When Does the IC₅₀ Accurately Assess the Blocking Potency of a Drug?

Julio Gomis-Tena, Brandon M. Brown, Jordi Cano, Beatriz Trenor, Pei-Chi Yang, Javier Saiz, Colleen E. Clancy, and Lucia Romero*

ABSTRACT: Preclinical assessment of drug-induced proarrhythmogenicity is typically evaluated by the potency of the drug to block the potassium human ether-à-go-go-related gene (hERG) channels, which is currently quantified by the IC₅₀. However, channel block depends on the experimental conditions. Our aim is to improve the evaluation of the blocking potency of drugs by designing experimental stimulation protocols to measure the IC₅₀ that will help to decide whether the IC₅₀ is representative enough. We used the state-of-the-art mathematical models of the cardiac electrophysiological activity to design three stimulation protocols that enhance the differences in the probabilities to occupy a certain conformational state of the channel and, therefore, the potential differences in the blocking effects of a compound. We simulated an extensive set of 144 in silico I₉Kr blockers with different kinetics and affinities to conformational states of the channel and we also experimentally validated our key predictions. Our results show that the IC₅₀ protocol dependency relied on the tested compounds. Some of them showed no differences or small differences on the IC₅₀ value, which suggests that the IC₅₀ could be a good indicator of the blocking potency in these cases. However, others provided highly protocol dependent IC₅₀ values, which could differ by even 2 orders of magnitude. Moreover, the protocols yielding the maximum IC₅₀ and minimum IC₅₀ depended on the drug, which complicates the definition of a “standard” protocol to minimize the influence of the stimulation protocol on the IC₅₀ measurement in safety pharmacology. As a conclusion, we propose the adoption of our three-protocol IC₅₀ assay to estimate the potency to block hERG in vitro. If the IC₅₀ values obtained for a compound are similar, then the IC₅₀ could be used as an indicator of its blocking potency, otherwise kinetics and state-dependent binding properties should be accounted.

1. INTRODUCTION

The rapid component of delayed rectifier current (I₉Kr), which is encoded by the human ether-à-go-go-related gene (hERG), plays an important role on the cardiac action potential (AP) duration. This current is a well-known promiscuous drug target, and many drugs associated with torsade de pointes inhibit the I₉Kr and/or hERG channels.¹ Therefore, a key test of the current cardiac safety assessment of pharmacological compounds consists of the observed in vitro block of these channels.² This is typically quantified by the IC₅₀, which is the drug concentration that blocks 50% of the current. There is experimental evidence of the IC₅₀ dependency on the experimental conditions, such as voltage stimulus protocol, temperature, and expression system.¹⁻⁷ Indeed, hERG channel blockers can inhibit the channel by means of different mechanisms, which may exhibit time, voltage, and state dependence.⁵⁻⁸,⁹ However, there is no standardization of these assays at present, which favors the existence of a high variability of the IC₅₀ values reported in the literature and databases, such as FDA drug labels, PubChem,¹⁰ and DrugBank.¹¹ A few experimental works have compared the IC₅₀ values using different voltage protocols and have reported variations in the IC₅₀ values up to 10-fold when only changing the voltage protocol.⁴⁻⁶,¹² However, the number of drugs used in these studies was reduced. A very recent investigation of the factors that contribute to the IC₅₀ differences has been performed using a in silico drug binding and unbinding to the open and inactivated states not allowing drug-bound channels to change their conformational state.¹³ With these simple drug–channel interactions, the authors have elegantly shown that state dependence of drug binding is a major determinant of the protocol dependence of I₉Kr IC₅₀. However, that study only considered in silico drug binding and unbinding in the open and/or inactivated states, not in the closed state, despite the existence of compounds, such as ketoconazole and BeKm-
1, that preferentially block the channel in the closed state.5,8,9 In addition, drug-bound channels in that study were not allowed to change their conformational state, which avoids simulation of drug trapping, a very well-known phenomenon that takes place in the presence of certain drugs.14,15

Here, we attempt to shed light on the relevance of the IC\textsubscript{50} as an indicator of the I_{Kr} blocking potency of a compound and to improve the characterization of its blocking effects using a highly detailed Markov model considering a wide range of drug–channel interactions. We hypothesize that, as the drug–channel interaction may depend on the conformational state of the channel, stimulation at certain voltages where the probability of these states is very different will provide more information about the blocking potency than a unique voltage clamp protocol. In this work, we designed voltage protocols that could unmask distinct state-dependent potencies of block.

Then, we systematically carried out “in silico drug genesis” by creating a wide range of virtual drugs with different kinetics and affinities to the conformational states of the I_{Kr} channel. In silico drugs are able to bind and unbind to any conformational state of the channel: closed, open, and inactivated. Moreover, two kinds of drug-bound channels were simulated: those that do not change their conformational state and those that do it, which allows the simulation of drug trapping. Next, we obtained the Hill-plots for each virtual drug using our new protocols as well as other existing protocols and calculated the IC\textsubscript{50}s. Finally, we performed some experiments to support our simulation results.

2. MATERIALS AND METHODS

2.1. Drug Models. The human ventricular I_{Kr} was simulated using the five-state Markov chain proposed by

![Figure 1. Simulated Markov drug–I_{Kr} interaction models with nondrug-bound (C\textsubscript{3}, C\textsubscript{2}, C\textsubscript{1}, O, and I) and drug-bound (C\textsubscript{3d}, C\textsubscript{2d}, C\textsubscript{1d}, O\textsubscript{d}, and I\textsubscript{d}) states considering unstuck (A,C,E,G,I, and K) and stuck (B,D,F,H,J, and L) drug-bound channels. D is the drug concentration, and its product with k_C, k_O, and k_I corresponds to the association rates constants in the closed, open, and inactivated states, respectively, and r_C, r_O, and r_I are the dissociation rate constants in the closed, open, and inactivated states, respectively. Binding states are red colored. First column indicates the corresponding type of the drug–channel interaction and first row specifies the state of the channel when the drug is bound.](https://pubs.acs.org/doi/10.1021/acs.jcim.9b01085)
higher affinity to the open state, to the inactivated state, and with the same affinity, respectively. Finally, we labeled COI, ClosedOI, OpenCI, and InactivOC the drug binding simultaneously to both the closed and open states with the same affinity, with higher affinity to the closed, to the open, and to the inactivated state, respectively. We added the suffixes ss, s, m, f, and ff, depending on the slowest dissociation rate of the drug, which corresponded to 0.001, 0.003, 0.01, 0.1, and 10 s⁻¹, respectively. Diffusion (k) and dissociation (r) rate constants for each drug–IₙKᵣ interaction as tested in the model are included in the Supporting Information (Tables S1 and S2). Drug doses ranging from 10⁻¹¹ to 10⁻²⁺ mol/L (M) with 10⁻²⁺ M steps were simulated for each virtual drug in order to build their respective Hill plots. The temperature was set to 22 or 37 °C and intracellular and extracellular potassium concentrations were fixed to 130 and 4 mM, respectively.

2.2. Simulation of the Pseudo-ECG

Pseudo-ECGs were computed using a one-dimensional (1D) tissue model of a transmural wedge preparation, as in our previous work. The 1D model was composed by 60 endocardial cells, 45 midmyocardial cells, and 60 epicardial cells, each cell being 100 μm long, as defined in the O’Hara et al. model and it was paced at 1 Hz. The propagation of the AP was described by the following nonlinear reaction diffusion equation

\[C_m \frac{\partial V_m(x, t)}{\partial t} + \sum I_{\text{ion}} + a \frac{\partial}{\partial x} \left(\frac{1}{R_i(x)} \frac{\partial V_m(x, t)}{\partial x} \right) = 0 \]

where \(C_m \) stands for the membrane capacitance, \(a \) is the radius of the fiber, \(\sum I_{\text{ion}} \) is the sum of all the ionic currents flowing through the cellular membrane, and \(R_i \) represents the intracellular resistivity. Drug blocking effect on \(I_{\text{Kr}} \) was formulated using the standard sigmoid dose–response curve, parameterized using the half-maximal response dose (IC₅₀), and considering a Hill coefficient of 1 as in previous studies.

\[I_{\text{Kr}}(D) = \frac{I_{\text{Kr}}}{1 + \frac{D}{IC_{50}}} = 1 - b \]

where \(D \) is the drug concentration and “1 – b” is the fraction of unblocked channels.

2.3. Experimental Methods

All experiments were conducted manually with an EPC-10 amplifier (HEKA, ...
Lambrecht/Pfalz, Germany) at room temperature in the whole-cell mode of the patch-clamp technique. HEK-293 cells stably expressing hKv11.1 (hERG) under G418 selection were a generous gift from Craig January (University of Wisconsin, Madison). Cells were cultured in Dulbecco’s modified Eagle’s medium containing fetal bovine serum 10%, glutamine 2 mM, Na+ pyruvate 1 mM, penicillin 100 U/L, streptomycin 171.94 μM (100 μg/mL), and G418 1 M (500 mg/mL). Before experiments, cells were lifted using TrypLE and plated onto poly-L-lysine-coated coverslips, patch pipettes were pulled from soda lime glass (micro-hematocrit tubes) and had resistances of 2−4 MΩ. We used normal sodium Ringer for the external solution (in mM: NaCl 160, KCl 4.5, CaCl2 2, MgCl2 1, HEPES 10 (adjusted to pH 7.4, using HCl and NaOH, and 290−310 mOsm). The internal solution contained (in mM) CaCl2 5.375, MgCl2 1.75, EGTA 10, HEPES 10, KCl 120, and NaATP 4 (adjusted to pH 7.2, using HCl and NaOH, and 300−320 mOsm). For all experiments, solutions of dofetilide and moxifloxacin were always freshly prepared from 1, 10, or 100 mM stock solutions in dimethyl sulfoxide (DMSO) during the experiment. The final DMSO concentration never exceeded 1%.

2.4. Stimulation Protocols. Three different sets of voltage clamp protocols were used. The first and third sets were designed in this work while the second was adopted from the literature. The first set was composed of our new stimulation voltage clamp protocols, which consisted of a 5 s variable voltage conditioning step (at −80, 0, and 40 mV) followed by a 0.2 s test pulse at −60 mV repeated at 5.4 s intervals, from a holding potential of −80 mV (Figure 2, top). When the 5 s variable voltage was fixed at −80 mV, a 0.5 ms prepulse at −20 mV was included and the 0.2 s test pulse was applied at −50 mV. These protocols were called P-80, P0, and P40, respectively. The second set was composed of Protocol-O, Protocol-C, and the standard protocol (SP) defined by Yao et al. 2005.5 Protocol-O consisted of a 4.8 s conditioning step at 20 mV followed by a 0.5 s test pulse at −50 mV repeated at 6 s intervals, from a holding potential of −80 mV. Protocol-C consisted of a 1 s conditioning step at 20 mV followed by a 5 s test pulse at −50 mV repeated at 60 s intervals, from a holding potential of −80 mV. The SP consisted of a 4.8 s conditioning step at 20 mV followed by a 5 s test pulse at −50 mV repeated at 15 s intervals, from a holding potential of −80 mV. The third set of protocols consisted of two AP clamp protocols, P_AP1 and P_AP2, which were generated using a version of the mid-myocardial O’Hara et al. AP model22 whose IKr is reduced to 40% at 0.5 and 2 Hz, respectively. IKr and hERG channels were stimulated repeatedly until reaching the steady state at pretreatment control and under drug application. Peak tail current amplitudes were measured at steady state and Hill plots were constructed by plotting the steady-state tail peak current normalized to control for each concentration versus the decimal logarithm of the drug concentration, as in previous studies.5,6,25,27

3. RESULTS

3.1. Design of Voltage Protocols. As a drug–channel interaction may depend on the conformational state of the channel, and it depends on the membrane voltage, we studied the influence of the voltage of the conditioning step of the stimulation protocol on the probability of the IKr channel to occupy a specific conformational state using computer simulations. For this purpose, we considered a stimulation voltage clamp that consisted of a 5 s variable voltage (Vin) conditioning step followed by a 0.2 s test pulse at −60 mV repeated at 5.4 s intervals from a holding potential of −80 mV

![Graph](https://example.com/graph.png)

Figure 3. Simulated effects of voltage clamp protocols on IC50. Voltage clamp protocols (A) and the corresponding steady-state current traces before and after the application of selected virtual drugs: unstuck Inactivated_s (B), stuck Inactivated_s (C), and stuck ClosedO_s (D) at 22 °C. First column represents the Markovian schemes of the simulated drug–Ikr interactions. Second, third, and fourth columns correspond to the steady-state currents traces elicited for each protocol and arrows indicate peak tail current amplitudes at marked concentrations. Last column illustrates the corresponding Hill plots.
This protocol was applied in control (absence of drug) at different conditioning step voltages. Then, the average of the probabilities of the three closed states (C\text{AVG} solid line), the open state (O\text{AVG} dashed line), and the inactivated state (I\text{AVG} dotted line) for the whole protocol duration were computed as a function of the conditioning step voltage (Figure 2A). Moreover, the differences C\text{AVG} − O\text{AVG} (Figure 2B) and I\text{AVG} − O\text{AVG} (Figure 2C) were also calculated, as these differences will be key to select the conditioning step voltages that will provide more information about the blocking potency of the drug. Indeed, unstuck OpenC drugs are expected to produce the highest block when the stimulation protocol is such that it maximizes the probability of the open state (close to 0 mV, Figure 2A, long dashed line) while the probability of the closed state is low. It would occur when the C\text{AVG} − O\text{AVG} is small and O\text{AVG} is relatively high, which would correspond to a conditioning pulse close to 0 mV (Figure 2B). In addition, the lowest inhibition of the channels would occur when the C\text{AVG} − O\text{AVG} is maximum, which takes place for conditioning pulses at low voltages (Figure 2B). Therefore, the maximum and minimum IC\text{SO} of unstuck OpenC will be expected when applying this protocol with conditioning pulses close to −80 and 0 mV, respectively. For conditioning pulses at higher voltages, such as 40 mV the IC\text{SO} would be expected to be closer to the value obtained with the conditioning pulse at 0 mV. In the case of unstuck ClosedO drugs, the opposite behavior is expected. Regarding drugs with different affinities to the open and inactivated states, as I\text{AVG} − O\text{AVG} is maximum at 40 mV (Figure 2C), adoption of this voltage for the conditioning pulse would yield high inhibition for unstuck InactivO drugs. Therefore, the application of this protocol with conditioning steps at −80, 0, and 40 mV would highlight the differences in the potency of the block with the voltage. As conditioning steps at −80 mV raised very small currents to be measured in the experiments, we modified this protocol to include a prepulse at 20 mV for 0.5 s to open the channels. These protocols were labeled P-80, P0, and P40, respectively, as indicated in the Materials and Methods section. Figure 3A shows a representation of each protocol.

3.2. Simulated Effects of the Voltage Protocol on the IC\text{SO}.

Once the stimulation protocols were designed, I\text{Kr} inhibition produced by all the prototypical drugs was examined using P-80, P0, and P40.

Figure 3 summarizes the results obtained for three selected drugs: unstuck Inactivated_s (Figure 3B), stuck Inactivated_s (Figure 3C), and stuck ClosedO_s (Figure 3D). The voltage clamp protocols are represented at the top panel (Figure 3A). The Markovian schemes of the simulated drug−I\text{Kr} interactions are illustrated in the first column, the steady-state currents traces elicited for each protocol, namely, P-80, P0, and P40, are depicted in the second, third, and fourth column, respectively, and the corresponding Hill plots are constructed in the last column. Unstuck Inactivated_s (Figure 3B) produced similar inhibition of I\text{Kr} tail currents with P-80, P0, and P40, so the resulting Hill plot curves are superimposed and the IC\text{SO} values are the same. Indeed, in the case of unstuck drugs that only bind and unbend to one state, the IC\text{SO} values do not depend on the stimulation protocol, as it is determined by the ratio between the diffusion (k) and the “off” rate (r). Although the steady-state block is the same for each protocol, the time needed to reach it depends on the voltage protocol as it determines the mean probabilities of the channel of being on each state, and, therefore the average of the time during the cycle to be on the state where the drug can bind and unbend. However, stuck Inactivated_s (Figure 3C) had higher inhibitory effects with protocols P0 (second column) and P40 (third column) than with P-80 (first column), which is consistent with the fact that I\text{AVG} is high for P0 and P40 and almost zero for P-80 (Figure 2A, V = 0, 40 and −80 mV, respectively). For example, 10 nM stuck Inactivated_s inhibited tail currents by approximately 50% with P0 and P40, whereas it only reached approximately 20% with P-80. Subsequently, the Hill plot curves and the IC\text{SO} values corresponding to P0 (red) and P40 (green) are similar while the one corresponding to P-80 (blue) is shifted to the left. Therefore, Hill plots of drugs binding just to one state of the channel were highly dependent on the state of the drug-bound channel. Unstuck variants had the same IC\text{SO} with the three protocols while the stuck ones exhibited the smallest IC\text{SO} with the protocol that enhanced the probability of the state where the drug binds and unbinds; P40, P0, and P-80 for Inactivated (Figure 3C), Open, and Closed drugs, respectively (not shown). Finally, stuck ClosedO_s (Figure 3D) revealed higher potency to block I\text{Kr} with P-80, followed by P0, then with P40, so the Hill plot curves as well as the IC\text{SO} values are different. It is in close agreement with the inverse dependency of C\text{AVG} and I\text{AVG} − O\text{AVG} with V\text{m} (Figure 2A,B). These results indicate that unstuck Inactivated_s (Figure 3B) produces voltage independent I\text{Kr} steady-state blocks. On the contrary, stuck Inactivated_s (Figure 3C) produces smaller I\text{Kr} inhibition at low voltages, as it binds and unbinds to the inactivated state, and stuck ClosedO_s (Figure 3D) at high voltages, as it has a preferential affinity to the closed states. Therefore, the dissimilar effects produced by the drugs when applying our set of voltage clamp protocols manifest the differences in drug−channel interactions.

Figure 4 illustrates the simulated Hill plots for each type of the prototypical drug binding to two states with state-dependent affinities using the proposed protocols: P-80 (blue), P0 (red), and P40 (green) at 22 °C. Both variants of ClosedO_s (Figure 4A) have the minimum IC\text{SO} with P-80, as expected, as more channels are closed at −80 mV, while the maximum IC\text{SO} is registered with P0 or P40. In the case of OpenC_s drugs, the maximum IC\text{SO} is registered with P-80, which maximizes the time the channels are closed and tends to reveal the drug’s affinity to this state. OpenC_s drugs only showed small differences of IC\text{SO}, P0 being the protocol showing the smallest IC\text{SO}, as it is the one that enhances the most the probability of the open state. Finally, the maximum IC\text{SO} of InactivO_s (Figure 4D) is registered with P-80 as this protocol minimizes the probability of the inactivated state, when the affinity of the drug is higher. Drugs with similar state preferences and drug-bound states exhibited similar Hill plot patterns although the maximum IC\text{SO} ratio depended on the value of the slowest dissociation rate of the drug. For example, the maximum IC\text{SO} of InactivO_m also corresponded to P-80 and the IC\text{SO} obtained with P0 and P40 were very similar, like InactivO_s. However, the maximum IC\text{SO} ratio was 13.0 instead of 23.2, which was the corresponding to InactivO_s (Figure 4D). These results suggest that the influence of the voltage clamp protocol on the estimation of the inhibitory effects of a compound depends on the specific interaction with the channel.

As this study was extended to the 144 in silico drugs, Hill plots for every prototypical drug were constructed using our proposed protocols (P0, P40, and P-80) and IC\text{SO} values were...
Figure 4. Simulated Hill plots for each type of the prototypical drugs binding to two states with state-dependent affinities using the proposed protocols: P-80 (blue), P0 (red) and P40 (green) at 22 °C. Unstuck (top) and stuck (bottom) variants of ClosedO_s (A), OpenC_s (B), OpenI_s (C), and InactivO_s (D). The maximum IC50 ratio for each drug is also indicated in each panel.

Figure 5. Maximum IC50 ratios obtained with our proposed protocols (P0, P40, and P-80) at 22 °C. Filled (blue and green) and nonfilled (black and red) bars for stuck and unstuck drugs, respectively.
important differences were observed. The highest IC$_{50}$ ratio at 35 °C was 105.1. The maximum IC$_{50}$ ratio that increased the most with the temperature belonged to unstuck ClosedO$_{ss}$ (Figure 7A) while the one that decreased the most corresponded to stuck InactivO$_{ss}$ (Figure 7B). Temperature-related differences for the other virtual drugs were smaller than two-fold. Therefore, the impact of the voltage protocol on the IC$_{50}$ is influenced by temperature, although to a small extent.

3.3. Experimental Validation. In order to provide an experimental validation to our results, our protocols were applied to construct the experimental Hill plots of two well-known I$_{Kr}$ blockers, moxifloxacin and dofetilide, at 22 °C. The moxifloxacin IC$_{50}$ corresponding to P0, P40, and P-80 was 373, 196, and 143 μM, respectively (Figure 8A, left panel), which gives rise to a maximum ratio of 2.6. This ratio is in accordance to the experiments of Alexandrou et al. 200628 performed at 22 °C, that provide a maximum ratio of 1.9. A much more diluted influence of the stimulation protocol on dofetilide IC$_{50}$ was registered. Hill plots look completely different (Figure 8B, left panel) and disparate IC$_{50}$ values are obtained: 57, 193, and 695 μM, which correspond to P0, P40, and P-80, respectively. It yields a maximum ratio of 12.2, which is approximately 3-fold the one calculated from studies, where the only factor that changed was the voltage protocol.12 Moreover, our experiments support our finding that no stimulation protocol can provide the maximum IC$_{50}$ for every drug. Indeed, the P-80 protocol raised the maximum moxifloxacin IC$_{50}$ value while P0 provided the minimum, contrarily to dofetilide.

Therefore, our experiments support the potential use of our protocols to discriminate drugs with a small protocol dependence of the drug block, such as moxifloxacin, from drugs with an enormous dependence, such as dofetilide. Our experiments also corroborate that the maximum IC$_{50}$ ratios obtained with our protocols are higher than with previous protocols, and the difficulty to define a unique protocol to assess the I$_{Kr}$ IC$_{50}$ for all I$_{Kr}$ blockers.

3.4. Simulated Effects of IC$_{50}$ Differences on the QT Interval. In order to show how dissimilar estimates for the IC$_{50}$ would affect the prediction of drug-induced QT interval prolongation, pseudo-ECGs were computed in the presence of moxifloxacin and dofetilide. Concentrations of both drugs were fixed to the IC$_{50}$ values obtained with P40, as this protocol provided an intermediate IC$_{50}$ value for both drugs. Then, the drug block was simulated using the simple pore equation without considering the kinetics and conformational state preference, as done in many previous works.$^{21,23-25}$ Figure 8 shows that when the estimate of the IC$_{50}$ used in the simulations was the one obtained with P40, a 106 ms QT prolongation—from 310 ms in control (black) to 416 ms...
stimulation protocols to detect di-
of the blocking potency. First, we designed new experimental-
protocols depending on the voltage. Second, we simulated a wide variety-
of the following therapeutic concentrations: 6.23 μM-
and 2 nM dofetilide (see Figure S3 in the-
Supporting Information). The predicted QT intervals for-
moxifloxacin were 318, 319, and 323 ms when using the IC50-
corresponding to P40, P0, and P-80, respectively, and for-
dofetilide they were 326, 322, and 317 ms, respectively. Again,-
the discrepancies were higher for dofetilide (9 ms) than for-
moxifloxacin (5 ms). Therefore, differences in estimates for the-
IC50 involve variances in the prediction of the QT interval.

3.5. Clinical Relevance of the IC50s Obtained with the-
Proposed Stimulation Protocols. The ultimate objective of-
studying the blocking potency of drugs is to know the effects of-
the drugs in vivo. As our proposed stimulation protocols are far-
from the time courses of the membrane potentials in vivo, we-
also aimed to investigate the drug effects when stimulating the-
channels with AP waveforms to study whether the blocking-
effects observed with our three proposed protocols are close to-
those estimated with more realistic voltage waveforms. For this-
purpose, we simulated the Hill plots for every prototypical-
drug with P_AP1 and P_AP2, which correspond to the steady-
state APs obtained using a version of the mid-myocardial-
O’Hara et al. AP model17 whose fIg is reduced to 40% at 0.5-
and 2 Hz, respectively. Figure 9 illustrates these AP clamp-
protocols (A and B) and shows a comparison of the simulated-
Hill plots with these AP clamps (dotted) and with our three-
proposed protocols (solid) for each type of the prototypical-
drugs binding to two states with state-dependent affinities. Our-
results showed that the curves obtained with P_AP1 were-
similar to the ones corresponding to P80 while those registered-
with P_AP2 looked like those obtained with P0. This-
observation seems reasonable as in P_AP1 the membrane-
voltage is −80 mV most of the time with short intervals of-
positive potential and in P_AP2 the membrane voltage is close-
0 mV for a long proportion of the time. These results may-
lead to the conclusion that P-80 and P0 would be enough to-
characterize the fIg block under realistic conditions, P40 being-
less relevant. However, the IC50 obtained with P40 could be-
useful to study the fIg block in situations that promote channel-
inactivation. Our results suggest that the blocking potentials-
observed with our three proposed protocols are in line with-
the ones that will be exerted under realistic voltage waveforms.

4. DISCUSSION

4.1. Main Findings. We developed a computational-
approach to investigate whether the IC50 values obtained for-
a certain drug could be good estimators of the inhibitory-
effects in vivo and to propose improvements in the assessment-
of the blocking potency. First, we designed new experimental-
stimulation protocols to detect different inhibitory potentials-
depending on the voltage. Second, we simulated a wide variety-
of fIg—drug interactions with increasing drug concentrations-
using the new stimulation protocols. Third, we extracted the-
IC50 values for each drug with the new protocols and with-
others from the literature and calculated the maximum ratio-
of IC50 for each drug—protocol combination. Fourth, we-
performed experiments to support our theoretical observations.
important aspects. First, our protocols were specifically designed to unmask the potential differences in the blocking effects of a compound because of the existence of dissimilarities in the affinities to each conformational state of the hERG channel. In addition, the generation and simulation of a wide variety of dynamic models of the I_{Kr}—drug interaction with very diverse kinetics and affinities to the conformational states of the channel, which is to date hardly possible to achieve experimentally. Importantly, our experiments confirmed that the protocol providing the maximum IC$_{50}$ value was drug-specific. This suggests that the adoption of a standard stimulation protocol would dramatically under- or overestimate the blocking potency of certain drugs. In our opinion, the use of our three proposed protocols is crucial to build a better picture of the inhibitory effects and the possible clinical outcomes of a compound.

4.2. Impact of the Stimulation Protocol on Blocking Potency Estimation. Some experimental studies have evidenced that the blocking potencies of drugs may vary with the stimulus pattern. Kirsch, et al. 2004 used several patch-clamp voltage protocols to study hERG inhibition of 15 drugs. They found differences in the IC$_{50}$ for some drugs, the maximum IC$_{50}$ ratio being 3.2. Later, Yao et al. in 2005 designed two voltage protocols, Protocol-O and Protocol-C, and compared their results with the SP. BeKm-1, a compound that preferentially blocks the channel in the closed, showed the biggest differences in the concentration—response curves. This is in agreement with our simulations, as most of the highest IC$_{50}$ ratios correspond to virtual drugs that exclusively or preferentially bind in the closed state (see Figure 5). However, the IC$_{50}$ ratios obtained for these drugs in our simulations are higher than 20 (up to 105.1) while the ratio registered for BeKm-1 is 10.3. It corresponds to the ratio between the IC$_{50}$ obtained with a SP over the IC$_{50}$ obtained with Protocol-O. Protocol-C revealed a smaller block but, unfortunately, the concentration—response curve was incomplete and no IC$_{50}$ was provided. Obtaining the full curve could have provided a higher IC$_{50}$ ratio.

More recently, Milnes et al. in 2010 studied the effects of the stimulation protocol on hERG inhibition for cisapride and dofetilide at 37 °C. They provided maximum IC$_{50}$ ratios of 10.3 and 3.75, respectively, when only changing the voltage protocol. The maximum ratio in our experiments with dofetilide is 12.8, which is higher than 3.75. This can be because of the differences on the stimulation protocols and temperature.

Our results also reveal that protocols yielding the maximum IC$_{50}$ and minimum IC$_{50}$ depend on the drug. Our experiments provided the lowest IC$_{50}$ value with P-80 in the case of moxifloxacin and with P0 for dofetilide. Our observation that the protocol revealing the maximum potency of the block is drug-dependent is also supported by Yao et al. 2005.

Therefore, our study of the impact of the stimulation protocol on the estimation of current inhibition is in accordance with previous experiments, but it reveals a more critical role of the voltage protocol. A very recent investigation has studied protocol-dependent differences in IC$_{50}$ and observed that state preferential binding, drug-binding kinetics and trapping are key factors. Their Markov models included a state-dependent block, but they did not reproduce other important characteristics, such as closed-state trapping. Contrarily, our Markovian models are very comprehensive as they reproduce a state-dependent block, trapping as well as drug binding and unbinding to any state of the channels. Moreover, our models can mimic drug-bound channels changing its conformational state or remaining unchanged.

In order to know if our main results were highly dependent on the ion channel model, we repeated some key simulations using two additional formulations of the hERG channel: Lee et al. and Li et al. models. These two Markovian models have distinct structures and transition rates, which are also different from the Fink et al. model. Figures S4 and S5 of the Supporting Information represent the Markovian schemes (left column) and the simulated Hill plots for each type of the prototypical drugs binding to two states with state-dependent affinities using the proposed protocols: P-80 (blue), P0 (red), and P40 (green) at 22 °C using Lee et al. and Li et al. hERG models, respectively. These figures show the simulated Hill plots for each type of the prototypical drug binding to the two states with state-dependent affinities using the proposed protocols, as in Figure 4, where they were simulated using the Fink et al. model. The patterns of the Hill plots obtained with the three models were very similar, although there are quantitative differences that affect the values of the maximum IC$_{50}$ ratios. In the three cases, the IC$_{50}$ protocol dependency relied on the tested compounds and the protocols yielding the maximum IC$_{50}$ and minimum IC$_{50}$ depended on the drug with the three ionic models. Indeed, both variants of ClosedO_s (Figures 4A,F, S4B, and S5B) have the minimum IC$_{50}$ with P-80 and the IC$_{50}$ registered with P0 and P40 are substantially higher. Also, in the case of OpenC_s drugs (Figures 4B, S4C and S5C), the maximum IC$_{50}$ was registered with P-80 and the minimum with P0, which is similar to the one obtained with P40. In addition, Open_l drugs showed small differences of IC$_{50}$ with the three models (Figures 4C, S4E and S5E), the minimum IC$_{50}$ being obtained with P0, although it could be very similar to the ones registered with the other protocols. Moreover, the maximum IC$_{50}$ of Inactivated_s was registered with P-80 with the three models (Figures 4D, S4F, and S5F), and the IC$_{50}$ values obtained with P0 and P40 were similar.

We also obtained the Hill plots of unstuck and stuck Inactivated_s with Lee et al. and Li et al. models (see middle and bottom rows of Figure S6 of the Supporting Information) and they clearly resemble the ones obtained with the Fink et al. model (top row of Figure S6 and right panels of Figure 3B, C), the unstuck variant having the same IC$_{50}$ for the three protocols. Therefore, there are also drugs that showed no differences or small differences on the IC$_{50}$ value when simulated with Lee et al. and Li et al. models. Overall, the main conclusions of this work hold when the ionic channel model is simulated with Lee et al. or the Li et al. models, which have different structures and transition rates from the Fink et al. model, which suggests that the main conclusions of this work are not dependent of the ionic model used.

4.3. Implications for Drug Safety Assessment. Our work has important implications for drug safety assessment. Indeed, one of the most relevant cardiac safety tests of pharmacological compounds consists of the measurement of hERG IC$_{50}$ in vitro. As previously explained, other authors have shown differences on IC$_{50}$ values, but they were smaller than in our work, and some of these authors considered that the use of a certain protocol could be enough for safety studies. However, different protocols and temperatures are proposed. Kirsch and co-workers propose a step-ramp protocol at near-physiological temperatures, while Yao and colleagues propose the long-pulse step protocol at room temperature.
More recently, the comprehensive in vitro proarrhythmia assay initiative, led by the FDA, has raised the need of a standardization of the experiments used to obtain the IC_{50} values. However, our results suggest that the existence of a wide variety of drug–channel interactions impairs the definition of a “standard” protocol to minimize the influence of the stimulation protocol on the IC_{50} measurement. In order to improve the assessment of drug safety, we suggest the adoption of a three-protocol IC_{50} assay. Provided that the differences in IC_{50} for a compound are small enough, the IC_{50} could be used for the assessment of the inhibitory effects of the compound. On the contrary, supposing the IC_{50} resulted in very different values, the IC_{50} would be a poor indicator. Then, other characteristics, like kinetics and state-dependent binding properties should be investigated to have a better picture of the blocking effects of the compound.

Although the proposed protocols do not correspond to electrophysiological conditions, our simulations with the AP clamp protocols have shown that the Hill plots obtained with P-80 are close to those obtained with P_AP1 and P0 with P_AP2 which come from voltage membrane time courses of cells with a reduced repolarization reserve at slow and fast pacing, respectively. Therefore, the IC_{50} obtained from our protocols would be related to the blocking potencies of the drugs in vivo. However, considering only these two IC_{50} values would be an oversimplification, as electrical activity is very different during arrhythmic episodes or in the presence of pathologies, like hypo or hyperkalemia, ischemia, or heart failure. In addition, the AP waveform is not uniform in the heart. There are apico-basal and transmural differences. Purkinje AP time courses are also different from ventricular AP time courses and there is a natural intersubject variability. These reasons led us to try to design protocols to infer the drug potency in each conformational state of the channel. We designed P-80, P0, and P40 to investigate the drug block in the closed, open, and inactivated states, respectively. Although at 0 mV not all channels are open, the open probability is relatively high at that voltage. If the IC_{50} obtained with the three protocols are similar, we can assume that the channel block that can occur in any real situation will be similar. On the contrary, if the values are disparate, the channel block produced by the drug may be extremely dependent on the situation.

Recent works propose alternative methods to assess the proarrhythmic risk of drugs by using the modeling and simulation of drug–channel interactions and considering the kinetics of block. Some authors have even attempted to implement a standardized protocol for the measurement of kinetics and potency of the hERG block. Unfortunately, their results highlight the challenges in identifying it over a range of kinetics. We also agree that drug safety assessment would improve by considering the kinetics of the block, but, to the best of our knowledge, most pharmaceutical companies are not constructing mathematical models of drug–hERG interactions based on the current block measured using a dynamic voltage protocol, which seems to require a substantial time. Formulation of mathematical models describing drug–channel interactions is not an easy work. Even the authors proposing this method obtain different models depending on the seed used to fit the model, which may lead to different predictions. In addition, drugs may bind and unbind the channel by many mechanisms and, as far as we are concerned, only a few possible types of drug–channel interactions are being accounted for in these attempts. Indeed, their Markovian models do not consider the possibility of the drug binding and unbinding to any channel state and their simulated drug-bound channels have less conformational states than the unbound channels. Therefore, only a few types of drug–channel interactions are considered in these attempts. The above-mentioned restrictions reduce the number of parameters to be fitted in the process of drug model development and simplify it. However, it can also lead to a misunderstanding of the mechanism of drug–channel interaction, which can result in unrealistic predictions of the effects of the compounds. Therefore, we suggest the application in the industry of the protocols designed here. If the three IC_{50} values are similar, then IC_{50} is a good indicator of the blocking effects of the compound and it can be used to predict its proarrhythmic risk, by using the Tx index for example. Otherwise, the study of the kinetics and state-dependent binding would be needed to better characterize it, and the formulation of mathematical models describing drug–channel interactions would be worthy.

4.4. Limitations. Our work suggests the use of three voltage protocols instead of one when assessing the blocking potential of drugs. We have applied them to a wide range of virtual drugs and to two off-the-shelf drugs. Although it is not possible to experimentally reproduce our simulations, our work would also benefit from experiments with more types of drugs.

We have accounted for the effect of the temperature on the transition rates between the channel states. However, the influence of temperature on binding and unbinding rates of the virtual drugs has not been included as there is not a universal dependence followed by all compounds.

It is to mention that there are factors affecting data interpretation in ligand binding assays under equilibrium conditions that must be considered when designing and performing experiments to obtain Hill plot curves, such as ligand depletion, nonattainment of equilibrium, buffer composition, and the temperature at which the assay is conducted.

All in all, we believe that our three-protocol hERG-IC_{50} assay would improve the evaluation of the proarrhythmic risk of drugs in the early stages of drug development.

5. CONCLUSIONS

Our work reveals that the evaluation of the blocking potency of drugs in the early stages of drug development could be improved by the use of our three-protocol hERG-IC_{50} assay, which was designed to reveal the dissimilarities in the affinity of the drug to the different conformational states of the channel. Our results show that the influence of the stimulation protocol on IC_{50} evaluation depends on the specific I_{Na}–drug interaction. In some cases, the three IC_{50} values registered for a compound are the same or very similar, then, the IC_{50} could be used as an estimator of the inhibitory potency. However, in other cases, the IC_{50} estimated by two different protocols could vary as much as 2 orders of magnitude. Then, kinetics and state-dependent properties would also be necessary to predict drug effects. Importantly, as the protocol that provided the maximum IC_{50} was specific to the drug, the design of a “standard” protocol that provides a representative IC_{50} value for any compound becomes pointless. To sum up, adoption of our hERG-IC_{50} assay on the methods of routinely evaluating the effects of a drug on hERG channels on safety
pharmacology would ultimately result in more accurate clinical predictions.

■ ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.9b01085.

Maximum IC_{50} ratios for each simulated drug obtained with our protocols and with Yao, et al. 2005 protocols at 22 °C; maximum IC_{50} ratios obtained with our proposed protocols at 35 °C and comparison with 22 °C; simulated steady state pseudo-ECGs for moxifloxacin and dofetilide; simulated Hill plots for each type of the prototypical drugs binding to two states with state-dependent affinities using the proposed protocols at 22 °C using the Lee et al. hERG model; simulated Hill plots for each type of the prototypical drugs binding to two states with state-dependent affinities using the proposed protocols at 22 °C using the Li et al. hERG model, and simulated Hill plots for unstuck and stuck Inactivated states using the three ionic channel models: Fink et al., Lee et al. model, and Li et al. (PDF)

■ AUTHOR INFORMATION

Corresponding Author
Lucia Romero — Centro de Investigación e Innovación en Bioingeniería (C2B), Universitat Politècnica de Valencia, 46022 Valencia, Spain; orcid.org/0000-0003-4605-8630; Phone: +34 96 3877000 ext. 76024; Email: lromero@ci2b.upv.es

Authors
Julio Gomis-Tena — Centro de Investigación e Innovación en Bioingeniería (C2B), Universitat Politècnica de Valencia, 46022 Valencia, Spain
Brandon M. Brown — Department of Pharmacology, University of California, Davis, Davis, California 95616-8636, United States
Jordi Cano — Centro de Investigación e Innovación en Bioingeniería (C2B), Universitat Politècnica de Valencia, 46022 Valencia, Spain
Beatriz Trenor — Centro de Investigación e Innovación en Bioingeniería (C2B), Universitat Politècnica de Valencia, 46022 Valencia, Spain
Pei-Chi Yang — Department of Pharmacology, University of California, Davis, Davis, California 95616-8636, United States
Javier Saiz — Centro de Investigación e Innovación en Bioingeniería (C2B), Universitat Politècnica de Valencia, 46022 Valencia, Spain
Colleen E. Clancy — Department of Pharmacology, University of California, Davis, Davis, California 95616-8636, United States

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.jcim.9b01085

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was partially supported by the Dirección General de Política Científica de la Generalitat Valenciana (PROMETEU2016/088), Ministerio de Economía y Competitividad, and Fondo Europeo de Desarrollo Regional (FEDER) DPI2015-69125-R (MINECO/FEDER, UE) as well as Ayuda a Primeros Proyectos de Investigación (PAID-06-18), Vicerrectorado de Investigación. Innovación y Transferencia de la Universitat Politècnica de Valencia (UPV), València, Spain. The research was also supported by the National Institutes of Health 1R01HL128537-01A1.

■ ABBREVIATIONS

C_{AVG}, the average of the probabilities of the three-closed states; CiPA, comprehensive in vitro pro-arrhythmia assay; ClosedO, drug binding simultaneously to both the open and closed states with higher affinity to the closed state; CO, drug binding simultaneously to both the open and closed states with the same affinity to both states; COI, drug binding simultaneously all states with the same affinity; ClosedOI, drug binding simultaneously with higher affinity to the closed state; hERG, human ether-a-go-go-related gene; I_{AVG}, the average of the probability of the inactivated state; InactivO, drug binding simultaneously to both the inactivated and open states with higher affinity to the inactivated state; InactivOC, drug binding simultaneously all states with higher affinity to the inactivated state; IO, drug binding simultaneously to both the inactivated and open states with the same affinity to both states; IC_{50}, drug concentration that obstructs the 50% of the channels; I_{op}, rapid component of the delayed rectifier current; O_{AVG}, the average of the probability of the open state; OpenC, drug binding simultaneously to both the open and closed states with higher affinity to the open state; OpenCI, drug binding simultaneously all states with higher affinity to the inactivated state; OpenI, drug binding simultaneously to both the open and inactivated states with higher affinity to the open state; stuck drug, drug that does not allow bound channels to change their conformational state unless unbinding occurs; TdP, torsade de pointes; unstuck drug, drug that allows bound channels to change their conformational state.

■ REFERENCES

(1) Gintant, G. A. Preclinical Torsades-de-Pointes Screens: Advantages and Limitations of Surrogate and Direct Approaches in Evaluating Proarrhythmic Risk. Pharmacol. Ther. 2008, 119, 199–209.
(2) Food and Drug Administration. International Conference on Harmonisation; Guidance on STB Nonclinical Evaluation of the Potential for Delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals. Fed. Regist. 2005, 70, 61133–61134.
(3) Witchel, H. J.; Milnes, J. T.; Mitcheson, J. S.; Hancox, J. C. Troubleshooting Problems with in Vitro Screening of Drugs for QT Interval Prolongation Using HERG K+ Channels Expressed in Mammalian Cell Lines and Xenopus Oocytes. J. Pharmacol. Toxicol. Methods 2002, 48, 65–80.
(4) Kirsch, G. E.; Trepavkova, E. S.; Bricmeone, J. C.; Sidach, S. S.; Erickson, H. D.; Kochan, M. C.; Shyjka, L. M.; Lacerda, A. E.; Brown, A. M. Variability in the Measurement of HERG Potassium Channel Inhibition: Effects of Temperature and Stimulus Pattern. J. Pharmacol. Toxicol. Methods 2004, 50, 93–101.
(5) Yao, J.-A.; Xu, X.; Lu, D.; Baker, R. L.; Daharsh, E.; Atterton, P. Estimation of Potency of HERG Channel Blockers: Impact of Voltage Protocol and Temperature. J. Pharmacol. Toxicol. Methods 2005, 52, 146–153.
(6) Stork, D.; Timin, E. N.; Berjukow, S.; Huber, C.; Hohaus, A.; Auer, M.; Herin, S. State Dependent Dissociation of HERG Channel Inhibitors. Br. J. Pharmacol. 2009, 151, 1368–1376.
(7) Hancox, J. C.; McPate, M. J.; El Harchi, A.; Zhang, Y. H. The HERG Potassium Channel and HERG Screening for Drug-Induced Torsades de Pointes. Pharmacol. Ther. 2008, 119, 118–132.
(8) Durnaine, R.; Roy, M.-L.; Brown, A. M. Blockade of HERG and Kv1.5 by Ketonezolam. J. Pharmacol. Exp. Ther. 1998, 286, 727–735.
(9) Milnes, J. T.; Dempsey, C. E.; Ridley, J. M.; Crocioni, O.; Arcangelo, A.; Hancox, J. C.; Witchel, H. J. Preferential Closed Channel Blockade of HERG Potassium Currents by Chemically Synthesised BeKm-1 Scorpion Toxin. FEBS Lett. 2003, 547, 20–26.
(10) Kim, S.; Thiessen, P. A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B. A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S. H. PubChem Substance and Compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213.
(11) Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.; Grant, J. R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assenpourn, N.; Jynkkan, I.; Li, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A Major Update to the DrugBank Database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082.
(12) Milnes, J. T.; Witchel, H. J.; Leaney, J. L.; Leishman, D. J.; Hancox, J. C. Investigating dynamic protocol-dependence of hERG potassium channel inhibition at 37 °C: Cisapride versus dofetilide. J. Pharmacol. Toxicol. Methods 2010, 61, 178–191.
(13) Lee, W.; Windley, M. J.; Perry, M. D.; Vandenberg, J. I.; Hill, A. P. Protocol-Dependent Differences in IC50 Values Measured in Human Ether-á-Go-Go-Related Gene Assays Occur in a Predictable Way and Can be Used to Quantify State Preference of Drug Binding. Mol. Pharmacol. 2019, 95, 537–550.
(14) Carmeliet, E. Voltage- and Time-Dependent Block of the Delayed K+ Current in Cardiac Myocytes by Dofetilide. J. Pharmacol. Exp. Ther. 1992, 262, 809–817.
(15) Mitcheson, J. S.; Chen, J.; Sanguinetti, M. C. Trapping of a Methanesulfonanilide by Closure of the HERG Potassium Channel Activation Gate. J. Gen. Physiol. 2000, 115, 229–240.
(16) Fink, M.; Noble, D.; Virag, L.; Varro, A.; Giles, W. R. Contributions of HERG K+ Current to Repolarization of the Human Ventricular Action Potential. Prog. Biophys. Mol. Biol. 2008, 96, 357–376.
(17) Romero, L.; Trenor, B.; Yang, P.-C.; Saiz, J.; Clancy, C. E. In silico screening of the impact of HERG channel kinetic abnormalities on channel block and susceptibility to acquired long QT syndrome. J. Mol. Cell. Cardiol. 2015, 87, 271–282.
(18) Colquhoun, D.; Dowsland, K. A.; Beato, M.; Plesed, A. J. R. How to Impose Microscopic Reversibility in Complex Reaction Mechanisms. Biophys. J. 2004, 86, 3510–3518.
(19) Lee, W.; Mann, S. A.; Windley, M. J.; Imtiqaz, M. S.; Vandenberg, J. I.; Hill, A. P. In silico assessment of kinetics and state dependent binding properties of drugs causing acquired LQTS. Prog. Biophys. Mol. Biol. 2016, 120, 89–99.
(20) Ellinwood, N.; Dobrev, D.; Morotti, S.; Grandi, E. Revealing Kinetics and State-Dependent Binding Properties of IKur-Targeting Drugs That Maximize Atrial Fibrillation Selectivity. Chaos 2017, 27, 093918.
(21) Romero, L.; Cano, J.; Gomis-Tena, J.; Trenor, B.; Sanz, F.; Pastor, M.; Saiz, J. In Silico QT and APD Prolongation Assay for Early Screening of Drug-Induced Proarrhythmic Risk. J. Chem. Inf. Model. 2018, 58, 867–878.
(22) O’Hara, T.; Virag, L.; Varró, A.; Rudy, Y. Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Comput. Biol. 2011, 7, No. e1002061.
(23) Mirams, G. R.; Cui, Y.; Sher, A.; Fink, M.; Cooper, J.; Heath, B. M.; McMahon, N. C.; Gavaghan, D. J.; Noble, D. Simulation of Multiple Ion Channel Block Provides Improved Early Prediction of Compounds’ Clinical Torsadogenic Risk. Cardiovasc. Res. 2011, 91, 53–61.