Red-injective modules

Juma Kasozi, David Ssevviiri*and Vincent Umutabazi

Department of Mathematics
Makerere University, P.O BOX 7062, Kampala Uganda
E-mail addresses: kasozi@cns.mak.ac.ug, ssevviiri@cns.mak.ac.ug, umutabazivincent@yahoo.fr

Abstract

Let $\text{Red}(M)$ be the sum of all reduced submodules of a module M. For modules over commutative rings, $\text{Soc}(M) \subseteq \text{Red}(M)$. By drawing motivation from how Soc-injective modules were defined by Amin et. al. in [1], we introduce Red-injective modules, study their properties and use them to characterize quasi-Frobenius rings and V-rings.

Keywords: Injective modules; Red-injective modules; Soc-injective modules; Quasi-Frobenius rings; V-rings

MSC 2010 Mathematics Subject Classification: 16D50, 16D60, 16L60

1 Introduction

For a not necessarily commutative ring R, Lee and Zhou in [7] defined an R-module M to be reduced if for all $r \in R$ and $m \in M$, $mr = 0$ implies that $Mr \cap mR = \{0\}$. This definition is equivalent to saying that for all $r \in R$ and $m \in M$, $mr^2 = 0$ implies that $mRr = \{0\}$, see [10] for the proof. However, for modules over commutative rings we get Definition 1 below.

Definition 1. An R-module M is reduced if for all $r \in R$ and $m \in M$, $mr^2 = 0$ implies that $mr = 0$.

Except in Example 3.1, all rings are unital, commutative and associative. Modules are right unital defined over rings. A submodule is reduced if it is reduced as a module. A submodule of a reduced module is reduced but a factor module of a reduced module need not be reduced. The \mathbb{Z}-module \mathbb{Z} is reduced but its factor module $\mathbb{Z}/n\mathbb{Z}$ is not reduced for a non-square free integer n. The socle of an

*Corresponding author
R-module M, denoted by $\text{Soc}(M)$ is the sum of simple submodules of M. Let $\text{Red}(M)$ denote the sum of reduced submodules of M, i.e.,

$$\text{Red}(M) := \sum_{i \in I} \{N_i \mid N_i \text{ is a reduced submodule of } M \}.$$

Definition 2. An R-module M is **semi-reduced** if $\text{Red}(M) = M$.

Proposition 1. For any R-module M, the following implications hold:

$$\text{simple} \Rightarrow \text{semi-simple} \Rightarrow \text{reduced} \Rightarrow \text{semi-reduced}.$$

Proof: We prove that a semi-simple module is reduced. The other implications follow from the definition of semi-simple and semi-reduced modules respectively. Since a simple module is prime\(^1\) and every prime module is reduced, a simple module is reduced. Suppose that M is a semi-simple module and $mr^2 = 0$ where $m \in M$ and $r \in R$. Then, $(m_1, m_2, \ldots, m_i, \cdots) r^2 = 0$ where $(m_1, m_2, \ldots, m_i, \cdots) = m \in M = \bigoplus_{i \in I} M_i$ for some simple modules M_i. Since every simple module is reduced, $m_i r^2 = 0 \Rightarrow m_i r = 0 \forall \ i \in I$. Hence, $mr = 0$, and M is reduced. \hfill \Box

Corollary 1. For any R-module M, $\text{Soc}(M) \subseteq \text{Red}(M)$.

Proof: The proof follows from the fact that a semi-simple module is semi-reduced which is proved in Proposition 1. \hfill \Box

Note that for semi-simple modules and for modules without nonzero reduced submodules, $\text{Soc}(M) = \text{Red}(M)$.

Example 1.1. A reduced module need not be semi-simple. \mathbb{Z} and \mathbb{Q} are reduced \mathbb{Z}-modules but they are not semi-simple.

1.1 Other basic definitions

Definition 3. \([1, \text{Definition 1.1}]\) Let M and N be R-modules. M is **socle-N-injective** (Soc-N-injective) if any R-homomorphism $f : \text{Soc}(N) \rightarrow M$ extends to N. Equivalently, for any semi-simple submodule K of N, any R-homomorphism $f : K \rightarrow M$ extends to N. An R-module M is **Soc-quasi-injective** if M is Soc-M-injective. M is **Soc-injective** if M is Soc-R-injective. R is right (self-) **Soc-injective**, if the module R_R is Soc-injective (equivalently, if R_R is Soc-quasi-injective).

Definition 4. \([1, \text{Definition 1.2}]\) An R-module M is called **strongly Soc-injective**, if M is Soc-N-injective for all R-modules N. A ring R is called **strongly Soc-injective**, if the module R_R is strongly Soc-injective.

\(^1\)An R-module M for which $RM \neq \{0\}$ is **prime** if for all $a \in R$ and every $m \in M$, $am = 0$ implies that $m = 0$ or $aM = \{0\}$.

2
Definitions 3 and 4 together with Corollary 1 motivate us to have Definitions 5 and 6 respectively.

Definition 5. An R-module M is called **Red-N-injective** if any R-homomorphism $f: K \to M$ extends to N for any semi-reduced submodule K of N. M is called **Red-quasi-injective** if it is Red-M-injective. M is called **Red-injective** if it is Red-R-injective.

Definition 6. An R-module M is called **strongly-Red-injective**, if M is Red-N-injective for all R-modules N.

In Definition 7, we recall different generalizations of injective modules that we later use in the sequel. As with Soc-injective and Red-injective modules defined above, these generalizations of injective modules were defined by relaxing conditions on the lifting property of homomorphisms.

Definition 7. If M and N are R-modules, then

1. M is **N-injective** if every R-homomorphism from a submodule of N into M can be extended to an R-homomorphism from N into M.

2. M is **quasi-injective** if it is M-injective.

3. M is **N-simple-injective** if for any submodule L of N, any homomorphism $\theta: L \to M$ with $\theta(L)$ simple, can be extended to a homomorphism $\beta: N \to M$.

4. M is **simple-injective** if it is simple R-injective.

5. M is **strongly simple-injective**, if M is simple-N-injective for all right R-modules N.

6. M is **min-N-injective** if, for every simple submodule L of N, every homomorphism $\gamma: L \to M$ extends to N.

7. M is **min-injective** if it is min-R-injective.

8. M is **strongly min-injective**, if it is min-N-injective for all R-modules N.

9. M is **pseudo-injective** if any monomorphism from a submodule of M to M extends to an endomorphism of M.

1.2 Notation

Throughout this paper, $N \subseteq^e M$, $N \oplus M$, $N \subseteq^\oplus M$, and $N \leq M$, mean that N is an essential submodule of M, a direct sum of N and M, N is a direct summand of M, N is a submodule of M respectively.
1.3 Paper roadmap

In Section 1, we have given the introduction, defined key terms, given the notation used and the roadmap for the paper.

Section 2 is devoted to obtaining properties of Red-injective modules and their generalizations. An equivalent definition of a Red-injective module is obtained. It is shown that any injective module is strongly Red-injective and a Red-injective module is Soc-injective. Other implications with known generalizations of injective modules are given. The class of (strongly) Red-injective R-modules is closed under isomorphisms, direct products and summands. If M is a Noetherian module, then a direct sum of Red-M-injective is Red-M-injective. For a family of R-modules $\{M_i : i \in I\}$, an R-module N is Red-$\left(\oplus_{i \in I} M_i\right)$-injective if and only if it is Red-M_i-injective for each i. For a projective R-module M, every quotient of a Red-M-injective R-module is Red-M-injective if and only if Red(M) is projective if and only if every quotient of an injective R-module is Red-M-injective. Over a principal ideal domain a free module is Red-injective if each of its submodule is Red-injective. Red(N)-lifting modules are introduced. It is shown that if a module N is Red(N)-lifting, then any R-module K is Red-N-lifting if and only if K is N-injective. It is shown that Red-quasi-injective modules inherit a weaker version of C2-condition and C3-condition.

In Section 3, we characterize quasi-Frobenius rings and right V-rings in terms of strongly Red-injective modules. A ring R is quasi-Frobenius if and only if every strongly Red-injective R-module is projective. A ring R is a right V-ring if and only if every simple R-module is strongly Red-injective. A question is raised as to whether Red-quasi-injective modules and Soc-quasi-injective modules are clean and or satisfy the exchange property.

2 Red-injective modules

Proposition 2. For R-modules K, M and N, the following statements are equivalent:

1. Any R-homomorphism $f : K \to M$ extends to N for any semi-reduced submodule K of N.
2. Any R-homomorphism $f : \text{Red}(N) \to M$ extends to N.

Proof:

1 \Rightarrow 2 since $\text{Red}(N)$ is semi-reduced.

2 \Rightarrow 1. Suppose $f : K \to M$ is an R-homomorphism and K is a semi-reduced submodule of N. Since $K \leq \text{Red}(N)$, then f extends to N.

\square
Proposition 3. If N is an R-module, then

1. any injective module is strongly Red-injective,
2. a Red(N)-injective module is Soc(N)-injective.

Proof:

1. Let M be an injective module. Then M is N-injective for every R-module N. For every submodule K of N, any R-homomorphism $f : K \to M$ extends to N. For every module N, any R-homomorphism $f : \text{Red}(N) \to M$ extends to N. Hence, M is strongly Red-injective.

2. Suppose $f : \text{Soc}(N) \to M$ is an R-homomorphism and M is Red(N)-injective. By Proposition 1, Soc(N) is a semi-reduced submodule of N. Hence by Definition 5, f extends to N. Thus, M is Soc-N-injective.

\[\blacksquare\]

Every projective module over a right Noetherian right self-injective ring is strongly Red-injective. Let R be a ring for which each module M has Red(M) = \{0\}. Then, M is strongly Red-injective.

A Red-injective module need not be injective. The module \mathbb{Z} is Red-injective but not injective.

Theorem 1. Let $\{M_i : i \in I\}$ be a family of R-modules and N, M, A, C, S and K be R-modules. Then the following conditions hold:

1. A direct product $\prod_{i \in I} M_i$ is Red-N-injective if and only if each M_i is Red-N-injective.
2. For $S \leq N$, if M is Red-N-injective, then M is Red-S-injective.
3. For $M \cong N$; M is Red-S-injective if and only if N is Red-S-injective.
4. For $A \cong B$; C is Red-A-injective if and only if it is Red-B-injective.
5. For $N \subseteq \bigoplus M$, if M is Red-K-injective, then N is Red-K-injective.

Proof:

1. We prove only for $M = M_i \times M_j$ where i, $j \in I$. The proof for the general case is analogous. Let M_i and M_j be Red-N-injective R-modules, $h : \text{Red}(N) \to N$ and $f : \text{Red}(N) \to M_i \times M_j$ be any R-homomorphisms.

Define

\[f_{M_i} : \text{Red}(N) \to M_i\] such that $\pi_{M_i} \circ f = f_{M_i}$

and

\[f_{M_j} : \text{Red}(N) \to M_j\] such that $\pi_{M_j} \circ f = f_{M_j}$.
where \(\pi_{M_i} : M_i \times M_j \rightarrow M_i \) and \(\pi_{M_j} : M_i \times M_j \rightarrow M_j \) are \(R \)-homomorphisms. Since \(M_i \) and \(M_j \) are \(R \)-injective there exists \(f'_{M_i} : N \rightarrow M_i \) and \(f'_{M_j} : N \rightarrow M_j \) such that
\[
f_{M_i} = f'_{M_i} \circ h \quad \text{and} \quad f_{M_j} = f'_{M_j} \circ h.
\]
By the uniqueness part of the universal property of direct product there exists an \(R \)-homomorphism \(f' : N \rightarrow M_i \times M_j \) such that \(f = f' \circ h \). It follows that \(\pi_{M_i} \circ (f' \circ h) = f_{M_i} \) and \(\pi_{M_j} \circ (f' \circ h) = f_{M_j} \).

By the uniqueness of the universal property we conclude that \(f = f' \circ h \). Hence, \(f : \text{Red}(N) \rightarrow M_i \times M_j \) extends to \(N \). Thus \(M_i \times M_j \) is \(R \)-injective. Conversely, assume that \(M_i \times M_j \) is \(R \)-injective. Let \(h : \text{Red}(N) \rightarrow N \) and \(f_{M_i} : \text{Red}(N) \rightarrow M_i \) be any \(R \)-homomorphisms. Choose \(f_{M_j} : \text{Red}(N) \rightarrow M_j \) to be the zero \(R \)-homomorphism. We obtain \(f' : N \rightarrow M_i \times M_j \) such that \(f = f' \circ h \). Finally we obtain \(f_{M_i} = \pi_{M_i} \circ f = (\pi_{M_i} \circ f') \circ h \). Hence \(\pi_{M_i} \circ f' : N \rightarrow M_i \) is an extension of \(f_{M_i} \). Thus, \(M_i \) is \(R \)-injective. Similarly, \(M_j \) is \(R \)-injective.

2. Consider the diagram in Figure 1, where \(M \) is \(R \)-injective.

\[
\begin{array}{ccc}
\text{Red}(S) & \xrightarrow{k} & \text{Red}(N) \\
& \downarrow{g} & \downarrow{h} \\
S & \xrightarrow{\iota} & N
\end{array}
\]

\[
f' \circ \iota : S \rightarrow M \quad \text{is an extension for any} \quad R \text{-homomorphism} \quad q : \text{Red}(S) \rightarrow M. \quad \text{Thus} \quad M \quad \text{is} \quad R \text{-injective.}
\]

3. Let \(N \cong M \) where \(\theta : N \rightarrow M \) is an \(R \)-isomorphism between them. Let \(f_N : \text{Red}(S) \rightarrow N \) be any \(R \)-homomorphism. Since \(M \) is \(R \)-injective, any \(R \)-homomorphism \(f_M : \text{Red}(S) \rightarrow M \) extends to \(f'_M : S \rightarrow M \). So for any \(R \)-homomorphism \(h : \text{Red}(S) \rightarrow S \), \(f_M = f'_M \circ h \).

Since \(M \) and \(N \) are isomorphic there exists an inverse homomorphism \(\theta^{-1} : M \rightarrow N \) such that \(\theta^{-1} \circ f'_M : S \rightarrow N \) is an \(R \)-homomorphism. Define \(f'_N = \theta^{-1} \circ f'_M : S \rightarrow N \). Then, \(f'_N \) is an extension of \(f_N \). Thus, \(N \) is \(R \)-injective. Similarly, if \(N \) is \(R \)-injective then \(M \) is \(R \)-injective.
4. Suppose that \(A \cong B \) and \(C \) is Red-\(A \)-injective. We show that \(C \) is Red-\(B \)-injective.

Consider the diagram in Figure 2, where \(f'_A : A \to C \) is the extension of \(f_A : \text{Red}(A) \to C \). Let also \(f_B : \text{Red}(B) \to C \) be an \(R \)-homomorphism. Define \(f'_B = f'_A \circ \theta : B \to C \). Then \(f'_B : B \to C \) is the extension of \(f_B \). Thus \(C \) is Red-\(B \)-injective. A similar argument works for the converse.

5. Let \(N \subseteq \oplus M \) and \(M \) be Red-\(K \)-injective. We show that \(N \) is Red-\(K \)-injective. Since \(N \subseteq \oplus M \), there exists an \(R \)-submodule \(N' \) of \(M \) such that \(N \oplus N' = M \). Let \(\pi_N : N \oplus N' \to N \) be the projection \(R \)-homomorphism. Since \(M \) is Red-\(K \)-injective, any \(R \)-homomorphism \(f_M : \text{Red}(K) \to M \) extends to \(f'_M : K \to M \). Suppose \(f_N = \pi_N \circ f_M : \text{Red}(K) \to N \). Define \(f'_N = \pi_N \circ f'_M : K \to N \). Then \(f'_N : K \to N \) is the extension of \(f_N \). Hence, \(N \) is Red-\(K \)-injective.

\(\square \)

Corollary 2. Let \(N \) be an \(R \)-module, then

1. a finite direct sum of Red-\(N \)-injective modules is again Red-\(N \)-injective. In particular, a finite direct sum of Red-injective (resp., strongly Red-injective) modules is again Red-injective (resp., strongly Red-injective);

2. a direct summand of Red-quasi-injective (resp., Red-injective, strongly Red-injective) module is again Red-quasi-injective (resp., Red-injective, strongly Red-injective) module.

Proposition 4. If \(M \) is a Noetherian \(R \)-module, then a direct sum of Red-\(M \)-injective modules is Red-\(M \)-injective.

Proof: For \(D = \bigoplus_{i \in I} D_i \), a direct sum of Red-\(M \)-injective modules, let \(f : K \to D \) be an \(R \)-homomorphism, where \(K \) is any semi-reduced submodule of \(M \). Since \(K \) is finitely generated, \(f(K) \leq \bigoplus_{i=1}^n D_i \) for some positive integer \(n \). Since \(\bigoplus_{i=1}^n D_i \) is Red-\(M \)-injective, then \(f \) can be extended to an \(R \)-homomorphism \(\hat{f} : M \to D \).

\(\square \)
Corollary 3. Let R_R be a Noetherian module. Then, a direct sum of Red-injective modules is Red-injective.

Proposition 5. Let $\{M_i : i \in I\}$ be a family of R-modules and N be an R-module. Then, N is $\text{Red}(\bigoplus_{i \in I} M_i)$-injective if and only if it is Red-M_i-injective for each i.

Proof:

(\Rightarrow). Suppose that N is $\text{Red}(\bigoplus_{i \in I} M_i)$-injective. Let $f : \text{Red}(M_i) \to N$ be any R-homomorphism. By hypothesis, any R-homomorphism $g : \text{Red}(\bigoplus_{i \in I} M_i) \to N$ extends to $\bar{g} : \bigoplus_{i \in I} M_i \to N$. The required extension of f is $\bar{g} \circ \iota$ where ι is the injection $\iota : M_i \to \bigoplus_{i \in I} M_i$.

(\Leftarrow). Suppose that N is Red-M_i-injective for each $i \in I$. Since N is Red-M_i-injective for each $i \in I$; let $\theta_i : M_i \to N$ be the extension of $f_i : \text{Red}(M_i) \to N$ for each $i \in I$. Let also $g : \text{Red}(\bigoplus_{i \in I} M_i) \to N$ be any R-homomorphism. By the fundamental property of direct sum of modules, there exists an R-homomorphism $\theta = \langle \theta_i \rangle : \bigoplus_{i \in I} M_i \to N$ such that $\theta \circ \iota_i = \theta_i$ for all $i \in I$; where $\iota_i : M_i \to \bigoplus_{i \in I} M_i$ is the injection R-homomorphism for each $i \in I$. Then θ is an extension of $g : \text{Red}(\bigoplus_{i \in I} M_i) \to N$. Hence, N is $\text{Red}(\bigoplus_{i \in I} M_i)$-injective.

Corollary 4. If A, B, C, and Q are R-modules and the short exact sequence $\{0\} \to A \xrightarrow{\mu} B \xrightarrow{\varepsilon} C \to \{0\}$ splits, then the following conditions hold:

1. Q is Red-C-injective if and only if it is Red-$(B/\mu(A))$-injective.
2. Q is Red-B-injective if and only if it is Red-A-injective and Red-C-injective.

Proof:

1. This follows from the fact that $B/\mu(A) \cong C$.
2. Follows from Proposition 4, Theorem 1 and the fact that $B \cong A \oplus C$.

Proposition 6. Let N and M be R-modules. Then the following conditions hold:

1. M is injective \Rightarrow M is N-injective \Rightarrow M is Red-N-injective \Rightarrow M is Soc-N-injective \Rightarrow M is min-N-injective.
2. M is injective \Rightarrow M is strongly Red-injective \Rightarrow M is strongly Soc-injective \Rightarrow M is strongly min-injective \Leftrightarrow M is strongly simple-injective.
Proposition 7. For an R-module M, if $\text{Red}(M)$ is a direct summand of M, then every R-module is Red-M-injective.

Proof: Suppose that K is an R-module and $\text{Red}(M) \subseteq \oplus M$. We show that K is Red-M-injective. Let $f : \text{Red}(M) \to K$ be any R-homomorphism. Since $\text{Red}(M)$ is a direct summand of M, there exists a proper R-submodule P of M such that $M = \text{Red}(M) \oplus P$. There exists an R-homomorphism $f' : M \to \text{Red}(M)$ such that $f'(n+p) = n$, for all $n \in \text{Red}(M)$ and $p \in P$. Then, the R-homomorphism $f \circ f' : M \to K$ is an extension of f because $(f \circ f')(n+p) = f(f'(n+p)) = f(n)$ for all $n+p \in M$. Hence, K is Red-M-injective. \square

Theorem 2. For a projective R-module M, the following conditions are equivalent:

1. Every quotient of a Red-M-injective R-module is Red-M-injective.
2. Every quotient of an injective R-module is Red-M-injective.
3. $\text{Red}(M)$ is a projective R-module.

Proof:

(1 \Rightarrow 2). This is due to the fact that every injective R-module is Red-M-injective.

(2 \Rightarrow 3). Consider the diagram in Figure 3 below:

$$
\begin{array}{ccccccc}
E & \xrightarrow{\varepsilon} & N & \xrightarrow{i} & \{0\} \\
\downarrow f & & \downarrow & & \\
\{0\} & \xrightarrow{f} & \text{Red}(M) & \xrightarrow{i} & M
\end{array}
$$

Figure 3

where E and N are R-modules, ε an R-epimorphism, and f an R-homomorphism. By [4, Proposition 5.1], assume that E is injective. Since N is Red-M-injective f can be extended to an R-homomorphism $g : M \to N$. Since M is projective, g can be lifted to an R-homomorphism $\bar{g} : M \to E$ such that $\varepsilon \circ \bar{g} = g$. Define $\bar{f} : \text{Red}(M) \to E$ by $\bar{f} = \bar{g}|_{\text{Red}(M)}$. Then $\varepsilon \circ \bar{f} = \varepsilon \circ \bar{g}|_{\text{Red}(M)} = f$. Hence, $\text{Red}(M)$ is projective.

(3 \Rightarrow 1). Let N and L be R-modules with $\varepsilon : N \to L$ an R-epimorphism and N is Red-M-injective. Consider the diagram in Figure 4.
Since Red(M) is projective, \(f \) can be lifted to an \(R \)-homomorphism \(g : \text{Red}(M) \to N \) such that \(\varepsilon \circ g(m) = f(m) \), for all \(m \in \text{Red}(M) \). Since \(N \) is Red-\(M \)-injective, \(g \) can be extended to an \(R \)-homomorphism \(\tilde{g} : M \to N \). Hence, \(\varepsilon \circ \tilde{g} : M \to L \) extends \(f \).

\[\varepsilon \]

\[\text{Corollary 5.} \] The following conditions are equivalent for a reduced projective \(R \)-module:

1. Every quotient of a Red-injective \(R \)-module is Red-injective.
2. Every quotient of an injective \(R \)-module is Red-injective.
3. \(\text{Red}(R_R) \) is a projective module.

In addition, if every semi-reduced submodule of a projective \(R \)-module is projective, then \(\text{Red}(R_R) \) is a projective module.

Proof: 1 \(\iff \) 1 \(\iff \) 4 follows from Theorem 2. The additional case follows from the fact that \(\text{Red}(R_R) \) is a semi-reduced submodule of a projective module \(R_R \).

Proposition 8. Let \(R \) be a Principal Ideal Domain (PID) and \(N \) be an \(R \)-module. Then, the following statements hold:

1. If every free \(R \)-module is Red-\(N \)-injective then each of its submodules is Red-\(N \)-injective.
2. If every projective \(R \)-module is Red-\(N \)-injective then each of its submodules is Red-\(N \)-injective.
3. Every projective \(R \)-module is Red-\(N \)-injective if and only if every free \(R \)-module is Red-\(N \)-injective.

Proof:

1. Suppose that every free \(R \)-module \(M \) is Red-\(N \)-injective, and \(L \leq M \). Since over a PID a submodule of a free module is free, \(L \) is free. By hypothesis, \(L \) is Red-\(N \)-injective.
2. Suppose that every projective R-module P is Red-N-injective, and $K \leq P$. Since over a PID a submodule of a projective R-module is projective, K is projective. By hypothesis, K is Red-N-injective.

3. Over a PID every projective module is free. The converse holds since any free module is projective.

Definition 8. Let X be a submodule of a module M. We say that Red(M) respects X if there exists a direct summand A of M contained in X such that $X = A \oplus B$ and $B \leq \text{Red}(M)$. M is called Red(M)-lifting if Red(M) respects every submodule of M.

Proposition 9. Let N be an R-module. If N is Red(N)-lifting, then any R-module K is Red-N-injective if and only if K is N-injective.

Proof:

(\Rightarrow). Suppose that K is Red-N-injective. Let L be any submodule of N, $\iota : L \to N$ the inclusion map and $f : L \to K$ any R-homomorphism. Since Red(N) respects L, L has a decomposition $L = A \oplus B$ such that $A \subseteq N$ and $B \leq \text{Red}(N)$. $N = A \oplus A'$ for some submodule A' of N. Then, $L = A \oplus (L \cap A')$ and $L \cap A'$ is semi-reduced. Let $i : L \cap A' \to L$ be the inclusion map and $f|_{L \cap A'} : L \cap A' \to K$. Since K is Red-N-injective, there exists an R-homomorphism $g : N \to K$ such that $g \circ \iota \circ i = f|_{L \cap A'}$. Now, define $h : N \to K$ by $h(a + a') = f(a) + g(a')$ ($a \in A, a' \in A'$). Then $h \circ \iota = f$, and hence K is N-injective.

(\Leftarrow). Every N-injective module is Red-N-injective. This is due to the fact that for every N-injective module K, any R-homomorphism from any submodule of N to K extends to N.

Proposition 9 shows that Red-quasi-injective modules inherit a weaker version of C2-condition and C3-conditions.
Proposition 10. Suppose that an R-module N is Red-quasi-injective.

1. (Red-C2) If P and Q are semi-reduced submodules of N, $P \cong Q$ and $P \subseteq N$, then $Q \subseteq N$.

2. (Red-C3) Let P and Q be semi-reduced submodules of N with $P \cap Q = \{0\}$. If $P \subseteq N$ and $Q \subseteq N$; then $P \oplus Q \subseteq N$.

Proof:

1. Since $P \cong Q$, and P is Red-N-injective, being a direct summand of a Red-quasi-injective module N, Q is Red-N-injective by Corollary 2(2). If $i : Q \rightarrow N$ is the inclusion map, the identity $id_Q : Q \rightarrow Q$ has an extension $\eta : N \rightarrow Q$ such that $\eta \circ i = id_Q$, and hence $Q \subseteq N$.

2. Since both P and Q are direct summands of N; then both P and Q are Red-N-injective. Then the semi-reduced module $P \oplus Q$ is Red-N-injective, and so a direct summand of N by an argument similar to the one given in 1.

3 **Strongly Red-injective modules**

In this section, we characterize quasi-Frobenius rings and right V-rings in terms of strongly Red-injective modules. A ring R is called right semi-Artinian if every non-zero R-module has nonzero socle. A submodule $S \leq M$ is small if, for any submodule $N \leq M$, $S + N = M$ implies that $N = M$. The projective cover of an R-module M is a projective module P for which there is an epimorphism $P \rightarrow M$ whose kernel is small. A ring R is left perfect if every R-module has a projective cover.

Proposition 11. The following implications hold:

- R is right semi-Artinian \Rightarrow every strongly Red-injective R-module is injective \Rightarrow every strongly Red-injective R-module is quasi-continuous.

In particular, over a left perfect ring R, every strongly Red-injective right R-module is injective.

Proof: For a right semi-Artinian ring R, suppose that a non-zero R-module M is strongly Red-injective. Then, $\{0\} \neq \text{Soc}(M) \subseteq M$. Amin et al., in [1, Corollary 3.2] showed that a strongly Soc-injective module with essential socle is injective. Since M has essential socle, it is injective. M is quasi-continuous because every injective module is quasi-continuous see [8, p.18]. The last statement follows from the fact that every left perfect ring is right semi-Artinian, see [6, Theorem 11.6.3].

A ring R is called quasi-Frobenius if R is right (or left) Artinian and right (or left) self-injective. Equivalently, R is quasi-Frobenius if and only if every injective R-module is projective if and only if
every projective \(R \)-module is injective. A ring whose all simple right modules are injective is called a right \(V \)-ring.

Theorem 3. A ring \(R \) is quasi-Frobenius if and only if every strongly Red-injective module is projective.

Proof: If \(R \) is quasi-Frobenius, then \(R \) is right semi-Artinian and so by Proposition 10 every strongly Red-injective module is injective, and hence projective since \(R \) is quasi-Frobenius. Conversely, if every strongly Red-injective module is projective, then in particular every injective module is projective, and so \(R \) is quasi-Frobenius. \(\square \)

Theorem 4. \(R \) is a right \(V \)-ring if and only if every simple \(R \)-module is strongly Red-injective.

Proof: Suppose that \(M \) is a simple \(R \)-module where \(R \) is a right \(V \)-ring. Then, by definition of a \(V \)-ring, \(M \) is injective. Hence, \(M \) is strongly Red-injective. Conversely, suppose that any simple module \(M \) is strongly Red-injective. Since \(M \) is simple, \(\text{Soc}(M) = M \) and hence \(\{0\} \neq \text{Soc}(M) \subseteq^e M \). Since \(M \) has essential socle, it is injective by [1, Corollary 3.2]. Hence, \(R \) is a right \(V \)-ring. \(\square \)

Corollary 6. Let \(M \) be an \(R \)-module with essential socle. The following statements are equivalent:

1. \(M \) is injective.
2. \(M \) is strongly Red-injective.
3. \(M \) is strongly Soc-injective.

Proof: By Proposition 5(2), \(1 \Rightarrow 2 \Rightarrow 3 \). By [1, Corollary 3.2], \(3 \Rightarrow 1 \) which completes the proof. \(\square \)

Remark 1. We make the following observations:

1. It is easy to check that any sort of injectivity that lies between injective and strongly Red-injective modules would lead to Theorems 3 and 4.
2. Red-injectivity is a less restricted notion than injectivity but carries most of the properties of injectivity.
3. Red-injectivity is much closer to injectivity than Soc-injectivity.
4. When the ring is not commutative, a semi-simple module need not be semi-reduced, see Example 3.1 below:

Example 3.1. Let the ring \(R \) be the collection of all \(2 \times 2 \) matrices over the field of real numbers. The module \(M = R_R \) is semi-simple but not reduced. For if \(m = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in M \) and \(r = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix} \in R \), then \(mr \neq 0 \) but \(mr^2 = 0 \). Since a direct sum of reduced modules is reduced, \(M \) is a direct sum of simple modules which is not reduced. A simple module over a not necessarily commutative ring need not be reduced. \(M \) is not semi-reduced.
The following implications hold:

Injective ⇒ quasi-injective ⇒ pseudo-injective ⇒ Red-quasi-injective.

For the first two implications, see [9]. The last implication is trivial, it follows directly from the definitions.

Example 3.2. Let R be the ring of all eventually constant sequences $(x_n)_{n \in \mathbb{N}}$ of elements in \mathbb{F}_2, the field of two elements. Then, $E(R_R) = \prod_{n \in \mathbb{N}} \mathbb{F}_2$, which has only one automorphism, namely the identity automorphism. By [5, Example 9], R_R is pseudo-injective but it is not quasi-injective. It therefore follows that R_R is Red-quasi-injective but not injective.

An R-module M is said to satisfy the **exchange property** if for every R-module A and any two direct sum decomposition $A = M' \bigoplus N = \bigoplus_{i \in I} A_i$ with $M' = M$, there exists a submodule B_i of A_i such that $A = M' \bigoplus (\bigoplus_{i \in I} B_i)$. An R-module is called **clean** if its endomorphism ring, $\text{End}_R(M)$, is clean, i.e., for all $f \in \text{End}_R(M)$, $f = e + u$ with e idempotent and u a unit. Pseudo-injective modules (and hence quasi-injective and injective modules) are clean and also satisfy the exchange property, see [2] and [3]. Note that pseudo-injective modules are equivalent to automorphism-invariant modules as they are being referred to in [2] and [3]. The equivalence was proved in [5]. We now ask:

Question 1. Are the Red-quasi-injective modules and Soc-quasi-injective modules clean? Do they satisfy the exchange property?

References

[1] I. Amin, M. Yousif and N. Zeyada, Soc-injective rings and modules, *Comm. Algebra*. **33**(11), (2005), 422–4250.

[2] P. A. G. Asensio and A. K. Srivastava, Automorphism-invariant modules, to appear in contemporary Mathematics series of Amer. Math. Soc.

[3] P. A. G. Asensio and A. K. Srivastava, Automorphism-invariant modules satisfy the exchange property, *J. Algebra*, **388**, (2013), 101–106.

[4] H. C. Eilenberg and H. Cartan, *Homological algebra*, Princeton University, 1996.

[5] N. Er, S. Singh and A. K. Srivastava, Rings and modules which are stable under automorphisms of their injective hulls, *J. Algebra*, **379**, (2013), 223–229.

[6] F. Kasch, *Modules and rings*, Vol. 17, Academic Press, 1982.

[7] T. K. Lee and Y. Zhou, Reduced modules, *Rings, modules, algebras and abelian groups*, **236**, (2004), 365–377.
[8] S. H. Mohamed and B. J. Müller, *Continuous and discrete modules*, Vol. 147, Cambridge University Press, 1990.

[9] S. Singh and A. K. Srivastava, Rings of invariant module type and automorphism-invariant modules, to appear in Contemporary Mathematics, Amer. Math. Soc.

[10] D. Ssevviiri, A contribution to the theory of prime modules, Nelson Mandela Metropolitan University, 2013.