MMD labeling of complete tripartite graphs

Revathi R, Angel D and Mary Jeya Jothi R
Department of Mathematics, Sathyabama Institute of Science and Technology, India.
revathirangan75@gmail.com ; angel.zara1001@gmail.com; jeyajothi31@gmail.com;

Abstract. A simple, connected and undirected graph with \(n \) vertices is said to have (MMD) modular multiplicative divisor labeling if there exist a one to one and onto function \(f \) from vertices of the graph to set of all natural numbers from 1 to \(n \) and label induced on the edges by the product of labels of end vertices modulo \(n \) such that addition of all edge labels is congruent to 0 (mod \(n \)). This paper studies MMD labeling of complete tripartite graphs and some open problems.

1. Introduction
All terms and expressions in this paper we follow Harary [1]. Every graph is finite, simple, connected and undirected. Many results about labeling of graphs are outlined in the survey paper [2]. Number theory contains more applications of graph labeling and graph coloring [6,7]. Motivated by the result of Marbun[3], MMD labeling of \(k \)- multilevel corona of path \(P_3 \) with disjoint union of \(2m \) copies of \(K_1 \) and \(k \)- multilevel corona of \(C_n \) (adding pendant edge for each vertex of the cycle \(C_n \)) with disjoint union of \(2m \) copies of path \(P_3 \), where \(k \) and \(m \) are positive integers have been studied [5]. Also [4] characterize certain families of MMD graphs. This paper studies MMD labeling of complete tripartite graphs and discuss open problems related to the topic.

2. Preliminaries

Definition 2.1. A graph labeling is an assignment of integers to the vertices or edges, or both, subject to certain conditions.

Definition 2.2. A graph \(G \) with \(n \) vertices is said to have modular multiplicative divisor (MMD) labeling if there exist a bijection \(f \) from \(V(G) \) to \(\{1,2,...,n\} \) and the induced function \(f^* \) from \(E(G) \) to \(\{0,1,...,n-1\} \) where \(f^*(uv) = f(u)f(v) \pmod{n} \) for all \(uv \in E(G) \) such that \(n \) divides the sum of all edge labels of \(G \).

Modular multiplicative divisor labeling of a graph with \(n = 5 \) is given in figure 2.1. Sum of all edge labels = 0+0+0+0+3+2+3+2+1+4 = 15 \(\equiv 0 \pmod{5} \).
Definition 2.3. A simple graph G is said to be a bipartite graph if the vertex set of G can be divided into two disjoint non-empty subsets X and Y such that each edge joins a vertex in X to a vertex in Y.

Definition 2.4. A bipartite graph G is said to be a complete bipartite graph if every vertex of X is adjacent to all vertices of Y.

Definition 2.5. A simple graph G is said to be a complete tripartite graph if the vertex set of G can be partitioned into three disjoint non-empty subsets V_1, V_2, V_3 such that an edge joins two vertices u, v of G if and only if u and v do not belong to the same V_i. It is denoted by $K_{l,m,n}$ if V_1, V_2, V_3 have l, m, n elements respectively.

3. Main Results

Constructed large families of graphs using the operations corona, union and addition [5]. This section discusses MMD labeling of tripartite graphs.

Theorem 3.1 The complete tripartite graph $K_{l,m,n}$ admits MMD labeling.

Proof:

Let the vertices of l-vertices part, m-vertices part and n-vertices part of $K_{l,m,n}$ be $\{u_1,u_2,\ldots,u_l\}$, $\{v_1,v_2,\ldots,v_m\}$ and $\{w_1,w_2,\ldots,w_n\}$ respectively.

Let the graph $K_{l,m,n}$ be G with $l+m+n=N$ (say) number of vertices and lmn edges of G.

Case (i)

Any two vertices part of $K_{l,m,n}$ be even (This case includes l,m,n all are even). Let it be l-vertices part and m-vertices part. That is $l \equiv 0 \pmod{2}$ and $m \equiv 0 \pmod{2}$. Label the vertices of l-vertices part and m-vertices part of $K_{l,m,n}$ as

$$f(u_i) = \begin{cases}
 i & \frac{l}{2} + 1 \leq i \leq l \\
 N + \frac{l}{2} - i & 1 \leq i \leq \frac{l}{2}
\end{cases}$$
Other vertices of n-vertices part can be assigned with the remaining integers. Sum of $l m n$ edge labels will be

$$f(v_i) = \left\{ \begin{array}{ll}
\frac{l}{2} + i & 1 \leq i \leq \frac{m}{2} \\
N - \frac{l}{2} - i & \frac{m}{2} + 1 \leq i \leq m
\end{array} \right.$$

$$f(v_i) \left[f(u_1) + \ldots + f(u_l) \right] + f(v_j) \left[f(u_1) + \ldots + f(u_l) \right] + \ldots + f(v_m) \left[f(u_1) + \ldots + f(u_l) \right] + \left[f(w_1) + \ldots + f(w_n) \right]$$

$$= \left[\frac{lmN}{4} + \left(f(w_1) + \ldots + f(w_n) \right) \right] \left(l + m \right) N \left/ 2 \right.$$

which is a multiple of N.

Example: 3.1 MMD labeling of complete tripartite graph $K_{4,2,3}$ is shown in figure 3.1

![Diagram](image)

Fig. 3.1 MMD labeling of $K_{4,2,3}$

Case (ii)

Exactly two vertices part of $K_{l,m,n}$ be odd. Let $l \equiv 1(\mod 2)$ and $m \equiv 1(\mod 2)$ (That is $n \equiv 0(\mod 2)$). Labels of l-vertices part and n-vertices part of $K_{l,m,n}$ are
Vertices of \(m \)-vertices part which are not included above can be assigned with the remaining integers.

Sum of \(lm \) edge labels will be

\[
\begin{align*}
[f(u_1) + \ldots + f(u_l)] + [f(v_1) + \ldots + f(v_m)] + [f(w_1) + \ldots + f(w_n)] \\
= [N(l+1)/2] [f(v_1) + \ldots + f(v_m)] + [N(n/2)] [f(v_1) + \ldots + f(v_m)] + [f(u_1) + \ldots + f(u_l)]
\end{align*}
\]

which is a multiple of \(N \).

Example: 3.2 MMD labeling of \(K_{3,3,2} \) is shown in figure 3.2

Fig. 3.2 MMD labeling of \(K_{3,3,2} \)

4. Conclusion and open problem
Studied MMD labeling of complete tripartite graphs $K_{l,m,n}$. The problem still remains open for all $l \equiv 1(\text{mod } 2), m \equiv 1(\text{mod } 2), n \equiv 1(\text{mod } 2)$.

Problem:

Does there exist MMD labeling of $K_{l,m,n}$ for all $l \equiv 1(\text{mod } 2), m \equiv 1(\text{mod } 2)$ and $n \equiv 1(\text{mod } 2)$?

References

[1] Harary F 1972 Graph Theory (Addison-Wesley, Reading, Massachusetts).
[2] Gallian J A 2015 A Dynamic Survey of Graph Labeling, Electronic j of combinatorics Dec. 7, #DS6.
[3] Marbun H T and Salman A N M 2013 Wheel-supermagic labelings for a wheel k-multilevel corona with a cycle, AKCE Int. J. Graphs Comb. 10 183-91.
[4] Revathi R and Ganesh S 2016, Characterization of Some Families of Modular Multiplicative Divisor Graphs, J of Taibah University for Science 11 294-97.
[5] Revathi R and Ganesh S 2017, Modular Multiplicative Divisor Labeling of k-Multilevel Corona Related Graphs, J of Computational and Theoretical Nanoscience, 13 7634-39.
[6] Mary Jeya Jothi R and Revathi R 2020, SSP Cyclic Structure of Some Circulant Graphs Journal of Combinatorial Mathematics and Combinatorial Computing 112 95 – 102.
[7] Angel D 2018, Invertibility in Well Covered and Perfect Graphs”. Proceedings of the International Conference on Advanced Computing Networking and Informatics, Springer, AISC, 28 495-499.