Effect of some biological factors on the chitin yield of two crustacean species inhabiting the Egyptian waters

Amira Talaat Abo-Hashesh1, Wafaa Said Sallam2, Fedekar Fadel Madkour3*, Hanaa Khalil Ashour4, Amro Mohamed Hanora5

1Biotechnology Institute for Postgraduate and Researches, Suez Canal University, 41522, Ismailia, Egypt
2Department of Marine Science, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
3Department of Marine Science, Faculty of Science, Port Said University, 42511, Port Said, Egypt
4Department of Chemistry, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
5Department of Microbiology, Faculty of Pharmacy, Suez Canal University, 41522, Ismailia, Egypt

Objective: To investigate the chitin yield of two commercial crustacean species that are exploited in the Suez Canal region, the Red Sea crab *Charybdis natator* (*C. natator*) and the Mediterranean mantis shrimp *Erugosquilla massavensis* (*E. massavensis*), and to assess the effect of some biological factors such as sex, size and maturity stages of females’ ovaries on this yield.

Methods: A total of 64 specimens of crabs were collected from the Red Sea and 1377 mantis shrimps were collected from the Mediterranean Sea. Chitin was obtained after the de-proteinization, de-mineralization and de-colorization of 5 g oven dried exoskeletons and values were expressed as g/5 g and percentages.

Results: Chitin yield was significantly higher in *E. massavensis* than *C. natator* (22.1%, 14.22%, respectively). No significant difference in the yield was recorded between males and females of *C. natator* (12.9%, 14.9%, respectively), while the yield in *E. massavensis* males was significantly higher than females (25.3%, 21.2%, respectively). Significant variations in the chitin yield were observed between the different sizes of *E. massavensis* with the maximum being from the individuals falling in the size range 90–130 mm body length. The yield was at its lowest in the immature stage of *C. natator* females’ ovaries (9.29%). However, the values increased and remained constant for the remaining stages (≥ 18%).

Conclusions: The study recommends the use of the mantis shrimp for the production of chitin on commercial scale particularly medium sized males.

ARTICLE INFO

Article history:
Received 28 Aug 2017
Received in revised form 25 Sep 2017
Accepted 27 Sep 2017
Available online 21 Oct 2017

Keywords:
Chitin yield
Biological factors
Erugosquilla massavensis
Charybdis natator

ABSTRACT

Objective: To investigate the chitin yield of two commercial crustacean species that are exploited in the Suez Canal region, the Red Sea crab *Charybdis natator* (*C. natator*) and the Mediterranean mantis shrimp *Erugosquilla massavensis* (*E. massavensis*), and to assess the effect of some biological factors such as sex, size and maturity stages of females’ ovaries on this yield.

Methods: A total of 64 specimens of crabs were collected from the Red Sea and 1377 mantis shrimps were collected from the Mediterranean Sea. Chitin was obtained after the de-proteinization, de-mineralization and de-colorization of 5 g oven dried exoskeletons and values were expressed as g/5 g and percentages.

Results: Chitin yield was significantly higher in *E. massavensis* than *C. natator* (22.1%, 14.22%, respectively). No significant difference in the yield was recorded between males and females of *C. natator* (12.9%, 14.9%, respectively), while the yield in *E. massavensis* males was significantly higher than females (25.3%, 21.2%, respectively). Significant variations in the chitin yield were observed between the different sizes of *E. massavensis* with the maximum being from the individuals falling in the size range 90–130 mm body length. The yield was at its lowest in the immature stage of *C. natator* females’ ovaries (9.29%). However, the values increased and remained constant for the remaining stages (≥ 18%).

Conclusions: The study recommends the use of the mantis shrimp for the production of chitin on commercial scale particularly medium sized males.

1. Introduction

Chitin and cellulose are the most abundant natural biopolymers present in nature. Carapaces of large crustaceans especially crabs, shrimps and mantis shrimps contain chitin as a main component[1]. Many authors reported the use of chitin and its derivatives in several fields such as agriculture, treatment of wastewater, drug transportation, tissue engineering, molecular imprinting, cosmetics and food preservation[2-5]. Chitin based studies are progressively abundant, and new possible ways of utilization have been reported[6-9].

Several crustacean species are commercially harvested from the Mediterranean and Red Seas which include shrimps, crabs and mantis shrimps. However, this industry generates large volumes of waste materials that are discarded on a daily basis and represents a disposal problem. An improved commercial way to use this ample waste material is by converting them to forms with added value such as nutrients, (*e.g.*, proteins and minerals) as well as other useful biochemical compounds like chitin and...
chitosan\[10,11\]. No studies have been carried out on the production of chitin from any crustacean species inhabiting the Egyptian waters. The impact of the biological factors affecting chitin production in these crustaceans such as size, sex and females’ maturation stage has not been investigated. This study aimed to investigate the chitin yield of two of the commercial crustacean species that have a fishery potential and a considerable popularity in the Egyptian markets, the brachyuran crab *Charybdis natator* (Herbst, 1794) (*C. natator*) and the mantis shrimp *Erugosquilla massavensis* (Kossman, 1888) (*E. massavensis*). It also aimed to assess the effect of some biological factors on this yield.

2. Materials and methods

2.1. Sample collection

During the period 2013–2014, a total of 1 377 specimens of *E. massavensis* were collected from the Mediterranean Sea at Port Said, and 64 of *C. natator* collected from the Red Sea at the Gulf of Suez (Figure 1). Fresh samples were obtained from the fishing ports and immediately stored in the freezer at –20 °C for long time preservation. After thawing, specimens were sorted according to sex, then measured by means of a vernier caliper with an accuracy of 0.1 mm. The crab was measured for its carapace width while the mantis shrimp for its body length (BL) (Figure 2). Individuals were then divided into size groups with 10 mm interval for *C. natator* and 20 mm for *E. massavensis*. Females of each species were dissected to judge the gonad maturity stages and divided into 4 groups (immature, maturing, mature and ripe)[12]. Three replicate sub-samples were taken from each group for chitin extraction. The integuments were separated from specimens by means of a forcep.

2.2. Chitin extraction

For chitin extraction, integuments were digested by boiling for 10 min and dried at 40 °C in an oven until constant weight. Dried integuments were ground using a Grinder Rotor (Retch RM200, Germany) until a fine powder was obtained. Three consecutive processes were then applied, de-proteinization, de-mineralization and de-coloration[13-15].

2.2.1. De-proteinization

In a conical flask, 5 g of dried integument powder was added to 50 mL of 4% NaOH solution at a ratio of 10:1 (v/w). The mixture was treated under standard autoclaving conditions (15 psi/121 °C) for 10 min (to decompose the albumen into soluble amino acids) and then filtered. The solid residue was washed to neutrality in running tap water to remove any traces of chemicals and soluble impurities. The residue was rinsed with de-ionized water and then oven-dried at 40 °C over night. The obtained substance was weighed and the weight of the protein was calculated.

2.2.2. De-mineralization

1 mol/L HCl was added to the obtained de-proteinized sample at a ratio of 20:1 (v/w) and stirred for 15–30 min to remove existing minerals (mainly calcium carbonate). The duration was dependent on the species, being longer in case of the rock crab due to its relatively hard exoskeleton. The mixture was filtered and the solid residue was washed and oven-dried as described in the previous step. The obtained substance was weighed and the weight of the minerals was calculated.

2.2.3. De-coloration

After de-mineralization, 25 mL of acetone was added to the...
sample and left for 10 min to remove any impurities[16]. The mixture was then filtered and dried for 2 h at room temperature. Sodium hypochlorite solution was added to the mixture at ratio of 1:10 (w/v) and kept for 5 min at room temperature with constant stirring, then filtered. Sodium hypochlorite was used to reduce the odor of the material and remove pigments[17]. The solid residue was washed with tap water for 30 min, oven-dried and weighed. The chitin content was determined from the weight differences between the raw material and that of the chitin obtained after treatment and calculated as g/5 g.

Data was presented as mean percentages. The Two-way ANOVA test was performed using the software package SPSS version 15.0 (SPSS Inc., USA).

3. Results

Dried exoskeleton of the two species consisted of protein, minerals, pigments and chitin with minerals constituting more than 50% of the skeleton dry weight (Figure 3). In general, proteins and minerals were significantly less in the mantis shrimp (19.62%, 55.81%, respectively) than the crab (21.33%, 62.28%, respectively) (F (1, 133) = 4, P < 0.05 for protein and F (1, 133) = 50.56, P < 0.01 for minerals) (Figure 3). In terms of weight (g/5 g), chitin yield was significantly higher in E. massavensis (1.16 g) than C. natator (0.69 g) (F (1, 133) = 97.38, P < 0.01) (Tables 1 and 2). On the other hand, chitin yield was significantly higher in E. massavensis males (average 1.27, 25.3%) than females (average 1.05, 21.2%) (F (1, 60) = 30.51, P < 0.01) while in C. natator, females showed insignificant slightly higher values of chitin (average 0.73 g, 14.9%) than males (average 0.65 g, 12.9%) (Tables 1 and 2, Figure 3).

Body size ranged between 70 and 170 mm in both sexes of E. massavensis while in C. natator the carapace width ranged between 70–130 mm in females and 70–140 mm in males (Tables 1 and 2). Insignificant variations in chitin content were noticed among different sizes of C. natator for both sexes, with irregular values ranged between 0.49 g (9.9%) and 0.88 g (17.7%) (Figure 4A). Conversely, significant variations in chitin yield were observed between the different sizes of E. massavensis with the maximum (33%) being in the size range 90–130 mm BL (F (4, 16) = 3.61, P < 0.05, F (4, 16) = 7.17, P < 0.01) (Figure 4B).

With regard to maturity stage, chitin yield in C. natator was at its lowest values in the immature stage of females (9.29%) then values increased and remained constant for the remaining stages (≥ 18%). In contrast, values were almost equal in all stages of E. massavensis (Figure 5).

![Figure 2. Dorsal view of C. natator (A) and E. massavensis (B).](image)

![Figure 3. Percentage of exoskeleton components of C. natator and E. massavensis.](image)

A: Chitin; B: Proteins; C: Minerals; D: Pigments.

Table 1 Mean values of chitin (g/5 g) obtained from C. natator in relation to size.
Size range (mm)
70–80
80–90
90–100
100–110
110–120
120–130
130–140
Average
Total mean

Table 2 Mean values of chitin (g/5 g) obtained from E. massavensis in relation to size.
Size range (mm)
70–90
90–110
110–130
130–150
150–170
Average
Total mean
4. Discussion

Crustaceans’ exoskeleton has been described as “a bio-mineralized structure which consists of an organic matrix together with an inorganic mineral”[18]. The present study was an attempt to estimate the yield of chitin from two crustacean species inhabiting Egyptian waters, the Red Sea crab C. natator and the Mediterranean mantis shrimp E. massavensis, and stand on the effect of size, sex and maturity stage on this yield.

The percentages of exoskeleton components (e.g. chitin, proteins, minerals and pigments) obtained for the two species in the present work were in agreement with previous studies on other crustaceans[17,19]. Differences in the levels of those components with high proportion of minerals in two species (more than 50%) could be referred to the mechanical requirements as well as the difference in the biological escape behavior between the two animals. E. massavensis showed lower percentages of minerals than C. natator where lobsters are known to have a lighter, more elastic cuticle than crabs since they are motile, fast-swimming animals, therefore, they are able to escape from predators and seek shelter between rocks[18]. Crabs, on the other hand, need a hard, highly mineralized shell in order to hold tightly to the ground and burrow into the sand during any attack. Moreover, mantis shrimps are known as very aggressive predators with high swimming and predation abilities[20]. Accordingly, the shell of E. massavensis is less mineralized and therefore lighter and less hard than that of C. natator, a fact that explains the lower levels of both protein and minerals recorded between these two species in the present study.

Previous studies reported chitin values close to those measured in the present study for the mantis shrimp[20-22] and crab[11,20,22] (Table 3). The variability in content of chitin in shells according to species has been documented[20-22]. Also, several factors were found to influence chitin values in crustacean shells such as season, nutritional and geographic condition[23,24].

Table 3

Chitin yield (g/20 g) of the studied species in comparison with other crustaceans studied elsewhere.

Species	Reference	Chitin (g/20 g)	Preparation method
Squilla mantis	(Linnaeus, 1758)	4.80* C1	
Squilla spp.		4.83* C1	
Podophthalmus nigri (Fabricius, 1798)	7.42* C1		
Calappa lophos	(Herbst, 1782)	1.79* C1	
Dromia dehaani	(Kemp, 1911)	2.13* C1	
E. massavensis		4.42* C3	
C. natator		2.19* C3	

C1: Conventional 1[22]; C2: Conventional 2[20]; C3: Conventional 3[15]. *: Values have been calculated on the basis of 20 g initial weight for comparative reasons.

The maximum chitin yield for E. massavensis was noticed in the size range 90–130 mm BL. It is proposed that at this size range, maturity takes place and therefore the intermolt intervals lengthen, thus individuals keep the chitin levels in their shells high. Increased size or reproductive maturity may stop molting in crustaceans[25,26].

Increasing chitin yield in E. massavensis males than females is reasonable since reproduction in females is known to deplete all resources from the body organs to help with ovarian development. The immature stage of the ovary is the onset of the reproductive process where chitin starts to deposit in the ova during development. Crabs are more likely to be less active prior to the reproduction and consequently protein and minerals are not consumed excessively and could therefore be found in their shells with high levels[23]. On the other hand, increasing in chitin levels had been reported in the shell waste of the Norway lobster Nephrops norvegicus from Northern Ireland and was attributed to the decrease in protein[27]. In this context, other small crustaceans have been reported as an alternative chitin source. Of these, Artemia cyst was suggested as a new source
of chitin[28], in addition to the resting eggs of the fresh water flea Daphnia longispina that was reported to have about 23%–25% chitin content[9].

Conclusively, the present study shows the significance of the two studied species’ integuments in the production of chitin on a commercial scale and recommends the sustainable exploitation of this resource. Special attention can be drawn to middle size males’ mantis shrimps in order to obtain the maximum possible yield.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgments

This study is supported by the Swedish International Development Cooperation Agency, Sweden (Grant number 2009-6420).

References

[1] Pandharipande SL, Bhagat PH. Synthesis of chitin from crab shells and its utilization in preparation of nanostructured film. Int J Sci Eng Technol Res 2016; 5(5): 1378-83.
[2] Rogulská OY, Mutsenko VV, Revenko EB, Petrenko YA, Ehrlich H, Petrenko AY. Culture and differentiation of human adipose tissue mesenchymal stromal cells within carriers based on sea sponge chitin skeletons. Stem Cell Day 2013; 23: 267-70.
[3] Wan ACA, Tai BCU. Chitin – a promising biomaterial for tissue engineering and stem cell technologies. Biotechno Adv 2013; 31: 1776-85.
[4] Westholm LJ, Repo E, Sillanpää M. Filter materials for metal removal from mine drainage – a review. Environ Sci Pollut Res 2014; 21: 9109-28.
[5] Ifuku S, Saimoto H. Chitin nanofibers: preparations, modifications, and applications. Nanoscale 2012; 4: 3308-18.
[6] Chang C, Peng N, He M, Teramoto Y, Nishio Y, Zhang L. Fabrication and properties of chitin/hydroxyapatite hybrid hydrogels as scaffold nano-materials. Carbohydr Polym 2013; 91: 7-13.
[7] Sabitha M, Sanoj Rejinold N, Nair A, Lakshmanan VK, Nair SV, Jayakumar R. Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer. Carbohydr Polym 2013; 91: 48-57.
[8] Salah R, Michaud P, Mati F, Harrat Z, Lounici H, Abdi N, et al. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluated with the human monocye leukaemia cell line, THP-1. Int J Biol Macromol 2013; 52: 333-9.
[9] Kaya M, Cakmak YS, Baran T, Asan-Ozusaglam M, Mentes A, Tozak KO. New chitin, chitosan, and O-carboxymethyl chitosan sources from resting eggs of Daphnia longispina (Crustacea); with physicochemical characterization, and antimicrobial and antioxidant activities. Biotechnol Bioprocess Eng 2014; 19: 58-69.
[10] Majekodunmi SO. Current development of extraction, characterization and evaluation of properties of chitosan and its use in medicine and pharmaceutical industry. Am J Polym Sci 2016; 6(3): 86-91.
[11] Das S, Ganesh EA. Extraction of chitin from trash crabs (Podophthalmus vigil) by an eccentric method. Curr Res J Biol Sci 2010; 2(1): 72-5.
[12] Sukumaran KK. Study on the fishery and biology of the mantis shrimp Oratosquilla nepa (laterellae) of south Kanara coast during 1979–83. Indian J Fish 1987; 34(3): 292-305.
[13] No HK, Lee MY. Isolation of chitin from crab shell waste. J Korean Soc Food Nutr 1996; 24: 105-13.
[14] Burrows F, Louieme C, Abazinge M, Onokpise O. Extraction and evaluation of chitosan from crab exoskeleton as a seed fungicide and plant growth enhancer. Am Euras J Agric Environ Sci 2017; 2(2): 103-11.
[15] Bolat Y, Bilgin Ş, Günlü A, Izcı L, Koca SB, Çetinkaya S, et al. Chitin-chitosan yield of freshwater crab (Potamon potamios, Olivier 1804) shell. Pak Vet J 2010; 30(4): 227-31.
[16] Al Sagheer FA, Al-Sughayer MA, Muslim S, Elsabee MZ. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr Polym 2009; 77: 410-9.
[17] de Andrade SMB, Ladhumanandasingam R, da Rocha BG, Belarmino DD, Galvão AO. The use of exoskeletons of shrimp (Lipopenaeus vannamei) and crab (Ucides cordatus) for the extraction of chitosan and production of nanomembrane. Mater Sci Appl 2012; 3: 495-508.
[18] Bosselmann F, Romano P, Fabritius H, Raabe D, Epplle M. The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim Acta 2007; 463: 65-8.
[19] Hayes M. Chitin, chitosan and their derivatives from marine rest raw materials: potential food and pharmaceutical applications. In: Hayes M, editor. Marine bioactive compounds. Boston: Springer; 2012, p. 115-28.
[20] Tadayon M, Amini S, Masic A, Miserez A. The mantis shrimp saddle: a biological spring combining stiffness and flexibility. Adv Funct Mater 2015; 25: 6437-47.
[21] Thirunavukkarasu N, Dhinamala K, Moses Inbaraj R. Production of chitin from two marine stomatopods Oratosquilla spp. (Crustacea). J Chem Pharm Res 2011; 3(1): 353-9.
[22] Jaganathan K, Soundarapandian P, Suresh TV, Murali Shankar A, Arunprabu S, Raffi SM. Extraction and characterization of chitin from marine bycatch crustaceans employing chemical method. Indon-Asian J Multidiscip Res 2015; 1(1): 94-102.
[23] Bilgin Ş, Fidanbaş ZUC. Nutritional properties of crab (Potamon potamios Olivier, 1804) in the lake of Egidir (Turkey). Pak Vet J 2011; 31(3): 239-43.
[24] Ofem MI, Anyandi AJ, Ene EB. Properties of chitin reinforces composites: a review. Niger J Technol 2017; 36(1): 57-71.
[25] Hartnoll RG. Strategies of crustacean growth. Aust Mus Memoir 1984; 18: 121-31.
[26] Nagaraju GPC. Reproductive regulators in decapod crustaceans: an overview. J Exp Biol 2011; 214: 3-16.
[27] Morrow JC. Biotechnological utilisation of Nephrops shell waste [dissertation]. Scotland: University of Glasgow; 2002.
[28] Tujik H, Moradi M, Rohani SMR, Erfani AM, Jalali FSS. Preparation of chitosan from brine shrimp (Artemia urmiana) cyst shells and effects of different chemical processing sequences on the physicochemical and functional properties of the product. Molecules 2008; 13: 1263-74.