TOPICAL REVIEW • OPEN ACCESS

A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm

To cite this article: Elisabeth Ramm et al 2022 Environ. Res. Lett. 17 013004

View the article online for updates and enhancements.
A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm

Elisabeth Ramm, Chunyan Liu, Per Ambus, Klaus Butterbach-Bahl, Bin Hu, Pertti J Martikainen, Maija E Marushchak, Carsten W Mueller, Heinz Rennenberg, Michael Schlote, Henri M P Siljanen, Carolina Voigt, Christian Werner, Christina Biasi and Michael Dannenmann

Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen 82467, Germany
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, People's Republic of China
Department of Geosciences and Natural Resource Management, Center for Permafrost (Cenperm), University of Copenhagen, Copenhagen DK-1350, Denmark
Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, People's Republic of China
Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio 70210, Finland
Department of Biological and Environmental Science, University of Jiývskýlia, Jiývskýlia FI-40014, Finland
Chair of Soil Science, Science Center Weihenstephan, Department of Ecology and Ecosystem Management, Technical University Munich, Freising 85354, Germany
Research Unit for Comparative Microbiome Analyses, Helmholtz Zentrum München, Oberschleissheim 85764, Germany
Department of Geography, University of Montreal, Montreal, QC H2V 0B3, Canada

* Authors to whom any correspondence should be addressed.
E-mail: lcy@post.iap.ac.cn, christina.biasi@uef.fi and michael.dannenmann@kit.edu

Keywords: permafrost, nitrogen, gross N turnover, mineralization, meta-analysis, plant-soil-microbe system, global change

Supplementary material for this article is available online

Abstract

The paradigm that permafrost-affected soils show restricted mineral nitrogen (N) cycling in favor of organic N compounds is based on the observation that net N mineralization rates in these cold climates are negligible. However, we find here that this perception is wrong. By synthesizing published data on N cycling in the plant-soil-microbe system of permafrost ecosystems we show that gross ammonification and nitrification rates in active layers were of similar magnitude and showed a similar dependence on soil organic carbon (C) and total N concentrations as observed in temperate and tropical systems. Moreover, high protein depolymerization rates and only marginal effects of C:N stoichiometry on gross N turnover provided little evidence for N limitation. Instead, the short period when soils are not frozen is the single main factor limiting N turnover. High gross rates of mineral N cycling are thus facilitated by released protection of organic matter in active layers with nitrification gaining particular importance in N-rich soils, such as organic soils without vegetation. Our finding that permafrost-affected soils show vigorous N cycling activity is confirmed by the rich functional microbial community which can be found both in active and permafrost layers. The high rates of N cycling and soil N availability are supported by biological N fixation, while atmospheric N deposition in the Arctic still is marginal except for fire-affected areas. In line with high soil mineral N production, recent plant physiological research indicates a higher importance of mineral plant N nutrition than previously thought. Our synthesis shows that mineral N production and turnover rates in active layers of permafrost-affected soils do not generally differ from those observed in temperate or tropical soils. We therefore suggest to adjust the permafrost N cycle paradigm, assigning a generally important role to mineral N cycling. This new paradigm suggests larger permafrost N climate feedbacks than assumed previously.
1. Introduction—are permafrost-affected soils characterized by organic N cycling only?

Over the last decades, the nitrogen (N) cycle of permafrost-affected soils has been perceived to involve mostly organic N compounds with little importance of the production and turnover of mineral N (see figure 1(a)). This paradigm has been established since the landmark paper of Schimel and Bennett (2004) which postulates that in cold ecosystems—in contrast to temperate and tropical systems—a strong temperature limitation of protein depolymerization limits the availability of dissolved organic N compounds (DON, e.g. amino acids). Consequently, DON would be exposed to intense plant-microbe competition so that microbes would remain N-limited but not carbon-limited, which forces them to use the assimilated N for growth rather than for performing ammonification (Regina et al 1996, Schimel and Bennett 2004). Because ammonification is the first step of mineral N production and turnover, it provides the substrate for other mineral N cycling processes in the plant-soil-microbe system. Hence, impaired ammonification suppresses the entire mineral N cycle, i.e. subsequent nitrification (the microbial oxidation of ammonium (NH$_4^+$) and ammonia (NH$_3$) to nitrite (NO$_2^-$) and nitrate (NO$_3^-$)), denitrification (the reduction of NO$_3^-$ or NO$_2^-$ to gaseous N such as the greenhouse gas (GHG) nitrous oxide (N$_2$O) and inert dinitrogen gas (N$_2$)), and microbial immobilization of NH$_4^+$ and NO$_3^-$ (figure 1(a)). Such a ‘short’ N-conserving cycle is characterized by high N limitation and efficient ecosystem N retention, but by little importance of mineral N turnover such as ammonification and nitrification that leads to gaseous or hydrological N losses from the ecosystem. A wide range of studies has emphasized the prevalence of organic N over mineral N forms to be characteristic for N-limited arctic ecosystems (Kielland 1995, Jones and Kielland 2002, Weintraub and Schimel 2005, Weedon et al 2012, Wild et al 2018). As a consequence of the predominance of organic N cycling there would be no significant emissions of microbially produced N$_2$O and other N gases, while carbon (C) mineralization still facilitates production and emission of the GHGs carbon dioxide (CO$_2$) and methane (CH$_4$).

Based on these assumptions, together with the large amounts of C stored in permafrost-affected soils (Hugelius et al 2014), permafrost research interests during the last decades have focused on climate feedbacks of the C cycle via emission of the GHGs CO$_2$ and CH$_4$. The total gaseous C release resulting from permafrost degradation might be as high as 92 ± 17 Pg C within this century, with an estimated contribution by CO$_2$ and CH$_4$ of 97.7% and 2.3%, respectively (Schuur et al 2015). These GHG emissions from warming permafrost-affected soils are thought to be large enough to significantly contribute to the global temperature increase in the 21st century (Schuur et al 2013). What is less known, however, is that permafrost-affected soils store and potentially emit large—though less well constrained—amounts of N (Harden et al 2012, Ramm et al 2020, Voigt et al 2020). Particularly N$_2$O is of major concern as it is a long-lived GHG with a 100 year global warming potential exceeding those of CO$_2$ and CH$_4$ by 265 and 9.5 times, respectively (IPCC 2014). Furthermore, N$_2$O plays a dominant role in stratospheric ozone destruction in the 21st century (Ravishankara et al 2009).

Permafrost N pools and associated soil N turnover processes (protein depolymerization, ammonification, nitrification, denitrification) started to receive increasing attention only 1–2 decades ago. A current search in the Web of Science and Scopus (March 2021) indicated several hundred studies on ‘permafrost/arctic C turnover’, around 100 studies on ‘permafrost/arctic N turnover’ and only about ten studies on ‘permafrost/arctic gross N turnover’. Thus, the general observation that understanding of N cycling is lagging behind relevant work on C cycling for decades (Schlesinger 2009) is particularly true for permafrost-affected ecosystems. Deficits in knowledge on ecosystem N cycling compared to C cycling persist—not only concerning permafrost ecosystems—due to a range of severe methodological problems to accurately quantify the complex N cycling in the plant-soil-microbe system (Groffman et al 2006, Rennenberg et al 2009, Butterbach-Bahl et al 2013).

However, a series of arguments and recent observations question the old paradigm (figure 1(a)) of a predominance of organic N cycling in permafrost-affected soils with little importance of mineral N cycling.

(a) First, increasing evidence shows that emissions of the potent GHG N$_2$O are more important for permafrost-affected soils than previously thought (Voigt et al 2020). Since about a decade, large N$_2$O emissions have been reported from a wide range of permafrost-affected ecosystems (Repo et al 2009, Elberling et al 2010, Voigt et al 2020). As N$_2$O emissions are largely originating from various nitrification and denitrification pathways as well as chemical decomposition of nitrification intermediate products such as hydroxylamine (Butterbach-Bahl et al 2013), this observation points to a larger importance of mineral N cycling in permafrost-affected soils.

(b) Second, several studies showed high annual gross ammonification and nitrification at relatively low annual temperatures (e.g. in continental steppe of Inner Mongolia; Wu et al 2012), with freeze-thaw events being a hot moment for N mineralization and emissions of N gases (Wolf et al 2010, Wu et al 2012, Wagner-Riddle et al
Figure 1. Nitrogen (N) cycling in permafrost-affected soils according to the old paradigm (a) and according to the revised paradigm (b). Gray shows negligible turnover processes. Present organic N pools are shown in orange, active organic N turnover processes in yellow, present mineral N pools in light blue, active mineral N turnover processes in blue, uptake processes in green (dashed lines indicate negligible uptake processes), N deposition in black, leaching in purple, gaseous losses in red. Arrow widths indicate importance according to reviewed data. Plus signs contain reasons for enhanced cycling. EPSs = extracellular polymeric substances, SON = soil organic nitrogen, DON = dissolved organic nitrogen, \(\text{NH}_4^+\) = ammonium, \(\text{NO}_3^-\) = nitrate, \(\text{N}_2\) = dinitrogen, \(\text{N}_2\text{O}\) = nitrous oxide, OM = organic matter, PF = permafrost.

2017, Wu et al 2020). A study conducted in the German Alps even showed the occurrence of large gross ammonification and nitrification rates in frozen montane grassland soil, both based on measurements of gross N turnover and molecular analysis of functional N cycle genes.
(Wang et al 2016). Consequently, the temperature conditions in permafrost-affected soils do not per se exclude significant mineral N production and turnover. Meanwhile, also studies on gross N turnover in permafrost-affected soils were published, but the information is scattered and has not yet been synthesized.

(c) Third, the paradigm that ammonification is largely insignificant in the C- and N-rich permafrost-affected soils contradicts our general understanding of ecosystem controls apart from permafrost-related studies, i.e. a positive correlation of soil organic carbon (SOC) and total nitrogen (TN) concentrations with gross ammonification (Booth et al 2005). Furthermore, Wild et al (2015) did not detect a decrease in microbial N limitation along a latitudinal transect ranging from arctic to temperate ecosystems. Instead, N limitation seems to decrease with soil depth (Meyer et al 2006, Wild et al 2015).

(d) Fourth, it is well known that biological N fixation (BNF) can significantly contribute to N availability in permafrost ecosystems (Henry and Svoboda 1986, Hobara et al 2006, Stewart et al 2013). Given the large BNF rates of cyanobacterial associations in permafrost-affected soils (0.1–25.8 kg N ha$^{-1}$ yr$^{-1}$; table 2), this additional N input could lift N limitation for microbes, thereby facilitating gross ammonification (Stewart et al 2014).

(e) Fifth, atmospheric N deposition might still be generally low in the northern circumpolar permafrost region, but is expected to rise due to increased emissions from global and local sources (Lamarque et al 2005, Dentener et al 2006). Especially the increasing frequency of severe fires in the Arctic (Holloway et al 2020) could increase atmospheric N loads in this region at large scales, as was recently reported for tropical regions of Central Africa (Bauters et al 2018).

(f) Sixth, the Arctic is warming rapidly and climate change related disturbances are becoming more common (Biskaborn et al 2019, IPCC 2019). Ammonium/nitrate content is usually an order of magnitude higher in the permafrost than in the active layer (Keuper et al 2012, Beermann et al 2017, Fouche et al 2020). Warming of permafrost regions and subsequent permafrost thaw may promote N availability through C and N substrate release from formerly protected permafrost. Such increased N availability, together with increased CO$_2$ concentrations in the atmosphere, might increase vegetation cover in permafrost ecosystems and associated rhizodeposition of labile C and N compounds that again—via priming of soil organic matter (SOM) decomposition—could enhance mineral N cycling.

These points indicate that mineral N cycling in permafrost-affected soils has possibly been underestimated. Hence, here we attempt to assess and quantify the role mineral N cycling plays in permafrost-affected soils. In order to reflect on the validity of the classical permafrost N cycling paradigm, we synthesize existing data on gross and net N turnover rates in the plant-soil-microbe system, as well as N input and output processes. Overall, our objective is to characterize the significance of permafrost mineral N cycling and to identify research gaps that hamper understanding permafrost ecosystem N cycling under current and future climate.

2. Methods

We conducted a meta-analysis to synthesize current knowledge on gross and net N turnover rates in permafrost-affected soils. This was accompanied by literature reviews on soil organic N properties, N inputs by BNF and atmospheric N deposition, on the importance of mineral versus organic N in plant N nutrition, and on gaseous/hydrological N losses. Peer-reviewed papers referring to net and gross N turnover rates (net DON production/gross protein depolymerization, net/gross ammonification, net/gross nitrification) under field and laboratory conditions were collected from the Web of Science using specific search terms (for more details on literature survey, data extraction and assembly please see supplementary material 1 available online at stacks.iop.org/ERL/17/013004/mmedia). Additional studies were found from links to other publications and based on the expert knowledge of the authors. In total 16 studies were suitable for our analysis of gross N rates and 33 studies for our analysis of net N rates (see meta-analysis references, supplementary material 1). From that we extracted 81 datasets concerning gross rates and 163 datasets concerning net rates (often more than one turnover process was measured). The data were extracted from tables or graphs (using GetData Graph Digitizer 2013). In the following, we refer to net changes of DON and amino acids as net DON production. Soils were classified as organic or mineral as reported in the papers or based on C and N concentrations and C:N ratios (if possible). Further data on climate and soil properties were extracted (see supplementary material 1) to analyze potential controls of N transformation rates. Graphs and linear regressions were produced in Origin Version 2016 (OriginLab Corporation 2016). The regression lines do not account for standard errors as this might bias the data due to only few available standard errors. Relative importance of environmental factors controlling gross N turnover rates were assessed using stepwise
multiple linear regression analysis which was conducted in SPSS 8.0 (SPSS Inc 1998) and a tool for proportional marginal variance decomposition which was performed in R v3.2.6. (R Core Team 2019) using the R package relaimpo (see Grömping 2021). Statistical significance was given at 95% confidence interval. Gross rates of N turnover in permafrost-affected soils were compared with respective data of temperate/tropical systems by use of the gross N turnover datasets published by Booth et al (2005) and Elrys et al (2021a, 2021b). For this purpose, also data contained in graphs of Booth et al (2005) were digitized and data from Elrys et al were obtained via personal communication.

BNF rates reported for mosses/lichens/cyanobacteria and alders in permafrost systems were extracted from the Web of Science and based on scientific expertise of the authors. If expressed in other units, the rates were converted to kg N ha\(^{-1}\) yr\(^{-1}\) (or per season) since this is the common unit in the scientific field, notwithstanding that the observed areal coverage of N\(_2\)-fixing vegetation communities of mosses/lichens/cyanobacteria is often patchy and they vary at much smaller scales than one hectare.

All mentioned processes are driven by microbial activities. Despite much is known about drivers for microbiomes in temperate systems and factors determining their activities, it is unclear if the available data can be used to improve our understanding on N turnover in permafrost-affected soils, mainly as the keystone species for the different processes might differ, with different ecophysiology compared to those microorganisms which we are already well aware of. This also relates to microbial network formation and interaction patterns, which are essential mainly for nitrification but to a smaller extent also for other processes. We used the small amount of literature available where phylogeny of functional groups was described and linked these data to known properties of the described taxa also from other cold environments.

3. How important is microbial mineral N production in permafrost-affected soils?

The perception that N cycling in permafrost-affected soils is largely based on organic N forms has been promoted by many studies quantifying soil dissolved organic and mineral N concentrations and/or net rates of N turnover. This is because dissolved N concentrations and net rates of N turnover are relatively simple to determine and therefore preferably analyzed in arctic environments compared to gross rates of N turnover, which require elaborate stable isotope studies. While gross rates reveal rates of single N turnover processes, net rates reflect the balance of production and consumption of an N compound, thereby integrating several gross processes.

3.1. A synthesis of published rates of gross and net N turnover in permafrost-affected soils

Meta-analysis of N turnover rates published for permafrost-affected soils (mg N kg sdw\(^{-1}\) d\(^{-1}\); net rates N \(= 247\) observations, gross rates N \(= 132\) observations) in field or laboratory studies revealed strikingly different patterns in net and gross transformation rates. Net DON production rates (only available for six organic soils with mean of \(-9.4\) and median of \(-2.9\) mg N kg sdw\(^{-1}\) d\(^{-1}\)) were negative while mean and median net rates of ammonification, nitrification and N mineralization were either slightly negative or close to zero with no significant differences between organic and mineral soil horizons (figure 2(a)). The mean net DON production of all reviewed studies, including those that could not be categorized as organic or mineral, was \(-5.1\) mg N kg sdw\(^{-1}\) d\(^{-1}\) (median: 0.02; N = 11) (figure S1). The mean net N mineralization was 0.8 mg N kg sdw\(^{-1}\) d\(^{-1}\) (median: 0.1; N = 127) (figure S1), which appears to confirm the absence of significant mineral N cycling in permafrost-affected soils. To compare, Liu et al (2017) summarized the average net mineralization over North and South America, Europe, Africa, Asia and Oceanica across different ecosystems to be 2.4 ± 0.2 mg N kg sdw\(^{-1}\) d\(^{-1}\). Shrub ecosystems showed the lowest net N mineralization rates (0.4 ± 0.1 mg N kg sdw\(^{-1}\) d\(^{-1}\)) and wetlands the highest net mineralization rates (6.1 ± 1.7 mg N kg sdw\(^{-1}\) d\(^{-1}\)). Under the traditional plant-nutrition-oriented view of net rates as a measure of the N ‘left over’ by microbes for plant N uptake, the low net mineralization in permafrost areas would confirm that plants need to rely on organic N sources. However, the negative net DON production rates also suggest high microbial immobilization of DON (figure 1(a)) and thus a very strong and successful microbial competition for DON against plants.

While the hardly detectable net rates tell that mineral N production in permafrost-affected soils might be generally negligible, the gross rates show that this is clearly a misconception (figure 2(b)). Mean gross protein depolymerization in permafrost-affected soils as obtained from published studies was 69.6 mg N kg sdw\(^{-1}\) d\(^{-1}\) (median: 8.7; N = 30), mean gross ammonification was 13.8 mg N kg sdw\(^{-1}\) d\(^{-1}\) (median: 3.1; N = 65) and mean gross nitrification 6.6 mg N kg sdw\(^{-1}\) d\(^{-1}\) (median: 1.9; N = 51) (figure S2), with organic soils showing considerably larger rates than mineral soils (figure 2(b)). Gross N turnover rates did not significantly differ between field and laboratory studies (figure S3).

Hence, our synthesis of N turnover data clearly shows significant gross ammonification and nitrification activity in permafrost-affected soils, which is not at all reflected by the negligible rates of net N turnover. Also for other N-limited systems, such mismatches of net and gross rates were highlighted. For instance, Wu et al (2012) showed that an annual
dataset of net rates of N turnover in continental semi-arid steppe soils of Inner Mongolia did neither reflect plant N availability nor the enormous magnitude and seasonal dynamics of gross inorganic N production rates. All of this is explained by the fact that net rates integrate all producing and consuming processes, e.g. of NH$_4^+$ or NO$_3^-$ (usually in absence of plants using non-intact soil cores). Thus, net rates do not reflect rates and dynamics of mineralization-immobilization turnover and ignore major plant-soil-microbe interactions, which is not in line with a modern perception of profound plant impacts on N turnover via successful competition for N also in N-limited systems (Rennenberg et al. 2009, and references therein).

Based on our synthesis we conclude that net rates of N turnover are of comparably little use to provide insight into N cycling in permafrost-affected soils.

Only Wild et al. (2013, 2015, 2017, 2018) reported gross protein depolymerization for permafrost-affected soils, while for temperate and tropical systems, hardly any depolymerization data are available. The available data on gross protein depolymerization in permafrost-affected soils, derived from Greenland, Sweden and Siberia, indicate that gross protein depolymerization exceeded gross ammonification on average by approximately an order of magnitude in organic soils, i.e. only a minor fraction of the produced DON was further mineralized to NH$_4^+$, however, at still notable rates (figure 2(b)). To compare, in temperate soil beech...

Figure 2. Net rates (a) and gross rates (b) of DON production/protein depolymerization, ammonification, nitrification in permafrost-affected soils. Net N mineralization as the sum of net ammonification and net nitrification includes the studies that differentiate between the two processes as well as the many studies that only show the sum of these processes. Data are shown separately for organic (red) and mineral (blue) horizons including different geographical locations and ecosystems as boxplots. Open circles indicate the mean which is also given in numbers to the right of the boxes. The number of observations is shown in brackets beneath the boxplots. There was no study reporting net DON production in mineral soils. For comparison, global means of gross ammonification and nitrification reported for other soils as obtained from Elrys et al. (2021a, 2021b) are provided in squared brackets.
litter (in Austria) gross protein depolymerization rates (131–497 mg N kg sdw$^{-1}$ d$^{-1}$) exceeded gross ammonification 8.6–34.8-fold and gross nitrification 8.5–32.7-fold (Wanek et al. 2010). Also Jones and Kielland (2002) observed for Alaskan black spruce taiga that ammonification was slower than depolymerization. Such findings suggest that the bottleneck of N mineralization in permafrost areas is not the transformation of high-molecular-weight DON to low-molecular-weight DON, but the transformation of low-molecular-weight DON to NH$_4^+$+.

This means that microbes invest relatively much in the depolymerization of N-rich polymers (N mining) via extracellular enzymes in order to overcome N limitation. Generally, information on gross protein depolymerization comes with the caveats that only few data have been published and that the high published rates suggest a possibly questionable, very low mean residence time of depolymerized soil organic N (SON; the difference between TN and inorganic N) of only weeks to months. The underlying methodology of isotopic dilution of 15N-labeled amino acids has been simplified recently (Noll et al. 2019) so that more data might become available in near future to shed further light on the quantitative role of depolymerization in permafrost-affected soils. Based on the available data, we conclude that the reported very high gross protein depolymerization rates in permafrost-affected soils contradict two major N cycle paradigms, i.e., the assumptions that (a) depolymerization is the limiting ‘bottleneck’ of the N cycle and (b) that depolymerization in permafrost-affected soils is strongly limited by temperature (Schimel and Bennett 2004). These high rates challenge the perception of ubiquitous N limitation in northern soils (Wild et al. 2015), but suggest a rapid turnover of at least part of polymeric organic matter. Nonetheless, the extent to which either the transformation of proteins to amino acids or of amino acids to NH$_4^+$ control N availability in permafrost-affected soils remains severely understudied.

Our meta-analysis data on gross N turnover rates in permafrost areas refer to the active layer of a permafrost ecosystem except for one study. Mao et al. (2020) compared an active layer (0–10 cm) to a permafrost layer (215–265 cm) on the Tibetan Plateau with the permafrost layer being analyzed for gross N turnover shortly after thawing. They found that gross ammonification (0.5 ± 0.04 mg N kg sdw$^{-1}$ d$^{-1}$) and nitrification rates (0.1 ± 0.00 mg N kg sdw$^{-1}$ d$^{-1}$) were lower in the permafrost layer than in the active layer (3.5 ± 0.16 and 0.6 ± 0.03 mg N kg sdw$^{-1}$ d$^{-1}$, respectively), but still detectable, indicating substantial mineralization activity immediately after permafrost thaw (supplementary material 2). However, to our knowledge no published study to date has successfully determined gross N turnover under frozen permafrost soil conditions.

Permafrost gross ammonification and nitrification rates from the meta-analysis were compared with other systems using the comprehensive synthesis of gross N turnover by Booth et al. (2005) who presented a wide range of gross N turnover rates measured in temperate, tropical, semiarid and arctic/montane ecosystems (only ca. 4% in arctic/montane systems). Since the original data were not available, we digitized data from Booth et al. (2005) and found mean gross ammonification from organic and mineral soils to be 13.5 mg N kg sdw$^{-1}$ d$^{-1}$ (median: 4.7; N = 158), while mean gross nitrification was 3.0 mg N kg sdw$^{-1}$ d$^{-1}$ (median: 1.2; N = 158). Thus, mean permafrost gross ammonification (13.8 mg N kg sdw$^{-1}$ d$^{-1}$) turned out to be comparable to and mean permafrost gross nitrification (6.6 mg N kg sdw$^{-1}$ d$^{-1}$) even tended to be higher than in non-permafrost ecosystems. More recently, Elrys et al (2021a, 2021b) provided a global synthesis of gross ammonification and nitrification across climatic zones, thereby distinguishing between organic and mineral soils. Interestingly, the very recent global mean values of gross rates provided by Elrys et al do not significantly differ from synthesized data of Booth et al. (2005). Elrys et al. (2021a) reported mean global ammonification of 30.2 and 4.3 mg N kg sdw$^{-1}$ d$^{-1}$ for organic and mineral soils, respectively, which is well comparable to the permafrost data of this study (24.1 and 2.4 mg N kg sdw$^{-1}$ d$^{-1}$; figure 2(b)). Global gross nitrification was 8.8 and 3.5 mg N kg sdw$^{-1}$ d$^{-1}$ in organic and mineral soils, respectively (Elrys et al. 2021b), which is also comparable to the rates obtained for permafrost soils in this study (12.7 and 1.7 mg N kg sdw$^{-1}$ d$^{-1}$; figure 2(b)).

When comparing gross ammonification rates of permafrost-affected soils collected within this study with those of other ecosystems presented by Booth et al. (2005), it becomes evident that gross ammonification rates in permafrost-affected soils show not only a comparable magnitude, but also almost the same dependency on SOC and TN concentrations compared to rates in other ecosystems (figure 3). Specifically, gross ammonification increases at the same rate depending on SOC concentrations in permafrost-affected soils as in soils of other ecosystems (temperate/tropical/montane) (figure 3(a)). The dependency of gross ammonification and TN concentrations for permafrost-affected soils even shows a slightly steeper slope compared to data for other ecosystems (figure 3(b)).

This comparison suffers from the problem that published gross N turnover rates almost exclusively origin from snapshot studies that are mostly limited to a single or few sampling dates in the growing season. This caveat however does not only apply for permafrost studies. Hitherto, only few studies provided annual gross N turnover rates based on monthly or even more frequent sampling over an entire year (Wang et al 2016, and references therein). Hence,
also the Booth et al (2005) dataset largely contains snapshot measurements mainly obtained during the warm season, as is the case for permafrost studies. Gross N turnover in winter remains a research gap in permafrost-affected as well as in other soils. This is particularly problematic as recent work suggests that both frozen soil and freeze-thaw events can be hot moments of N turnover (Wang et al 2016, Wu et al 2020). High dissolved mineral N concentrations in permafrost (Elberling et al 2010, Keuper et al 2012, Beermann et al 2017, Salmon et al 2018, Fouché et al 2020) could thus indeed indicate significant N mineralization, but no experimental evidence is available to support this.

A mean gross ammonification rate of 13.8 mg N kg sdw−1 d−1 (figure S2) at a soil depth of 0.1 m and a bulk density of 0.4 g cm−3 would in 100 d translate into a seasonal ammonification estimate of 552 kg N ha−1, thereby exceeding the annual N demand of most temperate forests severalfold (Rennenberg and Dannenmann 2015). This rough but very conservative estimate of the average growing season potential of gross ammonification in permafrost systems suggests that, according to published rates, gross ammonification indeed can allow for significant mineral N nutrition of plants.

While gross nitrification on average accounts for about half of ammonification in permafrost-affected soils (figure 4), it is notable that gross nitrification is extensive in the organic layers in several ecosystems, even exceeding gross ammonification by orders of magnitude in tundra soils of Greenland and Siberia (figure 4; supplementary material 2). These results point at a significant contribution of heterotrophic nitrification to the formation of NO3−, i.e. via a direct oxidation of organic N compounds to NO3− (Chen et al 2015). Furthermore, the results indicate a surprisingly high importance of autotrophic nitrification as fate of produced NH4+ in permafrost-affected soils, which is similar to or even higher than in other soils (figure 4). Since under N limitation, NH4+ is rather immobilized by heterotrophic microbes than nitrified (Butterbach-Bahl and Dannenmann 2012), the high relative importance of nitrification also contradicts the paradigm of strong N limitation.

3.2 Controls of gross N turnover in permafrost-affected soils
To identify and characterize controls of N transformation rates in permafrost-affected soils, we compared the N turnover rates with reported environmental, soil and vegetation parameters (supplementary material 2). Unfortunately, we could not consider soil temperature as the data were widely not reported. A parameterization of gross N turnover in permafrost-affected soils under different temperatures is among the most pressing research needs.

Stepwise linear regression (using sub-datasets of overlapping data on gross rates and potential controls, see included variables in table 1) with log-transformed data showed that gross protein depolymerization expressed on soil dry weight
Figure 4. The gross nitrification: gross ammonification ratio published for mineral soils in agricultural (agric), grass and woody ecosystems across different latitudes (synthesized by Booth et al 2005, part of figure 8) as compared to the same ratios in organic (red) and mineral (blue) permafrost-affected soils (PF) reviewed here. Data are shown as boxplots. Open circles indicate the mean. To the right of the boxplot the median as well as upper and lower quartiles are given in numbers. Using a t-test, thereby considering non-equal variance, the gross nitrification: gross ammonification ratio tends to be higher in permafrost systems compared to other systems at $p = 0.07$.

Table 1. Stepwise linear regressions for gross protein depolymerization, ammonification and nitrification.

Gross N turnover	Included variables	Equation	p-value	R^2
Protein depolymerization	SOC, TN, C:N ratio	$1.1 \times \log_{10} (SOC) + 0.1$	0.000	0.673
Ammonification	Gross protein depolymerization, SOC, TN, C:N ratio, DON	$0.9 \times \log_{10} (\text{gross protein depolymerization}) - 0.7 \times \log_{10} (\text{TN}) - 1.2$	0.018	0.608
Nitrification	Gross ammonification, SOC, TN, C:N ratio, DON, NH_4^+	$0.9 \times \log_{10} (NH_4^+) - 0.4$	0.000	0.592

basis was mainly dependent on SOC concentration (table 1). Gross ammonification in turn was mainly controlled by gross protein depolymerization and TN concentration, with gross protein depolymerization explaining around 85% of gross ammonification (figure S4). Surprisingly, TN was correlated negatively with gross ammonification, suggesting that not TN, but only the active N fraction thereof (which can be easily decomposed) is important for gross ammonification. Gross nitrification was limited by NH_4^+ in the sub-dataset (table 1).

Analyzing the entire dataset of gross rates of N turnover and SOC/TN concentrations revealed that gross protein depolymerization, gross ammonification and gross nitrification rates were strongly positively correlated with SOC and TN concentrations (with the exception of gross nitrification versus SOC concentration) (figure 5). Our meta-analysis for permafrost-affected soils thus highlights SOC and TN concentrations as major controls of gross ammonification and nitrification which is in line with the global synthesis by Booth et al (2005). Also Elrys et al (2021a) identified SOC and TN as positive controls of gross ammonification, besides a positive influence by increasing microbial biomass, increasing precipitation, decreasing bulk density and decreasing soil pH. This resembles results for potential net ammonification (Li et al 2019, 2020). Gross nitrification was influenced by TN, C:N ratio, microbial biomass, precipitation, temperature, soil pH and ecosystem types, which differed between heterotrophic and autotrophic nitrification (Elrys et al 2021b). These results show the importance of testing those factors again once there are more data for permafrost-affected soils.

Gross ammonification also was closely related to DON concentrations, indicating the relationship to its substrate (figure S5). Though suffering from limited data availability, the relationship between SOC concentrations and gross nitrification was best described by a polynomial function with mineral soils showing increasing nitrification with more SOC, but organic soils possibly showing decreasing...
nitrification with more SOC (figure 5(e)). This might be explained by the autotrophic metabolism of many nitrifiers so that they do not rely on a C source. Furthermore, extremely high SOC concentrations in permafrost systems represent largely flooded peatland systems, where anaerobic processes dominate and nitrification might be inhibited by the lack of oxygen. The positive relationship of TN with gross nitrification (figure 5(f)) might reflect that with increasing N availability, NH$_4^+$ partitioning is increasingly directed in favor of autotrophic nitrification and at the expense of heterotrophic microbial NH$_4^+$ immobilization (Butterbach-Bahl and Dannenmann 2012).

The SOC:TN ratio (soil C:N ratio), has frequently been used as an indicator of N availability and to characterize N cycling, with high C:N ratios indicating low ammonification and nitrification but high microbial N immobilization and retention (Borken and Matzner 2004, Rennenberg et al 2009, Butterbach-Bahl and Dannenmann 2012). While the relationships mentioned above confirm a certain role of C:N stoichiometry in the regulation of ammonification and nitrification in permafrost-affected soils.
as well, the influence of SOC and TN concentrations on gross N turnover prevails so that overall gross protein depolymerization and ammonification increased with increasing C:N ratios (figures 6 and 7) due to the correlation of SOC concentrations with C:N ratios. Also gross nitrification showed no negative relationship to C:N ratio (figure S8). Consequently, the C:N ratio was a poor indicator of gross N turnover in permafrost-affected soils. A prevalence of SOC over C:N ratios as dominant control of gross N turnover is however typical for across-ecosystem comparisons not only in permafrost ecosystems (Booth et al 2005). Notwithstanding this, at given C availability (especially dissolved organic carbon; DOC), changing N availability possibly can strongly influence gross N turnover. However, the use of DOC:DON ratios, i.e. a C:N index more related to bioavailability, did not indicate that for our dataset (figure S9). Also for net rates only an insignificant trend of organic soils towards larger net nitrification with lower C:N ratios was found (figure S10). In summary, based on the collected data it appears that C:N stoichiometry is—in contrast to expectations—not a decisive factor in explaining different N turnover across different permafrost-affected soils. In contrast, N mineralization in active layers seems to be much more related to absolute SOM content.

4. How available is SON in permafrost-affected soils for N mineralization?

With SOC and TN content being the main control, the tremendous amounts of SOM in permafrost-affected soils of the northern hemisphere (Tarnocai et al 2009, Hugelius et al 2014) facilitate high rates of gross N turnover upon thaw. High SOC and TN concentrations originate from long-term organic matter incorporation over millennia. The SOM accrual is thought to be further enhanced by reduced mineralization due to low temperatures and oxygen limitation, and in particular by physical protection of SOM from microbial attack in frozen soil (Harden et al 2012, Mueller et al 2015). Consequently, increased bioavailability of SOM due to reduced environmental constraints (e.g. higher temperatures, reduced permafrost) in active layers (Oechel et al 1995, 2000, Schuur et al 2008, 2015) supports and explains high gross N turnover rates as outlined in figure 2(b).

Focusing on the prominent mechanisms that stabilize SOM in permafrost-affected soils, (a) the saturation and stabilization due to freezing of SOM and (b) the translocation of plant-derived SOM into deeper soil horizons by cryoturbation, Harden et al (2012) reported modelled N stocks to 3 m soil depth ranging from 4.6 kg N m\(^{-2}\) in cryosols with low or absent cryoturbation to 7.5 kg N m\(^{-2}\) in C-rich permafrost-affected peat soils with strong cryoturbation. The differences in N stocks due to cryoturbation clearly point to the high relevance of the depth distribution of organic N forms within the soil profile. A burial of rather fresh litter-derived SOM by cryoturbation leads to the accrual of SOM with higher C:N ratios at greater soil depth (Treat et al 2016a). The SOM in such cryoturbated pockets contains high amounts of rather undecomposed plant residues (particulate organic matter; POM) (Diochon et al 2013, Mueller et al 2015). This might be caused by a slowed-down protein depolymerization of SOM translocated to greater soil depths possibly due to low abundance of fungi, as reported by Wild et al (2013) for cryosols in Siberia.

Heterotrophic N turnover processes such as ammonification, immobilization and denitrification are depending on the availability of DOC as a labile substrate for microorganisms. This appears relevant for permafrost-affected soils as well—as indicated by a positive correlation between DOC and gross ammonification in our meta-analysis dataset (figure S11). The DOC that leaches from plant residues is rich in rather labile, easily bioavailable SOM compounds (rich in carbohydrates, low in aromatic/aliphatic C) (Surey et al 2020). Thus, the large storage of POM in the form of plant residues as well as of mineral-associated organic matter in permafrost-affected soils (Gentsch et al 2015, Mueller et al 2015) might explain the substantial gross mineral N turnover revealed by our synthetic analysis. The release of soluble and, thus, more bioavailable SOM and SON is also directly affected by physical factors like the frequency of freeze-thaw cycles that have been shown to directly lead to an increased release of DOC and thus increased microbial activity including N\(_2\)O losses (Cui et al 2016, Yang et al 2016, 2018).

Especially DON released from SOM depolymerization at greater permafrost soil depth will have considerable implications, as it is hardly reached by plant roots and thus rather prone to ammonification and losses via denitrification or leaching (Koven et al 2015). With receding permafrost, the release of N by the decomposition of SOM will on the one hand occur in surface soils that are rich in organic matter (i.e. in the active layer where microbial communities are present) due to higher temperatures, and on the other hand in deep-soil N-rich SOM due to increased decomposition (Salmon et al 2018). With ongoing permafrost collapse and the alteration of intact permafrost landforms into water-logged sites (e.g. from permafrost peatland to permafrost-free fen), releasing previously stored SOM (Patzner et al 2020), the newly available N from SOM decomposition will also become more plant-available due to shifting vegetation and increasing rooting depth (Finger et al 2016, Blume-Werry et al 2019, Hewitt et al 2019, Pedersen et al 2020). In a warmer future, fostered root growth and elevated CO\(_2\) mixing ratios might
The C:N ratios in permafrost-affected soils are considerably lower with increased intermixing of mineral material and thus with increasing soil depth from the organic peaty topsoils to mineral subsoils (Kuhry and Vitt 1996, Mueller et al. 2015), with very low C:N values in deeper mineral-rich permafrost layers like Yedoma deposits (Strauss et al. 2015), reflecting the decomposition degree of the stored SOM and possible degradation of SOM prior to sedimentation (e.g. Yedoma). It is well known for soils of the temperate zone that a decrease in C:N ratios with progressing decomposition demonstrates the enrichment in microbiologically immobilized N (Lehmann and Kleber 2015, Kallenbach et al. 2016, Kopittke et al. 2018, 2020), and this can also be assumed for permafrost-affected soils with low C:N ratios. High C:N ratios are known to indicate lower decomposability of fresh SOM due to the nutrient demand of decomposers, while with progressing decomposition C:N ratios become lower due to the loss of C and the microbial retention of N (Schädel et al. 2014). Our data synthesis supports the occurrence of high depolymerization and ammonification under conditions of high SOC and TN concentrations that go along with high C:N ratios. This might reflect the high need for microbial N mining in arctic organic topsoils with high C:N ratios (Lavoie et al. 2011, Sistla et al. 2012). For permafrost-affected soils with rather low C:N ratios of the Tibetan Plateau an increase in N availability was demonstrated to lead to a lowering of the microbial priming of SOM decomposition due to a decreased need for N mining (Chen et al. 2018). While the C:N ratios of permafrost-affected soils have been known to be strongly positively correlated with the release of SOC at accelerated permafrost retreat (Schädel et al. 2014, Kuhry et al. 2020), our data suggest SOC concentration to be a major predictor of the vulnerability of permafrost SOM to N mineralization as well, possibly due to the close link of depolymerization and ammonification.

5. The microbiome of permafrost-affected soils and its role in mineral N cycling

The production and turnover of mineral N in permafrost-affected soils requires a microbial community which is capable to survive and even grow under the psychrophilic conditions of permafrost-affected soils. Microbes developed a number of unique properties during evolution, which helped them to tolerate cold temperatures. The lower limit of microbial activities is ~20 °C (D’Amico et al. 2006), although survival of most spores etc is also possible below that temperature. So even at soil temperatures below ~4 °C, which are typically occurring in soils affected by continuous permafrost, microbial activities are obvious. At such temperatures, microbes depend on small amounts of unfrozen water present in the particular environments and require physiological adaptations (D’Amico et al. 2006, Mackelprang et al. 2017). Microbial communities involved in mineral nutrient cycling are abundant in permafrost-affected soils both in the active (e.g. Yergeau et al. 2010, Lamb et al. 2011, Alves et al. 2013) and permafrost layers (e.g. Hultman et al. 2015). In the face of the diverse needs for adaptation of microbiota to survive in permafrost-affected soils, the high diversity of microbiota found in such environments (Pikuta et al. 2005, Vishnevetskaya et al. 2006, Nicholson et al. 2013, Frank-Fahle et al. 2014, Frey et al. 2016, Monteux et al. 2018, Ivanova et al. 2020) is surprising but in line with our synthesis of significant rates of mineral N turnover. Qi et al. (2017) analyzed samples from an altitude gradient along the Tibetan Plateau and showed that microbial functional diversity and the number of unique genes increased with elevation. However, it must be taken into account that possibly not all deoxyribonucleic acid (DNA) in the frozen soil has been derived from living microbiota, as DNA from dead microorganisms might be highly persistent in such environments and thus the molecular analysis might include also a history of microbes which have been present at the respective sites in the past together with ones being dormant or actually active (Burkert et al. 2019).

Most of the genera obtained by cultivation by Vishnevetskaya et al. (2006) were capable of denitrification as proven by whole genome sequences. This observation was confirmed by a microcosm study which analyzed the effects of cryoturbation in an arctic peatland soil using molecular tools (Palmer et al. 2012). Quantitative polymerase chain reaction (PCR) revealed a higher abundance of bacteria harboring the nitrate reductase narG in cryoturbated than in unturbated peat soil. Bacteria capable to perform nitrite reduction (based on the abundance of the nirS and nirK genes) were also increased in the cryoturbated settings. Interestingly, always the bacteria harboring the nirS gene dominated over those carrying
the nirK gene. The importance of nirS-type denitrifiers in permafrost-affected soils was confirmed in a number of studies from different natural permafrost-affected soils in the northern hemisphere and in alpine soils (Andert et al. 2012, Palmer and Horn 2015, Chen et al. 2019). Global warming may even increase the abundance of nirS-type denitrifiers, mainly in the rhizosphere of shrubs and other plant species (Song et al. 2021). In the study of Palmer et al. (2012), numbers of bacteria capable to transform N\textsubscript{2}O into N\textsubscript{2} were significantly lower compared to nitrite reducers, which also explains the strong increase of N\textsubscript{2}O emissions in the cryoturbated soils after NO\textsubscript{3}− addition. However it must be considered that in the mentioned study only those bacteria were assessed which belong to the clade 1 of nosZ, and not those which harbor the nosZ genes of clade 2, due to the selection of the primers for analysis (Yoon et al. 2016). Calderoli et al. (2018) demonstrated the importance of clade 2 of the nosZ gene for N\textsubscript{2}O reduction in permafrost-affected soils. The authors analyzed sediments from Ushuaia Bay, a subantarctic environment, and found that the majority of nosZ genes identified belong to clade 2 and could be assigned to different bacterial lineages. The analysis of a fosmid metagenomic library from the same site showed that the genomic context of clade 2 variants of nosZ variants was variable, and was accompanied by distinct regulatory elements, suggesting the evolution of differential ecophysiological roles. In a recent study by Hetz and Horn (2021) this observation was confirmed and a strong co-occurrence between *Rhodanobacter* spp. and taxa of the Burkholderiacaeae was found. The authors considered *Burkholderiacaeae* which harbor nosZ genes of clade 2 as key acetate assimilators during complete denitrification in acidic cryoturbated peat of the arctic tundra mainly at pH levels <4. Taking these observations together, it is obvious that the potential for denitrification is well-presented in permafrost-affected soils and functional redundancy for the different groups is high, which strongly contributes to the resilience.

Also the presence of nitrifiers in permafrost-affected soils is well-documented not only by turnover data but also by abundance measurements of the ammonia- and nitrite-oxidizing microbiota. Based on a recent study from Sanders et al. (2019) in which permafrost-affected soils from Siberia were studied, nitrifiers represent 0.6%–6.2% of the total microbial community, as shown by 16S ribosomal ribonucleic acid (rRNA) amplicon sequencing. These numbers are significantly higher compared to what has been described for soils from temperate or tropical regions (Mukhtar et al. 2019). Based on the analysis of the ammonia monooxygenase gene (*amoA*), ammonia-oxidizing bacteria (AOB) were found in nearly all soil types, whereas ammonia-oxidizing archaea (AOA) were only detected in soils with low SOM (Sanders et al. 2019). This finding contradicts a number of other studies, where the importance of AOA was proven under certain settings. For example, a recent study shows that only a few AOA species closely related with *Candidatus Nitrososocosmicus* spp. are fueling nitrification in acidic permafrost peat soils across several arctic sites (Siljanen et al. 2019). Laanbroek et al. (2018) could demonstrate that AOA were significantly more abundant in Brown than in Histic Andosols, while the opposite was observed for AOB when freshly sampled Icelandic Andosols affected by permafrost were analyzed. However, only the numbers of AOB but not the numbers of AOA correlated significantly and positively with potential NH\textsubscript{3} oxidation activities. Also, Alves et al. (2013) who investigated arctic soils demonstrated that AOA were the only ammonia oxidizers detected in five out of eleven soils and that they outnumbered AOB in four of the remaining six. Banerjee and Siciliano (2012) observed strong spatial heterogeneities of AOA and AOB which they could relate to differences in SOC and moisture.

These findings may explain much of the contrasting data published on the abundance pattern of both redundant functional groups of ammonia oxidizers. All studies were in line with the finding that despite high abundance of ammonia oxidizers in permafrost-affected soils, their diversity is low, indicating a need for a special adaptation of AOA and AOB to psychrophilic environments. This was also confirmed by Hayashi et al. (2020) who sampled soils from Langhovde, East Antarctica, and identified only six and ten operational taxonomic units for AOB and AOA, respectively. AOB were dominated by Nitrosospira, which is in line with data from Sanders et al. (2019); Nitrosporphaera and Nitrososomas were the two dominant clusters of AOA. Two recent benchmark studies gave a first insight into the genomes of major ammonia oxidizers which are adapted to permafrost environments. Alves et al. (2019) described the new species *Ca. Nitrososocmicus arcticus*, a novel thaumarchaeon which was enriched from arctic soils. Genomic analyses show that this organism harbors all genes involved in NH\textsubscript{3} oxidation and in C fixation via the 3-hydroxypropionate/4-hydroxybutyrate cycle, characteristic of all AOA, as well as the capability for urea utilization and potentially also for heterotrophic metabolism. Interestingly, the authors observed faster growth rates (based on marker gene counts) at lower temperatures (4°C–8°C) but without detectable NO\textsubscript{2}− production. Sanders et al. (2019) were able to enrich Nitrosospora-like AOB which made up to 50% of the diversity observed in their studies of permafrost-affected soils, and could confirm growth at lower temperatures.

Nitrifiers compete for NH\textsubscript{4}+ with plants in permafrost-affected soils. Indeed it has been shown that in vegetated permafrost peat activity of nitrifiers is limited by the competition for N with
vegetation, while the bare peat surfaces without vegetation have high nitrification activity (Repo et al. 2009, Marushchak et al. 2011, Voigt et al. 2017a). But there is also strong competition for NH$_4^+$ with anammox bacteria, which utilize NH$_3$ under anoxic conditions. Zhao et al. (2018) investigated the diversity, community composition, and abundance of anammox bacteria along an altitudinal gradient on the Qinghai-Tibet Plateau. A molecular detection revealed the presence of anammox bacteria mainly in samples which were more affected by freezing among the two types of soil samples. Results of high-throughput sequencing targeting the hydrazine synthesis β-subunit (hzsB) gene revealed the presence of three known anammox genera (Ca. Brocadia, Ca. Jettenia, and Ca. Kuennenia).

Generally, the high abundance of ammonia oxidizers in permafrost-affected soils indicates a relatively high importance of nitrification, thereby confirming findings of our meta-analysis on gross nitrification rates. While molecular analysis of ammonification is largely missing, the high abundance of ammonia oxidizers in permafrost-affected soils would be very surprising if there was no significant NH$_3$ production. Besides ammonification, an efficient recycling of NO$_3^-$ via dissimilatory nitrate reduction to ammonium (DNRA) might also fuel nitrifiers. However, no clear evidence for a significant abundance and activity of DNRA in permafrost-affected soils exists so far. Most studies which described the mineral N cycle did not consider the nrfA gene, a marker for DNRA. Another possibility for nitrifiers is the alternative use of urea. Many ammonia oxidizers can utilize urea for nitrification because they possess the enzyme urease that hydrolyses urea to NH$_3$ and CO$_2$ (Pomerening-Röser and Koops 2005). The use of urea might be supported by 'reciprocal feeding' where urease-positive nitrite-oxidizing bacteria can provide urease for urease-negative AOB (Daims et al. 2016).

In this respect, also the role of comammox bacteria in permafrost-affected soils which are capable of the complete transformation of NH$_3$ into NO$_3^-$ needs to be clarified. Of course, also the fixation of N$_2$ needs to be considered as a possible path for NH$_3$ formation (see section 6).

Ammonia oxidation in active layers is responding to higher substrate availability, moisture and temperature (Alves et al. 2013, Osborne et al. 2016, Daebeler et al. 2017). There are results showing that warming had a minor effect on microbial communities involved in nutrient cycling including N$_2$O production processes (Lamb et al. 2011). However, according to other studies warming had induced changes in the abundance of genes (Mackelprang et al. 2011, Fenton et al. 2016) and transcripts (Hultman et al. 2015) and increased N$_2$O emissions from permafrost peatland (Voigt et al. 2017b). According to a recent meta-analysis of 93 field warming studies, warming increased N mineralization, N$_2$O emissions and DON, but did not affect the abundance of functional genes relevant for N cycling (Salazar et al. 2020).

6. The role of BNF in permafrost-affected soils

Being an important N input source into soils, BNF is thought to play an important role by facilitating N limitation in the remote and pristine permafrost region (Chapin and Bledsoe 1992, Vitousek et al. 2002, Hobara et al. 2006, Lindo et al. 2013, Stewart et al. 2013). A major group of prokaryotes performing BNF are cyanobacteria. These phototrophic prokaryotes can be associated with certain plants like bryophytes or grasses as facultative epiphytes (Solheim et al. 1996) or endophytes (Turetsky 2003), they can be an obligatory constituent of a lichen (cyanolichens) as symbionts, or free-living in water or topsoils. Another N$_2$-fixing group important in permafrost areas are actinorhizal root symbionts of trees in subarctic ecosystems close to the tree line or in permafrost-rich boreal landscapes.

How N$_2$ fixation influences nutrient availability for microbes and plants is not completely understood (Belnap 2001, Johnson et al. 2005, Knowles et al. 2006, Lagerström et al. 2007, Stewart et al. 2014), especially not for permafrost areas. Generally, N availability can be increased (Zielke et al. 2005, Stewart et al. 2011a, 2011b, 2013, Letendre et al. 2019), but the question is if, when and how exactly BNF triggers ammonification and subsequent nitrification and denitrification with associated gaseous N losses. A prerequisite for BNF-induced N$_2$O production in an ecosystem seem to be low immobilization rates of microbes and plants, as otherwise the fixed N is immediately assimilated (Diaková et al. 2016, Voigt et al. 2020). For example, in arctic environments with high N limitation but N-saturated microorganisms and/or low abundance of plants, like in polar deserts, BNF can fuel N cycling from ammonification to N$_2$O emissions (Stewart et al. 2013, 2014). Another possibility is that plants that are associated with N$_2$ fixers trigger N cycling and N$_2$O emissions themselves (e.g. potentially alders; see section 6.2).

However, since BNF and low N availability are strongly correlated due to down-regulation processes (Vitousek et al. 2002), in many ecosystems N inputs via BNF are often readily taken up and immobilized by microbes and/or plants, preventing N$_2$O emissions. This is why one can find ecosystems with BNF that lack N$_2$O emissions (Diaková et al. 2016). Vice versa, there are ecosystems with high N turnover rates and N$_2$O emissions, but without N$_2$ fixation, e.g. barren peat surfaces (Diaková et al. 2016). N$_2$O emissions from permafrost ecosystems are thus not strictly dependent on BNF, but can be caused solely by internal cycling processes as well. When, however, the microbes or plants that immobilized the fixed N$_2$
die off, the previously immobilized N can become available in the soil in the form of organic N. This fits observations that a big share of dissolved N that N₂ fixers release is organic (Johnson et al. 2005, Stewart et al. 2014). Higher inputs of organic N due to BNF could, after being depolymerized, finally stimulate the production of NH₄⁺ in the long term.

The persisting lack of knowledge on BNF rates is exacerbated by a prevailing use of acetylene reduction assays (ARAs) with controversial conversion factors, suitable for comparative studies, but resulting in doubtful absolute rate numbers. Publications using more reliable, direct ¹⁵N₂ fixation methods in permafrost ecosystems are scarce (e.g. Vile et al., 2014, Rousk et al. 2016b, 2017).

6.1. N fixation from bryophytes, lichens and free-living cyanobacteria

Taking the whole terrestrial (sub-)arctic into account, cyanobacteria are the primary N₂-fixing organisms (Henry and Svoboda 1986, Solheim et al. 1996, Hobara et al. 2006). Lichens do not account for as much BNF as bryophytes due to their lower mass, but their BNF rates per mass are often higher (Schell and Alexander 1973, Crittenden and Kershaw 1978, Gunther 1989, Hobara et al. 2006), e.g. accounting for 24.9 kg N ha⁻¹ yr⁻¹ in a low arctic tundra (Stewart et al. 2011a). As can be seen in table 2, reported BNF rates are higher than commonly thought. In subarctic regions, N₂ fixation rates by moss-associated cyanobacteria were found to range from 0.3 to 5 kg N ha⁻¹ yr⁻¹ (Rousk et al. 2015, 2017). Values are even higher for frost-heaved sites: in subarctic Northern Sweden N₂ fixation accounted for an input of 8.8–11 kg N ha⁻¹ season⁻¹, so that the fixed N exceeded annual plant uptake (Sorensen et al. 2006). In peat of bogs in Alberta, Canada, the mean BNF rate was as much as 25.8 ± 2.4 kg N ha⁻¹ yr⁻¹ (Vile et al. 2014). In high arctic ecosystems BNF rates are lower, but still account for 65%–90% of the total ecosystem N input (Henry and Svoboda 1986, Hobara et al. 2006).

There are also N₂-fixing prokaryotes that are free-living in water/soil and form colonies. They often belong to particularly drought-resistant biological soil crusts (BSCs) together with algae, mosses, liverworts, fungi and lichens (Stewart et al. 2014). Besides decomposition, direct N leakage from crust organisms is substantial (Evans and Lange 2001). For example, 1%–2% of TN in BSCs could be found extracellularly as NH₄⁻N in a semiarid desert in Arizona (Mayland et al. 1966), but comparable data for arctic regions are missing. While bryophytes and lichens are assumed to release fixed N rather slowly due to decomposition or induced by disturbance (Rousk et al. 2016b), free-living cyanobacteria release fixed N into the soil N pool within days to weeks including diffusion (Rousk et al. 2016b) and BSCs do so even faster (Belnap 2001, Rousk et al. 2016b).

Thus, they provide a constant N input into the soil. Although BNF rates by free-living cyanobacteria are generally low, NO and N₂O losses from steppe can be replaced by the fixed N₂ (Holst et al. 2009). It is known that BNF still takes place at low temperatures (Dickson 2000, Arndal et al. 2009), e.g. mats of Nostoc and Calothrix perfom BNF in soils at −4 °C, because photosynthesis is not stopped and cells are not entirely frozen (Davey 1983). A big portion of fixed N is oxidized within the BSCs (Johnson et al. 2005), which might lead to gaseous N emissions under anoxic circumstances.

Fixation rates of 20–25 kg N ha⁻¹ yr⁻¹ argue for a release of N limitation over years and might contribute to the occurrence of mineral N turnover in active layers, while low BNF rates of less than 1 kg N ha⁻¹ yr⁻¹ might not change N availability of the ecosystem significantly. Our literature research led to a hypothetical mean BNF rate of 6.0 kg N ha⁻¹ yr⁻¹ by the different cyanobacterial associations (table 2; overall mean). There is a caveat concerning the reported BNF rates arising from the conversion of monthly or growing season rates to annual rates (ignoring times with lower BNF rates than during measurements). Thus, some rates in table 2 potentially overestimate actual rates.

A warming climate is expected to exert controversial effects on BNF rates. For instance, warming-induced increased shrub abundance in conjunction with increased N availability and turnover could diminish BNF rates (Zackrisson et al. 2004, DeLuca et al. 2007). On the other hand, BNF rates are likely to increase under conditions of increased temperature and soil moisture (Rousk et al. 2018). Thus, there is a need for tracing the fate of fixed atmospheric N₂ into intact plant-soil-microbe systems as well as the use of molecular tools rather than ARAs (a) across various arctic ecosystems and (b) in controlled experiments including differences in moisture and temperature to finally reveal correlations between BNF rates and the N turnover including GHG emissions (Stewart et al. 2013).

6.2. Symbiotic N fixation by trees (Alnus-Frankia association)

Evergreen shrubs, dwarf shrubs and grasses (including sedges) are the most common plant functional types in arctic wetlands, whereas the abundance of tree species is much lower (Bridgham et al. 1996). Because ecosystems without trees are prevailing, overall N fixation in the arctic is dominated by bryophytes, lichens and soil crusts as outlined in section 6.1. However, due to their size any trees capable of BNF represent a very significant N input pathway with great potential to cause mineral N turnover and open the N cycle. Deciduous actinorhizal Alnus spp. constitute the only N₂-fixing tree species in arctic environments, often found close to the southern border of permafrost areas (Hibbs and Cromack 1990,
Table 2. BNF rates of associations with cyanobacteria or rhizobia and of the *Alnus-Frankia* association (mosses marked in green, lichens in yellow, free-living cyanobacteria in orange, BSCs in brown, legumes in dark green, alders in dark orange) as measured at different locations in different ecosystems of permafrost areas. Rates are given in kg N ha\(^{-1}\) yr\(^{-1}\) (or per season if mentioned). Sources and respective methods are shown.

Topic	Associations with N\(_2\) fixers	BNF rate (kg N ha\(^{-1}\) yr\(^{-1}\))	Location	Ecosystem	Source	Method
6.1 N fixation from bryophytes, lichens and free-living cyanobacteria	Peat moss (*Sphagnum fuscum*) with cyanobacteria and methanotrophs	2.6	Near Lake Torneträsk, Abisko, Sweden (subarctic)	Wet heath, dry heath, polygon, forest, mine	Rousk *et al* (2015)	ARA, *in situ*
	Feather moss (*Hylocomium splendens*) with cyanobacteria	0.3	Near Lake Torneträsk, Abisko, Sweden (subarctic)	Wet heath, dry heath, polygon, forest, mine	Rousk *et al* (2015)	ARA, *in situ*
	Peat moss (*S. fuscum*)	1.0 ± 0.1	Near Abisko Scientific Research Station, Sweden (subarctic)	Bog	Rousk *et al* (2016b)	\(^{15}\)N\(_2\) fixation, *in situ*
Mosses with diazotrophs						
Cotton grass and mosses with diazotrophs		5.0	Zackenberg, Greenland (high arctic)	Dry heath (dense moss surface)	Rousk *et al* (2017)	\(^{15}\)N\(_2\) fixation, *in situ*
Mosses with diazotrophs		1.2	Zackenberg, Greenland (high arctic)	Dry heath (water-logged fen)	Rousk *et al* (2017)	\(^{15}\)N\(_2\) fixation, *in situ*
Peat moss (*Sphagnum spp.*)		1.2	Near Abisko Scientific Research Station, Sweden (subarctic)	Wet heath	Sorensen and Michelsen (2011)	ARA (conversion factor from earlier study), *in situ*
Peat mosses (*S. fuscum, Sisyrinchium angustifolium, Sphagnum capillifolium*) with cyanobacteria and methanotrophs		20.5	Daring Lake, Northwest Territories (low arctic)	Xerophytic herb tundra, heath-lichen/ heath-mat tundra, birch hummock, wet sedge meadow	Stewart *et al* (2011a)	ARA (calibrated by using \(^{15}\)N\(_2\) gas), *in situ* + modelling for upscaling
Peat mosses (S. capillifolium)		25.8 ± 2.4	Alberta Bogs, Canada	Peat	Vile *et al* (2014)	ARA (calibrated by using \(^{15}\)N\(_2\) gas), *in situ*
Cyanolichen		0.1	Brooks Lake, Alaska, USA	Tundra + boreal forest (Brooka Lake drainage)	Gunther (1989)	ARA, laboratory
Cyanolichens (Peltigera aphrosta)		0.9	Near Lake Tornetrask, Abisko, Sweden (subarctic)	Wet heath, dry heath, polygon, forest, mine	Rousk *et al* (2015)	ARA, *in situ*
Table 2. (Continued.)

Topic	Associations with N\textsubscript{2} fixers	BNF rate (kg N ha-1 yr-1)	Location	Ecosystem	Source	Method
Cyanolichen (P. aphtosa)		3.5 ± 0.4	Near Abisko Scientific Research Station, Sweden (subarctic)	Heath	Rousk et al (2016b)	15N\textsubscript{2} fixation, in situ
Cyanolichen (Stereocaulon paschale)		24.9	Daring Lake, Northwest Territories (low arctic)	Xerophytic herb tundra, heath-lichen/heath-mat tundra, birch hummock, wet sedge meadow	Stewart et al (2011a)	ARA (calibrated by using 15N\textsubscript{2} gas), in situ + modelling for upscaling
Diazotrophs (including few cyanolichens P. aphtosa)		1.1	Immnavait Watershed (Immnavait Creek), Alaska, USA (arctic)	Meadows	Hobara et al (2006)	ARA (calibrated by using 15N\textsubscript{2} gas), laboratory + modelling for upscaling
Thick moss mats, scattered lichens (mostly P. aphtosa and Peltigera venosa) with diazotrophs		8.8 per season	Shore of Lake Torneträsk, Abisko, Sweden (subarctic)	Frost-heaved moss-covered surfaces	Sorensen et al (2006)	ARA (calibrated by using 15N\textsubscript{2} gas), in situ + laboratory
Scattered mosses, liverworts, lichens (e.g. P. aphtosa) with diazotrophs		2.5 per season	Shore of Lake Torneträsk, Abisko, Sweden (subarctic)	Stable heath vegetation	Sorensen et al (2006)	ARA (calibrated by using 15N\textsubscript{2} gas), in situ + laboratory
Cyanobacteria (mostly Nostocales and Stigonematales)		24.5	Lais River + Vindel River + Pite River, northern Sweden (subarctic)	Alluvial meadow	DeLuca et al (2013)	ARA (calibrated by using 15N\textsubscript{2} gas), in situ
Cyanobacterial algae (especially Nostoc spp.)		0.8	Alexandra Fjord, Ellesmere Island, Canada (high arctic)	Sedge meadows	Henry and Sloboda (1986)	ARA, in situ
Cyanobacterial algae (especially Nostoc spp.)		0.9	Sverdrup Pass, Ellesmere Island, Canada (high arctic)	Wet to mesic sedge-moss meadows	Henry and Sloboda (1986)	ARA, in situ
Organic crust (free-living cyanobacteria)		0.9	Near Lake Torneträsk, Abisko, Sweden (subarctic)	Wet heath, dry heath, polygon, forest, mire	Rousk et al (2015)	ARA, in situ
Cyanobacterial crust		0.6 ± 0.1	Near Abisko Scientific Research Station, Sweden (subarctic)	Polygon-patterned ground with open soil	Rousk et al (2016b)	15N\textsubscript{2} fixation, in situ

(Continued.)
Topic	Associations with N\textsubscript{2} fixers	BNF rate (kg N ha-1 yr-1)	Location	Ecosystem	Source	Method
Organic crust (free-living cyanobacteria)		1.2	Zackenberg, Greenland (high arctic)	Dry heath	Rousk et al (2017)	15N\textsubscript{2} fixation, in situ
Organic crust (free-living cyanobacteria)		11.0 per season	Shore of Lake Torneträsk, Abisko, Sweden (subarctic)	Frost-heaved sorted circles	Sorensen et al (2006)	ARA (calibrated by using 15N\textsubscript{2} gas), in situ + laboratory
Hollow BSC		3.3	Daring Lake, Northwest Territories (low arctic)	Xerophytic herb tundra, heath-lichen/heath-mat tundra, birch hummock, wet sedge meadow	Stewart et al (2011a)	ARA (calibrated by using 15N\textsubscript{2} gas), in situ + modelling for upscaling
Hummock BSC		7.1	Daring Lake, Northwest Territories (low arctic)	Xerophytic herb tundra, heath-lichen/heath-mat tundra, birch hummock, wet sedge meadow	Stewart et al (2011a)	ARA (calibrated by using 15N\textsubscript{2} gas), in situ + modelling for upscaling
Legume (\textit{Astragalus alpinus}) with rhizobia		1.3	Near Lake Torneträsk, Abisko, Sweden (subarctic)	Wet heath, dry heath, polygon, forest, mire	Rousk et al (2015)	ARA, in situ
Legume (\textit{A. alpinus}) with rhizobia		4.2 ± 1.0	Near Abisko Scientific Research Station, Sweden (subarctic)	Transition zone between patterned ground and mixed dwarf shrub heath	Rousk et al (2016b)	15N\textsubscript{2} fixation, in situ
Overall mean		6.0				
Overall median		1.9				

(Continued.)
Topic	Location	Ecosystem	Source	Method	BNF rate (kg N ha\(^{-1}\) yr\(^{-1}\))
6.2 Symbiotic N fixation by trees	Tanana River, 35 km SW of Fairbanks, Alaska, USA	Taiga (floodplain)	Uliassi and Ruess (2002)	ARA incubation of nodules, in situ	140 ± 41
Alnus incana spp. tenuifolia with Frankia bacteria	Tanana River, 35 km SW of Fairbanks, Alaska, USA	Taiga (floodplain), fertilized with phosphorous	Uliassi and Ruess (2002)	ARA incubation of nodules, in situ	28–59
Alnus incana spp. tenuifolia with Frankia bacteria (late succession)	Bonanza Creek Experimental Forest, 35 km SW of Fairbanks, Alaska, USA	Taiga (upland), post-fire succession	Mitchell and Ruess (2009)	ARA incubation of nodules, in situ	6.2 ± 1.2
Alnus viridis spp. fruticosa with Frankia bacteria (late succession)	Bonanza Creek Experimental Forest, 35 km SW of Fairbanks, Alaska, USA	Taiga (floodplain)	Uliassi and Ruess (2002)	ARA incubation of nodules, in situ	6.6 ± 1.2
Alnus viridis spp. fruticosa with Frankia bacteria	Bonanza Creek Experimental Forest, 35 km SW of Fairbanks, Alaska, USA	Taiga, post-fire succession (black spruce forest before fire)	Mitchell and Ruess (2009)	ARA incubation of nodules, in situ	22–107
Alnus viridis spp. fruticosa with Frankia bacteria	Kougarok Hillslope, 103 km from Nome, Seward Peninsula, Alaska, USA	Tundra (alder savanna community)	Salmon et al. (2019)	ARA incubation of nodules, in situ	5.3 ± 1.9
Alnus viridis spp. fruticosa with Frankia bacteria	35 km NW and 40 km NE of Fairbanks, Alaska, USA	Taiga (alder stand already before fire)	Houseman et al. (2020)	ARA incubation of nodules, in situ	33 ± 31
Alnus viridis spp. fruticosa with Frankia bacteria	35 km NW and 40 km NE of Fairbanks, Alaska, USA	Taiga, post-fire succession (alder stand already before fire)	Houseman et al. (2020)	ARA incubation of nodules, in situ	91 ± 30
Pawlowski and Newton 2008). As pioneer species, alders generally increase soil fertility in the long term until successional species take over. BNF by Alnus spp. is mediated by its filamentous bacterial symbiont Frankia (Actinobacteria) at a range similar to Rhizobium-legume symbioses (Hibbs and Cromack 1990, Huss-Danell 1990, 1997, Dawson 2008). BNF of Siberian alder (Alnus hirsuta Turcz. var. sibirica) and other arctic alder species appears at budbreak, peaks at midsummer after full leaf expansion and disappears after all leaves have been shed, thereby following the seasonal change in nitrogenase activity of the nodules (Huss-Danell 1990, Tsutsumi et al 1993, Tobita et al 2013).

Temperate alder forests fix more than 150 kg N ha\(^{-1}\) yr\(^{-1}\) (Uri et al 2011). The annual amount of BNF of a Siberian alder forest stand in Japan was estimated at comparably low 56.4 kg N ha\(^{-1}\), contributing 66.4% to the annual amount of N in leaf litter (Tobita et al 2013). Concerning permafrost areas data are very scarce and hitherto restricted to Alaska (table 2). In tundra, rates are comparably low: annual N\(_2\) fixation was 5.3 ± 1.9 kg N ha\(^{-1}\) yr\(^{-1}\) by alder savannas and 19.5 ± 6.8 kg N ha\(^{-1}\) yr\(^{-1}\) by alder shrublands, with the latter still causing elevated N levels in adjacent plants and soils (Salomon et al 2019). Nitrogen input by late-succession A. viridis in upland of interior Alaska was 6.6 ± 1.2 kg N ha\(^{-1}\) yr\(^{-1}\) (Mitchell and Ruess 2009). However, Alnus spp. in floodplains can show much higher BNF rates of 22–107 kg N ha\(^{-1}\) yr\(^{-1}\) (Ruess et al 2009). At a floodplain of the Tanana River, N\(_2\) fixation in alder stands was 59 ± 11 kg N ha\(^{-1}\) yr\(^{-1}\) or 28 kg N ha\(^{-1}\) yr\(^{-1}\), depending on the ARA conversion factor (Uliassi and Ruess 2002). Alder stands fixed even more N when fertilized with phosphorus (140 ± 41 kg N ha\(^{-1}\) yr\(^{-1}\)) (Uliassi and Ruess 2002). For boreal Alaska, it was estimated that after a fire with moderate intensity, Siberian alder might fix 33 ± 31 kg N ha\(^{-1}\) yr\(^{-1}\) if there had been an alder stand already before the fire, and 91 ± 30 kg N ha\(^{-1}\) yr\(^{-1}\) if there had been a black spruce forest (Houseman et al 2020).

On the one hand, the temperature dependency of BNF might limit annual BNF rates. However, the temperature dependency of BNF by Siberian alder has yet not been analyzed in different environments and may be adapted to the low soil temperatures in permafrost ecosystems. In view of the large influence of BNF on the entire N cycle in permafrost ecosystems, there is a need for research on this topic also with regard to climate warming which might trigger higher BNF rates. In Himalayan alder, BNF per plant increased with plant age, but peaked at the stand level at the age of 15–20 years (Sharma et al 2002). It has not been reported whether BNF stops when a critical amount of N has accumulated at the stand level, as previously observed in an Acacia-Eucalyptus forest in Australia (Pfaustsch et al 2009). Thus, the significance of N\(_2\) fixation of deciduous actinorhizal Alnus spp. for the N dynamics of trees, stands and ecosystems in permafrost areas is presently not understood.

The soil N pool can be significantly increased by alder-associated BNF (Nossov et al 2011). Also, McCaully et al (2021) found first indications for microbially produced NO\(_3^-\) from degradation of alder organic matter. In permafrost peatlands of Northeast China, Ramm et al (personal communication) found gross ammonification and nitrification rates in soils of alder forests to exceed those of adjacent tree-free peatlands by more than an order of magnitude. Possibly such increases in N mineralization are not only facilitated by BNF-induced N inputs and organic matter with lower C:N ratio. It can be speculated that due to the high energy demand of BNF, the temperature in the surrounding of nodules may increase, thereby generally supporting the N dynamics in permafrost-affected soil. This still needs to be studied both in the laboratory and in the field. Possibly, permafrost alder forests, being widespread in arctic and boreal zonobiomes, and increasing in abundance in the circumpolar permafrost region (Sturmi et al 2001, Tape et al 2006, Lantz et al 2010, Frost and Epstein 2014), show a completely atypical N cycle with high mineral N cycling. The latter, combined with anoxic soil conditions, could make such permafrost alder forests hot spots of N\(_2\)O emission.

7. Can atmospheric N deposition contribute to release N limitation in permafrost regions?

Atmospheric transportation of reactive N (Nr) compounds ranges in scales up to thousands of kilometers and hence the very remote parts of the world, e.g. the northern circumpolar permafrost region, also receive substantial Nr deposition. The total deposition of Nr involving organic and inorganic forms has increased from less than 0.1 kg N ha\(^{-1}\) yr\(^{-1}\) in 1860 to the present 0.1–2 kg N ha\(^{-1}\) yr\(^{-1}\) in the northern circumpolar permafrost region (Galloway et al 2004, Dentener et al 2006). A further increase of atmospheric deposition in the region is expected during the 21st century due to increased Nr emissions from global and local sources, e.g. arctic shipping, wildfire and exploitation of natural resources (Lamarque et al 2005, Dentener et al 2006, Peters et al 2011). Organic N deposition may contribute globally on average 20%–30% of total deposition, but its rates remain unknown in most of the northern circumpolar permafrost region (Hodson et al 2005, Kanakidou et al 2016). Inorganic N deposition globally increased by 8% in the recent four decades, which is estimated to be 0.27 kg N ha\(^{-1}\) yr\(^{-1}\) on average in the Arctic according to the GEOS-Chem Chemical Transport Model (Ackerman et al 2019).
A number of N addition experiments have been established to evaluate the effects of atmospheric deposition on arctic and subarctic ecosystems, but most of the experiments are carried out with unrealistically high N addition rates of 40–250 kg N ha\(^{-1}\) yr\(^{-1}\) and a short duration of 1 year. Very few studies simulate atmospheric deposition with more realistic N addition rates, i.e. \(\leq 10\) kg N ha\(^{-1}\) yr\(^{-1}\), for at least 3 years (Gordon et al. 2001, Madan et al. 2007, Arens et al. 2008). The addition of ammonium nitrate (NH\(_4\)NO\(_3\)) with a rate of 5 kg N ha\(^{-1}\) yr\(^{-1}\) significantly increased the chlorophyll content of Polygonum viviparum leaves at an arctic semi-desert in Svalbard, and altered the CO\(_2\) exchange and normalized difference vegetation index at an arctic tundra in Greenland (Madan et al. 2007, Arens et al. 2008). Addition of 5 and 10 kg N ha\(^{-1}\) yr\(^{-1}\) for 3 years caused N saturation, i.e. the situation that soil N availability exceeds plant and microbial demands, in the arctic semi-desert and tundra, respectively. Addition of NH\(_4\)NO\(_3\) with a rate of 10 kg N ha\(^{-1}\) yr\(^{-1}\) to an arctic tundra heath in Svalbard for 3–8 years led to physiological N saturation over 3 kg N ha\(^{-1}\) yr\(^{-1}\) deposition (0.1–10 kg N ha\(^{-1}\) yr\(^{-1}\); table 2) represent the primary pathways of external N input to the arctic and subarctic ecosystems with low nutrient supply.

The increasing frequency of large fires in the Arctic (Holloway et al. 2020, McCarty et al. 2020) might be a decisive factor affecting atmospheric N deposition. In shrubland and forest, often more than 90% of the plant biomass and organic layer is volatilized, e.g. due to pyrodenitrification, while mineral N is accumulating at the site of the fire itself due to the combustion process and mineralization of dead soil microbial biomass (Dannenmann et al. 2018). Also in dry tundra heath a recent study showed fire-induced mineral N increases (Xu et al. 2021). However, implications of arctic fires for N biogeochemistry remain severely understudied (McCarty et al. 2021).

8. Do plants in permafrost ecosystems rather use mineral or organic N?

In general, arctic vegetation is adapted to short growing seasons and relatively low nutrient availability. Due to the perennial nature of numerous arctic plant species, nutrient storage and mobilization minimizes the annual nutrient loss and reduces the demand for annual nutrient uptake required to produce new tissues. In addition, many dominant arctic plant species can use organic N in the soil and atmospheric N\(_2\) either directly, or through root symbiosis with ericoid or ectomycorrhizal bacteria symbiosis, as well as their tripartite symbiosis system (plant-Frankia-ericoid mycorrhiza) (Kielland 1994, Schimel and Chapin 1996, Johansson and Shaver 1999, Dawson 2008, Moore et al. 2018). These two features constitute a competitive advantage compared to other species that dominantly rely on the annual availability of mineral N (Johansson and Shaver 1999, Rennenberg and Schmidt 2010).

Preferential use of organic N versus mineral N by plants from permafrost ecosystems has been reported in either in vivo or in situ uptake studies. For instance, a labeling experiment with intact soil cores from arctic tundra in Alaska indicated that roots of woody Vaccinium spp. acquired up to three times more N from the amino acid glycine than from NH\(_4\)\(^+\) (Walker et al. 2010). Fungistic application reduced N acquisition into plant tissue by 30%–40% indicating that the fungal partner of the ericaceous plant roots of Vaccinium spp. contributes significantly to N nutrition (Walker et al. 2010). Higher uptake rates of amino acid compared to mineral N have also been reported for other plant species growing in permafrost ecosystems (Johansson and Shaver 1999, Moore et al. 2018).

However, application of \(^{13}\)C/\(^{15}\)N-labeled amino acids suggests that some woody shrub species take up amino acid N at least partially subsequent to amino acid degradation as indicated by preferential \(^{15}\)N compared to \(^{13}\)C accumulation (Moore et al. 2018). Apparently, mineral N in the form of NH\(_4\)\(^+\) can be taken up by the roots of arctic vegetation.
In the light of low atmospheric deposition but large ammonification rates found across permafrost ecosystems, mineral N taken up by plants very likely originates from N mineralization of organic matter rather than external inputs from the atmosphere. Nonetheless, the significance of this uptake is species-specific and assessing its contribution to plant N nutrition requires further studies.

Despite preferential N accumulation from amino acids compared to mineral N, leaves and roots of numerous species from permafrost ecosystems contain similar amounts of NO$_3^-$ of soil origin as species from temperate and subtropical ecosystems with higher N availability in the soil (Andrews 1986, Schneider et al. 1996, Simon et al. 2014, Liu et al. 2018). Since also the ratios between leaf and soil NO$_3^-$ contents were similar across ecosystems, it has been concluded that despite low NO$_3^-$ availability, NO$_3^-$ uptake capacities in permafrost are similarly high as in low-latitude ecosystems (Liu et al. 2018). The presence of NO$_3^-$ in both leaves and roots of arctic plant species in the absence of appreciable atmospheric N inputs suggests that at least part of the NO$_3^-$ taken up by the roots is transported to and assimilated in the leaves. In situ assimilation in the leaves of arctic plant species has also been assumed from stable isotope analyses of soil and plant NO$_3^-$, since NO$_3^-$ assimilation by nitrate reductase activity causes an enrichment of 15N and 18O in unamminated NO$_3^-$ (Liu et al. 2018). In a modelling approach, Liu et al. (2018) calculated that NO$_3^-$ uptake can contribute 4%-52% to total leaf N in a range of arctic plant species with particularly low contributions in most ectomycorrhizal plants. This result indicates that mycorrhiza symbiosis is of high significance for the acquisition of DON by plant roots as also observed in previous studies (e.g. Kielland 1994), but that mineral N sources may be particularly important for plants lacking this root symbiosis. It also demonstrates that concluding fluxes of nutrients into plant roots from soil nutrient concentrations can be misleading and that generally NO$_3^-$ cannot be neglected as an N source of arctic plant species.

As a consequence of climate warming, recent studies conducted in alpine ecosystems of the Tibetan Plateau indicated changing soil freeze-thaw front dynamics of permafrost-affected soil in the past decades, i.e. a decreased maximum layer of frozen soil and a delay of beginning and end of the annual frozen period (Wang et al. 2001, Gao et al. 2003, Li et al. 2005). Such changes of soil freeze-thaw dynamics have significantly enhanced concentrations of dissolved organic matter in permafrost-affected soils (Fitzhugh et al. 2001, Herrmann and Witter 2002, Sharma et al. 2006). This increase is thought to be a consequence of the disruption of microbial biomass during thawing and the concomitant release of organic N compounds. However, particularly NH$_4^+$ seems to accumulate in the melt water (Keuper et al 2012, Salmon et al. 2016, Keuper et al 2017, Voigt et al 2017a). It is still a matter of debate, if the significant NH$_4^+$ accumulation in the melt water is a consequence of insufficient root uptake capacity of NH$_4^+$ compared to DON or of a fast rate of ammonification.

Chang et al. (2014) reported that simulated freezing-thawing cycles with elevated thawing periods in the Qilian Mountains (northern Tibetan Plateau), China, increased soil DON concentrations 2.42- and 2.82-fold in Picea crassifolia stands and stands of alpine shrubs/grasses, respectively, compared to control treatments. Thus, thawing and subsequent mineralization can increase plant-available N at the thaw front of permafrost-affected soils. When N availability was experimentally increased at the freeze-thaw front at 45 cm depth, the roots of several shrubs exclusively present at this soil depth were capable of N uptake between autumn and spring, when aboveground tissue was largely senescent (Keuper et al. 2017). Nitrogen fertilization of these roots increased aboveground biomass and N content of the deep-rooting plants at a similar magnitude as shallow N fertilization, showing that N taken up by the roots at the thaw front can be transported upwards effectively. Also labeling experiments with 15N-ammonium chloride indicate that the roots of arctic plant species are able to take up mineral N at soil temperatures close to or even below 0 °C (Edwards and Jefferies 2010), but the quantitative significance of this uptake remains to be elucidated. Thus, thawing of permafrost soil by climate warming provides additional N to deep-rooting, N-limited shrubs for growth and development and, therefore, can be assumed to change plant community composition and to counteract increased C loss from thawing permafrost soils due to enhanced biomass production at enhanced N availability (Keuper et al. 2017). Notwithstanding this, enhanced plant N demand in conjunction with high N losses can also increase N limitation of the vegetation (Kou et al. 2020).

9. Nitrogen losses induced by mineral N production in permafrost-affected soils

Substantial losses of N via gaseous emissions to the atmosphere through nitrification and denitrification and via leaching of mineral N to water bodies are thought to occur from terrestrial ecosystems that are N-saturated, i.e. where N supply exceeds the immediate needs of plants and microbes (Butterbach-Bahl et al. 2013). This has led to the assumption of negligible or small gaseous and aquatic N losses from permafrost-affected soils, where mineral N turnover and N pools where supposed to be small and N tightly recycled between plants, microbes and SOM (Shaver et al. 1992, Buckeridge et al. 2010, Kicklighter et al. 2019).

The generally high ammonification and nitrification rates in active layers of permafrost-affected soils

22
however should also result in significant N losses, even if mineral N limitation prevails due to high microbial immobilization and plant-microbe competition. Furthermore, enhanced N mineralization with warmer temperatures (Salazar et al. 2020) and N release from permafrost (Keuper et al. 2012, Voigt et al. 2017a) will likely increase N losses to the atmosphere and aquatic systems, with important consequences for the ecosystem C balance both on land (via nutrient limitation of plant growth) and in water bodies (via enhanced primary production).

9.1. Gaseous N losses

The gaseous N losses from soils occur mainly in the form of atmospherically inert dinitrogen (N$_2$) (Scheer et al. 2020), the strong GHG nitrous oxide (N$_2$O) (Tian et al. 2020), and, to smaller extent, the atmospherically reactive gases nitric oxide (NO) (Pilegaard 2013) and nitrous acid (HONO) (Su et al. 2011, Oswald et al. 2013). Regarding these gaseous N losses, only those of N$_2$O have been reported for permafrost-affected soils in situ, and even they are understudied compared to gaseous C losses from permafrost regions.

According to a recent review (Voigt et al. 2020), small N$_2$O emissions commonly occur from permafrost-affected soils during the growing season, whereas studies on wintertime N$_2$O exchange in the Arctic are scarce. At the higher end these emissions are comparable to N$_2$O emissions from tropical or agricultural soils. Nitrous oxide emissions during the growing season tend to be higher from peatlands (median with 25th–75th quartiles: 60 (18–481) mg N m$^{-2}$ d$^{-1}$) than from upland soils (34 (6–170) mg N m$^{-2}$ d$^{-1}$) or from wetlands with low organic matter content (19 (8–19) mg N m$^{-2}$ d$^{-1}$). Higher emissions occur from bare soils (455 (165–779) mg N m$^{-2}$ d$^{-1}$) compared to vegetated soils (30 (6–89) mg N m$^{-2}$ d$^{-1}$) (Voigt et al. 2020). As typical for soil N$_2$O fluxes (Butterbach-Bahl et al. 2013), N$_2$O emissions from permafrost-affected soils show high spatial and temporal heterogeneity (Voigt et al. 2020), with high emissions e.g. from bare peat surfaces on permafrost peatlands, reaching up to over 6000 mg N m$^{-2}$ d$^{-1}$ during the growing season (Repo et al. 2009, Maruschak et al. 2011). On the other hand, high N$_2$O emissions have recently been confirmed from Alaskan tussock tundra on a landscape scale with air-borne measurements (Willkerson et al. 2019), suggesting widespread emissions across the landscape. Since N$_2$O is produced during mineral N transformation processes (Butterbach-Bahl et al. 2013), substantial emissions confirm significant microbial production and turnover of mineral N.

Due to lack of direct in situ measurements of N$_2$, NO and HONO from permafrost-affected soils, we can only speculate about their occurrence. But, since these gases are produced by the same mineral N transformation processes as N$_2$O (Butterbach-Bahl et al. 2013, Oswald et al. 2013, Pilegaard 2013), soils with substantial N$_2$O emissions (permafrost peatlands, bare soils) can be considered as the most potential sources for the other gaseous N forms as well. Scheer et al. (2020) estimated that at the global scale N$_2$O comprises approximately 8% (6%–11%) of the terrestrial denitrification flux. Assuming that on average permafrost-affected soils emit 288 mg N m$^{-2}$ d$^{-1}$ in the growing season (Voigt et al. 2020), this would equal to about 0.3 kg N$_2$O-N ha$^{-1}$ growing season$^{-1}$ of 100 d, or eventually 3 kg N ha$^{-1}$ growing season$^{-1}$ of total denitrification as estimated based on the global ratios of N$_2$O to total denitrification provided by Scheer et al. (2020). There is additional direct evidence for N$_2$ release from high-N$_2$O-emitting subarctic peat soils as a result of complete denitrification, i.e. N$_2$O reduction to N$_2$, from application of the acetylene inhibition method (blocking N$_2$O reduction to N$_2$) in vitro (Palmer et al. 2012) and from stable isotope studies of N$_2$O in the pore gas in situ (Gil et al. 2017). Production of NO was observed in a laboratory incubation conducted with Alaskan tundra soils, with strong positive dependence on mineral N content (Yonemura et al. 2019).

9.2. Aquatic N losses

Permafrost landscapes are characterized by low hydrological landscape conductivity, shallow flow paths of water (Sjöberg et al. 2020), and high abundance of water bodies and water-logged soils (Vonk et al. 2015). The magnitude, timing and composition of lateral N losses from land to aquatic systems will change with permafrost thaw processes such as thermokarst erosion (Turetsky et al. 2019) and active layer deepening (Biskaborn et al. 2019), combined with changing precipitation patterns (Bintanja and Andry 2017). The particulate organic N transport by rivers to the Arctic Ocean has been estimated at 695 Gg N and is associated with dissolved N export (DON and mineral N) of equal magnitude (McClelland et al. 2016), and will likely increase in the future with permafrost thaw (Connolly et al. 2020).

There are differences in the magnitude and composition of dissolved N losses by leaching between soil types and layers. Organic soils have a higher potential for overall N leaching losses (DON and mineral N) than mineral soils (Wickland et al. 2018, Fouché et al. 2020). In organic soils, N leaching may be dominated by DON (Wickland et al. 2018, Fouché et al. 2020) and NH$_4^+$ (Fouché et al. 2020). Leaching of NO$_3^-$ may be more important for well-drained mineral soils and is expected to increase with deepening active layers and exposure of mineral soil layers in thermokarst features (Harms and Jones 2012, Harms et al. 2014). This can have great implications for plant nutrition (see section 8).

Interestingly, the content of leachable N is typically higher in permafrost layers compared to active layers (Keuper et al. 2012, Beermann et al. 2017,
Wickland et al. 2018, Fouché et al. 2020), suggesting higher lateral N losses with progressing permafrost thaw (Connolly et al. 2020). Enhanced and persistent mineral N losses via leaching have been observed from permafrost thaw slumps (Bowden et al. 2008, Abbott et al. 2015) and thermokarst gullies (Harms and Jones 2012). Elevated mineral N concentrations observed in arctic rivers (Jones et al. 2005, Bowden et al. 2008) indicate that mineral N losses from permafrost-affected landscapes are increasing.

Besides dissolved N discharge from thermokarst features, substantial N inputs into aquatic systems occur with direct sediment losses associated with wildfires (Abbott et al. 2021) and fluviothermal erosion and thermokarst along river banks (Kanevskiy et al. 2016, Fuchs et al. 2018) and coast-line (Günther et al. 2013). In addition to permafrost thaw processes, longer thaw seasons will likely enhance leaching of mineral N through continued ammonification and nitrification in fall with little N uptake by plants or microbes (Treat et al. 2016b).

10. Mineral N cycling matters: a revised paradigm, persisting knowledge gaps and recommendations for future studies

This review demonstrates that the paradigm of a predominance of organic N cycling in permafrost-affected soils cannot be confirmed by gross N turnover data published during recent years (see figure 1(b)). In contrast, mineral N cycling is present and important in the active layer of permafrost-affected soils to a similar extent as in temperate or even tropical soils and its main processes ammonification and nitrification are similarly dependent on SOC and TN. This is because functional limitations of SOM decomposition, N mineralization and mineral nutrient cycling are largely released upon permafrost thaw so that soil microbial N cycling does not stop at the level of DON in these cold environments. Considering the presence of an abundant microbial community involved in mineral N cycling both in active and permafrost layers, the large C and N stocks of permafrost-affected soils and the fact that the main functional limitation for N cycling is exerted by frozen soil, mineral N turnover might increase in a warmer future. In a changing Arctic, there may be increasing priming and N mining due to increased rooting and exudation, mobilizing additional SOM/SON and accelerating N cycling even more. Permafrost retreat thus bears a high potential not only for C but also for N mineralization even in soils with high C:N ratios.

Our meta-analysis showed that gross ammonification in permafrost ecosystems can be high enough to allow for significant mineral N nutrition of plants which might be especially relevant when no ectomycorrhiza are present. As plants compete strongly for both organic and inorganic N forms with microbes in permafrost areas, net N turnover rates tend to be around zero and do not depict which processes are taking place and at which magnitude. Thus, in fact, net rates might be particularly misleading with respect to permafrost-affected soils, and their widespread use can explain how the old paradigm has established in the first place. While net N mineralization was found to decrease with latitude (and altitude) (Liu et al. 2016, 2017), this is not indicated for gross ammonification and nitrification. High depolymerization rates do not only question the paradigm that depolymerization is the bottleneck of N cycling, but also—together with high ammonification, nitrification and nitrification:ammonification ratios—suggest that N limitation is not particularly pronounced in permafrost-affected soils. Among the wide and diverse range of different permafrost ecosystems, mineral N cycling and associated N losses appear to be especially important in N-rich organic soils, when plant cover is absent and when impacted by cryoturbation or erosion (such as thermokarst). However, more data are needed to reveal influences of different ecosystem types on gross N turnover as no significant differences were found (not even when comparing unvegetated to vegetated ecosystems). With an increasing amount of available data, geographical patterns should be analyzed in more detail in future review articles.

Currently, the process-based and quantitative understanding of N cycling in permafrost-affected ecosystems is still limited by a lack of experimental evidence on gross N turnover rates (particularly on gross protein depolymerization), with regard to seasonal dynamics and dynamics in the vertical soil profile (e.g. along the freezing/thawing front and water table) (table 3). As soils freeze from the surface in autumn/winter there is a phase where the upper part of the active layer is frozen, but is underlain by a non-frozen part. In contrast to temperate soils, below this non-frozen layer there is the permanently frozen core. Currently, nothing is known about N turnover and gas accumulation between the two frozen layers, while it has been shown that these soil conditions are relevant for CH4 release (Mastepanov et al. 2008, Pirk et al. 2015, Zona et al. 2016). Nitrogen turnover processes in frozen soil itself are also generally unknown but could matter as few studies reported for non-permafrost soils. A methodological framework to study N transformation processes in frozen soil is urgently needed to gain insight into annual N cycling in permafrost-affected soils, in particular in tundra uplands and the high arctic. Furthermore, the microbiome performing ammonification is not well-known for permafrost-affected soils. Also processes such as anammox and DNRA are severely understudied (table 3).

There is increasing evidence that arctic plants in addition to DON can use also mineral N forms
Table 3. Key findings of this review, permafrost (PF) research gaps referring to the different research topics explored in this review, and recommendations for future studies.

Research topic	Key findings of this review	Research gaps	Recommendations for future studies
Soil N stocks and gross N turnover	• Gross ammonification and nitrification rates are of similar magnitude in active layers in PF systems compared to temperate/tropical systems.		
• Thawing of PF soil releases functional limitations for N cycling.			
• Gross mineral N cycling across PF ecosystems depends on SOC and TN.			
• High gross nitrification rates question N limitation.			
• Depolymerization is likely not the rate-limiting step for ammonification as depolymerization rates by far exceed ammonification rates, but scarce data.			
• Reported N mineralization rates allow for significant plant mineral N nutrition.			
• Net rates for microbial N turnover are close to zero, and, thus, do not reflect the high dynamic of microbial N turnover in PF-affected soils.	Seasonality remains uncertain as only snapshot studies available for gross rates, no wintertime fluxes.		
Improved quantification of additional N inputs to ecosystems due to PF thawing.			
Gross N turnover in different PF ecosystem types.			
Gross N turnover dynamics in the vertical soil profile and in frozen soil.			
Landscape-scale dynamics of gross N turnover.			
Temperature sensitivity of gross N turnover.			
Importance of depolymerization as a control of ammonification, rates of anammox/DNRA (difficult quantification).			
Re-assessment/comparison of uncertainties associated with methodologies for gross and net rate determination.	15N pool dilution studies in situ with at least seasonal temporal resolution including winter, linking measurement with biogeochemical modelling studies.		
Differentiation of N sources in thawing PF layers by 15N tracing studies.			
In situ studies that cover a wide range of PF systems.			
Depth profiles of N turnover based on in situ incubations, method development for frozen-soil studies.			
Field warming studies and laboratory incubation studies on temperature effects on gross N turnover.			
Methodological framework to quantify these processes.			
Experiments evaluating uncertainties of methodologies.			
Microbiome involved in N turnover	• Nitrifiers and denitrifiers are abundant in PF-affected soils.	Microbiome involved in ammonification, anammox, DNRA.	Linking molecular microbiome with biogeochemical process studies, assessing the role of C:N:P stoichiometry.
BNF	• BNF by bryophytes and lichens might significantly contribute to N input in PF systems, but difficult upscaling (possibly leads to overestimation).		
• Very high BNF potential of N_2-fixing shrubs. | Landscape-scale N_2 fixation, considering seasonal variability.
Relationships between N_2 fixation and N mineralization
Temperature dependency of N_2 fixation.
Symbiotic N_2 fixation by shrubs hardly quantified. | Linking molecular studies with biogeochemical quantification and remote sensing studies to bridge scales.
$^{15}N_2$ tracing studies to assess conversion to soil mineral N.
Laboratory parameterization studies
Study of fixation rates and distribution of alders in PF systems. |

(Continued.)
Research topic	Key findings of this review	Research gaps	Recommendations for future studies
Atmospheric N deposition	• Rates overall seem still low in the Arctic except for fire-induced deposition.	Few measurements available	Network of N deposition measurements in the Arctic
Plant N uptake	• Arctic plants in addition to DON can also use mineral N, in particular in absence of mycorrhiza.	Actual uptake rates uncertain	Plant mineral N uptake rates in intact PF plant-soil systems.
Gaseous N losses	• Relatively high N₂O emissions from arctic soil support the occurrence of large mineral N turnover rates.	Annual fluxes for most representative PF systems considering the high spatiotemporal variability.	Continuous, year-round flux measurements at research stations with dedicated infrastructure.
		HONO, N₂, NO fluxes unknown	First field measurements urgently needed (but challenging methodology).
		Importance of GHG fluxes from surface waters unknown	Measurements of GHG fluxes from water bodies combined with catchment-scale studies on nutrient fluxes.
Aquatic N losses	• River water concentrations indicate a significant role of mineral N leaching.	Information on leaching at site scale missing	Continuous N concentration measurements in creeks/rivers, assessment of lateral N leaching at site scale.
for growth, particularly those which are not in association with mycorrhizal fungi and Frankia bacteria symbioses. Plants relying on mineral N forms may even have a competitive advantage in a future warmer world, when permafrost thawing and climate warming trigger the availability of relatively high amounts of \(\text{NH}_3^+ \) and \(\text{NO}_3^- \) by enhanced microbial mineral N cycling. The significance of higher plants and their interaction with rhizospheric microorganisms for N cycling in permafrost ecosystems are still largely unexplored. Especially how BNF influences N mineralization is not clear. There is a research gap concerning the physiological, biochemical and molecular mechanisms that allow BNF and plant root N uptake at freezing temperatures. Studying interactions of plant physiology with soil biogeochemistry will be decisive for predicting climate change effects on nutrient cycles and GHG balances in warming permafrost ecosystems, especially with regard to alder shrubs (table 3).

The outlined high importance of mineral N cycling in permafrost-affected soils suggests that also gaseous N losses may be higher as previously assumed, but so far only fluxes of \(\text{N}_2 \) have been studied, while reports on other forms of gaseous N losses from permafrost-affected soils (e.g. HONO, NO, \(\text{N}_2 \text{O} \)) are almost completely missing. Findings of high \(\text{N}_2 \text{O} \) emissions from permafrost should not be neglected as they are potentially relevant as another feedback mechanism to climate change. Already today, permafrost-affected soils emit 0.17–1.3 Tg \(\text{N}_2 \text{O} \)–N yr\(^{-1}\) (Voigt et al 2020), i.e. up to 20% of the \(\text{N}_2 \text{O} \) emissions from soils under natural vegetation worldwide (6.6 Tg \(\text{N}_2 \text{O} \)–N yr\(^{-1}\); Ciais et al 2013). It has been estimated that between 7% and 15% of organic C might be released from permafrost in this century (Schuur et al 2015). When analogously assuming that ca. 10% of the organic N store will be released until 2100, and only 1% thereof will be emitted as \(\text{N}_2 \text{O} \) (conservative estimate as 1% is the default \(\text{N}_2 \text{O} \) emission factor of the Intergovernmental Panel on Climate Change for N mineralized from mineral soils; IPCC 2006), this would mean additional 67 Tg \(\text{N}_2 \text{O} \)–N until 2100. This translates into ca. 0.8 Tg \(\text{N}_2 \text{O} \)–N yr\(^{-1}\) which would approximately double current average emissions from permafrost, with a huge uncertainty of this estimate. Regarding aquatic losses, the lateral transport of N (e.g. \(\text{NO}_3^- \) leaching through draining of thermokarst) is an important research field to gain insight into possible nutrient shifts from terrestrial to aquatic ecosystems. Also, arctic fires might not only cause N volatilization and re-deposition at large scales, but accelerate permafrost thaw and possibly promote mineral N cycling at large scales, however this has been rarely assessed for different permafrost ecosystems.

Consequently, the research gaps on permafrost N cycling (table 3) need to be addressed by inter-disciplinary studies involving atmospheric/soil physicists, biogeochemists, microbiologists, hydrologists and plant physiologists to investigate N cycling in intact plant-soil-microbe systems at the landscape scale, thereby considering plant-soil-microbe C:N:P interactions, seasonal dynamics, and vertical soil profile dynamics. Such studies will be a prerequisite for better assessing permafrost nutrient climate feedbacks.

Data availability statement

Any data that support the findings of this study are included within the article.

Acknowledgments

We acknowledge funding provided by DFG (Grant Nos. DA1217/4-1 and SCHL446/41-1) and NSFC (Grant No. 41861134029). We thank two anonymous reviewers for thoughtful and constructive comments.

ORCID iDs

Elisabeth Ramm @ https://orcid.org/0000-0001-5294-487X

Chunyan Liu @ https://orcid.org/0000-0001-6932-8520

Per Ambus @ https://orcid.org/0000-0001-7580-524X

Klaus Butterbach-Bahl @ https://orcid.org/0000-0001-9499-6598

Maija E Marushchak @ https://orcid.org/0000-0002-2308-5049

Carsten W Mueller @ https://orcid.org/0000-0003-4119-0544

Michael Schloter @ https://orcid.org/0000-0003-1671-1125

Henri M P Siljanen @ https://orcid.org/0000-0002-3197-1438

Carolina Voigt @ https://orcid.org/0000-0001-8589-1428

Michael Dannenmann @ https://orcid.org/0000-0001-5924-7612

References

Abbott B W et al 2021 Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic Glob. Change Biol. 27 1408–30

Abbott B W, Jones J B, Godsey S E, Larouche J R and Bowden W B 2015 Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost Biogeosciences 12 3725–40

Ackerman D, Millet D B and Chen X 2019 Global estimates of inorganic nitrogen deposition across four decades Glob. Biogeochem. Cycles 33 100–7
Alves R J E, Kerou M, Zappe A, Bittner R, Abby S S, Schmidt H A, Pfeifer K and Schleper C 2019. Nitrogen oxides by the arctic terrestrial thawmeaehaelota Candidatus Nitrosococcusioicus arcticus is stimulated by increasing temperatures front. Microbiol. 10 1571
Alves R J E, Vanek W, Zappe A, Richter A, Svenning M M, Schleper C and Urich T 2013. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea (mme 17 1620 33)
Andert J, Borjeson G and Hallin S 2012 Temporal changes in methanate oxidizing and denitrifying communities and their activities in a drained peat soil Wetlands 32 1047–55
Andrews M 1986. The partitioning of nitrate assimilation between root and shoot of high plants Plant Cell Environ. 9 511–9
Arens S J T, Sullivan P F and Walker J M 2008. Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high arctic ecosystem J. Geophys. Res. Biogeosci. 113 G03509
Ardal M, Illeris L, Michelsen A, Albert K, Tamstorf M and Hansen B 2009. Seasonal variation in gross ecosystem production, plant biomass, and carbon and nitrogen pools in five high arctic vegetation types. Arct. Antarctic. Alp. Res. 41 164–73
Banerjee S and Siciliano S D 2012. Factors driving potential ammonia oxidation in Canadian arctic ecosystems: does spatial scale matter? Appl. Environ. Microbiol. 78 346–53
Bauters M et al 2018. High nitrogen content in central African forests PNAS 115 549–54
Beermann F, Langer M, Wetterich S, Strauss J, Boike J, Fiencke C, Schirrmeister L, Pfeiffer E-M and Kutzbach L 2017. Permafrost thaw and liberation of inorganic nitrogen in eastern Siberia. Permafrost Perglacial Process. 28 603–18
Belnap J 2001. Biological Soil Crusts: Structure, Function and Management. Ecological Studies (Analysis and Synthesis) vol 150 (Berlin: Springer)
Bintanja R and Andry O 2017. Towards a rain-dominated Arctic Nat. Clim. Change 7 263–7
Biskaborn B K et al 2019. Permafrost is warming at a global scale Nat. Commun. 10 264
Blume-Werry G, Milbau A, Teuber L, Kling H and Hagemann S 2004. Observations of nitrogen oxides in April and May 2001 in five high arctic vegetation types J. Geophys. Res. Biogeosci. 109 G02026
Bridgham S D, Pastor J, Janssens J A, Chapin C and Malterer T J 2000. Effects of abiotic factors on nitrogen fixation by blue-green algae in Antarctica Pol. Biol. 27 123–30
Butterbach-Bahl K, Baggs E M, Dannenmann M, Kiese R and Zechmeister-Boltenstern S 2013. Nitrous oxide emissions from soil: how well do we understand the processes and their controls? Phil. Trans. R. Soc. B 368 20131022
Butterbach-Bahl K and Dannenmann M 2012. Soil carbon and nitrogen interactions and biosphere-atmosphere exchange of methane and nitrous oxide. Recarbonization of the Biosphere—Ecosystems and the Global Carbon Cycle (Berlin: Springer) pp 429–43
Calderoli P A, Espinola F J, Dionisi H M, Gill M N, Jansson J K and Loizaga M 2018. Predominance and high diversity of genes associated to denitrification in metagenomes of subtropical coastal sediments exposed to urban pollution PlaOne 13 e020760
Chang Z Q, Ma Y L, Liu W, Feng Q, Su Y H, Xi H Y and Si J H 2014. Effects of soil freezing and thawing on the carbon and nitrogen in forest soil in the Qilian Mountains. J. Glaciol. Geocryol. 36 200–6
Chapin D M and Bledsoe C 1992. Nitrogen fixation in arctic plant communities Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective (New York: Academic) pp 301–19
Chen L et al 2018. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency Nat. Commun. 9 3951
Chen Y L, Kou D, Li F, Ding J Z, Yang G B, Fang K and Yang Y H 2019. Linkage of plant and abiotic properties to the abundance and activity of N-cycling microbial communities in Tibetan permafrost-affected regions Plant Soil 434 453–66
Chen Z, Ding W, Xu Y, Muller C, Rüttig T, Yu H, Fan J, Zhang J and Zhu T 2015. Importance of heterotrophic nitrification and disimilatory nitrate reduction to ammonium in a cropland soil: evidence from 15N tracing study to literature synthesis Soil Biol. Biochem. 91 65–75
Ciais P et al 2013. Carbon and other biogeochemical cycles Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press) pp 465–570
Connolly T C, Cardenan M B, Burkart G A, Spencer R G M and McChlaid CJ W 2020. Groundwater as a major source of dissolved organic matter to Arctic coastal waters Nat. Commun. 11 1479
Crittenden P D and Kershaw K A 1978. Discovering the role of lichens in the nitrogen cycle in the boreal-arctic ecosystems Bryologue 81 258–67
Cui Q, Song C, Wang X, Shi F, Wang L and Guo Y 2016. Rapid N/O fluxes at high level of nitrate nitrogen addition during freeze-thaw events in boreal peatlands of Northeast China Atmos. Environ. 135 1–8
D’Amico S, Collins T, Marx J C, Feller G and Gerday C 2006. Psychrophilic microorganisms: challenges for life EMBO Rep. 7 385–9
Daebeler A, Bodell P L E, Hefting M M, Rutting T, Jia Z J and Lanbroek H J 2017. Soil warming and fertilization altered rates of nitrogen transformation processes and selected for adapted ammonia-oxidizing archaia in sub-arctic grassland soil Soil Biol. Biochem. 107 114–24
Daims H, Lücker S and Wagner M 2016. A new perspective on ammonia-oxidizing bacteria in five high arctic vegetation types J. Plant Nutr. Soil Sci. 169 277–83
Dannenmann M et al 2018. Postfire nitrogen balance of Mediterranean shrublands: direct combustion losses versus gaseous and leaching losses from the postfire soil mineral nitrogen fluxes. Glob. Change Biol. 24 4053–20
Davey A 1983. Effects of abiotic factors on nitrogen fixation by blue-green algae in Antarctica Pol. Biol. 2 95–100
Dawson J 2008. Ecology of actinorhizal plants Nitrogen-fixing Actinorhizal Symbioses. Nitrogen Fixation Research: Origins and Progress (Berlin: Springer) pp 119–234
DeLuca T H, Zackrisson O, Gentili F, Sellstedt A and Nilsson M C 2007. The partitioning of nitrate assimilation between root and shoot of higher plants J. Geophys. Res. Biogeosci. 112 G03509
Dentener F et al 2006. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation Glob. Biogeochm. Cycles 20 GB4003
Quantifying post-fire Siberian alder distribution, growth, and N-fixation in boreal Alaska PlOS One 15 02338004
Hugelius G et al 2014 Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps Biogeosciences 11 6573–93
Hultman J et al 2015 Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes Nature 521 208–12
Huss-Danell K 1990 The physiology of actinorhizal nodules The Biology of Frankia and Actinorhizal Plants (New York: Academic) pp 129–56
Huss-Danell K 1997 Actinorhizal symbioses and their N2 fixation New Phytol. 136 375–405
IPCC 2006 N2O emissions from managed soils, and CO2 emissions from lime and urea application 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Cambridge: Cambridge University Press)
IPCC 2014 Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Geneva: IPCC)
IPCC 2019 IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (accepted)
Ivanova A A, Zhelezova A D, Chernov T I and Dedysh S N 2020 Linking ecology and systematics of acidobacteria: distinct habitat preferences of the Acidobacteria and Bacteriocellata in tundra soils PlOS One 15 e0230157
Jiang Y, Rocha A V, Rastetter E B, Shaver G R, Mishra U, Ivanova A A, Zhelezova A D, Chernov T I and Dedysh S N 2020 IPCC 2019
Huss-Danell K 1997 Actinorhizal symbioses and their N2 fixation New Phytol. 136 375–405
IPCC 2006 N2O emissions from managed soils, and CO2 emissions from lime and urea application 2006 IPCC Guidelines for National Greenhouse Gas Inventories (Cambridge: Cambridge University Press)
IPCC 2014 Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Geneva: IPCC)
IPCC 2019 IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (accepted)
Ivanova A A, Zhelezova A D, Chernov T I and Dedysh S N 2020 Linking ecology and systematics of acidobacteria: distinct habitat preferences of the Acidobacteria and Bacteriocellata in tundra soils PlOS One 15 e0230157
Jiang Y, Rocha A V, Rastetter E B, Shaver G R, Mishra U, Ivanova A A, Zhelezova A D, Chernov T I and Dedysh S N 2020
Johansson S and Shaver G R 1999 Within-stand nutrient cycling in arctic and boreal wetlands Ecology 80 2139–50
Johnson S L, Budinoff C R, Belnap J and Garcia-Pichel F 2005 Johnson S and Shaver G R 1999 Within-stand nutrient cycling in arctic and boreal wetlands Ecology 80 2139–50
Johnson S L, Budinoff C R, Belnap J and Garcia-Pichel F 2005 Relevance of ammonium oxidation within biological soil crust communities Environ. Microbiol. 7 1–12
Jones D L and Kielland K 2002 Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils Soil Biol. Biochem. 34 209–19
Jones J B, Petrone K C, Finlay J C, Hinman L D and Bolton W R 2005 Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost Geophys. Res. Lett. 32 L02401
Jönsdóttir I S, Callaghan T V and Lee J A 1995 Fate of added ammonium in a moss-sedge arctic community and effects of increased nitrogen deposition Sci. Total Environ. 160/161 677–85
Kallenbach C M, Frey S D and Grandy A S 2016 Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls Nat. Commun. 7 13630
Kanakidou M, Myriokefalitakis S, Daskalakis N, Fanourgakis G, Nenes A, Baker A R, Tsirigidis K and Mihalopoulos N 2016 Past, present and future atmospheric nitrogen deposition J. Geophys. Res. Atmos. 121 9137–51
Kanevskiy M, Shur Y, Strauss J, Jorgenson T, Fortier D, Stephani E and Vasiliev A 2016 Patterns and rates of riverbank erosion involving ice-rich permafrost (Yedoma) in northern Alaska Geomorphology 253 370–84
Keuper F, Dorrepal E, van Bodegom P M, van Logtestijn R S P and Aerts R 2012 A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands Glob. Change Biol. 18 2437–50
Keuper F, van Bodegom P M, Dorrepal E, Weedon J T, van Hal J, van Logtestijn R S P and Aerts R 2012 A frozen feast: thawing permafrost increases plant-available nitrogen in subarctic peatlands Glob. Change Biol. 18 1998–2007
Kiklighter D W, Melillo J M, Monier E, Sokolov A P and Zhuang Q 2019 Future nitrogen availability and its effect on carbon sequestration in northern Eurasia Nat. Commun. 10 5024
Kielland K 1994 Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling Ecology 75 2373–83
Kielland K 1995 Landscape patterns of free amino acids in arctic tundra soils Biogeochemistry 31 85–98
Knowles R D, Pastor J and Biesboer D D 2006 Increased soil nitrogen associated with dinitrogen-fixing, terricolous lichens of the genus Peltigera in northern Minnesota Oikos 114 37–48
Kopittke P M, Dalal R C, Hoeschen C, Li C, Menzies N W and Mueller C W 2020 Soil organic matter is stabilized by organo-mineral associations through two key processes: the role of the carbon to nitrogen ratio Geoderm. 357 113974
Kopittke P M, Hernandez-Soriano M C, Dalal R C, Finn D, Menzies N W, Hoeschen C and Mueller C W 2018 Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter Glob. Change Biol. 24 1762–70
Kou D et al 2020 Progressive nitrogen limitation across the Tibetan alpine permafrost region Nat. Commun. 11 3351
Koven C D, Lawrence D M and Riley W J 2015 Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamicsPNAS 112 3753–7
Kühnel R, Roberts T J, Björkman M P, Iaksonn E, Aas W, Holmén K and Ström J 2011 20-year climatology of NO3− and NH4+ wet deposition at Ny-Ålesund, Svalbard Adv. Meteorol. 2011 406508
Kuhry P, Barra J, Blok D, Elberling B, Faucherre S, Hugelius G, Jorgensen C J, Richter A, Santruckova H and Weiss N 2020 Lability classification of soil organic matter in the northern permafrost region Biogeosciences 17 361–79
Kuhry P and Bitt H D H 1996 Fossil carbon/nitrogen ratios as a measure of peat decomposition Ecology 77 271–5
Laanbroek H J, Veenhuizen P T M, Keijzer R M and Hefington M M 2018 Numerical relationships between microbial and bacterial amines vary by Icelandic andosols Microb. Ecol. 75 204–15
Lagerström A, Nilsson M C, Zackrisson O and Wardle D A 2007 Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression Funct. Ecol. 21 1027–33
Lamarque J-F et al 2005 Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: analysis of nitrogen deposition J. Geophys. Res. Atmos. 110 D19303
Lamb E G, Han S, Lanoil B D, Henry G H R, Brumwell M E, Banerjee S and Siciliano S D 2011 A high arctic soil ecosystem resists long-term environmental manipulations Glob. Change Biol. 17 918–94
Lantz T C, Sgerel S E and Henry G H R 2010 Response of green alder (Alnus viridis subsp. fruticosa) patch dynamics and plant community composition to fire and regional temperature in north-western Canada J. Biogeogr. 37 1597–610
Lavoie M, Mack M C and Schuur E A G 2011 Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils J. Geophys. Res. Biogeosci. 116 G03013
Lehmann J and Kleber M 2015 The contentious nature of soil organic matter Nature 528 60–68
Letendre-A C, Coxson D S and Stewart K J 2019 Restoration of ecosystem function by soil surface inoculation with biocrust in mesic and xeric alpine ecosystems Ecol. Res. 37 101–12
Li L, Zhu X D, Wang Q C and Wang Z Y 2005 Mapping and analyses of permafrost change in the Qinghai Plateau using GIS J. Glaciol. Geocryol. 27 320–8
Li Z et al 2020 Global variations and controlling factors of soil nitrogen turnover rate Earth Sci. Rev. 207 103250
Li Z, Tian D, Wang B, Wang J, Wang S, Chen H Y H, Xu X, Wang C, He N and Niu S 2019 Microbes drive global soil nitrogen mineralization and availability Glob. Change Biol. 25 1078–88
Lindo Z, Nilsson M-C and Gundale M J 2013 Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change *Glob. Change Biol.* 19 2022–35
Liu X-Y et al 2018 Nitrate is an important nitrogen source for arctic tundra plants *PNAS* 115 3398–403
Liu Y, He N, Wen X, Yu G, Gao Y and Jia Y 2016 Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems *Agric. Ecosyst. Environ.* 215 40–66
Liu Y, Wang C, He N, Wen X, Gao Y, Li S, Niu S, Butterbach-Bahl K, Luo Y and Yu G 2017 A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms *Glob. Change Biol.* 23 455–64
Mackelprang R, Burkert A, Haw M, Mahendrarajah T, Conaway C H, Douglas T A and Waldrop M P 2017 Microbial survival strategies in ancient permafrost: insights from metagenomics *ISME J.* 11 2305–18
Mackelprang R, Waldrop M, DeAngelis K M, David M M, Chavarria K L, Blazeviciz S J, Rubin E M and Jansson K J 2011 Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw *Nature* 480 366–71
Madar N I, Deacon I J and Robinson C H 2007 Greater nitrogen and/or phosphorus availability increase plant species’ cover and diversity at a high arctic polar semidesert *Pol. Biol.* 30 559–70
Mao C, Kou D, Chen L, Qin S, Zhang D and Yang Y 2020 Permafrost nitrogen status and its determinants on the Tibetan Plateau *Glob. Change Biol.* 26 2590–302
Maruschak M F, Pitkamaki A, Koponen H, Biasi C, Seppala M and Martikainen P J 2011 Nitrogen uptake by *Nitrospira* sp. nov., a novel amino acid uptake from soil bacteria as a major source of atmospheric reactive nitrogen *Science* 341 1233–5
Palmer K, Biasi C and Horn M A 2013 Denitrification activity of a remarkably diverse fen denitrifier community in Finnish Lapland is *N*-oxide limited *PLoS One* 10 e0123123
Patzer M S et al 2020 Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw *Nat. Commun.* 11 6329
Parmentier F J W, Mastepanov M and Christensen T R 2015 Nitrogen-fixing Actinorhizal *sp. nov., a novel psychrotolerant, facultative anaerobe isolated from Carnobacterium pleistocenium* *ISME J.* 9 239–52
Palmer K, Biasi C and Horn M A 2012 Contrasting denitrifier communities relate to contrasting *N₂O* emission patterns from acidic peat soils in arctic tundra *ISME J.* 6 1038–77
Palmer K and Horn M A 2013 Denitrification activity of a remarkably diverse fen denitrifier community in Finnish Lapland is *N*-oxide limited *PLoS One* 10 e0123123
Meyer H, Kaiser C, Biasi C, Hämmerle R, Rusalimova O, Lashchinsky N, Baranyi C, Daims H, Barsukov P and Richter A 2006 Soil carbon and nitrogen dynamics along a latitudinal transect in western Siberia, Russia *Biogeochemistry* 81 239–52
Mccarthy J L et al 2021 Reviews & syntheses: arctic fire regimes and emissions in the 21st century *Biogeosciences* 18 5053–83
Mccarthy J L, Smith T E L and Turetsky M R 2020 Arctic fires re-emerging *Nat. Geosci.* 13 656–60
McCaulley R E et al 2021 High temporal and spatial nitrate variability on an Alaskan hillslope dominated by alder shrubs *Cryosphere* 2021 Preprint in review (https://doi.org/10.5194/tc-2021-166)
McClelland J W et al 2016 Particulate organic carbon and nitrogen export from major Arctic rivers *Glob. Biogeochem. Cycles* 30 629–43
Meyers T, Weideon T J, Blume-Werry G, Gavazov K and Jassey V E J, Johansson M, Keuper F, Olid C and Dorrepal E 2018 Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration *ISME J.* 12 2129–41
Moore T R, Alfonso A and Clarkson B R 2018 Plant uptake of organic nitrogen in two peatlands *Plant Soil* 433 391–400
Mooshhammer M, Wanek W, Zechmeister-Boltenstern S and Richter A 2014 Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources *Front. Microbiol.* 5 22
Mueller C W, Rethemeyer J, Kao-Kniffin J, Lopezmann S, Hinkel K M and Bockheim J G 2015 Large amounts of labile organic carbon in permafrost soils of northern Alaska *Glob. Change Biol.* 21 2804–17
Mukhtar H, Lim Y P, Lim C M and Lim Y R 2019 Recent abundance of ammonia oxidizing archaea and bacteria influence soil nitrification responses to temperature *Microorganisms* 7 526
Nicholson W L, Krivushin K, Gilichinsky D and Schuerger A C 2013 Growth of *Carnobacterium* spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars *PNAS* 110 666–71
Noll L, Zhang S and Wanek W 2019 Novel high-throughput approach to determine key processes of soil organic nitrogen cycling: gross protein depolymerization and microbial amino acid uptake *Soil Biol. Biochem.* 130 73–81
Nossov D R, Hollingsworth T N, Rues W R and Kielland K 2011 Development of *Ahnus tenuefula* stands on an Alaskan floodplain: patterns of recruitment, disease and succession *J. Ecol.* 99 621–33
Oechel W C, Vourlitis G L, Hastings S J and Bohckarev S A 1995 Change in arctic CO₂ flux over 2 decades—effects of climate-change at Barrow, Alaska *Ecol. Appl.* 5 846–55
Oechel W C, Vourlitis G L, Hastings S J, Zaluzka R C, Hinzman L and Kane D 2000 Acclimation of ecosystem CO₂ exchange in the Alaskan Arctic in response to decadal climate warming *Nature* 406 978–81
OriginLab Corporation 2016 *Origin Version* 2016 (Northampton, MA: OriginLab Corporation)
Osborne B B, Baron J S and Wallenstein M D 2016 Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats *Front. Earth Sci.* 10 1–12
Oswald R et al 2013 HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen *Chem. Commun.* 2305–18
Palmer K, Biasi C and Horn M A 2013 Denitrification activity of a remarkably diverse fen denitrifier community in Finnish Lapland is *N*-oxide limited *PLoS One* 10 e0123123
Patzer M S et al 2020 Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw *Nat. Commun.* 11 6329
Pawlowski K and Newton W E 2008 *Nitrogen-fixing Actinomycetales* Symbioses (Berlin: Springer)
Peters E, Fliberger B and Michelsen A 2020 Foraging deeply: depth-specific plant nitrogen uptake in response to climate-induced *N*-release and permafrost thaw in the high arctic *Glob. Change Biol.* 26 6523–36
Penton C R et al 2016 NifH-harboring bacterial community composition across an Alaskan permafrost thaw gradient *Front. Microbiol.* 7 1894
Peters G P, Nilsen T B, Lindholt L, Eide M S, Glemsrud S, Eide I. and Foglstedt J S 2011 Future emissions from shipping and petroleum activities in the Arctic *Atmos. Chem. Phys.* 11 5305–20
Plautsch S, Rennenberg H, Bell T L and Adams M A 2009 Nitrogen uptake by *Eucalyptus regnans* and *Acacia* spp.—preferences, resource overlap and energetic costs *Tree Physiol.* 29 389–99
Pikuta E V, Marsic D, Bej A, Tang J, Krader P and Hoover R B 2005 *Carnobacterium pleistocenium* sp. nov., a novel psychrotolerant, facultative anaerobe isolated from permafrost of the Fox Tunnel in Alaska *Int. J. Syst. Evol. Microbiol.* 55 473–8
Pileggaard K 2013 Processes regulating nitric oxide emissions from *Pseudomonas* spp. in karstic soils *Phil. Trans. R. Soc. B* 368 20130126
Pirk N, Santos T, Gustafson C, Johansson A J, Tufvesson E, Parmentier F J W, Mattepanov M and Christensen T R 2015
Methane emission bursts from permafrost environments during autumn freeze-in: new insights from ground-penetrating radar. Geophys. Res. Lett. 42 6732–8
Pommerening-Röser A and Koops H-P 2005 Environmental pH as an important factor for the distribution of urease positive ammonia-oxidizing bacteria Microbiol. Res. 160 27–35
Qi Q et al 2017 The biogeographic pattern of microbial functional genes along an altitudinal gradient of the Tibetan pasture Front. Microbiol. 8 975
R Core Team 2019 R: a language and environment for statistical computing R Foundation for Statistical Computing (Vienna: R Foundation for Statistical Computing)
Ramm E et al 2020 The forgotten nutrient—the role of nitrogen in permafrost soils of northern China Adv. Atmos. Sci. 37 793–9
Ravishankara A R, Daniel J S and Portmann R M 2009 Nitrous oxide (N₂O): the dominant ozone-depleting substance emitted in the 21st century Science 326 123–5
Regina K, Nyläinen H, Silvola J and Martikainen P J 1996 Fluxes of nitrous oxide from boreal peatlands as affected by peatland type, water table level and nitrification capacity Biogeochemistry 35 401–18
Rennenberg H and Dannenmann M 2015 Nitrogen nutrition of trees and temperate forests—the significance of nitrogen availability in pedosphere and atmosphere Forests 6 2820–35
Rennenberg H, Dannenmann M, Gesler A, Kreuzwieser J, Simon J and Papan H 2009 Nitrogen balance in forests: nutritional limitation of plants under climate change stresses Plant Biol. 11 4–23
Rennenberg H and Schmidt S 2010 Perennial lifestyle—an adaptation to nutrient limitation? Tree Physiol. 30 1047–9
Repo M E, Suisuiotto S, Lind S E, Jokinen S, Elskov V, Blasi C, Virtanen T and Martikainen P J 2009 Large N₂O emissions from cryoturbated peat soil in tundra Nat. Geosci. 2 189–92
Rousk K, Michelsen A and Rousk J 2016a Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments Glob. Change Biol. 22 4150–61
Rousk K, Sorensen P L, Lett S and Michelsen A 2015 Across-habitat comparison of diazotroph activity in the subarctic Microb. Ecol. 69 778–87
Rousk K, Sorensen P L and Michelsen A 2016b Nitrogen transfer from four nitrogen fixer associations to plants and soils Ecosystems 19 1491–504
Rousk K, Sorensen P L and Michelsen A 2017 Nitrogen fixation in the high arctic: a source of ‘new’ nitrogen? Biogeochemistry 136 213–22
Rousk K, Sorensen P L and Michelsen A 2018 What drives biological nitrogen fixation in high arctic tundra: moisture or temperature? Environ. Res. 9 621–17
Raes R, Anderson M D, McFarland J M, Jørgensen K, Olson K and Taylor D L 2013 Ecosystem-level consequences of symbiotic partnerships in an N-fixing shrub from interior Alaskan floodplains Ecol. Monog. 83 177–94
Raes R W, McFarland J M, Trumner L M and Rohrs-Richey J K 2009 Disease-mediated declines in N-fixation inputs by Amta tenuifolia to early-successional floodplains in interior and south-central Alaska Ecosystems 12 489–508
Salazar A, Rousk K, Jønsdottir I S, Bellenger J and Andresson O S 2020 Faster nitrogen cycling and more fungal and root biomass in cold ecosystems under experimental warming: a meta-analysis Ecology 101 e02938
Salmon V G, Breen A L, Kumar J, Lara M J, Thornton P E, Wullschleger S D and Iversen C M 2019 Alder distribution and expansion across a tundra hillside: implications for local N cycling Front. Plant Sci. 10 1099
Salmon V G, Schädel C, Bracho R, Pegoraro E, Celis G, Mauritz M, Mack M C and Schuur E A G 2018 Adding depth to our understanding of nitrogen dynamics in permafrost soils J. Geophys. Res. Biogeosci. 123 2497–512
Salmon V G, Soucy P, Mauritz M, Celis G, Natali S M, Mack M C and Schuur E A G 2016 Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw Glob. Change Biol. 22 1927–41
Sanders T, Spieck E, Fiencke C, Hølgen J and Pfeiffer E-M 2019 Cold adapted Nitzospira sp.: a potential crucial contributor of ammonia oxidation in cryosols of permafrost-affected landscapes in northeast Siberia Microorganisms 7 699
Schädel C, Schuur E A G, Bracho R, Elberling B, Knoblauch C, Lee H, Luo Y, Shaver G R and Turetsky M R 2014 Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data Glob. Change Biol. 20 641–52
Schue R, Fuchs C, Pelster D E and Butterbach-Bahl K 2020 Estimating global terrestrial denitrification from measured N₂O/(N₂O+NO₃) product ratiosCurr. Opin. Environ. Sustain. 47 72–80
Schell D M and Alexander V 1973 Nitrogen fixation in arctic coastal tundra in relation to vegetation and micro-relief Arctic 26 130–7
Schimel J P and Chapin F S III 1996 Tundra plant uptake of amino acid and NH₄⁺ nitrogen in sites: plants compete well for amino acid N Ecology 77 2142–7
Schimel J and Bennett J 2004 Nitrogen mineralization: challenges of a changing paradigm Ecology 85 591–602
Schlesinger W H 2009 On the fate of anthropogenic nitrogen PNAS 106 203–8
Schneider S, Gessler A, Weber P, Sengbusch D V, Hanemann U and Rennenberg H 1996 Soluble N compounds in trees exposed to high loads of N: a comparison of spruce (Picea abies) and beech (Fagus sylvatica) grown under field conditions New Phytol. 134 103–14
Schuur E A G et al 2008 Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle Bioscience 58 701–14
Schuur E A G et al 2013 Expert assessment of vulnerability of permafrost carbon to climate change Clim. Change 119 319–74
Schuur E A G et al 2015 Climate change and the permafrost carbon feedback Nature 520 171–9
Sharma G, Sharma R, Sharma E and Singh K K 2002 Performance of age series of Alnus incana plantation in the Sikkm Himalaya: nutrient dynamics Ann. Bot. 89 273–82
Sharma S, SzUltra Z, Schilling R, Munch J C and Schlöter M 2006 Influence of freeze-thaw stress on the structure and function of microbial communities and denitrifying populations in soil Appl. Environ. Microbiol. 72 2148–54
Shaver G R, Billings W D, Chapin F S, Giblin A E, Nadelhoffer K J, Oechel W C and Rastetter E B 1992 Global change and the carbon balance of arctic ecosystems Bioscience 42 433–41
Siljanen H M P, Alves R J E, Ronkainen J, Lampaert R E, Bhattachar R H, Bagnoud N, Maruschchak M, Martikainen P J, Schleper C and Biasi C 2019 Archaeal nitrification is a key driver of high nitrous oxide emissions from arctic peatlands Soil Biol. Biochem. 137 107539
Simon J and Papen H 2009 Nitrogen balance in forests: availability in pedosphere and atmosphere Glob. Change Biol. 15 22–32
Sjöberg Y, Jan A, Painter S L, Coon E T, Carey M P, O’Donnell J A and Sistla S A, Asao S and Schimel J P 2012 Detecting microbial activity from tussock and shrub soil in permafrost peatland Microorganisms 1 55
Song Y, Jiang L, Song C, Wang X, Ma X, Zhang H, Tan W, Gao J, Duan Y, Liu Z, Li S and Hou A 2021 Microbial abundance and enzymatic activity from tussock and shrub soil in permafrost peatland after 6-year warming Front. Plant Sci. 12 10999
Staaf J, Aalto L, Kändal E and Västlag H 1996 Nitrogen fixation in arctic vegetation and soils from Svalbard, Norway Polar. Biol. 16 16–20
Steffen K, Yohe G, Dowlatabadi H, Hammitt J K, Kasperson R E, Mahler M R, Rose J L and Wotipka P 2002 Global climate change: potential for emerging threats and new opportunities Science 296 641–4
Sollins B, Endal A and Västlag H 1996 Nitrogen fixation in arctic vegetation and soils from Svalbard, Norway Polar. Biol. 16 16–20
Song Y, Yang H, Song C, Wang X, Ma X, Zhang H, Tan W, Gao J and Hou A 2021 Microbial abundance and enzymatic activity from tussock and shrub soil in permafrost peatland after 6-year warming Ecol. Indic. 126 107589
Sorensen P L, Jonasson S and Michelsen A 2006 Nitrogen fixation, denitrification, and ecosystem nitrogen pools in relation to vegetation development in the subarctic Arct. Antarct. Alp. Res. 38 263–72
Sorensen P L and Michelsen A 2011 Long-term warming and litter addition affects nitrogen fixation in a subarctic heath Glob. Change Biol. 17 528–37
SPSS Inc 1998 SPSS for Windows Version 8.0 (Chicago, IL: SPSS Inc.)
Stewart K J, Brummell M E, Coxson D S and Siciliano S D 2013 How is nitrogen fixation in the high arctic linked to greenhouse gas emissions? Plant Soil 362 215–29
Stewart K J, Grogan P, Coxson D S and Siciliano S D 2014 Topography as a key factor driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems Soil Biol. Biochem. 70 96–112
Stewart K J, Grogan P and Coxson D 2011a Nitrogen inputs by associative cyanobacteria across a low arctic tundra landscape Arct. Antarct. Alp. Res. 43 267–78
Stewart K J, Lamb E G, Coxson D S and Siciliano S D 2011b Bryophyte-cyanobacterial associations as a key factor in N\textsubscript{2}-fixation across the Canadian Arctic Plant Soil 344 335–46
Strauss J, Schirrmeister L, Mangelsdorf K, Eichhorn L, Wetterich S and Herzschu U 2015 Organic-matter quality of deep permafrost carbon—a study from Arctic Siberia Biogeosciences 12 2227–45
Street L E, Burns N R and Woodin S J 2013 Slow recovery of high arctic heath communities from nitrogen enrichment New Phytol. 206 682–95
Sturm M, Racine C and Tape S D 2001 Climate change: increasing shrub abundance in the Arctic Nature 411 546–7
Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner F X, Andreae M O, Cheng P, Zhang Y and Pöschl U 2011 Soil nitrite as a source of atmospheric HONO and OH radicals Science 333 1616–8
Surey R, Schimpf C M, Saubelt L, Mueller C W, Rummel P S, Dittert K, Kaiser K, Böttcher J and Mikutta R 2020 Potential nitrite as a source of atmospheric HONO and OH radicals J. Geophys. Res. Biogeosci. 78 78–94
Tarnocai C, Canadell J G, Schuur E A G, Kuhry P, Mazhitova G and Zimov S 2009 Soil organic carbon pools in the northern circumpolar permafrost region Glob. Biogeochem. Cycles 23 GB2023
Tian H et al 2020 A comprehensive quantification of global nitrous oxide sources and sinks Nature 586 248–56
Tobita H, Hasegawa S F, Yazaki K, Komatsu M and Kitao M 2013 Nitrogen fixation in primary succession on the Tanana river floodplain Ecology 83 88–103
Uri V, Löhmus K, Mander Ü, Ostonen I, Aasaar J, Maddison M, Helmisari H S and Augustin J 2011 Long-term effects on the nitrogen budget of a short-rotation grey alder (Alnus incana (L.) Moench) forest on abandoned agricultural land Ecol. Eng. 37 920–30
Vile M A et al 2014 N\textsubscript{2}-fixation by methanotrophs sustains carbon and nitrogen accumulation in pristine peatlands Biogeochemistry 121 317–28
Vishnivetskaya T A, Petrova M A, Urbanke J, Ponder M, Moyer C L, Gilichinsky D A and Tiedje J M 2006 Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods Astrobiology 6 400–141
Vitousek P M et al 2002 Toward an ecological understanding of biological nitrogen fixation Biogeosciences 57/58 1–45
Voigt C et al 2017a Increased nitrous oxide emissions from arctic peatlands after permafrost thaw PNAS 114 6238–43
Voigt C, Lamprecht R E, Maruschak M E, Lind S E, Novakovskiy A, Aurela M, Martikainen P J and Biasi C 2017b Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane, and nitrous oxide Glob. Change Biol. 23 3121–38
Voigt C, Maruschak M E, Abbott B W, Biasi C, Elberling B, Siciliano S D, Sonnentag O, Stewart K J, Yang Y and Martikainen P J 2020 Nitrous oxide emissions from permafrost-affected soils Nat. Rev. Earth Environ. 1 420–34
von J E K et al 2015 Reviews and syntheses: effects of permafrost thaw on arctic aquatic ecosystems Biogeosciences 12 7129–67
Wagner-Riddle C, Congreves K A, Abalos D, Berg A A, Brown S E, Ambadhan J T, Gao X, and Tenuta M 2017 Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles Nat. Geosci. 10 279–83
Walker J F, Johnson L C and Simpson N B 2010 Application of fungistics in soil reduces N uptake by an arctic ericoid shrub (Vaccinium vitis-idaea) Mycolgia 102 822–34
Wanek W, Mooshammer M, Blöchel A, Hanreich A and Richter A 2010 Determination of gross rates of amino acid production and immobilization in decomposing leaf litter by a novel 15N isotope pool dilution technique Soil Biol. Biochem. 42 1293e1302
Wang C, H, Dong W J and Wei Z G 2001 The feature of seasonal frozen soil in Qinghai-Tibet Plateau Acta Geogr. Sin. 56 523–31
Wang C et al 2016 Climate change amplifies gross nitrogen turnover in montane grasslands of central Europe in both summer and winter seasons Glob. Change Biol. 22 2963–78
Weedon J T, Kovalchuk G A, Aerts R, van Hal J, van Logtestijn R, Tas N, Roling W F M and van Bodegom P M 2012 Summer warming accelerates sub-arctic peatland nitrogen cycling without changing enzyme pools or microbial community structure Glob. Change Biol. 18 138–50
Weintraub M N and Schimel J P 2005 The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils Biogeochemistry 73 339–80
Wild B et al 2015 Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia Glob. Biogeochem. Cycles 29 2967–82
Wild B et al 2018 Amino acid production exceeds plant nitrogen demand in Siberian tundra Environ. Res. Lett. 13 034002
Wolf B, Alaei S, Bengtson P, Bode S, Boeckx P, Schnecker J, Mayerhofer W and Rütting T 2017 Short-term carbon input increases microbial nitrogen demand, but not microbial nitrogen mining, in a set of boreal forest soils Biogechemistry 136 261–78
Wolf B et al 2018 Amino acid production exceeds plant nitrogen demand in Siberian tundra Environ. Res. Lett. 13 034002
Wild B, Alaei S, Bengtson P, Bode S, Boeckx P, Schnecker J, Mayerhofer W and Rütting T 2017 Short-term carbon input increases microbial nitrogen demand, but not microbial nitrogen mining, in a set of boreal forest soils Biogechemistry 136 261–78
Willemsen J, Dobosy R, Sayres D S, Healy C, Dumas E, Baker B and Anderson J G 2019 Permafrost nitrous oxide emissions observed on a landscape scale using the airborne eddy-covariance method Atmos. Chem. Phys. 19 4257–68
Wolf B, Zheng X, Brüggemann N, Chen W, Dannennmann M, Han X, Sutton M A, Wu H, Yao Z and Butterbach-Bahl K 2010 Grazing-induced reduction of natural nitrous oxide release from continental steppe Nature 464 881–4
Woodin S J 1997 Effects of acid deposition on arctic vegetation
Ecology of Arctic Environments (Oxford: Blackwell Science)
pp 219–39
Wu H, Dannenmann M, Wolf B, Han X G, Zheng X and
Butterbach-Bahl K 2012 Seasonality of soil microbial
nitrogen turnover in continental steppe soils of Inner
Mongolia Ecosphere 3 34
Wu X, Chen Z, Kiese R, Fu J, Oschwendtner S, Schloter M, Liu C,
Butterbach-Bahl K, Wolf B and Dannenmann M 2020
Dinitrogen (N$_2$) pulse emissions during freeze-thaw cycles
from montane grassland soil Biol. Fertility Soils 56 959–72
Xu W, Lambæk A, Holm S S, Furbo-Halken A, Elberling B and
Ambus P L 2021 Effects of experimental fire in combination
with climate warming on greenhouse gas fluxes in arctic
tundra soils Sci. Total Environ. 795 148847
Yang G et al 2018 Magnitude and pathways of increased nitrous
oxide emissions from uplands following permafrost thaw
Environ. Sci. Technol. 52 9162–9
Yang Z, Gao J, Yang M and Sun Z 2016 Effects of freezing intensity
on soil solution nitrogen and microbial biomass nitrogen in
an alpine grassland ecosystem on the Tibetan Plateau, China
J. Arid Land 8 749–59
Yergeau E, Hogues H, Whyte I G and Greer C W 2010 The
functional potential of high arctic permafrost revealed by
metagenomic sequencing, qPCR and microarray analyses
ISME J. 4 1206–14
Yonemura S, Uchida M, Iwahana G, Kim Y and Yoshikawa K 2019
Technical advances in measuring greenhouse gas emissions
from thawing permafrost soils in the laboratory Pol. Sci.
19 137–45
Yoon S, Nissen S, Park D, Sanford R A and Löffler E 2016 Clade I
nosZ from those harboring clade II nosZ Appl. Environ.
Microbiol. 82 3791–800
Zackrisson O, DeLuca T H, Nilsson M C, Sellstedt A
and Berglund I M 2004 Nitrogen fixation increases
with successional age in boreal forests Ecology
85 3327–34
Zhao S, Zhuang L, Wang C, Li Y, Wang S and Zhu G 2018
High-throughput analysis of anammox bacteria in
wetland and dryland soils along the altitudinal gradient
in Qinghai–Tibet Plateau Microbiol. Open
7 e536
Zielke M, Solheim B, Spjelkavik S and Olsen R A 2005 Nitrogen
fixation in the high arctic: role of vegetation and
environmental conditions Arct. Antarct. Alp. Res.
37 372–8
Zona D et al 2016 Cold season emissions dominate the arctic
tundra methane budget PNAS 113 40–45