Supplementary Information

Synthesis and characterization of MgF$_2$-CoF$_2$ binary fluorides. Influence of the treatment atmosphere and temperature on the structure and surface properties

Mariusz Pietrowski*, Michał Zieliński, Emilia Alwin, Agata Suchora, Joanna Gawarecka

Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89B, 61-614 Poznań, Poland

Corresponding author, e-mail: mariop@amu.edu.pl

Table S1 Photographs of Mg$_{x}$Co$_{1-x}$F$_2$ binary fluorides after thermal treatment in reducing and oxidizing atmospheres.

Sample	Dried 120 °C	Reduced 300 °C	Reduced 400 °C	Oxidized 300 °C	Oxidized 400 °C
Mg100	![Image]	![Image]	![Image]	![Image]	![Image]
MgCo0.6	![Image]	![Image]	![Image]	![Image]	![Image]
MgCo7.5	![Image]	![Image]	![Image]	![Image]	![Image]
MgCo37.7	![Image]	![Image]	![Image]	![Image]	![Image]
Co100	![Image]	![Image]	![Image]	![Image]	![Image]
In Figure S1 presented are X-ray powder diffraction patterns of the samples oxidized in air. Magnesium fluoride calcined at 300 °C (Mg100-Ox3) is characterized by a set of reflections typical of MgF₂ (sellaite, PDF 41-1443) and has tetragonal structure (P4/mnm). No other reflections (also from MgO), that could indicate the presence of other crystalline phases, were observed. The incorporation of CoF₂ in the amount of 0.6 mol% did not result in changes in the XRD pattern. At a greater Co content (the MgCo7.5-Ox3 sample), the reflections became shifted towards smaller 2θ angles which indicates the replacement of Mg²⁺ ions by Co²⁺ ions. On the other hand, no magnesium-containing sample (Co100-Ox3) is characterized by the presence of reflections originating from CoF₂ (PDF 33-417) and signals pointing to the presence of the Co₃O₄ phase (PDF 43-1003). The oxide phase also appears in the XRD pattern of the MgCo7.5-Ox3 sample and its amount increases with increasing CoF₂ content in the sample. In the diffraction pattern of MgCo37.7-Ox3 the aforementioned phase is discernible and in that of no magnesium-containing sample (Co100-Ox3) it is very clearly visible. After calcination at 400 °C, the presence of cobalt oxide becomes even more pronounced. Cobalt fluoride is not as stable as MgF₂ and during the calcination it is gradually oxidized to Co₃O₄.

Table S2

Fluoride	a, Å	c, Å	c/a	Year	Ref.
MgF₂	4.6218 (1)	3.0534 (2)	0.6606	1962	1
MgF₂	4.6213 (1)	3.0159 (1)	0.6526	1971	2
MgF₂	4.6213 (1)	3.0519 (1)	0.6604	1976	3
MgF₂	4.628 (5)	3.045 (3)	0.6580	1981	4
MgF₂	4.6233 (1)	3.0522 (1)	0.6602	1987	5
MgF₂	4.6249 (1)	3.0520 (1)	0.6599	2001	6
MgF₂	4.622 (7)	3.050 (3)	0.6599	2002	7
MgF₂	4.6258 (6)	3.0469 (4)	0.6587	2012	8
Mg100-R3	4.6214 (2)	3.0413 (4)	0.6581	2018	this work
CoF₂	4.6951 (1)	3.1796 (2)	0.6772	1954	9
CoF₂	4.6954 (4)	3.1774 (4)	0.6767	1971	2
CoF₂	4.6950 (7)	3.1817 (5)	0.6777	1993	10
CoF₂	4.6956 (5)	3.1793 (5)	0.6771	2001	11
Co100-R3	4.6934 (3)	3.1437 (5)	0.6699	2018	this work

Parenthesized figures represent standard deviations of the least unit cited.
Fig. S2 XPS survey spectra of MgF₂, CoF₂ and MgₓCo₁₋ₓF₂ binary fluorides.

References

1. K. V. K. Rao, S. V. N. Naidu and P. L. N. Setty, *Acta Crystallogr.*, 1962, 15, 528-530.
2. W. H. Baur and A. A. Khan, *Acta Crystallogr. Sect. B: Struct. Sci.*, 1971, B 27, 2133-2139.
3. W. H. Baur, *Acta Crystallogr. Sect. B: Struct. Sci.*, 1976, 32, 2200-2204.
4. J. P. Vidal, G. Vidal-Valat, M. Galtier and K. Kurkisuonio, *Acta Crystallogr. Sect. A: Found. Crystallogr.*, 1981, 37, 826-837.
5. N. Nakagiri, M. H. Manghnani, Y. H. Kim and L. C. Ming, in *High-Pressure Research in Mineral Physics: A Volume in Honor of Syun-iti Akimoto*, American Geophysical Union, 2013, DOI: 10.1029/GM039p0281, pp. 281-287.
6. J. Haines, J. M. Leger, F. Gorelli, D. D. Klug, J. S. Tse and Z. Q. Li, *Phys. Rev. B: Condens. Matter*, 2001, 64, 1341101-13411010.
7. J. L. Booster, J. H. L. Voncken, A. van Sandwijk and M. A. Reuter, *Powder Diffr.*, 2002, 17, 112-118.
8. A. Demourgues, N. Penin, D. Dambournet, R. Clarenc, A. Tressaud and E. Durand, *J. Fluorine Chem.*, 2012, 134, 35-43.
9. J. W. Stout and S. A. Reed, *J. Am. Chem. Soc.*, 1954, 76, 5279-5281.
10. M. M. R. Costa, J. A. Paixao, M. J. M. Dealmeida and L. C. R. Andrade, *Phys. Rev. B: Condens. Matter*, 1993, 49, 591-599.
11. N. J. O’Toole and V. A. Streltsoy, *Acta Crystallogr. Sect. B: Struct. Sci.*, 2001, 57, 128-135.