Humic substances are effective in the suppression of delayed type hypersensitivity, rat paw oedema, a graft-vs-host reaction and contact hypersensitivity in rats. They reduce the CRP (C reactive protein) levels of patients suffering from osteoarthritis of the knee and the wheel and flare reaction of patients suffering from hay fever. They have also been described as cardio protective and pro-angiogenic. Toxicity studies have indicated that potassium humate is safe in humans up to a daily dosage of 1g/kg, whereas fulvic acid is safe in humans up to a daily dosage of 1.8 g per adult. The anti-inflammatory action of potassium humate can be contributed to the inhibition of the release of inflammatory-related cytokines, an adhesion molecule, oxidants and components of the complement system.

Keywords: inflammation, humic substances, humic acid, potassium humate, fulvic acid.

INTRODUCTION

Long before chemical formulae to cure diseases were developed, man discovered the healing powers of plants. Humic substances are formed from the decomposition of plants and occur naturally in water, peat, soil and brown coal. These substances have a complex structure and can be fractionated into humin and humic and fulvic acids (MacCarthy et al., 1979). Although they have primarily been used to stimulate plant growth, they have also been applied in the treatment of various diseases in humans. Humic acids are soluble in water only at pH values higher than 2 whereas fulvic acid is soluble in water even at low pH values. Humin, in contrast, is a mixture of materials that are insoluble under all conditions (Pena-Méndez et al., 2005). The richest source of humic acid is found in brown coal, also known as lignite, which is the "youngest" part of coal. Two different humic substances (i.e. forest and grass humic substances) were characterised with the use of two different spectroscopic techniques; i.e. DRIFT (diffuse reflectance infrared Fourier transform) and NMR 1H (nuclear magnetic resonance) (Muscola et al., 2006). Owing to the significant differences found in the chemical compositions of the two samples, an analytical and preparative thin layer chromatography analysis was carried out and indicated the complexity of the molecular structure of potassium humate (Van Rensburg et al., 2010b).
APPLICATION OF PEAT AND MUD PREPARATIONS FOR THE TREATMENT OF INFLAMMATION.

The pharmacological properties of products rich in humic acids, derived from peat extracts such as sapropel, tolpa peat and mumie, have been extensively reviewed (Schepetkin et al., 2002 and 2003). It has been used as a folk medicine for more than 3 000 years. Diseases that have been treated include inflammatory- related- and ophthalmological diseases, gastric ulcers, acute gastroenteritis, anaemia, hypercholesterolemia, dermatitis, psoriasis, hepatic and viral diseases and diseases of the gall bladder.

Peat preparations have been used as a topical treatment as well as in spas for dermatitis and psoriasis (Wolina, 2009) (Table 1). The topical application of mud and peat reduces the symptoms of patients suffering from rheumatoid arthritis, eczema and psoriasis (Codish et al., 2005; Chadzopulu et al 2011) (Table 1). These products have been shown to increase T-cell immunity in patients infected with pulmonary tuberculosis and are also effective in the treatment of hepatic diseases and diseases of the gall bladder (Schepetkin et al., 2002). In a study by (Krzeminski et al 2005) it was shown that a Tolpa peat preparation (TPP) possesses pro-angiogenic and cardio protective effects when administered subcutaneously in rats after the induction of myocardial infarction (Table 1).

Mud bath therapy and humate balneotherapy has improved the quality of life of patients suffering from osteoarthritis (Table 1), which is an inflammation-related disease associated with the progressive destruction of cartilage (Bellometti et al., 1997; Iubutskaia and Ivanov 1999; Codish et al., 2005; Fraioli et al., 2011; Gungen et al., 2012; Chadzopulu et al 2011), whereas Vysokogorskii et al (2009) described the wound healing properties of a solution of sapropel applied topically to full-thickness planar wounds induced in Wistar rats (Table 1).

MECHANISTIC STUDIES

Mechanistic studies done in vitro indicated that potassium humate derived from brown coal inhibits degranulation of phagocytes (Jooné and van Rensburg, 2004), the activation and/or release of blood products associated with inflammation, such as cytokines and superoxide dismutase, and the migration and adhesion of inflammation-related cells to sites where allergic reactions and tissue damage take place (van Rensburg and Naude 2009). Fulvic acid also decreases the release of TNF-alpha, but at much higher concentrations (>200 μg/ml) (Junec et al 2009).

On the other hand Chen el al (2002) indicated that humic acid treatment increased the adhesion as well as the production of oxidants by stimulated neutrophils in vitro. Humic substances has also been reported to stimulate the release of pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF-alpha) in vitro, but only in the presence of exogenous lipopolysaccharides (Junec et al 2009), indicating that these substances should not cause inflammation under normal conditions.
Humic substances also possess antioxidant activities (Aeschbacher et al., 2012; Kučerík et al., 2008; Vašková et al., 2011) and inhibit the expression of complement receptor one (CR1) and three (CR3) in lipopolysaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs) through the inhibition of nuclear factor kappa B (NF-κB) activation (Gau et al., 2000). These surface molecules play an important role during inflammation by assisting the cells to adhere to the walls of blood vessels in the vicinity of inflammatory reactions as in the case of patients suffering from autoimmune diseases (Crockard et al., 1992). The above-mentioned results were confirmed with a potassium humate product derived from brown coal (Joone and van Rensburg 2004). In this way humic substances protect areas of existing inflammation by stopping inflammatory cells from reaching affected sites, “sticking” to the nearby blood vessels and releasing toxic substances in these areas. The mechanism of action of humic substances can also contribute to the inhibition of both the classical- and alternative pathways of complement activation, as well as the degranulation of phagocytes and the production of inflammation-related cytokines such as IL-1β, IL-6, IL-10 and TNF-α (van Rensburg and Naudé, 2009; Joone and van Rensburg, 2004).

PRECLICAL TOXICITY AND EFFICACY STUDIES

The pro-angiogenic, angio-immunomodulatory as well as the cardioprotective properties of TPP, administered subcutaneously in rats was described by Tadeusz et al (2005) (Table 1). They came to the conclusion that Tolpa peat can prevent the development of ischemic cardiomyopathy in rats.

The anti-inflammatory activity of topically applied oxifulvic acid, a fulvic-acid product derived from bituminous coal, was compared with a 1% preparation of both diclofenac sodium and betamethasone in a murine model of contact hypersensitivity (Van Rensburg et al., 2001) (Table 1). In this experiment mice were sensitised to dinitrofluorobenzene and then challenged with dinitrofluorobenzene on the dorsal surface of one ear. The mice’s inflamed ears were treated with a topical application of either a placebo cream or a formulation containing oxifulvic acid, diclofenac sodium or betamethasone. The thickness of their ears was measured on a daily basis. Oxifulvic acid, as well as the betamethasone and diclofenac sodium formulations, reduced the cutaneous inflammatory responses.

In a preclinical toxicity study in rats treated daily with an oral dosage of potassium humate at 1g/kg for 1 month, it was found that the dosage had no effect on the safety parameters nor did a dosage of 500mg/kg have any effect on the pups when it was administered to pregnant female rats (Van Rensburg et al., 2007). In efficacy studies potassium humate, at an oral dosage of 60mg/kg, inhibited a delayed type hypersensitivity reaction in rats immunised with sheep red blood cells, a carrageenan-induced oedema and a graft-vs-host reaction in rat models (Van Rensburg et al., 2010b), as well as a contact hypersensitivity reaction in rats sensitised with dinitrofluorobenzene (Van Rensburg et al., 2007) (Table 1). In these studies potassium humate compared favourably with indomethacin and prednisolone. Interestingly, immune-incompetent rats (induced with cyclophosphamide treatment in the graft-vs-host experiment) treated with potassium humate did not suffer from the normal weight loss as was the case with rats treated with cyclophosphamide alone (Van Rensburg et al., 2010b). Furthermore a chemical complex was prepared by Anwer et al (2010) with humic acid and aspirin by lyophilization. This complex enhanced the anti-inflammatory activity of aspirin alone in the rat paw oedema model (Anwer et al., 2010).
The antioxidant and wound healing properties of sapropels were described by Vysokogorskii et al. (2009), suggesting that it might be recommended for inclusion in medicinal formulations whereas Ozkan et al. (2014) described the neuroprotective effects of humic acid, administered intraperitoneally, in a focal cerebral ischemia rat model, which might be due to its antioxidant properties. They speculated that humic acid may be applied as a preventive agent in patients with a high risk of developing ischemia-induced brain injury.

In two separate studies on two different fulvic-acid products, one derived from bituminous coal and the other from a carbohydrate source (CHD-FA), it was found that fulvic acid is safe and effective in the reduction of a contact hypersensitivity reaction in rats when applied topically (Van Rensburg et al., 2001, Sabi et al., 2011) (Table 1).

A study was done to determine the effects of the subcutaneous administration of TPP on spontaneous angiogenesis in rats after the induction of myocardial infarction. The results indicated that this product possesses cardio-protective properties by preventing the development of ischemic cardiomyopathy (Krzeminski et al. 2005) (Table 1).

Trckova et al. 2005 reviewed the application of peat as a food supplement for farm animals and came to the conclusion that there are many beneficial properties of peat such as the detoxifying and absorbent effects, stimulation of the immune system and an increase in the growth of the animals. He suggested that, because of the differences in the chemical composition of peat from different areas, it will be necessary to test the effects of each source.

CLINICAL STUDIES

Oxifulvic acid, applied topically to allergic individuals, significantly reduced a wheel and flare reaction after intradermal allergen challenge (Snyman et al 2002), which was similar to that of hydrocortisone (Table 1).

A pilot study done on atopic people indicated that a 4.5% oxifulvic acid cream applied topically inhibited an elicited inflammatory reaction (Gandy et al., 2011). This study was followed up with a clinical trial in which atopic people were treated for three days with daily oral dosages of up to 40ml of a 3.8% solution of a carbohydrate-derived fulvic acid. A significant decrease in the skin prick test was observed (Table 1). It was concluded that this product was safe at these dosages (Gandy et al., 2012).

In a double blind placebo controlled Phase I study with oxihumate (a bituminous-coal-derived humate product) done on HIV-positive individuals at oral dosages of 2g, 4g, 6g and 8g per person per day over a two-week period (Botes et al 2002) it was demonstrated that, although the product had no positive effect on the viral load and CD4 counts of the patients, it was well tolerated with no side effects. This trial was executed before April 2004, when the national antiretroviral treatment (ART) programme was launched in South Africa.

The most conclusive findings were the results obtained from two clinical trials. In the first trial potassium humate was administered orally in patients suffering from allergic rhinitis (Gandy et al.,
2010) and in the second trial it was administered in patients suffering from osteoarthritis of the knee (van Rensburg et al., 2010a). In the first trial potassium humate decreased the wheel and flare reaction of the patients and in the second trial it improved the physical functioning of the patients and decreased the levels of C reactive protein (CRP) in the blood of patients on the product (Figure 1) (Table 1). This was confirmed by Günem et al (2012) who found that mud pack therapy slows down the progression of knee osteoarthiris. Although CRP is not directly involved in the inflammatory process, it is widely used as a marker of inflammation (Boylan et al., 2001; Koenig et al., 1999 Nakayama et al., 1993). For example, Nakayama et al., (1993) reported that a strong association exists between an increase in CRP levels and the progression of atherosclerosis, whereas McIntre al (1997) found the measurement of CRP useful for monitoring patients suffering from inflammatory bowel disease.

Figure 1

Effect of potassium humate vs placebo (before and after a 2 week washout period) on hs-CRP levels of patients suffering from osteoarthritis of the knee **.

*Significant (p<0.5) reduction in hs-CRP compared to placebo values.

**Van Rensburg CEJ, Badenhorst BE, Gandy JJ and Snyman JR. 2010(b). The Open Conference Proceedings Journal 1:69-74. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
CONCLUSIONS AND FUTURE DIRECTIONS

Inflammation plays a role during viral and bacterial infections (Nakayama et al., 1993), autoimmune diseases (Nathan, 2002), cancer (Balkville and Mantovani, 2001; Coussens and Werb, 2002; Baumgarten and Frasor, 2012), allergies (Venge 1994), Alzheimer disease (Holmes et al., 2009) and cardiovascular conditions (Ridker et al., 2000). An association between inflammation and malignancies has also been described (Lu et al., 2006). The effective control of inflammation could be used to protect candidates predisposed to these conditions (Abou-Raya and Abou-Raya, 2006). This could also be the case with other inflammatory-related diseases (Coussens and Werb, 2002; Halliday 2000; Nakayama et al., 1993).

Unfortunately, the use of non-steroidal anti-inflammatory drugs (NSAID) can lead to an increased risk of gastrointestinal complications such as ulcerative colitis, intestinal ulcers, intestinal perforations, damage to the small bowel (Somasundaram et al., 1995; Davis, 1995; Thiefin and Beaugerie, 2005; Sostres et al., 2010) and large intestines (Davis, 1995), as well as an increased risk of cardiovascular complications (Bjarnason et al., 1993; McIntire et al., 1997; Fosslien, 2005). These drugs have therefore become unsafe for use by patients already predisposed to these conditions. Interestingly, a humic acid preparation (TPP) significantly accelerated the healing of gastric ulcers induced in rats (Brzozowski et al., 1994) (Abshenas et al., 2014). A chemical complex was prepared with humic acid and aspirin by lyophilisation. This complex enhanced the anti-inflammatory activity of aspirin alone in the rat paw oedema model (Answer et al., 2010).

In conclusion, products derived from humic substances have been used and tested over centuries for inflammatory related diseases (Table 1) suggesting that it can be a possible safe alternative for the treatment and/or prevention of diseases associated with inflammation.

Humic substances	Used by/tested in:	Route of application	Application
Peat	Humans	Topical and spas	Treatment of: Dermatitis (Wolina et al 2009)
			Psoriasis (Codish et al 2005)
			Rheumatoid arthritis (Güngen et al., 2012)
			Wounds (Vysokogorski et al 2009)
Tolpa peat preparation	Rats	Subcutaneous	Cardioprotective and pro-angiogenic (Krzeminski et al 2005).
Mud/humate balneotherapy	Humans	Mud bath therapy	Improve quality of life (Chadzopaulu et al 2011)
			Wound healing (Vysokogorski et al., 2009).
Sapropeel	Rats	Topical	Wound healing (Vysokogorski et al 2009)
Oxfulvic acid	Rats	Topical	Treatment of osteoarthritis (Scheepetkin 2002).
	Mice	Topical	Inflammation (Van Rensburg et al 2001).
	Humans	Topical	Inflammation (Snyman et al 2002)
Carbohydrate derived	Rats	Topical	Wound healing (Sabi et al 2011)
Fulvic acid	Eczema (Gandy et al 2011).		
---------------------	-----------------------------		
Carbohydrate derived fulvic acid	Humans	Topical	Treatment of eczema (Gandy et al 2011).
Carbohydrate derived fulvic acid	Humans	Oral	Safety (Gandy et al 2012).
Potassium humate	Rats	Oral	Decrease contact hypersensitivity (Van Rensburg et al 2007). Decreases delayed type hypersensitivity (Van Rensburg and Naude 2009). Decrease graft vs host reaction (Van Rensburg and Naude 2009). Decrease paw oedema and a graft-vs-host reaction (Van Rensburg et al 2010b).
Potassium humate	Humans	Oral	Treatment of allergic rhinitis (Gandy et al 2010). Treatment of osteoarthritis (Van Rensburg et al 2010a).

Conflict of interest: The author is involved in the distribution of a potassium humate preparation on the market for the treatment of various inflammatory related diseases.

REFERENCES

Abou-Raya A, Abou-Raya S. 2006. Inflammation. A pivotal link between autoimmune diseases and atherosclerosis. *Autoimmunity Rev* 5 (5):331-337.

Abshenas J, Kheirandish R, Slalary AR. 2014. Gastroprotective effect of mummy on induced gastric ulcer in rats. *Comp Clin Pathol* 23(2):305-309.

Aeshbacher M, Graf C, Schwarzenbach RP, Sander M. 2012. Antioxidant properties of humic substances. *Environ Sci Technol* 46 (9):4916–4925.

Anwer Md K, Agarwal SP, Ali A, et al. 2010. Molecular complexes of aspirin with humic acid extracted from shilajit and their characterization. *J Inclusion Phenom Macro* 67(1-2): 209-215.

Balkwill F, Mantovani A. 2001. Inflammation and cancer. *Lancet* 357: 539-545.

Baumgarten SC, Frasor J. 2012. Minireview: Inflammation: an instigator of more aggressive estrogen receptor (ER) positive breast cancers. *Mol Endocrin* 26(30):360-371.

Bellometti S, Giannini S, Sartori L, Crepaldi G. 1997. Cytokine levels in osteoarthrosis patients undergoing mud therapy. *Int J Clin Pharm Res* 17(4):149-153.

Botes ME, Dekker J, van Rensburg, CEJ. 2002. Phase I trial with oral oxihumate in HIV-infected patients. *Drug Develop Res* 57:34-39.
Boylan MT, Crockard AD, Duddy ME, et al. 2001. Interferon-β1a administration results in a transient increase of serum amyloid A protein and C-reactive protein: comparison with other markers of inflammation. *Immunol Let* 75(3):191-197.

Bjarnason IJ, Hayllar AJ, MacPherson A, Russell S. 1993. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. *Gastroenterol* 104 (6):1832-1847.

Brzozowski T, Dembiński A, Konturek S. 1994. Influence of Tolpa Peat Preparation on gastroprotection and gastric and duodenal ulcers. *Acta Pol Pharm* 51(1):103-107.

Chen D-H, Liu J-J, Lu F-J, Yang M-L, Yasnang L, Huang T-S. 2002. The effect of humic acid on the adhesibility of neutrophils. *Thromb Res* 108(1):67-76.

Chadzopulu A, Adraniotis J, Theodosopoulo E. 2011. The therapeutic effects of mud. *Prog Health Sci* 2011;1(2):132-136.

Codish S, Abdu-Shakra M, Flusser D, Fringer M, Sukenik S. 2005. Mud compress therapy for the hands of patients with rheumatoid arthritis. *Rheumatol Int* 25:49-54.

Crockard AD, Thomson JM, McBride, et al. 1992. Markers of inflammatory activation: Upregulation of complement receptors CR1 and CR3 on synovial fluid neutrophils from patients with inflammatory joint disease. *Clin Immunol Immunopathol* 65:135-142.

Coussens LM, Werb, W. 2002. Inflammation and cancer. *Nature* 420:860-867.

Davies NM. Toxicity of nonsteroidal antiinflammatory drugs in the large intestine. 1995. *Dis Colon Rectum* 38(12):1311-1321.

Fosslien E. Cardiovascular complications of non-steroidal anti-inflammatory drugs. 2005. *Ann Clin Lab Sci Autumn* 35(4):347-385.

Fraioli A, Serio A, Mennuni G, Cecarelli F, Petraccia L, Fontana M, Grassi M. 2011. A study on the efficacy of treatment with mud packs and baths with Sillene mineral water (Chianciano Spa Italy) in patients suffering from knee osteoarthritis. *Rheumatol Int* 31(10) 1333-1340.

Gandy JJ, Meeding JP, Snyman JR, van Rensburg CEJ. 2010. The clinical efficacy of potassium humate in the treatment of allergic rhinitis: A double blind placebo controlled trial. *Drug Develop Res* 71:358-363.

Gandy JJ, Meeding JP, van Rensburg CEJ. 2012. Phase 1 clinical study of the acute and subacute safety and proof-of-concept efficacy of carbohydrate-derived fulvic acid. *Clin Pharmacol* 4:7-11.

Gandy JJ, Meeding JP, Snyman JR, van Rensburg CEJ. 2011. Randomized, parallel-group, double-blind, controlled study to evaluate the efficacy and safety of carbohydrate-derived fulvic acid in topical treatment of eczema. *Clin Cosmet Investig Dermatol* 4: 145–148.

Gau R-J, Yang H-L, Chow S-N, Suen J-L, Lu F-J. 2000. Humic Acid suppresses the LPS-induced expression of cell-surface adhesion proteins through the Inhibition of NF-κB activation. *Toxicol*
Appl Pharmacol 166:59-66.

Güngen, G., Fusan, A., Fundkoğlu, G., Simin, R. 2012. The effect of mud pack therapy on serum YKL-40 and hsCRP levels in patients with knee osteoarthritis. Rheumatol Int 32(5) 1235-1244.

Halliday G, Robinson R, Sheperd C, Kril J. 2000. Alzheimer’s disease and inflammation: a review of cellular and therapeutic mechanisms. Clin Exp Pharmacol 27(1-2): 1-8.

Holmes C, Cunningham, C, Zotova E, Woolford J, Dean C, Kerr S, Culliford D. 2009. Systemic inflammation in disease progression in Alzheimer disease. Neurology 73(10) 768-774.

Iubitskaia NS and Ivanov EM, Lubitskaia NS. 1999. Sodium humate in the treatment of osteoarthrosis patients. Europe Pubmed Central. PMID:10598525.

Lu H, Ouyang W, Huang C. 2006. Inflammation, a key event in cancer development. Mol Cancer Res 4:221-233.

Joone GK, van Rensburg CEJ. 2004. An in vitro investigation of the anti-inflammatory properties of potassium humate. Inflammation 28(3):169 -174.

Junec R, Morrow R, Schoenherr JJ, Schubert R, Kallmeyer R, Phull S, Klöcking R. 2009. Bimodal effect of humic acids on the LPS-induced TNF-α release from differentiated U937 cells. Phytomedicine 16(5): 470-476.

Koenig K, Sund, M, Fröhlich, M, Fischer H-G et al. 1999. C-Reactive Protein, a Sensitive Marker of Inflammation, Predicts Future Risk of Coronary Heart Disease in Initially Healthy Middle-Aged Men. Circulation 99:237-242.

Krzemiński TF, Nożyński JN, Grzyb J, Porc M, Żegleń S, Filas V, Skopińska-Różewska E, Sommer E, Filewska M. 2005 et al. 2005. Angiogenesis and cardioprotection after TNFα-inducer-Tolpa Peat Preparation treatment in rat’s hearts after experimental myocardial infarction in vivo. Vasc Pharmacol 43(3): 164-170.

Kučerík J, Bakajová B, Pekař M. 2008. Antioxidant effect of lignite humic acids and its salts on the thermo-oxidative stability/degradation of polyvinyl alcohol blends. Environ Chem Let. 6(4):241-245.

Lu H, Ouyang W, Huang C. 2006. Inflammation, a key event in cancer development. Molecular Cancer Research. Published on line DOI: 10.1158/1541-7786.MCR-05-0261:221-232.

MacCarthy P, Peterson MJ, Malcolm RL, Thurman EM. 1979. Separation of humic substances by pH gradient desorption from a hydrophobic resin. Anal. Chem 51 (12): 2041–2043

McIntire C, Harper I, Macdougall, IC, Raine, AE, Williams A, Baker LR. 1997. Serum C-reactive protein as a marker for infection and inflammation in regular dialysis patients. Clin Nephrol 48(6):371-374.
Muscola A, Sidari M, Attina E, Francisco O, Tugnoli V, Nardi S. 2006. Biological Activity of Humic Substances Is Related to Their Chemical Structure. *SSSAJ* 71(1):75-85.

Nakayama T, Sonoda S, Urano T, Yamada M, Okada M. 1993. Monitoring both serum amyloid protein A and C-reactive protein as inflammatory markers in infectious diseases. *Clin Chem* 39: 293-297.

Nathan C. 2002. Points of control in Inflammation. *Nature* 420:846-852.

Ozcan A, Sen HM, Sehitoglu I, Alacam H, Guven M, Aras AB, Akman T, Silan C, Cosar M, Karaman HIO. 2014. Neuroprotective effect of humic acid on focal cerebral ischemia injury: an experimental study on rats. Inflammation DOI: 10.1007/s10753-014-0005-0. Published on line. ISSN 1573-2576.

Pena-Méndez EM, Havel J, Patočha J. 2005. Humic substances – compounds of still unknown structure: applications in agriculture, industry, environment and biomedicine. *J Appl Biomed* 3:13-24.

Ridker PM, Hennekens CH, Burning JE, Rifai N. 2000. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. *N Engl Med* 342:836-843.

Sabi R, Very P, van Rensburg CEJ. 2011. Carbohydrate-derived fulvic acid (CHD-FA) inhibits Carrageenan-induced inflammation and enhances wound healing: efficacy and toxicity study in rats. *Drug Develop Res* 73(1):18-23.

Schepetkin IA, Khlebnikov AI, Young Ah S, Woo SB, Jeong C-S, Klubachuk ON, Kwon BS. 2003. Characterization and Biological Activities of Humic Substances from Mumie. *J Agric Food Chem* 51: (18) 5245–5254.

Schnepetkin I, Khlebnikov A, Se Kwon B. 2002. Medical drugs from humus matter: focus on mumie. *Drug Develop Res* 57:140-159.

Snyman JR, Dekker J, Malfeld, SCK, van Rensburg CEJ. 2002. Pilot study to evaluate the safety and therapeutic efficacy of topical oxifulvic acid in atopic volunteers. *Drug Develop Res* 57:40-43.

Somasundaram S, Hayllar H, Rafi S, Wigglesworth JM et al. 1995. The biological basis of non-steroidal anti-inflammatory drug-induced damage to the gastrointestinal tract: A review and a hypothesis. *Scand J Gastroentero* 30(4): 289-299.

Sostres C, Gargallo CJ, Arroyo MT, Lanas A. 2010. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. *Best Prac Res Cl Ga Dugs* 24 (2): 121-132.

Tadeusz TF, Nożyński JK, Grzyb J, Porc M, Żegleń S, Filas V, Skopińska-Różewska E, Sommer E. 2005. Angiogenesis and cardioprotection after TNFα-inducer-Tolpa Peat Preparation treatment in rat's hearts after experimental myocardial infarction in vivo. *Vasc Pharmacol* 43(3):164-170.
Trkova M, Marlova L, Hudcova H, Falinya M, Zraly Z, Dvorska L, Beran V, Pavlik I. 2005. Peet as a feed supplement for animals: a review. *Vet. Med. – Czech* 50, 2005 (8): 361–377.

Thiefin G, Beaugerie L. 2005. Toxic effects of nonsteroidal anti-inflammatory drugs on the small bowel, colon and rectum. *Joint bone spine* 72(4):286-294.

Van Rensburg CEJ, Badenhorst BE, JJ Gandy, JR Snyman. 2010(a). Potassium humate reduces inflammation and clinically improves the outcomes of patients with osteoarthritis of the knee. Conference Proceedings of the International Conference on Drug Discovery and Therapy. An open access publication by Bentham Sciences Publications. *The Open Conference Proceedings Journal* 1:69-74.

Van Rensburg CEJ, Cromarty AD, Naude PJW. 2010(b). Potassium humate inhibits carrageenan induced paw oedema and a graft-vs-host reaction in rats. *Inflammopharmacol* 18:33-39.

Van Rensburg CEJ, Malfeld SCK, Dekker J. 2001. Topical application of oxifulfvic acid suppresses the cutaneous immune response in mice. *Drug Develop Res* 53: 29–32.

Van Rensburg CEJ, Naude PJW. 2009. Potassium humate inhibits the production of inflammatory cytokines and complement activation *in vitro*. *Inflammation* 32(4):270-276.

Van Rensburg CEJ, Snyman JR, Mokoele T, Cromarty AD. 2007. Brown coal derived humate inhibits contact hypersensitivity; an efficacy, toxicity and teragenicity study in rats. *Inflammation* 30(5):148-152.

Venge P. 1994. Soluble markers of allergic inflammation. *Allergy* 49(1):1-8.

Vysokogorskii VE, Nozdrunova AA, Plaksin GV, Krivonos OI, Mkrtchan OZ, Petrosyan LYu. 2009. Antioxidant activity of liquid products of heat-treated sapropels. *Parmaceut Chem J* 43(4):191-194.

Vašková J, Veliká B, Pilátová M, Kron I, Vaško, L. Effects of humic acid in vitro. 2011. *In Vitro Cell Dev Biol* 2011;47:378-382.

Venge P. Soluble markers of allergic inflammation. 1994. *Allergy* 49:1-8.

Wolina U. Peat: a natural source for dermatocosmetics and dermatotherapeutics. 2009. *J Cutan Aesther Surg* 2(1):17-20.