The GroE chaperones of *Escherichia coli* promote the folding of other proteins under conditions where no spontaneous folding occurs. One requirement for this reaction is the trapping of the nonnative protein inside the chaperone complex. Encapsulation may be important to prevent unfavorable intermolecular interactions during folding. We show here that, especially for oligomeric proteins, the timing of encapsulation and release during folding is of critical importance. If this cycle is decelerated, spontaneous folding occurs. One requirement for this folding of other proteins under conditions where no encapsulation takes place is the binding of GroEL to the substrate polypeptide. The GroE machinery is able to bind to the substrate polypeptide, resulting in the formation of a GroE complex that promotes the folding of the substrate polypeptide. This leads to the ejection of bound substrates into the central cavity of the GroE complex, where substrate polypeptides are encapsulated. The GroE cage allows folding in an unique folding environment outside the central cavity before it is released into the bulk solution independent of its folded state. Therefore, substrate polypeptides are encapsulated in a hydrophilic folding cage.

Experimental Procedures

Proteins—GroEL and GroES were purified from the *E. coli* strain JM109. The complexes were formed by mixing GroEL and GroES in the presence of ATP (2 mM), and ADP; SR1, single ring mutant of GroEL; wtGroEL, wild type GroEL; ATPγS, adenosine 5′-O-thiotriphosphate; Rubisco, ribulose-bisphosphate carboxylase/oxygenase; HPLC, high performance liquid chromatography.

*This work was supported by the German-Israeli Science Foundation (GIF), the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF), and the Fonds der Chemischen Industrie. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked ‡ To whom correspondence should be addressed. Tel.: 49 89 289 13341; Fax: +49 89 289 13345; E-mail: johannes.buchner@ch.tum.de.

© 2000 by The American Society for Biochemistry and Molecular Biology, Inc.

The GroE chaperone system from *Escherichia coli* prevents the aggregation and supports the folding of polypeptides (cf. 1–3). It consists of GroEL, a tetradecameric double-ring cylinder of identical 57-kDa subunits (4) and its cochaperone GroES, a heptameric dome-shaped ring structure of 10-kDa subunits (5). The GroEL double ring itself contains two binding sites for unfolded polypeptides on the inner rims of its two rings and an ATP binding site in each subunit (4). ATP binding induces large structural changes in GroEL, resulting in the out- and upward movement of the apical domains (6–8). As a consequence, hydrophobic residues, which are responsible for polypeptide binding, move away from the interior of the ring. This leads to the ejection of bound substrates into the central channel of the GroEL cylinder and the concomitant binding of the cochaperone GroES. Thus, substrate polypeptides are encapsulated in a hydrophilic folding cage (8–11).

Importantly, the ATP-induced domain movements in GroEL lead to the doubling in volume of the central channel (7, 8). Thus, substrates up to 60 kDa can fold inside the GroE cavity (12–14). ATP hydrolysis and the negative cooperativity for ATP binding between the two GroEL rings (15, 16) trigger the release of GroES and the substrate every 20 s (11, 17). Therefore, the bound substrate can fold only for a short period of time in the protected environment of the central cavity before it is ejected into the bulk solution independent of its folded state (11, 17–20). Binding of non-native polypeptides by GroEL decreases the concentration of aggregation-prone intermediates in solution, and sequestration of polypeptide chains inside the GroE cage allows folding in an unique folding environment without interaction with other folding intermediates (10). In addition to this passive role, the GroE machinery is able to accelerate protein folding (20, 21), possibly by active unfolding of kinetically trapped intermediates, which gives them a new chance to fold (22).

A key question remaining in this scenario is whether folding inside GroE always leads to committed intermediates or whether unfavorable folding reactions can occur inside GroE complexes. To address this question, we analyzed folding reactions occurring under stringent conditions. As a model substrate protein, we used dimeric citrate synthase (CS)1 (23). We had shown previously that GroE binds monomeric unfolding intermediates of CS (24). A folding reaction inside the central cavity of the GroE complexes leads to an intermediate that is committed to associate to the native dimer, even under nonpermissive conditions. Thus, the GroE system shifts the kinetic partitioning between irreversible aggregation, which is the favored folding pathway in the absence of GroE, toward a productive folding reaction (25). Using this experimental system, we show here that CS can undergo folding reactions inside GroE complexes that lead to irreversibly misfolded proteins.

Formation of SR1-CS Complexes—To form SR1 complexes with bound monomeric CS, CS (0.075 mM) was incubated at 43 °C in the presence of ATP (2 mM) or 0.3 mM GroEL, 0.6 mM GroES, and 2 mM ATP at 25 °C. Inactivation was initiated by a temperature shift to the indicated temperatures. To determine the inactivation kinetics, aliquots were withdrawn at the indicated time points, and CS activity was measured at 35 °C according to Srere (29).

Inactivation of CS—CS was diluted 1:100 to a final concentration of 0.075 μM into 50 mM Tris/HCl, pH 8.0 (25 °C), 10 mM KCl, 10 mM MgCl2, 1 mM dithioerythritol in the presence of ATP (2 mM) or 0.3 μM GroEL, 0.6 μM GroES, and 2 mM ATP at 25 °C. Inactivation was initiated by a temperature shift to the indicated temperatures. To determine the inactivation kinetics, aliquots were withdrawn at the indicated time points, and CS activity was measured at 35 °C according to Srere (29).

The abbreviations used are: CS, citrate synthase; GdmCl, guanidinium chloride; GroE, complex composed of GroEL, GroES, and ATP or ADP; SR1, single ring mutant of GroEL; wtGroEL, wild type GroEL; ATPγS, adenosine 5′-O-thiotriphosphate; Rubisco, ribulose-bisphosphate carboxylase/oxygenase; HPLC, high performance liquid chromatography.
any affinity to GroEL after folding inside of SR1-GroES complexes, 1 μM of SR1 was added upon reactivation. This excess of SR1 ensures that all intermediates that did not fold to the committed state are immediately trapped (25).

To determine the overall amount of reactivatable intermediates, GroEL (0.3 μM) and GroES (0.6 μM) were added to ensure a GroE-assisted folding. Additionally, 40 mM GdmCl were added immediately after the start of reactivation at 25 °C, because GdmCl destabilizes SR1-GroES-substrate complexes (data not shown). This ensures that all CS intermediates have been dissociated from SR1 and have the chance to fold in a reaction mediated by wtGroE.

Formation of wtGroE-CS Complexes—To bind monomeric CS intermediates to wtGroE, CS (0.075 μM) was incubated at 43 °C in the presence of GroEL (0.3 μM) and GroES (0.7 μM) for 90 min (24). After adjusting the temperature to 45 °C, ATP (2 mM) was added. ATP hydrolysis was stopped by the addition of 25 mM EDTA.

Formation of wtGroE-GroES-CS Complexes—To bind monomeric CS intermediates to wtGroES, CS (0.15 μM) was incubated at 43 °C in the presence of GroES (0.6 μM) for 90 min (24). After adjusting the temperature to 45 °C, ATP (200 μM) was added to allow binding of GroES. After a further 10 s, apyrase (10 units) was added to hydrolyze the ATP to ADP and AMP. To dissociate the GroEL2-GroES1-CS complexes, the samples were incubated on ice for 30 min. The end points of reactivation were determined after 120 min incubation at 25 °C. This procedure only led to the formation of stable wtGroEL14-GroES1-CS cis complexes (31). Due to this we used twice the amount of CS for this experiment, because statistically only 50% of the GroEL bound CS monomers are sequestered underneath GroES. The other portion of CS monomers are bound to the GroEL ring opposite to GroES and cannot fold during the experiment. We plotted the time in activity gained from CS monomers folded in GroEL-GroES-CS cis complexes.

HPLC-Size exclusion chromatography Experiments—CS-SR1 experiments were performed as described above. After incubation of SR1-CS-GroES complexes at 45 °C, aliquots were withdrawn and injected onto a Tosohaas TSK 4000 PW gel filtration column (30 cm in length). The column was operated at 25 °C with a flow rate of 0.75 ml/min in 50 mM Tris/HCl, pH 8.0, 10 mM KCl, and 10 mM MgCl2.

Electron Microscopy—CS (50 nM) was denatured in the presence of GroEL (40 nM) at 45 °C for 80 min in 50 mM Tris/HCl, pH 8.0, 10 mM KCl, 10 mM MgCl2, 1 mM dithioerythritol, 0.2 mM NAD, 2 mM phosphoenolpyruvate, 10 μg/ml pyruvate kinase, and 25 μg/ml lactate dehydrogenase. GroEL (75 nM) or SR1 (100 nM) were added and preincubated for 5 min. To measure the effect of GroES on the ATPase of GroEL, 150 nM GroES was added to GroEL or SR1. Then ATP (2 mM) was added, and after a further 2-min preincubation period, the change in absorbance at 340 nm was measured over 10 min in a thermostatted Ultrospec 3000 Amersham Pharmacia Biotech spectrophotometer. The rate of ATP hydrolysis was calculated as described (32). The rate of ATPγS hydrolysis, a very slowly hydrolyzable ATP analog, was determined at 45 °C in the presence of 1 μM GroEL and 2 μM GroES.

Data Analysis—Rate constants for the unfolding and refolding kinetics of CS were obtained from non-linear fits using Sigma plot 4.0 (Jandel Scientific). Rate constants and equilibrium constants for association or for association followed by an unimolecular folding reactions were determined with the corresponding models using the program Scientist (Micromath). Simulations of the determined folding steps were also performed with Scientist.

RESULTS

The Ability of GroE to Rescue CS from Inactivation Decreases at Higher Temperatures—Having analyzed previously how the GroE chaperone system stabilizes CS during thermal unfolding (25), we were now interested in determining the limitations of folding inside GroE complexes using this assay.

To test the temperature range in which GroE is able to fold CS, we inactivated native CS in the presence or absence of GroEL, GroES, and ATP at different temperatures. As shown in Fig. 1, the ability of GroE to stabilize CS during heat denaturation decreased with increasing temperatures. Interestingly, even at physiological temperatures (37 °C), CS is inactivated slowly but completely in the absence of the chaperone

FIG. 1. Temperature dependence of CS inactivation in the absence or presence of GroE. CS (0.075 μM) was incubated in 50 mM Tris/HCl, pH 8.0, 10 mM KCl, 10 mM MgCl2, and 2 mM ATP at 37 °C (A), 40 °C (B), and 45 °C (C) without additional components (●) or in the presence of 0.3 μM GroEL and 0.6 μM GroES (○)
The distribution of GroE particles is indicated in percent and analyzed by image processing (see “Experimental Procedures”).

plexes at 25 °C, 37 °C, and 45 °C. Samples were prepared at the indicated temperatures and analyzed by image processing (see “Experimental Procedures”). The distribution of GroE particles is indicated in percent.

ATPase activity was determined between 25 °C and 45 °C using a coupled enzymatic assay (see “Experimental Procedures”) for 75 nm GroEL (●), 75 nm GroEL and 150 nm GroES (○), 75 nm SR1 (■), 75 nm SR1 and 150 nm GroES (□).

Fig. 2. Temperature dependence of functional aspects of the GroE-system. A, temperature dependence of the GroE ATPase. ATPase activity was determined between 25 °C and 45 °C using a coupled enzymatic assay (see “Experimental Procedures”) for 75 nm GroEL (●), 75 nm GroEL and 150 nm GroES (○), 75 nm SR1 (■), 75 nm SR1 and 150 nm GroES (□).

B, electron microscopic distribution of asymmetrical (bullets) and symmetrical (footballs) GroEL-GroES complexes at 25 °C, 37 °C, and 45 °C. Samples were prepared at the indicated temperatures in the presence of ATP, and pictures were taken and analyzed by image processing (see “Experimental Procedures”).

The reaction can be described with two exponential kinetics with rate constants of \(k_1 = 0.09 \text{ min}^{-1} \) and \(k_2 = 0.0015 \text{ min}^{-1} \), respectively. In the presence of GroE, the level of native CS can be held constant at approximately 75%, and the initial loss of activity follows a single exponential reaction (\(k = 0.1 \text{ min}^{-1} \)). At 45 °C, a stabilizing effect of GroE is no longer detectable (Fig. 1C).

Temperature Dependence of the GroE ATPase Activity—First, we determined the ATPase activity of GroEL and SR1, a single ring mutant of GroEL (9), in the absence or presence of GroES between 25 °C and 45 °C. Changes in the GroE ATPase mechanism would result in a kink in the temperature dependence. The Arrhenius plot of the GroEL-ATPase in Fig. 2A shows clearly that there is a linear relationship between ATPase activity and temperature in the investigated temperature range. As expected, in the presence of GroES the rate of the GroEL ATPase activity was approximately half that observed in the absence of GroES due to its inhibition of the ATPase. These results clearly demonstrate that the ATPase mechanism of the GroE chaperone machinery does not change at higher temperatures. Furthermore, the ATPase rates per subunit are very similar for SR1 and wtGroEL (Fig. 2A). This shows that SR1 has similar ATPase properties as wt GroEL under the conditions used. As expected, the rate of ATP hydrolysis for SR1 in the presence of GroES decreased to almost zero. The inhibition of ATPase function is due to the fact that SR1 binds GroES in the presence of ATP and hydrolyses the bound ATP but cannot release GroES and ADP (9). This result also demonstrates that the SR1-GroES complexes are stable in the investigated temperature range.

Distribution of Symmetric and Asymmetric GroE-Particles—Since there are indications that the association between GroEL and GroES is perturbed at elevated temperatures (34, 35), we investigated potential changes in structure of GroEL-GroES complexes formed at different temperatures. We used electron microscopy and image processing to visualize and classify asymmetric GroEL-GroES, complexes, so called “bullets,” and symmetric GroEL-GroES complexes, so called “footballs,” at different temperatures. Furthermore, we prepared GroE complexes in the presence of CS to investigate potential substrate-induced changes in complex formation. At all temperatures investigated, GroEL bullets and footballs could be detected (Fig. 2B). However, no temperature-dependent differences in the distribution of the three species were observed. Also, the binding of CS had no influence on the complex formation at the investigated temperatures.

Long Term Incubation of Monomeric CS Intermediates in Stable Cis Complexes Leads to Misfolding—Having shown that the inability of GroE to stabilize native CS at higher temperatures is not due to mechanistic changes in the ATPase or the association of GroEL and GroES itself, we now focused on the folding of CS inside GroE at higher temperatures. As described previously (25), monomeric CS intermediates (M1) fold inside GroE cis complexes to a state (M2), which is committed to associate to native dimers. This reaction is responsible for the apparent stabilization of CS at 40 °C (see Fig. 1B). Now we tested whether this folding step occurs also at 45 °C. To this end, complexes between monomeric CS unfolding intermediates, SR1, and GroES were formed in the presence of ATP. HPLC size exclusion chromatography confirmed that the SR1-GroES-CS complexes were stable for at least 90 min at 45 °C (data not shown). After different incubation times at 45 °C, aliquots were withdrawn and dissociated on ice (30), and the number of CS molecules that reached the committed state was determined. Additional SR1 was added to trap all CS folding intermediates that could still be recognized by the chaperone (cf. the scheme in Fig. 3A). We found that after short term incubation in the cis complexes at 45 °C, about 30% of the CS molecules fold to the committed state (Fig. 3A). Upon further incubation, these committed intermediates disappear rapidly. The kinetic trace can be described by two consecutive reactions with rate constants of 1.9 min\(^{-1}\) and 0.06 min\(^{-1}\), respectively. Taken together, these results show that monomeric CS intermediates (M1) fold inside of SR1-GroES complexes to an association-competent state (M2) also at 45 °C. Prolonged incubation leads to a misfolding reaction, resulting in the formation of the CS intermediate (M3), which in contrast to M2 is not association-competent anymore: M1 ⇔ M2 ⇔ M3. The “overfolding” reaction (M2 → M3) could reflect a specific property of SR1. In this case, M3 would not be formed in wtGroE. To test this possibility, we inactivated CS in the presence of GroEL and GroES as described for SR1. Then ATP was added to form GroEL-GroES-CS complexes, and 10 s later, the ATP cycle was quenched by appyrase. Under the conditions used, appyrase hydrolyzed the ATP free in solution within 3–4 s to ADP and within 10 s to AMP (data not shown). Following the appyrase quench, we investigated the folding of monomeric intermediates of CS inside the GroEL-GroES complexes as described for SR1 (Fig. 3B). The analysis clearly showed that monomeric CS intermediates fold with approximately the same rate constants to an association-competent monomer (M2) as observed for SR1-GroES complexes (k1 = 2.1 min\(^{-1}\)). After pro-
longed incubation, M2 disappeared in a subsequent slower folding reaction ($k_2 = 0.08 \text{ min}^{-1}$), as observed in SR1. Thus, folding inside SR1-GroES complexes is a valid model for GroE cis-folding even at higher temperatures.

Due to the apyrase treatment, CS became artificially locked inside wtGroE complexes. To test whether the disappearance of the committed intermediate (M2) also occurs in the presence of a completely active, ATP-hydrolyzing GroE system, we analyzed the time course of the appearance and disappearance of M2.

FIG. 3. Cis folding of monomeric CS intermediates at 45 °C. A, complexes between monomeric CS intermediates (0.15 μM) and the GroEL single ring mutant SR1 (0.2 μM) were incubated for 2 min at 45 °C. Cis folding was initiated by addition of GroES (0.3 μM) and ATP (2 mM). After different incubation times at 45 °C, encapsulated CS was released by a 30-min incubation on ice. Then the yield of CS intermediates lacking any affinity for GroEL was determined after 120 min of reactivation at 25 °C in the presence of a high excess of SR1 (1 μM). Excess SR1 trapped all CS molecules that did not fold to the association-competent state during incubation in cis complexes. B, distribution of CS intermediates with no apparent affinity to GroEL (M2) during folding at 45 °C. Complexes between monomeric CS intermediates (0.15 μM) and the wtGroEL (0.3 μM) were incubated for 2 min at 45 °C. Folding was initiated by the addition of GroES (0.7 μM) and ATP (2 mM). After different incubation times of CS intermediates in the presence of GroE at 45 °C, the amount of CS intermediates lacking affinity for GroEL were determined in the presence of an excess of EDTA (25 mM) after 120 min at 25 °C. EDTA stops the GroE machinery by chelating the Mg$^{2+}$ ions, which are essential for ATP binding to GroE.

FIG. 4. The association-competent monomer of CS is able to associate to the native dimer at 45 °C. The association-competent monomer (M1) was populated inside of SR1-GroES complexes at 25 °C as described previously, then the complexes were dissociated by ice incubation, and the reactivation time course was measured at 45 °C.
40 mM GdmCl. GdmCl was added to destabilize the SR1 complexes or in the presence of wtGroEL after 150 min at 45 °C in SR1 complexes and can be well described by two consecutive reactions with rate constants of 0.65 min⁻¹ and 0.05 min⁻¹, respectively. This implicates a kinetic partitioning between the productive association of M₂ to native dimers and the unproductive conversion of M₀ to Mₓ.

To rule out the possibility that the committed and association-competent intermediate (M₃) can no longer associate to native dimers at higher temperatures, we populated M₀ inside SR1-GroES complexes at 25 °C, released them, and followed the dimerization at 45 °C. As shown in Fig. 4, the activity of CS increased rapidly and decreased in a subsequent reaction. The first reaction represents the association of the monomeric intermediate (M₀) to the active dimer (Dₐ, k = 18 600 s⁻¹ min⁻¹), and the second subsequent reaction corresponds to the unfolding of the native dimer (Dₐ) to the inactive dimer (Dᵢ, k = 0.18 min⁻¹) (cf. Ref. 24). This experiment clearly shows that the association-competent intermediate (M₃) can still associate to the native dimer at 45 °C. This together with kinetic simulations confirms that the conversion of M₂ to M₃ is essential to explain the complete loss of CS activity in the presence of GroE at temperatures higher than 37 °C (see Figs. 1 and 6).

The Amount of Reactivable CS Intermediates Differs Strongly on Incubation in Different GroE Complexes at 45 °C—Having shown that in GroE complexes a misfolding reaction of monomeric CS intermediates occurs, we were now interested in determining whether the resulting CS species (M₃) can be reactivated by GroE. We incubated monomeric CS in stable SR1-GroES complexes or in the presence of wtGroEL-GroES at 45 °C as described above. Reactivation was started in the case of wtGroEL-GroES by a temperature shift to 25 °C and the addition of ATP. In the case of SR1-GroES complexes, we first dissociated the complexes on ice, then wtGroEL, GroES, ATP, and a small amount of GdmCl were added for reactivation. Fig. 5A shows the reactivation kinetics of CS intermediates after a 150-min incubation at 45 °C either with wtGroEL-GroES or in SR1-GroES. Interestingly, only 42% of CS activity can be recovered after incubation in SR1-GroES
complexes. In contrast, after incubation of CS in the presence of the wtGroE system, up to 80% of CS activity can be recovered. This leads to the conclusion that CS monomers misfold irreversibly inside stable SR1-GroES complexes to a monomeric intermediate M4; M1 ↔ M2 ↔ M3 → M4. To determine the kinetics of this folding reaction, we investigated the change in yield of reactivatable CS intermediates with increasing incubation times in SR1-GroES complexes at 45 °C (Fig. 5B). We found that the number of reactivatable intermediates decreased constantly with a rate constant of 0.0038 min⁻¹. After 180 min at 45 °C, less than 40% activity could be recovered. However, in the presence of an ATP cycling GroE system, even after prolonged incubation at 45 °C, no irreversible loss of CS activity could be detected. This result clearly demonstrates that long time sequestration in stable cis complexes can lead to irreversible folding reactions.

Decelerating the ATPase of GroE Leads to Misfolding in an Active GroE System —The above-mentioned results implicate that the time of encapsulation inside cis complexes is critical and that even in functional GroE complexes, the kinetic competition between productive folding steps and misfolding exists. Based on the preceding results we predicted that increasing the time of encapsulation in wtGroE complexes by slowing down the GroE ATPase should lead to irreversible misfolding even in the presence of an ATP-hydrolyzing GroE system. To test this hypothesis we aimed to artificially decrease the rate of ATP hydrolysis by GroEL. To this end we made use of the ATP analog ATPγS, which is hydrolyzed 100-fold more slowly than ATP by GroEL at 45 °C (data not shown). This allowed monitoring of the influence of a drastically decelerated GroE system on the folding of CS under nonpermissive conditions. We incubated CS in the presence of wtGroEL-GroES with ATPγS at 45 °C, as described above. Reactivation was started by a temperature shift to 25 °C and the addition of ATP. As shown in Fig. 5B, the amount of reactivatable intermediates decreased (k = 0.002 min⁻¹), with a slightly slower kinetic as in the case of SR1. In this experiment only 50% of the CS activity could be regained after 180 min at 45 °C. This experiment clearly demonstrates the importance of the GroE timer and folding kinetics for productive folding.

DISCUSSION

We show here that an irreversible misfolding reaction can occur in GroE complexes. This gives insight into the general mechanism of folding inside GroE, since no specific temperature-induced changes in GroE function were detected. Because the encapsulated CS intermediates are monomeric (24), we suggest the following model for their GroE-assisted folding (Fig. 6 and Table 1). The unfolding intermediate, M1, folds inside GroE complexes to the association-competent intermediate, M2. One round of ATP hydrolysis is sufficient for this reaction to occur. This intermediate, which can be populated up to 80% in cis complexes, lacks any affinity for GroEL and is committed to associate to the native dimer even under nonpermissive conditions. Under nonpermissive conditions, M2 undergoes a further folding reaction to a state M3, which does not fold directly to the native state and can be trapped again by GroEL. In the absence of a binding and release cycle, the intermediate M3 misfolds irreversibly inside GroE to the conformation M4 in a subsequent reaction. Even after restoration of ATP cycling conditions, M4 cannot be refolded, and CS activity cannot be restored. The conversion of M3 to the irreversibly misfolded intermediate M4 inside GroE is slow and, thus, highlights the critical importance of the timer function of the ATPase for productive folding.

Kinetic simulations using the reaction scheme presented in Fig. 6 showed that the conversion of intermediate M2 to intermediate M3 is sufficient to explain the complete loss of CS activity in the presence of GroE at temperatures higher than 37 °C. At physiological temperature (37 °C), CS inactivates slowly but steadily in the absence of the GroE chaperone system. In the presence of GroE, CS is stabilized at a constant level of activity. The fast decrease in activity at the beginning of inactivation reflects the fact that only monomeric and not dimeric CS intermediates fold productively in GroE cis complexes. This folding event leads to association-competent monomers (M2) that associate again to the native dimer. The overfolding reaction (M2 → M3) is not significant at this temperature. Thus, in this case, GroE modulates the kinetic partitioning between productive and unproductive folding steps as described for bacterial luciferase (36).

Since the irreversible conversion of M3 to the intermediate M4 occurred only in stable cis complexes, the ATP-hydrolyzing GroE system is able to actively shift the intermediate M2 back toward the productive folding pathway, most likely by disrupting incorrect intramolecular interactions in CS. Such an unfolding activity of GroE was directly demonstrated for Rubisco by tritium exchange experiments (22). The three-dimensional structure of CS (37) gives a hint on the potential structural basis of the overfolding reaction. It could well be that the loop/helix extension of the monomer, which is normally intertwined with the other monomer, folds back on the dimer interface, thus blocking the correct dimer formation. Irreversible misfolding occurs when the protein is encapsulated for extended periods of time in GroE. This argues strongly against a passive role of GroE in which sequestration is the key element for folding under nonpermissive conditions. Analysis of a strongly decelerated GroE system confirmed this. Here, one round of ATPγS hydrolysis took approximately 10 to 15 min. During this time, the CS intermediates were sequestered in GroE, and in agreement with our hypothesis, the amount of reactivatable CS intermediates decreased as in SR1. At longer incubation times the loss of folding competence is slower compared with SR1, due to the hydrolysis of ATPγS.

Under nonpermissive conditions, the continuous binding, encapsulation, and release of nonnative proteins is required for GroE to allow folding (cf. Refs. 1, 2, and 38). GroEL is a slow

Table 1

Rate constants of CS folding in the presence of GroE complexes

The CS folding reactions were measured at 45 °C in stable SR1-GroES complexes, in stable wtGroEL-GroES bullets, or in the presence of an ATP-cycling GroE system.

Condition	Reaction	Rate constant (min⁻¹)
SR1-GroES complex	M1 → M2	1.9
Stable wtGroEL-GroES bullets	M2 → M3	0.06
GroE, ES, ATP	M3 → M4	0.0038

a wtGroEL/GroES cis bullets were created by an apyrase treatment (see "Experimental Procedures" and Fig. 3).

b Rate constant for the conversion of M3 to M4 in the presence of a wtGroE system with an 100-fold decelerated ATPase (see "Experimental Procedures" and Fig. 5).
ATPase that is able to direct the energy from substrate binding and ATP hydrolysis to the promotion of the folding process (22, 39). What determines the rate of hydrolysis remained elusive. Based on our results we like to propose that the decisive factor for the evolution of the rate of ATP hydrolysis by GroEL is the competition between productive and aberrant folding inside the GroE complex.

Acknowledgment—We thank Arthur Horwich for the SR1 plasmid, Stefan Walter, and Martina Beißinger for helpful discussions.

REFERENCES

1. Fenton, A. F., and Horwich, A. L. (1997) Protein Sci. 6, 743–760
2. Sigler, P. B., Xu, Z., Rye, H. S., Burston, S. G., Fenton, W. A., and Horwich, A. L. (1998) Annu. Rev. Biochem. 67, 581–608
3. Beißinger, M., and Buchner, J. (1996) Biochim. Biophys. Acta 1307, 1–25
4. Braig, K., Grotzinger, S., Hedge, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L., and Sigler, P. B. (1994) Nature 371, 578–584
5. Hunt, J. F., Weaver, A. J., Landry, S. J., Gierasch, L., and Deisenhofer, J. (1996) Nature 380, 371–378
6. Saibil, H. R., Zheng, D., Roseman, A. M., Hunter, A. S., Watson, G. M. F., Chen, S., auf der Mauer, A., O'Hara, B. P., Wood, S. P., Barnett, L. K., and Ellis, R. J. (1993) Curr. Biol. 3, 265–273
7. Chen, S., Roseman, A. M., Hunter, A. S., Wood, S. P., Burston, S. G., Ranson, N. A., Clark, A. R., and Saibil, H. R. (1994) Nature 371, 261–264
8. Roseman, A. M., Chen, S., White, H., Braig, K., and Saibil, H. R. (1996) Cell 80, 214–251
9. Weissman, J. S., Hohl, C. M., Kovaleva, O., Kashi, Y., Chen, S. X., Braig, K., Saibil, H. R., Fenton, W. A., and Horwich, A. L. (1995) Cell 82, 577–587
10. Mayhew, M., de Silva, A. C. R., Martin, J., Erdjument-Bromage, H., Tempst, P., and Hartl, F. U. (1996) Nature 379, 420–426
11. Weissman, J. S., Rye, H. S., Fenton, W. A., Beechem, J. M., and Horwich, A. L. (1996) Cell 84, 481–490
12. Enwalt, K. L., Hendrick, J. P., Houry, W. A., and Hartl, F. U. (1997) Cell 90, 491–500
13. Xu, Z., Horwich, A. L., and Sigler, P. B. (1997) Nature 388, 741–750
14. Sakikawa, C., Taguchi, H., Makino, Y., and Yoshida, M. (1999) J. Biol. Chem. 274, 21251–21256
15. Yifrach, O., and Horovitz, A. (1995) Biochemistry 34, 9716–9723
16. Yifrach, O., and Horovitz, A. (1996) J. Mol. Biol. 255, 556–561
17. Todd, M. J., Viti, P., and Horwich, A. L. (1994) Science 265, 659–666
18. Burston, S. G., Ranson, N. A., and Clarke, A. R. (1995) J. Mol. Biol. 249, 158–152
19. Todd, M. J., Lorimer, G. H., and Thirumalai, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 4030–4035
20. Sparrer, H., Rutkai, K., and Buchner, J. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 1096–1100
21. Ranson, A. A., Dunster, N. J., Burston, S. G., and Clarke, A. R. (1995) J. Mol. Biol. 250, 581–586
22. Shylerman, M., Lorimer, G. H., and Englander, W. S. (1999) Science 284, 822–825
23. Buchner, J., Grallert, H., and Jakob, U. (1998) Methods Enzymol. 290, 323–338
24. Grallert, H., Rutkai, K., and Buchner, J. (1998) J. Mol. Biol. 273, 32305–32310
25. Grallert, H., and Buchner, J. (1999) J. Biol. Chem. 274, 20717–20717
26. Schmidt, M., Bucheler, U., Kaluza, B., and Buchner, J. (1994) J. Biol. Chem. 269, 27964–27972
27. Gwill, S. C., and von Hippel, P. H. (1989) Anal. Biochem. 182, 319–326
28. Fujita, J. (1976) Eur. J. Biochem. 63, 263–269
29. Srere, P. A. (1966) J. Biol. Chem. 241, 2157–2165
30. Rye, H. S., Burston, S. G., Fenton, W. A., Beechem, J. M., Xu, Z., Sigler, P. B., and Horwich, A. L. (1997) Nature 388, 792–798
31. Beißinger, M., Rutkai, K., and Buchner, J. (1999) J. Mol. Biol. 289, 1075–1092
32. Kreuzer, K. N., and Jongeneel, C. V. (1983) Methods Enzymol. 100, 144–160
33. Hegerl, R., and Altbauer, A. (1982) Ultramicroscopy 9, 109–116
34. Goloubinoff, P., Diamant, S., Weiss, C., and Azem, A. (1997) FEBS Lett. 407, 215–219
35. Llorca, O., Galan, A., Carrascosa, J. L., Muga, A., and Valpuesta, J. M. (1998) J. Mol. Biol. 281, 803–818
36. Nieba-Axmann, S. E., Ottiger, M., Wuthrich, K., and Pluckthun, A. (1997) J. Mol. Biol. 270, 803–818