In Vivo Competitions between Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus in a Gnotobiotic Sheep Model Revealed by Multi-Omic Analyses

Carl J. Yeoman, Christopher J. Fields, Pascale Lepercq, Philippe Ruiz, Evelyne Forano, Bryan A. White, Pascale Mosoni

ABSTRACT Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens are the three predominant cellulolytic bacterial species found in the rumen. In vitro studies have shown that these species compete for adherence to, and growth upon, cellulosic biomass. Yet their molecular interactions in vivo have not heretofore been examined. Gnotobiotically raised lambs harboring a 17-h-old immature microbiota devoid of culturable cellulolytic bacteria and methanogens were inoculated first with F. succinogenes S85 and Methanobrevibacter sp. strain 87.7, and 5 months later, the lambs were inoculated with R. albus 8 and R. flavefaciens FD-1. Longitudinal samples were collected and profiled for population dynamics, gene expression, fibrolytic enzyme activity, in sacco fiberolysis, and metabolite profiling. Quantitative PCR, metagenome and metatranscriptome data show that F. succinogenes establishes at high levels initially but is gradually outcompeted following the introduction of the ruminococci. This shift resulted in an increase in carboxymethyl cellulase (CMCase) and xylanase activities but not in greater fibrolysis, suggesting that F. succinogenes and ruminococci deploy different but equally effective means to degrade plant cell walls. Expression profiles showed that F. succinogenes relied upon outer membrane vesicles and a diverse repertoire of CAZymes, while R. albus and R. flavefaciens preferred type IV pili and either CBM37-harboring or cellulosomal carbohydrate-active enzymes (CAZymes), respectively. The changes in cellulolysis also affected the rumen metabolome, including an increase in acetate and butyrate at the expense of propionate. In conclusion, this study provides the first demonstration of in vivo competition between the three predominant cellulolytic bacteria and provides insight on the influence of these ecological interactions on rumen fibrolytic function and metabolomic response.

IMPORTANCE Ruminant animals, including cattle and sheep, depend on their rumen microbiota to digest plant biomass and convert it into absorbable energy. Considering that the extent of meat and milk production depends on the efficiency of the microbiota to deconstruct plant cell walls, the functionality of predominant rumen cellulolytic bacteria, Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens, has been extensively studied in vitro to obtain a better knowledge of how they operate to hydrolyze polysaccharides and ultimately find ways to enhance animal production. This study provides the first evidence of in vivo competitions between F. succinogenes and the two Ruminococcus species. It shows that a simple disequilibrium within the cellulolytic community has repercussions on the rumen metabolome and fermentation end...
products. This finding will have to be considered in the future when determining strategies aiming at directing rumen fermentations for animal production.

KEYWORDS pili IV, CAZymes, cellulose degradation, gnotobiotic animal model, outer membrane vesicles, rumen

Cellulose typically represents ~40% of plant biomass (1) but is not endogenously degradable by mammalian species, including ruminants, due to a lack of an endogenously encoded ability to hydrolyze this important carbohydrate resource. Mammals are instead dependent on members of their gastrointestinal tract microbiota for providing this capability (2). Ruminant animals, including cattle and sheep, harbor a core rumen microbiome (3), including a limited number of taxa known to specialize in the deconstruction of cellulose (4, 5). The three best described and cultivable cellulolytic bacteria, *Fibrobacter succinogenes*, *Ruminococcus albus*, and *Ruminococcus flavefaciens*, each employ unique methods of fulfilling this function. *R. flavefaciens* facilitates cellulose deconstruction by virtue of a cellulosome (6); *R. albus* instead appears to utilize noncellulosomal, but coalescing membrane-attached enzymes (7), while the organization of the cellulosytic system of *F. succinogenes* remains enigmatic, with outer membrane vesicles (OMVs) possibly involved (8, 9). Each of these species is frequently detected among a variety of adult ruminants throughout the world and often cooccur in the rumen (3, 4). Previous *in vitro* studies have provided evidence of competition among these cellulolytic species for adhesion to plant biomass and for growth on cellulose substrates (10–12). However, little is known about their symbiotic relationships *in vivo* or the antagonistic or synergistic impact of their cooccurrence on fibrolysis. We sought to determine how the three species interact molecularly *in vivo* within a previously described and tractable gnotobiotic sheep model (13, 14) and to evaluate how variations in their composition affect ruminal fibrolysis and metabolism alongside a methanogenic hydrogenotroph.

RESULTS

Fibrobacter succinogenes is outcompeted following inoculation of ruminococci. *Fibrobacter succinogenes* S85 (week 3), *Methanobrevibacter* sp. strain 87.7 (week 7), *Ruminococcus albus* 8, and *R. flavefaciens* FD1 (week 28) were sequentially inoculated into two gnotobiotic lambs that were raised aseptically from birth to 37 weeks (Fig. 1). Microbial composition dynamics were monitored from weeks 22 to 33 using quantitative PCR (qPCR) (Fig. 2) and most probable number (MPN) enumeration of total cultivable and total cultivable cellulolytic bacteria (see Fig. S1 in the supplemental material). Using qPCR, the total number of bacteria observed throughout the sampling period showed little variation at $10^{10.3} \pm 0.16$ 16S rDNA copies/g of rumen content (Fig. 2). These numbers did not vary between the two animals ($P = 0.5$) and were consistent with those measured by MPN ($10^{10.2} \pm 0.4$ cells/ml) (Fig. S1A and S1B). qPCR data indicated that *F. succinogenes* was initially dominant, being enumerated at $10^{9.4} \pm 0.25$ 16S rDNA copies/g prior to inoculation of the two *Ruminococcus* strains. Following inoculation with the two *Ruminococcus* spp., *F. succinogenes* was gradually outcompeted in both animals. By week 33, *R. albus* and *R. flavefaciens* were enumerated at $10^{8.8} \pm 0.2$ and $10^{5.9} \pm 0.4$ 16S rDNA copies/g, respectively, while *F. succinogenes* was enumerated at $10^{4.7} \pm 0.8$ 16S rDNA copies/g (Fig. 2). *Methanobrevibacter* sp. 87.7 was enumerated at $10^{5.8} \pm 0.9$ 16S rDNA copies/g, and total cultivable methanogens were enumerated by MPN at $10^{6.2} \pm 1.0$ cells/ml throughout the sampling period and exhibited noticeable fluctuation over the first 3 weeks following inoculation of the *Ruminococcus* spp. (Fig. S1C). Consistent with both qPCR and MPN data, most metagenomic and metatranscriptomic reads aligned to the *F. succinogenes* S85 reference genome at week 27 with only low to modest alignment to the *Methanobrevibacter* sp. 87.7 and the two *Ruminococcus* genomes (Fig. S2A). *F. succinogenes* was also well represented in metagenomic, but not metatranscriptomic, data from weeks 29 and 31 and obtained almost no coverage by week 33. This transition, was also seen in the increasing alignment of...
these data to the *R. albus* and *R. flavefaciens* genomes between weeks 29 and 33 (Fig. S2A).

Gene expression. Carbohydrate-active enzymes (CAZymes) and accessory systems putatively involved in bacterial adhesion or polysaccharide utilization represented 11%, 21%, and 25% of the total transcriptomes of *F. succinogenes*, *R. albus*, and *R. flavefaciens*, respectively (Fig. 3), while *Methanobrevibacter* sp. 87.7 expressed mostly genes involved in methanogenesis and redox systems (on average 5.5% of total gene expression) (Fig. 3). The expression of CAZymes by each cellulolytic species reflected each bacterium’s relative abundance in each sample (Fig. S2A and S2B). Although the inoculated cellulolytic strains each encoded approximately 100 CAZyme genes (see http://www.cazy.org/), only a small subset of those genes were expressed at >1% of their total CAZy gene expression (Fig. 4; see Table S1 in the supplemental material). The 15 most highly expressed CAZyme genes from each of the three cellulolytic strains across all time points were genes targeting cellulose (glycoside hydrolase 5 [GH5], GH8, GH9, GH48, and GH51), hemicelluloses (GH10, GH11, GH26, GH43, and carbohydrate esterase 4 [CE4]) and pectins (polysaccharide lyase 11 [PL11] and CE12). Notably, each of *R. albus*’ and *R. flavefaciens*’ 15 most expressed CAZyme transcripts encoded proteins harboring either a family 37 carbohydrate-binding module or a dockerin, respectively (Fig. 4). A more diverse carbohydrate transport and metabolism gene expression profile was measured when the ecosystem harbored high numbers of *F. succinogenes* S85 (period 1) compared to that observed following the introduction of the ruminococci (period 2) (Fig. 5). *R. albus* and *R. flavefaciens* were observed to most abundantly

FIG 1 Overview of animal trial. The lambs were initially fed sterilized cow milk (until weaning at week 14) and then sterilized lucerne hay pellets. They were inoculated with *F. succinogenes* S85 (week 3), *Methanobrevibacter* (Mbb.) sp. 87.7 (week 7), and *R. albus* 8 and *R. flavefaciens* FD1 (week 28). Periods 1 and 2 correspond to pre- and postinoculation of the ruminococci, respectively. Sampling of rumen contents during both periods are indicated by black triangles. In sacco incubations of lucerne and wheat straw cell walls are indicated by green and yellow rectangles, respectively.

FIG 2 Dynamics of total bacteria and *F. succinogenes*, *R. albus*, and *R. flavefaciens*. The numbers of 16S copies/gram of rumen material evaluated by quantitative PCR in rumen contents pre- and postinoculation of the ruminococci (at week 28) are shown.
express GH9 and GH48 family mRNAs and their inoculation resulted in a dramatic increase in the level of these transcripts that corresponded to decreases in GH2 and GH43 mRNAs (Fig. 5). In addition to CAZymes, \textit{F. succinogenes} exhibited high expression of genes predicted to be involved in the production of extracellular structures, including outer membrane vesicles (OMVs) (4% of total expression). \textit{R. albus} expressed type IV pilus genes (14% of total gene expression), and \textit{R. flavefaciens} FD1 expressed both cellulosomal and type IV pilus genes (12 and 4% of total expression, respectively) (Table S1). Fibro-slime domain containing genes mostly exhibited only low to moderate expression by \textit{F. succinogenes} (0.35% of total gene expression), the exception being FSU_RS11870 (FSU_2502) that was expressed at ~1,000 reads per kilobase per million (RPKM) initially prior to the introduction of the ruminococci (Table S1).

Adhesion to plant biomass. Using qPCR, we further sought to determine any preferential binding of the three inoculated cellulolytic organisms to plant biomass. The distribution of the three species adherent to cannula-inserted \textit{in sacco} samples of either lucerne (alfalfa) or wheat straw reflected their measured abundances in the rumen content with no obvious preference of each cellulolytic species to one or other substrate (Fig. S3). Consistently, scanning electron microscopy (SEM) analyses of both substrates revealed high densities of adherent rod morphotypes consistent with \textit{F. succinogenes}’ cell morphology (Fig. S4) prior to the inoculation of the two cellulolytic ruminococci. After inoculation of \textit{R. albus} and \textit{R. flavefaciens}, adherent cocci were observed consistent with the \textit{Ruminococcus} cell morphology (Fig. S4). \textit{F. succinogenes}-like morphotypes remained evident in these later samples although they were never observed alongside \textit{Ruminococcus}-like morphotypes, suggesting spatial partitioning.

FIG 3 Major functional or structural genes expressed by the four inoculated strains \textit{in vivo}. Relevant functional or structural genes expressed by \textit{F. succinogenes} S85, \textit{R. albus} 8, \textit{R. flavefaciens} FD-1, and \textit{Methanobrevibacter} 87.7 are given in Table S1 in the supplemental material, in addition to the calculations of the percentages of each group of expressed genes within each genome. These percentages were used to generate the four histograms presented here.
Fibrobacter succinogenes S58

locus_tag	protein_id	dbCAN hits	GFW09	GFW16	GFW17
FSU_RS01335	WP_01572116.1	CMB11(0.99),GH51(0.60)	0	0	0
FSU_RS011825	WP_01454520.1	CMB11(0.99),GH51(0.60)	0	0	0
FSU_RS09555	WP_01454621.1	CMB11(0.99),GH51(0.60)	0	0	0
FSU_RS007075	WP_01454607.1	CMB11(0.99),GH51(0.60)	0	0	0
FSU_RS009580	WP_01454516.1	CMB11(0.99),GH51(0.60)	0	0	0
FSU_RS005835	WP_01454554.1	CMB11(0.99),GH51(0.60)	0	0	0
FSU_RS13850	WP_01454692.1	CMB11(0.99),GH51(0.60)	0	0	0
FSU_RS07970	WP_01573191.1	CMB11(0.99),GH51(0.60)	0	0	0
FSU_RS12090	WP_01454687.1	CMB11(0.99),GH51(0.60)	0	0	0
FSU_RS11205	WP_01573182.1	CMB11(0.99),GH51(0.60)	0	0	0
FSU_RS05540	WP_01454652.1	CMB11(0.99),GH51(0.60)	0	0	0
FSU_RS15260	WP_01454497.1	CMB11(0.99),GH51(0.60)	0	0	0
FSU_RS03685	WP_01454674.1	CMB11(0.99),GH51(0.60)	0	0	0

Ruminococcus albus 8

locus_tag	protein_id	dbCAN hits	GFW09	GFW16	GFW17
CS_RS17266	WP_00283159.1	CMB37(0.98),CM(0.98),GH(0.99)	0	0	0
CS_RS06185	WP_00284583.1	CMB37(0.98),CM(0.98),GH(0.99)	0	0	0
CS_RS14100	WP_00283189.1	CMB37(0.98),CM(0.98)	0	0	0
CS_RS15355	WP_00282491.1	CMB37(0.98),CM(0.98)	0	0	0
CS_RS15645	WP_00282384.1	CMB37(0.98),CM(0.98)	0	0	0
CS_RS03190	WP_00285150.1	CMB37(0.98),CM(0.98)	0	0	0
CS_RS18403	WP_00284769.1	CMB37(0.98),CM(0.98)	0	0	0
CS_RS18470	WP_00284746.1	CMB37(0.98),CM(0.98)	0	0	0
CS_RS10005	WP_00285103.1	CMB37(0.98),CM(0.98)	0	0	0
CS_RS13180	WP_00282840.1	CMB37(0.98),CM(0.98)	0	0	0
CS_RS17270	WP_00282328.1	CMB37(0.98),CM(0.98)	0	0	0
CS_RS12433	WP_00284736.1	CMB37(0.98),CM(0.98)	0	0	0
CS_RS11900	WP_00282372.1	CMB37(0.98),CM(0.98)	0	0	0
CS_RS18480	WP_00284791.1	CMB37(0.98),CM(0.98)	0	0	0

Ruminococcus flavefaciens FDS

locus_tag	protein_id	dbCAN hits	GFW09	GFW16	GFW17
RM/LFA01/RS010550	WP_00984912.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS023280	WP_00988766.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS021000	WP_00989793.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS025250	WP_00989507.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS0115725	WP_00989601.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS024055	WP_00989648.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS024515	WP_00989386.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS029070	WP_00989624.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS024530	WP_00989486.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS024470	WP_00989426.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS0105545	WP_00989415.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS018855	WP_00989766.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS018860	WP_00989761.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
RM/LFA01/RS012325	WP_00989566.1	CMB30(0.92),CM(0.97),GH(0.99)	0	0	0
Fibrolytic activity. Zymogram profiles revealed carboxymethyl cellulase (CMCase) and xylanase enzyme profiles to be consistent with those of a pure culture of *F. succinogenes* initially at week 27 but to be more similar to pure *R. albus* and *R. flavefaciens* culture profiles at week 33 (Fig. 6). Total rumen CMCase and xylanase specific activity increased 2.6-fold during this same period (Table 1). However, increases in these fibrolytic activities were not reflected by *in sacco* experiments, where no significant increase was seen in the rates of dry matter (DM), neutral detergent fiber (NDF), or acid detergent fiber (ADF) disappearance of either lucerne or wheat straw (*P > 0.05*) (Table 2).

Rumen metabolomics. The rumen metabolome (Table S2) varied by animal and sample day (Fig. 7A and B). Profiles obtained before (week [wk] 27 [initial]) and immediately following the addition of the ruminococci (wk 30 [transitory]) revealed five discriminant metabolites that included a decrease in the free sugar glucopyranose and galactofuranose and the cellulose-derived keto acid levulinic acid (Fig. 7C). As the ruminococci outcompeted *F. succinogenes* (wk 30 versus wk 33 [final]), 11 discriminant metabolites were observed, including decreases in ferulic acid and increases in several phenolic metabolites (Fig. 7D). Comparisons of initial and final time points revealed nine discriminant metabolites (Fig. 7E), including an increase in 3-(3-hydroxyphenyl) propionic acid and a decrease in oxalic acid. Targeted metabolomic analyses of fermentation end products revealed that acetate and butyrate increased in their relative abundance following establishment of the ruminococci at the expense of propionate (Fig. S5).

DISCUSSION

The functional ecology of the major cellulolytic bacteria of the rumen was studied for the first time *in vivo* within a tractable animal model using complementary molecular, microbiological, enzymatic, and nutritional techniques. The animal model harbored in its rumen an immature microbiota that was limited to those microbes acquired during the first 17 h of contact with the mother (see Text S1 in the supplemental material). The lack of cultivable cellulolytic and methanogenic communities and measurable activities in our animal model allowed us to control the cellulolytic and methanogenic populations in a sequential manner by inoculating specific strains harboring these functions and then observe competition among three major rumen cellulolytic species. Multiple analyses revealed that *R. albus* became numerically, transcriptionally, and enzymatically dominant within 4 weeks of inoculation. This observation agrees with several *in vitro* coculture experiments that have also shown that *R. albus* was the most competitive in initial adhesion to, and growth, on cellulose (10, 12, 15). The high adherence of *R. albus* has been described *in vitro* to be the result of cell-surface-located type IV pili (16–18), CBM37-containing glycoside hydrolases (19, 20), and a glycocalyx (21). We observed high expression of type IV pilus genes by both *R. albus* and *R. flavefaciens* supporting an important role for these extracellular appendages in adhesion to cellulose *in vivo* (16–18, 22). Our data also support the importance of CBM37-harboring CAZymes by *R. albus* and cellulose by *R. flavefaciens* for fiber breakdown *in vivo* with GH9 and GH48 family enzymes appearing to be preferred for ruminococcal cellulolytic function (7, 19, 20, 22).

R. albus has also been shown to produce *in vitro* a bacteriocin active against *R. flavefaciens* but not against *F. succinogenes* (23, 24). The gene encoding this bacteriocin in *R. albus* B has been described (25), and we found that it is very poorly transcribed in our animal model whatever the period (data not shown). Hence, bacteriocin production by *R. albus* cannot explain the fact that *R. flavefaciens* did not establish at high levels. *R. flavefaciens* was, however, able to numerically outcompete *F. succinogenes*.

FIG 4 Legend (Continued)

in Table S1 from the highest to lowest expression counts (expressed in RPKM) using the sum of counts of each transcript in the two animals (421 and 455) at the three sampling times. For each gene, the encoded protein identifier (ID) is given along with its modular composition (dbCAN hits) and complementary annotation provided on the CAZy site (http://www.cazy.org/) or determined by manual annotation using BLASTP on NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi).
FIG 5 Expression profiles for eggnog/COG (clusters of orthologous groups) (A) and Interpro2GO categories (B). Counts were derived from functional assignments to the full metatranscriptome read data.

(Continued on next page)
Despite the obvious ecological advantages of *R. albus* and the competitiveness of *R. flavefaciens* both *in vitro* and in our model, with the exception of two studies (26, 27), most studies performed with conventional sheep have instead found *F. succinogenes* to outnumber both *Ruminococcus* spp. (28–32). The difference between *in vitro* studies, our animal model, and these studies on conventional sheep may be attributable to differences in the broader ecology, where a newborn immature microbiota could be more ecologically favorable to the development of *R. albus* and *R. flavefaciens*, while a conventional adult microbiota may better favor *F. succinogenes* through unmeasured ecological interactions. This assumption agrees with studies of newborn calves and lambs in which cellulolytic ruminococci colonized the rumen earlier than *F. succinogenes* (33, 34). Diet may also influence the composition of both the cellulolytic and broader community (32, 35–37).

F. succinogenes expressed a more diverse CAZyme repertoire that included GH8, GH51, GH5, and GH9 family glycoside hydrolases. These genes are also highly expressed in *in vitro* continuous cultures of *F. succinogenes* S85 (38) and include a functionally characterized GH51 endoglucanase 2 (Eg2, CelF, and EgF) and the GH9 endoglucanase 1 (Cel2 and End1). Our results suggest that GH8 CAZymes may also be important to the fibrolytic function of *F. succinogenes* on lucerne. Additionally, four *F. succinogenes* genes (FSU_2078, FSU_2396, FSU_2397, and FSU_2502) have previously been proposed from *in vitro* proteomics studies to encode a four-protein complex within outer membrane vesicles (8). These vesicles are hypothesized to serve as vehicles of CAZymes that target plant biomass by means of the 180-kDa cellulose-binding protein encoded by 1 of 10 Fibro-slime-domain-containing gene, FSU_2502. Our metatranscriptomic data confirmed the high expression of these four genes *in vivo* and also suggest that OMV formation may involve additional genes, including a cluster of eight highly expressed genes (FSU_RS11370 = FSU_2396 to FSU_RS11405 = FSU_2404). As transcriptional changes do not necessarily reflect the translation and activity of the associated enzymes, we accompanied the metatranscriptomic analyses with functional analyses using *in sacco* incubations, zymograms, and metabolomics.

DM disappearance varied over time, corresponding to differences in the relative

FIG 5 Legend (Continued)

(A) Overall counts for assignments to functions related to carbohydrate transport and metabolism (family G) were then determined using MEGAN, scaling to the overall percentage of each specific functional category, with the top six eggnoG categories described. (B) Overall counts for assignments to functions related to carbohydrate metabolism (GO:0005975, carbohydrate metabolic process) were then determined using MEGAN, scaling to the overall percentage of each specific functional category, with the top four InterPro assignments shown.

FIG 6 Zymogram profiles of carboxymethylcellulases (A) and xylanases (B). Zymograms showing active enzyme profiles of pure cultures and present in protein extracts from the sheep rumen contents at the end of period 1 at week 27 (lane 4, animal 421; lane 6, animal 455) and of period 2 at week 33 (lane 5, animal 421; lane 7, animal 455). Zymogram profiles of protein extracts from *F. succinogenes* S85 (lane 1), *R. albus* 8 (lane 2), and *R. flavefaciens* (lane 3) after 48-h *in vitro* incubation on filter paper strips are presented for comparison.
abundances of each cellulolytic species, but also between animals and by substrate and did not reflect measured CMCase and xylanase activities, which were 2.6-fold higher when ruminococci became dominant. This finding suggests that factors in addition to total fibrolytic enzyme activities must influence fibrolytic efficiency.

The resulting changes in fermentation end products, including a reduction in propionate and increases in acetate and butyrate, as the two Ruminococcus strains outcompeting F. succinogenes may impact the resulting productivity of the animal. Indeed, the amounts and profiles of short-chain fatty acids (SCFAs) formed in the rumen have consequences for the efficiency of energy utilization, production of methane, risks of ruminal acidosis, and composition of animal products (39, 40). F. succinogenes is an acetate and succinate producer, and succinate is a precursor of propionate (41). Our metatranscriptome data confirmed that two genes (FSU_RS14505 and FSU_RS14510) encoding fumarate reductase/succinate dehydrogenase involved in the succinate pathway were highly transcribed by F. succinogenes in vivo, which was not observed with the two ruminococci (data not shown). Hence, the disappearance of this species could in part explain the decrease in propionate. R. albus and R. flavefaciens produce acetate, formate, and hydrogen. All three products could account for the increase in acetate in rumen fluids knowing that formate and H₂ can be utilized by acetogenic bacteria to produce acetate. We previously showed that acetogenic bacteria were active in similar animal models as long as methanogens did not colonize the ecosystem at high levels (14). The increase in butyrate may indicate unmeasured ecological interactions that favor growth of butyrate-producing bacteria as ruminococci become dominant.

TABLE 1 Fibrolytic enzyme specific activity in the sheep rumen contents pre- and postinoculation of R. albus and R. flavefaciens

Enzyme	Period 1, wk 27	Period 2, wk 33
CMCase	109 ± 46 A	278 ± 85 B
Xylanase	439 ± 127 A	1,140 ± 166 B

*Enzyme specific activity was measured from protein extracts prepared from the sheep rumen contents at the end of each period. Values are the means ± standard deviations (SD) of the data obtained for the two sheep and for rumen contents sampled pre- and postfeeding. Different letters after the values indicate significant difference at P < 0.01.

TABLE 2 Fiber degradation in the sheep rumen contents pre- and postinoculation of R. albus and R. flavefaciens

Sheep and degradation process	Amt of lucerne (% (w/w) dry matter initial feed)	Amt of wheat straw cell walls (% (w/w) dry matter initial feed)		
	wk 23	wk 30	wk 25	wk 32
Sheep 421				
DMdis	20 ± 5 A	26 ± 2 B	19 ± 4 X	20 ± 2 X
NDFdis	12.5 ± 0.7 A	16.8 ± 0.2 B	18.1 ± 0.4	18.7 ± 0.2
ADFdis	9.2 ± 0.7 A	11.8 ± 0.2 B	10.9 ± 0.3	11.5 ± 0.4
Sheep 455				
DMdis	28 ± 1 A	26 ± 1 A	18 ± 2 X	7 ± 3 Y
NDFdis	17.5 ± 0.1 A	16.0 ± 0.2 B	19.2 ± 0.4 A	8.2 ± 1.1 B
ADFdis	13.7 ± 0.1 A	11.7 ± 0.1 B	11.2 ± 0.3 A	5.5 ± 0.2 B

*DMdis was measured from series of bags containing plant materials and incubated in the rumen for 24 h during either weeks 23 and 25 of period 1 or weeks 30 and 32 of period 2. The data obtained from the two animals were not averaged because at week 30 and week 32, the abundances of the three cellulolytic species had not evolved in the same manner in the two sheep as evidenced in Fig. 2. DMdis values are the means ± SD of the data obtained for each animal and each plant material. Different letters after the values indicate significant difference at P < 0.005. NDFdis and ADFdis values are the means of three fiber analysis determinations performed on pooled fermented residues retrieved from each bag series.
Metabolomic profiles according to animal (421 and 455) and sampling time. Sampling time was referred to as initial in red (week 27 for both animals), transitory in green (weeks 31 for 421 and week 29 for 455), and final in blue (week 33 for both animals). Variations in metabolomes were (Continued on next page)
In addition to SCFAs, several phenolic metabolites, including 3-(3-hydroxyphenyl)propionic acid were found to change in association with the abundance of the two ruminococci. These metabolites are catabolites of plant polyphenols, including hydroxycinnamic acids (42). It is possible that the ruminococci enhance the production of these molecules by hydrolyzing esterified hydroxycinnamic acids from lucerne hemicelluloses. While phenolic metabolites exhibit antimicrobial properties, *R. albus* and *R. flavefaciens* may be resistant to these effects, given findings that the dehydroxylated derivative of 3-(3-hydroxyphenyl)propionic acid, 3-phenylpropanoic acid has instead been shown to enhance their growth and fibrolysis *in vitro* (43–46).

In conclusion, this study describes for the first time *in vivo* competition between the three predominant cellulolytic rumen bacteria. It shows that global metabolic modifications in the rumen can be engendered by a simple disequilibrium in the cellulolytic community. It also provides *in vivo* evidence of the expression by the three cellulolytic bacterial species of different enzymatic and structural systems previously thoroughly studied *in vitro* that allow them to ensure their adhesion and hydrolytic function and survive in a very complex and competitive microbial digestive ecosystem.

MATERIALS AND METHODS

Ethics statement. The experimental protocol was validated by the local ethics committee (Comité d’Éthique pour l’Expérimentation Animale Auvergne) before beginning the trial, and the protocol was registered under the number CE18-08. Procedures were in accordance with the guidelines for animal research of the French Ministry of Agriculture and all other applicable national and European guidelines and regulations for experimentation with animals.

Animal model. The gnotobiotic sheep model has been described previously in detail (14, 47). Briefly, two INRAE line 401 lambs were born naturally and removed from their dams 17 h after birth. Lamb 421 (female) and lamb 455 (male) were then placed in a sterile isolator and reared under gnotobiotic conditions in the animal experimental facility of UMR MEDIS (Theix, Saint-Genes-Champanelle, France). Lambs were fed ultrahigh-temperature (UHT)-sterilized cow (*Bos taurus*) milk until they were 14 weeks old. At 2 weeks, they were also provided access to pelleted rations created from dehydrated lucerne (alfalfa) hay (7-mm diameter; SAFE, Augy, France). Lucerne pellets were sterilized by gamma irradiation (4 Mrad; Ionisos, Dagneux, France) prior to feeding. After 14 weeks, the animals were fed once daily at 8:00 a.m. with the lucerne pellets only. Sheep 421 and 455 were fitted within the sterile isolator with a permanent rumen plastisol cannula (diameter, 2.5 cm) at 17 and 18 weeks, respectively. Withdrawal of rumen contents and in sacco incubations began after the lambs had recovered from surgery at 22 weeks of age. The experiment ran for 12 weeks, and at the end of the experiment, sheep 421 and sheep 455 were both 34 weeks old and weighed 32 and 42 kg, respectively.

Cellulolytic inoculation. Lambs were monitored for the first 2 weeks after birth for the cultivable presence of cellulolytic and methanogenic activities, as well as for cultivable protozoa and fungi as previously described (14). None of these metabolisms or microbial groups were detected during this period. At 3 weeks of age, lambs were inoculated on 3 consecutive days with 20 ml (10^8 cells ml^-1) of a 2-day-old pure culture of *Fibrobacter succinogenes* S85 (ATCC 19169) fed on filter paper strips. The lambs were subsequently inoculated at 7 weeks of age with a pure culture of the ruminal methanogen *Methanobrevibacter* sp. 87.7 to enable hydrogenotrophy and ensure fibrolytic activity would not be inhibited by hydrogen buildup in this animal model (14, 47, 48). Finally, at 28 weeks of age, they were inoculated via cannula on 3 consecutive days with 160 ml (10^6 cells ml^-1) of 2-day-old pure cultures of both *Ruminococcus flavefaciens* FD1 (sourced from the Department of Animal Science, University of Illinois, Champaign-Urbana, IL, USA) and *Ruminococcus albus* 8 (sourced from USDA-National Center for Agricultural Utilization Research [NCAUR], Peoria, IL, USA) each supplied on filter paper strips. An overview of the animal trial and sampling procedure is presented in Fig. 1.

Rumen sampling. Rumen contents were withdrawn through the cannula on 2 consecutive days (each Tuesday and Wednesday) of weeks 22, 24, and 27 (*F. succinogenes* S85 was the only cellulolytic strain inoculated at these sample points) and on weeks 29, 31 and 33 (after *R. albus* 8 and *R. flavefaciens* FD1 had been inoculated) (Fig. 1). Sampling was performed before morning feeding (time zero [T0]) and 3 h after feeding (T3). T0 samples are reported with comparisons to T3 samples described in Text S1 in the supplemental material. The rumen content (50 ml) withdrawn on the first day of sampling was immediately used to determine ruminal pH and for culture-based microbial enumerations.

The rumen content (250 ml) withdrawn on the second day of sampling was treated as follows: a 50-
ml aliquot was immediately mixed on ice with 100 ml RNA later (Applied Biosystems, Courtaboeuf, France), aliquoted to four fractions of equal volumes, and stored at −80°C until nucleic acid extraction. A second 50-ml aliquot was kept on ice and treated as described below for polysaccharidase enzymatic analyses. A third 50-ml aliquot was frozen at −20°C (as sample saving) to determine the dry matter content of the rumen material. The remaining aliquot was centrifuged at 10,000 × g for 15 min at 4°C, and 1 ml of supernatant was taken and stored at −80°C for metabolomic analyses.

Enumeration of microbial communities. Total cultivable bacteria, total cultivable cellulosytic bacteria, and total cultivable methanogens were enumerated by using the most probable number (MPN) method as described previously (14).

In sacco digestibility assays. To evaluate plant substrate degradation in our model, we used the lucerne (alfalfa) pellets, as provided in the animal diet, and cell walls prepared as described previously (49) from ground and sieved (160 to 400 μm) wheat straw. Cell wall residues were prepared using an Soxhlet extractor by refluxing in 1:2 ethanol-toluene and then 95°C ethanol until the extracts became colorless (49). Nylon bags (RS10 in situ bags [100 × 50 mm; porosity of 50 μm]; Ankom Technology, NY, USA) were filled with either 1 g dry matter (DM) of the lucerne pellets or 0.5 g DM of wheat straw cell walls. In sacco incubations of lucerne bags were carried out for both sheep beginning on weeks 23 (post-fibrobacter inoculation but pre-ruminococci inoculation) and 30 (post-ruminococci inoculation), while incubations of wheat cell wall bags began on weeks 25 (also post-fibrobacter inoculation but pre-ruminococci inoculation) and 32 (post-ruminococci inoculation; Fig. 1). During 8 consecutive days, two bags were introduced into the rumen before morning feeding and removed after 24 h of incubation. One bag was then immediately washed in RNase-free phosphate-buffered saline (PBS) until the buffer was clear. It was then placed in a sterile tube containing a mixture of 20 ml RNA later (Applied Biosystems, Courtaboeuf, France) and 10 ml RNase-free water and frozen at −80°C for subsequent molecular analyses. The other bag was washed with tap water until the water was visibly clear and then frozen at −20°C for subsequent fiber composition analysis. Extra bags were also incubated to provide materials for electron microscopy observations of adhering bacteria, as described below.

Dry matter disappearance was determined by measuring changes in the weight of nylon bags between insertion and after removal and drying at 60°C for at least 72 h. Contents of the bags corresponding to the same plant substrate, same week of incubation, and same animal were pooled to obtain sufficient quantities of material for nucleic acid extraction. DNA was extracted in triplicate from 0.25 g of pellet using a Fast DNA Spin kit and Gene Clean Turbo; MP Biomedicals, Illkirch, France). RNA was extracted in quadruplicate from 0.70 g of rumen content pellet using a Nucleospin RNAII kit (Macherey-Nagel, Biomedicals, Illkirch, France) following the manufacturer’s recommendations. RNA was extracted in quadruplicate from 0.70 g of rumen content pellet using a Nucleospin RNAII kit (Macherey-Nagel, Biomedicals, Illkirch, France) following the manufacturer’s recommendations. RNA was extracted in quadruplicate from 0.70 g of rumen content pellet using a Nucleospin RNAII kit (Macherey-Nagel, Biomedicals, Illkirch, France) following the supplier’s instructions with the following exceptions. (i) During the cell lysis step, approximately 160-mg zirconia beads of 0.1-mm diameter (Bio Spec Products, Bartlesville, OK, USA) were added to the sample in addition to RA1 buffer and β-mercaptoethanol, for bead-beating (twice for 30 s each time at maximum power of 6.5) using the FastPrep instrument (MP Biomedicals, Illkirch, France). (ii) During the washing step, buffer RA2 was replaced by buffer FW1 as recommended by the supplier. Eluted RNA was submitted to an additional RNase-free DNase treatment (provided in the RNAII kit); RNA integrity was assessed using an Agilent 2100 bioanalyzer as previously described (51), and all samples were found to have a RNA integrity number (RIN) of >8. Nucleic acid concentrations were estimated by absorbance at 260 nm (NanoDrop ND-1000). They were kept at −80°C until utilization.

Quantitative real-time PCR. Quantitative PCR (qPCR) targeting total bacteria, methanogenic archaea, and each of the cellulosytic species—R. albus, R. flavaculis, and F. succinogenes—was performed using SYBR green chemistry with a Mastercycler ep realplex 2S (Eppendorf, Le Pecq, France) in 96-well plates (Twin.tec plate 96 skirted; Eppendorf). Results were analyzed using realplex version 2.0 software (Eppendorf). The qPCR conditions (i.e., primers, reaction mixture, program, standard curves) have been...
TABLE 3 Genomes used in this study

Strain	BioProject ID	NCBI accession no.
Fibrobacter succinogenes subsp. succinogenes S85	PRJNA224116	NC_017448.1
Methanobrevibacter sp. 87.7	PRJNA339853	MRCT0000000.1
Ruminococcus albus 8	PRJNA224116	NZ_APDM00000000.2
Ruminococcus flavefaciens FD-1	PRJNA224116	NZ_ACOK01000031.1

Genetic reference data. Representative genomes from each of the cellulolytic species have previously been reported for R. flavefaciens 17 (52), R. albus 8 (53), and Fibrobacter succinogenes S85 (54). Methanobrevibacter sp. 87.7 was sequenced at Montana State University via a single run of an Illumina MiSeq. DNA was extracted using the DNeasy PowerLyzer microbial kit (Qiagen, Germantown, MD, USA), and genomic data were assembled using SPAdes v. 3.6.2 and gave 500-fold coverage. Genomic data were annotated using NCBI’s Prokaryotic Genome Annotation Pipeline (https://www.ncbi.nlm.nih.gov/genome/annotation_prok) and are deposited in GenBank under PRJNA339853. The four genomes used as reference in this study are presented in Table 3.

Metagenomic and metatranscriptomic analyses. Rumen samples withdrawn before feeding (time zero [T0]) at weeks 27, 31, and 33 for animal 421 and weeks 27, 29, and 33 for animal 455 (Fig. 1) were subjected to metagenomic and metatranscriptomic analyses. Triplicate DNA and quadruple RNA extracts were each pooled by animal and time point. RNA extracts were transcribed to cDNA by first strand cDNA synthesis, and both DNA and cDNA were independently sequenced with one lane each of paired-end 2 × 125 nucleotide (nt) HiSeq 2500 (Illumina) sequencing.

Sequence data were quality and adapter trimmed using Trimmomatic v. 0.33 (55). Metatranscriptome data were then further preprocessed using SortMeRNA v. 2.1b (56) to separate sequences into rRNA and non-rRNA fractions. Full metagenomic data and the rRNA and non-rRNA subset of metatranscriptomic data from the SortMeRNA analysis were aligned to all four reference genomes as a single index file, using the Burrows-Wheeler Aligner v 0.7.15 (57). Coverage data for all alignments (used for downstream visualization) were generated using deepTools v. 2.5.0.1 (58) and visualized using the Integrative Genomics Viewer v2.3.92 (59). Basic expression normalization to reads per kilobase per million (RPKM) was performed using the edgeR (60). Heat-maps were generated using the R package, ggplot on expression data scaled to the standard deviation from the mean. De novo CAZY-specific functional analysis was performed using HHMER v. 3.1b2 (61) and the Release 5.0 protein motifs obtained from dbCAN (62). Read counts for all coding sequence annotation from each genome were generated using featureCounts v1.9.2 (63). All metagenomic and metatranscriptomic data were aligned using DIAMOND v. 0.8.37 (64) against the NCBI nonredundant protein database (July 2017). Taxonomic and functional information assignment as well as initial analyses and summary figures for taxonomic and functional classification were generated using MEGAN v6.8.13 (65). Metagenomic and metatranscriptomic data are deposited in GenBank under BioProject PRJNA644650.

Metabolomic analyses. Using complementary samples to those utilized for metagenomic and metatranscriptomic analyses, 1 ml of the rumen supernatant (collected as described above) was dried and derivatized as previously described (66). A 5-μl aliquot of an internal standard (C19, fatty acid) was added to each sample prior to derivatization. Samples were injected with a split ratio of 7:1 into a gas chromatography (GC)-mass spectrometry (MS) system, consisting of an Agilent 7890A (Agilent Inc., Palo Alto, CA, USA) gas chromatograph, an Agilent 5975C mass selective detector, and an Agilent 7683B autosampler. Gas chromatography was performed on 60-m HP-5MS columns with 0.25-mm inner diameter and 0.25-mm film thickness (Agilent Inc., Palo Alto, CA, USA) and with an injection temperature of 2,500°C, the interface set to 2,500°C, and the ion source adjusted to 2,300°C. The helium carrier gas was set at a constant flow rate of 1.5 ml min⁻¹. The temperature program of 5-min isothermal heating at 700°C, followed by an oven temperature increase of 50°C min⁻¹ to 3,100°C and a final 20 min at 3,100°C. The mass spectrometer was operated in positive electron impact mode (EI) at 69.9 eV ionization energy in the m/z 2 to 800 scan range. The spectra of all chromatogram peaks were then compared with electron impact mass spectrum libraries NIST08 (National Institute of Standards and Technology [NIST], MD, USA) and WILEY08 (Palisade Corporation, NY, USA) and a custom library of the University of Illinois Roy J. Carver Metabolomics Center. To allow direct comparisons between samples, all data were normalized to the internal standard in each chromatogram. The chromatograms and mass spectra were evaluated using the MSD ChemStation (Agilent, Palo Alto, CA, USA) and AMDIS (NIST, Gaithersburg, MD, USA). The retention time and mass spectra were implemented within the AMDIS method formats.

Analysis of volatile fatty acid (VFA) was performed without derivatization on rumen fluids using gas chromatography as previously described (67). Fermentation end products were assessed by comparing prefeeding (0-h) and 3-h postfeeding profiles throughout the animal experiment.

Statistical analyses. A Student’s t test was used to compare DM disappearance, as well as polysaccharidase specific activities in animals between period 1 (weeks 22 to 27) with F. succinogenes only and period 2 (weeks 28 to 33) after inoculation of cellulolytic ruminococci. Differences were considered significant at P < 0.05.

March/April 2021 Volume 12 Issue 2 e03533-20 mbio.asm.org 13
Metabolomic data were analyzed by using a partial least-squares discriminant analysis (PLS-DA) model to visualize variations of metabolites among experimental time points (initial [week 27], transitory [weeks 29 to 31], and final [week 33]) and an orthogonal PLS-DA for the two animals (421 and 455). The raw matrix with metabolite concentrations was log_{10} transformed before analyzing the data with the ropls R package (68, 69). To identify the metabolites responsible for discrimination between two time points (initial versus transitory, transitory versus final, and initial versus final), a pairwise comparative analysis using a t test was used to test the statistical significance. Only the variables (metabolites) with a variable importance projection (VIP) of >1.0 in the PLS-DA analysis were considered relevant for time discrimination. These tests were performed using the MetaBioDiff R package (70) and were normalized using the variance stabilization method (71) before the differential analyses.

Data availability. The data sets supporting the results of this article are included within the article and its additional supplemental material. The genome sequence of Methanobrevibacter sp. 87.7 was deposited in GenBank under NZ_MRCT01000000 and BioProject PRJNA339853. The metagenome and metatranscriptome data are available in GEO data sets at NCBI (http://www.ncbi.nlm.nih.gov/) under BioProject PRJNA646650.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

- **TEXT S1**, DOCX file, 0.04 MB.
- **FIG S1**, PDF file, 0.1 MB.
- **FIG S2**, PDF file, 0.1 MB.
- **FIG S3**, PDF file, 0.1 MB.
- **FIG S4**, PDF file, 0.4 MB.
- **FIG S5**, PDF file, 0.1 MB.
- **FIG S6**, PDF file, 0.2 MB.
- **FIG S7**, PDF file, 0.2 MB.
- **TABLE S1**, XLSX file, 0.3 MB.
- **TABLE S2**, XLSX file, 0.03 MB.

ACKNOWLEDGMENTS

We thank Christel Bera-Maillet for advice regarding the experimental protocol for obtaining gnotobiotically raised sheep and B. Gaillard-Martinié who was in charge of the electron microscopy work. We also thank Gérard Andant and Gérard Vert for technical assistance, especially for their input in the maintenance, sampling, and analyses performed on these animals maintained for several months in sterile isolators.

This work was funded by MEDIS laboratory (INRAE France) with support from the Roy J. Carver Biotechnology Center, the Montana Agricultural Experiment Station (project MONB00113), the National Institute of General Medical Sciences of the National Institutes of Health (NIH-NIGMS; award number P20GM103474) and is a contributing project to Multistate Research Projects, W4177, Enhancing the Competitiveness of U.S. Beef (MONB00195).

We declare that we have no competing interests.

P.M. and B.A.W. conceived the study. C.J.Y., P.L., and P.M. performed the experiments. C. J.Y., C.J.F., P.R., E.F., and P.M. analyzed the data. C.J.Y. and P.M. wrote the manuscript with the help of all authors. All authors read and approved the final manuscript.

REFERENCES

1. Pauly M, Keegstra K. 2008. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568. https://doi.org/10.1111/j.1365-313X.2008.03463.x

2. Yeoman CJ, White BA. 2014. Gastrointestinal tract microbiota and probiotics in production animals. Annu Rev Anim Biosci 2:469–486. https://doi.org/10.1146/annurev-animal-022513-114149

3. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Global Rumen Census Collaborators, Janssen PH. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep 5:14567. https://doi.org/10.1038/srep14567

4. Kong YH, Xia Y, Seviour R, He ML, McAllister T, Forster R. 2012. In situ identification of carboxymethyl cellulose-digesting bacteria in the rumen of cattle fed alfalfa or triticale. FEMS Microbiol Ecol 80:159–167. https://doi.org/10.1111/j.1574-6941.2011.01295.x

5. Morais S, Mizrahi I. 2019. Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol Rev 43:362–379. https://doi.org/10.1093/femsre/fzu007

6. Jindou S, Borovok I, Rincon MT, Flint HJ, Antonopoulos DA, Berg ME, White BA, Bayer EA, Lamed R. 2014. Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens. J Bacteriol 186:7971–7976. https://doi.org/10.1128/JB.00973-06

7. Dassa B, Borovok I, Ruimy-Israeli V, Lamed R, Flint HJ, Duncan SH, Henrissat B, Coutinho P, Morrison M, Mosoni P, Yeoman CJ, White BA, Bayer EA. 2014. Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS One 9: e99221. https://doi.org/10.1371/journal.pone.0099221

8. Amtzen MO, Varnai A, Mackie RI, Ejsink VGH, Pope PB. 2017. Outer membrane vesicles from Fibrobacter succinogenes SBS contain an array of...
carbohydrate-active enzymes with versatile polysaccharide-degrading capacity. Environ Microbiol 19:2701–2714. https://doi.org/10.1111/1462-2920.13370.
2. Raut MP, Couto N, Karunakaran E, Biggs CA, Wright PC. 2019. Deciphering the unique cellulose degradation mechanism of the ruminal bacterium *Fibrobacter succinogenes* SB5. Sci Rep 9:16542. https://doi.org/10.1038/s41598-019-52675-8.
3. Mosoni P, Fonty G, Gouet P. 1997. Competition between ruminal cellulolytic bacteria for adhesion to cellulose. Curr Microbiol 35:44–47. https://doi.org/10.1007/s002849900209.
4. Shi Y, Weimer PJ. 1997. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions. Appl Environ Microbiol 63:743–748. https://doi.org/10.1128/AEM.63.2.743-748.1997.
5. Chen J, Weimer P. 2001. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiology (Reading) 147:21–30. https://doi.org/10.1099/00221287-147-1-21.
6. Chauveynas-Durand F, Masseglia S, Fonty G, Forano E. 2010. Influence of the composition of the cellulolytic flora on the development of hydrognotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiologically reared lambs. Appl Environ Microbiol 76:7931–7937. https://doi.org/10.1128/AEM.01784-10.
7. Grooten J, Mosoni P, Denman SE, Al Jassim R, McSweeney CS, Forano E. 2012. Methanogen colonisation does not significantly alter acetogen diversity in lambs isolated 17 h after birth and raised aseptically. Microb Ecol 64:628–640. https://doi.org/10.1007/s00248-012-0024-z.
8. Odenyo AA, Mackie RI, Stahl DA, White BA. 1994. The use of 16S rDNA-targeted oligonucleotide probes to study competition between ruminal fibrobacillary bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Appl Environ Microbiol 60:3697–3703. https://doi.org/10.1128/AEM.60.8.3697-3703.1994.
9. Pedgen RS, Larson MA, Grant RJ, Morrison M. 1998. Adherence of the Gram-positive bacterium *Ruminococcus albus* to cellulose and identification of a novel form of cellulose-binding protein which belongs to the Pf4 family of proteins. J Bacteriol 180:5921–5927. https://doi.org/10.1128/JB.180.22.5921-5927.1998.
10. Rakotoaivonina H, Jabulin G, Hebraud M, Gaillard-Martinie B, Forano E, Mosoni P. 2002. Adhesion to cellulose of the Gram-positive bacterium *Ruminococcus albus* involves type IV pili. Microbiology (Reading) 148:1871–1880. https://doi.org/10.1099/00221287-148-6-1871.
11. Rakotoaivonina H, Larson MA, Morrison M, Girardeau JP, Gaillard-Martine B, Forano E, Mosoni P. 2005. The *Ruminococcus albus* pilA1-pilA2 locus: expression and putative role of two adjacent pil genes in pilus formation and bacterial adhesion to cellulose. Microbiology (Reading) 151:1291–1299. https://doi.org/10.1099/mic.0.27733-0.
12. Devlieghere E, Goodenough PB, Karnati SK, Benner EA, Lamed R, Miron J, Nelson KE, Morrison M. 2004. *Ruminococcus albus* 8 mutants defective in cellu-lose degradation are deficient in two processive endocellulosomes, Cel54A and Cel95B, both of which possess a novel modular architecture. J Bacteriol 186:136–145. https://doi.org/10.1128/JB.186.1.136-145.2004.
13. Rakotoaivonina H, Terrie C, Chambon C, Forano E, Mosoni P. 2009. Proteomic identification of CBM37-containing cellulases produced by the rumen cellulolytic bacterium *Ruminococcus albus* 20 and their putative involvement in bacterial adhesion to cellulose. Arch Microbiol 191:379–388. https://doi.org/10.1007/s00203-009-0463-1.
14. Mosoni P, Gaillard-Martine B. 2001. Characterization of a spontaneous adhesion-defective mutant of *Ruminococcus albus* strain 20. Arch Microbiol 176:62–61. https://doi.org/10.1007/s002030100292.
15. Vodovnik M, Duncan SH, Reid MD, Cantlay L, Turner K, Parkhill J, Lamed R, Yeoman CJ, Miller ME, White BA, Bayer EA, Marinsek-Logar R, Flint HJ. 2011. Expression of cellulose component subunits and type IV pili within the extracellular proteome of *Ruminococcus flavefaciens* 007. PLoS One 6:e6533. https://doi.org/10.1371/journal.pone.0065333.
16. Odenyo AA, Mackie RI, Stahl DA, White BA. 1994. The use of 16S rDNA-targeted oligonucleotide probes to study competition between ruminal fibrobacillary bacteria: development of probes for *Ruminococcus* species and evidence for bacteriocin production. Appl Environ Microbiol 60:3688–3696. https://doi.org/10.1128/AEM.60.11.3688-3696.1994.
17. Chen JQ, Stevenson DM, Weimer PJ. 2004. Albusin B, a bacteriocin from the ruminal bacterium *Ruminococcus albus* 7 that inhibits growth of *Ruminococcus flavefaciens*. Appl Environ Microbiol 70:3167–3170. https://doi.org/10.1128/AEM.70.5.3167-3170.2004.
55. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu70. 56. Kopylova E, Noe L, Touzet H. 2012. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28:3211–3217. https://doi.org/10.1093/bioinformatics/bts611. 57. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324. 58. Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T. 2014. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic Acids Res 42:W187–W191. https://doi.org/10.1093/nar/gku365. 59. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754. 60. Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616. 61. Eddy SR. 1998. Profile hidden Markov models. Bioinformatics 14:755–763. https://doi.org/10.1093/bioinformatics/14.9.755. 62. Yin YB, Mao XZ, Yang JC, Chen X, Mao FL, Xu Y. 2012. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445–W451. https://doi.org/10.1093/nar/gks479. 63. Liao Y, Smyth GK, Shi W. 2014. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. https://doi.org/10.1093/bioinformatics/btt656. 64. Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176. 65. Huson DH, Auch AF, Qi J, Schuster SC. 2007. MEGAN analysis of metagenomic data. Genome Res 17:377–386. https://doi.org/10.1101/gr.5969107. 66. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L. 2000. Techni- cal advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142. https://doi.org/10.1046/j.1365-313x.2000.00774.x. 67. Erwin ES, Marco GJ, Emery EM. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J Dairy Sci 44:1768–1771. https://doi.org/10.3168/jds.S0022-0302(53)91483-0. 68. R Core Team. 2019. R: a language and environment for statistical comput- ing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. 69. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. 2011. Integrative genomics viewer. Nat Biotechnol 29:24–26. https://doi.org/10.1038/nbt.1754. 70. Thevenot EA, Roux A, Xu Y, Eznan E, Junot C. 2015. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res 14:3322–3335. https://doi.org/10.1021/acs.jproteome.5b00354. 71. Mock A, Warta R, Dettling S, Brox B, Jager D, Herold-Mende C. 2018. MetaboDiff: an R package for differential metabolomic analysis. Bioinformatics 34:3417–3418. https://doi.org/10.1093/bioinformatics/bty344. 72. Huber W, von Heydebreck A, Sultmann H, Poustka A, Vingron M. 2002. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(Suppl 1):S96–S104. https://doi.org/10.1093/bioinformatics/18.suppl_1.s96.