SUPPLEMENTARY MATERIAL

Two new sesquiterpenoids from the marine-sediment-derived fungus

Trichoderma harzianum P1-4

Sheng-Tao Fang, Ying-Jie Wang, Xin-Yue Ma, Xiu-Li Yin, Nai-Yun Ji*

Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China

Three cyclonerane sesquiterpenoids, including the known cyclonerodiol (1), together with its new derivatives, (10E)-12-acetoxy-10-cycloneren-3,7-diol (2) and 12-acetoxycyclonaran-3,7-diol (3) were isolated from the cultures of marine-sediment-derived fungus Trichoderma harzianum P1-4. The structures of the new compounds (2 and 3) were elucidated based on extensive spectroscopic methods (1D/2D NMR and HR-MS) and optical rotation analysis.

Keywords: Trichoderma harzianum; sesquiterpenoid; marine fungus; cyclonerodiol
List of Supporting Information

Table S1. Nuclear magnetic resonance data for compounds 2 and 3 (in CDCl₃, δ in ppm, J in Hz)

Figure S1. Key COSY (bold line) and HMBC (arrow) correlations of 2 and 3.

Figure S2. Key NOE correlations (double-headed arrow) of 2 and 3.

Figure S3. ¹H NMR spectrum of compound 2.

Figure S4. ¹³C NMR and DEPT spectra of compound 2.

Figure S5. ¹H, ¹H COSY spectrum of compound 2.

Figure S6. HSQC spectrum of compound 2.

Figure S7. HMBC spectrum of compound 2.

Figure S8. NOESY spectrum of compound 2.

Figure S9. EI-MS of compound 2.

Figure S10. HR-EI-MS of compound 2.

Figure S11. ¹H NMR spectrum of compound 3.

Figure S12. ¹³C NMR and DEPT spectra of compound 3.

Figure S13. ¹H, ¹H COSY spectrum of compound 3.

Figure S14. HSQC spectrum of compound 3.

Figure S15. HMBC spectrum of compound 3.

Figure S16. NOESY spectrum of compound 3.

Figure S17. EI-MS of compound 3.

Figure S18. HR-EI-MS of compound 3.
Table S1. Nuclear magnetic resonance data for compounds 2 and 3 (in CDCl$_3$, δ in ppm, J in Hz)

No.	2		3	
	δ$_H$	δ$_C$	δ$_H$	δ$_C$
1	1.07 (d, 6.9)	14.5 (CH$_3$)	1.07 (d, 6.9)	14.5 (CH$_3$)
2	1.63 (m)	44.3 (CH)	1.63 (m)	44.2 (CH)
3		81.3 (C)		81.3 (C)
4	1.71 (m), 1.58(m)	40.4 (CH$_2$)	1.70 (m), 1.58(m)	40.4 (CH$_2$)
5	1.88 (m), 1.58 (m)	24.3 (CH$_2$)	1.87 (m), 1.57 (m)	24.3 (CH$_2$)
6	1.88 (m)	54.3 (CH)	1.86 (m)	54.2 (CH)
7		74.7 (C)		74.8 (C)
8	1.55 (t, 8.4)	39.9 (CH$_2$)	1.46 (m)	40.8 (CH$_2$)
9	2.15 (m)	22.4 (CH$_2$)	1.45(m), 1.33(m)	21.1 (CH$_2$)
10	5.49 (td, 7.1, 1.0)	129.6 (CH)	1.40 (m), 1.18 (m)	34.0 (CH$_2$)
11		130.2 (C)	1.81 (m)	32.6 (CH)
12	4.48 (s)	70.2 (CH$_2$)	3.98 (dd, 10.7, 6.0)	69.4 (CH$_2$)
			3.89 (dd, 10.7, 6.8)	
13	1.29 (s)	26.1 (CH$_3$)	1.29 (s)	26.1 (CH$_3$)
14	1.20 (s)	25.1 (CH$_3$)	1.18 (s)	25.2 (CH$_3$)
15	1.70 (s)	14.0 (CH$_3$)	0.96 (d, 6.8)	16.8 (CH$_3$)
1'		171.0 (C)		171.3 (C)
2'	2.10 (s)	21.0 (CH$_3$)	2.08 (s)	21.0 (CH$_3$)
Figure S1. Key COSY (bold line) and HMBC (arrow) correlations of 2 and 3.

Figure S2. Key NOE correlations (double-headed arrow) of 2 and 3.
Figure S3. 1H NMR spectrum of compound 2.

Figure S4. 13C NMR and DEPT spectra of compound 2.
Figure S5. 1H,1H COSY spectrum of compound 2.

Figure S6. HSQC spectrum of compound 2.
Figure S7. HMBC spectrum of compound 2.

Figure S8. NOESY spectrum of compound 2.
Figure S9. EI-MS of compound 2.

Figure S10. HR-EI-MS of compound 2.
Figure S11. 1H NMR spectrum of compound 3.

Figure S12. 13C NMR and DEPT spectra of compound 3.
Figure S13. 1H,1H COSY spectrum of compound 3.

Figure S14. HSQC spectrum of compound 3.
Figure S15. HMBC spectrum of compound 3.

Figure S16. NOESY spectrum of compound 3.
Figure S17. EI-MS of compound 3.

Figure S18. HR-EI-MS of compound 3.