Assessment of procedural skills in residents working in a research and training institute: An effort to ensure patient safety and quality control

ABSTRACT

Background: To ensure patient safety, it is important to regularly assess the knowledge and practical skills of anesthesia trainees. This study was conducted to evaluate the competency of the residents and the impact of various corrective measures in the form of didactic lectures and clinical skill demonstrations on the conduct of various procedural skills by the residents.

Materials and Methods: Ninety-five junior residents were enrolled in this study. Assessment of competency of 1st, 2nd, and 3rd year residents in performing various procedure skills of anesthesia was done in two stages using procedure specific checklist (PSC) and Global Rating Scales (GRSs). Preliminary results of the first assessment (Score 1) were discussed with the residents; deficiencies were identified and corrective measures suggested by didactic lectures and clinical skill demonstrations which were followed by a subsequent assessment after 3 months (Score 2).

Results: There was a statistically significant improvement in the PSC and GRS scores after corrective measures for all the procedural interventions studied. Percentage increase in scores was maximum in 1st year (42.98 ± 6.62) followed by 2nd year (34.62 ± 5.49) and minimum in 3rd year residents (18.06 ± 3.69). The percentage increase of scores was almost similar for all subset of procedural skills; low, intermediate, and high skill anesthetic procedures.

Conclusion: For assessment of procedural skills of residents, use of PSC and GRS scores should be incorporated and the same should be used to monitor the impact of various corrective measures (didactic lectures and clinical skill demonstrations) on the conduct of various procedural skills by the resident.

Key words: Assessment; checklist; Global Rating Scales; procedural skills; residents

Introduction

The practice of anesthesia is challenging and dynamic. The anesthesiologist is often faced with time sensitive situations which demand critical decision-making and high-quality surgical interventions. It is thus important to regularly assess the knowledge and practical skills of the trainees to ensure patient safety.[1-3]

Our hospital is a tertiary care referral hospital. The Department of Anesthesia and Intensive Care is one of the largest with 90–100 junior residents (students enrolled in MD Anesthesia for a period of 3 years). The teaching faculty consists of approximately thirty consultants and forty senior residents (anesthesiologists recruited for a period of 3 years after completion of MD). They are responsible
for the training of these residents and monitoring of their clinical and academic activities. The aim of this prospective observational study was to incorporate a combination of previously validated checklists and Global Rating Scales (GRSs)\(^4\) for the evaluation of the competency of the residents during the performance of various procedural skills. This was to ensure better quality of health-care delivery by identifying deficiencies and initiating corrective measures in the form of didactic lectures and clinical skill demonstrations. A reevaluation of the residents done after a period of 3 months was used to assess the impact of the corrective measures.

Materials and Methods

The study was conducted after informed consent from the junior residents and approval by the institutional ethics committee. Assessment of a particular procedural skill was done only if the log book of the resident showed more than twenty independent, successful performances of the skill in the past. Any resident with less than this number was excluded from the study. Three subsets of residents were identified based on number of years of admission in the residency program: 1\(^{st}\) year (1\(^{st}\) and 2\(^{nd}\) semester), 2\(^{nd}\) year (3\(^{rd}\) and 4\(^{th}\) semester), and 3\(^{rd}\) year (5\(^{th}\) and 6\(^{th}\) semester; each semester comprises 6 months duration).

The trainees were assessed for competency in six different procedures which were grouped in three subsets based on the level of skill needed for successful completion of the same.

1. Low skill procedures
 a. Endotracheal intubation
 b. Subarachnoid block.

2. Intermediate skill procedure
 a. Lumbar epidural block
 b. Arterial line cannulation (radial artery).

3. High skill procedure
 a. Central line (internal jugular vein) cannulation
 b. Nerve stimulator-guided supraclavicular brachial plexus block.

Assessment of each procedural skill was done by the consultant anesthetist (second and third investigator) using two evaluation tools:

a. Procedure-specific checklist (PSC) (Appendix A): A resident’s score was calculated at the completion of the procedure based on the proportion of items done correctly in the checklist

b. GRS (Appendix B): It consists of seven dimensions, each related to some aspect of procedure performance. Each dimension was graded on a 5-point scale with the middle and extreme points anchored by explicit descriptors. Each 5-point item was scored from 0 (poor performance) to 4 (good performance). A resident’s score for a given station was determined by summing the marks on the seven dimensions and dividing by 28 to obtain a percentage score. Items on the GRS were developed in accordance with the procedure planned/evaluated.

Data collection

Assessment of competency was done in two stages. Preliminary results of the first assessment (Score 1) were discussed with the residents and corrective measures suggested by didactic lectures and clinical skill demonstrations which was followed by a subsequent assessment after 3 months (Score 2).

Paired t-test was used to compare the score before and after didactic lectures and clinical skill demonstrations. Percentage change in score for different subset of residents (1\(^{st}\), 2\(^{nd}\), and 3\(^{rd}\) year) was compared within the group and between the group using one-way ANOVA and post hoc analysis with Bonferroni corrections, respectively. All tests were considered two tailed with 95% confidence interval and statistical significant \(P < 0.05\).

Results

We enrolled 95 junior residents in this study. The distribution of residents based on years of experience is summarized in Figure 1.

Comparison of scores (procedure-specific checklist and Global Rating Scale) of residents for various procedural skills

There was a statistically significant improvement in the PSC and GRS scores after corrective measures for all the procedural interventions studied [Table 1].

![Figure 1: Distribution of residents based on years of experience](image)
Comparison of percentage increase in scores (procedure-specific checklist and Global Rating Scale) of residents based on complexity of the procedure

The percentage increase of scores was almost similar for all subset of procedural skills; low, intermediate, and high skill [Table 2].

Comparison of scores (procedure-specific checklist) of residents based on years of training

The PSC scores of residents in the three subsets based on the duration of residency are summarized in Table 3. Percentage increase in performance of PSC was maximum in 1st year (42.98 ± 6.62) followed by 2nd year (34.62 ± 5.49) and minimum in 3rd year (18.06 ± 3.69). The difference was statistically significant (P = 0.00) for all comparisons between 1st, 2nd, and 3rd year.

Comparison of percentage improvement in scores for all procedures performed by residents

Detailed intergroup comparison was done for all procedures performed by residents of either of the six semesters [Figure 2a and b]. Improvement of PSC score of 1st semester residents was significantly more compared to improvement of 5th and 6th semester residents in all anesthetic procedures. Compared to 4th semester residents, 1st and 2nd semester residents showed significantly more improvement in performing subarachnoid block, and for other procedures, the percentage improvement was not statistically significant (P > 0.05). When improvement was compared among 1st, 2nd, and 3rd semester residents, for central line insertion and supraclavicular brachial block, 1st semester residents showed significantly more improvement compared to 2nd and 3rd semester, and for all other procedures, no statistically significant difference in percentage improvement was seen among them. Improvement of 3rd semester residents was significantly more compared to 4th semester in arterial and central line insertion. Improvement of 4th semester residents was significantly more compared to 6th semester for all procedures. Compared to 5th semester residents, 4th semester residents showed significantly more improvement in performing subarachnoid and epidural block and arterial line insertion. Improvement of 5th and 6th semester residents was comparable for all procedures.

Discussion

In our study, regular assessment of procedural skills of residents and corrective measures in the form of didactic lectures and clinical skill demonstrations led to a statistically significant improvement in the performance of the procedural skills which were evaluated using PSC and GRS scores. The values of the percentage increase in the cumulative scores however did not differ significantly based on the complexity of the procedure which we graded as low, intermediate, and high in our study. The percentage increase in score of PSC and GRS for all procedures was maximum in 1st year residents and minimum in 3rd year residents, and the differences were statistically significant. This reemphasizes the fact that residents are more susceptible to change during early years of training.
The cumulative value of the GRS scores for all residents (Table 1) decreases as the complexity of the procedure increases. The previous study has also reported that complex procedures such as peripheral nerve blocks, central line insertion, and epidural block are more difficult to learn than basic manual skills (e.g., endotracheal intubation). This point needs to be considered when formulating the contents of the residency program. Early exposure to complex procedural interventions may lead to failures and protocol violations, but introduction of residents at a very late stage makes them less susceptible to changes and improvements. Thus, the 2nd year of residency may be considered as the “golden period” and should be utilized for improvement of complex procedural skills.

We used two different assessment tools because each has its merits and demerits. An advantage of checklists is that they have intrinsic content validity. The use of checklists has been shown to be inappropriate in higher levels of experience and more complex skills. Another problem with checklists is that as all steps of procedure are weighted equally regardless of clinical importance, a trainee might obtain a high score, despite omitting important steps of procedure. Advantage of GRS is that they are not confined to one procedure but can be used for different procedural skills. As the GRS has a gradation of response in each category, it is less objective than a checklist, although this allows the assessment to be more qualitative. Potential pitfalls with GRS include the “halo effect,” when good or bad performance in one domain unduly influences the grading of performance in other domains.

Basic science and clinical knowledge are examined on a routine basis using written and oral examinations, but assessment of procedural skill is often neglected. Lack of a uniform objective method could be one of the factor. Task-specific checklists and GRS when used for assessment of residents performing an interscalene brachial plexus block and axillary block have reliably discriminated between different levels of training and are thus valid measures of performance. Cumulative sum analysis has been found to be an effective tool for measuring the competence of anesthetic trainees for practical procedures. All above-mentioned studies have emphasized on assessment of procedural skills, but in our study, we have also shown the improvement in performance after training using the above-mentioned assessment tools.

Cumulative sum analysis is an alternative tool to assess an individual’s performance during the conduct of various procedural skills. Problems with using cumulative sum analysis (CUSUM) analysis is that it is a statistical method that looks at the outcome rather than at the process of performing procedural skills and there are no nationally agreed definitions for success or failure for a given procedure, and those used in the literature vary greatly.

We recruited residents after the performance of minimum twenty procedures because Konrad et al. have demonstrated that the learning curves reveal a marked improvement of skill after twenty attempts. Learning manual skills is a multimodal function depending on many variables and varies from individual to individual. Attaining a prescribed number of procedures lacks validity and may not guarantee competence as trainees might have learnt incorrect technique and could continually perform techniques incorrectly. It is clear, though, that there is a wide spectrum of learning curves, and consequently, the only way to guarantee competency is to tailor training to the individual rather than to focus on minimum numbers.

One of the limitations of our study was that the data collection was done from only one center; the learning situation can vary greatly from institute to institute and thus the components of checklist for various procedures may not be the same. We assessed the residents only one time both before and after training; ideally, residents should have been assessed three times and final score would have been mean of the three scores.
Conclusion

Use of PSC and GRS scores should be incorporated for the assessment of procedural skills of residents. The same should be used to monitor the impact of various corrective measures on the conduct of a procedural skill by the resident. Intensive supervision and quality control are least effective for residents in the last years of residency. Periodic review of the curriculum of the residency program and necessary changes can be done based on the results of assessment using PSC and GRS.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Ringsted C, ØStergaard D, Scherpbier A. Consultants’ opinion on a new practice-based assessment programme for first-year residents in anaesthesiology. Acta Anaesthesiol Scand 2002;46:1119-23.
2. Siker ES. Assessment of clinical competence. Curr Opin Anaesthesiol 1999;12:677-84.
3. Tetzlaff JE. Assessment of competency in anesthesiology. Anesthesiology 2007;106:812-25.
4. Regehr G, MacRae H, Reznick RK, Szalay D. Comparing the psychometric properties of checklists and global rating scales for assessing performance on an OSCE-format examination. Acad Med 1998;73:993-7.
5. Konrad C, Schüpfer G, Wietlisbach M, Gerber H. Learning manual skills in anesthesiology: Is there a recommended number of cases for anesthetic procedures? Anesth Analg 1998;86:635-9.
6. Naik VN, Perlas A, Chandra DB, Chung DY, Chan VW. An assessment tool for brachial plexus regional anesthesia performance: Establishing construct validity and reliability. Reg Anesth Pain Med 2007;32:41-5.
7. Friedman Z, Katznelson R, Devito I, Siddiqui M, Chan V. Objective assessment of manual skills and proficiency in performing epidural anesthesia – Video-assisted validation. Reg Anesth Pain Med 2006;31:304-10.
8. Hodges B, Regehr G, McNaughton N, Tiberius R, Hanson M. OSCE checklists do not capture increasing levels of expertise. Acad Med 1999;74:1129-34.
9. Vassiliou MC, Feldman LS, Andrew CG, Bergman S, Leffondré K, Stanbridge D, et al. A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg 2005;190:107-13.
10. Bould MD, Crabtree NA, Naik VN. Assessment of procedural skills in anaesthesia. Br J Anaesth 2009;103:472-83.
11. Sultan SF, Iohom G, Saunders J, Shorten G. A clinical assessment tool for ultrasound-guided axillary brachial plexus block. Acta Anaesthesiol Scand 2012;56:616-23.
12. Kestin IG. A statistical approach to measuring the competence of anaesthetic trainees at practical procedures. Br J Anaesth 1995;75:805-9.
13. Drake EJ, Coghill J, Sneyd JR. Defining competence in obstetric epidural anaesthesia for inexperienced trainees. Br J Anaesth 2015;114:951-7.
14. Ospina OD, Medina AM, Marulanda MC, Buitrago LM. Cumulative sum learning curves (CUSUM) in basic anaesthesia procedures. Colomb J Anesthesiol 2014;42:142-53.
15. Eberl I. Institutionelles learning: the idea of organized learning. Vienna: Paul Haupt; 1996.
16. Watts J, Feldman WB. Assessment of technical skills. In: Neufeld VR, Norman GR, editors. Assessing Clinical Competence. New York: Springer Publishing Company; 1985. p. 259-75.
Appendix A

A(1): Checklist for endotracheal intubation

Item	Yes	No
Ensures that all necessary parties are present and ready to begin procedure		
Correctly identifies appropriate size of endotracheal tube (ETT) and laryngoscope blade based on age and weight of patient		
Equipment checked to ensure working properly (laryngoscope light, etc.)		
Ensures suction in place and working properly		
Any other necessary equipment gathered if required, for example, stylet, LMA		
If anticipated difficult airway, difficult airway cart kept ready		
Patient’s head positioned properly		
Suctioning done if required		
Laryngoscope blade inserted properly		
Laryngoscopy done in proper way		
ETT inserted to appropriate depth and stylet removed (if used)		
Correct placement of ETT confirmed using capnography/auscultation/chest rise		
I will pass the resident regarding this competence		

A(2): Checklist for subarachnoid block

Item	Yes	No
Makes proper preparations in the anesthetic and operating rooms		
Informs and guides patient appropriately regarding the procedure and positioning		
Washes and/or decontaminates hands, wears gloves, and gown by sterile technique		
Correct positioning of patient, sitting or lateral position, with assistance from staff		
Correct preparation of utensils and check of drugs and instruments		
Proper identification of insertion level appropriate for the planned operation		
Uses proper sterile technique - sterile cleaning and draping of skin		
Discuss choice of local anesthetic for skin and choice of median or paramedian approach		
Local analgesia established at desired site and patient told of impending needle stick		
Correct insertion of spinal needle		
Loss of resistance appreciated		
Free flow of cerebrospinal fluid checked		
Drug given properly		
Performs procedure fluently		
Discuss and defend choice and dose of anesthetic for the spinal block		
Disposes of waste appropriately		
Determines block level – with indication of dermatomes		
Initiates proper measures to support cardiovascular function		
Describes indications and contraindications for spinal anesthesia		
Describes at least three important complications, describes how to prevent and treat these		
Communicates effectively with the patient and team members		
Documents procedure correctly and completely		
I will pass the resident regarding this competence		
A(3): Checklist for lumbar epidural block

Yes	No
Makes proper preparations in the anesthetic and operating rooms	
Informs and guides patient appropriately regarding the procedure and positioning	
Washes and/or decontaminates hands, wears gloves, and gown by sterile technique	
Correct positioning of patient, sitting or lateral position, with assistance from staff	
Correct preparation of utensils and check of drugs and instruments	
Proper identification of insertion level appropriate for the planned operation	
Uses proper sterile technique - sterile cleaning and draping of skin	
Discuss choice of local anesthetic for skin and choice of median or paramedian approach	
Local analgesia established at desired site and patient told of impending needle stick.	
Correct insertion of epidural needle	
Correct identification of epidural space – loss of resistance	
Correct insertion of epidural catheter	
Performs procedure fluently	
Gives test dose to check catheter position - can explain the reason and procedure for testing	
Discuss and defend choice and dose of anesthetic for the epidural block	
Disposes of waste appropriately	
Determines block level – with indication of dermatomes	
Initiates proper measures to support cardiovascular function	
Describes indications and contraindications for epidural anesthesia	
Describes at least three important complications, describes how to prevent and treat these	
Communicates effectively with the patient and team members	
Documents procedure correctly and completely	

I will pass the resident regarding this competence

A(4): Checklist for radial arterial line cannulation

Yes	No
Obtains informed consent	
Performs Allen test	
Positions forearm and wrist	
Have pressure bag and tubing for connection ready	
Washes hands	
Applies cap, mask, sterile gown, sterile gloves	
Opens kit and organizes procedure material	
Paints and drapes the site	
Injects local anesthetic (2% lidocaine) at site of procedure	
Palpates radial pulse with nondominant index finger	
Inserts needle tip into radial artery pulse site	
Bevel up, enters artery at 30° to 40°	
Watches for flash of bright red blood (flashback)	
Uses dominant hand thumb to slip guide wire into artery	
Slips plastic catheter over wire into the artery	
Gently removes the needle and wire	
Applies pressure immediately proximal to puncture site to prevent loss of blood from hub	
Places plastic coupler to pressure transducer	
Dresses with transparent sterile dressing	
Dispose of needle and guide wire in sharps container	
Cleans up	
Writes procedure note in appropriate space	

I will pass the resident regarding this competence
A(5): Checklist for central line (internal jugular vein) cannulation

Yes	No

- Patient is educated about the need for and implications of the central line as well as the processes of insertion and maintenance
- Patient’s anticoagulation therapy status assessed
- Obtain informed consent
- Washes and/or decontaminates hands, wears gloves, and gown by sterile technique
- Equipment assembled and verified — materials, medications, syringes, dressings, and labels
- Site assessed and marked
- Patient positioned for procedure
- Sterilize procedure site (chlorhexidine)
- Allow site to dry before puncture
- Use sterile technique to drape patient from head to toe
- Use local anesthetic and/or sedation
- Catheter prefilled and all lumens clamped except distal port
- Obtain qualified second operator after 3 unsuccessful sticks
- Aspirate blood from each lumen (to avoid air embolism and ensure intravascular placement)
- Transduce central venous pressure or estimate central venous pressure by fluid column (to avoid arterial placement)
- Clean blood from the site using antiseptic agent (chlorhexidine)
- Sterile dressing applied (gauze, transparent dressing)
- Dressing dated
- Disposes of waste appropriately
- Describes indications and contraindications for central line insertion
- Describes at least three important complications, describes how to prevent and treat these
- Communicates effectively with the patient and team members
- Documents procedure correctly and completely
- Verify placement by X-ray

I will pass the resident regarding this competence

A(6): Checklist for nerve stimulator-guided supraclavicular brachial plexus block

Yes	No

- Position patient supine and head up
- Turns head slightly to contralateral side
- Identifies the anatomical landmarks
- Infiltrates skin with local anesthetic
- Betadine skin preparation
- Palpates for subclavian artery and inserts needle posterolateral to artery
- Asks for nerve stimulator to be turned to level 1.0 to 1.5 mA
- Advances atraumatic needle no more than 1” relative to skin
- Remains perpendicular to all planes
- Needle-advanced slightly caudal
- Recognizes appropriate muscle group stimulation
- Asks for voltage on nerve stimulator to be turned down
- Readjusts needle to obtain maximal twitch response for lesser voltage
- Upon accepting twitch asks for aspiration for blood
- Asks for injection of 1-2 cc of local to r/o intravascular injection
- Asks for injection of 5 cc incremental dose of local anesthetic
- Respiration after each 5 cc dose to r/o blood
- Removes needle and applies pressure and massage to injection site
- Describes indications and contraindications for epidural anesthesia
- Describes at least three important complications, describes how to prevent and treat these
- Communicates effectively with the patient and team members
- Documents procedure correctly and completely

I will pass the resident regarding this competence
Appendix B: Global rating scale

Preparation for procedure	1	2	3	4	5
Did not organize equipment well. Has to stop procedure frequently to prepare equipment	Equipment generally organized. Occasionally has to stop and prepare items	All equipment neatly organized prepared and ready for use			
Respect for tissue	Frequently used unnecessary force on tissue or caused damage	Careful handling of tissue but occasionally caused inadvertent damage	Consistently handled tissues appropriately with minimal damage		
Time and motion	Many unnecessary moves	Efficient time/motion but some unnecessary moves	Clear economy of movement and maximum efficiency		
Instrument handling	Repeatedly makes tentative or awkward moves with instruments by inappropriate use of instruments	Competent use of instruments but occasionally appeared stiff or awkward	Fluid moves with instruments and no awkwardness		
Knowledge of instruments	Frequently asked for wrong instruments or used inappropriate instrument	Know names of most instruments and used appropriate instrument	Obviously familiar with the instruments and their names		
Flow of procedure	Frequently stopped procedure and seemed unsure of next move	Demonstrated some forward planning with reasonable progression of procedure	Obviously planned course of procedure with effortless flow from one move to the next		
Use of assistants	Consistently placed assistants poorly or failed to use assistants	Appropriate use of assistants most of the time	Strategically used assistants to the best advantage at all times		
Knowledge of procedure	Deficient knowledge	Knew all important steps of operation	Demonstrated familiarity with all aspects of operation		
Overall performance	Very poor	Competent	Clearly superior		