Influence of technical condition parameters on the residual resource of capacitive equipment

P A Kulakov¹, A V Rubtsov¹, V G Afanasenko¹, O E Zubkova¹, R R Sharipova¹ and A A Gudnikova¹

¹Ufa State Petroleum Technological University, 1, Kosmonavtov street, Ufa, 450062, Russia

E-mail: kulakov.p.a@mail.ru

Abstract. The work solved the problem of resource assignment to the safe operation of capacitive devices after carrying out technical diagnostics on permissible technical parameters, depending on the combined effect of the parameters of the technical condition of the equipment oil and gas refining and petrochemical industries. 10 technical and technological parameters of capacitive devices were selected, and the evaluation was carried out using such an indicator as the residual service life of capacitive devices. The authors developed a mathematical model, calculated diagnostic coefficients and informative value of the indicator for each period adopted by the expert. An algorithm for estimating the residual service life of capacitive devices based on the measure of information content of Kulbak is proposed. The estimates of the residual life, which are out of the constructed model, are shown. Conclusions about the rationality of the proposed algorithm for solving problems of this type are made.

1. Introduction
Capacitive equipment of production facilities in the oil and gas industry occupies one of the leading places, both in terms of metal content and participation in technological processes. Such equipment is used for the processes of settling, separation, collection and storage, etc., established by the process technology and technological regulations.

Capacities of the oil and gas industry relate to technical devices that are operated at a hazardous production facility and, therefore, according to legislation in the field of industrial safety, they must periodically undergo an assessment of the technical condition and residual life.

The operational reliability of capacitive equipment depends on many different factors, such as, for example, working pressure and temperature, technological environment, design features, material performance, etc. The determining factors for assessing reliability are the determination of the dominant damage mechanism, the degree of degradation, and the level of material defectiveness.

All determining factors can be determined in the course of work on the assessment of the technical condition and residual resource of the object under consideration.

The scope of work on the assessment and forecasting of a resource includes such works as: documentation analysis; non-destructive and destructive control; necessary strength calculations and resource calculation; tests for strength, density and tightness.

The predominant mechanism of damage to the capacitive equipment of the oil and gas industry is corrosive wear, due to various corrosion processes.
In order to quantify the degree of corrosive wear of structural elements and predict the residual life of the wall thickness, it is necessary to measure the residual wall thickness of the elements and to make a comparative analysis with the design and reject thicknesses. In some cases, the minimum probable wall thickness is calculated taking into account uncontrolled surface areas and increasing reliability.

Mathematical methods used in expert assessments allow the resource to be estimated at the upper boundary (table 1). In certain cases, this boundary is very high in relation to the value given in the conclusion of the industrial safety expertise [1].

The data obtained in the form of bulk arrays of necessary indicators make it possible to analyze the final result of future examinations, to develop a mathematical model that can most fully characterize the considered type of technical device [1-6].

The parameters of the technical state of the capacitive equipment make it possible to get an idea about their state, as well as about the change of parameters in time intervals, which will entail the diverse trajectories and forms of wear and the possible failure scenarios [7–10].

Currently, the influence of technical parameters of heat exchange systems [11, 12] is widely evaluated, the residual resource is modeled using computer technology [12, 13], mathematics [12, 13, 14], neural networks [4-6] are used. However, even such an extensive arsenal does not always provide the required accuracy of the outcomes and the simplicity of the applicability of complex equations.

2. Mathematical model

10 signs were selected that affect the residual life of heat exchange systems: Commissioning year (τ_1), Expert evaluation year (τ_2), Pressure (P), Temperature (T), Housing shell (inner diameter) (D), Wall thickness passport (h_1), minimum wall thickness (h_2), lifetime (τ_3), corrosion rate per year (ε), thickness margin (n_h).

We have data on 46 expert opinions on heat exchangers with an expert opinion from 4 to 10 years (table 1). In the sample there are no data on containers for which the examination would give a negative conclusion. The effect of the listed parameters (τ_1, τ_2, P, T, D, h_1, h_2, τ_3, ε, n_h) on the residual capacity of the containers can be determined by calculating their informativeness [1].

Informativeness assessment is carried out by Kullback measure [1]. Since the Kullback measure makes it possible to evaluate the information content as a measure of the discrepancy between the two classes, already with the three classes difficulties arise. Therefore, we will evaluate for several iterations: at the first iteration, we will divide the heat exchangers into two groups - having a residual life of 10 years and not having such a resource, at the second iteration we divide the remaining life of 8 years, at the third - 6 years and at the fourth iteration - 5 years.

There are ten signs (τ_1, τ_2, P, T, D, h_1, h_2, τ_3, ε, n_h), as well as the result - the residual resource for the first iteration - 10 years, or its absence. We divide containers into two groups: "A" - having a residual life of 10 or more years; "B" - not having such a resource. As data for building a model, we take tanks 1-37, and to test the model - heat exchangers 38-46.

We find the information content of each of the ten signs.

We will consider an example of calculating the information content on the basis of the “Date of commissioning”, which is denoted by τ_1.

The range of variation of this parameter is from 1955 to 1999. All values τ_1 are divided into intervals: [1955; 1965], (1965; 1975], (1975; 1985], (1985; 1995), (1995; 1999). With 4 intervals, we determine the frequency of tanks falling into one of the groups (“A” or “B”). In our sample, there are no tanks with a commissioning date between 1955 and 1965 that would fall into group “A”, but there are 11 containers that fall into group “B.” In the interval (1975; 1985) there are three containers from the group “A” and also three containers from group “B”.

Determining the relative frequency of falling into one group or another within the interval: if for group “A” there are 3 heat exchangers from 4 heat exchangers of group “A”, then for the third interval the relative frequency of falling into group “A” is $y_A = 75\%$ (table 2).
Table 1. Data on heat exchangers and factors affecting the residual life.

N	Date of commissioning, year	Date of examination, year	Pressure	Temperatur e	Shell of the body (inner diameter)	Wall thickness	Time of maintenance	Corrosion velocity	Residual resource
1	1960	2005	1.35	50	1000	10	9.13	45	0.19
2	1973	2004	0.45	50	1400	6	5.6	31	0.22
3	1967	2008	0.06	50	1400	8	4.6	41	1.04
4	1970	2008	0.03	50	2800	5	4.1	38	0.47
5	1977	2008	2	20	1000	12	10.8	31	0.32
6	1978	2008	0.8	100	1000	12	10.6	30	0.39
7	1967	2008	4	50	1200	22	20.5	41	0.17
8	1962	2007	0.018	60	1600	8	7.6	45	0.11
9	1961	2010	0.1	100	2400	28	22.3	49	0.42
10	1961	2010	0.2	350	2000	8	6.8	49	0.31
11	1962	2007	0.014	100	1400	6	3.7	45	0.85
12	1956	2005	0.028	60	2780	10	6.1	49	0.80
13	1968	2007	2.5	50	1200	14	12.3	39	0.31
14	1968	2007	2.5	50	1200	14	12.3	39	0.31
15	1996	2008	0.2	100	2400	10	9.5	12	0.42
16	1967	2008	2.5	50	1200	16	11.7	41	0.66
17	1997	2010	0.9	100	1600	8	6.3	13	1.63
18	1978	2008	1.5	200	2400	14	12.8	30	0.29
19	1978	2007	0.02	50	1200	8	6.1	29	0.82
20	1967	2007	0.02	100	1800	6	4.9	47	0.39
21	1994	2005	2.3	200	406	8	6.1	20	1.19
22	1999	2004	0.9	100	2000	8	7.2	5	2.00
23	1958	2003	0.03	20	2800	6	4.4	45	0.59
24	1968	2008	0.03	100	2800	8	7.1	40	0.28
25	1967	2008	0.5	70	2732	34	23.9	41	0.72
26	1978	2008	0.06	100	2000	14	12.7	30	0.31
27	1959	2007	0.03	100	1800	6	5.6	48	0.14
28	1955	2005	1.1	200	1139	8	7.6	50	0.10
29	1967	2002	1.4	50	2800	6	5.4	35	0.29
30	1993	2013	0.2	100	1200	10	7.6	20	1.20
31	1967	2008	2.5	100	1000	18	17.3	41	0.09
32	1967	2008	0.2	150	800	6	5.1	41	0.37
33	1967	2008	0.2	20	1000	8	7.3	41	0.21
34	1972	2010	0.2	100	3000	14	13	18	0.40
35	1955	2010	0.1	100	2732	34	32.5	55	0.08
36	1985	2010	0.3	100	1600	6	4.5	25	1.00
37	1959	2008	0.1	100	2400	8	6.9	49	0.28
38	1962	2008	0.03	100	2800	6	4.4	46	0.58
39	1967	2008	0.2	100	3400	20	18.5	41	0.18
40	1966	2003	0.02	50	2800	6	5.1	28	0.33
41	1959	2008	0.07	100	600	5	3.5	49	0.15
42	1968	2007	0.2	130	1600	6	5.5	39	0.19
43	1985	2004	0.2	25	500	10	7.5	19	0.39
44	1977	2002	0.3	40	1600	6	5.1	25	0.30
45	1985	2007	0.011	40	1000	10	9.3	22	0.34

Table 2. The information content of the feature «Date of commissioning».

Interval	Range of the number of heat exchangers	Relative frequency, %	Smoothed	DC	\bar{I}
The determination of the weighted smoothed frequency is intended to level the influence of the distribution on the intervals. It is necessary to take into account the frequency of the feature in two intervals of the preceding and two intervals of the subsequent ones. The intervals that precede interval 1, zero and minus one, have zero frequency.

To compensate for the subjective effect of the distribution on the intervals, we find the coefficient of the weighted smoothed frequency using a continuous approximation of the piecewise linear function \([1, 12]\). It takes into account two preceding and following intervals with empirical coefficients depending on the number of intervals and on the number of heat exchangers in the sample. When calculating the interval No. 1, the previous intervals, as well as the subsequent intervals for the last interval, have a frequency equal to zero.

Weighted smoothed frequency is found by the formula \([1]\):

\[
\bar{y} = \frac{(y_1 + 2 \cdot y_2 + 4 \cdot y_3 + 2 \cdot y_4 + y_5)}{10}
\]

where \(y_1, \ldots, y_5\) - frequencies in intervals.

The value of the weighted smoothed frequency in the first interval for the group "A" is equal to:

\[
\bar{y}_{A1} = \frac{(0 + 2 \cdot 0 + 4 \cdot 0 + 2 \cdot 75)}{10} = 7.5\%.
\]

The value of the weighted smoothed frequency in the first interval for the group "B" is equal to:

\[
\bar{y}_{B1} = \frac{(0 + 2 \cdot 0 + 4 \cdot 33.3 + 2 \cdot 42.4 + 9.09)}{10} = 22.7\%.
\]

The value of the weighted smoothed frequency in the third interval for group "B" is equal to:

\[
\bar{y}_{B3} = \frac{(33.3 + 2 \cdot 42.2 + 4 \cdot 9.09 + 2 \cdot 9.09 + 6.06)}{10} = 32.5\%.
\]

For each of the intervals we determine the value of the ratio of smoothed frequencies. For the first interval:

\[
\frac{\bar{y}_{A1}}{\bar{y}_{B1}} = \frac{7.5}{22.7} = 0.33
\]

For each interval we find the value of the diagnostic coefficient (DK) \([7]\):

\[
DC_i = 10 \cdot \lg \frac{\bar{y}_{A_i}}{\bar{y}_{B_i}}
\]

The value of the dynamic coefficient in the first interval:

\[
DC_1 = 10 \cdot \lg 0.33 = -4.8
\]
According to the formula Kullback coefficient informativity of the sign in the i-th interval [7]:

\[J_i = 0.5 \cdot DC_i \cdot (\overline{y}_{ni} - \overline{y}_{ni})/100 \]

The value of the coefficient of information for the first interval:

\[J_1 = 0.5 \cdot (-4.8) \cdot (7.5 - 22.7)/100 = 0.367 \]

The informativeness of feature 1 is determined by the sum of the coefficients of informativeness over all intervals. The results of determining the informativeness of all ten signs are given in table 3.

The sign “Thickness margin” has the greatest information content \((J = 1.88)\), and the sign “Pressure” possesses the smallest information content \((J = 0.23)\).

Table 3. The results of determining the diagnostic coefficient and informative signs.

Parameter	Commissioning date	Amount			
Range	1965	1975	1985	1995	2035
DC	-4.815	-2.449	2.595	2.632	5.311
J	0.367	0.139	0.19	0.12	0.328

Parameter	Year of examination	Amount				
Range	2004	2006	2008	2010	2012	2020
DC	0	-2.139	-0.193	2.573	0.953	1.035
J	0	0.068	0.001	0.23	0.019	0.011

Parameter	Pressure	Amount							
Range	0.3	0.6	0.9	1.2	1.5	1.8	2.1	2.4	3.6
DC	0.015	0.044	1.895	0.714	1.148	4.393	1.035	-2.297	0
J	0	0	0.05	0.004	0.001	0.14	0.005	0.02	0.329

Parameter	Temperature	Amount					
Range	50	100	150	200	250	300	500
DC	-3.224	-2.449	1.113	1.568	3.998	3.724	1.383
J	0.133	0.139	0.041	0.048	0.211	0.054	0.005

Parameter	Diameter of shell	Amount						
Range	800	1200	1600	2000	2400	2800	3200	4800
DC	-1.805	-1.717	-3.918	-1.006	2.068	3.483	0.839	0.134
J	0.023	0.042	0.215	0.016	0.078	0.24	0.009	

Parameter	Wall thickness according to the passport	Amount				
Range	6	10	14	18	22	26
DC	-4.453	-2.596	1.895	3.329	4.159	0.714
J	0.199	0.159	0.08	0.209	0.192	0.003

Parameter	Minimum wall thickness	Amount							
Range	10	15	20	25	30	35	40	45	50
DC	3.724	5.185	1.035	2.881	3.522	4.905	-0.13	-4.126	0
J	0.054	0.181	0.005	0.007	0.147	0.498	0	0.245	0.2

Parameter	Corrosion rate per year	Amount				
Range	0.2	0.4	0.6	0.8	1	1.2
DC	0.292	2.301	2.005	0.591	-5.149	
J	0.002	0.166	0.093	0.005	0.146	

Parameter	Thickness margin	Amount										
Range	1.2	1.5	1.8	2.1	2.4	2.7	3	3.3	3.7	4.1	4.5	6.1
DC	-4.815	-2.739	-4.058	-1.249	2.796	5.807	6.154	2.175	6.154	7.404	9.165	3.144
J	0.244	0.12	0.235	0.021	0.1	0.321	0.175	0.011	0.038	0.151	0.403	0.04

Diagnostic factors were summarized for each tank. The distribution of the amounts of diagnostic features for tanks that have and do not have a residual resource of 10 years is shown in figure 1.

By analogy with the tanks investigated above and using the obtained diagnostic coefficients, we will estimate the residual life of nine tanks from the control set.
From figure 1 it is clear that when the sum of diagnostic factors is less than 16, the residual life is less than 10 years, with the sum of diagnostic factors more than 24, the residual life is more than 10 years, there is uncertainty in the interval (16, 24).

Then they applied this algorithm to build a model and estimate the possible residual life of containers equal to 8 years, 6 years and 5 years.

The simulation results were brought together into a single database and evaluated their correctness.

Having made a comparative analysis of the simulation results with an expert conclusion, we see that there are 2 units of capacitive equipment out of 46, which show erroneous results. Capacities 40, 46 and 17 require more detailed analysis in the direction of increasing the residual life.

![Figure 1. Distribution of heat exchangers by the sum of diagnostic factors for a residual life of 5 years.](image)

A larger number of pieces of equipment (from 100 or more) in the model should improve the accuracy of the forecast, allowing for a more detailed analysis of the uncertainty interval. On the other hand, expert assessments of the state, normative documents that cannot be converted to numerical indicators, as well as previous expert opinions, have a great influence. In addition, a number of parameters, such as, for example, the working medium in a vessel, are difficult to convert to numerical values.

References

[1] Kulbak S 1967 *The Theory of Information and Statistics* (Nauka – Science, Moscow)
[2] Steklov A S, Serebrakov A V and Titov VG 2016 *Bulletin of Ivanovo State Energy University* 5 21–6
[3] Pan Z, Liang S and Garmestani H 2019 *Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture* 233(4) 1103–11
[4] Moraes J F, Jordon J B and Su X 2019 *Engineering Fracture Mechanics* 209 92–104
[5] Roxas C L and Lejano B A. 2019 *International Journal of Geomate* 16(56) 79–84
[6] Paulsen O and Sejnowski T J 2000 *Current Opinion in Neurobiology* 10(2) 172–9
[7] Kulakov P A, Apparow I H and Afanasenko V G 2018 *IOP Conference Series: Materials Science and Engineering* 451(1) 012201
[8] Bogdanovich A V 2017 *Ore dressing* 4 22–7
[9] Shabelnikov S I 2017 *Mining journal* 12 21–4
[10] Kucheraviy V I and Milkov S N 2016 *Problems of mechanical engineering and machine
reliability 1 105–10
[11] Anoshkin AN, Pospelov AB and Yakushev R 2014 Bulletin of the Perm National Research Polytechnic University. Mechanics 2 5–28
[12] Kutubbalatov A A and Kulakov P A 2017 Proceedings of the Tula state university, Science of earth 2 88–102
[13] Okladnikova E N and Sugak EV 2011 Siberian Journal of Science and Technology 2 132–6
[14] Kulakov P A, Kutubbalatov A A and Afanasenko V G 2018 Socar Proceedings Issue 2 41–8