Human DNA Polymerase \(\lambda \) Functionally and Physically Interacts with Proliferating Cell Nuclear Antigen in Normal and Translesion DNA Synthesis*

Giovanni Maga††, Giuseppe Villani†, Kristijan Ramadani‡, Igor Shevlev†††, Nicolas Tanguy Le Gac‡, Luis Blanco‡‡, Giuseppina Blanca‡, Silvio Spadari‡, and Ulrich Hübser†

From the *Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche, Via Abbiati Grassero 207, I-27100 Pavia, Italy, the *Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, 205 Route de Narbonne, 31077 Toulouse Cedex, France, the Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland, the ‡†Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute, Leningrad District, Gatchina 188300, Russia, and the ‡‡Centro di Biologia Molecolare Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autonoma, Madrid 28089, Spain

Proliferating cell nuclear antigen (PCNA) has been shown to interact with a variety of DNA polymerases (pol) such as pol \(\delta \), pol \(\epsilon \), pol \(\iota \), pol \(\kappa \), pol \(\eta \), and pol \(\beta \). Here we show that PCNA directly interacts with the newly discovered pol \(\lambda \) cloned from human cells. This interaction stabilizes the binding of pol \(\lambda \) to the primer template, thus increasing its affinity for the hydroxyl primer and its processivity in DNA synthesis. However, no effect of PCNA was detected on the rate of nucleotide incorporation or discrimination efficiency by pol \(\lambda \). PCNA was found to stimulate efficient synthesis by pol \(\lambda \) across an abasic (AP) site. When compared with pol \(\delta \) human pol \(\lambda \) showed the ability to incorporate a nucleotide in front of the lesion. Addition of PCNA led to efficient elongation past the AP site by pol \(\lambda \) but not by pol \(\delta \). However, when tested on a template containing a bulky DNA lesion, such as the major cisplatin Pt-d(GpG) adduct, PCNA could not allow translesion synthesis by pol \(\lambda \). Our results suggest that the complex between PCNA and pol \(\lambda \) may play an important role in the bypass of abasic sites in human cells.

In the last few years the number of known eukaryotic DNA polymerases (pols), including terminal transferase and telomerase, has increased to at least 19 (1). A particular pol might have more than one functional task in a cell, and a particular DNA transaction may require more than one pol, suggesting that nature has provided various safety mechanisms. This multifunctional feature is especially valid for the variety of novel pols identified in the last 3 years. These are the lesion-repli-

cating enzymes pol \(\zeta \), pol \(\eta \), pol \(\iota \), pol \(\kappa \), and Rev1, and a group of pols called pol \(\theta \), pol \(\lambda \), pol \(\mu \), pol \(\sigma \), and pol \(\phi \) that fulfill a variety of other tasks. The gene encoding the novel pol \(\lambda \) was cloned and mapped to mouse chromosome 19 and to human chromosome 10 (2, 3). pol \(\lambda \) contains all the critical residues involved in DNA binding, nucleotide binding, nucleotide selection, and catalysis of DNA polymerization and has been assigned to family X based on sequence homology with pol \(\beta \), pol \(\mu \), and terminal deoxynucleotidyltransferase. pol \(\lambda \) has been suggested to play a role in meiotic recombination and DNA repair, and the recent demonstration of an intrinsic 5’-deoxyribose-5-phosphate lyase activity in pol \(\lambda \) supports a function of this enzyme in base excision repair (4, 5). Cloned and purified human (h) pol \(\lambda \) inserts nucleotides in a DNA template-dependent manner and is processive in small gaps containing a 5’-phosphate group. These properties, together with its nucleotide insertion fidelity parameters and lack of proofreading activity, indicate that hpol \(\lambda \) is a novel pol \(\beta \)-like enzyme (5). Recently, pol \(\lambda \) was purified from calf thymus tissue, and the biochemical properties of the native calf thymus pol \(\lambda \) were shown to be similar to the recombinant hpol \(\lambda \) protein (6). In particular, it has been shown that the native calf thymus enzyme was able to synthesize DNA on a template containing abasic (AP) sites with the same efficiency as on undamaged DNA, thus suggesting a potential role of pol \(\lambda \) in translesion synthesis. The in vivo function of pol \(\lambda \) has also been addressed by using transgenic null mice but with conflicting results (7, 8).

PCNA is a highly conserved eukaryotic protein essential for DNA replication and repair (9, 10). In DNA replication PCNA acts as the processivity factor for pol \(\delta \) and pol \(\epsilon \) and plays an important role in coordinating leading and lagging strand synthesis (11). Kinetic analysis showed that the mechanism of PCNA interaction with pol \(\delta \) and pol \(\epsilon \) is different. PCNA increased the stability of the pol \(\delta \)-DNA primer complex (thus reducing the dissociation rate of the enzyme from the DNA template) without affecting the nucleotide incorporation step (12), whereas for pol \(\epsilon \) PCNA increased the association rate of the enzyme to the DNA primer and also the nucleotide incorporation rate without affecting the dissociation step (13, 14). The amount of PCNA in the cell is more than 10-fold that of pol \(\delta \), suggesting that this protein might have roles in addition to that of a polymerase accessory factor. Indeed, several PCNA-binding proteins have been discovered with various functions such as Okazaki fragment processing, DNA repair, DNA meth-
ylation, chromatin remodeling, and cell cycle control. Most of these proteins share a consensus sequence for PCNA binding designated as the PCNA interacting proteins box (15–17). Among its recently discovered partners are some of the novel eukaryotic pols, namely hpol η, hpol κ, and hpol l (18–21).

PCNA has been shown to stimulate their DNA synthetic activity on both undamaged and damaged DNA, but the processivity of these enzymes has not significantly increased. Steady-state kinetic studies indicated a novel mechanism for this stimulation that was caused by an increase in the efficiency of nucleotide insertion and resulted from a reduction in the apparent K_m for the incoming nucleotide. As a result, the efficiency of correct versus incorrect nucleotide incorporation and the incorporation in front of a variety of DNA lesions was increased.

Recently a direct interaction of PCNA with pol β was shown that might have potential implications in the mechanism of short-patch base excision repair (22). In light of the similarity between pol β and pol λ in the present work we wanted to investigate the effect of PCNA on the activity of hpol λ. We show that PCNA directly binds to hpol λ and stimulates its activity. However, this stimulation appears to take place by a mechanism that is different from the cases of hpol η, hpol κ, and hpol l, closely resembling the interaction of PCNA with pol δ. Indeed PCNA stabilizes the binding of pol λ to the primer/template, thus increasing its processivity without affecting the affinity for the nucleotide substrate or the misincorporation efficiency. Furthermore, PCNA increases the efficiency of DNA synthesis by pol λ through an AP site but not past a cisplatin adduct.

MATERIALS AND METHODS

Chemicals

$[^3]H$dATTP (40 Ci/mmol) and $[^32]P$dTTP (3000 Ci/mmol) were from Amer sham Biosciences; unlabeled dNTPs, poly(dA), and oligo(dT)$_{12-18}$ were from Roche Molecular Biochemicals. The tetrahydrofuran (dSpacer) was from Glen Research. Activated calf thymus DNA was prepared as described (23). Whatman was the supplier of the GF/C filters. All other reagents were of analytical grade and were purchased from Merck or Fluka.

Nucleic Acid Substrates

The d60-mer containing the Pt-d(GpG) adduct was constructed as described (24). The undamaged d73-mer, the d73-mer containing the synthetic (tetrahydrofuran) AP site, and the corresponding primers were chemically synthesized and purified on denaturing polyacrylamide gel. The sequences are shown as follows: d73-mer, 5'-GTATGATATGCGGAGGTTCTGGCCTGGCCGGCGCGGTGGTGAATTCCGCAGGCGCTGCCGTATGCTCTTGTTGTGA-3'; d57-mer, 5'-GATCGGCGGGTGAAGATTTAGGAGGTTGATGTTGAGGAATGGAGTAAGGTGAGTATGTTGATGATA-3'; and d60-mer, 5'-GGTGGTGGTGGTCGGCGCGGGGTGTTGTGGATGTTGATGATA-3'. The sequences that are complementary to the corresponding primers are underlined. Bold letters indicate the position of the respective lesions (X, AP site; GG, Pt-d(GpG) adduct).

Enzymes and Proteins

Recombinant hpol δ was expressed and purified as described (5). Mammalian pol α and pol δ were purified as described (23) and had specific activities of 25,000 units/ml (0.2 mg/ml) for pol α and 50,000 units/ml (0.1 mg/ml) for pol δ. Unit of pol activity corresponds to the incorporation of 1 pmol of total dTMP into acid-precipitable material in 60 min at 37 °C in a standard assay containing 0.5 μM (nucleotides) of poly(dA)/oligo(dT)$_{12-18}$ and 20 μM dTTP. Recombinant human PCNA was isolated as described (14, 25). Phosphorylated recombinant human PCNA was prepared as described (26). *Escherichia coli* pol I (Klenow fragment) was from Roche Molecular Biochemicals.

Enzymatic Assays

DNA Polymerase Assay—pol λ activity on poly(dA)/oligo(dT)$_{12-18}$ was assayed in a final volume of 25 μl containing 50 mM Tris-HCl (pH 7.6), 0.25 mg/ml bovine serum albumin, 1 mM DTT, 0.5 mM MnCl$_2$, and 5 μM $[^3]H$dATTP (5 Ci/mmol) unless otherwise indicated in the figure legends. All reactions were incubated for 15 min at 37 °C unless otherwise stated, and the DNA was precipitated with 10% trichloroacetic acid. Insoluble radioactive material was determined by scintillation counting as described (27). For sequencing gel analysis the reaction mixture included 50 mM Tris-HCl (pH 7.6), 0.25 mg/ml bovine serum albumin, 1 mM MnCl$_2$, 5 μM each of unlabeled dNTPs, and $[^32]P$-labeled DNA template as indicated in the figure legends. All reactions were assayed in the absence or in the presence of 1 μM of either dTTP, dATP, dGTP, or dCTP. All reactions were incubated for 15 min at 37 °C unless otherwise stated, stopped by addition of sequencing gel loading buffer, and heated for 3 min at 95 °C. Reaction products were resolved on a 20% polyacrylamide, 7 M urea gel.

Pull-down Assay

Pull-down experiments were performed by incubating 20 pmol (as trimer) of $[^32]P$-labeled human/PCNA with nickel-nitri ltrocetic acid agarose beads in the absence or in the presence of 10 pmol of histidine-tagged hpol λ in buffer A (50 mM Tris-HCl (pH 7.6), 1 mM DTT, 0.1 mM NaCl, 0.005% Nonidet P-40). Inclusion of 1 μM DTT was found to increase the specificity of binding and reduce the background. After extensive washing in buffer A containing 20 μM imidazole, proteins bound to the beads were eluted with buffer A containing 1 mM imidazole and analyzed by SDS-PAGE.

Steady-state Kinetic Data Analysis

For kinetic analysis, time-dependent nucleotide incorporation was measured in the presence of increasing concentrations of DNA or nucleotide substrate. The slopes of the curves obtained by linear interpolation of the data points were taken as the initial velocities of the reactions. The products were separated by PAGE and quantitated by PhosphorImager analysis.

Enzymes and Proteins

Recombinant hpol λ was expressed and purified as described (5). Mammalian pol α and pol δ were purified as described (23) and had specific activities of 25,000 units/ml (0.2 mg/ml) for pol α and 50,000 units/ml (0.1 mg/ml) for pol δ. Unit of pol activity corresponds to the incorporation of 1 pmol of total dTMP into acid-precipitable material in 60 min at 37 °C in a standard assay containing 0.5 μM (nucleotides) of poly(dA)/oligo(dT)$_{12-18}$ and 20 μM dTTP. Recombinant human PCNA was isolated as described (14, 25). Phosphorylated recombinant human PCNA was prepared as described (26). *Escherichia coli* pol I (Klenow fragment) was from Roche Molecular Biochemicals.

Enzymatic Assays

DNA Polymerase Assay—pol λ activity on poly(dA)/oligo(dT)$_{12-18}$ was assayed in a final volume of 25 μl containing 50 mM Tris-HCl (pH 7.6), 0.25 mg/ml bovine serum albumin, 1 mM DTT, 0.5 mM MnCl$_2$, and 5 μM $[^3]H$dATTP (5 Ci/mmol) unless otherwise indicated in the figure legends. All reactions were incubated for 15 min at 37 °C unless otherwise stated, and the DNA was precipitated with 10% trichloroacetic acid. Insoluble radioactive material was determined by scintillation counting as described (27). For sequencing gel analysis the reaction mixture included 50 mM Tris-HCl (pH 7.6), 0.25 mg/ml bovine serum albumin, 1 mM MnCl$_2$, 5 μM each of unlabeled dNTPs, and $[^32]P$-labeled DNA template as indicated in the figure legends. All reactions were assayed in the absence or in the presence of 1 μM of either dTTP, dATP, dGTP, or dCTP. All reactions were incubated for 15 min at 37 °C unless otherwise stated, stopped by addition of sequencing gel loading buffer, and heated for 3 min at 95 °C. Reaction products were resolved on a 20% polyacrylamide, 7 M urea gel.

Pull-down Assay

Pull-down experiments were performed by incubating 20 pmol (as trimer) of $[^32]P$-labeled human/PCNA with nickel-nitri ltrocetic acid agarose beads in the absence or in the presence of 10 pmol of histidine-tagged hpol λ in buffer A (50 mM Tris-HCl (pH 7.6), 1 mM DTT, 0.1 mM NaCl, 0.005% Nonidet P-40). Inclusion of 1 μM DTT was found to increase the specificity of binding and reduce the background. After extensive washing in buffer A containing 20 μM imidazole, proteins bound to the beads were eluted with buffer A containing 1 mM imidazole and analyzed by SDS-PAGE.

Steady-state Kinetic Data Analysis

For kinetic analysis, time-dependent nucleotide incorporation was measured in the presence of increasing concentrations of DNA or nucleotide substrate. The slopes of the curves obtained by linear interpolation of the data points were taken as the initial velocities of the reaction at any given substrate concentration. The K_m and V_{max} values were calculated by plotting the initial velocities in dependence of the substrate concentrations and fitting the data according to the Michaelis-Menten equation in the following form,

$$v = \frac{v_{max}E_0}{K_m + [S]}$$

where $k_{cat}E_0 = V_{max}$.

The steady-state rates (k_{cat}) of synthesis values for time-dependent nucleotide incorporation by pol λ on the undamaged template were determined according to the exponential equation,

$$\frac{(\text{products})}{(\text{products})} = A(1 - e^{-kt}) + k_{cat}T$$

where A is the burst amplitude and t is time. The products were calculated from the values of integrated gel band intensities $P_{t} - P_{t-1}$, where T is the target site, the template position of interest and P_{t} is the sum of the integrated intensities at positions T, $T + 1$, ... $T + n$.

RESULTS

Human PCNA Stimulates the Processivity of Human DNA Polymerase λ—Fig. 1 shows a time course of nucleotide incorporation by pol λ on a sp17:72-mer oligonucleotide primer template in the absence (panels A and C) or in the presence (panels B and D) of PCNA. Under distributive conditions the comparison of the reaction products at the different time points revealed an apparent slower DNA synthesis by pol λ in the presence of PCNA.
PCNA interacts with PCNA in Translesion Synthesis

PCNA increases the processivity of pol λ. A, time-dependent elongation of a d17:d72-mer primer/template by pol λ in the absence of PCNA under distributive conditions. B, time-dependent elongation of a d17:d72-mer primer/template by pol λ in the presence of PCNA under distributive conditions. Reactions shown in panels A and B were carried out as described under “Materials and Methods” in the presence of 1 pmol of pol λ and 0.25 pmol of 5'-labeled DNA template. C, time-dependent elongation of a d17:d72-mer primer/template by pol λ in the absence of PCNA under processive conditions. D, time-dependent elongation of a d17:d72-mer primer/template by pol λ in the presence of PCNA under processive conditions. Reactions shown in panels C and D were carried out as described under “Materials and Methods” in the presence of 1 pmol of pol λ, 0.25 pmol of 5'-labeled DNA template, and 10 pmol of unlabeled poly(dA)/oligo(dT) as the trap. nt, nucleotide.

fewer extra nucleotides were added in the presence of PCNA under distributive conditions (Fig. 1B).

PCNA Increases the Affinity of DNA Polymerase λ for the 3'-OH Hydroxyl Primer—To further investigate the mechanism of interaction of PCNA with human pol λ, the variation of the initial velocities of the reaction catalyzed by pol λ was measured in the absence or in the presence of increasing amounts of PCNA. From each series of measurements, the affinity values (Kₘ) and the catalytic rates (kₗₒ₃₋₄) were calculated. As shown in Fig. 2A, the affinity of pol λ for the 3'-OH primer was increased by PCNA in a dose-dependent manner as indicated by the decrease of the apparent Kₘ values. Correspondingly, the efficiency of primer utilization (kₗₒ₃₋₄/Kₘ) value was increased (Fig. 2B). When the variation of the Kₘ and kₗₒ₃₋₄/Kₘ values was plotted with regard to the PCNA concentration, as shown in Fig. 2, C and D, respectively, both curves fitted to an hyperbolic equation that allowed the calculation of apparent dissociation constants for PCNA of 30.1 (± 0.5) nM and 26.5 (± 0.8) nM, respectively. These values were very close to the Kₘ for the 3'-OH primer calculated in the absence of PCNA (29.3 (± 0.8) nM). The fact that the amount of PCNA required for half-maximal stimulation was almost identical to the concentration of 3'-OH primer ends required to half-saturate the pol λ active site suggests that PCNA binds pol λ with the same stoichiometry as the 3'-OH primer. Thus, it appears that pol λ, PCNA, and the 3'-OH primer form an equimolar complex.

PCNA Does Not Influence the Affinity or the Incorporation/Misincorporation Efficiency of DNA Polymerase λ for the Nu-
pol λ Interacts with PCNA in Translesion Synthesis

Fig. 3. PCNA does not influence the nucleotide misincorporation/incorporation ability of pol λ. A, PCNA does not change the apparent affinity of pol λ for the nucleotide substrate. The dependence of the reaction velocity of pol λ from the dTTP concentration was measured in the presence of 0.5 pmol of enzyme and 5 pmol of poly(dA)/oligo(dT) (in terms of 3'-OH primer ends) and in the absence (circles) or in the presence of 10 nM (triangles), 20 nM (squares), and 50 nM (diamonds) PCNA. B, DNA synthesis catalyzed by human pol λ on a d17:d73 oligonucleotide. Reactions were performed as described under “Materials and Methods” in the presence of 0.2 pmol of enzyme and 0.5 pmol of DNA substrate and in the absence (lane 6) or in the presence of 1 μM dGTP (lane 1), 1 μM dTTP (lane 2), 1 μM dCTP (lane 3), 1 μM dATP (lane 4), or the mixture of all four dNTPs (1 μM each) (lane 5). C, the same experiment as described in panel B but in the presence of 50 nM PCNA at nucleotide.

Fig. 4. PCNA physiologically interacts with pol λ and specifically stabilizes its binding to the template/primer. A, time-dependent dissociation of the pol λ-DNA complex in the absence (lanes 1–4) or in the presence (lanes 5–8) of PCNA. The EMSA was performed as described under “Materials and Methods” in the presence of 2 pmol of pol λ and 5 pmol of 5'-labeled d17:d72-mer oligonucleotide. Bound, represents oligonucleotide complexes with pol λ; Free, represents unbound oligonucleotide. B, quantification of the results of the experiment shown in panel A. The percentage of enzyme bound was plotted versus time, and the data were fitted to a simple exponential to calculate the dissociation rate (k_{diss}). C, PCNA directly interacts with pol λ in the absence of DNA. Pull-down experiments were performed as described under “Materials and Methods” in the presence of 20 pmol (as trimer) of 32P-labeled PCNA and in the absence or in the presence of 10 pmol of His-tagged pol λ.

A Direct Physical Association of PCNA with pol λ Stabilizes the Binding of the Enzyme to the Primer/Template by Reducing Its Dissociation Rate—The results presented above suggested that PCNA increases the processivity of pol λ and its apparent affinity for the 3'-OH primer end, possibly by increasing the residence time of pol λ at the primer/template junction. To directly test this hypothesis, an EMSA was performed with 5'-labeled 17:72-mer oligonucleotide in which preformed pol λ-DNA complexes were challenged at different time points with an excess of poly(dA)/oligo(dT) trap and 1% formaldehyde. At any given time point the fraction of unbound enzyme should be trapped by the cold DNA, whereas formaldehyde should allow fixation of the fraction of pol λ bound to labeled DNA. As shown in Fig. 4A, in the presence of PCNA slower dissociation of pol λ appearing in Fig. 3B, lane 3, can be explained as a combination of limited misincorporation and template slippage; after addition of the first cytosine residues (encoded by the two guanosine residues in the template), reannealing of the template allowed insertion of an additional cytosine. Therefore, a mismatch dA/dCMP is introduced followed by two correct insertions of two cytosine residues in the template, resulting in the formation of a new primer/template structure. If this is the case with pol λ in this sequence context, it appears that the presence of PCNA is not able to inhibit such an “abnormal” templating. All together these results suggested that PCNA did not influence the nucleotide discrimination efficiency of pol λ.
was observed as indicated by the higher amount of enzyme-
DNA complex present at any time point (compare lanes 1–4
with lanes 5–8). Quantification of the bound fraction allowed
the fitting of the curves to a simple exponential with dissociation
rates of $0.0086 \pm 2 \times 10^{-3}$ s$^{-1}$ in the absence of PCNA
and $0.0032 \pm 8 \times 10^{-4}$ s$^{-1}$ in its presence (Fig. 4B). In addi-
tion, to verify whether pol λ and PCNA directly interacted a
pull-down assay was performed with radiolabeled PCNA and
His-tagged pol λ. Nickel-nitrilotriacetic acid-agarose beads
were incubated with C-terminal-labeled PCNA alone or in com-
bination with His-tagged pol λ. After extensive washing, beads
were eluted with 1 mM imidazole, and the eluted proteins were
loaded onto a SDS-polyacrylamide gel. As shown in Fig. 4C,
nickel-nitrilotriacetic acid-agarose beads incubated with PCNA
alone resulted only in a background level of bound PCNA.
However, inclusion of pol λ resulted in significant binding of
PCNA. These results indicated that PCNA interacted function-
ally and physically with pol λ.

PCNA Promotes Translesion DNA Synthesis by DNA Poly-
merase λ at an Abasic Site but Not at a Cis-Pt Adduct—The
results presented so far indicated that PCNA interacts with pol
λ and increases its residence time on the DNA template. Be-
sides providing pol λ with higher processivity, this interac-
tion could influence the ability of the enzyme to bypass sites along
the template sequence where it normally would dissociate (e.g.
at DNA lesions). To address this point, the effect of PCNA was
evaluated on the ability of pol λ to replicate across two different
lesions: first, an AP site and second, a cis-Pt (dGpG) adduct. AP
sites are very common non-instructional lesions that can arise
spontaneously in the DNA as a consequence of normal cellular
metabolism. On the other hand, cisplatin, a clinically used
anticancer drug, causes bulky DNA adducts, the prominent one
being formed between two adjacent guanines on the same DNA
strand (Pt-(GpG)). Both lesions are able to block DNA synthe-
sis in vitro by the replicative pols α, δ, and ϵ. As shown in Fig.
5A, a d17:d73-mer primer template containing a single syn-
thetic AP site (tetrahydrofuran moiety) at a defined position on
the template strand was used as the substrate for DNA synthe-
sis by pol λ in the absence or in the presence of PCNA.
Without added PCNA pol λ mainly incorporated a nucleotide
at the position corresponding to the AP site and stopped, although
a limited elongation from the nucleotide incorporated in front
of the lesion was also observed (Fig. 5A, lane 3). When increas-
ing amounts of PCNA were added, however, pol λ was able to
efficiently bypass the AP lesion synthesizing full-length 73-
nucleotide products in a PCNA dose-dependent manner (Fig.
5A, lanes 4 and 5). E. coli pol I was used as a positive control for
lesion bypass (Fig. 5A, lane 2). When the major cellular PCNA-
dependent replicative enzyme pol δ was tested under similar
conditions a different result was obtained. As shown in Fig. 5B,
in the presence of PCNA pol δ was stopped at the position inmediat-
ely before the AP site (Fig. 5B, lane 1). When increasing
amounts of PCNA were added, significant incorporation in front
of the lesion was achieved, but no subsequent elongation
was detected (Fig. 5B, lanes 2–5) even in the presence of satu-
rating amounts of PCNA. Thus, pol λ showed the ability to
catalyze both incorporation in front of the abasic lesion and
subsequent elongation of the nucleotide opposite the AP site in
a PCNA-stimulated manner. When the ability of pol λ to bypass
an AP site was tested in the presence of increasing dNTP
concentrations (Fig. 5C), PCNA was again found to promote translesion synthesis as revealed by the increase in the full-
length products at low dNTP concentrations (compare lanes
1–3 to lanes 6–8), but the overall nucleotide incorporation
efficiency of pol λ was not affected (k_{cat}/K_m values were 2.7
$(\pm 0.3) \times 10^3$ m$^{-1}$ s$^{-1}$ in the absence of PCNA and 3.3 $(\pm 0.3) \times$
pol λ Interacts with PCNA in Translesion Synthesis

48439

added there was an increase in the products synthesized up to the stop site, but no translesion synthesis was observed. Thus, despite its similarity to pol β, human pol λ showed a different profile of DNA lesion bypass when dealing with a bulky DNA lesion such as the major cisplatin adduct. All of the experiments were carried out in the presence of MnCl₂, because this was the optimal ion cofactor for recombinant hpol λ (5). It has been reported that for some pols (pol α, pol β, T4 pol, herpes simplex virus pol), Mn²⁺ ions can increase the lesion bypass efficiency (28). However, the concentrations required to see such effects were much higher than the one used in our assays (0.5 mM); thus it seems unlikely that MnCl₂ significantly influenced the ability of pol λ to bypass an AP site under these conditions (29). In addition, when similar experiments were performed with native calf thymus pol λ in the presence of 10 mM MgCl₂, efficient AP site bypass was detected, whereas no differences were detected by replacing Mn²⁺ with 10 mM MgCl₂ for pol I, pol α, and pol δ under these conditions (data not shown).

DISCUSSION

Recently pol λ was purified from calf thymus tissue, and this native calf thymus pol λ was able to synthesize DNA on a template containing abasic sites with the same efficiency as on undamaged DNA, thus suggesting a potential role of pol λ in translesion synthesis (6). Interestingly, pol λ mRNA expression is apparently cell cycle-dependent, being higher in quiescent and S to M phase cycling cells (3). Thus, pol λ could be specialized in DNA repair taking place during specific stages of the cell cycle required in nonproliferating cell types or during differentiation processes. Such a specialized DNA repair function of pol λ might be related to the ability of the enzyme to establish distinct interactions that could regulate its cellular function(s). To investigate the specific pathway(s) recruiting this enzyme as a first step in understanding its contribution to the maintenance of genetic stability, we have investigated its interaction with PCNA. The rationale of such an approach was based on the recent observations that PCNA, besides acting as a processivity factor for the replicative pols δ and ε, was able to interact with the repair enzyme pol β and with a variety of novel translesion pols such as pol ι, pol κ, and pol η, suggesting a potential role of this protein in targeting the translesion pols to the replication machinery. These pols have been shown to contain a sequence closely resembling the consensus sequence for PCNA interaction, SRGVLSSF for pol ι and SMSVETF for pol κ (the conserved PCNA-interacting protein box amino acids are in bold) (18). Interestingly, inspection of the hpol λ sequence revealed the presence of a very similar box, SVPVLELF (amino acids 331–338). We found that PCNA directly interacts with pol λ, and this interaction stabilizes the binding of the enzyme to the template/primer as reflected by the reduction of the dissociation rate of pol λ and the 5-fold increase in its processivity (Fig. 1). However, PCNA did not influence the affinity or the incorporation efficiency of the nucleotides by pol λ (Fig. 3); instead it increased the affinity of pol λ for the 3’-hydroxyl primer (Fig. 2). This was different from what has been observed with pol ι, pol κ, and pol η where the stimulation was caused by an increased affinity for the nucleotides (18, 19, 21). Rather, it closely resembled the mechanism of interaction between PCNA and pol δ, whose processivity is stimulated as a consequence of the reduced enzyme/DNA dissociation rate (12). The lack of effects of PCNA on nucleotide incorporation by pol λ was also reflected by the fact that PCNA did not alter the ability of pol λ to discriminate between correct and wrong nucleotides; pol λ showed a very limited misincorporation ability either in the absence or in the presence of PCNA (Fig. 3). When tested on a synthetic oligonucleotide containing an AP site, PCNA was able to stimulate the incorporation of a nucleotide opposite the lesion by both pol λ and pol δ. However, pol λ could also further elongate the nascent DNA strand, whereas pol δ was stalled at the lesion (compare Fig. 5, A and B). On the other hand, PCNA failed to promote the bypass of a helix-distorting DNA lesion such as the Pt-(SpG) adduct by pol λ, which was blocked at the position immediately preceding the lesion. In summary our results indicate that although PCNA stimulated translesion synthesis of pol λ past an abasic site as it did for pol ι, pol κ, and pol η, it may do it by a different mechanism of interaction with this specific polymerase. This might reflect a different functional role of such an interaction. Besides targeting pol λ to the replication machinery, PCNA seems likely to be able to act in cooperation with pol λ to enhance its processivity. We would like to propose a model in which PCNA, during DNA replication, promotes incorporation of a nucleotide opposite an abasic site by pol δ. The resulting stalled replication fork might be rescued by a “switching” between pol δ and pol λ because of the ability of this latter pol to elongate the nascent DNA strand. This pol switching might be promoted by PCNA through competition between pol δ (which after stalling likely dissociates from the primer) and pol λ (which can be recruited at the lesion through its interaction with PCNA). A mechanism for AP site bypass in eukaryotic cells involving two different pols, one able to incorporate a nucleotide in front of the lesion and a second one capable of extending the newly generated primer, has already been proposed (30). In that model, pol ζ was identified as the enzyme responsible for the extension step. Our data support the idea that pol λ, at least under certain conditions, could take up such a role as well; moreover, the physical and functional interaction of PCNA with pol δ and, as shown here, pol λ provides a logical mechanism for the regulation of the concerted action of these two pols.

REFERENCES

1. Hubscher, U., Maga, G., and Spadari, S. (2002) Annu. Rev. Biochem. 71, 153–163.
2. Aucourt, S., Flatter, E., Dahan, A., Faill, A., Bertoccio, B., Storch, S., Delhous, F., Cocco, L., Gupta, N., Weil, J. C., and Reynaud, C. A. (2000) Nucleic Acids Res. 28, 3684–3693.
3. Garcia-Diaz, M., Dominguez, O., Lopez-Fernandez, L. A., de Lera, L. T., Saniger, M. L., Ruiz, J. F., Parraga, M., Garcia-Ortiz, M. J., Kirchhoff, T., del Mazo, J., Bernard, A., and Blanco, L. (2000) J. Mol. Biol. 301, 851–867.
4. Garcia-Diaz, M., Bebeke, A., Kunkel, T. A., and Blanco, L. (2001) J. Biol. Chem. 276, 34659–34663.
5. Garcia-Diaz, M., Bebeke, A., Sabariego, R., Dominguez, O., Rodriguez, J., Kirchhoff, T., Garcia-Palomero, E., Fisher, A. J., Juarez, R., Ruiz, J. F., Kunkel, T. A., and Blanco, L. (2002) J. Biol. Chem. 277, 18454–18458.
6. Bertocci, B., De Smet, A., Flatter, E., Dahan, A., Bories, J. C., Landreau, C., Weil, J. C., and Reynaud, C. A. (2002) J. Immunol. 168, 3702–3706.
7. Kobayashi, Y., Watanabe, M., Okada, Y., Sawada, H., Takai, H., Nakanishi, M., Kowase, Y., Suzuki, H., Nagashima, K., Ikeda, K., and Motoyama, N. (2002) Mol. Cell. Biol. 22, 2769–2776.
8. Jonsson, Z. O., and Hubscher, U. (1997) Biosci. Rep. 19, 967–975.
9. Perspri, E. (1997) Prog. Cell Cycle Res. 3, 193–210.
10. Maga, G., Villani, G., Tillement, V., Stucki, M., Locatelli, G. A., Frölin, I., Spadari, S., and Hubscher, U. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 14298–14303.
11. Eimhof, H. J., and Guengerich, F. P. (2000) J. Biol. Chem. 275, 16316–16322.
12. Maga, G., and Hubscher, U. (1995) Biochemistry 34, 891–901.
13. Maga, G., Jonsson, Z. O., Stucki, M., Spadari, S., and Hubscher, U. (1999) J. Mol. Biol. 295, 259–267.
14. Warbrick, E. (1998) Biosci. Rep. 19, 155–199.
15. Tsunimoto, T. (1999) Front Biosci. 4, 849–858.
16. Warbrick, E. (2000) Biosci. Rep. 20, 1005–1010.
17. Haracska, L., Johnson, R. E., Unk, I., Phillips, B. B., Hurwitz, J., Prakash, L., and Prakash, S. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 14256–14261.
18. Haracska, L., Johnson, R. E., Unk, I., Phillips, B. B., Hurwitz, J., Prakash, L., and Prakash, S. (2001) Mol. Cell. Biol. 21, 7199–7206.
19. Haracska, L., Kondratick, C. M., Unk, I., Prakash, S., and Prakash, L. (2001) Mol. Cell 8, 407–415.
20. Haracska, L., Johnson, R. E., Phillips, B. B., Hurwitz, J., Prakash, L., and Prakash, S. (2002) Mol. Biol. Cell 12, 784–791.
21. Kedar, P. S., Kim, S. J., Robertson, A., Hsu, P., Prausnitz, R., Horton, J. K.,
Lewis, M., and Wilson, S. H. (2002) J. Biol. Chem. 277, 31115–31123
23. Weiser, T., Gassmann, M., Thommes, P., Ferrari, E., Hafkemeyer, P., and Hubscher, U. (1991) J. Biol. Chem. 266, 10420–10428
24. Hoffmann, J. S., Pillaire, M. J., Maga, G., Podust, V., Hubscher, U., and Villani, G. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 5356–5360
25. Stucki, M., Pascucci, B., Parlanti, E., Fortini, P., Wilson, S. H., Hubscher, U., and Dogliotti, E. (1998) Oncogene 17, 835–843
26. Podust, L. M., Podust, V. N., Sogo, J. M., and Hubscher, U. (1995) Mol. Cell. Biol. 15, 3072–3081
27. Hubscher, U., and Kornberg, A. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 6284–6288
28. Loeb, L. A., and Kunkel, T. A. (1982) Annu. Rev. Biochem. 51, 429–457
29. Villani, G., Tanguy Le Gac, N., Wasangu, L., Burnouf, D., Furhs, R. P., and Boehmer, P. E. (2002) Nucleic Acids Res. 30, 3323–3332
30. Haracska, L., Unk, I., Johnson, R. E., Johansson, E., Burgers, P. M., Prakash, S., and Prakash, L. (2001) Genes Dev. 15, 845–954

pol λ Interacts with PCNA in Translesion Synthesis