CAYLEY PARAMETRIZATION AND THE ROTATION GROUP
OVER A NON-ARCHIMEDEAN PYTHAGOREAN FIELD

M. G. MAHMOUDI

Abstract. Using Cayley transform, we show how to construct rotation matrices infinitely near the identity matrix over a non-archimedean pythagorean field. As an application, an alternative way to construct non-central proper normal subgroups of the rotation group over such fields is provided.

Mathematics Subject Classification: 11E57, 12D15, 20G15, 65F35.

Keywords: Cayley parametrization; Frobenius norm; orthogonal group; rotation group; pythagorean field; non-archimedean field.

1. Introduction

The Cayley transform provides an important parametrization of the rotation group of the euclidean space. This map which was introduced by Arthur Cayley in 1846, associates a rotation matrix to every skew symmetric matrix of eigenvalues different from -1. The Cayley parameterization was used by J. Dieudonné in [3] §15, §16 to construct normal subgroups of the rotation group of a vector space V of dimension $n = 3$ equipped with an anisotropic quadratic form over the field of p-adic numbers or the field of formal Laurent series in one variable over the field of real numbers for arbitrary $n \geq 3$. Later, using the properties of Elliptic spaces, E. Artin in [1, Ch. V, §25] constructed non-central subgroups of the rotation group $SO(V)$ of a vector space V of dimension $n \geq 3$ equipped with an anisotropic quadratic q form over a field F with a non-archimedean ordering.

We simplify the Artin construction using the Cayley parametrization. The main new observations that make this simplification possible are the following:

(1) Assume that n is odd or n is even and $\det q$ is trivial. If F is not formally real pythagorean then the rotation group $SO(V)$ is never projectively simple (see [5,1] and [5,2]). This enables us to concentrate on the case where the base field F is pythagorean, hence the Frobenius norm is at disposal and one may consider it instead of the maximum norm as used in [1, Ch. V, §3].

(2) If F is a formally real pythagorean field with a non-archimedean ordering then one can find a rotation matrix $A \in M_n(F)$ such that the Frobenius norm of $A - I \neq 0$ is infinitely small (see [5,3]).

Finally, as another application, we complement a result due to L. Bröcker [2], which implies that the orthogonal groups $SO(V)$ are all projectively simple for the case where the Witt index ν of q is zero, $n \geq 3$ and $n \neq 4$ precisely in the case where F is pythagorean formally real field, admits only of archimedean ordering and q is similar to $x_1^2 + x_2^2 + \cdots + x_n^2$. This addresses the following passage by J. Dieudonné in [3] p. 39: "... la simplicité du groupe des rotations (pour $\nu = 0$, $n > 2$ et $n \neq 4$) sur le corps des nombres réels \mathbb{R}, apparaît comme un phénomène très particulier, dû à la structure très spéciale du corps \mathbb{R} parmi les corps commutatifs. Il y aurait lieu de rechercher s’il existe d’autres corps qui partagent avec lui cette propriété.".
2. Notation and Terminology

Throughout this paper, F denotes a field of characteristic different from two. Let (V, b) be bilinear space of dimension n over a field F and let $q : V \to F$ be its associated nondegenerate quadratic form given by $q(x) = b(x, x)$. The determinant of b is the determinant of a Gram matrix of b modulo $F^\times 2$ and is denoted by $\det b$ or $\det q$. One says that b or q represents a scalar $\lambda \in F$ if there exists a nonzero vector $v \in V$ such that $b(v, v) = \lambda$. A vector $u \in V$ is called anisotropic (resp. isotropic) if $q(u) \neq 0$ (resp. $q(u) = 0$). A quadratic form q is said to be anisotropic if all nonzero vectors in V are anisotropic, otherwise q is called isotropic. The Witt index ν of (V, b) is defined as the maximal dimension of a totally isotropic subspace of V. As the characteristic of F is different from two, there exists an orthogonal basis $\{e_1, \cdots, e_n\}$ of (V, b). It is known that for $n \geq 3$ the group $\text{SO}(V)$ is a non-abelian group and its center is either $\{\pm \text{id}\}$ or $\{\text{id}\}$ depending on the parity of n (see [4] p. 51).

For every $\sigma \in O(V)$ by the Cartan-Dieudonné theorem, there exists a decomposition $\sigma = \prod_{i=1}^n \tau_{u_i}$, where $m \leq n$ and τ_{u_i} is a reflection along the anisotropic vectors $u_i \in V$ given by

$$\tau_{u_i}(x) = x - 2\frac{b(x, u_i)}{q(u_i)} u_i.$$

It is known that the class of $\theta(\sigma) = \prod_{i=1}^m q(u_i)$ in the quotient group $F^\times / F^\times 2$, which is called the spinor norm of σ, is independent of the choices and the number of u_i's.

We recall that a field F is said to be formally real (or ordered field) if -1 is not a sum of squares in F. A field F is called pythagorean if every sum of squares is again a square. An element c of a formally real field F is called totally positive if c is positive with respect to all orderings of F.

If F is a pythagorean field then for every matrix A with entries in F, the Frobenius norm of A, denoted by $\|A\|$, is defined as the absolute value of the square root of the sum of squares of entries of A. The Frobenius norm satisfies the inequalities $\|AB\| \leq \|A\|\|B\|$ and $\|A + B\| \leq \|A\| + \|B\|$ when A and B are of appropriate sizes.

For any matrix $A \in M_n(F)$ such that $I + A$ is invertible, the map $A \mapsto (I - A)(I + A)^{-1}$ is called the Cayley map. For any skew-symmetric matrix $A \in M_n(F)$ such that the matrix $I + A$ is invertible, the matrix $Q = C(A)$ satisfies $Q^T Q = I$ and $\det Q = 1$. Conversely for every orthogonal matrix Q such that $I + Q$ is invertible $C(Q)$ is a skew-symmetric matrix, see [3] p. 56.

3. Rotation group over non-archimedean fields

As a first observation we have the following result:

Proposition 3.1. Let (V, b) be anisotropic bilinear space of dimension $n \geq 2$ over a field F. Then the image of the spinor norm $\theta : \text{SO}(V) \to F^\times / F^\times 2$ is trivial if and only if F is a formally real pythagorean field and q represents only one square class in F^\times, in particular q is similar to the quadratic form $x_1^2 + \cdots + x_n^2$.

Proof. First assume that the spinor norm map is the trivial map. Let $u \in V$ be an anisotropic vector with $q(u) = d \neq 0$. Then for any anisotropic vector $v \in V$ as $\theta(\tau_{u} \tau_{v})$ is trivial, the scalars $q(u)$ and $q(v)$ are in the same square class in F^\times. It follows that q is isomorphic to $dx_1^2 + \cdots + dx_n^2$. Let $\alpha, \beta \in F$, we should prove that there exists $\gamma \in F$ such that $\gamma^2 = \alpha^2 + \beta^2$. As $n \geq 2$, we may consider two orthogonal vectors $u, v \in V$ with $q(u) = q(v) = d \neq 0$. Now consider the vector $w = \alpha u + \beta v \in V$. We have $q(w) = (\alpha^2 + \beta^2)d$. As $q(w)$ and $q(u)$ are in the same square classes, the quantity $\alpha^2 + \beta^2$ is a square in F. If F is not formally real,
then -1 is a sum of squares in F, hence is a square since F is pythagorean. As $q \simeq dx_1^2 + \cdots + dx_n^2$ and $n \geq 2$, the form q would be isotropic, contradiction. The converse follows from the Cartan-Dieudonné theorem and the fact that the current hypotheses imply that the spinor norm of the product of two arbitrary reflections is trivial.

\[\square \]

Proposition 3.2. Let (V, b) be an anisotropic bilinear space of dimension $n \geq 3$ over a field F such that $\text{SO}(V)$ is projectively simple. Then the spinor norm map $\theta: \text{SO}(V) \to F^\times / F^\times 2$ is the trivial map precisely in the following cases (i) n is odd, (ii) n is even and the determinant of b is trivial.

Proof. First suppose that θ is the trivial map. Let $\{e_1, \ldots, e_n\}$ be an orthogonal basis of (V, b). We have $-\text{id} = \tau_{e_1} \tau_{e_2} \cdots \tau_{e_n}$. It follows that in the case where n is even, $-\text{id} \in \text{SO}(V)$ and $\theta(-\text{id})$ which coincides with the determinant of b, is trivial.

Conversely suppose that (i) or (ii) hold. In the case (i) the group $\text{SO}(V)$ has trivial center. Thus the hypotheses actually say that $\text{SO}(V)$ is itself a simple group. It follows that $\ker(\theta)$ is either the trivial group or is the whole $\text{SO}(V)$. The first case is impossible as $\text{SO}(V)$ is non-abelian. The second case implies that $\text{Im}(\theta)$ is trivial.

In the case (ii) the center of $\text{SO}(V)$ is the subgroup $\{\pm \text{id}\}$. As $-\text{id} = \tau_{e_1} \tau_{e_2} \cdots \tau_{e_n}$ and the determinant of b is assumed to be trivial, $\theta(-\text{id})$ is trivial as well. Therefore, the kernel of the spinor norm map θ is a subgroup of $\text{SO}(V)$ containing $\{\pm \text{id}\}$. As $\text{SO}(V)$ is assumed to be projectively simple, $\ker(\theta)$ is either $\{\pm \text{id}\}$, or $\text{SO}(V)$. If $\ker(\theta) = \{\pm \text{id}\}$, we have $\text{SO}(V)/\{\pm \text{id}\} \simeq \text{Im}(\theta)$. This shows that $\text{SO}(V)/\{\pm \text{id}\}$ is an abelian simple group. It follows that this quotient group is either the trivial group (thus $\text{Im}(\theta)$ is the trivial group) or a group of prime order. The later case is ruled out as a non-abelian group is never projectively cyclic. The former case also implies the triviality of $\text{Im}(\theta)$.

\[\square \]

Proposition 3.3. Let F be a pythagorean field with a non-archimedean ordering \leq. Then there exists a matrix $A \in M_n(F)$ with $A \neq \pm I$, $A^TA = I$ and $\det A = 1$ such that $\|I - A\|$ is infinitely small.

Proof. Let ϵ be an infinitely small positive element of F and let $B \in M_n(F)$ be a nonzero skew-symmetric matrix whose entries are rational. Consider the matrix $A = C(\epsilon B)$, where C is the Cayley map. We claim that $\|I - A\|$ is infinitely small. First note that $I + \epsilon B$ is invertible, hence $C(\epsilon B)$ is meaningful and is different from $\pm I$. Let m be an odd positive integer. The relation $I + \epsilon^m B^m = (I + \epsilon B)D$ where $D = (I - \epsilon B + \epsilon^2 B^2 + \cdots + \epsilon^{m-1} B^{m-1})$ implies that $\|(I + \epsilon B)^{-1} - D\| = \epsilon^m \|B^m(I + \epsilon B)^{-1}\|$. By the Cramer rule every entry of $B^m(I + \epsilon B)^{-1}$ is of the form $p(\epsilon)/q(\epsilon)$ where $p(X), q(X) \in \mathbb{Q}[X]$ are of degree at most n. It follows that for sufficiently large m, the quantity $\|(I + \epsilon B)^{-1} - D\| = \epsilon^m p(\epsilon)/q(\epsilon)$ is infinitely small. Hence

\[
\begin{align*}
\|I - A\| &= \|I - (I - \epsilon B)(I + \epsilon B)^{-1}\| \\
&\leq \|I - (I - \epsilon B)D\| + \|(I - \epsilon B)((I + \epsilon B)^{-1} - D)\| \\
&\leq \|I - (I - \epsilon B)D\| + \|I - \epsilon B||\|(I + \epsilon B)^{-1} - D\|
\end{align*}
\]

Both quantities $\|I - (I - \epsilon B)D\|$ and $\|(I + \epsilon B)^{-1} - D\|$ are infinitely small and the proof is complete.

\[\square \]

Proposition 3.4. Let F be a pythagorean ordered field and let (V, b) be a bilinear space of dimension $n \geq 3$, isometric to $x_1^2 + \cdots + x_n^2$. If F carries a non-archimedean ordering then $\text{SO}(V)$ contains a proper non-central normal subgroup.

Proof. We claim that the group

\[N = \{\sigma \in \text{SO}(V) : \|x - \sigma(x)\| \text{ is infinitely small if } q(x) = 1\} \]
is a non-trivial normal subgroup of $SO(V)$ (the idea of considering this subgroup was borrowed from [5, p. 150]). To prove this claim we first show that N is a subgroup of $SO(V)$. Consider two elements $\sigma, \tau \in N$. We should prove that $\sigma\tau$ also belongs to N. We have $\|x - \sigma\tau(x)\| = \|(x - \tau(x)) + (\tau(x) - \sigma\tau(x))\| \leq \|x - \tau(x)\| + \|\tau(x) - \sigma\tau(x)\| = \|x - \tau(x)\| + \|x - \sigma(x)\|$, which is infinitely small. The fact that $\sigma^{-1} \in N$ when $\sigma \in N$ and the normality of N is straightforward. It remains to show that N is a nontrivial subgroup of $SO(V)$. Consider two orthogonal vectors $u, v \in V$ with $q(u) = q(v) = 1$. Let $\sigma = -\tau_u \in SO(V)$. We have $\|v - \sigma(v)\| = \|v + \tau_u(v)\| = 2\|v\| = 2$. Hence $\sigma \notin N$, thus $N \neq SO(V)$. By (3.3), there exists a rotation matrix A such that $\|I - A\|$ is infinitely small. It follows that for every x with $\|x\| = 1$ we have $\|x - Ax\| \leq \|I - A\|$ is infinitely small. Hence $A \neq \pm I$ is an element of N and $N \neq \{\pm I\}$.

Corollary 3.5. (Bröcker) Let (V, b) be a bilinear space of dimension $n \geq 3$ over a field F whose Witt index is zero. Then the rotation group $SO(V)$ is a projectively simple if and only if F is a pythagorean formally real field and q is similar to the quadratic form $x_1^2 + x_2^2 + \cdots + x_n^2$.

Proof. In [2], Bröcker proves that if F is a pythagorean formally real field which admits only of archimedean orderings, $n \geq 3$ and $n \neq 4$ and q is anisotropic then the kernel of the spinor norm $\theta : SO(V) \to F^\times/F^\times 2$ coincides with the commutator subgroup $\Omega(V)$ of the orthogonal group $O(V)$ (see [2, (1.7)]) and the group $\Omega(V)$ is projectively simple (see [2, Satz (1.10)]). Of course when q represents only one square class, the whole rotation group $SO(V)$ coincides with the kernel of the spinor norm. Hence the sufficiency of the conditions can be obtained from Bröcker’s theorem. The sufficiency follows from (3.1), (3.2) and (3.4).

Acknowledgments. The support from Sharif University of Technology is gratefully acknowledged.

References

[1] Artin, E. *Geometric algebra*. Interscience tracts in pure and applied mathematics. No. 3. New York: Interscience Publishers Inc.; London: Interscience Publishers Ltd. (1957).

[2] Bröcker, L. *Zur orthogonalen Geometrie über pythagoreischen Körperrn*. J. Reine Angew. Math. 268/269, 68-77 (1974).

[3] Dieudonné, J. *Sur les groupes classiques*. Publications de l’Institut de Mathématique de l’Université de Strasbourg, VI. Actualités Scientifiques et Industrielles, No. 1040. Hermann, Paris, 1973.

[4] Dieudonné, J. *La géométrie des groupes classiques*. Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 5. Berlin-Heidelberg-New York: Springer-Verlag (1971).

[5] Perrin, D. *Cours d’algèbre*, Paris: Ellipes (1996).

[6] Weyl, H. *The classical groups, their invariants and representations*. Reprint of the second edition (1946) of the 1939 original. Princeton University Press, Princeton, N.J. (1939).

M. G. MAHMOUDI, mmahmoudi@sharif.ir, DEPARTMENT OF MATHEMATICAL SCIENCES, SHARIF UNIVERSITY OF TECHNOLOGY, P. O. BOX 11155-9415, TEHRAN, IRAN.