The Involvement of J-protein AtDjC17 in Root Development in *Arabidopsis*

Carloalberto Petti
University of Kentucky, carloalberto.petti@uky.edu

Meera Nair
University of Kentucky, meer.rocks23@gmail.com

Seth DeBolt
University of Kentucky, sdebo2@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/horticulture_facpub

Part of the *Horticulture Commons*

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

Petti, Carloalberto; Nair, Meera; and DeBolt, Seth, "The Involvement of J-protein AtDjC17 in Root Development in *Arabidopsis*" (2014). *Horticulture Faculty Publications.* 21.
https://uknowledge.uky.edu/horticulture_facpub/21

This Article is brought to you for free and open access by the Horticulture at UKnowledge. It has been accepted for inclusion in Horticulture Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
The involvement of J-protein AtDjC17 in root development in Arabidopsis

Carloalberto Petti, Meera Nair and Seth DeBolt*

Department of Horticulture, University of Kentucky, Lexington, KY, USA

In a screen for root hair morphogenesis mutants in Arabidopsis thaliana L. we identified a T-DNA insertion within a type III J-protein AtDjC17 caused altered root hair development and reduced hair length. Root hairs were observed to develop from trichoblast and atrichoblast cell files in both Atdjc17 and 35S::AtDJC17. Localization of gene expression in the root using transgenic plants expressing proAtDJC17::GUS revealed constitutive expression in stele cells. No AtDJC17 expression was observed in epidermal, endodermal, or cortical layers. To explore the contrast between gene expression in the stele and epidermal phenotype, hand cut transverse sections of Atdjc17 roots were examined showing that the endodermal and cortical cell layers displayed increased anticlinal cell divisions. Aberrant cortical cell division in Atdjc17 is proposed as causal in ectopic root hair formation via the positional cue requirement that exists between cortical and epidermal cell in hair cell fate determination. Results indicate a requirement for AtDJC17 in position-dependent cell fate determination and illustrate an intriguing requirement for molecular co-chaperone activity during root development.

Keywords: root hair, root patterning, development, heat shock protein, J-family, J-proteins

INTRODUCTION

During Arabidopsis thaliana L. Heyne root development, the distribution of hair cells has been extensively studied as a position-dependent developmental program. Here, the alternating emergence of trichoblast cells or root hair (H) versus atrichoblast cells or non-root hairs (N) relies on positional information, whereby epidermal cells in direct contact with anticlinal cell walls of two underlying cortical cells acquire H cell fate and all others become N cells (Dolan et al., 1994; Dolan, 2006). This position-dependent cell fate determination at the root epidermis is reliant on a complex regulatory pathway involving genetic cell fate determinants and mobile transcriptional regulators (Kwak et al., 2005; Kwak and Schiefelbein, 2007). Here, SCRAMBLED (SCM), a leucine-rich receptor-like kinase (LRR-RKL) relays positional information underlying this pattern (Lee and Schiefelbein, 2002; Dolan, 2006; Kwak and Schiefelbein, 2008). Signalling through SCM establishes repression of the R2R3-MYB transcription factor WEREWOLF (WER) in H cells. As a result, the repression of WER in H cells causes increased levels of WER in N cells and in turn the levels of a regulatory complex consisting of transcriptional mediators WER-GLABRA3 (GL3)/ENHANCER OF GLABRA3 (EGL3)-TRANSPARENT TESTA GLABRA1 (TTG1). The combined effect of these factors causes activation of direct targets including the N-cell determinant and homeodomain-leucine-zipper transcription factor GLABRA2 (GL2; Kwak and Schiefelbein, 2008).

The complexity of cell fate determination in the epidermal layers is clearly evidenced by the large number of transcription regulators involved (Guimil and Dunand, 2006; Bruex et al., 2012), as well as by an increasingly large number of additional genes, e.g., auxin responsive, AXR2, AXR3 (Nagpal et al., 2000; Knox et al., 2003), KEU, which encodes the yeast SecI homolog, a key regulator of vesicle trafficking (Assaad et al., 2001), ROP2 a small Rho-plant GTPase implicated in cytoskeleton organization and cell polarity (Jones et al., 2002, 2006) and the ethylene oxide genes ETO1 and ETO2 involved in ethylene synthesis (Cao et al., 1999). Recently, a nuclear factor with homology to a heat shock factor (HSF; ten Hove et al., 2010), which encodes the SCHIZORIZA gene (Mylona et al., 2002), was also linked to radial patterning. Despite the potential for heat shock protein (HSP) or HSFs to play roles in root hair development and patterning, due to the obvious exposure to changing environmental conditions, genetic evidence for key genes remains poorly characterized.

A large number of genes encode the HSPs and HSFs. HSPs were named as heat response proteins (Ritossa, 1962; Tissiers et al., 1974), but since have been linked to a multitude of biological processes including microtubules stabilization, anti-apoptosis, refolding of a protein in non-native status, regulation of steroid hormone receptors (Kregel, 2002), protein translocation, protein folding reviewed by (Al-Whaibi, 2011), cell proliferation (Pechan, 1991) and at least with regard to fungi, HSPs are involved in signaling (Panaretou and Zhai, 2008). Among the HSPs the most studied are the HSP70 (Bakau and Horwich, 1998) and the DnaJ (Nakamoto and Vígh, 2007; Siddique et al., 2008). DnaJ is a member of the Hsp40 family of molecular chaperones, which is also known as J-protein family (Walsh et al., 2004). In Arabidopsis, the J-family encompass as many as 120 members classified in four sub-types (Rajan and D’Silva, 2009). J-protein type I, share all motifs found in a DnaJ a highly conserved N-terminal J-domain, followed by a glycine/phenylalanine rich region, a

www.frontiersin.org
zinc-binding cysteine rich region and a variable C-terminal region. The remaining types display a simplified structure, with type II, missing the Zinc finger domain and type III displaying only the J-domain. Type IV, are J-like protein with a large similarity to the J-domain but missing the recognition motif HPD (Siddique et al., 2008; Rajan and D’Silva, 2009). DNAJ/ J-domain proteins are best known as co-chaperones working in client binary complex association with HSP70 (Minami et al., 1996; Miernyk, 2001; Qiu et al., 2006; Summers et al., 2009; Jelenska et al., 2010; Bekh-Ochir et al., 2013).

Herein, during a screen of T-DNA A. thaliana mutants for defective root hairs we identified that mutations in a type III J-protein (AtDjC17) gene and we aimed to study the transcriptional and genetic features that contribute to root development.

MATERIALS AND METHODS

PLANT MATERIAL AND GROWTH CONDITIONS

Arabidopsis thaliana (L.) Heynh (Arabidopsis) ecotype Colombia-0 was used in all experiments. The T-DNA insertional alleles [Ats23240, germplasm SALK_008678 (AtDjC17-1-1) and SALK_024726C (AtDjC17-1-2)] were obtained from the Arabidopsis Biological Resource Center (ABRC, Ohio State University). Seeds were surface sterilized and vernalized at 4°C for 2 days in the darkness prior to plating them on ½ strength Murashige and Skoog (MS) basal salts medium (pH 5.7; Duchefa, Holland) solidified with 0.8% agar. Seeds were germinated under 16 h light; 8 h darkness conditions at a constant temperature of 22°C. Seeds were plated as described above and plates were vertically positioned and incubated in dark grown (22°C) condition. The phenotypes of AtDjC17-1-1 and AtDjC17-1-2 were compared to that of wild-type (WT) during plant growth and development. Plants were grown in MetroMix 360 (Sun Gro Horticulture) in a temperature controlled environmental chamber (22°C; Adaptil, Conviron).

GENOTYPING OF THE MUTANT LINES

Homozygosity of the knockout lines AtDjC17-1-1/AtDjC17-1-2 was verified by polymerase chain reaction (PCR)-based genotyping, primers sequences are given in supporting information Table S1. Total plant DNA was extracted as previously described (Rogers and Bendich, 1985). For PCR purposes the DNA concentration was standardized to 100 ng µl−1 in Tris pH 8.0 (10 mM).

MICROSCOPY

Imaging and quantitation of seedling phenotype employed fluorescence stereomicroscopy (Olympus MVX) and ImageJ (National Institutes of Health, Bethesda, MD, USA). Statistical analysis comparing AtDjC17 and WT plants used PRISM4 (Graphpad, La Jolla, CA, USA) and Minitab (Minitab Inc., USA). Seedling phenotypes, including root hair and epidermal patterning defects were examined consistently at 7-d post-germination. Seedlings were grown vertically in ½ strength MS agar. Root hair length measurements were averaged across the entire root. To examine the pattern of epidermal development in a uniform spatial region of the root we documented cell area in the region covering 0.65 mm of root, initiating approximately 2 mm above the root cap. Average cell length and area determinations for each trichoblast/atrichoblast cell used area measurement output after tracing the polygon via the freehand selection tool (ImageJ) and pixel-number2 converted to µm2. Due to the 3-dimensional nature of the root structure only those root hairs visible in the optical plane were counted. Transverse root sections were made as described (Huang et al., 1998) whereby roots were embedded in 3% molten agarose and hand sectioned using double-edged razor blade. The sections were stained with calcofluor-white (Sigma, USA) stain and visualized under fluorescence stereomicroscope (Olympus MVX; DAPI filter). For β-glucuronidase (GUS) histochemical assay, staining solution was prepared according to (Guvarc’h et al., 1996). The seedlings were cleared, sectioned as above and counter stained with 0.05% Ruthenium red according to (Hassan et al., 2010) before visualization. Propidium iodide staining was performed as described in (Nawy et al., 2005). Accordingly 7-d post-germination seedlings were stained with 10 µg ml−1 propidium iodide for 30 s to 2 min, rinsed and mounted on water. Microscopy was performed on an Olympus FV1000 laser scanning confocal microscope using a 63 x N.A 1.4 water-immersion objective. The microscope is equipped with lasers for excitation wavelengths ranging from 405 to 633 nm and propidium iodide stain was excited using the DsRed setting in the Olympus Fluoview software (Olympus). All image processing was performed by using Olympus Fluoview software (Olympus) and ImageJ (W. Rasband, National Institutes of Health, Bethesda, MD, USA) software.

CONSTRUCTION OF REPORTER AND OVEREXPRESSION LINES

SELECTION AND EXPRESSION ANALYSIS OF TRANSGENIC LINES

The AtDjC17 transcript accumulation was assayed by fusing the AtDjC17 promoter to the GUS (Jefferson et al., 1987) reporter gene through a promoter::uidA fusion construct. A 1.5 Kb putative promoter region was PCR-amplified with the specific primers ATDJCI7P-F/ATDJCI7P-R (Supporting information Table S1) and the PCR amplified product was cloned into pCXP5T GUS ZeBaTA vectors (Chen et al., 2009). For overexpression studies, the open reading frame was PCR amplified from genomic DNA using primers ATDJCI7G-F/ATDJCI7G-R and the amplification was cloned into the pCXSN vector (Chen et al., 2009) under the constitutive expression of the Cauliflower mosaic virus (CaMV)-35S promoter (35S). Sequence verified clones were transformed by electroporation into Agrobacterium tumefaciens hypervirulent strain GV3101. Arabidopsis plants were transformed (Clough and Bent, 1998) and homozygous alleles selected using the selectable marker hygromycin (25 µg ml−1, Duchefa). Homozygous T3 plants from independent transfectants were used in subsequent studies. T-DNA lines were complemented by restoring AtDjC17 under the control of the native promoter. The native promoter was PCR amplified and cloned within KpnI and HindIII sites of the pMDC32 vector replacing the 2X35S promoter. The full length AtDjC17 cDNA was cloned within the AscI and PacI sites completing the fusion cassette. For complementation, T-DNA lines were floral dipped and selected for hygromycin resistance. T2/T3 generations were used for phenotypical characterization.
GENE EXPRESSION STUDIES
Sterilized AtDjc17 and WT seed were germinated and grown vertically on 1/2 strength MS agar plates in 16:8 light:dark conditions for 7-d. Root was rapidly excised from batches of approximately 200 seedlings using a surgical blade in aseptic conditions and snap frozen in liquid nitrogen. Total RNA was extracted using QIAGEN RNAeasy Plant mini kit and treated with DNase I (Fermentas, LifeSciences) according to the manufacturer’s instructions. Up to 2 μg of the extracted total RNA was used for single stranded cDNA synthesis using High capacity cDNA reverse transcription kit (Applied Biosystems). The final volume was diluted fourfold and 2 μl of the synthesized cDNA (100 ng) was used in the subsequent RT-PCR reactions. Quantitative real time PCR was conducted using Fast SYBR® Green Mastermix (Applied Biosystems) or HOTFIREPOL® EvAGreen® mastermix (OAK Biotechnologies LLC, USA) with StepOne™ Real-Time PCR system (Applied Biosystems). For the RT-PCR reaction the following conditions were used: 1 cycle of initial denaturation at 95°C for 10 or 15 min accordingly to the master mix employed, followed by 40 cycles of denaturation at 95°C for 15 s and annealing/extension at 60°C for 30 s; followed by melting curve analysis. Actin 2 was used as internal control (Supporting information Table S1), with three-pooled biological replicates and three technical replicates. Primers for RT-PCR where possible were taken from referenced sources or designed using PRIMER3 (http://www.embnet.sk/cgi-bin/ primer3 www.cgi; Supporting information Table S1).

RESULTS
MUTATIONS IN AtDjc17 CAUSED ALTERED ORGANIZATION OF ROOT HAIR POSITION IN ATRICHOBLAST VERSUS TRICHOBLAST CELL FILES
In a screen for altered root hair (H-cell) occurrence, we identified a causal mutation in AtDjc17-1-1 (At5g23240). Motif analysis showed that AtDjc17 contained a J-domain motif and was broadly classified as a J-protein type III (Rajan and D’Silva, 2009). To further confirm the root hair phenotype, two alleles were isolated and correspond to AtDjc17-1-1 and AtDjc17-1-2. Homozygosity for the insertion of a T-DNA into the AtDjc17 exon was verified by PCR (see Supplementary material Figure S1 for insertion position). Further, AtDjc17 mRNA abundance was examined in WT as well as AtDjc17-1-1 and AtDjc17-1-2 plants by qRT-PCR and these data revealed no detectable AtDjc17 mRNA for either allele. Thus, we concluded that both AtDjc17-1-1 and AtDjc17-1-2 were null alleles.

H-cells appeared in adjacent cell files rather than in alternating cell files in both mutant alleles (AtDjc17-1-1 and AtDjc17-1-2 respectively, Figure 1 and supplementary material Figure S2) described as irregular root H emergence. A 31% reduction in H-cells was observed in a trichoblast cell file in AtDjc17-1-1 (Figures 1B–D). As expected, 100% of H-cells were identified in the trichoblast cell file in WT roots (n = 10 seedlings; Figures 1A–D). In AtDjc17-1-1 we observed H-cells in atrichoblast cell file (approximately 19.5% H cells), whereas no H formation was observed in atrichoblast cell files in WT. Alongside these data we also observed a quantitative increase in the distance between adjacent H-cells in a cell file in AtDjc17 alleles compared with WT (217.9 ± 6.6 μm for AtDjc17-1-1 and 173.4 ± 5.8 μm for WT, P < 0.05; Figure 2H). Accounting for this phenotype was an observed increase in trichoblast cell area for AtDjc17 mutants (AtDjc17-1-1: 2916 ± 161.6 μm²; WT: 2384 ± 104.2 μm², P > 0.05), indicative of an expansion defect.

To query whether increasing the transcript abundance for AtDjc17 would influence root epidermal patterning phenotype, we expressed a 35S::AtDjc17 in WT plants. This resulted in a transgenic plant with 3.5-fold increase in AtDjc17 transcript in the roots. Visual examination of the 35S::AtDjc17 roots also revealed irregular H-cell occurrence compared with WT. In an opposite fashion than was observed in AtDjc17 mutants, the 35S::AtDjc17 displayed a 12.5% reduction in H-cells in a trichoblast cell file (Figures 1C–D) as compared to 31% in AtDjc17-1. Average occurrence of H-cells in the atrichoblast file was 34% (Figure 1E) compared to the 19.5% in AtDjc17. Additionally, 35S::AtDjc17 displayed a significant increase in the number of H-cells calculated per 0.65 mm of root length i.e., 19.4 ± 0.7 (Figure 2G, P < 0.05) when compared with the values determined for the WT (Figures 2A–G) and AtDjc17-1-1 (Figures 2B–G). This increase was also paralleled by a reduction of the distance between root H-cells (135 ± 2.9 μm, P < 0.05; Figure 2H) as compared to WT and to the AtDjc17 mutants. These data support the requirement for AtDjc17 in determining the correct positional distribution of H-cells among epidermis cells in the Arabidopsis root.

To further confirm that observed phenotypes in AtDjc17 were in response to dysfunction in AtDjc17 we complemented the T-DNA mutant with the AtDjc17 driven by its native promoter (2000 bp upstream of initiation codon). The resulting complementation line was not discernible from the WT with respect to H-cell frequency and position (Supplementary Figure 3). These data were consistent with the observed phenotypes linked to AtDjc17.

VISUAL EXAMINATION OF proAtDjc17::GUS TRANSCRIPT REVEALED LOCALIZATION TO THE STELE CELLS
To visually determine where the AtDjc17 transcript was expressed during root development we generated a β-glucuronidase (GUS) reporter fused to the AtDjc17 promoter. Microscopic examination of 7-day old seedlings indicated a spatially discreet zone of transcript coincident with the stele and no visible abundance of genes was explored. Here, we examined the LRR-RLK
(SCM), the bHLH transcription factors GLABRA3 (GL3) and EGL3, the R2R3-MYB transcription factor WER, the small single-repeat R3-MYB transcription factor CAPRICE (CPC), the WD-repeat TRANSPARENT TESTA GLABRA2 (TTG2), the homeodomain-leucine-zipper transcription factor GLABRA 2 (GL2), the basic-leucine zipper transcription factor SCARECROW (SCR), the transcription factor SHR, and zinc finger proteins JACKDAW (JKD) and MAPGPIE (MGP; Galway et al., 1994; Di Laurenzio et al., 1996; Masucci et al., 1996; Wada et al., 1997, 2002; Lee and Schiefelbein, 1999; Helariutta et al., 2000; Schellmann et al., 2002; Sabatini et al., 2003; Zhang et al., 2003; Bernhardt et al., 2005; Koshino-Kimura et al., 2005; Ishida et al., 2007, 2008; Kwak and Schiefelbein, 2007; Welch et al., 2007; Hassan et al., 2010) in AtDjC17 alleles compared with WT. TTG2 amongst the epidermal patterning regulators and JKD and MGP involved in radial and epidermal patterning were not differentially expressed when compared to WT (Figure 4). Results showed a significant \(P \leq 0.05 \) up-regulation of GL3, SCM, EGL3, WER, CPC, and TTG1 as compared to WT (Figure 4). The principle exceptions were SCR and SHR, which were down-regulated \(P < 0.05 \), Figure 4). This trichoblast and atrichoblast specific transcripts increased abundance is consistent with both irregular H-cell development and reduced frequency of H-cells. SCR transcript was down-regulated in the AtDjC17 mutant root (Figure 4) more over SCR has been shown to cause a loss and coupling of endodermal and cortical cell layers (Di Laurenzio et al., 1996). However, mutants with loss in the AtDjC17 gene product did not exhibit as dramatic effects as other characterized mutants such as shr, as evidenced by agarose embedded hand-sections or propidium iodide staining (Figure 5). This down-regulation of SCR transcript likely resulted from an up or downstream regulation, such as SHR, which was also down-regulated in AtDjC17. Nevertheless, a cell division increase was quantified in cortical (Increased cell division: AtDjC17-1/1-2: 9 cells/section \(\pm 1 \) vs. WT 8 cells/section \(\pm 0, n = 15 \)) and endodermal layers (Increase in cell frequency in endodermal layer AtDjC17-1/1-2: 9 cells/section \(\pm 1 \) vs. WT 8 cells/section \(\pm 0 \),
Mutations and overexpression in **AtDjC17** cause root hair alteration and ectopic root hair production. (A–C) Variation in number of root hairs is illustrated in **AtDjC17-1-1** and **3S::AtDjC17** mutants as compared to WT plants. Green dots highlight the presence of root hair at the site. (G) Average number of root hairs determined from a total of 10 roots. An area approximately 2 mm from the root cap was chosen for the comparison covering 0.65 mm root length. (D–F) Stereomicroscope images of WT (D), **AtDjC17-1-1** (E), and **3S::AtDjC17** (F) roots false colored to show the trichoblast (red) and atrichoblast (green) cell files. Arrows in **AtDjC17-1-1** and **3S::AtDjC17** mutant highlights the presence of two trichoblast cell files adjacent to each other illustrating the presence of ectopic root hair. (H) Comparison of distance between adjacent root hairs in a single vertical trichoblast cell file in WT (D), **AtDjC17-1-1** (E) and overexpressor **3S::AtDjC17** (F). *indicates significant difference (*P* ≤ 0.05).

CORTICAL AND ENDODERMAL CELL LAYERS DISPLAY ABERRANT DIVISIONS IN **AtDjC17 BUT NOT IN **3S::AtDjC17**

Phenotypes associated with the dysfunction in the stele expressed **SHR**, and ground tissue stem cell expressing **MGP** and **JKD**

n = 15) of the **AtDjC17** mutant, which was consistent with a “scrambling” of expression among transcripts involved in epidermal patterning.

Transcriptional analyses of **AtDjC17** and 12 known regulators of root development (Figure 6) were investigated in the overexpressor of **3S::AtDjC17**. As expected, **3S::AtDjC17** increased **AtDjC17** transcript levels but it was also noted a down-regulation of **GL2**, which was consistent with the ectopic root hair phenotype previously described (Figure 1). In addition to **3S::AtDjC17** also the transcript levels of GL3, TTG2, and SCR were also up-regulated. Consistently with GL2 also CPC was found down-regulated along with **SHR**, whereas the remaining regulators were found to be unchanged.
genes include irregular pattern formation in the cortical and endodermal cell layers (Helariutta et al., 2000; Welch et al., 2007; Koizumi et al., 2011; Ogasawara et al., 2011). Although shr has a far more severe effect on plant growth and development than what we have documented for AtdjC17 mutants (Figures 1 and 2; Supplementary material Figure S2) AtdjC17 subtle phenotypes are more similar to the one documented for mgp and jkd. Using laser scanning confocal microscopy, we examined the longitudinal cell file development of AtdjC17 and WT using propidium iodide to fluorescently label the cell walls. Here, the cortical and endodermal cell layers in AtdjC17 root did not show obvious changes in cell division relative to WT (Figures 5D–F). By contrast, when we examined cross sections of WT, AtdjC17 and 35S::AtDJC17 seedling roots it was evident that the cortical (co) and endodermal (en) layer displayed increased frequency of cell divisions in the AtdjC17 mutants (co: 9 cells per section ± 1, n = 15; en: 9 cells per section ± 1, n = 15) compared to the WT (8 cells per section ± 0, n = 15; Figures 5A,B). On the contrary, 35S::AtDJC17 did not show observable alteration in divisions in either cortical cells or endodermal cell layers (Figure 5C). Absence of visible alteration in the longitudinal propidium iodide stained section suggests an anticlinal division alteration only identifiable through cross sections. Changes in the number of cells in the cortical layer directly influences the frequency of trichoblast cells in the epidermal layer due to the position requirement for contact with two underlying cortical cells (Kwak and Schiefelbein, 2007), which was consistent with the observed aberrant H-cell occurrence visualized in AtdjC17 mutants (Figure 1). The modest changes in root patterning (increase cell division: AtdjC17-1/1-2: 9 cells/section ± 1 vs. WT 8 cells/section ± 0, n = 15) and development (increase in cell frequency in endodermal layer AtdjC17-1/1-2: 9 cells/section ± 1 vs. WT 8 cells/section ± 0, n = 15) displayed similarity to mgp and jkd (Welch et al., 2007; Ogasawara et al., 2011).

DISCUSSION

Mutations in AtDJC17 identified in this study, caused aberrant cell fate determination and cell divisions in ground tissue layers in Arabidopsis roots. Existing literature supports DNA/J-domain family proteins functioning as co-chaperones working in association with HSP70 class proteins (Miernyk, 2001; Qiu et al., 2006; Summers et al., 2009; Jelenska et al., 2010; Bekh-Ochir et al., 2013) and based on the observed root phenotypes, we hypothesized that AtDJC17 would plausibly be required for cell fate determination by acting in a client binary complex with a cognate HSP70 as a protein chaperone to fortify key stage(s) in the pathway. We envisioned that chaperone function could be important, particularly at the epidermis, where exposure to the adjacent soil environment may require such a chaperone due to environmental stress. However, an unexpected feature of the AtDJC17 was its prominent expression in restricted to stele tissue of the Arabidopsis root (Figure 3). This is despite H-cell irregularity phenotypes being observed in the epidermis (Figure 1). Interestingly, dysfunction in genes encoding the zinc finger proteins JKD and MGP resulted in a similar syndrome of defective epidermal cell fate determination and division defects despite transcription being localized outside of epidermal tissue. JKD expression is localized in ground tissue, quiescent center (QC) and to a lesser extent in mature cortical cells and is known to limit SHR and control cell divisions that give rise to endodermal and cortical layers (Welch et al., 2007; Hassan et al., 2010). SHR, a GRAS family transcription factor is expressed in stele tissue (Welch et al., 2007) and influences root development by influencing asymmetric divisions that give rise to ground tissue as well as endodermal cell identity. It does this in part by regulating SCR, another GRAS family transcription factor (Helariutta et al., 2000). Both SHR and SCR affect overall root development as mutations in these genes causes supernumerary and replacement of cortical/endodermal cell layer with a single ground cell layer having heterogeneous cell identity. Therefore, matching expression for AtDJC17 and SHR suggests possible functional influence in the same pathway. We propose a model whereby a chaperone complex involving AtDJC17 could be influencing this pathway in a non-cell autonomous fashion that involves SHR, SCR, JKD, and MGP.

Indeed, examining gene expression of SHR and SCR in AtdjC17 supports these data. Quantitative real time (Q-RT) PCR revealed
FIGURE 4 | Gene expression analysis for previously identified regulatory elements of root development. (A) RNA equal loading of WT and AtDjc17 mutant lines (AtDjc17-1-1, AtDjc17-1-2). (B) Relative fold changes determined on whole root sample for SCRAMBLE (SCM); GLABRA3 (GL3); Enhancer of GLABRA3 (ENGL3); WEREWOLF (WER); CAPULICE (CPC); TRANSPARENT TESTA 1 (TTG1); GLABRA2 (GL2); TRANSPARENT TESTA 2 (TTG2); SCARECROW (SCR); SHORTROOT (SHR); MAGPIE (MGP) and JAKDOW (JKD). Error bars indicate standard deviation. * indicates significant difference ($P \leq 0.05$).

FIGURE 5 | Examination of cell division in WT, AtDjc17-1-1 and 35S::AtDjc17 roots: agarose embedded hand sections stained with calcofluor-white stained and confocal microscopic images of propidium iodide stained WT, AtDjc17-1-1 and 35S::AtDjc17 mutant roots. (A) WT section. (B) AtDjc17-1-1 section showing additional cell division in the cortical and endodermal layers. Note that the divisional pattern seems anticlinal in nature. Arrow heads indicate ectopic divisions. (C) 35S::AtDjc17 section with no evidence of altered cortical and endodermal cell numbers. (D) 7-day old post-germination WT root tip and zone above the meristematic tip in WT root. (E) AtDjc17-1-1 root tip with associated zone above the meristematic tip. (F) 35S::AtDjc17 root tip and elongation zone. st, stele; en, endodermis; co, cortex; ep, epidermis.
down-regulation of SCR. We anticipated that down-regulation of SCR in AtdjC17 would be mirrored by SHR, which was confirmed by Q-RT PCR (Figure 4). By contrast, in the whole root samples from AtdjC17, trichoblast, and atrichoblast specific expressed transcripts [atrichoblast (WER, GL2, CPC); trichoblast (EGL3, GL3)] both displayed increased abundance relative to WT. Considering the mixed identity among epidermal cell files observed as H-cell-fate irregularities, the observed increased transcript abundance among these cell type specific transcripts was not unexpected, but does not conclusively suggest any single element as responsive. Alternatively, Q-RT PCR on whole root samples might not be a sensitive method to uncover differences in cell type specific transcript levels. Cell type specific Q-RT PCR on AtdjC17 may provide better understanding of the differences in gene expression for epidermal patterning specific genes.

Intriguingly, expression levels of JKD and MGP, were not differentially expressed in AtdjC17 further suggests that AtDjC17 functions independently of these factors. These data did not support our hypothesis of transcriptional linkage to the zinc finger proteins JKD and MGP but did identify transcriptional association to SCR/SHR. Given its critical requirement for root development, it is indeed plausible that molecular chaperone function for SHR would be important to safeguard the root developmental program. Taken together, JKD null mutations cause ectopic periclinal divisions in the cortical and endodermal layer but also an ectopic root hair development in a non-cell autonomous fashion (Welch et al., 2007; Hassan et al., 2010). Hence, while the localization of AtDjC17 expression to stel cells partially overlapped with SHR the phenotype of AtdjC17 more closely resembled jkd, although with a far less severe impact on cell division and whole plant morphogenic phenotypes. The position dependence needed to acquire H-cell versus N-cell fate in epidermal cells (Dolan, 2006) is such that ectopic divisions within the cortical cells observed in transverse cross sections of the AtdjC17 root could explain the corresponding irregular pattern of H-cell emergence (Figure 1). Further studies are needed to assign biochemical association between possible targets of the AtDjC17 co-chaperone, in addition to isolation of the anticipated cognate HSP70. Although many genes have been identified in root development (Guimil and Dunand, 2006) no prior evidence supports a requirement for a DNAJ-HSP40 for epidermal cell fate determination, and results from AtdjC17 raise the intriguing possibility of a HSP complex playing a chaperone role in root development.

AUTHOR CONTRIBUTIONS
Carloalberto Petti carried out the phenotyping and genotyping of the T-DNA, the RT analyses and the transgenesis and drafted the manuscript. Meera Nair helped with the phenotyping and genotyping of the T-DNA lines and drafted the manuscript. Seth DeBolt conceived the study and drafted the manuscript. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS
We thank Jozsef Stork and Jordan Clay (University of Kentucky) for technical assistance. This work was supported by the National Science Foundation (NSF) MCB 1122016 and NSF EPSCoR.

SUPPLEMENTARY MATERIAL
The manuscript contains a supplementary table (Table S1) listing the primers employed for genotyping, cloning, and for RT-PCR studies. Additionally it also contains three supplementary figures displaying the position of the insertion (Figure S1); detailed characterization of root hair pheno-type of AtdjC17-1-2 (Figure S2); complemented T-DNA lines by native promoter driven construct (Figure S3). The Supplementary Material for this article can be found online at: http://www.frontiersin.org/journal/10.3389/fpls.2014.00532/abstract

REFERENCES
Al-Whaibi, M. (2011). Plant heat-shock proteins: a mini review. J. King Saud Univ. Sci. 23, 139–150. doi: 10.1016/j.jksus.2010.06.022
Assaad, F., Huert, Y., Mayer, U., and Jürgens, G. (2001). The cytokinesis gene KEULE encodes a Sec1 protein that binds the syntaxin KNOLLE. J. Cell Biol. 152, 531–543. doi: 10.1083/jcb.152.3.531
Bakau, B., and Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–366. doi: 10.1016/S0092-8674(00)80928-9
Bekh-Ochir, D., Shimada, S., Yamagami, A., Kanda, S., Ogawa, K., Nakazawa, M., et al. (2013). A novel mitochondrial Dnal/Hsp40 family protein BIL2 promotes...
plant growth and resistance against environmental stress in brassinosteroid signaling. *Planta* 237, 1509–1525. doi:10.1007/s00425-013-1859-3

Bernhardt, C., Zhao, M., Gonzalez, A., Lloyd, A., and Schiefelbein, J. (2005). The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. *Development* 132, 291–298. doi:10.1242/dev.01565

Brady, S. M., Orlando, D. A., Lee, J. Y., Wang, Y. J., Koch, J., Dinneny, J. R., et al. (2007). A high-resolution root spatiotemporal map reveals dominant expression patterns. *Science* 318, 801–806. doi:10.1126/science.1146262

Bruex, A., Kainkaryam, R. M.,Wieckowski, Y., Kang, Y. H., Bernhardt, C., Xia, Y., et al. (2012). A gene regulatory network for root epidermis cell differentiation in Arabidopsis. *PLoS Genet.* e1002446. doi:10.1371/journal.pgen.1002446

Cao, X., Linstead, P., Berger, F., Kieber, J., and Dolan, L. (1999). Differential ethylene sensitivity of epidermal cells is involved in the establishment of cell pattern in the Arabidopsis root. *Physiol. Plant.* 106, 311–317. doi:10.1034/j.1399-3054.1999.106030.x

Chen, S., Songkumarn, P., Liu, J., and Wang, G. L. (2009). A versatile zero-backbone T-vector system for cloning and functional genomics. *Plant Physiol.* 150, 1111–1121. doi:10.1104/pp.109.137325

Clough, S., and Bent, A. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. *Plant J.* 16, 735–743. doi:10.1046/j.1365-3137.1998.00343.x

Di Laurenzio, L., Wysocka-Diller, J., Malamy, J. E., Pysh, L., Helariutta, Y., Freshour, J. A., et al. (2000). The SHORT-ROOT gene controls radial patterning of the Arabidopsis root. *Development* 283, 13177–13182. doi: 10.1073/pnas.0910943107

Jones, M., Shen, J., Fu, Y., Li, H., Yang, Z., and Grierson, C. (2002). The Arabidopsis Rop2 GTase is a positive regulator of both root hair initiation and tip growth. *Plant Cell* 14, 763–776. doi:10.1105/tpc.010359

Knox, K., Grierson, C., and Lacey, O. (2003). AXR3 and SHY2 interact to regulate root hair development. *Development* 130, 5769–5777. doi:10.1242/dev.00659

Koizumi, K., Wu, S., MacRae-Crerrar, A., and Gallagher, K. L. (2011). An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor. *Curr. Biol.* 21, 1559–1564. doi:10.1016/j.cub.2011.08.013

Koshino-Kimura, Y., Wada, T., Tachibana, T., Tsugeki, R., Ishiguro, S., and Okada, K. (2005). Regulation of CAPRICE transcription by MYB proteins for root epidermis differentiation in Arabidopsis. *Plant Cell Physiol.* 46, 817–826. doi:10.1093/pcp/pcp096

Kregel, K. C. (2002). Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. *J. Appl. Physiol.* 122, 189–197.

Kwak, S. H., and Schiefelbein, J. (2007). The role of the SCRAMBLED receptor-like kinase in patterning the Arabidopsis root epidermis. *Dev. Biol.* 302, 118–131. doi:10.1016/j.ydbio.2006.09.009

Kwak, S. H., and Schiefelbein, J. (2008). A feedback mechanism controlling SCRAMBLE receptor accumulation and cell-type pattern in Arabidopsis. *Curr. Biol.* 18, 1949–1954. doi:10.1016/j.cub.2008.10.064

Kwak, S. H., Shen, R., and Schiefelbein, J. (2005). Positional signaling mediated by a receptor-like kinase in Arabidopsis. *Science* 307, 1111–1113. doi:10.1126/science.1105373

Lee, M. M., and Schiefelbein, J. (1999). WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. *Cell* 99, 473–483. doi:10.1016/S0092-8674(00)81536-6

Lee, M. M., and Schiefelbein, J. I. (2002). Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback. *Plant Cell* 14, 611–618. doi:10.1010/fpc.010434

Minami, Y., Höhfeld, J., Ohtsuka, K., and Hartl, F. U. (1996). Regulation of the Heat shock proteins: their roles as multipurpose machines for protein folding. *Annu. Rev. Biochem.* 65, 423–453. doi:10.1146/annurev.biochem.65.1.423

Miernyk, J. A. (2001). The D-domain proteins of Arabidopsis thaliana: an unexpectedly large and diverse family of proteins. *Cell Stress Chaperones* 6, 209–218. doi:10.1379/1466-1268(2001)609<0209:TDDPD>2.0.CO;2

Minami, Y., Höhfeld, J., Ohtsuka, K., and Hartl, F. U. (1996). Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog hsp40. *J. Biol. Chem.* 271, 19617–19624. doi:10.1074/jbc.271.32.19617

Miyon, P., Linstead, P., Martienssen, R., and Dolan, L. (2002). SCHIZORIZA controls an asymmetric cell division and restricts epidermal identity in the Arabidopsis root. *Development* 129, 4327–4334.

Nagpal, P., Walker, L., Young, J., Sonawala, A., Timpte, C., Estelle, M., et al. (2000). AXR2 encodes a member of the Aux/IAA protein family. *Plant Physiol.* 123, 563–574. doi:10.1104/pp.123.3.563

Nakamuta, H., and Vigh, L. (2007). The small heat shock protein DnaK is required for cell-type patterning in the Arabidopsis root epidermis. *Development* 134, 291–292.

Nagpal, P., Walker, L., Young, J., Sonawala, A., Timpte, C., Estelle, M., et al. (2000). SCHIZORIZA controls an asymmetric cell division and restricts epidermal identity in the Arabidopsis root. *Development* 129, 4327–4334.

Nagpal, P., Walker, L., Young, J., Sonawala, A., Timpte, C., Estelle, M., et al. (2000). AXR2 encodes a member of the Aux/IAA protein family. *Plant Physiol.* 123, 563–574. doi:10.1104/pp.123.3.563

Ogasawara, H., Kaimi, R., Colasanti, J., and Kozaki, A. (2011). Activity of transcription factor JACKDAW is essential for SHR/SCR-dependent activation of MAGPIE, SCARECROW, and SHORT ROOT transcription in Arabidopsis. *Plant Physiol.* 157, 1033–1047. doi:10.1104/pp.110.175181

Panaretou, B., and Zhai, C. (2008). The heat shock proteins: their roles as multipurpose machines for protein folding. *Annu. Rev. Biochem.* 65, 423–453. doi:10.1146/annurev.biochem.65.1.423

Petti et al. 2015. Cylindrical root development. *AtD7C17 and root development*.
Rajan, V. B., and D’Silva, P. (2009). Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Funct. Integr. Genomics 9, 433–446. doi: 10.1007/s10142-009-0132-0

Ritossa, F. (1962). A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18, 571–573. doi: 10.1007/BF02172188

Rogers, S. O., and Bendich, A. J. (1985). Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5, 69–76. doi: 10.1007/BF00020088

Sabatini, S., Heidstra, R., Wildwater, M., and Scheres, B. (2003). SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev. 17, 354–358. doi: 10.1101/gad.252503

Schellmann, S., Schnittger, A., Kirik, V., Wada, T., Okada, K., Beermann, A., et al. (2002). TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J. 21, 5036–5046. doi: 10.1093/emboj/cdf524

Siddique, M., Gernhard, S., von Koskull-Döring, P., Vierling, E., and Scharf, K. (2008). The plant sHSP superfamily: five new members in Arabidopsis thaliana with unexpected properties. Cell Stress Chaperones 13, 183–197. doi: 10.1007/s12192-008-0032-6

Summers, D. W., Douglas, P. M., Ramos, C. H. I., and Cyr, D. M. (2009). Polypeptide transfer from Hsp40 to Hsp70 molecular chaperones. Trends Biochem. Sci. 34, 230–233. doi: 10.1016/j.tibs.2008.12.009

ten Hove, C. A., Willemsen, V., de Vries, W. I., van Dijken, A., Scheres, B., and Heidstra, R. (2010). SCHIZORIZA encodes a nuclear factor regulating asymmetry of stem cell divisions in the Arabidopsis root. Curr. Biol. 20, 452–457. doi: 10.1016/j.cub.2010.01.018

Tissiers, A., Mitchell, H. K., and Tracy, U. M. (1974). Protein synthesis in salivary glands of D. melanogaster. Relation to chromosome puffs. J. Mol. Biol. 84, 249–258.

Wada, T., Kurata, T., Tominaga, R., Koshino-Kimura, Y., Tachibana, T., Goto, K., et al. (2002). Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129, 5409–5419. doi: 10.1242/dev.00111

Wada, T., Tachibana, T., Shimura, Y., and Okada, K. (1997). Epidermal cell differentiation in Arabidopsis determined by a myb homolog, CPC. Science 277, 1113–1116. doi: 10.1126/science.277.5329.1113

Walsh, P., Bursac, D., Law, Y., Cyr, D., and Lithgow, T. (2004). The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep. 5, 567–571. doi: 10.1038/sj.embor.7400172

Welch, D., Hassan, H., Bilou, I., Immlink, R., Heidstra, R., and Scheres, B. (2007). Arabidopsis -JACKDAW, and MAGPIE zinc finger proteins delimit asymmetric cell division, and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev. 21, 2196–2204. doi: 10.1101/gad.440307

Zhang, F., Gonzalez, A., Zhao, M., Payne, C. T., and Lloyd, A. (2003). A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130, 4859–4869. doi: 10.1242/dev.00681

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 25 July 2014; paper pending published: 28 August 2014; accepted: 18 September 2014; published online: 08 October 2014.

Citation: Petti C, Nair M and DeBolt S (2014) The involvement of J-protein AtDjC17 in root development in Arabidopsis. Front. Plant Sci. 5:532. doi: 10.3389/fpls.2014.00532

This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science.

Copyright © 2014 Petti, Nair and DeBolt. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.