Hahnke, R.L., Stackebrandt, E., Meier-Kolthoff, J.P., Tindall, B.J., Huang, S., Rohde, M., Lapidus, A., Han, J., Trong, S., Haynes, M., Reddy, T.B.K., Huntemann, M., Pati, A., Ivanova, N.N., Mavromatis, K., Markowitz, V., Woyke, T., Göker, M., Kyrpides, N.C., Klenk, H.-P.

High quality draft genome sequence of Flavobacterium rivuli type strain WB 3.3-2T (DSM 21788T), a valuable source of polysaccharide decomposing enzymes

(2015) Standards in Genomic Sciences, 10 (JULY2015), 16 p
High quality draft genome sequence of *Flavobacterium rivuli* type strain WB 3.3-2\(^T\) (DSM 21788\(^T\)), a valuable source of polysaccharide decomposing enzymes

Richard L. Hahnke\(^1\)*, Erko Stackebrandt\(^1\), Jan P. Meier-Kolthoff\(^1\), Brian J. Tindall\(^1\), Sixing Huang\(^1\), Manfred Rohde\(^2\), Alla Lapidus\(^3,4\), James Han\(^5\), Stephan Trong\(^5\), Matthew Haynes\(^5\), T.B.K. Reddy\(^5\), Marcel Huntemann\(^5\), Amrita Pati\(^5\), Natalia N. Ivanova\(^5\), Konstantinos Mavromatis\(^5\), Victor Markowitz\(^6\), Tanja Woyke\(^5\), Markus Göker\(^1\), Nikos C. Kyrpides\(^5,7\) and Hans-Peter Klenk\(^8\)

Abstract

Flavobacterium rivuli Ali et al. 2009 emend. Dong et al. 2013 is one of about 100 species in the genus *Flavobacterium* (family *Flavobacteriaceae*, phylum *Bacteroidetes*) with a validly published name, and has been isolated from the spring of a hard water rivulet in Northern Germany. Including all type strains of the genus *Myroides* and *Flavobacterium* into the 16S rRNA gene sequence phylogeny revealed a clustering of members of the genus *Myroides* as a monophyletic group within the genus *Flavobacterium*. Furthermore, *F. rivuli* WB 3.3-2\(^T\) and its next relatives seem more closely related to the genus *Myroides* than to the type species of the genus *Flavobacterium*, *F. aquatile*. The 4,489,248 bp long genome with its 3,391 protein-coding and 65 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. The genome of *F. rivuli* has almost as many genes encoding carbohydrate active enzymes (151 CAZymes) as genes encoding peptidases (177). Peptidases comprised mostly metallo (M) and serine (S) peptidases. Among CAZymes, 30 glycoside hydrolase families, 10 glycosyl transferase families, 7 carbohydrate binding module families and 7 carbohydrate esterase families were identified. Furthermore, we found four polysaccharide utilization loci (PUL) and one large CAZy rich gene cluster that might enable strain WB 3.3-2\(^T\) to decompose plant and algae derived polysaccharides. Based on these results we propose *F. rivuli* as an interesting candidate for further physiological studies and the role of *Bacteroidetes* in the decomposition of complex polymers in the environment.

Keywords: Carbohydrate active enzyme, Polysaccharide utilization loci, Gram-negative, Non-motile, Aerobic, Hard water rivulet, *Flavobacteriaceae*, Bacteroidetes, GEBAM, Myroides
Here we present the set of carbohydrate active enzymes, polysaccharide utilization loci and peptidases of strain WB 3.3-2, together with a summary of its present classification, the set of known phenotypic features and a description of the permanent draft genome sequencing and annotation derived from a culture of strain DSM 21788T.

Organism information
Classification and features
The draft genome of F. rivuli DSM 21788T (ARKJ0000000) has one full-length 16S rRNA gene sequence (Q765_20790, 1415 bp) and one partial 16S rRNA gene sequence (Q765_20790, 594 bp) which were both 100 % identical with the sequence from the original species description (AM934661, NR_115084) [1]. BLAST search revealed the presence of a closely related strain CH1-10 (JX971542, 98.4 %) from a mushroom, two closely related (98.5 %) clone sequences from floor dust (FM872607, FM872591) [69], and two clone sequences from human skin (HM274288, HM269957, 98.2 %).

The next related species was Flavobacterium sub- saxonensis WB 4.1-42T [1], whereas other affiliations are poorly supported (Fig. 1). In contrast to the original affiliation with the genus Flavobacterium, F. rivuli WB 3.3-2T belongs to a group of Flavobacterium species which seem more closely related to the genus Myroides [71] than to the type species of Flavobacterium, F. aquatil [10, 15, 29] (Fig. 2). However, the backbone of the 16S rRNA gene phylogenetic tree is essentially unresolved. A summary of the classification and general features of F. rivuli WB 3.3-2T is shown in Table 1. Cells of strain WB 3.3-2T are Gram-negative, aerobic to microaerobic, non-motile (flagella are absent) and non-gliding, catalase- and oxidase-positive 0.4–0.6 × 1.5–2.0 μm rods which produce extracellular polymeric substances (EPS) (Fig. 3). Colonies are pearl-white on R2A and CY agars and yellow on TSA and NA agars. Flexirubin pigments are absent. Sparse growth occurs between 4 and 8 °C and no growth was observed above 29 °C; the growth optimum is between 16 and 24 °C. Growth occurs between pH 6.4 and 7.8 (optimum 7.0) and at NaCl concentrations between 0 and 2 % (w/v) with an optimum at 1 % (w/v). Nitrate reduction is negative. The strain hydrolyses aesculin, cellobiose, glycogen, starch, Tween 40 and Tween 80, but not alginate, caseine, cellulose, chitin, DNA and pectin. The tests for β-galactosidase and acid phosphatase are strongly positive. Other physiological properties are available for the API ZYM and API 20NE systems (bioMérieux) and the GN MicroPlate system (Biolog) substrate panels [1]. Maltose and other carbohydrates are assimilated. Properties that can be used for the differentiation from the closely related type strain of F. subsaxonicum are, according to the substrates provided by the GN MicroPlate, positive utilization of acetic acid, α-D-lactose, trehalose and Tween 40, and lack of utilization of L-alanine, L-fucose, a-ketobutyric acid, DL-lactic acid, methyl β-D-glucoside, L-ornithine, L-rhamnose and L-serine.

Chemotaxonomic data
Major fatty acids (>5 % of total) are i-C15:0, ai-C15:0, C16:0, C16:0 3-0H, iso-C17:0 3-0H and, as main component, summed feature C16:1 ω7c and/or iso-C15:0 2-0H [1]. Although the original publication indicates that “summed feature 3” is present (C16:1 ω7c and/or iso-C15:0 2-0H) and is generally explained as “summed features are groups of two or three fatty acids that cannot be separated by GLC using the MIDI System” this is a misrepresentation of information provided by MIDI Inc as well as a failure to further inspect the final results. Re-examination of the original data held in the DSMZ indicates that a single peak is present with an ECL of 15.819, coinciding with the ECL of C16:1 ω7c in the MIDI Sherlock TSBA40 peak naming table, indicating that C16:1 ω7c is present and iso-C15:0 2-0H is absent. While these differences may appear trivial this information can be linked back to the enzymes (their encoding genes) and biosynthetic pathways leading to the synthesis of these two very different fatty acids as has been pointed out previously by [57, 58]. No data are available on respiratory quinone, peptidoglycan, polar lipid, polyamine and whole-cell sugar composition. The DNA G+C content of the type strain was previously determined as 40.4 mol% [1].

The genera Flavobacterium and Myroides
Figures 1 and 2 give an overview of the phylogenetic relationships of members of the genus Flavobacterium based on the comparison of 16S rRNA gene sequences (see list in Additional file 1: Table S1). In addition members of the genus Myroides are included and members of the genus Capnocytophaga and Coenonia are used as outgroups. Members of the genera Flavobacterium and Myroides form a monophyletic group, but the division of that monophyletic group to produce a monophyletic group including all members of the genus Myroides does not result in members of the genus Flavobacterium forming a monophyletic group. In such cases the genus Flavobacterium may be divided into several monophyletic groups or the group representing members of the genus Flavobacterium and may be described as being paraphyletic. If a genus is to be composed of species that constitute a monophyletic group then the present data suggest at least two alternatives. If one retains the genus Myroides as a monophyletic group then the division of the genus Flavobacterium into several monophyletic groups may need closer investigation, potentially resulting in the creation of several new genera. Alternatively, the fact that a monophyletic group is recovered that includes members of both the genera Flavobacterium and Myroides may be
Fig. 1 Phylogenetic tree of the genus Flavobacterium and its most closely related genus Capnocytophaga. The tree was inferred from 1,254 aligned characters of the 16S rRNA gene sequence under the maximum likelihood (ML) criterion as previously described [34]. The sequences were aligned using poa [45] and the resulting alignment restricted to its conserved part using Gblocks [20]. The branches are scaled in terms of the expected number of substitutions per site. Numbers adjacent to the branches are support values from 1,000 ML bootstrap replicates (left) and from 1,000 maximum-parsimony bootstrap replicates (right) if larger than 60% [34]. Accession numbers of 16S rRNA gene sequences are listed in Additional file 1: suppl. Table 6.
indicative of the inclusion of members of both taxa in a single genus, where the genus name Flavobacterium Bergey et al. [10] has priority over the genus name Myroides Vancanneyt et al. [44, 71]. The type species of the genus Myroides, Myroides odoratus (Stutzer [68]) Vancanneyt et al. [71] was originally named F. odoratum Stutzer [68], i.e. the two names are homotypic synonyms. The lowest 16S rRNA gene sequence pairwise similarity values between the type strain of the type species of the genus Flavobacterium, F. aquatile and other type strains of species considered to be members of the genus Flavobacterium is 92-93 %, close to the 16S rRNA gene sequence pairwise similarity value of 92 % to the type strain of the type species of Myroides, M. odoratum.

Genome sequencing information

Genome project history

F. rivuli DSM 21788 was selected for sequencing on the basis of its phylogenetic position [35, 40], and is part of Genomic Encyclopedia of Type Strains, Phase I: the one thousand microbial genomes project [43], a follow-up of the Genomic Encyclopedia of Bacteria and Archaea pilot project [74], which aims at increasing the sequencing coverage of key reference microbial genomes.
and to generate a large genomic basis for the discovery of genes encoding novel enzymes [61]. KMG-I is the first of the production phases of the "Genomic Encyclopedia of Bacteria and Archaea: sequencing a myriad of type strains initiative a [42] and a Genomic Standards Consortium project [27]. The genome project is deposited in the Genomes OnLine Database [59] and the permanent draft genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI) using state-of-the-art sequencing technology [49]. A summary of the project information is shown in Table 2.

Growth Conditions and genomic DNA preparation
A culture of DSM 21788T was grown aerobically in DSMZ medium 830 [4] at 20 °C. Genomic DNA was isolated using Jetflex Genomic DNA Purification Kit (GENOMED 600100) following the standard protocol provided by the manufacturer but modified by an incubation time of 60 min. the incubation on ice overnight on a shaker, the use of additional 50 μl proteinase K, and the addition of 200 μl protein precipitation buffer. DNA is available from DSMZ through the DNA Bank Network [32].

Table 1 Classification and general features of *F. rivuli* WB 3.3-2T in accordance with the MIGS recommendations [26], as developed by [25], List of Prokaryotic names with Standing in Nomenclature [23] and the Names for Life database [31]

MIGS ID	Property	Term	Evidence code
Current classification	Domain	Bacteria	TAS [73]
	Phylum	Bacteroidetes	TAS [2, 41]
	Class	Flavobacteriia	TAS [3, 11]
	Order	Flavobacteriales	TAS [14, 65]
	Family	Flavobacteriaceae	TAS [13, 65]
	Genus	Flavobacterium	TAS [12, 36]
	Species	Flavobacterium rivuli	TAS [1]
	type strain	WB 3.3-2T	TAS [1]
	Gram-stain	negative	TAS [1]
	Cell shape	rod-shaped	TAS [1]
	Motility	nonmotile	TAS [1]
	Sporulation	non-spore forming	TAS [13]
	Temperature range	mesophilic (4–29 °C)	TAS [1]
	Optimum temperature	16–24 °C	TAS [1]
	pH range; Optimum	6.4–7.8, 7	TAS [1]
	Carbon source	Carbohydrates, peptides	TAS [1]
MIGS-6	Habitat	fresh water	TAS [1, 17]
MIGS-6.3	Salinity	0–2 %	TAS [1]
MIGS-22	Oxygen requirement	obligate aerobe	TAS [1]
MIGS-15	Biotic relationship	free-living	TAS [1, 17]
MIGS-14	Pathogenicity	not reported	NAS
MIGS-4	Geographic location	Harz Mountains, North Germany	TAS [1, 17]
MIGS-5	Sample collection time	9 June 2005	TAS [1, 17]
MIGS-4.1	Latitude	51.758065	TAS [1, 17]
MIGS-4.2	Longitude	10.11638	TAS [1, 17]
MIGS-4.4	Altitude	273 m	TAS [17]

Evidence codes - IDA, Inferred from Direct Assay (first time in publication), TAS traceable author statement (i.e., a direct report exists in the literature), NAS, non-traceable author statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). Evidence codes are from the Gene Ontology project [5].

Genome sequencing and assembly
The draft genome of DSM 21788T was generated using the Illumina technology [9]. An Illumina Std. shotgun library was constructed and sequenced using the Illumina HiSeq 2000 platform which generated 14,972,538 reads totaling 2,245.9 Mbp (Table 3). All general aspects of library construction and sequencing performed at the JGI can be found at [21]. All raw sequence data were passed through DUK, a filtering program developed at JGI,
which removes known Illumina sequencing and library preparation artifacts (Mingkun L, Copeland A, Han J, DUK. Unpublished). Following steps were performed for assembly: (1) filtered reads were assembled using Velvet [77], (2) 1–3 Kbp simulated paired end reads were created from Velvet contigs using wgsim [46], (3) Sequence reads were assembled with simulated read pairs using Allpaths–LG [33]. Parameters for assembly steps were: 1) Velvet (velveth: 63–shortPaired and velvetg: –very clean yes –export- Filtered yes –min contig lgth 500 – scaffolding no –cov cutoff 10) 2) wgsim (–e 0 –1 100 –2 100 –r 0 –R 0 –X 0) 3) Allpaths–LG (PrepareAllpathsInputs: PHRED 64 = 1 PLOIDY = 1 FRAG COVERAGE = 125 JUMP COVERAGE = 25 LONG JUMP COV = 50, RunAllpathsLG: THREADS = 8 RUN = std shredpairs TARGETS = standard VAPI WARN ONLY = True OVERWRITE = True). The final draft assembly contained 26 contigs in 23 scaffolds, with three contigs shorter than the threshold used to generate Table 3. The total size of the genome is 4.5 Mbp and the final assembly is based on 560.1 Mbp of data, which provides a 124.1x average coverage of the genome.

Genome annotation

Genes were identified using Prodigal [37] as part of the DOE-JGI genome annotation pipeline [49], followed by manual curation using the JGI GenePRIMP pipeline [60]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) non-redundant database, UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and InterPro database. These data sources were combined to assert a product description for each predicted protein. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes-Expert Review (IMG-ER) platform [48].

Genome properties

The assembly of the draft genome sequence consists of 23 scaffolds amounting to 4,489,248 bp. The G + C content is 39.6 % (Table 3) which is similar to the G + C content determined by Ali et al. [1] and is within the acceptable range for a microbial species [56]. Of the 4,056 genes predicted, 3,991 were protein-coding genes, and 65 RNAs. The majority of the protein-coding genes (70.1 %) were assigned a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.

Insights from the genome sequence

Comparative genomics

Here we present a brief comparative genomics analysis of *F. rivuli* DSM 21788 with a selection of its closest phylogenetic neighbour (according to Fig. 1), *F. subsaxonicum* [1] (NZ_AUGP00000000), other potentially closely related species such as *F. filum* [66] (NZ_AUDM00000000) and *F. beibuense* [30] (NZ_JRLV00000000), as well as the genome of the type species of the genus *Flavobacterium*, *F.

Attribute	Number	% of Total
DNA, total number of bases	4489248	100.0
DNA coding number of bases	3981399	88.7
DNA G + C number of bases	1777758	39.6
DNA scaffolds	23	100.0
Genes total number	4056	100.0
Protein coding genes	3991	98.4
RNA genes	65	1.6
rRNA genes	8	0.2
5S rRNA	5	0.1
16S rRNA	1	<0.1
23S rRNA	2	0.1
tRNA genes	48	1.2
Other RNA genes	9	0.2
Protein coding genes with function prediction	2842	70.1
without function prediction	1149	28.3
Protein coding genes with COGs	2570	63.4
Protein coding genes with Pfam	2924	72.1
Protein coding genes coding signal peptides	654	16.1
Protein coding genes coding transmembrane proteins	906	22.3
CRISPR repeats	0	0

Table 3 Genomic statistics

Table 2 Genome sequencing project information

MIGS ID	Property	Term
MIGS-31.1	Sequencing quality	Level 2: High-Quality Draft
MIGS-28.1	Libraries method	Illumina Std shotgun library
MIGS-28.2	Reads count	14972538 sequencing reads
MIGS-29	Sequencing method	Illumina HiSeq 2000,
MIGS-31.2	Fold coverage	124.1x
MIGS-30	Assembly method	Velvet v. 1.1.04, ALLPATHS v. r41043
MIGS-32	Gene calling method	Prodigal, GenePRIMP, IMG-ER
NCBI project ID	182404	
Genbank ID	ARK00000000	
Genbank Date of Release	16-SEP-2013	
IMG object ID	2519103183	
GOLD ID	GI11501	
MIGS-13	Source Material Identifier	DSM 21788
Project relevance	Tree of Life, GBEA-KMG	
The genomes of these five sequenced Flavobacterium type strains differ significantly in their size: F. rivuli 4.49 Mbp (see above), F. beibuense 3.8 Mbp, F. filum 3.19 Mbp, F. subsaxonicum 4.63 Mbp and F. aquatile 3.49 Mbp. Since these genome sequences have not been sequenced completely yet, the final values might change slightly in future analyses based on complete genome sequences.

An estimate of the overall similarity between F. rivuli and the other strains in this data set was generated with the Genome-to-Genome Distance Calculator (2.0) [6, 7, 53]. It calculates intergenomic distances by comparing two respective genomes to obtain HSPs (high-scoring segment pairs) and, afterwards, infers distances via a set of formulas (1, HSP length/total length; 2, identities/HSP length; 3, identities/total length). The GGDC also reports model-based DDH estimates (digital DDH or dDDH) along with their confidence intervals [53]. Since formula 2 is robust against the use of incomplete genome sequences (see above), it is especially suited for this type of analysis.

The result of this comparison is shown in Table 5 and yields dDDH of below 22 % throughout, which underlines the expected status of distinct species, as inferred from the 16S rRNA sequence similarities. Consequently, with 21.3 % dDDH F. subsaxonicum has the highest similarity to F. rivuli, whereas F. aquatile has the lowest similarity of 18.4 % dDDH. The comparison of F. rivuli with F. aquatile and F. filum reached the lowest value (2 %) regarding the average genome length covered with HSPs. This value was slightly increased (7 %) between F. rivuli and F. beibuense and clearly higher (31 %) with respect to F. subsaxonicum, the closest related species according to Fig. 1. The identity within the HSPs was 77 % on average, whereas the identity over the whole genome was 24 % regarding the comparison of F. rivuli with F. subsaxonicum, and, was even below 10 % regarding the remaining comparisons (Table 5).
Gliding motility
The gliding motility machinery among Bacteroidetes is composed of adhesion-like proteins, an ATP-binding cassette transporter, the PorS secretion system, and additional proteins, as described by McBride and Zhu [51]. In the genome of F. rivuli all genes necessary for gliding motility were identified (Table 6). However, adhesin-like proteins comparable to the ones of F. johnsoniae UW101 were not found, and gliding motility of F. rivuli was not observed previously [1].

Peptidases
The MEROPS [64] annotation was carried out by searching the sequences against MEROPS 9.10 (access date:

Table 5 Pairwise comparison of F. rivuli with F. filum, F. subsaxonicum, F. beibuense and F. aquatile using the GGDC (Genome-to-Genome Distance Calculator). Digital DDH (dDDH) and the respective confidence intervals (CI) are specified for GGDC’s recommended formula 2.

	F. rivuli versus	% dDDH	% CI	dDDH	HSP length/total length (%)	Identities/HSP length (%)	Identities/total length (%)
F. aquatile	18.4	2.5		2	76	1	
F. beibuense	18.7	2.6		7	76	6	
F. filum	19.0	2.5		2	77	1	
F. subsaxonicum	21.3	2.9	31		79	24	

Table 6 Gliding motility-related genes in strain DSM 21788T compared to genes in Flavobacterium strains studied by McBride and Zhu [51]

Locus tag prefix	F. rivuli DSM 21788T	F. psychrophilum JIP02/86T	F. johnsoniae ATCC 17061T	
Gliding motility	F565_ RS01	FP	Fjoh_	
Adhesin-like	remA –	1959	0808	
	remB –	2117	1657	
	sprB –	0016	0979	
ATP-binding cassette transporter	gldA 05270	0252	1516	
	gldD 00760	1089	2722	
	gldG 00765	1090	2721	
Additional protein required for gliding	gldB 13390	2069	1793	
	gldC 13385	2068	1794	
	gldD 18865	1663	1540	
	gldE 18860	1358	1539	
	gldH 10515	0024	0890	
	gldI 11845	1389	1557	
Peptidropyl isomerase (Flavobacterium, protein folding)	gldl 08180	1892	2369	
PorS secretion system (secretion of RemA/RemB and SprA/SprB)	gldK 18605	1973	1853	
	gldL 18600	1972	1854	
	gldM 18595	1971	1855	
	gldN 18590	1970	1856	
	sprA 06065	2121	1653	
	sprE 19150	2467	1051	
	sprF 05475	0326	1466	

*essential gliding motility genes after McBride and Zhu [51]
Table 7 Peptidases and simple peptidase inhibitors in the genome of strain DSM 21788^T

Peptidase family	M01	M03	M12	M13	M14	M16	M19	M20	M23
Counts	6	2	2	2	8	3	1	5	8
Peptidase family	M24	M28	M38	M41	M42	M43	M48	M50	M61
Counts	2	2	6	1	1	1	1	1	1
Peptidase family	M75	M79	M90	M96					
Counts	2	1	1	2					
Peptidase family	S01	S08	S09	S11	S12	S14	S16	S24	S26
Counts	2	5	31	1	6	3	3	5	1
Peptidase family	S33	S41	S46	S49	S51	S54	S66		
Counts	16	6	3	1	2	3	2		
Peptidase family	C01	C25	C26	C40	C44	C56	C82		
Counts	1	1	8	3	4	4	1		
Peptidase family	N11	T02	U32	U73	U08	U28			
Counts	1	1	2	1	1	1			
Inhibitor family	I39	I71	I87						
Counts	22	1	2						

2014.10.16, version: pepunit.lib). *F. rivuli* processes 177 peptidases the majority of which were 59 metallo (M) and 89 serine (S) peptidases (Table 7 and Additional file 1: Table S2). Furthermore, the *F. rivuli* genome contained 22 I39, two I87 and one I71 simple peptidase inhibitors (Table 7 and Additional file 1: Table S3).

Carbohydrate active enzymes

The CAZyme annotation was a combination of RAPSearch2 search [75, 78] and HMMER scanning [28]. The RAPSearch2 database was created from the protein sequences listed at the CAZy website [18, 47] (access date: 2014.09.18) while the profile HMMs were downloaded...

Table 8 Carbohydrate active enzymes (CAZy) in the genome of strain DSM 21788^T

CAZy family	GH1	GH2	GH3	GH5	GH13	GH16	GH23
Counts	1	15	11	4	4	2	2
CAZy family	GH25	GH27	GH28	GH29	GH30	GH31	GH36
Counts	1	2	5	2	3	5	2
CAZy family	GH37	GH39	GH42	GH43	GH51	GH65	GH73
Counts	1	3	1	11	3	1	1
CAZy family	GH78	GH88	GH92	GH95	GH97	GH105	GH106
Counts	1	1	2	3	5	4	2
CAZy family	GH127	GH130	GH4^a				
Counts	1	2	3				
CAZy family	GT2	GT4	GT5	GT9	GT19	GT20	GT28
Counts	13	10	1	3	1	1	1
CAZy family	GT30	GT41	GT51	GT^a			
Counts	1	1	4	1			
CAZy family	CBM2	CBM10	CBM13	CBM32	CBM35	CBM50	CBM57
Counts	1	1	1	2	4	1	
CAZy family	CE2	CE4	CE6	CE7	CE11	CE12	CE14
Counts	1	1	1	1	3	2	
CAZy family	CE^a	PL11					
Counts	3	1					

^agenes attributed to an enzyme class, but not to a family
The outputs of these two program runs were compared and only their intersections were kept (i.e., loci confirmed by both methods). In case of conflicting family assignments, the RAPSearch2 results were preferred.

Overall, in its genome *F. rivuli* DSM 21788\(^2\) possess a variety of carbohydrate active enzymes including 94 glycoside hydrolases (GH) belonging to 31 families, 11 carbohydrate binding modules (CBM) belonging to 7 families, 13 carbohydrate esterases (CE) belonging to 8 families, one polysaccharide lyase of family 11 (PL11) and 37 glycosyl transferases belonging to 11 families (Table 8 and Additional file 1: Table S4). The carbohydrate esterases CE2, CE6, CE7, CE12 might act as carboxylic-ester hydrolases (EC 3.1.1.-) and the carbohydrate esterases CE11, CE14 as linear amides (EC 3.5.1.-).

The genome of strain DSM 21788\(^2\) comprised a set of four GH5 and three GH51, for the potential hydrolysis of various cellulose or xylan polysaccharides. The absence of GH50, GH86 (agarose hydrolysis), GH18, GH19, GH20 (chitin hydrolysis) and a gene for alginate lyase (EC 4.2.2.3) corroborate the results of Ali et al. [1] that *F. rivuli* can not hydrolyze agarose, chitin and alginate, respectively. *F. rivuli* is equipped with one GH1, five GH5 and three GH30 as potential \(\beta\)-glucosidases and was shown to utilize cellobiose (D-Glc-\(\beta\)(1\(\rightarrow\)4)-D-Glc) but not cellulose [1]. Gentobiose (D-Glc-\(\beta\)(1\(\rightarrow\)6)-D-Glc) utilization and \(\beta\)-galactosidase activity was shown for *F. rivuli* [1] which has one GH1, fifteen GH2, eleven GH3 and one GH42 encoded in its genome. Starch was hydrolyzed by *F. rivuli* [1] presumably by enzyme activity of the four GH13 (\(\alpha\)-amylase) and trehalase [1] by four GH13, one GH37, one

![Fig. 4](image-url) Synteny between a potentially laminarin-specific PUL of *F. rivuli* DSM 21788\(^2\) and other Flavobacteriaceae. Open circles indicate genes which were specifically expressed by ‘Gramella forsetii’ KT0803 when grown on laminarin, as shown by Kabisch et al. [38]. Locus tags are given below both the first and last gene of the loci. Accession numbers in brackets are GenBank accession numbers of the corresponding contig. Investigation of syntenic loci was done using MultiGeneBlast [52]. A description of glycoside hydrolase families (GH) can be seen at the CAZy homepage [18, 47].

from dbCAN [76] (version: dbCAN-fam-HMMs.txt.v3). The genome of strain DSM 21788\(^2\) comprised a set of four GH5 and three GH51, for the potential hydrolysis of various cellulose or xylan polysaccharides. The absence of GH50, GH86 (agarose hydrolysis), GH18, GH19, GH20 (chitin hydrolysis) and a gene for alginate lyase (EC 4.2.2.3) corroborate the results of Ali et al. [1] that *F. rivuli* can not hydrolyze agarose, chitin and alginate, respectively. *F. rivuli* is equipped with one GH1, five GH5 and three GH30 as potential \(\beta\)-glucosidases and was shown to utilize cellobiose (D-Glc-\(\beta\)(1\(\rightarrow\)4)-D-Glc) but not cellulose [1]. Gentobiose (D-Glc-\(\beta\)(1\(\rightarrow\)6)-D-Glc) utilization and \(\beta\)-galactosidase activity was shown for *F. rivuli* [1] which has one GH1, fifteen GH2, eleven GH3 and one GH42 encoded in its genome. Starch was hydrolyzed by *F. rivuli* [1] presumably by enzyme activity of the four GH13 (\(\alpha\)-amylase) and trehalase [1] by four GH13, one GH37, one
GH65 (trehalase). The products of starch hydrolysis, maltose and D-glucose, can be utilized by *F. rivuli* [1]. Melibiose (D-Gal-α(1 → 6)-D-Glc) was metabolized by *F. rivuli* and α-galactosidase activity was confirmed [1], which might be mediated by the two GH27, two GH36 and five GH97.

Polysaccharide utilization loci

Members of flavobacteria were frequently found in aquatic habitats and play a pivotal role in the remineralization of complex organic matter [24, 39]. The coincidence of (i) a preference for polymeric substrates [39], (ii) the occurrence during algal blooms [62, 70] and (iii) the organization of genes involved in polysaccharide decomposition in polysaccharide utilization loci (PUL) [16, 67], suggests a specialization of *Flavobacteria* members towards the utilization of complex organic matter.

In *F. rivuli* DSM 21788T four PULs were identified consisting of a TonB-dependent receptor, a SusD-like protein and a series of carbohydrate active enzymes (Figs. 4, 5, 6 and 7). The syntenity between the identified PULs and 40 currently available *Flavobacteriaceae* genomes were investigated using MultiGeneBlast [52]. Figure 4 shows one of the PULs being conserved between some strains from the genera *Flavobacterium*, *Cellulophaga*, *Gramella* and *Zunongwangia*. Kabisch et al. [38] showed that proteins of the same PUL in *Gramella forsetii* KT0803 were specifically expressed when grown on laminarin. The second PUL comprised of three glycosyl transferases, two GH5 and GH43 was found also in *F. denitrificans* DSM 15936T and *F. johnsoniae* UW101 [50], but with an additional GH2 (Fig. 5). Two further PULs comprised combinations of GH2, GH3, GH31, GH97 and other glycoside hydrolases and were only partially identical with PULs of other *Flavobacterium* members (Fig. 6a and b). These PULs potentially enable *F. rivuli* to decompose hemicellulose or xylose.

In addition to the PULs, *F. rivuli* DSM 21788T had one large operon-like structure comprising a set of 11 glycoside hydrolases, 3 carbohydrate esterases, one polysaccharide lyase (Fig. 7a), notably three GH28s (exo-poly-α-D-galacturonosidase) and a PL11 (digalacturionate lyase) for the decomposition of a pectate-like polysaccharide (polygalacturonate). Acetyl groups may be split of by CE7 (acetyl xylan esterase) and CE12 (rhamnogalacturonan acetylesterase). Interestingly, this operon additionally includes an altronate hydrolase and an oxidoreductase, which are part of the D-galactopyranonurate catabolic pathway (Fig. 7c), as well as two transporters, an aldose epimerase, a dehydrogenase and a kinase, which may mediate the catabolism of side-chain saccharides such as D-xylose, D-mannose and D-arabinose. In other *Flavobacterium* species, genes of the D-galactopyranonurate catabolic pathway are all co-located in loci which are syntenic with a gene cluster in *F. rivuli* (Fig. 7b). However, the gene cluster in *F. rivuli* did not contain the altronate hydrolase and oxidoreductase. Conclusively, the absence of the two genes of the D-galactopyranonurate catabolic pathway, and thus the ability to utilize polygalacturonate, was possibly compensated by the large CAZy-rich gene cluster.

Conclusion

The high-quality draft genome sequence of the Gram-negative, non-motile *F. rivuli* WB 3.3-2T (=DSM 21788T) isolated from a spring of a hard water rivulet provided new insights into the polysaccharide-decomposition

Fig. 5 Synteny between a PUL of *F. rivuli* DSM 21788T, *F. denitrificans* DSM 15936T and *F. johnsoniae* UW101T. Locus tags are given below both the first and last gene of the loci. Accession numbers in brackets are GenBank accession numbers of the corresponding contig. Investigation of syntenic loci was done using MultiGeneBlast [52]. A description of glycoside hydrolase families (GH) and glycoside transferase families (GT) can be seen at the CAZy homepage [18, 47].
potential of freshwater Flavobacteriaceae. F. rivuli belongs to a group of deep-branching species within the genus Flavobacterium that might be more closely related to the genus Myroides than to the type species of Flavobacterium, F. aquatile. The present data points towards an unsatisfactory taxonomy irrespective of which interpretation

Fig. 6 Two PUL of F. rivuli DSM 21788 with low synteny (a, b) to PUL of other Flavobacterium members, potentially mediating the decomposition of hemicellulose or xylose. Locus tags are given below both the first and last gene of the loci. Accession numbers in brackets are GenBank accession numbers of the corresponding contig. Investigation of syntenic loci was done using MultiGeneBlast [52]. A description of glycoside hydrolase families (GH) can be seen at the CAZy homepage [18, 47].
Fig. 7 (See legend on next page.)
one follows and is largely a result of publishing new species in the genus *Flavobacterium* without taking into consideration a wider range of species in that genus or including members of the genus *Myroides* as well as publishing new species within the genus *Myroides* without taking a larger number of species from the genus *Flavobacterium* into consideration (including the type species). At the same time all evaluations are primarily based on “phylogenetic data” (i.e., gene sequence data) and genera are often poorly delineated. At first glance it does not appear that this approach will resolve this issue. Bernardet et al. [12] mentioned the clustering of *F. rivuli* among other *Flavobacterium* species in groups or possible new genera which have 16S rRNA gene sequence identities below 93 % with the type species *F. aquatile* of the genus. However, the potentially new genera could not be delineated because different procedures or culture conditions were used to describe common features [12].

The problem of an essentially unresolved backbone in the 16S rRNA gene sequence phylogeny of the *Flavobacteriaceae* (see above) will most probably be overcome in the near future with the foreseeable increase of publicly available draft genome sequences from large scale projects such as GBEA, which will enable us to infer whole genome sequence based phylogenies with a significantly higher statistical support for the branching topology using genome-based inference methods [54].

The genome of strain *F. rivuli* WB 3.3-2^T (DSM 21788^T) comprised 4.48 Mbp on 23 scaffolds and was sequenced as part of the *Genomic Encyclopedia of Bacteria and Archaea* project. The genome encoded for a great variety of 151 carbohydrate active enzymes and 177 peptidases. The four identified polysaccharide-utilization loci may enable strain WB 3.3-2^T to decompose laminarin, hemicellulose and xylose. One gene cluster was identified that may enable strain WB 3.3-2^T to decompose pectate-like polysaccharides. This genome in combination with other genomes of the *Flavobacteriaceae* will give further insights into the evolution and genetic potential of bacteria succeeding in substrate-related niches during polysaccharide decomposition in marine and freshwater habitats.

Additional file

Additional file 1: Table S1. Accession numbers of 16S rRNA gene sequences of *Flavobacterium*, *Myroides*, *Capnocytophaga* and *Coenonia* type strains used for generating the phylogenetic tree (Fig. 1) and the histogram (Fig. 2). **Table S2.** Peptidases or homologues in the genome of *F. rivuli* DSM 21788^T. **Table S3.** Simple peptidases inhibitors in the genome of *F. rivuli* DSM 21788^T. **Table S4.** Carbohydrate active enzymes (CAZymes) in the genome of *F. rivuli* DSM 21788^T. **Table S5.** Sulfatases in the genome of *F. rivuli* DSM 21788^T.
Flavobacterium swingii sp. nov. and Flavobacterium reichenbachii sp. nov., isolated from a hard water rivulet. Int J Syst Evol Microbiol. 2009;59:2610–7.

2. Anon. Validation List N° 143. Int J Syst Evol Microbiol. 2012;62:1–4.

3. Anon. Validation List N° 145. Int J Syst Evol Microbiol. 2012;62:1017–9.

4. Anon. List of growth media used at the DSMZ. http://www.dsmz.de/.

5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25:25–9.

6. Auch AF, Klenk H-P, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci. 2010;2:142–8.

7. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci. 2010;2:117–34.

8. BAuA 2010 – 2012 update. Classification of bacteria and archaea in risk groups. http://www.baue.de. TRBA 466. 19.

9. Bennett S, Solexa Ltd. Pharmacogenomics. 2004:433–8.

10. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon FM. Bergey’s Manual of Determinative Bacteriology 1st edn. Baltimore: Williams and Wilkins Co.; 1923.

11. Bernardet J-F. Class II. Flavobacteria class. nov. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig WWBB, editors. Bergey’s Manual of Systematic Bacteriology, The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Flavobacteria, Dictyoglycos, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes, vol. 4. 2nd ed. New York: Springer; 2010. p. 106–314.

12. Bernardet JF, Bowman JP, Genus I. Flavobacterium. Bergonie, Breed, Hammer and Huntoon 1923, 97º emend. Bernardet, Segers, Vancannetty, Berthe, Kersters and Vandamme 1996, 139. In: Bergey’s Manual of Systematic Bacteriology, The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Flavobacteria, Dictyoglycos, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes, vol. 4. 2nd ed. New York: Springer; 2011. p. 112–54.

13. Bernardet JF, Family I. Flavobacteriaceae Reichenbach 1902a, 327VP (Effective publication: Reichenbach 1980b, 2013) emend. Bernardet, Segers, Vancannetty, Berthe, Kersters and Vandamme 1996, 145 emend. Bernardet, Nakagawa and Holmes 2002, 1057. In: Bergey’s Manual of Systematic Bacteriology, vol. 4, 2nd ed. New York: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Flavobacteria, Dictyoglycos, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. Springer; 2011. p. 106–314.

14. Bernardet JF, Order I. Flavobacterales ord. nov. In: Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB, editors. Bergey’s Manual of Systematic Bacteriology, The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Flavobacteria, Dictyoglycos, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes, vol. 4. 2nd ed. New York: Springer; 2011. p. 105–329.

15. Bernardet JF, Segers P, Vancannetty M, Berthe F, Kersters K, Vandamme P. Cutting a gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hblus nov. sp. (bacsoyn, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol. 1996;46:128–48.

16. Bjursell MK, Martens EC, Gordon J. Functional genomic and metatbolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem. 2006;281:36269–79.

17. Brambilla E, Päuker O, Cousin S, Steiner U, Reimer A, Stackebrandt E. High through loses genomic and metatbolic studies of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem. 2006;281:36269–79.

18. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 2009;37:D233

19. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, et al. The NCBI taxonomy database at the turn of the century. Nucleic Acids Res. 2011;39:51.

20. Castresana J. Selection of conserved blocks from multiple alignments for genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci. 2010;2:117–34.

21. DOE Joint Genome Institute. A DOE office of science user facility of Lawrence Berkeley national laboratory. DOE Jt Genome Inst. http://jgi.doe.gov.

22. Dong K, Xu B, Zhu F, Wang G. Flavobacterium luxurense sp. nov., isolated from soil and emended descriptions of Flavobacterium suboxonimun;
Hahnke et al. Standards in Genomic Sciences (2015) 10:46

47. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZY) in 2013. Nucleic Acids Res. 2014;42:D490–5.

48. Markowitz VM, Mavromatis K, Ivanova NN, Chen IM, Chu K, Kyrpides NCM. IMG/GER: a system for microbial genome annotation expert review and curation. Bioinformatics. 2009;25:221–8.

49. Mavromatis K, Land ML, Brettin TS, Quest DJ, Copeland A, Clum A, et al. The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation. PLoS One. 2012;7:e48837.

50. McBride MJ, Xie G, Martens EC, Lapidus A, Henrissat B, Rhodes RG, et al. Novel features of the polysaccharide-digesting glucid binding bacterium Flavobacterium johnsonii as revealed by genome sequence analysis. Appl Env Microbiol. 2009;75:6864–75.

51. McBride MJ, Zhu Y. Gliding motility and Por secretion system genes are widespread among members of the phylum Bacteroidetes. J Bacteriol. 2013;195:270–8.

52. Medema MH, Takano E, Breitling R. Detecting sequence homology at the gene cluster level with MultiGeneBlast. Mol Biol Evol. 2013;30:1218–23.

53. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions, BMC Bioinformatics. 2013;14:60.

54. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Highly parallelized inference of large genome-based phylogenies. Concur Comput Pract Exp. 2014;26:1715–29.

55. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol. 2013;195:413–8.

56. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol. 2014;64:352–6.

57. Montero-Calasanz MDC, Göker M, Rohde M, Spröer C, Schumann P, Busse HJ, et al. Chryseobacterium oseae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambiri, C. ileum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, and C. gleum. Int J Syst Evol Microbiol. 2014;63:4386–95.

58. Pham MT, Bao Y, Yang J, Yu C, Bao X. Finding common domains in protein homologues. Algorithms Mol Biol. 2015;10:3.

59. Qin J, Li S, Cai Q, Li R, Wang J, Li W, et al. A metagenome-wide association study of gut microbiome in twins. PLoS Genet. 2014;10:e1004369.

60. Pati A, Mikhailova NN, Ochman H, Koonin EV, Wolf YI, Koonin EP. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods. 2012;40:D571–9. doi:10.1038/nrg11100. Epub 2011.

61. Prasad KV, Prasad KV. Review of the role of growth-promoting bacteria in crop production. J Plant Nutr. 2014;37:342–50.

62. Prasad KV, Prasad KV. Review of the role of growth-promoting bacteria in crop production. J Plant Nutr. 2014;37:342–50.

63. Prasad KV, Prasad KV. Review of the role of growth-promoting bacteria in crop production. J Plant Nutr. 2014;37:342–50.

64. Prasad KV, Prasad KV. Review of the role of growth-promoting bacteria in crop production. J Plant Nutr. 2014;37:342–50.

65. Prasad KV, Prasad KV. Review of the role of growth-promoting bacteria in crop production. J Plant Nutr. 2014;37:342–50.

66. Prasad KV, Prasad KV. Review of the role of growth-promoting bacteria in crop production. J Plant Nutr. 2014;37:342–50.

67. Prasad KV, Prasad KV. Review of the role of growth-promoting bacteria in crop production. J Plant Nutr. 2014;37:342–50.