Floating Point Arithmetic on Round-to-Nearest Representations

Peter Kornerup Jean-Michel Muller Adrien Panhaleux
SDU, Odense, Denmark LIP, CNRS/ENS Lyon, France

October 7, 2011

Abstract

Recently we introduced a class of number representations denoted RN-representations, allowing an un-biased rounding-to-nearest to take place by a simple truncation. In this paper we briefly review the binary fixed-point representation in an encoding which is essentially an ordinary 2’s complement representation with an appended round-bit. Not only is this rounding a constant time operation, so is also sign inversion, both of which are at best log-time operations on ordinary 2’s complement representations. Addition, multiplication and division is defined in such a way that rounding information can be carried along in a meaningful way, at minimal cost. Based on the fixed-point encoding we here define a floating point representation, and describe to some detail a possible implementation of a floating point arithmetic unit employing this representation, including also the directed roundings.

1 Introduction

In [KM05] a class of number representations denoted RN-Codings were introduced, “RN” standing for “round-to-nearest”, as these radix-β, signed-digit representations have the property that truncation yields rounding to the nearest representable value. They are based on a generalization of the observation that certain radix representations are known to possess this property, e.g., the balanced ternary ($\beta = 3$) system over the digit set $\{-1, 0, 1\}$. Another such representation is obtained by performing the original Booth-recoding [Boo51] on a 2’s complement number into the digit set $\{-1, 0, 1\}$, where it is well-known that the non-zero digits of the recoded number alternate in sign. Besides the simplicity of rounding by truncation, it has the feature that the effect of one rounding followed by another rounding yields the same result, as would be obtained by a single rounding to the same precision as the last. It is a known problem when using any “extended precision” of the IEEE-754 standard [IEE08], performing computations in “extended-80” format representation (e.g., the Intel extended double precision) storing the result in the binary “basic-64” format.

When we are not concerned with the actual encoding of a value, we shall here use the notation $\textit{RN-representation}$. This representation was further discussed in [KMP11], where a special encoding of the Booth-recoded binary representation was introduced. This encoding, termed the $\textit{canonical}$ encoding, is based on the ordinary 2’s complement representation, but with an appended round-bit, allowing round-to-nearest by truncation. Arithmetic on operands in this canonical encoding
is essentially standard 2’s complement arithmetic, but with the added benefit that negation is a constant time operation, obtained by bit inversion.

To be able to discuss a possible implementation of a floating point arithmetic unit it is necessary to repeat some material on the fixed point representation from previous publications. We shall in Section 2 (adapted from [KM05]) cite some definitions, however here restricted to the binary representation. Section 3 citing some material from [KMP11] but also expanding it, analyzes the relation between RN-representations and 2’s complement representations. Conversion from the latter into the former is performed by the Booth algorithm, yielding a signed-digit representation in a straightforward encoding. It is then realized that $n + 1$ bits are sufficient, providing a simple encoding consisting of the n bits of the 2’s complement encoding with a round-bit appended, yielding the canonical encoding. To be able to define arithmetic operations directly on the canonically encoded numbers it turns out to be useful to interpret them as intervals, reflecting the sign of what has possibly been rounded away by truncation.

Section 4 then presents implementations of addition, multiplication and division on fixed-point, canonically encoded RN-represented numbers, to some extent repeating material from [KMP11], but also expanding the descriptions on multiplication and division. It is noticed that these implementations are essentially identical to standard 2’s complement arithmetic. After introducing a floating point representation and encodings similar to the IEEE-754 formats, Section 5 shows that multiplication and division on such floating point operands can be defined in a straightforward way based on the fixed-point algorithms. Addition and subtraction is discussed in some detail, split in the traditional “near” and “far” cases. Directed roundings are are shown realizable based on a “sticky-bit”, but without the need for a rounding incrementation. Section 6 finally concludes the paper.

2 Binary RN-representations

For an introduction to the general class of RN-representations for odd and even radix we refer the reader to [KM05]. Here we are concentrating on the case of radix 2 over the digit-set $\{-1, 0, 1\}$, with the restriction that the signs of non-zero digits alternate.

Definition 1 (Binary RN-representation)

The digit sequence $D = d_n d_{n-1} d_{n-2} \cdots$ (with $-1 \leq d_i \leq 1$) is a binary RN-representation of x iff

1. $x = \sum_{i=-\infty}^{n} d_i 2^i$ (that is D is a binary representation of x);

2. for any $j \leq n$,

$$\left| \sum_{i=-\infty}^{j-1} d_i 2^i \right| \leq \frac{1}{2} 2^j,$$

that is, if the digit sequence is truncated to the right at any position j, the remaining sequence is always the number (or one of the two members in case of a tie) of the form $d_n d_{n-1} d_{n-2} d_{n-3} \ldots d_j$ that is closest to x.

Hence, truncating the RN-representation of a number at any position is equivalent to rounding it to the nearest. Although it is possible to deal with infinite representations, we shall restrict our discussions to finite representations, and find for such RN-representations some observations:
Theorem 2 (Binary RN-representations)

\[D = d_m d_{m-1} \cdots d_\ell \text{ is a binary RN-representation iff} \]

1. all digits have absolute value less than or equal 1;

2. if \(|d_i| = 1\), then the first non-zero digit that follows on the right has the opposite sign, that is, the largest \(j < i\) such that \(d_j \neq 0\) satisfies \(d_i \times d_j < 0\),

with some numbers having two finite representations, where one has its least significant nonzero digit equal to 1, the other one has its least significant nonzero digit equal to \(-1\).

A number whose finite representation has its last nonzero digit equal to 1 has an alternative representation ending with \(-1\). Just assume the last two digits e.g. are \(d_1\): since the representation is an RN-representation, if we replace these two digits by \((d_1 + 1)(-1)\) we still have a valid RN-representation. This has an interesting consequence: truncating a number which is a tie will round either way, depending on which of the two possible representations the number happens to have. Note that when a rounding has taken place, the sign of a non-zero part rounded away will have the opposite sign of the last non-zero digit, thus the representation carries information about what was rounded away, thus effectively halving the error bound on the result. We shall see below that this information may be utilized in subsequent calculations.

This rounding rule is thus different from the “round-to-nearest-even” rule required by the IEEE floating point standard [IEE08]. Both roundings provide a “round-to-nearest” in the case of a tie, but employ different rules when choosing which way to round in this situation. But note that the direction of rounding in general depends on how the value to be rounded was derived, as the representation of the value in the tie situation is determined by the sequence of operations leading to the value. However, when employing the canonical encoding based on a 2’s complement encoding, and the implementation of the basic arithmetic operations later, then the rounding in the tie-situations is deterministic.

3 Encoding Binary RN-represented Numbers

Here we briefly cite for completeness from [KMP11] the definition and some properties of the canonical binary representation and its encoding. Consider a value \(x = -b_m 2^m + \sum_{i=\ell}^{m-1} b_i 2^i\) in 2’s complement representation:

\[x \sim b_m b_{m-1} \cdots b_{\ell+1} b_\ell \]

with \(b_i \in \{0, 1\}\) and \(m > \ell\). Then the digit string

\[\delta_m \delta_{m-1} \cdots \delta_{\ell+1} \delta_\ell \quad \text{with} \quad \delta_i \in \{-1, 0, 1\} \]

defined (by the Booth recoding [Boo51]) for \(i = \ell, \ldots, m\) as

\[\delta_i = b_{i-1} - b_i \quad \text{(with} \ b_{\ell-1} = 0 \text{ by convention)} \] \hspace{1cm} (1)

is an RN-representation of \(x\) with \(\delta_i \in \{-1, 0, 1\}\). That it represents the same value follows trivially by observing that the converted string represents the value \(2x - x\). The alternation of the signs
of non-zero digits is easily seen by considering how strings of the form 011· · ·10 and 100· · ·01 are converted.

Hence the digits of the 2’s complement representation directly provides an encoding of the converted digits as a tuple: $\delta_i \sim (b_{i-1}, b_i)$ for $i = \ell, \ldots, m$ where

$$
\begin{align*}
-1 & \sim (0, 1) \\
0 & \sim (0, 0) \text{ or } (1, 1) \\
1 & \sim (1, 0),
\end{align*}
$$

where the value of the digit is the difference between the first and the second component.

Example: Let $x = \overline{110100110010}$ be a sign-extended 2’s complement number and write the digits of $2x$ above the digits of x:

	1	0	1	0	0	1	1	0	0
$2x$									
x	1	1	0	1	0	0	1	1	0
RN-repr. x	1	1	1	0	1	0	1	0	1

where it is seen that in any column the two upper-most bits provide the encoding defined above of the signed-digit below in the column. Since the digit in position $m+1$ will always be 0, there is no need to include the most significant position otherwise found in the two top rows.

If x is non-zero and b_k is the least significant non-zero bit of the 2’s complement representation of x, then $\delta_k = -1$, confirmed in the example, hence the last non-zero digit is always -1 and thus unique. However, if an RN-represented number is truncated for rounding somewhere, the resulting representation may have its last non-zero digit of value 1.

As mentioned in Theorem 2, there are exactly two finite binary RN-representations of any non-zero binary number of the form $a2^k$ for integral a and k, hence requiring a specific sign of the last non-zero digit would make the representation unique. On the other hand without this requirement, rounding by truncation of the 2’s complement encoding also makes the rounding deterministic and furthermore unbiased in the tie-situation, by rounding up or down, depending on the sign of the digit rounded away.

Example: Rounding the value of x in the previous example by truncating off the two least significant digits we obtain

	1	0	1	0	0	1	1	0	0
$\text{tr}_2(2x)$									
$\text{tr}_2(x)$	1	1	0	1	0	0	1	1	0
RN-repr. RN$_2(x)$	1	1	1	0	1	0	1	0	1

where it is noted that the bit of value 1 in the upper rightmost corner (in boldface) acts as a round bit, carrying information about the part rounded away by truncation (which here happened to be a tie situation).

The example shows that there is very compact encoding of RN-represented numbers derived directly from the 2’s complement representation, noting in the example that the upper row need not be part of the encoding, except for the round-bit. We will denote it the **canonical encoding**, and note that it is a kind of “carry-save” in the sense that it contains a bit not yet added in.
Definition 3 (Binary canonical RN-encoding)
Let a number x be given in 2’s complement representation as the bit string $b_m \cdots b_{\ell+1}b_\ell$, such that $x = -b_m2^m + \sum_{i=\ell}^{m-1} b_i2^i$. Then the binary canonical encoding of the RN-representation of x is defined as the pair

$$x \sim (b_m b_{m-1} \cdots b_{\ell+1}b_\ell, r)$$

where the round-bit is $r = 0$ and after truncation at position k, for $m \geq k > \ell$

$$\text{RN}_k(x) \sim (b_m b_{m-1} \cdots b_k b_k, r)$$

with round-bit $r = b_k$.

The signed-digit interpretation is available with digits δ_i from the canonical encoding by pairing bits using the encoding $(b_i - 1, b_i)$ as $\delta_i = b_i - 1 - b_i$ for $i > k$, and (r, b_k) with $\delta_k = r - b_k$, when truncated at position k.

The fundamental idea of the canonical radix-2 RN-encoding is that it is a binary encoding of a value represented in the signed digit set $\{-1, 0, 1\}$, where the non-zero digits alternate in sign. Using this encoding of such numbers employing 2’s complement representation in the form (a, r_a) it is seen that it then represents the value

$$(2a + r_u) - a = a + r_u,$$

where u is the weight of the least significant position of a. Note that there is then no difference between $(a, 1)$ and $(a + u, 0)$, both being RN-representations of the same value:

$$\forall a, \mathcal{V}(a, 1) = \mathcal{V}(a + u, 0),$$

where we use the notation $\mathcal{V}(x, r_x)$ to denote the value of an RN-represented number.

If (x, r_x) is the binary canonical encoding of $X = \mathcal{V}(x, r_x) = x + r_x u$ then it follows that

$$-X = -x - r_x u = \bar{x} + u - r_x u = \bar{x} + (1 - r_x) u = \bar{x} + \bar{r}_x u,$$

which can also be seen directly from the encoding of the negated signed digit representation.

Observation 4 If (x, r_x) is the canonical RN-encoding of a value X, then (\bar{x}, \bar{r}_x) is the canonical RN-encoding of $-X$, where \bar{x} is the 1’s complement of x. Hence negation of a canonically encoded value is a constant time operation.

It is important to note that although from a “value perspective” the representation is redundant ($\mathcal{V}(a, 1) = \mathcal{V}(a + u, 0)$), it is not so when considering the signed-digit representation. In this interpretation the sign of the least significant digit carries information about the sign of the part which possibly has been rounded away.

Lemma 5 Provided that a RN-represented number with canonical encoding (a, r_a) is non-zero, then $r_a = 1$ implies that the least significant non-zero digit in its signed-digit representation is 1 (the number was possibly rounded up), and $r_a = 0$ implies it is -1 (the number was possibly rounded down).

Proof: The result is easily seen when listing the trailing bits of the 2’s complement representation of $2a + r_a$ (with r_a in boldface) above those of a together with the signed-digit representation:

...	0	1	1	... 1
...	0	1	1	... 1
...	1	0	0	... 0

...	0	1	1	... 1
...	0	1	1	... 1
...	1	0	0	... 0

□
3.1 The Range of p-bit Canonically Encoded Numbers

With $p + 1$ bits in the tuple (a, r_a), where a is a p-bit 2’s complement representation paired with the round-bit r_a, it is just a non-redundant encoding of a value represented by p digits over the digit set $\{-1, 0, 1\}$. Assuming that the radix point is at the rightmost end, i.e., the numbers represent integer values, then the maximal value representable in p digits in $\{-1, 0, 1\}$ is $10 \cdots 0 \sim 2^{p-1}$ and the minimal value is $10 \cdots 0 \sim -2^{p-1}$, hence the range is sign-symmetric. The corresponding canonical encodings employing 2’s complement are $(011 \cdots 1, 1) \sim (2^{p-1}-1, 1)$ and $(100 \cdots 0, 0) \sim (-2^{p-1}, 0)$ respectively.

3.2 An Alternative Interpretation

But we may also interpret the representation (a, r_a) as an interval $I(a, r_a)$ of length $u/2$:

$$I(a, r_a) = \left[a + r_a \frac{u}{2} ; a + (1 + r_a) \frac{u}{2} \right],$$ \hspace{1cm} (3)

when interpreting it as an interval according to what may have been thrown away when rounding by truncation. For a detailed discussion of this interpretation see [KMP11].

Hence even though $(a, 1)$ and $(a + u, 0)$ represent the same value $a + u$, as intervals they are essentially disjoint, except for sharing a single point. In general we may express the interval interpretation as pictured in Fig. 1

Figure 1: Binary Canonical RN-representations as Intervals

We do not intend to define an interval arithmetic, but only require that the interval representation of the result of an arithmetic operation \odot satisfies

$$I(A \odot B) \subseteq I(A) \odot I(B) = \{ a \odot b | a \in A, b \in B \}.$$ \hspace{1cm} (4)

4 Arithmetic Operations on RN-Represented Values

We will here briefly summarize from [KMP11] the realization of addition and multiplication on fixed-point representations for fixed value of u, but expand on the implementation of multiplication and division. We want to operate directly on the components of the encoding (a, r_a), not on the signed-digit representation.

\footnote{Note that this is the reverse inclusion of that required for ordinary interval arithmetic}
4.1 Addition of RN-Represented Values

Employing the value interpretation of encoded operands \((a, r_a)\) and \((b, r_b)\) we have for addition:

\[
\begin{align*}
\mathcal{V}(a, r_a) &= a + r_a u \\
\mathcal{V}(b, r_b) &= b + r_b u \\
\mathcal{V}(a, r_a) + \mathcal{V}(b, r_b) &= a + b + (r_a + r_b) u
\end{align*}
\]

The resulting value has two possible representations, depending on the choice of the rounding bit of the result. To determine what the rounding bit of the result should be, we consider interval interpretations \(\mathcal{I}\) of the two possible representations of the result.

To define the addition operator \(\oplus\) on canonical encodings, we want \(\mathcal{I}((a, r_a) \oplus (b, r_b)) \subseteq \mathcal{I}(a, r_a) + \mathcal{I}(b, r_b)\), and \((a, r_a) \oplus (0, 0) = (a, r_a)\), hence in order to keep addition symmetric, we define addition of RN encoded numbers as follows.

Definition 6 (Addition) If \(u\) is the unit in the last place of the operands, let:

\[(a, r_a) \oplus (b, r_b) = ((a + b + (r_a \land r_b) u), r_a \lor r_b)\]

where \(r_a \land r_b\) may be used as carry-in to the 2’s complement addition.

4.2 Multiplying RN-Represented Values

By definition we have for the value of the product

\[
\begin{align*}
\mathcal{V}(a, r_a) &= a + r_a u \\
\mathcal{V}(b, r_b) &= b + r_b u \\
\mathcal{V}(a, r_a)\mathcal{V}(b, r_b) &= ab + (ar_b + br_a) u + r_a r_b u^2,
\end{align*}
\]

noting that the unit of the result is \(u^2\), assuming that \(u \leq 1\). Using the interval interpretation it turns out (for details see [KMP11]) that we do not get proper interval inclusions for all sign combinations. However, since negation of canonical (2’s complement) RN-encoded values can be obtained by constant-time bit inversion, multiplication of such operands can be realized by multiplication of the absolute values of the operands, the result being supplied with the correct sign by a conditional inversion. Thus employing bit-wise inversions, multiplication in canonical RN-encoding may be handled like sign-magnitude multiplication, hence assuming that both operands are non-negative:

Definition 7 (Multiplication) If \(u\) is the unit in the last place, with \(u \leq 1\), we define for non-negative operands:

\[(a, r_a) \otimes (b, r_b) = (ab + u(ar_b + br_a), r_a \land r_b),\]

and for general operands by appropriate sign inversions of the operands and result. If \(u < 1\) the unit is \(u^2 < u\) and the result may often have to be rounded to unit \(u\), which can be done by truncation.
The product can be returned as \((p, r_p)\) with \(p = ab + u(\ar_b + \br_a) = a(b + r_b u) + \br_a u\), where the terms of \(\br_a u\) may be consolidated into the array of partial products.

Example: For a 5-bit integer example let \((a, r_a) = (a_4a_3a_2a_1a_0, r_a)\) and \((b, r_b) = (b_4b_3b_2b_1b_0, r_b)\), or in signed-digit \(b = d_4d_3d_2d_1d_0, d_i \in \{-1, 0, 1\}\), we note that \(a_4 = b_4 = 0\) since \(a \geq 0\) and \(b \geq 0\). It is then possible to consolidate the terms of \(\br_a u\) (shown framed) into the array of partial products:

\[
\begin{array}{cccccc}
 & a_3 & a_2 & a_1 & a_0 & \\
\hline
a_3d_0 & a_2d_0 & a_1d_0 & a_0d_0 & d_0 & \\
a_3d_1 & a_2d_1 & a_1d_1 & a_0d_1 & b_0r_a & d_1 \\
a_3d_2 & a_2d_2 & a_1d_2 & a_0d_2 & b_1r_a & d_2 \\
a_3d_3 & a_2d_3 & a_1d_3 & a_0d_3 & b_2r_a & d_3 \\
a_3d_4 & a_2d_4 & a_1d_4 & a_0d_4 & b_3r_a & d_4 \\
\hline
p_8 & p_7 & p_6 & p_5 & p_4 & p_3 & p_2 & p_1 & p_0
\end{array}
\]

thus the product is \((p, r_p)\) with \(p = ab + u(\ar_b + \br_a) = a(b + r_b u) + \br_a u\) and \(r_p = r_a r_b\). In particular for \(a = (01011, 1)\) and \(b = (01001, 1)\) \(\sim \overline{11010}\):

\[
\begin{array}{cccccc}
 & 1 & 0 & 1 & 1 & \\
\hline
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 \\
\hline
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

hence \((01011, 1) \otimes (01001, 1) = (001110111, 1)\), where we note that \((001110111, 1)\) corresponds to the interval \([01110111.1 ; 0111000.0]\), clearly a subset of the interval

\[
[01011.1 \times 01001.1 ; 01100 \times 01010] = [01101101.01 ; 01111000.00].
\]

Thus multiplication of RN-represented values can be implemented on their canonical encodings at about the same cost as ordinary 2’s complement multiplication. Note that when recoding the multiplier into a higher radix like 4 and 8, similar kinds of consolidation may be applied.

4.3 Dividing RN-Represented Values

As for multiplication we assume that negative operands have been sign-inverted, and that the signs are treated separately. Employing our interval interpretation \((\text{3})\), to satisfy our interval inclusion condition \((\text{4})\) we must require the result of dividing \((x, r_x)\) by \((y, r_y)\) to be in the interval:

\[
\left[\frac{x + r_x}{2} ; \frac{x + (1 + r_x)}{2} \right] / \left[\frac{y + (1 + r_y)}{2} ; \frac{y + r_y}{2} \right],
\]

\(^2\)not showing the possible rewriting of negative partial products, requiring an additional row.
where it is easily seen that the rational value
\[q = \frac{x + r_x u}{y + r_y u/2} \]
belongs to that interval. Note that the dividend and divisor to obtain the quotient \(q \) are then constructed simply by appending the round bits to the 2’s complement parts, i.e., simply using the “extended” bit-strings as operands. To determine the accuracy needed in an approximate quotient \(q' = q + \varepsilon \) consider the requirement
\[
\frac{x + r_x u}{y + (1 + r_y)u/2} < q + \varepsilon < \frac{x + (1 + r_x)u/2}{y + r_y u/2}.
\]
(5)

Generally division algorithms require that the operands are scaled, hence assume that the operands satisfy \(1 \leq x < 2 \) and \(1 \leq y < 2 \), implying \(1/2 < q < 2 \). Furthermore assume that \(x \) and \(y \) have \(p \) fractional digits, so \(u = 2^{-p} \). To find sufficient bounds on the error \(\varepsilon \) in (5) consider first for \(\varepsilon \geq 0 \) the right bound. Here we must require
\[
(x + r_x u/2) + \varepsilon(y + r_y u/2) < x + (1 + r_x)u/2 \text{ or } \varepsilon(y + r_y u/2) < u/2,
\]
which is satisfied for \(\varepsilon < \frac{u}{4} \), since \(y + r_y u/2 < 2 \). For the other bound (for negative \(\varepsilon \)) we must require
\[
\frac{x + r_x u/2}{y + (1 + r_y)u/2} < \frac{x + r_x u/2}{y + r_y u/2} + \varepsilon
\]
or
\[
-\varepsilon(y + (1 + r_y)u/2) < (x + r_x u/2)u/2,
\]
which is satisfied for \(-\varepsilon < \frac{u}{4} \), since \(x \geq 1 \) and \(y + u \leq 2 \).

Hence \(|\varepsilon| < \frac{u}{4} \) assures that (5) is satisfied, and any standard division algorithm may be used to develop a binary approximation to \(q \) with \(p + 2 \) fractional bits, \(x = q'y + r \) with \(|r| < y2^{-p-2} \). Note that since \(q \) may be less than 1, a left shift may be required to deliver a \(p + 1 \) signed-digit result, the same number of digits as in the operands. Hence a bit of weight \(2^{-p-1} \) will be available as a (preliminary) round bit.

The sign of the remainder determines the sign of the tail beyond the bits determined. Recall from Lemma [5] that when the round bit is 1, the error is assumed non-positive, and non-negative when the round bit is 0. If this is not the case then the resulting round bit must be inverted, hence rounding is also here a constant time operation.

Similarly, function evaluations like squaring, square root and even the evaluation of “well behaved” transcendental functions may be defined and implemented, just considering canonical RN-represented operands as 2’s complement values with a “carry-in” not yet absorbed, possibly using interval interpretation to define the resulting round bit.

\[\text{We could also have chosen to evaluate the quotient } \frac{x + r_x u}{y + r_y u}. \text{ However dividing } (x, r_x) \text{ by the neutral element } (1, 0) \text{ would then yield the result } (x + r_x u, 0), \text{ whereas with the chosen quotient the result becomes } (x, r_x). \text{ The relative difference between these two expressions evaluated to some precision } p \text{ is at most } \text{ulp}(p)/2.\]
5 A Floating Point Representation

For an implementation of a binary floating point arithmetic unit (FPU) it is necessary to define an encoding of an operand \((2^e m, r_m)\), based on the canonical encoding of the significand part (say \(m\) encoded in \(p + 1\) bits, 2’s complement), supplied with the round bit \(r_m\) and the exponent \(e\) in some biased binary encoding. It is then natural to pack the components into a computer word (32, 64 or 128 bits), employing the same principles as used in the IEEE-754 standard [IEE08] (slightly modified from what was sketched in [KMP11]). For normal values it is also here possible to use a “hidden bit”, noting that the 2’s complement encoding of the normalized significand will have complementary first and second bits. Thus representing the leading bit as a (separate) sign bit, the next bit (of weight \(2^0\)) need not be represented and can be used as “hidden-bit”. Hence let \(f_m\) be the fractional part of the significand \(m\), assumed to be normalized such that \(1 \leq |m| < 2\), and let \(s_m\) be the sign-bit of \(m\). The “hidden bit” is then the complement \(\bar{s}_m\) of the sign-bit. The components can then be allocated in the fields of a word as:

| \(s_m\) | \(e\) | \(f_m\) | \(r_m\) |

with the round bit in immediate continuation of the significand part. The exponent \(e\) can be represented in biased form as in the IEEE-754 standard. The number of bits allocated to the individual fields may be chosen as in the different IEEE-754 formats, of course with the combined \(f_m, r_m\) together occupying the fraction field of those formats. The value of a floating point number encoded this way can then be expressed as:

\[
2^{e - \text{bias}} \left([s_m \bar{s}_m : f_1 f_2 \cdots f_{p-1}]_2 + r_m 2^{-p-1} \right)
\]

where \(f_1, f_2, \cdots, f_{p-1}\) are the (fractional) bits of \(f_m\).

Subnormal and exceptional values may be encoded as in the IEEE-754 standard, noting that negative subnormals have leading ones. Observe that the representation is sign-symmetric and that negation is obtained by inverting the bits of the significand.

We shall now discuss how the fundamental operations may be implemented on such floating point RN-representations, not going into details on overflow, underflow and exceptional values, as these situations can be treated exactly as known for the standard binary IEEE-754 representation. Note again that we want directly to operate on the 2’s complement encoding using \(s_m, f_m, r_m\), not on the signed-digit representation. Right-shifts are trivial, but for alignment of operands or left normalizing results, we must investigate how in general we can perform left shifts using the 2’s complement encoding.

Thinking of the value as represented in binary signed-digit, zeroes have to be shifted in when left shifting. In our encoding, say for a positive result \((d, r_d)\) we may have a 2’s complement bit pattern:

\[d \sim 0 0 \cdots 0 1 b_k \cdots b_{p-1}\]

and round bit \(r_d\) to be left-shifted. Here the least significant signed digit is encoded as \(\left\{ \frac{r_d}{b_{p-1}} \right\}\). Zero-valued digits to be shifted in may then be encoded as \(\left\{ \frac{r_d}{b_{p-1}} \right\}\), as confirmed from applying the addition rule for obtaining \(2 \times (x, r_x)\) by \((x, r_x) \oplus (x, r_x) = (2x + r_x u, r_x)\).

It then follows that shifting in bits of value \(r_d\) will precisely achieve the effect of shifting in zeroes in the signed-digit interpretation:

\[2^k d \sim 0 1 b_k \cdots b_{p-1} r_d \cdots r_d\] with round bit \(r_d\).
5.1 Multiplication and Division

Since the exponents are handled separately, forming the product or quotient of the significands is precisely as described previously for fixed point representations: sign-inverting negative operands by bitwise inversion, forming the product or quotient, possibly normalizing and rounding it, and supplying it with the proper sign by negating the result if the operands were of different signs.

5.2 Addition

Before addition or subtraction there is in general a need of alignment of the two operand significands, according to the difference of their exponents (too large a difference is treated as a special case, see below). The operand having the larger exponent must be left-shifted, with appropriate digit values appended at the least significant end, to overlap with the significand of the smaller operand. In effective subtractions, after cancellation of leading digits it may be necessary to left-normalize. Addition is traditionally now handled in an FPU as two cases [Far81], where the "near case" is dealing with effective subtraction of operands whose exponents differ by no more than one, where alignment is a constant time operation.

5.2.1 Subtraction, the "near case"

Here a significant cancellation of leading digits may occur, and thus a variable amount of normalization shifts on the result are required, handled by shifting in copies of the round-bit. Figure 2 shows a possible pipelined implementation of this case, where \(\text{lzd}(d) \) is a log-time algorithm for "leading zeroes determination" of the difference (see e.g., [Kor09]) to determine the necessary normalization shift amount. This determination is based on a redundant representation of the difference (obtained in constant time by pairing the aligned operands), taking place in parallel with the 2’s complement subtraction (conversion from redundant to non-redundant representation). Normalization can then take place on the non-redundant difference without need for sign inversion.

![Diagram](image)

Figure 2: Near Path, effective subtraction when \(|e_a - e_b| \leq 1 \)

For simplicity in the figure we assume that \(m_a, m_b \) and \(m_r \) are the 2’s complement operands, respectively the result, together with their appended round-bits.
5.2.2 Addition, the "far case"

The remaining cases dealt with are the situations where the result of adding or subtracting the aligned significands at most requires normalization by a single right or left shift. Since negation is a constant time operation we may assume that an effective 2's complement addition is to be performed of the left-aligned larger operand (appended with copies of the round-bit) and the sign-extended smaller operand. Rounding can then be performed as usual by truncation, noting that here there are only two log-time operations, the variable amount of alignment shifts and the addition. Compared with the IEEE-754 standard number representation the “expensive” determination of a sticky bit and rounding incrementation is avoided. Figure 3 shows a possible two-stage pipeline implementation.

![Diagram of the pipeline](image.png)

Figure 3: Far Path, add or subtract when \(|e_a - e_b| \geq 2 \)

In the case where the exponent difference exceeds the number of operand bits, it is not necessary to form the exact sum. The result can be constructed from the 2’s complement significand of the larger operand, supplied with a round-bit obtained by a very simple rule providing a result obeying the interval inclusion condition (4). Assuming that the smaller operand is to be added, simply force the round-bit of the result to become equal to the complemented sign-bit of the smaller operand (and of course in case of subtraction the sign-bit).

To see this, consider the interval interpretation (3) of the significand of the larger operand \(I(a, r_a) \) together with a bounding interval for the smaller operand \([0; \frac{u}{2}]\) (assumed positive), where \(u = \text{ulp}(a) \) is the unit of the least-significant position of the larger operand:

\[
I(a, r_a) + [0; \frac{u}{2}] = \left[a + r_a \frac{u}{2}; a + (1 + r_a) \frac{u}{2} \right] + [0; \frac{u}{2}]
= \left[a + r_a \frac{u}{2}; a + (2 + r_a) \frac{u}{2} \right]
= \begin{cases}
[a; a + u] & \text{for } r_a = 0 \\
[a + \frac{u}{2}; a + \frac{3}{2}u] & \text{for } r_a = 1.
\end{cases}
\]

Hence choosing the result as \(I(r, r_a) = I(a, 1) = [a + \frac{u}{2}; a + u] \) it satisfies the interval condition (4) when the smaller operand is positive. Similarly, if the smaller operand is negative

\[
I(a, r_a) + \left[-\frac{u}{2}; 0 \right] = \begin{cases}
\left[a - \frac{u}{2}; a + \frac{u}{2} \right] & \text{for } r_a = 0 \\
[a; a + u] & \text{for } r_a = 1
\end{cases}
\]

hence the result can be chosen as \(I(r, r_a) = I(a, 0) = [a; a + \frac{u}{2}] \). In summary we have:
Lemma 8 Given RN-represented floating point operands \(A = (s_a, e_a, f_a, r_a) \) and \(B = (s_b, e_b, f_b, r_b) \) with \(p \)-bit significands satisfying \(e_a > e_b + p \), then the result of the addition \(S = A + B \) can be represented as \(S = (s_a, e_a, f_a, \bar{s}_b) \).

5.3 Discussion of the Floating Point RN-representation

As seen above it is straightforward to define binary floating point representations, when the significand is encoded in the canonical 2’s complement encoding with the round-bit appended. An FPU implementation of the basic arithmetic operations is feasible in about the same complexity as one based on the sign-magnitude representation of the IEEE-754 standard for binary floating point. But since the round-to-nearest functionality is achieved at less hardware complexity, the arithmetic operations will generally be faster, by avoiding the usual log-time “sticky-bit” determination and rounding incrementation.

Negation is obtained in constant time by bit-wise inversion, noting that the domain of representable values is sign symmetric. Although one less bit is used for the significand, the round-bit provides additional information such that the discretization error is the same as in the IEEE-754 representation of the compatible format. Notice that if the result is not exact, then the round-bit provides information about which direction the rounding took. In effect the round-bit provides the same information on the accuracy of the result as the additional bit available in the binary IEEE-754 encoding of the significand. Just as in an x86 FPU it is possible to signal exactness of a result.

The directed roundings can also be realized at minimal cost; however, requiring the calculation of a “sticky bit”, as also needed for the directed roundings of the IEEE-754 representation, but no rounding incrementation is needed here:

Theorem 9 Let a number after truncation of tail \(t \) have encoding \((a, r_a)\) with sign-bit \(s_a \), then the directed roundings can be realized by changing the resulting round-bit as follows:

\[
\begin{align*}
RU : & \quad r_a := 1 \\
RD : & \quad r_a := 0 \\
RZ : & \quad r_a := s_a \\
RA : & \quad r_a := \bar{s}_a,
\end{align*}
\]

conditional on the truncated tail \(t \) (the “sticky-bit”) being non-zero.

Proof: Consider the case of RU when \(r_a = 0 \). By Lemma 8 the least significant non-zero signed-digit of the truncated \((a, r_a)\) is \(-1\), and if \(t \neq 0 \) the value was effectively rounded down, thus \(r_a \) should be changed to \(r_a = 1 \), whereas it should not be changed when \(r_a = 1 \). The other cases follow similarly. \(\square \)

6 Conclusions and Discussion

Concentrating on binary RN-represented operands over the signed digit set \([-1, 0, 1]\), allowing trivial (constant time) rounding by truncation, we have previously proposed a simple encoding based on the ordinary 2’s complement representation, with negation also being a constant time
operation, which often simplifies the implementation of arithmetic algorithms. Operands in the canonical encoding can be used directly at hardly any penalty in the implementation of the basic arithmetic operations, e.g., addition, subtraction, multiplication and division, allowing constant time rounding. Thus despite the RN-representation encodes a very special signed-digit representation, it allows the operations to be performed in a slightly modified 2’s complement arithmetic.

The fixed point encoding immediately allows for the definition of corresponding floating point representations, which in a comparable hardware FPU implementation will be simpler and faster than an equivalent IEEE-754 standard conforming implementation.

The particular feature that rounding-to-nearest is obtained by truncation, implies that repeated roundings ending in some lower precision yields the same result, as if a single rounding to that precision was performed. In [Lee89] it was proposed to attach some state information (2 bits) to a rounded result, allowing subsequent roundings to be performed in such a way that these problems are avoided. It was shown that this property holds for any specific IEEE-754 rounding mode, including in particular for the round-to-nearest-even mode. But the IEEE-754 roundings may still require log-time incrementations, which are avoided with the proposed RN-representation.

Thus in applications where conformance to the IEEE-754 standard is not required, employing the proposed floating-point RN-representation, it is possible to avoid the penalty of log-time roundings. Signal processing may be an application area where specialized hardware (ASIC or FPGA) is often used anyway, where the RN-representation can provide faster arithmetic with un-biased round-to-nearest operations at reduced area and delay.

References

[Boo51] A.D. Booth. A Signed Binary Multiplication Technique. *Q. J. Mech. Appl. Math.*, 4:236–240, 1951.

[Far81] P.M. Farmwald. *On the Design of High Performance Digital Arithmetic Units*. PhD thesis, Stanford, Aug. 1981.

[IEE08] IEEE. *IEEE Std. 754TM-2008 Standard for Floating-Point Arithmetic*. IEEE, 3 Park Avenue, NY 10016-5997, USA, August 2008.

[KM05] P. Kornerup and J.-M. Muller. RN-Coding of Numbers: Definition and some Properties. In *Proc. IMACS’2005*, July 2005. Paris.

[KMP11] P. Kornerup, J-M. Muller, and A. Panhaleux. Performing Arithmetic Operations on Round-to-Nearest Representations. *IEEE Transactions on Computers*, 60(2):282–291, February 2011.

[Kor09] P. Kornerup. Correcting the Normalization Shift of Redundant Binary Representations. *IEEE Transactions on Computers*, 58(10):1435–1439, October 2009.

[Lee89] C. Lee. Multistep Gradual Rounding. *IEEE Transactions on Computers*, 38(4):595–600, April 1989.