Graphical shapes of the 2nd type singularities of a 3-RRR planar mechanism

F Buium, C Duca, I Doroftei and D Leohchi

Mechanical Engineering, Mechatronics and Robotics Department, “Gheorghe Asachi” Technical University of Iasi, Iasi, Romania

E-mail: fbuium@gmail.com

Abstract. This paper intends to discuss about singularity curves of 2nd type inside the workspace of a 3 RRR planar parallel mechanism used as robot structure. In order to attain this goal we will use certain variation of the links dimensional parameters. This characterization of the mechanism singularities located inside mechanism workspace depends on the dimensional parameters and can be useful in mechanism designing accorded to some functional particularities in the sense that it can help in avoiding singular configurations.

1. Introduction

Due to their evident advantages and opportunities, mechanisms of this category have been largely treated in technical literature [1-40], and wide applied in practical purposes. As is well known, the singularities represent points located inside workspace or limiting workspace, where mechanism movements become uncontrolled or even impossible (the mechanism self-locks). The pose of mechanism (or a structural group) when a singularity occurs is called singular configuration of mechanism or structural group. According to scientific literature [2], singularities limiting mechanism workspace are named of first degree and those located inside mechanism workspace were named of second degree.

2. Singularities of the 3 RRR planar mechanism

In order to illustrate our research we used the example of a 3 DoF 3-RRR planar parallel mechanism with the three actuated joints located on the fixed platform, equally distanced from each other, having in addition equal lengths for proximal and distal links and joints of the mobile platform being also equally distanced from each other. These all particularizations have been done in order to simplify our analysis and not disturbing results nor reducing the method generality.

The problem of singularities in the 3 RRR planar mechanism is detailed treated in technical scientific world [1-8, 11-23]. So, we will use for our purpose, the classical procedure of its determination and study.

Let consider a 3 DoF planar parallel mechanism of a 3-RRR as it was defined in literature [3] (figure 1). Related to this mechanism we do following notations: $O_1A_1 = l_1$ - proximal links length; $A_iB_i = l_2$ - distal links length; L, b - sides of the two platforms triangle; $O_1O_2O_3$ - fixed platform; $B_1B_2B_3$ - mobile platform; Ox, Mx_M, y_M - fixed and mobile systems; M - end effector characteristic point; $q = [x, y, \varphi]$ - output data matrix; $\theta = [\theta_1, \theta_2, \theta_3]$ - input data matrix; $\varphi = const.$.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
platform orientation angle; \(\psi_i = \angle x'M'B_i \), angles depicting position of \(M \) point on the mobile platform.

![Figure 1. 3-RRR planar mechanism - calculus scheme.](image)

To determine the singularities of this mechanism we used an implicit vector function \(\theta = [\theta_1, \theta_2, \theta_3] \) formed by three dimensional function of a three dimensional variable \(q = [x, y, \phi] \):

\[
F(\theta, q) = 0.
\] (1)

Differentiating this relation with respect to time, a formula between input and output velocities were obtained [2]:

\[
J_q \cdot \dot{q} + J_\theta \cdot \dot{\theta} = 0.
\] (2)

The two Jacobian matrices \(J_q \) and \(J_\theta \) depict the two type of singularities: \(J_q \) - related to second type, representing singularities inside workspace and \(J_\theta \) related to first type, representing workspace boundaries which define the workspace shape. In this paper we will deal with singularities of second type only, i.e. located inside workspace boundaries. In order to perform this, Jacobian matrix \(J_q \) will be expressed by following formula, from mathematics:

\[
J_q = \begin{bmatrix}
\frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} & \frac{\partial F_1}{\partial \phi} \\
\frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} & \frac{\partial F_2}{\partial \phi} \\
\frac{\partial F_3}{\partial x} & \frac{\partial F_3}{\partial y} & \frac{\partial F_3}{\partial \phi}
\end{bmatrix}.
\] (3)

Accomplishing the calculations in this matrix, it may be written \(\Delta J_q \), the Jacobian matrix determinant. Taking \(\Delta J_q = 0 \) we will able to discuss about the situations when singularities of this type occur. The idea of this paper is based on the fact that for a given mechanism assembled in a given (from the eight possible), manner – each point of workspace may be touched in an one way only, i.e. given \(q = [x, y, \phi] \) implies one \(\theta = [\theta_1, \theta_2, \theta_3] \) only, thus the problem being determined.
3. The singularity curves tracing aided configuration determinant

We will use to evaluate the configuration determinant \(\Delta J_q \) we shall calculate it in \(Ox \) plane of movement taking into account \(x, y \) variable in this plane and orientation of the mobile platform \(\phi \) - as being constant. So \(\Delta J_q \) can be shown as a surface in \(Ox \) plane, for each angle \(\phi \).

![Image of singularity curves tracing](image1.png)

(a) Workspaces and singularity curves intersecting \(\Delta J_q \) surface with \(Ox \) plane.

![Image of workspaces](image2.png)

(b) Workspaces by changing viewpoint of \(\Delta J_q \) surface.

![Image of \(\Delta J_q \) surfaces](image3.png)

(c) \(\Delta J_q \) surfaces. \(L=3; l1=1; l2=1.5; b=0.5; \phi=\pi/6 \); (left); \(L=3; l1=1; l2=1.5; b=0.5; \phi=\pi/2 \); (right).

Figure 2. Singularities shapes for \(L=3 \), \(\phi=\pi/6 \) and \(\phi=\pi/2 \), \(d=[1,1,1] \).
a) Workspaces and singularity curves intersecting ΔJ_q surface with Oxy plane.

b) Workspaces by changing viewpoint of ΔJ_q surface.

c) ΔJ_q surfaces. $L=2; l_1=1; l_2=1.5; b=0.5; \phi=\pi/6$ (left); $L=2; l_1=1; l_2=1.5; b=0.5; \phi=\pi/2$ (right).

Figure 3. Singularities shapes for $L=2$, $\phi=\pi/6$ and $\phi=\pi/2$, $d=[1,1,1]$.
a) Workspaces and singularity curves intersecting ΔJ_q surface with Oxy plane.

b) Workspaces by changing viewpoint of ΔJ_q surface.

c) ΔJ_q surfaces. $L=2;\ l_1=1;\ l_2=1.5;\ b=0.5;\ \phi=\pi/6$, (left); $L=2;\ l_1=1;\ l_2=1.5;\ b=0.5;\ \phi=\pi/2$ (right).

Figure 4. Singularities shapes for $L=2$, $\phi=\pi/6$ and $\phi=\pi/2$, $d=[-1,1]$.
4. Discussions

In figures 2, 3, 4 it presents some results obtained aided configuration determinant ΔJ_q, imposing certain values of constructive parameters L, l_1, l_2, b, two orientation angles of mobile platform φ and two of eight ($2^3 = 8$) possible assembling modes of proximal and distal links $(l_1$, $l_2)$. For each of these situations, ΔJ_q is 3D plotted, as a surface $\Delta J_q(x, y)$ with $\varphi = \text{const.}$, x and y being the coordinates of the plane where the mechanism operates. To constructive parameter were attributed arbitrarily shown values, taking care the mechanism to be able to work and averages of calculates values not be exaggerate, so that, these values are small. We must specify that values signifying lengths do not represent measurement units; they are abstract ones, chosen only by purpose to facilitate our research.

Regarding the ΔJ_q 3D representations, it can see they define the mechanism workspace if it intersects obtained surfaces with Oxy plane (figure 1). The obtained curves in Oxy plane can be also regarded as solutions of the $\Delta J_q(x, y) = 0$ equation or a 2D graphical representation of an implicit done function $\Delta J_q(x, y) = 0$. Therefore, these planar graphical representations describe rigorously (theoretically at less) the mechanism workspace and located inside it curves of 2^{nd} singularity type. These curves divide the mechanism workspace in several regions (different coloured in figures 2, 3, 4), where the mechanism can run properly. However, passing through demarcation (singularity) curves, the mechanism comes out from the properly running domain. It can self-blocks, the movement can become indeterminate or energetically inefficient (unfavourable force transmission index). The singularity curves of 2^{nd} type and formed by it regions are shown in figures 2, 3 and 4, in the top and middle sides of them. In the bottom side of the figures 2, 3 and 4 are shown 3D plotted ΔJ_q for a constant orientation of the mobile platform φ. Images seen in the top and middle sides of figures 2, 3 and 4 represent intersection between ΔJ_q surface and Oxy plane obtained using two different graphical procedures: level curves representation of the surface (in the top) and changing the view point (in middle). These 2D and 3D representations were made varying parameter L, orientation of the mobile platform φ, and assembling mode.

Regarding presented images from figures 2, 3, 4, it can be observed some characteristic traces of the obtained curves:
- These curves divide Oxy plane in zones with special implications for studied mechanism: ones do not take part from mechanism workspace, they represent points that cannot be attained by end-effector when mechanism runs, others represent distinct workspace parts, separated by singularity curves. Inside these zones mechanism work properly but it cannot pass across the demarcation lines without danger of self-blocking or indeterminate movements. These zones are different coloured in figures 2, 3, 4.
- $\Delta J_q = 0$ depicts singularities of 2^{nd} type but here are included the singularities of 1^{st} type too. It is explained because mathematical expressions of ΔJ_q and ΔJ_θ contain a square root from a same term.
- Varying dimensional parameters of mechanism $(L$, l_1, l_2, $b)$, orientation of mobile platform φ or assembling mode, it obtains a large variety of workspace shapes and singularity curves shapes too.

5. Conclusions

In this paper, a series of past researches performed by authors is continued, following only the aspect of singularity curve shapes inside the mechanism workspace. We consider this procedure (of tracing singularity curves of 2^{nd} type inside mechanism workspace), as being a real aid in mechanism designing process. So, considering as done a mechanism of this type we can easily verify if the end effector trajectory enters in an acceptable domain, avoiding singularity zones. It can observe that by a small modification in exposed input parameters is possible to obtain great effects in effective mechanism workspace.
References
[1] Merlet J-P 1997 Le robots paralleles, 2e edition revue et augumentee (Paris: Editions Hermes)
[2] Doroftei I 2008 Singularity analysis of a 3RRR planar parallel robot I - Theoretical aspects
 Buletinul Institutului Politehnic din Iasi LIV(LVIII) pp 465-472
[3] Doroftei I 2008 Singularity analysis of a 3RRR planar parallel robot II - Physical significance
 Buletinul Institutului Politehnic din Iasi LIV(LVIII) pp 473-480
[4] Arsenault M, Boudreau R 2004 The synthesis of three-degree-of-freedom planar mechanism
 with revolute joints (3-RRR) for an optimal singularity-free workspace, Journal of Robotic
 Systems 21(5) pp 259-274
[5] Bonev I 2002 Geometric analysis of planar mechanisms- PhD thesis (Quebec: Departament de
 Genie Mecanique, Faculte des Sciences et de Genie, Universite Laval)
[6] Zlatanov D 1988 Generalized singularity analysis of mechanisms - PhD thesis (Toronto:
 Department of Mechanical and Industrial Engineering, University of Toronto)
[7] Merlet J-P 1999 Parallel manipulators: state of the art and perspectives Inst. Nat. de Rech. en
 Inf. et en Auto, France
[8] Merlet J-P 2000 Parallel Robots (Kluwer Academic Publishers)
[9] Merlet J-P, Gosselin C M, Mouly N 1998 Workspaces of planar manipulators Mechanism and
 Machine Theory 33(1-2) pp 7-20
[10] Kumar V 1992 Characterization of workspaces of parallel manipulators ASME, Journal of
 Mechanic Design 114(3) pp 368-375
[11] Gosselin C M and Angeles J 1988 The optimum kinematic design of a planar three degree of
 freedom parallel manipulator ASME J. Mech Transm Autom Des 110(1) pp 35-41
[12] Merlet J-P 1977 Designing a parallel manipulator for a specific workspace Int J Robot Res 16(4)
 pp 545-556
[13] Gosselin G M and Wang J 1997 Singularity loci of planar parallel manipulators with revolute
 joints Robot Auton Syst 21(4) pp 377-398
[14] Boudreau R and Gosselin C M 2001 La synthese d’un plat-forme Gough-Stewart pour un
 espace atteignable prescript Mech Mach Theory 36(3) pp 327-342
[15] Bonev I A and Gosselin C M 1990 Singularity loci of planar manipulators with revolute joint,
 2nd Workshop on Computational Kinematics, South Korea pp 1964-1969
[16] Gosselin C M and Angeles J 1990 Singularity analysis of close-loop kinematic chains IEEE
 Trans Robot Autonom 6(3) pp 281-290
[17] Gosselin C M and Angeles J 1991 A global performance index for the kinematic optimization of
 robotic manipulators ASME J Mech Des 113(13) pp 220-226
[18] Gosselin CM 1992 The optimum design of robotic manipulators using dexterity indices Robot
 Auton Syst 9(4) pp 213-226
[19] Sefroui J and Gosselin C M 1995 On the quadratic nature of the singularity curves of planar
 three degree of freedom parallel manipulators Mech Mach Theory 30(4) pp 533-551
[20] Hunt K H 1978 Kinematic geometry of mechanisms Oxford University press pp 199-201
[21] Merlet J-P 1996 Direct kinematic of planar parallel manipulators Proc. IEEE Int. Conf. on
 Robotics, Minneapolis pp 3744-3749
[22] Daniali H R M, Zsombor-Murray P J and Angeles J Singularities analysis of planar parallel
 manipulators Mech. Mach. Theory 30(5) pp 665-678
[23] Bonev I A 2002 Geometric analysis of parallel mechanisms- Ph.D Thesis (Canada: Laval
 University, Quebec)
[24] Duca C, Buium Fl 2010 Questions about Self-Blocking of Mechanisms Buletinul Institutului
 Politehnic din Iasi LV(LX) pp 249 – 254
[25] Buium Fl, Oprisan C, Duca C, Doroftei I 2010 About Workspace Shape of an 3-RRR Planar
 Parallel Mechanism Buletinul Institutului Politehnic din Iasi LV(LX) pp 233 – 242
[26] Duca C, Buium Fl 2014 Singularities classification for structural groups of dyad type Applied
 Mechanics and Materials 658 pp 47-54
[27] Lovasz E C, Grigorescu S M, Mărgineanu D T, Pop C, Gruescu C M, Maniu I 2015 Kinematics of the planar parallel Manipulator using Geared Linkages with linear Actuation as kinematic Chains 3-R (RPRGR) RR The 14th IFToMM World Congress, Taipei, Taiwan

[28] Lovasz E C, Grigorescu S M, Mărgineanu D T, Pop C, Gruescu C M, Maniu I 2015 Geared Linkages with Linear Actuation Used as Kinematic Chains of a Planar Parallel Manipulator Mechanism, Transmissions and Applications pp 21-31

[29] Duca C, Buium F l 2014 Transmission indices adoption for 6R structural group Applied Mechanics and Materials 658 pp 55-58

[30] Buium F l, Leohchi D, Doroftei I 2014 A workspace characterization of the 3 RRR planar mechanism Applied Mechanics and Materials 658 pp 563-568

[31] Buium F l, Duca C, Leohchi D 2014 Problems regarding singularities analysis of a 3 RRR parallel mechanism Applied Mechanics and Materials 658 pp 569-547

[32] Bonev I A, Zlatanov D and Gosselin C M 2003 Singularity analysis of 3 dof planar mechanisms via scw theory ASME J. of Mech Des 125(3) pp 573-581

[33] Angeles J 2002 The robust design of parallel manipulators 1st Int Colloquium, Collaborative Research Centre 562 pp 29-30

[34] Angeles J 2004 The qualitative synthesis of planar manipulators ASME J. of Mech Des 126(4) pp 617-624

[35] Zlatanov D, Fenton R G and Benhabib B 1995 A unifying framework for classification and interpretation of mechanism singularities ASME J. of Mech Des 117(4) pp 566-572

[36] Zlatanov D, Bonev I A, Gosselin C M 2001 Constraint singularities as configuration space singularities online paper: http://www.parallemic.org/Reviews/Review008.html

[37] Zlatanov D, Bonev I A, Gosselin C M 2002 Constraint singularities as configuration space singularities ARK, Caldes de Malavalla

[38] Arouk K A, Bouzagrou B C, Gogu G 2015 CAD-based unified graphical methodology for solving the main problems related to geometric and kinematic analysis of planar parallel robotic manipulators Robotics and Computer Integrated Manufacturing 37 pp 302-321

[39] Arouk K A, Bouzagrou B C, Gogu G 2012 CAD Based Geometric Procedures for Workspace and Singularity Determination of the 3 RPR Parallel Manipulator Applied Mechanics and Materials 162 pp 131-140

[40] Chablat D, Wengr Ph 2004 The kinematic analysis of a symmetrical three-degree-of-freedom planar parallel manipulator CISM-IFToMM Symposium on Robot Design. Dynamics and Control, Montreal