Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections

A Nijnik and REW Hancock

Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada

Correspondence
Professor REW Hancock,
Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, 2259 Lower Mall Research Station, University of British Columbia, Vancouver, Canada V6T 1Z4.
E-mail: bob@cmdr.ubc.ca

Received 16 June 2008
Revised 21 August 2008
Accepted 21 October 2008

The rapidly increasing incidence of multidrug-resistant infections and the alarmingly low rate of discovery of conventional antibiotics create an urgent need for alternative strategies to treat bacterial infections. Host defence peptides are short cationic molecules produced by the immune systems of most multicellular organisms; they are a class of compounds being actively researched. In this review, we provide an overview of the antimicrobial and immunomodulatory activities of natural host defence peptides, and discuss strategies for creating artificial derivatives with improved biological and pharmacological properties, issues of microbial resistance, and challenges associated with their adaptation for clinical use.

Introduction

Host defence peptides (HDPs) are an evolutionarily ancient component of the innate immune system of most multicellular organisms. They exhibit a wide range of biological activities from direct killing of invading pathogens to modulation of immunity and other biological responses of the host. In this article, we will refer to the overlapping classes of peptides with these activities as antimicrobial and immunomodulatory, respectively. Despite the enormous diversity in their sequences and structures, most HDPs share the following features: positive charge, high content of hydrophobic residues, and amphipathic fold.

The structural diversity of natural peptides provides an excellent starting point for the production of artificial peptides and derivatives with more potent and desirable biological activities, for clinical and commercial applications.

The diversity of host defence peptides

Two major families of naturally occurring HDPs have been distinguished: defensins and cathelicidins (Table 1). Defensins are cationic amphipathic peptides with an average length of 30 residues and a triple-stranded antiparallel β-sheet structure, stabilised by three disulphide bonds.

Defensins are further subdivided into three subfamilies of α, β, and θ defensins, based on the pattern of disulphide-bonding (Table 1).

In humans, but not in cattle or mice, α-defensins are found in the secretory granules of neutrophils and other leukocytes. In most mammals other than cattle, a set of α-defensins is also produced by Paneth cells in the crypts of the small intestine. These α-defensins, also known as cryptidins, are synthesised as inactive precursors and activated by a removal of an N-terminal segment catalysed by metalloprotease matrilysin (MMP7) in mice and by trypsin in humans. After microbial stimulation, the concentration of α-defensins within the crypts is estimated to reach 10 mg/ml, which is more than sufficient for strong microbicidal action. This, and the association of Crohn’s disease with dysregulation in cryptidin production, highlights the importance of α-defensins in the maintenance of immune homeostasis in the gut.

β-Defensins are expressed by most epithelial cells, and their expression is often stimulated by proinflammatory stimuli and infection. They are present in the mucosal secretions of respiratory, gastrointestinal, and urogenital tracts, and in inflamed skin. β-Defensins are also expressed by human monocytes, macrophages, and dendritic...
cells, and are important components of the azurophilic granules of bovine neutrophils.\(^4\)

The much rarer \(\theta\)-defensins are cyclic molecules, produced in neutrophils and monocytes of rhesus macaques through ligation of two \(\alpha\)-defensin-like peptides.\(^{17}\) As a result of their cyclic structure, the (moderate) microbicidal activity of \(\theta\)-defensins is resistant to salt concentration. However, \(\theta\)-defensins have not been found in humans or other mammals.

Cathelicidins are the other major family of natural HDPs, although they are grouped by their mechanism of production rather than sequence similarity. All cathelicidins are synthesised as inactive precursors, comprising an N-terminal cathelin-like domain followed by the peptide region, and are proteolytically processed to release mature active HDPs.\(^{18}\) Cathelicidins vary in length, sequence, and structure, having extended, \(\alpha\)-helical or \(\beta\)-hairpin folds; however, some are short linear molecules (for example, indolicidin, 13 amino acids), and these are ideal starting points for the design of synthetic peptides with optimised biological activity.

Bovine and porcine immune systems produce a large variety of cathelicidins, including bactenecin, indolicidin, PR-39, protegrins, prophenins, and many others.\(^{18}\) In contrast, in humans there is only one known cathelicidin precursor protein hCAP18, which is proteolytically processed to yield mature cathelicidin LL-37\(^{19}\) and, in the skin, a series of additional proteolytic derivatives with altered activities.\(^{20}\)

Table 1 The diversity of mammalian host defence peptides

| Peptide family and structure | Subfamily | Expression and diversity |
|-----------------------------|-----------|-------------------------|
| Defensin                    | \(\alpha\)-defensins | Neutrophils and other leukocytes |
| Amphilathic, cationic peptides | | Paneth cells of the intestines |
| Triple-stranded antiparallel \(\beta\)-sheet | | Epithelial cells |
| Cathelicidin                | LL-37 expressed by neutrophils and other leukocytes mucosal epithelia, skin | CRAMP expressed by neutrophils, and other leukocytes mucosal epithelia, skin |
| Amphilathic, cationic peptides | | Large variety: protegrins, PR-39, prophenins, etc. Expressed by neutrophils and other leukocytes |

Many other HDPs that do not belong to the defensin or cathelicidin families have also been characterised in humans and other mammals. Some important examples include: histatins, histidine-rich cationic peptides with antifungal activity present in the saliva;\(^{39}\) dermcidin, an anionic peptide present in human sweat with modest salt-insensitive antimicrobial properties;\(^{30}\) cationic peptide lactoferricin derived from an iron-binding protein lactoferrin and found in mucosal secretions, milk, and in the granules of leukocytes.\(^{31}\)

**Biological activities and roles of host defence peptides in immunity**

The evolutionarily widespread distribution and the extreme diversity of HDPs highlight their prominent role in immune defences. Historically, this has been attributed to their antimicrobial activity but in recent years potent immunomodulatory properties of HDPs have been characterised and suggested to be an important part of their biological function.\(^{19,32}\) An in-depth understanding of the physiological roles and mechanisms of action of HDPs is crucial for the development of artificial variants with optimised activity for therapeutic applications.

Antimicrobial properties of HDPs are linked to their amphipathic fold, which allows the peptides to interact with lipid bilayers of microorganisms,\(^2\) and kill either through membrane disruption or by translocating across the membrane and inhibiting cytosolic targets. Owing to the relatively nonspecific nature of the interactions between HDPs and the anionic lipids of microbial membranes, many peptides have broad antimicrobial properties, targeting Gram-positive and -negative bacteria, fungi, protozoa, and some viruses.\(^1,31\) Furthermore, HDPs are highly effective

---

upregulated by proinflammatory stimuli, and is also induced by the HIF-1z and the vitamin D receptor pathways.\(^{26-28}\)

The much rarer \(\theta\)-defensins are cyclic molecules, produced in neutrophils and monocytes of rhesus macaques through ligation of two \(\alpha\)-defensin-like peptides.\(^{17}\) As a result of their cyclic structure, the (moderate) microbicidal activity of \(\theta\)-defensins is resistant to salt concentration. However, \(\theta\)-defensins have not been found in humans or other mammals.

Cathelicidins are the other major family of natural HDPs, although they are grouped by their mechanism of production rather than sequence similarity. All cathelicidins are synthesised as inactive precursors, comprising an N-terminal cathelin-like domain followed by the peptide region, and are proteolytically processed to release mature active HDPs.\(^{18}\) Cathelicidins vary in length, sequence, and structure, having extended, \(\alpha\)-helical or \(\beta\)-hairpin folds; however, some are short linear molecules (for example, indolicidin, 13 amino acids), and these are ideal starting points for the design of synthetic peptides with optimised biological activity.

Bovine and porcine immune systems produce a large variety of cathelicidins, including bactenecin, indolicidin, PR-39, protegrins, prophenins, and many others.\(^{18}\) In contrast, in humans there is only one known cathelicidin precursor protein hCAP18, which is proteolytically processed to yield mature cathelicidin LL-37\(^{19}\) and, in the skin, a series of additional proteolytic derivatives with altered activities.\(^{20}\)

LL-37 lacks disulphide bonds and is weakly structured in solution, but adopts an \(\alpha\)-helical conformation when interacting with lipid bilayers. Mice also have only one cathelicidin precursor, which is processed to produce mature peptide CRAMP, with 67% sequence identity to LL-37.\(^{21}\)

LL-37 is found in the secretory granules of neutrophils and other leukocytes,\(^{22}\) and is also produced by mucosal epithelia and keratinocytes.\(^{23-25}\) The expression of LL-37 is modestly...
against multidrug-resistant bacterial strains. Peptides can also interact with mammalian membranes and this is at least partly responsible for cytotoxicity of some peptides at high concentrations. However, distinct composition of mammalian membranes, with preferential localisation of anionic phospholipids into the inner leaflet, offers some protection. Furthermore, membrane interactions and antimicrobial properties of most HDPs are strongly dependent on the composition of the media, being inhibited by divalent cations and serum. Thus, although HDPs almost certainly function as powerful microbicidal agents in some physiological settings, such as the phagolysosomes of neutrophils, intestinal crypts, and sites of acute inflammation, under other conditions where salt concentrations are high (100 mm monovalent and 2 mm divalent cations) and peptide concentrations are modest, their immunomodulatory activities are almost certainly more physiologically relevant.

A wide range of HDPs from different species have been shown to act as chemoattractants for cells of innate and adaptive immunity. As an example, human cathelicidin LL-37 attracts neutrophils, monocytes, T cells, and mast cells, using formyl peptide receptor-like 1 (FPRL1), and a distinct G-coupled receptor. Optimal chemotactic activity of LL-37 is observed in a concentration range that can be reached in vivo under inflammatory conditions. Furthermore, synthetic peptide IDR-1, which is protective in mouse models of bacterial infections, similarly chemoattracts neutrophils, acting through receptor FPRL1.

Apart from direct chemotactic effects, HDPs also elicit other complex responses in leukocytes and epithelial cells, altering gene expression and behaviour to facilitate and to modulate immune responses (Figure 1). For example, when LL-37 was used to stimulate primary human monocytes and macrophage cell lines, microarrays demonstrated the induction of a wide range of chemokines, chemokine receptors, and other genes involved in cell adhesion, communication, and motility. In particular, induction of chemokines IL8, Gro-α, MCP1, MIP-1β, and MIP-3β, but not proinflammatory cytokines, was observed.

Figure 1  Immunomodulatory activity of host defence peptides: human cathelicidin LL-37. LL-37 induces global alterations in gene expression in monocytes, signalling through p38, ERK, PI3K, and NF-κB pathways, and promoting expression of chemokines and other genes involved in cell communication and motility. LL-37 also acts as a direct chemoattractant for monocytes, neutrophils, T cells, and mast cells through the FPRL1 receptor, and an unknown G-coupled receptor. LL-37 is also strongly anti-endotoxic and inhibits the production of proinflammatory cytokines in monocytes in response to LPS, and also the maturation of monocyte-derived dendritic cells by TLR ligands. In contrast, LL-37 pretreatment of monocytes modulates the process of dendritic cell differentiation, enhancing their function, and in plasmacytoid dendritic cells (pDCs) LL-37 promotes responses to TLR9 ligands. Other activities of LL-37 include the promotion of antimicrobial functions of neutrophils, mast cell degranulation, and IL-1β processing in LPS-primed monocytes. LL-37 also affects neutrophil and epithelial cell apoptosis. In keratinocytes, LL-37 induces IL-8, and promotes migration and wound healing, and these activities depend on ADAM family metalloproteinase, EGFR and FPRL1. In airway epithelial cells, LL-37 activates p38 and ERK pathways and induces chemokine secretion, and this is reported to be mediated by receptors: FPRL1, ADAM family metalloproteinase and EGFR, and through active peptide internalisation. LL-37 also promotes angiogenesis, through FPRL1 receptor on vascular endothelium.
Host defence peptides: potential therapeutic applications

A Nijnik and REW Hancock 2009, Emerging Health Threats Journal

Therapeutic potential of host defence peptides

With increasing bacterial resistance to conventional antibiotics, there is a growing interest in exploiting the biological activities of HDPs to target multidrug-resistant pathogens. However, despite much progress in the laboratory, so far only a few HDP-derived compounds have progressed into the clinic, with most clinical trials focusing on topical rather than systemic applications (Table 2).

The traditional approach to developing HDP-based therapeutics has focused on the antimicrobial properties of natural peptides. Various methodologies for identifying, selecting, or designing highly active artificial antimicrobial peptides have been developed. One approach is to screen extensive libraries of semirandom peptides for bactericidal properties. Alternatively, systematic substitutions in the amino-acid sequence of natural antimicrobial HDPs can be used to improve their activity. For example, combining high-throughput peptide synthesis on cellulose sheets with automated screening for antimicrobial properties using a luciferase reporter system allowed the development of potentiated derivatives of cathelicidins in the immune defences of epithelial surfaces is also implicated in human pathologies, in particular in Crohn’s disease and cystic fibrosis. It was suggested that the bacterial colonisation of the airways of cystic fibrosis patients, is at least in part, the result of inactivation of antimicrobial peptides by the high salt contents of airway fluids in cystic fibrosis. Mutations in NOD2, associated with Crohn’s disease, result in impaired production of defensins and this was proposed to contribute to the chronic intestinal inflammation by disrupting the interactions between the immune system and the microbiota.

In summary, HDPs with their direct antimicrobial properties and diverse immunomodulatory activities play an important role in mammalian immunity to infections and immune homeostasis. The potential for these activities for clinical and commercial purposes remains to be fully explored.

Therapeutic potential of host defence peptides

With increasing bacterial resistance to conventional antibiotics, there is a growing interest in exploiting the biological activities of HDPs to target multidrug-resistant pathogens. However, despite much progress in the laboratory, so far only a few HDP-derived compounds have progressed into the clinic, with most clinical trials focusing on topical rather than systemic applications (Table 2).

The traditional approach to developing HDP-based therapeutics has focused on the antimicrobial properties of natural peptides. Various methodologies for identifying, selecting, or designing highly active artificial antimicrobial peptides have been developed. One approach is to screen extensive libraries of semirandom peptides for bactericidal properties. Alternatively, systematic substitutions in the amino-acid sequence of natural antimicrobial HDPs can be used to improve their activity. For example, combining high-throughput peptide synthesis on cellulose sheets with automated screening for antimicrobial properties using a luciferase reporter system allowed the development of potentiated derivatives of cathelicidins in the immune defences of epithelial surfaces is also implicated in human pathologies, in particular in Crohn’s disease and cystic fibrosis. It was suggested that the bacterial colonisation of the airways of cystic fibrosis patients, is at least in part, the result of inactivation of antimicrobial peptides by the high salt contents of airway fluids in cystic fibrosis. Mutations in NOD2, associated with Crohn’s disease, result in impaired production of defensins and this was proposed to contribute to the chronic intestinal inflammation by disrupting the interactions between the immune system and the microbiota.

In summary, HDPs with their direct antimicrobial properties and diverse immunomodulatory activities play an important role in mammalian immunity to infections and immune homeostasis. The potential for these activities for clinical and commercial purposes remains to be fully explored.
antimicrobial properties produced on an industrial scale for use as food preservatives. They make up one class of such compounds.73 Their potential therapeutic value certainly warrants further investigation. Another approach to reducing the costs of peptide therapeutics is to improve peptide stability and pharmacokinetics, thus decreasing the required dose. Currently, this is investigated with protease-resistant D-amino acid peptides and various peptidomimetics.3

Concerns have been raised that a widespread use of HDPs in the clinic would select for pathogens resistant to natural immune defences. Indeed, many bacterial species already possess modestly effective resistance mechanisms, including peptide degradation, sequestration, efflux, and chemical modifications of cell walls and membranes to reduce HDP binding.74,75 Resistance to HDPs can be selected in the laboratory.76 Nevertheless, HDPs are less prone to inducing resistance than conventional antibiotics because they often use several microbicidal mechanisms simultaneously, targeting many microbial systems with low affinity rather than having one specific target.75 Also, because of the diverse mechanisms of peptide action, the use of synthetic peptides that do not occur in nature could partly alleviate the problem of resistance to natural HDPs. Finally, immunomodulatory peptides that act on the host rather than on the pathogen offer a unique opportunity to minimise the direct selective pressures for pathogen resistance.

Recently, such an immunomodulatory peptide, an innate defence regulator IDR-1, was shown to protect mice against bacterial infections, including infections with multidrug-resistant pathogens, and this provides an important proof of principle for the immunomodulatory approach.38 The peptide was shown to act as a neutrophil chemoattractant37 and furthermore to induce chemokine production and promote cell recruitment in vitro and in vivo; these activities may account for some of its protective effects. Importantly this peptide, as well as many natural HDPs, exerts anti-inflammatory and anti-endotoxic effects at the same time as promoting local clearance of infection.38,40 Thus, unlike other treatments aimed at boosting the immune system, such peptides can offer protection without the risk of inducing dangerous hyperinflammatory states. In the immediate future, the field of immunomodulatory peptide therapeutics faces the challenges of developing high-throughput screens for immunomodulatory activity, and also of firmly defining which in vitro activities correlate with the protection against infection and other desirable biological outcomes in vivo. Furthermore, other activities of HDPs, such as their roles in wound healing and angiogenesis, require further investigation to assess their potential therapeutic value.54

Conclusion
Over the course of evolution, nature has created an impressive arsenal of HDPs with extreme diversity in structure and biological activity. These can serve as excellent templates for development of both antimicrobial and immunomodulatory compounds, often combining both activities in the same molecule. The potential therapeutic value of such compounds is just beginning to be fully recognised. These compounds can be used in combination with conventional antibiotics, and also to target resistant pathogens where conventional antibiotics fail. Some peptides may even have potential against diseases of unknown aetiology (emerging infectious diseases), as their spectrum of activity is often very broad and may involve stimulation of the immune response of the host rather than targeting the pathogen. Importantly, immunomodulatory peptides that target the host immune system rather than the pathogen also offer an excellent opportunity to minimise the risks of pathogen resistance to these compounds. The current challenge is to develop new biologically active synthetic peptides or mimetics thereof with improved pharmacokinetics, low toxicity, and low manufacturing costs for both topical and systemic applications.
Acknowledgements
We are financially supported by Genome Canada and Genome BC, the Foundation for the National Institutes of Health, the Gates Foundation, and the Canadian Institutes of Health Research (CIHR). AN is a CIHR and Michael Smith Foundation postdoctoral research fellow. REWH is a Canada Research Chair in Microbiology.

Author contributions
Both authors contributed equally to the development, intellectual concepts, and writing of this paper.

Competing interests
REWH has founded companies for the exploitation of host defence peptides as antimicrobials (Migenix) and immunomodulators (Inimex). In both companies, he is a minor shareholder, whereas in the latter he is a member of the Scientific Advisory Board and consultant.

Provenance and peer review
Commissioned without payment, externally peer-reviewed.

References
1 Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002;415:389–95.
2 Powers JP, Hancock RE. The relationship between peptide structure and antibacterial activity. Peptides 2003;24:1681–91.
3 Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 2006;24:1551–7.
4 Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003;3:710–20.
5 Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, et al. The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 2000;96:3086–93.
6 Zeya HI, Spitznagel JK. Antibacterial and enzymic basic proteins from leukocyte lysosomes: separation and identification. Science 1963;142:1085–7.
7 Ayabe T, Ashida T, Kohgo Y, Kono T. The role of Paneth cells and their antimicrobial peptides in innate host defense. Trends Microbiol 2004;12:394–8.
8 Welkamp J, Schauber J, Stange EF. Defensins and cathelicidins in gastrointestinal infections. Curr Opin Gastroenterol 2007;23:32–8.
9 Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Draja B, et al. Paneth cell trypsin is the processing enzyme for human defensin-3. Nat Immunol 2002;3:583–90.
10 Wilson CL, Ouelttte AJ, Satchell DP, Ayabe T, López-Boado YS, Stratman JL, et al. Regulation of intestinal alpha-defensin activation by the metalloprotease matrilysin in innate host defense. Science 1999;286:113–17.
11 Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouelttte AJ, et al. Secretion of microbial alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 2000;1:113–18.
12 Welkamp J, Salzmann NH, Porter E, Nuding S, Weichenthal M, Petras RE, et al. Reduced Paneth cell alpha-defensins in ileal Crohn’s disease. Proc Natl Acad Sci USA 2005;102:18129–34.
13 Bals R, Wang X, Wu Z, Freeman T, Bafna V, Zasloff M, et al. Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 1999;102:674–80.
14 Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM, et al. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 1997;88:553–60.
15 Harder J, Bartels J, Christophers E, Schroeder JM. A peptide antibiotic from human skin. Nature 1997;387:861.
16 Stolzenberg ED, Anderson GM, Ackermann MR, Whitlock RH, Zasloff M. Epithelial antibiotic induced in states of disease. Proc Natl Acad Sci USA 1997;94:8866–90.
17 Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, et al. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science 1999;286:498–502.
18 Zanetti M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 2004;75:39–48.
19 Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE, et al. Impact of LL-37 on anti-infective immunity. J Leukoc Biol 2005;77:451–9.
20 Braff MH, Hawkins MA, Di Nardo A, Lopez-Garcia B, Howell MD, Wong C, et al. Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 2005;174:4271–8.
21 Gallo RL, Kim Kj, Bernfield M, Kozak CA, Zanetti M, Merluzzi L, et al. Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J Biol Chem 2002;277:10388–93.
22 Sorensen O, Arnliots K, Cowland JB, Bainton DF, Borregaard N. The human antibacterial cathelicidin, hCAP-18, is synthesized in myelocytes and metamyelocytes and localized to specific granules in neutrophils. Blood 1997;90:2796–803.
23 Bals R, Wang X, Zasloff M, Wilson JM. The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 1998;95:9541–6.
24 Frohm M, Agerberth B, Ahangari G, Stähle-Bäckdahl M, Lidén S, Wiguell H, et al. The expression of the gene coding for the antibacterial peptide LL-37 is induced in human keratinocytes during inflammatory disorders. J Biol Chem 1997;272:15258–63.
25 Frohm Nilsson M, Sandstedt B, Sorensen O, Weber G, Borregaard N, Stähle-Bäckdahl M, et al. The human cationic antimicrobial peptide (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 1999;67:2561–6.
26 Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human anti-microbial response. Science 2006;311:1770–3.
27 Peyssonnaux C, Boutin AT, Zinkernagel AS, Datta V, Nizet V, Johnson IS, et al. Critical role of HIP-1/alpha in keratinocyte defense against bacterial infection. J Invest Dermatol 2008;128:1964–8.
28 Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, et al. HIP-1/alpha expression regulates the bactericidal capacity of phagocytes. J Clin Invest 2005;115:1806–15.
29 Kavanagh K, Dowd S. Histatins: antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 2004;56:285–9.
30 Schitteck B, Hipfel R, Bauer B, Bauer J, Kalbacher H, Stevanovic S, et al. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2001;2:1133–7.
31 Farnaud S, Evans RW. Lactoferrin—a multifunctional protein with antimicrobial properties. Mol Immunol 2003;40:395–405.
32 Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 2002;169:3883–91.
33 Klotman ME, Chang TL. Defensins in innate antiviral immunity. Nat Rev Immunol 2006;6:447–56.
34 Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem 1998;273:3718–24.
35 De Y, Chen Q, Schmidt AP, Anderson GM, Wang JM, Wooster J, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemotactact human peripheral blood neutrophils, monocytes, and T cells. J Exp Med 2000;192:1069–74.
36 Niyonsaba F, Iwabuchi K, Someya A, Hirata M, Matsuda H, Ogawa H, et al. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. *Immunology* 2002;106:20–6.

37 Lee HY, Bae YS. The anti-inflammatory peptide, innate defense-regulator peptide, stimulates neutrophil chemotaxis via a formyl peptide receptor. *Biosci Biophys Res Commun* 2008;369:573–8.

38 Scott MG, Dullaghan E, Mookherjee N, Glavas N, Waldbrook M, Thompson A, et al. An anti-inflammatory peptide that selectively modulates the innate immune response. *Nat Biotechnol* 2007;25:465–72.

39 Bowdish DM, Davidson DJ, Speert DP, Hancock RE. The human cathelicidin peptide LL-37 induces activation of the extracellular signal-regulated kinase and p38 kinase pathways in primary human monocytes. *J Immunol* 2004;172:3758–65.

40 Mookherjee N, Brown KL, Bowdish DM, Doria S, Falsafi R, Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Zheng Y, Niyonsaba F, Ushio H, Nagaoka I, Ikeda S, Okumura K, Elssner A, Duncan M, Gavrilin M, Wewers MD. A novel P2X7 regulator peptide, stimulates neutrophil chemotaxis via a formyl peptide receptor activator, the human cathelicidin-derived peptide LL37, via the activation of formyl-peptide receptor-like 1 and P2X7. *J Immunol* 2006;176:2455–64.

41 Kandler K, Shakhiev R, Kleemann P, Klescz F, Lohoff M, Vogelmeier C, et al. The anti-microbial peptide LL-37 inhibits the activation of dendritic cells by TLR ligands. *Int Immunol* 2006;18:1729–36.

42 Davidson DJ, Currie AJ, Reid GS, Bowdish DM, MacDonald KL, Ma RC, et al. The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. *J Immunol* 2004;172:1146–56.

43 Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang YH, Homey B, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. *Nature* 2007;449:564–9.

44 Zheng Y, Niyonsaba F, Ushio H, Nagaoka I, Ikeda S, Okumura K, et al. Cathelicidin LL-37 induces the generation of reactive oxygen species and release of human alpha-defensins from neutrophils. *Br J Immunol* 2007;157:1124–31.

45 Niyonsaba F, Someya A, Hirata M, Ogawa H, Nagaoka I. Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. *Eur J Immunol* 2001;31:1066–75.

46 Elssner A, Duncan M, Gavrilin M, Wewers MD. A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. *J Immunol* 2004;172:4987–94.

47 Barlow PG, Li Y, Wilkinson TS, Bowdish DM, Lau YE, Coseau C, et al. The human cationic host defense peptide LL-37 mediates contrasting effects on apoptotic pathways in different primary cells of the innate immune system. *J Leukoc Biol* 2006;80:509–20.

48 Nagaoka I, Tamura H, Hirata M. An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. *J Immunol* 2006;176:3044–52.

49 Zhang Z, Cherryholmes G, Shively JE. Neutrophil secondary necrosis is induced by LL-37 derived from cathelicidin. *J Leukoc Biol* 2008;84:780–8.

50 Carretero M, Escamez MJ, Garcia M, Duarte B, Holguin A, Retamosa L, et al. *In vitro* and *in vivo* wound healing-promoting activities of human cathelicidin LL-37. *J Invest Dermatol* 2008;128:223–36.

51 Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, et al. Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. *J Immunol* 2005;175:4662–8.

52 Lau YE, Rozeck A, Scott MG, Goosney DL, Davidson DJ, Hancock RE, et al. Interaction and cellular localization of the human host defense peptide LL-37 with lung epithelial cells. *Infect Immun* 2005;73:5829–91.

53 Trittivenga GS, Aariou J, Ninaber DK, Drijfhout JW, Sorensen OE, Borregaard N, et al. The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. *J Immunol* 2003;171:6690–6.

54 Koczulla R, von Degenfeld G, Kupatt C, Krötz F, Zahler S, Göke T, et al. An angiogenic role for the human peptide antibiotic LL37/ hCAP-18. *J Clin Invest* 2003;111:1665–72.

55 Biragyn A, Ruffini PA, Leifer CA, Kiyoshminkovka E, Shakhov A, Chertov O, et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. *Science* 2002;298:1025–9.

56 Kobayashi KS, Chamaillard M, Ogura Y, Henegarui O, Inohara N, Nuñez G, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. *Science* 2005;307:731–4.

57 Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defender. *Nature* 2003;422:522–6.

58 Nizet V, Ohtake T, Lauth X, Towbridge J, Rudisill J, Dorschner RA, et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. *Nature* 2001;414:454–7.

59 Cromeck M, Slamova Z, Bergman P, Kovácová L, Podracká L, Ehren I, et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. *Nat Med* 2006;12:636–41.

60 Ganz T, Metcalf JA, Gallin JL, Boxer LA, Lehrer RI, et al. Microbial/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and ‘specific’ granule deficiency. *J Clin Invest* 1988;82:552–6.

61 Putsep K, Carlsson G, Boman HG, Andersson M. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. *Lancet* 2002;360:1144–9.

62 Ong PY, Ohtake T, Brandt C, Strickland I, Bogniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. *N Engl J Med* 2002;347:1151–60.

63 Yamazaki K, Di Nardo A, Bardan A, Mukamami K, Ohtake T, Coda A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. *Nat Med* 2007;13:975–80.

64 Bals R, Weiner DJ, Wilson JM. The innate immune system in cystic fibrosis lung disease. *J Clin Invest* 1999;103:303–7.

65 Smith JJ, Travis SM, Greenberg EP, Welsh MJ. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. *Cell* 1996;88:229–36.

66 Levy SB, Marshall B. Anti-bacterial resistance worldwide: causes, challenges and responses. *Nat Med* 2004;10 (12 Suppl): S122–9.

67 Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuerzo JH, et al. Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. *Nature* 1991;354:84–6.

68 Watt PM. Screening for peptide drugs from the natural repertoire of biodiverse protein folds. *Nat Biotechnol* 2006;24:177–83.

69 Hilpert K, Volkmann-Engert R, Walter T, Hancock RE. High-throughput generation of small antibacterial peptides with improved activity. *Nat Biotechnol* 2005;23:1008–12.

70 Jenssen H, Fjell CD, Cherkasov A, Hancock RE. QSAR modeling and computer-aided design of antimicrobial peptides. *J Pept Sci* 2008;14:110–14.

71 Loose C, Jensen K, Rigoutsos I, Stephanopoulos G. A linguistic model for the rational design of antimicrobial peptides. *Nature* 2006;443:867–9.

72 Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. *Nature* 2005;437:975–80.

73 Cotter PD, Hill C, Ross RP. Bacteriocins: developing innate immunity for food. *Nat Rev Microbiol* 2005;3:777–88.

74 Nizet V. Antimicrobial peptide resistance mechanisms of human bacterial pathogens. *Curr Issues Mol Biol* 2006;8:975–80.

75 Peschel A, Sahli HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. *Nat Rev Microbiol* 2006;4:529–36.

76 Perron GG, Zasloff M, Bell G. Experimental evolution of resistance to an antimicrobial peptide. *Proc Biol Sci* 2006;273:251–6.