INTRODUCTION

Diabetes mellitus is a metabolic disorder characterized by disruption of carbohydrate, fat, and protein metabolism. The disorder is associated with severe complications, including retinopathy, microangiopathy, and peripheral neuropathy [1]. Diabetes causes major economic losses worldwide and impedes country development [2,3].

The number of persons affected by diabetes is expected to reach 438.4 million worldwide in 2030 [4]. Only a fraction (49.3%) of the population in Africa has been tested for the disease [5] but, in sub-Saharan Africa alone, an estimated 10.4 million people lived with diabetes in 2007 [6]. In the central African country of Gabon, which has a population of ~1.7 million people [7], 10.71% of the population has been diagnosed with this disease [8]. Since, pharmaceutical products used for the management of diabetes are expensive for rural populations and may induce serious side effects [9], medicinal plants are used predominately to treat this disease. According to George et al. [10], medicinal plants contain biologically active compounds with diverse therapeutic applications. For example, saponins and alkaloids in Alstonia boonei De Wild. have a diuretic effect and are utilized in the treatment of urinary edema and hypertension [11]. The fungicidal action of saponins in (Piptadeniastrum africanum Hoof. f.) Brenan provides another example [12] used in traditional medicine. In Gabon, 78.2% of the species of plants in forests are used medicinally by pygmies [13], which exemplifies this country’s botanical medicinal heritage. It is important to improve understanding of plants used by local people in the treatment of diabetes in Gabon and which may have beneficial applications for the world at large. The aim of this study is to survey a wide range of Gabonese plants for their antidiabetic activity.

MATERIALS AND METHODS

Study Area

Gabon is a small francophone country located in Central Africa bordering the Atlantic Ocean at the Equator between the Republic of the Congo and Equatorial Guinea. The climate
is always hot and humid. Gabon houses some of Africa’s most biodiverse rainforests, which comprise approximately 80% of the country and stretch to the coast. Research in the Northwest and South Central/East of Gabon was done in the following three provinces: Estuaire (N.W. coastal region), Ogooué-Lolo (south-central forest region), and Haut-Ogooué (southeast mosaic of forest-savanna) [Figure 1]. The sampling was conducted in both rural areas and urban regions, including is even towns and six departments of the three provinces [Table 1].

Investigation Method

The ethnobotanical survey was conducted between October 2014 and March 2015, which spans periods of sparse but heavy rainfall (October-November), a short dry season (December-January), and part of the long wet season with heavy rainfall (February-April). The investigation was carried out using a semi-structured questionnaire in French or in the native language of the informant. Interviewees included diabetic patients, traditional healers, traditional health practitioners, herbalists, and other knowledgeable people. The recorded parameters were locality, sociodemographic data (age and gender), vernacular or local plant names, plant parts used, method of preparation, method of administration, quantity consumed, and type of material, samples collected for botanical identification were dried, preserved and identified by an expert botanist, ISSEMBE Yves, at National Herbarium of Libreville, Gabon. The Latino names of some plant species have been updated using the plant list database [14].

Data Analysis

The frequency of citation (FC) of a plant species was evaluated using the following formula: FC = (Number of times a particular species was mentioned/Total number of times that all species were mentioned) × 100 [15,16].

Informants group	Number of persons (urban/rural)	Age (years)	Professional experience (years)
Diabetic patients	8/6	50-65	-
Traditional healers	0/29	27-69	10-30
Traditional health practitioners	10/0	40-65	10-30
Herbalists	15/0	25-45	3-10

Figure 1: Map of study areas
RESULTS

Demographic Characteristics

A total of 80 people were investigated, of which 68 informants had a rich knowledge of herbal medicine [Table 2]. The balance did not report knowledge of medicinal plants and was excluded from further study. Of those that reported information, 14 were patients with physician-diagnosed diabetes mellitus or people were relatives of people suffering from diabetes, 29 were traditional healers, 10 were traditional health practitioners, and 15 were herbalists. More than half (65%) of the interviewees were male, and the average age of both sexes was approximately 53 years with informants ranging in age until 70 years. More than half of all respondents (51.5%) were from rural areas, traditional healers who were the most numerous informants were mainly represented areas rural while herbalists and traditional health practitioners were only recorded that in urban areas.

Ethnobotanical Characteristics and Associated Knowledge

The species cited by respondents in this study were listed in alphabetical order by scientific name, local or vernacular name, family, genus, plants parts used, mode of preparation, mode of administration, and FC [Table 2]. 50 species belonging to 31 families and 50 genus were used for the treatment of diabetes. The Annonaceae was the most commonly represented of all families [Figure 2], with particular use of soursop Annona muricata L. Nine plant species were most cited by interviewers as a remedy for diabetes, of which Guibourtia tessmannii (Harms) J. Leonard (Caesalpinioideae) was the most frequent (7.14%) followed by A. boonei (Apocyanceae), Carica papaya L. (Carciceae), Persea americana Mill. (Lauraceae), Allium sativum L. (Amaryllidaceae), A. muricata (Annonaceae), Ceiba pentandra (L.) Gaertn. (Malvaceae), Cocos nucifera L. (Areaceae), Pieralima nitida (Stapf) T. Durand and H. Durand (Apocynaceae) (4.29%). The others species were least cited, it is the case of Annickia chlorantha (Oliv.) Setten and Maas (Annonaceae), Cymbopogon citratus (DC.) Stapf (Poaceae), Eugenialum tessmannii Harms (Caesalpinioideae), Lantana camara L. (Verbenaceae), Musa × paradisiaca L. (Musaceae), Psidium guajava L. (Myrtaceae), Vernonia amygdalina Delile (Asteraceae), Xylopia aethiopica (Dunal) A. Rich. (Annonaceae), and the gymnosperm Gnetum africanum Welw. (Gnetaceae) [Table 2]. Bibliographic research showed that about 94% of plants were well-documented in literature [Table 3]. All 50 plants are used to prepare medicinal drugs individually or in various combinations.

The result shows that the most frequently used plant parts were stem barks (50%) followed by leaves (26%) and other plant parts (24%), including roots (6%), fibers (4%), bulbs, fruit, flower, rhizome, skin, and stem (2% each) [Figure 3]. Most components were prepared by decoction (58%). Maceration (18%) and infusion (14%) were other modes of preparation and use, as was chewing (4%), burning and cooking (2%) [Figure 4]. Three modes of administration were used. Herbal products were primarily administered orally (98% of cases), mostly in liquid form (88%). Administration by mastication was also recorded (10% of cases) as was treatment by vapor bath (2% of cases) [Figure 5].

DISCUSSION

The results of demographic data showed that most knowledgeable interviewees were male (65%) of average age >50 years. A previous study found that women (69%) frequently used more medicinal plants than men (31%) [145]. Uniyal et al. [146] also found that men knew comparatively more about plant-based medicines than females because women were occupied by household working pressure. In Gabon, women tender house gardens and are more ready than men to bring out the first health care.

Figure 2: Repartition of plants families
Botanical names	Local names/venacular	Families	Genus	Parts used	Mode of preparation	Mode of administration	Numbers of citations	Frequencies of citations
Acacia auriculiformis Benth.	Akasmani	Fabaceae	Acacia	Leaves	Infusion	Steam bath	1	1,428,571
Allium sativum L.	Garlic	Amaryllidaceae	Allium	Bulb	Decoction	Drink	3	4,285,714
Alstonia boonei De Wild.	Emien	Apocynaceae	Alstonia	Stem barks	Maceration	Drink	3	4,285,714
Anchomanes dillmonti (Blume)	Nkwe-n'dóju (Galoa)	Araceae	Anchomanes	Rhizom	Maceration	Drink	1	1,428,571
Annickia chlorantha (Oliv.)	Mwamba jaune	Annonaceae	Annickia	Stem barks	Decoction	Drink	1	1,428,571
Setten & Maas								
Annona muricata L.	Soursop	Annonaceae	Annona	Stem barks	Decoction	Drink	3	4,285,714
Annonidium mannii (Oliv.) Engl.	Ebom	Annonaceae	Annonidium	Stem barks	Decoction	Drink	1	1,428,571
Antrocaryon klaineanum Pierre	Onzabili	Anacardiaceae	Antrocaryon	Stem barks	Infusion	Drink	1	1,428,571
Aucoumea klaineana Pierre	Okoumé	Burseraceae	Aucoumea	Stem barks	Maceration	Drink	1	1,428,571
Carica papaya L.	Papaya	Caricaceae	Carica	Root	Decoction	Drink	3	4,285,714
Celtis tessmannii (L.) Gaertn.	Fromage	Malvaceae	Celtis	Stem barks	Decoction	Drink	3	4,285,714
Celtis tessmannii Rendle	Diania	Cannabaceae	Cannabaceae	Stem barks	Decoction	Drink	1	1,428,571
Cleistopholis glauca Pierre ex	Unknown	Annonaceae	Cleistopholis	Stem barks	Decoction	Drink	1	1,428,571
Engl. and Diels								
Cocos nucifera L.	Coconut	Aracaceae	Cocos	Fiber	Decoction	Drink	3	4,285,714
Combretum micranthum G. Don	Kinkéliba	Combretaceae	Combretum	Leaves	Infusion	Drink	1	1,428,571
Copaifera mildbraedii Harms	Murei (Punu)	Caesalpinioideae	Copaifera	Stem barks	Decoction	Drink	1	1,428,571
Cylicodiscus gabunensis Harms	Okan	Mimosoideae	Cylicodiscus	Stem barks	Decoction	Drink	1	1,428,571
Cymbopogon citratus (D.C.) Stapf	Lemongrass	Poaceae	Cymbopogon	Leaves	Infusion	Drink	1	1,428,571
Dubia macrocarpa Bocq.	Akak	Malvaceae	Dubiosa	Stem barks	Decoction	Drink	1	1,428,571
Entada gigas (L.) Fawcett and Rendle	Cœur de mer	Mimosoideae	Entada	Stem barks	Decoction	Drink	1	1,428,571
Euryetapetum tessmannii Harms	Anzilim	Caesalpinioideae	Euryetapetum	Stem barks	Decoction	Drink	1	1,428,571
Gnetum africanum Welw.	Nkumu	Gnetaceae	Gnetum	Leaves	Cooking	Eat	1	1,428,571
Guibourtia tessmannii (Hamars) J. Leonard	kévazigo	Caesalpinioideae	Guibourtia	Stem barks	Decoction	Drink	5	7,142,857
Harungana madagascariensis Lam. ex Poir.	Atsui	Hyperaceae	Harungana	Leaves	Chewing	Eat	1	1,428,571
Lantana camara L.	Lantanière	Verbenaceae	Lantana	Leaves	Infusion	Drink	1	1,428,571
Mammeea africana Sabine Microdesmis puberula Hook.f. ex Planch.	Oboto	Calophyllaceae	Mamea	Stem barks	Decoction	Drink	1	1,428,571
Milicia excelsa (Welw.) C. C. Berg	Obiga (Akléé)	Moraceae	Milicia	Stem barks	Decoction	Drink	1	1,428,571
Mimosa pudica L.	Bodji (Punu)	Fabaceae	Mimosa	Leaves	Decoction	Drink	1	1,428,571
Musa × paradisiaca L.	Plantain	Musaceae	Musa	Skin	Burning	Eat	1	1,428,571
Musanga cecropioides R.Br. ex Tedlie	Parassolier	Urticaceae	Musanga	Leaves	Decoction	Drink	1	1,428,571
Nauclea diderrichii (De Wild.) MERR.	Bilinga	Rubiaceae	Nauclea	Stem barks	Decoction	Drink	1	1,428,571
Newbouldia laevis (P. Beaup.) Seem.	Ossomendo (Ndoumu)	Bignoniaceae	Newbouldia	Stem barks	Decoction	Drink	1	1,428,571
Pennisetum purpureum Schumach.	Mikuku (bakota)	Poaceae	Pennisetum	Stem	Maceration	Drink	1	1,428,571
Pereromia lucellia (L.) Kunth Pepper - elder	Piperaceae	Piperaceae	Pereromia	Leaves	Infusion	Drink	1	1,428,571
Persea americana Mill.	Avocado	Lauraceae	Persea	Leaves	Infusion	Drink	3	4,285,714
Petroselinum crispum (Mill.) Fuss	Parsley	Apiaceae	Petroselinum	Leaves	Chewing	Eat	1	1,428,571
Phaseolus vulgaris L. P. Picralima nitida (Stapf)	Bean	Fabaceae	Phaseolus	Fruit	Decoction	Drink	1	1,428,571
T. Durand and H. Durand Piptadeniastrum africana (Hook.f.) Brenan	Dabéma	Mimosoideae	Piptadeniastrum	Stem barks	Decoction	Drink	1	1,428,571
Pseudospondias longifolia Engl.	Ofof	Anacardiaceae	Pseudospondias	Stem barks	Decoction	Drink	1	1,428,571
Psidium guajava L.	Guava	Myrtaceae	Psidium	Leaves	Decoction	Drink	1	1,428,571
Quassia africana (Baill.) Baill.	Mukédi (Punu)	Simaroubaceae	Quassia	Stem barks	Maceration	Drink	1	1,428,571

(Contd...)
Respondents were dominated by aged people (>50 years). This experience is consistent with the study of Etuk et al. [147], in which the estimated age range of respondents was 40-70 years. Others have documented a profound and growing knowledge gap regarding medicinal plants between old and young people [148]. According to Uniyal et al. [146], the younger generations are ignorant of the vast medicinal resources available in their surroundings and are occupied in the search for money through market resources. Transmission of traditional medicinal knowledge from one generation to the next is thereby under threat [13,16].

It was also found that plant-based medicinal knowledge was more prevalent among people living in rural rather than urban areas as described earlier by Vashistha [149]. Indeed, in a rural area, endogenous knowledge being more preserved [150], people resort, culturally, to the use of traditional medicine and herbal drugs are socioeconomically acceptable [151,152].

50 medicinal plants were exploited by both rural and urban people for the treatment of diabetes. Annonaceae was the most represented family. Members of the Annonaceae contain natural products with varied therapeutic properties, such as the anti-flavonol taxifolin [153], which is known to possess antidiabetic, antitumor, and anti-inflammatory properties [154]. In addition, Annonaceae acetogenins are potent mitochondrial toxins with anticancer and anti-HIV activities [154]. However, excessive use of Annona muricata has been associated with atypical parkinsonism on the island of Guadeloupe [155].

Among plant components used for medicinal purposes, stem barks were most often used followed by leaves in accord with the findings of other investigators [13,16,147]. Bark is easily collected and contains concentrated bioactive [58,60]. However, leaves which also accumulate pharmacologically active principles reportedly are often used to manage diabetes [15,156]. Whereas the collection of leaves does not induce plant damage, collection of bark, roots or the whole plant is destructive and may lead to species depletion [157]. Some respondents recognized and addressed this problem with a traditional ritual in which a coin was placed at the base of the tree and while the injured part was wiped with dead leaves. This practice reportedly was undertaken to facilitate a rapid regeneration of the excised part of the plant.

Herbal drugs were most commonly used as oral decoctions. This observation was in accordance with the work of Madingou et al., [68] who observed that healing plants are generally boiled in medicinal recipes and then taken orally by many healers in Gabon and also many other reports worldwide [158-160].

Evaluating the bio-efficacy of the medicinal plants recorded, it was observed that each plant was mentioned at least twice by

Table 2: (Continued)

Botanical names	Local names/venacular	Families	Genus	Parts used	Mode of preparation	Mode of administration	Numbers of citations	Frequencies of citations
Santiria trimera (Oliv.) Aubrèv.	Ebo	Burseraceae	Santiria	Root	Decoction	Drink	1	1,428,571
Tabernanthe iboga Baill.	Iboga	Apocynaceae	Tabernanthe	Stem barks	Maceration	Drink	1	1,428,571
Tithonia diversifolia (Hems.) A. Gray	Daisy	Asteraceae	Tithonia	Flowers	Decoction	Drink	1	1,428,571
Vernonia amygdalina Delile	Ndolé	Asteraceae	Vernonia	Leaves	Chewing	Eat	1	1,428,571
Voacanga africana Stapf ex Scott-Elliot	Ondou or Ontuless (Téké)	Apocynaceae	Voacanga	Root	Maceration	Drink	1	1,428,571
Xylopia aethiopica (Dunal) A. Rich.	Mugana (Punu)	Annonaceae	Xylopia	Fruit	Decoction	Drink	1	1,428,571
Zea mays L.	Maize	Poaceae	Zea	Fiber	Decoction	Drink	1	1,428,571

Figure 3: Plant parts cited for treating diabetes in the same areas of Gabon

Figure 4: Pharmaceutical forms used to treat diabetes in some Gabonese regions
Table 3: Phytochemical and pharmacological properties of plants

Botanicals names	Biological properties	Phytochemicals compounds	References
Acacia auriculiformis Benth.	Antifilarial effect. Antioxidant activity	Triterpenoid saponins. Proacaciaside and acacia mini. Tetrahydroxylavonane, teracacidin, and trihydroxyflvanone, phenols, and tannins. Proanthocyanidins.	[17-20]
Allium sativum L.	Antioxidant activity. Anti-diabetic and hypolipidemiac properties. Antihypertensive effect	Phenylpropanoids. Saponins, steroids, tannins, carbohydrates and cardiac glycosides. Propenyl cisteine and allyl cisteine	[21-24]
Alstonia boonei De Wild.	Diuretic activity. Hypoglycemic properties. Antioxidant activity	Saponins and indole alkaloids. Alkaloids, tannins, steroids, glycosides, flavonoids, and terpenoids. Tripterpenes	[9,11,25,26]
Anchormanites diffimmers (Blume) Engl.	Antimicrobial activity. Anti-inflammation and anti-noiception activities	Cardiac glycosides, terpenoids, steroids, phlebotannins, and flavonoids.	[27,28]
Annicka chlorantha (Oliv.) Setten and Maas	Antioxidant activity. Noteworthy biological activity	Phenolics, flavonoids, alkaloids, glycosides, saponins. Isoquinoline, acetonenins, and sesquiterpenes	[29,30]
Annonidium manni (Oliv.) Engl. and Diels	Antitubercular activity. Cytotoxic agent. Antioxidant activity and anticanancer agent	Alkaloids, phenols, polyphenols, saponins, tannins, steroids and triterpenes	[34,35]
Annonidium manni (Oliv.) Engl. and Diels	Antimicrobial activity.	Phoenolic, total flavonoids, total tannins total proanthocyanidins, coumarins, anthracones, saponins, and triterpenoids. Antrocarine A-F. Ergostane-type antrocarine E	[36-38]
Aucoumea klaireana Pierre	Antioxidant activity. Antimicrobial activity	Monoterpenoids	[39,40]
Annonidium manni (Oliv.) Engl. and Diels	Antimicrobial activity. Antihyperglycemic and hypolipidemic activities. Antithrombocytopenic activity. Useful antioxidant. Antifungal agent	Saponins, cardiac glycoside, anthraquinone, flavonoids, steroids, and tannins. Phenolics, cARPaine. Benzylicosinolate. Benzyl isothiocyanate	[41-45]
Ceiba pentandra L. Gaernt.	Hypoglycemic and antihyperglycemic effects. Antioxidant activity	Phenolic, flavonoid, alkaloid and tannins	[46,47]
Cleistophilus glauca Pierre ex Engl. and Diels	Antimicrobial activity.	Cleistriosides-2. Patchoulenone, cypere and germacrene D	[48,49]
Cocos nucifera L.	Cytotoxic and antihyperglycemic properties. Antimalarial activity	Phenolic compounds, flavonoids, resins, alkaloids, carbohydrate, proteins, and fibers. Tannins, saponins, glycosides, steroids and anthraquinones	[50,51]
Combretum micranthum G. Don	Antihyperglycemic activities.	Gallic acid, rutin trihydrate, (+)-catechin and benzoic acid. Alkaloids, saponins, tannins, anthraquinones, cardiac glycosides, flavonoids, and steroids	[52,54]
Cylcodiscus gabunensis Harms	Antiplasmodial activity. Antimicrobial activity. Antimalarial activity	Alkaloids and terpenes. Leucoanthocyanins, saponins, tannins, polyphenols, coumarins, cardiac glycosides, reducing sugars, steroids, flavonoids, steroids and or triterpenes. Gallic acid, oligosaccharides	[55,57]
Cymbopogon citratus (DC.) Stapf	Anti-inflammatory and sedative. Hypoglycemic and hypolipidemic effects. Antitubercular activity. Anti-inflammatory activity.	Citral and terpenes. Alkaloids, saponins, tannins, anthraquinones, steroids, phenols. Carlinoside, isoorientin, cynaroside, luteolin 7-O-neohesperidoside, kurilesin A and cassiaoccidentalin B	[58-61]
Duboscia macrocarpa Bocq.		Dubosane. Dubosides	[62,63]
Entada gigas (L.) Fawcett and Rendle	Used for diarrhea. Microbial infection	Alkaloids, phenols, and tannins	[64,65]
Gnetum africanum Welw.	Potential chemopreventive agents. Antimicrobial activity	Phenolic compounds, flavonoids, phytosterols, alkaloids, tannins, saponins, chlorophyll, and glycosides. β-caryophyllene, (E)-phytol and trimethyl-2-pentadecanone	[66,67]
Guilbouertia tessmannii (Harms) J. Leonard	Hypotensive activity. Antioxidant activity. Hypoglycemic effect	Tripterpenes, sterols, alkaloids, tannins, polyphenols, sugars and saponosides	[68,70]
Harungana madagascariensis Lam. ex Poir.	Anti-inflammatory, antioxidant and antidiabetic activities	Polyphenols, tannins, and triterpenes. Alkaloids, saponins, and flavonoids	[71,73]

(Contd...)
Table 3: (Continued)

Botanical names	Biological properties	Phytochemicals compounds	References
Lantana camara L.	Hypoglycemic and wound healing properties. Antihyperglycaemic effect. Antimicrobial and cytotoxic activities.	Carbohydrates, flavonoids, phytosterols, saponins, β-caryophyllene, ar-curcumene/zingiberene, γ-curcumene-15-al/epi-β-bisabolol, (E)-nerolidol, davanone, euugenol/alooaromadendrene, and carvone	[74-76]
Mammee africana Sabine	Cytoprotective and antimicrobial activities. Hypoglycemic effect. Hepatoprotective activity.	4-phenylcoumarins, 4-n-propylcoumarins, one 4-n-pentylcoumarin, 1,5-dihydroxyxanthone and 1-methoxy-5-hydroxyxanthone	[77-79]
Microdesmis puberulaHook.f. ex Planch.	Analgesic and anti-stress agent.	keayandines A, B, C and keayanine A. Saponins, cardiac glycosides, deoxysugars, alkaloids, and terpenes	[80-82]
Milicia excelsa (Welw.) C. Berg	Wound healing and antibacterial effects. Used for the management of Type 2 diabetes	Tannins, alkaloids, flavonoids and saponins. Melicamidine A. 3,4-dimethoxybenzyl beta-D-xypophorosyl -beta-D-glucopyranoside, lupeol acetate, ursolic acid, triacetylt (E)-ferulate, and 2-(3,5-dihydroxiphenyl) benzofuran-5,6-diol. Polyphenol, phenol, triterpenes and glicosides	[83-86]
Mimosa pudica L.	Antimicrobial activity. Hypolipidemic activity. Antihyperglycemic activity. Anthelmintic activity. Antioxidant activity.	C-glycosylflavones. Terpenoids, flavonoids, glycosides, alkaloids, quinines, phenols, tannins, saponins, and coumarins	[87-89]
Musa × paradisiaca L.	Antitryptansomal effects. Genotoxic activity.	Alkaloids, flavonoids, terpenoids, saponins, tannins, and reducing sugars, alkaloids, and cardenolides.	[90-93]
Musanga cecropioidesR.Br. ex Tedlie	Antihypertensive. Antioxidant activity.	Cercropic acid methyl ester	[94-96]
Nauclea diderrichii (De Wild.) Merr.	Antitryptansosomal effects.	Alkaloids, flavonoids, terpenoids, saponins, tannins, and reducing sugars, alkaloids, and cardenolides.	[97,98]
Newbouldia javaeis (P. Beaux.) Seem.	Antimicrobial activity.	C-glycosylflavones. Terpenoids, flavonoids, glycosides, alkaloids, quinines, phenols, tannins, saponins, and coumarins	[99-101]
Pennisetum purpureum Schumach.	Antioxidant enzyme. Nutritional and antinutritional. Heribical activity.	Ascorbic acid, rutin, epicatechin, anthocyanins, p-coumaric acid, caffeine, and terpinene.	[102-105]
Peperomia pellucida (L.) Kunth	Anticancer, antimicrobial, antidiabetic properties.	Phytochemicals compounds. 3,3,8-p-menhthatriene, β-phellandrene, apiole, myristicin, and terpinolene.	[106-108]
Persea americana Mill.	Hypoglycemic and hypolipidemic activities. Antihyperglycemic activity.	Alkaloids, flavonoids, terpenoids, saponins, tannins, resins, steroids, phenols and carbohydrate. Flavonoids, glycosides, saponins, and terpenoids.	[109-111]
Petroselinum crispum (Mill.) Fuss	Antioxidant and antibacterial activities. Anti-virico activity. Antidiabetic effect.	Phenolics compounds. 3,3,8-p-menhthatriene, β-phellandrene, apiole, myristicin, and terpinolene.	[112-114]
Phaseolus vulgaris L.	Antihyperglycemic activity. Antioxidant and antiproliferative effects.	Alkaloids, flavonoids, proteins, tannins, terpenoids, saponins, quercetin, anthocyanin and catechin. Gallic acid, chlorogenic acid, epicatechin, myricitin, fumonisin, caffeic acid, and kaempferol.	[115,116]
Picralima nitida (Stapf) T. Durand and H. Durand	Hypoglycemic activity. Antioxidant and antidiabetic activities.	Flavonoids, terpenes, sterols, saponins, alkaloids and polyphenols.	[117,118]
Piptadeniastrum africanaum (Hook.f.) Brenan	Antifungal activity. Gastroprotective and ulcer healing effects.	Alkaloids, saponins, coumarins, flavonoids, carbohydrates, phenolic compounds, and tannins. Piptadenine and piptadenamide	[119,120]
Pseudospondias longifolia Engl.	Antioxidant and antimicrobial properties.	Total phenols, gallic acid, flavonoids, quercetin, tannins, tannic acid and proanthocyanidins procyanidin.	[121]
Psidium guajava L.	Hypoglycemic and hypotensive properties. Antioxidant activity.	Total phenols, gallic acid, flavonoids, quercetin, tannins, tannic acid and proanthocyanidins procyanidin.	[122,123]
Quassia africana (Baill.) Baill.	Antiamoebic activity. Antiviral activity. Larvicidal property.	Alkaloids, saponins, carboxylates, phenolic compounds, and tannins. Psiddin and pseuderine	[124-126]
Saintiria trimera (Oliv.) Aubrèv.	Antimicrobial activity.	Tannins, alkaloids, flavonoids, saponins, terpenes. Quassin and sinalkalactone D	[127-129]
Tabernanthe iboga Baill.	Insulinotropic effect. Antiinflammatory activity.	Iboigaine, tabernanthine, and voacangin	[130,131]
Tithonia diversifolia (Hemsl.) A. Gray	Antihyperglycemic activity.	Flavonoids, tannins, saponins, sterols and terpenes. Tannins and saponins. Sugars, sesquiterpene lactones and phenolics.	[124,132-134]
Vernonia amygdalina Delile	Hypoglycemic and hypolipidemic activity.	Flavonoids, terpenoids, saponins, tannins and reducing sugars, alkaloids, cardic glycosides. Carbohydrates, sterols and balsams. Sesquiterpene lactone vernolide and vernolial	[135-137]
people from different regions for the management of diabetes. The literature also reports the use of some of these plants for diabetes treatment in other countries such as A. boonei has been studied in Nigeria [9]; P. americana, studied in Nigeria and Brazil [109,110]; P. nitida in Nigeria and Cameroon [117,118].

Moreover, the literature reports anti-diabetic properties of many of these plants. 15 of them would have hypoglycemic, hypolipemia the case of P. americana, P. guajava, C. citratus, C. pentandra, C. papaya, L. camara, A. muricata, and A. sativum [22,109,110]. C. pentandra would have both antihyperglycemic and hypoglycemic effects [46]. Gaubouria would have antioxidant and hypoglycemic [69,70]. Since, the frequency of plant use citations by both traditional healers and literature is an indication of the pharmacological relevance of the plant and thus, of curative properties [156], one may argue the therapeutic properties of some of the investigated medicinal plants which were evidenced by their studied pharmacological properties.

CONCLUSION

The study highlights the drug discovery great potential of the Congo Basin Forest. Nowadays, the management of diabetes is not the only fact of modern medicine, many medicinal based plants recipes are proposed by healers worldwide and deserve to be valued and rationalize.

REFERENCES

1. Akhtar MS, Ali MR. Study of anti diabetic effect of a compound medicinal plant prescription in normal and diabetic rabbits. J Pak Med Assoc 1984;34:239-44.
2. Chauhan A, Sharma PK, Srivastava P Kumar N, Dudhe R. Plants having potential antidiabetic activity: A review. Pharm Lett 2010;2:369-87.
3. Patel DK, Kumar R, Laloo D, Hemalatha S. Natural medicines from plant source used for therapy of diabetes mellitus: An overview of its pharmacological aspects. Asian J Trop Dis 2012;2:239-50.
4. Mbanya JC, Motala AA, Sobongwi E, Assah PK, Enoru ST. Diabetes in sub-Saharan Africa. Lancet 2010;376:23-34.
5. Peer N, Kengne AP, Motala AA, Mbanya JC. Diabetes in the Africa Region: An update. Diabetes Res Clin Pract 2014;103:197-205.
6. Diabetes Atlas. 3rd ed. IDF Available from: https://www.idf.org/sites/default/files/attachments/article_495_en.pdf. [Last accessed on 2016 Jun 25].
7. Countrymeters, Gabon Population; 2017. Available from: http://www.countrymeters.info/fr/Gabon. [Last accessed on 2017 Mar 02].
8. Atlas du Diabète de la FID. 6e edition; 2014. Available from: http://www.idf.org/sites/default/files/Atlas-poster-2014_FR.pdf. [Last accessed on 2015 Feb 12].
9. Askimloye OA, Oshilaja RT, Okelana OA, Askimloye ID, Idowu OM. Hypoglycemic activity of Alternia boonei stem bark extract in mice. Afr J Pharmacol 2016;10:418-27.
10. George VC, Kumar DR, Rajkumar V, Suresh PK, Kumar RA. Quantitative assessment of the relative antinociceptive potential of the n-butanolic leaf extract of Annona muricata Linn. in normal and immortalized human cell lines. Asian Pac J Cancer Prev 2012;13:699-704.
11. Adeniyi MA, Adeniyi JO, Ajayi EA, Preliminary phytochemical and diuretic studies of Atelostum boonei stem bark in male wistar rats. J Nat Remedies 2004;4:179-82.
12. Brusotti G, Tosi S, Tava A, Picco AM, Grisoli P, Cesari I, et al. Antimicrobial and phytochemical properties of stem bark extracts from Piptadeni austrum africanum (Hook.f.) brenan. Ind Crops Prod

Table 3: (Continued)

Botanical names	Biological properties	Phytochemicals compounds	References
Voacanga africana Stapf ex Scott-Elliot	Antioxidant activity. Antimicrobial activity	Anthranoids, anthraquinone, cardiac glycosides, phenols, phlobatannins, starch and tannins. Ibogamine, voacamine, vobasine, voacangine, voacristine, 19-epi-voacristine and 19-epi-heynanine	[124,138,139]
Xylopia aethiopica (Dunal) A. Rich.	Hypoglycemic effects. Antihyperglycemic and antioxidant potentials	Alkaloids and polyphenols	[140,141]
Zea mays L.	Preventive effect of the diabetic nephropathy. Antioxidant activity. Therapeutic and antioxidative agents	Anthocyanins and phenolics compounds. Flavonoids, saponins, tannins, phlobatannins, alkaloids, cardiac glycosides, and terpenoids	[142-144]
Tjeck, et al.: Medicinal plants used for diabetes management

13. Bett J., Yongo D., Mbombo D., Ipouga D., Ngoye A. An ethnobotanical and floristic study of medicinal plants among the Baka Pygmies in the periphery of the Ipassa-biosphere reserve, Gabon. Eur J Med Plants 2013;3:174-205.

14. The Plant List. Version 1. 2013. Available from: http://www.theplist.org. [Last accessed on 2017 Feb 11].

15. Ovovik S., Kister M., Khan S., Talukder S.H., Hauner H. Traditional medicinal plants used for the treatment of diabetes in rural and urban areas of Dhaka, Bangladesh - An ethnobotanical survey. J Ethnobiol Ethnomed 2013;9:43.

16. Dey AK., Rashid MM., Millat MS., Rashid MM. Ethnobotanical survey of medicinal plants used in traditional health practitioners and indigenous people in different districts of Chittagong, Bangladesh. Int J Pharm Sci Invent 2014;3:1-7.

17. Ghosh M., Babu SP., Sukul NC., Mahato SB. Antifilarial effect of two triterpenoid saponins isolated from Acacia auriculiformis. Indian J Exp Biol 1993;31:604-6.

18. Garai S., Mahato SB. Isolation and structure elucidation of three triterpenoid saponins from Acacia auriculiformis. Phytochemistry 1997;44:137-40.

19. Barry KM., Mihara R., Davies NW., Mitsunaga T., Mohammed CL. Polyphenols in Acacia mangium and Acacia auriculiformis heartwood with reference to heart rot susceptibility. J Wood Sci 2005;51:615-21.

20. Sathya A., Siddhuraju P. Role of phenolics as antioxidants, biomolecule protectors and as anti-diabetic factors – Evaluation on bark and empty pod methanolic extracts of Acacia indica. Asian Pac J Trop Med 2012;5:757-65.

21. Ichikawa M., Ryu K., Yoshiha J., Ide N., Kodera Y., Sasaoka T., et al. Identification of six phenylpropanoids from garlic skin as major antioxidants. J Agric Food Chem 2003;51:7313-7.

22. Thomson M., Al-Amin ZM., Al-Qattan KK., Shaban LH., Ali M. Anti-diabetic and hypolipidaemic properties of garlic (Allium sativum L.) in streptozotocin-induced diabetic rats. Int J Diabetes Metab 2007;15:108-15.

23. Mikail HG. Phytochemical screening, elemental analysis and acute toxicity of aqueous extract of Allium sativum L. bulbs in experimental rabbit. J Med Plants Res 2010;4:322-6.

24. Matsutomo T., Ushijima Y., Kodera Y., Nakamoto M., Takashima M., Morihara N., Ryu K., Yoshida J., Ide N., Kodera Y., Sasaoka T., et al. Identification of six phenylpropanoids from garlic skin as major antioxidants. J Agric Food Chem 2003;51:7313-7.

25. Chime SA., Ugwuoco EC., Onyishii IV., Brown SA., Onunkwo GC. Formulation and evaluation of Alstonia boonei stem bark powder tablets. Indian J Pharm Sci 2013;75:226-30.

26. Ohawure MO., Ikewere OM., Alaghakhlu DL., Okoye FB. The useful properties of stem bark powder of Alstonia boonei (Graviola). Asian J Pharm Sci 2013;8:315-18.

27. Adesokan AA., Akanji MA., Yakubu MT. Antibacterial potentials of Allium sativum L. bulbs in experimental rabbits. J Med Plants Res 2010;4:322-6.

28. Adesokan OA., Akanji MA., Yakubu MT. Antibacterial potentials of aqueous extract of Enantia chlorantha stem bark. Afr J Tradit Complement Altern Med 2007;4:201-5.

29. Talontsi FM., Lamsho E., Douanja-Meli C., Kouam SF., Spillers M. Antiplasmodial and cytotoxic dibenzofurans from Enantia chlorantha (Burman) engl. leaves and rhizomes against Plasmodium berghei infected mice. J Ethnopharmacol 2014;153:233-40.

30. Ge H., Dai J. Chemical constituents of an endophytic fungus from Annona muricata. Zhongguo Zhong Yao Za Zhi 2010;35:3151-5.

31. Gavamukiyula Y., Abou-Eteleta F., Wamunyokoli F., AEI-Shemy H. Phytochemical screening, anti-oxidant activity and in vitro antitumor potential of ethanolic and water leaf extracts of Annona muricata (Graviola). Asian J Trop Med 2014;75:103-11.

32. Djeussi DE., Noumedem JA., Seukep JA., Fankam AG., Voukeng I.K. Antibacterial activities of selected edible plants extracts against multidrug-resistant Gram-negative bacteria. BMC Complement Altern Med 2013;13:164.

33. Kuetu V., Fankam AG., Wiensch B., Efferth T. Cytotoxicity and modes of action of the methanol extracts of six Cameroonian medicinal plants against multidrug-resistant tumor cells. Evid Based Complement Alternat Med 2013;2013:285903.

34. Sima GC., Obame EL., Ondo JP., Zong C., Nene EE., Traore A. Ethnotherapy study, phytochemical screening and antioxidant activity of Antrocaryon klaineanum Pierre and Anthocleista nobilis G. Don. medicinal plants from Gabon. J Adv Res 2015;3:812-9.

35. Douanla PD., Tabopda TK., Thichta AD., Cieckiewicz E., Fredrich M., Boyom FF., et al. Anticancerous A-F, antiplasmodial ergostane steroids from the stem bark of Antrocaryon klaineanum. Phytomedicine 2017;117:521-6.

36. Foukeng Y., Akak CM., Tala MF., Azbeze AG., Ditrich B., Vardiencds JC., et al. The structure of antarcorine A, an ergostane isolated from Antrocaryon klaineanum Pierre (Anacardiaceae). Fitoterapia 2017;117:614-1.
Tjeck, et al.: Medicinal plants used for diabetes management

55. Okonji JE, Ita BN, Udokpoh AE. Antiplasmodial activity of Cylicodiocus gabunensis. J Ethnopharmacol 2006;107:175-8.

56. Koutchou ML, Kouam J, Penlap BV, Ngadjui BT, Formum ZT, Eboa FX. Evaluation of antimicrobial activity of the stem bark of Cylicodiocus gabunensis (Mimosaceae). Afr J Tradit Complement Altern Med 2007;4:67-93.

57. Aldulaimi O, Uche FI, Hameed M, Mbye H, Ullah I, Drijfhout F, et al. A characterization of the antimarial activity of the bark of Cylicodiocus gabunensis. J Ethnopharmacol 2017;198:221-5.

58. Negrelle RR, Gomes EC. Cymbopogon citratus (DC.) Stapf: Chemical composition and biological activities. Rev Bras Planta Med 2007;9:60-92.

59. Adeyeye AA, Agbaje EO. Hypoglycemic and hypolipidemic effects of fresh leaf aqueous extract of Cymbopogon citratus Stapf. in rats. J Ethnopharmacol 2007;112:440-4.

60. Asaolu MF, Oeyemui OA, Olanlokun JO. Chemical compositions, phytochemical constituents and in vitro biological activity of various extracts of Cymbopogon citratus. Pak J Nutr 2009;8:1920-2.

61. Costa G, Ferreira JP, Vittorino C, Pina ME, Sousa JJ, Figueiredo IV, et al. Polyphenols from Cymbopogon citratus leaves as topical anti-inflammatory agents. J Ethnopharmacol 2016;178:222-8.

62. Wafa P, Kamdem RS, Ali Z, Anjum S, Khan SN, Begum A, et al. Dubosic acid: A potent a-glucosidase inhibitor with an unprecedented triterpenoid carbon skeleton from Dubosia macrocarpa. Org Lett 2010;12:5769-72.

63. Thuenend MH, Douanka P, Tabopda TK, Tchinda AT, Tamze V, Nkengfack AE, et al. Two new glycosides from Dubosia macrocarpa Booy. Phytochem Lett 2014;10:1-4.

64. Ariwoodo JO, Adeniji KA, Onadeji OM, Shasanya OS. Survey of wild plant seeds and their value in traditional herbal medicine in Osun State, Nigeria. J Res Forest Wildl Environ 2013;4:39-51.

65. Fankam AG, Kuate JR, Kuate V. Antibacterial activities of Beilschmiedia obscura and six other Cameroon medicinal plants against multidrug resistant Gram-negative phenotypes. BMC Complement Altern Med 2014;14:241.

66. Iwalewa EO, Adewale IO, Taiwo AE. Analyses of the volatile constituents and antimicrobial activities of Gornongema latifolium (Benth.) and Ocinum gratissimum L. from Nigeria. J Med Food 2009;1:105-10.

67. Edet UU, Ehiabhi OS, Ogunwande IA, Ekundayo O. Analyses of the phytochemical constituents and in vitro biological activity of various extracts of Morinda citrifolia (Linn.) leaves. J Intercult Ethnopharmacol 2010;2:215-21.

68. Iwalewa EO, Adewale IO, Taiwo AE. Chemical composition and biological activities. Rev Bras Planta Med 2013;5:30-6.

69. Roumy V, Hennebelle T, Zamblé A, Zamblé Y, Slashp S, Bailleul F. Letter: Characterisation and identification of spermine and spermidine derivatives in Microdesmis keayana and Microdesmis puberula roots by electrospray ionisation tandem mass spectrometry and high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry. Eur J Mass Spectrom (Chichester) 2008;14:111-5.

70. Okany CC, Ishola IO, Ashorobi RB. Evaluation of analgesic and antistress potential of methanolic stem wood extract of Microdesmis puberula Hook.f. ex planch (Pandaceae) in mice. Int J Appl Res Nat Prod 2012;5:30-6.

71. Okon AE, Otu IS, Adaeeze OK, Godvin DK, Ndem JI, Fidelis UA. Phytochemical screening and effect of ethanol root extract of Microdesmis puberula on some haematological and biochemical parameters in normal male albino Wistar rats. J Med Plant Res 2013;7:2338-42.

72. Udengbunam SO, Nnaji TO, Udengbunam RI, Okaro JC, Agbo I. Evaluation of traditional herbal ointment formulation of Milicia excelsa (Welw) C.C berg for wound healing. Afr J Biotechnol 2013;12:3351-9.

73. Hussain H, Nyongha AT, Dongo E, Ahmad J, Zhang W. Melicilamide A: A new ceramide from Milicia excelsa. Nat Prod Res 2013;27:1246-9.

74. Ouete JL, Sandjo LP, Kapche DW, Yeboah SO, Mapitse R, Abegam BZ, et al. Excelsoside: A new benzylc diglycoside from the leaves of Milicia excelsa. Z Naturforsch C 2014;69(8-7):271-5.

75. Dzeufiet PD, Toharnadeu MC, Bilanda DC, NgadenaYS, Poumeni MK, Nana D, et al. Preventive effect of Milicia excelsa (Moraceae) aqueous extract on dexamethasone induced insulin resistance in rat. J Pharm Sci Chem 2014;5:1232-4.

76. Yuan K, Liu JL, Yin MW. Chemical constituents of C-glycosylflavonones from Mimosa pudica. Yao Xue Xue Bao 2000;4:215-21.

77. Balogun AE, Adaeze OK, Godvin DK, Ndem JI, Fidelis UA. Phytochemical screening and effect of ethanolic stem wood extract of Microdesmis puberula Hook.f. ex planch (Pandaceae) in mice. Int J Appl Res Nat Prod 2012;5:30-6.

78. Tchamadeu MC, Dzeufiet PD, Nouga CC, Azebaze AG, Allard J, Mosse B. Analysis of the volatile constituents and antimicrobial activities of Guibourtia tessmannii (Guttiferae) in diabetic rats. J Ethnopharmacol 2010;127:368-72.

79. Mallick C, Chatterjee K, Guhabiswas M, Ghosh D. Antiatherogenic effects of separate and composite extract of root of Musa paradisiaca and leaf of Coccinia indica in streptozotocin-induced diabetic male albino rat. Afr J Tradit Complement Altern Med 2007;4:362-71.

80. Hussain A, Khan MN, Sajid MS, Izbal Z, Khan MK, Abbas RZ, et al. In vitro screening of the leaves of Musa paradisiaca for antimicrobial activity. J Anim Plant Sci 2011;21:205-8.

81. Mahmood A, Ngar O, Oumar MN. Phytochemicals constituent and antioxidant activities in Musa x paradisiaca flower. Eur J Sci Res 2011;66:311-8.

82. Sundaram SC, Subramanian S. Biochemical evaluation of hypoglycemic activity of Musa paradisiaca (Plantain) flowers in STZ induced experimental diabetes in rats. Asian J Res Chem Biotechnol 2011;4:827-33.

83. Lentsi D, Sondengam BL, Ayafor JF, Tsoupras MG, Tabacchi R. Further studies on the phytochemical profile of Cylicodiscus gabunensis oil samples from Cuba, Nepal, and Yemen. Chem Biodivers 2013;10:215-21.

84. Tchamadeu MC, Dzeufiet PD, Nougua CC, Azabeaze AG, Allard J, Girolami JP, et al. Hypoglycaemic effects of Mammea africana (Guittaeae) in diabetic rats. J Ethnopharmacol 2010;127:368-72.

85. Tjeck JE, Bawo MB, Mbagwu VO. Hematoprotective activity of Mammea africana ethanol stem bark extract. Avicenna J Phytomed 2010;2:260-3.

86. Nana D, Nkengfack AE, et al. Preliminary qualitative screening for cancer chemopreventive agents in Telfairia occidentalis Hook.f.. Z Naturforsch C 2014;69(7-8):271-5.

87. Yuan K, Lu JL, Yin MW. Chemical constituents of C-glycosylflavonones from Mimosa pudica. Yao Xue Xue Bao 2000;4:215-21.

88. Gandhiraja N, Srima S, Meenav V, Sriakshmi JK, Sasikumar C, Rajeswari R. Phytochemical screening and antimicrobial activity of the plant extracts of Mimosa pudica L. against selected microbes. Ethnobot Leaf 2009;13:618-24.

89. Rajendran R, Krishnakumar E. Hypolipidemic activity of chloroform extract of Mimosa pudica leaves. Avicenna J Med Biotechnol 2010;2:215-21.

90. Mallick C, Chatterjee K, Guhabiswas M, Ghosh D. Analipidemic effects of separate and composite extract of root of Musa paradisiaca and leaf of Coccinia indica in streptozotocin-induced diabetic male albino rat. Afr J Tradit Complement Altern Med 2007;4:362-71.

91. Hussain A, Khan MN, Sajid MS, Izbal Z, Khan MK, Abbas RZ, et al. In vitro screening of the leaves of Musa paradisiaca for antimicrobial activity. J Anim Plant Sci 2010;20:5-8.

92. Mahmood A, Ngar O, Oumar MN. Phytochemicals constituent and antioxidant activities in Musa x paradisiaca flower. Eur J Sci Res 2011;66:311-8.

93. Sundaram SC, Subramanian S. Biochemical evaluation of hypoglycemic activity of Musa paradisiaca (Plantain) flowers in STZ induced experimental diabetes in rats. Asian J Res Chem Biotechnol 2011;4:827-33.

94. Lentsi D, Sondengam BL, Ayafor JF, Tsoupras MG, Tabacchi R. Further studies on the phytochemical profile of Cylicodiscus gabunensis oil samples from Cuba, Nepal, and Yemen. Chem Biodivers 2013;10:215-21.

95. Tchouya GR, Nantia EA. Phytochemical analysis, antioxidant activities in vitro and phytochemical studies of the stem bark aqueous extract of Cylicodiscus gabunensis. Afr J Tradit Complement Altern Med 2007;4:827-33.
Gabon. J Pharmacogn Phytochem 2015;3:192-5.

97. Nwodo NJ, Agbo MO. Antitrypanosomal effects of methanolic extracts of Nuclea diderrichii (Mert.) and Spathodea campanulata stem bark. J Pharm Allied Sci 2010. DOI: 10.4314/JOPHAS.V7I5.63466.

98. Liu W, Di Giorgio C, Lamidi M, Elias R, Ollivier E, De Mee MP. Genotoxic and clastogenic activity of saponins extracted from Nuclea bark as assessed by the micronucleus and the comet assay in Chinese hamster ovary cells. J Ethnopharmacol 2011;137:176-83.

99. Kuete V, Eyon GOK, Fofoc NG, Ban VP, Hussain H, Krohn K, et al. Antimicrobial activity of the methanolic extract of and the chemical constituents isolated from Newbouldia laevis. Pharmazie 2007;62:552-5.

100. Hassan SW, Tillo MK, Lawal M, Umar RA, Ndakotsu MA, Farouk UI, et al. Hepatoprotective action of stem extracts of Newbouldia laevis in rats treated with carbon tetrachloride (CCL4). J Global Biosci 2015;4:1627-46.

101. Osiogwe CC, Akah PA, Nworu CS, Okoye TC, Tchimene MK. Antihyperglycemic studies on the leaf extract and active fractions of Newbouldia laevis (Bignoniaceae). Pharmacol Pharm 2015;6:518-32.

102. Yuh-FM, Wang BS, Chu HL, Chang LW, Yen WJ, Lin CJ, Duh PD. Napiergass (Pennisetum purpureum S.) protects oxidative damage of biomolecules and modulates antioxidant enzyme activity. Food Chem 2007;105:1364-74.

103. Akaraonye CC, Ikewuchi JC. Nutritional and anti-nutritional components of (Pennisetum purpureum Schumach). Pak J Nutr 2009;8:324-5.

104. Prinsen P, Gutierrez A, del Rio JC. Lipophilic extracts from the cortex and pith of elephant grass (Pennisetum purpureum Schumach.) stems. J Agric Food Chem 2012;60:6408-17.

105. Norhaziah MZ, Ismail BS, Chua HS. Herbicidal activity of Pennisetum purpureum (Napier grass). Afr J Biotechnol 2012;11:6269-73.

106. Wei LS, Wee W, Siong JY, Syamsumir DF. Characterization of anticancer, antimicrobial, antioxidant properties and chemical compositions of Peperomia pellucida leaf extract. Acta Med Iran 2011;49:670-4.

107. Oloyede GK, Onocho PA, Olaniran BB. Phytochemical, toxicity, antimicrobial and antioxidative screening of leaf extracts of Peperomia pellucida from Nigeria. J Ethnopharmacol 2004;91:215-8.

108. de Fátima Amorim-Blank M, Dmitrieva EG, Frantzen EM, Antonioli AR, Andrade MR, Marchioro M. Anti-inflammatory and analgesic activity of Peperomia pellucida (L.) HBK (Piperaceae). J Ethnopharmacol 2004;91:215-8.

109. Brai BI, OdetoLA AA, Agomo PU. Hypoglycemic and hypcholesterolemic potential of Persea americana leaf extracts. J Med Food 2007;10:356-60.

110. Lima CR, Vasconcelos CF, Costa-Silva JH, Maranhão CA, Costa J, Maranhão CA. Antimicrobial activity of extract from Persea americana Mill. leaf via the activation of protein kinase B (PKB/ Akt) in streptozotocin-induced diabetic rats. J Ethnopharmacol 2012;141:1517-25.

111. Garcia-Rodriguez YM, Torres-Gurolla G, Mélendez-González J. Antioxidant activity of the bark of Persea americana Mill cv. Hass. Chem Biodivers 2016;13:1767-75.

112. Snoussi M, Delhan M, Noumi E, Flamini G, Papetti A. Chemical composition and antibiofilm activity of Persea americana and Ocimum basilicum essential oils against Vibrio spp. strains. Microb Pathog 2016;90:13-21.

113. Abou Khalil NS, Abou-Elhamd AS, Wasfy SI, El Mileegy IM, Smichy MI, et al. Antimalarial activity of stem barks of Piptadeniastrum africanum on experimentally induced gastric ulcers in rats. BMC Complement Altern Med 2015;15:214.

114. Ateufack G, Domgou Makam EC, Mbiatumba M, Dongo Meuido RB, David G, Kamanyi A, et al. Gastroproctive and ulcer healing effects of Piptadeniastrum africanum on experimentally induced gastric ulcers in rats. BMC Complement Altern Med 2015;15:214.

115. Atchibri AL, Brou KD, Kouakou TH, Kouadio YJ, Gnakri D. Screening of antimicrobial activities of Thunbergia alata (Acanthaceae) on Vibrio cholerae f. brennan. Chem Biodivers 2017;14.

116. Obiang CS, Ondo JP, Atome GR, Engonga LC, Siawaya JF, Emvo EN. Phytochemical screening, antioxidant and antimicrobial potential of stem barks of Coula edulis Baill. Pseudospondias longifolia Engl. and Carapa klaineana Pierre. from Gabon. Asian Pac J Trop Med 2016;6:567-63.

117. Ojevoje VA. Hypoglycemic and hypotensive effects of Psidium guajava (Myrtaceae) leaf aqueous extract. Methods Find Exp Clin Pharmacol 2005;27:689-95.

118. Araújo HM, Rodrigues FF, Costa WD, Nonato Cde F, Rodrigues FF, Boligon AA, et al. Chemical profile and antioxidant capacity verification of Psidium guajava (Myrtaceae) fruits at different stages of maturation. EXCLI J 2015;14:1020-30.

119. Tona L, Kambu K, Ngimbé N, Cimanga K, Vlitnick AJ. Antiinflammatory and phytochemical screening of some Congolese medicinal plants. J Ethnopharmacol 1998;61:57-65.

120. Apers S, Cimanga K, Vanden Bergh De, Van Meenen E, Longanga AO, Foriers A, et al. Antiviral activity of simikalakactone D, a quassioside from Quassia africana. Planta Med 2002;68:20-4.

121. Sama W, Ajayeoba EO, Choudhary M. Larvicidal properties of simikalakactone D from Quassia africana (Simaroubaceae) baill and baill, on the malaria vector Anopheles gambiae. Afr J Tradit Complement Altern Med 2014;11:84-8.

122. Da Silva MF, Francisco RH, Gray AI, Lechat JR, Waterman PG. Lanost-7-en triterpenes from stem bark of Santinia trimera. Phytochem 1990;29:1629-32.

123. Martins AP, Salgueiro LR, Gonçalves MJ, Proença da Cunha A, Vila R, Cariguier S. Essential oil composition and antimicrobial activity of Santinia trimera bark. Planta Med 2003;69:77-9.

124. Andre M, Garber A, Gasse MS, Weih P, Jaspert C, et al. Antimicrobial activities of Spathodea campanulata. J Ethnopharmacol 2005;100:1364-74.

125. Apers S, Cimanga K, Vanden Bergh De, Van Meenen E, Longanga AO, Foriers A, et al. Antiviral activity of simikalakactone D, a quassioside from Quassia africana. Planta Med 2002;68:20-4.

126. Sampaio BL, Edrada-Ebel RA, Da Costa FB. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia in Brazilian populations. J Ethnopharmacol 2011;132:1015-20.

127. Milua T, Nosaka K, Ishii H, Ishida T. Antidiabetic effect of Nitobigeku, the herb Tithonia diversifolia, in KK-Ay diabetic mice. Biol Pharm Bull 2005;28:2152-6.

128. Ogundare AO. Antimicrobial effect of Tithonia diversifolia and Jatropha gossypifolia leaf extracts. Trends Appl Sci Res 2007;2:148-50.

129. Sampaio BL, Edrada-Ebel RA, Da Costa FB. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Sci Rep 2016. DOI: 10.1038/srep29265.

130. Ayoola GA, Coker HA, Adefesun SA, Adepoju-Bello AA, Abaweya K, Ezenia EC, et al. Phytochemical screening and antioxidant activities of some selected medicinal plants used in traditional therapy in southwestern Nigeria. J Ethnopharmacol 2011;133:1015-20.

131. Akah PA, Alemji JM, Salawu OA, Okoye TC, Offiah NV. Effects of Vernonia amygdalina on biochemical and hematological parameters in diabetic rats. Asian J Med Sci 2009;1:108-13.

132. Abay SM, Lucantoni L, Daihya N, Dori G, Dembo EG, Esposito F, et al. Antimalarial activity of stem barks of Picralima nitida (Apocynaceae) and Sonchus oleraceus (Asteraceae). BMC Complement Altern Med 2013;13:157.

133. Obiang CS, Ondo JP, Atome GR, Engonga LC, Siawaya JF, Emvo EN. Phytochemical screening, antioxidant and antimicrobial potential of stem barks of Coula edulis Baill. Pseudospondias longifolia Engl. and Carapa klaineana Pierre. from Gabon. Asian Pac J Trop Med 2016;6:567-63.
