Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202102634

Engineered Small Extracellular Vesicles as a FGL1/PD-L1 Dual-targeting Delivery System for Alleviating Immune Rejection

Hsiang-i Tsai, Yingyi Wu, Xiaoyan Liu, Zhanxue Xu, Longshan Liu, Changxi Wang, Huanxi Zhang, Yisheng Huang, Linglu Wang, Weixian Zhang, Dandan Su, Fahim Ullah Khan, Xiaofeng Zhu, Rongya Yang, Yuxin Pang, John E. Eriksson, Haitao Zhu, Dongqing Wang, Bo Jia*, Fang Cheng*, and Hongbo Chen*
Supporting Information

Engineered small extracellular vesicles as a FGL1/PD-L1 dual-targeting delivery system for alleviating immune rejection

Hsiang-i Tsai, Yingyi Wu, Xiaoyan Liu, Zhanxue Xu, Longshan Liu, Changxi Wang, Huanxi Zhang, Yisheng Huang, Linglu Wang, Weixian Zhang, Dandan Su, Fahim Ullah Khan, Xiaofeng Zhu, Rongya Yang, Yuxin Pang, John E. Eriksson, Haitao Zhu, Dongqing Wang, Bo Jia*, Fang Cheng*, and Hongbo Chen*

Dr. H.I. Tsai[+], Y. Y. Wu, X. Y. Liu, Z. X. Xu, L. L. Wang, W. X. Zhang, D. D. Su, Prof. F. Cheng, Prof. H. B. Chen
School of Pharmaceutical Sciences (Shenzhen)
Sun Yat-sen University
Shenzhen 518107, P.R. China
E-mail: chengf9@mail.sysu.edu.cn, chenhb7@mail.sysu.edu.cn

Prof. H.T. Zhu, Prof. D.Q. Wang
Department of Medical Imaging
The Affiliated Hospital of Jiangsu University
Zhenjiang 212001, China

Dr. H. X. Zhang, Prof. L. S. Liu, Prof. C. X. Wang
Organ Transplant Center
The First Affiliated Hospital, Sun Yat-sen University
58 Zhongshan 2nd Road, Guangzhou, Guangdong 510080, China

Dr. Y. S. Huang, Dr. B. Jia
Department of Oral Surgery
Stomatological Hospital, Southern Medical University
Guangzhou 510280, Guangdong, PR China
E-mail: dentist-jia@163.com

Dr. F. U. Khan
Zoology Department UST
Bannu Kp 28100, Pakistan

Dr. X. F. Zhu, Prof. Y.X Pang
School of Traditional Medicine Materials Resource, Guangdong Pharmaceutical University
Yunfu 527322, Guangdong, China.
Prof. R. Y. Yang
Department of Dermatology, The Seventh Medical Center of PLA General Hospital,
Peking 100010, China

Prof. J. Eriksson
Cell Biology, Biosciences, Faculty of Science and Engineering
Åbo Akademi University,
FI-20520, Turku, Finland

[+] Present address: Department of Medical Imaging
The Affiliated Hospital of Jiangsu University
Zhenjiang 212001, China

H. Tsai, Y. Y. Wu and X. Y. Liu contributed equally to this work.
B. Jia, F. Cheng, and H. B. Chen are corresponding authors
Supporting Information
Supplement Figures

Figure S1. MSC sEVs has a negative immune regulation function. (related to Figure 2)

A) Heat map of miRNAs targeting these immune genes created using 4,872 Immunologic Signature Gene Sets provided by the GSEA website, \(n = 3 \). B) Real time RT-PCR confirmation of miR125b-5p, let-7b-5p and miR-21-5p up-regulated by miRNA-sequencing, \(n = 3 \). Error bar, mean ± SEM. \(P \)-values are calculated using student T-test. \(*P < 0.05, **P < 0.01, ***P < 0.001\). C) Inhibition of PBMC and CD3+ T cells over a 5 day period by different sEVs groups using CFSE staining. PBMCs or T cells were stimulated with plate-bound CD3 (10 μg/mL) and IL-2 (2 ng/mL), then treated with the indicated different types of sEVs (50 μg/mL). Cell proliferation was detected by CFSE at 5 days post-treatment, respectively. NC group: treated with PBS. D0 group: CFSE assay at 0 days post-treatment. CFSE staining was analyzed by flow cytometry.
Figure S2. Modification couldn’t affect the negative immune regulation function of the miRNAs in exosomes. (related to Figure 2)

Heat map of miRNAs in HEK-293T sEVs and MSC-FP sEVs targeting whole genome provided by the GSEA website, n = 3.

- **Up-regulated miRNAs**
 - hsa-miR-199a-3p
 - hsa-miR-23b-3p
 - hsa-miR-125a-5p
 - hsa-miR-3168
 - hsa-let-7i-5p
 - hsa-miR-21-5p
 - hsa-miR-23a-3p
 - hsa-let-7b-5p
 - hsa-miR-125b-5p

- **Down-regulated miRNAs**
 - hsa-miR-4442
 - hsa-miR-1273b-5p
Figure S3. Construction of MSC cell line stably expressing GFP or OFP and GFP/OFP. (related to Figure 3)

A) Confocal images indicated the expression of GFP or OFP in MSC cells. B) Confocal images indicated the expression of GFP and OFP in MSC cells. WGA-Alexa-350 was used to stain cell membranes. Scale bar: 10 µm.
Figure S4. Establishment and characterization of FGL1 sEVs and PD-L1 sEVs. (related to Figure 3)

A-C) The TEM images (A), size distribution (B), and the Zeta potential (C) of purified sEVs from MSC-FGL1 and MSC-PD-L1 cells, n = 3. (scale bar: 100 nm).
Figure S5. Upregulated PD-1 and LAG-3 mRNA levels of PBMC and Jurkat cell after PI stimulation. (related to Figure 4)

A-B) Expression of LAG-3 (A) and PD-1 (B) mRNA levels in Jurkat cells upon P/I stimulation as detected by qPCR, n = 3. Error bar, mean ± SEM. P-values are calculated using student T-test. *p < 0.05, **p < 0.05, ***p < 0.001.
Figure S6. FGL1/PD-L1 sEVs could affect Th1, Th17 and Treg differentiation. (related to Figure 4)

A-C) Flow cytometry analysis of CD4^+ IFN-γ^+ Th1 (A), CD4^+ IL-17A^+ Th17 (B) and CD4^+ CD25^+ Treg (C) expression in P/I-stimulated CD3^+ T cells treated with or without different groups of sEVs.
Figure S7. Encapsulation rate of FGL1/PD-L1 sEVs loaded with FK506. (related to Figure 4)

FK506 was encapsulated in the FGL1/PD-L1 sEVs by electroporation, and its encapsulation rate was detected by UV-VIS at 300 nm ($n = 3$).
Figure S8. Establishment of MSC cells expressing mouse-FGL1/PD-L1. (related to Figure 5)

A) Western blotting for mouse-PD-L1-OFP and mouse-FGL1-GFP in the whole cell lysate in MSCs. B) Confocal images indicate the expression of mouse-PD-L1-OFP, mouse-FGL1-GFP and mouse-PD-L1-OFP/mouse-FGL1-GFP in MSCs. Cell membranes stained with WGA Alexa 350. Scale bar: 10 µm.
Figure S9. Bioluminescence imaging and toxicity test of FGL1/PD-L1 sEVs in mice. (related to Figure 5)

A) *In vivo* Bioluminescence imaging of sEVs, Free sEVs, and FP sEVs originating from MSC cells via tail vein injection. sEVs: injected with MSC-sEVs. Free sEVs: injected with vector sEVs. B) Complete blood count test (CBC test). Mice were injected with Free sEVs or FP sEVs via tail vein injection for 14 days for whole blood analysis, \(n = 5 \). Error bar, mean ± SEM. \(P \)-values are calculated using student T-test. ns: not significant. C) Histological images obtained from the hearts, livers, spleens and kidneys of mice treated with NC, saline, or different groups of EVs for 14 days post-injection as compared to the NC group. Scale bar: 100 µm.
Figure S10. The appearance and biochemical analysis of FK506 and FP sEVs @ FK506 in heart allogenic mice. (related to Figure 5)

A) Images highlighting the hair loss of heart allogenic mice after injecting with FK506 or FP sEVs@FK506. B) Blood samples were collected after injecting with saline, FK506 or FP sEVs@FK506 to measure creatinine (CREA) and urea nitrogen (UREA) by automatic blood analyzer. n = 5. Error bar, mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
Supplementary Tables

Table S1. Top-scored negative immunoregulation miRNAs between HEK-293T sEVs and MSC-FP sEVs.

Up-regulated miRNAs	ID	P VALUE	Function
hsa-miR-199a-3p[1]	MIMAT0000232	1.45713E-08	Inhibition of inflammation, immunity and resistance to kidney damage
hsa-miR-23b-3p[2]	MIMAT0000418	2.43588E-05	Effective treatment of rheumatoid arthritis
hsa-miR-125a-5p[3]	MIMAT0000443	0.008456264	Promote the generation of M2 type macrophages
hsa-miR-3168[4]	MIMAT0015043	8.46957E-25	Suppress the immune system and relieve asthma
hsa-let-7i-5p[5]	MIMAT0000415	1.19388E-33	Inhibition of IL - 6
hsa-miR-21-5p[6]	MIMAT0000076	0.000657411	Inhibits the immune function of dendritic cells
hsa-miR-23a-3p[7]	MIMAT0000078	3.35175E-05	Upregulate the expression of PD-L1 to inhibit T cells function
hsa-let-7b-5p[8]	MIMAT000063	4.70362E-27	Inhibit the expression of inflammatory cytokines in macrophages
hsa-miR-125b-5p[9]	MIMAT0000423	1.37316E-88	Inhibition of inflammation, immunity and resistance to kidney damage

Down-regulated miRNAs	ID	P VALUE	Function
hsa-miR-4442[10]	MIMAT0018960	1.2899E-122	Downregulation inhibits inflammation and relieves dermatomyositis
hsa-miR-1273h-5p[11]	MIMAT0030415	1.0546E-166	Increased in the PBMCs of SLE patients
Factor	Function description	Reference	
--------	---------------------	-----------	
IL-2	Promote the differentiation of CD4⁺ T cells and activate Treg cells	[12]	
IL-18	Promote the differentiation of CD4⁺ T cells	[13]	
IL-22	Promote the differentiation of CD4⁺ T cells	[14]	
IL-10	Activate Treg cells	[15]	
IL-5	Regulating the differentiation, growth and activation of eosinophils	[16]	
IL-17A	Promote the differentiation of CD4⁺ T and CD8⁺ cells	[14, 17]	
IL-21	Inhibit the proliferation of Treg cells	[18]	
IL-12	Promote the differentiation of CD4⁺ T cells	[18a, 19]	
IL-6	Regulator of Treg/Th17 balance	[20]	
CCL1	Suppressive function of Tregs	[21]	
ID3	Control of the differentiation of regulatory T cells and TH17 cells	[22]	
ID1	Promotes T Regulatory Cell Differentiation	[23]	
TNFRSF12	Promotes T Regulatory Cell Differentiation	[24]	
BMPR1B	Development and Activation of CD4⁺ T Cells	[25]	
CX3CL1	Chemotactic activity for monocytes, NK cells, and T cells	[26]	
IL11	Promote the proliferation and differentiation of CD4⁺T cells	[27]	
ILF	Regulator of Treg/Th17 balance	[28]	
Protein	Function	Reference	
---------	----------	-----------	
CXCL13	Activate Tregs cells	[29]	
CCL4	Inhibit the proliferation of CD8⁺ cells	[30]	
IL12RB2	Promotes Th1 Cell Differentiation	[31]	
TNFSF14	Activate NK T cells	[32]	
IDO1	Activate Tregs cells	[33]	
IL36A	Activate T cells	[34]	
IL1RN	Activate Th17 cells	[35]	
IL12A	Promotes CD8⁺ Cell Differentiation	[36]	
IL21	Promotes CD8⁺ Cell Differentiation	[37]	
TNFRSF8	Promotes Th17 Cell Differentiation	[38]	
TNFRSF12A	Promotes the proliferation of T cells	[39]	
EDA2R	Inhibit the Differentiation of Th17 cells	[40]	
TSLP	Enhances the function of helper type 2 cells	[41]	
Table S3. The demographic clinical characteristics in kidney transplant patients.

Variables	Total (n = 19)	ABMR (n = 6)	TCMR (n = 6)	Stable (n = 7)	P
Donors					
Types, n (%)					
DD	11 (58)	2 (33)	6 (100)	3 (43)	0.045
LD	8 (42)	4 (67)	0 (0)	4 (57)	
Recipients					
Gender, n (%)					0.037
Female	9 (47)	1 (17)	2 (33)	6 (86)	
Male	10 (53)	5 (83)	4 (67)	1 (14)	
Age (year), Mean ± SEM	36.96 ± 9.30	42.10 ± 10.44	37.43 ± 10.60	32.14 ± 4.61	0.156
Weight (kg), Mean ± SEM	52.0 ± 12.2	59.3 ± 16.1	50.2 ± 7.2	47.3 ± 10.2	0.191
Previous_transplantation, n (%)					0.48
0	16 (84)	6 (100)	4 (67)	6 (86)	
1	3 (16)	0 (0)	2 (33)	1 (14)	
Days_from_transplant_to_sample, Median (IQR)	371 (185, 582)	1474 (822, 2142)	133 (73, 152)	376 (369, 378)	0.002
CNI*, n (%)					1
FK506	19 (100)	6 (100)	6 (100)	7 (100)	
	Median (IQR)	Median (IQR)	Median (IQR)	Median (IQR)	p-value
--------------------------	-------------------	-------------------	-------------------	-------------------	---------
FK506 C₀ (ng/ml), Median (IQR)	6.5 (5.10, 7.80)	7.8 (7.58, 9.75)	5.5 (5.05, 6.30)	6.3 (5.55, 8.25)	0.168
White blood cell count (10^⁹/L), Median (IQR)	7.44 ± 2.14	7.63 ± 2.82	7.71 ± 2.25	7.05 ± 1.63	0.847
Lymphocyte count (10^⁹/L), Mean ± SEM	1.35 ± 0.63	1.07 ± 0.38	1.32 ± 0.66	1.61 ± 0.75	0.331
Neutrophil (10^⁹/L), Median (IQR)	5.41 ± 2.12	5.83 ± 2.63	5.70 ± 1.71	4.80 ± 2.14	0.657
Monocyte count (10^⁹/L), Mean ± SEM	0.57 ± 0.17	0.62 ± 0.17	0.58 ± 0.22	0.52 ± 0.14	0.608

CNIs, Calcineurin inhibitors; FK506, Tacrolimus; LD, Living donor; DD, Death donor. * Standard maintenance immunosuppression, including CNI, prednisolone and mycophenolic acid was applied to all patients.
Gene	Forward primer sequence 5’→3’	Reverse primer sequence 5’→3’
mouse-β-Actin	GGCTGTATTCCTCCCTCCTATCG	CCAGTTGGTAAACAATGCCCATGT
mouse-Tnfa	TCTCATCAGTCTCCTATGGCCC	GGGAGTGAACAAGGTACAAC
mouse-Granzyme B	TCGACCCTACATGGGCTTAC	TGGGGAATGCATTTCATCAT
mouse-Pd-1I	TCTGATCGTCGATGGCAGC	CGTTGTCCAGGCTTCTCTC
mouse-Fgl1	CTTCGTCCCTGGTGGCATT	TCCCGCAAGCAGTTCTCAC
mouse-Tim3	TCAGGTCTTACCTACACTGTTG	GCATTCTACAACCTCAACAC
mouse-Vista	GACAGGTGGCCTCTCAACC	TTTTCGATCCCTGGGTGGT
mouse-Cila4	GCTTCTTAGATTACCCTCTCTG	CGGCCATGTTCTGGATCA
mouse-Tigit	CTGATACAGGCTGCCTTCTCT	TGGGTCACTTCAGCTGTGC
mouse-Il-12	CAGCATGTGTCAATCAGCTAC	TGTGTTCTCAAGGATTT
mouse-Pd-1	ACCCTGGTCATTCATCTG	CATTGTCCCTCTGACACTG
mouse-LAG-3	AGCTTCCAGGGTGGGGC	GTCCACTTGGCAGTGGAA
mouse-Foxp3	CACCTATGCCACCATTTACCG	CATGCGAGTAACCATATGAGA
human-LAG-3	TCACGTGTGACACACAGCAGGAG	GTAAAGTGCAGGTAGGAAA
human-PD-1	GCACGAGGGACAATAGGAGCC	AATGTTGGCATACTCCGTCGT
human-ACTIN	CCACACTGTGGCCCATCACC	AGGATCTCATGAGGATGTCAGTC
human-FGL1	AGTCTGCTTGTCTGAAGTCTTC	TCCCTCATCTCCAACCTTATT
human-PD-L1	GAGTGAGGATGGTCTCAGACG	GAGAAGCTGAGGTAGGGAC
human-TBET	GCAGCACCAGCTACTTCACC	GTAGGGCGTAGGCTCAAGG
human-GATA3	AGAGCGTGCGCTCAGGAC	CTACCCACTGCAAAGGAAAC
human-FOXP3	GAGAAGCTGAGGTCCATGCA	TTGATCTTTGAGGTCAGGGGCCAGG
--------	---------	---------
human-\textit{ROR}_\gamma	AAATCTGTGGGACAAGTCG	CTGACGGGTGCAGGAGTAG
human-U6	CTCGCTTTCGGCAGCAC	AACGCTTCACGAATTTGCGT
mQ-PRIMER-R	GTGCAGGGTGCGAGGT	
miR-let-7b-5p-F	GCGCTGAGGTAGTGGTTGT	
miR-21-5p-F	GCGCTAGCTTATCACGACTGA	
miR-125b-5p-F	GCTCCCTGAGACCCTAAC	
Reference

[1] G. Zhu, L. Pei, F. Lin, H. Yin, X. Li, W. He, N. Liu, X. Gou, *J. Cell Physiol.* **2019**, *234* (12), 23736.

[2] R. Li, Q. Ruan, F. Yin, K. Zhao, *J. Pharmacol. Sci.* **2021**, *145* (1), 69.

[3] S. Banerjee, H. Cui, N. Xie, Z. Tan, S. Yang, M. Icyuz, V. J. Thannickal, E. Abraham, G. Liu, *J. Biol. Chem.* **2013**, *288* (49), 35428.

[4] T. Bahmer, S. Krauss-Etschmann, D. Buschmann, J. Behrends, H. Watz, A. M. Kirsten, F. Pedersen, B. Waschki, O. Fuchs, M. W. Pfaffl, E. von Mutius, K. F. Rabe, G. Hansen, M. V. Kopp, I. R. Konig, S. Bartel, *Allergy* **2021**, *76* (1), 366.

[5] X. Wang, H. X. Wang, Y. L. Li, C. C. Zhang, C. Y. Zhou, L. Wang, Y. L. Xia, J. Du, H. H. Li, *Hypertension* **2015**, *66* (4), 776.

[6] M. Reis, E. Mavin, L. Nicholson, K. Green, A. M. Dickinson, X. N. Wang, *Front. Immunol.* **2018**, *9*, 2538.

[7] J. Liu, L. Fan, H. Yu, J. Zhang, Y. He, D. Feng, F. Wang, X. Li, Q. Liu, Y. Li, Z. Guo, B. Gao, W. Wei, H. Wang, G. Sun, *Hepatology* **2019**, *70* (1), 241.

[8] S. E. Nematian, R. Mamillapalli, T. S. Kadakia, M. Majidi Zolbin, S. Moustafa, H. S. Taylor, *J. Clin. Endocrinol. Metab.* **2018**, *103* (1), 64.

[9] J. Y. Cao, B. Wang, T. T. Tang, Y. Wen, Z. L. Li, S. T. Feng, M. Wu, D. Liu, D. Yin, K. L. Ma, R. N. Tang, Q. L. Wu, H. Y. Lan, L. L. Lv, B. C. Liu, *Theranostics* **2021**, *11* (11), 5248.

[10] Y. Y. Yang, X. X. Zuo, H. L. Zhu, S. J. Liu, *Beijing Da Xue Xue Bao Yi Xue Ban* **2019**, *51* (2), 374.

[11] G. Guo, H. Wang, X. Shi, L. Ye, K. Wu, K. Lin, S. Ye, B. Li, H. Zhang, Q. Lin, S. Ye, X. Xue, C. Chen, *J. Transl. Med.* **2018**, *16* (1), 370.

[12] a) H. Abken, *Transplantation* **2021**, *105* (7), 1394; b) S. Sad, T. R. Mosmann, *J. Immunol.* **1994**, *153* (8), 3514.

[13] M. Sawada, T. Kawayama, H. Imaoka, Y. Sakazaki, H. Oda, S. Takenaka, Y. Kaku, K.
Azuma, M. Tajiri, N. Edakuni, M. Okamoto, S. Kato, T. Hoshino, *PLoS One* 2013, 8 (1), e54623.

[14] T. J. Scriba, B. Kalsdorf, D. A. Abrahams, F. Isaacs, J. Hofmeister, G. Black, H. Y. Hassan, R. J. Wilkinson, G. Walzl, S. J. Gelderbloem, H. Mahomed, G. D. Hussey, W. A. Hanekom, *J. Immunol.* 2008, 180 (3), 1962.

[15] a) J. Niu, W. Yue, Y. Song, Y. Zhang, X. Qi, Z. Wang, B. Liu, H. Shen, X. Hu, *Clin. Exp. Immunol.* 2014, 176 (3), 473; b) C. I. Kingsley, M. Karim, A. R. Bushell, K. J. Wood, *J. Immunol.* 2002, 168 (3), 1080.

[16] M. Goldman, A. Le Moine, M. Braun, V. Flamand, D. Abramowicz, *Trends in immunology* 2001, 22 (5), 247.

[17] M. P. Crawford, S. Sinha, P. S. Renavikar, N. Borcherding, N. J. Karandikar, *Proc. Natl. Acad. Sci. U. S. A.* 2020, 117 (32), 19408.

[18] a) C. Jandl, S. M. Liu, P. F. Canete, J. Warren, W. E. Hughes, A. Vogelzang, K. Webster, M. E. Craig, G. Uzel, A. Dent, *Nat. Commun.* 2017, 8 (1), 1; b) A. Suto, D. Kashiwakuma, S. Kagami, K. Hirose, N. Watanabe, K. Yokote, Y. Saito, T. Nakayama, M. J. Grusby, I. Iwamoto, H. Nakajima, *J. Exp. Med.* 2008, 205 (6), 1369.

[19] G. Trinchieri, S. Pflanz, R. A. Kastelein, *Immunity* 2003, 19 (5), 641.

[20] A. Kimura, T. Kishimoto, *Eur. J. Immunol.* 2010, 40 (7), 1830.

[21] D. B. Hoelzinger, S. E. Smith, N. Mirza, A. L. Dominguez, S. Z. Manrique, J. Lustgarten, *J. Immunol.* 2010, 184 (12), 6833.

[22] T. Maruyama, J. Li, J. P. Vaque, J. E. Konkel, W. Wang, B. Zhang, P. Zhang, B. F. Zamarron, D. Yu, Y. Wu, Y. Zhuang, J. S. Gutkind, W. Chen, *Nat. Immunol.* 2011, 12 (1), 86.

[23] C. Liu, H. C. Wang, S. Yu, R. Jin, H. Tang, Y. F. Liu, Q. Ge, X. H. Sun, Y. Zhang, *J. Immunol.* 2014, 193 (2), 663.

[24] H. Nishikii, B. S. Kim, Y. Yokoyama, Y. Chen, J. Baker, A. Pierini, M. Alvarez, M.
Mavers, K. Maas-Bauer, Y. Pan, S. Chiba, R. S. Negrin, *Blood* 2016, 128 (24), 2846.

[25] M. Kuczma, P. Kraj, *Vitam. Horm.* 2015, 99, 171.

[26] B. A. Jones, M. Beamer, S. Ahmed, *Mol. Interv.* 2010, 10 (5), 263.

[27] A. Curti, A. Tafuri, M. R. Ricciardi, P. Tazzari, M. T. Petrucci, M. Fogli, M. Ratta, R. Lapalombella, E. Ferri, S. Tura, M. Baccarani, R. M. Lemoli, *Haematologica* 2002, 87 (4), 373.

[28] S. M. Metcalfe, *Genes Immun.* 2011, 12 (3), 157.

[29] B. P. Lee, W. Chen, H. Shi, S. D. Der, R. Forster, L. Zhang, *J. Immunol.* 2006, 176 (9), 5276.

[30] S. A. Joosten, K. E. van Meijgaarden, N. D. Savage, T. de Boer, F. Triebel, A. van der Wal, E. de Heer, M. R. Klein, A. Geluk, T. H. Ottenhoff, *Proc. Natl. Acad. Sci. U. S. A.* 2007, 104 (19), 8029.

[31] Z. Y. Zhou, S. L. Chen, N. Shen, Y. Lu, *Autoimmun Rev.* 2012, 11 (10), 699.

[32] F. Shi, Y. Xiong, Y. Zhang, C. Qiu, M. Li, A. Shan, Y. Yang, B. Li, *Inflammation* 2018, 41 (3), 1021.

[33] A. de Luca, S. Bozza, T. Zelante, S. Zagarella, C. D'Angelo, K. Perruccio, C. Vacca, A. Carvalho, C. Cunha, F. Aversa, L. Romani, *Cell Mol. Immunol.* 2010, 7 (6), 459.

[34] S. Abdollahi-Roodsaz, L. A. Joosten, M. I. Koenders, I. Devesa, M. F. Roelofs, T. R. Radstake, M. Heuvelmans-Jacobs, S. Akira, M. J. Nicklin, F. Ribeiro-Dias, W. B. van den Berg, *J. Clin. Invest.* 2008, 118 (1), 205.

[35] J. C. Waite, D. Skokos, *Int. J. Inflam.* 2012, 2012, 819467.

[36] N. Takemoto, A. M. Intlekofer, J. T. Northrup, E. J. Wherry, S. L. Reiner, *J. Immunol.* 2006, 177 (11), 7515.

[37] C. S. Hinrichs, R. Spolski, C. M. Paulos, L. Gattinoni, K. W. Kerstann, D. C. Palmer, C. A. Klebanoff, S. A. Rosenberg, W. J. Leonard, N. P. Restifo, *Blood* 2008, 111 (11), 5326.

[38] X. Sun, H. Yamada, K. Shibata, H. Muta, K. Tani, E. R. Podack, Y. Yoshikai, *J. Immunol.*
2010, 185 (4), 2222.

[39] L. Xia, L. Jiang, Y. Chen, G. Zhang, L. Chen, Cytokine 2021, 155658.

[40] P. G. Miller, M. B. Bonn, S. C. McKarns, J. Immunol. 2015, 195 (6), 2633.

[41] M. Kitajima, H. C. Lee, T. Nakayama, S. F. Ziegler, Eur. J. Immunol. 2011, 41 (7), 1862.