Adjunctive Medical Therapy with α-Blocker after Extracorporeal Shock Wave Lithotripsy of Renal and Ureteral Stones: A Meta-Analysis

Mingchao Li¹, Zhengyun Wang², Jun Yang¹, Xiaolin Guo¹*, Tao Wang¹, Shaogang Wang¹, Chunping Yin³*, Jihong Liu¹, Zhangqun Ye¹

1 Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, P. R. China, 2 Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China, 3 Department of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

* guoxiaolin@tjh.tjmu.edu.cn (XLG); cpyin888@163.com (CPY)

Abstract

Background
Although some trials assessed the efficacy and safety of the α-blocker in facilitating renal and ureteral stones expulsion after extracorporeal shock wave lithotripsy (ESWL), the role of the α-blocker in facilitating upper urinary calculi expulsion after ESWL remain controversial.

Aims
To determine the efficacy and safety of the α-blocker in facilitating renal and ureteral stones expulsion after ESWL.

Methods
A literature search was carried out using the PubMed database, EMBASE and the Cochrane Library database to identify relevant studies. Two reviewers independently extracted data and assessed methodological quality. Pooled effect estimates were obtained using a fixed- and random-effects meta-analysis.

Results
The meta-analysis included 23 RCTs, α-blocker significantly enhanced expulsion rate of upper urinary tract calculi after ESWL (P<0.00001; RR 1.21; 95% CI 1.12–1.31), significantly promoted steinstrasse expulsion (P=0.03; RR 1.25; 95% CI 1.03–1.53), significantly shortened the discharge time of upper urinary tract calculi (P=0.0001; MD -2.12; 95% CI -3.20–1.04), significantly reduced the patient's pain VAS score (P=0.001; RR -1.0; 95% CI -1.61–0.39). Compared with the control group, dizziness (P=0.002; RR 5.48; 95% CI 1.91–
15.77), anejaculation (P=0.02; RR 12.17; 95% CI 1.61–91.99) and headache (P=0.04; RR 4.03; 95% CI 1.04–15.72) in the α-blocker group was associated with a higher incidence.

Conclusions

Treatment with α-blocker after ESWL appears to be effective in enhancing expulsion rate of upper urinary tract calculi, shortening the discharge time of upper urinary tract calculi, reducing the patient’s pain. The side effects of α-blocker were light and few.

Introduction

Urolithiasis has plagued human beings for thousands of years [1]. Urolithiasis is a disease that affects 8–15% of the population of Europe and North America [2]. Extracorporeal shock wave lithotripsy (ESWL) was introduced by Chaussy et al in the 1980s [3]. Today, about 80% of urinary tract stones are managed with ESWL. Initially a treatment for renal and upper ureteric stones, it soon became clear that ESWL could also be used to treat stones within the middle and distal ureter [4]. ESWL produces fragmentation of the calculi using shockwaves and facilitates calculi elimination through the excretory pathway, is currently the initial treatment of choice for uncomplicated stones located in the upper urinary tract [5]. Success rates of ESWL depend on the type of lithotripter used, stones size and location [6]. In recent years, new treatments have been developed aiming to further improve the success rate after ESWL. Medical expulsion therapy, which includes α-blocker, and conventional analgesic and anti-inflammatory drugs, has shown promise in accelerating the spontaneous clearance of urinary stones as well as adjunctive treatment after ESWL for urinary stone [7].

More recent studies evaluated effect of α-blocker after ESWL on urinary stones clearance, but the evidence for their effectiveness in assisting stones clearance remained conflicting. A meta-analysis combining the studies reported to date would provide information about effect of α-blocker. The direction and magnitude of this effect will help in guiding decisions about clinical practice.

Methods

Search strategy

The literature search was undertaken according to the guidelines of the Centre for Reviews and Dissemination and Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement [8]. An extensive PubMed, EMBASE, and The Cochrane Library search was performed including the following terms: α-blocker (or α-adrenergic antagonist, or α-receptor antagonist, or tamsulosin, or doxazosin, or alfuzosin, or terazosin), and SWL (or ESWL, or shock wave lithotripsy, or shockwave lithotripsy, or ultrasonic lithotripsy, or lithotripter). We considered all publications in any language published before February 28, 2014.

Study selection

The studies that met the following criteria were included: (1) RCTs; (2) patients with renal and/or ureteric calculi who were treated with ESWL; (3) α-blocker as an intervention compared with placebo or a control group; (4) Outcome measures that should be reported were clearance rate or pain (VAS) or expulsion time. Exclusion criteria were: trials in which
combined intervention of α-blocker with other proven spasmolytics (e.g. corticosteroids, calcium channel blockers and phloroglucinol) were applied.

Data abstraction and quality assessment

The abstraction of data was conducted by two independent investigators. Discrepancies were resolved by discussion and simultaneous reference to the relevant literatures. The methodological quality of the included trials was evaluated using the Jadad quality scale [9]: (1) randomization (the study was described as randomized); (2) double blinding (participant masking and researcher masking); (3) reporting of the number of dropouts and reasons for withdrawal; (4) allocation concealment; (5) generation of random numbers (by using computer, random numbers table, shuffled cards, or tossed coins). RCTs scored 1 point for each area addressed in the study design for a possible score between 0 and 5 (highest level of quality). The quality of all included studies was assessed by two investigators and the articles were classified as high-quality if their Jadad score > 4 and low quality if their Jadad score ≤ 3. Disagreements regarding methodological quality were resolved with discussion between reviewers.

Statistical analysis

Meta-analyses and forest plots were carried out by the use of Review Manager version 5.3 software. RR and 95% CI were calculated for the expulsion rate of stones and incidence of side effects during treatment. Weighted mean differences and 95% CI were for expulsion time and Pain. Heterogeneity was assessed using the I-square test. When heterogeneity was present (I-square > 25%) the data was analyzed using the random-effects model, otherwise a fixed-effect was used. For all studies analyzed, a P-value of less than 0.05 was considered statistically significant. Publication bias was explored via a funnel-plot analysis. The Begg rank correlation and Egger weighted regression test methods were also used to statistically assess publication bias by Stata 12.0 (P < 0.05 was consider as indicative of statistically significant publication bias). In case of heterogeneity, subgroup analysis was conducted according to dosage of drug, different stone size and location.

Results

Study selection and characteristics

Our search strategy identified 236 studies, through an abstract review we excluded all references related to other topics, editorials, alternate study designs (ie observational studies), duplicate references, reviews and review articles, of which 24 were potentially relevant trials (Fig 1). One [10] was excluded for combined intervention of α-blocker with phloroglucinol (spasmolytic drug) resulting in a total of 23 RCTs [11–33] which met study criteria. The characteristics and results of the 23 included studies are summarized in Table 1.

The mean Jadad score of these 23 studies was 3.2, ranging from 1 to 5 points (Table 2). 8 of 23 RCTs met the Jadad criteria for high quality [12], [14], [16], [19–20], [22], [27], [29]. All of the studies included suggested randomization, and 14 studies reported the method of random sequences generation [12], [14], [20], [22], [24], [27], [29], [33]. Double blinded method were used only in four studies [12], [14], [16], [22], we considered that the outcomes and their measurements may likely to be influenced by lack of blinding. In general, the methodological and report qualities of the included studies were good, but still not very ideal.
Statistical results

The expulsion rate of α-blocker for stones. The expulsion rate was analyzed in 22 of the 23 studies. The expulsion rate of the α-blocker group was significant higher than that of the control group (P < 0.00001; RR 1.21; 95% CI 1.12–1.31) (Fig 2). The expulsion rate of the tamsulosin 0.4mg group was analyzed in 16 of the 23 studies. The expulsion rate of the tamsulosin 0.4mg group was significant higher than that of the control group (P < 0.00001; RR 1.28; 95% CI 1.16–1.42) (Fig 3), there was no significant difference in the expulsion rate between tamsulosin 0.2mg group and control group (P = 0.57; RR 1.09; 95% CI: 0.81–1.47) (Fig 3). The expulsion rate of the α-blocker group was significant higher than that of the control group both for renal stones (P < 0.0001; RR 1.34; 95% CI 1.16–1.55) and ureteral stones (P = 0.002; RR 1.20; 95% CI 1.07–1.35) (Fig 4). The expulsion rate of the α-blocker group was significant higher than that of the control group both for lower ureteral stones (P = 0.008; RR 1.29; 95% CI 1.07–1.56) and upper ureteral stones (P = 0.005; RR 1.14; 95% CI: 1.04–1.25) (Fig 5). The expulsion rate of the α-blocker group was higher than that of the control group for 4–10 mm stones (P = 0.01; RR 1.10; 95% CI: 1.02–1.19), 10–20 mm stones (P < 0.00001; RR 1.76; 95% CI: 1.47–2.10) and 10–30 mm stone (P = 0.006; RR 1.55; 95% CI: 1.14–2.12) (Fig 6). The expulsion rate of the α-blocker group was significant higher than that of the control group for steinstrasse (Fig 7) (P = 0.03; RR 1.25; 95% CI: 1.03–1.53).
Table 1. The characteristics and results of the 23 included studies.

Author (year)	Region	Subgroup	Mean age (years)	Male: female	No. patients	Stone location	Stone size range (mm)
Wang (2009)	Taiwan	TG	44.25	69	LU	-	-
		CG	51.9±8.9	25:13	38	LU	6.5±1.2
Vicentini (2011)	Brazil	TG	47.3±11.5	16:22	38	Renal	10 (5–20)
		CG	45.7±15.1	24:14	38	Renal	12 (6–20)
Georgiev (2011)	Bulgaria	TG	54±20	67:32	99	U, R	10±4.1±6
		CG	51±22	53:33	87	U, R	9±5±12±7
Falahatkar (2011)	Iran	TG	45.5±14	53:22	75	U, R	13.22
		CG	47±14	52:23	75	U, R	12.88
Vicentini (2011)	Brazil	TG	47.3±11.5	16:22	38	Renal	10 (5–20)
		CG	45.7±15.1	24:14	38	Renal	12 (6–20)
Georgiev (2011)	Bulgaria	TG	54±20	67:32	99	U, R	10±4.1±6
		CG	51±22	53:33	87	U, R	9±5±12±7
Falahatkar (2011)	Iran	TG	45.5±14	53:22	75	U, R	13.22
		CG	47±14	52:23	75	U, R	12.88
Vicentini (2011)	Brazil	TG	47.3±11.5	16:22	38	Renal	10 (5–20)
		CG	45.7±15.1	24:14	38	Renal	12 (6–20)
Georgiev (2011)	Bulgaria	TG	54±20	67:32	99	U, R	10±4.1±6
		CG	51±22	53:33	87	U, R	9±5±12±7
Falahatkar (2011)	Iran	TG	45.5±14	53:22	75	U, R	13.22
		CG	47±14	52:23	75	U, R	12.88
The expulsion time of the \(\alpha \)-blocker for stones. The expulsion time of the \(\alpha \)-blocker group was analysed in 12 of the 23 studies. The expulsion time of the \(\alpha \)-blocker group was significant shorter than that of the control group for renal and ureteral stones (\(P = 0.0001; \) \(\text{MD} = -2.12; 95\% \text{CI} -3.20--1.04 \)) (Fig 8). The expulsion time of the tamsulosin 0.4mg group was analysed in 9 of the 23 studies. The expulsion time of the tamsulosin 0.4mg group was significant shorter than that of the control group (\(P < 0.00001; \) \(\text{MD} = -2.46; 95\% \text{CI} -3.46--1.46 \)) (Fig 8). The expulsion time of the \(\alpha \)-blocker group was significant shorter than that of the control group for ureteral stones (\(P < 0.00001; \) \(\text{MD} = -2.13 95\% \text{CI} -3.36--0.89 \)) (Fig 9). There was no significant difference in the expulsion time between \(\alpha \)-blocker group and control group both for upper ureteral stones (\(P = 0.38; \) \(\text{MD} = -1.23; 95\% \text{CI} -3.36--0.89 \)) and lower ureteral stones (\(P = 0.26; \) \(\text{MD} = -1.23; 95\% \text{CI} -3.36--0.89 \)) (Fig 9).

Pain. The difference in VAS (visual analogue scale, VAS) score between the \(\alpha \)-blocker group and control group showed statistical significance (\(P = 0.001; \) \(\text{MD} = -1.0; 95\% \text{CI} -1.61--0.39 \)) (Fig 10).

Proportion of patients with renal or ureteral colic of the \(\alpha \)-blocker group was significant less than that of control group during treatment (\(P < 0.00001; \) \(\text{RR} = 0.3; 95\% \text{CI} 0.22--0.40 \)) (Fig 10).

Incidence of side effects during treatment. The frequencies of any adverse event are shown in Fig 11, compared with the control group, dizziness (\(P = 0.002; \) \(\text{RR} = 5.48; 95\% \text{CI} 1.91--15.77 \)), anejaculation (\(P = 0.02; \) \(\text{RR} = 12.17; 95\% \text{CI} 1.61--91.99 \)) and headache (\(P = 0.04; \) \(\text{RR} = 4.03; 95\% \text{CI} 1.04--15.72 \)) in the \(\alpha \)-blocker group was associated with a higher incidence.

The expulsion rate of α-blocker

Study or Subgroup	α-blocker Events	Control Events	Weight	Risk Ratio M-H, Random, 95% CI	Risk Ratio M-H, Random, 95% CI
Agarwal 2009	19 20	18 20	5.4%	1.06 [0.88, 1.26]	
Ates 2012	33 35	35 44	5.6%	1.19 [1.00, 1.41]	
Bhagat 2006	26 29	23 29	5.1%	1.22 [1.00, 1.48]	
Cho 2013	39 41	40 43	6.7%	1.02 [0.92, 1.14]	
Falahatkar 2011	50 70	43 71	4.4%	1.18 [0.93, 1.50]	
Georgiev 2011	90 99	65 87	6.2%	1.22 [1.06, 1.40]	
Gravas 2007	19 30	16 31	2.1%	1.23 [0.79, 1.90]	
Gul 2013	30 34	165 230	6.0%	1.23 [1.06, 1.42]	
Hussein 2010	49 67	38 69	4.1%	1.33 [1.03, 1.72]	
Janane 2014	144 186	82 170	5.5%	1.61 [1.35, 1.91]	
Kobayashi 2008	32 38	30 34	5.3%	0.95 [0.79, 1.15]	
KöPELI 2004	17 24	8 24	1.2%	2.13 [1.14, 3.96]	
Micali 2007	23 28	12 21	2.4%	1.44 [0.96, 2.16]	
Moursy 2010	32 44	25 44	3.3%	1.28 [0.93, 1.75]	
Naja 2008	48 51	49 65	5.9%	1.25 [1.07, 1.46]	
Park 2013	37 44	29 44	4.2%	1.28 [1.00, 1.64]	
Resim 2005	24 32	23 35	3.3%	1.14 [0.84, 1.56]	
Singh 2011	54 59	50 58	6.4%	1.06 [0.93, 1.21]	
Vicentini 2011	23 38	14 38	1.8%	1.64 [1.01, 2.68]	
Wang 2008	31 40	18 40	2.6%	1.72 [1.18, 2.52]	
Wang 2009	28 35	31 38	4.6%	0.98 [0.78, 1.23]	
Wang 2009	29 34	31 38	4.9%	1.05 [0.85, 1.28]	
Wang 2010	41 55	24 52	3.1%	1.62 [1.16, 2.25]	

Total (95% CI) 1133 1325 100.0% 1.21 [1.12, 1.31]

Total events 920 869

Heterogeneity: Tau² = 0.02; Chi² = 61.20, df = 22 (P < 0.0001); I² = 64%
Test for overall effect: Z = 5.01 (P < 0.00001)

Fig 2. The expulsion rate of the α-blocker.

doi:10.1371/journal.pone.0122497.g002

Publication bias analysis

The distribution of the studies using traditional funnel plot (Fig 12) showed asymmetrical distribution of effect estimate, which suggested the possibility of publication bias. Egger weighted regression analysis (p = 0.027) also showed presence of publication bias. But the Begg rank correlation statistic (p = 0.428) showed no evidence of publication bias.

Discussion

This meta-analysis suggested that α-blocker significantly enhanced the expulsion rate of upper urinary tract calculi and steinstrasse, shortened stones expulsion time, reduced the pain of patients. Side effects of α-blocker was light and few.
This meta-analysis included 23 RCTs [11]-[33], with 979 patients in experimental group, 933 patients in control group. Heterogeneity existed in expulsion rate of upper urinary tract calculi, the reason for heterogeneity might relate to ESWL energy and frequency, the location and the size of the stones. When separately analyzed ureter calculi, renal stones, 4–10 mm stones, we did not observe heterogeneity.

We observed a significant improvement in the success rates for the adjuvant use of α-blockers for ureteral stones, upper and lower ureteral stones, renal stones, 4–10 mm stones, 10–20 mm stones, 10–30mm stones. α-blocker could significantly promote steinstrasse discharge. A previous meta-analysis [6] excluded steinstrasse, our meta-analysis for the first time showed that α-blockers could significantly promoted steinstrasse discharge.
Our meta-analysis from studies suggested that α-blockers could significantly shorten the discharge time of upper urinary tract stones and ureteral stones, but there was heterogeneity among these studies. The reason for heterogeneity might relate to difference of drug treatment time, ESWL energy and frequency, the location and the size of the stones. α-blocker shorten upper and lower ureteral stones discharge time, but without statistical significance, which might be related to the size and location of the stones.

Tamsulosin was used as adjuvant therapy in 20 studies, of which 18 was tamsulosin 0.4mg [11]-[12], [14]-[18], [20]-[22], [24]-[26], [28]-[29], [31], of which 2 was tamsulosin 0.2mg. one
of which was from Japan [23], another of which was from South Korea [33]. Tamsulosin 0.4 mg significantly promoted the discharge of upper urinary tract stones, significantly shorten the discharge time of stones. However, tamsulosin 0.2 mg could not significantly promote the ureteral stones expulsion, however, the result only from two studies, this need a large number of clinical trials to confirm.

α-blockers can significantly reduce the patient's pain and the proportion of patients with renal colic. In some studies, a total VAS score was 100 points, in some studies, a total VAS score was 10 points, in order to facilitate statistical analysis, we took 100 points as the total score of data conversion into total score of 10 points data.

Side effect of α-blockers was light and few, the common side effects were headache, dizziness, majority of which was mild dizziness, anejaculation. In the treatment group, one patient experienced delay ejaculation, one patient experienced abnormal ejaculation, one patient

Fig 5. The expulsion rate of the α-blocker for upper and lower ureteral stones.
doi:10.1371/journal.pone.0122497.g005
The expulsion rate of the α-blocker for 4-10mm stones

Study or Subgroup	α-blocker	Control	Risk Ratio M-H, Fixed, 95% CI
Bhagat 2006	14	14	1.05 [0.89, 1.25]
Cho 2013	39	41	1.02 [0.92, 1.14]
Janane 2014	64	83	1.19 [0.96, 1.47]
Park 2013	37	44	1.28 [1.00, 1.64]
Singh 2011	28	30	1.04 [0.89, 1.21]
Vicentini 2011	10	17	1.10 [0.59, 2.05]
Wang 2009	28	35	0.98 [0.79, 1.23]
Wang 2009	29	34	1.05 [0.85, 1.28]
Wang 2010	14	18	1.23 [0.81, 1.86]
Total (95% CI)	316	312	1.10 [1.02, 1.19]

Heterogeneity: Chi² = 6.18, df = 8 (P = 0.63); I² = 0%
Test for overall effect: Z = 2.46 (P = 0.01)

The expulsion rate of the α-blocker for 10-20mm stones

Study or Subgroup	α-blocker	Control	Risk Ratio M-H, Fixed, 95% CI
Janane 2014	80	103	1.96 [1.52, 2.58]
Singh 2011	26	29	1.09 [0.88, 1.35]
Vicentini 2011	13	21	2.37 [1.10, 5.10]
Wang 2010	27	37	2.01 [1.23, 3.26]
Total (95% CI)	190	186	1.76 [1.47, 2.10]

Heterogeneity: Chi² = 21.02, df = 3 (P = 0.0001); I² = 86%
Test for overall effect: Z = 6.24 (P < 0.00001)

The expulsion rate of the α-blocker for 10-30mm stones

Study or Subgroup	α-blocker	Control	Risk Ratio M-H, Random, 95% CI
Bhagat 2006	14	15	1.60 [0.97, 2.63]
Janane 2014	80	103	1.98 [1.52, 2.58]
Resim 2005	24	32	1.14 [0.84, 1.56]
Singh 2011	26	29	1.09 [0.88, 1.35]
Vicentini 2011	13	21	2.37 [1.10, 5.10]
Wang 2010	27	37	2.01 [1.23, 3.28]
Total (95% CI)	237	233	1.55 [1.14, 2.12]

Heterogeneity: Tau² = 0.11, Chi² = 22.29, df = 5 (P = 0.0005); I² = 79%
Test for overall effect: Z = 2.76 (P = 0.006)

Fig 6. The expulsion rate of the α-blocker for different size stones.

doi:10.1371/journal.pone.0122497.g006
The expulsion rate of the α-blocker for steinstrasse

Study or Subgroup	Tamsulosin	Control	Risk Ratio M.H Fixed, 95% CI
Bhagat 2006	10	10	12.7% [0.86, 2.02]
Moursy 2010	32	44	44.5% [0.93, 1.75]
Resim 2005	24	32	39.1% [0.84, 1.56]
Vicentini 2011	5	5	3.6% [0.58, 5.83]

Total (95% CI) 91 89 100% 1.25 [1.03, 1.53]

Total events 71 55

Heterogeneity: χ²= 0.84, df= 3 (P = 0.84); I²= 0%

Test for overall effect: Z = 2.21 (P = 0.03)

Fig 7. The expulsion rate of the α-blocker for steinstrasse.

doi:10.1371/journal.pone.0122497.g007

The expulsion time of the α-blocker for renal and ureteral stones

Study or Subgroup	α-blocker	Control	Mean Difference IV, Random, 95% CI
Agarwal 2009	30.7	19.6	-8.30 [-20.54, 3.94]
Atlas 2012	4.14	1.78	2.36 [-6.46, 1.52]
Cakiroglu 2013	8.34	7.6	-0.71 [-3.25, 2.71]
Cho 2013	9.5	4.8	4.72 [0.51, 8.93]
Gavaras 2007	12.95	6.92	6.03 [2.35, 9.71]
Janane 2014	8.4	1.8	-6.62 [-19.54, 6.29]
Kobayashi 2008	15.66	6.14	9.52 [3.79, 15.25]
Moursy 2010	12.67	2.29	-10.38 [-18.54, -2.22]
Naja 2008	35.53	19.47	-16.06 [-29.54, -2.58]
Singh 2011	26.78	11.96	-14.82 [-28.54, -1.11]
Wang 2009	8.2	3	-5.20 [-15.61, 5.21]
Wang 2009	3.1	5.5	-2.40 [-8.07, 3.29]

Total (95% CI) 687 701 100% -2.12 [-3.20, -1.04]

Heterogeneity: τ²= 2.09, χ²= 85.36, df= 12 (P < 0.00001); I²= 96%

Test for overall effect: Z = 3.84 (P < 0.00001)

Fig 8. The expulsion time of the α-blocker.

doi:10.1371/journal.pone.0122497.g008
experienced retrograde ejaculation, one patient experienced postural hypotension, two patients experienced diarrhea, four patients experienced rhinitis. With regard to nausea with or without vomiting, four patients experienced in the treatment group, five patients experienced in control group.

The expulsion time of the α-blocker for ureteral stones

Study or Subgroup	α-blocker	Control	Mean Difference (IV, Random, 95% CI)
Agarwal 2009	30.7	19.6	-8.30 [-20.54, 3.94]
Ates 2012	4.14	1.78	0.63 [-0.46, 1.52]
Cakiroglu 2013	8.34	7.6	-4.25 [-7.12, -1.38]
Cho 2013	9.5	4.8	-9.10 [-15.43, -2.77]
Grivas 2007	12.95	6.92	-0.27 [-3.25, 2.71]
Janane 2014	8.4	1.9	-2.20 [-5.55, -1.85]
Kobayashi 2008	15.68	6.14	-3.91 [-7.97, -1.85]
Singh 2011	26.78	11.96	-4.50 [-10.11, 1.11]
Wang 2009	6.2	3.5	-0.30 [-1.61, 1.10]
Wang 2009	6.2	3.5	-0.30 [-1.61, 1.10]
Wang 2010	8.1	1.6	-3.50 [-4.07, -2.93]

Total (95% CI): 592

Heterogeneity: Tau² = 2.20; Chi² = 79.54, df = 10 (P < 0.00001); I² = 97%

Test for overall effect: Z = 3.14 (P = 0.002)

The expulsion time of the α-blocker for upper ureteral stones

Study or Subgroup	α-blocker	Control	Mean Difference (IV, Random, 95% CI)
Agarwal 2009	30.7	19.6	-8.30 [-20.54, 3.94]
Ates 2012	4.14	1.78	0.63 [-0.46, 1.52]
Singh 2011	26.78	11.96	-4.50 [-10.11, 1.11]

Total (95% CI): 114

Heterogeneity: Tau² = 10.17; Chi² = 4.91, df = 2 (P = 0.09); I² = 59%

Test for overall effect: Z = 0.86 (P = 0.39)

The expulsion time of the α-blocker for lower ureteral stones

Study or Subgroup	α-blocker	Control	Mean Difference (IV, Random, 95% CI)
Grivas 2007	12.95	6.92	-0.27 [-3.25, 2.71]
Wang 2009	6.2	3.3	-0.30 [-1.61, 1.01]
Wang 2009	6.1	3.3	-0.40 [-1.56, 0.76]
Wang 2010	8.1	1.6	-3.50 [-4.07, -2.93]

Total (95% CI): 154

Heterogeneity: Tau² = 4.04; Chi² = 37.49, df = 3 (P < 0.00001); I² = 92%

Test for overall effect: Z = 1.14 (P = 0.26)

doi:10.1371/journal.pone.0122497.g009

Fig 9. The expulsion time of the α-blocker for ureteral stones.
The characteristic of this meta-analysis was statistically analyzed the effect of α-blockers on steinstrasse and on different location and size stones. The shortcoming of this meta-analysis was that there were heterogeneities among studies. The heterogeneities might relate to different duration of treatment, different stone size and location, different ESWL energy and frequency among studies. Most of the included trials failed to describe detail information about randomization and allocation concealment. Lack of blinding procedures in RCTs can also exaggerate the conclusions of these trials. In addition, publication bias should also not be ignored because both the funnel plot and Egger’s test showed the possibility of publication bias, even though the Begg’s test showed no evidence of publication bias. Further assessment of α-blockers needs to be taken by large-scale clinical studies which employ rigorous methodologies. So the results need to be interpreted cautiously. But on the whole, to some extent, the results of this meta-analysis will help clinicians to make some right clinical decisions. As more and more clinical trials take, conclusions will be more credible.

The VAS of the α-blocker for renal and ureteral stones

Study or Subgroup	α-blocker	Control	Mean Difference	Mean Difference					
	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Agarwal 2009	2.53	1.79	20	3.83	2.8	20	9.0%	-1.30 [-2.76, 0.16]	
Atas 2012	6.89	1.02	35	6.59	1.58	44	15.7%	0.30 [-0.26, 0.88]	
Cakiroglu 2013	2.73	2.28	59	3.81	2.74	64	13.2%	-1.08 [-1.97, -0.19]	
Cho 2013	5.33	1.22	41	6.43	1.36	43	15.9%	-1.10 [-1.65, -0.55]	
Naja 2008	2.067	2.035	51	4.73	2.498	65	13.7%	-1.86 [-2.69, -1.04]	
Singh 2011	2.492	0.767	59	4.181	1.724	68	18.4%	-1.69 [-2.17, -1.21]	
Vicentini 2011	1.57	0.82	38	2.08	1.47	38	18.0%	-0.51 [-1.05, 0.03]	
Total (95% CI)	303	332	100.0%	-1.00 [-1.61, -0.39]					

Heterogeneity: Tau² = 0.53; Chi² = 34.92, df = 6 (P < 0.00001); I² = 93%
Test for overall effect: Z = 3.21 (P = 0.001)

Proportion of patients with renal or ureteral colic

Study or Subgroup	α-blocker	Control	Risk Ratio	Risk Ratio
	Events	Total	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Georgiev 2011	21	99	0.31 [0.21, 0.46]	
Hussein 2010	9	67	0.44 [0.22, 0.89]	
Janane 2014	10	186	0.23 [0.12, 0.44]	
Wang 2008	2	40	0.25 [0.08, 1.11]	
Wang 2010	3	55	0.28 [0.08, 0.97]	
Total (95% CI)	447	418	100.0%	0.30 [0.22, 0.40]

Total events: 45
Heterogeneity: Chi² = 1.89, df = 4 (P = 0.76); I² = 0%
Test for overall effect: Z = 7.94 (P < 0.000001)

Fig 10. α-blocker decreasing pain.

doi:10.1371/journal.pone.0122497.g010

The characteristic of this meta-analysis was statistically analyzed the effect of α-blockers on steinstrasse and on different location and size stones.

The shortcoming of this meta-analysis was that there were heterogeneities among studies. The heterogeneities might relate to different duration of treatment, different stone size and location, different ESWL energy and frequency among studies. Most of the included trials failed to describe detail information about randomization and allocation concealment. Lack of blinding procedures in RCTs can also exaggerate the conclusions of these trials. In addition, publication bias should also not be ignored because both the funnel plot and Egger’s test showed the possibility of publication bias, even though the Begg’s test showed no evidence of publication bias. Further assessment of α-blockers needs to be taken by large-scale clinical studies which employ rigorous methodologies. So the results need to be interpreted cautiously. But on the whole, to some extent, the results of this meta-analysis will help clinicians to make some right clinical decisions. As more and more clinical trials take, conclusions will be more credible.
Dizziness

Study or Subgroup	α-blocker Events	Control Events	Total Weight	Risk Ratio M-H, Fixed, 95% CI
Bhagat 2006	1	0	29	12.5%
Cho 2013	2	0	41	12.2%
Janane 2014	5	0	186	13.0%
KÜPELI 2004	1	0	39	12.5%
Park 2013	1	0	41	12.5%
Resim 2006	4	0	32	11.9%
Wang 2008	2	0	40	12.5%
Wang 2010	2	0	55	12.8%
Total (95% CI)	18	0	463	449
Heterogeneity:	**Chi² = 0.76, df = 7 (P = 1.00); I² = 0%**	**Risk Ratio M-H, Fixed, 95% CI**	5.48 [1.91, 15.77]	

Test for overall effect: Z = 3.16 (P = 0.002)

Headache

Study or Subgroup	α-blocker Events	Control Events	Total Weight	Risk Ratio M-H, Fixed, 95% CI
Moursy 2010	4	0	44	20.7%
Resim 2005	5	0	32	79.3%
Total (95% CI)	9	2	76	79
Heterogeneity:	**Chi² = 0.53, df = 1 (P = 0.47); I² = 0%**	**Risk Ratio M-H, Fixed, 95% CI**	4.03 [1.04, 15.72]	

Test for overall effect: Z = 2.01 (P = 0.04)

Anejaculation

Study or Subgroup	α-blocker Events	Control Events	Total Weight	Risk Ratio M-H, Fixed, 95% CI
Hussein 2010	5	0	69	49.6%
Moursy 2010	6	0	44	50.4%
Total (95% CI)	11	0	111	113
Heterogeneity:	**Chi² = 0.00, df = 1 (P = 0.95); I² = 0%**	**Risk Ratio M-H, Fixed, 95% CI**	12.17 [1.61, 91.99]	

Test for overall effect: Z = 2.42 (P = 0.02)

Fig 11. Side effects of α-blocker.

doi:10.1371/journal.pone.0122497.g011
Fig 12. Funnel plot analysis to detect publication bias.

doi:10.1371/journal.pone.0122497.g012
Supporting Information

S1 PRISMA Checklist. PRISMA checklist. (DOC)

Author Contributions

Conceived and designed the experiments: CPY JHL XLG ZQY. Performed the experiments: MCL TW JY. Analyzed the data: MCL TW SGW. Contributed reagents/materials/analysis tools: MCL TW ZYW. Wrote the paper: MCL ZYW.

References

1. Cui Y, Cao W, Shen H, Xie J, Adams TS, Zhang Y, et al. Comparison of ESWL and Ureteroscopic Holmium Laser lithotripsy in Management of Ureteral Stones. PLoS One. 2014; 9:e87634. doi: 10.1371/journal.pone.0087634 PMID: 24498344
2. Sayed MA, Abolyosr A, Abdalla MA, El-Azab AS. Efficacy of tamsulosin in medical expulsive therapy for distal ureteral calculi. Scand J Urol Nephrol. 2008; 42: 59–62. PMID: 17853008
3. Chaussy C, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet. 1980; 2: 1265–1268. PMID: 6108446
4. Phipps S, Stephenson C, Tolley D. Extracorporeal shockwave lithotripsy to distal ureteric stones: the transgluteal approach significantly increases stone-free rates. BJU Int. 2013; 112: E129–133. doi: 10.1111/j.1464-410X.2012.11738.x PMID: 23360696
5. Carrasco J, Anglada FJ, Campos JP, Muntané J, Requena MJ, Padillo J. The protective role of coenzyme Q10 in renal injury associated with extracorporeal shockwave lithotripsy: a randomised, placebo-controlled clinical trial. BJU Int. 2014; 113: 942–50. doi: 10.1111/bju.12485 PMID: 24119199
6. Zhu Y, Duijvesz D, Rovers MM, Lock TM. alpha-Blockers to assist stone clearance after extracorporeal shock wave lithotripsy: a meta-analysis. BJU Int. 2010; 106: 256–261. doi: 10.1111/j.1464-410X.2009.09014.x PMID: 19889063
7. Fan B, Yang D, Wang J, Che X, Li X, Wang L, et al. Can tamsulosin facilitate expulsion of ureteral stones? A meta-analysis of randomized controlled trials. Int J Urol. 2013; 20: 818–830. doi: 10.1111/iju.12048 PMID: 23278872
8. Moher D, Liberati A, Tetzlaff J, Altman DG. Reprint—preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther. 2009; 89: 873–880. PMID: 19723669
9. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996; 17: 1–12. PMID: 8721797
10. Zaytoun OM, Yakoubi R, Zahran AR, Fouda K, Marzouk E, Gaafar S, et al. Tamsulosin and doxazosin as adjunctive therapy following shock-wave lithotripsy of renal calculi: randomized controlled trial. Urol Res. 2012; 40: 327–332. doi: 10.1007/s00240-011-0410-x PMID: 21837534
11. Wang CJ, Huang SW, Chang CH. Adjunctive medical therapy with an alpha-1A-specific blocker after shock wave lithotripsy of lower ureteral stones. Urol Int. 2009; 82:166–169. doi: 10.1159/000200793 PMID: 19322003
12. Vicentini FC, Mazzucchi E, Brito AH, Chedid Neto EA, Danilovic A, Srougi M. Adjuvant tamsulosin or nifedipine after extracorporeal shock wave lithotripsy for renal stones: a double blind, randomized, placebo-controlled trial. Urology. 2011; 78: 1016–1021. doi: 10.1016/j.urology.2011.04.062 PMID: 21802124
13. Georgiev MI, Ormanov DI, VassilevVD, Dimitrov PD, Mladenov VD, Popov EP, et al. Efficacy of tamsulosin oral controlled absorption system after extracorporeal shock wave lithotripsy to treat urolithiasis. Urol. 2011; 78: 1023–1026. doi: 10.1016/j.urology.2011.01.073 PMID: 21917304
14. Falahatkar S, Khosropanah I, Vajary AD, Bateni ZH, Khosropanah D, Allahkhah A. Is there a role for tamsulosin after shock wave lithotripsy in the treatment of renal and ureteral calculi? J Endourol. 2011; 25: 495–498. doi: 10.1097/END.0b013e318204b33f PMID: 21166579
15. Agarwal MM, Naja V, Singh SK, Mavuduru R, Mete UK, Kumar S, et al. Is there an adjunctive role of tamsulosin to extracorporeal shockwave lithotripsy for upper ureteric stones: results of an open label randomized nonplacebo controlled study. Urology. 2009; 74: 989–992. doi: 10.1016/j.urology.2009.06.075 PMID: 19883809
16. Singh SK, Pawar DS, Giriwan MS, Indora JM, Sharma S. Role of tamsulosin in clearance of upper ureteral calculi after extracorporeal shock wave lithotripsy: a randomized controlled trial. Urol J. 2011; 8: 14–20. PMID: 21404197
17. Resim S, Ekerbicer HC, Ciftci A. Role of tamsulosin in treatment of patients with steinstrasse developing after extracorporeal shock wave lithotripsy. Urology. 2005; 66: 945–948. PMID: 16286100
18. Moursy E, Gamal WM, Abuzeid A. Tamsulosin as an expulsive therapy for steinstrasse after extracorporeal shock wave lithotripsy: a randomized controlled study. Scand J Urol Nephrol. 2010; 44: 315–319. doi: 10.3109/003655909.2010.494616 PMID: 20560802
19. Basri Cakıroglu, Sinanoglu O, Mahmure Uraz. The effect of tamsulosin on pain and clearance according to ureteral stone location after shock wave lithotripsy. Curr Ther Res Clin Exp. 2013; 74: 33–35. doi: 10.1016/j.curtheres.2012.12.003 PMID: 24385155
20. Küpeli B, Irkilata L, Gürçak S, Tunç L, Kiraç M, Karaoğlan U, et al. Does tamsulosin enhance lower ureteral stone clearance with or without shock wave lithotripsy? Urology. 2004; 64: 1111–1115. PMID: 15596181
21. Gravas S, Tzortzis V, Karatzas A, Oeconomou A, Melekos MD. The use of tamsulosin as adjunctive treatment after ESWL in patients with distal ureteral stone: do we really need it? Results from a randomised study. Urol Res. 2007; 35: 231–235. PMID: 17609936
22. Cho HJ, Shin SC, Lee HE, Park JY, Lee SB, Kim HH. A prospective randomized controlled trial of the efficacy of tamsulosin after extracorporeal shock wave lithotripsy for single proximal ureteral stone. Korean J Urol. 2013; 54: 527–530. doi: 10.4111/kju.2013.54.2.106 PMID: 23550174