The sporophytic self-incompatibility mating system is conserved in Olea europaea subsp cuspidata and O. e. europaea

C. M. Breton, Pierre Villemur, A. J. Berville

To cite this version:

C. M. Breton, Pierre Villemur, A. J. Berville. The sporophytic self-incompatibility mating system is conserved in Olea europaea subsp cuspidata and O. e. europaea. Euphytica, 2017, 213 (1), pp.1-7. 10.1007/s10681-016-1818-8. hal-01607235

HAL Id: hal-01607235
https://hal.archives-ouvertes.fr/hal-01607235
Submitted on 27 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License
The sporophytic self-incompatibility mating system is conserved in *Olea europaea* subsp. *cuspidata* and *O. e. europaea*

Catherine Marie Breton · Pierre Villemur · André Jean Bervillé

Received: 10 February 2016 / Accepted: 11 December 2016 / Published online: 23 December 2016
© Springer Science+Business Media Dordrecht 2016

Abstract Fruit setting after self-pollination, crosses and free-pollination appears to be erratic in the cultivated olive tree (*Olea europaea* subsp. *europaea* L. (*O. e. europaea* L.)) because of a lack of a suitable model to enable prediction of rates. The same lack of prediction also applies to the wild taxon *Olea europaea* subsp *cuspidata* (*O. e. cuspidata*). Because of their close phylogenetic relationships, we hypothesize that *O. e. cuspidata* and cultivated olive share the same self-incompatibility system. We used data recently published in a wide study involving four *O. e. cuspidata* accessions and four olive cultivars. Because the olive varieties have been deciphered for their *S*-allele pair, that infer determinants present in the stigma and pistil, and that coat the pollen, we deciphered the *S*-alleles carried by three of the *O. e. cuspidata* accessions. Data are too scarce and the number of accessions too small to speculate on the *O. e. cuspidata* genetic population structure. The working hypothesis is confirmed. This study and data from the Italian team will enable us to embark on a large-scale hybridization program between the two subsp. to obtain a wide range of progenies for screening for responses to cold, diseases and pests.

Keywords Genetic resources · Hybridization · Olive

Introduction

Recently Cáceres et al. (2015) published new data on fruit setting after hybridization between two subspecies of *Olea europaea*, namely subsp *europaea* L. (*O. e. europaea* L.) and subsp *cuspidata* (*O. e. cuspidata* Wall ex G. Don.). Controlled crosses between four *O. e. cuspidata* accessions on the one hand and four olive cultivars—‘Dolce Agogia’, ‘Favolosa’ also called ‘Fs17’, ‘Frantoio’ and ‘Lecchio’—on the other hand, led to fifteen hybrid plants saved in a nursery. Fruit setting between pairs of the subspecific taxon *O. europaea* appeared erratic because there was no way of predicting success or failure. However, we have already attributed *S*-allele pairs to three of the olive varieties within the framework of the sporophytic model. We thus questioned whether *O. e. europaea* and *O. e. cuspidata* have the same self-incompatibility system.

As reported by Besnard et al. (2001) seventeen hybrid trees, which are now 31 years old, were
obtained by Villemur by 1984. Hannachi et al. (2009) studied oil yield and some phenotypic traits such as fruit color and size in these trees. These trees are maintained in dense conditions in the orchard collection at INRA—Montpellier; they have lost their juvenile traits and blossom and produce fruit regularly each year with each tree yielding several kilograms of fruit.

Table 1.

Natural hybrids between subspecies O. e. cuspidata and O. e. europaea occur in areas surrounding olive orchards in South Africa (Costa 1998; H. Sommerlatte pers comm). There are no published reports of natural hybridization in countries other than South Africa, but there are speculations that they may occur (Breton et al. 2008; Cáceres et al. 2015 for review).

Recently Gibbs (2015) published a complete review on the different aspects of self-incompatibility including architecture self-incompatibility (ASI) type and late-acting self incompatibility. We can omit aspects that are well documented in the review. However, most researchers ignore the fact that SI distribution in the evolutionary tree of the Plantae is not in concordance with the species phylogeny. It appears that SI has appeared several times either as architecture SI, gametophytic self-incompatibility (GSI) and sporophytic self-incompatibility (SSI) (Fig. 1). Moreover, for close species in different genera SI may have been lost and become self-compatible as in Prunus (P. persica), whereas other Prunus species (cherry, apricot and almond) harbor a GSI mechanism. Arabidopsis thaliana has lost SI whereas A. lyrata harbors a deep SSI system (Goubet et al. 2012).

Oleaceae are known to harbor different floral biology systems. In Jasminum heterostyly, either distyly and tristyly, is known in 24 families (Ganders 1979; Dommeé et al. 1992). In Fraxinus different modes exist; F. excelsior and F. angustifolia (Mediterranean) are polygamous (Bochenek 2011) as each tree carries at least some hermaphroditic flowers and may be functionally dioecious. F. ornus displays androdioecy (Dommeé et al. 1999). F. lanuginosa displays androdioecious behavior in northern Japan (Ishida and Hiura 2002); and Phillyrea displays androdioecy (Saumitou-Laprade et al. 2010). In Olea little is known apart from O. e. europaea; however, Hannachi and Marzouck (2012) recently discovered androdioecy in O. e. subsp. sylvestris (wild olive or oleaster). Although the GSI model has been considered as functioning in the cultivated olive (Zhu et al. 2013) it is now established that the SSI model works (Breton and Bervillé 2012; Breton et al. 2014; Farinelli et al. 2015; Koubouris et al. 2014). SSI and GSI differ in other features by the stage of deposit of S-determinants onto the pollen coat. With SSI the S-determinants are deposited early before the tetrad stage, and thus all pollen grains are coated by the same S-determinants (Breton et al. 2014). Without dominance between the S-alleles, both determinants coat all pollen grains produced by the individual. However, when dominance is expressed, only the S-determinant of the dominant S-allele is present on the pollen coat. Gibbs (2015) reported the history of emergence of the SSI model, and stressed the difficulties it may cause in analysing cross data. The singularities are due to dominance relationships (>) whereby (i) each pollen grain may not be coated by the S-determinant of the S-allele it carries; that is, the determinant of the recessive S-allele is lacking, and (ii) in reciprocal crosses with $R_2 > R_3$ and $R_1 = R_3$ the cross $\mathcal{G}R_1R_3 \times R_2R_3$ (determinant R_2) is compatible, whereas the reciprocal cross $\mathcal{G}R_2R_3 \times R_1R_3$ (determinant R_1R_3) is incompatible.

Differences in fruit setting after crossing, self-pollination or free-pollination between O. e. cuspidata and O. e. europaea resemble most olive cross data widely published in several countries and quoted by Cáceres et al. (2015). For three of these varieties Farinelli et al. (2015) have, within the framework of the sporophytic self-incompatibility (SSI) system, already deciphered the S-allele pair in each variety. We aimed to verify if O. e. cuspidata harbors SSI as is the case in cultivated olive, and therefore we attempted to decipher the S-alleles in the four accessions from O. e. cuspidata. Based on the attributed S-allele pair of each olive variety we deduced the S-alleles in O. e. cuspidata. Cross fruit set is shown to match inferences from SSI for successes and failures. When reciprocal crosses were made the power of attributing a pair is higher than when crosses were made in only one direction. Data enabled us to decipher S-alleles in 16 crosses. It was fortunate that Cáceres et al. (2015) used several olive varieties that carry different S-allele pairs (including all S-alleles). Theoretical self-compatibility and self-incompatibility as open-pollination rates are discussed in relation to experimental data.
Table 1 Crosses reported by Cáceres et al. (2015) and S-alleles deduced from mating successes and failures based on reference parents and those deciphered in this study

Cross	Possible S-alleles	Pollen determinant	Cáceres code	No flowers\(^a\)	No fruit	Fruit set (%)	No SEC	No SO	No GE
OeSA-A × DA	R1R3R4R5R6	R2	C1	173	2	1.16	2	2	2
OeDA × SA-A	R2R3		C16	47	3	6.38	3	3	2
OeSA-A × Fs17	R4R6	R6	C2	449	0	0	0	0	0
Fs17 × OeSA-A	R4R6	R6	C19	22	0	0	0	0	0
OeSA-A × Fra	R4R6	R5	C3	204	6	2.94	6	10	10
OeSA-A × Lec	R4R6	R1R5	C4	308	4	1.30	4	7	7
OeSA-A	R4R6			709	4	0.56	2	2	1
OeSA-A	R4R6	OP1		2720	293	10.77	10	17	9
OeSA-B × DA	R1R3R4R5R6	R2	C5	374	28	7.49	18	11	0
OeSA-B × Fs17	R1R3R4R5	R6	C6	51	6	11.76	6	7	0
OeSA-B × Lec	R3R4	R1R5	C7	267	3	1.12	2	3	0
OeSA-B × Fra	R3R4	R5	C8	126	0	0	0	0	0
OeSA-B	R3R4	R3	S2	362	1	0.28	1	1	0
OeSA-B	R3R4	OP2		365	23	6.30	2	2	0
OeCH × DA	R1R3R4R5R6	R2	C9	21	1	4.76	1	1	1
DA × OeCH	R2R3	R1R5R6	C17	284	4	1.42	4	3	3
Chin × Fs17	R1R4R5R6	R6	C10	43	0	0	0	0	0
OeCH × Lec	R5R6	R1R5	C11	12	0	0	0	0	0
OeCH × Fra	R5R6	R5	C12	49	0	0	0	0	0
OeCH	R5R6	R6	S3	656	0	0	0	0	0
OeCH	R5R6	OP3		1424	26	1.83	3	3	3
OelN × DA	R1R3R4R5R6	R2	C13	209	1	0.48	1	1	0
DA × OelN	R2R3	R1R5R6	C18	20	1	5.00	1	1	1
OelN × Fs17	?R6	R6	C14	100	0	0	0	0	0
Fs17 × OelN	R4R6	R6	C20	198	6	3.03	6	6	4
OelN × Lec	R1R5 or R1R4 or R4R5	R1R5	C15	12	0	0	0	0	0
OelN	S4			332	1	0.30	0	0	0
OelN	OP4			100	2	2.00	0	0	0
Self-pollination DA									
Fs17	S5			74	7	5.18	2	2	2
Open-pollination DA									
Fs17	S6			112	6	5.36	1	1	1

OeSA-A Olea europaea subsp. cuspidata from South Africa, OeSA-B Olea europaea subsp. cuspidata from South Africa, OeCH Olea europaea subsp. cuspidata from China, O. e. europaea OeIN Olea europaea subsp. cuspidata from India, DA: dolce agogia, FR frantoio, Lec leccino, No number, SEC number of stones used for embryo culture, GE germinated embryos, SO seed obtained

\(^a\) Refers to number emasculated for different crosses, or sampled for self- and open-pollination studies

Materials and methods

The origin of the *O. e. cuspidata* studied in Montpellier was Stellenboch, South Africa. Elia Psillakis brought it from Chania (Greece) in the 1970s as fresh scions that were grafted onto an olive stock in a greenhouse in Montpellier. *O. e. cuspidata* was grafted onto the cultivated olive ‘Olivière’, and local varieties from the Hérault area were grown in the greenhouse. The grafted *O. e. cuspidata* tree was exposed to
pollination by each of the mixture of varieties cultivated in the same greenhouse. Seeds were obtained naturally from free-pollination. They were harvested and germinated without hormone treatment in pots. Seventeen hybrid trees are conserved in the olive tree collection at INRA-Montpellier.

The genetics of SI depend on one locus with several S-alleles; thus two S-alleles are expected for each variety. Until now six S-alleles have been hypothesized for olive, and named R1 to R6, thus the two by two pairwise combinations lead to fifteen host pairs (Breton and Berville 2012). Dominance relationships were revealed when one reciprocal pairwise combination leads in one direction to fruit set, and in the other direction to failure of the cross (Moutier 2002; Farinelli et al. 2006, 2015). Dominance relationships established by Breton and Berville (2012) were $R6 > R2 > R1 = R3 = R5 > R4$; that is, four levels of dominance were found. Among olive varieties for any S-allele pair, the higher the difference in dominance level the higher the self-compatibility level of the tree (Breton et al. 2016). However, on the male side the most important feature is that each pollen grain is coated by the same S-determinants—all pollen grains emitted by one tree carry the same S-determinant. S-proteins remain undetermined in olive at present. Consequently, to avoid any ambiguity in the coding of S-alleles and S-determinants for varieties the S-allele pair is italicized ($SxSy$), whereas the pollen determinants are presented with regular characters and underlined (Sx, when $Sx > Sy$). Obviously, for one variety the S-allele pair in the stigma and the pollen determinant(s) is conserved, whether or not the other variety is male or female.

From all data published on olive crosses one can deduce that data from a cross that succeeded are more reliable than data from a cross that failed. In all publications, repeats of one cross in several bags shows that successes occur for about half of the expected compatible bags (Farinelli et al. 2015).

Routinely, when a variety is mated as male or female with a series of other varieties all with known S-allele pairs, then the S-alleles enabling success are identified. We proceeded with other cross data in a stepwise manner. It is only necessary to eliminate S-alleles to reduce the number to two potential S-alleles.

Thus, choice of the reference varieties for crossing is vital to complete deciphering. In the Cáceres et al. (2015) study all host varieties were emasculated, thus there was no risk of interference in fruit set by self-pollination, and therefore we can be confident with the data. However, emasculation may have damaged the stigma and pistil because the average fruit set appeared low for self-pollination and free pollination in the varieties. The C1 to C20 codes refer to crosses made and examined by Cáceres et al. (2015).
Results

The open-pollinated grafted *O. e. cuspidata* tree grown in the greenhouse at Montpellier produced many fruits. After sowing viable seedlings were grown in a greenhouse. After 31 years 17 viable adult trees remain in the INRA collection at Montpellier.

Cáceres et al. (2015) published a set of data after crossing four cultivated olive varieties (*Dolce Agogia*, ‘Favolosa’, Frantoio and Leccino) with four *O. e. cuspidata* individuals from South Africa (SA), China (CH), and India (IN). Farinelli et al. (2015) attributed the S-allele pairs R2R3-R2 (female genotype-pollen determinant), unknown; R4R5-R5, and R1R5-R1R5 to these varieties, respectively.

Because *O. e. cuspidata* SA-A as female was successfully mated by ‘Dolce Agogia’ (C1)-R2R3 as host and R2 as male (C16)-in both directions of crossing, SA-A cannot carry R2 or R3 but could carry R1, R4, R5, or R6. SA-A was successfully mated by *Frantoio* (R5) (C3) and *Leccino* (R1R5) (C4), and consequently R1 and R5 can be eliminated as the possible S-alleles for SA-A leaving R4R6 as the genotype for SA-A. The SA-A cross by ‘Favolosa’ failed (C2, C19) as both SA-A and ‘Favolosa’ carry the common S-allele R6. Consequently SA-A and ‘Favolosa’ carried R4R6.

SA-B was mated by *Dolce Agogia* R2 (C5), ‘Favolosa’ R6 (C6), *Frantoio* R5 (C8), and *Leccino* R1R5 (C7) thus *O. e. cuspidata* cannot carry R2, R6, R5, or R1, and consequently SA-B carries R3R4 and thus behaves as R3.

Olea europaea cuspidata China (OeCH) and *Dolce Agogia* R2 mated successfully in both directions (C9, C17); OeCH may carry R1, R4, R5, or R6. But the other three varieties failed as male (C10, C11 and C12). Thus OeCH cannot carry R1 and R4 but could carry R5 and R6, thus Oe- CH is confirmed as R5R6 and R6.

Olea europaea cuspidata India (OeIN) and *Dolce Agogia* mated successfully in both directions (C13, C18), OeIN and ‘Favolosa’ also mated successfully in both directions (C14, C20), but *Leccino* R1R5 failed as male (C15). Thus OeIN should carry R1 and/or R5 and therefore R1 or R5 remain undetermined along with R4. The cross with *Frantoio* if incompatible would indicate R5, and if compatible would indicate R1. Consequently OeIN could be R1R5 or R1R4 or R4R5.

Data of Cáceres et al. (2015) concerning self-pollination for SA-A, SA-B, OeCH and OeIN are 4/709–0.56%, 1/362–0.28%, 0/656–0% and 1/332–0.30% in comparison to varieties ‘Dolce Agogia’ (7/74–5.18%) and ‘Favolosa’ (6/112–5.36%). Thus *O. e. cuspidata* after self-pollination displayed low seed set in comparison to ‘Dolce Agogia’ and ‘Favolosa’. However, it is indicative that those data cannot be compared with data from Farinelli et al. (2006) and Breton et al. (2014) obtained on more hermaphrodite flowers.

Data concerning open-pollination of SA-A (293 fruit/2720 flowers), SA-B (23/365), OeCH (26/1424), OeIN (2/100), Dolce Agogia (12/120), and ‘Favolosa’ (40/336 or 11.90% cannot be easily compared because open-pollination of each female variety depends on the genotypes of surrounding varieties rather than the tree itself.

Discussion

Comparison of progeny size from *O. e. cuspidata* in Montpellier (present results) and in Italy (Cáceres et al. 2015) shows that embryo rescue is useless. The determination of self-incompatibility in olive is expensive and requires considerable investment.

S-alleles were identified for the cultivated olive variety ‘Favolosa’ as R4R6 using three *O. e. cuspidata* accessions, namely, the two from South Africa (SA-A R4R6 and SA-B R3R4) and one from China (R5R6). The fourth *O. e. cuspidata* accession from India remains partially deciphered as R1R5, R1R4 or R4R5. R4 is the lowest ranking recessive S-allele and thus did not influence the outcome of crosses unless the parent was homozygous for R4, but a homozygous R4R4 olive individual has not been documented. Data on self-pollination shows that all these pairs are partially self-compatible—thus R1R4 could be eliminated based on the Breton et al. (2016) model, and open-pollination data showed that all host varieties received some compatible pollen. The Chinese accession is the first occurrence of R5R6 pair reported for an *Olea* individual.

The pedigree of ‘Favolosa’, a selection from open-pollinated progenies from *Frantoio* R4R5, infers that ‘Favolosa’ should carry either R4 or R5 and an unknown S-allele from the pollination source. ‘Favolosa’ received R6 from free pollination. It is logical to suppose that a pollen grain coated by R5 had not
pollinated Frantoio. However, R6 was not detected previously in Central Italy and is infrequent in Central Italy, but it is present in ‘Nostrale Rigali’ in Sicily (Farinelli et al. 2015). The frequency of R6 among about eighty varieties was 9/155 (0.06), whereas the frequency of R3 was 35/155 (23%) (unpublished statistics). The number of O. e. cuspidata individuals here is too low to speculate on the frequency of R6 in its populations.

The self-compatibility rate is expected to be higher for the R6R4 pair because of three levels of dominance difference between R6 and R4 (Breton et al. 2016). Mehltenbacher (1997) found nine levels of dominance among 39 S-alleles in Hazelnut, and self-fertility was present in cutleaf hazelnut (Mehlenbacher and Smith 2006). Self-fertility occurs in genotypes combinating S28 and S1, S2 or S26 S-alleles—all three being recessive to S28. However, the possibility that S28 alone leads to self-fertility by mutation in the male part cannot be eliminated.

There is concern because OeSA-B was mated by the other three accessions, but not by Frantoio. This is not important because ‘Leccino’ and ‘Frantoio’ carry the R5 S-allele. However, it is frequent that a mate predicted to succeed, leads to no fruit set (Farinelli et al. 2015). This does not contradict the SSI model.

Cáceres et al. (2015) used % for O-PR and self-pollination of 100 emasculated flowers. However the results are ambiguous, because they did not say whether they had or had not counted male-sterile flowers, the proportion of which is variety dependent. The exact description should be ‘fruit set for 100 hermaphrodite flowers’ that standardizes data to enable comparison of fruit sets between varieties.

Self-pollination for the R3R4 pair is expected to be relatively low. Thus 0.28 (0.28 fruit for 100 emasculated flowers calculated for 1 fruit / 362 emasculated flowers) is probably overestimated, and the range in variation could be important on a larger sample.

Unambiguously O. e. cuspidata from China carries, for the first time, the R5R6 pair, a combination not found in cultivated varieties (Breton et al. 2014; Farinelli et al. 2015). Self-compatibility is expected to be relatively high (with Frantoio for reference). Open-pollination is low probably because varieties carrying R5 are frequent in the area (Farinelli et al. 2015). All varieties that do not harbor R6 release compatible pollen for the host O. e. cuspidata in the Perugia collection. This illustrates the paradoxical inference from SSI as in any location free pollination of one host variety does not depend on the host variety itself, but on the surrounding varieties. Thus trees carrying R6 even at low frequency are pollinators for 99% of host varieties, and consequently it is not surprising that ‘Favolosa’ harbors R6. This is one of the consequences of the SSI model, and does not happen with the GSI model.

Conclusion

The olive subspecies O. e. europaea and O. e. cuspidata share many molecular markers and a few are specific of each species (Cáceres et al. 2015). Moreover they share the same self-incompatibility system. This study and that of Cáceres et al. (2015) will now enable us to start on a largescale hybridization program between the two subspecies to obtain large progeny populations for screening for agronomic traits such as resistance to cold, diseases and pests. This study shows that crosses can be chosen based on compatibility.

Acknowledgements We thank Hilary Sommerlatte for suggestions and Géry Bertaux for English improvement. We thank Robert McIntosh, Associate Editor for his pertinent suggestions.

References

Besnard G, Baradat P, Chevalier D, Tagmount A, Bervillé A (2001) Genetic differentiation in the olive complex (Olea europaea) revealed by RAPDs and RFLPs in the rRNA genes. Genet Resour Crop Evol 48:165–182
Bochenek GM (2011) Reproductive biology and population genetics of common ash (Fraxinus excelsior L.). PhD thesis, Göteborg University
Breton CM, Bervillé A (2012) New hypothesis elucidates self-incompatibility in the olive tree regarding S-alleles dominance relationships as in the sporophytic model. CR Biol 335:563–572
Breton C, Guerin J, Ducatillon C, Médail F, Kull C, Bervillé A (2008) Taming the wild and ‘wilding’ the tame: tree breeding and dispersal in Australia and the Mediterranean. Plant Sci 175:197–205
Breton CM, Farinelli D, Shafik S, Sedgley M, Heslop-Harrisson JS, Bervillé AJ (2014) The self-incompatibility mating system of the olive (Olea europaea L.) functions with dominance between S-alleles. Tree Genet Genomes 10:1055–1067. doi: 10.1007/s11295-014-0742-0
Breton CM, Farinelli D, Koubouis G, Bervillé AJ (2016) A model based on S-allele dominance relationships to explain
pseudo self-fertility of varieties in the olive tree. Euphytica 210:105–117. doi: 10.1007/s10681-016-1708-0

Cáceres ME, Ceccarelli F, Pupilli V, Sarri M, Mencuccini M (2015) Obtainment of inter-subspecific hybrids in olive (Olea europaea L.). Euphytica 201:307–319

Costa C (1998) Olive production in South Africa. A handbook for olive growers, Agricultural Research Council, Pretoria 124 pp

Dommeé B, Thompson JD, Cristini F (1992) Distylie chez Jasminum fruticans L.: hypothèse de la pollinisation optimale basée sur les variations de l’écologie intraflorale. Bull Soc Bot Fr 139(3):223–234

Dommeé B, Geslot A, Thompson JD, Reille M, Denelle N (1999) Androdioecy in the entomophilous tree Fraxinus ornus (Oleaceae). New Phytol 143:419–426

Farinelli D, Boco M, Tombesi A (2006) Results of four years of observations on self-sterility behavior of several olive cultivars and significance of cross-pollination. Proceeding of the 2nd Int Seminar on Biotechnology and Quality of Olive Products around the Mediterranean Basin–Olive-Bioteq 2006, 5–10 Nov 2006, Marsala–Mazara del Vallo Italy, vol 1, pp 275–282

Farinelli D, Breton CM, Famiani F, Bervillé A (2015) Specific features in the olive self-incompatibility system: a method to decipher S-allele pairs based on fruit settings. Sci Horticul 181:62–75

Ganders FR (1979) The biology of heterostyly. N Zealand J Bot 17:607–635

Gibbs PE (2015) Late-acting self-incompatibility—the pariah breeding system in flowering plants. New Phytol 203:717–734. doi:10.1111/nph.12874 PMID: 24902632

Goubet PM, Bergès H, Bellec A, Prat E, Helmstetter N, Mangenet S et al (2012) Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis. PLoS Genet 8(3):e1002495. doi:10.1371/journal.pgen.1002495

Hannachi H, Marzouk S (2012) Flowering in the wild olive (Olea europaea L.) tree (oleaster): phenology, flower abnormalities and fruit set traits for breeding the olive. Afr J Biotechnol 11:8142–8148

Hannachi H, Sommerlatte H, Breton C, Msallem M, El Gazzah M, Ben El Hadj S, Bervillé A (2009) Oleaster (var. sylvestris) and subsp. cuspidata are suitable genetic resources for improvement of the olive (Olea europaea subsp. europaea var. europaea). Genet Res Crop Evol 56:393–403

Ishida K, Hiura T (2002) Mating system and population genetic structure of an androdioecious tree, Fraxinus lanuginosa Koidz. (Oleaceae) in northern Japan. Heredity 88:296–301. doi:10.1038/sj.hdy.6800043

Koubouris GC, Breton CM, Metzidakis IT, Vasilakakis MD (2014) Self-incompatibility and pollination relationships for four Greek olive cultivars. Sci Horticul 176:91–96

Mehlenbacher SA (1997) Revised dominance hierarchy for S-alleles in Corylus avellana L. Theor Appl Genet 94:360–366

Mehlenbacher SA, Smith DC (2006) Self-compatible seedlings of the cutleaf hazelnut. HortScience 41:482–483

Moutier N (2002) Self-fertility and inter-compatibilities of sixteen olive variety species. Acta Hort 586:209–212

Saumitou-Laprade P, Vernet P, Vassiliadis C, Hoareau Y, de Magny G, Dommé B, Lepart JA (2010) Self-incompatibility system explains high male frequencies in an androdioecious plant. Science 327:1648–1650

Zhu W-Z, Zhou P, Xie J, Zhao G, Wei Z-H (2013) Advances in the pollination biology of olive (Olea europaea L.). Acta Ecol Sin 33:64–71