SOME INEQUALITIES FOR DIFFERENTIABLE CONVEX FUNCTIONS WITH APPLICATIONS

MEVLÜT TUNC♣ AND SEVİL BALGECİ♠

Abstract. In this paper, the Authors establish a new identity for differentiable functions. By the well-known Hölder and power mean inequality, they obtain some integral inequalities related to the convex functions and apply these inequalities to special means.

1. Introductions

A function $f : I \to \mathbb{R}$ is said to be convex on I if inequality

$$f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)$$

holds for all $x, y \in I$ and $t \in [0, 1]$. We say that f is concave if $(-f)$ is convex.

Geometrically, this means that if P, Q and R are three distinct points on the graph of f with Q between P and R, then Q is on or below the chord PR.

Theorem 1. The Hermite-Hadamard inequality: Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex function and $a, b \in I$ with $a < b$. The following double inequality:

$$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a}\int_a^b f(x)\,dx \leq \frac{f(a) + f(b)}{2}$$

is known in the literature as Hadamard’s inequality (or Hermite-Hadamard inequality) for convex functions. If f is a positive concave function, then the inequality is reversed.

In [5], Dragomir and Agarwal obtained inequalities for differentiable convex mappings which are connected to Hadamard’s inequality, as follow:

Theorem 2. Let $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable mapping on I^*, where $a, b \in I$, with $a < b$. If $|f'|^q$ is convex on $[a, b]$, then the following inequality holds:

$$\left|\frac{f(a) + f(b)}{2} - \frac{1}{b-a}\int_a^b f(x)\,dx\right| \leq \frac{b-a}{8} [2000] [\text{Mathematics Subject Classification].} Primary 26D15.

[Key words and phrases. Convexity, Hermite-Hadamard Inequality, Special Means.

♣Corresponding Author.]

1
Theorem 4. Let \(f : I \subseteq [0, \infty) \to \mathbb{R} \) be differentiable mapping on \(I^\circ \) such that \(f' \in L[a, b] \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \), \(q \geq 1 \) is concave on \([a, b] \) for some fixed \(s \in (0, 1] \), then the following inequality holds:

\[
\frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) \, dx \leq \frac{b - a}{4} \left(\frac{(|f'(a)|^q + |f'(b)|^q)}{2} \right)^{\frac{1}{q}}.
\]

If \(|f'|^q \) is concave on \([a, b] \) for some \(q \geq 1 \), then

\[
\frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) \, dx \leq \frac{b - a}{4} \left(f'(a + b) \right) \cdot
\]

In \([1]\), Alomari, Darus and Kirmaci obtained inequalities for differentiable s-convex and concave mappings which are connected with Hadamard’s inequality, as follow:

Theorem 4. Let \(f : I \subseteq [0, \infty) \to \mathbb{R} \) be differentiable mapping on \(I^\circ \) such that \(f' \in L[a, b] \), where \(a, b \in I \) with \(a < b \). If \(|f'|^q \), \(q \geq 1 \) is concave on \([a, b] \) for some fixed \(s \in (0, 1] \), then the following inequality holds:

\[
\frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b f(x) \, dx \leq \left(\frac{b - a}{4} \right) \left(\frac{q - 1}{2q - 1} \right)^{1 - \frac{1}{q}} \left[f' \left(\frac{3a + b}{4} \right) + f' \left(\frac{a + 3b}{4} \right) \right].
\]

For recent results and generalizations concerning Hadamard’s inequality and concepts of convexity and concavity see \([1, 21]\) and the references therein.

Throughout this paper we will use the following notations and conventions. Let \(J = [0, \infty) \subseteq \mathbb{R} = (-\infty, +\infty) \), and \(a, b \in J \) with \(0 < a < b \) and \(f' \in L[a, b] \) and

\[
A(a, b) = \frac{a + b}{2}, \quad G(a, b) = \sqrt{ab}, \quad I(a, b) = \frac{1}{e} \left(\frac{b^b}{a^a} \right)^{\frac{1}{b-a}},
\]

\[
H(a, b) = \frac{2ab}{a + b}, \quad L(a, b) = \frac{b - a}{\ln b - \ln a},
\]

\[
L_p(a, b) = \left(\frac{b^{p+1} - a^{p+1}}{(p + 1)(b - a)} \right)^{\frac{1}{p}}, \quad a \neq b, \quad p \in \mathbb{R}, \quad p \neq -1, 0
\]

be the arithmetic, geometric, identric, harmonic, logarithmic, generalized logarithmic mean for \(a, b > 0 \) respectively.

The main purpose of this paper is to establish refinements of Hadamard’s inequality for convex functions.

2. Main Results

In order to establish our main results, we first establish the following lemma.

Lemma 1. Let \(f : J \to \mathbb{R} \) be a differentiable function on \(J^\circ \). If \(f' \in L[a, b] \), then

\[
\frac{1}{b - a} \int_a^b f(x) \, dx + \frac{af(b) - bf(a)}{2(b - a)} - \frac{1}{2}f \left(\frac{a + b}{2} \right)
\]

\[
= \frac{1}{4} \int_0^1 (tb + (1 - t)a) f' \left(\frac{1 - t}{2}b + \frac{1 + t}{2}a \right) \, dt
\]

\[
+ \frac{1}{4} \int_0^1 (ta + (1 - t)b) f' \left(\frac{1 - t}{2}a + \frac{1 + t}{2}b \right) \, dt
\]
for each \(t \in [0, 1] \) and \(a, b \in J \).

Proof. Integrating by parts, we get

\[
\begin{align*}
\frac{1}{4} \int_0^1 (tb + (1-t)a) f' \left(\frac{1-t}{2} b + \frac{1+t}{2} a \right) dt \\
+ \frac{1}{4} \int_0^1 (ta + (1-t)b) f' \left(\frac{1-t}{2} a + \frac{1+t}{2} b \right) dt \\
= (tb + (1-t)a) \left. \frac{f \left(\frac{1-t}{2} b + \frac{1+t}{2} a \right)}{a-b} \right|_0^1 - \int_0^1 \frac{f \left(\frac{1-t}{2} b + \frac{1+t}{2} a \right)}{a-b} (b-a) dt \\
+ (ta + (1-t)b) \left. \frac{f \left(\frac{1-t}{2} a + \frac{1+t}{2} b \right)}{b-a} \right|_0^1 - \int_0^1 \frac{f \left(\frac{1-t}{2} a + \frac{1+t}{2} b \right)}{b-a} (a-b) dt \\
= \frac{bf(a) - af \left(\frac{a+b}{2} \right)}{a-b} + 2 \int_0^1 f \left(\frac{1-t}{2} b + \frac{1+t}{2} a \right) dt \\
+ \frac{af(b) - bf \left(\frac{a+b}{2} \right)}{b-a} + 2 \int_0^1 f \left(\frac{1-t}{2} a + \frac{1+t}{2} b \right) dt \\
= \frac{bf(a) - af \left(\frac{a+b}{2} \right)}{a-b} + \frac{4}{b-a} \int_a^{a+b} f(x) dx + \frac{af(b) - bf \left(\frac{a+b}{2} \right)}{b-a} + \frac{4}{b-a} \int_{a+b}^b f(x) dx \\
= \frac{1}{b-a} \int_a^b f(x) dx + \frac{af(b) - bf(a)}{2(b-a)} - \frac{1}{2} f \left(\frac{a+b}{2} \right)
\end{align*}
\]

\(\square \)

Theorem 5. Let \(f : J \to \mathbb{R} \) be a differentiable function on \(J^o \). If \(|f'|\) is convex on \(J \), then

\[
\left| \frac{1}{b-a} \int_a^b f(x) dx + \frac{af(b) - bf(a)}{2(b-a)} - \frac{1}{2} f \left(\frac{a+b}{2} \right) \right| \\
\leq \left(\frac{5}{48} a + \frac{7}{48} b \right) |f'(a)| + \left(\frac{7}{48} a + \frac{5}{48} b \right) |f'(b)|
\]

for each \(a, b \in J \).
Proof. Using Lemma 1 and from properties of modulus, and since \(|f'|\) is convex on \(J\), then we obtain

\[
\frac{1}{b-a} \int_a^b f(x) \, dx + \frac{a f(b) - b f(a)}{2(b-a)} - \frac{1}{2} f\left(\frac{a+b}{2}\right)
\]

\[
\leq \frac{1}{4} \int_0^1 (tb + (1-t)a) \left| f'\left(\frac{1-t}{2}b + \frac{1+t}{2}a\right) \right| \, dt
\]

\[
+ \frac{1}{4} \int_0^1 (ta + (1-t)b) \left| f'\left(\frac{1-t}{2}a + \frac{1+t}{2}b\right) \right| \, dt
\]

\[
\leq \frac{1}{4} \int_0^1 (tb + (1-t)a) \left[\frac{1-t}{2} |f'(b)| + \frac{1+t}{2} |f'(a)| \right] \, dt
\]

\[
+ \frac{1}{4} \int_0^1 (ta + (1-t)b) \left[\frac{1-t}{2} |f'(a)| + \frac{1+t}{2} |f'(b)| \right] \, dt
\]

\[
= \frac{1}{4} \left(\frac{1}{6}a + \frac{1}{12}b \right) (|f'(b)|) + \frac{1}{4} \left(\frac{1}{3}a + \frac{5}{12}b \right) (|f'(a)|)
\]

\[
+ \frac{1}{4} \left(\frac{1}{12}a + \frac{1}{6}b \right) (|f'(a)|) + \frac{1}{4} \left(\frac{5}{12}a + \frac{1}{3}b \right) (|f'(b)|)
\]

\[
= \left(\frac{5}{48}a + \frac{7}{48}b \right) |f'(a)| + \left(\frac{7}{48}a + \frac{5}{48}b \right) |f'(b)| .
\]

The proof is completed. \(\square\)

Proposition 1. Let \(a, b \in J^0\), \(0 < a < b\), then

\[
\left| \frac{1}{L(a,b)} - \frac{1}{H(a,b)} - \frac{1}{2 A(a,b)} \right|
\]

\[
\leq \left(\frac{5}{48}a + \frac{7}{48}b \right) \frac{1}{a^2} + \left(\frac{7}{48}a + \frac{5}{48}b \right) \frac{1}{b^2}
\]

Proof. The proof follows from (2.1) applied to the convex function \(f(x) = 1/x\). \(\square\)

Proposition 2. Let \(a, b \in J^0\), \(0 < a < b\), then

\[
\left| L_n^\alpha(a,b) + \frac{(n-1) G^2(a,b) L_{n-1}^\alpha(a,b)}{2} - \frac{1}{2} A^n(a,b) \right|
\]

\[
\leq \frac{5n}{24} A(a^n, b^n) + \frac{7n}{24} A(ba^{n-1}, ab^{n-1})
\]

Proof. The proof follows from (2.1) applied to the convex function \(f(x) = x^n, n \geq 2\). \(\square\)

Proposition 3. Let \(a, b \in J^0\), \(0 < a < b\), then

\[
- \ln I(a,b) + \frac{\ln (a^b/b^a)}{2(b-a)} + \frac{1}{2} \ln A(a,b) \leq \frac{12}{48} + \frac{7b}{48a} + \frac{5a}{48b}
\]

Proof. The proof follows from (2.1) applied to the convex function \(f(x) = -\ln x\). \(\square\)
Theorem 6. Let \(f : J \to \mathbb{R} \) be a differentiable function on \(J^o \). If \(|f'|^q \) is convex on \([a, b]\) and \(q > 1 \) with \(\frac{1}{p} + \frac{1}{q} = 1 \), then

\[
\frac{1}{b-a} \int_a^b f(x) \, dx + \frac{af(b) - bf(a)}{2(b-a)} - \frac{1}{2} f \left(\frac{a+b}{2} \right) \leq \frac{1}{4^{1+1/q} L_p(a,b)} \left[\left| f'(b) \right|^q + 3 \left| f'(a) \right|^q \right]^{\frac{1}{p}} + \left[\left| f'(a) \right|^q + 3 \left| f'(b) \right|^q \right]^{\frac{1}{q}}
\]

Proof. From Lemma 4 and using the well-known Hölder integral inequality, we obtain

\[
\frac{1}{b-a} \int_a^b f(x) \, dx + \frac{af(b) - bf(a)}{2(b-a)} - \frac{1}{2} f \left(\frac{a+b}{2} \right) \leq \frac{1}{4} \int_0^1 (tb + (1-t)a) \left| f' \left(\frac{1-t}{2} b + \frac{1+t}{2} a \right) \right| \, dt
\]

\[
+ \frac{1}{4} \int_0^1 (ta + (1-t)b) \left| f' \left(\frac{1-t}{2} a + \frac{1+t}{2} b \right) \right| \, dt
\]

\[
\leq \frac{1}{4} \int_0^1 \left((tb + (1-t)a)^p + (ta + (1-t)b)^p \right)^{\frac{1}{p}} \left[\int_0^1 \left| f' \left(\frac{1-t}{2} a + \frac{1+t}{2} b \right) \right|^q \, dt \right]^{\frac{1}{q}}
\]

\[
+ \frac{1}{4} \int_0^1 \left((tb + (1-t)a)^p + (ta + (1-t)b)^p \right)^{\frac{1}{p}} \left[\int_0^1 \left| f' \left(\frac{1-t}{2} b + \frac{1+t}{2} a \right) \right|^q \, dt \right]^{\frac{1}{q}}
\]

\[
\leq \frac{1}{4} \left(\frac{b^{p+1} - a^{p+1}}{(b-a)(p+1)} \right)^{\frac{1}{p}} \left[\left| f'(b) \right|^q \int_0^1 \frac{1-t}{2} \, dt + \left| f'(a) \right|^q \int_0^1 \frac{1+t}{2} \, dt \right]^{\frac{1}{q}}
\]

\[
+ \frac{1}{4} \left(\frac{b^{p+1} - a^{p+1}}{(b-a)(p+1)} \right)^{\frac{1}{p}} \left[\left| f'(a) \right|^q \int_0^1 \frac{1-t}{2} \, dt + \left| f'(b) \right|^q \int_0^1 \frac{1+t}{2} \, dt \right]^{\frac{1}{q}}
\]

\[
= \frac{1}{4^{1+1/q} L_p(a,b)} \left[\left| f'(b) \right|^q + 3 \left| f'(a) \right|^q \right]^{\frac{1}{p}} + \left[\left| f'(a) \right|^q + 3 \left| f'(b) \right|^q \right]^{\frac{1}{q}}.
\]

The proof is completed. \(\square \)

Proposition 4. Let \(a, b \in J^o \), \(0 < a < b \), then

\[
\left| \frac{1}{L(a,b)} - \frac{1}{H(a,b)} - \frac{1}{2 A(a,b)} \right| \leq \frac{1}{4^{1+1/q} L_p(a,b)} \left[b^{-2q} + 3a^{-2q} \right]^{\frac{1}{q}} + \left[a^{-2q} + 3b^{-2q} \right]^{\frac{1}{q}}
\]

Proof. The proof follows from (2.2) applied to the convex function \(f(x) = 1/x \). \(\square \)

Proposition 5. Let \(a, b \in J^o \), \(0 < a < b \), then

\[
\left| L_n(a,b) + \frac{(n-1) G^2(a,b) L_{n-1}^{-1}(a,b)}{2} - \frac{1}{2} A^n(a,b) \right| \leq \frac{1}{4^{1+1/q} L_p(a,b)} \left[nb^{(n-1)q} + 3na^{(n-1)q} \right]^{\frac{1}{q}} + \left[na^{(n-1)q} + 3nb^{(n-1)q} \right]^{\frac{1}{q}}
\]

Proof. The proof follows from (2.2) applied to the convex function \(f(x) = x^n \), \(n \geq 2 \). \(\square \)
Proposition 6. Let \(a, b \in J^\circ\), \(0 < a < b\), then
\[
- \ln I (a, b) + \frac{\ln (a^b/b^a)}{2(b-a)} - \frac{1}{2} \ln A (a, b) \leq \frac{1}{4^{1+1/q}} L_\rho (a, b) \left[\left[b^{-q} + 3a^{-q} \right]^{1/q} + \left[a^{-q} + 3b^{-q} \right]^{1/q} \right]
\]

Proof. The proof follows from (2.2) applied to the convex function \(f(x) = -\ln x\).

\[\square\]

Theorem 7. Let \(f : J \rightarrow \mathbb{R}\) be a differentiable function on \(J^\circ\). If \(|f'|^q\) is convex on \([a, b]\) and \(q \geq 1\), then
\[
(2.3) \quad \left| \frac{1}{b-a} \int_a^b f(x) \, dx + \frac{af(b) - bf(a)}{2(b-a)} - \frac{1}{2} f \left(\frac{a+b}{2} \right) \right| \leq \frac{A^{1-\frac{q}{2}} (a, b)}{4 \times 12^q} \left\{ \left[|f'(b)|^q (2a+b) + |f'(a)|^q (4a+5b) \right]^{\frac{1}{q}} + \left[|f'(a)|^q (a+2b) + |f'(b)|^q (5a+4b) \right]^{\frac{1}{q}} \right\}
\]

Proof. From Lemma \[\square\] and using the well-known power mean inequality and since \(|f'|^q\) is convex on \([a, b]\), we have

\[
\left| \frac{1}{b-a} \int_a^b f(x) \, dx + \frac{af(b) - bf(a)}{2(b-a)} - \frac{1}{2} f \left(\frac{a+b}{2} \right) \right| \leq \frac{1}{4} \left(\int_0^1 (tb + (1-t) a) \, dt \right)^{1-\frac{q}{2}} \left[\int_0^1 (tb + (1-t) a) \left| f' \left(\frac{1-t}{2} b + \frac{1+t}{2} a \right) \right|^q \, dt \right]^{\frac{1}{q}}
\]
\[
+ \frac{1}{4} \left(\int_0^1 (ta + (1-t) b) \, dt \right)^{1-\frac{q}{2}} \left[\int_0^1 (ta + (1-t) b) \left| f' \left(\frac{1-t}{2} a + \frac{1+t}{2} b \right) \right|^q \, dt \right]^{\frac{1}{q}}
\]
\[
\leq \frac{1}{4} \left(\int_0^1 (tb + (1-t) a) \, dt \right)^{1-\frac{q}{2}} \left[\int_0^1 (tb + (1-t) a) \left(\frac{1-t}{2} |f'(b)|^q + \frac{1+t}{2} |f'(a)|^q \right) \, dt \right]^{\frac{1}{q}}
\]
\[
+ \frac{1}{4} \left(\int_0^1 (ta + (1-t) b) \, dt \right)^{1-\frac{q}{2}} \left[\int_0^1 (ta + (1-t) b) \left(\frac{1-t}{2} |f'(a)|^q + \frac{1+t}{2} |f'(b)|^q \right) \, dt \right]^{\frac{1}{q}}
\]
\[
\leq \frac{1}{4 \times 12^q} \left(\frac{a+b}{2} \right)^{1-\frac{q}{2}} \left\{ \left[|f'(b)|^q (2a+b) + |f'(a)|^q (4a+5b) \right]^{\frac{1}{q}} + \left[|f'(a)|^q (a+2b) + |f'(b)|^q (5a+4b) \right]^{\frac{1}{q}} \right\}
\]

The proof is completed. \[\square\]

Proposition 7. Let \(a, b \in J^\circ\), \(0 < a < b\), then
\[
\left| \frac{1}{L (a, b)} - \frac{1}{H (a, b)} - \frac{1}{2A (a, b)} \right| \leq \frac{A^{1-\frac{q}{2}} (a, b)}{4 \times 12^q} \left\{ \left[b^{-2q} (2a+b) + a^{-2q} (4a+5b) \right]^{\frac{1}{q}} + \left[a^{-2q} (a+2b) + b^{-2q} (5a+4b) \right]^{\frac{1}{q}} \right\}
\]
Proof. The proof follows from (2.3) applied to the convex function \(f(x) = 1/x \).

Proposition 8. Let \(a, b \in J^0, \ 0 < a < b \), then
\[
\left| L_n^n(a, b) + \frac{(n-1)G^2(a, b)L_{n-1}^{n-1}(a, b)}{2} - \frac{1}{2}A^n(a, b) \right| \\
\leq \frac{A^{1-\frac{q}{2}}(a, b)}{4 \times 12^\frac{q}{2}} \left\{ \left[(nb^{n-1})^q (2a + b) + (na^{n-1})^q (4a + 5b) \right]^\frac{1}{q} \\
+ \left[(nb^{n-1})^q (a + 2b) + (na^{n-1})^q (5a + 4b) \right]^\frac{1}{q} \right\}
\]

Proof. The proof follows from (2.3) applied to the convex function \(f(x) = x^n, n \geq 2 \).

Proposition 9. Let \(a, b \in J^0, \ 0 < a < b \), then
\[
\left| -\ln I(a, b) + \frac{\ln (a^b/b^a)}{2(b-a)} + \frac{1}{2} \ln A(a, b) \right| \\
\leq \frac{A^{1-\frac{q}{2}}(a, b)}{4 \times 12^\frac{q}{2}} \left\{ \left[b^{-q} (2a + b) + a^{-q} (4a + 5b) \right]^\frac{1}{q} \\
+ \left[a^{-q} (a + 2b) + b^{-q} (5a + 4b) \right]^\frac{1}{q} \right\}
\]

Proof. The proof follows from (2.3) applied to the convex function \(f(x) = -\ln x \).

References

[1] M. Alomari, M. Darus, U.S. Kirmaci, Some Inequalities of Hermite-Hadamard type for s-convex Functions, Acta Math. Sci. 31B(4):1643-1652 (2011).
[2] M. Alomari, M. Darus, S.S. Dragomir, Inequalities of Hermite Hadamard’s Type for Functions Whose Derivatives Absolute Values are Quasi-convex, RGMIA 12 (suppl. 14) (2009).
[3] S.S. Dragomir, Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl. 167 (1992) 49-56.
[4] S.S. Dragomir, Y.J. Cho, S.S. Kim, Inequalities of Hadamard’s type for Lipschitzian mappings and their applications, J. Math. Anal. Appl. 245 (2000) 489-501.
[5] S.S. Dragomir, R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998) 91-95.
[6] S. S. Dragomir and C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA monographs, Victoria University, 2000. [Online: http://www.staff.vu.edu.au/RGMIA/monographs/hermite-hadamard.html].
[7] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893) 171-215.
[8] H. Kavurmacı, M. Avci, M E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, J. Ineq. Appl. 2011, 2011:86, doi:10.1186/1029-242X-2011-86.
[9] U.S. Kirmaci, M.E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput. 153 (2004) 361-368.
[10] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput. 147 (2004) 137-146.
[11] D.S. Mitrinović, I.B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985) 229-232.
[12] D. S. Mitrinović, J. Pečarić, and A.M. Fink, Classical and new inequalities in analysis, KluwerAcademic, Dordrecht, 1993.
[13] M.E. Özdemir, A theorem on mappings with bounded derivatives with applications to quadrature rules and means, Appl. Math. Comput. 138 (2003) 425-434.
[14] J. E. Pečarić, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press Inc., 1992.
[15] C.E.M. Pearce, J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formula, Appl. Math. Lett. 13 (2000) 51-55.
[16] M. Tunç, On Some New Inequalities for Convex Functions, Turk. J. Math., 36, (2012) 245-251.
[17] M. Tunç, On Some Hermite-Hadamard Type Inequalities For Certain Convex Functions, Proceedings of The Romanian Academy, Series A, 15(1) (2014) 3-10.
[18] M. Tunç, Some Hadamard like inequalities via convex and s-convex functions and their applications for special means, Mediterranean Journal of Mathematics, Accepted. Doi: 10.1007/s00009-013-0373-y
[19] M. Tunç, S.U. Kirmaci, New Inequalities for Convex Functions, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(1), (2010) 89-99.
[20] B.-Y. Xi and F. Qi, Some Integral Inequalities of Hermite-Hadamard Type for Convex Functions with Applications to Means, Journal of Function Spaces and Appl., Volume 2012, Article ID 980438, 14 p., doi:10.1155/2012/980438.
[21] G.S. Yang, D.Y. Hwang, K.L. Tseng, Some inequalities for differentiable convex and concave mappings, Comput. Math. Appl. 47 (2004) 207-216.

★★Mustafa Kemal University, Faculty of Science and Arts, Department of Mathematics, 31000, Hatay, Turkey
E-mail address: mevluttttunc@gmail.com
E-mail address: sevilbalgecti@gmail.com