Research Article

Composition and diversity of arbuscular mycorrhizal fungi spore associated with different land-use types in tropical gold mine

Faisal Danu Tuheteru1*, Husna1, Albasri1, Asrianti Arif1, Kartini Kramadibrata2, Geoffrey Soka3

1 Department of Forestry, Faculty of Forestry and Environmental Science, Halu Oleo University, Kendari, Southeast Sulawesi 93121, Indonesia
2 Herbarium Bogoriense, Botany Division, Research Center for Biology-LIPI, Cibinong Science Center, Jln. Raya Jakarta-Bogor Km. 46, Cibinong 16911, Bogor, Java, Indonesia.
3 Department of Wildlife Management, Sokone University of Agriculture, P.O. Box 3073, Morogoro, Tanzania

*corresponding author: fd.tuheteru1978@gmail.com

Received 17 July 2020, Accepted 18 September 2020

Abstract: Understanding the composition and diversity of arbuscular mycorrhizal fungi (AMF) is imperative for potentially enhancing their ecological role in different terrestrial ecosystems. Land use can have substantial effects on AMF species composition and diversity, but such effects have been explored less in tropical landscapes. In this study, we assessed the effects of disturbances on AMF species richness, observed the potential development of AMF types to produce mycorrhizal biofertilizer bioinoculants. This study was conducted identifying and selecting AMFs was for the purpose of managing post-mining land in Bombana District, Southeast Sulawesi, Indonesia. AMF spores collected from the field and trap culture were directly isolated and morphologically identified. A total of 15 AMF species were identified, including 11 species from field samples and 9 species from trap cultures. We noted that five AMF species were unique to field conditions and 5 AMF species were uniquely isolated from trap culture. It appears that Glomeraceae family contributed the highest number of species in all land-use types. Glomus sp. 1 was the most frequent species found in all land-use types. The Simpson’s index, Shannon index and evenness ranged from 1.60 ± 0.51 to 2.40 ± 0.40; 0.41 ± 0.17 to 0.62 ± 0.17; 0.25 ± 0.10 to 0.39 ± 0.11, respectively. In this study, we found three new records of AMF species including Entrophospora colombiana, Sclerocystis microcarpa and Glomus coronatum for Indonesia, i.e. from this study, it is clear that different land-use types affected AMF spore composition and species diversity. All AMF species found in this study were then applied to the land to improve land quality.

Keywords: arbuscular mycorrhizal fungi, Glomeraceae, gold tailings, land-use, Indonesia

Introduction

Mycorrhizae have a mutually beneficial relationship between plant roots with certain fungi (Smith and Read, 2008). One of the mycorrhiza-forming fungi is Arbuscular Mycorrhizal Fungi (AMF). AMF is an obligate fungus of the phylum Glomeromycota and forms symbiotic relationships with 90% of higher plants in terrestrial ecosystems (Smith and Read, 2008) and wetlands (Tuheteru and Wu, 2017). AM fungi can be beneficial for plant life and growth in a variety of biotic and abiotic environmental conditions, such as salinity (He et al., 2019), drought (Zhang et al., 2019), heavy metal toxicity (Husna et al., 2019) and waterlogging (Tuheteru et al., 2015). In addition, AMF is also potential to be developed as a tool for vegetation, reforestation, and restoration program in degraded ecosystems (Wang, 2017) and for phytoremediation process for land contaminated...
with organic and inorganic materials (Tuheteru et al., 2016; 2020).

AMF has a global distribution in diverse ecosystems where the environment is still intact or damaged. The distribution of the AMF is strongly influenced by various factors affecting the abundance, wealth, and diversity of AMF. The composition and richness of the AMF species in a habitat or ecosystem are very dependent on various factors including soil types (Lekberg et al., 2007), soil depth (Oehl et al., 2005), pH (Bainard et al., 2015), climate (Kivlin et al., 2011), altitude (Gai et al., 2012), spatial and temporal distribution (Lovelock et al., 2003), host specificity plants (Johnson et al., 2013; Govindan et al., 2019), plant species distribution (Kivlin et al., 2011) and differences in plant growth and location (Uhlmann et al., 2004). Other contributing factors include disturbance (Guadarrama and Alvarez-Sanchez, 1999; Dandan and Zhiwei, 2007; Tchabi et al., 2008), and land use types intensity (Oehl et al., 2010; Bainard et al., 2012; Soka and Ritchie, 2018).

Studies on identifying and diversifying of AMF from native and degraded ecosystems in tropical regions of Indonesia are relatively limited. AMF species composition and diversity in Indonesia were carried out in farmlands, orchards, forests, grasslands, peatlands, forest conservation areas, degraded or polluted lands and forest ecosystems (Husna et al., 2018). A total of 72 AMF types from 4 orders, 16 genera, and 8 families were reported in Indonesia (Husna et al., 2018). AMF diversity studies on disturbed were reported from lands such as the gold tailings land in Timika Papua (Suharno et al., 2016; 2017) and Lombok West Nusa Tenggara (Prasetyo et al., 2010) and South Africa (Buck et al., 2019). In addition, research on AMF diversity in tropical grasslands is still limited (Soka and Ritchie, 2018; Stürmer et al., 2018). In tropical regions of Indonesia, studies on AMF diversity in one location that includes forest ecosystem, grassland, gold tailing land and post gold mining land have never been conducted. Mining activities can have an impact on decreasing biodiversity, including soil biota such as arbuscular mycorrhizal fungi (Husna et al., 2015; Wang 2017).

In this study, we hypothesized that AMF spore density and species richness are low in disturbed sites (post gold mining land). In addition, variations in soil properties such as pH as well as N, P and Mn content in soil affect AMF density and diversity. This study is expected 1) to provide information on AMF types in Indonesia; 2) gather information on the effects of disturbances on AMF species richness; 3) observe potential development of AMF types to produce mycorrhizal biofertilizer bio-inoculants. The aim of this study was conducted identifying and selecting AMFs was for the purpose of managing post mining land in Bombana District, Southeast Sulawesi, Indonesia and the AMF obtained were then applied to the land to improve land quality.

Materials and Methods

Study site description

This study was conducted at four study sites, namely PT. Panca Logam Makmur, a 3-year old Artisanal Small-scale Gold Mining (ASGM) Tailings, community’s post gold mining land (PGML), savanna and forest in Rarowatu Utara District, Bombana Regency, Southeast Sulawesi Province, Indonesia. Mean annual rainfall ranged from 1,083 mm to 1,325 mm. The elevation is 110 meters above sea level.

Field soil sampling

Soil samples were collected from all four study sites in March 2019. Sampling square plots 2 x 2 m were made at each study site, i.e. 10 plots at the community’s post gold mining land (PGML) and forest and 15 plots for Artisanal Small-scale Gold Mining (ASGM) Tailings and savanna tailings (Figure 1). Soil samples taken were ± 500 g of soil from each plot at 4 different sampling points at a depth of 0-20 cm. Soil samples were respectively collected and were made into 3 sub-samples. Thus, there were 12 soil samples. The collected soil samples were respectively kept in plastic bags and labelled with code names and plant names at each point or plot. All soil samples were dried in the laboratory for further AMF spores isolation and identification process as well as soil physical-chemical analyses.

Soil laboratory analyses

The analyses of soil physical and chemical properties were conducted at the SEAMEO BIOTROP’s Soil and Plant Laboratory in Bogor, Indonesia. Soil analyses for each sample were repeated three times.

Soil trap culture

Trapping technique was used following the method by Brundrett et al. (1996) using open culture pots. The planting medium used was a mixture of 50 g soil samples and 150 g zeolite rocks. Weaning Sorghum bicolor sprouts were planted in the pot. Maintenance included watering, nutrient administration and manual pest control.

Isolation of AMF spores

AMF spores and sporocarp were isolated from 100 g of soil using the wet pouring technique from
Identification of AMF spores was conducted based on shape, size, colour, hyphae of carriers, spores ornamentation and bulbous suspensors. The nomenclature of the AMF spores was carried out following the method by Schüßler and Walker (2010) and Redecker et al., (2013). All specimens of AMF were deposited in the Department of Forestry, Halu Oleo University, Kendari, Indonesia.

Identification of AMF spores was conducted based on shape, size, colour, hyphae of carriers, spores ornamentation and bulbous suspensors. The nomenclature of the AMF spores was carried out following the method by Schüßler and Walker (2010) and Redecker et al., (2013). All specimens of AMF were deposited in the Department of Forestry, Halu Oleo University, Kendari, Indonesia.

Figure 1. Map of study site showing different land-use types in tropical gold mines in Indonesia.

Table 1. AMF diversity parameters and formula.

Parameter	Formula
Isolation frequency	\[
(IF)	\left(\frac{\text{the number of soil samples where AMF types or genera were found}}{\text{total sample}}\right) \times 100\% \]
Relative abundance	Percentage of AMF spores based on species or genus \[
(RA)	\left(\frac{\text{IF} + \text{RA}}{2}\right). IV value of ≥20 indicates the dominant type or genus
Important value	\[
(IV)	\left(\frac{\text{IF} + \text{RA}}{2}\right). IV value of ≥20 indicates the dominant type or genus
Spore density	Amount of AMF spores per 100 g of soil
Species richness	Number of AMF types in each soil sample
Shannon-Weiner index	\[
H'	-\sum p_i \ln p_i \]
Evenness	\[
E	H'/H'_{\text{max}} \]
Simpson’s index	\[
D	\sum \left[\frac{n_i(n_i-1)}{N(N-1)}\right] \]

Notes: \(p_i = \frac{n_i}{N}\), \(n_i\) = the number of AMF spores per species; \(N\) = the total number of spores that are identified; \(H'_{\text{max}} = \ln S\), \(S\) = the total number of species identified.

AMF colonization

Ten stained root segments of one cm long were randomly selected and mounted on the slide to determine the presence and absence of AMF structure. Root samples were cleaned and preserved in 70% alcohol solution. AMF colonies were observed using trypan blue stain (Phillips and Hayman 1970). The mycorrhizal roots were examined to calculate the AMF percentage using the following formula:

\[
\left[\frac{\Sigma \text{field view of mycorrhizal root}}{\Sigma \text{total of the observed field view}}\right] \times 100\% \quad \text{(Brundrett et al., 1996).}
\]
Diversity of arbuscular mycorrhizal fungi spore associated with different land-use types

AMF diversity indices
Diversity data observed in this study were isolation frequency, relative abundance, importance value, spore density, species richness, Shannon-Wiener index, evenness and Simpson's index as presented in Table 1.

Statistical analysis
Data were analyzed using analysis of variance (F test), including soil chemical properties, spore density and AMF colonization, species richness, Shannon-Weiner index, Evenness and Simpson Index. The test of treatment differences using LSD at 95% confidence level was conducted when the F-test result showed a significant effect. Correlations between soil chemical properties and spore density were carried out using Pearson's correlation.

Results and Discussion
AMF root colonization and spore density
The results of microscopic observations on plant root samples showed that AMF structures were found including internal hyphae> vesicles> external hyphae> hyphae coil. The AMF colonization ranged from 67.2 to 83.3% (Table 2). The total number of AMF spores varied by locations ranging from 10 to 18 per 100 g of soil. The highest number of spores was found in soil samples from the forest location. Conversion of natural forests into mining land contributed negative impact on AMF abundance and species richness. Mining activity may cause extensive environmental stresses and damages to soil, plants and ecosystems (Wang 2017). Soil disturbance from mining activity may cause a reduction or loss of AMF propagule and infectivity. On the other hand, conversion land can change soil properties and changing plant community structure and diversity (Johnson et al. 2013; Wang 2017). AMF species richness and types decreased with increasing land-use type intensity (Oehl et al., 2010; Bainard et al., 2012). Different types and varieties of plants also affected the presence of AMF (Govindan et al., 2019).

The total of AMF types identified from soil samples and trap culture
A total of 15 AMF types were identified from soil samples from the four study sites, including seven genera, i.e. Acaulospora, Entrophospora, Glomus, Sclerocystis, Gigaspora, Racocetra and Scutellospora. Of the total species identified, 40% belong to Glomeraceae, 33.3% belong to Gigasporaceae, 20% belong to Acaulosporaceae, and 6.7% belong to Entrophosporaceae (Table 3). Glomus sp. was present in all study sites. AMF species were highest in forest > gold > tailing > savannah (Table 3).

Table 2. AMF colonization and spores density.

Site	Plant richness	Colonization (%)	Field (per 100 g soil)	Trap culture (50 g soil)
Forest	8	67.2	18	43
ASGM tailings	37	82.5	14	103
Savanna	14	71.9	12	17
Community’s PGML	16	83.3	10	74
Means		**76.2**		

Overall, nine AMF species were detected sporulating in trap cultures, of which; five species were previously recorded from field samples, while four species including Entrophospora colombiana, Gigaspora gregaria, Gigaspora sp. 1 and Gigaspora sp. 2 were recovered exclusively from trap culture (Table 3). Glomeraceae belongs to the dominant family of Glomeraceae six types of AMF. Various studies also showed that Glomeraceae has been dominant in various sites and ecosystems such as post-mining land (Singh and Jamaluddin, 2011; Husna et al., 2015), savannah (Soka and Ritchie, 2018), saline (Zu et al., 2018), tropical forest (Kramadibrata, 2012; 2016) and land use types (Guadarrama and Alvarez-Sanchez, 1999). In tropical Indonesia, Glomeraceae was reportedly dominant with 36 species or 53% of 72 AMF types in Indonesia (Husna et al. 2018). In this study, there were three new AMF types that have never been revealed in Indonesia, namely E. colombiana, S. microcarpa, and G. coronatum. Thus, the discovery of three types of AMFs can add to the wealth of AMF types in tropical Indonesia.
Diversity of arbuscular mycorrhizal fungi spore associated with different land-use types

Tabel 3. Glomeromycota species recovered from field soils and trap cultures.

Family	AMF species	Forest Fs	ASGM Tailings Fs	Savannah Fs	Community’s PGML Fs
		Tc	Tc	Tc	Tc
Acauloporaceae	Acaulospora scrobiculata	*	*	*	*
	Acaulospora tuberculata	*	*	*	*
	Acaulospora foveata	*	*	*	*
Entrophosporaceae	Entrophospora colombiana		*	*	*
Glomeraceae	Glomus coronatum		*	*	*
	Glomus sp.1	*	*	*	*
	Glomus sp.2		*	*	*
	Sclerocystis microcarpa		*	*	*
	Sclerocystis rubiformis		*	*	*
	Sclerocystis sinuosa	*	*	*	*
Gigasporaceae	Racocetra gregaria		*	*	*
	Gigaspora sp.1		*	*	*
	Gigaspora sp.2		*	*	*
	Scutellospora pellucida	*	*	*	*
	Scutellospora sp.1	*	*	*	*

Fs (Field soils), Tc (Trap cultures)

AMF Fungal Diversity

The highest relative frequency in *Glomus* sp.1 was 100% followed by *Scutellospora* sp. 1 (75%), *A. scrobiculata*, *A. tuberculata*, *Sclerocystis sinuosa* and *Scutellospora pellucida* were 50% each and the lowest types were 25% (Table 4). AMF spore relative density per location was presented in Table 4. Based on the Important Value, *Scutellospora* sp. 1 was dominant in forest, tailings and community’s gold post-mining ecosystems. *A. tuberculata* was dominant in forest and community’s gold post-mining ecosystems, *Glomus* sp. 1 and *A. Scrobiculata* were each dominant in forest sites and gold tailings. *Glomus* is a tolerant and adaptive genus in a variety of soil and environmental conditions (Husna et al., 2015). It can survive from acid to alkaline soils, produces small spores in a short time compared to *Gigaspora* and *Scutellospora*.

Glomeraceae has been reported to have the highest number of species in the Glomeromycota phylum (Dandan and Zhiwei, 2007; Schüßler and Walker, 2010; Singh and Jamaluddin, 2011). This study clearly demonstrated that *Glomus* sp.1 was the most dominant AMF species in all four study sites. *Glomus* sp. 1 is suspected to be dominant due to its small size, which can be associated with high sporulation capacity, adaptability to soil, climate and different plants (Shi et al., 2006; Kivlin et al., 2011; Shukla et al., 2013; Morales et al., 2019). Data on AMF diversity indices are presented in Table 5. The results showed that there were no statistically significant differences between AMF diversity in different and use types. The Shannon-Weiner index (H), evenness (E), and Simpson's index (D) varied from 0.41 to 0.62; 0.25-0.39 and 0.26-0.60, respectively.

Different locations (land use types) affect AMF species richness and diversity. Forests environment supported more spores compared to other study sites. The results of this study were relevant to the soil nature at each study site, the disturbance intensity, and plant differences. The amount of spores, species richness, and AMF species diversity varied in different land use types (Dandan and Zhiwei, 2007). Human activities on each land use type contributed negative influence on AMF species richness/types and population dynamics (Guadarrama and Alvarez-Sanchez, 1999). Johnson et al. (2013) stated that land-use types with high intensity could change the nature of soil and may decrease AMF species richness and diversity. A study conducted by Gonzales-Cortes et al. (2012) also indicated the impact of land-use types changes (forest to avocado plantation and maize fields) was greater on AMF composition and richness. In this study, three types of AMF belonging to Glomeraceae family were found (*Glomus* sp. 1, *Glomus* sp. 2 and *S. sinuosa*) in the savanna ecosystem. The number of AMF types in this study was lower than those in previous research on savanna ecosystems in the tropics. The results of the study by Stürmer et al., (2018) found 21 types of AMF dominated by Gigasporaceae in Tropical Savannas of Roraima, Brazil, and Soka and Ritchie (2018) reported nine types of AMF in tropical savanna landscape of Tanzania. Muchane et al. (2012) found 14 types of AMF in tropical savanna of Maasai Mara in Kenya. A study conducted by Tchabi et al. (2008) found 49 AMF types in the sub-Saharan savannas of Benin.
Table 4. AMF fungal diversity.

AMF Species	Relative Frequency (%)	Forest	ASGM tailings	Savanna	Community’s PGML								
		IF	RA	IV	IF	RA	IV	IF	RA	IV	IF	RA	IV
A. scrobiculata	50	20	12	16	40	36.59	38.29	-	-	-	-	-	-
A. tuberculata	50	30	16	23	-	-	-	-	-	-	30	25	27.5
A. foveata	25	20	8	14	-	-	-	-	-	-	-	-	-
S. microcarpa	25	10	4	7	-	-	-	-	-	-	-	-	-
S. rubiformis	25	10	4	7	-	-	-	-	-	-	-	-	-
S. sinonosa	50	-	-	-	-	-	-	-	-	-	40	48.65	30.98
G. coronatum	25	-	-	-	-	6.67	10.81	5.77	-	-	-	-	-
Glomus sp.1	100	10	44	27	20	14.63	17.32	20	40.54	19.15	10	5	7.5
Glomus sp.2	25	-	-	-	-	6.67	2.44	4.55	-	-	-	-	-
S. pellucida	50	-	-	-	6.67	1.22	3.94	-	-	-	10	10	10
Scutellospora sp.1	75	30	12	21	53.33	45.12	49.23	-	-	-	30	50	40

Table 5. AMF fungal diversity indices.

Site	S	H’	E	D
Forest	2.20 ± 0.37	0.59 ± 0.17	0.37 ± 0.10	0.26 ± 0.13
ASGM tailings	2.40 ± 0.40	0.62 ± 0.17	0.39 ± 0.11	0.60 ± 0.11
Savanna	1.80 ± 0.20	0.53 ± 0.13	0.33 ± 0.08	0.55 ± 0.12
Community’s PGML	1.60 ± 0.51	0.41 ± 0.17	0.25 ± 0.10	0.46 ± 0.16
Pr>F	0.468	0.798	0.799	0.304
Diversity of arbuscular mycorrhizal fungi spore associated with different land-use types

Table 6. Physical and chemical characteristics of soils across land use types.

Code/methods	Forest	ASGM tailings	Savanna	Community’s PGML	CV (%)	P-value	
pH (SNI 03-6787-2002)	H$_2$O	5.73±0.07b	6.17±0.27b	8.07±0.15a	6.30±0.26b	5.44	0.0002
	CaCl$_2$	5.13±0.12b	5.10±0.25b	7.43±0.07a	5.27±0.37b	7.03	0.0002
* Organic C %							
	1.71±0.20a	0.30±0.04b	0.76±0.16b	0.65±0.22b	6.30±0.26b	5.44	0.0002
* Total N (Kjeldahl)	%	0.20±0.02a	0.06±0.01c	0.11±0b	0.12±0.02b	21.18	0.0011
C/N Ratio							
	8.67±1.20	7±1.3	5±0	34.62			
*P$_2$O$_5$ (SL-MU-TT-05 (Bray I/II)	ppm	14.77±0.52ab	14.13±0.54b	18.70±1.06a	14.37±2.04b	5.44	0.0002
CEC	cmol/kg	12.53±1.09b	5.60±0.28c	23.77±2.04a	9.93±1.71b	19.16	0.0001
Texture	Sand %	41.67±0.81bc	70.93±2.20a	35.07±3.50c	48.03±3.45b	5.44	<.0001
SL-MU-TT-10	Silt %	33.23±1.61a	18.90±0.90c	30.13±0.23ab	28.23±1.37b	5.44	0.0001
(Hydrometer)	Clay %	25.10±0.85b	10.17±2.07c	34.80±3.41a	23.73±3.08b	5.44	0.0001
Total Mn (HNO$_3$ – HClO$_4$ (AAS)	Ppm	574.0±59.10b	553.0±62.65bc	853.0±89.11a	311.0±98.53c	5.44	0.0009
Total Fe (HNO$_3$ – HClO$_4$ (AAS)	%	1.14±0.03a	0.800.02b	1.30±0.09a	0.89±0.06b	5.44	0.0009

Table 7. Pearson-correlation matrix for edaphic variables associated with AMF abundance.

*pH (H$_2$O) CaCl$_2$	*C Org	*N Total	C/N	*P$_2$O$_5$	CEC	Texture	Mn Total	Fe Total				
						Sand	Silt	Clay				
Colonization	-0.137	-0.340	-0.849	-0.748	-0.988	-0.464	-0.593	0.690	-0.758	-0.600	-0.607	-0.845
Richness	-0.926	-0.827	0.644	0.641	0.384	-0.745	-0.602	0.173	0.205	-0.391	-0.514	-0.281
Spores AMF	-0.499	-0.341	0.697	0.549	0.728	-0.223	-0.153	0.038	0.210	-0.186	0.221	0.193
H’	-0.188	-0.117	0.153	-0.056	0.360	-0.051	-0.138	0.380	-0.303	-0.400	0.481	0.053
E	-0.188	-0.117	0.153	-0.056	0.360	-0.051	-0.138	0.380	-0.303	-0.400	0.481	0.053
D	0.531	0.361	-0.949	-0.976	-0.747	0.251	0.024	0.468	-0.763	-0.256	0.223	-0.291
Relationship between spore density and soil properties

Soil chemical properties varied among sites/land-use types. pH, P, O, CEC, clay, Mn and Fe total were significantly higher in savanna. Organic-C and N-total were significantly lower in gold tailing and higher in forest. Sand was higher in gold mine tailings than other land-use types. There were no differences in P, O savanna and forest (Table 6).

It was found that C-organic, N total, C/N ratio, total Mn, total Fe, silt and clay fractions were negatively correlated with AMF colonization in plant roots (Table 7). The sand texture was positively correlated with AMF colonization. pH, P, O, CEC and Mn were negatively correlated with the number of AMF types. All soil properties, except sand texture. Previous studies reported that soil pH (Bainard et al., 2015), organic matter content (Husna et al. 2015) and soil P (Soka and Ritchie, 2018) generally influenced AMF spore density and distribution. Bainard et al. (2015) reported that high pH and P decreased AMF species abundance, whereas low P could increase AMF species diversity (Soka and Ritchie, 2018), (Singh and Jamaluddin, 2011; Husna et al. 2015). Table 7 showed that Mn and Fe contents in soil were negatively correlated with AMF colonization and richness. AMF colonization and diversity were low in heavy metal because heavy metals may potential inhibit AM fungi life cycle (Wang and Carney, 1999) and AM developmental processes (Wang 2017). Finally, the collected AMF types can be reproduced and tested for effectiveness in a local nursery and field-scale plants. Potential AMF types have been developed for biofertilizers to support the restoration efforts of forest ecosystems and degraded land, including tailings and post-gold mining lands in the tropics. AMF is an integral of ecosystem restoration projects and a key player in the recovery of degraded ecosystems (Wang, 2017). Further, AMF can also reduce the need for fertilizer so as to reduce the cost of ecological restoration.

Conclusion

The current study confirms that AMF community composition was clearly different between the four land use types, and that AMF spore density and diversity were significantly lowest in disturbed lands (tailings and post-gold mining land). A total of seven genera of AMF were identified: Gigaspora, Acaulospora, Entrophospora, Sclerocystis, Glomus, Racocetra and Scutellospora. Glomus was the most dominant genus in all four study sites. Glomus can be a candidate for screening high ecological restoration strains for the tailings and post-gold mining lands. This study has shown that variability in soil factors within and across land use types can have a significant effect on the AM fungal community structure and should not be ignored. The soil properties including soil pH, C-organic, P and Mn affected the AMF species density and richness. All AMF species found in this study could be potentially be developed into biological fertilizer to restore degraded forest ecosystems.

Acknowledgements

The authors wish to thank the Directorate General of Resource, Science, Technology, and Higher Education, Ministry of Research, Technology, and Higher Education of the Republic of Indonesia for funding support (No. 513g/UN29.20/PPM/2019). The authors also thank the Chairman of PT. Panca Logam Makmur for assistance during the soil sampling in the gold post-mining areas.

References

Bainard, L.D., Dai, M., Furrazola-Gómez, E., Torres-Arias, Y., Bainard, J.D., Sheng, M., Eilers, W. and Hamel, C. 2015. Arbuscular mycorrhizal fungal communities are influenced by agricultural land use and not soil type among the chemozem great groups of the Canadian Prairies. Plant and soil 387: 351–362.
Diversity of arbuscular mycorrhizal fungi spore associated with different land-use types

Bainard, L.D., Koch, A.M., Gordon, A.M. and Klironomos, J.N. 2012. Temporal and compositional differences of arbuscular mycorrhizal fungal communities in conventional monocropping and tree-based intercropping systems. Soil Biology and Biochemistry 45: 172–180.

Brundrett, M., Bouger, N., Dell, B., Grove, T. and Majalazuk. 1996. Working with Mycorrhizas In Forestry and Agriculture. Australian Centre for International Agriculture Research, Canberra.

Buck, M.T., Straker, C.J., Mavri-Damelin, D. and Weersby, I.M. 2019. Diversity of arbuscular mycorrhizal (AM) fungi colonising roots of indigenous Vachellia and Senegalia trees on gold and uranium mine tailings in South Africa. South African Journal of Botany 121: 34–44

Chiomento, J.L.T., Stürmer, S.L., Carrenho, R. da Costa, R.C., Scheffer-Basso, S.M., Antunes, L.E.C., Nienow, A.A. and Calvete, E.O. 2019. Composition of arbuscular mycorrhizal fungal communities signals generalist species in soils cultivated with strawberry. Scientia Horticulturae 253: 286–294

Dandan, Z. and Zhiwei, Z. 2007. Diversity of arbuscular mycorrhizal fungi in the hot-dry valley of the Jinsha River, Southwest China. Applied Soil Ecology 37(1):118-128.

Gai, J.P., Tian, H., Yang, F.Y., Christie, P., Li, X.L. and Klironomos, J.N. 2012. Arbuscular mycorrhizal fungal diversity along a Tibetan elevation gradient. Pedobiologia 55:145–151

Govindan, M., Rajeshkumar, P.P., Varma, C.K.Y., Anees, C.K.M., Rashmi, C.R. and Nair, A.B. 2019. Arbuscular Mycorrhizal Fungi Status of Mango (Mangifera indica) Cultivars Grown in Tropic Quartzipsamments Soil. Agricultural Research 9: 188-196 doi.org/10.1007/s40003-019-00432-8

Guadarrama, P. and Álvarez-Sánchez, F.J. 1999. Abundance of arbuscular mycorrhizal fungi spores in different environments in a tropical rain forest, Veracruz, Mexico. Mycorrhiza 8(5): 267-270

He, W., Fan, X., Zhou, Z., Zhang, H., Gao, X., Song, F. and Geng, G. 2019. The effect of Rhizophagus irregularis on salt stress tolerance of Eucalyptus angustifolia roots. Journal of Forestry Research Published online 11 October 2019. doi.org/10.1007/s10636-019-01053-1

Husna, Budi, S.W.R., Mansur, I. and Kusmana, C. 2015. Diversity of arbuscular mycorrhizal fungi in the growth habitat of kayu kuku (Pericopsis mooniana Thw.) in Southeast Sulawesi. Pakistan Journal of Biological Sciences 18(1): 1-10.

Husna, Tuheteru, F.D. and Arif, A. 2018. Arbuscular Mycorrhizal Fungi Symbiosis and Conservation of Endangered Tropical Legume Trees. In: B. Giri et al. (eds.), Root Biology, Soil Biology 52. Springer. Germany.

Husna, Mansur, I., Budi, S.W.R., Tuheteru, F.D., Arif, A., Tuheteru, E.J. and Albasi, R. 2019. Effects of arbuscular mycorrhizal fungi and organic material on growth and nutrient uptake by Pericopsis mooniana in coal mine. Asian Journal of Plant Science 18(3): 101-109

Johnson, J.M., Houngnandan, P., Kane, A., Sanon, K.B. and Neyra M. 2013. Diversity patterns of indigenous arbuscular mycorrhizal fungi associated with rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin, West Africa. Pedobiologia 56:121-128

Kivlin, S.N., Christine, V.H. and Treseder, K.K. 2011. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294-2303

Koske, R.E., Gemma, J.N. and Jackson, N. 1997. Arbuscular mycorrhizal fungi associated with three species of turfgrass. Can J Bot 75:320–332

Kramadibrata K. 2012. Arbuscular fungi in Ujung Kulon National Park. Berita Biologi, 11 (2): 205-209 (in Indonesian).

Lekberg Y., Koide R.T., Rohr, J.R., Aldrich-Wolfe L. and Morton J.B. 2007. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105

LoveLock, C., Andersen, K.M. and Morton, J.B. 2003. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135(2):268-79

Meilagh, A.A. and Cairney, J.W.G. 1999. Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Advances in Ecological Research 30, 69-112.

Muchane, M.M., Mugoya, C and Masiga C.W. 2012. Effect of land use system on Arbuscular Mycorrhiza fungi in Maasai Mara ecosystem, Kenya. Afr. J. Microbiol. Res. 6, 3904-3916.

Oehl, F., Laczkó, E., Bogenrieder, A., Stahr, K., Bösch R., Van der Heijden M. and Sieverding, E. 2010. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol. Biochem. 42, 724–738.

Oehl F, Sieverding E., Ineichen K., Ris E-A, Boller T. and Wiemken A. 2005. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

Pacioni G. 1992. Wet sieving and decanting techniques for the extraction of spores of VA mycorrhizal fungi. in : Norris, J.R., D.J. Read and A.K Varma (Eds.). Methods in Microbiology. Vol. 24. Academic Press Inc. Sandiego.

Phillips, J.M. and Hayman, D.S. 1970. Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizae fungi for rapid assessment of infection. Trans Br Mycol Soc 55: 158-161.

Prasetyo, B., Krisnayanti, B.D., Utomo, W.H. and Anderson, C.W.N. 2010. Rehabilitation of Artisanal Mining Gold Land in West Lombok, Indonesia: 2. Arbuscular Mycorrhiza Status of Tailings and Surrounding Soils. J Agric Sci 2(2): 202-209.

Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S.L., Morton, J.B. and Walker C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza. 23:515-531.

Schüßler, A. and Walker C. 2010. The Glomeromycota. A species list with new families and new genera. Kew: The Royal Botanic Garden Kew.

Shi, Z.Y., Chen, Y.L., Feng, G., Liu, R.J., Christie, P and Li, X.L. 2006. Arbuscular mycorrhizal fungi
Diversity of arbuscular mycorrhizal fungi spore associated with different land-use types

associated with the Meliaceae on In Haiman Island, Cina. Mycorrhiza 16(2):81-87
Shukla, A., Vyas, D. and Anuradha, J. 2013. Soil depth: an overriding factor for distribution of arbuscular mycorrhizal fungi. J Soil Sci Plant Nutr 13(1):23-33
Singh, A.K. and Jamaluddin. 2011. Status and diversity of arbuscular mycorrhizal fungi and its role in natural regeneration on limestone mined spoils. Biodiversitas 12 (2):107-111
Smith, S.E. and Read, D.J. 2008. Mycorrhizal symbiosis. Third ed. Academic Press. San Diego.
Soka, G.E. and Ritchie, M.E. 2018. Arbuscular mycorrhizal spore composition and diversity associated with different land uses in a tropical savanna landscape, Tanzania. Appl Soil Ecol 125:222-232
Stürmer, S.L., Kemmelmeier, K., Moreira, B.C., Catarina, M., Gilmara, M.K., Pereira, M.D and da Silva, K. 2018. Arbuscular mycorrhizal fungi (Glomeromycota) communities in tropical savannas of Roraima, Brazil. Mycol Prog 17(10): 1149-1159
Suharno, Soetarto, E.S., Sancayaningsih, R.P. and Kasiamdari, R.S. 2017. Association of arbuscular mycorrhizal fungi (AMF) with Brachiaria precumbens (Poaceae) in tailing and its potential to increase the growth of maize (Zea mays). Biodiversitas 18: 433-441
Suharno, Kasiamdari, R.S., Soetarto, E.S and Sancayaningsih, R.P. 2016. Presence of arbuscular mycorrhizal fungi on fern from tailing deposition area of gold mine in Timika, Indonesia. International Journal of Environmental Bioremediation & Biodegradation, 4 (1), 1-7.
Tchabi A, Coyne, D., Hountondji, F., Lawouin, L., Wienkken, A. and Oehl, F. 2008. Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 18:181–195
Tuheteru, F.D., Kusmana, C., Mansur, I., Iskandar. and, Tuheteru E.J. 2016. Potential of Ionkida (Nauclea orientalis L.) for phytoremediation of acid mined drainage at PT. Bukit Asam Tbk. (Persero), Indonesia. Res J Bot 11:9-17
Tuheteru, F.D. and Wu, Q.S. 2017. Arbuscular mycorrhizal fungi and tolerance of waterlogging stress in plants. In : QS Wu (eds.) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer. Singapore.
Tuheteru, F.D., Arif, A., Husna, Mansur, I., Tuheteru E.J, Jusniar, Basrudin, Albasi, Hadijah M.H, and Karepesina S. 2020. Arbuscular mycorrhizal fungal inoculation improves Nauclea orientalis L. growth dan phosphorus uptake in gold mine tailings soil media. J. Degrade. Min. Land Manage., 7 (3): 2193-2200
Uhlmann, E., Görke, C., Petersen, A. and Berwinkler, F.O. 2004. Comparison of species diversity of arbuscular mycorrhizal fungi in winter-rainfall areas of South Africa and summer-rainfall areas of Namibia. Mycological Progress. 3 (4): 267–274
Wang, F. 2017. Occurrence of arbuscular mycorrhizal fungi in mining-impacted sites and their contribution to ecological restoration : Mechanisms and applications. Critical Reviews in Environmental Science and Technology, 0 (0): 1-57
Xiang, D., Verbruggen, E., Hu, Y., Veresoglou, S.D., Rillig, M.C., Zhou, W., Xu, T., Li, H., Hao, Z., Chen, Y. and Chen, B. 2014. Land use influences arbuscular mycorrhizal fungal communities in the farming–pastoral ecotone of northern China. New Phytologist 204: 968-978
Zhang, Z., Zhang, J., Xu, Zhou, L. and Li, Y. 2019. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New Forest 50(4): 593-604
Zu Y, Ping, Y., Mu, L. and Yang, T. 2018. The diversity of arbuscular mycorrhizal fungi of Rosa acicularis ‘Luhe’ in saline areas. Journal of Forestry Research. 30(4): 1507-1512