Voltage-dependent Block of Anthrax
Toxin Channels in Planar Phospholipid
Bilayer Membranes by Symmetric
Tetraalkylammonium Ions

Effects on Macroscopic Conductance

ROBERT O. BLAUSTEIN and ALAN FINKELSTEIN

From the Departments of Physiology & Biophysics and Neuroscience, Albert Einstein
College of Medicine, Bronx, New York 10461

ABSTRACT In a recent paper (Blaustein, R. O., T. M. Koehler, R. J. Collier, and
A. Finkelstein. 1989. Proc. Natl. Acad. Sci. USA. 86:2209–2213) we described the
general channel-forming properties of the PA$_{65}$ fragment of anthrax toxin in
planar phospholipid bilayer membranes. In the present paper we extend our
previous studies of the permeability properties of this channel, using a series of
symmetric tetraalkylammonium (TAA) ions. Our main finding is that at micromolar
concentrations on either the cis (toxin-containing) or trans side of a membrane
containing many (>1,000) channels, these ions, ranging in size from tetramethyl-
ammonium to tetrahexylammonium, induce a voltage-dependent reduction of
membrane conductance. (We attribute a similar voltage-dependent reduction of
membrane conductance by millimolar concentrations of HEPES to a cationic form
of this buffer present at micromolar concentrations.) In going from large negative
to large positive voltages (on the TAA side) one sees that the conductance first
decreases from its value in the absence of TAA, reaches a minimum, and then rises
back at larger positive voltages toward the level in the absence of TAA. Our
interpretation of this behavior is that these symmetric TAA ions block the
cation-selective PA$_{65}$ channel in a voltage-dependent manner. We postulate that
there is a single site within the channel to which TAA ions can bind and thereby
block the passage of the major current-carrying ion (potassium). A blocking ion is
driven into the site by modest positive voltages, but is driven off the site and
through the channel by larger positive voltages, thus explaining the relief of block.
(In the accompanying paper [Blaustein, R. O., E. J. A. Lea, and A. Finkelstein.
1990. J. Gen. Physiol. 96:921–942] we confirm this interpretation of the data by
analysis at the single-channel level.) This means that these blocking ions can pass
through the channel; the permeability to tetrahexylammonium, the largest ion studied,
implies that the narrowest part of the channel has a diameter of at least 11 Å.

Address reprint requests to Dr. Alan Finkelstein, Department of Physiology and Biophysics, Albert
Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461

J. GEN. PHYSIOL. © The Rockefeller University Press · 0022-1295/90/11/0905/15 $2.00
Volume 96 November 1990 905–919
INTRODUCTION

We have earlier recounted (Blaustein et al., 1989) the channel-forming properties in phospholipid bilayers of "anthrax toxin," a tripartite toxin elaborated by the bacterium \textit{Bacillus anthracis}, the causative agent of the disease anthrax. (For a general review of anthrax toxin see Leppla et al. [1985].) In that study we examined the three separate proteins that make up anthrax toxin—protective antigen (PA), edema factor, and lethal factor—and found that the trypsin-cleaved 65-kD COOH-terminal portion of PA, called PA_{65},\footnote{Recently renamed PA_{6S} (Singh et al., 1989).} forms voltage-dependent and pH-dependent cation-selective channels in planar phospholipid bilayers, whereas the other toxin components are devoid of channel-forming activity. We also reported that the "instantaneous" current through PA_{65}-treated membranes saturates at voltages above +50 mV and below -80 mV.

Subsequent analysis of this saturation phenomenon, reported in this paper, shows that it results from a voltage-dependent block of the channel by micromolar amounts of a cationic form of HEPES buffer present in the experiments. We also find that micromolar amounts of symmetric tetraalkylammonium ions, when added to either side of the membrane, produce a voltage-dependent block that is relieved by large voltages of the appropriate sign; it is the interaction of these tetraalkylammonium ions with the channel that is the main focus of the present study. We argue that the voltage-mediated relief of block implies that the blocking ions can go through the channel, thus providing us with a novel way to determine the diameter of the channel lumen. All of the experiments described in this paper were with membranes containing many channels, and thus deal with "macroscopic" effects; the following paper (Blaustein et al., 1990) addresses these same phenomena at the single-channel level.

MATERIALS AND METHODS

PA of anthrax toxin was a generous gift from Dr. T. M. Koehler and Dr. R. J. Collier of the Department of Microbiology and Molecular Genetics, Harvard Medical School. The protein was purified and trypsin-cleaved, as previously described, to yield PA_{65} (Blaustein et al., 1989). It was stored in 0.35 M NaCl/20 mM ethanolamine HCl, pH 9.0, as frozen aliquots; once thawed, it was kept at 4°C. At a concentration of ~600 μg/ml, pH 9.0, and 4°C, PA_{65} showed little loss of channel-forming capability after storage for several months.

All experiments were performed on planar phospholipid bilayer membranes formed at room temperature by the brush technique of Mueller et al. (1963) across a 1-mm-diam hole in a Teflon partition separating two Lucite compartments, each containing 3 ml of salt solutions that could be stirred with small magnetic stir bars. Generally, the salt solutions were 100 mM KCl/1 mM EDTA, pH 6.6, and the membranes were formed from a 3% solution of diphytanoyl phosphatidylicholine (DPhPO) in n-decane; bi-ionic potential measurements were on membranes formed from a 5% solution of asolectin in n-decane. After the membranes were completely black, PA_{65} was added to one compartment (defined as the \textit{cis} compartment) to concentrations ranging from 1 ng/ml to 1 μg/ml, and records were then taken.

Experiments were done under voltage-clamp conditions with a single pair of Ag/AgCl electrodes that made electrical contact with the solutions in the compartments via agar salt bridges (usually 3 M KCl). The member conductance (g) in symmetric salt solutions is defined as the current (I) flowing through the membrane divided by the transmembrane voltage (V),
i.e., \(g = I/V \), where \(V \) is the potential of the cis compartment relative to that of the trans, which is taken as zero; before addition of PA65 membrane conductance was -20 pS. The applied voltages and the current responses were displayed simultaneously on a physiograph chart recorder (Narco Bio-Systems, Houston, TX) and a Hitachi V-212 oscilloscope, and, when desired, were digitized using an Instrutech VR-10 digital data recorder and stored on VHS tape using a Panasonic PV-2700 video cassette recorder.

DPhPC was obtained from Avanti Polar Lipids, Inc. (Birmingham, AL), asolectin was lecithin type IIS from Sigma Chemical Company (St. Louis, MO) and was purified by the method of Kagawa and Racker (1971), and n-decane (99+% pure) was from Aldrich Chemical Company (Milwaukee, WI). Tetramethylammonium (Me4N+), bromide (purum grade), tetraethylammonium (Et4N+ or TEA+) bromide (puriss grade), tetrapropylammonium (Pr4N+) bromide (purum grade), tetrabutylammonium (Bu4N+) bromide (puriss grade), tetrapentylammonium (Pe4N+) bromide (purum grade), tetrahexylammonium (Hx4N+) bromide (purum grade), tetraheptylammonium (Hp4N+) bromide (purum grade), and tetraoctylammonium (Oc4N+) bromide (purum grade) were purchased from Fluka Chemical Corporation (Ronkonkoma, NY) and used as provided. Tetraethylammonium chloride was purchased from Eastman Chemical Company (Rochester, NY) and was treated several times with activated charcoal and filtered.

Selectivity Measurements

In the single-salt experiments the membrane was formed in symmetric (e.g., 0.1 M KC1) solutions, and, after the establishment of a significant PA65-induced conductance (>10^-9 S), gradients were generated by additions of concentrated salt solutions (e.g., 3 M KCI) to the cis side. After each addition, the reversal potential (i.e., the potential at which \(I = 0 \)) for the existing gradient was determined. In the bi-ionic experiments the membrane was formed in the presence of the asymmetric salt solutions (e.g., 0.1 M KCI vs. 0.1 M TEA Cl), and, after its treatment with PA65, the reversal potential was determined; because of the large (3 ml) volumes of the compartments, there was minimal mixing of solution contents before painting the membrane-forming solution across the 1-mm-diam hole.

Current–Voltage Relations

To generate "instantaneous" I-V characteristics, PA65-treated membranes were pulsed for 0.25 s, at 5- or 10-mV increments, to voltages ranging from -150 mV to +150 mV; currents were measured 10–20 ms after the beginning of each pulse to minimize the effect of gating at large negative voltages. (At voltages below -50 mV, half of the channels close within a few seconds [Blaustein et al., 1989] After each pulse the voltage was returned to 0 mV for 0.5 s to reopen any channels that might have closed during the previous pulse (see Fig. 3). To assess the effect of HEPES or a given tetraalkylammonium ion on a PA65-treated membrane, we first generated the "instantaneous" I-V characteristic in the absence of the agent, and then subsequently in its presence at two to three different concentrations; this complete set of recordings generally required 3 min. To minimize the effect of the linear increase with time (for periods of up to 1 h) of the PA65-induced conductance (Blaustein et al., 1989), we began these measurements ~40 min after the addition of PA65. Consequently, the number of channels present in the membrane throughout the course of the recordings remained essentially constant to within 10%.

Binding Isotherms

The equilibrium dissociation constant for the binding, at 0 mV, of a particular tetraalkylammonium ion to a site(s) in the channel was determined by measuring the small signal current (\(\Delta I \), resulting from a voltage pulse between +5 mV and -5 mV) in the absence of this
blocking ion and then in its presence at equal concentrations on the two sides of the membrane. \(\Delta I \) in its presence divided by \(\Delta I \) in its absence gives the normalized conductance, \(g_{\text{norm}} \); thus \(1 - g_{\text{norm}} \) is the fraction of conductance blocked (f). This quantity was determined on a single PA₆₅-treated membrane at several different (symmetric) concentrations of the blocking ion, and a binding isotherm was thereby constructed. To calculate the dissociation constant, data were fit, using a nonlinear least-squares algorithm, to the equation \(f = \frac{[\text{TAA}]}{([\text{TAA}] + K_d)} \), where TAA represents a tetraalkylammonium ion. As with the I-V experiments, measurements were begun ~40 min after addition of PA₆₅ to maintain an essentially constant number of channels in the membrane during this period.

RESULTS

Selectivity

We previously reported that the PA₆₅ channel is much more permeable to K⁺ than to Cl⁻, and ideally selective for tetrapropylammonium (Pr₄N⁺) over Br⁻ (Blaustein et al., 1989). These data, as well as those from subsequent reversal potential measurements with TEA⁺Cl⁻, are shown in Fig. 1. The channel is also permeable to the divalent cations Mg²⁺ and Ca²⁺. An activity ratio of 4.5 for MgCl₂ (500 mM vs. 100 mM) gives a reversal potential of 13.4 mV (ideal Mg²⁺ permeability is -19.3 mV; ideal Cl⁻ permeability is 38.7 mV); an activity ratio of 1.8 for CaCl₂ (186 mM vs. 100 mM) gives a reversal potential of 3.3 mV (ideal Ca²⁺ permeability is -7.3 mV; ideal Cl⁻ permeability is 14.5 mV).

The channel's permeability to Pr₄N⁺ places a lower limit of 9 Å on its diameter. We had hoped to continue sizing the channel with similar selectivity experiments using larger symmetric tetraalkylammonium ions (Bu₄N⁺, Pe₄N⁺, etc.), but unfortunately the intrinsic lipid bilayer permeabilities of these ions are so large that interpretation of such experiments is impossible at the concentrations necessary for ion selectivity measurements.

In the course of measuring reversal potentials, we noticed that the conductances induced by given concentrations of PA₆₅ were orders of magnitude less in Me₄N·Br, Et₄N·Br, and Pr₄N·Br than in KCl or NaCl, suggesting that these ions might block the channel. (This led us to the study, described in the next section, of the blocking action of these, and larger ions in the series, at micromolar concentrations.) Surprisingly, however, bi-ionic potential measurements of KCl vs. TEA⁺Cl⁻ indicate that the channel is more permeable to TEA⁺ than to K⁺. For a PA₆₅-treated asolectin membrane separating 0.1 M KCl cis from 0.1 M TEA⁺Cl⁻ trans, the reversal potential is ~30 mV (KCl side positive).

Blocking

HEPES. With 10 mM HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) buffer (pH 6.5–7.5) on both sides of a PA₆₅-treated membrane, the “instantaneous” current saturates, and even declines, at voltages greater than +50 mV and less than −80 mV (see Fig. 5 of Blaustein et al., 1989); in the absence of

² Although the effects of HEPES and tetraalkylammonium ions reported in this section are on macroscopic conductances, we describe them as resulting from “blocking” of the PA₆₅ channel by these ions. This is the most obvious interpretation of the data, and it is confirmed by the single-channel results reported in the following paper (Blaustein et al., 1990).
buffer, or with MES (2-[N-morpholino]ethanesulfonic acid) buffer in that pH range, the I-V characteristic is fairly linear (Fig. 2 A). It appears that HEPES can block the channel in a voltage-dependent fashion. At first glance this is paradoxical, since the channel is strongly cation selective, and at neutral pH HEPES exists chiefly in two forms: anionic and neutral. (In fact, the HEPES anion has been shown to block anion-selective channels [Yamamoto and Suzuki, 1987; Soejima and Kokubun, 1988].) However, aqueous titration of HEPES buffer reveals a group, presumably the second nitrogen of the piperazine ring, that is titrated at a pK around 4.0–4.5 (unpublished observations). Therefore, at neutral pH roughly one-thousandth of the HEPES (i.e., \(\sim 10 \) \(\mu \)M in our experiments) exists as a cation, and it is this species that we believe blocks the channel. There are three observations consistent with this assumption: (a) as noted above, with MES buffer, which lacks a second nitrogen and

Figure 1. Plot of membrane potential (at \(I = 0 \)) vs. the logarithm of the ratio of salt activity across PA_65-treated membranes. DPhPC membranes were formed at room temperature across a 1-mm-diam hole separating unbuffered symmetric 0.1 M solutions of either KCl, Et_4NCl, or Pr_4NBr. After the membranes were completely black, PA_65 was added to the solution on one side (the cis side) to a concentration of \(\sim 2 \) ng/ml. Membrane conductance increased linearly with time, and after it had reached at least \(10^4 \) pS, salt gradients were established across the membrane by additions of concentrated salt solutions to the cis side, and the resulting membrane potential at \(I = 0 \) (the reversal potential) was recorded. The potentials plotted in the figure are those of the dilute, 0.1 M trans solution with respect to the more concentrated cis solution. The line drawn is that for ideal monovalent cation selectivity (59 mV per 10-fold activity ratio). Data points for each of the three salts tested were obtained on a single membrane. PA_65-treated membranes are ideally selective for Et_4N^+ and Pr_4N^+ with respect to Cl^- and Br^-, respectively, but there is clear deviation from ideality for KCl. (It is conceivable, but unlikely, that the deviation from ideality for KCl is totally a consequence of a combination of polarization potentials and streaming potentials resulting from the osmotic gradient of KCl across the membrane. The next to the last point has already been corrected for at least polarization effects, as urea [a permeant solute through the PA_65 channel] was added to the trans side to balance the osmotic gradient. [This increased the measured potential by 1.0 mV.] Independent streaming potential measurements in 0.1 M KCl gave a value of 2.9 mV for a two osmolal gradient of sucrose [an almost impermeant solute], which would add another 1.5 mV to the point, still leaving it 2 mV short of the ideal value. Note also that the last point deviates proportionately even further from ideality.) Activity coefficients for KCl were obtained from Robinson and Stokes (1959) and those for Et_4NCl and Pr_4NBr were from Lindenbaum and Boyd (1964).
FIGURE 2. Voltage-dependent block of current through a PA65-treated membrane upon addition of HEPES buffer. A DPhPC membrane was formed at room temperature across a 1-mm-diam hole separating symmetric 0.1 M KCl/1 mM EDTA, pH 6.6 solutions. Once the membrane was completely black, PA65 was added to one solution (defined as the cis solution) to a concentration of 18 ng/ml, while the membrane voltage was clamped at +20 mV. Membrane conductance rose linearly with time; after 40 min the membrane was pulsed from -120 mV to +120 mV in 10-mV increments (see Fig. 3), and the resulting current responses were recorded. HEPES buffer was then added to the cis solution to a concentration of 2 mM, raising the pH of the solution to 7.6, and the membrane was pulsed as described above. The pH of the cis solution was then lowered to 6.4 by addition of HCl and the membrane was once again pulsed as above. Finally, KOH was added to the cis solution, raising the pH to 10.0, and the membrane was pulsed as above. The entire procedure took less than 3 min, so that the number of channels present during the course of these measurements remained essentially constant to within 10%. The cis solution was stirred continuously throughout the course of the experiment. "Instantaneous" (within 10–20 ms) currents for each set of voltage pulses were determined and plotted vs. voltage. A, No HEPES, pH 6.6. B, 2 mM HEPES, pH 7.6. C, 2 mM HEPES, pH 6.4. D, 2 mM HEPES, pH 10.0.

hence does not exist in a cationic form, the "instantaneous" current does not exhibit saturation and decline with voltage; (b) if HEPES is present only on the cis side of the membrane, current saturation and decline occur at positive, but not negative, voltages (Fig. 2 B), where the converse occurs with HEPES present only on the trans side (data not shown), thus indicating that a cationic species is being driven into the
channel; (c) if, in the presence of HEPES, the pH is lowered from 7.6 to 6.4 during the course of an experiment, the current saturation and decline are enhanced (compare Fig. 2 B and C); (d) if the pH is then raised to 10.0, the I-V characteristic once again becomes linear (Fig. 2 D). Rather than study the effect of HEPES$^+$, which is an esoteric cation, we chose instead to probe the channel's structure with a series of symmetric tetraalkylammonium ions which, like HEPES$^+$, exhibit voltage-dependent blockade of the channel.

Tetraalkylammonium ions. Symmetric quaternary ammonium ions, ranging in size from tetramethylammonium to tetrahexylammonium, block the PA$_{65}$ channel in a voltage-dependent fashion when added to either the cis or trans compartment. Fig. 3 shows current responses of PA$_{65}$-treated membranes to voltage pulses in the absence and presence of Bu$_4$N$^+$; I-V curves derived from these records are shown in Fig. 4 A. Note that these are "instantaneous" I-V curves (see Materials and Methods). In Fig. 4 B these I-V curves have been converted to g-V curves, where conductances in the presence of Bu$_4$N$^+$ have been normalized to the conductances just before its addition. Similar results are obtained with the other tetraalkylammonium ions, representative examples of which are shown in Fig. 5. (In these experiments the intrinsic bilayer tetraalkylammonium conductances were negligible.)

There are several notable features of these curves: (a) The tetraalkylammonium ions block from both the cis and trans sides. Although a possible interpretation of this result is that these ions bind to a single site in the channel accessible from either side, implying that they are permeant, it is not possible from this fact alone to rule out two (or more) different sites separated by an essentially infinite potential energy barrier. However, (b) at sufficiently large positive voltages on the blocking-ion side there is relief of block. This is evident in the shape of the I-V curves and is even more apparent from the presence of a minimum in the g-V curves. The most obvious interpretation of this behavior is that these ions are permeant, and are driven through the channel by large voltages of the appropriate sign. (c) These blockers are more potent from the cis side; ~20-fold higher concentrations are needed on the trans side to achieve comparable effects. (d) The I-V and g-V curves generated with blocker on the cis side are roughly mirror images of the curves generated with trans blocker.

Binding

Results of equilibrium binding measurements (i.e., at $V = 0$) with several tetraalkylammonium ions are summarized in Table I. The binding data are well fit by Langmuir adsorption isotherms, with a characteristic dissociation constant (K_0) for each ion; a representative isotherm is shown in Fig. 6. Excluding Pr$_4$N$^+$, which is slightly anomalous, the ions appear to block more potently with increasing size up to Pe$_4$N$^+$, whose K_0 is about fourfold smaller than that of Bu$_4$N$^+$ and about twofold smaller than that of H$_4$N$^+$; K_0 values range from 1.6 mM for Me$_4$N$^+$ down to 2 μM.

3 An identical asymmetry in blocker efficacy is always seen at the single-channel level (Blaustein et al., 1990); that is, PA$_{65}$ channels always insert with the same orientation.
FIGURE 3. Voltage-dependent block of current through PA₆₅-treated membranes upon addition of Bu₄N⁺ to either the cis or trans compartment. DPhPC membranes were formed at room temperature across a 1-mm-diam hole separating symmetric 0.1 M KCl/1 mM EDTA, pH 6.6 solutions. After the membranes were completely black, PA₆₅ was added to one solution (the cis solution) to a concentration of 8 ng/ml (left records) or 30 ng/ml (right records). After 40 min the voltage was pulsed from -150 mV to +150 mV, in 10-mV increments as shown, and the resulting current responses were recorded (two upper records). Bu₄N⁺ was then added either to the cis compartment (lower left record) to a concentration of 15 µg/ml, or to the trans compartment (lower right record) to a concentration of 250 µg/ml, and the resulting current responses were recorded. The transients, particularly prominent at large negative voltages, result from rapid gating of the PA₆₅ channels. The number of channels present during the course of these measurements remained essentially constant to within 10%. Solutions were stirred continuously throughout the course of the experiments.

for Pe₄N⁺. The effects with ions larger than Hx₄N⁺ were uninterpretable, making it difficult to assess any continuing trend. In agreement with the blocking data of the previous section, almost all of the decrease in membrane conductance occurred upon each addition of tetraalkylammonium ions to the cis side during the course of

4 Upon addition of Me₄N⁺ through Hx₄N⁺ to the cis and trans solutions, the small signal conductance fell to a new equilibrium value within seconds—the mixing time of the compartments. With Hp₄N⁺, however, conductances fell continuously for several minutes, never reaching a stable value. With Oc₄N⁺, conductances first decreased somewhat and then rose to much larger values; we interpret this increase as resulting from the intrinsic bilayer permeability of Oc₄N⁺.
DISCUSSION

The main finding reported in this paper is that at micromolar concentrations on either the cis or trans side of the membrane, symmetric tetraalkylammonium ions—tetramethylammonium ion (Me₄N⁺) through tetrahexylammonium ion (Hx₄N⁺)—induce a voltage-dependent block of the cation-selective channel formed...
FIGURE 5. Conductance–voltage relations for PA₆₅-treated membranes with various symmetric tetraalkylammonium ions present in either the cis (left) or trans (right) compartment. The normalized conductances plotted here, \(g_{\text{norm}} \), were obtained as described in Fig. 4 B from records analogous to those shown in Fig. 3 and 4 A. Note the differences in concentrations used for the cis and trans experiments. All experiments were performed on DPhPC membranes separating symmetric solutions of 0.1 M KCl/1 mM EDTA, pH 6.6.
in planar phospholipid bilayer membranes by the PA$_{65}$ fragment of anthrax toxins.5

At voltages larger than about +60 mV on the blocking-ion side there is relief of block. That is, in going from large negative voltages to large positive voltages (on the blocking-ion side), one sees the conductance first decrease from its value in the absence of blocking ion, reach a minimum at about +60 mV, and then rise back at larger positive voltages toward the level seen in the absence of blocker (Figs. 4B and 5). For a given tetraalkylammonium ion, ~20-fold higher concentrations are required on the trans side to obtain effects comparable in magnitude to those with the ion on the cis side.

How are these observables to be explained? The simplest interpretation is that there is a single site within the PA$_{65}$ channel to which tetraalkylammonium ions can bind, and when these ions occupy this site the channel is blocked; that is, the major current-carrying ion (K$^+$, present at 100-mM concentration in our experiments) cannot traverse the channel. The blocking ion is driven into the site by modest positive voltages, but is driven off the site and out through the channel by larger positive voltages, thus explaining the relief of block. In terms of the oft-used barrier-well models, this is a two-barrier, single-well model (Fig. 7), with the larger

Ion	K_a (μM)
Me$_4$N$^+$	1,600
Et$_4$N$^+$	224
Pr$_4$N$^+$	298
Bu$_4$N$^+$	7.91
Pe$_4$N$^+$	2.04
Hx$_4$N$^+$	3.70

height of the trans barrier accounting for the greater effectiveness of blocker from the cis side.

Before considering the quantitative aspects of this picture, we note an important qualitative feature of our findings. Whatever the details of the number, shape, and size of the energy barriers and wells, or the general energy profile in any continuum model of the channel, the most obvious and straightforward interpretation of relief of block at large positive voltages on the blocker side is that the blocking ion is driven through the channel.6 In other words, the PA$_{65}$ channel is permeable to tetraalkylammonium ions.

Although the observed effects are on macroscopic currents and conductances in membranes containing many channels, we describe them in this discussion as occurring on the individual channels to avoid awkward circumlocutions.

It is conceivable, though very unlikely, that the rise in conductance at large positive voltages, or for that matter, the fall in conductance at smaller positive voltages, results from a direct voltage dependence of the PA$_{65}$ channel induced by tetraalkylammonium ions, and that it has nothing to do with blocking and unblocking. In the following paper (Blaustein et al., 1990) we directly confirm blocking and unblocking at the single-channel level.

5 Although the observed effects are on macroscopic currents and conductances in membranes containing many channels, we describe them in this discussion as occurring on the individual channels to avoid awkward circumlocutions.

6 It is conceivable, though very unlikely, that the rise in conductance at large positive voltages, or for that matter, the fall in conductance at smaller positive voltages, results from a direct voltage dependence of the PA$_{65}$ channel induced by tetraalkylammonium ions, and that it has nothing to do with blocking and unblocking. In the following paper (Blaustein et al., 1990) we directly confirm blocking and unblocking at the single-channel level.
monium ions up to the size of Hx4N+, implying that the narrowest part of the channel is at least 11 Å in diameter. Interestingly, even though TEA+ blocks the channel, it is more permeant than K+, as judged from the bi-ionic potential between 0.1 M KCl and 0.1 M TEA•Cl. Of further interest, and possibly relevant to the mechanism of ion permeation through this channel (although we don't know how), is that this basically cation-selective channel has a finite anion (Cl-) permeability, as evidenced both by small, but real, deviations from Nernstian potentials in KCl gradients (Fig. 1) and by comparable Cl- and Mg2+ (or Ca2+) selectivity, manifested by the reversal potentials in MgCl2 and CaCl2 gradients.

Quantitatively, the most significant feature of the model in Fig. 7 that can be extracted from the macroscopic g-V curves is the location of the blocking site, its so-called electrical distance within the channel. At negative voltages a blocking ion that enters the site almost certainly exits to the cis solution, because the energy barrier from the site to the trans side is so much smaller than that to the trans side.

Therefore, at negative voltages with blocking ion in the cis solution, the blocker rarely traverses the channel, and is therefore effectively at equilibrium between the cis solution and the blocking site. Consequently, if we call the number of channels in the open or unblocked state \(n_u \) and the number in the closed or blocked state \(n_b \), then at negative voltages with blocking ion in the cis solution we can write the Boltzmann distribution:

\[
\frac{n_u}{n_b} = A e^{-q \delta_{\text{cis}} V / k T},
\]

where \(q \) is the unit charge on a tetraalkylammonium ion, \(k \) is the Boltzmann constant, \(T \) is temperature in degrees Kelvin \((kT/q \approx 25.6 \text{ mV at room temperature})\), \(V \) is the voltage on the cis side, and \(\delta_{\text{cis}} \) is the electrical distance from the cis side to the binding site (see Fig. 7); i.e., \(\delta_{\text{cis}} \) is the fraction of the total transmembrane potential, \(V \), seen at the well. The constant \(A \) is a function of the particular blocker and its
concentration. Since the normalized conductance \(g_{\text{norm}} \) of Fig. 4B is equal to
\(\frac{n_u}{n_u + n_b} \), Eq. 1 can be rewritten as:

\[
\frac{g_{\text{norm}}}{1 - g_{\text{norm}}} = A e^{-\psi \bar{V}/kT},
\]

(This treatment is analogous to that used by Woodhull [1973] to analyze proton blockage of sodium channels in nerve.) A semilogarithmic plot of \(g_{\text{norm}}/(1 - g_{\text{norm}}) \) vs. voltage from \(-15\) mV to \(-90\) mV for \(\text{Bu}_4\text{N}^+ \) yields a straight line whose slope represents an \(e \)-fold change per \(27 \) mV (Fig. 8A); i.e., \(\delta_{\text{cis}} = 0.95 \). Similar plots for the other tetraalkylammonium ions in this study also yield straight lines with essentially the same slope; the range is \(27-34 \) mV, with a mean of \(31 \) mV \((\delta_{\text{cis}} = 0.83) \).

This seems to imply that the blocking site is close to the trans side, since its electrical distance from the cis side is over four-fifths of the total electrical distance (assuming \(\delta_{\text{total}} = \delta_{\text{cis}} + \delta_{\text{trans}} = 1.0 \)). However, if experiments with \(\text{Bu}_4\text{N}^+ \) present in the trans solution are analyzed in a similar manner at large positive voltages (where \(\text{Bu}_4\text{N}^+ \) is effectively in equilibrium between the blocking sites and the trans solution), we obtain an \(e \)-fold change per \(17 \) mV (Fig. 8B), which gives \(\delta_{\text{trans}} = 1.51 \), thus making \(\delta_{\text{total}} = 2.5 \). The usual interpretation of \(\delta_{\text{total}} > 1 \) is that there is multiple ion occupancy, in which case voltage dependence of blocking involves movement not only of the blocking ion, but also of the other charges (potassium ions) in the channel (see Hille, 1984). Our data (with \(\delta_{\text{total}} = 2.5 \)) therefore indicate that in addition to a single blocking ion there are also one to two potassium ions in the channel. Since the voltage dependence of blocking from the trans side is roughly twice as steep as that from the cis side, the blocking site is electrically closer to the latter, being about one-third the distance from the cis side and two-thirds the distance from the trans side.

Consistent with the notion of multiple ion occupancy of the channel is our finding that \(\delta_{\text{total}} \) in 0.01 M KCl is smaller than in 0.1 M KCl. Specifically, semilogarithmic plots of \(g_{\text{norm}}/(1 - g_{\text{norm}}) \) vs. voltage (analogous to those shown in Fig. 8) in 0.01 M KCl, we obtain an \(e \)-fold change per \(17 \) mV (Fig. 8B), which gives \(\delta_{\text{trans}} = 1.51 \), thus making \(\delta_{\text{total}} = 2.5 \). The usual interpretation of \(\delta_{\text{total}} > 1 \) is that there is multiple ion occupancy, in which case voltage dependence of blocking involves movement not only of the blocking ion, but also of the other charges (potassium ions) in the channel (see Hille, 1984). Our data (with \(\delta_{\text{total}} = 2.5 \)) therefore indicate that in addition to a single blocking ion there are also one to two potassium ions in the channel. Since the voltage dependence of blocking from the trans side is roughly twice as steep as that from the cis side, the blocking site is electrically closer to the latter, being about one-third the distance from the cis side and two-thirds the distance from the trans side.

Consistent with the notion of multiple ion occupancy of the channel is our finding that \(\delta_{\text{total}} \) in 0.01 M KCl is smaller than in 0.1 M KCl. Specifically, semilogarithmic plots of \(g_{\text{norm}}/(1 - g_{\text{norm}}) \) vs. voltage (analogous to those shown in Fig. 8) in 0.01 M KCl, we obtain an \(e \)-fold change per \(17 \) mV (Fig. 8B), which gives \(\delta_{\text{trans}} = 1.51 \), thus making \(\delta_{\text{total}} = 2.5 \). The usual interpretation of \(\delta_{\text{total}} > 1 \) is that there is multiple ion occupancy, in which case voltage dependence of blocking involves movement not only of the blocking ion, but also of the other charges (potassium ions) in the channel (see Hille, 1984). Our data (with \(\delta_{\text{total}} = 2.5 \)) therefore indicate that in addition to a single blocking ion there are also one to two potassium ions in the channel. Since the voltage dependence of blocking from the trans side is roughly twice as steep as that from the cis side, the blocking site is electrically closer to the latter, being about one-third the distance from the cis side and two-thirds the distance from the trans side.

Consistent with the notion of multiple ion occupancy of the channel is our finding that \(\delta_{\text{total}} \) in 0.01 M KCl is smaller than in 0.1 M KCl. Specifically, semilogarithmic plots of \(g_{\text{norm}}/(1 - g_{\text{norm}}) \) vs. voltage (analogous to those shown in Fig. 8) in 0.01 M KCl, we obtain an \(e \)-fold change per \(17 \) mV (Fig. 8B), which gives \(\delta_{\text{trans}} = 1.51 \), thus making \(\delta_{\text{total}} = 2.5 \). The usual interpretation of \(\delta_{\text{total}} > 1 \) is that there is multiple ion occupancy, in which case voltage dependence of blocking involves movement not only of the blocking ion, but also of the other charges (potassium ions) in the channel (see Hille, 1984). Our data (with \(\delta_{\text{total}} = 2.5 \)) therefore indicate that in addition to a single blocking ion there are also one to two potassium ions in the channel. Since the voltage dependence of blocking from the trans side is roughly twice as steep as that from the cis side, the blocking site is electrically closer to the latter, being about one-third the distance from the cis side and two-thirds the distance from the trans side.

\[7\] Because the barrier is larger on the trans side than on the cis side, one must go to voltages greater than \(80 \) mV to be in the range where exit from the well is predominantly to the trans side. For \(g_{\text{norm}} \) to be measurably less than \(1.0 \) at these voltages, relatively large concentrations of blocker in the trans solution are required.
KCl for cis and trans Bu_4N^+ yield slopes representing e-fold changes per 29 and 22 mV, respectively. These translate into δ_{ci} = 0.88 and δ_{tm} = 1.16, thus making δ_{tot} = 2.0 in 0.01 M KCl, in contrast to its value of 2.5 in 0.1 M KCl. Quantitative interpretation of the effect of KCl concentration on both δ_{tot} and single-channel conductance is model dependent, extremely complicated, and beyond the scope of our present study.
We thank Dr. Edward Lea for helpful discussions during the course of these experiments and Dr. Olaf Andersen and Dr. Christopher Miller for critically reading this manuscript.

This work was supported by NIH Medical Scientist Training grant T32GM7288 from NIGMS to R. O. Blaustein and by NIH grant GM-29210-12 to A. Finkelstein.

References

Blaustein, R. O., T. M. Koehler, R. J. Collier, and A. Finkelstein. 1989. Anthrax toxin: Channel-forming activity of protective antigen in planar phospholipid bilayers. *Proceedings of the National Academy of Sciences USA.* 86:2209–2213.

Blaustein, R. O., E. J. A. Lea, and A. Finkelstein. 1990. Voltage-dependent block of anthrax toxin channels in planar phospholipid bilayer membranes by symmetric tetraalkylammonium ions. Single-channel analysis. *Journal of General Physiology.* 96:921–942.

Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer Associates, Inc., Sutherland, MA 1–426.

Kagawa, Y., and E. Racker. 1971. Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing 32P$_2$-adenosine triphosphate exchange. *Journal of Biological Chemistry.* 246:5477–5487.

Leppla, S. H., B. E. Ivins, and J. W. Ezzel, Jr. 1985. Anthrax toxin. In *Microbiology.* L. Leive, editor. American Society for Microbiology, Washington, DC. 63–66.

Lindenbaum, S., and G. E. Boyd. 1964. Osmotic and activity coefficients for the symmetrical tetraalkylammonium halides in aqueous solution at 25°. *Journal of Physical Chemistry.* 68:911–917.

Mueller, P., D. O. Rudin, H. T. Tien, and W. C. Wescott. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. *Journal of Physical Chemistry.* 67:534–555.

Robinson, R. A., and R. H. Stokes. 1959. Electrolyte Solutions. 2nd ed. Butterworths Publications Ltd., London. 1–571.

Singh, Y., S. H. Leppla, R. Bhatnagar, and A. M. Friedlander. 1989. Internalization and processing of *Bacillus anthracis* lethal toxin by toxin-sensitive and -resistant cells. *Journal of Biological Chemistry.* 264:11099–11102.

Soejima, M., and S. Kokubun. 1988. Single anion selective-channel and its ion selectivity in vascular smooth muscle. *Pflügers Archiv.* 411:304–311.

Woodhull, A. M. 1973. Ionic blockage of sodium channels in nerve. *Journal of General Physiology.* 61:687–708.

Yamamoto, D., and N. Suzuki. 1987. Blockage of chloride channels by HEPES buffer. *Proceedings of the Royal Society of London, Series B.* 230:93–100.