First examples of stable transition metal complexes of an all-metal antiaromatic molecule (Al$_4$Li$_4$)

Ayan Datta and Swapan K Pati

Theoretical Sciences Unit and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Center for Advanced Scientific Research Jakkur Campus, Bangalore 560 064, India. E-mail: pati@jncasr.ac.in

Abstract

We propose new methodologies for stabilizing all-metal antiaromatic clusters like: Al$_4$Li$_4$. We demonstrate that these all-metal species can be stabilized by complexation with 3d-transition metals very similar to its organic counterpart, C$_4$H$_4$. Complexation to transition metal ions reduce the frontier orbital energies and introduces aromaticity. We consider a series of such complexes [η^4(Al$_4$Li$_4$)-Fe(CO)$_3$, $\eta^2\sigma^2$(Al$_4$Li$_4$)-Ni and (Al$_4$Li$_4$)$_2$Ni] and make a comparison between the all-metal species and the organometallic compounds to prove conclusively our theory. Fragmentation energy analysis as well as NICS support similar mechanism of complexation induced stability in these all-metal molecules.
The concept of aromaticity and antiaromaticity is of fundamental importance in chemistry. From the simple Hückel theory to the more refined concepts like ring-currents and critical point charge-densities, the field has evolved over a period of half-a-century[1]. The idea has been extended from initially a small class of organic π-conjugated systems to now many inorganic molecules and molecular clusters[2], with rapid experimental verifications through actual synthesis and characterizations[3].

The recent report of the first all-metal antiaromatic complex, Al$_4$Li$_4$ shows the generalizations and usefulness of this idea[4]. Also, in the last few years there have been reports of aromaticity in all-metal clusters[5]. However, unlike their organic counterpart, C$_4$H$_4$, where the energy separation between the σ and π orbitals is substantial, these all-metal molecules have closely placed orbitals and thus have poor σ-π separation. Mostly, the aromatic characteristic is associated with delocalized electrons (π electrons). However recently it has been reported that these clusters are more σ-aromatic than π-antiaromatic[6]. As a result, there has been a confusion whether to call these complexes aromatic or antiaromatic. The controversy can only be settled after the successful synthesis followed by unambiguous crystal structure determinations. For a stable molecular crystal, measurement of bond lengths alternations as well as the charge densities (ring critical points) are well established parameters for characterizing aromaticity/antiaromaticity[7].

These clusters however have till now been synthesized only in the gas-phase by laser vaporization technique and is thus insufficient in providing
structural details. Recently, we have shown that these materials, Al_4M_4 (M=Li, Na and K) are also very good candidates for higher-order nonlinear optical (NLO) applications due to charge transfer from the highly electropositive ion (Li) to the Al$_4$-rings$[8]$. Unfortunately, the stability is one issue which hinders any applications let alone firm establishment of the basic understanding.

The synthesis of antiaromatic molecules is difficult because of their instabilities. Cyclobutadiene, (C$_4$H$_4$), a 4π electron system remained non-isolated for a longtime before Longuet-Higgins and Orgel proposed in a landmark paper, the concept of stabilization through complexation with a transition metal to form an organometallic compound$[9]$. The compound was synthesized soon after$[10]$. In the following, we justify this simplistic model for the small Al$_4$-clusters and propose a few very stable complexes of these all-metal species. Parallely, we also compare and contrast the energetics with their organic analogues (C$_4$H$_4$ complexes).

We have performed a closed shell calculation for singlet and an open shell calculation for the triplet state at the 6-311G(d,p) basis set level. Electron correlation has been included according to the DFT method using Becke’s three parameter hybrid formalism and the Lee-Yang-Parr functionals (B3LYP) available in the Gaussian electronic structure set of codes$[11]$. The geometries obtained from the B3LYP method have been shown to be in very good agreement with the measured photoelectron spectra in such small clusters$[12]$.

3
In Fig. 1, the minimum energy ground state structures are shown for C$_4$H$_4$ and Al$_4$Li$_4$. Simple Hückel π-electron theory predicts a triplet square geometry for C$_4$H$_4$ with equal C-C bond lengths\cite{13}. However inclusion of interaction with the underlying σ backbone stabilizes the C$_4$H$_4$ molecule in a singlet state with rectangular geometry. This is a good example of Jahn-Teller distortion or Pierls instability in low-dimensional system which allows stabilizations through bond length alternation. In fact, in this picture, the square geometry actually corresponds to a transition state between two degenerate rectangular ground state structures. In Table 1, the total energies, bond length alternation (Δr, defined as the average difference between the bond lengths of two consecutive bonds in the 4-membered ring) for both the states are tabulated. The rectangular C$_4$H$_4$ [A(i)] is more stable than the square geometry [A(ii)] by 6.2 Kcal/mol. Thus, a triplet square geometry is expected to be the transition state for processes such as ring whizzing, where one rectangular form is converted into the other (an in-plane rotation of 90°), in harmony with time-resolved transition state studies for the tub-inversion in 1,3,5,7-cyclooctatetraene\cite{14}.

Since in Al$_4$Li$_4$ the σ-π separation is poor, the Hückel π-electron picture is completely invalid. In fact, the π electrons in this case interacts more strongly with the σ backbone and we expect a distorted structure as the ground state. The ground state structure for the singlet state is found to be a rectangular Al$_4$-geometry with surrounding Li atoms, forming a C$_{2h}$ symmetry group [B(i)]. The same structure has been found in previous calculations as well\cite{6}.
Another low-energy structure for Al$_4$Li$_4$ found by optimizing the geometry for the singlet square geometry is a diamond shaped structure. It has a D$_{2h}$ symmetry [B(ii)] and is 15 Kcal/mol higher in energy than the stable C$_{2h}$ geometry [B(i)]. Thus, the rectangular Al$_4$-ring in [B(i)] corresponds to the ground-state geometry for Al$_4$Li$_4$. The structural distortion leading to a magnetic triplet state with D$_{4h}$ symmetry [B(iii)] is found to lie 55 Kcal/mole above the ground state singlet [B(i)]. There also exist a low-energy structure with the same geometry as the ground state (C$_{2h}$ symmetry) with purely spin excitation at an energy only 5 Kcal/mole above the ground state. This triplet geometry [B(iv)] for Al$_4$Li$_4$ does not have a counterpart in C$_4$H$_4$, clearly explaining the low σ-π gap and the existence of continuum like metallic states in Al$_4$Li$_4$.

Existence of a very stable rectangular ground state structure together with a square geometry as the transition state for the Al$_4$-ring similar to those for C$_4$H$_4$ suggests that these inorganic clusters are anti-aromatic in nature. This is expected since, the highly electropositive Li atoms donate electrons to the Al-atoms, thereby creating a species of the type Al$_4^{4-}$, isoelectronic with C$_4$H$_4$. Thus we can safely consider Al$_4$Li$_4$ as a 4π electron system with the π-HOMO (highest occupied molecular orbital) being a non-bonding molecular orbital as like in C$_4$H$_4$. In the context of C$_4$H$_4$, Longuet-Higgins suggested that such a system can be stabilized if the non-bonding electrons form bonding molecular orbitals with suitable low energy d-orbitals of a transition metal. For this to happen however, the energies of the d-orbitals should lie
close to the low-energy levels of the molecule alone. In the following, we pro-
pose a few stable complexes of Al$_4$Li$_4$ and compare their formation energies
in comparison with their organic analogues.

1 Fe(CO)$_3$ complex:

A molecular complex, η^4(C$_4$H$_4$)-Fe(CO)$_3$, has been recognized through the
formation of such bonding molecular orbitals and this complex has been
reported to be quite stable[15]. In fact, oxidation of this complex releases the
C$_4$H$_4$ ligand which is a stable source for the highly reactive cyclobutadiene
in organic synthesis[16]. For the Al$_4$Li$_4$, we perform ground state energy
analysis on the similar system, η^4(Al$_4$Li$_4$)-Fe(CO)$_3$, using the same level of
theory mentioned above. Both η^4(Al$_4$Li$_4$)-Fe(CO)$_3$ and its organic analogue
have substantial stability (see Fig. 2 for structures). Al$_4$Li$_4$ indeed forms a
stable η^4 complex with Fe(CO)$_3$ [2(ii)]. The stability of the complexes are
investigated using the following fragmentation scheme:

$$\eta^4$(C$_4H_4$)-Fe(CO)$_3$ = C$_4$H$_4$ + Fe(CO)$_3$$$

$$\eta^4$(Al$_4Li_4$)-Fe(CO)$_3$ = Al$_4$Li$_4$ + Fe(CO)$_3$$$

The binding energy for η^4(Al$_4$Li$_4$)-Fe(CO)$_3$ is found to be 106.04 Kcal/mol
while that for η^4(C$_4$H$_4$)-Fe(CO)$_3$ it is 78.44 Kcal/mol. The comparable bind-
ing energies for the two compounds suggest that Al$_4$Li$_4$ is very well stabilized
in the complex, in-fact even more stabilized than C$_4$H$_4$.

6
The HOMO of the molecule (a non-bonding MO for C₄H₄), interacts with the low-energy d-orbital of the ligand to form a bonding combination in the complex. Thus, C₄H₄ that initially possessed 4π electrons now has two more electrons, forming a species of the type C₄H₄²⁻, an aromatic molecule. Similarly, for Al₄Li₄, the complexation converts it into Al₄Li₄²⁻, a well-established aromatic complex⁵. The HOMO energies for C₄H₄ in the free and in the coordinated form (derived by performing a single-point energy calculation on the C₄H₄ fragment in the optimized complex) are −0.198 au and −0.157 au respectively, while the same for the complex, η⁴(C₄H₄)-Fe(CO)₃, is −0.250 au. Similarly, for Al₄Li₄, the free and the coordinated form have HOMO energies at −0.128 and −0.104 respectively and the complex η⁴(Al₄Li₄)-Fe(CO)₃ has the same at −0.168 au. The stabilization of the frontier orbitals in the metal complex in both the systems has its manifestation at the formation of the stable structure. The similarity in the difference between the HOMO energies of free and coordinated structures and with that of the corresponding complex for each molecule suggest that a similar mechanism is operative in lowering the energies of the frontier orbitals in stabilizing the complexes.

The above explanation is based on a simplistic picture of the interaction. To verify that indeed such a scheme is valid for a molecule with poor σ-π separation like Al₄Li₄, we compare the Δr for both C₄H₄ and Al₄Li₄ in the free geometry and when they are complexed with the transition metal. For C₄H₄, the Δr is 0.24 Å in the free state. In the complex, η⁴(C₄H₄)-Fe(CO)₃, the Δr for the C₄H₄ ring is only 0.005 Å. Thus, C₄H₄ when complexed is a
square rather than a rectangle and as expected from the π-only interaction, it behaves as aromatic $C_4H_4^{2-}$. For Al_4Li_4, $\Delta r=0.13 \, \text{Å}$ in the free state while in the complex it is only 0.03 Å. This clearly supports that the Al_4Li_4 has been converted into $Al_4Li_4^{2-}$, accounting for its substantial stability due to aromaticity. The complexation induced metalloaromaticity in Al_4Li_4 is schematically shown in Fig. 3. While a square (triplet) Al_4Li_4 is much higher in energy than the rectangular Al_4Li_4, this square form is stabilized on complexation to a transition metal. Same is the case for C_4H_4, where the square form becomes stabilized upon complexation. This is similar to the origin of aromaticity in benzene, where the π-delocalized D_{6h} structure corresponds to a energy minima between two bond-altered Kekule forms with D_{3h} symmetry.

An even more clear picture is derived by performing a calculation for the nucleus-independent chemical shift (NICS) at the GIAO-B3LYP /6-311+G(d,p) level. We calculate the NICS at the center of the Al_4 ring before and after complexation with the Fe(CO)$_3$. For comparison, the same values are also calculated for C_4H_4. In C_4H_4, NICS values before (C_4H_4) and after complexation ($C_4H_4^{2-}$) are 23.55 ppm and -15.37 ppm respectively. The change in sign clearly shows the transition from antiaromatic to aromatic nature upon complexation. For Al_4Li_4, the NICS values change from -11.01 ppm in the free state to -25.44 ppm on complexation in $\eta^4(Al_4Li_4)$- Fe(CO)$_3$. The initial negative magnitude for NICS in free Al_4Li_4 supports the claim by Schleyer et al that Al_4Li_4 has higher σ-aromaticity than π-antiaromaticity.
But, the increase in NICS value with same negative sign suggests increased aromaticity in these clusters upon complexation, which is expected from the π only picture of the conversion of Al_4Li_4 to $\text{Al}_4\text{Li}_4^{2-}$. Thus, complexation with Fe(CO)_3 induces metalloaromaticity in Al_4Li_4 and thereby stabilizes the complex, $\eta^4(\text{Al}_4\text{Li}_4)$-$\text{Fe(CO)}_3$.

2 **bis nickel(II) chloride complex:**

Next we consider another very well known example of a stable C_4H_4 complex, bis(cyclobutadiene nickel(II) chloride). The tetramethyl derivative for the complex crystallizes in a P21/c point group and has a good resolution ($R=7.0\%$), CCD reference code, NCBNIB [18]. We have obtained the structure from the database and the methyl groups was substituted by H for easy comparison with the Al_4Li_4 derivative, bis(Al_4Li_4 nickel (II) chloride). Both the structures, bis(cyclobutadiene nickel(II) chloride) and bis(Al_4Li_4 nickel(II) chloride) were optimized at the same level of theory as mentioned above. The structure for bis(cyclobutadiene nickel(II) chloride) remains similar to that found from the crystal structure. Fig. 4 shows the structures for the two complexes. For the organometallic complex 4(i), the bond length alternation in the C_4H_4 ring is only 0.05 Å. Therefore this bridged chlorine system also shows strong mixing of the d-orbitals from Ni and the non-bonding electrons of C_4H_4.

For the all-metal complex 4(ii) however, the $\eta^4(\text{Al}_4\text{Li}_4)$-Ni binding mode is converted into $\eta^2\sigma^2(\text{Al}_4\text{Li}_4)$-Ni upon optimization. In Fig.5, we show this
change in the binding mode. Two of the initial π-bonds between Al and Ni (Al-Ni distance of the order 2.42 Å) are now converted into strong σ bonds (Al-Ni distance of the order 2.25 Å) in the optimized geometry. Such a change in bonding pattern from π character to σ character is quite well known in organometallic chemistry[19]. It is interesting to note that a similar phenomenon occurs in the all metal complexes as well.

A fragmentation analysis on these two molecules is given below.

\[
\text{bis(cyclobutadiene nickel(II) chloride)} = 2 \text{C}_4\text{H}_4 + \text{bis(nickel(II) chloride)}
\]

\[
\text{bis(Al}_4\text{Li}_4 \text{nickel(II) chloride)} = 2 \text{Al}_4\text{Li}_4 + \text{bis(nickel(II) chloride)}
\]

The stabilization energies are 68.39 Kcal/mol for 4(i) and 286.77 Kcal/mol for 4(ii). Such high stability in the Al$_4$Li$_4$ complex is due to the formation of two strong Al-Ni σ bonds as discussed above.

3 Metal sandwich complex:

Another well known methodology in stabilizing a molecule is to form a sandwich type of geometry where two molecular species can share interaction with a transition metal: cyclopentadiene is stabilized in such a geometry resulting in the Ferrocene structure[20]. For C$_4$H$_4$, a simple effective electron number (EAN) counting shows that the metal in between the two ligands should have 10 valence electrons in stabilizing a sandwich of the type:(C$_4$H$_4$)$_2$M. The simplest metal with 10 electrons in the valence shell is Nickel(0). Elements in the same group like Pd or Pt have a strong spin-orbit coupling and prefer
square-planar geometry (16 electron geometry). Thus a coordination number of 8 as required in a sandwich complex is not possible with Pd or Pt. After performing the geometry optimization at the same level of theory discussed above, we find that the structure for \((C_4H_4)_2Ni\) is indeed a sandwich geometry with the two \(C_4H_4\) rings above and below the Ni atom (see Fig. 6 (i)). In this complex, the Ni atom sits symmetrically inside the cavity of the two \(C_4H_4\) rings with a distance of 1.99 Å from each \(C_4H_4\) ring. The two \(C_4H_4\) are staggered to each other.

Similarly, we have been able to stabilize the \(Al_4Li_4\) cluster by introducing it in a sandwich of the type: \((Al_4Li_4)_2Ni\). The geometry is shown in Fig. 6 (ii) (the optimization is performed at the B3LYP/LANL2MB level followed by energy calculation at B3LYP/6-311G(d,p) level). The central Ni atom sits unsymmetrically in the cavity of the two \(Al_4Li_4\) rings. A very recent theoretical study on its aromatic analogue, \(Al_4^{2-}\), support our calculations[21]. Interestingly, the Al atoms in the rings bend towards the Ni atom and the planarity of the \(Al_4\) ring is thereby lost. This is understood from the fact that when the \(4\pi\) electrons of each of the two \(Al_4Li_4\) rings interact with the central Ni atom, the requirement of the Al atoms to be in plane with the Li atom is no longer important. Instead, the sandwich like structure with 18 electrons gives an extra stabilization keeping the whole system electrically neutral. The stability of these complexes are investigated using the following fragmentation scheme:

\[
(C_4H_4)_2Ni = 2 \, C_4H_4 + Ni(0)
\]
\[(\text{Al}_4\text{Li}_4)_2\text{Ni} = 2\text{Al}_4\text{Li}_4 + \text{Ni}(0)\]

where \(\text{Ni}(0)\) is in a \(^3\text{F}\) state. \(\text{Al}_4\text{Li}_4\) binds strongly to the \(\text{Ni}(0)\) and has a binding energy of 134.285 Kcal/mol. For \(\text{C}_4\text{H}_4\) this binding energy is 150.819 Kcal/mol.

In conclusion, we have demonstrated for the first time that the all-metal species like \(\text{Al}_4\text{Li}_4\) can be stabilized by complexation with 3d-transition metals, very similar to its organic counterpart, \(\text{C}_4\text{H}_4\). Although such a complexation induced metalloaromaticity is a well established concept in the realm of organometallic chemistry, we have demonstrated that it is a very general and elegant concept which can be used for all metallic molecules with orbitals that are close in energy with the d-orbitals of the transition metal. We have also shown that these all-metal complexes have similar binding energies and properties like their organometallic counterparts and thus should be considered as very good candidates for experimental synthesis. Also, such a stabilization will provide a very precise answer to the question of aromaticity/antiaromaticity and will lead to novel applications of these clusters. We believe that our work will motivate synthesis of these molecules as were the case in the previous generation for the organometallic complexes.

Acknowledgements: We would like to dedicate this communication to the memory of Prof. H. C. Longuet-Higgins. SKP acknowledges CSIR and DST, Govt. of India, for the research grants.
References

[1] (a) *Aromaticity and Antiaromaticity*, V. I. Minkin, M. N. Glukhontsev, B. Ya. Simkin, Wiley, NY, 1994; (b) S. Shaik, A. Shurki, D. Danovich, P. C. Hilberty, *Chem. Rev.* 2001, 101, 1501-1539; (c) J. A. N. F. Gomas and R. B. Mallion, *Chem. Rev.* 2001, 101, 1349-1383.

[2] (a) G. N. Srinivas, A. Anoop, E. D. Jemmis, T. P. Hamilton, K. Lammertsma, J. Leszczynski, H. F. Schaefer III, *J. Am. Chem. Soc.* 2003, 125, 16397-16407; (b) *Boranes and Metalloboranes*, C. E. Housecroft, E. H. Ltd, Chichester, Eng. 1990.

[3] (a) W. Mesbah, C. Prasang, M. Hofmann, G. Geiseler, W. Massa, A. Berndt, *Angew. Chem. Int. Ed.* 2003, 42, 1717-1719; (b) B. Schiemenz, G. Huttner, *Angew. Chem. Int. Ed.* 1993, 32, 297.

[4] (a) A. Kuznetsov, K. Birch, A. I. Boldyrev, X. Li, H. Zhai, L. Wang, *Science* 2003, 300, 622-625; (b) S. Shetty, D. G. Kanhare and S. Pal, *J. Phys. Chem. A* 2004, 108, 628-631.

[5] (a) X. Li, A. Kuznetsov, H-F. Zhang, A. I. Boldyrev, L. Wang, *Science* 2001, 291, 859-861; (b) X. Li, H-F. Zhang, L-S. Wang, A. E. Kuznetsov, N. A. Cannon, A. I. Boldyrev, *Angew. Chem. Int. Ed.* 2001, 40, 1867-1870; (c) A. Kuznetsov, A. I. Boldyrev, X. Li, L-S. Wang, *J. Am. Chem. Soc.* 2001, 123, 8825-8831.
[6] Z. Chen, C. Corminboeuf, T. Heine, J. Bohmann, P. V. R. Schleyer, *J. Am. Chem. Soc.* **2003**, *125*, 13930-13931.

[7] (a) A. Ranganathan, G. U. Kulkarni, *J. Phys. Chem. A* **2002**, *106*, 7813-7819; (b) J. M. Cole, R. C. B. Copley, G. J. McInyre, J. A. K. Howard, M. Szablewski, G. H. Cross, *Phys. Rev. B* **2002**, *65*, 125107-(1-11); (c) *Atoms in Molecules-A quantum theory*, R. F. W. Bader, Oxford, U. K., 1990.

[8] To appear in *J. Phys. Chem. A* **2004**. See http://in.arxiv.org/abs/cond-mat/0408183

[9] (a) H. C. Longuet-Higgins, L. E. Orgel, *J. Chem. Soc.* **1956**, 1969-1972; (b) *Principles and Applications of Organotransition Metal Chemistry*, J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Oxford, 1987.

[10] (a) W. Hubel, E. H. Braye, *J. Inorg. Nucl. Chem.* **1958**, *10*, 250; (b) R. Criegee, G. Schroder, *Liebigs. Annu. Chem.* **1959**, *623*, 1.

[11] (a) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648-5652; (b) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785-789.

[12] A. I. Boldyrev, L-S. Wang,*J. Phys. Chem. A* **2001**, *105*, 10759-10775.

[13] *The Molecular Orbital Theory of Conjugated Systems*, L. Salem, Benjamin Inc. 1966.
[14] D. H. Paik, D-S. Yang, I-R Lee, A. H. Zewail, Angew. Chem. Int. Ed. 2004, 43, 2830-2834.

[15] G. F. Emerson, L. Watts, R. Pettit, J. Am. Chem. Soc. 1965, 87, 131-133.

[16] J. C. Barobak, L. Watts, R. Pettit, J. Am. Chem. Soc. 1966, 88, 1328.

[17] P.v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. v. Eikema-Hommas, J. Am. Chem. Soc. 1996, 118, 6317.

[18] J. D. Dunitz, H. C. Mez, O. S. Mills, H. M. M. Shearer, Helv. Chim. Acta. 1962, 45, 647.

[19] Organometallic Conjugation: Structures, Reactions, and Functions of d-d and d-π Conjugated Systems, A. Nakamura, K. Yamaguchi, N. Ueyama, 2002, Springer Series in Chemical Physics, 73.

[20] G. Wilkinson, M. Rosenblum, M. C. Whiting, R. B. Woodward, J. Am. Chem. Soc. 1952, 74, 2125-2126.

[21] J. M. Mercero, J. M. Ugalde, J. Am. Chem. Soc. 2004, 126, 3380-3381.
Table 1: The total energies (in au) and the bond-length alternation, Δr (in Å) for C_4H_4 and Al_4Li_4 in different spin states corresponding to different lowest energy structures.

Molecule	Symmetry	Spin-state	Energy	Δr
C_4H_4 (A(i))	D_{2h}	Singlet	-154.718	0.240
C_4H_4 (A(ii))	D_{4h}	Triplet	-154.708	0.000
Al_4Li_4 (B(i))	C_{2h}	Singlet	-999.932	0.130
Al_4Li_4 (B(ii))	D_{2h}	Singlet	-999.908	0.120
Al_4Li_4 (B(iii))	D_{4h}	Triplet	-999.844	0.000
Al_4Li_4 (B(iv))	C_{2h}	Triplet	-999.926	0.200
Figure 1: Equilibrium minimum energy geometries for C\textsubscript{4}H\textsubscript{4} and Al\textsubscript{4}Li\textsubscript{4} in the singlet and triplet states (See Table. 1). Bond lengths are given in Å. Ball color: Black=C, White=H, Pink=Li, Light orange=Al.
Figure 2: Equilibrium minimum energy geometries for (i) $\eta^4(C_4H_4)$-Fe(CO)$_3$ and (ii) $\eta^4(Al_4Li_4)$-Fe(CO)$_3$. Bond lengths are in Å. Ball color: Red=O, Violet=Fe.
Figure 3: Schematic representation of (i) change in geometry for ring whizzing and complexation to transition metal center for A=Al in Al$_4$Li$_4$ ($\Delta E_1=55$ Kcal/mol, $\Delta E_2=100$ Kcal/mol); A=C in C$_4$H$_4$ ($\Delta E_1=6.2$ Kcal/mol, $\Delta E_2=78.4$ Kcal/mol) (ii) Ring whizzing in benzene.
Figure 4: Equilibrium minimum energy geometries for (i) bis(cyclobutadiene nickel(II) chloride) and (ii) bis(Al$_4$Li$_4$ nickel(II) chloride). Distances are in Å. Ball color: Green=Cl, Blue=Ni.
Figure 5: Conversion from η^4 binding mode for Al_4Li_4 to $\eta^2\sigma^2$ in the complex in Fig. 4(ii).
Figure 6: Equilibrium minimum energy geometries for (i) \((\text{C}_4\text{H}_4)_2\text{Ni}\) and (ii) \((\text{Al}_4\text{Li}_4)_2\text{Ni}\). Distances are in Å.