Analgesic α-conotoxins modulate GIRK1/2 channels via GABA\textsubscript{B} receptor activation and reduce neuroexcitability

Anuja R. Bony, Jeffrey R. McArthur, Rocio K. Finol-Urdaneta and David J. Adams*

Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia.

*Correspondence should be addressed to David J. Adams (Email: djadams@uow.edu.au)

Running title: α-Conotoxin Vc1.1 potentiates GIRK currents.
Abstract

Activation of G protein-coupled inwardly rectifying potassium (GIRK or Kir3) channels leads to membrane hyperpolarization and dampening of neuronal excitability. Here we show that the analgesic α-conotoxin Vc1.1 potentiates inwardly rectifying K^+ currents (I_{Kir}) mediated through native and recombinant GIRK1/2 channels by activation of the G protein-coupled GABA_{B} receptor (GABA_{B}R) via a Pertussis toxin (PTX)-sensitive G protein. Recombinant co-expression of human GIRK1/2 subunits and GABA_{B}R in HEK293T cells resulted in a Ba^{2+}-sensitive I_{Kir} potentiated by baclofen and Vc1.1 which was inhibited by PTX, intracellular GDP-β-S, or the GABA_{B}R-selective antagonist CGP 55845. In adult mouse DRG neurons, GABA_{B}R-dependent GIRK channel potentiation by Vc1.1 and baclofen hyperpolarizes the cell resting membrane potential with concomitant reduction of excitability consistent with Vc1.1 and baclofen analgesic effects in vivo. This study provides new insight into Vc1.1 as an allosteric agonist for GABA_{B}R-mediated potentiation of GIRK channels and may aid in the development of novel non-opioid treatments for chronic pain.

Keywords

Baclofen / α-conotoxin / GABA_{B} receptor / GIRK channel / sensory neuron
Introduction

Current pharmacotherapies available for the treatment of neuropathic and chronic pain include opioids and anti-depressants frequently associated with severe adverse effects (Costigan et al, 2009; Finnerup et al, 2021) underscoring the need for alternative therapies. Several venom-derived peptides have been demonstrated to selectively target neurotransmitter receptors and ion channels in nociceptive pathways. In particular, a number of relatively small disulfide-rich peptides isolated from marine cone snails called conotoxins exhibit anti-nociceptive activity (Knapp et al, 2012; Sadeghi et al, 2017; Hone et al, 2018; Kennedy et al, 2020). α-Conotoxin MVIIA, which inhibits neuronal high voltage-activated (HVA) N-type (Cav2.2) calcium channels, is the active element of Prialt™ (Ziconotide), an FDA approved drug for the treatment of intractable pain (Wermeling, 2005). However, off-target effects and the requirement for intrathecal administration restrict its applications.

α-Conotoxins are primarily recognised as muscle and neuronal nicotinic acetylcholine receptor (nAChR) antagonists (Lebbe et al, 2014; Abraham & Lewis, 2018). Yet, α-conotoxins active at $\alpha9\alpha10$ nAChRs also inhibit neuronal calcium (Cav) channels via activation of G protein-coupled GABA$_B$ receptors (GABA$_B$Rs) (Callaghan et al, 2008; Daly et al, 2011; Adams et al, 2012; Cuny et al, 2012). α-Conotoxin Vc1.1 from Conus victoriae venom was shown to antagonize $\alpha9\alpha10$ nAChRs (Vincler et al, 2006; Nevin et al, 2007) and to activate GABA$_B$Rs resulting in inhibition of Cav2.2 (N-type) and Cav2.3 (R-type) channels in mammalian primary afferent neurons (Callaghan et al, 2008; Berecki et al, 2014; Sadeghi et al, 2017). In $\alpha9$ knockout mice and rodent neuropathic and chronic visceral pain models, Vc1.1 and its analogues, exhibit anti-nociceptive activity via GABA$_B$R inhibition of Cav2.2/Cav2.3-mediated currents (Callaghan & Adams, 2010; Mohammadi & Christie, 2014; Castro et al, 2018). Selective GABA$_B$R
antagonists, and Ga\(_{i/o}\) inhibitors such as *Pertussis* toxin, GDP-\(\beta\)-S, and G protein \(\beta\gamma\) scavengers, all attenuate \(\alpha\)-conotoxin inhibition of Cav2.2/Cav2.3 channels. In HEK293 cells co-expressing Cav2.2 and GABA\(_B\)R where the GABA/baclofen binding sites have been neutralized, Vc1.1 remains able to inhibit Cav2.2 Ca\(^{2+}\) currents suggesting that it acts as an allosteric GABA\(_B\)R agonist (Huynh *et al.*, 2015). The cyclized Vc1.1 analogue, cVc1.1, is >8000-fold more potent inhibiting GABA\(_B\)R-dependent HVA calcium channels than \(\alpha9\alpha10\) nAChRs highlighting the role of GABA\(_B\)R in its anti-nociceptive actions (Clark *et al.*, 2010; Castro *et al.*, 2018; Sadeghi *et al.*, 2018).

GABA\(_B\)Rs functionally couple to GIRK channels to attenuate nociceptive transmission (Blednov *et al.*, 2003) analogous to the analgesic effects observed upon agonist activation of \(\mu\)-opioid, \(\alpha2\) adrenergic, muscarinic or cannabinoid receptors (Blednov *et al.*, 2003; Mitrovic *et al.*, 2003; Nagi & Pineyro, 2014; Yudin & Rohacs, 2018), or by direct activation of GIRK channels (Lujan *et al.*, 2014). GIRK channels are tetrameric assemblies of four distinct subunits, GIRK1, GIRK2, GIRK3 and GIRK4, of which only GIRK2 and GIRK4 channels form functional homotetramers whereas GIRK1 and GIRK3 are obligatory heterotetramers requiring other GIRK subunits to enable trafficking to the plasma membrane (Lujan *et al.*, 2014; Lujan *et al.*, 2015). All GIRK subunits, but in particular GIRK1 and GIRK2, are expressed in mammalian sensory neurons where they may couple with G protein-coupled receptors (GPCRs) including GABA\(_B\)R (Marker *et al.*, 2004; Kanjhan *et al.*, 2005; Gao *et al.*, 2007; Lyu *et al.*, 2015). Direct binding of the G protein (G\(_{i/o}\)) G\(\beta\gamma\) subunit to the GIRK channel has been shown to activate and modulate the inhibitory actions of several neurotransmitters (Hibino *et al.*, 2010; Luscher & Slesinger, 2010;). Independent of GPCR activation, a number of clinically active compounds targeting GIRK channels have been described to modulate diverse pathological processes (Luscher & Slesinger,
2010; Wydeven et al, 2014). For example, the GIRK channel opener VU046655 exhibits antinociceptive activity implicating GIRK-mediated activity in analgesia (Abney et al, 2019).

In the present study, we investigated the effect of the analgesic α-conotoxins Vc1.1, RgIA, and PeIA on recombinant and native GIRK-mediated K$^+$ currents and their effects on neuronal excitability. These conopeptides potentiated heteromeric GIRK1/2 and homomeric GIRK2 channels when co-expressed with human GABABR in HEK293T cells and suppressed excitability in adult mouse DRG neurons. A preliminary account of the results has been presented as a published abstract (Bony et al, 2020).

Results

Analgesic α-conotoxins potentiate GIRK1/2 channel-mediated K$^+$ currents via GABABR activation

The effect of α-conotoxin Vc1.1 on GIRK1/2 channels was investigated in HEK293T cells transiently transfected with human GIRK1, GIRK2, GABABR1 and GABABR2 subunits. In transfected HEK293T cells, basal inwardly rectifying K$^+$ current (I_{Kir}) density recorded in the presence of 20 mM extracellular K$^+$ at -100 mV was 55.7 ± 7.5 pA/pF ($n = 17$). I_{Kir} was reversibly reduced by ~75% to 18.9 ± 4.1 pA/pF ($n = 17$) upon bath application of 1 mM Ba$^{2+}$ which effectively blocks most Kir channels (Hibino et al, 2010). Under our recording conditions, non-transfected HEK293 cells exhibited an endogenous I_{Kir} density of 1.5 ± 0.2 pA/pF ($n = 6$) consistent with that reported previously (Ämmälä et al, 1996). Bath application of either Vc1.1 (1 μM) or baclofen (100 μM) reversibly potentiated whole-cell inward K$^+$ currents at -100 mV by 28.3 ± 1.8 pA/pF ($n = 8$) and 68.4 ± 5 pA/pF ($n = 9$), respectively (Fig. 1A, B; Table 1). Barium (1 mM) fully blocked the potentiation of I_{Kir} by Vc1.1 and baclofen (Fig. 1A, B). Vc1.1
and baclofen were ineffective at potentiating GIRK1/2-mediated I_{Kir} in HEK293 cells expressing GIRK1/2 channels alone in the absence of GABA$_B$R (n = 5; Fig. 1C, D & H). Since GIRK2 can form functional homotetramers, the effect of α-conotoxin Vc1.1 was verified on cells co-expressing homomeric GIRK2 channels and GABA$_B$Rs. The basal I_{Kir} density for GIRK2 transfected cells was 17.3 ± 4.4 pA/pF (n = 12) which was reversibly inhibited by >63% in the presence of 1 mM Ba$^{2+}$. Vc1.1 (1 µM) and baclofen (100 µM) reversibly potentiated GIRK2-mediated I_{Kir} at -100 mV by 9.8 ± 1.0 pA/pF (n = 6) and 27.1 ± 4.2 pA/pF (n = 4), respectively (Fig. 1E, F & H; Table 1).

Other α-conotoxins active at $\alpha 9\alpha 10$ nAChRs including RgIA and PeIA potently inhibit HVA calcium channels via GABA$_B$R activation (Callaghan et al, 2008; Daly et al, 2011; Berecki et al, 2014) and therefore were also tested on recombinant GIRK1/2-GABA$_B$R in HEK293T cells. Bath application of α-conotoxins PeIA and RgIA at 1 µM reversibly potentiated the GIRK1/2-mediated I_{Kir} increasing the current density by 26.6 ± 6.5 pA/pF and 22.1 ± 4.7 pA/pF (n = 5-7), respectively (Fig. 1H; Table 1). In contrast, application of the $\alpha 7$ nAChR antagonist, α-conotoxin ImI (1 µM), failed to potentiate I_{Kir} (n = 5) compared to Vc1.1 tested in the same cells (Fig. EV1C, D & E). Furthermore, reduction of Vc1.1 ($Vc1.1^{RA}$) with dithiothreitol (DTT; 1 mM) rendered the peptide incapable of potentiating GIRK1/2-mediated I_{Kir} (n = 5; Fig. EV1A, B & E).

Vc1.1 potently potentiated GABA$_B$R-coupled GIRK1/2 channels with an EC$_{50}$ of 197.2 ± 0.2 nM (nH = 1.1; n = 5-7 replicates per concentration) determined from the concentration-response relationship displayed in Fig. 1G. Notably, the concentration of Vc1.1 to potentiate GABA$_B$R-GIRK1/2 K$^+$ currents is ~100-fold higher than that required for Vc1.1 inhibition of
rodent DRG neuron GABA\(_B\)R-HVA calcium currents and recombinant human GABA\(_B\)R-Cav2.2 expressed in HEK293 cells (Callaghan et al., 2008; Huynh et al., 2015).

GIRK1/2 channels are not directly activated by Vc1.1

The involvement of GABA\(_B\)R in the potentiation of GIRK1/2 and GIRK2 K\(^+\) currents by analgesic \(\alpha\)-conotoxins and baclofen was investigated in HEK293T cells by expressing GIRK1/2 alone and using the selective GABA\(_B\)R antagonist, CGP 55845 upon co-transfection with GABA\(_B\)R. In the absence of GABA\(_B\)R expression, application of either baclofen or Vc1.1 failed to potentiate GIRK1/2 K\(^+\) currents indicating that Vc1.1 and baclofen potentiation of recombinant I\(_{\text{Kir}}\) is GABA\(_B\)R-dependent. Bath application of CGP 55845 (1 \(\mu\)M) did not affect the GIRK1/2 K\(^+\) current but robustly and reversibly antagonized the potentiation of I\(_{\text{Kir}}\) by both Vc1.1 (80\%, \(n = 5\)) and baclofen (88\%, \(n = 5\)), respectively (Fig. 2A, B & I). In HEK293T cells, CGP 55845 antagonism of Vc1.1- and baclofen-induced potentiation of I\(_{\text{Kir}}\) was reversible. Taken together, these results highlight a requirement for GABA\(_B\)R activation for the potentiation of GIRK1/2 K\(^+\) currents by Vc1.1 and baclofen.

G\(\beta\)\(\gamma\) mediates Vc1.1 modulation of GIRK1/2

GIRK channel modulators like the orthosteric agonists, GABA and baclofen, act via the G protein G\(\alpha_{i/o}\), whereas G\(\beta\)\(\gamma\) is known to interact with the GIRK1 and GIRK2 N-terminus or C-terminus (Ivanina et al., 2003; Kahanovitch et al., 2014; Dascal & Kahanovitch, 2015). The role of G proteins in GABA\(_B\)R-mediated potentiation of GIRK channels by Vc1.1 was investigated using selective G protein inhibitors. A 24 hour incubation with Pertussis toxin (PTX; 1 \(\mu\)g/ml), an inhibitor of heterotrimeric G\(_{i/o}\) proteins (G\(\alpha_{i/o}\)), abrogated the potentiation of GIRK1/2-mediated K\(^+\) currents by 1 \(\mu\)M Vc1.1 to 1.1 ± 0.5 pA/pF (\(n = 5\)) and 100 \(\mu\)M baclofen to 2.0 ± 0.8 pA/pF (\(n = 5\)) compared to untreated cells (Fig. 2C, D & I). Replacement of GTP with the
hydrolysis-resistant GDP analogue, GDP-\(\beta\)-S (500 \(\mu\)M) in the patch pipette, attenuated Vc1.1 and baclofen potentiation of GABA\(_B\)-GIRK1/2 \(K^+\) currents compared to control (3.6 \(\pm\) 0.9 pA/pF (n = 5) and 15.4 \(\pm\) 2.3 pA/pF (n = 5), respectively) (Fig. 2E, F & I). In contrast, inclusion of the non-hydrolyzable G protein-activating GTP analogue, GTP-\(\gamma\)-S (500 \(\mu\)M) in the patch pipette, potentiated basal \(I_{KIR}\) approximately two-fold from control (55.7 \(\pm\) 7.5 pA/pF) to GTP-\(\gamma\)-S (114.8 \(\pm\) 9.4 pA/pF, n = 5; \(p = 0.0004\)) whereas Vc1.1 (1 \(\mu\)M) potentiation of \(I_{KIR}\) was increased by 78.1\% in the presence of GTP-\(\gamma\)-S (from 94.6 \(\pm\) 8.7 pA/pF to 168.5 \(\pm\) 4.0 pA/pF, n = 5; \(p = 0.0051\)) (Fig. EV2A, B & C). Similarly, baclofen potentiation of \(I_{KIR}\) was increased 61.5\% in the presence of GTP-\(\gamma\)-S from 114.7 \(\pm\)9.4 pA/pF to 185.2 \(\pm\) 20.5 pA/pF (n = 5; \(p = 0.002\)) (Fig. EV2A, B & C). The observed increase in \(I_{KIR}\) density is consistent with a contribution of Vc1.1 to the activation of \(G\alpha_{i/o}\) protein underlying GIRK1/2 channel potentiation. The requirement of \(G\beta\gamma\) in the signalling cascade between the GABA\(_B\)R and GIRK1/2 channels was investigated by supplementing the intracellular solution (patch pipette) with the peptide analogue of the G protein receptor kinase 2 (GRK2i) that acts as a \(G\beta\gamma\) scavenger (Koch et al, 1994). In comparison to non-supplemented controls, GRK2i (10 \(\mu\)M) significantly attenuated the potentiation of GIRK1/2 \(K^+\) currents by Vc1.1 and baclofen by 70\% and 74\% (n = 5-8), respectively (Fig. 2G, H & I). Overall, these results indicate that the G protein heterodimer subunit \(G\beta\gamma\) is involved in the modulation of GIRK1/2 channels by Vc1.1 and baclofen.

Vc1.1 potentiates inwardly rectifying \(K^+\) currents and depresses excitability in mouse DRG neurons

All GIRK channel members have been identified in rat DRG neurons (Gao et al, 2007), however, the presence of GIRK1 and GIRK2 subunits in mouse DRG has been contested (Nockemann et al, 2013). The expression and co-localization of the GIRK1, GIRK2, and...
GABA\textsubscript{B}R2 proteins in mouse DRG neurons was investigated using immunofluorescence and confocal microscopy. Fig. 3A shows images of double immunostainings in which positive immunoreactivity for GIRK1 (red) and GIRK2 (green) antibodies is demonstrated. The merged panel shows that these two GIRK subunits co-localize in ~81% of the DRG neurons (13 of 16 counted) present in the imaged field. Antibody validation experiments were performed in HEK293 cells transfected with GIRK1, GIRK2 and GABA\textsubscript{B}R2 (Fig. EV3). Double staining was also carried out to investigate GABA\textsubscript{B}R and GIRK channel co-localization in mouse DRG neurons which show abundant expression of GIRK2 and GABA\textsubscript{B}R2 (Fig. 3B). The fluorescent signals overlapped in 96% of the DRG neurons (96 of 100 counted) indicative of co-localization (Fig. 3B merge). Due to antibody compatibility constraints, we consider immunodetection of GIRK2 and GABA\textsubscript{B}R2 as expression proxies, supported by previous studies showing that GIRK1 requires GIRK2 for trafficking to the plasma membrane (Hibino \textit{et al}, 2010; Luscher & Slesinger, 2010) and that GABA\textsubscript{B}R can only function as R1/R2 heterodimers (Pinard \textit{et al}, 2010; Cuny \textit{et al}, 2012; Frangaj & Fan, 2018; Mao \textit{et al}, 2020).

Modulation of I\textsubscript{Kir} by Vc1.1 and baclofen was examined in isolated DRG sensory neurons from adult mice. Bath application of baclofen (100 μM) and Vc1.1 (1 μM) potentiated I\textsubscript{Kir} elicited by 50 ms ramps from –100 mV to +40 mV in approximately one-third (15/50) of small to medium diameter (<30 μm) DRG neurons. Neuronal Ba2+-sensitive, inward rectifying K+ currents (I\textsubscript{Kir}) recorded in the presence of high K+ were potentiated by 45.2% in the presence of 1 μM Vc1.1 (ΔI\textsubscript{Kir} = 19.4 ± 2.8 pA/pF; n = 15) from the control level (Fig. 3C, D; Table 1). Accordingly, baclofen (100 μM) applied to the same neurons increased I\textsubscript{Kir} by 50.8% (ΔI\textsubscript{Kir} = 25.8 ± 3.9 pA/pF; n = 15) consistent with GABA\textsubscript{B}R activation of GIRK channels in mouse DRG neurons (Fig. 3C, D; Table 1). Incubation of mouse DRG neurons with PTX (1 μg/ml) for 24 hr
inhibited both Vc1.1 and baclofen potentiation of I_{Kir} ($n = 5$) consistent with our observation in recombinant human GABA$_B$R and GIRK1/2 channels.

Inhibition of I_{Kir} by Tertiapin-Q (500 nM) was used as a reporter of GIRK channel activity (Kanjhan et al., 2005). Under these experimental conditions, Tertiapin-Q inhibited the whole-cell inward I_K recorded in high external K$^+$ by $35.0 \pm 4.3\%$ whereas Ba$^{2+}$ inhibited $46.4 \pm 4.0\%$ inward I_K in the same cell ($n = 11$, $p = 0.001$, paired t-test) (Fig. 3E). The co-localisation of GABA$_B$R and GIRK channels in mouse DRG neurons and antagonism of Vc1.1- and baclofen-dependent potentiation of I_{Kir} by Tertiapin-Q are both consistent with the modulation of native GIRK K$^+$ currents by α-conotoxin Vc1.1 and baclofen via GABA$_B$R in DRG neurons.

Vc1.1 depresses excitability in adult mouse DRG neurons

To determine if GABA$_B$R-mediated GIRK channel potentiation by Vc1.1 influences neuronal excitability, small to medium diameter (<30 µm) adult mouse DRG neurons were studied under current clamp and the passive and active membrane properties compared between control and treated cells (Table 2). Bath application of α-conotoxin Vc1.1 (1 µM) reversibly reduced action potential firing in response to depolarizing current pulses in adult mouse DRG neurons (Fig. 4A). In 26 of 42 (62%) neurons recorded, the resting membrane potential was hyperpolarized by ~5 mV in the presence of 1 µM Vc1.1 ($\text{Control} = -53 \pm 2$ mV, $\text{Vc1.1} = -58 \pm 2$ mV $n = 24$; $p = 0.0024$) (Fig. 4Bi, Table 2) and the input resistance (R_i) was reduced by >1.5-fold from 542.4 ± 121.4 MΩ (control) to 344.1 ± 71.1 MΩ ($n = 6$; $p = 0.0318$) (Fig. 4Bii; Table 2). In the presence of Vc1.1, the rheobase for action potential firing increased approximately two-fold from 104 ± 18 pA (control) to 192 ± 30 pA ($n = 26$; $p < 0.0001$) (Fig. 4Biii, Table 2). Furthermore, the number of action potentials evoked in DRG neurons in response to 10 pA
depolarizing current steps (−25 - 300 pA) was more than halved in the presence of Vc1.1 compared to control (n = 26; p = 0.002) (Fig. 4Biv, Table 2).

DRG neuronal excitability in response to depolarizing current pulses was greatly suppressed in >two-thirds of neurons (21/31) upon application of baclofen (Fig. 5A). Baclofen (100 µM) hyperpolarized the resting membrane potential by ~5 mV from −59 ± 2 mV to −64 ± 2 mV (n = 18; p = 0.02) (Fig. 4C, Di, Table 2) and reduced the input resistance of DRG neurons approximately two-fold from 741.0 ± 189.5 MΩ (control) to 417.2 ± 99.4 MΩ (n = 10; p = 0.008) (Fig. 4Dii, Table 2). Baclofen also significantly increased the rheobase ~two-fold from 321 ± 88 pA to 620 ± 115 pA (n = 21; p = 0.0002) (Fig. 4Diii, Table 2) and attenuated the number of action potentials more than half in response to a 50 pA depolarizing current step (n = 21; p = 0.047) (Fig. 4Div, Table 2). These results are consistent with a reduction in DRG neuronal excitability in the presence of both Vc1.1 and baclofen.

In contrast, spontaneous action potential firing was associated with a ~10 mV depolarization of the resting membrane potential from −65 ± 2 mV (control) to −55 ± 1 mV (n = 21; p < 0.0001) in the presence of 500 nM Tertiapin-Q (Fig. 5A, B; Table 2). Exposure of DRG neurons to Tertiapin-Q (500 nM) increased the input resistance more than ~1.5-fold from 326.0 ± 79.7 MΩ to 510.7 ± 114.7 MΩ (n = 14; p = 0.008) (Fig. 5C, Table 2). The rheobase was significantly reduced ~two-fold from 619 ± 122 pA to 376 ± 82 pA (n = 21; p = 0.0003) in the presence of 500 nM Tertiapin-Q (Fig. 5D, Table 2), and the number of action potentials elicited in response to a 25 pA depolarizing current step was increased more than three-fold (n = 21; p = 0.0011) (Fig. 5E, Table 2). In contrast, application of Vc1.1 in the presence of the GABA_BR antagonist CGP 55845 did not alter passive or active membrane properties of mouse DRG neurons (n = 7; Fig. EV4A, B). Taken together, the results tabulated in Table 2 suggests that
Vc1.1 and baclofen potentiation of GIRK-mediated K\(^+\) currents via GABA\(_B\)R activation acts to dampen DRG neuronal excitability, and thereby contribute to the reported anti-nociceptive activities in animal models of mechanical allodynia and chronic pain (Klimis et al., 2011; Castro et al., 2017).

Discussion

The major outcome of this study is the demonstration that analgesic \(\alpha\)-conotoxin Vc1.1 modulates both GIRK1/2 and GIRK2 K\(^+\) currents through G protein-coupled GABA\(_B\)R in HEK293T cells and mouse DRG neurons. Vc1.1 and baclofen potentiate recombinant GIRK1/2 and GIRK2 K\(^+\) currents only when co-expressed with GABA\(_B\)R subunits R1 and R2. Inhibition of Vc1.1 potentiation of GIRK1/2 \(I_{\text{Kir}}\) by the selective GABA\(_B\)R antagonist, CGP 55845, and the lack of effect of Vc1.1 on GIRK-mediated \(I_{\text{Kir}}\) in the absence of GABA\(_B\)R expression, supports GABA\(_B\)R as the primary target and not the GIRK channel itself. Our study also provides immunocytochemical support for the expression of GIRK channel protein in mouse DRG neurons.

GABA\(_B\) receptor biology and pharmacology in pain processing has been studied extensively and the modulation of HVA N-type calcium channels and/or GIRK channels by GABA\(_B\)R agonists, GABA and baclofen, is a recognized mechanism of action (Malcangio, 2018; Benke, 2020). Our findings propose another plausible mechanism of action through which analgesic \(\alpha\)-conotoxin Vc1.1 regulates membrane excitability in sensory neurons. Disruption of GABA\(_B\)R-GIRK channel association in recombinant GABA\(_B\)R/GIRK complexes HEK293 cells and native DRG neurons precludes \(I_{\text{Kir}}\) potentiation by baclofen and Vc1.1, consistent with previous studies supporting GIRK’s involvement in anti-nociception in models of neuropathic
pain (Ippolito et al., 2005; Marker et al., 2005) and via satellite ganglion cells of the trigeminal ganglia (Takeda et al., 2015).

Proposed mechanism underlying Vc1.1 activation of GABA$_B$R

PTX catalyzes the ADP-ribosylation of the α_i subunits of the heterotrimeric G protein thereby precluding the interaction between G proteins and GPCRs. The involvement of the PTX-sensitive G protein, G$_{\alpha_i/o}$, in GABA$_B$R modulation of GIRK channels by Vc1.1 was demonstrated by (1) pre-treatment of cells expressing either native or recombinant GABA$_B$R/GIRK with PTX, and (2) intracellular application of the non-hydrolysable GDP analog, GDP-\beta-S, to inhibit of G protein activation. Both PTX and GDP-\beta-S abolished baclofen and Vc1.1 potentiation of GIRK1/2 channels. Furthermore, the observed inhibition of GIRK1/2 I_{Kir} potentiation by Vc1.1 and baclofen in the presence of the G$\beta\gamma$ scavenger, GRK2i, is consistent with G$\beta\gamma$ interaction with GIRK1/2 channels. GPCR-mediated activation of GIRK channel signaling involving G$_{\alpha_i/o}$ and G$\beta\gamma$ binding to the GIRK channel resulting I_{Kir} potentiation has been reported previously (Padgett & Slesinger, 2010; Wang et al., 2016; Kano et al., 2019). Fluorescence resonance energy transfer (FRET) studies show that upon GPCR activation G$\beta\gamma$ preferentially binds to the GIRK channel whereas Gα binds to GABA$_B$R (Fowler et al., 2007; Laviv et al., 2011; Richard-Lalonde et al., 2013). Agonist dependent and GPCR-mediated activation of GIRK channels is proposed to occur via direct G$\beta\gamma$ subunit interaction with the channel in a membrane-delimited fashion (Lujan et al., 2014; Yudin & Rohacs, 2018). The recruitment of G$\beta\gamma$ by the GIRK channel is essential in GPCR-mediated potentiation, whereas other prototypical agonists that activate GIRK channels in the absence of a GPCR or in a G protein-independent manner, do not require the G$\beta\gamma$ heterodimer (Jelacic et al., 2000; Wydeven
et al., 2014). Accordingly, our results provide evidence that Vc1.1 targeting of GABABR modulates GIRK channels via activation of Gαi/o protein and Gβγ signaling as proposed in Fig. 6.

α-Conotoxin Vc1.1 has been shown to act as an allosteric agonist as it does not bind to the canonical ligand binding site of GABABR (Huynh et al., 2015), nevertheless, its precise binding site on the GABABR remains to be identified (Sadeghi et al., 2017). In the present study, we show that Vc1.1 potentiates GIRK1/2 channels albeit with 10- to 100-fold lower potency than for inhibition of human and rat CaV2.2 channels (Callaghan & Adams, 2010; Huynh et al., 2015; Hone et al., 2018). In a comparable manner, it was shown that even though GIRK and Cav2.2 channels are regulated by GABABR by an analogous mechanism, the EC50 for GIRK potentiation by baclofen is ~100-fold higher than for inhibition of HVA Ca2+ channels in rat supraoptic neurons (Harayama et al., 2014).

A durable macromolecular complex between GIRK-G protein-GABABR upon agonist binding (Padgett & Slesinger, 2010) that occurs through collision coupling (rather than a pre-existing complex) has been proposed (Kahanovitch et al., 2017). It is conceivable that Vc1.1 targets the complex activating Gαi/o proteins and Gβγ via GABABR to reversibly potentiate GIRK channel signaling. This is consistent with previous studies whereby agonist stimulation of Gαi/o-coupled GPCRs results in increased concentration of Gβγ heterodimers available to activate GIRK channels whereas the Gαi/o subunit enhances G protein-GPCR association in GPCR-GIRK complexes (Touhara & McKinnon, 2018).

Expression and modulation of GIRK channels in sensory neurons

GIRK channels are expressed in neurons of several regions of the central nervous system including the spinal cord (Ponce et al., 1996; Marker et al., 2006; Lujan & Aguado, 2015) supporting their role in modulating several neurological disorders or disease conditions
(Mayfield et al., 2015; Rifkin et al., 2017). Functional coupling to GABA_BR has been described in rat (Gao et al., 2007) and human DRG neurons (Castro et al., 2017), yet the function of GIRK channels in mouse peripheral neurons has remained largely unexplored.

Functional recordings of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2/PIP2] activated GIRK currents in postnatal day zero (P0) mouse DRG neurons in response to neurotrophin-mediated cleavage of p75(NTR) have been reported (Coulson et al., 2008). Here, we show functional coupling between GIRK1/2 (and GIRK2) channels and GABA_BR in mouse DRG neurons and heterologous expression systems evidenced by the potentiating actions of baclofen and Vc1.1 on I_{Kir}. This is supported by co-localization of GIRK1, GIRK2, and GABA_BR2 subunits in overlapping populations of small and medium diameter neurons of adult mouse DRG (Fig. 3A, B).

In voltage clamp experiments, approximately one-third of DRG neurons responded to Vc1.1 which is similar to the proportion of mouse DRG neurons in which the µ-opioid receptor agonist DAMGO elicited I_{Kir}-like currents reported by Saloman et al. (2016). Similar to previous studies of baclofen treated rat trigeminal ganglion and reticular thalamic neurons (Takeda et al., 2004; Cain et al., 2017), baclofen and Vc1.1 hyperpolarized the resting membrane potential, increased the firing threshold (rheobase) and reduced action potential firing in the mouse DRG neurons analyzed here. The GABA_BR antagonist CGP55845 abrogated potentiation of I_{Kir} and the neuroexcitability dampening effects of Vc1.1 whereas Ba²⁺ and the GIRK channel inhibitor Tertiapin-Q enhanced excitability and antagonized the potentiation of I_{Kir} by baclofen and Vc1.1 in mouse DRG neuron. Thus far, our findings are consistent with GABA_BR modulation of GIRK channels and the concomitant reduction in DRG neuronal excitability. Tertiapin-Q antagonized the effects of Vc1.1 and baclofen on neuronal excitability in a manner consistent with results of
our study of human GABA\textsubscript{B}R and GIRK1/2 channels expressed in HEK293T cells. Hence, GIRK channels function as downstream effectors of GABA\textsubscript{B}R contributing to the anti-nociceptive activity of baclofen and Vc1.1.

In rat pyramidal neurons, GIRK channel density is higher in dendrites than in the soma (Takigawa & Alzheimer, 1999; Chen & Johnston, 2005) perhaps posing a limitation to our work as it relies on somatic DRG neuron I\textsubscript{K\text{ir}} recordings (within 24 hours of acute dissociation). The relatively low I\textsubscript{K\text{ir}} density in adult mouse DRG neurons implies that most processes and the dendritic pool of GIRK channels that may be associated are lost upon isolation. Future efforts will be directed to determine the relative abundance of GIRK channel isoforms at the mouse peripheral nerve terminals.

Neuroexcitability and implications for GIRK channel

Analgesic \(\alpha\)-conotoxins inhibit \(\alpha9\alpha10\) nAChRs directly and HVA calcium (Cav2.2 and Cav2.3) channels via GABA\textsubscript{B}R activation (Sadeghi et al, 2017; Kennedy et al, 2020). The GABA\textsubscript{B}R is abundantly expressed in the somatosensory (afferent) nervous system and its role in mitigating mechanical allodynia and chronic visceral hypersensitivity in animal models of neuropathic and visceral pain, respectively, has been demonstrated (Castro et al, 2017; Loeza-Alcocer et al, 2019). Furthermore, \(\alpha\)-conotoxin Vc1.1 has been shown to reduce excitability in human DRG neurons via a GABA\textsubscript{B}R-mediated mechanism. In the present study, we demonstrate that analgesic \(\alpha\)-conotoxins Vc1.1, RgIA and PeIA potentiate heteromeric and homomeric GIRK currents via GABA\textsubscript{B}R. However, the GABA\textsubscript{B}R agonists, baclofen and GABA, tested at maximally effective concentrations, were more efficacious than the analgesic \(\alpha\)-conotoxins, Vc1.1, RgIA, and PeIA in potentiating of GIRK-mediated I\textsubscript{K\text{ir}}.
Hyper-excitability and ectopic firing are characteristic sensory neuron responses to nerve injury and chronic pain (Amir et al, 2005; Berta et al, 2017). Control of cell-surface expression and/or the biophysical properties of ion channels in sensory neurons is central to membrane excitability such that the activation of GIRK channels hyperpolarizes the neuron thus reducing excitability. Our findings are consistent with the functional expression of GIRK channels in mouse DRG neurons and their involvement in GABA_B-mediated anti-nociceptive activity in response to baclofen and α-contotoxin Vc1.1. The modulation of HVA N-type (Cav2.2) calcium channels and/or GIRK channels by GABA_B agonists, GABA and baclofen, is recognized as analgesic mechanism of action. A new scenario involving diverse signaling mechanism(s) underlying α-contotoxin Vc1.1’s analgesic effect is emerging. Synergistic action of Vc1.1 to inhibit Cav2.2/2.3 and potentiate GIRK channels reducing neuronal excitability likely contributes to its anti-nociceptive activity. Lastly, the precise molecular details of GIRK I_Kir potentiation via GABA_B activation remains to be elucidated, therefore, further studies of sensory neuron GIRK channels and their coupling to GPCRs will follow.

Materials and Methods

Antibodies and pharmacological agents

Primary antibodies anti-GIRK1 and anti-GIRK2 were purchased from Alomone Labs (Jerusalem, Israel). The primary antibodies were rabbit polyclonal GIRK1 (P63250, intracellular, C-terminus), guinea pig polyclonal GIRK2 (P48542, intracellular, C-terminus), rabbit polyclonal GIRK2 (P348542, intracellular, C-terminus) and rabbit monoclonal GABA_B2 (Abcam, ab75838). The secondary antibodies (Abcam Cambridge, MA USA) were Alexa Fluor 647-conjugated polyclonal donkey anti-rabbit IgG antibody (ab150075), Alexa Fluor 488-conjugated
polyclonal goat anti-guinea pig IgG antibody (ab150185) and Alexa Fluor 488-conjugated polyclonal goat anti-rabbit IgG antibody (ab150073). DAPI (4′,6-diamidino-2-phenylindole; Sigma-Aldrich, North Ryde, NSW, Australia) was used for nuclear staining of the neurons.

α-Conotoxins Vc1.1, PeIA, Rg1A, and ImI were synthesized as described previously (10, 11, 15) and kindly provided by Dr Richard Clark (University of Queensland, Australia). (±)-β-(Aminomethyl)-4-chlorobenzenepropanoic acid (Baclofen), γ-aminobutyric acid (GABA), guanosine 5′-[β-thio]diphosphate trilithium salt (GDP-β-S), guanosine 5′-[γ-thio]triphosphate tetralithium salt (GTP-γ-S) and Pertussis toxin (PTX) were purchased from Sigma-Aldrich (St. Louis, MO), CGP 55845 ((2S)-3-[[[(1S)-1-(3,4-Dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl) phosphinic acid hydrochloride) and GRK2i were purchased from Tocris Bioscience (Bristol, UK). Tertiapin-Q, a potent inhibitor of inward rectifier K+ (Kir) channels, was purchased from Abcam (Cambridge, UK). All drugs were dissolved in distilled H2O to prepare to their appropriate stock concentration other than CGP 55845 which was dissolved in DMSO. Compounds were then diluted in extracellular high K+ (20 mM). The final concentration of DMSO did not exceed 0.01%.

Cell culture, transfection and clones

HEK293T cells expressing the SV40 large T antigen (HEK293T, ATCC, USA) were cultured in Dulbecco’s modified Eagle’s medium (DMEM, ThermoFisher Scientific, Scoresby, VIC, Australia), supplemented with 10% heat inactivated foetal bovine serum (FBS, Bovigen, Australia), 1% penicillin and streptomycin (Pen/Strep) and 1% GlutaMAX (ThermoFisher Scientific, Australia). Cells were incubated at 37°C in 5% CO2 in a humidified incubator and passaged when ~80% confluent following the procedures described previously.
HEK293T cells were transiently co-transfected with plasmid cDNAs encoding human GIRK 1 (KCNJ3 or Kir3.1) and/or GIRK 2 (KCNJ6 or Kir3.2) (both pcDNA3 based and were kindly provided by Dr Paul Slesinger, Mt Sinai, New York, USA) and human GABA_B₁ and GABA_B₂ subunits (OriGene Technologies, Inc, Rockville, MD USA) using Lipofectamine 2000 (ThermoFisher Scientific, Australia). Cells were seeded in 12-well plates the day before transfection and 2 μg of each plasmid DNA with 0.2 μg of green fluorescent protein (GFP) were transfected following the manufacturer’s protocol of Lipofectamine. Cells were then replated on 12 mm glass coverslips 48-72 hours after transfection for subsequent patch clamp studies.

Whole-cell patch clamp of HEK293T cells

Transiently transfected HEK293T cells were recorded 48-72 hours post transfection using whole-cell patch clamp methods. An external bath solution containing high K⁺ was used to record GIRK K⁺ currents that included (in mM): 120 NaCl, 20 KCl, 2 CaCl₂, 1 MgCl₂, 10 HEPES and 10 Glucose, pH 7.4 with NaOH (~320 mOsmol.kg⁻¹). Borosilicate glass electrodes (World Precision Instruments, Sarasota, FL USA) with an access resistance of 3-5 MΩ were filled with internal solution containing (in mM): 130 KCl, 20 NaCl, 5 EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetra acetic acid), 5.46 MgCl₂, 10 HEPES, 5 MgATP, 0.2 Na-GTP, pH 7.2 with KOH (~300 mOsmol.kg⁻¹). Membrane currents were recorded using a MultiClamp 700B amplifier and digitized with a Digidata 1440A (Molecular Devices, San Jose, CA USA) with series resistance (<10 MΩ) and cell capacitance compensated by ~80% avoiding current oscillation. All membrane currents were sampled at 10 kHz and filtered at 1 kHz.

GIRK K⁺ currents were recorded by applying a voltage ramp protocol from −100 mV to +40 mV from a holding potential of −40 mV, at a frequency of 0.1 Hz. Modulation of GIRK K⁺
currents by bath application of various compounds was measured at \(-100\) mV. All experiments were carried out at room temperature (21-23\(^\circ\)C).

Isolation and culture of rodent dorsal root ganglion (DRG)

All animal procedures were conducted in accordance with the University of Wollongong Animal Ethics Committee (AE16/10) guidelines and regulations. Adult C57BL/6 mice (8-10 weeks old) were purchased from Australian BioResources (Moss Vale, NSW, Australia) and housed in individually ventilated cages with a 12 h light/dark cycle; food pellets and water were available *ad libitum*.

Mice were euthanized by isoflurane inhalation followed by rapid decapitation. A laminectomy exposed the DRGs in the thoracic and lumbar regions. DRGs were harvested and transferred to ice cold (4\(^\circ\)C) Hanks Buffered Saline Solution (HBSS), free of Ca\(^{2+}\) and Mg\(^{2+}\). DRGs were then trimmed, removing central and peripheral nerve processes, digested in HBSS containing Collagenase type II (3 mg/ml; Worthington Biomedical Corp., Lakewood, NJ, USA) and Dispase (4 mg/ml; GIBCO, Australia). The DRGs were incubated in this enzyme mix at 37\(^0\)C in 5% CO\(_2\) in a humidified incubator for 40 min. The ganglia were then rinsed three to four times in warm (37\(^0\)C) F12/Glutamax (Invitrogen) media supplemented with 10% heat-inactivated foetal bovine serum (FBS; GIBCO\(^TM\), ThermoFisher Scientific, Australia) and 1% penicillin/streptomycin. The ganglia were dispersed by mechanical trituration with progressively smaller fire polished glass Pasteur Pipettes. The supernatant was filtered through a 160 \(\mu\)m nylon mesh (Millipore Australia Pty Ltd, North Ryde, NSW) to remove undigested material. The dissociated DRG neurons were then plated onto poly-D-lysine coated 12 mm cover glass (Sigma-Aldrich, Australia). Neurons were left to attach for \(~3\) hours at 37\(^{\circ}\)C after which media was added and then incubated overnight and used within 24 hrs.
Current and voltage clamp recording of native GIRK currents

Current clamp recordings of DRG neurons were typically carried out 24 hours after dissociation in a bath solution containing (in mM): 140 NaCl, 4 KCl, 2 CaCl\(_2\), 1 MgCl\(_2\), 10 HEPES and 10 Glucose, pH 7.4 with NaOH (~320 mOsmol.kg\(^{-1}\)). Borosilicate fire polished patch pipettes (World Precision Instruments) with a resistance of 2-4 M\(\Omega\) were filled with standard internal solution containing (in mM): 130 KCl, 20 NaCl, 5 EGTA (ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid), 5.46 MgCl\(_2\), 10 HEPES, 5 Mg-ATP, 0.2 Na-GTP, pH 7.2 with KOH (~300 mOsmol.kg\(^{-1}\)). Action potentials were generated by series of depolarizing current steps of 500 ms duration in small to medium diameter (<30 \(\mu\)m) DRG neurons that had a resting membrane potential (RMP) of > −40 mV. Whole-cell configuration was obtained in voltage clamp mode before proceeding to current clamp recording. Neuronal excitability was measured every 5 s using a constant amplitude small depolarizing current pulses.

Whole-cell GIRK channel K\(^+\) currents were recorded from isolated DRG neurons superfused with high K\(^+\) extracellular solution containing (in mM): 120 NaCl, 20 KCl, 2 CaCl\(_2\), 1 MgCl\(_2\), 10 HEPES and 10 Glucose, pH 7.4 with NaOH (~320 mOsmol.kg\(^{-1}\)). Patch pipettes were filled with the same intracellular solution as above. Currents were elicited using a similar voltage protocol to that used for HEK293 cells (ramp from −100 mV to +40 mV, at a frequency of 0.1 Hz, from a holding potential of −40 mV and sampled at 10 kHz). Recordings were electronically compensated for cell capacitance and series resistance to ~80%. All solutions including the pharmacological agents were superfused using a Peristaltic pump at an exchange speed of 1 ml/min. The volume of the experimental chamber was ~500 µl. All experiments were carried out at room temperature (21-23\(^\circ\)C).

Immunocytochemistry and confocal microscopy
Dissociated DRG neurons plated on poly-D-lysine coated glass coverslips were washed twice with HBSS and fixed using Zamboni’s fixative solution containing 1.6% formaldehyde (Australian Biostain Pty Ltd, Traralgon, VIC, Australia) for 15 min. Cells were permeabilized with 0.1% Triton X-100 for 10 min. Non-specific antibody binding was reduced by incubating the cells for 1 hour in HBSS based blocking solution containing 5% goat serum, 5% BSA and 0.1% Triton X-100. All primary and secondary antibodies were diluted in blocking solution to the working concentration. For DRG neuron double staining of GIRK1 and GIRK2 channels, both anti-rabbit polyclonal GIRK1 (1:100 dilution) and anti-guinea pig polyclonal GIRK2 (1:100 dilution) antibodies were added simultaneously and incubated at 4°C overnight. Following three 5 min washes with blocking solution, the samples were incubated with the secondary antibody, a donkey anti-rabbit IgG (1:500) 1 hr, in the dark, at room temperature (RT). Triplicate washes with blocking solution preceded addition of the goat anti-guinea pig IgG secondary antibody (1:500) which again was incubated 1 hr at RT, in the dark. For GIRK2 and GABABR2 double staining, a mixture of the primary antibodies rabbit polyclonal GIRK2 (1:100) and rabbit monoclonal GABABR2 (1:400) were incubated at 4°C overnight, washed and followed by sequential incubations with donkey anti-rabbit IgG secondary antibody (1:500, 1 hr, RT), wash and goat anti-rabbit IgG secondary (1:500, 1 hr, RT). Control experiments for single and double staining procedures were performed by omitting the primary antibodies. Nuclei were counterstained with DAPI (1:5000, 5 min, RT), washed, covered with mounting media (Dako North America Inc., Carpinteria, CA, USA), sealed and stored at 4°C. Images were recorded with a Leica SP8 confocal microscope using 40x oil immersion objective. Images were analysed using ImageJ (Java, NIH) and LAS X softwares (Leica, Macquarie Park, NSW, Australia).

Data analysis and statistics
Data analysis used Clampfit 10.7 (Molecular Devices, San Jose, CA, USA) and GraphPad Prism 7 (GraphPad Software, San Diego, CA, USA) software. In voltage clamp experiments, inward rectifying K⁺ currents (I_{Kir}) were analysed by measuring the steady-state current in high K⁺ solution designated basal I_{Kir} (I_{CONTROL}, I_{CTR}), peak potentiation by agonists (I_{COMPOUND}, I_{COMP}) and I_{Kir} density (pA/pF) determined by dividing peak current amplitude by cell capacitance (Cm). The Ba²⁺-sensitive current amplitude was determined in the presence of 1 mM Ba²⁺ (in high K⁺ bath solution) and subtracting the current before and after application of the modulators to evaluate the effects of GABA₉R-active modulators on the K⁺ current.

\[
I_{Kir} \text{ density (pA/pF)} = (I_{COMP} - I_{CTR})/Cm
\]

(1)

Concentration-response relationship for Vc1.1 was determined using equation (1) from 4-5 individual experiments for each concentration tested on GIRK1/2 channels. The relationship was fitted with the Hill equation following:

\[
I_{Kir} \text{ density (pA/pF)} = \frac{[COMP]^n \times I_{Kir} \text{ density max}}{[EC_{50}]^n + [COMP]^n}
\]

where \(n \) is the Hill coefficient, \(EC_{50} \) is the half-maximal response.

In current clamp experiments, all DRG neurons accepted for analysis had a RMP more negative than −40 mV. The whole-cell input resistance (R_i) was measured in the absence and presence of various modulators by calculating the slope of the linear fit of hyperpolarizing responses to current steps from −5 to −40 pA in 5 pA increments. Rheobase threshold was measured by applying a series of depolarizing current steps (500 ms) in 5 pA increments to determine which first evoked action potential discharge. The number of action potentials was
counted at a current injection of 2x rheobase in both control conditions and in the presence of modulators or pharmacological agents.

Statistical significance was determined between two groups by using paired t-test or Student’s t-test. Multiple group comparisons were done by one-way ANOVA with Tukey’s test. All results are presented as mean ± SEM and n, number of observations. Statistical significance is shown by asterisk *indicating p < 0.05, **indicating p < 0.005 and ***indicating p < 0.001 and ****indicating p < 0.0001.

Data Availability

This study includes no data deposited in external repositories.

Acknowledgements

We thank Dr Alexander (Sandy) Harper, University of Dundee, for his insightful comments on a draft manuscript. A.R.B. was supported by a University of Wollongong Postgraduate Research Scholarship. This work was supported by an Australian National Health and Medical Research Council (NHMRC) Program Grant [APP1072113] to D.J.A.

Author contributions

D.J.A. conceived and supervised the project; D.J.A., J.R.M. and R.K.F-U. designed research; A.R.B. performed research; A.R.B, J.R.M, R.K.F-U. and D.J.A. analyzed the data; A.R.B, J.R.M, R.K.F-U. and D.J.A. wrote the paper.
Conflicts of interest

The authors declare no competing financial interests.
References

Abney KK, Bubser M, Du Y, Kozek KA, Bridges TM, Linsdley CW, Daniels JS, Morrison RD, Wickman K, Hopkins CR, et al (2019) Analgesic effects of the GIRK Activator, VU0466551, alone and in combination with morphine in acute and persistent pain models. *ACS Chem Neurosci* 10: 1294-1299.

Abraham N, Lewis RJ (2018) Neuronal nicotinic acetylcholine receptor modulators from cone snails. *Mar Drugs* 16: 208.

Adams DJ, Callaghan B, Berecki G (2012) Analgesic conotoxins: block and G protein-coupled receptor modulation of N-type (Ca\textsubscript{V\textsubscript{2.2}}) calcium channels. *Br J Pharmacol* 166: 486-500.

Amir R, Kocsis JD, Devor M (2005) Multiple interacting sites of ectopic spike electrogenesis in primary sensory neurons. *J Neurosci* 25: 2576-2585.

Ämmälä C, Moorhouse A, Ashcroft FM (1996) The sulphonylurea receptor confers diazoxide sensitivity on the inwardly rectifying K+ channel Kir6.1 expressed in human embryonic kidney cells. *J Physiol* 494(Pt 3): 709-714.

Benke D (2020) GABA\textsubscript{B} receptors and pain. In: *Current Topics in Behavioral Neurosciences*, Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2020_130

Berecki G, McArthur JR, Cuny H, Clark RJ, Adams DJ (2014) Differential Cav2.1 and Cav2.3 channel inhibition by baclofen and α-conotoxin Vc1.1 via GABA\textsubscript{B} receptor activation. *J Gen Physiol* 143: 465-479.

Berta T, Qadri Y, Tan PH, Ji RR, (2017) Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. *Expert Opin Ther Targets* 21: 695-703.

Blednov YA, Stoffel M, Alva H, Harris RA (2003) A pervasive mechanism for analgesia: activation of GIRK2 channels. *Proc Natl Acad Sci U S A* 100: 277-282.
Bony AR, McArthur JR, Finol-Urdaneta RK, Adams DJ (2020) Modulation of native and recombinant GIRK1/2 channels by analgesic α-conotoxins. *Biophysical J* 118: 115a.

Cain SM, Garcia E, Waheed Z, Jones KL, Bushell TJ, Snutch TP (2017) GABA_B receptors suppress burst-firing in reticular thalamic neurons. *Channels* 11: 574-586.

Callaghan B, Adams DJ (2010) Analgesic α-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in sensory neurons of α9 nicotinic receptor knockout mice. *Channels* 4: 51-54.

Callaghan B, Haythornthwaite A, Berecki G, Clark RJ, Craik DJ, Adams DJ (2008) Analgesic α-conotoxins Vc1.1 and Rg1A inhibit N-type calcium channels in rat sensory neurons via GABA_B receptor activation. *J Neurosci* 28: 10943-10951.

Castro J, Grundy L, Deiteren A, Harrington AM, O'Donnell T, Maddern J, Moore J, Garcia-Caraballo S, Rychkov GY, Yu R, et al. (2018) Cyclic analogues of α-conotoxin Vc1.1 inhibit colonic nociceptors and provide analgesia in a mouse model of chronic abdominal pain. *Br J Pharmacol* 175: 2384-2398.

Castro J, Harrington AM, Garcia-Caraballo S, Maddern J, Grundy L, Zhang J, Page G, Miller PE, Craik DJ, Adams DJ, Brierley SM (2017) α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABA_B receptors. *Gut* 66: 1083-1094.

Chen X, Johnston D (2005) Constitutively active G-protein-gated inwardly rectifying K⁺ channels in dendrites of hippocampal CA1 pyramidal neurons. *J Neurosci* 25: 3787-3792.

Clark RJ, Jensen J, Nevin ST, Callaghan BP, Adams DJ, Craik DJ (2010) The engineering of an orally active conotoxin for the treatment of neuropathic pain. *Angew Chem Int Ed Engl* 49: 6545-6548.
Costigan, M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. *Annu Rev Neurosci* 32: 1-32.

Coulson EJ, May LM, Osborne SL, Reid K, Underwood CK, Meunier FA, Bartlett PF, Sah P (2008) p75 Neurotrophin receptor mediates neuronal cell death by activating GIRK channels through phosphatidylinositol 4,5-bisphosphate. *J Neurosci* 28: 315-324.

Cuny H, de Faoite A, Huynh TG, Yasuda T, Berecki G, Adams DJ (2012) \(\gamma \)-Aminobutyric acid type B (GABA\(_B \)) receptor expression is needed for inhibition of N-type (Cav2.2) calcium channels by analgesic \(\alpha \)-conotoxins. *J Biol Chem* 287: 23948-23957.

Daly NL, Callaghan B, Clark RJ, Nevin ST, Adams DJ, Craik DJ (2011) Structure and activity of \(\alpha \)-conotoxin PeIA at nicotinic acetylcholine receptor subtypes and GABA\(_B \) receptor-coupled N-type calcium channels. *J Biol Chem* 286: 10233-10237.

Dascal N, Kahanovitch U (2015) The roles of G\(\beta \gamma \) and G\(\alpha \) in gating and regulation of GIRK channels. *Int Rev Neurobiol* 123: 27-85.

Finnerup NB, Kuner R, Jensen TS (2021) Neuropathic pain: from mechanisms to treatment. *Physiol Rev* 101: 259-301.

Fowler CE, Aryal P, SuenKF, Slesinger PA (2007) Evidence for association of GABA\(_B \) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. *J Physiol* 580: 51-65.

Frangaj A, Fan QR (2018) Structural biology of GABA\(_B \) receptor. *Neuropharmacology* 136: 68-79.

Gao XF, Zhang, HL You ZD, Lu CL, He C (2007) G protein-coupled inwardly rectifying potassium channels in dorsal root ganglion neurons. *Acta Pharmacol Sin*. 28: 185-190.
Harayama N, Kayano T, Moriya T, Kitamura N, Shibuya I, Tanaka-Yamamoto K, Uezono Y, Ueta Y, Sata T (2014) Analysis of G-protein-activated inward rectifying K⁺ (GIRK) channel currents upon GABA_B receptor activation in rat supraoptic neurons. *Brain Res* 1591: 1-13.

Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. *Physiol Rev* 90: 291-366.

Hone AJ, Servent D, McIntosh JM (2018) α9-containing nicotinic acetylcholine receptors and the modulation of pain. *Br J Pharmacol* 175: 1915-1927.

Huynh TG, Cuny H, Slesinger PA, Adams DJ (2015) Novel mechanism of voltage-gated N-type (Cav2.2) calcium channel inhibition revealed through α-conotoxin Vc1.1 activation of the GABA_B receptor. *Mol Pharmacol* 87: 240-250.

Ippolito DL, Xu M, Bruchas MR, Wickman K, Chavkin C (2005) Tyrosine phosphorylation of K(ir)3.1 in spinal cord is induced by acute inflammation, chronic neuropathic pain, and behavioral stress. *J Biol Chem* 280: 41683-41693.

Ivanina T, Rishal I, Varon D, Mullner C, Frohnwieser-Steinecke B, Schreibmayer W, Dessauer CW, Dascal N (2003) Mapping the Gβγ-binding sites in GIRK1 and GIRK2 subunits of the G protein-activated K⁺ channel. *J Biol Chem* 278: 29174-29183.

Jelacic TM, Kennedy ME, Wickman K, Clapham DE (2000) Functional and biochemical evidence for G-protein-gated inwardly rectifying K⁺ (GIRK) channels composed of GIRK2 and GIRK3. *J Biol Chem* 275: 36211-36216.

Kahanovitch U, Berlin S, Dascal N (2017) Collision coupling in the GABA_B receptor-G protein-GIRK signaling cascade. *FEBS Lett* 591: 2816-2825.
Kahanovitch U, Tsemakhovich V, Berlin S, Rubinstein M, Styr B, Castel R, Peleg S, Tabak G, Dessauer CW, Ivanina T, Dascal N (2014) Recruitment of Gβγ controls the basal activity of G-protein coupled inwardly rectifying potassium (GIRK) channels: crucial role of distal C terminus of GIRK1. J Physiol 592: 5373-5390.

Kanjhan R, Coulson EJ, Adams DJ, Bellingham MC (2005) Tertiapin-Q blocks recombinant and native large conductance K+ channels in a use-dependent manner. J Pharmacol Exp Ther 314: 1353-1361.

Kano H, Toyama Y, Imai S, Iwahashi Y, Mase Y, Yokogawa M, Osawa M, Shimada I (2019) Structural mechanism underlying G protein family-specific regulation of G protein-gated inwardly rectifying potassium channel. Nat Commun 10: 2008.

Kennedy AC, Belgi A, Husselbee BW, Spanswick D, Norton RS, Robinson AJ (2020) α-Conotoxin peptidomimetics: probing the minimal binding motif for effective analgesia. Toxins (Basel) 12: 505.

Klimis H, Adams DJ, Callaghan B, Nevin S, Alewood PF, Vaughan CW, Mozar CA, Christie MJ (2011) A novel mechanism of inhibition of high-voltage activated calcium channels by α-conotoxins contributes to relief of nerve injury-induced neuropathic pain. Pain 152: 259-266.

Knapp O, McArthur JR, Adams DJ (2012) Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins (Basel) 4: 1236-1260.

Koch WJ, Hawes BE, Inglese J, Luttrell LM, Lefkowitz RJ (1994) Cellular expression of the carboxyl terminus of a G protein-coupled receptor kinase attenuates Gβγ-mediated signaling. J Biol Chem 269: 6193-6197.
Compartmentalization of the GABA_B receptor signaling complex is required for presynaptic inhibition at hippocampal synapses. *J Neurosci* 31: 12523-12532.

Lebbe EK, Peigneur S, Wijesekara I, Tytgat J (2014) Conotoxins targeting nicotinic acetylcholine receptors: an overview. *Mar Drugs* 12: 2970-3004.

Loeza-Alcocer E, McPherson TP, Gold MS (2019) Peripheral GABA receptors regulate colonic afferent excitability and visceral nociception. *J Physiol* 597: 3425-3439.

Luján R, Aguado C (2015) Localization and targeting of GIRK channels in mammalian central neurons. *Int Rev Neurobiol.* 123: 161-200.

Luján R, Marron Fernandez de Velasco E, Aguado C, Wickman K (2014) New insights into the therapeutic potential of GIRK channels. *Trends Neurosci.* 37 20-29.

Luscher C, Slesinger PA (2010) Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. *Nat Rev Neurosci.* 11: 301-315.

Lyu C, Mulder J, Barde S, Sahlholm K, Zeberg H, Nilsson J, Arhem P, Hokfelt T, Fried K, Shi TJ (2015) G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy. *Mol Pain* 11: 44.

Malcangio M (2018) GABA_B receptors and pain. *Neuropharmacology* 136: 102-105.

Mao C, Shen C, Li C, Shen DD, Xu C, Zhang S, Zhou R, Shen Q, Chen LN, Jiang Z, et al (2020) Cryo-EM structures of inactive and active GABA_B receptor. *Cell Res* 30: 564-573.

Marker CL, Lujan R, Colon J, Wickman K (2006) Distinct populations of spinal cord lamina II interneurons expressing G-protein-gated potassium channels. *J Neurosci* 26: 12251-12259.
Marker CL, Lujan R, Loh HH, Wickman K (2005) Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of 𝜇- and δ- but not κ-opioids. *J Neurosci* 25: 3551-3559.

Marker CL, Stoffel M, Wickman K (2004) Spinal G-protein-gated K⁺ channels formed by GIRK1 and GIRK2 subunits modulate thermal nociception and contribute to morphine analgesia. *J Neurosci* 24: 2806-2812.

Mayfield J, Blednov YA, Harris RA (2015) Behavioral and genetic evidence for GIRK channels in the CNS: role in physiology, pathophysiology, and drug addiction. *Int Rev Neurobiol* 123: 279-313.

Mitrovic I, Margeta-Mitrovic M, Bader S, Stoffel M, Jan LY, Basbaum AI (2003) Contribution of GIRK2-mediated postsynaptic signaling to opiate and α2-adrenergic analgesia and analgesic sex differences. *Proc Natl Acad Sci U S A* 100: 271-276.

Mohammadi S, Christie MJ (2014) α9-nicotinic acetylcholine receptors contribute to the maintenance of chronic mechanical hyperalgesia, but not thermal or mechanical allodynia. *Mol Pain* 10: 64.

Nagi K, Pineyro G (2014) Kir3 channel signaling complexes: focus on opioid receptor signaling. *Front Cell Neurosci* 8: 186.

Nevin ST, Clark RJ, Klimis H, Christie MJ, Craik DJ, Adams DJ (2007) Are α9α10 nicotinic acetylcholine receptors a pain target for α-conotoxins? *Mol Pharmacol* 72: 1406-1410.

Nockemann D, Rouault M, Labuz D, Hublitz P, McKnelly K, Reis FC, Stein C, Heppenstall PA (2013) The K⁺ channel GIRK2 is both necessary and sufficient for peripheral opioid-mediated analgesia. *EMBO Mol Med* 5: 1263-1277.
Padgett CL, Slesinger PA (2010) GABA_B receptor coupling to G-proteins and ion channels. *Adv Pharmacol* 58: 123-147.

Pinard A, Seddik R, Bettler B (2010) GABA_B receptors: physiological functions and mechanisms of diversity. *Adv Pharmacol* 58: 231-255.

Ponce A, Bueno E, Kentros C, Vega-Saenz de Miera E, Chow A, Hillman D, Chen S, Zhu L, Wu MB, Wu X, et al (1966) G-protein-gated inward rectifier K⁺ channel proteins (GIRK1) are present in the soma and dendrites as well as in nerve terminals of specific neurons in the brain. *J Neurosci* 16: 1990-2001.

Richard-Lalonde M, Nagi K, Audet N, Sleno R, Amraei M, Hogue M, Balboni G, Schiller PW, Bouvier M, Hébert TE, Pineyro G (2013) Conformational dynamics of Kir3.1/Kir3.2 channel activation via δ-opioid receptors. *Mol Pharmacol* 83: 416-428.

Rifkin RA, Moss SJ, Slesinger PA (2017) G protein-gated potassium channels: a link to drug addiction. *Trends Pharmacol Sci* 38: 378-392.

Rose TR, Wickman K (2020) Mechanisms and regulation of neuronal GABA_B receptor-dependent signaling. In: *Current Topics in Behavioral Neurosciences*, Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2020_129

Sadeghi M, Carstens BB, Callaghan BP, Daniel JT, Tae H-S, O'Donnell T, Castro J, Brierley SM, Adams DJ, Craik DJ, Clark RJ (2018) Structure-activity studies reveal the molecular basis for GABA_B-receptor mediated inhibition of high voltage-activated calcium channels by α-conotoxin Vc1.1. *ACS Chem Biol* 13: 1577-1587.

Sadeghi M, McArthur JR, Finol-Urdaneta RK, Adams DJ (2017) Analgesic conopeptides targeting G protein-coupled receptors reduce excitability of sensory neurons. *Neuropharmacology* 127: 116-123.
Saloman JL, Scheff NN, Snyder LM, Ross SE, Davis BM, Gold MS (2016) Gi-DREADD expression in peripheral nerves produces ligand-dependent analgesia, as well as ligand-independent functional changes in sensory neurons. *J Neurosci* 36: 10769-10781.

Takeda M, Nasu M, Kanazawa T, Shimazu Y (2015) Activation of GABA_B receptors potentiates inward rectifying potassium currents in satellite glial cells from rat trigeminal ganglia: in vivo patch-clamp analysis. *Neuroscience* 288: 51-58.

Takeda M, Tanimoto T, Ikeda M, Kadoi J, Matsumoto S (2004) Activation of GABA_B receptor inhibits the excitability of rat small diameter trigeminal root ganglion neurons. *Neuroscience* 123: 491-505.

Takigawa T, Alzheimer C (1999) G protein-activated inwardly rectifying K^+ (GIRK) currents in dendrites of rat neocortical pyramidal cells. *J Physiol* 517(Pt 2): 385-390.

Touhara KK, MacKinnon R (2018) Molecular basis of signaling specificity between GIRK channels and GPCRs. *Elife* 7: e42908.

Vincler M, Wittenauer S, Parker R, Ellison M, Olivera BM, McIntosh JM (2006) Molecular mechanism for analgesia involving specific antagonism of α9α10 nicotinic acetylcholine receptors. *Proc Natl Acad Sci U S A* 103: 17880-17884.

Wang W, Touhara KK, Weir K, Bean BP, MacKinnon R (2016) Cooperative regulation by G proteins and Na^+ of neuronal GIRK2 K^+ channels. *Elife* 5: e15751.

Wermeling DP (2005) Ziconotide, an intrathecally administered N-type calcium channel antagonist for the treatment of chronic pain. *Pharmacotherapy* 25: 1084-1094.

Wydeven N, Marron Fernandez de Velasco E, Du Y, Benneyworth MA, Hearing MC, Fischer RA, Thomas MJ, Weaver CD, Wickman K (2014) Mechanisms underlying the activation
of G-protein-gated inwardly rectifying K\(^+\) (GIRK) channels by the novel anxiolytic drug, ML297. *Proc Natl Acad Sci U S A* 111: 10755-10760.

Yudin Y, Rohacs T (2018) Inhibitory G\(_{i/o}\)-coupled receptors in somatosensory neurons: potential therapeutic targets for novel analgesics. *Mol Pain* 14: 1744806918763646.
Table 1. Summary of GIRK-mediated K⁺ current potentiation (ΔI_{Kir}) at -100 mV by Baclofen, GABA, and α-conotoxins Vc1.1. RgIA, PeIA and ImI in HEK293T cells co-expressing GABA$_B$R and either GIRK1/2 or GIRK2 channels and mouse DRG neurons.

Modulator	Recombinant (HEK293T)	Native (DRG)	
	GIRK1/2 (ΔI_{Kir}, pA/pF) % Increase	GIRK2 (ΔI_{Kir}, pA/pF) % Increase	Whole-cell GIRK current density (ΔI_{Kir}, pA/pF) % Increase
Baclofen (100 µM)	68.4 ± 5 (9)	27.1 ± 4.2 (4)	25.8 ± 3.9 (15)
GABA (100 µM)	51.1 ± 6.6 (9)	-	-
Vc1.1 (1 µM)	29.6 ± 1.5 (8)	9.8 ± 1.0 (6)	19.4 ± 2.8 (15)
RgIA (1 µM)	26.6 ± 6.5 (5)	-	-
PeIA (1 µM)	22.1 ± 4.7 (7)	-	-
ImI (1 µM)	1.1 ± 0.3 (5)	-	-
% Increase represents I_{Kir} potentiation by each modulator relative to the basal I_{Kir} in high K^+. Current density (pA/pF) represent the mean ± SEM; number of experiments is given in parentheses.

Table 2. Summary of the effects of α-conotoxin Vc1.1, Baclofen and Tertiapin-Q on the passive and active membrane properties of mouse DRG neurons.

Parameters	Vc1.1 (1 µM)	Baclofen (100 µM)	Tertiapin-Q (500 nM)
Δ RMP (mV)	-4.3 ± 1.1	-5.1 ± 1.9	$+10.0 \pm 1.0$
	(25)	(18)	(21)
R_i (fold change)	$\downarrow 1.5 \pm 0.2$	$\downarrow 1.7 \pm 0.1$	$\uparrow 1.9 \pm 0.3$
	(6)	(10)	(14)
AP# (fold change)	$\downarrow 1.8 \pm 0.2$	$\downarrow 1.5 \pm 0.3$	$\uparrow 3.4 \pm 0.7$
	(26)	(21)	(21)
Rheobase (fold change)	$\uparrow 2.0 \pm 0.2$	$\uparrow 3.1 \pm 0.7$	$\downarrow 1.9 \pm 0.1$
	(26)	(21)	(21)

AP#, Number of action potentials; R_i, Input resistance; RMP, Resting membrane potential

\uparrow, increase; \downarrow, decrease; Fold change calculated for each individual neuron and data represent the mean ± SEM; number of experiments is given in parentheses.
Figure Legends

Figure 1. α-Conotoxin Vc1.1 modulation of heteromeric GIRK1,2 and homomeric GIRK2 channels require GABA_BR.

A, C Representative K⁺ currents recorded from GIRK1/2 channels co-expressed either with GABA_BR (A) or alone (C) in response to a 50 ms voltage ramp protocol (−100 to +40 mV; see inset) applied at 0.1 Hz from a holding potential of −40 mV in the absence (control) and presence of 1 μM Vc1.1 (blue), 100 μM baclofen (red) or 1 mM Ba²⁺ (grey).

B, D Corresponding diary plots of K⁺ current amplitude at −100 mV as a function of time in cells expressing GIRK1/2 channels and GABA_BR (B) and GIRK1/2 channels alone (D). Responses to sequential bath application of Vc1.1 (blue), baclofen (red), and Ba²⁺ (grey) are indicated by the bars above.

E Vc1.1 potentiates also homomeric GIRK2 channel when co-expressed with GABA_BR. Representative human GIRK2-mediated K⁺ currents obtained in the absence (Control, black), and presence of 1 μM Vc1.1 (blue), 100 μM baclofen (red) or 1 mM Ba²⁺ (grey).

F Corresponding diary plot to (E) showing peak K⁺ current amplitude at −100 mV as a function of time in response to bath application of Vc1.1 (blue), baclofen (red) or Ba²⁺ (grey).

G α-Conotoxin Vc1.1 concentration-response relationship obtained for potentiation of GIRK1/2 co-expressed with GABA_BR in HEK293T cells. ∆I_{Kir} represents total I_{Kir} (basal + potentiation) minus basal I_{Kir}.

H Bar graph of ∆I_{Kir} density (pA/pF) at −100 mV in response to 100 μM baclofen (red), 100 μM GABA (orange), 1 μM Vc1.1 (blue), 1 μM RgIA (purple) and 1 μM PeIA (yellow) recorded.
from cells expressing either heteromeric GIRK1/2 (solid) or homomeric GIRK2 (hashed) co-expressed with GABA\textsubscript{B}R. Neither Vc1.1 nor baclofen potentiates K+ currents in cells expressing GIRK1/2 alone. The vertical dotted line (40 pA/pF) is for reference. Data represent mean ± SEM and the number of experiments is given in parentheses.

Figure 2. Potentiation of GIRK1/2-mediated K+ current by either \(\alpha\)-conotoxin Vc1.1 or baclofen requires co-expression of GABA\textsubscript{B}R and involves G protein Ga\textsubscript{i/o} and βγ.

A Bath application of the selective GABA\textsubscript{B}R antagonist CGP 55845 (1 µM) antagonizes Vc1.1 potentiation of GIRK1/2 channels. Representative K+ currents recorded from HEK293T cells co-expressing GABA\textsubscript{B}R and GIRK 1/2 channels in the absence (control; black) or presence of 1 µM CGP 55845 alone (green), and co-application of CGP 55845 plus 1 µM Vc1.1 (light green), Vc1.1 alone (blue) or 1 mM Ba2+ (grey).

B Corresponding diary plot of K+ current amplitude at −100 mV (A) as a function of time.

C Representative K+ currents elicited from cells co-expressing GABA\textsubscript{B}R and GIRK1/2 channels with 24 hr pre-treatment with 1 µg/ml Pertussis toxin (PTX).

D Corresponding diary plots of peak K+ currents at −100 mV (C) as a function of time.

E Inclusion of 500 µM GDP-β-S in the intracellular patch pipette solution abolished Vc1.1 potentiation of GIRK1/2 current. Representative K+ current traces in the absence (control; black) or presence of Vc1.1 (blue), baclofen (red) or Ba2+ (grey).

F Corresponding diary plot of (E) as a function of time.

G Inclusion of Gβγ scavenger, GRK2i (10 µM) inhibited potentiation by both Vc1.1 and baclofen in cells co-expressing GABA\textsubscript{B}R and GIRK1/2.
H Corresponding time plot of (G) showing peak I_{Kir} potentiation by Vc1.1 and baclofen at -100 mV.

I Bar graph of ΔI_{Kir} density recorded at -100 mV in response to 1 μM Vc1.1 ($-29.5 \pm 1.52 \text{ pA/pF}$, blue) or 100 μM baclofen ($-68.4 \pm 5 \text{ pA/pF}$, red) in HEK293T cells co-expressing GIRK1/2 channels and GABA$_B$R (control). Potentiation of ΔI_{Kir} density by Vc1.1 and baclofen was significantly reduced by 1 μM CGP 55845. Following pre-treatment with PTX (1 μg/ml) or inclusion of either GDP-\(\beta\)-S (500 μM) or G\(\beta\)\(\gamma\) scavenger, GRK2i (10 μM), in the intracellular pipette solution, ΔI_{Kir} density was similarly attenuated compared to peak current density measured for Vc1.1 or baclofen in control condition. Data are expressed as mean \pm SEM and statistical significance, **** $p < 0.0001$ vs control; one-way ANOVA followed by Tukey’s post hoc test; number of experiments is given in parentheses.

Figure 3. Expression of GIRK1, GIRK2 and GABA$_B$_2 subunit of GABA$_B$R and α-conotoxin Vc1.1 potentiation of inward rectifier K$^+$ currents in adult mouse DRG neurons.

A Immunolabeling of mouse DRG neurons and visual inspection by confocal microscopy revealed both GIRK1 and GIRK2 channels express and show co-localization with each other using antibodies directed against GIRK1 and GIRK2 channels.

B DRG neurons showing expression of GABA$_B$_2 subunit and GIRK2 channel and both GIRK2 and GABA$_B$_2 co-localize in mouse DRG neurons. Co-expression of GIRK 1 and GIRK 2 or GIRK2 and GABA$_B$R immunoreactivity in mouse DRG neurons was independent of cell diameter. Scale bars: 100 μm. DAPI (blue) staining marks nucleus.

C Diary plot of peak inward K$^+$ currents recorded at -100 mV in small to medium diameter (<30 μm) mouse DRG neurons as a function of time. Whole-cell K$^+$ currents obtained in
response to voltage ramps (−100 mV to +40 mV) applied at 0.1 Hz in the absence (basal control taken after baclofen washout, black) and presence of 1 μM Vc1.1 (blue), 100 μM baclofen (red) or 500 nM Tertiapin-Q (brown).

D Bar graph of inward K^+ current density measured at −100 mV in response to Vc1.1 (1 μM, blue) and baclofen (100 μM, red). Data represent mean ± SEM. Number of experiments are shown in parentheses. p = 0.011, paired t-test.

E Summary of the effects of Tertiapin-Q (500 nM, brown) and Ba$^{2+}$ (1 mM, grey) on whole-cell inward I_K. Data represent mean ± SEM. p = 0.001, paired t-test. Number of experiments is given in parentheses.

Figure 4. α-Conotoxin Vc1.1 hyperpolarizes the resting membrane potential and reduces excitability in mouse DRG neurons similar to the canonical GABA$_B$R agonist baclofen.

A Representative voltage responses to current clamp steps recorded in a DRG neuron (28.7 μm diameter) in the absence (control; left) and presence of 1 μM Vc1.1 (right). Broken line indicates 0 mV, black indicates the rheobase and red indicates 2x rheobase for both membrane potential and current.

B Bar graphs and scatter plots of the effects of 1 μM Vc1.1 on resting membrane potential (RMP), $p = 0.0011$ (i), input resistance (R_i), $p = 0.0304$ (ii), rheobase, $p < 0.0001$ (iii), and number of APs, $p = 0.0016$ (iv) in response to 500 ms depolarizing current step in small to medium diameter neurons of adult mice DRG. Data represented as mean ± SEM; Paired t-test. Number of experiments are given in parentheses.

C Representative voltage responses to current clamp steps recorded in a DRG neuron (26.2 μm diameter) in the absence (control; left) and presence of 100 μM baclofen (right). Broken line
indicates 0 mV, black indicates the rheobase and red 2x rheobase in each condition for both membrane potential and current.

D Bar graphs and scatter plots of the effects of 100 µM baclofen on resting membrane potential (RMP), $p = 0.0177$ (i), input resistance (R_i), $p = 0.035$ (ii), rheobase, $p = 0.0002$ (iii), and number of APs, $p = 0.0474$ (iv) in response to 500 ms depolarizing current step in small to medium diameter neurons of adult mice DRG. Data represented as mean ± SEM; Paired t-test. Number of experiments is given in parentheses.

Figure 5. Tertiapin-Q, a GIRK channel inhibitor, enhances excitability in mouse DRG neurons and depolarizes the resting membrane potential.

A Representative voltage responses to current clamp steps recorded in a DRG neuron (22.9 µm diameter) in the absence (control; left) and presence of 500 nM TPQ (right). Broken line indicates 0 mV, black indicates the rheobase and red indicates 2x rheobase for both membrane potential and current.

B Bar graphs and scatter plots of the effects 500 nM Tertiapin-Q on resting membrane potential (RMP), $p < 0.0001$ (i), input resistance (R_i), $p = 0.0354$ (ii), rheobase, $p = 0.0003$ (iii), and number of APs, $p = 0.0011$ (iv) in response to 1 sec depolarizing current step in small to medium diameter (<30 µm) adult mice DRG neurons. Data represent mean ± SEM values; Paired t-test. Number of experiments is given in parentheses.

Figure 6. Schematic representation of the $\text{GABA}_{B1/2}$ subunits of GABA_BR and its downstream effector Vc1.1 transducing signals to GIRK channels.
Allosteric binding of Vc1.1 to GABA\(_{B}\)R activates heterotrimeric G protein. Dissociation of G\(\alpha\)\(_{i/o}\) and heterodimer G\(\beta\gamma\) (red line) of G protein activates heteromeric GIRK1/2 channel. Similarly, baclofen binding to orthosteric binding site, Venus Fly Trap (VFT) of GABA\(_{B1}\) subunit of GABA\(_{B}\)R can also potentiate GIRK channel via dissociation of G\(\alpha\)\(_{i/o}\) and G\(\beta\gamma\) heterodimer of G protein.
Expanded View Figure Legends

Figure EV1. α-Conotoxin Vc1.1 activity abolished upon reducing the disulfide bond with dithiothreitol (DTT) and the lack of effect of α-conotoxin ImI on heteromeric GIRK1/2 channels co-expressed with GABA\(_B\)R.

A Representative current-voltage relationship elicited from HEK293 cells co-expressing GABA\(_B\)R and GIRK1/2 channels in the absence (Control, black) and presence of 1 µM Vc1.1 reduced by 1 mM DTT/reduced Vc1.1 (Vc1.1\(^{\text{RA}}\)) (pink), 100 µM baclofen (red), 1 µM wild-type Vc1.1 (blue) or 1 mM Ba\(^{2+}\) (grey).

B GIRK1/2-mediated K\(^+\) current amplitude measured at −100 mV plotted as a function of time in the presence of sequential application of reduced Vc1.1 (DTT treatment/Vc1.1\(^{\text{RA}}\)), baclofen, globular Vc1.1 and Ba\(^{2+}\).

C Representative current-voltage relationships obtained from HEK293T cells co-expressing GABA\(_B\)R and GIRK1/2 channels in the absence (Control, black) and presence of 1 µM ImI (light blue), 1 µM Vc1.1 (blue), 100 µM baclofen (red) or 1 mM Ba\(^{2+}\) (grey).

D Peak K\(^+\) current amplitude plotted as a function of time during sequential application of ImI, Vc1.1, baclofen, and Ba\(^{2+}\).

E Quantification of the effect of reduced (linear) Vc1.1 and ImI compared to globular Vc1.1 and baclofen. Data represent mean ± SEM. Statistical significance, **** p < 0.0001; one-way ANOVA. Number of experiments is given in parentheses.
Figure EV2. Heterotetrameric GIRK1/2 K⁺ currents enhanced by intracellular GTP-γ-S.

A Current-voltage relationship obtained in HEK293T cells containing intracellular GTP-γ-S (500 µM) in the absence (basal) and presence of Vc1.1 (1 µM, brown), Ba²⁺ (1 mM, grey) and baclofen (100 µM, red).

B Corresponding plot of peak Iₖir density as a function of time in HEK293T cell containing GTP-γ-S.

C Bar graph comparing the effect of the absence (control, Vc1.1) and presence of GTP-γ-S (500 µM) on basal, Vc1.1 (1 µM) and baclofen (100 µM) induced peak Iₖir density. Data are expressed as mean ± SEM; statistical significance *** p = 0.004, ** p = 0.005 and p = 0.002 respectively; one-way ANOVA followed by Tukey’s post hoc test; number of experiments is given in parentheses.

Figure EV3. Fluorescence micrographs representing immunolabeling of GIRK 1, GIRK 2 and GABA_B R2 alone and co-localization when over-expressed recombinantly in HEK293 cells.

A-C GIRK1 (red), GIRK2 (green) and GABA_B R2 (red) exhibited immunoreactivity in HEK293T cells and DAPI (blue) staining denotes the nucleus of the cells.

D-E DAPI (blue), GIRK1 (red), GIRK2 (green) and GABA_B R2 (red) immunoreactivity in HEK293T cells. The merged/overlay images depict co-localization of GIRK1 and GIRK2 or GIRK2 and GABA_B R2 upon transfection. Scale bars: 100 µm.
Figure EV4. Vc1.1-induced excitability in mouse DRG neurons is antagonized by the selective GABA_{B}R antagonist CGP55845.

A Representative voltage responses to current clamp steps recorded in a DRG neuron (26 μm diameter) in the absence (control; left) and presence of CGP 55845 + Vc1.1 (1 μM) (right). Broken line indicates 0 mV, black indicates the rheobase and red indicates 2x rheobase for both membrane potential and current.

B Bar graphs and scatter plots of the effects CGP 55845 + Vc1.1 on resting membrane potential (RMP), p = 0.4 (i), input resistance (R_{i}), p = 0.1 (ii), rheobase, p = 0.36 (iii), and number of APs, p = 0.39 (iv) in response to 500 ms depolarizing current step in small to medium diameter neurons of adult mouse DRG. Data represent mean ± SEM values; Paired t-test. Number of experiments is given in parentheses.
