Genotoxic effect of 2,2'-bis(bicyclo[2.2.1]heptane) on bacterial cells

A. Kessenikh¹, E. Gnuchikh¹,²,³, S. Bazhenov¹, M. Bermeshev⁴, V. Pegov¹, V. Samoilov⁴, S. Shorunov⁴, A. Maksimov⁴, L. Yaguzhinsky¹,⁵, I. Manukhov¹,²*

¹ Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia, ² State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Centre “Kurchatov Institute”, Kurchatov Genomic Center, Moscow, Russia, ³ NRC “Kurchatov Institute”, Moscow, Russia, ⁴ Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia, ⁵ AN Belozersky Res Inst Physicochem Biol, Moscow MV Lomonosov State Univ, Moscow, Russia

* manukhov@i.ru

Abstract

The toxic effect of strained hydrocarbon 2,2′—bis (bicyclo[2.2.1]heptane) (BBH) was studied using whole-cell bacterial lux-biosensors based on Escherichia coli cells in which luciferase genes are transcriptionally fused with stress-inducible promoters. It was shown that BBH has the genotoxic effect causing bacterial SOS response however no alkylating effect has been revealed. In addition to DNA damage, there is an oxidative effect causing the response of OxyR/S and SoxR/S regulons. The most sensitive to BBH lux-biosensor was E. coli pSoxS-lux which reacts to the appearance of superoxide anion radicals in the cell. It is assumed that the oxidation of BBH leads to the generation of reactive oxygen species, which provide the main contribution to the genotoxicity of this substance.

Introduction

Strained hydrocarbons like norbornane and its non-saturated derivatives are commonly used in the production of rubber, epoxides, medicinal compounds and perfumes [1,2]. Notably, thermotechnical characteristics of strained hydrocarbons, which have extra internal energy due to deformation of valence bond angles, made them attractive for high-performance combustion applications [3]. Strained 2,2′-bis(bicyclo[2.2.1]heptane) (BBH) compound is a promising as a fuel component for liquid rocket engines. It is assumed that BBH is comparable with the unsymmetrical dimethylhydrazine (UDMH) in terms of specific impulse efficiency, but can be significantly less toxic to the environment and personnel working with rocketry. For the purpose of this study, BBH which consists of two strained structures made of 14 carbons and 22 hydrogens (Fig 1) was synthesized from 5-vinyl-2-norbornene [4–6]. Here we present the data describing the toxicity of BBH, which we had obtained by utilizing bacterial lux-biosensors. Lux-biosensors are living Escherichia coli cells transformed with hybrid plasmids, containing luxCDABE genes of Photobacterium luminescens under control of various stress promoters, responsible for increasing the cells luminescence in occurrence of toxicants in the
Similarly designed study of UDMH toxicity has been completed earlier [12,13]. The purpose of this work was to test genotoxicity of BBH and to investigate the mechanisms of genotoxicity if any occurs. The mechanism of BBH genotoxicity was evaluated using specific lux-biosensors of *E. coli* MG1655 cells with hybrid plasmids pAlkA-lux, pOxyR-lux, pSoxS-lux, and pColD-lux, reacting to DNA alkylation, oxidative damage by hydrogen peroxide, superoxide anion radicals and DNA damages that cause an SOS response, respectively. Threshold concentrations of BBH and UDMH were compared for different stress-responsive promoters.

Materials and methods

Chemicals

All chemicals were of analytical purity. Hydrogen peroxide was obtained from the firm "Ferraine" (Russia). Mitomycin C, N,N'-dimethyl-4,4’-dipyridyl dichloride (paraquat), methyl methanesulfonate, and enzyme catalase obtained from Sigma-Aldrich Co (USA). All test solutions were prepared immediately before use. The investigated compound 2,2’-bis(bicyclo[2.2.1]heptane) was synthesized by the Diels-Alder reaction from 5-vinyl-2-norbornene and dicyclopentadiene according to [14] with the subsequent stage of exhaustive hydrogenation of the cycloadduct in methanol on a Pd/C catalyst (1%) with hydrogen (25°C, 20 ATM, 24 h) [1,6].

Bacterial strains and plasmids

The cells of *E. coli* K12 strain MG1655 F’ ilvG rfb-50 rph-1 (obtained from VKPM collection) were combined with plasmids pAlkA-lux, pColD-lux, pOxyR-lux and pSoxS-lux [10,11,15–17] that were built using a promoterless plasmid backbone pDEW201 [8]. pAlkA-lux carries PalkA, sensitive to DNA alkylation in cell. pColD-lux carries PcolD, sensitive to DNA damages causing SOS-response. pOxyR-lux carries PoxYR, inducible by hydrogen peroxide or alkyl hydroperoxide. pSoxS-lux carries PsoxS, inducible by superoxide anion radical. *E. coli* MG1655 cells transformed with pXen7 plasmid constitutively expressing luxCDABE genes.
were employed as non-inducible control. Photos of luminescent colonies of *E. coli* MG1655 pXen7 are given in supplementary (S1 Fig in S1 File).

Media and culturing conditions

Cell cultures were prepared by overnight cultivation at 37°C with aeration at 200 rpm in the 25 ml glass culture tubes in 5 ml of LB media supplemented with 100 μg/ml ampicillin, then diluted 1:100 in LB and grown at 37°C till reaching OD$_{600}$ = 0.1–0.2, which corresponds to early logarithmic phase. The resulting cultures were used for further experiments and luminescence measurements.

Experiment conditions and luminescence measurement

Bacterial cultures were divided into the 200-μl portions in separate wells of 96-well plate, and then 20 μl of tested compound (control toxicant or BBH in concentrations of 100, 10, or 1 mg/ml) were added. Then cells were incubated without shaking at room temperature with repetitive direct measurements of total bioluminescence (in RLU, relative light units) using plate luminometer LM–01A (Immunotech, Czech Republic). The measurement time depended on the type of biosensor used. The average common measurement time is 2 hours [10,12,13]. Since BBH is a new compound and has an unknown mechanism of interaction with cellular structures, preliminary experiments were extended by 2–3 hours to enable postponed effects detection. After characteristic response time was evaluated series of experiments were conducted with measurement times allowing to see the most significant biosensors signals. This time was 3 hours for pAlkA-lux, 2 hours for pOxyR-lux, 5 hours for pColD-lux, and pSoxS-lux. For threshold concentrations identification experiments with each biosensor were carried out with serial twofold BBH dilutions from 1 to 500 mM.

Statistical analysis

Average values and standard deviations were calculated for five independent replications in each experiment. One-way ANOVA followed by Dunnett’s multiple comparisons test and one-sample t-test for each concentration of test substance for all biosensors were performed using GraphPad Prism version 8.01 for Windows, GraphPad Software, La Jolla California USA, (www.graphpad.com). Area under curve (AUC) obtained by integrating kinetic curves data.

Results

Induction of *PalkA*

At the first stage, the ability of BBH to alkylate DNA was investigated with use of *E. coli* MG1655 (pAlkA-lux) biosensor (Fig 2). The pAlkA-lux plasmid contains lux-genes under the control *PalkA*, therefore when alkylating agents occur in the sample the luminescence increases. Methyl methanesulfonate (MMS) in concentration of 100 μM was used as the alkylating substance in a positive control.

As one can see in Fig 2, none of the tested concentrations of BBH caused an alkylating effect as luminescence does not increase. One-way ANOVA for 1 and 10 g / l BBH and control curves gives a p-value of 0.35. At a maximum concentration of 100 g/l (10%) BBH has a cytotoxic effect, leading to a slight but still statistically significant decrease (p-value < 0.001, Dunnett’s test) in the background luminescence of cells (about 2–3 times).
Induction of *P*oxy*R*

Fig 3 shows the measurement of the luminescence kinetics of *E. coli* MG1655 (pOxyR-lux) after the addition of BBH. Hydrogen peroxide in concentration of 1 mM was used in a positive control.

BBH causes induction of the *oxyR* gene promoter (**Fig 3**). *P*oxy*R* activates in response to appearance of hydrogen peroxide or alkyl hydroperoxides. These toxicants can cause modifications of DNA nitrogenous bases, leading to an increase in the rate of mutagenesis [19,20]. The maximum effect is achieved at BBH 1% (**Fig 3**, curve BBH-2), a lower concentration does...
not cause a significant increase in luminescence, and a higher has a general toxic effect on cells, leading to a decrease in the base level of luminescence. One-way ANOVA for BBH (all concentrations) and control curves gives p-value < 0.001. In the presence of catalase, the induction of the Poxyr by 1% BBH was almost abolished.

Induction of PcolD

Fig 4 shows the measurement of luminescence kinetics of *E. coli* MG1655 (pColD-lux) after the addition of BBH. The antibiotic mitomycin C was used in a positive control. It forms cross-linking with DNA, causes a stop of the replication fork, the formation of single-stranded DNA sites, and, as a consequence, SOS response.

As can be seen from the data shown in the Fig 4, the addition of BBH in concentrations of 10% and 1% leads to the high level of DNA damage, which causes an SOS response. The maximum possible response amplitude of the *E. coli* MG1655 (pColD-lux) biosensor is about three orders of magnitude [10]. In this experiment, we see the maximum biosensor activation of about 20 times during incubation with BBH at a concentration of 10 g/l. One-way ANOVA for BBH (all concentrations) and control curves gives p-value < 0.001.

Induction of PsosxS

Then the appearance of a superoxide anion radical in cells during incubation in the presence of BBH was investigated. For this purpose, lux-genes under the control of the PsosxS promoter were used. Fig 5 shows the luminescence kinetics of *E. coli* MG1655 (pSoxS-lux) cells incubated with BBH. As a standard inductor for PsosxS promoter paraquat is usually used—a substance that leads to occurrence of superoxide anion radical as a result of reactions with quinones of the respiratory chain. Hydrogen peroxide does not directly react with the SoxR protein but causes lipid peroxidation and the respiratory chain proteins damage that
eventually leads to an increase in the superoxide anion radical pool in the cell [10,21]. Thus, H$_2$O$_2$ can also be used in a positive control to E. coli MG1655 (pSoxS-lux).

As one can see from Fig 5, activation of the PsoxS promoter occurs when BBH is added at all concentrations from 1 to 100 g/l. One-way ANOVA for BBH (all concentrations) and control curves gives p-value < 0.001. On the basis of the data obtained in the experiments we can suggest that BBH causes the appearance of a superoxide anion radical in the cell.

Comparative analysis of biosensors activation

The diagram in Fig 6 demonstrates the activation of biosensors with different BBH concentrations. Activation values were determined as ratio of the area under the curve for each concentration of the test substance to the area under the control curve without the addition of toxicant. Areas (AUC) are obtained by integrating the kinetic curve data shown in graphs 2–5. Statistical analysis was performed by Student’s one-sample test.

As can be seen from the diagram in Fig 6, the BBH concentration 100 g/l, having a significant general toxicity for cells, reduces the luminescence of all used biosensors. Only E. coli MG1655 pColD-lux activated by this concentration of BBH exceeds the control curve (after 1.5 hours). This occurs, despite partial cell death, in virtue of the high induction amplitude of the biosensor with the PcolD promoter (up to 20 times). A BBH concentration 10 g/l causes a statistically significant activation of the PcolD, PsoxS, and PoxyR promoters (p < 0.001, one sample t-test), but not the PalkA promoter. The BBH concentration 1 g/l causes a statistically significant activation only of the PsoxS promoter (p = 0.02, one sample t-test).

Threshold concentrations for lux biosensors

Table 1 shows the threshold concentrations of UDMH and BBH possible to activate stress promoters. As control, data are given for standard, promoter-specific toxicants inducing a
noticeable (1.5–2 times) effect of bioluminescence enhancement of lux-biosensors. Mitomycin C induces damage of DNA, hydrogen peroxide causes the oxidative stress, paraquat induces oxidative stress through generation of superoxide anion radicals, methylnitronitrosoguanidine (N-methyl-N’-nitro-N-nitrosoguanidine) (MNNG) alkylates DNA.

Discussion

It is known that degrading of a number of hydrocarbon compounds leads to reactive oxygen species generation and oxidative stress induction in bacterial cells [25,26]. According to the literature, BBH must be oxidized by oxygen, as well as all hydrocarbons, by a free-radical chain mechanism [27]. In [27] it was shown on the example of cyclopropane

Biosensor	UDMH* mM	BBH, mM	Standard toxicant, mM	Note
pAlkA-lux	2×10⁻²	nd**	MNNG, 10⁻⁵	Alkylation of DNA
pOxyR-lux	3×10⁻³	10±3.5	H₂O₂, 2×10⁻⁴	Oxidation by hydrogen peroxide [22]
pColD-lux	8×10⁻³	7±2.5	Mitomycin C, 10⁻⁶	DNA damages which are leads to the formation of single-stranded sections of DNA in the cell
pSoxS-lux	0.2	3±1.4	paraquat, 10⁻⁴	Oxidation by superoxide anion radicals
pXen7	2	40±12	C₂H₅OH, 200	Total toxicity is measured by the incidence of luminescence, which correlates with the number of living cells

* The values of threshold concentrations for UDMH and standard toxicants which were obtained by us earlier [23,24].
** nd—not determined.
that hydroxyl radical is one of the products of strained compounds destruction under intense light. The BBH molecule includes two elements with strained bonds, which determine a higher energy release in the oxidation process compared to conventional non-strained hydrocarbons. In [3] comparison of ΔH° (in Kcal/mol) obtained for ring opening of cycloalkanes provided and the ring strain energy is shown to be 3.57 times higher in cyclobutanes compared to cyclopentane. The radical mechanism of oxidation along with the increased reaction energy suggests that the toxic effect of this type of compounds should be determined mainly by reactions of formation of reactive oxygen species. An increased content of superoxide anion radical in the cell can lead to DNA damage [28–30]. In this regard, it should be noted that according to our experiment, the toxicity of BBH, determined by the appearance of a superoxide anion radical in cells, is close to that of UDMH, despite the fact that the tests were conducted with an undispersed form of the product insoluble in water, whose contacts with biological objects are sharply reduced and are determined only by the interface of the phases. Under natural conditions, deep dispersion of products is completely absent during fuel spillage, including a humid environment. Thus, the chosen experimental conditions achieve convergence with the conditions of accidental fuel spill.

The genotoxic effect of BBH definitely takes place and is expressed by cell damages that activates the following defense systems: SOS response, oxyR/S regulon, and soxR/S regulon. The time for the appearance of H_2O_2 in quantities sufficient to activate the cellular response systems after adding BBH to the medium is rather short and is expressed in a minute scale as the Poxyr response to BBH 10 g/l is comparable in speed with the positive control, where 1 mM H_2O_2 was added at the beginning of incubation. It takes more time for PcolD to respond: 50 minutes—induction onset (T_{min}), 3.5 hours—maximum response (T_{max}). This is consistent with the data obtained earlier for other genotoxic substances and is explained by the time spent on entering into the cell, DNA damaging that blocks replication [31], formation of single strand ends and activation of SOS response [10,32]. The long time required for the PsosxS response ($T_{min} = 70$ min, $T_{max} = 4$ hours) is apparently explained by the fact that the appearance of superoxide anion radical in the cell is obviously associated only with damage of the respiratory chain [33]. Respiratory chain damage is possible as a result of exposure to alkyl radicals or H_2O_2 arising from the oxidation of BBH. However, the concentration of H_2O_2 is significantly less than 1 mM and cannot affect the PsosxS promoter. The permeability of the cell membrane for alkyl radicals arising from BBH oxidation was not investigated before and apparently takes time.

Activation of SOS response occurs only at very high concentrations of BBH in the medium (threshold concentration is about 1 g/l). The test using E. coli MG1655 (pColD-lux) is more sensitive to genotoxic agents than SOS chromotest [34], which is used in toxicology along with the Ames test [35,36] to determine the rate of mutagenesis. These tests correlate well with each other [32], but may underestimate the effect of alkylation compounds on the rate of mutagenesis [37]. In the present work, using the E. coli MG1655 (pAlkA-lux) biosensor, it was shown that during incubation of cells with BBH, DNA alkylation is not observed and, obviously, alkylation compounds do not appear in the medium.

The oxidation of BBH under aerobic conditions in the presence of E. coli cells (Figs 3 and 5, Table 1) leads to the appearance of superoxide anion radical and hydrogen peroxide. As a result, alkyl radicals or alkylhydroperoxides can occur in an organic-rich environment. The addition of catalase to the medium significantly reduces the activation of the oxyR promoter (Fig 3, curve cat-2), which indicates the appearance of hydrogen peroxide, which easily penetrates the cell membrane. Hydrogen peroxide and superoxide radicals, as well as possible alkyl radicals and alkyl hydroperoxides, cause the oxidation of the nitrogenous bases of DNA which accelerates mutagenesis as a result of the inaccurate activity of the DNA polymerase [19,20,28–30].
Conclusion

We believe that the basis of the genotoxic effect of BBH on cells are provided by reactive oxygen species that damage the DNA therefore accelerating mutagenesis. Thus, the mechanism of genotoxic action of BBH is fundamentally different from the action of UDMH, which is determined by alkylating derivatives, primarily nitrosodimethylamine [13] and superoxide-anion radicals arising from the oxidation of UDMH with atmospheric oxygen [12].

Supporting information

S1 File.

(DOC)

Acknowledgments

The authors are grateful to Stanislav Filippovich Chalkin for the development of interdisciplinary ties in the scientific community. Authors are grateful to K.V. Lavrov from NRC "Kurchatov Institute”—GOSNIIGENETIKA (Kurchatov Genomic Center) for visualization of light-emitting colonies E. coli MG1655 pXen7 biosensor culture.

Author Contributions

Conceptualization: A. Kessenikh, V. Pevgov, L. Yaguzhinsky, I. Manukhov.
Data curation: A. Kessenikh, M. Bermeshev, V. Pevgov.
Formal analysis: I. Manukhov.
Funding acquisition: V. Samoilov.
Methodology: A. Kessenikh, E. Gnuchikh, S. Bazhenov, V. Pevgov, I. Manukhov.
Project administration: I. Manukhov.
Resources: M. Bermeshev, V. Pevgov, V. Samoilov, S. Shorunov, A. Maksimov.
Software: I. Manukhov.
Supervision: V. Pevgov, I. Manukhov.
Validation: A. Kessenikh, I. Manukhov.
Visualization: I. Manukhov.
Writing – original draft: I. Manukhov.
Writing – review & editing: A. Kessenikh, S. Bazhenov, V. Pevgov, L. Yaguzhinsky, I. Manukhov.

References

1. Bermesh ev M V., Chapala PP. Addition polymerization of functionalized norbornenes as a powerful tool for assembling molecular moieties of new polymers with versatile properties. Progress in Polymer Science. Elsevier Ltd; 2018. pp. 1–46. https://doi.org/10.1016/j.progpolymsci.2018.06.003
2. Ivin K, Mol J. Applications of the Olefin Metathesis Reaction. Academic P. Olefin Metathesis and Metathesis Polymerization. Academic P. London, Eds.: Academic Press; 1997. pp. 397–410.
3. Sirjean B, Glade PA, Ruiz-Lopez MF, Fournet R. Detailed kinetic study of the ring opening of cycloalkanes by CBS-QB3 calculations. J Phys Chem A. 2006; 110: 12693–12704. https://doi.org/10.1021/jp0651081 PMID: 17107122
4. Bermeshev M V., Antonova TN, Shangareev DR, Danilova AS, Pozharskaya NA. Selective Catalytic Hydrogenation of Alicyclic Dienes with Hydrogen in a Liquid Phase. Pet Chem. 2018; 58: 869–875. https://doi.org/10.1134/S0965544118100031

5. Ushakov N V. Selective Hydrogenation of 5-Vinylnorborn-2-ene and Other Methods for the Synthesis of 2-Vinylnorbornane. Russian Journal of Applied Chemistry. Pleiades Publishing; 2018. pp. 728–745. https://doi.org/10.1134/S0707427218050026

6. Shorunov S V., Piskunova ES, Petrov VA, Bykov VI, Bermeshev M V. Selective Hydrogenation of 5-Vinyl-2-Norbornene to 2-Vinylnorbornane. Pet Chem. 2018; 58: 1056–1063. https://doi.org/10.1134/S0965544118120125

7. Van Dyk TK, Majarian WR, Konstantinov KB, Young RM, Dhurjati PS, LaRussa RA. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol. 1994; 60: 1414–1420. https://doi.org/10.1128/AEM.60.5.1414-1420.1994 PMID: 8017928

8. Van Dyk TK, Rosson RA. Photorhabdus luminescens luxCDABE promoter probe vectors. Methods Mol Biol. 1998; 102: 85–95. https://doi.org/10.1385/0-89603-520-4:85 PMID: 9661011

9. LaRussa RA, Majarian WR, Van Dyk TK. Highly sensitive method for determining environmental insults. US patent WO94/13831, 1994.

10. Kotova YY, Manukhov I V., Zavilgelskii GB. Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress. Appl Biochem Microbiol. 2010; 46: 781–788. https://doi.org/10.1134/S00368381000089

11. Manukhov I, Kotova Vy, Ma'dov D, I'l'ichev A, Bel'kov A, Zavil'gel'ski i G. Induction of oxidative stress and SOS response in Escherichia coli by vegetable extracts: The role of hydroperoxides and the synergistic effect of simultaneous treatment with cisplatinum. Microbiology. 2008; 77: 523–529. https://doi.org/10.1134/S0026261708050020

12. Zavilgelsky GB, Kotova YY, Manukhov I V. Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide. Mutat Res—Genet Toxicol Environ Mutagen. 2007; 634: 172–176. https://doi.org/10.1016/j.mrgentox.2007.07.012 PMID: 17869570

13. Goryanin I, Kotova V, Krasnopeeva E, Manukhov I, Chubukov P, Balabanov V, et al. Genotoxic action of the 1,1-dimethylhydrazine determined by alkylating compounds appearing in the result of oxidation and hydrogen peroxide. Tr MIPT. 2013; 5: 103–111.

14. Bell A, Langsdorf L, Burtovyy O. Cycloalkynorbornene monomers, polymers suitable for use as pervaporation membrane films. US patent WO 2014/025735, 2014.

15. Vasilchenko AS, Vasilechenko A V., Pashkova TM, Smirnova MP, Kolodkin NI, Manukhov I V., et al. Antimicrobial activity of the indolicidin-derived novel synthetic peptide In-58. J Pept Sci. 2017; 23: 855–863. https://doi.org/10.1002/jpsc.3049 PMID: 29193518

16. Gruzhikh I, Baranova A, Schukina V, Khaliullin I, Zavilgelsky G, Manukhov I. Kinetics of the thermal inactivation and the refolding of bacterial luciferases in Bacillus subtilis and in Escherichia coli differ. PLoS One. 2019; 14. https://doi.org/10.1371/journal.pone.0226576 PMID: 31869349

17. Melkina OE, Goryanin II, Bazhnenov S V., Manukhov I V., Zavilgelsky GB. Comparative analysis of Alivibrio logei luxR1 and luxR2 genes regulation in Escherichia coli cells. Arch Microbiol. 2019; 201: 1415–1425. https://doi.org/10.1007/s00203-019-01691-3 PMID: 31392374

18. Zavilgelsky GB, Zarubina AP, Manukhov I V. Sequencing and comparative analysis of the lux operon of Photorhabdus luminescens strain Zm1: ERIC elements as putative recombination hot spots. Mol Biol. 2002; 36: 637–647. https://doi.org/10.1023/A:1020663128043

19. Rhaese HJ, Freese E, Melzer MS. Chemical analysis of DNA alterations. II. Alteration and liberation of bases of deoxynucleotides and deoxynucleosides induced by hydrogen peroxide and hydroxylamine. BBA Sect Nucleic Acids Protein Synth. 1968; 155: 491–504. https://doi.org/10.1016/0005-2787(68)90194-9

20. Imlay JA, Linn S. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol. 1987; 169: 2967–2976. https://doi.org/10.1128/JB.169.7.2967-2976.1987 PMID: 3298208

21. Zheng M, Wang X, Templeton LJ, Smulski DR, LaRussa RA, Storz G. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol. 2001; 183: 4562–4570. https://doi.org/10.1128/JB.183.15.4562-4570.2001 PMID: 11443091

22. Kessenikh A, Manukhov I, Vagapova E, Vysookikh My, Konopleva M, Kotova Vy, et al. Lux-biosensors set for detection of toxic products of incomplete oxidation of non-symmetric dimethylhydrazine in medium. patent of Russia 262 2625669, 2015.

23. Manukhov I, Balabanov V, Kotova Vy, Khrulnova S, Melkina O, Kraynov A, et al. Use of Lux biosensors for detection of UDMH in soil. Dual Technol (in Russ. 2008; 44: 50–56.

24. Manukhov I, Gorbunov M, Degtev D, Zavilgelsky G, Kessenikh A, Konopleva M, et al. A set of lux biosensors for determining the genotoxic products of incomplete oxidation of asymmetric dimethylhydrazine in a medium. patent of Russia 2569156, 2014.
25. Kessenikh AG, Manukhov IV, Yaguzhinsky LS, Bermeshev MV, Zisman MA, Pevgov VG, et al. Toxic effect of 2-ethyl[bicyclo[2.2.1]heptane] on bacterial cells. Biotehnologiya. 2019; 35: 67–72. https://doi.org/10.21519/0234-2758-2019-35-6-67-72

26. Sazykin I, Makarenko M, Khmelevtsova L, Seliverstova E, Rakin A, Sazykina M. Cyclohexane, naphthalene, and diesel fuel increase oxidative stress, CYP153, sodA, and recA gene expression in Rhodococcus erythropolis. Microbiologopen. 2019; 8. https://doi.org/10.1002/mbo3.855 PMID: 31119875

27. Dóbé S, Turányi T, Bérces T, Máta F. The kinetics of hydroxyl radical reactions with cyclopropane and cyclobutane. Proc Indian Acad Sci—Chem Sci. 1991; 103: 499–503.

28. Nunoshiba T, Obata F, Boss AC, Oikawa S, Mori T, Kawanishi S, et al. Role of iron and superoxide for generation of hydroxyl radical, oxidative DNA lesions, and mutagenesis in Escherichia coli. J Biol Chem. 1999; 274: 34832–34837. https://doi.org/10.1074/jbc.274.49.34832 PMID: 10574955

29. Farr SB, D’Ari R, Touati D. Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc Natl Acad Sci U S A. 1986; 83: 8268–8272. https://doi.org/10.1073/pnas.83.21.8268 PMID: 3022287

30. Prieto-Alamo M-J, Abril N, Pueyo C. Mutagenesis in Escherichia coli K-12 mutants defective in superoxide dismutase or catalase. Carcinogenesis. 1993; 14: 237–244. https://doi.org/10.1093/carcin/14.2.237 PMID: 8382113

31. Sassanfar M, Roberts JW. Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol. 1990; 212: 79–96. https://doi.org/10.1016/0022-2836(90)90306-7 PMID: 2108251

32. Igonina E V., Marsova M V., Abilev SK. Lux Biosensors: Screening Biologically Active Compounds for Genotoxicity. Russ J Genet Appl Res. 2018; 8: 87–95. https://doi.org/10.1134/S2079059718010082

33. Demin O V., Kholodenko BN, Skulachev VP. A model of O-2- generation in the complex III of the electron transport chain. Molecular and Cellular Biochemistry. Kluwer Academic Publishers; 1998. pp. 21–33. https://doi.org/10.1007/978-1-4615-5653-4_3

34. Quillaret P, Hofnung M. The SOS chromotest: A review. Mutation Research—Reviews in Genetic Toxicology. Elsevier; 1993. pp. 235–279. https://doi.org/10.1016/0165-1101(93)90019-J

35. Ames BN, McCann J, Yamazaki E. Methods for detecting carcinogens and mutagens with the salmonella/mammalian-microsome mutagenicity test. Mutat Res Mutagen Relat Subj. 1975; 31: 347–363. https://doi.org/10.1016/0165-1161(75)90046-1

36. Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutation Research/Environmental Mutagenesis and Related Subjects. Elsevier; 1983. pp. 173–215. https://doi.org/10.1016/0165-1161(83)90010-9

37. Rapoport I. [Mechanism of the mutagenic effect of N-nitroso compounds and principle of the direct action of mutagens]. Dokl Akad Nauk SSSR. 1969; 189: 407–410. PMID: 5398032