A magnetic levitation based low-gravity simulator with an unprecedented large functional volume

Hamid Sanavandi and Wei Guo

Low-gravity environment can have a profound impact on the behaviors of biological systems, the dynamics of fluids, and the growth of materials. Systematic research on the effects of gravity is crucial for advancing our knowledge and for the success of space missions. Due to the high cost and the limitations in the payload size and mass in typical spaceflight missions, ground-based low-gravity simulators have become indispensable for preparing spaceflight experiments and for serving as stand-alone research platforms. Among various simulator systems, the magnetic levitation-based simulator (MLS) has received long-lasting interest due to its easily adjustable gravity and practically unlimited operation time. However, a recognized issue with MLSs is their highly non-uniform force field. For a solenoid MLS, the functional volume $V_{1\%	ext{g}}$, where the net force results in an acceleration <1% of the Earth’s gravity g, is typically a few microliters (µL) or less. In this work, we report an innovative MLS design that integrates a superconducting magnet with a gradient-field Maxwell coil. Through an optimization analysis, we show that an unprecedented $V_{1\%	ext{g}}$ of over 4000 µL can be achieved in a compact coil with a diameter of 8 cm. We also discuss how such an MLS can be made using existing high-T_c-superconducting materials. When the current in this MLS is reduced to emulate the gravity on Mars ($g_M = 0.38g$), a functional volume where the gravity varies within a few percent of g_M can exceed 20,000 µL. Our design may break new ground for future low-gravity research.

npj Microgravity (2021) 7:40; https://doi.org/10.1038/s41526-021-00174-4
unprecedented $V_{1\%}$ of over 4000 µL can be achieved in a compact coil of 8 cm in diameter. This optimum $V_{1\%}$ increases with the size and the field strength of the MLS. We then discuss how such an MLS can be made using existing high-T_c SC materials so that long-time operation with minimal energy consumption can be achieved. To further demonstrate the usefulness of this MLS, we also consider reducing its current and the field strength to emulate the gravity on Mars ($g_M = 0.38g$). It turns out that a functional volume over 20,000 µL can be produced, in which the gravity only varies within a few percent of g_M. Our design concept may break new ground for exciting applications of MLSs in future low-gravity research.

RESULTS
Levitation by a solenoid magnet
To aid the discussion of our MLS design, we first introduce the fundamentals of magnetic levitation using a solenoid magnet. Following this discussion, we will present the details of our innovative MLS design concept.

The mechanism of magnetic levitation can be understood by considering a small sample (volume ΔV) placed in a static magnetic field $\mathbf{B}(r)$. Owing to the magnetization of the sample material, the energy of the magnetic field increases by

$$\Delta E_B = -\frac{\chi B^2(r)}{2\mu_0(1+\chi)} \Delta V,$$

(1)

where χ is the magnetic susceptibility of the sample material and μ_0 is the vacuum permeability. For diamagnetic materials with a negative χ, ΔE_B is positive and therefore it requires energy to insert a diamagnetic sample into the $\mathbf{B}(r)$ field. Counting in the gravity effect, the total potential energy associated with the sample per unit volume can be written as:

$$E(r) = -\frac{\chi B^2(r)}{2\mu_0(1+\chi)} + \rho gz,$$

(2)

where ρ is the material density and z denotes the vertical coordinate. This energy leads to a force per unit volume acting on the sample as:

$$F = -\nabla E(r) = -\frac{\chi}{\mu_0(1+\chi)} \left(\nabla B \right) \cdot \mathbf{B} - \rho g \hat{z}.$$

(3)

For an appropriate non-uniform magnetic field, the vertical component of the field-gradient force (i.e., the first term on the right side in Eq. (3)) may balance the gravitational force at a particular location, i.e., the levitation point. Sample suspension can therefore be achieved at this point.

In order to attain a stable levitation, the specific potential energy E must have a local minimum at the levitation point so the sample cannot stray away. Since E depends on the material properties besides the $\mathbf{B}(r)$ field, we need to specify the sample material. Considering the fact that water has been utilized in a wide range of low-gravity researches and is also the main constituent of living cells and organisms, we adopt the water properties at ambient temperature (i.e., gravity only varies within a few percent of the functional volume over 20,000). Our design concept may break new ground for exciting applications of MLSs in future low-gravity research.

Fig. 1 Functional volume analysis for a conventional solenoid MLS. a Schematic of a solenoid with a diameter of $D = 8$ cm and a height of $\sqrt{3D}/2$. b Calculated specific potential energy $E(r)$ of a small water sample placed in the magnetic field. The turn-current NI of the solenoid is 607.5 kA. The origin of the coordinates is at the center of the solenoid. The dashed contour denotes the boundary of the trapping region, and the solid contour shows the low-force region (i.e., acceleration <0.01g). c The functional volume $V_{1\%}$ (i.e., the overlapping volume of the two contours) versus the turn-current NI. Representative shapes of the low-force region are shown.

(continued by the dashed contour) in which E decreases towards the region center. When a water sample is placed in this region, it moves towards the region center where the net force is zero, i.e., the levitation point. We have also calculated the specific force field using Eq. (3). The solid contour in Fig. 1b denotes the low-force region in which the net force corresponds to an acceleration <0.01g. The overlapping volume of the trapping region and the low-force region is defined as our functional volume $V_{1\%}$, where the sample not only experiences a weak residue force but also remains trapped. In Fig. 1c, we show the calculated $V_{1\%}$ as a function of NI. The trapping region emerges only above a threshold turn-current of about $NI = 520$ kA. As NI increases, $V_{1\%}$ first remains small (i.e., a few µL) and has a shape like an inverted raindrop. When NI is above ~600 kA, $V_{1\%}$ grows rapidly and peaks at $NI = 607.5$ kA before it drops with further increasing NI. In the peak regime, $V_{1\%}$ has a highly anisotropic shape due to the non-uniform force field, which makes it unsuitable for practical applications despite the enhanced $V_{1\%}$ value. The required extremely large turn-current also presents a great challenge.

Concept and performance of our MLS design
To increase $V_{1\%}$, the key is to produce a more uniform field-gradient force to balance the gravitational force such that the net force remains low in a large volume. Base on Eq. (3), this can be achieved if we have a nearly uniform \mathbf{B} field and in the meanwhile, the field gradient is almost constant in the same volume. These two seemingly irreconcilable conditions can be satisfied approximately. The solution is to superimpose a strong uniform field \mathbf{B}_s
with a weak field $\mathbf{B}_1(r)$ that has a fairly constant field-gradient $\nabla \mathbf{B}_1$. In this way, the total field $\mathbf{B} = \mathbf{B}_0 + \mathbf{B}_1$ is approximately uniform and its gradient $\nabla \mathbf{B} \approx \mathbf{B}_1$ can also remain nearly constant.

The uniform field \mathbf{B}_0 can be produced in the bore of a superconducting solenoid magnet. Indeed, for superconducting magnets used in magnetic resonance imaging applications, spatial uniformity of the field better than a few parts per million (ppm) in a space large enough to hold a person has become standard. The recently built 32-T all-superconducting magnet at the National High Magnetic Field Laboratory (NHMFL) further proves the feasibility of producing strong uniform fields using cutting-edge superconducting technology. As for the \mathbf{B}_1 field, we propose to produce it using a gradient-field Maxwell coil. As shown in Fig. 2a, such a coil consists of two identical current loops (diameter D) placed coaxially at a separation distance of $\sqrt{3} D/2$. The current in the top loop is clockwise (viewed from the top) while the origin of the coordinates is at the center of the bottom current loop. The black dashed contour denotes the boundary of the trapping region, and the black solid contour shows the low-force region (i.e., acceleration $<0.01g$).

![Fig. 2 Functional volume of our MLS design using a gradient-field Maxwell coil. (a) Schematic of the gradient-field Maxwell coil with a diameter $D = 8$ cm in the presence of an applied uniform field B_0. (b) Calculated specific potential energy $E(r)$ of a small water sample placed in the magnetic field for $l = 112.6$ kA and $B_0 = 24$ T. The origin of the coordinates is at the center of the bottom current loop. The black dashed contour denotes the boundary of the trapping region, and the black solid contour shows the low-force region (i.e., acceleration $<0.01g$).](image)

In this way, the total field $\mathbf{B} = \mathbf{B}_0 + \mathbf{B}_1$ is approximately uniform and its gradient $\nabla \mathbf{B} \approx \mathbf{B}_1$ can also remain nearly constant.

The uniform field B_0 can be produced in the bore of a superconducting solenoid magnet. Indeed, for superconducting magnets used in magnetic resonance imaging applications, spatial uniformity of the field better than a few parts per million (ppm) in a space large enough to hold a person has become standard. The recently built 32-T all-superconducting magnet at the National High Magnetic Field Laboratory (NHMFL) further proves the feasibility of producing strong uniform fields using cutting-edge superconducting technology. As for the B_1 field, we propose to produce it using a gradient-field Maxwell coil. As shown in Fig. 2a, such a coil consists of two identical current loops (diameter D) placed coaxially at a separation distance of $\sqrt{3} D/2$. The current in the top loop is clockwise (viewed from the top) while the origin of the coordinates is at the center of the bottom current loop. The black dashed contour denotes the boundary of the trapping region, and the black solid contour shows the low-force region (i.e., acceleration $<0.01g$).

The $B_1(r)$ generated by the gradient-field Maxwell coil can be calculated using the Biot-Savart law (see details in the Method section), from which the specific potential energy E for an inserted water sample can again be determined. As an example, we show in Fig. 2b the calculated $E(r)$ profile for a coil with $D = 8$ cm and with an applied current of $I = 112.6$ kA in the presence of a uniform field $B_0 = 24$ T. Again, we use the dashed contour and the solid contour to show, respectively, the trapping region and the 0.01g low-force region. By evaluating the overlapping volume of the two regions, we obtain $V_{1\text{m}} = 4004 \mu$L. More importantly, this functional volume is much more isotropic as compared with that in Fig. 1b, which makes it highly desirable in practical applications. To optimize the coil current I and the base field B_0, we have conducted further analyses. First, for a fixed B_0, we vary the coil current I. Representative results at $B_0 = 24$ T are shown in Fig. 3a. It is clear that $V_{1\text{m}}$ peaks at about $I = 112.6$. We denote this peak value as V_{opt}. The decrease of $V_{1\text{m}}$ at large I is caused by the fact that the field \mathbf{B}_1 generated by the coil is no longer much smaller than the base field \mathbf{B}_0, which impairs the uniformity of the field-gradient force. Next, we vary the base field strength B_0 and determine the corresponding V_{opt} at each B_0. The result is shown in Fig. 3b. It turns out that there exists an optimum base field strength of -24.7 T (denoted as B_0^\star), where an overall maximum functional volume (denoted as V^\star) of $\sim 4050 \mu$L can be achieved. This volume is comparable to those of the largest water drops adopted in the past spaceflight experiments. As for the above analyses assumed a fixed coil diameter $D = 8$ cm. When D varies, the maximum functional volume V^\star and the corresponding MLS parameters (i.e., I^\star and B_0^\star) should also change. To examine the coil-size effect, we have repeated the aforementioned analyses with a number of coil diameters. The results are collected in Fig. 4. As D increases from 6 cm to 14 cm, the maximum functional volume V^\star increases from $\sim 1500 \mu$L to over 21,000 μL, i.e., over 14 times. Meanwhile, the required coil current I^\star and the base field strength B_0^\star increase almost linearly with D by factors of 4 and 1.3, respectively. This analysis suggests that it is advantageous to have a larger coil provided that the desired I^\star and B_0^\star can be achieved.

DISCUSSION

The MLS concept that we have presented requires an applied current of the order 10^2 kA in both loops of the gradient-field Maxwell coil. A natural question is whether this is practical. One may consider making the loop using a thin copper wire with 10^3 turns so that a current of the order 10^2 A in the wire is sufficient. However, simple estimation reveals that the Joule heating in the resistive wire can become so large that the wire could melt. To solve this issue, we propose to fabricate the Maxwell coil using REBCO (i.e., rare-earth barium copper oxide) superconducting tapes similar to those used in the work by Hahn et al. A schematic of the proposed MLS setup is shown in Fig. 5a. A 24-T superconducting magnet with a bore diameter of 120 mm (existing at the NHMFL) is assumed for producing the B_0.
deviations from that of an ideal gradient-bore with a diameter as large as 6 cm can be used for sample inside a shielded vacuum housing. A room-temperature center could be cooled conveniently by a 4-K pulse-tube cryocooler immersion in a liquid helium bath, the compact REBCO coils the superconducting magnet at the NHMFL is cooled by maximum functional volume.

The required optimum diameter D to achieve V^\ast versus the coil diameter D. (b) The maximum functional volume V^\ast for coils with different diameters D. (a) The required optimum I^\ast and B_0^\ast to achieve V^\ast versus the turn-current at $B_0=24$ T. The overall shapes of the trapping region and the low-force region are nearly identical to those of the ideal gradient-field Maxwell coil. Therefore, despite the change in the coil geometry as compared with the ideal gradient-field Maxwell coil, the performance of our practical design does not exhibit any significant degradation.

Besides levitating samples for near-zero gravity research, our MLS can also be tuned to partially cancel the Earth’s gravity so that ground-based emulation of reduced gravities in the extra-terrestrial environments (such as on the Moon or Mars) can be achieved. To demonstrate this potential, we present further analyses of the practical MLS shown in Fig. 5 with lower applied currents for simulating the Martian gravity $g_M=0.38g^\ast$. In Fig. 6a, we show a contour plot of the specific potential energy $E(r)$ for water samples in the practical MLS when a turn-current of $N=66.55$ kA is applied at $B_0=24$ T. It is clear that the energy contour lines (red curves) are evenly spaced in the center region of the MLS, suggesting a fairly uniform and downward-pointing force in this region. We then calculate the magnitude of the force using Eq. (3). The two black contours in Fig. 6a represent the boundaries of the regions in which the total force leads to an effective gravitational acceleration within 1% and 5% of g_M, respectively. If we define the volume of the contour in which the gravity varies within 5% of g_M as our functional volume V_M, its dependence on the turn-current at $B_0=24$ T is shown in Fig. 6b. This functional volume has a peak value $V_{M,\text{opt}}$ of $\sim 22.5 \times 10^3 \mu$L at $N=66.55$ kA.
This peak volume is so large that even small animals or plants can be accommodated inside. We have also calculated the peak volume V_{opt} at different base field strength B_0. As shown in Fig. 6c, initially the peak volume V_{opt} increases sharply with B_0, then it gradually saturates when B_0 is > -24 T. Operating the MLS at higher B_0 gives a marginal gain in the functional volume.

In conclusion, our analyses have clearly demonstrated the superiority of the proposed MLS concept in comparison with conventional solenoid MLSs. An unprecedentedly large and isotropic functional volume, i.e., about three orders of magnitude larger than that for a conventional solenoid MLS, can be achieved. The implementation of the superconducting magnet technology will also ensure the stable operation of this MLS with a minimal energy consumption rate, which is ideal for future low-gravity research and applications.

METHOD

Magnetic field calculation

The magnetic field $B(r)$ generated at r by a current loop in three-dimensional space can be calculated using the Biot-Savart law\(^2\):

$$B(r) = \frac{\mu_0 I}{4\pi} \int \frac{dl \times (r - l)}{|r - l|^3},$$

where dl is the elementary length vector along the current loop. For a field-gradient Maxwell coil with a radius $R = D/2$, the generated magnetic field $B(r)$ can be decomposed into an axial component and a radial component due to the axial symmetry. If we set the z axis along the coaxial axis of the two loops and place the coordinate origin at the center of the bottom loop, the two components can be evaluated as:

$$B_x(r, z) = \frac{\mu_0 I}{4\pi} \int_0^L \left[\frac{r \cos(\phi)}{R^2} + \frac{(R - r) \cos(\phi)}{z^2} \right] d\phi,$$

$$B_y(r, z) = \frac{\mu_0 I}{4\pi} \int_0^L \left[\frac{r \sin(\phi)}{R^2} + \frac{(R - r) \sin(\phi)}{z^2} \right] d\phi$$

where

$$R_1 = \sqrt{[r - R \cos(\phi)]^2 + [R \sin(\phi)]^2 + z^2},$$

$$R_2 = \sqrt{[r - R \cos(\phi)]^2 + [R \sin(\phi)]^2 + (z - L)^2},$$

$L = \sqrt{3}D/2$ is the separation distance between the two loops, and L is the current in each loop.

The magnetic field $B(r)$ generated by the practical MLS design as depicted in Fig. 5a can be calculated by superimposing the fields produced by the four sets of field-gradient Maxwell coils. The field of each coil is evaluated in the same way as outlined above. Counting in the base field B_0, the total field is then given by $B(r) = B_0 + B^{(1)}_x(r)e_x + B^{(1)}_y(r)e_y$.

For a solenoid with a length L and a radius R, if we assume the wire is thin such that the turn number N is large but the total turn-current NI remains finite, an exact expression for the generated magnetic field can be derived based on the Biot-Savart law\(^3,4\):

$$B_x^{(1)}(r, z) = \frac{\mu_0 N I}{4\pi} \int_0^L \frac{\left[1 + 2K(k^2) + \frac{1}{2}E(k^2) \right]}{\sqrt{1 - k^2}} d\phi,$$

$$B_y^{(1)}(r, z) = \frac{\mu_0 N I}{4\pi} \int_0^L \frac{\left[k K(k^2) - \frac{r}{R} \Pi(h^2, k^2) \right]}{\sqrt{1 - k^2}} d\phi,$$

where

$$k = \frac{4h}{(R + r)C_0},$$

$$h^2 = \frac{4h^2}{(R + r)^2C_0},$$

$$\zeta = z + L/2,$$

and the functions $K(k^2)$, $E(k^2)$, and $\Pi(h^2, k^2)$ are given by:

$$K(k^2) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}},$$

$$E(k^2) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} \sqrt{1 - k^2 \sin^2 \theta},$$

$$\Pi(h^2, k^2) = \int_0^{\pi/2} \frac{d\theta}{\sqrt{1 - h^2 \sin^2 \theta} \sqrt{1 - k^2 \sin^2 \theta}}.$$

Numerical method

The magnetic fields produced by the solenoid, the ideal gradient-field Maxwell coil, and the practical MLS design are all calculated using MATLAB. Considering the axial symmetry, we only evaluate the fields in the $r-z$ plane. The sizes of the computational domains for different types of designs are essentially shown in Fig. 1b, Fig. 2b, and Fig. 5b. Typically, the computational domain is discretized using a square grid with spatial resolutions $\Delta r = 10 \mu m$ and $\Delta z = 10 \mu m$, which gives good convergence of the numerical results. The calculations assumed water properties at the ambient temperature, but the same procedures can be applied to other materials with different magnetic susceptibilities and densities.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

DATA AVAILABILITY

The computer codes and the data supporting the findings of this study are available from the corresponding author upon reasonable request.

Received: 1 August 2021; Accepted: 8 October 2021; Published online: 29 October 2021

REFERENCES

1. Hammond, T. G. et al. Gene expression in space. *Nat. Med.* 5, 359–359 (1999).

2. White, R. J. & Averner, M. Humans in space. *Nature* 409, 1115–1118 (2001).
3. Williams, D., Kuipers, A., Mukai, C. & Thirsk, R. Acclimation during space flight: effects on human physiology. *Can. Med. Assoc. J.* **180**, 1317–1323 (2009).

4. Stavrinidou, M., Mikolajewicz, N., Corlett, T., Morris, M. & Komarova, S. A systematic review and meta-analysis of bone loss in space travelers. *npj Microgravity* **6**, 1–9 (2020).

5. Snyder, H. A. Effect of sloshing on the mechanics of dewar systems in low-gravity. *Cryogenics* **41**, 825–830 (2001).

6. Nelson, A. R. & Gokhale, N. R. Oscillation frequencies of freely suspended water drops. *J. Geophys. Res.* **77**, 2724–2727 (1972).

7. Obreschkow, D. et al. Cavitation bubble dynamics inside liquid drops in microgravity. *Phys. Rev. Lett.* **97**, 094502 (2006).

8. Siegel, R. Effects of reduced gravity on heat transfer. In *Adv. Heat Transf.* **4**, 101–184 (1967).

9. Ohta, H. & Baba, S. Boiling experiments under microgravity conditions. *Exp. Heat Trans.* **26**, 266–295 (2013).

10. Unsworth, B. R. & Kelkes, P. I. Growing tissues in microgravity. *Nat. Med.* **4**, 901–907 (1998).

11. Strelow, V. I., Kurovannm, I. P., Zakhvor, B. G. & Voloshin, A. E. Crystallization in space: results and prospects. *Crystallogr. Rep.* **59**, 781–806 (2014).

12. Matisik, B. P., Zhao, A. X., Narayanan, R. & Fripp, A. L. The microgravity environment: its prediction, measurement, and importance to materials processing. *J. Cryst. Growth** **170**, 90–95 (1997).

13. Board, S.S. & National Research Council of The National Academia. *Space: the future of humanity* (2018).

14. Musk, E. Making life multi-planetary. *Scientific American* **318**(5), 52–57 (2018).

15. Witze, A. NASA plans Mars sample-return rover. *Science* **364**(6433), 649–650 (2019).

16. Vandenbrink, J. P. & Kiss, J. Z. Space, the final frontier: a review of recent microgravity experiments performed in microgravity. *Acta Astronaut.* **50**, 691–696 (2002).

17. Ferranti, F., Del Bianco, M. & Pacelli, C. Advantages and limitations of current microgravity platforms for space biology research. *Microgravity Sci. Technol.* **20**, 212 (2008).

18. Carlsson, S. I., Bertilaccio, M. T., Ballabio, E. & Maier, J. A. Endothelial stress by clinostat rotation. *Acta Physiol.* **195**, 529–535 (2009).

19. Dedolph, R. R. & Dipert, M. H. The physical basis of gravity stimulus nullification in the early stage. This research is supported by National Science Foundation under grant no. CBET-1801780. The work was conducted at the National High Magnetic Field Laboratory, Florida State University, which is supported by National Science Foundation Cooperative Agreement No DMR-1644779 and the state of Florida.

20. Vandenbrink, J. P. & Kiss, J. Z. Space, the final frontier: a review of recent microgravity experiments performed in microgravity. *Acta Astronaut.* **50**, 691–696 (2002).

21. Sreedhar, G. & Kure, R. A. Oscillation frequencies of freely suspended water drops. *J. Geophys. Res.* **77**, 2724–2727 (1972).

22. Obreschkow, D. et al. Cavitation bubble dynamics inside liquid drops in microgravity. *Phys. Rev. Lett.* **97**, 094502 (2006).

23. Siegel, R. Effects of reduced gravity on heat transfer. In *Adv. Heat Transf.* **4**, 101–184 (1967).

24. Ohta, H. & Baba, S. Boiling experiments under microgravity conditions. *Exp. Heat Trans.* **26**, 266–295 (2013).

25. Unsworth, B. R. & Kelkes, P. I. Growing tissues in microgravity. *Nat. Med.* **4**, 901–907 (1998).

26. Strelow, V. I., Kurovannm, I. P., Zakhvor, B. G. & Voloshin, A. E. Crystallization in space: results and prospects. *Crystallogr. Rep.* **59**, 781–806 (2014).

27. Matisik, B. P., Zhao, A. X., Narayanan, R. & Fripp, A. L. The microgravity environment: its prediction, measurement, and importance to materials processing. *J. Cryst. Growth** **170**, 90–95 (1997).

28. Board, S.S. & National Research Council of The National Academia. *Space: the future of humanity* (2018).

29. Musk, E. Making life multi-planetary. *Scientific American* **318**(5), 52–57 (2018).

30. Witze, A. NASA plans Mars sample-return rover. *Science* **364**(6433), 649–650 (2019).

31. Vandenbrink, J. P. & Kiss, J. Z. Space, the final frontier: a review of recent microgravity experiments performed in microgravity. *Acta Astronaut.* **50**, 691–696 (2002).

32. Ferranti, F., Del Bianco, M. & Pacelli, C. Advantages and limitations of current microgravity platforms for space biology research. *Microgravity Sci. Technol.* **20**, 212 (2008).

33. Carlsson, S. I., Bertilaccio, M. T., Ballabio, E. & Maier, J. A. Endothelial stress by clinostat rotation. *Acta Physiol.* **195**, 529–535 (2009).

34. Dedolph, R. R. & Dipert, M. H. The physical basis of gravity stimulus nullification in the early stage. This research is supported by National Science Foundation under grant no. CBET-1801780. The work was conducted at the National High Magnetic Field Laboratory, Florida State University, which is supported by National Science Foundation Cooperative Agreement No DMR-1644779 and the state of Florida.

ACKNOWLEDGMENTS

The authors would like to thank H.J. Mari and J. Valles for their valuable comments on the manuscript. The authors also acknowledge Shaolong Zhu for his assistance at the early stage. This research is supported by National Science Foundation under grant no. CBET-1801780. The work was conducted at the National High Magnetic Field Laboratory, Florida State University, which is supported by National Science Foundation Cooperative Agreement No DMR-1644779 and the state of Florida.
AUTHOR CONTRIBUTIONS
W.G. designed the research; H.S. conducted the simulations; H.S. and W.G. analyzed the results and wrote the paper.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41526-021-00174-4.

Correspondence and requests for materials should be addressed to Wei Guo.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021