Impact of COL6A4P2 gene polymorphisms on the risk of lung cancer: A case-control study

Xiaodong Dang1*, Wenhui Zhao1*, Chen Li2, Hua Yang2, Dianzhen Li2, Shanshan Zhang2, Tianbo Jin3,4*

1 Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Shaanxi, Xi’an, China, 2 Xi’an 21st Century Biological Science and Technology Co., Ltd, Shaanxi, Xi’An, China, 3 Key Laboratory of Molecular Mechanism and Intervention Research for Plateau Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China, 4 Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Sciences, Northwest University, Shaanxi, Xi’an, China

* These authors contributed equally to this work.

* jintianbo@gmail.com

Abstract

Lung cancer (LC) is a malignant tumor that poses the greatest threat to human health and life. Most studies suggested that the occurrence of LC is associated with environmental and genetic factors. We aimed to explore the association between COL6A4P2 single nucleotide polymorphisms (SNPs) and CHD risk in the Chinese Southern Han population. Based on the ‘case-control’ experimental design (510 cases and 495 controls), we conducted an association study between five candidate COL6A4P2 SNPs and the corresponding LC risk. Odds ratio (OR) and 95% confidence intervals (CIs) were calculated by logistic regression to analyze the LC susceptibility under different genetic models. The results showed that COL6A4P2 rs34445363 was significantly associated with LC risk under alleles model (OR = 1.26, 95%CI: 1.01–1.58, \(p = 0.038\)). In addition, rs34445363 was also significantly associated with LC risk under the log-additive model (OR = 1.26, 95%CI: 1.01–1.58, \(p = 0.041\)).

The results of subgroup analysis showed that rs34445363 (OR = 1.42, 95%CI: 1.03–1.95, \(p = 0.033\)) and rs61733464 (OR = 0.72, 95%CI: 0.52–0.99, \(p = 0.048\)) were both significantly associated with LC risk in the log-additive model among participants who were ≤ 61 years old. We also found that the variation of rs34445363 (GA vs. GG, OR = 1.73, 95%CI: 1.04–2.86, \(p = 0.034\)) and rs77941834 (TA vs. TT, OR = 1.88, 95%CI: 1.06–3.34, \(p = 0.032\)) were associated with LC risk in the codominant model among female participants. Our study is the first to find that COL6A4P2 gene polymorphism is associated with LC risk in the Chinese Han population. Our study provides a basic reference for individualized LC prevention.

Introduction

Lung cancer (LC) is a malignant tumor with the fastest growth in morbidity and mortality and the greatest threat to human health and life [1]. According to the Global Cancer Observatory database (http://gco.iarc.fr/) [2], there are 2,093,876 new cases of LC worldwide, accounting for 11.6% of all cancers; the number of people who died of LC in 2018 is 1,761,007, accounting for 17.9% of all cancer deaths in 2018. Among them, the incidence and mortality of LC in
women were 13.1% and 6.9%, respectively. LC has become the most malignant tumor with the highest incidence and mortality [3–5]. In China, LC also has a high incidence and mortality, and its morbidity and mortality in men are more than twice that of women [6]. Most studies have suggested that the occurrence of LC is associated with environmental (smoke, occupational exposure, and air pollution) and genetic factors [7, 8]. In particular, genetic factors play an essential role in the occurrence of LC. Li et al. [9] revealed that LC susceptibility in the Chinese Han population was associated with HOTAIR gene mutations. Dimitrakopoulos et al. [10] believed that the NF-kB2 gene mutation is significantly associated with LC risk. However, the association between COL6A4P2 gene polymorphisms and LC susceptibility has not been reported.

COL6A4P2 (collagen type VI alpha 4 pseudogene 2), also named COL6A4, is located on Chr.3q22 in humans. COL6A4 expresses type VI collagen (COL6), an extracellular matrix protein that plays a vital role in maintaining lung tissue integrity. Chiu et al. [11] showed by quantitative secretion cleavage that COL6 is a protein involved in tumor metastasis. Voiles et al. [12] demonstrated that the expression of the COL6 protein in LC is upregulated. Thus, we suspect that COL6A4 may be associated with LC.

It has been reported that COL6A4 is an unprocessed pseudogene due to the presence of multiple stop codons in the gene sequence [13]. Many studies have shown that pseudogenes play an essential role in cancer development. Cheng et al. [14] have found that pseudogenes affect the occurrence and development of cancer by forming IncRNA-pseudogene-mRNA competitive triples. Lynn et al. [15] have confirmed that polymorphisms in the MYLKP1 pseudogene is associated with an increased risk of colon cancer. Wei et al. [16] have found that the pseudogene DUXAP10 promotes the invasiveness of LCs. Therefore, we speculated that the COL6A4P2 gene might play a role in cancer development.

In this study, we first explored the association between the COL6A4P2 gene and LC risk, revealing the association between COL6A4P2 gene polymorphism and LC susceptibility in the Chinese Han population.

Materials and methods
Study participants
Using a case-control design, 510 LC patients (mean age: 60.78 ± 9.96 years) and 495 controls (mean age: 61.94 ± 7.72 years) were enrolled in the study. All patients were recruited from Shaanxi Provincial Cancer Hospital. Patient inclusion criteria were as follow: 1) newly diagnosed LC, 2) histopathological LC diagnosed by an experienced pathologist, 3) no previous radiation therapy or chemical therapy, and 4) no history of cancer or metastatic carcinoma. Patients with asthma, bronchitis, pneumonia, lung abscess, tuberculosis, other lung diseases, autoimmune diseases, trauma or other tumors were excluded from the study. After that, we investigated and collected information regarding clinical indicators of LC patients, including sex, age, histological classification, tumor stage, and the status of lymph node metastasis.

The controls were healthy volunteers recruited from the Shaanxi Provincial Cancer Hospital during the same period. No medical or family history of cancer or any pulmonary disease was the inclusion criteria for the control group. At the time of recruitment, trained personal interviewed using a structured questionnaire to obtain information regarding their demographic characteristics.

Data collection
This study was approved by the Shaanxi Provincial Cancer Hospital ethics committee and conformed to the ethical principles for medical research involving humans of the World Medical
Association Declaration of Helsinki. All participants signed informed consent forms before participating in the study. Subsequently, a sample of approximately 5 mL of venous blood was obtained from each participant and collected into tubes containing ethylenediaminetetraacetic acid for anticoagulation. Genomic DNA was extracted from peripheral blood samples using a whole-blood genomic DNA extraction kit (GOLDMAG, Xi’an, China) according to the manufacturer’s instructions. The purity and concentration of the DNA samples were evaluated using a NanoDrop 2000C system (Thermo Scientific, Waltham, MA, USA). Isolated DNA was stored at −80˚C until analysis.

SNP genotyping

Five candidate SNPs in the *COL6A4P2* gene were selected with a minor allele frequency (MAF) > 0.05 from the global population in the 1,000 Genome Projects (http://www.internationalgenome.org/). We then used HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) to predict the possible functions of the SNPs. The primers for amplification and single-base extension were designed using the Assay Design Suite, V2.0 (https://agenacx.com/online-tools/). Genotyping of the five SNPs was carried out on the MassARRAY iPLEX (Agena Bioscience, San Diego, CA, USA) platform using matrix-assisted laser desorption ionization–time of flight mass spectrometry [17]. Genotyping results were generated using Agena Bioscience TYPER software, version 4.0. Genotyping was performed by laboratory personnel in a double-blinded manner.

Analysis of COL6A4P2 and SNPs expression

Data regarding the expression of *COL6A4P2* in LC were obtained from the UALCAN online database (http://ualcan.path.uab.edu/analysis.html), a web server that provides customizable functions. Tumors and normal samples in the UALCAN database were derived from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) projects. The effect of *COL6A4P2* gene expression on LC prognosis was predicted using the OncoLnc database (http://www.oncolnc.org/). We also predicted the expression of SNPs in the *COL6A4P2* gene in normal lung tissues using the GTEx database (https://gtexportal.org/home/).

Statistical analyses

An independent sample t-test was used to assess differences in the population and clinical characteristics of the study participants. Fisher’s exact tests for HWE were performed by comparing the observed and expected genotype frequencies to calculate the genotype frequencies among the controls. Pearson’s χ^2 test was used to compare the allelic and genotype frequencies of each SNP between LC patients and controls. Multiple genetic model analyses (codominant, dominant, recessive, and log-additive) were performed using PLINK software (http://zzz.bwh.harvard.edu/plink/ld.shtml) to assess the association between SNPs and LC risk. Furthermore, we calculated stratification factors using sex and age to adjust for possible confounders. Finally, we used Haploview software (version 4.2) to construct haplotypes and to estimate the pairwise linkage disequilibrium using the SHEsis software platform (http://analysis.bio-x.cn/myAnalysis.php) was used to estimate the association between haplotype and LC risk. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using logistic regression analyses adjusted for sex and age [18], with the wild-type allele used as a reference. Statistical analyses were performed using SPSS software (version 21.0, IBM Corporation, Armonk, NY, USA). All p-values of statistical tests were two-sided, and $p < 0.05$, which considered indicative of statistical significance. We also conducted a false-positive report probability (FPRP) analysis to detect whether the significant findings were just chance or noteworthy observations [19].
Results

Characteristics of cases and controls

The basic clinical information of patients with LC and controls is shown in Table 1. Five hundred and ten patients were presented with a different distribution, according to age (age \(\leq 61 \), 266 cases; age \(> 61 \), 244 cases), gender (male, 355 cases; female, 155 cases), pathological type (lung squamous cell carcinoma [LUSC], 120 patients; lung adenocarcinoma [LUAD], 188 patients), tumor stage (I-II, 84 cases; III-IV, 261 cases), and lymph node metastasis (LNM) status (positive, 215 cases; negative, 84 cases).

Basic information and allele frequencies of COL6A4P2 gene polymorphisms are presented in Table 2. The genotype distribution of all SNPs in the control subjects met the HWE \((p > 0.05)\). HaploReg function annotation results revealed that SNPs associated with LC risk were successfully predicted to have biological functions. The association between COL6A4P2 polymorphisms and LC risk under the allele model is shown in Table 2, and the results showed that rs34445363 was associated with an increased LC risk \((OR = 1.26, 95\%CI: 1.01–1.58, p = 0.038)\).

Table 1. The comparison of basic characteristics between cases and controls.

Characteristics	Case (n = 510)	Control (n = 495)
Age		
\(\leq 61 \)	266	224
\(> 61 \)	244	271
Mean ± SD	60.78 ± 9.96	61.94 ± 7.72
Gender		
Male	355	346
Female	155	149
Pathological type		
LUSC	120	
LUAD	188	
Unknown	202	
Tumor stage		
I-II	84	
III-IV	261	
Unknown		
LNM		
Positive	215	
Negative	84	
Unknown		

LUSC = lung squamous cell carcinoma; LUAD = lung adenocarcinoma; LNM = lymph node metastasis.

https://doi.org/10.1371/journal.pone.0252082.t001

Table 2. Basic information about SNPs in COL6A4P2 and association with risk of lung cancer in allele model.

Gene	SNP ID	Chr.	Alleles(A/B)	Frequency (MAF)	p-value for HWE	OR (95% CI)	p	Function	
COL6A4P2	rs34445363	3q22.1	A/G	0.217	0.180	0.879	1.26 (1.01–1.58)	0.038	Selected eQTL hits
COL6A4P2	rs7625942	3q22.1	A/G	0.223	0.225	0.608	0.98 (0.80–1.21)	0.915	Motifs changed, Selected eQTL hits
COL6A4P2	rs77941834	3q22.1	A/T	0.122	0.097	0.798	1.29 (0.97–1.71)	0.086	Motifs changed, Selected eQTL hits
COL6A4P2	rs61733464	3q22.1	A/G	0.186	0.213	0.346	0.85 (0.68–1.06)	0.146	DNAse, Motifs changed, Selected eQTL hits
COL6A4P2	rs11914893	3q22.1	A/C	0.108	0.115	0.825	0.93 (0.70–1.23)	0.620	Motifs changed, GRASP QTL hits

SNP = single nucleotide polymorphism; Chr. = chromosome; A/B = minor/major, MAF = minor allele frequency; HWE = Hardy Weinberg equilibrium. \(p < 0.05 \) indicates statistical significance. Bold values indicate a significant difference.

https://doi.org/10.1371/journal.pone.0252082.t002
p = 0.038), and there were no differences between the other four SNPs (rs7625942, rs77941834, rs61733464, and rs11914893) in the COL6A4P2 gene and LC risk (p > 0.05).

Association between the COL6A4P2 gene and the risk of LC

Genetic models (codominant, dominant, recessive, and log-additive) and genotype frequencies were used to identify any associations between the SNPs and the risk of LC. The results showed that rs34445363 in the COL6A4P2 gene significantly increased the risk of LC in the log-additive model (adjusted for age and sex, OR = 1.26, 95%CI: 1.01–1.58, p = 0.041, Table 3), and no significant difference was found for the other SNPs between cases and controls (all p > 0.05).

Furthermore, we identified by pathological analysis that rs34445363 locus variation significantly increased the risk of LUAD in the dominant model (adjusted by age and gender, GA/AA vs. GG, OR = 1.43, 95%CI: 1.01–2.04, p = 0.046) and log-additive model (adjusted by age and gender, OR = 1.38, 95%CI: 1.02–1.86, p = 0.034); However, mutations of rs61733464 in the COL6A4P2 gene have a lower incidence of LUAD with the GA genotype in the codominant model (adjusted by age and gender, GA vs. GG, OR = 0.65, 95%CI: 0.44–0.96, p = 0.031) and under the dominant model (adjusted by age and gender, GA/AA vs. GG, OR = 0.66, 95% CI: 0.46–0.96, p = 0.031).

Association between COL6A4P2 polymorphism and clinicopathological features

To evaluate the association of COL6A4P2 SNPs with various clinicopathological features, we segregated patients according to the clinical stage (I–II vs. III–IV) and LNM status (positive vs. negative). There was no significant association between LNM status and COL6A4P2

SNP ID	Model	Genotype	Control	LC	OR (95%CI)	p	LSCC	OR (95%CI)	p	LUAD	OR (95%CI)	p
rs34445363	Codominant	GG	329	313	1.00		72	1.00		112	1.00	
		GA	146	173	1.25(0.10–1.64)	0.102	43	1.27(0.82–1.96)	0.278	66	1.39(0.96–2.00)	0.082
		AA	15	24	1.63(0.84–3.17)	0.151	5	1.52(0.52–4.46)	0.442	10	1.88(0.81–4.36)	0.144
	Dominant	GG	329	313	1.00		72	1.00		112	1.00	
		GA/AA	161	197	1.29(0.99–1.67)	0.056	48	1.29(0.85–1.97)	0.229	76	1.43(1.01–2.04)	0.046
	Recessive	GG/GA	475	486	1.00		115	1.00		178	1.00	
		AA	15	24	1.51(0.78–2.92)	0.220	5	1.40(0.48–4.06)	0.533	10	1.68(0.73–3.87)	0.223
	Log-additive	–	–	–	1.26(1.01–1.58)	0.041	–	1.26(0.88–1.80)	0.212	–	1.38(1.02–1.86)	0.034
rs61733464	Codominant	GG	310	340	1.00		82	1.00		133	1.00	
		GA	158	150	0.86(0.66–1.13)	0.278	33	0.79(0.50–1.24)	0.299	46	0.65(0.44–0.96)	0.031
		AA	26	20	0.70(0.38–1.28)	0.246	5	0.75(0.27–2.07)	0.581	9	0.76(0.34–1.69)	0.504
	Dominant	GG	310	340	1.00		82	1.00		133	1.00	
		GA/AA	184	170	0.84(0.65–1.09)	0.181	38	0.78(0.51–1.21)	0.265	55	0.66(0.46–0.96)	0.031
	Recessive	GG/GA	468	490	1.00		115	1.00		179	1.00	
		AA	26	20	0.73(0.40–1.34)	0.310	5	0.81(0.30–2.21)	0.683	9	0.87(0.39–1.91)	0.724
	Log-additive	–	–	–	0.85(0.68–1.05)	0.139	–	0.82(0.57–1.18)	0.285	–	0.74(0.55–1.01)	0.059

SNP = single nucleotide polymorphism; LC = lung cancer; LUAD = lung adenocarcinoma; LSCC = lung squamous cell carcinoma; OR = odds ratio; 95%CI = 95% confidence interval.

p < 0.05 indicates statistical significance.

Bold values indicate a significant difference.
polymorphism variation (S1 Table). However, for the rs77941834 variant, the codominant model (adjusted by age and gender, TA vs. TT, OR = 0.52, 95%CI: 0.29–0.94, p = 0.030), dominant model (adjusted by age and gender, TA/AA vs. TT, OR = 0.49, 95%CI: 0.28–0.86, p = 0.013), and log-additive model (adjusted by age and gender, OR = 0.55, 95%CI: 0.34–0.87, p = 0.011) significantly decreased the LC risk in patients with III-IV as compared to patients with I-II tumor stage (Table 4). No statistically significant association was observed for tumor staging and the other four SNPs (rs34445363, rs7625942, rs61733464 and rs11914893).

Stratification analysis of age and gender
Multiple inheritance model analysis showed that age and sex significantly affected the association between COL6A4P2 SNPs and LC risk. We found that rs34445363 was associated with a higher incidence of LC in people aged ≤ 61 years with the AA genotype in the codominant model (adjusted by gender, AA vs. GG, OR = 2.62, 95%CI: 1.00–6.85, p = 0.049) and in the log-additive model (adjusted by gender, OR = 1.42, 95%CI: 1.03–1.95, p = 0.033); rs61733464 was associated with a decreased LC risk under the dominant model (adjusted by gender, GA/AA vs. GG, OR = 0.68, 95%CI: 0.46–0.99; p = 0.048) and log-additive model (adjusted by gender, OR = 0.72, 95%CI: 0.52–0.99, p = 0.048) in people aged ≤ 61 years (Table 5).

In addition, we found that the sex significantly affected the association between SNPs of the COL6A4P2 gene and LC risk (Table 5). The mutation of COL6A4P2 rs34445363 in females could significantly increase the LC risk with the GA genotype under the codominant model (adjusted by age, GA vs. GG, OR = 1.73, 95% CI: 1.04–2.86, p = 0.034), dominant model (adjusted by age, GA/AA vs. GG, OR = 1.75, 95% CI: 1.08–2.85, p = 0.024) and log-additive model (adjusted by age, OR = 1.60, 95% CI: 1.05–2.44, p = 0.028); Women with rs77941834 mutation have a higher incidence of LC with the TA genotype under the codominant model (adjusted by age, TA vs. TT, OR = 1.88, 95% CI: 1.06–3.34, p = 0.032), in dominant model (adjusted by age, TA/AA vs. TT, OR = 1.89, 95% CI: 1.07–3.33, p = 0.027) and log-additive model (adjusted by age, OR = 1.81, 95% CI: 1.06–3.08, p = 0.030).

FPRP analysis
The results of FPRP analysis showed that (S2 Table): the association between COL6A4P2 rs34445363 and LC in people aged ≤ 61 (p = 0.049) was not noteworthy at the prior probability level of 0.25 and FPRP threshold of 0.2 (FPRP = 0.338). The FPRP of the remaining significant results were all less than 0.2, which means that these positive results were noteworthy.

SNP ID	Model	Genotype	Control	Case	OR (95%CI)	p
rs77941834	Codominant	TT	57	210	1.00	
		TA	23	46	0.52 (0.29–0.94)	0.030
		AA	4	5	0.33 (0.09–1.31)	0.116
	Dominant	TT	57	210	1.00	
		TA/AA	27	51	0.49 (0.28–0.86)	0.013
	Recessive	TT/TA	80	256	1.00	
	Log-additive	AA	4	5	0.39 (0.10–1.49)	0.167
					0.55 (0.34–0.87)	0.011

SNP = single nucleotide polymorphism; OR = odds ratio; 95%CI = 95% confidence interval.
p < 0.05 indicates statistical significance.
Bold values indicate a significant difference.

https://doi.org/10.1371/journal.pone.0252082.t004
Association of COL6A4P2 haplotypes with the risk of LC

SNPs in the current study were in linkage disequilibrium for the study population (Fig 1). Unfortunately, there was no statistically significant difference among the COL6A4P2 haplotype frequencies in the cases and controls (S3 Table).

Expression of COL6A4P2 and SNPs

Database analysis showed that compared with healthy subjects, expression of the COL6A4P2 gene was significantly higher in LUAD ($p = 1.62 \times 10^{-12}$), and expression of the COL6A4P2 gene polymorphisms and lung cancer

Table 5. Distribution of COL6A4P2 polymorphisms in populations of different ages and genders and its association with risk of lung cancer.

SNP ID	Model	Genotype	Age > 61	Age ≤ 61						
			Control	Case	OR (95%CI)	p	Control	Case	OR (95%CI)	p
rs34445363	Codominant	GG	179	152	1.00	150	161	1.00		
		GA	82	86	1.24 (0.85–1.81)	0.254	64	87	1.29 (0.87–1.92)	0.210
		AA	9	6	0.76 (0.26–2.19)	0.606	6	18	2.62 (1.00–6.85)	0.049
	Dominant	GG	179	152	1.00	150	161	1.00		
		GA/AA	91	92	1.20 (0.83–1.72)	0.340	70	105	1.41 (0.96–2.06)	0.079
	Recessive	GG/GA	261	238	1.00	214	248	1.00		
		AA	9	6	0.70 (0.24–2.02)	0.513	6	18	2.41 (0.93–6.24)	0.070
	Log-additive	–	–	–	1.11 (0.81–1.53)	0.524	–	–	1.42 (1.03–1.95)	0.033
rs61733464	Codominant	GG	174	159	1.00	136	181	1.00		
		GA	81	74	0.98 (0.67–1.44)	0.923	77	76	0.70 (0.47–1.03)	0.073
		AA	15	11	0.82 (0.36–1.86)	0.636	11	9	0.58 (0.23–1.46)	0.249
	Dominant	GG	174	159	1.00	136	181	1.00		
		GA/AA	96	85	0.96 (0.66–1.38)	0.812	88	85	0.68 (0.46–0.99)	0.048
	Recessive	GG/GA	255	233	1.00	213	257	1.00		
		AA	15	11	0.83 (0.37–1.86)	0.642	11	9	0.66 (0.26–1.63)	0.365
	Log-additive	–	–	–	0.95 (0.70–1.28)	0.713	–	–	0.72 (0.52–0.99)	0.048
SNP ID	Model	Genotype	Male	Female						
----------	---------	----------	----------	----------						
			Control	Case	OR (95%CI)	p	Control	Case	OR (95%CI)	p
rs34445363	Codominant	GG	225	220	1.00	104	92	1.00		
		GA	110	118	1.10 (0.80–1.52)	0.547	36	55	1.73 (1.04–2.86)	0.034
		AA	11	17	1.47 (0.67–3.24)	0.334	4	7	1.98 (0.56–6.98)	0.289
	Dominant	GG	225	220	1.00	104	92	1.00		
		GA/AA	121	135	1.14 (0.84–1.55)	0.411	40	62	1.75 (1.08–2.85)	0.024
	Recessive	GG/GA	335	338	1.00	140	147	1.00		
		AA	11	17	1.43 (0.65–3.11)	0.372	4	7	1.67 (0.18–5.82)	0.423
	Log-additive	–	–	–	1.15 (0.88–1.49)	0.314	–	–	1.60 (1.05–2.44)	0.028
rs77941834	Codominant	TT	279	284	1.00	124	112	1.00		
		TA	63	61	0.94 (0.64–1.39)	0.763	23	39	1.88 (1.06–3.34)	0.032
		AA	4	10	2.42 (0.75–7.84)	0.141	1	2	2.21 (0.20–24.76)	0.519
	Dominant	TT	279	284	1.00	124	112	1.00		
		TA/AA	67	71	1.03 (0.71–1.50)	0.878	24	41	1.89 (1.07–3.33)	0.027
	Recessive	TT/TA	342	345	1.00	147	151	1.00		
		AA	4	10	2.44 (0.76–7.91)	0.136	1	2	1.94 (0.17–21.66)	0.590
	Log-additive	–	–	–	1.11 (0.80–1.53)	0.547	–	–	1.81 (1.06–3.08)	0.030

SNP = single nucleotide polymorphism; OR = odds ratio; 95%CI = 95% confidence interval.
$p < 0.05$ indicates statistical significance.
Bold values indicate a significant difference.

https://doi.org/10.1371/journal.pone.0252082.t005
gene was significantly higher in LUSC ($p = 2.44 \times 10^{-7}$, Fig 2A and 2C). OncoLnc database analysis showed that expression of the COL6A4P2 gene was significantly correlated with the survival rate in LUAD patients ($p = 4.25 \times 10^{-3}$). However, the expression of the COL6A4P2 gene had no significant effect on the prognosis of LUSC ($p = 3.00 \times 10^{-1}$, Fig 2D). Furthermore, the GTEx database prediction results showed that four SNPs (rs34445363, $p = 5.80 \times 10^{-14}$; rs7625942, $p = 8.90 \times 10^{-8}$; rs77941834, $p = 1.60 \times 10^{-5}$; rs61733464, $p = 1.00 \times 10^{-9}$) on the COL6A4P2 gene were significantly expressed in normal lung tissues (Fig 3).

Discussion

In this study we analyzed the association of COL6A4P2 gene polymorphisms with susceptibility to LC. We identified that rs34445363 in COL6A4P2 was associated with an increased risk of LC. Our results also suggested that rs34445363 site mutations increase the risk of LUAD, while the mutation of rs61733464 significantly decreased the LUAD risk. These results suggest an association between genetic polymorphisms of COL6A4P2 and susceptibility to LC.

Numerous studies have shown that collagen levels play an essential role in the development of LC [20, 21]. Naveen et al. [22] identified collagen VI as a potential biomarker for the early
diagnosis of LC by proteomic analysis, suggesting that LC is associated with collagen-encoding genes. The COL6A4P2 gene is a pseudogene formed by the chromosomal break of the collagen-encoding gene COL6A4 [13, 23]; therefore, we speculate that the COL6A4P2 gene may be associated with LC. Our results suggest that the rs34445363 mutation in the COL6A4P2 gene significantly increases the risk of LC, validating our conjecture, and is consistent with previous studies.

Our results also found that the association between COL6A4P2 gene polymorphism and LC risk was influenced by gender and age. A retrospective analysis by Oh et al. [24] assessed the crucial effects of sex and age in the development of LC. Aareleid et al. [25] revealed that LC has different incidence rates in different genders and ages. These studies are consistent with our results and enhance the credibility of our findings.

Furthermore, we predicted the differential expression of COL6A4P2 in normal lung tissues and LC tissues using a database. Voiles et al. [12] found that collagen VI protein levels increased in tumor lung tissue and speculated that the expression of the COL6A4P2 gene in tumor lung tissue is variable. This is consistent with our predictions. Fagerberg et al. [26] found that the COL6A4P2 gene is specifically expressed in human lung tissue by genome-wide...
integration analysis of transcriptomics and antibody proteomics. These findings suggest the important research significance of the \textit{COL6A4P2} gene in the development of LC, prompting that the \textit{COL6A4P2} gene deserves further study.

Conclusion

In conclusion, the present study is the first to investigate the association between \textit{COL6A4P2} and LC. Our findings indicated that \textit{COL6A4P2} gene polymorphism is associated with LC risk in the Chinese Han population. However, it is necessary to conduct further studies in other races and larger sample sizes to confirm our results. Our study provides a basic reference for individualized LC prevention.

Supporting information

S1 Table. Association between \textit{COL6A4P2} polymorphism and lymph node metastasis status in patients with lung cancer.

(DOCX)
S2 Table. FPRP and statistical power values of the association analysis results in the sub-group analysis.

(DOCX)

S3 Table. Haplotype frequencies of COL6A4P2 polymorphisms and their association with the risk of lung cancer.

(DOCX)

S4 Table. Genotyping results of all participants.

(XLSX)

S1 File.

(DOCX)

Acknowledgments

We thank all authors for their contributions and supports. We are also grateful to all participants for providing blood samples.

Author Contributions

Conceptualization: Tianbo Jin.

Data curation: Dianzhen Li, Shanshan Zhang.

Methodology: Xiaodong Dang, Wenhui Zhao.

Software: Chen Li, Hua Yang.

Writing – review & editing: Xiaodong Dang, Tianbo Jin.

References

1. Kou Y, Li G, Shao J, et al. Genome-Wide Profiling Reveals That Herbal Medicine Jinfukang-Induced Polyadenylation Alteration Is Involved in Anti-Lung Cancer Activity. Evid Based Complement Alternat Med. 2017; 2017:5326909. https://doi.org/10.1155/2017/5326909 PMID: 29234412

2. Albarqouni L, Elessi K, Abu-Rmeileh N M E. A comparison between health research output and burden of disease in Arab countries: evidence from Palestine. Health Res Policy Syst. 2018; 16(1):25. https://doi.org/10.1186/s12961-018-0302-4 PMID: 29544498

3. de Groot P M, Wu C C, Carter B W, et al. The epidemiology of lung cancer. Transl Lung Cancer Res. 2018; 7(3):220–233. https://doi.org/10.21037/tlcr.2018.05.06 PMID: 30050761

4. Sun K X, Zheng R S, Zeng H M, et al. [The incidence and mortality of lung cancer in China, 2014]. Zhonghua Zhong Liu Za Zhi. 2018; 40(11):805–811. https://doi.org/10.3760/cma.j.issn.0253-3766.2018.11.002 PMID: 30481929

5. Bhimji S S, Wallen J M. Cancer, Lung, Adenocarcinoma. StatPearls. Treasure Island (FL)2018.

6. Cao M, Chen W. Epidemiology of lung cancer in China. Thorac Cancer. 2018.

7. Mohamed S, Bayoumi H, El-Aziz N A, et al. Prevalence, risk factors, and impact of lung Cancer on outcomes of idiopathic pulmonary fibrosis: a study from the Middle East. Multidiscip Respir Med. 2018; 13:37. https://doi.org/10.1186/s40248-018-0150-7 PMID: 30305901

8. Liu D, Wen H, He J, et al. Society for Translational Medicine Expert Consensus on the preoperative assessment of circulatory and cardiac functions and criteria for the assessment of risk factors in patients with lung cancer. J Thorac Dis. 2018; 10(9):5545–5549. https://doi.org/10.21037/jtd.2018.08.91 PMID: 30416805

9. Li H, Yang Z, Li J, et al. Genetic variants in IncRNA HOTAIR are associated with lung cancer susceptibility in a Chinese Han population in China: a case-control study. Cancer Manag Res. 2018; 10:5209–5218. https://doi.org/10.2147/CMAR.S175961 PMID: 30464618
10. Dimitrakopoulos F D, Antonacopoulou A G, Kottorou A E, et al. NF-κB2 Genetic Variations are Significantly Associated with Non-Small Cell Lung Cancer Risk and Overall Survival. Sci Rep. 2018; 8(1):5259. https://doi.org/10.1038/s41598-018-23324-3 PMID: 29588475

11. Chiu K H, Chang Y H, Wu Y S, et al. Quantitative secretome analysis reveals that COL6A1 is a metastasis-associated protein using stacking gel-aided purification combined with iTRAQ labeling. J Proteome Res. 2011; 10(3):1110–1125. https://doi.org/10.1021/pr1008724 PMID: 21186846

12. Voiles L, Lewis D E, Han L, et al. Overexpression of type VI collagen in neoplastic lung tissues. Oncol Rep. 2014; 32(6):1897–1904. https://doi.org/10.3892/or.2014.3438 PMID: 25176343

13. Fitzgerald J, Rich C, Zhou F H, et al. Three novel collagen VI chains, alpha4(VI), alpha5(VI), and alpha6(VI). J Biol Chem. 2008; 283(29):20170–20180. https://doi.org/10.1074/jbc.M710139200 PMID: 18400749

14. Wu C, Wei Y, Zhu Y, et al. Identification of cancer-related potential biomarkers based on lncRNA-pseudogene-mRNA competitive networks. FEBS Lett. 2018; 592(6):973–986. https://doi.org/10.1002/1873-3468.13011 PMID: 29453881

15. Lynn H, Sun X, Ayshev D, et al. Single nucleotide polymorphisms in the MYLK1 pseudogene are associated with increased colon cancer risk in African Americans. PLoS One. 2018; 13(8):e0200916. https://doi.org/10.1371/journal.pone.0200916 PMID: 30161129

16. Wei C C, Nie F Q, Jiang L L, et al. The pseudogene DUXAP10 promotes an aggressive phenotype through binding with LRD1 and repressing LATS2 and RRAD in non small cell lung cancer. Oncotarget. 2017; 8(3):5233–5246. https://doi.org/10.18632/oncotarget.14125 PMID: 28096571

17. Huang C Y, Xun X J, Wang A J, et al. CHRNA5 polymorphisms and risk of lung cancer in Chinese Han smokers. Am J Cancer Res. 2015; 5(10):3241–3248. PMID: 25176343

18. Dai Z J, Liu X H, Ma Y F, et al. Association Between Single Nucleotide Polymorphisms in DNA Polymerase Kappa Gene and Breast Cancer Risk in Chinese Han Population: A STROBE-Compliant Observational Study. Medicine (Baltimore). 2016; 95(2):e2466. https://doi.org/10.1097/MD.0000000000002466 PMID: 26765445

19. He J, Zou Y, Liu X, et al. Association of Common Genetic Variants in Pre-microRNAs and Neuroblastoma Susceptibility: A Two-Center Study in Chinese Children. Mol Ther Nucleic Acids. 2018; 363(1):121–128. https://doi.org/10.1016/j.omtn.2018.01.003 PMID: 29858046

20. Shea M P, O'Leary K A, Wegner K A, et al. High collagen density augments mTOR-dependent cancer stem cells in ERalpha+ mammary carcinomas, and increases mTOR-independent lung metastases. Cancer Lett. 2018; 433:1–9. https://doi.org/10.1016/j.canlet.2018.06.025 PMID: 29935374

21. Li Y, Chen Y, Ma Y, et al. Collagen prolyl hydroxylase 3 has a tumor suppressive activity in human lung cancer. Exp Cell Res. 2018; 363(1):121–128. https://doi.org/10.1016/j.yexcr.2017.12.020 PMID: 29277505

22. Chaudhary N, Bhatnagar S, Malik S, et al. Proteomic analysis of differentially expressed proteins in lung cancer in Wistar rats using NKK as an inducer. Chem Biol Interact. 2013; 204(2):125–134. https://doi.org/10.1016/j.cbi.2013.05.004 PMID: 23692979

23. Gara S K, Grumati P, Urciuolo A, et al. Three novel collagen VI chains with high homology to the alpha3 chain. J Biol Chem. 2008; 283(16):10658–10670. https://doi.org/10.1074/jbc.M709540200 PMID: 18276594

24. Oh J Y, Lee Y S, Min K H, et al. Presence of lung cancer and high gender, age, and physiology score as predictors of acute exacerbation in combined pulmonary fibrosis and emphysema: A retrospective study. Medicine (Baltimore). 2018; 97(31):e11683.

25. Aareleid T, Zimmermann M L, Baburin A, et al. Divergent trends in lung cancer incidence by gender, age and histological type in Estonia: a nationwide population-based study. BMC Cancer. 2017; 17(1):596. https://doi.org/10.1186/s12885-017-3605-x PMID: 28854969

26. Fagerberg L, Hallstrom B M, Oksvold P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014; 13(2):397–406.