The universal cover of an algebra without double bypass

Patrick Le Meur

Abstract

Let A be a basic and connected finite dimensional algebra over a field k of characteristic zero. We show that if the quiver of A has no double bypass then the fundamental group (as defined in [17]) of any presentation of A by quiver and relations is the quotient of the fundamental group of a privileged presentation of A. Then we show that the Galois covering of A associated with this privileged presentation satisfies a universal property with respect to the connected Galois coverings of A in a similar fashion to the universal cover of a topological space.

Introduction

In this text, k will be an algebraically closed field. Let A be a finite dimensional algebra over k. In order to study left A-modules we may assume that A is basic and connected, where basic means that A is the direct sum of pairwise non isomorphic indecomposable projective left A-modules. For such an algebra, the study of the Galois coverings of A gives some information on the representation theory of A (see [7], [11] and [17]) and is a particular case of the covering techniques introduced in [6], [10] and [18]. In order to manipulate coverings of A we will always consider, unless otherwise stated, A as a k-category with set of objects a complete set $\{e_i\}_i$ of primitive pairwise orthogonal idempotents and with morphisms space $e_i \rightarrow e_j$ the vector space $e_j A e_i$. The covering techniques have led to the definition (see [11] and [17]) of a fundamental group associated with any presentation of A by quiver and admissible relations, and which satisfies many topological flavoured properties (see [3], [11] and [17]). This construction and its associated properties depend on the choice of a presentation of A. In particular, one can find algebras for which there exist different presentations giving rise to non isomorphic fundamental groups. In this text we compare the fundamental groups of the presentations of A as defined in [17], and we study the coverings of A with the following question in mind: does A have a universal Galois covering? i.e. does A admit a Galois covering which is factorised by any other Galois covering? This question has been successfully treated when A is representation-finite (see [6] and [10]). The present study will involve quivers “without double bypass”. In simple terms, a quiver without double bypass is a quiver which has no distinct parallel arrows, no oriented cycle and has no subquiver of the following form \rightarrow where continued (resp. dotted) arrows represent arrows (resp. oriented paths) in the quiver. Assuming that k is a characteristic zero field and that the ordinary quiver Q of A has no double bypass, we prove the following result announced in [16]:
Theorem 1. Assuming the above conditions, there exists a presentation $kQ/I_0 \simeq A$ by quiver and relations such that for any other presentation $kQ/I \simeq A$ the identity map on the walks in Q induces a surjective group morphism $\pi_1(Q, I_0) \twoheadrightarrow \pi_1(Q, I)$.

The proof of the above theorem allows us to recover the following fact proven in [5]: if A is a basic triangular connected and constricted finite dimensional k-algebra, then different presentations of A give rise to isomorphic fundamental groups. Under the hypotheses made before stating Theorem 1 and with the same notations, if $k\tilde{Q}/\tilde{I}_0 \rightarrow kQ/I_0$ is the Galois covering with group $\pi_1(Q, I_0)$ induced by the universal Galois covering of (Q, I_0) (see [17]), we show the following result.

Theorem 2. For any connected Galois covering $F: C' \rightarrow A$ with group G there exist an isomorphism $k\tilde{Q}/I_0 \sim A$, a Galois covering $p: k\tilde{Q}/I_0 \rightarrow C'$ with group a normal subgroup N of $\pi_1(Q, I_0)$ and a commutative diagram:

$$
\begin{array}{ccc}
k\tilde{Q}/I_0 & \xrightarrow{p} & C' \\
F_0 \downarrow & & \downarrow F \\
kQ/I_0 & \sim & A
\end{array}
$$

Hence Theorem 2 partially answers the question concerning the existence of a universal Galois covering. The text is organised as follows: in Section 1 we define the notions we will use, in Section 2 we prove Theorem 1, in Section 3 we give useful results on covering functors, these results will be used in the proof of Theorem 2 to which Section 4 is devoted. Section 2 gives the proofs of all the results that were announced by the author in [16]. This text is part of the author’s thesis made at Université Montpellier 2 under the supervision of Claude Cibils.

1 Basic definitions

k-categories, covering functors, Galois coverings

A k-category is a category \mathcal{C} such that the objects class \mathcal{C}_0 of \mathcal{C} is a non empty set and such that each set \mathcal{C}_x of morphisms $x \rightarrow y$ of \mathcal{C} is a k-vector space with k-bilinear composition. Let \mathcal{C} be a k-category. We will say that \mathcal{C} is **locally bounded** if the following properties are satisfied:

- a) distinct objects are not isomorphic,
- b) for each $x \in \mathcal{C}_0$, the k-algebra \mathcal{C}_x is local,
- c) $\bigoplus_{y \in \mathcal{C}_0} \mathcal{C}_x$ is finite dimensional for any $x \in \mathcal{C}_0$,
- d) $\bigoplus_{x \in \mathcal{C}_0} \mathcal{C}_x$ is finite dimensional for any $y \in \mathcal{C}_0$.

Unless otherwise stated, all the k-categories we will introduce will be locally bounded. As an example, let A be a basic finite dimensional k-algebra. If $1 = \sum_{i=1}^n e_i$ is a decomposition of the unit into a sum of primitive orthogonal idempotents, then $A = \bigoplus_{i,j} e_i e_j A e_j$ and A is a locally bounded k-category with set of objects $\{e_1, \ldots, e_n\}$ and with morphisms space $e_i \rightarrow e_j$ equal to $e_j A e_i$. We will say that the k-category \mathcal{C} is **connected** if for any $x, y \in \mathcal{C}_0$ there exists a sequence $x_0 = x, \ldots, x_n = y$ in \mathcal{C}_0 such that $x_i \mathcal{C}_{x_{i+1}} \neq 0$ or $x_{i+1} \mathcal{C}_x \neq 0$ for any i. Recall that an **ideal** I of \mathcal{C} is the data of vector subspaces $yI_x \subseteq y\mathcal{C}_x$ for each $x, y \in \mathcal{C}_0$, such that the composition of a morphism in I with any morphism in \mathcal{C} lies in I. The **radical** (see [6]) of \mathcal{C} is the ideal $\mathcal{R}\mathcal{C}$ of \mathcal{C} such
that yRC_x is the set of non invertible morphisms $x \to y$ for any $x, y \in C_0$. If $n \geq 2$ we set $R^nC = (RC)^n$. The ordinary quiver of C has set of vertices C_0, and for $x, y \in C_0$ the number of arrows $x \to y$ is exactly $\text{dim}_k yRC_x/yR^2C_x$. Finally, we say that C is triangular if its ordinary quiver has no oriented cycle. All functors are assumed to be k-linear functors between k-categories.

A functor $F : E \to B$ is called a covering functor (see [6]) if the following properties are satisfied:

a) $F^{-1}(x) \neq \emptyset$ for any $x \in B_0$,

b) for any $x_0, y_0 \in C$ and any $\hat{x}_0, \hat{y}_0 \in E_0$ such that $F(\hat{x}_0) = x_0$ and $F(\hat{y}_0) = y_0$, the following maps induced by F are isomorphisms:

$$
\bigoplus_{x \in \hat{x}_0} yE_{\hat{x}_0} \to y_0 B_{x_0} \quad \text{and} \quad \bigoplus_{x \in \hat{x}_0} y\hat{y}_0 E_{\hat{x}_0} \to y_0 B_{x_0}.
$$

In particular, if $u \in B_{y_0}$, the inverse images of u by these isomorphisms will be called the lifting of u (w.r.t. F) with source (resp. target) \hat{x}_0 (resp. \hat{y}_0). Recall that if E is locally bounded (resp. connected) then so is B.

A G-category is a k-category C endowed with a group morphism $G \to \text{Aut}(C)$. Moreover, if the induced action of G on C_0 is free, then C is called a free G-category. The quotient category C/G of a free G-category C (see [7] for instance) has set of objects C_0/G. For any $\alpha, \beta \in C_0/G$ we set:

$$
\beta(C/G)_\alpha = \left(\bigoplus_{x \in \alpha, y \in \beta} yC_x \right) / G
$$

and the composition is induced by the composition in C. The natural projection $C \to C/G$ is a covering functor. A Galois covering with group G is a functor $F : E \to B$ with E a free G-category and such that there exists a commutative diagram:

$$
\begin{array}{ccc}
E & \xrightarrow{F} & B \\
\downarrow \sim & & \downarrow \sim \\
E/G & \to & B
\end{array}
$$

where $E \to E/G$ is the natural projection and the horizontal arrow is an isomorphism. In particular a Galois covering is a covering functor. A connected Galois covering is a Galois covering $E \to B$ where E is connected.

A G-graded category is a k-category C such that each morphism space has a decomposition $yC_x = \oplus_{y \in G} yC^h_x$ satisfying $zC^h_y \subseteq zC^h_x$. The smash-product category (see [7]) C^G_2 has set of objects $(C^G_2)_0 = C_0 \times G$, and $(y,t)(C^G_2)_{(x,s)} = yC^h_{(x,s)}$ for (x,s) and (y,t) in $(C^G_2)_0$. The composition in C^G_2 is induced by the composition in C. The natural projection $F : C^G_2 \to C$, defined by $F(x,s) = x$ and $F(u) = u$ for $u \in (y,t)(C^G_2)_{(x,s)} \subseteq yC_x$, is a Galois covering with group G. It has been shown in [7] that if $p : E \to B$ is a Galois covering with group G, then B is a G-graded category and there exists a commutative diagram:

$$
\begin{array}{ccc}
\hat{E} & \xrightarrow{\hat{\varphi}} & B^G_2 \\
\downarrow p & & \downarrow \sim \\
\hat{B} & \to & B
\end{array}
$$

where $B^G_2 \to B$ is the natural projection and φ is an isomorphism.
Quivers with admissible relations

Let Q be a locally finite quiver with set of vertices Q_0, set of arrows Q_1 and source and target maps $s,t: Q_1 \to Q_0$ respectively. Recall that locally finite means that $s^{-1}(x)$ and $t^{-1}(x)$ are finite sets for any $x \in Q_0$. For simplicity we will write x^+ (resp. x^-) for the set $s^{-1}(x)$ (resp. $t^{-1}(x)$). A (non trivial) oriented path in Q is a non empty sequence $\alpha_1, \ldots, \alpha_n$ of arrows of Q such that $s(\alpha_{i+1}) = t(\alpha_i)$ for any $1 \leq i \leq n-1$. Such a path is written $\alpha_n \ldots \alpha_1$, its source (resp. target) is $s(\alpha_1)$ (resp. $t(\alpha_n)$). For each $x \in Q_0$ we will write e_x for the (trivial) path of length 0 and with source and target equal to x. The path category kQ has set of objects Q_0, the morphism space y^kQ_x is the vector space with basis the set of oriented paths in Q with source x and target y (including e_x in case $x = y$). The composition of morphisms in kQ is induced by the concatenation of paths. Notice that kQ is a free k-category in the following sense: for any k-category \mathcal{C}, a functor $kQ \xrightarrow{F} \mathcal{C}$ is uniquely determined by the family of morphisms $\{F(\alpha) \in F(y)\mathcal{C}F(x) \mid x \to y \in Q_1\}$. We will denote by kQ^+ the ideal of kQ generated by Q_1. Notice also that if Q_0 is finite then kQ is also a k-algebra, $kQ = \oplus_{x,y} y^kQ_x$, with unit $1 = \sum_{x \in Q_0} e_x$, and kQ^+ becomes an ideal of this k-algebra. If $r \in y^kQ_x$ we define the support of r (denoted by $\text{supp}(r)$) to be the set of paths in Q which appear in r with a non zero coefficient. Moreover, we define normal form of r as an equality of the type $r = \sum_i \lambda_i u_i$ such that $\lambda_i \in k^*$ for any i and where the paths u_i are pairwise distinct. An admissible ideal of kQ is an ideal $I \subseteq kQ$ such that $I \subseteq (kQ^+)^2$ and such that for any $x \in Q_0$ there exists $n \geq 2$ such that I contains all the paths with length at least n and with source or target x. The couple (Q,I) is then called a quiver with admissible relations and the quotient category kQ/I is locally bounded. When Q_0 is finite, an admissible ideal I of kQ is exactly an ideal I of the k-algebra kQ such that $(kQ^+)^n \subseteq I \subseteq (kQ^+)^2$ for some integer $n \geq 2$. Recall from [6] that if \mathcal{C} is a locally bounded k-category then there exists an admissible ideal I for the ordinary quiver Q of \mathcal{C} and there exists an isomorphism $kQ/I \xrightarrow{\sim} \mathcal{C}$. Such an isomorphism is called a presentation of \mathcal{C} with quiver and (admissible) relations (or an admissible presentation for short). Similarly, if A is a basic finite dimensional k-algebra, an admissible presentation of A is an isomorphism of k-algebras $kQ/I \xrightarrow{\sim} A$ where (Q,I) is a bound quiver.

Transvections, dilatations

A bypass (see [2]) in Q is a couple (α,u) where $\alpha \neq u$, $\alpha \in Q_1$ and u is a path in Q parallel to α (this means that α and u share the same source and the same target). A double bypass is a 4-tuple (α,u,β,v) such that (α,u) and (β,v) are bypasses and such that the arrow β appears in the path u. Notice that if α,β are distinct parallel arrows of Q, then $(\alpha,\beta,\beta,\alpha)$ is a double bypass. Notice also that if $u = va$ is an oriented cycle in Q with first arrow a, then (a,au,a,au) is a double bypass. Hence, if Q has no double bypass, then Q has no distinct parallel arrows and no oriented cycle. If A is a basic k-algebra with quiver Q, we will say that A has no double bypass if Q has no double bypass. A transvection is an automorphism of the k-category kQ of the form $\varphi_{\alpha,u,\tau}$ where (α,u) is a bypass, $\tau \in k$ and $\varphi_{\alpha,u,\tau}$ is given by $\varphi_{\alpha,u,\tau}(\alpha) = \alpha + \tau u$ and $\varphi_{\alpha,u,\tau}(\beta) = \beta$ for any arrow $\beta \neq \alpha$ (this uniquely defines $\varphi_{\alpha,u,\tau}$ since kQ is a free k-category). Notice that Q has no double bypass if and only if any two transvections commute. A dilatation is an automorphism $D: kQ \xrightarrow{\sim} kQ$ such that $D(\alpha) \in k^*\alpha$ for any arrow α. Notice that the definitions of transvections and dilatations are analogous to those of transvection and dilatation matrices (see [15, Chap. XIII, § 9] for instance).
Recall that a dilatation matrix of $GL_n(k)$ is a diagonal invertible matrix with at most one diagonal entry different from 1 and a transvection matrix is a matrix with diagonal entries equal to 1 and which has at most one non diagonal entry different from 0.

Fundamental group, coverings of quivers with relations

Let (Q, I) be a quiver with admissible relations. For each arrow $\alpha \in Q_1$ we will write α^{-1} for its formal inverse with source (resp. target) $s(\alpha^{-1}) = t(\alpha)$ (resp. $t(\alpha^{-1}) = s(\alpha)$).

A walk is an unoriented path in Q. More precisely it is a formal product $u_n \ldots u_1$ of arrows and of formal inverses of arrows such that $s(u_i) = t(u_{i+1})$ for any $1 \leq i \leq n - 1$. Let $r = t_1u_1 + \ldots + t_nu_n \in yI_x$ where $t_i \in k^*$ and where the paths u_i are distinct. Then r is called a *minimal relation* if for any non empty proper subset E of $\{1, \ldots, n\}$ we have $\sum_{i \in E} t_iu_i \not\in yI_x$. With this definition, any $r \in I$ can be written as the sum of minimal relations with pairwise disjoint supports. Notice that in this definition we do not assume n to be greater than or equal to 2 as done usually (see [17]). This change is done for simplicity and does not affect the constructions which follow. The homotopy relation of (Q, I) is the smallest equivalence relation \sim_I on the set of walks (in Q) which is compatible with the concatenation of walks and such that:

- $\alpha\alpha^{-1} \sim_I e_y$ and $\alpha^{-1}\alpha \sim_I e_x$ for any arrow $x \xrightarrow{\alpha} y$,
- $u_1 \sim_I u_2$ for any minimal relation $t_1u_1 + \ldots + t_nu_n$.

Notice that in order to compute \sim_I we may restrict ourselves to any set of minimal relations generating the ideal I (see [9]). Assume that Q is connected (i.e. Q is connected as an unoriented graph) and let $x_0 \in Q_0$. The fundamental group (see [17]) $\pi_1(Q, I, x_0)$ of (Q, I) at x_0 is the set of \sim_I-classes of walks starting and ending at x_0.

The composition is induced by the concatenation of walks and the unit is the \sim_I-class of e_{x_0}. Since different choices for x_0 give rise to isomorphic fundamental groups (since Q is connected) we shall write $\pi_1(Q, I)$ for short.

Example 1. (see [3]) Assume that Q is the following quiver:

```
  b
 / \ /
 a --- c
  \ / \
     d
```

and set $I =< da >$ and $J =< da - dcb >$. Then $kQ/I \cong kQ/J$ whereas $\pi_1(Q, I) \cong \mathbb{Z}$ and $\pi_1(Q, J) = 0$.

A covering $(Q', I') \xrightarrow{p} (Q, I)$ of quivers with admissible relations (see [17]) is a quiver morphism $Q' \xrightarrow{p} Q$ such that $p(I') \subseteq I$ and such that:

- a) $p^{-1}(x) \neq \emptyset$ for any $x \in Q_0$,
- b) $x^+ \xrightarrow{p} p(x)^+$ and $x^- \xrightarrow{p} p(x)^-$ are bijective for any $x \in Q_0$,
- c) for any minimal relation $r \in yI_x$ and for any $x' \in p^{-1}(y)$ there exist $y' \in p^{-1}(y)$ and $r' \in y'I_{x'}$ such that $p(r') = r$,
- d) same statement as c) after interchanging x and y.

Recall that the automorphism group $Aut(Q, I)$ of a bound quiver (Q, I) is the group of automorphisms $g: Q \cong Q$ of the quiver Q such that $g(I) \subseteq I$. Assume that $(Q', I') \xrightarrow{p} (Q, I)$ is a covering, then the group of automorphisms of p is defined by $Aut(p) = \{ g \in Aut(Q', I') \mid p \circ g = p \}$. If $(Q', I') \xrightarrow{p} (Q, I)$ is a covering and if G is a subgroup of $Aut(p)$, then p is called a Galois covering with group G if Q and Q' are connected and if G acts transitively on $p^{-1}(x)$ for any $x \in Q_0$. Notice that if $(Q', I') \xrightarrow{p} (Q, I)$ is
a covering (resp. a Galois covering with group G) then the induced functor $kQ'/I' \xrightarrow{\tilde{g}} kQ/I$ is a covering functor (resp. a Galois covering with group G). Let (Q, I) be a connected quiver with admissible relations and let $x_0 \in Q_0$. The universal cover of (Q, I) is a Galois covering $(\tilde{Q}, \tilde{I}) \xrightarrow{\pi} (Q, I)$ with group $\pi_1(Q, I, x_0)$ as defined in [17]. One can describe it as follows: \tilde{Q}_0 is the set of \sim_I-classes $[w]$ of walks w starting at x_0. The arrows of \tilde{Q} are the couples $(\alpha, [w])$ where $\alpha \in Q_1$ and $[w] \in \tilde{Q}_0$ are such that $s(\alpha) = t(w)$. The source (resp. target) of the arrow $(\alpha, [w])$ is $[w]$ (resp. $[\alpha w]$). The map $\tilde{Q} \xrightarrow{\tilde{g}} Q$ is defined by $p([w]) = t(w)$ and $p(\alpha, [w]) = \alpha$. The ideal \tilde{I} is equal to $p^{-1}(I)$. Finally, the action of $\pi_1(Q, I)$ on (\tilde{Q}, \tilde{I}) is the following: if $g \in \pi_1(Q, I)$ we may write $g = [\gamma]$ with γ some walk with source and target equal to x_0. Then for any $[w] \in \tilde{Q}_0$ (resp. $(\alpha, [w]) \in \tilde{Q}_1$) we have $g(w) = \gamma^{-1}([w])$ (resp. $g(\alpha, [w]) = (\alpha, [\gamma^{-1} w])$).

Some linear algebra

We introduce here some notions that will be useful in the sequel and that will be used without reference. Let E be a finite dimensional k-vector space with basis (e_1, \ldots, e_n) and let (e_1^*, \ldots, e_n^*) be the corresponding dual basis (i.e. $e_i^*(e_j) = 1$ and $e_i^*(e_j) = 0$ if $j \neq i$). If $\{r_I\}_{I \in T}$ is a family in E, then $Span(r_I ; t \in T)$ will denote the subspace of E generated by this family. If $r \in E$ we will write $supp(r)$ (the support of r) for the set of those e_i’s appearing in r with a non zero coefficient. Therefore $e_i \in supp(r)$ is equivalent to $e_i^*(r) \neq 0$. Let $F \subseteq E$ be a subspace. A non zero element $r \in F$ is called minimal if it cannot be written as the sum of two non zero elements of F with disjoint supports. We will denote by \equiv_F the smallest equivalence relation on $\{e_1, \ldots, e_n\}$ such that $e_i \equiv_F e_j$ for any $r \in F$ minimal and any $e_i, e_j \in supp(r)$. Like in the situation of the homotopy relation of a bound quiver, the equivalence relation \equiv_F is determined by any generating family of F made of minimal elements. Notice that if F is the vector space with basis the set of oriented paths in a finite quiver Q (without oriented cycle) and if I is an admissible ideal of kQ, then for any paths u and v we have: $u \equiv_F v \Rightarrow u \sim_I v$. The converse is usually false as one can see in Example 1 where $a \sim_J cb$ and $a \not\sim_J cb$. Assume now that the basis of E is totally ordered: $e_1 < \ldots < e_n$. A Gröbner basis of F is a basis (r_1, \ldots, r_l) of F such that:

- for any j there is some i_j such that $r_j \in e_{i_j} + Span(e_i ; i < i_j)$.
- $e_{i_j} \not\subset supp(r_j)$ unless $j = j'$.
- if $r = e_i + \sum_{i < j} r_i e_j \in F$ then $e_i = e_{i_j}$ for some j.

With this definition, F has a unique Gröbner basis which has a natural total order: $r_1 < \ldots < r_l$ if we assume that $i_1 < \ldots < i_l$. Moreover, r_1, \ldots, r_l are minimal elements of F. This last property implies in particular that $e_i \equiv_F e_j$ if and only if there exists a sequence of integers m_1, \ldots, m_p such that $e_i \in supp(r_{m_1}), e_j \in supp(r_{m_p})$ and $supp(r_{m_j}) \cap supp(r_{m_{j+1}}) \neq \emptyset$ for each j. Notice that our definition of Gröbner basis is slightly different from the classical one (see e.g. [1]) since we do not use any multiplicative structure. Moreover, our definition is linked with the notion of reduced echelon form matrix (see [14, p. 65]). We may also point out that a study of Gröbner bases in path algebras of quivers has been made in [8].

We end this paragraph with a reminder on the exponential and on the logarithm of an endomorphism. If $u \colon E \to E$ is a nilpotent endomorphism, we define the exponential of u to be $exp(u) = \sum_{l \geq 0} \frac{1}{l!} u^l$. Thus, $exp(u) : E \to E$ is a well defined linear isomorphism such that $exp(u) - Id$ is nilpotent. If $v : E \to E$ is an isomorphism such that $v - Id$ is nilpotent, we define the logarithm of v to be $log(v) = \sum_{l \geq 0} (-1)^{l+1} \frac{1}{l!} (v - Id)^l$. Recall that if $u : E \to E$ is a nilpotent endomorphism, then $log(exp(u)) = u$.

6
2 Proof of Theorem 1

In this section we provide the proof of Theorem 1 (see also [16, Thm 1.1]). We fix A a basic connected finite dimensional k-algebra with quiver Q. Throughout this section we will assume that Q has no oriented cycle. The proof of Theorem 1 decomposes into 4 steps as follows, and we will devote a subsection to each step:

a) If kQ/I and kQ/J are isomorphic to A as k-algebras, then there exists $\varphi: kQ \xrightarrow{\sim} kQ$ a product of transvections and of a dilatation such that $\varphi(I) = J$.

b) If $\varphi(I) = J$ and if φ is a dilatation then $\pi_1(Q, I) \simeq \pi_1(Q, J)$. If φ is a transvection, then there exists a surjective group morphism $\pi_1(Q, I) \to \pi_1(Q, J)$ or $\pi_1(Q, J) \to \pi_1(Q, I)$, induced by the identity map on the walks in Q.

c) The homotopy relations \sim_ℓ of the admissible presentations kQ/I of A can be displayed as the vertices of a quiver Γ such that for any arrow $\sim_\ell \to \sim_\ell$ the identity map on walks induces a surjective group morphism $\pi_1(Q, I) \to \pi_1(Q, J)$.

d) If k has characteristic zero and if Q has no double bypass, then the quiver Γ has a unique source. Moreover, if \sim_0 is the source of Γ then I_0 fits Theorem 1.

2.1 Different presentations of an algebra are linked by products of transvections and dilatations

In order to consider A as a k-category we need to choose a decomposition of the unit into a sum of primitive orthogonal idempotents. The following proposition shows that this choice is irrelevant and that we may fix these idempotents once and for all. We will omit the proof which is basic linear algebra.

Proposition 2.1. [16, 3.1] Let I and J be admissible ideals of kQ. If $kQ/I \simeq kQ/J$ as k-algebras then there exists $\varphi: kQ \xrightarrow{\sim} kQ$ an automorphism extending the identity map on Q_0 and such that $\varphi(I) = J$.

Recall that $GL_n(k)$ is generated by transvection and dilatation matrices. The following proposition states an analogous result for the group of automorphisms of kQ extending the identity map on Q_0.

Proposition 2.2. Let \mathcal{G} be the group of automorphisms of kQ extending the identity map on Q_0. Let $\mathcal{D} \subseteq \mathcal{G}$ be the subgroup of the dilatations of kQ and let $\mathcal{T} \subseteq \mathcal{G}$ be the subgroup generated by the transvections. Then \mathcal{T} is a normal subgroup and $\mathcal{G} = \mathcal{D}\mathcal{T} = \mathcal{T}\mathcal{D}$.

Remark 1. The group of automorphisms of an algebra has already been studied. More precisely the reader can find in [13], [20] and [21] a study of the group of outer automorphisms of an algebra.

Proof of Proposition 2.2: For any transvection $\varphi = \varphi_{\alpha,u,\tau}$ and any dilatation D we have $D\varphi D^{-1} = \varphi_{\alpha,u,\tau}^{-1}$ where $\lambda \in k^*$ and $\mu \in k^*$ are such that $D(\mu) = \lambda u$ and $D(\alpha) = \mu \alpha$. Hence, in order to prove the proposition, it is enough to prove that $\mathcal{G} = \mathcal{T}\mathcal{D}$. If $\psi \in \mathcal{G}$ we shall write $n(\psi)$ for the number of arrows $\alpha \in Q_1$ such that $\psi(\alpha) \notin k^*\alpha$. Notice that $n(\psi) = 0$ if and only if $\psi \in \mathcal{D}$. Let us prove by induction on $n \geq 0$ that $R_n : n(\psi) \leq n \Rightarrow \psi \in \mathcal{T}\mathcal{D}^n$ is true. Obviously R_0 is true. Let $n \geq 1$, assume that R_{n-1} is true, and let $\psi \in \mathcal{G}$ such that $n(\psi) = n$. Hence, there exists $x \xrightarrow{\alpha_1} y \in Q_1$ such that $\psi(\alpha_1) \notin k^*\alpha_1$. Let $\alpha_1, \ldots, \alpha_d$ be the arrows $x \to y$ of Q and
let $E = \text{Span}(\alpha_1, \ldots, \alpha_d) \simeq y (kQ^+/(kQ^+)^2)_r$. Since $kQ \xrightarrow{\psi} kQ$ is an automorphism, the composition $f: E \leftrightarrow ykQ \xrightarrow{\psi} ykQ \rightarrow E$ of ψ with the natural inclusion and the natural projection is a k-linear isomorphism hence an element of $GL_d(k)$. Thus (see [15, Chap. XIII Prop. 9.1]) there exist transvections matrices $f_1, \ldots, f_t \in GL_d(k)$ such that $f_1 \cdots f_t (\alpha_i) \in k^* \alpha_i$ for each $i \in \{1, \ldots, d\}$. For each f_j, let $f_j: kQ \rightarrow kQ$ be the automorphism such that $f_j(\alpha_i) = f_j(\alpha_i)$ for each $i \in \{1, \ldots, d\}$ and such that $f_j(\beta) = \beta$ for any arrow β not parallel to α_1. In particular, f_j is a transvection with respect to some α_{ij}. Let $g_1 = f_1 \cdots f_t \in T$. Then, $g_1 \psi(\alpha_i) \in k^* \alpha_i + (kQ^+)^2$ and if $\beta \in Q_1$ is not parallel to α_1 and satisfies $\psi(\beta) \in k^* \beta$ then $g_1 \psi(\beta) \in k^* \beta$. Let $\psi = g_1 \psi$. By construction, for each $i \in \{1, \ldots, d\}$, we have $\psi(\alpha_i) = \lambda_i \alpha_i + \sum_{j=1}^{n_i} \tau_{ij} u_{ij}$ with u_{ij} paths of length at least 2. Let $\varphi_{i,j}$ be the transvection $\varphi_{\alpha_i,u_{i,j},-\tau_{i,j}/\lambda_i}$ for each $i \in \{1, \ldots, d\}$ and each $j \in \{1, \ldots, n_i\}$, and let $g_2 \in T$ be the product of the $\varphi_{i,j}$’s (for any $i \in \{1, \ldots, d\}$ and any $j \in \{1, \ldots, n_i\}$). It is easy to check that the transvections $\varphi_{i,j}$ commute between each other so that the definition of g_2 is unambiguous. Since Q has no oriented cycle, we have $g_2 \psi(\alpha_i) = \lambda_i \alpha_i$ for each i, and $g_2 \psi(\beta) \in k^* \beta$ if $\beta \in Q_1$ is not parallel to α_1 and satisfies $\psi(\beta) \in k^* \beta$. In particular: $n(g_2g_1 \psi) < n(\psi) = n$. Since R_{n-1} is true, $g_2g_1 \psi$ lies in TD and so does ψ (recall $g_1, g_2 \in T$). Hence, R_n is true. This achieves the proof of Proposition 2.2.

Réak 2. Proposition 2.1 and Proposition 2.2 imply that if I and J are admissible ideals of kQ such that $kQ/I \simeq kQ/J$ as k-algebras, then there exist $\varphi_1, \ldots, \varphi_n$ (resp. $\varphi'_1, \ldots, \varphi'_m$) a sequence of transvections of kQ, together with D a dilatation such that $J = D\varphi_n \ldots \varphi_1(I)$ (resp. $J = \varphi'_m \ldots \varphi'_1 D(I)$).

2.2 Comparison of the fundamental group of two presentations of an algebra linked by a transvection or a dilatation

If I is an ideal and φ is a dilatation or a transvection, then I and $\varphi(I)$ are similar enough in order to compare the associated homotopy relations. Before stating this comparison we prove two useful lemmas. We fix I an admissible ideal of kQ, we fix $\varphi = \varphi_{\alpha,u,\tau}$ a transvection ($\tau \neq 0$) and we set $J = \varphi(I)$.

Lemma 2.3. Assume that $\alpha \not\sim_I u$ and let $r \in yJ_X$ be a minimal relation with normal form $r = \sum_C \lambda_c \theta_c + \sum_B \lambda_b v_b \alpha u_b$ such that α does not appear in the path θ_c for any $c \in C$. Then there exists a minimal relation $r' \in yJ_X$ with normal form $r' = \sum_C \lambda_c \theta_c + \sum_B \lambda_b v_b \alpha u_b + \sum_{B'} \lambda_{b'} v_{b'} u_{b'}$, where $B' \subseteq B$.

Proof: Let us assume that $B \neq \emptyset$ (if $B = \emptyset$, the conclusion is immediate). Since Q has no oriented cycle, the paths v_b and u_b do not contain α. Since r is a minimal relation of I and since $\alpha \not\sim_I u$, we have $\theta \neq v_b u_b$ for any $c \in C, b \in B$. Therefore, $\varphi(r)$ has a normal form $\varphi(r) = \sum_C \lambda_c \theta_c + \sum_B \lambda_b v_b \alpha u_b + \sum_{B'} \lambda_{b'} v_{b'} u_{b'} \in yJ_X \setminus \{0\}$. Thus there exists a minimal relation $r' \in yJ_X$ with normal form $r' = \sum_C \lambda_c \theta_c + \sum_B \lambda_b v_b \alpha u_b + \sum_{B'} \lambda_{b'} v_{b'} u_{b'}$ such that $\emptyset \neq B' \subseteq B, C' \subseteq C$ and $B' \subseteq B$. Hence $\varphi^{-1}(r')$ has a normal form $\varphi^{-1}(r') = \sum_C \lambda_c \theta_c + \sum_{B'} \lambda_{b'} v_{b'} u_{b'} + \sum_{B''} \lambda_{b''} v_{b''} u_{b''} \in yJ_X \setminus \{0\}$. Since $r \in yJ_X$ is a minimal relation and since $\alpha \not\sim_I u$ we infer that there exists a minimal relation $r'' \in yJ_X$ with normal form $r'' = \sum_C \lambda_c \theta_c + \sum_{B'} \lambda_{b'} v_{b'} u_{b'}$ such that $C'' \subseteq C' \subseteq C$ and $\emptyset \neq B'' \subseteq B'$. This forces $C'' = C$ and $B'' = B'$ because $r \in yJ_X$ is a minimal relation. Thus $C' = C$ and $B' = B$. Hence we have a minimal
relation \(r' \in yJ_x \) with normal form \(r' = \sum C \lambda_c \theta_c + \sum_B \lambda_b v_b\alpha u_b + \sum_B' \lambda_b \tau v_b uu_b \) as announced.

Lemma 2.4. Assume that \(\alpha \sim J u \) and let \(r \in yI_x \) be a minimal relation. Then \(v \sim J w \) for any \(v, w \in \text{supp}(r) \).

Proof: We may write \(r = \sum C \lambda_c \theta_c + \sum_B \lambda_b v_b\alpha u_b + \mu_b v_b uu_b \) where:
. \(\lambda_c, \lambda_b \in k^* \) and \(\mu_b \in k \) for any \(c \in C \) and \(b \in B \),
. the paths \(\theta_c, v_b\alpha u_b, v_b uu_b \) (\(c \in C, b, b' \in B \)) are pairwise distinct,
. for any \(c \in C \), the path \(\theta_c \) does not contain \(\alpha \).

Hence \(\varphi(r) = \sum C \lambda_c \theta_c + \sum_B \lambda_b v_b\alpha u_b + (\mu_b + \tau \lambda_b) v_b uu_b \in yJ_x \) and there exists a decomposition \(\varphi(r) = r_1 + \ldots + r_n \) where \(r_i \in yJ_x \) is a minimal relation and \(\text{supp}(r_i) \cap \text{supp}(r_j) = \emptyset \) if \(i \neq j \). If \(B = \emptyset \) then \(\varphi(r) = r \in yJ_x \) is a minimal relation and the lemma is proved. Hence we may assume that \(B \neq \emptyset \). This implies that for any \(i \in \{1, \ldots, n\} \) there exists \(b \in B \) such that \(v_b\alpha u_b \in \text{supp}(r_i) \) or \(v_b uu_b \in \text{supp}(r_i) \) (if this is not the case then \(r_i = \sum C' \lambda_c \theta_c \) for some non empty subset \(C' \) of \(C \), thus \(\varphi^{-1}(r_i) = \sum C' \lambda_c \theta_c \in yJ_x \) which contradicts the minimality of \(r \)). Let \(\equiv \) be the smallest equivalence relation on the set \(\{1, \ldots, n\} \) such that: \(i \equiv j \) if there exists \(b \in B \) such that \(v_b\alpha u_b \in \text{supp}(r_i) \) and \(v_b uu_b \in \text{supp}(r_j) \). Since the \(r_i \)'s are minimal relations of \(J \) and since \(\alpha \sim J u \), we get: if \(i \equiv j \) then \(v \sim J w \) for any \(v, w \in \text{supp}(r_i) \cup \text{supp}(r_j) \).

Let \(\mathcal{O} \subseteq \{1, \ldots, n\} \) be a \(\equiv \)-orbit and let \(r' = \sum_{i \in \mathcal{O}} r_i \in yJ_x \). Hence \(r' = \sum_C \lambda_c \theta_c + \sum_B \lambda_b v_b\alpha u_b + (\mu_b + \tau \lambda_b) v_b uu_b \) where \(C' \subseteq C \) and \(\emptyset \neq B' \subseteq B \). This implies that \(\varphi^{-1}(r') = \sum C' \lambda_c \theta_c + \sum_B \lambda_b v_b\alpha u_b + \mu_b v_b uu_b \in yI_x \) and the minimality of \(r \) yields \(C' = C, B' = B, r' = \varphi(r) \) and \(\mathcal{O} = \{1, \ldots, n\} \). Hence \(\{1, \ldots, n\} \) is an \(\equiv \)-orbit. Therefore \(v \sim J w \) for any \(v, w \in \text{supp}(\varphi(r)) \). And since \(\alpha \sim J u \) we infer that \(v \sim J w \) for any \(v, w \in \text{supp}(r) \). \(\Box \)

We can state the announced comparison now. For short, the word \textit{generated} stands for: \textit{generated as an equivalence relation compatible with the concatenation of walks and such that} \(\alpha^{-1}\alpha \sim J e_x, \alpha\alpha^{-1} \sim J e_y \) for any arrow \(x \xrightarrow{\alpha} y \).

Proposition 2.5. \[16, 3.2\] Let \(I \) be an admissible ideal of \(kQ \), let \(\varphi \) be an automorphism of \(kQ \) and set \(J = \varphi(I) \). If \(\varphi \) is a dilatation, then \(\sim I \) and \(\sim J \) coincide. Assume now that \(\varphi = \varphi_{\alpha,u,\tau} \) is a transvection.

a) If \(\alpha \sim I u \) and \(\alpha \sim J u \) then \(\sim I \) and \(\sim J \) coincide.

b) If \(\alpha \not\sim I u \) and \(\alpha \sim J u \) then \(\sim I \) is generated by \(\sim J \) and \(\alpha \sim J u \).

c) If \(\alpha \not\sim I u \) and \(\alpha \not\sim J u \) then \(I = J \) and \(\sim I \) and \(\sim J \) coincide.

Remark 3. The following implication (symmetric to b)):

if \(\alpha \sim I u \) and \(\alpha \not\sim J u \) then \(\sim I \) is generated by \(\sim J \) and \(\alpha \sim I u \)

is also satisfied since \(\varphi^{-1}_{\alpha,u,\tau} = \varphi_{\alpha,u,-\tau} \).

Proof of Proposition 2.5: If \(\varphi \) is a dilatation, then \(\sim I \) and \(\sim J \) coincide because for any \(r \in ykQ_x \) we have \(\text{supp}(r) = \text{supp}(\varphi(r)) \) and because \(r \) is a minimal relation of \(I \) if and only if the same holds for \(\varphi(r) \) in \(J \). Let us assume that \(\varphi = \varphi_{\alpha,u,\tau} \) is a transvection.

a) Lemma 2.4 applied to \(I, J, \varphi \) (resp. \(J, I, \varphi^{-1} = \varphi_{\alpha,u,-\tau} \)) shows that any two paths appearing in a same minimal relation of \(I \) (resp. \(J \)) are \(\sim J \)-equivalent (resp. \(\sim I \)-equivalent). Hence \(\sim I \) and \(\sim J \) coincide.

b) Let \(\equiv \) be the equivalence relation generated by: \((v \sim I w \Rightarrow v \equiv w) \) and \(\alpha \equiv u \).
Our aim is to show that \sim_J and \equiv coincide. Thanks to Lemma 2.4 we have: $v \equiv w \Rightarrow v \sim_J w$. Let $Min(I)$ be the set of the minimal relations of I. For each $r \in Min(I)$ let us fix a normal form $r = \sum C \lambda_c \theta_c + \sum B \lambda_b \nu_b \omega_b$ satisfying the hypotheses of Lemma 2.3. Hence there exists $B' \subseteq B$ and a minimal relation r_1 of J with normal form $r_1 = \sum C \lambda_c \theta_c + \sum B' \lambda_b \nu_b \omega_b$. Thus $\varphi(r) - r_1 = \sum B' \tau \lambda_b \nu_b \omega_b \in J$ can be written as a sum $r_2 + \ldots + r_{n_\tau}$ of minimal relations of J with pairwise disjoint supports. In particular, $\varphi(r) = r_1 + \ldots + r_{n_\tau}$ where each $r_i \in J$ is a minimal relation. Notice that any two paths appearing in r_1 are \equiv-equivalent because of the normal form of r_1 and because of the definition of \equiv. With these notations, the set $\{r_i \mid r \in Min(I) \text{ and } 1 \leq i \leq n_\tau\}$ is made of minimal relations of J and generates the ideal J. Thus, in order to show that \sim_J and \equiv coincide, it is enough to show that any two paths appearing in some r_i are \equiv-equivalent. Let $r \in Min(I)$, let $i \in \{1, \ldots, n_\tau\}$, and let $v, w \in supp(r_i)$. We have already proved that if $i = 1$ then $v \equiv w$, thus we may assume that $i \geq 2$. Keeping the above notations for the normal form of r, there exist $b,b' \in B$ such that $v = \nu_b \omega_b$ and $w = \nu_{b'} \omega_{b'}$. Since $\alpha \equiv u$ and since any two paths appearing in r_1 are \equiv-equivalent we get $v = \nu_b \omega_b \equiv \nu_{b'} \omega_{b'} \equiv \nu_{b'} \omega_{b'} = w$. Hence any two paths appearing in some r_i are \equiv-equivalent. This implies that \sim_J and \equiv coincide. Therefore, \sim_J is generated by \sim_I and $\alpha \sim_J u$.

c) Let $r \in I$ be a minimal relation of I and apply Lemma 2.3 to r. Since $\alpha \not\sim_J u$, we infer that $r \in J$. Since I is generated by its minimal relations we get $I \subseteq J$. Finally, $I = J$ because I and J have the same dimension. \hfill \Box

Remark 4. In the situation b) of Proposition 2.5, the identity map on the walks of Q induces a surjective group morphism $\pi_1(Q,I) \twoheadrightarrow \pi_1(Q,J)$.

Proposition 2.5 allows us to prove the following result which has already been proved in [5]. Recall that the algebra kQ/I, where I is admissible, is called **constricted** if $\dim_y(kQ/I)_x = 1$ for any arrow $x \rightarrow y$ of Q.

Proposition 2.6 (see also [5]). Assume that A is constricted. Then different admissible presentations of A yield the same homotopy relation. In particular, they have isomorphic fundamental groups.

Proof: Let $kQ/I \simeq A$ be any admissible presentation. If (α, u) is a bypass in Q then $u \in I$ because A is constricted and I is admissible. In particular, for any $\tau \in k$ and any $r \in kQ$ we have: $\varphi_{\alpha,u,\tau}(r) - r$ belongs to the ideal of kQ generated by $u \in I$ and therefore $\varphi_{\alpha,u,\tau}(r) - r \in I$. This shows that $\varphi(I) \subseteq I$ and that $\varphi(I) = I$ (I is finite dimensional because Q has no oriented cycle) for any transvection φ. Let $kQ/J \simeq A$ be another admissible presentation. From Remark 2 we know that there exist a dilatation D and transvections $\varphi_1, \ldots, \varphi_n$ such that $J = D \varphi_n \ldots \varphi_1(I)$. We deduce from what we have proved above that $\varphi_n \ldots \varphi_1(I) = I$. Hence, $J = D(I)$. Proposition 2.5 implies that \sim_I and \sim_J coincide. Therefore, $\pi_1(Q,I)$ and $\pi_1(Q,J)$ are isomorphic. \hfill \Box

If \sim and \sim' are homotopy relations, we will say that \sim' is a **direct successor** (see also [16, Sect. 3]) of \sim if there exist admissible ideals I and J of kQ, together with a transvection $\varphi = \varphi_{\alpha,u,\tau}$ such that $\sim = \sim_I$, $\sim' = \sim_J$, $J = \varphi(I)$, $\alpha \neq_I u$ and $\alpha \sim_J u$. Notice that I, J, φ need not be unique.
2.3 The quiver Γ of the homotopy relations of the presentations of the algebra

Definition 2.7. [16, 4.1] We define the quiver Γ as follows:

- Γ_0 is the set of homotopy relations of the admissible presentations of A:
 $$\Gamma_0 = \{ \sim_I \mid I \text{ is admissible and } kQ/I \simeq A \}$$
- there is an arrow $\sim \rightarrow \sim'$ if and only if \sim' is a direct successor of \sim.

Example 2. Assume that $A = kQ/I$ where Q is

```
\begin{tikzpicture}
  \node (a) at (0,0) {}; 
  \node (b) at (1,1) {}; 
  \node (c) at (1,-1) {}; 
  \node (d) at (2,0) {}; 
  \draw (a) edge (b) edge (c); 
  \draw (b) edge (d) edge (c); 
  \end{tikzpicture}
```
and $I = \langle da \rangle$. Let $J = \langle da - dcb \rangle$. Using Proposition 2.5 one can show that Γ is equal to: $\sim_I \rightarrow \sim_J$. Notice that the identity map on walks induces a surjective group morphism $\mathbb{Z} \simeq \pi_1(Q, I) \twoheadrightarrow \pi_1(Q, J) \simeq 1$.

The author thanks Mariano Suárez-Alvarez for the following remark:

Remark 5. A homotopy relation is determined by its restriction to the paths in Q with length at most the radical length of A. Thus there are only finitely many homotopy relations. This argument shows that Γ is finite.

The following proposition states some additional properties of Γ and is a direct consequence of Remark 2 and Proposition 2.5.

Proposition 2.8. Assume that Q has no oriented cycle and let m be the number of bypasses in Q. Then Γ is connected and has no oriented cycle. Any vertex of Γ is the source of at most m arrows and any oriented path in Γ has length at most m.

Remark 6. According to Remark 4, if there is a path in Γ with source \sim_I and target \sim_J, then the identity map on the walks in Q induces a surjective group morphism $\pi_1(Q, I) \twoheadrightarrow \pi_1(Q, J)$. Moreover, since Γ is finite, any vertex of Γ is the target of a (finite) path whose source is a vertex of Γ (i.e. a vertex with no arrow ending at it). As a consequence, if Γ has a unique source \sim_{I_0}, then the fundamental group of any admissible presentation of A is a quotient of $\pi_1(Q, I_0)$.

2.4 The uniqueness of the source of Γ and the proof of Theorem 1

Notice that until now we have used neither the characteristic of k nor the possible non existence of a double bypass in Q. These hypotheses will be needed in order to prove the uniqueness of the source of Γ. The complete proof of the uniqueness of the source of Γ is somewhat technical. For this reason we deal with the technical considerations in the two lemmas that follow.

Lemma 2.9. Let E be a finite dimensional k-vector space endowed with a totally ordered basis $e_1 < \ldots < e_n$. Assume that k has characteristic zero. Let $\nu: E \rightarrow E$ be a linear map such that $\nu(e_i) \in \text{Span}(e_j : j < i)$ for any $i \in \{1, \ldots, n\}$, and let I and J be two subspaces of E such that the following conditions are satisfied:

- a) $\psi(I) = J$ where $\psi: E \rightarrow E$ is equal to $\exp(\nu)$.
- b) if $e_i \in \text{supp}(\nu(e_j))$ then $e_i \not\equiv_I e_j$ and $e_i \not\equiv_J e_j$.

Then I and J have the same Gröbner basis and $I = J$.

11
Proof: Let us prove Lemma 2.9 by induction on n. If $n = 1$ the equality is obvious so let us assume that $n > 1$ and that the conclusion of Lemma 2.9 holds for dimensions less than n. We will denote by $r_1 < \ldots < r_p$ (resp. $r'_1 < \ldots < r'_p$) the Gröbner basis of I (resp. of J) and we will write i_1, \ldots, i_p (resp. i'_1, \ldots, i'_p) for the integers such that $r_j \in e_{i_j} + \text{Span}(e_i ; i < j)$ (resp. $r'_j \in e_{i'_j} + \text{Span}(e_i ; i < i'_j)$). In order to prove that $I = J$ we will prove the four following facts:

a) the two sequences $i_1 < \ldots < i_p$ and $i'_1 < \ldots < i'_p$ coincide,

b) if $\psi(r_1) = r'_1$,

c) $r_1 = r'_1$ and $\nu(r_1) = 0$ (using the induction hypothesis on $E/k.e_1$),

d) $r_2 = r'_2, \ldots, r_p = r'_p$ (using the induction hypothesis on $E/k.r_1$).

a) For simplicity let us set $E_i = \text{Span}(e_j ; j \leq i)$. Since $\nu(e_j) \in E_{i-1}$ and $r_j \in e_{i_j} + E_{i_j-1}$ and since $\psi = \exp(\nu)$, we get $\psi(r_j) \in J \cap (e_{i_j} + E_{i_j-1})$ for any j. Hence, the definition of the Gröbner basis of J forces $\{i_1, \ldots, i_p\} \subseteq \{i'_1, \ldots, i'_p\}$ and the cardinality and the ordering on these two sets imply that $i_1 = i'_1, \ldots, i_p = i'_p$

b) Since $i_1 = i'_1$ we infer that $\psi(r_1) - r'_1 \in J \cap E_{i_1-1}$. Then, the definition of the Gröbner basis of J forces $\psi(r_1) - r'_1 = 0$.

c) Let us prove that $r_1 = r'_1$. Notice that the definition of a Gröbner basis and the equalities $\psi(r_1) = r'_1$ and $\psi(e_1) = e_1$ force: $e_1 \in I \Leftrightarrow r_1 = e_1 \Leftrightarrow r'_1 = e_1 \Leftrightarrow e_1 \in J$. Hence we may assume that $e_1 \notin I$ and $e_1 \notin J$.

Let $\tilde{E} = E/k.e_1$ and let $\pi: E \to \tilde{E}$ be the natural projection. We will write \tilde{x} for $\pi(x)$. Similarly we set $\tilde{I} = \pi(I)$ and $\tilde{J} = \pi(J)$. In particular \tilde{E} has a totally ordered basis: $\tilde{e}_2 < \ldots < \tilde{e}_n$. Since $\nu(e_1) = 0$ and since $\psi(e_1) = e_1$, the mappings ν and ψ induce linear mappings $\tilde{\nu}, \tilde{\psi}: \tilde{E} \to \tilde{E}$. It follows from the properties of ν and ψ that $\tilde{\psi}(\tilde{I}) = \tilde{J}$, that $\tilde{\nu}(\tilde{e}_i) \in \text{Span}(\tilde{e}_j ; 2 \leq j < i)$ for any $i \geq 2$, that $\tilde{\psi} = \exp(\tilde{\nu})$, and that $\text{supp}(\tilde{\nu}(\tilde{e}_i)) = \{ \tilde{e}_j | j \geq 2 \text{ and } e_j \in \text{supp}(\nu(e_i)) \}$ for any $i \geq 2$. Moreover, with the definition of the Gröbner basis of I we get:

- $\tilde{r}_j \in \tilde{e}_{i_j} + \text{Span}(\tilde{e}_i ; i < i_j)$ for any j (recall that $e_1 \notin I$),
- $\text{supp}(\tilde{r}_j) = \{ \tilde{e}_i | i \geq 2 \text{ and } e_i \in \text{supp}(r_j) \}$ for any j.

Therefore $\tilde{r}_1 < \ldots < \tilde{r}_p$ is the Gröbner basis of \tilde{I} and: $\tilde{e}_i \equiv \tilde{r}_j \Rightarrow e_i \equiv r_j$. Similarly $\tilde{r}'_1 < \ldots < \tilde{r}'_p$ is the Gröbner basis of \tilde{J} and: $\tilde{e}_i \equiv \tilde{r}'_j \Rightarrow e_i \equiv r'_j$. Using the above description of $\text{supp}(\nu(\tilde{e}_i))$ together with the above link between \equiv_I (resp. \equiv_J) and $\equiv_{\tilde{I}}$ (resp. $\equiv_{\tilde{J}}$) we infer that:

- $\tilde{e}_i \not\equiv_{\tilde{I}} \tilde{e}_j$ and $\tilde{e}_i \not\equiv_{\tilde{J}} \tilde{e}_j$ as soon as $\tilde{e}_j \in \text{supp}(\tilde{\nu}(\tilde{e}_i))$

For this reason we may apply the induction hypothesis to E, \tilde{I} and \tilde{J}. Hence \tilde{I} and \tilde{J} have the same Gröbner basis and $\tilde{r}_1 = \tilde{r}'_1$ i.e. $r'_1 = r_1 + \lambda e_1$ with $\lambda \in k$. Therefore $(\psi - \text{Id})(r_1) = \lambda e_1$, and since $\psi(e_1) = e_1$ we get $\nu(r_1) = \log(\psi)(r_1) = \lambda e_1$. Assume that $\lambda \neq 0$ i.e. $e_1 \in \text{supp}(\nu(e_1))$. Thus there exists $e_1 \in \text{supp}(r_1)$ such that $e_1 \in \text{supp}(\nu(e_1))$. This implies that $e_1 \not\equiv_{\tilde{I}} e_1$, and since any two elements in $\text{supp}(r_1)$ are $\equiv_{\tilde{I}}$-equivalent, this forces $e_1 \not\in \text{supp}(r_1)$. Hence $e_1, e_1 \in \text{supp}(r'_1) = \text{supp}(r_1) \cup \{e_1\}$ and therefore $e_1 \equiv_{J} e_1$. This contradicts $e_1 \in \text{supp}(\nu(e_1))$ and shows that $\lambda = 0$, that $r_1 = r'_1$ and that $\nu(r_1) = 0$.
d) Let us show that \(r_2 = r'_2, \ldots, r_p = r'_p \). For this purpose we will apply the induction hypothesis to \(\bar{E} = E/k.r_1 \). Let \(q: E \to \bar{E} \) be the natural projection. We will write \(\bar{e}_i \) (resp. \(\bar{I}, \bar{J}, \bar{r}_j, \bar{r}'_j \)) for \(q(e_i) \) (resp. \(q(I), q(J), q(r_j), q(r'_j) \)). Hence \(\bar{E} \) has a totally ordered basis: \(\bar{e}_1 < \ldots < \bar{e}_{i-1} < \bar{e}_{i+1} < \ldots < \bar{e}_n \). Since \(\nu(r_1) = 0 \) and since \(\psi(r_1) = r_1 \), the mappings \(\nu \) and \(\psi \) induce linear mappings \(\bar{\nu}, \bar{\psi}: \bar{E} \to \bar{E} \). These mappings obviously satisfy \(\bar{\psi}(\bar{I}) = \bar{J}, \bar{\nu}(\bar{e}_i) \in \text{Span}(\bar{e}_j; \ j \neq i \text{ and } j < i) \) for any \(i \neq i_1 \), and \(\bar{\psi} = \exp(\bar{\nu}) \).

Moreover, our choice for the basis of \(\bar{E} \) and the definition of the Gröbner basis of \(I \) imply that:

\[
\begin{align*}
\text{supp}(\bar{r}_j) &= \{ \bar{e}_i \mid e_i \in \text{supp}(r_j) \} \text{ for any } j \geq 2, \\
\bar{r}_2 < \ldots < \bar{r}_p \text{ is the Gröbner basis of } \bar{I}.
\end{align*}
\]

These two properties imply in particular that: \(\bar{e}_i \equiv \bar{e}_j \Rightarrow e_i \equiv_I e_j \) for any \(i, j \neq i_1 \).

The corresponding properties hold for \(\bar{J} \) (replace \(r_j \) by \(r'_j \), \(I \) by \(J \) and \(\bar{I} \) by \(\bar{J} \)). Thus, in order to apply the induction hypothesis to \(\bar{E} \) it only remains to prove that: \(\bar{e}_j \in \text{supp}(\bar{\nu}(\bar{e}_i)) \Rightarrow e_i \not\equiv \bar{e}_j \) and \(e_i \not\equiv \bar{e}_j \) for any \(i, j \neq i_1 \). Assume that \(i, j \neq i_1 \) satisfy \(\bar{e}_j \in \text{supp}(\bar{\nu}(\bar{e}_i)) \).

From the definition of \(\bar{E} \) and \(\bar{\nu} \) we know that:

\[
\begin{align*}
\text{supp}(\bar{\nu}(\bar{e}_i)) &= \{ \bar{e}_i \mid e_i \in \text{supp}(\nu(e_i)) \} \text{ if } e_{i_1} \notin \text{supp}(\nu(e_i)), \\
\text{supp}(\bar{\nu}(\bar{e}_i)) &\subseteq \{ \bar{e}_i \mid e_i \in \text{supp}(\nu(e_i)) \} \text{ and } l \neq i_1 \cup \{ \bar{e}_i \mid l < i_1 \text{ and } e_l \in \text{supp}(r_1) \} \text{ if } e_{i_1} \in \text{supp}(\nu(e_i)).
\end{align*}
\]

Let us distinguish the cases \(e_j \in \text{supp}(\nu(e_i)) \) and \(e_j \notin \text{supp}(\nu(e_i)) \):

- if \(e_j \notin \text{supp}(\nu(e_i)) \) then \(e_j \not\equiv \bar{e}_j \) and \(e_j \not\equiv I \bar{e}_j \) and the above comparison between \(\equiv_I \) (resp. \(\equiv_I \)) and \(\equiv_I \) (resp. \(\equiv_I \)) yields \(\bar{e}_i \not\equiv_I \bar{e}_j \) and \(\bar{e}_i \not\equiv_I \bar{e}_j \).

- if \(e_j \not\equiv \text{supp}(\nu(e_i)) \) then necessarily \(e_{i_1} \in \text{supp}(\nu(e_i)) \) and \(e_j \in \text{supp}(r_1) \). Since \(r_1 = r'_1 \), the property \(e_j \in \text{supp}(r_1) \) implies that \(e_j \equiv_I e_{i_1} \) and \(e_j \equiv_J e_{i_1} \). On the other hand, the property \(e_{i_1} \in \text{supp}(\nu(e_i)) \) implies that \(e_{i_1} \not\equiv I e_i \) and \(e_{i_1} \not\equiv J e_i \). Therefore \(e_j \not\equiv I e_i \) and \(e_j \not\equiv J e_i \) and finally \(\bar{e}_j \not\equiv_I \bar{e}_i \) and \(\bar{e}_j \not\equiv_J \bar{e}_i \).

Thus all the conditions of Lemma 2.9 are satisfied for \(\bar{E}, \bar{I}, \bar{J}, \bar{\nu} \). For this reason we can apply the induction hypothesis which gives: \(\bar{I} \) and \(\bar{J} \) have the same Gröbner basis. We infer that \(q(r_i) = q(r'_i) \) for each \(i = 2, \ldots, p \). Hence for each \(i \geq 2 \) there exists \(\lambda_i \in k \) such that \(r_i = r'_i + \lambda_i r_1 \), and \(\lambda_i \) is necessarily zero because \(e_{i_1}^*(r_i) = e_{i_1}^*(r'_i) = 0 \) (cf the definition of a Gröbner basis). Therefore \(r_i = r'_i \) for each \(i = 1, \ldots, p \) and \(I = J \) as announced.

\[\square \]

Lemma 2.10. Let \(\varphi: kQ \to kQ \) be an automorphism extending the identity map on \(Q_0 \).

Let \(I \) be an admissible ideal of \(kQ \) and set \(J = \varphi(I) \). Suppose that \(k \) has characteristic zero. Suppose that for any arrow \(\alpha \) there is a normal form \(\varphi(\alpha) = \alpha + \sum_i \lambda_i u_i \) where each \(u_i \) satisfies: \(\alpha \not\Rightarrow_I u_i \), \(\alpha \not\Rightarrow_J u_i \) and \(\varphi(\alpha) = a \) for any arrow appearing in \(u_i \) (in particular \(\varphi(u_i) = u_i \)). Then \(I \) and \(J \) coincide.

Proof: Let \(E \) be the vector space \(kQ = \oplus_{x,y} kQ_{2} \). Hence \(E \) is finite dimensional since \(Q \) has no oriented cycle, and \(I \) and \(J \) can be considered as subspaces of \(E \). In order to apply Lemma 2.9 to \(E, I, J, \varphi \), we need to exhibit a totally ordered basis of \(E \) together with a mapping \(\nu: E \to E \). Let us take the family of paths in \(Q \) for the basis of \(E \).

The following construction of a total order \(< \) on this basis is taken from [8]. Let us fix a total order on \(Q_0 \cup Q_1 \) (which is finite) and let \(< \) be the induced lexicographical order on the paths in \(Q \) (\(e_x < u \) if \(u \) is non trivial). If \(u \) is a path we let \(W(u) \) be the number
of arrows $\alpha \in Q_1$ appearing in u and such that $\varphi(\alpha) \neq \alpha$. Hence, for any $\alpha \in Q_1$, we have $W(\alpha) = 0$ if $\varphi(\alpha) = \alpha$ and $W(\alpha) = 1$ if $\varphi(\alpha) \neq \alpha$. The total order $<$ is then defined as follows:

$$u < v \iff \begin{cases} W(u) < W(v) \\ W(u) = W(v) \text{ and } u < v \end{cases}$$

This yields: $e_1 < \ldots < e_n$ a totally ordered basis of E made of the paths in Q. Notice that with this basis, the equivalence relations \equiv_I and \sim_J (resp. \equiv_J and \sim_J) satisfy the following property: $e_i \equiv_I e_j \Rightarrow e_i \sim_J e_j$ (resp. $e_i \equiv_J e_j \Rightarrow e_i \sim_J e_j$). Let $\nu: kQ \to kQ$ be the derivation (i.e. the k-linear map such that $\nu(vu) = \nu(v)u + v\nu(u)$ for any u and v) such that $\nu(e_x) = 0$ for any $x \in Q_0$ and $\nu(\alpha) = \varphi(\alpha) - \alpha$ for any arrow $\alpha \in Q_1$. Thus, for any path u and any $v \in \text{supp}(\nu(u))$ there exist an arrow $\alpha \in Q_1$ together with paths u_1, u_2, u_3 such that $u = u_3\alpha u_1$, $v = u_3 u_2 u_1$ and $u_2 \in \text{supp}(\nu(u))$. Notice that with the assumptions made on φ, this implies that $e_i \not\equiv_I e_j$ and $e_i \not\equiv_J e_j$ as soon as $e_j \in \text{supp}(\nu(e_i))$. Moreover, for any $\alpha \in Q_1$ and any $u \in \text{supp}(\nu(u))$ we have $W(u) = 0$, hence $\nu \circ \nu(\alpha) = 0$. Since $\nu: kQ \to kQ$ is a derivation, we infer that: $e_j \in \text{supp}(\nu(e_i)) \Rightarrow W(e_j) < W(e_i) \Rightarrow e_j < e_i$. Hence $\nu(e_i) \in \text{Span}(e_j ; j < i)$ for any i. In order to apply Lemma 2.9, it only remains to prove that $J = \exp(\nu)(I)$. To do this it suffices to prove that $\varphi = \exp(\nu)$. Since ν is a derivation, $\exp(\nu): kQ \to kQ$ is an automorphism such that $\exp(\nu)(e_x) = e_x$ for any $x \in Q_0$ (recall that $\nu(e_x) = 0$). Moreover, if $\alpha \in Q_1$ then $\nu^2(\alpha) = 0$ and $\nu(\alpha) = \varphi(\alpha) - \alpha$, therefore $\exp(\nu)(\alpha) = \varphi(\alpha)$. Hence φ and $\exp(\nu)$ are automorphisms of kQ and they coincide on $Q_0 \cup Q_1$. This implies that $\varphi = \exp(\nu)$. Hence, the data E, I, J, ν together with the ordered basis $e_1 < \ldots < e_n$ satisfy the hypotheses of Lemma 2.9 which implies that $I = J$. \hfill \Box

The uniqueness of the source of Γ is given by the following result.

Proposition 2.11. [16, Th. 3.4] Assume that A satisfies the hypotheses made before stating Theorem 1, then Γ has a unique source.

Proof: Notice that any two transvections of kQ commute since Q has no double bypass. Let \approx and \approx' be sources of Γ. Let I and J be admissible ideals of kQ such that $kQ/I \cong A \cong kQ/J$ and such that $\approx = \approx_I$ and $\approx' = \approx_J$. According to Remark 2 there exist a sequence of transvections $\varphi_1 = \varphi_{\alpha_1, u_1, \tau_1}, \ldots, \varphi_n = \varphi_{\alpha_n, u_n, \tau_n}$ of kQ and a dilatation D such that $J = \varphi_n \cdots \varphi_1 D(I)$. Thanks to Proposition 2.5 we know that $\approx_I = \approx_{D(I)}$. Thus, in order to prove that $\approx = \approx'$, we may assume that $D = \text{Id}_{kQ}$ and $J = \varphi_n \cdots \varphi_1 (I)$. Moreover we may assume that n is the smallest non negative integer such that there exist I, J and a sequence of transvections $\varphi_1, \ldots, \varphi_n$ satisfying $\approx = \approx_I$, $\approx' = \approx_J$ and $J = \varphi_n \cdots \varphi_1 (I)$. Let us prove that $\alpha_i \not\approx_I u_i$ for any $i \in \{1, \ldots, n\}$. If i is such that $\alpha_i \approx_I u_i$ then Proposition 2.5 implies that $\approx_I = \approx_{\varphi_i (I)}$ since \approx_I is a source of Γ. Hence $\approx = \approx_{\varphi_i (I)}$, $\approx' = \approx_J$ and $J = \varphi_n \cdots \varphi_{i+1} \varphi_{i-1} \cdots \varphi_1 (\varphi_i (I))$ which contradicts the minimality of n. Thus $\alpha_i \not\approx_I u_i$ for any i and the same arguments apply to J since $I = \varphi_1^{-1} \cdots \varphi_n^{-1} (J)$ and since \approx_J is a source of Γ. Hence $\alpha_i \not\approx_J u_i$ for any i. This shows that the data I, J, $\varphi_n \cdots \varphi_1$ satisfy the hypotheses of Lemma 2.10. We infer that $I = J$ and that $\approx = \approx'$. This shows that Γ has a unique source. \hfill \Box

Proposition 2.11 and Remark 5 prove Theorem 1:

Theorem 1. (see also [16, Thm. 1.1]) Let A be a basic connected finite dimensional algebra over a field k of characteristic zero. If the quiver Q of A has no double bypass,
then there exists a presentation $kQ/I_0 \simeq A$ with quiver and admissible relations such that for any other admissible presentation $kQ/I \simeq A$, the identity map on walks induces a surjective group morphism $\pi_1(Q, I_0) \to \pi_1(Q, I)$.

The following example shows that one cannot remove the hypothesis on the characteristic of k in Proposition 2.11:

Example 3. Let Q be the following quiver without double bypass:

```
  b -> c
  |    |
  a    d
  |    |
  e <- f
```

Set $u = cb$ and $v = fe$. Set $A = kQ/I_0$ where $I_0 = \langle da + vu, va + du \rangle$. Then $\pi_1(Q, I_1) = \mathbb{Z}/2$. Let I_1 and I_2 be the ideals defined below:

- $I_1 = \langle \varphi_{a,u,1}(I_0) \rangle = \langle da + du + vu, va + du + vu \rangle$,
- $I_2 = \langle \varphi_{a,v,-1} \circ \varphi_{d,v,-1}(I_0) \rangle = \langle da, va + du - 2vu \rangle$.

Hence $A \simeq kQ/I_1 \simeq kQ/I_2$. If $\text{car}(k) = 0$, then $\pi_1(Q, I_1) = \pi_1(Q, I_2) = 1$ and Γ is equal to $\sim_{I_0} \sim_{I_1} \sim_{I_2}$. Suppose now that $\text{car}(k) = 2$. Then $I_2 = \langle da, va + du \rangle$, $\pi_1(Q, I_0) \simeq \mathbb{Z}/2$, $\pi_1(Q, I_1) = 1$, $\pi_1(Q, I_2) \simeq \mathbb{Z}$ and Γ is equal to $\sim_{I_0} \sim_{I_2} \sim_{I_1}$. Hence Γ has two sources. Notice that the identity map on walks induces a surjective group morphism $\pi_1(Q, I_2) \to \pi_1(Q, I_0)$. Notice also that one can build similar examples for any non zero value p of $\text{car}(k)$ by taking for Q a sequence of p bypasses.

3 Preliminaries on covering functors

In this section we give some useful facts on covering functors.

Lemma 3.1. Let $p: \mathcal{E} \to \mathcal{B}$ and $q: \mathcal{E}' \to \mathcal{B}$ be covering functors where \mathcal{E} is connected. Let $r, r': \mathcal{E} \to \mathcal{E}'$ be such that $q \circ r = q \circ r' = p$. If there exists $x_0 \in \mathcal{E}_0$ such that $r(x_0) = r'(x_0)$ then $r = r'$.

Proof: Since q is a covering functor, for any $u \in \mathcal{E}_x \backslash \{0\}$ we have:

$$r(x) = r'(x) \text{ or } r(y) = r'(y) \implies r(u) = r'(u), \quad r(x) = r'(x) \text{ and } r(y) = r'(y) \quad (\star)$$

Assume that there exists $x_0 \in \mathcal{E}_0$ such that $r(x_0) = r'(x_0)$. Since \mathcal{E} is connected, for any $x \in \mathcal{E}_0$ there exists a sequence $x_0, \ldots, x_n = x$ of objects of \mathcal{E} together with a non zero morphism between x_i and x_{i+1} for any i. This implies (thanks to (\star)) that $r(x) = r'(x)$. Thus r and r' coincide on \mathcal{E}_0, and (\star) implies $r = r'$.

The following proposition generalises the result [17, Prop. 3.3]. Using Lemma 3.1 its proof is immediate.

Proposition 3.2. Let $F: \mathcal{E} \to \mathcal{B}$ be a covering functor where \mathcal{E} is connected. Then \mathcal{E} is an $\text{Aut}(F)$-category. Moreover, F is a Galois covering if and only if $\text{Aut}(F)$ acts transitively on each $F^{-1}(x)$. Finally, if F is Galois covering with group G, then $G = \text{Aut}(F)$.

Proposition 3.3. Let $p: \mathcal{E} \to \mathcal{B}$ and $q: \mathcal{F} \to \mathcal{E}$ be functors where \mathcal{E} is connected and set $r = p \circ q: \mathcal{F} \to \mathcal{B}$. Then p, q, r are covering functors as soon as two of them are so.

Proof: Using basic linear algebra arguments, it is easy to verify the two following facts: if p and q (resp. q and r) are covering functors then so is r (resp. p). If p and r are
covering functors, then \(q \) satisfies the condition b) in the definition of a covering functor. We only need to prove that \(q^{-1}(x) \neq \emptyset \) for any \(x \in \mathcal{E}_0 \). The condition b) implies that \(q^{-1}(x) \neq \emptyset \iff q^{-1}(y) \neq \emptyset \) as soon as \(y \in \mathcal{E}_x \neq 0 \). Since \(\mathcal{E} \) is connected and \(q^{-1}(g(x)) \neq \emptyset \) for any \(x \in \mathcal{F}_0 \) we deduce that \(q^{-1}(x) \neq \emptyset \) for any \(x \in \mathcal{E}_0 \). □

Proposition 3.4. Let \(p: \mathcal{C} \rightarrow \mathcal{B} \) (resp. \(q: \mathcal{C}' \rightarrow \mathcal{B} \)) be a connected Galois covering with group \(G \) (resp. \(G' \)) and assume there exists a commutative diagram of \(k \)-categories and \(k \)-linear functors where \(\varphi \) is an isomorphism extending the identity map on \(\mathcal{B}_0 \):

\[
\begin{array}{ccc}
\mathcal{C} & \xrightarrow{r} & \mathcal{C}' \\
\downarrow p & & \downarrow q \\
\mathcal{B} & \xrightarrow{\varphi} & \mathcal{B}
\end{array}
\]

Then there exists a unique mapping \(\lambda: G \rightarrow G' \) such that \(r \circ g = \lambda(g) \circ r \) for any \(g \in G \). Moreover \(\lambda \) is a surjective morphism of groups and \(r \) is a Galois covering with group \(\text{Ker}(\lambda) \).

Proof: Thanks to Proposition 3.3, \(r \) is a covering functor. Fix \(\tilde{x}_0 \in \mathcal{C} \) and set \(x_0 = p(\tilde{x}_0) \). For any \(g \in \text{Aut}(p) \) we have \(q(r(\tilde{x}_0)) = x_0 = q(r(g(\tilde{x}_0))) \). Since \(q \) is Galois with group \(G' \), there exists a unique \(\lambda(g) \in G' \) such that \(\lambda(g)(r(\tilde{x}_0)) = r(g(\tilde{x}_0)) \), and Lemma 3.1 yields \(\lambda(g) \circ r = r \circ g \). Hence: \((\forall g \in G) \ (\exists! \lambda(g) \in G', \lambda(g) \circ r = r \circ g) \). This last property shows the existence and the uniqueness of \(\lambda \). It also shows that \(\lambda: G \rightarrow G' \) is a group morphism and that \(\text{Aut}(r) = \text{Ker}(\lambda) \). Moreover, \(\lambda \) is surjective because of its definition and because \(p \) is Galois with group \(G \). Finally, Proposition 3.2 shows that \(r \) is a Galois covering with group \(\text{Ker}(\lambda) \). □

4 The universal cover of an algebra

In this section we will prove Theorem 2. Let \(Q \) be a connected quiver without oriented cycle and fix \(x_0 \in Q_0 \) for the computation of the groups \(\pi_1(Q,I) \). If there is no ambiguity we shall write \([w]\) for the homotopy class of a walk \(w \).

Lemma 4.1. Let \(I \) be an admissible ideal of \(kQ \), let \(D \) be a dilatation of \(kQ \) and set \(J = D(I) \). Let \(\lambda: \pi_1(Q,I) \xrightarrow{\sim} \pi_1(Q,J) \) be the isomorphism given by Proposition 2.5. Let \(p: (Q,\tilde{I}) \rightarrow (Q,I) \) (resp. \(q: (Q,\tilde{J}) \rightarrow (Q,J) \)) be the universal Galois covering with group \(\pi_1(Q,I) \) (resp. \(\pi_1(Q,J) \)). Then there exists an isomorphism \(\psi: k\tilde{Q}/\tilde{I} \xrightarrow{\sim} k\tilde{Q}/\tilde{J} \) such that the following diagram commutes:

\[
\begin{array}{ccc}
k\tilde{Q}/\tilde{I} & \xrightarrow{\psi} & k\tilde{Q}/\tilde{J} \\
\downarrow \tilde{p} & & \downarrow \tilde{q} \\
kQ/I & \xrightarrow{\bar{D}} & kQ/J
\end{array}
\]

where \(\bar{D}, \tilde{p} \) and \(\tilde{q} \) are induced by \(D, p \) and \(q \) respectively. Moreover, \(\psi \) satisfies: \(\psi \circ g = \lambda(g) \circ \psi \) for any \(g \in \pi_1(Q,I) \).

Proof: We have \(\tilde{Q} = \tilde{Q} \) since \(\sim_I \) and \(\sim_J \) coincide (see Proposition 2.5). Set \(\bar{D}: k\tilde{Q} \rightarrow k\tilde{Q} \) to be defined by: \(\bar{D}(a,[w]) = (D(a),[w]) \) for any arrow \((a,[w]) \in \tilde{Q}_1 \). By construction \(\bar{D} \) is an automorphism of \(k\tilde{Q} \) and \(\bar{D}(\tilde{I}) = \tilde{J} \). Set \(\psi: k\tilde{Q}/\tilde{I} \xrightarrow{\sim} k\tilde{Q}/\tilde{J} \) to be induced by \(\bar{D} \). Then it is easy to check all the announced properties. □
Lemma 4.2. Let I be an admissible ideal of kQ, let $\varphi = \varphi_{\alpha,u,\tau}$ be a transvection, set $J = \varphi(I)$ and assume that $\alpha \sim_J u$. Let $\lambda: \pi_1(Q, I) \to \pi_1(Q, J)$ be the surjection given by Proposition 2.5. Denote by $p: (\hat{Q}, \hat{I}) \to (Q, I)$ (resp. by $q: (\hat{J}, \hat{J}) \to (Q, J)$) the universal Galois covering with group $\pi_1(Q, I)$ (resp. $\pi_1(Q, J)$). Then there exists a Galois covering $\psi: k\hat{Q}/\hat{I} \to k\hat{Q}/\hat{J}$ with group $\text{Ker}(\lambda)$ and such that the following diagram commutes:

$$
\begin{array}{ccc}
k\hat{Q}/\hat{I} & \xrightarrow{\psi} & k\hat{Q}/\hat{J} \\
\hat{p} \downarrow & & \downarrow \hat{q} \\
kQ/I & \xrightarrow{\tilde{\varphi}} & kQ/J
\end{array}
$$

where $\varphi, \tilde{\varphi}$ and \hat{q} are induced by φ, p and q respectively.

Moreover, ψ satisfies: $\psi \circ g = \lambda(g) \circ \psi$ for any $g \in \pi_1(Q, I)$.

Proof: Let $\varphi': k\hat{Q} \to k\hat{Q}$ be defined by: $\varphi'([w]) = [w]$ for any $[w] \in \hat{Q}_0$, $\varphi'(\beta, [w]) = (\beta, [w])$ for any $(\beta, [w]) \in \hat{Q}_1$ such that $\beta \neq \alpha$, and $\varphi'(\alpha, [w]) = ([w] + \tau(u, [w])$ for any $(\alpha, [w]) \in \hat{Q}_1$. Then φ' is well defined since $\alpha \sim_J u$. Moreover, $\varphi \circ p(a) = q \circ \varphi'(a)$ for any $a \in \hat{Q}_1$, and $\varphi'(I) \subseteq \hat{J}$. Let $\psi: k\hat{Q}/\hat{I} \to k\hat{Q}/\hat{J}$ be induced by φ'. Thus $\hat{q} \circ \psi = \varphi \circ \hat{p}$. Let $g = [\gamma] \in \pi_1(Q, I)$ and let $[w] \in \hat{Q}_0$. Then $\psi \circ g([w]) = \psi([w\gamma^{-1}]) = [w\gamma^{-1}] = \lambda(g)([w]) = \lambda(g) \circ \psi([w])$. The Lemma 3.1 implies that $\psi \circ g = \lambda(g) \circ \psi$ for any $g \in \pi_1(Q, I)$. Finally, Proposition 3.4 gives: ψ is a Galois covering with group $\text{Ker}(\lambda)$.

Lemma 4.3. Let A be a basic and connected finite dimensional k-algebra with ordinary quiver Q. Assume that k has characteristic zero and that Q has no double bypass. Let \sim_{I_0} be the unique source of Γ and \sim_J be a vertex of Γ. Then there exist a sequence $\varphi_1, \ldots, \varphi_n$ ($\varphi_i = \varphi_{\alpha_i, u_i, \tau_i}$) of transvections and a dilatation D such that:

a) $I = D\varphi_n \ldots \varphi_1(I_0)$,

b) if I_i is the ideal $\varphi_i \ldots \varphi_1(I_0)$ then $\alpha_i \sim_J u_i$.

Proof: We shall write $[n]$ for the set $\{1, \ldots, n\}$. Remark 2 implies that $I = D\psi_1 \ldots \psi_m(I_0)$ where the ψ_i’s are transvections and D is a dilatation. Set $J = D^{-1}(I) \equiv \psi_1 \ldots \psi_m(I_0)$.

Thus we only need to prove that the conclusion of Lemma 4.3 holds for J. Let R_m be the property: “If J is the image of I_0 by a product of m transvections, then there exists a sequence $\varphi_1, \ldots, \varphi_n$ of transvections such that $J = \varphi_n \ldots \varphi_1(I_0)$ and which satisfies the property b) of Lemma 4.3”. Let us prove that R_m is true by induction on $m \geq 0$. Obviously R_0 is true, let $m \geq 1$ and let us assume that R_{m-1} is true. Let $J = \psi_1 \ldots \psi_m(I_0)$ where $\psi_i = \varphi_{a_i, v_i, \tau_i}$. Assume first that there exists $i_0 \in [m]$ such that $a_{i_0} \sim_J v_i$. Set $J' = \psi_1 \ldots \psi_{i_0-1} \psi_{i_0+1} \ldots \psi_m(I_0)$. Thanks to R_{m-1}, there exists a sequence $\varphi_1, \ldots, \varphi_n$ of transvections such that $J' = \varphi_n \ldots \varphi_1(I_0)$ and which satisfies the property b) of Lemma 4.3. The sequence $\varphi_1, \ldots, \varphi_n, \psi_1$ shows that R_m is true when such an i_0 exists. Assume now that for any $i \in [m]$ we have $a_i \not\sim_J v_i$. Let $\varphi = \psi_m \ldots \psi_1$. Lemma 2.10, applied to the data I_0, J, φ, shows that $J = I_0$. Hence R_m is true (with $n = 0$) in this situation as well. This achieves the proof of Lemma 4.3.

The following proposition shows how a Galois covering of locally bounded k-category is induced by a covering of quivers with relations. Notice that this proposition makes no assumption on the ordinary quiver of the involed k-categories (in particular, the quiver may have loops, oriented cycles, multiple arrows...). It generalises [17, prop 3.4, 3.5]. The proof uses the ideas presented in [11, sect. 3].
Proposition 4.4. Let $F: \hat{C} \to C$ be a Galois covering with group G where C and \hat{C} are locally bounded. Then, there exist admissible presentations $\varphi: kQ/I' \to C$ and $\psi: \hat{kQ}/\hat{I} \to \hat{C}$ and a covering of quiver with relations $p: (\hat{Q}, \hat{I}) \to (Q, I')$, such that φ restricts to the identity map $Q_0 = C_0 \to C_0$ on C_0 and such that the following diagram is commutative:

$$
\begin{array}{ccc}
k\hat{Q}/\hat{I} & \xrightarrow{\psi} & \hat{C} \\
\downarrow{\bar{p}} & & \downarrow{\hat{F}} \\
kQ/I' & \xrightarrow{\varphi} & C
\end{array}
$$

where \bar{p} is induced by p. If \hat{C} is connected, then p is Galois with group G.

Proof: Using [7, Thm. 3.8] we may assume that C is G-graded, that $C' = \mathbb{C}_G^F \to C$ is the natural projection. Since \hat{C} and C are locally bounded, [6, 3.3] implies that any morphism in $R\mathcal{C}$ is the sum of images (under F) of morphisms in $R\hat{C}$. Since the image under F of a morphism in \hat{C} is a homogeneous morphism in C, we deduce that the ideals $R\mathcal{C}$ and $R^2\mathcal{C}$ are homogeneous. Thus, for any $x \neq y \in Q_0$ there exist homogeneous elements $y_0u_x^{(1)}, \ldots, y_0u_x^{(\nu_n(x))}$ of $yR\mathcal{C}_x$ giving rise to a basis of $y(R\mathcal{C}/R^2\mathcal{C})_x$. In particular, y_0u_x is equal to the number of arrows $x \to y$ in Q. Let $\mu: kQ \to C$ be defined as follows: $\mu(x) = x$ for any $x \in Q_0 = C_0$, and μ induces a bijection between the set of arrows $x \to y$ of Q and $\{y_0u_x^{(1)}, \ldots, y_0u_x^{(\nu_n(x))}\}$ for any $x \neq y \in Q_0$. Set $I' = Ker(\mu)$. Hence I' is admissible and μ induces an isomorphism $\varphi: kQ/I' \to C$. The following construction of p uses the ideas of Green in [11, Sect. 3]. The k-category kQ is a G-graded as follows: a path u in Q is homogeneous of degree the degree of $\mu(u)$. By using the G-grading on C, it is easy to check that I' is homogeneous and that $\varphi: kQ/I' \to C$ is homogeneous of degree 1_G. Let \hat{Q} be the quiver as follows: $\hat{Q}_0 = Q_0 \times G$, and the arrows $(x, s) \xrightarrow{\alpha} (y, t)$ in \hat{Q}_1 are exactly the arrows $x \xrightarrow{\alpha} y$ in Q_1 with degree $t^{-1}s$. Let $p: \hat{Q} \to Q$ be defined by: $p((x, s)) = x$ and $p((x, s) \xrightarrow{\alpha} (y, t)) = \alpha$ for any $(x, s) \in \hat{Q}_0$ and any $(x, s) \xrightarrow{\alpha} (y, t) \in \hat{Q}_1$. Let $\hat{I} \subseteq \hat{Q}$ be the admissible ideal $p^{-1}(I')$ of $k\hat{Q}$. According to [11, Sect. 3], p is a covering, and if \hat{Q} is connected then p is Galois with group G. In particular $\bar{p}: k\hat{Q}/\hat{I} \to kQ/I'$ is a covering functor. Let $\nu: k\hat{Q} \to C' = \mathbb{C}_G$ be as follows: $\nu(x, s) = (\varphi(x), s)$ for any $(x, s) \in \hat{Q}_0$, and if $(x, s) \xrightarrow{\alpha} (y, t) \in \hat{Q}_1$ then $\nu(\alpha) = \mu(p(\alpha)) \in \varphi(y)C^{-1}_{\varphi(x)} \varphi(x)$. Therefore $F \circ \nu = \varphi \circ p$, and since φ is an isomorphism, we have $\hat{I} = Ker(\nu)$. Let $\psi: k\hat{Q}/\hat{I} \to C'$ be induced by ν. Hence $\psi: \hat{Q}_0 \to \hat{C}_0$ is bijective, ψ is faithful and $\varphi \circ \bar{p} = F \circ \psi$. Moreover ψ is full because \bar{p} and F are covering functors. Thus, ψ is an isomorphism. Finally, if C' is connected then \hat{Q} is connected and this implies that p is a Galois covering with group G. \qed

Recall from [4] that a triangular algebra is called simply connected if the fundamental group of any presentation of this algebra is trivial. A triangular algebra is simply connected if and only if it has no proper connected Galois covering, see [19]. The following corollary generalises this characterisation to non triangular algebras, it is a direct consequence of Proposition 4.4

Corollary 4.5. Let A be a basic connected finite dimensional k-algebra. Then the following assertions are equivalent:

1. for any admissible presentation $kQ/I \simeq A$ we have $\pi_1(Q, I) = 1$,
2. A has no proper Galois covering $\mathcal{C} \to A$ with \mathcal{C} connected and locally bounded.
Remark 7. Proposition 4.4 does not necessarily hold when F is a covering functor and not a Galois covering. As an example, set $C = kQ$ where Q is equal to:

![Diagram of the quiver Q](image)

Set $G = \mathbb{Z}/2 = \langle \sigma \mid \sigma^2 \rangle$ and set $C' = kQ'$ where Q' is the quiver:

![Diagram of the quiver Q'](image)

Set $F : C' \to C$ to be defined by: $F(b) = F(\sigma b) = b$, $F(c) = F(\sigma c) = c$, $F(a) = a$ and $F(\sigma a) = a + cb$. Then F is a covering functor. The group $Aut(F)$ is trivial therefore F is not Galois, and F cannot be induced by any covering of bound quivers. Notice that if $F : C' \to C$ is a covering functor and if the ordinary quiver of C has no bypass, then F is induced by a covering of bound quivers.

Theorem 2. Assume that A satisfies the hypotheses made before stating Theorem 1. Let $\phi_0 : kQ/I_0 \simeq A$ be an admissible presentation such that \sim_{I_0} is the source of Γ. Let $(Q, I_0) \overset{p_0}{\to} (Q, I_0)$ be the universal Galois covering with group $\pi_1(Q, I_0)$ and let $k\tilde{Q}/\tilde{I}_0 \overset{\tilde{p}_0}{\to} kQ/I$ be induced by p_0. For any connected Galois covering $F : C' \to A$ with group G there exists an isomorphism $k\tilde{Q}/\tilde{I}_0 \overset{\tilde{\sigma}}{\to} A$ equal to ϕ_0 on objects, a Galois covering $F' : k\tilde{Q}/\tilde{I}_0 \to C'$ with group N a normal subgroup of $\pi_1(Q, I_0)$ such that the following diagram commutes:

\[
\begin{array}{ccc}
k\tilde{Q}/\tilde{I}_0 & \overset{F'}{\to} & C' \\
p_0 \downarrow & & \downarrow F \\
kQ/I_0 & \overset{\sim}{\to} & A \\
\end{array}
\]

Moreover, there is an exact sequence of groups: $1 \to N \to \pi_1(Q, I_0) \to G \to 1$.

Proof: Let $C' \overset{\tilde{F}}{\to} A$ be a connected Galois covering with group G. Thanks to Proposition 4.4 we may assume that there exists a Galois covering (with group G) of bound quivers $(Q', I') \overset{r}{\to} (Q, I)$ such that: $A = kQ/I$, $C' = kQ'/I'$ and $F : C' \to A$ is induced by q. Let $(\tilde{Q}, \tilde{I}) \overset{\tilde{\sigma}}{\to} (Q, I)$ be the universal Galois covering with group $\pi_1(Q, I)$. Thus (see [17]) there exists a Galois covering $(\tilde{Q}, \tilde{I}) \overset{r}{\to} (Q', I')$ such that $q \circ r = p$. Hence we have a commutative diagram (denoted by D):

\[
\begin{array}{ccc}
k\tilde{Q}/\tilde{I} & \overset{\tilde{F}}{\to} & kQ'/I' \\
p_0 \downarrow & & \downarrow \tilde{\sigma} \\
kQ/I_0 & \overset{\tilde{\sigma}}{\to} & kQ/I \\
\end{array}
\]

Since \sim_{I_0} is the source of Γ, Lemma 4.3 implies that there exist both a sequence of transvections $\varphi_1 = \varphi_{a_1, u_1, \tau_1}, \ldots, \varphi_n = \varphi_{a_n, u_n, \tau_n}$ of kQ and a dilatation D such that $I = D\varphi_{a_1, u_1, \tau_1} \ldots \varphi_n(I_0)$ and such that $\alpha_i \sim_{I_i} u_i$ if $I_i = \varphi_{\alpha_i, u_i, \tau_i}(I_0)$ for any i. Lemma 4.1 and Lemma 4.2 applied to D, I, I_n and φ_1, I_{n-1}, I_i respectively yield the following com-
mutative diagrams denoted by D' and T_i respectively:

$$
\begin{array}{c}
\frac{kQ}{I} \longrightarrow k\hat{Q}/\hat{I} \\
\Downarrow p_n \Downarrow \varphi_i \Downarrow p_i \\
\frac{kQ}{I_n} \overset{D'}{\longrightarrow} \frac{kQ}{I_i}
\end{array}
\quad
\begin{array}{c}
\frac{kQ^{(i-1)}/I^{(i-1)}}{kQ^{(i)}/I^{(i)}} \\
\Downarrow p_{n-1} \Downarrow \varphi_i \\
\frac{kQ^{(i-1)}}{I^{(i-1)}_i} \overset{\tilde{\varphi}_i}{\longrightarrow} \frac{kQ}{I_i}
\end{array}
$$

where φ_i (resp. D) is induced by φ_i (resp. D) and $kQ^{(i)}/I^{(i)} \overset{p_i}{\longrightarrow} kQ/I_i$ is induced by the universal Galois covering $(Q^{(i)}, I^{(i)}) \overset{p_i}{\longrightarrow} (Q, I_i)$ with group $\pi_1(Q, I_i)$. If we connect T_1, \ldots, T_n, D' and D we get the announced commutative diagram. Finally the announced properties of F' are given by Proposition 3.4.

□

Remark 8. Using the universal property in Theorem 2 it is easily verified that if there exists a Galois covering $C' \rightarrow A$ such that C' is simply connected (i.e. the fundamental group of any presentation of C' is trivial), then $C' \simeq k\hat{Q}/\hat{I}_0$.

One may wish to use the more general framework of Galois categories (see [12]) in order to recover Theorem 1 and Theorem 2. Unfortunately this cannot be done in general because the category of covering functors with finite fibre of A may not be a Galois category as explained in the following example:

Example 4. Let $A = kQ/I$ where Q is equal to

$$
\begin{array}{c}
1 \\
\downarrow a \\
2 \\
\downarrow \sigma a \\
3 \\
\downarrow \sigma e \\
4 \\
\downarrow \sigma d \\
5 \\
\downarrow \sigma f
\end{array}
$$

and $I = < da, dcb + fea, fecb >$. Set $G = \mathbb{Z}/2 = < \sigma | \sigma^2 >$. Let Q' be the quiver:

$$
\begin{array}{c}
1 \\
\downarrow a \\
2 \\
\downarrow \sigma a \\
3 \\
\downarrow \sigma e \\
4 \\
\downarrow \sigma d \\
5 \\
\downarrow \sigma f
\end{array}
$$

and set:

$$
I' = < \sigma d a, d \sigma a, dcb + \sigma f \sigma e a, \sigma d \sigma c \sigma b + \sigma e \sigma a, \sigma c \sigma e \sigma c \sigma b >
$$

Hence the natural mapping $p: (Q', I') \rightarrow (Q, I) \ (x, \sigma x \mapsto x)$ is a Galois covering with group G. Therefore, if we set $A' = kQ'/I'$, then p induces a Galois covering $F': A' \rightarrow A$ with group G. If u is a path in Q' (resp. in Q) we will write \tilde{u} (resp. \hat{u}) for: $u \text{ mod } I' \in A'$ (resp. for: $u \text{ mod } I \in A$). Let us set $F': A' \rightarrow A$ to be the Galois covering with group G as well and defined as follows:

- $F'(%28\tilde{u}\%29) = F'(%28\sigma a\%29) = \tilde{a} + \tilde{cb}$,
- $F'(%28\tilde{x}\%29) = F'(%28\sigma x\%29) = \tilde{x}$ for any $x \in \left\{ b, c, d, e, f \right\}$. 20
Assume that the category of the coverings of A with finite fibre is a Galois category. Hence this category admits finite products and the product of F with F' gives rise to a diagram:

\[\begin{array}{ccc} & C & \\
F & p_1 \downarrow & \downarrow p_2 \\
A' & \rightarrow & A' \\
F' & \leftarrow & A \\
\end{array} \]

such that $F'' = F \circ p_1 = F' \circ p_2$ is a covering functor with fibre the product of the fibres of F and F'. Hence $C_0 = Q_0' \times Q_0' = \bigcup_{x \in Q_0} \{(x, x), (x, \sigma x), (\sigma x, x), (\sigma x, \sigma x)\}$. Moreover, Proposition 3.3 implies that p_1 and p_2 are covering functors as well. Let us compute the lifting u of $\tilde{a} \in \pi_3 A_1$ w.r.t. F'' and with source $(1, 1)$. Using the lifting property of p_1 and p_2 we get:

- $p_1(u_1) + p_1(u_2) = \tilde{a}$ where $u_1 + u_2 \in (\sigma_3, 3)C_{(1, 1)} \oplus (\sigma_3, 3)C_{(1, 1)}$,
- $p_2(v_1) + p_2(v_2) = \tilde{a}$ where $v_1 + v_2 \in (3, \sigma_3)C_{(1, 1)} \oplus (\sigma_3, 3)C_{(1, 1)}$,
- $p_2(v_3) + p_2(v_4) = \tilde{c}b$ where $v_3 + v_4 \in (\sigma_3, 3)C_{(1, 1)} \oplus (3, 3)C_{(1, 1)}$.

Since $\tilde{a} = F(\tilde{a}) = F'(\tilde{a} - \tilde{c}b)$, we infer that $u = u_1 + u_2 = v_1 + v_2 - v_3 - v_4$. Therefore $v_3 = v_4 = 0$, $u_1 = -v_3$ and $u_2 = v_2$. Notice that $v_3 \neq 0$ and $v_2 \neq 0$ since $\tilde{a} \neq 0$ and $\tilde{c}b \neq 0$. Therefore, the spaces $(\sigma_3, 3)C_{(1, 1)}$ and $(\sigma_3, 3)C_{(1, 1)}$ are non zero. Since p_1 is a covering functor, we infer that p_1 induces an inclusion $(\sigma_3, 3)C_{(1, 1)} \oplus (\sigma_3, 3)C_{(1, 1)} \hookrightarrow 3A_1'$ of a space of dimension at least 2 in $\sigma_3 A_1'$, $\pi_3 A_1' = k.\tilde{a}$. This contradiction shows that the product of F with F' does not exist and that the category of coverings of A with finite fibre is not necessarily a Galois category.

We end this study with a final remark concerning monomial algebras. Recall that an algebra A is monomial if it admits a presentation $kQ/I_0 \simeq A$ where I_0 is generated by a set of paths. In such a case, $\pi_1(Q, I_0) \simeq \pi_1(Q)$ (the fundamental group of Q) and therefore the fundamental group of any other presentation of A is a quotient of $\pi_1(Q, I_0)$. Thus, Theorem 1 holds for A monomial without hypothesis on the characteristic of k or on the double bypasses in Q. Hence we can wonder if Theorem 2 holds for monomial algebras. This question will be studied in a subsequent text.

Acknowledgements

The author would like to thank Claude Cibils, María Julia Redondo and Andrea Solotar for carefully reading a previous version of this text and for many helpful comments. He also acknowledges an anonymous referee, Katie Coon and Guillaume Lamy for their help to improve the English of the text.

References

[1] W. W. Adams and P. Loustaunau. An introduction to Gröbner bases, volume 3 of Graduate Studies in Mathematics. American Mathematical Society, 1994.
[2] I. Assem, D. Castonguay, E. N. Marcos, and S. Trepode. Strongly simply connected shurian algebras and multiplicative bases. *Journal of Algebra*, 283(1):161–189, 2005.

[3] I. Assem and J. A. de la Peña. The fundamental groups of a triangular algebra. *Communications in Algebra*, 24(1):187–208, 1996.

[4] I. Assem and A. Skowroński. On some classes of simply connected algebras. *Proceedings of the London Mathematical Society*, 56(3):417–450, 1988.

[5] M. J. Bardzell and E. N. Marcos. H^1 and representation of finite dimensional algebras. *Lecture Notes in Pure and Applied Mathematics*, 224:31–38, 2002.

[6] K. Bongartz and P. Gabriel. Covering spaces in representation theory. *Inventiones Mathematicae*, 65:331–378, 1982.

[7] C. Cibils and E. N. Marcos. Skew categories, Galois coverings and smash-product of a k-category. *Proceedings of the American Mathematical Society*, 134(1):39–50, 2006.

[8] D. R. Farkas, C. D. Feustel, and E. L. Green. Synergy in the theories of Gröebner bases and path algebras. *Canadian Journal of Mathematics*, 45(4):727–739, 1993.

[9] D. R. Farkas, E. L. Green, and E. N. Marcos. Diagonalizable derivations of finite dimensional algebras. *Pacific Journal of Mathematics*, 196(2):341–351, 2000.

[10] P. Gabriel. The universal cover of a representation finite algebra. *Lecture Notes in Mathematics*, 903:65–105, 1981. in: Representation of algebras.

[11] E. L. Green. Graphs with relations, coverings and group-graded algebras. *Transactions of the American Mathematical Society*, 279(1):297–310, sep 1983.

[12] A. Grothendieck and M. Raynaud. Revêtements étale et groupe fondamental. *SGA 1*, volume 224 of *Lecture Notes in Mathematics*. Springer Verlag, Berlin-Heidelberg-New York, 1971.

[13] F. Guil-Asensio and M. Saorín. The group of outer automorphisms and the Picard group of an algebra. *Algebras and Representation Theory*, 2(4):313–330, 1999.

[14] F. E. Hohn. *Elementary matrix algebra*. Collier Macmillan Publishers, 1973. 3rd edition.

[15] S. Lang. *Algebra*. Addison-Wesley Publishing Company, 1993. 3rd edition.

[16] P. Le Meur. The fundamental group of a triangular algebra without double bypasses. *C. R. Acad. Sci. Paris*, Ser. I 341, 2005.

[17] R. Martínez-Villa and J. A. de la Peña. The universal cover of a quiver with relations. *Journal of Pure and Applied Algebra*, 30:277–292, 1983.

[18] Ch. Riedtmann. Algebren, darstellungsköcher uiberlagerungen und zurück. *Commentarii Mathematici Helvetici*, 55:199–224, 1980.

[19] A. Skowroński. Algebras of polynomial growth. *Topics in Algebra - Banach Center Publications*, 26(1):535–568, 1990.

[20] C. Strametz. The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra. arXiv:math.TR/0111060 v2, to appear in *Journal of Algebra* and its Applications, dec 2001.

[21] C. Strametz. The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra. *C. R. Acad. Sci. Paris*, 334(9):733–738, 2002.