무인항공기 사생활 보호 방안
이보성, 이중엽, 박유진, 김범수
연세대학교 바른ICT연구소

Privacy Protection from Unmanned Aerial Vehicle
Bosung Lee, Joongyeup Lee, Yujin Park, Beomsoo Kim
Barun ICT Research Center, Yonsei University

요 약
무인항공기에 의한 사생활 침해는 신고를 필요로 하지 않는 소형 무인항공기에 장착된 영상정보처리기기로 인해 발생할 가능성이 크다. 본 논문에서는 무인항공기로부터의 사생활 보호를 위해 사생활 보호 관련 법령 - 개인정보보호법, 정보통신망법 등이 무인항공기에 장착된 영상정보처리기기의 이동성을 반영할 수 있도록 보완될 것을 제안한다. 이와 함께, 사생활 침해의 우려가 가장 큰 미신고 소형 무인항공기에 대한 규정을 항공관련 법령에 포함할 것을 제안한다. 또한 피촬영자의 무인항공기 인지 및 촬영된 영상정보에 대한 비식별화 조치 등의 기술적 대응 방안을 제안한다.

ABSTRACT
Privacy-right infringement using unmanned aerial vehicle (UAV) usually occurs due to the unregistered small UAV with the image data processing equipment. In this paper we propose that privacy protection acts, Personal Information Protection Act, Information and Communications Network Act, are complemented to consider the mobility of image data processing equipment installed on UAV. Furthermore, we suggest the regulations for classification of small UAVs causing the biggest concern of privacy-right infringement are included in aviation legislations. In addition, technological countermeasures such as recognition of UAV photographing and masking of identifying information photographed by UAV are proposed.

Keywords: Unmanned Aerial Vehicle (UAV), Small UAV, Privacy-right Infringement, Privacy Protection, Image Data Processing Equipment

I. 서 론
일반인에게 드론(Drone)으로 널리 알려져 있는 무인항공기(Unmanned Aerial Vehicle, UAV)는 항공기에 사람이 탑승하지 않고 원격 또는 자동으로 제어되는 항공기를 통칭한다. 무인항공기는 센서, 비행제어 컴퓨터 등 기술의 진보와 함께 정찰, 포격 등의 군사적인 용도로 개발이 시작되어 2000년대 아프가니스탄 전, 이라크 전을 통해 효용성이 입증되며, 최근에는 상업용, 취미용 등으로 그 사용이 더욱 다양해지고 있다. 글로벌 소핑업체인 아마존과 월마트는 근거리 배송을 위한 무인항공기 도입을 고려하고 있고 구글은 태양광 드론업체 타이탄 에어로스페이스를 인수하여 다목적 인공위성으로의 활용을 시도하고 있다. 이와 함께 개인들도 헬리캠을 통한 촬영이나 레이싱 같은 취미용으로 활용하는 등 그 사용이 증가하는 추세에 있다. 무인항공기 시장은 지난 10년간 매우 빠르게 성장하였으며 향후 더 큰 확산이 예상되는데 미국 항공산업 전문 시장 분석업체인 틸(Teal) 그룹은 전 세계 무인항공기 시장이 2025년까지 910억 달러 규모로 성장할 것으로 예상하면서 민간 및 공공용 무인항공기 시장의 개방을...
시기나 속도에 따라 사생활 보호 방안을 마련하였다[1].

한편, 무인항공기의 확산과 함께 미국 백악관에 개인 무인항공기가 날아들고, 민간 여객기와 드론이 충돌하는 등 이전에는 생각하지 못했던 위험이 현실화되면서 무인항공기에 대한 안전 우려가 증가하고 있다. 이와 함께 무인항공기에 장착된 고성능 카메라로 인한 사생활 침해의 우려 또한 제기되고 있다[2].

최근 미국 동영상 공유사이트인 브레이크닷컴 (www.break.com)에 누드해변에서 드론(정확하게는 소형 무인항공기)으로 촬영된 영상이 공개되어 논란이 된 바 있다. 할리우드 스타들도 드론을 이용한 무단촬영을 의미하는 드론 파파라치에 시달리는 등 소형 무인항공기의 사생활 침해 우려가 제기되고 있다. 이에 따라 무인항공기의 사용에 대한 법적로 제도적 사생활 침해 대응책이 마련되어야 한다는 요구가 각국에서 증가하고 있다[3]. 2015년 한국인터넷진흥원의 조사[4]에 의하면 전체 응답자의 33.9%가 무인항공기를 사생활 침해 목적으로 사용할 우려가 있다고 응답하는 등 국내에서도 이러한 우려가 증가하고 있다. 현재 무인항공기 기술의 발전에 따라 소형 무인항공기의 보급이 확대되고 있으며, 취미용으로 넘어려서는 DJI사의 팬텀이라는 무인항공기는 1.2kg 정도 무게에 UHD(Ultra High Definition) 카메라를 달고 2km정도의 거리에서 조명도 가능하므로, 이러한 무인항공기에 의한 사생활 침해 우려는 계속 증가할 것으로 예상된다.

이로 인해 각국에서는 무인항공기의 안전한 운용과 사생활 보호에 관련된 규정과 법령을 정비하려는 노력이 진행되고 있다. 무인항공기의 안전한 운용과 관리에는 국제민간항공기구(IAEO)가 중심이 되어 표준화 작업을 진행하고 있으며, 국내에서는 무인항공기 관련 국제 법령 동향과 신설선의 사례를 바탕으로 국내 무인항공기 운용을 위한 관련 법령의 제정 및 정비의 필요성을 제시[5]하거나 미국의 무인항공기 사생활 침해에 대한 정책을 분석하여 무인항공기 사생활보호법안 제정의 필요성을 제시[2]하는 등 안전한 운용과 사생활 보호에 관련된 다양한 연구가 진행되어 왔다.

그러나, 무인항공기에 장착된 카메라로 인한 사생활 침해 우려는 무인항공기에만 국한된 문제가 대응하기보다는 법적으로 사용되는 스마트폰, 블랙박스, 디지털 카메라, 웹커뮤니티 기기에서의 영상촬영으로 인한 사생활 침해 우려와 함께 고려되어야 할 필요가 있다. 특히 최근의 ICT 기술 확산과 더불어 새로운 디바이스가 나타날 때마다 사생활 침해에 관련된 규제 및 법안을 제·개정하는 것은 법적적 안정성을 해치 수 있다는 우려와 함께 산업진흥의 측면에서 경제성이 될 수도 있고, 우리나라는 개인정보보호법, 정보통신망법 등 무인항공기의 영상촬영에 영향을 미칠 수 있는 다른 법률이 이미 제정되어 있어, 무인 항공기의 사용자 침해에 관한 독자적인 법률 및 정책을 제안하기 보다는 현재 법률 모호성을 인용하는데 사생활 침해를 방지하기 위한 다양한 논의가 진행될 필요가 있다.

이에 따라 본 논문에서는 다음과 같은 연구 주제를 바탕으로 따라 논의를 진행하고자 한다.

- 사생활 침해를 유발하는 무인항공기의 범위는 어떠한가?
- 영상정보처리기기로 인한 사생활 침해 관련 연구 및 정책은 어떠한가?
- 현재 무인항공기 사생활 침해 관련 법령과 개선 필요 사항은 무엇인가?

본 논문의 2장에서는 각국의 무인항공기의 분류 기준을 통해 사생활 침해 우려가 있는 무인항공기의 범위를 도출한다. 3장에서는 기존의 영상촬영 관련 사생활 침해 사례와 함께, 영상촬영으로 인한 사생활 침해를 방지하기 위한 선행 연구 및 관련 정책을 설명한다. 4장에서는 무인항공기의 사생활 침해에 영향을 미칠 수 있는 관련 법령에 대해서 논하고자 한다. 이를 바탕으로 5장에서는 현재 법률 내에서 무인항공기로 인한 사생활 침해 우려를 효과적으로 방지하고 관련 산업을 발전시켜 나가기 위한 정책적, 기술적 발전 방안을 제시하고 후속 연구 방향을 제시한다.

II. 사생활 침해 우려가 있는 무인항공기 범위

2.1 무인항공기 분류 및 운용 기준

미 국방성에서는 무인항공기를 "조종사를 태우지 않고, 공기역학적 힘에 의해 부양하여 자율적으로 또는 원격조종으로 비행을 하는 무기 또는 일반화물을 실을 수 있는 인위적 또는 자연적으로 활동을 하며, 비행에 있어 상호작용을 용이하게 하는 설계"로 정의하고 있다(6). 미연방항공청(Federal Aviation Administration, FAA)에서는 "인위적 조종 또는 자율조종으로 제계 밖 비행이 가능한 민간용
비행기로서 스포츠 또는 취미 목적으로 운용되지 않으며, 또한 승객이나 승무원을 운송하지 않는 것을 무인항공기로 정의하고 있다[7].

반면 우리나라에서는 항공법 제2조(정의)의 제3호항 항공 업무에 대한 정의의 "마목에서 "항공기에 사람 탑승하지 아니하고 원격·자동으로 비행할 수 있는 항공기"를 무인항공기로 정의하고 있으며, 제28호에서 항공기와 경량항공기 외에 비행할 수 있는 장치인 초경량비행장치 내에 무인비행장치를 포함하고 있는 데, 이 또한 무인항공기로 분류된다.

미국은 무게(최대이륙중량), 공역사용, 속도, 조종사 인증 및 감항증명 여부 등의 기준으로 무인항공기를 분류하고 있다. FAA의 분류 기준에 따르면, 조종사 인증을 필요로 하지 않고, 누구나 비행할 수 있는 무인항공기인 RC Model의 경우 조종사로부터 INM 이외의 지상으로부터의 400 ft 이내의 가시거리 내에서만 무인항공기를 운용하도록 규정하고 있다[8].

영국은 무게에 따라 무인항공기를 분류하고, 무게별로 운용 제한을 시행하고 있다. 이와 함께 제한된 공역 내에서만 운용이 가능하며 공항류기지기의 허가 없이도 제한공역. 공항교통혼잡구역 및 지상에서 400ft를 초과하는 높이에서의 운용, 도시 또는 주거 구역 150미터 이내의 구역예외의 운용, 가시거리 밖(500미터 밖)에서의 운용을 금지하고 있다[9].

호주에서는 150kg을 초과하는 무인항공기를 대형으로 분류하여, 무인항공기 자가용 면장 및 무인항공기 운용 인증을 요구하고 있다. 이와 함께 대형 무인항공기의 운용에 대해서는 동록을 요구하며 청정비고에서의 운용을 수월한 것과 특별감항증명을 취득하도록 하고 있다. 조종사 인증이 필요할 경우에 운용요건을 추가하도록 하고 있다. 한편 100g 이하의 초소형 무인항공기는 동록을 면제하고 있다. 이와 함께 초소형무인항공기의 경우는 400ft AGL(Above Ground Level) 이하의 높이에서 안전하다고 지정된 공역, 비행장 그리고 인구밀집지역에서의 운용이 가능하다고 규정하고 있다[10].

우리나라의 항공법에서는 무인항공기를 분류하는 특별한 기준이 규정되어 있지 않으나 항공법 시행규칙 제14조(초경량비행장치의 범위 등의 제6항 무인비행장치 항목에서 150kg 이하의 무인비행기 또는 무인항공기 비행 장치를 무인동력비행장치로 규정하고 이를 운용하는 자를 초경량비행장치 조종자라고 규정하고 있는데, 여기에서 말하는 초경량비행장치 조종자는 일반 항공기 조종사처럼 항공 업무에 종사하는 자가 아닌 레저 스포츠 활동을 주목적으로 하는 자를 의미한다. 이와 더불어 초경량비행장치 중 자체 중량 12kg, 엔진배기량 50cc 이하인 무인동력비행장치 및 자체중량 12kg, 길이 7m, 엔진배기량 50cc 이하인 무인비행선은 초경량비행장치의 신고 대상에도 제외하고 있다. 이와 같은 내용으로 볼 때, 우리나라에서는 무인항공기를 150kg 초과하는 무인항공기, 12kg 초과 150kg 이하의 신고를 필요로 하는 무인동력비행장치(무인비행선의 경우 12kg 초과 180kg 이하) 및 신고를 필요로 하지 않는 12kg 이하의 초경량비행장치로 나누는 것이 타당하다고 할 것이다. 각 국의 무인항공기 분류 기준과 운용 제한을 목록의 Table A~D에 요약 정리하였다.

2.2 소형 무인항공기로 인한 사생활 침해 우려

미국, 영국, 호주 및 우리나라의 무인항공기에 대한 분류 기준과 운용 제한은 각국의 사정에 맞게 다양하게 정해져 있지만, 공통적으로는 무게, 운용 범위, 조종사 자격 및 무인항공기 인증(신고) 여부 등의 기준에 따라 무인항공기를 분류하고 있다. 2.1에서 설명한 각국의 무인항공기의 분류 기준에 따르면, 다음 두 가지 요인으로 인해 소형 무인항공기가 사생활 침해를 유발할 가능성이 크다고 할 수 있다.

- 무인항공기 인증 및 조종사 자격 면제
 무인항공기 인증과 조종사 자격이 필요없으므로, 누구나 고성능 영상정보처리기기를 탑재한 소형 무인항공기를 운용할 수 있어, 피환영자는 무인항공기를 이용하여 영상을 촬영하는 운용자를 인식할 수 없게 된다.

- 가시거리 내에서 운용에 제한
 무인항공기 운용에 제한이 없으므로, 무인항공기를 가시거리 내에서 운용하더라도 규정에 있어 소형 무인항공기와 피환영자가 가시거리 범위내에 존재함으로써 식별 가능한 영상촬영이 가능하게 된다.

Table. 1에 각국의 소형무인항공기의 무게, 법적 의무 및 운용제한 사항이 정리하였다. 이 표에서 볼 수 있듯이 미국의 경우 25kg 이하의 조종사 인증이
필요 없는 소형무인항공기는 400ft 이내의 가시거리 내에서 주간 시간밖에 운용이 가능하다. 따라서 이에 속하는 소형무인항공기는 가시거리 내에서 조종사 인증 없이 탑재된 카메라를 이용하여 촬영이 가능한다는 것을 의미한다. 반면에 CAT2나 CAT3에 속하는 중대형 무인항공기의 경우 유인항공기와 유사한 조종사 인증 및 등록이 필요하며 가시거리 밖에서 운용되는 경우가 대부분으로 사생활 침해의 우려가 있다. 영국의 경우에도 20kg 미만의 경량무인항공기는 감성항인증표준이 존재하지 않으며 최소한의 운용제약만 있고, 400ft를 초과하는 높이 및 가시거리 밖 (500 미터 밖)에서의 운용이 제한되는데, 이는 바꿔 말하면 20kg 미만의 경량무인항공기는 인증이 필요 없으며 가시거리 내에서 운용되며 조종사 자격 요건도 경감되어, 카메라가 탑재될 경우 사생활 침해의 우려가 존재한다는 것을 의미한다. 마찬가지로 호주의 경우 소형 무인항공기에 대해서는 등록을 면제하고 있으며, 400ft AGL 이하의 고도에서는 용역에 제한이 없으므로 유사하게 사생활 침해가 발생할 수 있다.

우리나라에서도 12kg, 엔진배기량 50cc 이하인 무인동력비행장치 및 자체중량 12kg, 길이 7m, 엔진배기량 50cc 이하인 무인비행선은 초정방형항공기는 비행장치의 신고 대상에서도 제외되어 있고, 주간에 운용하도록 되어 있으며 12kg 이하의 초정방형비행장치를 이용하여 주간에 지상의 피사체를 촬영할 경우에는 역시 사생활 침해의 우려가 존재하게 된다.

이에 따라 본 논문에서는 사생활 침해 우려가 있는 무인항공기의 범위를 “신고를 필요로 하지 않으면서 영상정보처리기기를 탑재하고 가시거리 내에서 운용되는 소형 무인항공기”로 도출하고, 이 범위에 해당하는 무인항공기의 사생활 침해 우려에 대한 대응 방안을 논하고자 한다.

III. 관련 연구 및 정책

3.1 영상정보처리기기로 인한 사생활 침해 관련 연구

3.1.1 CCTV와 네트워크 카메라

CCTV와 네트워크 카메라가 우리 일상에서 흔히 접할 수 있는 가장 광범위한 영상정보처리기기로 거리, 건물의 내외부뿐만 아니라 버스와 택시 등 교통수단 내부부터까지 설치되어 범죄예방 및 안전관리를 보다 수월하게 하는 등의 긍정적인 효과를 가져왔다. 그럼에도 불구하고 영상정보의 수집 및 이용 과정에서 불특정 다수의 일상생활을 밀접하게 촬영하여 온라인으로 유출하거나, 피촬영자의 의도와는 상관없이 지속적인 활용과 감시가 행해짐으로 인한 개인정보의 유출 및 인권침해 우려 등 부정적인 문제 또한 대두되었다. 이러한 우려를 방지하기 위한 목적으로 국내에서는 개인정보보호법에서 CCTV와 네트워크 카메라를 ‘영상정보처리기기’로 규정하고 엄격한 절차를 통해 설치 및 활용이 가능하도록 하는 등 정보주체의 권리와 법률로 보호하기 위한 법률규제를 마련하였다. 차견상 등 [11]은 이러한 법률규제에도 불구하고 사적공간에서의 CCTV에 의한 사생활 침해 논란은 지속적으로 이어지고 있으며, CCTV의 설치 운영에 대한 규제 근거가 마련되어야 하며, 사회적 합의를 통해 합리적인 정책을 설정할 것을 제안하였다.

3.1.2 차량 블랙박스

차량 블랙박스는 차량의 전후좌우 혹은 내부를 활용, 기록하여 사고가 발생하였을 당시의 상황을 분석하기 위한 용도로 최근 그 활용이 증가하고 있다. 그러나 블랙박스의 활용범위가 사고자 간의 분쟁해결을 넘어서 타 차량의 운전 영상이나 교통사고 영상 외에

Table 1. Duty and Restriction of Small UAV

Nation	Mass	Legal Duty	Operational Restriction
US	~ 25 kg	Airworthiness and pilot certification not required	Operations permitted below 400 ft and in the line of sight at daytime
UK	~ 20 kg	None of airworthiness certification	Prohibited to operate over 400 ft and outside the line of sight (500 m)
Australia	~ 100 g	Exemption of registration	Operation permitted below 400 ft
Korea	~ 12 kg	Registration not required	Operation permitted at daytime

필요 없는 소형무인항공기는 400ft 이내의 가시거리 내에서 주간 시간밖에 운용이 가능하다. 따라서 이에 속하는 소형무인항공기는 가시거리 내에서 조종사 인증 없이 탑재된 카메라를 이용하여 촬영이 가능한다는 것을 의미한다. 반면에 CAT2나 CAT3에 속하는 중대형 무인항공기의 경우 유인항공기와 유사한 조종사 인증 및 등록이 필요하며 가시거리 밖에서 운용되는 경우가 대부분으로 사생활 침해의 우려가 있다. 영국의 경우에도 20kg 미만의 경량무인항공기는 감성항인증표준이 존재하지 않으며 최소한의 운용제약만 있고, 400ft를 초과하는 높이 및 가시거리 밖 (500 미터 밖)에서의 운용이 제한되는데, 이는 바꿔 말하면 20kg 미만의 경량무인항공기는 인증이 필요 없으며 가시거리 내에서 운용되며 조종사 자격 요건도 경감되어, 카메라가 탑재될 경우 사생활 침해의 우려가 존재한다는 것을 의미한다. 마찬가지로 호주의 경우 소형 무인항공기에 대해서는 등록을 면제하고 있으며, 400ft AGL 이하의 고도에서는 용역에 제한이 없으므로 유사하게 사생활 침해가 발생할 수 있다.

우리나라에서도 12kg, 엔진배기량 50cc 이하인 무인동력비행장치 및 자체중량 12kg, 길이 7m, 엔진배기량 50cc 이하인 무인비행선은 초정방형항공기는 비행장치의 신고 대상에서도 제외되어 있고, 주간에 운용하도록 되어 있으며 12kg 이하의 초정방형비행장치를 이용하여 주간에 지상의 피사체를 촬영할 경우에는 역시 사생활 침해의 우려가 존재하게 된다.

이에 따라 본 논문에서는 사생활 침해 우려가 있는 무인항공기의 범위를 “신고를 필요로 하지 않으면서 영상정보처리기기를 탑재하고 가시거리 내에서 운용되는 소형 무인항공기”로 도출하고, 이 범위에 해당하는 무인항공기의 사생활 침해 우려에 대한 대응 방안을 논하고자 한다.
또한, 특히에 탑승한 승객의 대화와 모습 등 개인정보에 해당하는 영상이 온라인을 통해 무단으로 유포되는 사례가 다수 발생하고 있는 등 개인정보 유출 및 사생활 침해 사례가 빈번해지고 있다. 현행 개인정보보호법에서는 영상정보처리기기를 "일정한 공간에 지속적으로 설치되어 촬영하는 장치"로 정한데다, 이동 도중 촬영이 이루어지는 블랙박스의 경우 법적 사각지대에 위치한 것이 현실이다. 김영식 등[12]은 현재까지 법적으로 차량 블랙박스 사생활 침해 규정 및 제도는 정비되지 않아 법적 규정이 미비하여 개인정보 유출로 인한 사생활 침해 가능성을 높이는 실정이라고 주장하였다. 이들은 차량용 블랙박스에 의해 수집된 개인영상정보를 설치목적과 다른 목적에 무분별하게 사용하는 것은 개인정보보호법을 제정한 우리 사회의 일반적 합의에 부합하지 않으므로, 블랙박스 산업발전과 개인정보보호가 양립할 수 있도록 현행 법령의 보완을 제안하였다.

3.1.3 구글 스트리트뷰 등 지도 서비스

구글이 2007년 서비스를 시작한 구글 스트리트뷰는 실제 거리를 촬영하여 촬영지의 위치와 주소 등을 제공하는 서비스로 국내에서는 네이버의 거리뷰, 다음의 로드뷰 등 유사한 서비스가 제공되고 있다. 그런대, 이 서비스를 통해 미국에서는 자택사진이 무단 게재된 적이며 국내에서도 인인이 모놀이에 출입하는 사진이 게재되어 사생활 침해에 대한 논란이 일어난 바 있다. 이에 따라 서비스 제공자는 사용자가 허용할 경우 해당 사진을 삭제하기도 하며, 게재된 사진에서 얼굴 및 자동차 번호 등을 복제·분사가능하도록 자동 모자이크 처리하여 사생활 침해에 대해 협력해 준다. 그러나 개인을 식별할 수 없도록 처리하여 개인정보보호법상의 식별정보로서의 개인정보라는 논란은 해소할 수 있으나, 정보주체의 사생활이라는 개념에서는 여전히 침해 우려가 제기되고 있다. 이상화[13]는 지도 서비스에 의한 허용자 인격권 침해 및 관점사진의 불법·기술적 조치로서 최초의 원 데이터를 삭제하거나 개인정보보호법을 만족할 수 있는 데이터가 비슷하도록 처리되어야 함은 물론이고, 당사자의 이의제기권 같은 권리도 정차적으로 보장되어야 한다고 주장하였다.

3.1.4 구글 글래스

구글에 2012년 구글 I/O를 통해 발표한 구글 글래스는 헤드마운티드스플레이(HMD, Head Mounted Display)가 장착된 안경 형태의 촬영형 컴퓨터로 출시 초기부터 사생활 침해에 대한 우려가 발생하였는데, 톨루나(Toluna)의 조사 결과[14]에 따르면, 조사 대상자의 72%가 구글 글래스를 사용하지 않을 가장 큰 이유로 사생활 침해 문제를 꼽았음을 정도이다. 2014년 구글 글래스를 착용한 카일 러셀이라는 리포터가 폭행을 당한 사건과 카지 노, 스프링 클럽, 병원, 라이브 등의 구글 글래스 착용이 금지되어야 한다는 논란[15] 등 사생활 침해 논란이 지속되어 일반 대중에 대한 판매는 중단되었다. 구글 글래스가 야기한 사생활 침해 논란의 근본적인 원인은 정보주체인 개인들의 허락 없이 지속적으로 일상적인 사진 및 영상촬영과 감시가 행해지고, 이렇게 촬영된 영상을 손쉽게 온라인에 배포될 수 있다는 점이었다. 이 때문에 구글은 얼굴을 인식하는 기술을 도입한 구글 글래스에 허용하지 않으며, 촬영 중 안경의 디스플레이에서 불빛이 나도록 설계하였으나, 여전히 사생활 침해 우려가 남아 있다. 이상학[13]은 지도 서비스에 피촬영자의 인격권이 침해되지 않도록 가능한 법적, 수학적 조치로서 최초의 원 데이터를 삭제하거나 개인정보보호법상의 식별정보로서의 개인정보라는 논란은 해소할 수 있으나, 정보주체의 사생활이라는 개념에서는 여전히 침해 우려가 제기되고 있다. 이상화[13]는 지도 서비스에 의한 허용자 인격권 침해 및 관점사진의 불법·기술적 조치로서 최초의 원 데이터를 삭제하거나 개인정보보호법을 만족할 수 있는 데이터가 비슷하도록 처리되어야 함은 물론이고, 당사자의 이의제기권 같은 권리도 정차적으로 보장되어야 한다고 주장하였다.

3.1.5 무인항공기 사생활 침해 연구

기존의 영상정보처리기기 및 서비스로 인한 사생활 침해와 관련된 연구와 달리 무인항공기는 최근에 민간에 널리 보급되기 시작하여, 이에 관련한 사생활 침해에 관련된 연구는 미흡한 실정이다. 김선이[2]는 개인정보보호법이 시행 중이지만 무인 항공기 관련 사생활 침해가 발생했을 때 무인항공기의 특성에 대한 개인정보보호법을 적용하기 어려울 것으로 보고 미국 입법안과 개인정보보호법을 참고하여 무인항공기의 사생활 침해를 대비한 별도의 무인항공기 사생활보호법이 필요하다고 주장하였다. 미국에서는 Bennett[16]와 Kaminski[17]가 민간 무인항공기에 대한 미국 연방정부의 규제 범위와 주 정부의 사생활 보호범위의 충돌 및 표현의 자유와의 규제가 필요하다고 주장하였다. Park 등[18]은 드론 광고에서 드론의 디지털카메라 기능을 강조할 경우 소비자의 사생활 침해 우려가 높아지며, 광고의 배경 사진이 자연경관이 아닌 도심일 경우에도 증가
항을 실험을 통해 보임으로써, 일반인들이 드론에 장착된 디지털 카메라의 기능에 대해 사생활 침해의 우려가 크다는 것을 보였다. 이상에서 논한 바와 같이 무인항공기와 더불어 기존의 영상정보처리기기로 인한 사생활 침해는 정보주체인 피촬영자의 동의 없이 고성능 카메라 등에 의해 촬영되고, 이렇게 촬영된 영상들이 온라인을 통해 무단으로 유포됨으로써 일반인들의 사생활 침해의 우려가 크다는 것을 알 수 있다. 그런데, 무인항공기를 이용한 영상촬영은 기존의 영상정보처리기기와 달리 피촬영자가 활영주체인 무인항공기의 위치를 파악하기 힘들며, 활영주체가 누구인지 알하기 힘들다는 점에서 더욱 사생활 침해 우려가 크다. 또한 이와 현행 개인정보보호법에서 영상정보처리기기를 "일정한 공간에 지속적으로 설치되어 촬영하는 장치"로 정의하고 있기 때문에 이로 인한 사생활 침해의 우려는 더욱 높은 편이다. 이와 같은 사정을 고려한 결과, 무인항공기를 활용한 영상정보처리기기의 사생활 침해 방지를 위한 관련 연구와 정책은 점차 활발히 이루어지고 있다.

3.2 주요국 무인항공기 사생활보호 정책

무인항공기를 비롯한 새로운 영상정보처리기기의 발전에 따른 사생활 침해 방지를 위한 관련 연구와 정책은 각국에 이에 관한 다양한 정책을 제시하고 있다. 미국은 25kg 이하의 무인항공기에 대해서는 간략하게 조용히 인증을 필요로 하지 않았으나, 2015년 12월 250g 이상 25kg 이하의 무인항공기를 소유한 13세 이상의 미국시민권자 또는 영주권자는 의무적으로 무인항공기를 등록하도록 하는 제도를 시행하고 있다. 이 범위에 포함되는 무인항공기의 소유자는 이메일 주소, 신용카드 정보 및 실재 주소나 우편수령지 주소를 등록하고 부여받은 등록번호를 무인항공기에 부착하도록 하였다. 이 범위를 넘어선 무인항공기에 대해서는 기존적인 항공기 등록절차를 따르도록 하고 있으며, 일반은 주거지역에서 드론에 장착된 카메라를 이용한 영상촬영을 원칙적으로 금지하고, 촬영된 영상을 인터넷에 유포시킬 경우, 사생활 침해의 우려가 크다는 것을 인정한 결과, 무인항공기를 사생활 침해 방지를 위한 법령에 포함한 무인항공기 가이드라인을 발표했다. 각국의 무인항공기 사생활 보호 정책은 Table. 2에 요약하였다.

3.3 관련 연구 및 정책의 시사점

이 장에서 논한 선행연구와 각국의 정책의 공통점은 영상처리장비로 인한 사생활 침해 방지를 위한 관련 법령에 대한 정비와 더불어, 피촬영자가 활영 중인 무인항공기를 인식할 수 있도록 하며, 무인항공기의 촬영에 대한 사용 목적을 제한하고, 사용자에게 사생활 침해를 최소화하기 위한 비상대책을 마련하도록 규정하고 있는 점이다. 이를 통해 사생활 침해의 우려가 크다는 점을 시사점이라고 할 수 있다.

IV. 무인항공기 사생활 보호 관련 법령

현재 국내의 항공관련법에는 무인항공기에 특화된 법령이 없으며, 기존 법에서는 주로 운항 안전에 관한 조항만 언급되어 있고 사생활 침해 방지에 관한 항목은 포함되어 있지 않다. 이로 인하여 무인항공기 운용에 따른 사생활 침해에 대한 법적 근거 없이 당시 항공법이 이외에도 개인정보보호법, 정보통신망 이
Table 2. Privacy Protection Policies of Other Countries

Nation	Policy	Description
US	Unmanned Aircraft Systems Registration	• All aircraft weighing more than 250g and less than 25kg must be registered
• e-mail, card number, address and registration number must be attached to the aircraft		
	Bill of Drone Aircraft Privacy and Transparency Act	• Destruction of information and data collected by the unmanned aircraft system that is no longer relevant to the investigation of a crime under a warrant or to an ongoing criminal proceeding.
• Submission of data collection statement including whether the unmanned aircraft system will collect information or data about individuals or groups of individuals		
• FAA shall revoke the certificate, license, or other grant of authority to operate an unmanned aircraft system if such system is operated in a manner that is not in accordance with the terms of a data collection statement submitted		
UK	Amendments of CCTV Guideline	• Place a signage in the area of operating UAS explaining its use
• Provide a privacy notice on a website or some other form of privacy notice		
Japan	Drone Guideline	• Prohibit to photograph in residential areas with a camera attached on the drone
• De-identification of privacy related information for circulating that information on the internet
• Enforcement of the image deletion in accordance with the request for deletion on the privacy infringement related regulations |

4.1 항공법

현재 항공법의 제2조 28호에 정의되어 있는 초경량비행장치는 소유자의 이름을 국토교통부장관에게 신고하고, 신고번호를 받아 초경량비행장치에 표시하여야 한다고 동법 제23조 제1항에 규정되어 있다. 다만 항공법 시행령 제14조 제5호에서 사업용이 아닌 12kg 이하의 무인항공기는 신고하지 않아도 된다고 규정하고 있다(24). 따라서 일반인들이 개인 여행용으로 사용하는 12kg 이하 무인항공기는 신고 없이 비행 승인만 받도록 하고 있으며, 그에 따라 현재 판매되고 있는 대다수 취미용 소형 무인항공기는 무게가 12kg 이하인 점을 고려하여 카메라를 탑재한 초경량항공기를 이용한 활영자료를 식별할 수 있는 방안인 항공법내에 마련되어 있지 않다고 볼 수 있다.
Table 3. Articles related to UAV in Personal Information Protection Act

Article	Keyword	Description
Art. 2 Subpara. 7	Definition of Image Data Processing Equipment	The term "image data processing equipment" means equipment prescribed by Presidential Decree that is permanently installed in a certain space to photograph the images, etc. of a person or object, or to transmit such images via a wired or wireless network.
Art. 25	Restrictions on Installation and Operation of Image Data Processing Equipment	① No one shall install and operate image data processing equipment in a public space except in the following cases: 1. Where the installation and operation of image data processing equipment is concretely permitted by statutes; 2. ... for preventing and investigating a crime; 3. ... for facility safety and fire prevention; 4. ... for traffic control 5. ... for collecting, analyzing and providing traffic information. ④ A person who intends to install and operate image data processing equipment pursuant to each subparagraph of paragraph (1) (hereinafter referred to as "operator of image data processing equipment") shall take necessary measures, including the installation, etc. of a signboard, as prescribed by Presidential Decree, so that a subject of information can readily recognize such equipment: Provided, That this shall not apply to facilities prescribed by Presidential Decree. ⑤ An operator of image data processing equipment shall not arbitrarily handle the image data processing equipment for purposes other than the intended purpose of installation, shoot other locations, and use a recording function.
Art. 72	Penalty Provisions	Any of the following persons shall be punished by imprisonment with labor for not more than three years or by a fine not exceeding 30 million won: 1. A person who arbitrarily handles image data processing equipment for any purpose other than the intended purpose of installation, films other locations, or uses a recording function, in violation of Article 25 Paragraph 5
'일정한 공간'이 반드시 '고정된 장소'를 의미하는 것은 아닙니다. 이동성 있는 공간이므로, 이동성이 있는 공간이라 하더라도 촬영기기의 설치 위치와 촬영 범위가 일정하게 한정(버스, 택시 등 영업용 차량 내부에 설치된 CCTV)되어 있으면 영상정보처리기에 해당한다고 볼 수도 있습니다. 이 경우에도 카메라를 장착한 무인항공기가 여기에 포함되지만 여부는 논리의 여지가 발생합니다.

또한, '상속적 설치'는 승차, 영업용 차량(恒久)의 사용으로 영상정보처리기의 범위로 선정될 것을 득하므로, 개인이 휴대하고 있는 캠코더, 디지털카메라 등으로 영상을 촬영하는 것은 영상정보처리기의 범위에 포함되지 않습니다.

따라서 카메라를 장착한 무인항공기 또한 영상정보처리기인 경우 개인이 휴대한 캠코타나 카메라 등에 해당한다고 볼 수도 있어 카메라를 장착한 무인항공기에 대한 법적 사각 지대가 발생할 소지가 있습니다.

현재는 개인정보보호법상의 영상정보처리기기인 아닐로, 개인이 휴대하고 있는 캠코더, 디지털카메라 등의 영상을 촬영하는 것은 영상정보처리기의 범위에 포함되지 않습니다.

4.3 정보통신망법

현재 취미용 및 개인용 무인항공기를 통한 활동이 확대되고 있으며, SNS 등에 흐름이 크고 법정의 사용을 금하게 하고 있으며, 카메라를 장착한 무인항공기를 정보통신망법으로 규제하기 위해서는 관련 법령에 대한 정비가 필요하다고 본다. 영상정보처리기며 영상정보처리기인 개념이 국한되지 않아 범용적으로 사용되는 스마트폰, 블랙박스, 디지털 카메라, 웨어러블 기기에서도 촬영한 영상은 무인항공기 내장된 영상정보처리기에 포함되어야 한다고 본다. 이에 대해 종합적인 고려가 필요하다고 본다.

4.3 정보통신망법

현재 취미용 및 개인용 무인항공기를 통한 활동이 확대되고 있으며, SNS 등에 흐름이 크고 법정의 사용을 금하게 하고 있으며, 카메라를 장착한 무인항공기를 정보통신망법으로 규제하기 위해서는 관련 법령에 대한 정비가 필요하다고 본다. 영상정보처리기며 영상정보처리기인 개념이 국한되지 않아 범용적으로 사용되는 스마트폰, 블랙박스, 디지털 카메라, 웨어러블 기기에서도 촬영한 영상은 무인항공기 내장된 영상정보처리기에 포함되어야 한다고 본다. 이에 대해 종합적인 고려가 필요하다고 본다.

5.1 법제적 사생활 보호 방안

4장에서 살펴본 바와 같이 현행 항공법은 무인항공기의 무게만을 기준으로 규제율을 달리하고 있으며, 최근의 기술 발전에 따라 소형무인항공기에 고해상도 카메라 및 무선전송장치를 탑재가 가능해짐으로 인해 무인항공기의 규제법으로서의 취미용으로 사생활 침해에 효과적으로 대응할 수 없다. 실제로 국토교통부는 무인항공기의 크기나 무게에 따라 규제를 달리하고 있으며, 무인항공기의 무게만을 기준으로 사생활 침해에 효과적으로 대응할 수 없다는 점으로 사례로 제시[26]하고 있으며 국토부가 제시한 취미용 무인비행장치의 등록규제를 현행 12kg에서 5kg으로 하향
하는 방안에 대해 관련 전문가들은 무게뿐만 아니라 성능도 고려하여 등록기준을 강화해야 한다는 의견을 제시하는 등 무게만으로 무인항공기를 규제하는 것에 대한 논란이 발생하고 있다. 따라서 무인항공기의 무게에 따른 규제와 더불어 영상정보처리기기의 탑재여부, 무선전송장치의 종류에 따라 규제를 세분화하는 것을 고려할 수 있다. 예를 들어 기준 무게 이하의 무인항공기는 하더라도 카메라를 탑재하여 활염이 가능하고 무선전송장치를 통해 활염된 영상을 전송할 수 있는 무인항공기에 대해서는 활염 목적에 따라 사전 신고 등록을 의무화하는 방안 등을 도입할 수 있다. 이에 따라 본 논문에서는 무인항공기로 인한 사생활 침해를 방지하기 위하여 신고를 필요로 하지 않는 초경량 비행장치의 범위를 다음과 같이 수정할 것을 제안한다.

• 항공법 시행령 제14조 제5호 신고를 필요로 하지 아니하는 초경량 비행장치의 범위

(현행) 무인비행기 및 무인회전익(無人回轉翼) 비행장치 중에서 연료의 무게를 제외한 자체무게가 12킬로그램 이하인 것
(개선안) 무인비행기 및 무인회전익(無人回轉翼) 비행장치 중에서 연료의 무게를 제외한 자체무게가 12킬로그램 이하이며 영상정보처리기기를 탑재하지 아니한 것

한편 개인정보보호법 상에 영상정보를 포함한 개인정보에 대한 규정이 포괄적으로 정의되어 있으므로 무인항공기 사생활 침해 대응을 위한 별도의 법률을 제정하거나 무인항공기를 개인정보보호법상의 영상정보처리기기로 추가하는 것은 추후 새로운 기술의 발전과 더불어 개인 식별이 가능한 영상활영 기기가 개발될 때마다 별도의 법률을 제정해야 한다는 관점에서 비합하지 않다. 특히 사물인터넷의 활성화와 함께 시각화의 활성화와 함께 지속적으로 새로운 영상정보처리기기의 등장이 예상되므로 이때마다 관련법을 제정하거나 개인정보보호법에 관련 기기를 추가하여 규제하는 것은 적시 대응의 어려움과 법체계의 혼란을 가져올 것이 명확하다. 따라서 무인항공기를 이용한 활염에 따른 사생활 침해 대응에 있어서는 기존 개인정보보호법의 일반 원칙을 따르면서도 이동성이 있는 영상기기(무인항공기, 자동차 블랙박스 등)의 특수성을 반영할 수 있도록 개인정보보호법상의 영상정보처리기기에 관한 조항을 다음과 같이 수정하는 것을 제안하고자 한다.

• 개인정보보호법 제2조 제7호 영상정보처리기기

(현행) "영상정보처리기기"란 일정한 공간에 지속적으로 설치되어 사람 또는 사물의 영상을 촬영하거나 이를 유·무선으로 전송하는 장치로서 대통령령으로 정하는 장치를 말한다.
(개선안) "영상정보처리기기"란 사람 또는 사물의 영상을 촬영하거나 이를 유·무선으로 전송하는 장치로서 대통령령으로 정하는 장치를 말한다.

• 개인정보보호법 시행령 제3조 영상정보처리기기의 범위에 규정 추가

(규정추가) 이동형 카메라: 이동 가능한 장비에 설치된 기기로 영상정보를 그 기기를 설치·관리하는 자가 무선 네트워크를 통하여 어느 곳에서도 수집·저장 등의 처리를 할 수 있도록 하는 장치

이와 함께 무인항공기에 장착된 영상정보처리기기를 이용하여 활염한 영상 정보를 업무의 목적으로 이용하고자 하는 경우는 무인항공기 조종자가 개인정보 처리자로서의 의무를 갖도록 하여 해당 영상정보에 대한 보관·관리 및 처리 원칙을 준수하도록 하고, 무인항공기로 활염한 영상이 사생활을 침해할 소지가 있을 경우 배포를 금지하는 조항을 정보통신망법에 추가할 것을 제안한다. 이와 함께 필요한 경우 활염된 영상에 대한 마스킹 등 비식별 조치를 수행하도록 할 필요가 있다. 이와 더불어 개인이 무인항공기로 활염한 사생활 관련 영상을 인터넷 등을 통해 유포하지 못하도록 정보통신망법의 사생활 침해 방지 조항을 추가할 필요가 있다.

• 정보통신망법 제44조의 7 불법정보의 유통금지 등

(규정추가) 사생활을 침해하는 음향·화상 또는 영상 정보 배포·판매·임대하거나 공공연하게 전시하는 내용에 관한 정보

1066 무인항공기 사생활 보호 방안
이상의 현행 법령상에서 무인항공기로 인한 사생활 침해에 대응하기 위한 법제적 방안에 대한 내용은 Table 4에 요약하였다.

5.2 기술적 사생활 보호 방안

피촬영자의 동의 없이 촬영한 영상을 무인항공기로 탑재된 통신장비를 통해 SNS나 인터넷 등에 유포하는 행위는 기존의 정보통신망법으로 규제가 가능하다. 그러나 개인이 촬영에 사전 동의하거나, 인지한다는 것이 현실적으로 불가능하므로 이에 대해서는 기술적인 대응 방안을 도입할 필요가 있다. 따라서 본 논문에서는 3장에서 살펴본 바와 같이 미국이나 유럽, 일본 등에서 제시한 사생활 보호 가이드라인을 참조하여 무인항공기에서 촬영이 이루어지는 시점에 이를 인지하도록 하는 기술적 조치를 의무화하거나, 촬영이 이루어진 후에 관련 정보에 대해서 비식별화 조치를 수행하도록 하는 기술적인 방안을 도입할 것을 제안한다.

기술적인 방안으로는 영상정보처리기기가 탑재된 무인항공기의 비행 시 개인이 무인항공기를 비행 중임을 인지할 수 있도록, LED 등을 이용하여 빛을 발생하도록 하거나, 소리를 발생시키도록 하는 방안을 적용할 수 있다. 또한 50~70m 범위 안에 있는 모바일 디바이스 간 근거리 통신 기술에 사용되는 블루투스(Beacon) 같은 통신 장비를 무인항공기로 탑재하게 규정하고, 여기에서 발생하는 신호를 감지하여 스마트폰 등을 이용하여 근거리에서 비행 중인 무인 항공기의 정보를 파악할 수 있도록 하여 신고 되지 않은 무인항공기의 비행을 막을 수 있는 법에 의해서 규제하도록 하는 것이 가능할 것이다. 이와 더불어 현재는 실시간 영상 마스킹과 같은 기술을 완전하게 적용하기에는 기술적인 발전이 요구되고 있으나, 향후 관리 영상 인식 기술이 발전되면, 개인정보에 해당하는 영상정보를 인식하여 자동으로 비식별화 하거나 장치를 의무적으로 탑재하는 것은 검토할 수 있다.
VI. 결 론

본 논문에서는 무인항공기 중에서 사생활 침해가 발생할 수 있는 무인항공기의 범위를 영상정보처리기기를 탑재한 신고되지 않는 소형 무인항공기로 도출하였다. 이에 따라, 사생활 침해의 우려가 가장 큰 영상정보처리기가 탑재된 미신고 소형 무인항공기에 대한 등록 규정을 항공관련 법령에 포함할 것을 제안하며, 무인항공기에 장착된 영상정보처리기의 이동성을 반영할 수 있도록 개인정보보호법 관련 규정을 보완할 것을 제안한다. 이와 함께, 개인이 무인 항공기로 활성한 영상을 인터넷 등에 무단으로 배포하지 못하도록 정보통신망법에 사생활 침해의 소지가 있는 영상배포를 금지하는 조항을 추가할 것을 제안한다.

법제적 대응방안과 더불어, 피촬영자의 무인항공기 인지 및 촬영된 영상정보에 대한 비식별화 조치 등의 기술적 방안을 도입할 것을 제안한다.

이러한 법제적, 기술적인 방안과 더불어 추가적으로 소형 무인항공기를 구입하고자 하는 개인에게 안전 및 사생활 침해에 대한 지식을 얻는데 도움을 주는 관련 경고문은 무인항공기 판매자에 포함하도록 하는 방안도 도입할 필요가 있다고 본다.

본 논문에서는 제안한 바와 같이 무인항공기 인지에 대한 규제와 더불어 사생활 보호 정책의 균형을 도모할 수 있는 관련 규정 및 가이드라인 등을 조속히 마련하여 무인항공기에 대한 근거 없는 사생활 침해에 대한 우려를 불식하는 것이 필요하다고 판단된다.

본 논문에서는 최근 확산되고 있는 무인항공기의 영상촬영으로 야기될 수 있는 사생활 침해 대응방안에 대해서 현재 법제도 내에서 대응할 수 있는 방안을 제시하고 있으나, 영상촬영으로 인한 사생활 침해는 비단 무인항공기에 국한된 문제가 아니며, 따라서 최근 논란이 되고 있는 몰카 활용, 개인의 스마트폰이나 블랙박스에 이용한 공익 인신의 증가에 따른 개인의 초상권 침해 및 명예훼손 논란 등에 관련하여 이동형 영상정보처리기로 인한 개인의 사생활 침해와 공익적 순기능의 조화를 이루기 위한 후속 연구의 전략이 계속되어야 할 것이다.

References

[1] Teal Group, "2014 UAV Market Profile and Forecast," Jul. 2014.
[2] Kim, S., "A study on infringement of privacy of unmanned aircraft: Focusing on the analysis of legislation and US policy," The Korean Journal of Air&Space Law and Policy, Vol. 29, No. 2, Dec. 2014, pp. 135~161.
[3] Ahn, J., "Double-sidedness of Covering Cases with Drone," Kwanhun Journal, Vol. 134, Mar. 2015, pp.114~120.
[4] Korea Internet & Security Agency, "2015 Survey on Internet Issues," Feb. 2016.
[5] Kim, J., "A Study on the Legislation for the Commercial and Civil Unmanned Aircraft System Operation," The Korean Journal of Air&Space Law and Policy, Vol. 28, No. 1, Jun. 2013, pp. 3~54.
[6] Department of Defense, "Unmanned Aircraft System Roadmap 2005–2030," Aug. 2005.
[7] Federal Aviation Administration, "Unmanned Air Vehicle Design Criteria," Jun. 1996. p. 4
[8] Federal Aviation Administration, "Interim Operational Approval Guidance 08–01," Mar. 2008.
[9] Civil Aviation Authority, "CAP 722. Unmanned Aircraft System Operations in UK Airspace - Guidance 6th Edition," Mar. 2015.
[10] Civil Aviation Safety Authority, "Civil Aviation Safety Regulation 1998 Part 101. 2015 Compilation," Dec. 2015
[11] Cha, G. and Shin, Y., "Personal Video Privacy Issue to Increasing CCTV Installation," Communications of the Korea Information Science Society, Vol. 27, No. 12, Dec. 2009, pp. 25~33.
[12] Kim, Y. and Park, R., "The Problem of Personal Information Infringement by The Video Event Data Recorder(Automotive Black-box) - The Necessity of Legal Regulation and A Legislative Alternative," The Journal of Police Science, Vol. 14, No. 3, 2014, pp.
67~88.
[13] Lee, S., "Legal Consideration of Geographic Information System: Focusing on Internet Roadview Service," Journal of Law and Politics Research, Vol. 14, No. 2, Jun. 2014.
[14] Karissa, B., "72% of Americans Refuse Google Glass Over Privacy Concerns," Mashable.com, June. 22. 2014.
[15] Costill, A., "Top 10 Places that Have Banned Google Glass," Searchenginejournal.com, Aug. 2013.
[16] Bennett, C., "Civilian Drones, Privacy, and the Federal-State Balance," Brookings Institution, Sep. 2014.
[17] Kaminski, M., "Drone Federalism: Civilian Drones and the Things They Carry," California Law Review Circuit, Vol. 4, No. 57, May. 2013, pp. 57~74.
[18] Park, Y. and Kim, J., "Could Consumers' Privacy Concern about a Drone be Attenuated by Categorical Cue and Background-Image?," Theory and Practice in Marketing Asia, Jul. 2016.
[19] Federal Aviation Administration, "Unmanned Aircraft Systems (UAS) Registration," Dec. 2015.
[20] "Drone Aircraft Privacy and Transparency Act of 2015," 114th Congress (2015-2016), Mar. 2015.
[21] "Preserving American Privacy Act of 2015," 114th Congress (2015-2016), Mar. 2015.
[22] Information Commissioner’s Office, "In the picture: A data protection code of practice for surveillance cameras and personal information," May. 2015.
[23] Korea Internet & Security Agency, "Japan, Prepared Aviation Act to Regulate Drone," Sep. 2015.
[24] Ministry of Land, Infrastructure and Transport, "Enforcement Decree of the Aviation Act. Article 14." Nov. 2010.
[25] Ministry of Security and Public Administration, "Personal Information Protection Act and Guide," Nov. 2011.
[26] National Assembly Research Service, "2015 Parliamentary Inspection Report," Aug. 2015.
무인항공기 사생활 보호 방안

이 보 성 (Bosung Lee) 정회원
1994년 2월: 서울대학교 항공우주공학과 졸업
1996년 2월: 서울대학교 항공우주공학과 석사
2005년 2월: 서울대학교 항공우주공학과 박사
2015년 1월~현재: 연세대학교 바른ICT연구소 연구원
2015년: 정보통합전산센터 클라우드 기술위원회 자문위원
2015년 9월~현재: 사이버안전훈련센터 겸임교수
《 관심분야》 클라우드 컴퓨팅, 무인항공기, 정보보호, 산업보안, 전산유체역학, 병렬처리

이 중 엽 (Joongyeup Lee) 정회원
2005년 2월: 연세대학교 정보대학원 정보학 석사
2014년 8월~현재: 연세대학교 정보대학원 정보보호 박사과정
2016년 6월~현재: 한국인터넷진흥원 책임연구원
《관심분야》 개인정보 보호, 정보보안 기버넌스, 비즈니스 전략

박 유 진 (Yujin Park) 정회원
2015년 2월: 성균관대학교 문헌정보학과 졸업
2015년 3월~현재: 연세대학교 정보대학원 정보보호전공 석사과정
2015년 3월~현재: 연세대학교 바른ICT연구소 인턴
《관심분야》 정보보호 정책 및 제도, 프라이버시 권리, 개인정보보호, 전자상거래, 소셜미디어

김 범 수 (Beomsoo Kim) 종신회원
1999년: 미국 University of Texas at Austin (Ph.D)
1999년~2002년: 미국 University of Illinois at Chicago, 조교수
2002년~현재: 연세대학교 정보대학원 교수
2014년~현재: ISACA Korea(한국정보시스템감사공동체협회) 회장
2014년~현재: 연세대학교 바른ICT연구소 소장
2015년~현재: OECD SPDE(정보보호작업반) 부의장
《관심분야》 정보보호정책 및 제도, 프라이버시 권리, 개인정보 보호, 전자상거래, 정보경제학
Appendix

Table A. FAA UAV Classification

Mass	General Purpose	Business Airworks
less than 7kg	'Small unmanned aircraft' in ANO(Air Navigation Order) Art. 255	- Operational limitations and additional Airworks limitations described in ANO Art 166 (a)-(c)
	• Minimum operational limitations under ANO Art 138, 166, 167	• CAA permission required described in ANO Art 166 (5)
	• None of airworthiness certification	• None of airworthiness certification
7kg ~ 20kg	'Small unmanned aircraft' in ANO Art. 255	• Operational limitations and additional Airworks limitations described in ANO Art 166 (a)-(c)
	• Operational limitations under ANO Art 166,167	• CAA permission required described in ANO Art 166 (5)
	• None of airworthiness certification	• None of airworthiness certification
20kg ~ 150kg	Kinetic energy by impact less than 95 KJ	-
	Airworthiness certification of certified fuselage recommended	-
more than 150kg	Nationwide operational rules complied	-
	EASA airworthiness certification complied	-

Table B. UK UAV Classification

Mass	General Purpose	Business Airworks
less than 7kg	• 'Small unmanned aircraft' in ANO(Air Navigation Order) Art. 255	- Operational limitations and additional Airworks limitations described in ANO Art 166 (a)-(c)
	• Minimum operational limitations under ANO Art 138, 166, 167	• CAA permission required described in ANO Art 166 (5)
	• None of airworthiness certification	• None of airworthiness certification
7kg ~ 20kg	• 'Small unmanned aircraft' in ANO Art. 255	• Operational limitations and additional Airworks limitations described in ANO Art 166 (a)-(c)
	• Operational limitations under ANO Art 166,167	• CAA permission required described in ANO Art 166 (5)
	• None of airworthiness certification	• None of airworthiness certification
20kg ~ 150kg	Kinetic energy by impact less than 95 KJ	-
	Airworthiness certification of certified fuselage recommended	-
more than 150kg	Nationwide operational rules complied	-
	EASA airworthiness certification complied	-

Table C. Australia UAV Classification

Class	Mass	Operational Requirements
Large	more than 150kg	• Manned aircraft license and UAV operational certification required
		• UAV registration and Management program required
		• Special airworthiness certification required
Small	100g ~ 150kg	• Exemption of airworthiness certification
		• Operational requirements added when required
Ultra small	not more than 100g	• Exemption of registration

Table D. Korean UAV Classification

Aircraft	Ultra-light plane
Name	
Unmanned aircraft	Unmanned aerial vehicles
Unmanned powered aerial vehicles	Unmanned airships
Definition	
Operation of an aircraft capable of being flown autonomously by remote control without an onboard pilot	Unmanned aircraft or unmanned rotor flying equipment that weigh 150 kilograms or less, excluding the weight of fuel
Legal Duty	
• Registration of Aircraft	• Ultra-light plane (above 12 kg) registration
• Permission for flights	• Permission for flights in the limited airspace and at daytime

Appendix