A comment on black hole state counting in loop quantum gravity

A. Ghosh and P. Mitra

Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064

There are two ways of counting microscopic states of black holes in loop quantum gravity, one counting all allowed spin network labels j, m and the other involving only the labels m. Counting states with $|m| = j$, as done in a recent Letter, does not follow either.

Loop quantum gravity has yielded detailed counts of microscopic quantum states corresponding to a black hole. A start was made in [1] in the direction of quantizing a black hole characterized by an isolated horizon. The quantum states arise when the cross sections of the horizon are punctured by spin networks. The spin quantum numbers j, m, which characterize the punctures, can label the quantum states. The entropy is obtained by counting states that are consistent with a fixed area of the cross section [1] and a total spin projection constraint. An estimation of the entropy was carried out in [2] counting only m-labels (pure horizon states) – see also [3]. In [4], the j-labels were also recognized as characterizing states. Both approaches follow discussions in [1]. Unlike these approximate estimations, [5] has used exact numerical methods, counting j, m-labels as in [4]. Recently, [6] has also attempted exact calculations using some number theory. [4] presents two calculations, one of which counts j, m-labels, but the other counts only states having $|m| = j$, in a bid to follow [2]. Unfortunately, as explained below, this prescription is not in general equivalent to the rule of counting all horizon states or m-labels: it was reached only approximately for large black holes [2, 5]. Consequently this counting of states in [6] is invalid.

We use units such that $4\pi\gamma L_p^2 = 1$, where γ is the so-called Barbero-Immirzi parameter involved in the quantization and L_p the Planck length. Setting the area A of the horizon equal to an eigenvalue of the area operator, we write

$$ 2 \sum_{j,m} s_{j,m} \sqrt{j(j+1)} = A, \quad (1) $$

where $s_{j,m}$ is the number of punctures carrying spin quantum numbers j, m and obeying the spin projection constraint

$$ \sum_{j,m} ms_{j,m} = 0. \quad (2) $$

Consider for definiteness a small black hole with $A = 4\sqrt{6}$. This corresponds to 2 punctures each with $j = 2$. Each puncture in principle has 5 allowed values for m, but not all the 25 states obey (2), which is satisfied only if $m_2 = -m_1$, so that there are 5 states. These 5 states have different j, m-labels and therefore the number of states in the j, m-counting of [4] is 5. This is of course what the j, m calculation of [6] yields. But in fact the j-values of the two punctures being the same, the states have different m-labels, so that the number of states in the pure m-label counting envisaged in [1] is also 5. On the other hand, the number of states which the $|m| = j$ calculation of [6] gives is only 2, namely the states with $m_2 = -m_1 = \pm 2$.

Consider next the situation $A = 2\sqrt{2} + 2\sqrt{6}$. Here, there are 2 punctures with $j = 1, 2$. For [2] to be satisfied, m_2 cannot be larger than 1 in magnitude, so that there are only 3 combinations of m possible. As the j values may be interchanged, there are 6 states in the j, m counting prescription. However, the m counting prescription yields only 3 because the j values are not to be taken into consideration here. On the other hand, setting $|m| = j$, as in [6], leads to no state at all because ± 2 and ± 1 cannot cancel.

In short, in considering small black holes, or any black hole which can be treated exactly, the $|m| = j$ method of [6] may not count all states with distinct m-labels. It gives a severely reduced estimate except in special cases involving $j = \frac{1}{2}$ or for large area [2, 3]. In general, to get the correct number of horizon states (m counting), one has to use the formula $\left(\sum_{m} s_{m} \right)^2$, where $s_{m} \equiv \sum_{j} s_{j,m}$, [2] for each allowed set $\{m\}$ and find the sum.

We thank Fernando Barbero for correspondence.

[1] A. Ashtekar, J. Baez and K. Krasnov, Adv. Theor. Math. Phys. 4 (2000) 1
[2] K. A. Meissner, Class. Quant. Grav. 21 (2004) 5245
[3] A. Ghosh and P. Mitra, Phys. Rev. D74 (2006) 064026
[4] A. Ghosh and P. Mitra, Phys. Letters B616 (2005) 114
[5] A. Corichi, J. Diaz-Polo, and E. Fernandez-Borja, Phys. Rev. Letters 98 (2007) 181301
[6] I. Agullo, J. F. Barbero G., J. Diaz-Polo, E. Fernandez-Borja, E. J. S. Villaseñor, Phys. Rev. Letters, 100 (2008) 211301