Trends of Augmented Reality in Science Learning: A Review of the Literature

U Alizkan¹, F C Wibowo¹, L Sanjaya¹, B R Kurniawan² and B K Prahani³
¹Department of Physics Education, Universitas Negeri Jakarta
Jl. Rawamangun Muka, Jakarta 13220, Indonesia
²Department of Physics Education, Universitas Negeri Malang
Malang City, East Java 65145, Indonesia
³Department of Physics Education, Universitas Negeri Surabaya
Surabaya City, East Java 60213, Indonesia
Email: ubedalizkan@gmail.com, fcwibowo@unj.ac.id, lari@unj.ac.id, binarprahani@unesa.ac.id

Abstract. This study provides a literature review on the trend of using Augmented Reality (AR) in science learning. A relative literature review was carried out by collecting 30 journals from the Science Direct and Google Scholar databases in the period 2012 to 2021. This paper examines the research that has been done on the use of AR in science learning and classifies it into 11 topics, namely about inquiry skills, critical thinking, conceptual knowledge, misconception, conceptual understanding, knowledge construction, learning outcomes, attention, attitude, achievement, motivation, collaborative and autonomous learning. A review of the research results shows that the overall use of AR technology in recent years has increased, especially on the topic of attitude and achievement which has a positive impact on science learning. While on the topic of misconceptions, inquiry skills, attention, collaborative and autonomous learning has not been widely studied by researchers. In addition, the use of AR in science learning has challenged such as students, teachers, and technical. This is interesting for further research.

1. Introduction
Science is a science that contains systematic, rational, and objective theories about the universe. Science can be claimed as scientific knowledge, namely science that has been tested for truth through systematics or scientific methods [1]. Science contains abstract concepts so that it requires the use of learning media to visualize abstract concepts. The integration of technology in developing appropriate learning media can make it easier for students to understand abstract concepts in their entirety. One of the uses of technology in education is the use of Augmented Reality technology in learning science.

Augmented reality is a technology that visually augments the real world environment by projecting computer-generated information into the eye [2]. Augmented Reality is a rapidly growing field of research that aims to fully integrate the virtual with the real environment [3]. This AR can be interpreted that real objects in real time are added to virtual objects that appear when using a tool or device on the real object. So that there is a relationship between the virtual world and the real world with the help of the camera. The resulting content can be in the form of three-dimensional (3D) models, videos, images, sound and text [4].

Research on augmented reality has been widely carried out, based on published journals reporting the advantages, limitations, effectiveness challenges, etc. of the use of augmented reality in education. However, since augmented reality is an emerging technology, it is important to get an idea of the progress and real impact of its use in education especially on science learning.
Previous studies on augmented reality in science learning can be used to guide future studies. Therefore, a systematic review is very important to present the current situation and to shed light on future studies. Reviewing previous studies helps researchers to make decisions about issues such as topics, methods and sampling. It is possible to find many systematic reviews in the literature on the use of technology in education [5, 6]. However, there have only been a few systematic reviews examining augmented reality studies. This augmented reality study, therefore, aims to bridge the existing gap in the literature by analyzing all educational studies found in various databases (ScienceDirect and Google Scholar). From the identification results,
1) What journals are used in this literature study?
2) How will augmented reality research trends in science learning be from 2012 to 2021?
What are the challenges of implementing augmented reality in science learning?

2. Method
This study analyzed and synthesized articles about the use of Augmented Reality media in science learning from 2012 to May 2021. Articles were collected using Publish or Perish software using the keyword “Augmented Reality Science Education” in the Science Direct and Google Scholar databases. There are several criteria used to select the articles to be analyzed which are shown in table 1.

Criteria	Inclusion	Exclusion
Article type	Indexed journal	Journal not indexed
Types of research	Empirical research	Meta analysis, literature review
Research field	Science Learning	Non-science learning
language	English	Non-English
Timeline	2012- May 2021	Less than 2012

3. Result and Discussion
3.1 Number of Journal Publications
Among the 30 studies augmented reality were analyzed from 15 journal and 3 conference, consisting of dairy journal Interactive Learning Environments (2), Advances in Human-Computer Interaction (1), British Journal of Educational Technology (2), Computers & Education (4), Computers in Human Behavior (6), Computer Applications in Engineering Education (1), Contemporary Educational Technology (1), Education and Information Technologies, European Journal of Physics, International Journal of Computer Supported Collaborative Learning (1), Journal of Computer Assisted Learning (1), Journal of Research in Education and Teaching (1), Journal of Science Education and Technology (1), Science Educational International (1), Human Interaction Conference (1), International Conference on Advanced Learning Technologies (1), International Symposium on Mixed and Augmented Reality Adjunct (1). The distribution of articles from 2012- Mei 2021 is shown in table 2.

Publication Type	Journals and Conference Selected	Number of Articles Selected	% of Articles Selected
Conference	Human Interaction Conference	1	3,3%
Conference	International Conference on Advanced Learning Technologies	1	3,3%
Conference	International Symposium on Mixed and Augmented Reality Adjunct	1	3,3%
Journal	Interactive Learning Environments	2	6,6%
Journal	Advances in Human-Computer Interaction	1	3,3%
Journal	British Journal of Educational Technology	2	6,6%
3.2 Augmented Reality trends in Science Learning

The use of AR in the educational environment is a research topic that has recently become popular. In this study, 30 articles were used regarding research on the use of augmented reality in science learning which were grouped into 11 topics, namely about inquiry skills, critical thinking, conceptual knowledge, misconceptions, conceptual understanding, construction knowledge, learning outcomes, attention, attitude, achievement, motivation, collaborative and autonomous learning. In addition, the use of augmented reality is mostly applied in universities. This is because the student's learning independence factor is quite good compared to students at middle and elementary school levels.

Table 3. The Study on the use AR in Science Learning

Study	Subject	School Level	Topic
[7]	Physics (Electromagnetic)	University	Critical Thinking
[8]	Biology (Anatomy)	Secondary School	Attitude, Achievement
[9]	Chemistry (Molecular Geometry)	University	Motivation
[10]	Physics (Electric circuit)	University	Conceptual Understanding
[11]	Chemistry (Chemical Elements)	Junior high school	Conceptual knowledge
[12]	Physics (Heat Transfer)	University	Knowledge Construction
[13]	Physics (Electric circuit)	Middle school	Attitude
[14]	Biology (Cell)	University	Motivation, Achievement
[15]	Physics (Force and energy)	Junior high school	Achievement, Attitude
[16]	Physics (Electric circuit)	Junior high school	Conceptual knowledge, Inquiry Skill
[17]	Biology (Anatomy)	University	Motivation
[18]	Natural Science	Elementary School	Achievement, Motivation, Critical Thinking
[19]	Physics (Heat Transfer)	Senior High School	Conceptual Understanding
[20]	Physics (Solar system)	Junior high school	Achievement, Misconception
[21]	Physics (Heat Transfer)	University	Conceptual Understanding
[22]	Physics (Magnetic Field)	University	Motivation, Learning Outcomes
[23]	Physics (Electricity)	University	Attitude
Study	Subject	School level	Topic
-------	-------------------------------------	------------------	--------------------------------------
[24]	Physics (Magnetic Field)	University	Attitude, Learning Outcomes
[25]	Biology (Ecology)	Elementary School	Achievement, Attitude
[26]	Biology	Secondary School	Motivation
[27]	Physics (Electrical Machines)	University	Collaborative, Autonomous Learning
[28]	Chemistry (Atoms)	Junior high school	Attitude
[29]	Natural Science	Elementary School	Achievement, Motivation
[30]	Physics (Electromagnetics)	High school	Attitude
[31]	Physics (Elastic collision)	University	Learning outcomes
[32]	Astronomical	Elementary School	Conceptual knowledge
[33]	Physics (Lens)	High school	Attitude, motivation, attention
[34]	Physics (Space)	University	Knowledge Construction
[35]	Physics (Electromagnetics)	High school	Achievement, motivation
[36]	Physics (Newtonian force and motion)	Primary school	Learning outcomes

Figure 1. Trends of Research Subject in Science Learning

![Diagram showing trends of research subjects](image)

Figure 2. Trend of Research Articles on the use of AR for Several Variables in Science Learning from 2012 – 2021

![Diagram showing trends of research variables](image)
Based on Figure 1 and 2, it can be concluded that the research trend of using AR in science learning from 2012-2019 is on the subject of electricity and electromagnetic. Whereas for the topic of attitude and achievement which can have a positive impact on science learning. While on the topic of inquiry skills, misconceptions, and attention have not been studied by many researchers. This is interesting for further research.

3.3 Challenges of Using Augmented Reality in Science Learning

Based on the results of the analysis that has been done, there are several studies that do not write about the difficulties in using augmented reality in science learning and only focus on the benefits of its implementation. However, there are also some limitations to using AR for educational purposes. The technical problems experienced when using AR is the main and most important limitation [39]. The use of location-based AR is generally limited by the technical problems experienced with GPS [38]. The use of marker-based AR is limited by the technical problems experienced with perceiving the markers [31]. Other limitations include the lack of adequate information from teachers to develop AR materials [37]. In addition, there are challenges faced by students regarding students who are not accustomed to using augmented reality media in learning [32, 34]. Based on the results of the analysis that has been made the use of augmented reality in science learning is grouped into three categories, namely student difficulties, teacher difficulties, and technical difficulties as shown in table 4.

| Table 4. Challenges of Application of Augmented Reality in Science Learning |
|-----------------------------|-------------------------------|-------------------------------|
| Challenge | Challenge | Article Example |
| Student | Unaccustomed to using and difficulty in using it | [32, 34, 37] |
| Teacher | Lack of information in developing AR | [37] |
| Technical | GPS and markers | [37-39] |

4. Conclusion

This study examines 30 articles on augmented reality on science learning indexed in the ScienceDirect and Google Scholar databases using content analysis methods. Data analysis set out to establish trends in augmented reality studies of science learning. The number of educational AR studies has increased over the years. The importance of using Augmented reality for educational purposes and the increasing number of AR studies will continue in the years to come. It can be said that the results of this systematic review are important to guide future studies.

The results show that the research trend of using AR in science learning from 2012-2019 is on the topic of attitude and achievement that can have a positive impact on science learning. Apart from the advantages of using augmented reality in science learning, there are challenges for students, teachers, and technical challenges.

References

[1] Bromme, R., & Beelmann, A. (2016). Transfer Entails Communication: The Public Understanding of (Social) Science as a Stage and a Play for Implementing Evidence-Based Prevention Knowledge and Programs. Prevention Science, 19(3), 347–357.

[2] Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent Advances in Augmented Reality. IEEE Comput. Graph. Appl., 21(6), 34–47. http://doi.org/10.1109/38.963459

[3] Pai, Y. S., et al (2016). Armswing: using arm swings for accessible and immersive navigation in AR/VR spaces. Proceedings of the 16th International Conference on Mobile and Ubiquitous Multimedia. ACM (189-198) doi: org/10.1145/3152832.3152864

[4] K. Lee, “Augmented Reality in Education and Training,” TechTrends, vol. 56, no. 2012, pp. 13–21, 2012

[5] Kucuk, S., Aydemir, M., Yildirim, G., Arpacik, O., & Goktas, Y. (2013). Educational technology research trends in Turkey from 1990 to 2011. Computers & Education, 68, 42–50.
[6] Pimmer, C., Mateescu, M., & Gröhhbiel, U. (2016). Mobile and ubiquitous learning in higher education settings. A systematic review of empirical studies. Computers in Human Behavior, 63, 490–501. http://doi.org/10.1016/j.chb.2016.05.057

[7] H. Faridi, N. Tuli, A. Mantri, G. Singh, and S. Gargrish, “A framework utilizing augmented reality to improve critical thinking ability and learning gain of the students in Physics,” Comput. Appl. Eng. Educ., vol. 29, no. 1, pp. 258–273, 2021, doi: 10.1002/cae.22342.

[8] O. Article, “Determining the Effect of Science Teaching Using Mobile,” vol. 32, no. 2, pp. 137–148, 2013.

[9] M. Abdinejad, B. Talaie, H. S. Qorbani, and S. Dalili, “Student Perceptions Using Augmented Reality and 3D Visualization Technologies in Chemistry Education,” J. Sci. Educ. Technol., vol. 30, no. 1, pp. 87–96, 2021, doi: 10.1007/s10956-020-09880-2.

[10] K. Altmeyer, S. Kapp, M. Thees, S. Malone, J. Kuhn, and R. Brünken, “The use of augmented reality to foster conceptual knowledge acquisition in STEM laboratory courses—Theoretical background and empirical results,” Br. J. Educ. Technol., vol. 51, no. 3, pp. 611–628, 2020, doi: 10.1111/bjet.12900.

[11] S. Y. Chen and S. Y. Liu, “Using augmented reality to experiment with elements in a chemistry course,” Comput. Human Behav., vol. 111, p. 106418, 2020, doi: 10.1016/j.chb.2020.106418.

[12] M. Thees, S. Kapp, M. P. Strzys, F. Beil, P. Lukowicz, and J. Kuhn, “Effects of augmented reality on learning and cognitive load in university physics laboratory courses,” Comput. Human Behav., vol. 108, p. 106316, 2020, doi: 10.1016/j.chb.2020.106316.

[13] B. Baran, E. Yecan, B. Kaptan, and O. Paşayiğit, “Using augmented reality to teach fifth grade students about electrical circuits,” Educ. Inf. Technol., vol. 25, no. 2, pp. 1371–1385, 2020, doi: 10.1007/s10639-019-10001-9.

[14] C. Erbas and V. Demirer, “The effects of augmented reality on students’ academic achievement and motivation in a biology course,” J. Comput. Assist. Learn., vol. 35, no. 3, pp. 450–458, 2019, doi: 10.1111/jcal.12350.

[15] M. Fidan and M. Tuncel, Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education, vol. 142. Elsevier Ltd, 2019.

[16] H. O. Kapici, H. Akçay, and T. de Jong, “Using hands-on and virtual laboratories alone or together—which works better for acquiring knowledge and skills?,” J. Sci. Educ., ..., 2019, [Online]. Available: https://link.springer.com/article/10.1007/s10956-018-9762-0.

[17] T. Khan, K. Johnston, and J. Ophoff, “The Impact of an Augmented Reality Application on Learning Motivation of Students,” Adv. Human-Computer Interact., vol. 2019, 2019, doi: 10.1155/2019/7208494.

[18] S. C. Chang and G. J. Hwang, “Impacts of an augmented reality-based flipped learning guiding approach on students’ scientific project performance and perceptions,” Comput. Educ., vol. 125, pp. 226–239, 2018, doi: 10.1016/j.compedu.2018.06.007.

[19] P. Knierim, F. Kiss, and A. Schmidt, “Look Inside: Understanding Thermal Flux through Augmented Reality,” Adjun. Proc. - 2018 IEEE Int. Symp. Mix. Augment. Reality, ISMAR-Adjunct 2018, pp. 170–171, 2018, doi: 10.1109/ISMAR-Adjunct.2018.00059.

[20] M. Sirakaya and E. K. Cakmak, “The effect of augmented reality use on achievement, misconception and course engagement,” Contemp. Educ. Technol., vol. 9, no. 3, pp. 297–314, 2018, doi: 10.30935/cet.444119.

[21] H. Search et al., “Ac ce d M us,” 2017.

[22] M. B. Ibanez, A. J. De Castro, and C. D. Kloos, “An Empirical Study of the Use of an Augmented Reality Simulator in a Face-to-Face Physics Course,” Proc. - IEEE 17th Int. Conf. Adv. Learn. Technol. ICALT 2017, pp. 469–471, 2017, doi: 10.1109/ICALT.2017.105.

[23] M. Akçayir, G. Akçayır, H. M. Pektas, and M. A. Ocak, “Augmented reality in science laboratories: The effects of augmented reality on university students’ laboratory skills and attitudes toward science laboratories,” Comput. Human Behav., vol. 57, pp. 334–342, 2016, doi: 10.1016/j.chb.2015.12.054.

[24] G. J. Hwang, P. H. Wu, C. C. Chen, and N. T. Tu, “Effects of an augmented reality-based
educational game on students’ learning achievements and attitudes in real-world observations,”
Interact. Learn. Environ., vol. 24, no. 8, pp. 1895–1906, 2016, doi: 10.1080/10494820.2015.1057747.

[25] S Cai, F K Chiang, Y Sun, C Lin & J J Lee. Applications of augmented reality-based natural interactive learning in magnetic field instruction. Interactive Learning Environments, 1744-5191 http://dx.doi.org/10.1080/10494820.2016.1181094

[26] G. W. Ng, Y. B. Oon, H. Y. Lee, and E. H. Teoh, “An Augmented Reality System for Biology Science Education in Malaysia,” Int. J. Innov. Comput., vol. 6, no. 2, pp. 8–13, 2016.

[27] J. Martín-Gutiérrez, P. Fabiani, W. Benesova, M. D. Meneses, and C. E. Mora, “Augmented reality to promote collaborative and autonomous learning in higher education,” Comput. Human Behav., vol. 51, pp. 752–761, 2015, doi: 10.1016/j.chb.2014.11.093.

[28] S. Cai, X. Wang, and F. K. Chiang. “A case study of Augmented Reality simulation system application in a chemistry course,” Comput. Human Behav., vol. 37, pp. 31–40, 2014, doi: 10.1016/j.chb.2014.04.018.

[29] T. H. C. Chiang, S. J. H. Yang, and G. J. Hwang, “An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities,” Educ. Technol. Soc., vol. 17, no. 4, pp. 352–365, 2014.

[30] M. B. Ibáñez, A. Di Serio, D. Villarán, and C. Delgado Kloos, “Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness,” Comput. Educ., vol. 71, pp. 1–13, 2014, doi: 10.1016/j.compedu.2013.09.004.

[31] H. Y. Wang, H. B. L. Duh, N. Li, T. J. Lin, and C. C. Tsai, “An investigation of university students’ collaborative inquiry learning behaviors in an augmented reality simulation and a traditional simulation,” J. Sci. Educ. Technol., vol. 23, no. 5, pp. 682–691, 2014, doi: 10.1007/s10956-014-9494-8.

[32] J. Zhang, Y. T. Sung, H. T. Hou, and K. E. Chang, “The development and evaluation of an augmented reality-based armillary sphere for astronomical observation instruction,” Comput. Educ., vol. 73, pp. 178–188, 2014, doi: 10.1016/j.compedu.2014.01.003.

[33] S. Cai, F. K. Chiang, and X. Wang, “Using the augmented reality 3D technique for a convex imaging experiment in a physics course,” Int. J. Eng. Educ., vol. 29, no. 4, pp. 856–865, 2013.

[34] T. J. Lin, H. B. L. Duh, N. Li, H. Y. Wang, and C. C. Tsai, “An investigation of learners’ collaborative knowledge construction performances and behavior patterns in an augmented reality simulation system,” Comput. Educ., vol. 68, pp. 314–321, 2013, doi: 10.1016/j.compedu.2013.05.011.

[35] A. Dünser, L. Walker, H. Horner, and D. Bentall, “Creating interactive physics education books with augmented reality,” Proc. 24th Aust. Comput. Interact. Conf. OzCHI 2012, pp. 107–114, 2012, doi: 10.1145/2414536.2414554.

[36] N. Enyedy, J. A. Danish, G. Delacruz, and M. Kumar, Learning physics through play in an augmented reality environment, vol. 7, no. 3. 2012.

[37] Chang, K.-E., Chang, C.-T., Hou, H.-T., Sung, Y.-T., Chao, H.-L., & Lee, C.-M. (2014). Development and behavioral pattern analysis of a mobile guide system with augmented reality for painting appreciation instruction in an art museum. Computers & Education, 71, 185–197.

[38] Cheng, K.-H., & Tsai, C.-C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of Science Education and Technology, 22(4), 449–462.

[39] Lu, S.-J., & Liu, Y.-C. (2015). Integrating augmented reality technology to enhance childrens learning in marine education. Environmental Education Research, 21(4), 525–541.