Review

Treatment strategies and metabolic pathway regulation in urothelial cell carcinoma: a comprehensive review

Huang-Yu Yang 1,2,*, Chao-Yi Wu 3, Jia-Jin Chen 1 and Tao-Han, Lee 1,*

1 Department of Nephrology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan;

2 Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.

3 Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; joywucgu@cgmh.org.tw

* Correspondence: hyyang01@gmail.com (H.-Y.Y.) and b9602100@cgmh.org.tw (T.-H. L.)

Abstract: Cisplatin-based chemotherapy has long been viewed as the first-line chemotherapy for advanced and metastatic urothelial carcinoma (UC). However, many patients with UC have been classified as “cisplatin-ineligible patient”, which requires alternative chemotherapy due to their poor responses. In fact, vast majority of those who initially responded to cisplatin-based chemotherapy eventually progressed. Understanding of UC tumor immunology provided an immunopathogenic bases for immune checkpoint inhibitors, targeting PD-1 and CTLA-4, to treat cisplatin ineligible metastatic UC and patients with platinum-refractory metastatic UC. In 2020, data from the trail further showed that PD-L1 inhibitors benefit prolonged survival and progression-free survival as maintenance therapy. Besides immune-targeting therapies, manipulation of tumor microenvironment via metabolic pathways alternation, such as inhibiting tumor glycolysis, lactate accumulation and exogenous glutamine uptake, has been investigated in the past few years. In this comprehensive review, we started by introducing traditional chemotherapy of UC, and summarized current evidences supporting the use of immune checkpoint inhibitors and highlighted ongoing clinical trials. Lastly, we reviewed the tumor metabolic characteristic and the anti-tumor treatments targeting metabolic pathways.

Keywords: Urothelial carcinoma, immune checkpoint inhibitors, immunotherapy, tumor microenvironment, metabolic pathway

1. Epidemiology and pathogenesis of urothelial carcinoma

Bladder cancer is the most common malignancy involving the urinary system and a common malignancy worldwide. The American Cancer Society reported about 80,470 new cases of bladder cancer and about 17,670 deaths due to bladder cancer in 2019 [1]. Among the various histological types of bladder cancers, urothelial carcinoma of the bladder (UCB) is the most common and is referred to as upper tract urothelial carcinoma (UTUC) when its involvement site changes to the renal pelvis and ureter. Although UTUC is less common than UCB, it usually shows more invasive staging at diagnosis. Tobacco smoking is a well-known risk factor for both UCB and UTUC and is responsible for more than 50% of all urothelial carcinomas (UCs). In addition to smoking, aristolochic acid (AA) consumption has been identified as an important environmental risk factor for UCs in the past few
years. AA is a common component in Chinese medicines and some weight loss regimens in Western countries and has been linked to Chinese herbal nephropathy and Balkan endemic nephropathy. It generates AA-derived DNA adducts and is accompanied by a high frequency of A:T pair mutations of the TP53 gene [2-4]. According to a previous molecular epidemiology report, the ratio of UTUC to total UCs is significantly higher in endemic areas and more than half of these UTUC cases are possibly associated with AA exposure [5]. Before the development of effective chemotherapy strategies, UC was a lethal disease, with a median survival of 3–6 months; nearly all patients died from progression to locally advanced cancer or metastatic disease [6]. The survival outcomes of UC were greatly improved since the use of cisplatin-based chemotherapy as first-line therapy for both locally advanced and metastatic UC; however, more than 50% patients were considered ineligible for cisplatin-based chemotherapy due to compromised performance status, renal failure, or heart failure. Most cisplatin-ineligible patients had no choice but to receive alternative regimens that have less efficacy. This situation has changed in the past few years with the use of immune checkpoint inhibitors (ICIs) in the management of UCs. ICIs have shown positive results as first-line treatment in cisplatin-ineligible patients and second-line treatment in patients with platinum-refractory metastatic UC. In this comprehensive review, we have summarized the treatment strategies in UC, including traditional chemotherapy and immunotherapy, and provided new evidence regarding metabolic interventions in the management of malignancies.

2. Chemotherapy in urothelial carcinoma

For non-muscle-invasive UCB (stage Ta, T1, and Tis) or low-risk UTUC, conservative treatment including transurethral resection, kidney-sparing surgery, and intravesical therapy appears to be a rational choice considering the importance of preserving bladder and renal function [7, 8]. However, approximately 25% patients will progress to muscle-invasive disease or develop metastatic disease after initial conservative therapy, leading to the development of second primary tumors along the urothelium in the genitourinary tract, including the renal pelvis, ureters, urethra, and bladder. When the disease progresses to advanced stages or a metastatic phase, systemic chemotherapy becomes the standard approach; cisplatin-based chemotherapy is the initial choice of therapy for such patients. Gemcitabine plus cisplatin (GC) and dose-dense methotrexate with vinblastine, doxorubicin, and cisplatin (M-VAC) are the common chemotherapy regimens for metastatic UC and have shown similar survival benefit, with a median overall survival of approximately 13.8 and 14.8 months, respectively [6, 9, 10]. Although M-VAC therapy has a response rate of 72% for metastatic disease, its high toxicity and low tolerability have been a major concern. Conversely, the GC regimen appears to have a better safety profile and higher tolerability than the M-VAC regimen, but in a previous report, nearly 30% patients experienced anemia and 50% patients developed thrombocytopenia after GC therapy [6, 10, 11]. In 2011, Galsky et al. defined that cisplatin-ineligible patients have one of the following characteristics: Eastern Cooperative Oncology Group (ECOG) performance status ≥ 2, neuropathy grade ≥2 or hearing loss, New York Heart Association Classification III heart failure or higher, or creatinine clearance <60 mL/min [12-16]. Subsequently, this criterion became an important index to evaluate whether cisplatin-based chemotherapy is suitable for patients. However, radical nephroureterectomy with bladder cuff excision with or without template preservation is the standard of care for high-risk UTUC; however, renal function preservation is more challenging in radical nephroureterectomy and patients undergoing this procedure are often unsuitable for cisplatin-based chemotherapy. In a study by Kaag et al., the mean estimated glomerular filtration rate (eGFR) declined significantly after nephroureterectomy; the mean eGFR decreased by 24% compared to the preoperative level. Further, patients eligible for chemotherapy decreased from 49% to 19% after operation using eGFR of 60 mL/min per 1.73 m² as the cutoff value [17].

For cisplatin-ineligible patients, carboplatin-based treatment is considered an alternative; however, carboplatin-based chemotherapy shows disappointing results compared to the cisplatin-based treatment. A study reported that carboplatin-based treatment had a significantly lower percentage of overall response and complete response than cisplatin-based regimen [18, 19]. Considering the poor response showed by alternative chemotherapy regimens in cisplatin-ineligible
patients and a vast majority of cisplatin-eligible patients eventually progress despite objective response in initial cisplatin-based chemotherapy, novel therapy agents had been sought for the treatment of locally advanced and metastatic UC, and ICIs have become the most promising alternative therapy in the past few years.

3. Immunotherapy in urothelial carcinoma

By understanding the immune system and interaction between immune cells and tumor cells, immunotherapy for cancer patients has tremendously expanded in the past decades. In normal physiology, the interaction between antigen-presenting cells (APCs) and T cells is well controlled by a complex and rigorous system, the immune checkpoint system. This system suppresses the adaptive immune response in a timely manner to prevent incorrect or prolonged T cell activation. The co-stimulatory or inhibitory proteins on APCs are key components of the immune checkpoint system that determine the fate of T cells after antigen presentation. For example, when protein CD80/86 on APCs bind to CD28 protein on T cells, a stimulatory response is triggered, leading to T cell proliferation. In contrast, the inhibition cascade is activated when the same protein, CD80/86, binds to the cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) or when the programmed death ligand 1 (PD-L1) on APCs binds to programmed death 1 (PD-1) protein on the T cells. Based on the current understanding of cancer immunity, cancer cells may evade the anti-tumor response by exploiting these immune checkpoint pathways and creating a tumor microenvironment (TME) that ultimately impairs immune cell activation and function. ICIs, which have a different effect from the direct cytotoxic effects of traditional chemotherapy, aim to rejuvenate T cell anti-tumor response by using antibodies or recombinant ligands to block malignant cell-induced inhibitory pathways [20-23].

The antagonistic antibodies of CTLA-4 (ipilimumab and tremelimumab) and PD-1 receptor (nivolumab, pembrolizumab, and pidilizumab) or its ligand PD-L1 (atezolizumab, avelumab, and durvalumab) are two classes of ICIs approved by the United States Food and Drug Administration (FDA). Tissue-based assays in various studies suggest that tumors with larger sizes, aggressive behaviors, and poor outcomes are associated with PD-L1 expression [21, 24, 25]. Other studies propose that ICI treatment would be more suitable in malignancies with a high somatic mutation rate because abundant tumor-specific neo-antigens might induce a rigorous immune response post T cell rejuvenation by ICIs. Based on these findings, ICIs appear to be an excellent choice for advanced and metastatic UCs, which not only exhibit aggressive clinical behavior but also are well-known highly antigenic malignancies harboring the fourth highest mutation rate among all cancers [26].

3.1. Immunotherapy: PD-1 signal inhibitor

In 1999, Tasuku Honjo et al. demonstrated that receptor PD-1 is an immune checkpoint based on the finding that PD-1 knockout mice develop autoimmune diseases. The ligands of PD-1, PD-L1 and PD-L2, were identified in 2000 and 2001, respectively. By understanding that tumors can escape host immune surveillance by expressing PD-L1, blocking the PD-1/PD-L1 signaling pathway to improve the outcomes in patients with malignancies seems rational [27-29]. In 2006, the first clinical study using PD-1 signal inhibitor (MDX-1106) against treatment-resistant solid tumors showed improved anti-tumor efficacy and high tolerability [30]. To date, there are nine types of PD-1 signal inhibitors from eight pharmaceutical companies, and more than 500 clinical trials are examining their efficacy in different types of solid and hematological malignancies.

Among these nine types, the FDA has approved two PD-1 signal inhibitors as first-line therapy and five PD-1 signal inhibitors as second-line therapy for locally advanced and metastatic UC. Atezolizumab and pembrolizumab were both approved as first-line therapies for cisplatin-ineligible or platinum-ineligible patients with PD-L1-positive advanced or metastatic UC. Atezolizumab, a humanized engineered immunoglobulin G1 monoclonal antibody that inhibits binding to PD-L1, was first used as first-line treatment for cisplatin-ineligible patients with metastatic UC in the IMVigor210 trial in 2016. Most cisplatin-ineligible patients had renal impairment and low ECOG performance and some had a history of hearing impairment and peripheral neuropathy. In this trial, atezolizumab showed promising response durability and overall survival with low clinically relevant toxicities in
metastatic UC [31]. Almost at the same time, the anti-PD-1 antibody pembrolizumab was investigated for cisplatin-ineligible patients with metastatic UC in the KEYNOTE-052 trial, which showed a 27% complete response rate with acceptable tolerability. The PD-L1 expression level was examined in the KEYNOTE-052 trial, and prolonged median overall survival was observed in patients with PD-L1 combined positive scores ≥10 [32].

Following the failure of platinum-based therapy in patients with advanced or metastatic UC, the FDA approved atezolizumab, avelumab, durvalumab, nivolumab, and pembrolizumab as second-line treatment. IMvigor 210 reported that atezolizumab showed promising results with respect to overall survival and progression-free survival in platinum-refractory metastatic UC, and the result was even better in patients with higher levels of PD-L1 positive immune cells [33]. IMvior211, a phase III clinical trial, compared atezolizumab to the investigator’s choice of therapy (taxanes or vinflunine) for platinum-refractory metastatic UC; despite failing to meet the primary endpoint of the study, the exploratory analysis showed durable response and survival benefits of atezolizumab in the intention to treat population [34]. Furthermore, pembrolizumab was reported to have a prolonged overall survival and lower treatment-related adverse events rate as compared to chemotherapy (paclitaxel, docetaxel, or vinflunine) for platinum-refractory advanced or metastatic UC in the KEYNOTE-045 trial. In this study, pembrolizumab prolonged overall survival regardless of PD-L1 status [35]. Durvalumab, a selective, high-affinity, engineered human monoclonal antibody blocking PD-L1 binding to PD-1, was used in patients with metastatic UC who progressed after the failure of platinum-based chemotherapy in the NCT01693562 clinical trial. In this single-arm phase I/II trial, durvalumab showed favorable results in treatment response rate and overall survival regardless of PD-L1 expression level. Nivolumab, a human monoclonal antibody targeting PD-1, was first reported to have a durable clinical response and manageable safety profile in platinum-refractory advanced or metastatic UC in the CheckMate 032 trial, and significant improvement in overall survival among different PD-L1 expression levels was then observed in the CheckMate 275 study [36, 37]. In the JAVELIN solid tumor study, Avelumab, a human immunoglobulin G1 anti-PD-L1 antibody, showed anti-tumor activity in platinum-refractory or cisplatin-ineligible patients, with 40% objective response rate in PD-L1 positive tumor cells in >5% of patients and 9% in PD-L1 positive cells in <5% of patients [38].

Although PD-1 signaling inhibitors showed promising results as monotherapy, a low long-term durable objective response rate and high relapse rate warrants alternative approaches for metastatic UC. Several studies have shown that the cytotoxic effect of chemotherapy might enhance the efficacy of checkpoint inhibitors [39-43]. In IMvigor310, a double-blind phase III trial, combination therapy with atezolizumab plus platinum-based chemotherapy showed significant prolongation of progression-free survival and enhanced interim overall survival and complete response rate [44]. However, another phase III trial, KEYNOTE-361, which compared pembrolizumab with chemotherapy and pembrolizumab alone, failed to meet the primary endpoint, and showed that combination therapy was not superior to pembrolizumab monotherapy with respect to both overall survival and progression-free survival [45]. Currently, ongoing trials are investigating the efficacy of a combination of systemic chemotherapy and checkpoint inhibitors in locally advanced and metastatic UC. Future application of these potential regimens will be determined by the results of these clinical trials.

Besides being the first-line treatment for cisplatin-ineligible or platinum-ineligible metastatic UC and second-line treatment for patients with platinum-refractory metastatic UC, recent reports have revealed that immune checkpoint therapy may also play a role in maintenance therapy. A recently published phase III trial, JAVELIN bladder 100, reported that using avelumab, an anti-PD-L1, as maintenance therapy for patients with locally advanced or metastatic UCB experienced an objective response or stable disease after four to six cycles of GC regimen prolonged overall survival and progression-free survival compared to the best supportive care. This encourages results were observed across all prespecified subgroups regardless of PD-L1 expression status [46, 47]. Based on these data, in 2020, Avelumab was approved by FDA for maintenance therapy in metastatic UC not progressed after initial platinum-based chemotherapy.
Table 1. The indication and therapeutic regimen of programmed death 1 (PD-1) signal inhibitor approved by U.S Food and Drug Administration (FDA)

Indication	PD-1 signal inhibitor
First-line therapy	Atezolizumab
	Pembrolizumab
cisplatin ineligible or platinum ineligible patients with PD-L1 positive advanced or metastatic UC	
Second line therapy	Atezolizumab
	Avelumab
advanced or metastatic UC following failure platinum-based therapy	
Maintenance therapy	Durvalumab
	Nivolumab
local advanced or metastatic UC with objective response or stable disease after four to six cycle of GC regimen	
	Pembrolizumab
	Avelumab

UC: urothelial carcinoma; GC regimen: Gemcitabine plus cisplatin regimen

3.2. Immunotherapy: CTLA-4 pathway inhibitor

In 1988, CTLA-4 was first recognized as a critical molecule in maintaining T cell homeostasis and tolerance by competing with CD28 for CD80/86 and downregulating T cell receptor (TCR) signaling. The TCR signaling pathway activated by CD28-CD80/86 promotes cytokine interleukin-2 (IL-2) production and leads T cell into the cell cycle entry, T-helper-cell differentiation, and immunoglobulin isotype switching; therefore, CTLA-4 induces T cell anergy by blocking these pathways [48-50]. One theory suggests that the poor immunogenicity of many malignancies may be because these tumors cannot provide a signal strong enough for CD28-mediated co-stimulation, which is necessary to fully activate T cells. Based on this theory, Leach et al. reported that the administration of CTLA-4 antibodies can induce an effective anti-tumor response by blocking the inhibitory effects of CTLA-4 [13, 51, 52]. To date, there are two CTLA-4 inhibitors being examined for their efficacy in various malignancies in several clinical trials.

Tremelimumab, a monoclonal antibody against CTLA-4, has been used as monotherapy for patients with platinum-refractory locally advanced or metastatic UC in the NCT02527434 trial. In this phase II trial, 32 patients with metastatic UC were enrolled and 750 mg tremelimumab was given via intravenous infusion every four weeks for seven cycles and then every 12 weeks for two additional cycles, which resulted in better clinical activity with an objective response rate of 18.8% [53]. There seems to be similar clinical efficacy between CTLA-4 blocking with tremelimumab and PD-1/PD-L1 inhibitor in platinum-refractory UC; however, patients tend to experience more side effects with CTLA-4 inhibition according to the American Association for Cancer Research [54]. Further validation from studies with larger numbers of patients is needed before clinical application.

Considering that ICIIs targeting the CTLA-4 and PD-1/PD-L1 pathways have distinct mechanisms of T cell response, combination therapies targeting both these pathways to manipulate different phases of immune responses may improve antitumor efficacy.[55-58] Based on this theory, synergistic immunotherapeutic activity of combined inhibition of the CTLA-4 and PD-1/PD-L1 pathways were tested. The CheckMate 032 trial compared nivolumab monotherapy to combination therapy with nivolumab and ipilimumab in platinum-refractory patients, and the combination therapy group was further divided by different ICI dosages. Patients received either 3 mg/kg nivolumab plus 1 mg/kg ipilimumab every three weeks for four doses followed by 3 mg/kg nivolumab monotherapy every two weeks or 1 mg/kg nivolumab plus 3 mg/kg ipilimumab every three weeks for four doses followed by 3 mg/kg nivolumab monotherapy every two weeks. The combination therapy group showed a higher objective response rate to nivolumab monotherapy, and within the combination therapy group, patients who received higher ipilimumab doses showed better objective response rates and complete response rates. No significant toxicities induced by
combination therapy were reported in this study [59]. Based on these results, a phase III trial, CheckMate 901 (NCT03036098), comparing nivolumab with or without ipilimumab with cisplatin or carboplatin-based chemotherapy for metastatic UC in the first-line setting is ongoing. Furthermore, therapy with durvalumab alone or in combination with tremelimumab is being investigated in the NCT02527434 phase II trial for evaluating its safety and efficacy, and durvalumab and tremelimumab combination therapy for patients with stage IV bladder cancer is being investigated in the NCT02516241 phase III trial.

4. Metabolic intervention as cancer treatment

ICIs showed promising clinical activity and durable side effects in locally advanced or metastatic UC, as mentioned above. The overall response rate was still around 30%, according to a previous report [60]. Several studies have revealed a lack of correlation between T cell infiltration in solid tumors, response to immunotherapy, and density of immunogenic antigens, suggesting that there are antigen-independent factors that influence the anti-tumor response [61-64]. Based on the experimental and clinical evidences, the TME might be an antigen-independent factor that influences immune surveillance. TME is characterized by a complex interplay between tumor cells and their surrounding neighbors, including stromal cells, extracellular matrix, adipocytes, and mesenchymal stem cells. TME compromises function and the fate of tumor-infiltrating immune cells by creating a three-dimensional structure favoring immunological tolerance and reducing anti-tumor efficacy even with immunotherapeutic intervention. All the components within TME, including low pH, hypoxia, nutrient-limiting metabolic competition, and nitric oxide (NO) production work together to impair T cell function [20, 65-69].

In 1923, Warburg et al. observed that tumor cells exhibit high glucose uptake and favor glycolysis as energy supplement even with sufficient oxygen, which was coined as the Warburg effect [70-73]. However, glycolysis is also required by T cells, macrophages, and APCs; therefore, competitive TME impairs these immune cells by limiting their glycolytic capacity. Sirtuin 6 (SIRT6), a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, is involved in glucose homeostasis as an epigenetic regulator. SIRT6 deficiency stimulates hypoxia-inducible factor 1α (HIF1α) activity, which increases the expression of glycolysis-related genes, such as lactate dehydrogenase (LDH), glucose transporters (GLUTs), and pyruvate dehydrogenase kinases (PDKs) [74-76]. Several studies have revealed that various human cancers, especially pancreatic and colorectal cancer, are SIRT6 deficient, and restoring SIRT6 activity might be a promising therapeutic strategy in these cases [77-79]. Ellagic acid, a common polyphenol in berries, had been reported to have anti-proliferative effect on human colon adenocarcinoma cells by inhibiting glycolysis via increasing the deacetylase activity of SIRT6 [80-82]. This suggests that targeting SIRT6 activity might be a new insight into the development of anti-cancer therapies. According to the Warburg effect, tumor cells favor glycolysis, which leads to excessive lactate formation even under sufficient oxygen. Lactate, the main metabolite of tumor cells and cancer-associated fibroblasts, is largely accumulated in the TME and has been seen as one of the key components driving immunosuppression and favoring tumor growth [83-86]. Growing evidence indicates that the proton-coupled lactate efflux from cancer cells or stromal cells preserves the acidic phenotype and increases tumor progression by modulating the TME, which

Pathway	Mechanism	Drugs	Trial(Phase)/Experimental model	Result
Immune checkpoint inhibitor				
PD-1 pathway	blocking PD-L1 and PD-1 interaction	Atezolizumab	NCT02108652 (IMvigor 210, phase II)	FDA-approved first-line and second-line therapy of UC
			NCT02302807 (IMvior211, phase III)	
Avelumab NCT01772004 (JAVELIN, phase III) FDA-approved second-line and maintenance therapy of UC

Durvalumab NCT01693562 (Study 1108, phase I/II) FDA-approved second-line therapy of UC

Nivolumab NCT01928394 (CheckMate 032, phase I/II) FDA-approved second-line therapy of UC

NCT02387996 (CheckMate-275, phase II)

Pembrolizumab NCT02256436 (KEYNOTE-045, phase III) FDA-approved first-line and second-line therapy of UC

CTLA-4 pathway blocking CTLA-4 and CD80/86 interaction

Tremelimumab NCT02527434 (phase II) comparable efficacy as PD-1/PD-L1 inhibitor, but more side effects

Ipilimumab - -

Combination therapy of PD-1 and CTLA-4 pathway blocking on PD-1 and CTLA-4 pathway

Nivolumab NCT01928394 (CheckMate 032, phase I/II) higher objective response rate to nivolumab monotherapy

NCT03036098 (CheckMate 901, phase III) ongoing

Metabolic intervention

Pathway	Target	Method	Model	Effect
Glycolysis	inhibit glycolysis via increasing deacetylase activity of SIRT6	Ellagic acid	Cellular model	anti-tumor effect
Lactate transport and metabolic	inhibit SLC16A1 and SLC16A7	AZ3965	NCT01791595 (phase I)	ongoing
		a-cyano-4-hydroxycinnamate	Cellular model	inhibit tumor proliferation and induce apoptosis
	LDHA inhibitor	Galloflavin	Cellular model	reduce cancer cells growth and induced apoptosis
Glutamine transport and metabolic	glutamine antagonist	6-diazo-5-oxo-L-norleucine	Cellular model	anti-tumor effect
	glutaminase inhibitor	CB-839	NCT03875313 (phase I/II)	ongoing

FDA: U.S Food and Drug Administration; UC: urothelial carcinoma; LDHA: lactate dehydrogenase A

includes cell invasion, angiogenesis, survival signaling, and escaping immune surveillance. An in vitro study reported that human and mouse tumor-specific CD8+ cells reduce cytolytic activity and cytokine production when extracellular pH is lower than 6.0–6.5 [87, 88]. By understanding these mechanisms, molecule targets for lactate transporters, SLC16A1 or SLC16A7, to reduce lactate levels in tumors have been discovered. AZ3965 and α-cyano-4-hydroxycinnamate, small molecules blocking lactate transporters, have been reported to be successful in several types of malignancies including Burkitt lymphoma, breast cancer, small cell lung cancer, and glioblastoma. Another therapeutic approach is to block the conversion of pyruvate to lactate by inhibiting lactate dehydrogenase A (LDHA) [89, 90]. Negative correlation between LDHA expression and T cell activation markers were noted in mouse tumor models, and further studies revealed that LDHA
targeting therapy can re-activate T cell-mediated and natural killer cell mediated immune surveillance [91]. N-hydroxyindole and galloflavin, (LDH) inhibitors, have been shown encourage efficacy on reducing cancer cell growth, and induced apoptosis [92, 93].

In addition to favoring glycolysis, many cancer cells depend on an exogenous supply of glutamine. Glutamine, a non-essential amino acid in mammalian cells, is an important fuel for the tricarboxylic acid cycle, an important source of reduced nitrogen for biosynthesis, and a precursor of nucleotide and lipid synthesis. Although most mammalian cells can synthesize glutamine de novo via glutamine synthetase (GLUL), several types of cancer cells only express low levels of GLUL and need to depend on exogenous glutamine supplementation, which can be catalyzed in the mitochondria via glutaminase [94-97]. Glutamine metabolism is a key component not only for tumor survival but also for regulating the balance between effector T cells and T regulatory cells. Studies have revealed that reduction of glutamine levels in culture media reduced mTORC1 activity and coincided with effector T cell defects, suggesting that the glutamine-depleted TME would suppress anti-tumor immunity [65, 98-101]. In the recent years, by understanding the high demand of glutamine in cancer cells and its regulatory effect on the immune system, the glutamine antagonist 6-diazo-5-oxo-L-norleucine has been re-evaluated as an anti-cancer therapy, especially in glutamine-dependent tumors [102]. Furthermore, CB-839, a potent selective and orally bioavailable inhibitor of glutaminase, showed anti-proliferative activity on tumor cell lines and is being evaluated in clinical trials for the treatment of glutamine-dependent malignancies [103-105]. The metabolic characteristic of dependence on exogenous supplement of glutamine in tumors suggests that surrounding neighbors might play a key role in glutamine supplement. As the cancer grows, they recruit stromal cells as part of the TME; these reactive stromal cells co-evolve and continually interact with cancer cells, becoming an integral part of their physiology and indispensable for their survival. In 2016, Yang et al. identified that reactive stromal cells are reprogrammed through an upregulated glutamine anabolic pathway, which allows them to harness carbon and nitrogen from non-canonical sources to synthesize glutamine in nutrient-deprived TME, and become the exogenous glutamine source for tumor development. In a mouse tumor model, co-targeting glutamine synthetase in stromal cells and glutaminase in cancer cells can reduce tumor size weight and prevent metastasis [95]. These successful findings in animal models or preclinical trials suggest that metabolic crosstalk in the TME may offer a unique opportunity to restore the host’s anti-tumor immunity.

5. Conclusions

We introduce traditional chemotherapy of UC, followed by current evidences supporting the use of immune checkpoint inhibitors and ongoing clinical trials. Moreover, we reviewed the tumor metabolic characteristic and the anti-tumor treatments via metabolic pathways. A better strategy for UC management might be achieved by boosting T cell responses via ICIs and modulating cancer metabolism together. Further research in immunotherapy, including ICIs and immunometabolism intervention, is expected to provide new drug targets that modulate immune cells in a more selective way, providing more potent and less toxic choices for cancer management.

Funding: This review article was supported by grants from the Chang Gung Memorial Hospital (CMRPG3F1183).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

UTUC Upper tract urothelial carcinoma
M-VAC Methotrexate, Vinblastine, Doxorubicin and Cisplatin
eGFR Estimated glomerular filtration rate
CTLA-4 Cytotoxic T lymphocyte antigen-4
LDHA Lactate dehydrogenase A
GLUT Glucose transporters
GLUL Glutamine synthetase
PD-L1 Programmed death ligand 1
UCB Urothelial carcinoma of the bladder
APC Antigen presenting cell
PD-1 Programmed death 1
FDA Food and Drug Administration
TME Tumor microenvironment
UC Urothelial carcinoma
AA Aristolochic acid
ICI Immune checkpoint inhibitor
GC Gemcitabine plus cisplatin
NO Nitrous oxide

References

1. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2019. CA Cancer J Clin, 2019. 69(1): p. 7-34.
2. Yang, H.Y., et al., Aristolochic Acid and Immunotherapy for Urothelial Carcinoma: Directions for unmet Needs. Int J Mol Sci, 2019. 20(13).
3. Chen, C.-H., et al., Aristolochic acid-associated urothelial cancer in Taiwan. Proceedings of the National Academy of Sciences, 2012: p. 201119920.
4. Grollman, A.P., et al., Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proceedings of the National Academy of Sciences, 2007. 104(29): p. 12129-12134.
5. Chen, C.H., et al., Aristolochic acid-associated urothelial cancer in Taiwan. Proc Natl Acad Sci U S A, 2012. 109(21): p. 8241-6.
6. von der Maase, H., et al., Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol, 2000. 18(17): p. 3068-77.
7. Hendrickson, K. and J.A. Witjes, Current strategies for first and second line intravesical therapy for nonmuscle invasive bladder cancer. Curr Opin Urol, 2007. 17(5): p. 352-7.
8. Steinbach, F. and F. Schuster, [Intravesical adjuvant chemotherapy for superficial bladder cancer -- results of a survey in Saxony]. Aktuelle Urol, 2005. 36(4): p. 337-41.
9. Kaufman, D., et al., Phase II trial of gemcitabine plus cisplatin in patients with metastatic urothelial cancer. J Clin Oncol, 2000. 18(9): p. 1921-7.
10. Lehmann, J., et al., [Gemcitabine/cisplatin vs. MVAC. 5 year survival outcome of the phase III study of chemotherapy of advanced urothelial carcinoma in Germany]. Urologe A, 2003. 42(8): p. 1074-86.
11. Wang, Y., et al., Different Chemotherapy Regimens in the Management of Advanced or Metastatic Urothelial Cancer: a Bayesian Network Meta-Analysis of Randomized Controlled Trials. Cell Physiol Biochem, 2018. 50(1): p. 1-14.
12. Bellmunt, J., N. Mottet, and M. De Santis, Urothelial carcinoma management in elderly or unfit patients. EJC Suppl, 2016. 14(1): p. 1-20.
13. Kim, T.J., K.S. Cho, and K.C. Koo, Current Status and Future Perspectives of Immunotherapy for Locally Advanced or Metastatic Urothelial Carcinoma: A Comprehensive Review. Cancers (Basel), 2020. 12(1).
14. Thompson, R.H., et al., Eligibility for neoadjuvant/adjuvant cisplatin-based chemotherapy among radical cystectomy patients. BJU Int, 2014. 113(5b): p. E17-21.

15. Dash, A., et al., Impact of renal impairment on eligibility for adjuvant cisplatin-based chemotherapy in patients with urothelial carcinoma of the bladder. Cancer, 2006. 107(3): p. 506-13.

16. Galsky, M.D., et al., Treatment of patients with metastatic urothelial cancer "unfit" for Cisplatin-based chemotherapy. J Clin Oncol, 2011. 29(17): p. 2432-8.

17. Kaag, M.G., et al., Changes in renal function following nephroureterectomy may affect the use of perioperative chemotherapy. Eur Urol, 2010. 58(4): p. 581-7.

18. Galsky, M.D., et al., Comparative effectiveness of cisplatin-based and carboplatin-based chemotherapy for treatment of advanced urothelial carcinoma. Ann Oncol, 2012. 23(2): p. 406-10.

19. Small, E.J., et al., A carboplatin-based regimen for the treatment of patients with advanced transitional cell carcinoma of the urothelium. Cancer, 1996. 78(8): p. 1775-80.

20. Riera-Domingo, C., et al., Immunity, Hypoxia, and Metabolism-the Menage a Trois of Cancer: Implications for Immunotherapy. Physiol Rev, 2020. 100(1): p. 1-102.

21. Koh, J., et al., Clinicopathologic analysis of programmed cell death-1 and programmed cell death-ligand 1 and 2 expressions in pulmonary adenocarcinoma: comparison with histology and driver oncogenic alteration status. Mod Pathol, 2015. 28(9): p. 1154-66.

22. Friedman, C.F., T.A. Proverbs-Singh, and M.A. Postow, Treatment of the Immune-Related Adverse Effects of Immune Checkpoint Inhibitors: A Review. JAMA Oncology, 2016. 2(10): p. 1346-1353.

23. Dorado, B., et al., Autocrine IL-4 gene regulation at late phases of TCR activation in differentiated Th2 cells. J Immunol, 2002. 169(6): p. 3030-7.

24. Iwai, Y., et al., Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci, 2017. 24(1): p. 26.

25. Lawrence, M.S., et al., Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature, 2013. 499(7457): p. 214-218.

26. Vuky, J., et al., Long-Term Outcomes in KEYNOTE-052: Phase II Study Investigating First-Line Pembrolizumab in Cisplatin-Ineligible Patients With Locally Advanced or Metastatic Urothelial Cancer. J Clin Oncol, 2020. 38(23): p. 2658-2666.

27. Rosenberg, J.E., et al., Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet, 2016. 387(10031): p. 1909-20.
34. Department of Error. Lancet, 2018. 392(10156): p. 1402.
35. Bellmunt, J., et al., Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N Engl J Med, 2017. 376(11): p. 1015-1026.
36. Sharma, P., et al., Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N Engl J Med, 2017. 376(11): p. 1015-1026.
37. Sharma, P., et al., Pembrolizumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol, 2016. 17(11): p. 1590-1598.
38. Sharma, P., et al., Pembrolizumab in metastatic urothelial carcinoma after platinum failure (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol, 2017. 18(3): p. 312-322.
39. Patel, M.R., et al., Avelumab in metastatic urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): pooled results from two expansion cohorts of an open-label, phase 1 trial. Lancet Oncol, 2018. 19(1): p. 51-64.
40. Bailly, C., X. Thur, and B. Quesnel, Combined cytotoxic chemotherapy and immunotherapy of cancer: modern times. NAR Cancer, 2020. 2(1).
41. Galluzzi, L., et al., Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nature Reviews Clinical Oncology, 2020.
42. Seliger, B., Combinatorial Approaches With Checkpoint Inhibitors to Enhance Anti-tumor Immunity. Frontiers in Immunology, 2019. 10(999).
43. Shulman, S.T., Changes Afoot, and the Pediatric SUPPORT Decision. Pediatr Ann, 2015. 44(12): p. 509-11.
44. Galsky, M.D., et al., Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet, 2020. 395(10236): p. 1547-1557.
45. Merck Provides Update on Phase 3 KEYNOTE-361 Trial Evaluating KEYTRUDA® (pembrolizumab) as Monotherapy and in Combination with Chemotherapy in Patients with Advanced or Metastatic Urothelial Carcinoma, in Businesswire. 2020, Pamela Eisele, Kristen Drake.
46. Avelumab Outduels Supportive Care for Urothelial Cancer. Cancer Discov, 2020. 10(7): p. OF4.
47. Powles, T., et al., Avelumab Maintenance Therapy for Advanced or Metastatic Urothelial Carcinoma. N Engl J Med, 2020. 383(13): p. 1218-1230.
48. Rotte, A., Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res, 2019. 38(1): p. 255.
49. Carosella, E.D., et al., A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G. Eur Urol, 2015. 68(2): p. 267-79.
50. Gu, L., et al., The safety and tolerability of combined immune checkpoint inhibitors (anti-PD-1/PD-L1 plus anti-CTLA-4): a systematic review and meta-analysis. BMC Cancer, 2019. 19(1): p. 559.
51. Leach, D.R., M.F. Krummel, and J.P. Allison, Enhancement of antitumor immunity by CTLA-4 blockade. Science, 1996. 271(5256): p. 1734-6.
52. Driessens, G., J. Kline, and T.F. Gajewski, Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol Rev, 2009. 229(1): p. 126-44.
53. Sharma, P., et al., Efficacy and Tolerability of Tremelimumab in Locally Advanced or Metastatic Urothelial Carcinoma Patients Who Have Failed First-Line Platinum-Based Chemotherapy. Clin Cancer Res, 2020. 26(1): p. 61-70.
54. Anti-CTLA-4 antibody tremelimumab shows efficacy in patients with metastatic bladder cancer, in eCancer. 2019: eCancer.

55. Rotte, A., Combination of CTLA-4 and PD-1 blockers for treatment of cancer. Journal of Experimental & Clinical Cancer Research, 2019. 38(1): p. 255.

56. Bellmunt, J., T. Powles, and N.J. Vogelzang, A review on the evolution of PD-1/PD-L1 immunotherapy for bladder cancer: The future is now. Cancer Treat Rev, 2017. 54: p. 58-67.

57. Callahan, M.K. and J.D. Wolchok, At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J Leukoc Biol, 2013. 94(1): p. 41-53.

58. Chae, Y.K., et al., Current landscape and future of dual anti-CTLA4 and PD-1/PD-L1 blockade immunotherapy in cancer; lessons learned from clinical trials with melanoma and non-small cell lung cancer (NSCLC). Journal for ImmunoTherapy of Cancer, 2018. 6(1): p. 39.

59. Macdonald, D., et al., Providing postpartum care with limited resources: Experiences of nurse-midwives and obstetricians in urban Tanzania. Women Birth, 2019. 32(3): p. e391-e398.

60. Topalian, S.L., C.G. Drake, and D.M. Pardoll, Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell, 2015. 27(4): p. 450-61.

61. Spranger, S., et al., Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc Natl Acad Sci U S A, 2016. 113(48): p. E7759-E7768.

62. Lanitis, E., et al., Mechanisms regulating T-cell infiltration and activity in solid tumors. Ann Oncol, 2017. 28(suppl_12): p. xii18-xii32.

63. Bonaventura, P., et al., Cold Tumors: A Therapeutic Challenge for Immunotherapy. Frontiers in Immunology, 2019. 28(suppl_12): p. xii18-xii32.

64. Kather, J.N., et al., Topography of cancer-associated immune cells in human solid tumors. Elife, 2018. 7.

65. Yang, H.Y., et al., Manipulation of Metabolic Pathways and Its Consequences for Anti-Tumor Immunity: A Clinical Perspective. Int J Mol Sci, 2020. 21(11).

66. Whiteside, T.L., The tumor microenvironment and its role in promoting tumor growth. Oncogene, 2008. 27(45): p. 5904-12.

67. Baghban, R., et al., Tumor microenvironment complexity and therapeutic implications at a glance. Cell Communication and Signaling, 2020. 18(1): p. 59.

68. Ribeiro Franco, P.I., et al., Tumor microenvironment components: Allies of cancer progression. Pathol Res Pract, 2020. 216(1): p. 152729.

69. Iovanna, J.L. and D. Closa, Factors released by the tumor far microenvironment are decisive for pancreatic adenocarcinoma development and progression. OncoImmunology, 2017. 6(11): p. e1358840.

70. Adekola, K., S.T. Rosen, and M. Shanmugam, Glucose transporters in cancer metabolism. Curr Opin Oncol, 2012. 24(6): p. 650-4.

71. Liberti, M.V. and J.W. Locasale, The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci, 2016. 41(3): p. 211-218.

72. Schwartz, L., C.T. Supuran, and K.O. Alfarouk, The Warburg Effect and the Hallmarks of Cancer. Anticancer Agents Med Chem, 2017. 17(2): p. 164-170.

73. Xu, X.D., et al., Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol Res Treat, 2015. 38(3): p. 117-22.
74. Sebastian, C., et al., The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell, 2012. 151(6): p. 1185-99.

75. Zhang, G., et al., Decreased expression of SIRT6 promotes tumor cell growth correlates closely with poor prognosis of ovarian cancer. Eur J Gynaecol Oncol, 2015. 36(6): p. 629-32.

76. de Ceu Teixeira, M., et al., Sirtuins and SIRT6 in Carcinogenesis and in Diet. Int J Mol Sci, 2019. 20(19).

77. Tian, J. and L. Yuan, Sirtuin 6 inhibits colon cancer progression by modulating PTEN/AKT signaling. Biomed Pharmacother, 2018. 106: p. 109-116.

78. Hu, J.Q., et al., Histone deacetylase SIRT6 regulates chemosensitivity in liver cancer cells via modulation of FOXO3 activity. Oncol Rep, 2018. 40(6): p. 3635-3644.

79. Garcia-Peterson, L.M., et al., The sirtuin 6: An overture in skin cancer. Exp Dermatol, 2020. 29(2): p. 124-135.

80. Rahnasto-Rilla, M., et al., Effects of galloflavin and ellagic acid on sirtuin 6 and its anti-tumorigenic activities. Biomed Pharmacother, 2020. 131: p. 110701.

81. Ahire, V., et al., Ellagic Acid Enhances Apoptotic Sensitivity of Breast Cancer Cells to gamma-Radiation. Nutr Cancer, 2017. 69(6): p. 904-910.

82. Chen, H.S., et al., Ellagic acid induces cell cycle arrest and apoptosis through TGF-beta/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int J Oncol, 2015. 46(4): p. 1730-8.

83. Romero-Garcia, S., et al., Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance. Frontiers in Immunology, 2016. 7(52).

84. Rattigan, Y.I., et al., Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp Cell Res, 2012. 318(4): p. 326-35.

85. Busk, M., et al., Inhibition of tumor lactate oxidation: consequences for the tumor microenvironment. Radiother Oncol, 2011. 99(3): p. 404-11.

86. Mishra, D. and D. Banerjee, Lactate Dehydrogenases as Metabolic Links between Tumor and Stroma in the Tumor Microenvironment. Cancers (Basel), 2019. 11(6).

87. Bellone, M., et al., The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors. Oncoimmunology, 2013. 2(1): p. e22058.

88. Nakagawa, Y., et al., Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett, 2015. 167(2): p. 72-86.

89. Polanski, R., et al., Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res, 2014. 20(4): p. 926-937.

90. Mathupala, S.P., P. Parajuli, and A.E. Sloan, Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery, 2004. 55(6): p. 1410-9; discussion 1419.

91. Brand, A., et al., LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metab, 2016. 24(5): p. 657-671.

92. Granchi, C., et al., Small-molecule inhibitors of human LDH5. Future Med Chem, 2013. 5(16): p. 1967-91.

93. Farabegoli, F., et al., Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways. Eur J Pharm Sci, 2012. 47(4): p. 729-38.

94. Cluntun, A.A., et al., Glutamine Metabolism in Cancer: Understanding the Heterogeneity. Trends Cancer, 2017. 3(3): p. 169-180.
95. Yang, L., et al., Targeting Stromal Glutamine Synthetase in Tumors Disrupts Tumor Microenvironment-Regulated Cancer Cell Growth. Cell Metab, 2016. 24(5): p. 685-700.
96. Li, T. and A. Le, Glutamine Metabolism in Cancer. Adv Exp Med Biol, 2018. 1063: p. 13-32.
97. Issaq, S.H., et al., Glutamine synthetase is necessary for sarcoma adaptation to glutamine deprivation and tumor growth. Oncogenesis, 2019. 8(3): p. 20.
98. Cruzat, V., et al., Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients, 2018. 10(11).
99. Duran, R.V. and M.N. Hall, Glutaminolysis feeds mTORC1. Cell Cycle, 2012. 11(22): p. 4107-8.
100. Csibi, A., et al., The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell, 2013. 153(4): p. 840-54.
101. Feng, M., et al., LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer. J Exp Clin Cancer Res, 2018. 37(1): p. 274.
102. Cervantes-Madrid, D., Y. Romero, and A. Duenas-Gonzalez, Reviving Lonidamine and 6-Diazo-5-oxo-L-norleucine to Be Used in Combination for Metabolic Cancer Therapy. Biomed Res Int, 2015. 2015: p. 690492.
103. Garber, K., Cancer anabolic metabolism inhibitors move into clinic. Nat Biotechnol, 2016. 34(8): p. 794-5.
104. Gross, M.I., et al., Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther, 2014. 13(4): p. 890-901.
105. Boysen, G., et al., Glutaminase inhibitor CB-839 increases radiation sensitivity of lung tumor cells and human lung tumor xenografts in mice. Int J Radiat Biol, 2019. 95(4): p. 436-442.