Editorial: Understanding anti-trypanosomatid immune responses: The key to developing protective strategies against them

Cazorla S. I.1,2*, Alonso-Padilla Julio3,4, W. De Souza5,6 and Padilla A. M.7

1Centro de Referencia para Lactobacilos – CERELA (CONICET), Tucumán, Argentina, 2Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina, 3Instituto Salud Global de Barcelona (ISGlobal), Barcelona, Spain, 4CIBERINFECC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain, 5Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 6CMABio, Universidade do Estado do Amazonas-UEA, Manaus, Amazonas, Brazil, 7Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States

KEYWORDS
neglected tropical disease, kinetoplastid microorganisms, immune response, immunomodulation, trypanosomatids

Trypanosomatid parasites are kinetoplastid microorganisms, some of which cycle between the gut of insect vectors and the tissues of vertebrate hosts (1). In the vertebrate hosts, these parasites alter the expression of virulence genes and modify biological and antigenic properties in order to counteract the host immune responses and establish a persistent infection (2, 3).

The diseases caused by trypanosomatids are among the so-called neglected tropical diseases (NTDs), which affect millions of individuals mostly in low and middle-income countries from tropical and subtropical regions. In addition to their close relationship with poverty, these diseases permanently deform and disable a large number of poor people, who are thus trapped in their poverty situation. Sadly, these diseases are often forgotten by governments and the pharmaceutical industry, due to the lack of political voice of the affected populations and the reduced economic revenue from this low-income market (4, 5).

Although chemotherapy is critically important in reducing the parasite burden, the variable efficacy of the drugs against different clinical stages of the infections, their frequently associated adverse effects, and our poor understanding of drug-resistant parasite phenotypes remain major concerns. To date, there are no licensed human
vaccines against trypanosomatid infections and the majority of
the immunization studies have been conducted only at the pre-
clinical level (6). Thus, there is an urgent need for the
development of prophylactic and/or therapeutic vaccines able
to elicit an effective immune response against these parasites (7).

Trypanosomatid parasites drive major modifications of the
immune system and frequently the immune response evoked
does not result in protection (8). Even worse, this response might
sometimes be responsible for immunopathological disorders (9).
Therefore, a deep knowledge of the strategies displayed by these
parasites and the response of the hosts to the infection is
fundamental for the rational design of protective tools. This
Research Topic focuses on the search for new prophylactic or
therapeutic immunization platforms, the elucidation of the
immune mechanism contributing to protection, and the
strategies by which these kinetoplastids evade the host
immune response.

In recent years, in addition to the identification of vaccine
antigens, further efforts have focused on the development of
efficient antigen delivery systems, adjuvants and vaccination
regimens to enhance the protective responses to defined
immunogens (10, 11).

A strong inflammatory immune response with IFN-gamma
as a key cytokine is considered to be crucial in the control of
Trypanosoma cruzi infection. However, this inflammatory
profile is also frequently linked to tissue damage and
considered partially responsible for the pathology of Chagas
disease. Silva et al. address both aspects of the immune response
by pre-treating animals with alpha-tocopherol, an isomer of the
E-vitamin, prior to the infection. Alpha-tocopherol has
previously been described as a potential adjuvant to enhance
immune responses to vaccines in several models. They showed
that a pre-treatment with several 100 mg/kg doses of alpha-
tocopherol induced an increase in the number of IFN-gamma-
producing immune cells and effector memory T cells, resulting
in better control of parasite levels in the blood. Interestingly, this
pre-treatment also resulted in reduced tissue damage associated
with infection and a higher survival rate. This pathology
protective effect may be due to the development of more IL-
10-producing CD8+ T cells in the treated animals, which would
counterbalance the inflammatory response while preventing an
excessive destruction of the tissues. These complementary
characteristics modulating the immune response make alpha-
tocopherol treatment an interesting component to be tested as a
vaccine adjuvant. As noted by the authors, although its use as a
prophylactic measure before infection may not be practical, this
treatment might become important in the context of a
therapeutic vaccine, where the goal is to potentiate an already
present immune response against the chronic infection while
preventing further pathology. If this dual effect is also confirmed
in the chronic model, treatment with alpha-tocopherol could
give researchers a new tool to enhance the host response to
promote complete T. cruzi clearance of chronic infections.

Many species and subspecies of Leishmania infect humans
and other mammals causing a wide spectrum of diseases,
ranging from cutaneous leishmaniasis (CL), mucocutaneous
leishmaniasis (MCL), diffuse cutaneous leishmaniasis (DCL),
and visceral leishmaniasis (VL), depending on parasite virulence
factors and the immune response established by the host (12). In
the Old World, VL is mainly caused by L. donovani and L.
infantum, while in the New World, L. infantum is the primary
species reported (12, 13).

A delicate balance between inflammatory and regulatory
responses is required to achieve immune control of L. infantum
(14). Furthermore, intracellular pathogens can modulate or
hijack host gene expression processes through non-coding
RNA-mediated regulatory mechanisms as an additional
strategy to dampen the host immune response (15, 16). To
gain a deeper understanding of the immune response mounted
against Leishmania infection, Sanz et al. performed
transcriptome sequencing of lymph node aspirates from dogs
naturally infected with L. infantum. Dogs are the main domestic
reservoir for visceral leishmaniasis and parasites can be found in
the lymph nodes of infected dogs. They identified 5,461
differentially expressed genes (DEGs) in infected dogs
compared to healthy controls. Through weighted gene co-
expression network analysis, they identified four main co-
expression modules associated with cell cycle processes,
endoplasmic reticulum stress, regulation of the immune
response, and regulation of the B cell apoptotic process.
Interestingly, these co-expression modules, were correlated
with the monocyte concentration in blood and the clinical
stage of the sick dogs. As expected for infected animals, some
of the genes displaying the highest differential expression as well
as two of the four co-expression modules, were involved in the
immune response. Notably, the analysis also identified 21
differentially expressed IncRNAs and one module associated
with chromatin organization in sick dogs, from which the
authors suggest a possible role for epigenetic regulation
processes in the immunopathogenesis of canine leishmaniasis.

In recent years, an increasing number of alarming L.
donovani cases with unusual cutaneous manifestations have
been described in Sri Lanka, Nepal, and India (17, 18).
Accordingly, Thakur et al. describe a systemic-immune profile
of the cytokines and IgG antibodies circulating in 20 atypical
cutaneous leishmaniasis patients and 18 individuals with typical
visceral presentation of L. donovani infection from north and
northeast endemic areas of India. These atypical cutaneous cases
are caused by infection with L. donovani, a parasite whose
infection usually results in a visceral systemic pathology.
Authors describe a cytokine profile in the atypical cutaneous
patients that more closely resembles that seen in classical
cutaneous leishmaniasis cases. The cytokine profile of the
studied patients displays a higher ratio IFN-gamma/IL-10,
which could be associated with a better restriction of the
parasites to the cutaneous environment and the prevention of
visceralization. Similarly, this relatively higher level of IFN-gamma could favor the tissue damage observed in skin lesions. This profile in atypical cases differs from what is usually observed in cases of visceral leishmaniasis, despite the fact that both pathologies are the result of an infection by the same agent. As suggested by the authors, changes in the antibody pools displayed by different isolates of *L. donovani* might be in part responsible for the different outcomes, although further parasitological and deeper immunological studies are needed to test this hypothesis.

The host innate immune system plays a pivotal role in the recognition of kinetoplastid infections. Polymorphonuclear neutrophils react against protozoan parasites by different effector mechanisms, which include the release of immunomodulatory molecules (19, 20), phagocytosis, production of reactive oxygen species (ROS), and the release of neutrophil extracellular traps (NETs) (21). NETs are extracellular reticular fibrillar structures composed of DNA, histones, granulins and cytoplasmic proteins, delivered externally by neutrophils in response to different stimuli such as microorganisms, cytokines and host molecules. NET formation has been extensively demonstrated to trap, immobilize, inactivate, and kill, invading microorganisms and acts as an innate response against pathogenic invasion. Recent studies have demonstrated that the lipophosphoglycan (LPG) extracted from the surface of *T. brucei* induces the release of NETs in a time- and concentration-dependent manner (21, 22).

To determine the possible pathways involved in NET formation after *T. brucei’s* LPG exposure, Zhang et al., used a combination of blocking antibodies and protein kinase inhibitors. Their work describes an activation pathway in which *T. brucei*-derived LPG induces the phosphorylation of the c-Jun N-terminal kinase (JNK) through TLR2 and TLR4 receptors on the surface of neutrophils. This JNK phosphorylation triggers the release of DNA and the burst of ROS by neutrophils resulting in the formation of the NETs. As such, this study identifies a *T. brucei*-LPG-induced activation pathway for NET formation with features that are shared by other trypanosomatid infections.

In conclusion, this Research Topic provides new knowledge regarding the host-pathogen relationships of kinetoplastid parasites and the description of potential targets and approaches that could augment protective immune responses. Some of the mechanisms that parasites can orchestrate to counteract the host defenses and establish a functional infection are also considered. Nevertheless, our understanding of the immune system interaction with these highly complex pathogens is far from complete, and many challenges remain in our fight against these parasites.

Author contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Acknowledgments

The editors want to acknowledge the authors for their contributions to this Research Topic. We would also like to thank to the staff of Frontiers in Major Tropical Diseases Immunology for making it possible for us to conduct this Research Topic.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

1. Podlipaev S. The more insect trypanosomatids under study—the more diverse trypanosomatidae appears. *Int J Parasitol* (2001) 131(5-6):648–52. doi: 10.1016/s0020-7519(01)00139-4
2. Mathur RK, Awasthi A, Wadhone P, Ramananmurthy R, Saha B. Reciprocal CD40 signals through p38MAPK and ERK-1/2 induce counteracting immune responses. *Nat Med* (2004) 10(5):540-4. doi: 10.1038/nm1045
3. Cazorla SI, Frank FM, Malchiodi E. Vaccination approaches against Trypanosoma cruzi infection. *L. Expert Rev Vaccines* (2009) 8(7):921–35. doi: 10.1586/erv.09.45
4. Rotureau B, Walecka E, Jamonneau V, Solano P, Molla S, Debré P, et al. Enhancing research integration to improve one health actions: learning lessons from neglected tropical diseases experiences. *BMJ Glob Health* (2022) 7(6):e008881. doi: 10.1136/bmjgh-2022-008881
5. Nwaka S, Bailey RG. Virtual drug discovery and development for neglected diseases through public-private partnerships. *Nat Rev Drug Discov* (2003) 2(11):919–28. doi: 10.1038/nrd1230
6. Seder RA, Hill AV. Vaccines against intracellular infections requiring cellular immunity. *Nature* (2008) 17406(6797):793–8. doi: 10.1038/35021239
7. Camargo EP, Gazzinelli RT, Morde CM, Precioso AR. Why do we still have not a vaccine against chagas disease? Mem Inst Oswaldo Cruz (2022) 9:117.e208314. doi:10.1590/0074-027620200314

8. Cardillo F, de Pinho RT, Zuzquim Antas PR, Mengel J. Immunity and immune modulation in Trypanosoma cruzi infection. Pathog Dis (2015) 73(9):fv082. doi:10.1093/femspd/fv082

9. Sterin-Borda L, Giordanengo L, Joensen L, Geo S. Cruzipain induces autoantibodies against cardiac muscarinic acetylcholine receptors. Funct pathol implications. Eur J Immunol (2003) 33(9):2459–68. doi:10.1002/eji.200324009

10. Moyle PM. Biotechnology approaches to produce potent, self-adjuvancing antigen-adjuvant fusion protein subunit vaccines. Biotechnol Adv (2017) 35(3):375–89. doi:10.1016/j.biotechadv.2017.03.005

11. Li Q, Li Z, Deng N, Ding F, Li Y, Cai H. Built-in adjuvants for use in vaccines. Eur J Med Chem (2022) 5(227):113917. doi:10.1016/j.ejmech.2021.113917

12. Murray HW, Berman JD, Davies CR, Saravia NG. Advances in leishmaniasis. Lancet (2005) 366(9496):1561–77. doi:10.1016/S0140-6736(05)67628-5

13. Heras-Mosteiro J, Monge-Maillo B, Pinart M, Lopez Pereira P, Reveiz L, Garcia-Carrasco E, et al. Interventions for old world cutaneous leishmaniasis. Cochrane Database Syst Rev (2017) 12(12):CD005067. doi:10.1002/14651858.CD005067.pub5

14. Toeppe AJ, Petersen CA. The balancing act: immunology of leishmaniosis. Res Vet Sci (2020) 130:19–25. doi:10.1016/j.resv.2020.02.004

15. Shirahama S, Miki A, Kaburaki T, Akimoto N. Long non-coding RNAs involved in pathogenic infection. Front Genet (2020) 26:454(11). doi:10.3389/fgene.2020.00454

16. Fernandes JCR, Acuña SM, Aoki JI, Fiolet-Winter LM, Muxel SM. Long non-coding RNAs in the regulation of gene expression: physiology and disease noncoding RNA. Noncoding RNA (2019) 5(1):17. doi:10.3390/ncrna5010017

17. Siriswardana Y, Deepachandi B, Gunasekara C, Warnasooriya W, Karunaweera ND. Leishmania donovani induced cutaneous leishmaniasis: an insight into atypical clinical variants in Sri Lanka. J Trop Med (2019) 27:2019:4538597. doi:10.1155/2019/4538597

18. Bastola A, Shrestha M, Lamsal M, Shrestha S, Prajapati S, Adhikari A, et al. A case of high altitude cutaneous leishmaniasis in a non-endemic region in Nepal. Parasitol Int (2020) 74:101991. doi:10.1016/j.parint.2019.101991

19. Hermosilla C, Caro YM, Silva LM, Ruiz A, Taubert A. The intriguing host innate immune response: novel anti-parasitic defence by neutrophil extracellular traps. Parasitology. (2014) 141:1489–98. doi:10.1017/S0031182014000316

20. Mutoon-Caro T, Rubio RM, Silva LM, Magdowski G, Gartner U, McNeilly TN, et al. Leucocyte-derived extracellular trap formation significantly contributes to Haemonchus contortus larval entrapment. Parasit Vect. (2015) 8:607. doi:10.1186/s13071-015-1219-1

21. Grob D, Consejeros I, Zahady D, Velásquez PC, Gartner U, Alarcón P, et al. Trypanosoma brucei brucei induces polymorphonuclear neutrophil activation and neutrophil extracellular traps release. Front Immunol (2020) 22:559561(11). doi:10.3389/fimmu.2020.559561

22. Zhang K, Jiang N, Chen H, Zhang N, Sang X, Feng Y, et al. TatD DNases of African trypanosomes confer resistance to host neutrophil extracellular traps. Sci China Life Sci (2021) 64:621–32. doi:10.1007/s11427-020-1854-2