Metabolic variation between *japonica* and *indica* rice cultivars as revealed by non-targeted metabolomics

Chaoyang Hu1*, Jianxin Shi1*, Sheng Quan1*, Bo Cui1, Sabrina Kleessen2, Zoran Nikoloski2, Takayuki Tohge3, Danny Alexander4, Lining Guo4, Hong Lin1, Jing Wang1, Xiaocui1, Jun Rao1, Qian Luo1, Xiangxiang Zhao5, Alisdair R. Fernie3 & Dabing Zhang1

1National Center for Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China, 2Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany, 3Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany, 4Metabolon Inc., Durham, North Carolina 27713, USA, 5Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Jiangsu, 223300, China.

Seed metabolites are critically important both for plant development and human nutrition; however, the natural variation in their levels remains poorly characterized. Here we profiled 121 metabolites in mature seeds of a wide panel *Oryza sativa* japonica and indica cultivars, revealing correlations between the metabolic phenotype and geographic origin of the rice seeds. Moreover, japonica and indica subspecies differed significantly not only in the relative abundances of metabolites but also in their corresponding metabolic association networks. These findings provide important insights into metabolic adaptation in rice subgroups, bridging the gap between genome and phenome, and facilitating the identification of genetic control of metabolic properties that can serve as a basis for the future improvement of rice quality via metabolic engineering.

Rice (*Oryza sativa* L.) is a major staple food feeding over 50% of the global population. Cultivated rice was domesticated from the common ancestor of wild rice (*Oryza rufipogon*) under both natural and human selective pressures, and displays large genetic diversity across thousands of varieties1,2. Rice cultivars are mainly grouped into two subspecies *japonica* and *indica* with marked differences in plant architecture, agronomic and physiological features (e.g., stress resistance, cold tolerance, and seed quality)1. Although *japonica* and *indica* cultivars exhibit clear variation in genome sequences as well as in the morphological and physiological features2,3, the gap between DNA sequence information and end phenotypes, particularly chemical composition and its effect on plant development and adaption, remains largely obscure.

Seed quality is of immense agronomical importance, and is ultimately determined by chemical composition4–6. Metabolites in seeds function not only as energy components for the seed but also as nutrients for humans and livestocks. As metabolism is strongly influenced by heritable factors, the genetic basis underlying metabolic traits has recently become of major research interest7–9. Recent evidence suggests that there is considerable metabolic diversity in seeds from different rice cultivars. Kusano et al (2007) identified 10 metabolites with variations across 62 rice varieties using one- and two-dimensional gas chromatography-time-of-flight–mass spectrometry (GC-GC-TOF-MS)9. Heuberger et al (2010) detected 3,097 signals in 10 rice varieties using ultra performance liquid chromatography (UPLC-MS)10. Similarly, using GC-TOF-MS, Lou et al (2011) identified 41 metabolites showing a wide range of variations in 48 distinct rice germplasms11, whilst Kim et al (2012) identified 52 metabolites in seven cultivars by GC-TOF-MS12. Matsuda et al (2012) conducted metabolic quantitative trait loci (mQTL) analysis in rice grains using inbred lines, and determined few loci affecting levels of metabolites13. Despite the insights provided by these studies, metabolomic analysis of seeds with the goal of comparing and contrasting *japonica* and *indica* rice subspecies using a large collection of different inbred lines has not yet been reported.

Here we performed a large-scale non-targeted metabolomic analysis in seeds of 100 *japonica* and *indica* cultivars with a broad genetic diversity, and observed that *japonica* and *indica* had diversified metabolomes, reflecting their unique metabolic properties which can be regarded as a local adaptive response. Network-based
of the resulting metabolic profiles and other morphological traits identified further differences in the coordinated change of metabolite abundances in the two types of geographically dispersed cultivars.

Results

Metabolic profiles of rice seeds. To evaluate metabolite composition in seeds across different rice cultivars, we analyzed a rice core collection representative of most *japonica* and *indica* cultivars. We identified a total of 121 metabolites with known structures, including: amino acids and their derivatives, carbohydrates, lipids, CPGECs (cofactors, prosthetic groups and electron carriers) as well as nucleotides and secondary metabolites. In comparison with previous reports by Lou et al. (2011) and Matsuda et al. (2012), our study extended both the numbers of rice genotypes and metabolites identified. The identified metabolites were mapped onto nine super-metabolic pathways and their underlying 31 sub-pathways (Fig. 1 and Supplementary Table S1) as defined by the Plant Metabolic Net (PMN) and Kyoto Encyclopedia of Genes and Genomes (KEGG). These metabolites cover most of central metabolism and reflect the physiological state and nutritional value of rice seeds. Notably, the abundance of each metabolite differs remarkably among all tested inbred lines (Supplementary Table S1). Therefore, these lines may represent useful rice germplasm for breeders, which can pursue hybrids with high levels of desirable nutrients via hybridization and selection. The absence of glycolytic intermediates in mature rice seeds supported the fact that the physiological activity of desiccated seed is quite low.

Figure 1 | Rice seed metabolome. The identified 121 metabolites are mapped on a simplified metabolic network. Squares denote metabolites detected in this study, while circles represent undetected metabolites. Red (green) squares denote the metabolites with higher (lower) mean levels in *japonica* in comparison to *indica*, determined by Nested ANOVA. The darker the color is, the more significant the difference is. For full metabolite names, refer to Supplementary Table S1.
usually grown in tropical and subtropical regions at low latitudes or altitudes\(^{16}\). To assess differences in chemical composition between *japonica* and *indica* sub-species, we compared their mature seed metabolomes. Principle component analysis (PCA) revealed that the first three components can separate *japonica* and *indica* cultivars although there were some overlaps (Fig. 2), supported by the hierarchical clustering (Supplementary Fig. S1). The separation between *japonica* and *indica* at the metabolic level suggests that the two subspecies may employ different metabolic strategies to adapt to the growth environments.

To further reveal the difference between *japonica* and *indica* cultivars in seed metabolome, we performed nested ANOVA and observed that the relative abundance of 92 metabolites including 28 amino acids and their derivatives, 23 carbohydrates, 22 lipids, 12 CPGECs, five nucleotides and two secondary metabolites exhibited statistically significant differences between *japonica* and *indica* cultivars with 66 metabolites higher in *japonica* and 26 higher in *indica* (Fig. 1 and Supplementary Table S1). To reveal the metabolites that can discriminate *japonica* from *indica*, we performed Random Forest ranking analysis, the accuracy of which was 94% in this study. We observed that particular metabolites including 14 amino acids can be used to differentiate between *japonica* and *indica* subspecies, with asparagine ranked the highest (Table 1). The order of the top 30 metabolites ranked according to the Random Forest analysis was, furthermore, remarkably similar to the ranking based on statistical significance from the ANOVA, supporting the reliability of possible application of these metabolites as biomarkers for the discrimination of *japonica* from *indica* subspecies.

The metabolites of differential behavior between *japonica* and *indica* subspecies were mainly associated with three metabolic functions,

![Figure 2](image_url)

Figure 2 | Principal component (PC) analysis of the rice seed metabolomes. The first two PCs explain 34.81% of variance separating *japonica* from *indica* cultivars.

Biochemical Name	Mean Decrease Accuracy	Japonica/Indica	P-value	FDR-value	Super Pathway
asparagine	9.4445	0.68	3.62E-09	6.71E-09	Amino acid
4-guanidinobutanoate	9.1961	0.68	1.00E-14	8.50E-14	Amino acid
alanine	9.0173	1.73	1.00E-15	1.50E-14	Amino acid
trigonelline	8.435	2.63	1.00E-15	1.90E-14	CPGEC
gamma-tocopherol	8.2808	0.50	8.90E-14	4.93E-13	CPGEC
glutamate	8.2736	1.38	1.20E-14	8.50E-14	Amino acid
phytate	7.7472	1.54	1.26E-06	1.52E-06	Carbohydrate
13-HODE-9-HODE	6.263	1.88	4.36E-11	1.16E-10	Lipids
agmatine	6.2329	2.10	8.06E-13	3.20E-12	Amino acid related compound
putrescine	6.1999	2.07	1.16E-11	3.58E-11	Amino acid
gamma-aminobutyrate	6.1925	2.29	1.04E-10	2.40E-10	Amino acid
glycine	6.0299	1.35	4.95E-06	4.92E-06	Amino acid
adonitol	5.8866	1.75	9.07E-12	3.15E-11	Nucleotide
trans-4-hydroxyproline	5.5906	0.60	0.0002	0.0001	Amino acid
serine	5.4119	1.43	2.17E-08	3.41E-08	Amino acid
gluconate	4.9611	2.89	5.96E-13	2.76E-12	Carbohydrate
carnitine	4.8728	0.69	3.91E-07	5.44E-07	CPGEC
sucrose	4.826	1.19	1.07E-09	2.28E-09	Carbohydrate
inositol-1-phosphate	4.8148	0.83	0.0006	0.0004	Carbohydrate
nicotianamine	4.5049	1.22	7.41E-07	9.37E-07	CPGEC
citrate	4.4552	0.80	0.0002	0.0001	Carbohydrate
1,3-dihydroxyacetone	4.114	1.43	2.21E-08	3.41E-08	Carbohydrate
tyrosine	4.0544	1.29	6.31E-06	6.02E-06	Amino acid
piperazolate	4.054	0.78	9.28E-05	6.98E-05	Amino acid
arginine	3.921	1.15	0.0097	0.0042	Amino acid
pyridoxilate	3.9206	0.84	0.0004	0.0002	CPGEC
guanosine	3.9175	1.10	0.0163	0.0067	Nucleotide
stigmasterol	3.8728	1.18	2.31E-09	4.59E-09	Lipids
mannitol	3.8254	0.70	0.0064	0.003	Carbohydrate
spermidine	3.8041	1.47	1.94E-06	2.16E-06	Amino acid

Higher values of mean decrease accuracy correspond to a larger importance of the metabolite in classifying *japonica* from *indica* cultivars. The column of *japonica*/*indica* shows the ratios of relative metabolite levels between *japonica* and *indica* cultivars. P-value and FDR-value indicate the significance and false discovery rate of difference of the relative metabolite levels between *japonica* and *indica*, respectively. CPGEC: Co-factors, Prosthetic Groups, and Electron Carriers.
namely, nitrogen metabolism, stress responses and inorganic nutrition storage and translocation. In general *japonica* appeared to have higher levels of nitrogen containing compounds, such as: gamma-aminoobutyrate, serine, alanine, glutamate, glycine, glutamine, and argamine, and polyamines (putrescine and spermidine) than *indica* (Supplementary Table S1). By contrast, *japonica* cultivars had lower levels of reduced glutathione, trans-4-hydroxyproline, asparagine and 4-guanidinobutanooate etc., compared to *indica* cultivars (Supplementary Table S1). In vegetative tissues nitrogen containing molecules, such as: glutamate, glutamine, and asparagine, play key roles in nitrogen assimilation, recycling, translocation and storage. Previous studies demonstrated that *japonica* and *indica* display different nitrogen uptake efficiency during the vegetative growth stage, whilst our data support previous claims that they likely have different strategies for nitrogen remobilization for yield and quality in seed during grain filling and maturation stage. This difference in nitrogen-containing metabolites may result from the adaptation to their original growth conditions and the nitrogen availability, although it should be stressed that the plants studied here were grown *ex situ*. Moreover, metabolites associated with stress responses such as γ-aminobutyric acid (GABA), alanine, linolenate, 13-HODE-9-HODE (9,13-DHOME), 12,13-hydroxyoctadec-9(Z)-enoate (12,13-DHOME), 9,10-hydroxyoctadec-12(Z)-enoic acid (9,10-DHOME), and glucose accumulate to higher levels in *japonica* cultivars. However, lower levels of anti-oxidative metabolites, such as reduced glutathione (GSH), γ-tocopherol, γ- tocotrienol and pyridoxate were observed in *japonica*. This result suggests that *japonica* seeds exhibit lower capacity for oxidative remediation than *indica*, which is consistent with observations that *japonica* cultivars are more susceptible than *indica* to irradiation and oxidative stress in seeds and seedlings. Moreover, metabolites related to inorganic nutrition storage and translocation, such as phytate, glutonate and nicotianamine, were higher in *japonica* than *indica* cultivars, indicating a different ability of translocation and storage of those inorganic nutrients. It is known that negatively charged phosphate in phytate makes it an efficient chelating agent of positively charged mineral cations, such as K, Mg, Fe, Ca and Zn. In addition, glutonate is also a strong chelating agent, while nicotianamine is responsible for the translocation of Fe and Mn from leaf to the developing seeds. Previous studies reported that the accumulations of Cu, Fe, Zn, and Mn in roots and shoots of *japonica* are higher than those of *indica*, the metabolomic data in this study may imply higher amounts of certain inorganic nutrients in *japonica* seeds, as compared with those in *indica*.

Metabolite-metabolite correlation analysis. Correlation analysis can be used to reveal relationships among metabolites. When applied to our dataset, this analysis revealed both positive and negative correlations among metabolites in both subspecies (Fig. 3a, 3b and Supplementary Data 1). At a threshold of correlation value greater than 0.50 (r-value ≥ 0.5), there were 868 and 1448 pairs of positive correlations, and 34 and 13 pairs of negative correlations, in *japonica* and *indica*, respectively. Generally, metabolites with high correlations observed in both *japonica* and *indica* were either amongst amino acids or between amino acids and carbohydrates or nucleotides. Additionally, some correlations among lipids, particularly phospholipids, were quite high: 12,13-hydroxyoctadec-9(Z)-enoate (12,13-DHOME) and 9,10-hydroxyoctadec-12(Z)-enoic acid (9,10-DHOME), which share the same common substrates and enzymes in their biosynthetic pathways, displayed the highest positive association in *japonica* (r-value = 0.99, p-value < 1.00E-16), while 1-oleoylglycerol (1-OG) and 2-oleoylglycerophosphocholine (2-OGPC), 1-oleoylglycerophosphocholine (1-OGPC) and 2-OGPC, 1-palmitoylglycerophosphocholine (1-PGPC) and 2-OGPC, 1-OG and 1-OGPC, 1-linoleoylglycerophosphonol (1-LGPC) and 1-lyso-1-myristoylglycerophosphocholine (1-MGPC), and 1-OGPC and 1-PGPC accounted for the six highest positive correlations in *indica* (r-value > 0.97 and p-value < 1.00E-16). Remarkably, the strongest negative associations in *japonica* and *indica* were 1-linoleoylglycerophosphoethanolamine (1-LGPE) with choline (r = −0.77, p-value = 5.14E-11) and reduced glutathione (GSH) with linolate (r = −0.62, p-value = 1.89E-06), respectively. Altogether, this analysis and other reports uncovered a conserved and highly coordinated interplay of amino acids, and of amino acids and carbohydrates in the crop seed metabolic network and a unique concerted interaction of lipids in rice seeds.

Fisher’s z-transformation analysis was employed to assess differential metabolite-metabolite correlations between *japonica* and *indica* subspecies. A total of 286 pair-wise associations were significantly different at False Discovery Rate at least 0.05 (FDR-value ≤ 0.05) between *japonica* and *indica* (Supplementary Data 1). The vast majority of the differential correlations were among different classes of metabolites such as carbohydrates, amino acids and lipids, with few differential correlations within metabolites of the same classes (Figure 3c and Supplementary Fig. S2). However, 11 metabolite-metabolite pairs associated with phospholipids displayed the most contrasting correlation trends between *japonica* and *indica* subspecies (Supplementary Data 1). Our results indicated that the correlations between metabolites of the same class are relatively conserved whilst those between metabolites of the different classes are rather diverse between *japonica* and *indica* subspecies. Therefore, our analysis provides insight that these two rice subspecies evolved distinct regulatory strategies for certain sets of metabolites, facilitating their adaptation to their specific growth conditions. Future detailed investigations into the role of these metabolites will allow elucidation of the network of key metabolic regulators in rice seeds.

Metabolite-morphological trait correlation analysis. It has previously been reported that levels of certain metabolites are associated with other morphological traits. To examine whether such associations are present in rice, we performed correlation analysis between the 121 seed metabolic traits (metabolites) and the 17 morphological traits we measured. This analysis revealed that most of the metabolites were negatively correlated with the measured morphological traits (Fig. 4a and 4b and Supplementary Data 1), which is similar to previous observations in tomato. *japonica* cultivars displayed less metabolite-morphological trait associations than *indica* did (Fig. 4a and 4b), i.e. six positive and 23 negative associations in *japonica* (Fig. 4a), while the number of those associations in *indica* was 49 and 142, respectively (Fig. 4b). Furthermore, *japonica* and *indica* shared 13 metabolite-morphological trait associations (Fig. 4c), for example heading time (HT), an important and complex trait controlling the adaptation of rice cultivars to their growth environment, was negatively correlated with three amino acids (such as histidine and arginine), five carbohydrates (such as arabinol and mannotol), one lipid (glycerophosphorylcholine, GPC), and one peptide (ophthalmate), whilst being positively correlated with fumarate and glutarate.

Fisher’s z-transformation analysis was also employed to assess differential metabolite-morphological trait correlations between *japonica* and *indica* subspecies. Only five pair-wise associations were significantly different (FDR-value ≤ 0.05) between these two subspecies (Supplementary Data 1). They were seed width (SW) with oxidized glutathione and tyrosine, and panicle length with phytate, linolenate and fumarate.

Network-based analyses. In order to explore which structural properties of the reconstructed networks reflect the partition of metabolites into differential and non-differential groups between two subspecies, *japonica* and *indica* networks were created separately by graphical LASSO. The *indica* network contained 339 edges, while the *japonica* network was denser and included 419 edges (Fig. 5a). The *Indica* network had five connected components, of which the largest...
Figure 3 | Comparison of metabolite-metabolite correlation in *japonica* and *indica* rice seeds. (a) Heatmap of metabolite-metabolite correlation and significance in *indica*. In the colored area, rectangles represent Pearson correlation coefficient (r) values of metabolite pairs (see correlation color key). In the black and white area, rectangles represent the respective p-values (see significance color key). (b) Heatmap of metabolite-metabolite correlation and significance in *japonica*. (c) Fisher’s z-transformation analysis of differential metabolite-metabolite correlations between *japonica* and *indica* subspecies. Red rectangles indicate r-values of *indica* that are significantly bigger than those of *japonica*. Green rectangles indicate r-values of *indica* that are significantly smaller than those of *japonica*. Blue rectangles indicate r-values that are significant in both *indica* and *japonica*, but not significantly different between *indica* and *japonica*. Grey rectangles indicate r-values that are at least significant in one subspecies, but not significant between *indica* and *japonica*. White rectangles indicate r-values that are significant neither in *indica* nor in *japonica*, and not significantly different between *indica* and *japonica*.

One had 117 nodes (i.e. metabolites), and the remaining four were isolated nodes (i.e., glucosaminate, trehalose, gamma-tocopherol, and gamma-tocotrienol). The *japonica* network exhibited three connected components, of which the largest one contained 119 nodes, and the other two were isolated nodes (i.e., glucosaminate, and gamma-tocopherol) (Fig. 5b). Of the four isolated nodes in the two networks, only gamma-tocotrienol and gamma-tocopherol showed differential behavior between the subspecies.

The intersection shared by *indica* and *japonica* networks contained 121 nodes, with 93 edges and 34 connected components, while the symmetric difference contained 572 edges falling into three connected components, of which two were isolated nodes and one contained the remaining 119 metabolites. In the network intersection, 21 of the connected components were isolated nodes, and the remaining 13 connected components which may correspond to conserved associations due to similar underlying metabolic processes between the two rice subspecies. The decrease in the number of edges and the increase in the number of connected components between the intersection and each individual network imply that the *japonica* and *indica* networks have only few edges in common connecting a small number of nodes. Five out of these 13 connected components were observed to be enriched on the basis of all three ontologies used (Supplementary Fig. S3 and Supplementary Table S2). For example, connected component 1 was enriched in fatty acids (such as phospholipids and glycerophospholipids), which was in agreement with the metabolite-metabolite correlation analysis result (Fig. 3 and Supplementary Data 1).

Altogether, the edges in the network intersection were distributed among 100 nodes (metabolites), which indicate that 21 metabolites do not share edges between the *japonica* and *indica* networks. Nevertheless, 17 of these 21 metabolites were not isolated in the *indica* network, including: tryptophan, lysine, pipercolate, glutamine, N-acetylglutamate, betaine, N-acetylgulosamine, 1,3-dihydroxyacetone, sorbitol, glucarate (saccharate), nicotianmine, nicotinate ribonucleoside, trigonelline (N-methylhexocinitate), glycerol, 13-HODE, 9-HODE, beta-sitosterol, and adenosine. In the *japonica* network, additional two metabolites, i.e., gamma-tocotrienol and trehalose, were not isolated. These metabolites are involved in creating connected cultivar-specific subnetworks, which, in the *indica* network, include 13 metabolites on nine edges, and in the *japonica* network, consist of 12 metabolites and 10 edges (Supplementary Fig. S4).

To analyze the position of the differential metabolites within the network, the following node properties: degree, eccentricity, closeness, betweenness, eigencentrality and coreness were examined and the hypothesis that the average of each property for the differential metabolites is smaller/greater than the average of the non-differential metabolites was tested. Surprisingly, none of the 12 hypotheses (i.e., six properties and smaller/greater relationship) could be validated in the symmetric difference between the two networks. However, in the intersection, the differential metabolites have smaller degree, coreness, and closeness than the non-differential metabolites (Supplementary Table S3). This implied that a metabolite showing differential behavior is expected on average to be of larger eccentricity than a non-differential metabolite. Altogether, these findings indicated that differential metabolites are on the periphery of the network intersection, pulling the conserved processes in the cultivar-specific direction.
We further analyzed the metabolite community using three different approaches (i.e. fast greedy community detection, edge betweenness approach and leading eigenvector approach) (Supplementary Data 2). Since the fast greedy community detection resulted in the largest modularity in both networks, the resulting communities were then used to test for enrichment of terms based on the three previously used ontologies. The findings are presented in Supplementary Data 2 for the indica and japonica networks, respectively. Interestingly, the negligible overlap between the network communities, arising due to structural differences and quantified by the adjusted Rand index, corresponded to the observed differences in the enriched terms. While the modular structure of the indica network suggested orchestration of carbohydrate and amino acid metabolism, in the japonica network this seemed to be the case rather for lipid and amino acid metabolism.

Metabolomics profiles support isolation-by-distance model. To determine if the metabolic phenotype forms a random or structured spatial pattern, we investigated the relationship between the geographic proximity of the rice cultivars and their metabolic phenotypes. The geographic variability analysis showed positive associations between metabolic phenotype and geographic origin in rice seeds, revealing a robust pattern of isolation-by-distance. These structured patterns were observed for different classes of metabolites, and were supported by significant ranges for Moran’s I (0.57–0.59), Geary’s C (0.40–0.42), and Global G (0.022) (Supplementary Table S4).

Discussion

During their evolutionary process, plants, as sessile organisms, developed an array of molecular mechanisms to adapt to the varying environments, resulting in diversified molecular phenotypes and morphological traits (e.g., flowering time, yield and organ size). Understanding of the molecular factors determining plant adaptation is of general significance in plant research, and of particular importance in staple crops, which depends mainly on the quantification of the relationship between phenotypic characteristics and growth habitats or genotypic characteristics. In this study, using a standardized non-targeted UHPLC/MS/MS and GC-MS based metabolic profiling approach combined with robust statistical analysis, we investigated the relationship between biochemical characteristics and geographic origins, genotypic characteristics, and morphological traits in the mature seeds of japonica and indica rice.

Figure 4 | Correlations between metabolite levels and morphological traits. Full names of the abbreviation of metabolites and morphological traits refer to Supplementary Table S1 and Methods, respectively. Details about the associations are listed in Supplementary Data 1. Positive and negative correlations are represented by red and green edges, respectively. Each color denotes a compound class as shown in the top right legend. (a) Six positive and 23 negative correlations observed in japonica cultivars. (b) 49 positive and 142 negative correlations determined in indica cultivars. (c) 13 correlations shared between japonica and indica cultivars.
metabolome of seed desiccation, the final stage of seed development, which seemingly exhibits highly convergent local adaptation. The opposite abundance of asparagine and alanine between japonica and indica cultivars indicates that they harbor different strategies for nitrogen utilization in seeds, probably via the regulation of the expression of transaminases or asparaginases. Another line of evidence suggestive of a different amino acid regulation is provided by the apparent difference in the metabolic fluxes between Arg and GBH vs Arg and polyamines in the two subspecies (Fig. 1).

The metabolic differences described here may be, at least partially, the result of mechanisms which sense or regulate stress responses. For example reactive oxygen species (ROS) generated during the seed desiccation process has an important role in cellular signaling for seed development. Moreover, GABA and alanine are the two main amino acids accumulating under hypoxic stress conditions where they have been suggested to represent an important adaptive strategy to store carbon and nitrogen in preparation for the return to normal oxygen condition such as germination. Furthermore in this vein, oxylipins are a large family of lipids-derived metabolites, which play significant roles in plant development and defense. These compounds can be produced by non-enzymatic oxidation of polysaturated fatty acids, mainly linolenate (18:3) and linoleate (18:2). The lipid peroxidation products (9,13-DHOME, 12,13-DHOME and 9,10-DHOME) of the oxylipin pathways are consistent markers of higher oxidative states, as are oxidized sugars, such as gluconate. In contrast, reduced glutathione (GSH), tocopherols and pyridoxate directly act as protective agents against oxidative stress. Compared with indica, japonica cultivars contain higher levels of oxidized metabolites (including GABA, alanine, gluconate and oxylipins) and concomitant lower levels of reduced metabolites (such as GSH, γ-tocopherol, γ-tocotrienol and pyridoxate), which suggest lower capacity for oxidative remediation in these cultivars. This is consistent with the previous findings that the overall susceptibility to oxidative damage is less in indica rice seeds than that in japonica.

By investigating the interactions between metabolites, network-based analysis can help interpret complex datasets through the identification of key network components. Metabolite-metabolite correlation analysis generated a large number of significant correlations, the vast majority of which are positive, in both japonica and indica. The highly coordinated regulation of metabolic abundance in seeds has previously been also observed in other species, such as tomato, strawberry and Arabidopsis. The highly synchronized patterns of change in metabolite levels of different species suggest that the regulation of metabolic process in seeds is conserved and tightly regulated during the evolutional history. On the other hand, japonica and indica also display significant differences in some metabolite-metabolite correlations. Firstly, there are less positive correlations but more negative correlations in japonica than in indica. Secondly, the magnitude of most significant correlations is different between the two subspecies. This phenomenon may be caused by variant feedback regulation and different preference of metabolic pathways between japonica and indica, which have not been proved in this study. Future efforts should be paid to elucidate the mechanism of different regulation of seed metabolome using a combination of molecular and biochemical methods.

Metabolite-morphological trait correlation analysis revealed more negative correlations in both indica and japonica cultivars, indicating an opposite change of specific rice phenotypic traits with the particular metabolite levels across the population, which is consistent with the findings in the pericarp and seed of tomato. We propose that certain morphological traits, such as HT, TSNPP, PL and plant height (PH) affect rice seed metabolites. Negative correlations between seed metabolites and HT are mainly for amino acids and their derivatives. Similarly, in tomato the negative correlations between seed metabolites and harvest index are mainly for amino acids and N-containing compounds. Therefore, a conserved meta-
bolic regulatory mechanism may operate in plants, regulating N partitioning and seed development, which finally modulates plant yield. The genetic and molecular mechanism underlying this phenomenon merits further investigation. In addition, four seed metabolites (stachydrine, mannitol, arabinol, and arabitol) negatively correlate with filled seed number per panicle (FSNPP) but two metabolites (1-MGPC and 1-OGPC) positively correlate with ESNPP, revealing the competition for nutrition among the seeds in the same plant. The similar competitive phenomenon was observed in other species including badamum, apple, citrus, papaya, and tomato. Furthermore, two seed metabolites (GPC and mannitol) negatively correlate with plant height. Altogether, metabolite and morphological trait correlation analysis uncovers common regulatory nodes for seed metabolic pathways in both rice subspecies.

Additionally, although there were only five significantly different metabolite and morphological trait correlations between japaonica and indica subgroups, they tend to be subspecies-specific (Fig. 4), which may facilitate the dissection of the mechanisms underlying the metabolomic difference between these two subspecies. Furthermore, the same morphological trait in different subspecies highly correlate with different metabolites, for example, HT in japaonica and indica correlates with different metabolites (Supplementary Data 1).

Further network-based analysis reveals that the network structural properties between japaonica and indica vary significantly. Japaonica network has more edges which largely differ from that of indica network. This is manifested in the finding that japaonica has a distinct metabolite community from indica, in which carbohydrates and lipids metabolism instead of carbohydrates and amino acids exhibit orchestrated changes. On the other hand, our analysis also reveals a conserved sub-network between these two subspecies, which is validated by three additional ontology enrichment analyses, indicating both cultivar-specific and conserved metabolic processes between japaonica and indica rice seeds.

To dissect the genetic basis of natural variation for complex metabolic traits in plants, association mapping including quantitative trait locus (QTL) analysis and genome-wide association study (GWAS) analysis has been increasingly applied. By metabolite profiling and genetic analysis of 41 Arabidopsis accessions and two recombinant inbred lines, Trontin et al (2011) framed the range of natural variation of the major seed flavonoids and identified three genes co-localized that they were below the limits of instrument detection sensitivity. Metabolic differences between japaonica and indica seeds were determined using nested ANOVA in the R package. In addition, the metabolite profiles were subject to principal component analysis (PCA), and network-based analyses, the latter based on metabolite-metabolite and metabolite-morphological trait correlations employing the mean profile values. To assess differential metabolite-metabolite and metabolite-morphological trait correlations between japaonica and indica subspecies, Fisher’s z-transformation analysis was employed. An edge was established between two metabolites if their 5-fold cross-validated partial correlation was different from zero, estimated from the sparse precision matrix based on LASSO. Proximity network analysis were carried out as previously reported. All statistical and network-based analyses were performed in R statistical environment and SIMPCA P software. Metabolic pathway and the graphical presentation of metabolite-morphological trait correlation were composed with Cytoscape version 2.8.3. The heatmaps of metabolite-metabolite correlation were visualized with MultiExperiment Viewer (MeV) version 4.8. Tests are deemed significant at level of 5%.

Methods

Materials. The study is based on our core collection of rice cultivars containing 51 japaonica and 49 indica with a broad genetic and ecological diversity (Supplementary Table S5). All plants were planted in a paddy field in Minhang (31.03° N, 121.45° E), Shanghai, during the summer season in 2011. The experimental design was a randomized complete block design (including two rows of each inbred line and ten plants each row). Hundreds of individual mature rice seeds from four panicles of two individual plants were collected, frozen with liquid nitrogen and stored at −80 °C until metabolomics analysis. Meanwhile, 17 morphological traits including: heading time (HT); plant height (PH); tiller number (TN); panicle length (PL3); 100-seed weight (100-SW); seed length (SL); seed width (SW); seed thickness (ST); the ratio of seed length to seed width (SL/SW); the ratio of seed length to seed thickness (SL/ST); the ratio of seed width to seed thickness (SW/ST); filled seed number per panicle (FSNPP), empty seed number per panicle (ESNPP), total seed number per panicle (TNSPP), seed set percent (SPS), primary branch number per panicle (PBN), second branch number per panicle (SNB) were measured.

Metabolite profiling. Samples were ground into fine powder, and methanol extracts from 40 mg sample were then analyzed using a well established analytical platform: ultra-HPLC (ULHPLC)-tandem mass spectrometry (MS/MS) and gas chromatography (GC)-MS. The detailed information about these platforms has been published elsewhere. For LC platform, chromatographic separation and full scan mass spectra were performed to record retention time, mass-to-charge ratio, and MS/ MS of all detectable ions. For GC platform, the samples were derivatized with BSTFA (bis(trimethylsilyl)-trifluoroacetamide), and the retention time and mass-to-charge ratio for all detectable ions were measured. The ion features of the samples were matched in an automated way against in-house built reference libraries of chemical standard entries for identification of metabolites.

Data analysis. Integrated peak ion counts were used to compare relative abundances of a metabolite in each sample. The missing values for a given metabolite were imputed with the observed minimum detected value for statistical analysis, assuming that they were below the limits of instrument detection sensitivity. Metabolic differences between japaonica and indica seeds were determined using nested ANOVA in the R package. In addition, the metabolite profiles were subject to principal component analysis (PCA), and network-based analyses, the latter based on metabolite-metabolite and metabolite-morphological trait correlations employing the mean profile values. To assess differential metabolite-metabolite and metabolite-morphological trait correlations between japaonica and indica subspecies, Fisher’s z-transformation analysis was employed. An edge was established between two metabolites if their 5-fold cross-validated partial correlation was different from zero, estimated from the sparse precision matrix based on LASSO. Proximity network analysis were carried out as previously reported. All statistical and network-based analyses were performed in R statistical environment and SIMPCA P software. Metabolic pathway and the graphical presentation of metabolite-morphological trait correlation were composed with Cytoscape version 2.8.3. The heatmaps of metabolite-metabolite correlation were visualized with MultiExperiment Viewer (MeV) version 4.8. Tests are deemed significant at level of 5%.

1. Khush, G. S. Origin, dispersal, cultivation and variation of rice. Plant Mol Biol. 35, 25–34 (1997).
2. Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501 (2012).
3. Huang, X. et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet. 42, 967–977 (2010).
4. Jara, S. et al. Selecting for seed oil content in rice using a commercial metabolomics approach. J Proteome Res. 10, 1144–11459 (2011).
5. Kovach, M. J., Calingacion, M. N., Fitzgerald, M. A. & McCouch, S. R. The origin and evolution of fragrance in rice (Oryza sativa L.). Proc Natl Acad Sci USA. 106, 14444–14449 (2009).
6. Ufaz, S. & Galili, G. Improving the content of essential amino acids in crop plants: goals and opportunities. Plant Physiol. 147, 954–961 (2008).
7. Schauer, N. et al. Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20, 509–523 (2008).
8. Toubiana, D. Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations. *PLoS Genet.* 8, e1002612 (2012).

9. Kuwano, M. et al. Application of a metabolicomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. *J. Chromatogr. A* 1218, 79–120 (2011).

10. Heuberger, A. L. et al. Metabolomic and functional genomic analyses reveal varietal differences in bioactive compounds of cooked rice. *PLoS One* 5, e12915 (2010).

11. Lou, Q. et al. Profiling and Association Mapping of Grain Metabolites in a Subset of the Core Collection of Chinese Rice Germplasm (Oryza sativa L.). Journal of agricultural and food chemistry 59, 9237–9246 (2011).

12. Kim, J. K., Park, S., Cook, J. H., Voo, Y., Cho, H. S. & Ha, S. Comparative metabolic profiling of pigmented rice (Oryza sativa L.) cultivars reveals primary metabolites are correlated with secondary metabolites. *J. Cereal Sci.* 57, 14–20 (2012).

13. Matsuda, F. et al. Dissection of genotype–phenotype associations in rice grains using metabolome quantitative trait loci analysis. *Plant J.* 70, 624–636 (2012).

14. Toshima, D., Fernie, A. R., Nikosoloi, Z. & Fait, A. Network analysis: tackling complex data to study plant metabolism. *Trends Biotechnol.* 31, 29–36 (2012).

15. Molina, J. et al. Molecular evidence for a single evolutionary origin of domesticated rice. *Proc. Natl. Acad. Sci. USA.* 108, 8351–8356 (2011).

16. Xiong, Z. et al. Differentiation and distribution of indica and japonica rice varieties along the altitude gradients in Yunnan Province of China as revealed by InDel markers. *Genet. Resour. Crop Ev.* 57, 891–902 (2010).

17. Hernandez-Sebastian, C. et al. Free amino acid profiles suggest a possible role for asparagine in the control of storage-product accumulation in developing seeds of low- and high-protein soybean lines. *J. Exp. Bot.* 56, 1951–1963 (2005).

18. Gautheron, L., Rendorf-Cren, M., Rothstein, S. J., Chardon, F. & Suzuki, A. Biological functions of asparagine synthetase in plants. *Plant Sci.* 179, 141–153 (2010).

19. Britto, D. T. & Kronzucker, H. J. Bioengineering nitrogen acquisition in rice: can novel initiatives in rice genomics and physiology contribute to global food security? *BioEssays* 26, 683–692 (2004).

20. Fan, X. et al. Comparing nitrate storage and remobilization in two rice cultivars that differ in their nitrogen use efficiency. *J. Exp. Bot.* 58, 1729–1740 (2007).

21. Koutrobas, S. & Ntanos, D. Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions. *Field Crop. Res.* 83, 251–260 (2003).

22. Ramarathnam, N., Osaka, T., Namiki, M. & Kawashiki, S. Studies on changes in fatty acid composition and content of endogenous antioxidants during germination of rice (*Oryza sativa L*). *J. Amer. Oil Chem. Soc.* 66, 105–108 (1989).

23. Liu, F. et al. Gene expression profiles deciphering rice phenotypic variation between Nipponbare (*Japonica*) and 93–11 (*Indica*) during oxidative stress. *PLoS One* 5, e8632 (2010).

24. Gibson, R. S., Bailey, K. B., Gibbs, M. & Ferguson, E. L. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. *Food Nutr. Bull.* 31, 134–146 (2010).

25. Gao, F., Lu, Q. & Komarneni, S. Gluconate controls one-dimensional growth of tellurium nanostructures. *Adv. Mater.* 23, 329–351 (2011).

26. De Sousa, C. & Sodek, L. Alanine metabolism and alanine aminotransferase functions of asparagine synthetase in plants. *Planta* 236, 143–153 (2012).

27. Deng, Z. Y., Gong, C. Y. & Wang, T. Use of proteomics to understand seed metabolism and seed, fruit, and plant relations. *Plant Physiol.* 143, 1720–1738 (2007).

28. Molina, J. & Herrickson, C. J. and Hellmann, H. Vitamin B6: a known compound of surprising complexity. *Molecules* 14, 329–351 (2009).

29. Foyer, C. H. & Nogor, G. Ascorbate and glutathione: the heart of the redox hub. *Plant Physiol.* 155, 2–18 (2011).

30. Fait, A. et al. Reconfiguration of the achenic and receptacle metabolic networks in the flowering strawberry fruit development. *Plant Physiol.* 148, 730–750 (2008).

31. Angelovici, R. et al. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development. *Plant Physiol.* 151, 2058–2072 (2009).

32. Morandi, B., Corelli Grappadelli, L., Rieger, M. & Lo Bianco, R. Carbohydrate availability affects growth and metabolism in peach fruit. *Physiol. Plantarum* 133, 229–241 (2008).

33. Link, H. Significance of flower and fruit thinning on fruit quality. *Plant Growth Regul.* 31, 17–26 (2000).

34. Kubo, T., Hohjo, I. & Hiratsuka, S. Sucrose accumulation and its related enzyme activities in the juice sacs of osmata mandarin fruit from trees with different crop loads. *Sci. Horticult.* 91, 215–225 (2001).

35. Zhuo, L., Christopher, D. A. & Paul, R. E. Defoliation and fruit removal effects on papaya fruit production, sugar accumulation, and sucrose metabolism. *J. Amer. Soc. Hortic. Sci.* 125, 644–652 (2000).

36. Abc, Y. et al. The SMALL AND ROUND SEED1 (SRS1/DEP2) gene is involved in the regulation of seed size in rice. *Genes Genet Syst.* 85, 327–339 (2010).

37. Totro, C., Tisné, S., Bach, L. & Loudet, O. What does Arabidopsis natural variation teach us (and does not teach us) about adaptation in plants? *Curr Opin Plant Biol.* 14, 225–231 (2011).

38. Koutoublou, J. M. et al. Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis. *J. Exp. Bot.* 63, 3749–3764 (2012).

39. Chan, E. K., Rowe, H. C., Corwin, J. A., Joseph, B. & Klieberstein, D. J. Combining genome-wide association mapping and transcriptional networks to identify novel genes controlling glucosinolates in Arabidopsis thaliana. *PLoS Biol.* 9, e1001125 (2011).

40. Melhus, I. N. et al. Natural variation in maize aphid resistance is associated with 2, 4-dihydroxy-7-methoxy-1, 4-benzoaxin-3-one glycoside methyltransferase activity. *Plant Cell* 25, 2341–2355 (2013).

41. Streblerheim, C. et al. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. *Proc Natl Acad Sci* 109, 8872–8877 (2012).

42. Chan, E. K., Rowe, H. C. & Klieberstein, D. J. Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping. *Genetics* 185, 991–1007 (2010).

43. Angelovic, R. et al. Genome-wide analysis of branched-chain amino acid levels in Arabidopsis seeds. *Plant Cell* 25, 4827–4843 (2013).

44. Cook, J. P. et al. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. *Plant Physiol* 158, 824–834 (2012).

45. Li, H. et al. Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. *Nat Genet.* 45, 43–50 (2013).

46. Lipka, A. E. et al. Genome-wide association study and pathway level analysis of tocochromanol levels in maize grain. *G3 Genomes Genet* 3, 1287–1299 (2013).

47. Hwang, E. Y. et al. A genome-wide association study of seed protein and oil content in soybean. *BMC Genom.* 15, 1 (2014).

48. Qiao, T. et al. Untargeted marker discovery profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. *Toxicologic Patholog* 37, 521–535 (2009).

49. Evans, A. M., DeHaen, C. D., Barrett, T., Mitchell, M. & Milgram, E., Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. *Anal Chem.* 81, 6656–6667 (2009).

50. Clarke, J. D. et al. Assessment of genetically modified soybean in relation to natural variation in the soybean seed metabolome. *Sci Rep* 3, 3082 (2013).

51. Tishbairian, R. The lasso method for variable selection in the Cox model. *Statistics in Medicine* 16, 385–395 (1997).

Acknowledgments

We thank Professor Qiangnan from China National Rice Research Institute and Professor Lijun Luo from Shanghai Agrobiosciences Gene Center for providing the rice seeds used in present study. We also thank Mr. Jie Zong and Dai Chen from Novel Bioinformatics Ltd., Co. for their technical assistance in bioinformatics analysis, and Mr. Zhijun Luo and Ms.
Mingjiao Chen for growing rice materials. This work was supported by the National Transgenic Plant Special Fund (2011ZX08012-002 and 2013ZX08012-002), China Innovative Research Team, Ministry of Education, 111 Project (B14016).

Author contributions
C.H., X.Z. and B.C. performed rice seed sampling and morphological trait observation. C.R., S.Q. and Q.L. carried out the metabolic profiling. D.A. and L.G. performed the annotation of the metabolites. C.H., J.S., H.L., J.W., X.C. and J.R. performed the data analysis. T.T. accomplished the classification of the identified chemicals, and S.K. and Z.N. carried out the network-based analysis and geographic origin analysis. C.H., J.S., L.G., Z.N., A.R.F. and D.Z. wrote the manuscript. J.S. and D.Z. designed the experiments and supervised the research.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Hu, C.Y. et al. Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Sci. Rep. 4, 5067; DOI:10.1038/srep05067 (2014).