Variability of VHE γ-ray emission from the binary PSR B1259–63/LS 2883

Stanislav Stefanik¹,² and Dalibor Nosek¹
¹Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University
V Holesovickach 2, 180 00 Prague 8, Czech Republic

Abstract. We examine changes of the γ-ray intensity observed from the direction of the binary system PSR B1259–63/LS 2883 during campaigns around its three periastron passages. A simple and straightforward method is applied to the published data obtained with the Imaging Atmospheric Cherenkov Technique. Regardless of many issues of the detection process, the method works only with numbers of very high energetic photons registered in the specified regions. Within the realm of this scheme, we recognized changes attributable to the variations of the intrinsic source activity at high levels of significance.

1 Introduction

PSR B1259–63/LS 2883 is one of few γ-ray binaries detected in the very high energetic (VHE) regime. It is known to consist out of a Be star with an equatorial disk tilted relative to the movement of the pulsar which orbits around the star with a period $T = 1237$ days [1]. The variability of the source emission has been clearly observed in multiple wavebands from radio to VHE with the most prominent changes occurring around the periastron passages [2]. The cause of these variations is believed to be the interaction of the pulsar with the stellar disk. Significant variability of the VHE γ-ray flux around periastron [3,4] was observed by the H.E.S.S. telescope array. Although a considerable overlap of the pre– and post–periastron data has not been obtained so far, a stronger evidence for the repetitive behaviour stemming from the orbital motion was claimed based on the correspondence of the newest data with the older lighcurve [5]. Recently, detection of a GeV flare by the Fermi–LAT [5,6] and a lack of evidence for an attributable VHE flare [4] lead to the conclusion that the high energy (HE) photons have a different origin than the VHE ones. In this paper, we reexamine the changes of VHE activity of PSR B1259–63/LS 2883 during campaigns targeted at periods of periastron passages.

We deal with publicly available VHE data gathered by Cherenkov telescopes in the on/off observation mode [7]. In this approach, the numbers of detected events N_{on} and N_{off} are extracted from the observed signal (on) and background (off) regions, respectively. They are related by the on–off parameter α which is the ratio of exposures of signal and background regions. Traditionally, the level of significance of the source presence in the on–source region is determined using the Li–Ma method [8]. In this work, we use its modification for the investigation of changes in the source intensity (see [9,10] for details). A source parameter $\beta > 0$ is introduced to quantify the signal in the on–source region when compared to the background ascertained from the reference regions. The core of the modified on–off method is the statement of the null hypothesis that a previously identified source of interest attains intensity of chosen value β, i.e. $N_{on} = \alpha \beta N_{off}$ [9]. A level of significance for the rejection of the assumption of constant source activity is given by [9,10]

$$S_{LM} = s \sqrt{2 \{N_{on} \ln X_1 + N_{off} \ln X_2\}^\dagger},$$

for the asymptotic Li–Ma statistics. Here, the logarithmic arguments are $X_1 = (\alpha \beta^2) N_{off}$ and $X_2 = (1 + \alpha \beta) N_{off}/N_{on}$. The s–term in Eq. 1 is either $+1$ or -1 for observations of an excess ($S_{LM} > 0$) or deficit ($S_{LM} < 0$) of events, respectively.

Li–Ma significance given in Eq. 1 asymptotically follows the normal distribution with zero mean and unit variance [10]. Therefore, any inconsistency between the sample distributions of S_{LM} and the reference standard Gaussian distribution should be regarded as a sign of change in the tested γ–ray intensity. It is also worth noting, that the test of the null hypothesis can be advantageously inverted to derive confidence intervals for the source parameter β at a given level of significance. Sequence of such confidence intervals then carries information about changes of the observed γ–ray activity.

The correct treatment of Poisson observables is inherent in the modified on–off method which straightforwardly exploits just the numbers of detected photons. Its other benefit is that systematic uncertainties are fully accounted for and are already included in the confidence intervals for the source parameter. The application of the method is thus very simple yet the range of possible utilizations and the interpretations of results remain utmost general.
Data sets used in our study comprise results of observations of PSR B1259–63/LS 2883 by the H.E.S.S. telescope array during periastron passages in 2004 [3], 2007 [4] and 2011 [2]. Presented numbers of on– and off–source counts together with values of the parameter \(\alpha \) were used as input. Measured counts in each studied observational period ranged between over one hundred to several thousands. Data were taken in configurations with different numbers of active telescopes.

We examined changes of the observed source intensity deduced from the H.E.S.S. data by the means of confidence intervals for the source parameter \(\beta \). These intervals were constructed at a 3\(\sigma \) level for the \(\beta \) obtained for the \(\gamma \)-ray binary PSR B1259–63/LS 2883 [2,4]. Segments with points represent monthly intervals, hatched bands denote yearly intervals. The horizontal dashed line indicates the average value of the source parameter taken over all measurements. Interval for 2011 observations was estimated by accounting for the energy spectrum presented by the H.E.S.S. collaboration, for details see Tab. 1 and Section 3.

In order to quantify the trends of the source activity emerging in the sequence of confidence intervals we also performed test with the 2004 and 2007 data for the assumption of constant intensity. The source activity to be tested was chosen as an average value of the ratio of observed and expected on–source events over the observational periods in 2007, i.e. \(\beta_{07} = (N_{\text{on}}/\alpha N_{\text{off}}) \approx 1.21 \). Our results of testing changes of the source activity are presented as a quantile–quantile (QQ) plot. For this purpose, Li–Ma significances were calculated according to Eq. (1) and then assigned to the quantiles of the standard normal distribution \(N(0, 1) \). The quantiles were chosen to be \(k/(m + 1) \) where \(m \) denotes the number of observed events and \(k = 1 \ldots m \). The observational time sequence is indicated as increasing sizes of markers.

In Fig. 3 a QQ–plot of the distribution of Li–Ma significances is shown. The dashed line denotes the reference 45° line through the origin on which the data points lie provided the hypothesis of constant source intensity of given value is true. Most of the measurements conducted in 2007 (squares) are approximately consistent with the reference line apart from the minor downward shift which indicates that the value of intensity during these periods was slightly lower than the chosen one. The only exceptional result in 2007 is obtained for the June data set which yields significances for the rejection of a steady source activity assumption \(S_{\text{LM}} > 3.6 \). On contrary, the 2004 sample significances (circles) exhibit considerable dispersion from the reference line. Different skewness of the distributions of sample significances compared to the reference standard normal distribution hints that the source intensity changed. At two occasions a significant excess of source activity is recognized with the significances \(S_{\text{LM}} > 3.6 \). In one case a considerable deficit of events is observed with \(S_{\text{LM}} \approx -3 \).
380 GeV from PSR B1259–63

The H.E.S.S. collaboration stated that there is evidence for variability of integral flux above the energy threshold of roughly 500 GeV in 2011 when compared to the previous observations. In view of the 2011 detection of a HE γ–ray flare by the Fermi–LAT [5, 6], it may be suggestive to relate this flare to the higher level of the VHE activity as seen in our analysis. However, when testing the ‘Pre–flare’ and ‘Flare’ data sets of H.E.S.S. [2] for deviations of the source intensity from its average value, the test significances for both periods are \(S_{\text{LM}} < 1 \). Thus, we cannot reject the assumption of constant intensity during 2011 based on these data and, accordingly, the connection with the GeV flare is questionable.

The increase of the observed VHE activity may be attributable to the truly intrinsically variable emission or it may be some effect of the detection process. We cannot exclude the latter possibility without further details on the used data, particularly on the exact detection thresholds in each observational campaign. Nevertheless, we have no firm indication of inconsistency of the source intensity above 1 TeV in 2011 when compared to the previous observations. Hence, we comply with the H.E.S.S. conclusions about the overall agreement of integral fluxes above this energy.

4 Conclusions

We used the modified on–off method to judge whether significant changes of the γ–ray intensity from the direction of binary PSR B1259–63/LS 2883 were observed during its three periastron passages. Within our method, the problem of variable source activity can be treated using solely the numbers of detected events.

Temporal evolution of the observed source intensity is clearly recognized on the account of the modified on–off...
The results of our analysis of the data gathered by the H.E.S.S. experiment clearly show that changes of the source activity occurred during 2004 and 2007 between individual months while the overall intensities in both seasons stayed in agreement. Our findings on the data obtained above approximately 500 GeV in 2011 show that the observed source intensity was enhanced in this season with respect to earlier measurements.

Acknowledgements

This work was supported by the Czech Science Foundation grant 14-17501S.

References

[1] S. Johnston et al., ApJ 387, L37–L41 (1992)
[2] H.E.S.S. Collaboration, A&A 551, A94 (2013)
[3] F. Aharonian et al., A&A 442, 1–10 (2005)
[4] F. Aharonian et al., A&A 507, 389–396 (2009)
[5] A. A. Abdo et al., ApJ Lett. 736, L11 (2011)
[6] P. H. T. Tam et al., ApJ Lett. 736, L10 (2011)
[7] D. Berge, S. Funk, J. Hinton, A&A 446, 1219–1229 (2007)
[8] T.P. Li, Y.Q. Ma, ApJ 272, 317–324 (1983)
[9] D. Nosek, S. Stefanik, J. Noskova, ICRC 2013, arXiv:1309.6476
[10] S. Stefanik, D. Nosek, Nucl. Phys. B-Proc. Sup. 256, 258–263 (2014)