Germ Cells Are Not Required to Establish the Female Pathway in Mouse Fetal Gonads

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

| Citation          | Maatouk, Danielle M., Lindsey Mork, Ashley Hinson, Akio Kobayashi, Andrew P. McMahon, and Blanche Capel. 2012. Germ cells are not required to establish the female pathway in mouse fetal gonads. PLoS ONE 7(10): e47238. |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Published Version | doi:10.1371/journal.pone.0047238                                                                                                                                                                                                                                     |
| Citable link      | http://nrs.harvard.edu/urn-3:HUL.InstRepos:11729583                                                                                                                                                                                                                |
| Terms of Use      | This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA |
Germ Cells Are Not Required to Establish the Female Pathway in Mouse Fetal Gonads

Danielle M. Maatouk¹, Lindsey Mork¹²*, Ashley Hinson¹², Akio Kobayashi³⁵, Andrew P. McMahon³, Blanche Capel¹

¹Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America, ²Department of Pediatrics, Division of Hematology-Oncology, Duke University School of Medicine, Durham, North Carolina, United States of America, ³Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, United States of America

Abstract

The fetal gonad is composed of a mixture of somatic cell lineages and germ cells. The fate of the gonad, male or female, is determined by a population of somatic cells that differentiate into Sertoli or granulosa cells and direct testis or ovary development. It is well established that germ cells are not required for the establishment or maintenance of Sertoli cells or testis cords in the male gonad. However, in the agametic ovary, follicles do not form suggesting that germ cells may influence granulosa cell development. Prior investigations of ovaries in which pre-meiotic germ cells were ablated during fetal life reported no histological changes during stages prior to birth. However, whether granulosa cells underwent normal molecular differentiation was not investigated. In cases where germ cell loss occurred secondary to other mutations, transdifferentiation of granulosa cells towards a Sertoli cell fate was observed, raising questions about whether germ cells play an active role in establishing or maintaining the fate of granulosa cells. We developed a group of molecular markers associated with ovarian development, and show here that the loss of pre-meiotic germ cells does not disrupt the somatic ovarian differentiation program during fetal life, or cause transdifferentiation as defined by expression of Sertoli markers. Since we do not find defects in the ovarian somatic program, the subsequent failure to form follicles at perinatal stages is likely attributable to the absence of germ cells rather than to defects in the somatic cells.

Introduction

During embryogenesis, sexual differentiation begins with the onset of fetal gonad development. The primordial gonad is bipotential and, in mammals, its fate is normally genetically controlled by the presence or absence of a Y-chromosome, leading to male or female development, respectively. A mixture of somatic cell types and germ cells reside within the primordial gonad. In XY gonads, a subset of somatic cells upregulate Sry, the sex-determining gene on the Y-chromosome, leading to differentiation of the supporting cell lineage as preSertoli cells [1,2]. In the absence of Sry, XX supporting cells differentiate as pregranulosa cells [1,3]. Throughout development, gonadal supporting cells closely interact with germ cells. During fetal life, somatic cells dictate whether germ cells initiate differentiation as spermatogonia or oogonia. However the reciprocal influence of germ cells on somatic cell differentiation before birth is not well understood in mammals.

The influence of germ cells on gonadogenesis is highly variable among vertebrates (reviewed in [4]). In the red-eared slider turtle, Trachemys scripta, loss of germ cells does not influence sex determination or morphological differentiation of the testis or ovary before hatching, but whether it affects the eventual differentiation of the adult organs is unknown [5]. In contrast, in some species of fish the earliest sexually dimorphic event occurs not in the somatic cells of the gonad, but in the germ cell lineage (reviewed in [6]). In zebrafish, loss of germ cells invariably leads to the differentiation of a testis [7]. The number of germ cells also controls the fate of the gonad in medaka, where mutants that produce a large number of germ cells are female, and those that deplete germ cells are male [8,9]. In fact, recent studies showed that the medaka sox9b gene, which was thought to control testis development in a manner similar to mammalian Sox9, does not affect testis differentiation directly, but instead does so through controlling germ cell proliferation [10]. These studies suggest that in some species, germ cells play an active role in the sex-determining decision.

Whether germ cells play an active or passive role during somatic cell differentiation of the mammalian gonad has been a longstanding question [11–13]. In XY gonads, loss of germ cells does not disrupt the ability of Sertoli cells to undergo morphological reorganization to form testis cords. However, germ cells are critical for morphological development of the ovary at birth, when
clusters of germ cells break down and primordial follicles form, consisting of an oocyte surrounded by a single layer of pregranulosa cells [11,13-15].

Whether germ cells also function to maintain the fate of the granulosa cell lineage, possibly by repressing aspects of Sertoli differentiation, is unknown. This proposition arose from the observation that a number of mutants that cause a loss of germ cells result in postnatal transdifferentiation of the granulosa cell lineage. In these cases, granulosa cells acquired morphological characteristics of Sertoli cells such as a tripartite nucleolus, basally located nuclei, and arrangement into cord-like structures [14] and transitioned from expressing ovarian markers, such as FOXL2, to expressing markers of Sertoli cells, such as SOX9 [16].

Some of the earliest cases of transdifferentiation were observed in female freemartin cattle where a loss of germ cells in response to hormones from the male co-twin was associated with the development of male cord-like structures in the ovary [17,18]. In rodent models, exposure of ovaries to AMH [19,20], double knockout of the two estrogen receptors (ERz/ERxKO) [21,22] and null mutations in the gene encoding P450 aromatase (Cyp19a1; ArKO) [22,23] result in similar cord-like structures appearing in the postnatal ovary following germ cell loss. Mouse mutants for several genes expressed in the female supporting cell lineage, including Wnt4 or Rbpj single mutants and the Wnt4; Foxl2 double mutant, undergo a germ cell loss after meiotic entry and show evidence of sex reversal near birth [24-27]. However, not all cases of transdifferentiation can be attributed to germ cell loss. In the Foxl2 mutant, postnatal transdifferentiation of granulosa cells occurred prior to oocyte loss [16,28], indicating that the loss of germ cells was not responsible for the loss of granulosa cell fate.

To separate the effects of germ cell depletion from other somatic mutations, experimental manipulations that directly deplete ovaries of germ cells were performed, but these have also shown variable effects on ovarian differentiation. At postnatal stages, irradiation of rat ovaries did result in the appearance of testis cord-like structures [29]. While transdifferentiation induced by irradiation has not been reported in mouse, depletion of germ cells at different stages of postnatal ovarian development using Diptheria toxin did not lead to transdifferentiation [16]. Thus, the role of germ cells in establishing and maintaining ovarian fate after birth is still in question.

Depletion of primordial germ cells at the earliest stages of gonad development was previously performed using both chemical and genetic methods. Busullan-induced germ cell depletion in rat embryos did not cause prenatal ovarian sex reversal based on histological examination [15]. Similarly, mutations of the white spotting locus (Kit) resulted in germ cell loss, but spermatogenic cords were not observed in the ovary before or after birth [30]. However, both of these studies were performed prior to the development of molecular markers of ovarian differentiation. While morphological changes reminiscent of Sertoli development were not observed, the possibility remained that the expression of genes that distinguish pregranulosa cells from Sertoli cells, such as FOXL2 and SOX9, might be altered. Such changes could potentially affect the ability of pregranulosa cells to form follicles at birth.

To establish a baseline for the major somatic subpopulations that exist in the fetal ovary, we first characterized the expression of a number of markers of somatic cell types common to the testis and ovary, as well as new markers for the ovary. We then examined the expression of these ovarian cell types in the context of early germ cell depletion using two different methods to ablate germ cells: chemical disruption using the chemotherapy drug busullan and genetic disruption using the KitWv mutation [31]. Consistent with previous morphological studies, we found that the loss of germ cells did not impact the establishment or maintenance of multiple ovarian cell lineages including granulosa cells.

Materials and Methods

Mouse Strains and Genotyping

All animals were maintained and experiments were conducted according to the Institutional Animal Care and Use Committee of the Duke University Medical Center and NIH guidelines (Permit Number: A168-11-07). The Wnt4-eGFPCre (Wnt4eGFP/+ ) allele was generated using the same targeting scheme used for Wnt4-eGFPCreER2+ mice [32], αSma-EYFP mice (obtained from J. Lessard; [33]) were maintained on a mixed CD-1/FVB genetic background. Oct4-GFPf5 [34], Wnt4f5/− and KitWv/+ (C57BL/6J-KiWv/-J; Jackson Laboratory [31]) mice were maintained on a C57BL/6J genetic background.

For the Wnt4f5/− allele, Cre genotyping was used to distinguish wild type embryos from embryos carrying the mutant allele, and the gonad phenotype was used to distinguish heterozygous from homozygous mutants. The irregular development of the mesonephric ducts in both sexes, or the presence of vasculature in XX gonads, was characteristic of a homozygous mutant. For the KitWv mutation, a TaqMan SNP Genotyping Assay (Applied Biosystems) was developed and run on a StepOnePlus thermal cyclers (Applied Biosystems) following the supplier’s protocol. Primer and probe sequences (5’-3’) are as follows: Forward primer GCTACCTGGGGAATCACATGATAT; Reverse primer TGAGTCCTCAGTGGTCCATCTCT; FAM-conjugated probe for the KitWv allele CATGCATGGTTGGG; and VIC-conjugated probe for the Kit allele CATGCACGGTTGG.

Matings

To generate wild type embryos for immunofluorescent analysis, αSna-I/FPf2/f2, Oct4-GFPf2/f2 and Wnt4f5/− males were crossed to CD-1 (Charles River) females in timed matings. For comparison of ovaries with and without germ cells, Oct4-GFPf2/f2 males were crossed to CD-1 females, and pregnant females were injected intraperitoneally with 10-30 mg of busulfan (Sigma) dissolved in 50% DMSO, an equivalent volume of 50% DMSO, or left un injected. No difference was observed between mock injected and uninjected mice, and they were used interchangeably as controls. KitWv/+ heterozygous mice were intercrossed to generate KitWv/+ embryos depleted of germ cells.

Immunofluorescence

Following timed matings, gonads were dissected from embryos and fixed for several hours or overnight at 4°C in 4% paraformaldehyde. Samples were embedded in OCT and cryosectioned (18 µm) or whole mount immunostained with antibodies against the following markers: p27 (Santa Cruz, 1:500), GFP (Aves lab, 1:500 or Molecular Probes, 1:1000), laminin (a kind gift from Harold Erickson; 1:500), laminin (Neomarkers, 1:500), MABF (Bethyl Labs, 1:2000), SOX9 (Millipore, 1:2000), FOXL2 (Novus Biologicals, 1:200 or a kind gift from Reiner Veitia, 1:250), GATA4 (Santa Cruz, 1:100), PECAM1 (BD BioScience, 1:250), MIS/AMH (Santa Cruz, 1:500), WT1 (Santa Cruz, 1:100) and SCPS (Novus Biologicals, 1:500). Primary antibodies were detected by Cy2-, Cy3- and Cy5-conjugated secondary antibodies (Jackson Immunology Research Laboratories, 1:500) or Alexa Fluor 488- and Alexa Fluor 647-conjugated secondary antibodies (Molecular Probes, 1:500). Samples were mounted with 2.5% DABCO (Sigma-Aldrich) in 90% glycerol and imaged on a Leica SP2 confocal microscope.
Results

Characterization of the embryonic ovarian cell lineages

In contrast to the distinct structural organization of the testis, the embryonic ovary undergoes few obvious morphological changes. At 12.5 dpc, when testis cords are first observed in XY gonads, XX gonads appear as a heterogeneous mixture of somatic and germ cells. By 14.5 dpc, a subtle organization is apparent upon histological or immunological examination, where meiotic germ cells are arranged into clusters referred to as ovigerous cords [35]. Near birth, these clusters break down and primordial follicles form, a process that is dependent on the presence of germ cells [36]. To determine if germ cells influence the establishment or maintenance of the major ovarian cell lineages, we first identified markers and characterized the different cell types present in the ovary using confocal immunofluorescence. Figure 1 and Figure S1 summarize the main somatic cell types distinguished in the embryonic ovary between 12.5–14.5 dpc: (1) vascular endothelial cells, (2) vasculature-associated cells, (3) cells residing in or near the coelomic epithelium and (4) pregranulosa cells.

In males, endothelial cells that reside in the gonad-mesonephros border are recruited into the gonad to form a well-defined vasculature and coelomic vessel [33,37,38] that demarcates and instructs formation of the testis cords [39,40]. Outside of testis vasculature and coelomic vessel [33,37,38] that demarcates and instructs formation of the testis cords [39,40]. Outside of testis cords, in close proximity to the vasculature, resides a diverse population of interstitial cells, some of which express members of the MAF transcription factor family and give rise to the steroid-producing fetal Leydig cells [4]. The functional significance of these parallel cell types in the ovary is currently unclear. Similar to producing fetal Leydig cells [4]. The functional significance of population of interstitial cells, some of which express members of instructs formation of the testis cords [39,40]. Outside of testis vasculature and coelomic vessel [33,37,38] that demarcates and instructs formation of the testis cords [39,40]. Outside of testis cords, in close proximity to the vasculature, resides a diverse population of interstitial cells, some of which express members of the MAF transcription factor family and give rise to the steroid-producing fetal Leydig cells [4]. The functional significance of these parallel cell types in the ovary is currently unclear. Similar to producing fetal Leydig cells [4]. The functional significance of population of interstitial cells, some of which express members of instructs formation of the testis cords [39,40]. Outside of testis vasculature and coelomic vessel [33,37,38] that demarcates and instructs formation of the testis cords [39,40]. Outside of testis cords, in close proximity to the vasculature, resides a diverse population of interstitial cells, some of which express members of the MAF transcription factor family and give rise to the steroid-producing fetal Leydig cells [4]. The functional significance of these parallel cell types in the ovary is currently unclear. Similar to producing fetal Leydig cells [4].

Several transcription factors essential for the early formation of the gonad in both sexes include WT1, GATA4 and SF1 [41–43]. At 14.5 dpc, WT1 is expressed in all somatic cells of the ovary, except endothelial cells (Figure 1C). This was also seen for SF1 and GATA4 at both earlier (12.5–13.5 dpc) and later (17.5 dpc) stages (Figure S1 and data not shown). While it was previously reported that GATA4 and SF1 expression levels are downregulated after 13.5 dpc [44,45], we found persistent GATA4 and SF1 expression in the ovary at the stages we examined. This may reflect differences in antibody or detection sensitivities.

A subset of somatic cells, the supporting cells, surrounded nests of germ cells, retained expression of these transcription factors and also expressed FOXL2 (Figure 1D). These cells are referred to as supporting cells because they are closely associated with germ cells throughout development and give rise to granulosa cells in the first wave of growing follicles that form after birth [3]. FOXL2-positive cells were initially observed close to the mesonephros and gradually extended out towards the coelomic surface, filling the future medullary region of the ovary but excluded from a region near and including the coelomic surface that expressed either WT1 alone or was αSma-EYFP/WT1-double positive (Figure S1, also [3]). Near birth, FOXL2-positive cells were located in both the medulla and cortex of the ovary, though still excluded from the coelomic surface. FOXL2-expressing cells were usually distinct from the αSma-EYFP/MAFB population; however, a few cells expressing both αSma-EYFP and FOXL2 were detected at both early and late stages (inset in Figure 1D).

Based on previous in situ and microarray data, Wnt4 was found to be expressed in both male and female gonads before 11.5 dpc, subsequently becoming female specific [27,46]. To investigate which cell type expresses Wnt4 in the ovary, we used a Wnt4-eGFPCre (Wnt4Cre) targeted allele as a transcriptional reporter. Wnt4Cre was detected in the mesonephros of XX and XY gonads at 12.5 dpc but was specific to somatic cells of the XX gonad (Figure 1E; XY gonad shown in inset). Co-labeling Wnt4Cre gonads with FOXL2 revealed that Wnt4 was also expressed in the pregranulosa cell lineage of the ovary, closely overlapping FOXL2 expression. Due to variability in the brightness of each marker, we could not determine whether some cells express either Wnt4Cre or FOXL2 alone. Similar to FOXL2, Wnt4 is not expressed in the cells closest to the coelomic surface. Expression of the reporter was very weak after 14.5 dpc and could not be detected at 17.5 dpc (data not shown).

In summary, gonadal somatic markers were expressed in non-endothelial cells. A subset of these cells expressed MAFB and αSma-EYFP (vascular associated), while another subset, the pregranulosa cell lineage, expressed FOXL2 and Wnt4 (supporting cells). Consistent with this result, Wnt4 expression was detected specifically in the supporting cell lineage of the XX gonad by microarray analysis of individual cell lineages from the early ovary and testis [47,48].

The effect of germ cell loss on ovarian differentiation

Several mutations result in both the loss of germ cells and postnatal sex reversal. Because sex reversal is observed after germ cell loss in these cases, it has been proposed that germ cells are required to establish or maintain the ovarian cell fate (for review see [11,14]). To test this hypothesis, we investigated the effect of germ cell depletion on the establishment of the major ovarian cell lineages during fetal life. This was accomplished by treating pregnant females with busulfan to deplete germ cells at a stage when they are just arriving in the genital ridge, between 10.5–11.5 dpc. We used Oct4-GFP transgenic mice [34] so that the presence of germ cells could be easily determined. Mice injected at 10.5 dpc were severely depleted of germ cells by 12.5 dpc. At 14.5 dpc, GATA4, which marks all non-endothelial ovarian somatic cells, was expressed normally in germ cell-depleted ovaries and laminin deposition surrounded clusters of somatic cells in the absence of germ cells (Figure 2A, B). The pregranulosa cell lineage, as marked by FOXL2 expression, was established normally and a marker of Sertoli cells, SOX9, was not detected (Figure 2C, D; inset in 2C shows positive staining for SOX9 expression in a control testis). Mice injected with busulfan at 11.5 dpc were analyzed at 17.5–18.5 dpc, just before birth. Although treated ovaries were markedly smaller, somatic markers were expressed similar to controls, and there was no evidence of sex reversal (Figure 2E, F). Additionally, no defect was observed in formation of the vasculature (marked by PEMCAM1) or the number of vascular associated cells (marked by Laminin) (Figure 2B, F).

To examine the effects of germ cell loss using a non-chemically based method, we next analyzed KitWv/Wv mutants, which show a severe loss of germ cells during the migratory phase [31]. To determine if germ cell loss caused transdifferentiation of pregranulosa cells near birth, the expression of two Sertoli cell markers, SOX9 and AMH, were examined in XX KitWv/Wv and XX KitWv/+ ovaries. As expected, SOX9 and AMH are expressed in XX KitWv/+ Sertoli cells at 17.5 dpc. Cells in XY gonads do not express the pregranulosa cell marker FOXL2 or the meiotic germ cell marker SCP3 (Figure 3A, B). SCP3-positive germ cells are widespread in XX KitWv/+ ovaries but were severely depleted in KitWv/Wv samples, confirming a near complete loss of germ cells in...
the homozygous mutants (Figure 3E, F). However, consistent with the results of the busulfan experiments, we observed no difference in FOXL2 expression between Kit+/+ and KitWv/Wv samples, nor did we observe any evidence of transdifferentiation towards a Sertoli cell fate (Figure 3B, C, E, F). Taken together, these results suggest that loss of germ cells alone does not result in morphological evidence of sex reversal or disrupt the prenatal
that germ cells may play an active role in repressing the male pathway.

Previous studies analyzed busulfan-treated fetal rat ovaries, as well as mouse \( \text{Kit}^{Wv/Wv} \) ovaries, and relying on ultrastructural morphological analyses, came to the conclusion that germ cells are not required for the differentiation of the somatic lineages during embryonic stages [13,30]. Here we used molecular markers to examine the commitment and maintenance of somatic cell fate in germ cell-depleted ovaries. Using a variety of markers for different cell types, we characterized the four predominant somatic cell lineages in the ovary: (1) Vascular endothelial cells (PECAM1-positive), (2) Vasculature associated cells (\( \text{Vess-EYFP} \) and MAFB-positive), (3) General somatic cells (GATA4-, SFI- and WT1-positive) and (4) granulosa cell precursors (\( \text{Wnt4} \) and FOXL2-positive). An examination of these lineages after busulfan treatment revealed no obvious defects in their establishment or maintenance. Using a second model of germ cell depletion, the \( \text{Kit}^{Wv} \) mutation, we also found no evidence of disrupted ovarian development or transdifferentiation towards the Sertoli cell fate. In the absence of a detectable defect in the somatic ovarian program, we conclude that the subsequent failure to form follicles at perinatal stages is attributable to the absence of germ cells; however, we cannot rule out the possibility that defects arise in somatic cells at birth.

Consistent with prior experiments [15,30], our results support the conclusion that depletion of germ cells at pre-meiotic stages does not lead to sex reversal. Some evidence suggests that the influence of germ cells over the ovarian somatic environment, and the ability to repress various aspects of testis development, may vary according to developmental stage [14]. We previously found disruptions in endothelial cell migration and testis cord formation when XY gonadal cells were exposed to meiotic germ cells, but not pre-meiotic germ cells or XX gonads that were depleted of germ cells [50], suggesting that meiotic germ cells, not pre-meiotic, may function in repression of the testis pathway. The majority of transdifferentiation cases occur when germ cells survive the pre-meiotic stage of germ cell development, and die following meiotic entry. This is the case for the \( \text{Rpe1} \), \( \text{Wnt4} \) and \( \text{Wnt4}; \text{Foxl2} \) mutants that undergo isolated perinatal sex reversal [24–27] and the AMH transgenic that exhibits transdifferentiation during postnatal stages [19]. Germ cell depletion just after birth, or at late postnatal stages, leads to transdifferentiation in some cases (irradiation of rat ovaries; [29]), but not others (\( \text{Fgla}, \text{Diphtheria Tox} \); [16,51]). Importantly, transdifferentiation can occur in the presence of germ cells, as FOXL2-deficient granulosa cells were shown to transdifferentiate prior to oocyte loss [16,28].

Our experiments, which removed germ cells at the pre-meiotic stage, analyzed the role of germ cells in establishing and maintaining the ovarian cell fate during fetal stages of development. The results support the conclusion that a loss of germ cells at this early stage does not alter the fate of somatic cells in the fetal ovary. However, one possibility is that granulosa cells acquire the competence for transdifferentiation following contact with meiotic germ cells. If germ cells are lost prior to meiotic entry, pregranulosa cells do not proceed through this differentiation step and cannot transdifferentiate. This would imply that pregranulosa cell-germ cell interactions, which are critical after birth for folliculogenesis, also play a role during fetal ovarian stages. Further studies that specifically deplete meiotic germ cells at prenatal stages, in the absence of a genetic mutation in the soma, would clarify whether meiotic germ cell loss has detrimental effects on granulosa cell differentiation and repression of Sertoli markers.

**Discussion**

**Germ cells are not required for ovarian development during embryogenesis**

In mammals, the role of XX germ cells as potential regulators of ovarian development has been extensively questioned ([11,14]). In the testis, germ cell depletion does not disrupt the formation of testis cords; however, near birth, germ cells are absolutely required for the formation of ovarian follicles [11,49]. The finding that certain scenarios cause a loss of germ cells prior to transdifferentiation of the granulosa cell lineage, led to the idea of establishment or maintenance of the ovarian cell types, at least as defined by the markers we investigated.

**Figure 2. Loss of germ cells does not affect expression of ovarian markers.** Oct4-GFP transgenic mice were injected with busulfan at 10.5 or 11.5 dpc and gonads were dissected at 14.5 or 18.5 dpc, respectively. Oct4-GFP-expressing germ cells (blue) were severely depleted, or absent, from treated samples (B, D, and F). (A–B) At 14.5, GATA4 (green) was expressed in all somatic cells of control and germ-cell depleted samples and laminin (red) expression was not detectably altered. (C–D) Control and busulfan treated gonads at 14.5 dpc were immunostained for SOX9 (red) and FOXL2 (green). FOXL2 was similarly expressed and no SOX9 was detected in control or treated XX gonads. An inset in (C) shows SOX9 expression (and no FOXL2) in an XY gonad at the same stage (the exposure levels for SOX9 and FOXL2 were similarly expressed and no SOX9 was detected in control or treated XX gonads). Samples in A–D were cryosectioned then immunostained. Whole mount immunostaining was performed on samples in E–F. The scale bar in panel (A) represents 50 μm in panels A–D (including the inset in C), 100 μm in panels E–F and 24.5 μm in insets within E–F. doi:10.1371/journal.pone.0047238.g002
Figure 3. Ovaries lacking germ cells do not transdifferentiate towards a Sertoli cell fate. (A–C) SOX9 (red) and FOXL2 (green) immunostaining of cryosectioned 17.5 dpc gonads. (A) XY Kit+/− testes express SOX9, but not FOXL2 (XY germ cells exhibit high background staining). (B–C) XX Kit+/− and Kit−/− ovaries express only FOXL2 and show no evidence of transdifferentiation. (D–F) AMH (red) and SCP3 (green) immunostaining of the same samples as in A–C. (D) As expected, XY Kit+/− testes express AMH, but not the meiotic germ cell marker SCP3. (E–F) XX Kit+/− and Kit−/− ovaries do not express AMH. SCP3 immunostaining confirms significant germ cell loss in Kit−/− ovaries (EF). All samples were cryosectioned then immunostained. The scale bar represents 50 μm in all panels. The dotted line demarcates the boundary of the ovary.

doi:10.1371/journal.pone.0047238.g003

Supporting Information

Figure S1 Characterization of ovarian cell lineages from 12.5–13.5 dpc. (A–F) Ovaries were dissected from 12.5 dpc (left panel) and 13.5 dpc embryos (right panel) and immunostained for PECAM1 to label germ cells and vasculature (blue), FOXL2 (green) and an additional somatic marker (red). (A) αSMA, (B) Laminin, (C) GATA4, (D) SF1, (E) WT1 and (F) LHX9. Whole mount immunostaining was performed on all samples. Scale bar in (A) represents 50 μm in all panels. (TIF)

References

1. Albrecht KH, Eicher EM (2001) Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 240: 92–107.
2. Burgoyne PS, Buehr M, Koopman P, Rossant J, McLaren A (1988) Cell-autonomous action of the testis-determining gene: Sertoli cells are exclusively XY in XX:XY chimaeric mouse testes. Development 102: 443–450.
3. Mork I, Maatouk DM, McMahon JA, Guo JJ, Zhang P, et al. (2012) Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol Reprod 86: 37.
4. DeFalco T, Capel B (2009) Gonad morphogenesis in vertebrates: divergent means to a convergent end. Annu Rev Cell Dev Biol 25: 457–482.
5. DiNapoli L, Capel B (2007) Germ cell depletion does not alter the morphogenesis of the fetal testis or ovary in the red-eared slider turtle (Trachemys scripta). J Exp Zool B Mol Dev Evol 308: 236–241.
6. Saito D, Tanaka M (2009) Comparative aspects of gonadal sex differentiation in medaka: a conserved role of developing oocytes in sexual canalization. Sex Dev 3: 99–107.
7. Slanchev K, Stehler J, de la Caucia-Mendez G, Raz E (2005) Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci U S A 102: 4074–4079.
8. Kobayashi T, Matsuda M, Kajiura-Kobayashi H, Suzuki A, Saito N, et al. (2004) Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Dev Dyn 231: 518–526.
9. Kurokawa H, Saito D, Nakamura S, Katoh-Fukui Y, Ohta K, et al. (2007) Germ cells are essential for sexual dimorphism in the medaka gonad. Proc Natl Acad Sci U S A 104: 16958–16963.
10. Nakamura S, Watakabe I, Nishimura T, Toyoda A, Taniguchi Y, et al. (2012) Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance. PLoS One 7: e29982.
11. McLaren A (1991) Development of the mammalian gonad: the fate of the supporting cell lineage. Bioessays 13: 151–156.
12. Sinclair A, Smith C (2009) Females battle to suppress their inner male. Cell 139: 1051–1053.
13. Whitworth DJ (1998) XX germ cells: the difference between an ovary and a testis. Trends Endocrinol Metab 9: 2–6.
14. Guigon CJ, Magre S (2006) Contribution of germ cells to the differentiation and maturation of the ovary: insights from models of germ cell depletion. Biol Reprod 74: 450–458.
15. Merchant H (1973) Rat gonadal and ovarian organogenesis with and without germ cells. An ultrastructural study. Dev Biol 44: 1–21.
16. Ulahnhaus NH, Jakob S, Arlag K, Eisenberger T, Sekido R, et al. (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139: 1130–1142.
17. Jost A, Vigier B, Prepin J (1972) Freemartins in cattle: the first steps of sexual organogenesis. J Reprod Fertil 29: 349–379.
18. Short RV, Smith J, Mann T, Evans EP, Hallett J, et al. (1969) Cytogenetic and endocrine studies of a freemartin heifer and its bull co-twin. Cytogenetics 8: 369–388.

Acknowledgments

We thank members of the Capel lab, especially Tony DeFalco and Steve Munger, for their helpful comments and discussion. We thank Reiner Veitia and Harold Erickson for contributing valuable antibody reagents and James Lessard for the αSma-EYFP mice.

Author Contributions

Conceived and designed the experiments: BC DMM. Performed the experiments: DMM LM AH. Analyzed the data: DMM LM BC. Contributed reagents/materials/analysis tools: APM AK. Wrote the paper: DMM BC.
19. Ichringer RR, Cate RL, Freelick GJ, Palmeri RD, Brinster RL (1990) Abnormal sexual development in transgenic mice chronically expressing Mullerian Inhibiting Substance. Nature 345: 167–170.

20. Vigier B, Wainrin F, Magre S, Tran D, Jessu N (1987) Purified bovine AMH induces a characteristic freemartin effect in fetal rat prospective ovaries exposed to it in vitro. Development 100: 43–55.

21. Couse JF, Hewitt SC, Bunch DO, Sar M, Walker VR, et al. (1999) Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science 286: 2328–2331.

22. Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, et al. (2000) Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development 127: 4277–4291.

23. Britt KL, Kerr J, O’Donnell L, Jones ME, Drummond AE, et al. (2002) Estrogen regulates development of the somatic cell phenotype in the cestrian ovary. Faseb J 16: 1389–1397.

24. Chassot AA, Ranc F, Gregoire EP, Roepers-Gajadien HL, Taketo MM, et al. (2007) Loss of Wnt4 and Foxd2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 16: 2795–2804.

25. Oktolenghi C, Pelosi E, Tran J, Colombino M, Douglass E, et al. (2007) Loss of Wnt4 and Foxd2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 16: 2795–2804.

26. Tomizuka K, Horikoshi K, Kitada R, Sugawara Y, Iba Y, et al. (2008) R-gondial plays an essential role in ovarian development through positively regulating Wnt4 signalling. Hum Mol Genet 17: 1264–1277.

27. Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP (1999) Female Mullerian Inhibiting Substance. Nature 345: 167–170.

28. Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, et al. (2000) Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development 127: 4277–4291.

29. Guigon CJ, Coudouel N, Mazaud-Guiot N, Forest MG, Magre S (2005) Follicular cells acquire Sertoli cell characteristics after oocyte loss. Endocrinology 146: 2992–3004.

30. Merchant-Larios H, Centeno B (1981) Morphogenesis of the ovary from the sterile W/W+ mouse. Proc Clin Biol Res 59B: 383–392.

31. Little CC, Cloudman AM (1937) The Occurrence of a Dominant Spotting factor in green fluorescent protein (GFP) transgene in mice. Development Growth & Differentiation 41: 673.

32. Yoshimizu T, Sugiyama N, De Felice M, Il Yeom Y, Ohbo K, et al. (1999) Germ-line-specific expression of the Oct-4/green fluorescent protein (GFP) transgene in mice. Development Growth & Differentiation 41: 673.

33. Pepling ME, Spradling AC (1998) Female mouse germ cells form synchronously dividing cysts. Development 125: 3323–3328.