Abstract

Ganoderma lucidum is a mushroom with traditional medicinal properties that has been widely used in China and other countries in Eastern Asia. Ganoderic acids (GA) produced by G. lucidum exhibit important pharmacological activities. Previous studies have demonstrated that methyl jasmonate (MeJA) is a potent inducer of GA biosynthesis and the expression of genes involved in the GA biosynthesis pathway in G. lucidum. To further explore the mechanism of GA biosynthesis, cDNA-Amplified Fragment Length Polymorphism (cDNA-AFLP) was used to identify genes that are differentially expressed in response to MeJA. Using 64 primer combinations, over 3910 transcriptionally derived fragments (TDFs) were obtained. Reliable sequence data were obtained for 390 of 458 selected TDFs. Ninety of these TDFs were annotated with known functions through BLASTX searching the GenBank database, and 12 annotated TDFs were assigned into secondary metabolic pathways by searching the KEGGPATHWAY database. Twenty-five TDFs were selected for qRT-PCR analysis to confirm the expression patterns observed with cDNA-AFLP. The qRT-PCR results were consistent with the altered patterns of gene expression revealed by the cDNA-AFLP technique. Additionally, the transcript levels of 10 genes were measured at the mycelium, primordia, and fruiting body developmental stages of G. lucidum. The greatest expression levels were reached during primordia for all of the genes except cytochrome b2 reached its highest expression level in the mycelium stage. This study not only identifies new candidate genes involved in the regulation of GA biosynthesis but also provides further insight into MeJA-induced gene expression and secondary metabolic response in G. lucidum.

Introduction

Medicinal mushrooms are viewed as a rich source of therapeutically useful biologically active agents. There are approximately 700 species of higher basidiomycetes that have been found to possess significant pharmacological activities [1]. For several thousand years, Ganoderma lucidum (Ling-Zhi in Chinese and Reishi in Japanese) has been widely used in Asia as a home remedy to treat minor disorders and promote vitality and longevity [2]. Numerous studies have revealed that the primary active ingredients of G. lucidum are polysaccharides and the secondary metabolites ganoderic acids (GAs) [3,4]. Most GAs have important medicinal value, such as the regulation of osteoclast genesis [5], the inhibition of cholesterol synthesis [3] and tumor growth [6], and protection of the liver [7]. However, despite the important pharmacological potential of GAs, low GA yield from both field cultivation and fermentation limits its wide-spread use.

Many attempts have been made to increase GA biosynthesis. Those works can be divided into two branches. Most reports focus on the environmental conditions during fermentation. The optimal medium (carbon source, nitrogen source, mineral source, and initial pH) was elucidated by an orthogonal design study that tested one factor at a time [8]. By studying the effect of the fed-batch fermentation process (pH-shift and dissolved oxygen tension-shift) on the GA content, strategies were identified that resulted in a significant synergistic enhancement of GA accumulation [9]. Recently, the use of an inducer to enhance the activity components in fungi fermentation has drawn great interest [10,11]. For GA production, methyl jasmonate, phenobarbitral and H2O2 were added to culture medium to increase the GA content [12–14]. However, due to the unclear mechanism of ganoderic acid biosynthesis, determining the optimal fermentation conditions and screening an effective inducer to produce maximum quantities of GA are still a trial-and-error process.

Isotopic tracer experiments have demonstrated that GA, a type of terpenoid, is synthesized via the mevalonate pathway [15,16]. The genes that encode the proteins involved in the GA biosynthesis pathway have been cloned and characterized, and the regulation of the expression levels of these genes has been investigated under different environmental conditions to deter-
mine the relationship between GA biosynthesis and the expression of these genes [17–20]. Recent studies have demonstrated that the over-expression of these biosynthetic genes results in an enhanced accumulation of GA in G. lucidum [21–23]. Although these reports indicated that increased GA biosynthesis may result from the up-regulation of GA biosynthesis genes, how specific environmental conditions induce GA biosynthesis through the GA biosynthetic pathway remains unclear. Therefore, research on the GA biosynthesis mechanism has concentrated on the mevalonate pathway.

MeJA is a ubiquitous small signaling molecule in the plant kingdom. Environmental stresses, such as wounding or pathogen attack, can trigger MeJA production [24,25]. In plants, MeJA induces stomatal closure, monoterpenoid indole alkaloids and isoprenoid biosynthesis, and defense response pathways by activating reactive oxygen species, the MAPK signal pathway, or the calcium-dependent protein kinase signal pathway [25–28]. In fungi, MeJA is involved in the modulation of Cryptococcus laurentii and Penicillium expansum growth [29] and the regulation of Aflatoxin B1 biosynthesis by Aspergillus parasiticus [30,31]. The same phenomenon is observed in G. lucidum; when different concentrations of MeJA were added to the culture, the GA contents were improved [12]. Moreover, the transcript levels of the genes hmg, fps, and sgs in the GA biosynthesis pathway were up-regulated in response to MeJA. However, the signaling pathways initiated by MeJA to regulate GA biosynthesis and gene expression remain unknown.

In this study, differentially expressed transcripts were screened in the MeJA-treated mycelium using cDNA-AFLP to gain insights into the regulatory mechanisms of GA biosynthesis in response to MeJA. The differentially expressed transcripts were sequenced and classified, and their expression patterns were analyzed. For some of the regulated genes, quantitative real-time polymerase chain reaction (qRT-PCR) was used to confirm the expression patterns observed with cDNA-AFLP. In addition, the transcript levels of some of the candidate genes were investigated at various developmental stages of G. lucidum.

Results

Isolation of Differentially Expressed Genes

To select a suitable restriction enzyme combination for cDNA-AFLP analysis of G. lucidum, several enzyme combinations were tested; the combination of EcoRI and MseI produced an acceptable range of fragment sizes (Figure 1).

A total of 64 primer combinations was used to selectively amplify the expressed genes. Differentially expressed transcript-derived fragments were extracted from the gel and used as templates for re-amplification by PCR. The cDNA-AFLP fragments were highly reproducible, as evidenced by the similar band intensities observed in the three biological replications. All of the visible TDFs between 150 and 800 bp were counted. Of the total 3910 transcript-derived fragments obtained using cDNA-AFLP with 64 primer pairs, 919 (23.5%) displayed altered expression patterns after MeJA induction; 703 were up-regulated, and 216 were down-regulated. Reliable sequences were obtained for 390 TDFs out of 458 TDFs selected for further analysis. Sequence data from this article have been deposited in GenBank, Accession Numbers: JZ163375-JZ163764. According to the genomic sequence of G. lucidum [32,33], the distributions of 390 TDFs were analyzed as shown in Figure S1. Because our knowledge of gene functions in G. lucidum is relatively limited, only 90 of the sequenced genes were associated with known functions, as determined by BLAST searching the GenBank database (Table 1 and Table 2). The sites of known functional TDFs on chromosomes were analyzed as shown in Table 2 and Figure S2. Several differentially expressed genes showed homology to genes encoding transcription factors and genes involved in metabolism, gene regulation, signal transduction, stress defense, protein trafficking and protein degradation (Table 2).

Gene Sequence Analysis

The annotation approach was based on sequence similarity searches in the GenBank database. The 390 TDFs were subjected to a BLASTX search against the NCBI non-redundant protein database using the default parameters. The results revealed that 241 TDFs (61.8%) had significant sequence similarities to known proteins (eValue<10^-5); 90 TDFs (23.08%) had significant sequence similarity to classified proteins, 151 TDFs (38.72%) had sequence similarity to unclassified proteins; and the remaining 149 TDFs (38.21%) failed to match any proteins in the database. It was noted that the information about the genomes or transcriptomes of this species was needed in-depth analysis. Of the 90 TDFs, 45.6% were homologous to Coprinopsis cinere, 11.1% were homologous to Laccaria bicolor and 7.8% were homologous to Postia placenta.

Gene ontology (GO) assignments describe gene products in terms of their associated molecular functions, biological processes and cellular components. Blast2GO (B2G) is a bioinformatic tool for GO-based DNA or protein sequence annotation [34]. The 90 TDFs were submitted to Blast2GO, and 75 were successfully annotated (Table S1). Figure 2A shows the percentages of differentially expressed genes in the 90 known functional sequences assigned to various functional categories. Of these, 40.0% of the annotations were related to ‘metabolism/energy’, 17.0% were related to ‘protein synthesis/fate’, and 16.0% were related to ‘transcription’. Figure 2B shows that the percentages of different functional categories of up- and down-regulated sequences in the 90 known functional sequences were significantly different (P<0.05). In the metabolism/energy group and the protein synthesis/fate group, the percentages of up-regulated genes (28.9% and 13.3%, respectively) were increased compared with the percentages of down-regulated genes (11.1% and 3.3%, respectively). In the transcription term and the signal transduction term, the percentages of up-regulated genes (7.8% and 5.6%, respectively) were equal to the percentages of down-regulated genes (7.8% and 5.6%, respectively). Interestingly, all of the differentially expressed genes were up-regulated in the defense/cell organization group (4.4%). KEGG provides a reference knowledge base for linking genomes to life through the process of PATHWAY mapping. In this study, the 90 annotated TDFs were blasted against the KEGG database. Thirty of these TDFs were highly homologous to some protein, and 21 were assigned to the metabolic pathways in the database (Table S2). Interestingly, 12 TDFs were assigned to secondary metabolic pathways, specifically, the biosynthesis of terpenes, terpenoids and steroids.

Quantitative RT-PCR Analysis of MeJA-induced Differentially Expressed TDFs in G. lucidum

Co-expression analysis, which is based on the premise that a set of genes involved in a biological process is co-expressed under given conditions, has been successfully used to identify novel genes involved in secondary metabolism [35]. To verify the correlation between the expression of differentially expressed TDFs and MeJA induction, quantitative RT-PCR analysis was performed for 25 TDFs, which involved in metabolism [glucosidase I (gls), glutathione-dependent formaldehyde dehydrogenase (gfd), fumarase...
(fum), NAD-dependent deacetylase (ndd), pyruvate carboxylase (pco), pyruvate kinase (pyr), ERG27-3-keto sterol reductase (ksr), aryl-alcohol oxidase (aao), catalase (cat), cytochrome b2 (cyt) and acetyl-CoA acetyltransferase (aact)), gene regulation (nucleotide binding protein (nbp), histone deacetylase (hd), pre-mRNA splicing factor (prp) and IMP-specific 5′-nucleotidase 1 (nuc)), signal transduction (cAMP-dependent protein kinase (apk), CMGC/MAPK/JNK protein kinase (mapk), small monomeric GTPase (rho), histidine kinase (hk) and protein kinase activator (mob)), cell organization (cell division control protein (cdc)) and trafficking (vacuolar membrane protein (vmp), vacuole protein (vac), calcium transporting ATPase (cal) and glycerol uptake facilitator (guf)). In Figure 3, nbp (TDF009), cal (TDF375), hd (TDF293), gls (TDF080), apk (TDF040), gfd (TDF291), guf (TDF078), prp (TDF042), ndd (TDF015), mapk (TDF013), and rho (TDF165) were down-regulated in response to MeJA treatment, whereas others were up-regulated. For hk (TDF051), mob (TDF052), nuc (TDF058), pyr (TDF323), pco (TDF243), ksr (TDF256), and vmp (TDF264), the highest levels of transcripts were observed with 50 µM MeJA. For aao (TDF096), cdc (TDF122), cat (TDF129), fum (TDF195), vac (TDF360), cyt (TDF047), and aact (TDF113), the highest levels of transcripts were observed with 200 µM MeJA. The qRT-PCR results are

Figure 1. cDNA-AFLP analysis of transcripts in response to MeJA treatment in *G. lucidum*. cDNA-AFLP silver-stained polyacrylamide gels with 9 primer combinations (PC) amplifying differentially expressed genes in *G. lucidum* treated with 0, 50 and 200 µM MeJA, respectively. The combinations of primers used are indicated according to the codes reported in Table S4. The molecular weight marker sizes are indicated on both sides. Arrows indicate some of the differentially expressed transcript-derived fragments.

doi:10.1371/journal.pone.0065027.g001
consist with the altered expression patterns observed for these 23 genes using cDNA-AFLP (Figure S3).

Variations in Gene Expression at Developmental Stages of G. lucidum

All of TDFs from MeJA-induced library were searched from mycelium or fruiting body EST library reported by Chen et al., 2012 [32] (Figure 4A and Table S3). In the three EST libraries, there are 260 genes accounted for the majority, including basic metabolism and signal transduction genes. There are 30 genes appeared in both mycelium library and MeJA-induced library, most of which are of unknown function genes. Forty-nine genes appeared in both the fruiting EST library and MeJA-induced library, including ERG27-3-keto sterol reductase and cytochrome P450. Fifty genes only exist in MeJA-induced library, indicating that these genes inducing conditions expressed in methyl jasmonate, and may not be expressed or low expressed in mycelium and fruiting bodies, such as pre-mRNA splicing factor and catalase.

Varying amounts of GA are observed in different developmental stages in G. lucidum. A recent study reported that the GA level is highest during the primordium and fruiting body stages [32]. To further study the relationship between the differentially expressed genes and GA biosynthesis, the transcription levels of 10 genes were examined during the mycelium, primordium, and fruiting body developmental stages in G. lucidum (Figure 4B). Expression levels were the highest during primordium for TDF040 (apk, cAMP-dependent protein kinase), TDF096 (aoa, aroyl-alcohol oxidase), TDF052 (mob, protein kinase activator), TDF256 (ksr, ERG27-3-keto sterol reductase), TDF051 (hk, histidine kinase), TDF103 (mapk, CMGC/MAPK/JNK protein kinase), and TDF165 (rho, small monomeric GTPase). For TDF264 (vmp, vacuolar membrane protein) and TDF009 (nrbp, nucleotide binding protein), expression levels were the highest during both the primordium and the fruiting body stages. Only TDF047 (ct, cytochrome b2) showed a maximum expression level during the mycelium stage.

Discussion

The biosynthesis of many secondary metabolites is modulated by environmental conditions [36]. Few data are available to elucidate the regulatory mechanisms of the secondary metabolite biosynthesis in response to environmental factors in fungi due to the complex regulatory network and regulatory gene interactions involved [36–38]. The same challenge exists for understanding the mechanisms governing the regulation of GA biosynthesis [39,40]. Despite significant research efforts to understand the influence of environmental factors on the GA biosynthesis [39], the regulatory networks by which environmental factors regulate GA biosynthesis remain unclear. Recent studies on genetically modified GA biosynthesis have focused on the genes restricted to the mevalonate pathway [21,22]. Our previous study demonstrated that methyl jasmonate can significantly increase both the amount of GA and the transcription levels of known genes in the GA biosynthesis pathway [12]. Additional unknown genes may be involved in the regulatory network of GA biosynthesis. Therefore, the screening of differentially expressed genes during MeJA induction may not only identify novel candidate target genes involved in the regulation of GA biosynthesis but may also provide a new perspective for understanding the regulation of GA biosynthesis (Figure 5).

Among the MeJA up-regulated genes were the acetyl-CoA acetyltransferase gene (TDF113), several members of the cytochrome family (TDF019, TDF047, TDF160, TDF313, TDF322, TDF355, and TDF364), and, most notably, cytochrome P450s (CYPs) (Table 2 and Figure 3). In addition, TDF256, which encodes a 3-keto sterol reductase (ksr), was shown to be up-regulated by MeJA induction with both cDNA-AFLP and real-time PCR (Table 2 and Figure 3). In Saccharomyces cerevisiae, ksr (Erg27p) is required for oxidosqualene cyclase (Erg7p) activity [41], which converts oxidosqualene to lanosterol. Those results suggest that the genes in the mevalonate pathway are up-regulated in response to MeJA induction (Figure 5). This result is consistent with those of previous studies [12,13] and demonstrates that the genes encoding key enzymes in the mevalonate pathway play an important role in GA biosynthesis. Although not all of the differentially expressed genes in the mevalonate pathway have been detected, the cDNA-AFLP approach is effective for screening differentially expressed genes during MeJA induction.

These results indicate that MeJA induction modulates not only GA biosynthesis-related genes but also related genes in other metabolic pathways, such as glycerol metabolism, pyruvate metabolism, lactate metabolism, sphingolipid metabolism etc. Pyruvate is a precursor of the methylerythritol 4-phosphate (MEP) pathway, and a pyruvate decarboxylase catalyzes the formation of pyruvate decarboxylase catalyzes the formation of pyruvate carboxylase (Figure 3). This result is consistent with those of previous studies [12,13] and demonstrates that the genes encoding key enzymes in the mevalonate pathway play an important role in GA biosynthesis. Although not all of the differentially expressed genes in the mevalonate pathway have been detected, the cDNA-AFLP approach is effective for screening differentially expressed genes during MeJA induction.

These results indicate that MeJA induction modulates not only GA biosynthesis-related genes but also related genes in other metabolic pathways, such as glycerol metabolism, pyruvate metabolism, lactate metabolism, sphingolipid metabolism etc. Pyruvate is a precursor of the methylerythritol 4-phosphate (MEP) pathway, and a pyruvate decarboxylase catalyzes the formation of pyruvate carboxylase (Figure 3). This result is consistent with those of previous studies [12,13] and demonstrates that the genes encoding key enzymes in the mevalonate pathway play an important role in GA biosynthesis. Although not all of the differentially expressed genes in the mevalonate pathway have been detected, the cDNA-AFLP approach is effective for screening differentially expressed genes during MeJA induction.

These results indicate that MeJA induction modulates not only GA biosynthesis-related genes but also related genes in other metabolic pathways, such as glycerol metabolism, pyruvate metabolism, lactate metabolism, sphingolipid metabolism etc. Pyruvate is a precursor of the methylerythritol 4-phosphate (MEP) pathway, and a pyruvate decarboxylase catalyzes the formation of pyruvate carboxylase (Figure 3). This result is consistent with those of previous studies [12,13] and demonstrates that the genes encoding key enzymes in the mevalonate pathway play an important role in GA biosynthesis. Although not all of the differentially expressed genes in the mevalonate pathway have been detected, the cDNA-AFLP approach is effective for screening differentially expressed genes during MeJA induction.
No.	TDF	Size	Metabolism/energy	Homologue	Max Score	Max ident*	E value	Expressionb	Chromosomes Sitec
1	TDF006	271	Glucosidase I (Coprinopsis cinerea)	140	71%	6.0E-32 U	No hits found		
2	TDF015	468	NAD-dependent deacetylase (Puccinia graminis)	120	42%	9.0E-26 D	Chr6		
3	TDF070	267	Ceramidase (Coprinopsis cinerea)	243	77%	9.0E-63 U	Chr13		
4	TDF080	365	1,3-beta-glucan synthase (Laccaria bicolor)	171	80%	3.0E-41 D	Chr11		
5	TDF096	275	Aryl-alcohol oxidase (Coprinopsis cinerea)	95.9	70%	2.0E-18 U	No hits found		
6	TDF300	375	Phosphoglycerate kinase (Coprinopsis cinerea)	365	79%	2.0E-123 D	No hits found		
7	TDF138	677	Anthranilate synthase (Coprinopsis scobicola)	194	79%	6.0E-59 D	Chr3		
8	TDF142	494	Saccharopine dehydrogenase (Coprinopsis cinerea)	194	79%	6.0E-57 U	Chr11		
9	TDF143	461	2-methylcitrate dehydratase (Coprinopsis cinerea)	192	74%	7.0E-57 U	Chr11		
10	TDF047	612	Cytochrome b2 (Coprinopsis cinerea)	180	66%	1.0E-43 U	Chr3		
11	TDF099	262	Acetylactylate synthase (Neosartorya fischeri)	86.3	55%	1.0E-15 U	Chr7		
12	TDF375	194	Calcium transporting ATPase (Coprinopsis cinerea)	63.2	100%	6.0E-15 D	Chr13		
13	TDF153	478	Aspartate ammonia lyase (Coprinopsis cinerea)	272	84%	3.0E-88 U	Chr1		
14	TDF376	538	Lipase/esterase (Coprinopsis cinerea)	155	43%	1.0E-40 D	Chr1		
15	TDF113	600	Acetyl-CoA acetyltransferase (Coprinopsis cinerea)	302	74%	2.0E-80 U	Chr1		
16	TDF160	718	Cytochrome P450 (Postia placenta)	239	55%	7.0E-74 U	Chr11		
17	TDF161	511	Glycoside hydrolase family 31 protein (Serpula lacrymans)	225	62%	3.0E-67 U	Chr3		
18	TDF381	309	Flavin-containing monooxygenase (Aspergillus niger)	104	49%	3.0E-24 U	Chr12		
19	TDF313	287	Cytochrome-b5 reductase (Coprinopsis cinerea)	99.4	78%	6.0E-47 U	GaLu96scf_50		
20	TDF314	327	Hexokinase (Coprinopsis cinerea)	151	81%	1.0E-41 U	Chr11		
21	TDF019	265	Cytochrome b5 (Phanerochaete chrysosporium)	123	76%	2.0E-34 U	Chr1		
22	TDF353	278	Heparinsacu II/III family protein (Coprinopsis cinerea)	128	56%	6.0E-32 D	Chr3		
23	TDF355	219	Cytochrome P450 (Postia placenta)	147	65%	5.0E-40 U	Chr1		
24	TDF243	238	Pyruvate carboxylase (Laccaria bicolor)	142	84%	1.0E-38 U	Chr6		
25	TDF195	478	Heparinase II/III family protein (Coprinopsis cinerea)	128	56%	6.0E-32 D	Chr3		
26	TDF136	282	Cytochrome P450 like TBP (Scheffersomyces stipitis)	269	82%	2.0E-47 U	Chr3		
27	TDF307	239	Fumarase (Scheffersomyces stipitis)	117	73%	2.0E-29 U	Chr11		
28	TDF223	170	Glycoside hydrolase family 3 protein (Serpula lacrymans)	75.1	61%	2.0E-15 U	Chr4		
29	TDF338	209	ATP synthase subunit gamma (Coprinopsis cinerea)	85.1	90%	2.0E-18 U	Chr11		

Transcription

No.	TDF	Size	Homologue	Max Score	Max ident*	E value	Expressionb
37	TDF009	336	Nucleotide binding protein, putative (Candida dubliniensis)	103	50%	6.0E-21 D	Chr3
38	TDF020	330	Transcription factor (Sterum hirsutum)	211	90%	3.0E-62 U	Chr1
39	TDF042	271	Pre-mRNA splicing factor prp1 (Coprinopsis cinerea)	113	63%	1.0E-23 D	Chr7
40	TDF058	551	IMP-specific 5'-nucleotidase 1 (Uncinocarpus reessii)	221	59%	5.0E-56 U	Chr3
41	TDF081	316	Epsilon DNA polymerase (Coprinopsis cinerea)	156	71%	9.0E-37 D	Chr1
42	TDF318	309	Eukaryotic translation initiation factor 6 (Postia placenta)	156	95%	1.0E-46 U	Chr8
43	TDF094	379	DNA-directed RNA polymerase II subunit (Coprinopsis cinerea)	206	91%	1.0E-51 D	Chr6
44	TDF114	466	Translation initiation factor 3 subunit 3 (Coprinopsis cinerea)	171	71%	5.0E-41 U	Chr3
45	TDF050	398	Chrom domain protein MRG15 (Piriformospora indica)	174	47%	1.0E-50 D	Chr12
46	TDF049	374	Translation elongation factor 1a (Schizopyllum commune)	266	94%	6.0E-85 U	Chr3
47	TDF370	233	rRNA intron-encoded homing endonuclease (Medicago trunculata)	137	49%	1.0E-34 D	Chr5

Table 2. Transcript derived fragments (TDFs) from G. lucidum with homologies to other known protein.
Table 2. Cont.

No.	TDF	Size	Homologue*	Max Score	Max ident	E value	Expression	Chromosomes Site
48	TDF341 303	RWD domain-containing protein (Laccaria bicolor)	141	57%	8.00E-40	D	No hits found	
49	TDF156 340	argonaute-like protein (Laccaria bicolor)	140	66%	1.00E-36	D	Chr11	
50	TDF390 320	transcription factor (Stereum hirsutum)	204	90%	8.00E-60	U	Chr1	

Protein synthesis/fate

No.	TDF	Size	Homologue*	Max Score	Max ident	E value	Expression	Chromosomes Site
51	TDF297 312	peptidylprolyl isomerase (Datisca glomerata)	186	82%	4.00E-59	U	Chr9	
52	TDF136 444	ubiquitin-protein ligase (Coprinopsis cinerea)	208	68%	5.00E-61	U	Chr4	
53	TDF299 304	histone H2B (Coprinopsis cinerea)	176	100%	2.00E-54	U	Chr2	
54	TDF145 561	60S ribosomal protein L10 (Postia placenta)	333	95%	2.00E-115	U	Chr10	
55	TDF303 439	profilin (Laccaria bicolor)	186	74%	1.00E-58	U	Chr9	
56	TDF151 501	SNARE protein SEDS	192	78%	2.00E-58	U	Chr3	
57	TDF164 405	mitochondrial endopeptidase (Serpula lacrymans)	198	66%	2.00E-58	U	Chr7	
58	TDF312 272	histone H4 (Coprinopsis cinerea)	160	100%	3.00E-50	U	Chr6	
59	TDF383 181	signal peptidase 21 kDa subunit (Coprinopsis cinerea)	113	91%	4.00E-31	U	Chr11	
60	TDF347 333	Ubiquitin (Camponotus floridanus)	246	98%	2.00E-82	U	Chr3	
61	TDF385 286	mitochondrial 50S ribosomal protein L5 (Postia placenta)	84.7	84%	1.00E-18	D	Chr7	

Signal transduction

No.	TDF	Size	Homologue*	Max Score	Max ident	E value	Expression	Chromosomes Site
66	TDF013 297	CMGC/MAPK/JNK protein kinase (Coprinopsis cinerea)	104	58%	4.00E-21	D	Chr4	
67	TDF193 736	Rho2 GTP binding protein (Ustilago maydis)	127	88%	1.00E-50	D	Chr2	
68	TDF040 299	CaM-dependent protein kinase Akt (Coprinopsis cinerea)	90.5	49%	7.00E-17	D	Chr1	
69	TDF051 669	histidine kinase (Schizosaccharomyces pombe)	116	62%	3.00E-24	U	Chr6	
70	TDF052 547	protein kinase activator Mob2 (Coprinopsis cinerea)	203	78%	8.00E-51	U	Chr7	
71	TDF304 299	serine/threonine kinase receptor associated protein (Coprinopsis cinerea)	84%	84%	3.00E-60	U	No hits found	
72	TDF158 580	CMGC/GSK protein kinase (Coprinopsis cinerea)	159	81%	6.00E-45	U	Chr4	
73	TDF165 675	rho small monomeric GTPase (Coprinopsis cinerea)	268	74%	6.00E-89	D	Chr2	
74	TDF008 848	Ras2 (Cryptococcus neoformans)	89	69%	8.00E-35	D	Chr8	
75	TDF333 394	signal recognition particle binding protein (Coprinopsis cinerea)	187	90%	1.00E-53	U	No hits found	

Transport facilitation

No.	TDF	Size	Homologue*	Max Score	Max ident	E value	Expression	Chromosomes Site
76	TDF078 444	glycerol uptake facilitator (Talaromyces stipitatus)	105	45%	2.00E-21	D	Chr5	
77	TDF083 441	copper chaperone TahA (Trametes versicolor)	117	83%	8.00E-25	U	Chr8	
78	TDF159 548	vacuolar sorting protein (Ajellomyces capsulatus)	153	43%	2.00E-43	D	Chr3	
79	TDF187 490	oligopeptide transporter (Laccaria bicolor)	266	76%	3.00E-83	U	Chr10	
80	TDF342 350	inorganic phosphate transporter (Laccaria bicolor)	99	76%	2.00E-22	D	Chr8	
81	TDF048 218	nuclear transport factor 2 (Coprinopsis cinerea)	174	80%	5.00E-54	D	Chr10	
82	TDF360 315	vacuole protein (Cryptococcus neoformans)	96.3	64%	1.00E-23	U	Chr3	
83	TDF327 167	COPII-coated vesicle protein (Coprinopsis cinerea)	85.9	85%	3.00E-20	U	Chr1	
84	TDF384 259	NIFU-like protein c (Coprinopsis cinerea)	126	74%	3.00E-34	D	Chr3	
85	TDF316 294	t-complex protein 1 (Coprinopsis cinerea)	162	73%	8.00E-46	U	Chr1	
86	TDF264 521	vacuolar membrane protein (Cryptococcus gattii)	97.8	73%	6.00E-28	U	Chr4	
membrane protein up-regulated under MeJA treatment and in fruiting body development. The consistent result indicated these five genes may have important roles on the GA biosynthesis. However, there are four genes down-regulated under MeJA treatment and up-regulated in fruiting body development (cAMP-dependent protein kinase, CMGC/MAPK/JNK protein kinase, small monomeric GTPase and nucleotide binding protein) (Figure 3 and Figure 4). Although both MeJA induction and fruiting body stage increased GA content, the regulation mechanism may be difference. These genes may have a variety of physiological functions, especially the regulation of fungal development in development process [42,43]. Therefore, these four genes probably regulated not only GA biosynthesis in the fruiting body stage, but also the fruiting body development of *Ganoderma lucidum*.

Some signaling factors have been reported to regulate both cell developmental processes and secondary metabolite biosynthesis in filamentous fungi [37]. For example, the small monomeric GTPase rho played an essential role in controlling genes involved in cell polarity, H₂O₂ generation, asexual sporulation, and mycotoxin production [42,44,45]. The rho-GTPase pathway was associated with cholesterol biosynthesis [46]. In the cDNA-AFLP library, the *G. lucidum* TDF165 gene encodes a protein with sequence similarity to rho (Table 2). The qRT-PCR results confirmed that the rho gene is down-regulated in response to MeJA (Figure 3). Furthermore, the down-regulation of the rho expression level through rho gene silencing can increase the GA content (data not shown). These results suggest that the rho small GTPase pathway represses GA biosynthesis in *G. lucidum*.

A mitogen-activated protein kinase (MAPK) gene (TDF013) was also isolated and characterized from the *G. lucidum* library. The transcription level of the MAPK gene in response to MeJA was 0.20±0.01-fold that of the control. As one of components of the MAPK cascade, a critical signal transduction pathway in eukaryotic organisms, MAPK is essential for regulating growth, differentiation processes and secondary metabolism [47,48]. Recently, it was reported that the MAPK cascade played an important role in regulating sterigmatocystin biosynthesis [43]. In *G. lucidum*, H₂O₂ induced phosphorylation of the proteins Hog-1 and Fus3, which are homologs of the mammalian MAPKs p38 and ERK [49]. In contrast, the mammalian JNK homolog in BCRC 36111 was not detected using a JNK-specific antibody [50]. In this study, the CMGC/MAPK/JNK MAPK is down-regulated after MeJA induction, suggesting that it may

Table 2. Cont.

No.	TDF	Size	Homologue*	Max Score	Max ident	E value	Expression	Chromosomes
87	TDF122	674	cell division control protein 23 (Coprinopsis cinerea)	236	65%	2.00E-60	U	Chr5
88	TDF176	346	hsp70-like protein (Coprinopsis cinerea)	91.7	71%	4.00E-20	U	Chr10
89	TDF179	280	microtubule associated protein (Coprinopsis cinerea)	99	75%	4.00E-23	U	No hits found
90	TDF129	448	catalase (Trametes versicolor)	216	66%	1.00E-63	U	Chr3

*Based on highest BLASTX match with an E value lower than 1e-04.

U, up-regulation; D, down-regulation.

The distribution of TDFs on chromosomes in *G. lucidum* genome.

doi:10.1371/journal.pone.0065027.t002

Figure 2. Percentages of 90 known functional TDFs with functional categories. A. The functional classification of transcript-derived fragments (90 TDFs) from *G. lucidum* in response to MeJA. The percentages of differentially expressed genes in the 90 known functional sequences assigned to various functional categories. B. Ninety TDFs in biological function categories showing differential expression patterns in *G. lucidum*. The percentages of different functional categories of up- and down-regulated sequences in the 90 known functional sequences were significantly different (P<0.05).

doi:10.1371/journal.pone.0065027.g002
play a negative regulatory role in the MeJA signaling pathway (Figure 5).

The sequences of the TDFs that generated significant matches to sequence databases were most commonly genes involved in stress response and cell organization. Two of these TDFs, TDF122, which encodes cell division control protein, and TDF176, which encodes an hsp70-like protein, may also be involved in cell repair and protection against defense responses. TDF 145 and TDF336, which are derived from putative 60S ribosomal protein genes, have also been implicated in responses to oxidative stress, in addition to protein translation for improving carotenoid biosynthesis [51]. Other TDFs, such as *G. lucidum* TDF129 (similar to a catalase), are clearly involved in oxidative stress defense [52]. Previous studies reported that H2O2 increases GA production [14]. Catalase might be involved in prompt neutralization of H2O2. The up-regulation of TDF129, a catalase-homologous gene in response to MeJA, indicated that the burst of

Figure 3. qRT-PCR analysis of 25 selected TDFs in *G. lucidum*. Expression of 25 selected genes treated with 0, 50 and 200 μM MeJA, respectively. aao (TDF096) aryl-alcohol oxidase, nbp (TDF009) nucleotide binding protein, cdc (TDF122) cell division control protein, cal (TDF375) calcium transporting ATPase, cat (TDF129) catalase, vmp (TDF264) vacuolar membrane protein, hd (TDF293) histone deacetylase, gls (TDF080) glucosidase I, hk (TDF051) histidine kinase, fum (TDF195) fumarase, ksr (TDF256) ERG27-3-keto sterol reductase, apk (TDF040) cAMP-dependent protein kinase, nuc (TDF058) IMP-specific 5’-nucleotidase I, gfd (TDF291) glutathione-dependent formaldehyde dehydrogenase, ppyr (TDF323) pyruvate kinase, mob (TDF052) protein kinase activator, pec (TDF243) pyruvate carboxylase, guf (TDF078) glycerol uptake facilitator, prp (TDF042) pre-mRNA splicing factor, vac (TDF360) vacuole protein, aact (TDF113) acetyl-CoA acetyltransferase, ndd (TDF015) NAD-dependent deacetylase, mapk (TDF013) CMGC/MAPK/JNK protein kinase, rho (TDF165) small monomeric GTPase, cyt (TDF047) cytochrome b2. All samples were examined in triplicate. For all genes represented in this figure, the P value was <0.05 or 0.01 (*p<0.05 and **p<0.01).

doi:10.1371/journal.pone.0065027.g003
reactive oxygen species (ROS) triggered by MeJA was most likely involved in GA biosynthesis (Figure 5).

Vacuoles and vesicles are known to sequester secondary metabolites to protect host cells from self-toxicity [53]. Enzymes involved in secondary metabolism, including those for the biosynthesis of cyclosporin, penicillin, and aflatoxin in fungi, are often found in vesicles and vacuoles, [54–56]. In *Aspergillus parasiticus*, two enzymatic steps in aflatoxin biosynthesis are completed in vesicles, and these organelles also participate in the compartmentalization and export of the end product, aflatoxin [57]. A vacuole protein gene (TDF360), a vacuolar membrane protein (TDF264) and a COPII-coated vesicle protein gene (TDF327) were also isolated from the *G. lucidum* library (Table 2).

The transcription level of the *vmp* gene in response to MeJA induction was 3.10±0.12-fold that of the control (Figure 3).

In conclusion, cDNA-AFLP screening has revealed a number of MeJA-responsive genes in *G. lucidum*. Of the 390 successfully sequenced TDFs, 300 unknown or hypothetical proteins require

Figure 4. The expression of TDF genes in different development stages. A. Venn diagrams depicting the genes expressed across MeJA-induction and the different developmental stages. Data are derived from Table S3. B. The transcript levels of TDF genes under the developmental stages of *G. lucidum*. The X axis shows the abbreviation of genes. The full name of each gene is in the Figure 3 legends. All samples were examined in triplicate. For all genes represented in this figure, the P value was <0.01. doi:10.1371/journal.pone.0065027.g004

Figure 5. Schematic pathway predicting the role of MeJA induced genes in *G. lucidum*. Integrated pathway map shows the role of MeJA-induced genes involved in GA biosynthesis, primary metabolism, signaling regulation and transcriptional regulation. Dashed lines indicate the probable pathway involved in GA biosynthesis. Solid lines indicate the result supported by cDNA-AFLP and real time PCR. The ESTs from cDNA-AFLP results are indicated in stars. doi:10.1371/journal.pone.0065027.g005
The MeJA induction leads to altered metabolism/energy of genes and the Ca$^{2+}$ previous report found that the calcineurin-signal transduction pyruvate metabolism, calcium transporting ATPases etc. In other secondary metabolism, such as glycerol metabolism, sterilized using a 0.2-
concentration was 2
in the GA biosynthesis pathway [12]. The MeJA induction leads to altered metabolism/energy of G. lucidum, which involves changes in primary metabolism and other secondary metabolism, such as glycerol metabolism, pyruvate metabolism, calcium transporting ATPases etc. In previous report found that the calcineurin-signal transduction was significant to GA biosynthesis [58]. The GA biosynthetic genes and the Ca$^{2+}$ sensor were up-regulated with calcium addition. The changes of CMGC/GSK protein kinase, histidine kinase, serine/threonine kinase receptor associated protein, cAMP-dependent protein kinase, rho small monomeric GTPase, MAPK related ESTs signifies a signaling network probably regulated GA biosynthesis under MeJA treatment. But the proper functional characterizations of such genes are still pending. Thus, further characterization of those genes involved in the regulation of GA biosynthesis would lead to an in-depth understanding of GA biosynthesis regulation network.

Materials and Methods

Fermentation Conditions and Methyl Jasmonate Elicitation of G. lucidum

G. lucidum, strain HG, was grown at 28°C in potato dextrose agar (PDA) medium. The fermentation conditions of G. lucidum were maintained as described [12]. For methyl jasmonate induction, MeJA (Sigma, USA) was dissolved in ethanol and were maintained as described [12]. For methyl jasmonate agar (PDA) medium. The fermentation conditions of added to all cultures.

RNA Extraction Procedure

For each sample, ~0.5 g of mycelia was collected by filtration from the culture media, dehydrated in liquid nitrogen and stored at −80°C. Total RNA was extracted using an RNA Isolation Kit (Takara, China) and treated with DNase I (Takara, China) according to the manufacturer's instructions.

cDNA-AFLP Analysis

The cDNA-AFLP protocol was described previously by Vuylsteke et al. [59]. Double-stranded cDNA was synthesized from 2.5 μg of total RNA using an M-MLV RTase cDNA Synthesis Kit (Takara, China) and an oligo-dT primer (Takara, China).

After pre-amplification, the mixture was diluted 600-fold, and 5 μl was used for selective amplification with each of 64 primer combinations and two selective nucleotides on the MseI primer (Table S4). Touchdown PCR was performed using the following conditions: 2 min of denaturation at 94°C; 13 cycles of 30 s of denaturation at 94°C, 30 s of annealing starting at 65°C and decreasing by 0.7°C per cycle, and 60 s of extension at 72°C; 23 cycles of 30 s of denaturation at 94°C, 30 s of annealing at 56°C, and 60 s of extension at 72°C; and 5 min at 72°C. Selective amplification products were separated on a 6% polyacrylamide gel for 2.5 h at 115 W and 50°C. Images of TDFs were developed by silver staining. TDFs that showed clear differences in intensity were visualized by the Quantity One software Version 4.6 (Bio-Rad, Hercules CA) to identify up-regulated or down-regulated TDFs.

Sequence Analysis of cDNA-AFLP Fragments

The bands corresponding to differentially expressed genes were excised from the gels with a surgical blade, and the eluted DNA was reamplified using the selective amplification primers and the following PCR conditions: denaturation for 15 min at 94°C; 35 cycles of 40 s of denaturation at 94°C, 60 s of annealing at 56°C, and 40 s of extension at 72°C; and 5 min at 72°C. The quantity of each reamplified band was assessed on a 2% agarose gel, and the DNA was purified from the gel and then sequenced directly using the same primers that were used for the re-amplification or cloned into a pMD-18T vector (Takara, China) and sequenced. Nucleotide and protein sequences were compared to sequences in the available public databases by BLAST sequence alignment. Homology searching was performed against the NCBI databases. The sequences were manually assigned to functional categories based on the analysis of the scientific literature and also with the aid of the information reported for each sequence by the Gene Ontology Consortium [60].

Real-time RT-PCR Analysis

Real-time RT-PCR was performed on pools of RNA derived from two independent biological experiments. All samples were examined in triplicate. The samples were prepared as described above for the cDNA-AFLP. Total RNA was treated with RNase-free DNase I (Takara, China) according to the manufacturer's instructions, and 2.5 μg was then used for reverse transcription with Reverse Transcriptase M-MLV (Takara, China). Then, 5 μl of 1:10 diluted cDNA samples was used as the qRT PCR template with 0.5 μM gene-specific primers and 10 μl SYBR Premix Ex Taq II (Takara, China) in a total volume of 20 μl. All samples were examined in triplicate. Experiments were performed in a Realplex2 Systems (Eppendorf, Germany) with the following thermal cycling profile: 95°C for 10 min, followed by 40 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s. Each real-time assay was tested in a dissociation protocol to ensure that each amplicon was a single product. The relative quantification of gene expression was performed using the housekeeping gene 18S rRNA [61]. Specific primer pairs were designed for the 25 transcriptionally derived fragments (TDFs) chosen for validation using the Primer 3 software (Table S5). The Ct was used to calculate the fold changes (FC) in each gene compared to the expression level detected in the control:

$$\text{DD} = \text{Ct} - \text{Ct}$$

where ΔΔCt = (ΔCt target − ΔCt 18S rRNA) control sample. Gene expression was evaluated by calculating the difference between the Ct of the gene analyzed and the Ct of the control 18S rRNA. Post-qRT-PCR calculations analyzing the relative gene expression levels were performed according to the 2$^{-\Delta\Delta C_{t}}$ method described by Livak and Schmittgen [62].

Statistical Analysis

The significance of samples was determined by analysis of variance, and sample means were separated by the Student’s t-test. Statistical significance was expressed as P<0.05 or P<0.01.

Supporting Information

Figure S1 The distribution of 390 TDF on chromosomes in G. lucidum genome.

Figure S2 Transcript derived fragments (TDFs) homologies to other known protein found in the *G. lucidum* genome. (DOC)

Figure S3 Expression patterns of 25 genes in the cDNA-AFLP results. (DOC)

Table S1 Gene Functional Annotations according to Gene Ontology (GO). (DOC)

Table S2 Pathway description of TDFs by searching the KEGG PATHWAY database. (DOC)

Table S3 The genes expressed across MeJA-induction and the different developmental stages. (DOC)

References

1. Zhou J, Xiao HJ (2009) Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Adv Biochem Eng Biotechnol 113: 79–150.
2. Liu ZB (1979) The current pharmacological research on *Ganoderma lucidum* in China. Acta Pharm Sin (in Chinese) 14: 103–192.
3. Hajji H, Maco C, Roberts M, Niederberger P, Fay LB (2005) Effect of 26-oxygenotesters from *Ganoderma lucidum* and their activity as cholesterol synthesis inhibitors. Appl Environ Microbiol 71: 3653–3658.
4. Joseph S, Sabulal B, George V, Antony KR, Janarthanan KK (2011) Antitumor and anti-inflammatory activities of polysaccharides isolated from *Ganoderma lucidum*. Acta Pharm 61: 335–342.
5. Miyamoto I, Liu J, Shimizu K, Sato M, Kukita A, et al. (2009) Regulation of osmoregulation in *Ganoderma lucidum* isolated from *Ganoderma lucidum*. Eur J Pharmacol 60: 1–7.
6. Jedinak A, Thyagarajan-Sahu A, Jiang J, Sliva D (2011) Ganodermanontriol, a lanostanoid triol from *Ganoderma lucidum*, suppresses growth of colon cancer cells through cell cycle signaling. Int J Oncol 38: 761–767.
7. Kiryu Y, Taniguchi M, Baba K (2002) Antitumor and antinematostatic effects of ganoderic acid from liver of triterpenoid fractions of *Ganoderma lucidum*: mechanism of action and isolation of an active substance. Anticancer Res 22: 3309–3318.
8. Li N, Liu XH, Zhou J, Li YX, Zhao MW (2006) Analysis of Influence of Environmental Conditions on Ganoderic Acid Content in *Ganoderma lucidum* using Orthogonal Design. J Microbiol Biotechnol 16: 1940–1946.
9. Tang YJ, Zhang W, Zhong JJ (2009) Performance analyses of a pH-shift and DOT-shift integrated fed-batch fermentation process for the production of ganoderic acid and *Ganoderma* polysaccharides by medicinal mushroom *Ganoderma lucidum*. Biosourc Technol 100: 1852–1859.
10. Mach-Aigrain AR, Pucher ME, Mach RL (2010) D-Xylose as a repressor or inducer of xylose synthase expression in *Hypocrea junicolor* (Trichoderma reesei). Appl Environ Microbiol 76: 1770–1776.
11. Zhang BB, Cheung PC (2011) Use of stimulatory agents to enhance the isolation of an active substance. Anticancer Res 22: 3309–3318.
12. Liang CX, Li YB, Xu JW, Wang JL, Miao XL, et al. (2010) Methyl jasmonate induces hydroxymethylglutaryl-CoA synthase from *Ganoderma lucidum* (Ling-zhi) in *Ganoderma lucidum* biosynthesis pathway. World J Microbiol Biotechnol 29: 523–531.
13. Creelman RA, Tierney ML, Muller JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci U S A 89: 4938–4941.
14. Chen A, Bestock RM, Ayvazlisho S, Hildebrand DF (1994) Lipid-derived signals that discriminate wound- and pathogen-responsive isoforms pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-CoA reductase genes and anti-microbial isoforms in *Solanum tuberosum*. Plant J 60: 6149–6159.
15. Shang CH, Shi L, Ren A, Qin L, Zhao MW (2010) Cloning, characterization, and differential expression of a lanosterol synthase gene from *Ganoderma lucidum*. Biosci Biotechnol Biochem 74: 974–978.
16. Shi L, Qin L, Xu Y, Ren A, Fang X, et al. (2012) Molecular cloning, characterization, and function analysis of a mevalonate pyrophosphate decarboxylase gene from *Ganoderma lucidum*. Mol Biol Rep 39: 6149–6159.
17. Xu JW, Xu YN, Zhong JJ (2012) Enhancement of Ganoderic Acid Accumulation by Overexpression of an *N*-Terminal Truncated *3-Hydroxy-3-Methylglutaryl* CoA Reductase Gene in the Basidiomycete *Ganoderma lucidum*. Appl Environ Microbiol 78: 7968–7976.
18. Ren A, Ouyang X, Shi L, Jiang AL, Mu DS, et al. (2013) Molecular characterization and expression analysis of GHMGs, a gene encoding hydroxymethylglutaryl-CoA synthase from *Ganoderma lucidum* (Ling-zhi) in *Ganoderma lucidum* biosynthesis pathway. World J Microbiol Biotechnol 29: 523–531.
19. Shang CH, Shi L, Ren A, Qin L, Zhao MW (2010) Molecular cloning, characterization, and differential expression of a lanosterol synthase gene from *Ganoderma lucidum*. Biosci Biotechnol Biochem 74: 974–978.
20. Shang CH, Shi L, Ren A, Qin L, Zhao MW (2010) Molecular cloning, characterization, and differential expression of a lanosterol synthase gene from *Ganoderma lucidum*. Biosci Biotechnol Biochem 74: 974–978.
21. Shi L, Qin L, Xu Y, Ren A, Fang X, et al. (2012) Molecular cloning, characterization, and function analysis of a mevalonate pyrophosphate decarboxylase gene from *Ganoderma lucidum*. Mol Biol Rep 39: 6149–6159.
22. Xu JW, Xu YN, Zhong JJ (2012) Enhancement of Ganoderic Acid Accumulation by Overexpression of an *N*-Terminal Truncated *3-Hydroxy-3-Methylglutaryl* CoA Reductase Gene in the Basidiomycete *Ganoderma lucidum*. Appl Environ Microbiol 78: 7968–7976.
23. Ren A, Ouyang X, Shi L, Jiang AL, Mu DS, et al. (2013) Molecular characterization and expression analysis of GHIOMGs, a gene encoding hydroxymethylglutaryl-CoA synthase from *Ganoderma lucidum* (Ling-zhi) in *Ganoderma lucidum* biosynthesis pathway. World J Microbiol Biotechnol 29: 523–531.
24. Creelman RA, Tierney ML, Muller JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci U S A 89: 4938–4941.
25. Choo A, Bestock RM, Ayvazlisho S, Hildebrand DF (1994) Lipid-derived signals that discriminate wound- and pathogen-responsive isoforms pathways in plants: methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-CoA reductase genes and anti-microbial isoforms in *Solanum tuberosum*. Plant J 60: 6149–6159.
26. Oh SY, Kim JH, Park MJ, Kim SM, Yoon CS, et al. (2005) Induction of heat shock protein 72 in *C. melo* cells by methyl jasmonate through ROS-dependent heat shock factor 1 activation. Int J Mol Med 16: 833–839.
27. Raina SK, Wakhade DP, Jagg I, Singh P, Paul SK, et al. (2012) GMPK1, a mitogen activated protein kinase from *Catharanthus roseus* and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids. BMC Plant Biol 12: 134.
28. Munemasa S, Hosains MA, Nakamura Y, Mori IC, Murata Y (2011) The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol 155: 553–561.
29. Yao HJ, Tian SP (2005) Effects of a biocatalysed control and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved, J Appl Microbiol 98: 941–950.
30. Meimaroglou DM, Galanopoulou D, Markaki P (2009) Study of the Effect of Methyl Jasmonate Concentration on Aflatoxin B1 biosynthesis by *Aspergillus flavus*. Bioresour Technol 100: 1852–1859.
31. Yen CG, Chen FY, Hsu Y, Lin Y, Yang CH, et al. (2012) The genome of *Ganoderma lucidum* provides insights into triterpenes biosynthesis and wood degradation. PLoS One 7 e36146.
32. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676.
33. Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, et al. (2008) Comprehensive flavonol profiling and transcriptome coexpression.
34. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, et al. (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: 3674–3676.
35. Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, et al. (2008) Comprehensive flavonol profiling and transcriptome coexpression.
analysis leading to decoding gene-metabolite correlations in

Yu JH, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43: 457–488.

Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66: 447–459.

Yin WB, Amaike S, Wohlbach DJ, Gasch AP, Chiang YM, et al. (2012) An Aspergillus nidulans bZIP response pathway hardwired for definitive secondary metabolism operates through aflR. Mol Microbiol 83: 1024–1034.

Shi L, Ren A, Mu D, Zhao M (2010) Current progress in the study on biosynthesis and regulation of ganoderic acids. Appl Microbiol Biotechnol 88: 1243–1251.

Mo C, Milla P, Athenstaedt K, Ott R, Balliano G, et al. (2003) In yeast sterol cyclase (Erg7p) activity. Biochim Biophys Acta 1633: 68–74.

Yin WB, Amaike S, Wohlbach DJ, Gasch AP, Chiang YM, et al. (2012) An Aspergillus nidulans bZIP response pathway hardwired for definitive secondary metabolism operates through aflR. Mol Microbiol 83: 1024–1034.

You BJ, Fang W, Huang J, Yin YL, Chen YJ, et al. (2012) Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. PLoS One 7: e44031.

Mu C, Milla P, Athenstaedt K, Ott R, Balliano G, et al. (2003) In yeast sterol biosynthesis the 3-keto reductase protein (Erg27p) is required for oxidosqualene cyclase (Erg7p) activity. Biochim Biophys Acta 1633: 68–74.

Zheng W, Zhao Z, Chen J, Liu W, Ke H, et al. (2009) A Cdc42 ortholog is required for penetration and virulence of Magnaporthe grisea. Fungal Genet Biol 46: 450–460.

Bayram O, Bayram OS, Ahmed YL, Marnayama J, Valerius O, et al. (2012) The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism. PLoS Genet 8: e1002816.

Raudaskoski M, Kothe E, Fowler TJ, Jung EM, Horton JS (2012) Ras and Rho small G proteins: insights from the Schizosaccharomyces pombe genome sequence and comparisons to other fungi. Biotechnol Genet Eng Rev 28: 61–100.

Song J, Li J, Lulla A, Evers BM, Chung DH (2006) Protein kinase D protects against oxidative stress-induced intestinal epithelial cell injury via Rho/ROK/PKC-delta pathway activation. Am J Physiol Cell Physiol 290: C1469–1476.

Hong SY, Lina JE (2008) Functional expression and subcellular localization of the aflatoxin pathway enzyme Ver-1 fused to enhanced green fluorescent protein. Appl Environ Microbiol 74: 6383–6386.

Chanda A, Roze LV, Kang S, Artymovich KA, Hicks GR, et al. (2009) A key role for vesicles in fungal secondary metabolism. Proc Natl Acad Sci U S A 106: 19533–19538.

Xu YN, Zhong JJ (2012) Impacts of calcium signal transduction on the fermentation production of antitumor ganoderic acids by medicinal mushroom Ganoderma lucidum. Biotechnol Adv 30: 1301–1308.

Vlietstra M, Pedelman JD, van Eijk MJ (2007) AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nat Protoc 2: 1399–1413.

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29.

Mu D, Shi L, Ren A, Li M, Wu F, et al. (2012) The development and application of a multiple gene co-silencing system using endogenous URA3 as a reporter gene in Ganoderma lucidum. PLoS One 7: e43737.

Lavik KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.