現在、溶接技術は製造業の様々な分野で利用されており、モノづくりに不可欠な加工技術のひとつとなっている。一方で、溶接部を起点とする破壊事例も多く、溶接部には高い信頼性が求められる。一般に溶接施工後に溶接部の表面や内部に対して非破壊検査が行われ、各種溶接欠陥の有無やそのサイズが評価される。簡単な目視による試験（VT）などは溶接のパス毎に行われるが、その他の超音波探傷試験（UT）などの非破壊検査に関しては、一つの開先に対して溶接が終了した時や、あるいは溶接終了後に余盛除去などの表面研削をした後に行われることが多い。特に、板厚が大きい場合に用いられる多層溶接において、従来のような施工後の検査によって内部の欠陥が確認されると、その補修のためにガウジングなどによる欠陥除去だけでなく、再度の開先加工や予熱といった溶接準備を要し、時間や金銭面で大幅な負担が生じることとなる。また、近年実用化が進みつつあるワイヤとアーク放電による積層造形（Wire Arc Additive Manufacturing: WAAM）やレーザーメタルデポジション（Laser Metal Deposition: LMD）といった手法では、溶接部を起点とする破壊事例が増加しており、特に溶接部の信頼性が求められる。

そこで、溶接と同時に検査を行うインプロセスモニタリングにより、溶接施工中の溶接品質の評価を行うことが可能となれば、その場で補修等の対応を効率的に行えることにより、製造分野に大きな変革がもたらされる可能性もある。

インプロセスモニタリングの実現には、溶接施工中の高温・高ノイズ環境下での適用を考慮した計測手法の開発が必要である。過去の研究では、溶接施工時の高温環境下での計測技術について検討されてきたが、溶接施工中の計測はまだ確立されておらず、欠陥が検知された場合には作り直しとなることが考えられる。そこで、溶接施工中の計測技術を検討することが必要である。
空中超音波法など、レーザ超音波法などが用いられる。X線法は大掛かりな装置が必要であり、適用板厚に制限がある。また鉛による遮蔽が必要であるが、適用には課題が多い。電磁超音波法や空気超音波法は、対象物との接触を必要とせずに超音波を送信受信できるもので、対象物に近接する必要があり、また欠陥検出の一つであるS/N比が悪いため、溶接施工中の影響が考えられる。そこで本研究では、レーザをプローブとして用いることで、非接触で計測が可能となるレーザ超音波法に着目した。レーザ超音波法は測定対象表面にパルスレーザを照射することで超音波を励起させ、対象の内部や表面を伝播し、各種界面で反射する超音波をレーザ干渉計により受信することで内部情報を得る手法である。従来の超音波送受信方法と比較して、数十MHzにも及ぶ高周波数の超音波を帯域に励起できる。ビーム径が小さいため狭隘部にも適用可能である。非接触であるため光学ミラーやメカニカルステージにより高速走査が可能であるなどの特徴が挙げられる。

現在、レーザ超音波法は板厚計測や、欠陥検出だけでなく、相変態温度や残留応力といった材料特性の評価など様々な研究に用いられている。従来の超音波送受信レーザは据え置き型で、ミラー伝送による高出力レーザが用いられているため、計測対象を移動させることでレーザ超音波計測が行われていた。この方法では、設備が大掛かりとなり、導入にコストを要するため適用範囲が制限されてしまう。さらなる適用範囲の拡大には、実施工現場のように固定された計測装置に対し、計測装置が移動することで計測を行うことが求められる。そこで本研究では、近年開発の小型化の進んだ、手のひらサイズで超音波励起が可能なファイバ伝送によるマイクロチップレーザを送信レーザとして用いることで、計測装置をロボットアームに搭載し、溶接と共に移動しながらかつインプロセスで計測を行うレーザ超音波ロボット計測システムを、現場への適用が可能な形で開発することを目的としている。

2. レーザ超音波ロボット計測システムの構築

2.1 システムの概要

まず、今回構築するレーザ超音波ロボット計測システムの概要をFig.1に示す。一般にレーザ超音波法では、超音波送信用装置にパルスレーザを用い、受信装置にレーザ干渉計を用いる。従来送信レーザの可搬性に課題があったため、本研究では送信レーザとして波長1064nmでファイバ伝送による小型のマイクロチップレーザを開発品を使用した。
また、受信装置として波長が532 nmのNd:YAGレーザ、およびマイケルソン干渉計を基盤とした多チャンネルランダム変数干渉計によるレーザ干渉計を用いた(2)。なお、受信レーザはフィバ伝送であるため、可搬性に問題はない。今回用いたマイクロチップレーザの外観をFig.2に、各レーザ装置の仕様をTable 1, Table 2に示す。

従来のUTと同様、レーザ超音波法では注目したい領域に応じて超音波の送信点と受信点を定めるため、送信レーザ照射点（以下、送信点）と受信レーザ照射点（以下、受信点）を配置する必要がある。また、レーザ超音波法では送信点あるいは受信点を多点に照射することで広範囲の超音波信号を取得でき、開口合成処理(SAFT: Synthetic Aperture Focusing Technique)により欠陥などの各種界面が画像化された開口合成像の視認向上につながる(24)。したがって、送信の方法や配置は非常に重要となる。以下では本システムにおける送受信方法を述べる。レーザを照射した場合、溶接と同一方向からレーザを照射し計測を行うことが必要となる。この場合、TOFD法に代表される二探触子法(19)のように、開先を挟んで両端の母材にそれぞれのレーザを照射して計測を行う送受信点配置が候補として挙げられる。しかし、この方法では多層溶接の初層溶接時に超音波が伝播せずに、1バース每の溶接品質の評価が困難となると考えられる。よって、各種欠陥の有無の評価を1バース毎に行うためには、溶接ビード付近の超音波情報を多く取得できるように溶接ビード上にレーザを照射することが必要となる。本研究では溶接ビード上に送信レーザを、母材上に受信レーザをそれぞれ照射することとした。これは、一般に送信レーザの出力は比較して照射表面の性状や入射角度などの影響を受けにくいである(20,21)。また開口合成処理を行うためには、受信点座標、受信点座標が必要であるため、本研究では平坦な母材に照射する受信レーザを一軸ステージにより母材面と平行に走査し、受信点を多点とした。

本研究では送信点で励起された超音波が試験体内部の各種界面で反射し、受信点で検出される超音波の伝播時間から、横軸が時間、縦軸が信号強度のA-scopeを送信レーザの1パルス毎に取得した。一つの送信点に対して受信点を走査することで、A-scopeを色変調し試験体における受信点位置と超音波伝播時間とを直交座標に表示したB-scopeも取得した。また、欠陥位置などを可視化するために、周波数処理をB-scopeに対して施し、送信点座標、受信点座標、超音波伝播距離を算出するための超音波音速を入力することで開口合成処理を行った。ここで、超音波音速には温度依存性があることが知られており(22)。アーク溶接中の試験体内部にも温度分布が生じていることは自明であるが、本研究では温度が一定で長時間溶接を行うことにより開口合成処理を行った。これは実施工現場での溶接補修等の用途を念頭に置いたため、本研究では温度が一定と仮定し、開口合成処理を行った。なお、開口合成処理を行うためには、温度分布を考慮しない開口合成であっても欠陥指示が得られるという結果を報告している(13,23)。

2.2 マイクロチップレーザによる欠陥検出性的評価

多層溶接の中間層の各層に対してレーザ超音波計測を行う場合、送信点を溶接ビード上に位置設定することで超音波伝播挙動が複雑となり、得られた信号の解釈や評価が困難となる。そこで、まずFig.3に示すような板厚10.6 mmのSUS304板に設けたφ1.0 mmの横穴人工欠陥を対象にレーザ超音波計測を行い、各受信点位置を評価した。設計した欠陥直上をX=0と設定し、X=±5～20 mmの範囲で受信レーザをスキャンする単点送信・多点受信機を光学定盤上で組み上げ、レーザ超音波計測を行った。レーザ超音波計測を行った。送信レーザ20 Hzに対し、受信点間距離が0.1 mm、受信点数が150点となるように受信レーザを2mm/sでスキャンした。レーザにより励起される超音波波形をモニターとして、アプデーションモード及び時域波形が存在する(24,25)が、本研究では厚板多層溶接溶接時の1バース毎の計測にも適用できるレーザ超音波法を目指しているため、より強く超音波が励起されるアプデーションモードで計測を行うことが望ましいと考えられる。
そこで送信レーザ出射後にf=−50 mmの平凹レンズと、
f=50 mmの平凸レンズを40 mmの間隔をあけて配置し、照
射位置でのビーム径をφ0.4 mm程度に絞ることで材料表面
上において強いアブレーションを誘起させた。
計測結果をFig. 4に示す。X=15 mmで取得したA-scopeを一
例としてFig. 4(a)に、一回の受信レーザ走査で得たB-scope
をFig. 4(b)に、これを元に作成した開口合成像をFig. 4(c)に
示す。この際、注目する欠陥や板厚信号の視認性を向上さ
せるために、周波数フィルタにより3 MHz以下及び10 MHz
以上の周波数成分を除去した。A-scopeとB-scopeからわか
るように、レーザ超音波計測では計測表面を伝播する表面
波が得られる。それに加え、裏面からのエコー及び欠陥から
のエコーが得られており、開口合成像においてもそれぞれ
明確に指示されていることがわかる。
欠陥指示信号のS/N比を次のように定義して求めた。実際の欠陥の中心位置
Z=5.8 mmの上下1 mm、つまりZ=4.8～6.8 mmを信号領域、
信号領域の上下端からそれぞれ1 mmずつ領域、つまり
Z=3.8～4.8 mm、6.8～7.8 mmをノイズ領域として、信号領域の
最大値をS、ノイズ領域の平均値をNとして算出した。
X=10 mm上で実際にS/N比を計算すると4.27となり、平板
のような単純形状においてφ1.0 mmの横穴人工欠陥をS/N
比よく指示できることがわかった。

2.3 システムの構築
これまでの検討をふまえ、実際に計測装置をロボットに
搭載し、レーザ超音波ロボット計測システムを構築した。組み上げたシステムの外観をFig. 5に示す。今回は横向きレ
型多層受溶接を想定して計測を行った。送信レーザの照射
タイミングをフォトディテクタにより検知し、受信レーザ
と同期させ、受信レーザのスキャンステージも同時に制御し
た。送信レーザはビード上に、受信レーザは母材表面に対
して垂直に照射するため、溶接トーチに対して送信レーザ
を上方に、受信レーザを下方に配置した。送信点は雲台に
経由してレーザを固定することで調節した。受信点は1軸
ステージにより走査し、レーザ超音波計測において重要と
なる受信感度を最大化するために、受信レーザの焦点位置
を移動させる機構も設けた。Fig. 5(b)は非溶接中に送受信
レーザを照射した際の写真である。本写真に示すとおり、レーザ照射位置（計測断面）は物理的な干渉を避けるため
溶接窪い位置の約50 mm後方とした。また、レーザヘッド
へのスパッタやヒュームなどの直接的な飛散を防ぐために、溶接トーチの周囲にアルミニウム箔を用いて簡易的な遮蔽板を設けた。

3. 実験結果と考察

3.1 実験条件

本研究では、試験体として軟鋼（SS400）の板厚19mm、開先角度35°で母材間ルートギャップ7mmの多層盛レ型開先継手試験体を用いた。また、2パス目と5パス目（2層1パス目）をインプロセス計測の対象とした。これは、目的としている1パス毎の品質計測において、特に後退り工程が大きくなるような板厚裏面に近い溶接パスにおけるインプロセス計測の可能性を検証するためである。溶接条件をTable 3に示す。溶接ワイヤにはワイヤ径1.2mmの軟鋼ソリッドワイヤ（YGW15）を、シールドガスにはAr-20%CO₂ガス（ガス流量20L/min）を用い、横向き溶接を行った。溶接ロボットには最大可搬能力10kg、反復精度±0.03mmの6軸ロボットアームを用いた。また、安定的におよそ1mm以上の欠陥を導入するために、インプロセス計測の対象パスに対し、前パスで出来たビードに対して、一部の領域に対してのみ人工的にスリットを入れることで、対象パス溶接の途中に欠陥が生じるようにした。2パス目では1パスでの溶接結果に深さ3～4mmのスリットを全溶接長さ180mm内のおよそ50mmから130mmの間に、5パス目では4パスでの溶接結果に深さ4～5mmのスリットを全溶接長さ170mmの内のおよそ55mmから115mmの間に、それぞれFig. 6に示すように工作機械で導入した。溶接の結果、実際に生じた欠陥の断面マクロの一例をFig. 7に示す。いずれの場合もおおよそ1mm以上の欠陥が生成された。

3.2 ロボット搭載による計測への影響

従来のレーザ超音波計測手法では、光学定盤などに計測機器が固定された状態で使用され、計測対象を持ち込んで計測、という形が多かった。また、溶接中にインプロセス
計測を行った先行研究においても、溶接トーチとは異なる側面からの計測によりアークによる強い発光の影響を受けない方向からの計測であった12~14）。一方、本研究のように計測機器をロボットアームに搭載すると、ロボットアームが動作することによる微振動や溶接アークによる強い発光が計測側に生じることになる。そこで、これらのレーザ超音波計測に対する影響について調査した。ここでは、ビード形状の影響を排除し、微振動や発光の影響のみについて検討するために、Fig. 8(a)に示すように送信点を溶接線方向に変動の無い母材下板側に配置して、板厚計測を行うことで調査した。その他計測条件は2.2節と同様とした。

まず、ロボットアームの振動などの影響については、Fig.8(b)に示すように計測機器を搭載したロボットが移動する場合と、位置決め精度25μmの一軸ステージで試験体を走査する場合とで比較した。Fig.8(c)はロボットアーム、試験体ともに静止した状態でレーザ超音波計測を行い開口合成を行った結果であるが、Z=19mmに板厚の指示が見られる。比較する値として、得られた開口合成像のX=10mm上における板厚指示信号強度や、受信感度の指標として受信装置のキャリプレーション値（mV/nm）などを採用した。計測はY方向に100mmの領域内で行い、静止計測（速度0mm/s）を10mm間隔で11断面、移動計測を速度2~8mm/sと1mm/s間隔で変更し7条件行った。その際、それぞれの断面、速度でn=4以上とした。板厚信号は開口合成像上Z=18～20mmを信号領域として、そこでの最大値とした。これまでも同様、ノイズ領域も設定しS/N比も求めた。Fig.9(a)にロボットが移動した場合の計測結果を、Fig.9(b)に試験体がステージにより移動した場合の計測結果をそれぞれ示す。11断面で静止計測により得た結果が各断面で大きく変化しなかったため、計測位置に対する違いは影響が少ないとしてそれぞれ平均化して表示している。また、移動計測により速度ごとに得た結果を平均化し、静止計測の結果で正規化したグラフをFig.9(c)に示す。同図同(a)、(b)の比較によると、ステージが移動する条件では速度を変更しても受信感度、板厚信号ともにほぼ一定の結果を示しているのに対し、ロボットが移動する条件では、速度が増すとともに板厚信号と受信度が減少傾向を示していることがわかる。これらから、やはりロボットアームにおける振動が計測機器に伝わり、信号低下につながっていることが推察される。しかし同図(c)に示すようにS/N比に注目するとロボット移動でもステージ移動でもほぼ変わらない結果となっており、静止計測と比較しても8割程度の低下にとどまっていることがわかる。これは、ロボット移動の場合は受信度が低下したことによって信号強度とともにノイズも低下したためと
考えられるが、ステージ移動の場合については理解が難しい。受信感度に低下は見られないため、送信レーザによる超音波励起効率が低下している可能性があるが、一般に送信レーザによるアブレーションについては受信レーザと比較して表面性状の影響を受けにくいとされていることと矛盾する。もしくは、速度ごとに示した信号強度の結果から単純にエラーバーの範囲内であるとも考えられるが、このことについては今後さらに検証を行う必要がある、いずれにせよロボットアームが移動して計測を行う場合でも、信頼比を同等のS/N比で計測を行えることが示唆された。

次に、アーク発光の影響、特に受信レーザに対する影響について、開先内において１パス目の溶接をしながらその50mm後方で板厚計測を行うことにより調査した。溶接速度は5.4mm/sで、6つの試験体を用いて溶接中のインプロセス計測、溶接後の移動を伴うポストプロセス計測、移動領域の断面において溶接後の静止計測を行った。計測の結果得た受信感度と板厚信号強度をプロットしたグラフをFig.9に示す。先ほどの検討結果と同様、静止計測では焦点を調節することで受信感度を最大限引き出すが、インプロセス、ポストプロセスともにロボットアームが移動するとその微振動などにより受信感度は低下することがわかれる。また、受信感度と板厚信号強度に正の相関が見られ、やはり静止計測では受信感度、板厚信号ともに大きくなることがわかる。インプロセス計測結果については、ばらつきは多いもののポストプロセスとの結果と大きく変わらず、このことからアークによる発光下でもレーザ超音波計測を行うことが示唆された。

3.3 受信範囲の検討

本研究では、Fig.9やFig.8に示したようにX方向に受信点を複数設定することでXZ断面にて二次元で開口成分を行う。受信点数が多いほど一断面の計測時間も長くなる。インプロセス計測を行う場合、送受信位置はポストプロセスと共に移動するため、計測時間分、溶接方向（ここではY方向）に移動した領域を平均化した結果が出力されることとなる。したがって、溶接線方向に連続して存在する欠陥だけでなく、ブローホールのように局所的に存在するような欠陥についてもS/N比よく示すと示すには、一断面の計測
時間を短縮する必要がある。送信レーザの繰り返し周波数を上げることが最も単純な高速化であるが、装置の制約上容易ではない場合が多い。そこで本研究では受信点間距離0.1mmと一定として、受信範囲を縮小することにより受信点数を少なくすることを試みた。

評価対象は、Fig.11に示すφ1.5mmの横穴人工欠陥を導入した多層溶接試験体2種類で、それぞれ2パス目、5パス目の溶接が終了した試験体とした。板厚19mmの厚板での計測において、受信範囲を変更したときの結果の違いを顕著化させるためにφ1.5mmの大きい欠陥を導入した。右側板（横断の場合下側板）端に原点を設定し、欠陥中心位置（X, Z）を2パス試験体で(2, 12), 5パス試験体で(−2, 15)とした。送受信位置は図中に示すとおりであるが、受信範囲は同図(c)のように変化させた。受信範囲を縮小した際の開口合成像に生じる欠陥指示信号の強度やS/N比を比較し、受信範囲の影響を検討した。

一例として、2パス試験体を対象としてX_D=25(W=15)mm, X_D=15(W=5)mmとした際の開口合成像と、そのX=2mm上の強度分布をそれぞれFig.12(a), (b)に示す。開口合成像では、Z=12mmに導入した欠陥の指示、Z=19mmの母材裏面の非溶接部の指示が見られる。欠陥位置のx座標での開口合成像における強度分布に対し、2.2項で定義した方法で欠陥指示信号の強度とS/N比を算出した。強度やS/N比を求めるにあたっては、一条件に対して4回計測を行った。それぞれの結果を平均化した値と標準偏差を記したグラフをFig.13に示す。2パス、5パス試験体とも、受信範囲を縮小するほど受信点数が少なくなる。すなわち欠陥を指示する情報を減るため、欠陥指示強度が低下していくことがわかる。一方でS/N比に注目すると、受信範囲を縮小しても2パス試験体では増加していく傾向がみられ、5パス試験体でもほとんど変化しなかった。これは欠陥位置や送受信条件により、2パス試験体ではX=10mm付近で欠陥から伝播してきたエコー強度が強く、受信領域内で得られるエコー強度の勾配が大きいからで、5パス試験体では欠陥の位置が受信領域から比較的離れており、受信領域内での勾配が小さいからであると考えられる。このように、受信範囲縮小により開口合成像上の欠陥指示強度は低下するものの、同時にノイズも減少することや欠陥エコーが厚い範囲で集して受信することで、受信範囲を5mmとしても欠陥の有無は確認できることがわかった。よって、インプロセス計測にも受信範囲5mmを適用することとした。

3.4 インプロセス計測結果

本節では、実際に送信レーザを溶接中のビード上に照射し、前節で求めた受信範囲に受信レーザを照射しながら、スリットによって生成する欠陥をインプロセスで検知する。
実験を行った。2パス目で行ったインプロセス計測では、Fig.14(a)に示すように欠陥の存在する領域を計測断面3～6、欠陥の無い領域を計測断面1, 2, 7, 8と設定し、5パス目で行ったインプロセス計測では、同図(b)に示すように欠陥の存在する領域を計測断面4～7、欠陥の無い領域を計測断面1～3, 8～10と設定した。まず、2パス目の溶接中にFig.15(a)に示す送受信条件でインプロセス計測を行った。スリットを導入した欠陥の存在する領域における結果の一例として計測断面4で得た開口合成像を同図(b)に、欠陥の無い領域における結果の一例として断面番号2で得た開口合成像を同図(c)に示す。欠陥の存在する領域ではその指示が得られ、欠陥の無い領域ではその指示がされていないことがわかる。さらに、Fig.15に示した以外の3断面ずつでも同様の結果が得られた。このことから、構築したレーザ超音波ロボット計測システムで溶接のインプロセスで欠陥の検出が可能であることが示された。

次に、5パス目の溶接中にFig.16(a)に示す送受信条件でインプロセス計測を行った。同図(b)に欠陥の存在する領域
における結果の一例として計測断面7で得た開口合成像を、
同図(c)に欠陥の無い領域における結果の一例として計測断面2で得た開口合成像をそれぞれ示す。このように、欠陥の存在する領域で欠陥指示が得られ、欠陥の無い領域ではその指示がされなかったが、同図(d)に示すように欠陥の存在しない計測断面10で欠陥指示のようなノイズが現れた。
これは5パス目の条件は2パス目と比較して超音波伝播距離が長く、欠陥サイズも小さいため、得られる欠陥指示信号強度が小さく、相対的にノイズ成分が見えやすくなってしまったことが原因であると考えられる。実際の欠陥中心位置(X, Z)=(-2, 16)より、これまでと同様の方法で開口合成像のX=-2 mm上で強度計算をしたところ、このノイズによる指示強度は、今回設定した欠陥の存在する計測断面4～7の4断面すべてで得られた欠陥指標強度よりも小さかった。実施工現場への適用には、板厚などの基本信号強度から算出して閾値を設けることなどを考慮すると可能とする必要があるが、一方で容易に見分けがつか程度まで更なるS/N比向上が重要となると考えられる。

3.5 考察

前節までの結果においては、送信点位置の選定の仕方にについて特に触れていなかったが、送信点位置は計測結果に影響を及ぼすことが予想される。そこで、例としてFig.15の2パス目インプロセス計測を対象とし、Fig.17(a)のように送信点のみをX=-2 mmと変更した。欠陥部を内包する断面4のインプロセス計測結果として同図(b)に示す開口合成像が得られたが、欠陥の指示は確認されなかった。そこで、溶接後の同サンプルに対してポストプロセス計測を行ったところ、X=-2 mmのままでは同じく欠陥指示が得られなかったが、Fig.15(a)に示したように送信位置をX=-4 mmとするFig.15(a)に示したように送信位置をX=-4 mmとするFig.15(b)と同様の欠陥指示が得られた。これは、アブレーション領域において励起される縦波超音波成分がレーザ照射表面に対して垂直方向に多く伝播するという性質や、超音波反射方向の欠陥形状に対する依存性に起因して、Fig.17(a)の照射条件では、欠陥での反射成分が少なくなってしまったためであると考えられる。このように、送信条件によっては指示できる領域が変わる。このことは通常の超音波探傷でも同様であり、施工上は欠陥の種類や位置がある程度予測される場合でもないことは、インプロセス計測には計測対象においては最も適化が必要となると考えられる。指示可能領域を広げることには、例えばガルバリウムシステムによる複数点送信が考えられるが(20)、送信点が複数になることで一つの断面計測にかかる時間の増加や、あるいは対応する受信点数
の減少といった問題も生じるため、実現には送信レーザの繰り返し周波数の向上が有効になると考えられる。

次に、インプロセスでの検出性を評価するため、ポストプロセス計測と比較を行った。

3.4節に示すインプロセス計測を行った後の試験片に対し、同一の送受信条件で、アークを点弧せず単に移動を伴うポストプロセス計測と、各計測断面移動領域の中心断面における静止計測を行った。2パスでの計測断面4における計測結果をFig.18(a)~(c)に、5パスでの計測断面4における計測結果をFig.19(a)~(c)に示す。2パス、5パスともに、欠陥指示がインプロセス計測とポストプロセス計測とではほとんど変わらないことがわかる。これは、本実験条件においては3.2節で示したようにアーク

Fig.17 Failed condition in in-process measurement for 2nd pass

Fig.18 SAFT result in defect part for 2nd pass (measurement section number 4)

Fig.19 SAFT result in defect part for 5th pass (measurement section number 4)
点弧の影響はほとんどないこと、及び既報でも示しているが、対象断面における温度の影響は大きくないことを示す。また、移動の有無を比較すると静止計測の場合が最も欠陥指示が強くなる。この結果も2.3節で行った板厚計測での結果と傾向が概ね一致しており、静止計測の場合は受信感度が高くなるため欠陥の位置が明確な形状が欠落し、不連続であることから、準定常状態を想定した板厚合成の原理上、静止して計測を行った場合のほうが強い指示が得られると考えられる。したがって、移動計測においても静止計測状態に近づく、すなわち一断面計測における溶接線方向の移動距離をより小さくし空間分解能を上げることで、開口合成像の欠陥指示が可能であることが示された。一方、溶接施工中に欠陥検出を試みたところ、レーザ超音波計測システムで溶接のインプロセスで欠陥の検出が可能であることが示された。構築したレーザ超音波計測システムを用いて、手のひらサイズのファイバ伝送によるマイクロチップレーザ開発品を用いることで、溶接と共に移動しながらインプロセスで計測を行うレーザ超音波計測システムを構築した。搭載したマイクロチップレーザ開発品の仕様はパルスエネルギー20 mJ、繰り返し周波数20 Hz、パルス幅1.5～2 msであった。その超音波性能は、板厚10.6 mmのSUS304材に設けたφ1.0 mmの横穴人工欠陥をS/N比4.27で計測できること、およびレーダ超音波計測装置をロボットアームに搭載することにより信号强度が低下することがわかった。しかし、波長を大きくすることで従来のステージ走査による計測と同等のS/N比で計測できることが示唆された。また、溶接の50 mm後方での溶接アークによる強い発光が計測側に生じる場合でも、レーザ超音波計測を行えることが示された。構築したシステムを用いて、レーザ開先に多層盛溶接の2パス目と5パス目を対象に横向で溶接施工中における欠陥検出を試みたところ、2パス目では欠陥の存在する領域すべてで欠陥指示され、欠陥の無い領域ではその指示が示されなかった。このように構築したレーザ超音波計測システムで溶接のインプロセスで欠陥の検出が可能であることが示された。一方、2パス目では欠陥の無い領域でも欠陥指示のようないすぎが現れる場合があった。その理由は、レーダの繰り返し周波数向上によって、一断面計測における溶接線方向の移動距離をより小さくし空間分解能を上げることで、開口合成像の欠陥指示S/N比の向上が期待できる。要求される精度やレーザのスペックに合わせて適切な送信点位置や受信範囲を選択する必要があるものの、実施工場所においても、インプロセスで溶接品質の評価を行う可能性を示すことができた。
microchip laser, Preprints of the National Meeting of JWS, 104 (2019), 106–107 (in Japanese)

17) A. Wartelle, B. Pouet and S. Breugnot: INDUSTRIAL LASER-ULTRASONIC RECEIVERS: RECENT PROGRESS IN MULTI-CHANNEL RANDOM-QUADRATURE INTERFEROMETERS, Presented at the 2012 FAR East NDT Forum in Hefei, China

18) W. Müller, V. Schmitz and G. Schäfer: RECONSTRUCTION BY THE SYNTHETIC APERTURE FOCUSING TECHNIQUE (SAFT), NUCLEAR ENGINEERING AND DESIGN, Vol. 94, No. 3 (1986), 393–404

19) T. Mihara: Developments in Ultrasonic Inspection, Journal of the Vacuum Society of Japan, Vol. 54, No. 1 (2011), 39–46 (in Japanese)

20) Y. K. An, B. Park and H. Sohn: Complete noncontact laser ultrasonic imaging for automated crack visualization in a plate, Smart Materials and Structures, Vol. 22, No. 2 (2013), 17

21) B. Park, Y. K. An and H. Sohn: Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning, Composites Science and Technology, Vol. 100 (2014), 1018

22) W. Kurz and B. Lux: Die Schallgeschwindigkeit von Eisen und Eisenlegierungen im festen und flüssigen Zustand, High Temperatures-High Pressures, Vol. 1 (1969), 387–399

23) K. Nomura, T. Matsuida, R. Kita, S. Otaki and S. Asai: Monitoring technique of weld quality using laser ultrasonic IV (Development of robotic measurement system with microchip laser), Proceedings of the Japan Society of Mechanical Engineers, (2019) J40144, (in Japanese)

24) G. F. Miller and H. Pursey: On the Partition of Energy between Elastic Waves in a Semi-Infinite Solid, PROCEEDINGS OF THE ROYAL SOCIETY A, Vol. 223 (1954), p. 521

25) A. E. Lord and J. Acoust: Geometric Diffraction Loss in Longitudinal- and Shear-Wave Attenuation Measurements in an Isotropic Half-Space, The Journal of the Acoustical Society of America, Vol. 39 (1966), p. 650