L∞-BMO BOUNDS FOR PSEUDO-MULTIPLIERS ASSOCIATED WITH THE HARMONIC OSCILLATOR

DUVÁN CARDONA

Abstract. In this note we investigate some conditions of Hörmander-Mihlin type in order to assure the L^∞-BMO boundedness for pseudo-multipliers of the harmonic oscillator. The H^1-L^1 continuity for Hermite multipliers also is investigated. The final version of this paper will appear in Rev. Colombiana Mat.

Contents

1. Introduction
2. Preliminaries
 2.1. Pseudo-multipliers of the harmonic oscillator
 2.2. Functions of bounded mean oscillation BMO.
 2.3. The space H^1
 2.4. The Hörmander-Mihlin condition for pseudo-multipliers
3. L^∞-BMO continuity for pseudo-multipliers
References

1. Introduction

The aim of this paper is to investigate the boundedness from $L^\infty(\mathbb{R}^n)$ into $\text{BMO}(\mathbb{R}^n)$ for pseudo-multipliers associated with the harmonic oscillator (see e.g. S. Thangavelu [21, 22]). As it was observed by M. Ruzhansky in [7], from the point of view of the theory of pseudo-differential operators, pseudo-multipliers would be the special case of the symbolic calculus developed in M. Ruzhansky and N. Tokmagambetov [17, 18] (see also Remark 2.2). Let us consider the (Hermite operator) quantum harmonic oscillator $H := -\Delta_x + |x|^2$, (where Δ_x is the standard Laplacian) which extends to an unbounded self-adjoint operator on $L^2(\mathbb{R}^n)$. It is a well known fact, that the Hermite functions\(^1\) ϕ_ν, $\nu \in \mathbb{N}_0^n$, are the L^2-eigenfunctions of H, with corresponding eigenvalues satisfying: $H\phi_\nu = (2|\nu|+n)\phi_\nu$. The system $\{\phi_\nu\}_{\nu \in \mathbb{N}_0^n}$, which is a subset of the Schwartz class $\mathcal{S}(\mathbb{R}^n)$, denotes the Hermite polynomial of order ν_j.

\(^1\)Each Hermite function ϕ_ν has the form $\phi_\nu := \Pi_{j=1}^n \phi_{\nu_j}$, $\phi_{\nu_j}(x_j) = (2^{\nu_j} \nu^j \sqrt{\pi})^{-\frac{1}{2}} H_{\nu_j}(x_j) e^{-\frac{1}{2} x_j^2}$, where $x \in \mathbb{R}^n$, $\nu \in \mathbb{N}_0^n$, and $H_{\nu_j}(x_j) := (-1)^{\nu_j} e^{x_j^2} \frac{d^{\nu_j}}{dx_j^{\nu_j}}(e^{-x_j^2})$.
provides an orthonormal basis of $L^2(\mathbb{R}^n)$. So, the spectral theorem for unbounded operators implies that

$$Hf(x) = \sum_{\nu \in \mathbb{N}_0^n} (2|\nu| + n) \hat{f}(\phi_\nu), \ f \in \text{Dom}(H), \quad (1.1)$$

where $\hat{f}(\phi_\nu)$ is the Fourier-Hermite transform of f at ϕ_ν, which is given by

$$\hat{f}(\phi_\nu) = \int_{\mathbb{R}^n} f(x)\phi_\nu(x)dx. \quad (1.2)$$

If $G \subset \mathbb{R}^n$ is the complement of a subset of zero Lebesgue measure in \mathbb{R}^n, the pseudo-multiplier associated with a function $m : G \times \mathbb{N}_0^n \to \mathbb{C}$ is defined by

$$Af(x) = \sum_{\nu \in \mathbb{N}_0^n} m(x, \nu)\hat{f}(\phi_\nu)\phi_\nu(x), \ x \in G, \ f \in \text{Dom}(A). \quad (1.3)$$

In this sense we say that A is the pseudo-multiplier associated to the function m, and that m is the symbol of A. In this paper the main goal is to give conditions on m in order that A can be extended to a bounded operator from L^∞ to BMO. The problem of the boundedness of pseudo-multipliers is an interesting topic in harmonic analysis (see e.g. J. Epperson [10], S. Bagchi and S. Thangavelu [1], D. Cardona and M. Ruzhansky [7] and references therein). The problem was initially considered for multipliers of the harmonic oscillator

$$Af(x) = \sum_{\nu \in \mathbb{N}_0^n} m(\nu)\hat{f}(\phi_\nu)\phi_\nu(x), \ f \in \text{Dom}(A). \quad (1.4)$$

Indeed, an early result due to S. Thangavelu (see [20, 21]) states that if m satisfies the following discrete Marcinkiewicz condition

$$|\Delta_\nu m(\nu)| \leq C_\alpha (1 + |\nu|)^{-|\alpha|}, \ \alpha \in \mathbb{N}_0^n, \ |\alpha| \leq \left[\frac{n}{2} \right] + 1, \quad (1.5)$$

where Δ_ν is the usual difference operator, then the corresponding multiplier $T_m : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ extends to a bounded operator for all $1 < p < \infty$. In view of Theorem 1.1 of S. Blunck [3], (see also P. Chen, E. M. Ouhabaz, A. Sikora, and L. Yan, [8, p. 273]), if we restrict our attention to spectral multipliers $A = m(H)$, the boundedness on $L^p(\mathbb{R}^n)$, can be assured if m satisfies the Hörmander condition of order s,

$$\|m\|_{L_u.H^s} := \sup_{r > 0} \|m(r \cdot)\eta(|\cdot|)\|_{H^s(\mathbb{R}^n)} = \sup_{r > 0} r^{s-n/2} \|m(\cdot)\eta(\cdot^{-1} |\cdot|)\|_{H^s(\mathbb{R}^n)} < \infty, \quad (1.6)$$

where $\eta \in \mathcal{D}(0, \infty)$ and $s > \frac{n+1}{2}$, for all $p \in \left[p_0, \frac{p_0}{p_0 - 1}\right]$, for some $p_0 \in (1, 2)$. If $|\nu| = \nu_1 + \cdots + \nu_n$, for spectral pseudo-multipliers

$$Ef(x) = \sum_{\nu \in \mathbb{N}_0^n} m(x, 2|\nu| + n)\hat{f}(\phi_\nu)\phi_\nu(x), \ f \in \text{Dom}(E), \quad (1.7)$$

under one of the following conditions

\[\text{Dom}(A) = \{f \in L^2(\mathbb{R}^n) : \sum_{\nu \in \mathbb{N}_0^n} |m(\nu)\hat{f}(\phi_\nu)|^2 < \infty\}\] is a dense subset of $L^2(\mathbb{R}^n)$. Indeed, note that $\{\phi_\nu\}_\nu \subset \text{Dom}(A)$, and consequently $L^2(\mathbb{R}^n) = \text{span}(\{\phi_\nu\}_\nu) \subset \text{Dom}(A)$.
Let us assume that

\begin{equation}
|\Delta^\gamma_m(x, 2\nu + 1)| \leq C_n(2\nu + 1)^{-\gamma}, \quad 0 \leq \gamma \leq 5,
\end{equation}

(1.8)

\[S. \text{Bagchi and S. Thangavelu, [1]: } n \geq 2, \ E \text{ bounded on } L^2(\mathbb{R}^n) \text{ and }
\]

\[|\Delta^\gamma_m(x, 2|\nu| + 1)| \leq C_n(2|\nu| + 1)^{-\gamma}, \quad 0 \leq |\gamma| \leq n + 1,
\]

(1.9)

the operator \(E \) extends to an operator of weak type \((1,1)\). This means that \(E : L^1(\mathbb{R}^n) \rightarrow L^{1,\infty}(\mathbb{R}^n) \) admits a bounded extension (we denote by \(L^{1,\infty}(\mathbb{R}^n) \) the the weak \(L^1 \)-space\(^3\)). In view of the Marcinkiewicz interpolation Theorem it follows that \(E \) extends to a bounded linear operator on \(L^p(\mathbb{R}^n) \), for all \(1 < p \leq 2 \).

We can now that in the previous results the \(L^2 \)-boundedness of pseudo-multipliers is assumed. The problem of finding reasonable conditions for the \(L^2 \)-boundedness of spectral pseudo-multipliers, was proposed by S. Bagchi and S. Thangavelu in [1]. To solve this problem, it was considered in [7], the following Hörmander conditions,

\[
\|m\|_{L_{u,H^s}} := \sup_{r > 0, y \in \mathbb{R}^n} r^{(s-\frac{n}{2})} \|\langle x \rangle^s \mathcal{F}_{m(y, \cdot)} \psi(r^{-1} | \cdot |)(x)\|_{L^2(\mathbb{R}^n)} < \infty, \quad (1.10)
\]

\[
\|m\|_{L_{u,H^s}} := \sup_{k \geq 0} \sup_{y \in \mathbb{R}^n} 2^{k(s-\frac{n}{2})} \|\langle x \rangle^s \mathcal{F}_{H^{-1}}[m(y, \cdot) \psi(2^{-k} | \cdot |)](x)\|_{L^2(\mathbb{R}^n)} < \infty, \quad (1.11)
\]

defined by the Fourier transform \(\mathcal{F} \) and the inverse Fourier-Hermite transform \(\mathcal{F}_{H^{-1}} \). More precisely, the Hörmander condition (1.10) of order \(s > \frac{3n}{2} \), uniformly in \(y \in \mathbb{R}^n \), or the condition (1.11) for \(s > \frac{3n}{2} - \frac{1}{2} \), uniformly in \(y \in \mathbb{R}^n \), guarantee the \(L^2 \)-boundedness of the pseudo-multiplier (2.2). As it was pointed out in [7], in (1.10) we consider functions \(m \) on \(\mathbb{R}^n \times \mathbb{R}^n \), but to these functions we associate a pseudo-multiplier with symbol \(\{m(x, \nu)\}_{x \in \mathbb{R}^n, \nu \in \mathbb{N}_0^n} \). On the other hand, (see Corollary 2.3 of [7]) if we assume the condition,

\[
|\Delta^\gamma_m(x, \nu)| \leq C_\alpha(1 + |\nu|)^{-|\alpha|}, \quad \alpha \in \mathbb{N}_0^n, \quad |\alpha| \leq \rho,
\]

(1.12)

for \(\rho = [3n/2] + 1 \), then the pseudo-multiplier in (2.2) extends to a bounded operator on \(L^p(\mathbb{R}^n) \), and for \(p = 2n + 1 \) we have its \(L^p(\mathbb{R}^n) \)-boundedness for all \(1 < p < \infty \). Now, we record the main theorem of [7]:

Theorem 1.1. Let us assume that \(2 \leq p < \infty. \) If \(A = T_m \) is a pseudo-multiplier with symbol \(m \) satisfying (1.10), then under one of the following conditions,

- \(n \geq 2, \ 2 \leq p < \frac{2(n+3)}{n+1}, \) and \(s > s_{n,p} := \frac{3n}{2} + \frac{n-1}{2}(\frac{1}{2} - \frac{1}{p}) \),
- \(n \geq 2, \ p = \frac{2(n+3)}{n+1}, \) and \(s > s_{n,p} := \frac{3n}{2} + \frac{n-1}{2(n+3)} \),
- \(n \geq 2, \ \frac{2(n+3)}{n+1} < p \leq \frac{2n}{n-2}, \) and \(s > s_{n,p} := \frac{3n}{2} - \frac{1}{6} + \frac{2n}{3} (\frac{1}{2} - \frac{1}{p}) \),
- \(n \geq 2, \ \frac{2n}{n-2} \leq p < \infty, \) and \(s > s_{n,p} := \frac{3n-1}{2} + n(\frac{1}{2} - \frac{1}{p}) \),
- \(n = 1, \ 2 \leq p < 4, \ s > s_{1,p} := \frac{3}{2} \),
- \(n = 1, \ p = 4, \ s > s_{1,4} := 2 \),
- \(n = 1, \ 4 < p < \infty, \ s > s_{1,p} := \frac{5}{3} + \frac{2}{3}(\frac{1}{2} - \frac{1}{p}) \),

the operator \(T_m \) extends to a bounded operator on \(L^p(\mathbb{R}^n) \). For \(1 < p \leq 2 \), under one of the following conditions

\(^3\)which consists of those functions \(f \) such that \(\|f\|_{L^{1,\infty}} = \sup_{\lambda>0} \lambda \cdot \text{meas}\{x \in \mathbb{R}^n : |f(x)| > \lambda\} < \infty. \)
1.1 implies that under one of the following conditions,
\[n \geq 2, \quad \frac{2(n+3)}{n+5} \leq p \leq 2, \text{ and } s > s_{n,p} \equiv \frac{3n}{2} + \frac{n-1}{2} \left(1 - \frac{1}{p} \right), \]
\[n \geq 2, \quad \frac{2n}{n+2} \leq p \leq \frac{2(n+3)}{n+5}, \text{ and } s > s_{n,p} \equiv \frac{3n}{2} + \frac{2n}{3} \left(1 - \frac{1}{p} \right), \]
\[n \geq 2, \quad 1 < p \leq \frac{2n}{n+2}, \text{ and } s > s_{n,p} \equiv \frac{3n}{2} + n \left(1 - \frac{1}{p} \right), \]
\[n = 1, \quad \frac{4}{3} \leq p < 2, \text{ and } s > s_{1,p} \equiv \frac{7}{4}. \]
\[n = 1, \quad 1 < p < \frac{4}{3}, \text{ and } s > s_{1,p} \equiv \frac{11}{4} + \frac{2n}{3} \left(1 - \frac{1}{p} \right), \]
the operator T_m extends to a bounded operator on $L^p(\mathbb{R}^n)$. However, in general:

- for every $\frac{4}{3} < p < 4$ and every n, the condition $s > \frac{3n}{2}$ implies the L^p-boundedness of T_m.

If the symbol m of the pseudo-multiplier T_m satisfies the Hörmander condition (1.11), in order to guarantee the L^p-boundedness of T_m, in every case above we can take $s > s_{n,p} - \frac{1}{12}$. Moreover, the condition $s > \frac{3n}{2} - \frac{1}{12}$ implies the L^p-boundedness of T_m for all $\frac{4}{3} < p < 4$.

Now we present our main result. We will provide a version of Theorem 1.1 for the critical case $p = \infty$. Because, in harmonic analysis the John-Nirenberg class BMO (see [11]) is a good substitute of L^∞ we will investigate the boundedness of pseudo-multipliers from $L^\infty(\mathbb{R}^n)$ to BMO(\mathbb{R}^n).

Theorem 1.2. Let $A : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ be a continuous linear operator such that its symbol $m = \{m(x, \nu)\}_{x \in G, \nu \in \mathbb{N}_0^n}$ (see (2.1)) satisfies one of the following conditions,

(CI): m satisfies the Hörmander-Mihlin condition
\[\|m\|_{L^\infty, H^n} := \sup_{r > 0, y \in \mathbb{R}^n} r^{(s-\frac{1}{2})} \|\langle x \rangle^s \mathcal{F}[m(y, \cdot)\psi(r^{-1}|\cdot|)](x)\|_{L^2(\mathbb{R}^n)} < \infty, \quad (1.13) \]
where $s > \max\{\frac{7n}{4} + \frac{1}{2}, \alpha\}$, and α is defined as in (3.2),

(CII): m satisfies the Marcinkiewicz type condition,
\[|\Delta_0^\alpha m(x, \nu)| \leq C_\alpha (1 + |\nu|)^{-|\alpha|}, \quad |\alpha| \leq [7n/4 - 1/12] + 1. \quad (1.14) \]

Then the operator $A = T_m$ extends to a bounded operator from $L^\infty(\mathbb{R}^n)$ into BMO(\mathbb{R}^n).

Now, we will discuss some consequences of our main result.

Remark 1.3. In relation with the results of Epperson [10] and Bagchi and Thangavelu [1] mentioned above, Theorem 1.2 implies that under one of the following conditions,

- $n = 1$, $|\Delta_0^\gamma m(x, 2\nu + 1)| \leq C_\gamma (2\nu + 1)^{-|\nu|}, \quad 0 \leq \gamma \leq 2$,
- $n \geq 2$, $|\Delta_0^\gamma m(x, 2|\nu| + n)| \leq C_\gamma (2|\nu| + n)^{-|\nu|}, \quad 0 \leq |\gamma| \leq [7n/4 - 1/12] + 1$,

the spectral pseudo-multiplier
\[Ef(x) = \sum_{\nu \in \mathbb{N}_0^n} m(x, 2|\nu| + n) \hat{f}(\phi_\nu) \phi_\nu(x), \quad f \in \text{Dom}(E), \quad (1.15) \]
extends to a bounded operator from $L^\infty(\mathbb{R}^n)$ into BMO(\mathbb{R}^n).
Remark 1.4. For $n = 1$, Theorem 1.1 implies that the symbol inequalities
\[|\Delta^n_x m(x, \nu)| \leq C_{\gamma}(1 + \nu)^{-\alpha}, \quad 0 \leq \gamma \leq 2, \tag{1.16} \]
are sufficient conditions for the $L^p(\mathbb{R})$-boundedness of pseudo-multipliers with $4/3 < p < 4$, and also under the estimates
\[|\Delta^n_x m(x, \nu)| \leq C_{\gamma}(1 + \nu)^{-\alpha}, \quad 0 \leq \gamma \leq 3, \tag{1.17} \]
we obtain the $L^p(\mathbb{R})$-boundedness of T_m for all $p \in (1, 4/3) \cup (4, \infty)$. However, we can improve the conditions on the number of derivatives imposed in (1.17) to discrete derivatives up to order 2 in order to assure the $L^p(\mathbb{R})$-boundedness of T_m for all $4/3 < p < \infty$. Indeed, from Theorem 1.2, the hypothesis (1.16) implies the boundedness of T_m from $L^\infty(\mathbb{R})$ to BMO(\mathbb{R}) and also its $L^p(\mathbb{R})$-boundedness for $4/3 < p < \infty$, in view of the Stein-Fefferman interpolation theorem applied to the L^2-L^2 and L^∞-BMO boundedness results.

Remark 1.5. Let us consider a multiplier T_m of the harmonic oscillator. Theorem 1.2 assures that under one of the following conditions,

(CI)': m satisfies the Hörmander-Mihlin condition
\[\|m\|_{t, a, H^s} := \sup_{r > 0} r^{(s - \frac{n}{2})/2} \langle x \rangle^s |m(\cdot)\psi(r^{1/2} \cdot)\rangle_{L^2(\mathbb{R})} < \infty, \tag{1.18} \]
where $s > \max\{\frac{n}{4} + \alpha, \frac{n}{2}\}$, and α is defined as in (3.2),

(CII)': m satisfies the Marcinkiewicz type condition,
\[|\Delta^\alpha m(\nu)| \leq C_{\alpha}(1 + |\nu|)^{-|\alpha|}, \quad |\alpha| \leq [7n/4 - 1/12] + 1, \tag{1.19} \]
the operator T_m extends to a bounded operator from $L^\infty(\mathbb{R}^n)$ into BMO(\mathbb{R}^n). Moreover, the duality argument shows the boundedness of T_m from $H^1(\mathbb{R}^n)$ into $L^1(\mathbb{R}^n)$.

For certain spectral aspects and applications to PDE of the theory of pseudo-multipliers we refer the reader to the works [2, 4, 5, 6] and [20]. This paper is organised as follows. Section 2 introduces the necessary background of harmonic analysis that we will use throughout this work. Finally, in Section 3 we prove our main theorem.

2. Preliminaries

2.1. Pseudo-multipliers of the harmonic oscillator. To motivate the definition of pseudo-multipliers we will prove that these operators arise, for example, as bounded linear operators on the Schwartz class $\mathcal{S}(\mathbb{R}^n)$.

Theorem 2.1. Let us consider the set $G := \{z \in \mathbb{R}^n : \phi_{\nu}(z) \neq 0, \text{ for all } \nu\}$, and let $A : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n)$ be a continuous linear operator. Then, the function $m : G \times N_0^n \to \mathbb{C}$, defined by
\[m(x, \nu) := \phi_{\nu}(x)^{-1} A\phi_{\nu}(x), \quad x \in G, \nu \in N_0^n, \tag{2.1} \]

4The symbol m is defined a.e. $(x, \nu) \in \mathbb{R}^n \times N_0^n$. Indeed, note that $D = \{z : \phi_{\nu}(z) = 0 \text{ for some } \nu\}$ is a countable set, has zero measure and that m is defined on $G \times N_0^n$, where $G = \mathbb{R}^n - D$.
satisfies the property
\[Af(x) = \sum_{\nu \in \mathbb{N}^n_0} m(x, \nu) \hat{f}(\phi_\nu) \phi_\nu(x), \ x \in G, \ f \in \mathcal{S}(\mathbb{R}^n). \quad (2.2) \]

Proof. Let us assume that \(A \) is a continuous linear operator \(A : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n) \).
Because, for every \(\nu \in \mathbb{N}^n_0 \), \(\phi_\nu \in \mathcal{S}(\mathbb{R}^n) = \text{Dom}(A) \), define for every \(x \in G \), and \(\nu \in \mathbb{N}^n_0 \), the function
\[m(x, \nu) := \phi_\nu(x)^{-1} A \phi_\nu(x). \quad (2.3) \]
Let \(f \in \mathcal{S}(\mathbb{R}^n) \subset L^2(\mathbb{R}^n) \) and let us consider its Hermite series
\[f = \sum_{\nu \in \mathbb{N}^n_0} \hat{f}(\phi_\nu) \phi_\nu. \quad (2.4) \]
Because \(\| f \|^2_{L^2(\mathbb{R}^n)} = \sum_{\nu} |\hat{f}(\phi_\nu)|^2 < \infty \), by Simon Theorem (see Theorem 1 of B. Simon [19]), the series
\[f_N = \sum_{|\nu| \leq N} \hat{f}(\phi_\nu) \phi_\nu, \ N \in \mathbb{N}, \quad (2.5) \]
converges to \(f \) in the topology of the Schwartz class \(\mathcal{S}(\mathbb{R}^n) \). Because, \(A : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n) \), is a continuous linear operator, we have that \(Af_n \) converges to \(Af \) in the topology of \(\mathcal{S}(\mathbb{R}^n) \). Consequently, we have proved that
\[Af = \sum_{\nu \in \mathbb{N}^n_0} \hat{f}(\phi_\nu) A \phi_\nu. \quad (2.6) \]
By observing that \(m(x, \nu) := \phi_\nu(x)^{-1} A \phi_\nu(x) \), we obtain the identity,
\[Af(x) = \sum_{\nu \in \mathbb{N}^n_0} m(x, \nu) \hat{f}(\phi_\nu) \phi_\nu(x), \ x \in G, \ f \in \mathcal{S}(\mathbb{R}^n). \]
So, we end the proof. \(\square \)

Remark 2.2. It is a well known fact that several classes of pseudo-differential operators
\[T_\sigma f(x) = \int_{\mathbb{R}^n} e^{i2\pi x \xi} \sigma(x, \xi) \hat{f}(\xi)d\xi, \ f \in C_0^\infty(\mathbb{R}^n), \quad (2.7) \]
are continuous linear operators on the Schwartz class \(\mathcal{S}(\mathbb{R}^n) \). For example, if \(\sigma \) is a tempered and smooth function (i.e. that \(\sigma \in C^\infty(\mathbb{R}^{2n}) \) satisfies \(\int |\sigma(x, \xi)|(1 + |x| + |\xi|)^{-\kappa}dxd\xi < \infty \) for some \(\kappa > 0 \)) then \(T_\sigma : \mathcal{S}(\mathbb{R}^n) \to \mathcal{S}(\mathbb{R}^n) \), extends to a continuous linear operator. More interesting cases arise with pseudo-differential operators with symbols \(\sigma \) in the Hörmander classes, or with more generality, in the Weyl-Hörmander classes (see L. Hörmander [15, 16]). From Theorem 2.1 we have that continuous pseudo-differential operators on \(\mathcal{S}(\mathbb{R}^n) \) also can be understood as pseudo-multipliers of the harmonic oscillator.
2.2. Functions of bounded mean oscillation BMO. We will consider in the following two subsection the necessary notions for introducing the BMO and H^1 spaces. For this, we will follow Fefferman and Stein [13]. Let f be a locally integrable function on \mathbb{R}^n. Then f is of bounded mean oscillation (abbreviated as $f \in \text{BMO}(\mathbb{R}^n)$), if

$$
\sup_Q \frac{1}{|Q|} \int_Q |f(x) - f_Q| \, dx := \|f\|_* < \infty,
$$

(2.8)

where the supremum ranges over all finite cubes Q in \mathbb{R}^n, $|Q|$ is the Lebesgue measure of Q, and f_Q denote the mean value of f over Q, $f_Q = \frac{1}{|Q|} \int_Q f(x) \, dx$. It is a well-known fact that $L^\infty(\mathbb{R}^n) \subset \text{BMO}$. Moreover $\ln(|x|) \in \text{BMO}$. The class of functions of bounded mean oscillation, modulo constants, is a Banach space with the norm $\| \cdot \|_*$, defined above. According to the John-Nirenberg inequality, $f \in \text{BMO}(\mathbb{R}^n)$ if and only if, the inequality

$$
|\{ x \in Q : |f(x) - f_Q| > \alpha \}| \leq e^{-\frac{\alpha}{\|f\|_*}|Q|},
$$

(2.9)

holds true for every $\alpha > 0$. For understanding the behaviour of a function $f \in \text{BMO}(\mathbb{R}^n)$, it can be checked that

$$
\int_{\mathbb{R}^n} \frac{|f(x)|}{1 + |x|^{n+1}} \, dx < \infty.
$$

(2.10)

Moreover, a function $f \in \text{BMO}(\mathbb{R}^n)$, if and only if (2.10) holds and

$$
\iint_{|x-x_0|<\delta;0<t<\delta} t|\nabla u(x,t)|^2 \, dxdt \lesssim \delta^n,
$$

(2.11)

for all $x_0 \in \mathbb{R}^n$ and $\delta > 0$. Here, $u(x,t)$ is the Poisson integral of f defined on $\mathbb{R}^n \times (0, \infty)$ by (see Fefferman [12]),

$$
u(x,t) = \int_{\mathbb{R}^n} P_t(x-y)f(y) \, dy, \quad P_t(x) := \frac{c_n t}{(t^2 + |x|^2)^{(n+1)/2}}.
$$

(2.12)

2.3. The space H^1. The Hardy spaces $H^p(\mathbb{D})$, $0 < p < \infty$, were first studied as part of complex analysis by G. H. Hardy [14]. An analytic function F on the disk \mathbb{D} is in $H^p(\mathbb{D})$, if

$$
\sup_{0<r<1} \int_{-\pi}^{\pi} |F(re^{i\theta})|^p \, d\theta < \infty.
$$

(2.13)

For $1 < p < \infty$, we can identify $H^p(\mathbb{D})$, with $L^p(\mathbb{T})$, where \mathbb{T} is the circle. This identification does not hold, however, for $p \leq 1$. Unfortunately, these results cannot be extended to higher dimensions using the theory of functions of several complex variables. So, let us introduce the Hardy space $H^1(\mathbb{R}^n)$. Let R_1, \ldots, R_n, be the Riesz transform on \mathbb{R}^n,

$$
R_j f(x) = \lim_{\varepsilon \to 0} \int_{|\xi| > \varepsilon} e^{i2\pi x \cdot \xi_j} \xi_j / |\xi| \hat{f}(\xi), \quad f \in \text{Dom}(R_j),
$$

(2.14)
where \(\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-2\pi i x \cdot \xi} f(x) dx \) is the Fourier transform of \(f \) at \(\xi \). Then, \(H^1(\mathbb{R}^n) \) consists of those functions \(f \) on \(\mathbb{R}^n \), satisfying,

\[
\|f\|_{H^1(\mathbb{R}^n)} := \|f\|_{L^1(\mathbb{R}^n)} + \sum_{j=1}^{n} \|R_j f\|_{L^1(\mathbb{R}^n)}.
\]

(2.15)

The main remark in this subsection is that the dual of \(H^1(\mathbb{R}^n) \) is \(\text{BMO}(\mathbb{R}^n) \) (see Fefferman and Stein [13]). This can be understood in the following sense:

(a) If \(\phi \in \text{BMO}(\mathbb{R}^n) \), then \(\Phi : f \mapsto \int_{\mathbb{R}^n} f(x) \phi(x) dx \), admits a bounded extension on \(H^1(\mathbb{R}^n) \).

(b) Conversely, every continuous linear functional \(\Phi \) on \(H^1(\mathbb{R}^n) \) arises as in (a) with a unique element \(\phi \in \text{BMO}(\mathbb{R}^n) \).

The norm of \(\phi \) as a linear functional on \(H^1(\mathbb{R}^n) \) is equivalent with the \(\text{BMO} \) norm. Important properties of the \(\text{BMO} \) and the \(H^1 \) norm are the followings,

\[
\|f\|_* = \sup_{\|g\|_{\text{BMO}} = 1} \left| \int_{\mathbb{R}^n} f(x) g(x) dx \right|, \quad \|g\|_{H^1} = \sup_{\|f\|_{H^1} = 1} \left| \int_{\mathbb{R}^n} f(x) g(x) dx \right|.
\]

(2.16)

For our further analysis we will use the following fact (see Fefferman and Stein [13, pag. 183]): if \(f \in H^1(\mathbb{R}^n) \), and \(\phi \in \mathcal{S}(\mathbb{R}^n) \) satisfies \(\int \phi(x) dx = 1 \), let us define

\[
u^+ f(x) := \sup_{t > 0} |\phi_t * f(x)| = \sup_{t > 0} \left| \int_{\mathbb{R}^n} \phi_t(x - y) f(y) dy \right|, \quad \phi_t(x) = t^{-n} \phi\left(\frac{x}{t}\right).
\]

(2.17)

Then, \(u^+ f \in L^1(\mathbb{R}^n) \), \(f(x) = \lim_{t \to 0} \phi_t * f(x), \ a.e. x \), and there exist positive constants \(A \) and \(B \) satisfying

\[
A \|f\|_{H^1} \leq \|u^+ f\|_{L^1} \leq B \|f\|_{H^1}.
\]

(2.18)

The duals of the \(H^p(\mathbb{R}^n) \) spaces, \(0 < p < 1 \), are Lipschitz spaces. This is due to P. Duren, B. Romberg and A. Shields [9] on the unit circle, and to T. Walsh [23] in \(\mathbb{R}^n \).

2.4. The Hörmander-Mihlin condition for pseudo-multipliers. As we mentioned in the introduction, if \(m \) is a function on \(\mathbb{R}^n \), we say that \(m \) satisfies the Hörmander condition of order \(s > 0 \), if

\[
\|m\|_{l,u,H^s} := \sup_{r > 0} \|m(r^\cdot) \eta(\cdot | \cdot)\|_{H^s(\mathbb{R}^n)} = \sup_{r > 0} r^{s - \frac{n}{2}} \|m(\cdot) \eta(r^{-1} | \cdot)\|_{H^s(\mathbb{R}^n)} < \infty,
\]

(2.19)

where \(H^s(\mathbb{R}^n) \) is the usual Sobolev space of order \(s \). Indeed, we also can use the following formulation for the Hörmander-Mihlin condition,

\[
\|m\|_{l,u,H^s} := \sup_{j \in \mathbb{Z}} \|m(2^j | \cdot) \eta(\cdot)\|_{H^s(\mathbb{R}^n)} = \sup_{j \in \mathbb{Z}} 2^{j(s - \frac{n}{2})} \|m(\cdot) \eta(2^{-j} | \cdot)\|_{H^s(\mathbb{R}^n)} < \infty.
\]

(2.20)
In particular, if we choose \(\eta \in \mathcal{D}(0, \infty) \) with compact support in \([1/2, 2]\), and by assuming that \(m \) has support in \(\{ \xi : |\xi| > 2 \} \), we have that \(m(\cdot)\eta(2^{-j}|\cdot|) = 0 \) for \(j \leq 0 \). So, for a such symbol \(m \), we have

\[
\|m\|_{L^1, H^s} := \sup_{j \geq 1} \|m(2^j \cdot |\cdot|)\eta(\cdot)\|_{H^s(\mathbb{R}^n)} = \sup_{j \geq 1} 2^{j(s-\frac{n}{2})}\|m(\cdot)\eta(2^{-j}|\cdot|)\|_{H^s(\mathbb{R}^n)} < \infty.
\]

Because we define multipliers by associating to \(T \) the Hörmander condition to \(S \), we can always split \(T_m = T_0 + S_m \), where \(T_0 \) has symbol supported in \(\{ \nu : |\nu| \leq 2 \} \) and the pseudo-multiplier \(S_m \) has symbol supported in \(\{ \nu : |\nu| > 2 \} \). We will apply the Hörmander condition to \(S_m \) in order to assure its \(\ell^\infty \)-BMO boundedness, and later we will conclude that \(T_m \) is \(\ell^\infty \)-BMO bounded, by observing that the \(\ell^\infty \)-BMO boundedness of \(T_0 \) is trivial. This analysis will be developed in detail in the next section, in the context of pseudo-multipliers by employing the Hörmander type condition

\[
\|m\|_{L^1, H^s} := \sup_{j \geq 1, x \in \mathbb{R}^n} 2^{j(s-\frac{n}{2})}\|m(x, \cdot)\eta(2^{-j}|\cdot|)\|_{H^s(\mathbb{R}^n)} < \infty,
\]

for \(s \) large enough which follows from (1.13).

3. \(\ell^\infty \)-BMO continuity for pseudo-multipliers

In this section we present the proof of our main result. The main strategy in the proof of Theorem 1.2 will be a suitable Littlewood-Paley decomposition of the symbol together with some suitable estimates for the operator norm of pseudo-multipliers associated to each part of this decomposition. Our starting point is the following lemma. We use the symbol \(X \lesssim Y \) to denote that there exists a universal constant \(C \) such that \(X \leq CY \).

Lemma 3.1. Let \(\phi_\nu, \nu \in \mathbb{N}_0^n \) be a Hermite function. Then, there exists \(\kappa \leq -1/12 \), such that

\[
\|\phi_\nu\|_{\text{BMO}} \lesssim |\nu|^\kappa. \tag{3.1}
\]

Proof. By using that \(\ell^\infty \subset \text{BMO} \), we have \(\|\phi_\nu\|_{\text{BMO}} \lesssim \|\phi_\nu\|_{\ell^\infty} \). Now, from Remark 2.5 of [7] we can estimate \(\|\phi_\nu\|_{\ell^\infty} \lesssim |\nu|^{-1/12} \) which implies the desired estimate. Indeed, if

\[
\kappa := \inf \{ \omega \in \mathbb{R} : \|\phi_\nu\|_{\text{BMO}} \lesssim |\nu|^\omega \}, \tag{3.2}
\]

we have that \(\kappa \leq -1/12 \). \(\square \)

Proof of Theorem 1.2. We will prove that if \(m \) satisfies the condition (CI), then \(A = T_m \) can be extended to a bounded operator from \(\ell^\infty(\mathbb{R}^n) \) to \(\text{BMO}(\mathbb{R}^n) \). Let us consider the operator

\[
\mathcal{R} := \frac{1}{2}(H - n),
\]

where \(H \) is the harmonic oscillator on \(\mathbb{R}^n \), and let us fix a dyadic decomposition of its spectrum: we choose a function \(\psi_0 \in C_0^\infty(\mathbb{R}) \), \(\psi_0(\lambda) = 1 \), if \(|\lambda| \leq 1 \), and
\(\psi(\lambda) = 0\), for \(|\lambda| \geq 2\). For every \(j \geq 1\), let us define \(\psi_j(\lambda) = \psi_0(2^{-j}\lambda) - \psi_0(2^{-j+1}\lambda)\). Then we have
\[
\sum_{l \in \mathbb{N}_0} \psi_l(\lambda) = 1, \text{ for every } \lambda > 0. \tag{3.4}
\]

Let us consider \(f \in L^\infty(\mathbb{R}^n)\). We will decompose the symbol \(m\) as
\[
m(x, \nu) = m(x, \nu)(\psi_0(|\nu|) + \psi_1(|\nu|)) + \sum_{k=2}^\infty m_k(x, \nu), \quad m_k(x, \nu) := m(x, \nu) \cdot \psi_k(|\nu|). \tag{3.5}
\]

Let us define the sequence of pseudo-multipliers \(T_{m(j)}, \ j \in \mathbb{N}\), associated to every symbol \(m_j\), for \(j \geq 2\), and by \(T_0\) the operator with symbol \(\sigma \equiv m(x, \nu)(\psi_0 + \psi_1)\). Then we want to show that the operator series
\[
T_0 + S_m, \quad S_m := \sum_k T_{m(k)}, \tag{3.6}
\]
satisfies,
\[
\|T_m\|_{\mathcal{B}(L^\infty(\mathbb{R}^n), \text{BMO}(\mathbb{R}^n))} \leq \|T_0\|_{\mathcal{B}(L^\infty(\mathbb{R}^n), \text{BMO}(\mathbb{R}^n))} + \sum_k \|T_{m(k)}\|_{\mathcal{B}(L^\infty(\mathbb{R}^n), \text{BMO}(\mathbb{R}^n))}, \tag{3.7}
\]
where the series in the right hand side converges. Because, \(f \in L^\infty(\mathbb{R}^n)\) and for every \(j\), \(T_{m(j)}\) has symbol with compact support, \(T_{m(j)} : L^\infty(\mathbb{R}^n) \to L^\infty(\mathbb{R}^n)\) is bounded, and consequently \(T_{m(j)} f \in L^\infty(\mathbb{R}^n) \subset \text{BMO}(\mathbb{R}^n)\). Now, because \(T_{m(j)} f \in \text{BMO}(\mathbb{R}^n)\), we will estimate its BMO norm \(\|T_{m(j)} f\|_\ast\). By using that every symbol \(m_k\) has variable \(\nu\) supported in \(\{\nu : 2^{k-1} \leq |\nu| \leq 2^{k+1}\}\), we have
\[
T_{m(k)} f(x) = \sum_{2^{k-1} \leq |\nu| \leq 2^{k+1}} m_k(x, \nu) \phi_\nu(x) \widehat{f}(\phi_\nu), \quad x \in \mathbb{R}^n.
\]
Consequently,
\[
\|T_{m(k)} f\|_\ast \leq \sum_{2^{k-1} \leq |\nu| \leq 2^{k+1}} \|m_k(\cdot, \nu) \phi_\nu(\cdot)\|_\ast |\widehat{f}(\phi_\nu)|. \tag{3.8}
\]

From (2.16) and by using the Fourier inversion formula we have,
\[
\|m_k(\cdot, \nu) \phi_\nu(\cdot)\|_\ast = \sup_{|\Omega|_{h^1} = 1} \left| \int_{\mathbb{R}^n} m_k(x, \nu) \phi_\nu(x) \Omega(x) dx \right| = \sup_{|\Omega|_{h^1} = 1} \left| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i2\pi \nu \cdot \xi} \hat{m}_k(x, \xi) d\xi \phi_\nu(x) \Omega(x) dx \right|
\leq \sup_{|\Omega|_{h^1} = 1} \sup_{x \in \mathbb{R}^n} \int_{\mathbb{R}^n} |\hat{m}_k(x, \xi)| d\xi \times \int_{\mathbb{R}^n} |\phi_\nu(x)||\Omega(x)| dx.\]
By the Cauchy-Schwarz inequality, and the condition $s > n/2$, we have
\[
\int_{\mathbb{R}^n} |\hat{m}_k(x, \xi)| d\xi \leq \left(\int_{\mathbb{R}^n} \langle \xi \rangle^{2s} |\hat{m}_k(x, \xi)|^2 d\xi \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^n} \langle \xi \rangle^{-2s} d\xi \right)^{\frac{1}{2}}. \tag{3.9}
\]
Consequently, we claim that
\[
\int_{\mathbb{R}^n} |\hat{m}_k(x, \xi)| d\xi \leq C \|m\|_{L^1, H^s} \times 2^{-k(s-\frac{n}{2})}. \tag{3.10}
\]
Indeed, if $\hat{\psi}(\lambda) := \hat{\psi}_0(\lambda) - \hat{\psi}_0(2\lambda)$, then $\hat{\psi} \in \mathcal{D}(\mathbb{R})$ and,
\[
\int_{\mathbb{R}^n} |\hat{m}_k(x, \xi)| d\xi \lesssim \|m_k(x, \cdot)\|_{H^s(\mathbb{R}^n)} = \|m(x, \cdot)\hat{\psi}(2^{-k}\cdot)\|_{H^s(\mathbb{R}^n)}
\[
\lesssim \|m(x, \cdot)\|_{L^1, H^s} \times 2^{-k(s-\frac{n}{2})} \lesssim \|m\|_{L^1, H^s} \times 2^{-k(s-\frac{n}{2})}.
\]
So, we obtain
\[
\|m_k(\cdot, \nu)\phi_\nu(\cdot)\|_s \leq \|m\|_{L^1, H^s} \times 2^{-k(s-\frac{n}{2})} \sup_{\|\Omega\|_{H^1} = 1} \int_{\mathbb{R}^n} |\phi_\nu(x)| |\Omega(x)| dx
\[
= \|m\|_{L^1, H^s} \times 2^{-k(s-\frac{n}{2})} \sup_{\|\Omega\|_{H^1} = 1} \int_{\mathbb{R}^n} \text{sig}(\Omega(x)) |\phi_\nu(x)| |\Omega(x)| dx,
\]
where $\text{sig}(\Omega(x)) = -1$, if $\Omega(x) < 0$, and $\text{sig}(\Omega(x)) = 1$, if $\Omega(x) \geq 0$. By the duality relation (2.16), and by using that
\[
\|\text{sig}(\Omega(x))|\phi_\nu(x)||_{\text{BMO}} \leq 2\|\text{sig}(\Omega(x))|\phi_\nu(x)||_{\text{BMO}} = 2\|\phi_\nu(x)||_{\text{BMO}},
\]
we conclude that
\[
\|m_k(\cdot, \nu)\phi_\nu(\cdot)\|_s \lesssim \|m\|_{L^1, H^s} 2^{-k(s-\frac{n}{2})} \sup_{\|\Omega\|_{H^1} = 1} \|\phi_\nu\|_{\text{BMO}} \|\Omega\|_{H^1}.
\]
Returning to the estimate (3.8), we can write
\[
\|T_{m(k)} f\|_s \leq \sum_{2^{k-1} \leq |\nu| \leq 2^{k+1}} \|m\|_{L^1, H^s} 2^{-k(s-\frac{n}{2})} \|\phi_\nu\|_{\text{BMO}} \|\hat{f}(\phi_\nu)\|
\[
\leq \sum_{2^{k-1} \leq |\nu| \leq 2^{k+1}} \|m\|_{L^1, H^s} 2^{-k(s-\frac{n}{2})} \|\phi_\nu\|_{\text{BMO}} \|\phi_\nu\|_{L^1} \|f\|_{L^\infty}.
\]
Thus, the analysis above implies the following estimate for the operator norm of $T_{m(k)}$, for all $k \geq 2$,
\[
\|T_{m(k)}\|_{\mathcal{B}(L^\infty(\mathbb{R}^n), \text{BMO}(\mathbb{R}^n))} \lesssim \sum_{2^{k-1} \leq |\nu| \leq 2^{k+1}} \|m\|_{L^1, H^s} 2^{-k(s-\frac{n}{2})} \|\phi_\nu\|_{\text{BMO}} \|\phi_\nu\|_{L^1}.
\]
By using Lemma 2.2 of [7] we have $\|\phi_\nu\|_{L^1(\mathbb{R}^n)} \lesssim |\nu|^\frac{n}{2}$. Additionally, the inequality (3.1):
\[
\|\phi_\nu\|_{\text{BMO}} \lesssim |\nu|^\alpha,
\]
This analysis allows us to estimate the operator norm of T and ν in the

Now, by using that T_0 is a pseudo-multiplier whose symbol has compact support in the ν-variables, we conclude that T_0 is bounded from $L^\infty(\mathbb{R}^n)$ to $\text{BMO}(\mathbb{R}^n)$ and

$$
\|T_0\|_{\mathcal{B}(L^\infty(\mathbb{R}^n), \text{BMO}(\mathbb{R}^n))} \leq C \|m\|_{L^\infty}.
$$

This analysis allows us to estimate, the operator norm of T_m as follows,

$$
\|T_m\|_{\mathcal{B}(L^\infty(\mathbb{R}^n), \text{BMO}(\mathbb{R}^n))} \leq \|T_0\|_{\mathcal{B}(L^\infty(\mathbb{R}^n), \text{BMO}(\mathbb{R}^n))} + \sum_k \|T_m(k)\|_{\mathcal{B}(L^\infty(\mathbb{R}^n), \text{BMO}(\mathbb{R}^n))}
$$

$$
\lesssim \|m\|_{L^\infty} + \sum_{k=1}^{\infty} 2^{-k(s-\frac{7n}{4}+\alpha)} \|m\|_{l.a.H^s}
\leq C(\|m\|_{L^\infty} + \|m\|_{l.a.H^s}) < \infty,
$$

provided that $s > \frac{7n}{4} + \alpha$, for some $\alpha \leq -1/12$. So, we have proved the L^∞-BMO boundedness of T_m. In order to end the proof we only need to prove that, under the condition (CII), the operator T_m is bounded from $L^\infty(\mathbb{R}^n)$ to $\text{BMO}(\mathbb{R}^n)$. But, if m satisfies (CII), then it also does to satisfy (CI), in view of the inequality,

$$
\|m\|_{l.a.H^s} \lesssim \sup_{|\alpha| \leq \frac{7n}{4} - 1/12 + 1} (1 + |\nu|)^{|\alpha|} \sup_{x,\nu} |\Delta^\alpha m(x, \nu)|, \quad (3.12)
$$

for $s > 0$ satisfying, $\frac{7n}{4} - \frac{1}{12} < s < \frac{7n}{4} - 1/12 + 1$, (see Eq. (2.29) of [7]).

Remark 3.2. According to the proof of Theorem 1.2, if T_m satisfies the condition (CI), then we have

$$
\|T_m\|_{\mathcal{B}(L^\infty(\mathbb{R}^n), \text{BMO}(\mathbb{R}^n))} \leq C(\|m\|_{L^\infty} + \|m\|_{l.a.H^s}). \quad (3.13)
$$

On the other hand, if we assume (CII), the operator norm of T_m satisfies

$$
\|T_m\|_{\mathcal{B}(L^\infty(\mathbb{R}^n), \text{BMO}(\mathbb{R}^n))} \leq C \sup_{|\alpha| \leq \frac{7n}{4} - 1/12 + 1} (1 + |\nu|)^{|\alpha|} \sup_{x,\nu} |\Delta^\alpha m(x, \nu)|. \quad (3.14)
$$

\square

Acknowledgements. I would like to thank Professor Michael Ruzhansky for several discussions on the subject.

References

1. Bagchi, S. Thangavelu, S. On Hermite pseudo-multipliers. J. Funct. Anal. 268 (1) (2015), 140–170
2. Barraza, E. Samuel., Cardona, D. On nuclear L^p multipliers associated to the harmonic oscillator, in: Analysis and Partial Differential Equations: Perspectives from Developing Countries, Springer Proceedings in Mathematics & Statistics, Springer, Imperial College London, UK, 2016. M. Ruzhansky and J. Delgado (Eds), (2019).
3. Blunck, S. A Hörmander-type spectral multiplier theorem for operators without heat kernel. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 3, 449–459.
4. Cardona, D. A brief description of operators associated to the quantum harmonic oscillator on Schatten-von Neumann classes. Rev. Integr. Temas Mat. Vol 36(1), 49–57, (2018).
5. Cardona, D. L^p-estimates for a Schrödinger equation associated with the harmonic oscillator. Electron. J. Differential Equations, (2019), No. 20, pp. 1-10.
6. Cardona, D. Sharp estimates for the Schrödinger equation associated to the twisted Laplacian, to appear in, Rep. Math. Phys. arXiv:1810.02940
7. Cardona, D. Ruzhansky, M. Hörmander condition for pseudo-multipliers associated to the harmonic oscillator. arXiv:1810.01260.
8. Chen, P., Ouhabaz, E. M., Sikora, A., Yan, L. Restriction estimates, sharp spectral multipliers and endpoint estimates for Bochner-Riesz means. J. Anal. Math. 129 (2016), 219–283.
9. Duren, P. Romberg, B., Shields A. Linear functionals on H^p spaces with $0 < p < 1$, J. Reine Angew. Math. 238 (1969), 32–60.
10. Epperson, J. Hermite multipliers and pseudo-multipliers, Proc. Amer. Math. Soc. 124 (1996), no. 7, 2061–2068.
11. John, F., Nirenberg, L. On Functions of Bounded Mean Oscillation. Comm. Pure Appl. Math. (1961), 415-426.
12. Fefferman, C. Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588
13. Fefferman, C. Stein, E. H^p-spaces of several variables. Acta Math. Vol 129 (1972), 137–193.
14. Hardy, G. H. The mean value of the modulus of an analytic function, Proc. London Math. Soc. 14 (1914), 269–277.
15. Hörmander, L.: Pseudo-differential Operators and Hypo-elliptic equations Proc. Symposium on Singular Integrals, Amer. Math. Soc. 10, 138-183 (1967)
16. Hörmander, L.: The Analysis of the linear partial differential operators Vol. III. Springer-Verlag, (1985)
17. Ruzhansky M., Tokmagambetov N., Nonharmonic analysis of boundary value problems, Int. Math. Res. Notices, 12, (2016), 3548–3615.
18. Ruzhansky M., Tokmagambetov N., Nonharmonic analysis of boundary value problems without WZ condition, Math. Model. Nat. Phenom., 12 (2017), 115–140.
19. Simon, B. Distributions and their Hermite expansions. J. Math. Phys. 12 (1971), 140–148.
20. Thangavelu, S. Multipliers for Hermite expansions, Revist. Mat. Ibero. 3 (1987), 1–24.
21. Thangavelu, S. Lectures on Hermite and Laguerre Expansions, Math. Notes, vol. 42, Princeton University Press, Princeton, 1993.
22. Thangavelu, S. Hermite and special Hermite expansions revisited, Duke Math. J., 94(2) (1998), 257–278.
23. Walsh, T. The dual of $H^p(R^{n+1})$ for $p < 1$, Can. J. Math. 25 (1973), 567–577.

Duván Cardona:
DEPARTMENT OF MATHEMATICS: ANALYSIS LOGIC AND DISCRETE MATHEMATICS
Ghent University
Ghent-Belgium
E-mail address duvanc306@gmail.com