Neuroprotective effect of *Hydrocotyle sibthorpioides* against monosodium glutamate-induced excitotoxicity

Iswar Hazarika\(^a,\(^b\), Geetha Kannoth Mukundan\(^c\) and P. Sivakami Sundarid

\(^a\)Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, Karnataka, India; \(^b\)Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Science, Guwahati, Assam, India; \(^c\)Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, Karnataka, India; \(^d\)Department of Pharmacognosy, College of Pharmaceutical Sciences, Dayananda Sagar University, Bengaluru, Karnataka, India

ABSTRACT

We aimed to evaluate the neuroprotective effect of *H. sibthorpioides* against monosodium-glutamate (MSG) induced excitoneurotoxicity in rats. We randomly divided the animals into 11 groups (\(n = 8\)) and subjected them to high doses of MSG (2 g/kg body weight) and the test dose (1 week). The test chemicals were *H. sibthorpioides* extracts of petroleum ether, chloroform, methanol, and water. We used Dizocilpine-hydrogen-maleate as a standard and assessed the cognitive property using Morris-water-maze and elevated-plus-maze. After the experimental period, we evaluated the biochemical parameters. We found chloroform and methanolic extracts significantly enhanced the cognitive behaviour of rats compared to control. Biochemical analysis suggested that there was a high level of antioxidants and lower levels of glutamate and proinflammatory cytokines in the cortex and hippocampus. We concluded that chloroform and methanolic extracts of *H. sibthorpioides* enhanced the level of antioxidants, decreased proinflammatory-cytokines and glutamate in the brain, and thus prevented the monosodium-glutamate-induced-excite-neurotoxicity.

ARTICLE HISTORY

Received 10 July 2021
Accepted 19 March 2022

KEYWORDS

Neuroprotective; monosodium glutamate; *Hydrocotyle sibthorpioides* Lam.; antioxidant property; proinflammatory cytokines; cognition
1. Introduction

Monosodium glutamate (MSG) is a flavoring agent and many countries use it without any restrictions (Farombi and Onyema 2006). Hence, people consume large doses of MSG that lead to an increase in blood and brain glutamate concentration (Shivasharan et al. 2013). A high brain MSG concentration increases excitability and activates the proteolytic enzymes to cause severe toxicity (Weil et al. 2008). This neurotoxicity implicates neurodegenerative diseases, which can produce symptoms like dizziness, flushing, numbness, sweating, and increased oxidative stress (Farombi and Onyema 2006; Ambrosi et al. 2014). High doses of MSG also increase the oxygen free radicals and damage the neurons of the hypothalamic region (Meldrum 1993; 2000; Farombi and Onyema 2006). Hence, i.p. injection of MSG in high dose will be a successful model for the study of oxidative stress and excitotoxic neuronal damage in the rat brain.

People of Assam use *Hydrocotyle sibthorpioides* Lam. (Family: Araliaceae) traditionally as a brain tonic (Hazarika et al. 2019; 2021). Report also suggests a high level of antioxidants in *H. sibthorpioides* (Huang et al. 2008). Earlier, we demonstrated the neuroprotective effect of *H. sibthorpioides* extracts on aluminum chloride induced neurotoxicity in rats (Hazarika et al. 2022). However, no study investigated the neuroprotective effect of *H. sibthorpioides* extracts against glutamate-induced excitotoxicity. Therefore, we aimed to evaluate the neuroprotective activity of *H. sibthorpioides* extracts against MSG-induced neurotoxicity in rats.

2. Results and discussion

The extracts of *H. sibthorpioides* showed the presence of many secondary metabolites (Table S2). Methanolic extract of *H. sibthorpioides* (MEHS) showed maximum % yield, phenolic content, flavonoids content and asiaticoside (Table S3, Figure S1). Chloroform extract (CEHS) showed significantly high asiaticoside.

Morris’s water maze is considered to be a very good model for the study of spatial memory (Vorhees and Williams 2006) and elevated plus maze (EPM) for cognition. In
EPM, as compared to control initial transfer latency (%ITL, 0.99 ± 0.06) was significantly high in CEHS (200 mg/kg, %ITL, 1.05 ± 0.07; 100 mg/kg, %ITL, 1.08 ± 0.06; \(p < 0.001 \)), MEHS (200 mg/kg, %ITL, 1.08 ± 0.06; 100 mg/kg, %ITL, 1.08 ± 0.07; \(p < 0.001 \)) and dizocilpine hydrogen maleate (DHM, 0.05 mg/kg; %ITL, 1.09 ± 0.05) (Figure S2a). CEHS, MEHS and DHM showed significant decrease \((p < 0.001) \) in time to reach the hidden platform, searching frequency and time in the target area compared to control in Morris’s water maze.

Cortex and hippocampus are most susceptible to oxidative stress damage because these areas are highly enriched in nonheme iron that is involved in the catalysis of ROS production (Hill and Switzer 1984; Venkataraman et al. 2007; Tanamatayarat et al. 2012). Treatment with DHM, CEHS, and MEHS significantly altered their level (Figure S3).

GABA reduced significantly in the cortex and hippocampus in groups treated only with MSG (Figure S4). MEHS reversed the MSG induced GABA depletion from the cortex and hippocampus. On the other hand, the level of glutamate significantly increased \((p < 0.001) \) in the group treated with the only MSG when compared to the control. However, the level of glutamate reduced significantly \((p < 0.001) \) in groups treated with CEHS and MEHS when compared to groups treated only with MSG (Figure S4).

The glutamate exposure is also responsible for the increased production of proinflammatory cytokines such as IL-6, IL-\(\beta \), and TNF-\(\alpha \) (Chaparro-Huerta et al. 2005). Our results are per the above finding that the group treated only with MSG significantly increased the pro-inflammatory cytokines; however, administration of CEHS and MEHS significantly reduced \((p < 0.001) \) the level of proinflammatory cytokines suggesting that the extracts possess anti-inflammatory properties (Figure S5).

The present study also evidenced the loss of neuronal structure, necrosis in the cortex and hippocampal region of rats treated only with MSG. However, the MSG caused damage was less in groups treated with DHM, CEHS, and PEHS, showing a protective effect towards neurodegeneration (Figure S6). The protective effect of *H. sibthorpioides* may be attributed to the free radical scavenging property and proinflammatory cytokines inhibiting property.

3. Conclusions

Chloroform and methanolic extracts of *H. sibthorpioides* inhibit inflammatory cytokines and scavenge oxygen free radicals to show its neuroprotective effect against MSG-induced neurotoxicity. However, it requires further investigations to reveal the specific mechanism.

Acknowledgements

The authors like to thank the management of the College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore for their support in the completion of this work.

Disclosure statement

No potential conflict of interest was reported by the authors.
Funding

The author(s) reported there is no funding associated with the work featured in this article.

ORCID

Iswar Hazarika http://orcid.org/0000-0001-8091-1741

References

Ambrosi G, Cerri S, Blandini F. 2014. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J Neural Transm (Vienna). 121(8):849–859.

Chaparro-Huerta V, Rivera-Cervantes MC, Flores-Soto ME, Gomez-Pinedo U, Beas-Zarate C. 2005. Proinflammatory cytokines and apoptosis following glutamate-induced excitotoxicity mediated by p38 MAPK in the hippocampus of neonatal rats. J Neuroimmunol. 165(1-2):53–62.

Farombi E. O, Onyema OO. 2006. Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Hum Exp Toxicol. 25(5):251–259. https://doi.org/10.1191%2F0960327106ht621oa.

Hazarika I, Geetha KM, Sundari PS, Madhu D. 2019. Acute oral toxicity evaluation of extracts of Hydrocotyle sibthorpioides in wistar albino rats as per OECD 425 TG. Toxicol Rep. 6:321–328.

Hazarika I, Mukundan GK, Sundari PS, Laloo D. 2021. Journey of Hydrocotyle sibthorpioides Lam.: From traditional utilization to modern therapeutics—A review. Phytother Res. 35(4): 1847–1871.

Hazarika I, Mukundan GK, Sundari PS, Das A. 2022. The modulatory effect of Hydrocotyle sibthorpioides in attenuating the Aluminium chloride induced neurotoxicity in the rat brain. Adv Tradit Med (Adtm). 22(1):207–219.

Hill JM, Switzer RC. III, 1984. The regional distribution and cellular localization of iron in the rat brain. Neuroscience. 11(3):595–603.

Huang SS, Huang GJ, Ho YL, Lin YH, Hung HJ, Chang TN, Chang MJ, Chang JJ, Chang YS. 2008. Antioxidant and antiproliferative activities of the four Hydrocotyle species from Taiwan. Bot. Stud. 49:311–322. https://ejournal.sinica.edu.tw/bbas/content/2008/4/Bot494-03.pdf.

Meldrum B. 1993. Amino acids as dietary excitotoxins: a contribution to understanding neurodegenerative disorders. Brain Res Brain Res Rev. 18(3):293–314.

Meldrum BS. 2000. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 130(4S Suppl):1007S–1015S.

Shivasharan BD, Nagakannan P, Thippeswamy BS, Veerapur VP. 2013. Protective effect of Calendula officinalis L. flowers against monosodium glutamate induced oxidative stress and excitotoxic brain damage in rats. Indian J Clin Biochem. 28(3):292–298.

Tanamatayarat P, Sotanaphun U, Poobrasert O. 2012. Thai plants from Doi Tung: brine shrimp lethality, antioxidative activity and combination effect with L-ascorbic acid. Nat Prod Res. 26(10):919–925.

Venkataraman P, Muthuvel R, Krishnamoorthy G, Arunkumar A, Sridhar M, Srinivasan N, Balasubramanian K, Aruldhas MM, Arunakaran J. 2007. PCB (Aroclor 1254) enhances oxidative damage in rat brain regions: protective role of ascorbic acid. Neurotoxicology. 28(3):490–498.

Vorhees CV, Williams MT. 2006. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc. 1(2):848–858.

Weil ZM, Norman GJ, DeVries AC, Nelson RJ. 2008. The injured nervous system: a Darwinian perspective. Prog Neurobiol. 86(1):48–59.