Serial-passage experiments with microbial pathogens have demonstrated that strains tend to increase in virulence when passaged in a new host species and lose virulence for the preceding species (1). The fungal pathogen Cryptococcus neoformans is an excellent model to study host-dependent mutational changes, as it causes infections in multiple hosts that are chronic, allowing time for significant microevolution. For example, the fungus commonly resides within soil, where it has the capacity to inhabit free-living amoebae (2) and to colonize seedlings of the plant *Arabidopsis thaliana* (3) by using virulence factors such as a polysaccharide capsule and a laccase enzyme for success in each of these host niches, respectively. *C. neoformans* is also a major human pathogen that causes fatal meningoencephalitis in immunocompromised hosts, including those with AIDS, as well as transplant recipients and cancer patients receiving conditioning regimens or chemotherapy, respectively. Worldwide, the fungus accounts for a large proportion of the AIDS-related deaths that occur, reaching 600,000 per year (4), and continues to cause a significant infectious burden in both AIDS and non-AIDS patients in the United States (5).

Mammalian infection is believed to be acquired through the inhalation of yeast cells from the environment into the lungs. Several lines of evidence suggest that the fungus is acquired early in life (6, 7) and may reactivate years later after immune suppression (8). Such long host residence suggests that host adaptation may occur during mammalian residence. Indeed, mouse experiments show increases in the mammalian virulence of *C. neoformans* (9–11), as well as the less virulent species *C. albidus* and *C. laurantii* (12), after serial mouse passage, suggesting that periods of fungal growth in the host may result in microevolution of the pathogen. In addition, extended residence in infected patients has also been associated with phenotypic changes (13, 14). However, the more classical virulence factors laccase and capsule, as well as growth rates *in vitro*, have not shown consistent changes after mouse passage (15) or after passage through nonmammalian hosts such as the amoeba *Dictyostelemium discoideum* (16). In contrast, changes in
antifungal susceptibility have been noted (17), as well as modest reductions in capsule size after passage (11), suggesting mutations in unidentified genes. The possibility that such microevolutionary changes may result in clinically relevant increases in virulence is suggested by data showing that cryptococcal isolates successful at disseminating to the brains of solid-organ transplant recipients expressed higher levels of the virulence-associated copper transporter CTR4 than those limited to causing pulmonary disease (18). However, the genetic mechanisms involved in the optimization of virulence and whether these changes can occur during mammalian residency remain unknown.

More recently, changes in pseudohypha formation between amoeba-adapted and mouse-adapted strains linked to the RAM signal transduction pathway have given insights into the transition between potential restricted ecological niches (19). Free-living amoebae have the ability to act as scavengers for fungi (20–22) and exert pressure for the retention of virulence factors such as the antiphagocytic capsule (2). In the same way, both C. neoformans and the related strain C. gattii have the ability to act as endophytic fungi, causing either lethal infections or symbiotic colonization in Arabidopsis plant seedlings, both dependent on the virulence factor laccase (3). This suggests that genetic and epigenetic changes during the transition between ecologically different environments may provide insight into the acquisition and potentiation of virulence of the fungus.

Thus, to examine physiologically relevant molecular changes during a transition from a soil environment to the mammalian host, we subjected nine serotype A primary culture isolates from soil and pigeon nests to serial passage in mice, followed by recovery from their brains. The expression patterns of two isolates that showed environmental Fe(III) to Fe(II), acting in association with an iron permease (FTR1) and a multicopper ferroxidase Fet3p (24, 25) to facilitate iron uptake in fungi. Iron acquisition during infection is important for infections by diverse bacterial pathogens, as well as fungi such as C. neoformans (26). Overexpression of FRE3 in the two environmental strains facilitated growth in the presence of iron, increased growth rates in macrophages, and recapitulated the increase in virulence in mice after serial passage. These data thus support a relationship between the expression levels of a cryptococcal iron reductase in iron-dependent growth, as well as virulence in C. neoformans, during the transition between the environment and a mammalian host.

RESULTS

Serial passage of primary environmental isolates of C. neoformans identifies a set of HAVS. A set of nine strains recovered from environmental sources without passage through animals was used for mouse passage studies (Table 1). Classical serotyping was used to identify the strains as serotype A, and genotyping by multilocus sequencing identified the strains as VGI (see Fig. S3 in the supplemental material) as previously described (27, 28). Since passage in laboratory medium is known to result in mutational changes (29), care was taken to minimize laboratory passage. Single colonies of environmental strains were inoculated into Swiss albino mice sequentially four times over a 4-month period, and single colonies were recovered from brains before inoculation into each successive mouse. As shown in Fig. 1A, there was prominent strain-to-strain variability in the acquisition of virulence during mouse passage measured by mouse death (15). Two isolates (no. 6 and 9) showed the most prominent changes, with an approximately 4-fold reduction in the time to death between the first and fourth inoculations (Fig. 1A), and were designated highly adapted virulent strains (HAVS). In contrast, one strain (no. 7) did not change in virulence during the four passages and was selected as a control strain. One of the isolates (no. 1) was unable to achieve sufficient virulence to cause mouse death but did disseminate to the brain in each of the four passages. Comparison of the virulence-associated traits of the nine strains before and after mouse passage found little change in growth rates in yeast extract-peptone-dextrose (YPD) (Fig. 1C) or in capsule size (Fig. 1D). However, changes in laccase expression, measured by determining melanin production, were noted (Fig. 1E) but were not associated with virulence acquisition, except for strain 8, which showed a 2-fold increase in virulence. Fungal survival in the macrophage-like cell line J774.16 (Fig. 1F) showed significant changes in both HAVS, as well as in isolate 4, which showed no change in virulence in mice. In addition, the HAVS were not differentiated from the remainder of the group based on multilocus sequencing (see Fig. S3 in the supplemental material), and all of the strains retained the haploid state after mouse passage (see Fig. S4). In summary, mouse passage of nine environmental strains identified a set of HAVS that showed no consistent changes in the three best-known virulence-associated traits or in genotype-specific similarities.

TABLE 1 Environmental strains used in this study

Isolate	Strain	Origin	Source	Doubling time (h) at 37°C
1	NIH120	Pigeon nest	Chester Emmons, What Cheer, IA	2.7
2	NIH192	Soil	Dexter Howard, Hot Springs, CA	2.9
3	NIH117	Pigeon nest	Chester Emmons, Loudoun County, VA	2.8
4	NIH118	Pigeon guano	Chester Emmons, Washington, DC	3.0
5	NIH115	Soil	Chester Emmons, Loudoun County, VA	2.5
6	NIH119	Soil	Chester Emmons, Washington, DC	2.9
7	NIH193	Pigeon cote	Dexter Howard, Westminster, CA	2.6
8	NIH316	Chicken house	Libero Ajello, CDC	3.0
9	NIH404	Soil	Harold Muchmore, Oklahoma	2.8

a Junior Village.
b Capitol dome.
HAVS demonstrate increased expression levels of an iron reductase after serial mouse passage. To examine whole-genome changes in gene expression associated with increased virulence during mouse passage, the two HAVS isolates, as well as a control strain (no. 7) that did not increase in virulence during mouse passage, were compared to their respective environmental predecessor by transcriptome sequencing (RNA-seq). RNA was isolated from fungi under nutrient-depleted conditions, which previously were used to correlate the expression levels of the CTR4 copper transporter with clinical dissemination to the brains of patients (18). Nutrient depletion also induces a number of virulence-associated traits, such as laccase (30), autophagy (31), and high-affinity glucose transporters (32). Comparison of the expression profiles of two isolates from brains after the fourth passage with those of their respective precursor demonstrated increased transcription (false-discovery rate [FDR], <0.05) >2-fold in four genes in the HAVS (Table 2). In common between the two HAVS was a gene (CNAG_06524) with homology to a set of iron reductase genes of Saccharomyces cerevisiae. In addition, HAVS 6 demonstrated increased expression of a predicted protein (CNAG_07853) and HAVS 9 showed increased expression of a conserved hypothetical protein, CNAG_04495. In comparison, control strain 7 showed no significant expression changes in these genes. Real-time quantitative PCR (qPCR) confirmed increased CNAG_06524 expression levels in the HAVS but not the control strain after mouse passage (Fig. 2A). Interestingly, analysis of FRE3 expression in all nine strains demonstrated a significant increase in expression postpassage in only isolates 6 and 9, with a trend toward increased expression in isolate 8 and little changes in strains that did not increase in virulence (see Fig. S5 in the supplemental material).

The C. neoformans genome contains eight putative FRE-encoded iron reductases. The CNAG_06524 protein contains
three canonical domains commonly shared by the FRE family of iron reductases: a ferric reductase domain and two C-terminal flavin adenine dinucleotide (FAD)- and NADPH-binding domains (33). In addition, using two different predictive programs, seven transmembrane domains were identified, one within the N terminus and six within the ferric reductase domain. Such an organizational structure is typical of the FRE3 family of proteins from fungi that have no TM domains within the FAD or NAD-binding C-terminal domains (34). Furthermore, a BLAST analysis of CNAG_06524 identified eight putative iron reductases with homology to the S. cerevisiae group of eight FRE3-encoded iron reductases (Fig. 2C) with closest homology (E = 3e-40; 1e-41) to the Fre2/Fre3 group. Phylogenetic analysis of both Fre protein families clustered both the S. cerevisiae Fre2/3 sequence with high support (99%) and the S. cerevisiae Fre2-6 sequence with good support (Fig. 2C). Placement of other sequences of both S. cerevi-

Locus	Name	Log₂ expression ratio in isolate:			
		6	9	7	FDR*
CNAG_06524	Ferric reductase	2.80	2.68	0.43	0.002
CNAG_07853	Predicted protein	2.41	−1.70	−0.50	0.927
CNAG_02691	Conserved hypothetical	2.04	−2.21	0.63	0.831
CNAG_04495	Conserved hypothetical	−0.27	2.94	−0.11	0.039

* Adjusted P-value.

FIG 2 C. neoformans FRE3 encodes a cryptococcal iron reductase. (A) FRE3 expression of the strains indicated. Cells were incubated in ASN medium without glucose for 3 h at 37°C, and FRE3 transcripts were measured by qPCR as described in Materials and Methods. (B) Scheme of putative protein sequence of the FRE3 iron reductase (CNAG_06524), including ferric reductase, FAD-binding, NADPH-binding, and transmembrane (TM) domains. (C) ClustalW comparison of S. cerevisiae (Sc) and C. neoformans (indicated by CNAG number) proteins of the FRE-encoded family of proteins. Parsimonious trees were constructed by using the heuristic parsimony algorithm of PAUP 4b10 as described in Materials and Methods. Bootstrap support percentages are shown above branches. (D) Wild-type strain H99 containing RNAi FRE3 suppression plasmids (RNAi-1 and RNAi-2 strains) or the empty vector alone (EV-1 and EV-2) were induced for the times indicated in LIM and monitored by iron reductase assay as described in Materials and Methods. (E) Wild-type H99 cells were incubated in LIM (low Fe), ASN medium (Asn), or LIM after the addition of 2.5 mM FeCl₃, and FRE3 expression was analyzed by qPCR as described in Materials and Methods. (F) Wild-type H99 cells were incubated in low-copper (low Cu) medium, ASN medium, or after the addition of 1.5 mM CuSO₄ (high Cu) and analyzed as described for panel E. **, P < 0.01; ****, P < 0.0001.
C. neoformans Fre3/CNAG_06524 is an iron reductase induced under low-iron conditions without copper reductase activity. To confirm a role for CNAG_06524 as an iron reductase, two independent RNA interference (RNAi) strains were constructed and iron reductase enzymatic activity was assayed with a fluorophore-coupled assay (35). The reductase activity of two independent transformants (RNAi-1, RNAi-2) was compared to that of two strains containing the empty vector alone (EV-1, EV-2) in equivalent copy number in an H99 genetic background. As shown in Fig. 2D, RNAi suppression of CNAG_06524 resulted in significant suppression of iron reductase activity after induction in low-iron medium for either 2 or 6 h \(P < 0.0001; n = 6 \). In contrast, a similar assay (35) using copper as the substrate failed to demonstrate significant CNAG_06524-dependent copper reductase activity (data not shown). Transcriptional studies compared expression levels of CNAG_06524 under low- and high-iron conditions and demonstrated elevated expression under low-iron conditions with a minor amount of induction under high-iron conditions that did not reach statistical significance (Fig. 2E). In contrast, induction was not observed with low copper concentrations Fig. 2F, which were tested because the *S. cerevisiae* Fre1 and Fre2 proteins exhibit copper-dependent activities (23, 36). In conclusion, sequence similarity to Fet2 and Fet3, production of an iron reductase activity without copper reductase activity, and induction in low iron but not low copper suggest that CNAG_06524 is most similar to Fre3 from *S. cerevisiae* (23, 36) and will thus be designated *C. neoformans* Fre3.

Reduced gene dosing of cryptococcal Fre3 results in reduced iron-dependent growth, reduced melanin formation, and reduced survival in macrophages. To assess the role of *C. neoformans* FRE3 gene dosing on iron-dependent growth fitness, the growth rates of two independent FRE3 RNAi strains (RNAi-1, RNAi-2) were compared to those of two equivalent strains expressing the empty plasmid alone (EV-1, EV-2). Since the rates did not differ significantly between the respective RNAi-1 and RNAi-2 strains or between the EV-1 and EV-2 strains, the data were expressed as pooled doubling times (RNAi-1/2, EV-1/2) in three independent experiments with each strain. These studies demonstrated equivalent growth on YPD agar with >90% plasmid retention (data not shown) but reduced growth on low-iron medium (Fig. 3A) (doubling times: RNAi-1/2, 9.3 h; EV-1/2, 16.4 h \(P < 0.0001 \)). *FRE3* suppression also reduced growth after moderate iron repletion with 15 \(\mu M \) FeCl₃ (Fig. 3B) (doubling times: RNAi-1/2, 3.9 h; EV-1/2, 9.3 h \(P < 0.0001 \)) with reduced final concentrations of cells in stationary phase (see Fig. S2 in the supplemental material). A high concentration of iron (2.5 mM) also resulted in reduced growth of the RNAi strains (Fig. 3C) (doubling times: RNAi-1/2, 4.0 h; EV-1/2, 6.6 h \(P < 0.0001 \)), although stationary-phase cultures of the two strains reached similar plateau levels (see Fig. S2). In contrast, *FRE3* suppression resulted in minimal suppression of growth in hemin-containing medium (Fig. 3D) (doubling times: RNAi-1/2, 5.7 h; EV-1/2, 7.6 h \(P = 0.05 \)), suggesting that *FRE3* has no significant role in siderophore-dependent iron uptake.

FRE3 gene suppression also played a role in virulence factor production and macrophage survival. For example, laccase expression, measured by determining melanin production (Fig. 3E), was dependent on optimal *FRE3* expression, but capsule production on 1:10 Sabouraud medium was not affected (Fig. 3F). However, survival in the macrophage-like cell line J774.16 was attenuated after *FRE3* suppression (Fig. 3G) \(P < 0.01 \) suggesting a role in this important phenotype.

Overexpression of FRE3 in the HAVS precursor strains recapitulates the increased virulence induced by serial mouse passage. To confirm a role for increased *FRE3* expression in adaptive virulence after serial mouse passages, *FRE3* was overexpressed in the HAVS precursors (no. 6 and 9) under the control of an actin promoter. In both strains, overexpression (6-fold overexpression, strain 6-OEx; 9-fold overexpression, strain 9-OEx) resulted in higher growth rates in low-iron medium than of the equivalent strains (6-EV, 9-EV) expressing the empty vector alone (Fig. 4A and B) (doubling times: 6-OEx, 7.7 h; 6-EV, 9.6 h \(P < 0.0001 \); 9-OEx, 7.1 h; 9-EV: 10.6 h \(P < 0.001 \)). Overexpression also resulted in significantly higher growth rates in medium supplemented with 15 \(\mu M \) FeCl₃ (Fig. 4C and D) (doubling times: 6-OEx, 5.1 h; 6-EV, 6.5 h \(P < 0.001 \); 9-OEx, 7.1 h; 9-EV: 9.2 h \(P < 0.05 \)). These data suggest that growth in the environmental precursor strains could be further optimized by increasing the expression of the *FRE3* gene. Interestingly, the expression of the two principal virulence factors capsule and laccase was not altered in the two *FRE3*-overexpressing strains (Fig. 4E and F), suggesting that *FRE3* does not alter virulence by increasing these virulence factors. However, overexpression did result in increased fungal survival in the macrophage-like *J774.16* cell line, which was statistically significant \(P < 0.01 \), an important virulence attribute of this facultative intracellular pathogen (37). Finally, the HAVS precursors overexpressing *FRE3* were inoculated into mice and demonstrated an increase in virulence over strains expressing the empty vector alone (Fig. 4H and I), partially recapitulating the increased virulence induced by mouse passage.

DISCUSSION

Epidemiological (8), as well as serologic (7), work suggests that acquisition of the fungal pathogen *C. neoformans* often occurs early in life and is followed by a latent stage and reactivation prior to the onset of disease, which is akin to diseases such as tuberculosis. This suggests that segments of the human population may harbor the organism and remain susceptible after immune suppression either because of infectious causes as in HIV/AIDS or immunomodulating therapy during transplant conditioning or after cancer chemotherapy. Such a prolonged residence in the mammalian host also suggests a potential to undergo microevolution during mammalian carriage, optimizing pathogenic potential. This optimization occurs on top of an already formidable armamentarium of mammalian virulence factors such as an antiphagocytic capsule, potentiated in ecological niches containing free-living amoebae (2), or an immunomodulatory factor such as laccase, required for colonization and infection of seedling plants (3). Thus, the present study sought to identify genes that have the capacity to both (i) facilitate virulence and (ii) undergo permitted transcriptional inductions during the environment-to-mammalian transition. Interestingly, after four passages through mice, the environmental strains showed a markedly different propensity to increase virulence, with two HAVS reducing the time to death by a factor of four, whereas the other strains showed little or no difference in virulence; indeed, one strain remained unable to kill mice after 60 days despite successful brain infection. This variation in the acquisition of virulence in unrelated strains has been
reported previously and is likely due to genetic background differences (11, 38).

With this experimental environment-to-mammal transition model, a whole-genome approach identified increases in the transcription of a cryptococcal FRE3-encoded iron reductase not previously identified as having a role in fungal virulence. This whole-genome search was prompted by previous studies showing a lack of correlation of known virulence factors with virulence acquisition in mice (11) and was confirmed in the present studies. The best-studied family of FRE3-encoded iron reductases is that of the model yeast S. cerevisiae, which, like that of C. neoformans, contains eight members (23). Iron acquisition requires an elaborate mechanism for acquisition by fungi because the metal is water insoluble and is maintained in the metabolically inactive ferric form Fe(III) because of the presence of dissolved oxygen (39). Iron reductases contain three canonical domains, a heme-containing six-transmembrane ferric reductase domain and two C-terminal cytoplasmic FAD- and NADPH-binding domains (33), which act together in two half reactions whereby reduction of Fe(III) to Fe(II) is coupled to the oxidation of dioxygen to superoxide radical (33). Reduced iron is then acquired by copper-containing Fet3, which then oxidizes iron back to Fe(III) as it is transported across the cell wall in concert with an FTR1-encoded iron permease (40). These domains are present in homologous proteins from other fungal pathogens such as Paracoccidioides brasiliensis (41). Linkage of the iron acquisition machinery with that of copper is suggested by a requirement of Fet3 for its copper cofactor (42). Not surprisingly, this linkage extends to the iron reductase family, where the FRE1- and FRE2-encoded proteins are involved in the reduction of both ferric and cupric ions (43). However, in the present study, while the cryptococcal reductase showed the highest homology to the Fre2 and Fre3 proteins, lack of transcriptional dependence on either copper or copper reductase activity led us to designate the cryptococcal protein Fre3,
which is more exclusively an iron-regulated and iron-reductive protein (23, 36). However, phylogenetic relationships between the FRE family in the present studies suggested large differences between the Fre protein sequences of the ascomycete *S. cerevisiae* and the basidiomycete *C. neoformans*, so such a designation can only be approximate at best. *C. neoformans* Fre3p maintained the transmembrane structural signature of fungi (34), suggesting retention of yeast-like iron acquisition requirements for this protein, unlike other *C. neoformans* proteins such as Sp1, which have acquired mammalian features (44). Phenotypically, FRE3 suppression by RNAi caused reduced growth rates in medium containing FeCl₃, which requires reductive iron uptake in *C. neoformans* (45), but without such a defect in the presence of the siderophore hemin, suggesting that FRE3 has no role in siderophore-dependent growth. FRE3 RNAi was used in these phenotypic studies rather than knockout strains to simulate the more subtle changes in gene dosing during environment-to-mammal transitions. Knockout strains would be expected to have a more robust phenotype but are less relevant to issues of physiologically relevant phenotypes, as gene deletion per se would be unlikely in wild-type strains. Interestingly, FRE3 suppression in H99 resulted in reduced laccase activity although FRE3 overexpression in the environmental strains, either after mouse passage or genetically induced by plasmid-mediated FRE3 overexpression, did not alter laccase activity, suggesting a threshold effect of FRE3 gene dosing on laccase activity. Previous studies have noted that iron significantly modulates laccase activity (46) and the CIR1 iron regulator modulates laccase activity (47). Relationships between iron signaling and laccase may be due to the enzyme’s role as an iron oxidase, which has the ability to reduce fungicidal Fen- ton oxidative products such as hydroxyl radical, produced by macrophages after fungal cell engulfment (48). Interestingly, fungal survival in the macrophage-like cell line J774.16 was also reduced after FRE3 suppression. Fungal survival in a mouse model of *C. neoformans* FRE3 overexpression in precursor environmental strains increases iron-dependent growth, survival in macrophages, and virulence in a mouse model. (A to D) FRE3 was overexpressed in two environmental strains (6-OEx, 9-OEx), and growth in LIM (low Fe) or after supplementation in 15 mM FeCl₃ (+ 15 μM Fe) was compared to that of equivalent control strains containing the empty vector (6-EV, 9-EV). (E) Capsule formation was induced by growth on 1:10 SAB medium, and capsule formation was observed (top) and capsule size was measured (bottom) by differential interference contrast microscopy. (F) The laccase activities of the strains indicated were assayed by measuring melanin formation. (G) Survival of the fungal strains indicated in J774.16 cells was assessed by counting CFU and expressed as percent survival after the removal of phagocytosed and adherent cells by washing as described in Materials and Methods. Results of five independent experiments are shown. **, *P < 0.01. (H, I) The fungal strains indicated (1 × 10⁶ CFU) were inoculated i.v. into Swiss albino mice, which were sacrificed when moribund.

![Image](mbio.asm.org)
such as those of the *C. gattii* outbreak in the Pacific Northwest (49).

To further validate the role of FRE3 in acquisition of virulence in the HAVS isolates, the environmental precursors were transformed with FRE3-expressing plasmids under the control of the ACT1 constitutive promoter, to simulate the increased expression of the gene after mouse passage. These studies showed that the two environmental strains that had acquired increased FRE3 expression during mouse passage also developed better iron-dependent growth, better survival in the J774.16 macrophage-cell line, and increased virulence in a mouse model. These results identify FRE3 as not only a new virulence-associated gene but also as one that is permitted to undergo mammal-restricted transcriptional changes during the transition between the saprophytic and infective states. To clarify this dynamic relationship between the acquisition of virulence and the environment-to-mammal transition, we have used the term “virulence adaptation genes” for genes such as cryptococcal FRE3. During the simulated environment-to-mammal transition in the present studies, increased transcription of virulence adaptation genes such as FRE3 within the mammalian host likely leads to positive selection and increased virulence. These selective pressures led to preferential recovery of HAVS isolates with elevated FRE3 transcription after mouse passage in two independent environmental strains originally obtained thousands of miles apart from each other. The small number of genes showing transcriptional changes suggests that mouse passage was genetically restricted under these conditions and suggests a model for a genetic “bottleneck” typical of those described where only small numbers of clones survive evolutionary pressures, such as *M. tuberculosis* (50). It also suggests how small changes in expression can increase the virulence of *C. neoformans*, especially considering the wide dissemination of the organism in crowded metropolitan areas, highlighted by isolate 6 from the U.S. Capitol dome in Washington, DC. Interestingly, FRE3 has not been identified as an upregulated gene in macrophages in previous studies (51), although more recent studies did demonstrate upregulation of iron uptake genes such as the CFO1-encoded ferroxidase from “in situ” human cerebrospinal fluid samples (52). However, it is important to note that the present study design differs from those used previously in that transcriptional differences between strains were sought (postpassage versus prepassage) rather than differences between conditions (glucose-rich medium versus macrophage environment). Indeed, even a constitutively expressed gene could acquire an increased capacity for expression during mouse passage and increase the overall virulence of a pathogen. However, several caveats apply to the present studies. For example, only a small number of environmental isolates were analyzed after passage; it is expected that additional cryptococcal virulence adaptation genes will be identified by using additional animal models and cryptococcal strains. Other models of infection (pulmonary, for example) offer an environment quite different from that of an intravenous (i.v.) infection and could provide selective pressures to uncover other virulence adaptation genes. However, it is important to use actual environmental strains with limited laboratory passage in such experiments, as the underlying genetic background may affect the mutational mechanism(s) active during these transitions. Additional genes may have been identified by relaxing our stringent criteria of a 2-fold or greater expression change during mouse passage, possibly expanding the scope of biological interpretation. In addition, a role for compensatory mutations that could augment or diminish the effect of FRE3 mutations was not examined that could influence the true “virulence composite” of the pathogen. Despite these caveats, these studies represent an initial exploration of the environment-to-mammal transition by the whole-genome approach, identifying the potential role of the FRE3 iron reductase in this important transition.

MATERIALS AND METHODS

Fungal strains, plasmids, and growth media. The *C. neoformans* ATCC 208821 (H99) strain was a gift from J. Perfect, and H99FOA19 was the recipient strain for the expression of green fluorescent protein fusions, overexpression, and RNAi constructs. Environmental strains were obtained from lyophilized cultures in our collection, identified by biochemical reactions (53) and brown-colored colonies on *Guizotia abyssinica* agar, and typed by using serotype-specific absorbed rabbit serum (27). The URA5 gene was contained in pCIP3 (54) and was the generous gift of J. Edman. Strains were grown in YPD (2% glucose, 1% yeast extract, 2% Bacto peptone), on YPD agar, or in asparagine salts with 2% glucose, 1 g/liter asparagine, 10 mM sodium phosphate (pH 6.5), and 0.25 g/liter MgSO4. Low-iron medium was prepared as previously described (35) and contained, per liter, 20 g of glucose, 5 g of asparagine, 400 mg of KH2PO4, 100 mg of MgSO4 ·7H2O, 50 mg of CaCl2 ·2H2O, 1 mg of thiamine, 57 mg of biotin, 396 mg of CuSO4 ·5H2O, 72 mg of MnCl2 ·4H2O, 4.2 mg of ZnCl2, and 37 mg of (NH4)6Mo7O24 ·4H2O buffered with 50 mM 2-(N-morpholino)ethanesulfonic acid–NaOH to pH 6.0 and was depleted of iron with Chelex 100 (Sigma) prior to the addition of transition metal salts as previously described (35). Iron supplemented with iron or hemin was prepared by the addition of the indicated amount of FeCl3 or hemin (Sigma).

Virulence factor expression and mouse passage and virulence studies. Capsule formation was assessed on a 1:10 dilution of Sabouraud medium (1:10 SAB) as previously described (56), and the method of Liu et al. (48) was used to measure laccase activity. All experimental procedures were conducted under a protocol approved by the Institutional Animal Care and Use Committee of the Intramural Research Program of the NIAID, NIH. For the i.v. infection model, sets of 6- to 8-week-old Swiss albino mice (Harlan) were infected by tail vein injection of 106 CFU of the strains of *C. neoformans* and mutants indicated. For mouse passage experiments, mice were infected as described above, and after sacrifice, two strains were recovered from their brains and grown on YPD agar. The mice were fed ad libitum and monitored by inspection twice daily. Mice were euthanized when moribund. Statistical significance of differences in mouse survival times was assessed by Kruskal-Wallis statistics (analysis of variance [ANOVA] on ranks). Statistical analysis was conducted with GraphPad Prism software, version 4.03.

RNA-seq gene expression analysis. Replicate RNA samples were obtained from two strains isolated from the brains of mice after the final environmental passage. The cells were grown to mid-log phase and subjected to starvation at 37°C in asparagine salts (ASN) without glucose for 3 h as previously described (18). RNA was isolated and processed in two independent processing runs, with all six strains represented in each run, i.e., two virulent strains, one nonvirulent strain, and their environmental predecessors. The RNA integrity numbers determined with an Agilent 2100 Bioanalyzer were greater than 9.8 for all samples. Sequencing libraries were prepared with Illumina TrueSeq RNA Sample Preparation version 1 for the first sample set and version 2 for the duplicate sample set. High-throughput sequencing by synthesis was performed with an Illumina HiScan-SQ with a 100-base paired-end protocol. Approximately 10 million raw reads per library were quality filtered and mapped with BowTie, keeping only those mapped uniquely to the reference sequences from the *C. neoformans* var. *grubii* H99 Sequencing Project, Broad Institute of Harvard and MIT (http://www.broadinstitute.org/). Transcript abundance values (reads per kilobase per million) were analyzed by lowess normalization of log ratios (after passage/before passage), followed by ANOVA to test for statistically significant expression differences. Reported *P* values...
were subjected to Benjamini-Hochberg FDR adjustment for multiple testing.

qRT-PCR experiments. *C. neoformans* strains were grown to the mid-log phase prior to induction by incubation for 3 h at 37°C in asparaginase salts as previously described (18). RNA was extracted before and following induction and treated with the RNase-Free DNase Set (Qiagen). Five-microgram samples of total RNA were used for cDNA generation with Invitrogen SuperScript II reverse transcriptase and oligo(dT) primers in a 30-μl reaction mixture. cDNA (1 μl) was used as the template for real-time reaction mixtures containing primer sets and qSYBR green Supermix (Bio-Rad). Primers FRE-S-RT-2 and FRE-A-RT-2 were used to amplify *C. neoformans* **FRE3**, and the products were compared to those of equivalent reactions with primers **ACT1-1200S** and **ACT1-1455A** for normalization. qPCR data were analyzed with Bio-Rad iQ5 software, and results are presented as normalized expression (∆∆CT) for the microarray validation studies.

Sequence data mining and analysis. *C. neoformans* and *S. cerevisiae* sequence data were retrieved from the NCBI Broad Institute website and the Saccharomyces Genome Database, respectively. For the analysis of cryptococcal and yeast Fe reductase-related motifs, sequences were retrieved by BLASTp searches with yeast FRIE1-8 and *C. neoformans* CNAG_06524 as the query sequences. The full protein sequences were aligned with MUSCLE (57), and motifs were manually extracted and aligned (see Fig. S1 in the supplemental material). A phylogenetic analysis of the conserved motifs (Fig. 3B) was performed with the heuristic parsimony algorithm of PAUP 4b10 (58). To evaluate support for the groups in the tree, 500 nonparametric bootstrap replicates were analyzed. PAUP returned 500 equally parsimonious trees for which the 50% majority rule consensus is shown. All of the variation among the equally parsimonious trees occurred within these collapsed groups, so the branches shown in Fig. 2 were found in all 500 trees. Bootstrap support values of >70% were considered significant. Predicted transmembrane regions were identified by two prediction programs, MEMSAT (59) and Phobium (60).

Construction of **FRE3 RNAi and **FRE3**-overexpressing **C. neoformans** strains. The cryptococcal shuttle vector pORA-KUTAP, containing the URA5 transformation marker, was used to effect RNAi suppression of *C. neoformans* **FRE3** as described by Panepinto et al. (65), modified by the substitution of a 500-bp fragment of intron 1 of **LAC1** for the intervening region between the sense and antisense strands. Briefly, to construct the **FRE3** RNAi strain, pORA-KUTAP, containing the EF-1α terminator sequence, was digested with EcoRI and ligated simultaneously to a mixture of an Xhol-digested PCR-amplified **LAC1** intron fragment from **H99** (with primers **IntronS-Xho** and **IntronA-Xho**; see Table S1 in the supplemental material) and a second Xhol- and EcoRI-digested, PCR-amplified fragment of the *C. neoformans* **FRE3** open reading frame (frst with primers Fre-KD-S-Rl and Fre-KD-A-Xhol) to produce pFRE3-RNAi. To construct the **FRE3**-overexpressing strain, pORA-KUTAP was digested with EcoRI and ligated with amplified **FRE3** fragments from cDNA with primers FRE-2RI and FRE-A-RI to produce pFRE3-OXe. The plasmids were recovered, their sequences were verified, and they were linearized with SceI and transformed into *C. neoformans** H99 Mata una5 cells by electroporation by standard methods (56). An H99 Mata una5 strain transformed with plasmid pORA-KUTAP without the RNAi construct served as a control for URA5 expression for in vivo studies. Transformants were selected by equivalent copy number demonstrated by uncut Southern analysis as described previously (65), and expression in all transformants was verified to be at least more than five times the endogenous expression of the precursor strain by qPCR (see Table S1 for the sequences of the primers used). All of the *C. neoformans* strains recovered from nonselective medium or animals were tested for growth on YPD and ASN minimal medium to verify that >90% of them had retained the plasmids indicated.

Iron reductase assay. Iron reductase activity was assayed by the method of Nyhus and Jacobson (35). Briefly, cells were grown overnight in ASN medium with 2% glucose and then transferred to limited-iron medium (LIM). At the indicated time of induction in LIM, 1 × 10⁵ cells aliquots were removed, mixed with ferric hydroxyethylhenilenetraic acid and bathophenanthroline disulfonic acid at 1 mM each, and incubated for 1 h prior to the reading of A₅₃₅ as previously described (61). For copper reductase assays, cells were prepared as described above but assays were conducted mixed with CuSO₄ and bathocuproine disulfonate (BCDS) at 1 mM each and copper reductase activity was measured by Cu(I)-BCDS complex formation at 478 nm.

Phagocytosis assay. Phagocytosis and fungal killing assays were conducted with J774.16 cells by the method of Shapiro et al. (62) Approximately 5 × 10⁵ J774.16 macrophage-like cells/well were plated in complete Dulbecco’s modified Eagle medium (DMEM) and incubated overnight at 37°C in a 5% CO₂ atmosphere. Cells were continuously kept under the stimulation of recombinant murine gamma interferon (IFN-γ) at 100 U ml⁻¹. *C. neoformans* H99 cells grown for 48 h in YPD were washed three times with phosphate-buffered saline (PBS) and resuspended in DMEM supplemented with 20% mouse serum (Pel-Freeze Biologicals, Rogers, AR), incubated for 20 min in 40% serum, and subsequently added to a macrophage monolayer at a 1:5 macrophage-to-yeast ratio. Unsporulated yeast cells resuspended in DMEM (lacking mouse serum) were used as a control. After a 1-h incubation at 37°C, the macrophage monolayer was washed three times with PBS and stained with FUN-1 in distilled water. The phagocytosis index was determined by microscopic examination of the number of fungal cells ingested or adherent divided by the total number of macrophages. At least 300 macrophages were analyzed for each condition, and the results of three independent experiments are shown.

Fungal killing by J774.16 cells. The method of Wormley and Perfect (66) was used to assay fungal killing by J774.16 cells. Briefly, 1 × 10⁵ cells of J774.16 (obtained from the American Type Culture Collection) in a volume of 50 μl per well was added to flat-bottom 96-well plates, supplemented with IFN-γ (100 U/ml) and lipopolysaccharide (0.6 μg/ml), and incubated at 37°C with 5% CO₂ for 12 to 18 h. Overnight cultures of the *C. neoformans* strains indicated were washed at 5,000 × g three times for 5 min, yeast pellets were suspended in 10 ml of DMEM, and the numbers of viable yeast cells were quantified. Yeast cells were suspended in DMEM containing monocalonal antibody 18B7 (1 μg/ml) at 10⁶/ml and incubated for 1 h at 37°C. Yeast cells were added (10⁵ cells/100 μl) to macrophages in a 96-well tissue culture plate, incubated at 37°C at 5% CO₂ for 1 h, and then washed three times with sterile PBS to remove extracellular yeast. After the removal of extracellular yeast, 200 μl of DMEM was added to each well and the plate was again incubated at 37°C for 8 h. A 100-μl volume of 0.05% SDS was added to each well to lyse monocytes and release phagocytized yeast cells. The wells were washed three times with sterile water, the washes were pooled and serially diluted, and the CFU counts in portions of the final dilution (100 μl to 1.0 ml) were quantified. Fungal survival was expressed as the CFU count at 8 h as a percentage of that at the 1-h time point.

Multilocus sequence alignment. DNA was isolated by standard methods from the *C. neoformans* strains indicated. PCR amplification of multilocus sequence typing (MLST) allelic regions for the highly conserved regions of six genes (CAP59, GDP1, LAC1, PLB1, SOD1, and **URA5**) was performed with PfU Ultra HotStart DNA polymerase (Agilent Technologies) according to the *C. neoformans* MLST consortium (28). The primer sequences, consensus MLST loci, and lengths of the trimmed sequence files used were from the Pathogenic Fungi MLST Database (http://mlst .mycologylab.org/defaultinfo.aspx?Page=MLSTConsensus). PCR products were run on a 2% agarose gel to confirm product size prior to DNA sequencing. Trimmed MLST sequences were concatenated, resulting in the inclusion of 3,271 to 3,463 characters for alignment and phylogenetic analysis with ClustalW (63, 64). Distances included for the unrerooted tree were calculated by using ClustalW phylogeny. Distance values show the number of substitutions as a proportion of the length of the alignment, excluding gaps.

Determination of plody by flow cytometry. Cells were stained with propidium iodide and analyzed for fluorescence intensity by flow cytometry.
etry by the method of Lin et al. (67). Serotype A strain H99 was used as a haploid reference strain. Environmental strains were grown in YPD broth overnight at 30°C. Cells were harvested at 10^7/ml, washed twice in distilled water, and fixed in 70% ethanol overnight at 4°C. Cells were washed twice with distilled water, stained with propidium iodide (10 μg/ml) in 15 mM sodium phosphate buffer containing RNase (1 mg/ml), and incubated at 37°C for 2 h. Stained cells were diluted in Tris–HCl (1 M pH 8.0), and 10^4 cells were counted by flow cytometry (BD LSRII Fortessa) at 488 nm.

Statistics. The capsule radius was measured in India ink experiments by using 10 cells of each strain, and means were compared by ANOVA by using 10 cells of each strain, and means were compared by ANOVA.
29. Franzot SP, Mukherjee J, Cerniak R, Chen LC, Hamdan JS, Casadevall A. 1998. Microevolution of an standard strain of Cryptococcus neoformans resulting in differences in virulence and other phenotypes. Infect. Immun. 66:89–97.

30. Williamson PR. 1994. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J. Bacteriol. 176:656–664.

31. Hu G, Hachey M, Waterman SR, Panepinto J, Shin S, Liu X, Gibbons J, Valji-Nagy T, Obara K, Jaffe HA, Ohsumi Y, Williamson PR. 2008. P3K signaling of autoprophagy is required for starvation tolerance and virulence of Cryptococcus neoformans. J. Clin. Invest. 118:1116–1197. http://dx.doi.org/10.1172/JCI32053.

32. Price MS, Betancourt-Quiroz M, Price JL, Toftaleti DL, Vora H, Hu G, Kronstad JW, Perfect JR. 2011. Cryptococcus neoformans requires a functional glycolytic pathway for disease but not persistence in the host. mBio 2:e00103-11. http://dx.doi.org/10.1128/mBio.00103-11.

33. Finegold AA, Shatwell KP, Klausner RD, Dancis A. 1996. Intramembrane bis-heme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NAPDH oxidase. J. Biol. Chem. 271:31021–31024. http://dx.doi.org/10.1074/jbc.271.49.31021.

34. Zhang X, Krause KH, Xenarios I, Soldati T, Boekmann B. 2013. Evolution of the ferric reductase domain (FRD) superfamly: modularity, functional diversification, and signature motifs. PLoS One 8:e58126. http://dx.doi.org/10.1371/journal.pone.0058126.

35. Nyhus KJ, Jacobsen ES. 1999. Genetic and physiologic characterization of ferric-cuprease reductase constitutive mutants of Cryptococcus neoformans. Infect. Immun. 67:2357–2365.

36. Geogotsoa E, Vogriogiani LS, Fragadakis GS, Alexandraki D. 1997. The yeast Fep1/Fep2 cuprease reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J. Biol. Chem. 272:13786–13792. http://dx.doi.org/10.1074/jbc.272.21.13786.

37. Feldmesser M, Kress Y, Novikoff P, Casadevall A. 2000. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect. Immun. 68:4225–4237. http://dx.doi.org/10.1128/IAI.68.7.4225-4237.2000.

38. Fries BC, Chen F, Currie BP, Casadevall A. 1996. Karyotype instability in Cryptococcus neoformans infection. J. Clin. Microbiol. 34:1531–1534.

39. Crichton RR, Pierre JL. 2001. Old iron, young copper: from Mars to Venus. Biometals 14:99–112. PubMed. doi:10.1023/A:1016710810701. PubMed.

40. Kosman DJ. 2003. Molecular mechanisms of iron uptake in fungi. Mol. Microbiol. 47:1185–1197. http://dx.doi.org/10.1046/j.1365-2958.2003.03368.x.

41. Silva MG, Schrank A, Bailao EA, Bailao AM, Borges CG, Staats CC, Parente JA, Pereira M, Salem-Izacc SM, Mendes-Giannini MJ, Oliveira RM, Silva LK, Nosanchuk JD, Vainstein MH, de Almeida Soares CM. 2011. The homeostasis of iron, copper, and zinc in Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii: a comparative analysis. Front. Microbiol. 2:49. http://dx.doi.org/10.3389/fmicb.2011.00049.

42. Shi X, Stoj C, Romeo A, Kosman DJ, Zhu Z. 2003. Fep1p Cu^2+ reduction and Fet3p Cu^+ oxidation modulate copper toxicity in Saccharomyces cerevisiae. J. Biol. Chem. 278:50309–50315. http://dx.doi.org/10.1074/jbc.M307019200.

43. Hassett R, Kosman DJ. 1995. Evidence for Cu(I) reduction as a component of copper uptake by Saccharomyces cerevisiae. J. Biol. Chem. 270:128–134. http://dx.doi.org/10.1074/jbc.270.1.128.

44. Adler A, Park YD, Larsen P, Nagajaran V, Wollenberg K, Qiu J, Myers TG, Williamson PR. 2011. A novel specificity protein 1 (SP1)-like gene regulating protein kinase C-1 (Pkc1)-dependent cell wall integrity and virulence factors in Cryptococcus neoformans. J. Biol. Chem. 286:29977–29980. http://dx.doi.org/10.1074/jbc.M111.230268.

45. Jung WH, Saikia S, Hu G, Wang J, Fung CK, D’Souza C, White R, Kronstad JW. 2010. HapX positively and negatively regulates the transcriptional response to iron deprivation in Cryptococcus neoformans. PLoS Pathog. 6:e1001209. http://dx.doi.org/10.1371/journal.ppat.1001209.

46. Polacheck I, Hearing VJ, Kwon-Chung KJ. 1982. Biochemical studies of phenoloxidase and utilization of catecholamines in Cryptococcus neoformans. J. Bacteriol. 190:1212–1220.