Review of open source tools for PV modeling

Will Holmgren, U. Arizona
Clifford Hansen, Sandia National Lab
Joshua Stein, Sandia National Lab
Mark Mikofski, DNV-GL
Goals for this talk

• Promote the use of open source software in the PV modeling community

• Summarize the state of open source for PV modeling

• Stimulate discussion of how to support open source PV modeling projects in the future
Why use open source PV tools?

• *The Scientific Paper is Obsolete* (The Atlantic, April 2018)

• Encourages reproducibility and replicability in science

• Open source analyses encourage transparency and collaboration

• Project financing soft costs could be reduced through transparent, vetted algorithms

• More people looking at code, using it in different situations may yield more robust tools

• Modify the code to make it work better for you
Name	Purpose	Years Developed	Documentation Website	Development Website	Primary Languages	License
PVLib Matlab	General purpose PV modeling	2012 - *	pvpmc.sandia.gov	github.com/sandialabs/MATLAB_PV_LIB Matlab	Matlab	BSD 3
PVLib Python	General purpose PV modeling	2013 - *	pvlib-python.readthedocs.io	github.com/pvlib/pvlib-python	Python	BSD 3
System Advisory Model	Desktop app for PV, wind, CSP modeling, financial	2013 - *	sam.nrel.gov	github.com/NREL/SAM	C++	Mixed
ssc	Compute modules for SAM	2010 - *	sam.nrel.gov	github.com/nrel/ssc	C, C++	Mixed
rdtools	PV degradation	2017 - *	github.com/NREL/rdtools	github.com/NREL/rdtools	Python	MIT/GPL 3
PVFree	API for obtaining PV modeling parameters	2015 - *	pvfree.herokuapp.com	github.com/SunPower/pvfree	Python	Unlicensed
SolarUtils	Python wrappers of C solar position and spectral decomposition	2016	github.com/SunPower/SolarUtils	github.com/SunPower/SolarUtils	Python	BSD 3
Pecos	Performance monitoring	2016 - *	pecos.readthedocs.io	github.com/sandialabs/pecos	Python	BSD 3
Solpy	General purpose PV modeling	2011-2015	solpy.readthedocs.io	github.com/nrcharles/solpy	Python	LGPL 2.1
PVMismatch	IV curve calculator for mismatched cells	2012 - *	sunpower.github.io/PVMismatch/	github.com/SunPower/PVMismatch	Python	BSD 3
photovoltaic	General purpose PV modeling	2017 - *	github.com/trautsned/photovoltaic	github.com/trautsned/photovoltaic	Python	GPL 3
feedinlib	PV timeseries modeling	2015 - *	github.com/oemof/feedinlib	github.com/oemof/feedinlib	Python	GPL 3
CASSYS	PV system modeling	2015 - *	github.com/CanadianSolar/CASSYS	github.com/CanadianSolar/CASSYS	Excel, C#	BSD 3
Two development models

I giveth thee mostly-finished software that I’ve been toiling on in private

- SAM/ssc
- PVLIB Matlab
- Rdtools

Let’s make some software in the open, warts and all

- PVLib Python
- PVMismatch
- feedinlib

My recommendation: choose what works for you, but don’t be afraid to develop openly
Licenses

• Permissive: BSD 3, MIT
• Restrictive (copy left): GPL 3, LGPL 2.1
• Dual: Mixed GPL 3/MIT
• Unlicensed

• I urge you to:
 • Spend 15+ minutes reading about licenses (multiple times)
 • Choose the license consistent with what you want – not your lawyers
 • License all of your code (unlicensed != public domain)
Funding

SHOW ME THE MONEY!!!!!!!
Funding

Source of funds

Kind of funds	Public	Private
Direct	DOE support PVLib Matlab & SAM	Southern/EPRI funded UA to add solar forecasts to PVLib Python
Indirect	DOE supports this workshop, which helps all of us.	SunPower, First Solar, DNV-GL, IMS, Sunshine Analytics... engineers contribute to open source software

There are many ways you can support open source software!
Funding

• *Show me the impact!* – person/group with the money

• Hard to trace impact

• Harder still to quantify impact
Funding

• Easy way for SETO to support open source:
 • FOA can require that software be released as open source
 • At least encourage it in the data management plan!
Community

- Strong open source projects have strong user and developer communities

- Communities need help to grow and remain healthy
 - The PVPMC workshop is great for that
 - What else can we do?

- Who decides when code is ready to be merged into a package?

- Most people behave professionally, but not all
 - Formal codes of conduct may help
Resources

• Version control, GitHub, package management stymies people – we will help you!

• But my code is no good – we will help you!

• Let’s learn from others:
 • SciPy Conference
 • AMS Python Symposium
 • opensource.org
 • opensource.guide
 • Roads and Bridges, N. Eghbal
 • contributor-covenant.org

https://stackoverflow.com/questions/15651576/github-team-usage
Conclusions

• It’s wonderful that we can now have an open source PV review talk

• We should talk more about project scope, ambition, and collaboration, but...

• It’s also ok for open source projects to compete a little bit

• “Funding” for open source PV tools is complicated and evolving

• Future success or failure is determined by everyone in this room
 • Contribute as you can
 • Be respectful above all else

See Holmgren et. al., PVSC 2018 for more