Influence of synaptic interaction on firing synchronization and spike death in excitatory neuronal networks

Sheng-Jun Wang1, Xin-Jian Xu2, Zhi-Xi Wu3, Zi-Gang Huang1, and Ying-Hai Wang4

1Institute of Theoretical Physics, Lanzhou University, Lanzhou Gansu 730000, China
2Department of Mathematics, College of Science, Shanghai University, Shanghai 200444, China
3Department of Physics, Umeå University, 90187 Umeå, Sweden

(Dated: November 17, 2008)

We investigated the influence of efficacy of synaptic interaction on firing synchronization in excitatory neuronal networks. We found spike death phenomena, namely, the state of neurons transits from limit cycle to fixed point or transient state. The phenomena occur under the perturbation of excitatory synaptic interaction that has a high efficacy. We showed that the decrease of synaptic current results in spike death through depressing the feedback of sodium ionic current. In the networks with spike death property the degree of synchronization is lower and unsensitive to the heterogeneity of neurons. The mechanism of the influence is that the transition of neuron state disrupts the adjustment of the rhythm of neuron oscillation and prevents further increase of firing synchronization.

PACS numbers: 87.18.Sn, 05.45.Xt, 87.18.Hf

I. INTRODUCTION

Synchronization of neural activity appears in different parts of the mammalian cerebral cortex1, and underlies different neural processes in both normal and anomalous brain functions2. It has been suggested that synchronization plays a vital role in information processing in the brain, e.g., processing information from different sensory systems to form a coherent and unified perception of the external world3,4,5,6,7. On the other hand, synchronization has been detected in pathological conditions such as Parkinson’s disease8,9. And epileptic seizures have long been considered resulting from excessive synchronization brain activity10. Therefore understanding the mechanisms of synchronization may be a critical step in elucidating how neural systems work11. It has stimulated a great deal of theoretical and numerical works, such as the studies on the effects of the topological properties of underlying networks12,13,14,15, and the dynamical properties of synaptic coupling16,17.

It was recently shown that the response time of synaptic couplings influences the stability of synchronized oscillation in the nonlocally coupled Hodgkin-Huxley (HH) equations18. If the response time of synaptic coupling is slow, synchronized activity of the systems is instable for excitatory coupling. However, the underlying dynamical mechanism of the influence is not clear. In experimental studies18, it has been suggested that the generation of prolonged epileptiform neuronal synchronization is favored by lower efficacy of synaptic transmission. The numerical studies18 in a detailed computational model revealed that seizure-like activity occurs when the excitatory synapses are weakened, and the results were confirmed experimentally in mouse neocortical slices. According to the common accepted assumption that synchronization of neuronal activity underlies seizures, the dynamical mechanism of synchronization may be useful for understanding the way the biological neural system works.

In this work, we numerically investigated the dynamical mechanism underlying the influence of synaptic efficacy on firing synchronization in HH neuron networks. To do this, we first studied the dynamics of the response of HH neuron to excitatory synaptic current. When the efficacy of synapse is low, namely, strength is weak and duration is short, the limit cycle is stable to the perturbation of the synaptic current. When synaptic efficacy is high, synaptic current can induce the transition of the neurons from limit cycle to fixed point or transient state. The transition is determined by dynamics of neuron’s ionic channel. The decrease of synaptic current depresses the feedback of sodium ionic current which is responsible for the initiation of the spike. For simplicity we will refer to the transitions as spike death.

In neuronal networks, synaptic input of a neuron is the accumulation of the currents received from all presynaptic neurons. When the coherence of firing time of neurons is enhanced by the excitatory interaction, the synaptic input of neurons transforms from the fluctuating waveform into the pulse shape like the signal produced by one synapse. If synaptic efficacy is high, the input signal can induce spike death of the neuron. Then spike death disorders the adjustment of the rhythm of neurons and prevents neurons from firing spikes synchronously. In contrast, for synapses of lower efficacy, the duration of synaptic current is too short to induce spike death of neurons. Additionally, the firing synchronization is different from synchronous activity of oscillators for the existence of the transitions of neuron’s state.

The paper is organized as follows. The HH neuron...
model and the synaptic coupling were introduced in Sec. II. The response of a HH neuron to synaptic current was investigated in Sec. III. The influence of the dynamics of neurons on firing synchrony was shown in Sec. IV. Discussion and conclusion were given in Sec. V.

II. MODEL

To investigate the dynamics of a neuron under the perturbation of synaptic stimulus, we adopted a system consisting of a HH neuron and a synapse. The HH neuron was originally proposed for the giant axon in a squid [20]. It serves as a paradigm for the spiking neuron models that based on nonlinear conductances of ion channels. The model describes the evolution of the membrane potential $V(t)$ and can be written as

$$ C \frac{dV}{dt} = I_{ion} + I_{stim} + I_{syn}, $$

where I_{ion} is the ionic current, I_{stim} is the external current and I_{syn} is the synaptic current. The ionic current describes the ion channel on the membrane and is defined as

$$ I_{ion} = -g_{Na}m^4h(V - E_{Na}) - g_{K}n^4(V - E_{K}) - g_{l}(V - E_{l}), $$

where g_{Na}, g_{K} and g_l are the maximum conductances for the sodium, potassium and leak currents, E_{Na}, E_{K} and E_{l} are the corresponding reversal potentials. m and h are the activation and inactivation variables of the sodium current and n is the activation variable of the potassium current. The gating variables $y = m, h, n$ satisfy the differential equation

$$ \frac{dy(t)}{dt} = \alpha_y [1 - y(t)] - \beta_y y(t), $$

with nonlinear functions α_y and β_y given by

$$ \alpha_m = 0.1(V + 40)/(1 - \exp[-(V + 40)/10]), $$

$$ \beta_m = 4 \exp[-(V + 65)/18], $$

$$ \alpha_h = 0.07 \exp[-(V + 65)/20], $$

$$ \beta_h = 1/[1 + \exp[-(V + 35)/10]], $$

$$ \alpha_n = 0.01(V + 55)/(1 - \exp[-(V + 55)/10]), $$

$$ \beta_n = 0.125 \exp[-(V + 65)/80]. $$

The parameter values are $E_{Na} = 50 \text{ mV}$, $E_{K} = -77 \text{ mV}$, $E_{l} = -54.4 \text{ mV}$, $g_{Na} = 120 \text{ mS/cm}^2$, $g_{K} = 36 \text{ mS/cm}^2$, $g_l = 0.3 \text{ mS/cm}^2$, and $C = 1 \mu F/cm^2$ [21] [22].

The external current I_{stim} determines the firing rate of the neuron. In the absence of synaptic coupling I_{syn}, the HH neuron has the following bifurcation diagram as a function of I_{stim}. In the parameter regions $I_{stim} < I_0$ and $I_{stim} > I_2$ fixed point is the global attractor. For $I_0 < I_{stim} < I_1$ the neuron possesses coexisting stable attractors, the fixed point and the limit cycle which are separated by an unstable limit cycle. For $I_1 < I_{stim} < I_2$ fixed point becomes unstable. The values of bifurcation points are $I_0 \approx 6.2 \mu A/cm^2$, $I_1 \approx 9.8 \mu A/cm^2$ and $I_2 \approx 154 \mu A/cm^2$ [23].

We adopted the synaptic current I_{syn} described by an alpha function [22]. The alpha function synapse is a phenomenological model based on an approximate correspondence of the time course of the waveform to physiological recordings of the postsynaptic response [24]. The equation of the synapse is like:

$$ I_{syn}(t) = -g_{syn} \alpha(t - t_{in})(V(t) - E_{syn}), $$

with

$$ \alpha(t) = (t/\tau) \exp(-t/\tau)\Theta(t). $$

Where τ is the characteristic time of the interaction, $\Theta(t)$ is the Heaviside step function, and t_{in} is the beginning time of the synaptic interaction, i.e., the firing time of the presynaptic neuron (all delays are neglected). The synaptic effect is traditionally classified as excitatory or inhibitory depending on the value of E_{syn}. Here, we took $E_{syn} = 30 \text{ mV}$ for excitatory synapses, and -80 mV for inhibitory ones. Eq. (11) yields pulses with the maximum value of e^{-1} at $t = t_{in} + \tau$ and with the half-width of 2.45τ [22]. So τ characterizes the duration of the synaptic interaction. For the alpha function synapse, we equated the synaptic efficacy to the maximum synaptic conductances g_{syn} and the characteristic time τ. The high efficacy means that synaptic current possesses strong strength and long duration.

III. SPIKE DEATH OF NEURON

We focused on the dynamics of the system in the parameter region near the bifurcation point I_1. Firstly, we studied the response of bistable neuron ($I_0 < I_{stim} < I_1$) to excitatory synaptic current. In simulations, firing was identified as membrane potential V is over 20 mV. When the neuron fired a spike, we triggered a pulse of synaptic current into it. We observed two types of dynamics of the response, which depended on the efficacy of synapse. For slow response time and strong synaptic strength, the neuron transited from the limit cycle to the fixed point. The transition of neuron’s state is shown in Figs. 1. In Fig. 1(a) the response of the neuron to the synaptic current is represented by the membrane potential V. In the figure, the synaptic current is illustrated by the pulse added on the external current. One can see that the periodic firing eliminated after the synaptic current was injected. The value of membrane potential tended to -61.15 mV through subthreshold oscillation. In Fig. 1(b) the transition of neuron’s state is shown in a three-dimensional space (V, h, m) which is a projection of the phase space (V, h, m, n). The trajectory left the limit cycle and was attracted into the basin of the fixed point. At last, through transient process, the trajectory stopped at the fixed point which is indicated by the dashed lines in the
The sum of the external current to excitatory synaptic current. The symbol \(I \) denotes the sum of the external current \(I_{\text{stim}} \) and the synaptic current \(I_{\text{syn}} \). (a) The response of bistable HH neuron to excitatory synaptic current. The symbol \(I \) denotes the sum of the external current \(I_{\text{stim}} \) and the synaptic current \(I_{\text{syn}} \). (b) The corresponding phase portrait. The values of parameters are \(\tau = 2 \) msec, \(g_{\text{syn}} = 1 \) mS/cm\(^2\) and \(I_{\text{stim}} = 8.5 \) \(\mu \)A/cm\(^2\).

FIG. 1: (Color online) (a) The response of bistable HH neuron to excitatory synaptic current. The symbol \(I \) denotes the sum of the external current \(I_{\text{stim}} \) and the synaptic current \(I_{\text{syn}} \). (b) The corresponding phase portrait. The values of parameters are \(\tau = 2 \) msec, \(g_{\text{syn}} = 1 \) mS/cm\(^2\) and \(I_{\text{stim}} = 8.5 \) \(\mu \)A/cm\(^2\).

When the external signal \(I_{\text{stim}} \) is larger than but near \(I_1 \), the neuron possesses a stable limit cycle and an unstable fixed point. This is explicitly shown in the corresponding 3D phase space \((V, h, m)\). In Fig. 2(b) one can see that the trajectory of the neuron left the limit cycle and transiently moved around the unstable fixed point which is indicated by the dashed lines. The unstable fixed point was \((V, h, m, n)=(-60.15, 0.423, 0.092, 0.394)\) as the parameter \(I_{\text{stim}} = 8.5 \) \(\mu \)A/cm\(^2\). On the other hand, for systems with quick response time and weak synaptic strength, the transition did not occur and the trajectory was attracted back the limit cycle from weak perturbation.

When the external signal \(I_{\text{stim}} \) is larger than but near \(I_1 \), the neuron possesses a stable limit cycle and an unstable fixed point. In this case there were also two types of dynamics of response. For high synaptic efficacy, the neuron exhibited a transient behavior when it received the synaptic current. Fig. 2(a) shows that the membrane potential responded to the synaptic current with a transient subthreshold oscillation. The subthreshold oscillation interrupted the periodic firing of the neuron. In phase space the transient behavior was a motion around the unstable fixed point. Like bistable neurons, the trajectory returned to limit cycle from weak perturbation.

FIG. 2: (Color online) (a) The response of the neuron with \(I_{\text{stim}} = 12.5 \) \(\mu \)A/cm\(^2\) to excitatory synaptic current. (b) The corresponding phase portrait. The synaptic parameters are the same as Fig. 1.
boundary of the region, the transient motion around the unstable fixed point cannot be induced by the synaptic current.

In the following, we referred to the phenomena shown in both Fig. 1 and Fig. 2 as spike death. Different from oscillator death which is the quenching of oscillation of coupled systems, spike death is the behavior of a single neuron. And spike death includes both the transition between stable attractors and the transient behavior.

Next we gave a qualitative interpretation of the spike death phenomena. Although the synaptic current consists of a rise and a decay stage, we want to show that the decrease of the synaptic current induces the transition of neuronal activity. We illustrated the role of the decreased current in Fig. 3. In the simulations, external currents linearly decreased from 20 \(\mu \text{A/cm}^2 \) to 8.5 \(\mu \text{A/cm}^2 \), and synaptic current was absent. The time of beginning to decrease and the different slopes of the decrease current were chosen to represent the distinct duration and rate of decay of the current. In Fig. 3(a), the activity of the neuron transited from the periodic firing to silent state through transient subthreshold oscillation. The decrease of current induced the spike death of the neuron. In Fig. 3(b), the decay of the current occurred in the refractory period of the neuron. The decreased current did not depress the next spike. This is similar to the scenario of the synaptic current of short duration. So spike death requires that the decrease of current occurs at the end of refractory period and the stage of the initiation of next spike. In Fig. 3(c), the external current decreased with the slope -0.5 \(\mu \text{A}/(\text{cm}^2 \text{ msec}) \). Comparing with Fig. 3(a), the rate of decrease was small. Although the current decreased at the stage of initiating a spike, it did not depress the firing of the neuron. Thus spike death requires that the rate of decrease of current is large at the stage of initiating spikes.

To interpret the effect of the decrease of current on the oscillation of neurons, we reviewed the generation of spikes. For a fixed value of membrane potential \(V \), the variable \(y = (m, h, n) \) approaches the value \(y_0(V) = \alpha_y(V)/[\alpha_y(V) + \beta_y(V)] \) with the time constant \(\tau_y(V) = [\alpha_y(V) + \beta_y(V)]^{-1} \). The variable \(m_0(V) \) increases with \(V \), and the corresponding time scale \(\tau_m \) is little than \(\tau_h \) and \(\tau_n \). If external current injects into the cell and raises the membrane potential \(V \), the conductance of sodium channels \(g_{N_a} m^3 h \) increases due to increasing \(m \). Then sodium ions flow into the cell and raise membrane potential even further. If this positive feedback is large enough, a spike is initiated [21]. When external current decreases at the onset of the generation of a spike, the raise of membrane potential slows down. Then the increase of \(m \) is slowed down. So the positive feedback is weakened. If the current decreases quickly, the spike of neuron can be depressed. Therefore, for depressing the positive feedback of sodium ionic current, the decrease of current must occur at the onset of generation of spike, and the current must decrease in a large rate. This interpretation is consistent with above simulated results that the strong strength and the long duration of synaptic current are necessary for spike death.

IV. INFLUENCE ON FIRING SYNCHRONIZATION

Next we investigated the influence of spike death on the firing synchronization in neuronal networks. We considered a directed random network consisting of \(N \) non-
identical HH neurons. The network was generated as following: With a probability \(p \), we connected each of the probable directed couplings (such as the one from the \(j \)th neuron to the \(i \)th neuron). The network is described by adjacency matrix \(\{a^{ij}\} \) which entry \(a^{ij} \) is equal to 1 when the coupling from \(j \) to \(i \) exists, and zero otherwise. In the directed network, \(a^{ij} \) can be not equal to \(a^{ji} \), and the signal travels in only the direction from \(j \) to \(i \) if \(a^{ij}=1 \) and \(a^{ji}=0 \). The signal received by the neuron \(i \) is the accumulation of all input synaptic currents, which is defined as

\[
I^{i}_{\text{syn}}(t) = -\frac{1}{q^i} \sum_{j=1}^{N} a^{ij} g_{\text{syn}}(t - t^{j}_{\text{in}}) (V^{i}(t) - E^{ij}_{\text{syn}}),
\]

where \(q^i \) is the rescaled factor which equals the number of inputting synapses of neuron \(i \) \((i = 1, \ldots, N) \). \(t^{j}_{\text{in}} \) is the latest firing time of presynaptic neuron \(j \). \(E^{ij}_{\text{syn}} \) is the reverse potential of the synapse connecting \(j \) to \(i \).

To study the global behavior of neuronal networks we computed the average activity \(\mathbb{V}(t) = (1/N) \sum_{i=1}^{N} V^{i}(t) \) of the network. The amplitude of average activity can intentionally reveal the coherence of activity of neurons, which is defined as [12]

\[
\sigma^2 = \frac{1}{T_2 - T_1} \int_{T_1}^{T_2} \langle (\mathbb{V}(t))_t - \mathbb{V}(t) \rangle^2 dt,
\]

where the angle brackets denote temporal average over the integration interval. In this work we studied the firing synchrony for the reason that neuronal states may transit away from the limit cycle and the synchronization of oscillators will be disrupted. Here we focused on the coherence of firing time of neurons. We adopted the average cross correlation of firing time of neurons [24, 27] to quantify the degree of firing synchronization. Average cross correlation is obtained by averaging the pair coherence \(K_{ij}(\gamma) \) between neuron \(i \) and \(j \), i.e.,

\[
K = \frac{1}{N(N-1)} \sum_{i=1}^{N} \sum_{j=1,j\neq i}^{N} K_{ij}(\gamma).
\]

The pair coherence \(K_{ij}(\gamma) \) is defined as

\[
K_{ij}(\gamma) = \frac{\sum_{l=1}^{k} X(l) Y(l)}{\left(\sum_{l=1}^{k} X(l)^2 \sum_{l=1}^{k} Y(l)^2\right)^\frac{1}{2}},
\]

which is measured by the cross correlation of spike trains at zero time lag within a time bin \(\gamma \). To transform the neuronal activity into spike train, the interval \(T_2 - T_1 \) is divided into \(k \) bins of \(\gamma = 1 \) msec. Then spike trains of neurons \(i \) and \(j \) are given by \(X(l) = 0 \) or 1 and \(Y(l) = 0 \) or 1 \((l = 1, \ldots, k) \), where 1 represents a spike generates in the bin and 0 otherwise.

We numerically investigated the collective activity of networks versus the fraction of excitatory neurons \(f_{\text{exc}} \) in the networks. In general, excitatory synapses tend to synchronize the activity of neurons in networks. However, it was shown that in neural systems different types of dynamics of response of neurons to couplings produce different synchrony property [29]. Here we studied the influence of the new type of response, spike death, on the formation of synchrony as the excitatory interactions increase. In simulations, the networks consisted of 1000 neurons and connecting probability was \(p=0.01 \). The synaptic conductance took the value \(g_{\text{syn}}=1 \) mS/cm². As an example, we used the synapses with the characteristic time \(\tau=2 \) msec or \(\tau=1 \) msec to generate neuronal networks with or without spike death, respectively. To ensure that the neurons had nonidentical properties, the external currents \(I_{\text{stim}} \) were in \((8.0, 12.0) \) µA/cm² and were generated at random.

In Fig. 5(a) we plotted the amplitude of average activity \(\sigma \) versus the fraction of excitatory neuron \(f_{\text{exc}} \). Squares (cycles) represented the relations in networks with \(\tau=2 \) msec (1 msec). The error bars were the standard deviation across 20 realizations. (b) The relation between average cross correlation \(K \) and the fraction of excitatory neuron \(f_{\text{exc}} \).
average activity of the network with $\tau = 2$ msec decreased obviously and the network changed quickly to oscillating randomly, as shown in Fig. 7(a). In the network without spike death property, coherent oscillation appeared, as shown in Fig. 7(b). When the fraction of excitatory neurons increased, the excitatory interaction enhanced the average activity in the networks both with and without the spike death property, while the average activity in the latter was obviously larger. Furthermore, the frequency of the average activity \overline{V} in networks with $\tau = 1$ msec was higher than the frequency in networks with $\tau = 2$ msec.

The synchrony properties can be qualitatively explained by spike death. In networks, if the fraction of excitatory neuron is increased, the coherence of firing time of neurons is enhanced. Then the input synaptic current of a neuron may transform from fluctuating waveform into a smooth pulse. If the pulse of the accumulated synaptic current has long enough duration to depress the next spike, the synaptic current may lead to spike death. Therefore the synaptic current disorders the adjustment of the rhythm of neurons’ firing and prevents synchronization. To demonstrate this, we showed the synaptic currents and spike death events in Fig. 7. In Fig. 7(a) and 7(b) we plotted the input synaptic currents of a neuron, which was randomly chosen in networks with $f_{exc} = 0.5$ and $f_{exc} = 0.8$ respectively. The transform from fluctuate waveform to smooth pulse was observed. In simulations we took the peak of subthreshold oscillation of a neuron as a spike death event. Fig. 7(c) shows the histogram of frequency of spike death events, i.e., the number of spike death events in 1 msec. The spike death events periodically appeared with the same rhythm as the average activity of the network. In contrast, spike death events cannot be obtained in the networks of low synaptic efficacy. Thus the spike death can explain the above synchrony property.

If network consists of identical neurons, the influence of spike death also exists and is more remarkable. Fig. 8(a) shows the relation of K to f_{exc} of the networks in which the external currents of all neurons was $I_{stim} = 10.0 \mu A/cm^2$. One can see that the values of K of the networks with $\tau = 2$ msec (squares) was similar to Fig. 5. For networks with $\tau = 1$ msec (circles), however, the value of K tended to 1 as f_{exc} increases. We calculated the degree of synchrony as a function of the heterogeneity of neurons in purely excitatory networks. In simulations the value of external currents I_{stim} distributed in the region $(10.0 - 0.5w, 10.0 + 0.5w) \mu A/cm^2$. Fig. 8(b) shows the relation between K and the width w of the parameter region of I_{stim}. For networks with $\tau = 2$ msec (squares), the degree of synchrony was unsensitive to the heterogeneity of neurons. In contrast, the degree of synchrony in networks with $\tau = 1$ msec (circles) remarkably increased and tended to 1 as the heterogeneity of neurons decreased. For networks with $\tau = 1$ msec, the relation between K and the width w of the parameter region was fitted to the first order exponential decay curve. The fitted curve (dashed line) is $K = Aexp(-w/B) + K_0$ with $K_0 = 0.362 \pm 0.005$, $A = 0.595 \pm 0.007$ and $B = 1.017 \pm 0.030$. The remarkable difference between two kinds of networks shows that spike death can effectively prevent the firing synchronization in neuronal networks.

V. DISCUSSION AND CONCLUSION

We have used HHI neuron networks to investigate the dynamical origin of the influence of synaptic efficacy on the firing synchronization. A new dynamics of response of neurons to coupling, spike death, was suggested as a possible mechanism underlying the influence. When
the firing time of neurons is so coherent that synaptic currents have a pulse waveform in excitatory networks. Synaptic current induces the transition of neuron’s state from limit cycle to fixed point or transient state. The transitions disrupt the adjustment of rhythm of neurons’ oscillations and prevent further increase of firing synchronization.

We studied the dynamics of the HH neuron responding to the excitatory synaptic perturbation. We numerically demonstrated that the synapse of high efficacy, i.e., large characteristic time and strong strength, induces spike death of the neuron. For bistable neurons, spike death means the transition from limit cycle to fixed point or transient state. The transient state is the motion around the unstable fixed point in phase space. Spike death of neurons results from the decrease of synaptic current, which depresses the feedback of sodium ionic current at the stage of initiating a spike.

We demonstrated the influence of spike death on the degree of firing synchronization. In simulations we considered the networks with or without the spike death property, which were generated using synapses of characteristic time $\tau = 2$ msec and $\tau = 1$ msec, respectively. The degree of synchrony of the former was lower. This is consistent with results of [16] that synchronous state is not stable for the excitation coupling of slow response time. However, we also showed that for slow response time, the degree of synchrony increased with the fraction of excitatory, and oscillation rate of whole network slowed down. Our main results are that in the network with $\tau = 2$ msec, the spike death events were observed. And spike death can explain the mechanism of preventing the raise of the degree of synchrony. Related synchrony properties was found also in weakly coupled HH neurons [22, 29]. In the case of weak coupling, the phase of neuron was perturbed by couplings, but the oscillation of neuron was not destroyed. In contrast, the new dynamical mechanism we suggested is proper for strong coupling and underlies the synchrony of the interrupted oscillations. Additionally, it is notable that, for the existence of spike death, the firing synchronization of neuronal networks is different from the usual oscillator synchronization in which each oscillator is stable to perturbations [28].

Our work relates to that of Drover et al. [30]. In the elegant work, using a simplified neuron model of two variables, they proposed a mechanism for slowing firing down. They found that slow decay synaptic variable induces that trajectory is attracted toward the unstable fixed point of the simplified model. This is similar with the transient behavior of HH neuron we proposed here. However, with their mechanism, synaptic excitation is strongly synchronizing in networks in contrast with that spike death prevents synchrony. In neural networks, collective behaviors sensitively depend on the intrinsic dynamics of neurons [31], and many types of response of neuron to synaptic coupling may exist [29]. It is interesting to make further studies on the relations among different responses and their effects on the collective behaviors of networks.

The variability of strength of synapses was not involved in the present investigation. The synaptic strength is often affected by the activity of neurons through synaptic plasticity [31] and synaptic adaption [32]. The effect of changes of synaptic strength will be studied elsewhere.

As mentioned above, the phenomena that low efficacy of synapses favors the generation of neuronal synchronization underlying seizure were obtained in experiments and numerical simulations [18, 19]. Here we equated the strength and especially the characteristic time of synapses to the synaptic efficacy, and studied the mechanism by which synapses influence firing synchronization. The mechanism of the influence may have potentially values for understanding the way the realistic neural system works.

Acknowledgments

We thank L. Wang for many helpful discussions and C.-F. Feng for comment reading. This work was supported by the NSF of China, Grant No. 10775060. X.-J.X acknowledges financial support from FCT (Portugal), Grant No. SFRH/BPD/30425/2006.
