Submitted: 21.08.2012
Accepted: 03.11.2012

Ultrasonographiczna ocena średnicy światła tętnic kończyn dolnych u osób zdrowych – zależności od wieku, płci, parametrów morfologicznych badanego

Ultrasound assessment of the caliber of the arteries in the lower extremities in healthy persons – the dependency on age, sex and morphological parameters of the subjects

Dorota Czyżewska1, Andrzej Ustymowicz2, Kamil Krysiuk3, Paweł Witkowski3, Mateusz Zonenberg3, Konrad Dobrzycki3, Urszula Łebkowska2

1 Uniwersytecki Szpital Kliniczny w Białymstoku, Białystok, Polska
2 Zakład Radiologii, Uniwersytet Medyczny w Białymstoku, Białystok, Polska
3 Studenckie Koło Naukowe, Zakład Radiologii, Uniwersytet Medyczny w Białymstoku, Białystok, Polska

Adres do korespondencji: Dorota Czyżewska, Zakład Radiologii, Uniwersytecki Szpital Kliniczny w Białymstoku, ul. M. Skłodowskiej-Curie 24 A, 15-276 Białystok,
e-mail: dorotacyzewska@o2.pl, tel.: 85 746 82 18, faks: 85 746 88 21

Słowa kluczowe
ultrasonografia,
kolorowy doppler,
kończyna dolna,
tętnica,
średnica światła

Streszczenie

Cel: Celem pracy jest ocena średnicy światła tętnic kończyn dolnych: tętnicy udowej wewnętrznej, tętnicy udowej zewnętrznnej, tętnicy podkolanowej, tętnicy pismeczwowej tylnej i tętnicy grzbietowej stopy u osób zdrowych oraz ustalenie jej zależności od wieku, płci oraz parametrów morfologicznych ciała (waga, wzrost, BMI) badanego. Material: Zbadano 228 zdrowych osób w wieku 18–81 lat (średnia ±SD; 43,1 ±16,71): 134 kobiety w wieku 19–74 lat (43,2 ±15,63) i 94 mężczyzn w wieku 18–81 lat (43 ±18,22). Metoda: Badania przeprowadzano za pomocą sondy liniowej, o częstotliwości 7,5 MHz. Światło naczyń oceniano po nałożeniu na obraz w prezentacji B mapy kolorów (kolorowy doppler). Wyniki: Ustalono średnią i odchylenie standardowe dla średnicy światła badanych naczyń. Średnice światła wszystkich zbadanych naczyń w grupie mężczyzn były istotnie statystycznie większe od wartości w grupie kobiet. Nie stwierdzono istotnych statystycznie różnic średnicy światła naczyń pomiędzy stronami (prawa – lewa). Wykazano występowanie istotnych statystycznie korelacji pomiędzy wielkiem a średnicą światła badanych naczyń, dla dużych tętnic uda – dodatnich, dla tętnic podudzia i stopy – ujemnych. Odnoszano także istotne statystycznie dodatnie korelacje pomiędzy wzrostem badanych, wagą i BMI a średnicą światła naczyń. Wnioski: Ustalone średnie światła tętnic kończyn dolnych oraz ich zależności od wieku, płci i parametrów morfologicznych badanego umożliwiają odróżnienie fizjologicznej przebudowy naczyń od procesu patologicznego, zachodzącego na przykład w przebiegu miażdżycy czy nadciśnienia.
Abstract

Aim: The aim of this paper was to evaluate the caliber of the following arteries in the lower extremities: the common femoral artery, superficial femoral artery, popliteal artery, posterior tibial artery and dorsalis pedis artery and to determine the relation of the calibers to age, sex and morphological parameters of the body such as weight, height and BMI of the subject. Material: Two hundred and twenty-eight healthy persons aged 18–81 were examined (average ±SD; 43.1±16.71): 134 women aged 19–74 (43.2±15.63) and 94 men aged 18–81 (43±18.22). Methods: The study was conducted with the use of a linear probe of 7.5 MHz frequency. The vascular caliber was assessed after the color map (color Doppler) was placed on a B-mode image. Results: The average and standard deviation values for the calibers of examined vessels were determined. The calibers of all vessels examined in the group of men were statistically significantly larger than those in the group of women. No statistically significant differences between the calibers of the right and left sides were determined. The statistically significant correlations were specified between the age and the caliber of the examined vessels; positive for large femoral arteries and negative for the arteries of the crus and foot. Positive, statistically significant correlations between the caliber and the height, weight and BMI were also reported. Conclusions: The reported calibers of the arteries in the lower extremities and their relation to age, sex and morphological parameters of the subjects enable the differentiation of the physiological remodeling of the vessels from the pathological processes in e.g. atherosclerosis or hypertension.

Wstęp

Choroba niedokrwienna kończyn dolnych jest naj częstą przyczyną amputacji kończyn dolnych oraz istotnym czynnikiem ryzyka udaru mózgu i zawalu mięśnia sercowego(1). Stanowi coraz większe zsywanie dla systemu opieki zdrowotnej, powodując duże koszty społeczne oraz ekonomiczne. Obecnie badacze poszukują możliwie tanich, a zarazem wiarygodnych metod diagnozowania i monitorowania przebiegu tej choroby.

Badanie ultrasonograficzne (USG) jest pierwszoplanowym badaniem w diagnostyce chorób tętnic kończyn dolnych. Analiza obrazu uwzględnia zarówno ocenę morfologiczną naczyń (prezentacja B, kolorowy doppler), jak i spektralną przepływu krwi (duplex Doppler), a wynik jest porównywany do wartości referencyjnych w grupie osób zdrowych. Pomimo niekwestionowanego rozwoju technik obrazowych opublikowano niewiele prac na temat średnicy światła tętnic kończyn dolnych u osób zdrowych, zwłaszcza poniżej kolana, a dostępne w literaturze dane dotyczą badań pojedynczych naczyń, ewentualnie ich wyniki oparte są na niewielkiej liczbie badań(2–4). Tym bardziej trudno znaleźć publikacje na temat zależności średnicy tętnic kończyn dolnych od wieku, płci oraz parametrów morfologicznych badanego.

Celem pracy jest ocena średnicy światła tętnic kończyn dolnych: tętnicy udowej wspólnej – TUW, tętnicy udowej powierzchownej – TUP, tętnicy

Introduction

Peripheral artery disease is the most common cause of lower extremity amputations and it constitutes an important risk factor of stroke or myocardial infarction(1). It is becoming a great challenge for the health care system due to high social and economic costs. Currently, the researchers seek possibly cheap and, at the same time, reliable methods of diagnosing and monitoring the course of this disease.

Ultrasound examination (US) is the primary one in the diagnostics of the arterial diseases of the lower extremities. The analysis of the image encompasses both the morphological assessment of the vessels (B-mode image, color Doppler) as well as spectral evaluation of the blood flow (duplex Doppler) and the results are compared to the referential values of healthy subjects. Despite the indisputable development of imaging techniques, few papers have been published concerning the caliber of the arteries in the lower extremities in healthy persons, in particular regarding the arteries below the knee. The data available in the pertinent literature concern the assessment of single vessels or the study results are based on a small number of subjects(2–4). All the more, it is difficult to find any publications concerning the relation of the caliber of the arteries in the lower extremities to age, sex and morphological parameters of the subjects.

The aim of this paper was to evaluate the calibers of the following arteries in the lower extremities: the
Zbadano 228 zdrowych osób w wieku 18–81 lat (średnia ±SD; 43,1±16,71): 134 kobiety w wieku 19–74 lat (43,2±15,63) i 94 mężczyzn w wieku 18–81 lat (43±18,22). Badaną grupę stanowili pracownicy szpitala, studenci i ich krewni. Kryteria wykluczające z badań to między innymi: nacieśnienie (SBP>140 mm Hg i/lub DBP>90 mm Hg), palenie papierosów, otyłość (BMI≥30 kg/m²), choroba niedożytna, choroby układu krążenia, aby wyeliminować czynniki szpitala, studenci i ich krewni. Kryteria wykluczające z badań do dwóch grup, te dotyczące osób zdrowych oraz ustalenie jej zależności od wieku, płci oraz parametrów morfologicznych ciała (waga, wzrost, BMI) badanego.

Material i metoda

Zbadano 228 zdrowych osób w wieku 18–81 lat (średnia ±SD; 43,1±16,71): 134 kobiety w wieku 19–74 lat (43,2±15,63) i 94 mężczyzn w wieku 18–81 lat (43±18,22). Badaną grupę stanowili pracownicy szpitala, studenci i ich krewni. Kryteria wykluczające z badań do dwóch grup, te dotyczące osób zdrowych oraz ustalenie jej zależności od wieku, płci oraz parametrów morfologicznych ciała (waga, wzrost, BMI) badanego.

Table 1. Parametry morfologiczne ciała badanych w grupach: kobiet, mężczyzn i całej grupie (kobiety i mężczyźni)

Parametry morfologiczne	Kobiety (n=134) (średnia ±SD)	Mężczyźni (n=94) (średnia ±SD)	Cała grupa (n=228) (średnia ±SD)
Wzrost [m]	1,64±0,06	1,77±0,06	1,69±0,09
Waga [kg]	62,51±8,27	80,72±9,80	70,02±12,68
BMI [kg/m²]	23,31±2,83	25,69±2,62	24,29±2,99

Material and methods

Two hundred and twenty-eight healthy persons aged 18–81 (average ±SD; 43.1±16.71): 134 women aged 19–74 (43.2±15.63) and 94 men aged 18–81 (43±18.22) were examined. The group of subjects comprised the hospital personnel, students and their relatives. The factors excluding from the study were among others: hypertension (SBP>140 mm Hg and/or DBP>90 mm Hg), smoking, obesity (BMI≥30 kg/m²), peripheral artery disease (assessed on the basis of the ankle-brachial index – ABI, measured on the dorsalis pedis artery and the posterior tibial artery; the value ABI<0.9 was considered abnormal). Tab. 1 presents the morphological parameters (height, weight, BMI) for the whole group and separately for men and women.

The examinations were performed by a person with 5 years of experience in Doppler diagnostics (D.C.) with the use of a scanner (Siemens, Siemens Elegra, Erlangen, Germany) equipped with a linear probe with the average frequency of 7.5 MHz (B-mode: 5.1–9.0 MHz; color Doppler: 5.1–6.5 MHz). The subjects were examined after a 10-minute rest in the supine position (while assessing CFA, SFA, PTA, DPA) and in the prone position (while assessing PA). The measurements of the DPA were conducted after bending the subject’s lower extremity in the knee joint at the angle of 90°. The vessel caliber was assessed after the color map (color Doppler) was placed on a B-mode image. The parameters of the Doppler examination were adjusted individually to

common femoral artery – CFA, superficial femoral artery – SFA, popliteal artery – PA, posterior tibial arteries – PTA and dorsalis pedis artery – DPA and to determine the relation of the calibers to age, sex and morphological parameters of the body such as weight, height and BMI of the subject.
Ultrasound assessment of the caliber of the arteries in the lower extremities in healthy persons – the dependency on age, sex and morphological parameters of the subjects

Badane naczynie	Średnica światła [mm] (średnia ±SD)	Kobiety (n=134) (średnia ±SD)	Mężczyźni (n=94) (średnia ±SD)	Cała grupa (n=228) (średnia ±SD)
TUW1 CFA1	7,62±0,96	8,75±0,85	8,05±1,07	
TUP2 SFA2	5,78±0,62	6,50±0,55	6,06±0,69	
TP1 PA1	5,73±0,67	6,47±0,72	6,03±0,78	
TPT4 PTA4	1,98±0,34	2,16±0,35	2,05±0,36	
TGS5 DPA5	1,85±0,40	2,11±0,43	1,96±0,43	

1 TUW – tętnica udowa wspólna
2 TUP – tętnica udowa powierzchowna
3 TP – tętnica podkolanowa
4 TPT – tętnica piszczelowa tylna
5 TGS – tętnica grzbietowa stopy

1 CFA – common femoral artery
2 SFA – superficial femoral artery
3 PA – popliteal artery
4 PTA – posterior tibial artery
5 DPA – dorsalis pedis artery

Tab. 2. Średnica światła badanych tętnic w grupach: kobiet, mężczyzn i całej grupie (kobiet i mężczyzn)

Tab. 2. The caliber of the examined arteries in the groups of women, men and the entire group (women and men)

(zakres: 868–3125 Hz), wzmocnienie koloru (zakres: 70–78 dB). Pomiary średnicy światła naczyń wykonywano na poniższych poziomach:

- tętnicy udowej wspólnej – 3 cm powyżej rozwidlania naczynia;
- tętnicy udowej powierzchownej – 3 cm poniżej rozwidlania TUW;
- tętnicy podkolanowej – 3 cm powyżej odjęcia tętnicy piszczelowej przedniej;
- tętnicy piszczelowej tylnej – na poziomie kostki przyśrodkowej;
- tętnicy grzbietowej stopy – na poziomie szyjki kości skokowej.

Uzyskane wyniki poddano analizie statystycznej, w której dla cech mierzałnych wyliczono średnią arytmetyczną i odchylenie standardowe. Dla cech zgodnych z rozkładem normalnym, ocenianych testem Shapiro-Wilka, przy porównaniach między grupami stosowano test t-Studenta, a dla cech niezgodnych z tym rozkładem – test U Manna-Whitneya. Analizując w grupach pomiary pomiędzy stronami, wykorzystano odpowiednio test t-Studenta dla par lub test Wilcoxon dla par. Wyliczono również współczynniki korelacji. W obliczeniach jako znamienne statystycznie przyjęto poziom istotności p<0,05. Obliczenia dokonano, wykorzystując pakiet statystyczny SPSS.

The obtained results were statistically analyzed and for the measurable features an average and standard deviation were determined. While making the comparisons between the groups, the Student’s t-test was used for the features compatible with the normal distribution and evaluated with the Shapiro-Wilk test. If the features were not compatible with this distribution, the U Mann-Whitney test was performed. When analyzing the measurements between two sides, the paired Student’s t-test or the Wilcoxon signed-rank test were performed. The correlation factors were

the size of the vessel in order to eliminate possible artifacts: the frequency of impulse repetitions (range: 868–3125 Hz), color enhancement (range: 70–78 dB). The measurements of the calibers were conducted at the following levels:

- the common femoral artery – 3 cm above the branching;
- the superficial femoral artery – 3 cm below the CFA branching;
- the popliteal artery – 3 cm above the origin of the anterior tibial artery;
- the posterior tibial artery – in the region of the medial malleolus;
- the dorsalis pedis artery – in the region of the neck of the talus bone.
Badani wyrazili zgodę na wykonanie badań oraz użycie uzyskanych wyników do celów statystyczno-naukowych.

Wyniki

Uzyskane wyniki średnicy światła naczyń przedstawiono w tab. 2. Wykazano zmniejszenie średnicy światła naczyń wraz z odległością od serca, choć średnica światła TUP nie różniła się w sposób istotny statystycznie od średnicy światła TP. Średnice światła TPT i TGS były porównywalne i około 3-krotnie mniejsze od średnicy światła TUP. Średnice światła wszystkich zbadanych naczyń w grupie mężczyzn były istotnie statystycznie większe od wartości w grupie kobiet, a największą różnicę zaobserwowano pomiędzy największymi naczyniami (TUW). Nie stwierdzono istotnych statystycznie różnic średnicy światła naczyń pomiędzy stronami (prawa – lewa). Wykazano występowanie istotnych statystycznie korelacji pomiędzy wiekiem i średnicą światła badanych naczyń zarówno w grupach kobiet i mężczyzn, jak i w całej badanej grupie. Wraz z wiekiem następowało poszerzenie TUW, TUP, TP zarówno w grupie kobiet (zwiększa istotnie – ryc. 1): TUW – r=0,379, TUP – r=0,170, TP – r=0,205, jak i mężczyzn oraz zwężenie TPT i TGS (zwiększa istotnie w grupie mężczyzn – ryc. 2): TPT – r=0,229, TGS – r=0,305. Wykazano także występowanie istotnych statystycznie korelacji pomiędzy wzrostem badanych naczyń a średnicą światła badanych naczyń dla TUW (r=0,509), TUP (r=0,533), TP (r=0,438), TPT (r=0,261), TGS (r=0,337), wagą badanych i średnicą światła naczyń calculated as well. In the calculations, the significance level p<0.05 was considered statistically significant. The calculations were performed by means of the statistical package SPSS.

The subjects consented to the examinations and usage of the obtained results for statistical and research purposes.

Results

The obtained calibers of the vessels are presented in tab. 2. It was shown that the calibers of the vessels decrease with the distance from the heart. However, the caliber of the SFA did not differ in a statistically significant way from the caliber of the PA. The calibers of the PTA and DPA were similar and about 3-times smaller than the caliber of the SFA. The calibers of all vessels examined in the group of men were statistically significantly larger than those in the group of women and the greatest difference was observed between the largest vessels (CFA). No statistically significant differences between the calibers of the right and left sides were determined. It was demonstrated that there are statistically significant correlations between the age and the diameter of the calibers of the examined vessels both in the groups of women and men as well as in the entire group of subjects. With age, the dilatation of the CFA, SFA and PA progressed in the group of women (particularly significant – fig. 1): CFA – r=0,379, SFA – r=0,170, PA – r=0,205, and men. The narrowing of
Ultrasound assessment of the caliber of the arteries in the lower extremities in healthy persons –
the dependency on age, sex and morphological parameters of the subjects

Omówienie

Pomiar średnicy naczyń stanowi istotny składnik badania ultrasonograficznego tętnic kończyn dolnych. Pozwala między innymi na szybkie, a zarazem wiarygodne zdiagnozowanie tętniaka, ekstazji czy hipoplazji naczyń. W praktyce klinicznej analiza obrazu morfologicznego naczyń skupia się jednak zwykle na ocenie obecności blaszeczek miąższowych: ich położenia, wielkości, echogeniczności, homogenności oraz szacowanego stopnia zwężenia tętnicy. Należy jednak pamiętać, że zmniejszenie przepływu krwi w naczyniu jest wynikiem nie tylko odcinkowych zwężień powodowanych przez blaszki miąższowe – może być również następstwem przebudowy/obkurczenia całego naczyńca, w przebiegu między innymi miąższów, naciskania, zapalenia czy zmian poradacyjnych, dlatego też pożądana jest ocena średnicy naczyńca, nawet w przypadku braku zmian morfologicznych w jego świetle. Analiza średnicy tętnic mogłaby być szczególnie przydatna w monitorowaniu procesu przebudowy naczyń.

W pracy przedstawiliśmy wyniki pomiarów średnicy tętnic kończyn dolnych: tętnicy udowej współrzędnej, tętnicy udowej podkolanowej, tętnicy piszczelowej tylnej, tętnicy grzbietowej stopy u osób zdrowych. Otrzymane wyniki są zbliżone do uzyskiwanych przez innych autorów, zwykle koncentrujących się na badaniu wybranych, pojedynczych naczyń odcinka udowo-podkolanałowego.

Stwierdziliśmy, że średnica tętnic kończyn dolnych zmniejsza się wraz ze wzrostem odległości od serca, co jest również obserwowane w badaniach tętnic innych odcinków ciała (np. kończyna górnna, szyja i głowa), a średnica tętnicy udowej współrzędnej jest około trzykrotnie większa od średnicy dystального odcinka tętnic podudzia. Wynika to ze znacznie większej masy mięśniowej i większego zapotrzebowania na krew w odcinku udowym niż podudzi czy stóp. Nie stwierdzono jednak istotnej statystycznie różnicy średnicy światła pomiędzy tętnicą udową powierzchowną a tętnicą podkolanową, chociaż odległość miejsca dokonywania pomiarów wynosiła około 30–40 cm (średnicę tętnicy udowej powierzchownej mierzono w odległości 3 cm poniżej rozwidlenia tętnicy udowej.

PTA and DPA was also observed (particularly significant in the group of men – fig. 2): PTA – r=-0.229, DPA – r=-0.305. The statistically significant correlations between the following factors were also demonstrated: the height and caliber of CFA (r=0.509), SFA (r=0.533), PA (r=0.438), PTA (r=0.261), DPA (r=0.337), the weight and caliber (r=0.699), SFA (r=0.646), PA (r=0.536), PTA (r=0.299), DPA (r=0.203) and the BMI and caliber of CFA (r=0.600), SFA (r=0.475), PA (r=0.388), PTA (r=0.214). As the above mentioned parameters grow, the caliber of the vessels increase.

Discussion

The measurement of the calibers constitutes an important component of ultrasound examination of the lower extremities. Among others, it allows for a quick and reliable diagnosis of aneurysm, ectasia or hypoplasia of the vessel. In clinical practice, however, the analysis of the morphological image of the vessel usually concentrates on detection of atherosclerotic plaques: their location, size, echogenicity, homogeneity and an estimated degree of artery stenosis. It must be remembered, however, that the decrease in blood flow in the vessel not only results from focal stenosis caused by the atherosclerotic plaques, but sometimes also from the remodeling/shrinking of the whole vessel, in the course of atherosclerosis, hypertension, inflammation or post-radiation changes.

Therefore, the evaluation of the vascular diameter is required even when there are no signs of morphological changes in its lumen. The analysis of the arterial calibers might be particularly useful in monitoring the process of the vascular remodeling.

The paper presents the calibers of the following arteries in the lower extremities: the common femoral artery, superficial femoral artery, popliteal artery, posterior tibial artery and dorsalis pedis artery in healthy subjects. The received results are similar to those obtained by other authors who usually focus on studying selected, single vessels of the femoropopliteal region.

The authors of this article conclude that the calibers of the arteries in the lower extremities decrease with the distance from the heart, which is also observed in other parts of the body (e.g. upper extremities and head), and that the diameter of the common femoral artery is about three times larger than the diameter of the distal fragment of the crural arteries. This results from the greater muscle mass and greater need for blood in the femoral region than in the lower leg and...
wspólnej, a tętnicy podkolanowej – 3 cm powyżej jej rozwięzienia). Wynik ten można tłumaczyć brakiem odgałęzień tętnicy udowej powierzchownej, która spełnia jedynie funkcję „transportującą”.

Średnice wszystkich zbadanych naczyń w grupie mężczyzn były istotnie statystycznie większe niż w grupie kobiet. Jest to prawdopodobnie wynik znacznych różnic parametrów morfologicznych ciała badanych w obu grupach (tab. 1), co sugeruje również wykazane istotne statystycznie, dodatnie korelację pomiędzy wzrostem, wagą i BMI badanego a średnicą naczyń. Podobnie jak inni autorzy, my również nie wykazaliśmy istotnych różnic średnicy badanych tętnic pomiędzy stronami.

Stwierdziliśmy ponadto, że wraz z wiekiem następuje zwiększenie średnicy tętnicy udowej wspólnej, tętnicy udowej powierzchownej oraz tętnicy podkolanowej w obu grupach, zarówno w grupie kobiet, jak i mężczyzn. Dodatnią korelację pomiędzy wiekiem badanego a średnicą naczyń wykazali także Sandgren i wsp. w badaniu tętnicy udowej wspólnej (3). Fakt ten można tłumaczyć między innymi przez budowę strukturalną ściany naczyń, następującą wraz z wiekiem: zwiększeniem względnej zawartości kolagenu, proporcji kolagen/elastyna oraz degradacją strukturalnej sieci elastyny i zmniejszeniem jej gęstości, zmniejszeniem ilości jąder komórek mięśni gładkich (6,7), a także mechanicznym działaniem podwyższonego ciśnienia tętniczego krwi na ścianę naczyń u osób starszych (6,9).

W przeciwieństwie do naczyń odcinka udowego, średnice światła tętnicy piszczelowej tylnej, jak również tętnicy grzbietowej stopy zmniejszały się wraz z wiekiem badanego. Obserwacja ta nie była jak dotąd odnotowana w literaturze. Wydaje się, że za zmniejszenie średnicy tych tętnic odpowiada odmienna budowa ich ściany w stosunku do powyższej opisanych naczyń większego kalibru: mniejsze ilości elastyny i kolagenu, natomiast większe komórek mięśni gładkich oraz hipertrofia tych ostatnich (10). W naszej pracy nie byliśmy jednak w stanie ocenić powyższej zachodzących procesów, chociażby poprzez ocenę grubości ściany naczyń czy grubości kompleksu błony śródrożowej i wewnętrznej – IMT (intima-media thickness), ponieważ zastosowana w badaniu sonda o częstotliwości 7,5 MHz nie pozwala na wiarygodną ocenę ściany tętnic podudzi czy stóp. Analizę budowy ściany i kompleksu błony śródrożowej i wewnętrznej tętnicy piszczelowej przedniej w tętnicy promieniowej przeprowadzili Osika i wsp. w badaniu mikroskopii ultraslonograficznej przy użyciu sondy o częstotliwości 55 MHz (11).

foot. Nevertheless, no statistically significant differences between the calibers of the superficial femoral artery and popliteal artery were observed despite the fact that the distance between the places where the measurements were taken constituted about 30–40 cm (the caliber of the superficial femoral artery was measured 3 cm below the branching of the common femoral artery, while the caliber of the popliteal artery was measured 3 cm above its branching). Such a result may be explained with the lack of branching on the superficial femoral artery, which functions are merely “to transport”.

In this study, the calibers of all vessels examined in the group of men were statistically significantly larger than those in the group of women. This probably results from significant differences in morphological parameters of the subjects in both groups (tab. 1). Such a reason is also suggested by the statistically significant positive correlations between height, weight and BMI of the subjects and the calibers of the vessels. Similarly to other authors, this study did not present any significant differences in the calibers of the examined arteries between the sides.

Furthermore, the authors noted that with age the calibers of the common femoral artery, superficial femoral artery and popliteal artery increase both in women and in men. The positive correlation between the age of the subject and vascular diameter was also demonstrated by Sandgren et al. in their study concerning the common femoral artery (5). This observation may be explained by, among others, structural remodeling of the vascular wall progressing with age: the increase in the relative collagen content and in the collagen/elastin proportion, as well as elastin degradation and the decrease of its, the decrease in the number of nuclei of the smooth muscle cells (6,7) as well as mechanical influence of the increased arterial pressure on the vascular wall in the elderly (6,9).

Contrary to the vessels of the femoral region, the calibers of the posterior tibial artery as well as the dorsalis pedis artery decreased with the age of the subject. As of this date, such an observation has not been made in the literature. It seems that the decrease in the diameter of these arteries is caused by their wall structure which is different from the larger vessels described above i.e. lesser amount of elastin and collagen, greater amount of the smooth muscle cells and hypertrophy of the latter (10). Nevertheless, in this study the authors were not able to assess the aforementioned processes, for instance, by the evaluation of the intima-media thickness (IMT), since the probe used in the research with the frequency of 7.5 MHz
Ograniczeniem pracy może być pominięcie w bada-
niu pomiaru średnicy światła tętnicy strzałkowej. Jest
to naczynie stosunkowo głęboko położone, pomiędzy
tkankami/mięśniami podudzia, co utrudnia jego rze-
telną ocenę ultrasonograficzną\(^\text{(12)}\).

Wnioski

Przedstawione w pracy zależności średnicy światła
tętnic kończyn dolnych od wieku, płci, parametrów
morfologicznych są odzwierciedleniem przebudowy
naczyń, jaką obserwujemy u osób zdrowych. Ich
znajomość może pomóc odróżnić zmiany fizjolo-
giczne w naczyniu od zmian patologicznych, zacho-
dzących między innymi w przebiegu miażdżyckiego
cy

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powią-
zań z innymi osobami lub organizacjami, które mogłyby negatywnie
wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo/References

1. Hirsch AT, Hartman L, Town RJ, Virnig BA: National health care costs
 of peripheral arterial disease in the Medicare population. Vasc Med
 2008; 13: 209–215.

2. Macchi C, Gulisano M, Giannelli F, Catini C, Pacini P, Brizzi E: The
 calibers of the common femoral, popliteal, and posterior tibialis ar-
 teries: a statistical investigation in 100 healthy subjects by color Doppler
 ultrasonography. Ital J Anat Embryol 1994; 99: 157–169.

3. Sandgren T, Sonesson B, Ahlgren R, Länne T: The diameter of the com-
 mon femoral artery in healthy human: influence of sex, age, and body
 size. J Vasc Surg 1999; 29: 503–510.

4. Valecchi D, Bacci D, Gulisano M, Sgambati E, Sibilio M, Lipomas M
 et al.: Assessment of internal diameters of abdominal and femoral blood
 vessels in 250 living subjects using color Doppler ultrasonography. Ital
 J Anat Embryol 2010; 115: 180–184.

5. Pasterkamp G, Schoneveld AH, van Welleren W, Hillen B, Clarinus RJG,
 Haendelschild CC et al.: The impact of atherosclerotic arterial remodel-
 ling on percentage of luminal stenosis varies widely within the arterial
 system. A postmortem study. Arterioscler Thromb Vasc Biol 1997; 17:
 3057–3063.

6. Gaballa MA, Jacob CT, Raya TE, Liu J, Simon B, Goldman S: Large
 artery remodeling during aging: biaxial passive and active stiffness.
 Hypertension 1998; 32: 437–443.

7. Fonck E, Prod'hom G, Roy S, Augsburger L, Rüfenacht DA, Stergiopu-
lou N: Effect of elastin degradation on carotid wall mechanics as as-
 sessed by a constituent-based biomechanical system. Am J Physiol Heart
 Circ Physiol 2007; 292: H2754–H2763.

8. Yoon SS, Osthgea Y, Louis T: Recent trends in the prevalence of high
 blood pressure and its treatment and control, 1999–2008. NCHS Data
 Brief 2010; (48): 1–8.

9. Cronenwett JL, Sargent SK, Wall MH, Hawkes ML, Freeman DH, Dain BJ
 et al.: Variables that affect the expansion rate and outcome of small
 abdominal aortic aneurysms. J Vasc Surg 1990; 11: 260–268; discuss-
 ion 268–269.

10. van den Akker J, Schoorl MJ, Bakker EN, Vanbavel E: Small artery
 remodeling: current concepts and questions. J Vasc Res 2010; 47:
 183–202.

11. Osika W, Dangardt F, Grönros J, Lundstam U, Myredal A, Johansson M
 et al.: Increasing peripheral artery intima thickness from childhood to
 seniority. Arterioscler Thromb Vasc Biol 2007; 27: 671–676.

12. Grassbaugh IA, Nelson PR, Rucicillo EM, Schermerhorn ML, Fillinger
 MF, Powell RJ et al.: Blinded comparison of preoperative duplex ultra-
 sound scanning and contrast arteriography for planning revasculariza-
 tion at the level of the tibia. J Vasc Surg 2003; 37: 1186–1190.

Conflict of interest

The authors do not report any financial or personal links with other
persons or organizations, which might negatively affect the content
of this publication and claim authorship rights to this publication.

J Utrasound 2012; 12: 420–427