The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation

John F. Watkins, Patrick Sung, Satya Prakash, and Louise Prakash

Department of Biophysics, University of Rochester School of Medicine, Rochester, New York 14642 USA; Department of Biology, University of Rochester, Rochester, New York 14627 USA

The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme that is required for DNA repair, DNA damage-induced mutagenesis, and sporulation. In addition, RAD6 mediates the mult ubiquitination and degradation of amino-end rule protein substrates. The structure and function of RAD6 have been remarkably conserved during eukaryotic evolution. Here, we examine the role of the extremely conserved amino terminus, which has remained almost invariant among RAD6 homologs from yeast to human. We show that RAD6 is concentrated in the nucleus and that the amino-terminal deletion mutation, rad6Δ1-9, does not alter the location of the protein. The amino-terminal domain, however, is essential for the mult ubiquitination and degradation of amino-end rule substrates. In the rad6Δ1-9 mutant, β-galactosidase proteins bearing destabilizing amino-terminal residues become long lived, and purified rad6Δ1-9 protein is ineffective in ubiquitin-protein ligase (E3)-dependent protein degradation in the proteolytic system derived from rabbit reticulocytes. The amino terminus is required for physical interaction of RAD6 with the yeast UBR1-encoded E3 enzyme, as the rad6Δ1-9 protein is defective in this respect. The rad6Δ1-9 mutant is defective in sporulation, shows reduced efficiency of DNA repair, but is proficient in UV mutagenesis. E3-dependent protein degradation by RAD6 could be essential for sporulation and could affect the efficiency of DNA repair.

[Key Words: RAD6 gene; Saccharomyces cerevisiae; ubiquitin-conjugating enzyme; amino-end rule protein]

Received
uitination and protein degradation in yeast as well as in mammals. Purified yeast RAD6 protein catalyzes multiubiquitination and degradation of protein substrates with destabilizing amino termini in reaction mixtures containing ubiquitin activating enzyme [E1], E3, and the ubiquitin-specific protease from rabbit reticulocytes (Sung et al. 1991). In S. cerevisiae, UBR1 encodes the amino-end-recognizing [E3] enzyme, and the ubr1 null mutant is unable to degrade X-β-galactosidase bearing any of the destabilizing residues [X] at the amino terminus. Sporulation is somewhat defective in the ubr1 mutant, and growth rate is slightly retarded (Bartel et al. 1990). UBR1-dependent protein degradation is inactive in the rad6 null mutant, indicating that RAD6 interacts with UBR1 in mediating multiubiquitination and degradation of substrates with destabilizing amino termini (Dohmen et al. 1991). In rabbit reticulocytes, only the E2_{14k} enzyme has been found to catalyze the E3-dependent multiubiquitination and degradation of amino-end rule substrates (Pickart and Rose 1985; Pickart and Vella 1988). Recently, this protein has been shown to be identical in sequence to the human RAD6 homolog HHR6B (Wing et al. 1992).

The structure and function of RAD6 have been highly conserved during eukaryotic evolution. RAD6 is a single-copy gene in S. cerevisiae, Schizosaccharomyces pombe, and Drosophila melanogaster but is duplicated in human, and the two human homologs share 95% identical amino acid residues (Koken et al. 1991b). The acidic tail is found only in the S. cerevisiae protein; otherwise, the various homologs share a high degree of sequence identity. Genetic studies with the RAD6 homolog rhp6^+ in S. pombe indicate that rhp6^+ resembles RAD6 in its roles in DNA repair, mutagenesis, and sporulation. Furthermore, S. cerevisiae and S. pombe genes can substitute functionally for one another (Reynolds et al. 1990). The Drosophila and human genes also complement the DNA repair and mutagenesis defects of the S. cerevisiae rad6Δ mutant (Koken et al. 1991a,b).

Among the RAD6 homologs, the amino-terminal sequence has remained almost invariant. Because this conservation does not extend to other ubiquitin-conjugating enzymes, a role of this sequence in RAD6-specific functions is implicated. To delineate the role of this sequence, we have examined the effects of an amino terminal deletion mutation on various RAD6-dependent functions. We find that this mutation inactivates the amino-end rule-dependent protein degradation pathway and engenders defective sporulation and a reduction in the proficiency of DNA repair.

Results

RAD6 is concentrated in the nucleus

We examined the location of RAD6 in yeast cells by indirect immunofluorescence, using affinity-purified antibodies directed against the rad6Δ-149 protein, which is deleted for the entire acidic tail region of 23 residues. This antibody shows a very high degree of specificity toward the globular domain of RAD6. We found that RAD6 is concentrated in the nucleus, its location coinciding with the nuclear stain DAPI [Fig. 1A,B]. However, some RAD6 also appears to be present in the cytoplasm. In contrast, in the rad6Δ strain, no cross-reactivity was observed over the entire cell [Fig. 1C,D].

Mutagenesis of the highly conserved amino terminus of RAD6 protein

The amino terminus of RAD6 represents the most highly conserved segment in the protein. In this region, the first 15 residues are identical among RAD6 and its homologs, with the exception of a single difference in S. pombe [Fig. 2A]. This sequence conservation, however, does not extend to other ubiquitin-conjugating enzymes [Fig. 2B], suggesting an involvement of the amino-terminal region in RAD6-specific functions. To examine the role of this sequence, we mutated the translation initiating ATG codon to AAG, so that translation of the mutant protein would initiate from the next methionine codon at position 10. To examine the intracellular expression of the resulting rad6ΔΔ-9 mutant allele, we cloned it into low-copy and multicopy yeast vectors, generating plasmids pR68 and pR64, respectively. In these plasmids, the mutant allele is fused to the normal RAD6 promoter. We also fused the rad6ΔΔ-9 allele to the S. cerevisiae highly expressed and constitutive ADC1 promoter.
Watkins et al.

Figure 2. The amino-terminal sequence of the RAD6 protein is highly conserved among its homologs from different species, but not among other *S. cerevisiae* ubiquitin-conjugating enzymes. (A) The amino-terminal 50 residues in various RAD6 homologs: *S. cerevisiae* RAD6 (Reynolds et al. 1985); *S. pombe* rhp6+ (Reynolds et al. 1990); *D. melanogaster* DHR6 (Koken et al. 1991a); and human HHR6A and HHR6B (Koken et al. 1991b). (B) Comparison of the first 50 residues of RAD6 protein to other ubiquitin-conjugating enzymes from *S. cerevisiae*: UBC1 (Seufert et al. 1990); UBC4 and UBC5 (Seufert and Jentsch 1990); UBC8 (Qin et al. 1991); and CDC34 (Goebel et al. 1988). Dots indicate identity to the RAD6 protein; dashes indicate gaps introduced in the protein sequence for optimal alignment. The numbers above the RAD6 sequence refer to the amino acid residue of RAD6. In UBC8, the first methionine residue occurs at a position corresponding to residue 13 of RAD6.

promoter in a multicopy vector, yielding plasmid pR661. These rad6A-1_9 plasmids were introduced into the rad6A strain EMY1, and the intracellular levels of mutant proteins were determined by Western immunoblot analysis. The rad6A-1_9 allele encodes a shorter protein of approximately the size expected (Fig. 3). The mutant protein was barely detectable in rad6AΔ cells carrying plasmid pR68, whereas the level of protein in cells carrying the multicopy plasmid pR64 was approximately fourfold lower than wild-type RAD6 levels. An increase of ~50-fold occurred in cells carrying the *ADC1::rad6A-1_9* plasmid pR661 over the level of protein produced by pR64. Thus, the level of rad6A-1_9 protein in rad6AΔ cells harboring pR661 is >10-fold higher than the level of RAD6 protein in wild-type cells.

The rad6A-1_9 protein localizes to the nucleus

The amino terminus of RAD6 contains a high proportion of basic amino acids (see Fig. 2), and the sequence MST-PARRL fits the common features of nuclear-targeting signals in that it is a short sequence rich in basic residues (Dingwall and Laskey 1991). To determine whether the amino terminus of RAD6 is necessary for nuclear targeting, we examined the cellular location of the rad6A-1_9 protein in the rad6AΔ strain EMY1 harboring plasmid pR64. The results in Figure 4 show that the mutant protein is also located in the nucleus.
Role of conserved RAD6 amino terminus

Although the rev1 and rev3 mutants are defective in UV mutagenesis, they are only marginally UV sensitive, suggesting that mutagenic bypass of DNA damage constitutes a minor DNA repair pathway in yeast. Thus, RAD6 functions with RAD18 in error-free DNA repair and with REV1 and REV3 in mutagenic bypass. The higher level of UV resistance of the rad6Δ a9 mutant over that of the rad6Δ strain could arise from partial inactivation of the RAD18-dependent DNA repair pathway in the rad6Δ a9 strain. Alternatively, although the RAD18 pathway could be completely inactive in the rad6Δ a9 mutant, the observed level of UV sensitivity might result from a more efficient processing of DNA damage by mutagenic bypass. In the latter case, we would expect the UV sensitivity of rad6Δ rad18Δ cells harboring plasmid pR661 to be similar to that of the rad6Δ strain carrying pR661. Therefore, to distinguish between these possibilities, we examined the UV sensitivity of rad6Δ rad18Δ mutant strain with or without the plasmid pR661. Because we found no increase in the UV resistance of rad6Δ rad18Δ cells upon introduction of plasmid pR661 [Fig. 5], we infer partial inactivation of the RAD18 pathway rather than a more efficient mutagenic bypass to be the likely reason for the observed level of UV sensitivity in the rad6Δ a9 mutant.

The rad6Δ a9 mutation renders cells sporulation defective, as no sporulation occurred in the rad6Δ rad18Δ diploid strain carrying plasmid pR661 (Table 2). Western immunoblotting of cell extracts at various times during sporulation indicated that the level of rad6Δ a9 protein stays ~10-fold higher than the level of RAD6 protein in wild-type cells (data not shown). Therefore, the failure of rad6Δ rad6Δ cells harboring pR661 to sporulate is not the result of reduced levels of mutant protein under sporulation conditions. The rad6Δ a9 mutation also affects growth rate adversely (Table 3); the growth rate of the mutant was intermediate between that of the wild-type and rad6 null strains. Growth rate was not affected by the rad6-149 mutation. This mutation renders cells sporulation defective, but DNA repair and mutagenesis remain unaffected [Morrison et al. 1988].

Defective amino-end-dependent protein degradation in the rad6Δ a9 mutant

The RAD6 gene is specifically required for ubiquitination and subsequent degradation of proteins dependent on the identity of the amino terminal residue [Dohmen

Figure 5. Survival after UV irradiation of rad6Δ strain EMY8 and the isogenic rad6Δ rad18Δ strain JHY119 carrying different plasmids. Strains were grown on media for maintaining selection of the plasmids. (I) RAD + strain 839; (J) rad6Δ + vector pSCW231; (A) rad6Δ + pR661 (ADCl::rad6 a9); (A) rad6Δ rad18Δ + vector pSCW231; (J) rad6Δ rad18Δ + pR661 (ADCl::rad6 a9).

Table 1. Effect of the rad6Δ a9 mutation on UV-induced reversion of met14

UV dose (J/m²)	pSCW231	pR67	pRR661
0	0.0	0.3	0.9
2	0.0	13.0	83.0
4	0.0	48.0	262.0
6	0.0	65.0	618.0

*Values represent the average of at least three independent experiments.

Table 2. Sporulation of rad6Δ rad6Δ strain carrying different plasmids

Strain	Plasmid	Gene	Sporulation (%)
EMY28	pSCW23	rad6Δ	0
EMY26	pR67	RAD6	35
EMY28	pR661	rad6Δ a9	0

*Based on a count of >1000 cells for each strain. Strains EMY26 and EMY28 are isogenic.
et al. 1991, Sung et al. 1991). In this role, RAD6 interacts with the UBR1-encoded amino-end-recognizing protein. To examine the effect of the rad6Δ mutation on degradation of amino-end rule substrates, as well as that of rad6-153 and rad6-149 mutations deleted for the sequence encoding the last 19 or 23 amino acids of the acidic tail, respectively, we used plasmids (KEP268, KEP269, KEP270; Table 4) in which the Escherichia coli β-galactosidase gene bearing different amino-terminal codons is fused to the ubiquitin gene placed under the control of the GAL10 promoter (Bachmair et al. 1986). Expression of Ub–X–β-Gal plasmids in yeast results in the cleavage of ubiquitin, yielding the X–β-Gal protein, where X denotes the amino-terminal residue. Ub–X–β-Gal plasmids encoding Met, a stabilizing residue, Arg, a type I destabilizing residue, or Leu, a type II destabilizing residue at the amino terminus, were introduced into isogenic RAD+ and rad6Δ strains. The rad6Δ strains, each harboring a different Ub–X–β-Gal plasmid, were then transformed with a plasmid bearing either the rad6Δ or rad6-149 [pR661], the rad6-149 [pR615], or the rad6-153 [pR616] mutant allele, and the stability of X–β-Gal proteins determined by measuring the steady-state levels of β-galactosidase, and by pulse-chase experiments.

In the RAD+ strain, the steady-state level of Met–β-Gal was much higher than that of Arg–β-Gal or Leu–β-Gal, whereas in the rad6Δ strain, Arg–β-Gal and Leu–β-Gal increased to levels nearly equal to that of the stable Met–β-Gal (Fig. 6). The levels of Arg–β-Gal and Leu–β-Gal in the rad6Δ mutant resembled those in the rad6Δ strain, suggesting that the RAD6-mediated amino-end rule pathway is defective in the rad6Δ mutant. In contrast, cells carrying the rad6-153 gene displayed normal activity, whereas the proficiency of degradation was reduced in the rad6-149 mutant. These findings are in agreement with our previous in vitro studies, indicating that rad6-153 protein was as efficient as RAD6 in E3-dependent protein ubiquitination and subsequent degradation, whereas the rad6-149 protein showed reduced levels of activity (Sung et al. 1991).

Pulse-chase experiments done to verify and extend the results obtained from colorimetric assays of β-gal levels are shown in Figure 7. In RAD+ cells, during the 15-min chase period, Met–β-Gal was stable but Arg–β-Gal and Leu–β-Gal proteins decayed with an approximate half-life of 3 min and 5 min, respectively. Multiubiquitinated species of Arg–β-Gal and Leu–β-Gal were evident, particularly in the 0-min sample, and these proteins also generated a β-Gal cleavage product of ~90 kD. For the stable Met–β-Gal protein, there was no evidence of formation of either the higher molecular weight species representing ubiquitinated β-Gal or of the 90-kD product. In contrast, in the rad6Δ and rad6Δ strains, Arg–β-Gal and Leu–β-Gal proteins became stabilized like the

Table 3. Growth rates of rad6Δ strain EMY1 carrying the RAD6 or mutant rad6 gene on a plasmid

Plasmid	Genotype	Doubling time* (hr) ± S.D.
pR67	RAD6	1.54 ± 0.15
pSCW231	rad6Δ	2.70 ± 0.07
pR661	rad6Δ-19	2.12 ± 0.14
pR615	rad6-149	1.51 ± 0.06

*Average of at least three independent experiments carried out at 30°C.

Table 4. Plasmids used in this study

Plasmid	Gene, vector, and nutritional marker
pR64	rad6Δ+ gene in 2µ vector [URA3]
pR67	RAD6 gene in CEN vector [URA3]
pR68	rad6Δ+ gene in CEN vector [URA3]
pR615	rad6-149 gene in CEN vector [URA3]
pR616	rad6-153 gene in CEN vector [URA3]
pR661	ADC1 promoter::rad6Δ+ gene in 2µ vector [TRP1]
pSCW231	ADC1 promoter in 2µ vector [TRP1]
KEP268	GAL10 promoter::UB-Met–β-Gal in 2µ vector [URA3]
KEP269	GAL10 promoter::UB-Arg–β-Gal in 2µ vector [URA3]
KEP270	GAL10 promoter::UB-Leu–β-Gal in 2µ vector [URA3]
pSOB44	ADC1 promoter::UBR1/ha in 2µ vector [TRP1]

Figure 6. rad6Δ mutant is defective in the amino-end rule degradation pathway in vivo. Levels of β-Gal activity in RAD+ and various mutant rad6 strains expressing either Ub–Met–β-Gal, Ub–Arg–β-Gal, or Ub–Leu–β-Gal. Cells were grown to a density of 1×10^7 cells/ml in selection medium containing 2% galactose as the sole carbon source and assayed for β-gal activity as described in Materials and methods. Values shown represent the average of at least three independent experiments. The levels of Arg–β-Gal and Leu–β-Gal in each strain were normalized to the Met–β-Gal activity (set at 100%) in that particular strain. Standard deviation is shown above each bar. (Solid bar) RAD+; (dark hatched bar) rad6Δ; (crosshatched bar) rad6Δ; (light hatched bar) rad6-149; (open bar) rad6-153.
Role of conserved RAD6 amino terminus

Figure 7. Pulse-chase analysis of X-β-Gal in RAD+ and various rad6 mutants. Cultures of exponentially growing cells (0.5 x 10⁷ to 1.0 x 10⁷ cells/ml) expressing either Ub-Met-β-Gal, Ub-Arg-β-Gal, or Ub-Leu-β-Gal were labeled for 5 min with [35S]methionine at 30°C (0 min), followed by a chase at 30°C in the presence of cycloheximide and unlabeled methionine for 15 min (15 min). β-Gal was immunoprecipitated from the cells and subjected to electrophoresis and fluorography as described in Materials and methods. (A–D) The X-β-Gal band is indicated, and the position of the ~90-kD long-lived β-Gal cleavage product is marked by an arrow. Higher molecular weight species representing multiubiquitinated forms of Arg-β-Gal and Leu-β-Gal appear in the RAD+ strain and, to a lesser extent, in the rad6-149 mutant. (E) To show unequivocally the absence of multiubiquitination and degradation of Arg-β-Gal in the rad6A and rad6Δ1-9 strains, the Arg-β-Gal gels in B and C were exposed for a longer period.

Met-β-Gal protein, and we did not observe any multiubiquitinated species or 90-kD cleavage product in either mutant. Degradation of Arg-β-Gal and Leu-β-Gal proteins occurred in the rad6-149 mutant but at a slower rate than in the RAD+ strain; the half-life of Arg-β-Gal was increased to ~12 min, and that of Leu-β-Gal was increased to ~50 min. Thus, our studies indicate that the rad6Δ1-9 mutant lacks the ability to function in the amino-end rule protein degradation pathway, whereas the efficiency of this pathway is reduced in the rad6-149 mutant.

The rad6Δ1-9 protein is defective in E-3-dependent protein degradation in vitro

RAD6-dependent multiubiquitination and degradation of substrates bearing destabilizing amino-terminal residues can be examined in vitro using the proteolytic system derived from rabbit reticulocytes (Sung et al. 1991), the E3 component of this cell-free system is functionally equivalent to the UBR1 gene product of yeast. To assess the ability of the rad6Δ1-9 mutant protein to function with E3 in amino-end-dependent protein degradation, we purified the rad6Δ1-9 protein to near homogeneity (Fig. 8) from extract of the rad6Δ strain EMY8 harboring the plasmid pR661 [ADCl::rad6Δ1-9] by a combination of four-column chromatographic steps (see Materials and methods).

The RAD6 and rad6Δ1-9 proteins were tested for their ability to cooperate with E3 in the degradation of [125I]-labeled β-lactoglobulin, which has leucine at its amino terminus, a destabilizing amino-terminal residue in both rabbit reticulocytes and yeast. Consistent with our previous findings (Sung et al. 1991), RAD6 promoted the degradation of β-lactoglobulin in the proteolytic system, showing a strict requirement for E3, ubiquitin, and the ubiquitin-specific protease [Table 5]. In contrast, the rad6Δ1-9 protein, even in an amount fivefold higher than RAD6, was totally ineffective in protein degradation [Table 5]. We also examined the formation of ubiquitinated β-lactoglobulin by subjecting reaction mixtures to SDS-PAGE and autoradiography, as described previously (Sung et al. 1991; see Materials and methods). In contrast to the RAD6 protein, which catalyzes the multiubiquitination of β-lactoglobulin [Fig. 9, lane 3], the rad6Δ1-9 protein did not function in this reaction [Fig. 9, lanes 4,5].

Conceivably, the failure of rad6Δ1-9 protein to mediate multiubiquitination and degradation of β-lactoglobulin could occur upstream of E3 interaction, that is, in thioester formation with ubiquitin, a reaction catalyzed by the ubiquitin-activating enzyme E1. To eliminate this possibility, we examined the formation of ubiquitin...
thioester (Sung et al. 1988) with the RAD6 and rad6\textsubscript{A1-9} proteins, using the same E1 preparation as we used in the protein-degradation experiments. We found that the rad6\textsubscript{A1-9} protein readily forms thioester with ubiquitin, indicating that the mutant protein retains the ability to interact with E1 and ubiquitin [Fig. 10].

Defective physical interaction of the rad6\textsubscript{A1-9} protein with the UBR1 gene product

The results presented above establish that the rad6\textsubscript{A1-9} mutation inactivates the amino-end rule function of RAD6 protein. Using methodology similar to that employed by Dohmen et al. (1991) in demonstrating physical interaction between RAD6 and UBR1 proteins, we examined whether the rad6\textsubscript{A1-9} protein interacts with UBR1.

The rad6\Delta ubr1\Delta yeast strain BBY68 was transformed with the plasmid pS0B44 (\textit{ADC1::UBR1/ha}), a high-copy plasmid containing the \textit{UBR1} gene carrying a carboxy-terminal 9-residue extension [derived from hemagglutinin (ha) of influenza virus] under the control of the \textit{ADC1} promoter (Dohmen et al. 1991). Cell extract containing the UBR1/ha protein was mixed with the purified RAD6 or rad6\textsubscript{A1-9} protein and, after incubation, subjected to immunoprecipitation with protein A-agarose beads bearing affinity-purified anti-RAD6 antibodies. After washing, proteins from immunoprecipitates were

Table 5. rad6\textsubscript{A1-9} protein is ineffective in E3-dependent protein degradation

E2 enzyme	Reaction mix	Degradation (%)	Activity relative to RAD6 (%)
RAD6a	complete	21.5	100
RAD6b	E3	0.4	2
RAD6a	ubiquitin	0	0
RAD6b	protease	0	0
rad6\textsubscript{A1-9}a	complete	0	0
rad6\textsubscript{A1-9}b	complete	0	0

RAD6 and rad6\textsubscript{A1-9} proteins were examined for the ability to mediate E3 dependent degradation of 125I-labeled \(\beta\)-lactoglobulin as described in Materials and methods. The concentration of E2 in the assays was 200 nMa or 1 \mu Mb.

Figure 9. E3-dependent multiubiquitination of \(\beta\)-lactoglobulin occurs with RAD6 but not with rad6\textsubscript{A1-9} protein. Reaction mixtures containing RAD6 [200 nM; lanes 1-3] or rad6\textsubscript{A1-9} [200 nM in lane 4; 1 \mu M in lane 5] were assembled as described in Materials and methods, incubated at 37°C for 20 min, and subjected to electrophoresis in a 12.5% polyacrylamide-SDS gel, followed by autoradiography of the dried gel. [Lane 1] With RAD6 but no ubiquitin; [lane 2] with RAD6 but no E3; [lane 3] with RAD6, E3, and ubiquitin; [lanes 4,5] rad6\textsubscript{A1-9} with E3 and ubiquitin. [\(\beta\text{Lg}\)] 125I-labeled \(\beta\)-lactoglobulin; [Cont.] contaminant in the \(\beta\)-lactoglobulin preparation; [Ub-\(\beta\text{Lg}\)] ubiquitin conjugates of \(\beta\)-lactoglobulin in lane 3.

Figure 10. rad6\textsubscript{A1-9} Protein forms thioester conjugate with ubiquitin. Formation of ubiquitin thioester with RAD6 [lane 1] or rad6\textsubscript{A1-9} [lane 2] protein was carried out as described in Materials and methods. The ubiquitin thioester conjugates [uRAD6 and urad6\textsubscript{A1-9}] were readily disrupted by treatment with 2-mercaptoethanol [not shown]. The minor band below uRAD6 and urad6\textsubscript{A1-9} is a proteolytic product generated by a contaminating protease in the ubiquitin preparation. [Ub] 125I-labeled ubiquitin.
eluted by treatment with 2% SDS, and the eluates analyzed by immunoblotting (Fig. 11A, B) with either anti-RAD6 antibodies (Sung et al. 1988) or the monoclonal antibody 12CA5 specific for the ha epitope (Field et al. 1988) in UBR1/ha. In agreement with the result of Dohmen et al. (1991), we found that RAD6 forms a physical complex with the 226-kD UBR1/ha protein, as indicated by coprecipitation of the two proteins (Fig. 11A, B, lanes 2). The rad6_D protein, however, did not coprecipitate the UBR1/ha protein (Fig. 11A, B, lanes 3), indicating a defect in interaction with the UBR1 protein.

Discussion

The amino terminus of RAD6 is extremely conserved, where the first 15 residues are almost invariant in RAD6 and its homologs from yeast to human. Because conservation of this domain is specific to RAD6 and does not extend to the other ubiquitin-conjugating enzymes, we expected this sequence to be required for interactions with specific protein components that mediate RAD6-dependent functions, rather than in interactions with proteins in the ubiquitin-conjugating pathway, such as the ubiquitin-activating enzyme E1 or ubiquitin itself. RAD6 differs from the other ubiquitin-conjugating enzymes in its requirement in DNA repair, mutagenesis, and sporulation and in its capacity to catalyze E3-dependent multiubiquitination of amino-end rule substrates. These functions of RAD6 are also shared by its homologs from higher eukaryotes, as these homologs can complement the DNA repair and mutagenesis defects of the <i>S. cerevisiae</i> rad6_d mutant (Reynolds et al. 1990; Koken et al. 1991a,b). In rabbit reticulocytes, E2₁₄ is the only ubiquitin-conjugating enzyme that functions in E3-dependent multiubiquitination and degradation of substrates, and this protein is identical in sequence to the human RAD6 homolog HHR6B (Wing et al. 1992). To determine the role of the amino-terminal sequence, we examined the effects of a rad6_D protein and that the rad6_D mutation has no adverse effect on nuclear localization. Because of the presence of basic amino acids in residues 10–15, we examined whether these residues were responsible for nuclear entry of the rad6_D protein. We constructed a rad6_D mutant allele by simultaneously changing the ATG codons at positions 1 and 10 to AAG, which results in a protein deleted for the first 15 residues. However, we found that this protein also localizes to the nucleus (data not shown).

The most interesting finding to emerge from our studies is the inability of the rad6_D protein to function in the amino-end-dependent protein degradation pathway in both yeast and rabbit reticulocytes. In the rad6_D mutant, the short-lived β-Gal proteins containing either the arginine- or the leucine-destabilizing residue at the amino terminus become metabolically stabilized, and the severity of the defect in the mutant was identical to that in the rad6 null mutant. In the proteolytic system derived from rabbit reticulocytes, we show that rad6_D protein has lost the ability to mediate multiubiquitination and degradation of β-lactoglobulin, which bears the destabilizing residue leucine at its amino terminus. Results from the coimmunoprecipitation experiments indicate that the defect of rad6_D protein in the amino-end rule function is the result of a failure to physically interact with the UBR1-encoded E3 enzyme.

The rad6_D mutation has a striking effect on sporulation, as rad6_D/rad6_A cells carrying this mutant gene do not sporulate. This mutation also lowers the proficiency of DNA repair and reduces growth rate, whereas the rate of UV mutagenesis is elevated a fewfold. Because ubiquitin-conjugating activity is essential for all RAD6 biological functions (Sung et al. 1990), the differential effects of the rad6_D mutation in these cellular processes very likely stem from the inability of the mutant protein to interact with specific protein components that affect these processes. Because the RAD6 amino terminus is essential for interaction with the yeast E3 enzyme encoded by the UBR1 gene, we suggest that a simultaneous defect in interactions with additional E3 enzymes could underlie the phenotypic defects observed in the rad6_D mutant.

Both in yeast and rabbit reticulocytes, there is evidence for the existence of multiple E3 enzymes that recognize different amino termini. A protein, E3-R, partially purified from <i>S. cerevisiae</i> vegetative cells, has been shown to mediate ubiquitination of amino-end rule substrates by RAD6 [Sharon et al. 1991]. In conjunction with E3-R, RAD6 also ubiquitinates a substrate with a
blocked amino terminus. The level of E3-R activity is not affected by the ubr1 null mutation; therefore, E3-R and UBR1 represent different proteins. In rabbit reticulocytes, in addition to E3α, which recognizes substrates bearing type I (basic) or type II (bulky hydrophobic) destabilizing amino termini and which specifically interacts with RAD6 (Sung et al. 1991), another protein, E3β has been purified that recognizes type III substrates that bear Ala, Ser, or Thr at the amino terminus (Hellman and Hershko 1990). These residues are destabilizing in reticulocyte lysates but not in yeast, presumably because of the presence of E3β in reticulocytes. It is not known whether the rabbit RAD6 homolog E214K interacts with E3β.

In addition to defective interaction with UBR1, the rad6ΔT9 protein could be defective in interacting with E3-R and also with other E3 proteins that might recognize determinants other than the amino terminus. A common sequence in various E3 proteins might govern their interaction with the RAD6 amino terminus. Our finding that the rad6ΔT9 mutant is defective in both sporulation and UBR1-mediated protein degradation is consistent with the suggestion that E3-dependent ubiquitination of substrates by RAD6 might constitute an essential protein degradation pathway in sporulation. The rad6 mutants also cause sporulation deficiency in S. cerevisiae (Morrison et al. 1988), indicating the requirement of the acidic tail in this process. The rad6-T49 protein, however, can function in E3-dependent degradation, albeit at a slower rate. Because the acidic tail is found only in the S. cerevisiae RAD6 protein, its dispensability in sporulation would appear to be restricted to this species. An essential role of the RAD6 globular domain in sporulation is indicated from studies with the S. pombe rhp6a+ gene. Although rhp6+ does not contain the acidic tail, it is essential for sporulation in S. pombe, as manifested from the inability of the rhp6A/rhp6Δ mutant strain to sporulate. Moreover, the S. cerevisiae rad6-149 gene restores a normal level of sporulation in the rhp6A/rhp6Δ strain (Reynolds et al. 1990).

Our studies reported here indicate an involvement of the RAD6 amino terminus in this sporulation specific role of the globular domain. Because the amino-terminal sequence is almost invariant from yeast to human, we expect the sporulation/meiosis-specific role of the RAD6 amino terminus to be conserved among eukaryotes. Furthermore, if the RAD6 amino terminus interacts with related E3 proteins, then we anticipate a parallel evolutionary conservation of these E3 proteins as well.

The reduced efficiency of DNA repair in the rad6ΔT9 mutant could arise as a pleiotropic effect of defective E3 interactions, and decreased growth rate may be a consequence of defective repair of spontaneous DNA lesions. An association between DNA repair and growth rate is suggested from the following observations: (1) the rad6-T49 mutant is defective in sporulation but DNA repair and growth rate remain unaffected; (2) null mutations in the RAD18 and RAD5 genes, both members of the RAD6 epistasis group, have no effect on sporulation, but they diminish both DNA repair and growth rate (Johnson et al. 1992); and (3), the SRS2 mutation suppresses both the DNA repair and growth defects in the rad6 null mutation by channeling DNA lesions into the alternate DNA repair pathway controlled by genes in the RAD52 epistasis group (Schiestl et al. 1990). RAD6, by its E3-dependent roles, may control the levels of exopeptidases or endopeptidases which, in turn, affect the levels of DNA repair proteins. A decrease in the level of some limiting proteins, resulting from elevated peptidase levels in the rad6ΔT9 mutant, might underlie the DNA repair and growth defects. Another possibility is that the RAD6 amino terminus directly interacts with DNA repair proteins. In that case, the RAD6 amino terminus would be expected to interact with E3 proteins, as well as with DNA repair proteins, by recognition of a common sequence motif. However, we have observed no evidence of any similar sequence shared among UBR1, RAD18, RAD5, and several other DNA repair proteins. We also examined the possibility that amino acids 10–15 provide the rad6ΔT9 protein the residual capacity to interact with DNA repair proteins. However, we found that the UV sensitivity and growth rate, as well as UV mutagenesis, in the rad6ΔT9 mutant were virtually identical to that in the rad6ΔT9 mutant (data not shown).

In summary, we suggest that the RAD6 amino terminus is specifically involved in interactions with various E3 proteins and that E3 dependent ubiquitination of substrates is essential for sporulation and affects the proficiency of DNA repair.

Materials and methods

Strains and plasmids

S. cerevisiae strains used in this study are listed in Table 6. Growth, minimal, and sporulation media were prepared as described (Sherman et al. 1986). A list of plasmids used in Table 4.

Yeast transformation and other procedures

Introduction of plasmids into yeast strains was done according to Ito et al. (1983). Determination of UV survival and UV-induced mutagenesis, as well as techniques for Western immunoblotting and affinity purification of antibodies, were as described previously (Morrison et al. 1988). Electrophoresis of proteins on SDS–polyacrylamide gels was performed according to Laemmli (1970).

Construction of rad6ΔT9 plasmids

The initiation codon of the RAD6 gene was changed from ATG to AAG by site-directed mutagenesis (Zoller and Smith 1984). The mutation was made using the oligonucleotide 5’-TGGT-GTGCAGTTCAGCTTTA-3’, which corresponds to the antisense DNA strand of RAD6 from positions +12 to −9 (Reynolds et al. 1985). A 613-bp EcoRI fragment containing the mutation was used to replace the wild-type RAD6 sequence in the same fragment from plasmids pTB227, pR67 [Morrison et al. 1988], and pSCW242 (Sung et al. 1990) yielding plasmids pR64, pR68, and pR661, respectively (Table 4). DNA sequence analysis of the mutant gene confirmed that only the desired change had occurred.
Table 6. S. cerevisiae strains used

Strain	Genotype	Source
LP3041-6D	MATα leu2-3 leu2-112 trp1Δ ura3-52	Sung et al. (1990)
839	MATα ade5 his7 leu2-3 lys1 met14 pet5 ura3	Morrison et al. (1988)
EMY1	MATα leu2-3 leu2-112 trp1Δ ura3-52 rad6Δ::LEU2*	Morrison et al. (1988)
EMY7	MATα ade5 his7 leu2-3 lys1 met14 pet5 ura3 rad6Δ::LEU2*	Morrison et al. (1988)
EMY8	MATα ade5 his7 leu2-3 lys1 met14 pet5 ura3 trp1Δ::URA3 + rad6Δ::LEU2*	Reynolds et al. (1990)
YPH500	MATα ade2-101 his3–Δ200 leu2-Δ1 lys2-801 trp1–Δ63 ura3-52	Sikorski and Hieter (1989)
JWY119	MATα ade5 his7 leu2-3 lys1 met14 pet5 ura3 trp1Δ rad18Δ rad6Δ::LEU2*	this study
JWY182	MATα ade2-101 his3–Δ200 leu2-Δ1 lys2-801 trp1–Δ63 ura3-52 rad6Δ	this study
BWY48	MATα ade5 his7 leu2-3 lys1 met14 pet5 ura3 trp1Δ rad18Δ rad6Δ	Dohmen et al. (1991)
EMY26	rad6Δ/rad6Δ [EMY1 × EMY7]	Sung et al. (1990)
EMY28	rad6Δ/rad6Δ [EMY1 × EMY8]	Reynolds et al. (1990)

Strains LP3041-6D and EMY1 are isogenic; strains 839, EMY7, EMY8, and JWY119 are isogenic; and strains YPH500 and JWY182 are isogenic.

Construction of JWY119 (rad6Δ rad18Δ) and JWY182 (rad6Δ) strains

The genomic RAD6 gene from strain EMY8 and the genomic RAD6 gene from strain YPH500 were deleted by the method of gene replacement [Rothstein 1983]. A ura3 mutant of EMY8 was obtained by selecting for growth on 5-fluoro-orotic acid (5-FOA) [Boeke et al. 1984]. To delete the RAD18 gene, the resulting rad6ΔΔ strain was transformed with a 6.6-kb EcoRI fragment from pJL239 in which a 3.8-kb BamHI–BglII fragment from pNKY51 (Alani et al. 1987) containing a hisG–URA3–hisG construct had been inserted into the BglII site of pJL193 [Jones et al. 1988]. This deletes the RAD6 gene from position +130 in the open reading frame to 20 nucleotides beyond the termination codon. URA4 transformants carrying the rad18ΔΔ mutation, as verified by alleleism test, were grown on 5-FOA to select for a ura3 mutant, yielding the rad6Δ Δrad18Δ strain JWY119. The rad6ΔΔ mutation in YPH500 was obtained by transformation with a HindIII–BglII DNA fragment of pTB64 [Reynolds et al. 1985] in which the 613-bp EcoRI fragment containing the entire RAD6 open reading frame has been replaced by the 3.8-kb hisG–URA3–hisG DNA fragment from pNKY51. Strain JWY182 was obtained by 5-FOA treatment of URA4 transformants showing alleleism to rad6.

Indirect immunofluorescence

Determination of the cellular location of RAD6 and mutant Rad6 proteins was done by indirect immunofluorescence [Pringle et al. 1991]. Affinity-purified antibodies to rad6Δ-149 protein were used as the primary antibody. The secondary antibody was goat anti-rabbit IgG conjugated to FITC [Sigma]. As a control, cells used for immunofluorescence were also incubated with secondary antibody, in the absence of treatment with primary antibody, to make certain there was no cross-reactivity of cellular material to the secondary antibody. Cells were stained with 4',6'-diamidino-2-phenylindole (DAPI) to visualize the nucleus. A Leitz Laborlux D fluorescence microscope equipped with an Olympus PM-10AD photomicrographic system was used to visualize and photograph the fluorescence.

Determination of β-Gal activity

RADΔΔ strain YPH500, rad6Δ strain JWY182, and rad6ΔΔ strain JWY182 carrying plasmids pR661 (rad6ΔΔ, pR615 (rad6Δ–149), or pR616 (rad6Δ–153) were each transformed with the Ub–X-β-Gal plasmid KEP268, KEP269, or KEP270. Minimal medium containing 2% galactose, instead of glucose, was inoculated with cells from an exponentially growing culture in glucose-containing medium. The cells were grown overnight at 30°C and used to inoculate fresh galactose-containing medium. The cells were grown to ~1 x 107 cells/ml and then assayed for the level of β-Gal as described by Reynolds and Lundblad (1989).

In vivo β-Gal degradation assay

Pulse-chase experiments and immunoprecipitation of β-Gal proteins were carried out by a procedure similar to Bachmair et al. (1986). Briefly, RADΔΔ strain YPH500 and rad6ΔΔ strain JWY182 carrying plasmids of interest [see above] were grown at 30°C in medium [for maintaining selection of plasmids] containing 2% galactose [in place of glucose] until the cell density was ~1 x 107 cells/ml. Cells from 30 ml of suspension were collected by filtration and washed three times at 30°C with 30 ml of selection medium lacking methionine. Cells were then suspended in 0.5 ml of 40 mm potassium phosphate buffer (pH 7.4), 1% galactose, and labeled with 500 μCi of [35S]methionine (Amersham; >1000 Ci/mmmole) for 5 min at 30°C. After the pulse period, the cells were collected by filtration, washed with 15 ml of selection medium (30°C), and suspended in 0.8 ml of selection medium containing 0.5 mg/ml of cycloheximide and 10 mm methionine. Samples of 0.4 ml were then withdrawn immediately and after a 15-min chase period [0- and 15-min samples, respectively, in Fig. 7], and added to 0.8 ml of ice-cold buffer A [1% Triton X-100, 0.15 m NaCl, 5 mm EDTA, 50 mm HEPES [pH 7.5]] containing protease inhibitors [leupeptin, pepstatin, aprotinin, and chymostatin each at 20 μg/ml, 5 mm n-ethylmaleimide, 1 mm PMSF, 0.5 mm benzamidine], and cells were broken by vortexing vigorously for 3 min at 4°C in the presence of 0.4 ml (~0.7 grams) of acid-washed glass beads [0.5 mm]. Cellular debris was removed by centrifugation, and β-Gal was immunoprecipitated from 0.95 ml of supernatant by addition of monoclonal antibodies to β-Gal (Promega) and incubation at 4°C for 1 hr with rocking. Protein A–agarose [50 μl] (Bio-Rad) was then added to the samples, and the incubation was continued for an additional 30 min. The protein A–agarose pellet after a 3-sec centrifugation was washed three times with buffer A containing 0.1% SDS, suspended in SDS–electrophoresis sample loading buffer, boiled for 3 min, and electrophoresed on a 6% SDS–polyacrylamide gel [Laemmli 1970]. After electrophoresis, the gel was subjected to fluorography using ENHANCE [Du Pont] and following the manufacturer’s recommended procedure.
Protein purification

All of the protein purification steps were carried out at 4°C. Buffer A was 50 mM Tris-HCl (pH 7.5) containing 10% sucrose, 200 mM KCl, 10 mM EDTA, 10 mM 2-mercaptoethanol, and 10 μg/ml of each of the following protease inhibitors: aprotinin, chymostatin, leupeptin, and pepstatin A. Buffer B was 20 mM KH2PO4 (pH 7.4) containing 10% glycerol, 0.5 mM EDTA, and 0.2 mM DTT. Chromatographic matrices were equilibrated in buffer B containing 150 mM KCl.

The rad6Δ1-9 mutant protein was purified from extract of the rad6Δ strain EMY8 harboring pR661 [ADCl::rad6Δ1-9]. Fifty grams of cells were disrupted through the use of a French press in 100 ml of buffer A, and the crude lysate was clarified by centrifugation [100,000g for 60 min]. The supernatant [fraction I] was dialyzed with 50 ml of 10% glycerol before being applied onto DEAE–Sephadex (1.6 x 12.5 cm); bound proteins were eluted with buffer B containing 400 mM KCl. The protein pool [fraction II; 15 ml] was dialyzed against 1 liter of buffer B to lower the KCl concentration to 100 mM and chromatographed on DEAE–Sephadex [1 x 5 cm] by use of a 120-mM gradient of 150–400 mM KCl in buffer B. The rad6Δ1-9 protein elutes from DEAE–Sephadex at ~310 mM KCl, and the protein pool [fraction III; 9 ml] was diluted with 5 ml of 10% glycerol and further fractionated on Mono Q (HRS/5) with a 25-ml of KCl gradient from 150 to 500 mM. The Mono-Q pool [fraction IV; 1 ml with ionic strength of 400 mM KCl] was concentrated to 100 μM and chromatographed on Sephadex G50 [1 x 25 cm] to give fraction V [1.5 ml], which contained 20 μg of nearly homogeneous rad6Δ1-9 protein and was concentrated to 100 μg/ml and stored in small aliquots at -70°C.

Wild-type RAD6 protein was purified as described by Sung et al. [1988].

Immunoprecipitation

Cell lysate was prepared from the ubrlΔ rad6Δ strain BY68 harboring the plasmid pSOB44, in which UBR1 is overexpressed from the ADCl promoter. Cells were disrupted with a French press in buffer C [50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 50 mM NaCl, and 0.5 mM DTT], and 10 μg/ml of the protease inhibitors aprotinin, chymostatin, leupeptin, and pepstatin A at 1 ml/g of cells and clarified by centrifugation [100,000g for 120 min]. To 0.3 ml of extract was added 1 μg of purified RAD6 or rad6Δ1-9 protein, and after a 12-hr incubation on ice, 30 μl of Affigel protein A (Bio-Rad) bearing 50 μg of anti-RAD6 antibodies [Sung et al. 1988] was added. After mixing by rocking for 2 hr at 4°C, the immunoprecipitates were washed four times with 300 μl of ice-cold buffer C containing 5% glycerol but no protease inhibitors. Proteins were eluted from immunoprecipitates by a 5-min treatment with 50 μl of 2% SDS at 37°C and subjected to SDS-PAGE and immunoblot analysis.

Assay of E3-dependent protein mult ubiquitination and degradation

Components of the cell-free proteolytic system—affinity-purified E1 and fractions containing E3 and the ubiquitin-specific protease—were obtained from rabbit reticulocytes as described [Sung et al. 1991]. Assay mixtures [25 μl] were assembled in 50 mM Tris-HCl (pH 7.3) containing 5 mM MgCl2, 9.4 μM ubiquitin, 125I-labeled β-lactoglobulin [1.2 x 103 cpm], an ATP-regenerating system [2 mM ATP, 10 mM creatine phosphate, and 0.6 U/ml each of creatine phosphokinase and inorganic pyrophosphatase], 200 nM RAD6 or 200 nM to 1 μM rad6Δ1-9 protein, 100 nM E1, E3 fraction [18 μg protein], and the protease fraction [17 μg protein]; mult ubiquitination and degradation of the 125I-labeled protein substrate proceeded at 37°C for 60 min. To process reaction mixtures for quantitation of substrate degradation, 30 μg of BSA was added in 30 μl followed by 30 μl of 40% trichloracetic acid. After a 10-min incubation on ice, samples were spun at 4°C for 5 min in a microcentrifuge and the radioactivity of the supernatant was determined. To visualize the mult ubiquitinated forms of the substrate, 10 μl of reaction mixtures were withdrawn after 20 min of incubation and subjected to electrophoresis in 12.5% SDS-polyacrylamide gels and autoradiography.

Assay of thioester formation

Reaction mixtures (10 μl) containing 6 μM 125I-labeled ubiquitin, 200 nM E1 and 500 nM RAD6 or rad6Δ1-9 protein in 50 mM Tris-HCl (pH 7.3), with 5 mM MgCl2, 2 mM ATP, and 0.1 mM DTT were incubated at 30°C for 10 min. After the addition of 10 μl of SDS buffer [4% SDS in 100 mM Tris-HCl (pH 6.8) and 20% glycerol], samples were subjected to electrophoresis in 12.5% SDS-polyacrylamide gels and autoradiography.

Other procedures

Iodination of ubiquitin and β-lactoglobulin with sodium 125I (Amerham) using the chloramine T method was done as described (Sung et al. 1988). SDS-PAGE was carried out according to Laemmli [1970]. Nitrocellulose blots were probed with 1/1000 dilution of the anti-ha monoclonal antibody 12CA5 [2.5 mg/ml], Berkeley Antibody and 1/1000 dilution of affinity-purified polyclonal anti-RAD6 antibodies [2.5 ml/ml, Sung et al. 1988], and immunoblots were developed with protein A–HRP and 4-chloro-1-naphthol following the instructions of the supplier (Bio-Rad).

Acknowledgments

We thank E. Miller for expert technical assistance, C. Pickart and E. Kasperek for components of the rabbit reticulocyte proteolytic system, and A. Varshavsky and K. Madura for strain BY68 and plasmids Ub-X-I3-Gal and pSOB44. This work was supported by grants GM19261 from the National Institutes of Health and DE-FGO2-88ER60621 from the Department of Energy.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Alani, E., L. Cao, and N. Kleckner. 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541–545.

Bachmair, A., D. Finley, and A. Varshavsky. 1986. The recognition component of the N-end rule pathway. EMBO J. 5:3179–3189.

Boeke, J.D., F. LaCroute, and G.R. Fink. 1984. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro- orotic acid resistance. Mol. & Gen. Genet. 197: 345–346.

Dingwall, C. and R.A. Laskey. 1991. Nuclear targeting se-

260 GENES & DEVELOPMENT
Domain structures---A consensus? Trends Biol. Sci. 16: 478–481.
Dohmen, R.J., K. Madura, B. Bartel, and A. Varshavsky. 1991. The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme. Proc. Natl. Acad. Sci. 88: 7351–7355.
Field, J., J.I. Nikawa, D. Broek, B. MacDonald, L. Rodgers, I.A. Wilson, R.A. Lerner, and M. Wigler. 1988. Purification of a Rho-responsive adenyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8: 2159–2165.
Finley, D. and V. Chau. 1991. Ubiquitination. Annu. Rev. Cell Biol. 7: 25–69.
Goebi, M.G., J. Youchim, S. Jentsch, J.P. McGrath, A. Varshavsky, and B. Byers. 1988. The yeast cell cycle gene CDC34 encodes a ubiquitin-conjugating enzyme. Science 241: 1331–1335.
Haas, A., P.M. Reback, G. Pratt, and M. Rechsteiner. 1990. Ubiquitin-mediated degradation of histone H3 does not require the substrate-binding ubiquitin protein ligase E3, or attachment of polyubiquitin chains. J. Biol. Chem. 265: 21664–21669.
Heller, H. and A. Hershko. 1990. A ubiquitin-protein ligase specific for type III protein substrates. J. Biol. Chem. 265: 6532–6535.
Hershko, A. 1991. The ubiquitin pathway for protein degradation. Trends Biochem. Sci. 16: 265–268.
Itu, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkalai cations. J. Bacteriol. 153: 163–168.
Jentsch, S., J.P. McGrath, and A. Varshavsky. 1987. The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329: 131–134.
Johnson, R.E., T.S. Henderson, T.D. Peters, S. Prakash, M. Bankmann, and L. Prakash. 1992. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs, and affects the stability of simple repetitive sequences in the genome. Mol. Cell. Biol. 12: 3807–3818.
Jones, J.S., S. Weber, and L. Prakash. 1988. The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence. Nucleic Acids Res. 16: 7119–7131.
Koken, M., P. Reynolds, D. Bootsmra, J. Hoeijmakers, S. Prakash, and L. Prakash. 1991a. Dhrr6, a Drosophila homolog of the yeast DNA-repair gene RAD6. Proc. Natl. Acad. Sci. 88: 3832–3836.
Koken, M.H.M., P. Reynolds, I. Jaspers-Dekker, L. Prakash, S. Prakash, D. Bootsmra, and J.H.J. Hoeijmakers. 1991b. Structural and functional conservation of two human homologs of the yeast repair gene RAD6. Proc. Natl. Acad. Sci. 88: 8865–8869.
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
Morrison, A., E.J. Miller, and L. Prakash. 1988. Domain structure and functional analysis of the carboxy-terminal polymeric sequence of the RAD6 protein of Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 1179–1185.
Pickart, C.M. and I.A. Rose. 1985. Functional heterogeneity of ubiquitin carrier proteins. J. Biol. Chem. 260: 1573–1581.
Pickart, C.M. and A.T. Vella. 1988. Levels of active ubiquitin carrier proteins decline during erythroid maturation. J. Biol. Chem. 263: 12028–12035.
Prakash, S., P. Sung, and L. Prakash. 1990. Structure and function of DNA repair genes of Saccharomyces cerevisiae. In The eukaryotic nucleus: Molecular structure and macromo-
lecular assemblies [ed. P. Strauss and S. Wilson], pp. 275–292. The Tellford Press, Caldwell, NJ.
Pringle, J.R., A.E.M. Adams, D.G. Drubin, and B.K. Haarer. 1991. Immunofluorescence methods for yeast. Methods Enzymol. 194: 565–602.
Qin, S., B. Nakajima, M. Nomura, and S.M. Arfin. 1991. Cloning and characterization of a Saccharomyces cerevisiae gene encoding a new member of the ubiquitin-conjugating protein family. J. Biol. Chem. 266: 15549–15554.
Reynolds, A. and V. Lundblad. 1989. Yeast vectors and assays for expression of cloned genes. In Current protocols in molecular biology (ed. F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, and K. Struhl), vol. 2, pp. 13.6.1–13.6.4. Wiley Interscience, New York.
Reynolds, P., S. Weber, and L. Prakash. 1985. RAD6 gene of Saccharomyces cerevisiae encodes a protein containing a tract of 13 consecutive aspartates. Proc. Natl. Acad. Sci. 82: 168–172.
Reynolds, P., M.H.M. Koken, J.H.J. Hoeijmakers, S. Prakash, and L. Prakash. 1990. The thrp6 gene of Schizosaccharomyces pombe: A structural and functional homolog of the RAD6 gene from the distantly related yeast Saccharomyces cerevisiae. EMBO J. 9: 1423–1430.
Rothstein, R.J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101: 202–211.
Schiestel, R. H., S. Prakash, and L. Prakash. 1990. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124: 817–831.
Seufert, W. and S. Jentsch. 1990. Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 9: 543–550.
Seufert, W., J.P. McGrath, and S. Jentsch. 1990. UBC1 encodes a novel member of an essential subfamily of yeast ubiquitin-conjugating enzymes involved in protein degradation. EMBO J. 9: 4535–4541.
Sharon, G., B. Raboy, H.A. Parag, D. Dimitrovsky, and R.G. Kulka. 1991. RAD6 gene product of Saccharomyces cerevisiae requires a putative ubiquitin protein ligase (E2) for the ubiquitination of certain proteins. J. Biol. Chem. 266: 15890–15894.
Sherman, F., C. Fink, and J.B. Hicks. 1986. Methods in yeast genetics: Laboratory course manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
Sitkorski, R.S. and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
Sung, P., S. Prakash, and L. Prakash. 1988. The RAD6 protein of Saccharomyces cerevisiae polyubiquitinitates histones, and its acidic domain mediates this activity. Genes & Dev. 2: 1476–1485.
----. 1990. Mutation of cysteine-88 in the Saccharomyces cerevisiae RAD6 protein abolishes its ubiquitin-conjugating activity and its various biological functions. Proc. Natl. Acad. Sci. 87: 2695–2699.
Sung, P., E. Berleth, C. Pickart, S. Prakash, and L. Prakash. 1991. Yeast RAD6 encoded ubiquitin conjugating enzyme mediates protein degradation dependent on the N-end-recognizing E3 enzyme. EMBO J. 10: 2187–2193.
Wing, S.S., F. Dumas, and D. Banville. 1992. A rabbit reticulo-cyte ubiquitin carrier protein that supports ubiquitin dependent proteolysis [E2_{446}] is homologous to the yeast DNA repair gene RAD6. J. Biol. Chem. 267:6495–6501.
Zoller, M.J. and M. Smith. 1984. Oligonucleotide-directed mutagenesis: A simple method using two oligonucleotide primers and a single-stranded DNA template. DNA 3: 479–488.

Role of conserved RAD6 amino terminus
The extremely conserved amino terminus of RAD6 ubiquitin-conjugating enzyme is essential for amino-end rule-dependent protein degradation.

J F Watkins, P Sung, S Prakash, et al.

Genes Dev. 1993, 7:
Access the most recent version at doi:10.1101/gad.7.2.250

References

This article cites 37 articles, 22 of which can be accessed free at: http://genesdev.cshlp.org/content/7/2/250.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or [click here](http://genesdev.cshlp.org/content/7/2/250.full.html#ref-list-1).