Marginal diversity analysis of conservation of Chinese domestic duck breeds

Yang Zhang1, Laidi Wang1, Youqing Bian2, Zhaoshan Wang3, Qi Xu1, Guobin Chang1 & Guohong Chen1

The present study aimed to systematically evaluate the genetic diversity of Chinese domestic duck breeds and ensure the most effective allocation and usage of conservation funds. We first performed an analysis of DNA genetic distance in 21 duck breeds by measuring short tandem repeats. Then, we calculated the extinction probability, contribution rate, and marginal diversity for each breed. The results showed that the extinction rate of the Zhongshan duck, Guangxi duck, and Ji’an duck were the highest at 0.67, 0.59, and 0.59, respectively, and that of the Linwu duck, Jinding duck, and Gaoyou duck were the lowest at 0.15, 0.18, and 0.19, respectively. The current diversity of populations was 7.72 and the expected diversity in five hundred years is 5.14 ± 1.15. The marginal diversity of the Chinese Muscovy duck was the largest (−2.20), accounting for 42.61% of the expected diversity, followed by the Guangxi duck (−0.49, 9.44%), whereas the Jinding duck was the smallest (−0.12; 2.32%). The protection potency of the Chinese Muscovy duck was the largest (0.61), followed by Guangxi duck (0.29), whereas the Jinding duck was the smallest (0.02). This study provides a reference for determining the conservation priority of Chinese domestic duck breeds or genetic resources.

Animal genetic resources are the basis of the sustainable development of animal husbandry1,2, and China is one of the foremost countries in this respect, accounting for one-sixth of the world’s animal genetic resources3,4. Two systematic and comprehensive surveys were conducted on animal genetic resources: one from 1970 to 1980, and the other in 2004. According to the Report on Domestic Animal Genetic Resource in China (edited in 2012)5, 777 breeds of animal genetic resources have been formally named in China, including 556 local breeds, 109 cultivated breeds, 104 introduced breeds, and eight other breeds. With respect to breeds of poultry, there are 116 chickens, 34 ducks, 31 geese, three turkeys, three pigeons, and two species of quail.

However, animal genetic resources have shown an overall decline in China since 1970s, due to unknown resources in some areas, low in vivo conservation, loss of animal genetic resources, and large-scale adoption of breeding and intensification processes6. In particular, the large number of imported breeds, and their wide promotion, have greatly threatened Chinese domestic animal genetic resources7. As examples, the Guping chicken, Lintao chicken, Wenshan goose, and Simao goose have all become extinct and, in total, 44 breeds are on the edge of extinction and 15 are endangered8. In response to this crisis, the departments responsible for managing Chinese animal genetic resources have allocated yearly funds toward conservation efforts. Since these funds are limited, both conservation strategy and fund allocation are determined by the economic value and population size of a breed9. However, the subjectivity of this system could result in ineffective conservation of precious and endangered genetic resources. Therefore, a better system is needed to determine priority in these conservation efforts and achieve optimal allocation of funds10,11.

One option is through marginal diversity, which was defined by Weitzman in 199212 as a mechanism for measuring genetic diversity. The concept uses genetic and non-genetic factors to calculate a “maximum-likelihood tree”13 and the current diversity of breeds, and estimates the expected variations in diversity over a certain time. This approach defines criteria of diversity and relies on quantitative assessments of different strategies, providing concrete reasoning for breed conservation. At present, marginal diversity has been applied in studies on European pigs14 and cows15; however, no systematic assessment with this approach has been conducted in Chinese domestic...
duck breeds and the managers also do not know how to allocate funds for breed insurance. Here, we use short tandem repeat profiling to perform a marginal diversity analysis of 21 Chinese domestic duck breeds or genetic resources, which can be used to determine conservation priority.

Materials and Methods

All animal experiments were performed in accordance with the Regulations for the Administration of Experimental Animals issued by the Ministry of Science and Technology (Beijing, China). All experiments were approved by the Animal Care and Use Committee of Yangzhou University.

Breed and genetic distance measurements. The objects of the study were Chinese domestic duck breeds or their genetic resources. Their name, sample size, and origin are shown in Table 1. Blood was collected according to pedigree, to ensure that samples were from unrelated individuals. The samples (0.5 mL) obtained from the vein of the ducks wings were carefully mixed with lysis solution and kept at 4 °C for subsequent DNA extraction. DNA extraction was performed according to the method described by Huang et al.17.

Twelve pairs of microsatellite primers with rich polymorphism were selected as follows: APH01, APL2, AJ272579, AJ272578, AJ415887, AJ515884, AJ515893, AY493256, AY493289, AY493313, and CMO11. The Sequences, combination, and optimal reaction condition have been reported previously18. A total of 1802 ducks were genotyped and the population genetic parameters calculated were described in a published paper18. The standard genetic distance between populations was calculated with Microsatellite-Toolkit 19 and Dispan (http://www.softpedia.com/get/Science-CAD/DISPAN.shtml).

PCA and population structure analysis for all breeds. In this study, SPSS13.0 software was used for principal component analysis (PCA) of all the detected alleles20, and Structure 2.0 (http://rosenberglab.bioinformatics.med.umich.edu/distruct.htm) software was used for genetic Structure analysis of 21 populations.

Extinction probability. Extinction probability is an important index for genetic resource diversity. Future changes in the diversity of local breeds or genetic resources can be measured as the extinction probability over time (500 years)21. In Weitzman’s approach, the extinction probability (Zi) of each set is a variable that needs special attention. There are various methods for calculating Zi; however, we adopted the method proposed by Reust-Marti11. This method uses seven variables: the total population size (POS), its change over the past 10 years (CHA), distribution of the breed (DIS), risk of indiscriminate crossing (CRO), organization and conservation measures of breeding (ORG), special traits (SPE), and threat of production transition (PRO) (Table 2). Different weights (w) were given to different variables to estimate Zi in the future 500 years. The estimate formula and correction formula are as follows:

Breed Abbreviation	Sample size	Economic use	Feather color	Existing quantity	Origin
Beijing duck BJ	96	meat	white	49,900,000	Jade Spring Hill, Beijing
Chaohu duck CH	80	meat/egg	hemp	2,000,000	Lujiang, Chaohu, Anhui
Dayu duck DY	96	meat	hemp	110,000	Dayu, Ganzhou, Jiangxi
Chinese Muscovy duck (Chinese Fanya) FY	96	meat	white/black	1,200,000	Honduras
Guangxi small sheldrake GX	72	egg/meal	hemp	10,000,000	Xilian, Baise, Guangxi
Gaoyou duck GV	66	egg/meat	hemp	2,000,000	Gaoyou, Jiangxi
Jian red duck JA	80	meat/egg	brown red	10,000,000	Jianzhu, Jian, Jiangxi
Ilanchang duck IC	96	meat/egg	hemp	530,000	Xichang City and Dechang County, Sichuan
Jianling duck JD	80	egg	hemp	12,000	Zini, Longhai, Fujian
Jingjiang sheldrake JJ	80	meat	hemp	136,000	Jingzhou, Hubei
Jianshui brown duck JS	96	meat/egg	brown	12,000	Jianshui, Linian, etc., Yunnan
Jingxi large sheldrake JX	72	egg/meal	hemp	400,000	Jingxi, Baise, Guangxi
Liancheng white duck LC	96	fancy	white	1,500,000	Liancheng, Longyan, Fujian
Linwu duck LW	72	egg	light gray hemp	6,510,000	Linwu, Chenzhou, Hunan
Mawang duck MW	96	egg	light gray hemp	466,000	Youyang, Chongqing
Putian black duck/coot PT	96	meat/egg	black	150,000	Lingchuan, Putian, Fujian
Shanma (Mountain) duck SM	72	egg	light gray hemp	25,000	Longyan, Fujian
Sansui duck SS	96	egg/meat	hemp	10,000	Sansui, Guizhou
Taiwan duck TW	96	egg/meal	dun	2,400,000	Yilan, Dali, etc., Taiwan
Youxian County sheldrake YX	72	egg	light gray hemp	5,800,000	Youxian, Zhuzhou, Hunan
Zhongshan sheldrake ZS	96	meat/egg	hemp	None	Zhongshan, Guangdong

Table 1. Name, sample size, and origin of 21 Chinese domestic duck breeds.
∑∑= Z iw x/ maxwx
(1)

where, w_i is the weight of each variable (w_1 = 0.35, w_2 = 0.15, w_3 = 0.14, w_4 = 0.10, w_5 = 0.06 and w_7 = 0.10) and x_i is the estimate of the ith indicator. The seven parameters for this analysis were attained by on-site observation, literature review, and estimation, in order to calculate the Zi of each breed and genetic resource in the next 500 years. For the convenience of calculation, Zia of each breed or genetic resource was corrected to 0.1–0.9, according to the formula below:

∑= . Zia
08
12
01
(2)

For the set (S) containing a certain number (N) of breeds and genetic resources, and a breed i, the distance of j ∈ S can be expressed as d_ij. According to Weitzman’s recursive algorithm, the diversity variable D (S) can be calculated by an N × N distance matrix. The probability of a breed’s existence in 500 years is 1-Zi, if Z is an N-dimensional vector containing Zi of N sets. K is an N-dimensional vector containing the indicator variable Ki (i = 1, 2, … N). Ki = 1 if the set i exists, whereas Ki = 0 if the set i is extinct. Therefore, K represents an overview of the status in which a subset of breeds exists and its complementary subset is extinct. The formula of the existence probability of a subset of breeds is as follows:

∏ =+ − PK () (Ki(1) z)
(3)

DK is the diversity of the subsets safe from extinction. The expected diversity at the end of the time horizon (500 years) is calculated as:

∑= ∀ ED PK D () ()
(4)

The variance of the expected diversity is:

D'_j = ∂ED() ∂z j Var(D) = ∑ ∀ K P(K)D'_K = [∑ K P(K)DK]²
(5)

The marginal diversity of a breed or genetic resource reflects the variation of the expected diversity when the extinction probability is increased by one unit. The marginal diversity is calculated as follows:

D'_j = ∂ED() ∂z j
(6)

Based on the extinction probability and expected diversity of a breed or genetic resource, Weitzman suggested conservation potency as the optimal parameter to assess the genetic diversity over a given time horizon. The conservation potency (CP) is calculated as follows:

CP_i = z_i × D'_j
(7)

CP_i represents a possible increase in the expected diversity of a breed or genetic resource when the threat is completely removed. According to previous work by Simianer et al., CP_i is the optimal parameter for determining conservation schemes, with the highest CP_i requiring a minimum amount of capital required for the protection scheme. The breed or genetic resource with the highest CP_i should be allocated the least funds in breeding conservation efforts.

Table 2. Influencing factors and criteria of extinction probability.

Influencing factor	Abbreviation	Grading standard
Total population size	POS	0.3 < ten thousand; 0.2 = ten thousand to one hundred thousand; 0.1 = one hundred thousand to one million; 0 = one million
Change of total population size over the past 10 years	CHA	0.1 = decreasing (>20%); 0 = increasing or maintaining stability
Distribution of the breed	DIS	0.2 = county; 0.1 = city; 0 = trans-regional and trans-provincial areas
Risk of indiscriminate crossing	CRO	0.2 = high degree; 0.1 = moderate degree; 0.05 = low degree; 0 = No
Organization and conservation measures of breeding	ORG	0.2 = No; 0 = Yes
Special traits	SPE	0.2 = Yes; 0 = None
Threat of production transition	TRA	0.3 = high degree; 0.2 = moderate degree; 0.1 = low degree
Results

Genetic distance. Twelve simple sequence repeats were detected in the 21 duck breeds. Nei’s standard genetic distance was estimated using Microsatellite-Toolkit and Dispan24. According to the genetic distance matrix (Table 3) and cluster analysis by the unweighted pair-group method with arithmetic means (Fig. 1)25, FY belonging to the *Cairina* breed forms a single set, whereas the other 20 duck breeds (*Anas*) form three large sets.

The distance between GY and JA was the shortest, and the distance between FY and GX was the longest.

First bullet.

PCA and population structure analysis for all breeds. PCA was performed on the gene frequencies of all alleles detected in 12 SSR seats in 21 populations. The plane distance graph constructed according to the first two principal components was shown in Fig. 1. 21 duck breeds were divided into three large groups. Among them, BJ, ZS, SS, JC, PT, JS, LC were relatively close to each other. JJ, DY and CH were close to each other, forming another group. In addition, 9 breeds including JA, GY, SM, JX, JD, GX, YX, LW constituted a group. The distances between FY and other 20 domestic duck breeds were relatively large.

Structure 2.0 program can group individuals with similar genotypes on multiple SSR seats without prior knowledge of the fusion or evolutionary history of the populations (Fig. 2). When K = 2, no single population was isolated; Of these, 9 breeds such as BJ, JC, JS, LC, MW, PT, SS, TW, ZS were grouped together, and the rest of

Table 3. Nei’s standard genetic distance between 21 Chinese domestic duck breeds. Note: Breed abbreviations are defined in Table 1.

	BJ	CH	DY	FY	GX		GC	JA	JC	JD	JJ	JS	JX	LC	LW	MW	PT	SM	SS	TW	YX	
CH	0.3649																					
DY	0.3552	0.2093																				
FY	1.4498	1.5928	1.7169																			
GX	0.5577	0.5698	0.2720	2.3350																		
GY	0.4749	0.3001	0.2800	2.0529	0.1984																	
JA	0.5655	0.4483	0.3074	2.1508	0.1557	0.0700																
JC	0.1875	0.4740	0.3797	1.4489	0.5702	0.6435	0.7541															
JD	0.5225	0.3202	0.2559	1.9372	0.1793	0.1212	0.1301	0.6755														
JJ	0.3738	0.2097	0.1989	1.7176	0.2734	0.1910	0.2287	0.4072	0.1355													
JS	0.2040	0.3825	0.4276	1.3069	0.6836	0.5397	0.6659	0.2801	0.5233	0.4767												
JX	0.3935	0.4419	0.1989	2.0945	0.2999	0.4227	0.4163	0.3683	0.3702	0.2440	0.4795											
LC	0.5355	0.5450	0.4381	1.2578	0.7158	0.6798	0.7618	0.4471	0.7652	0.5228	0.5866	0.4956										
LW	0.4433	0.3063	0.2631	2.1002	0.3364	0.3405	0.3244	0.4824	0.2751	0.2529	0.3010	0.3217	0.7047									
MW	0.2260	0.3622	0.3898	1.2259	0.6588	0.5169	0.6061	0.3178	0.4908	0.4347	0.2043	0.4445	0.3674	0.4905								
PT	0.6262	0.6331	0.5018	1.2362	0.7920	0.7392	0.8338	0.5651	0.6991	0.5654	0.5996	0.4819	0.1791	0.5982	0.4644							
SM	0.4500	0.3127	0.2506	1.7219	0.3043	0.2494	0.2266	0.6413	0.1110	0.2022	0.4304	0.4134	0.5293	0.4080	0.3766	0.6702						
SS	0.2863	0.2854	0.2604	1.4692	0.4835	0.3242	0.4179	0.3951	0.3245	0.2849	0.3233	0.3351	0.2986	0.3026	0.1489	0.3283	0.3262					
TW	0.3868	0.6315	0.5551	1.2674	0.8891	0.8208	0.8472	0.5227	0.7868	0.6760	0.4128	0.6160	0.4860	0.7567	0.1730	0.3802	0.5840	0.3922				
YX	0.4048	0.2970	0.1567	1.8717	0.3296	0.3464	0.3301	0.4498	0.3180	0.3098	0.4338	0.3354	0.5949	0.1912	0.4687	0.5947	0.2805	0.3386	0.6838			
ZS	0.1228	0.3896	0.3505	1.4752	0.5732	0.5210	0.5913	0.4878	0.3876	0.2101	0.3239	0.4621	0.4212	0.1372	0.5241	0.4182	0.2113	0.3126	0.4576			

Figure 1. Two-dimensional scatter plot of the first and second factors for 21 duck populations. Note: Breed abbreviations are defined in Table 1.
12 breeds were clustered into one group. When K = 3 and K = 4, no single group was isolated. FY, LC, PT were clustered into one group. FY ducks were isolated as a single group until K = 5. When K = 7, BJ, JC, JS and ZS still formed a group. CH, DY and JX still gathered into one group: GX, GY, JA, JD clustered into the last one group.

Extinction probability. The average extinction probability for the 21 Chinese domestic duck breeds and genetic resources was 0.38% (Table 4). ZS, GX, and JA had the largest extinction probabilities, whereas LW, JD, and FY had the smallest.

Current and expected future diversity. The current diversity of the 21 breeds and genetic resources was determined to be 7.72, and the expected diversity of all sets in 500 years is 5.14 ± 1.15. Therefore, an overall decrease of 2.58 (33.43%) is anticipated.

Contributions and marginal diversities of each breed. The term “contributions” is defined as the percentage of contribution of each breed to overall diversity. The contributions and marginal diversities of each of the 21 breeds are shown in Table 5 and Fig. 3. The contribution of FY was the largest (Table 3) followed by GX, whereas JD had the smallest contribution. Similarly, in terms of marginal diversity, FY showed the largest (Table 5), followed by GX, whereas JD has the smallest (−0.12, 2.32). Finally, FY had the highest conservation potency, followed by GX, and JD had the lowest.

Discussion

There are numerous domestic duck breeds in China including 27 indigenous breeds, two introduced breeds, and a few developing breeds. However, with the introduction and promotion of cherry valley duck, the number of local duck species in China has dropped sharply, and many species are facing the danger of extinction. Conservation of genetic diversity plays an important role in sustaining the livestock breeds. At present, Weitzman marginal diversity method has attracted more and more attention in the research on rational allocation of livestock and poultry resources protection funds, and has become one of the most dynamic theories in the field of livestock genetic resources protection and utilization. There were many researches on animal genetic diversity in the world, but few of them analyze the application of marginal diversity method. To our knowledge, Reist-Marti et al. (2003) have estimated extinction probability in livestock breeds. Bennewitz (2005) estimated the extinction probabilities of 5 German dual-purpose cattle breeds by population viability analysis. And then (2006) he analyzed 44 North Eurasian cattle breeds using simplified determined extinction probabilities. The results show that the expected loss of diversity within the next 50 years is between 1 and 3% of the actual diversity. The marginal diversity analysis of goat, sheep, cattle, pigs has been completed in China, which provides a reliable data reference for the division of conservation funds. After years of investigation of domestic duck resources and collection of blood samples, this paper analyzed the marginal diversity and extinction probability of local duck breeds in China for the first time.

In this paper, the PCA was used to explain the molecular genetic relationships among the populations and a plane distance map was constructed, reflecting the real genetic information and genetic relationships of the 21 populations. Structure cluster analysis use allelic and genotype data from multiple loci, such as SSR loci, to construct a cluster model. Structure 2.0 program was based on Bayesian probability theory, adopt Markov-Monte Carlo simulation algorithm, and used mixed model when running the program to reveal the unknown population genetic relationship and potential population Structure from all population levels. The expected number of classification (K value) of the detected group was set at runtime, which can be used to divide all individuals and reflect
the genetic structure of the group. It is especially suitable for the study of the genetic structure, the differentiation and migration of individuals. In this paper, the population Structure diagram and the maximum-likelihood tree obtained based on Structure 2.0 program were consistent with the results from PCA, verifying the accuracy of population Structure inference.

Table 4. Extinction factor weighting and extinction probability correction of each population. Breed abbreviations are defined in Table 1.

Breed name	Extinction probability	Contribution (%)	Marginal diversity	Conservation potency
BJ	0.23	4.25	−0.2183	0.0494
CH	0.48	7.26	−0.3732	0.1789
DY	0.58	3.47	−0.1783	0.1031
FY	0.28	42.61	−2.1896	0.6120
GX	0.59	9.44	−0.4849	0.2876
GY	0.19	3.57	−0.1834	0.0341
IA	0.59	4.07	−0.2091	0.1235
IC	0.48	6.23	−0.3202	0.1527
JD	0.18	2.32	−0.1192	0.0210
JS	0.54	4.35	−0.1977	0.0872
JX	0.42	6.77	−0.3751	0.1513
LC	0.35	5.75	−0.2955	0.1043
LW	0.15	4.63	−0.2381	0.0359
MW	0.33	3.18	−0.1633	0.0539
PT	0.40	5.87	−0.3015	0.1201
SM	0.27	4.80	−0.2349	0.0659
SS	0.38	5.22	−0.2682	0.1014
TW	0.24	8.95	−0.4597	0.1099
YX	0.19	3.85	−0.1977	0.0378
ZS	0.67	2.79	−0.1434	0.0955

Table 5. Marginal diversity of 21 Chinese domestic duck breeds. Breed abbreviations are defined in Table 1.

Breed name	Extinction probability	Contribution (%)	Marginal diversity	Conservation potency
BJ	0.23	4.25	−0.2183	0.0494
CH	0.48	7.26	−0.3732	0.1789
DY	0.58	3.47	−0.1783	0.1031
FY	0.28	42.61	−2.1896	0.6120
GX	0.59	9.44	−0.4849	0.2876
GY	0.19	3.57	−0.1834	0.0341
IA	0.59	4.07	−0.2091	0.1235
IC	0.48	6.23	−0.3202	0.1527
JD	0.18	2.32	−0.1192	0.0210
JS	0.54	4.35	−0.1977	0.0872
JX	0.42	6.77	−0.3751	0.1513
LC	0.35	5.75	−0.2955	0.1043
LW	0.15	4.63	−0.2381	0.0359
MW	0.33	3.18	−0.1633	0.0539
PT	0.40	5.87	−0.3015	0.1201
SM	0.27	4.80	−0.2349	0.0659
SS	0.38	5.22	−0.2682	0.1014
TW	0.24	8.95	−0.4597	0.1099
YX	0.19	3.85	−0.1977	0.0378
ZS	0.67	2.79	−0.1434	0.0955
The calculation for extinction probability considers all factors that might cause change in a breed or genetic resource, making it an accurate and reliable estimation 40. However, due to the political and economic situation in China, as well as the distribution of indigenous duck breeds and resources, some factors were not considered in this study, such as natural disasters, reliability of the information source, and development of reasonable storage approaches. For this measurement, seven variables (POS, CHA, DIS, CRO, ORG, SPE, and TRA) were assigned to different weights as major factors. These variables have been proved to be important factors reflecting population diversity. Here, we calculated the current and expected population diversities of a total of 21 Chinese duck breeds, respectively. Importantly, we found that the expected diversity (within 500 years) were 33.43\% lower than current diversity.

Some variables for calculating the extinction probability, such as CHA and CRO, only consider the conservation of a single breed or genetic resource, and do not account for the effect of the conserved breed on the genetic diversity of the entire population 41. If limited breeding conservation funding is allocated based on extinction probability parameters, it may not be the most beneficial solution for the entire population, especially if that population includes numerous breeds and strains. Instead, the breed with the largest contribution should be given the highest priority 42,43. In this study, the largest contributor was FY, followed by GX.

However, breed contribution is not the only consideration for conservation planning efforts, and its calculation does not consider extinction probability. In contrast, marginal diversity considers both contribution and the extinction probability, and can therefore act as a comprehensive measurement of the importance of each breed. According to Weitzman, marginal diversity parameters should be considered the preferred reference during breeding conversation planning 44. Conserving the breed with the largest conservation potency is the most effective way to maintain overall genetic diversity. Therefore, the first two breeds prioritized should be FY and GX, followed by CH, JC, JS, JX, JA, PT, TW, LC, DY, SS, ZS, JJ, SM, MW, BJ, YX, LW, GY, and JD.

Based on the marginal diversity parameters, we identified the conservation priority of 21 local duck breeds and genetic resources. FY and GX are the first two breeds that should be protected. The conservation priority in this study can provide a reference for breed conservation planning.

Data Availability
The data generated and analyzed as a part of this study are included within this article.

References
1. Anderson, S. Animal genetic resources and sustainable livelihoods. Ecol Econ. 45, 331–339, https://doi.org/10.1016/S0921-8009(03)00088-0 (2003).
2. Rege, J. E. O. & Gibson, J. P. Animal genetic resources and economic development: issues in relation to economic valuation. Ecol Econ. 45, 319–330, https://doi.org/10.1016/S0921-8009(03)00087-9 (2003).
3. Lu, G. B., Wang, X. H., Chang, W. K. & Zhang, H. Analysis of Conservation Status of Chinese Livestock and Poultry Genetic Resources. Acta Ecol Anim Dom. 35, 6 (2014).
4. Feng, W., Ma, Y., Chen, Y. & Fu, B. General view on status of domestic animal genetic resources in china. Acta Vet Et Zoootech Sin. 28, 4 (1997).
5. Resources, N. C. f. A. G. Report on Domestic Animal Genetic Resources in China. (China Agriculture Press, 2012).
6. Ma, Y., Xu, G., Wang, D. & Liu, H. Study on Dynamic Information of Animal Genetic Resources in China. Scientia Agric Sin. 35, 4 (2002).
7. Liu, F., Long, H., Yang, Y. & He, Z. Temporal Changes and the Influencing Factor of China Importing Genetic Resources of Livestock and Poultry. 2013 World Agricultural Outlook Conference 331–339, https://doi.org/10.1007/978-3-642-54389-0_29 (2014).
8. Ma, Y. & Wu, C. Evaluation of Threatening Degree of the Animal Genetic Resources in China. Ecol Dom Anim. 22, 6 (2001).
9. Li, J., Li, M. & Wang, Y. The problem and protection strategy of the genetic resources of livestock and poultry in China. J. NU Nationalities. (Natura1 Science) 34, 5, https://doi.org/10.14084/j.cnki.cn62-1188/n.2013.04.007 (2013).
10. Simianer, H., Marti, S. B., Gibson, J., Hanotte, O. & Rege, J. E. O. An approach to the optimal allocation of conservation funds to minimize loss of genetic diversity between livestock breeds. *Ecol Econ.* 45, 377–392, https://doi.org/10.1016/S0921-8009(03)00092-2 (2003).

11. Reist-Marti, S. B., Simianer, H., Gibson, J., Hanotte, O. & Rege, J. E. O. Weitzman’s approach and conservation of breed diversity: an application to African cattle breeds. *Conserv Biol.* 17, 1299–1311, https://doi.org/10.1111/j.1523-1739.2003.01587.x (2003).

12. Knapp, S. M., Russell, R. E. & Swihart, R. K. Setting priorities for conservation: the influence of uncertainty on species rankings of Indiana mammals. *Biol Cons.* 111, 223–234, https://dx.doi.org/10.1016/j.biocon.2006.03.00278-1 (2003).

13. Weitzman, M. What to preserve? An application of diversity theory to crane conservation. *Quar J. Eco.* 26 (1993).

14. Zoller, S., Boskova, V. & Anismanova, M. Maximum-Likelihood Tree Estimation Using Codon Substitution Models with Multiple Partitions. *Mol Biol Evol.* 32, 2208–2216, https://doi.org/10.1093/molbev/msv097 (2015).

15. Laval, G. et al. Genetic diversity of eleven European pig breeds. *Genet Sel Evol.* 32, 187–203 (2000).

16. Canon, J. et al. Genetic diversity measures of local European beef cattle breeds for conservation purposes. *Genet Sel Evol.* 33, 311–332 (2001).

17. Huang, Y. H. et al. A genetic and cytogenetic map for the duck (Anas platyrhynchos). *Genetics.* 173, 287–296, https://doi.org/10.1534/genetics.105.053256 (2006).

18. Zhang, Y. et al. Analysis of the Genetic Diversity and Origin of Some Chinese Domestic Duck Breeds. *J. Integr Agr.* 13, 849–857, https://doi.org/10.1006/s2099-3119(13)60447-5 (2014).

19. Berardi, G., Toscanini, U. & Raimondi, E. STR data for PowerPlex (R) 16 system from Buenos Aires population, Argentina. *Forensic Sci Int.* 134, 222–224, https://dx.doi.org/10.1016/S0379-0708(03)00141-5 (2003).

20. Gauch, H. G. Jr., Qian, S., Piepho, H. P., Zhou, L. & Chen, R. Consequences of PCA graphs, SNP codings, and PCA variants for elucidating population structure. *PloS one.* 14, e0218306, https://doi.org/10.1371/journal.pone.0218306 (2019).

21. Li, P. Marginal diversity and conservation priority of the local goat populations in Shandong PhD thesis, Shandong Agricultural University, (2008).

22. Olliver, L. et al. An assessment of European pig diversity using molecular markers: Partitioning of diversity among breeds. *Conserv Genet.* 6, 729–741, https://doi.org/10.1007/s10592-005-9032-6 (2005).

23. Pham, M. H. et al. Genetic diversity of Vietnamese domestic chicken populations as decision-making support for conservation strategies. *Anim Genet.* 44, 509–521, https://doi.org/10.1111/age.12045 (2013).

24. Liu, J. B. Analysis of geographic and pairwise distances among sheep populations. *Genet Mo Res.* 13, 4177–4186, https://doi.org/10.4238/2014.June.9.4 (2014).

25. Zhang, Y. et al. Genetic diversity of endangered Polyoporus umbellatus from China assessed using a sequence-related amplified polymorphism technique. *Genet Mol Res.* 11, 4121–4129, https://doi.org/10.4238/2012.December.3.1 (2012).

26. He, D. Q. et al. A homogenous nature of native Chinese duck matrilineal pool. *BMC Evol Biol.* 8, 298, https://doi.org/10.1186/1471-2148-8-298 (2008).

27. (Organization), F. F. a. A. Coping with climate change: the roles of genetic resources for food and agriculture, (Italy: FAO, 2015).

28. Zerabrak, M., Bennewitz, J., Kantanan, J., Osaker, I. & Vangen, O. Analysis of genetic diversity and conservation priorities for six north Ethiopian cattle breeds. *Anim Breed Genet.* 124, 236–241, https://dx.doi.org/10.1111/j.1439-0388.2007.00660.x (2007).

29. Ling, Y. H. et al. Assessment of Genetic Diversity among the Twelve Chinese Meat Goat Breeds Using Weitzman Approach. *J. Anim Plant Sci.* 24, 986–990 (2014).

30. Souza, C. A. et al. Genetic diversity and assessment of 23 microsatellite markers for parentage testing of Santa Ines hair sheep in Brazil. *Genet Mol Res.* 11, 1217–1229, https://doi.org/10.4238/2012.May.8.4 (2012).

31. Curkovic, M. et al. The genetic diversity and structure of 18 sheep breeds exposed to isolation and selection. *J Anim Breed Genet.* 133, 71–80, https://doi.org/10.1111/jbg.12160 (2016).

32. Hariyono, D. N. H. et al. Genetic diversity and phylogetic relationship analyzed by microsatellite markers in eight Indonesian local duck populations. *Asia-Australas J Anim Sci.* 32, 31–37, https://doi.org/10.5713/ajas.18.0055 (2019).

33. Bennewitz, J. & Meuwissen, T. H. E. Estimation of extinction probabilities of five German cattle breeds by population viability analysis. *J. Dairy Sci.* 88, 2949–2961, https://doi.org/10.3168/jds.2002-0302(05)72975-1 (2005).

34. Bennewitz, J. et al. Estimation of breed contributions to present and future genetic diversity of 44 North Eurasian cattle breeds using core diversity measures. *Genet Sel Evol.* 38, 201–220, https://doi.org/10.1051/gse:2005036 (2006).

35. Yuehui, M. Marginal diversity and its application to Chinese sheep breeds conservation. *China Biod Sci.* 15, 3 (2005).

36. Yongjiang, M., Hong, C., Zhangping, Y., Pinent, T. & Simianer, H. The application of marginal diversity on yellow cattle breeds conservation in China. *China Cattle Sci.* 32, 8 (2006).

37. Qianjun, Z. & Ma, Y. Optimal allocation of funds for conservation of Chinese pig breeds using marginal diversity estimates. *China Biod Sci.* 17, 7, https://doi.org/10.1360/biod.0060166 (2007).

38. Moore, B. R. & Donoghue, M. J. A Bayesian approach for evaluating the impact of historical events on rates of diversification. *Proc Natl Acad Sci USA.* 106, 4307–4312, https://doi.org/10.1073/pnas.0807230106 (2009).

39. Marshall, T. C., Slate, J., Kruuk, L. E. & Pemberton, J. M. Statistical confidence for likelihood-based paternity inference in natural populations. *Mol Ecol.* 7, 639–55 (1998).

40. Bomka, F. Bayesian estimation of speciation and extinction probabilities from (in)complete phylogenies. *Evolution.* 62, 2441–2445, https://dx.doi.org/10.1111/j.1558-5646.2008.00455.x (2008).

41. Garcia, D. Corral, N. & Canon, J. Combining inter- and intrapopulation information with the Weitzman approach to diversity conservation. *J. Heredity.* 96, 704–712, https://doi.org/10.1093/jhered/esx103 (2005).

42. Barker, J. S. F. Animal breeding and conservation genetics. *Conserv Genet.* 68, 15 (1994).

43. Zhao, Q. Organisengenic diversity and conservation of Chinese sheep populations Ph.D thesis, Chinese Academy of Agricultural Science, (2007).

44. Weitzman, M. On diversity. *The Quarterly Journal of Economics.* 107, 43 (1992).

Acknowledgements
We are grateful to Professor Y.J. Mao at Yangzhou University for his participation in and guidance to calculation and analysis of the standard genetic distance and calculation of the marginal diversity parameters. This research work was supported by the National Natural Science Foundation of China (31601931), Jiangsu modern Agricultural Industrial Technology system construction project (JATS[2018]301).

Author Contributions
Q.X. and G.H.C. conceived and designed the experiments; Y.Z. and L.D.W. performed the experiments and wrote the paper; Y.Q.B. analyzed the data; Z.S.W. contributed materials; G.B.C. reviewed and edited the manuscript. All authors read and approved the manuscript.
Additional Information

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019