CONSOLIDATED LEARNING - A DOMAIN-SPECIFIC MODEL-FREE OPTIMIZATION STRATEGY WITH EXAMPLES FOR XGBOOST AND MIMIC-IV

Katarzyna Woźniac
Faculty of Mathematics and Information Science
Warsaw University of Technology
k.woznica@mini.pw.edu.pl

Mateusz Grzyb
Faculty of Mathematics and Information Science
Warsaw University of Technology
m.grzyb@student.mini.pw.edu.pl

Zuzanna Trafas
Faculty of Computing and Telecommunications
Poznan University of Technology
zuzanna.trafas@student.put.poznan.pl

Przemysław Biecek
Faculty of Mathematics and Information Science
Warsaw University of Technology
przemyslaw.biecek@pw.edu.pl

ABSTRACT

For many machine learning models, a choice of hyperparameters is a crucial step towards achieving high performance. Prevalent meta-learning approaches focus on obtaining good hyperparameters configurations with a limited computational budget for a completely new task based on the results obtained from the prior tasks. This paper proposes a new formulation of the tuning problem, called consolidated learning, more suited to practical challenges faced by model developers, in which a large number of predictive models are created on similar data sets. In such settings, we are interested in the total optimization time rather than tuning for a single task. We show that a carefully selected static portfolio of hyperparameters yields good results for anytime optimization, maintaining ease of use and implementation. Moreover, we point out how to construct such a portfolio for specific domains. The improvement in the optimization is possible due to more efficient transfer of hyperparameter configurations between similar tasks. We demonstrate the effectiveness of this approach through an empirical study for XGBoost algorithm and the collection of predictive tasks extracted from the MIMIC-IV medical database; however, consolidated learning is applicable in many others fields.

Keywords meta-learning, hyperparameter optimization, consolidated learning, portfolio of hyperparameters

1 Introduction

In order to effectively use the full capabilities of available machine learning algorithms, we have to pay considerable attention to the hyperparameter settings. On the one hand, hyperparameter tuning may be very expensive due to the dimension of the searched space. On the other, it is necessary because the default settings of the hyperparameters do not guarantee a good model quality (Lavesson and Davidsson, 2006; Probst et al., 2019). So, automatic hyperparameter optimization methods are being developed to avoid a manual, trial-and-error-based search for the optimal set and thereby support users in building effective predictive models. They have become part of AutoML frameworks (Thornton et al., 2013; Bergstra et al., 2015; Olson and Moore, 2019; Feurer et al., 2019) and resulted in increasing attention to the ease of use, implementation, parallelization, and computational complexity of the proposed methods. It is essential to adapt to the considered prediction problem and provide anytime performance, i.e., to propose a good configuration of hyperparameters even if only a few evaluations have been performed.

So far, two main groups of optimization techniques have been recommended and are used as baselines in papers proposing new solutions. The most basic class of methods are grid search and random search (Bergstra and Bengio, 2012). They are completely independent of the dataset; for each case, optimization must be started from scratch for a pre-specified hyperparameter grid. To find near optimal solutions, many optimization evaluations have to be performed. In addition, these methods do not use the information obtained in the earlier iterations, namely the information
which algorithm settings gave a good performance model. The second class, Bayesian-based methods, is a response to that problem. It automatically extracts knowledge from the learning curve, and then the surrogate model proposes a new set of hyperparameters weighing the benefits of exploring new, unseen regions versus sampling from the known regions with good performance (Hutter et al., 2011; Bergstra et al., 2011; Snoek et al., 2012). This is an example of online hyperparameter optimization adapting to dataset characteristics and updating the learning curve. Nevertheless, these methods still do not provide anytime performance and require independent optimization for each prediction problem.

In addition to the techniques that require performing a full optimization for each new task, there is an increasing need for an offline approach that involves building a portfolio of several hyperparameter configurations (Wistuba et al., 2016; Feurer et al., 2019; Pfisterer et al., 2021; Feurer et al., 2021). From one perspective, the hyperparameters portfolio is a special case of meta-learning since the portfolio components together should give good performance on previously performed experiments for the collected datasets and should transfer this good performance to a new dataset. For each collected dataset, at least one configuration from the portfolio should parameterize the model with a good quality. We assume that at least one configuration will be promising for new, unknown data. Such a repository of data based on what we determine as the portfolio is called a meta-train set and new target predictive problems are called a meta-test.

It has been shown that a predefined, limited set of hyperparameters optimized for a wide range of datasets gives better results than Bayesian optimization (Wistuba et al., 2016; Pfisterer et al., 2021). Moreover, the portfolio approach may be seen as extended defaults that are easy to share and parallelize. In the first studies introducing this method all meta-train datasets have the same relevance while composing a portfolio due to their independent weighing. Therefore, to enhance the impact of meta-learning, Feurer et al. (2019) use meta-features, (i.e. vectors of dataset characteristics) in the evaluation of the dataset similarity. Then, while creating a portfolio, more weight is given to good hyperparameters configuration for meta-train sets more similar to the considered new data. This approach may be seen as a combination of the online and offline procedures since a static portfolio leverages the most effective configuration for similar datasets, assuming they have similar learning curves. Employing meta-train datasets allows reduction of time for early iterations in Bayesian methods.

Techniques employing portfolios built on meta-features and assessing similarity are intuitive to humans and resemble an expert’s use of domain knowledge. The difficulty of this approach is actually the use of meta-features. Firstly, computing meta-features may be expensive and generate errors (Feurer et al., 2021). Secondly, we do not know how to describe prediction problems and datasets using meta-features in an effective and discriminative way. Namely, whether they should be predefined, based on statistical definitions (Vanschoren, 2019; Rivolli et al., 2019), or landmarks (Pfahringer et al., 2000), or perhaps automatically trained extractors based on neural networks (Edwards and Storkey, 2017; Hewitt et al., 2018; Jomaa et al., 2021). Due to availability, a set of meta-features based on statistical definitions is most often used, but their correlation with model performance is questionable (Woznica and Biecek, 2021). Also, the definition of distance and similarity between data sets is undetermined (Wistuba et al., 2015; Feurer et al., 2015).

In addition to meta-features, selection of meta-train is crucial for the effectiveness of the portfolio. The standard choice of dataset repositories is OpenML (Bischl et al., 2017). It includes prediction problems from diverse domains and may be a satisfying source to build a portfolio that speeds up the optimization for general, random data. Nonetheless, we have some external knowledge about specific characteristics in many applications, e.g., a high target imbalance in insurance claims frequency models or interactions between specific blood tests in medical data. Domain-specific AutoML frameworks (Alaa and Schaar, 2018; Guyon et al., 2019; Vakhrushev et al., 2021) already employ these unique properties. This work shows that instead of searching for meta-features describing these relevant attributes we can appropriately select the meta-train, limiting to representative datasets from a specific domain. We call this refined meta-train a consolidated meta-train and we term the subsequent creation of a portfolio to transfer hyperparameter from that meta-train as consolidated learning.

Our contributions are as follows. 1) We purposefully restrict meta-train distribution, taking into account domain-specific characterizations of considered tasks. Defining a consolidated meta-train, we highlight the importance of design decision in selection of meta-train.

2) We leverage a consolidated collection of the prior experiments to determine the portfolio of hyperparameters transferred from the meta-train to meta-test tasks. We employ two model-free portfolio selection strategy methods: greedy search and average ranking. 3) To mimic a real case, we create a metaMIMIC repository extracted from the medical MIMIC-IV database (Johnson et al., 2020). Our experiments reflect various levels of consolidation between the meta-train and the meta-test (see Figure 1) because of the definition of input and output space for every task. 4) In our experimental setup, we empirically show an improvement of consolidated learning on baseline methods (random search and Bayesian optimization) and predefined portfolios extracted from the OpenML repository.
the hypothesis that consolidated learning for MIMIC-IV enhances the transfer of XGBoost (Chen and Guestrin, 2016) hyperparameters in the early stage of optimization. The consolidated portfolio combines the advantages of the two approaches used so far: it extends the idea of the defaults, and it is easy to share such a ranking of subsequent algorithms. What is more, at the same time, we take into account the specifics of a given dataset using the best configurations of hyperparameters for similar data. The proposed method does not require additional optimization, is parallelizable, and has strong anytime model performance. This property is significant when we aim at good results with a limited time budget. This makes consolidated learning a support for data scientists preparing entire collections of models for similar prediction problems or other subsamples of observations. In the long run, applying consolidated learning to model deployment can significantly reduce optimization budgets.

Figure 1: Relationship between similarity of tasks and consolidated learning. Correspondence between space of prediction problems allows meta-feature-free technique of hyperparameter tuning to incorporate the advantages of meta-learning. The more similarity in the design of the tasks, the consolidated learning increases.

2 Related work

Until now, it has been common for individuals to use the defaults implemented in the software or to use simple tuning methods. With the development of machine learning, more advanced hyperparameter optimization methods have been proposed; however, they require additional expertise in the configuration itself. This is why some data scientists find them deterrent and this is why they often neglect tuning. The use of random search methods was conducive to automatic hyperparameter optimization gaining in popularity. Previously, it was known that the configurations for many algorithms are crucial for the performance of trained models, but effective tuning of the settings was lacking. Random search facilitates determination of a low dimensional effective subspace of hyperparameters faster than a grid search or manual tuning, but it is still susceptible to the dimensionality of the searched space. To eliminate low-efficiency configurations, faster multi-armed bandits methods such as Successive Halving (Jamieson and Talwalkar, 2016) or Hyperband (Li et al., 2017) are used. However, these more advanced methods work only for iterative algorithms and are far less common than simple random search or defaults.

Bayesian-based optimization methods are a class of techniques that particularly require expert knowledge in implementation. Their great advantage is using the knowledge acquired from the previous evaluations and adjusting the optimization process to the characteristics of the considered dataset. However, the selection of a surrogate model is crucial for optimization effectiveness. The most popular are variants of SMBO (Jones et al., 1998) such as SMAC (Hutter et al., 2011), TPE (Bergstra et al., 2011) or Spearmint (Snoek et al., 2012). However, all of them are computationally demanding, difficult to parallelize and depend on the choice of a starting point (Wistuba et al., 2015). What is more, straightforward Bayesian-based methods do not provide anytime good solutions. To eliminate this problem,
adaptive resource allocation and early-stopping of unpromising configurations are combined with Bayesian optimization (Falkner et al., 2018). Despite these modifications, we still do not leverage the information that has been gathered so far in the previous experiments for other datasets; the only way to provide additional information is the prior distributions of the hyperparameters (Oh et al., 2018; Souza et al., 2021; Perrone et al., 2019).

In addition to the predefined portfolio of hyperparameters employed in this article, there are different attempts to combine the strengths of online and offline approaches. The most common is injection of the portfolio information into Bayesian optimization. The main goal is to exploit the adaptability of online methods while leveraging offline portfolios in order to quickly propose a good, though perhaps not the best, configuration of hyperparameters. The most common approach is to define the starting points in Bayesian optimization not as random ones but considering their model performance in the prior experiments (Feurer et al., 2015, 2019; Wistuba et al., 2018).

These methods emphasize adaptation of the surrogate model to the considered new dataset, and the portfolio is used only for initialization. An alternative is to use the results from the previous experiments and build a black-box surrogate model that predicts the performance for a selected data set and hyperparameter configuration. Then, based on the data collected offline, we can make a prediction of the response surface for the new dataset (Vilalta et al., 2004; Reif et al., 2014; Davis and Giraud-Carrier, 2018; Probst et al., 2019).

3 Problem definition

3.1 Hyperparameter optimization

Most machine learning algorithms are dependent on the user specified hyperparameters. An algorithm is trained, i.e., values of internal model parameters are updated iteratively, in accordance with the chosen algorithm and the data provided. So most machine learning algorithms A can be parametrized with dataset D and hyperparameter configuration $\lambda \in \Lambda \subset \mathbb{R}^d$. Dataset D is a finite sample from joint distribution $D = (X, Y)$, where $X \subset \mathbb{R}^p$ is p-dimensional feature space and Y is target variable space, categorical or numerical. To evaluate the quality of trained model $A(D, \lambda)$ we use quality function $F : D \times \Lambda \rightarrow \mathbb{R}$ mapping a dataset and hyperparameters to model performance, for instance, accuracy or an area under curve (AUC). For every hyperparameter, we attempt to estimate the expected value of performance for a random sample of observations given as

$$G(D, \lambda) = \mathbb{E}_{D \sim D} F(D, \lambda).$$ \hspace{1cm} (1)

Since we observe only a finite sample from D we estimate Equation 1 using cross-validation or a holdout subset of data. The main objective of hyperparameter optimization for prediction problem D is to find λ^* configuration, optimal in respect to the expected value of model performance

$$\lambda^* = \operatorname{arg max}_{\lambda \in \Lambda} G(D, \lambda).$$ \hspace{1cm} (2)

We consider different hyperparameter tuning strategies such as the mentioned earlier random search or Bayesian optimization to find this configuration. However, these can not guarantee that we will find the global maximum and the setting providing this, so we are interested in finding a configuration that gives a decent model performance, preferably after only a few iterations.

Most optimization strategies are based on a trial of the finite sequence of hyperparameter values $\Lambda_T = (\lambda_1, \ldots, \lambda_T)$, where T - the number of iterations depending on the available budget. In random search, the set Λ_T is predefined and independent of the prior experiments, and every component λ_i is sampled independently of each other. In Bayesian-based methods Λ_T is selected in runtime and λ_i is determined by a surrogate model on the base of the model performance for the preceding values $\lambda_1, \ldots, \lambda_{i-1}$.

3.2 Meta-learning in hyperparameter optimization

One of the application of meta-learning in hyperparameter optimization is transferring a hyperparameter portfolio from a set of previously performed experiments to a new dataset. Like random search, a predefined meta-learning portfolio is actually a finite sequence of configurations completely defined before tuning for the considered new dataset. However, configurations λ_i are not sampled independently but selected considering the performance model from the previously collected experiments, optimized for these experiments, and then possibly extended to randomly chosen new task. Herein lies the primary assumption of meta-learning and hyperparameter transfer; we assume that configurations that worked for a set of previous tasks will also give a decent performance for new, unknown data. The algorithm by which the portfolio is composed can vary, the most commonly used is greedy search (Wistuba et al., 2015), but average ranking (Brazdil and Soares, 2000) can also be applied.
In this article, the main contribution is the method of determining the family of datasets for which the optimization is performed, not the procedure of completing the transferred portfolio of hyperparameters. That is why we have to highlight two sets of tasks. Firstly, we determine a repository of the already tuned \(N\) tasks and call it meta-train set \(D_{\text{meta-train}}\). Every dataset is associated with the distribution \(D_{\text{meta-train}}^i = (X_{\text{meta-train}}^i, Y_{\text{meta-train}}^i)\) for \(i = 1, \ldots, N\), where \(X_{\text{meta-train}}^i \subset \mathbb{R}^p\) is a \(p_i\) dimensional feature space. Using \(D_{\text{meta-train}}\) we will define the meta-learned portfolio \(\Lambda_T\). Secondly, a meta-test task is not known before the dataset for which we want solve the Equation 2. The meta-test task is sampled from distribution \(D_{\text{meta-test}} = (X_{\text{meta-test}}, Y_{\text{meta-test}})\) which is different than meta-train distribution. Let \(P(X_{\text{meta-train}}^i), P(X_{\text{meta-test}}^i)\) be marginal probability distributions for \(i\)-th meta-train prediction problem and for meta-test respectively. Generally, every meta-train distribution \(X_{\text{meta-train}}^i\) and \(X_{\text{meta-test}}^i\) is defined independently of each other, and we do not assume any relationship between them.

As OpenML is a major source of prediction tasks, various unrelated datasets are used. For instance, one of meta-train task \(\text{wdbc}\) describing prediction of breast cancer consists of numerical features extracted from image diagnostic and the meta-test is \(\text{spambase}\) using word frequency statistics to assess whether a mail is spam. Every feature may come from markedly different sources and distributions. However, even this kind of meta-train selection ensures an improvement in the optimization strategy, especially in terms of anytime performance. To benefit from advantages of such a guided portfolio of hyperparameters, we focus more on meta-train and meta-test relationships in this work.

3.3 Consolidated learning

We define a technique of transferring the hyperparameter from the consolidated design meta-train set to the meta-test task as consolidated learning. The motivation behind this modification comes from a practical perspective on building predictive models.

In real-world use cases, prediction tasks for specific domains often include standard explanatory variables shared between many datasets so that models can exploit analogous dataset characteristics. For example, according to (Kumar et al., 2021), 75% of analyzed articles concerning prediction of Alzheimer disease dementia progression use cognitive assessments as features. In extreme cases, data scientists working for a specific entity often have one large database and build multiple models for different data samples extracted, such as Koyner et al. (2018) building a sequence of machine learning models to predict an acute kidney injury. One other case is the need to update the model for samples from a different time period. In that case, it is common to update the set of observations and train the model anew. Such models use the same set of variables so the models should have close properties to the previous versions. The question remains how to optimize the new algorithm.

These dependencies and shared definitions of features between meta-datasets is a different scenario from what has been considered in research papers on meta-learning so far. To capture these circumstances, from the design of the sets used for training, we assume a similarity between the prediction problems. We expect that if machine learning algorithms can use similarly or identically distributed features then it should detect similar features interactions or treat the same common variable similarly. Since the only parameterizations of the model that we know of are hyperparameters we assume that such relationships between prediction tasks will positively affect the transfer of hyperparameters.

We formalize the consolidated meta-train and consolidated learning using the terminology from Section 3.2. Restricting meta-train tasks to the representative for specific domain results in dependency between \(X_{\text{meta-train}}^i\) and \(X_{\text{meta-test}}\) for some \(i = 1, \ldots, N\). In particular, exploratory features with the same marginal distribution may occur in two different meta-train and meta-test distributions. In other words, some of the explanatory variables may be shared between the two prediction problems under consideration. We term this situation as \(P(X_{\text{meta-train}}^i) \cap P(X_{\text{meta-test}}^j) \neq \emptyset\) for \(i \neq j\) or \(P(X_{\text{meta-train}}^i) \cap P(X_{\text{meta-test}}) \neq \emptyset\). If features set is identical we denote this by \(P(X_{\text{meta-train}}) \equiv P(X_{\text{meta-test}})\). We define this constrained meta-train as a consolidated set in which common explanatory variables occur between the sets contained in the meta-train set and the meta-test set. On the basis of consolidated meta-training, a portfolio is composed (according to any strategy) and this process is called consolidated learning.

Correspondence between consolidated meta-train and meta-test is significantly higher than between unrelated tasks within the OpenML repository. The assumption about shared variables allows us to propose a meta-feature-free strategy of consolidated learning, namely hyperparameter transfer which provides anytime solutions.

4 metaMIMIC repository

This section describes the methodology for creating a meta-dataset to imitate the consolidated learning environment. Therefore, based on the MIMIC-IV database (Johnson et al., 2020) we create a collection of binary classification tasks.
of varying similarity. We weigh three scenarios of similarity between the extracted tasks. In the real world, such repositories are naturally collected during model development. However, to our knowledge, such a repository is not available for research purposes. Behind the choice of the MIMIC database as a source for the collection of prediction problems is its wide use in the research for machine learning applications in medical diagnosis (Nemati et al., 2018; Zhang et al., 2019; Meng et al., 2021; Liu et al., 2021). We employ this collection to evaluate a hyperparameter transfer in consolidated learning and assess the improvement in tuning.

4.1 MIMIC-IV database

MIMIC-IV (Medical Information Mart for Intensive Care) is an extensive, freely available database comprising de-identified health-related data from patients admitted to the intensive care unit (ICU) of the Beth Israel Deaconess Medical Center. It contains data of over 380,000 patients admitted to the ICU from 2008-2019. We include patient tracking data, demographics, laboratory measurements sourced from patient-derived specimens, and information collected from the clinical information system used during ICU stay.

To determine the cohort selection, we have to define the patient inclusion criteria taking into account machine learning principles (Johnson et al., 2017; Meng et al., 2021; Purushotham et al., 2018). We consider only the first admission of every patient to preserve the independence of all observations. Every patient must be at least 15 years old at the time of hospitalization and his admission must correspond to at least one chart event, one lab event, and one diagnosis recorded in the database. The hospital stay length must be shorter than 60 days. In total, 34925 unique patients met all the above conditions.

4.2 Prediction tasks

To determine multiple predictive problems, we decided to predict the occurrence of a specific disease. We examined 50 most commonly appearing conditions and hand-picked groups of diseases that have a representation in both ICD-9 and ICD-10 codes (see Table 1). It resulted in 12 targets for binary classification. We also considered whether the selected targets can be successfully predicted with the data available in the MIMIC-IV database (at least 0.7 mean ROC AUC in 4-fold cross-validation after tuning).

Condition	ICD-9	ICD-10	Frequency
Hypertensive diseases	401-405	I10-I16	59.8%
Disorders of lipid metabolism	272	E78	40.3%
Anemia	280-285	D60-D64	35.9%
Ischematic heart disease	410-414	I20-I25	32.8%
Diabetes	249-250	E08-E13	25.3%
Chronic lower respiratory diseases	466, 490-496	J40-J47	19.5%
Heart failure	428	I50	19.4%
Hypotension	458	I95	14.5%
Purpura and other hemorrhagic conditions	287	D69	11.9%
Atrial fibrillation and flutter	427.3	I48	10.5%
Overweight, obesity and other hyperalimentation	278	E65-E68	10.5%
Alcohol dependence	303	F10	7.7%

Table 1: Selected targets with corresponding ICD codes and frequency in the considered cohort.

We selected 58 features, hand-picking ones with the lowest number of missing values. Besides gender and age, we included only numerical variables related to the purposeful medical examination. Most features were recorded several times, so we aggregated them a minimum, average, and maximum values. In total, this resulted in 172 variables. The missing values are imputed with a mean of all observations for each task independently to avoid data leakage.

4.3 Task correspondence

In addition to specifying the response variables and the explanatory variable space, we also considered various assumptions about choosing the subset of observations and available variables. Generally, in applications such choices are forced by the available data, such as the size of the sample of observations that can be used, or how model validation is defined.

We mimic different selection scenarios that affect the intuitive perception of similarity between the obtained tasks in this work. The process of task design always consists of three choices – which predictors to use, which observa-
tions to consider and which target to predict (see Figure 2). To verify the impact of similarity between the tasks on the consolidated learning, we compare them with baseline transfer from a wide range of OpenML datasets, in addition to the three scenarios of task correspondence.

Figure 2: Schemas of design decision in creating scenarios of similarity between meta-train and meta-test. In S1-S3 from MIMIC-IV we extracted feature space, sample of observations and target disease. In S1 models for meta-train and meta-test use all predictors and observations but targets vary. Scenario S2 contain models built for the same predictors but disjoint sample of observations. In S3 we consider different subset of predictors. In S4 meta-train is composed of the OpenML datasets unrelated to MIMIC.

1. In the first scenario (S1), we predict different targets considering the same observations and using the same variables. Using formal notation feature space are identical \(X_{\text{meta-train}} \equiv X_{\text{meta-test}} \) for every \(i = 1, \ldots, N \). Therefore, the only real choice to make is to select which target to predict (Figure 2 S1). This setup reflects a situation where these targets are determined by historical data of the hospital’s patients comprising basic diagnostic tests and diagnoses. The only difference between the tasks is the diagnosis we want to predict, so there are 12 prediction sets.

2. In the second scenario (S2), various targets are predicted considering different samples observations but using the same set of variables. To avoid leakage of information occurring in S1, we consider two random, disjoint samples of observations (Figure 2 S2) but the models are provided with the same 172 variables. This experimental setting corresponds to the situation where we consider models built on out-of-time samples of patients but from the same distribution. When considering any two prediction problems, we can examine models built on independent sets of observations. In this setup, we get \(2 \times 12 = 24 \) prediction tasks.

3. In the third scenario (S3), we manipulate not only observations samples but also a set of variables to predict defined tasks. We select a different number of the most important predictors for each task (Figure 2 S3). The choice of predictor set was realized through selecting top \(n \) variables with the highest permutation variable importance value (Breiman, 2001; Fisher et al., 2019), calculated using the XGBoost model with default settings. We determine \(n = 10, 20, 50, 100 \) out of 172 features. This scenario imitates the transfer of knowledge between models built upon different targets, but now the scenario takes into account not identical feature space. Many predictive problems are based on an core set of variables and these are available in many tasks. An example is blood tests performed and used in the diagnosis of most diseases. So when considering a broad class of medical problems, many of the tasks contain variables describing such measurements. But there are also more specific tests for example cognitive testing is the primary diagnosis of Alzheimer’s or ECG for heart diseases. If we are considering sets of models that predict these diseases then the datasets will have corresponding variables. In this setup we get \(4 \times 2 \times 12 = 96 \) prediction tasks.

4. As a baseline meta-set and meta-learning approach (S4), we use 22 datasets from the OpenML repository. Using this collection for meta-learning, even in an online approach, has proven better than using random search or uninformed Bayesian optimization.

5 Experiment methodology

The proposed method of model tuning for the MIMIC-IV database is based on hyperparameters transfer within a collection of medical prediction problems. We validate the effectiveness of using a MIMIC family of prediction problems by comparing analogous tuning strategies determined for an unrelated family of datasets with the OpenML.
5.1 Hyperparameter grid

As a hyperparameter search space, we use the grid from the MementoML study (Kretowicz and Biecek, 2020) to validate the consolidated learning with the results obtained from 22 machine learning tasks from the OpenML repository. The designed grid comprises 1000 sets of 8 different XGBoost hyperparameters sampled independently from the predefined distributions. The considered hyperparameters and the distributions they are sampled from are presented in Table 2. If gblinear is selected as a booster, not all hyperparameters are active.

The predefined grids of hyperparameters exemplifies discretization of the searched space. However, the predefined grid approach has been used in several works on optimization (Wistuba et al., 2015, 2016) so we decided to create a fixed random grid. It uses the advantages of random search and allows efficient space search while ensuring the reproducibility of results.

Table 2: Hyperparameters and their underlying distributions. U stands for a random variable sampled from a uniform distribution with corresponding lower and upper bounds. Booster can be either gblinear or gbtree with equal probability. With * we indicate the active hyperparameters when booster = gblinear.

Hyperparameter	Type	Lower	Upper	Distribution
* n_estimators	integer	1	1000	U
* learning_rate	float	0.031	1	\(2^U\)
* booster	discrete	-	-	gblinear, gbtree
subsample	float	0.5	1	U
max_depth	integer	6	15	U
min_child_weight	float	1	8	\(2^U\)
colsample_bytree	float	0.2	1	U
colsample_bylevel	float	0.2	1	U

For each task in scenarios S1- S3, we train XGBoost models for a given grid of hyperparameters using 4-fold cross-validation (CV). In scenario S4 we use results from MementoML. ROC AUC is used as model performance measure. Due to the incomparability of AUC values between the tasks, mean 4-CV ROC AUC is scaled to interval \([0, 1]\) for each task individually.

5.2 Tuning strategies

We test four hyperparameter tuning methods for the XGBoost algorithm. Two of them are meta-learning based, so they use the performance model results for other meta-train sets. For each scenario, the following strategies are tested: the transfer is performed with metaMIMIC (S1-S3) and OpenML (S4) independently. In the hyperparameter transfer within the metaMIMIC, we used one-task-out validation. For scenario S4, we studied the transfer of hyperparameters configuration into the optimization for metaMIMIC tasks from scenario S2. As a meta-learning strategy of formation portfolio we considered:

- Average Sequential Model Free Optimization (A-SMFO) (Wistuba et al., 2016) using the greedy algorithm to determine a sequence of hyperparameters to test on the new task. The order in the hyperparameter portfolio is initially optimized for the meta-train set and the best configurations for each meta-train dataset are included. In the consecutive iterations, we add configurations among the feasible candidates, not considering the previously chosen ones. This offline algorithm aims to create a diverse configuration portfolio covering a wide range of prediction problems.

- Average Ranks Ranking Method (AR) (Brazdil and Soares, 2000) determining the order of hyperparameters according to the average ranking obtained by configurations for every meta-train dataset. This method is elementary and does not require additional computations.

Both meta-learning methods are limited to hyperparameter configuration derived from the grid defined in Section 5.1. As a baseline tuning strategy, we tested random search and Bayesian optimization as two strategies not exploiting results from other datasets.

- Random search (RS) is simulated as a random walk within a defined hyperparameters grid. Due to this, we did not perform a random search several times to estimate the expected learning curve and its variance; we could figure the theoretically expected model performance after \(t\) iterations determined by the expected value of the beta distribution with the relevant parameters and empirical parameters quantiles.
• Bayesian optimization (BO) is performed using the implementation available in the scikit-optimize package based on uniform distributions of hyperparameters, with bounds corresponding to the MementoML grid. Since Bayesian optimization may propose different configurations of hyperparameters than on our given grid of hyperparameters, it also validates the quality of the proposed search space.

Since A-SMFO, AR, and RS use evaluation from the same hyperparameter grid for every task, the observed maximum of AUC measure is the same for all the three tuning strategies. They only vary in a sequence of proposed configurations. Bayesian optimization is not limited to this grid only and can find better or worse optimal AUC than the other optimizations.

5.3 Evaluation of tuning strategies

The objective of the experiment is to see if we can improve hyperparameter tuning for one dataset from metaMIMIC using meta-learning for scenarios S1 - S3 relative to S4. Let us recall that we use a one-task-out schema for scenarios S1-S3 to build the meta-train set. Furthermore, to avoid information leakage for scenarios S2 and S3, we always exclude the meta-learning-based optimization strategy, the target for which we optimize. For example, let us consider scenario S2 and diabetes target variable with the first subsample of observations in meta-train. We include only the tasks for the second subsample of observations but exclude the tasks for diabetes. For scenario S4, the OpenML dataset repository is independent of the metaMIMIC, so we do not address this problem.

We compare the optimization strategies for all scenarios and each dataset individually. For every iteration of optimization of a given strategy, we consider the best performance obtained so far. That is why, we are interested in reaching the maximal value as soon as possible and in learning which strategy achieves this. To aggregate this information for the entire collection of datasets, we recorded the development of the average rank among different hyperparameter tuning strategies. Furthermore, to assess the speed of convergence to observed optimum, we use the average distance (ADTM) to maximum AUC value (Wistuba et al., 2015).

Let $D_{\text{meta-test}}$ be the collection of meta-test datasets for which tuning strategy is evaluated, and f is AUC measure. The portfolio of hyperparameter configuration proposed by strategy in iteration T is Λ_T. Then ADTM is defined as

$$ADTM(D_{\text{meta-test}}, \Lambda_T) = \frac{1}{|D_{\text{meta-test}}|} \sum_{i \in D_{\text{meta-test}}} \min_{\lambda \in \Lambda_T} \frac{f_i^{\max} - f_i(\lambda)}{f_i^{\max} - f_i^{\min}},$$

where $|D_{\text{meta-test}}|$ is a cardinality of meta-test set. In our experiment setup as meta-test we consider all MIMIC-based tasks available in examined scenario S1-S4. For each meta-test task portfolio is determined by corresponding meta-train, according to one-dataset-out validation.

6 Effectiveness of consolidated learning

To assess the improvement in transferability of hyperparameters brought by consolidated learning we perform optimization for every metaMIMIC task from Scenario S2. We build portfolios upon the meta-train in Scenarios S2 and S4. For S2, we consider the meta-train including the same sample of observations and a disjoint sample of observations as in the meta-test task. We also test two strategies for creating a static portfolio, A-SMFO, and AR. The baseline collates meta-learning results with random search, Bayesian optimization, and default XGBoost algorithm.

Figure 3 shows the results for the four selected meta-test targets. Looking at the model performance during hyperparameter tuning, we see that methods based on meta-learning provide configurations close to the observed maximum already in the first iteration. The distance between the learning curves for scenarios S2, S4, and the baselines is evident for the first few iterations. These results are significantly better than the model without tuning. Despite being able to go beyond the specified grid, Bayesian optimization obtains better results for only two targets, so we may assume that the predefined grid covers the space of good configurations.

Let us take a closer look at the meta-learning-based methods. The differences in model performance between the transfer for consolidated learning in scenario S2 and the transfer based on OpenML are of the order of 10^{-3}, but in most cases, domain-based strategies reach maximum AUC before OpenML-based methods. Furthermore, the difference between the transfer in scenario S2 regarding the identical and disjoint sample of observations is negligible, so the effect of the subset of observations is not significant. A-SMFO and AR strategies of building a portfolio give close learning curves even in the first iteration.

To further summarize the impact of strategy selection between different tasks and scenarios, we examine the change in average rankings for each strategy (Figure 4). We see that in the earlier iterations, portfolios from S2 consolidated
Figure 3: Hyperparameter tuning velocity of different methods and multiple tasks. Purpura is the only task for which OpenML initially significantly outperforms MIMIC-IV among the 12 tasks considered.

learning get a better rank than the configurations extracted from OpenML, especially in the early iterations. All strategies based on consolidated learning have a similar average rank, regardless of a subsample of observations and a method of creating a portfolio algorithm. Only Bayesian optimization exceeds the consolidated optimization but

Figure 4: Comparison of the aggregated performance development with the increasing number of iterations for different optimization strategies. In the left plot, changes in the average rank of strategy are used to summarize overall efficiency. In the right, ADTM is applied. As meta-test tasks always are used MIMIC-based task from scenario S2. For meta-train, we use tasks from S2 for the disjoint subset of observations (S2 A-SMFO, S2 AR), the same subset of observations (S2 A-SMFO H2, S2 AR H2). As baseline strategies, we use meta-train from scenario S4 (S4 A-SMFO, S4 AR), random search (S2 RANDOM), and Bayesian optimization (S2 BO).
requires about 30 iterations to approach the S2 strategies. In Figure 4 we see how fast the tuning strategies converge against the best hyperparameter configuration on average. Similarly, we observe the learning curves for consolidated learning converge considerably faster than the other strategies. Again, this marked difference is more substantial in the OpenML meta-data set. As the rank of each strategy changes with time, we see that all line associated with S2 scenario converge to the observed maximum the fastest. OpenML-based strategies are slightly worse AUC but reach the maximum after about 10 iterations. Bayesian optimization goes beyond the fixed-parameter grid, and to see if it finds better hyperparameters than those included in the grid, ADTM for this optimization is computed assuming that the maximum observed value is equal to the maximum observed on the predefined grid. Hence, negative ADTM values for BO over 75 interactions.

Thus, we can conclude that meta-learning is effective and even using unrelated datasets allows us to reject unsatisfactory configurations and provide a decent model performance for several trials in tuning. We can accelerate the tuning by employing consolidated learning. Random search and Bayesian optimization need to go through several iterations to achieve comparable results as methods based on a static portfolio created from the previous experiments.

7 Robustness of transferability

In Section 6, we saw that meta-learning-based methods find the optimum observed on the defined grid after only 10 iterations. In this section, we explore the similarity between hyperparameter spaces in model performance terms. We also investigate the effect of task correspondence on the strength of hyperparameter transfer. This is especially important in order to provide anytime solution for optimization.

![Figure 5: Numbers of the best 10 hyperparameter sets (regarding the mean 4-CV ROC AUC measure) shared between tasks from S4, S1, and S2. An individual cell of the matrix corresponds to the number of hyperparameter sets shared between a given pair of tasks. Histograms summarize the distribution of the values of each matrix. White color on the diagonal means that the value is not considered.](image-url)
To analyze the consistency of the hyperparameters model performance between any pair of tasks, we examine the percentage of overlap in the top 10 best configurations (Figure 5). We decide on a threshold of 1% because 10 iterations in tuning is sufficient for strategies S2 and S4. Nevertheless, choosing another threshold value from a reasonable range of 10-100 results in analogous relationships between the distributions of values in the matrices. This fact is also reflected in the mean of Spearman rank correlation coefficients calculated for individual pairs of full rankings (0.165 ± 0.469 for S4, 0.885 ± 0.072 for S1, and 0.849 ± 0.078 for S2).

Comparing the distributions of values in the presented matrices shows that the number of shared best hyperparameter sets is significantly higher for the S1 than for the S4 scenario representing a meta-learning from unrelated problems. In addition, with the rightmost matrix, it is apparent that considering disjoint subsets of observations (which is often closer to actual use cases) results in only a slight decrease in the average number of shared hyperparameter sets.

![Figure 6: Summary of mean numbers of the best ten hyperparameter sets (regarding the mean 4-CV ROC AUC measure) shared between tasks from S3. A single matrix cell represents the average value for tasks with a given number of columns and is based on a given subset of observations. Additionally, the vectors on the right correspond to the same operation for the intersection of MIMIC-IV-based tasks with tasks derived from OpenML.](image)

The analysis of the results scenario S3 required a partial aggregation of the calculated statistics because without this operation, the number of possible combinations would become too large for clear representation in a graph. We decided to perform this aggregation by grouping the tasks based on their source and, for MIMIC-IV, also on the number of predictors and the considered subset of observations (Figure 6). Therefore, a single cell corresponds to the average value of a matrix created in the same way as the previous graph.

As the number of predictors decreases, their diversity between the tasks increases, which is due to the procedure of selecting them described in Section 4.3. Despite this, the average number of shared hyperparameter sets for tasks based on a similar number of predictors is consistently high. This suggests that consolidated learning is related to the transferability of hyperparameters. Nonetheless, even in the worst case, the average number of shared hyperparameter sets is higher between the pairs of MIMIC-IV-based tasks than when intersecting the MIMIC-IV-based tasks with the tasks derived from the OpenML.
8 Conclusions

The results presented in this work highlight the importance of selecting meta-training repositories. To our knowledge, this is the first work analyzing the impact of meta-train sets on the optimization power of predefined hyperparameter portfolios. We show that purposefully accumulating results from the prior prediction problems described by similar sets of variables strengthens the optimization strategies. We demonstrate empirically that leveraging datasets from the MIMIC database produces better model performance than using a portfolio determined for a diverse repository. We observe a positive effect of application of consolidated learning both in tuning speed and the consistency of the best hyperparameters. We also analyze the weakening of assumptions in simulated consolidated learning - despite smaller constraints in individual consolidated learning scenarios, we still show a more significant transfer than for OpenML datasets.

Using the database MIMIC-IV, we demonstrate how consolidated meta-train repositories can be constructed in practice. To our knowledge, this is the first approach to creating a domain-specific repository for meta-learning. It is worth noting that the defined data dependency problem captures the real use of that database in both academic work and practical model deployment. What is more, the conducted research uses non-synthetic data from a real-world source but allows us to simulate the different relationships between meta-train and meta-test.

Our approach enhances the meta-learning effect in hyperparameter optimization while avoiding the problem of defining a representative set of meta-features. This approach attempts to answer whether hyperparameter transfer occurs at all and whether it can be correlated with some definitions of meta-features. If the transfer does not occur for such restrictively defined tasks, it is hard to imagine that we are able to define meta-features that catch the similarity of predictive problems. Based on this study, we see that the transfer is more evident within MIMIC-IV-based tasks.

In future work, we plan to verify the hypothesis that the consolidated portfolios created for the experiments extracted from MIMIC-IV give better performance for disease prediction problems based on the history collected during hospital admission. This may be the first step, leading to domain-specific portfolios for a broader class of problems than defined in this work and transferring hyperparameters between different problems without requiring the datasets to partially share the same variable definitions.

The code needed to reproduce the metaMIMIC and the whole study can be found in this repository: https://github.com/ModelOriented/metaMIMIC.

Acknowledgments

The work on this paper is financially supported by the NCN Opus grant 2017/27/B/ST6/01307.

References

Alaa, A. and Schaar, M. (2018). AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian Optimization with Structured Kernel Learning. In Proceedings of the 35th International Conference on Machine Learning (ICML), pages 139–148.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter optimization. Advances in Neural Information Processing Systems, 24.

Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(10):281–305.

Bergstra, J., Komer, B., Eliasmith, C., Yamins, D., and Cox, D. D. (2015). Hyperopt: a python library for model selection and hyperparameter optimization. Computational Science & Discovery, 8(1):13–19.

Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R. G., van Rijn, J. N., and Vanschoren, J. (2017). OpenML benchmarking suites and the OpenML100. stat, 1050:11.

Brazdil, P. B. and Soares, C. (2000). A comparison of ranking methods for classification algorithm selection. In Proceedings of the 11th European conference on machine learning (ECML), pages 63–75, Berlin Heidelberg. Springer.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Chen, T. and Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785–794.
Davis, C. and Giraud-Carrier, C. (2018). Annotative experts for hyperparameter selection. In *AutoML Workshop at ICML*.

Edwards, H. and Storkey, A. (2017). Towards a neural statistician. In *Proceedings of the 5th International Conference on Learning Representations (ICLR)*.

Falkner, S., Klein, A., and Hutter, F. (2018). BOHB: Robust and efficient hyperparameter optimization at scale. In *Proceedings of the 35th International Conference on Machine Learning (ICML)*, pages 1437–1446.

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and Hutter, F. (2021). Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning. *preprint arXiv:2007.04074*.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., and Hutter, F. (2019). *Auto-sklearn: Efficient and Robust Automated Machine Learning*, pages 113–134. Springer International Publishing, Cham.

Feurer, M., Springenberg, J., and Hutter, F. (2019). Initializing bayesian hyperparameter optimization via meta-learning. In *Proceedings of the 35th International Conference on Machine Learning (ICML)*, pages 1177–1186.

Fisher, A., Rudin, C., and Dominici, F. (2019). All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously. *Journal of Machine Learning Research*, 20(177):1–81.

Guyon, I., Sun-Hosoya, L., Boullé, M., Escalante, H. J., Escalera, S., Liu, Z., Jajetic, D., Ray, B., Saeed, M., Sebag, M., Statnikov, A., Tu, W.-W., and Viegas, E. (2019). *Analysis of the AutoML Challenge Series 2015–2018*, pages 177–219. Springer International Publishing, Cham.

Hewitt, L. B., Nye, M. I., Gane, A., Jaakkola, T. S., and Tenenbaum, J. B. (2018). The variational homoencoder: Learning to learn high capacity generative models from few examples. *preprint arXiv:1807.08919*.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Sequential model-based optimization for general algorithm configuration. In *Lecture Notes in Computer Science*, pages 507–523. Springer Berlin Heidelberg, Berlin Heidelberg.

Jamieson, K. and Talwalkar, A. (2016). Non-stochastic best arm identification and hyperparameter optimization. In *Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS)*, pages 240–248.

Johnson, A., Bulgarelli, L., Pollard, T., Horng, S., Celi, L., and Mark, R. (2020). MIMIC-IV (version 1.0).

Johnson, A. E. W., Pollard, T. J., and Mark, R. G. (2017). Reproducibility in critical care: a mortality prediction case study. In *Proceedings of the 2nd Machine Learning for Health Care Conference (MLHC)*, pages 361–376.

Jomaa, H. S., Schmidt-Thieme, L., and Grabocka, J. (2021). Dataset2vec: learning dataset meta-features. *Data Mining and Knowledge Discovery*, 35(3):964–985.

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global optimization of expensive black-box functions. *Journal of Global Optimization*, 13(4):455–492.

Koyner, J. L., Carey, K. A., Edelson, D. P., and Churpek, M. M. (2018). The development of a machine learning inpatient acute kidney injury prediction model. *Critical Care Medicine*, 46(7):1070–1077.

Kretowicz, W. and Biecek, P. (2020). MementoML: Performance of selected machine learning algorithm configurations on OpenML100 datasets. *preprint arXiv:2008.13162*.

Kumar, S., Oh, I., Schindler, S., Lai, A. M., Payne, P. R., and Gupta, A. (2021). Machine learning for modeling the progression of alzheimer disease dementia using clinical data: a systematic literature review. *JAMIA Open*, 4(3):ooab052.

Lavesson, N. and Davidsson, P. (2006). Quantifying the impact of learning algorithm parameter tuning. In *Proceedings of the 21st AAAI Conference on Artificial Intelligence*, volume 6, pages 395–400.

Li, L., Jamieson, K. G., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017). Hyperband: Bandit-based configuration evaluation for hyperparameter optimization. In *Proceedings of the 5th International Conference on Learning Representations (ICLR)*.
Liu, T., Zhao, Q., and Du, B. (2021). Effects of high-flow oxygen therapy on patients with hypoxemia after extubation and predictors of reintubation: a retrospective study based on the MIMIC-IV database. *BMC Pulmonary Medicine*, 21(1):1–15.

Meng, C., Trinh, L., Xu, N., and Liu, Y. (2021). MIMIC-IF: Interpretability and Fairness Evaluation of Deep Learning Models on MIMIC-IV Dataset. *preprint arXiv:2102.06761*.

Nemati, S., Holder, A., Razmi, F., Stanley, M. D., Clifford, G. D., and Buchman, T. G. (2018). An interpretable machine learning model for accurate prediction of sepsis in the ICU. *Critical Care Medicine*, 46(4):547–553.

Oh, C., Gavves, E., and Welling, M. (2018). BOCK: Bayesian optimization with cylindrical kernels. In *Proceedings of the 35th International Conference on Machine Learning (ICML)*, pages 3868–3877.

Olson, R. S. and Moore, J. H. (2019). *TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning*, pages 151–160. Springer International Publishing, Cham.

Perrone, V., Shen, H., Seeger, M. W., Archambeau, C., and Jenatton, R. (2019). Learning search spaces for bayesian optimization: Another view of hyperparameter transfer learning. In *Advances in Neural Information Processing Systems*.

Pfahringer, B., Bensusan, H., and Giraud-Carrier, C. G. (2000). Meta-learning by landmarking various learning algorithms. In *Proceedings of the 17th International Conference on Machine Learning (ICML)*, pages 743–750.

Pfisterer, F., van Rijn, J. N., Probst, P., Müller, A. C., and Bischl, B. (2021). Learning multiple defaults for machine learning algorithms. In *Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO)*, pages 241–242.

Probst, P., Boulesteix, A.-L., and Bischl, B. (2019). Tunability: Importance of hyperparameters of machine learning algorithms. *Journal of Machine Learning Research*, 20(53):1–32.

Purushotham, S., Meng, C., Che, Z., and Liu, Y. (2018). Benchmarking deep learning models on large healthcare datasets. *Journal of Biomedical Informatics*, 83:112–134.

Reif, M., Shafait, F., Goldstein, M., Breuel, T., and Dengel, A. (2014). Automatic classifier selection for non-experts. *Pattern Analysis and Applications*, 17(1):83–96.

Rivolli, A., Garcia, L. P., Soares, C., Vanschoren, J., and de Carvalho, A. C. (2019). Characterizing classification datasets: a study of meta-features for meta-learning. *preprint arXiv:1808.10406*.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of machine learning algorithms. *Advances in Neural Information Processing Systems*, 25.

Souza, A., Nardi, L., Oliveira, L., Olukotun, K., Lindauer, M., and Hutter, F. (2021). *Bayesian Optimization with a Prior for the Optimum*, pages 265–296.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). Auto-WEKA. In *Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 847–855.

Vakhрушев, А., Рыжков, А., Савченко, М., Симаков, Д., Дамдинов, Р., and Тузхилин, А. (2021). LightAutoML: AutoML Solution for a Large Financial Services Ecosystem. *preprint arXiv:2109.01528*.

Vanschoren, J. (2019). *Meta-Learning*, pages 35–61. Springer International Publishing, Cham.

Vilalta, R., Giraud-Carrier, C., Brazdil, P., and Soares, C. (2004). Using meta-learning to support data mining. *International Journal of Computer Science & Applications*, 1:31–45.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2015). Learning hyperparameter optimization initializations. In *Proceedings in the 2nd IEEE International Conference on Data Science and Advanced Analytics (DSAA)*, pages 1–10.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2016). Sequential model-free hyperparameter tuning. In *Proceedings in the IEEE International Conference on Data Mining (ICDM)*, pages 1033–1038.

Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2018). Scalable gaussian process-based transfer surrogates for hyperparameter optimization. *Machine Learning*, 107(1):43–78.
Woźnica, K. and Biecek, P. (2021). Towards explainable meta-learning. *preprint arxiv:2002.04276*.

Zhang, Z., Ho, K. M., and Hong, Y. (2019). Machine learning for the prediction of volume responsiveness in patients with oliguric acute kidney injury in critical care. *Critical Care*, 23(1):1–10.