A validation of causal dynamical triangulations

Rajesh Kommu

Department of Physics, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA

E-mail: rkkommu@ucdavis.edu

Received 11 November 2011, in final form 14 March 2012
Published 26 April 2012
Online at stacks.iop.org/CQG/29/105003

Abstract

The causal dynamical triangulation (CDT) approach to quantum gravity is a lattice approximation to the gravitational path integral. Developed by Ambjørn et al, it has yielded some important results, notably the emergence of classical spacetime and short scale dimensional reduction. However, virtually all the results reported so far have been based on a single computer code. In this paper we present the first completely independent verification of the CDT algorithm, and report the successful reproduction of the emergence of classical spacetime and smooth reduction in the spectral dimension of the $(2+1)$- and $(3+1)$-dimensional spacetimes.

PACS numbers: 04.60.Gw, 04.60.Nc

(Some figures may appear in colour only in the online journal)

1. Introduction

The causal dynamical triangulation (CDT) approach to quantum gravity has emerged as a breath of fresh air in the effort to quantize gravity. In CDT, developed by Ambjørn et al [1–4], we have an attempt at quantizing gravity that relies solely on ideas and techniques that have been known to physicists for quite some time—path integrals, causality, simplicial manifolds, finite-size scaling effects, etc. The formulation of CDT, while being extremely straightforward, has yielded some important results, such as the emergence of classical spacetime and dimensional reduction of spacetimes at short distances.

So far, however, all the results that have been reported for CDT have either come from the original group led by Ambjørn et al or from groups that have used the code or data sets from the original group. In this paper, we present the first independent verification of the CDT algorithm, using code developed from scratch in a completely independent fashion. We have been able to reproduce the important results reported for CDT and set the stage for further results, which will be reported elsewhere [5–7].

The outline of this paper is as follows. In section 2 we present a brief overview of the CDT approach. Readers interested in greater detail should refer to [2] and [3]. In section 3 we
describe our CDT implementation, at a fairly high level. Finally, in section 4, we present the results from our simulations.

2. Causal dynamical triangulations

CDT is based on the gravitational path integral

\[G(\mathbf{g}_i, \mathbf{g}_f; t_i, t_f) = \int \mathcal{D}[g] e^{iS_{\text{EH}}[g]}, \]

where

\[S_{\text{EH}}[g] = \frac{1}{16\pi G} \int d^d x \sqrt{-g} (R - 2\Lambda) \]

is the Einstein–Hilbert action. Here \(\mathbf{g}_i \) and \(\mathbf{g}_f \) are the spatial metrics on the initial and final slice and \(g \) represents all possible (spacetime) metrics that satisfy the initial and final conditions. By all possible metrics, we mean metrics that are not related to each other by diffeomorphisms.

To define the action in the path integral, CDT uses Regge calculus [8] as its starting point. The basic idea of Regge calculus is to approximate a smooth manifold (for example spacetime) with a piecewise linear manifold, with curvature restricted to subspaces of co-dimension 2.

The geometrical objects used to approximate \(d \)-dimensional manifolds are \(d \)-simplices, which consist of \((d-1)\)-dimensional faces, \((d-2)\)-dimensional hinges or ‘bones’ (on which the curvature of the manifold resides), and so on down to zero-dimensional simplices (points). A \(d \)-simplex has \(d+1 \) points.

For manifolds without a boundary, a discrete version of the Einstein–Hilbert action can be formulated using

\[\int d^d x \sqrt{-g} R \rightarrow 2 \sum_{\text{hinges } h} V_h \delta_h \]

and

\[\int d^d x \sqrt{-g} \rightarrow \sum_d V_d \]

to obtain

\[S_R = \frac{1}{8\pi G} \sum_h V_h \delta_h - \frac{\Lambda}{8\pi G} \sum_d V_d, \]

where \(V_h \) is the volume of a hinge, \(V_d \) is the volume of a top level \(d \)-simplex, and \(\delta_h \) is the deficit angle at \(h \).

CDT assumes a global time slicing, where each time slice is equipped with a positive definite metric and has finite volume. This eliminates the possibility of closed time-like curves. By construction, any maximal causal curve intersects each time slice exactly once, giving a discrete analog of global hyperbolicity.

The building blocks of CDT are \(d \)-simplices that span adjacent time slices. A time-like \((p, q)\) \(d \)-simplex, where \(p + q = d + 1 \), has \(p \) points on the lower time slice and \(q \) points the adjacent higher time slice. For a space-like simplex, all points are on the same spatial slice. No space-like \(d \)-simplices are present in \(d \)-dimensional spacetimes. But both space-like and time-like types of lower dimensional simplices are present in the spacetime. The simplicial building blocks in CDT have an inherent causal structure built into them, induced from the time-slicing. To preserve this causal structure, CDT does not allow topology changes of the time slices. A simplicial manifold without a boundary is constructed by gluing together \(d \)-simplices such that exactly two simplices are attached along any face \((d-1)\)-dimensional simplices). For a simplicial manifold with a boundary, the faces on the boundary will have only one \(d \)-simplex attached to them.
The lengths of the space-like and time-like links (1-simplices) are defined as
\[l_{\text{space}}^2 = a^2, \quad l_{\text{time}}^2 = -\alpha a^2, \quad \alpha > 0, \]
where \(a \) is the lattice spacing and \(\alpha \) is the asymmetry parameter. In 2+1 dimensions, we have three types of 3-simplices, denoted by (1, 3), (2, 2) and (3, 1). In 3 + 1 dimensions, we have four types of 4-simplices, denoted by (1, 4), (2, 3), (3, 2) and (4, 1). The volume of each type of simplex and the dihedral angles subtended between the faces of these simplices are given in [2]. Using these, we can formulate the Lorentzian version of the Regge action in \(d = 3, 4 \) as
\[
S = \frac{1}{8\pi G} \left(\sum_{\text{space-like hinges, } h} \text{Vol}(h) \frac{1}{4} \left(2\pi - \sum_{d - \text{simplices at } h} \Theta \right) \right. \\
+ \frac{1}{8\pi G} \sum_{\text{time-like hinges, } h} \text{Vol}(h) \left(2\pi - \sum_{d - \text{simplices at } h} \Theta \right) \\
- \frac{\Lambda}{8\pi G} \sum_{\text{time-like } d - \text{simplices, } d} \text{Vol}(d),
\]
where \(\Theta \) is the dihedral angle subtended at the hinge \(h \). Equation (7) is a reformulation of (5) with space-like and time-like simplices distinguished.

Wick rotation in CDT is based on a particular non-perturbative Wick rotation defined in [15, 16]. In proper-time gauge—that is, using Gaussian normal coordinates—a \(d \)-dimensional metric can be written as [16]
\[
dx^2 = \epsilon \, dt^2 + g_{ij} \, dx^i \, dx^j, \quad \epsilon = \pm 1, \quad i, \, j = 1, \, 2, \ldots, \, d - 1,
\]
where \(t \) is the proper time. Lorentzian metrics have \(\epsilon = -1 \), while Euclidean metrics have \(\epsilon = +1 \). Wick rotation is carried out by the mapping \(\epsilon \mapsto -\epsilon \), the \(g_{ij} \) being unchanged. This Wick rotation technique has the important property that real Lorentzian metrics are mapped to real Euclidean metrics [15, 16]. For the specific case of CDT, this technique translates to [2]
\[
\alpha \mapsto -\alpha, \quad \alpha > \frac{1}{2}(d = 3), \quad \alpha > \frac{7}{12}(d = 4).
\]
This leads to a pure imaginary value for the action. The gravitational path integral (1) in CDT is replaced by a sum over distinct triangulations
\[
\int \mathcal{D}[g] e^{iS} \rightarrow \sum_T \frac{1}{C(T)} e^{iS(T)},
\]
where \(C(T) \) is the order of the automorphism group of the triangulation.

The Wick rotated action\(^1\) for a triangulation in 2+1 dimensions is given by
\[
S^{(3)} = i(-\kappa_0 N_0 + \kappa_3 N_3),
\]
where
\[
\kappa_0 = \frac{1}{4G}, \quad \kappa_3 = \frac{\Lambda}{48\sqrt{2}\pi G} + \frac{1}{4G} \left(\frac{3}{\pi} \cos^{-1}(1/3) - 1 \right)
\]
and \(N_0, N_3 \) are the number of 0-simplices and 3-simplices, respectively. Equation (11) can be derived from (7) by substituting the appropriate expressions for the simplex volumes and dihedral angles, using topological identities for (2 + 1)-dimensional Lorentzian triangulations

\(^1\) Equations (11) and (12) are derived for \(\alpha = -1 \). (Here by \(\alpha \) we mean the value of \(\alpha \) after Wick rotation.) For \(\alpha \neq -1 \) the action will have terms involving \(N_0, N_3^{(3,1)} \) and \(N_3^{(2,1)} \), where \(N_3^{(3,1)} \) and \(N_3^{(2,2)} \) are the number of (3,1) and (2,2) 3-simplices. However, in 2+1 dimensions, there are only two independent bulk degrees of freedom, so the action still takes the form (11), although with (12) altered. See [2] for details.
and then performing a Wick rotation \((9)\). The topological identities eliminate all but two of the bulk variables \(N_0 \ldots N_d\).

Substituting the Wick rotated action in \((10)\) gives us the partition function:

\[
Z = \sum_{T} \exp(\kappa_0 N_0 - \kappa_3 N_3). \tag{13}
\]

A similar procedure in \(3+1\) dimensions leads to the Wick rotated action

\[
S^{(4)} = i\left(-(\kappa_0 + 6\Delta)N_0 + \kappa_4 N_4 + \Delta(2N_4^{(4,1)} + N_4^{(3,2)})\right) \tag{14}
\]

and the corresponding partition function

\[
Z = \sum_{T} \exp \left((\kappa_0 + 6\Delta)N_0 - \kappa_4 N_4 - \Delta(2N_4^{(4,1)} + N_4^{(3,2)})\right), \tag{15}
\]

where

\[
\kappa_0 = \frac{\sqrt{3}}{8G}, \quad \kappa_4 = \frac{\Lambda \sqrt{5}}{768\pi G} + \frac{\sqrt{3}}{8G} \left(\frac{5}{2\pi} \cos^{-1}(1/4) - 1\right) \tag{16}
\]

and \(\Delta\) is a complicated function that depends on \(\alpha\), with \(\alpha = 1\) corresponding to \(\Delta = 0\). \(N_4^{(4,1)}\) is the number of \((4,1)\) plus \((1,4)\) simplices, and \(N_4^{(3,2)}\) is the number of \((3,2)\) plus \((2,3)\) simplices.

To generate the distinct triangulations required for evaluating the partition function and the expectation value of any observable, the CDT approach uses a set of ergodic moves. An ergodic move applied to a triangulation yields another distinct triangulation, one that is not related to the first one by a diffeomorphism. Ergodicity ensures that we can go from one triangulation to any other triangulation by repeated application of moves. Ergodic moves also preserve the topology of the manifold, as well as the simplicial manifold property. The moves are described in detail in [2].

3. Numerical implementation

In our numerical implementation, each \(d\)-simplex is identified by a unique ID and is stored as a list (containing sublists) of points

\[(ty \ lo \ hi \ (p0 \ p1 \ldots \ pd) \ (n0 \ n1 \ldots \ nd)).\]

Here \(ty\) identifies the type of the top level \(d\)-simplex \(ty = 1, 2, \ldots, d\). \(lo\) and \(hi\) are the lower and higher time slices spanned by the simplex. The \(pi\)s are the points that make up the simplex, and the \(ni\)s are the IDs of the neighboring simplices. Each \(d\)-simplex is attached to its neighboring \(d\)-simplices across one of its faces, a face being a \((d-1)\)-dimensional simplex. Each \(d\)-simplex has \(d+1\) faces and hence \(d+1\) neighbors. The simplex \(nk\) is connected on the \((p0 \ldots pd) - (pk)\) face. The points are used only as unique labels to identify the vertices of a simplex. While we distinguish the points on the lower time slice from the points on the higher time slice, the ordering of the points in any given slice is immaterial. Each simplex, at all levels \(d = 0, 1, \ldots, d\), appears exactly once.

With this choice for the simplex data structure, it is fairly straightforward to implement the ergodic moves described in detail in [2]. It is essential that the moves maintain the simplicial property of the manifold. This requires that two simplices should be connected across a single face and that a \((d-1)\)-simplex should be shared between exactly two \(d\)-simplices. Our implementation of the ergodic moves also ensures that there are no duplicate simplices at any level \(d = 0, 1, \ldots, d\).
To generate the distinct triangulations using the ergodic moves, we apply the Metropolis algorithm [9]. The Metropolis algorithm uses a Markov chain that, upon reaching equilibrium, satisfies the detailed balance condition

$$P(T_1)W(T_1, T_2) = P(T_2)W(T_2, T_1),$$

where $P(T_i)$ is the probability of being in a particular triangulated geometry T_i and $W(T_i, T_j)$ is the transition probability of going from triangulation T_i to triangulation T_j. The probability of being in a particular triangulation is proportional to the Boltzmann weight e^{-S_E}. The detailed balance condition in this case can be written as

$$W(T_1, T_2) = e^{-S_E(T_2)}e^{-S_E(T_1)} = e^{-\Delta S_E}.$$

(17)

The simplest choice for the transition probability W that satisfies this condition is

$$W(T_1, T_2) = \begin{cases} e^{-\Delta S_E} & \text{if } \Delta S_E > 0, \\ 1 & \text{if } \Delta S_E \leq 0. \end{cases}$$

(18)

Thus a move that increases the action may be accepted or rejected, while moves that decrease the action or leave the action unchanged are always accepted.

We initialize the simulation by specifying the number of time slices T and the total volume of the spacetime. The initialization process starts by triangulating each spatial slice as a $(d-1)$-sphere. The $t=0$ and the $t=T$ slices are identified to enforce the periodic boundary conditions in time. This is done for technical convenience, rather than due to any physical argument. Next, the triangulations on adjacent slices are connected. We then apply the volume increasing subset of the ergodic moves until the total volume reaches the desired target volume.

Once the simulation has been initialized, we have to run simulation for about 100 000 sweeps to thermalize the spacetimes. A sweep is defined as N_d attempted moves, where N_d is number of d-simplices in the spacetime. Thermalization ensures that the system is sufficiently randomized, and has moved away from the highly structured initial conditions. Once thermalization is completed, we start saving spacetimes every 100 sweeps, to build our ensembles.

4. Results

4.1. Phase structure

In $2+1$ dimensions, the phase structure of the CDT model can be explored by tracking the dependence of an order parameter on coupling constants. The order parameter selected is the ratio of the number of $(2, 2)$ 3-simplices to the total number of 3-simplices in the spacetime:

$$\tau = \frac{N_{22}}{N_3} = \frac{N_{22}}{N_{13} + N_{22} + N_{31}}.$$

(20)

The dependence of τ on the coupling constant is shown in figure 1.

Figure 1 shows a phase transition, at $\kappa_0^c \approx 3.3$. In [3], this phase transition was reported at a value of $\kappa_0^c \approx 6.6$. The two results differ by a factor of 2, for reasons we do not understand, but the qualitative results are identical. For $\kappa_0 > \kappa_0^c$, we observe that the spatial volumes of successive slices is not strongly correlated—spacetime has effectively decoupled into disconnected spatial slices. This is shown in figure 2, where we have taken a snapshot of a simulation in this decoupled phase.

A snapshot of the simulation in the other phase, characterized by $\kappa_0 < \kappa_0^c$, clearly shows the emergence of a well defined, extended geometry phase. This is shown in figure 3. The
Figure 1. N_{22}/N_3 versus κ_0.

Figure 2. A snapshot of a $(2+1)$-dimensional spacetime in the decoupled phase.

Figure 3. A snapshot of a $(2+1)$-dimensional spacetime in the extended phase.
simulation fluctuates around this extended geometry, a geometry that resembles a classical universe. This classical spacetime emerges from the simulation, and was not explicitly specified by us. In this phase, the volume of successive spatial slices is strongly correlated, and the path integral is dominated by metrics that are approximate solutions of the Einstein equations.

A thick slice is defined as the portion of spacetime that is bounded by adjacent spatial slices. Thick slices are labeled by half-integer values where, for example, a thick slice labeled by \(t = 1/2 \), is bounded by the spatial slices \(t = 0 \) and \(t = 1 \). The volume of a thick slice is defined as the number of \(d \)-simplices in that thick slice. In figures 2 and 3 time is along the horizontal axis. These figures were generated by considering the volumes of the thick slices for half-integer values ranging from \(t = 1/2 \) to \(t = T - 1/2 \) where \(T \) is total number of time slices. We draw a circle with radius equal to the volume of the slice, and join circles corresponding to adjacent thick slices by linear interpolation. The axial symmetry in these figures is therefore a visualization artifact. Figure 4 shows a typical spatial slice in 2 + 1 dimensions, embedded in a three-dimensional space [6].

In 3 + 1 dimensions, while we are not aware of an order parameter analogous to the (2 + 1)-dimensional case, we do observe three distinct phases, illustrated in figures 5–7. All three figures are for spacetimes with \(T = 64 \) and \(N_4 = 81920 \).

Phase A is characterized by a splitting up of the spacetime in small pieces of irregular volume, with each piece not extending beyond a few time slices. In phase B, all of the spacetime volume collapses into a single piece of minimal extension. Both of these non-physical phases are characterized by a small value for the ratio \(N_{(3,2)}/N_4 \). Phase C is the extended geometric phase, where there is a strong correlation between the volumes of successive spatial slices.

4.2. Spectral dimension

One of the major contributions of the CDT approach has been the introduction of the spectral dimension as probe of the properties of spacetime, both on short and long scales.
Figure 5. A $(3 + 1)$-dimensional spacetime in phase A, $\kappa_0 = 5.0$, $\Delta = 0.0$, $\kappa_4 = 1.01$.

The diffusion equation for a d-dimensional manifold with a smooth metric $g_{\mu\nu}$ is given by [10, 11]

$$\frac{\partial}{\partial \sigma} K_g(\xi, \xi_0; \sigma) = \Delta_g K_g(\xi, \xi_0; \sigma),$$ \hspace{1cm} (21)

where σ is the diffusion time, $\Delta_g = -g^\mu\nu \nabla_\mu \nabla_\nu$ is the Laplace operator corresponding to $g_{\mu\nu}(\xi)$ and $K_g(\xi, \xi_0; \sigma)$ is the probability density of diffusion from ξ_0 to ξ in a time σ. The diffusion processes we care about are ones that are initially peaked at a point ξ_0

$$K_g(\xi, \xi_0; \sigma = 0) = \frac{\delta^d(\xi - \xi_0)}{\sqrt{|g|}}.$$ \hspace{1cm} (22)

Instead of probability density, we measure the return probability, which is defined as

$$P_g(\sigma) = \frac{1}{V} \int_M d^d\xi \sqrt{|g|} K_g(\xi, \xi; \sigma).$$ \hspace{1cm} (23)

For a flat space with infinite volume, the solution of equation (21) is [10, 11]

$$K_g(\xi, \xi_0; \sigma) = \frac{e^{-d^2(\xi, \xi_0)/4\sigma}}{(4\pi \sigma)^{d/2}},$$ \hspace{1cm} (24)

where $d_g(\xi, \xi_0)$ is the geodesic distance between ξ and ξ_0. The return probability for the flat space case is

$$P_g(\sigma) = \frac{1}{\sigma^{d/2}}.$$ \hspace{1cm} (25)

Taking the logarithmic derivative of the equation (25), we obtain

$$-2 \frac{d}{d \ln \sigma} \ln P(\sigma) \frac{d \ln P(\sigma)}{d \ln \sigma} = d.$$ \hspace{1cm} (26)
Figure 6. A $(3 + 1)$-dimensional spacetime in phase B, $\kappa_0 = 1.6$, $\Delta = 0.0$, $\kappa_4 = 0.65$.

Figure 7. A $(3 + 1)$-dimensional spacetime in phase C, $\kappa_0 = 2.4$, $\Delta = 0.6$, $\kappa_4 = 0.079$.

This definition of the spectral dimension can be extended to curved and/or finite volume spacetimes, with the addition of finite-size corrections, and allows one to define a generalized dimension on a wide variety of spaces that are not smooth manifolds [12].

In CDT, the spectral dimension [10, 4, 13] of the spacetime is measured by initiating a diffusion process from a randomly selected simplex. A single step in a random walk is generated by moving to randomly selected neighbor. By initiating a large number of walks
with \(\sigma \) steps, we can calculate the probability of returning to the starting simplex. The return probability can be then used to compute the spectral dimension.

The spectral dimension versus step size plot for a \((2+1)\)-dimensional spacetime is shown in figure 8. We observe that the spectral dimension demonstrates a smooth transition from a value of about 2.4 at short scales up to a value of about 3.0 at larger values of \(\sigma \), and then starts to fall for \(\sigma \) greater than about 400. Fitting the data to a function of the form

\[
D(\sigma) = a + \frac{b}{c+\sigma}
\]

we obtain

\[
D(\sigma) = 3.03 - \frac{10.51}{17.87 + \sigma}.
\]
\[(27)\]

Fitting the data to \(D(\sigma) = a + be^{-c\sigma}\), as suggested in [11], we obtain

\[
D(\sigma) = 3.19 - 0.97e^{-0.013\sigma}.
\]
\[(28)\]

From this, we obtain \(D(0) = 2.22\) and \(D(\infty) = 3.19\), which agrees well with \(D(0) = 2.12\) and \(D(\infty) = 2.98\) reported in [11].

The smooth reduction of the dimension of the spacetime at shorter scales is one of the most interesting features of the CDT model. This is an indication of the highly non-classical behavior at small scales. The reduction in dimension for larger \(\sigma\) is due to the finite (and rather small) volume of the spacetimes being considered.

The spectral dimension versus step size plot for a \((3+1)\)-dimensional spacetime is shown in figure 9. The spectral dimension in this case ranges from a value of about 1.8 at short scales up to a value of about 4.0 at larger values of \(\sigma\), and then starts to fall for \(\sigma\) greater than about 600, with the functional form being given by:

\[
D(\sigma) = 4.43 - \frac{375}{141 + \sigma}.
\]
\[(29)\]
This is to be compared with the

$$D(\sigma) = 4.02 - \frac{119}{54 + \sigma}$$ \hspace{1cm} (30)

reported in [4].

4.3. Spectral dimension of the spatial slices

The spectral dimension of a spatial slice can be computed using a process identical to that used for determining the spectral dimension of the full spacetime. We select the slice with the maximum \((d-1)\)-volume and initiate diffusion processes from a randomly selected \((d-1)\)-simplex on this slice.

The spectral dimension of the maximum volume slice for a \((3+1)\)-dimensional spacetime is show in figure 10. For short scales, up to \(\sigma \approx 40\), the return probability differs considerably for even and odd step sizes, and the plot bifurcates. Once the even and odd step size spectral dimensions converge, \(D(\sigma)\) is approximately 1.5, before a gradual reduction due to finite-size scaling. In [4], a spatial slice spectral dimension of 1.56 is reported. This is value is computed by calculating the average return probability of all the spatial slices. The agreement of our results with value reported in [4] indicates that each spatial slice has roughly the same spectral dimension.

Figure 11 shows a corresponding plot for \((2+1)\)-dimensional spacetime. In this case, the even and odd \(\sigma\) plots converge at a much larger value of \(\sigma \approx 150\). The spectral dimension value then levels off at about 1.65.
Figure 10. Spectral dimension for the maximum volume spatial slice for a 3 + 1 spacetime.

Figure 11. Spectral dimension for the maximum volume spatial slice for a 2 + 1 spacetime.
Volume profile

At the beginning of this section, we discussed the emergence of an extended phase, which we said was a solution to the classical Einstein equations. However, the only evidence we have presented so far are figures 3 and 7, where the shape of the volume profile is indicative of such a solution. There is a rigorous, quantitative procedure, in which volume profiles of the spatial slices are fit to the Euclidean de Sitter solution, in $2+1$ and $3+1$ dimensions. This procedure is described in detail in [14]. We have been able to verify these results in $2+1$ and $3+1$ dimensions; our analysis will be presented in [5].

5. Conclusions

The causal dynamical triangulation (CDT) approach to quantum gravity has many promising features, and our computer simulation has been able to successfully reproduce these results in $2+1$ and $3+1$ dimensions. Most of these results were first reported by Ambjørn et al [1–4], and our simulation provides the first completely independent verification. We observe the emergence of a well defined extended geometric phase. This geometric phase shows a smoothly changing spectral dimension that ranges from a value close to 2.0 to a value larger than 3.0 for the $(2+1)$-dimensional spacetimes and from about 2.0–4.0 for the $(3+1)$-dimensional spacetimes. The spatial slices exhibit a non-classical behavior, as indicated by their spectral dimension plots.

Our successful reproduction of many of the results reported by Ambjørn et al, using a completely independent software implementation, should improve confidence in the CDT model. With the exception of the value of the phase transition point in the $(2+1)$-dimensional model, our results are in good agreement with those reported in [3, 4, 14], and convince us of the overall validity of the CDT approach.

Having successfully reproduced the basic results of the CDT model, we are now using our CDT implementation to explore some further interesting problems. These include investigating the quantum fluctuations in $(2+1)$-dimensional CDTs and comparing the results with canonical quantization approaches [6], detailed analysis of the volume profiles in $2+1$ and $3+1$ dimensions [5] and exploring Horava–Lifshitz gravity on the CDT lattice [7]. In the near future, we plan to release our implementation into the public domain.

Acknowledgments

I would like to thank Professor Steve Carlip for his initial suggestion of CDT as a research topic, and for his guidance and patience for the duration of this project. I would like to thank the summer REU students, Jun Zhang, Masha Baryakhtar, David Kamensky and Christian Anderson, for their valuable contributions to the project. I would also like to thank Joshua Cooperman, Adam Getchell, Michael Sachs and Patrick Zułkowski for helpful discussions regarding CDT and for their willingness to work with poorly documented code written in an unfamiliar programming language.

This work was supported in part by DOE grant DE-FG02-91ER40674.

References

[1] Ambjørn J, Jurkiewicz J and Loll R 2000 Nonperturbative Lorentzian path integral for gravity Phys. Rev. Lett. 85 924
[2] Ambjørn J, Jurkiewicz J and Loll R 2001 Dynamically triangulating Lorentzian quantum gravity *Nucl. Phys.* B *610* 347

[3] Ambjørn J, Jurkiewicz J and Loll R 2001 Nonperturbative 3D Lorentzian quantum gravity *Phys. Rev.* D *64* 044011

[4] Ambjørn J, Jurkiewicz J and Loll R 2005 Reconstructing the universe *Phys. Rev.* D *72* 064014

[5] Cooperman J Further evidence for the emergence of de Sitter spacetime from Causal Dynamical Triangulations in preparation

[6] Sachs M 2011 Testing lattice quantum gravity in 2 + 1 dimensions arXiv:1110.6880 [gr-qc]

[7] Anderson C, Carlip S J, Cooperman J H, Hořava P and Zulkowski P 2012 Quantizing Hořava–Lifshitz gravity via causal dynamical triangulations *Phys. Rev.* D *85* 044027

[8] Regge T 1961 General relativity without coordinates *Il Nuovo Cimento* 19 558

[9] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 Equation of state calculations by fast computing machines *J. Chem. Phys.* 21 1087

[10] Ambjørn J, Jurkiewicz J and Loll R 2005 The spectral dimension of the universe is scale dependent *Phys. Rev. Lett.* 95 171301

[11] Benedetti D and Henson J 2009 Spectral geometry as a probe of quantum spacetime *Phys. Rev.* D *80* 124036

[12] Carlip S 2010 The small scale structure of spacetime arXiv:1009.1136 [gr-qc]

[13] Ambjørn J, Jurkiewicz J and Loll R 2006 The universe from scratch *Contemp. Phys.* 47 103

[14] Ambjørn J, Jurkiewicz J and Loll R 2008 Nonperturbative quantum de Sitter universe *Phys. Rev.* D *78* 063544

[15] Dasgupta A and Loll R 2001 A proper-time cure for the conformal sickness in quantum gravity *Nucl. Phys.* B *606* 357

[16] Dasgupta A 2002 The real Wick rotations in quantum gravity *J. High Energy Phys.* JHEP07(2002)002