Evaluation of Diffusion Creep in Low Melting Point Materials by Nanoindentation Creep Test

Tadahiro SHIBUTANI*2, Qiang YU and Masaki SHIRATORI

*1 Faculty of Engineering, Yokohama National University,
79-5 Tokiwadai, Hodogaya-ku, Yokohama shi, Kanagawa, 240-8501 Japan

In this paper, the behavior of diffusion creep in Sn 37 Pb as a low temperature melting point alloy during nanoindentation creep test was examined. Creep exponent, n, estimated from the relationship between hardness and indenter dwell time decreases as a function of time and is saturated with n = 1. From the observation of the indented surface, the surface was pushed by the indenter in the early stage. However, several grains of tin near indenter were transformed in the last stage. A finite element analysis reveals that the rate of the relaxation of the hydrostatic stress is more rapidly than that of the hydrostatic stress because the multi-axial stresses appear near the indenter. The core hydrostatic stress causes the gradient of chemical potential on the grain boundaries. It implies that diffusion creep is activated during the nanoindentation creep test. The transition of mechanism of creep deformation under the indenter from the dislocation creep to the diffusion creep takes place.

Key Words: Creep, Hardness, Finite Element Method, Nanoindentation, Diffusion Creep, Low Temperature Melting Point Alloy

1. 緒 論

金属材料における高温時 (T ≥ 0.37Tm) で、代表的な変形機構であるクリープ変形は、とくに軸位が上昇運動に起因した軸位クリープの形態を持つ向転動により起因する拡散クリープ変形がある。一般に、中温高応力域（0.5Tm < T < 0.3Tm）では軸位クリープが支配的であり、高温低応力域（0.5Tm < T）では原子空孔の移動が容易になる、拡散クリープが支配的となる。軸位クリープでは、定常クリープひずみ速度は応力の n 乗に比例し多くの金属において n は 3 以上の値をとることが経験的に知られている。一方、より高温低応力域で支配的となる拡散クリープでは、理論的に n = 1 となる。Ashby の変形機構によれば、拡散クリープ変形が支配的となる応力は単軸応力下において非常に小さく（一般にせん断弾性係数の 10% 以下）

膨大な試験時間を要することなどを理由に従来の引張クリープ試験などにおいて拡散クリープが評価された例は少ない。

クリープ変形特性を評価する手法は、定応力クリープ、ねじりクリープ、内圧円筒クリープなど種々の試験法がある。特に、近年は微小構造物における局所領域のクリープ特性把握のためにマイクロナノインデンテーションによる押込みクリープ試験が開発されている。押込みクリープ試験は、一定荷重下における押込み深さの時間的変化を連続的に測定し、両者の関係よりクリープ特性を取得する方法である。上述のべき乗クリープを対象として、多くの材料について引張クリープ試験との良好な相関性が報告されており、クリープ特性把握の簡便な手法として広く使われている。しかし、引張試験に比べて応力・ひずみ場が複雑であり、詳細なメカニズムの把握には至っておらず不明な点が多い。

本研究では、常温でもクリープ変形挙動を示す低融
点金属材料である Sn-37Pb 共晶はんだ材料を対象とし
て、ナノインデンテーションクリーブ試験を行った。
とくに、圧子接触部近傍においては周間の変形拘束に
より 3 軸圧縮応力場が発生する。このとき、せん断変
形を主要機構とする軸位クリーブ変形に比べて静水圧
応力成分が起因した粒界面に作用する応力勾配を駆動
力とする拡散クリーブ変形の寄与が高くなることに着
目して、拡散クリーブの影響について検討を行った。
試験過程を対象として圧子および試料をモデル化した
拡散クリーブ解析により応力発生メカニズムを検討
し、低融点材料の押込み過程における拡散クリーブ機
構の解明を試みた。

2. クリーブ変形理論

軸位クリーブによる応力σとクリーブひずみ速度εの
関係については、数多くの実験結果に基づき単軸応力
下の定常クリーブ過程中を次式の Norton 則が幅広く
用いられる。

\[\dot{\varepsilon} = A \sigma^n \] \hspace{1cm} (1)

ここで、A および n はそれぞれクリーブ定数、指数で
ある。すなわち、A および n は材料により変化する。ま
た、多軸応力状態では Mises 型クリーブ理論において
式(1)におけるひずみ速度および応力はそれぞれ相当
クリーブひずみ\(\dot{\varepsilon} \) と相当応力\(\sigma \) が用いられる。この
とき、体積変化を伴わず、ひずみ速度によって静水圧
の影響を受けないと仮定すると、クリーブひずみは次
式で表すことができる(6)。

\[\dot{\varepsilon} = C \sigma^{n-1} s_y \] \hspace{1cm} (2)

ここで、\(s_y \) は\(s_y = \sigma_g - \sigma_0 s / \beta \) であり偏心応力を示している。

拡散クリーブ変形においては原子の輸送(拡散)によ
り材料が変形する。原子の輸送経路としては粒界と粒
内があり、それぞれ粒界拡散クリーブ(Coble-creep)、体
拡散クリーブ(Nabarro-Herring creep)と呼ばれる。一般
に、0.5T_n < 0.8T_n で粒界拡散クリーブ、0.8T_n < T で体
拡散クリーブが支配的になると言われており、それよ
れの原子流束\(J_a \) および\(J_g \) は次式で表すことができる
(10)。

\[J_a = -\frac{D_a}{kT} \frac{\partial \mu}{\partial x} \text{ along grain boundaries} \] \hspace{1cm} (3)

\[J_g = -\frac{D_g}{kT} \text{ grad } \mu \text{ in grains} \] \hspace{1cm} (4)

ここで、\(D_a \) および\(D_g \) はそれぞれ粒界拡散係数、体拡
散係数。\(\mu \) はポルツマン定数、\(T \) は絶対温度である。\(\mu \)
は化学ポテンシャルであり、粒界上では粒界に垂直な
応力\(\sigma_0 \) probleme や次式のように表される(8)。

\[\mu = \mu_0 - \sigma_0 \Omega \] \hspace{1cm} (5)

\(\mu_0 \) は化学ポテンシャルの基準値、\(\Omega \) は原子容を示す。
上式より、拡散クリーブ変形は材料内応力\(\sigma_0 \) に起
因して発生する。\(\sigma_0 \) によって、均等な静水圧応力状態にお
いてはポテンシャル関数が零となるため、拡散クリー
ブ変形は発生しない(9)。\(\sigma_0 \) に関係する 3 軸成分は粒界に作用する垂直応力として
拡散クリーブ変形の駆動力となる。単軸引張応力下の
拡散クリーブ変形において、ひずみ速度および予備
の関係がある。

\[\dot{\varepsilon} = \dot{\varepsilon}_0 + \dot{\varepsilon}_g \] \hspace{1cm} (6)

\(\dot{\varepsilon}_0 \) は結晶粒径、\(\dot{\varepsilon}_g \) は粒界拡散層厚さ、\(\dot{\varepsilon}_a \) は定数である。
すなわち、単軸応力状態では式(1)において\(n=1 \) の場合
に相当する。このように、応力に対してひずみ速度が
比例することが拡散クリーブにおける大きな特徴のひと
とである。また、押込みクリーブ試験のように応力
多軸性が存在する場合においても、上式の応力依存
性が成立することが解析的に確認されている(8)。

3. 試験方法

3.1. ナノインデンテーションクリーブ試験

Sargent と Ashby により、押込みクリーブ試験におい
tては硬度\(H \) と保持時間\(t \) の間に以下のよう関係が
あることが知られている。

\[-n \ln H = \ln B - \frac{\Omega}{RT} + \ln t \] \hspace{1cm} (7)

ここで、硬度\(H \) は押込み荷重\(P \) を圧痕の投影面
積\(S=\pi h^2 \) で除した平均圧力\(P/S \) として定義される。
\(D_0 \) は圧痕形状によって決まる係数であり、\(h_t \) は押込み深
さである。荷重一定のとき、硬度\(H \) の関数である
ことを考慮すると、ポアソン比が変化しない状態であ
るときを考慮すると、上式は荷重保持過程においても
成立し、押込み深さを連続的に測定することにより得
られる\(s-H \) 曲線が同対数グラフ上で直線になる。この
ときの曲配は引張クリーブ試験から得られるクリーブ
指数とよく一致することが知られており、簡易的にクリー
ブ指数を推定することができる(9,10)。

さて、圧子下における応力は押し込みによる圧縮応力
ナノインデンテーションにより、合金の硬度や弾性率を測定する方法について述べます。ナノインデンテーションは、試料表面の微小領域を圧入し、その圧下変位と荷重を測定することにより、試料の硬さや弾性率を評価する技術です。特に、ナノスケールの試料を対象とした場合に有効です。

インデンテーションは、試料に微小な荷重を掛けて試料表面を圧入し、試料の变形量を測定します。微小な荷重で圧入すると、試料表面に発生するマイクロひずみを測定して試料の硬度を評価することができます。この手法は、試料の硬さや弾性率を高精度で測定することが可能で、ナノレベルの精度を必要とする研究や産業応用に広く用いられています。

4. 弾塑性クーリー解析

圧入挙動を考慮したクーリー解析が可能になり、試料の塑性域の挙動を把握することができる。ナノインデンテーションにより得られたデータを用いて、クーリー解析を行うことで、試料の強度や熱伝導性を高精度で評価することが可能になります。
ナノインデンテーションクライアップ試験による低融点材料の弾性クライアップ特性評価

Table 1 Material properties for eutectic Sn-37Pb

Material property	Value
Young's modulus E	20 GPa
Poisson's ratio ν	0.4
Yield stress σ_Y	29.1 MPa
Creep constant α	5.486×10^{-12} MPa$^{-1}$ s$^{-1}$
Creep exponent n	4.7

5. 結果および考察

5.1 P-H 関係

図4は、各試験荷重における荷重-変位曲線を対数表示で示す。いずれの試験においても押し込み後の保持時間において変位が大きく増大しており、顕著なクライアップ変形が見られる。$P=9.8$ mN においては、押し込み領域がミクロインデンテーションであり却下線とほぼ同じ大きさであるのに対して、$P=9.8$ mN および 98 mN では押し込み領域が数十ミクロン以上に拡大しており、多結晶領域に対する押し込みクライアップ試験となっている。微視組織および表面の影響によって、押し込み直後には若干の変形が見られるものの、$P=0.5$ mN においては各試験の負荷曲線はほぼ一致している。図5は、保持時間における変形変化を対数プロットしたものである。時間の経過とともに、押し込み深さが増大し硬さは減少する。保持開始後において、各試験荷重において両者は対数線図で直線関係を示しており、式(7)で示される関係が現れている。そのときの勾配は $n = 6$ となり、バーレック引張り試験や他のインデンテーションによる報告例によりも少し大きいものの、Sn 単結晶のインデンテーション結果と近い値を示している(20)。したがって、開始時においては転位クライアップや粒界すべき変形が支配的な変形機構となっていると考えられる。$P=9.8$ mN および 98 mN においては、保持時間の増加とともに、n 値は減少している。これは、式(1)で示される Norton 則において律連される変形機構が変化していることを示唆している。$t=1000$ s あたりから、図中変形の変化は顕著となり、その傾きは緩やかにほぼ 1 に近いに収束する傾向が認められる。なお、$P=9.8$ mN において、収束する過程において一度 n 値が上昇する

Fig. 3 Mesh division and boundary conditions for elastic-plastic-creep analysis.

Fig. 4 Relationship between load on surface and displacement into surface.
図5 Evolution of hardness in nanoindentation creep test.

図6 Indentation profile and deformation of grains.

の領域は押込み領域から数結晶粒まで拡大していた。

5.2. 転位クリープ変形による応力緩和挙動

図7は、FEM解析より得られた$t=0$ sにおける相当応力分布と静水圧成分をそれぞれ示している。転子接触面近傍を中心に応力集中が発生しており、数ミクロン程度の領域まで塑性域が拡大している。これは、前述の押込み試験結果とほぼ同程度であり結晶粒数個分に相当する。また、静水圧成分は相当応力よりも大きい値を示している。これは、3軸圧縮応力集中が発生していることを示している。なお、このときの最大圧縮応力は接触面に対して垂直な方向に発生している。

図8は、圧子接触面近傍における応力場の変化を示す。横軸は、表面からの距離を示しており、対称軸に最も近い積分点の値を降伏応力で無次元化した値をプロットしている。図8(a)を示すように、表面から$d=40$ μmの領域で相当応力が減少している。すなわち、インデンテーションクリープ試験においては、保持時間とともに相当応力は減少する。$t=30$ μmで降伏応力の約40%となっているが、このとき転位クリープのひずみ速度は約1/100となる。また、$t=1200$ sで既に相当応力分布は収束しているが、応力レベルは低下している。図8(b)は、静水圧成分の分布を示す。保持開始後において圧子接触面近傍において高い応力集中が存在する為クリープ変形により応力は減少している。$t=1200$ s
以降において応力分布は一様応力と等価に取扱っている。これは、十分な保持時間を経ても応力勾配が存在することを示しており、拡散クリープの発生を示唆している。また、応力勾配は押込み時よりもその傾斜は拡大している。実験においても、実験速度は1000 s−1 以下に観測しており、解析結果と定性的に一致している。したがって、インデンテーションクリープ試験において、十分な保持時間を経た場合転位クリープ速度の減少により相対的に拡散クリープ変形が顕著になる。べき乗クリープにおける応力緩和時間は、クリープ指数の影響により異なる。クリープ指数が大きいほど高応力状態の保持時間が短いクリープ速度が小さくなるため、拡散クリープへの遷移も短時間で発生すると考えられる。一方、クリープ指数が小さい場合には相当応力の緩和速度が減少するため、拡散クリープへの遷移も緩やかとなる。

6. まとめ
ナノインデンテーションクリープ試験において、圧子接触部近傍における3輪圧縮応力成分が十分な保持時間の後支配的となることに着目して、押込み過程のクリープ変形特性について検証した。得られた結果は以下のようにまとめることができる。

[1] 低融点材料である共晶 Sn-37Pb を対象として、ナノインデンテーションクリープ試験を実施した。
硬さ－時間関係より得られるクリープ指数 n は保持開始時においては n=6 程度であり、バルク材において得られる転位クリープ変形におけるクリープ特性に比べて大きい値をとる。

[2] 時間の経過とともに、推定される n 値は徐々に減少し、十分な時間の後拡散クリープ変形において特徴的な指数である n=1 に収束する傾向が認められた。

[3] 保持開始直後は、圧子の押し込みによる変形が支配的となっているのに対して、十分な保持時間後は圧子接触部周辺において結晶粒内の変形が発生している。これにより、保持過程において変形機構が変化していることを示している。

Fig. 7 Contour map of stresses near the contact area between indenter and surface.

Fig. 8 Evolution of stresses in the vicinity of the tip of indenter.
圧子と供試材をモデル化した弾塑性クリップ解析において、圧子押し込み部近傍では周囲の変形拘束により3軸圧縮応力場が形成される。保持の初期段階において発生する相当応力は時間の経過とともに減少し、圧子接触部近傍では静水圧成分が支配的となる。

参考文献
(1) M. F. Ashby, Acta Metallurgica, 20 (1972), 887.
(2) J. Weertman, Trans. metal. Soc. A.I.M.E., 227 (1963), 1475.
(3) R. L. Coble, J. Applied Physics, 34 (1963), 1679.
(4) C. Herring, J. Applied Physics, 21 (1950), 437.
(5) J. Harper and J. E. Dorn, Acta Metallurgica, 5, (1957), 654.
(6) T. G. Langdon, Metallurgical and Materials Transactions, 33A (2002), 249.
(7) M. J. Mayo and W. D. Nix, Acta Metallurgica, 36 (1988), 2183.
(8) P. M. Sargent and M. F. Ashby, Materials Science and Technology, 8 (1992), 594.
(9) 藤原、大塚、日本金属学会誌, 63-6 (1999), 760.
(10) K. Zhang and J. R. Weertman, Applied Physics Letters, 85-22 (2004), 5197.
(11) 小川, 宮本, 大塚, 大塚, 材料, 49-5 (2000), 666-671.
(12) S. N. G Chu and J. C. M. Li, J. Material Science, 12, (1977) 2200.
(13) A. Needleman and J. R. Rice, Acta Metallurgica, 28 (1980), 1315.
(14) 北村, 大谷, 山中, 服部, 日本機械学会論文集 A 編, 60-572 (1994), 935.
(15) T. Kitamura, T. Shibutani, R. Ohtani, Metallurgical and Materials Transactions, 29A (1998), 2533.
(16) T-J. Chang, K. I. Kagawa, J. R. Rice and L. B. Sills, Acta Metallurgica, 27 (1979), 265.
(17) 調谷, 北村, 大谷, 日本機械学会論文集 A 編, 65-640 (1999), 2497.
(18) A. C. F. Cocks, Applied Solid Mechanics, 3 (1989), 30.
(19) 杏井, 川上, 高橋, 岸本, 渋谷, 日本機械学会論文集 A 編, 63-611 (1997), 1594.
