Tobacco smoking, body mass index, hypertension, and kidney cancer risk in central and eastern Europe

P Brennan*,1, O van der Hel1, LE Moore2, D Zaridze3, V Matveev4, I Holcatova5, V Janout6, H Kollarova6, L Foretova7, N Szeszenia-Dabrowska8, D Mates9, N Rothman2, P Boffetta1 and W-H Chow2

1International Agency for Research on Cancer (IARC), Lyon, France; 2Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, MD, USA; 3Institute of Carcinogenesis, Cancer Research Center, Moscow, Russia; 4Department of Urology, NN Blokhin Cancer Research Centre, Moscow, Russia; 5Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic; 6Department of Preventive Medicine, Faculty of Medicine, Palacky University, Olomouc, Czech Republic; 7Department of Cancer Epidemiology & Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic; 8Department of Epidemiology, Institute of Occupational Medicine, Lodz, Poland; 9Institute of Public Health, Bucharest, Romania

Kidney cancer accounts for 1.9% of all malignancies, with approximately 189,000 new cases diagnosed globally each year and the incidence varying more than 10-fold around the world, with the highest rates generally observed in central European countries and among blacks in the United States (Murai and Oya, 2004). Smoking is an established risk factor, although the increase in risk is moderate (IARC, 2004). Other possible risk factors are hypertension and obesity, with potentially differing risks for men and women (Shapiro et al, 1999; Bergstrom et al, 2001). To examine the risk factors for kidney cancer in central Europe, we conducted a large multicenter case–control study in Czech Republic, Poland, Russia, and Romania. We present here data on the role of smoking, hypertension, and body mass index (BMI) in this high-risk population.

MATERIALS AND METHODS

This hospital-based case–control study was conducted in seven centres (Moscow (Russia), Bucharest (Romania), Lodz (Poland), and Prague, Olomouc, Ceske Budejovice, and Brno (Czech Republic)). A total of 1097 newly diagnosed, histologically confirmed, renal parenchymal cancers (ICD-O-2 code C64) between 20 and 79 years of age were recruited during August 1999 and January 2003. Trained medical staff reviewed medical records to extract relevant diagnostic information, including date and method of diagnosis, histologic type, tumour location, stage, and grade. Eligible controls (n = 1476) were admitted to the same hospitals as the cases for conditions unrelated to smoking or genitourinary disorders (except for benign prostatic hyperplasia) between August 1998 and March 2003. No single disease made up more than 20% of the control group. Both cases and controls had to be residents of the study areas for at least 1 year. The response rate for cases ranged from 90 to 98.6% and for the controls, 90.3–96.1%.

Trained interviewers used standardised questionnaires at all centres to elicit information on demographic background, smoking, alcohol drinking, dietary practices, height, weight, medical history, family history of cancer, residential history, and occupational history.

Smoking status (never smoker, former smoker, current smoker) was defined as status 2 years before interview. Packyears were used as a measure of cumulative tobacco smoking and were calculated by the number of cigarettes smoked per day multiplied by years of smoking and divided by 20. History of hypertension was self-reported and a positive history was restricted to patients who reported being treated for hypertension. The weight in kilograms was ascertained for 2 years before the interview. Body mass index was calculated by dividing the weight by the square of the height in metres.

Kidney cancer risks were estimated by odds ratios (ORs) and 95% confidence intervals (CIs) using logistic regression analysis, with adjustment for age (5-years interval), smoking (current, former, and never smokers), BMI in five categories (<25, 25–27.4, 27.5–29.9, 30–34.9, ≥35), history of hypertension treatment (no vs yes), and country, where appropriate. Heterogeneity tests were used to evaluate differences among countries by including country–exposure interaction terms in the logistic models, and likelihood ratio tests to evaluate the statistical significance of the interaction terms.

RESULTS

The study population consisted of 1097 kidney cancer cases (648 men and 449 women) and 1476 controls (952 men and 524 women) (Tables 1 and 2). Among cases, tumour stage at diagnosis was
similar for both sexes, with 9.2% of men and 6.9% of women having M1 stage and 10.3% of men and 8.8% of women having ≥N1 stage, 83% of cases were clear cell carcinoma and 6% papillary carcinoma.

Smoking was not associated with an increased risk of kidney cancer, and no dose–response was seen with increasing levels of smoking.

Table 2
Odds ratio of kidney cancer for tobacco smoking

Smoking	Men	Women	Total									
	Cases	Controls	OR*	95% CI	Cases	Controls	OR*	95% CI	Cases	Controls	OR*	95% CI
Never smokers	170	232	1.00	Ref	340	368	1.00	Ref	510	600	1.00	Ref
Former smokers	204	302	0.89	0.68, 1.17	47	51	1.07	0.69, 1.67	126	153	1.15	0.83, 1.58
Current smokers	273	416	0.99	0.76, 1.29	60	105	0.70	0.48, 1.02	183	261	0.81	0.57, 1.15
< 17 packyears	150	231	0.94	0.70, 1.26	62	97	0.76	0.52, 1.11	162	228	0.77	0.57, 1.05
≥ 31 packyears	165	261	0.89	0.67, 1.19	13	19	0.85	0.40, 1.78	178	280	0.85	0.66, 1.09

*Adjusted for age, body mass index, history of hypertension and country. **Ref = reference category.*

DISCUSSION

This study provides evidence that increased BMI and a history of hypertension are risk factors for kidney cancer in high-risk areas of central and eastern Europe, countries in which data on kidney cancer have been limited. The increased risk associated with BMI was more pronounced among men, while the increased risk for history of hypertension was more pronounced among women.

Our findings of increasing risks for kidney cancer with increasing BMI agree with most other studies. A recent evaluation by an IARC working group on the effects of body weight and adiposity showed that all but one of the 19 reviewed studies found a more than two-fold increase in kidney cancer risk among obese men and women compared with those of normal weight (IARC, 2002). In addition, two recent cohort studies confirmed a role for BMI (Bjorge et al, 2004; van Dijk et al, 2004). A potential mechanism by which obesity may increase kidney cancer risk involves increased levels of insulin-like growth factor (IGF) or lipid peroxidation. Increasing BMI is associated with elevated levels of fasting serum and free IGF-I among both men and women (Frystyk et al, 1995). Insulin-like growth factor-I stimulates cell proliferation.
An association between hypertension and kidney cancer has also been previously reported (McLaughlin et al, 2006). Hypertension is hypothesised to cause renal damage directly or cause metabolic or functional changes within the renal tubules, thus increasing the kidney’s susceptibility to carcinogens or promoting agents (Cowley and Roman, 1996). The relationship between kidney cancer and hypertension is complex. McCredie and Stewart (1992) showed that kidney cancer in hypertensive patients was related to the duration of hypertension, suggesting that hypertension contributes aetiologically relevant rather than being a consequence of the tumour (McCredie and Stewart, 1992). Also, in this connection, cohort studies may stratify by follow-up time, several finding that have found that the effect of hypertension is the same in the first years of follow-up as later (Fraser et al, 1990; Coughlin et al, 1997; Chow et al, 2000). These findings support the hypothesis that hypertension is a risk factor for kidney cancer. Further, an increased risk has been reported with mild hypertension that usually go untreated, and a decreasing risk of among those who have experienced lowered blood pressure levels over time (Chow et al, 2000).

Smoking is an established risk factor for kidney cancer, although the increase in risk is weak (IARC, 2004). In a comprehensive meta-analysis, we have recently estimated that the increased risk for ever smokers compared to never smokers was 38% (RR = 1.38 (95% CI: 1.28, 1.49) (Hunt et al, 2005)). There was also a strong dose-dependent increase with increasing tobacco consumption. However, the OR for smoking obtained from the meta-analysis in hospital-based studies was 1.17 (95% CIs: 1.03, 1.34), whereas in population-based studies, it was 1.49 (95% CIs: 1.34, 1.66). Our current study had a 97% power of detecting an increased risk of 40% associated with smoking, although only about a 50% power of detecting a 20% increase in risk. One possible conclusion is that smokers were over-represented in hospital controls resulting in a reduced power to detect a real effect of smoking on kidney cancer. We did compare the smoking prevalence between the major control groups and did not detect any heterogeneity, although a small amount of bias could not be excluded.

Our study confirms that BMI and a history of hypertension are risk factors for kidney cancer in central Europe, a region with the highest incidence currently reported, but these are unlikely to explain fully the high incidence, indicating that important causes remain to be discovered.

ACKNOWLEDGEMENTS

This research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute, Division of Cancer Epidemiology and Genetics.

REFERENCES

Bergstrom A, Hsieh CC, Lindblad P, Lu CM, Cook NR, Wolk A (2001) Obesity and renal cell cancer – a quantitative review. Br J Cancer 85: 984 – 990

Bjorge T, Tretei S, Engeland A (2004) Relation of height and body mass index to renal cell carcinoma in two million Norwegian men and women. Am J Epidemiol 160: 1168 – 1176

Chow WH, Grisley G, Fraumeni Jr JF, Järnholm B (2000) Obesity, hypertension, and the risk of kidney cancer in men. N Engl J Med 343: 1305 – 1311

Coughlin SS, Neaton JD, Randall B, Sengupta A (1997) Predictors of mortality from kidney cancer in 332 547 men screened for the multiple risk factor intervention trial. Cancer 79: 2171 – 2177

Cowley Jr AW, Roman RJ (1996) The role of the kidney in hypertension. JAMA 275: 1581 – 1589

Fraser GE, Phillips RL, Beeson WL (1990) Hypertension, antihypertensive medication and risk of renal carcinoma in California Seventh-Day Adventists. Int J Epidemiol 19: 832 – 838
Frystyk J, Vestbo E, Skjaerbaek C, Mogensen CE, Orskov H (1995) Free insulin-like growth factors in human obesity. *Metabolism* 44: 37–44
Hunt JD, van der Hel OL, McMillan GP, Boffetta P, Brennan P (2005) Renal cell carcinoma in relation to cigarette smoking: meta-analysis of 24 studies. *Int J Cancer* 114: 101–108
IARC (2002) Handbooks of Cancer Prevention Vol. 6 Weight Control and Physical Activity. IARC Press: Lyon, France
IARC (2004) IARC Monographs on the Evaluation for the Carcinogenic Risk of Chemicals to Humans: Tobacco Smoke and Involuntary Smoking. IARC press: Lyon
McCredie M, Stewart JH (1992) Risk factors for kidney cancer in New South Wales, Australia. II. Urologic disease, hypertension, obesity, and hormonal factors. *Cancer Causes Control* 3: 323–331
McLaughlin JK, Lipworth L, Tarone RE, Blot WJ (2006) Renal cancer. In: 'Cancer Epidemiology and Prevention', Section: 'Cancer by Tissue of Origin' Schottenfeld D, Fraumeni Jr JF (eds) pp 1087–1100. Oxford University Press: Oxford, UK
Murai M, Oya M (2004) Renal cell carcinoma: etiology, incidence and epidemiology. *Curr Opin Urol* 14: 229–233
Shapiro JA, Williams MA, Weiss NS, Stergachis A, LaCroix AZ, Barlow WE (1999) Hypertension, antihypertensive medication use, and risk of renal cell carcinoma. *Am J Epidemiol* 149: 521–530
van Dijk BA, Schouten LJ, Kiemeney LA, Goldbohm RA, van den Brandt PA (2004) Relation of height, body mass, energy intake, and physical activity to risk of renal cell carcinoma: results from the Netherlands Cohort Study. *Am J Epidemiol* 160: 1159–1167
Yu H, Rohan T (2000) Role of the insulin-like growth factor family in cancer development and progression. *J Natl Cancer Inst* 92: 1472–1489