Survey on Penaeidae Shrimp Diversity and Exploitation in South East Coast of India

Perumal Rajakumaran and Baskralingam Vaseeharan

Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India

Corresponding author: Baskralingam Vaseeharan, Crustacean Molecular Biology & Genomics lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630003, Tamil Nadu, India; Tel: +91-4565-225682; Fax: +91-4565-225202; E-mail: vaseeharanb@gmail.com

Received date: February 25, 2014; Accepted date: August 28, 2014; Published date: September 05, 2014

Keywords: Penaeidae; Diversity; Nomenclature; Exploitation; Conservation

Biodiversity performs a number of ecological services for mankind that have commercial and recreational or resources management purpose. Globally, more than 30,000 marine crustacean species have been reported. Crustacean fishery is one of the major resources of India that includes the commercially important shrimps, prawns, lobsters and crab which are important in the tropical food chain of marine ecosystem. Penaeidae, a family of marine crustacean in the suborder Dendrobranchiata, often referred to as penaeid shrimp or penaeid prawn with 48 recognized genera, 23 of them is known only from the fossil record. Total averaged Penaeidae catching at world level was 1.21 million tons per annum for the year 2008-10. The Penaeidae shrimp constitute the backbone of Indian seafood export industry as the major foreign exchange earner as well as source of livelihood for millions of fishermen in the country. India exported US $ 2.8 billion worth marine products in 2010-11, of which shrimp contributed 3.09% in volume and 69.5% in value of the total export [1].

Many researchers have been surveyed on penaeid species exploitation by using variety of gear in India [9,10-22]. The juvenile destruction in the marine environment in the Palk Bay where young ones of P. semisulcatus are indiscriminately captured by 'Thalluvalai' a kind of small conical bagnet dragged along the shallow near-shore areas, if allow fully grown to them could get crores of money [23,24]. Damaging practice commonly found in the estuarine systems is the widespread removal of young shrimp for aquaculture purpose. 97% of the shrimp fry are destroyed or thrown on the land during the collection of only 3% seed of tiger shrimp for culture. During wild collection of 1 million P. monodon, an estimated annual loss of 75 million non-target fin and shellfish larvae occurs [3].

The maintenance and management of our rich biodiversity requires accurate and continuous updating of data, identification of biological organism and documentation of biological diversity is a primary step towards any research work, management and conservation [1,25]. Sudarsan stated that specimen of prawns had often catches and as such a special survey for prawn resources have to be undertaken [26]. The pioneering survey work on penaeid species diversity in north east coast of India such as Andaman and Nicobar Islands 12 littoral species length at capture of many of the targeted species. Considerable volume of discards of non-target edible fishes by the multiday trawlers is also a serious concern. The intensive fishing of prawns at 50 m depth line persistently over the past several years and the destruction of habitats occur during the process of exploitation caused by various kinds of human activities adversely affecting the crustacean fauna and their resources [2,4-8]. The substantial portion of the penaeid catches by indigenous gears such as fixed bag nets (‘Dol’), seines, gill nets etc. which operate in the inshore areas. A number of innovative gears such as ring seines, trammel nets and munitrawls operated by motorized country crafts are being increasingly employed along the coasts of India which state led to state of over exploitation.

The assessment of Penaeidae species diversity in a particular region is very important in formulating conservation strategies. In the present study, the survey on diversity of Penaeidae species in south east coast of India has been assessed on the basis of landing of variety of species in this group. Penaeidae species were collected from various main landing centers of south east coast of India for three years. Identification and nomenclature was done based on previously published literature. Among the 59 species observed, the Penaeus semisulcatus, Penaeus monodon and Fenneropenaeus indicus were found mostly in all landing centers. As first and foremost, the Metapenaeus spp., Metapenaeus anchistus, Metapenaeopsis wellesi, Parapenaeopsis sinica (Kishinouye), Parapenaeopsis hungerfordi, Parapenaeopsis venusta, Parapenaeopsis coronadelica, Parapenaeopsis gracilimana, Trachysalambria longipes and Parapenaeus lanceolatus landed in south east coast of India. As far as Penaeidae shrimp diversity is good in south east coast region of India, and needed the fishing site and mesh size regulation to protect the juvenile and adult of Penaeidae from inshore and offshore catching.

South east coast mainly is situated on the south east of Peninsular India covers an area of 1,30,058 Sq.km. The length of its coastline is about 1050 km with its significant portion on the east coast bordering Bay of Bengal. Increase in human population and demand for shrimp in the world market has resulted in over exploitation of shrimp from Indian coastal waters. This is believed to have caused over fishing of all stock and population of shrimp by the use of banned gears and methods [2,3]. In general decline in resource availability as evidenced by decline in catches and catch rate and incidence of large proportion of juveniles and young fish in the landings and decrease in average catches. In general decline in resource availability as evidenced from the fossil record. Total averaged Penaeidae catching at world level was 1.21 million tons per annum for the year 2008-10. The Penaeidae shrimp constitute the backbone of Indian seafood export industry as the major foreign exchange earner as well as source of livelihood for millions of fishermen in the country. India exported US $ 2.8 billion worth marine products in 2010-11, of which shrimp contributed 3.09% in volume and 69.5% in value of the total export [1].

South East Coast of India has been assessed on the basis of landing of variety of species in this group. Penaeidae species were collected from various main landing centers of South East Coast of India for three years. Identification and nomenclature was done based on previously published literature. Among the 59 species observed, the Penaeus semisulcatus, Penaeus monodon and Fenneropenaeus indicus were found mostly in all landing centers. As first and foremost, the Metapenaeus spp., Metapenaeus anchistus, Metapenaeopsis wellesi, Parapenaeopsis sinica (Kishinouye), Parapenaeopsis hungerfordi, Parapenaeopsis venusta, Parapenaeopsis coronadelica, Parapenaeopsis gracilimana, Trachysalambria longipes and Parapenaeus lanceolatus landed in south east coast of India. As far as Penaeidae shrimp diversity is good in south east coast region of India, and needed the fishing site and mesh size regulation to protect the juvenile and adult of Penaeidae from inshore and offshore catching.

The maintenance and management of our rich biodiversity requires accurate and continuous updating of data, identification of biological organism and documentation of biological diversity is a primary step towards any research work, management and conservation [1,25]. Sudarsan stated that specimen of prawns had often catches and as such a special survey for prawn resources have to be undertaken [26]. The pioneering survey work on penaeid species diversity in north east coast of India such as Andaman and Nicobar Islands 12 littoral species

Biodiversity performs a number of ecological services for mankind that have commercial and recreational or resources management purpose. Globally, more than 30,000 marine crustacean species have been reported. Crustacean fishery is one of the major resources of India that includes the commercially important shrimps, prawns, lobsters and crab which are important in the tropical food chain of marine ecosystem. Penaeidae, a family of marine crustacean in the suborder Dendrobranchiata, often referred to as penaeid shrimp or penaeid prawn with 48 recognized genera, 23 of them is known only from the fossil record. Total averaged Penaeidae catching at world level was 1.21 million tons per annum for the year 2008-10. The Penaeidae shrimp constitute the backbone of Indian seafood export industry as the major foreign exchange earner as well as source of livelihood for millions of fishermen in the country. India exported US $ 2.8 billion worth marine products in 2010-11, of which shrimp contributed 3.09% in volume and 69.5% in value of the total export [1].

Many researchers have been surveyed on penaeid species exploitation by using variety of gear in India [9,10-22]. The juvenile destruction in the marine environment in the Palk Bay where young ones of P. semisulcatus are indiscriminately captured by 'Thalluvalai' a kind of small conical bagnet dragged along the shallow near-shore areas, if allow fully grown to them could get crores of money [23,24]. Damaging practice commonly found in the estuarine systems is the widespread removal of young shrimp for aquaculture purpose. 97% of the shrimp fry are destroyed or thrown on the land during the collection of only 3% seed of tiger shrimp for culture. During wild collection of 1 million P. monodon, an estimated annual loss of 75 million non-target fin and shellfish larvae occurs [3].

The maintenance and management of our rich biodiversity requires accurate and continuous updating of data, identification of biological organism and documentation of biological diversity is a primary step towards any research work, management and conservation [1,25]. Sudarsan stated that specimen of prawns had often catches and as such a special survey for prawn resources have to be undertaken [26]. The pioneering survey work on penaeid species diversity in north east coast of India such as Andaman and Nicobar Islands 12 littoral species

The maintenance and management of our rich biodiversity requires accurate and continuous updating of data, identification of biological organism and documentation of biological diversity is a primary step towards any research work, management and conservation [1,25]. Sudarsan stated that specimen of prawns had often catches and as such a special survey for prawn resources have to be undertaken [26]. The pioneering survey work on penaeid species diversity in north east coast of India such as Andaman and Nicobar Islands 12 littoral species
Chanda and Bhattacharya described three new species of shrimp from Indian waters [27-29]. The survey of trawl fishing of Penaeidae shrimp species in the Northern Mandapam Coast of Palk Bay has been described by Siva Rama Krishnan [30]. Radhakrishnan reported annotated checklist of the penaeoid, Sergestoid, Stenopodid and Caridean prawn fauna of India [1]. Not much inventory work has been carried of this penaeidae diversity and details of species exploitation in south east coast of India. Conservation of penaeidae diversity is the urgent need of the hour in order to maintain the balance of nature and support the availability of natural resources for future generation. Assessment of biodiversity of a particular region is very important to formulate conservation strategies [31]. Therefore, the present study on the Penaeidae diversity and exploitation of the east coast on the basis of landing from inshore and offshore water. The objectives of present study are to report the diversity of penaeidae, new species availability in the south east coast of India for a period from April 2010 to April 2013. In addition report the pattern of exploitation and preventive strategies to protect Penaeidae diversity in the study area.

Materials and Methods

Different kinds of Penaeidae shrimp were collected from the landing centers of Chennai, Nagapattinam, Pudukkottai, Ramanathapuram, and Tuticorin of south east coast of India in Figure 1. The collection of species for three years from April 2010- April 2013. Collected shrimps were kept in ice pack, brought to the laboratory. All species were identified and grouped according to published literature [32-35] and nomenclature of Penaeidae based on the availability of published literature present in the form of research articles, monographs, books, species checklist and technical reports. The WoRMS Register, ITIS Standard Search and the Carideorum catalogus also have been referred for confirmation of the genera and species [36].

General diagnostic characters for identification of penaeidae shrimp (FAO Species identification guide for fishery purposes, 1998)

The major criteria used to identify penaeidae shrimp are as follows:- Penaeidae rostrum is well developed and generally extending beyond eyes, always bearing more than 3 upper teeth. No styliform projection at base of eyestalk and no tubercle on its inner border. Both upper and lower antennular flagella of similar length, attached to tip of antennular peduncle. Carapaces lacking both post orbital and post antennal spines. Generally cervical groove are short, always with distance from dorsal carapace. All 5 pairs of legs are well developed, fourth leg bearing a single well-developed arthrobranch (hidden beneath carapace, occasionally accompanied by a second, rudimentary arthrobranch). In males, endopod of second pair of pleopods (abdominal appendages) with appendix masculine only. Third and fourth pleopods divided into 2 branches. Telson sharply pointed, with or without fixed and/or movable lateral spines. Colour: body colour varies from semi-translucent to dark grayish green or reddish, often with distinct spots, cross bands and/or other markings on the abdomen and uropods; live or fresh specimens, particularly those of the genus *Penaeus*, can often be easily distinguished by their coloration. General diagnostic characters for identification of penaeidae shrimp is given in Figure 2.

Genus wise diagnostic characters followed for penaeidae shrimp identification (FAO Species identification guide for fishery purposes, 1998)

The major criteria used to identify penaeidae shrimp genus wise are as follows: Fifth leg with exopod, carapace without longitudinal or vertical sutures; second leg with ischial spine; eyes small: *Atypopeneaus* (Figure 3a). Third maxilliped,13. Antennal flagellum, 14. Antenna, 15. Antennal scale, 16. Antennular flagellum, 17. Antennule

![Figure 1: Different kinds of Penaeidae shrimp collected from the provinces of east coast of India.](image1)

![Figure 2: General diagnostic characters for identification of penaeidae shrimp.](image2)

![Figure 3: Genus wise diagnostic characters followed for penaeidae shrimp identification.](image3)
maxilliped without epipod; male petasma symmetrical, benthic, fifth leg without exopod (carapace without longitudinal or vertical sutures), third maxilliped without epipod; male petasma symmetrical benthic: Metapenaeus (Figure 3d and e). Rostrum with lower teeth, abdomen glabrous and smooth: Peneaeus (Figure 3d), grooved carapace (Peneaeus-Melicertus), non – grooved carapace (Peneaeus- non Melicertus) (Figure 3f). Body almost naked, with crests and grooves on carapace distinct; petasma, symmetrical, Carapace with longitudinal and vertical sutures telson without movable lateral spines: Parapenaeus (Figure 3g and h). Carapace with both longitudinal and vertical sutures second leg without ischiial spine; eyes large body naked, with crests and grooves on carapace distinct; longitudinal suture usually long third leg without epipod: Parapenaeopsis (Figure 3i). Carapace lacking longitudinal and vertical sutures telson with movable lateral spines, rostrum extending far beyond eye; pterygostomian spine present, deep water: Peneaeopsis (Figure 3c and i). Carapace with both longitudinal and vertical sutures, second leg without ischiial spine; eyes large body usually hairy, with crests and grooves on carapace obscure, longitudinal suture short; third leg generally with epipod: Megokris, Trachysalambria (Figure 3k). The coloration of the uropods of Megokris are yellowish with grey or brown margins and centre is red or reddish brown with golden margin but in Trachysalambria the colouration of uropods are red or reddish brown, with conspicuous white margin.

Results

Morphological and seasonal variation of Peneaeidae species

In all peneaeidae species collected in the present study, the female specimens were large size than male specimens. As far as peneaeidae species sexual variation, a large copulatory organ on first pair of pleopods in males (petasma), and on posterior thoracic sternites in females (thelycum). In males, endopod of second pair of pleopods was with appendix masculina only. In Metapenaeus species in adult male, merus of fifth leg (pereiopod) with basal notch followed by prominent keel was present which was absent in females. In Fenneropenaeus species dactyl of third maxillipeds had half as long as protopodus. In Parapenaeopsis hardwickii, the female rostrum very long with sigmoidal shape with distal half is toothless, extending beyond antennular peduncle, in adult male tooth less portion is absent and slightly curved downward, only reaching middle of the second antennular segment. The specimen colour was varied from place to place, depended the residence environmental condition such as sea weeds and sedimentation. Peneaeus monodon, Fenneropenaeus indicus, F. merguiensis, F. penicillatus, Parapenaeopsis, Metapenaeus, Megokris, Trachysalambria species were obtained highly in the North east monsoon season (October–November), Peneaeus semisulcatus were obtained throughout the year. The more variety of Parapenaeus species were obtained in the summer rainy season (April –May) from the south east coast of India. In the present study, Gender number of Peneaeidae species were somewhat equal only.

Distribution of Peneaeidae species

In the present study totally fifty nine Peneaeidae species were obtained from all landing centers from south east east coast of India. The Peneaeus species like P. monodon, F. indicus and P. semisulcatus were obtained mostly in all landing centers rather than other Peneaeidae species. The species under genus Peneaeus senu lato (old Peneaeus), Melicertus latissculatus was available only in southern part of east coast of India (Ramanathapuram and Tuticorin), and species under genus Peneaeopsis, P. jerryi and P. rectaculata also were only in southern part (Tuticorin). The more variety of Parapenaeus and Parapeneopsis species were landed as by-catch of other Peneaeidae species from offshore water in the southern region of south east coast of India (Ramanathapuram)
Parapenaeopsis hardwickii, Megokris granulosus, Megokris sedili, Megokris pescadorensis, Penaeopsis jerryi, Penaeopsis rectaculata, Parapenaeus fissures, Parapenaeus investigatoris, Metapenaeopsis stridulans, Metapenaeopsis palvensis, Metapenaeopsis moegensis, Metapenaeopsis barbata, Trachysalambria curvostris. Lesser number of species landed were Fenneropenaeus penicillatus, Marsupenaeus japonicus, Metapenaeus ensis, Metapenaeus stebbingi, Funchalia woodwardi, Parapenaeopsis cornuta, Parapenaeopsis tenella, Parapenaeopsis nana, Parapenaeopsis sulptilus, Parapenaeopsis hungerfordi, Parapenaeopsis venusta, Parapenaeopsis comorandlica, Parapenaeopsis gracillima, Kishinoyopenaeopsis maxillipedos (Parapenaeopsis maxillipedos), Gajampenaeopsis uncta (old name Parapenaeopsis uncta), Parapenaeus longipes, Parapenaeus fissurodies indicus, Trachysalambria aspera, Trachysalambria fulva, Trachysalambria longipes. Details of variety and distribution of Penaeidae species in the period 2010-2013 were collected from south east coast of India are given in Table 1. In the present study, new candidate shrimp in Indian water like Metapenaeopsis wellsi, Kishinoyepenaeopsis amicus (old name Parapenaeopsis sinica), Parapenaeus lanceolatus [32], Metapenaeus papuensis, P. gracillima, Metapenaeus anchistus, Parapenaeopsis venusta, Trachysalambria longipes, Parapenaeopsis comorandlica, Parapenaeopsis hungerfordi were landed in south east coast of India in Figure 4. The special morphological characters of new species obtained from south east coast of India distinguished from other Penaeidae species are given in Table 2.

Figure 4: Details of variety of Penaeidae species collected in the period 2010-2013.
Table 1: List of species availability in south east coast of India 2010-2013. *New species in the south east coast of water.

Penaeidae species	Morphological features
Metapenaeus anchistus	Rostrum distinctly directed upward, bearing 10 to 12 teeth along entire upper margin, almost straight and slightly curved downward at tip; rostrum extending to about distal segment of antennular peduncle. Postrostral crest is low. Brachiocardiac crest, distinct. First leg with distinct ischial spine. Telson with 3 pairs of large movable spine, Body covered with fine pubescence. In males, a narrow space between distomedian projections of petasma; in females, lateral plates of telycum without raised posterior edge and continuous to posterior transverse ridge.
Metapenaeus pauensis	Look like a Metapenaeus elagens, rostrum armed with teeth along entire upper border, armed 8-12 upper teeth, in males, ditomedian projection of petasma directed forward, their inner margin almost parallel, tubercle on merus of fifth leg slightly bent inwards, in female, ridges on lateral plates of telycum curved outward posteriorly.
Metapenaeopsis wellsi	Posteriolateral carapace no stidulating ridges, pterygostomian spine very strong, rostrum not forming crest.
Parapenaeopsis gracillima	Rostrum short, not extending beyond eyes, first leg without basial spine.
Parapenaeopsis coromandelica	Rostrum sigmoid shape, half-length toothless, telson armed with 1 or 2 pairs of fixed lateral spines.
Parapenaeopsis hungerfordi	Rostrum long and extending antennular peduncle, longitudinal suture extending almost to posterior carapace.
Parapenaeopsis venusta	Rostrum short and extending just beyond eyes, longitudinal suture only reaching as far as level of hepatic spine.
Kishinoyepenaeopsis amicus	Rostrum usually with 9 or 10 upper teeth, third leg with a basial spine. The end of the rostrum upward with black dot, absence of dark band in the last abdominal segment as seen in Kishinoyepenaeopsis maxillipeda.
Parapenaeopsis lanceolatus	Rostrum extending beyond second segment of antennular peduncle, branchiostegal spine present.

Table 2: Morphological characters of new species obtained from south east coast of water

M. novaeguineae (Haswell, 1879)	Northern velvet shrimp
P. hardwicki (Miers, 1878)	Spear shrimp
P. stylifera (H. Milne Edwards, 1837)	Kiddy shrimp
P. cornuta (Kishinouye, 1900)	Coral shrimp
P. tenella (Spence Bate, 1886)	Smooth shell shrimp
P. acclivirostris (Alcock, 1905)	Hawknose shrimp
P. nana (Alcock, 1905)	Dwarf shrimp
P. venusta (De Man, 1907)*	Adonis shrimp
P. coromandelica (Alcock, 1906)*	Coromandel shrimp
P. gracillima (Nobili, 1903)*	Thin shrimp
P. sculpitila (Heller, 1862 a)	Rainbow shrimp
P. hungerfordi (Alcock, 1905)*	Dog shrimp
P. uncta (New name Gangampenaeopsis uncta Alcock, 1905)	Uncuta shrimp
P. maxillipeda (Alcock, 1905) New name Kishinoyepenaeopsis maxillipeda	Torpedo shrimp
P. sinica (Liu and Wang, 1987) New name Kishinoyepenaeopsis amicus (V.C.Nguyen, 1971)*	

M. sedili (Hall, 1961)	Malayan rough shrimp
M. granulosus (Haswell, 1879)	Coarse shrimp
M. pescadoorensis (Schmitt, 1931a)	Big head Sand Prawn

T. curvostris (Stimpson, 1860)	Southern rough shrimp
T. aspera (Alcock, 1905)	-
T. fulva (Dall, 1957)	-
T. longipes* (Paulson, 1875)	Long legged rough shrimp

| P. jerryi (Perez Farfanite, 1979) | Gondwana shrimp |
| P. rectaculata (Spence Bate, 1881) | Needle shrimp |

P. investigatoris (Alcock & Anderson, 1899)	Explorer rose shrimp
P. longipes (Alcock, 1905)	Flamingo Shrimp
P. fissuroides indicus (Crosnier, 1986a)	False rose shrimp.
P. fissurus (Spence Bate, 1881)	Neptune Rose Shrimp
P. sextuberculatus (Kubo, 1949)	Domino shrimp

Parapenaeopsis longipes	Trachysalambria longipes
Look like Trachysalambria curvostris, rostrum straight and armed with 8 to 11 upper teeth, fourth and fifth abdominal segments without posteromedian incisions, fifth leg extending beyond antennal scale, posterior plate of female telycum without distinct notch.	
Exploited Penaeidae species

Marsupenaeus japonicus, Melicertus latisulcatus, P. monodon, P. semisulcatus, F. indicus, F. merguiensis, F. penicillatus in Penaeus genus, M. dobsoni, M. monoceros, M. brevicornis, and M. ensis in Metapenaeus genus, and P. styliroa, P. hardickii in Parapenaeopsis genus were commercially exploited along the south east coast of India. Also the by-catch species like Parapenaeopsis, Parapenaeus, Penaeopsis, Metapenaeopsis, Atypoopenaeus, Megokris, Trachysalambria, Trachypenaeus, both juvenile and adult from offshore water were thrown as waste are shown in Figure 5. Particularly Penaeus semisulcatus juvenile populations were exploited by fishing from inshore water are given in Figure 6.

Figure 5: Exploited Penaeidae species

Figure 6: Penaeus semisulcatus juvenile populations were exploited by fishing from inshore water.

Discussion

Diversity of Penaeidae species

The structure of decapod crustacean assemblages on the continental regions is different by spatial differences in environmental and oceanographic conditions particularly by depth, bottom type and characteristic of the water masses [37-43]. In the present study, the south east coast of India from Tuticorin to Chennai, 59 species of Penaeidae were landed, this high number of species availability shows that the good environmental and oceanographic conditions for living of these species. The main species landed were P. semisulcatus F. indicus, P. monodon, M. latisulcatus, P. styliroa, P. hardwickii, M. dobsoni, and M. brevicornis. In addition the following deep sea shrimps observed were Penaeopsis jerryi, Penaeopsis rectaculata, Parapenaeus investigatoris, Parapenaeus fissures, Atypoopenaeus stenodactylus, and M. stridulensis were landed in south east coast of India. According to the Central Marine Fisheries Research Institute [44], in south east coast particularly in Tamilnadu, the inshore Penaeidae shrimp comprised of 25 species, of which P. semisulcatus, F. indicus, Melicertus latisulcatus, Parapenaeopsis maxillipedo, Ganjampenaeopsis uncta (Old name Parapenaeopsis uncta) and Metapenaeus dobsoni are predominant and other species of deep sea prawns were Parapenaeus fissureoids, Penaeopsis jerryi, and P. investigatoris.

According to Suseelan [21], predominant Penaeidae species in the Indian coast are, F. indicus, P. monodon, P. semisulcatus, F. merguiensis, F. penicillatus, M. dobsoni, M. monoceros, M. affinis, M. brevicornis, P. styliroa, Metapenaeus moyebi, Metapenaeus kutchensis P. hardickii, and P. scultulis. In the present study, F. indicus, P. monodon, P. semisulcatus, F. merguiensis, F. penicillatus, M. dobsoni, M. monoceros, M. affinis, M. brevicornis, P. styliroa, Metapenaeus moyebi, and P. scultulis was landed. P. semisulcatus, P. monodon and F. indicus were obtained mostly all landing centre, which indicates the three species are the major commercial species in south east coast of India. The M. latisulcatus landed mainly in southern most regions (Tuticorin and Ramanathapuram) which consistent with geographical location of this species as reported by Rao et al. and indicate geographic specific distribution of Melicertus latisulcatus [45].

In the present study, Penaeopsis jerryi and Penaeopsis rectaculata landed southern region only (Tuticorin), which could be the environmental condition favors such as temperature and substratum sand with mud in deeper region for these two species as reported by John and Kurien, and Radhika Rajasree [46], that the Penaeopsis species, Metapenaeopsis andamanensis to be showing strong preference towards slightly higher water temperature and a substrate demarcated by mixture of sand and mud.

Kurian and Sebastian reported that the Parapenaeus longipes, Parapenaeus fissures, and Parapenaeus investigatoris in Indian water landings were by the long trip deep sea trawls from the depth of 70-90m [47]. In present study, the P. fissures, P. investigatoris, P. longipes, Parapenaeus sextuberculatus, P. fissuroideis indicus, Metapenaeopsis barbata, Metapenaeopsis striulans, and Atypoopenaeus stenodactylus were caught in the south east coast water by long trip deep trawels catching. This observation indicate that the depth profoundly influences the assemblage structure of deep sea prawn and the hydrographic features and the fishing intensity can affect the distribution and abundance of marine species such effect on the
species diversity and species richness as stated by Radhika Rajasree [46].

Previously, many new Penaeidae species has been reported like Parapeneaopsis hardwickii, Attypopenaeus compressipes, Parapeneaopsis acclivoirostris, Metapeneaopsis novae-guineae, and Trachypeneaopsis curvoirostris from west cost of India [48], Peneaopsis eduardoi from Indo-west pacific region, Peneaopsis jerry from Indian Ocean [49], and Parapeneaopsis Bissuroides indicus from west cost of India [50]. In the present study, new Penaeidae species of Metapeneaopsis welsi, Kishinouyepeneaopsis amicus (old name Parapeneaopsis sinica), Parapeneausan lanceolatus, M. papuensis, P. gracillima, Metapeneausan anchistus, Parapeneausan venusta, T. longipes, P. coromandelica, and Parapeneausan hungerfordi were landed in south east coast of India. These Peneausanae species were not reported previously in Indian coasts; hence the present report would give the novel insight on Peneausanae diversity in the east coast of India.

Exploitation of Penaeid species

The total landing of Peneausanae prawn in India was 2,72,969 tons in 2011 in which trawlers account for about 60% and the indigenous gears in south east coast of India. Mechanized trawls landed 46t of prawns while gillnets landed 13t [44]. In the present study, Peneausanae species Marsupeneausan japonicus, Melicertus fatisuckatus, P. monodon, P. semisculus, P. indicus, F. murgueni, P. penicillatus species and among the Metapeneausan species, M. do bsoni, M. monoceros, M. affinis, M. bivercornis, M. ensis, M. endovori, M. lysianassa. Parapeneausan species P. stylifera, and P. hardwikii, which grow to a large size, were commercially exploited by Mechanized large-scale operation of ring seines, mini-trawls, trammel net and indigenous gears in south east coast of India.

In deep shrimp trawling, the juvenile and seldom adult of G. uncta, P. corinuta, K. maxillipedes, P. sulphalis, P. tenella, M. granulosus, M. sedili, T. curvoirostris, Parapeneausan, Metapeneausan, Peneausan species are exploited as by-caught, and are considered less economic value and thrown as waste. Thus deep shrimp exploitation affects the peneausanae and also marine species biodiversity. Limiting the operation of fixed nets like stake nets, dip net etc. together with appropriate mesh size restrictions, and a ban of export of count sizes of shrimps below a fixed minimum level would be the methods for conserving the peneausanae shrimp.

As far as the Peneausan semisculus juvenile stage in the shallow inshore water seagrass ecosystem is the nursery ground for P. semisculus which have restricted distribution and are facing depletion. It is estimated that about 2500 indigenous fishing units are participated 7.1% in total marine fish catches, and catches (35,200 t) declined by 1.3% as compared to 2010 [44]. As far as south east coast of India (Tamilnadu) about 20,163 t of penea masked prawns were landed, accounting for 54.8% of the crustacean landings in 2011. About 85.4% of this was landed by trawl nets. The catch of non-peneaean prawns was relatively meager, accounting for 3.4% of the prawn landings. Prawn fishery along south Tamil Nadu coast (off Tuticorin) is done by mechanized trawl, indigenous trawl and gillnet (mainly in the estuarine areas). Mechanized trawls landed 119 t of prawns from inshore waters and 468 t of deep sea prawns. Indigenous trawl landed 46 t of prawns while gillnets landed 13 t [44]. In the present study, Peneausanae species Marsupeneausan japonicus, Melicertus fatisuckatus, P. monodon, P. semisculus, P. indicus, F. murgueni, P. penicillatus species and among the Metapeneausan species, M. do bsoni, M. monoceros, M. affinis, M. bivercornis, M. ensis, M. endovori, M. lysianassa. Parapeneausan species P. stylifera, and P. hardwikii, which grow to a large size, were commercially exploited by Mechanized large-scale operation of ring seines, mini-trawls, trammel net and indigenous gears in south east coast of India.

In present study reports 59 different Penaeidae species landed showed that the healthy diversity of Penaeidae species in south east coast of Indian water. The indiscriminate exploitation of juvenile at inshore areas and deep sea Penaeidae species like Parapeneausan, Metapeneaopsis, Peneaopsis, Attypopenaeus, and selected species of Parapeneaopsis, Megokris, and Trachysalambria are thrown as waste which reducing the diversity of Penaeidae. Therefore, the conservation measures generally adopted for this Penaeidae species include restriction of fishing effort, imposition of closed seasons for fishing, allotment of catch quotas, cod-end mesh regulations for fishing nets, and restriction on capturing juveniles from nursery grounds of entire coastline of south east coast of India to protect the prevailing Penaeidae diversity in south east coast of India.

Conclusion

In present study reports 59 different Penaeidae species landed showed that the healthy diversity of Penaeidae species in south east coast of Indian water. The indiscriminate exploitation of juvenile at inshore areas and deep sea Penaeidae species like Parapeneausan, Metapeneaopsis, Peneaopsis, Attypopenaeus, and selected species of Parapeneaopsis, Megokris, and Trachysalambria are thrown as waste which reducing the diversity of Penaeidae. Therefore, the conservation measures generally adopted for this Penaeidae species include restriction of fishing effort, imposition of closed seasons for fishing, allotment of catch quotas, cod-end mesh regulations for fishing nets, and restriction on capturing juveniles from nursery grounds of entire coastline of south east coast of India to protect the prevailing Penaeidae diversity in south east coast of India.

Acknowledgement

The authors express their special thanks to the Department of Science and Technology, New- Delhi, India, for financial assistance from DST–PURSE.

References

1. Radhakrishnan EV, Deshmukh VD, Maheswarudu G, Josleen J, Dineshbabu AP, et al. (2012) Prawn fauna (Crustacea: Decapoda) of India - An annotated checklist of the Peneaoids, Sergestoids, Stenopodids and Caridean prawns. Journal of Marine Biological Association of India 54: 50-72.
2. Suseelan C, Pillai NN (1993) Crustacean fishery resources of India - An overview. Indian Journal of Fisheries 40: 104-111.
3. Quader O (2010) Coastal and marine biodiversity of Bangladesh (Bay of Bengal) Proc. of International Conference on Environmental Aspects of Bangladesh (ICEAB10), Japan.
4. Gopalan UK, Vengayil D, Udayavarpa P, Krishnankutty M (1983) The Shrimping Backwaters of Kerala. Journal of Marine Biological Association of India 25: 131-141.
5. Suseelan C (1987) Impact of environmental changes and human interference on the prawn fishery resources. The marine fisheries information service Technical andExtension Series 73: 1-5.
6. Kathirvel M, Suseelan C, Rao PV (1993) Biology population and exploitation of the Indian deep-sea spiny lobster Pueriiliis sewerill Ramsadan. Fishing Chimes 8: 16-25.
7. Suseelan C, Rajan KN, Nacharkumar G (1989) The Karikadi fishery of kerala. The marine fisheries information service Technical and Extension Series: 102: 4-8.
8. Suseelan C, Nair KP (1994) Endangered vulnerable and rare estuarine shellfishes of India. In: Threatened fishes of India. Natcon Publication 4: 237-251.

9. Mohamed KH, Suseelan C (1973) Deep-sea prawn resources of the South-West Coast of India. Proc Symp. Living Resources of the seas around India. Spl Publ Cochin : 614-633.

10. Muthu MS (1971) On some new records of penaeid prawns from the East Coast of India. Indian Journal of Fisheries 15: 145-154.

11. Muthu MS (1972a) Parapenaeopsis indica sp. nov. (Decapoda, Penaeidae) from the Indian waters. Indian Journal of Fisheries 16: 174-180.

12. Muthu MS (1972b) Taxonomic notes on the penaeid prawn Metapenaeopsis gallensis (Pearson, 1905). Journal of Marine Biological Association of India 14: 564-567.

13. Rao GS (1984) On collection of two species of pelagic penaeids (Crustacea : Decapoda) from the oceanic waters of the South-West Arabian sea. Journal of Marine Biological Association of India 26: 165-166.

14. Ravindranath K (1989) Taxonomic status of the Coromandel shrimp Parapenaeopsis stylitera coromandelica Alcock (Decapoda, Penaeidae). Crustacea 57: 258-262.

15. Silas EG, Muthu MS (1976a) On a new species of penaeid prawn of the genus Metapenaeus Wood-Mason and Alcock from the Andamans. Journal of Marine Biological Association of India 26: 165-166.

16. Silas EG, Muthu MS (1976b) Notes on a collection of penaeid prawns from the Andamans. Journal of Marine Biological Association of India18: 78-90.

17. Thomas MM (1977) Decapod crustaceans new to Andaman and Nicobar Islands. Indian Journal of Fisheries 24: 56-61.

18. Thomas MM (1979) On a collection of deep sea decapod crustaceans from the Gulf of Mannar. Journal of Marine Biological Association of India 21: 41-44.

19. Thomas MM (1986) Decapod crustaceans from Palk Bay and Gulf of Mannar. In: Recent Advances in Marine Biology. New Delhi: 405-435.

20. George MJ (1979) Taxonomy of Indian penaeids (Peneaeidae, Crustacea, Decapoda) In: Contributions to Marine Sciences. 21: 59-64.

21. Suseelan C (1996) Crustacean biodiversity, conservation and management. In: Marine Biodiversity: Conservation and management 41-65.

22. Kathirvel M, Thirumurli P, Gokul A (2007) Indian penaeid shrimp species biodiversity and economical values. National symposium on Conservation and Valuation of Marine Biodiversity. Zoological Survey of India: 161-176.

23. Manickam SPE, Arputhara MR, Rao PV (1989) Exploitation of juveniles of giant tiger prawn, Peneaus semisulcatus along Palk Bay and its impact on the tiger prawn fishery of the region. Bulletin of the central marine fisheries Research institutes 44:137-45.

24. Rajamani M, Palanichamy S (2009) Need to regulate the thaliluvai fishery along Palk Bay, southeast coast of India. Journal of the Marine Biological Association of India 51: 223-226.

25. Patlak AK, Singh SP, Kumar R, Chaturvedi R (2012) Glimpses on Marine ornamental and shell fish resources of India. International day for biological diversity Marine Biodiversity 152-154.

26. Sudarsan D (1978) Fish trawl catches of Sholai Bay Port Blair (Andamans) in relation to hydrology and plankton. Mataya 3: 83-86.

27. Chanda A, Bhattacharya T (2002) Melicertus similis a new species of prawn Decapoda: Peneaeidae from Alcock. Bombay Natural History Society 99: 495-498.

28. Chanda A, Bhattacharya T (2003) Fenneropenaeus konkanii a new species of prawn Decapoda: Peneaeidae) from Indian coast. Science and Culture 69: 229-230.

29. Chanda A, Bhattacharya T (2004) A new species of the genus Parapenaeopsis Alcock, 1900 (Penaeidae: Peneaeidae) from Orissa India. Proceedings of the Zoological Society. 57: 23-27.

30. Sivaramakrishnan T, Rajesh S, Patterson J (2012) Trawl Fishing of Penaeid Prawn in the Northern Mandapam Coast of Palk Bay. World Journal of Fish and Marine Sciences 4: 278-283.

31. Basha SKM, Raiya Laksmi RE, Ratneswara Rao B, Murthy CVN, Savithramma N (2012) Biodiversity and conservation of Pulicat lake-Andhra Pradesh. International Journal of Geology, Earth and Environmental Sciences 2: 129-135.

32. Kubo I (1949) Studies on the penaeids of Japanese and its adjacent waters. Journal of the Toyo University Fisheries 20: 870-872.

33. Holthuis LB (1980) FAO species catalogue. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. FAO Fisheries Synopsis 1: 1-261.

34. Farfante PI, Kensiely B (1997) Penaeoid and Sergestoid shrimp and Prawns of the world. Paris: Museum National d'Histoire Naturelle.

35. Chan YT (1988) Shrimps and prawns. FAO Species Identification Guide for Fishery purposes. The living Marine Resources of the western central pacific Rome: FAO. 851-971.

36. De Grave S, Fransen CJHM (2011) Carideorum Catalogus: The Recent Species of the Dendrobranchiate, Stenopodidean, Procarididean and Caridean Shrimps (Crustacea: Decapoda), Zool. Med Leiden 85: 195-589.

37. Abello P, Valladares FJ, Castellón A (1988) Analysis of the structure of crustacean assemblages off the Catalan coast (North-West Mediterranean). Marine Biology 98: 39-49.

38. Markle DF, Dadvalla MJ, Halliday RG (1988) Demersal fish and decapod crustacean fauna of the upper continental slope off Nova Scotia from LaHavre to St. Pierre Banks. Canadian Journal of Zoology 66: 1952-1960.

39. Basford DJ, Eleftheriou A, Raffaei D (1989) The epifauna of the northern North Sea (56°-61°N). Journal Marine Biological Association UK 69: 387-407.

40. Olaso I (1990) Distribución y abundancia del megabentos invertebrado en fondos de la plataforma Cantábrica. Publicaciones Especiales Instituto de Oceanografia,1.

41. Macpherson E (1991) Biogeography and community structure of the decapod crustacea fauna off Namibia (southeast Atlantic). Journal of Crustacean Biology 11: 401-415.

42. Sarda F (1993) Bio-ecological aspects of the decapod crustacean fisheries in the Western Mediterranean. Aquatic living Resources 6: 299-306.

43. Sarda F, Cartes J, Company J (1994) Spatio-temporal variations in megabenthos abundance in three different habitats on the Catalan deepsea (Western Mediterranean). Marine Biology 120: 211-219.

44. CMFRI (2012) Annual Report 2011-12. Central Marine Fisheries Research Institute Cochin 186.

45. Rao SG, Subramaniam VT, Rajamani M, Manickam PES, Maheswar Gudu (1993) Stock assessment of Penaeus spp. off the east coast of India. Indian journal of Fisheries 40: 1-19.

46. Rajaassie RS (2011) Biodiversity of Deep Sea Prawns in the Upper Continental Slope of Arabian Sea, off Kerala (South West India): A Comparison between Depths and Years Turkish Journal of Fisheries and Aquatic Sciences 11: 291-302.

47. Kurian CV, Sebastian VO (1976) Prawn and Prawn fisheries of India. Hindustan publishing corporation (India) 280.

48. Kanju MM (1966) On new records of five species of Penaeidae Decapoda Magura (Peneaeida) on the west coast of India. J Mar boil Ass India 2: 82-84

49. Farfante IP (1980) Penaeopsis jerryi new species from the Indian ocean Crustacea Peneaeidea. Proceedings of the biological society of Washington 92: 208-215.

50. Dineshbabu AP (2004) An account on the fishery and biology of Parapeneus fischerioidesindicus Cronsr, 1985 recorded for the first time from Indian waters. Journal of Marine Biological Association of India 46: 215-219.