different covariance matrices and numbers of observations under Laplace distribution of errors ($\mu_0 = 0_p$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $nr = 1000$).

Σ	n	Method	$Q_n(I_p)$	$Q_n(S_{n,B,\varepsilon}^{-1})$	$Q_n(S_{n,B,\varepsilon}^{-2})$	$Q_n(S_{n,B,\varepsilon}^{-3})$	$Q_n(S_{n,\varepsilon}^{+})$
$\Sigma_{(1)}$	7	AD	6.9	3.7	11.1	17.6	45.4
		NB	23.4	13.6	14.9	12.2	2.1
		PB	7.3	4.2	3.4	2.6	3.9
	10	AD	5.7	3.8	8.7	14.1	29.6
		NB	6.9	3.7	3.7	1.5	0
		PB	5.6	3.4	3.9	3.4	3.7
	14	AD	4.9	3.3	6.6	10.3	22.2
		NB	5.3	4.3	3.2	2.2	0.5
		PB	5.3	3.9	4.6	4.7	5.1
	20	AD	4.8	3.4	7.3	7.6	13.8
		NB	4.5	4.0	3.6	2.7	1.1
		PB	5.0	4.2	4.6	4.5	4.4
$\Sigma_{(2)}$	7	AD	8.8	8.5	12.2	24.6	47.1
		NB	19.4	12.9	14.3	12.8	3.0
		PB	8.9	5.3	4.1	4.2	4.7
	10	AD	7.8	7.2	10.6	19.1	31.0
		NB	8.4	4.0	3.0	2.2	0
		PB	6.9	5.0	4.8	5.4	6.3
	14	AD	7.3	7.3	9.4	14.1	19.1
		NB	7.6	4.3	3.7	2.7	1.0
		PB	7.4	5.6	5.2	5.6	5.6
	20	AD	6.3	6.4	7.3	10.7	16.3
		NB	6.5	4.9	3.4	2.7	2.1
		PB	6.7	5.6	4.9	5.1	4.6
$\Sigma_{(3)}$	7	AD	9.2	8.7	11.8	23.7	45.4
		NB	17.5	12.4	15.8	13.8	2.3
		PB	9.2	6.6	5.2	5.1	5.0
	10	AD	7.6	7.2	7.8	17.7	29.0
		NB	8.6	4.6	3.8	2.4	0
		PB	7.3	5.4	4.4	4.7	5.3
	14	AD	8.0	7.8	7.1	14.7	20.1
		NB	8.1	4.9	3.3	2.7	0.9
		PB	8.4	6.5	4.0	5.0	5.4
	20	AD	7.8	7.7	7.3	10.6	14.4
		NB	7.6	5.0	4.3	2.0	1.7
		PB	8.2	6.2	5.3	4.9	4.5
Table 3: Empirical sizes (as percentages) of the tests versus different covariance matrices and numbers of observations under χ^2_{20} distribution of errors ($\mu_0 = 0_p$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $nr = 1000$).

Σ	n	Method	$Q_n(I_p)$	$Q_n(S_{n,B,\varepsilon}^{-1})$	$Q_n(S_{n,B,\varepsilon}^{-2})$	$Q_n(S_{n,B,\varepsilon}^{-3})$	$Q_n(S_{n,B,\varepsilon}^+)$
$\Sigma_{(1)}$	7	AD	6.1	2.7	10.9	18.9	45.8
		NB	22.3	11.4	16.7	14.4	2.7
		PB	6.2	3.0	4.9	3.4	4.2
	10	AD	7.0	3.1	10.1	14.2	29.6
		NB	8.2	4.0	4.8	2.6	0.1
		PB	7.1	3.5	5.4	5.3	5.5
	14	AD	6.2	3.3	9.6	10.3	21.1
		NB	6.8	4.1	4.9	2.6	1.0
		PB	6.4	4.2	6.0	4.9	6.0
	20	AD	5.3	2.3	8.1	8.1	13.7
		NB	5.5	2.5	4.2	3.7	2.3
		PB	5.4	2.6	5.4	5.0	5.6
$\Sigma_{(2)}$	7	AD	9.1	8.6	14.1	25.5	47.5
		NB	20.0	13.1	14.5	12.0	2.9
		PB	9.3	5.4	4.6	5.4	5.7
	10	AD	8.4	8.1	10.3	19.0	30.6
		NB	9.5	4.3	2.9	2.9	0.2
		PB	8.2	5.1	5.4	6.2	6.5
	14	AD	7.3	7.4	8.4	13.8	21.1
		NB	7.5	4.3	3.7	1.5	0.7
		PB	7.3	5.8	5.3	4.5	5.7
	20	AD	5.8	6.0	8.6	12.5	15.1
		NB	6.1	4.8	5.4	3.0	1.7
		PB	6.1	5.2	6.5	5.9	5.1
$\Sigma_{(3)}$	7	AD	8.4	7.6	10.8	24.5	46.2
		NB	19.1	12.2	14.1	13.9	2.9
		PB	8.7	4.7	3.6	4.8	5.9
	10	AD	7.4	7.7	8.4	17.3	26.4
		NB	7.9	4.3	3.0	2.1	0.1
		PB	7.4	5.3	4.6	5.2	4.1
	14	AD	7.4	7.2	7.5	14.0	22.4
		NB	7.6	4.2	4.2	3.0	1.6
		PB	7.3	5.0	5.8	6.7	6.3
	20	AD	6.3	6.3	5.8	10.4	13.8
		NB	6.5	4.7	3.8	3.3	2.1
		PB	6.6	5.4	4.5	5.5	5.5
Table 4: Empirical sizes (as percentages) of the tests versus different covariance matrices and numbers of observations under log-normal distribution of errors ($\mu_0 = 0_p$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $nr = 1000$).

Σ	n	Method	$Q_n(I_p)$	$Q_n(S_{n,B,\epsilon}^{-1})$	$Q_n(S_{n,B,\epsilon}^{-2})$	$Q_n(S_{n,B,\epsilon}^{-3})$	$Q_n(S_{n,B,\epsilon}^+)$
$\Sigma_{(1)}$	7	AD	10.7	3.9	16.0	34.8	70.3
		NB	27.0	9.8	18.5	19.1	8.2
		PB	11.0	3.8	9.5	14.2	20.2
10	AD	11.4	3.3	17.5	30.2	58.8	
	NB	12.2	4.1	7.6	6.0	0.5	
	PB	11.1	3.7	11.9	17.1	28.5	
14	AD	8.4	2.8	15.1	23.5	45.7	
	NB	9.3	3.6	7.8	6.8	3.1	
	PB	8.7	3.3	11.5	15.5	27.2	
20	AD	7.9	2.0	14.2	19.3	39.6	
	NB	8.6	3.0	9.0	6.5	5.3	
	PB	8.3	2.5	12.8	14.6	25.3	
$\Sigma_{(2)}$	7	AD	12.8	11.7	21.4	41.0	67.8
		NB	22.6	15.0	19.2	18.6	7.5
		PB	12.8	8.7	12.8	15.4	20.2
10	AD	13.8	13.2	20.5	31.7	53.2	
	NB	14.8	8.6	9.0	5.7	0.3	
	PB	13.5	10.5	11.8	16.7	23.6	
14	AD	11.0	10.4	16.1	27.6	44.0	
	NB	11.2	7.2	7.4	6.2	2.3	
	PB	11.0	8.9	12.1	17.3	23.2	
20	AD	7.5	7.1	11.4	21.0	33.0	
	NB	7.6	5.0	5.9	5.6	4.1	
	PB	7.3	5.7	9.3	14.2	20.0	
$\Sigma_{(3)}$	7	AD	13.5	12.8	19.7	39.5	65.9
		NB	23.1	15.2	18.9	18.7	6.5
		PB	13.6	9.7	10.6	14.3	19.0
10	AD	10.2	10.2	15.8	30.7	52.4	
	NB	11.1	6.5	5.8	4.6	0.5	
	PB	10.4	7.9	9.9	15.5	22.2	
14	AD	11.3	11.0	14.2	27.7	45.4	
	NB	11.9	7.2	7.1	6.2	2.6	
	PB	11.7	8.7	10.0	17.7	24.5	
20	AD	6.2	6.0	10.5	20.5	33.0	
	NB	6.4	4.4	5.6	4.8	4.1	
	PB	6.4	5.5	9.2	14.2	20.0	
Table 5: Empirical sizes (as percentages) of the tests versus different covariance matrices and “greater” numbers of observations under normal distribution of errors ($\boldsymbol{\mu}_0 = \mathbf{0}_p$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $nr = 1000$).

Σ	n	Method	Test statistic	$Q_n(I_p)$	$Q_n(S_{n,B,\varepsilon}^{-1})$	$Q_n(S_{n,B,\varepsilon}^{-2})$	$Q_n(S_{n,B,\varepsilon}^{-3})$	$Q_n(S_{n,\varepsilon}^+)$
Σ_1	30	AD	$Q_n(I_p)$	6.6	3.6	8.4	8.1	11.4
		NB	$Q_n(S_{n,B,\varepsilon}^{-1})$	6.5	4.7	5.6	5.0	3.3
		PB	$Q_n(S_{n,B,\varepsilon}^{-2})$	6.7	4.5	6.4	5.8	5.2
	40	AD	$Q_n(I_p)$	5.1	2.9	6.3	6.8	8.4
		NB	$Q_n(S_{n,B,\varepsilon}^{-1})$	5.5	4.0	4.7	4.5	3.8
		PB	$Q_n(S_{n,B,\varepsilon}^{-2})$	5.4	4.1	5.2	5.0	5.2
	50	AD	$Q_n(I_p)$	5.1	3.4	5.1	5.5	7.7
		NB	$Q_n(S_{n,B,\varepsilon}^{-1})$	5.3	4.2	3.9	3.6	3.8
		PB	$Q_n(S_{n,B,\varepsilon}^{-2})$	5.5	4.5	4.2	4.5	5.0
	60	AD	$Q_n(I_p)$	5.4	3.2	5.8	6.0	8.6
		NB	$Q_n(S_{n,B,\varepsilon}^{-1})$	5.4	4.2	4.8	4.7	6.0
		PB	$Q_n(S_{n,B,\varepsilon}^{-2})$	5.4	4.3	5.1	5.4	6.4
Σ_2	30	AD	$Q_n(I_p)$	6.8	6.9	8.3	9.4	11.4
		NB	$Q_n(S_{n,B,\varepsilon}^{-1})$	7.0	5.7	5.7	4.7	3.3
		PB	$Q_n(S_{n,B,\varepsilon}^{-2})$	7.2	6.5	6.5	6.4	5.2
	40	AD	$Q_n(I_p)$	6.5	6.1	6.1	7.3	8.4
		NB	$Q_n(S_{n,B,\varepsilon}^{-1})$	5.7	5.2	4.8	3.8	3.8
		PB	$Q_n(S_{n,B,\varepsilon}^{-2})$	6.4	5.8	5.2	5.0	5.2
	50	AD	$Q_n(I_p)$	5.4	5.3	4.8	6.4	7.7
		NB	$Q_n(S_{n,B,\varepsilon}^{-1})$	5.1	4.4	3.9	3.8	3.8
		PB	$Q_n(S_{n,B,\varepsilon}^{-2})$	5.3	4.7	4.4	4.6	5.0
	60	AD	$Q_n(I_p)$	5.2	5.0	5.9	7.2	8.6
		NB	$Q_n(S_{n,B,\varepsilon}^{-1})$	5.6	4.6	4.8	5.0	6.0
		PB	$Q_n(S_{n,B,\varepsilon}^{-2})$	5.2	4.8	5.0	5.8	6.4
Table 6: Empirical sizes (as percentages) of the tests versus different covariance matrices and “greater” numbers of observations under Laplace distribution of errors ($\mu_0 = 0_p$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $nr = 1000$).

Σ	n	Method	Test statistic	$Q_n(I_p)$	$Q_n(S_{n,B,\varepsilon}^{-1})$	$Q_n(S_{n,B,\varepsilon}^{-2})$	$Q_n(S_{n,B,\varepsilon}^{-3})$	$Q_n(S_{n,\varepsilon}^+)$
$\Sigma_{(1)}$	30	AD		6.1	4.4	6.5	7.6	9.9
		NB		6.2	5.9	4.6	3.9	3.8
		PB		6.3	5.4	5.1	5.2	5.3
	40	AD		4.8	4.0	5.1	6.8	8.1
		NB		5.0	4.7	3.0	3.8	2.6
		PB		5.0	4.4	4.0	4.7	4.6
	50	AD		5.0	4.3	5.5	5.6	7.1
		NB		5.2	4.8	3.6	3.8	3.6
		PB		5.4	4.5	4.5	4.5	4.8
	60	AD		4.7	3.5	5.2	6.6	8.3
		NB		4.9	4.7	4.1	4.6	4.1
		PB		4.7	4.3	4.7	5.2	5.4
$\Sigma_{(2)}$	30	AD		5.4	5.5	5.7	8.4	10.2
		NB		6.0	4.7	3.3	3.6	3.0
		PB		5.8	4.9	4.0	4.7	4.6
	40	AD		4.7	4.9	6.0	6.9	8.6
		NB		5.2	4.0	3.9	3.5	3.7
		PB		4.8	4.1	5.0	4.1	4.8
	50	AD		5.7	5.8	6.2	7.2	7.6
		NB		6.1	5.3	5.2	3.9	3.3
		PB		6.1	5.8	5.4	4.6	4.5
	60	AD		4.7	4.6	4.7	6.2	7.0
		NB		4.8	4.3	3.9	3.9	3.8
		PB		4.5	4.4	4.2	4.3	4.8
Table 7: Empirical sizes (as percentages) of the tests versus different covariance matrices and “greater” numbers of observations under χ^2_{20} distribution of errors ($\mu_0 = 0_p$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $nr = 1000$).

Σ	n	Method	$Q_n(I_p)$	$Q_n(S_n^{-1}_{n,B,\varepsilon})$	$Q_n(S_n^{-2}_{n,B,\varepsilon})$	$Q_n(S_n^{-3}_{n,B,\varepsilon})$	$Q_n(S_n^{+}_{n,\varepsilon})$
$\Sigma_{(1)}$	30	AD	5.8	2.4	8.6	6.8	12.6
		NB	6.0	3.6	5.4	4.3	4.5
		PB	6.3	3.3	6.9	5.0	6.5
	40	AD	6.4	3.8	7.6	7.1	10.0
		NB	6.2	5.0	5.6	4.8	4.4
		PB	6.5	4.4	6.9	5.6	6.1
	50	AD	4.9	3.2	5.8	5.2	8.3
		NB	4.8	4.1	4.4	4.1	4.0
		PB	5.1	3.6	4.9	4.5	5.4
	60	AD	4.9	3.3	5.8	5.3	6.7
		NB	5.3	4.4	4.6	4.0	3.7
		PB	5.2	3.7	5.2	4.2	4.4
$\Sigma_{(2)}$	30	AD	6.5	6.7	7.1	8.9	10.1
		NB	6.7	5.7	4.8	4.7	3.9
		PB	6.4	5.6	5.8	6.1	5.7
	40	AD	6.2	5.9	6.2	7.3	9.0
		NB	6.5	5.3	5.2	4.1	4.2
		PB	6.0	5.5	5.8	5.0	5.7
	50	AD	5.2	5.1	5.9	6.5	8.8
		NB	5.1	4.5	3.9	4.3	4.6
		PB	5.2	4.7	5.0	4.7	5.1
	60	AD	6.1	5.9	6.4	7.0	8.7
		NB	6.1	5.2	4.7	4.6	5.4
		PB	5.9	5.2	5.8	4.8	6.3
Table 8: Empirical sizes (as percentages) of the tests versus different covariance matrices and “greater” numbers of observations under log-normal distribution of errors ($\mu_0 = 0_p$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $nr = 1000$).

Σ	n	Method	$Q_n(I_p)$	$Q_n(S_{n,B,\varepsilon}^{-1})$	$Q_n(S_{n,B,\varepsilon}^{-2})$	$Q_n(S_{n,B,\varepsilon}^{-3})$	$Q_n(S_{n,\varepsilon}^+)$.
$\Sigma_{(1)}$	30	AD	5.7	1.6	13.9	16.2	28.6
		NB	5.3	2.4	8.4	6.8	5.8
		PB	5.8	2.0	12.3	13.0	20.7
	40	AD	6.9	2.3	13.1	14.7	23.8
		NB	6.9	2.9	8.4	7.6	6.8
		PB	7.3	2.4	12.5	12.4	19.2
	50	AD	6.8	2.0	13.6	13.9	23.5
		NB	6.8	3.0	9.7	6.9	5.3
		PB	6.9	2.4	13.6	12.1	19.7
	60	AD	6.2	1.9	11.1	11.1	20.8
		NB	6.4	2.6	7.6	5.3	5.9
		PB	6.4	2.1	10.4	10.0	16.9
$\Sigma_{(2)}$	30	AD	7.7	7.4	10.1	16.0	25.1
		NB	7.8	6.2	5.8	5.1	5.5
		PB	7.7	6.7	8.4	12.0	17.6
	40	AD	6.2	5.7	9.4	14.6	20.8
		NB	6.3	4.0	5.7	6.1	6.4
		PB	6.5	4.9	8.4	12.0	17.4
	50	AD	5.2	5.3	7.8	12.9	18.3
		NB	5.4	4.6	4.6	5.1	5.0
		PB	5.5	4.6	6.9	10.2	14.0
	60	AD	7.9	7.4	8.2	12.2	17.6
		NB	8.0	5.7	5.3	5.8	5.9
		PB	7.5	7.1	7.4	10.4	14.4
Table 9: Empirical powers (as percentages) of the tests under Laplace distribution of errors, $\Sigma = \Sigma_{(1)}$ and $n = 20$ ($\mu_0 = 0_p$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $nr = 1000$). The empirical powers of the asymptotic tests based on $Q_n(S_{n,B,\varepsilon}^{-2})$, $Q_n(S_{n,B,\varepsilon}^{-3})$ and $Q_n(S_{n,\varepsilon}^+)$ are included for illustration and completeness only, since they are usually too liberal.

μ'	Method	Test statistic	$Q_n(I_p)$	$Q_n(S_{n,B,\varepsilon}^{-1})$	$Q_n(S_{n,B,\varepsilon}^{-2})$	$Q_n(S_{n,B,\varepsilon}^{-3})$	$Q_n(S_{n,\varepsilon}^+)$
$(2, 0’_5)$	AD	70.8	38.1	74.0	71.3	72.9	
	NB	71.2	39.9	62.2	51.6	32.6	
	PB	70.6	39.3	68.3	59.3	52.1	
$(0, 2, 0’_4)$	AD	70.5	39.2	73.5	70.0	71.8	
	NB	70.6	41.4	62.4	51.7	29.3	
	PB	71.5	39.9	66.9	59.9	50.8	
$(1.51’_2, 0’_4)$	AD	74.9	43.4	78.8	77.4	78.0	
	NB	74.9	45.0	69.2	55.7	34.7	
	PB	75.3	44.7	74.3	67.5	58.4	
$(0’_2, 1, 0’_3)$	AD	16.7	3.3	8.4	56.2	96.3	
	NB	18.3	4.2	4.4	43.5	69.1	
	PB	17.4	4.0	5.6	49.3	88.5	
$(0’_2, 1’_2, 0’_2)$	AD	44.7	3.2	8.6	77.6	99.9	
	NB	46.8	4.2	5.0	65.6	95.7	
	PB	44.5	3.9	6.2	71.3	99.1	
$(1’_3, 0’_3)$	AD	60.1	23.8	49.3	77.7	99.6	
	NB	61.0	25.8	38.0	64.0	80.0	
	PB	59.7	25.7	41.4	69.8	95.4	
$(1’_4, 0’_2)$	AD	75.6	23.8	49.3	88.8	100	
	NB	76.5	25.7	37.2	80.1	97.5	
	PB	75.4	26.2	41.5	84.4	99.7	
Table 10: Empirical powers (as percentages) of the tests under Laplace distribution of errors, \(\Sigma = \Sigma_{(2)} \) and \(n = 20 \) (\(\mu_0 = 0_p, \ p = 6, \ r = 4, \ \alpha = 5\%, \ B = 1000, \ nr = 1000, \ a_1 = v_1 + v_2, \ a_2 = v_3 + v_4, \ a_3 = v_1 + v_2 + v_3, \ a_4 = v_1 + \cdots + v_4, \) where \(v_1, \ldots, v_6 \) are the eigenvectors of \(\Sigma_{(2)} \) corresponding to the eigenvalues \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_6 \) respectively). The empirical powers of the asymptotic tests based on \(Q_n(S_{n,B,\varepsilon}^{-1}) \), \(Q_n(S_{n,B,\varepsilon}^{-2}) \) and \(Q_n(S_{n,B,\varepsilon}^+) \) are included for illustration and completeness only, since they are usually too liberal.

\(\mu \)	Method	Test statistic				
		\(Q_n(L_p) \) & \(Q_n(S_{n,B,\varepsilon}^{-1}) \) & \(Q_n(S_{n,B,\varepsilon}^{-2}) \) & \(Q_n(S_{n,B,\varepsilon}^+) \)				
2v₁	AD	86.8	86.8	81.2	80.7	80.1
	NB	87.1	81.5	70.7	56.1	40.0
	PB	86.3	83.6	75.0	68.5	61.0
v₂/2	AD	9.4	5.3	73.3	75.8	75.0
	NB	9.6	3.9	60.1	49.8	33.5
	PB	9.4	4.5	66.0	61.4	55.7
a₁/2	AD	20.7	15.2	75.6	79.0	78.4
	NB	21.2	11.8	63.8	53.2	37.8
	PB	20.9	13.2	69.7	65.5	59.5
v₃/3	AD	7.2	5.3	9.7	88.4	88.6
	NB	7.9	4.3	5.8	68.3	53.2
	PB	7.0	4.4	7.1	80.1	73.7
a₂/6	AD	6.7	5.4	7.3	40.1	98.9
	NB	6.9	4.2	4.7	18.8	85.0
	PB	6.4	4.3	5.3	26.9	95.3
a₃/3	AD	14.1	10.7	47.4	93.1	92.8
	NB	14.5	7.8	34.0	79.2	64.7
	PB	14.2	8.7	40.2	86.7	81.5
a₄/8	AD	7.1	6.5	12.2	34.1	93.0
	NB	7.7	5.2	6.2	14.2	59.4
	PB	7.4	5.5	8.2	22.8	78.5
Table 11: Empirical powers (as percentages) of the tests under Laplace distribution of errors, $\Sigma = \Sigma(3)$ and $n = 20$ ($\mu_0 = 0_p$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $n_r = 1000$, $w = 1000$, $n_r = 1000$, v_1, \ldots, v_6 are the eigenvectors of $\Sigma(3)$ corresponding to the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_6$ respectively).

The empirical powers of the asymptotic tests based on $Q_n(S_{n,B,\varepsilon}^{-1})$, $Q_n(S_{n,B,\varepsilon}^{-2})$ and $Q_n(S_{n,\varepsilon}^{+})$ are included for illustration and completeness only, since they are usually too liberal.

μ	Method	$Q_n(L_p)$	$Q_n(S_{n,B,\varepsilon}^{-1})$	$Q_n(S_{n,B,\varepsilon}^{-2})$	$Q_n(S_{n,B,\varepsilon}^{-3})$	$Q_n(S_{n,\varepsilon}^{+})$
$2v_1$	AD	92.4	92.2	89.0	87.0	85.9
	NB	92.8	89.5	82.9	67.3	46.7
	PB	92.2	90.8	85.2	76.7	71.4
$v_2/2$	AD	9.8	5.6	80.9	90.6	91.3
	NB	9.9	4.1	74.0	74.0	55.7
	PB	10.1	4.6	76.3	84.1	78.4
$a_1/2$	AD	23.1	15.8	83.6	93.0	92.2
	NB	23.5	11.1	76.5	77.5	56.7
	PB	22.7	12.5	79.3	86.2	80.9
$v_3/3$	AD	6.8	5.5	19.5	83.0	84.3
	NB	6.7	4.2	14.5	60.4	45.1
	PB	7.1	4.5	15.6	71.9	66.2
$a_2/6$	AD	6.4	5.5	9.5	35.3	96.9
	NB	6.3	4.2	5.9	14.5	71.6
	PB	6.1	4.5	7.1	21.9	87.6
$a_3/3$	AD	13.6	8.6	57.0	95.0	94.9
	NB	14.7	5.8	46.7	81.6	67.1
	PB	13.4	7.4	52.1	89.9	85.0
$a_4/8$	AD	5.8	5.6	13.3	31.5	85.1
	NB	5.9	3.9	9.2	12.8	45.2
	PB	5.6	4.1	10.2	19.2	67.1
Table 12: Empirical powers (as percentages) of the tests under χ^2_{20} distribution of errors, $\mathbf{\Sigma} = \mathbf{\Sigma}_{(4)}$ and $n = 20$ ($\mu_0 = 0_p$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $nr = 1000$). The empirical powers of the asymptotic tests based on $Q_n(S^{-2}_{n,B,\epsilon})$, $Q_n(S^{-3}_{n,B,\epsilon})$ and $Q_n(S^+_{n,\epsilon})$ are included for illustration and completeness only, since they are usually too liberal.

μ'	Method	Test statistic				
		$Q_n(I_p)$	$Q_n(S^{-1}_{n,B,\epsilon})$	$Q_n(S^{-2}_{n,B,\epsilon})$	$Q_n(S^{-3}_{n,B,\epsilon})$	$Q_n(S^+_{n,\epsilon})$
(2, $0'_5$)	AD 71.8	42.9	75.0	70.9	72.2	
	NB 72.0	45.3	58.9	47.6	24.2	
	PB 71.8	45.3	67.2	57.6	45.9	
(0, 2, $0'_4$)	AD 71.4	41.5	74.7	70.7	72.1	
	NB 72.1	44.0	60.3	48.0	25.1	
	PB 72.0	43.9	66.2	58.1	46.2	
(1.51'_2, $0'_4$)	AD 76.5	51.1	77.5	72.7	73.8	
	NB 77.2	53.3	61.7	51.6	29.4	
	PB 76.9	54.1	68.5	60.8	49.8	
(0'_2, 1, $0'_3$)	AD 16.4	2.2	8.7	59.1	98.7	
	NB 17.2	2.9	4.6	46.4	76.5	
	PB 16.4	2.8	6.1	51.9	93.2	
(0'_2, 1'_2, $0'_2$)	AD 41.2	2.1	8.6	79.2	100	
	NB 43.3	3.0	5.6	69.7	99.0	
	PB 42.1	2.9	6.4	73.6	100	
(1'_3, $0'_4$)	AD 59.7	25.9	41.7	75.7	99.6	
	NB 60.2	29.3	26.1	60.8	82.7	
	PB 61.0	28.8	33.4	67.1	97.0	
(1'_4, $0'_2$)	AD 80.6	26.4	41.3	87.5	100	
	NB 81.4	28.8	26.9	78.9	99.2	
	PB 80.3	29.1	33.3	83.8	100	
Table 13: Empirical powers (as percentages) of the tests under χ^2_{20} distribution of errors, $\Sigma = \Sigma^{(2)}$ and $n = 20$ ($\mu_0 = 0_p$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $nr = 1000$, $a_1 = v_1 + v_2$, $a_2 = v_3 + v_4$, $a_3 = v_1 + v_2 + v_3$, $a_4 = v_1 + \cdots + v_4$, where v_1, \ldots, v_6 are the eigenvectors of $\Sigma^{(2)}$ corresponding to the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_6$ respectively). The empirical powers of the asymptotic tests based on $Q_n(S_{n,B,\varepsilon}^{-1})$, $Q_n(S_{n,B,\varepsilon}^{-2})$ and $Q_n(S_{n,\varepsilon}^{-)}$ are included for illustration and completeness only, since they are usually too liberal.

μ	Method	$Q_n(I_p)$	$Q_n(S_{n,B,\varepsilon}^{-1})$	$Q_n(S_{n,B,\varepsilon}^{-2})$	$Q_n(S_{n,B,\varepsilon}^{-3})$	$Q_n(S_{n,\varepsilon}^{-})$
$2v_1$	AD	84.0	83.8	80.0	76.4	77.2
	NB	84.2	79.4	68.9	56.4	40.2
	PB	84.4	81.1	73.5	66.0	61.0
$v_2/2$	AD	9.0	6.6	70.4	72.9	72.9
	NB	9.9	4.6	58.9	47.0	31.8
	PB	9.3	5.5	64.3	59.8	51.3
$a_1/2$	AD	19.3	14.3	72.9	75.5	74.8
	NB	19.3	10.5	60.7	51.1	36.8
	PB	19.4	11.9	65.6	61.0	54.6
$v_3/3$	AD	7.3	6.3	9.5	86.7	85.4
	NB	7.5	4.4	5.6	64.2	48.3
	PB	7.4	5.5	6.7	75.6	68.2
$a_2/6$	AD	6.6	6.2	7.6	38.7	99.0
	NB	7.0	4.4	4.2	19.0	83.5
	PB	7.1	5.4	5.6	26.4	95.0
$a_3/3$	AD	13.3	9.5	44.6	90.9	91.0
	NB	13.4	7.3	31.3	76.2	62.1
	PB	13.3	8.4	35.9	85.0	78.6
$a_4/8$	AD	7.4	6.9	11.8	32.7	90.7
	NB	7.5	4.9	7.0	15.9	54.7
	PB	7.7	5.9	8.3	21.6	75.2
Table 14: Empirical powers (as percentages) of the tests under χ^2_{20} distribution of errors, $\Sigma = \Sigma_{(3)}$ and $n = 20$ ($\mu_0 = 0$, $p = 6$, $r = 4$, $\alpha = 5\%$, $B = 1000$, $nx = 1000$, $a_1 = v_1 + v_2$, $a_2 = v_3 + v_4$, $a_3 = v_1 + v_2 + v_3$, $a_4 = v_1 + \cdots + v_4$, where v_1, \ldots, v_6 are the eigenvectors of $\Sigma_{(3)}$ corresponding to the eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_6$ respectively). The empirical powers of the asymptotic tests based on $Q_n(S_{n,B,\varepsilon}^{-1})$, $Q_n(S_{n,B,\varepsilon}^{-2})$ and $Q_n(S_{n,\varepsilon}^{+})$ are included for illustration and completeness only, since they are usually too liberal.

μ	Method	Test statistic				
	$Q_n(I_p)$	$Q_n(S_{n,B,\varepsilon}^{-1})$	$Q_n(S_{n,B,\varepsilon}^{-2})$	$Q_n(S_{n,B,\varepsilon}^{-3})$	$Q_n(S_{n,\varepsilon}^{+})$	
$2v_1$	AD	95.2	95.3	90.6	87.7	84.9
	NB	95.2	91.0	82.9	64.2	41.8
	PB	94.8	93.0	86.9	75.4	64.7
$v_2/2$	AD	11.4	6.4	83.9	92.1	91.4
	NB	11.8	4.6	76.2	73.3	53.7
	PB	12.6	5.2	80.7	83.8	76.0
$a_1/2$	AD	22.7	16.9	87.9	94.5	93.6
	NB	23.8	12.2	80.8	77.1	57.0
	PB	23.6	13.6	84.7	87.1	79.4
$v_3/3$	AD	8.1	6.5	18.4	81.9	83.1
	NB	8.6	4.6	13.8	58.1	41.3
	PB	8.4	5.2	16.0	68.8	61.7
$a_2/6$	AD	7.1	6.3	9.6	32.1	96.1
	NB	7.9	4.5	5.3	15.2	65.8
	PB	7.6	5.3	7.2	21.0	85.8
$a_3/3$	AD	15.7	11.7	57.4	97.5	97.7
	NB	16.3	8.7	48.4	85.2	69.7
	PB	16.1	9.6	51.4	92.9	88.7
$a_4/8$	AD	8.1	7.1	13.7	30.1	84.0
	NB	8.3	5.2	8.6	11.5	42.2
	PB	8.3	5.8	10.5	18.7	63.2
Table 15: Numbers of rejected nonparametric bootstrap samples for which \(\text{rank}(S^*_n) \neq \text{rank}(S_n) \) per 1000 for data generated similarly as in Section 5 of the paper \((p = 6, r = 4)\). For \(n = 15, \ldots, 20 \), the numbers of rejected samples were always equal to zero.

\(\Sigma \)	\(n \)	Normal	Laplace	\(\chi^2_{20} \)	Log-normal
\(\Sigma_{(1)} \)	7	595	567	580	609
	8	304	292	287	299
	9	117	120	119	106
	10	32	34	37	28
	11	4	8	6	7
	12	1	0	2	0
	13	2	1	0	0
	14	0	0	0	0
\(\Sigma_{(2)} \)	7	569	603	596	613
	8	291	295	276	279
	9	121	110	110	118
	10	37	31	35	29
	11	9	7	3	3
	12	0	2	1	4
	13	1	0	0	0
	14	0	0	0	0
\(\Sigma_{(3)} \)	7	577	604	567	612
	8	278	273	290	277
	9	127	97	116	117
	10	25	26	38	32
	11	8	6	4	4
	12	0	1	1	2
	13	1	0	0	0
	14	0	0	0	1