Improving Short Utterance PLDA Speaker Verification using SUV Modelling and Utterance Partitioning Approach

Ahilan Kanagasundaram*,†, David Dean*, Sridha Sridharan* and Clinton Fookes*

Speech and Audio Research Laboratory*
Queensland University of Technology, Brisbane, Australia*
{a.kanagasundaram, d.dean, s.sridharan, c.fookes}@qut.edu.au*

Electrical & Electronic Engineering, Faculty of Engineering†
University of Jaffna, Jaffna, Sri Lanka†
ahilan@eng.jfn.ac.lk†

Abstract
This paper analyses the short utterance probabilistic linear discriminant analysis (PLDA) speaker verification with utterance partitioning and short utterance variance (SUV) modelling approaches. Experimental studies have found that instead of using single long-utterance as enrolment data, if long enrolled-utterance is partitioned into multiple short utterances and average of short utterance i-vectors is used as enrolled data, that improves the Gaussian PLDA (GPLDA) speaker verification. This is because short utterance i-vectors have speaker, session and utterance variations, and utterance-partitioning approach compensates the utterance variation. Subsequently, SUV-PLDA is also studied with utterance partitioning approach, and utterance-partitioning-based SUV-GPLDA system shows relative improvement of 9% and 16% in EER for NIST 2008 and NIST 2010 truncated 10sec-10sec evaluation condition as utterance-partitioning approach compensates the utterance variation and SUV modelling approach compensates the mismatch between full-length development data and short-length evaluation data.

Index Terms: speaker verification, i-vectors, PLDA, SUV, utterance partitioning

1. Introduction

A significant amount of speech is required for speaker model enrolment and verification, especially in the presence of large intersession variability, which has limited the widespread use of speaker verification technology in everyday applications. Reducing the amount of speech required for development, training and testing while obtaining satisfactory performance has been the focus of a number of recent studies in state-of-the-art speaker verification design, including joint factor analysis (JFA), i-vectors, probabilistic linear discriminant analysis (PLDA) and support vector machines (SVM) [1, 2, 3]. Continuous research on this field has been ongoing to address the robustness of speaker verification technologies under such conditions.

Previous research studies had found that long utterance i-vectors contain two source of variation: changing speaker characteristics, and changing channel (or session) characteristics [7]. Recently it was found that short utterance i-vectors vary due to speaker, session and linguistic content (utterance variation) [6]. In typical PLDA speaker verification, a single utterance is used as enrolment data. In this paper, instead of using a single long-utterance as enrolment data, long-enrolment utterance is partition into multiple short-enrolment utterances and the average i-vector over the short utterances is used as enrolment data to improve the short utterance speaker verification system. Recently, we have also introduced short utterance variance (SUV) modelling to PLDA speaker verification system to compensate the session and utterance variations [9]. Subsequently, in this paper, we also investigate the utterance-partitioning-based GPLDA speaker verification with SUV modelling approach.

This paper is structured as follows: Section 2 details the i-vector feature extraction techniques. Section 3 explains the GPLDA based speaker verification system. The experimental protocol and corresponding results are given in Section 6 and Section 7. Section 8 concludes the paper.

2. I-vector feature extraction

I-vectors represent the GMM super-vector by a single total-variability subspace. This single-subspace approach was motivated by the discovery that the channel space of JFA contains information that can be used to distinguish between speakers [10]. An i-vector speaker and channel dependent GMM super-vector can be represented by,

\[\mu = m + Tw. \] (1)

where \(m \) is the same universal background model (UBM) super-vector used in the JFA approach and \(T \) is a low rank total-variability matrix. The total-variability factors (\(w \)) are the i-vectors, and are normally distributed with parameters \(N(0,1) \). Extracting an i-vector from the total-variability subspace is essentially a maximum a-posteriori adaptation (MAP) of \(w \) in the subspace defined by \(T \). An efficient procedure for the optimization of the total-variability subspace \(T \) and subsequent extraction of i-vectors is described Dehak et al. [7]. In this paper, the pooled total-variability approach is used for i-vector feature extraction where the total-variability subspace (\(R_{\text{total}} = 500 \)) is trained on telephone and microphone speech utterances together.

3. Short utterance variance added i-vector features

The long-length utterance i-vectors have speaker and session variations whereas short-length i-vectors have speaker, session
and a lot of utterance variations. Thus, during development for SUV-PLDA, utterance variance is captured using the inner product of the difference between the full- and short-length i-vectors, and it is artificially added to full-length utterances and the simulated SUV is modelled using the PLDA approach. The short utterance variance matrix, S_{SUV}, can be calculated as follows,

$$S_{SUV} = \frac{1}{N} \sum_{n=1}^{N} A^T (w_{n}^{full} - w_{n}^{short}) A (w_{n}^{full} - w_{n}^{short})^T$$

(2)

where the estimation of the LDA matrix, A is detailed in our previous work [5]. For S_{SUV} estimation, the actual definition of what constitutes a full and/or short-length utterance needs to be established. For this research, we have defined full-length to be NIST standard utterance length, and in order to capture the SUV short utterance selection was as 20 sec. The SUV decorrelated matrix, D, is calculated using the Cholesky decomposition of $DD^T = S_{SUV}$. A random vector with utterance variation information can be generated if random normally independently distributed vector, d, with $\mu = 0.0$ and $\sigma = 1.0$ is multiplied by the SUV decorrelated matrix, D. The SUV-added full-length development vectors can be estimated as follows,

$$w = w_{full} + D^T d$$

(3)

After the SUV-added full-length i-vectors are extracted, length-normalized GPLDA model parameters are estimated in as described in Section 4.

4. Length-normalized GPLDA system

4.1. PLDA modelling

In this paper, we have chosen length-normalized GPLDA, as it is also a simplified and computationally efficient approach [12]. The length-normalization approach is detailed by Garcia-Romero et al. [12], and this approach is applied on development and evaluation data prior to GPLDA modelling. A speaker and channel dependent length-normalized i-vector, w_r, can be defined as,

$$w_r = \bar{w} + U_1 x_1 + \varepsilon_r$$

(4)

where for given speaker recordings $r = 1, \ldots, R$; U_1 is the eigenvoice matrix, x_1 is the speaker factors and ε_r is the residuals. In the PLDA modelling, the speaker specific part can be represented as $\bar{w} + U_1 x_1$, which represents the between speaker variability. The covariance matrix of the speaker part is $U_1 U_1^T$. The channel specific part is represented as ε_r, which describes the within speaker variability. The covariance matrix of channel part is Λ^{-1}. We assume that precision matrix (Λ) is full rank. Prior to GPLDA modelling, standard LDA approach is applied to compensate the additional channel variations as well as reduce the computational time [4].

4.2. GPLDA scoring

Scoring in GPLDA speaker verification systems is conducted using the batch likelihood ratio between a target and test i-vector [3]. Given two i-vectors, w_{target} and w_{test}, the batch likelihood ratio can be calculated as follows,

$$\ln \frac{P(w_{target}, w_{test} | H_1)}{P(w_{target} | H_0)P(w_{test} | H_0)}$$

(5)

where H_1 denotes the hypothesis that the i-vectors represent the same speakers and H_0 denotes the hypothesis that they do not.

5. Utterance-partitioning-based PLDA speaker verification

A single long utterance is commonly used as enrolment data in PLDA speaker verification system. It was previously found that short utterance i-vectors have speaker, session and utterance variations. It is hypothesised that if long-duration speech data is partitioned into short utterances and if average of short utterance i-vectors is estimated, this approach would compensate the utterance variations. In this paper, in order to test this hypothesis, long enrolled-utterance are partitioned into short utterances and multiple i-vectors are extracted and average of extracted i-vectors is used as enrolled i-vector. A block diagram of utterance-partitioning-based PLDA speaker verification is shown in Figure 1. Though truncated short utterances are extracted from same speaker and session, every short utterance i-vectors have different behaviour due to linguistic content and
the averaging of multiple short utterance i-vectors can be used compensate the linguistic content variation.

6. Experimental methodology

The proposed methods were evaluated using the the NIST 2008 and NIST 2010 SRE corpora. The shortened evaluation utterances were obtained by truncating the NIST 2008 short2-short3 and NIST 2010 core-core conditions to the specified length of active speech for both enrolment and verification. Prior to truncation, the first 20 seconds of active speech were removed from all utterances to avoid capturing similar data across multiple utterances. For NIST 2008, the evaluation was used using the equal error rate (EER) and the minimum decision cost function (DCF), calculated using $C_{miss} = 10$, $C_{FA} = 1$, and $P_{target} = 0.01$ [14]. The performance for the NIST 2010 SRE was evaluated using the EER and the old minimum DCF (DCF_{old}), calculated using $C_{miss} = 10$, $C_{FA} = 1$, and $P_{target} = 0.01$, where evaluation was performed using the telephone-telephone condition [15].

We have used 13 feature-warped MFCC with appended delta coefficients and two gender-dependent UBM$s containing 512 Gaussian mixtures throughout our experiments. The UBM$s were trained on telephone and microphone speech from NIST 2004, 2005, and 2006 SRE corpora, and then used to calculate the Baum-Welch statistics before training a gender dependent 2004, 2005, and 2006 SRE corpora, and then used to calculate the total-variability subspace of dimension $R_w = 400$. The pooled total-variability representation and the GPLDA parameters were trained using telephone and microphone speech data from NIST 2004, 2005 and 2006 SRE corpora as well as Switchboard II which includes 1386 female and 1117 male speakers. We empirically selected the number of eigenvectors (N_1) equal to 120 as best value according to speaker verification performance over an evaluation set. 150 eigenvectors were selected for LDA estimation. S-normalisation was applied for experiments, and randomly selected telephone and microphone utterances from NIST 2004, 2005 and 2006 were pooled to form the S-normalisation dataset [16].

7. Results and discussions

7.1. Utterance-partitioning-based GPLDA system

In this section, the performance of standard LDA-projected PLDA and utterance-partitioning-based LDA-projected GPLDA were compared on NIST 2008 and 2010 truncated conditions. Standard LDA-projected GPLDA was evaluated on 10sec-10sec and 20sec-10sec conditions. For utterance-partitioning-based LDA-projected GPLDA system, 20sec enrolment utterance was truncated into two 10sec utterances and average of 10sec i-vectors was used as enrolment i-vector. Table 1 compares the performance of utterance-partitioning-based LDA-projected GPLDA system against standard LDA-projected GPLDA system. Utterance-partitioning-based LDA-projected system shows improvement over standard LDA-projected system. Based upon these results, it is believe that though truncated short enrolled-utterances are extracted from same speaker and session, every short enrolled-utterance i-vectors have different behaviour due to linguistic content and the averaging of multiple short enrolled-utterance i-vectors can be used compensate the linguistic content variation.

7.2. Utterance-partitioning-based SUV-GPLDA system

In our previous studies, we have found that SUV-added GPLDA approach can effectively model the short utterance variance [5]. In this section, short utterance variance was studied with utterance-partitioning-based GPLDA system. Table 3 compares the performance of utterance-partitioning-based LDA-projected SUV-GPLDA system against standard LDA-projected SUV-GPLDA system. It can be clearly seen that utterance-
partitioning-based LDA-projected SUV-GPLDA system shows improvement over LDA-projected SUV-GPLDA system. When utterance-partitioning-based LDA-projected SUV-GPLDA system is compared against standard LDA-projected GPLDA system from Table 1 and 2, utterance-partitioning-based LDA-projected SUV-GPLDA system shows relative improvement of 9% and 16% in EER for NIST 2008 and NIST 2010 truncated 10sec-10sec evaluation condition as utterance-partitioning approach compensates the mismatch between full-length development data and short-length evaluation data.

8. Conclusion

This paper studied the PLDA speaker verification approach with utterance partitioning and SUV modelling approaches. Our experimental studies have found that instead of using single long-utterance as enrolment data, if long enrolled-utterance was partitioned into multiple short utterances and average of short utterance i-vectors was used as enrolled data, that improved the GPLDA speaker verification. This is because short utterance i-vectors have speaker, session and utterance variations, and utterance-partitioning approach compensates the utterance variation. SUV-GPLDA speaker was also studied with utterance-partitioning approach, and utterance-partitioning-based LDA-projected SUV-GPLDA system showed relative improvement of 9% and 16% in EER for NIST 2008 and NIST 2010 truncated 10sec-10sec evaluation condition as utterance-partitioning approach compensates the utterance variation and SUV modelling approach compensates the mismatch between full-length development data and short-length evaluation data.

9. Acknowledgements

This project was supported by an Australian Research Council (ARC) Linkage grant LP130100110.

10. References

[1] R. Vogt, B. Baker, and S. Sridharan, “Factor analysis subspace estimation for speaker verification with short utterances,” in Interspeech 2008, Brisbane, Australia, September 2008.

[2] A. Kanagasundaram, R. Vogt, B. Dean, S. Sridharan, and M. Mason, “i-vector based speaker recognition on short utterances,” in Proc. of INTERSPEECH. International Speech Communication Association (ISCA), 2011, pp. 2341–2344.

[3] M. McLaren, R. Vogt, B. Baker, and S. Sridharan, “Experiments in SVM-based speaker verification using short utterances,” in Proc. Odyssey Workshop, 2010, pp. 83–90.

[4] A. Kanagasundaram, R. Vogt, D. Dean, and S. Sridharan, “PLDA based speaker recognition on short utterances,” in The Speaker and Language Recognition Workshop (Odyssey 2012). ISCA, 2012.

[5] A. Kanagasundaram, D. Dean, and S. Sridharan, “Improving PLDA speaker verification with limited development data,” in IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2014.

[6] A. Kanagasundaram, D. Dean, J. Gonzalez-Dominguez, S. Sridharan, D. Ramos, and J. Gonzalez-Rodriguez, “Improving short utterance based i-vector speaker recognition using source and utterance-duration normalization techniques,” in Proc. of INTERSPEECH. International Speech Communication Association (ISCA), 2013.

[7] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor analysis for speaker verification,” Audio, Speech, and Language Processing, IEEE Transactions on, vol. PP, no. 99, pp. 1 –1, 2010.

[8] P. Kenny, T. Stafylakis, P. Ouellet, M. Alam, and P. Dumouchel, “PLDA for speaker verification with utterances of arbitrary duration,” in IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2013.

[9] A. Kanagasundaram, D. Dean, S. Sridharan, J. Gonzalez-Dominguez, D. Ramos, and J. Gonzalez-Rodriguez, “Improving short utterance i-vector speaker recognition using utterance variability modelling and compensation techniques,” in Speech Communication. Publication of the European Association for Signal Processing (EURASIP), 2014.

[10] N. Dehak, R. Dehak, P. Kenny, N. Brummer, P. Ouellet, and P. Dumouchel, “Support vector machines versus fast scoring in the low-dimensional total variability space for speaker verification,” in Proceedings of Interspeech, 2009, p. 1559 1562.

[11] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A study of inter-speaker variability in speaker verification,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 5, pp. 980–988, 2008.

[12] D. Garcia-Romero and C. Espy-Wilson, “Analysis of i-vector length normalization in speaker recognition systems,” in International Conference on Speech Communication and Technology, 2011, pp. 249–252.

[13] P. Kenny, “Bayesian speaker verification with heavy tailed priors,” in Proc. Odyssey Speaker and Language Recognition Workshop, Brno, Czech Republic, 2010.

[14] “The NIST year 2008 speaker recognition evaluation plan,” NIST, Tech. Rep., 2008. [Online]. Available: http://www.itl.nist.gov/srd/nist08/.

[15] “The NIST year 2010 speaker recognition evaluation plan,” NIST, Tech. Rep., 2010. [Online]. Available: [http://www.itl.nist.gov/srd/nist10/index.html]

[16] S. Shum, N. Dehak, R. Dehak, and J. Glass, “Unsupervised speaker adaptation based on the cosine similarity for text-independent speaker verification,” Proc. Odyssey, 2010.