We live in a hostile environment, surrounded by micro-
bial pathogens and subject to a range of physical and
chemical insults. To survive in this environment, verte-
brates have evolved complex immune systems. A key
element of this defence is the deployment of rapid
response elements at the most probable sites of attack,
which are the epithelial-cell boundaries between the
body and the environment in the skin, gut and lungs.
As the body’s largest and most exposed interface with
the environment, the skin has a central role in host
defence. Before the relatively recent discovery of the
immunological defences of skin, the cutaneous interface
was viewed as a passive barrier between the host and the
hostile environment. In the past few decades, however, it
has become apparent that the mechanical aspects of epi-
dermal defence are reinforced by a versatile and robust
system of immune surveillance1 (FIG. 1). The crucial role
of immune surveillance in maintaining homeostasis is
evident from the marked increase in the frequency and
severity of cutaneous malignancies and infections when
immune function is limited, for example in patients with
genetic and acquired immunodeficiency disorders and
in those receiving immunosuppressive therapy after
organ transplantation2,3. The regulation of skin
defence mechanisms is also crucial, as inappropriate or
misdirected immune activity is implicated in the patho-
genesis of a large variety of acquired inflammatory skin
disorders, including psoriasis, atopic and allergic contact
dermatitis, lichen planus, alopecia areata and vitiligo4–10.
The role of immune dysfunction in these conditions is
emphasized by their response to immunosuppressive
therapeutic interventions11–14.

Understanding the mechanisms of immune surveil-
lance in the skin and tissue-specific immune responses
also has important implications for the rational design
of vaccines. To promote protective immunity, an
immunization protocol must elicit not only an antigen-
specific immune response, but also an effective memory
response that will provide long-lived protection at the
most probable sites of invasion. This applies equally to
immunization against infectious organisms, which in
most cases invade through the skin or the epithelia of
the gastrointestinal or respiratory systems, and to the
elicitation of immune responses against tumours. As we
discuss, the route and means of adjuvant stimulation
that is used can affect the effectiveness and utility of
specific vaccine strategies.

In this review, we discuss these issues in the context
of recent advances in our understanding of cutaneous
immune mechanisms, highlighting the interaction of

IMMUNE SURVEILLANCE IN THE SKIN: MECHANISMS AND CLINICAL CONSEQUENCES

Thomas S. Kupper and Robert C. Fuhlbrigge

The skin, as the primary interface between the body and the environment, provides the first
line of defence against a broad array of microbial pathogens and trauma. In addition to its
properties as a physical barrier, the skin has many active defence mechanisms. In this review,
we discuss the interaction between the innate and adaptive immune systems in the skin as
a model for immune function at epithelial-cell interfaces with the environment. How these
mechanisms account for the robust nature of cutaneous immune surveillance and how their
dysregulation drives the pathogenesis of inflammatory skin disorders and skin-based tumours
are the subjects of this review.
innate and adaptive immune systems in the induction and maintenance of effective cutaneous immune surveillance.

Innate immune surveillance

Central to our model of cutaneous immune surveillance are the cells resident in the skin, which function as sentinels for danger signals, including invasion by microorganisms. Keratinocytes and Langerhans cells in the epidermis, as well as dermal mast cells, dendritic cells (DCs) and macrophages, provide an early warning system by releasing stored and inducible antimicrobial peptides, chemotactic proteins and cytokines (Fig. 2). Keratinocytes are important and often under-appreciated participants in cutaneous immune responses. They produce large quantities of interleukin-1α (IL-1α), tumour-necrosis factor (TNF) and antimicrobial peptides such as β-defensins in response to various stimuli, including kinetic and thermal trauma, ultraviolet radiation, cytokines and neuropeptides. IL-1α and IL-1β from epidermal Langerhans cells, in turn, act as a potent stimulator of local immune function.

Keratinocytes also produce a large number of chemokines and other immunoregulatory cytokines in response to stimulation. These products have various important effects on resident innate immune cells in the skin, such as mast cells, DCs and macrophages, resulting in the upregulation of expression of other inducible mediators and recruitment of additional immune cells from the blood. The induction of local inflammation through IL-1, however, depends on the balance of agonists (IL-1α and IL-1β) and antagonists (IL-1Ra and IL-1R2) that are active in this pathway.

Both the epithelial barrier cells and resident innate immune cells in the skin express pattern-recognition receptors that recognize specific pathogen components and can trigger downstream activation cascades. An important subset of these receptors belong to the Toll-like receptor (TLR) family, which bind pathogen-associated molecular pattern molecules such as lipopolysaccharide, bacterial lipoproteins, flagellin, yeast mannans and unmethylated CpG DNA motifs. TLR expression is variable and might identify subsets of innate immune cells, such as DCs, with specific functions. DC activation through TLRs results in increased production of pro-inflammatory cytokines and antimicrobial peptides, increased nitric oxide synthesis and enhanced bacterial killing, as well as increased antigen presentation. The binding of TLR ligands is associated with the recruitment of intracellular adaptor proteins similar to those used by IL-1R and subsequent activation of the JUN N-terminal kinase (JNK) and nuclear factor-κB (NF-κB) signalling pathways. The NF-κB signalling pathway is seen as a key link between the innate and adaptive immune systems. In the skin, NF-κB regulates the expression of numerous genes that are involved in the initiation of the inflammatory response, including adhesion molecules, chemokines and cytokines (such as IL-1 and TNF), matrix metalloproteases, nitric oxide synthase and enzymes that control prostaglandin synthesis. Beyond the direct effects of these compounds on pathogens and abnormal cells, products of the innate immune response direct the recruitment of additional leukocytes to the site.
of activation. In humans, genes regulated by NF-κB include the endothelial adhesion molecules E-selectin and P-selectin, intercellular adhesion molecule 1 (ICAM1), vascular cell-adhesion molecule 1 (VCAM1), and various chemokines and cytokines. Collectively, these molecules are considered to be both necessary and sufficient for initiation of the leukocyte adhesion–extravasation cascade that recruits circulating leukocytes from the periphery. These include antigen non-specific leukocytes, such as neutrophils and natural killer cells, as well as key components of the adaptive immune system, such as effector T cells (FIG. 3).

Mast cells are another crucial component of the cutaneous immune response apparatus. Mast cells have been shown to release different patterns of cytokines and bioactive compounds, including leukotrienes, IL-1β, IL-4, IL-5, IL-6, IL-13, TNF and granulocyte–macrophage colony-stimulating factor (GM-CSF), in response to various TLR ligands. These and other mast-cell products have an important role in both the initiation and modulation of innate immune responses and the generation of adaptive immune responses.

Adaptive immune surveillance

The adaptive immune system, based on T cells and B cells that express antigen-specific receptors, provides vertebrate organisms with a broader and more flexible repertoire of responses to pathogens, and a means for providing memory of past encounters. Adaptive immune surveillance addresses the logistical challenge faced by the immune system in getting the right T cell to the right place at the right time. At the skin interface, this process can be viewed as operating at three levels, which we term primary, secondary and tertiary immune surveillance (FIG. 4). Primary immune surveillance incorporates the mechanisms for bringing environmental antigens that are encountered in the skin, professional antigen-presenting cells (APCs) and naive T cells together in the specialized microenvironment of skin-draining lymph nodes. Secondary immune surveillance, in turn, involves the production and distribution of antigen-specific effector memory T cells expressing homing receptors that direct their migration to the tissue where antigen was encountered. Tertiary immune surveillance encompasses the long-term elements of the acquired immune response, including the production of central memory and effector cells that are potentially directed to tissues other than the site of primary exposure. Each of these modes of immune surveillance is a strategy used by the immune system to improve the odds that each T cell will find the antigen for which its T-cell receptor (TCR) is specific and develop effective responses: first, by increasing the efficiency with which naive T cells are exposed to antigens; second, by targeting the effector response to the most appropriate tissue site; and third, by expanding coverage to other tissues.

Primary immune surveillance. Activated DCs, whether derived from epidermal Langerhans cells or dermal DCs, are professional APCs with the capacity to present antigens efficiently and to affect the maturation of naive T cells to a memory effector phenotype. At sites of injury or pathogen invasion in the skin, these cells become activated through innate mechanisms, including pattern-recognition receptors (such as TLRs) and exposure to the pro-inflammatory cytokines (such as IL-1 and TNF) that are released in response to tissue injury or infection. Activated APCs rapidly engulf foreign particles and undergo maturation as they emigrate through the afferent lymphatics to the
local skin-draining lymph nodes22,57. This maturation process enhances antigen processing and upregulates the expression of MHC molecules and co-stimulatory molecules, including CD80 and CD86 (REF. 54).

The function of the local draining lymph nodes is to promote frequent and supervised contact between antigens that are derived from a specific segment of the skin (carried by DCs that have migrated throughfferent lymphatics) and the adaptive immune system (T cells entering the lymph node through high endothelial venules). Naïve T cells that encounter their cognate antigen presented by an activated and mature DC will undergo proliferation and clonal expansion, produce autocrine growth factors and differentiate into memory/effector T cells.

Secondary immune surveillance. When an antigen is encountered in a specific tissue, such as the skin, the activation of T cells in the local draining lymph nodes results in the production of antigen-specific effector cells that express homing receptors for that site. In this way, the immune response is preferentially targeted back to the site of the initial infection or stimulation. T cells recruited to sites of inflammation in the skin will encounter a range of inflammatory mediators triggered by innate immune mediators, as well as activated dermal DCs and inflammatory dendritic epidermal cells (IDECs) that can present antigen and provide co-stimulatory signals to T cells that express appropriate counter-receptors55,56.

With regard to the recruitment of T cells to the skin, the earliest step in this process is the tethering and rolling of T cells on E-selectin and/or P-selectin expressed by dermal post-capillary venules. Skin-homing T cells can be identified by expression of the cell-surface carbohydrate epitope cutaneous lymphocyte antigen (CLA), which binds E-selectin. CLA is expressed by \textasciitilde 30\% of circulating memory T cells and is virtually absent on naïve T cells67. T cells found in inflammatory skin lesions are mainly CD45RO+ CLA+, whereas few T cells that accumulate in inflammatory sites other than the skin express CLA57,58. CLA is reproducibly found on most T cells present in cutaneous lymphocytic infiltrates of almost all skin diseases, including psoriasis, atopic dermatitis, allergic contact dermatitis, erythema multiforme, cutaneous GRAFT-VERSUS-HOST DISEASE (GVHD) and cutaneous T-cell lymphoma (CTCL)57-64. In biopsies of CTCL, both malignant T cells and those that respond to the presence of tumour cells in the skin are CLA+. CLA also seems to be a good marker of malignant CTCL cells in the peripheral blood of some patients with Sezary syndrome65.

The factors that induce CLA expression by T cells are less well understood, but seem to be related to the specialized environments present in secondary lymphoid tissue. That is, the microenvironment in skin-draining lymph nodes promotes the expression of CLA by newly activated effector T cells, whereas that of Peyer's patches, for example, favours the expression of \(\alpha_4 \beta_7 \) (a gut-homing receptor) by new effector T cells66-68. A large volume of circumstantial evidence supports this model. For example, circulating memory T cells specific for nickel or house-dust mite in allergic or atopic individuals, respectively, express high levels of CLA66. These antigens were encountered through the skin. Similarly, circulating CD8+ effector T cells specific for skin-associated viruses express CLA, whereas those specific for non-cutaneous viruses do not69. By contrast,
T cells specific for rotavirus are CLA+, but express high levels of \(\alpha_4\beta_7 \) (REF. 70) as the immune system encounters this virus through the gut. More recently, mouse studies indicate that DCs derived from Peyer’s patches can preferentially induce the expression of \(\alpha_4\beta_7 \) by newly generated effector cells in vitro\(^{67,68} \).

Studies of CLA induction in vitro have indicated that expression is enhanced by CD3 activation in the presence of IL-12 and is not restricted to functional and phenotypic T-cell subsets\(^{67,72} \). However, the factors that regulate the induction of expression in vivo and the maintenance of expression by resting circulating cells have not been determined.

Although CLA and \(\alpha_4\beta_7 \) mediate specific tethering and rolling steps in distinct tissue vascular beds, the activation of these rolling cells also proceeds in a tissue-specific manner. Several chemokines and their receptors are associated with skin-homing T cells\(^{73-75} \), including CC-chemokine receptor 4 (CCR4) and its ligands CCL17 (thymus and activation-regulated chemokine, TARC) and CCL22 (macrophage-derived chemokine, MDC). Constitutive and inducible expression of CCL17 on the luminal aspect of post-capillary venules in the skin has been shown, and CLA+ T cells typically co-express CCR4. CCR4–CCL17 interactions can lead to the arrest of rolling T cells if they are provided an integrin ligand.

CCL27 (cutaneous T-cell-attracting chemokine, CTACK) has also been implicated in skin homing. This chemokine, preferentially produced by epidermal keratinocytes, binds to CCR10 and is chemotactic for T cells in vitro\(^{76-78} \). CCR10 is expressed by a subset of CLA+ T cells only, and its role in inducing the arrest of T cells on post-capillary venules in the skin has not been shown. Other work indicates that CCR6 might be
important for skin homing, though the expression of this chemokine receptor is more variable. In most situations, it seems that skin-homing memory cells that express CLA, CCR4 and leukocyte function-associated antigen 1 (LFA1) accumulate in the skin, where E-selectin, CCL17 and ICAM1 are constitutively and inducibly expressed on post-capillary venules. What role other receptor–ligand pairs will have in specific conditions remains to be determined. Cytokines produced by T cells that are recruited to sites of inflammation can influence the content of the ongoing infiltrate by modifying the balance of chemokines produced. For example, interferon-γ (IFN-γ) can induce keratinocytes to produce a range of products, including CXC10 (IFN-inducible protein 10, IP-10), CCL19 (monokine induced by IFN-γ, MIG) and CCL11 (IFN-inducible T-cell α-chemoattractant, ITAC), which act to recruit T cells that express the chemokine receptor CXC3R (REF 80).

Many pathogens have evolved to use tissue-specific routes of entry. The persistence of memory T cells with both antigen and tissue specificity in the peripheral circulation prepares the immune system for possible future interaction with the same pathogen, by providing a population of antigen-specific effector cells pre-targeted to the site where exposure to that pathogen would be most likely to recur.

Although skin-homing T cells are a kind of rapid deployment corps that can be called up to inflamed tissues, there is also evidence for constitutive homing of such T cells to the skin. T cells recovered from non-inflamed skin express high levels of CLA and CCR4 as well as other chemokine receptors. Even in the absence of inflammation, leukocytes are observed to tether and roll constitutively on low levels of selectin expressed in dermal post-capillary venules. These cells can be thought of as continuously scanning the endothelial-cell surfaces of their target tissue for activation signals and are poised to respond to the slightest hint of danger.

Constitutive expression of E-selectin on cutaneous microvessels has been described in both humans and mice, as has expression of CCL17 and ICAM1 (REFS 85–87). Using these sequential interactions, an indeterminate fraction of these T cells continuously enter the skin and traffic through it, seeking antigen–dependent activation. Antigen-specific T cells can also be detected in the uninfamed skin of patients with atopic dermatitis. It is unclear whether T cells that home constitutively to the skin are responding to subclinical levels of inflammation or if alternative mechanisms exist that support constitutive expression of endothelial homing components. It is important to note that while they are in the skin, these cells can be thought of as ‘resident’ T cells; how long they reside in the skin is unknown at present.

Tertiary immune surveillance. Although a given pathogen is most likely to be re-encountered at the same epithelial-cell interface as it was originally engaged, this cannot be guaranteed. Among the T-cell subpopulations produced after an initial antigen encounter are a population of antigen-specific memory cells, known as central memory T cells, that retain expression of CD62 ligand (CD62L) and CCR7, and the ability to circulate through lymph nodes. These cells can then emigrate from the lymph node in which they were originally produced to lymph nodes throughout the body (including those draining non-cutaneous epithelial-cell interfaces), where they may encounter DCs expressing the same cognate antigen. In this way, the immune system hedges its bets, ensuring a more rapid and effective response even if the next encounter occurs at a different interface.

Although the original description of central memory cells suggested that they could home to lymph nodes only, it has become clear that some T cells can express both central memory and tissue-homing receptors. For example, cells that express CLA, L-selectin, CCR4 and CCR7 are well represented in peripheral blood. One interesting question that awaits investigation is whether central memory T cells that are generated in a skin-draining lymph node and resident in a different tissue lymph node (for example, gut or respiratory system lymph node) will, if exposed to antigen, give rise to new effectors of a skin-homing phenotype or effectors that home to the current source tissue, or both.

As seen from this discussion, innate immune surveillance mechanisms drive the development of adaptive immune responses — that is, injury, inflammation and other danger signals facilitate T-cell development and entry into tissues. Memory T cells and innate immune effector cells can be thought to enter tissues not because they ‘see’ antigen, but because the local endothelium expresses appropriate counter-receptors and chemoattractants. Only after they have exited the blood can they respond to their antigen that is productively presented. This has important implications for the aetiopathology of inflammatory skin diseases.

Regulatory T cells. Although the mechanisms described earlier highlight the activation and recruitment of effector T cells, it is clear that REGULATORY T CELLS also have an important, though less well characterized, role in damping exaggerated cutaneous immune responses, as well as in the maintenance of immune tolerance to innocuous self or exogenous antigens. Recent reports have indicated that regulatory T-cell subsets might traffic to the skin using pathways that are similar to those used by effector cells. An imbalance in effector/regulatory T-cell recruitment or functions might be a crucial factor in the development of inflammatory skin lesions. Conversely, for those conditions in which the antigen (self or exogenous) can be identified, induction of regulatory T cells to specific antigens could provide a powerful mechanism for inducing specific tolerance.

Clinical implications

T-cell-mediated inflammatory skin diseases are extraordinarily common. Also, new therapies for disease have led to new T-cell-mediated skin diseases, notably GVHD after therapeutic allogeneic bone-marrow transplantation. If these diseases are viewed from our current perspective of cutaneous immune surveillance, insights emerge that are useful to understanding their clinical and biological behaviour.
The evidence described earlier indicates that the cutaneous immune-surveillance system responds to any cutaneous injury that produces danger signals as if it was potentially infectious. Both innate and adaptive immunity are mobilized, and their activities are synergistic. Inappropriate adaptive immunity can be driven by non-specific activation of innate immune pathways, for example, chronic trauma due to scratching of the skin. This in turn can lead to autoinflammatory feedback loops through the recruitment and activation of leukocytes independent of antigen-specific help. Different populations of cells accumulate in specific disease states, reflecting the patterns of expression of vascular adhesion molecules and chemotactic cytokines induced by the balance of stimuli in that target organ (Table 1). This has potential significance for the immunopathology of diseases in organs other than the skin. Our continued understanding of mechanisms of cutaneous immune surveillance will almost certainly provide important insights into immune surveillance and diseases at other environmental epithelial-cell interfaces, including the gut, lungs, oropharyngeal and genital mucosa.

Psoriasis. Psoriasis, which affects ~1–2% of adults worldwide, is characterized by the formation of erythematous cutaneous plaques covered with scale. Histologically, psoriatic plaques show keratinocyte hyperproliferation and both neutrophil infiltration of the upper epidermis and an infiltrate in the dermis and epidermis replete with T cells, DCs and macrophages.

Psoriasis has an obligate immunological component; therapies directed against T-cell activation and function are highly effective in this disease, and the disease can be initiated in xenograft models by activated T cells\(^{84}\). Increasingly, it is being understood as an autoimmune disease, although the autoantigen(s) has not been identified\(^{85}\). The T cells in psoriatic lesions are CLA\(^+\), T cells that are specific for E-selectin and ICAM1 expression on local vasculature. This leads to the activation of resident T cells and the recruitment of CLA\(^+\) T cells from the blood, including the presumed subpopulation that is specific for psoriatic autoantigens.

The interplay of innate and adaptive immune responses in psoriasis is seen in the Koebner phenomenon, in which physical trauma provokes the development of a psoriatic lesion. As discussed earlier, skin trauma leads to the release of innate immune activators, such as IL-1 and TNF, and results in the upregulation of E-selectin and ICAM1 expression on local dermal post-capillary venules. This leads to the activation of resident T cells and the recruitment of CLA\(^+\) T cells from the blood, including the presumed subpopulation that is specific for psoriatic autoantigens.

The table below summarizes the T cells in inflammatory skin disease:

Skin disease	T-cell subtype	Antigenic target	Cytokine profile
Psoriasis	Epidermal: CD8\(^+\) Dermal: CD4\(^+\)	N.D. (autoantigens?)	T\(_{h1}\)
Atopic dermatitis	CD4\(^+\)	Extrinsic: allergens (for example, *D. pterynossinus*) Intrinsic: N.D. (autoantigens?)	Acute: T\(_{h2}\) Chronic: T\(_{h1}\)
Allergic contact dermatitis (contact hypersensitivity)	CD4\(^+\) and CD8\(^+\)	Haptens (small molecules that elicit a type IV hypersensitivity reaction)	T\(_{h1}\) > T\(_{h2}\)
Vitiligo	CD8\(^+\)	Melanoctye autoantigens	N.D.
Cutaneous T-cell lymphoma	CD8\(^+\)	Antigen independent	T\(_{h2}\)

\(\text{T}_{\text{h1}}\) T helper cell.
Atopic dermatitis. Atopic dermatitis is a common disease that affects people of all age groups worldwide. The prevalence has been reported to vary between 7% and 17% for children, and in 60% or more of these individuals the disease can persist into adulthood.

Atopy is the hereditary predisposition to allergy or hypersensitivity, with the term atopic dermatitis used to describe a group of skin diseases associated with atopic conditions (allergic rhinitis, allergic keratoconjunctivitis, asthma and eczema) that might be seen in all age groups. Clinically, atopic dermatitis is characterized by the development of erythematous, exudative lesions in skin folds that are associated with intense itching. Histopathological sections show perivascular infiltration of the dermis and epidermis by lymphocytes, monocytes and macrophages.

Acute atopic dermatitis is mediated by T cells specific for environmental antigens, although there are subgroups of atopic dermatitis that might have different mechanisms of triggering and maintaining inflammation (for example, extrinsic/allergic atopic dermatitis versus intrinsic/non-allergic atopic dermatitis). The house-dust mite *Dermatophagoides pteronyssinus* is a common source of extrinsic antigen, and T cells specific for this antigen can be identified in lesional and non-lesional skin of selected individuals. Antigen presentation is enhanced by the presence of high-affinity IgE receptors on Langerhans cells, which internalize antibody–antigen complexes, process antigen and present it to T cells within evolving lesions. Interestingly, as atopic dermatitis lesions become more chronic, the cytokine profile they exhibit shifts from Th2 to Th1 type. The mechanism behind this switch is incompletely understood.

The interplay between innate and acquired immunity emerges in this disease also. It is well established that scratching of pruritic non-lesional skin can lead to the emergence of new lesions. Presumably this occurs by the trauma of scratching, as in the Koebner response described earlier. A second link comes at the level of bacterial colonization and superinfection. *Staphylococcus aureus* is readily cultured from atopic skin, particularly lesional skin, and it might be that stimulation by bacterial superantigens or the activation of TLRs on resident skin cells leads to chronic release of primary cytokines. Recent studies have shown that atopic epidermis, unlike psoriatic epidermis, does not produce the antibacterial peptides β-defensin and cathelicidin in response to such infection, and that IL-4 blocks the induction of these antimicrobial peptides from keratinocytes. So, a product of Th2 cells blocks one pathway of innate immune activation, leading to bacterial overgrowth and the induction of another innate immune pathway. This, in turn, facilitates the continued activation of the adaptive immune system, including the recruitment and activation of atopic Th2 cells, and perpetuation of the lesion.

Allergic contact dermatitis. Allergic contact dermatitis (ACD), also referred to as contact hypersensitivity, is a T-cell-mediated type IV delayed-type hypersensitivity reaction to specific environmental antigens and is manifested by varying degrees of erythema, spongiosis (epidermal oedema) and vesiculation. Most contact allergens are themselves irritants (for example, uroshiol or poison ivy), and they therefore provide both antigen and danger signals when they contact skin. The pathophysiology of this disorder is multifactorial, but is characterized by the infiltration and activation of both CD4+ and CD8+ T cells. A general model in which allergen-specific type 1 CD4+ and CD8+ T cells act as effectors and type 2 CD4+ T cells act as regulatory elements is supported by investigations in animal models. Accumulation of eosinophils and enhanced production of IgE can also be seen. ACD requires a sensitization phase of 1–2 weeks after exposure, in which small molecule components of the active agent bind to endogenous proteins and act as hapten to induce the activation and proliferation of antigen-specific T cells, which then mature into skin-homing effector memory cells. Subsequent epicutaneous exposures result in symptoms that progress over hours to days and reflect activation of resident antigen-specific effector T cells as well as their further local accumulation from the blood. This is followed by accumulation of CD4+ T cells that produce Th2-type cytokines (for example, IL-5 and IL-13) in chronic and resolving lesions. Recent studies have implicated IL-10, produced by CD4+CD25+ regulatory T cells, as a key factor in the down-modulation of allergic responses in the skin.

Cutaneous graft-versus-host disease. Acute cutaneous GVHD describes a distinctive syndrome of dermatitis, developing within 100 days of allogeneic haematopoietic-cell transplantation. Chronic cutaneous GVHD describes a more indolent syndrome that develops after day 100. Development of GVHD depends on the transfer of immunologically competent cells, such as mature T cells included in bone-marrow transplants or resident in solid organ transplants, the presence of alloantigens on host tissues that can stimulate the graft cells and the lack of an effective host immunological response to the graft. Acute cutaneous GVHD is characterized initially by a rash or by a generalized redness of the skin and desquamation. Chronic cutaneous GVHD can lead to areas of thickened skin or sclerodermatous changes that sometimes cause contractures and limitation of joint mobility. The predilection of GVHD for the skin and the gastrointestinal tract has led to speculation that it is mediated in these respective tissues by antigen-specific T cells with distinct skin- or gut-homing properties. This hypothesis has not been formally tested.

Cutaneous T-cell lymphoma. We and others have proposed that CTCLs are malignancies of skin-homing T cells. The most common form of this uncommon disease — mycosis fungoides — is characterized by patches and plaques on the skin, often in non-sun-exposed areas, which can resemble eczematous dermatitis. Histopathological features of CTCL include the clustering of malignant T cells in the epidermis, often around Langerhans cells. There is evidence that...
expression of homing molecules determines the anatomic localization of these cells.41 Tumour cells that are CLA and CCR4 positive but lack expression of either L-selectin or CCR7 can be found in the skin, whereas cells that express both L-selectin and CCR7 are associated with lymph-node involvement. The CTCL cells almost invariably produce T₃₂⁻type cytokines.122 Recently, evidence has emerged that CTCL is associated with marked disruption of the T-cell repertoire, indicating that it might be a systemic disease rather than simply a clonal malignancy of skin-homing T cells.223

Vitiligo. Vitiligo is characterized by complete or partial depigmentation of the epidermis. It is an acquired progressive disorder in which some or all of the melanocytes that reside in the interfollicular epidermis and, occasionally, in the hair follicles are selectively destroyed.124 Vitiligo is relatively frequent, occurring in 1–2% of the population. CD8⁺ T cells specific for antigens that are uniquely expressed by melanocytes are frequently seen in these patients, leading to the suggestion that vitiligo is a T-cell-mediated autoimmune disorder.125 Interestingly, vitiligo is most prominent in areas that are subject to minor trauma, providing another disease-related link between innate and acquired immunity in inflammatory skin diseases.

Other inflammatory skin disorders might also be mediated or modulated by these mechanisms. Although there are few data present in the literature, further investigations might identify a role for dysregulation of leukocyte homing in the pathogenesis of these and other skin conditions. It is not possible to discuss the full range of implications in this review.

Vaccine development. The concepts of immune surveillance and tissue-specific homing have important implications for the rational design of vaccines, as highlighted by the example of smallpox (Box 1). Not only must the antigen be administered in a manner that leads to DC maturation and migration to lymph nodes (danger signals or adjuvant effects), but also the route of administration might have marked qualitative and quantitative effects on the desired protective immune response. Such considerations are taking on a broader scope and purpose, with interest in the development of vaccines against tumours, HIV and emerging infectious agents responsible for diseases such as Lyme disease, West Nile virus disease and severe acute respiratory syndrome (SARS). Even longstanding immunization protocols, such as those established more than 40 years ago for smallpox, are under active investigation for improvements that might reduce complications while maintaining effectiveness. The findings outlined earlier indicate that vaccination through the skin (intradermal) will be most efficient at stimulating skin-homing effector cells, whereas alternative routes (for example, oral and intramuscular) will most efficiently generate effector memory T cells that are directed towards other sites.

Although aggressive stimulation with adjuvants might bypass the anatomically specific elements of the immune response by driving broad production of central memory cells, it might be preferable in some cases to limit responses to a desired site to avoid potential complications in other tissues.

Tumour vaccines. Our knowledge of leukocyte homing and immune-surveillance mechanisms also has implications for the field of antitumour vaccines. Despite considerable work in this area, the clinical success of antitumor vaccinations has been limited so far. One reason for this could be that the methods chosen for immunization are insufficient or inappropriate for the tumour of interest. Malignant melanoma is a cancer of melanocytes, or pigment cells, that reside in the epidermis and hair follicles and produce melanin. There is convincing evidence that malignant melanoma can evoke humoral and cellular immune responses in some patients. The radial growth phase of primary melanoma, associated with slow and superficial growth without prominent dermal invasion, is regularly associated with a marked dermal lymphocytic

Box 1 | Vaccinating against smallpox in atopic patients

Smallpox (variola major) typically enters the host through the oropharynx, invades the mucosal epithelium, and migrates to regional lymph nodes, and then to the spleen, the bone marrow and other lymph nodes, where viral replication occurs.151 After an incubation period of 12–14 days, virus enters the blood within leukocytes, which seed the skin and produce the characteristic skin lesions (pox), whereas most other tissues are spared. The fact that virus seems to travel in leukocytes that specifically exit blood vessels in the papillary dermis indicates that variola virus preferentially associates with leukocytes that can home to skin; alternatively, it might be that only skin tissues can support the subsequent replication steps that are required for lesion formation.

Protective vaccination with vaccinia virus depends on delivery of the virus to the epidermis by a technique known as scarification, leading to an epidermal ‘pox’ reaction—a cutaneous T-cell-mediated delayed-type hypersensitivity reaction presumably involving vaccinia-virus-specific skin-homing T cells. Both subcutaneous and intramuscular vaccinations fail to provoke a pox reaction and do not effectively incite neutralizing antibodies or vaccinia-virus-specific cytotoxic T cells.152

Patients with either active or quiescent atopic dermatitis are at risk after immunization for the development of eczema vaccinatum, which results from an inability of the host to control the spread of virus from the inoculation site, and is associated with substantial morbidity and mortality.153,154 We hypothesize that atopic individuals have defects in both innate and acquired immune responses to vaccinia virus. Atopic patients preferentially generate T helper 2 (TH2)-cell responses to antigens encountered through the skin, and increased levels of the TH2-type cytokine interleukin-4 (IL-4) can be detected in both affected and uninvolved skin, and keratinocytes from non-atopic individuals.406–162

©2004 Nature Publishing Group
reaction, sometimes resulting in partial tumour destruction124–135. Clonal expansion of T cells occurs in regressing primary melanoma, and lymphocytes explanted from such lesions are cytotoxic in vitro to autologous melanoma cells129–132. Although a rapid lymphocytic infiltrate in the vertical growth phase (where rapid growth and prominent dermal invasion occur) of primary melanoma occurs less frequently, this response is correlated with prolonged survival and a reduced incidence of metastatic disease133–135.

Many strategies to enhance antimalanoma immunity are under investigation at present, based on whole tumour cells or defined tumour antigens136–144. In the development of such protocols, relatively little attention has been paid to the route of vaccination used145–147. We would predict that immunization through the skin would generate a skin-homing effector T-cell response, but might not be expected to target metastatic tumours in the lungs or gastrointestinal tract efficiently. Under normal circumstances, antimalanoma T-cell responses might first be expected to develop in the local skin-draining lymph nodes and should lead to the generation of skin-homing memory effector cells. Indeed, IL-2 therapy (which expands and activates pre-existing memory effector cell populations) and DC vaccine therapies result in more rapid responses to the cutaneous metastases of melanoma than to metastases elsewhere148. For immunization with melanoma-antigen-pulsed DCs, if they are injected into the skin, they could traffic through adjacent lymphatics to draining lymph nodes, generating skin-homing memory effector cells. Injected intravenously, however, their migration patterns remain largely unknown.

Protocols to enhance DC migration to peripheral lymph nodes are under investigation149. It is also important to consider the effects of vaccination strategies on DC activation, as antigen presentation by immature DCs has been shown to stimulate antigen-specific inhibition of effector T-cell functions150.

Conclusions

Investigation of leukocyte trafficking to the skin has provided insight into the role of primary, secondary and tertiary immune surveillance in normal cutaneous immune function and in the development of inflammatory skin diseases. The few disorders that we have discussed in detail are only a subset of clinically important T-cell-mediated skin diseases, which also include drug eruptions, alopecia areata, lichen planus and many others. The number and diversity of these diseases are testament to how many things can potentially go wrong in a complex system such as cutaneous immune surveillance. At the same time, it is extraordinary that the cutaneous immune system works as it does most of the time. The concept that exaggerated or inappropriate activity of an important immune-surveillance mechanism can cause organ-specific diseases might extend to immunological bowel disease and asthma, which occur at two other epithelial-cell interfaces with the environment. The challenge will be to design therapies that target the elements of cutaneous immune surveillance that are overactive in specific diseases of the skin or other organs, while leaving intact those functions that are central to survival in a hostile world filled with opportunistic pathogens.

1. Robert, C. & Kupper, T. S. Inflammatory skin diseases, T cells, and immune surveillance. *N. Engl. J. Med.* 341, 1817–1826 (1999).
2. Udhyakumar, S., Nandwani, R., Drinker, T., Nayagam, A. T. & Darley, C. R. The prevalence of skin disease in HIV infection and its relationship to the degree of immunosuppression. *Br. J. Dermatol.* 137, 595–598 (1997).
3. Lugo-Janes, G., Sánchez, J. L. & Santiago-Delpon, E. Prevalence and clinical spectrum of skin diseases in kidney transplant recipients. *J. Am. Acad. Dermatol.* 24, 410–414 (1991).
4. Kadunce, D. P. & Krueger, G. G. Pathogenesis of psoriasis. *Dermatol. Clin.* 13, 723–737 (1995).
5. Leung, D. Y. Atopic dermatitis: immunobiology and treatment with immune modulators. *Clin. Exp. Immunol.* 107 Suppl. 1, 25–30 (1997).
6. Galli, E. et al. Atopic dermatitis: molecular mechanisms, clinical aspects and new therapeutic approaches. *Curr. Mol. Med.* 3, 127–138 (2003).
7. Gonzalez, F. J. Adverse drug reactions to drugs. *Clin. Exp. Allergy* 27 Suppl. 4, 4–3 (1998).
8. Porter, S. R., Kirby, A., Olsen, I. & Barrett, W. Immunologic aspects of dermal and oral lichen planus: a review. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* 83, 358–366 (1997).
9. McDonagh, A. J. & Messenger, A. G. The pathogenesis of alopecia areata. *Dermatol. Clin.* 14, 681–670 (1996).
10. Bohn, E. E. & Milikan, L. E. Vestibulocutaneous diseases with prominent immunologic features. *JAMA* 288, 2389–2398 (1992).
11. Wong, E., Camp, P. R. D. & Greaves, M. W. The responses of normal and psoriatic skin to single and multiple topical applications of leukotriene B4. *J. Invest. Dermatol.* 84, 421–423 (1985).
12. Krueger, J. G., Wolfe, J. T. & Natrley, R. T. Successful ultraviolet B treatment of psoriasis is accompanied by a reversal of keratinocyte pathology and by selective depletion of interleukin-17a from the skin. *J. Exp. Med.* 182, 2057–2068 (1995).
13. Gicquel, S. L., Gillet, P. A., Johnson R. Response of psoriasis to be lymphocyte-selected toxic (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic role. *J. Invest. Dermatol.* 1, 442–447 (1998).
14. Lim, K. K. et al. Cyclosporine in the treatment of dermatologic disease: an update. *Mayo Clin. Proc.* 71, 1192–1191 (1996).
15. Krueger, T. S. & Groves, R. W. The interleukin-1 axis and cutaneous inflammation. *J. Invest. Dermatol.* 105, 625–665 (1995).
16. Murphy, J. E., Robert, C. & Kupper, T. S. Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity. *J. Invest. Dermatol.* 114, 602–606 (2000).
17. Heffler, C. et al. Interleukin 7 is produced by murine and human keratinocytes. *J. Exp. Med.* 178, 1109–1114 (1993).
18. Yang, D., Chertov, O. & Oppenheim, J. J. The role of mammalian antimicrobial peptides and proteins in the development of such protocols, relatively little attention has been paid to the route of vaccination used145–147. We would predict that immunization through the skin would generate a skin-homing effector T-cell response, but might not be expected to target metastatic tumours in the lungs or gastrointestinal tract efficiently. Under normal circumstances, antimalanoma T-cell responses might first be expected to develop in the local skin-draining lymph nodes and should lead to the generation of skin-homing memory effector cells. Indeed, IL-2 therapy (which expands and activates pre-existing memory effector cell populations) and DC vaccine therapies result in more rapid responses to the cutaneous metastases of melanoma than to metastases elsewhere148. For immunization with melanoma-antigen-pulsed DCs, if they are injected into the skin, they could traffic through adjacent lymphatics to draining lymph nodes, generating skin-homing memory effector cells. Injected intravenously, however, their migration patterns remain largely unknown.

Protocols to enhance DC migration to peripheral lymph nodes are under investigation149. It is also important to consider the effects of vaccination strategies on DC activation, as antigen presentation by immature DCs has been shown to stimulate antigen-specific inhibition of effector T-cell functions150.

Conclusions

Investigation of leukocyte trafficking to the skin has provided insight into the role of primary, secondary and tertiary immune surveillance in normal cutaneous immune function and in the development of inflammatory skin diseases. The few disorders that we have discussed in detail are only a subset of clinically important T-cell-mediated skin diseases, which also include drug eruptions, alopecia areata, lichen planus and many others. The number and diversity of these diseases are testament to how many things can potentially go wrong in a complex system such as cutaneous immune surveillance. At the same time, it is extraordinary that the cutaneous immune system works as it does most of the time. The concept that exaggerated or inappropriate activity of an important immune-surveillance mechanism can cause organ-specific diseases might extend to immunological bowel disease and asthma, which occur at two other epithelial-cell interfaces with the environment. The challenge will be to design therapies that target the elements of cutaneous immune surveillance that are overactive in specific diseases of the skin or other organs, while leaving intact those functions that are central to survival in a hostile world filled with opportunistic pathogens.
innate immune responses, as highlighted by the studies of Aliprantis, Tada, Hayashi, Kadowaki, Wagner, with a focus on bacterial CpG-DNA interactions and implications for dendritic cell (DC) biology.

Innate immunity: the virtues of Langerhans cells and a novel, inflammatory dendritic epidermal cells (IDEC) in atopic dermatitis. J. Clin. Invest. 136, 136–137 (2015).

Innate immunity: the virtues of Langerhans cells and a novel, inflammatory dendritic epidermal cells (IDEC) in atopic dermatitis. J. Clin. Invest. 136, 136–137 (2015).

Innate immunity: the virtues of Langerhans cells and a novel, inflammatory dendritic epidermal cells (IDEC) in atopic dermatitis. J. Clin. Invest. 136, 136–137 (2015).
105. Williams, H. C. Epidemiology of atopic dermatitis. Clin. Exp. Dermatol. 25, 522–529 (2000).
106. Hanifin, J. M. Epidemiology of atopic dermatitis. Monogr. Allergy 21, 116–131 (1987).
107. Engler, R. J., Kenner, J. & Leung, D. Y. Smallpox vaccination risk considerations for patients with atopic dermatitis. Clin. Infect. Dis. 110, 357–365 (2000).
108. Sidbury, R. & Hanifin, J. M. Old, new, and emerging therapies for atopic dermatitis. Dermatol. Clin. 18, 1–11 (2000).
109. Gruman, K. W., Lawton, S., Williamson, H. C., Docherty, G. & Jones, J. The British Association of Dermatologists audit of atopic eczema management in secondary care. Phase 2: audit of service process. Br. J. Dermatol. 142, 274–278 (2000).
110. Wuthrich, B. & Schmid-Grendelmeier, P. The atopic eczema/dermatitis syndrome. Epidemiology, natural course, and history of the IgE-associated (‘extrinsic’) and the nonallergic (‘intrinsic’) AEDS. J. Invest. Allergol. Clin. Immunol. 13, 1–5 (2003).
111. Nomura, I. Milk-induced eczema is associated with the expansion of human CD4+ T lymphocytes with antitumor activity in a human melanoma model. J. Invest. Dermatol. 110, 1–11 (1998).
112. Rook, A. H. Contact dermatitis. Clin. Exp. Dermatol. 23, 1618–1621 (2003).
113. Bohle, B. et al. Long-lived T, 2 clones specific for seasonal and perennial allergens can be detected in blood and skin by their TCR-hypervariable regions. J. Immunol. 160, 2022–2027 (1998).
114. Georley, P. R. Davies for T1 and T2 cells in the immunopathogenesis of atopic dermatitis. Immunol. Today 19, 393–397 (1998).
115. Nomura, I. et al. Complete molecular reconstructions induced by patient-specific vaccination plus granulocyte-monocyte colony-stimulating factor against a melanoma. Nature Med. 5, 1171–1177 (1999).
116. Rook, A. H. et al. Image analysis of stage 1 melanoma (1.00–2.50 mm) lymphocytic infiltrates related to metastasis and survival. J. Cutan. Pathol. 19, 390–397 (1992).
117. Clemente, C. G. et al. Prognostic value of tumor-infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77, 1303–1310 (1996).
118. Weber, L. et al. Tumor immunity and autoreactivity induced by immunization with homologous DNA. J. Clin. Invest. 102, 1258–1264 (1998).
119. Esteban, F. O. Vaccines and melanoma. J. Cutan. Pathol. 26, 295–302 (2000).
120. Akriviadis, A., Bhatnagar, P., Ho, C., Isidori, A., Tavassoli, F. A., Lakhani, S. R. & Mihm, M. C., Jr. Major histocompatibility antigens involved in elicitation of allergic contact hypersensitivity. J. Invest. Dermatol. 94, 326–329 (1990).
121. Chadburn, A., Shalaby, F., Smeal, T. & Baltimore, D. CD40L prevents induction of innate immune response genes. J. Immunol. 171, 3262–3269 (2003).
122. Giustizieri, M. L., Scola, E., D’Amore, A. & Torella, T. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Am. J. Contact Dermat. 7, 288–294 (1996).
123. Kamping, I. B. & Dean, R. A. Allergic contact dermatitis: the cellular effectors. Contact Dermatol 46, 1–5 (2002).
124. Leung, D. Y. Molecular basis of allergic diseases. Mol. Genet. Metab. 63, 157–167 (1998).
125. Caamaño, I., de la Rosa, J. & Cano, A. Human CCR5 + T lymphocytes with remarkable regulatory functions on dendritic cells and nickel-specific T1 immune responses. J. Invest. Dermatol. 127, 1023–1027 (2003).
126. Aractingi, S. & Chosidow, O. Cutaneous graft-versus-host disease. Arch. Dermatol. 134, 602–612 (1998).
127. Kigel, M. et al. CCR7: the helping hand of dendritic cells. Am. NY Acad. Sci. 941, 1–11 (2001).
128. Rock, A. H. et al. Pathogenesis of cutaneous T-cell lymphoma: implications for the use of recombinant cytokines and photopheresis. Clin. Exp. Immunol. 107 Suppl. 1, 16–20 (1997).
129. O’Riain, S. et al. Interferon-gamma promotes exaggerated cytokine responses and overcomes genetic resistance to mousepox. J. Virol. 75, 1205–1210 (2001).
130. Ambach, A., Bornrench, B. & Golick, H. Perforin hyperexpression and death in cytotoxic T cells from patients with exacerbated atopic dermatitis and asymptomatic rhinoconjunctivitis allergic. J. Allergy Clin. Immunol. 107, 878–886 (2001).
131. Mackensen, A. Interferon-gamma promotes the immune effector function of T helper lymphocytes in mediating T helper 1 lymphocyte migration. J. Exp. Med. 192, 1669–1676 (2000).
132. Atkinson-Caveny, K., Sampson, H., Pickler, L. & Leung, D. Milk-induced eczema is associated with the expansion of T cells expressing cutaneous lymphocyte antigen. J. Clin. Invest. 95, 913–918 (1995).
133. Niewold, T. A., personal communication to the author at the time of a presentation at the XVth World Congress on Dermatology, New Delhi (India, 2001).
134. Kigel, M. et al. Intracutal injection of semimature monocyte-derived dendritic cells induces T helper type 1 responses in patients with atopic dermatitis and from atopic dermatitis model mice. N. Engl. J. Med. 345, 525–528 (2001).
135. Girolomoni, G. & Pastore, S. The role of keratinocytes in the pathogenesis of atopic dermatitis. J. Am. Acad. Dermatol. 45, 871–877 (2001).
136. Pastore, S., Contri, S., La Placa, M., Didona, B. & Girolomoni, G. Interferon-y promotes exaggerated cytokine production in keratinocytes cultured from patients with atopic dermatitis. J. Allergy Clin. Immunol. 101, 538–544 (1998).

Acknowledgements
This work is supported by the National Institutes of Health.

Competing interests statement
The authors declare that they have no competing financial interests.

Online links

DATABASES
The following terms in this article are linked online to:
• LocusLink: http://www.ncbi.nlm.nih.gov/LocusLink/
• CDD: http://www.ncbi.nlm.nih.gov/Structure/cdd/wrmbase/CDD.shtml
• PDB: http://www.rcsb.org/pdb/home/home.do
• NCBI: http://www.ncbi.nlm.nih.gov/BLAST/
• GeneCards: http://www.gene-cards.org/
• PubMed: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
• OMIM: http://www.ncbi.nlm.nih.gov/omim/
• RePrints: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retract

FURTHER INFORMATION
Harvard Skin Research Center: http://dermatology.bwh.harvard.edu
Bgham and Woman’s Hospital Dermatology Clinic: http://www.bghamandwomens.org/dermatology/
Access to this interactive links box is free online.