Currently, there are two surgical ways to treat intertrochanteric fractures among the elderly, including extramedullary or intramedullary fixation.[1,2] Although extramedullary fixation is the conventional treatment of intertrochanteric fractures, intramedullary fixation has become a more popular method with the development and progress of intramedullary instruments.[3] The optimal choice between the helical blade and lag screw is still controversial.[4-6] Some pieces of literature have reported that there is no difference in the clinical efficacy, except for the operation time that the lag screw is longer than that of the helical blade.[7] However, biomechanical studies have shown that the helical blade is superior to the conventional solid lag screw. According to the operation manual, the same length of bone tunnel as lag screw is necessary at the time of placement, resulting in more bone loss, while helical blades only need to drill through the lateral wall and tapping into femoral head directly, compassed...
sequentially the surrounding bone to obtain more holding force. In recent years, complications are not only “cut-out”, but also a high “cut through” rate occurs in the helical blade. Superomedial migration of the helical blade has a higher “cut through” rate which migrate into the femoral head and hip joint than the conventional one. However, Schwarzkopf et al. found that both screws designed provided similar fixation strength for stabilization of four-part intertrochanteric fractures. A recent meta-analysis suggested that cephalomedullary implant type was not a risk factor for implant cut-out, then a tip-apex distance (TAD) of >25 mm was a reliable indicator for cut-out risk. Contemporarily, Kim et al. concluded that the helical blade had a higher rate of fixation failure than lag screws; therefore, surgeons should carefully utilize blade-type cephalomedullary nails while treating hip fractures.

At present, there is no consensus on the choice of two screws in clinical practice. Therefore, it is necessary to investigate whether helical blades lead to better outcomes. In this review, we aimed to compare the radiological and functional outcomes between the helical blade and lag screw in treating intertrochanteric fractures among the elderly and provide suggestions for clinical treatment.

MATERIALS AND METHODS

Search strategy and selection criteria

Relevant studies published between January 1st, 1990 and January 12th, 2022 were selected by searching on PubMed, Embase, Web of Science, Medline, Cochrane Library, Science Citation Index Expanded (SCIE) 2000-present, Current Chemical Reactions (CCR), and Index Chemicus (IC). No language restrictions were applied. The following combined text and MeSH terms were used: “intertrochanteric fracture”, “lag screw”, and “helical blade”. The complete search used for PubMed as below:

((Intertrochanteric fracture)[MeSH terms]) OR ((Fractures, Hip)(Text Word)) OR ((Trochanteric

Identification of studies via databases and other sources

Records identified from databases (n=1,141) Additional records identified from other sources (n=10)

Records after duplicates removed (n=192)

Records excluded by reading title and abstract: (n=108)
- Most reasons for exclusion were:
 - Comparisons not applicable
 - Not relevant to questions
 - Outcomes out of interest

Full-text articles assessed for eligibility (n=24)

Full-text articles: (n=13)
- Non-prospective studies (n=12)
- Study included not only old people (n=1)

Reports assessed for eligibility (n=11)

Studies included in quantitative synthesis (meta-analysis) (n=11)

FIGURE 1. Study flowchart.
Comparing helical blade and lag screw

We considered all potentially eligible studies for review, irrespective of the primary outcome or language. A manual search was also carried out using the reference lists of key articles published in English. The assessment of study quality was presented in Figure 1. The Cochrane Collaboration Risk of Bias Tool applied to evaluate the quality of the randomized-controlled trials (RCTs) can be seen in Figure 2.

Study selection and data extraction

At least two review authors independently selected related studies, the assessed risk of bias, and extracted data. We performed a limited meta-analysis using the randomized-effect model. Included studies were considered eligible, if they met the Population, Intervention, Comparison, Outcomes, and Study criteria as follows:

Population: Elderly patients with intertrochanteric fractures had at least six months duration of follow-up.

Intervention: Intramedullary fixation with a helical blade.

Comparator: Intramedullary fixation with lag screw, but not Intertan screws.

Outcomes: The primary outcome was the mechanical failure rates. Mechanical failure refers to an implant cut-out, cut-in, lateral migration more than 1 cm, the implant breaks, varus displacement, or complications caused by internal fixation defects. Secondary outcomes included the excellent and good rate of fracture reduction, Harris Hip Score (HHS), and postoperative hip pain. All articles which met the inclusion criteria must include the primary outcome, followed by the inclusion or exclusion of secondary outcomes.

Study design: RCTs.

We reviewed study titles and abstracts, and studies that satisfied the inclusion criteria retrieved for full-text assessment. Trials selected for detailed analysis and data extraction were analyzed by two investigators, and disagreements were resolved by a third investigator.

Statistical analysis

The following data were extracted into the Microsoft Excel (version 2019-v19.0, Microsoft Corp., WA, USA) from each selected study, including total number of participants, age, unstable fracture rate, mean Singh indexes, follow-up duration, type of nail,
number of mechanical complications, HHS, quality of reduction, and postoperative hip pain. We assessed the effects of two types of nails on four aspects: Mechanical failure rates, HHS, excellent and good rate of fracture reduction, and postoperative hip pain. The results were analyzed using the RevMan software (Review Manager (RevMan) [computer program] version 5.4. The Cochrane Collaboration, 2020). Mechanical failure rate, the excellent and good rate of fracture reduction, and postoperative hip pain as dichotomous variables were compared using odds ratio (OR) values. A confidence interval (CI) of 95% was used. The HHS as a continuous variable was compared using mean differences. In the meta-analyses of each outcome, we pre-planned sensitivity analyses restricted to trials comparing the helical blade and lag screw in these four aspects. This comparison is the most important clinical question about the role of the helical blade.

Grading of Recommendations Assessment Development and Evaluation (GRADE) profiler (version 3.6), which is Working Group aiming at developing and disseminating a sensible approach to grading quality of evidence and strength of recommendations, was used to evaluate the level of the evidence and strength of recommendations for

![Random sequence generation (selection bias)](image1)
![Allocation concealment (selection bias)](image2)
![Blinding of participants and personnel (performance bias)](image3)
![Blinding of outcome assessment (detection bias)](image4)
![Incomplete outcome data (attrition bias)](image5)
![Selective reporting (reporting bias)](image6)

FIGURE 3. The quality of the RCTs.

RCTs: Randomized-controlled trials.

Study	Year	Type of nails	Patients	Age (mean)	Unstable fracture rate (%)	Mean Singh's Indexes	Follow-up (mean)
Yaozeng et al.[16]	2010	PFNA vs. TGN	55/52	76.8/76.6	0.65/0.60	N/A	17.5
Park et al.[17]	2010	PFNA vs. PFN	23/17	74/67	0.70/0.71	2.46/2.67	18
Wild et al.[18]	2010	PFNA vs. Targon PF	40/40	81.8/83.1	0.65/0.68	N/A	12
Stern et al.[19]	2011	PFNA vs. Gamma3	79/89	86.8/85.9	0.63/0.66	N/A	12
D’Arrigo et al.[20]	2012	PFNA vs. TGN	51/46	81.7/80	0.57/0.71	N/A	15.1
Vaquero et al.[21]	2012	PFNA vs. Gamma3	31/30	83.6/83.5	0.43/0.43	N/A	12
Shin et al.[22]	2017	PFNA II vs. ZNN	181/172	77.7/76.2	0.72/0.74	N/A	12.3
Sharma et al.[23]	2017	PFNA vs. PFN	25/23	74.1/60.8	1.00/1.00	N/A	9.0-12
Mallya et al.[24]	2019	PFNA2 vs. PFN	37/41	69.5/70.8	1.00/1.00	2.21/2.27	6
Bonnaire et al.[25]	2020	PFNA vs. Gamma3	53/53	81/83	1.00/1.00	N/A	24
Singh et al.[26]	2021	PFNA2 vs. PFN	15/15	64.7/59.5	N/A	N/A	N/A

PFNA: Proximal femoral nail antirotation; TGN and Gamma3: The third generation gamma nail; PFN: Proximal femoral nail; ZNN: Zimmer natural nail; N/A: Not Applicable.
included outcomes. The GRADE profiler (version 3.6) was used to evaluate the evidence of included outcomes. To implement this part, the data obtained by the RevMan software analysis were imported into the GRADE profiler. Statistical heterogeneity of the included research was evaluated using the chi-square test following the P and I², with values greater than 50% regarded as being indicative of high heterogeneity. We used the RevMan and GRADE software for all statistical analyses.

RESULT

Description of studies

The list of studies excluded and reasons for exclusion are shown in Figure 3, and 11 studies were included. The characteristics of included studies are shown in Table I. The quality of the RCTs was acceptable, all the RCTs reported their methods of randomization. Some of the included RCTs reported blinding of the surgeons, participants, or assessors. All of the studies provided results for a minimum of 95% among the included patients. Eleven included studies were followed for an average of 6 to 24 months.

Effects of interventions

The meta-analysis results suggested that three subjects were concerned with exited low heterogeneity following the P and I² except for postoperative hip pain. The forest plot of four outcomes indicated the two studied devices had no statistically significant difference. Eleven studies [7,16-25] included a total of 1,146 patients concerned with mechanical failure rates, the quality

Outcomes	Illustrative comparative risks* (95% CI)	Relative effect (95% CI)	No of Participants (studies)	Quality of the evidence (GRADE)	Comments
	Assumed risk	Corresponding risk	Mechanical failure		
	Control		1146	moderate	
		OR 0.74 (0.4 to 1.27)	(11 studies)		
	Study population				
failure rate	86 per 1000				
	Follow-up: mean 12 months				
	Moderate				
	90 per 1000				

*The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

FIGURE 4. The quality of the evidence in mechanical failure rates.

FIGURE 5. Forest plot diagram comparing mechanical failure rates between helical blade and lag screw.
of the evidence was moderate, as some articles[7,22,23] have a small sample size and there is a risk of bias (Figure 4). No significant differences were found in helical blade versus lag screw (OR=0.71, 95% CI 0.40-1.27, p=0.22; Figure 5). The incidence of mechanical impairment was 37/579 versus 49/567, respectively. Random-effect model was used to explore heterogeneity, I²=23%, and no statistically significant heterogeneity was found between these studies. Additionally, five of the studies[20-24] included a total of 642 patients concerned with the quality of reduction, the quality of the evidence was moderate, due to the exited inconsistency about the evaluation of reduction criteria (Figure 6). The excellent and good rate of fracture reduction was no significantly different between the helical blade and lag screw (OR=1.33, 95% CI 0.61-2.90, p=0.48; Figure 7). The excellent and good rate of fracture reduction was 313/325 versus 300/317, respectively. I²=0%, random-effect model suggested no heterogeneity. Five of the studies[19,21,24,25] included a total of 647 patients concerned with HHS, and the quality of the evidence was moderate, due to the exited imprecision about HHS grading (Figure 8). No significant difference was found between the helical blade versus lag screw (mean difference [MD]=1.83, 95% CI -0.29-3.95, p=0.29; Figure 9). A total of 331 and 316 patients were included in the two groups for comparison and we used the random-effect model to explore heterogeneity, and no statistically significant heterogeneity was found between the included studies (I²=20%). The number of patients with postoperative hip pain was recorded as complaints at the final follow-up. Four of the studies[7,16,19,21] included a total of 568 patients, and the quality of the evidence was low (Figure 10). There was no statistically significant difference between the helical blade and lag screw (OR=0.41,
Comparing helical blade and lag screw

FIGURE 8. The quality of the evidence in Harris Hip Score.

FIGURE 9. Forest plot diagram comparing Harris Hip Score between helical blade and lag screw.

FIGURE 10. The quality of the evidence in postoperative hip pain.
The incidence of postoperative hip pain was 37/295 versus 60/273, respectively. Random-effect model was used to due to high heterogeneity in postoperative hip pain.

DISCUSSION

In all 11 studies regarding mechanical failure, there was no statistically significant difference between the two screws in terms of mechanical failure. The basic principles and procedures are the same for most internal fixation devices, only the exact technique and instrumentation vary depending upon the device used.[25] Some orthopedic surgeons believe that the key for excellent outcomes are the fracture type, general condition of the patient, and surgeon’s experience, but not the implant.[16] Bonnaire et al.[24] suggested that there was no significant difference in perioperative complications between PFNA and Gamma3, and the cut-out was a result of the screw being poorly positioned rather than implant-related. Ibrahim et al.[26] also agreed that there was no association between helical blade fixation and implant cut-out, and poorer fracture reduction was predictive of failure by cut-out. With the increasing frequency of intramedullary devices, particularly the PFNA, the literature on cut-in or “medial migration” has gradually increased. Some scholars believe that the anatomic reduction of the fracture, precise spiral blade placement, and the management of osteoporosis are the cornerstones to prevent screw incision. Hence, they proposed these factors resulting in the cut-in phenomenon and recognize that this is an atypical mode of failure different from cut-out.[27] To date, this phenomenon has been reported only in screw blades, but not in lag screws.

Proximal femoral nail antirotation has a superior performance over the proximal femoral nail (PFN) in the setting of osteoporosis, which is attributed to the compaction of cancellous bone by the helical blade.[28] However, the comparison of the resistance to pullout strength between the two types of original screws (lag screw versus helical blade) showed that the lag screw was significantly superior to the helical blade for all bone mineral densities (BMDs), while in terms of rotational strength, the helical blade was significantly superior to the lag screw, regardless of the rotation direction and the BMD.[28] On the contrary, some authors argued that the stability of the lag screw was correlated with the bone quality around the screw.[29] They measured the BMD with micro-computed tomography and found that it was higher in the center region of the femoral head than in the inferior region. Therefore, lag screws are recommended to be inserted into the center of the femoral head.[30] Although both types of implants have similar advantages, PFNA is preferred for patients with osteoporosis. Only two of the 11 included references mention the Singh indexes. Two studies were included for further classification of osteoporosis and indicated that the spiral blade group had an advantage over the lag screw group.[7,23] Park et al.[7] suggested that the helical blade produced better results in terms of social function scores, mobility scores, and complication rates with a statistically significant difference. Mallya et al.[23] concluded that the helical blade group showed better results in terms of perioperative morbidity. In the current literature reports, we did not find more similar articles.

Shin et al.[21] found that cut-out was associated with the screw or blade position within the femoral head measured with the TAD, but not in terms of the fracture reduction quality. However, TAD and the quality of fracture reduction were emphasized as the most common risk factors of fixation failure after the treatment of intertrochanteric hip fractures. Five articles on reduction quality were included in this meta-analysis. Sharma et al.[22] reported that one patient with a poor reduction quality in the helical blade group had no complications, while four patients with a good reduction quality in the lag screw group had mechanical complications. In their
Comparing helical blade and lag screw

Treatment, Mallya et al.[23] found four cases of poor reduction and unsatisfactory postoperative function in the helical blade group, including two cases of mechanical failure. In the lag screw group, four patients with good reduction had implant-related complications, while four patients with poor reduction had also poor postoperative function, and three patients had favorable function. Excellent reduction quality is an important factor to achieve good postoperative function.[21,23] Notably, no implant design can compensate for poor fracture reduction or implant placement.[23]

The HHS indicated no significant difference between the two groups in our review. However, there were differences in the HHS among five studies included. With the increase of age, HH5 showed a downward trend. Good functional results can be obtained, when good radiological parameters are restored as reported in the literature.[23] Postoperative lateral hip pain was thought to be related to lag screw sliding distance and fracture type. More unstable fracture types and screw displacement of more than 6 mm may result in varus malreduction and iliotibial band agitation.[21] Postoperative hip pain included in this study was obtained from patients’ statements at the final follow-up; therefore, the quality of evidence is low. In our opinion, postoperative hip pain was not quantified, which could affect the synthetic result and this requires further study.

A meta-analysis on the comparison between lag screws and spiral blades concluded that fixation failure was more common with helical blades than with lag screws.[19] However, our study concluded that there was no significant difference in the rate of fixation failure between the two groups.[24] The reasons may be as follows: First, all the studies included were RCTs. Second, the comparison between PFNA and PFN was included in our inclusion criteria. Third, there are certain differences in the definition of mechanical fixation failure. Rather than completely rewriting the previous review, we took a pragmatic decision to reorder the categories of outcomes and highlight the primary outcomes.

Nonetheless, there were several limitations in the current analysis. First, the occurrence of mechanical failure often takes time to observe, and its occurrence is “all” or “none” relationship, the possibility of publication bias is relatively small, but we did not include the retrospective literature. Second, instead of including a single lag screw, we included the PFN, but not the Intertan screw, as the PFN was the previous generation of PFNA. The two internal fixation devices are comparable. Third, the same results in different studies were presented in different forms; thus, we cannot make full use of these results for meta-analysis. In our opinion, further refinement of grouping and contrast according to the degree of osteoporosis would be more helpful to analyze these issues more clearly.

In conclusion, the two types of screws and their clinical efficacy have been continuously and greatly improved in the treatment of intertrochanteric fractures. Both helical blades and lag screws are good choices for fixing intertrochanteric fracture.

Acknowledgements: The authors thanks Dr. Peng Huang (Maternal and Child Health Hospital of Guangxi Province) for helping write the paper, and my wife Xiaofei Zhang (Maternal and Child Health Hospital of Guangxi Province) for giving me advises in conceiving this study.

Data Sharing Statement: The data that support the findings of this study are available from the corresponding author upon reasonable request.

Author Contributions: Designed the study, collected the data, analysed the results, generated figures, and wrote the paper: J.H.; Literature search, article revision: Q.W.

Conflict of Interest: The authors declared no conflicts of interest with respect to the authorship and/or publication of this article.

Funding: The authors received no financial support for the research and/or authorship of this article.

REFERENCES

1. Karapinar L, Turgut A, Kumbaraci M, Koca A. Evaluation of the quadrants of femoral neck-head in the cephalomedullary fixation of intertrochanteric fractures with a helical blade: Is inferior posterior quadrant also safe? A clinical study. Jt Dis Relat Surg 2021;32:93-100.
2. Alessio-Mazzola M, Traverso G, Coccarello F, Sanguineti F, Formica M. Dynamic hip screw versus intramedullary nailing for the treatment of A1 intertrochanteric fractures: A retrospective, comparative study and cost analysis. Jt Dis Relat Surg 2022;33:314-22.
3. Chang SM, Hou ZY, Hu SJ, Du SC. Intertrochanteric femur fracture treatment in Asia: what we know and what the world can learn. Orthop Clin North Am 2020;51:189-205.
4. Hancoğlu S, Gem K, Tosyali HK, Ókçu G. Clinical and radiological outcomes of trochanteric AO/OTA 31A2 fractures: Comparison between helical blade and lag screw - A retrospective cohort study. Z Orthop Unfall 2022;160:278-86.
5. Baek SH, Baek S, Won H, Yoon JW, Jung CH, Kim SY. Does proximal femoral nail antirotation achieve better outcome than previous-generation proximal femoral nail? World J Orthop 2020;11:483-91.
6. Hou Y, Yao Q, Zhang G, Ding L. Comparative study of proximal femoral shortening after the third generation of Gamma nail versus proximal femoral nail anti-rotation in treatment of intertrochanteric fracture. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2018;32:338-45.
7. Park JH, Lee YS, Park JW, Wang JH, Kim JG. A comparative study of screw and helical proximal femoral nails for the treatment of intertrochanteric fractures. Orthopedics 2010;33:81-5.

8. Sommers MB, Roth C, Hall H, Kam BC, Ehmke LW, Krieg JC, et al. A laboratory model to evaluate cutout resistance of implants for pertrochanteric fracture fixation. J Orthop Trauma 2004;18:361-8.

9. Al-Munajjed AA, Hammer J, Mayr E, Nerlich M, Lenich A. Biomechanical characterisation of osteosyntheses for proximal femur fractures: Helical blade versus screw. Stud Health Technol Inform 2008;133:10.

10. Strauss E, Frank J, Lee J, Kummer FJ, Tejwani N. Helical blade versus sliding hip screw for treatment of unstable intertrochanteric hip fractures: A biomechanical evaluation. Injury 2006;37:984-9.

11. Utrilla AL, Reig JS, Muñoz FM, Tufanisco CB. Trochanteric gamma nail and compression hip screw for trochanteric fractures: A randomized, prospective, comparative study in 210 elderly patients with a new design of the gamma nail. J Orthop Trauma 2005;19:229-33.

12. Chen XK, Xiong J, Liu YJ, Han Q, Wang TB, Zhang DY. A rare complication of pelvic perforation by an excessive medial slide of the helical blade after treatment of an intertrochanteric fracture with proximal femoral nail anti-rotation: A case report and literature review. Chin J Traumatol 2022;25:118-21.

13. Schwarzkopf R, Takemoto RC, Kummer FJ, Ego1 K A. Helical blade vs telescoping lag screw for intertrochanteric fracture fixation. Am J Orthop (Belle Mead NJ) 2011;40:452-6.

14. Ng M, Shah NS, Golub I, Cimineran M, Zhai K, Kang KK, et al. No difference between lag screw and helical blade for cephalomedullary nail cut-out: a systematic review and meta-analysis. Eur J Orthop Surg Traumatol 2021.

15. Kim CH, Kim HS, Kim YC, Moon DH. Does the helical blade lead to higher rates of fixation failure as compared to lag screw in the cephalomedullary nailing treatment of hip fractures? A systematic review and meta-analysis. J Orthop Trauma 2021;35:401-7.

16. Yaozeng X, Dechun G, Huilin Y, Guangming Z, Xianbin W. Comparative study of trochanteric fracture treated with the proximal femoral nail anti-rotation and the third generation of gamma nail. Injury 2010;41:1234-8.

17. Wild M, Jungbluth P, Thelen S, Laффrée Q, Gehrmann S, Betsch M, et al. The dynamics of proximal femoral nail: A clinical comparison between PFNA and Targon PF. Orthopedics 2010;33.

18. Stern R, Lübbeke A, Suva D, Miozzari H, Hoffmeyer P. Prospective randomised study comparing screw versus helical blade in the treatment of low-energy trochanteric fractures. Int Orthop 2011;35:1855-61.

19. D’Arrigo C, Carcangiu A, Perugia D, Scapellato S, Alonzo R, Frontini S, et al. Intertrochanteric fractures: Comparison between two different locking nails. Int Orthop 2012;36:2545-51.

20. Vaquero J, Munoz J, Frat S, Ramirez C, Aguado HJ, Moreno E, et al. Proximal Femoral Nail Antirotation versus Gamma3 nail for intramedullary nailing of unstable trochanteric fractures. A randomised comparative study. Injury 2012;43 Suppl 2:S47-54.

21. ShinYS, Chae JE, Kang TW, Han SB. Prospective randomized study comparing two cephalomedullary nails for elderly intertrochanteric fractures: Zimmer natural nail versus proximal femoral nail antitrotation II. Injury 2017;48:1550-7.

22. Sharma A, Mahajan A, John B. A comparison of the clinical- radiological outcomes with Proximal Femoral Nail (PFN) and Proximal Femoral Nail Antitrotation (PFNA) in fixation of unstable intertrochanteric fractures. J Clin Diagn Res 2017;11:RC05-RC09.

23. Mallya S, Kamath SU, Madegowda A, Krishnamurthy SL, Jain MK, Holla R. Comparison of radiological and functional outcome of unstable intertrochanteric femur fractures treated using PFN and PFNA-2 in patients with osteoporosis. Eur J Orthop Surg Traumatol 2019;29:1035-42.

24. Bonnaire F, Lein T, Fülling T, Bula P. Reduced complication rates for unstable trochanteric fractures managed with third-generation nails: Gamma 3 nail versus PFNA. Eur J Trauma Emerg Surg 2020;46:935-62.

25. Singh M, Singh Karday D, Singh D. A comparative study of 30 cases of intertrochanteric fracture femur in elderly patients treated with Proximal Femoral Nailing Anti Rotation-2(PFNA-2) and Proximal Femoral Nailing (PFN). European Journal of Molecular & Clinical Medicine 2021;8:3189-96.

26. Ibrahim I, Appleton PT, Wixted JJ, DeAngelis JP, Rodriguez EQ. Implant cut-out following cephalomedullary nailing of intertrochanteric femur fractures: Are helical blades to blame? Injury 2019;50:926-30.

27. Yam M, Kang BJ, Chawla A, Zhang W, Way LG, Xavier RPA, et al. Cephalomedullary blade cut-ins: A poorly understood phenomenon. Arch Orthop Trauma Surg 2020;140:1939-45.

28. Cho HM, Park KM, Jung TG, Park JY, Lee Y. Conventional versus helical blade screw insertion following the removal of the femoral head screw: A biomechanical evaluation using trochanteric gamma 3 locking nail versus PFN antitrotation. BMC Musculoskelet Disord 2021;22:767.

29. Uemura K, Takao M, Otake Y, Hamada H, Sakai T, Sato Y, et al. The distribution of bone mineral density in the femoral heads of unstable intertrochanteric fractures. J Orthop Surg (Hong Kong) 2018;26:2309499018787325.

30. Kuzyk PR, Zdero R, Shah S, Olsen M, Waddell JP, Schemitsch EH. Femoral head lag screw position for cephalomedullary nails: A biomechanical analysis. J Orthop Trauma 2012;26:414-21.

31. Biber R, Berger J, Bail HJ. The art of trochanteric fracture reduction. Injury 2016;47 Suppl 7:S5-56.

32. Socci AR, Casemyr NE, Leslie MP, Baumgaertner MR. Implant options for the treatment of intertrochanteric fractures of the hip: Rationale, evidence, and recommendations. Bone Joint J 2017;99-B:128-33.

33. Shon OJ, Choi CH, Park CH. Factors associated with mechanical complications in intertrochanteric fracture treated with proximal femoral nail antitrotation. Hip Pelvis 2021;33:154-61.

34. Atik OŞ. What are the expectations of an editor from a scientific article? Jt Dis Relat Surg 2020;31:597-8.