Manuscript version: Published Version
The version presented in WRAP is the published version (Version of Record).

Persistent WRAP URL:
http://wrap.warwick.ac.uk/158323

How to cite:
The repository item page linked to above, will contain details on accessing citation guidance from the publisher.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk
TOI-1259Ab – a gas giant planet with 2.7 per cent deep transits and a bound white dwarf companion

David V. Martin,† Kareem El-Badry, Vedad Kunovac Hodžić, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessica Birky, Daniel Foreman-Mackey, Christina Hedges, Benjamin T. Montet, Simon J. Murphy, Alexandre Santerne, Keivan G. Stassun, Amaury H. M. J. Triaud, Ruth Angus, Jessi

ABSTRACT

We present TOI-1259Ab, a 1.0\(R_{\text{Jup}}\) gas giant planet transiting a 0.71\(R_{\odot}\) K-dwarf on a 3.48 d orbit. The system also contains a bound white dwarf companion TOI-1259B with a projected distance of \(\sim 1600\) au from the planet host. Transits are observed in nine TESS sectors and are 2.7 per cent deep – among the deepest known – making TOI-1259Ab a promising target for atmospheric characterization. Our follow-up radial velocity measurements indicate a variability of semiamplitude \(K = 71\) m s\(^{-1}\), implying a planet mass of 0.44\(M_{\text{Jup}}\). By fitting the spectral energy distribution of the white dwarf, we derive a total age of 4\(0.08^{+0.21}_{-0.53}\) Gyr for the system. The K dwarf’s light curve reveals rotational variability with a period of 28 d, which implies a gyrochronology age broadly consistent with the white dwarf’s total age.

Key words: planets and satellites: formation – binaries: eclipsing – stars: individual (TOI-1259) – stars: low-mass – stars: rotation.

1 INTRODUCTION

We know that roughly half of the stars in the galaxy exist in multiples (Duquennoy & Mayor 1991; Tokovinin 2014), but the vast majority of exoplanet discoveries have been in single star systems. The presence of a stellar companion will affect exoplanet populations. It may restrict the regions where planets may orbit stably (Dvorak 1984; Holman & Wiegert 1999; Mardling & Aarseth 2001), reduce the lifetime of protoplanetary discs (Kraus et al. 2012; Daemgen et al. 2015; Cheetham et al. 2015), inhibit planetesimal formation (Thébault, Marzari & Scholl 2008; Xie, Zhou & Ge 2009) and induce high-eccentricity dynamics (Mazeh & Shaham 1979; Eggleton & Kisseleva-Eggleton 2006; Fabrycky & Tremaine 2007). Early exoplanet searches avoided close stellar multiples, whereas more distant binary companions were often undetected. Now, the vast Gaia astrometry survey is revealing thousands of wide binaries (El-Badry & Rix 2018; Hartman & Lépine 2020; Mugrauer & Michel 2020), many of which contain confirmed or candidate planets.

An even less studied aspect of exoplanet populations is the effect of stellar evolution, with most planets being discovered around main-sequence stars. As stars evolve they will expand, lose mass and, in most cases, leave behind a degenerate white dwarf (WD). A surprising discovery is that up to roughly 50 per cent of WDs have atmospheres polluted with heavy elements (Debes, Walsh & Stark 2012; Farihi 2016; Wilson et al. 2019), despite the fact that the high gravity should cause such elements to settle out of the atmosphere in a short time. This is seen as evidence that circumstellar planetary material occasionally accretes on to WDs, replenishing the heavy elements.

However, it is tricky to actually find planets around WDs. A lack of sharp spectral features prevents precise radial velocity (RV) monitoring (Maxted, Marsh & Moran 2000). A small radius, similar to that of the Earth, significantly reduces transit probabilities and durations (Farmer & Agol 2003; Faedi et al. 2010). A typically faint apparent magnitude leads to noisy light curves. Astrometric planet detection with Gaia is promising, but will still be challenging because of the faintness of the objects (Silvotti et al. 2014). Evidence for circumbinary planets has been presented for some binaries containing at least one WD (e.g. Qian et al. 2009), but the validity of the...
Table 1. Summary of the TOI-1259 system. Host star parameters derived from SED fits (Section 3.1). White dwarf parameters are detailed in Table 4, and we only show parameters from the first model in that table here. Full planet parameters are shown in Table 5. Coordinates and distances are from the TESS Input Catalog v8.1.

Parameter	Description	Value
TIC	TESS Input Catalog	288735205
Gaia ID	2294170838587572736	
Right ascension	282.100297136879°	
Gaia ID 2294170834291960832		
Declination	79.2560447193138°	
Input Catalog	1718312312	
Apparent V magnitude	12.08	
Distance (pc)	118.11 ± 0.37	
Mass (M_⊙)	0.68±0.01	
Radius (R_⊙)	0.739 ± 0.031	
Effective temperature (K)	4775 ± 100	
Metallicity	−0.5 ± 0.5	
Surface gravity (cgs)	4.5 ± 0.5	
Transiting planet – TOI-1259Ab		
M_pl	Mass (M_Jup)	0.441±0.049
R_pl	Radius (R_Jup)	1.022±0.027
P_pl	Orbital period (d)	3.4779780±0.000019
a_pl	Semi-major axis (au)	0.04070±0.00114
e_pl	Eccentricity	0
Bound white dwarf companion – TOI-1259B		
TIC	TESS Input Catalog	1718312312
Gaia ID	2294170834291960832	
Right ascension	282.11052432749°	
Gaia ID 2294170834291960832		
Declination	79.2650447193138°	
Input Catalog	1718312312	
Apparent V magnitude	19.23	
Distance (pc)	120.6 ± 4.6	
Mass (M_⊙)	0.561 ± 0.021	
Radius (R_⊙)	0.0131 ± 0.0003	
Projected current separation (au)	1648	
Effective temperature (K)	6300°	

Evidence has been repeatedly questioned (Wittenmyer, Horner & Marshall 2013; Zorotovic & Schreiber 2013; Bear & Soker 2014). Only recently did Vanderburg et al. (2020) discover the first bona fide planet transiting a WD: WD 1856+534 (see also Alonso et al. 2021). There have also been discoveries of transiting planetary debris (Vanderburg et al. 2015; Manser et al. 2019; Guidry et al. 2020; Vanderbosch et al. 2020) and accretion on to a WD attributed to the evaporating atmosphere of a giant planet (Gänsicke et al. 2019).

In this paper, we present TOI-1259Ab, a planet that is relevant to questions at the intersection of stellar evolution and stellar multiplicity. It is a transiting Jupiter-sized planet on a 3.48 d orbit around a K-dwarf, with a WD companion at a projected separation of ≈1600 au. The WD was already known to be bound based on its Gaia parallax and common proper motion (El-Badry & Rix 2018). The transits were discovered by the TESS Science Processing Operations Center (SPOC; Jenkins et al. 2016) and the community was alerted by the TESS Science Office on 17 October 2019 (Guerrero 2020), but the unusually deep transits of 2.7 per cent raised concerns that the signal is actually due to an eclipsing binary. Through our RV follow-up, we confirm that the signal is due to a planet, with a mass of 0.44M_Jup. We summarize the key aspects of the TOI-1259 system in Table 1.

Only a few bona fide planets have been discovered with degenerate outer companions (Table 2), the first being Gliese-86b (Queloz et al. 2000; Els et al. 2001; Lagrange et al. 2006). Mugrauer (2019) found 204 binary companions in a sample of roughly 1300 exoplanet hosts, of which eight of the companions were WDs. Mugrauer & Michel (2020) found five WD companions to TESS Objects of Interest, including TOI-1259, but without RV data to confirm the TOIs as planets. Some of these planets were also in the El-Badry & Rix (2018) catalogue.

Even when a planet host star is still on the main sequence, the evolution of an outer companion still has implications for the planet’s dynamics and survival (Kratter & Perets 2012; Stephan et al. 2020). Heavy element pollution in any of these WDs may be caused by its stellar binary companion (Veras et al. 2011, 2013; Bonsor & Veras 2015; Hamers, Perets & Portegies Zwart 2016; Stephan, Naoz & Zuckerman 2017), and would also suggest both stars in the binary host (or once hosted) planets, of which only two systems are presently known (WASP-94, Neveu-VanMalle et al. 2014 and XO-2, Desidera et al. 2014). The presence of a WD companion also makes it possible to calculate the system’s age independently of other methods such as gyrochronology and isochrone fitting (Barnes 2003; Jørgensen & Lindgren 2005; Angus et al. 2019).

WD aside, the planet TOI-1259Ab has some beneficial properties for future atmospheric follow-up with James Webb Space Telescope (JWST). The planet has 2.7 per cent deep transits on its 0.71 R_⊙ K-dwarf host, which are amongst the deepest known (Fig. 1). The 0.71 R_⊙ K-dwarf host star has a J magnitude of 10.226, and is located on the sky with an ecliptic latitude of 76.878°, placing it near the TESS and JWST continuous viewing zones. A measurement of the planet’s atmospheric composition or other properties would also complement any measurement of pollution in the WD atmosphere, as we try to better understand the formation and survival of planets in multistellar systems.

Our paper is structured as follows. Section 2 details the TESS photometry, SOPHIE RVs, and Gaia astrometry. In Section 3, we present a combined analysis of these data and thereby characterize the planet, its host star, and the companion WD. We conclude by discussing some implications for this system and potential future work in Section 4.

2 OBSERVATIONS

2.1 TESS photometry

The TESS mission observed TOI-1259 in 2 min cadence mode for a total of 240 d, covering nine sectors (14, 17–21, 24–26) between 2019 July 18 and 2020 July 4. The TESS Science Processing Operations Center pipeline (Jenkins et al. 2016) identified a ~2.5 per cent transit signal lasting ~2.2 h, repeating with a period of 3.48 d. The flat-bottomed shape and deep transit – combined with the K dwarf host – is consistent with a giant planet, substellar object, or very low-mass star. There were 58 transit events in the TESS data.

The TESS spacecraft fires its thrusters to unload angular momentum from its reaction wheels every few days, which may cause the images obtained in the timestamps to appear disjoint. To make sure the momentum dumps do not affect our further analysis, we identify the times of these events from the Data Quality Flags in the FITS files, and exclude the data obtained within four hours on either side of the thruster events.
Table 2. Known extra-solar planets around a main-sequence star with a bound white dwarf companion, ordered by the current projected separation of the white dwarf (sepWD). Of the TOIs (TESS Objects of Interest) with white dwarf companions in the catalogues of El-Badry & Rix (2018) and Mugrauer & Michel (2020), only TOI-1259Ab is confirmed to be a planet. CTOI-53309262 was only seen to transit once by TESS and so its period and semimajor axis are to be determined (TBD).

Name	a_{pl} (au)	SepWD (au)	Planet reference	White dwarf reference
HD 13445 (Gliese-86)	0.1143	21	Queloz et al. (2000)	Els et al. (2001)
HD 27442 (Epsilon Reticuli)	1.271	236	Butler et al. (2001)	Lagrange et al. (2006)
HIP 116454	0.098	524	Vanderburg et al. (2015)	Vanderburg et al. (2015)
HD 8535	2.45	560	Naef et al. (2010)	Mugrauer (2019)
CTOI-53309262	TBD	625	Unconfirmed Community TOI	El-Badry & Rix (2018)
Kepler-779	0.0558	1105	Morton et al. (2016)	Mugrauer (2019)
TOI-1703	0.0223	1302	Unconfirmed TOI	Mugrauer & Michel (2020)
TOI-1259	0.0416	1648	This Paper	El-Badry & Rix (2018)
HD 107148	0.269	1790	Butler et al. (2006)	Mugrauer & Michel (2020)
TOI-249	0.0564	2615	Unconfirmed TOI	Mugrauer & Michel (2020)
WASP-98	0.0453	3500	Hellier et al. (2014)	Southworth et al. (2020)
HD 118904	1.7	3948	Jeong et al. (2018)	Mugrauer (2019)
TOI-1624	0.0688	4965	Unconfirmed TOI	Mugrauer & Michel (2020)
HD 147513 (62 G. Scorpii)	1.32	5360	Mayor et al. (2004)	Alexander & Lourens (1969)

Table 3. Stellar radius and mass measurements based on four different methods. In all cases, we use a fit to the SED combined with Gaia DR2 parallaxes. In methods 1 and 2 we follow the procedure of Stassun & Torres (2016) and Stassun et al. (2017, 2018) to derive the radius and the mass comes from the SED measurement of the surface gravity log g (1) and the Torres et al. (2010) mass–radius relationship (2). In methods 3 and 4, we use ExoFASTv2 (Eastman et al. 2019) to fit the SED and two different isochrones. We use method 2 (in bold) as the nominal value.

Method	Radius (R_\odot)	Mass (M_\odot)
1. SED + log g	0.739 ± 0.031	0.79 ± 0.14
2. SED + Torres et al. (2010) M-R	0.739 ± 0.031	0.68 ± 0.08
3. SED + MIST isochrones	0.733 ± 0.022	0.777 $^{+0.037}_{-0.038}$
4. SED + PARSEC isochrones	0.729 ± 0.020	0.777 $^{+0.034}_{-0.031}$

Figure 1. Transit depths of all confirmed transiting exoplanets as a function of the planet’s equilibrium temperature (where such a value has been calculated). The colour indicates the mass of the host star in solar masses. The triangle demarcates TOI-1259 with 2.7 per cent deep transits.

2.2 Ground based follow-up photometry

We acquired ground-based time-series follow-up photometry of TOI-1259A as part of the TESS Follow-up Observing Program.1 A full transit was observed on UTC 2019 October 10 using an unfiltered diffuser and again on UTC 2019 October 17 in g-band from the Deep Sky West 0.5-m telescope near Rowe, New Mexico, USA. An egress was observed on UTC 2019 October 6 in R and V band using two 0.4-m telescopes at Kourovka observatory of Ural Federal University near Yekaterinburg, Russia. A full transit was observed on UTC 2019 October 24 in z-band from the 0.36-m telescope at Acton Sky Portal private observatory in Acton, MA, USA. A full transit was observed on UTC 2019 December 4 in R band from the 0.25-m telescope at Ananijev L33 private observatory near Ananijev, Ukraine. All observations detected on-time transits with depths consistent with TESS using apertures that were not blended with any known TICv8 or Gaia DR2 neighbouring stars, except the diffuser observation was partially contaminated with a star that is too faint to cause the transit detection. Although TESS observed 58 transits of TOI-1259 b in Cycle 2, we also include all available ground-based light curves in our analysis, with the exception of the R- and V-band observations at Kourovka Observatory on 2019 October 6 which only observed the egress. The reduced data of all ground-based photometry are available at ExoFOP-TESS.2

2.3 SOPHIE radial velocities

To measure the mass of TOI-1259Ab we used SOPHIE, which is a high resolution2 échelle spectrograph used to find extra-solar planets

1https://exofop.ipac.caltech.edu/followup
2https://exofop.ipac.caltech.edu/
3We used the ‘high-efficiency mode’, which has a resolution of $R = 39,000$ and is typically used for stars fainter than 10th magnitude.
with high-precision RVs (Perruchot et al. 2008; Bouchy et al. 2009). It is installed on the 1.93-m telescope at Observatoire de Haute Provence, France.

We obtained 19 RV measurements of TOI-1259Ab between 2020 June 10 and 2020 July 16 using the SOPHIE spectrograph. All RVs were calculated using the standard SOPHIE pipeline, where a cross-correlation function is calculated between the data and a K5 mask. Each observation yielded an RV with a precision of roughly 20 m s$^{-1}$.

We note that our spectra are not contaminated by the bound WD, since it is both too faint (19.23 mag compared with 12.08 for the host star) and too far away (13.9 arcsec separation compared with 3 arcsec diameter SOPHIE fibres) to contribute any light.

2.4 Gaia astrometry

TOI-1259A and its WD companion (TOI-1259B) were identified as a candidate wide binary by El-Badry & Rix (2018), who searched $Gaia$ DR2 for pairs of stars with positions, parallaxes, and proper motions consistent with bound Keplerian orbits. Fig. 2 shows an SDSS image of the system, with both the K-dwarf primary and WD companion clearly visible. The projected angular (physical) separation of the pair is 13.9 arcsec (1648 au). The plane-of-the-sky absolute velocity difference between the WD and K dwarf is $Δ V_⊥ = 0.47^{+0.20}_{-0.26}$ km s$^{-1}$. For comparison, we can calculate the Keplerian orbital velocity of a circular orbit separated by 1648 au, with masses 0.68 and 0.561M\odot (see Table 1):

$$V = \sqrt{\frac{G (M_\star + M_{WD})}{\text{sep}_{WD}}},$$ \hspace{0.5cm} (1)

where $G = 6.67384 \times 10^{-11}$. The value $V = 0.82$ km s$^{-1}$ is consistent with the $Gaia$ measurement, within the precision of 0.08 km s$^{-1}$

The measurements which are limited by the $Gaia$ proper motion uncertainties. The semimajor axis of the WD–K dwarf orbit and the 3D separation of the two stars are not currently measurable. However, for randomly oriented orbits and a plausible eccentricity distribution, the projected semimajor axis is almost always within a factor of two of the true semimajor axis (see El-Badry & Rix 2018, their fig. B1). The WD companion was later independently identified by Mugrauer & Michel (2020).

Because orbital accelerations are not easy to measure in long-period binaries, distinguishing gravitationally bound wide binaries from chance alignments depends on statistical arguments about the probability of chance alignments. The chance alignment probability for a given separation, data quality, and background source density can be estimated empirically (e.g. Lépine & Bongiorno 2007; El-Badry et al. 2019; Tian et al. 2020). We follow the approach described in Tian et al. (2020) to estimate the chance-alignment probability. In brief, we repeat the binary search after artificially shifting each star in $Gaia$ DR2 by ∼1″, searching for companions around its new position. This procedure removes genuine binaries, but preserves chance alignment statistics (see Lépine & Bongiorno 2007). Comparing the number of binary candidates found so far to the number found in $Gaia$ DR2 at similar separation, we estimate a chance-alignment probability of ∼1 × 10$^{-4}$ for TOI-1259A and its companion. That is, there is little doubt that the planet host and WD are physically associated.

3 ANALYSIS AND RESULTS

3.1 Host star parameters

We performed an analysis of the broad-band spectral energy distribution (SED) of the star together with the $Gaia$ DR2 parallaxes (adjusted by +0.08 mas to account for the systematic offset reported by Stassun & Torres 2018), in order to determine an empirical measurement of the stellar radius, following the procedures described in Stassun & Torres (2016), Stassun, Collins & Gaudi (2017), and Stassun et al. (2018). We pulled the $BVgriz$ magnitudes from APASS, the JHK_s magnitudes from 2MASS, the $W1–W4$ magnitudes from WISE, the G_{Gaia} magnitudes from $Gaia$, and the NUV magnitude from GALEX. Together, the available photometry spans the full stellar SED over the wavelength range 0.2–22 μm (see Fig. 3).

We performed a fit to the SED using Kurucz (1979) stellar atmosphere models, with the effective temperature (T_{eff}), metallicity ([Fe/H]), surface gravity ($\log g$) as free parameters. The only additional free parameter is the extinction (A_V), which we restricted to the maximum line-of-sight value from the dust maps of Schlegel, Finkbeiner & Davis (1998). The resulting fit is very good (Fig. 3) with a reduced $χ^2$ of 1.7 and best-fitting $A_V = 0.20 ± 0.07$, $T_{\text{eff}} = 4775 ± 100$ K, $\log g = 4.5 ± 0.5$, and [Fe/H] = −0.5 ± 0.5. Integrating the (unreddened) model SED gives the bolometric flux at Earth, $F_{\text{bol}} = 5.94 ± 0.14 \times 10^{-10}$ erg s$^{-1}$ cm$^{-2}$. Taking the F_{bol} and T_{eff} together with the $Gaia$ DR2 parallax, gives the stellar radius, $R_\star = 0.739 ± 0.031 R_\odot$

The stellar mass can be obtained from the SED analysis in two ways. First, we can use the R_\star together with $\log g$ to obtain a mass estimate of $M_\star = 0.79 ± 0.14 M_\odot$. Alternatively, we can apply the Torres, Andersen & Giménez (2010) empirical mass–radius relations to get a value $M_\star = 0.68 ± 0.08 M_\odot$. As an independent test of our stellar parameters, we ran EXOFASTV2 (Eastman et al. 2019) to create a joint fit of the SED and two different types of isochrones: MIST (Choi et al. 2016; Dotter 2016) and PARSEC (Bressan et al. 2012). With MIST we obtain...
Figure 3. Spectral energy distribution of TOI-1259A. The red symbols represent the observed photometric measurements, where the horizontal bars represent the effective width of the passband. The blue symbols are the model fluxes from the best-fit Kurucz (1979) atmosphere model (black).

\[R_\star = 0.733 \pm 0.022 \text{ and } M_\star = 0.777^{+0.037}_{-0.038} \text{ and with PARSEC we obtain similar values of } R_\star = 0.729 \pm 0.020 \text{ and } M_\star = 0.777^{+0.034}_{-0.031}. \]

Throughout this paper, we will use the \(R_\star = 0.739 \, R_\odot \text{ and } M_\star = 0.68 \, M_\odot \) values calculated using the empirical SED and Torres et al. (2010) relation, respectively. These are the priors that will be used in the global analysis to determine the planet parameters in Section 3.6.

In Table 3 we list our four different pairs of derived values for the primary star mass and radius.

3.2 Host star rotation

We use a Systematics-insensitive Periodogram (SIP) to build a periodogram whilst simultaneously detrending TESS instrument systematics from scattered background, following the method first described in Angus, Foreman-Mackey & Johnson (2016) and more recently implemented for TESS data in Hedges et al. (2020). For this we use the Simple Aperture Photometry (SAP) light curves, since the PDCSAP light curves tend to have the rotation period removed, or at least made harder to identify. The SIP power amplitude is shown in Fig. 4. The SIP shows the most significant power at a period of \(P_{\text{rot}} = 28 \, \text{d} \) and a secondary peak at \(P_{\text{rot}} \approx 40 \, \text{d} \). We adopt the more significant peak at \(P_{\text{rot}} = 28 \, \text{d} \) as the true rotation rate of TOI-1259. The signal at \(P_{\text{rot}} \approx 40 \, \text{d} \) is possibly an alias of the rotation period.

The rotation period of \(P_{\text{rot}} = 28 \, \text{d} \) is close to the orbital period of TESS (27 d). We conduct two tests of the validity of this rotation rate. First, We construct SIPs for the targets neighbouring TOI-1259 and find no evidence of a similar peak in near-by targets. Secondly, we create a SIP for all ‘background’ pixels outside of the TESS pipeline aperture in the TESS Target Pixel File for TOI-1259. This background SIP, shown as a blue line in Fig. 4, has no power at 28 d. This suggests that the 28 d signal is intrinsic to the target, and not an artefact of, for example, the sampling frequency of TESS.

3.3 Host star age

When estimating the ages of K dwarfs using gyrochronology, it is essential to account for ‘stalled magnetic braking’. Recent observations have revealed that rotational evolution is inhibited for middle-aged K dwarfs (Curtis et al. 2019; Angus et al. 2020). This stalled rotational evolution is thought to be caused by an internal redistribution of angular momentum (Spada & Lanzafame 2020). Unless this phenomenon is taken into account, the ages of K dwarfs could be underestimated by more than 2 Gyr.

We estimated an age for this star using a new gyrochronology model that accounts for stalled magnetic braking (Angus et al., in preparation). This model was calibrated by fitting a Gaussian process (GP), a semiparametric model that is flexible enough to capture the complex nature of stellar spin-down, to a number of asteroseismic stars and open clusters, including NGC 6811 where many member stars exhibit stalled magnetic braking (Curtis et al. 2019). We also used kinematic ages of Kepler field stars to calibrate this model for old K and early M dwarfs, where there is a dearth of suitable open cluster calibration stars. These kinematic ages also reflect the stalled magnetic braking behaviour seen in open clusters (Angus et al. 2020).

Using this model, we infer an age of \(4.8^{+0.7}_{-0.8} \) Gyr for this star. The quoted age uncertainty is the formal uncertainty that results from the
uncertainty on the star’s rotation period, and does not account for uncertainty in the model. Quantifying the magnitude of the model uncertainty is beyond the scope of this paper, however, a 20 per cent uncertainty of around 1 Gyr may be a more reasonable estimate of the true age uncertainty. This estimated age for the planet host is consistent with that of the total age of the WD (Section 3.4).

3.4 White dwarf age

WDs steadily cool as they age. A WD’s cooling age – that is, the time since it became a WD – can therefore be constrained from its temperature and luminosity. If the WD’s mass is known, the initial mass of its progenitor star can be inferred through the initial–final mass relation (IFMR), and this initial mass constrains the pre-WD age of the WD progenitor. Therefore, if we have a well-constrained distance to the WD then its total age, i.e. the sum of its main sequence lifetime and its cooling age, can be robustly measured from its SED. Under the reasonable ansatz that the WD and K dwarf formed at the same time, we can then measure the total system age from the WD.

We use BASE-9 (von Hippel et al. 2006; De Gennaro et al. 2008; Stein et al. 2013; Stenning et al. 2016) to fit the SDSS ugriz photometry of the WD. BASE-9 combines evolutionary models for WDs (Althaus & Benvenuto 1998; Montgomery et al. 1999), WD atmospheric models (Bergeron, Wesemael & Beauchamp 1995; Holberg & Bergeron 2006), PARSEC evolutionary models (Bressan et al. 2012), and semiempirical IFMRs to predict the SED of a WD with a given age, initial mass and metallicity, distance, extinction, and spectral type. It then uses MCMC methods to constrain these parameters from the SED of an observed WD.

We use the Gaia parallax of the brighter K dwarf companion as a prior. For the initial [Fe/H], we assume a Gaussian prior with a mean of −0.2 and a standard deviation of 0.3, appropriate for a disc star in the solar neighbourhood (e.g. Hayden et al. 2015). The spectral type of the WD is not known. Although we expect extinction to be almost negligible for such a nearby WD, we fit the extinction A_V as a free parameter, with a Gaussian prior with a mean of 0.01 and a standard deviation of 0.02, based on the 3D dust map of Green et al. (2019). For context, the SFD reddening (which quantifies the total dust column to infinity, including dust behind the WD) at the WD’s position is $E(B-V) = 0.085$ (Schlegel et al. 1998). We use a flat prior between 0 and 12 Gyr for total age. Our fiducial fit assumes the WD has a hydrogen atmosphere, which is true for ~ 75 per cent of WDs with its temperature and mass. We also show how the constraints would change if the WD had a helium atmosphere in Table 4.

A systematic uncertainty in modeling the WD’s evolution is the IFMR. Because most published IFMRs are discrete, analytic fitting functions, this uncertainty is difficult to marginalize over gracefully. To estimate the magnitude of this uncertainty, we compare constraints that assume two different IFMRs: the IFMR measured by Williams, Bolte & Koester (2009) from bound clusters, and the IFMR measured by El-Badry, Rix & Weisz (2018) from the Gaia colour–magnitude diagram of nearby field WDs.

Fig. 5 shows the resulting constraints on parameters of the WD, assuming a hydrogen atmosphere. Values are also reported in Table 4. The temperature and radius of the WD are well constrained by the SED. Because the radius of a WD is determined primarily by its mass, this also constrains the WD’s mass, which in turn constrains the initial mass of the WD progenitor. The cooling age of the WD is reasonably well constrained to be between 1.7 and 2 Gyr. The pre-WD age is more uncertain, because a modest uncertainty in initial mass leads to a significant uncertainty in main-sequence lifetime. This is the primary cause of the differences in the constraints obtained for the two different IFMRs. The two relations are actually quite similar at the relevant WD mass (see El-Badry et al. 2018, their fig. 3), but the El-Badry et al. (2018) relation is somewhat shallower. This means that a larger range of initial masses could produce the observed WD mass, and thus, that there is a larger range of allowed pre-WD ages. The pre-WD lifetime of a 2 M⊙ star is ~ 1.3 Gyr, while that of a 1.2 M⊙ star is ~ 6 Gyr, so the resulting uncertainty is non-negligible. A tighter constraint on the WD mass—which is potentially achievable via gravitational redshift, e.g. Reid 1996—could improve the statistical uncertainty on total age. However, the constraint is already tight enough that systematic uncertainty due to the IFMR is comparable to the statistical uncertainty, so the IFMR uncertainty would likely dominate the age uncertainty even with significantly better data.

Table 4 also shows how constraints on the WD’s parameters would change if it had a helium atmosphere rather than a hydrogen atmosphere. Changing the atmosphere slightly changes the WD’s colours and the mass–radius relation, such that the implied mass of the WD is lower. The difference is, however, relatively modest. A tighter constraint on the WD mass—which is potentially achievable via gravitational redshift, e.g. Reid 1996—could improve the statistical uncertainty on total age. However, the constraint is already tight enough that systematic uncertainty due to the IFMR is comparable to the statistical uncertainty, so the IFMR uncertainty would likely dominate the age uncertainty even with significantly better data.

3.5 Radial velocity modelling

To confirm the planet we conduct two independent analyses. First, in this section we detect solely the RV signal, using the genetic algorithm YORB (Ségransan et al. 2010). Secondly, in Section 3.6 we do a combined fit of both the photometry and RV, with a completely different code.

Table 4. Parameters of the WD. We compare constraints derived assuming a hydrogen versus helium atmosphere and constraints that assume two different IFMRs.

Parameter	H atm; El-Badry + 18 IFMR	H atm; Williams + 09 IFMR	He atm; El-Badry + 18 IFMR	He atm; Williams + 09 IFMR
Total age (Gyr)	$4.08^{+1.12}_{-0.53}$	$3.74^{+0.56}_{-0.31}$	$4.67^{+1.70}_{-0.94}$	$3.94^{+0.81}_{-0.44}$
Cooling age (Gyr)	$1.88^{+0.07}_{-0.06}$	$1.88^{+0.07}_{-0.06}$	$1.78^{+0.06}_{-0.05}$	$1.78^{+0.06}_{-0.05}$
Pre-WD age (Gyr)	$2.18^{+0.23}_{-0.21}$	$1.84^{+0.35}_{-0.35}$	$2.87^{+1.73}_{-1.00}$	$2.14^{+0.86}_{-0.47}$
Radius (R$_\odot$)	$0.0131^{+0.0004}_{-0.0003}$	$0.0131^{+0.0004}_{-0.0003}$	$0.0129^{+0.0003}_{-0.0003}$	$0.0129^{+0.0003}_{-0.0003}$
Mass (M$_\odot$)	$0.56^{+0.12}_{-0.02}$	$0.56^{+0.12}_{-0.02}$	$0.54^{+0.19}_{-0.22}$	$0.54^{+0.19}_{-0.22}$
Initial mass (M$_\odot$)	$1.59^{+0.08}_{-0.02}$	$1.72^{+0.17}_{-0.17}$	$1.45^{+0.06}_{-0.20}$	$1.61^{+0.17}_{-0.17}$
T_{eff} (K)	6300^{+80}_{-70}	6300^{+80}_{-70}	6330^{+80}_{-70}	6330^{+80}_{-70}
A_V (mag)	$0.019^{+0.018}_{-0.013}$	$0.019^{+0.018}_{-0.013}$	$0.019^{+0.017}_{-0.013}$	$0.019^{+0.017}_{-0.013}$
Figure 5. Parameters of the WD and its progenitor, obtained from fitting the SED. We compare constraints obtained when assuming the initial–final mass relations (IFMR) from El-Badry et al. (2018) and Williams et al. (2009). For this figure we assume a hydrogen atmosphere, but in Table 4 we also show results for a potential helium atmosphere. Values listed on the diagonal are based on the El-Badry et al. (2018) IFMR. Contours enclose 68 and 95 per cent probability. The total age of the WD – and thus, presumably, the age of the system – is at least 3 Gyr. The age uncertainty is dominated by uncertainty in the mass and pre-WD age of the progenitor.
where k is the number of model parameters, RSS is the sum of the squares of the model residuals (in m/s), and $n_{\text{obs}} = 13$ is the number of observations. We calculate the BIC for a flat line $(k = 1)$, the best-fitting eccentric model from YORBIT $(k = 6)$ and a forced circular model with the same period $(k = 4)$. The flat, eccentric, and circular BIC values are 157.8, 136.2, and 133.6, respectively. The circular planet model has the lowest BIC, making it the favoured model.

For one model to be significantly better than another though, a BIC reduction of more than 6 is considered ‘strong evidence’. This means that the circular model is not significantly better than the eccentric model, but both are significantly better than the flat model. Otherwise said, the RVs alone provide strong evidence that the planet exists, but we cannot constrain its eccentricity.

3.6 Global modelling of the photometry and radial velocity

We model the combined light curves (TESS and ground-based) and RV data using EXOPLANET (Foreman-Mackey et al. 2020). The EXOPLANET software uses STARRY (Luger et al. 2019; Agol, Luger & Foreman-Mackey 2020) to rapidly compute analytical limb darkened light curves, and is also integrated with Celerite for scalable GP computations. Since the models (and their gradients) within EXOPLANET are analytical, the software is built on the THEANO (Theano Development Team 2016) engine and therefore allows the use of Pymc3 (Salvatier, Wiecki & Fonnesbeck 2016), which offers fast and effective convergence using gradient-based sampling algorithms.

The SAP light curve from TESS shows a clear rotational signal of the host star (Fig. 4). While we could take advantage of the rotational signal in our modelling, we derive a rotation period in Section 3.2 using the SIF: We therefore opt to use the PDCSAP flux (Smith et al. 2012; Stumpe et al. 2012, 2014; Jenkins et al. 2016), in our transit analysis, which is corrected for spacecraft systematics and the rotation signal since the derived rotation period is on a similar time-scale to a TESS sector.

The TESS spacecraft fires its thrusters to unload angular momentum from its reaction wheels every few days, which may cause the images obtained in the timestamps to appear disjoint. To make sure the momentum dumps do not affect our further analysis, we identify the times of these events from the Data Quality Flags in the FITS files, and exclude the data obtained within four hours on either side of the thruster events.

We model the out-of-transit variability using GPs. We use the SHOTERM model in celerite (Foreman-Mackey et al. 2017; Foreman-Mackey 2018), fixing the quality factor $Q = 1/\sqrt{2}$ so that the covariance function becomes

$$k(\tau) = S_0 \omega_0 \exp\left(-\frac{1}{\sqrt{2}}\omega_0 \tau\right) \cos\left(\frac{\omega_0 \tau}{\sqrt{2}} - \frac{\pi}{4}\right).$$

We fit for the natural logarithms of the amplitude and frequency, S_0 and ω_0. Since each TESS sector may have systematics on different time-scales and amplitudes, we model each sector and ground-based light curve with individual GPs, and also assign individual flux scaling terms and white noise terms.

We fit the TESS and ground-based photometry using our GP model combined with a transit model, as well as a Keplerian model for the RV data. We place Gaussian priors on the stellar mass and radius using values from the SED analysis in Section 3.1, $M_\star = 0.68 \pm 0.08 M_\odot$, $R_\star = 0.739 \pm 0.031 R_\odot$. Further, we vary the impact parameter b, as well as the natural logarithms of the period P, mid-transit time T_0, planet radius R_{pl}, and planet mass M_{pl}.

The limb darkening of the star is described by a quadratic formula,
Table 5. Derived parameters from the joint modelling of TESS photometric and SOPHIE RV data.

Parameter	Description	Value circular model (adopted)	Value eccentric model
M_\star (M$_\odot$)	Stellar massa	$0.744^{+0.064}_{-0.059}$	$0.743^{+0.066}_{-0.064}$
R_\star (R$_\odot$)	Stellar radiusb	$0.711^{+0.020}_{-0.019}$	$0.711^{+0.024}_{-0.024}$
ρ_\star (g cm$^{-3}$)	Stellar density	$2.92^{+0.09}_{-0.04}$	$2.91^{+0.28}_{-0.25}$
$\log g_\star$ (cgs)	Stellar surface gravity	$4.605^{+0.013}_{-0.013}$	$4.581^{+0.044}_{-0.045}$
Orbital period (d)	P	$3.4779780^{+0.000019}_{-0.000017}$	$3.4779779^{+0.000018}_{-0.000016}$
Transit mid-point	T_0 (BJD$_{UTC}$ - 2,457,000)	$1686.700531^{+0.000097}_{-0.000104}$	$1686.700536^{+0.000099}_{-0.000100}$
Planet mass	M_pl (M$_\oplus$)	$0.441^{+0.049}_{-0.047}$	$0.440^{+0.051}_{-0.049}$
Planet radius	R_pl (R$_\oplus$)	$1.022^{+0.030}_{-0.027}$	$1.021^{+0.034}_{-0.034}$
Planet density	ρ_pl (g cm$^{-3}$)	$0.513^{+0.048}_{-0.045}$	$0.513^{+0.066}_{-0.066}$
Planet surface gravity	$\log g_\text{pl}$ (cgs)	$3.019^{+0.040}_{-0.040}$	$3.019^{+0.053}_{-0.053}$
Mass ratio	M_pl/M_\star	$0.000567^{+0.000036}_{-0.000055}$	$0.000568^{+0.000052}_{-0.000051}$
Planet-to-star radius ratio	R_pl/R_\star	$0.14762^{+0.00318}_{-0.00303}$	$0.14764^{+0.00332}_{-0.00331}$
Scaled separation	a/R_\star	$12.314^{+0.036}_{-0.056}$	$12.301^{+0.032}_{-0.038}$
Scaled stellar radius	R_pl/a	$0.08121^{+0.00037}_{-0.00033}$	$0.08130^{+0.00024}_{-0.00026}$
Scaled planet radius	R_pl/a	$0.01198^{+0.000097}_{-0.000093}$	$0.01200^{+0.000037}_{-0.000034}$
Planet equilibrium temperaturec	T_{eq} (K)	963^{+21}_{-25}	963^{+25}_{-25}
Impact parameter	b (R_\star)	$0.065^{+0.055}_{-0.044}$	$0.064^{+0.055}_{-0.065}$
Orbital inclination	i_p (°)	$89.70^{+0.20}_{-0.26}$	$89.70^{+0.21}_{-0.26}$
Semimajor axis	a (AU)	$0.04070^{+0.00114}_{-0.00100}$	$0.04069^{+0.00116}_{-0.00120}$
Transit depth at T_0	D_{T_0}	$0.026759^{+0.000097}_{-0.000100}$	$0.026756^{+0.000097}_{-0.000100}$
Transit duration between 1$^{\text{st}}$ and 4$^{\text{th}}$ contacts	T_{14} (d)	$0.10314^{+0.00020}_{-0.00020}$	$0.10313^{+0.00019}_{-0.00019}$
RV semiamplitude	K (m s$^{-1}$)	$72.0^{+6.8}_{-6.4}$	$72.2^{+6.4}_{-6.4}$
Eccentricity	e	$0.030^{+0.034}_{-0.022}$	$0.030^{+0.034}_{-0.022}$
Argument of periastron	ω (°)	0	0^{+132}_{-138}
Unit eccentricity parameter	$\sqrt{\varepsilon} \cos \omega$	$-0.082^{+0.011}_{-0.010}$	$-0.081^{+0.011}_{-0.010}$
Unit eccentricity parameter	$\sqrt{\varepsilon} \sin \omega$	$-0.087^{+0.013}_{-0.014}$	$-0.085^{+0.014}_{-0.015}$
Limb darkening coefficient, TESS band	κ_{TESS}	$0.5241^{+0.0066}_{-0.0064}$	$0.5232^{+0.0067}_{-0.0068}$
Limb darkening coefficient, TESS band	v_{TESS}	$0.088^{+0.016}_{-0.017}$	$0.088^{+0.015}_{-0.015}$
Limb darkening coefficient, R band	κ_{R}	$0.5328^{+0.0103}_{-0.0097}$	$0.5333^{+0.0099}_{-0.0098}$
Limb darkening coefficient, R band	v_{R}	$0.171^{+0.020}_{-0.020}$	$0.172^{+0.020}_{-0.020}$
Limb darkening coefficient, g band	κ_{g}	$0.368^{+0.0102}_{-0.0097}$	$0.368^{+0.0099}_{-0.0099}$
Limb darkening coefficient, g band	v_{g}	$0.209^{+0.020}_{-0.020}$	$0.209^{+0.021}_{-0.020}$
Limb darkening coefficient, white light	κ_{white}	$0.802^{+0.0098}_{-0.0101}$	$0.802^{+0.0100}_{-0.0100}$
Limb darkening coefficient, white light	v_{white}	$0.030^{+0.021}_{-0.021}$	$0.029^{+0.021}_{-0.020}$
Limb darkening coefficient, white light	κ_{white}	$0.664^{+0.0099}_{-0.0101}$	$0.662^{+0.0105}_{-0.0104}$
Limb darkening coefficient, white light	v_{white}	$0.059^{+0.021}_{-0.019}$	$0.062^{+0.020}_{-0.020}$

Notes. aControlled by Gaussian prior, $\mathcal{N}(0.68, 0.05)$.
bControlled by Gaussian prior, $\mathcal{N}(0.739, 0.031)$.
cAssuming zero albedo.

with coefficients and uncertainties within the TESS, R, z, g, and white light bands determined using PYLDTK (Parviainen & Aigrain 2015) and EXOFAST online tool.\footnote{http://astroults.astronomy.ohio-state.edu/exofast/limbdark.shtml (Eastman, Gaudi & Agol 2013).} PYLDTK and EXOFAST interpolate the Husser et al. (2013) and Claret & Bloemen (2011) atmospheric models, respectively, where we used stellar parameters from Table 3. We vary the limb darkening coefficients with a Gaussian prior centred

on the computed values, with standard deviation of 0.01 and 0.02 for c_1 and c_2, respectively. These uncertainties roughly correspond to twice the computed error, which we inflated to account for uncertainties in the stellar atmospheric models. The SOPHIE RV data is further described by the semiampplitude K, eccentricity parameters $\sqrt{\varepsilon} \cos \omega$ and $\sqrt{\varepsilon} \sin \omega$, and additional nuisance parameters that model the offset and a white noise term that is added in quadrature to the SOPHIE uncertainties.

We first perform a maximum-likelihood fit, followed by MCMC sampling using the NUTS sampler within PYMC3 to obtain credible
Figure 7. Upper panel: Nine sectors of TESS PDCSAP photometry of TOI-1259. The blue model is the Gaussian process model. Middle panel: The light curve after removing the Gaussian process model, showing transits only, with the transit model overlaid in orange. Bottom panel: Residuals from the best-fitting full model.

Figure 8. Phase folded and detrended light curve of the primary transit after removing the Gaussian process model. We show the unbinned data in blue, and the data averaged in 10 min bins in blue/white points. The orange line is the best-fitting transit model, with a maximum depth of 2.7 percent.

We visually searched for a secondary eclipse in the binned residuals of the phase-folded TESS photometry, shown in Fig. 10. The residuals close to phase 0.5 (where a secondary eclipse would be for a circular orbit) show no signs of a planet occultation. There may be a tentative signal of a ∼100 ppm secondary eclipse at phase ∼0.64. However, this implies an eccentricity of roughly 0.2–0.3. Such high eccentricities are not supported by the current RV data. We estimate the secondary eclipse depth to be 63 ppm, using the simple approximation $\approx 0.5(R_p/a_p)^2$, where we assume a geometric albedo of 0.5 and ignore thermal emission. An eclipse of this depth would be consistent with the small dip seen at phase 0.64, but more observations, potentially including those from an extended TESS mission, would be needed to confirm that this feature is a secondary eclipse.

4 DISCUSSION

We have confirmed that the TESS transiting candidate TOI-1259Ab is a 0.441M$_{\text{Jup}}$ transiting exoplanet on a 3.48 d orbit, through our RV and ground-based photometric follow-up. Furthermore, by combining with the existing Gaia binaries catalog of El-Badry & Rix (2018), we show that this planet exists in a binary star system, where its primary star is a 0.68 M$_{\odot}$ K-dwarf and the secondary star is a 0.56 M$_{\odot}$ WD on a bound orbit. The current projected separation is roughly 1648 au. All of the key parameters of this system are summarized in Table 1.
4.1 Comparison with Mugrauer & Michel (2020)

Mugrauer & Michel (2020) independently characterized the WD companion to TOI-1259. They also concluded that it was a bound companion, and determined a projected separation of roughly 1600 au, which is the same as in El-Badry & Rix (2018). Their derived WD effective temperature of $T_{\text{eff}} = 6473_{-419}^{+672}$ K agrees with our calculations of $T_{\text{eff}} = 6300_{-70}^{+80}$ K.

4.2 Dynamical history

Wang et al. (2014) determined that the planet frequency in binary systems was lower than that around single stars for binary separations up to 1500 au, which is the same as in El-Badry & Rix (2018). Some other studies suggest that the influence of a binary is less far-reaching, with only 100–200 au and tighter binaries affecting planet populations (Kraus et al. 2016; Moe & Kratter 2019; Ziegler et al. 2021). With a mass of 0.56 M_\odot at a distance of about 1600 au, our WD is presently at a separation not predicted to impact planet formation. However, during its main-sequence lifetime, the WD’s progenitor would have been both more massive ($\sim 1.59 M_\odot$) and much closer (~ 900 au, assuming adiabatic mass-loss). At this point secular effects such as Kozai–Lidov (Kozai 1962; Lidov 1962; Mazeh & Shaham 1979) may have been relevant to the planet. Indeed, the Kozai–Lidov effect may have brought the planet to its current orbital configuration, by inducing high-eccentricity tidal migration (Fabrycky & Tremaine 2007; Naoz, Farr & Rasie 2012; Naoz 2016), if the planet started out at a wider orbit, as would be expected for a gas giant. Given the estimated pre-WD age of the system (2 Gyr), a large range of orbital parameters could have led to the observed orbit of the planet TOI-1259Ab. In such a case,
the companion star evolving into a WD may have also acted as a natural ‘shut-off’ for such secular effects (Dawson & Johnson 2018).

We also note here that our combined photometry and RV fit favours a circular solution for the planetary orbit. The planet may have had a higher eccentricity (e.g. due to Kozai–Lidov) in the past but with a semimajor axis of only 0.04 au it likely would have been circularized by tidal interactions within the age of the system. Higher precision photometric follow-up that is able to reveal the secondary transit of the planet would most likely be the best means of detecting any potential small but non-zero eccentricity.

Any planets that orbited the WD progenitor may have experienced the opposite effect; the evolution of their host into a WD may have acted to ‘turn-on’ secular effects (Shappee & Thompson 2013; Stephan et al. 2017; Stephan, Naoz & Gaudi 2018; Stephan, Naoz & Gaudi 2020). This could cause the destruction of its planets. TOI-1259A’s WD companion would therefore be a worthwhile target for finding signatures of heavy element pollution by planetary debris. In any case, more detailed studies of the dynamical history of TOI-1259 and of Gliese-86b, which has a WD companion at a projected separation of just 21 au (Queloz et al. 2000; Els et al. 2001; Lagrange et al. 2006), are warranted and will be part of a future work.

4.3 Future spectroscopic characterization of the white dwarf companion

There is a propensity for WDs to have atmospheres contaminated by heavy elements (Debes et al. 2012; Farihi 2016; Wilson et al. 2019), despite an expectation that such elements would quickly settle towards the core due to the high gravity. This has been measured in WDs without any known exoplanet companions, but the pollution itself has been attributed to the accretion of surrounding planetary material. It would be interesting to know if WD such as TOI-1259B, which do have a known associated planet, are more likely to be polluted than ‘lonely’ WDs. Southworth et al. (2020) most recently tested this for WASP-98, but their spectroscopy of the WD revealed a featureless spectrum and hence no evidence of pollution could be ascertained. It will ultimately be beneficial to conduct such spectroscopy on not only TOI-1259B, but indeed all of the similar systems listed in Table 2.

Follow-up spectroscopy will also hopefully inform us if the atmosphere is hydrogen or helium dominated. Breaking this degeneracy would allow a more accurate constraint on the WD parameters since we could choose the appropriate model from Table 4.

4.4 Future JWST observations

Kempton et al. (2018) derived a Transmission Spectroscopy Metric (TSM). It is a means of prioritizing exoplanets for future atmospheric characterization, in particular using the JWST, and is proportional to the expected signal-to-noise ratio for the planet’s transmission spectrum. Their analytic expression is

\[TSM = S \times \frac{R_p^3 T_{eq}}{M_{pl} R_\star^2} \times 10^{-m_J/5}, \]

(3)

where \(m_J \) is the magnitude of the host star in the \(J \) band and \(S \) is a an empirical scale factor derived by Kempton et al. (2018) to make their simple analytic expression match the more detailed simulations of Louie et al. (2018). The factor \(S \) depends on the radius of the

\[\text{A similar configuration to TOI-1259, but with a wider binary separated by} \sim 3500 \text{au}. \]
transiting planet: $S = 0.19$ for $R_\text{pl} < 1.5R_\oplus$; $S = 1.26$ for $1.5 < R_\text{pl} < 2.75R_\oplus$; $S = 1.28$ for $2.75 < R_\text{pl} < 4.0R_\oplus$ and $S = 1.15$ for $R_\text{pl} > 4.0R_\oplus$.\footnote{Whilst we use this final scale factor for all planets above 4R_\oplus, Kempton et al. (2018) only define it for 4 to 10R_\oplus and do not give a scale factor for larger planets.}

For TOI-1259Ab we calculate a value of $TSM = 180$, which places it in the top 3 percent of all confirmed transiting exoplanets. We demonstrate this in Fig. 12. TOI-1259Ab has a scaled separation $a/R_\star = 12.31^{+0.06}_{-0.06}$ and an equilibrium temperature $T_{\text{eq}} = 963 \pm 21$ K. Most of the planets with a higher TSM value are hotter and larger. There are only two objects cooler than 1000 K with a higher TSM: WASP-69b and WASP-107b. These two planets have already received considerable attention with respect to their atmospheres. WASP-69b (Anderson et al. 2014) has a confirmed presence of helium in its atmosphere from ground-based observations (Nortmann et al. 2018). WASP-107b (Anderson et al. 2017) is a so-called ‘super-puff’, based on a 0.12M_Jup mass and a 0.94R_Jup radius, and Hubble Space Telescope observations have revealed the presence of both helium (Spake et al. 2018) and water (Kreidberg et al. 2018).

With an ecliptic latitude of 76.878°, TOI-1259Ab is near the JWST continuous viewing zone and is observable for typically 227 d per year, which will assist future atmospheric characterization.

ACKNOWLEDGEMENTS

This project began at the Expanding the Science of TESS meeting, which took place in 2020 February the University of Sydney, back when meeting people in large groups was still a thing. The RV observations were partly conducted while OHP was in ‘remote observing’ mode, a special mode produced as a response the unique COVID-19 situation. We are extremely grateful for the dedication of the staff at OHP that allowed observations to resume. We thank Markus Mugrauer for looking at a draft version of this paper. Finally, we thank a referee for providing a thorough review that undoubtedly improved the quality of the paper.

The observations were obtained under an OHP DDT programme (PI Triaud). This work was in part funded by the U.-Norway Fulbright Foundation and a NASA TESS GI grant G022253 (PI: Martin). DVM received funding from the Swiss National Science Foundation (grant P 400P2 186735). AHMJT received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant 803193/BEBOP). VKH is also supported by a Birmingham Doctoral Scholarship, and by a studentship from Birmingham’s School of Physics & Astronomy. SG has been supported by STFC through consolidated grants ST/L000733/1 and ST/P000495/1. SJM was supported by the Australian Research Council through DECRANDE18011104. VK has been supported by the Ministry of science and Higher Education of the Russian Federation, topic N 0 FEUZ-2020-0038.

We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS SPOC. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products.

This research has used Astropy,\footnote{http://www.astropy.org} a community-developed core PYTHON package for Astronomy (Astropy Collaboration 2013, 2018).

Based in part on observations made at Observatoire de Haute Provence (CNRS), France.

DATA AVAILABILITY

All TESS data are publically available and can be downloaded using Lightkurve (Lightkurve Collaboration 2018) or other tools. The SOPHIE RVs are published as supplementary data. Any other data/models in this article will be shared on reasonable request to the corresponding author.

REFERENCES

Angus R., Foreman-Mackey D., 2020, AJ, 159, 123
Alonso R. et al., 2021, A&A, 649, A131
Althaus L. G., Benvenuto O. G., 1998, MNRAS, 296, 206
Anderson D. R. et al., 2014, MNRAS, 445, 1114
Anderson D. R. et al., 2017, A&A, 604, A110
Angus R. et al., 2019, AJ, 158, 173
Angus R. et al., 2020, AJ, 160, 90
Angus R., Foreman-Mackey D., Johnson J. A., 2016, ApJ, 818, 109
Astropy Collaboration, 2013, A&A, 558, A33
Astropy Collaboration, 2018, AJ, 156, 123
Barker A. J., Ogilvie G. I., 2009, MNRAS, 395, 2268
Barnes S. A., 2003, ApJ, 586, 464
Bear E., Soker N., 2014, MNRAS, 444, 1698
Bergeron P., Wesemael F., Beauchamp A., 1995, PASP, 107, 1047
Bonsor A., Veras D., 2015, MNRAS, 454, 53
Bouchy F. et al., 2009, A&A, 505, 853
Bressan A., Marigo P., Girardi L., Salasnich B., Dal Cero C., Rubele S., Nanni A., 2012, MNRAS, 427, 127
Butler R. P. et al., 2006, ApJ, 646, 505
Butler R. P., Tinney C. G., Marcy G. W., Jones H. R. A., Penny A. J., Apps K., 2001, ApJ, 555, 410
Chauvin G., Lagrange A.-M., Udry S., Fuscino T., Galland F., Naef D., Beuzit J.-L., Mayor M., 2006, A&A, 456, 1165
Cheetham A. C., Kraus A. L., Ireland M. J., Cieza L., Rizzuto A. C., Tuthill P. G., 2015, ApJ, 813, 83
Choi J., Dotter A., Conroy C., Cantiello M., Paxton B., Johnson B. D., 2016, ApJ, 823, 102

MNRAS 507, 4132–4148 (2021)
APPENDIX A: NUISANCE PARAMETERS FROM THE GLOBAL ANALYSIS

Table A1. Fitted Gaussian process (GP) and radial velocity nuisance parameters from the joint modelling of the photometric and radial velocity data. Only the parameters for the circular orbital model are given, as the differences from the eccentric model are negligible.

Parameter	Description	Value	Prior
Sector 14	log σ0.04	−15.79 ± 0.59	\(\mathcal{N}(\log \text{var}(\text{flux}), 5^2)\)
log a0	GP frequency	−0.90 ± 0.56	\(\mathcal{N}(2\pi/5, 5^2)\)
log a2	White noise term	−24.52 ± 5.73	\(\mathcal{N}(\log \text{var}(\text{flux}), 10^2)\)
F	Flux scaling factor	0.99949 ± 0.00053	\(\mathcal{N}(\text{median}(\text{flux}), 5^2)\)
Sector 17	log σ0.04	−8.71 ± 0.28	\(\mathcal{N}(\log \text{var}(\text{flux}), 5^2)\)
log a0	GP frequency	0.28 ± 0.32	\(\mathcal{N}(2\pi/5, 5^2)\)
log a2	White noise term	−24.52 ± 5.28	\(\mathcal{N}(\log \text{var}(\text{flux}), 10^2)\)
F	Flux scaling factor	1.00051 ± 0.00206	\(\mathcal{N}(\text{median}(\text{flux}), 5^2)\)
Sector 18	log σ0.04	−10.19 ± 0.33	\(\mathcal{N}(\log \text{var}(\text{flux}), 5^2)\)
log a0	GP frequency	0.75 ± 0.17	\(\mathcal{N}(2\pi/5, 5^2)\)
log a2	White noise term	−24.86 ± 6.10	\(\mathcal{N}(\log \text{var}(\text{flux}), 10^2)\)
F	Flux scaling factor	0.99975 ± 0.00041	\(\mathcal{N}(\text{median}(\text{flux}), 5^2)\)
Sector 19	log σ0.04	−14.66 ± 0.52	\(\mathcal{N}(\log \text{var}(\text{flux}), 5^2)\)
log a0	GP frequency	−0.01 ± 0.25	\(\mathcal{N}(2\pi/5, 5^2)\)
log a2	White noise term	−24.74 ± 5.49	\(\mathcal{N}(\log \text{var}(\text{flux}), 10^2)\)
F	Flux scaling factor	1.00004 ± 0.00019	\(\mathcal{N}(\text{median}(\text{flux}), 5^2)\)
Sector 20	log σ0.04	−14.21 ± 0.37	\(\mathcal{N}(\log \text{var}(\text{flux}), 5^2)\)
log a0	GP frequency	−0.37 ± 0.24	\(\mathcal{N}(2\pi/5, 5^2)\)
log a2	White noise term	−24.89 ± 5.37	\(\mathcal{N}(\log \text{var}(\text{flux}), 10^2)\)
F	Flux scaling factor	0.99995 ± 0.00044	\(\mathcal{N}(\text{median}(\text{flux}), 5^2)\)
Sector 21	log σ0.04	−11.30 ± 0.38	\(\mathcal{N}(\log \text{var}(\text{flux}), 5^2)\)
log a0	GP frequency	1.04 ± 0.15	\(\mathcal{N}(2\pi/5, 5^2)\)
log a2	White noise term	−24.77 ± 2.82	\(\mathcal{N}(\log \text{var}(\text{flux}), 10^2)\)
F	Flux scaling factor	1.00006 ± 0.00012	\(\mathcal{N}(\text{median}(\text{flux}), 5^2)\)
Sector 24	log σ0.04	−11.28 ± 0.44	\(\mathcal{N}(\log \text{var}(\text{flux}), 5^2)\)
log a0	GP frequency	1.14 ± 0.16	\(\mathcal{N}(2\pi/5, 5^2)\)
log a2	White noise term	−24.71 ± 3.39	\(\mathcal{N}(\log \text{var}(\text{flux}), 10^2)\)
F	Flux scaling factor	1.00007 ± 0.00010	\(\mathcal{N}(\text{median}(\text{flux}), 5^2)\)
Table A1 – continued

Parameter	Description	Value	Prior
Sector 25			
log $S_00_o^0$	GP amplitude	$-9.83^{+0.34}_{-0.32}$	$\mathcal{N}(\log \text{var(flux)}, 5^2)$
log $\omega_{o} (\text{s}^{-1})$	GP frequency	$1.51^{+0.13}_{-0.13}$	$\mathcal{N}(\log 2\pi/5, 5^2)$
log σ^2	White noise term	$-24.64^{+3.34}_{-5.93}$	$\mathcal{N}(\log \text{var(flux)}, 10^2)$
\mathcal{F}	Flux scaling factor	$1.00006^{+0.00001}_{-0.00001}$	$\mathcal{N}(\text{median(flux)}, 5^2)$
Sector 26			
log $S_00_o^0$	GP amplitude	$-13.37^{+0.63}_{-0.61}$	$\mathcal{N}(\log \text{var(flux)}, 5^2)$
log $\omega_{o} (\text{s}^{-1})$	GP frequency	$0.44^{+0.24}_{-0.28}$	$\mathcal{N}(\log 2\pi/5, 5^2)$
log σ^2	White noise term	$-24.67^{+3.33}_{-5.35}$	$\mathcal{N}(\log \text{var(flux)}, 10^2)$
\mathcal{F}	Flux scaling factor	$1.00005^{+0.00015}_{-0.00015}$	$\mathcal{N}(\text{median(flux)}, 5^2)$
R band			
log $S_00_o^0$	GP amplitude	$2.87^{+1.82}_{-2.48}$	$\mathcal{N}(-1, 10^2)$
log $\omega_{o} (\text{s}^{-1})$	GP frequency	$5.10^{+2.29}_{-0.57}$	$\mathcal{N}(\log 2\pi/0.04, 10^2)$
log σ^2	White noise term	$-10.98^{+0.25}_{-0.29}$	$\mathcal{N}(\log \text{var(flux)}, 10^2)$
\mathcal{F}	Flux scaling factor	$0.89563^{+0.00080}_{-0.00069}$	$\mathcal{N}(\text{median(flux)}, 5^2)$
ϵ band			
log $S_00_o^0$	GP amplitude	$-8.88^{+1.85}_{-3.46}$	$\mathcal{N}(-1, 10^2)$
log $\omega_{o} (\text{s}^{-1})$	GP frequency	$2.34^{+0.24}_{-0.23}$	$\mathcal{N}(\log 2\pi/0.04, 10^2)$
log σ^2	White noise term	$-18.14^{+4.86}_{-7.64}$	$\mathcal{N}(\log \text{var(flux)}, 10^2)$
\mathcal{F}	Flux scaling factor	$0.14724^{+0.000132}_{-0.000026}$	$\mathcal{N}(\text{median(flux)}, 5^2)$
g’ band			
log $S_00_o^0$	GP amplitude	$-3.14^{+1.27}_{-1.23}$	$\mathcal{N}(-1, 10^2)$
log $\omega_{o} (\text{s}^{-1})$	GP frequency	$2.84^{+1.20}_{-1.20}$	$\mathcal{N}(\log 2\pi/0.04, 10^2)$
log σ^2	White noise term	$-19.04^{+4.50}_{-7.50}$	$\mathcal{N}(\log \text{var(flux)}, 10^2)$
\mathcal{F}	Flux scaling factor	$0.16291^{+0.000197}_{-0.000266}$	$\mathcal{N}(\text{median(flux)}, 5^2)$
White light			
log $S_00_o^0$	GP amplitude	$3.10^{+1.11}_{-1.03}$	$\mathcal{N}(-1, 10^2)$
log $\omega_{o} (\text{s}^{-1})$	GP frequency	$3.97^{+0.42}_{-0.48}$	$\mathcal{N}(\log 2\pi/0.04, 10^2)$
log σ^2	White noise term	$-10.92^{+0.21}_{-0.21}$	$\mathcal{N}(\log \text{var(flux)}, 10^2)$
\mathcal{F}	Flux scaling factor	$1.36259^{+0.000500}_{-0.000481}$	$\mathcal{N}(\text{median(flux)}, 5^2)$
SOPHIE			
log σ (km s$^{-1}$)	White noise term	$-5.44^{+1.34}_{-4.40}$	$\mathcal{N}(\log \text{median(RV)}, 5^2)$
γ (km s$^{-1}$)	Systemic velocity	$-40.8197^{+0.0036}_{-0.0037}$	$\mathcal{N}(\text{median(RV)}, 0.5^2)$

1Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA
2Department of Astronomy and Theoretical Astrophysics Center, University of California Berkeley, Berkeley, CA 94720, USA
3School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
4American Museum of Natural History, New York, NY 10024, USA
5Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
6Department of Astronomy, University of Washington, Seattle, WA 98105, USA
7Bay Area Environmental Research Institute, PO Box 25, Moffett Field, CA, USA
8NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035, USA
9School of Physics, University of New South Wales, Sydney, NSW 2052, Australia
10Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006, Australia
11CNRS, CNES, LAM Marseille Univ, Marseille, 13388, France
12Department of Physics & Astronomy, Vanderbilt University, Nashville, TN 37235, USA
13Center for Cosmology and AstroParticle Physics, The Ohio State University, Columbus, OH 43210, USA
14Acton Sky Portal Private Observatory, Acton, MA 01720, USA
15Laboratory of Astrochemical Research, Ural Federal University, Ekaterinburg, Russia, ul. Mira d. 19, Yekaterinburg 620002, Russia
16Astronomical department, Ural Federal University, Yekaterinburg 620002, Russia
17Private Astronomical Observatory, Ananajev, Odessa Region UA-66400, Ukraine
18Department of Physics, Engineering and Astronomy, Stephen F. Austin State University, TX 75962, USA
19Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University, Marrakech, 644M+C9G, Oukaimeden, Morocco
20Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG, UK
21Centre for Exoplanets and Habitability, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
22SETI Institute, 189 Bernardo Ave, Suite 200, Mountain View, CA 94043, USA
23Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

MNRAS 507, 4132–4148 (2021)
