A Method of Classifying All Simply Laced Root Systems

G. R. Vijayakumar
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road, Colaba
Mumbai 400 005
India
Email: vijay@math.tifr.res.in

Abstract

A root system in which all roots have same norm is known as a simply laced root system. We present a simple method of classifying all simply laced root systems.

Keywords: simply laced root system, base, euclidean space.

2000 Mathematics Subject Classification: 05C50, 15A18.

This note is motivated by Chapter 12 of [1], a study of the class of all graphs with least eigenvalue \(\geq -2 \); we present a much simpler and shorter method of deriving Theorem 12.7.4 of [1]. Let \(\mathbb{N}, \mathbb{Z} \) and \(\mathbb{R} \) be respectively the set of all positive integers, the set of all integers and the set of all reals. Let \(\mathbb{E} \) be the euclidean space of countably infinite dimension; i.e., \(\mathbb{E} \) is the usual innerproduct space defined on \(\{ (r_1, r_2, \ldots) \in \mathbb{R}^\mathbb{N} : \sum_{i=1}^{\infty} r_i^2 < \infty \} \); for any \(x = (r_1, r_2, \ldots) \) and \(y = (s_1, s_2, \ldots) \) which belong to \(\mathbb{E} \), their innerproduct \(\sum_{i=1}^{\infty} r_i s_i \) is denoted by \(\langle x, y \rangle \). We denote the zero-vector of any subspace of \(\mathbb{E} \) by 0 itself. Let \(\mathbb{S} \) be any subset of \(\mathbb{E} \). Then the set \(\{ \alpha_1 v_1 + \cdots + \alpha_n v_n : \text{for each } i \leq n, \alpha_i \in \mathbb{Z} \text{ and } v_i \in \mathbb{S} \} \) is denoted by \(\mathbb{Z}(\mathbb{S}) \); any element (subset) in (of) \(\mathbb{Z}(\mathbb{S}) \) is said to be generated by \(\mathbb{S} \). \(\hat{\mathbb{S}} \) denotes the set \(\{ v \in \mathbb{Z}(\mathbb{S}) : ||v|| = \sqrt{2} \} \). We associate with \(\mathbb{S} \), a graph denoted by \(G[\mathbb{S}] \): its vertex set is \(\mathbb{S} \); two vertices are joined if their innerproduct is nonzero. If \(G[\mathbb{S}] \) is connected, then \(\mathbb{S} \) is called indecomposable; otherwise it is decomposable. Note that \(\mathbb{S} \) is decomposable if and only if it has a proper subset \(T \) such that for all \(x \in T \) and for all \(y \in \mathbb{S} \setminus T, \langle x, y \rangle = 0 \). If \(\mathbb{S} \) is linearly independent and for all distinct \(x, y \in \mathbb{S}, \langle x, y \rangle \leq 0 \), then \(\mathbb{S} \) is called obtuse.

Our object is to produce a method of classifying every non-empty finite set \(\mathbb{X} \) in \(\mathbb{E} \) such that for all \(x, y \in \mathbb{X}, \langle x, x \rangle = 2, \langle x, y \rangle \in \mathbb{Z} \text{ and } x - \langle x, y \rangle y \in \mathbb{X} \). Such a set \(\mathbb{X} \) is known as a simply laced root system in the literature and any element in \(\mathbb{X} \) is called a root of \(\mathbb{X} \). When \(\mathbb{X} \) is indecomposable (decomposable) it is also called irreducible (reducible). Thus note that \(\mathbb{X} \) is a (disjoint) union of mutually orthogonal irreducible simply laced root systems. Henceforth \(\Phi \) denotes a simply laced root system. A subset \(\Delta \) of \(\Phi \) is called a base of \(\Phi \) if \(\Delta \) is obtuse and generates \(\Phi \). (Though this definition appears to be different from that of a base of a general root system (see [2] or [3]), it can be shown that for simply laced root systems, they are equivalent.)

Remark 1. For any \(x \in \Phi, -x = x - 2x = x - \langle x, x \rangle x \in \Phi \). Let \(a, b \in \Phi \); note that \(\langle a, b \rangle = 1 \Rightarrow a - b \in \Phi \) and \(\langle a, b \rangle = -1 \Rightarrow a + b \in \Phi \); since \(||a|| \leq ||a|| ||b|| \) where\}
The family of all connected graphs with largest eigenvalue ≤ 2.

equality holds only when one root is a scalar multiple of the other, it follows that if $a \neq \pm b$ then $\langle a, b \rangle \in \{-1, 0, 1\}$.

The following result classifies all simply laced root systems.

Theorem 2. If Ω is an irreducible simply laced root system, then there exists an automorphism θ of E such that $\theta(\Omega) \in \{A_n : n \in \mathbb{N}\} \cup \{D_n : n \in \mathbb{N} \text{ and } n > 3\} \cup \{E_6, E_7, E_8\}$.

Let $\{e_i : i = 1, 2, \ldots\}$ be an orthonormal basis for E. Then

for each $n \in \mathbb{N}$, $A_n = \{\pm(e_i - e_j) : 1 \leq i < j \leq n + 1\}$ and

for each $n \geq 2$, $D_n = \{\pm e_i \pm e_j : 1 \leq i < j \leq n\}$.

$E_8 = D_8 \cup \left\{ \frac{1}{2} \sum_{i=1}^{8} \epsilon_i e_i : \epsilon_i = \pm 1 \text{ for } i \leq 8 \text{ and } \prod_{i=1}^{8} \epsilon_i = 1 \right\}$,

$E_7 = \{v \in E_8 : \langle v, a \rangle = 0\}$ and

$E_6 = \{v \in E_7 : \langle v, b \rangle = 0\}$

where a and b are two vectors in E_8 such that $\langle a, b \rangle = 1$.

Let us denote the largest eigenvalue and the least of a graph G by $\Lambda(G)$ and $\lambda(G)$ respectively. Derivation of Theorem 2 can be done in two steps: (1) For each irreducible root system, finding a base Δ such that $\Lambda(G[\Delta]) < 2$. (2) Associating with each connected graph whose largest eigenvalue is less than 2, a base of one of the root systems defined above. The second part is routine; the reader is referred to [2] and [3].
A Method of Classifying All Simply Laced Root Systems

3

for this. We focus only on the first one; our method involves heavily the family of all
connected graphs with largest eigenvalue \(\leq 2 \) displayed in the figure—for each graph
\(G \) on the left (right), \(\Lambda(G) = 2 \) (\(\Lambda(G) < 2 \)). (For computation of this family, see [4].)

Proposition 3. If \(X \) is a base of \(\Phi \), then \(\tilde{X} = \Phi \).

Proof. For any \(w = t_1x_1 + \cdots + t_mx_m \in \tilde{X} \), where \(x_1, \ldots, x_m \) are distinct vectors in \(X \),
let \(\rho(w) = |t_1| + \cdots + |t_m| \). It is enough to show that \(\tilde{X} \subseteq \Phi \). Let \(u = \alpha_1v_1 + \cdots + \alpha_nv_n \)
where \(v_1, \ldots, v_n \) are distinct vectors in \(X \) be an element in \(\tilde{X} \); we can assume that each
\(x \in \tilde{X} \) such that \(\rho(x) < \rho(u) \) belongs to \(\Phi \) and \(x \not\in X \). Now for some \(k \in \{1, \ldots, n\} \),
\(\alpha_k \neq 0 \); we can assume that for each \(j \leq k \), \(\alpha_j > 0 \) and for each \(j \in \{ i \in \mathbb{N} : k < i \leq n \} \),
\(\alpha_j < 0 \). Then for some \(\ell \in \{1, \ldots, k\} \), \(\langle u, v_\ell \rangle > 0 \). Since \(u \neq v_\ell \), it can be verified that
\(\langle u, v_\ell \rangle = 1 \). Therefore \(|u - v_\ell|^2 = 2 \); since \(\rho(u - v_\ell) = \rho(u) - 1 \), \(u - v_\ell \in \Phi \). Now
\(\langle u - v_\ell, v_\ell \rangle = -1 \Rightarrow (u - v_\ell) + v_\ell \in \Phi \); i.e., \(u \in \Phi \).

Proposition 4. \(\Phi \) has a base.

Proof. We can assume that \(\Phi \) is irreducible. Let \(S \) be an indecomposable obtuse
subset of \(\Phi \) such that \(Z(S) \cap \Phi \) is as large as possible. Suppose that the latter is a
proper subset of \(\Phi \). Since \(\Phi \) is irreducible, we can find some \(p \in \Phi - Z(S) \) and \(a \in S \)
such that \(\langle p, a \rangle < 0 \). Let \(T \) be the set of all roots \(r \) such that the following holds: for
some \(x \in S \), \(\langle r, x \rangle < 0 \) and \(r \) can be expressed in the form \(p - \sum_{x \in S} \alpha_xx \) where for each
\(x \in S \), \(\alpha_x \in \mathbb{N} \cup \{0\} \). For any such \(r \), let \(\sum_{x \in S} \alpha_xx \)—it is easy to verify that this sum is
independent of the form for \(r \)—be denoted by \(\rho(r) \). Note that \(T \) is non-empty because
\(p \in T \). Choose a root \(q \) in \(T \) so that \(\rho(q) \) is as large as possible. If \(q \) can be easily verified
that \(\langle q, x \rangle \in \{-1, 0\} \) for each \(x \in S \). Now assuming \(S \cup \{q\} \subseteq \mathbb{R}^n \) where \(n = |S| + 1 \), let
\(B \) be the \(n \times n \) matrix whose rows are the vectors in \(S \cup \{q\} \). Since \(S \cup \{q\} \) is not obtuse,
it is linearly dependent. Therefore \(B \) is singular. Then the relation \(\lambda(\hat{B}^T \hat{B}) \geq 0 \) where
\(\hat{B}^T \) is the transpose of \(B \) becomes an equality. Since \(\hat{B}^T = 2I - A \) where \(A \) is the
adjacency matrix of \(G[S \cup \{q\}] \), it follows that \(\lambda(2I - A) = 0 \); therefore \(\Lambda(A) = 2 \).
Then \(G[S \cup \{q\}] \) is one of the graphs on the left side of the figure. It can be verified
that \(\alpha A = 2\alpha \) where \(\alpha \) is the vector formed by the labels assigned to the vertices of
\(G[S \cup \{q\}] \). Now \((\alpha B)(\alpha B)^T = \alpha B B^T \alpha^T = \alpha(2I - A)\alpha^T = 0 \alpha^T = 0 \). Therefore
\(\alpha B = 0 \). Since one of the coordinates of \(\alpha \) is 1, a vector in \(S \cup \{q\} \), say \(u \), belongs to
\(Z(X) \) where \(X = (S \cup \{q\}) \setminus \{u\} \). Since \(u \) is a pendent vertex of \(G[S \cup \{q\}] \), \(G[X] \) is
connected; therefore \(X \) is indecomposable. Since \(S \subseteq Z(X) \), \(X \) is linearly independent.
Note also that \(Z(S) \not\subseteq Z(X) \) because \(S \cup \{p\} \subseteq Z(X) \). Thus the presence of \(X \)
contradicts the choice of \(S \). Therefore \(S \) is a base of \(\Phi \). □

Now we can prove the main result: By Proposition 3, \(\Omega \) has a base \(X \). Taking \(X \subseteq \mathbb{R}^{|X|} \),
let \(B \) be the \(|X| \times |X| \) matrix whose rows are the elements of \(X \). Then \(B B^T = (2I - A) \)
where \(A \) is the adjacency matrix of \(G[X] \). Since \(B \) is non-singular, so is \(B B^T \); therefore
\(\lambda(B B^T) > 0 \); i.e., \(\lambda(2I - A) > 0 \). Hence \(\Lambda(A) < 2 \). Since \(\Omega \) is irreducible, \(X \)
is indecomposable; therefore \(G[X] \) is one of the graphs on the right side of the figure.
Now as mentioned in the discussion before Proposition 3 there is a root system $\mathcal{R} \in \{A_n : n \in \mathbb{N}\} \cup \{D_n : n \in \mathbb{N} \text{ and } n \geq 4\} \cup \{E_6, E_7, E_8\}$ having a base Y such that $G[Y] = G[X]$. Therefore there is a bijection $f : X \mapsto Y$ such that for all $x, y \in X$, $\langle f(x), f(y) \rangle = \langle x, y \rangle$. Now the map θ^* from the linear span of X to that of Y defined by $\theta^*(\sum_{x \in X} \alpha_x x) = \sum \alpha_x f(x)$ is an isomorphism. Since these subspaces are finite dimensional, θ^* can be extended to an automorphism θ of \mathbb{E}. Now by Proposition 3, $\theta(\Omega) = \theta(\hat{X}) = \hat{\theta}(X) = \hat{Y} = \mathcal{R}$. □

Remark 5. Let $X = \{v_1, \ldots, v_n\}$ be a subset of \mathbb{E} such that for all $i, j \in \{1, \ldots, n\}$, $\|v_i\| = \sqrt{2}$ and $\langle v_i, v_j \rangle \in \mathbb{Z}$. For each $x \in \hat{X}$, define $\eta(x) = (\langle x, v_1 \rangle, \ldots, \langle x, v_n \rangle)$. Then $|\hat{X}| = |\{\eta(x) : x \in X\}|$ because for all $a, b \in \hat{X}$, $\eta(a) = \eta(b) \Rightarrow a = b$. Therefore \hat{X} is finite. Note for all $a, b \in \hat{X}$, $a - \langle a, b \rangle b \in \hat{X}$ because $\|a - \langle a, b \rangle b\|^2 = \|a\|^2 - 2 \langle a, b \rangle^2 + \langle a, b \rangle^2 \|b\|^2 = 2$. Thus it follows that \hat{X} is a simple laced root system.

Let A be the adjacency matrix of a signed graph whose least eigenvalue ≥ -2. (By terming each edge of a graph as positive or negative, we get a signed graph; from the adjacency matrix of the former, that of the latter is obtained by replacing each entry which corresponds to a negative edge by -1.) Then $\lambda(A + 2I) \geq 0$. Therefore for some real matrix B, $A + 2I = BB^\top$. Thus there is a subset $X = \{v_1, \ldots, v_n\}$ of \mathbb{E} such that for all $i, j \in \{1, \ldots, n\}$, $\|v_i\| = \sqrt{2}$ and $\langle v_i, v_j \rangle \in \mathbb{Z}$ and $([v_i, v_j])_{i,j=1}^n$—known as the Gram matrix of X—equals $A + 2I$. By Remark 3, X is a subset of a simply laced root system. Therefore by Theorem 2, we have the following.

Theorem 6. If A is the adjacency matrix of a connected signed graph such that its least eigenvalue is at least -2, then $A + 2I$ is the Gram matrix of a subset of a root system which is either D_n for some $n \in \mathbb{N}$ or E_8.

References

[1] C. Godsil and G. Royle, *Algebraic Graph Theory*, Springer, New York (2001).

[2] J. E. Humphreys, *Introduction to Lie Algebras and Representation Theory*, Springer-Verlag, New York (1972).

[3] R. Kane, *Reflection Groups and Invariant Theory*, Springer-Verlag, New York (2001).

[4] J. H. Smith, Some properties of the spectrum of a graph, in *Combinatorial Structures and their Applications*, eds. R. Guy, H. Hanani, N. Sauer and J. Schönheim, Gordon and Breach, New York (1970), 403–406.