Development of uncertainty estimation procedure for measurement of nonlinear distortions

M Belaya, S Kravtsova

PhD in techniques, associate professor, associate professor of department «Technical expertise and quality management», Federal State Educational Institution of Higher Education «Sevastopol State University»

E-mail: belaya_079@mail.ru

Abstract. The article is devoted to the question of expediency of development of uncertainty estimation procedure for measurement of nonlinear distortions. The article deals with the sequence of uncertainty estimation in the measurement of nonlinear distortions. Using the reference calibration tool, the installation of the measuring sample K2C-57, calibration was carried out and the results of experimental studies were obtained, in assessing the uncertainty of measuring the harmonic distortion.

Key words. Measurement, calibration, means of measurement, uncertainty, harmonic distortion, measurement uncertainty budget

Introduction

It is now widely accepted that when all of the known or assumed error components have been calculated and the corresponding corrections applied, there is still uncertainty as to the correctness of the corrected result, i.e. doubt as to how well the measurement result represents the value of the physical quantity being measured [11-13].

Methods

During calibration devices are divided into standards and calibrated measuring instruments. According to the method of obtaining the values of the measured values are two main methods of measurement [1,4]:

- direct evaluation method;
- method of comparison with measure.

The method of direct evaluation is a method of measurement, in which the values of the quantities are determined directly by the reference device of the measuring device.

Measure comparison method – a measurement method in which the values of quantities are compared with the value specified by the measure[6-7].

A specific procedure for the evaluation of uncertainty depends on the method of measurements used during calibration. The following methods are used to transfer a unit of value in calibration schemes:

- direct measurement by the calibrated measuring instrument of the value formed by the reference measure;
- direct comparison of calibrated and reference measuring instruments;
- indirect formation by several reference measures of a value that is measured by a calibrated measuring instrument;
- direct measurement by reference measurement of the value formed by the calibrated measure;
- comparison of the values generated by the reference and calibrated measure using a comparator;
- indirect measurement of the value generated by the calibrated measure.

During the calibration of the measuring instrument, the value and uncertainty of the difference between the value of Xs, which is formed by the reference measure or measured by the reference measuring instrument, and the value of Xc, measured by the calibrated instrument, are estimated:

$$\Delta = X_c - X_s$$ \hspace{1cm} (1)

This difference is then used to correct the measurement result. Thus, the assessment of uncertainty in calibration is the estimation of the uncertainty of the \(\Delta \).

When calibrating measures, the magnitude and uncertainty of the actual value of the XC measure to be calibrated is usually estimated by measurement with a reference measurement tool or by comparison with a reference measure Xs. The correction in this case is the difference between the nominal XN and the actual Xc values of the measure:

$$\Delta = X_c - X_N$$ \hspace{1cm} (2)

Assessment of uncertainty in calibration is to estimate the uncertainty of the value of Xc.

Also, the measurements should take into account the values, the effect of which is not taken into account by the experimental data, but which are significant during calibration [5,15]. For example, environmental parameters, supply voltage, quantization errors, inaccuracy of value setting, mutual influence of measure and measuring instrument [14].

Extended calibration uncertainty is determined by the formula:

$$U = kU$$ \hspace{1cm} (3)

where U - is the standard uncertainty,
k - is the coverage coefficient calculated in the General case as the student coefficient with the effective number of degrees of freedom veff defined by the Welch-Sattersweit formula.

Consider the procedure for estimating uncertainty in the measurement of the harmonic distortion. In our case, the uncertainty is determined by type A. For a more reliable estimate, the number of observations should be at least ten. The calibration results are recorded in a protocol [8-10].

In the process of calibration, the difference between the value of the harmonic distortion coefficient (Kg), set on the reference unit, and the value of the harmonic distortion coefficient (Kg), measured by the calibrated non-linear distortion meter, is determined (NDM).

The calibration scheme is shown in figure 1.

![Figure 1. Scheme of the calibration](image)

The measurement method is based on direct multiple measurement of the Kg sample unit, using a calibrated NDM.

The model equation in this case has the form:

$$\Delta = (X_c + \Delta_c) - X_s$$ \hspace{1cm} (4)

where \(\Delta \) – evaluation of the output value at the point of calibration;
\(X_c \) – the Kg value that was measured by the calibrated NDM;
\(\Delta_c \) – the quantization accuracy of the calibrated NDM;
\(X_s \) – nominal value Kg.

The following expression for the total standard measurement uncertainty will correspond to the
model equation (4):
\[u(\Delta) = \sqrt{u(x_i)^2 + u_{(\Delta_c)}^2 + u_{(\Delta_s)}^2} \],

where \(u(x_i) \) - standard type A uncertainty determined by the formula (7);
\(u(\Delta_c) \) - quantization error of the measuring device, determined by the formula (8);
\(u(\Delta_s) \) - standard calibration uncertainty of the reference installation specified in the calibration certificate.

In reusable measurements, the value estimate is defined as the arithmetic mean of the observations:
\[x_c = \frac{1}{n} \sum_{i=1}^{n} X_{ci} \]

Estimation of standard uncertainty by type A, \(u(x_i) \), is carried out by means of statistical analysis of a series of observations:
\[u(x_i) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (X_{ci} - x_c)^2} \]

where \(X_{ci} \) - i-th measurement result,
\(n \) - number of measurements.

For a more reliable estimate, the number of observations should be at least ten. Prior to the type A standard uncertainty assessment, omissions from the experimental data should be excluded.

The quantization error of the measuring device is determined by the following formula:
\[u(\Delta_c) = \frac{q}{2 \cdot 2 \sqrt{3}} \]

where \(q \) - unit of scale division of the calibrated NDM.

The effective number of degrees of freedom for this case will be determined by the formula:
\[\nu_{eff} = \left(n - 1 \right) \left[\frac{u(\Delta)}{u(x_i)} \right]^4 \]

The expanded uncertainty of measurement during calibration of the NDM is determined from the expression:
\[U(\Delta) = k \cdot u(\Delta) \]

where \(k \) - the coverage rate for the probability 0.95.

The budget of measurement uncertainty during calibration NDM is given in the table 1.

The measurement result is recorded in the following form:
\[\Delta = [\Delta \pm U(\Delta)] \text{ B, } p = 0.95 \]

Table 1. Measurement uncertainty budget for calibration NDM
Input value

\(x_c \)
\(\Delta_c \)
\(x_s \)
Output value
\(\Delta \)
Let's consider, on a concrete example, the proposed procedure of uncertainty estimation. In accordance with section 13 "Calibration of the device" of the technical description and operating instructions for the non-linear distortion meter automatic C6-11 [2], we determine the calibrated points (table 2).

Table 2. Calibrated points when measuring harmonic distortion NDM C6-11

Kg	Frequencies
0.03%	200 Hz, 1.9 kHz, 2.2 kHz, 19.9 kHz
0.1%	20 Hz, 198 Hz, 20 kHz, 100 kHz, 199.9 kHz
0.25%	200 Hz, 1.9 kHz, 2.2 kHz, 19.9 kHz
0.6%	20 Hz, 198 Hz, 200 Hz, 1.9 kHz, 2.2 kHz, 19.9 kHz, 20 kHz, 100 kHz, 199.9 kHz
2.5%	20 Hz, 198 Hz, 200 Hz, 1.9 kHz, 2.2 kHz, 19.9 kHz, 20 kHz, 100 kHz, 199.9 kHz
9.0%	20 Hz, 198 Hz, 200 Hz, 1.9 kHz, 2.2 kHz, 19.9 kHz, 20 kHz, 100 kHz, 199.9 kHz
30.0%	20 Hz, 198 Hz, 200 Hz, 1.9 kHz, 2.2 kHz, 19.9 kHz, 20 kHz, 100 kHz, 199.9 kHz

Used reference calibration tool, measuring installation model K2C-57, has the following metrological characteristics:
- Kg = (0.003 – 100) %
- 10 Hz – 200 kHz
- U = (0.0005 ÷ 0.73) %

The accessories and other means used for calibration are presented in table 3.

Table 3. Accessories and other facilities used

Name	Characteristics
Measuring parameters of the air «Atmosphere-1»	650 – 1080 hPa, Δ = ± 1,0 hPa
	5 – 40 ºC; Δ = ± 0,5 ºC
	10 – 90 %; Δ = ± 3 %
Voltmeter AST	150; 300 V
Digital panel meter ЕПВ-100	Accuracy class 0,5
	(10 – 100) Hz
	Accuracy class 1,0

During the calibration it is necessary to observe the conditions of the calibration (table 4).

Table 4. Calibration conditions

Name	Norm	Fact
air temperature, ºC	20 ± 5	21
relative humidity, %	30…80	59
atmospheric pressure, kPa	84…106	101,1
supply voltage, V	220 ± 4,4	220,5
network frequency, Hz	50 ± 0,5	50,1
Table 5 Determination of metrological characteristics when measuring harmonic distortion

Calibrated point	Measurement result (Kg), Xc, %	Price of measurements limit	Δ Kg, %	
frequencies	1 2 3 4 5 6 7 8 9 10	medium		
200 Hz	0.0295 0.0300 0.0305 0.0295 0.0295 0.030 0.0305 0.0290 0.0290 0.029	0.0005	-0.00035 ± 0.0215	
1.9 kHz	0.0290 0.0290 0.0295 0.0285 0.0285 0.0280 0.0280 0.0280 0.0280 0.0280	0.0005	-0.00140 ± 0.0215	
2.2 kHz	0.0280 0.0285 0.0280 0.0280 0.0280 0.0285 0.0285 0.0285 0.0285 0.0285	0.0005	-0.00180 ± 0.0215	
19.9 kHz	0.0285 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290 0.0290	0.0005	-0.00125 ± 0.0215	
20 Hz	0.090 0.092 0.090 0.090 0.092 0.094 0.096 0.096 0.094 0.092	0.002	-0.0074 ± 0.011	
198 Hz	0.092 0.092 0.094 0.092 0.094 0.096 0.096 0.096 0.094 0.0942	0.002	-0.0058 ± 0.011	
20 kHz	0.105 0.105 0.100 0.105 0.105 0.110 0.105 0.105 0.105 0.105	0.005	0.0050 ± 0.070	
100 kHz	0.100 0.105 0.105 0.105 0.105 0.110 0.105 0.105 0.105 0.105	0.005	0.0050 ± 0.070	
199.9 kHz	0.130 0.125 0.125 0.125 0.125 0.130 0.135 0.125 0.125 0.1270	0.005	0.0270 ± 0.070	
200 Hz	0.235 0.230 0.225 0.220 0.225 0.230 0.220 0.220 0.225 0.225	0.005	-0.0250 ± 0.0325	
1.9 kHz	0.220 0.225 0.220 0.220 0.230 0.235 0.225 0.225 0.225 0.2255	0.005	-0.0245 ± 0.0325	
2.2 kHz	0.220 0.230 0.225 0.220 0.225 0.230 0.225 0.225 0.225 0.2270	0.005	-0.0230 ± 0.0325	
19.9 kHz	0.225 0.230 0.225 0.220 0.225 0.225 0.220 0.225 0.225 0.2255	0.005	-0.0265 ± 0.0325	
20 Hz	0.52 0.54 0.52 0.56 0.52 0.52 0.52 0.54 0.52 0.528	0.02	-0.072 ± 0.09	
198 Hz	0.52 0.52 0.54 0.52 0.54 0.52 0.52 0.52 0.54 0.526	0.02	-0.074 ± 0.09	
200 Hz	0.52 0.54 0.54 0.54 0.56 0.52 0.52 0.56 0.52 0.534	0.02	-0.066 ± 0.05	
1.9 kHz	0.62 0.64 0.64 0.64 0.62 0.64 0.64 0.64 0.64 0.634	0.02	0.034 ± 0.05	
2.2 kHz	0.64 0.64 0.64 0.64 0.62 0.64 0.64 0.64 0.64 0.634	0.02	0.034 ± 0.05	
19.9 kHz	0.52 0.54 0.56 0.52 0.52 0.52 0.54 0.52 0.54 0.530	0.02	-0.070 ± 0.05	
20 kHz	0.52 0.52 0.54 0.52 0.52 0.52 0.54 0.52 0.52 0.524	0.02	-0.076 ± 0.12	
100 kHz	0.56 0.62 0.64 0.66 0.66 0.68 0.68 0.68 0.68 0.656	0.02	0.056 ± 0.12	
199.9 kHz	0.68 0.68 0.66 0.68 0.70 0.72 0.70 0.68 0.68 0.684	0.02	0.084 ± 0.12	
Calibrated point	Measurement result (Kg), Xc, %	Price of division of the scale measurements	Δ Kg, % limit	
-----------------	---------------------------------	--	----------------	
frequencies	Kg, %	medium	± 0.090	± 0.120
20 Hz	2.45 2.40 2.40	2.45	0.05	
198 Hz	2.60 2.60 2.65	2.60	0.05	0.180
200 Hz	2.60 2.65 2.65	2.65	0.05	0.130
1.9 kHz	2.55 2.55 2.55	2.55	0.05	0.130
2.2 kHz	2.60 2.60 2.60	2.60	0.05	0.205
19.9 kHz	2.55 2.55 2.55	2.55	0.05	0.205
20 kHz	2.65 2.70 2.75	2.70	0.05	0.205
100 kHz	2.70 2.75 2.75	2.75	0.05	0.205
199.9 kHz	2.70 2.75 2.75	2.75	0.05	0.205
20 Hz	8.52 8.54 8.56	8.56	0.05	0.205
198 Hz	8.54 8.52 8.54	8.54	0.05	0.205
200 Hz	8.60 8.58 8.62	8.62	0.05	0.205
1.9 kHz	9.26 9.30 9.28	9.28	0.05	0.205
2.2 kHz	9.32 9.30 9.34	9.34	0.05	0.205
19.9 kHz	9.36 9.38 9.40	9.40	0.05	0.205
20 kHz	9.50 9.48 9.48	9.48	0.05	0.205
100 kHz	9.62 9.64 9.66	9.66	0.05	0.205
199.9 kHz	8.26 8.28 8.30	8.30	0.05	0.205
20 Hz	29.5 29.0 28.5	28.5	0.05	-1.15
198 Hz	29.0 28.5 29.0	29.0	0.05	-1.15
200 Hz	30.5 31.0 30.5	30.5	0.05	-1.15
1.9 kHz	29.5 29.0 28.5	28.5	0.05	-1.15
2.2 kHz	29.5 30.0 28.5	28.5	0.05	-1.15
19.9 kHz	29.0 29.0 28.5	28.5	0.05	-1.15
20 kHz	28.0 27.5 27.5	27.5	0.05	-1.15
100 kHz	27.5 28.0 28.0	28.0	0.05	-1.15
199.9 kHz	27.5 28.0 28.5	28.5	0.05	-1.15
Table 6. Calculation of measurement uncertainty (Kg = 0.03 % in frequency range)

The value of the range	Standard uncertainty of the measurement Kg (by type А) u(xc), %	The standard uncertainty of the quantization u(Δc), %	The standard uncertainty of the reference measures u(xs), %	Total standard uncertainty u(Δ), %	The expanded uncertainty in the measurement U(Δ), %
200 Hz	1,8·10^-4	7,2·10^-5	- 2·10^-4	2,8·10^-4	5,6·10^-4 k = 2,01
1,9 kHz	1,6·10^-4	7,2·10^-5	- 2·10^-4	2,7·10^-4	5,4·10^-4 k = 2,00
2,2 kHz	8,2·10^-5	7,2·10^-5	- 2·10^-4	2,3·10^-4	4,5·10^-4 k = 1,96
19,9 kHz	1,1·10^-4	7,2·10^-5	- 2·10^-4	2,3·10^-4	4,7·10^-4 k = 1,97

Table 7. Calculation of measurement uncertainty (Kg = 0.1 % in frequency range)

The value of the range	Standard uncertainty of the measurement Kg (by type А) u(xc), %	The standard uncertainty of the quantization u(Δc), %	The standard uncertainty of the reference measures u(xs), %	Total standard uncertainty u(Δ), %	The expanded uncertainty in the measurement U(Δ), %
20 Hz	7,3·10^-4	2,9·10^-4	- 6,5·10^-4	1·10^-3	2,1·10^-3 k = 2,03
1,98 Hz	5,5·10^-4	2,9·10^-4	- 6,5·10^-4	0,9·10^-3	1,8·10^-3 k = 2,00
20 kHz	7,5·10^-4	7,2·10^-4	- 1,8·10^-3	2·10^-3	4·10^-3 k = 1,96
100 kHz	1,1·10^-3	7,2·10^-4	- 1,8·10^-3	2·10^-3	4·10^-3 k = 1,97
199,9 kHz	1,1·10^-3	7,2·10^-4	- 1,8·10^-3	2·10^-3	4·10^-3 k = 1,98

Table 8. Calculation of measurement uncertainty (Kg = 0.25 % in frequency range)

The value of the range	Standard uncertainty of the measurement Kg (by type А) u(xc), %	The standard uncertainty of the quantization u(Δc), %	The standard uncertainty of the reference measures u(xs), %	Total standard uncertainty u(Δ), %	The expanded uncertainty in the measurement U(Δ), %
200 Hz	1,7·10^-3	7,2·10^-4	- 1·10^-3	2,1·10^-3	4,3·10^-3 k = 2,08
1,9 kHz	1,6·10^-3	7,2·10^-4	- 0,5·10^-3	1,8·10^-3	3,8·10^-3 k = 2,13
2,2 kHz	1,5·10^-3	7,2·10^-4	- 0,5·10^-3	1,8·10^-3	3,8·10^-3 k = 2,13
19,9 kHz	1,1·10^-3	7,2·10^-4	- 0,5·10^-3	1,4·10^-3	2,8·10^-3 k = 2,06

Conclusion
Using the proposed procedure of uncertainty estimation in the measurement of nonlinear distortions and the requirements used in the development of calibration techniques [3], established in GOST R 8.879-2014 "State system of ensuring the uniformity of measurements. Methods of calibration of measuring
instruments. General requirements for the content and presentation" it is advisable to develop a method of calibration of measuring instruments.

References

[1] Zakharov I.P. Neopredelennost' izmereniy dlya chaynikov i nachal'nikov. Uchebnoye posobiye. Kharkov: 2013. – pp. 36
[2] DLJ2.770.003 TO. Izmeritel' nelineynykh iskazheniy avtomaticheskii S6-11. Tekhnicheskoye opisiyaniye i instruktsiya po eksplyutatsii.
[3] GOST R 8.879-2014 State system for ensuring the uniformity of measurements. General requirements for content and presentation. - Enter 09/01/2015. - M. : Standardinform, 2015. - 8 p.
[4] Inochkin F M, Kruglov S K, Bronshtein I G, Kompan T A, Kondratiev S V, Korenev A S & Puhov N F 2018 Superresolution contour reconstruction approach to a linear thermal expansion measurement. Paper presented at the Proceedings - International Conference on Image Processing, ICIP, 3843-3847. doi:10.1109/ICIP.2018.8451081
[5] Sirunyan A M, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, Woods, N 2018 Search for gauge-mediated supersymmetry in events with at least one photon and missing transverse momentum in pp collisions at √s=13TeV. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 780, 118-143. doi:10.1016/j.physletb.2018.02.045
[6] Balashov E V, Korotkov A S, Rumyancev I A 2018 Calibration of Phase Shifters on Basis of Vector-Sum Signals Radioelectronics and Communications Systems, 61 (11), pp. 515-521. DOI: 10.3103/S073527271811002X
[7] Liokumovich L, Muravyov K, Skliarov P, Ushakov N 2018 Signal detection algorithms for interferometric sensors with harmonic phase modulation: Miscalibration of modulation parameters Applied Optics, 57 (25), pp. 7127-7134. DOI: 10.1364/AO.57.007127
[8] Pergushev A, Sorotsky V 2018 Signal distortion decreasing in envelope tracking power amplifiers. Proceedings of the 2018 IEEE International Conference on Electrical Engineering and Photonics, EExPolytech 2018, art. no. 8564443, pp. 44-47. DOI: 10.1109/EExPolytech.2018.8564443
[9] Inochkin F M, Kruglov S K, Bronshtein I G, Kompan T A, Kondratiev S V, Korenev A S, Puhov N F 2018 Superresolution Contour Reconstruction Approach to a Linear Thermal Expansion Measurement. Proceedings - International Conference on Image Processing, ICIP, art. no. 8451081, pp. 3843-3847. DOI: 10.1109/ICIP.2018.8451081
[10] Fedotov A, Noronen T, Gumenyuk R, Ustimchik V, Chamorovskii Y, Golant K, Odnoblyudov M, Rissanen J, Niemi T, Filippov V 2018 Ultra-large core birefringent Yb-doped tapered double clad fiber for high power amplifiers. Optics Express, 26 (6), pp. 6581-6592. DOI: 10.1364/OE.26.006581
[11] Andreeva T A, Bokhman E D, Venediktov V Y U, Gordeev S V, Korolev A N, Kos'Mina M A, Lukin A Y A, Shur V L 2018 Estimation of metrological characteristics of a high-precision digital autocolimator using an angle encoder. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 85 (7), pp. 406-409. DOI: 10.1364/JOT.85.000406
[12] Ivanov S I, Liokumovich L B, Medvedev A V 2018 Synthesis of the Demodulation Algorithm for the Phase Modulated Signals in Presence of the Background Noise Using Complete Sufficient Statistics. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11118 LNCS, pp. 666-674. DOI: 10.1007/978-3-030-01168-0_61
[13] Pergushev A, Sorotsky V 2018 Signal distortion decreasing in envelope tracking power amplifiers. Proceedings of the 2018 IEEE International Conference on Electrical Engineering and Photonics, EExPolytech 2018, art. no. 8564443, pp. 44-47. DOI: 10.1109/EExPolytech.2018.8564443
[14] Liokumovich L, Muravyov K, Skliarov P, Ushakov N 2018 Signal detection algorithms for
interferometric sensors with harmonic phase modulation: Miscalibration of modulation parameters. Applied Optics, 57 (25), pp. 7127-7134. DOI: 10.1364/AO.57.007127

[15] Liokumovich L, Medvedev A, Muravyov K, Skliarov P, Ushakov N 2017 Signal detection algorithms for interferometric sensors with harmonic phase modulation: Distortion analysis and suppression. Applied Optics, 56 (28), pp. 7960-7968. DOI: 10.1364/AO.56.007960