Generalizable items and modular structure for computerised physician staffing calculation on intensive care units

Manfred Weiss, Gernot Marx, Thomas Iber

Manfred Weiss, Department of Anesthesiology, University Hospital Ulm, D-89081 Ulm, Germany
Gernot Marx, Klinik für Operative Intensivmedizin und Intermediate Care, Uniklinik RWTH Aachen, D-52074 Aachen, Germany
Thomas Iber, Department of Anesthesia and Intensive Care, Klinikum Mittelbaden Baden-Baden/Blühl, D-76532 Baden-Baden, Germany

Author contributions: Weiss M, Marx G and Iber T wrote the paper on behalf of the “Forum quality management and economics” of the German Association of Anaesthesiologists (BDA) and the German Society of Anaesthesiology and Intensive Care Medicine (DGAI); Weiss M, Marx G and Iber T were leading in the previous versions and the update and publications in German language of the calculation base for the personnel requirement of physicians on ICUs including an Excel calculation sheet by the “Forum quality management and economics” focusing on quantitative and qualitative cornerstones for personnel requirement of physicians on ICUs.

Supported by the German Association of Anaesthesiologists (BDA) and the German Society of Anaesthesiology and Intensive Care Medicine (DGAI), in that BDA and DGAI sponsored meetings of the working group "personnel management" to create the physician staffing tools 2008 and 2012. Weiss M, Marx G and Iber T are members of the working group "personnel management of BDA and DGAI".

Conflict-of-interest statement: Authors declare no conflict of interests for this article.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Abstract

Intensive care medicine remains one of the most cost-driving areas within hospitals with high personnel costs. Under the scope of limited budgets and reimbursement, realistic needs are essential to justify personnel staffing. Unfortunately, all existing staffing models are top-down calculations with a high variability in results. We present a workload-oriented model, integrating quality of care, efficiency of processes, legal, educational, controlling, local, organisational and economic aspects. In our model, the physician’s workload solely related to the intensive care unit depends on three tasks: Patient-oriented tasks, divided in basic tasks (performed in every patient) and additional tasks (necessary in patients with specific diagnostic and therapeutic requirements depending on their specific illness, only), and non patient-oriented tasks. All three tasks have to be taken into account for calculating the required number of physicians. The calculation tool further allows to determine minimal personnel staffing, distribution of calculated personnel demand regarding type of employee due to working hours per year, shift work or standby duty. This model was introduced and described first by the German Board of Anaesthesiologists and the German Society of
Anesthesiology and Intensive Care Medicine in 2008 and since has been implemented and updated 2012 in Germany. The modular, flexible nature of the Excel-based calculation tool should allow adaptation to the respective legal and organizational demands of different countries. After 8 years of experience with this calculation, we report the generalizable key aspects which may help physicians all around the world to justify realistic workload-oriented personnel staffing needs.

Key words: Budgets; Critical care; Economics; Humans; Intensive care units; Personnel hospital; Personnel staffing and scheduling; Physicians; Workload; Quality of health care

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: After 8 years of experience with the first calculation tool for physician staffing on intensive care units, generalizable key aspects are presented to help physicians all around the world to justify realistic personnel needs. A workload-oriented modular, flexible Excel-based calculation tool is presented, integrating quality of care, efficiency of processes, legal, educational, controlling, local, organisational and economic aspects. Staffing calculations reflect basic tasks (every patient), additional tasks (specific diagnostic and therapeutic requirements), non patient-oriented tasks, and, auxiliary calculations, such as minimal personnel staffing, distribution of personnel demand regarding type of employee due to working hours per year, shift work or standby duty.

Weiss M, Marx G, Iber T. Generalizable items and modular structure for computerised physician staffing calculation on intensive care units. *World J Crit Care Med* 2017; 6(3): 153-163 Available from: URL: http://www.wjgnet.com/2220-3141/full/v6/i3/153.htm DOI: http://dx.doi.org/10.5492/wjccm.v6.i3.153

INTRODUCTION

Intensive care medicine is one of the most cost-driving areas within hospitals with high personnel costs[1,2]. Thus, realistic requirements for personnel staffing are highly needed. Several professional societies in Germany (DGA, BDA, DIVI, DGCH, BDCH)[3], Europe (ESICM)[4,5] or the United States (SCCM)[6,7] made recommendations for the staffing and organisation of interdisciplinary intensive care units (ICUs). The presence of physicians on ICUs 24-h, 7 d a week, 365 d a year are justified by the physicians perspective[3,4,6,7], and, in Germany, economically relevant for reimbursement. Unfortunately, all existing staffing models are top-down calculations with a high variability in the calculated results. In turn, this variability often reflects the range between sufficient personnel resources and being underpowered, thereby leading to controversial discussions. Taking into account quality of care, it is necessary to calculate the need by a bottom-up method based on the performed procedures and actions. Furthermore, in the G-DRG-reimbursement system, costs for continuous medical education are insufficiently taken into consideration[8]. Bearing these aspects in mind, the working group “personnel management of BDA and DGAI” published a workload-oriented modular calculation model for personnel staffing of physicians in the ICU in 2008[9] and an update in 2012[10]. Thereby, the actual-state of personnel staffing on the ICU can be compared with the necessary target-state and allows physician staffing on a workload basis. The BDA and DGAI tool enables an individualised systematic analysis for every type of hospital[10]. The purpose of this paper is to present generalizable items and a modular structure for a computerised calculation tool for widespread use which may help physicians to justify realistic workload-oriented personnel staffing requirements on ICUs all around the world.

MODULAR CALCULATION OF STAFFING OF PHYSICIANS ON ICUS

Generalizable items of personnel staffing in the ICU are presented. The workload-oriented calculation[9,10] has been developed for every type of ICU, taking into account various magnitudes, premises and organisational structures of hospitals, and degrees of care. The basic consideration in this model is analysing the workload of physicians on ICUs, which has been divided in basic tasks, additional tasks, and non patient-oriented tasks (including management issues and teaching). The personnel demand for these tasks can be calculated using Excel-based “calculation tools” (Tables 1-4). In addition, “assistance tools” can be provided to calculate minimal personnel staffing, distribution of calculated personnel need regarding type of employee due to working hours per year, shift work or stand by duty (Tables 5-8).

First of all, reflections are inevitable regarding the local situation, performance of the hospital, subset of patients, premises and organisational structures. Standard times regarding workload tasks have to be defined, at best should have been measured in the distinct hospital, and consented by different stakeholders.

However, before calculating workload-related personnel staffing, some aspects have to be clarified: (1) in-house times for admission, daily routine, omission and handing over by physicians; (2) in-house number and times for tasks, procedures and examinations, and non-recurring tasks performed per year per patient; (3) number of ICU beds; (4) number of cases and patient days per year; (5) average drop-out times (holidays, illness); (6) holidays given to shift workers, gross annual working time in hours per work-fellow; (7) number of physicians in specialist training with, e.g., less than 3 mo ICU experience; (8) time for non patient-oriented...
Table 1 Basic patient-oriented tasks of physicians on the intensive care unit

	In-house	Standard	In-house time	Standard time	Physicians/	handing over
	Time (min)	Time (min)	Physician/patient	Physician/patient	Time/ patient	Time/ patient
Admission (time per patient, including daily routine on day of admission)						
Patient takeover	5	5				
Clinical evaluation	5	5				
Writing of admission documents	20	20				
Writing of physician's instructions	10	10				
Reimbursement documentation			(DRGs)			
Basic examination and controls	5	5				
Handing over round	5	5				
Senior physician round	5	5				
Sum	65	65				
Daily routine (time per patient)						
Transit time	5	5				
Physical examination and status	5	5				
Writing of physician's instructions	5	5				
Documentation	2	2				
Radiology round	2	2				
Microbiology round	2	2				
Physiotherapy round	10	10				
Talking with relatives	5	5				
Rounds with consultants	5	5				
Sum	41	41				
Omission/demission (time per patient)						
Final examination	3	3				
Final documentation	15	15				
Physician's letter	5	5				
Handing over	2	2				
Sum	25	25				
Handing over medical rounds (time per patient)						
Shift 1	Handing over 1 Mo - Fr	25	5	25	5	5
Shift 2	Handing over 2 Mo - Fr	25	5	25	5	5
Shift 3	Handing over 3 Mo - Fr	15	5	15	5	3
Senior physician round Mo - Fr	10	10	5	1	0	
Sum Mo - Fr	75	70				
Shift 1	Handing over 1 Sa, Su, public holiday	15	5	15	5	3
Shift 2	Handing over 2 Sa, Su, public holiday	0	5	0	0	
Shift 3	Handing over 3 Sa, Su, public holiday	15	5	15	5	3
Senior physician round Sa, Su, public holiday	5	5	5	1		
Sum Sa, Su, public holidays	35	35				

Tasks of the ICU physicians (e.g., working groups, administration, teaching); (9) number of full-time and partial-time physicians and working hours per week and year; and (10) shift work and standby duty.

In respect to all these items, e.g., with average drop-out time of 19.5% in a three-shift system and legal working regulations regarding handing over to other workshifts, the workload results in 26.25 h for three physicians per day. In other words, 6.8 full-time physicians are necessary to run an ICU 24-h, 7 d a week, 365 d a year. This minimal staffing is independent of the number of beds and patients.

Thus, e.g., with 12.75 h per day at maximum in shift work at with maximum 48 h per week and a standby duty of maximum 54 h per week, minimal staffing demand can be calculated (Table 6). Weekly working hours multiplied with 52.2 result in the potential gross working time of a physician. The real net working time of a physician is yielded by subtracting the drop-out times (holidays, average times of illness) from the gross working time.

In the following, a modular calculation model for personnel staffing of physicians is presented. For better understanding, we filled the tables with a sample of a virtual ICU (Tables 1-8). After gathering the relevant data for the calculation sheets, the respective data can be filled in the input fields (Tables 1-8). When all the relevant white fields in the Tables of a distinct ICU are filled with the respective data, staff requirements/year in hours are summed up, and automatically transferred.
to the following tables.

WORKLOAD-ORIENTED STAFFING CALCULATIONS

Basic effort includes all duties of physicians, which have to be done in each patient on admission, on a daily basis, handing over to other work-shifts, and on omission from the ICU, irrespective of severity of disease (Table 1). For calculation, different personnel staffing variations on working days, weekends and holidays have been taken into account.

The additional tasks, depending on severity of disease and organ dysfunctions, reflect all other tasks, procedures and examinations, as well as non-recurring tasks performed per year per patients (Table 2).

Table 2 Additional patient-oriented tasks of physicians on the intensive care unit

Inhouse time (min)	Standard time (min)	Numbers per yr	Total time	
Examinations				
Angiography (diagnostic/interventional)	120	120	45	5400
CT scan	60	45	379	22740
Examination	20	20		
Preparation time for transit	20	20		
Transit time	20	20		
Magnetic resonance tomography MRT	65	65	80	5200
Examination	20	20		
Preparation time for transit	30	30		
Transit time	15	15		
Diagnostic bronchoscopy	40	40	208	11920
Additional efforts (onetime/patient/stay)	200330			
Physician's letter (extensive, multi-page)	30	30	708	21240
Final documentation in decease	30	30	113	3390
Inquires by health insurance	15	15	35	525
Preparation for rehabilitation	45	45	107	4815
Tasks/procedures				
Ascites puncture	20	20	0	0
Installation of arterial line	10	10	254	2540
ARDS - 135° position	20	20	280	5600
Transfusion blood/coagulation products (per unit)	5	5	2732	13660
Cardioversion	15	15	4	60
Insertion of central lines (CVC, Sheldon, PICCO)	40	40	374	14960
Intracranial pressure measurement	15	15	16	240
Intubation	15	15	100	1500
Support of consultants	10	10	49	490
Transportation to operating theatre (in/out)	20	20	2600	52000
Installation of PAC/PICCO	10	10	1	10
Isolation of patients (i.e. MRSA)/d	15	15	45	675
Installation of peridural catheters	30	30	6	180
Percutaneous puncture of bladder	30	30	0	0
Puncture of pleura (one-time)	20	20	0	0
Transesophageal echocardiography	45	45	31	1395
Chest tube	30	30	113	3390
Tracheotomy (dilatation/plastically)	60	60	93	5580
Transvenous pacemaker	10	10	0	0
Ultrasonography of bladder	10	10	238	2380
Ultrasonography of pleura	10	10	200	2000
Transfer of patient to external institutions	30	30	0	0
Major wound care	15	15	50	750

CT: Computed tomography; MRI: Magnetic resonance imaging.
Non patient-oriented-tasks reflect working groups, administrative tasks, collaboration in commissions, teaching of students or nurses, tasks in projects and regulatory decrees (e.g., X-rays, hygiene, quality management, laws regarding medical products), knowledge development and continuation requirements (Table 3).

Total calculation results from patient days and cases per year, time efforts for basic and additional tasks, and for non patient-oriented tasks, which are summed up (Table 4). To result in the net annual working time,

Working groups	Time in h per year	FE net	Name working groups ... Projects
Airway management	84	0.04	
Haemostaseology	84	0.04	
Regional anaesthesia	84	0.04	
Working group A	84	0.04	Ultrasound
Working group B	84	0.04	Quality management, SOP's
Working group C	42	0.02	Hygiene standards

Administrative tasks	Time in h per year	FE net	Name working groups ... Projects
Waste management/recycling	42	0.02	
Department homepage	42	0.02	
Controlling	84	0.04	
Duty rota/duty pay off	218	0.10	
Inhouse continued education	42	0.02	
Executive board meetings	104	0.05	
Annual report	84	0.04	
Documentation of effort	84	0.04	
Computers and interconnection	84	0.04	
Rotation	21	0.01	
Emergency room management	21	0.01	
Rota plan	42	0.02	
Holiday plan	42	0.02	
Certificates	42	0.02	
Administrative task A	84	0.04	Strategy planning
Administrative task B	0.00		
Administrative task C	0.00		

Work in committees	Time in h per year	FE net	Name working groups ... Projects
Antibiotics	42	0.02	
Drugs	42	0.02	
Urban planning	84	0.04	
Equipment	84	0.04	
Materials management and control	42	0.02	
Transfusions	42	0.02	
Committee A	84	0.04	Patient's feedback
Committee B	0.00		
Committee C	0.00		

Students in practical year (PY)	Number of PY students per year	Time demand of physicians for PY students (h)	FE net
	8	2192	1.30

Work in projects	Time in h per year	FE net
Project A	218	0.10
Project B	0.00	
Project C	0.00	
Project D	0.00	
Project E	0.00	

Teaching	Time in h per year	FE net
Nurses	500	0.23
Other matters	0.00	

Regulatory decrees/representatives	Time in h per year	FE net
Worker protection	52	0.02
Data security	52	0.02
Diagnosis related groups	52	0.02
Hygiene	52	0.02
Devices	52	0.02
Hazardous material	52	0.02
Ordinance on medical devices	52	0.02
Quality management	52	0.02
Protection against X-rays	52	0.02

Sum hours net per year (h)	Time in h per year	FE net
5348.4	3.16	
Festive seasons and holiday seasons have to be taken into account. Additional times, e.g., for holidays given to shift workers, should be added. Following, times for rest allowance for full-time work-fellows should be stated. Rest allowance reflects holidays and average illness, and have to be defined as percentage of gross annual working time (Table 4). Real annual personnel demand in hours can be converted to annual full-time equivalents in that the sum of annual hours is divided through the net annual working time hours of an employee. If management functions are associated with the number of beds (e.g., 0.15 physicians per 6 beds), proportional personnel staff for management can be calculated (e.g., 0.3 physicians per fellows with less than 3 mo of ICU experience). Moreover, given the number of work-fellows in training per year, additional staff for teaching can be stated. On top, additional time for work-fellow dialogue and knowledge continuation for each full-time work-fellow should be added. Taken together, all these items lead to the number of full-time physicians needed per year to fulfill the items named above.

Auxiliary Staffing Calculations

If the total workload and need of personnel staffing in full-time physicians per year is known, assistance tools can clarify how to distribute employees with differing average working time per week (Table 5). As shown in the example in Table 5, the mix with partial-time and full-time physicians results in sum in 17 work-fellows to fulfill the tasks which were calculated to be provided by 14.5 full-time employees.

Table 4 Total calculation of physician staffing on the intensive care unit

	Time demand per patient (min)
Patient days per year	5868
Caes per year	705
Public holidays/yr	11
Total amount	
Numbers of ‘admissions’	705
Numbers of ‘daily routine’	5163
Numbers of ‘discharges/transferrals’	705
Numbers of ‘handing over rounds monday - friday’	4019
Numbers of ‘handing over rounds Sat, Sun, public hol.’	1849
Total times	
Time “takeover”	45825 min
Time “daily routine”	211683 min
Time “discharges/transferrals”	17625 min
Time “handing over rounds monday - friday”	301438 min
Numbers “handing over rounds Sat, Sun, public hol.”	64709 min
Total time BT	641280 min
Total time AT	3339 h
Time demand (BT + AT)	14027 h
Time for non patient-oriented tasks	5348 h
Holidays for shift workers	205 h
Total time expenditure	19580 h
Rest allowance in %	19.5%
Total time expenditure plus rest allowance	23398 h
Working hours without break per day (h)	8.4
Standard weekly hours of FE in h	42
Annual net time per FE (h)	1691
Number of FE	11.6 (net 1)
Number of beds	16
LS role	0.4 (0.15 FE/6 beds/net)
Leadership role h/yr	676 (hours for 0.15 FE/6 beds/net)
Number of physicians < 3 mo of ICU experience/yr	7
PT	2.1 (0.3 FE/physician < 3 mo ICU experience/year/net)
Postgraduate training hours per year	3550
Total time + leader ship, PT	23806 h
Number FE without continuing medical education	14.1 (net 2)
CME/SA (h)	704
Continuing medical education/staff appraisal in FE	0.4
Total time + LS, PT, CME, SA (net total)	24511 h
Number FE (net total)	14.5

BT: Basic tasks; AT: Additional tasks; FE: Full-time employee; LS: Leader ship role; PT: Postgraduate training; CME: Continuing medical education; SA: Staff appraisal.
to run an ICU is presented in Table 6. How many work-fellows do I need at minimum to guarantee a 24-h, 7-d a week, 365-d a year coverage with physician personnel, and in some countries, depending on that to get reimbursed or fulfill quality standards? Calculating the hours needed per year to cover full-time physician coverage, reflecting average drop-out times (holidays, average time for illness, e.g., 19.5% per year) and legal working regulations (e.g., at maximum 48 h/week in shift work, as well as 54 h/week with opt-out in standby duty! Take care for legal regulations: e.g., at maximum 12 h shift + 45 min handing over! AWT: Annual working time; CME: Continuing medical education; LS: Leadership; PT: Postgraduate training; SA: Staff appraisal.

Table 5 Calculation with work-fellows with different annual working times

CME, staff appraisal: AWT desired net value (h)	Gross AWT (h)	Rest allowance plus LS, PT, CME, SA (%)	Net AWT (h)	Number of physicians	Net AWT real (h)	
Employee type 1	42.00	2192	19.5	1691	4.0	6762
Employee type 2	21.00	1096	19.5	808	2.0	1616
Employee type 3	48.00	2506	19.5	1943	1.0	1943
Employee type 4	54.00	2819	19.5	2195	3.0	6584
Employee type 5	10.50	548	19.5	367	1.0	367
Employee type 6	40.00	2088	19.5	1606	3.0	4819
Employee type 7	20.00	1044	19.5	766	3.0	2298
Employee type 8	11	0	19.5	-74	0	
Employee type 9	11	0	19.5	-74	0	
Employee type 10	11	0	19.5	-74	0	

Sum employees: 17.0

Sum annual working time net (h): 24389

Hours net demand (if negative values) (h): -121

Gross AWT = \[\text{Standard weekly hours} \times \frac{5}{262} \times \text{261 workdays} - \text{public holidays}\], underlying (365 running days - 102 saturdays; sundays = 261 workdays). Net AWT = gross AWT - [gross AWT × (Rest allowance plus LS, PT, CME, SA)]. AWT: Annual working time; CME: Continuing medical education; LS: Leadership; PT: Postgraduate training; SA: Staff appraisal.

Table 6 Calculation of minimal physician staffing per year to run an intensive care unit

Time handing over round (min)	45	Number of handing overs day	Sum handing over (min) per day	Sum handing over (h) per day
8 h	3	135	1.95	
12 h	2	90	1.50	
x h	0	0	0.00	
Working hours per day in h	8.4			
Rest allowance in %	19.5			
Minimal demand of physicians				
Minimal occupancy: 1 physician, 24 h/d, 7 d/wk, 365 d/yr				

Number of physicians per shift	Shift	Net hours per day plus handing over	Net hours per year plus handing over	Gross hours per year plus handing over	FE net h/wk
1	8 h	26.25	9981	11450	6.8
1	12 h	25.50	9308	11122	6.6
1	x h	24.00	8760	10468	6.2

Not considered: times for CME, LS, PT, SA. Take care for legal working regulations: e.g., at maximum 48 h/wk in shift work, as well as 54 h/wk with opt-out in standby duty! Take care for legal regulations: e.g., at maximum 12 h shift + 45 min handing over! AWT: Annual working time; CME: Continuing medical education; FE: Full-time employee; LS: Leadership; PT: Postgraduate training; SA: Staff appraisal.

Weiss M et al. Generalizable physician staffing calculation on ICUs
DISCUSSION

One calculation tool cannot cover all aspects worldwide. However, modular tools, such as the BDA/DGAI tool\(^{[10]}\), have the key advantage to systematically look at the own performance spectrum, structural and legal conditions, and to calculate the corresponding personnel need. It should be kept in mind that besides all the workload-based calculations, due to arrange for manpower, a minimal personnel staffing is necessary to run an ICU with full-time coverage by a physician 24-h, 7-d a week, 365-d a year. This minimal staffing demand is independent of the workload, number of beds and patients.

Regarding medicolegal aspects, professional societies in Germany (DIVI, DGAI) and in Europe (ESICM) agree on the demand of continuous presence of physicians on the ICU. Previous top-down staffing models resulted in a high variability between sufficient and underpowered personnel resources. For example, the top-down calculation of the European Society of Intensive Care Medicine suggested the need of 5 physicians per ICU comprising 6 to 8 beds per year\(^{[4,5]}\). Thus, calculation of a 24 bed unit leads to a demand of 15 to 20 physicians, and, thereby, to a difference in demand of 5 physicians or 25%. In Germany, 24-h coverage by a physician is an inalienable prerequisite for reimbursement within the G-DRG system in terms of quality management. The presented calculation instrument directly couples workload to the personnel demand. Irrespective of quantitative calculations of staff, in Germany, reflecting legal demands, it has to be assured that performance is delivered all the time economically and according to commonly accepted standards of care and knowledge\(^{[12]}\) on the level of an experienced physician\(^{[13]}\), with benefit for the patient. Thus, besides quantitative, qualitative cornerstones for personnel requirement of physicians on ICUs have to be taken into account. The modular basis of the BDA/DGAI tool allows subsets of patients treated, social and industrial law, medical quality standards, economic and reimbursement items of the respective countries to be taken into consideration and to adapt the tool for personnel staffing in various countries and types of hospitals. In former days, the ICU personnel staffing tool was allocated via disc in Germany. Currently, it is provided online for free to all BDA/DGAI members, and,

Table 7 Calculation of physician staffing in shift work

Characteristics of shift work	Demand of physicians
Duty hours (shift)	06:00-14:54
Public holidays/year	11
Rest allowance in %	19.5
Working hours without break per day (h)	8.4
Standard weekly hours of full-time employee (FE) in h	42
Gross annual time per full-time employee FE (h)	2192
Net annual time per full-time employee FE (h) (without public holidays, holidays, illness)	1691

Shift	Days	Shift model	Start	End	Break h	Working hours without break h	Physician/shift Demand/week Physicians	Demand/week Physicians	Physicians	Demand/year Physicians	
a. m. shift	Weekday	8 h 6:00	14:54	0.5	8.4	5	5	210	250	10500	6.2
p. m. shift	Weekday	8 h 14:00	22:54	0.5	8.4	2	5	84	250	4200	2.5
night shift	Weekday	8 h 22:00	6:54	0.5	8.4	2	2	33.6	104	1747.2	1
a. m. shift	Weekday	8 h 6:00	14:54	0.5	8.4	2	2	33.6	104	1747.2	1
p. m. shift	Weekday	8 h 14:00	22:54	0.5	8.4	2	2	33.6	104	1747.2	1
night shift	Weekday	8 h 22:00	6:54	0.5	8.4	2	2	33.6	104	1747.2	1
a. m. shift	Public holiday	8 h 6:00	14:54	0.5	8.4	2	11	184.8	0.1		
p. m. shift	Public holiday	8 h 14:00	22:54	0.5	8.4	2	11	184.8	0.1		
night shift	Public holiday	8 h 22:00	6:54	0.5	8.4	2	11	184.8	0.1		
Senior physician/ Inhouse special duty		8:00	10:00	0	2	1	2	4	115	230	0.1
		0:00	0:00								
Sum	482.8	24926	14.7								
Net demand	-415.4	-0.2									

Take care for legal regulations: e.g., at maximum 12 h shift + 45 min handing over! Take care for legal working regulations: e.g., at maximum 48 h/wk in shift work! CME: Continuing medical education; FE: Full-time employee; LS: Leadership, PT: Postgraduate training; SA: Staff appraisal.
at the owner’s expense, to interested stakeholders by BDA/DGAI. The tool is widespread all over Germany in university and non-university hospitals and has been fine-tuned through the years since 2008, reflecting and integrating the feedback of the users. However, studies reflecting improved outcomes or better productivity

Table 8 Calculation of physician staffing in standby duty

Shift	Days	Type	Start	End	Break h	Duty hours (shift)	07:15-16:09	8:4	3	5	126	250	6300	3.7
a. m. shift	Weekday	7:15	16:09	0.5	8.4	5	126	250	6300	3.7				
p. m. shift	Weekday	7:15	16:09	0.5	8.4	5	126	250	6300	3.7				
a. m. shift	Weekday	7:15	16:09	0.5	8.4	5	126	250	6300	3.7				
p. m. shift	Weekday	7:15	16:09	0.5	8.4	5	126	250	6300	3.7				
a. m. shift	Public holiday	7:15	16:09	0.5	8.4	5	126	250	6300	3.7				
p. m. shift	Public holiday	7:15	16:09	0.5	8.4	5	126	250	6300	3.7				
x shift	Weekday	7:15	16:09	0.5	8.4	5	126	250	6300	3.7				
p. m. shift	Weekday	7:15	16:09	0.5	8.4	5	126	250	6300	3.7				
a. m. shift	Public holiday	7:15	16:09	0.5	8.4	5	126	250	6300	3.7				
p. m. shift	Public holiday	7:15	16:09	0.5	8.4	5	126	250	6300	3.7				

CME: Continuing medical education; FE: Full-time employee; LS: Leadership; PT: Postgraduate training; SA: Staff appraisal.
have not been performed. Feedback to BDA/DGAI revealed that personnel calculations were effected in around 1/3 of the users, transposed partially in 1/3, and not accepted in 1/3. Unfortunately, there is no in total or representative scientific evaluation of personnel staffing in non-university and university hospitals all over Germany which could reflect the gap between the calculations done by the tool and the actual personnel staffing of the ICUs. Moreover, whether staffing differences from basic and regular care up to maximal care hospitals result in better productivity or improved outcome in Germany is still a matter of debate. However, quality of care, length of stay and mortality in ICUs has been reported to be highly dependent on organisational structures, personnel staffing and qualification of physicians\[9,14,15\]. Reductions in personnel staffing are counterproductive if safety for patients and staff, and efficiency of processes decline\[16-19\], and/or the costs for materials increase\[19,20\]. Furthermore, it has to be taken into account that optimal reduction in errors is expected with a 85% average utilisation of an ICU with 100% of personnel staffing\[19\]. To achieve optimal quality, physician staffing has been claimed as follows\[5,21\]: The ICU has to be under a qualified, uniform, physician organised guidance, e.g., by a physician of a specialty which has intensive care medicine as an integrated part, such as anaesthesia, surgery, internal medicine, and who has special certification in intensive care medicine. The leader of the ICU should not be in other duties in his hospital, devoted full-time or at least 75% of time to intensive care\[5,21\].

To find out whether timings for tasks are realistic, in the ICU personnel staffing tool, we proceeded as follows. To determine duration of tasks to be performed, estimations by experts’ opinion (10 leaders of ICUs), a survey in 200 ICUs in Germany (practising ICU physicians), and real time measurements on a surgical and a medical ICU have been compared\[22\]. In 20%, expert opinion survey and measured times were consistent. Differences, such as higher values for daily routine in the basic care non-university hospital, may be explained by different process operations on the various wards. Thus, necessary time requirements depend on the comparability of basic prerequisites, process operations, structural and legal conditions. Therefore, cited timings for tasks can serve as an indication for time requirements, however, have to be verified, at best with real time measurements in the own structural conditions and process operations.

Tasks beyond the ICU, such as initial trauma care, care for in-hospital emergencies or engagement as external emergency physician, should not be incorporated in the staffing calculation of the ICU, but calculated separately. Quantitative and qualitative cornerstones for personnel requirement of physicians in anaesthesia reflecting recent legal rights of patients in Germany, meeting legal demands of therapeutic quality, and, thus, serving patient safety, have been published in 2015 by the German Society of Anesthesiologists (BDA) and the German Society of Anesthesiology and Intensive Care Medicine (DGAI)\[23\]. Subsequently, the current Excel-based calculation tool version (2015) regarding physician staffing in anaesthesia has been published, especially reflecting recent laws governing physician’s working conditions and competence in the field of anaesthesia, as well as demands of strengthened legal rights of patients, patient care and safety\[24\].

CONCLUSION

Workload-oriented models of physician staffing with generalizable items taking into account quality, efficiency of processes, legal, educational, controlling, local, organisational and economic aspects, differentiating basic effort, additional effort, and non patient-oriented tasks, may help to justify realistic personnel staffing demands. Modular calculation models may serve to individualise generalizable aspects to various types of hospitals, process operations, structural and legal conditions, as well as funding and refunding systems, resulting in broadly use and acceptance by various stakeholders all around the world. In the future, it should be evaluated whether this model may lead to improvement of patient safety and quality of management.

ACKNOWLEDGMENTS

We thank Vagts DA, Schleppers A, Leidinger W, Sehn N and Klöss T of the working group “personnel management of BDA and DGAI” for their constructive contribution to develop and update the workmanship oriented modular calculation model for personnel staffing of physicians in the ICU in 2008 and in 2012. We thank Clair Hartmann, MD, working in our Department of Anesthesiology in Ulm, for checking the manuscript as a native speaker.

REFERENCES

1 Engel C, Brunckhorst FM, Bone HG, Brunckhorst R, Gerlach H, Grond S, Gruending M, Huhle G, Jaschinski U, John S, Mayer K, Oppert M, Olthoff D, Quintel M, Ragaller M, Rossaint R, Stuber F, Weiler N, Welte T, Bogatsch H, Hartog C, Loeffler M, Reinhart K. Epidemiology of sepsis in Germany: results from a national prospective multicenter study. Intensive Care Med 2007; 33: 606–618 [PMID: 17323501 DOI: 10.1007/s00134-006-0517-7] 2 Halpern NA, Pastores SM, Greenstein RJ. Critical care medicine in the United States 1985-2000: an analysis of bed numbers, use, and costs. Crit Care Med 2004; 32: 1254-1259 [PMID: 15187502]

3 Weißauer W. Ausstattung und Organisation interdisziplinärer operativer Intensiv einheiten. Gemeinsame Empfehlungen der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin und des Berufsverbandes Deutscher Anästhesisten sowie der Deutschen Gesellschaft für Chirurgie und des Berufsverbandes der Deutschen Chirurgen. Deutsche Gesellschaft für Chirurgie - Mitteilungen 2005; 232-235. Available from: URL: https://www.dgai.de/publikationen/ vereinbarungen

4 Ferdinand E. Recommendations on minimal requirements for Intensive Care Departments. Members of the Task Force of the European Society of Intensive Care Medicine. Intensive Care Med 1997; 23: 226-232 [PMID: 9069011]
5 Valentin A, Ferdinande P. Improvement EWGoQ. Recommendations on basic requirements for intensive care units: structural and organizational aspects. *Intensive Care Med* 2011; 37: 1575-1587 [PMID: 21455541 DOI: 10.1007/s00134-011-2300-7]

6 Haupt MT, Bekes CE, Brilli RJ, Carl LC, Gray AW, Jastremski MS, Naylor DF, PharmD MR, MD AS, Wedel SK, MD MH. Guidelines on critical care personnel: Recommendations based on a system of categorization of three levels of care. *Crit Care Med* 2003; 31: 2677-2683 [PMID: 14665541 DOI: 10.1097/01.CCM.0000094227.88000.93]

7 Dorman T, Angood PB, Angus DC, Clemmer TR, Cohen NH, Darbin CG, Falk JL, Helfaar MA, Haupt MT, Horst HM, Ivy ME, Ognibene FP, Sladen RN, Grevnik AV, Napolitano LM. Guidelines for critical care medicine training and continuing medical education. *Crit Care Med* 2004; 32: 263-272 [PMID: 14707590 DOI: 10.1097/01.CCM.0000104916.33769.9A]

8 Bundesärztekammer. Fallpauschalen-System wird zum Glücksspiel. Pressemeldung zum 107. Deutschen Ärzteetag Bremen 2004 vom 04.11.2005. Available from: URL: http://www.bkz.de/home/themen/a-Z/Arzteetag/107.de/Arzteetag/2004/11/04/11/index.html

9 Weiss M, Marx G, Vagts D, Leidinger W, Sehn N, Iber T. Personnel requirement planning in intensive care medicine in the age of DRGs – A new performance-oriented calculation model. *Anaesthesia Intensivmed* 2008; 49 Suppl 4: S41-S51. Available from: URL: http://www.ai-online.info/aionline/Supplements/issn.pdf:CFE779ABB90C692A2027498412BF8

10 Weiss M, Marx G, Vagts DA, Schleppers A, Leidinger W, Sehn N, Klöös T, Iber T. Calculation of personnel requirement ‘intensive care medicine 2012-Revision of the 2008 calculation tool for the medical profession. *Anaeth Intensivmed* 2012; 53 Suppl 3: S50-S62 [ISSN0170-533410330]. Available from: URL: http://www.ai-online.info/aionline/Supplements/issn.pdf:CFE779ABB90C692A2027498412BF8

11 Russian Medical Products (Medizinproduktgesetz – MPG) in der Fassung der Bekanntmachung vom 7. August 2002, BGBl I S. 3146, geändert am 25. November 2003, BGBl I S. 2304. Available from: URL: https://www.gesetze-im-internet.de/bundesrecht/mpg/gesamt.pdf

12 Federal Ministry of Justice and Consumer Protection. SGB V §§ 2, 70 Abs. 1. Available from: URL: https://www.gesetze-im-internet.de/sgb_5___70.html

13 OLG Düsseldorf: Urteil vom 20.10.1985-8 U 100/83, 1985

14 Knaus WA, Wagner DP, Zimmerman JE, Draper EA. Variations in mortality and length of stay in intensive care units. *Ann Intern Med* 1993; 118: 753-761 [PMID: 8478050]

15 Pronovost PJ, Angus DC, Dorman T, Robinson KA, Dresnizov TT, Young TL. Physician staffing patterns and clinical outcomes in critically ill patients: a systematic review. *JAMA* 2002; 288: 2151-2162 [PMID: 12413275]

16 Iapichino G, Radrizzani D, Simini B, Bertolini G, Ferla L, Mistraletti G, Porta F, Miranda DR. Volume of activity and occupancy rate in intensive care units. Association with mortality. *Intensive Care Med* 2004; 30: 290-297 [PMID: 14685662 DOI: 10.1007/s00134-003-2113-4]

17 Tibby SM, Correa-West J, Durward A, Ferguson L, Murdoch IA. Adverse events in a paediatric intensive care unit: relationship to workload, skill mix and staff supervision. *Intensive Care Med* 2004; 30: 1160-1166 [PMID: 15067503 DOI: 10.1007/s00134-004-2256-y]

18 Tarnow-Mordi WO, Hau C, Warden A, Shearer AJ. Hospital mortality in relation to staff workload: a 4-year study in an adult intensive-care unit. *Lancet* 2000; 356: 185-189 [PMID: 10963195]

19 Friesdorf W, Göbel M. Safety and Reliability of clinical work processes. In: Strasser H, Kloth K, Rausch H, Bubb H. Quality of Work and Products in Enterprises of the Future. Stuttgart: Ergonomia Verlag, 2003: 669-672

20 Reinhart K. [Genuine progress in intensive care medicine must be payable also in future—a plea for a public debate]. *Anaesthes Intensivmed Notfallmed Schmerzther* 2004; 39: 187-190 [PMID: 15098165 DOI: 10.1055/s-2004-8484143]

21 Young MP, Birkmeyer JD. Potential reduction in mortality rates using an intensivist model to manage intensive care units. *Eff Clin Pract* 2000; 3: 284-289 [PMID: 11151525]

22 Miller FK, Iber T, Weiss M, Marx G, Uhlig E, Noky T, Henschel J, Vagts DA. Comparison of medical services based on expert opinion, survey and actual measurements to determine human resources. *Intensive Care Med* 2008; 34 Supp 1: S72

23 BD Aktuell. | DGAIinfo. Aus den Verbänden. Geschäftsführung BDA/DGAI: Behandlungsqualität und Patientensicherheit: Eckpunkte zur ärztlich-personellen Ausstattung anästhesiologischer Arbeitsplätze in Krankenhäusern. Beschluss des Erweiterten Präsidium der DGAI vom 20.11.2014 sowie von Präsidium und Ausschuss des BDA vom 15.12.2014. *Anästh Intensivmed* 2015; 56: 145-154. Available from: URL: http://www.dgai.de/publikationen/shop

24 Weiss M, Rossaint R, Iber T. Calculation of personnel requirements in the field of anaesthesia for 2015 – Revision of the 2009 calculation basics applicable to medical services. *Anaeth Intensivmed* 2015; 56: 1-18. Available from: URL: http://www.dgai.de/publikationen/shop

P- Reviewer: Krishnan T, Lin JA S- Editor: Song XX L- Editor: A E- Editor: Lu YJ
