INTRODUCTION

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), declared pandemic since March 2020 (WHO, 2020), causes the coronavirus disease 2019 (COVID-19). Coronaviruses belong to a large family of viruses circulating widely among humans and animals (Weiss et al., 2005).

Since the beginning of the pandemic, five SARS-CoV-2 variants of concern (VoCs) have emerged, thus posing an increased risk to global public health (Sanyaolu et al., 2021; WHO, 2021).

SARS-CoV-2 is transmitted by direct, indirect, or close contact with saliva and respiratory secretions of infected people produced by sneezing, coughing, breathing, and phonating. A high salivary load of SARS-CoV-2 in COVID-19 patients may be responsible for the increasing risk of contamination of the surrounding environment (Aboubakr et al., 2021). As saliva is a potential vehicle for viral spread (Vaz et al., 2020), reducing salivary virus load may help prevent its spread.

Healthcare workers are likely to be at higher risk of severe COVID-19 infection due to continuous exposure to the saliva of potentially infected patients (Prati et al., 2020). The virus may be transmitted during dental and otolaryngological procedures that produce droplets which can remain suspended in the air from few minutes to hours before laying on surfaces (Mick & Murphy, 2020).
The following commercial mouthwashes (M) were used:

- **MA:** Listerine® Cool Mint milder taste (alcohol-free mouthwash containing SLs and EO Eucalyptol, Thymol, Menthol, and *Camelia Sinensis* leaf extract, and caffeine);
- **MC:** Cetilsan® Sugar Free (mouthwash containing CPC 0.1%, alcohol and EOs eucalyptol, eugenol);
- **MD:** Curasept® ADS DNA Intensive treatment (alcohol-free mouthwash containing CHX 0.2%, polyvinylpyrrolidone/vinyl acetate copolymer, Sodium DNA, EOs peppermint M644, anethole, menthol, green mint, cloves, and cinnamon).

2.2 Viruses and cell cultures

The virucidal activity was evaluated against the wild type (wt) SARS-CoV-2 (2019-nCov/Italy-INMI1 strain, clade V strain, Wuhan strain) and the Alpha, Beta, and Gamma VoCs. The wt, Alpha, and Beta strains were purchased from the European Virus Archive goes Global (EVAg) while the Gamma strain was kindly provided by the University of Siena, Department of Medical Biotechnology.

Vero E6 cells (ATCC - CRL 1586) were cultured in Dulbecco's modified Eagle's medium (DMEM)—High Glucose (Euroclone, Pero, Italy) supplemented with 2 mM L- Glutamine (Lonza), 100 units/ml penicillin-streptomycin mixture (Lonza) and 10% of fetal bovine serum (FBS) (Euroclone), in a 37°C, 5% CO₂ humidified incubator.

Cells were seeded in T175 cm² flask at a density of 1 x 10⁶ cells/ml. After 18–20 h, the sub-confluent cell monolayer was infected with 3.5 ml of DMEM 2% FBS containing the SARS-CoV-2 strains at a multiplicity of infection (MOI) of 0.01. After 1 h of incubation at 37°C in a humidified atmosphere with 5% CO₂, 50 mL of DMEM containing 2% FBS were added. The flasks were observed daily, and the viruses were harvested when 80–90% of the cells manifested cytopathic effect (CPE).

Each virus was titrated in serial 1 log dilutions (from 1 log to 11 log) to obtain a 50% tissue culture infective dose (TCID50) on 96-well plate of VERO E6 cells.

The viral titers of stock viruses used to assess virucidal activity were 10⁶.41/ml tissue culture infectious doses (TCID₅₀/ml) for the wt virus, 10⁶.33TCID₅₀/ml for Alpha, 10⁶.33TCID₅₀/ml for Beta, and 10⁶.67TCID₅₀/ml for Gamma VoCs.

2.3 Virucidal activity assay

The potential virucidal activity of mouthwashes against SARS-CoV-2 and its VoCs was assessed by pre-treatment of the viruses with mouthwashes A to D. In detail, the viral stock of each virus was put in contact with the same amount of each mouthwash. After 30 s (T1), 1 min (T2), and 3 min (T3) of incubation at room temperature, the samples were diluted tenfold from 10⁻¹ to 10⁻¹¹ in DMEM and subjected to viral titration in Vero E6 cells. For each virus, a virus control (VC) was prepared by titrating the stock virus, as reported in the previous paragraph.
2.4 | Viral titration

One hundred µl of each virus-mouthwash mixture dilution (8 replicates for each dilution) or virus were then added to a 96-well plate containing an 80% confluent Vero E6 cell monolayer. The plates were incubated for 72 h for wt virus and 96 h for the VoCs at 37°C, 5% CO₂ in humidified atmosphere, and checked for presence/absence of CPE by an inverted optical microscope. A CPE higher than 50% of the monolayer indicated viral infection. Based on the CPE, the viral titer was calculated using the Reed-Muench method (Reed et al., 1938). All the experiments were performed in triplicate.

2.5 | Data analysis

Normality of distribution was assessed by Shapiro–Wilk test. Data from virucidal activity of mouthwashes were expressed as mean ± standard deviation (SD) and analyzed by analysis of variance (ANOVA) using the Tukey test as post hoc test (statistical significance set at 0.05). Statistical analyses were performed with the software GraphPad Prism v.8.0.0 (GraphPad Software).

3 | RESULTS

Preliminary evaluation of mouthwashes (without SARS-CoV-2) on Vero E6 cells revealed evidence of cytotoxic effects in undiluted solutions and, occasionally, in the wells containing the 10⁻¹ and 10⁻² dilution of the mouthwashes/virus mixture.

The results of viral titrations on Vero E6 cells at T1, T2, and T3 contacts of the control virus and of the mouthwashes with the wt virus and the Alpha, Beta, and Gamma VoCs are reported in Table 1. Control viruses did not show significant variations in the viral titers at different time intervals. Moreover, the virucidal activity of the mouthwashes against wt and VoCs was statistically compared with VC and reported in Table 2.

All mouthwashes significantly (p < 0.05) reduced viral titers of wt virus and VoCs as compared to VC in the different time intervals evaluated in this study (Table 2). MA and MB significantly decreased viral titers of wt virus, Alpha, and Beta VoCs by 3.4–3.9 log10 TCID50/ml (p < 0.001) at all the time points while the viral titers of the Gamma VoC were reduced by 2.6–2.8 log10 TCID50/ml (p < 0.001) after 30 s and by 3.2 log10 TCID50/ml (p < 0.001) after 1 min and 3 min time contacts. MC was able to significantly reduce the viral titers of wt virus, Alpha, and Beta VoCs by 2.8 to 2.9 log10 TCID50/ml (p < 0.001) at all time intervals while MC decreased Gamma VoC by 2.2 log10 TCID50/ml (p < 0.001) at all time intervals.

MD moderately decreased, yet significantly, the infectious titer of SARS-CoV-2 wt and of the VoCs by 0.7–1.3 log10 TCID50/ml (from p = 0.007 to p < 0.001) over all time intervals, with exception of the wt virus that lost 2.2 log10 TCID50/ml (p < 0.001) after 3 minutes.
Abbreviations: 95% CI, 95% confidence interval; M, mouthwash; MDV, mean difference of viral titers expressed as log10 TCID50/ml; v, virus.

***Highly significant.
**Very significant.

Moreover, the efficacy of mouthwashes against viruses has been demonstrated, and products to reduce periodontal pathogen bacteria. Before SARS-CoV-2 pandemic, the development of mouthwashes with different VOCs could be helpful to obtain a more precise picture.

In this study, the virucidal activity of mouthwashes in their commercial formulations has been tested. We cannot exclude that over time intervals used for mouthwash application (Jenkins et al., 1994).

SLs- and CPC-based mouthwashes showed highly significant virucidal activity against all the SARS-CoV-2 strains tested in this study after as few as 30 s of contact. These results mirror what observed in similar in vitro studies using a feline coronavirus strain (Buonavoglia et al., 2021).

4 | DISCUSSION

Before SARS-CoV-2 pandemic, the development of mouthwashes was essentially aimed at the reduction of the bacterial load in the oral cavity and included products to release Fluoride as caries prevention, and products to reduce periodontal pathogen bacteria. Moreover, the efficacy of mouthwashes against viruses has been reported (Carrouel et al., 2021; Eggers et al., 2018; Shewale et al., 2021). However, since 2020, the virucidal activity of mouthwashes against SARS-CoV-2 has been investigated in detail, as these products, if opportunely conceived, could offer a useful tool to reduce the risk of infection.

The commercial availability of pre-procedural mouthwashes with specific antiviral properties against SARS-CoV-2 is regarded as a safe device for medical and dental practitioners. To date, CPC or iodine-povidone (PVP-I)-based mouthwashes are the most recommended to reduce SARS-CoV-2 viral load in droplets and aerosols generated during dental procedures (Herrera et al., 2020; Senewiratne et al., 2021; Shet et al., 2022; Xu et al., 2021). However, the use of PVP-I is contraindicated in patients with allergy to iodine, with thyroid disease, pregnancy, or treatment with radioactive iodine (Gray et al., 2013). Hydrogen peroxide-, CHX-, cyclodextrin-, Citrox-, EO-, and SLS-based mouthwashes tested also effective against SARS-CoV-2. Several proprietary mouthwash formulations contain alcohol (ethanol), and in some products, the concentration of ethanol can be as high as 26% (Huang et al., 2021). Moreover, in a recent review data regarding the efficacy of experimental mouthwashes against SARS-CoV-2 have been reported (Chen & Chang, 2021). Also, there is evidence that VoCs may differ in terms of biological properties (antigenicity, fitness, and transmission velocity) and therefore assessing the virucidal activity of mouthwashes with different VOCs could be helpful to obtain a more precise picture.

In this study, we tested the in vitro virucidal activity of SLS-, CPC-, and CHX-based commercial mouthwashes against wt SARS-CoV-2 and three VoCs. The virucidal effects were evaluated at different contact times (30 s, 1 min, and 3 min) which are the common time intervals used for mouthwash application (Jenkins et al., 1994).

SLS- and CPC-based mouthwashes showed highly significant virucidal activity against all the SARS-CoV-2 strains tested in this study after as few as 30 s of contact. These results mirror what observed in similar in vitro studies using a feline coronavirus strain (Buonavoglia et al., 2021).

In this study, the virucidal activity of mouthwashes in their commercial formulations has been tested. We cannot exclude that over the main components other minor ingredients or excipients may have exerted virucidal activity alone or in synergy. For example, thymol may have antiviral effect and has been suggested as general environmental disinfectant (Kowalczyk et al., 2020).

Among the antiseptics, according to the available scientific literature, CPC offers the most encouraging results in vitro, tested with SARS-CoV-2 wt and with Alpha VoC (Munoz-Basagoiti et al., 2021). In our study, the CPC-based mouthwash MC used at a concentration...
of 0.1% was able to reduce the viral titer of wt virus and of VoCs by up to 2.9 log 10 at all the time intervals. The antiviral effect of CPC against coronaviruses is probably based on its lysosomotropic activity and ability to destroy viral capsids (Baker et al., 2020).

Although the efficacy of CHX against SARS-CoV-2 has been demonstrated (Jain et al., 2021), the virucidal activity of CHX-based mouthwashes is considered controversial (Herrera et al., 2020). The 5th edition of the guidelines for the diagnosis and treatment of SARS-CoV-2 pneumonia released by the National Health Commission of the People’s Republic of China (Chinese Centre for Disease Control & Prevention, 2020) indicates that CHX-mouthwashes, used in dental practices, are not effective in reducing the viral load of COVID-19 (Cavalcante-Leão et al., 2021; Peng et al., 2020). This finding mirrors the limited effects against SARS-CoV-2 strains observed in our study.

Interestingly, we observed a lower virucidal activity for all the tested mouthwashes against the Gamma VoC. The reason for this unique resistance pattern is not clear and could be related to increased virus stability or to increased tenacity of the receptorial interaction or to number of mutations of the S protein and genomic alterations in comparison with other variants (Mohammadi et al., 2021). Interestingly, this phenomenon could account, in part, for the increased speed of transmission of this variant in the human population and should be investigated more in depth, considering the relevant implications. A limit of this study was the fact that we did not confirm the results in vivo, for instance evaluating the viral titer in the saliva of SARS-CoV-2-infected patients before and after mouth rinsing with mouthwashes. Regardless, these findings indicate that different VoCs of SARS-CoV-2 should be used when evaluating products used for virus inactivation.

The translational value of our results to the clinical use should be assessed more precisely, since some factors, not considered in vitro, could negatively impact on the antiviral efficacy of mouthwashes in the oral cavity. This could include the contact times, the volume, and palatability of the mouthwash. Also, since the rinsing and virucidal effect of mouthwashes is limited to the oral cavity, this would not have any effect on the virus shed by the nasal route.

5 | CONCLUSIONS

In conclusion, we were able to assess the in vitro ability of different mouthwashes to decrease the infectivity of SARS-CoV-2 and its variants, and we observed that Gamma VoC was apparently more resistant to treatment with the tested mouthwashes.

ACKNOWLEDGEMENTS

Open Access Funding provided by Università degli Studi di Siena within the CRUI-CARE Agreement.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.
Silva, A., Azevedo, M., Sampaio-Maia, B., & Sousa-Pinto, B. (2021). The effect of mouthrinses on severe acute respiratory syndrome coronavirus 2 viral load. *Journal of the American Dental Association, 50002–8177(21), 00786–788. https://doi.org/10.1016/j.adaj.2021.12.007*

Sommerstein, R., Fux, C. A., Vuichard-Gysin, D., Abbas, M., Marschall, J., Balmelli, C., Troillet, N., Harbarth, S., Schlegel, M., Widmer, A., Balmelli, C., Eisenring, M.-C., Harbarth, S., Marschall, J., Pittet, D., Sax, H., Schlegel, M., Schweiger, A., Senn, L., ... Zanetti, G. (2020). Risk of SARS-CoV-2 transmission by aerosols, the rational use of masks, and protection of healthcare workers from COVID-19. *Antimicrobial Resistance & Infection Control, 9*(1), 100. https://doi.org/10.1186/s13756-020-00763-0

Tadakamadla, J., Boccalari, E., Rathore, V., Dolci, C., Tartaglia, G. M., & Tadakamadla, S. K. (2021). In vitro studies evaluating the efficacy of mouth rinses on Sars-Cov-2: A systematic review. *Journal of Infection and Public Health, 14*(9), 1179–1185. https://doi.org/10.1016/j.jiph.2021.07.020

Tateyama-Makino, R., Abe-Yutori, M., Iwamoto, T., Tsutsumi, K., Tsuji, M., Morishita, S., Kurita, K., Yamamoto, Y., Nishinaga, E., & Tsukinoki, K. (2021). The inhibitory effects of toothpaste and mouthwash ingredients on the interaction between the SARS-CoV-2 spike protein and ACE2, and the protease activity of TMPRSS2 in vitro. *PLoS One, 16*(9), e0257705. https://doi.org/10.1371/journal.pone.0257705

Ueki, H., Furusawa, Y., Iwatsuki-Horimoto, K., Imai, M., Kabata, H., Nishimura, H., & Kawaoka, Y. (2020). Effectiveness of face masks in preventing airborne transmission of SARS-CoV-2. *mSphere, 5*(5), e00637–e00720. https://doi.org/10.1128/mSphere.00637-20U

van der Valk, J. P. M., & in ’t Veen, J. C. C. M. (2021). SARS-CoV-2: The relevance and prevention of aerosol transmission. *Journal of Occupational and Environmental Medicine, 63*(6), e395–e401. https://doi.org/10.1097/JOM.0000000000002193

Vaz, S. N., Santana, D. S., Netto, E. M., Pedroso, C., Wang, W. K., Santos, F. D. A., & Brites, C. (2020). Saliva is a reliable, non-invasive specimen for SARS-CoV-2 detection. *The Brazilian Journal of Infectious Diseases, 24*(5), 422–427. https://doi.org/10.1016/j.bjid.2020.08.001

Weiss, S. R., & Navas-Martin, S. (2005). Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. *Microbiology and Molecular Biology Reviews, 69*(4), 635–664. https://doi.org/10.1128/MMBR.69.4.635-664.2005

World Health Organization. (2020). WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

WORLD Health Organization (2021). Tracking SARS-CoV-2 variants. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/

Xu, C., Wang, A., Hoskin, E. R., Cugini, C., Markowitz, K., Chang, T. L., & Fine, D. H. (2021). Differential effects of antiseptic mouth rinses on SARS-CoV-2 infectivity in vitro. *Pathogens, 10*, 272. https://doi.org/10.3390/pathogens10030272

How to cite this article: Buonavoglia, A., Lanave, G., Marchi, S., Lorusso, P., Montomoli, E., Martella, V., Camero, M., Prati, C., & Trombetta, C. M. (2022). In vitro virucidal activity of mouthwashes on SARS-CoV-2. *Oral Diseases, 00*, 1-7. https://doi.org/10.1111/odi.14205