LEVI-CIVITA CONNECTION FOR $SU_q(2)$

SUGATO MUKHOPADHYAY

Indian Statistical Institute
203 B.T. Road, Kolkata, India

Abstract. We prove that the $4D_\pm$ calculi on the quantum group $SU_q(2)$ satisfy a metric-independent sufficient condition for the existence of a unique bicovariant Levi-Civita connection corresponding to every bi-invariant pseudo-Riemannian metric.

1. Introduction

The quantum group $SU_q(2)$ introduced in [7] and the notion of bicovariant differential calculi on Hopf algebras was introduced in [8] by Woronowicz. The question of bicovariant Levi-Civita connections on bicovariant differential calculi of compact quantum groups have been investigated by Heckenberger and Schmüdgen in [5] for the quantum groups $SL_q(N)$, $O_q(N)$ and $Sp_q(N)$. On the other hand, Beggs, Majid and their collaborators have studied Levi-Civita connections on quantum groups and homogeneous spaces in various articles, and a comprehensive account can be found in [1].

More recently, in [3], bicovariant connections on arbitrary bicovariant differential calculi of compact quantum groups and the notion of their metric compatibility with respect to arbitrary bi-invariant pseudo-Riemannian metrics was studied. In that article, the construction of a canonical bicovariant torsionless connection on a calculus was presented (Theorem 5.3 of [3]), provided that Woronowicz’s braiding map σ for the calculus satisfies a diagonalisability condition. Also, a metric-independent sufficient condition for the existence of a unique bicovariant Levi-Civita connection (in the sense of Definition 6.3 of [3]) was provided in Theorem 7.9 of [3].

In this article, we will investigate the theory of [3] in the context of the $4D_\pm$ calculi of the compact quantum group $SU_q(2)$ which were explicitly described in [7] and then [6]. In Section 2, we recall the notion of covariant Levi-Civita connections on bicovariant differential calculi as formulated in [3]. In Section 3, the $4D_\pm$ calculi on $SU_q(2)$ are recalled and we show that Woronowicz’s braiding map for the $4D_\pm$ calculi satisfy the diagonalisability condition mentioned above. In Section 4, we construct a bicovariant torsionless connection. In Section 5, we will show that the sufficiency condition of Theorem 7.9 of [3] is satisfied by both calculi, except for at most finitely many values of q, and hence we can conclude the existence of a unique bicovariant Levi-Civita connection, corresponding to a bi-invariant pseudo-Riemannian metric.

2. Levi-Civita connections on bicovariant differential calculi

In this section, we recall the notion of Levi-Civita connections on bicovariant differential calculi as formulated in [3].

We say that $(\mathcal{E}, \Delta_{\mathcal{E}}, \varepsilon\Delta)$ is a bicovariant bimodule over a Hopf algebra A if \mathcal{E} is a bimodule over A, $(\mathcal{E}, \Delta_{\mathcal{E}})$ is a left A-comodule, $(\mathcal{E}, \varepsilon\Delta)$ is a right A-comodule, subject to the following compatibility conditions:

$$\Delta_{\mathcal{E}}(ap) = \Delta(a)\Delta_{\mathcal{E}}(p), \quad \Delta_{\mathcal{E}}(\rho a) = \Delta_{\mathcal{E}}(\rho)\Delta(a)$$

$$\varepsilon\Delta(ap) = \Delta(a)\varepsilon\Delta(p), \quad \varepsilon\Delta(\rho a) = \varepsilon\Delta(\rho)\Delta(a),$$

where ρ is an arbitrary element of \mathcal{E} and a is an arbitrary element of A. If $(\mathcal{E}, \Delta_{\mathcal{E}}, \varepsilon\Delta)$ is a bicovariant bimodule over A, we say that an element e in \mathcal{E} is left (respectively, right) invariant if $\Delta_{\mathcal{E}}(e) = 1 \otimes e$ (respectively, $\varepsilon\Delta(e) = e \otimes 1$). In this article, we will denote the vector space of elements of \mathcal{E} invariant under the left coaction of A by $a\mathcal{E}$, and that of elements invariant under
the right coaction of \(\mathcal{A} \) by \(\mathcal{E}_0 \). If \(\mathcal{E} \) and \(\mathcal{F} \) are two bicovariant bimodules over \(\mathcal{A} \), a \(\mathbb{C} \)-linear map \(T : \mathcal{E} \rightarrow \mathcal{F} \) is said to be left covariant if \(\Delta x \circ T = (\text{id} \otimes \mathbb{C} T) \circ \Delta x \). \(T \) is said to be right covariant if \(x \Delta \circ T = (T \otimes \mathbb{C} \text{id}) \circ x \Delta \). \(T \) is called bicovariant if it is both left-covariant and right-covariant.

A (first order) differential calculus \((\mathcal{E}, d)\) over a Hopf algebra \(\mathcal{A} \) is called a bicovariant differential calculus if the following conditions are satisfied:

(i) For any \(a_k, b_k \) in \(\mathcal{A}, k = 1, \ldots, K \),
\[
(\sum_k a_k db_k = 0) \text{ implies that } (\sum_k \Delta(a_k)(\text{id} \otimes \mathbb{C} d)\Delta(b_k) = 0),
\]

(ii) For any \(a_k, b_k \) in \(\mathcal{A}, k = 1, \ldots, K \),
\[
(\sum_k a_k db_k = 0) \text{ implies that } (\sum_k \Delta(a_k)(d \otimes \text{id})\Delta(b_k) = 0).
\]

Woronowicz ([8]) proved that a bicovariant differential calculus is endowed with canonical left and right-comodule coactions of \(\mathcal{A} \), making it into a bicovariant bimodule \((\mathcal{E}, \Delta_{\mathcal{E}}, \varepsilon_{\mathcal{E}})\). Moreover, the map \(d : \mathcal{A} \rightarrow \mathcal{E} \) is a bicovariant map.

Next, we state the construction of the associated space of two-forms, \(\Omega^2(\mathcal{A}) \) for a bicovariant differential calculus of an arbitrary unital Hopf algebra \(\mathcal{A} \) as in [8]. To do so, we need to recall the braiding map \(\sigma \) for bicovariant bimodules.

Proposition 2.1. (Proposition 3.1 of [8]) Given a bicovariant bimodule \(\mathcal{E} \) on a Hopf algebra \(\mathcal{A} \), there exists a unique bimodule homomorphism
\[
\sigma : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \rightarrow \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}
\]
such that \(\sigma(\omega \otimes \mathcal{A} \eta) = \eta \otimes \mathcal{A} \omega \) \((1)\)

for any left-invariant element \(\omega \) and right-invariant element \(\eta \) in \(\mathcal{E} \), under the coactions of \(\mathcal{A} \). \(\sigma \) is an invertible bicovariant \(\mathcal{A} \)-bimodule map from \(\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \) to itself. Moreover, \(\sigma \) satisfies the following braid equation on \(\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \):
\[
(\text{id} \otimes \mathcal{A} \sigma)(\sigma \otimes \mathcal{A} \text{id})(\text{id} \otimes \mathcal{A} \sigma) = (\sigma \otimes \mathcal{A} \text{id})(\text{id} \otimes \mathcal{A} \sigma)(\sigma \otimes \mathcal{A} \text{id}).
\]

The symbol \(\wedge \) denotes the quotient map, which is a bicovariant bimodule map,
\[
\wedge : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \rightarrow \Omega^2(\mathcal{A}).
\]
The map \(d : \mathcal{A} \rightarrow \mathcal{E} \) extends to a unique exterior derivative map (to be denoted again by \(d \)),
\[
d : \mathcal{E} \rightarrow \Omega^2(\mathcal{A}),
\]
such that, for all \(a \) in \(\mathcal{A} \) and \(\rho \) in \(\mathcal{E} \),

(i) \(d(a \rho) = da \wedge \rho + ad(\rho) \),

(ii) \(d(\rho a) = d(\rho) a - \rho \wedge da \),

(iii) \(d \) is bicovariant.

Let us, from now on, denote the subspace of left-invariant elements of an arbitrary bicovariant bimodule \(\mathcal{E} \) by the symbol \(\mathcal{E}_0 \). By Proposition 2.5 of [2], the vector space \(\mathcal{E}_0 \otimes \mathcal{E}_0 \mathcal{E} \) can be identified with the space \(\mathcal{E}_0(\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}) \) of left-invariant elements of \(\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \). The isomorphism \(\mathcal{E}_0 \otimes \mathcal{E}_0 \mathcal{E} \rightarrow \mathcal{E}_0(\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}) \) is given by
\[
\omega_i \otimes \mathbb{C} \omega_j \mapsto \omega_i \otimes_{\mathcal{A}} \omega_j \quad (2)
\]
where \(\{\omega_i\}_i \) is a vector space basis of \(\mathcal{E}_0 \).

Moreover, by the bicovariance of the map \(\sigma : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \rightarrow \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \), we get the restriction (see Equation 18 of [3]):
\[
\sigma_{\mathcal{E}} := \sigma|_{\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}} : \mathcal{E}_0 \otimes \mathbb{C} \mathcal{E} \rightarrow \mathcal{E}_0 \otimes \mathbb{C} \mathcal{E}.
\]

From now on, we are going to work under the assumption that \(\sigma_{\mathcal{E}} \) is a diagonalisable map between finite dimensional vector spaces. In [3], this assumption was crucially used to set up a framework for the existence of a unique bicovariant Levi-Civita connection on a bicovariant differential calculus satisfying the assumption.
Let us introduce some notations and definitions so that we can recall the framework mentioned above.

Definition 2.2. Suppose the map \(\sigma \) is diagonalisable. The eigenspace decomposition of \(\mathcal{E} \otimes \mathbb{C} \mathcal{E} \) will be denoted by \(\mathcal{E} \otimes \mathbb{C} \mathcal{E} = \bigoplus_{\lambda \in \Lambda} V_{\lambda} \), where \(\Lambda \) is the set of distinct eigenvalues of \(\sigma \) and \(V_{\lambda} \) is the eigenspace of \(\sigma \) corresponding to the eigenvalue \(\lambda \). Thus, for example, \(V_1 \) will denote the eigenspace of \(\sigma \) for the eigenvalue \(\lambda = 1 \).

Moreover, we define \(\mathcal{E} \otimes_{\mathbb{C}} \mathcal{E} \) to be the eigenspace of \(\sigma \) with eigenvalue 1, i.e.,

\[
\mathcal{E} \otimes_{\mathbb{C}} \mathcal{E} := V_1.
\]

We also define \(\mathcal{F} := \bigoplus_{\lambda \in \Lambda \setminus \{1\}} V_{\lambda} \). Finally, we will denote by \(\rho(\text{sym}) \) the idempotent element in \(\text{Hom}(\mathcal{E} \otimes \mathbb{C} \mathcal{E}, \mathcal{E}) \) with range \(\mathcal{E} \otimes_{\mathbb{C}} \mathcal{E} \) and kernel \(\mathcal{F} \).

Let us introduce the notion of bi-invariant pseudo-Riemannian metric on a bicovariant \(\mathcal{A} \)-bimodule \(\mathcal{E} \).

Definition 2.3. \([5], \text{Definition } 4.1 \text{ of } [3]\) Suppose \(\mathcal{E} \) is a bicovariant \(\mathcal{A} \) bimodule and \(\sigma : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \rightarrow \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \) be the map as in Proposition 2.1. A bi-invariant pseudo-Riemannian metric for the pair \((\mathcal{E}, \sigma)\) is a right \(\mathcal{A} \)-linear map \(g : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \rightarrow \mathcal{A} \) such that the following conditions hold:

(i) \(g \circ \sigma = g \).

(ii) If \(g(\rho \otimes_{\mathcal{A}} \nu) = 0 \) for all \(\nu \in \mathcal{E} \), then \(\rho = 0 \).

(iii) The map \(g \) is bi-invariant, i.e. for all \(\rho, \nu \in \mathcal{E} \),

\[
\begin{align*}
(id \otimes C \nu)(\Delta(\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}) (\rho \otimes_{\mathcal{A}} \nu)) &= g(\rho \otimes_{\mathcal{A}} \nu), \\
(e \otimes id)(\Delta(\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E}) (\rho \otimes_{\mathcal{A}} \nu)) &= g(\rho \otimes_{\mathcal{A}} \nu).
\end{align*}
\]

Now we can define the torsion of a connection and the compatibility of a left-covariant connection with a bi-invariant pseudo-Riemannian metric.

Definition 2.4. \([5]\) Let \((\mathcal{E}, d) \) be a bicovariant differential calculus on \(\mathcal{A} \). A (right) connection on \(\mathcal{E} \) is a \(C \)-linear map \(\nabla : \mathcal{E} \rightarrow \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \) such that, for all \(a \) in \(\mathcal{A} \) and \(\rho \) in \(\mathcal{E} \), the following equation holds:

\[
\nabla(\rho a) = \nabla(\rho)a + \rho \otimes_{\mathcal{A}} da.
\]

The map \(\nabla \) is said to be a left-covariant, right-covariant or bicovariant connection if it is a left-covariant, right-covariant or bicovariant map, respectively. The torsion of a connection \(\nabla \) on \(\mathcal{E} \) is the right \(\mathcal{A} \)-linear map

\[
T_{\nabla} := \Lambda \circ \nabla + d : \mathcal{E} \rightarrow \Omega^2(\mathcal{A}).
\]

The connection \(\nabla \) is said to be torsionless if \(T_{\nabla} = 0 \).

Our notion of torsion is the same as that of \([5]\), with the only difference being that they work with left connections.

Definition 2.5. \((\text{Definitions } 6.1 \text{ and } 6.3 \text{ of } [3])\) Let \(\nabla \) be a left-covariant connection on a bicovariant calculus \((\mathcal{E}, d) \) such that the map \(\sigma \) is diagonalisable, and \(g \) a bi-invariant pseudo-Riemannian metric. Then we define

\[
\Pi_{\nabla}^0(\nabla) : \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \rightarrow \mathcal{E} \text{ by the following formula :}
\]

\[
\Pi_{\nabla}^0(\nabla)(\omega_1 \otimes \omega_2) = 2(id \otimes g)(\sigma \otimes id)(\nabla \otimes id)0(\text{sym})(\omega_1 \otimes \omega_2).
\]

Next, for all \(\omega_1, \omega_2 \) in \(\mathcal{E} \) and \(a \) in \(\mathcal{A} \), we define \(\Pi_{\nabla} \) \(: \mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \rightarrow \mathcal{E} \) by

\[
\Pi_{\nabla}(\nabla)(\omega_1 \otimes \omega_2) = \Pi_{\nabla}^0(\nabla)(\omega_1 \otimes \omega_2)a + g(\omega_1 \otimes A \omega_2)da.
\]

Finally, \(\nabla \) is said to be compatible with \(g \), if, as maps from \(\mathcal{E} \otimes_{\mathcal{A}} \mathcal{E} \) to \(\mathcal{E} \),

\[
\Pi_{\nabla}(\nabla) = dg.
\]

This allows us to give the definition of a Levi-Civita connection.

Definition 2.6. Let \((\mathcal{E}, d) \) be a bicovariant differential calculus such that the map \(\sigma \) is diagonalisable and \(g \) a pseudo-Riemannian bi-invariant metric on \(\mathcal{E} \). A left-covariant connection \(\nabla \) on \(\mathcal{E} \) is called a Levi-Civita connection for the triple \((\mathcal{E}, d, g) \) if it is torsionless and compatible with \(g \).
In [3], it was shown that this suitably generalises the notion of Levi-Civita connections for bicovariant differential calculi on Hopf algebras.

Then, we have the following metric-independent sufficient condition for the existence of a unique bicovariant Levi-Civita connection.

\textbf{Theorem 2.7.} (Theorem 7.9 of [3]) Suppose \((\mathcal{E},d)\) is a bicovariant differential calculus over a cosemisimple Hopf algebra \(\mathcal{A}\) such that the map \(\sigma\) is diagonalisable and \(\omega\) be a bi-invariant pseudo-Riemannian metric. If the map

\[(\sigma(P_{\text{sym}}))_{ij} : (\mathcal{E} \otimes_{\mathbb{C}} \mathcal{E}) \otimes \mathcal{E} \to \mathcal{E} \otimes_{\mathbb{C}} (\mathcal{E} \otimes_{\mathbb{C}} \mathcal{E})\]

is an isomorphism, then the triple \((\mathcal{E},d,\omega)\) admits a unique bicovariant Levi-Civita connection.

3. The 4\(D_{\pm}\) Calculi on \(SU_q(2)\) and the Braiding Map

In this section we recall briefly the definition quantum group \(SU_q(2)\) and the 4\(D_{\pm}\) calculus on \(SU_q(2)\). Then we show that the map \(\sigma : \mathcal{E} \otimes \mathcal{E} \to \mathcal{E} \otimes \mathcal{E}\) is actually diagonalisable. Our main reference for the details is [6].

For \(q \in [-1,1]\), \(SU_q(2)\) is the \(C^*\)-algebra generated by the two elements \(\alpha\) and \(\gamma\), and their adjoints, satisfying the following relations:

\[
\alpha^*\alpha + \gamma^*\gamma = 1, \quad \alpha\alpha^* + q^2\gamma\gamma^* = 1,
\]

\[
\gamma^*\gamma = \gamma\gamma^*, \quad \alpha\gamma = q\gamma\alpha, \quad \alpha\gamma^* = q\gamma^*\alpha.
\]

The comultiplication map \(\Delta\) is given by

\[
\Delta(\alpha) = \alpha \otimes \alpha - q\gamma^* \otimes \gamma, \quad \Delta(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.
\]

This makes \(SU_q(2)\) into a compact quantum group. We will denote the Hopf *-algebra generated by the elements \(\alpha, \gamma\) by the symbol \(\mathcal{A}\).

In [6], it is explicitly proven that there does not exist any three-dimensional bicovariant differential calculus and exactly two inequivalent four-dimensional calculi for \(SU_q(2)\). We use the description of the two bicovariant calculi, \(4D_+\) and \(4D_-\), as given in [6]. We will rephrase some of the notation to fit our formalism. For \(q \in \{-1,1\}\), the first order differential calculi \(\mathcal{E}\) of both the \(4D_+\) and \(4D_-\) calculi are bicovariant \(\mathcal{A}\)-bimodules such that the space \(\mathcal{E}\) of one-forms invariant under the left coaction of \(\mathcal{A}\) is a 4-dimensional vector space. We will denote a preferred basis of \(\mathcal{E}\) by \(\{\omega_i\}_{i=1,2,3,4}\). Here we have replaced the notation in [6] with \(\omega_i = \Omega_i\).

The following is the explicit description of the exterior derivative \(d\) on \(\mathcal{E}\) for the preferred basis \(\{\omega_i\}_{i=1}^4\) mentioned above.

\textbf{Proposition 3.1.} (Equation (5.2) of [6]) Let \(d : \mathcal{E} \to \Omega^2(\mathcal{A})\) be the exterior derivative of the 4\(D_{\pm}\) calculus.

\[
d(\omega_1) = \pm \sqrt{r} \omega_1 \wedge \omega_3, \quad d(\omega_2) = \mp \sqrt{r} \omega_2 \wedge \omega_3,
\]

\[
d(\omega_3) = \pm \sqrt{q} \omega_1 \wedge \omega_2, \quad d(\omega_4) = 0,
\]

where the upper sign stand for \(4D_+\) and the lower for \(4D_-\), and \(r = 1 + q^2\).

Now we show that the map \(\sigma\) for \(SU_q(2)\) satisfies the diagonalisability condition by giving explicit bases for eigenspaces of \(\sigma\). We will use the explicit action of \(\sigma\) on elements \(\omega_i \otimes_{\mathcal{A}} \omega_j\), \(i, j = 1, 2, 3, 4\) as given in Equation (4.1) of [6]

\textbf{Proposition 3.2.} For \(SU_q(2)\), the map \(\sigma\) is diagonalisable and has the minimal polynomial equation

\[(\sigma - 1)(\sigma + q^2)(\sigma + q^{-2}) = 0.
\]

\textit{Proof.} The proof of this result is by explicit listing of eigenvectors of \(\sigma\) for eigenvalues \(1, q^2, q^{-2}\) and by a dimension argument. Throughout we make use of the canonical identification \(\omega_i \otimes_{\mathcal{A}} \omega_j \mapsto \omega_i \otimes \omega_j\) as stated in (2).
Either by directly applying σ_0 on the following linearly independent two-tensors or from Equation (4.2) of [6], we get that the following are in the eigenspace corresponding to eigenvalue 1:

$$\omega_1 \otimes \omega_1, \omega_2 \otimes \omega_2, \omega_3 \otimes \omega_3 + t \omega_1 \otimes \omega_2, \omega_4 \otimes \omega_4,$$

$$\omega_1 \otimes \omega_2 + \omega_2 \otimes \omega_1, \omega_3 \otimes \omega_3 + q^2 \omega_3 \otimes \omega_2,$$

$$q^2 \omega_1 \otimes \omega_3 + \omega_3 \otimes \omega_1, \frac{tk}{q^2} \omega_2 \otimes \omega_3 - \omega_2 \otimes \omega_4 - \omega_4 \otimes \omega_2,$$

$$\frac{tk}{q^2} \omega_1 \otimes \omega_3 + \omega_3 \otimes \omega_1,$$

By explicit computation, the following linearly independent two-tensors are in the eigenspace corresponding to the eigenvalue q:

$$\frac{tk}{q^2} \omega_3, \omega_1 \otimes \omega_3 - q^2 \omega_2 \otimes \omega_4 - \frac{tk}{q^2} \omega_4 \otimes \omega_2, \omega_4 \otimes \omega_2,$$

$$-\frac{tk}{q^2} \omega_3 \otimes \omega_4 + \frac{tk}{q^2} \omega_1 \otimes \omega_1 + \frac{tk}{q^2} \omega_1 \otimes \omega_4 + \omega_4 \otimes \omega_1,$$

$$-\frac{tk}{q^2} \omega_1 \otimes \omega_3 + \frac{tk}{q^2} \omega_3 \otimes \omega_4 - q^2 \omega_3 \otimes \omega_4 + q^2 \omega_4 \otimes \omega_3.$$

By explicit computation, the following linearly independent two-tensors are in the eigenspace corresponding to the eigenvalue q^{-2}:

$$\frac{tk}{q^2} \omega_2 \otimes \omega_3 - q^2 \omega_2 \otimes \omega_4 - \frac{tk}{q^2} \omega_4 \otimes \omega_2, \omega_4 \otimes \omega_2,$$

$$-\frac{tk}{q^2} \omega_3 \otimes \omega_4 + \frac{tk}{q^2} \omega_1 \otimes \omega_1 + \frac{tk}{q^2} \omega_1 \otimes \omega_4 - q^2 \omega_4 \otimes \omega_2,$$

$$-\frac{tk}{q^2} \omega_1 \otimes \omega_3 + \frac{tk}{q^2} \omega_3 \otimes \omega_4 - q^2 \omega_3 \otimes \omega_4 + q^2 \omega_4 \otimes \omega_3.$$

We have thus accounted for 16 linearly independent elements of $\sigma E \otimes_c \rho E$. Since ρE has dimension 4, $\sigma E \otimes_c \rho E$ has dimension 16. Hence we have a basis, and in particular bases for the eigenspace decomposition, of $\sigma E \otimes_c \rho E$. Moreover, σ_0 satisfies the minimal polynomial

$$(\sigma_0 - 1)(\sigma_0 + q^2)(\sigma_0 + q^{-2}) = 0.$$

\[\square\]

4. A BICOVARIANT TORSIONLESS CONNECTION

In this section, using the fact that σ_0 is diagonalizable and $\sigma E \otimes_c \rho E$ admits an eigenspace decomposition, we construct a bicovariant torsionless connection on the $4D_{\pm}$ calculus.

Remark 4.1. Note that since any element ρ in E can be uniquely expressed as $\rho = \sum \omega_i a_i$ for some a_i in A (Theorem 2.1 of [8]), a connection on E is determined by its action on the basis $\{\omega_i\}$.

By Proposition 3.2, we have the eigenspace decomposition

$$\sigma E \otimes_c \rho E = \text{Ker}(\sigma_0 - \text{id}) \oplus \text{Ker}(\sigma_0 + q^2) \oplus \text{Ker}(\sigma_0 + q^{-2}).$$

Since $\text{Ker}(\wedge) = \text{Ker}(\sigma_0 - \text{id})$, we have that

$$\text{Ker}(\sigma_0 + q^2) \oplus \text{Ker}(\sigma_0 + q^{-2}) \cong \Omega^2(A),$$

with the isomorphism being given by $\wedge|_{\text{Ker}(\sigma_0 + q^2) \oplus \text{Ker}(\sigma_0 + q^{-2})}$. Let us denote $\text{Ker}(\sigma_0 + q^2) \oplus \text{Ker}(\sigma_0 + q^{-2})$ by ρF from now on. This is consistent with the notation adopted in Definition 2.2.

Theorem 4.2. Let $\{\omega_i\}_{1}$ be the preferred basis for the $4D_\pm$ calculus on $SU_q(2)$. For $i = 1, 2, 3, 4$, we define

$$\nabla_0(\omega_i) = -(\wedge|_{\rho F})^{-1} \circ d(\omega_i) \in \sigma E \otimes_c \rho E.$$
Then, ∇ extends to a bicovariant torsionless connection on \mathcal{E}. More explicitly,

\[
\nabla_0(\omega_1) = \pm \frac{r}{k^2(q^2 + 1)^2} \left(\frac{2t k}{\sqrt{r}} \omega_1 \otimes \mathcal{C} \omega_3 + t q \omega_1 \otimes \mathcal{C} \omega_4 - \frac{2t k}{\sqrt{r}} \omega_3 \otimes \mathcal{C} \omega_1 + t q \omega_4 \otimes \mathcal{C} \omega_1 \right)
\]

\[
\nabla_0(\omega_2) = \pm \frac{r}{k^2(q^2 + 1)^2} \left(\frac{2t k}{\sqrt{r}} \omega_2 \otimes \mathcal{C} \omega_3 - t q \omega_2 \otimes \mathcal{C} \omega_4 - \frac{2t k}{\sqrt{r}} \omega_3 \otimes \mathcal{C} \omega_2 - t q \omega_4 \otimes \mathcal{C} \omega_2 \right)
\]

\[
\nabla_0(\omega_3) = \pm \frac{q r}{k^2(q^2 + 1)^2} \left(\frac{2t k}{\sqrt{r}} \omega_1 \otimes \mathcal{C} \omega_2 - \frac{2t k}{\sqrt{r}} \omega_2 \otimes \mathcal{C} \omega_1 - \frac{t^2 k}{\sqrt{r}} \omega_3 \otimes \mathcal{C} \omega_3 + t q \omega_3 \otimes \mathcal{C} \omega_4 + t q \omega_4 \otimes \mathcal{C} \omega_3 \right)
\]

\[
\nabla_0(\omega_4) = 0
\]

Proof. By the definition of ∇_0,

\[
\land \circ \nabla_0(\omega_i) = - \land \circ (\land_{\alpha})^{-1} \circ d(\omega_i) = -d(\omega_i).
\]

Therefore, for any element $\rho = \sum_i \omega_i a_i$ in \mathcal{E},

\[
\land \circ \nabla_0(\sum_i \omega_i a_i) = \land \circ \sum_i (\nabla_0(\omega_i) a_i + \omega_i \wedge a_i)
\]

\[
= - \sum_i (\land \circ (\land_{\alpha})^{-1} \circ d(\omega_i) a_i + \omega_i \wedge a_i)
\]

\[
= - \sum_i (d(\omega_i) a_i + \omega_i \wedge a_i) = - \sum_i d(\omega_i a_i).
\]

Hence ∇_0 is a torsionless connection. The construction of ∇_0 is the same as that in Theorem 5.3 of [3]. Hence, by that theorem, our connection ∇_0 is bicovariant.

Now we derive ∇_0 explicitly on each ω_i using the formulas for $d(\omega_i)$ in Proposition 3.1.

We have that $d(\omega_1) = \pm \sqrt{r} \omega_1 \wedge \omega_3$. The decomposition of $\omega_1 \otimes \mathcal{C} \omega_3$ as a linear combination of the basis eigenvectors listed in Proposition 3.2 is given by

\[
\omega_1 \otimes \mathcal{C} \omega_3 = \frac{2q^2}{(q^2 + 1)^2} (q^2 \omega_1 \otimes \mathcal{C} \omega_3 + \omega_3 \otimes \mathcal{C} \omega_1)
\]

\[
- \frac{q^2 \sqrt{r}}{k(q^2 + 1)^2} \left(\frac{t^2 k}{\sqrt{r}} \omega_1 \otimes \mathcal{C} \omega_3 + \omega_1 \otimes \mathcal{C} \omega_4 + \omega_4 \otimes \mathcal{C} \omega_1 \right)
\]

\[
- \frac{\sqrt{r}}{t^2 k(q^2 + 1)^2} \left(- \frac{t k}{q \sqrt{r}} \omega_1 \otimes \mathcal{C} \omega_3 - q^2 \omega_1 \otimes \mathcal{C} \omega_4 + \frac{t q k}{\sqrt{r}} \omega_3 \otimes \mathcal{C} \omega_1 + \omega_4 \otimes \mathcal{C} \omega_1 \right)
\]

\[
- \frac{\sqrt{r}}{t^2 k(q^2 + 1)^2} \left(\frac{t k}{q \sqrt{r}} \omega_1 \otimes \mathcal{C} \omega_3 + \omega_1 \otimes \mathcal{C} \omega_4 + \frac{t q k}{\sqrt{r}} \omega_3 \otimes \mathcal{C} \omega_1 - q^2 \omega_4 \otimes \mathcal{C} \omega_1 \right).
\]

Since the first two terms in the above decomposition are elements of $\text{Ker}(\sigma - \text{id}) = \text{Ker}(\land)$, applying \land on both sides, we have

\[
\omega_1 \wedge \omega_3 = - \frac{\sqrt{r}}{t^2 k(q^2 + 1)^2} \left(- \frac{t k}{q \sqrt{r}} \omega_1 \otimes \mathcal{C} \omega_3 - q^2 \omega_1 \otimes \mathcal{C} \omega_4 + \frac{t q k}{\sqrt{r}} \omega_3 \otimes \mathcal{C} \omega_1 + \omega_4 \otimes \mathcal{C} \omega_1 \right)
\]

\[
- \frac{\sqrt{r}}{t^2 k(q^2 + 1)^2} \left(\frac{t k}{q \sqrt{r}} \omega_1 \otimes \mathcal{C} \omega_3 + \omega_1 \otimes \mathcal{C} \omega_4 + \frac{t q k}{\sqrt{r}} \omega_3 \otimes \mathcal{C} \omega_1 - q^2 \omega_4 \otimes \mathcal{C} \omega_1 \right),
\]

and since the last two terms in the decomposition are from \mathcal{F},

\[
(\land_{\alpha})^{-1}(\omega_1 \wedge \omega_3) = - \frac{\sqrt{r}}{t^2 k(q^2 + 1)^2} \left(- \frac{t k}{q \sqrt{r}} \omega_1 \otimes \mathcal{C} \omega_3 - q^2 \omega_1 \otimes \mathcal{C} \omega_4 + \frac{t q k}{\sqrt{r}} \omega_3 \otimes \mathcal{C} \omega_1 + \omega_4 \otimes \mathcal{C} \omega_1 \right)
\]

\[
- \frac{\sqrt{r}}{t^2 k(q^2 + 1)^2} \left(\frac{t k}{q \sqrt{r}} \omega_1 \otimes \mathcal{C} \omega_3 + \omega_1 \otimes \mathcal{C} \omega_4 + \frac{t q k}{\sqrt{r}} \omega_3 \otimes \mathcal{C} \omega_1 - q^2 \omega_4 \otimes \mathcal{C} \omega_1 \right).
\]
Thus, by the construction of ∇_0, we have
\[
\nabla_0(\omega_1) = \pm \left(-\frac{r}{t^2k(q^2 + 1)^2} \left(-\frac{tk}{\sqrt{r}} \omega_1 \odot \omega_3 - q^2 \omega_1 \odot \omega_4 + \frac{tk}{\sqrt{r}} \omega_3 \odot \omega_1 + \omega_4 \odot \omega_1 \right) \right)
- \frac{r}{t^2k(q^2 + 1)^2} \left(-\frac{tk}{\sqrt{r}} \omega_1 \odot \omega_3 + \omega_1 \odot \omega_4 + \frac{tk}{\sqrt{r}} \omega_3 \odot \omega_1 - q^2 \omega_4 \odot \omega_1 \right))
= \pm \frac{r}{t^2k(q^2 + 1)^2} \left(\frac{2tk}{\sqrt{r}} \omega_1 \odot \omega_3 + t\omega_1 \odot \omega_4 - \frac{2tk}{\sqrt{r}} \omega_3 \odot \omega_1 + t\omega_4 \odot \omega_1 \right)
\]

Proposition 3.1 also gives that $d(\omega_2) = \pm \frac{kr}{q} \omega_2 \wedge \omega_3, d(\omega_3) = \pm \frac{kr}{q} \omega_1 \wedge \omega_2$ and $d(\omega_4) = 0$. So, similarly, we have
\[
\omega_2 \odot \omega_3 = \frac{2}{(q^2 + 1)^2} \left(\omega_2 \odot \omega_3 + q^2 \omega_1 \odot \omega_2 \right) - \frac{q^4 r}{k(q^2 + 1)^2} \left(\frac{t^2k}{\sqrt{r}} \omega_2 \odot \omega_3 \odot \omega_1 \odot \omega_4 - \omega_2 \odot \omega_4 \omega_1 \odot \omega_2 \right)
+ \frac{q^2 r}{t^2k(q^2 + 1)^2} \left(\frac{tk}{\sqrt{r}} \omega_2 \odot \omega_3 \odot \omega_1 \odot \omega_4 - \frac{tk}{\sqrt{r}} \omega_1 \odot \omega_2 \odot \omega_4 \odot \omega_2 \right)
+ \frac{q^2 r}{t^2k(q^2 + 1)^2} \left(\frac{tk}{\sqrt{r}} \omega_2 \odot \omega_3 \odot \omega_1 \odot \omega_4 - \frac{tk}{\sqrt{r}} \omega_2 \odot \omega_4 \odot \omega_1 \odot \omega_2 \right),
\]
and hence,
\[
\nabla_0(\omega_2) = \pm \frac{r}{t^2k(q^2 + 1)^2} \left(\frac{2tk}{\sqrt{r}} \omega_2 \odot \omega_3 \omega_4 - t\omega_2 \odot \omega_4 \omega_1 - \frac{2tk}{\sqrt{r}} \omega_3 \odot \omega_2 \omega_4 - t\omega_4 \odot \omega_1 \right).
\]

Moreover,
\[
\omega_1 \odot \omega_2 = \frac{2tq^2}{(q^2 + 1)^2} \left(\omega_1 \odot \omega_2 + \omega_2 \odot \omega_1 \right) + \frac{2q^2}{(q^2 + 1)^2} \left(\omega_3 \odot \omega_3 + t\omega_1 \odot \omega_2 \right)
- \frac{q^4 r}{k(q^2 + 1)^2} \left(\frac{t^2k}{\sqrt{r}} \omega_1 \odot \omega_2 \odot \omega_3 \odot \omega_4 + \omega_1 \odot \omega_4 \odot \omega_3 \odot \omega_2 \right)
- \frac{q^2 r}{tk(q^2 + 1)^2} \left(\frac{tk}{\sqrt{r}} \omega_1 \odot \omega_2 \odot \omega_3 \odot \omega_4 - \frac{tk}{\sqrt{r}} \omega_2 \odot \omega_3 \odot \omega_4 \odot \omega_1 \right)
- \frac{q^2 r}{tk(q^2 + 1)^2} \left(\frac{tk}{\sqrt{r}} \omega_1 \odot \omega_2 \odot \omega_3 \odot \omega_4 - \frac{tk}{\sqrt{r}} \omega_2 \odot \omega_4 \odot \omega_1 \odot \omega_2 \right),
\]
and hence,
\[
\nabla_0(\omega_3) = \pm \frac{qr}{tk(q^2 + 1)^2} \left(\frac{2tk}{\sqrt{r}} \omega_1 \odot \omega_2 \omega_4 - \frac{2tk}{\sqrt{r}} \omega_2 \odot \omega_4 \omega_1 - \frac{2tk}{\sqrt{r}} \omega_3 \odot \omega_1 \odot \omega_4 + t\omega_4 \odot \omega_1 \odot \omega_2 \right)
\]
Lastly, since $d(\omega_4) = 0$, $\nabla_0(\omega_4) = 0$

Thus, we are done with our proof. \(\square\)

5. Existence of a unique b covariant Levi-Civita connection

In this section, we prove that for every $q \in \mathbb{C}$, the $4D_\pm$ calculi admit a unique b covariant Levi-Civita connection for every bi-invariant pseudo-Riemannian metric (as defined in Definition 2.3) on \mathcal{E}. We achieve this by verifying the hypotheses of Theorem 2.7.

Recall that for the $4D_\pm$ calculi, we had the decomposition
\[
o \mathcal{E} \otimes \mathcal{E} = \text{Ker}(o\sigma - \text{id}) \oplus \text{Ker}(o\sigma + q^2) \oplus \text{Ker}(o\sigma + q^{-2}).\]

We have already fixed the symbol $o\mathcal{F}$ for $\text{Ker}(o\sigma + q^2) \oplus \text{Ker}(o\sigma + q^{-2})$. Let us now denote $\text{Ker}(o\sigma - \text{id})$ by $o \mathcal{E} \otimes \mathcal{E}^\text{sym} \mathcal{E}$. Moreover, as in Definition 2.2, we define the \mathbb{C}-linear map
\[
o(P_{\text{sym}}) : o \mathcal{E} \otimes \mathcal{E} \rightarrow o \mathcal{E} \otimes \mathcal{E}
\]
to be the idempotent with range $o \mathcal{E} \otimes \mathcal{E}^\text{sym} \mathcal{E}$ and kernel $o \mathcal{F}$. Since, $o(P_{\text{sym}})$ is the idempotent onto the eigenspace of $o\sigma$ with eigenvalue one, and with kernel the eigenspaces with eigenvalues q^2 and q^{-2}, it is of the form (see (22) of [3])
\[
o(P_{\text{sym}}) = \frac{o\sigma + q^2}{1 + q^2} \frac{o\sigma + q^{-2}}{1 + q^{-2}}.
\]
By Proposition 3.2, the set \(\{ \nu_i \}_{i=1}^{10} \) forms a basis of \(\mathfrak{a} \mathfrak{E} \otimes \mathfrak{C} \mathfrak{E} \), where \(\nu_i \) are given as follows:

\[
\begin{align*}
\nu_1 &= \omega_1 \otimes \omega_1, \\
\nu_2 &= \omega_2 \otimes \omega_2, \\
\nu_3 &= \omega_3 \otimes \omega_3 + i\omega_1 \otimes \omega_2, \\
\nu_4 &= \omega_4 \otimes \omega_4, \\
\nu_5 &= \omega_2 \otimes \omega_1 + \omega_1 \otimes \omega_2, \\
\nu_6 &= \omega_3 \otimes \omega_2 + \frac{1}{q^2} \omega_2 \otimes \omega_3, \\
\nu_7 &= \omega_3 \otimes \omega_1 + q^2 \omega_1 \otimes \omega_3, \\
\nu_8 &= \omega_4 \otimes \omega_2 + \omega_2 \otimes \omega_4 - \frac{t^2 k}{q^2 \sqrt{r}} \omega_2 \otimes \omega_1, \\
\nu_9 &= \omega_4 \otimes \omega_1 + \omega_1 \otimes \omega_4 + \frac{t^2 k}{q^2 \sqrt{r}} \omega_1 \otimes \omega_3, \\
\nu_{10} &= \omega_4 \otimes \omega_3 + \omega_3 \otimes \omega_4 + \frac{t^2 k}{q^2 \sqrt{r}} \omega_1 \otimes \omega_2.
\end{align*}
\]

Thus, an arbitrary element of \((\mathfrak{a} \mathfrak{E} \otimes \mathfrak{C} \mathfrak{E}) \otimes \mathfrak{C} \mathfrak{E} \) is given by \(X = \sum_{i,j} A_{ij} \nu_i \otimes \omega_j \), for some complex numbers \(A_{ij} \). Hence, if we show that \((a(P_{\mathfrak{sym}}))_{23}(\sum_{i,j} A_{ij} \nu_i \otimes \omega_j) = 0 \) implies that \(A_{ij} = 0 \) for all \(i, j \), then \((a(P_{\mathfrak{sym}}))_{23} \) is a one-one map from \((\mathfrak{a} \mathfrak{E} \otimes \mathfrak{C} \mathfrak{E}) \otimes \mathfrak{C} \mathfrak{E} \) to \(\mathfrak{E} \otimes \mathfrak{C} \mathfrak{E} \). However, \(\dim((\mathfrak{a} \mathfrak{E} \otimes \mathfrak{C} \mathfrak{E}) \otimes \mathfrak{C} \mathfrak{E}) = \dim(\mathfrak{E} \otimes \mathfrak{C} \mathfrak{E})(a \mathfrak{E} \mathfrak{C} \mathfrak{E}) \), so that \((a(P_{\mathfrak{sym}}))_{23} \) is a linear isomorphism from \((\mathfrak{a} \mathfrak{E} \otimes \mathfrak{C} \mathfrak{E}) \otimes \mathfrak{C} \mathfrak{E} \) to \(\mathfrak{a} \mathfrak{E} \otimes \mathfrak{C} \mathfrak{E} \). Suppose \(\{ A_{ij} \}_{ij} \) are complex numbers such that \((a(P_{\mathfrak{sym}}))_{23}(\sum_{i,j} A_{ij} \nu_i \otimes \omega_j) = 0 \). Then, by (5), we have

\[
((q^2(a(\sigma))_{23} + 1)((a(\sigma))_{23} + q^2))(\sum_{ij} A_{ij} \nu_i \otimes \omega_j) = 0.
\]

We want to show that except for finitely many values of \(q \), the above equation implies that all the \(A_{ij} \) are equal to \(0 \). This involves a long computation, including a series of preparatory lemmas. We will be using the explicit form of \(a(\sigma)(\omega_i \otimes \omega_j) \) as given in Equation (4.1) of [6] as well as (6) to express the left hand side of (7) as a linear combination of basis elements \(\omega_i \otimes \omega_j \otimes \omega_k \). Then we compare coefficients to derive relations among the \(A_{ij} \). We do not provide the details of the computation. However, for the purposes of book-keeping, each equation is indexed by a triplet \((i, j, k) \) meaning that it is obtained by collecting coefficients of the basis element \(\omega_i \otimes \omega_j \otimes \omega_k \) in the expansion of \(((q^2(a(\sigma))_{23} + 1)((a(\sigma))_{23} + q^2))(\sum_{mn} A_{mn} \nu_m \otimes \omega_n) \).

Lemma 5.1. We have the following equations:

\[
\begin{align*}
A_{11} &= 0 \\
A_{12}(q^4 + 2) + (tA_{31} + A_{51} + A_{101} \frac{t^2 k}{q^2 \sqrt{r}})2q^2 + (A_{73}q^2 + A_{93} \frac{t^2 k}{q^2 \sqrt{r}})2q(q^2 - 1) &= 0 \\
A_{13}(q^4 + 2q^2 - 1) + A_{14}(\frac{k}{\sqrt{r}}(q^2 - 2 + q^{-2})) \\
+ (A_{71}q^2 + A_{91} \frac{t^2 k}{q^2 \sqrt{r}})2q^2 + A_{91}(\frac{k}{\sqrt{r}}q^{-2}(q^2 - 1)) &= 0 \\
A_{13}(-2q^2 \frac{t^2 k}{k} + A_{14}(q^4 + 1) + (A_{71}q^2 + A_{91} \frac{t^2 k}{q^2 \sqrt{r}})q^4 + A_{91}(q^4 + 1) &= 0
\end{align*}
\]

Proof. The above equations are derived by comparing the coefficients of \(\omega_1 \otimes \omega_1 \otimes \omega_1 \), \(\omega_1 \otimes \omega_2 \), \(\omega_1 \otimes \omega_1 \otimes \omega_3 \) and \(\omega_1 \otimes \omega_1 \otimes \omega_4 \) in (7).
Lemma 5.2. We have the following equations:

\[
A_{12}(2q^2 - 1) + (tA_{31} + A_{51} + A_{10,1} \frac{t^2k}{\sqrt{r}})(q^4 + 1) + (A_{73}q^2 + A_{94} \frac{t^2k}{\sqrt{r}})(-2q(q^2 - 1)) \\
+ A_{93}(\frac{k}{\sqrt{r}}(q^2 - 1)^2) + (A_{74}q^2 + A_{94})(-\frac{k}{\sqrt{r}}(q^2 - 1)^2) = 0 \\
\text{(1,2,1)}
\]

\[
tA_{32} + A_{52} + A_{10,2} \frac{t^2k}{\sqrt{r}} = 0 \\
\text{(1,2,2)}
\]

\[
(tA_{34} + A_{54} + A_{10,4} \frac{t^2k}{\sqrt{r}})(-\frac{k}{\sqrt{r}}(q^2 - 1)^2) + (tA_{34} + A_{53} + A_{10,3} \frac{t^2k}{\sqrt{r}})(-(q^2 - 1)^2) \\
+ (A_{72}q^2 + A_{92} \frac{t^2k}{\sqrt{r}})2q^2 + A_{92}(\frac{k}{\sqrt{r}}(q^2 - 1)^2) = 0 \\
\text{(1,2,3)}
\]

\[
(tA_{33} + A_{53} + A_{10,3} \frac{t^2k}{\sqrt{r}})q^4 + (tA_{34} + A_{54} + A_{10,4} \frac{t^2k}{\sqrt{r}})(q^4 + 1) \\
+ (A_{72}q^2 + A_{92} \frac{t^2k}{\sqrt{r}})(-q^2) + A_{92}(q^4 + 1) = 0 \\
\text{(1,2,4)}
\]

Proof. The above equations are derived by comparing the coefficients of $\omega_1 \otimes \omega_2 \otimes \omega_1$, $\omega_1 \otimes \omega_2 \otimes \omega_1$, $\omega_1 \otimes \omega_2 \otimes \omega_1$ and $\omega_1 \otimes \omega_2 \otimes \omega_1$ in (7). \hfill \Box

Lemma 5.3. We have the following equations:

\[
A_{12}q^2 + A_{14} \frac{k}{\sqrt{r}}(-q^2(q - q^{-1})^2) \\
+ (A_{71}q^2 + A_{94} \frac{t^2k}{\sqrt{r}})(-q^4 + 2q^2 + 1) + A_{91} \frac{k}{\sqrt{r}}(-q^2 - 1)^2 = 0 \\
\text{(1,3,1)}
\]

\[
(tA_{33} + A_{53} + A_{10,3} \frac{t^2k}{\sqrt{r}})2q^2 + (tA_{34} + A_{54} + A_{10,4} \frac{t^2k}{\sqrt{r}})(q^2 - 2q + q^{-2}) \\
+ (A_{72}q^2 + A_{92} \frac{t^2k}{\sqrt{r}})(q^4 + 2q^2 - 1) + A_{92} \frac{k}{\sqrt{r}}q^{-2}(q^2 - 1)^2 = 0 \\
\text{(1,3,2)}
\]

\[
(tA_{31} + A_{51} + A_{10,1} \frac{t^2k}{\sqrt{r}})(-2q^3 + 2q) + A_{12}2q(q^2 - 1) + A_{93}(\frac{k}{\sqrt{r}}q^{-2}(q^2 - 1)^3) \\
+ (A_{73}q^2 + A_{93} \frac{t^2k}{\sqrt{r}})(-q^4 + 6q^2 - 1) + (A_{74}q^2 + A_{94} \frac{t^2k}{\sqrt{r}})(-\frac{k}{\sqrt{r}}q^{-2}(q^2 - 1)^3) = 0 \\
\text{(1,3,3)}
\]

\[
(tA_{31} + A_{51} + A_{10,1} \frac{t^2k}{\sqrt{r}})(-2q^3 + 2q) + (A_{73}q^2 + A_{93} \frac{t^2k}{\sqrt{r}})(q^4) \\
+ A_{93}(3(q^2 - 1)^2 + 2q^2) + (A_{74}q^2 + A_{94} \frac{t^2k}{\sqrt{r}})(q^4 + 1) = 0 \\
\text{(1,3,4)}
\]

Proof. The above equations are derived by comparing the coefficients of $\omega_1 \otimes \omega_3 \otimes \omega_1$, $\omega_1 \otimes \omega_3 \otimes \omega_1$, $\omega_3 \otimes \omega_2$, $\omega_1 \otimes \omega_3 \otimes \omega_3$ and $\omega_1 \otimes \omega_3 \otimes \omega_1$ in (7). \hfill \Box
The above equations are derived by comparing the coefficients of $\frac{\omega}{C}$.

\[
\begin{align*}
A_{13}(\frac{q^2}{k}) + A_{14}(q^4 + 1) + (A_{71}q^2 + A_{91}\frac{\omega^2k}{q\sqrt{r}})q^4\sqrt{r} + A_{91}(q^4 + 1) &= 0 \\
(tA_{33} + A_{35} + A_{103}\frac{\omega}{C}) + (tA_{34} + A_{54} + A_{104}\frac{\omega}{C})q^4 + 1) &= 0 \\
+A_{72}q^2 + A_{92}\frac{\omega^2k}{\sqrt{r}} + A_{92}(q^4 + 1) &= 0 \\
A_{12}(\frac{r}{k}) + (tA_{31} + A_{51} + A_{101}\frac{\omega^2k}{q\sqrt{r}})\sqrt{r} + A_{93}(q^4 - 1) &= 0 \\
+A_{73}q^2 + A_{93}\frac{\omega^2k}{\sqrt{r}}(q^2 - 1) + (A_{74}q^2 + A_{94}\frac{\omega^2k}{\sqrt{r}})(q^4 + 1) &= 0 \\
A_{94} &= 0
\end{align*}
\]

\textit{Proof.} The above equations are derived by comparing the coefficients of $\omega_1 \otimes \omega_4 \otimes \omega_1$, $\omega_1 \otimes \omega_4 \otimes \omega_1$ and $\omega_1 \otimes \omega_4 \otimes \omega_1$ in (7).

\[
\begin{align*}
A_{51} &= 0 \\
A_{52}(q^4 + 2) + A_{21}(2q^2) + (A_{63}q^{-2} + A_{81}\frac{\omega^2k}{q^2\sqrt{r}})2q(q^2 - 1) &= 0 \\
+A_{83}(\frac{k}{\sqrt{r}}(q^2 - 1) - 1) + (A_{64}q^{-2} + A_{84}\frac{\omega^2k}{q^2\sqrt{r}})\sqrt{r}q(q^2 - 2 + q^2) &= 0 \\
A_{53}(q^4 + 2q^2 - 1) + A_{54}\frac{k}{\sqrt{r}}(q^2 - 2 + q^2) &= 0 \\
+(A_{64}q^{-2} + A_{84}\frac{\omega^2k}{q^2\sqrt{r}})2q^2 + A_{81}\frac{k}{\sqrt{r}}q^{-2}(q^2 - 1) &= 0 \\
A_{53}(\frac{k}{\sqrt{r}}q^2) + A_{54}(q^4 + 1) + (A_{61}q^{-2} + A_{81}\frac{\omega^2k}{q^2\sqrt{r}})\sqrt{r}k + A_{81}(q^4 + 1) &= 0
\end{align*}
\]

\textit{Proof.} The above equations are derived by comparing the coefficients of $\omega_2 \otimes \omega_1 \otimes \omega_1$, $\omega_2 \otimes \omega_1 \otimes \omega_2$, $\omega_2 \otimes \omega_1 \otimes \omega_1$ and $\omega_2 \otimes \omega_1 \otimes \omega_1$ in (7).

\[
\begin{align*}
A_{52}(2q^2 - 1) + A_{21}(q^4 + 1) + (A_{63}q^{-2} + A_{83}\frac{\omega^2k}{q^2\sqrt{r}})(-2q(q^2 - 1)) &= 0 \\
+A_{83}(\frac{k}{\sqrt{r}}(q^2 - 1) - 2) + (A_{64}q^{-2} + A_{84}\frac{\omega^2k}{q^2\sqrt{r}})(\frac{k}{\sqrt{r}}q(q^2 - 2 + q^2)) &= 0 \\
A_{22} &= 0 \\
A_{23}(-q^4 + 2q^2 - 1) + A_{24}(\frac{k}{\sqrt{r}}(q^4 - 2q^2 + 1)) &= 0 \\
+(A_{62}q^{-2} + A_{82}\frac{\omega^2k}{q^2\sqrt{r}})2q^2 + A_{82}(\frac{k}{\sqrt{r}}q^2 - 1) &= 0 \\
A_{23}q^{-2} + A_{24}(q^4 + 1) + (A_{62}q^{-2} + A_{82}\frac{\omega^2k}{q^2\sqrt{r}})\sqrt{r}k &+ A_{82}(q^4 + 1) &= 0
\end{align*}
\]

\textit{Proof.} The above equations are derived by comparing the coefficients of $\omega_2 \otimes \omega_2 \otimes \omega_1$, $\omega_2 \otimes \omega_2 \otimes \omega_1$ and $\omega_2 \otimes \omega_2 \otimes \omega_1$ in (7).
Lemma 5.7. We have the following equations:

\[
A_{53}(2q^2) + A_{54}(q^4 + 1) + (A_{61}q^{-2} + A_{81}\frac{t^k}{q^2\sqrt{r}})(-q^4 + 2q^2 + 1) + A_{81}\frac{k}{\sqrt{r}}(-q^2 - 1)^2 = 0 \quad (2,3,1)
\]

\[
A_{52}2q(-q^2 - 1) + A_{21}(-2q^3 + 2q) + (A_{63}q^{-2} + A_{83}\frac{t^2k}{q^2\sqrt{r}})(-q^4 + 6q^2 - 1) + A_{83}\frac{k}{\sqrt{r}}(-q^2 - 1)^3 = 0 \quad (2,3,2)
\]

\[
A_{21}\sqrt{q}(-q^2 + 2 + q^2) + (A_{64}q^{-2} + A_{84}\frac{t^2k}{q^2\sqrt{r}})\sqrt{q}q^4 + A_{83}(q^2 - 1)^2 + 2q^2
\]

\[
+ (A_{64}q^{-2} + A_{84}\frac{t^2k}{q^2\sqrt{r}})(q^4 + 1) = 0 \quad (2,3,4)
\]

Proof. The above equations are derived by comparing the coefficients of \(\omega_2 \otimes\omega_3 \otimes\omega_1, \omega_2 \otimes\omega_3 \otimes\omega_2, \omega_3 \otimes\omega_2 \otimes\omega_3 \otimes\omega_3 \) and \(\omega_2 \otimes\omega_3 \otimes\omega_3 \otimes\omega_4 \) in (7).

Lemma 5.8. We have the following equations:

\[
A_{53}\frac{k}{\sqrt{r}}(-q^2) + A_{54}(q^4 + 1) + (A_{61}q^{-2} + A_{81}\frac{t^2k}{q^2\sqrt{r}})\frac{\sqrt{q}}{k}q^4 + A_{81}(q^4 + 1) = 0 \quad (2,4,1)
\]

\[
A_{52}\frac{k}{\sqrt{r}}q^4 + A_{24}(q^4 + 1) + (A_{62}q^{-2} + A_{82}\frac{t^2k}{q^2\sqrt{r}})\frac{\sqrt{q}}{k}(-q^2) + A_{82}(q^4 + 1) = 0 \quad (2,4,2)
\]

\[
A_{21}\sqrt{q}(-q^3) + A_{21}\frac{k}{\sqrt{r}}q^3 + (A_{31}q^{-2} + A_{83}\frac{t^2k}{q^2\sqrt{r}})\frac{\sqrt{q}}{k}q^2(q^2 - 1) + A_{83}(q^4 - 1) + (A_{64}q^{-2} + A_{84}\frac{t^2k}{q^2\sqrt{r}})(q^4 + 1) = 0
\]

\[
A_{84} = 0 \quad (2,4,4)
\]

Proof. The above equations are derived by comparing the coefficients of \(\omega_2 \otimes\omega_4 \otimes\omega_1, \omega_2 \otimes\omega_3 \otimes\omega_4 \otimes\omega_3 \) and \(\omega_2 \otimes\omega_3 \otimes\omega_4 \otimes\omega_4 \) in (7).

Lemma 5.9. We have the following equations:

\[
A_{71} = 0 \quad (3,1,1)
\]

\[
A_{72}(q^4 + 2) + A_{61}2q^2 + A_{83}2q(q^2 - 1)
+ A_{10,3}\frac{k}{\sqrt{r}}q^{-1}(-q^2 - 1)^2 + A_{34}\frac{k}{\sqrt{r}}q^2(q^2 - 2 + q^2) = 0 \quad (3,1,2)
\]

\[
A_{73}(q^4 + 2q^2 - 1) + A_{74}\frac{k}{\sqrt{r}}q^2 - 2 + q^2 + A_{31}2q^2 + A_{10,1}\frac{k}{\sqrt{r}}q^2(-q^2 - 1) = 0 \quad (3,1,3)
\]

\[
A_{73}\frac{k}{\sqrt{r}}(-q^2) + A_{74}(q^4 + 1) + A_{31}\frac{\sqrt{q}}{k}q^4 + A_{10,1}(q^4 + 1) = 0 \quad (3,1,4)
\]

Proof. The above equations are derived by comparing the coefficients of \(\omega_3 \otimes\omega_1 \otimes\omega_1, \omega_3 \otimes\omega_3 \otimes\omega_2 \otimes\omega_3 \) and \(\omega_3 \otimes\omega_1 \otimes\omega_1 \otimes\omega_4 \) in (7).
Lemma 5.10. We have the following equations:

\[A_{72}(2q^2 - 1) + A_{61}(q^4 + 1) + A_{33}2q(-q^2 - 1) \]
\[+ A_{10,3}\frac{k}{\sqrt{r}}(-q^{-1}(q^2 - 1)^2) + A_{34}\frac{k}{\sqrt{r}}(-q(q^2 - 2 + q^{-2})) = 0 \] (3,2,1)
\[A_{62} = 0 \] (3,2,2)
\[A_{63}(-q^4 + 2q^2 + 1) + A_{64}\frac{k}{\sqrt{r}}(-(q^4 - 2q^2 + 1)) + A_{33}2q^2 + A_{10,2}\frac{k}{\sqrt{r}}(-q^2 - 1)^2) = 0 \] (3,2,3)
\[A_{63}\frac{\sqrt{r}}{k}q^4 + A_{64}(q^4 + 1) + A_{32}\frac{\sqrt{r}}{k}(-q^2) + A_{10,2}(q^4 + 1) = 0 \] (3,2,4)

Proof. The above equations are derived by comparing the coefficients of \(\omega_3 \otimes \omega_2 \otimes \omega_1, \omega_3 \otimes \omega_2 \otimes \omega_3, \omega_3 \otimes \omega_2 \otimes \omega_3 \), and \(\omega_3 \otimes \omega_2 \otimes \omega_4 \) in (7).

Lemma 5.11. We have the following equations:

\[A_{72}3q^2 + A_{74}\frac{k}{\sqrt{r}}(-(q^2 - 1)^2) + A_{31}(-q^4 + 2q^2 + 1) + A_{10,1}\frac{k}{\sqrt{r}}(-(q^2 - 1)^2) = 0 \] (3,3,1)
\[A_{63}2q^2 + A_{64}\frac{k}{\sqrt{r}}(q^2 - 2 + q^{-2}) + A_{32}q^4 + 2q^2 - 1) + A_{10,2}\frac{k}{\sqrt{r}}q^{-2}(q^2 - 1)^2 = 0 \] (3,3,2)
\[A_{61}(-2q^3 + 2q) + A_{33}(-q^4 + 6q^2 - 1) \]
\[+ A_{10,3}\frac{k}{\sqrt{r}}(-q^{-2}(q^2 - 1)^3) + A_{34}\frac{k}{\sqrt{r}}(-q(q - 1)^3) = 0 \] (3,3,3)
\[A_{64}\frac{\sqrt{r}}{k}q^3 + A_{33}\frac{\sqrt{r}}{k}q^4 + A_{10,3}(3(q^2 - 1)^2 + 2q^2) + A_{34}(q^4 + 1) = 0 \] (3,3,4)

Proof. The above equations are derived by comparing the coefficients of \(\omega_3 \otimes \omega_3 \otimes \omega_1, \omega_3 \otimes \omega_3 \otimes \omega_3 \), \(\omega_3 \otimes \omega_3 \otimes \omega_3 \), and \(\omega_3 \otimes \omega_3 \otimes \omega_3 \) in (7).

Lemma 5.12. We have the following equations:

\[A_{73}\frac{\sqrt{r}}{k}(-q^2) + A_{74}(q^4 + 1) + A_{31}\frac{\sqrt{r}}{k}q^4 + A_{10,1}(q^4 + 1) = 0 \] (3,4,1)
\[A_{63}\frac{\sqrt{r}}{k}q^3 + A_{64}(q^4 + 1) + A_{32}\frac{\sqrt{r}}{k}(-q^2) + A_{10,2}(q^4 + 1) = 0 \] (3,4,2)
\[A_{72}\frac{\sqrt{r}}{k}(-q^3) + A_{64}\frac{\sqrt{r}}{k}q^3 = 0 \] (3,4,3)
\[A_{10,4} = 0 \] (3,4,4)

Proof. The above equations are derived by comparing the coefficients of \(\omega_3 \otimes \omega_4 \otimes \omega_1, \omega_3 \otimes \omega_4 \otimes \omega_3 \), \(\omega_4 \otimes \omega_2, \omega_3 \otimes \omega_4 \otimes \omega_3 \), and \(\omega_4 \otimes \omega_4 \otimes \omega_4 \) in (7).

Lemma 5.13. We have the following equations:

\[A_{91} = 0 \] (4,1,1)
\[A_{92}(q^4 + 2) + A_{81}2q^2 + A_{10,3}2q(q^2 - 1) \]
\[+ A_{43}\frac{k}{\sqrt{r}}q^{-1}(q^2 - 1)^2 + A_{10,4}\frac{k}{\sqrt{r}}q(q^2 - 2 + q^{-2}) = 0 \] (4,1,2)
\[A_{93}(q^4 + 2q^2 - 1) + A_{94}\frac{k}{\sqrt{r}}(q^2 - 2 + q^{-2}) + A_{10,1}2q^2 + A_{41}\frac{k}{\sqrt{r}}q^{-2}(q^2 - 1) = 0 \] (4,1,3)
\[A_{93}\frac{\sqrt{r}}{k}(-q^2) + A_{94}(q^4 + 1) + A_{10,3}\frac{\sqrt{r}}{k}q^4 + A_{41}(q^4 + 1) = 0 \] (4,1,4)

Proof. The above equations are derived by comparing the coefficients of \(\omega_4 \otimes \omega_1 \otimes \omega_1, \omega_4 \otimes \omega_3 \otimes \omega_2, \omega_4 \otimes \omega_1 \otimes \omega_3\), and \(\omega_4 \otimes \omega_1 \otimes \omega_4 \) in (7).
Lemma 5.14. We have the following equations:

\[A_{92}(q^2 - 1) + A_{81}(q^4 + 1) + A_{10,3}2q(q^2 - 1) + A_{43}\frac{k}{\sqrt{r}}(-q^{-1}(q^2 - 1)^2) \]

\[+ A_{10,4}\frac{k}{\sqrt{r}}(q^2 - 2 + q^{-2}) = 0 \quad (4,2,1) \]

\[A_{82} = 0 \quad (4,2,2) \]

\[A_{83}(-q^4 + 2q^2 + 1) + A_{84}\frac{k}{\sqrt{r}}(-q^4 + 2q^2 - 1) + A_{10,2}2q^2 + A_{42}\frac{k}{\sqrt{r}}(q^2 - 1)^2 = 0 \quad (4,2,3) \]

\[A_{83}\frac{\sqrt{r}}{k}q^4 + A_{84}(q^4 + 1) + A_{10,2}\frac{\sqrt{r}}{k}(-q^2) + A_{42}(q^4 + 1) = 0 \quad (4,2,4) \]

Proof. The above equations are derived by comparing the coefficients of \(\omega \otimes \omega \otimes \omega_1 \), \(\omega_4 \otimes \omega_2 \otimes \omega_3 \), and \(\omega_4 \otimes \omega_2 \otimes \omega_4 \) in (7).

Lemma 5.15. We have the following equations:

\[A_{93}(q^4 + 2q^2 - 1) + A_{94}\frac{k}{\sqrt{r}}(q^2 - 2 + q^{-2}) + A_{10,1}(-q^4 + 2q^2 + 1) \]

\[+ A_{41}\frac{k}{\sqrt{r}}(-q^{-1}(q^2 - 1)^2) = 0 \quad (4,3,1) \]

\[A_{83}2q^2 + A_{84}\frac{k}{\sqrt{r}}(q^2 - 2 + q^{-2}) + A_{10,2}(q^4 + 2q^2 - 1) + A_{42}\frac{k}{\sqrt{r}}(-q^2 - 1)^2 = 0 \quad (4,3,2) \]

\[A_{92}2q(q^2 - 1) + A_{81}(-2q^3 + 2q) + A_{10,3}(-q^4 + 6q^2 - 1) + A_{43}\frac{k}{\sqrt{r}}(-q^{-2}(q^2 - 1)^3) \]

\[+ A_{10,4}\frac{k}{\sqrt{r}}(-q^{-1}(q^2 - 1)^3) = 0 \quad (4,3,3) \]

\[A_{83}\frac{\sqrt{r}}{k}q^3 + A_{10,3}\frac{\sqrt{r}}{k}q^4 + A_{43}(3(q^2 - 1)^2 + 2q^2) + A_{10,4}q^4 + 1 = 0 \quad (4,3,4) \]

Proof. The above equations are derived by comparing the coefficients of \(\omega_4 \otimes \omega_3 \otimes \omega_1 \), \(\omega_4 \otimes \omega_2 \otimes \omega_3 \), and \(\omega_4 \otimes \omega_2 \otimes \omega_4 \) in (7).

Lemma 5.16. We have the following equations:

\[A_{93}\frac{\sqrt{r}}{k}(-q^2) + A_{94}(q^4 + 1) + A_{10,1}\frac{\sqrt{r}}{k}q^4 + A_{41}(q^4 + 1) = 0 \quad (4,4,1) \]

\[A_{83}\frac{\sqrt{r}}{k}q^4 + A_{83}(q^4 + 1) + A_{10,2}\frac{\sqrt{r}}{k}(-q^2) + A_{42}(q^4 + 1) = 0 \quad (4,4,2) \]

\[A_{92}\frac{\sqrt{r}}{k}(-q^3) + A_{81}\frac{\sqrt{r}}{k}q^3 + A_{10,3}\frac{\sqrt{r}}{k}q^4(2q^2 - 1) + A_{43}(q^4 - 1) + A_{10,4}q^4 + 1 = 0 \quad (4,4,3) \]

\[A_{44} = 0 \quad (4,4,4) \]

Proof. The above equations are derived by comparing the coefficients of \(\omega_4 \otimes \omega_4 \otimes \omega_1 \), \(\omega_4 \otimes \omega_2 \otimes \omega_4 \) and \(\omega_4 \otimes \omega_4 \otimes \omega_4 \) in (7).

Theorem 5.17. For the 4D\(_\pm\) calculi, the map

\[((0(P_{\text{sym}}))_{23}) : (\mathcal{E} \otimes_{\mathcal{E}} \mathcal{E}) \otimes \mathcal{E} \rightarrow \mathcal{E} \otimes (\mathcal{E} \otimes_{\mathcal{E}} \mathcal{E}) \]

is an isomorphism except for, possibly, finitely many values of \(q \in (-1, 1) \backslash \{0\} \). Hence, for each bi-invariant pseudo-Riemannian metric \(g \), there exists a unique bicovariant Levi-Civita connection for each calculus.

Proof. By the discussion preceding the above series of preparatory lemmas, we need to show that the system of equations given above admit only the trivial solution for \(A_{ij} \), \(i = 1, \ldots, 10 \), \(j = 1, \ldots, 4 \). We then proceed to solve these equations for all \(A_{ij} \). Note that the following variables are all identically zero in the above over-determined system:

\(A_{11} \) (by (1,1,1)), \(A_{94} \) (by (1,4,4)), \(A_{51} \) (by (2,1,1)), \(A_{22} \) (by (2,2,2)), \(A_{84} \) (by (2,4,4)), \(A_{71} \) (by (3,1,1)), \(A_{62} \) (by (3,2,2)), \(A_{10,4} \) (by (3,4,4)), \(A_{91} \) (by (4,1,1)), \(A_{82} \) (by (4,2,2)) and \(A_{44} \) (by (4,4,4)).
This reduces the equations (1,3,1) and (1,4,1) to the following exact system of linear equations in the variables A_{13} and A_{14}, with the associated matrix having determinant $q^2(q^2 + 1)^2$:

$$A_{13}2q^2 + A_{14}\frac{k}{q}(q^2(q - q^{-1})^2) = 0$$

$$A_{13}(\frac{q}{k} + 2) + A_{14}(q^4 + 1) = 0$$

Hence the solution for the variables A_{13} and A_{14} is zero.

We repeat this process for the rest of the A_{ij}, identifying a subset of equations which has been reduced to an exact one due to the previously solved q in the current set are also solved to be 0 except for at most finitely many value of $q \in (-1,1) \setminus \{0\}$. (2,2,3) and (2,2,4) reduce to the following system of linear equations in A_{23} and A_{24} with determinant $(q^2 + 1)^2$:

$$A_{23}(-q^4 + 2q^2 + 1) + A_{24}(-\frac{k}{q}(q^4 - 2q^2 + 1)) = 0$$

$$A_{23}(\frac{q}{k} + 2) + A_{24}(q^4 + 1) = 0$$

(4,1,3), (4,1,4) and (4,3,1) reduce to the following system of linear equations in A_{41}, A_{93}, $A_{10,1}$ with determinant $2q^{10} - 2q^4 - 2q^2 + 2$:

$$A_{93}(q^4 + 2q^2 - 1) + A_{10,1}(2q^2 + A_{41}\frac{k}{q}q^{-2}(q^2 - 1)) = 0$$

$$A_{93}(\frac{q}{k} - q^2) + A_{10,1}(q^4 + 1) = 0$$

$$A_{93}(q^4 + 2q^2 - 1) + A_{10,1}(q^4 - 2q^2 + 1) + A_{41}\frac{k}{q}(q^2 - 1)^2 = 0$$

(4,1,2), (4,2,1), (4,3,3) and (4,4,3) reduce to the following system of linear equations in A_{43}, A_{81}, A_{92}, $A_{10,3}$ with determinant $4q^{14} + 10q^{12} - 10q^{10} - 8q^8 + 26q^4 - 26q^2 + 4$:

$$A_{92}(q^4 + 2) + A_{43}(2q^2 + A_{10,3}(-2q^2 - 1) + A_{41}\frac{k}{q}(q^2 - 1)^2) = 0$$

$$A_{92}(2q^2 - 1) + A_{43}(q^4 + 1) + A_{10,3}(2q^2 - 1) + A_{41}\frac{k}{q}(q^2 - 1)^2 = 0$$

$$A_{92}(2q^2 - 1) + A_{43}(-2q^3 + 2q) + A_{10,3}(-q^4 + 6q^2 - 1) + A_{41}\frac{k}{q}(q^2 - 1)^3 = 0$$

$$A_{92}(\frac{q}{k} - q^3) + A_{43}(\frac{q}{k} - q^3) + A_{10,3}\frac{q}{k}q^2(q^2 - 1) + A_{43}(q^4 - 1) = 0$$

(3,4,3), (3,1,2), (3,2,1) and (3,3,3) reduce to the following system of linear equations in A_{33}, A_{34}, A_{61}, A_{72} with determinant $-2q^2(q - 1)^2(q + 1)^2(q^2 + 1)^2$:

$$A_{72}\frac{q}{k}(q^3) + A_{61}\frac{q}{k}q^3 = 0$$

$$A_{72}(q^4 + 2) + A_{61}(2q^2 + A_{33}(-2q^2 - 1) + A_{34}\frac{k}{q}(q^2 - 2 + q^{-2}) = 0$$

$$A_{72}(2q^2 - 1) + A_{61}(q^4 + 1) + A_{33}(-2q^2 - 1) + A_{34}\frac{k}{q}(q^2 - 2 + q^{-2}) = 0$$

$$A_{61}(-2q^3 + 2q) + A_{33}(-q^4 + 6q^2 - 1) + A_{34}\frac{k}{q}(q^4 - q^{-1})^3 = 0$$

(2,1,3) and (2,1,4) reduce to the following system of equations in A_{53} and A_{54} with determinant $q^4(q^2 + 1)^2$:

$$A_{53}(q^4 + 2q^2 - 1) + A_{54}\frac{k}{q}(q^2 - 2 + q^{-2}) = 0$$

$$A_{53}(\frac{q}{k} - q^2) + A_{54}(q^4 + 1) = 0$$

(1,1,2), (1,2,1), (1,3,3) and (1,3,4) reduce to a system of equations in A_{12}, A_{31}, A_{73}, A_{74} with determinant a non-zero polynomial in q:
By Theorem\(2.12)\), \((2.2.1), (2.3.3), (2.3.4)\) and \((2.4.3)\) reduce to a system of equations in \(A_{21}, A_{52}, A_{63}, A_{64}, A_{83}\) with determinant a non-zero polynomial in \(q\):

\[
A_{52}(q^4 + 2) + A_{21}(2q^2) + (A_{63}q^2 + A_{64}\frac{t^2k}{q^2}\sqrt{r})2q(q^2 - 1)
+ A_{63}\left(k\frac{1}{q^2}\sqrt{r}(q^2 - 1)^2\right) + (A_{64}q^2 + A_{84}\frac{t^2k}{q^2}\sqrt{r})(q^2 - 2 + q^2) = 0
\]

\[
A_{52}(2q^2 - 1) + A_{21}(q^2 + 1) + (A_{63}q^2 + A_{83}\frac{t^2k}{q^2}\sqrt{r})(-2q(q^2 - 1))
+ A_{83}\left(k\frac{1}{q^2}\sqrt{r}(q^2 - 1)^2\right) + (A_{64}q^2 + A_{84}\frac{t^2k}{q^2}\sqrt{r})(-q^2 + 2 + q^2) = 0
\]

\[
A_{52}2q^2(q^2 - 1) + A_{21}(-2q^3 + 2q) + (A_{63}q^2 + A_{83}\frac{t^2k}{q^2}\sqrt{r})(-q^4 + 6q^2 - 1)
+ A_{83}\left(k\frac{1}{q^2}\sqrt{r}(-q^2 - q - 1)^3\right) + (A_{64}q^2 + A_{84}\frac{t^2k}{q^2}\sqrt{r})(q^2 + 2q^2)
\]

\[
A_{21}\left(k\frac{1}{q^2}\sqrt{r}q^3 + (A_{63}q^2 + A_{83}\frac{t^2k}{q^2}\sqrt{r})q^4 + A_{83}(3q^2 - 1) + 2q^2)\right)
+ (A_{64}q^2 + A_{84}\frac{t^2k}{q^2}\sqrt{r})(q^4 + 1) = 0
\]

\[
A_{52}\left(k\frac{1}{q^2}\sqrt{r}(-q^3) + A_{21}\left(k\frac{1}{q^2}\sqrt{r}q^3 + (A_{63}q^2 + A_{83}\frac{t^2k}{q^2}\sqrt{r})q^2\right)\right)q^2 = 0
\]

\[
A_{83}(q^4 - 1) + (A_{64}q^2 + A_{84}\frac{t^2k}{q^2}\sqrt{r})(q^4 + 1) = 0
\]

\((3.3.2)\) and \((3.4.2)\) reduce to a system of equations in \(A_{32}, A_{10,2}\) with determinant \(q^4(q^2 + 1)^2\):

\[
A_{32}(q^4 + 2q^2 - 1) + A_{10,2}\frac{t^2k}{q^2}\sqrt{r}q^2(q^2 - 1)^2 = 0
\]

\[
A_{32}\left(k\frac{1}{q^2}\sqrt{r}q^2(q^2 - 1)^2\right) + A_{10,2}(q^4 + 1) = 0
\]

Finally, \((4.2.3)\) reduces identically to \(A_{42} = 0\).

Hence we have shown that all \(A_{ij}\) are identically equal to zero except for almost finitely many values of \(q \in (-1, 1)\). Therefore, \((\sigma(P_{\text{Sym}}))_{21}|_{o(\mathcal{O})_{(2, 0)\mathcal{O} \mathcal{C} \mathcal{E}}}\) is an isomorphism if \(q\) does not belong to this finite subset.

Since \(SU_q(2)\) is a cosemisimple Hopf algebra, and we have shown that the map \(\sigma\) is diagonalisable, by Theorem 2.7, for each bi-invariant pseudo-Riemannian metric \(g\), each of the \(4D_\pm\) calculi admits a unique bicovariant Levi-Civita connection for all but finitely many \(q\).

The proof of Theorem 2.7, as given in [3], involves explicitly constructing a Levi-Civita connection for each triple \((\mathcal{E}, d, g)\), subject to the accompanying hypothesis. In Theorem 5.17, we have shown that the hypothesis holds for the \(4D_\pm\) calculi and for any bi-invariant pseudo-Riemannian metric. In this subsection, we provide the explicit construction of the Levi-Civita connection for a fixed arbitrary bi-invariant pseudo-Riemannian metric \(g\). For this we will need to recall some definitions and results from [3].
Definition 5.18. Let E and g be as above. We define a map

$$V_g : oE \to (oE)^*, \quad V_g(e)(f) = g(e \otimes_A f).$$

Definition 5.19. Let g be as above. We define a map

$$g^{(2)} : (oE \otimes_C oE) \otimes (oE \otimes_C oE) \to C$$

by the formula

$$g^{(2)}((e_1 \otimes_C e_2) \otimes (e_3 \otimes_C e_4)) = g(e_1 \otimes_A g(e_2 \otimes_A e_3) \otimes_A e_4)$$

for all e_1, e_2, e_3, e_4 in oE.

We also define a map $V_{g^{(2)}} : (oE \otimes_C oE) \to (oE \otimes_C oE)^* := \text{Hom}_C(oE \otimes_C oE, C)$ by the formula

$$V_{g^{(2)}}(e_1 \otimes_C e_2)(e_3 \otimes_C e_4) = g^{(2)}((e_1 \otimes_A e_2) \otimes_A (e_3 \otimes_A e_4)).$$

Proposition 5.20. (Lemma 4.4 and 4.9 of [3]) The map V_g is one-one and hence a vector space isomorphism from oE to $(oE)^*$. Moreover, the map $V_{g^{(2)}}$ is a vector space isomorphism from $oE \otimes_C oE$ onto $(oE \otimes_C oE)^*$.

Definition 5.21. Let V and W be finite dimensional complex vector spaces. The canonical vector space isomorphism from $V \otimes_A W^*$ to $\text{Hom}_C(W, V)$ will be denoted by the symbol $\zeta_{V,W}$. It is defined by the formula:

$$\zeta_{V,W} \left(\sum v_i \otimes \phi_i(w) \right) = \sum v_i \phi_i(w). \quad (8)$$

Lemma 5.22. (Lemma 3.12 of [3]) The following maps are vector space isomorphisms:

$$\zeta_{oE \otimes_C oE} : (oE \otimes_C oE) \otimes (oE)^* \to \text{Hom}_C(oE \otimes_C oE, oE)$$

$$\zeta_{oE \otimes_C oE} : oE \otimes (oE \otimes_C oE)^* \to \text{Hom}_C(oE \otimes_C oE, oE)$$

Definition 5.23. Given the maps $\zeta_{oE \otimes_C oE}, \zeta_{oE \otimes_C oE}, V_g, V_{g^{(2)}}$ and $0(P_{sym})_{23}$, the map

$$\tilde{\Phi}_g : \text{Hom}_C(oE \otimes_C oE, oE) \to \text{Hom}_C(oE \otimes_C oE, oE)$$

is defined such that the following diagram commutes:

$$\xymatrix{ \text{Hom}_C(oE \otimes_C oE, oE) & (oE \otimes_C oE)^* \ar[l]_{\zeta_{oE \otimes_C oE}} \ar[r]^{(0P_{sym})_{23}} & (oE \otimes_C oE, oE) \ar[l]_{\tilde{\Phi}_g} }$$

Remark 5.24. In Theorem 5.17, we proved that the map $0(P_{sym})_{23} : (oE \otimes_C oE) \otimes (oE \otimes_C oE) \to (oE \otimes_C oE, oE)$ is an isomorphism. By Proposition 5.20 and Lemma 5.22, the remaining legs of the above commutative diagram are isomorphisms. Hence, $\tilde{\Phi}_g : \text{Hom}_C(oE \otimes_C oE, oE) \to \text{Hom}_C(oE \otimes_C oE, oE)$ is also an isomorphism.

Theorem 5.25. For a fixed bi-invariant pseudo-Riemannian metric g, the bicovariant Levi-Civita connection ∇ is defined on elements of oE by

$$\nabla = \nabla_0 + \tilde{\Phi}_g^{-1}(dg - \bar{\Pi}_0^g(\nabla_0)), \quad (9)$$

where ∇_0 is the bicovariant torsionless connection constructed in Theorem 4.2. Here, ∇_0 and g are considered as restrictions on oE and $oE \otimes_C oE$ respectively.

Proof. Let us recall from Remark 4.1, that it is sufficient to define a connection on oE to define it on the whole of E. Next, by (4), $\bar{\Pi}_0^g(\nabla_0)$ is a well-defined map in $\text{Hom}_C(oE \otimes_C oE, oE)$. The map dg is a well-defined map in $\text{Hom}_C(oE \otimes_C oE, oE)$. (Indeed it is the zero-map, since g maps $oE \otimes_C oE$ to C, and d maps C to 0. That we write it at all in the formula of ∇ is because of how it appears in the proof of Proposition 7.3 of [3].) We have already remarked that $\tilde{\Phi}_g$ is a well-defined isomorphism from $\text{Hom}_C(oE \otimes_C oE, oE)$ to $\text{Hom}_C(oE \otimes_C oE, oE)$. Hence, the right-hand side of (9) is a well-defined map in $\text{Hom}_C(oE \otimes_C oE, oE)$. That it defines the unique bicovariant Levi-Civita connection on E follows from the proofs of Proposition 7.3 and Theorem 7.8 of [3], and we leave out the details.
References

[1] E.J. Beggs and S. Majid: Quantum Riemannian geometry, Grundlehren der mathematischen Wissenschaften, Springer Verlag, 2019

[2] J. Bhowmick and S. Mukhopadhyay: Pseudo-Riemannian metrics on bicovariant bimodules, arxiv: 1911.06036v1.

[3] J. Bhowmick and S. Mukhopadhyay: Covariant connections on bicovariant differential calculus, arxiv: 1912.04689v1.

[4] A. Connes: Noncommutative geometry. Academic Press, Inc., San Diego, CA, 1994.

[5] I. Heckenberger and K. Schm¨ udgen : Levi-Civita Connections on the Quantum Groups $SL_q(N) \ O_q(N)$ and $Sp_q(N)$, Comm. Math. Phys. 185, 1997 177–196.

[6] Piotr Stachura: Bicovariant differential calculi on $S_n U(2)$, Lett. Math. Phys., 25, 1992, 3, 175–188.

[7] S.L. Woronowicz: Twisted SU(2) group. An example of a noncommutative differential calculus, Publ. Res. Inst. Math. Sci., Kyoto University. Research Institute for Mathematical Sciences. Publications, 23, 1987, 1, 117–181.

[8] S.L. Woronowicz: Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys., 122, 1989, 1, 125–170.