Model Embeddability for Symmetric Group-Based Models

Muhammad Ardiyansyah, Dimitra Kosta, and Kaie Kubjas

May 15, 2020

Abstract

We study model embeddability, which is a variation of the famous embedding problem in probability theory, when apart from the requirement that the Markov matrix is the matrix exponential of a rate matrix, we additionally ask that the rate matrix follows the model structure. We provide a characterisation of model embeddable Markov matrices corresponding to symmetric group-based phylogenetic models. In particular, we provide necessary and sufficient conditions in terms of the eigenvalues of symmetric group-based matrices. To showcase our main result on model embeddability, we provide an application to hachimoji models, which are eight-state models for synthetic DNA. Moreover, our main result on model embeddability, enables us to compute the volume of the set of model embeddable Markov matrices relative to the volume of other relevant sets of Markov matrices within the model.

1 Introduction

The embedding problem for stochastic matrices, also known as Markov matrices, deals with the question of deciding whether a stochastic matrix M is the matrix exponential of a rate matrix Q. A rate matrix, also known as a Markov generator, has non-negative non-diagonal entries and row sums equal to zero. If a stochastic matrix satisfies such a property and can be expressed as a matrix exponential of a rate matrix, namely $M = e^{Qt}$, then M is called embeddable. Applications of the embeddability property vary from biology and nucleotide substitution models [37] to mathematical finance [20]. For a first formulation of the embedding problem see [12]. An account of embeddable Markov matrices is provided in [11]. The embedding problem for 2×2 matrices is due to Kendall and first published by Kingman [27], for 3×3 matrices is fully settled in a series of papers [4, 10, 21, 20, 23], while for 4×4 stochastic matrices has been recently solved in [7]. In general, when the size n of the stochastic matrix is greater than 4, we lack full understanding of the embeddable $n \times n$ stochastic matrices. In the present paper we study the model embedding problem for $n \times n$ stochastic matrices coming from phylogenetic models.

Phylogenetics is the field that aims at reconstructing the history of evolution of species. A phylogenetic model is a mathematical model used to understand the evolutionary process given data sets. The most popular phylogenetic models are nucleotide substitution models.
which use aligned DNA sequence data to study the molecular evolution of DNA. A comprehensive treatment of phylogenetic methods is given by Felsenstein, who is considered the father of statistical phylogenetics, in his seminal book [15]. Algebraic and geometric methods have been employed with great success in the study of phylogenetic models leading to an explosion of related research work and the establishment of the field of phylogenetic algebraic geometry, also known as algebraic phylogenetics; see [1, 3, 5, 9, 17, 13, 28, 32, 35] for a non-exclusive list of publications.

To build such a phylogenetic model, we first require a phylogenetic tree, which is a directed acyclic graph (DAG) comprising of vertices and edges representing the evolutionary relationships of a group of species. Let us denote by $T = (V(T), E(T))$ the phylogenetic tree, where $V(T)$ is the set of vertices and $E(T)$ the set of edges. The vertices with valency 1 are called the leaves of the tree and are denoted by $\Lambda(T)$. The tree is considered rooted and the direction of evolution is from the root towards the leaves. On each vertex of the tree T, we associate a random variable with k possible states, where in most cases k is taken to be 2, for the binary states $\{0, 1\}$, or 4, to represent the four types of DNA nucleotides $\{A, C, G, T\}$. We also require a mutation matrix $M^{(e)}$ corresponding to each edge $e \in E(T)$ of the tree, where the entries of this $k \times k$ matrix $M^{(e)}$ represent the probabilities of transition between states. In a phylogenetic tree, the leaves correspond to extant species and so the random variables at the leaves are observed, while the interior vertices correspond to extinct species and so the random variables at the interior vertices are hidden.

In this paper we are focusing on symmetric group-based substitution models. Substitution models are a class of phylogenetic models which make the fundamental assumption that sites evolve independently according to a continuous-time Markov process and for which the transition matrices are stochastic matrices of the form $M^{(e)} = \exp(tQ^{(e)})$. Group-based models are a special class of phylogenetic models, in which the matrices $M^{(e)}$ are pairwise distinct, but they can all be simultaneously diagonalizable by a linear change of coordinates given by the discrete Fourier transform of an abelian group. For example, the Cavender-Farris-Neyman (CFN) model [8, 14, 31], as well as the Jukes-Cantor (JC) [24], the Kimura-2 parameter (K2P) [25] and the Kimura-3 parameter (K3P) [26] models for DNA are all group-based phylogenetic models. In [35], it is established that through the discrete Fourier transform group-based models correspond to toric varieties, which are geometric objects with nice combinatorial properties. We are interested in symmetric group-based substitution models. Namely, apart from distinct and simultaneously diagonalizable, the transition matrices $M^{(e)}$ are also symmetric square matrices. Symmetric models are a subset of a special class of models called time-reversible models, where the Markov process appears identical when moving forward or backward in time.

The classical embedding problem is concerned with finding a rate matrix Q, given a square stochastic matrix M. When we impose the additional assumption that the rate matrix Q follows the corresponding model conditions, we arrive at a different refined notion of embeddability called model embeddability. For instance, properties of model embeddability for reversible stochastic matrices, namely when we additionally require that the rate matrix Q is reversible, are studied in [22], while the embeddability of circulant and equal-input stochastic matrices is studied in [2]. In the current paper, we focus on the (G, L)-embeddability for $n \times n$ matrices corresponding to symmetric group-based substitution models. The (G, L)-
embeddability means that we require that the rate matrices Q preserve the symmetric group-based structure imposed by the abelian group G and the symmetric labelling L. Model embeddability for symmetric group-based models is relevant both for homogeneous and inhomogeneous time-continuous processes, as group-based models are Lie Markov models, and hence multiplicatively closed [36, 37]. Our results apply to irreducible time-reversible group-based models, as in this case the rate matrices Q are symmetric according to [32, Lemma 17.2]. A characterisation of the set of embeddable and model-embeddable matrices corresponding to the Jukes-Cantor, Kimura-2 and Kimura-3 DNA substitution models is given in [6, 34]. Although model embeddability, which is a refined notion of embeddability imposed by the model structure, implies classical embeddability, the converse is generally not true.

The main result of this paper is a characterization of (G, L)-embeddability for any abelian group G equipped with a symmetric G-labeling function L in Theorem 4.1. We provide necessary and sufficient conditions which the eigenvalues of the stochastic matrix of the model need to satisfy for the matrix to be (G, L)-embeddable. To showcase our result, we first introduce three group-based models with the underlying group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, based on the hachimoji DNA system introduced in [19]. Hachimoji, a Japanese word meaning “eight letters”, is used to describe a synthetic analog of the nucleic acid DNA, where we have the four natural nucleobases $\{A, C, G, T\}$ and furthermore an additional four synthetic nucleotides $\{P, Z, B, S\}$. We then apply Theorem 4.1 to characterise the model embeddability for the three hachimoji DNA models. The three models are called hachimoji 7-parameter, hachimoji 3-parameter and hachimoji 1-parameter models, which can be thought of as generalisations of the Kimura 3, Kimura 2 and Jukes-Cantor models respectively. Finally, the characterisation of model embeddability in terms of eigenvectors enables us to compute the volume of the (G, L)-embeddable Markov matrices and compare this volume with volumes of other relevant sets of Markov matrices. For the general Jukes-Cantor model, which includes the hachimoji 1-parameter model, the volumes can be derived exactly; for the hachimoji 3-parameter model and for the hachimoji 7-parameter model symbolically and numerically.

The outline of the paper is the following. Section 2 gives a mathematical background covering notions such as the labeling functions, group-based models and the discrete Fourier transform. Section 3 introduces symmetric G-compatible labelings which is a class of labeling functions with particularly nice properties. Section 4 presents the main result of this paper about the model embedding problem for symmetric group-based models equipped with a certain labeling function. Then in Section 5 we focus on the hachimoji DNA and provide exact characterisation of the model embeddability in terms of eigenvalues of the Markov matrix for the hachimoji 7-parameter, the hachimoji 3-parameter and the hachimoji 1-parameter models. Finally, Section 6 presents results on the volume of stochastic matrices that are (G, L)-embeddable for the three hachimoji group-based models. The code for the computations in this paper is available at https://github.com/ardiyam1/Model-Embeddability-for-Symmetric-Group-Based-Models.

2 Preliminaries

In this section, we give background on group-based models and the discrete Fourier transform.
Definition 2.1. Let G be a finite additive abelian group and L a finite set. A *labeling function* is any function $L : G \rightarrow L$.

Fundamental in the definition of a group-based model associated to a finite additive abelian group G and a labeling function L is that the rate of mutation from a state g to state h depends only on the difference $L(h - g)$: That is, the entries of a rate matrix Q are

$$Q_{g,h} = \psi(h - g)$$

for a vector $\psi \in \mathbb{R}^G$ satisfying $\sum_{g \in G} \psi(g) = 0$, $\psi(g) \geq 0$ for all non-zero $g \in G$ and $\psi(g) = \psi(h)$, whenever $L(g) = L(h)$. We say that such Q is a (G, L)-rate matrix. Since the matrix exponentiation preserves symmetries of a matrix, then the entries of a mutation matrix $P = \exp(Q)$ are

$$P_{g,h} = f(h - g)$$

for a vector $f \in \mathbb{R}^G$ satisfying $\sum f(g) = 1$, $f(g) \geq 0$ for all $g \in G$ and $f(g) = f(-g)$ for all $g \in G$. As we see in Example 2.3, in general it is not true that $f(g) = f(h)$ whenever $L(g) = L(h)$. In Section 3, we introduce G-compatible labeling functions which guarantee this property and then we say that P is a (G, L)-Markov matrix.

Example 2.2. Let $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ and $L = \{0, 1, 2, 3\}$. The Kimura 3-parameter, the Kimura 2-parameter and the Jukes-Cantor models correspond to the following labeling functions

- $L((0, 0)) = 0, L((0, 1)) = 1, L((1, 0)) = 2, L((1, 1)) = 3$,
- $L((0, 0)) = 0, L((0, 1)) = L((1, 0)) = 1, L((1, 1)) = 2$,
- $L((0, 0)) = 0, L((0, 1)) = L((1, 0)) = L((1, 1)) = 1$,

respectively. The Kimura 3-parameter rate and mutation matrices have the form

$$
\begin{pmatrix}
 a & b & c & d \\
 b & a & d & c \\
 c & d & a & b \\
 d & c & b & a
\end{pmatrix}.
$$

In the case of the Kimura 2-parameter model additionally $b = c$ and in the case of the Jukes-Cantor model $b = c = d$.

Example 2.3. Let $G = \mathbb{Z}_7$ and L be a labeling function such that $L(1) = L(2) = L(5) = L(6)$ and $L(3) = L(4)$. Consider the (G, L)-rate matrix

$$Q =
\begin{pmatrix}
 -1 & 0.125 & 0.125 & 0.25 & 0.25 & 0.125 & 0.125 \\
 0.125 & -1 & 0.125 & 0.125 & 0.25 & 0.25 & 0.125 \\
 0.125 & 0.125 & -1 & 0.125 & 0.125 & 0.25 & 0.25 \\
 0.25 & 0.125 & 0.125 & -1 & 0.125 & 0.125 & 0.25 \\
 0.25 & 0.25 & 0.125 & 0.125 & -1 & 0.125 & 0.125 \\
 0.125 & 0.25 & 0.25 & 0.125 & 0.125 & -1 & 0.125 \\
 0.125 & 0.125 & 0.25 & 0.25 & 0.125 & 0.125 & -1
\end{pmatrix}.$$

4
By direct computation, we get

\[
P = e^{Q} = \begin{pmatrix}
0.41305 & 0.0858551 & 0.0834148 & 0.124205 & 0.124205 & 0.0834148 & 0.0858551 \\
0.0858551 & 0.41305 & 0.0858551 & 0.0834148 & 0.124205 & 0.124205 & 0.0834148 \\
0.0834148 & 0.0858551 & 0.41305 & 0.0858551 & 0.124205 & 0.124205 & 0.0834148 \\
0.124205 & 0.0834148 & 0.0858551 & 0.41305 & 0.0858551 & 0.0834148 & 0.124205 \\
0.124205 & 0.124205 & 0.0834148 & 0.0858551 & 0.41305 & 0.0858551 & 0.0834148 \\
0.0834148 & 0.124205 & 0.124205 & 0.0834148 & 0.0858551 & 0.0834148 & 0.124205 \\
0.0858551 & 0.0834148 & 0.124205 & 0.124205 & 0.0834148 & 0.0858551 & 0.124205
\end{pmatrix}.
\]

The matrix \(P \) is not a \((\mathcal{G}, L)\)-Markov matrix, since \(f(1) = f(6) \neq f(2) = f(5) \).

Let \(\mathbb{C}^* \) denote the multiplicative group of complex numbers without zero. A group homomorphism from \(\mathcal{G} \) to \(\mathbb{C}^* \) is called a character of \(\mathcal{G} \). The characters of \(\mathcal{G} \) form a group under multiplication, called the character group of \(\mathcal{G} \) and denoted by \(\hat{\mathcal{G}} \). The character group \(\hat{\mathcal{G}} \) is isomorphic to \(\mathcal{G} \). We will denote the elements of \(\hat{\mathcal{G}} \) by \(\hat{\gamma} \) such that there exists an isomorphism \(\mathcal{G} \to \hat{\mathcal{G}} \) that maps \(g \mapsto \hat{\gamma} \).

Lemma 2.4 ([33], Lemma 17.1). Let \(g, h \in \mathcal{G} \) and \(k \in \mathbb{Z} \). Then \(\hat{\gamma}(-h) = \overline{\hat{\gamma}(h)} \) and \(\hat{k} \gamma(h) = \hat{\gamma}(kh) \), where \(\overline{\alpha} \) denotes the complex conjugate of \(\alpha \in \mathbb{C} \).

It follows from Lemma 2.4 that the values of characters are roots of unity. Given a function \(a : \mathcal{G} \to \mathbb{C} \), its discrete Fourier transform is a function \(\hat{a} : \mathcal{G} \to \mathbb{C} \) defined by

\[
\hat{a}(g) := \sum_{h \in \mathcal{G}} \hat{\gamma}(h)a(h).
\]

Lemma 2.5 ([30], Section 2). For any real-valued function \(a : \mathcal{G} \to \mathbb{C} \), the identity \(\hat{a}(-g) = \overline{\hat{a}(g)} \) holds for all \(g \in \mathcal{G} \). Moreover, if \(a(-g) = a(g) \) for all \(g \in \mathcal{G} \), then \(\hat{a}(-g) = \hat{a}(g) \) for all \(g \in \mathcal{G} \) and \(\hat{a} \) is a real-valued function.

In the proof of Theorem 4.1, we will use that \(\hat{\psi} \) and \(\hat{f} \) are real-valued. For this reason, in this paper we consider only group-based models that are equipped with symmetric labeling functions, i.e. \(L(g) = L(-g) \) for all \(g \in \mathcal{G} \). In other words, a symmetric group-based model assumes that the mutation matrices are real symmetric matrices.

The discrete Fourier transform is a linear endomorphism on \(\mathbb{C}^{\mathcal{G}} \). We will denote its matrix by \(K \). In particular, the entries of \(K \) are \(K_{g,h} = \hat{\gamma}(h) \) for \(g, h \in \mathcal{G} \). The matrix \(K \) is symmetric for any finite abelian group [29, Section 3.2]. The inverse of the discrete Fourier transformation matrix is \(K^{-1} = \frac{1}{|\mathcal{G}|} K^* \), where \(K^* \) denotes the adjoint of \(K \) [29, Corollary 3.2.2].

The following lemma describes the relation between functionals \(f \) and \(\psi \) in the case \(f(-g) = f(g) \) and \(\psi(-g) = \psi(g) \) for all \(g \in \mathcal{G} \).

Lemma 2.6 ([30], Lemma 2.2). Let \(Q \) be determined by \(\psi \in \mathbb{R}^{\mathcal{G}} \) and \(P \) be determined by \(f \in \mathbb{R}^{\mathcal{G}} \) as described earlier in this section such that \(P = e^{Q} \). Furthermore, assume that \(\psi(g) = \psi(-g) \) and \(f(g) = f(-g) \) for all \(g \in \mathcal{G} \). Then, \(\hat{f}(g) = e^{\psi(g)} \) for all \(g \in \mathcal{G} \).
Lemma 2.7. Let Q be determined by $\psi \in \mathbb{R}^G$ and P be determined by $f \in \mathbb{R}^G$ as described earlier in this section. Furthermore, assume that $\psi(g) = \psi(-g)$ and $f(g) = f(-g)$ for all $g \in G$. Let K_g denote the column of the discrete Fourier transform matrix labeled by g. The eigenpairs of Q (resp. P) are $(\hat{\psi}(g), K_g)$ (resp. $(\hat{f}(g), K_g)$) for $g \in G$.

Proof. This result is stated in the proof of [30, Lemma 2.2].

In particular, in the case of a Markov matrix, the vector of ones is an eigenvector with eigenvalue one. In the case of a rate matrix, the vector of ones is an eigenvector with eigenvalue zero. A direct consequence of Lemma 2.7 is that Q and P are diagonalizable by K, i.e. $Q = KD_1K^{-1}$ and $P = KD_2K^{-1}$ where D_1 and D_2 are diagonal matrices with diagonals given by the vectors $\hat{\psi}$ and \hat{f} of \mathbb{R}^G respectively.

3 G-compatible labeling functions

In this section, we introduce a class of labeling functions with the property that the symmetries of the probability vector are preserved under the discrete Fourier transformation. This property is required for any result that is proven using the discrete Fourier transform. Notably, labeling functions for all common group-based models (CFN, K3P, K2P, and JC models) are G-compatible.

Definition 3.1. Let G be a finite additive abelian group, L a set and $L : G \to L$ a labeling function. Let K be the discrete Fourier transformation matrix for G and x_L a column vector of length $|G|$ whose g-th component is $x_{L(g)}$. We say that L is a G-compatible labeling function if for every $g, h \in G$ with $L(g) = L(h)$, we have that $K_{g,:} \cdot x_L = K_{h,:} \cdot x_L$ and $(K^{-1})_{g,:} \cdot x_L = (K^{-1})_{h,:} \cdot x_L$. Here $M_{a,:}$ denotes the row of M indexed by group element a.

A labeling function that maps every group element to a different label is trivially G-compatible.

Remark 3.2. In the definition of a G-compatible labeling, we require that the matrices K and K^{-1} preserve the symmetries of the vector of labels x_L. For symmetric group-based models, it is enough to require that only K or K^{-1} preserves the symmetries of the vector of labels x_L. Recall that

$$K^{-1} \cdot x_L = \frac{1}{|G|} \cdot K^* \cdot x_L = \frac{1}{|G|} \cdot \overline{K} \cdot x_L.$$

The property $\hat{g}(-h) = \overline{\hat{g}(h)}$ implies $K_{g,-h} = \overline{K_{g,h}}$ and $K_{g,-h} = K_{g,h}$. If $-h = h$, this means $K_{g,h} = K_{g,h}$ for all $g \in G$. If $-h \neq h$, then taking into account that $x_{L(-h)} = x_{L(h)}$ gives $K_{g,h} \cdot x_{L(h)} + \overline{K_{g,-h}} \cdot x_{L(-h)} = K_{g,h} \cdot x_{L(h)} + K_{g,-h} \cdot x_{L(-h)}$. Hence $K^{-1} \cdot x_L = 1/|G| \cdot \overline{K} \cdot x_L$.

Remark 3.3. If a labeling function L is symmetric G-compatible and Q is a (G, L)-rate matrix, then a Markov matrix $P = e^Q$ is a (G, L)-Markov matrix, i.e. $P_{g,h} = f(h - g)$ for a vector $f \in \mathbb{R}^G$ and $f(g) = f(h)$ whenever $L(g) = L(h)$.

6
Example 3.4. Let $G = \mathbb{Z}_2 \times \mathbb{Z}_2$. The discrete Fourier transformation matrix for G is

$$K = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{pmatrix}.$$

To show G-compatibility for the three labeling functions from Example 2.2, it is enough to check that K preserves the symmetries of x_L. The labeling function of the Jukes-Cantor model is G-compatible, since

$$K \cdot \begin{pmatrix} x_0 \\ x_1 \\ x_1 \\ x_1 \end{pmatrix} = \begin{pmatrix} x_0 + 3x_1 \\ x_0 - x_1 \\ x_0 - x_1 \\ x_0 - x_1 \end{pmatrix}.$$

The labeling function of the Kimura 2-parameter model is G-compatible, since

$$K \cdot \begin{pmatrix} x_0 \\ x_1 \\ x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_0 + 2x_1 + x_2 \\ x_0 - x_2 \\ x_0 - x_2 \\ x_0 - 2x_1 + x_2 \end{pmatrix}.$$

In the literature, usually $L((1,0)) = L((1,1))$ in the Kimura 2-parameter model. The reason for this difference is that we use the discrete Fourier transform matrix in a format, which better demonstrates that it is the Kronecker product of discrete Fourier transformation matrices for \mathbb{Z}_2.

The labeling function of the Kimura 3-parameter is G-compatible, because each group element maps to a different label.

Sturmfels and Sullivant considered a different class of labeling functions, called friendly labelings [35]. We explore connections between friendly labelings and G-compatible labelings in Appendix A. We conjecture that every symmetric G-compatible labeling is a friendly labeling, but not vice versa.

The following lemma provides a necessary condition for G-compatible labeling functions.

Lemma 3.5. Let G be a finite additive abelian group, L a set and $L : G \rightarrow L$ a labeling function. If L is G-compatible, then $L(0) \neq L(g)$ for any $g \neq 0$.

Proof. Let K be the discrete Fourier transformation matrix for G. The entries of K are $\hat{g}(h)$ for $g, h \in G$, which are roots of unity. The row $K_{0:}$ consists of ones. On the other hand, no other row of K consists of ones only, as this would contradict the uniqueness of the identity element in the character group. In particular, every other row of K contains at least one element whose real part is strictly less than one. Thus it is impossible that $K_{0:} \cdot x_L = K_{g:} \cdot x_L$ for $g \neq 0$.

Table 1 summarizes up to isomorphism all possible symmetric G-compatible labeling functions for additive abelian groups of order up to eight. In the table, two group elements receive the same label if they belong to the same subset in a partition of G.

7
\[
\begin{array}{|c|c|c|}
\hline
n & \text{Group} & \text{Symmetric } G\text{-compatible labelings} \\
\hline
2 & \mathbb{Z}_2 & \{(0),\{1\}\} \\
3 & \mathbb{Z}_3 & \{(0),\{1\},\{2\}\} \\
4 & \mathbb{Z}_4 & \{(0),\{1\},\{2\},\{3\},\{4\}\} \\
4 & \mathbb{Z}_2 \times \mathbb{Z}_2 & \{(0,0),(0,1),(1,0),(1,1)\}, \{(0,0),(1,0),(1,1)\}, \{(0,0),(1,1)\}, \{(1,1)\} \\
5 & \mathbb{Z}_5 & \{(0),\{1\},\{2\},\{3\},\{4\}\} \\
6 & \mathbb{Z}_2 \times \mathbb{Z}_3 & \{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2)\} \\
7 & \mathbb{Z}_7 & \{(0),\{1\},\{2\},\{3\},\{4\}\} \\
8 & \mathbb{Z}_8 & \{(0),\{1\},\{2\},\{3\},\{4\}\} \\
8 & \mathbb{Z}_2 \times \mathbb{Z}_4 & \{(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3)\} \\
8 & \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 & \{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}, \{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(0,1,0),(0,1,1),(1,0,1),(1,1,1)\}, \{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}, \{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\}, \\
\hline
\end{array}
\]

Table 1: Symmetric \(G \)-compatible labelings for abelian groups of order \(n \leq 8 \) up to isomorphism.
We saw in Example 3.4 that the labeling function of the Jukes-Cantor model that assigns the same label to each nonzero element of the group $G = \mathbb{Z}_2 \times \mathbb{Z}_2$ is a G-compatible labeling. This example can be generalized to other groups.

Lemma 3.6. Let G be a finite abelian group. Let $L : G \to \{0, 1\}$ be a labeling function such that and $L(0) = 0$ and $L(g) = 1$ for $g \neq 0$. Then the labeling function L is symmetric G-compatible.

Proof. Clearly the labeling function L is symmetric. Let K be the discrete Fourier transformation matrix for G. By [29, Corollary 3.2.1], we have

$$\sum_{h \in G} K_{g,h} = \begin{cases} n, & g = 0 \\ 0, & g \neq 0 \end{cases}.$$

Hence

$$K_{g,:} \cdot x_L = \begin{cases} x_0 + (n - 1)x_1, & g = 0 \\ x_0 - x_1, & g \neq 0 \end{cases}.$$

Hence L is a G-compatible labeling function.

We call the model in Lemma 3.6 the general Jukes-Cantor model. We finish this section with giving another class of labeling functions that are G-compatible for every finite abelian group G.

Lemma 3.7. Let G be a finite additive abelian group, L a finite set and $L : G \to L$ a labeling function such that $L(g) = L(h)$ if and only if $g = -h$. Then L is G-compatible.

Proof. By Lemma 2.4, the identity $\hat{-g}(h) = \hat{g}(-h)$ holds for all $g, h \in G$. Then

$$K_{-g,:} \cdot x_L = \sum_{h \in G} \hat{-g}(h)x_{L(h)} = \sum_{h \in G} \hat{g}(-h)x_{L(h)} = \sum_{h \in G} \hat{g}(h)x_{L(-h)} = \sum_{h \in G} \hat{g}(h)x_{L(h)} = K_{g,:} \cdot x_L.$$

Thus, the labeling function L is G-compatible.

The converse of Lemma 3.7 is not true in general. Two examples are given by the labeling functions for the Kimura 2-parameter and the Jukes-Cantor model.

4 Model embeddability

The following theorem is the main result of this paper. It characterizes (G, L)-embeddable mutation matrices in terms of their eigenvalues.

Theorem 4.1. Fix a finite abelian group G, a finite set L, and a symmetric G-compatible labeling function $L : G \to L$. Let P be a (G, L)-Markov matrix. Then P is (G, L)-embeddable if and only if the vector $\lambda \in \mathbb{R}^G$ of eigenvalues is in the set

$$\{ \lambda \in \mathbb{R}^G : \lambda_0 = 1, \prod_{h \in G} \lambda_h^{Re((K^{-1})_{g,h})} \geq 1 \text{ for all nonzero } g \in G, \lambda_g > 0 \text{ for all } g \in G, \text{ and } \lambda_g = \lambda_h \text{ whenever } L(g) = L(h) \}.$$
Proof. We start by summarizing the idea of the proof. Let $\Psi_{G,L}$ be the set of (G, L)-rate matrices. Our goal is to characterize the set $\tilde{F}_{G,L}$ of eigenspectra of Markov matrices that are matrix exponentials of (G, L)-rate matrices in $\Psi_{G,L}$. This set is the image under the discrete Fourier transform of the set of model embeddable Markov matrices. We will do so using the discrete Fourier transform and Lemma 2.6. The first step is to consider the discrete Fourier transform of the set $\Psi_{G,L}$, which we denote by $\Psi_{G,L}$. The second step is to consider the image of the set $\tilde{\Psi}_{G,L}$ under coordinatewise exponentiation. This set is precisely $\tilde{F}_{G,L}$.

More specifically, let

$$
\Psi_{G,L} = \left\{ \psi \in \mathbb{R}^G : \sum_{g \in G} \psi(g) = 0, \psi(g) \geq 0 \text{ for all nonzero } g \in G, \text{ and } \psi(g) = \psi(h) \text{ whenever } L(g) = L(h) \right\}.
$$

The vectors in the set $\Psi_{G,L}$ are in one-to-one correspondence with (G, L)-rate matrices. The image of $\Psi_{G,L}$ under the discrete Fourier transform is the set

$$
\tilde{\Psi}_{G,L} = \left\{ \tilde{\psi} \in \mathbb{R}^G : \tilde{\psi}(0) = 0, (K^{-1} \tilde{\psi})(g) \geq 0 \text{ for all nonzero } g \in G, \text{ and } \tilde{\psi}(g) = \tilde{\psi}(h) \text{ whenever } L(g) = L(h) \right\}.
$$

We claim that the image of $\tilde{\Psi}_{G,L}$ under the coordinatewise exponentiation is the set

$$
\tilde{F}_{G,L} = \left\{ \tilde{f} \in \mathbb{R}^G : \tilde{f}(0) = 1, \prod_{h \in G} (\tilde{f}(h))^{(K^{-1})_{g,h}} \geq 1 \text{ for all nonzero } g \in G, \text{ and } \tilde{f}(g) > 0 \text{ for all } g \in G, \text{ and } \tilde{f}(g) = \tilde{f}(h) \text{ whenever } L(g) = L(h) \right\}.
$$

Indeed, let $\tilde{f} = \exp(\tilde{\psi})$. We need to show that $\tilde{f} \in \tilde{F}_{G,L}$. Then $\tilde{f} > 0$ because the image of the exponentiation map is positive. The inequality $a^T x \geq 0$ is equivalent to $\exp(a^T x) \geq 1$. Hence, the equation $\tilde{\psi}(0) = 0$ gives $\tilde{f}(0) = 1$ and the inequalities $(K^{-1} \tilde{\psi})(g) \geq 0$ give

$$
\prod_{h \in G} (\tilde{f}(h))^{(K^{-1})_{g,h}} = \prod_{h \in G} (e^{\tilde{\psi}(h)} e^{(K^{-1})_{g,h}}) = e^{\sum_{h \in G} \tilde{\psi}(h)(K^{-1})_{g,h}} \geq 1 \quad (4.1)
$$

for all nonzero $g \in G$. Conversely, a vector $\tilde{f} \in \tilde{F}_{G,L}$ is in the image of $\tilde{\Psi}_{G,L}$, since $\log(\tilde{f}) \in \tilde{\Psi}_{G,L}$ and $\log(\tilde{f})$ maps to \tilde{f}.

It is left to rewrite the inequalities (4.1) as in the statement of the theorem. We have

$$
(K^{-1})_{g,-h} = \frac{1}{|G|} K_{-h,g} = \frac{1}{|G|} \tilde{h}(g) = \frac{1}{|G|} \tilde{h}(-g) = \frac{1}{|G|} \tilde{h}(g) = \frac{1}{|G|} K_{h,g} = (K^{-1})_{g,h}
$$

for all $g, h \in G$. Here we use Lemma 2.4 and the definition of the discrete Fourier transformation matrix. If $-h = h$, then $(K^{-1})_{g,h} = (K^{-1})_{g,-h} = (K^{-1})_{g,h}$, and hence $(K^{-1})_{g,h} = \text{Re}((K^{-1})_{g,h})$. If $-h \neq h$, then $\tilde{f}(h) = \tilde{f}(-h)$ by Lemma 2.5. Hence

$$
(\tilde{f}(h))^{(K^{-1})_{g,h}} (\tilde{f}(-h))^{(K^{-1})_{g,-h}} = (\tilde{f}(h))^{(K^{-1})_{g,h}} (\tilde{f}(h))^{(K^{-1})_{g,h}} \quad (4.2)
$$

Finally, we recall that the eigenvalues of a mutation matrix P defined by a vector $f \in \mathbb{R}^G$ are $\lambda_h = \tilde{f}(h)$. Making the substitution gives the desired characterization. □
For \mathcal{G} cyclic, Theorem 4.1 has been independently proven by Baake and Sumner in the context of circulant matrices [2, Theorem 5.7]. Moreover, they show that every embeddable circulant matrix is circulant embeddable [2, Corollary 5.2].

It follows from Lemma 2.6 that if a (\mathcal{G},L)-Markov matrix P is (\mathcal{G},L)-embeddable, then there exists a unique (\mathcal{G},L)-rate matrix Q such that $P = \exp(Q)$. Indeed, since Q and P have both real eigenvalues and the eigenvalues of P are exponentials of eigenvalues of Q, then the eigenvalues of Q are uniquely determined by the eigenvalues of P. Then the (\mathcal{G},L)-rate matrix Q is the principal logarithm of P.

The inequalities $\lambda_g > 0$ in Theorem 4.1 imply $\det(P) = \prod \lambda_g > 0$. Hence the set of (\mathcal{G},L)-embeddable matrices for a symmetric group-based model is a relatively closed subset of one connected component of the complement of $\det(P^{(e)}) = 0$. A relatively closed subset means here a set that can be written as the intersection of a closed subset of $\mathbb{R}^{\mathcal{G} \times \mathcal{G}}$ and the connected component of the complement of $\det(P^{(e)}) = 0$.

In the rest of the current section and in Section 5, we will discuss applications of Theorem 4.1. We will recover known results about (\mathcal{G},L)-embeddability and as a novel application characterize embeddability for three group-based models of hachimoji DNA.

Example 4.2. The CFN model is the group-based model associated to the group \mathbb{Z}_2. The CFN Markov matrices have the form

$$P = \begin{pmatrix} a & b \\ b & a \end{pmatrix}.$$

The discrete Fourier transform matrix is

$$K = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

The eigenvalues of P are $\lambda_0 = a + b = 1$ and $\lambda_1 = a - b$. By Theorem 4.1, the Markov matrix P is CFN embeddable if and only if $0 < \lambda_1 \leq 1$ or equivalently $0 < a - b \leq 1$. This is equivalent to P satisfying $\det(P) > 0$, or equivalently $\text{tr}(P) > 1$. The result that a general 2×2 stochastic matrix is embeddable if and only if $\det(P) > 0$ or $\text{tr}(P) > 1$ goes back to [27, Proposition 2]. Hence P is CFN embeddable if and only if it is embeddable.

Example 4.3. Recall that the Kimura 3-parameter model is the group-based model associated to group $\mathcal{G} = \mathbb{Z}_2 \times \mathbb{Z}_2$ and a K3P Markov matrix P has the form (2.1). The eigenvalues of P are

$$\lambda_{(0,0)} = a + b + c + d, \quad \lambda_{(0,1)} = a - b + c - d, \quad \lambda_{(1,0)} = a + b - c - d, \quad \lambda_{(1,1)} = a - b - c + d.$$

By Theorem 4.1, a Markov matrix P is K3P embeddable if and only if

$$\lambda_{(0,0)} = 1, \quad \lambda_{(0,1)} > 0, \quad \lambda_{(1,0)} > 0, \quad \lambda_{(1,1)} > 0,$$

$$\lambda_{(0,1)} \geq \lambda_{(1,0)}, \quad \lambda_{(1,0)} \geq \lambda_{(0,1)} \lambda_{(1,1)}, \quad \lambda_{(1,1)} \geq \lambda_{(0,1)} \lambda_{(1,0)}. \quad (4.3)$$

This characterization for the Kimura 3-parameter model appears in [34, Theorem 3.2].
In the Kimura 2-parameter model \(b = c \) and \(\lambda_{(0,1)} = \lambda_{(1,0)} \). We get the conditions for the K2P embeddability by setting \(\lambda_{(0,1)} = \lambda_{(1,0)} \) in (4.3). Hence a K2P Markov matrix is K2P embeddable if and only if

\[
\lambda_{(0,0)} = 1, \lambda_{(0,1)} > 0, 1 \geq \lambda_{(1,1)} \geq \lambda_{(0,1)}^2.
\]

In the Jukes-Cantor model \(b = c = d \) and \(\lambda_{(0,1)} = \lambda_{(1,0)} = \lambda_{(1,1)} \). A JC Markov matrix is JC embeddable if and only if

\[
\lambda_{(0,0)} = 1, 1 \geq \lambda_{(0,1)} > 0.
\]

These two characterizations are discussed in [34, Section 3]. The K3P embeddability of a K3P Markov matrix with no repeated eigenvalues is equivalent to the embeddability of the matrix. Similarly, the JC embeddability of a JC Markov matrix is equivalent to the embeddability of the matrix. The same is not true for K2P Markov matrices with exactly two coinciding eigenvalues. For further discussion see [34, Section 3].

Remark 4.4. By [27, Corollary on page 18], the map from rate matrices to transition matrices is locally homeomorphic except possibly when the rate matrix has a pair of eigenvalues differing by a non-zero multiple of \(2\pi i \). Since for symmetric group-based models rate matrices are real symmetric, then all their eigenvalues are real and hence the map from rate matrices to transition matrices is a homeomorphism. Therefore the boundaries of embeddable transition matrices of symmetric group-based models are images of the boundaries of the rate matrices. For general Markov model, the boundaries of embeddable transition matrices are characterized in [27, Propositions 5 and 6].

Corollary 4.5. A \((G, L)\)-embeddable mutation matrix lies on the boundary of the set of \((G, L)\)-embeddable mutation matrices for a symmetric group-based model if and only if it satisfies at least one of the inequalities in Theorem 4.1 with equality.

5 Hachimoji DNA

In this section, we suggest three group-based models for a genetic system with eight building blocks recently introduced by Hoshika et al [19], and then characterize model embeddability for the proposed group-based models. The genetic system is called *hachimoji DNA*. It has four synthetic nucleotides denoted S, B, Z, and P in addition to the standard nucleotides adenine (A), cytosine (C), guanine (G) and thymine (T). Detailed descriptions of the four additional nucleotides are given in [19]. If in the standard 4-letter DNA, the purines are A and G and the pyrimidines are C and T, then in the hachimoji system, there are additionally purine analogs P and B, and pyrimidine analogs Z and S. The hydrogen bonds occur between the pairs A-T, C-G, S-B and Z-P.

This DNA genetic system with eight building blocks can reliably form matching base pairs and can be read and translated into RNA. It is mutable without damaging crystal structure which is required for molecular evolution. Hachimoji DNA has potential application in bar-coding, retrievable information storage, and self-assembling nanostructures.
The underlying group we suggest for the hachimoji DNA is $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, since when restricted to the standard 4-letter DNA it gives the group $\mathbb{Z}_2 \times \mathbb{Z}_2$ that is the underlying group for the standard DNA models. We identify the nucleotides with the group elements of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ as follows:

$$A = (0, 0, 0), C = (0, 0, 1), T = (0, 1, 0), G = (0, 1, 1),$$
$$P = (1, 0, 0), Z = (1, 0, 1), S = (1, 1, 0), B = (1, 1, 1).$$

The discrete Fourier transformation matrix of the group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ is

$$K = \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{pmatrix}. \quad (5.1)$$

5.1 Hachimoji 7-parameter model

The first model we propose is the analogue of the Kimura 3-parameter model and we will call it the hachimoji 7-parameter (H7P) model. In the hachimoji 7-parameter model, each element of the group $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ maps to a distinct label. Thus the labeling function is trivially (G, L)-compatible. The H7P rate and mutation matrices have the form

$$\begin{pmatrix}
 a & b & c & d & e & f & g & h \\
b & a & d & c & f & e & h & g \\
c & d & a & b & g & h & e & f \\
d & c & b & a & h & g & f & e \\
e & f & g & h & a & b & c & d \\
f & e & h & g & b & a & d & c \\
g & h & e & f & c & d & a & b \\
h & g & f & e & d & c & b & a
\end{pmatrix}. \quad (5.2)$$

The eigenvalues of a H7P Markov matrix are

$$\left(1, \lambda_{(0,0,1)}, \lambda_{(0,1,0)}, \lambda_{(0,1,1)}, \lambda_{(1,0,0)}, \lambda_{(1,0,1)}, \lambda_{(1,1,0)}, \lambda_{(1,1,1)}\right)^T = K \cdot \left(a, b, c, d, e, f, g, h\right)^T.$$

By Theorem 4.1, such a matrix is H7P embeddable if and only if all eigenvalues are positive.
and satisfy
\[
\begin{align*}
\lambda_{(0,0,0)} &= 1, \\
\lambda_{(0,1,0)}\lambda_{(1,0,0)}\lambda_{(1,1,0)} &\geq \lambda_{(0,0,1)}\lambda_{(0,1,1)}\lambda_{(1,0,1)}\lambda_{(1,1,1)}, \\
\lambda_{(0,0,1)}\lambda_{(0,0,0)}\lambda_{(0,1,1)} &\geq \lambda_{(0,1,0)}\lambda_{(0,1,1)}\lambda_{(1,0,0)}\lambda_{(1,1,0)}, \\
\lambda_{(0,1,1)}\lambda_{(1,0,0)}\lambda_{(1,1,1)} &\geq \lambda_{(0,0,1)}\lambda_{(0,1,0)}\lambda_{(1,0,1)}\lambda_{(1,1,0)}, \\
\lambda_{(0,0,1)}\lambda_{(0,1,0)}\lambda_{(0,1,1)} &\geq \lambda_{(1,0,0)}\lambda_{(1,0,1)}\lambda_{(1,1,0)}\lambda_{(1,1,1)}, \\
\lambda_{(0,1,0)}\lambda_{(1,0,1)}\lambda_{(1,1,1)} &\geq \lambda_{(0,0,1)}\lambda_{(0,1,1)}\lambda_{(1,0,0)}\lambda_{(1,1,0)}, \\
\lambda_{(0,0,1)}\lambda_{(1,1,0)}\lambda_{(1,1,1)} &\geq \lambda_{(0,1,0)}\lambda_{(0,1,1)}\lambda_{(1,0,0)}\lambda_{(1,0,1)}, \\
\lambda_{(0,1,1)}\lambda_{(1,0,1)}\lambda_{(1,1,0)} &\geq \lambda_{(0,0,1)}\lambda_{(0,1,0)}\lambda_{(1,0,0)}\lambda_{(1,1,1)}.
\end{align*}
\]

5.2 Hachimoji 3-parameter model

The second model we suggest specializes to the Kimura 2-parameter model when restricted to the standard 4-letter DNA. We will call it the *hachimoji 3-parameter (H3P)* model. We recall that in the Kimura 2-parameter model there are three distinct parameters for the rates of mutation: One parameter for a state remaining unchanged, one parameter for transversion from a purine base to a pyrimidine base or vice versa, and one parameter for transition to the other purine or to the other pyrimidine. We say that two bases are of the same type if they are both standard or synthetic bases. In the hachimoji 3-parameter model, there are the following parameters:

- *a*: the probability of a state remaining unchanged.
- *b*: the probability of a transversion from a purine base to a pyrimidine base or vice versa.
- *c*: the probability of a transition to another purine or pyrimidine base of the same type (same type transitions).
- *d*: the probability of a transition to another purine or pyrimidine base of different type (different type transitions).

The H3P rate and mutation matrices have the form
\[
P = \begin{pmatrix}
 a & b & b & c & d & b & b & d \\
 b & a & c & b & b & d & d & b \\
 b & c & a & b & b & d & d & b \\
 c & b & b & a & d & b & b & d \\
 d & b & b & a & d & b & b & c \\
 b & d & d & b & b & a & c & b \\
 b & d & d & b & b & c & a & b \\
 d & b & b & c & b & b & a &
\end{pmatrix}.
\] (5.3)

The labeling function of this model corresponds to the partition
\[
\{\{(0,0,0)\}, \{(0,0,1), (0,1,0), (1,0,1), (1,1,0)\}, \{(0,1,1)\}, \{(1,0,0), (1,1,1)\}\}.
\]
which is \((G, L)\)-compatible by Table 1.

The eigenvalues of a H3P Markov matrix are

\[w := \lambda_{(0,0,0)} = a + 4b + c + 2d = 1, \]
\[x := \lambda_{(0,1,1)} = a - 4b + c + 2d, \]
\[y := \lambda_{(1,0,0)} = \lambda_{(1,1,1)} = a + c - 2d, \]
\[z := \lambda_{(0,0,1)} = \lambda_{(0,1,0)} = \lambda_{(1,0,1)} = \lambda_{(1,1,0)} = a - c. \]

By Theorem 4.1, a H3P Markov matrix \(P \) is H3P embeddable if and only if the eigenvalues of \(P \) satisfy

\[w = 1, 1 \geq x > 0, y > 0, z > 0, x \geq y^2, xy^2 \geq z^4. \] (5.4)

5.3 Hachimoji 1-parameter model

The third model we suggest is the analogue of the Jukes-Cantor model and we will refer to it as **hachimoji 1-parameter (H1P) model**. It is the simplest group-based model associated to the group \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \) and it is described by only two distinct parameters for the rates of mutation. The two parameters are for a state remaining the same and a state mutating to any other state. The corresponding labeling function is \((G, L)\)-compatible by Lemma 3.6.

The H1P rate and mutation matrices have the form

\[
\begin{pmatrix}
 a & b & b & b & b & b & b \\
 b & a & b & b & b & b & b \\
 b & b & a & b & b & b & b \\
 b & b & b & a & b & b & b \\
 b & b & b & b & a & b & b \\
 b & b & b & b & b & a & b \\
 b & b & b & b & b & b & a \\
\end{pmatrix}
\] (5.5)

The eigenvalues of a H1P Markov matrix are \(w := \lambda_{(0,0,0)} = 1 \) and \(x := \lambda_g = a - b \) for \(g \neq 0 \). By Theorem 4.1, such a matrix is H1P embeddable if and only if its eigenvalues satisfy

\[w = 1 \text{ and } 1 \geq x > 0. \] (5.6)

Remark 5.1. The same conditions as in (5.6) characterize model embeddability for the general Jukes-Cantor model as defined in Lemma 3.6. This is also a special instance of a more general result [2, Corollary 4.7] on equal-input embeddability. If the order of \(G \) is even, then the notion of general embeddability is equivalent to the notion of model embeddability for the general Jukes-Cantor models by [2, Theorem 4.6].

6 Volume

The goal of this section is to study the volume of the set of model embeddable Markov matrices and compare this volume with volumes of other relevant sets of Markov matrices. We will focus on the hachimoji models and the generalization of the Jukes-Cantor model. We will use the following notation:
(i) Δ is the set of all Markov matrices in a model.

(ii) Δ_+ is the subset of matrices in Δ with only positive eigenvalues.

(iii) Δ_{dd} is the subset of diagonally dominant matrices in Δ, i.e. matrices in Δ such that in each row the diagonal entry is greater or equal than the sum of all other entries.

(iv) Δ_{me} is the subset of model embeddable mutation matrices in Δ.

Biologically, the subspace Δ_{dd} consists of matrices with probability of not mutating at least as large as the probability of mutating. We have the inclusions $\Delta_{me} \subseteq \Delta_+ \subseteq \Delta$ and $\Delta_{dd} \subseteq \Delta_+ \subseteq \Delta$.

The volumes of these spaces are given for the Kimura 3-parameter model in [34, Theorem 4.1], for the Kimura 2-parameter model in [7, Proposition 5.1] and for the Jukes-Cantor model in [34, Section 4].

Proposition 6.1. For the hachimoji 7-parameter model, consider Δ, Δ_+, and Δ_{dd} as subsets of \mathbb{R}^7 parameterized by $\lambda_{(0,0,1)}, \ldots, \lambda_{(1,1,1)}$, the eigenvalues of a H7P Markov matrix. Then:

(i) $V(\Delta) = \frac{256}{315}$,
(ii) $V(\Delta_+) = \frac{5}{144}$,
(iii) $V(\Delta_{dd}) = \frac{2}{315}$.

Proof. The entries of a H7P Markov matrix (5.2) are determined by a vector (a, b, c, d, e, f, g, h). The entries of this vector can be expressed in terms of the eigenvalues as

$$(a, b, c, d, e, f, g, h)^T = K^{-1}(1, \lambda_{(0,0,1)}, \lambda_{(0,1,0)}, \lambda_{(1,0,0)}, \lambda_{(1,0,1)}, \lambda_{(1,1,0)}, \lambda_{(1,1,1)})^T,$$

where K is the discrete Fourier transform matrix (5.1). Expressing all conditions defining Δ, Δ_+, and Δ_{dd} in terms of the eigenvalues $\lambda_{(0,0,1)}, \ldots, \lambda_{(1,1,1)}$ allows us to compute volumes of these sets using Polymake [16].

We are not able to compute the volume of the subspace of the H7P embeddable Markov matrices exactly. Instead we estimate the volume using the hit-and-miss Monte Carlo integration method [18] implemented in Mathematica. Table 2 summarizes the volume for various number of sample points. Table 3 gives relative volumes for the relevant sets.

| Table 2: The estimated volume of the set of H7P embeddable matrices using the hit-and-miss Monte Carlo integration with n sample points. |
|---|---|---|---|---|
| n | 10^4 | 10^5 | 10^6 | 10^7 |
| $V(\Delta_{me})$ | 0.0015 | 0.00197 | 0.001946 | 0.0019678 |
| $V(\Delta_{me} \cap \Delta_{dd})$ | 0.0008 | 0.00084 | 0.00085 | 0.0008271 |

| Table 3: The relative volumes for the hachimoji 7-parameter model. The volumes of Δ_{me} and $\Delta_{me} \cap \Delta_+$ are estimated using Monte Carlo integration with 10^6 sample points. |
|---|---|---|
| $\frac{V(\Delta)}{\Delta}$ | $\frac{\Delta_+}{\Delta}$ | $\frac{\Delta_{dd}}{\Delta}$ |
| $\frac{V(\Delta)}{\Delta}$ | $\frac{\Delta_+}{\Delta}$ | $\frac{\Delta_{dd}}{\Delta}$ |
| ≈ 0.00239 | ≈ 0.056045 | ≈ 0.13388 |
Proposition 6.2. For the hachimoji 3-parameter model, consider Δ, Δ_+, Δ_{dd}, and Δ_{me} as subsets of \mathbb{R}^3 parameterized by x, y, z, the eigenvalues of a H3P Markov matrix. Then:

(i) $V(\Delta) = \frac{4}{3}$; (ii) $V(\Delta_+) = \frac{7}{16}$; (iii) $V(\Delta_{dd}) = \frac{1}{6}$; (iv) $V(\Delta_{me}) = \frac{1}{3}$; (v) $V(\Delta_{me} \cap \Delta_{dd}) \approx 0.136733$.

Proof. The entries of a H3P Markov matrix as in (5.3) can be expressed in terms of the eigenvalues as

\[a = \frac{1 + x + 2y + 4z}{8}, \quad b = \frac{1 - x}{8}, \quad c = \frac{1 + x + 2y - 4z}{8}, \quad d = \frac{1 + x - 2y}{8}. \]

Expressing all conditions defining Δ, Δ_+, Δ_{dd}, and Δ_{me} in terms of x, y, z allows us to use the Integrate command in Mathematica to compute the desired volumes. For $V(\Delta_{me} \cap \Delta_{dd})$ we used the numerical integration command NIntegrate.

The sets Δ_{me}, Δ_+ and Δ for the hachimoji 3-parameter model are depicted in Figure 1. The relative volumes of relevant sets are given in Table 4.

Table 4: The relative volumes for the hachimoji 3-parameter model.

	Δ	Δ_+	Δ_{dd}
$\frac{V(\cdot)}{V(\Delta)}$	$\frac{1}{4} = 0.25$	$\frac{21}{64} = 0.328125$	$\frac{1}{8} = 0.125$
$\frac{V(\Delta_{me} \cap \cdot)}{V(\cdot)}$	$\frac{1}{4}$	$\frac{10}{21} \approx 0.76190$	≈ 0.82040

Finally, we discuss the generalization of the Jukes-Cantor model which includes the hachimoji 1-parameter model. Let G be a finite abelian group of order n and $L : G \rightarrow \{0, 1\}$ a
labeling function such that and $L(0) = 0$ and $L(g) = 1$ for $g \neq 0$. In Lemma 3.6 we proved that L is a G-compatible labeling. In the general Jukes-Cantor model, the mutation matrix P corresponding to this labeling is has the form

$$P_{ij} = \begin{cases} a, & i = j \\ b, & i \neq j \end{cases}.$$

Since P is a Markov matrix, then $a = 1 - (n-1)b$, and thus P is parameterized by b.

Proposition 6.3. For the general Jukes-Cantor model, consider Δ, Δ_+, Δ_{dd}, Δ_{me} as subsets of \mathbb{R} parameterized by b, the off-diagonal element of the Markov matrix. Then:

(i) $\Delta = [0, \frac{1}{n-1}]$;
(ii) $\Delta_+ = \{b \in \mathbb{R} : a = 1 - (n-1)b \geq 0, b \geq 0\} = [0, \frac{1}{n}]$;
(iii) $\Delta_{dd} = \{b \in \mathbb{R} : a = 1 - (n-1)b \geq 0, b \geq 0, 1 - (n-1)b \geq 0\} = [0, \frac{1}{2(n-1)}]$;
(iv) $\Delta_{me} = [0, \frac{1}{n}]$;
(v) $\Delta_{me} \cap \Delta_{dd} = [0, \frac{1}{2(n-1)}]$.

Proof. The Markov matrix P has eigenvalues 1 with multiplicity 1 and $a - b = 1 - nb$ with multiplicity $n - 1$. Hence

(i) $\Delta = \{b \in \mathbb{R} : a = 1 - (n-1)b \geq 0, b \geq 0\} = [0, \frac{1}{n-1}]$.
(ii) $\Delta_+ = \{b \in \mathbb{R} : a = 1 - (n-1)b \geq 0, b \geq 0, 1 - nb \geq 0\} = [0, \frac{1}{n}]$.
(iii) $\Delta_{dd} = \{b \in \mathbb{R} : a = 1 - (n-1)b \geq 0, b \geq 0, 1 - (n-1)b \geq (n-1)b\} = [0, \frac{1}{2(n-1)}]$.

(iv) By Remark 5.1, a Markov matrix is general Jukes-Cantor embeddable if and only if the eigenvalue $1 - nb$ satisfies $1 \geq 1 - nb > 0$. Since $1 \geq 1 - nb$ necessarily holds for any Markov matrix, we have $\Delta_{me} = \Delta_+$.

(v) Since $\Delta_{dd} \subseteq \Delta_+ = \Delta_{me}$, then $\Delta_{me} \cap \Delta_{dd} = \Delta_{dd}$.

The relative volumes of relevant sets for the general Jukes-Cantor model are presented in Table 5. Proposition 6.3 gives for the hachimoji 1-parameter model (i) $\Delta = [0, \frac{1}{n}]$; (ii) $\Delta_+ = [0, \frac{1}{n}]$; (iii) $\Delta_{dd} = [0, \frac{1}{14}]$; (iv) $\Delta_{me} = [0, \frac{1}{8}]$; (v) $\Delta_{me} \cap \Delta_{dd} = [0, \frac{1}{14}]$.

Table 5: The relative volumes for the general Jukes-Cantor model.

	Δ	Δ_+	Δ_{dd}
$V(\cdot)$	1	$\frac{n-1}{n}$	$\frac{1}{2}$
$V(\Delta)$	$\frac{n-1}{n}$	1	1

A Friendly labeling functions

Besides G-compatible labeling functions, there is another class of labeling functions which has been studied in the literature. They are called **friendly labeling functions** and were introduced by Sturmfels and Sullivant [35]. Friendly labelings are useful in determining phylogenetic invariants for group-based models on evolutionary trees. In particular, a friendly labeling guarantees that if a particular labeling comes from an assignment of group elements, then any choice of a group element to one particular edge which is consistent with the labeling can be extended to an assignment that is consistent with labeling on all edges of the claw tree.
Definition A.1. Let \mathcal{G} be a finite abelian group and $L : \mathcal{G} \to \mathcal{L}$ a labeling function. Let $n \in \mathbb{N}$. Define $\tilde{L} : \mathcal{G}^n \to \mathcal{L}^n$ to be the induced labeling function on \mathcal{G}^n and

$$Z = \{ g \in \mathcal{G}^n : g_n = \sum_{i=1}^{n-1} g_i \}.$$

The labeling function L is said to be n-friendly if for every $l \in \tilde{L}(Z)$ and $i = 1, 2, \ldots, n$, we have $(\pi_i \circ \tilde{L}^{-1})(l) = (L^{-1} \circ \pi_i)(l)$. Here, π_i denotes the projection to the i-th component. Furthermore, the labeling function L is said to be friendly if it is n-friendly for all $n \geq 3$.

By [35, Lemma 11], to check whether a labeling function is friendly, it is enough to check that the labeling is 3-friendly.

Example A.2 ([35], Example 9). Let $\mathcal{G} = \mathbb{Z}_4$ and $L : \mathcal{G} \to \{0, 1, 2\}$ such that

$$L(0) = 0, L(1) = 1, L(2) = L(3) = 2.$$

Then L is not friendly labeling because $L^{-1}(\pi_3((2, 2, 3))) = \{2, 3\}$ while $\pi_3(\tilde{L}^{-1}(2, 2, 3)) = 1, 3, 5, 6)$ = $\{2\}$.

Table 6 summarizes all friendly labelings for abelian groups of order n, where $2 \leq n \leq 8$. In the table, two group elements receive the same label if they belong to the same subset in a partition of \mathcal{G}. In the table we do not include the friendly labelings for $\mathbb{Z}_2 \times \mathbb{Z}_4$ and $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, since there are too many of them.

n	Group	Friendly labelings
2	\mathbb{Z}_2	$\{\{0,1\}\},\{\{0\},\{1\}\}$
3	\mathbb{Z}_3	$\{\{0,1,2\}\},\{\{0\},\{1,2\}\},\{\{0\},\{1\},\{2\}\}$
4	\mathbb{Z}_4	$\{\{0,1,2,3\\},\{\{0\},\{1,2,3\}\},\{\{0\},\{1,3\}\},\{\{0\},\{2,3\}\},\{\{0\},\{1\},\{2\},\{3\}\}$
4	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\{\{0,0\},\{0,1\},\{0,2\}\},\{\{1,0\},\{1,1\}\},\{\{1,2\}\}$
5	\mathbb{Z}_5	$\{\{0,1,2,3,4\}\},\{\{0\},\{1,2,3,4\}\},\{\{0\},\{1,4\}\},\{\{0\},\{2\},\{3\},\{4\}\}$
6	$\mathbb{Z}_2 \times \mathbb{Z}_3$	$\{\{0,0\},\{0,1\},\{0,2\}\},\{\{1,0\},\{1,1\}\},\{\{1,2\}\}$
7	\mathbb{Z}_7	$\{\{0,1,2,3,4,5,6\}\},\{\{0\},\{1,2,3,4,5,6\}\},\{\{0\},\{1,2,4\}\},\{\{3,5,6\}\},\{\{0\},\{1,6\}\},\{\{2,5\}\},\{\{3,4\}\},\{\{0\},\{1\}\},\{\{2\}\},\{\{3\}\},\{\{4\}\},\{\{5\}\},\{\{6\}\}$
The next example shows that there are friendly labelings that are not \mathcal{G}-compatible.

Example A.3. Let \mathcal{G} be a finite abelian group and $L : \mathcal{G} \to \{0\}$ the labeling function defined by $L(g) = 0$ for all $g \in \mathcal{G}$. By Lemma 3.5, the labeling function L is not \mathcal{G}-compatible. However, it is a friendly labeling, since $\pi_i(L^{-1}((0,0,0))) = \pi_i(Z) = \mathcal{G}$ and $L^{-1}(\pi_i((0,0,0))) = L^{-1}(0) = \mathcal{G}$.

Computations for abelian groups of order at most eight demonstrate that every symmetric \mathcal{G}-compatible labeling is a friendly labeling. It is left open, if the same is true for any finite abelian group.

Question A.4. Given a finite abelian group \mathcal{G}, is the set of all symmetric \mathcal{G}-compatible labelings strictly contained in the set of all friendly labelings?

Acknowledgements. An initial version of the main result of the present manuscript appeared in the preprint arXiv:1705.09228. Following the advice of referees, we divided the preprint into two manuscripts. The present manuscript builds on the section on the embedding problem in the earlier preprint. Most of the preprint arXiv:1705.09228 appeared in Bulletin of Mathematical Biology under the title “Maximum Likelihood Estimation of Symmetric Group-Based Models via Numerical Algebraic Geometry”. Kaie Kubjas was partially supported by the Academy of Finland Grant 323416.

References

[1] Elizabeth Allman and John Rhodes. Phylogenetic invariants for the general Markov model of sequence mutation. *Mathematical Biosciences*, 186:133–144, 2003.

[2] Michael Baake and Jeremy Sumner. Notes on Markov embedding. *Linear Algebra and its Applications*, 594:262–299, 2020.

[3] Hector Baños, Nathaniel Bushek, Ruth Davidson, Elizabeth Gross, Pamela E Harris, Robert Krone, Colby Long, Allen Stewart, and Robert Walker. Phylogenetic trees. *arXiv preprint arXiv:1611.05805*, 2016.

[4] Philippe Carette. Characterizations of embeddable 3 \times 3 stochastic matrices with a negative eigenvalue. *New York Journal of Mathematics*, 1:120–129, 1995.
[5] Marta Casanellas and Jesús Fernández-Sánchez. Performance of a new invariants method on homogeneous and nonhomogeneous quartet trees. *Molecular biology and evolution*, 24(1):288–293, 2007.

[6] Marta Casanellas, Jesús Fernández-Sánchez, and Jordi Roca-Lacostena. Embeddability and rate identifiability of Kimura 2-parameter matrices. *Journal of Mathematical Biology*, 80(4):995–1019, 2020.

[7] Marta Casanellas, Jesús Fernández-Sánchez, and Jordi Roca-Lacostena. The embedding problem for Markov matrices, 2020.

[8] James Cavender. Taxonomy with confidence. *Mathematical Biosciences*, 40:271–280, 1978.

[9] James Cavender and Joseph Felsenstein. Invariants of phylogenies in a simple case with discrete states. *Classification*, 4:57–71, 1987.

[10] Yong Chen and Jianmin Chen. On the imbedding problem for three-state time homogeneous Markov chains with coinciding negative eigenvalues. *Journal of Theoretical Probability*, 24:928–938, 2011.

[11] E Brian Davies. Embeddable Markov matrices. *Electronic Journal of Probability*, 15:1474–1486, 2010.

[12] Gustav Elfving. Zur theorie der Markoffschen ketten. *Acta Societatis Scientiarum Fennicae Nova Series A*, 2(8):17 pages, 1937.

[13] Steven N Evans and Terrence P Speed. Invariants of some probability models used in phylogenetic inference. *The Annals of Statistics*, pages 355–377, 1993.

[14] James S Farris. A probability model for inferring evolutionary trees. *Systematic Zoology*, 22(3):250–256, 1973.

[15] Joseph Felsenstein. *Inferring phylogenies*. Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts, 2003.

[16] Ewgenij Gawrilow and Michael Joswig. polymake: a framework for analyzing convex polytopes. In *Polytopes—combinatorics and computation (Oberwolfach, 1997)*, volume 29 of *DMV Sem.*, pages 43–73. Birkhäuser, Basel, 2000.

[17] Elizabeth Gross and Colby Long. Distinguishing phylogenetic networks. *SIAM Journal on Applied Algebra and Geometry*, 2(1):72–93, 2018.

[18] John Hammersley. *Monte Carlo methods*. Springer Science & Business Media, 2013.

[19] Shuichi Hoshika, Nicole A Leal, Myong-Jung Kim, Myong-Sang Kim, Nilesh B Karalkar, Hyo-Joong Kim, Alison M Bates, Norman E Watkins, Holly A SantaLucia, Adam J Meyer, et al. Hachimoji DNA and RNA: A genetic system with eight building blocks. *Science*, 363(6429):884–887, 2019.
[20] Robert B Israel, Jeffrey S Rosenthal, and Jason Z Wei. Finding generators for Markov chains via empirical transition matrices, with applications to credit ratings. *Math Finance*, 11(2):245–265, 2001.

[21] Cuthbert R James. The logarithm function for finite-state markov semi-groups. *Journal of the London Mathematical Society*, 2(3):524–532, 1973.

[22] Chen Jia. A solution to the reversible embedding problem for finite markov chains. *Statistics and Probability Letters*, 116:122–130, 2016.

[23] Soren Johansen. Some results on the imbedding problem for finite Markov chains. *Journal of London Mathematical Society*, 2:345–351, 1974.

[24] Thomas H Jukes and Charles R Cantor. Evolution of protein molecules. In H.N. Munro, editor, *Mammalian Protein Metabolism*, page 21–132. Academic Press, New York, 1969.

[25] Motoo Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *Journal of Molecular Evolution*, 16(2):111–120, 1980.

[26] Motoo Kimura. Estimation of evolutionary distances between homologous nucleotide sequences. *Proceedings of the National Academy of Sciences of the United States of America*, 78(1):454–458, 1981.

[27] John F C Kingman. The imbedding problem for finite Markov chains. *Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete*, 1(1):14–24, 1962.

[28] James A Lake. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. *Molecular Biology and Evolution*, 4:167–191, 1987.

[29] Bao Luong. *Fourier analysis on finite Abelian groups*. Springer Science & Business Media, 2009.

[30] Frederick A Matsen. Fourier transform inequalities for phylogenetic trees. *IEEE/ACM transactions on computational biology and bioinformatics*, 6(1):89–95, 2008.

[31] Jerzy Neyman. Molecular studies of evolution: a source of novel statistical problems. In S. S. Gupta and J. Yackel, editors, *Statistical Decision Theory and Related Topics*, pages 1–27. Academic Press, New York, 1971.

[32] Lior Pachter and Bernd Sturmfels. Tropical geometry of statistical models. *Proceedings of the National Academy of Science, USA*, 101(46):16132–16137, 2004.

[33] Lior Pachter and Bernd Sturmfels. *Algebraic statistics for computational biology*, volume 13. Cambridge university press, 2005.

[34] Jordi Roca-Lacostena and Jesús Fernández-Sánchez. Embeddability of Kimura 3ST Markov matrices. *Journal of theoretical biology*, 445:128–135, 2018.
[35] Bernd Sturmfels and Seth Sullivant. Toric ideals of phylogenetic invariants. *Journal of Computational Biology*, 12(2):204–228, 2005.

[36] Jeremy G Sumner, Jesús Fernández-Sánchez, and Peter D Jarvis. Lie Markov models. *Journal of theoretical biology*, 298:16–31, 2012.

[37] Klara L Verbyla, Anuj Pahwa Von Bing Yap, Yunli Shao, and Gavin A Huttley. The embedding problem for Markov models of nucleotide substitution. *PLOS ONE*, 8(7), 2013.

Authors’ affiliations:
Muhammad Ardiyansyah, Department of Mathematics and Systems Analysis, Aalto University, muhammad.ardiyansyah@aalto.fi

Dimitra Kosta, School of Mathematics & Statistics, University of Glasgow, Dimitra.Kosta@glasgow.ac.uk

Kaie Kubjas, Department of Mathematics and Systems Analysis, Aalto University, kaie.kubjas@aalto.fi