Perfluoroalkyl Acids in Maternal Serum and Indices of Fetal Growth
The Aarhus Birth Cohort
Bach, Cathrine C; Bech, Bodil H; Nohr, Ellen A; Olsen, Jørn; Matthiesen, Niels B; Bonefeld-Jørgensen, Eva C; Bossi, Rossana; Henriksen, Tine B

Published in:
Environmental Health Perspectives

DOI:
10.1289/ehp.1510046

Publication date:
2016

Document version:
Final published version

Citation for published version (APA):
Bach, C. C., Bech, B. H., Nohr, E. A., Olsen, J., Matthiesen, N. B., Bonefeld-Jørgensen, E. C., Bossi, R., & Henriksen, T. B. (2016). Perfluoroalkyl Acids in Maternal Serum and Indices of Fetal Growth: The Aarhus Birth Cohort. Environmental Health Perspectives, 124(6), 848-854. https://doi.org/10.1289/ehp.1510046

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying this open access version

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 02. Oct. 2023
Perfluoroalkyl Acids in Maternal Serum and Indices of Fetal Growth: The Aarhus Birth Cohort

Cathrine Carlsen Bach,1,2 Bodil Hammer Bech,3 Ellen Aagaard Nohr,4 Jørn Olsen,2,5 Niels Bjergråd Matthiesen,6 Eva Cecilie Bonefeld-Jørgensen,7 Rossana Bossi,8 and Tine Brink Henriksen1,6

1Perinatal Epidemiology Research Unit, Aarhus University Hospital, Aarhus, Denmark; 2Horsens Regional Hospital, Horsens, Denmark; 3Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark; 4Research Unit for Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark; 5Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, USA; 6Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark; 7Centre for Arctic Health & Unit for Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Aarhus, Denmark; 8Department of Environmental Science, Aarhus University, Roskilde, Denmark

BACKGROUND: Previous studies indicated an association between intrauterine exposure to perfluorooctane sulfonate (PFOS) or perfluorooctanoate (PFOA) and lower birth weight. However, these perfluoroalkyl acids (PFAAs) have to some extent been substituted by other compounds on which little is known.

OBJECTIVES: We investigated the association between specific PFAAs and birth weight, birth length, and head circumference at birth.

METHODS: We studied 1,507 mothers and their children from the Aarhus Birth Cohort (2008–2013). Nulliparous women were included during pregnancy, and serum levels of 16 PFAAs were measured between 9 and 20 completed gestational weeks (96% within 13 weeks). For compounds with quantifiable values in > 50% of samples (7 compounds), we report the associations with birth weight, birth length, and head circumference at birth determined by multivariable linear regression.

RESULTS: Estimated mean birth weights were lower among women with serum perfluorohexane sulfonate, perfluorohexane sulfonate, and PFOA concentrations above the lowest exposure quartile, but we found no consistent monotonic dose–response patterns. These associations were stronger when the population was restricted to term births (n = 1,426). For PFOS, the birth weight estimates for the highest versus lowest quartile were –50 g (95% CI: –123, 23 g) in all births and –62 g (95% CI: –126, 3 g) in term births. For the other PFAAs, the direction of the associations was inconsistent, and no overall association with birth weight was apparent. No PFAAs were associated with birth length or head circumference at birth.

CONCLUSIONS: Overall, we did not find strong or consistent associations between PFAAs and birth weight or other indices of fetal growth, though estimated mean birth weights were lower among those with exposures above the lowest quartile for some compounds.

CITATION: Bach CC, Bech BH, Nohr EA, Olsen J, Matthiesen NB, Bonefeld-Jørgensen EC, Bossi R, Henriksen TB. 2016. Perfluoroalkyl acids in maternal serum and indices of fetal growth: the Aarhus Birth Cohort. Environ Health Perspect 124:848–854; http://dx.doi.org/10.1289/ehp.1510046

Introduction

Perfluoroalkyl acids (PFAAs) are human-made chemicals found in various products, for example, food items and packaging, pots and pans, and textiles such as carpets, furniture, shoes, and clothing (Kantiani et al. 2010). Specific PFAAs (perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA)) have been voluntarily phased out or regulated in some parts of the world (Environment Canada 2010; European Parliament 2006; UNEP 2009; U.S. EPA 2000, 2006), and these compounds have to some extent been replaced by novel, similar compounds.

PFAAs accumulate in the human body (Butenhoff et al. 2006) and are persistent in the environment. Some have been shown to cross the placenta (Fei et al. 2007; Inoue et al. 2004; Kim et al. 2011; Midsch et al. 2007), and it has been hypothesized that they may affect fetal growth and development, possibly due to interaction with the peroxisome proliferator-activated receptor alpha (Abbott 2009), estrogen biosynthesis or interaction with receptors in vitro (Benninghoff et al. 2011; Du et al. 2013; Henry and Fair 2011; Kjeldsen and Bonefeld-Jørgensen 2013), thyroid hormone signaling (Du et al. 2013; Wang et al. 2013; Thibodeaux et al. 2003; Lau et al. 2003; Long et al. 2013; Inoue et al. 2004; Kim et al. 2011), or lipid metabolism (Apelberg et al. 2007; Thibodeaux et al. 2003). It is also plausible that exposures could affect the mother’s appetite and food intake, or have direct effects on placental growth and/or function.

In animals, several studies have found lower birth weight with exposure to PFOS (Luebker et al. 2005; Thibodeaux et al. 2003), PFOA (Koustan et al. 2014), and perfluoroundecanoic acid (PFUnA) (Takahashi et al. 2014). However, exposure levels were higher than average environmental exposures in humans. Epidemiological studies have investigated the association between exposure to PFOS and PFOA and birth weight or related outcomes (Apelberg et al. 2007; Arbuckle et al. 2013; Chen et al. 2012; Darrow et al. 2013; Fei et al. 2007; Hamm et al. 2010; Inoue et al. 2004; Kishi et al. 2015; Lee et al. 2013; Maisonet et al. 2012; Monroy et al. 2008; Robledo et al. 2015; Stein et al. 2009; Washino et al. 2009; Whitworth et al. 2012b; Wu et al. 2012). Even though most studies indicated an association with lower birth weight, in particular for PFOA, many studies had limited power and thus low precision due to small sample sizes (Bach et al. 2015). Few small studies (all with < 500 participants) investigated other PFAAs such as perfluoromononanoic acid [PFNA (Arbuckle et al. 2013; Chen et al. 2012; Monroy et al. 2008; Robledo et al. 2015)], PFUnA (Chen et al. 2012), perfluorohexane sulfonate [PFHxS (Arbuckle et al. 2013; Hamm et al. 2010; Lee et al. 2013; Maisonet et al. 2012; Monroy et al. 2008)], perfluorodecanoic acid [PFDA (Robledo et al. 2015)], and perfluorooctane sulfonamide (Robledo et al. 2015) and found no consistent associations. To our knowledge, the present study is the largest to address PFAAs other than PFOS and PFOA to date. We aimed to examine the association between maternal serum levels of several PFAAs and birth weight, birth length, and head circumference at birth in a large sample of pregnant women exposed to present (2008–2013) population levels of PFAAs. Additionally, we aimed to investigate the association between PFAAs and gestational age at birth and preterm birth.

Methods

The Aarhus Birth Cohort and Biobank

Annually, approximately 4,500 women give birth at the Department of Obstetrics and Gynecology, Aarhus University Hospital, Denmark. The ongoing Aarhus Birth Cohort...
Perfluoroalkyl acids and birth weight

Selection of Participants

For this study, women in the cohort were eligible if they donated a blood sample between 9 and 20 completed gestational weeks, gave birth to a live-born, singleton neonate, and were nulliparous. From the women who fulfilled these criteria (n = 2,853) we randomly sampled 1,533 women recruited during 2008–2013 (220–290 participants annually). Of these women, 1,507 (98%) had complete data on exposure, birth weight, and covariates and were included in the final study population. Regarding birth length, 1,499 (98%) participants were included, and for head circumference, 1,494 (97%) participants were included in the analyses. Approval was obtained from the Danish Data Protection Agency (reference 2012-41-1288), and the data collection was accepted by the Danish National Committee on Health Research Ethics (reference M-20110054).

Exposure Assessment

We measured the levels of 16 PFAAs in maternal serum and included compounds where at least 50% of the samples were above the lower limit of quantification (LOQ) (Table 1). PFAA analysis was performed at the Department of Environmental Science, Aarhus University, by use of high performance liquid chromatography–tandem mass spectrometry after solid phase extraction (Liew et al. 2014).

Outcomes

The outcomes available in the cohort included birth weight (continuous and z-score), birth length, and head circumference at birth. z-Scores were calculated by standardization of birth weight for gestational age according to the most recent (1996) Scandinavian fetal reference (Marsål et al. 1996). Furthermore, we studied the gestational age at birth and the odds for preterm birth (birth before 37 weeks and 0 days of gestation). Gestational age at birth was determined by first trimester ultrasound measurements. We identified non-implausible values of gestational age at birth (< 24 weeks or > 45 weeks). We identified birth weight and gestational age mismatches (Alexander et al. 1996), and participants with implausible combinations (n = 5) were excluded from the analyses of birth weight along with six participants with missing birth weight.

Statistical Analysis

We performed multivariable linear regression with robust standard errors (Huber–White sandwich estimator) to estimate the association between individual PFAAs and continuous birth weight and birth weight z-scores, birth length, head circumference at birth, and gestational age at birth. The association between levels of PFAAs and preterm birth was analyzed by logistic regression. We substituted PFAA values below the LOQ with the LOQ divided by the square root of 2. Levels of PFAAs were divided into quartiles with the lowest category used as reference. Moreover, we assessed the associations between continuous exposure measures and the above-mentioned outcomes. The continuous exposure measures were rescaled to assess the change in outcomes with a 0.1-ng/mL increase in PFAA levels because most of the compounds had median values < 1 ng/mL. To enhance comparability of individual PFAAs within our study, we also modeled estimates per interquartile range of exposure. In addition, PFAA levels were modeled by the use of restricted cubic splines with prespecified knots according to the quartile boundaries for each PFAA.

We identified covariates to include in the analyses by directed acyclic graphs (DAGs) (see Figures S1 and S2). The analyses were adjusted for maternal age (continuous), maternal prepregnancy body mass index [BMI (continuous)], and maternal level of education (four categories). Furthermore we conditioned on parity by restricting to nulliparous women. Information on maternal age and parity was available in the birth registration form, and information on BMI and maternal level of education was extracted from the questionnaire. There were no missing values for maternal age. Few values were missing for BMI (n = 11) and level of education (n = 4).

In a secondary analysis, we included gestational age (continuous) in the birth weight model in addition to the other covariates. We did this to compare our findings with the existing literature, even though we are aware of the caveats of adjustment for a potential intermediate (Wilcox et al. 2011). These considerations apply to birth weight z-scores as well. We also restricted the analyses to children born at term (≥ 37 weeks of gestation). Due to previous reports on sex differences concerning the investigated association (Andersen et al. 2010; Maisonet et al. 2012; Robledo et al. 2015; Washino et al. 2009), we performed the analyses of birth weight separate for each sex, as well as pooled. We examined the importance of the gestational age at blood draw by restriction to participants who gave a blood sample within 13 completed gestational weeks [n = 1,440 (96%)], STATA statistical software version 12 (StataCorp, College Station, TX, USA) was used for all the statistical analyses.

Results

For seven of the measured PFAAs, more than 50% of the samples had concentrations above the lower limit of quantification [PFHxS, perfluoroheptane sulfonate (PFHpS), PFOS, PFOA, PFNA, PFDA, and...
PFUnA], LOQ, levels above the LOQ, and distributions of the included PFAAs are listed in Table 1, and corresponding information regarding the excluded compounds is listed in Table S1. Pearson’s correlations for the seven included PFAAs are shown in Table S2. The two PFAAs with the highest correlation were PFNA and PFDA (Pearson’s correlation = 0.85), and the lowest correlation was found for PFUnA and PFHxS (Pearson’s correlation = 0.14).

Women with exposure levels in the higher quartiles were slightly older than those with exposure levels in the lower quartiles—the median ages were 29 years in the lowest quartiles and 30–31 years in the highest (Table 2). Maternal prepregnancy BMI did not differ according to exposure levels. For women with the three higher levels of education, there was not much difference between exposure distributions, but for the group of women with the lowest educational level, 38–50% of women had exposure levels in the lowest PFAA quartiles.

For three perfluoroalkane sulfonic acids (PFHxS, PFHpS, and PFOS) estimated mean birth weights were lower for all quartiles above the first quartile (Table 3). Only PFHxS showed some indication of a monotonic dose–response relationship with birth weight. Further adjustment for gestational age did not change the results in any consistent direction, but the associations for PFHxS, PFHpS, and PFOS were stronger in term births (n = 1,426). Continuous exposure measures of these compounds were not consistently associated with lower estimated mean birth weights.

No obvious association was found between PFOA, PFNA, PFDA, and PFUnA and birth weight (Table 3) regardless of whether exposures were modeled as continuous or categorical variables. For individual compounds the direction of the estimates was not consistent in each quartile, and no dose–response relationships were evident.

Restricted cubic splines of the associations between PFAAs and birth weight are presented in Figure S3. In general these did not identify any clear thresholds nor did they indicate monotonic dose–response patterns.

The associations between PFAA exposure and birth weight did not differ substantially between boys and girls for most compounds (Table 4). For PFNA and PFDA, estimated mean birth weights were lower for girls than for boys for quartiles above the first quartile, but in girls there was no monotonic dose–response pattern, and some of the apparent sex differences were attributable to higher estimated mean birth weight in boys with exposures above the lowest quartile.

Estimates for the association between PFAA exposures and birth length and head circumference at birth were all close to zero (see Table S3). There was no obvious association between PFAA exposure and gestational age at birth or preterm birth (see Table S4). The levels of PFAAs were similar in samples taken before and after 13 gestational weeks (data not shown), and the exclusion of 67 participants with a blood sample drawn after 13 completed gestational weeks did not change the results (data not shown).

Discussion

Overall, we found weak and inconsistent associations between PFAA exposures and birth weight, birth length, and head circumference at birth. Independent of offspring sex, estimated mean birth weights were lower in quartiles above the lowest quartile of three perfluoroalkane sulfonic acids, without clear monotonic dose–response patterns, whereas PFNA and PFDA tended to be associated with lower birth weight in girls only. However, the sex-specific estimates were less precise than the estimates from the complete population.

Almost a few studies have investigated the association between PFAAs and infant size at birth. PFAAs were measured in plasma or serum from maternal blood before conception, during pregnancy, or at birth, or in umbilical cord blood; and exposures were modeled as different continuous or categorical variables, which have made comparison of the results cumbersome. Also, the studies controlled for different factors (Bach et al. 2015). Nine studies investigated the association between PFOA and birth weight (Apelberg et al. 2007; Chen et al. 2012; Darrow et al. 2013; Fei et al. 2007; Hamm et al. 2010; Kishi et al. 2015; Maisonet et al. 2012; Robledo et al. 2015; Washino et al. 2009), and all found lower estimated mean birth weights with increasing exposure levels even though the magnitude and precision of the estimates varied substantially. Seven of 10 studies found tendencies towards lower birth weight with higher PFOS levels (Apelberg et al. 2007; Chen et al. 2012; Darrow et al. 2013; Fei et al. 2007; Hamm et al. 2010;

Table 2. Maternal characteristics according to early pregnancy levels of perfluoroalkyl acids in 1,507 mothers from the Aarhus Birth Cohort, 2008–2013.

PFAA	Age (years) [median (IQR)]	Prepregnancy BMI (kg/m²) [median (IQR)]	Education (%)			
	1 (n = 42)	2 (n = 439)	3 (n = 580)	4 (n = 446)		
PFHxS	Q1 29 (27–31)	22 (20–25)	50	27	27	19
	Q2 29 (27–31)	22 (21–25)	19	24	26	25
	Q3 30 (27–32)	22 (21–25)	21	27	23	25
	Q4 31 (29–33)	22 (20–25)	10	23	24	31
PFHpS	Q1 29 (27–32)	22 (20–24)	48	23	26	24
	Q2 29 (27–32)	22 (20–24)	14	28	25	26
	Q3 29 (27–32)	22 (20–25)	21	24	26	22
	Q4 30 (28–33)	22 (21–25)	17	24	22	28
PFOS	Q1 29 (27–32)	22 (20–25)	45	25	27	22
	Q2 29 (27–32)	22 (20–24)	19	25	25	24
	Q3 29 (27–32)	22 (20–24)	22	27	25	29
	Q4 30 (28–32)	22 (21–25)	14	23	25	25
PFOA	Q1 29 (27–32)	22 (21–26)	43	23	27	23
	Q2 29 (27–31)	22 (20–24)	28	25	26	26
	Q3 29 (27–31)	22 (20–25)	10	27	23	25
	Q4 30 (28–32)	22 (21–25)	19	25	24	26
PFNA	Q1 29 (27–32)	22 (20–25)	48	26	25	21
	Q2 30 (28–32)	22 (21–25)	17	26	25	27
	Q3 30 (27–32)	22 (20–24)	10	24	24	27
	Q4 30 (28–32)	22 (21–25)	26	24	26	24
PFDA	Q1 29 (27–32)	22 (20–25)	38	27	27	20
	Q2 29 (27–31)	22 (21–25)	19	25	26	24
	Q3 30 (27–32)	22 (20–25)	10	25	23	29
	Q4 30 (28–32)	22 (20–24)	33	23	24	28
PFUnA	Q1 29 (27–32)	22 (21–26)	48	30	27	18
	Q2 30 (27–32)	22 (20–25)	19	25	26	22
	Q3 30 (27–32)	22 (20–25)	17	23	23	31
	Q4 30 (28–32)	22 (20–24)	17	22	24	29

Abbreviations: IQR, interquartile range; PFAA, perfluoroalkyl acid; Q, quartile. For specific PFAA abbreviations see Table 1. Definitions of highest completed maternal education: 1. Municipal primary and lower secondary school; 2. upper secondary school, or 1–2 years of vocational training; 3. additional 3–4 years of education, e.g., Bachelor’s degree; 4. > 4 additional years of education, e.g., Master’s degree.
Inoue et al. 2004; Kishi et al. 2015; Maisonet et al. 2012; Robledo et al. 2015; Washino et al. 2009). Compared with some previous studies, we report lower serum levels of PFOS (Darrow et al. 2013; Fei et al. 2007; Lee et al. 2013; Maisonet et al. 2012; Monroy et al. 2008) and PFOA (Darrow et al. 2013; Fei et al. 2007; Maisonet et al. 2012; Wu et al. 2012). For instance, the mean level of PFOA in the present study was 5.6 ng/mL in a previous Danish study (1996–2002) by Fei et al. (2007) compared with 2.2 ng/mL in the present study. In the study by Fei et al. (2007), the mean level of PFOS was 35.3 ng/mL compared with 8.9 ng/mL in the present study. This may be attributable to a decreasing exposure trend over time. If a threshold value of exposure exists, this may partly explain the lack of an association between PFOA and birth weight, birth length, and head circumference at birth in the present study. It is possible that regulatory measures might have decreased exposure sources sufficiently, perhaps to an extent that PFOA does not pose a potential threat to perinatal health. Thus, the results of the present study are largely reassuring. However, in accordance with other studies, the present results suggest an association between PFOS and lower birth weight. Other compounds, such as PFHxS and PFHpS, were also associated with lower birth weight. If an association between PFAs and birth weight is mediated by changes in the sex hormone homeostasis, this may explain the somewhat different associations that we found according to offspring sex for PFNA and PFDA, but

Table 3. Maternal levels of perfluoroalkyl acids and birth weight in 1,507 children from the Aarhus Birth Cohort, 2008–2013.

PFAA/exposure scale	Mean ± SD	Crude	Adjusted \(^a\) (95% CI)	Adjusted \(^b\) (95% CI)	Restricted \(^c\) (95% CI)
PFHxS					
Q1	3,460 ± 556	Reference	Reference	Reference	Reference
Q2	3,452 ± 546	–9	–15 (–67, 57)	–11 (–67, 44)	–41 (–105, 24)
Q3	3,439 ± 504	–24	–25 (–100, 50)	–21 (–79, 37)	–34 (–101, 32)
Q4	3,424 ± 511	–77	–29 (–106, 37)	–49 (–109, 11)	–34 (–118, 19)
Per IQR (0.3 ng/mL)	–3	–7	–7 (–28, 14)	–13 (–30, 3)	–11 (–32, 9)
Per 0.1 ng/mL	–3	–10	–2 (–10, 5)	–5 (–11, 1)	–4 (–12, 12)
PFHAs					
Q1	3,473 ± 509	Reference	Reference	Reference	Reference
Q2	3,418 ± 540	–56	–52 (–126, 21)	–20 (–75, 35)	–46 (–109, 17)
Q3	3,446 ± 478	–27	–34 (–105, 36)	–50 (–107, 6)	–56 (–118, 7)
Q4	3,436 ± 504	–38	–42 (–115, 31)	–43 (–100, 14)	–63 (–129, 2)
Per IQR (0.1 ng/mL)	–8	–12	–12 (–40, 17)	–17 (–40, 6)	–23 (–50, 4)
Per 0.1 ng/mL	–7	–11	–11 (–37, 16)	–15 (–36, 5)	–21 (–45, 3)
PFOS					
Q1	3,481 ± 520	Reference	Reference	Reference	Reference
Q2	3,397 ± 518	–84	–86 (–159, –13)	–66 (–122, –11)	–93 (–157, –29)
Q3	3,461 ± 486	–20	–21 (–91, 48)	–30 (–86, 26)	–50 (–113, 13)
Q4	3,431 ± 510	–50	–50 (–123, 23)	–58 (–105, 8)	–62 (–126, 3)
Per IQR (4.8 ng/mL)	–1	–2	–2 (–30, 26)	–8 (–30, 14)	–14 (–40, 11)
Per 0.1 ng/mL	0	0	0 (–1, 0)	0 (–1, 0)	0.00 (0.00, 0.00)
PFNA					
Q1	3,458 ± 524	Reference	Reference	Reference	Reference
Q2	3,452 ± 496	–6	–12 (–65, 61)	–20 (–77, 37)	–26 (–92, 40)
Q3	3,391 ± 501	–67	–63 (–137, 11)	–43 (–100, 14)	–72 (–137, –6)
Q4	3,471 ± 490	14	11 (–62, 84)	3 (–54, 61)	10 (–55, 75)
Per IQR (1.1 ng/mL)	19	21	1 (–1, 4)	7 (–10, 23)	13 (–6, 33)
Per 0.1 ng/mL	2	2	2 (–1, 4)	1 (–1, 2)	–1 (–1, 3)
PFDA					
Q1	3,461 ± 554	Reference	Reference	Reference	Reference
Q2	3,432 ± 492	–29	–34 (–107, 39)	–45 (–103, 13)	–55 (–120, 11)
Q3	3,411 ± 506	–50	–44 (–119, 31)	–56 (–113, 2)	–52 (–117, 13)
Q4	3,468 ± 480	7	17 (–5, 90)	2 (–55, 59)	4 (–60, 69)
Per IQR (0.2 ng/mL)	11	15	15 (–6, 23)	9 (–7, 24)	13 (–6, 31)
Per 0.1 ng/mL	6	9	9 (–3, 21)	5 (–4, 13)	7 (–3, 17)
PFUnA					
Q1	3,449 ± 532	Reference	Reference	Reference	Reference
Q2	3,439 ± 510	–10	3 (–71, 76)	–3 (–61, 55)	4 (–60, 69)
Q3	3,459 ± 513	10	29 (–46, 105)	17 (–42, 76)	24 (–43, 91)
Q4	3,425 ± 480	–24	8 (–65, 81)	–13 (–72, 45)	–15 (–81, 51)
Per IQR (0.2 ng/mL)	–9	0	–9 (–21, 21)	–5 (–22, 11)	–8 (–27, 11)
Per 0.1 ng/mL	–4	0	0 (–6, 9)	–2 (–9, 5)	–3 (–11, 5)

Abbreviations: IQR, interquartile range; Q, quartile. For PFAA abbreviations see Table 1.

*Adjusted for maternal age, prepregnancy BMI and educational level. *Additionally adjusted for gestational age (continuous). *Adjusted as model A and restricted to term births (>37 gestational weeks and 0 days). Adjustment for gestational age among infants born at term did not change the results (data not shown).
A few studies investigated the association between PFAAs and fecundability (Buck Louis et al. 2013; Fei et al. 2009; Jørgensen et al. 2014; Vestergaard et al. 2012; Whitworth et al. 2012a). However, the magnitude of a possible bias due to nonresponse may not be very likely since participants were unaware of individual exposure levels (at any time) as well as the outcomes at the time of inclusion. However, it cannot be ruled out that the selection of study participants may have been associated with both exposure levels and the outcomes.

A few studies investigated the association between PFAAs and fecundability. In a study by Bach et al. (2013), trained health care professionals systematically assessed the outcomes as part of routine data collection concerning all births at the hospital. Measurement error concerning birth weight, particularly differential measurement error, is unlikely to be of importance. However, birth length and head circumference at birth may be more prone to measurement error, and this might partly explain our close-to-null results for these outcomes.

We were able to control for the potential confounders we considered to be most important (see Figures S1 and S2), including maternal prepregnancy BMI, age, educational level, and parity (by restriction to first-time mothers). Maternal prepregnancy BMI and

Table 4. Sex-stratified associations between levels of perfluoroalkyl acids and birth weight in 764 boys and 743 girls from the Aarhus Birth Cohort, 2008–2013.

PFAA/exposure scale	Birth weight in boys	Birth weight in girls	Sex-exposure interactiona		
	Crude	Adjustedb (95% CI)	Crude	Adjustedb (95% CI)	Adjustedb (95% CI)
PFHxS					
Q1	Reference	Reference	Reference	Reference	Reference
Q2	–14	(–21, –7, 0)	5	(–9, 10)	27 (–151, 170)
Q3	–31	(–42, –20, 0)	–19	(–29, –7)	–1 (–51, 151)
Q4	–13	(–22, –4, 5)	–56	(–74, 19)	–171 (–170, 135)
Per IQR (0.3 ng/mL)	–14	(–21, –7, 0)	–5	(–11, 25)	130 (–30, 56)
Per 0.1 ng/mL	–6	(–10, –2, 0)	–2	(0, 8)	5 (–11, 21)
PFHpS					
Q1	Reference	Reference	Reference	Reference	Reference
Q2	–82	(–104, –60, 0)	–48	(–66, 35)	–58 (–197, 82)
Q3	0	(–102, 101)	–48	(–66, 35)	–58 (–197, 82)
Q4	–15	(–38, 6)	–76	(–176, 20)	–63 (–208, 83)
Per IQR (0.1 ng/mL)	5	(–19, 35)	–27	(–72, 12)	–34 (–91, 23)
Per 0.1 ng/mL	5	(–32, 39)	–25	(–65, 11)	–31 (–83, 21)
PFOS					
Q1	Reference	Reference	Reference	Reference	Reference
Q2	–132	(–150, –114, 0)	–37	(–48, 11)	–85 (–61, 231)
Q3	16	(9–33)	–55	(–88, 28)	–63 (–201, 75)
Q4	–40	(–61, –19)	–73	(–154, 3)	–34 (–180, 112)
Per IQR (4.8 ng/mL)	25	(26–13, 85)	–32	(–71, 7)	–58 (–114, –3)
Per 0.1 ng/mL	1	(0, 1, 0)	–1	(–1–1)	–1 (–2, –1)
PFNA					
Q1	Reference	Reference	Reference	Reference	Reference
Q2	–35	(–50, –20, 0)	–11	(–70, 31)	23 (–126, 172)
Q3	36	(54–154)	–11	(–100, 95)	–56 (–202, 89)
Q4	11	(84–126)	11	(79–12)	1 (144, 147)
Per IQR (1.1 ng/mL)	27	(31, 4, 59)	1	(34, 42)	–27 (–74, 20)
Per 0.1 ng/mL	2	(0, 3, 0)	0	(0, 3, 4)	–2 (–7, 2)
PFDA					
Q1	Reference	Reference	Reference	Reference	Reference
Q2	63	(60, 67)	–89	(–93, 2)	–160 (–305, –14)
Q3	20	(19–53)	–131	(–218, –29)	–143 (–291, 5)
Q4	50	(43, 56)	–39	(–133, 63)	–81 (–228, 66)
Per IQR (0.4 ng/mL)	28	(27–5, 59)	–5	(–4, 38)	–31 (–78, 16)
Per 0.1 ng/mL	8	(7–2, 16)	–1	(–1, 11)	–9 (–22, 5)
PFUnA					
Q1	Reference	Reference	Reference	Reference	Reference
Q2	–17	(–21, –12, 99)	–14	(–97, 97)	13 (–135, 161)
Q3	7	(27–85, 136)	2	(24–79, 127)	–1 (–152, 150)
Q4	–19	(–13, 101, 127)	–41	(–102, 81)	–24 (–169, 122)
Per IQR (0.2 ng/mL)	–8	(–13, 35)	–13	(–31, 22)	–6 (–49, 37)
Per 0.1 ng/mL	–3	(–1, 14, 15)	–5	(–2, 13, 9)	–2 (–20, 15)

Abbreviations: IQR, interquartile range; Q, quartile. For PFAA abbreviations, see Table 1. *Adjusted for maternal age, prepregnancy BMI, and educational level. **Differences in birth weight between sexes are based on girls compared with boys—negative estimates refer to lower birth weight estimates for girls compared with boys.
physiological phenomena in pregnancy, including changes in the maternal glomerular filtration rate (GFR) and plasma volume expansion, may be potentially important confounders if exposures are assessed in late pregnancy or at birth (Loccisano et al. 2013; Morken et al. 2014). These phenomena are of much larger magnitude in late than in early pregnancy, and the fact that we measured PFAA levels early is likely to have reduced potential confounding by these factors, which we did not collect information on. In previous studies measuring PFAAs in late pregnancy, or at birth, confounding by changes in GFR and plasma volume expansion may potentially explain the associations demonstrated between higher levels of PFAAs and lower birth weight. However, in a recent review of the literature, we found no systematic differences in the magnitude and direction of the association between PFAAs and the estimated mean birth weight differences according to the timing of exposure assessment (Bach et al. 2015). Because the causal window of exposure is largely unknown, the optimal timing of exposure assessment is unsettled. We consider early measurements to be preferable in order to limit the impact of physiological changes during pregnancy that may influence the measured exposures.

Levels of PFAA compounds are correlated (see Table S2), and different PFAAs are likely derived from similar exposure sources. Biologically, it is possible that different PFAA compounds share health effects.

Conclusions
We found no strong associations between PFAA exposures and birth weight, birth length, or head circumference at birth. In particular, we failed to replicate the association between PFOA and lower birth weight previously shown primarily in populations with higher exposures that were not restricted to nulliparous women. The estimated mean birth weights were lower in quartiles above the reference for PFOS, PFHxS, and PFPs for all infants and for PFNA and PFDA in girls only. Most of the compounds we investigated have not been studied much, and more studies are warranted.

References
Abbott BD. 2009. Review of the expression of peroxisome proliferator-activated receptors alpha (PPARα), and gamma (PPARγ) in rodent and human development. Reprod Toxicol 27:246–257, doi:10.1016/j.reprotox.2008.10.001.
Alexander GR, Himes JH, Kaufman RB, Mor J, Kogan M. 1996. A United States national reference for fetal growth. Obstet Gynecol 87:183–188, doi:10.1097/00006255-199603000-00006.
Andersen CS, Fei C, Gamborg M, Nohr EA, Sørensen TIA, Olsen J. 2010. Prenatal exposure to perfluorinated chemicals and anthropometric measures in infancy. Am J Epidemiol 172:1280–1287, doi:10.1093/aje/kxw269.
Apleberg BJ, Witter FR, Herbstman JB, Calafat AM, Halden RU, Needham LL, et al. 2007. Cord serum concentrations of perfluorooctanoic acid (PFOS) and perfluorooctanoate (PFFOA) in relation to weight and size at birth. Environ Health Perspect 115:1670–1676, doi:10.1289/ehp.10334.
Aruckel TE, Kubiszczz C, Walker M, Davis K, Lalande K, Kosarac I, et al. 2013. Umbilical cord blood levels of perfluoralkyl acids and polybrominated flame retardants. Int J Hyg Environ Health 218:184–194, doi:10.1016/j.ijhjeh.2012.03.004.
Bach CC, Bech BH, Brix N, Nohr EA, Bonde JP, Henrikson TB. 2015. Perfluoropolyal and polyfluoroalkyl substances and human fetal growth: a systematic review. Crit Rev Toxicol 45:53–67, doi:10.1080/19440044.2015.925440.
Benninghoff AD, Bisson WH, Koch DC, Ehresman DJ, Kolluri SK, Williams DE. 2011. Estrogen-like activity of perfluoralkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro. Toxicol Sci 122:21–31, doi:10.1093/toxsci/kfr190.
Buck Louis GM, Sundaram R, Schisterman EF, Sweeney AM, Lynch CD, Goren-Lantot RE, et al. 2013. Persistent environmental pollutants and couple fecundity: the LIFE Study. Environ Health Perspect 121:231–236, doi:10.1289/ehp.1205301.
Butenhoff JL, Olsen GW, Phafies-Hutchens A. 2006. The applicability of biomonitoring data for perfluorooctanesulfonate to the environmental public health continuum. Environ Health Perspect 114:1776–1782, doi:10.1289/ehp.9060.
Chen MH, Ha EH, Wen TW, Su YN, Lien GW, Chen CY, et al. 2012. Perfluorinated compounds in umbilical cord blood of newborns. PLoS One 7:e24274, doi:10.1371/journal.pone.0024274.
Darrow LA, Howards PP, Winquist A, Steenland K. 2014. PFOS and PFOS serum levels and miscarriage risk. Epidemiology 25:505–512, doi:10.1097/EDE.0000000000000103.
Darrow LA, Stein CR, Steenland K. 2013. Serum perfluororacetoc acid and perfluorooctanoic sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005–2010. Environ Health Perspect 121:1207–1213, doi:10.1289/ehp.1206372.
Du G, Hu J, Huang H, Dí, Han X, Wu D, et al. 2013. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of estrogen-related genes in vitro and in vivo. Environ Toxicol Chem 32:353–360, doi:10.1002/etc.2034.
Environment Canada. 2010. Environmental Performance Report 2009-2010. Ottawa, Canada. 324 pp.
Fei C, McLaughlin JK, Tarone RE, Olsen J. 2007. Perfluorinated chemicals and fetal growth: a study within the Danish National Birth Cohort. Environ Health Perspect 115:1677–1682, doi:10.1289/ehp.1056.
Glynn A, Berger U, Bignert A, Ullah S, Aune M, Lignell S, et al. 2012. Perfluorokylated alkylic acids in blood serum from primiparous women in Sweden: serial sampling during pregnancy and nursing, and temporal trends 1996-2010. Environ Sci Technol 46:16297–16307, doi:10.1021/es301915q.
Hamm MP, Cherry NM, Chan F, Martin JW, Frystyk JY. 2010. Maternal exposure to perfluorinated acids and fetal growth. J Expo Sci Envirobiol 20:589–597, doi:10.1038/jes.2009.57.
Henry ND, Fair PA. 2011. Comparison of in vitro cytotoxicity, estrogenicity and anti-estrogenicity of trisakis(perfluorooctyl)triethanol (PFTEA) and perfluorooctanoic acid. J Appl Toxicol 32:265–272.
Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S, et al. 2004. Perfluorooctane sulfonate (PFOS) and related perfluorinated compounds in human maternal and cord blood samples: assessment of PFOS exposure in a susceptible population during pregnancy. Environ Health Perspect 112:1204–1207, doi:10.1289/ehp.8864.
Jensen TK, Andersen LB, Kyhl HB, Nielsen F, Christiansen HT, Grandjean P. 2015. Association between perfluorinated compound exposure and miscarriage in Danish pregnant women. PLoS One 10:e012496, doi:10.1371/journal.pone.012496.
Jørgensen KT, Specht I, Lentera V, Bach CC, Rylander L, Jönsson BA, et al. 2014. Perfluoralkyl substances and time to pregnancy in couples from Greenland, Poland and Ukraine. Environ Health 13:116, doi:10.1186/1476-069X-13-116.
Kantani L, Llorca M, Sanchis J, Farré M, Barceló D. 2014. Emerging food contaminants: a review. Anal Bioanal Chem 408:2413–2427, doi:10.1007/s00216-010-3059-8.
Kim S, Choi K, Ji K, Seo J, Kho Y, Park J, et al. 2011. Trans-placental transfer of thirteen perfluorinated compounds and relations with fetal thyroid hormones. Environ Sci Technol 45:7465–7472, doi:10.1021/es20204a.
Kishi R, Nakajima T, Goudarzi H, Kobayashi S, Sasaki S, Okada E, et al. 2015. The association of prenatal exposure to perfluorinated chemicals with maternal essential and long-chain polyunsaturated fatty acids during pregnancy and the birth weight of their offspring: the Hokkaido Study. Environ Health Perspect 123:1038–1045, doi:10.1289/ehp.1408834.
Kjeldsen LS, Bonefeld-Jorgensen EC. 2013. Perfluorinated compounds affect the function of sex hormone receptors. Environ Sci Pollut Res Int 20:4631–4644, doi:10.1007/s11356-013-1753-3.
Kousats E, Lanyi L, Sutton SP, Johnson PH, Achtle DE, Sen S, et al. 2014. The Navigation Guide—evidence-based medicine meets environmental health: systematic review of nonhuman evidence for PFOS effects on fetal growth. Environ Health Perspect 122:1015–1027, doi:10.1289/ehp.1307177.
Larsen PS, Kamper-Jørgensen M, Adamson A, Barros H, Bonde JP, Brescianini S, et al. 2013. Pregnancy and birth cohort resources in Europe: a large opportunity for aetiological child health research. Paediatr Perinat Epidemiol 27:393–414, doi:10.1111/ppe.12060.

Lau C, Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Stanton ME, et al. 2003. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci 74:382–392, doi:10.1093/toxsci/kfg122.

Lee YJ, Kim MK, Bae J, Yang JH. 2013. Concentrations of polyfluoroalkyl compounds during pregnancy and fetal and postnatal growth in Korean girls. Environ Health Perspect 121:1298–1303, doi:10.1289/ehp.1205339.

Midasch O, Drexler H, Hart N, Beckmann MW, Angerer J. 2007. Transplacental exposure of neonates to perfluorooctanesulfonate and perfluorooctanoate: a pilot study. Int Arch Occup Environ Health 80:643–648, doi:10.1007/s00420-006-0165-9.

Monroy R, Morrison K, Teo K, Atkinson S, Kubwabo C, Stewart B, et al. 2008. Serum levels of perfluoroalkyl compounds in human maternal and umbilical cord blood samples. Environ Res 108:56–62, doi:10.1016/j.envres.2008.06.001.

Morken NH, Travlos GS, Wilson RE, Egggesbo M, Longnecker MP. 2014. Maternal glomerular filtration rate in pregnancy and fetal size. PLoS One 9(7):e101987, doi:10.1371/journal.pone.0101987.

Mortensen LM, Bach BH, Nohr EA, Kruheffer M, Kjørgaard S, Uldbjerg N, et al. 2013. Data resource profile: the Aarhus Birth Cohort Biobank (ABC Biobank). Int J Epidemiol 42:1879–1890, doi:10.1093/ije/dyt199.

Robledo CA, Yeung E, Mendola P, Sundaram R, Maisong, Sweeney AM, et al. 2015. Preconception maternal and paternal exposure to persistent organic pollutants and birth size: the LIFE Study. Environ Health Perspect 123:88–94, doi:10.1289/ehp.1308016.

Savitz DA, Stein CR, Bartell SM, Elston B, Gong J, Shin HM, et al. 2012a. Perfluorooctanoic acid exposure and pregnancy outcome in a highly exposed community. Epidemiology 23:386–392, doi:10.1097/EDE.0b013e31824cb538.

Savitz DA, Stein CR, Elston B, Wellenius GA, Bartell SM, Shin HM, et al. 2012b. Relationship of perfluorooctanoic acid exposure to pregnancy outcome based on birth records in the mid-Ohio Valley. Environ Health Perspect 120:1201–1207, doi:10.1289/ehp.1104752.

Stein CR, Savitz DA, Dougan M. 2009. Serum levels of perfluorooctanoic acid and perfluorooctane sulfate and pregnancy outcome. Am J Epidemiol 170:837–846, doi:10.1093/aje/kwp212.

Takahashi M, Ishida S, Hirata-Koizumi M, Ono A, Hirose A. 2014. Repeated dose and reproductive/developmental toxicity of perfluoroundecanoic acid in rats. J Toxicol Sci 39:197–198.

Thibodeaux JR, Hanson RG, Rogers JM, Grey BE, Barbee BD, Richards JH, et al. 2003. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. I: maternal and prenatal evaluations. Toxicol Sci 74:269–281, doi:10.1093/toxsci/kfg121.

UNEP (United Nations Environment Programme), 2009. Governments Unite to Step-up Reduction on Global DDT Reliance and Add Nine New Chemicals under International Treaty. Available: http://chm.pops.int/Convention/Pressrelease/COP4Geneva8May2009/tabid/542/language=en-US/ Default.aspx [accessed 2 January 2015].

U.S. EPA (U.S. Environmental Protection Agency). 2000. EPA and 3M Announce Phase Out of PFOS. Available: http://yosemite.epa.gov/opa/admpress.nsf/0/33a9a496e8cb111356525568e1005246b4 [accessed 2 January 2015].

Wang Y, Starling AP, Haug LS, Egggesbo M, Becher G, Thomsen C, et al. 2013. Association between perfluoroalkyl substances and thyroid stimulating hormone among pregnant women: a cross-sectional study. Environ Health 12:76, doi:10.1186/1476-069X-12-76.

Washino N, Saito Y, Sasaki S, Kato S, Ban S, Konishi K, et al. 2009. Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ Health Perspect 117:660–667, doi:10.1289/ehp.1101861.

Witworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R, et al. 2012a. Perfluorinated compounds and subfecundity in pregnant women. Epidemiology 23:257–263, doi:10.1097/EDE.0b013e31823b5031.

Witworth KW, Haug LS, Baird DD, Becher G, Hoppin JA, Skjaerven R, et al. 2012b. Perfluorinated compounds in relation to birth weight in the Norwegian Mother and Child Cohort Study. Am J Epidemiol 175:1208–1216, doi:10.1093/aje/kwr459.

Wilcox AJ, Weinberg CR, Basso O. 2011. On the pitfalls of adjusting for gestational age at birth. Am J Epidemiol 174:1062–1068, doi:10.1093/aje/kwr230.

Wu K, Xu X, Peng L, Liu J, Guo Y, Hui X. 2012. Association between maternal exposure to perfluorooctanoic acid (PFOA) from electronic waste recycling and neonatal health outcomes. Environ Int 48:1–8, doi:10.1016/j.envint.2012.06.018.