High-speed atomic force microscopy imaging of live mammalian cells

Mikihiro Shibata¹, Hiroki Watanabe³, Takayuki Uchihashi⁴, Toshio Ando² and Ryohei Yasuda⁵

¹High-speed AFM for Biological Application Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
²Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
³Research Institute of Biomolecule Metrology Co. Ltd., Tsukuba, Ibaraki 305-0853, Japan
⁴Department of Physics and Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
⁵Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA

Received June 29, 2017; accepted July 26, 2017

Direct imaging of morphological dynamics of live mammalian cells with nanometer resolution under physiological conditions is highly expected, but yet challenging. High-speed atomic force microscopy (HS-AFM) is a unique technique for capturing biomolecules at work under near physiological conditions. However, application of HS-AFM for imaging of live mammalian cells was hard to be accomplished because of collision between a huge mammalian cell and a cantilever during AFM scanning. Here, we review our recent improvements of HS-AFM for imaging of activities of live mammalian cells without significant damage to the cell. The improvement of an extremely long (~3 μm) AFM tip attached to a cantilever enables us to reduce severe damage to soft mammalian cells. In addition, a combination of HS-AFM with simple fluorescence microscopy allows us to quickly locate the cell in the AFM scanning area. After these improvements, we demonstrate that developed HS-AFM for live mammalian cells is possible to image morphogenesis of filopodia, membrane ruffles, pits open-close formations, and endocytosis in COS-7, HeLa cells as well as hippocampal neurons.

Key words: Bio-imaging, live-cell imaging, nanotechnology, Probe microscopy, AFM

The possibility of direct visualization of live mammalian cells with high spatiotemporal resolution would provide the advanced knowledge of cellular functions. For example, morphology of synapses of neurons changes dynamically in response to extracellular stimulus and these morphological changes are critical for plasticity and adaptive response of neurons. However, since the size of synapses is only a few hundred nanometers, in order to better understand of the detailed processes of the morphological dynamics of synapses, direct visualization with nanometer resolution under near physiological conditions has long been desired, but remains a challenge.

Atomic force microscopy (AFM) can image a surface topography of objects with nanometer resolution in an aqueous solution and has been used to image a wide variety of morphological details of biological samples.
biological samples [1–11]. In particular, the appearance of high-speed AFM (HS-AFM), which has been extensively optimized the scanning speed by two orders of magnitudes faster than that of conventional AFM, opened a way to image the conformational change of single molecules on substrates with a subseconds time resolution [12,13]. In the past decade, various dynamic processes of biological samples including photo-induced conformational change of bacteriorhodopsin [14–16], myosin V walking on an actin filament [17], stabilization of membranes by annexin V [19], lipid membrane remodeling by ESCR-TIII polymerization [20], reaction processes of DNA targeting enzymes [21], nucleosome dynamics [22,23], local conformational changes of DNA strands [24–27], and dynamics of the nuclear pore complex [28,29], were visualized using HS-AFM. However, applications for nanostructure imaging of live mammalian cells has been complicated, since the length of scale of cells is three orders of magnitude larger than that of proteins. In this review, we introduce three improvements from the original HS-AFM setup to HS-AFM for imaging of live mammalian cells, and demonstrate HS-AFM movies of living COS-7 cells, HeLa cells and cultured hippocampal neurons by 5–10 μm fields in the time resolution of 5–10 seconds per frame, which visualized their cellular activities with nanometer resolution [30].

Development of HS-AFM for imaging of live mammalian cells

To apply HS-AFM for live-cell imaging, three improvements were required. First, we applied a wide-area scanner (photograph is shown in Fig. 1A), which is able to scan about 46×46 μm² within 50 seconds per frames [31]. In the mechanical design of a wide-area scanner, we referred the third-class leverage mechanism to amplify the displacements of X- and Y-directions. Specifically, both of the X- and Y-piezoelectric actuators (a nominal unloaded displacement is ~11 μm at 100 V) was symmetrically arranged against the supporting base attached a Z-piezoelectric actuator (a nominal unloaded displacement is ~4 μm at 100 V). In this case, the overall lever length is 25 mm. The fulcrum is set at the one end of the lever, while the force point is attached as a position of X- or Y-piezoelectric actuator with a length of 5 mm from the fulcrum; i.e., the designed lever ratio is 5. The actual displacements of this designed scanner resulted in ~46.7 μm and ~45.7 μm for the X- and Y-direction, respectively. A sample stage was glued on the top of a Z-piezoelectric actuator (white arrow in Fig. 1A). In addition, we further improved a wide-area scanner to obtain the best performance for HS-AFM observations, for example, a vibration damping for X-scan, a compensation for nonlinearity, a compensation for interference between X- and Y-scanners and the Z-scanner (Please see the details in our recent review [32]). Using this wide-area scanner, we can image a sample at ~7 second per frame for a scan area of 40×40 μm² at 256 pixels². The rate-limiting factor for imaging of the cell using a wide-area scanner is determined by the resonant frequency of the Z-piezoelectric actuator (f₀: ~50 kHz). Thus, the X-Y scanning size is enough to image a whole live mammalian cells. Indeed, we demonstrated HS-AFM movies of thin plasma membrane of live HeLa cells in 5×5 μm² with temporal resolution of five seconds per frame [31].

Second, a longer AFM tip was applied to avoid collisions between the base of cantilever and living cells. The small cantilever for HS-AFM consists of a bird-beak end with ~1 μm length (Left panel in Fig. 1B). We always fabricated an additional sharp tip on a bird-beak to obtain high-resolution images using electron beam deposition (EBD) by scanning electron microscopy (SEM) [33]. The length of an additional EBD tip used for imaging of biomolecules is less than ~1 μm. However, the tip of this length is unsuited for imaging of live mammalian cells, because the base of cantilever would collide with a taller region of a mammalian cell. To avoid these collisions, we fabricated a longer AFM tip by repeating 1 min EBD for 5–7 times on a bird-beak (the growth rate of an additional EBD tip is ~600 nm per min) [30]. To compensate the mechanical drift of the SEM, the focus position was reset after each EBD cycle. According to

Figure 1 HS-AFM setup for observations of live mammalian cells. (A) Photograph of a wide-area scanner (B) Scanning electron microscopy (SEM) imaging of the end of the cantilever with and without an electron-beam-deposit (EBD) tip. The tip length is about 3 μm for live-cell HS-AFM. (C) Epi-fluorescence images of a COS-7 cell transfected with mEFP. The white broken lines highlighted the base of a cantilever. The white square indicates a HS-AFM scanning area. HS-AFM images corresponds to Figure 2.
mammalian cells without significant damages during HS-AFM scanning.

Morphological dynamics of live COS-7 and HeLa cells at the leading-edge

Using developed HS-AFM system, we first observed live-cell lines such as COS-7 and HeLa cells. Figure 1C shows the fluorescence image of a mEGFP transfected COS-7 cell. And the corresponding to a sequence of HS-AFM topographical images is shown in Figure 2. At the leading edge of a COS-7 cell, the HS-AFM movie shows constant membrane ruffling and extension or retraction of filopodium for at least 15 min (Fig. 2). We tried to confirm whether these cellular morphologies really relate to cell activities, we applied cytochalasin D, which inhibits actin polymerization [34]. As we expected, after the addition of cytochalasin D, those morphological dynamics at the leading edge observed before gradually abolished (Fig. 2). Subsequently, after washout for ~30 min by the imaging solution, morphological dynamics of COS-7 cells completely recovered, suggesting that membrane dynamics observed by HS-AFM requires actin polymerization.

Interestingly, the addition of some growth factors activates membrane dynamics at the leading edge of cells. After the addition of insulin, which is a hormone as a growth factor of mammalian cells, membrane ruffling became dramatically larger (dashed circles in Fig. 3A). Specifically, a height of the leading edge became taller and the speed of the repeated membrane ruffling was accelerated. Furthermore, some pits appeared on the cell surface, implying that endocytic events frequently occurred by the stimulation of insulin.

![Figure 2](image)

Figure 2 HS-AFM images of a living COS-7 cell. A HS-AFM topographical image acquired from the area indicated in white box in Figure 1C before the addition of cytochalasin D (Top), after application of 20 ng/mL cytochalasin D (middle) and following washout for 30 min (bottom). HS-AFM images taken at the indicated times (green) and the image taken at 0 s (magenta) are overlaid. White arrows indicate newly appeared structures at the leading edge. HS-AFM imaging rates, 10 second per frame. HS-AFM pixel resolutions, 200×200 pixels².
Endocytosis of live COS-7 cells on the cell surface

We next observed the membrane dynamics at the center of live mammalian cells, where is closed to the nucleus (Fig. 4A). At the center of COS-7 cells, there is no unidirectional flow on the membrane surface. Instead, HS-AFM movie shows growths of protrusions in a vertical direction on the membrane surface and the appearance of the soft structure from the inside of the cell. In addition, many pits were observed on the membrane surface, and they constantly repeated the open and close forms on a specific area. In Figure 4B shows that time courses of the depth and height of the pits (Fig. 4B). To confirm pits formations are related to the cell activity, we applied a pharmacological experiment during HS-AFM observations. After the application of dynasore, which is an inhibitor of dynamin, pits formations were disappeared (Fig. 4C). Subsequently, formations of pits were recovered by washing out the drug for ~30 min by the imaging solution, suggesting that the observed pits on the cell surface are related to dynamin dependent endocytosis (Fig. 4C). When we overexpressed the constitutive active mutant of Rab5 (Rab5(Q79L)), which positively regulates endocytosis, HS-AFM movies of a COS-7 cells transfected with Rab5 mutant clearly shows that the frequency of pits formation increased, and the lifetime of pit was shorter than that of a COS-7 cell transfected with mEGFP (Fig. 4D, E). Thus, those results suggest that the observed pits on the cell surface are tightly associated with endocytosis. Interestingly, when pits closed, we often observed “cap-type” endocytosis, in which pits are closed with protrusions formed near the pits (Fig. 4B and Fig. 5). The height analysis in Figure 4B clearly shows the formation of the protrusion just after a pit closed (Fig. 4B). We hypothesize that a biological meaning of “cap-type” endocytosis is to gain the efficiency of a nutrient ingestion by once endocytosis, as if a protrusion cap is a scoop net. We noted that this “cap-type” endocytosis was also observed in COS-7, HeLa cells, as well as hippocampal neurons, implying the common endocytosis mechanism of mammalian cells (Fig. 8C). Moreover, pits repeatedly appeared on the specific area implying the existence of an endocytic “hot spot” on the cell surface (Fig. 4E).

Morphological dynamics of live neurons

From the above, the developed HS-AFM imaging of live mammalian cells could be performed for more than 30 min without any obvious damage to the cell. Using this HS-AFM, we next applied to directly visualize morphological dynam-
dissociated-cell cultures of hippocampal neurons from rats co-cultured with glia cells was the most suitable methods for HS-AFM observations. Figure 6 shows the Scanning Electron Microscopy (SEM) imaging of cultured hippocampal neurons of living neurons. On the other hand, we first required to optimize a culture method of neurons. After a process of many trials and errors for improving culturing methods for hippocampal neurons [35–38], we found that low-density dissociated-cell cultures of hippocampal neurons from rats co-cultured with glia cells was the most suitable methods for HS-AFM observations. Figure 6 shows the Scanning Electron Microscopy (SEM) imaging of cultured hippocampal...
structure belonged to the dendrite. Interestingly, this thin structure shows a quite flexible and changes its morphology over a few minutes (Fig. 9B). The rigid structure is 1500–2000 nm wide and ~590 nm high, while the thin flexible structure is ~140 nm high with different shapes. We note that those kinds of dynamics of the growth of filopodia at 9 DIV, the dendritic membrane ruffling at 13 DIV and the dynamics of small protrusion at 15 DIV were observed only living neurons on glia cells. This fact strongly suggests the importance of physical contacts between neurons and glia cells for their dynamic morphological changes.

Conclusions

The optimization of HS-AFM for live-cell imaging provides direct visualizations of morphological dynamics of live mammalian cells. Especially, the success of HS-AFM observations of living neurons would make possible to directly visualize the morphology dynamics of both pre- and postsynapses during their functions in the near future. After further improvements of HS-AFM techniques, such as combined with fluorescence resonance energy transfer (FRET) imaging or optical nanoscopy techniques [37–40], could add further information about conformational changes of specific receptors by external stimuli on membranes in living neurons.
Acknowledgements

The authors would like to acknowledge Dr. Jun Nishiyama for providing the plasmid of mEGFP-Rab5(Q79L). The original publication was supported by the Human Frontier Science Program (HFSP grant RGP0069/2011), JSPS Post-

Notations

Please see HS-AFM movies of live mammalian cells in the reference No. 30.
doctrinal Fellowships for Research Abroad (M. S.).

Conflicts of Interest

All the authors declare that they have no conflicts of interest.

Author Contribution

M. S. wrote the manuscript. H. W., T. U., T. A and R. Y. reviewed the manuscript and approved the final form.

References

[1] Binnig, G., Quate, C. F., & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

[2] Dague, E., Alsteens, D., Latge, J. P., Verbelen, C., Raze, D., Baulard, A. R., et al. Chemical force microscopy of single live cells. Nano Lett. 7, 3026–3030 (2007).

[3] Hansma, P. K., Elings, V. B., Marti, O. & Bracker, C. E. Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. Science 242, 209–216 (1988).

[4] Henderson, E., Haydon, P. G. & Sakaguchi, D. S. Actin filament dynamics in living glial cells imaged by atomic force microscopy. Science 257, 1944–1946 (1992).

[5] Leuba, S. H. & Bustamante, C. Analysis of chromatin by scanning force microscopy. Methods Mol. Biol. 119, 143–160 (1999).

[6] Mingeot-Leclercq, M. P., Deleu, M., Brasseur, R. & Dufrene, Y. F. Atomic force microscopy of supported lipid bilayers. Nat. Protoc. 3, 1654–1659 (2008).

[7] Muller, D. J., Helenius, J., Alsteens, D. & Dufrene, Y. F. Force probing surfaces of living cells to molecular resolution. Nat. Chem. Biol. 5, 383–390 (2009).

[8] Oesterhelt, F., Oesterhelt, D., Pfeiffer, M., Engel, A., Gaub, H. E. & Muller, D. J. Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000).

[9] Scheuring, S. & Sturgis, J. N. Chromatic adaptation of photosynthetic membranes. Science 309, 484–487 (2005).

[10] Stewart, M. P., Helenius, J., Toyoda, Y., Ramanathan, S. P., Muller, D. J. & Hyman, A. A. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469, 226–230 (2011).

[11] Williams, P. M., Fowler, S. B., Best, R. B., Toca-Herrera, J. L., Scott, K. A., Steward, A., et al. Hidden complexity in the mechanical properties of titin. Nature 422, 446–449 (2003).

[12] Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K. & Toda, A. A high-speed atomic force microscope for studying biological macromolecules. Proc. Natl. Acad. Sci. USA 98, 12468–12472 (2001).

[13] Ando, T., Uchihashi, T. & Fukuma, T. High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog. Surf. Sci. 83, 337–437 (2008).

[14] Shibata, M., Uchihashi, T., Yamashita, H., Kandori, H. & Ando, T. Structural changes in bacteriorhodopsin in response to alternate illumination observed by high-speed atomic force microscopy. Angew. Chem. Int. Ed. 50, 4410–4413 (2011).

[15] Shibata, M., Yamashita, H., Uchihashi, T., Kandori, H. & Ando, T. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat. Nanotech. 5, 208–212 (2010).

[16] Yamashita, H., Inoue, K., Shibata, M., Uchihashi, T., Sasaki, J., Kandori, H., et al. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. J. Struct. Biol. 184, 2–11 (2013).

[17] Kodera, N., Yamamoto, D., Ishikawa, R. & Ando, T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76 (2010).

[18] Uchihashi, T., Iino, R., Ando, T. & Noji, H. High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333, 755–758 (2011).
[19] Miyagi, A., Chipot, C., Rangl, M. & Scheuring, S. High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale. *Nat. Nanotechnol.* **11**, 783–790 (2016).

[20] Chiaruttini, N., Redondo-Morata, L., Colom, A., Humbert, F., Lenz, M., Scheuring, S., *et al.* Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation. *Cell* **163**, 866–879 (2015).

[21] Crampton, N., Yokokawa, M., Dryden, D. T., Edwardson, J. M., Rao, D. N., Takeyasu, K., *et al.* Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping. *Proc. Natl. Acad. Sci. USA* **104**, 12755–12760 (2007).

[22] Miyagi, A., Ando, T. & Lyubchenko, Y. J. Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. *Biochemistry* **50**, 7901–7908 (2011).

[23] Suzuki, Y., Higuchi, Y., Hizume, K., Yokokawa, M., Yoshimura, S. H., Yoshikawa, K., *et al.* Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy. *Ultramicroscopy* **110**, 682–688 (2010).

[24] Endo, M., Katsuda, Y., Hidaka, K. & Sugiyama, H. Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. *J. Am. Chem. Soc.* **132**, 1592–1597 (2010).

[25] Endo, M., Yang, Y., Suzuki, Y., Hidaka, K. & Sugiyama, H. Single-molecule visualization of the hybridization and dissociation of photoresponsive oligonucleotides and their reversible switching behavior in a DNA nanostructure. *Angew. Chem. Int. Ed.* **51**, 10518–10522 (2012).

[26] Raz, M. H., Hidaka, K., Sturla, S. J., Sugiyama, H. & Endo, M. Torsional Constraints of DNA Substrates Impact Cas9 Cleavage. *J. Am. Chem. Soc.* **138**, 13842–13845 (2016).

[27] Sannohe, Y., Endo, M., Katsuda, Y., Hidaka, K. & Sugiyama, H. Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. *J. Am. Chem. Soc.* **132**, 16311–16313 (2010).

[28] Mohamed, M. S., Kobayashi, A., Taoka, A., Watanabe-Nakayama, T., Kikuchi, Y., Hazawa, M., *et al.* High-Speed Atomic Force Microscopy Reveals Loss of Nuclear Pore Resilience as a Dying Code in Colorectal Cancer Cells. *ACS Nano* **11**, 5567–5578 (2017).

[29] Sakiyama, Y., Mazur, A., Kapinos, L. E. & Lim, R. Y. Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. *Nat. Nanotechnol.* **11**, 719–723 (2016).

[30] Shibata, M., Uchihashi, T., Ando, T. & Yasuda, R. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells. *Sci. Rep.* **5**, 8724 (2015).

[31] Watanabe, H., Uchihashi, T., Kobashi, T., Shibata, M., Nishiyama, J., Yasuda, R., *et al.* Wide-area scanner for high-speed atomic force microscopy. *Rev. Sci. Instrum.* **84**, 053702 (2013).

[32] Uchihashi, T., Watanabe, H., Fukuda, S., Shibata, M. & Ando, T. Functional extension of high-speed AFM for wider biological applications. *Ultramicroscopy* **160**, 182–196 (2016).

[33] Uchihashi, T., Kodera, N. & Ando, T. Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. *Nat. Protoc.* **7**, 1193–1206 (2012).

[34] Casella, J. F., Flanagan, M. D. & Lin, S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. *Nature* **293**, 302–305 (1981).

[35] Beaudoin, G. M. 3rd, Lee, S. H., Singh, D., Yuan, Y., Ng, Y. G., Reichardt, L. F., *et al.* Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. *Nat. Protoc.* **7**, 1741–1754 (2012).

[36] de Lima, A. D., Merten, M. D. & Voigt, T. Neurite differentiation and synaptogenesis in serum-free neuronal cultures of the rat cerebral cortex. *J. Comp. Neurol.* **382**, 230–246 (1997).

[37] Fath, T., Ke, Y. D., Gunning, P., Gotz, J. & Ittner, L. M. Primary support cultures of hippocampal and substantia nigra neurons. *Nat. Protoc.* **4**, 78–85 (2008).

[38] Kaeck, S. & Banker, G. Culturing hippocampal neurons. *Nat. Protoc.* **1**, 2406–2415 (2006).

[39] Chacko, J. V., Zanacchi, F. C. & Diaspro, A. Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach. *Cytoskeleton (Hoboken)* **70**, 729–740 (2013).

[40] Hell, S. W. Far-field optical nanoscopy. *Science* **316**, 1153–1158 (2007).