Identification of genes required for the fitness of *Streptococcus equi* subsp. *equi* in whole equine blood and hydrogen peroxide

Amelia R. L. Charbonneau1,2,*, Emma Taylor1,3, Catriona J. Mitchell1, Carl Robinson1, Amy K. Cain4, James A. Leigh5, Duncan J. Maskell2,6 and Andrew S. Waller1

Abstract

The availability of next-generation sequencing techniques provides an unprecedented opportunity for the assignment of gene function. *Streptococcus equi* subspecies *equi* is the causative agent of strangles in horses, one of the most prevalent and important diseases of equids worldwide. However, the live attenuated vaccines that are utilized to control this disease cause adverse reactions in some animals. Here, we employ transposon-directed insertion-site sequencing (TraDIS) to identify genes that are required for the fitness of *S. equi* in whole equine blood or in the presence of H$_2$O$_2$ to model selective pressures exerted by the equine immune response during infection. We report the fitness values of 1503 and 1471 genes, representing 94.5 and 92.5 % of non-essential genes in *S. equi*, following incubation in whole blood and in the presence of H$_2$O$_2$, respectively. Of these genes, 36 and 15 were identified as being important to the fitness of *S. equi* in whole blood or H$_2$O$_2$, respectively, with 14 genes being important in both conditions. Allelic replacement mutants were generated to validate the fitness results. Our data identify genes that are important for *S. equi* to resist aspects of the immune response *in vitro*, which can be exploited for the development of safer live attenuated vaccines to prevent strangles.

DATA SUMMARY

The DNA sequences generated in this study have been deposited in the European Nucleotide Archive under the accession number PRJNA578912.

INTRODUCTION

Strangles, caused by *Streptococcus equi* subspecies *equi*, is one of the most frequently diagnosed infectious diseases of equids worldwide, and is responsible for considerable economic and welfare cost to the horse industry [1]. Following entry via the nasopharyngeal or oral routes, *S. equi* subsp. *equi* binds to and invades the mucosal epithelium before transitioning to the lymph nodes of the head and neck, where it can be identified within 3 h [2]. The presence of *S. equi* subsp. *equi* within lymph nodes induces infiltration of polymorphonuclear leukocytes, leading to swelling and abscessation, which may cause dysphagia, lending to this disease’s common name of strangles [3].

The earliest vaccines against strangles used heat-killed bacteria, but whilst conferring significant levels of protection, these vaccines led to severe adverse reactions [4–8]. Cell-free-extract vaccines have also been developed, but published data suggested that the protection conferred by such vaccines was short-lived at best and that adverse reactions at the injection site remained a problem [9]. Recombinant subunit vaccines benefit from enhanced safety, and a new multi-component vaccine, Strangvac 4, has been shown to confer significant levels of protection against *S. equi* subsp. *equi* at 2 weeks post-combined intranasal and subcutaneous vaccination [10, 11]. However, Strangvac 4 is not yet available for use in horses.

Two live attenuated vaccines are available commercially for the prevention of strangles: Pinnacle IN [12] and Equilis...
StrepE [13]. These vaccines confer protection against challenge with *S. equi* subsp. *equi*, but the attenuated vaccine strains can cause adverse reactions and even strangles in some vaccinated animals [14–17]. A prototype live attenuated vaccine containing deletions in six genes conferred high levels of protection at 2 months post-second vaccination, but also led to adverse reactions when administered via the intramuscular route [18]. *S. equi* subsp. *equi* resists the equine immune system by producing known factors such as streptolysin S, immunoglobulin cleaving enzymes, a factor H-binding protein, SeM, fibronectin-binding proteins and a protective hyaluronic acid capsule [18–26]. However, it is likely that several other factors, which remain unidentified, are also employed to resist the equine immune system. The identification and attenuation of such factors provides an opportunity to enhance the safety of live attenuated vaccines.

The increased accessibility of functional genomics techniques has facilitated the development of a variety of transposon-insertion sequencing methods, which combine dense random mutant libraries and next-generation sequencing to identify essential bacterial genomes and assign gene function [27–33]. Exposure of mutant libraries to varying experimental conditions enables the relative fitness and conditional essentiality of each gene to be determined either *in vitro* [27, 34–36] or *in vivo* [37–42].

We developed a novel barcoded transposon-directed insertion-site sequencing (TraDIS) technique in *S. equi* subsp. *equi* utilizing pGh9:ISS1, which produces random, dense and stable transposon libraries [32]. To identify any novel genes involved in the survival of *S. equi* subsp. *equi* in the face of the equine immune system, *S. equi* mutant libraries were exposed to two conditions: whole equine blood and Todd–Hewitt broth (THB) containing hydrogen peroxide (H$_2$O$_2$). To validate the findings, a panel of six allelic replacement mutants were exposed to whole equine blood and H$_2$O$_2$, and the impact on their viability was measured.

METHODS

Bacterial strains, DNA isolation and primers

S. equi subsp. *equi* strain 4047 (Se4047) was grown in THB at 37 °C in a humidified atmosphere containing 5 % CO$_2$ unless otherwise stated. The *Escherichia coli* strain TG1 repA+ was used for the replication of the pGh9:ISS1 plasmids at 37 °C. *S. equi* subsp. *equi* genomic DNA was extracted using GenElute spin columns (Sigma Aldrich), according to the manufacturer’s instructions. A list of all primers used in this study is available in Table S1 (available with the online version of this article).

Minimum inhibitory concentration (MIC) of hydrogen peroxide (H$_2$O$_2$)

To determine the concentration of H$_2$O$_2$ required to exert a selective pressure on *S. equi* subsp. *equi*, the MIC of H$_2$O$_2$ in THB was determined. An overnight culture of Se4047 was diluted 40-fold and incubated until OD$_{600}$ 0.3 was reached (containing approximately 2×108 c.f.u. ml$^{-1}$). In a conical bottom 0.2 ml 96-well plate, the culture was diluted such that each well contained 4×105 c.f.u. ml$^{-1}$ and doubling dilutions of THB containing H$_2$O$_2$, ranging from 1.5 to 0.00046 % (Sigma Aldrich). Wells containing ddH$_2$O$_2$, instead of H$_2$O$_2$, were included as a control. The MIC was defined as the concentration of H$_2$O$_2$ in THB at which no growth of Se4047 occurred after incubation for 12 h at 37 °C in a humidified atmosphere containing 5 % CO$_2$. The experiment was conducted in triplicate and repeated on three independent occasions.

TraDIS in whole horse blood, H$_2$O$_2$ or THB

Three transposon libraries, AC, CT and GA described in our previous work [32], were each generated using a different modified ISS1 transposon, such that the bases AC, CT or GA were located three bases downstream of the ISS1 inverted repeat and adjacent to the genome sequence of *S. equi* subsp. *equi* within each transposon mutant. As each barcoded library was generated independently, each served as an experimental replicate. One millilitre of each stored *S. equi* subsp. *equi* barcoded transposon library was added to 39 ml of pre-warmed and pre-gassed THB containing 0.5 µg erythromycin ml$^{-1}$ (THBE), resulting in cultures of approximately 0.05–0.08 OD$_{600}$. Cultures were grown at 37 °C in a humidified atmosphere containing 5 % CO$_2$, for approximately 3 h until OD$_{600}$ 0.3 was reached. Five millilitres of the OD$_{600}$ 0.3 cultures were centrifuged at 10000 rpm for 5 min, generating pellets representing the input population of mutants. The supernatants were removed, and the pellets frozen for DNA extraction. One hundred microlitres of each OD$_{600}$ 0.3 culture was added to 50 ml of freshly drawn whole blood from the same Welsh mountain pony, THB containing 0.0004 % H$_2$O$_2$ (4×105 c.f.u. ml$^{-1}$) or THB (control). This number of bacteria was equivalent to approximately 66 c.f.u. and 72 c.f.u. of each mutant in the whole equine blood/THB control and H$_2$O$_2$ pools, respectively. The cultures were incubated for 2 h (whole blood and 0.0004 % H$_2$O$_2$) or overnight (THB

Impact Statement

Strangles, caused by *Streptococcus equi* subsp. *equi*, is one of the most frequently identified infectious diseases of horses worldwide, but the available live attenuated vaccines can survive for too long at the site of administration, leading to the development of adverse reactions. We applied a whole-genome approach to identify genes that are required in order for *S. equi* to grow in whole equine blood or in the presence of hydrogen peroxide, which simulate pressures exerted by the equine immune response. The simultaneous identification of every gene encoded within the DNA of *S. equi* that contributes to its ability to evade immune responses provides novel information about this important pathogen, and opens up exciting new opportunities for the design of safer and more effective vaccines with which to prevent strangles.
control) at 37 °C in a humidified atmosphere containing 5 % CO₂ with rotation (30 r.p.m.). An incubation time of 2 h in whole blood has been used previously to demonstrate the effects of deletion of the hasA gene [18]. To ensure output pools contained viable bacteria, mutants were recovered after incubation with whole blood or H₂O₂ by plating 300 µl onto 20 Todd–Hewitt agar (THA) Petri dishes containing 0.5 µg erythromycin ml⁻¹ (THAE) and 0.03 µg hyaluronidase ml⁻¹, followed by overnight incubation at 37 °C in a humidified atmosphere containing 5 % CO₂. Hyaluronidase was included to facilitate the recovery of distinct colonies of surviving mutants. Mutant colonies were washed off the Petri dishes using THB containing 50 % glycerol (v/v) for direct storage at −20 °C. Two millilitres of the recovered mutants were centrifuged at 10 000 r.p.m. for 5 min, the supernatants removed and the pellets frozen for DNA extraction. Five millilitres of the overnight control cultures in THB were centrifuged at 10 000 r.p.m. for 5 min, the supernatants removed and the pellets frozen for DNA extraction. The input pool of mutants for the whole blood analysis also served as the input pool for comparison with the overnight THB control culture.

DNA was extracted from the input pellets of each of the three independent ISSI libraries and from each recovered library, which served as experimental replicates (three input and three output libraries). Purified DNA was sequenced by TraDIS, as previously described [32]. In brief, DNA was fragmented to approximately 600–800 bp, the fragment ends were repaired, and adapter ligated to the fragments. DNA was then digested with Smal to minimize plasmid sequencing, and amplified by PCR with a specific ISSI primer and a unique indexing PCR primer for each of the six samples (indexing primers AHT 6, 7, 15, 16, 21 and 32 in Table S1). PCR products were purified, and size selected using AMPure XP beads. Libraries were quantified using the Kapa Biosystems library qPCR quantification kit and gel electrophoresis. Each prepared library was diluted to 2 nM and combined in equal concentrations to form a pool of the six uniquely indexed samples. PhiX (Illumina) was also diluted to 2 nM. The library pool and PhiX were denatured and neutralized, combined in the ratio of 3:2 and sequenced on an Illumina MiSeq DNA sequencer, as previously described [32].

The TraDIS sequencing data from the triplicate output and input samples were analysed as previously described using the BioTraDIS pipeline [32, 43] and the Se4047 reference genome [25]. Stringent mapping criteria of 100 % read match were imposed on the dataset resulting in between 37.8 and 57.6 % of reads mapping to the Se4047 reference genome (Table S2). Reads mapping to the final 10 % of each gene were discounted to prevent false negatives of gene fitness and function as the transposition of ISSI into this region of a gene can lead to no functional effect. Three genes (SEQ0285, SEQ0882 and SEQ1147) were over-represented in the input pools due to the prevalence of a few specific ISSI mutants were also removed from the dataset. Read counts per gene were normalized between the input libraries to facilitate data comparison. Eighty-five genes that contained <10 reads mapping to them, in any one of the three normalized input libraries, were removed to ensure each gene was sufficiently represented to minimize the effects of stochastic loss. Five-hundred and seventy-five genes previously identified as essential, ambiguous or not defined for survival in THB were also removed from the analysis [32]. These criteria permitted the inclusion of 1503 genes in the whole blood and THB overnight control analyses, which represent 94.5 % of non-essential genes in S. equi subsp. equi. A total of 1471 genes met the same inclusion criteria in the H₂O₂ analysis, which represented 92.5 % of non-essential genes in S. equi subsp. equi [32]. The three input pools contained on average 17 and 16 different ISSI mutants in each of the 1503 and 1471 genes that passed filtering, respectively. All genes removed from the input data were similarly removed from the output data before the read counts per gene were normalized between the output libraries. The script tradis_comparison was then used to compare each of the three sets of three output libraries to the three input libraries, on a sequencing reads per gene basis, generating a fitness value [log₂ fold change (FC)], P and q value for each gene. Genes were considered to have decreased fitness if they exhibited a log₂ FC value of less than −2 compared to the input control and had a q value of<0.05.

Validation of TraDIS whole equine blood and H₂O₂ fitness results

To confirm the reduced fitness of some genes as reported by TraDIS, allelic replacement mutants in Se4047 were generated lacking the genes pyrP (SEQ1316), mmmE (SEQ1365), addA (SEQ0953) and recG (SEQ0454). Strains of Se4047 lacking hasA (SEQ0269) and eqbE (SEQ1242) were also utilized, both of which have been described previously [18, 44]. The ΔhasA strain was used as a positive control in the whole equine blood assay, as it is known to be attenuated under this condition [18]. The ΔeqbE strain was used as a negative control, as TraDIS data showed that fitness in whole blood was not altered upon insertion of ISSI.

Deletion mutants were generated using an allelic replacement mutagenesis technique, as previously described for the generation of a ΔprtM mutant [45]. Briefly, 500 bp regions of S. equi subsp. equi DNA flanking the target gene were amplified using the primers listed in Table S1, ligated together and cloned into the pGhost9 plasmid [45]. Constructs were used individually to transform competent Se4047 cells, which were grown on THAE at 28 °C (the plasmid permissive temperature) for 2 days. Single colonies were inoculated into THBE overnight at 28 °C and then transferred to 37 °C for 3 h to induce chromosomal integration of the construct. Integrants were selected on THAE overnight at 37 °C; then, they were grown overnight at 37 °C in THBE, followed by dilution into THB and incubation at 28 °C for 48 h to excise pGhost9 and the target gene from the chromosome. Excised bacteria were grown on THA overnight at 37 °C to ensure free plasmid was lost. To confirm plasmid loss and, therefore, loss of erythromycin resistance, deletion strains were grown on both THAE and THA. Mutant alleles were confirmed by PCR using the appropriate P1 and P4 primers (suffixed with the gene name...
in Table S1) and sequencing on an ABI3100 DNA sequencer using BigDye fluorescent terminators. Deletion strains were stored in 25% glycerol (v/v) at −80°C.

Growth curves of validation strains

A single colony of each deletion mutant and Se4047 were inoculated into 10 ml THB in triplicate and grown for 16 h. Cultures were then diluted to approximately OD_{600} 0.08 in pre-warmed and pre-gassed THB, and grown until stationary phase was reached. The mean OD_{600} across the three replicates of each strain and their sE values were calculated. The doubling time of each replicate of each strain was calculated from exponential phase data and used to identify significant differences in growth rates of mutants compared to wild-type Se4047 using a two-tailed Student's t-test.

Identification of genes important for fitness in hydrogen peroxide

After filtering, input libraries contained 24 372 unique mutants in library AC, 22 734 unique mutants in library CT and 26 226 unique mutants in library GA (Table S5), which represented 92.5% of the non-essential genes in S. equi subsp. equi [32]. The three output libraries recovered after H_{2}O_{2} treatment contained, on average, 2.1±6.3% (SEM) fewer unique mutants than were present in the input libraries (Table S5). The effect of incubation with H_{2}O_{2} on the fitness of ISS1 mutants was determined by calculating the log FC for all 1471 genes passing the inclusion criteria (Fig. 2a). Fifteen genes were significantly reduced in fitness (% of fitness genes) did not belong to a defined COG category.

Generation of allelic replacement mutants in putative fitness genes

To validate the findings of the TraDIS fitness screen, we generated four allelic replacement mutants lacking the genes recG, addA, pyrP, and mnmE to confirm single mutant fitness effects in selective conditions. addA was selected for validation as it was the gene most negatively affected in whole equine blood as a result of ISS1 insertion. recG was selected because it was one of the least affected of the genes required for fitness in whole equine blood; in addition, a recA deletion has been incorporated previously into a live attenuated vaccine strain [18]. pyrP and mnmE were selected as these represented a middle ground in the affected genes. The ΔhasA and ΔeqbE mutants were generated previously. The ΔhasA mutant was utilized as it is known that this mutant has reduced fitness in whole equine blood [18], whilst the ΔeqbE allelic replacement...
Fig. 1. Fitness scores and COG categories of *S. equi* subsp. *equi* genes required for survival in whole equine blood. (a) Fitness scores (log$_{2}$FC) per gene of *S. equi* subsp. *equi* IS51 mutants post-incubation in whole equine blood, as determined by TraDIS. Blue dots, genes with significantly reduced fitness (log$_{2}$FC < −2 and q<0.05); red dots, genes significantly reduced in fitness of which deletion mutants were made and retested to confirm TraDIS results; green dot, eqbE exhibiting no fitness effect that was used as a control for validation; grey dots, genes exhibiting no significant fitness effect. (b) Functional COG categories of the 36 fitness genes identified in whole equine blood. L, Replication, recombination and repair; K, transcription; C, energy production and conversion; T, signal transduction mechanisms; R, general function prediction only; F, nucleotide transport and metabolism; V, defence mechanisms; N, cell motility; M, cell wall/membrane/envelope biogenesis; G, carbohydrate transport and metabolism; D, cell cycle control, cell division, chromosome partitioning; U, intracellular trafficking, secretion and vesicular transport; O, posttranslational modification, protein turnover, chaperones; J, translation, ribosomal structure and biogenesis; E, amino acid transport and metabolism.
Table 1. S. equi subsp. equi genes with reduced fitness in equine whole blood as a result of IS51 insertion as identified by TraDIS. Genes highlighted in grey were deleted by allelic replacement mutagenesis and deletion strains incubated in whole equine blood to validate TraDIS results. An ΔeqbE deletion strain was used as a negative control.

Gene	Locus tag	Function	log_{2}FC	q value
ackA	SEQ0118	Acetate kinase	−2.7	0.042
SEQ0231	Putative Mga-like regulatory protein	−2.9	<0.0005	
hasA	SEQ0269	Hyaluronan synthase	−2.4	0.046
hasB	SEQ0270	UDP-glucose 6-dehydrogenase	−2.2	<0.0005
SEQ0306	Putative ssDNA-binding protein	−8.5	<0.0005	
pepX	SEQ0383	Xaa-Pro dipeptidyl-peptidase	−2.3	0.017
recG	SEQ0454	ATP-dependent DNA helicase	−3.6	0.001
SEQ0492	Putative mannose-specific phosphotransferase system (PTS), IID component	−3.3	0.042	
SEQ0494	Putative mannose-specific phosphotransferase system (PTS), IIAB component	−3.7	0.017	
pptA/ecsA	SEQ0506	ABC transporter ATP-binding protein	−3.4	0.021
pptB/ecsB	SEQ0507	ABC transporter protein	−2.8	0.002
SEQ0562	Exodeoxyribonuclease	−2.7	0.022	
biaA/typA	SEQ0615	GTPase	−4.5	0.007
pyrD	SEQ0655	Putative dihydroorotate dehydrogenase	−3.0	0.007
ppc	SEQ0776	Putative phosphoenolpyruvate carboxylase	−5.9	<0.0005
addA	SEQ0953	Putative ATP-dependent exonuclease subunit A	−9.2	<0.0005
SEQ1028	SEQ1028	GntR family regulatory protein	−4.2	0.004
SEQ1073	SEQ1073	Putative phosphopantothenoylcysteine decarboxylase	−7.9	<0.0005
SEQ1112	SEQ1112	Putative exported protein	−4.5	0.001
SEQ1146	SEQ1146	Putative phosphate acetyltransferase	−5.1	<0.0005
ldh	SEQ1169	l-Lactate dehydrogenase	−5.1	<0.0005
SEQ1180	SEQ1180	Putative DNA-binding protein	−4.5	0.003
SEQ1181	SEQ1181	GntR family regulatory protein	−8.0	<0.0005
SEQ1304	SEQ1304	Pyridine nucleotide-disulphide oxidoreductase family protein	−6.4	<0.0005
pyrP	SEQ1316	Uracil permease	−4.6	<0.0005
mnmE	SEQ1365	tRNA modification GTPase	−5.2	<0.0005
SEQ1540	SEQ1540	Putative membrane protein	−4.5	0.003
smc	SEQ1566	Putative chromosome partition protein	−3.8	<0.0005
ccpA	SEQ1596	Catabolite control protein A	−4.3	0.011
pepQ	SEQ1597	Putative Xaa-Pro dipeptidase	−5.4	<0.0005
SEQ1800	SEQ1800	Putative exported protein	−8.3	<0.0005
scpA	SEQ1863	Segregation and condensation protein A	−4.5	<0.0005
greA	SEQ1879	Transcription elongation factor	−8.2	<0.0005
cwsS	SEQ1889	Sensor histidine kinase	−6.1	<0.0005
yqeK	SEQ1909	Hydrolase, HD family	−4.5	0.002
pyrG	SEQ1945	Putative CTP synthase	−2.3	<0.0005
eqbE	SEQ1242	Equibactin nonribosomal peptide synthase protein	0.6	1
Fig. 2. Fitness scores and COG categories of *S. equi* subsp. *equi* genes required for survival in hydrogen peroxide (H$_2$O$_2$). (a) Fitness scores (log$_2$FC) per gene of *S. equi* subsp. *equi* IS1 mutants post-incubation in H$_2$O$_2$, as determined by TraDIS. Blue dots, genes with significantly reduced fitness (log$_2$FC < −2 and q<0.05); red dots, genes significantly reduced in fitness of which deletion mutants were made and retested to confirm TraDIS results; green dots, genes exhibiting no fitness effect that acted as negative controls for validation; grey dots, genes exhibiting no significant fitness effect. (b) Functional COG categories of the fitness genes identified in H$_2$O$_2$. C, Energy production and conversion; L, replication, recombination and repair; R, General function prediction only; E, Amino acid transport and metabolism; D, Cell cycle control, cell division, chromosome partitioning; O, Posttranslational modification, protein turnover, chaperones; K, Transcription; J, Translation, ribosomal structure and biogenesis.
Table 2. *S. equi* subsp. *equi* genes with reduced fitness in the presence of hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) as a result of IS\textsubscript{S1} insertion, as identified by TraDIS. One gene highlighted in blue was uniquely identified in the presence of H\textsubscript{2}O\textsubscript{2} when compared to genes identified as reduced in fitness in whole equine blood. The remaining genes were similarly identified as required in whole equine blood. The genes highlighted in grey were deleted by allelic replacement mutagenesis and deletion strains incubated in THB containing H\textsubscript{2}O\textsubscript{2} to validate TraDIS results. The ΔeqbE deletion strain was used as a control.

Gene	Locus tag	Function	log\textsubscript{FC}	q value
SEQ0118	SEQ0118	Acetate kinase	−4.1	0.0021
etsR	SEQ0200	Transcriptional regulator	−3.9	0.0221
SEQ0306	SEQ0306	Putative ssDNA-binding protein	−4.9	<0.0005
recG	SEQ0454	ATP-dependent DNA helicase	−5.1	<0.0005
SEQ0562	SEQ0562	Exo-ribonuclease	−9.5	<0.0005
ppc	SEQ0776	Putative phosphoenolpyruvate carboxylase	−3.8	0.0221
addA	SEQ0953	Putative ATP-dependent exonuclease subunit A	−6.9	<0.0005
SEQ1028	SEQ1028	GntR family regulatory protein	−3.8	0.0071
SEQ1146	SEQ1146	Putative phosphate acetyltransferase	−8.5	<0.0005
ldt	SEQ1169	L- Lactate dehydrogenase	−4.5	0.0015
SEQ1304	SEQ1304	Pyridine nucleotide-disulphide oxidoreductase family protein	−5.7	<0.0005
mnmE	SEQ1365	tRNA modification GTPase	−4.4	<0.0005
smc	SEQ1566	Putative chromosome partition protein	−3.6	<0.0005
pepQ	SEQ1597	Putative Xaa-Pro dipeptidase	−4.5	<0.0005
yqeK	SEQ1909	Hydrolase, HD family	−4.5	0.0009
hasA	SEQ269	Hyaluronan synthase	0.6	1
pyrP	SEQ1316	Uracil permease	−0.7	1
eqbE	SEQ1242	Equibactin nonribosomal peptide synthase	0.5	1

Survival of key mutation strains in whole blood

The six deletion strains were incubated in whole equine blood with reduced bacterial loads to more closely reflect the proportion of attenuated *S. equi* subsp. *equi* ISS1 mutants present in the original TraDIS assay. Validation assays were also incubated for an additional hour. The growth of each deletion strain in whole equine blood was measured over time and compared statistically to wild-type Se\textsubscript{4047} (Fig. 5). The ΔhasA (P<0.0001) strain was highly attenuated in whole equine blood with a significantly longer doubling time (Fig. 5a), which is in agreement with published data on this strain [18]. The doubling times of the ΔaddA (P=0.0008), ΔrecG (P=0.0069) and ΔpyrP (P=0.019) strains were significantly longer than wild-type Se\textsubscript{4047} in whole equine blood (Fig. 5b–d). However, the ΔmnmE strain (P=0.38) did not have a significantly longer doubling time than Se\textsubscript{4047} in whole equine blood (Fig. 5e). The ΔeqbE control strain grew at the same rate as Se\textsubscript{4047} (Fig. 5f).

Survival of mutation strains in H\textsubscript{2}O\textsubscript{2}

The growth of each allelic replacement mutation strain in the presence of sub-MIC concentrations of H\textsubscript{2}O\textsubscript{2} was measured over time and compared statistically to the growth of Se\textsubscript{4047}
Fig. 3. Venn diagram of the 36 genes required for the survival of S. equi subsp. equi in whole equine blood compared to the 15 genes required for survival in hydrogen peroxide. The genes that were deleted by allelic replacement mutagenesis to validate the results are indicated.

DISCUSSION

Here, we describe the genome-wide identification of genes required by S. equi subsp. equi for survival in the presence of whole equine blood and H₂O₂, conditions that mimic an interaction with the equine immune response. ISSI mutants in 36 and 15 genes were significantly reduced in fitness upon exposure to whole equine blood or H₂O₂, respectively. Fourteen genes were required for fitness in both of these conditions. Four novel allelic replacement mutants lacking addA, recG, pyrP or mnmE were generated and tested to determine whether TraDIS had indeed identified novel genes that contribute to fitness in the presence of whole blood or H₂O₂. Two control mutants were also tested, a capsule deletion mutant, ΔhasA [18], and a ΔeqbE mutant [44].

addAB (also known as rexAB) encodes a major component of the homologous recombination process that repairs double-strand breaks by catalysing the unwinding of DNA [46–48]. In S. equi, addB was essential for growth in THB (insertion index=0.03, essential genes<0.034 [32]). Although, addA was not essential for growth in vitro or for fitness on overnight culture of the mutant libraries in THB, the ΔaddA mutant grew more slowly than the wild-type strain (Fig. 4). This slow growth phenotype was also observed in Streptococcus pneumoniae ΔaddA and ΔaddB mutants [47]. The S. equi subsp. equi ΔaddA deletion mutant was confirmed to be significantly attenuated in whole equine blood and H₂O₂. However, further investigation of the role of AddA is required as this result could, potentially, be related to the slow-growth phenotype of mutants lacking production of AddA.

recG encodes an ATP-dependent DNA helicase that is thought to be important for efficient recombination and DNA repair. RecG promotes the resolution of Holliday junctions by catalysing the conversion of junction intermediates to mature products by branch migration [49]. RecG is also thought to remove RNA from R-loops by unwinding the RNA–DNA hybrid [50, 51]. Although recG was non-essential for growth in vitro or for fitness on overnight culture of the mutant libraries in THB, the ΔrecG mutant was found to have a slower growth rate (Fig. 4). recG ISSI mutants were more significantly attenuated in H₂O₂ compared to whole equine blood and this result was confirmed using the ΔrecG mutant (Figs 5 and 6). This result could, in part, be related to the slow-growth phenotype of mutants lacking production of RecG.

A membrane-bound uracil permease encoded by pyrP scavenges uracil from the environment for pyrimidine biosynthesis [52]. pyrP was required for fitness in whole equine blood, but not in H₂O₂ (Tables 1 and 2). The ΔpyrP deletion mutant had a similar growth rate to the wild-type S4047 strain in THB. In agreement with the TraDIS data, the ΔpyrP
strain had a significantly longer doubling time in whole equine blood, but a similar doubling time to Se4047 in the presence of H₂O₂. Interestingly, pyrD and pyrG, which are involved in the downstream biosynthetic pyrimidine pathway, were also required by S. equi subsp. equi for fitness in the presence of whole equine blood, but not H₂O₂ in vitro. Although ISS1 mutants in pyrD had significantly reduced fitness following overnight culture in THB (Table S7).

mnmE (also known as trmE) is predicted to encode a tRNA modification enzyme that forms a heterotetrameric complex with MnmG (also known as GidA) [53, 54]. The MnmEG complex catalyses two different GTP- and FAD-dependent reactions, generating 5-aminomethyluridine and 5-carboxymethylaminomethyluridine, utilizing ammonium and glycine as substrates, respectively [53]. GTP hydrolysis by MnmE causes structural rearrangements within the MnmEG complex, which is necessary for subsequent tRNA modification, in E. coli [55]. In S. equi, MnmG was found to be essential for growth in vitro [32], and it was critical for survival in Streptococcus pyogenes and Streptococcus agalactiae [32, 56, 57]. S. pyogenes ΔmnmE and ΔmnmG deletion mutants had decreased production of known virulence factors including streptolysin O, M-protein, mitogenic factor and NAD-glycohydrolase [58]. Deletion of mnmE or mnmG also decreased biofilm production by 50 % in Streptococcus mutans [59]. The growth rate of the S. equi subsp. equi ΔmnmE deletion mutation strain in THB was significantly decreased relative to Se4047 and ΔmnmE was the slowest growing of the allelic replacement mutants generated in this study (Fig. 4). ISS1 mutants of mnmE had reduced fitness in both whole equine blood and H₂O₂. However, the ΔmnmE deletion mutation strain was only found to have a significantly longer doubling time in the presence of H₂O₂.

Streptococcal capsule mutants have long been known to be susceptible to killing in both in vitro and in vivo [60–63]. Disrupting the capsule, exposes the bacterial surface, rendering the cells more susceptible to immune attack. The S. equi subsp. equi ΔhasA (hyaluronan synthase) mutant is known to be highly susceptible to killing in equine blood, and so it was expected that this gene would be identified as being required for fitness in whole blood using TraDIS (Fig. 1a, Table 1) and in the validation experiment (Fig. 5). Interestingly, the log₂FC for hasA determined in the TraDIS screen of −2.4 (q=0.046) was close to the threshold of −2 used to determine attenuation; yet in isolation, the ΔhasA mutant was dramatically reduced in fitness in whole equine blood. One explanation for this result is that acapsular mutants benefit from the retained capsule of neighbouring mutants during fitness studies. Such a bystander effect could explain
Fig. 5. Validation of the *S. equi* subsp. *equi* TraDIS screen in whole equine blood. Strains with deletion mutations of whole equine blood fitness genes, as identified by TraDIS, were incubated in blood for 3 h and their survival measured each hour. (a) ΔhasA, (b) ΔaddA, (c) ΔrecG, (d) ΔpyrP, (e) ΔmnmE and (f) ΔeqbE deletion mutation strains compared to the wild-type parental strain, Se4047. Error bars indicate the se. The significance of changes in doubling time using a two-sided Student's *t*-test are indicated.
Fig. 6. Validation of the *S. equi* subsp. *equi* TraDIS screen in THB containing hydrogen peroxide. Strains with deletion mutations in H$_2$O$_2$ fitness genes, as identified by TraDIS, were incubated in THB containing H$_2$O$_2$ for 3 h and their survival measured each hour. (a) ΔhasA, (b) ΔaddA, (c) ΔrecG, (d) ΔpyrP, (e) ΔmnmE and (f) ΔeqbE deletion mutation strains compared to the wild-type parental strain, *Se*4047. Error bars indicate the SE. The significance of changes in doubling time using a two-sided Student’s t-test are indicated.
the recovery of acapsular mutants from the guttural pouches of persistently infected horses [64]. Mutants in the gene encoding UDP-glucose 6-dehydrogenase, hasB, were also found to meet the fitness threshold in the whole blood TraDIS screen (log FC = -2.2, q < 0.0005). However, the analysis of hasC was confounded by the presence of two copies of this gene in the genome of Se4047 [25]. Although important for fitness in whole blood, acapsular ISS1 mutants in hasA had no fitness cost when exposed to H2O2 (log FC = 0.6, q = 1). Our data suggest that at least some of the other 21 genes that were identified as being required for fitness in whole blood, but not H2O2, might similarly play a role in the evasion of phagocytosis, highlighting the application of TraDIS as a whole-genome functional genomics tool.

Other genes that were identified as being required for fitness in the presence of whole blood, but not H2O2, included ccpA, which putatively encodes catabolite control protein A. In Streptococcus suis, CcpA regulates many genes, primarily targeting those involved in carbohydrate metabolism and amino acid transporters, such as PTS uptake systems [65, 66]. Two PTS genes putatively required for mannose import, SEQ_0492 and SEQ_0494, and ldh, encoding lactate dehydrogenase, were also identified as important for survival in whole equine blood. Ldh was regulated by CcpA in S. suis [65, 66] and so the role of these genes in conferring fitness in the presence of whole equine blood may be interlinked.

The genes pptAB (also known as ecsAB) were required for the fitness of S. equi subsp. equi in whole blood, but not in the presence of H2O2. The pptAB genes encode ABC transporter proteins that export the quorum sensing peptides, SHP2 and SHP3, into the extracellular environment [67]. A pptAB deletion mutant of Staphylococcus aureus caused milder synovitis and reduced bone erosions in a murine model of arthritis [68]. The further study of pptAB to determine the role of quorum sensing to the virulence of S. equi subsp. equi is now warranted.

The transcriptional regulator CtsR was identified as being important for fitness in H2O2, but not whole equine blood. However, closer inspection of our data revealed that very few ISS1 mutants existed in the three input libraries and that these were represented by few reads; in library AC, 2 mutants were represented by 22 reads (Table S6). Therefore, although this gene met our inclusion criteria, we believe that this hit may be a false positive. In support of this hypothesis, a ΔctsR mutant of Lactobacillus plantarum was not significantly more susceptible to H2O2 than the wild-type parental strain [69].

With the exception of the capsule synthesis genes, none of the other genes that were previously linked to the survival of S. equi in whole blood were identified by TraDIS. The immunoglobulin-cleaving enzymes IdeE, IdeE2 [22, 23] and the Factor X-binding protein Se18.9 [21] are secreted and ISS1-associated defects are likely to be complemented by surrounding mutants. Unfortunately, the gene encoding the antiphagocytic protein SeM [19, 20] was removed from our analysis, as it was classed an essential gene in Se4047 [32]. None of the four fibronectin-binding proteins encoded by S. equi [24] were identified by TraDIS, which suggests that they may be functionally redundant in this system.

Conclusions
The TraDIS screens described herein have identified some interesting and novel genes, with many of them commonly identified between conditions. Two of the genes included in the validation panel, recG and addA, were attenuated in both conditions, but exhibited a slow growth phenotype compared to the wild-type parental strain, which restricts their usefulness as future targets for the development of live-attenuated vaccines as, for manufacturing purposes, vaccine strains should not be attenuated for growth in vitro. The capsule mutant hasA was confirmed to be required for survival in whole equine blood, but not H2O2. However, the reduced fitness of mnmE mutants in the TraDIS screen was only recapitulated in H2O2. The pyrp mutant had a normal growth rate in vitro and a slower growth rate in whole equine blood, suggesting that the deletion of pyrpP may be useful for the development of safer live attenuated vaccines. Therefore, further validation of the genes identified by TraDIS is warranted to demonstrate their importance in the absence of competing strains, prior to the development of new live attenuated vaccines.

Funding information
This work was funded through a grant from the Horse Trust (reference no. G4104). A.R.L.C. received a stipend from the University of Cambridge Doctoral Training Partnership scheme, which is funded by the BBSRC (Biotechnology and Biological Sciences Research Council) (reference no. 1503883). A.K.C was supported by an ARC (Australian Research Council) DECRa (Discovery Early Career Researcher Award) Fellowship (DE180100929).

Conflicts of interest
The authors declare that there are no conflicts of interest.

Ethical statement
Blood was collected under the auspices of a Home Office Project License, and following ethical review and approval by the Animal Health Trust’s Animal Welfare and Ethical Review Body (RPP 01_12).

Data Bibliography
Charbonneau ARL, Taylor E, Mitchell CJ, Robinson C, Cain AK, Leigh JA, Maskell DJ, Waller AS.
Raw Illumina fastq files have been made available in Genbank at the Sequence Read Archive (SRA accession number: PRJNA578912). 2020.

References
1. Boyle AG, Timoney JF, Newton JR, Hines MT, Waller AS et al. Streptococcus equi infections in horses: guidelines for treatment, control, and prevention of strangles – revised consensus statement. J Vet Intern Med 2018;32:633–647.
2. Timoney JF, Kumar P. Early pathogenesis of equine Streptococcus equi infection (strangles). Equine Vet J 2008;40:637–642.
3. Harrington DJ, Sutcliffe IC, Chanter N. The molecular basis of Streptococcus equi infection and disease. Microbes Infect 2002;4:501–510.
4. Bazeley PL, Battle J. Studies with equine streptococci 1. Aust Vet J 1940;16:140–146.
5. Bazeley PL. Studies with equine streptococci 2. Aust Vet J 1940;16:243–259.
6. Bazeley PL. Studies with equine streptococci 3. Aust Vet J 1942;18:141–155.
7. Bazeley PL. Studies with equine streptococci 4. Aust Vet J 1942;18:189–194.
8. Bazeley PL. Studies with equine streptococci 5. Aust Vet J 1943;19:62–85.
9. Hoffman AM, Stempfli HR, Prescott JF, Viel L. Field evaluation of a commercial M-protein vaccine against Streptococcus equi infection in foals. Am J Vet Res 1991;52:589–592.
10. Guss B, Flock M, Frykberg L, Waller AS, Robinson C et al. Getting to grips with strengas: an effective multi-component recombinant vaccine for the protection of horses from Streptococcus equi infection. PLoS Pathog 2009;5:e1000584.
11. Robinson C, Frykberg L, Flock M, Guss B, Waller AS et al. Strangvac: a recombinant fusion protein vaccine that protects against strangas, caused by Streptococcus equi. Vaccine 2018;36:1484–1490.
12. Walker JA, Timoney JF. Construction of a stable non-mucoid deletion mutant of the Streptococcus equi Pinnacle vaccine strain. Vet Microbiol 2002;91:31–40.
13. Jacobs AA, Goovaerts D, Nuijten PJ, Theelen RP, Hartford OM et al. Investigations towards an efficacious and safe strangles vaccine: submucosal vaccination with a live attenuated Streptococcus equi vaccine. Vaccine 2002;20:286–294.
14. Kelly C, Bugg M, Robinson C, Mitchell Z, Davis-Pagey N et al. Sequence variation of the SeM gene of Streptococcus equi. Infect Immun 2002;70:2326–2333.
15. Kemp-Symonds J, Kemble T, Waller A. Modified live Streptococcus equi (strangles) vaccination followed by clinically adverse reactions associated with bacterial replication. Equine Vet J 2000;32:351–357.
16. Livengood JL, Lanksa S, Maddox C, Tewari D. Detection and differentiation of wild-type and a vaccine strain of Streptococcus equi ss. equi using pyrosequencing. Vaccine 2016;34:3935–3937.
17. Robinson C, Heath Z, Slater J, Potts N, Steward KF et al. Vaccination with a live multi-gen型 deletion strain protects horses against virulent challenge with Streptococcus equi. Vaccine 2015;33:1160–1167.
18. Boschwitz JS, Timoney JF. Inhibition of C3 deposition on Streptococcus equi subsp. equi by M protein: a mechanism for survival in equine blood. Infect Immun 1994;62:3515–3520.
19. Galán JE, Timoney JF. Molecular analysis of the M protein of Streptococcus equi and cloning and expression of the M protein gene in Escherichia coli. Infect Immun 1987;55:3181–3187.
20. Tiwari R, Qin A, Artushima S, Timoney JF. Seel.19, an anti-phagocytic factor. H binding protein of Streptococcus equi. Vet Microbiol 2007;121:105–115.
21. Flock M, Frykberg L, Skøld M, Guss B, Flock J-H. Antiphagocytic function of an IgG glycosyl hydrolase from Streptococcus equi subsp. equi and its use as a vaccine component. Infect Immun 2012;80:2914–2919.
22. Hulting G, Flock M, Frykberg L, Lannergård J, Flock J-I et al. Two novel IgG endopeptidases of Streptococcus equi. FEMS Microbiol Lett 2009;28:44–50.
23. Lannergård J, Flock M, Johansson S, Flock J-I, Guss B. Studies of fibrinogen-binding proteins of Streptococcus equi. Infect Immun 2005;73:7243–7251.
24. Holden MTG, Heath Z, Paillot R, Steward KF, Webb K et al. Genomic evidence for the evolution of Streptococcus equi host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog 2009;5:e1000364.
25. von Beek C, Waern I, Eriksson J, Melo FR, Robinson C et al. Streptococcal ssgA activates a proinflammatory response in mast cells by a sublytic mechanism. Cell Microbiol 2019;21:e13064.
26. Langridge GC, Phan MD, Turner DJ, Perkins TT, Parts L et al. Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 2009;19:2308–2316.
27. van Opijnen T, Bodi KL, Camilli A. Tsq- seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 2009;6:767–772.
28. Goodman AL, McNulty NP, Zhao Y, Leip D, Mitra RD et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 2009;6:279–289.
29. Gawronska JD, Wong SMS, Giannoukos G, Ward DV, Akerley BJ. Tracking sequence insertion sites within libraries using deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci USA 2009;106:16422–16427.
30. Blanchard AM, Egan SA, Emes RD, Warry A, Leigh JA. PIMMS (Pragmatic Insertional Mutation Mapping System) laboratory methodology a readily accessible tool for identification of essential genes in Streptococcus. Front Microbiol 2016;7:1645.
31. Charbonneau ARL, Forman OP, Cain AK, Newland G, Robinson C et al. Defining the ABC gene of essentiality in streptococci. BMC Genomics 2017;18:426.
32. Barquist L, Boinett CJ, Cain AK. Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol 2013;10:1161–1169.
33. van Opijnen T, Camilli A. A fine scale phenotype-genotype virulence map of a bacterial pathogen. Genome Res 2012;22:2541–2551.
34. Dembek M, Barquist L, Boinett CJ, Cain AK, Mayho M et al. High-throughput analysis of gene essentiality and sporation in Clostridium difficile. mBio 2013;6:e002383.
35. Zhu L, Charbonneau ARL, Waller AS, Olsen RJ, Beres SB et al. Novel genes required for the fitness of Streptococcus pyogenes in human saliva. mSphere 2017;2:e00460–17.
36. Chaudhuri RR, Morgan E, Peters SE, Pleasance SJ, Hudson DL et al. Comprehensive assignment of roles for Salmonella Typhimurium genes in intestinal colonization of food-producing animals. PLoS Genet 2013;9:e1003456.
37. Subashchandrabose S, Smith S, DeOrnellas V, Crepin S, Kole M et al. Acinetobacter baumannii genes required for bacterial survival during bloodstream infection. mSphere 2016;1:e00013–15.
38. Grant AJ, Oshota O, Chaudhuri RR, Mayho M, Peters SE et al. Genes required for the fitness of Salmonella enterica serovar Typhimurium during infection of immunodeficient gp91–/-/phox mice. Infect Immun 2016;84:989–997.
39. Moule MG, Spink N, Willcocks S, Lim J, Guerra-Assunção JA et al. Characterization of new virulence factors involved in the intracellular growth and survival of Burkholderia pseudomallei. Infect Immun 2015;83:701–710.
40. Gutierrez MG, Yoder-Himes DR, Varawma JM. Comprehensive identification of virulence factors required for respiratory melioidosis using Tsq-seq mutagenesis. Front Cell Infect Microbiol 2015;5:78.
41. Zhu L, Olsen R, Beres S, Eraso J, Saavedra MO et al. Gene fitness landscape of group A Streptococcus during nectrotizing myositis. J Clin Investig 2019;129:887–901.
42. Barquist L, Mayho M, Cummins C, Cain AK, Boinett CJ et al. The TraDIS toolkit: sequencing and analysis for dense transposon mutant libraries. Bioinformatics 2016;32:1109–1111.
43. Heather Z, Holden MTG, Steward KF, Parkhill J, Song L et al. A novel streptococcal integrative conjugative element involved in iron acquisition. Mol Microbiol 2008;70:1274–1292.
44. Hamilton A, Robinson C, Sutcliffe IC, Slater J, Maskell DJ et al. Mutation of the maturase lipoprotein attenuates the virulence of Streptococcus equi to a greater extent than does loss of general lipoprotein lipidation. Infect Immun 2006;74:6907–6919.
45. Chédin F, Kowalczykowski SC. A novel family of regulated helicases/nucleases from gram-positive bacteria: insights into the initiation of DNA recombination. Mol Microbiol 2002;43:823–834.
46. Halpern D, Gruss A, Claverys J-P, El Karoui M. rexAB mutants in Streptococcus pneumoniae. Microbiology 2004;150:2409–2414.
Evolutionarily conserved proteins MnmE and GidA catalyze the tRNA modification process controlled by proteins MnmE and GidA. The essential genome of Streptococcus mutans under stress conditions. Appl Environ Microbiol 2014;80:97–103.

50. Wilson AT. The relative importance of the capsule and the M-antigen in determining colony form of group A streptococci. J Exp Med 1959;109:257–270.

51. Woolcock JB. The capsule of Streptococcus equi. J Gen Microbiol 1974;85:372–375.

52. Wessels MR, Moses AE, Goldberg JB, DiCesare TJ. Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proc Natl Acad Sci USA 1991;88:8317–8321.

53. Dalé JB, Washburn RG, Marques MB, Wessels MR. Hyalurionate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect Immun 1996;64:1495–1501.

54. Harris SR, Robinson C, Steward KF, Webb KS, Paillot R et al. Genome specialization and decay of the strangles pathogen, Streptococcus suis, is driven by persistent infection. Genome Res 2015;25:1360–1371.

55. Willenborg J, Fulde M, de Greeff A, Rohde M, Smith HE et al. Role of glucose and CcpA in capsule expression and virulence of Streptococcus suis. Microbiology 2011;157:1823–1833.

56. Willenborg J, de Greeff A, Jarek M, Valentin-Weigand P, Goethe R. The CcpA regulon of Streptococcus suis reveals novel insights into the regulation of the streptococcal central carbon metabolism by binding of CcpA to two distinct binding motifs. Mol Microbiol 2014;92:61–83.

57. Chang JC, Federle MJ. PptAB exports Rgg quorum-sensing peptides in Streptococcus. PLoS One 2016;11:e0168461.

58. Jonsson I-M, Juuti JT, François P, Almajidi R, Pietiäinen M et al. Inactivation of the Ecs ABC transporter of Staphylococcus aureus attenuates virulence by altering composition and function of bacterial wall. PLoS One 2010;5:e14209.

59. Van Bokhorst-van de Veen H, Bongers RS, Wels M, Bron PA, Kleerebezem M. Transcriptome signatures of class I and III stress response deregulation in Lactobacillus plantarum reveal pleiotropic adaptation. Microb Cell Fact 2013;12:112.