Allele-Specific Knockdown of ALS-Associated Mutant TDP-43 in Neural Stem Cells Derived from Induced Pluripotent Stem Cells

Citation for published version:
Nishimura, AL, Shum, C, Scotter, EL, Abdelgany, A, Sardone, V, Wright, J, Lee, Y, Chen, H, Bilican, B, Carrasco, M, Maniatis, T, Chandran, S, Rogelj, B, Gallo, J & Shaw, CE 2014, 'Allele-Specific Knockdown of ALS-Associated Mutant TDP-43 in Neural Stem Cells Derived from Induced Pluripotent Stem Cells', PLoS ONE, vol. 9, no. 3, pp. e91269. https://doi.org/10.1371/journal.pone.0091269

Digital Object Identifier (DOI):
10.1371/journal.pone.0091269

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
PLoS ONE

Publisher Rights Statement:
Copyright: © 2014 Nishimura et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Allele-Specific Knockdown of ALS-Associated Mutant TDP-43 in Neural Stem Cells Derived from Induced Pluripotent Stem Cells

Agnes L. Nishimura1, Carole Shum1, Emma L. Scotter1, Amr Abdelgany1, Valentina Sardone2, Jamie Wright1, Youn-Bok Lee1, Han-Jou Chen1, Bilada Bilican3, Monica Carrasco4, Tom Maniatis4, Siddharthan Chandran3, Boris Rogelj5, Jean-Marc Gallo1, Christopher E. Shaw1*

1 Department of Clinical Neuroscience, King's College London, London, United Kingdom, 2 Department of Public Health, Neuroscience, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy, 3 MRC Centre for Regenerative Medicine and Centre for Neurodegeneration, University of Edinburgh, Edinburgh, United Kingdom, 4 Department of Psychiatry & Molecular Biophysics, Columbia University, New York, New York, United States of America, 5 Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia

Abstract

TDP-43 is found in cytoplasmic inclusions in 95% of amyotrophic lateral sclerosis (ALS) and 60% of frontotemporal lobar degeneration (FTLD). Approximately 4% of familial ALS is caused by mutations in TDP-43. The majority of these mutations are found in the glycine-rich domain, including the variant M337V, which is one of the most common mutations in TDP-43. In order to investigate the use of allele-specific RNA interference (RNAi) as a potential therapeutic tool, we designed and screened a set of siRNAs that specifically target TDP-43M337V mutation. Two siRNA specifically silenced the M337V mutation in HEK293T cells transfected with GFP-TDP-43wt or GFP-TDP-43M337V or TDP-43 C-terminal fragments counterparts. C-terminal TDP-43 transfected cells show an increase of cytosolic inclusions, which are decreased after allele-specific siRNA in M337V cells. We then investigated the effects of one of these allele-specific siRNAs in induced pluripotent stem cells (iPSCs) derived from an ALS patient carrying the M337V mutation. These lines showed a two-fold increase in cytosolic TDP-43 compared to the control. Following transfection with the allele-specific siRNA, cytosolic TDP-43 was reduced by 30% compared to cells transfected with a scrambled siRNA. We conclude that RNA interference can be used to selectively target the TDP-43M337V allele in mammalian and patient cells, thus demonstrating the potential for using RNA interference as a therapeutic tool for ALS.

Introduction

The TDP-43 proteinopathies are a group of diseases with overlapping clinicopathological features including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP). The common hallmark of TDP-43 proteinopathies is the formation of phosphorylated, ubiquitinated and detergent-insoluble TDP-43 in the cytoplasm of motor neurons. In addition, cleavage of TDP-43 within the C-terminus produces lower molecular weight species of 35 and 25 kDa [1,2].

TDP-43 is a DNA/RNA binding protein of 43 kDa mainly localized in the nucleus, and has been implicated in transcriptional repression, pre-mRNA splicing and translational regulation [3,4,5]. In cell culture, overexpressed full length TDP-43 is localized mainly in the nucleus, whereas C-terminal fragments containing RNA recognition motif 2 (RRM2) and the glycine-rich domain are localized both in the nucleus and cytoplasm with formation of ubiquitinated inclusions in the latter compartment [6,7,8,9,10]. Recent studies have shown that the TDP-43 C-terminal fragments are prone to aggregation and may serve as a seed to facilitate aggregation of full-length TDP-43 [10].

Mutations in TDP-43 have been identified in familial and sporadic cases of ALS and FTLD-TDP, mainly in the C-terminal glycine-rich region, including the M337V mutation caused by an alteration of an adenine (A) to guanine (G) at position 1009 of TARDBP cDNA [3,11,12,13,14,15,16]. In a recent study using isogenic lines, mutant forms of TDP-43 were reported to be more stable than wild-type which was degraded two to four times faster than mutant TDP-43 [17]. Furthermore, mature motor neurons and neural stem cells (NSCs) derived from induced pluripotent stem cell (iPSC) lines from a patient carrying the M337V mutation showed higher levels of soluble and insoluble TDP-43 compared to controls. Given that overexpression of wild-type TDP-43 is toxic in a wide range of animal models [18,19], the toxicity of mutant TDP-43 may be underpinned by its accumulation.

Regardless of the mechanism by which mutant TDP-43 exerts toxicity, selectively reducing expression of the mutant protein,
while maintaining expression of wild-type TDP-43, is an attractive therapeutic strategy. One way to target the mutant allele in familial cases is using effective allele-specific small interference RNAs (siRNAs); an approach which has been already described in several autosomal dominant diseases such as Parkinson’s disease [20], Alzheimer’s Disease [21,22] and Huntington’s disease [23,24,25]. In ALS, silencing of a mutant superoxide dismutase 1 (SOD1) allele has been successfully achieved using siRNA and short hairpin RNA (shRNA) in cells and in animal models of ALS. It was shown that injection of shRNA delays ALS onset and extends survival in animal models [26,27,28,29,30]. To determine the effects of allele-specific siRNA as a potential therapeutic tool for familial ALS with mutation in TDP-43, we generated siRNAs specifically targeting the M337V mutant allele. These siRNAs were initially validated in HEK293T cells overexpressing full length GFP-TDP-43 wt or M337V, and subsequently analysed in iPSC-derived cells. Here we show for the first time that allele-specific siRNA decreases levels of mutant protein produced from the M337V allele, in NSCs derived from iPSCs from an ALS patient.

Materials and Methods

All participants provided their written signed consent to donate their skin sample to derive iPSCs and this study was approved by the Ethics committee from the King’s College Hospital, a National MREC (ethics ref. 10/S1103/10).

Plasmids and siRNA

Full length TDP-43 cDNA was used as a PCR template to generate full length TDP-43, which was tagged with N-terminal green fluorescent protein (GFP) by subcloning into EGFP-C1 (Clontech Laboratories Inc, Mountain View, USA). The C-terminal GFP-TDP-43 constructs encompassing the amino acids 181–414 containing the RNA recognition motif 2 (RRM2) and the glycine-rich domain were amplified using the full length GFP-TDP-43 as a template and subcloned into EGFP-C1 vector. The mutant M337V counterparts were obtained by QuiChange site-directed mutagenesis of these constructs following manufacturer's instructions (Agilent technologies Inc, Santa Clara, USA). All plasmids were sequence-verified.

Human siRNAs were obtained from Invitrogen (Carlsbad, USA), which target the endogenous TDP-43 (named here as siTDP-43; Invitrogen Stealth). Scrambled non-targeting sequence was obtained from Invitrogen (named as sic; Invitrogen Stealth, low GC content).

Five perfectly matched or single/multiple nucleotide mismatched siRNAs were designed to silence the M337V mutation with a single mismatch at position 9 (M9); 3 (M3); or 17 (M17); double mismatches at positions 8 and 9 (M99); and multiple mismatches at positions 5, 7, 10 and 16 (M5U) (Fig. 1). Allele-specific siRNAs were obtained from Eurogentec S.A. (Liége, Belgium) and from Invitrogen.

Cell culture and transfection

All reagents used for cell culture were obtained from Invitrogen unless otherwise stated.

HEK293T cells

HEK293T cells were cultured in DMEM high glucose with Glutamax, 100 U/mL penicillin/100 μg/mL streptomycin and 10% foetal bovine serum. Cells were transfected with Lipofectamine siRNA Max following manufacturer’s instructions. Initial allele-specific screening by western blot analysis was performed co-transfecting 800 ng of GFP-TDP-43wt or GFP-TDP-43M337V (full length) and 50 nM allele-specific siRNA. 5 nM of siRNA targeting endogenous TDP-43 (siTDP) and non-targeting siRNA (sic) were transfected into cells as experimental controls. Cells were analysed 48 hours post-transfection.

Stable, tetracycline-inducible clonal cell lines were generated in T-REx HEK293, cells (#R710-07, Invitrogen) using the T-REx system. Briefly, stable clonal lines transfected with pCMV6/Neo (constitutively expressed Tet-repressor) were transfected with pDEST30 HA-TDP-43 constructs using Lipofectamine 2000, selected using 600 μg/mL geneticin, and clonally isolated. Stable HEK293 lines were maintained as per HEK293T cells, but using Tet-free foetal bovine serum. All cells were maintained at 37°C, 5% CO2.

Neural stem cells

Induced pluripotent stem cells were derived from one ALS patient carrying the M337V mutation and one normal control as previously characterized [31]. Cells were cultured feeder-free on matrigel-coated flasks with mTeSR1 (STEMCELL technologies, Vancouver, USA).

iPSCs were differentiated into neural stem cells (NSCs) as described elsewhere before differentiating into neurons [32]. Briefly, iPSCs were plated at 30–40% confluence in neural induction medium containing Advanced DMEM/F12:Neurobasal (1:1), 100 U/mL penicillin/100 μg/mL streptomycin, 1% L-glutamine, 1× N2, 1× B27, 5 μg/mL BSA (Eurobio-products, Cambridge, UK), 10 ng/mL hLF (Millipore, Billerica, MA, USA), 3 μM CHIR90021 (BioVision technology Inc, San Francisco, USA), 2 μM SB431542 (Activin Inhibitor, Tocris Biosciences, Bristol, UK) and 0.1 μM Gamma Secretase Inhibitor XXI, Compound E (Merck Chemicals, Ltd, Darmstadt, Germany) for 7 days. Cells were split with TrypLE Express and plated adding 10 μM ROCK inhibitor, Y-27632 (Merck Chemicals, Ltd) to enhance cell survival for the initial passages. Compound E was withdrawn after seven days in culture and cells were maintained in the same medium until neuronal differentiation.

Once the allele-specific siRNAs were validated in HEK293T cells, we selected the most efficient siRNA (siM9) to test in NSCs. PepTume transfection reagent (SignaGen laboratories, Gaithersburg, USA) was used for transfecting NSCs following manufacturer's instructions. We used 50 nM of allele-specific siM9, 5 nM siTDP or 5 nM of sic and analysed cells by immunofluorescence and/or western blot.

Western blot and densitometry analyses

Cell lysates were obtained by lysing cells with cold Radio-Immunoprecipitation Assay (RIPA) buffer (150 mM sodium chloride, 1.0% NP-40 or Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS (sodium dodecyl sulphate), 50 mM Tris, pH 8.0), incubating on ice for 20 minutes and centrifuging at 14 000 rpm for 30 minutes. Supernatants were mixed with 2× SDS buffer (20% glycerol, 4% SDS, 100 mM Tris pH 6.8, 0.002% Bromophenol blue, 100 mM dithiothreitol) and boiled for 10 minutes, constituting the soluble fraction. Protein concentration was determined by Bio-Rad DC Protein Assay (Hemel Hempstead, UK).

Approximately 10 μg of homogenates were loaded into pre-cast gels (NuPAGE Novex 10% Bis Tris, Invitrogen) and transferred to nitrocellulose membrane using iBlot (Invitrogen). The membranes were blocked with 5% non-fat dry milk for at least one hour at room temperature and incubated with primary antibody overnight at 4°C. Membranes were washed with 1% Tween-20 TBS (TBST) and incubated with fluorescent secondary antibody (Thermo Scientific).
Fisher Scientific Inc, Waltham, MA, USA) in 0.01% SDS-TBS buffer for one hour at room temperature protected from light. After serial washes with TBS buffer, membranes were scanned using the Odyssey Imaging System (Li-Cor Biosciences, Cambridge, UK). Membranes were scanned, avoiding saturation of the bands, and quantified using ImageJ (version 1.45e, NIH, Bethesda, USA, http://rsb.info.nih.gov/ij/). Densitometry and statistical analyses were performed using One-way ANOVA with Bonferroni post-hoc test or Student’s t-test using GraphPad Prism 5.03 (GraphPad Software, San Diego, USA). All antibodies were purchased from Sigma-Aldrich unless stated otherwise (Dorset, UK). The antibodies used in western blot were: polyclonal anti-TDP-43 antibody (1:5 000, ProteinTech Group, Chicago, USA), monoclonal anti HA (1:10 000), monoclonal anti GFP (1:1 000), monoclonal anti GAPDH (1:5 000) and polyclonal anti-histone 3 as a loading control marker (1:20 000).

Immunofluorescence

After transfection with siRNAs, NSCs were rinsed with PBS and fixed with 4% paraformaldehyde for 15 minutes at room temperature. Cells were permeabilized with 0.25% Triton-X 100 for 15 minutes at room temperature and blocked with 10% normal donkey serum for one hour. Cells were incubated with primary antibody diluted in 5% normal donkey serum at 4°C overnight. After serial washes with PBS, cells were incubated with secondary antibody for one hour at room temperature, rinsed with PBS and stained with 1.25 μg/ml DAPI (Sigma) for 1–2 minutes at room temperature. Coverslips were mounted using DAKO mounting medium (Dako, Glostrup, Denmark) onto fluorescent microscope slides (Fisher Scientific, Waltham, MA, USA).

Antibodies used for immunostaining were: polyclonal HA (1:100, Cell Signaling Technology); polyclonal TDP-43 (1:300, ProteinTech Group); monoclonal TDP-43 (1:300, Santa Cruz Biotechnology, Inc, Santa Cruz, USA); polyclonal nestin (1:400, Santa Cruz Biotechnology, Inc) and monoclonal β-III tubulin (1:400, Sigma-Aldrich). Secondary antibodies were purchased from Jackson ImmunoResearch Laboratories Inc. (West Grove, PA, USA). Cell images were acquired using a Zeiss Axiovert S100 (HB0100) (Carl Zeiss Ltd., Hertfordshire, UK) inverted microscope, a Zeiss LSM 510 META confocal laser scanning microscope and an InCell Analyser 1000 (for aggregation analysis, described below).

Fisher Scientific Inc, Waltham, MA, USA) in 0.01% SDS-TBS buffer for one hour at room temperature protected from light. After serial washes with TBS buffer, membranes were scanned using the Odyssey Imaging System (Li-Cor Biosciences, Cambridge, UK). Membranes were scanned, avoiding saturation of the bands, and quantified using ImageJ (version 1.45e, NIH, Bethesda, USA, http://rsb.info.nih.gov/ij/). Densitometry and statistical analyses were performed using One-way ANOVA with Bonferroni post-hoc test or Student’s t-test using GraphPad Prism 5.03 (GraphPad Software, San Diego, USA). All antibodies were purchased from Sigma-Aldrich unless stated otherwise (Dorset, UK). The antibodies used in western blot were: polyclonal anti-TDP-43 antibody (1:5 000, ProteinTech Group, Chicago, USA), monoclonal anti HA (1:10 000), monoclonal anti GFP (1:1 000), monoclonal anti GAPDH (1:5 000) and polyclonal anti-histone 3 as a loading control marker (1:20 000).

Immunofluorescence

After transfection with siRNAs, NSCs were rinsed with PBS and fixed with 4% paraformaldehyde for 15 minutes at room temperature. Cells were permeabilized with 0.25% Triton-X 100 for 15 minutes at room temperature and blocked with 10% normal donkey serum for one hour. Cells were incubated with primary antibody diluted in 5% normal donkey serum at 4°C overnight. After serial washes with PBS, cells were incubated with secondary antibody for one hour at room temperature, rinsed with PBS and stained with 1.25 μg/ml DAPI (Sigma) for 1–2 minutes at room temperature. Coverslips were mounted using DAKO mounting medium (Dako, Glostrup, Denmark) onto fluorescent microscope slides (Fisher Scientific, Waltham, MA, USA).

Antibodies used for immunostaining were: polyclonal HA (1:100, Cell Signaling Technology); polyclonal TDP-43 (1:300, ProteinTech Group); monoclonal TDP-43 (1:300, Santa Cruz Biotechnology, Inc, Santa Cruz, USA); polyclonal nestin (1:400, Santa Cruz Biotechnology, Inc) and monoclonal β-III tubulin (1:400, Sigma-Aldrich). Secondary antibodies were purchased from Jackson ImmunoResearch Laboratories Inc. (West Grove, PA, USA). Cell images were acquired using a Zeiss Axiovert S100 (HB0100) (Carl Zeiss Ltd., Hertfordshire, UK) inverted microscope, a Zeiss LSM 510 META confocal laser scanning microscope and an InCell Analyser 1000 (for aggregation analysis, described below).

Figure 1. Allele-specific siRNAs targeting TDP-43M337V mutant allele. A. Schematic representation of TDP-43 protein containing two RNA-recognition motifs (RRM1 and RRM2), a bipartite nuclear localization signal (NLS), a nuclear export signal (NES) and a glycine-rich domain in the carboxy-terminal. The M337V mutation localization is indicated. Five allele-specific siRNAs were designed to contain mismatches at positions 9 (M9), 3 (M3), or 17 (M17); double mismatches at positions 8 and 9 (M8-9) or multiple mismatches at positions 5, 7, 10 and 16 (M5U). B. Representative western blot image showing the effects of allele-specific siRNA on cells transfected with GFP-TDP-43wt and GFP-TDP-43M337V. The allele-specific siM9 reduces the levels of GFP-TDP-43M337V specifically whereas GFP-TDP-43M5U levels remain unchanged. FLAG-tagged protein was used as a control for transfection efficiency. C. Densitometry analysis of relative GFP-TDP-43 normalised to GAPDH. Mean from three independent experiments. Error bars represent standard error of the mean (SEM). (One way ANOVA, * P<0.05; *** P<0.001).

doi:10.1371/journal.pone.0091269.g001
HEK293T aggregation analysis

HA-TDP-43 wt stable transfected HEK293T cells were transiently transfected with C-terminal GFP-TDP-43 wt or GFP-TDP-43 M337V and siRNAs for 48 hours, fixed and processed for immunofluorescence as described. Images were acquired using an InCell Analyser 1 000 (GE Healthcare, Little Chalfont, UK). Quantification was carried out by counting an average of 315 cells per image, in 25 images per treatment condition (3 sites each from 5 wells of a 96-well plate), for three independent experiments. Cytoplasmic aggregates were counted using the previously validated [33] Cell scoring module within the MetaMorph Image System 7.5 (v. 7.7, Molecular Devices, Wokingham, UK), and data were analysed using GraphPad Prism 5.03.

Total, nuclear and cytosolic TDP-43 quantification

TDP-43 and DAPI images of NSCs were acquired using identical parameters across all cell lines and treatments, and analysed with MetaMorph Image System. Quantification was carried out by counting an average of 150 cells per image, in 7–10 images for each treatment condition, for three independent experiments. Quantification of total and cytoplasmic TDP-43 was performed using journals written in-house (available from ELS). These measured the staining which was above a user-defined threshold, in the original image set (total TDP-43) and in an image set where a binarized mask of the DAPI-stained nuclear image was subtracted from the TDP-43 image (cytoplasmic TDP-43). Nuclear TDP staining was measured using the Count Nuclei module with TDP-43-stained images. Values shown are the average integrated intensities of staining per cell, with cell counts performed using the Count Nuclei module with DAPI-stained images.

RNA extraction and cDNA Synthesis

RNA was extracted from cells using the RNeasy Mini Kit (Qiagen) following the manufacturer’s instructions followed by DNase digestion. RNA was quantified on a microvolume spectrophotometer (NanoDrop 2000, ThermoScientific) and the quality and integrity was checked using a 1% agarose gel. Only samples with an absorbance ratio at OD260/280 between 1.8 and 2.2, and OD260/230 at about 2.0 with clear 28S/18S bands and no smears were processed for cDNA synthesis.

For cDNA synthesis, 150 ng of total RNA was transcribed with the SuperScript III First-Strand Synthesis System (Life Technologies) in a 20 μL volume, following the manufacturer’s instructions. cDNAs were diluted to 12.5 ng/μL and stored at −20°C.

Figure 2. Allele-specific siRNA silences the mutant allele specifically and reduces cytoplasmic inclusions in HEK293 cells. A. HA-TDP-43 M337V stably expressing HEK293 cells were co-transfected with C-terminal GFP-TDP-43 wt or GFP-TDP-43 M337V and siRNAs for 48 hours. Cells were fixed and stained with HA antibody (red) and DAPI (blue). GFP-TDP-43 cyttoplasmic and nuclear inclusions of different sizes were seen. C-terminal GFP-TDP-43 wt and GFP-TDP-43 M337V inclusions co-localized with full length HA-TDP-43 wt (arrows), however some inclusions did not recruit full length HA-TDP-43 wt (arrowhead). Scale bars = 20 μm. B. Percentage of cells with GFP aggregates. siM9 reduced the number of cells with aggregates in GFP-TDP-43 M337V – expressing cells. More than 70 000 cells were counted from three independent experiments. Error bars represent SEM (Student’s T-test, *** P < 0.001).

doi:10.1371/journal.pone.0091269.g002

Figure 2. Allele-specific siRNA silences the mutant allele specifically and reduces cytoplasmic inclusions in HEK293 cells. A. HA-TDP-43 M337V stably expressing HEK293 cells were co-transfected with C-terminal GFP-TDP-43 wt or GFP-TDP-43 M337V and siRNAs for 48 hours. Cells were fixed and stained with HA antibody (red) and DAPI (blue). GFP-TDP-43 cyttoplasmic and nuclear inclusions of different sizes were seen. C-terminal GFP-TDP-43 wt and GFP-TDP-43 M337V inclusions co-localized with full length HA-TDP-43 wt (arrows), however some inclusions did not recruit full length HA-TDP-43 wt (arrowhead). Scale bars = 20 μm. B. Percentage of cells with GFP aggregates. siM9 reduced the number of cells with aggregates in GFP-TDP-43 M337V – expressing cells. More than 70 000 cells were counted from three independent experiments. Error bars represent SEM (Student’s T-test, *** P < 0.001).

doi:10.1371/journal.pone.0091269.g002
Transcription analysis by Real-time PCR

The real-time PCRs were performed on a MicroAmp Optical 384-well reaction plate with barcode covered with MicroAmp Optical Adhesive Film (Applied Biosystems). Reactions were manually assembled and contained 0.5 μL of Taqman Gene Expression Assay (Hs00606522, Applied Biosystems), 5 μL of Taqman Gene Expression Master Mix (Applied Biosystems), 2 μL of diluted cDNA and 2.5 μL of nuclease-free water (Ambion). Concurrently, housekeeping endogenous control glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was assayed for each individual sample for normalisation purposes. The PCR profile was: 2 minutes at 50°C, 10 minutes at 95°C, followed by 40 cycles of 15 seconds at 95°C and 1 minute at 60°C. Negative controls (no template cDNA and blank) were included in all assays. RT-PCRs were performed with two biological replicates and three technical replicates of each cDNA sample in the ABI7900HT sequence detection system. On completion of RT-PCR, Ct values were generated using SDS 2.3 software.

The relative level of expression \((RQ) \) for \(TARDBP \) was calculated based on the formula \(RQ = 2^{-\Delta DCt} \). Each Ct value represents the mean of three values were discarded if they were not within 0.25 standard deviation of the mean. \(\Delta DCt \) equals to

![Figure 3. Generation of neural stem cells from iPSC lines. A. iPSCs are differentiated into neural stem cells (NSCs) using small molecules for 10 days. At this stage these cells are nestin positive (neuroprecursor marker) and can be further differentiated into neurons after treatment with 1 μM of retinoic acid for 14 days. Neurons are positive for β-III tubulin, which is a neuronal marker. Scale bars = 20 μm. B. iPSCs from an ALS patient with M337V mutation and control were differentiated into NSCs and immunostained with TDP-43 antibody. A representative confocal image of TDP-43 immunostaining shows an increase of cytoplasmic TDP-43 in M337V NPCs. C. Densitometry quantification of cytoplasmic TDP-43 normalised to the control (n = 3 independent experiments. *** P<0.001). doi:10.1371/journal.pone.0091269.g003](#)
CtTARDBP – CtgAPDH. The relative level of expression of each sample was normalised to the ΔCt of control NSCs treated with sic.

Results and Discussion

In recent years, the identification of TDP-43 as a major component of cytoplasmic, detergent-resistant inclusions in ALS and FTLD has opened new areas of research aiming to understand the pathological mechanisms of these diseases.

In order to investigate if an allele-specific siRNA can reduce the expression of TDP-43 mutant allele as a form of therapy; we designed five allele-specific siRNAs containing 19 nucleotides, targeting the M337V mutation. Early studies on the RNAi pathway showed that contiguity at the centre of siRNA is crucial to target recognition and cleavage, since mismatch abolished the RNAi effect and tended to occur at the centre of the siRNA structure [34,35]. Therefore, the position of the altered nucleotide in the siRNA is important to discriminate the mutant from the wild-type alleles. Allele-specific siRNAs targeting different regions of the same transcript display differences in the efficiency of silencing, therefore we designed siRNAs where the mutated nucleotide G position varies within the siRNA structure (Fig. 1A). The allele-specific siRNAs-M9, M3 and M17 are perfectly matched with the mutant allele but have a single mismatch with the wild-type counterpart. However, it is likely that not all single mismatches would create silencing selectivity and some mismatches might be tolerated by the RISC complex; compromising the allele-specificity. For this reason, we designed siRNAs with more

Figure 4. Allele-specific knockdown of M337V allele on neural stem cells. A. NSCs were transfected with allele-specific siM9 and stained for TDP-43. Images were acquired using identical parameters and analysed using Metamorph software. Representative confocal immunolabelling images showing allele-specific M337V knockdown in M337V lines. The allele-specific siM9 reduces endogenous TDP-43M337V expression in all compartments (cytosolic (B), nuclear (C) and total (D) TDP-43) (n = 3 independent experiments. ** P<0.01 and *** P<0.001).

doi:10.1371/journal.pone.0091269.g004

Allele-Specific Knockdown in Motor Neuron Disease
Figure 5. Allele-specific siM9 decreases total TDP-43 transcripts and protein levels in neuronalised cells. A. Representative Western blot image showing M337V knockdown in M337V lines. B. Densitometry analysis of relative TDP-43 protein normalised to GAPDH. C. qPCR display unchanged levels of total TDP-43 in the control lines transfected with siM9, whereas M337V lines showed a reduction. Error bars represent SEM (One way ANOVA, * P<0.05, ** P<0.01, *** P<0.001). doi:10.1371/journal.pone.0091269.g005
than one mismatch with the wild-type allele. The siRNA-M8-9 contains a double mismatch with the wild-type at positions 8 (sense strand G>C) and at position 9 (the mutation site), hence creating a single mismatch with the mutant allele. Similarly, the siRNA-M35U contains five mismatches (sense strand U>G) with the wild-type and four mismatches with the mutant allele (Fig. 1A).

To determine if these allele-specific siRNAs specifically knock down the M337V allele, HEK293T cells were transiently transfected with full length GFP-TDP-43wt or GFP-TDP-43M337V in combination with allele-specific siRNAs and analysed by western blot. In order to exclude the possibility of co-transfection with siRNA reduced the transfection efficiency of GFP-TDP-43M337V we co-transfected a flag-tagged protein (Fig. 1B). Two siRNAs showed a significant reduction in GFP-TDP-43M337V protein levels (siM9 and siM17). Using the siRNA with mismatch at position 9 (siM9), GFP-TDP-43M337V was reduced by 78%, whereas the allele-specific RNA with a mismatch at position 17 silenced GFP-TDP-43M337V by 25.6%. In contrast, GFP-TDP-43wt levels remained unchanged by transfection with any of the allele-specific siRNAs. Non-targeting siRNA control (sic) and siRNA targeting the N-terminal region of TDP-43 (siTDP-43) were used as controls. As expected, siTDP-43 was able to silence both GFP-TDP-43wt and GFP-TDP-43M337V, decreasing their expression levels by approximately 50% (Fig. 1C).

Having determined that allele-specific siRNA can reduce protein expression from the mutant allele specifically, we sought to determine whether this RNAi approach could also reduce the formation of cytosolic TDP-43 aggregates. HEK293T cells transiently transfected to overexpress C-terminal GFP-TDP showed recruitment of full length HA-TDP-43wt at near physiological levels do not form aggregates. Therefore, by transiently transfecting C-terminal GFP-TDP-43 proteins into HA-TDP-43 expressing cells, we were able to simultaneously assess whether allele-specific knockdown altered the formation of TDP-43M337V aggregates, and whether TDP-43 expression from the other ‘allele’ was maintained.

We observed that after allele-specific siRNA transfection, GFP-TDP-43M337V levels were reduced with a concomitant decrease in detectable cytoplasmic inclusions (Fig. 2B). In addition, we observed that HA-TDP-43wt remained unchanged, suggesting that the allele-specific siM9 specifically reduces the mutant allele (Figure 2A). The majority of the cytoplasmic inclusions of C-terminal GFP-TDP showed recruitment of full length HA-TDP-43wt at near physiological levels do not form aggregates. Therefore, by transiently transfecting C-terminal GFP-TDP-43 proteins into HA-TDP-43 expressing cells, we were able to simultaneously assess whether allele-specific knockdown altered the formation of TDP-43M337V aggregates, and whether TDP-43 expression from the other ‘allele’ was maintained.

We observed that after allele-specific siRNA transfection, GFP-TDP-43M337V levels were reduced with a concomitant decrease in detectable cytoplasmic inclusions (Fig. 2B). In addition, we observed that HA-TDP-43wt remained unchanged, suggesting that the allele-specific siM9 specifically reduces the mutant allele (Figure 2A). The majority of the cytoplasmic inclusions of C-terminal GFP-TDP showed recruitment of full length HA-TDP-43wt at near physiological levels do not form aggregates. Therefore, by transiently transfecting C-terminal GFP-TDP-43 proteins into HA-TDP-43 expressing cells, we were able to simultaneously assess whether allele-specific knockdown altered the formation of TDP-43M337V aggregates, and whether TDP-43 expression from the other ‘allele’ was maintained.

We observed that after allele-specific siRNA transfection, GFP-TDP-43M337V levels were reduced with a concomitant decrease in detectable cytoplasmic inclusions (Fig. 2B). In addition, we observed that HA-TDP-43wt remained unchanged, suggesting that the allele-specific siM9 specifically reduces the mutant allele (Figure 2A). The majority of the cytoplasmic inclusions of C-terminal GFP-TDP showed recruitment of full length HA-TDP-43wt at near physiological levels do not form aggregates. Therefore, by transiently transfecting C-terminal GFP-TDP-43 proteins into HA-TDP-43 expressing cells, we were able to simultaneously assess whether allele-specific knockdown altered the formation of TDP-43M337V aggregates, and whether TDP-43 expression from the other ‘allele’ was maintained.

We observed that after allele-specific siRNA transfection, GFP-TDP-43M337V levels were reduced with a concomitant decrease in detectable cytoplasmic inclusions (Fig. 2B). In addition, we observed that HA-TDP-43wt remained unchanged, suggesting that the allele-specific siM9 specifically reduces the mutant allele (Figure 2A). The majority of the cytoplasmic inclusions of C-terminal GFP-TDP showed recruitment of full length HA-TDP-43wt at near physiological levels do not form aggregates. Therefore, by transiently transfecting C-terminal GFP-TDP-43 proteins into HA-TDP-43 expressing cells, we were able to simultaneously assess whether allele-specific knockdown altered the formation of TDP-43M337V aggregates, and whether TDP-43 expression from the other ‘allele’ was maintained.

We observed that after allele-specific siRNA transfection, GFP-TDP-43M337V levels were reduced with a concomitant decrease in detectable cytoplasmic inclusions (Fig. 2B). In addition, we observed that HA-TDP-43wt remained unchanged, suggesting that the allele-specific siM9 specifically reduces the mutant allele (Figure 2A). The majority of the cytoplasmic inclusions of C-terminal GFP-TDP showed recruitment of full length HA-TDP-43wt at near physiological levels do not form aggregates. Therefore, by transiently transfecting C-terminal GFP-TDP-43 proteins into HA-TDP-43 expressing cells, we were able to simultaneously assess whether allele-specific knockdown altered the formation of TDP-43M337V aggregates, and whether TDP-43 expression from the other ‘allele’ was maintained.

We observed that after allele-specific siRNA transfection, GFP-TDP-43M337V levels were reduced with a concomitant decrease in detectable cytoplasmic inclusions (Fig. 2B). In addition, we observed that HA-TDP-43wt remained unchanged, suggesting that the allele-specific siM9 specifically reduces the mutant allele (Figure 2A). The majority of the cytoplasmic inclusions of C-terminal GFP-TDP showed recruitment of full length HA-TDP-43wt at near physiological levels do not form aggregates. Therefore, by transiently transfecting C-terminal GFP-TDP-43 proteins into HA-TDP-43 expressing cells, we were able to simultaneously assess whether allele-specific knockdown altered the formation of TDP-43M337V aggregates, and whether TDP-43 expression from the other ‘allele’ was maintained.
References

1. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314: 130–133.

2. Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Arai T, Hasegawa M, et al. (2010) Nomenclature for neurotrophic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol 117: 13–18.

3. Lagier-Tourenne C, Cleveland DW (2009) Rethinking ALS: the FUS about TDP-43. Cell 136: 1001–1004.

4. Nishimoto Y, Ito D, Yagi T, Nihei Y, Tsunoda Y, et al. (2010) Characterization of alternative isoforms and inclusion body of the TAR DNA-binding protein-43. J Biol Chem 285: 605–619.

5. Che MX, Jiang Y, Xie Y, Jiang LL, Hu HY (2011) Aggregation of the 35-kDa fragment of TDP-43 causes formation of cytoplasmic inclusions and alteration of RNA processing. FASEB J 25: 2344–2353.

6. Corrado L, Ratti A, Gellera C, Buratti E, Castellotti B, et al. (2009) High frequency of TARDBP gene mutations in Italian patients with amyotrophic lateral sclerosis. Hum Mutat 30: 680–694.

7. Winton MJ, Igaz LM, Wong MM, Kwong LK, Trojanowski JQ, et al. (2008) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 11: 452–458.

8. Yang C, Tan W, Whittle C, Nihei Y, Tsunoda Y, et al. (2010) The C-terminal TDP-43 fragment has a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS One 5: e10570.

9. Zhang Y, Engelmann J, Fiedler-RM (2009) Allele-specific silencing of mutant Huntington’s disease gene. J Neurochem 108: 82–90.

10. Ling SC, Albuquerque CP, Han JS, Lagier-Tourenne C, Tokunaga S, et al. (2010) Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration. Brain 133: 1763–1771.

11. Kabashi E, Lin L, Tradewell ML, Dion PA, Bercier V, et al. (2009) Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet 18: 671–683.

12. Tao PP, Soong BW, Lin KP, Tu PH, Lin JL, et al. (2011) FUS, TARDBP, and SOD1 mutations in a Taiwanese cohort with familial ALS. Neurobiol Aging 32: 553 e1513–512.

13. Li W, Sun W, Zhang Y, Wei W, Ambasudhan R, et al. (2011) Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A 108: 8299–8304.

14. Tao PP, Soong BW, Lin KP, Tu PH, Lin JL, et al. (2011) FUS, TARDBP, and SOD1 mutations in a Taiwanese cohort with familial ALS. Neurobiol Aging 32: 553 e1513–512.

15. Rutherford NJ, Zhang YJ, Baker M, Gass JM, Finch NA, et al. (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 4: e1000193.

16. Kraemer B, Schuck T, Wheeler J, Robinson L, Trojanowski JQ, et al. (2010) Loss of nuclear TAR DNA-binding protein-43 reduces neuronal survival in Huntington’s disease patient-derived fibroblasts. Hum Gene Ther 19: 710–719.

17. Tamaoka A, Arai M, Itokawa M, Arai T, Hasegawa M, et al. (2010) TDP-43 regulates its mRNA levels through a negative feedback loop. The Journal of Biological Chemistry 285: 6826–6834.

18. van Biesen PH, Jaspers L, Lombardi MS, Odekerken JC, Burright EN, et al. (2008) Identification and allele-specific silencing of the mutant huntingtin allele in Huntington’s disease patient-derived fibroblasts. Hum Gene Ther 19: 710–719.

19. Tollervey JR, Curk T, Rogelj B, Briese M, Cerreta M, et al. (2011) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 17: 423–426.

20. Van Der Heyden M, Ruitenbeek T, Prior J, Aarsman A, Baron J, et al. (2011) TDP-43 regulates its mRNA levels through a negative feedback loop. J Biol Chem 286: 4596–4605.

21. Abdelgany A, Wood M, Beeson D (2003) Allele-specific silencing of a pathogenic LRRK2 R1441 mutation mediated by RNAi. PLoS One 6: e21352.