The Shatashvili-Vafa G_2 superconformal algebra as a Quantum Hamiltonian Reduction of $D(2, 1; \alpha)$.

Reimundo Heluani*, Lázaro O. Rodríguez Díaz†

Abstract

We obtain the superconformal algebra associated to a sigma model with target a manifold with G_2 holonomy, i.e., the Shatashvili-Vafa G_2 algebra as a quantum Hamiltonian reduction of the exceptional Lie superalgebra $D(2, 1; \alpha)$ for $\alpha = 1$. We produce the complete family of W-algebras $SW(\frac{3}{2}, \frac{3}{2}, 2)$ (extensions of the $N = 1$ superconformal algebra by two primary supercurrents of conformal weight $\frac{3}{2}$ and 2 respectively) as a quantum Hamiltonian reduction of $D(2, 1; \alpha)$. As a corollary we find a free field realization of the Shatashvili-Vafa G_2 algebra, and an explicit description of the screening operators.

1 Introduction

The Shatashvili-Vafa G_2 algebra[1] is a superconformal vertex algebra with six generators $\{L, G, \Phi, K, X, M\}$. It is an extension of the $N = 1$ superconformal algebra of central charge $c = 21/2$ (formed by the super-partners $\{L, G\}$) by two fields Φ and K, primary of conformal weight $\frac{3}{2}$ and 2 respectively, and their superpartners X and M (of conformal weight 2 and $\frac{5}{2}$ respectively). Their OPEs can be found in Appendix A in the language of lambda brackets of[2].

This superconformal algebra appeared as the chiral algebra associated to the sigma model with target a manifold with G_2 holonomy in[1] its classical counterpart had been studied by Howe and Papadopoulos in[3]. In fact this algebra is a member of a two-parameter family $SW(\frac{3}{2}, \frac{3}{2}, 2)$ previously studied in[4] where the author found the family of all superconformal algebras which are extension of the super-Virasoro algebra, i.e., the $N = 1$ superconformal algebra, by two primary supercurrents of conformal weights $\frac{3}{2}$ and 2 respectively. It is a family parametrized by (c, ε) (c is the central charge and ε the coupling constant) of non-linear W-algebras. Its generators and relations are recalled in Appendix B.

*IMPA, Rio de Janeiro. Partially supported by CNPq

†IMPA, Rio de Janeiro. Supported by FAPERJ and CNPq.
The Shatashvili-Vafa G_2 algebra is a quotient of $SW(\frac{3}{2}, \frac{3}{2}, 2)$ with $c = \frac{21}{2}$ and $\varepsilon = 0$, in other words is the only one among this family which has central charge $c = \frac{21}{2}$ and contains the tri-critical Ising model as a subalgebra. It is precisely the fact that the Shatashvili-Vafa G_2 algebra appears as a W-algebra that motivated the authors to try to obtain this algebra as a quantum Hamiltonian reduction of some Lie superalgebra using the method developed in [7].

That $D(2, 1; \alpha)$ is the right Lie superalgebra candidate to be used in the Hamiltonian reduction is known from scattered results in the physics literature. It was shown in [10] that $SW(\frac{3}{2}, \frac{3}{2}, 2)$ is the symmetry algebra of the quantized Toda theory corresponding to $D(2, 1; \alpha)$ (in [9] was worked a classical version of this result in the case $\alpha = 1$ ($D(2, 1; \alpha) = osp(4|2)$) and from the well established connection between the theory of nonlinear integrable equations and W-algebras, see for example [12].

A coset realization of the $SW(\frac{3}{2}, \frac{3}{2}, 2)$ superconformal algebra and therefore of the Shatashvili-Vafa algebra can be found in [14]. In [15] was shown that the Hamiltonian reduction of $D(2, 1; \alpha)$ coincides with this coset model (the authors however restrict their attention to the even part of the superalgebra).

Some representations of the Shatashvili-Vafa G_2 superconformal algebra can be found in [14], but the character formulae remains unknown. It was observed in [11] that in order to systematically study the representation theory and the character formula for this algebra one should construct the Shatashvili-Vafa algebra using the quantum Drinfeld-Sokolov reduction developed in [8, 16]. This step is accomplished in this article.

In section 2 we review how to perform the quantum Hamiltonian reduction of a Lie superalgebra as introduced in [7]. We recap some of the main theorems as well as under which conditions this Hamiltonian reduction process induces a free field realization.

In section 3 we prove that the $SW(\frac{3}{2}, \frac{3}{2}, 2)$ superconformal algebra is the quantum Hamiltonian reduction of the Lie superalgebra $D(2, 1; \alpha)$, and obtain a free field realization of the $SW(\frac{3}{2}, \frac{3}{2}, 2)$ algebra on a space of three free Bosons and three free Fermions. As particular cases $\alpha \in \{1, -\frac{1}{2}, -2\}$ we obtain the Shatashvili-Vafa G_2 algebra as a quantum Hamiltonian reduction of the Lie superalgebra $osp(4|2)$, and also the corresponding free field realizations. We summarize our main result as (see Theorem 3.1 its remark)

Theorem. Let \mathfrak{h} be the Cartan subalgebra of $D(2, 1; \alpha)$. It is a three dimensional vector space with a non-degenerate bilinear form $(,)$ given by the Cartan matrix. Consider $\Pi \mathfrak{h}^*$ the odd vector space (Π denotes parity change) with its natural bilinear form $-(,)$.

Let $V_k(\mathfrak{h}_{\text{super}})$ be the super affine vertex algebra generated by three Bosons from \mathfrak{h} and three Fermions from $\Pi \mathfrak{h}^*$ and lambda brackets

$$[h_\lambda h''] = k\lambda(h, h''), \quad [\phi_\lambda \phi''] = -(\phi, \phi''), \quad h, h' \in \mathfrak{h}, \phi, \phi' \in \Pi \mathfrak{h}^*.$$
2. The Shatashvili-Vafa G_2 superconformal algebra is a quotient of this algebra by an ideal generated in conformal weight $7/2$ \([3, 2]\).

3. For each α_i of the three odd simple roots of $D(2, 1, \alpha)$ there exists a module M_i of $V_{\kappa}(\mathfrak{h}_{\text{super}})$ generated by a vector $|\alpha_i\rangle$ such that $h_n|\alpha_i\rangle = 0$ for $n > 0$, $h_0|\alpha_i\rangle = (h, \alpha_i)|\alpha_i\rangle$ and $\phi_n|\alpha_i\rangle = 0$ for $n > 0$ (for all $h \in \mathfrak{h}$ and $\phi \in \mathfrak{h}^*$). Let $\Gamma_i(z)$ be the unique intertwiner of type $(V_{\kappa}(\mathfrak{h}_{\text{super}}), M_i)$ and $Q_i \in \text{Hom}(V_{\kappa}(\mathfrak{h}_{\text{super}}), M_i)$ its zero mode. Then for generic values of (c, ε) we have $SW(\frac{3}{2}, \frac{3}{2}, 2) = \bigcap_{i} Q_i \subset V_{\kappa}(\mathfrak{h}_{\text{super}})$.

In Section 3 the reader can find a stronger version of this Theorem as the generators for $SW(\frac{3}{2}, \frac{3}{2}, 2)$ are found for any values of the parameters (c, ε).

2 Quantum reduction of Lie superalgebras

In this section we recall the construction of the W-algebras $W_{\kappa}(\mathfrak{g}, x, f)$ introduced in [7]. We follow the presentation in [8].

To construct the vertex algebra $W_{\kappa}(\mathfrak{g}, x, f)$ we need a quadruple (\mathfrak{g}, x, f, k) where $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ is a simple finite-dimensional Lie superalgebra with a non-degenerate even invariant supersymmetric bilinear form $\langle.,.\rangle$, and $x, f \in \mathfrak{g}_0$ such that ad_x is diagonalizable on \mathfrak{g} with half-integer eigenvalues, $[x, f] = -f$, the eigenvalues of ad_x on the centralizer \mathfrak{g}' of f in \mathfrak{g} are non-positive, and $k \in \mathbb{C}$.

We recall that a bilinear form $\langle ., . \rangle$ on \mathfrak{g} is called even if $\langle \mathfrak{g}_0|\mathfrak{g}_0\rangle = 0$, supersymmetric if $\langle ., . \rangle$ is symmetric (resp. skew-symmetric) on \mathfrak{g}_0 (resp. \mathfrak{g}_1), invariant if $\langle [a, b]|c\rangle = [\langle a|b\rangle, c]$ for all $a, b, c \in \mathfrak{g}$.

A pair (x, f) satisfying the above properties can be obtained when x, f are part of an \mathfrak{sl}_2 triple, i.e., $[x, e] = e$, $[x, f] = -f$ and $[e, f] = x$. As this will be the case in the quantum reduction performed in section 3 we assume for the rest of this section that we are working with such a pair. Let $\mathfrak{g} = \oplus_{j \in \frac{1}{2} \mathbb{Z}} \mathfrak{g}_j$, be the eigenspace decomposition with respect to ad_x. Denote

$$
\mathfrak{g}^+ = \bigoplus_{j > 0} \mathfrak{g}_j, \quad \mathfrak{g}^- = \bigoplus_{j < 0} \mathfrak{g}_j, \quad \mathfrak{g}^0 = \mathfrak{g}_0 \oplus \mathfrak{g}^-.
$$

Let $V_k(\mathfrak{g})$ denote the affine vertex algebra of level k associated to \mathfrak{g}. Denote by $F(A)$ the vertex algebra of free superfermions associated to a vector superspace A with an even skew-supersymmetric non-degenerate bilinear form $\langle ., . \rangle$, i.e., the λ-bracket is given by $[\varphi|\psi] = \langle \varphi|\psi \rangle$, $\varphi, \psi \in A$.

On the vector superspace $\mathfrak{g}_{1/2}$ the element f defines an even skew-supersymmetric non-degenerate bilinear form $\langle ., . \rangle_{ne}$ by the formula:

$$
\langle a|b \rangle = \langle f|[a, b] \rangle.
$$
The associated vertex algebra $F(\mathfrak{g}_{1/2})$ is called the vertex algebra of neutral free superfermions. Similarly on the vector superspace $\Pi\mathfrak{g}_+ \oplus \Pi\mathfrak{g}_+^*$ (where Π denotes parity-reversing), define an even skew-supersymmetric non-degenerate bilinear form $\langle \cdot, \cdot \rangle_{ch}$ by:

$$
\langle \Pi \mathfrak{g}_+|\Pi \mathfrak{g}_+ \rangle_{ch} = 0 = \langle \Pi \mathfrak{g}_+^*|\Pi \mathfrak{g}_+^* \rangle_{ch},
$$

$$
\langle a|b^* \rangle_{ch} = -(-1)^{p(a)p(b^*)} \langle b^*|a \rangle_{ch} = b^*(a), \quad a \in \Pi \mathfrak{g}_+, b^* \in \Pi \mathfrak{g}_+^*,
$$

where $p(a)$ denotes the parity of the element a. The associated vertex algebra $F(\Pi \mathfrak{g}_+ \oplus \Pi \mathfrak{g}_+^*)$ is called the vertex algebra of charged free superfermions. This vertex algebra carries an extra \mathbb{Z}-grading by charge by assigning: charge $\varphi = 1$ and charge $\varphi^* = -1$, $\varphi \in \Pi \mathfrak{g}_+$, $\varphi^* \in \Pi \mathfrak{g}_+^*$. Consider the vertex algebra

$$
C(\mathfrak{g}, x, f, k) = V_k(\mathfrak{g}) \otimes F(\Pi \mathfrak{g}_+ \oplus \Pi \mathfrak{g}_+^*) \otimes F(\mathfrak{g}_{1/2}).
$$

The charge decomposition of $F(\Pi \mathfrak{g}_+ \oplus \Pi \mathfrak{g}_+^*)$ induces a charge decomposition on $C(\mathfrak{g}, x, f, k)$ by declaring charge $V_k(\mathfrak{g}) = 0$ and charge $F(\mathfrak{g}_{1/2}) = 0$. This makes $C(\mathfrak{g}, x, f, k)$ a \mathbb{Z}-graded vertex algebra. We introduce a differential $d_{(0)}$ that makes $(C(\mathfrak{g}, x, f, k), d_{(0)})$ a \mathbb{Z}-graded complex as follows. Let $\{u_\alpha\}_{\alpha \in S_j}$ be a basis of each \mathfrak{g}_j, an let $S := \bigsqcup_{j \in \frac{1}{2} \mathbb{Z}} S_j$, $S_+ := \bigsqcup_{j > 0} S_j$. Put $m_\alpha := j$ if $\alpha \in S_j$. The structure constants $c_{\alpha\beta}^\gamma$ are defined by $[u_\alpha, u_\beta] = \sum_{\gamma} c_{\alpha\beta}^\gamma u_\gamma$, for $(\alpha,\beta,\gamma \in S)$. Denote by $\{\varphi_\alpha\}_{\alpha \in S_+}$ the corresponding basis of $\Pi \mathfrak{g}_+$ and by $\{\varphi^\alpha\}_{\alpha \in S_+}$ the basis of $\Pi \mathfrak{g}_+^*$ such that $\langle \varphi_\alpha, \varphi^\beta \rangle_{ch} = \delta_{\alpha}^\beta$. Similarly denote by $\{\Phi_\alpha\}_{\alpha \in S_{1/2}}$ the corresponding basis of $\mathfrak{g}_{1/2}$, and by $\{\Phi^\alpha\}_{\alpha \in S_{1/2}}$ the dual basis with respect to $\langle \cdot, \cdot \rangle_{nc}$, i.e., $\langle \Phi_\alpha, \Phi^\beta \rangle_{nc} = \delta_{\alpha}^\beta$. It is useful to define Φ_u for any $u = \sum_{\alpha \in S} c_\alpha u_\alpha \in \mathfrak{g}$ by $\Phi_u := \sum_{\alpha \in S_{1/2}} c_\alpha \Phi_\alpha$. Define the odd field

$$
d = \sum_{\alpha \in S_+} (-1)^{p(u_\alpha)} : u_\alpha \varphi^\alpha : - \frac{1}{2} \sum_{\alpha,\beta,\gamma \in S_+} (-1)^{p(u_\alpha)p(u_\gamma)} c_{\alpha\beta}^\gamma \varphi_\gamma \varphi^\alpha \varphi^\beta :
$$

$$
+ \sum_{\alpha \in S_+} (f|u_\alpha) \varphi^\alpha + \sum_{\alpha \in S_{1/2}} : \varphi^\alpha \Phi_\alpha :.
$$

Its Fourier mode $d_{(0)}$ is an odd derivation of all products of the vertex algebra $C(\mathfrak{g}, x, f, k)$, such that $d_{(0)}^2 = 0$ and that $d_{(0)}$ decreases the charge by 1. Thus $(C(\mathfrak{g}, x, f, k), d_{(0)})$ becomes a \mathbb{Z}-graded homology complex. Define the affine W-algebra $W_k(\mathfrak{g}, x, f)$ to be: as vector superspace the homology of this complex $W_k(\mathfrak{g}, x, f) := H(C(\mathfrak{g}, x, f, k), d_{(0)})$ together with the vertex algebra structure induced from $C(\mathfrak{g}, x, f, k)$. The vertex algebra $W_k(\mathfrak{g}, x, f)$ is also called the

quantum reduction

associated to the quadruple (\mathfrak{g}, x, f, k). Define the Virasoro field of $C(\mathfrak{g}, x, f, k)$ by

$$
L = L^g + \partial x + L^{ch} + L^{nc},
$$

where
\[L^{g} = \frac{1}{2(k + h^{\vee})} \sum_{\alpha \in S} (-1)^{p(u_{\alpha})} : u_{\alpha} u^{\alpha} : , \]

is given by the Sugawara construction, where \(\{ u^{\alpha} \}_{\alpha \in S} \) is the dual basis to \(\{ u_{\alpha} \}_{\alpha \in S} \), i.e., \((u_{\alpha} | u^{\beta}) = \delta_{\alpha}^{\beta} \). Here we are assuming that \(k \neq -h^{\vee} \), where \(h^{\vee} \) denotes the dual Coxeter number of \(g \).

\[L^{ch} = - \sum_{\alpha \in S_{+}} m_{\alpha} : \varphi^{\alpha} \partial \varphi_{\alpha} : + \sum_{\alpha \in S_{+}} (1 - m_{\alpha}) : (\partial \varphi_{\alpha}) \varphi_{\alpha} :, \]

\[L^{nc} = \frac{1}{2} \sum_{\alpha \in S_{1/2}} : (\partial \varphi_{\alpha}) \varphi_{\alpha} :, \]

The central charge of \(L \) is given by

\[c(g, x, f, k) = \frac{ksdim g}{k + h^{\vee}} - 12k(x|x) \]

\[- \sum_{\alpha \in S_{+}} (-1)^{p(u_{\alpha})} (12m_{\alpha}^{2} - 12m_{\alpha} + 2) - \frac{1}{2} sdim g_{1/2}. \]

With respect to \(L \) the fields \(a (a \in g_{j}) \), \(\varphi_{\alpha}, \varphi^{\alpha} (\alpha \in S_{+}) \) and \(\Phi_{\alpha} (\alpha \in S_{1/2}) \) are primary vectors except for \(a (a \in g_{0}) \) such that \((a | a) \neq 0 \), and the conformal weights are as follows: \(\Delta(a) = 1 - j (a \in g_{j}) \), \(\Delta(\varphi_{\alpha}) = 1 - m_{\alpha} \), \(\Delta(\varphi^{\alpha}) = m_{\alpha} \) and \(\Delta(\Phi_{\alpha}) = \frac{1}{2} \). In [7] is proved that \(d_{(0)} L = 0 \), then the homology class of \(L \) (which does not vanish) defines the Virasoro field of \(W_{k}(g, x, f) \), which is again denoted by \(L \).

To construct other fields of \(W_{k}(g, x, f) \) define for each \(v \in g_{j} \)

\[J^{(v)} = v + \sum_{\alpha, \beta \in S_{+}} (-1)^{p(u_{\alpha})} c_{\alpha}^{\beta}(v) : \varphi_{\alpha} \varphi^{\beta} :, \]

where the numbers \(c_{\alpha}^{\beta}(v) \) are given by \([v, u_{\alpha}] = \sum_{\alpha \in S} c_{\alpha}^{\beta}(v) u_{\alpha} \). The field \(J^{(v)} \in C(g, x, f, k) \) has the same charge, the same parity and the same conformal weight as the field \(v \). The \(\lambda \)-bracket between these fields is as follows:

\[[J^{(v)} \lambda J^{(v')}'] = J^{([v | v'])} + \lambda \left(k(v | v') + \frac{1}{2} (\kappa_{g}(v, v') - \kappa_{g_{0}}(v, v')) \right) , \]

if \(v \in g_{i}, v' \in g_{j} \) and \(ij \geq 0 \) where \(\kappa_{g} (\text{resp.} \kappa_{g_{0}}) \) denotes the Killing form on \(g \) (resp. \(g_{0} \)).

Denote by \(C^{-} \) the vertex subalgebra of the vertex algebra \(C(g, x, f, k) \) generated by the fields \(J^{(u)} \) for all \(u \in g_{\leq} \), the fields \(\varphi^{\alpha} \) for all \(\alpha \in S_{+} \) and the fields \(\Phi_{\alpha} \) for all \(\alpha \in S_{1/2} \). One of the main theorems on the structure of the vertex algebra \(W_{k}(g, x, f) \) is the following:
Theorem 2.1. [8] Theorem 4.1] Let \(g \) be a simple finite-dimensional Lie superalgebra with an invariant bilinear form \((\cdot,\cdot) \) and let \(x, f \) be a pair of even elements of \(g \) such that \(ad\ x \) is diagonalizable with eigenvalues in \(\frac{1}{2} \mathbb{Z} \) and \([x,f] = -f \). Suppose that all eigenvalues of \(ad\ x \) on \(g^f \) (the centralizer of \(f \)) are non-positive: \(g^f = \oplus_{j\leq 0} g_j^f \). Then

a) For each \(a \in g_{-j}^f (j \geq 0) \) there exists a \(d_{(0)} \)-closed field \(J^{(a)} \) in \(C^- \) of conformal weight \(1+j \) (with respect to \(L \)) such that \(J^{(a)} - J^{(a)} \) is a linear combination of normal ordered products of the fields \(J^{(b)} \), where \(b \in g_{-s} \), \(0 \leq s < j \), the fields \(\Phi_\alpha \), where \(\alpha \in S_{1/2} \), and the derivatives of these fields.

b) The homology classes of the fields \(J^{(a)} \), where \(a_1, a_2, \ldots \) is a basis of \(g^f \) compatible with its \(\frac{1}{2} \mathbb{Z} \)-gradation, strongly generate the vertex algebra \(W_k(g,x,f) \).

c) \(H_0 \left(C(g,x,f,k),d_{(0)} \right) = W_k(g,x,f) \) and \(H_j \left(C(g,x,f,k),d_{(0)} \right) = 0 \) if \(j \neq 0 \).

Remark 2.1. The complex \(\left(C(g,x,f,k),d_{(0)} \right) \) is formal, that is, the vertex algebra \(W_k(g,x,f) \) is a subalgebra of \(C(g,x,f,k) \) consisting of \(d_{(0)} \)-closed charge 0 elements of \(C^- \), furthermore the \(J^{(a)} \) can be computed recursively, for example in the case \(a \in g_{-1/2}^f \) the solution is unique an is given by:

Theorem 2.2. [8] Theorem 2.1 (d)\]

For \(v \in g_{-1/2} \) let

\[
G^{(v)} = J^{(v)} + \sum_{\beta \in S_{1/2}} J^{(v,u_\beta)}\Phi_\beta : + \frac{(-1)^{p(v)+1}}{3} \sum_{\alpha,\beta \in S_{1/2}} \Phi^{\alpha}\Phi^{\beta}\Phi_{[u_\alpha,u_\beta,u]} : - \sum_{\beta \in S_{1/2}} (k(v|u_\beta) + \text{str}_{g^+} (ad\ v)(ad\ u_\beta)) \partial\Phi^{\beta},
\]

Then provided that \(v \in g_{-1/2}^f \), we have \(d_{(0)}(G^{(v)}) = 0 \), hence the homology class of \(G^{(v)} \) defines a field of the vertex algebra \(W_k(g,x,f) \) of conformal weight \(\frac{2}{2} \). This field is primary.

Remark 2.2. In the case \(g^f \subset g \leq \) Theorem 2.1 and the identity (2.2) provides a construction of the vertex algebra \(W_k(g,x,f) \) as a subalgebra of \(V_k(g,g) \otimes F(g_{1/2}) \) where \(\nu_k \) is the 2-cocycle on \(g \leq [t, t^{-1}] \) given by

\[
\nu_k(at^m, bt^n) = m\delta_{m,-n} \left(k(a|b) + \frac{1}{2} (\kappa_g(a,b) - \kappa_g(a,b)) \right) \quad (2.3)
\]

for \(a, b \in g \leq \) and \(m, n \in \mathbb{Z} \).

Remark 2.3. Furthermore if this 2-cocycle is trivial outside \(g_0[t, t^{-1}] \), the canonical homomorphism \(g \leq \to g_0 \) induces a homomorphism from \(V_k(g,g) \otimes F(g_{1/2}) \) to \(V_k(g_0) \otimes F(g_{1/2}) \), obtaining in this way a free field realization of \(W_k(g,x,f) \) inside \(V_k(g_0) \otimes F(g_{1/2}) \).
3 Quantum Hamiltonian Reduction of $D(2, 1; \alpha)$

In this section we prove that the family $SW(\frac{3}{2}, \frac{3}{2}, 2)$ of W-algebras which has generators \{G, H, L, M, W, U\} of conformal weights $(\frac{3}{2}, \frac{3}{2}, 2, 2, 2, \frac{3}{2})$ and relations as given in Appendix B can be obtained as the quantum Hamiltonian reduction of $D(2, 1; \alpha)$. As a corollary we obtain a free field realization of this family. As a particular case we obtain a free-field realization of the Shatashvili-Vafa G_2 algebra on a space of three free Bosons and three free Fermions.

The Lie superalgebra $D(2, 1; \alpha)$ where $\alpha \in \mathbb{C} \setminus \{-1, 0\}$ is a one-parameter family of exceptional Lie superalgebras of rank 3 and dimension 17, which contains $D(2, 1) = osp(4, 2)$ as special cases (when $\alpha \in \{1, -\frac{1}{2}, -2\}$), see [13].

We present $\mathfrak{g} = D(2, 1; \alpha)$ as the contragradient Lie superalgebra associated to the Cartan matrix $A = (a_{ij})_{i,j}$ and $\tau = \{1, 2, 3\}$

$$
(a_{ij})_{i,j=1}^3 = \begin{pmatrix}
0 & 1 & \alpha \\
1 & 0 & -1 - \alpha \\
\alpha & -1 - \alpha & 0
\end{pmatrix}.
$$

(3.1)

We have generators $\{h_1, h_2, h_3, e_1, e_2, e_3, f_1, f_2, f_3\}$, h_i being even for all i and e_i, f_i being odd for all i and relations

$$[e_i, f_j] = \delta_{ij}h_i, \quad [h_i, e_j] = a_{ij}e_j, \quad [h_i, f_j] = -a_{ij}f_j.$$

Introduce the elements:

$$[e_1, e_2] = :e_{12}, \quad [e_1, e_3] = :e_{13}, \quad [e_2, e_3] = :e_{23}, \quad [e_1, e_{23}] = :e_{123},$$

$$[f_1, f_2] = :f_{12}, \quad [f_1, f_3] = :f_{13}, \quad [f_2, f_3] = :f_{23}, \quad [f_1, f_{23}] = :f_{123}.$$

Recall that \mathfrak{g} has vanishing Killing form and consequently the dual Coxeter number $h^\vee = 0$. Fix the following non-degenerate even supersymmetric invariant bilinear form $(,)$$

(h_i, h_j) = a_{ij}, \quad (e_i, f_j) = \delta_{ij}, \quad (e_{12}, f_{12}) = (f_{12}, e_{12}) = -1, \quad (e_{13}, f_{13}) = (f_{13}, e_{13}) = -\alpha, \quad (e_{23}, f_{23}) = (f_{23}, e_{23}) = 1 + \alpha, \quad (e_{123}, f_{123}) = -(f_{123}, e_{123}) = (1 + \alpha)^2.$$

To perform the quantum Hamiltonian reduction we take the pair (x, f):

$$x := \frac{(\alpha + 1)}{2\alpha}h_1 + \frac{\alpha}{2(\alpha + 1)}h_2 + \frac{1}{2\alpha(\alpha + 1)}h_3, \quad f := f_{12} + f_{13} + f_{23}.$$

This pair together with $e = -(\frac{1}{2})e_{12} + (\frac{1}{2\alpha})e_{13} + (-\frac{1}{2(\alpha + 1)})e_{23}$ forms an sl_2 triple. We have the following eigenspace decomposition of the algebra with
respect to $ad x$:

$$
\begin{array}{cccccccc}
g_{-3/2} & g_{-1/2} & g_0 & g_{1/2} & g_1 & g_{3/2} \\
f_{123} & f_{12} & f_1 & h_1 & e_1 & e_{12} & e_{123} \\
f_{13} & f_2 & h_2 & e_2 & e_{13} \\
f_{23} & f_3 & h_3 & e_3 & e_{23}
\end{array}
$$

Furthermore $g' = g_{-1/2}^{f_1} \oplus g_{-1/2}^{f_2} \oplus g_{-1/2}^{f_3}$ with $\dim g_{-1/2}^{f_1} = 2$, $\dim g_{-1/2}^{f_2} = 3$, and $\dim g_{-1/2}^{f_3} = 1$. This shows that the algebra $W_k(g, x, f)$ has six generators with the expected conformal weights.

The set of vectors $\{e_1, e_2, e_3\}$ is a basis of $g_{1/2}$, denote by $\Phi_1 := e_1$, $\Phi_2 := e_2$ and $\Phi_3 := e_3$ the corresponding free neutral fermions. The non-zero values of the (symmetric) bilinear form $\langle .| . \rangle_{ne}$ on $g_{1/2}$ are given by:

$$
\langle \Phi_1 | \Phi_2 \rangle_{ne} = -1, \quad \langle \Phi_1 | \Phi_3 \rangle_{ne} = -\alpha, \quad \langle \Phi_2 | \Phi_3 \rangle_{ne} = 1 + \alpha,
$$

(note that this is exactly minus the Cartan matrix of $D(2, 1; \alpha)$). Then the free neutral fermions satisfy the following non-zero λ-brackets:

$$
[\Phi_1, \Phi_2] = -1, \quad [\Phi_1, \Phi_3] = -\alpha, \quad [\Phi_2, \Phi_3] = 1 + \alpha,
$$

and the dual free neutral fermions with respect to $\langle .| . \rangle_{ne}$ are:

$$
\Phi^1 = (\frac{1+\alpha}{2\alpha})\Phi_1 + (-\frac{1}{2})\Phi_2 + (-\frac{1}{2\alpha})\Phi_3,
$$

$$
\Phi^2 = (-\frac{1}{2})\Phi_1 + (-\frac{\alpha}{2+2\alpha})\Phi_2 + (\frac{1}{2+2\alpha})\Phi_3,
$$

$$
\Phi^3 = (-\frac{1}{2\alpha})\Phi_1 + (\frac{1}{2+2\alpha})\Phi_2 + (-\frac{1}{2+2\alpha})\Phi_3.
$$

We fix the basis $\{h_1, h_2, h_3, f_1, f_2, f_3, f_{12}, f_{13}, f_{23}, f_{123}\}$ of g_{\leq} compatible with the $\frac{1}{2}\mathbb{Z}$ and \mathbb{Z} gradation of g. We consider the building blocks $J^{(v)}$ for each v that belongs to the above basis, (2.2) reduces to

$$
J^{(v)} \lambda J^{(v')} = J^{(|v, v'|)} + \lambda k(v|v'),
$$

because the Killing form κ_0 of g is zero and g_0 equals the Cartan subalgebra \mathfrak{h} of g, that is, the generators $J^{(v)}$ obey the same commutation relations as the generators of $V_k(D(2, 1; \alpha))$. Using Remark 2.2 we obtain that $W_k(g, x, f)$ is a subalgebra of $V_k(g_{\leq}) \otimes F(g_{1/2})$. For this reason and to simplify the notation we denote $J^{(v)}$ simply by v. Furthermore as the cocycle (2.3) is the original cocycle of $V_k(D(2, 1; \alpha))$ and this cocycle is trivial in $g_{<}$ outside $g_0 = \mathfrak{h}$, Remark 2.3 gives a free field realization of $V_k(g, x, f)$ inside $V_k(\mathfrak{h}) \otimes F(g_{1/2})$.

Let $J^{(f_i)}$ denote the d_0-closed fields associated to $\{f_1\}_{i=1}^3$ provided by Theorem 2.4. Using Theorem 2.2 we can compute $J^{(f_i)}$ explicitly:

$$
J^{(f_1)} = f_1 + \left(\frac{\alpha^2 - 1}{3}\right) : \Phi^1 \Phi^2 \Phi^3 : + : \Phi^1 h_1 : + k \partial \Phi^1,
$$

$$
J^{(f_2)} = f_2 + \left(\frac{\alpha(\alpha + 2)}{3}\right) : \Phi^1 \Phi^2 \Phi^3 : + : \Phi^2 h_2 : + k \partial \Phi^2,
$$

$$
J^{(f_3)} = f_3 + \left(\frac{2\alpha + 1}{3}\right) : \Phi^1 \Phi^2 \Phi^3 : + : \Phi^3 h_3 : + k \partial \Phi^3.
$$
We can compute the other fields \(J^{(f_1.2)} , J^{(f_1.3)} , J^{(f_2.3)} , J^{(f_1.2.3)} \) given by Theorem 2.1 that jointly with \(\{ J^{(f_i)} \}_{i=1}^3 \) strongly generate \(W_k(\mathfrak{g}, x, f) \), but in the \(SW(\frac{3}{2}, \frac{3}{2}, 2) \) superconformal algebra we can recover (using \(\lambda \)-brackets) all the fields from the generators in conformal weight \(\frac{3}{2} \), i.e., \(G \) and \(H \) (see Appendix B). Thus we only need to construct \(G \) and \(H \) from \(\{ J^{(f_i)} \}_{i=1}^3 \).

In order to do that observe that:

\[
a_1 f_1 + a_2 f_2 + a_3 f_3 \in \mathfrak{g}_{-1/2}^f \iff a_1 + a_2 (-\frac{a}{a+1}) + a_3 (-\frac{1}{a+1}) = 0, \tag{3.2}
\]

and that the central charge of the Virasoro field of \(W_k(\mathfrak{g}, x, f) \) given by formula (2.11) is \(c(\alpha, k) = \frac{9}{2} - 12 k(x|x) = \frac{9}{2} - \frac{6k(1+\alpha^2)}{\alpha(1+\alpha)} \).

We want to define a field \(G \) such that \(\{ G, L := \frac{1}{2} G_0 \} \) generate an \(N = 1 \) superconformal algebra with the above central charge, this is accomplished taking \(a_1 = a_2 = a_4 = \frac{1}{\sqrt{k}} \), i.e.,

\[
G := \frac{1}{\sqrt{k}} \left(J^{(f_1)} + J^{(f_2)} + J^{(f_3)} \right).
\]

We are looking for a vector \(H \) of conformal weight \(\frac{3}{2} \), such that:

\[
G_{(j)} H = 0, \quad j > 0, \tag{3.3}
\]

The most general vector of conformal weight \(\frac{3}{2} \) given by (3.2) is

\[
\left(\frac{\alpha}{\alpha+1} a_2 + \frac{1}{\alpha+1} a_3 \right) J^{(f_1)} + a_2 J^{(f_2)} + a_3 J^{(f_3)},
\]

which imposes the condition \(a_2 \alpha (-1 + 2\alpha) (1 + 2\alpha) + a_3 (2\alpha - \alpha) (2 + \alpha) = 0 \), which has as solution

\[
a_1' := \alpha (-1 + \alpha) (1 + 2\alpha),
\]

\[
a_2' := (-1) (2\alpha - \alpha) (2 + \alpha) (1 + \alpha),
\]

\[
a_3' := \alpha (-1 + 2\alpha) (1 + 2\alpha) (1 + \alpha).
\]

It follows from \(H(2) H = \frac{2\alpha^3}{3} \) (cf. (15.1)) that we need to rescale this solution to define \(H = \sum_{i=1}^3 a_i J^{(f_i)} \) with

\[
a_i := \left(-\frac{3}{2} (-1 + 2\alpha) \alpha^2 (1 + \alpha)^2 (2 + 4\alpha - \alpha (1 + \alpha)) \right)^{1/2} a_i'.
\]

We can obtain all other generators from \(G \) and \(H \), to perform this computations we use Thielemans's software [18]. Listed below are the explicit expressions of all the generators of \(W_k(\mathfrak{g}, x, f) \) as a subalgebra of \(V_k(\mathfrak{g}_- \otimes F(\mathfrak{g}_1/2)) \):

\[
G = \frac{i}{\sqrt{k}} f_1 + \frac{i}{\sqrt{k}} f_2 + \frac{i}{\sqrt{k}} f_3 + \frac{i}{\sqrt{k}} \Phi^1 h_1 : + \frac{i}{\sqrt{k}} : \Phi^2 h_2 : + \frac{i}{\sqrt{k}} : \Phi^3 h_3 :
\]

\[
+ i \sqrt{k} \partial \Phi^1 + i \sqrt{k} \partial \Phi^2 + i \sqrt{k} \partial \Phi^3,
\]

9
\[
\begin{align*}
L &= -\frac{1}{\kappa} f_{12} - \frac{1}{\kappa} f_{13} - \frac{1}{\kappa} f_{23} + \frac{(1 + \alpha)}{2\kappa} h_1 h_1 : + \frac{1}{2\kappa} : h_1 h_2 : + \frac{1}{2\kappa} : h_1 h_3 : \\
&\quad + \frac{\alpha}{4k + 4\kappa} : h_2 h_2 : - \frac{1}{2k + 2\kappa} : h_2 h_3 : + \frac{1}{4k + 4\kappa} : h_3 h_3 : + \frac{1}{2\kappa} : \Phi^1 f_2 : \\
&\quad + \frac{1}{2} : \Phi^1 f_3 : + \frac{1}{2} : \Phi^1 \partial \Phi^2 : + \sqrt{\alpha} : \Phi^1 h_2 : + \frac{1}{2} : \Phi^2 f_1 : - \frac{(1 + \alpha)}{2\kappa} h_1 : \Phi^2 f_2 : \\
&\quad + \sqrt{\alpha} : \Phi^1 h_3 : + \frac{(1 + \alpha)}{2\kappa} : \partial \Phi^1 : \\
&\quad + \frac{1}{2} \alpha : \partial \Phi^1 h_3 : + \frac{1}{2} (1 + \alpha) : \partial \Phi^2 : + (1 + \alpha) : \partial \Phi^3 : + (1 + \alpha) : \partial h_1 : + \frac{\alpha}{2 + 2\alpha} \partial h_2 \\
&\quad + \frac{1}{2 + 2\alpha} \partial h_3 :
\end{align*}
\]

\[
\begin{align*}
H &= \sqrt{-\frac{1}{2}(2 + 2\kappa)(1 + \alpha)} \left(-1 + \alpha \right) \left(1 + 2k + \alpha \right) (f_1 + : \Phi^1 h_1 : \\
&\quad + k \partial \Phi^1) - (2k - \alpha) \left(2 + 3\alpha + \alpha^2 \right) (f_2 + : \Phi^2 h_2 : + k \partial \Phi^2) \\
&\quad + (-1 + 2k) \alpha \left(1 + 3\alpha + 2\alpha^2 \right) (f_3 + : \Phi^3 h_3 : + k \partial \Phi^3) \\
&\quad + \alpha (1 + \alpha) (-3 \alpha (1 + \alpha) + 4k (1 + \alpha + \alpha^2)) : \Phi^1 \partial \Phi^3 :) ,
\end{align*}
\]

\[
\begin{align*}
\tilde{M} &= \sqrt{-\frac{1}{2}(2 + 2\kappa)(1 + \alpha)} \left(-1 + \alpha \right) \left(1 + 2k + \alpha \right) (f_{12} - \frac{1}{2} : h_1 h_2 : \\
&\quad : \Phi^1 f_2 : - : \Phi^2 f_1 :) + \frac{(2 + \alpha)(1 + 1 + 4k(1 + \alpha))}{\sqrt{k}} \left(f_{13} - \frac{1}{2} h_3 h_3 : + \alpha^2 : \Phi^1 f_3 : \\
&\quad + (1 + \alpha) : \Phi^2 f_2 : + (1 + \alpha) : \Phi^2 f_1 :) \\
&\quad - i\sqrt{k} (-1 + \alpha)(1 + \alpha)(1 + 2k + \alpha) \left(\partial h_1 : + \frac{1}{2\kappa} : h_3 h_1 : \\
&\quad + i\sqrt{k} (2k - \alpha) \alpha (2 + \alpha) \left(\partial h_2 : + \frac{1}{2\kappa} : h_3 h_2 : \\
&\quad - i\sqrt{k} (-1 + 2k) (1 + 2\alpha) \left(\partial h_3 : + \frac{1}{2\kappa} : h_3 h_3 : \\
&\quad + \frac{(3 \alpha (1 + \alpha) + 4k (1 + \alpha + \alpha^2))}{2\sqrt{k}} (-1 + \alpha) : \Phi^1 \Phi^2 h_2 : + \alpha : \Phi^1 \Phi^3 h_3 : + \alpha : \Phi^1 \Phi^2 h_3 : \\
&\quad - \alpha : \Phi^1 \Phi^3 h_3 : - (1 + \alpha) : \Phi^2 \Phi^3 h_3 : \\
&\quad - i\sqrt{k} (-1 + \alpha) \alpha (1 + 2k + \alpha) : \Phi^1 \partial \Phi^2 : \\
&\quad - i\sqrt{k}(-1 + \alpha) \alpha^2 (1 + 2k + \alpha) : \Phi^1 \partial \Phi^3 : \\
&\quad - i\sqrt{k} (2k - \alpha) (1 + \alpha) (2 + \alpha) : \Phi^2 \partial \Phi^3 : \\
&\quad - i\sqrt{k} (2k - \alpha) (2 + 3\alpha + \alpha^2) : \partial \Phi^1 \Phi^2 : \\
&\quad + i\sqrt{k}(-1 + 2k) (1 + 33 + 2\alpha^2) : \partial \Phi^1 \Phi^3 : \\
&\quad - i\sqrt{k} (-1 + 2k) \alpha (1 + \alpha) (1 + 2\alpha) : \partial \Phi^2 \Phi^3 :) ,
\end{align*}
\]
\[W = \frac{-\alpha}{\mu^2 + 4k(1 + \alpha + \alpha^2)} \left(\frac{(2\mu + \alpha^2)}{k} \right) (-f_{12} + \frac{\mu}{2} : h_1 h_2 : + : \Phi^1 f_2 : \\
+ : \Phi^2 f_1 : + \frac{4\alpha + 2k}{k} \mu : \left(-\alpha f_{13} + \frac{\mu}{2} : h_1 h_3 : + \alpha^2 : \Phi^1 f_3 : + \alpha^2 : \Phi^3 f_1 : \\
+ \frac{1 + \mu}{k} (\alpha + 2k(1 + \alpha)) \right) \right) (-f_{23} + \mu : h_2 h_3 : = -\left(1 + \alpha : \Phi^2 f_3 : - (1 + \alpha : \Phi^3 f_2) \right) \\
+ \frac{1 + \mu}{k} (\alpha + 2k + \alpha) : h_1 h_1 : + \frac{2k + 2\alpha}{k : 2k - \mu} : h_2 h_3 : \\
+ \frac{-2k + 1}{k : \alpha + \mu} : h_3 h_3 : = \left(-1 + \alpha^2 : \Phi^1 \Phi^2 h_1 : - \alpha (2 + \alpha : \Phi^3 \Phi^2 h_2 : \\
+ (1 - 2\alpha) : \Phi^1 \Phi^2 h_3 : + \left(\alpha - \alpha^3 : \Phi^1 \Phi^3 h_1 : - \alpha^2 (2 + \alpha : \Phi^3 \Phi^2 h_2 : \\
- \alpha (1 + 2\alpha) : \Phi^1 \Phi^3 h_3 : - \alpha (1 + 2k + \alpha) : \Phi^1 \Phi^2 : \\
- \alpha^2 (1 + 2k + \alpha) : \Phi^1 \Phi^2 : + (1 + \alpha^2) : \Phi^2 h_1 : \\
+ \alpha (2 + 3\alpha + \alpha^2) : \Phi^2 \Phi^1 h_2 : + (1 - 3\alpha - 2\alpha^2) : \Phi^3 \Phi^2 h_3 : \\
- (2k - \alpha) : \Phi^2 \Phi^3 : - (2k - \alpha) : \Phi^3 \Phi^2 : \\
+ \frac{4}{3} (1 + \alpha) (1 + 2k + \alpha) : h_1 h_1 : + \frac{4}{3} \alpha (2 + \alpha) : h_2 h_3 : + \frac{2k + 1}{k : 2k - \mu} : h_3 h_3 : , \right) \\
\]

\[U = \frac{-\alpha}{\mu^2 + 4k(1 + \alpha + \alpha^2)} \left(\frac{(2\mu + \alpha^2)}{k} \right) (-f_{123} + \frac{3(1 + \alpha)}{\mu^2} : h_1 f_2 : + \frac{3(1 + \alpha)}{\mu^2} : h_3 f_2 : \\
- \frac{3\alpha}{\mu^2} : h_2 f_3 : + \frac{3(1 + \alpha)}{\mu^2} : h_2 f_3 : - \frac{3\alpha}{\mu^2} : h_3 f_1 : \\
+ \frac{3(1 + \alpha)}{\mu^2} : h_3 f_2 : + \frac{6\alpha + 1 + \alpha^2}{\mu^2} : \Phi^1 f_3 : - \frac{3\alpha}{\mu^2} : \Phi^1 h_1 h_2 : \\
- \frac{-3\alpha}{\mu^2} : \Phi^1 h_1 h_3 : + \frac{3(1 + \alpha)}{\mu^2} : \Phi^1 h_2 h_2 : + \frac{3(1 + 3\alpha + 2\alpha^2)}{\mu^2} : \Phi^1 \Phi^2 f_3 : + i\sqrt{\alpha} (1 + 3\alpha + 2\alpha^2) : \Phi^1 \Phi^2 : \\
- \frac{-3\alpha^2 (1 + 3\alpha + 2\alpha^2)}{\mu^2} : \Phi^1 \Phi^2 f_1 : + \frac{3(1 + 3\alpha + 2\alpha^2)}{\mu^2} : \Phi^1 \Phi^1 f_3 : \\
- \frac{-3\alpha^2 (1 + 3\alpha + 2\alpha^2)}{\mu^2} : \Phi^1 \Phi^1 f_1 : + \frac{3(1 + 3\alpha + 2\alpha^2)}{\mu^2} : \Phi^1 \Phi^1 f_3 : \\
+ 3i\sqrt{\alpha} (1 + \alpha) : \Phi^1 \Phi^2 : \Phi^2 : - i\sqrt{\alpha} (2 + 3\alpha + \alpha^2) : \Phi^1 \Phi^2 : \Phi^1 \Phi^3 : \\
- 3i\sqrt{\alpha} (1 + \alpha) : \Phi^1 \Phi^3 : - \frac{1 + 3\alpha + 2\alpha^2}{\mu^2} : \Phi^1 \Phi^3 : \\
+ \frac{6(1 + \alpha)}{\mu^2} : \Phi^2 f_{13} : + \frac{3(1 + \alpha)}{\mu^2} : \Phi^2 f_{13} : + \frac{3(1 + \alpha)}{\mu^2} : \Phi^2 f_{13} : \\
- \frac{3\alpha (1 + \alpha)^2}{\mu^2} : \Phi^2 f_{13} : + \frac{3\alpha (1 + \alpha)^2}{\mu^2} : \Phi^2 f_{13} : - \frac{3\alpha (1 + \alpha)^2}{\mu^2} : \Phi^2 f_{13} : \\
+ 3i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : \Phi^3 : + \frac{2k - \alpha (1 + \alpha)}{\mu^2} : \Phi^2 f_{12} : + \frac{6(1 + \alpha)}{\mu^2} : \Phi^3 f_{12} : \\
- \frac{3\alpha (1 + \alpha)}{\mu^2} : \Phi^3 f_{12} : + \frac{3\alpha (1 + \alpha)}{\mu^2} : \Phi^3 f_{12} : + \frac{3\alpha (1 + \alpha)}{\mu^2} : \Phi^3 f_{12} : \\
- \frac{2(1 + 3\alpha + 2\alpha^2)}{\mu^2} : \Phi^2 f_{13} : - \frac{2(1 + 3\alpha + 2\alpha^2)}{\mu^2} : \Phi^2 f_{13} : - \frac{2(1 + 3\alpha + 2\alpha^2)}{\mu^2} : \Phi^2 f_{13} : \\
- \frac{2(1 + 3\alpha + 2\alpha^2)}{\mu^2} : \Phi^2 f_{13} : - \frac{2(1 + 3\alpha + 2\alpha^2)}{\mu^2} : \Phi^2 f_{13} : - \frac{2(1 + 3\alpha + 2\alpha^2)}{\mu^2} : \Phi^2 f_{13} : \\
- 3i\sqrt{\alpha} (1 + \alpha) : \Phi^1 \Phi^1 : - 3i\sqrt{\alpha} (1 + \alpha) : \Phi^1 \Phi^1 : - 3i\sqrt{\alpha} (1 + \alpha) : \Phi^1 \Phi^1 : \\
- i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : - i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : - i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : \\
+ 3i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : - 3i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : - 3i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : \\
+ 3i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : - 3i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : - 3i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : \\
+ 3i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : - 3i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : - 3i\sqrt{\alpha} (1 + \alpha) : \Phi^2 : \Phi^2 : \\]
\[+3\sqrt{k}\alpha(1 + \alpha) : \partial \Phi^3 h_2 : + \frac{2(1+k)\alpha(1+\alpha)}{\sqrt{k}} : \partial \Phi^3 h_3 : \]
\[- \frac{\alpha(1+2k+\alpha)}{\sqrt{k}} \partial f_1 + \frac{(2k-\alpha)(1+\alpha)}{\sqrt{k}} \partial f_2 + \frac{(1+2k)\alpha(1+\alpha)}{\sqrt{k}} \partial f_3 \]
\[- \frac{i}{2}\sqrt{k}(-1 + 4k - \alpha)\alpha \partial^2 \Phi^1 + \frac{i}{2}\sqrt{k}(1 + \alpha)(4k + \alpha)\partial^2 \Phi^2 \]
\[+ \frac{1}{2}\sqrt{k}(1 + 4k)\alpha(1 + \alpha)\partial^2 \Phi^3 \],

where \(\mu = \sqrt{\frac{9c(1+\varepsilon)}{11(1-\varepsilon)}} \) and \(\varepsilon(\alpha, k) = -\frac{4\sqrt{2}k^{3/2}(1+2\varepsilon)(-2+\alpha+\alpha^2)}{3\sqrt{(-1+2k)\alpha^2(1+\alpha)^2}(2k+4k^2-\alpha(1+\alpha))}. \)

One can check straightforwardly with the aid of [18] that the \(\lambda \)-brackets of the algebra \(W_k(g, x, f) \) coincides with the \(\lambda \)-brackets of the family of superconformal algebras \(SW(\frac{3}{2}, \frac{3}{2}, 2) \) with parameters \((c, k, \varepsilon) \). Shatashvili-Vafa’s \(G_2 \) superconformal algebra is a quotient of this algebra for \((c, \varepsilon) = (21/2, 0) \) modulo an ideal generated in conformal weight \(\frac{7}{2} \) (cf. Remark [11], in particular, the explicit commutation relations obtained in [14] are an artifact of the free field realization the authors used [3]. Solving \((c, \varepsilon) = (21/2, 0) \) in terms of \(\alpha \) and \(k \) there are three solutions: \(\{ \alpha = 1, k = -2/3 \}, \{ \alpha = -2, k = -2/3 \} \) and \(\{ \alpha = -1/2, k = 1/3 \} \). Precisely for this values of \(\alpha \) the superalgebra \(D(2, 1; \alpha) \) is nothing but the superalgebra \(osp(4|2) \), then the Shatashvili-Vafa \(G_2 \) superconformal algebra is a quotient of the quantum Hamiltonian reduction of \(osp(4|2) \).

Remark 3.1. The existence of the ideal [15,2] can be guessed from the fact that the affine vertex algebra \(V_k(osp(4|2)) \) at level \(k \in \{ -\frac{2}{3}, \frac{1}{3} \} \) is not simple, i.e., contains a non-trivial ideal [17].

Listed below are the explicit expressions of all the generators of the Shatashvili-Vafa \(G_2 \) superconformal algebra in the case \(\{ \alpha = 1, k = -2/3 \} \). Note that we are using the change of basis [13,3].

\[G = \sqrt{\frac{2}{3}} f_1 + \sqrt{\frac{2}{3}} f_2 + \sqrt{\frac{2}{3}} f_3 + \sqrt{\frac{2}{3}} : \Phi^1 h_1 : + \sqrt{\frac{2}{3}} : \Phi^2 h_2 : \]
\[+ \sqrt{\frac{2}{3}} : \Phi^3 h_3 : - \sqrt{\frac{2}{3}} \partial \Phi^1 - \sqrt{\frac{2}{3}} \partial \Phi^2 - \sqrt{\frac{2}{3}} \partial \Phi^3, \]

\[L = \frac{\sqrt{2}}{2} f_{12} + \frac{\sqrt{2}}{2} f_{13} + \frac{\sqrt{2}}{2} f_{23} - \frac{\sqrt{2}}{2} h_1 h_1 : - \frac{\sqrt{2}}{2} : h_1 h_2 : - \frac{\sqrt{2}}{2} : h_1 h_3 : - \frac{1}{\sqrt{16}} : h_2 h_2 : \]
\[+ \frac{\sqrt{2}}{2} : h_2 h_3 : - \frac{\sqrt{2}}{2} : h_3 h_3 : - \frac{\sqrt{2}}{2} : \Phi^1 f_2 : - \frac{\sqrt{2}}{2} : \Phi^1 f_3 : + \frac{\sqrt{2}}{2} \Phi^1 \partial \Phi^2 : \]
\[+ \frac{\sqrt{2}}{2} : \Phi^1 \partial \Phi^3 : - \frac{\sqrt{2}}{2} : \Phi^2 f_1 : + 3 : \Phi^2 f_3 : - : \Phi^2 \partial \Phi^3 : - \frac{\sqrt{2}}{2} : \Phi^3 f_1 : \]
\[+ 3 : \Phi^3 f_2 : - \frac{1}{2} : \partial \Phi^1 \Phi^2 : - \frac{1}{2} : \partial \Phi^3 \Phi^3 : + : \partial \Phi^2 \Phi^3 : + \partial h_1 \]
\[+ \frac{1}{4} \partial h_2 + \frac{1}{4} \partial h_3, \]

\[\Phi = 3 f_2 - 3 f_3 - 6 : \Phi^1 \Phi^2 \Phi^3 : + 3 : \Phi^2 h_2 : - 3 : \Phi^3 h_3 : - 2 \partial \Phi^2 + 2 \partial \Phi^3, \]
\[K = 3 \sqrt{\frac{2}{3}f_{12} - 3 \sqrt{\frac{2}{3}} f_{13} - \frac{3}{2} \sqrt{\frac{1}{2}} : h_{1} h_{2} + \frac{3}{2} \sqrt{\frac{1}{2}} : h_{1} h_{3} - \frac{3}{2} \sqrt{\frac{1}{2}} : h_{2} h_{3} : \]
\[+ \frac{3}{2} \sqrt{\frac{1}{2}} : h_{3} h_{3} - \frac{3}{2} \sqrt{\frac{1}{2}} : \Phi^{1} f_{2} : + 3 \sqrt{\frac{1}{2}} : \Phi^{1} f_{3} : + 3 \sqrt{\frac{1}{2}} : \Phi^{1} \Phi^{2} h_{1} : \]
\[- \frac{3}{2} \sqrt{\frac{1}{2}} : \Phi^{1} \Phi^{2} h_{2} : + \frac{3}{2} \sqrt{\frac{1}{2}} : \Phi^{1} \Phi^{2} h_{3} : - \frac{3}{2} \sqrt{\frac{1}{2}} : \Phi^{1} \Phi^{3} h_{1} : \]
\[- \frac{3}{2} \sqrt{\frac{1}{2}} : \Phi^{1} \Phi^{3} h_{2} : + \frac{3}{2} \sqrt{\frac{1}{2}} : \Phi^{1} \Phi^{3} h_{3} : - \frac{3}{2} \sqrt{\frac{1}{2}} : \Phi^{2} \Phi^{3} h_{1} : \]
\[+ 3 \sqrt{\frac{1}{2}} : \Phi^{2} \Phi^{3} h_{2} : + 3 \sqrt{\frac{1}{2}} : \Phi^{2} \Phi^{3} h_{3} : - 2 \sqrt{\frac{1}{2}} : \Phi^{2} \partial \Phi^{3} : + 3 \sqrt{\frac{1}{2}} : \Phi^{3} f_{1} : \]
\[- \sqrt{\frac{1}{2}} : \partial \Phi^{4} : + \sqrt{\frac{1}{2}} : \partial \Phi^{1} \Phi^{3} : - 2 \sqrt{\frac{1}{2}} : \partial \Phi^{2} \Phi^{3} : + \sqrt{\frac{3}{2}} \partial h_{2} - \sqrt{\frac{3}{2}} \partial h_{3}, \]

\[X = - 3 f_{23} - \frac{3}{2} : h_{2} h_{2} : - \frac{3}{2} : h_{2} h_{3} - \frac{3}{2} : h_{3} h_{3} : - \frac{3}{2} : \Phi^{1} \Phi^{2} h_{2} : \]
\[- \frac{3}{2} : \Phi^{1} \Phi^{2} h_{3} : - \frac{3}{2} : \Phi^{1} \Phi^{3} h_{2} : - \frac{3}{2} : \Phi^{1} \Phi^{3} h_{3} : - \frac{1}{2} : \Phi^{1} \partial \Phi^{2} : \]
\[- \frac{3}{2} : \Phi^{1} \partial \Phi^{3} : - 6 : \Phi^{2} f_{3} : + 3 : \Phi^{2} \Phi^{3} h_{2} : - 3 : \Phi^{2} \Phi^{3} h_{3} : + 5 : \Phi^{2} \partial \Phi^{3} : \]
\[- 6 : \Phi^{3} f_{2} : + \frac{3}{2} : \Phi^{1} \Phi^{2} : + \frac{3}{2} : \partial \Phi^{1} \Phi^{3} : - 5 : \partial \Phi^{2} \Phi^{3} : + \frac{3}{2} \partial h_{2} + \frac{3}{2} \partial h_{3}, \]

\[M = - 3 \sqrt{\frac{2}{3}} f_{13} + 3 \sqrt{\frac{2}{3}} : h_{1} f_{2} : + 3 \sqrt{\frac{2}{3}} : h_{1} f_{3} : - \frac{3}{2} \sqrt{\frac{2}{3}} : h_{2} f_{1} : - 3 \sqrt{\frac{2}{3}} : h_{2} f_{3} : \]
\[- \frac{3}{2} \sqrt{2} : h_{3} f_{1} : + 3 \sqrt{\frac{2}{3}} : h_{3} f_{2} : + 3 \sqrt{\frac{2}{3}} : h_{3} f_{3} : - \frac{3}{2} \sqrt{2} : \Phi^{1} h_{1} h_{2} : \]
\[- \frac{3}{2} \sqrt{2} : \Phi^{1} h_{1} h_{3} : - 3 \sqrt{\frac{2}{3}} : \Phi^{1} \Phi^{3} f_{1} : + 3 \sqrt{\frac{2}{3}} : \Phi^{1} \Phi^{3} f_{3} : + 9 \sqrt{\frac{2}{3}} : \Phi^{1} \Phi^{3} f_{3} : \]
\[- \sqrt{\frac{2}{3}} : \Phi^{2} \Phi^{3} \Phi^{4} : - 3 \sqrt{\frac{2}{3}} : \Phi^{1} \Phi^{3} f_{1} : + 9 \sqrt{\frac{2}{3}} : \Phi^{1} \Phi^{3} f_{1} : + 9 \sqrt{\frac{2}{3}} : \Phi^{1} \Phi^{3} f_{1} : + 3 \sqrt{\frac{2}{3}} : \Phi^{1} \Phi^{3} f_{1} : \]
\[+ \sqrt{\frac{2}{3}} : \Phi^{2} \Phi^{3} \Phi^{4} : + \sqrt{\frac{2}{3}} : \Phi^{1} \Phi^{4} \Phi^{3} : + \sqrt{\frac{2}{3}} : \Phi^{1} \Phi^{4} \Phi^{3} : - \frac{3}{2} \sqrt{\frac{2}{3}} : \Phi^{1} \partial h_{1} : \]
\[+ 3 \sqrt{\frac{2}{3}} : \Phi^{2} f_{13} : + 3 \sqrt{\frac{2}{3}} : \Phi^{2} h_{1} h_{2} : + 3 \sqrt{\frac{2}{3}} : \Phi^{2} h_{1} h_{3} : + 3 \sqrt{\frac{2}{3}} : \Phi^{2} \Phi^{3} f_{2} : \]
\[- 3 \sqrt{\frac{2}{3}} : \Phi^{2} \Phi^{3} f_{3} : - 2 \sqrt{\frac{2}{3}} : \Phi^{2} \Phi^{3} f_{3} : - \frac{3}{2} \sqrt{\frac{2}{3}} : \Phi^{2} \partial h_{2} : + 3 \sqrt{\frac{2}{3}} : \Phi^{3} f_{13} : \]
\[+ 3 \sqrt{\frac{2}{3}} : \Phi^{3} h_{1} h_{3} : + 3 \sqrt{\frac{2}{3}} : \Phi^{3} h_{2} h_{3} : - \frac{3}{2} \sqrt{\frac{2}{3}} : \Phi^{3} h_{2} h_{3} : + \frac{3}{2} \sqrt{\frac{2}{3}} : \partial \Phi^{1} h_{1} : \]
\[+ \sqrt{\frac{2}{3}} : \partial \Phi^{1} h_{2} : + \sqrt{\frac{2}{3}} : \partial \Phi^{3} h_{1} : + \sqrt{\frac{2}{3}} : \partial \Phi^{4} \Phi^{1} : + \sqrt{\frac{2}{3}} : \partial \Phi^{4} \Phi^{1} : - \sqrt{\frac{2}{3}} : \partial \Phi^{2} \phi^{3} : + \sqrt{\frac{2}{3}} : \partial \Phi^{2} \phi^{3} : \]
\[- \sqrt{\frac{2}{3}} : \partial \Phi^{3} h_{1} : - \sqrt{\frac{2}{3}} : \partial \Phi^{3} h_{2} : + \frac{3}{2} \sqrt{\frac{2}{3}} : \partial \Phi^{3} h_{3} : - \frac{3}{2} \sqrt{\frac{2}{3}} \partial f_{1} : \]
\[- \frac{3}{2} \sqrt{\frac{2}{3}} \partial f_{2} - \frac{3}{2} \sqrt{\frac{2}{3}} \partial f_{3} - \sqrt{\frac{2}{3}} \partial \phi^{1} : + \sqrt{\frac{2}{3}} \partial \phi^{2} : + \sqrt{\frac{2}{3}} \partial \phi^{2} : \]

The free field realization of \(W_{k}(\mathfrak{g}, f) \) inside \(V_{k}(\mathfrak{b}) \otimes F(\mathfrak{g}_{1/2}) \) is induced by the canonical homomorphism \(\mathfrak{g}_{<} \rightarrow \mathfrak{g}_{0} \), then we simply obtain the free field realization by removing the terms that contain a current \(v \in \mathfrak{g}_{<} \setminus \mathfrak{g}_{0} \), i.e., the terms containing \(f \)’s.
For example in the case \(\{ \alpha = 1, k = -2/3 \} \) the generators \(G \) and \(\Phi \) look as:

\[
G = \sqrt{\frac{2}{3}} : \Phi^1 h_1 : + \sqrt{\frac{2}{3}} : \Phi^2 h_2 : + \sqrt{\frac{2}{3}} : \Phi^3 h_3 : - \sqrt{\frac{2}{3}} \partial \Phi^1 - \sqrt{\frac{2}{3}} \partial \Phi^2 - \sqrt{\frac{2}{3}} \partial \Phi^3,
\]

\[
\Phi = -6 : \Phi^1 \Phi^2 \Phi^3 : + 3 : \Phi^2 h_2 : - 3 : \Phi^3 h_3 : - 2 \partial \Phi^2 + 2 \partial \Phi^3. \quad (3.4)
\]

Therefore we have proved:

Theorem 3.1. Let \(V_{-2/3}(\mathfrak{h}) \) be the affine vertex algebra of level \(-2/3\) associated to \(\mathfrak{h} \) with bilinear form \(A \), and \(F(\mathfrak{g}_{1/2}) \) the vertex algebra of neutral free fermions as defined above. The vectors \(G \) and \(\Phi \) given by the expressions above generate the \(SW(\frac{2}{3}, \frac{2}{3}, 2) \) vertex algebra with \(c = 21/2 \) and \(\varepsilon = 0 \) inside \(V_{-2/3}(\mathfrak{h}) \otimes F(\mathfrak{g}_{1/2}) \). This vertex algebra is not simple and dividing by the ideal \((\mathfrak{g}_{1/2})\) we obtain the Shatashvili-Vafa \(G_2 \) superconformal algebra.

Remark 3.2. Note that \(V_{-2/3}(\mathfrak{h}) \otimes F(\mathfrak{g}_{1/2}) \) is isomorphic (by a linear transformation on the generators) to the vertex algebra of three free Bosons and three free Fermions with inner product minus the inverse of Cartan matrix \((3.1)\) of \(D(2, 1; 1) \simeq \mathfrak{osp}(4|2) \).

Remark 3.3. This free field realization was found by Mallwitz \([10]\) using the most general ansatz on three free superfields of conformal weights \(\frac{1}{2} \). By obtaining this realization from the quantum Hamiltonian formalism we can find explicitly the screening operators associated with the reduction as follows.

First we rescale the currents \(h \in V_k(\mathfrak{h}) \) and consider instead \(\tilde{h} := \frac{h}{\sqrt{k}} \), therefore \(V_k(\mathfrak{h}) \) is identified as a vertex algebra with the Heisenberg algebra \(V_1(\mathfrak{h}) \) associated to \(\mathfrak{h} \).

Let \(V_Q \) denote the lattice vertex algebra \([6]\) associated to the root lattice \(Q \) (that correspond to the Cartan matrix that we have fixed at the beginning of the section) of \(D(2, 1; 2) \), i.e., we have three odd simple roots \(\{ \alpha_1, \alpha_2, \alpha_3 \} \). Then for every lattice element \(\alpha \) we have a \(V_1(\mathfrak{h}) \)-module \(M_\alpha \) and a vertex operator \(\Gamma_\alpha \) which is an intertwiner of type \((M_0, M_\alpha)\), hence its zero mode maps \(V_1(\mathfrak{h}) = M_0 \to M_\alpha \).

Let \(M_{-\alpha_i/\sqrt{k}} \) be the \(V_1(\mathfrak{h}) \)-module with highest weight \(-\alpha_i/\sqrt{k}\) and \(\Gamma_{-\alpha_i/\sqrt{k}} \) the intertwiner constructed just as in the lattice case, so that

\[
[\tilde{h}_i \lambda \Gamma_{-\alpha_i/\sqrt{k}}] = -\frac{(\alpha_i, \alpha_j)}{\sqrt{k}} \Gamma_{-\alpha_j/\sqrt{k}}, \quad \partial \left(\Gamma_{-\alpha_i/\sqrt{k}} \right) = -\tilde{h}_j \Gamma_{-\alpha_j/\sqrt{k}}.
\]

Define the operators

\[
Q_i := \Phi_i \Gamma_{-\alpha_i/\sqrt{k}} : V_1(\mathfrak{h}) \otimes F(\mathfrak{g}_{1/2}) \to M_{-\alpha_i/\sqrt{k}} \otimes F(\mathfrak{g}_{1/2}), \quad i = 1, 2, 3.
\]

A straightforward computation using \([13]\) shows that
equals the free field realization of \(W_k(g, x, f) \) inside \(V_1(h) \otimes F(g_{1/2}) \) that we have produced above.

Remark 3.4. In fact a similar result can be obtained for the quantum Hamiltonian reduction of any simple Lie superalgebra when the nilpotent \(f \) is super-principal, that is, there exists an odd nilpotent \(F \in g_{-1/2} \) with \([F,F] = f\) (\(f \in g_{-1} \) being a principal nilpotent) and these two vectors together with \(x \) form part of a copy of \(osp(1|2) \subset g \). Not all Lie superalgebras admit a superprincipal embedding, in particular, it is necessary to admit a root system with all odd simple roots. In this case, one takes \(F = \sum_i e_{-\alpha_i} \), the sum of all simple root vectors. The list of simple Lie superalgebras admitting an \(osp(1|2) \) superprincipal embedding consists of

\[
\text{sl}(n \pm 1|n), \quad osp(2n \pm 1|2n), \quad osp(2n|2n), \quad osp(2n + 2|2n), \quad D(2, 1; \alpha)
\]

In these case we see that \(g_{1/2} \) is naturally isomorphic to \(\Pi h^* \) and we can form the Boson-Fermion system and the screening charges as above. The intersection of their kernels coincides with the quantum Hamiltonian reduction for generic levels.

A \(\lambda \)-brackets of the Shatashvili-Vafa \(G_2 \) superconformal algebra

\[
[\Phi \lambda \Phi] = (-\frac{7}{2})\lambda^2 + 6X, \quad [\Phi \lambda X] = -\frac{15}{2} \Phi \lambda - \frac{5}{2} \Phi, \\
[X \lambda X] = \frac{35}{24} \lambda^3 - 10X \lambda - 5 \partial X, \quad [G \lambda \Phi] = K, \\
[G \lambda X] = -\frac{1}{2} G \lambda + M, \quad [G \lambda K] = 3 \Phi \lambda + \partial \Phi, \\
[G \lambda M] = -\frac{7}{12} \lambda^3 + (L + 4X) \lambda + \partial X, \quad [\Phi \lambda K] = -3G \lambda - 3 \left(M + \frac{1}{2} \partial G\right), \\
[\Phi \lambda M] = \frac{9}{2} K \lambda - \left(3 : G \Phi : -\frac{5}{2} \partial K\right), \quad [X \lambda K] = -3K \lambda + 3 \left(: G \Phi : -\partial K\right), \\
[X \lambda M] = -\frac{9}{4} G \lambda^2 - \left(5M + \frac{9}{4} \partial G\right) \lambda + \left(4 : GX : -\frac{7}{2} \partial M - \frac{3}{4} \partial^2 G\right),
\]
\[[K_{\lambda}K] = -\frac{21}{6} \lambda^3 + 6 (X - L) \lambda + 3 \partial (X - L), \]
\[[K_{\lambda}M] = -\frac{15}{2} \Phi \lambda^2 - \frac{11}{2} \partial \Phi \lambda + 3 (: GK : + 2 : L \Phi :), \]
\[[M_{\lambda}M] = -\frac{35}{24} \lambda^4 + \frac{1}{2} (20X - 9L) \lambda^2 + \left(10 \partial X - \frac{9}{2} \partial L \right) \lambda + \left(\frac{3}{2} \partial^2 X - \frac{3}{2} \partial^2 L - 4 : GM : + 8 : LX : \right), \]
\[[L_{\lambda}X] = -\frac{7}{24} \lambda^3 + 2X \lambda + \partial X, \quad [L_{\lambda}M] = -\frac{1}{4} G \lambda^2 + \frac{5}{2} M \lambda + \partial M. \]

B The \(SW(\frac{3}{2}, \frac{3}{2}, 2) \) superconformal algebra

Here we follow the presentation in [14]. The \(SW(\frac{3}{2}, \frac{3}{2}, 2) \) superconformal algebra has six generators \{G, L, H, \tilde{M}, W, U\} where G and L generate the \(N = 1 \) superconformal algebra of central charge \(c \), and \((H, \tilde{M}) \) and \((W, U) \) are two superconformal multiplets of dimensions \(\frac{3}{2} \) and 2 respectively.

A superconformal multiplet \(\Phi = (\Phi, \Psi) \) of dimension \(\Delta \) is a pair of two primary fields of conformal weights \(\Delta \) and \(\Delta + \frac{1}{2} \) respectively, such that the \(\lambda \)-brackets with the supersymmetry generator \(G \) are as follow:

\[[G_{\lambda} \Phi] = \Psi, \quad [G_{\lambda} \Psi] = (\partial + 2\Delta) \Phi. \]

The other \(\lambda \)-brackets between the generators are as follow:

\[[H_{\lambda}H] = \frac{c}{3} \lambda^2 + \varepsilon \tilde{M} + 2L + \frac{4}{3} \mu W, \]
(B.1)
\[[H_{\lambda} \tilde{M}] = (3G + 3\varepsilon H) \lambda + \frac{-2}{3} \mu U + \partial G + \varepsilon \partial H, \]
\[[\tilde{M}_{\lambda} \tilde{M}] = \frac{1}{3} c \lambda^3 + (4\varepsilon \tilde{M} + 8L + \frac{4}{3} \mu W) \lambda + 2\varepsilon \partial \tilde{M} + 4\partial L + \frac{2}{3} \mu \partial W, \]
\[[H_{\lambda} W] = \mu H \lambda + \frac{\varepsilon}{2} U + \frac{\mu}{3} \partial H, \]
\[[\tilde{M}_{\lambda} W] = (\frac{\mu}{3} \tilde{M} + 2\varepsilon W) \lambda + \frac{9\mu}{2c} : GH : + \frac{\mu(-27 + 2c)}{12c} \partial \tilde{M} + \varepsilon \partial W, \]
\[[H \lambda U] = (−\frac{2}{3} \mu \tilde{M} + 2 \varepsilon W) \lambda + \frac{9 \mu}{2c} : GH : -\frac{\mu(27 + 2c)}{12c} \partial \tilde{M} + \frac{\varepsilon}{2} \partial W, \]

\[[\tilde{M} \lambda U] = \mu H \lambda^2 + \left(\frac{5}{2} \varepsilon U + \frac{2}{3} \mu \partial H\right) \lambda - \frac{9 \mu}{2c} : G \tilde{M} : + \frac{9 \mu}{c} : LH : + \varepsilon \partial U + \frac{\mu(-27 + 2c)}{12c} \partial^2 H, \]

\[[W \lambda W] = \frac{c}{12} \lambda^3 + \left(\frac{5}{2} \varepsilon \tilde{M} + \frac{\mu(10c - 27)}{6c} W\right) \lambda + \partial L + \frac{\varepsilon}{4} \partial \tilde{M} + \frac{\mu(10c - 27)}{12c} \partial W, \]

\[[W \lambda U] = \left(-\frac{3}{2} G - \frac{3}{4} \varepsilon H\right) \lambda^2 + \left(\frac{\mu(-27 + 10c)}{12c} U - \partial G - \frac{\varepsilon}{2} \partial H\right) \lambda \\
- \frac{1}{48c} \left(162 \varepsilon : G \tilde{M} : + 432 \mu : GW : - 324 : H \tilde{M} : + 648 : LG : \\
+ 324 \varepsilon : LH : - 8 \mu(27 + 2c) \partial U + 6(-27 + 2c) \partial^2 G \\
+ 3(-27 + 2c) \varepsilon \partial^2 H\right), \]

\[[U \lambda U] = -\frac{c}{12} \lambda^4 - \left(\frac{5}{4} \varepsilon \tilde{M} + 5 L + \frac{\mu(-27 + 10c)}{6c} W\right) \lambda^2 - \left(\frac{5}{4} \varepsilon \partial \tilde{M} + 5 \partial L \\
+ \frac{\mu(-27 + 10c)}{6c} \partial W\right) \lambda - \frac{1}{16c} \left(-144 \mu : GU : - 108 : G \partial G : \\
- 54 \varepsilon : G \partial H : + 108 : H \partial H : - 108 : \tilde{M} \tilde{M} : + 216 \varepsilon : L \tilde{M} : \\
+ 432 : LL : + 288 \mu : LW : + 54 \varepsilon : \partial GH : - 3(9 - 2c) \varepsilon \partial^2 \tilde{M} \\
+ 24 \varepsilon \partial^2 L - 4 \mu(27 - 2c) \partial^2 W\right), \]

where \(c, \varepsilon \in \mathbb{C} \) and \(\mu = \sqrt{\frac{3c(4 + \varepsilon^2)}{2(27 - 2c)}} \).

Remark B.1. For \((c, \varepsilon) = (\frac{2}{3}, 0)\) it was checked in [14] that \(SW(\frac{2}{3}, \frac{2}{3}, 2) \) coincides with the Shatashvili-Vafa \(G_2 \) algebra at central charge \(\frac{21}{2} \) modulo the ideal generated by:

\[2\sqrt{14} : GW : - 3 : H \tilde{M} : + 2 : LG : - 2\sqrt{14} \partial U. \]

(B.2)

The existence of this ideal was first observed in [5]. The relations between the generators of \(SW(\frac{2}{3}, \frac{2}{3}, 2) \) in the case \((\frac{2}{3}, 0)\) and the generators of the Shatashvili-Vafa \(G_2 \) algebra as presented in the Appendix A are given by:

\[\Phi = iH, \ K = i\tilde{M}, \ X = -(L + \sqrt{14} W)/3, \ M = -(\partial G + 2\sqrt{14} U)/6. \]

(B.3)
References

[1] S. L. Shatashvili, C. Vafa, Superstrings and manifold of exceptional holonomy, Selecta Math. 1 (1995) 347-381.

[2] A. D’Andrea, V. G. Kac, Structure theory of finite conformal algebras, Selecta Math. 4 (1998) 377-418.

[3] P.S. Howe, G. Papadopoulos, Holonomy groups and W-symmetries, Comm. Math. Phys. 151 (1993) 467-480.

[4] R. Blumenhagen, Covariant construction of N=1 super W algebras, Nucl. Phys. B381 (1992) 641.

[5] J. M. Figueroa-O’Farrill, A note on the extended superconformal algebras associated with manifolds of exceptional holonomy, Phys. Lett. B 392 (1997) 77.

[6] V.G. Kac. Vertex Algebras for Beginners, volume 10 of University Lecture. Amer. Math. Soc., 1996.

[7] V. G. Kac, S.-S. Roan and M. Wakimoto, Quantum reduction for affine superalgebras, Comm. Math. Phys., 241 (2003), 307-342.

[8] V. G. Kac, M. Wakimoto, Quantum reduction and representation theory of superconformal algebras, Adv. Math. 185 (2004), 400-458. Corrigendum Adv. Math. 193 (2005), 453-455.

[9] H. Nohara, K. Mohri, Nucl. Phys. B349 (1991) 253.

[10] S. Mallwitz, On SW minimal models and N=1 supersymmetric quantum Toda field theories, Int. J. Mod. Phys. A 10 (1995) 977.

[11] J. de Boer, A. Naqvi and A. Shomer, The topological G_2 string, Adv. Theor. Math. Phys. 12 (2008).

[12] B. Feigin, E. Frenkel, Integrals of motion and quantum groups, Lect. Notes in Math. 1620, pp. 349-418, Springer Verlag, 1995.

[13] V. G. Kac, Lie superalgebras, Adv. in Math. 26 (1977), 8-96.

[14] B. Noyvert, Unitary minimal models of SW(3/2,3/2,2) superconformal algebra and manifolds of G_2 holonomy, JHEP 03 (2002) 030.

[15] B. L. Feigin, A. M. Semikhatov, The $\tilde{sl}(2) \oplus \tilde{sl}(2)/\tilde{sl}(2)$ coset theory as a Hamiltonian reduction of $D(2|1;\alpha)$ Nuclear Physics B, 610(3), 489-530 (2001).

[16] E. Frenkel, V. Kac and M. Wakimoto, Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction, Comm. Math. Phys. 147 (1992) 295-328.
[17] M. Gorelik, V. G. Kac, On simplicity of vacuum modules, Adv. Math. 211, (2007), 621-677.

[18] K. Thielemans, A Mathematica package for computing operator product expansions, Int. J. Mod. Phys. C2 (1991) 787-798.