Herbal Drugs Used in Diabetes Mellitus

Ankit Rana*, Ramandeep Singh

Himachal Institute of Pharmacy, Paonta Sahib, H.P., India

*Correspondence
Ankit Rana
Himachal Institute of Pharmacy, Paonta Sahib, H.P., India
E-mail: satinder.kakar5@gmail.com

Received: 02-09-2019 / Revised: 22-11-2019 / Accepted: 30-11-2019

Abstract

Diabetes mellitus (DM) is the most common of the endocrine disorders. It is an important human ailment, afflicting many, from various walks of life in different countries. The prevalence of diabetes mellitus is expected to reach up to 4.4% in the world by 2030. Among all type of diabetes, type 2 diabetes is main complication. Currently available treatment option in modern medicine have several adverse effects. Therefore, there is a need to develop safe and effective treatment modalities for diabetes. Medicinal plants play an important role in the management of diabetes mellitus especially in developing countries where resources are meager. This article presents a review on some reported anti-diabetic medicinal plants

Keywords: Diabetes, plants, endocrine, review.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Introduction

Diabetes mellitus is a most common disease affecting the citizens of developed as well developing countries. Diabetes mellitus is mainly caused by abnormality of carbohydrate metabolism which linked with low insulin [1]. The imbalance between insulin and glucagon is one of the great reason which cause diabetes. Diabetes mellitus may also defined as a metabolic disorder characterized by hyperglycemia, hyper aminoacidemia and hyper insulinaemia which may also leads to decrease in the insulin secretions [2]. In healthy condition the pancreas important role in regulation of glucose in body. It mainly consist alpha cells which secretes glucagon, beta cells while the glucagon in the condition of low level of blood glucose, in order to maintain the normal blood glucose level [3,4]. DM is described not only as condition of madhumeha {sugar loss in urine} but also as condition Ojameha [immunity and hormone loss] in Ayurveda for treatment purpose.

Types of diabetes mellitus

There are three main types of diabetes mellitus

Type 1 Diabetes Mellitus –IDDM [beta cell destruction]

Type 2 Diabetes Mellitus-NIDDM [insulin resistance]

Gestational Diabetes Mellitus [5].

TYPE 1 Diabetes Mellitus–Type 1 diabetes mellitus is also known as insulin dependent diabetes. It is most commonly occurring metabolic disorder and autoimmune disorder which is charactrized by the destruction of the beta cells [5]

TYPE 2 Diabetes Mellitus–Type 2 diabetes mellitus or non insulin dependent DM is a complex heterogeneous group of metabolic disorder which include hyperglycemias and impaired insulin action or insulin secretion.T2DM causedysfunctioning in multiple organs or tissues[5].

Gestational Diabetes–Gestational diabetes is blood glucose elevation during pregnancy. It is a significant disorder of carbohydrate metabolism due to hormonal changes during pregnancy. This can lead to elevated blood glucose in genetically predisposed individuals. It is more common among obese women and women with a family history of diabetes mellitus. It usually resolves once the baby is born. However, after pregnancy 5-10% of women with gestational diabetes are found to have type II diabetes. About 20-50% of women have a chance of developing diabetes in the next 5-10 years[5].

Pathophysiology of diabetes mellitus

The pancreas plays a primary role of metabolism of glucose by producing and secreting the hormones like
insulin and glucagon. The islets of langerhans produce and secrete insulin and glucagon directly into the blood. Insulin is a protein that is essential for proper regulation of glucose and for maintenance of proper glucose levels.[9] Glucagon is a hormone that opposes the action of insulin. It is secreted when blood glucose level falls. It increases blood glucose concentration, partly by stimulating the breaking down of stored glycogen in the liver by a pathway known as gluconeogenesis (Fig 1). Gluconeogenesis is the production of glucose in the liver from non-carbohydrate precursors such as amino acids[6].

Fig 1: Outline of diabetes

Signs and symptoms of diabetes mellitus
Common symptoms of diabetes include
- Feeling very thirsty
- Obesity
- Extreme fatigue
- Blurry vision
- Cuts/bruises that are slow to heal
- Weight loss – even though you are eating more [type 1]
- Tingling, pain, or numbness in the hands/feet[6].

Causes of diabetes mellitus are discussed in Table 1.

Table 1: Causes of Diabetes Mellitus

S/NO.	CAUSES
1	Obesity/overweight (especially excess visceral adiposity)
2	Excess glucocorticoids (cushing’s syndrome or steroid therapy)
3	Excess growth hormone (acromegaly)
Complication of diabetes

Acute complications
- Hyperglycaemia
- Hypoglycaemia
- Diabetes Ketoacidosis

Chronic Complications
- Diabetic Retinopathy
- Diabetic Neuropathy
- Diabetic Nephropathy

Diabetes diagnosis: The blood glucose levels of a healthy man are 80 mg/dl on fasting and up to 160 mg/dl in the postprandial state. A number of laboratory tests are available to confirm the diagnosis of diabetes[4].

Random plasma test: The simplest test and doesn’t require fasting before taking the test. If 200 or more than 200 mg/dl of blood glucose it probably indicates diabetes but has to be reconfirmed[4].

Fasting plasma glucose test: There should be eight hours fasting before taking this test. Blood glucose more than 126 mg/dl on two or more tests conducted on different days confirms a diabetes diagnosis[5]. Fasting glucose level is determined, and then gives 75 gm of glucose, 100 gm for pregnant women. The blood is tested every 30 minutes to one hr for two or three hrs. This test is normal if your glucose level at two hrs is less than 140 mg/dl. A fasting level of 126 mg/dl or greater and two hour glucose level of 200 mg/dl or higher confirms a diabetes diagnosis [5].

Glycated proteins: Proteins react spontaneously in blood with glucose to form glycated derivatives. The extent of glycation of proteins is controlled by the concentration of glucose in blood and by the number of reactive amino groups present in the protein that are accessible to glucose for reaction. All proteins with reactive sites can be glycated and the concentration of the glycated proteins that can be measured in blood is a marker for the fluctuation of blood glucose concentrations during a certain period. From a clinical diagnostic point glycated proteins with of these proteins to glucose for longer periods[2].

Glycated haemoglobin: The life span of hemoglobin in vivo is 90 to 120 days. During this time glycated hemoglobin A forms, being the ketoamine compound formed by combination of hemoglobin A and glucose. Several subfractions of glycated hemoglobin have been isolated, of these, glycated hemoglobin A fraction HbA1c is most interest serving as a retrospective indicator of the average glucose concentration. HbA1c is recommended as an essential indicator for the monitoring of blood glucose control. The blood HbA1c≥6.5% is considered as diabetes [6].

Different plants used in diabetes mellitus are discussed in table 2

Table 2: List of plants used in diabetes mellitus [5-15]

Sr.No.	Plant	Family	Part Used
1	*Abelmoschus moschatus*	Malvaceae	Mucilage
2	*Abroma augusta*	Sterculiaceae	Leaves
3	*Abrus precatorius*	Leguminosea	Seeds
4	*Abutilon indicum*	Malvaceae	Whole Plant
5	*Acacia arabica*	Rubaceae	Seeds
6	*Acacia bilimekii*	Fabaceae	Leaves
7	*Acacia catechu*	Rubaceae	Bark
8	*Acacia farmesiana*	Fabaceae	Bark
9	*Acacia nilotica*	Fabaceae	Leaves,Bark
10	*Acacia pennata*	Rubaceae	Shoot Tips
11	*Achranthes aspera*	Amaranthaceae	Whole Plant
12	*Aconitum carmichaeli*	Ranunculaceae	Roots
13	*Aconitum ferox*	Ranunculaceae	Root
	Species	Family	Part
---	---	-----------------	-----------------------
14	Aconitum palmatum	Ranunculaceae	Roots
15	Adhatoda vasica	Acanthaceae	Leaves
16	Adiantum capillus	Polypodiaceae	Whole Plant
17	Aegle marmelos	Rutaceae	Flower, Leaves
18	Aerva lanata	Amaranthaceae	Leaves
19	Afzelia africana	Fabaceae	Stem, Bark
20	Ajuga iva L	Lamiaceae	Whole Plant
21	Ajuga remota	Lamiaceae	Leaves
22	Albizia amara	Mimosoideae	Leaves
23	Allium cepa	Liliaceae	Stem, Tops.
24	Allium sativum	Liliaceae	Bulbs
25	Aloe vera	Liliaceae	Leaves
26	Annona muricata	Annonaceae	Leaves
27	Annona squamosa	Annonaceae	Leaves
28	Anethum graveolens	Apiaceae	Seeds
29	Anthocleista voglii	Logoniaceae	Bark
30	Anthocleista indicus	Rubiaceae	Bark
31	Areca catechu	Areaceae	Seeds
32	Argyreia nervosa	Convolvulaceae	Roots
33	Artocarpus altilis	Moraceae	Leaves
34	Asparagus gonooclados	Apargaceae	Bulb
35	Astragalus species	Leguminosea	Roots
36	Asystasia gaunigica	Acanthaceae	Leaves
37	Avena sativa	Poceae	Whole Plant
38	Averrhoa bilimbi	Oxalidaceae	Leaves
39	Azadirachta indica	Meliaceae	Seed Oil, Leaves
40	Bacopa monnieri	Scrophulariaceae	Aerial Parts
41	Bambusa vulgaris	Gramineae	Leaves
42	Barleria noctiflora	Acanthaceae	Whole Plant
43	Barleria prionotis	Acanthaceae	Leaf, Bark, Root
44	Basella rubra	Basellaceae	Leaves
45	Bauhinia rectusa	Leguminoseae	Seeds
46	Bauhinia variegata	Caesalpiniaceae	Bark
47	Bauhinia forficate	Caesalpiniaceae	Leaves
48	Bauhinia divaricata	Leguminoseae	Leaves
49	Bauhinia candidans	Leguminoseae	Leaves
50	Barleria lupulina	Acanthaceae	Aerial Part
51	Balanites aegyptiaca	Simarubiaee	Fruit
52	Baccharis trimera	Myrtaceae	Leaves
53	Averrhoa carambola	Oxalidaceae	Leaves
54	Atractylode japonica	Composiayae	Rhizomes
55	Asteracantha longifolia	Acanthaceae	Leaves
No.	Plant Name	Family	Part
-----	----------------------------	----------------	----------
55	Asparagus racemosus	Meliaceae	Roots
56	Artocarpus heterophyllus	Moraceae	Leaves
57	Artemocnemum glaucum	Chenopodiaceae	Whole
58	Artemisia pallens wall	Compositae	Aerial Part
59	Artemisia ludoviciana	Compositae	Leaves
60	Artemisia herba-alba	Compositae	Leaves
61	Artemisia dracunculus	Compositae	Whole Plant
62	Artemisia absinthium	Compositae	Leaves
63	Aronia melanocarpa	Rosaceae	Fruit
64	Arctostaphylos uva ursi	Ericaceae	Fruit
65	Aralia elata seem	Araliaceae	Root
66	Aquilaria sinesis	Thymelaceae	Leaves
67	Aquilaria agallocha	Thymelaceae	Stem
68	Aporosa lindleyana	Euphorbiaceae	Leaves
69	Asporosa lanceolata	Euphorbiaceae	Leaves
70	Anthocleista voglii	Lohoniaceae	Root
71	Anthocleista rhizophoroides	Logoniaceae	Bark
72	Anthocleista nobilis	Logoniaceae	Bark
73	Anthemis herba alba	Compositae	Aerial Part
74	Andropogon citratus	Poaceae	Aerial Part
75	Andrographis paniculata	Acanthaceae	Whole Plant
76	Andrographis paniculata	Acanthaceae	Root
77	Andrographis lineata	Acanthaceae	Leaves
78	Anacardium occidentale	Anacardiaceae	Leaves
79	Anacardium occidentale	Anacardiaceae	Bark
80	Amphipterygium adstringens	Anacardiaceae	Bark
81	Amorphophallus konjac	Araceae	Rhizome
82	Amomum subulatum	Zingiberaceae	Root
83	Amomum aromaticum	Zingiberaceae	Root
84	Amaranthus spinosus	Amaranthaceae	Stem
85	Amaranthus esculants	Amaranthaceae	Whole Plant
86	Amaranthus caudatus	Amaranthaceae	Leaves
87	Althaca officinalis	Malvaceae	Leaves, Whole Plant
88	Alternanthera sessillis	Amaranthaceae	Whole Plant
89	Alstonia scholaris	Apocynaceae	Bark
90	Alstonia macrophylla	Apocynaceae	Whole Plant
91	Akpinia galanga	Zingiberaceae	Rhizome
92	Aloe barbadensis	Liliaceae	Leaves
93	Aloe arborescens	Liliaceae	Leaves
94	Alchemilla vulgaris	Rosaceae	Aerial Parts
95	Alangium salvifolium	Alangiacae	Leaves
96	Agrimonia pilosa	Rosaceae	Leaves
97	Agrimonia eupatoria	Rosaceae	Leaves
98	Agarista mexicana	Ericaceae	Aerial Parts
No.	Scientific Name	Family	Plant Part
-----	-----------------------	-------------	------------------
99	Agapetes sikkimensis	Ericaceae	Aerial Parts
100	Aframomum memegueta	Zingiberaceae	Leaves
101	Aesculus hippocastanum	Hippocastanaceae	Seeds
102	Adiantum caudatum	Petridae	Leaves
103	Adansonia digitata	Bombacaceae	Stem Bark
104	Acrocomia mexicana	Leguminosae	Roots
105	Acosmium panamense	Leguminosae	Bark
106	Achyrocline sareioides	Asteraceae	Aerial Parts
107	Achyranthes aspera	Amaranthaceae	Whole Plant
108	Acanthopanax senticosus	Araliaceae	Leaves
109	Bauhinia variegata	Caesapinaceae	Flowers
110	Benincasa hispida	Cucurbitaceae	Fruit
111	Berberis aristata	Berberidaceae	Stem Bark
112	Berberis vulgaris	Berberidaceae	Root
113	Berenia stachyi	Saxifragaceae	Root
114	Beta vulgaris	Chenopodiaceae	Root Bark
115	Bighia sapida	Sapindaceae	Unripe Fruits
116	Bidens pilosa	Asteraceae	Whole Plant
117	Bixa orellana	Bixaceae	Leaves
118	Bombax ceiba	Bombacaceae	Seed
119	Boswellia serata	Frankincense	Whole Plant
120	Bougainvillea glabra	Rubiaceae	Leaves
121	Brassica juncea	Brassicaceae	Seeds
122	Brassica junceca coss	Brassicaceae	Leaves
123	Brassica napiformis	Brassicaceae	Leaves
124	Brassica nigra	Brassicaceae	Seeds
125	Brassica oleracca	Brassicaceae	Leaves
126	Brassica rapa	Brassicaceae	Root
127	Bryonia alba l.	Cucurbitaceae	Roots
128	Bryonia cretica	Cucurbitaceae	Aerial Parts
129	Bumelia sartorum	Sapotaceae	Root Bark
130	Butea monosperma	Fabaceae	Fruits
131	Caesalpinia cristata	Fabaceae	Seeds
132	Caesalpinia decapetala	Leguminosae	Seeds
133	Caesalpinia digyna	Leguminosae	Roots
134	Caesalpinia sappan	Fabaceae	Stem
135	Caseria esculanta	Caesalpinioideae	Roots
136	Cajanus cajan	Fabaceae	Seeds
137	Calamintha macrostema	Lamiaceae	Root
138	Calamintha officinalis	Lamiaceae	Aerial Parts
139	Calamintha umbrossa	Lamiaceae	Whole Plant
140	Calotropis procera	Asclepiadaceae	Latex
141	Camellia sinesis	Theaceae	Leaves
142	Canaryium schweinfurthi	Burseraceae	Stem Bark
#	Species	Family	Part
-----	------------------------------	-------------------	-----------
143	Canarium zeylanicum	Burseraceae	Bark
144	Canavalia ensiformis	Leguminosae	Seeds
145	Cannabis indica	Cannabinaceae	Whole Plant
146	Canecora decussata	Gentianaceae	Whole Plant
147	Capparis decidua	Gentianaceae	Fruits
148	Capparis incana	Capparaceae	Leaves
149	Capparis moon	Capparaceae	Fruit
150	Capparis sepiaria	Capparaceae	Leaves
151	Capravia biflora	Scrophulariaceae	Leaves
152	Carica papaya	Caricaceae	Fruit
153	Carissa carandas	Apocynaceae	Fruit
154	Carissa edulis	Apocynaceae	Fruit
155	Carmona retusa	Boraginaceae	Leaves
156	Carum carvi	Apiaceae	Seeds
157	Caseria glauca	Salicaceae	Bark
158	Cassia esculenta	Flacourtiaeae	Root
159	Cassia glauca	Saliaceae	Bark
160	Casseria zeylanica	Flacourtiaeae	Stem Bark
161	Cassia alta	Fabaceae	Leaves
162	Cassia auriculata	Leguminoseae	Roots
163	Cassia fistula	Leguminoseae	Seeds
164	Cassia occidentallis	Caesalpiniaceae	Leaves
165	Cassia siamea	Fabaceae	Leaves
166	Castela texana	Simaroubaceae	Leaves
167	Cecropia obtusifolia	Moraceae	Leaves
168	Cecropia peltata l	Moraceae	Leaves
169	Ceiba pentandra	Malvaceae	Roots
170	Ceiba pentandra	Malvaceae	Roots
171	Centella asiatica	Apiaceae	Whole Plant
172	Cephalandra indica	Cucurbitaceae	Leaves
173	Cephallanthus glabratus	Rubiaceae	Wood
174	Chamaemelum nobile	Compositae	Leaves
175	Cichorium intybus	Asteraceae	Seeds
176	Cinnamomum cassia	Lauraceae	Leaves
177	Cinnamomum tamala	Lauraceae	Bark
178	Cistanche tubulosa	Scrophulariaceae	Whole Plant
179	Citrullus lantatus	Cucurbitaceae	Pulp
180	Citrus aurantum	Rutaceae	Peels
181	Citrus limetta	Rutaceae	Peels
182	Citrus maxima	Rutaceae	Peels
183	Citrus sinensis	Rutaceae	Peels
184	Clausena anisata	Rutaceae	Leaves
185	Cleome aspera	Capparidaceae	Whole Plant
186	Clitoria termatea	Fabaceae	Seeds
No.	Species Name	Family	Part
-----	----------------------	--------------	-------------
187	Coccina grandis	Cucurbitaceae	Whole Plant
188	Coccina indica	Cucurbitaceae	Leaves
189	Coccins cardifolia	Menispermaceae	Stem
190	Cocculus villosus	Menispermaceae	Roots
191	Cocos nucifera l.	Arecales	Fiber
192	Coffea Arabica l.	Rubiaceae	Seeds
193	Coix lacrymal	Poaceae	Seed
194	Convallaria majalis	Asparagaceae	Bulb
195	Cordia dichotoma	Boraginaceae	Stem, Bark
196	Cordia morelosiana	Boraginaceae	Leaves
197	Cordia myxa	Boraginaceae	Stem, Bark
198	Carinadrum sativum	Apiaceae	Whole Plant
199	Corni fructus	Comaceae	Whole Plant
200	Cormus officinalis	Comaceae	Fruit
201	Costus specious	Costaceae	Rhizome
202	Coutarea latiflora	Rubiaceae	Bark
203	Crataegus Mexicana	Rosaceae	Root
204	Crataegus pubescens	Rosaceae	Whole Plant
205	Crotonaria medicaginea	Fabaceae	Seeds
206	Cucumis callosus	Cucurbitaceae	Seeds
207	Cucumis metuliferus	Cucurbitaceae	Fruit
208	Cucumis sativus	Cucurbitaceae	Fruit
209	Cucumis trigonos	Cucurbitaceae	Fruit
210	Cuminum cyminum	Umbelliferae	Seeds
211	Cuminum nigrum	Apiaceae	Seeds
212	Curcuma longa	Zingiberaceae	Rhizome
213	Cyathea divergens	Cyatheaceae	Bark
214	Cyclanthera pedata	Cucurbitaceae	Shoot
215	Cymbalaria muralis	Crophulariaceae	Whole Plant
216	Cynodon dactylon	Roaceae	Whole Plant
217	Cyperus iria	Cyperaceae	Root
218	Dalbergia sissoo	Fabaceae	Bark
219	Daucus carota	Apiaceae	Root
220	Decalepis root	Apocynaceae	Root
221	Delonix regia	Fabaceae	Leaves
222	Dendrobium nobile	Orchidaceae	Stem
223	Desurainia Sophia	Brassicaceae	Whole Plant
224	Desmodium motorium	Fabaceae	Leaves
225	Dillenia indica	Dilleniaceae	Leaves
226	Diospyros lotus	Ebenaceae	Fruit
228	Diospyros peregrine	Ebenaceae	Bark
229	Discorea japonica	Diseoraceae	Tubers
230	Discorea batalas	Diseoraceae	Tubers
231	Discorea bulbifera	Diseoraceae	Bulb
No.	Plant Name	Family	Part
-----	---------------------	-----------------------	-------------
232	Discorea rhizoma	Diseoraceae	Tubers
233	Dodonaea viscosa	Sapindaceae	Leaves
234	Eclipta alba	Asteraceae	Leaves
235	Eleusine coracana	Poaceae	Seeds
236	Ephedra elata	Ephedraceae	Aerial Parts
237	Eriobatrya japonica	Rosaceae	Seeds
238	Eruca sativa	Brassicaceae	Seeds
239	Erythrina indica	Fabaceae	Leaves
240	Erythrina variegata	Fabaceae	Leaves
241	Eucalyptus citriodora	Myrtaceae	Leaves
242	Eucalyptus globules	Myrtaceae	Leaves
243	Eugenia jambolana	Myrtaceae	Fruit
244	Ficus bengelensis	Moraceae	Root, Bark
245	Ficus carica	Moraceae	Leaves
246	Ficus glomerata	Moraceae	Bark
247	Ficus hispida	Moraceae	Leaves
248	Ficus racemosa	Moraceae	Bark
249	Ficus religiosa	Moraceae	Root, Bark
250	Ficus retusa	Moraceae	Leaves
251	Ficus sycomorus	Moraceae	Leaves
252	Fraxinus excelsior	Oleaceae	Seeds
253	Gallegan officinalis	Leguminoseae	Leaves
254	Ganoderma lucidum	Ganodermataceae	Fruit
255	Ginkgo biloba	Ginkgoaceae	Whole Plant
256	Ginseng radix	Araliaceae	Root
257	Glycine max	Leguminoseae	Seeds
258	Gmelina arborea	Verbenaceae	Root
259	Grewia asiatica	Tiliaceae	Bark
260	Grewia flavensis	Tiliaceae	Leaves
261	Grifola frondosa	Meripilaceae	Fruit
262	Guaiacum coulteri	Zygophyllaceae	Bark
263	Guaxuma ulmifolia	Sterculiaceae	Bark
264	Gymnema sylvestre	Asclepiadaceae	Leaves
265	Gymnura procumbens	Asteraceae	Leaves
266	Hamada salicornica	Hammamelidaceae	Whole Plant
267	Hedychium spicatum	Zingiberaceae	Rhizome
268	Helicteres isora	Sterculiaceae	Root
269	Heritiera minor	Sterculiaceae	Aerial Parts
270	Hintonia latiflora	Rubiaceae	Leaves
271	Hintonia standleyan	Rubiaceae	Stam, Bark
272	Hoodia curror	Apocynaceae	Stem
273	Hordeum vulgare	Gramineae	Seeds
274	Humulus lupulus	Cannabinaceae	Strobiles
275	Hydrolea zeylanica	Hydrangeaceae	Whole Plant
Indian medicinal plants with antidiabetic and related beneficial effects

There are many herbal remedies suggested for diabetes and diabetic complication. Medicinal plants form the main ingredients of these formulations. A list of medicinal plants with antidiabetic and related beneficial effects[7].

Acacia arabica

It is found all over India mainly in the wild habitat. The plant extract acts as an antidiabetic agent by acting as secretagogue to release insulin, it produces hypoglycemia in control rats but not in alloxanized animals. Powdered seeds of acacia arabica when administered (2.3 and 4g/kg body weight) to normal rabbits induced hypoglycemic effect by initiating release of insulin from pancreatic beta cells[8].

Aegle marmelos

Administration of aqueous extract of leaves improves digestion and reduces blood sugar and urea, serum cholesterol in alloxanized rats as compared to control. Along with exhibiting hypoglycemic activity, the extract also prevented peak rise in blood sugar at 1h in oral glucose[9].

Allium cepa

Various ether soluble fraction as well as insoluble fraction of dried onion powder show anti hyperglycemic activity in diabetic rabbits. Allium cepa is also known to have antioxidant and hypolipidaemic activity. Administration of a sulfur containing amino acid from allium cepa, S-methyl cysteine sulphoxide (smcs) (200 mg/kg for 45 days) to alloxan induced diabetic rats significantly controlled blood glucose as well as lipids in serum and tissues and normalized the activities of liver hexokinase, glucose 6-phosphatase and HMG co A reductase[10,11]. When diabetic patients were given single oral dose of 50 g of onion juice, it significantly controlled post-prandial glucose levels[12].

Allium sativum

Allium sativum is a perennial herb cultivated throughout India. Allin, a sulfur-containing compound is responsible for its pungent odour and it has been shown significant hypoglycemic activity[13]. This effect is thought to be due to increased hepatic metabolism, increased insulin release from pancreatic beta cells and/or insulin sparing effect[14]. Aqueous hómogenate of garlic (10 ml/kg/day) administered orally to sucrose fed rabbits (10 g/kg/day in water for two month) significantly increased hepatic glycogen and free amino acid content, decreased fasting blood glucose, and triglyceride levels in serum in comparison to sucrose controls[15].

Aloe vera and aloe barbadensis

Aloe, a popular houseplant, has a long history as a multipurpose folk remedy. The plant can be separated into two basic products: gel and latex. Aloe vera gel is the leaf pulp or mucilage, aloe latex, commonly referred to as “ aloe juice,” is a bitter yellow exudate from the pericyclic tubules just beneath the outer skin of the leaves. Extracts of aloe gum effectively increases glucose tolerance in both normal and diabetic rats.treatment of chronic but not single dose exudates of aloe barbadensis leaves showed hypoglycemic effect in alloxanized diabetic rats[16].

Azadirachta indica

Hydroalcoholic extracts of this plant showed antihyperglycemic activity in streptozotocin treated rats and this effect is because of increase in glucose uptake and glycogen deposition in isolated rat hemidiaphragm[17,18]. Apart from having anti-diabetic activity, this plant also has anti-bacterial, antimalarial, antifertility, hepatoprotective and antioxidant effects[19].

Caesalpinia bonducella

It is widely distributed throughout the coastal region of India and used ethanolic extracts also increased glycogenesis thereby increasing liver glycogen content[20]. Two fraction BM 169 and BM 170 B could increase secretion of insulin from isolated islets. The aqueous and 50% ethanolic extract of caesalpinia bonducella seeds showed antihyperglycemic and hypolipidemic activites in streptozotocin (stz)- diabetic rats[21]. The antihyperglycemic action of the seed extracts may be due to the blocking of glucose absorption. The drug has the potential to act as antidiabetic as well as antihyperlipidemic[22].

Capparis decidua

This is found throughout India, especially in dry areas. Hypoglycemic effect was seen in alloxanized rats when the rats were fed with 30% extracts of capparis is decidua (c. decidua) fruit powder for 3 weeks. This extract also reduced alloxan induced lipid peroxidation.

Table:

Plant Name	Family	Plant Part
Hyptis suaveolens	Lamiaceae	Aerial Plant
Hyssop’s officinalis	Lamiaceae	Leaves
Ivervillea sonorae	Curcurbitaceae	Root
Inula racemoma	Tubuliflorae	Root
Ipomea aquatic	Convolvulaceae	Whole Plant

References:

[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22].

Authors:

Rana and Singh

Website:

www.apjnh.com

Journal Information:

Asian Pac. J. Nursing and Health Sci., 2019; 2(2):11-24
e-ISSN: 2581-7442
significantly in erythrocytes, kidney and heart. C. decidua was also found to alter superoxide dismutase and catalase enzyme levels to reduce oxidative stress[23]. C.decidua additionally showed hypolipidaemic[24].

Coccinia indica

Dried extracts of coccinia indica (c. indica) (500 mg/kg body weight) were administered to diabetic patients for 6 weeks. These extracts restored the activities of enzyme lipoprotein lipase (LPL) that was reduced and glucose-6-phosphatase and lactate dehydrogenase. Which were raised in untreated diabetic[25]. Oral administration of 500 mg/kg of c. indica leaves showed significant hypoglycemia in alloxanized diabetic dogs and increased glucose tolerance in normal and diabetic dogs.

Eugenia jambolana

In India decocation of kernels of eugenia jambolana is used as household remedy for diabetes. This also forms a major constituent of many herbal formulations for diabetes. Antihyperglycemic effect of aqueous and alcoholic extract as well as lyophilized powder shows reduction in blood glucose level. This varies with different level of diabetes. In mild diabetes (plasma sugar >180 mg/dl). It shows 73.51% reduction, whereas in moderate (plasma sugar>280 mg/dl) and severe diabetes (plasma sugar>400 mg/dl) it reduced to 55.62% and 17.72% respectively[13]. The extract of jamun pulp showed the hypoglycemic activity in streptozotocin induced diabetic mice within 30 min of administration while the seed of the same fruit required 24 h[26].

Mangifera indica

The leaves of this plant are used as an antidiabetic agent in nigerian folk medicine, although when aqueous extract given orally did not alter blood glucose level in either hormoglycemic or streptozotocin induced diabetic rats. However, antidiabetic activity was seen when the extract and glucose were administered simultaneously and also when the extract was given to the rats 60 min before the glucose. The results indicate that aqueous extract of mangifera indica possess hypoglycemic activity. This may be due to an intestinal reduction of the absorption of glucose[27].

Momordica charantia

M. charantia is commonly used as an antidiabetic and antihyperglycemic agent in india as well as other asain countries. Extracts of fruit pulp,seed,leaves and whole plant was shown to have hypoglycemic effect in various animal models[28]. Polupeptide p, isolated from fruit, seeds and tissues of M.charantia showed significant hypoglycemic effect in normal and STZ diabetic rats. This may be because of inhibition of glucose-6-phosphate dehydrogenase activities[29].

Ocimum sanctum

It is commonly known as tulsi. Since ancient times, this plant is known for its medicinal properties. The aqueous extract of leaves of ocimum sanctum showed the significantreduction in blood sugar levels in both normal and alloxan induced diabetic total cholesterol, triglyceride and total lipid indicated the hypoglycemic and hypolipidimic effects of tulsi in diabetic rats[30]. Oral administration pf plant extract (200 mg/kg) for 30 days led to decrease in the plasma glucose level by approximately 9.06 and 26.4% on 15 and 30 days of the experiment respectively[31]. Renal glycogen content increased 10 fold while skeletal muscle and hepatic glycogen levels decreased by 68 and 75% respectively in diabetic rats as compared to control[32].

Phyllanthus amarus

It is a herb of height up to 60 cm, from family euphorbiaceae known as bhuiamala. It is scattered throughout the hotter parts of india, mainly deccan, konkan and south indian states. Traditionally it is used in diabetic therapies,methanolic extract of phyllanthus amarus was found to have potent antioxidant activity. This extract also reduced the blood sugar in alloxanized diabetic rats[33]. The plant also shows antinflammatory, antimutagenic, anticarcinogenic, anti diarrhoeal activity.

Pterocarpus marsupium

It is a deciduous moderated to large tree found in india mainly in hilly region,pterostilbene, a constituent derived from wood of this plant caused hypoglycemia in dogs[34,35]. Showed that the hypoglycemic activity of this extract is because of presence of tannates in the extract. Flavonoid fraction from pterocarpus marsupium has been shiwn to cause pancreatic beta cell regranulation[36]. Marsupin, pteropisin and liquiritigenin obtained from this plant showed antihyperlipidemic ctitivity,[35](+) epicatechin , its active principle, has been found to be insulinogenic, enhancing insulin relase and conversion of proinsulin to insulin in vitro. Like isulin(+) epicatechin stimulates oxygen uptake in fat cells and tissue slices of various organs, increase glycogen content of rat diaphragm in a dose-dependent manner[36].

Trigonella foenum graecum

It is found all over india and the fenugreek seeds are usually used as one of the major constituents of indian species. 4-hydroxyxleucine, a novel amino acid from fenugreek seed increased glucose stimulated insulin release by isolated islet cells in both rats and humans[50]. Oral administration of 2 and 8 g/kg 0f plant extract produced dose dependent decrease in the blood glucose levels in both normal as well as diabetic
Tinospora cordifolia: (guduchi) It is the large, glabrous, deciduous climbing shrub belonging to the family menispermaceae. It is widely distributed throughout India and commonly known as guduchi. Oral administration of the extract also prevented a decrease in body weight[44]. T.cordifolia is widely used in Indian ayurvedic medicine for treating diabetes mellitus[45-47]. Oral administration of an aqueous T.cordifolia root extract to alloxan diabetic rats caused a significant reduction in blood glucose and brain lipids. Though the aqueous extract at a dose of 400 mg/kg could elicit significant anti-hyperglycemic effect in different animal models, its effect was equivalent to only one unit/kg of insulin[48]. It is reported that the daily administration of either alcoholic or aqueous extract of T.cordifolia decrease the blood glucose level and increases glucose tolerance in rodents[49].

Conclusion
Diabetes is a metabolic disorder which can be considered as a major cause of high economic loss which can in turn impede the development of nations. Moreover, uncontrolled diabetes leads to many chronic complications such as blindness, heart failure, and renal failure. In order to prevent this alarming health problem, the development of research into new hypoglycaemic and potentially anti diabetic agents is of great intrest. In conclusion, this paper has presented a list of anti-diabetic plants used in the treatment of diabetes mellitus. It showed that these plants have hypoglycaemic effects.

References
1. Gopala Krishna Chinnaboina, AMS Sudhakar Babu, Rajesh Verma, Pankaj Sharma, Birendra Shrivastava. A Review on Diabetes Mellitus: Current Update on Management and Treatment, Asian Pac. J. Health Sci., 2018; 5(3):67-82.
2. Mostafa Madmoli, Mohammad Madmoli, Marzieh Abbaszade Aliabad, Mahboobeh Khodadadi, Fahimeh Papi Ahmadi. A systematic review on the impact of empowerment in improving self-care behaviors and some other factors in diabetic patients, International Journal of Health and Biological Sciences 2019; 2(2):11-16.
3. Talreja Seema, Kaur Deep Chanchal, “Fighting Diabetes: A Review of Clinical Studies,” Brazilian Journal of Pharmaceutical Sciences, 2013;(49):207-210
4. Elechi, N.A., Ewelike, F.W. Antidiabetic Activity of Fractions of the N-Hexane Extract of Leaves of Eriosema Psoraleoides (Lam) G.don (Leguminosae) on Alloxan-Induced Diabetic Albino Rats, Indian J.Pham.Biol.Res. 2019; 7(4):6-10.
5. Kaur Maninder, Valech Vandana,” Diabetes and Anti diabetic herbal an alternative toallopithy,” European journal of Medicine 2014;(6):25-27
6. Prakash Om, Kumar Rajesh, Shrivatsava Ritika, tripathi Pragya, Mishra Shardha and ajeet “Plants exposed with Anti Diabetic Properties,” American journal of pharmacological sciences, 2015;(3):55-66
7. Dixit P.P., Londhe J.S., Ghaskadbi S.S., Devasagayam T.P.A. In: Antidiabetic and related beneficial properties of indian medicinal plants, in Herbal Drug Research- A Twenty first century perspective. Sharma R.K., Arora R., editors. Jaypee brothers medicinal publishers (New Delhi, India) Limited; 2006. Pp. 377-386.
8. Wadood A., Wadood N., Shah S.A. Effects of Acacia arabica and Caralluma edulis on blood glucose levels on normal and alloxan diabetic rabbits.J. Pakistan Med. Assoc. 1989;39:208-212
9. Karunayanake E.H., Welihinda J., Sirimanne S.R., Sinnadorai G. Oral hypoglycemic activity of some medicinal plants of sri lanka. J. Ethnopharmacol. 1984;11:223-231.
10. Roman-Rmos R., Flores-Saenz J.L., Alaricon-Aguilar F.J. Antihyperglycemic effect of some edible plants. J. Ethnopharmacol. 1995;48:25-32.
11. Kumari K., Mathew B.C., Augsti K.T. Antidiabetic and hypolipidaemic effects of s-methyl cysteine sulfoxide, isolated from Allium cepa Linn. Ind. J. Biochem. Biophys. 1995;32:49-54.
12. Mathew P.T., Augusti K.T. Hypoglycemic effects of onion, Allium cepa Linn. On diabetes mellitus- a preliminary report. Ind. J.Physiol. Pharmacol.1975;19:213-217.
13. Sheela C.G., Augusti K.T. Antidiabetic effects of S-allyl cysteine sulphoxide isolated from garlic ALLIUM SATIVUM Linn. Indian J. Exp. Biol. 1992;30:523-526.
14. Bever B.O., Zahnd G.R. Plants with oral hypoglycemic action. Quart. J. Crude Drug Res. 1979;17:139-146.
15. Zachrias N.T., Sebastian K.L., Philip B., Augusti K.T. Hypoglycemic and hypolipidaemic effects of garlic in sucrose fed rabbits. Ind. J. Physiol. Pharmacol.1980;24:151-154.
16. Al-Awadi F.M., Gumaa K.A. Studies on the activity of individual plants of an antidiabetic plant mixture. Acta diabetologica. 1987;24:37-41.
17. Chattopadhyay R.R., Chattopadhyay R.N., Nandy A.K., Poddar G., Maitra S.K. Preliminary report on antihyperglycemic effect of fraction of fresh leaves of Azadiracta indica (Beng neem) Bull. Calcutta. Sch. Trop. med. 1987;35:29-33.
18. Chattopadhyay R.R., Chattopadhyay R.N., Nandy A.K., Poddar G., Maitra S.K. The effect of fresh leaves of Azadiracta indica on glucose uptake and glycogen content in the isolated rat hemidiaphragm. Bull. Calcutta. Sch. Trop. Med. 1987;35:8-12.
19. Biswas K., Chattopadhyay I., Banerjee R.K., Bandyopadhyay U. Biological activities and medicinal properties of neem (Azadiracta indica) Curr. Sci. 2002;82:1136-1345.
20. Chakraborti S., Biswas T.K., Rokeya B., Ali L., Mosihuhammad M., Nahar N., Khan A.K., Mukherjee B. Advanced studies on the hypoglycemic effect of Caesalpinia bonducella F. in type 1 and 2 diabetes in long evans rats. J. Ethnopharmacol. 2003;84:41-46.
21. Sharma S.R., Dwivedi S.K., Swarup D. Hypoglycemic, antihyperglycemic and hypolipidemic activities of Caesalpinia bonducella Seeds in rats. J. Ethnopharmacol. 1997;58:39-44.
22. Kannur D.M., Hukkeri V.I., Akki K.S. Antidiabetic activity of Caesalpinia bonducella Seed extracts in rats. Fitoterapia. In press.
23. Yadav P., Sarkar S., Bhatnagar D. Lipid peroxidation and antioxidant enzymes in erythrocytes and tissues in aged diabetic rats. Indian J. Exp. Biol. 1997;35:389-392.
24. Agarwal V., Chauhan B.M. A Study on composition and hypolipidemic effect of dietary fiber from some plant foods. Plant Foods Human Nutr. 1988;38::189-197.
25. Kamble S.M., Kamlakar P.L., Vaidya S., Bambole V.D. Influence of Cocccinia indica on certain enzymes in glycolytic and lipolytic pathway in human diabetes. Indian J. Med. Sci. 1998;52:143-146.
26. Acherekar S., Kaklij G.S., Kelkar S.M. Hypoglycemic activity of Eugenia Jambolana and Ficus Bengalensis: mechanism of action. In vivo. 1991;5:143-147.
27. Aderibigbe A.O., Emudianughe T.S., Lawal B.A. Antihyperglycemic effect of Mangifera indica in rat. Phytother Res. 1999;13:504-507.
28. Khanna P., Jain S.C., Panagariya A., Dixit V.P. Hypoglycemic activity of polypeptide-p from a plant source. J. Nat. Prod. 1981;44:648-655.
29. Shibib B.A., Khan L.A., Rahman R. Hypoglycemic activity of COCCINIA INDICA and Momordica charantia in diabetic rats: depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1, 6-biphosphatase and elevation of liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. Biochem. J. 1993;292:267-270.
30. Vats V., Grover J.K., Rathi S.S. Evaluation of antihyperglycemic and hypoglycemic effect of Trigonella foenum-graecum Linn, Ocimum sanctum Linn and Pterocarpus marsupium Linn. In normal and alloxanized diabetic rats. J. Ethnopharmacol. 2002;79:95-100.
31. Rai V., Iyer U., Mani U.V. Effect of Tulasi (Ocimum Sanctum) Leaf powder supplementation on blood sugar levels, serum lipids and tissue lipids and tissue lipid in diabetic rats. Plant Food for Human Nutrition. 1997;50:9-16.
32. Vats V., Yadav S.P., Grover, Ethanolic extract of Ocimum sanctum Leaves partially attenuates streptozotocin induced alteration in glycogen content and carbohydrate metabolism in rats. J. Ethnopharmacol. 2004;90:155-160.
33. Raphael K.R., Sabu M.C., Kuttan R. Hypoglycemic effect of methanol extract of Phyllanthus amarus on alloxan induced diabetes mellitus in rats and its relation with antioxidant potential. Indian J. Exp. Biol. 2002;40:905-909.
34. Haranath P.S.R.K., Ranganthrao K., Anjaneyulu C.R., Ramnathan J.D. Studies on the hypoglycemic and pharmacological actions of some stilbenes. Ind. J. Med. Sci. 1958;12:85-89.
35. Joglekar G.V., Chaudhary N.Y., Aiama R. Effect medicinal plants on glucose absorption in mice. Indian J. Physiol. Pharmacol. 1959;3:76-77.
36. Chakravarty B.K., Gupta S., Gambhir S.S., Gode K.D. Pancreatic beta cell regeneration. A novel antidiabetic mechanism of PTEROCARPS MARSUPIUM Roxb. Ind. J. Pharmacol. 1980;12:123-127.
37. Jahromi M.A., Ray A.B., Chansouria J.P.N. Antihyperlipidemic effect of flavonoids from Pterocarpus marsupium. J. Nat. Prod. 1993;56:989-994.
38. Ahmad F., Khalid P., Khan M.M., Rastogi A.K., Kidwai J.R. Insulin like activity (-) epicatechin. Acta. Diabetol. Lat. 1989;26:291-300.
39. Sauvare Y., Petit P., Broca C., Manteghetti M., Baissac Y., Fernandez-Alvarez J., Gross R., Roy M., Leconte A., Ribes G. 4-hydroxyisoleucine: a novel amino acid potentiator of insulin secretion. Diabetes. 1998;47:206-210.

40. Khosla P., Gupta D.D., Nagpal R.K. Effect of Trigonella Foenum graecum (fenugreek) on blood glucose in normal and diabetic rats. Indian J. Physiol. Pharmacol. 1995;39:173-174.

41. Gupta D., Raju J., Baquer N.Z. Modulation of some gluconeogenic enzyme activities in diabetic rat liver and kidney: effect of antidiabetic compounds. Indian J. Expt. Biol. 1993;37:196-199.

42. Ravikumar P., Anuradha C.V. Effect of fenugreek seeds on blood lipid peroxidation and antioxidants in diabetic rats. Phytother. Res. 1999;13:197-201.

43. Dixit P.P., Ghaskadbi S.S., Hari M., Devasagayam T.P.A. Antioxidant properties of germinated fenugreek seeds. Phytother. Res. 2005;19:977-983.

44. Stanely P., Prince M., V.P. Hypoglycemic and hypolipidemic action of alcoholic extract of Tinospora cordifolia roots in chemical induced diabetes in rats. Phytother. Res. 2003;17:410-413.

45. Stanely M., Prince P., Menon V.P. Antioxidant action of Tinospora cordifolia root extract in alloxan diabetic rats. Phytother. Res. 2001;15:213-218.

46. Price P.S., Menon V.P. Antioxidant activity of Tinospora cordifolia roots in experimental diabetes. J. Ethnopharmacol. 1999;65:277-281.

47. Mathew S., Kuttan G. Antioxidant activity of Tinospora cordifolia and its usefulness in the amelioration of cyclophosphamide-induced toxicity. J. Exp. Clin. Cancer. Res. 1997;16:407-411.

48. Dhaliwal K.S., Inventor. Method and composition for treatment of diabetes. US Patent. 5886029. 1999.

49. Gupta S.S., Varma S.C.L., Garg V.P., Rai M. Antidiabetic effect of Tinospora cordifolia. I. Effect on fasting blood sugar level, glucose tolerance induced hyperglycemia. Indian J. Exp. Biol. 1967;55:733-745.

50. Kaleem M., Asif M., Ahmed Q.U., Bano B. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore Med. J. 2006;47:670-675.

51. Mishra Rakhi, ShauibMand, Shavan and Mishra Shaker, “A Review on Herbal Anti Diabetics”, Journal of Acute Disease, 2011:235+237

52. Dr. Irchiya Raghveer, Kumar Anurag, Gupta Nitika, Yadav Anumalik, Gupta Nikhil, Kumar Santosh and GurjarHimanshu, “Review on some Medicinal Plants with Anti Diabetic activity and Analgesic activity , ”World Journal of pharmacy and pharmaceutical Science 2014:163-162

53. Modak Manisha, Dixit priyanjali, landhe jayanti, Gharkad bi Saroj, and devasagayam A., Paul Thomas, “Indian Herbs and Herbal used in the treatment on Diabetes ,” J.Clin Biochem. Nutr. 40,2007:163-177

54. Piero M. Ngug, NjagiMJoan, Cromwell Kibiti, Joseph N.J. Nagranwar, Eliud M/N/ A RapidlyExpanding Reasearch A venue 2012;(4):356-358

55. ANM Mamun-or-Rashid, Samim Hassam Md., Hassam Naim, Dash Bilap Kumar, Ashraf fuzzaman Sapon Md. And Sen Mnokehsan Kumar, “A Review of medicinal plants with antidiabetic activity,” Journal of pharmacognosy and phytochemistry:2014:149-159.

56. Sonia Verma, Madhu Gupta, Harvinder Popli and Geeta Aggarwal, “Diabetes Mellitus Treatment using Herbal Drugs,” “Advanced Journals 2018;10(10):1-10.

57. Gupta Rahul, Bajpai Gaurav Kumar, JohriSamtaand SaxenaA.M., “An Overview of indian novel traditional medicinal plants with Antidiabetic Potential. ; Afr. J.Traditional, Complementary and Alternative Medicines, 2008;5(1):1-17

58. Pal Saxena Rashmi, Dr. Wal Pranay, Pal Yogendra, sachinsneha, Kumar Deepak and Tiwari Sandhya, ‘A Review Article: On the usage of Herbal Drug in the treatment of Diabetes,’ European Journal of pharmaceutical and medical Research.2016;3(6):201-204

59. Sreenivasan Vidhya, Kadamsamyc.S., Kumar Ganesh M., Prabhu Ganesh K., Arularaj P., Johnson Sam, Chander Udaya, Venkatananyana R, “A Review of differnt natural herblals associated with the Anti Diabetic activity,” World Journal of pharmacy and pharmaceutical sciences2015;(4):119-212.

Source of Support: Nil
Conflict of Interest: Nil