Review Article

Hydrogen peroxide signaling in vascular endothelial cells

Rosa Bretón-Romero*, Santiago Lamas*

Centro de Biología Molecular ‘Severo Ochoa’ CSIC-UAM, Campus Universidad Autónoma, Nicolás Cabrera 1, Madrid E-28049, Spain

A R T I C L E I N F O

Article history:
Received 10 February 2014
Accepted 20 February 2014

Keywords:
Hydrogen peroxide
Redox signaling
 Vasodilation
Endothelium

A B S T R A C T

Redox signaling is implicated in different physiological and pathological events in the vasculature. Among the different reactive oxygen species, hydrogen peroxide (H₂O₂) is a very good candidate to perform functions as an intracellular messenger in the regulation of several biological events. In this review, we summarize the main physiological sources of H₂O₂ in the endothelium and the molecular mechanisms by which it is able to act as a signaling mediator in the vasculature.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Endothelial cells (ECs) line the inner surface of the cardiovascular system acting as a natural barrier between the blood and the rest of the organs and tissues. This metabolically active monolayer organ is constantly exposed to different biomechanical and biochemical stimuli to which it responds by preserving the integrity and homeostasis of vascular function [1]. Accumulating evidence indicates the important role of redox signaling in the triggering and mediation of these actions. Historically, oxidative stress and thus, the increased production of reactive oxygen species (ROS), have been closely related with endothelial dysfunction, with involvement in the pathogenesis of several cardiovascular diseases such as hypertension, diabetes or atherosclerosis among others [2–5]. However, a large body of research has demonstrated a key role for ROS as physiological regulators of intracellular signaling pathways involved in the function of vascular endothelium [6].

Redox signaling

For many years, ROS were described as unwanted toxic products of cellular metabolism able to cause molecular damage (including DNA, proteins and lipids), cell and tissue dysfunction. Substantial evidences in the past decades have proved that although high oxidant exposure or low antioxidant defense are implicated in the pathogenesis of several cardiovascular diseases such as atherosclerosis, hypertension or diabetes, ROS are important signaling molecules playing an essential role in the regulation of a large variety of different cell signaling processes [6–8].

Although the term ROS include all the chemical species derived from the incomplete reduction of molecular oxygen (O₂), it is important to mention that different redox-active species have completely different biological properties including reactivity, half-life or lipid solubility that have important implications in their action. Thus, the specificity and the selectivity of the different ROS are dictated by their chemical reactivity [9].

Among the different ROS, hydrogen peroxide (H₂O₂) fulfills the prerequisites for serving as an intracellular messenger and acting as a cell-signaling molecule. H₂O₂ is a small and non-polar molecule able to diffuse across biological membranes. It is ubiquitously produced and its longer half-life makes it suitable to act as a second messenger exerting prolonged effects in different signaling pathways [10].

To better understand the role and the effect of H₂O₂ in redox signaling it is critical to focus on the main sources of H₂O₂ in the vasculature and on the nature of this ROS as a two-electron oxidant.

Sources of hydrogen peroxide in the endothelium

Intracellular generation of ROS in endothelial cells both occur under physiological as well as pathophysiological conditions. In the endothelium it predominantly arises from four enzymatic systems which include the different isoforms of NAPDH oxidases (NOXs, see below for precisions), xanthine oxidoreductase, uncoupled endothelial nitric oxide synthase (eNOS) and mitochondrial respiration complexes [1,2]; however other sources such as the arachidonic acid metabolizing enzymes lipooxygenase and cyclooxygenases or the cytochrome P450 have been also described [11] (Fig. 1).

All these sources primarily catalyze the reduction of molecular oxygen after the acceptance of one electron and lead to the formation of superoxide radical anion (O₂⁻). A ROS extremely unstable that dismutates to H₂O₂ either spontaneously or enzymatically catalyzed by superoxide dismutase. Of note, some enzymes, such as glucose oxidase or xanthine oxidase have been described to directly produce
H$_2$O$_2$ by donating two electrons to oxygen [11]. In the case of the NOX4 isoform (the most abundant NADPH oxidase in the endothelium), there is some controversy about the ROS produced. Whereas some groups have described NOX4 as the only vascular homolog that directly produces H$_2$O$_2$ [12], others have proposed that the O$_2^{•−}$ produced by NOX4 is rapidly converted to H$_2$O$_2$, which becomes almost undetectable [13] (Fig. 2).

The main features of these enzymes are summarized as follows:

NADPH oxidase

In contrast to other oxidases which produce ROS as a byproduct of their catalytic function, NOX family enzymes have no known biosynthetic or catabolic function but synthesize ROS as their primary function [14,15]. They are a family of seven trans-membrane electron transporters that catalyze the transfer of electrons across biological membranes from the electron donor NADPH to O$_2$, leading to the generation of O$_2^{•−}$ [16] and according to some reports H$_2$O$_2$ [12,17,18]. All NOX isoforms have six trans-membrane alpha helices with cystolic N- and C-termini and they are differentially expressed and regulated in specific tissues. In endothelial cells, whereas NOX1, NOX2, NOX4 and NOX5 isoforms have been identified under physiological and pathophysiological conditions [19], NOX4 is by far the most abundant NADPH isoform [20,21]. In addition this isoform is the most distantly related member of the family. While its activity is dependent on p22phox, it does not require any cystolic subunits such as p47phox, p67phox, p40phox or Rac, as other NOX isoforms do [22].

Xanthine oxidoreductase

Xanthine oxidoreductase, termed as xanthine oxidase (XOR), is another potential source for ROS in the vasculature [23]. It is an iron-sulfur molybdenum flavoprotein enzyme that catalyzes the last steps of purine metabolism, the transformation of hypoxanthine and xanthine to uric acid, with O$_2^{•−}$ or H$_2$O$_2$ generation as by-products [24]. It exists in two forms, as xanthine dehydrogenase (XDH) and as xanthine oxidase (XO) [25]. The XDH activity present in the vascular endothelium is converted into XO by processes including thiol oxidation and/or proteolysis. The ratio between XO and XDH in the cells is critical to determine the amount of ROS produced by these enzymes [26]. Increases both in the expression and activity of XO have been related to vascular diseases [27,28]. In the last decade, XOR has been proposed as capable to produce NO$^+$ itself [29,30] adding a new essential vascular role for this enzyme in biological tissues [25].

Uncoupled eNOS

NO$^+$ is produced in mammals by a family of nitric oxide synthase (NOS) enzymes. There are three different isoforms, two of them constitutively present (the endothelial nitric oxide synthase, eNOS or NOS3, and the neuronal nitric oxide synthase, nNOS or NOS1), and one which is inducible (iNOS or NOS2). They are all flavin- and heme-containing enzymes that act as homodimers shuttling electrons from the NADPH bound at the C-terminal (reductase domain) to the N-terminal heme (oxidase domain), reducing O$_2$ and incorporating it into the guanidine of L-arginine to produce L-citrulline and NO$^+$. However, in the absence of cofactors (L-arginine, tetrahydrobiopterin (BH4) or both) NOSs can become a source of O$_2^{•−}$ in endothelium [31], thus becoming “uncoupled” to their primary role of NO$^+$ synthesis. This uncoupling involves the conversion of NOS enzyme to a monomer which generates O$_2^{•−}$ instead of NO$^+$ [32]. Uncoupling of eNOS has been related to different cardiovascular diseases that concur with endothelial dysfunction such as atherosclerosis, hypertension, hypercholesterolemia or diabetes [33–36].

Mitochondria

Mitochondria represent the major intracellular source of ROS under physiological conditions. Notwithstanding, ROS production by mitochondria can also be enhanced by several intracellular stimuli. Mitochondrial ROS production is a consequence of oxidative phosphorylation linked to aerobic respiration within the mitochondrial electron transport chain (ETC). This machinery is situated in the inner mitochondrial membrane and it is able to catalyze electron transfer using more than 80 peptides organized in four complexes [37]. The transfer of electrons usually leads to the formation of ATP by the fifth complex; however, at eight different sites along the respiratory chain, electrons derived from NADH or FADH can directly react with oxygen and generate O$_2^{•−}$ [38]. Electron leakage from the ETC causes partial reduction of molecular oxygen to O$_2^{•−}$ instead of reduction to H$_2$O. It is predicted that 1–2% of the O$_2$ consumed is converted into ROS [39]. Mitochondrial O$_2^{•−}$ dismutation by MnSOD leads to...
the formation of H$_2$O$_2$ inside the mitochondria [40]. The tight regulation of mitochondrial ROS is essential for avoiding the accumulation of ROS and oxidative damage, thus permitting the signaling role of these species. Although the function of mitochondrial H$_2$O$_2$ in several redox-dependent processes has been extensively reviewed [41,42], data in human vasculature are very limited [43].

Molecular targets of hydrogen peroxide

H$_2$O$_2$ is a mild oxidant and hence relatively inert to most biomolecules; nevertheless it is able to induce reversible, covalent modifications of cysteine thiolate residues located in active and allosteric sites of specific proteins resulting in alterations in their activity and function. Any protein containing a deprotonated cysteine residue is susceptible to be oxidized by H$_2$O$_2$ [44]; thus the sensitivity of the protein to oxidation depends on the ionization constant (pKa) and the local environment of the cysteine residue. Because the pKa of the sulfhydryl group of most cysteine residues is around 8.5, they are protonated at physiological pH (Cys−\cdotH$^+$), and so, inert to H$_2$O$_2$ oxidation. However, there are certain proteins which exhibit a lower pKa (7.5) and thus under physiological conditions they contain cysteine thiol groups prone to react with H$_2$O$_2$ under second order kinetics. H$_2$O$_2$ is capable of oxidizing those cysteine residues via the formation of an unstable intermediate cysteine sulfenic acid (R−\cdotSO$_2$H), and produce disulfides (R−\cdotS−S−R) [45,46]. Different kinds of disulfide bonds can occur depending on whether they are produced between cysteines within the same protein (intramolecular disulfide bond [47]) or between cysteines located in two different molecules producing a homo- or hetero-dimer (intermolecular disulfide bond [48]). In addition, disulfides can also form a mixed-disulfide between glutathione and the thiol of another protein (S-glutathionylation), or with amides to form sulfenyl amide (−SN−) [49]. Protein thios can undergo further two-electron oxidations by H$_2$O$_2$ to form sulfenic (R−SO$_2$H) or sulfonic acid (R−SO$_3$H). Once a cysteine thiol has been oxidized, it needs to be reduced back if the signal has to be ended, and the cells are provided by different enzymatic and non-enzymatic systems responsible for this process. Disulfides and sulfenic groups can be reduced either by thioredoxins (TRXs) and peroxiredoxins (PRXs), while the mixed-disulfide reduction is driven by glutaredoxins (GRXs) [50]. Sulfenic acid groups can be reduced to sulfenic by the sulfiredoxins (SRXs) a family of ATP-dependent enzymes [51], and overoxidation to sulfonic acid is considered to be biologically irreversible.

Different proteins are capable to be modified by H$_2$O$_2$ including phosphatases, transcription factors, ion channels, antioxidant and metabolic enzymes, structural proteins and protein kinases among others [19]. In the next section, we focus on the interaction between ROS and protein kinases that are involved in the control of the vascular function.

Protein kinases constitute a highly diverse group of enzymes that alter the function of target proteins by catalyzing the phosphorylation of tyrosine, threonine, and/or serine residues [52]. A significant number of them are sensitive to redox signaling as they bear redox-sensitive cysteines, either in the primary kinases themselves or in upstream regulatory proteins. Some serine/threonine protein kinases are modified by a direct redox modification of susceptible cysteines. For example protein kinase C (PKC) contains a cysteine rich domain susceptible to oxidation [53], or the nonreceptor tyrosine kinase Src in which endogenous H$_2$O$_2$ oxidizes Cys-245 and Cys-487 in the kinase domain resulting in the activation of the protein [54], whereas tyrosine kinases are mainly activated in an indirect way, because of the oxidative inactivation of the protein tyrosine phosphatases (PTP) which control their phosphorylated state. All PTPs contain cysteine residues in their catalytic domains that are essential for their catalytic activity and exist as a thiolate [55,56]. This is frequently the mechanism of the ROS-mediated signal for an important group of protein kinases, widely involved in cell signaling, the mitogen-activated protein kinases (MAPK).

MAPKs are key components of signaling pathways triggered by G-protein-coupled receptors, tyrosine kinase receptors, integrins and cytokines. They are a large family of serine/threonine kinases that requires tyrosine and threonine phosphorylation in the loop for activation [57]. They consist of four families of proteins: the extracellular signal regulated kinase (Erk1/2), p38 MAPK, jun N-terminal kinase (JNK) and the extracellular signal-regulated kinase 5 (ERK5), all of them reported as targets of H$_2$O$_2$. The ERK cascade is principally involved in proliferation, differentiation, growth and cell survival, JNK in apoptosis/inflammation and p38 MAPK in cell motility and inflammatory responses [58]. Thus the panoply of consequences derived from their redox regulation is quite ample.

In Table 1 we summarize the findings regarding the activation of MAPK by hydrogen peroxide and their role in vascular endothelial function.

H$_2$O$_2$ regulation of endothelial function

In vascular endothelial cells, ROS gained attention as important second messengers by regulating the activity of signaling proteins, enzymes and ion channels in endothelial cells. H$_2$O$_2$ modulates different aspects of endothelial cell function, including endothelial cell growth and proliferation, survival, endothelium-dependent vasorelaxation, cytoskeletal reorganization, inflammatory responses and endothelium-regulated vascular remodeling, among others [11]. Whereas a modest increase and a tight controlled regulation of H$_2$O$_2$ is essential for the maintenance of vascular homeostasis, an aberrant redox signaling, usually induced by an excessive production of ROS and/or by decreases in antioxidant activity, may contribute to an alteration in vascular function and lead to vascular disease [74,75].

We now discuss two situations where hydrogen peroxide exerts a profound influence on endothelial cells.

Cell growth, proliferation and angiogenesis

Endothelial cells growth and survival are dependent on several factors contributing to the intracellular production of O$_2^•−$ and H$_2$O$_2$ [76]. For example, the growth regulating p90RSK protein [59] and the early growth factor 1 (Egf1) [77] are activated in endothelial cells by a redox-dependent activation of Erk1/2 MAPK by H$_2$O$_2$. Moreover, several studies have demonstrated that ROS mediate numerous

MAPK	Effect of thiol modification	Effect on the endothelium	References
Erk1/2	Activation	Growth and proliferation	[59,60]
	Activation	Vasodilation	[61]
	Activation	Barrier dysfunction	[62]
	Activation	Actin	[63,64]
	Activation	cytoskeleton reorganization	
p38 MAPK	Activation	Vasodilation	[65]
	Activation	Actin	[63,66]
	Activation	Increase endothelial permeability	[67–69]
JNK	Activation	Apoptosis	[70–72]
ERK5	Activation	Inhibit endothelial apoptosis	[73]
angiogenic effects including migration, proliferation and tubule formation, through a tight regulation between H$_2$O$_2$ and the key angiogenic growth factor VEGF [78]. On one side, H$_2$O$_2$ upregulates VEGF mRNA and protein expression and VEGF-induced VEGFR2 activation [59,79,80], inducing angiogenic-related responses. However, VEGF is also able to activate one of the main sources of ROS in vascular endothelial cells, NADPH oxidase [81,82].

It is important to note that these beneficial effects on the vasculature are only produced by physiological concentrations of H$_2$O$_2$ where endothelial cell growth and angiogenesis are necessary, as in repairing ischemia damage [83]. However, supraphysiologically levels of H$_2$O$_2$ impair proliferation and/or decrease viability [84,85] or could even induce hypotrophy when diffusing to the smooth muscle [86].

Regulation of vascular tone and vascular relaxation

The effects of ROS on vascular tone are not uniform since they depend on the specific ROS molecule, its concentration, and the vascular bed that is affected among other factors [87]. In general, O$_2^-$ favors vasoconstriction because it reduces the bioavailability of nitric oxide (NO*) by reacting with it, and by generation of peroxynitrite [88,89]. In contrast, H$_2$O$_2$ induces vasodilation in different vascular beds, such as mesenteric [90,91], coronary [92,93] or pulmonary arteries [94]. The increment of H$_2$O$_2$ in vascular segments of transgenic mice with endothelial-specific NOX4 overexpression, lead to an increased vasodilation and reduced basal blood pressure [95]. H$_2$O$_2$ generation contributes to the physiological regulation of the vascular tone in different ways. It was found to be an endothelium-derived hyperpolarizing factor [96,97] or an activator of the potassium channel [98], but its vasorelaxing effect has been closely related to nitric oxide production. Indeed, H$_2$O$_2$ leads to the stimulation of eNOS and the subsequent production of nitric oxide via the activation of different signaling pathways such as PI3K/Akt [61,99] and Erk1/2 [61]. Furthermore, we have recently described the involvement of H$_2$O$_2$ in eNOS activation that may contribute to the protective role of laminar shear stress (LSS) in the vascular endothelium. We proposed a model in which LSS promotes the formation of signaling levels of H$_2$O$_2$, which in turn activate p38 MAPK and eNOS, increasing NO synthesis and protection of endothelial function [65] (Fig. 3). Moreover, H$_2$O$_2$ has been described not only as capable of activating eNOS, but also for upregulating its expression [100]. A major regulator of vasodilation in the vasculature is the protein kinase PKG1α [101]. PKG1α is also sensitive to oxidation by H$_2$O$_2$ through the formation of a disulfide bond [102], accounting for the activation of the protein, and the related increased vasodilation independently of cGMP levels [103].

Conclusions

Hydrogen peroxide acts as a signaling second messenger in the vasculature. Its targets in the cardiovascular system are diverse, and include different protein kinases, which convey a wide array of effects to the endothelium. Although increased H$_2$O$_2$ might result in an alteration of vascular reactivity and lead to toxicity and the development of vascular disease, signaling levels of H$_2$O$_2$ play a key role in vascular function and homeostasis.

Source of funding

Ministerio de Economía y Competitividad SAF 2012-31338 (S.L.), CSD 2007-00020 (S.L.), JAE-CSIC predoctoral fellowship (RB) and Fundación Renal “Ilhigo Alvarez de Toledo”.

References

[1] H. Cai, D.G. Harrison, Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circulation Research. 87 (2000) 840–4. http://dx.doi.org/10.1161/01.RES.87.10.840, 11073878.

[2] J.M. Li, A.M. Shah, Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology, American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 287 (2004) R1014–R1030. http://dx.doi.org/10.1152/ajpregu.0124.2004, 15475499.

[3] H. Cai, NAD(P)/H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease, Circulation Research. 96 (2005) 818–22. http://dx.doi.org/10.1161/01.RES.0000163617.07250.fb, 15860762.

[4] R.P. Brandes, J. Kreuzer. Vascular NADPH oxidases: molecular mechanisms of activation, Cardiovascular Research. 65 (2005) 16–27. http://dx.doi.org/10.1016/j.cardiores.2004.08.007, 15621030.

[5] K.R. Greindl, Novel NAD(P)H oxidases in the cardiovascular system, Heart (British Cardiac Society). 90 (2004) 491–3. http://dx.doi.org/10.1136/hrt.2003.029397, 15084538.

[6] P.D. Ray, B.W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cellular Signalling. 24 (2012) 981–90. http://dx.doi.org/10.1016/j.cellsig.2012.01.008, 22206105.

[7] T. Finkel, Oxygen radicals and signaling, Current Opinion in Cell Biology. 10 (1998) 248–53. http://dx.doi.org/10.1016/S0955-0674(98)01047-6, 9561849.

[8] S.G. Rhee, T.S. Chang, Y.S. Bae, S.R. Lee, S.W. Kang, Cellular regulation by hydrogen peroxide. Journal of the American Society of Nephrology. 14 (2003) S211–S215. http://dx.doi.org/10.1097/01.ASN.0000074430.45567.7E, 12874433.

[9] Y.M. Janssen-Heininger, B.T. Mossman, N.H. Heintz, H.J. Forman, B. Kalyanaraman, T. Finkel, et al. Redox-based regulation of signal transduction: principles, pitfalls, and promises, Free Radical Biology & Medicine. 45 (2008) 1–17. http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.011, 18423411.

[10] B. D’Auteaux, M.B. Toledoano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis, Nature Reviews. Molecular Cell Biology. 8 (2007) 813–24. http://dx.doi.org/10.1038/nrm2256, 17848967.

[11] H. Cai, Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences, Cardiovascular Research. 68 (2005) 26–36. http://dx.doi.org/10.1016/j.cardiores.2005.06.021, 16009356.

[12] I. Takac, K. Schröder, L. Zhang, B. Lardy, N. Anilkumar, J.D. Lambeth, et al, E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4, Journal of Biological Chemistry. 286 (2011) 13304–13. http://dx.doi.org/10.1074/jbc.M110.192138, 21343258.

[13] L. Serrander, L. Cartier, K. Bedard, B. Banfi, B. Lardy, O. Plastre, et al NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation, Biochemical Journal. 406 (2007) 105–14. http://dx.doi.org/10.1042/ BJ20061903, 17501721.

[14] K. Briege, S. Schiavone, F.J. Miller Jr., K.H. Krause, Reactive oxygen species: from health to disease, Swiss Medical Weekly. 142 (2012) w13658.

[15] J.R. Burgoyne, H. Mongue-Din, P. Eaton, A.M. Shah, Redox signaling in cardiac physiology and pathology, Circulation Research. 111 (2012) 1091–106. http://dx.doi.org/10.1161/CIRCRESAHA.111.255216, 23023511.

[16] K. Bedard, K.H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology, Physiological Reviews. 87 (2007) 245–313. http://dx.doi.org/10.1152/physrev.00044.2005, 17237347.

[17] K.D. Martyn, L.M. Frederick, K. von Loehenmeyen, M.C. Dinauer, U.G. Knaus, Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases, Cellular Signalling. 18 (2006) 69–82. http://dx.doi.org/10.1016/j.cellsig.2005.03.023, 15927447.
transactivation
Societies involved

Wung, Usatyuk, by rat
Molecular
go on-Romero, et al., Role of NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. Hypertension. 32 (1998) 488–95. http://dx.doi.org/10.1161/1014.Hyp.53.2.488

S.R. Le, K.K. Griending, Redi ng, vascular function, and hyperten sion, Antioxidants & Redi ng Signal ing. 10 (2008) 1045–59. http://dx.doi.org/10.1089/ars.2007.1861201

J.R. Price, J.A. Vita, J.F. Keaney Jr., Redi ng control of vascular nitric oxide bioavailability, Antioxidants & Redi ng Signal ing. 2 (2000) 919–35. http://dx.doi.org/10.1089/ars.2000.2.4.912113492

R. Rudi, J.S. Beckman, K.M. Bush, B.A. Freeman, Peroxynitrite oxidation of sulphydryls. The cytoxic potential of superoxide and nitric oxide, Journal of Biological Chemistry. 266 (1991) 4244–50.,

S. Fujimoto, T. Asano, M. Sakai, K. Sakurai, D. Takagi, N. Yoshimoto, et al., Mechanisms of hydrogen peroxide-induced relaxation in rabbit mesenteric small artery, European Journal of Pharmacology. 412 (2001) 291–300. http://dx.doi.org/10.1016/S0022-3544(01)01354-1

Y.J. Gao, S. Hirota, D.W. Zhang, L.J. Janssen, R.M. Lee, Mechanisms of hydrogen-peroxide-induced biphasic response in rat mesenteric artery, British Journal of Pharmacology. 138 (2003) 1085–92. http://dx.doi.org/10.1038/sj.bjp.0605705.147, 12684264.

A. Saito, I. Sakuma, D.D. Gutterman, Mechanism of dilation to reactive oxygen species in human coronary arterioles, American Journal of Physiology. Heart and Circulatory Physiology. 285 (2003) H2345–H2354.

N. Thengchaisri, L. Kuo, Hydrogen peroxide induces endothelium-dependent and -independent coronary arterial dilation: role of cyclooxygenase and potassium channels, American Journal of Physiology. Heart and Circulatory Physiology. 285 (2003) H2255–H2263.

T.M. Burke, M.S. Wolin, Hydrogen peroxide elicits pulmonary arterial relax ation and guanylate cyclase activation, American Journal of Physiology. 252 (1987) H721–H732.

R. Ray, C.E. Murdoch, M. Wang, C.X. Santos, M. Zhang, S. Alom-Ruiz, et al., Endothelial NOx4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo, Arteriosclerosis, Thrombosis, and Vascular Biology. 31 (2011) 1368–76. http://dx.doi.org/10.1161/ATVHA.110.215928, 21413586.

H. Shimokawa, T. Matoba, Hydrogen peroxide is an endothelium-derived hyperpolarizing factor, Pharmacological Research. 49 (2004) 543–9. http://dx.doi.org/10.1016/S1476-2380(03)00243-8, 14839182.

T. Matoba, H. Shimokawa, M. Nakashima, Y. Hirakawa, Y. Mukai, K. Hirano, et al., Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice, Journal of Clinical Investigation. 106 (2000) 1521–30. http://dx.doi.org/10.1172/JCI10506, 11210759.

Y. Iida, Z.S. Katius, Mechanisms of cerebral arterial relaxations to hydrogen peroxide, Stroke A Journal of Cerebral Circulation. 31 (2000) 2224–30. http://dx.doi.org/10.1161/01.STR.31.9.2224, 10978056.

S.R. Thomas, K. Chen, J.F. Keaney Jr., Hydrogen peroxide activates endothelial nitric oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway, Journal of Biological Chemistry. 277 (2002) 6017–24. http://dx.doi.org/10.1074/jbc.M101972000, 11744883.

G.R. Drummond, H. Cai, M.E. Davis, S. Ramasamy, D.G. Harrison, Transcripti onal and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide, Circulation Research. 86 (2000) 147–54. http://dx.doi.org/10.1161/01.RES.86.3.147, 10679488.

H.K. Surks, CGMP-dependent protein kinase I and smooth muscle relaxation: a tale of two isoforms, Circulation Research. 101 (2007) 1078–80. http://dx.doi.org/10.1161/CIRCRESAHA.107.165779, 18040024.

J.R. Burgoynes, M. Madhimi, F. Cuello, R.L. Charles, J.P. Brennan, E. Schröder, et al., Cystine redox sensor in PGKAs enables oxidant-induced activation, Science. 317 (2007) 1393–7. http://dx.doi.org/10.1126/science.1144318, 17711753.

J.R. Burgoynes, S. Okie, N. Ale-Agha, P. Eaton, Hydrogen peroxide sensing and signaling by protein kinases in the cardiovascular system, Antioxidants & Redi ng Signal ing. 18 (2013) 1042–52. http://dx.doi.org/10.1089/ars.2012.4817, 22867729.