The impact of main belt asteroids on infrared–submillimetre photometry and source counts
(Research Note)

Cs. Kiss1, A. Pál2, T.G. Müller3, and P. Ábrahám1

1 Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest, Hungary
2 Department of Astronomy, Eötvös University, Pázmány Péter st. 1/A, H-1117 Budapest, Hungary
3 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching, Germany

Received / Accepted ...

Abstract

Context. Among the components of the infrared and submillimetre sky background, the closest layer is the thermal emission of dust particles and minor bodies in the Solar System. This contribution is especially important for current and future infrared and submillimetre space instruments – like those of Spitzer, Akari and Herschel – and must be characterised by a reliable statistical model.

Aims. We describe the impact of the thermal emission of main belt asteroids on the 5...1000 µm photometry and source counts, for the current and future spaceborne and ground-based instruments, in general, as well as for specific dates and sky positions.

Methods. We used the statistical asteroid model (SAM) to calculate the positions of main belt asteroids down to a size of 1 km, and calculated their infrared and submillimetre brightness using the standard thermal model. Fluctuation powers, confusion noise values and number counts were derived from the fluxes of individual asteroids.

Results. We have constructed a large database of infrared and submillimetre fluxes for SAM asteroids with a temporal resolution of 5 days, covering the time span January 1, 2000 – December 31, 2012. Asteroid fluctuation powers and number counts derived from this database can be obtained for a specific observation setup via our public web-interface.

Conclusions. Current space instruments working in the mid-infrared regime (Akari and Spitzer Space Telescopes) are affected by asteroid confusion noise in some specific areas of the sky, while the photometry of space infrared and submillimetre instruments in the near future (e.g. Herschel and Planck Space Observatories) will not be affected by asteroids. Faint main belt asteroids might also be responsible for most of the zodiacal emission fluctuations near the ecliptic.

Key words. Solar system: asteroids – Infrared: solar system – Astrophysical data bases: miscellaneous – Radiation mechanisms: thermal

1. Introduction

Due to their relatively high apparent brightness at infrared wavelength compared e.g. to Galactic stars, asteroids are among the dominant sources at infrared wavelengths and can seriously affect the infrared and submillimetre photometry and source counts. Currently, 377,328 minor planets are known as of July 30, 2007) in our Solar System, of which about 99% are located in the main belt. On the plane of the sky the vast majority of main belt asteroids (MBAs) are found at ecliptic latitudes below 20°. They have sizes between a few ten meters up to about 1000 km. With temperatures between 200 and 300 K, the asteroids emit predominantly at thermal wavelengths between 5 µm and the millimetre range. Deep infrared observations close to the ecliptic will therefore always include some of these moving targets (e.g. Tedesco & Desér, 2002; Meadows et al., 2004). Such observations also show that only a small fraction of the existing minor body population is currently known and this population might cause a non-negligible confusion noise contribution at certain wavelengths and for specific instruments. Tedesco & Desér (2002) measured the number of main belt asteroids for the first time in a direct way by using the Infrared Space Observatory (ISO). Based on a statistical asteroid model the authors concluded that there are about 1.2±0.5×106 asteroids (≥ 1 km in diameter) in our solar system, twice as many as previously believed.

A set of celestial sources may affect compact source observations in two ways: (1) they contribute to the confusion noise, the uncertainty in point source photometry due to the fluctuations of the sky background; and (2) they also appear as individual sources, that may add ‘false’ detections to source counts.

Recently, several authors calculated confusion noise and detection limits for current/future infrared space missions (Spitzer, Akari, Herschel and SPICA). These papers considered the two major confusion noise components: the extragalactic background (Lagache et al., 2003; Negrello et al., 2004), the Galactic cirrus emission (Kiss et al., 2005; Jeong et al., 2003), or the combination of the two (Jeong et al., 2004).

Send offprint requests to: Cs. Kiss, pkisscs@konkoly.hu

http://cfa-www.harvard.edu/iau/lists/ArchiveStatistics.html
It is an important question for infrared space missions whether faint asteroids close to or below the detection limit could contribute significantly to the confusion noise of these instruments or could be present as a significant count of contaminating point sources in the field of view. To consider these asteroids, a reliable statistical model is needed. Recently, Tedesco et al. (2005) presented the "Statistical Asteroid Model" (hereafter SAM). This model is based on a population of $\sim 1.9 \times 10^6$ asteroids obtained from the complete known asteroid sample (as of 1999), plus extrapolation of the size-frequency distribution (SFD) of 15 asteroid dynamical families and three background populations, to a diameter limit of 1 km. The validity of the SAM was demonstrated by comparing SAM predictions with ISO measurements at 12 μm (Tedesco & Désert, 2002) and Spitzer measurements at the 8 and 24 μm photometric bands (Meadows et al., 2004). The asteroid counts from both deep surveys show good agreement with the SAM predictions.

In this paper we give (1) estimates for the impact of MBAs on infrared (IR) to submillimetre (especially spaceborne) measurements, such as asteroid number counts and confusion noise, for a specific date, sky position, wavelength/instrument; and (2) observable predictions for the infrared regime which can be used to check the parameters of the present model, e.g. size, albedo and positional distribution. This is the first study that investigates the impact of asteroids on infrared and submillimetre photometry and source counts in detail, based on a realistic asteroid sample.

2. Data processing

2.1. Position calculation

Orbital elements of all SAM asteroids, including the real and predicted ones were calculated for different epochs between the time span January 1, 2000 and December 31, 2012 with an average step size of 5 days. This step size is fine for yielding a good coverage of the solar elongation in a year. The orbital elements were obtained using accurate numerical integrations including the effect of all inner and outer planets. From the orbital parameters the apparent ecliptic coordinates, distances and magnitudes were derived using the spatial coordinates of the Earth itself and the absolute magnitudes (which is known from the SAM database). Some of the spacecrafts, including the Herschel and Planck Space Observatories will be located at the L2-point of the Earth-Moon system. The difference between the spatial position of the barycentre of the Earth-Moon system and the prospective position of the L2-point is negligible for the apparent distribution of the asteroids. However, the Spitzer Space Telescope is in a significant distance from Earth, therefore we performed the position and all subsequent other calculations for the Spitzer Space Telescope coordinates for a limited time span, covering the expected cryogenic lifetime between January 1, 2004 and December 31, 2009. The actual positions of the Spitzer Space Telescope were taken from the NASA/JPL HORIZONS system.\footnote{http://ssd.jpl.nasa.gov/?horizons}

To test the positional accuracy of our integration, we compared the observable ephemerides yielded by the integration and the coordinates returned by the Minor Planet & Comet Ephemeris Service of the Harvard-Smithsonian Center for Astrophysics\footnote{http://www.cfa.harvard.edu/iau/MPEph/MPEph.html} for a couple of known minor and dwarf planets, including Ceres, Pallas, Vesta and Astraea. The comparison timespan was almost 105 years, resulted by a backward integration from March 6, 2006 to 1901.0. The differences between the two sets were always smaller than 0.04 for a specific minor planet. We have also compared this difference for a timespan of 12 years, the same as the maximal integration period of the complete simulation. In this case the error was definitely smaller than 0.004.

2.2. Thermal brightness calculation

For each SAM asteroid and for each date thermal fluxes were assigned at 14 fixed wavelengths $\{\lambda_{0,k}\}$. These wavelengths were chosen the cover the 5 μm to 1 mm range in a logarithmically equidistant way. If a λ_i wavelength was different from $\{\lambda_{0,k}\}$, the monochromatic flux values were interpolated to the desired λ_i for each asteroid, individually. For the brightness calculations we applied the Standard Thermal Model (STM, see Lebofsky et al., 1986). In this model the surface temperature distribution is calculated using the true heliocentric and geocentric distances. The asteroids are described as smooth, spherical and non-rotating bodies in instantaneous equilibrium with the solar radiation. No heat conduction into the surface is considered. The correction for beaming, shape and conductivity effects is done via the η-parameter with a value of $\eta = 0.756$. Furthermore, the flux at non-zero solar phase angles is obtained by applying an empirical phase correction of 0.01 mag deg$^{-1}$ to the flux calculated at opposition. The STM has clear limitations with respect to flux accuracy (e.g. Müller & Blommaert, 2004) or for modelling of minor bodies outside the main belt (e.g. Harris, 1998), but highly accurate flux predictions are not crucial for our goals.

2.3. Number counts, fluctuation power and confusion noise

Number counts: Two kinds of number count quantities are calculated: (1) $N_{\text{tot}}(\lambda_i)$, the total count of asteroids in the counting cell, normalized by the solid angle of the counting cell Ω_c (sr$^{-1}$); and (2) $N_{\text{lim}}(\lambda_i, S_{\text{lim}})$, the count of asteroids above the detection limit S_{lim} in a particular counting cell, normalized by the solid angle of the counting cell Ω_c (sr$^{-1}$).

Fluctuation powers: The full fluctuation power (see Lagache et al., 2003 for an introduction) is calculated from the observed distribution of all asteroids in that specific cell, for a specific λ_i wavelength:

$$\delta F_{\text{0}}(\lambda_i) = \left(\frac{1}{\Omega_c}\right) \sum_j S_j^2(\lambda_i)$$

In this case the summation runs over all of the asteroids in the counting cell (sr$^{-1}$).

The fluctuation power due to non-detectable asteroids, δF_{lim}, can be calculated for a specific instrument in a similar way as δF_{0}, but in this case only asteroids below the detection limit S_{lim} are considered:

$$\delta F_{\text{lim}}(\lambda_i, S_{\text{lim}}) = \left(\frac{1}{\Omega_c}\right) \sum_{j:S_j<S_{\text{lim}}} S_j^2(\lambda_i)$$
Note that δF_{lim} is instrument-dependent only through the actual sensitivity limit, and other characteristics of the instrument, like spatial resolution, are not taken into account in the calculation of δF_{lim}. These properties are considered in the calculation of the confusion noise, δF_0 is a fully instrument-independent quantity, and both δF_0 and δF_{lim} depend strongly on the actual asteroid model.

Confusion noise: Throughout this paper we assume that the local spatial distribution of the asteroids is Poissonian, i.e. the same fluctuation power can be used to calculate the confusion noise at any spatial frequency, independent of the instrument. Thus confusion noise can be calculated from the fluctuation powers as:

$$\sigma_0(\lambda, \Omega_p) = \left(\Omega_p \cdot \delta F_0(\lambda) \right)^{1/2} \quad (3)$$

$$\sigma_{\text{lim}}(\lambda_i, S_{\text{lim}}, \Omega_p) = \left(\Omega_p \cdot \delta F_{\text{lim}}(\lambda_i, S_{\text{lim}}) \right)^{1/2} \quad (4)$$

for the ‘full’ and sensitivity limit dependent confusion noise values, respectively. Ω_p is the effective solid angle of the detector, which is not necessarily the physical size of the actual pixel/aperture, and the confusion noise applicable for detection limits of point sources depends on the point source flux extraction/reconstruction method as well, (see e.g. Kiss et al., 2005). "Best estimates" of effective solid angles of various instruments and filters can be found at our webpage.4

Due to their relatively low number density, asteroids in our model limit the detectability of point sources through the photometric, rather than the number density limit (see Lagache et al., 2003, for a detailed introduction), σ_0 and σ_{lim} are lower limits, since there is an unknown contribution of small (fainter) asteroids, which is not considered here (see Sect. 4 for a discussion).

In the following, unless otherwise quoted, we refer to all these quantities as specific for a given wavelength or photometric band and instrument, and therefore the wavelength, sensitivity limit and spatial resolution (effective detector solid angle) dependences are not marked.

3. Results

3.1. General results

The positions of the asteroids in the original SAM model were integrated in the time span January 1, 2000 to December 31, 2012. At each date a spectral energy distribution was assigned to each asteroid using the STM, as described in Sect. 2.2. Fluctuation powers and number counts have been derived from this database, which is publicly available at the URL: http://kisag.konkoly.hu/solarsystem/irsam.html. The web-interface is described in more detail in Appendix A.

For some specific instruments and time spans we constructed δF_0, δF_{lim}, N_{tot}, and N_{lim} maps to characterize the impact of main belt asteroids for the selected instruments. An example is shown in Fig. 2.

The fluctuation power and number count maps at different wavelengths (and the same date) show a very similar morphology. Considering the celestial structure, the main characteristics are the following (presented in the ecliptic coordinate system):

- The δF_0 and N_{tot} distributions (and so δF_{lim} and N_{lim}) are symmetric in ecliptic latitude (β), and show a maximum at the ecliptic plane at a specific ecliptic longitude (λ); δF_0, δF_{lim}, N_{tot} and N_{lim} show a similar morphology in celestial distribution.
- The maximum extension in β is at the anti-solar point, where fluctuation power isocontours form a "bulge", while the minimum is at the celestial position of the Sun. When comparing different dates, the bulge around the anti-solar point moves along the ecliptic as Earth revolves around the Sun, and so does the minimum.
- If maps presented in the ecliptic coordinate systems (λ–β) maps are transformed to helioecliptic coordinate system ([$\lambda - \lambda_\odot$]$-\beta$, where λ_\odot is the ecliptic longitude of the Sun), then the maps of different dates are rather similar. The differences are about one order lower than the median values of the different maps. Therefore it is possible to create time-independent average maps for a specific instrument setup, which can give ‘average’ fluctuation power and number count estimates, without the need to specify the exact day of the observation.

The main component of the asteroidal fluctuation power (or confusion noise) as well as the number counts can be well represented by a map, which is constant in the helioecliptic coordinate system. This kind of map can serve as a good guideline to characterize the expected impact of main belt asteroids for the infrared and submillimetre measurements of a specific instrument, if the exact date of the observation is not known. We present these maps for a handful of instruments in Appendix B, and they are also available in FITS format at our webpage.4

For medium ecliptic latitudes the asteroidal sky changes in a timescale of a few weeks, with an actual value depending on the instrument (wavelength and sensitivity limit) and sky position. Close to the ecliptic plane the amplitude of these temporal changes are less pronounced, and there are practically no changes at high ecliptic latitudes since asteroids are present at these places only sporadically.

3.2. The importance of main belt asteroids for specific instruments

Asteroids may affect IR and submillimetre observations in two ways: they can increase the fluctuation power (and hence the confusion noise) level, and contribute to the number count of point sources. In our investigated wavelength regime the main sources of confusion noise are the extragalactic background and the Galactic cirrus emission. The strength of the cirrus emission and confusion noise changes rapidly from place to place in the sky and is below the extragalactic confusion noise level in the best ‘cosmological’ windows for most of the space IR instruments (see e.g. Kiss et al., 2003).

Being constant and present in any direction, extragalactic background fluctuations represent a minimum value for the confusion noise. Therefore we used the respective extragalactic fluctuation powers to judge, whether asteroid confusion noise has to be considered for a specific instrument. In the calculations presented in Table II we considered an instrument as “affected”, if the asteroid confusion noise level was at least half of the extragalactic background component (as calculated by Lagache et al., 2003, 2004).

4 http://kisag.konkoly.hu/solarsystem/irsam.html
4. Discussion

The SAM is limited to asteroids with a lower limit in size of 1 km in diameter. There is, certainly, a population of asteroids with sizes below this limit. Since the confusion noise is calculated using Eq. 2, the impact of very small asteroids with sizes below this limit. Since the confusion noise estimates cannot rely on their currently known size distribution in Appendix C. A Simple relationship of $S(\lambda) \propto D^2$ was assumed between the flux density of an asteroid's thermal emission at a specific wavelength $S(\lambda)$ and its diameter D. Then the specific fluctuation power $\delta F(D)$ was calculated for a $D \pm \Delta D$ interval, using Eq. 1. It is clear from Fig. 1 that the fluctuation power is dominated by the bright and large asteroids, and that small ($D \leq 1$ km) minor planets have a negligible contribution to the fluctuation power. Presently orbits for almost 400,000 asteroids are known, i.e., more than 20% of the 1.9\times10^6 SAM asteroid sample (see Sect. 1), but only about 0.1% (\sim2000 asteroids) have known sizes and albedos which are the crucial parameters for the confusion noise estimates. The calculated power fluctuations are therefore dominated by asteroids which have been extrapolated in the SAM via size-frequency distributions. However, knowing only 0.1% is far from being statistically relevant and in some parts of the sky bright (i.e. large) asteroids are completely missing. This implies that confusion noise estimates cannot rely on the known asteroid sample alone and the application of the SAM model for confusion noise calculations is necessary.

On the other hand, fluctuation power and confusion noise are dominated by the largest/brightest asteroids in the actual field, even if the known ones are missing. As suggested by Fig. 1 the contribution of $D \leq 1$ km asteroids remains negligible, and a further extension of the SAM to smaller diameters would not improve the accuracy of the confusion noise calculations significantly.

Asteroids further out in the Solar System (e.g. trans-Neptunian objects) will not contribute considerably to the confusion noise or number counts, as deduced from their currently known size distribution in Appendix C. As discussed in detail in Appendix D, SAM asteroids contribute to the absolute brightness of the zodiacal emission in a negligible level, however, a set of these asteroids may be the dominant sources of zodiacal emission fluctuation power at some specific wavelengths and sky regions.

Acknowledgements. This research was supported by the European Space Agency (ESA) and by the Hungarian Space Office via the PECS programme (contract no. 98011). Cs. K. and P. Á. acknowledge the support of the Hungarian Research Fund (OTKA K62304).

References

Ábraháám, P., Leinert, Ch., Lemke, D., 1997, A&A 328, 702
Belton, M.J.S., et al., 1992, Science, 257, 1647
Fazio, G.G., Hora, J.L., Allen, L.E., et al., 2004, ApJS 154, 10
Harris, A. W. 1998, Icarus 131, 291
Jeong, W.S., Lee, H.M., Pak, S., et al., 2005, MNRAS, 357, 535
Jeong, W.S., Pearson, C.P., Lee, H.M., Pak, S., Nakagawa, T., 2006, MNRAS 369, 281
Kiss, Cs., Klaas, U., Lemke, D., 2005, A&A 430, 343
Kiss, Cs., Ábraháám, P., Laureijs, R.J., Moór, A., Birckmann, S.M., 2006, MNRAS 373, 1213
Kenyon, S.J., Bromley, B.C., 2004, AJ 128, 1916
Lagache, G., Dole, H., Puget, J.-L., et al., 2004, ApJS 154, 469
Lebofsky, L. A., Sykes, M. V., Tedesco, E. F. et al. 1986, Icarus 68, 239
Meadows, V.S., Bhattacharya, B., Reach, W.T., et al., 2004, ApJS 154, 469
Müller, T. G., Blommaert, J. A. D. L. 2004, A&A 418, 347
Roques, F., Doressoundiram, A., Dhillon, V., et al., 2006, AJ 132, 819
Tauber, J.A., 2004, Advances in Space Research 34, 491
Tedesco, E.F., Desert, F.-X., 2002, AJ 123, 2070
Tedesco, E.F., Cellino, A.; Zappalá, V., 2005, AJ 129, 2869
Werner, M.W., Roellig, T.L., Low, F.J., et al., 2004, ApJS 154, 1

Figure 1. Relative contribution of asteroids with a specific size D to the asteroid fluctuation power, using the size distribution and the simple flux model as described in Sect. 4.
Figure 2. Expected distribution of fluctuation power (δF_0, left column) and the total number of asteroids (N_{tot}, right column) over the sky of SAM asteroids at 20 µm on – from top to bottom – January 1, March 10 and May 20, 2008 (ecliptic coordinate system). The position of the solar and anti-solar points are marked with "⨀" and "⃝" symbols, respectively.
| Instrument | λ_i (\(\mu m\)) | $\log_{10}(\delta F_0/\text{Jy sr}^{-1})$ | $\lambda - \lambda_\odot$ (deg) | $|\Delta \beta|$ (deg) |
|------------|------------------|-------------------|-----------------|-----------------|
| Spitzer/IRAC | 8 | 1.49 | 2.11 | 120 | 20 |
| Akari/IRC | 9 | 1.47 | 1.21 | 90 | 13 |
| Akari/IRC | 18 | 1.39 | 2.23 | 90 | 16 |
| Spitzer/MIPS | 24 | 2.04 | 2.70 | 120 | 21 |
| Akari/FIS | 65 | 3.47 | 1.34 | 90 | – |
| Spitzer/MIPS & Herschel/PACS | 70 | 3.69 | 1.62 | 120 | – |
| Akari/FIS | 90 | 4.06 | 0.98 | 90 | – |
| Herschel/PACS | 100 | 4.42 | 0.95 | 120 | – |
| Akari/FIS | 140 | 4.42 | 0.41 | 90 | – |
| Akari/FIS | 160 | 4.43 | 0.23 | 90 | – |
| Spitzer/MIPS & Herschel/PACS | 160 | 4.43 | 0.36 | 120 | – |
| Herschel/SPIRE | 250 | 4.29 | -0.21 | 120 | – |
| Herschel/SPIRE | 350 | 3.88 | -0.59 | 120 | – |
| Herschel/SPIRE | 500 | 3.27 | -1.64 | 120 | – |

Table 1. Comparison of the extragalactic and asteroid full fluctuation power levels at some representative wavelengths of infrared and submillimetre space instruments. Asteroid fluctuation power was derived at the specified $\lambda - \lambda_\odot$ helio- ecliptic longitude, and at the ecliptic plane. The columns of the table are: 1) name of the instrument; 2) wavelength; 3) extragalactic background fluctuation power (EGB); 4) asteroid fluctuation power (MBA); 5) solar elongation used in the MBA fluctuation power calibration, in accordance with the visibility constraints of the instrument; 6) Ecliptic latitude range above/below the ecliptic plane, where a specific instrument is considered as ‘affected’ by asteroid confusion noise. Missing values indicate that the instrument is not affected.