Kinetics of 210Po accumulation in moss body profiles

Magdalena Długoś-Lisiecka

Abstract Radionuclide concentration analysis of total moss bodies often gave relatively different results than a separate analysis of each different morphological part of the same sample. The dynamics of the transfer of metals by dust uplifted from the soil and another approach, based on the diffusion of the two radionuclides to the moss, have been analyzed. In the proposed model, short- and long-term approaches have been applied. Each part of a moss’s profile can show different radionuclides accumulation ability, including both 210Pb and 210Po isotopes. A first-order kinetic model has been used for 210Po and 210Pb transport between three body components of mosses. This mathematical approach has been applied for 210Po activity concentration in the air estimation. For relatively clean deep forest region, calculated concentrations were from 17.2 to 43.8 μBqm$^{-3}$, while for urban air concentrations were higher from 49.1 to 104.9 μBqm$^{-3}$.

Introduction

210Pb and 210Po are natural radionuclides present in the atmosphere in result of 222Rn exhalation from the ground. Both are widely used as markers of various atmospheric processes, and because of the disequilibrium between their activity, concentration in fresh aerosols are often use for aerosol residence time calculation method (Persson and Holm 2011; Papastefanou 2006; Długoś-Lisiecka and Bem 2012). Each year up to around 11×10^9 Bq of 210Po can be emitted to the urban air from the local coal power plants in Lodz city, Poland (Długoś-Lisiecka 2015b).

The 210Po radionuclide content in fresh outdoor living plants is the result of the adsorption process from atmospheric precipitation and ingrowth from 210Pb decay (Eq. 1) (Persson 2014).

$$^{210}Pb \xrightarrow{22 \text{ year}} ^{210}Bi \xrightarrow{5.3 \text{ days}} ^{210}Po \xrightarrow{138 \text{ days}} ^{210}Po$$ (1)

Mosses are common biomarkers mainly used for the quantitative determination of concentrations most spread pollutions (heavy metals, radionuclides) of the atmosphere. Because of their good adsorption capacity, the use of mosses as bioindicators of atmospheric metal or radionuclides deposition has been widely accepted (Agnan et al. 2015; Dołęgowska and Migaszewski 2013; Koz and Cevik 2014; Basile et al. 2001; Boquete et al. 2014). The accumulation of 210Pb and 210Po in the moss body is generally characterized by two distinct processes: biosorption from dry or wet precipitation, or intake from soil, followed by internal transport. Firstly, a rapid radionuclides biosorption
occurs to give a steady state, which is then followed by slower internal transport within the plant’s body (Basile et al. 2001; Boquete et al. 2014). This second, slow step is considered as decisive for the final total radionuclides uptake by moss cells (Długosz-Lisiecka 2016; Uğur et al. 2003, 2004; Brumelis and Brown 1997; Steinnes 1995; Krmár et al. 2009, 2016; Aleksiayenak et al. 2013). Passive deposition on the external parts of the moss body has also been taken into account (Klos et al. 2012). It is generally assumed that the ectohydric mosses, represented by Pleurozium schreberi, take mineral components mainly from wet and dry deposition, so they are not greatly influenced by the soil composition (Fernández et al. 2005; Gjengedal and Steinnes 1990). Full analysis of the biosorption and accumulation of the metals should also take into account the translocation of the elements from the soil and their internal conduction by elongated cells, which promote the transport of water driven by surface tension (Klos et al. 2012; Dolegowska and Migaszewski 2013).

Both isotopes present in the air show different behaviors in the environment, including their transport and accumulation in plants, then can be transported between the annual increments of feather in the moss, and they are partially eluted due to leaching, depending on the meteorological conditions and the seasonal growth of the moss feather. Moreover, internal (vertical) transport of minerals within moss bodies, from leaves to rhizoids and vice versa, can also be enhanced by the presence of old dead tissue. Therefore, one should be aware that the rejection of dead fragments of stems or rhizoids can cause significant errors in the evaluation of the degree of air pollution by this method, thus, affecting the usefulness of moss as a biomarker.

The mathematical description of all the processes that occur in the moss body after absorption of the metals is quite complicated and depends on the speed of various processes. Several papers describe biosorption processes using the linear forms of the Langmuir, Freundlich, and Dubinin–Radushkevich models (Olu-Owolabi et al. 2012). The aim of this study is to use this type of kinetic investigation to identify activity of the ^{210}Pb in the air. For characterization of the dynamics of the metal bioaccumulation in the moss plant, at three compartment model has been applied. For each compartment, a first-order kinetic equation was used for analyzing the ^{210}Pb and ^{210}Po radionuclides’ transport within the mosses.

Material and methods

Samples were collected in two different environments (Fernández et al. 2005). Three samples were collected from different city centers and, for comparison, five samples were collected from unpolluted deep forest. The #1, #2, and #3 samples were collected during the summer, while samples #4 and #5 were taken in winter, all from a deep forest area, for identification seasonal fluctuation of radionuclide uptake from the environment by mosses.

Three remaining samples, #6, #7, and #8, were taken from the three city centers. Samples were dried in room temperature by 2 or 3 days, and the cleaned from grass, tree trunk, or other. The samples of mosses were divided into three parts: stems leaves, stems, and rhizoids (Długosz-Lisiecka and Wróbel 2014). The sample weights ranged from 1 up to a maximum of 2 g. Only two subsamples were prepare for each moss body parts for analysis radionuclides. Various species of the moss have different biosorption dynamic and accumulation ability; therefore, only one type of moss samples P. schreberi were object for this study. Pleurozium species is wide spread in local environment and has satisfying biomonitor features (Długosz-Lisiecka and Wróbel 2014).

The ^{210}Pb activities were determined by gamma spectrometry analysis in anticoincidence mode (Długosz-Lisiecka 2016). After instrumental ^{210}Pb analysis, a radiochemical ^{210}Po separation technique was applied before counting this radionuclide with α-spectrometry. Each sample was placed in a beaker filled with 2 and 5 ml of concentrated HNO$_3$ and HCl, respectively. In order to calculate the ^{210}Po separation efficiency, a known activity of ^{209}Po isotope (NIST 4326a) was added to each sample as a marker. After digestion, the samples were evaporated and the dry residues were dissolved in 70 ml of 1 M HCl. Prior to the spectrometry measurement, the ^{210}Po and ^{209}Po present in the solution were separated by spontaneous deposition on silver discs (the average efficiency of deposition was equal 95%). The activities of ^{210}Po and ^{209}Po were determined using an α-spectrometry system with a PIPS (CANBERRA) detector (Długosz et al. 2010).

The kinetics of the ^{210}Po and ^{210}Pb radionuclides’ translocation with dust uplifted from the soil was evaluated using the epigeal moss P. schreberi. The kinetic parameters for the radionuclide content of the three compartments of the moss are shown in Fig. 1.

Radionuclide uptake kinetics can be described using an adjustment of the three compartment models: Eq. (2, 3, 4) and Eq. (5, 6, 7) for ^{210}Pb and ^{210}Po, respectively.

\[
\begin{align*}
\frac{dC_{\text{Po}}}{dt} &= \lambda_{\text{a1}}X + \Delta C_{\text{Po1}} + \lambda_{\text{f1}}C_{\text{Po2}}-(\lambda_{\text{a1}} + \lambda_{\text{a2}} + \lambda_{\text{a3}})C_{\text{Po1}}-kX \\
\frac{dC_{\text{Po2}}}{dt} &= \lambda_{\text{a2}}C_{\text{Po1}} + \lambda_{\text{a2}}C_{\text{Po3}}-(\lambda_{\text{a2}} + \lambda_{\text{a3}})C_{\text{Po2}}-kX \\
\frac{dC_{\text{Po3}}}{dt} &= \lambda_{\text{a3}}C_{\text{Po2}} + \lambda_{\text{a3}}C_{\text{Po3}}-(\lambda_{\text{a3}} + \lambda_{\text{a1}})C_{\text{Po3}}-kX \\
\frac{dC_{\text{Pb}}}{dt} &= \lambda_{\text{b1}}B + \lambda_{\text{b1}}C_{\text{Pb2}}-(\lambda_{\text{b1}} + \lambda_{\text{b2}} + \lambda_{\text{b3}})C_{\text{Pb1}}-sB \\
\frac{dC_{\text{Pb2}}}{dt} &= \lambda_{\text{b2}}C_{\text{Pb1}} + \lambda_{\text{b2}}C_{\text{Pb3}}-(\lambda_{\text{b2}} + \lambda_{\text{b3}})C_{\text{Pb2}}-sB \\
\frac{dC_{\text{Pb3}}}{dt} &= \lambda_{\text{b3}}C_{\text{Pb2}} + \lambda_{\text{b3}}D-(\lambda_{\text{b3}} + \lambda_{\text{b1}})C_{\text{Pb3}}-sB
\end{align*}
\]
Where:

- \(C_{Po1,2,3} \) activity concentration of \(^{210}\text{Po} \) and \(^{210}\text{Pb} \) in the moss body, in compartments 1, 2, and 3, respectively,
- \(X,B \) \(^{210}\text{Po} \) and \(^{210}\text{Pb} \) activity concentrations accumulated from the atmosphere [Bq kg\(^{-1}\)],
- \(\lambda_{a1,2,3}, \lambda_{b1,2,3} \) \(^{210}\text{Po} \) and \(^{210}\text{Pb} \) radionuclides' accumulation rate (adsorption rate) (day\(^{-1}\)) for compartments 1, 2, and 3, respectively (vertical, down),
- \(\lambda_{d1,2,3}, \lambda_{c1,2,3} \) \(^{210}\text{Po} \) and \(^{210}\text{Pb} \) elimination rate (desorption) from each compartment of the moss's body (day\(^{-1}\)) for compartments 1, 2, and 3, respectively (vertical, up),
- \(\lambda_{w1,2,3}, \lambda_{y1,2,3} \) \(^{210}\text{Po} \) and \(^{210}\text{Pb} \) washout rate from each compartment of the moss's body (day\(^{-1}\)) for compartments 1, 2, and 3, respectively, to the outside,
- \(\lambda_{Po,\lambda_{Bi}} \) \(^{210}\text{Po} \) and \(^{210}\text{Bi} \) radionuclide decay constant [day\(^{-1}\)],
- \(kX,sB \) coefficient resulting from uplifted soil particles deposited on the surfaces of the moss samples for \(^{210}\text{Po} \) and \(^{210}\text{Pb} \), respectively,
- \(\Delta C_{Po1,2,3} \) \(^{210}\text{Po} \) ingrowth from \(^{210}\text{Pb} \) decay at time \(t \) [days].

As a result, after the integration for a given accumulation time \(t \), a set of equations for each compartment can be obtained. Particularly for leaves (compartment 1), these equations have the following forms (equations for next compartments would have similar form):

\[
1 - \exp\left(-\left(\lambda_{y1} + \lambda_{c1} + \lambda_{Po}\right)t\right) = \left(\lambda_{y1} + \lambda_{d1} + \lambda_{Po}\right)A_{Po1} + \lambda_{Po}A_{Po2}e^{-sB}\]

(8)

\[
1 - \exp\left(-\left(\lambda_{w1} + \lambda_{t1} + \lambda_{Po}\right)t\right) = \left(\lambda_{w1} + \lambda_{r1} + \lambda_{Po}\right)A_{Po1} + \lambda_{Po}A_{Po2}e^{-kX}\]

(9)

Where:

\[
\Delta C_{Po1} = A_{Po1}\left[\left(1 - \exp\left(-\lambda_{Bi}t\right)\right) + \frac{\lambda_{Bi}}{\lambda_{Bi} + \lambda_{Po}}\left(\exp\left(-\lambda_{Bi}t\right) - \exp\left(-\lambda_{Po}t\right)\right)\right]\]

(10)

Both Eqs. (8, 9) show the strong dependence of the \(A_{Po1} \) and \(A_{Po2} \) activities on the time of exposure. Both metals are incorporated into the moss's body (e.g., via adsorption followed by
internal transport); therefore, two processes, biosorption and radionuclide transportation, were considered. Firstly, a fast variant of the kinetics, describing the intensive processes of bioaccumulation and washout from compartments, was examined. Secondly, a long-term approach was used, describing the steady state conditions of the dynamics of bioaccumulation, taking into account 210Po ingrowth from 210Pb decay and its own radioactive decay.

Results

The levels of 210Po and 210Pb activity concentration in the various components of the moss’s body depend on several factors, such as the initial content of both radionuclides in the local environment and their activity ratios in the air and soil, along with the total accumulation time, which plays a significant role in the internal transport of metals (Koz and Cevik 2014; Sert et al. 2011; Uğur et al. 2003, 2004). 210Pb activity concentration distributions in moss body profiles collected in various environments (forest air, urban air) seemed to be more stable than 210Po concentrations. Proposed method focused on the fluctuations of 210Po activity concentration distributions in the moss profiles. 210Pb distribution analysis at the same profiles is aimed to help in estimation of the real 210Po content in the air, only.

Short-term dynamics of 210Po radionuclide bioaccumulation

For a short period of the absorption process ($t = 0–10$ days), $\Delta C_{Po1,2,3}$, the ingrowth of 210Po values from 210Pb decay, has a negligible contribution towards the total estimation of A_{Po1} activity and some simplification of the expressions (5–7) can be carried out. In the leaves, all the processes take place at their fastest rate; therefore, the 210Po decay constant $\lambda_{Po} = 0.005$ [day$^{-1}$] only gives a small contribution to the exponent value and can be omitted (Ghaemian 1979). It has been assumed, if there is no rain during that time, which mechanically removes the heavy metals from the plant, Eq. 9 that it can be simplified to the form shown below (e.g., for compartment 1).

The kX parameter describes the deposition of the uplifted soil particles onto the moss’s surface. Over a short period of time, the kX parameter can be considered to be negligible.

$$1 - \exp\left(-\lambda_{t1}t\right) = \frac{\lambda_{t1}A_{Po1}}{\lambda_{t1}X + \lambda_{d1}A_{Po2}}$$

Therefore, for a short term ($t < 10$ days), we can obtain the correlation: $1 - \exp\left(-\lambda_{t1}t\right) > 0$

$$\lambda_{t1}A_{Po1} << \lambda_{t1}X + \lambda_{d1}A_{Po2}$$

$$\lambda_{t1} < \lambda_{d1}$$

This equation confirms that the uptake of metals from wet or dry deposition seemed to be greater than the amount released from these mosses (Ghaemian 1979). In general, $\lambda_{a1}/\lambda_{d1}$ exceeds a value of 1.

The ratio of factors, λ_{a}/λ_{d}, for 210Po accumulation in moss describes the speed of two competing processes: accumulation from the atmosphere on the upper layer of the moss’s profile and downwards transport resulting from translocation in different parts of this plant (Olu-Owolabi et al. 2012). The λ_{a1} factor in compartment 1 describes the very effective biosorption of metals by the leaves from the air, whereas $-\lambda_{d1}$ describes 210Po transport down to the stem. Effective 210Po sorption at compartment 1 results from well-developed leaf branches and their large surface for the sorption process. The λ_{a}/λ_{d} factor ratio is rather typical for each moss species, while also depending on the effective surface of their leaves and local environmental pollution conditions.

Long-term dynamics of the 210Po and 210Pb radionuclides’ bioaccumulation

Over longer period of time ($t > 10$ days), the steady-state condition for compartment 1 can be settled and the expression $1 - \exp\left(-\left(\lambda_{t1} + \lambda_{a1} + \lambda_{d1} - \lambda_{a1}\right) \lambda_{t1}X\right) > 1$. In the long term, external and internal transport of 210Pb and 210Po radionuclides in the moss profile should be taken into account (Eqs. 14, 15).

$$\lambda_{w1} + \lambda_{t1} + \lambda_{Po} = \lambda_{a1} + \lambda_{d1} - k$$

As a result, Eq. 9 has the form:

$$\lambda_{a1}X + \Delta C_{Po1} + \lambda_{d1}A_{Po2} - kX = (\lambda_{w1} + \lambda_{t1} + \lambda_{Po})A_{Po1}$$

The ΔC_{Po1} parameter, a linear function of 210Pb, describes the ingrowth of 210Po from 210Pb decay. Over a long period ($t > 1$ year) of time, $\Delta C_{Po1} = A_{Po1}$. For the sake of simplicity of calculation, a state of equilibrium for the activity of this parameter has been taken to apply. As a result, Eq. 15 has the simple, linear form $y = ax - b$ (Eq. 16).

$$A_{Po1} = (\lambda_{w1} + \lambda_{t1} + \lambda_{Po})A_{Po1} - \lambda_{a1}X - \lambda_{a1}A_{Po2} + kX$$

where:

$$a = \lambda_{w1} + \lambda_{t1} + \lambda_{Po}; \quad b = \lambda_{a1}X + \lambda_{d1}A_{Po2} - kX$$

where the x and y coefficients are the 210Po and 210Pb activity concentrations in the compartments of the vertical moss profile (Eq. 17).

The settling of the steady-state conditions in the moss body takes a longer time in the case of rapid, mechanical, washout processes (Cučulović and Veselinović 2015; Cučulović et al. 2014) and seems to be different for each compartment.
general, saturation conditions cause a slowdown of the accumulation λ_0, λ_b, and λ_z internal transport parameters and change between each of the separate morphological moss parts, for the ^{210}Po and ^{210}Pb radionuclides. Other processes, such as ^{210}Po and ^{210}Pb radioactive decay and ^{210}Po ingrowth from ^{210}Pb, change both the rate and the accumulation process dynamics significantly. These low decay factors $\lambda_{\text{Po}} = 0.005$ [day$^{-1}$] and $\lambda_{\text{Pb}} = 8.5 \times 10^{-5}$ [day$^{-1}$] became essential and should be considered in the long-term process ($t > 10$ days).

On the base of this simple, linear Eq. (15), estimations of the X parameter, which describes the ^{210}Po activity concentration in the air, can be applied. Two sets of moss samples, representing two different environments, clean deep forest and city center, were collected. Let us assume the difference in the rate of deposition on the leaves surface and the accumulation in to the moss interior is linearly correlated, and their difference is constant. For simplicity of calculation, the k-λ_{a1} parameter was set at 0.3 [day$^{-1}$]. The results obtained in taking into account this assumption are show in Table 1.

There is a linear correlation between ^{210}Pb and ^{210}Po radionuclides in moss profiles. The ^{210}Po and ^{210}Pb activity concentrations in the moss profile can be applied for ^{210}Po activity concentration estimation in the air. The results presented in Table 1 confirm that there is a significantly higher ^{210}Po content in the urban air (samples 6, 7, and 8) than in the clean forest air (1, 2, and 3 for summer, and 4 and 5 for winter).

In relatively non-polluted air, the number of ^{210}Po ions attached to particles is low and ranges from dozens to hundreds [Bq kg$^{-1}$], while for polluted regions, the ^{210}Po activity concentration attached to the aerosols can reach up to several thousands [Bq kg$^{-1}$], depending on its origin and the particles’ size (Długosz et al. 2010). ^{210}Po activity concentration analysis in Bq kg$^{-3}$ units is more profitable for source pollution identification.

In this study, values the ^{210}Po activity concentration has been re-calculated for the concentration in the air, assuming dust concentration levels equal to 40 μg m$^{-3}$. Therefore, in Table 1, X parameter values in μBq m$^{-3}$ units have been also present.

For relatively clean areas, the ^{210}Po activity concentration ranges from 23 to 38 μBq m$^{-3}$ for the Arctic (Persson 2014). For comparison, in urban air, its activity concentration varied between 9.44 and 136.9 μBq m$^{-3}$ (Długosz-Lisiecka 2015a). X parameter values obtained on the basis of the proposed method are within the range of values provided by other investigators for France, Italy, Germany, and other European countries (Nho et al. 1996; Jia and Jia 2014; UNSCEAR 2000).

In the case of polluted urban environments (air or soil), the activity ratios $^{210}\text{Po}/^{210}\text{Pb} \geq 1$ can even exceed unity. As a result, the ^{210}Po total activity concentration depends on two processes: ^{210}Po decay with a half-life $T_{1/2} = 138$ days and ingrowth from ^{210}Pb (Fig. 2a). If the $^{210}\text{Po}/^{210}\text{Pb}$ initial activity ratio is equal to 0.1 in the different parts of the moss (as is the case for a relatively clean atmosphere), then the ^{210}Po content results mostly from ingrowth from ^{210}Po decay (Fig. 2b). The same kinetics between ^{210}Po and ^{210}Pb radionuclide activities can be obtained for morphological moss parts. However, washout, downward internal transport processes, biosorption, and upward transport processes will all significantly change the dynamic of the steady-state condition.

The results confirmed observations that different fragments of mosses have different contents of ^{210}Po and ^{210}Pb radionuclides deposited from the local environment. Based on the analysis, it can be concluded that the concentration distributions undergo significant changes with the seasonal variation in their shares of the radionuclides from different emission sources, and the varying transport of minerals within the plant. Solving the first-order kinetic equation for compartment no. 1 (leaves) can give valuable information about the input of fresh atmospheric ^{210}Po. Interesting differences have been noticed between samples collected in various locations with different contributions of atmospheric pollution sources. Because of the low number of the sample collected from high polluted regions this study has a preliminary character and will be continue.

Table 1 Results of estimation of ^{210}Po kinetic parameters X in [Bq kg$^{-1}$] and [μBq m$^{-3}$], in eight moss profiles (with assumption dust concentration equal 40 μg m$^{-3}$)

Sample no.	Linear equation	R^2	$\lambda_{a1} + \lambda_{t1}$ [day$^{-1}$]	λ_d [day$^{-1}$]	X [Bq kg$^{-1}$]	X [μBq m$^{-3}$]
#1	$y = 0.781x + 67.48$	0.776	0.77	1.08	813	32.5
#2	$y = 0.593x + 101.9$	0.999	0.59	0.89	1095	43.8
#3	$y = 0.460x + 123.2$	0.995	0.46	0.76	778	31.1
#4	$y = 0.917x + 110.2$	0.994	0.91	1.22	431	17.2
#5	$y = 0.856x + 58.61$	0.999	0.85	1.16	530	21.2
#6	$y = 2.091x - 178.1$	0.780	2.08	2.39	2621	105
#7	$y = 1.457x - 146.7$	0.983	1.45	1.76	2025	81.0
#8	$y = 0.958x - 41.05$	0.976	0.95	1.26	1226	49.1
Conclusions

The pollutants accumulated in the leaves of the moss tissues mostly come from atmospheric deposition, rather than from soil contamination. The increased activities of 210Po and 210Pb in moss body profiles confirm the significant contribution of 210Po activity in growth from 210Pb decay and aging of the moss tissue. The first-order kinetics of 210Po bioaccumulation in each of the morphological moss parts have been used as a method of estimating 210Po radionuclide activity concentration in the air.

Based on the radiometric analysis results, one can conclude that the 210Po and 210Pb concentration distributions depend on seasonal changes in the contributions of different emission sources, as well as the rate of the internal transport of minerals within the plants. The pollutants accumulated in the moss tissues come from sources of atmospheric deposition, rather than from contaminated soil. The disproportion in 210Po and 210Pb accumulation in different parts of the moss has been measured. Stems and rhizoids can be used for estimation of long-term pollution, while leaves be used for estimation short-term pollution in the air.

Acknowledgements This research work is supported by the National Science Centre under SONATA grant no. UMO-2012/07/D/ST10/02874.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Agnan Y, Séjalon-Delmas N, Claustres A, Probst A (2015) Investigation of spatial and temporal metal atmospheric deposition in France through lichen and moss bioaccumulation over one century. Sci Total Environ 529:285–296

Aleksiayenak YV, Frontasyeva MV, Florek M, Sykora I, Holy K, Masarik J, Brestakova L, Jeskovsky M, Steinnes E, Faanhof A, Ramatlahe
KI (2013) Distributions of 137 Cs and 210 Pb in moss collected from Belarus and Slovakia. J Environ Radioact 117:19–24
Basile A, Cogoni AE, Bassi P, Fabrizi E, Sorbo S, Giordano S, Cobianchi CR (2001) Accumulation of Pb and Zn in gametophytes and sporophytes of the moss Funaria hygrometrica (Funariales). Ann Bot 87:537–543
Boquete MT, Abal JR, Carballeira A, Fernández JA (2014) Effect of age on the heavy metal concentration in segments of Pseudoscleropodium purum and the biomonitoring of atmospheric deposition of metals. Atmos Environ 86:28–34
Brumelis G, Brown DH (1997) Movement of metals to new growing tissue in the moss Hylocomium splendens (Hedw.) BSG. Ann Bot 79:679–686
Čučulović A, Veselinović D (2015) Desorption of 137Cs from Brachythecium mildeanum moss using acid solutions with pH 4.60–6.50 J. Russ Phys Chem A 89(13):2473–2477
Čučulović A, Pavlović MS, Savović JJ, Veselinović DS (2014) Desorption of metals from Cetraria islandica (L.) Ach. Lichen using solutions simulating acid rain, arch. Biol Sci Belgrade 66(1):273–284
Długosz M, Grabowski P, Bern H (2010) 210Pb and 210Po radionuclides in urban air in Lodz city, Poland. J Radioanal Nucl Chem 289:719–725
Długosz-Lisiecka M (2015a) A excess of (210) polonium activity in the surface urban atmosphere. Part 1: fluctuation of the (210)Po excess in the air. Environ Sci Processes Impacts 17:458–464
Długosz-Lisiecka M (2015b) Excess of polonium-210 activity in the surface urban atmosphere. Part 2. Origin of 210Po excess. Environ Sci Processes Impacts 17(2):465–470
Długosz-Lisiecka M (2016) The sources and fate of 210Po in the urban air: a review. Environ Int 94:325–330
Długosz-Lisiecka M, Bern H (2012) Aerosol residence times and changes of radioiodine-131 and radiocesium-137 Cs activity over Central Poland after the Fukushima-Daichi nuclear reactor accident. J Environ Monit 14(5):1483–1489
Długosz-Lisiecka M, Wróbel J (2014) Use of moss and lichen species to identify 210Po contaminated regions. Environ Sci Processes Impacts 16(12):2729–2733
Dołęgowska S, Migaszewski ZM (2013) Anomalous concentrations of rare earth elements in the moss-soil system from south-central Poland. Environ Pollut 178:33–40
Fernández JA, Real C, Couto JA, Abal JR, Carballeira A (2005) The effect of sampling design on extensive biomonitoring surveys of air pollution. Sci Total Environ 337:11–21
Ghaemian N (1979) Lead uptake and its effects upon moss metabolism, Doctoral dissertation, University of Aberdeen
Gjengedal E, Steinnes E (1990) Uptake of metal ions in moss from artificial precipitation. Environ Monit Assess 14(1):77–87
Jia G, Jia J (2014) Atmospheric residence times of the fine-aerosol in the region of south Italy estimated from the activity concentration ratios of 210Po/210Pb in air particulates. J Anal Bioanal Tech 5(5):1–5
Klos A, Czora M, Rajfur M, Waclawek M (2012) Mechanisms for translocation of heavy metals from soil to epigeal mosses. Water Air Soil Pollut 223(4):1829–1836
Koz B, Cevik U (2014) Lead adsorption capacity of some moss species used for heavy metal analysis. Ecol Indic 36:491–494
Krmár M, Radnovic D, Mihailovic DT, Lalic B, Slirika J, Bikit I (2009) Temporal variations of 7Be, 210Pb and 137Cs in moss samples over 14 month period. Appl Radiat Isot 67(6):1139–1147
Krmár M, Mihailović DT, Arsenić I, Radnović D, Pap J (2016) Beryllium-7 and (210)Pb atmospheric deposition measured in moss and dependence on cumulative precipitation. Sci Total Environ 15(541):941–948
Nho E-Y, Ardouni B, Le Cloarec MF, Ramonet M (1996) Origins of 210Po in the atmosphere at Lamto, Ivory coast: biomass burning and Saharan dusts. Atmos Environ 30(22):3705–3714
Olu-Owolabi B, Diagboya PN, Ebaddan WC (2012) Mechanism of Pb2+ removal from aqueous solution using a nonliving moss biomass. Chem Eng J 195–196:270–275
Papastefanou C (2006) Residence time of tropospheric aerosols in association with radioactive nuclides. Appl Radiat Isot 64:93–100
Persson B (2014) 210Po and 210Pb in the terrestrial environment. Curr Adv Environ Sci 2(1):22–37
Persson BR, Holm E (2011) Polonium-210 and lead-210 in the terrestrial environment: a historical review. J Environ Radioact 102:420–429
Sert E, Uğur A, Özden B, Sağ MM, Camgöz B (2011) Biomonitoring of 210Po and 210pb using lichens and mosses around coal-fired power plants in Western Turkey. J Environ Radioact 102:535–542
Steinnes E (1995) A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci Total Environ 160:243–249
Uğur A, Özden B, Sağ MM, Yener G (2003) Biomonitoring of 210Po and 210Pb using lichens and mosses around auraminous coal-fired power plant in western Turkey. Atmos Environ 37:2237–2245
Uğur A, Özden B, Sağ MM, Yener G, Alınbaş Ü, Karucu Y, Bolca M (2004) Lichens and mosses for correlation between trace elements and 210Po in the areas near coal-fired power plant at Yatağan, Turkey. J Radioanal Nucl Chem 259(1):87–92
UNSCERAR (2000) Report to the general assembly, Annex B, Exposures from Natural Radiation Sources