MUC4-ErbB2 Oncogenic Complex: Binding studies using Microscale Thermophoresis

Maxime Liberelle1, Romain Magnez1, Xavier Thuru1, Yamina Bencheikh1, Severine Ravez1, Camille Quenon1, Anne-Sophie Drucbert2, Catherine Foulon3, Patricia Melnyk1, Isabelle Van Seuningen1,4 & Nicolas Lebègue1,4*

The MUC4 membrane-bound mucin is a large O-glycoprotein involved in epithelial homeostasis. At the cancer cell surface MUC4 interacts with ErbB2 receptor via EGF domains to promote cell proliferation and migration. MUC4 is highly regarded as a therapeutic target in pancreatic cancer as it is not expressed in healthy pancreas, while it is neoexpressed in early preneoplastic stages (PanINs). However, the association/dissociation constant of MUC4-ErbB2 complex is unknown. Protein-protein interactions (PPIs) have become a major area of research in the past years and the characterization of their interactions, especially by biophysical methods, is intensively used in drug discovery. To characterize the MUC4-ErbB2 interaction, we used MicroScale Thermophoresis (MST), a powerful method for quantitative protein interaction analysis under challenging conditions. We worked with CHO cell lysates containing either the transmembrane β subunit of MUC4 (MUC4β) or a truncated mutant encompassing only the EGF domains (MUC4EGF3+/+2). MST studies have led to the characterization of equilibrium dissociation constants (Kd) for MUC4β-ErbB2 (7–25 nM) and MUC4EGF3+/+2/ErbB2 (65–79 nM) complexes. This work provides new information regarding the MUC4-ErbB2 interaction at the biophysical level and also confirms that the presence of the three EGF domains of MUC4 is sufficient to provide efficient interaction. This technological approach will be very useful in the future to validate small molecule binding affinities targeting MUC4-ErbB2 complex for drug discovery development in cancer. It will also be of high interest for the other known membrane mucins forming oncogenic complexes with ErbBs at the cancer cell surface.

Context
Mucins form a family of large O-glycoproteins, of heterogeneous evolutionary origin, organized into a peptidic chain called apomucin in which a Serine/Threonine-rich region is intensively glycosylated. In addition to this O-glycosylation, which represents up to 50–80% of the total molecular weight of the protein, N-glycosylation may be present to a lesser extent1. MUC4 belongs to the membrane-bound mucin class and is synthesized as a single chain that may be cleaved into two subunits tightly associated by non-covalent interactions. MUC4α is the extracellular mucin-like O-glycosylated subunit whereas MUC4β is the membrane-tethered subunit. MUC4β contains several functional domains, such as epidermal growth factor (EGF)-like domains, Von Willebrand factor type D (VWD) domain and a single transmembrane helix (TM) with a short cytoplasmic tail (CT)2 (Fig. 1). Membrane-bound mucins have been reported to be involved in pathological disorders and particularly in neoplastic development of cancers3,4.

MUC4 is indeed extensively regarded as an overexpressed pro-tumorigenic protein in epithelial cancers (such as lung, esophagus, colon, breast or pancreas)5 as it forms an oncogenic complex with ErbB2 receptor tyrosine kinase. The physical interaction between human MUC4 and ErbB2 involves a region of the extracellular domain of MUC4β composed of three EGF-like domains6. Two of the three EGF-like domains (EGF1 and EGF2), conserved throughout evolution, are structurally equivalent to human EGF and biologically active7–10. Moreover,

1Univ. Lille, Inserm, CHU Lille, UMR-S1172 – JPARC – Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000, Lille, France. 2CHU Lille, Banque de tissus, F-59000, Lille, France. 3Univ. Lille, EA 7365, GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France. 4These authors contributed equally: Isabelle Van Seuningen and Nicolas Lebègue. *email: nicolas.lebegue@univ-lille.fr
Among the ErbB family, ErbB2 appears as a keystone for ErbB signaling, as it forms the most potent complex. It is the favored dimerization forming partner and is a key feature for crosstalk between numerous cells signaling pathways. More than two decades of studies have shown that ErbB2 is one of the most common overexpressed oncogenic factors with a strong correlation between its amplification and the aggressiveness of the tumor. Numerous therapeutic approaches are targeting ErbB2, either based on antibodies targeting epitopes or on inhibitors targeting the catalytic domain. Unfortunately, these treatments are expensive, drive resistances, and are associated with several side effects and in pancreatic cancer they often fail. Next to that, in vitro and in vivo data in pancreatic cancer show that silencing of MUC4 expression results in altered tumor cell behavior, decreased growth, decreased ErbB2 expression and a marked reduction in metastatic incidence.

Prior studies with rat ortholog of MUC4 sialomucin complex have shown the beneficial effect of EGF1-like domain in the direct interaction with ErbB2. It is the favored dimerization forming partner, and it is a key feature for crosstalk between numerous cells signaling pathways. More than two decades of studies have shown that ErbB2 is one of the most common overexpressed oncogenic factors with a strong correlation between its amplification and the aggressiveness of the tumor. Numerous therapeutic approaches are targeting ErbB2, either based on antibodies targeting epitopes or on inhibitors targeting the catalytic domain. Unfortunately, these treatments are expensive, drive resistances, and are associated with several side effects and in pancreatic cancer they often fail. Next to that, in vitro and in vivo data in pancreatic cancer show that silencing of MUC4 expression results in altered tumor cell behavior, decreased growth, decreased ErbB2 expression and a marked reduction in metastatic incidence.

In this study, we aimed at developing in vitro biophysical assays for macromolecular binding characterization between MUC4 or MUC4EGF3+1-12 (minimal MUC4 sequence for interaction with ErbB2 as shown previously, Fig. 1) and ErbB2. In addition to providing an equilibrium dissociation constant \((K_d) \) value for the first time, our work led to methodologies allowing characterization at the molecular level of this complex in vitro. We also aimed at developing a challenging purification-free strategy for low-protein concentration samples (such as total cell lysates), to avoid time and resource consuming steps which are often labor consuming using MicroScale Thermophoresis (MST) technological approach.

MST is a powerful biophysical method which has already proved useful and efficient in our laboratory to characterize binding affinities of ligand-protein or protein-protein interactions as therapeutic targets. In this study, we provided, a highly focused method combining fluorescent fusion protein, cell lysate and recombinant ErbB2 by using MST.

Results.

MST studies.

Buffer optimization. To develop the MST strategy, fluorescent eGFP tag fused to MUC4\(^{\text{3}} \) was expressed in CHO-K1 cells and used without further purification. Commercially available recombinant ErbB2, used as the binding partner, remained label-free. CHO-K1 cell extracts expressing eGFP-MUC4\(^{\text{3}} \) fusion proteins were first obtained using RIPA buffer. Cell extracts were then diluted either with PBS or a specific Tris-based MST buffer provided by NanoTemper\(^{\text{8}} \) technologies. This led us to reach an optimum fluorescence level to approximately 500 FI units, with final concentrations between 30 and 50 nM that were calculated from a fluorescence calibration curve. As no significant interaction with recombinant ErbB2 was measured under these conditions (Fig. 2, green and pink curves), lysis buffers were changed to less stringent buffers as described in NanoTemper\(^{\text{8}} \) guidelines. Cell extraction and dilutions were then performed in optimized conditions, respectively with MPer and PBS buffers and led to a fitted binding curve with tolerance of 20% from unvarying fluorescence among the sixteen capillaries (Fig. 2, orange curve). These results indicated that buffers containing Tris (RIPA, MST) were not suited for such interactions studies whereas those containing bicine (MPer) combined with PBS were well-suited.

MST assay optimization. MST measurement conditions were next studied to find the optimum IR laser heating time and power. No sign of aggregation, adhesion or convection phenomenon were observed with laser off/on times of 30 s and 80% MST power. As a very well defined equilibrium state could be reached, the value for the \(K_d \) remained stable until the laser went off at 30 s (Fig. S1). Impact of MST power was also studied to provide \(K_d \) values with great fitted binding curves, weak background signals and amplitude signals 3-fold greater than the noise level (Fig. S2). 80% MST power gave the best response, in accordance with the literature describing MST experiments on PPIs in biological fluids.

Incubation time optimization. Since MUC4 is produced as a soluble protein in our conditions, this may lead to misfolded protein that needs pre-incubation time to better interact with ErbB2. Binding profile evolution was...
thus monitored after protein incubation (MUC4β or MUC4EGF3+1+2 and ErbB2) at room temperature and MST experiments carried out every half hour (Fig. S3). For both MUC4 proteins, incubation time was found optimal from a period ranging between three and five hours at room temperature or 24 h at 4 °C. This was followed by a loss of affinity as a result of lysate degradation. Thus, MUC4β and MUC4EGF3+1+2 behaved similarly.

Measurement of MUC4β-ErbB2-Fc interaction. Two negative cross-controls were performed to confirm the absence of non-specific interactions with non-relevant proteins. No binding curves occurred between recombinant ErbB2 and a non-relevant eGFP fusion protein (eGFP-PD-1) nor between eGFP-MUC4β and ErbB2-Fc-like domain-containing protein (PD-1-Fc) (Fig. 3). This curve displays the exact dose-response curve for the binding interaction between ErbB2-Fc and eGFP-MUC4β lysate, with the concentration of eGFP-MUC4β proteins kept constant around 33 nM while the ErbB2-Fc concentration varies from 1 µM and 0.05 nM. This binding curve yields to a K_d of 131 ± 24 nM on two distinct cell lysates and performed each in triplicate. In comparison the dose-response curves in two different buffers (orange and brown curves) for the binding interaction between ErbB2-6His and eGFP-MUC4β lysate. The concentrations of ErbB2-6His range from 20 µM to 0.61 nM.

Figure 2. Effect of different combinations of lysis/dilution buffer on the binding curve of MUC4-ErbB2 in MST. Combinations of lysis/dilution buffer are given in this order. Binding curves of eGFP-MUC4β with ErbB2-Fc at 23 °C in RIPA-MST (pink curve), in RIPA-PBS (green curve) or MPer-MST (dark red curve) lead to $K_d > 20$ µM with no saturation. The binding curve in MPer-PBS condition (orange) allowed to find a K_d value in the range of several hundred nanomolars.

Figure 3. Binding curves and specificity controls. No significant interaction ($K_d > 20$ µM) was found for MUC4β with a non-relevant protein containing the same Fc (dark red curve) than recombinant ErbB2 nor for ErbB2 with a non-relevant eGFP fusion protein (blue curve), in comparison with the specific interaction between MUC4β and ErbB2 (green curve). This curve displays the exact dose-response curve for the binding interaction between ErbB2-Fc and eGFP-MUC4β lysate, with the concentration of eGFP-MUC4β proteins kept constant around 33 nM while the ErbB2-Fc concentration varies from 1 µM and 0.05 nM. This binding curve yields to a K_d of 131 ± 24 nM on two distinct cell lysates and performed each in triplicate. In comparison the dose-response curves in two different buffers (orange and brown curves) for the binding interaction between ErbB2-6His and eGFP-MUC4β lysate. The concentrations of ErbB2-6His range from 20 µM to 0.61 nM.
ErbB2 as a ligand or in the original reverse model. These experiments led to two binding curves, with only one

Involvement of MUC4β EGF domains in the interaction. We showed previously that the physical interaction between MUC4β and ErbB2 had involved a region encompassing the three EGF-like domains present in MUC4β. To confirm this result, CHO-K1 cell lysates expressing eGFP-MUC4EGF3 were then used either with ErbB2 as a ligand or in the original reverse model. These experiments led to two binding curves, with only one binding event, which almost overlapped each other, providing Kd values of 79 ± 18 nM and 65 ± 14 nM, for the normal and reverse models respectively (Fig. 5).

Discussion
Membrane-bound mucins, which are overexpressed in numerous epithelial cancers, have been considered as oncogenic factors for many years but the molecular mechanisms by which they mediate their oncogenic activities at the membrane are still unknown. MUC4 and more recently MUC3 and MUC13 have been described as membrane partners for the well-known orphan receptor ErbB2, which is often overexpressed in numerous cancers. ErbB2 targeted therapies, using antibodies or catalytic inhibitors, remain poorly efficient in pancreatic cancer, and have also been associated with ill side effects in other cancers.

We chose to develop an MST assay since this technology, routinely used in our team, does not require immobilization, requires low sample amounts, and can be used for biological fluids. The only drawback is that it needs fluorescent labelling which may cause non-specific binding. This approach showed that MST is highly protein-dependent in terms of lysis and dilution buffer. Tris is the most common buffer used in biochemical and biophysical studies but appears to behave negatively for proper protein folding and promotes aggregation. Combination of bicine lysis buffer and phosphate dilution buffer is the most efficient for lowering those detrimental effects and this was confirmed in the setting up of our experiments. MUC4β recombinant protein was designed
with its transmembrane α helix and was produced as a cytoplasmic protein not anchored to the cell membrane. This type of production may lead to misfolded protein which then needs long incubation times to interact with recombinant human ErbB2-Fc chimera. Furthermore, this ErbB2-Fc is described as a disulfide-linked homodimeric protein expressing the extracellular domains that lacks the TM and CT part. These two characteristics may explain the long incubation times required to produce a perfectly folded complex but which could also be linked to the intrinsic property of the interaction between ErbB2 and MUC4.

This work provides the first interaction affinity measurement involving the oncogenic ErbB2 protein tyrosine kinase receptor and its membrane partner the MUC4 mucin. It also provides an optimized methodology suitable for studying ErbB2 with other potential membrane partners. In all MST experiments, two binding events were observed between MUC4 and ErbB2. The first event displayed high affinities ranging from 7 to 25 ± 5 nM and the second interaction phase providing lower affinities ranging from 55 ± 17 to 152 ± 80 nM. Interestingly, the binding curves between MUC4 and ErbB2 displayed only one interaction phase with K_d values ranging from 65 to 79 ± 18 nM. These results suggest that the second event of low affinity may represent an interaction between the non-EGF-like domains of MUC4 and ErbB2. This may involve the C-terminal transmembrane helix (TM) and its short cytoplasmic tail (CT) or the VWD domain at the N-terminal part of MUC4 (see Fig. 1). These results also confirm that the physical interaction between MUC4 and ErbB2 is mediated for the major part by the EGF-like domains of MUC4 and provides the first mechanistic insights about the MUC4-ErbB2 structure-function relationship. The presence of dual binding events will need further studies to determine whether other determinants are involved in the interaction and which role are played by the non-EGF-like domains.

Finally, the importance of the dimeric character of ErbB2 was studied as the ErbB family members are known to have a tight relationship between the dimerization and the binding of ligands. For this purpose, MST experiments involving MUC4 and recombinant monomeric ErbB2 (ErbB2-6His) were performed but did not lead to any binding events. This result rigorously confirmed, for the first time, that the MUC4-ErbB2 interaction displays similar behavior as the rest of the ErbB receptor family complexes which require dimeric forms to be active. This methodological approach could thus be used to study the interaction of the other membrane-bound mucins involved in cancer progression that are known to interact with ErbB receptors.

SPR, one of the main biophysical method broadly used in drug discovery, was tested as an orthogonal method to MST with the additional benefit of providing access to the kinetic parameters of the interaction. Unfortunately, SPR needed high ErbB2 sample consumption and did not appear to be adapted for studying the specific characteristics of the MUC4-ErbB2 complex allowing critical insights for EGF domain targeting, to better inhibit the complex formation. Recent studies have shown that MST is suited for compound screening with a better output than other methods and thus comfort us with this strategy. Having

Figure 5. Dose-response binding curves in normal and reverse mode for interaction of eGFP-MUC4 + ErbB2-Fc. The blue curve corresponds to the normal mode, following the fluorescence of the eGFP tagged protein with titration of ErbB2-Fc. The green curve corresponds to the reverse mode with ErbB2 tagged to be red fluorescent and titrated against eGFP-MUC4 + ErbB2-Fc. While the concentration of eGFP-MUC4 + ErbB2-Fc protein is kept constant at 33 nM, the ErbB2-Fc concentration ranged from 1 μM and 0.05 nM. While the concentration of ErbB2-Fc is kept constant at 50 nM, the eGFP-MUC4 + ErbB2-Fc concentration ranged from 4.9 nM to 370 nM. The normal mode binding curve yields a K_d of 79 ± 18 nM while the reverse mode yields a K_d of 65 ± 14 nM.
validated this method to measure \(K_d \) values, we will now continue our work aiming at developing small inhibitory therapeutic molecules targeting MUC4 by the means of MST fragment or chemical library screening to identify ligands. This should open new avenues regarding MUC4 potential as a therapeutic target in cancer.

Methods

Materials. Reagents were obtained as follows: human recombinant ErbB2 protein (5 mg, R&D systems, ref. 1129-ER), Amaxa® Cell Line Nucleofector® Kit T (Lonza), RIPA lysis buffer, MPer lysis buffer and Hal™ Protease Inhibitor Cocktail (Thermo Scientific™), MST buffer, Tween 20, Monolol His-Tag Labeling Kit RED-tris-NTA 2nd Generation and premium coated capillaries (Nanotemper™), recombinant MUC4β and MUC4EGF3+1+2 inside peGFP-C1 vector (ProteoGenix SAS Schiltigheim, France).

eGFP-MUC4 constructs. The sequence for the MUC4 (accession number #Q99102) protein was obtained from Uniprot. Only the 3 subunit was kept, without the four amino acids involved in cleavage (GDPH), in order to obtain a monomeric eGFP-MUC4β fusion protein (optimized for CHO-K1 expression and synthesized by ProteoGenix SAS). DNA sequence was cloned into the peGFP-C1 vector using the appropriate restriction sites, with kanamycin and neomycin resistance genes (Fig. S7). MUC4EGF3+1+2 construct was designed and produced by ProteoGenix SAS with the same specifications, considering the domain limits from Uniprotn (from the start of EGF1 domain to the end of EGF2 domain), based on data from our previous work

Plasmid amplification and purification. Mix & Go competent E. coli cells (Zymo Research) were used for the cloning of DNA fragments and the preparation of plasmids because they possess recA1 and endA1 gene mutations that increase the insert stability and the extracted DNA quality. The strains were stored at −80°C. The peGFP-C1 Kana/MUC4β and the peGFP-C1 Kana/MUC4EGF3+1+2 plasmids were transformed into E. coli. The cultures were scaled-up for Midi-prep and DNA was extracted with the Plasmid DNA purification kit (Nucleobond Xtra Midi/Maxi kit). The plasmid concentration was quantified using NanoDrop spectrophotometer (ThermoFischer Scientific). Optimized DNA concentration (2µgµL⁻¹) was used for cell transfection studies.

Cell culture. Transfected CHO-K1 cells were grown in Ham's F12 medium supplemented with 10% (v/v) heat-inactivated fetal bovine serum (Life Technologies) and 1% (v/v) Penicillin-Streptomycin (Life Technologies). Cells were incubated at 37°C in a humidified atmosphere with 5% CO2 and maintained using standard cell culture techniques.

Cell transfection. peGFP-C1 plasmids encoding MUC4β or MUC4EGF3+1+2 were transfected into CHO-K1 cells (ATCC® CCL-61®) using the Cell Line Nucleofector® Kit T. One million cells were used with 2µg of plasmid at 2µgµL⁻¹ in 100µL of the Nucleofector solution. After 48 h, appropriate selective pressure was applied to the culture medium for 14 days to select transfected cells. These latter were then separated as previously described by flow cytometry and kept for thermophoresis analyses.

Cell lysis. CHO-K1 peGFP-C1 transfected cells were treated at confluence. After washing with PBS and trypsinization, cells were centrifuged at 1400 rpm for 5 min. After removing the supernatant, cells were washed with 5 ml PBS then centrifuged again for 5 min. Pelleted cells were then lysed using 300µL of MPer-buffer containing 1% protease inhibitor cocktail (Hal™ Protease Inhibitor Cocktail, EDTA-free, Thermo Fisher Scientific) and incubated on ice for 30 min with vortexing every 15 min. The cell lysate was then processed three times in an ultrasonic bath for 30 s and after that centrifuged at 15000 rpm at 4°C to remove large cell aggregates and cell debris. The supernatant (cell lysate) was recovered and stored at 4°C for rapid and fresh use without freezing.

GFP titration. To calculate the concentration of the eGFP fusion protein in the cell lysate, an in-house calibration curve was used as previously described. The fluorescein calibration curve is carried out on the thermophoresis instrument by establishing a range with different concentration points (from 0 to 100nM). Each concentration is linked to an amount of fluorescein fluorescence (FI Units). The concentration of the labeled protein eGFP is determined using relationship that connects the Fluorescein Units to the eGFP protein concentration. The fluorescein fluorescence (FI Units) were given by the initial fluorescence (cap-scan), it was possible to convert this fluorescence in its fluorescein equivalent. Reported on the calibration curve, this value allowed a determination of the concentration of the eGFP labeled protein.

ErbB2 fluorescent tagging. 100 nM of the ErbB2-Fc protein, also possessing a 6His-tag, was mixed with 50 nM of His-Tag Labeling Kit RED-tris-NTA (NanoTemper Technologies). After 30 min incubation, the protein solution was readily usable for thermophoresis measurement.

MicroScale thermophoresis measurement. Dilution buffer was prepared with 1X PBS containing 0.05% (v/v) P20 (PBS-T). For the normal model, appropriate volume (5 to 10µL of ErbB2-Fc or PD-1-Fc (R&D systems) was diluted 1:1 in dilution buffer to make dilution series of titrated solutions. For the reverse model, 10µL of high-concentrated lysates (containing eGFP-MUC4β, eGFP-MUC4EGF3+1+2) was diluted 3:1 to make dilution series of titrated solutions. For the titrant solutions, the cell lysates containing eGFP-fused proteins (eGFP-MUC4β, eGFP-MUC4EGF3+1+2, eGFP-PD-1) or the tagged ErbB2 with red-NTA dye were diluted in PBS-T buffer at a normalized fluorescence of 1000 FU at 100 LED power. Then equivalent volume of titrant and titrated solution were mixed to a final volume of 10 or 20µL. The maximal concentration for ErbB2-Fc was 1µM and the maximal concentration for containing eGFP-fused proteins was 400 nM. The initial fluorescence for each sample was 500 FU at 100 LED power, corresponding to a constant concentration in eGFP-protein of 35 nM and 25 nM.
for ErbB2. For measurements, samples were filled into premium coated capillaries (NanoTemper Technologies). The measurements were performed on a NanoTemper Monolith NT.115 instrument (NanoTemper Technologies). The analysis was performed at 100% blue LED power for eGFP-fused; 100% red LED power for NTA dyed ErbB2 and all at 80% MST power, with a standard 5 s before, MST-on for 30 s and 5 s after MST-off.

Received: 20 March 2019; Accepted: 27 October 2019;
Published online: 13 November 2019

References
1. Corfield, A. P. Mucins: a biologically relevant glycan barrier in mucosal protection. Biochim Biophys. Acta. 1850(1), 236–52 (2015).
2. Duraisamy, S., Ramasamy, S., Kharbans, S., & Kufe, D. Distinct evolution of the human carcinoma-associated transmembrane mucins, MUC1, MUC4 AND MUC16. Gene 373, 28–34 (2006).
3. Jonckheere, N. & Van Seuningen, I. The membrane-bound mucins: How large O-glycoproteins play key roles in epithelial cancers.
4. Jonckheere, N. & Van Seuningen, I. The membrane-bound mucins: From cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie 92, 1–11 (2010).
5. Carraway, K. L., Farooq, A. & Carothers Carraway, C. A. The membrane mucin Muc4 as a modulator for the receptor tyrosine kinase ErbB2. Recent Progress in Cancer Research, 59–75 (2007).
6. Jonckheere, N. The mucin MUC4 and its membrane partner ErbB2 regulate biological properties of human CAPAN-2 pancreatic cancer cells via different signalling pathways. PLoS One 2 (7) (2012).
7. Carraway, K. L., Farooq, A. & Carothers Carraway, C. A. The membrane mucin Muc4 as a modulator for the receptor tyrosine kinase ErbB2. Recent Progress in Cancer Research, 59–75 (2007).
8. Komatsu, M. Synthesis and secretion of Muc4/sialomucin complex: implication of intracellular proteolysis. Biochem. J. 368(1), 41–8 (2002).
9. Moniaux, N. Complete sequence of the human mucin MUC4: a putative cell membrane-associated mucin. Biochem. J. 338, 325–33 (1999).
10. Jonckheere, N., Skryep, N., Frenois, F. & Van Seuningen, I. Membrane-bound mucin modular domains: from structure to function. Biochimie 95(6), 1077–86 (2013).
11. Rong-Hua, T. All EGF(ErbB) receptors have preformed homo- and heterodimeric structures in living cells. Maruyama Journal of Cell Science 121, 3207–17 (2008).
12. Yarden, Y. & Sliwkowski, M. X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell. Biol. 2(2), 127–37 (2001).
13. Hynes, N. E. & MacDonald, G. ErbB receptors and signaling pathways in cancer. Curr. Opin. Cell. Biol. 21(21), 177–84 (2009).
14. Cell signaling technology, Inc., ErbB / HER Signaling Interactive Pathway, Available at HYPERLINK, https://www.cellsignal.com/contents/science-pathway-research-tyrosine-kinase/erbb-her-signaling-pathway/pathways-erbb, https://www.cellsignal.com/contents/science-pathway-research-tyrosine-kinase/erbb-her-signaling-pathway/pathways-erbb (2016).
15. Gutierrez, C. & Schiff, R. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 1(135), 55–62 (2011).
16. Terasima, M. et al. Impact of expression of human epidermal growth factor receptors EGFR and ERB2 on survival in stage II/III gastric cancer. Clin. Cancer Res. 21(18), 5992–6000 (2012).
17. Wichmann, H. et al. Inverse prognostic impact of ErbB2 mRNA and protein expression level in tumors of soft tissue sarcoma patients. Strahlenther Onkol 180(10), 912–8 (2014).
18. Dittrich, A., Gautrey, H., Browell, D. & Tyson-Capper, A. The HER2 Signaling Network in Breast Cancer–Like a Spider in its Web. J. Mammary Gland Biol. 3–4(19), 253–70 (2014).
19. Skrypek, N. et al. The mucin MUC4 mediates gemcitabine resistance of human pancreatic cancer cells via the concentrating nucleoside transporter family. Oncogene 32(13), 1714–23 (2013).
20. Dokmanovic, M., King, K. E., Mohan, N., Endo, Y. & Wu, W. J. Cardiototoxicity of ErbB2-targeted therapies and its impact on drug development, a spotlight on trastuzumab. Expert. Opin. Drug Metab. Toxicol. 7(13), 755–66 (2017).
21. Singh, A. P., Moniaux, N., Chauhan, S. C., Meza, J. L. & Batra, S. K. Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res. 64(2), 62–30 (2004).
22. Singh, A. P., Chaturvedi, P. & Batra, S. K. Emerging roles of MUC4 in cancer: a novel target for diagnosis and therapy. Cancer Res. 2(67), 433–8 (2007).
23. Kleef, J. et al. Pancreatic cancer. Nat. Rev. Dis Primers 2, 16022 (2016).
24. Wienken, C. J. Protein-binding assays in biological liquids using microscale thermophoresis. Nat. Commun. 1(1) (2010).
25. Duhr, S. & Braun, D. Why molecules move along a temperature gradient. Nat. Rev. Mol. Cell. Biol. 2(2), 127–37 (2001).
26. Jarabeck-Willemsen, M., Wienken, C. J., Braun, D., Baaske, F. & Durrh, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Technol. 9(4), 342–53 (2011).
27. Gibault, F. et al. toward the Discovery of a Novel Class of YAP–TEAD Interaction Inhibitors by Virtual Screening Approach Targeting YAP–TEAD Protein–Protein Interface. Cancers (Basel) 10(5), 140 (2018).
28. Magnez, R. et al. PD-1/PD-L1 binding studies using MicroScale Thermophoresis. Sci. Rep. 1(7), 17623 (2017).
29. Khavrutskii, L. et al. Protein Purification-free method of binding affinity determination by microscale thermophoresis. J Vis Exp. 78, e50541 (2013).
30. Duncan, T. J., Watson, N. F. S., Al-attar, A. H., Scholefield, J. H. & Durrant, L. G., The role of MUC1 and MUC3 in the biology and prognosis of colorectal cancer. World J. Surg. Oncol. 5 (31) (2007).
31. Senapati, S. et al. Expression of intestinal MUC17 membrane-bound mucin in inflammatory and neoplastic diseases of the colon. J. Clin. Pathol. 63(63), 702–7 (2010).
32. Khan, S. et al. MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene 36(4), 491–500 (2017).
33. Albrecht, H. & Carraway, K. L. MUC1 and MUC4: Switching the Emphasis from Large to Small. Cancer Biother. Radiopharm. 32(6), 261–71 (2011).
34. Ho, S. B. et al. Cysteine-Rich Domains of Muc3 Intestinal Mucin Promote Cell Migration, Inhibit Apoptosis, and Accelerate Wound Healing. Gastroenterology 131, 1501–17 (2006).
35. Ho, S. B. et al. Activity of recombinant cysteine-rich domain proteins derived from the membrane-bound MUC17/Muc3 family mucins. Biochim. Biophys. Acta. 1800(7), 629–38 (2010).
36. Burstein, H. J. The Distinctive Nature of HER2-Positive Breast Cancers. N. Engl. J. Med. 363(5), 1562–4 (2005).
37. Kumar, V., Abbas, A. & Aster, J. Robbins basic pathology (Elsevier/Saunders, Philadelphia, 2013).
38. Buza, N., Roque, D. M. & Santin, A. D. HER2/neu in Endometrial Cancer: A Promising Therapeutic Target With Diagnostic Challenges. Pathol. Lab. Med. 3(138), 343–50 (2014).
39. Rüschoff, J. et al. HER2 testing in gastric cancer: a practical approach. Modern Pathol. 5(25), 637–50 (2012).
40. Chiosea, S. I. et al. Molecular characterization of apocrine salivary duct carcinoma. Am. J. Surg. Pathol. 39(4), 744–52 (2015).
41. Chou, H. S. Clinical and molecular characterization of HER2 amplified-pancreatic cancer. Genome Med. 5, 78 (2013).
42. Nahta, R., Yu, D., Hung, M. C., Hortobagyi, G. N. & Esteva, F. J. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat. Clin. Pract. Oncol. 3(5), 269–80 (2006).
43. Waddell, N. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495–501 (2015).
44. Metrick, M. A., Temple, J. E. & MacDonald, G. The effects of buffers and pH on the thermal stability, unfolding and substrate binding of RecA. Biophys. Chem. 184, 29–36 (2013).
45. Lim, J. Y. et al. Biophysical stability of hyFc fusion protein with regards to buffers and various excipients. Int. J. Biol. Macromol. 86, 622–9 (2016).
46. Jones, J. T., Akita, R. W. & Slivkowsk, M. X. Binding specificities and affinities of egf domains for ErbB receptors. FEBS Lett. 447, 227–31 (1999).
47. Otani, T. et al. Production of biologically active IgG hinge-tag soluble epidermal growth factor receptors (ErbB). Biotechnol. Lett. 32, 361–6 (2010).
48. Besman, N. J., Bagchi, A., Ferguson, K. M. & Lemmon, M. A. Complex Relationship between Ligand Binding and Dimerization in the Epidermal Growth Factor Receptor. Cell Rep 9, 1306–17 (2014).
49. Linke, P. An Automated Microscale Thermophoresis Screening Approach for Fragment-Based Lead Discovery. J. Biomol. Screen 21, 414–21 (2016).
50. Domainex, Unlocking the potential of your drug discovery program. Available at HYPERLINK, www.domainex.co.uk/sites/default/files/documents/LOW_RES_flyer_Fragment_Builder_A4_6pp_0217.pdf, www.domainex.co.uk/sites/default/files/documents/LOW_RES_flyer_Fragment_Builder_A4_6pp_0217.pdf (2017).

Acknowledgements
This work was supported by Inserm, CNRS, grants from ANR (DRUG_MUC4), SIRIC ONCOLille, Grant INCa-DGOS-Inserm 6041, from “Contrat de Plan Etat Région” CPER Cancer 2007–2013, from la Ligue Nationale Contre le Cancer (comité du Nord). Maxime Liberelle is the recipient of a PhD fellowship from Inserm and Fondation ARC pour la Recherche sur le Cancer. We are thankful to the flow cytometry core facility of BiCEL and to Dominique Huges for proof-reading this paper.

Author contributions
Conception and design: N.L., X.T., I.V.S., M.L. Development of methodology: M.L., R.M., X.T., S.R. Acquisition of data: M.L., C.Q., Y.B. Analysis and interpretation of data: M.L. Writing, review, and/or revision of the manuscript: M.L., N.L., I.V.S., P.M., X.T. Administrative, technical, or material support: A.S.D. Study supervision: N.L., P.M., I.V.S., X.T. Grant supply: I.V.S., N.L.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-53099-0.

Correspondence and requests for materials should be addressed to N.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019