A novel compound heterozygous mutation in \textit{TTC8} identified in a Japanese patient

Shigeru Sato1, Takeshi Morimoto1,2, Kikuko Hotta3, Takashi Fujikado1,2 and Kohji Nishida1

\textbf{Abstract}

Bardet–Biedl syndrome (BBS), characterized by rod-cone dystrophy, postaxial polydactyly, central obesity, hypogonadism, renal abnormalities, and mental retardation, is a rare autosomal recessive disorder. To date, 21 causative genes have been reported. Here we describe a Japanese BBS patient with a novel compound heterozygous mutation in \textit{TTC8}. To the best of our knowledge, this is the first description of a BBS patient with a mutation in the \textit{TTC8} gene in Japan.

Bardet–Biedl syndrome (BBS) is a rare autosomal recessive disorder characterized by rod-cone dystrophy, postaxial polydactyly, central obesity, hypogonadism, renal abnormalities, and mental retardation. BBS is often complicated by strabismus/cataracts/astigmatism, diabetes mellitus, Hirschsprung disease, heart disease, and/or liver fibrosis. To date, 21 causative genes have been reported, comprising \textasciitilde80\% of BBS genetic abnormalities1,2. The remaining 20\% of genetic abnormalities among BBS patients are not yet known. In the present study, we performed whole-exome sequencing (WES) of a classical BBS patient.

The patient was diagnosed with BBS at 8 years of age, in accordance with criteria reported previously3. Primary and secondary signs of BBS in this patient are listed in Table 1. When the patient first visited Osaka University Hospital at 17 years of age, his best-corrected visual acuity (BCVA) was 0.07 in the right eye and 0.2 in the left eye. At 28 years of age, his BCVA was 0.01 in the right eye and 0.04 in the left eye; he exhibited bilateral diffuse retinal degeneration, including macular atrophy, attenuated retinal vessels, and optic nerve head pallor with little pigmentary dispersion. His parents were not consanguineous. His mother showed no sign of BBS or rod-cone dystrophy. His father did not have symptoms of BBS.

All experimental procedures were approved by the Ethics Committee at Osaka University (No. 719–2, Osaka, Japan) and conducted in accordance with the Declaration of Helsinki. Written informed consent was obtained from the patient (at the time of the report, a 28-year-old male) and his 61-year-old mother. Both individuals underwent ophthalmologic examinations: BCVA in decimal units, slit-lamp biomicroscopy, fundoscopy, visual field testing with Goldmann perimetry, optical coherence tomography (SSOCT; DRI OCT1, Topcon Corp., Tokyo, Japan), and fundus autofluorescence (Optos, Optos KK, Tokyo, Japan). Genomic DNA was extracted from blood samples using NucleoSpin Blood XL (Macherey-nagel, Düren, Germany). DNA libraries were constructed using SureSelectXT Human All Exon Kit V6 and SureSelectXT Reagent Kit (Agilent, Santa Clara, CA, USA) and then subjected to 100 bp paired-end sequencing on an Illumina HiSeq2500 Platform (Illumina, San Diego, CA, USA). Sequence reads were aligned to the reference human genome (UCSC hg19) in BWA (http://www.bio-bwa.sourceforge.net/) to align short reads after adaptor sequences were removed by Cutadapt (https://cutadapt.readthedocs.io/en/stable/). SAM tools (Version 0.1.17; http://www.samtools.sourceforge.net/) were used for sequence data conversion, sorting, and indexing. To exclude duplicate reads, Picard (http://picard.sourceforge.net) was used. Variants were determined using GATK (http://www.broadinstitute.org/gatk/). ANNOVAR

Correspondence: Shigeru Sato (s.sato@ophthal.med.osaka-u.ac.jp)

1Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan

2Department of Applied Visual Science, Osaka University Graduate School of Medicine, Osaka, Japan

Full list of author information is available at the end of the article.

© The Author(s) 2019

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Table 1 Primary and secondary signs of BBS in this patient

Primary signs	Age of onset	Clinical information	Intervention
Rod-cone dystrophy	8 Years old	Visual acuities: 0.01 (right), 0.04 (left), (with mild myopia and astigmatism)	No medication
Fundus finding: binocular diffuse retinal degeneration		Visual field: centipede constriction (binocular)	
Optical coherence tomography: binocular diffuse thinning of outer retinal layer (+), macular atrophy (+), macular edema (–), cystic changes (–), ellipsoid zone (–)		Fundus autofluorescence: binocular mottled pattern (+), perifoveal ring (–)	
Polydactyly	At birth	Both feet	Plastic surgery (19 months old)
Obesity	9 Years old	Height: 164 cm, Weight: 78.1 kg, Body mass index (BMI): 29 kg/m²	No medication
Hypogonadism	8 Years old	Testosterone: 300–600 ng/dl	No medication
Renal anomalies	1 Week old	Cystic kidney, Creatinine: 1.79 mg/dl, BUN: 21 mg/dl, eGFR cre: 37.2 mL/min/1.73 m²	
Mental retardation	No	-	-
Secondary signs		Hirschsprung disease 3 Months old	Surgery (28 months old)
Abnormal glucose tolerance	9 Years old	HbA1c: 5.6%, 75 g oral glucose tolerance test: 82 mg/dl at 0 h, 185 mg/dl at 2 h	No medication
Exotropia	NA	-	Bilateral lateral rectus muscle recession (14 years old)
Hypertension	27 Years old	Blood pressure = 145/83 mm Hg	Oral medicine (Amlodipine besilate 5 mg per day)
Cataract	NA	-	-
Heart diseases	No	-	-
Liver fibrosis	No	-	-

(http://www.openbioinformatics.org/annovar/) was used to annotate the resulting genetic variants. Rare variants (minor allele frequency < 0.05) were selected using the Exome Sequencing Project, 1000 Genomes Project, and Human Genetic Variation databases; possible pathogenic variants, such as nonsynonymous, nonsense, and frameshift mutations, were extracted from among the retinal degenerative disease-related genes registered in the Ret.Net™ database.

Ten candidate pathogenic rare variants in genes related to retinal degenerative diseases were detected in this patient. All were heterozygous variants; however, two novel nonsense (NM_001288781.1 [TTCC8_v001]: c.226 C>T, p.Q76X) and frameshift (NM_001288781.1 [TTCC8_v001]: c.309_310insTA, p.T103fs) mutations were located in the TTCC8 gene (also known as BBS8). Both mutations were validated by direct sequencing of PCR products (Applied Biosystems 3730 DNA Analyzer; Thermo Fisher Scientific K.K., Tokyo, Japan). The primer sets used for PCR were as follows: c.226 C>T, 5’-TGG GTTITAGGCAGCTTGGAG-3’ and 5’-ACCATAAGGCA GAACAGAAACCA-3’; c.308_309insAT, 5’-TAGGCCTT GGAACGTCTTTG-3’ and 5’- ACCATAAGGCAAGAC AGAAACCA-3’. This mutation is likely to be pathogenic, because the TTCC8 gene has been reported as a causative gene for BBS8⁴. The nonsense mutation was located in exon 3 of the TTCC8 gene, thus producing a truncated protein without tetratricoptide repeats 11 and 15, which are involved in pilus formation and twitching mobility. The frameshift mutation in exon 5 (c.309_310insTA) generates a premature stop codon in exon 6, which also produces TTCC8 lacking normal tetratricoptide repeats 11 and 15. The premature stop codon is located before the last exon; notably, a mRNA transcribed from a gene with a truncating mutation often undergoes nonsense-mediated mRNA decay before translation⁵. Thus, transcripts with nonsense and frameshift mutations are likely to be rapidly degraded to reduce the translation of the truncated TTC8 protein. Therefore, this compound heterozygous patient would not have a functional TTC8 protein to support the formation of the BBSome, leading to the development of BBS. His mother exhibited the heterozygous nonsense mutation, but no frameshift mutation. Although the genetic and clinical data were not available from his father, this patient’s BBS was determined to result from a compound heterozygous TTCC8 gene mutation.

BBS patients with mutations in the TTCC8 gene comprise only 2.8% of all BSS patients⁶⁷. In Japan, the genetics of four BBS families have been reported: BBS2, BBS5, and BBS7 homozygotes, as well as a BBS10 compound heterozygote⁸⁰. To the best of our knowledge, this is the first BBS patient with a mutation in the TTCC8 gene in Japan. Thus far, 16 families with the TTCC8 genetic abnormality...
Family	Ethnic	Consanguineous	Gene	Nucleotide alteration(s)	Zygosity state	Alteration(s) in coding sequence	Rod-cone dystrophy	Polydactyly	Obesity	Hypogonadism	Renal anomalies	Mental retardation	Secondary signs	Reference
Family 1	Japanese	No	TTC8	226 C > T & 308_309insAT	comp. het	Q76X & T103fs	Yes	Yes	No	Yes	No	No	Hirschsprung disease, abnormal glucose tolerance, exotropia, hypertension	Present study
Family 2	Pakistan	Yes	TTC8	IVS10 + 2_4deTGC	hom	Splice site	Yes	Yes	Yes	Yes	Yes	NA	Speech impediment	Ansley et al.
Family 2	Pakistan	Yes	TTC8	IVS10 + 2_4deTGC	hom	Splice site	Yes	Yes	Yes	Yes	Yes	NA	Speech impediment, developmental delay, brachycephaly	Ansley et al.
Family 2	Pakistan	Yes	TTC8	IVS10 + 2_4deTGC	hom	Splice site	Yes	Yes	Yes	Yes	Yes	NA	Speech impediment	Ansley et al.
Family 3	Saudi Arabian	NA	TTC8	187–188delEY	hom	6 bp Inframe deletion	Yes	Yes	Yes	NA	NA	NA	Speech impediment	Ansley et al.
Family 3	Saudi Arabian	NA	TTC8	187–188delEY	hom	6 bp Inframe deletion	Yes	Yes	Yes	NA	NA	NA	Speech impediment	Ansley et al.
Family 3	Saudi Arabian	NA	TTC8	187–188delEY	hom	6 bp Inframe deletion	Yes	Yes	Yes	NA	NA	NA	Speech impediment	Ansley et al.
Family 4	Saudi Arabian	NA	TTC8	187–188delEY	hom	6 bp Inframe deletion	Yes	Yes	Yes	NA	NA	NA	Speech impediment, developmental delay, brachycephaly, hemophilia	Ansley et al.
Family 4	Saudi Arabian	NA	TTC8	187–188delEY	hom	6 bp Inframe deletion	Yes	Yes	Yes	NA	NA	NA	Speech impediment, developmental delay, brachycephaly, hemophilia	Ansley et al.
Family 5	North African	Yes	TTC8	459 G > A	hom	Splice site	Yes	Yes	NA	NA	NA	NA	Cognitive impairment	Stoetzel al.
Family 5	North African	Yes	TTC8	459 G > A	hom	Splice site	Yes	Yes	NA	NA	NA	NA	Cognitive impairment	Stoetzel al.
Family 6	Lebanese	Yes	TTC8	IVS6 + 1_G > A	hom	Splice site	Yes	Yes	NA	NA	NA	NA	Cognitive impairment	Stoetzel al.
Family 7	Caucasian	No	TTC8	IVS6 + 1-2delGT	het	Splice site	Yes	Yes	NA	NA	NA	NA	Cognitive impairment	Stoetzel al.
Family 8	Tunisian	NA	TTC8	459 + 1 G > A	hom	Pro101LeufsX12	Yes	Yes	NA	NA	NA	NA	Cognitive impairment	Stoetzel al.
Family 9	Tunisian	NA	TTC8	459 + 1 G > A	hom	Pro101LeufsX12	Yes	Yes	NA	NA	NA	NA	Cognitive impairment	Stoetzel al.
Family 10*	Tunisian	NA	TTC8	355_356insGGTGGA,AGGC_CAGGCA	hom	Thr124ArgfsX43	NA	NA	NA	NA	NA	NA	Cognitive impairment	Stoetzel al.
Family 11	Turkish	Yes	TTC8	122 G > A	hom	W41X	Yes	Yes	Yes	Yes	Yes	No	Fatty liver, gall stones	Redin et al.
Family 12	NA	NA	TTC8	M52 + 1 G > A	hom	Splice site	Yes	Yes	Yes	Yes	No	No	Yes but details unknown	Janssen et al.
Family 13	Hispanic	NA	TTC8	485delG & 1000delA	comp. het	G162fsX4 & I334fsX1	Yes	Yes	Yes	Yes	Yes	Yes	Asthma, nasal polypeptide	Janssen et al.
Family 14	Tunisian	Yes	TTC8	329 G > A	hom	Splice site	NA	NA	NA	NA	NA	NA	Dental anomalies, hypertension	Mhamdi Q, et al.
Family 15	Tunisian	Yes	TTC8	459 + 1 G > A	hom	Splice site	Yes	Yes	Yes	Yes	Yes	NA	Fatty liver, gall stones	Janssen et al.
have been reported (Table 2)4,7,10–15. Most of these families have homozygous mutations; only our patient and a Hispanic family were compound heterozygotes. Although full clinical information was not available for some cases, most of the cases in these 16 families exhibit classical BBS without obvious differences in phenotypes.

In summary, we identified a novel compound heterozygous mutation in a Japanese BBS patient by WES. Our findings suggest that WES may be a useful tool for genetic diagnosis and characterization of BBS.

HGV database

The relevant data from this Data Report are hosted at the Human Genome Variation Database at https://doi.org/10.6084/m9.figshare.hgv.2528; https://doi.org/10.6084/m9.figshare.hgv.2531

Acknowledgements

We thank E. Suga, M. Morita, Y. Hasegawa, S. Tanaka, and S. Ishino for their technical assistance. We thank Editage (www.editage.jp) for the English language editing. This research was supported by the Project Promoting Clinical Trials for the Development of New Drugs and Medical Devices (Japan Medical Association) from the Japan Agency for Medical Research and Development, AMED.

Author details

1Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan. 2Department of Applied Visual Science, Osaka University Graduate School of Medicine, Osaka, Japan. 3Department of Medical Innovation, Osaka University Hospital, Osaka, Japan

Conflict of interest

The authors declare that they have no conflict of interest.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 November 2018 Revised: 24 December 2018 Accepted: 10 January 2019.

Published online: 12 March 2019

References

1. Forsythe, E., Kenny, J., Bacchelli, C. & Beales, P. L. Managing Bardet-Biedl Syndrome-now and in the future. Front. Pediatr. \textbf{6}, 23 (2018).

2. Dilan, T. L. et al. Bardet-Biedl syndrome-8 (BBS8) protein is crucial for the development of outer segments in photoreceptor neurons. \textit{Hum. Mol. Genet.} \textbf{15}, 283–294 (2006).

3. Beales, P. L., Elcioglu, N., Woolf, A. S., Parker, D. & Flinter, F. A. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. \textit{J. Med. Genet.} \textbf{36}, 437–446 (1999).

4. Ansley, S. J. et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. \textit{Nature} \textbf{425}, 628–633 (2003).

5. Hug, N., Longman, D. & Cáceres, J. F. Mechanism and regulation of the nonsense-mediated decay pathway. \textit{Nucleic Acids Res.} \textbf{44}, 1483–1495 (2016).

6. Bin, J. et al. BBS7 and TTC8 (BBS8) mutations play a minor role in the mutational load of Bardet-Biedl syndrome in a multiethnic population. \textit{Hum. Mutat.} \textbf{30}, E-737–E746 (2009).

7. Stoetzel, C. et al. BBS8 is rarely mutated in a cohort of 128 Bardet-Biedl syndrome families. \textit{J. Hum. Genet.} \textbf{51}, 81–84 (2006).

8. Hirano, M. et al. The first nationwide survey and genetic analysis of Bardet-Biedl syndrome in Japan. \textit{PLoS ONE} \textbf{10}, e0136317 (2015).

9. Kurita, K. et al. Clinical characteristics of a Japanese patient with Bardet-Biedl syndrome caused by BBS 10 mutations. \textit{Jpn J. Ophthalmol.} \textbf{62}, 458–466 (2018).
10. Smaoui, N. et al. Screening of the eight BBS genes in Tunisian families: no evidence of triallelism. Invest. Ophthalmol. Vis. Sci. 47, 3487–3495 (2006).
11. Harville, H. M. et al. Identification of 11 novel mutations in eight BBS genes by high-resolution homozygosity mapping. J. Med. Genet. 47, 262–267 (2010).
12. Janssen, S. et al. Mutation analysis in Bardet-Biedl syndrome by DNA pooling and massively parallel resequencing in 105 individuals. Hum. Genet. 129, 79–90 (2011).
13. Redin, C. et al. Targeted high-throughput sequencing for diagnosis of genetically heterogeneous diseases: efficient mutation detection in Bardet-Biedl and Alström syndromes. J. Med. Genet. 49, 502–512 (2012).
14. Mhandi, O. et al. Clinical and genetic characterization of Bardet-Biedl syndrome in Tunisia: defining a strategy for molecular diagnosis. Clin. Genet. 85, 172–177 (2014).
15. Ullah, A. et al. Sequence variants in four genes underlying Bardet-Biedl syndrome in consanguineous families. Mol. Vis. 23, 482–494 (2017).