Abstract. Resistance of social graphs to active attacks is a very important feature which must be maintained in the modern networks. Recently introduced \(k\)-metric antidimension graph invariant is used to define a new measure for resistance of social graphs. In this paper we have found and proved the \(k\)-metric antidimension for generalized Petersen graphs \(GP(n, 1)\) and \(GP(n, 2)\). It is proven that \(GP(2m+1, 1)\) and \(GP(8, 2)\) are 2-metric antidimensional, while all other \(GP(n, 1)\) and \(GP(n, 2)\) graphs are 3-metric antidimensional.

1. Introduction

The notion of \((k, l)\)-anonymity was introduced by Trujillo-Rasua and Yero (2016) in [8]. As explained in that paper the motivation was to establish a new measure for evaluating the resistance of social graphs against active attacks. This measure uses a new graph invariant: \(k\)-metric antidimension.

Let \(G = (V, E)\) be a simple connected graph and \(d(u, v)\) is the length of the shortest path between the vertices \(u\) and \(v\). The metric representation \(r(v|S)\) of vertex \(v\) with respect to an ordered set of vertices \(S = \{u_1, ..., u_t\}\) is defined as \(r(v|S) = (d(v, u_1), ..., d(v, u_t))\). Values \(d(v, u_i)\) are considered as metric coordinates of \(v\) with respect to vertices \(u_i\).

Definition 1.1. ([8]) Let \(k\) be the largest positive integer with the property that for every vertex \(v \in V(G) \setminus S\) there exist at least \(k - 1\) different vertices \(v_1, ..., v_{k-1} \in V(G) \setminus S\) with \(r(v|S) = r(v_1|S) = ... = r(v_{k-1}|S)\). In other words, \(v\) and \(v_1, ..., v_{k-1}\) have the same metric representation with respect to \(S\). Then, set \(S\) is called a \(k\)-antiresolving set for \(G\).

Definition 1.2. ([8]) For fixed \(k\), the minimum cardinality amongst all \(k\)-antiresolving sets in \(G\) is called the \(k\)-metric antidimension of graph \(G\), and it is denoted by \(\text{adim}_k(G)\). A \(k\)-antiresolving set of that minimum cardinality \(\text{adim}_k(G)\) is called a \(k\)-antiresolving basis of \(G\).

Definition 1.3. ([8]) If \(k = \max\{|\text{adim}_t(G)\text{ exists}\}\) then graph \(G\) is called \(k\)-metric antidimensional.

Observation 1.4. ([8]) If \(G\) has maximum degree \(\Delta\) and \(G\) is \(k\)-metric antidimensional then \(1 \leq k \leq \Delta\) holds.
In the sequel we shall use the equivalence relation defined in [1, 2]. Let \(S \subseteq V(G) \) be a subset of vertices of a connected graph \(G \) and let \(\rho_S \) be equivalence relation on \(V(G) \setminus S \) defined by

\[
(\forall a, b \in V(G) \setminus S \ (a \rho_S b \iff r(a|S) = r(b|S))
\]

and let \(S_1, \ldots, S_m \) be the equivalence classes of \(\rho_S \). Then the following property can be proved.

Proposition 1.5. (1, 2) Let \(k \) be a fixed integer, \(k \geq 1 \). Then \(S \) is a \(k \)-antiresolving set in \(G \) if and only if

\[
\min_{1 \leq i \leq m} |S_i| = k.
\]

In [2, 10] it has been proved that the problem of determining the \(k \)-metric antidimension of a graph for a fixed \(k \) is NP-complete in general case.

For some graphs with special structures it would be interesting to investigate the privacy measure based on the \(k \)-metric antidimension. Such investigations are considered in the literature:

- In [9] are considered 1-metric antidiendimensional trees and unicyclic graphs;
- Privacy violation properties of eight real social networks and large number of synthetic networks generated by both the classical Erdös-Rényi model and the Barabási-Albert preferential-attachment model were analyzed in [4];
- First privacy-preserving graph transformation improving privacy is presented in [6]. Experiments on random graphs show that the proposed method effectively counteracts active attacks;
- \(k \)-metric antidiendimensions of wheels and grid graphs are given in [11].

In this paper we study the \(k \)-metric antidimension of generalized Petersen graphs introduced by Coxeter [3]. The generalized Petersen graph \(GP(n, k) \) \((n \geq 3; 1 \leq k < n/2) \) has \(2n \) vertices and \(3n \) edges, where vertex set \(V \) and edge set \(E \) are defined as follows: \(V = \{u_i, v_i \mid 0 \leq i \leq n - 1\} \), \(E = \{[u_i, u_{i+1}], [u_i, v_i], [v_i, v_{i+k}] \mid 0 \leq i \leq n - 1\} \), with vertex indices taken modulo \(n \). In this notation the well-known Petersen graph presented on Figure 1 is \(GP(5, 2) \).

There are a lot of papers devoted to generalized Petersen graphs and their invariants. Some recent results include: metric dimension [7], strong metric dimension [5], and power domination [11].

Example 1.6. Consider the Petersen graph \(G \) given on Figure 1. By total enumeration it is easy to see that \(G \) is 3-antidimensional: 1-antiresolving basis is \(\{u_0, u_2\} \), 2-antiresolving basis is \(\{u_0, v_0\} \), while 3-antiresolving basis is \(\{v_0\} \). Therefore, \(\text{adim}_k(G) = \begin{cases} 2, & k = 1, 2 \\ 1, & k = 3 \end{cases} \).
It should be noted that, according to Definition 1.3, if a graph is \(k \)-metric antidimensional, it does not mean that there exists an \(l \)-antiresolving set for each \(l \in \{2, \ldots, k - 1\} \). For example, wheel graphs studied in [1] are \(n \)-metric antidimensional, but for \(4 \leq l \leq n - 1 \) there are no \(l \)-antiresolving sets in wheel graphs. Therefore, as mentioned and presented in [2, 4, 11], it is an interesting problem to find families of graphs for which there exist \(l \)-antiresolving sets for all values of \(l \), such that \(2 \leq l \leq k - 1 \). In the next two sections we show that \(GP(n, 1) \) and \(GP(n, 2) \) satisfy the previous property.

In Section 2 we prove that \(GP(2m, 1) \) is 3-metric antidimensional, while \(GP(2m + 1, 1) \) is 2-metric antidimensional. In Section 3 it is shown that \(GP(n, 2) \) is 3-metric antidimensional, except for \(n = 8 \), when it is 2-metric antidimensional.

2. \(k \)-metric antidimension of \(GP(n,1) \)

\[\text{Figure 2: Graph } GP(6,1) \]

Theorem 2.1. Graph \(GP(2m, 1) \) is 3-metric antidimensional and

(i) \(\text{adim}_1(GP(2m, 1)) = 1 \)

(ii) \(\text{adim}_2(GP(2m, 1)) = 4 \)

(iii) \(\text{adim}_3(GP(2m, 1)) = 2 \)

Proof. (i) Let us consider set \(S = \{u_0\} \). The equivalence classes of \(\rho_S \) are given in Table 1. More precisely, the first column of Table 1 contains set \(S \), while in the second one the equivalence classes of relation \(\rho_S \) are given, and in the third column the metric representations with respect to \(S \) are shown for all their vertices. Since the minimal cardinality of equivalence classes is one, according to Property 1.5 it follows that \(S = \{u_0\} \) is 1-antiresolving set. Since \(|S| = 1 \), \(S = \{u_0\} \) is a 1-antiresolving basis of \(GP(2m, 1) \), so \(\text{adim}_1(GP(2m, 1)) = 1 \).

(ii) Due to symmetry of \(GP(2m, 1) \) and the fact that set \(\{u_0\} \) is 1-antiresolving, it follows that every set \(S \) consisting of only one vertex of \(GP(2m, 1) \) is 1-antiresolving. Let us consider sets \(S \) of cardinality two. From symmetry properties of \(GP(2m, 1) \), without loss of generality we can assume \(u_0 \in S \). We have two cases.

Case 1. \(v_m \notin S \). Then from Table 1 it follows that \(v_m \) is the only vertex with the metric coordinate with respect to vertex \(u_0 \) which is equal to \(m + 1 \) and, consequently, \(S \) is 1-antiresolving.

Case 2. If \(v_m \in S \) then \(S = \{u_0, v_m\} \) and the corresponding equivalence classes are given in Table 1. From Table 2 and Property 1.5 it follows that set \(\{u_0, v_m\} \) is 3-antiresolving.

Cases 1 and 2 demonstrate that there does not exist set \(S \) of cardinality 2 which is 2-antiresolving for \(GP(2m, 1) \).

Next we consider sets \(S \) with cardinality three. Again, we can suppose that \(u_0 \in S \). If we \(v_m \notin S \), as in Case 1, we can conclude that \(S \) is 1-antiresolving. Suppose that \(v_m \in S \) and consider cases \(v_0 \in S \) or \(u_m \in S \). If \(v_0 \in S \), i.e. \(S = \{u_0, v_0, u_m\} \), then equivalence class \(\{u_m, v_{m-1}, v_{m+1}\} \) from Table 1 is partitioned into 2 classes: \(\{u_m\} \) with metric representation equal to \((m, 1, m + 1)\) and \(\{v_{m-1}, v_{m+1}\} \) with metric representation equal to...
Similarly, if $u_m \in S$, i.e. $S = \{u_0, u_m, v_m\}$, then class $\{u_1, u_{m-1}, v_0\}$ from Table 1 is partitioned into $\{u_1, u_{m-1}\}$ with metric representation equal to $(1, m, m-1)$ and $\{v_0\}$ with metric representation equal to $(1, m, m+1)$. Hence, if $u_0, v_m \in S$ and $v_0 \in S$ or $u_m \in S$ set S is 1-antiresolving. Finally, if $u_0, v_m \in S$ and $v_0 \not\in S$ and $u_m \not\in S$ we consider equivalence class $\{u_m, v_{m-1}, v_{m+1}\}$ from Table 1. Table 2 contains distances of u_m, v_{m-1}, v_{m+1} from all possible third elements of S. From Table 2 it follows that in all cases equivalence class $\{u_m, v_{m-1}, v_{m+1}\}$ is partitioned with respect to the third coordinate into two classes, one of cardinality 2 and the other of cardinality 1. Consequently, set S is again 1-antiresolving. Therefore, there does not exist set S of cardinality 3 which is 2-antiresolving for $GP(2m, 1)$.

Consider now set $S = \{u_0, v_0, u_m, v_m\}$ of cardinality 4 and the corresponding classes in Table 1. Since all classes have cardinality 2, it follows that S is 2-antiresolving for $GP(2m, 1)$. Since $adim_2(GP(2m, 1)) = 3$, we conclude $adim_2(GP(2m, 1)) = 4$.

(iii) Let $S = \{u_0, v_m\}$. As we have already concluded in (ii), from Table 1 it follows that S is 3-antiresolving set for $GP(2m, 1)$ and consequently $adim_2(GP(2m, 1)) = 2$. Let us prove that there does not exist a 3-antiresolving set S' of cardinality one. By symmetry, we can suppose that $S' = \{u_0\}$. As proved in (i), S' is 1-antiresolving set.

Since $GP(2m, 1)$ is 3-regular, according to Observation 1.4, it follows that $GP(2m, 1)$ is k-metric antidimensional for some $k \leq 3$. From (i)-(iii) it follows that $GP(2m, 1)$ is 3-metric antidimensional.

Theorem 2.2. Graph $GP(2m+1, 1)$ is 2-metric antidimensional and

(i) $adim_1(GP(2m+1, 1)) = 2$

(ii) $adim_2(GP(2m+1, 1)) = 1$

Proof. (i) Let $S = \{u_0, v_1\}$. It is easy to see that vertex v_2 has unique metric representation with respect to S equal to $(3, 1)$. According to Property 1.5, S is 1-antiresolving set of $GP(2m+1, 1)$. Let us prove that S is 1-antiresolving basis of $GP(2m+1, 1)$. Suppose contrary, that there exists 1-antiresolving
set \(S' \) of cardinality 1. Without loss of generality, due to the symmetry of \(GP(2m + 1, 1) \), we can assume that \(S' = \{u_0\} \). The equivalence classes of \(\rho_\varphi \) are given in Table 3. From Table 3 it follows that set \(S' \) is 2-antiresolving, which is a contradiction. Therefore, \(S = \{u_0, v_1\} \) is an 1-antiresolving basis of \(GP(2m + 1, 1) \), i.e. \(adim_1(GP(2m + 1, 1)) = 2 \).

(ii) Let \(S = \{u_0\} \). From Table 3 it is evident that set \(S = \{u_0\} \) is 2-antiresolving set of \(GP(2m + 1, 1) \). Since \(|S| = 1, S \) is a 2-antiresolving basis of \(GP(2m + 1, 1) \) and hence \(adim_2(GP(2m + 1, 1)) = 1 \).

From (i) and (ii) it follows that \(GP(2m + 1, 1) \) is \(k \)-metric antidimensional for \(k \geq 2 \). On the other side, according to Observation \(\square \) \(k \leq 3 \). Let us prove that \(GP(2m + 1, 1) \) is not 3-metric antidimensional, i.e. that in this graph there does not exist a 3-antiresolving set. Let \(S \) be a set of vertices from \(V \). Without loss of generality, we can assume \(u_0 \in S \). Consider the following two cases:

Case 1. \(v_m \notin S \) or \(v_{m+1} \notin S \). According to Table 3 the equivalence class with respect to \(S' = \{u_0\} \) with metric coordinate \(m + 1 \) is \([v_m, v_{m+1}]\). Therefore, the equivalence class with respect to \(S, S \supseteq S' \), whose members have distance from \(u_0 \) equal to \(m + 1 \) has cardinality less or equal to 2. It follows that \(S \) is not a 3-metric antidimensional set.

Case 2. Suppose that \(v_m \in S \) and \(v_{m+1} \in S \). Then each vertex \(u_i, i = 1, ..., n - 1, v_i, j = 0, ..., n - 1, j \neq m, m + 1 \) has unique metric representation with respect to \(\{u_0, v_m, v_{m+1}\} \subseteq S \) and therefore \(S \) is 1-antiresolving set. Cases 1 and 2 demonstrate that in \(GP(2m + 1, 1) \) there does not exist a 3-antiresolving set. Therefore, \(GP(2m + 1, 1) \) is 2-metric antidimensional.

Table 3: Equivalence classes of \(\rho_\varphi \) on \(GP(2m, 1) \)

\(S' \)	Equivalence class	Metric representation
\(\{u_0\} \)	\([u_1, u_{n-1}, v_0]\)	(1)
	\([u_j, u_{n-j}, v_{j-1}, v_{n-j+1}]\)	(i), \(2 \leq i \leq m \)
	\([v_m, v_{m+1}]\)	\((m + 1)\)

3. \(k \)-metric antidimension of \(GP(n,2) \)

![Figure 3: Graph GP(9,2)](image)

Theorem 3.1. For \(m \neq 2 \) graph \(GP(4m, 2) \) is 3-metric antidimensional and

(i) \(adim_1(GP(4m, 2)) = 2 \)
(ii) \(\text{adim}_2(GP(4m, 2)) = 1\)

(iii) \(\text{adim}_3(GP(4m, 2)) = 1\)

Proof. (i) Let \(S = \{u_0, u_{2m}\}\). It is easy to see that \(v_0\) has unique metric representation \((1, m + 1)\) with respect to \(S\). Therefore, \(S\) is \(1\)-antiresolving set. Suppose that there exists \(1\)-antiresolving set \(S'\) of cardinality 1. Due to the symmetry of \(GP(4m, 2)\), we can assume that \(S' = \{u_0\}\) or \(S' = \{v_0\}\). From Table 5 it can be seen that the equivalence classes in both cases have cardinality at least 2, which is a contradiction. Hence, \(\text{adim}_1(GP(4m, 2)) = 2\).

(ii) Let \(S = \{v_0\}\). According to Table 4, \(S\) is a \(2\)-antiresolving basis of cardinality 1, so \(\text{adim}_2(GP(4m, 2)) = 1\).

(iii) Let \(S = \{u_0\}\). From Table 4 we conclude that \(S\) is a \(3\)-antiresolving basis of \(GP(4m, 2)\), i.e. \(\text{adim}_3(GP(4m, 2)) = 1\).

From (i)-(iii) it follows that \(GP(4m, 2)\) is \(k\)-metric antidimensional for \(k \geq 3\). Since \(GP(4m, 2)\) is \(3\)-regular, according to Observation 1.4, it follows that \(k = 3\), i.e. \(GP(4m, 2)\) is \(3\)-metric antidimensional.

| Table 4: Equivalence classes of \(\rho_5\) on \(GP(4m, 2)\) |
|-------------|-----------|----------------|----------------|
| \(S\) | Equivalence class | Metric representation |
| \(\{u_0\}\) | \(\{u_1, u_{4m-1}, v_0\}\) | \(\{u_0, v_2, v_{4m-2}\}\) | \(\{u_1, u_{2}, u_{4m-2}, u_{4m-1}, v_4, v_{4m-4}\}\) |
| \(\{v_0\}\) | \(\{u_2, u_{2m}, v_{4m+3}\}\) | \(\{u_3, u_{2m+2}, v_{4m+3}\}\) | \(\{u_2, u_{2m+2}, v_{4m+3}\}\) |

Theorem 3.2. Graph \(GP(4m + 1, 2)\) is \(3\)-metric antidimensional and

(i) \(\text{adim}_1(GP(4m + 1, 2)) = 2\)

(ii) \(\text{adim}_2(GP(4m + 1, 2)) = 2\)

(iii) \(\text{adim}_3(GP(4m + 1, 2)) = 1\)

Proof. (i) The proof is similar to the proof of (i) in Theorem 3.1. Let \(S = \{u_0, u_{2m}\}\). Then vertex \(v_0\) has unique metric representation \((1, m + 1)\), which implies that \(S\) is an \(1\)-antiresolving set. Using Table 5 and the same argument as in (i) of Theorem 3.1 we conclude that \(\{u_0\}\) and \(\{v_0\}\) are not \(1\)-antiresolving sets, and due to the symmetry of \(GP(4m + 1, 2)\) the same holds for all singleton subsets of \(V\). Therefore, \(\text{adim}_1(GP(4m + 1, 2)) = 2\).

(ii) Let \(S = \{u_0, v_0\}\). According to Table 5, \(S\) is a \(2\)-antiresolving set since all equivalence classes are of cardinality at least 2. Since by Table 5 equivalence classes for sets \(\{u_0\}\) and \(\{v_0\}\) are of cardinality at least 3, similarly as in (i) we conclude \(\text{adim}_3(GP(4m + 1, 2)) = 2\).

(iii) For \(S = \{v_0\}\), directly from Table 5 it follows that \(\text{adim}_3(GP(4m + 1, 2)) = 1\).

From (i)-(iii) it follows that \(GP(4m + 1, 2)\) is \(k\)-metric antidimensional for \(k \geq 3\). By Observation 1.4 it follows that \(k = 3\), i.e. \(GP(4m + 1, 2)\) is \(3\)-metric antidimensional.
Table 5: Equivalence classes of ρ_5 on $GP(4m + 1, 2)$

S	Equivalence class	Metric representation
$[u_0]$	$\{u_1, u_{4m}, v_0\}$	(1)
	$\{u_i, u_{4m-i+1}, v_{2i-3}, v_{2i-2}, v_{4m-2i+3}, v_{4m-2i+4}\}$	(i), $i = 2, 3, 4$
	$\{u_{2i-5}, u_{2i-4}, u_{4m-2i+5}, u_{4m-2i+6}, v_{2i-3}, v_{2i-2}, v_{4m-2i+3}, v_{4m-2i+4}\}$	(ii), $i = 5, ..., m + 1$
	$\{u_{2m-1}, u_{2m}, u_{2m+1}, u_{2m+2}\}$	(m + 2)
$[v_0]$	$\{u_1, u_2, v_{2m-1}\}$	(1)
	$\{u_1, u_2, u_{4m-1}, u_{4m}, v_4, v_{4m-3}\}$	(2)
	$\{u_{2i-3}, u_{2i-2}, u_{4m-2i+3}, u_{4m-2i+4}, v_{2i-5}, v_{2i-2}, v_{4m-2i+3}, v_{4m-2i+4}\}$	(i), $i = 3, ..., m$
	$\{u_{2m-1}, u_{2m}, u_{2m+1}, u_{2m+2}, v_{2m-3}, v_{2m-1}, v_{2m+2}, v_{2m+4}\}$	(m + 1)
$[u_0, v_0]$	$\{u_1, u_{4m}\}$	(1, 2)
	$\{v_{2i}, v_{4m-1}\}$	(2, 1)
	$\{u_{2i}, u_{4m-1}\}$	(2, 2)
	$\{v_{1i}, v_{4m}\}$	(2, 3)
	$\{v_{4i}, v_{4m-3}\}$	(3, 2)
	$\{u_{4i}, u_{4m-2}\}$	(3, 3)
	$\{v_{5i}, v_{4m-2}\}$	(3, 4)
	$\{u_{4i}, u_{4m-3}, v_0, v_{4m-5}\}$	(4, 3)
	$\{u_{2i-5}, u_{2i-4}, u_{4m-2i+5}, u_{4m-2i+6}, v_{2i-2}, v_{4m-2i+3}\}$	(i, $i - 1$), $i = 5, ..., m + 1$
	$\{v_{2i-3}, v_{4m-2i+4}\}$	(i, $i + 1$), $i = 4, ..., m$
	$\{u_{2m-1}, u_{2m+2}\}$	(m + 1, m + 1)
	$\{u_{2m-1}, u_{2m}, u_{2m+1}, u_{2m+2}\}$	(m + 2, m + 1)

Theorem 3.3. For $m \geq 3$ graph $GP(4m + 2, 2)$ is 3-metric antidimensional and

(i) $adim_1(GP(4m + 2, 2)) = 1$

(ii) $adim_2(GP(4m + 2, 2)) = 2$

(iii) $adim_3(GP(4m + 2, 2)) = 2$

Proof. (i) Let $S = \{u_0\}$. Then vertex u_{2m+1} has the unique metric representation $(m + 3)$ and therefore, $adim_1(GP(4m + 2, 2)) = 1$.

(ii) $S = \{u_0, u_{2m+1}\}$. From Table 6, S is a 2-antiresolving set. If we consider singleton subsets of V, due to symmetry it is sufficient to analyze cases $\{u_0\}$ and $\{v_0\}$. By (i), $\{u_0\}$ is 1-antiresolving and since v_{2m+1} has unique metric representation $(m + 3)$ with respect to $\{v_0\}$, set $\{v_0\}$ is also 1-antiresolving. It means that all singleton subsets of V are not 2-antiresolving. This implies that $adim_2(GP(4m + 2, 2)) = 2$.

(iii) For $S = \{v_0, v_{2m+1}\}$ from Table 6 it follows that S is a 3-antiresolving set. Since all singleton vertices are 1-antiresolving sets it follows that $adim_3(GP(4m + 2, 2)) = 2$.

From (i)-(iii) it follows that $GP(4m + 2, 2)$ is k-metric antidimensional for $k \geq 3$. According to Observation 1.4, it follows that $k = 3$, i.e. $GP(4m + 2, 2)$ is 3-metric antidimensional. □
Table 6: Equivalence classes of ρ_5 on $GP(4m + 2, 2)$

S	Equivalence class	Metric representation
$[u_0, u_{2m+1}]$	$[u_1, u_{4m+1}, v_0]$	$(1, m + 2)$
	$[u_1, u_{4m+i+1}]$	$(i, m - i + 2), i = 2, 3, 4$
	$[v_{2i-3}, v_{2i-2}, v_{4m-2i+5}, v_{4m-2i+6}]$	$(i, m - i + 3), i = 2, ..., m$
	$[u_{2i-5}, u_{2i-4}, u_{4m-2i+6}, u_{4m-2i+7}]$	$(i, m - i + 5), i = 5, ..., m + 1$
	$[u_{2m-2}, u_{2m+4}]$	$(m + 1, 3)$
	$[u_{2m-3}, u_{2m+5}]$	$(m + 1, 4)$
	$[u_{2m}, u_{2m+2}, v_{2m+1}]$	$(m + 2, 1)$
	$[u_{2m-1}, u_{2m+3}]$	$(m + 2, 2)$
$[v_0, v_{2m+1}]$	$[u_0, v_2, v_{4m}]$	$(1, m + 2)$
	$[u_1, u_2, u_{4m}, u_{4m+1}, v_4, v_{4m-2}]$	$(2, m + 1)$
	$[u_{2i-3}, u_{2i-2}, u_{4m-2i+4}, u_{4m-2i+5}, v_{2i-5}, v_{4m-2i+2}, v_{4m-2i+7}]$	$(i, m - i + 3), i = 3, ..., m$
	$[u_{2m-1}, u_{2m}, u_{2m+1}, u_{2m+2}, v_{2m-3}, v_{2m+5}]$	$(m + 1, 2)$
	$[u_{2m-1}, v_{2m-1}, v_{2m+3}]$	$(m + 2, 2)$

Theorem 3.4. For $m \geq 2$ graph $GP(4m + 3, 2)$ is 3-metric antidimensional and

(i) $adim_1(GP(4m + 3, 2)) = 2$

(ii) $adim_2(GP(4m + 3, 2)) = 1$

(iii) $adim_3(GP(4m + 3, 2)) = 1$

Proof. (i) Let $S = \{u_0, u_2\}$. Then vertex u_1 has unique metric representation $(1,1)$ and consequently, S is 1-antiresolving set. Since by Table 7 sets $\{u_0\}$ and $\{v_0\}$ are 2-antiresolving and 3-antiresolving, respectively, then $adim_1(GP(4m + 3, 2)) = 2$.

(ii) and (iii) follow directly from Table 7.

Since $GP(4m + 3, 2)$ is 3-regular, according to Observation 1.4 it follows that $GP(4m + 3, 2)$ is k-metric antidimensional for some $k \leq 3$. From (i)-(iii) it follows that $GP(4m + 3, 2)$ is 3-metric antidimensional.

Table 7: Equivalence classes of ρ_5 on $GP(4m + 3, 2)$

S	Equivalence class	Metric representation
$[u_0]$	$[u_1, u_{4m+2}, v_0]$	(1)
	$[u_1, u_{4m+i+3}, v_{2i-3}, v_{2i-2}, v_{4m-2i+5}, v_{4m-2i+6}]$	$(i), i = 2, 3, 4$
	$[u_{2i-5}, u_{2i-4}, u_{4m-2i+7}, u_{4m-2i+8}, v_{2i-3}, v_{2i-2}, v_{4m-2i+5}, v_{4m-2i+6}]$	$(i), i = 5, ..., m + 1$
	$[u_{2m-1}, u_{2m}, u_{2m+3}, u_{2m+4}, v_{2m+1}, v_{2m+2}]$	$(m + 2)$
	$[u_{2m+1}, u_{2m+2}]$	$(m + 3)$
$[v_0]$	$[u_0, v_0, v_{4m+1}]$	(1)
	$[u_1, u_2, u_{4m+1}, u_{4m+2}, v_4, v_{4m-1}]$	(2)
	$[u_{2i-3}, u_{2i-2}, u_{4m-2i+5}, u_{4m-2i+6}, v_{2i-5}, v_{4m-2i+3}, v_{4m-2i+8}]$	$(i), i = 3, ..., m$
	$[u_{2m-1}, u_{2m}, u_{2m+1}, u_{2m+4}, v_{2m-3}, v_{2m+1}, v_{2m+2}, v_{2m+6}]$	$(m + 1)$
	$[u_{2m+1}, u_{2m+2}, v_{2m-1}, v_{2m+4}]$	$(m + 2)$

The values for the metric antidimension of the cases which are not covered by Theorems 3.1-3.4 are obtained by total enumeration and given in the next two observations.

Observation 3.5. Graph $GP(8, 2)$ is 2-metric antidimensional and $adim_1(GP(8, 2)) = 1$ and $adim_2(GP(8, 2)) = 1$.

Observation 3.6. Graphs \(GP(6, 2) \), \(GP(7, 2) \) and \(GP(10, 2) \) are 3-metric antidimensional and

\[
adim_k(GP(6, 2)) = \begin{cases}
1, & k = 1, 2 \\
2, & k = 3
\end{cases}
\]

\[
adim_k(GP(7, 2)) = \begin{cases}
2, & k = 1, 2 \\
1, & k = 3
\end{cases}
\]

\[
adim_k(GP(10, 2)) = \begin{cases}
4, & k = 2 \\
2, & k = 3
\end{cases}
\]

4. Conclusions

In this article the recently introduced \(k \)-metric antidimension problem is considered. We have studied mathematical properties of the \(k \)-antiresolving sets and the \(k \)-metric antidimension of some generalized Petersen graphs. Exact formulas for the \(k \)-metric antidimension of \(GP(n, 1) \) and \(GP(n, 2) \) are obtained.

A possible direction of future research could be considering the \(k \)-metric antidimension of some other challenging classes of graphs.

References

[1] M. Ćangalović, V. Kovačević-Vujičić, J. Kratica, \(k \)-metric antidimension of wheels and grid graphs, In: XIII Balkan Conference on Operational Research Proceedings, pp. 17–24. Belgrade May 2018.

[2] T. Chatterjee, B. DasGupta, N. Mobasheri, V. Srinivasan, I.G. Yero, On the computational complexities of three problems related to a privacy measure for large networks under active attack, Theoretical Computer Science, 775 (2019) 53-67.

[3] H. Coxeter, Self-dual configurations and regular graphs, Bulletin of American Mathematical Society 56 (1950) 413–455.

[4] B. DasGupta, N. Mobasheri, I.G. Yero, On analyzing and evaluating privacy measures for social networks under active attack, Information Sciences, 473 (2019) 87-100.

[5] J. Kratica, V. Kovačević-Vujičić, M. Ćangalović, The strong metric dimension of some generalized Petersen graphs, Applicable Analysis and Discrete Mathematics 11 (2017) 1–10.

[6] S. Mauw, R. Trujillo-Rasua, B. Xuan, Counteracting active attacks in social network graphs, In: IFIP Annual Conference on Data and Applications Security and Privacy, Springer, pp. 233–248, Trento, Italy, July 2016.

[7] S. Naz, M. Salman, U. Ali, I. Javaid, S.A.H. Bokhary, On the constant metric dimension of generalized Petersen graphs \(P(n, 4) \), Acta Mathematica Sinica, English Series 30(7) (2014) 1145–1160.

[8] R. Trujillo-Rasua, I.G. Yero, \(k \)-metric antidimension: A privacy measure for social graphs, Information Sciences 328 (2016) 403–417.

[9] R. Trujillo-Rasua, I.G. Yero, Characterizing 1-metric antidimensional trees and unicyclic graphs, The Computer Journal, 59(8) (2016) 1264-1273.

[10] C. Zhang, Y. Gao, On the complexity of \(k \)-metric antidimension problem and the size of \(k \)-antiresolving sets in random graphs, In: International Computing and Combinatorics Conference - COCOON 2017, Springer, pp. 555–567, Hong Kong, China, August 2017.

[11] M. Zhao, E. Shan, L. Kang, Power domination in the generalized Petersen graphs, Discussiones Mathematicae Graph Theory (2018) doi:10.7151/dmgt.2137