The Unusual Homodimer of a Heme-Copper Terminal Oxidase Allows Itself to Utilize Two Electron Donors

Guoliang Zhu*, Hui Zeng*, Shuangbo Zhang†, Jana Jili, Linhua Tai, Danyang Zhang, Xiaoyun Pang, Yan Zhang, Sin Man Lam, Yun Zhu,* Guohong Peng,* Hartmut Michel* and Fei Sun*

Abstract: The heme-copper oxidase superfamily comprises cytochrome c and ubiquinol oxidases. These enzymes catalyze the transfer of electrons from different electron donors onto molecular oxygen. A B-family cytochrome c oxidase from the hyperthermophilic bacterium Aquifex aeolicus was discovered previously to be able to use both cytochrome c and naphthoquinol as electron donors. Its molecular mechanism as well as the evolutionary significance are yet unknown. Here we solved its 3.4 Å resolution electron cryo-microscopic structure and discovered a novel dimeric structure mediated by subunit I (CoxA2) that would be essential for naphthoquinol binding and oxidation. The unique structural features in both proton and oxygen pathways suggest an evolutionary adaptation of this oxidase to its hyperthermophilic environment. Our results add a new conceptual understanding of structural variation of cytochrome c oxidases in different species.

Introduction

In all respiring organisms electrochemical proton gradients drive the flux of protons back through the membrane via ATP-synthases, which produces adenosine-5′-triphosphate by attaching an inorganic phosphate to adenosine-5′-diphosphate. In aerobic organisms, the electrochemical proton gradient is generated by a series of proton translocation reactions in the respiratory chains. Cytochrome c oxidase (CcO) is the terminal enzyme in the respiratory chains of many aerobic organisms. It is located in the inner membrane of mitochondria and bacteria, and catalyzes the electron transfer from cytochrome c to molecular oxygen that is reduced to water. Studies on this integral membrane protein complex revealed that eight protons are taken up from the matrix side of mitochondrial membrane or from the bacterial cytoplasm (N-side), four protons are pumped across the membrane into the intermembrane space of mitochondria or the periplasm of gram-negative bacteria (P-side), while another four protons are used for water formation.[1]

CcO is a member of the heme- and copper-containing terminal oxidases (HCOs) superfamily,[2] which also includes ubiquinol oxidases (QOxes), for example, the well-studied cytochrome bo3 from Escherichia coli (E. coli)[3] but not the cytochrome bd oxidases from the same bacterium.[4] HCOs are classified into three families, A, B and C, based on their amino acid sequences and proton transfer pathways.[5] They are multi-subunit complexes, for example, they possess 14 protein subunits in mammalian mitochondria[6] and 3 subunits in some bacteria.[7]

The conserved central catalytic subunit I contains two heme groups and a copper atom (Cuα). The low-spin heme can be a heme a or a heme b in prokaryotes,[8,9] whereas only heme a has been found in mitochondrial cytochrome c oxidases.[9] The low-spin heme a in the A-family CcO from

S. M. Lam
LipidALL Technologies Company Limited
Changzhou 213022, Jiangsu Province (China)
and
State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology,
Chinese Academy of Sciences
No.1 West Beichen Road, Chaoyang District, Beijing, 100101 (China)

[†] These authors contributed equally to this work.

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.202016785.

© 2021 The Authors. Angewandte Chemie published by Wiley-VCH GmbH.
This is an open access article published under a Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited.
Results

Overall structure of AaCcO dimer

The AaCcO sample was enriched by anion exchange chromatography and further purified by size-exclusion chromatography, and the fractions showing a dominant homogenous band around 242 kDa in Blue Native PAGE were used for subsequent cryo-EM experiments (Figure S1). Based on cryo-EM 3D classification using RELION[21] (Figure S2), we found two well-aligned classes of particles existing in the current purified sample. The first class represents the structure of dimeric complex III reported by us before[20] and the second represents the structure of dimeric AaCcO.

Our substantial image processing does not suggest the existing of any potential supercomplex in this sample. After in silico purification, the dimeric AaCcO structure was determined at a final resolution of 3.4 Å according to the gold standard FSC[0.14] (Fourier Shell Correlation) criterion (Figures S2, S4 and S5; Movie S1). The AaCcO dimer exhibits a C2 symmetry and contains three subunits (Figure 1A), subunit I (CoxA2, 63.9 kDa) with the heme b and the heme a/ Cu₄ active site, subunit II (CoxB2, 16.8 kDa) with the Cu₄ center, and subunit IIa (5.2 kDa) (Figure S1). It has dimensions of 84.7 Å in height and 107.7 Å in length. The length of the AaCcO monomer is 55.0 Å. The cofactors Cu₄, Cu₄, heme a, and heme b are well resolved (Figure 1B and Figure S4) with the edge-to-edge distance between Cu₄ and heme b Fe 15.4 Å, and the edge-to-edge distances from heme b to heme NQH₂ to be a direct electron donor bypassing cytochrome c.

Further structure comparisons revealed structural variations of AaCcO to increase structural stability and alter the proton transfer pathway as well as the oxygen diffusion pathway for its adaptation of the hyperthermophilic growth environment.

Figure 1. Overall structure of AaCcO. A) The protein structure of AaCcO is shown in two different views, with the dimensions indicated. The subunits CoxA2, CoxB2, and IIa are colored in green, yellow, and orange, respectively. B) The cofactors and quinols (NQs) are shown as stick representations. The color scheme of subunits CoxA2, CoxB2, and IIa is the same as in (A). The edge-to-edge distances between NQ from one protomer and heme b from the other protomer are labeled.
a_1 and from heme a_3 to Cu$_4$ are 5.0 Å and 5.1 Å, respectively. The overall structure of AaCcO is similar to that of TtCcO with a root mean square deviation (RMSD) of 1.02 Å for the aligned C$_\alpha$ atoms.

Subunit I: CoxA2

Surprisingly, subunit I (CoxA2) contains 14 TMHs, two more than the canonical structures of CcOs. The two additional TMHs of CoxA2 are found at the C-terminus (Figure 2A). This observation is consistent with sequence alignments which show subunit I in prokaryotes has a longer C-terminus than that in eukaryotes (Figure S3). The extra two TMHs bind to the outer surface of TMH5, TMH6, TMH7, and TMH8 of CoxA2. A superimposition of the AaCcO and TtCcO structures shows that the location of the 13th TMH is same in both complexes (Figure 2B). The structural superimposition also shows that the additional TMH14 occupies nearly the same site of one TMH of subunit III of the aa$_3$-type CcO (Figure 2C). The unique loop between TMH8 and TMH9 in AaCcO contributes to the formation of the dimeric structure. Superimposed subunit I is of AaCcO, TtCcO, and BtCcO are colored with the same scheme in (A), (B), and (C).

Subunit II: CoxB2 and Subunit III: Ila

Subunit II (CoxB2) contains one TMH and a ten-stranded β-barrel (Figure 3A). The β-barrel forms a polar domain that is located at the periplasmic side. The binuclear Cu$_3$ center is bound by the conserved residues His96, His139, Cys131, and Cys135. The distance between the two copper atoms is 2.7 Å. The conserved residues Trp121 and Tyr122 in *P. denitrificans* were proposed to play important roles in the electron transfer from cytochrome c to Cu$_A$. These two conserved residues are also observed in CoxB2 as Trp66 and Tyr67 (Figure S3 A,B). Subunit Ila of AaCcO has been identified previously and the corresponding density was found and traced in our structure. It contains only one TMH that possesses a location identical to that of the first TMH of subunit II in PdCcO but with opposite orientation (Figure 3A). Subunit Ila is involved in the formation of the dimer interface and interacts with many lipid molecules.

The AaCcO dimer

A comparison of the AaCcO dimer structure with the BtCcO dimer structure (PDB entry 2OCC) shows that their dimer interfaces are completely different (Figure 4A). The AaCcO dimer is formed via interactions of its major subunit CoxA2 while this is not the case for BtCcO (Figure 4B). Few protein–protein but fruitful protein–lipid interactions are observed in the dimeric interface. Strong hydrogen bond networks between protomers are observed among residues Tyr328, Arg337 and Glu339 at the loop region between TMH8 and TMH9 (Figures 4C,D). A hydrophobic cavity is
found in the interface near the cytoplasmic side, which is occupied by many lipid molecules (Figure S4). Two PEs (phosphatidylethanolamine) and two PGs (phosphatidylglycerol) lipid molecules are identified in the cavity (Figure 4C). And four more PGs are found at the vicinity (Figure 4C). Interestingly, two quinol molecules (NQ) are found at the interface with the head group orientation towards the P-side (Figure 4C). Our subsequent lipidomics mass spectrometry analysis of co-purified lipids in the sample confirmed the exact chemical composition of PE and PG and the mass spectrometry analysis of native A. aeolicus membranes identified the native quinol molecule as VII-tetrahydromultienol (phosphatidylethanolamine) and two PGs (phosphatidylglycerol) lipid molecules are identified in the cavity (Figure 4C).

The NQ binding site

We previously reported that AaCtO can use both reduced cytochrome c and quinol as electron donors. We originally hypothesized it would be caused by formation of a supercomplex between AaCcO and complex III, providing additional quinol binding sites for its direct oxidation bypassing cytochrome c. However, our structural study of the A. aeolicus complex II, which is buried inside one protomer while its carbonyl oxygen is proximal to heme b of another protomer (Figures 5A,B). The edge-to-edge distance between NQ and heme b is 15.0 Å. With this distance direct electron transfer is possible. In addition, the existence of several aromatic residues (Phe37, Try38, Tyr53, and Phe445) would be also possible involved in the electron transfer from NQ to heme b (Figure 5B). This quinol binding pocket is similar to the menaquinol binding pocket in cytochrome aa3-600 menaquinol oxidase from Bacillus subtilis (Figure S7B).

Only a K proton pathway exists in AaCtO

Based on the structure of a B-family CcO, the presence of three possible proton pathways, named K-, D-, and Q-pathways, were previously suggested. The residues for forming these pathways are usually conserved between different species with only a limited number of mutations. The K-pathway, named after its essential lysine residue Lys354, was identified previously. Structural superposition of the crystal structure of TtCcO and the cryo-EM structure of AaCcO reveals the presence of the K-pathway in AaCcO, except that at the start Glu516 in the subunit I of TtCcO is mutated to His515 in AaCcO (Figure 6A). In this pathway, protons can be transferred from His515 and Asp516 at the N side, via Lys354, Lys355, Thr353, Thr354, Ser350, and Thr226 to the active site that is formed by the high spin heme a1 and CuA. In the classical K-pathway, there is usually a conserved Glu of subunit II as a potential proton entry point, which is Glu515 in the subunit II of TtCcO and also conserved in AaCcO (Glu5 of subunit II, Figure S8).

Structural superposition also reveals the potential D- and Q-pathway of AaCcO (Figures 6B,C). In the D-pathway of TtCcO, protons can be transferred from Glu17 on the cytoplasmic side, via Thr91, Ser109, Ser155, Thr156, Ser197, Thr231, and several water molecules, to the heme a1 active...
site. However, in AaCcO, the entrance for protons is blocked by several hydrophobic residues, including Ala82, Leu89, Ala79, and Ile10. Furthermore, replacing hydrophilic residues to hydrophobic ones Val74, Ile186, and Phe220 does not allow proton transfer (Figure 6B). A similar situation was also found for the potential Q-pathway of AaCcO (Figure 6C). Thus, only the K-pathway does exist for proton transfer in AaCcO.

An unobstructed oxygen diffusion pathway in AaCcO

Based on the crystal structure of TtCcO, the presence of a Y-shaped oxygen diffusion pathway with two entry points was suggested (Figure 7A). Interestingly, in AaCcO one V-shaped potential oxygen diffusion pathway is observed (Figure 7B). There is only one entry point to this diffusion pathway, which starts at the middle of the membrane. In this pathway, O$_2$ enters a hydrophobic gate formed by Ile194, Ile193, Val138, and Leu190, turning at Phe220, Phe123, Val65, Ile66, and Try121, then passes near Trp228, Val224, Val225, Phe220, Phe217, Trp218 to reach the heme a_3 active center (Figure 7B). Sequence alignment shows that most of the residues lining the putative oxygen pathway are conserved, except Phe113 in AaCcO (Figure S9). A structural superposition of TtCcO and AaCcO reveals that the oxygen entry point 2 might be blocked by Phe113 in AaCcO (Figure 7C).

Discussion

The structures and functions of respiratory complexes from different species have been extensively studied in past years. Compared to conventional cytochrome c oxidases that use cytochrome c as the electron donor, AaCcO can directly oxidize quinol substrates besides cytochrome c. In the present study, we explored the high-resolution structure of AaCcO by single particle cryo-EM and got insights into the molecular mechanism of how AaCcO could use both cytochrome c and quinol as electron donors by discovering the existence of the native quinol molecules NQs bound at the dimeric interface. The edge-to-edge distance from NQ to heme b is close enough to enable a direct electron transfer from NQH$_2$ to the active binuclear center via heme b. The proximal aromatic residues between NQ and heme b would presumably enhance the rate of electron transfer. Subunit IIa was found to be important for NQ binding by ligation of the head group of NQ and the residue Glu39 of Subunit IIa presumably plays a role of stabilizing NQ during electron transfer. Notably, such electron transfer could only happen between NQ bound to one protomer and heme b of another protomer. Thus, the dimerization of AaCcO not only provides a new interface for NQ binding but also be necessary for direct electron transfer from NQ. Any regulation factor including thermal fluctuation that alters the formation of AaCcO dimer might affect its activity of direct NQH$_2$ oxidation, which could likely explain the low quinol oxidation activity measured previously.
Previous studies found BtCcO to form a homodimer in the crystals,[29] while it appears as a monomer in all supercomplex structures.[30] A recent cryo-EM study discovered another intact 14th subunit (NDUFA4) of human cytochrome c oxidase, which is important to keep it in a monomeric active form but was absent in the previous dimeric less active form.[31] At the same time, the structure of an active monomeric form of BtCcO was also determined by X-ray crystallography.[32] Our present work does not rule out the existence of a supercomplex in A. aeolicus, which has been suggested in a previous study.[33] However, the insensitivity of ubiquinol oxidation activity of the potential supercomplex to stigmatellin indicated that AaCcO itself has the activity of ubiquinol oxidation.[18] After solving the structure of AaCcO, its ubiquinol oxidation activity could be only explained by its dimeric form. Furthermore, this dimeric form is different from that of all other reported CcO dimers. We also superimposed the dimeric structure of AaCcO into other reported respiratory supercomplexes from Mycobacterium smegmatis (M. smegmatis),[34] Saccharomyces cerevisiae (S. cerevisiae)[26] and Sus scrofa (S. scrofa).[35] and found the dimeric interface of AaCcO does not overlap the interface between complex III and complex IV in the supercomplexes from M. smegmatis and S. scrofa (Figure S10). Thus, to form a supercomplex, such dimeric form of AaCcO would not need to be broken.

Considering the hyperthermophilic growth environment of A. aeolicus, it would be interesting to investigate the unique structural features of its respiratory chain complex and understand the mechanism of structural adaptation suitable for hyperthermophilic environment. In our previous study of A. aeolicus complex III, we discovered an extra transmembrane helix of cyt. c1 and several unique residues important for the thermotability of the complex.[30] Interestingly, we also found that subunit I of AaCcO possesses two additional C-terminal transmembrane helices, THM13 and TMH14, in comparison with eukaryotic CcOs, or still one additional TMH when comparing with TtCcO, a thermophilic prokaryotic CcO. Thus, it might be possible that the presence of the extra TMHs of AaCcO enhances its thermal stability suitable for the hyperthermophilic growth conditions. In addition, the membrane-anchored cytochrome c555 might bind to this TMH14, as proposed for the αα-type CcO from P. denitrificans.[36]

Based on the crystal structure of TtCcO, three proton transfer pathways (K, D, and O) were proposed.[7] Mutations of critical residues on D-pathway (S109A) and Q-pathway (T98V) showed little influence on the enzymatic activity.[13,37] Structural superposition of TtCcO and AaCcO reveals that the D- and Q-proton pathways in AaCcO are both blocked by multiple hydrophobic residues. Therefore, even if the D- and Q-proton pathways in TtCcO were active, the same pathways in AaCcO should be closed and inactive. Only the K-pathway appears to be present in AaCcO. Besides the proton transfer pathway, the potential oxygen diffusion channel of AaCcO also varies in comparison with that of TtCcO. Along with conserved oxygen channels being suggested for CcOs from Rhodobacter sphaeroides,[38] P. denitrificans[39] and B. taurus,[40] a Y-shaped oxygen channel was also reported in TiCcO, suggesting that there are two entry points for oxygen. However, structural superposition of AaCcO and TiCcO suggest that only one oxygen diffusion channel exists and forms a V-shaped in AaCcO. The second oxygen entry point 2 found in TiCcO is blocked by residue Phe113 in AaCcO at the equivalent position. The larger the void in a protein, the smaller is its stability.[10] The adapted structure of AaCcO with only the K proton pathway present and the V-shaped unobstructed oxygen channel with more hydrophobic residues blocking one entry appears to be evolutionary advantageous to keep the balance between its enzymatic activity and structural stability in the hyperthermophilic environment.

Conclusion

In summary, we solved the 3.4 Å structure of cytochrome c oxidase from the hyperthermophilic bacterium Aquifex aeolicus, revealed the molecular mechanism that this oxidase uses both cytochrome c and quinol as electron donors, made structural insights into its thermal stability, and suggested an evolutionary adaptation of this oxidase to keep the balance between its enzymatic activity and structural stability for the hyperthermophilic growth condition. These results provide structural basis for molecular mechanism and the evolutionary significance of cytochrome c oxidases in an extreme thermal environment.

Data and materials availability

The atomic coordinates of the cytochrome c oxidase of Aquifex aeolicus reported in this paper have been deposited in Worldwide Protein Data Bank (PDB) (http://www.rcsb.org) with the accession codes 7DEG. The corresponding maps have been deposited in the Electron Microscope Data Bank (EMDB) (http://emdbank.org) with the accession codes EMD-30657.

Acknowledgements

We thank Ping Shan, Ruigang Su and Mengyue Lou (FS lab) for their assistance in lab management. The materials were prepared at the Max Planck Institute of Biophysics, whereas the cryo-EM work was performed at the Center for Biological Imaging (CBI, http://cibi.ibp.ac.cn), Core Facilities for Protein Science at the Institute of Biophysics (IBP), Chinese Academy of Sciences (CAS). We would also like to thank B. Zhu, X. Huang, X. Li, T. Niu, G. Ji, D. Fan and other staff members from CBI for their help in data collection. We thank Zhensheng Xie from Lab of Proteomics, Core Facilities for protein Science, IBP, CAS for her help on LC-MS analysis. We thank Ulrich Ermel for his advice on data analysis. This work was equally supported by grants from Strategic Priority Research Program of Chinese Academy of Sciences (XDB37040102), the National Key Research and Development Program of China (2017YFA0504700) and National
Conflict of interest

The authors declare no conflict of interest.

Stichwörter: cytochrome c oxidase · dimerization · enzyme catalysis · naphthoquinone · protein structures

References:
1. A. Kannt, T. Soulimane, G. Buse, A. Becker, E. Banas, C. M. Ionescu, M. Otteypka, J. Koja, Chem. 2013, 5, 8872.
2. A. G. N. Green, H. Fang, R. J. Lin, G. Newton, C. D. Georgiou, R. B. Gennis, J. Biol. Chem. 1988, 263, 131–134.
3. A. M. Pereira, F. L. Sousa, A. F. Verissimo, M. Teixeira, Biochim. Biophys. Acta Bioenerg. 2008, 1777, 56–86; b) J. Hemp, R. B. Gennis, Results Probl. Cell Differ. 2008, 45, 1–31.
4. A. M. Pereira, F. Luquet, M. Teixeira, M. Bertran, A. Becker, M. Otteypka, Biochim. Biophys. Acta Bioenerg. 2001, 1505, 185–208.
5. B. Sals, B. Marc, F. Perel-Clemente, R. Szklarecz, E. Calvo, M. O. Landazuri, J. A. Enriquez, Cell Metab. 2012, 16, 378–386.
6. T. Soulimane, G. Buse, G. P. Bourenkov, H. D. Bartunik, R. Huber, M. E. Than, EMBO J. 2000, 19, 1766–1776.
7. B. D. Hill, J. Biol. Chem. 1994, 269, 2419–2425.
8. T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shizawa-Itoh, R. Nakashima, R. Yano, S. Yoshikawa, Science 1995, 269, 1069–1074; b) T. Tsukihara, H. Aoyama, E. Yamashita, T. Tomizaki, H. Yamaguchi, K. Shizawa-Itoh, R. Nakashima, R. Yano, S. Yoshikawa, Science 1996, 272, 1136–1144.
9. J. Abramson, S. Riitamo, G. Larsson, A. Jasaitis, M. Svensson-Ek, L. Laakkonen, A. Puustinen, I. Iwata, M. Wikstrom, Nat. Struct. Mol. Biol. 2000, 7, 910–917.
10. H. Witt, F. Malatesta, F. Nicoletti, M. Brunori, B. Ludwig, J. Biol. Chem. 1998, 273, 5123–5136; b) H. Witt, F. Malatesta, F. Nicoletti, M. Brunori, B. Ludwig, Eur. J. Biochem. 1998, 251, 367–373.
11. A. Puustinen, M. Finel, T. Halta, R. B. Gennis, M. Wikstrom, Biochemistry 1991, 30, 3936–3942.
12. J. A. Lyons, D. Aragao, O. Slattery, A. V. Pliakowski, T. Soulimane, M. Caffrey, Nature 2012, 487, 514–518.
13. T. Tietjenbrunn, W. Liu, Y. Chen, V. Katrich, C. D. Stout, J. A. Fee, V. Cherezov, Plos One 2011, 6, e22348.
14. H. Y. Chang, J. Hemp, Y. Chen, J. A. Bennis, Proc. Natl. Acad. Sci. USA 2009, 106, 16169–16173.
15. V. Rashamaki, M. Wikstrom, Biochim. Biophys. Acta Bioenerg. 2014, 1837, 999–1003.
16. A. Kannt, T. Soulimane, G. Buse, A. Becker, E. Banas, H. Michel, FEBS Lett. 1998, 434, 17–22.
17. M. M. Pereira, M. Santana, C. M. Soares, J. Mendes, J. N. Carita, A. S. Fernandes, M. Saraste, M. A. Carrondo, M. Teixeira, Biochim. Biophys. Acta Bioenerg. 1999, 1413, 1–13.
18. Y. Gao, B. Meyer, L. Sokolova, K. Zwicker, M. Karas, B. Brutschy, G. H. Peng, H. Michel, Proc. Natl. Acad. Sci. USA 2012, 109, 3275–3280.
19. G. L. Zhu, H. Zeng, S. B. Zhang, J. Iuli, X. Y. Pang, J. Hoffmann, Y. Zhang, N. Morgen, Y. Zhu, G. H. Peng, H. Michel, F. Sun, Angew. Chem. Int. Ed. 2020, 59, 343–351; Angew. Chem. 2020, 132, 351–359.
20. A. M. Pereira, M. Santana, C. M. Soares, J. Mendes, J. N. Carita, Biochim. Biophys. Acta Bioenerg. 1999, 1413, 1–13.
21. Y. Gao, B. Meyer, L. Sokolova, K. Zwicker, M. Karas, B. Brutschy, G. H. Peng, H. Michel, Proc. Natl. Acad. Sci. USA 2012, 109, 3275–3280.
22. G. L. Zhu, H. Zeng, S. B. Zhang, J. Iuli, X. Y. Pang, J. Hoffmann, Y. Zhang, N. Morgen, Y. Zhu, G. H. Peng, H. Michel, F. Sun, Angew. Chem. Int. Ed. 2020, 59, 343–351; Angew. Chem. 2020, 132, 351–359.
23. A. S. Fernandes, M. Saraste, M. A. Carrondo, M. Teixeira, Biochim. Biophys. Acta Bioenerg. 1999, 1413, 1–13.
24. Y. Gao, B. Meyer, L. Sokolova, K. Zwicker, M. Karas, B. Brutschy, G. H. Peng, H. Michel, Proc. Natl. Acad. Sci. USA 2012, 109, 3275–3280.
25. G. L. Zhu, H. Zeng, S. B. Zhang, J. Iuli, X. Y. Pang, J. Hoffmann, Y. Zhang, N. Morgen, Y. Zhu, G. H. Peng, H. Michel, F. Sun, Angew. Chem. Int. Ed. 2020, 59, 343–351; Angew. Chem. 2020, 132, 351–359.
26. A. S. Fernandes, M. Saraste, M. A. Carrondo, M. Teixeira, Biochim. Biophys. Acta Bioenerg. 1999, 1413, 1–13.
27. Y. Gao, B. Meyer, L. Sokolova, K. Zwicker, M. Karas, B. Brutschy, G. H. Peng, H. Michel, Proc. Natl. Acad. Sci. USA 2012, 109, 3275–3280.
28. G. L. Zhu, H. Zeng, S. B. Zhang, J. Iuli, X. Y. Pang, J. Hoffmann, Y. Zhang, N. Morgen, Y. Zhu, G. H. Peng, H. Michel, F. Sun, Angew. Chem. Int. Ed. 2020, 59, 343–351; Angew. Chem. 2020, 132, 351–359.
29. A. S. Fernandes, M. Saraste, M. A. Carrondo, M. Teixeira, Biochim. Biophys. Acta Bioenerg. 1999, 1413, 1–13.
30. Y. Gao, B. Meyer, L. Sokolova, K. Zwicker, M. Karas, B. Brutschy, G. H. Peng, H. Michel, Proc. Natl. Acad. Sci. USA 2012, 109, 3275–3280.
[36] J. W. de Gier, M. Schepper, W. N. Reijnders, S. J. van Dyck, D. J. Slotboom, A. Warne, M. Saraste, K. Krab, M. Finel, A. H. Stouthamer, R. J. van der Oost, Mol. Microbiol. 1996, 20, 1247–1260.
[37] H. Y. Chang, S. K. Choi, A. S. Vakkasoglu, Y. Chen, J. Hemp, J. A. Fee, R. B. Gennis, Proc. Natl. Acad. Sci. USA 2012, 109, 5259–5264.
[38] M. Svensson-Ek, J. Abramson, G. Larsson, S. Tornroth, P. Brzezinski, S. Iwata, J. Mol. Biol. 2002, 321, 329–339.
[39] S. Iwata, C. Ostermeier, B. Ludwig, H. Michel, Nature 1995, 376, 660–669.
[40] B. Lee, Protein Sci. 1993, 2, 733–738.

Manuskript erhalten: 18. Dezember 2020
Akzeptierte Fassung online: 4. März 2021
Endgültige Fassung online: 6. Mai 2021