Hydroxychloroquine is effective, and consistently so when provided early, for COVID-19: a systematic review

C. Prodromos1 and T. Rumschlag2
1) Illinois Sports Medicine and Orthopaedic Center and 2) Foundation for Orthopaedics and Regenerative Medicine, Glenview, IL, USA

Abstract

Hydroxychloroquine (HCQ) has shown efficacy against coronavirus disease 2019 (COVID-19) in some but not all studies. We hypothesized that a systematic review would show HCQ to be effective against COVID-19, more effective when provided earlier, not associated with worsening disease and safe. We searched PubMed, Cochrane, Embase, Google Scholar and Google for all reports on HCQ as a treatment for COVID-19 patients. This included preprints and preliminary reports on larger COVID-19 studies. We examined the studies for efficacy, time of administration and safety. HCQ was found to be consistently effective against COVID-19 when provided early in the outpatient setting. It was also found to be overall effective in inpatient studies. No unbiased study found worse outcomes with HCQ use. No mortality or serious safety adverse events were found. HCQ is consistently effective against COVID-19 when provided early in the outpatient setting, it is overall effective against COVID-19, it has not produced worsening of disease and it is safe.

Keywords: Azithromycin, COVID-19, hydroxychloroquine, outpatient, SARS-CoV-2

Original Submission: 9 September 2020; Revised Submission: 28 September 2020; Accepted: 29 September 2020

Article published online: 5 October 2020

Introduction

There is a need for effective treatment for coronavirus disease 2019 (COVID-19) infection. Hydroxychloroquine (HCQ), with or without azithromycin (AZ), has been found to have efficacy as a treatment for COVID-19 in some studies [1,2], while other studies have not shown efficacy [3,4]. While we do not prescribe HCQ to typical patients, we do treat various forms of inflammatory arthritis in patients prescribed HCQ by outside providers. Some physicians have stated that HCQ has greater efficacy if provided earlier in the course of the disease [5,6]. Several studies showing negative efficacy have been withdrawn as a result of methodologic problems [7].

We hypothesized that HCQ clinical studies would show the agent to have significant efficacy more often than not for COVID-19, and that efficacy would be greater if HCQ was provided earlier in the disease course. We also hypothesized that some studies that failed to show efficacy would be biased against positive efficacy and that no unbiased studies would show worsening. Finally, we hypothesized that HCQ would be found to be safe.

Methods

We searched PubMed, Cochrane, Embase, Google Scholar and Google for all reports on HCQ as a treatment for COVID-19 patients. This included preprints and preliminary reports on larger COVID-19 studies. We included reports with HCQ alone as well as in combination with AZ and/or zinc. We excluded reports that studied chloroquine. While chloroquine has shown efficacy, it has a worse adverse effects profile than HCQ. For this reason, and because HCQ is inexpensive and widely available, we believe that future treatment will and should focus on HCQ. It was thus our priority to examine HCQ as fully as possible. We excluded reports that only examined HCQ as a means to decrease transmission of COVID-19.
coronavirus because our focus was on demonstrated clinical efficacy. Reports were analysed for efficacy, type of study, time of intervention with HCQ during the COVID-19 disease course and adverse events. Our final search was performed 3 August 2020.

Results

A total of 43 reports were found that examined HCQ treatment for COVID-19 patients. Twenty-five reported positive clinical efficacy from providing HCQ to for COVID-19 patients; 15 showed no improvement with HCQ and three showed worse clinical results in patients who received HCQ.

Eleven studies in our review examined HCQ efficacy in patients in the outpatient or ‘day hospital’ setting; all reported positive results [8]. However, in two of the studies [9,10], the positive results, while clinically important (decreased risk of hospitalization and improvement in symptom resolution), were not statistically significant.

We found 32 reports of HCQ treatment in hospitalized patients with COVID-19. Of these 32 reports of hospitalized patients, 14 reported good results, 15 reported no improvement and three reported worse results. Fourteen studies reported the time during treatment during which HCQ was initiated. In nine studies, HCQ was administered within 48 hours of admission. In six [11–16] of these nine, improvement was noted. In three, no improvement was noted [3,17,18]. In five studies, HCQ was administered more than 48 hours after admission or in the intensive care unit (ICU). In two [19,20] of these five improvement was noted. In three it was not [21–23]. In 18 studies, the time of administration was not specified.

Seven of the 43 total studies [12,17,20,24–27] were chartless retrospective studies that used only billing codes. These studies all allowed initiation of HCQ treatment at times that differed with initiation of the control treatment, with HCQ presumably being chosen at the physician’s discretion in worsening patients who were more in need of treatment. All such studies were thought to exhibit selection bias against a positive result. Four additional studies [9,10,15,16] had positive trends towards efficacy that did not reach statistical significance. In one study [22], 8% of the treatment group was untreated but not excluded from the treatment group calculations. In addition, the median level of treatment was only 67% of the specified treatment. Nineteen of the 43 reports were preprints or otherwise not peer reviewed. Twenty-four of the articles were from peer-reviewed journals. Of the 11 outpatient reports, all of which reported positive results, seven were peer reviewed and four were not. Of the 32 hospitalization reports, 17 were peer reviewed and 15 were not.

Overall, 12 (50%) of the 24 peer-reviewed reports and 11 (58%) of 19 non–peer reviewed reports showed positive efficacy.

Some studies provided HCQ alone; some included the addition of AZ and/or zinc. No difference in outcome was observed with the addition of AZ (Table 1), although all of the outpatient studies that provided AZ had positive results. There were no deaths reported as a result of HCQ, AZ or zinc treatment. Increased QTc was seen but not torsades de pointes (TDP). Adverse events that were thought to be likely due to HCQ treatment were not life threatening. No permanent sequelae were described. Adverse events are listed in Tables 2–4. Table 5 provides a comparison of study treatments, settings and results.

Discussion

This review found four important results. The first is that HCQ appears to be consistently effective for the treatment of COVID-19 when used responsibly. The second is that overall, in most studies, HCQ exhibits efficacy against COVID-19. The third is that there are no unbiased studies showing a negative effect of HCQ treatment of COVID-19. The fourth is that HCQ appears to be safe for the treatment of COVID-19 when used responsibly.

Timing of HCQ provision

It was striking that 100% of the 11 studies which provided HCQ early in the disease on an outpatient basis showed positive results. In two of the studies [9,10], the benefit was only a trend. However, the effects were clinically important. In the study of Mitjà et al. [9], resolution of symptoms was decreased from 12 to 10 days; in that of Skipper et al. [10], the rate of hospitalization was decreased by 60%. It is likely that if the

Table 1. Study results by time of treatment initiation

Time of treatment initiation	No. of studies showing clinical improvement	No. showing no improvement	% improved vs. total studies
Outpatient ≤24 hours after hospitalization	27	16	63
Within 48 hours after hospitalization	24	3	67
After 48 hours of hospitalization; or in ICU	1	0	0
Nonspecified inpatient studies	20	10	44
Total	81	0	4

ICU, intensive care unit.

© 2020 The Authors. Published by Elsevier Ltd. New Microbes and New Infections, Volume 38 Number C, 2020

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Study	No. of patients and treatments	Total HCQ dose	Peer reviewed	Study type	Case severity	Treatment initiation	AEs	Results	
Ahmad 2020 [28]	54 total patients; all receiving HCQ ± AZ	Average 3700 mg	No	Retrospective case series	High-risk long-term care facility patients	NA	I seisure; HCQ discontinued, with no report regarding HCQ was likely cause	44% reduction in hospitalization in study patients compared to similar patient population	
Arshad 2020 [12]	2541 total patients; 783 receiving HCQ; 1202 receiving AZ; 1202; usual care Na = 409	2800 mg	Yes	Retrospective observational study (chartless)	Hospitalized patients	Average 1 day after hospitalization, with 91% receiving treatment within 48 hours	8.1% mortality for entire cohort, with 13.5% mortality for HCQ alone vs. 20.1% HCQ + AZ vs. 22.4% just AZ vs. 26% mortality for usual care		
Bernaola 2020 [30]	1645 total patients, 1498 receiving HCQ ± AZ	400 mg/d for 5–14 days	No	‘Comprehensive report’ (retrospective observational study)	Hospitalized patients, 15 critically ill, 85 non–critically ill	NA	None reported	HCQ associated with better clinical outcomes	
Carlucci 2020 [31]	932 total patients, 411 receiving HCQ + AZ + Zn, 521 receiving HCQ ± AZ	2400 mg	No	Retrospective observational study	Hospitalized patients	NA	None reported	Only prednisone or HCQ associated with decrease in mortality after propensity score matching; only HCQ was associated with improvement in mortality before propensity matching	
Chen 2020 [11]	62 total patients, 31 receiving HCQ, 31 receiving usual care	2000 mg	No	Prospective randomized clinical trial	Hospitalized patients, severe and critical infections excluded	1 day after hospitalization	1 rash, 1 headache; no severe AEs reported	Time to clinical recovery, body temperature recovery and cough remission time was significantly shorter in HCQ group; 4 patients whose disease progressed to severe illness were all in usual care group	
Davido 2020 [13]	132 total patients, 52 receiving HCQ + AZ	Average 5800 mg	Yes	Retrospective observational study	Hospitalized patients	Average 0.7 days after hospitalization	1 prolonged QT interval on ECG	Reduction in unfavourable outcome in patients receiving HCQ + AZ, especially patients with elevated lymphocyte or CRP levels	
de Novales 2020 [32]	164 total patients, 123 receiving HCQ, 34 receiving usual care	Average total 3600 mg	No	Retrospective cohort study	Hospitalized patients, 83 mild cases, 38 moderate, 35 severe	NA	None reported	Addition of Zn to regimen was associated with decreased mortality, hospice or ventilator rates; effect driven by noncritical patients	
Esper 2020 [8]	636 total patients, 412 receiving HCQ + AZ, 224 receiving usual care	3200 mg	No	Prospective observational study	Outpatient telemedicine visits	Average 5.2 days since symptom onset	2 serious: maculopapular rash, severe pruritus	Hospitalization rate of 1.9% in treatment group and 5.4% in control group; lower hospitalization rates (1.17% vs. 3.2%) for patients who began treatment before day 7 of symptoms vs. after day 7 of symptoms 70% of HCQ patients had virus clearance after 6 days via nasal swab PCR vs. 12.5% in control group	
Gautret 1 2020 [13]	36 total patients, 20 receiving HCQ, 16 receiving usual care	6000 mg	Yes	Prospective open-label nonrandomized clinical trial	‘Day hospital’ patients; included 8 asymptomatic cases	NA	None reported	65 had favourable outcome, 15% required oxygen therapy, 1 ICU admission, 1 death; positive PCR test results for 83% on day 7, 93% on day 8, 100% by day 12	
Gautret 2 2020 [31]	80 total patients, all receiving HCQ	6000 mg	Yes	Prospective uncontrolled observational study	‘Day hospital’ patients with mild infections	NA	None reported	2 nausea/vomiting, 4 diarrhoea, 1 blurred vision after 5 days treatment none required treatment discontinuation	65 had favourable outcome, 15% required oxygen therapy, 1 ICU admission, 1 death; positive PCR test results for 83% on day 7, 93% on day 8, 100% by day 12

Continued
Study	No. of patients and treatments	Total HCQ dose	Peer reviewed	Study type	Case severity	Treatment initiation	AEs	Results
Guerin 2020 [2]	88 total patients, 34 receiving usual care, 34 receiving AZ, 20 receiving HCQ + AZ	Average total 5100 mg	Yes	Retrospective cohort analysis	Outpatients with mild/moderate COVID-19	Day after symptoms for 36 patients, within 15 days for the rest	No serious AEs; 5 minor events including urticaria, headache, nausea, vomiting	AZ alone and HCQ + AZ both associated with significant improvement in recovery time compared to usual care (P<.19 and 25.8 days respectively) Slower virus clearance in HCQ group compared to LPV/r group but equivalent time to symptom remission
Kim, JW 2020 [35]	65 total patients, 21 receiving LPV/r, 44 receiving HCQ; 26.5% of HCQ patients also receiving AZ	Minimum 2800 mg	Yes	Retrospective cohort study	Hospitalized patients	Average 7 days before initiation of therapy	1 respiratory failure, 1 shock in HCQ group (likely from COVID-19, not treatment)	No serious AEs reported; 20 abdominal/GI
Kim, MS 2020 [36]	97 total patients, 22 receiving HCQ ± AZ, 35 receiving LPV/r, 40 receiving usual care	200 mg twice daily, duration not reported	No	Retrospective cohort study	Moderate hospitalized patients	NA	No serious AEs reported; with improved virus clearance, shorter hospital stays and quicker resolution of symptoms	
Lagier 2020 [37]	3737 total patients, 3119 receiving HCQ + AZ, 618 receiving usual care	6000 mg	Yes	Retrospective observational study	Hospitalized patients and patients seen at ‘day-care hospital’	1 day after testing positive	12 QT prolongation on ECG requiring discontinuation of HCQ; 3 QTc > 500 ms; no torsades de pointes or sudden deaths	HCQ + AZ associated with decreased risks of ICU transfer, extended hospitalization and risk of death
Million 2020 [6]	1061 patients, all receiving HCQ + AZ	6000 mg	Yes	Retrospective observational study	Hospitalized patients and patients seen at ‘day-care hospital’	Within 2 days after testing positive	25 mild and 6 serious AEs reported	4.6% poor clinical outcome (death, transfer to ICU, hospitalization for >10 days); 20 of 21 repeat nasal swabs were negative by day 15 after treatment
Monforte 2020 [1]	539 total patients, 197 receiving HCQ, 94 receiving HCQ + AZ, 92 receiving usual care	NA	Yes	Retrospective study, not randomized	Hospitalized patients	NA	None reported	
Sibidon 2020 [38]	4642 total patients, 6233 receiving HCQ, 257 receiving HCQ + AZ	NA	No	Retrospective cohort study (chartless)	Hospitalized patients	NA	None reported	
Scholz 2020 [39]	141 total patients, all receiving HCQ, AZ, Zn	2000 mg	No	Retrospective case series	Outpatient cases	Average 4.8 days after symptom onset	No serious AEs reported	No difference in mortality rate found in HCQ vs. usual care after regression analysis; discharge rates significantly higher in HCQ group
Xue 2020 [14]	30 total patients, 15 receiving HCQ within 7 days of hospitalization, 15 after 7 days	Minimum 2000 mg	Yes	Retrospective cohort study	Hospitalized patients	Either before 7 days or after 7 days of hospitalization	None reported	Earlier treatment with HCQ resulted in faster recovery than later; and lower rates of mechanical ventilation and ICU transfer
Yu 2020 [20]	548 total critically ill (ventilated, septic shock, ICU/organ failure) COVID-19 patients, 48 patients receiving HCQ, 520 usual care	Average total 1400 mg	Yes	Retrospective cohort study	Hospitalized patients, all critically ill (including ICU patients, ventilated or in septic shock)	NA	None reported	18.8% death rate in HCQ group vs. 45.8% in usual care group; Cox regression analysis showed significantly decreased mortality risk in HCQ group
TABLE 2. Continued

Study	No. of patients and treatments	Total HCQ dose	Peer reviewed	Study type	Case severity	Treatment initiation	AEs	Results
Zelenko 2020	1450 total patients, all receiving HCQ, AZ, Zn	2000 mg	No	Retrospective report	Outpatient treatment	NA	Nausea or diarrhoea in 10%; no serious AEs	Improvement in albumin, troponin I, BNP; reduction in mortality rates in COVID-19 patients with cardiac injury treated with HCQ No comparison to control group; 2 deaths, 6 hospitalizations, 4 intubations
Lopez 2020	29 total patients, all receiving HCQ + AZ, 17 patients with on-target HCQ levels, 12 patients with HCQ below target levels	4400 mg	Yes	Retrospective cohort study	ICU patients	NA	2 QTC prolongation; 1 altered mental status; 0 torsades de pointes	After regression analysis, no significant improvement in mortality rates, hospitalization duration or time to clinical improvement No significant difference in 15-day mortality rate or discharge from ICU for patients reaching HCQ level goals and not
Mahevas 2020	29 total patients (all receiving HCQ + AZ), 17 patients with on-target HCQ levels, 12 patients with	600 mg/d, duration not provided	No	Retrospective cohort study	Hospitalized patients requiring oxygen therapy	NA	8 patients discontinued HCQ due to ECG changes; 1 QTC > 500 ms	No statistically significant difference in poor clinical outcomes; 20.5% of patients who received HCQ transferred to Continued

AZ, azithromycin; BNP, B-type natriuretic peptide; AE, adverse event; COVID-19, coronavirus disease 2019; CRP, C-reactive protein; ECG, electrocardiogram; HCQ, hydroxychloroquine; ICU, intensive care unit; IL-6, interleukin 6; LPV/r, lopinavir/ritonavir; NA, not applicable; Zn, zinc.

TABLE 3. Studies showing no improvement with HCQ used to treat COVID-19

Study	No. of patients and treatments	Total HCQ dose	Peer reviewed	Study type	Case severity	Treatment initiation	AEs	Results
An 2020 [21]	226 total patients, 31 receiving HCQ, ± AZ at physician discretion	Average 3400 mg	No	Retrospective nonrandomized cohort study	Hospitalized patients; targeting 'mild to moderate cases'	Average 6.7 days after diagnosis	No SAEs reported	After propensity score matching and Cox regression, analysis found that HCQ was not associated with better clinical outcomes like virus clearance, length of hospital stay or duration of symptoms No significant difference in 15-day outcome between HCQ, HCQ + AZ, usual care
Cavalcanti 2020	667 total patients, 217 receiving HCQ + AZ, 221 receiving HCQ, 229 receiving standard care	5600 mg twice daily	Yes	Prospective randomized controlled trial	Hospitalized with mild/moderate cases	NA (provides time to group assignment, not time to treatment initiation)	30 reports of increased QTc, 6 reports of arrhythmia	No significant difference between HCQ receipt and intubation or death, ± AZ also no change No difference between groups in mortality rates after adjusting for comorbidities
Geleris 2020	1446 total patients, 70 intubated initially, 811 receiving HCQ.	Average 3200 mg	Yes	Retrospective cohort (chartless)	Hospitalized patients	Within 24 hours after hospitalization	None reported	No significant difference between HCQ and standard care groups; 30-day mortality for standard care was 0.2, vs. any HCQ 0.2, vs. HCQ + AZ 0.18
Giacomelli 2020	172 patients, 43 receiving HCQ + LPV/r within 5 days of symptoms and 129 after 5 days of symptoms	2000–8000 mg (200 mg twice daily for 5–20 days)	No	Retrospective nonrandomized cohort study	Hospitalized patients	Either before or after 5 days of symptoms	Increase in hepatic enzymes, nausea and diarrhoea reported, attributed to LPV/r	No significant difference between HCQ and standard care group; 30-day mortality for standard care was 0.2, vs. any HCQ 0.2, vs. HCQ + AZ 0.18
Ip 2020 [24]	2512 total patients, 1941 receiving HCQ, 59% of HCQ patients receiving AZ	2600 mg	No	Retrospective cohort (chartless)	Hospitalized patients not discharged home within 24 hours	NA	Prolonged QTC or arrhythmia reported in 134 patients, cardiomyopathy in 20 patients; does not comment on whether these were treatment-related AEs	No significant difference between HCQ and standard care group; 30-day mortality for standard care was 0.2, vs. any HCQ 0.2, vs. HCQ + AZ 0.18
Kalligeros 2020	108 total patients, 36 receiving HCQ ± AZ, 72 receiving usual care	NA; 5 days’ treatment with HCQ but dosage not provided	Yes	Retrospective cohort study	Hospitalized patients	NA	2 QTC prolongation; 1 altered mental status; 0 torsades de pointes	After regression analysis, no significant improvement in mortality rates, hospitalization duration or time to clinical improvement No significant difference in 15-day mortality rate or discharge from ICU for patients reaching HCQ level goals and not
Lopez 2020	29 total patients, all receiving HCQ + AZ, 17 patients with on-target HCQ levels, 12 patients with HCQ below target levels	4400 mg	Yes	Retrospective cohort study	ICU patients	NA	7 abnormal ECG, all discontinued treatment	No statistically significant difference in poor clinical outcomes; 20.5% of patients who received HCQ transferred to Continued

© 2020 The Authors. Published by Elsevier Ltd. NMNI, 38, 100776
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).
Study	No. of patients and treatments	Total HCQ dose	Peer reviewed	Study type	Case severity	Treatment initiation	AEs	Results
Mallac 2020 [3]	34 total patients, 21 receiving HCQ	4800 mg	No	Retrospective observational study	Hospitalized patients, with ICU and ventilator patients excluded	Within 2 days after hospitalization; median administration of HCQ at 0 days from hospitalization	None reported	ICU or died within 7 days. 22.1% for control. 2.8% of patients in HCQ group died within 7 days vs. 4.6% control; ARDS in 27.3% of HCQ group vs. 24.1% control. Hospital stay longer for HCQ group vs. standard care but NS. Main outcome: time to negativity for HCQ patients 17 days vs. 10 days for non-HCQ patients. Also showed no improvement in inflammatory markers/lymphopenia in HCQ group
Mita 2020 [9]	353 total patients, 169 receiving HCQ, 184 receiving usual care	3200 mg	Yes	Prospective randomized controlled trial	Outpatients	Average 3 days from symptom onset to treatment initiation	No treatment-related SAEs; multiple reports of nausea, vomiting, headache 1 QT prolongation; HCQ discontinued	No difference in virus clearance, no improvement in risk of hospitalization compared to control group. Nasopharyngeal swabs still positive in 8/10 after treatment 5–6 days after treatment. Clinical results: 1 death, 2 ICU admissions. No data yet released. Trial arm stopped for ‘lack of efficacy’
Molina 2020 [43]	11 total patients, all receiving HCQ + AZ	6000 mg	Yes	Prospective noncontrolled trial	Hospitalized patients with moderate to severe infections	NA	None reported	HCQ below target levels
ORCHID trial [61]	470 total patients	2400 mg	No	Prospective randomized controlled blinded study	Hospitalized patients	NA	None reported	
Paccoud 2020 [15]	89 total patients, 38 patients receiving HCQ, 46 receiving with standard care	6000 mg	Yes	Retrospective cohort study	Hospitalized patients	Within 2 days after hospitalization	6 AEs reported: 2 QTc prolongations, 1 each cytopenia, parathesia, headache diarrhoea	No significant difference in risk for long hospital admission, HCQ admission or death between HCQ group and standard of care group. Mortality 23.5% for HCQ + AZ, 18.9% HCQ alone, 10.9% for AZ alone, 17.8% for neither drug. Differences between groups NS
Rosenberg 2020 [18]	1438 total patients, 735 receiving HCQ + AZ, 271 receiving HCQ alone, 211 receiving AZ alone, 221 receiving usual care	NA	Yes	Retrospective cohort study	Hospitalized patients	Median 1 day after admission for HCQ, median 0 days after admission for AZ	194 arrhythmias in patients receiving HCQ; 120 QT prolongations. No effort to determine if AEs were treatment related. None reported	HCQ at 0 days after admission for HCQ; median 0 days after admission for AZ. Compared to control. Differences between groups NS. Differences between control and HCQ group. No statistically significant improvement of symptom severity between HCQ and placebo group; no statistically significant difference in hospitalization/mortality between the two groups. Only results on ‘negative conversion’ presented: 2 negative results 24 hours apart. Conversion rate in 28-day experimental group 85.4%, control group 81.3% (NS)
Singh 2020 [25]	3372 total patients, 1125 receiving HCQ, 799 HCQ + AZ, 2247 receiving usual care	NA	No	Retrospective cohort study (chartless)	Hospitalized patients	NA	After propensity score matching, no significant difference in mortality rates between patients treated with HCQ and usual care	
Skipper 2020 [16]	423 total patients, 212 receiving HCQ, 211 receiving placebo	3800 mg	Yes	Prospective randomized controlled trial	Outpatients	Within 4 days of symptoms	Multiple reports of abdominal pain, nausea, diarrhoea; no SAEs related to treatment reported.	Hospitalized patients, 148 patients with mild to moderate infections, 2 with severe infections
Tang 2020 [14]	150 total patients, 75 receiving HCQ, 75 receiving usual care	12 400 or 18 000 mg (average 15 200)	Yes	Prospective open-label randomized, controlled trial	Hospitalized patients	NA	2 serious AEs reported: 1 report of blurred vision, 1 report of thirst. Both transient and self limited	HCQ below target levels

AE, adverse event; ARDS, acute respiratory distress syndrome; AZ, azithromycin; COVID-19, coronavirus disease 2019; ECG, electrocardiogram; HCQ, hydroxychloroquine; ICU, intensive care unit; LPV/r, lopinavir/ritonavir; NS, not statistically significant; SAE, severe adverse event.
Twenty-three (53%) of the 43 studies showed a definite positive effect of HCQ vs. COVID-19. However, if negatively biased studies are removed and the clinically important positive trends from underpowered studies are moved to the positive efficacy group, then the ratio changes to 28 positive vs. nine with no effect, resulting in a 75% ratio of positive to nonpositive HCQ studies. Interestingly, none of the no-effect studies showed a clear trend towards worsening.

Overall efficacy

Twenty-three (53%) of the 43 studies showed a definite positive effect of HCQ vs. COVID-19. However, if negatively biased studies are removed and the clinically important positive trends from underpowered studies are moved to the positive efficacy group, then the ratio changes to 28 positive vs. nine with no effect, resulting in a 75% ratio of positive to nonpositive HCQ studies. Interestingly, none of the no-effect studies showed a clear trend towards worsening.

Randomized controlled trials

Of the seven randomized controlled trials (RCTs), two [9,10] were in the outpatient early treated group. As described above, both these studies had clinically important trends towards positive results, although results were underpowered and did not reach statistical significance. The other five RCTs were performed in hospitalized patients later in the disease course, where the efficacy of HCQ seems to be less. There was one positive [11], three no-effect [4,43,44] and one negative effect [22] studies. The negative effect study, however, was biased, as described below, such that any negative or no-effect result would not be valid. Thus, both RCTs with early treatment showed positive results; one of three hospitalized patients had a positive result, consistent with the general finding of better results with earlier HCQ provision.

Negative effect studies

Three studies had data that seemed to show worse outcomes with HCQ. However, all had significant biases. Further, all were reported in hospitalized patients, when results with HCQ are less good. Two [3,16] of the three studies were well-done studies that were nonetheless constrained by being chartless hospitalization studies that only used billing codes at particular time points to evaluate patients but had no information regarding events between these time points within their hospital course which led to initiation of treatment. Both studies were retrospective. Patients were not randomized to treatment with HCQ vs. other care. Rather patients apparently

TABLE 4. Studies that showed worse results with HCQ used to treat COVID-19

Study	No. of patients and treatments	Total HCQ dose	Peer reviewed	Study type	Case severity	Treatment initiation	AEs	Results
Horby 2020 [22]	4686 total patients, 1561 receiving HCQ, 3155 receiving usual care, 17% receiving HCQ + AZ	8800 mg	No	Prospective randomized controlled trial	Hospitalized patients	Average 3 days after hospitalization	1	torsades de pointes (patient recovered without need for intervention)
Magagnoli 2020 [26]	807 total patients, 198 receiving HCQ, 214 received HCQ + AZ	Median 2000 mg	Yes	Retrospective cohort study (chartless)	Hospitalized patients	NA	None reported	
Rivera 2020 [27]	2186 total patients, 538 receiving HCQ ± AZ, 1321 receiving usual care, 327 receiving other medications	NA	Yes	Retrospective observational study (chartless)	Hospitalized patients	NA	None reported	

AZ, azithromycin; COVID-19, coronavirus disease 2019; HCQ, hydroxychloroquine; NA, not applicable.
received HCQ at the discretion of the physician. The time of administration of HCQ to the patients who received it was not specified during hospitalization. This introduces selection bias in both studies regarding treatment with HCQ for sicker patients who were faring worse after admission, and who presumably would be more likely to have treatment vs. no treatment selected by their physician. Attempting to normalize comorbidities did not correct this bias because the clinical progress of COVID-19 infection is not well predicted by preexisting comorbidities. This selection bias means that patients whose condition worsened after admission, and who are thereby more likely to have worse outcomes, would be overrepresented in the HCQ treatment group. For this reason, negative results from the treatment arm of these studies are not valid because outcomes are moved negatively. A positive effect, however, would have validity because it could only occur despite the negative selection bias, not because of it.

The third study showing worse results with HCQ was a highly powered non–peer reviewed study whose primary outcome of 28-day mortality actually showed no difference between the HCQ-treated group and the usual treatment group. Two of the secondary results did just barely reach significance regarding the negative results [22]. However, the reporting of results was flawed: 8% of the patients in the treatment group did not receive HCQ at all, and the median number of days of treatment for all treated patients was only 6 out of a prescribed 9. These facts mean that less than half of patients received the full treatment regimen, or even two thirds of the full treatment regimen, with one in 12 receiving no treatment at all. However, these outcomes in untreated and undertreated patients were grouped with the fully treated patient outcomes. If HCQ has any positive effect, which we believe is well established, then this undertreatment would invalidate their borderline negative secondary results. In addition, treatment was initiated more than 48 hours after admission—a point that our aggregate data has shown to have a high incidence of no-effect results. The study was not blinded, introducing a potential undertreatment bias towards patients who were known by the staff to be treated with HCQ. This study most reasonably is actually a no-effects study, which is common in already hospitalized patients (such as these) treated more than 48 hours after admission.

Adverse events

Some clinicians fear that the increased QTc observed in the electrocardiogram results of some patients treated with HCQ or AZ indicates a predisposition to TDP and then death from ventricular fibrillation. We found no such deaths; nor did we find death from any cause related to HCQ treatment. Indeed, we found only one case of TDP at all, which resolved spontaneously without treatment and without sequelae. This is consistent with our prior study showing an absence of TDP mortality with HCQ treatment [45]. All of the adverse events which seemed attributable to HCQ treatment in the 43 studies were side effects known to occur with HCQ. These included nausea, vomiting, diarrhoea, stomach pain, headache, rash, dizziness, itching and blurred vision. In all cases, there was no indication of persistence of symptoms after discontinuing HCQ therapy. HCQ has been used with good safety for more than 50 years; the relatively minor adverse events seen in these studies is consistent with this good safety profile.

Strengths and weaknesses

A strength of this study is the large number of cohorts. A further strength is the critical methodologic study analysis, which to our knowledge has not heretofore been attempted for

TABLE 5. Comparison of treatments, settings and results

Characteristic	Positive results	No change	Negative results
Outpatient	Treatments:		
	HCQ: 2	HCQ: 2	HCQ: 2
	HCQ + AZ: 7	HCQ + AZ:	HCQ + AZ:
	HCQ ± AZ:	HCQ ± AZ:	HCQ ± AZ:
	HCQ + antivirals:	HCQ + antivirals:	HCQ + antivirals:
Hospitalized, treated within 48 hours	Treatments:		
	HCQ: 2	HCQ: 3	HCQ: 2
	HCQ + AZ: 1	HCQ + AZ:	HCQ + AZ:
	HCQ ± AZ: 1	HCQ ± AZ:	HCQ ± AZ:
	HCQ + antivirals:	HCQ + antivirals:	HCQ + antivirals:
Hospitalized, treated after 48 hours; or in ICU	Treatments:		
	HCQ: 2	HCQ:	HCQ: 2
	HCQ + AZ:	HCQ + AZ:	HCQ + AZ:
	HCQ ± AZ:	HCQ ± AZ:	HCQ ± AZ:
	HCQ + antivirals:	HCQ + antivirals:	HCQ + antivirals:
Administration time not reported in relation to hospitalization	Treatments:		
	HCQ: 2	HCQ:	HCQ: 2
	HCQ + AZ:	HCQ + AZ:	HCQ + AZ:
	HCQ ± AZ:	HCQ ± AZ:	HCQ ± AZ:
	HCQ + antivirals:	HCQ + antivirals:	HCQ + antivirals:

Values recorded in this table are the number of studies that achieved the designated result. AZ, azithromycin; HCQ, hydroxychloroquine; ICU, intensive care unit.
COVID-19. One weakness is the heterogeneity of study designs, which made it hard to compare results across studies. A perceived weakness of the study could be that our review includes reports made outside the peer-reviewed literature. Several studies, reporting both improvement and no efficacy with the provision of HCQ, included in our review are either preprints or preliminary results of larger trials. Because of the unprecedented and time-sensitive nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic, the scientific community has shared data and studies on a level unseen before this emergency. We believe that these reports hold valuable information and decided to include them, regardless of their publication venue. In addition, we found that both the peer-reviewed and non-peer-reviewed reports showed a similar breakdown between studies showing efficacy vs. not, so bias was therefore not introduced.

Significance

Our findings have substantial societal global importance because there have been numerous edicts either preventing HCQ provision for the treatment of COVID-19 or limiting it to the inpatient setting, which we believe have unintentionally resulted in many unnecessary deaths. Our findings showing efficacy and safety of HCQ against COVID-19 indicate that HCQ should be freely available to patients and physicians who choose to use it. It should especially be freely available to be provided on an outpatient basis before hospitalization, where it appears to be more effective and where early fears of fatal heart arrhythmias have been shown to be unfounded [45]. This is particularly important because of the other drugs to have demonstrated efficacy, remdesivir has shown no significant benefit in a recent study [46]. Remdesivir is also expensive and not widely available. Dexamethasone has only been shown to be effective in critically ill hospitalized patients [47]. Convalescent plasma has shown benefit [48], but even this is not well validated, and plasma is not available in large numbers of doses. Thus, HCQ, with proven efficacy and safety, a cost of 37 cents per pill and thus a total treatment cost of under $20 [49], vs. $3100 for remdesivir [50], as well as wide supply-chain availability, would appear to be the best COVID-19 treatment option available, and it needs to be widely promoted as such. Unfortunately, the controversies surrounding HCQ have resulted in physicians being afraid to prescribe it for reasons which have nothing to do with medicine and in patients being afraid to take it as a result of spurious reports of danger or fears that it is not effective. We hope that our study findings will disabuse the medical community of these misapprehensions about efficacy and validate that it is both efficacious and safe—and needs to be freely prescribable.

We do not believe that randomized controlled studies are necessary before HCQ is authorized for general use because the efficacy seen in studies already performed indicates that control patients in such studies might die unnecessarily, and because the time delay to perform any such study would cause yet more deaths by preventing HCQ use when it is most needed: immediately! Our study has shown that good evidence of efficacy exists and that there is no safety, cost or supply reason to not treat now. Unnecessary death from delayed treatment is too high a price to pay for greater certainty of knowledge. Many may have already died unnecessarily as a result of inaccurate HCQ information. It is imperative that we do not further add to the COVID-19 death toll by refusing to prescribe HCQ.

Conclusions

HCQ has been shown to have consistent clinical efficacy for COVID-19 when it is provided early in the outpatient setting; in general, it appears to work better the earlier it is provided. Overall, HCQ is effective against COVID-19. There is no credible evidence that HCQ results in worsening of COVID-19. HCQ has also been shown to be safe for the treatment of COVID-19 when responsibly used.

Conflict of interest

None declared.

References

[1] Monforte AdA, Tavelli A, Bai F, Marchetti G, Cozzi-Lepri A. Effectiveness of hydroxychloroquine in COVID-19 disease: a done and dusted situation? Int J Infect Dis 2020.

[2] Guérin V, Lévy P, Thomas JL, Lardenois T, Lacrosse P, Sarrazin E, et al. Azithromycin and hydroxychloroquine accelerate recovery of outpatients with mild/moderate COVID-19. Asian J Med Health 2020;18:45–55.

[3] Mallat J, Hamed F, Balkis M, Mohamed MA, Moosy M, Malik A, Nusair A, et al. Hydroxychloroquine is associated with slower viral clearance in clinical COVID-19 patients with mild to moderate disease: a retrospective study. medRxiv 2020.

[4] Cavalcañti AB, Zampieri FG, Azevedo LC, Rosa RG, Avezum A, Veiga VC, et al. Hydroxychloroquine alone or in combination with azithromycin to prevent major clinical events in hospitalised patients with coronavirus infection (COVID-19): rationale and design of a randomised, controlled clinical trial. medRxiv 2020.

[5] Zelenko V. Open letter describing Covid-19 treatment protocol. 23 March 2020. Available at: http://www.nunesfarma.com.br/download.php?id=TlRBPQ==.

© 2020 The Authors. Published by Elsevier Ltd. NMNI, 38, 100776
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0).
Lopez A, Duclos G, Pastene B, Bezulier K, Guilhamou R, Solas C, et al. Effects of hydroxychloroquine on Covid-19 in intensive care unit patients: preliminary results. Int J Antimicrob Agents 2020.

[6] Million M, Lagier J, Gautret P, Colson P, Fournier P, Amrane S, et al. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: a retrospective analysis of 1061 cases in Marseille, France. Travel Med Infect Dis 2020.

[7] Gumbien J, Fox M. Two coronavirus studies retracted after questions emerge about data. CNN; 4 June 2020. Available at: https://www.cnn.com/2020/06/04/health/retraction-coronavirus-studies-lancet-nejm/index.html.

[8] Esper RB, da Silva RS, Oikawa F, Castro M, Razuk-Filho A, Junior P. Empirical treatment with hydroxychloroquine and azithromycin for suspected cases of COVID-19 followed-up by telemedicine. São Paulo, Brazil: Prevent Senior Institute; 2020. Available at: https://ppgbertie.files.wordpress.com/2020/04/04.15-journal-manuscript-final.pdf.

[9] Pitijj O, Corbacho-Manne M, Ubals M, Tebe C, Peñafiel J, Tobias A, et al. Hydroxychloroquine for early treatment of adults with mild COVID-19: a randomized—controlled trial. Clin Infect Dis 2020.

[10] Skipper CP, Pastick KA, Engen NW, Bangdiwala AS, Abassi M, Skipper CP, et al. Hydroxychloroquine in nonhospitalized adults with early COVID-19: a randomized trial. Ann Intern Med 2020.

[11] Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D, et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized controlled trial. medRxiv 2020.

[12] Arshad S, Kilgore P, Chaudhry ZS, Jacobsen G, Wang DD, Huising K, et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis 2020.

[13] Davido B, Boussaid G, Vaugier I, Lansaman T, Bouchand F, Lawrence C, et al. Impact of medical care including anti-infective agents use on the prognosis of COVID-19 hospitalized patients over time. Int J Antimicrob Agents 2020.

[14] Xue H, Liu Y, Luo P, Liu X, Qiu L, Liu D, et al. Hydroxychloroquine treatment in COVID-19: a descriptive observational analysis of 30 cases from a single center in Wuhan, China. J Med Virol 2020.

[15] Pacoud O, Tubach F, Baptiste A, Bleibtreu A, Hajage D, Monsel G, et al. Compassionate use of hydroxychloroquine in clinical practice for patients with mild to severe Covid-19 in a French university hospital. Clin Infect Dis 2020.

[16] Mahervas M, Tran VT, Roumier M, Chabrol A, Paule R, Guillaud C, et al. No evidence of clinical efficacy of hydroxychloroquine in patients hospitalized for COVID-19 infection with oxygen requirement: results of a study using routinely collected data to emulate a target trial. medRxiv 2020.

[17] Geleins J, Sun Y, Pratt J, Zucker J, Baldwin M, Hripcsak G, et al. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N Engl J Med 2020.

[18] Rosenberg ES, Dufoix EM, Udoh T, Wilberschied LA, Kumar J, Tesoriero J, et al. Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State. JAMA 2020.

[19] Yu B, Li C, Chen P, Li J, Jiang H, Wang DW. Beneficial effects exerted by hydroxychloroquine in treating COVID-19 patients via protecting multiple organs. Sci China Life Sci 2020.

[20] Yu B, Li C, Chen P, Zhou N, Wang L, Li J, Jiang H, Wang DW. Low dose of hydroxychloroquine reduces fatality of critically ill patients with COVID-19. Sci China Life Sci 2020.

[21] An MH, Kim BS, Kang SH, Kim HJ, Park SK, et al. Treatment response to hydroxychloroquine and antibiotics for mild to moderate COVID-19: a retrospective cohort study from South Korea. medRxiv 2020.

[22] Horby P, Mafham M, Linsell L, Bell JL, Staplin N, Emberison JR, et al. Effect of hydroxychloroquine in hospitalized patients with COVID-19: preliminary results from a multi-centre, randomized, controlled trial. medRxiv 2020.

[23] Lopez A, Duclos G, Pastene B, Bezulier K, Guilhamou R, Solas C, et al. Effects of hydroxychloroquine on Covid-19 in intensive care unit patients: preliminary results. Int J Antimicrob Agents 2020.

[24] Ip A, Berry DA, Hansen E, Goy AH, Pecora AL, Sinclaire BA, et al. Hydroxychloroquine and tocilizumab therapy in COVID-19 patients—an observational study. medRxiv 2020.

[25] Singh S, Khan A, Chowdhry M, Chatterjee A. Outcomes of hydroxychloroquine treatment among hospitalized COVID-19 patients in the United States—real-world evidence from a federated electronic medical record network. medRxiv 2020.

[26] Maggioni J, Narendra S, Pereira F, Cummings TH, Hardin JW, Sutton SS, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. Med (N Y) 2020.

[27] Rivera DR, Peters S, Panagiotou OA, Shah DP, Kuderer NM, Hu SY, et al. Utilization of COVID-19 treatments and clinical outcomes among patients with cancer: a COVID-19 and Cancer Consortium (CCC19) cohort study. Cancer Discov 2020.

[28] Ahmed I, Alam M, Saadi R, Malimud S, Saadi E. Doxycycline and hydroxychloroquine as treatment for high-risk COVID-19 patients: experience from case series of 54 patients in long-term care facilities. medRxiv 2020.

[29] Ashraf MA, Shokouhi N, Shirali E, Davari-Tanha F, Memar O, Kamalipour A, et al. COVID-19 in Iran, a comprehensive investigation from exposure to treatment outcomes. medRxiv 2020.

[30] Bernaola N, Mené R, Bernaola A, Lara A, Carballo C, Larranaga P, et al. Observational study of the efficiency of treatments in patients hospitalized with Covid-19 in Madrid. medRxiv 2020.

[31] Calucci P, Ahuja T, Petrilli CM, Rajagopal H, Jones S, Rahman J. Hydroxychloroquine and azithromycin plus zinc vs. hydroxychloroquine and azithromycin alone: outcomes in hospitalized COVID-19 patients. medRxiv 2020.

[32] De Novales FJM, Ramírez-Olivencia G, Estébanez M, de Dios B, Herrero MD, Mata T, et al. Early hydroxychloroquine is associated with an increase of survival in COVID-19 patients: an observational study. Preprints 6 May 2020. https://doi.org/10.20944/preprints202005.0057.v1. Available at:

[33] Gautret P, Lagier JC, Parola P, Meddeb L, Mailhe M, Doudier B, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020.

[34] Gautret P, Lagier JC, Parola P, Meddeb L, Sevestre J, Mailhe M, et al. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: a pilot observational study. Travel Med Infect Dis 2020.

[35] Kim JW, Kim EJ, Kwon HH, Jung CY, Kim KC, Choe JY, et al. Lopinavir–ritonavir versus hydroxychloroquine for viral clearance and clinical improvement in patients with mild to moderate coronavirus disease, 2019. Korean J Intern Med 2020.

[36] Kim MS, Jang SW, Park YK, Kim BO, Hwang TH, Kang SH, et al. Treatment response to hydroxychloroquine, lopinavir/ritonavir, and antibiotics for moderate COVID 19: a first report on the pharmacological outcomes from South Korea. medRxiv 2020.

[37] Lagier JC, Million M, Gautret P, Colson P, Cortaredona S, Giraud-Gatineau A, et al. Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Marseille, France: a retrospective analysis. Travel Med Infect Dis 2020.

[38] Shidian E, Josse J, Leimaire G, Mayer I, Bernaux M, Gramfort A. Hydroxychloroquine with or without azithromycin and in-hospital mortality or discharge in patients hospitalized for COVID-19 infection: a cohort study of 4,642 in-patients. Int J Infect Dis 2020.

[39] Scholz M, Derwand R, Zelenko V. COVID-19 outpatients—early risk-stratified treatment with zinc plus low dose hydroxychloroquine and azithromycin: a retrospective case series study. Preprints. 30 June 2020. https://doi.org/10.20944/preprints202007.0025.v1. Available at:

[40] Giacomelli A, Pagani G, Ridolfo AL, Oreni A, Conti F, Pezzati L, et al. Early administration of lopinavir/ritonavir plus hydroxychloroquine does not alter the clinical course of SARS-CoV-2 infection: a retrospective cohort study. medRxiv 2020.
[41] Kalligeros M, Shehadeh F, Azalla E, Mylona EK, Aung S, Pandita A, et al. Hydroxychloroquine use in hospitalized patients with COVID-19: an observational matched cohort study. J Glob Antimicrob Resist 2020.

[42] Molina JM, Delaugerre C, Le Goff J, Mela-Lima B, Ponscarme D, Goldwirt L, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect 2020;50:30085-8.

[43] National Institutes of Health (NIH). NIH halts clinical trial of hydroxychloroquine. News release; 20 June 2020. Available at: https://www.nih.gov/news-events/news-releases/nih-halts-clinical-trial-hydroxychloroquine.

[44] Tang W, Cao Z, Han M, Wang Z, Chen J, Sun W, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomized controlled trial. BMJ 2020;369:m1849.

[45] Prodromos CC. Hydroxychloroquine is protective to the heart, not harmful: a systematic review. New Microbe. New Infect 2020.

[46] Spinner CD, Gottlieb RL, Criner GJ, López JRA, Cattelan AM, Vladoniu AS, et al. Effect of remdesivir vs. standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA 2020.

[47] RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mathai M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid-19—preliminary report. N Engl J Med 2020.

[48] Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A 2020;117:9490–6.

[49] Drugs.com. Hydroxychloroquine prices, coupons, and patient assistance programs. n.d. Available at: https://www.drugs.com/price-guide/hydroxychloroquine.

[50] Lupkin S. Remdesivir priced at more than $3,100 for a course of treatment. NPR; 29 June 2020. Available at: https://www.npr.org/sections/health-shots/2020/06/29/884648842/remdesivir-priced-at-more-than-3-100-for-a-course-of-treatment.