Mass-ratio condition for non-binding of three two-component particles with contact interactions

O. I. Kartavtseva, A. V. Malykhbc

Joint Institute for Nuclear Research, Joliot-Curie, Dubna, Russia 141980

Received: 27 July 2022 / Accepted: 23 January 2023
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract The binding of two heavy fermions interacting with a light particle via a contact interaction is possible only for a sufficiently large heavy-light mass ratio. The two-variable inequality is derived to determine the specific mass-ratio bound providing the absence of three-body bound states for lower values of the mass ratio. By means of this inequality, the mass-ratio bound is found to be 5.26 for the total angular momentum and parity $L^P=1^-$. For other L^P sectors, the mass-ratio bounds providing the absence of three-body bound states is found in a similar way. For generality, the method is extended to determine also the mass-ratio bounds for a system consisting of two identical bosons and a distinct particle for different L^P ($L>0$) sectors.

1 Introduction

In recent years, few-body dynamics of multi-component ultra-cold quantum gases has attracted much attention. A particular form of short-range interaction between particles becomes insignificant in the low-energy limit, and the zero-range model provides a universal description. Particularly important is the two-component three-body system with zero-range interaction, which was investigated, e. g., in [1–10]. A single parameter of the zero-range model, e. g., a two-body scattering length a, can be chosen as a scale, thus there is only one essential parameter, the mass ratio of different particles. One should mention that the introduction of the zero-range model in the few-body problem could be ambiguous and needs special efforts, which were discussed, e. g., in [9–14].

A system of two identical particles (bosons or fermions) of mass m and a distinct particle of mass m_1 in the universal low-energy limit of zero-range two-body interaction was considered in [2, 5, 9, 15–17] in different sectors of the total angular momentum L and parity P. Three-body bound states exist for the mass ratio exceeding the critical values μ_B, which were determined in numerical calculations [2, 5, 9, 15], namely, $\mu_B \approx 8.17259$ for $L^P=1^-$, $\mu_B \approx 22.6369$ for $L^P=2^+$ and $\mu_B \approx 43.3951$ for $L^P=3^-$ etc.

Besides these numerical results, it is of interest to determine the lower bound of the mass ratio μ^*, below which the three-body bound states do not exist. So far, only one mass-ratio bound $\mu^* = 2.617$ was obtained for the fermionic system in the sector of $L^P=1^-$ by analyzing the momentum-space integral equation [10]. In this work, the mass-ratio bound was determined using hyper-radial equations [18] and exploiting the fact that in the two-dimensional (also one-dimensional) quantum problem a bound state exists for any attractive potential [19].

2 Formulation

Consider a particle 1 of mass m_1 interacting with two identical particles 2 and 3 of masses $m_2=m_3=m$. In the framework of the zero-range model, two identical fermions do not interact with each other and the same is assumed for generality if two identical particles are bosons. The zero-range interaction in pairs (1-2) and (1-3) is completely determined by a single parameter, the two-body scattering length a. In the center-of-mass frame, one defines the scaled Jacobi variables as $x = \sqrt{\frac{2mm_1}{m+m_1}}(r_2-r_1)$ and $y = \sqrt{\frac{2m(m+m_1)}{m_1+2m}}\left(r_3 - \frac{m_1r_1 + mr_2}{m_1+m}\right)$, where r_i is the position vector of the i-th particle. The units are chosen by means of the condition $\hbar = |a| = \frac{2mm_1}{m+m_1} = 1$, which gives the unit two-body binding energy $\varepsilon_2 = 1$ for finite $a > 0$. The three-body

a e-mail: oik@nusun.jinr.ru
b e-mail: maw@theor.jinr.ru (corresponding author)

Published online: 11 February 2023
Hamiltonian is the sum of the kinetic energy, which is the six-dimensional negative Laplace operator, and the potential energy expressed by boundary conditions imposed at zero distance between interacting particles,

$$\lim_{r \to 0} \frac{\partial \ln(r \Psi)}{\partial r} = -\text{sgn}(a)$$ \hspace{1cm} (1)

where r denotes either $|\mathbf{r}_1 - \mathbf{r}_2|$ or $|\mathbf{r}_1 - \mathbf{r}_3|$. The problem formally depends on a single parameter, the mass ratio m_1/m_2, alternatively, the kinematic angle ω defined by $\sin \omega = 1/(1+m_1/m_2)$ will be used for convenience.

The total angular momentum L, its projection M and parity P are conserved quantum numbers that label the solutions. As the zero-range interaction acts in the s-wave, it is sufficient to consider only the case $P = (-)^L$. In addition, it is convenient to introduce P_s, the permutation operator of identical particles 2 and 3, whose eigenvalues $P_s = \pm 1$ designate whether the identical particles are fermions or bosons.

In the following analyses, the method of hyper-radial equations proposed by Macek [18] will be used. Thus, one introduces a hyper-radius $\rho = \sqrt{x^2 + y^2}$ and hyper-angles $(\alpha, \hat{x}, \hat{y})$ by $x = \rho \cos \alpha$, $y = \rho \sin \alpha$, $\hat{x} = x/x$, and $\hat{y} = y/y$. In these variables the Hamiltonian is expressed as

$$H = -\frac{1}{\rho^2} \frac{\partial}{\partial \rho} \left(\rho^2 \frac{\partial}{\partial \rho} \right) + \Delta_\rho$$ \hspace{1cm} (2)

supplemented with boundary conditions that follow from (1). In Eq. (2), Δ_ρ denotes the Laplace operator on the hyper-sphere whose explicit form can be found, e. g., in [2, 9, 20]. One can define an auxiliary eigenproblem on the hyper-sphere (for fixed ρ),

$$\left(\Delta_\rho + \gamma^2(\rho) - 4 \right) \Phi(\alpha, \hat{x}, \hat{y}; \rho) = 0,$$

$$\lim_{\alpha \to \pi/2} \frac{\partial \log[(\alpha - \pi/2)\Phi(\alpha, \hat{x}, \hat{y}; \rho)]}{\partial \alpha} = \rho \cdot \text{sgn}(a),$$ \hspace{1cm} (3)

whose eigenvalues $\gamma^2(\rho)$ and eigenfunctions $\Phi(\alpha, \hat{x}, \hat{y}; \rho)$ inherit symmetry of the total wave function and will be chosen in the form [2, 9, 15]

$$\Phi(\alpha, \hat{x}, \hat{y}; \rho) = (P_s + P_\alpha) \frac{\psi_{\gamma}^L(\alpha)}{\sin 2\alpha} Y_{LM}(\hat{y}).$$ \hspace{1cm} (5)

Here $Y_{LM}(\hat{y})$ is the spherical function, the labels L, M, and P_s in the left-hand side are suppressed for brevity, and the function $\psi_{\gamma}^L(\alpha)$ satisfies the equations

$$\left[\frac{d^2}{d\alpha^2} - \frac{L(L+1)}{\sin^2 \alpha} + \gamma^2 \right] \psi_{\gamma}^L(\alpha) = 0,$$ \hspace{1cm} (6a)

$$\lim_{\alpha \to \pi/2} \left(\frac{d}{d\alpha} - \rho \cdot \text{sgn}(a) \right) \psi_{\gamma}^L(\alpha) = \frac{2(-)^L P_s}{\sin 2\omega} \frac{\psi_{\gamma}^L(\omega)}{\sin \omega},$$ \hspace{1cm} (6b)

$$\psi_{\gamma}^L(0) = 0.$$ \hspace{1cm} (6c)

The solution of Eq. (6a) under the boundary condition (6c) can be written via the Legendre function of the second kind $Q_{\gamma}^L(x)$ or as a finite sum

$$\psi_{\gamma}^L(\alpha) = (\sin \alpha)^{L+1} \left(\frac{1}{\sin \alpha} \frac{d}{d\alpha} \right)^L \frac{\sin \gamma \alpha}{\sin \alpha}.\hspace{1cm} (7)$$

Substituting (7) into (6b), one arrives at the transcendental equation [9, 20]

$$\rho \cdot \text{sgn}(a) \Gamma\left(\frac{L + \gamma + 1}{2} \right) \Gamma\left(\frac{L - \gamma + 1}{2} \right) = 2 \Gamma\left(\frac{L + \gamma + 1}{2} \right) \Gamma\left(\frac{L - \gamma + 1}{2} \right) \Gamma\left(\frac{L - \gamma}{2} + 1 \right) \Gamma\left(\frac{L + \gamma}{2} + 1 \right) + P_s \frac{(-)^{L-\gamma} L \pi (\sin \omega) L}{\sin \gamma \pi \cos \omega} \left(\frac{d}{\sin \omega \ d\omega} \right)^L \frac{\sin \gamma \omega}{\sin \omega},$$

which determines an infinite set of eigenvalues $\gamma_n^2(\rho)$ and the corresponding eigenfunctions $\Phi_n(\alpha, \hat{x}, \hat{y}; \rho)$. Using the Hamiltonian (2) and the expansion of the total wave function in terms of eigenfunctions on the hyper-sphere

$$\Psi(x, y) = \rho^{-5/2} \sum_{n=1}^{\infty} f_n(\rho) \Phi_n(\alpha, \hat{x}, \hat{y}; \rho)$$ \hspace{1cm} (8)

one can obtain a system of hyper-radial equations [2, 9, 20] for the channel functions $f_n(\rho)$.

\begin{center}
\textcircled{ Springer}
\end{center}
As it will be proven in the next section, the lower energy bound and, consequently, the mass-ratio bound \(\mu^* \) can be found by using the one-channel approximation of an infinite system of hyper-radial equations, in which the diagonal coupling term \(\int \left(\frac{\partial \Phi}{\partial \rho} \right)^2 \sin^2 \alpha \, d\alpha \, d\mathbf{k} \, d\mathbf{j} \) is omitted,\(^{(10)}\)

\[
\frac{d^2}{d\rho^2} - \frac{\gamma^2(\rho) - 1/4}{\rho^2} + E \left(f(\rho) = 0. \right)
\]

Here \(\gamma^2(\rho) \) and \(\Phi(\alpha, \mathbf{k}, \mathbf{j}; \rho) \) denote the lowest eigenvalue and the corresponding eigen-function. The reduction to Eq. (10) is known also as the "extreme" adiabatic approximation \([21, 22]\). One should notice that if the diagonal coupling term is not omitted, one can obtain the usual adiabatic approximation whose solution provides the upper energy bound.

It is known \([9, 10, 12, 14, 20]\) that the above formulation of the tree-body problem does not define the self-adjoint Hamiltonian for a sufficiently large mass ratio. In particular, it was shown \([9, 20]\) that the singular term \(\frac{\gamma^2(\rho) - 1/4}{\rho^2} \) for \(\rho \to 0 \) in the lowest channel should be considered for analysis of self-adjointness. As a matter of fact, the three-body Hamiltonian is self-adjoint if \(\gamma^2(0) \geq 1 \) and an additional parameter is needed for an unambiguous formulation of the problem if \(\gamma^2(0) < 1 \). In terms of the mass ratio, the above formulation is valid for \(m/m_1 \leq \mu_r \), where the critical value \(\mu_r \) is determined by the condition \(\gamma^2(0) = 0 \). Using Eq. (8), one can find the equation for \(\mu_r \),

\[
2^{L-1}(L+1)!^2 \left(\frac{L+1}{2} \right) \cos \omega_r + (\sin \omega_r)^L \left(\frac{1}{\sin \omega_r} \frac{d}{d\omega_r} \right)^L (\omega_r \cot \omega_r) = 0,
\]

\(^{(11)}\) where \(\sin \omega_r = \mu_r/(\mu_r + 1) \). Numerical values of \(\mu_r \) are approximately 8.6185769247 for \(L_P = 1^-, 32.947611782 \) for \(L_P = 2^+ \), and 70.070774958 for \(L_P = 3^-, 119.73121698 \) for \(L_P = 4^-, 181.86643779 \) for \(L_P = 5^- \) etc.

In the following, it is important that the mass-ratio bound is less than this critical value \(\mu_r^* < \mu_r \); therefore, the problem is completely defined by the requirement of self-integrability or, equivalently, by the boundary condition \(f(\rho) \to 0 \) as \(\rho \to 0 \). This is supported by the fact that the numerically calculated critical values \(\mu_B \), where the first bound state appears, are smaller than \(\mu_r \).

Simpler example when the singular inverse square potential determines the self-adjointness of the Hamiltonian is the relativistic Coulomb problem \([23, 24]\). Note also a similar problem that arises if the Minlos-Faddeev method is used to regularize the three-body system with zero-range interaction \([25–30]\).

As it follows from (8), \(\gamma^2(\rho) \geq 1 \) for any \(m/m_1 < \mu_r \), if either \(a > 0 \) and \(P_s = (-)^{L+1} \) or \(a < 0 \), which entails the absence of bound states. Besides, it is trivial that an infinite number of bound states exist for any \(m/m_1 \) in the case \(L_P = 0^+ \) for two identical bosons and a distinct particle \((P_s = 1) \). Thus, it remains to determine the value \(\mu^* \) only for the positive scattering length \((a > 0) \) and \(P_s = (-)^L \), i.e., for odd \(L \) and \(P \) (even \(L > 0 \) and \(P \)) if the identical particles are fermions (bosons).

3 Non-binding condition

For the determination of the specific value \(\mu^* \), it is sufficient to construct the lower bound \(E_{LB} \) of the exact three-body energy \(E \) and prove that \(E_{LB} \) exceeds the two-body threshold for \(m/m_1 \leq \mu^* \). This will be done in the following three steps.

1. The lower bound \(E_{LB} \) for the ground-state energy \(E \) will be obtained by solving Eq. (10). This follows from the general derivation of the energy lower bound for any Hamiltonian separated into two parts

\[
h = T_1 + V_1(\xi) + T_2 + V_2(\xi, \eta),
\]

\(^{(12)}\) where \(\xi \) and \(\eta \) denote the sets of “slow” and “fast” variables. The kinetic energies \(T_1 \) and \(T_2 \) depend on \(\xi \) and \(\eta \), respectively. The statement is that the lowest eigenvalue \(E_{LB} \) of \(T_1 + V_1(\xi) + E(\xi) \) is the lower bound for all eigenvalues of the initial Hamiltonian \(h = (E_{LB} \leq E) \), where \(E(\xi) \) is the lowest eigenvalue of \(T_2 + V_2(\xi, \eta) \).

To sketch a simple proof, one should notice the inequality,

\[
T_2 + V_2(\xi, \eta) \geq E(\xi),
\]

\(^{(13)}\) i.e., the self-adjoint operator bounded from below exceeds its lowest eigenvalue (lowest threshold), where \(A \geq B \) means \(\langle \phi | A | \phi \rangle \geq \langle \phi | B | \phi \rangle \) for any \(\phi \). Using the evident inequality \(A + B \geq A + C \) for \(B \geq C \), one obtains the desired result \(h \geq T_1 + V_1 + E(\xi) \) and \(E \geq E_{LB} \).

This lower bound for the ground-state energy has been discussed many times in the literature, e.g., this line of proof was carried out for the adiabatic description of molecules \([31, 32, 34, 35]\), the \(N \)-body problem within the hyper-spherical framework \([22]\), and the hydrogen atom in a magnetic field \([33]\). These arguments will be applied to the problem under consideration taking the hyper-radius \(\rho \) as a “slow” variable and the hyper-angles \((\alpha, \mathbf{x}, \mathbf{j}) \) as “fast” variables. Furthermore, the part of the kinetic-energy operator depending on the hyper-radius
corresponds to T_1, the potential $V_1 = 0$, $T_2 + V_2$ is determined by Eqs. (3) and (4), and γ^2 / ρ^2 corresponds to $\varepsilon(\rho)$. As a result, the eigenvalue equation for $T_1 + V_1 + \varepsilon(\rho)$ reduces to Eq. (10), whose solution provides the energy lower bound.

(2) Let us introduce the reference Hamiltonian $h_\gamma = -d^2 / dx^2 - 1 / 4x^2$ supplemented with the restriction on the functions $\varphi(x)$ to satisfy the condition $\varphi \to x^{1/2}[1 + O(x)]$. It is well known that h_γ is non-negative, i.e., $\langle \varphi | h_\gamma | \varphi \rangle \geq 0$ for any φ, as h_γ is the radial part of the two-dimensional kinetic-energy operator. Thus, the spectra of h_γ as well as of any operator \hat{h} are pure continuous and there are no bound states, if $h \geq h_\gamma$. Nevertheless, a bound state of $h_\gamma + V(x)$ arises for an arbitrarily small $V(x)$ provided $\int V(x) x dx \leq 0$, and it is known that the bound-state energy is exponentially small for $V(x) \to 0$ [19].

(3) Determining whether the operator in Eq. (10) exceeds the reference Hamiltonian h_γ, one comes to the condition providing the absence of bound states. As $\gamma^2(\rho)/\rho^2$ tends to the two-body threshold $\varepsilon_2 = -1$ for $\rho \to \infty$, the bound states do not exist if $\gamma^2(\rho)/\rho^2 \geq -1$ for any ρ. The final result is

$$\rho(i \kappa) - \kappa \geq 0,$$

where $\gamma = i \kappa$ and the function $\rho(\gamma)$ is defined in transcendental Eq. (8). For $P = P_s = (-1)^L$ and $a > 0$ the condition (14) takes the form $B_L(\kappa, \omega) \geq 0$, where

$$B_L(\kappa, \omega) = 2\Gamma\left(1 + \frac{i \kappa}{2}\right) - \frac{1}{2\sin \omega \frac{d}{d \omega}} \left[\frac{1}{2} \sinh \kappa \omega \sin \frac{\kappa \pi}{2} \right] \left(\frac{L - i \kappa + 1}{2} \right) \left(\frac{L + i \kappa + 1}{2} \right),$$

Finally, to determine the mass-ratio bound μ^*, one needs to find ω^*, for which the condition $B_L(\kappa, \omega) \geq 0$ is valid for any $0 < \omega < \omega^* < \pi / 2$ and $\kappa > 0$.

3.1 Fermionic system in the sector $L^P = 1$−

In the system of identical fermions and a distinct particle, the three-body bound state of $L^P = 1$− arises for the smallest mass ratio. Moreover, $L^P = 1$− state is most important for describing the low-energy processes for fermions. The non-binding condition on the mass-ratio, i.e., the inequality $B_1(\kappa, \omega) \geq 0$, takes the form

$$F(\kappa) - G(\kappa, \omega) \geq 0,$$

where $F(\kappa) = (\kappa^2 + 1) \sinh \frac{\kappa \pi}{2} - \kappa^2 \cosh \frac{\kappa \pi}{2}$ and $G(\kappa, \omega) = 2 \frac{\kappa \omega}{\sin 2 \omega} - \frac{\sinh \kappa \omega}{\sin \omega} \sin \frac{\kappa \pi}{2}$.

Firstly, one should prove that $B_1(\kappa, \omega)$ is a monotonically decreasing function of ω ($0 < \omega < \pi / 2$) for any $\kappa > 0$. The condition $\frac{\partial B_1(\kappa, \omega)}{\partial \omega} \leq 0$ is equivalent to $\frac{\partial G(\kappa, \omega)}{\partial \omega} \geq 0$, which essentially gives

$$\left(\kappa^2 \tan \omega + 2 \cot \omega\right) \tanh \kappa \omega + \kappa \left(\tan^2 \omega - 2\right) \geq 0.$$

Inequality (17) is evidently fulfilled for $\tan^2 \omega \geq 2$. To proceed further, after simple transformations the inequality is written as

$$\left[4 + \kappa^2(\kappa^2 + 4)z^2 - \kappa^2z^2\right] \sinh^2 \kappa \omega - \kappa^2z(2z - 2)^2 \geq 0,$$

where $z = \tan^2 \omega$ is used for brevity. Using the inequality $\sinh \kappa \omega \geq \kappa^2 \sin^2 \omega \equiv \kappa^2z/(1 + z)$ in Eq. (18), one comes to a simple result

$$\kappa^2 + 3 - z \geq 0,$$

which is fulfilled for any κ if $z \equiv \tan^2 \omega \leq 3$. This completes the proof that $\frac{\partial B_1}{\partial \omega} \leq 0$; therefore, the implicit condition $B_1(\kappa, \omega) = 0$ determines the single-valued function $\omega_0(\kappa)$. At last, if one finds

$$\omega^* = \min \omega_0(\kappa), \quad 0 \leq \kappa < \infty$$

and the corresponding mass ratio μ^*, it provides the absence of bound states for any $\omega \leq \omega^*$ (consequently, for $m/m_1 \leq \mu^*$).

The function $\omega_0(\kappa)$, as shown in Fig. 1, has one minimum at κ^* and its value $\omega^* = \omega_0(\kappa^*)$ determines the mass ratio μ^*.

Numerical values κ^*, ω^*, and μ^* are presented in Table 1. The condition $m/m_1 \leq \mu^*$ in the sector $L^P = 1$− means a complete unbinding of the three-body system. As it was claimed in Sect. 2, the condition $\mu^* < \mu_r$ is valid, which confirms the self-consistency of the procedure.
for three-body systems containing either two identical fermions or two non-interacting bosons. The non-binding conditions were

Analogously to the preceding Sect. 3.1, one can suppose that identical fermions (bosons) and a distinct particle. Using the described approach, the values of the positive two-body scattering length a provides the absence of bound states for any mass ratio below as an inequality for the function of two variables. It is proven that two fermions and a distinct particle are not bound for any mass ratio below $<\omega<\pi/2$ for an angular momentum from 0. Thus, the condition $B_L(\kappa, \omega) = 0$ again determines the single-valued function $\omega_0(\kappa)$ and finding its global minimum ω^* yields the absence of bound states for any $\omega < \omega^*$, respectively, for $m/m_1 < \mu^*$.

The expressions for $B_L(\kappa, \omega)$ become lengthy and difficult to handle for higher L. In particular, for the three-body system containing two identical bosons in the sector $L^P = 2^+$,

$$B_L(\kappa, \omega) = \frac{(1 + \kappa^2)\pi}{2 \sinh \kappa \pi} \left[\frac{\kappa(\kappa^2 + 4)}{\kappa^2 + 1} \cosh \frac{\kappa \pi}{2} - \kappa \sinh \frac{\kappa \pi}{2} \right. + \left. 3 \frac{\kappa \cosh \kappa \omega - \sinh \kappa \omega \cot \omega}{(\kappa^2 + 1) \sin^2 \omega} \right] \frac{\sinh \kappa \omega}{\sin 2\omega}.$$ \hspace{1cm} (21)

Numerical calculations reveal that for all $0 < L \leq 5$ the functions $\omega_0(\kappa)$ exhibit one minimum, as shown in Fig. 1. The positions of these minima (κ^*, ω^*) are calculated and presented in Table 1 jointly with the corresponding values μ^*. All the values μ^*, ω^*, and κ^* increase with L, thus reflecting the general trend for the L-dependence of the critical mass-ratio value μ_B at which the first bound state appears. For comparison, the result of numerical calculations [2, 20] of μ_B is presented in the last column of Table 1.

L^P	κ^*	ω^*	μ^*	μ_B
1^-	2.17701	0.997755	5.26002	8.17259
2^+	3.30822	1.243618	17.85119	22.6369
3^-	4.51245	1.340135	36.75782	43.3951
4^+	5.74050	1.392347	61.97274	70.457
5^-	6.97890	1.425184	93.49356	103.823

3.2 Angular momenta $L \geq 2$

As the case $L^P = 1^-$ provides a complete unbinding of the three-body system, it is also of interest to derive the corresponding conditions in any L^P sectors. As discussed previously, one should consider odd (even) L and P correspond to the system containing two identical fermions (bosons) and a distinct particle. Using the described approach, the values μ^* will be determined below for $L \leq 5$.

He Analogously to the preceding Sect. 3.1, one can suppose that $B_L(\kappa, \omega)$ in Eq. (15) monotonically decrease with increasing $0 < \omega < \pi/2$ for any $\kappa > 0$. Thus, the condition $B_L(\kappa, \omega) = 0$ again determines the single-valued function $\omega_0(\kappa)$ and finding its global minimum ω^* provides the absence of bound states for any $\omega < \omega^*$, respectively, for $m/m_1 < \mu^*$.

The expressions for $B_L(\kappa, \omega)$ become lengthy and difficult to handle for higher L. In particular, for the three-body system containing two identical bosons in the sector $L^P = 2^+$,

$$B_L(\kappa, \omega)\left[\frac{(1 + \kappa^2)\pi}{2 \sinh \kappa \pi} \left[\frac{\kappa(\kappa^2 + 4)}{\kappa^2 + 1} \cosh \frac{\kappa \pi}{2} - \kappa \sinh \frac{\kappa \pi}{2} \right. + \left. 3 \frac{\kappa \cosh \kappa \omega - \sinh \kappa \omega \cot \omega}{(\kappa^2 + 1) \sin^2 \omega} \right] \frac{\sinh \kappa \omega}{\sin 2\omega} \right].$$ \hspace{1cm} (21)

Numerical calculations reveal that for all $0 < L \leq 5$ the functions $\omega_0(\kappa)$ exhibit one minimum, as shown in Fig. 1. The positions of these minima (κ^*, ω^*) are calculated and presented in Table 1 jointly with the corresponding values μ^*. All the values μ^*, ω^*, and κ^* increase with L, thus reflecting the general trend for the L-dependence of the critical mass-ratio value μ_B at which the first bound state appears. For comparison, the result of numerical calculations [2, 20] of μ_B is presented in the last column of Table 1.

The relative difference $\frac{\mu^* - \mu_B}{\mu_B}$ decreases from 0.36 to 0.1 for increasing angular momentum from $L = 1$ to $L = 5$. Again, it is possible to confirm the statement in Sect. 2 that $\mu^* < \mu_r$ for the considered total angular momenta.

4 Conclusion

Using the one-channel approximation for a system of hyper-radial equations, the non-binding condition for three particles is written as an inequality for the function of two variables. It is proven that two fermions and a distinct particle are not bound for any mass ratio below $\mu^* = 5.26$. This bound is sufficiently close to the result of numerical calculations [2, 9] for the mass ratio $\mu_B \approx 8.17259$, at which the first bound state arises. This non-binding condition on the mass ratio was obtained by considering the most important case of describing the low-energy processes for fermions, namely, states of the total angular momentum and parity $L^P = 1^-$ for the positive two-body scattering length $a > 0$. The alternative lower bound $\mu^* \approx 2.617$ was obtained by the rigorous analysis of the momentum-space integral equations [10] (Theorem 2.5) and is compatible with the present results of μ^*.

Furthermore, the same procedure was used to find non-binding conditions also for states of higher total angular momenta $L \leq 5$ for three-body systems containing either two identical fermions or two non-interacting bosons. The non-binding conditions were
determined for odd (even) \(L \) and \(P \) for the system containing fermions (bosons). As expected, the one-channel approximation works better for higher \(L \), which leads to better agreement between \(\mu^* \) and the numerically calculated \(\mu_R \) at which the first bound state arises in a given \(L^P \) sector. The described approach seems to be useful for derivation the lower bounds in the other few-body problems.

Data Availability Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

1. D.S. Petrov, Three-body problem in Fermi gases with short-range interparticle interaction. Phys. Rev. A **67**, 010703(R) (2003). https://doi.org/10.1103/PhysRevA.67.010703
2. O.I. Kartavtsev, A.V. Malykh, Low-energy three-body dynamics in binary quantum gases. J. Phys. B **40**, 1429 (2007). https://doi.org/10.1088/0953-4075/40/7/011
3. J. Levinsen, T.G. Tiecke, J.T.M. Walraven, D.S. Petrov, Atom-dimer scattering and long-lived trimers in fermionic mixtures. Phys. Rev. Lett. **103**, 153202 (2009). https://doi.org/10.1103/PhysRevLett.103.153202
4. K. Helfrich, H.W. Hammer, D.S. Petrov, Three-body problem in heteronuclear mixtures with resonant interspecies interaction. Phys. Rev. A **81**, 042715 (2010). https://doi.org/10.1103/PhysRevA.81.042715
5. A. Michelangeli, C. Schmidbauer, Binding properties of the \((2+1) \)-fermion system with zero-range interspecies interaction. Phys. Rev. A **87**, 053601 (2013). https://doi.org/10.1103/PhysRevA.87.053601
6. A. Safavi-Naini, S.T. Rittenhouse, D. Blume, H.R. Sadeghpour, Nonuniversal bound states of two identical heavy fermions and one light particle. Phys. Rev. A **87**, 032713 (2013). https://doi.org/10.1103/PhysRevA.87.032713
7. M. Jag, M. Zaccanti, M. Cetina, R.S. Louis, F. Schreck, R. Grimm, D.S. Petrov, J. Levinsen, Observation of a strong atom-dimer attraction in a mass-imbalanced Fermi-Fermi mixture. Phys. Rev. Lett. **112**, 075302 (2014). https://doi.org/10.1103/PhysRevLett.112.075302
8. O.I. Kartavtsev, A.V. Malykh, Universal description of three two-component fermions. EPL **115**, 36005 (2016). https://doi.org/10.1209/0295-5075/115/36005
9. S. Becker, A. Michelangeli, A. Ottolini, Spectral analysis of the \(2+1 \) fermionic trimer with contact interactions. Math. Phys. Anal. Geom. **21**, 35 (2018). https://doi.org/10.1007/s11040-018-9294-0
10. R.A. Minlos, On pointlike interaction between three particles: Two fermions and another particle. ISRN Math. Phys. **2012**, 230245 (2012). https://doi.org/10.5402/2012/230245
11. R.A. Minlos, A system of three quantum particles with point-like interactions. Usp. Mat. Nauk **69**, 3, 145 (2014). https://doi.org/10.1070/rm2014v069n03abeh004990
12. R.A. Minlos, On point-like interaction of three particles: two fermions and another particle II. Mosc Math. J. **14**, 617 (2014). https://doi.org/10.17323/1609-4514-2014-4-3-617-637
13. M. Correggi, G. Dell’antonio, D. Finco, A. Michelangeli, A. Teta, A class of Hamiltonians for a three-particle fermionic system at unitarity. Math. Phys. Anal. Geom. **18**, 32 (2015). https://doi.org/10.1007/s11040-015-9195-4
14. O.I. Kartavtsev, A.V. Malykh, Universal description of the rotational-vibrational spectrum of three particles with zero-range interactions. JETP Lett. **85**, 207 (2007). https://doi.org/10.1134/S002136400722002X
15. K. Helfrich, H.W. Hammer, On the Efimov effect in higher partial waves. J. Phys. B **44**, 215301 (2011). https://doi.org/10.1088/0953-4075/44/21/215301
16. A. Michelangeli, C. Schmidbauer, Binding properties of the \((2+1)\)-fermion system with zero-range interspecies interactions. Phys. Rev. A **87**, 053601 (2013). https://doi.org/10.1103/PhysRevA.87.053601
17. J.H. Macek, Properties of autoionizing states of He. J. Phys. B **1**, 831 (1968). https://doi.org/10.1088/0953-4075/1/5/005
18. B. Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions. Ann. Phys. **97**(2), 279–288 (1976). https://doi.org/10.1016/0003-4916(76)90038-5
19. O.I. Kartavtsev, A.V. Malykh, Universal description of three two-component fermions. EPL **115**, 36005 (2016). https://doi.org/10.1209/0295-5075/115/36005
20. J.L. Ballot, M. Fabre de la Ripelle, J.S. Levinger, Coupled adiabatic approximation in the three-body problem. Phys. Rev. C **26**, 115 (2011). https://doi.org/10.1103/PhysRevC.26.115
21. H.T. Coelho, J.E. Hornos, Proof of basic inequalities in the hyperspherical formalism for the \(n \)-body problem. Phys. Rev. A **43**, 6379 (1991). https://doi.org/10.1103/PhysRevA.43.6379
22. H. Hogreve, The overcritical Dirac-Coulomb operator. J. Phys. A **46**, 025301 (2013). https://doi.org/10.1088/1751-8113/46/2/025301
23. M. Gammone, A. Michelangeli, Discrete spectra for critical Dirac-Coulomb Hamiltonians. J. Math. Phys. **59**, 062108 (2018). https://doi.org/10.1063/1.5011305
24. R. Minlos, L. Faddeev, On the point interaction for a three-particle system in quantum mechanics. Dokl. Akad. Nauk SSSR **141**, 1335 (1961).
25. S. Albeverio, R. Hoegh-Krohn, T.T. Wu, A class of exactly solvable three-body quantum mechanical problems and the universal low-energy behavior. Phys. Lett. A **83**, 105 (1981). https://doi.org/10.1016/0375-9601(81)90507-7
26. A. Michelangeli, Models of zero-range interaction for the bosonic trimer at unitarity. Rev. Math. Phys. **33**, 2150010 (2021). https://doi.org/10.1142/S0129055X21500100
27. G. Basti, C. Cacciapuoti, D. Finco, A. Teta, Three-body Hamiltonian with regularized zero-range interactions in dimension three, Ann. Henri Poincaré (2022). [arXiv:math-ph/2107.07188]. https://doi.org/10.1007/s00023-022-01214-9
28. D. Ferretti, A. Teta, Regularized Zero-Range Hamiltonian for a Bose Gas with an Impurity, math-ph/2202.12765. https://doi.org/10.48550/arXiv.2202.12765
29. O.I. Kartavtsev, A.V. Malykh, Minlos-Faddeev regularization of zero-range interactions in the three-body problem. JETP Lett. **116**(3), 179–184 (2022). https://doi.org/10.3881/jps2163402260118X
30. V. Braitsev, The ground state energy of a molecule in adiabatic approximation, Dokl. Akad. Nauk SSSR **160**, 570 (1965). http://mi.mathnet.ru/eng/dan/v160i3/p570
32. S.T. Epstein, Ground-state energy of a molecule in the adiabatic approximation. J. Chem. Phys. 44(2), 836–837 (1966). https://doi.org/10.1063/1.1726771
33. A.F. Starace, G.L. Webster, Atomic hydrogen in a uniform magnetic field: Low-lying energy levels for fields below 10^9 g. Phys. Rev. A 19, 1629–1640 (1979). https://doi.org/10.1103/PhysRevA.19.1629
34. Yu.N. Ovchinnikov, I.M. Sigal, Number of bound states of three-body systems and Efimov's effect. Ann. Phys. 123, 274–295 (1979). https://doi.org/10.1016/0003-4916(79)90339-7
35. Antonio C. Fonseca, Edward F. Redish, P.E. Shanley, Efimov effect in an analytically solvable model. Nucl. Phys. A 320, 273–288 (1979). https://doi.org/10.1016/0375-9474(79)90189-1

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.