Error Probability of DPSK Signals with Intrachannel Four-Wave-Mixing in Highly Dispersive Transmission Systems

Keang-Po Ho, Senior Member, IEEE

Abstract—A semi-analytical method evaluates the error probability of DPSK signals with intrachannel four-wave-mixing (IFWM) in a highly dispersive fiber link with strong pulse overlap. Depending on initial pulse width, the mean nonlinear phase shift of the system can be from 1 to 2 rad for signal-to-noise ratio (SNR) penalty less than 1 dB. An approximated empirical phase shift of the system can be from 1 to 2 rad for signal-to-noise ratio (SNR) penalty less than 2 dB. An approximated empirical formula, valid for penalty less than 2 dB, uses the variance of the differential phase of the ghost pulses to estimate the penalty.

Index Terms—DPSK, intrachannel four-wave-mixing, fiber nonlinearities

I. INTRODUCTION

DIFFERENTIAL phase-shift keying (DPSK) signal has been studied widely recently for long-haul lightwave transmission systems [1]–[4]. In addition to the 3-dB receiver sensitivity improvement to on-off keying (OOK), high-speed DPSK signal also has larger tolerance to fiber nonlinearities than OOK signal [5]. Most DPSK experiments use return-to-zero (RZ) short pulse and launch a constant-intensity pulse train with phase modulated to each RZ pulse.

For 40-Gb/s signal in dispersive fiber, each RZ pulse broadens very fast by chromatic dispersion and overlaps with each other. The pulse-to-pulse interaction gives intrachannel cross-phase modulation (IXPM) and four-wave-mixing (IFWM) [6], [7]. As a constant pulse train, IXPM induces identical phase modulation and timing jitter to all pulses and does not affect DPSK signal. However, IFWM adds ghost pulses to each DPSK RZ pulse [8]–[11]. DPSK signal also has higher tolerance to IFWM than OOK signal [11].

When the IFWM induced ghost pulses are evaluated numerically, the error probability of DPSK signal can be calculated semi-analytically. This letter studies the statistical properties of IFWM in more detail using a method similar to [9], [11]. Both the error probability and signal-to-noise ratio (SNR) penalty are calculated.

II. STATISTICS OF IFWM

If the signal launched to the fiber link is Gaussian pulse train with initial 1/e-pulse width of T_0 or full-wide-half-maximum (FWHM) pulse with of $1.66T_0$, for a bit-interval of T, the kth pulse is $u_k = A_k \exp \left[-\left(t - kT \right)^2 / 2T_0^2 \right]$, where $A_k = \pm A_0$ is phase modulated by either 0 or π. From [8], [9], [11], the peak amplitude of the ghost pulses induced from IFWM, from the m, n, and $(m+n)$th pulses to the pulse at $t = 0$ is

$$\Delta u_{m,n} = i\gamma A_mA_n A_{m+n} \times \int_0^L e^{-az} \sqrt{1 + 2j\beta_2/T_0^2 + 3(\beta_2/T_0^2)^2} \times \exp \left\{ -\frac{3mnT^2}{T_0^2} + \frac{(m-n)^2T^2}{T_0^2} \right\} dz,$$

where $m \neq 0$ and $n \neq 0$, γ is the nonlinear coefficient and α is the attenuation coefficient of the fiber, β_2 is the coefficient of group velocity dispersion, and L is the fiber length per span. Here, we exclude both IXPM with either $m = 0$ or $n = 0$ and self-phase modulation with $m = n = 0$.

Figure 1(a) shows the distribution of the normalized complex electric field of $\Delta u_0/A_0$ with the unit of radian. Figure 1(b) shows the distribution of the peak phase shift of $\Im\{\Delta u_0\}/A_0$ versus $\Im\{\Delta u_1\}/A_1$ between two consecutive time intervals, where Δu_0 and Δu_1 are the peak-amplitude of ghost pulses and $\Im\{\} = \Im\{\}$ is the imaginary part of a complex number. The ghost pulses of Δu_0 and Δu_1 include all contributions of $-8 \leq m, n, m + n \leq 8$ for a 16-bit DPSK signal with about 64,000 combinations. Figure 1(a) is for ghost pulse at the center bit and Fig. 1(b) is for the center two bits. If the pulse amplitude of $|A_0|$ is significantly larger than the IFWM ghost pulses, $\Im\{\Delta u_0\}/A_0$ and $\Im\{\Delta u_1\}/A_1$ give approximately the phase shift [11].

Figures 2 are obtained for an N-span fiber link with $L = 100$ km of fiber per span with a normalized launched power of unity mean nonlinear phase shift of $\langle \Phi_{NL} \rangle = N\gamma L_{eff} P_0 = 1$ rad, where $P_0 = \sqrt{\pi}|A_0|^2T_0/T$ is the launched power, and $L_{eff} \approx 1/\alpha$ is the effective nonlinear length per span. N identical fiber spans are repeated one after another with 100% dispersion compensation at the end of each fiber span. For arbitrary fiber link configuration, N instead of one integration of 1 are required. IFWM ghost pulses add coherently span after span as the worst case. The fiber link has an attenuation coefficient of $\alpha = 0.2$ dB/km. With bit interval of $T = 25$ ps, DPSK signal has a data rate of 40 Gb/s. The initial pulse width is $T_0 = 5$ ps, for a duty cycle of about 1/3. The fiber
factor of interferometer loss and photodiode responsivity, the
signal with IFWM can be calculated semi-analytically.

With the distribution of Fig. 1, the error probability of DPSK
signals with IFWM is difficult to find analytically. From Figs. 1, the distribution of
the real parts of $\Re\{\Delta u_0\}/A_0$ and $\Re\{\Delta u_1\}/A_1$ have a correlation coefficient of about -0.54.

III. ERROR PROBABILITY FOR DPSK SIGNALS

The error probability of DPSK signals with IFWM is
difficult to find analytically. From Figs. 1 the distribution of
the IFWM induced ghost pulses is not Gaussian distributed.
With the distribution of Fig. 1 the error probability of DPSK
signal with IFWM can be calculated semi-analytically.

Assumed for simplicity that the transmitted phases at $t = 0$
and $t = T$ are identical and, without loss of generality, the
transmitted signals are $E_a(t) = E_a(t - T) = A_0 > 0$.
With optical amplifier noise of $n(t)$, ignored the constant
factor of interferometer loss and photodiode responsivity, the
photocurrent is [12]

$$i(t) = 2A_0 + \Delta u_1 + \Delta u_0 + n(t) + n(t - T)^2$$

$$-|\Delta u_1 - \Delta u_0 + n(t) - n(t - T)|^2. \quad (2)$$

A decision error occurs if $i(t) < 0$.

Given Δu_0 and Δu_1, the two terms in (2) are independent
of each other and have a noncentral chi-square distribution
[13, pp. 41-44]. Each term of (2) has the same noise variance of $4\sigma_n^2$, where $\langle n(t) \rangle^2 = 2\sigma_n^2$ with σ_n^2 as the noise variance per dimension. The noncentralities of the two terms of (2) are $2A_0 + \Delta u_1 + \Delta u_0$ and $|\Delta u_1 - \Delta u_0|^2$, respectively. From [13, App. B] [14], the probability of $i(t) < 0$ is equal to

$$p_c(\Delta u_0, \Delta u_1) = Q(a, b) - \frac{1}{2} e^{-(a^2 + b^2)/2} I_0(ab), \quad (3)$$

where $Q(\cdot, \cdot)$ is the Marcum Q function and

$$a^2 = \frac{\rho_s}{2} \left| 2 + \frac{\Delta u_1}{A_0} + \frac{\Delta u_0}{A_0} \right|^2, \quad (4)$$

$$b^2 = \frac{\rho_s}{2} \left| \frac{\Delta u_1}{A_0} - \frac{\Delta u_0}{A_0} \right|^2, \quad (5)$$

where $\rho_s = A_0^2/2\sigma_n^2$ is the SNR without taking into account
the ghost pulses. Evaluated semi-analytically using the distribution of Figs. 1 the error probability is equal to

$$p_c = E \left[p_c(\Delta u_0, \Delta u_1) \right], \quad (6)$$

where $E[\cdot]$ denotes expectation.

When the sequence of A_k is changed to $(-1)^k A_k$ with all
odd positions changing sign, from (1), Δu_0 remains the same
but Δu_1 changes sign. As $\Delta u_0/A_0$ and $\Delta u_1/A_1$ remain the
same for Fig. 1, the error probability for the case with $A_0 = -A_1$ is the same as that of (6).

Figure 2 shows the error probability as a function of SNR
ρ_s for DPSK signal with IFWM induced ghost pulses. The error probability without IFWM of $\frac{1}{2} e^{-\rho_s}$ [13, Sec. 5.2.8] is also shown for comparison. The semi-analytical formula of (6) with (5) is used to calculate the error probability based on
IFWM ghost pulse distribution of Figs. 1.

Figure 3 shows the SNR penalty for $p_c = 10^{-9}$ as a function of
the mean nonlinear phase shift of $\langle \Phi_{NL} \rangle$. In additional to
the SNR penalty corresponding to Fig. 2 Figure 3 also shows the penalty when the initial pulse width is $T_0 = 7.53$ ps for a
duty cycle of 1/2. For 1-dB SNR penalty, the mean nonlinear
phase shift must be less than 1.25 and 1.80 rad for initial pulse
width of $T_0 = 5$ and 7.53 ps, respectively. The SNR penalty is smaller for small initial pulse width of $T_0 = 5$ ps.

If the IFWM induced ghost pulses are assumed as Gaussian
distributed, the noise increases to $n(t) + \Delta u_0$ at $t = 0$.
However, the SNR of $|A_0|^2/E\langle n(t) + \Delta u_0|^2\rangle$ cannot be
used directly to find the error probability due the correlation
between the ghost pulses of Δu_0 and Δu_1. The phase variance
of $A_0 + n(t)$ is equal to about $1/2\rho_s$ [13, Sec. 5.2.7]. The variance of the differential phase is $1/\rho_s$ and should compare with

$$\sigma_{\delta\theta}^2 = E\left\{\left[3\{\Delta u_0/A_0\} - 3\{\Delta u_1/A_1\}\right]^2\right\}, \quad (7)$$

due to IFWM ghost pulses. The SNR penalty can be empirically estimated as $-10 \cdot \log_{10}\left(1 - 20\sigma_{\delta\theta}^2\right)$, where 20 is the SNR for a DPSK error probability of 10^{-9}. This empirical formula finds the SNR penalty based on the variance of the differential phase. Figure 3 also shows the SNR penalty from the empirical approximation. For SNR penalty less than 2 dB, the empirical approximation underestimates the SNR penalty by less than 0.25 dB. For SNR penalty larger than 2 dB, the approximation overestimates the SNR penalty.

The empirical approximation still requires extensive numerical calculations to find the variance of $\sigma_{\delta\theta}$ for each term of Δu_0 and Δu_1, and then averaging of $\sigma_{\delta\theta}$.

The above analysis and numerical results usually used the peak amplitude of the ghost pulses and the signal pulses. The pulse width of the ghost pulses is ignored for simplicity. However, the IFWM ghost pulse broadens to $\sqrt{3}$ times the signal pulse width [8], [9]. As the power is proportional to the pulse width, the ghosts pulse has $\sqrt{3}$ times larger energy than the signal for the same peak amplitude. In the worst case, the x-axis of Fig. 3 must scale by a factor of $3^{1/4} = 1.32$. However, the scale factor depends on the bandwidth of the optical and electrical filters in the receiver.

If optical match filter precedes the direct-detection DPSK receiver and the electric filter at the receiver has a wide bandwidth that does not distort the signal, the IFWM amplitude is increased by a factor of $\sqrt{3/2} = 1.22$ by the receiver, slightly less than the ratio of 1.32. If both the optical and electrical filters have a very wide bandwidth, allowing too much noise to the receiver, the peak amplitude directly transfers to the receiver. If the optical filter has a wide bandwidth but the electrical filter is a 0.75/T bandwidth Bessel filter, IFWM increases by a factor of 1.19 and 1.33 for $T_0 = 7.53$ and 5 ps, respectively. In practical system design, Figure 3 must be modified to take into account the design of both receiver and transmitter. Note that the mean nonlinear phase shift of Fig. 3 is a simple system parameter to evaluate.

Figure 3 shows that DPSK signal with IFWM can tolerate a far larger mean nonlinear phase shift of $\langle \Phi_{NL} \rangle$ than DPSK signal with nonlinear phase noise of $\langle \Phi_{NL} \rangle < 0.6$ rad for 1-dB penalty [15]. However, Ho [15] is for return-to-zero (NRZ) signal without pulse distortion and deduces that RZ signal has lower tolerance to nonlinear phase noise. We are currently developing model for RZ signal with nonlinear phase noise in highly dispersive systems for a fair comparison.

IV. CONCLUSION

When the peak amplitude of IFWM induced ghost pulses is evaluated numerically, the error probability of DPSK signals can be found semi-analytically. For a SNR penalty less than 1 dB, the mean nonlinear phase shift of the system must be less than 1 to 2 rad depending on the initial pulse width. An empirical approximation is also used to find the SNR penalty up to 2 dB.

REFERENCES

[1] A. H. Gnauck et al., "2.5 Tb/s (64×42.7 Gb/s) transmission over 40×100 km NZDSP using RZ-DPSK format and all-Raman-amplified spans," in Opt. Fiber Commun. Conf., 2002, postdeadline paper PC2.
[2] B. Zha et al., "6.4-Tb/s (160×42.7 Gb/s) transmission with 0.8 bit/Hz spectral efficiency over 32×100 km of fiber using CSRZ-DPSK format," in Opt. Fiber Commun. Conf., 2003, postdeadline paper PD19.
[3] C. Rasmussen et al., "DWDM 40G transmission over trans-Pacific distance (10,000 km) using CSRZ-DPSK, enhanced FEC and all-Raman amplified 100 km Ultra-WaveTM fiber spans," in Opt. Fiber Commun. Conf., 2003, postdeadline paper PD18.
[4] J.-X. Cai et al., "RZ-DPSK field trial over 13,100 km of installed non slope-matched submarine fibers," in Opt. Fiber Commun. Conf., 2004, postdeadline paper PDP34.
[5] C. Xu, X. Liu, and X. Wei, “Differential phase-shift keying for high spectral efficiency optical transmissions,” IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 2, pp. 281–293, 2004.
[6] I. Shaked, H. Takara, K. Mori, S. Kawanishi, and Y. Yamabayashi, “Influence of inter-bit four-wave mixing in optical TDM transmission,” Electron. Lett., vol. 34, no. 16, pp. 1600–1601, 1998.
[7] R.-J. Essiambre, B. Mikkelsen, and G. Raybon, “Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems,” Electron. Lett., vol. 35, no. 19, pp. 1576–1578, 1999.
[8] A. Mecozzi, C. B. Clausen, and M. Shtaif, “Analysis of interchannel nonlinear effects in highly dispersed optical pulse transmission,” IEEE Photon. Technol. Lett., vol. 12, no. 4, pp. 292–294, 2000.
[9] A. Mecozzi, C. B. Clausen, M. Shtaif, S.-G. Park, and A. H. Gnauck, “Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses,” IEEE Photon. Technol. Lett., vol. 13, no. 5, pp. 445–447, 2001.
[10] M. J. Ablowitz and T. Hirooka, “Resonant intrachannel pulse interaction and should compare with $\langle 0 \rangle$ and $\langle 6 \rangle$.

Fig. 3. The SNR penalty versus mean nonlinear phase shift of $\langle \Phi_{NL} \rangle$. The curves are from empirical formula.