Conservative Binary Dynamics with a Spinning Black Hole at $\mathcal{O}(G^3)$ from Scattering Amplitudes

Fernando Febres Cordero,1,∗ Manfred Kraus,1,† Guanda Lin,2,3,† Michael S. Ruf,4,§ and Mao Zeng3,¶

1Physics Department, Florida State University, Tallahassee, FL 32306-4350, USA
2CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
3Higgs Centre for Theoretical Physics, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
4Mani L. Bhaumik Institute for Theoretical Physics, University of California at Los Angeles, Los Angeles, CA 90095, USA

We compute the conservative two-body Hamiltonian of a compact binary system with a spinning black hole through $\mathcal{O}(G^3)$ to all orders in velocity, including linear and quadratic spin terms. To obtain our results we calculate the classical limit of the two-loop amplitude for the scattering of a massive scalar particle with a massive spin-1 particle minimally coupled to gravity. We employ modern scattering amplitude and loop integration techniques, in particular numerical unitarity, integration-by-parts identities, and the method of regions. The conservative potential in terms of rest-frame spin vectors is extracted by matching to a non-relativistic effective field theory. We also apply the Kosower-Maybee-O’Connell (KMOC) formalism to calculate the impulse in the covariant spin formalism directly from the amplitude. We work systematically in conventional dimensional regularization and explicitly evaluate all divergent integrals that appear in full- and effective-theory amplitudes, as well as in the phase-space integrals that arise in the KMOC formalism.

INTRODUCTION

After the momentous observation of gravitational waves produced by the merging of a black hole pair [1], the LIGO-Virgo-KAGRA collaboration continues to explore gravitational waves generated by compact binary systems. The systems so far detected [2] are mainly formed by a pair of black holes with masses in the range of 5 to 100 solar masses, although a handful of events have been associated to systems involving one or two neutron stars. Extracting such details about the binary systems that produced the detected gravitational waves hinges on our ability to precisely predict the structure of such signals based on the parameters of the systems, like for example the masses of the coalescent compact objects, especially in the light of the next-generation gravitational wave detectors [3, 4]. A critical theoretical input to produce these predictions is the conservative Hamiltonian of the two-body system.

Great efforts have been devoted to improve the predictions of binary dynamics through perturbative means. We work in the post-Minkowskian (PM) framework [5–14] which expands in Newton’s constant while keeping the full dependence on velocity. Long considered difficult, high-order PM corrections to the conservative dynamics of spinless binary system enjoyed recent progress using scattering amplitudes and their classical limits [15–17], in combination with effective field theory and advanced integration techniques. The computation of the conservative two-body dynamics at $\mathcal{O}(G^3)$ [18–23] and $\mathcal{O}(G^4)$ [24, 25] for spinless binary systems has been completed.1

Including spin effects is expected to be of high relevance in order to describe some of the detected binary systems (see e.g. Ref. [2]). This is particularly the case due to known degeneracies between the mass-ratio of the binary system and their spin, which leads to strongly biased parameter inference [40–43]. Therefore obtaining predictions for spin-dependent terms in the conservative potential is a necessity. Related results for up to fifth post-Newtonian (PN) order have appeared employing classical [44–63] and effective field theory methods [64–94]. In the PM approach, progress has been made at the first two PM orders [95–108]. At $\mathcal{O}(G^2)$, the scattering amplitudes approach have produced results up to quadratic-in-spin terms [109, 110], up to quartic-in-spin terms [111], fifth-power in spin [112], and even including all-orders-in-spin contributions [113, 114]. Furthermore, recently a study based on the worldline quantum field theory (QFT) formalism [115–118] has been presented on the impulse and spin kick in the scattering of two spinning compact objects including quadratic-in-spin contributions and up to order $\mathcal{O}(G^3)$ [119]. Proposals to express observables for spinning binaries through a generating function known as the eikonal exponent have appeared in Refs. [109, 121].

There is not a single definition of conservative dynamics in the literature, and here we adopt the definition used by Damour et. al. [14, 122] as well as Ref. [25],

1 The $\mathcal{O}(G^3)$ and $\mathcal{O}(G^4)$ results have also been obtained [26–28] in the worldline approach. See also progress in post-Newtonian corrections in the last few years in Refs. [29–39].
based on a time-symmetric prescription for the gravitational propagators, thereby excluding contributions from radiation-reaction and in particular contributions from zero-frequency graviton exchanges. These effects conserve the total energy of the system but in general not the orbital angular momentum. To determine the latter contributions it is efficient to employ complementary approaches based on linear response relations or soft theorems (see e.g. Refs. [119] and [120] for recent applications involving spin; and the latter reference for hidden relations with the spinless case).

In this letter we compute for the first time the conservative binary Hamiltonian with a spinning black hole up to $O(G^3)$ including terms linear and quadratic in spin.

SCATTERING AMPHITUDES

We make use of the fact that $2 \to 2$ scattering amplitudes for processes involving spin-1 massive particles can be used to fully characterize the conservative spinning dynamics through $2s$ powers of spin [123]. Therefore, we consider a theory of a massive scalar ϕ and a massive spin-1 (vector) field A_μ minimally coupled to gravity, which is described by the following Lagrangian

$$L = \sqrt{-g} \left[-\frac{2R}{k^2} + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} m_\phi^2 \phi^2 - \frac{1}{4} g^{\alpha\beta} g^{\gamma\delta} F_{\alpha\beta} F_{\gamma\delta} + \frac{1}{2} m_A^2 g^{\mu\nu} A_\mu A_\nu \right],$$

where $k = \sqrt{32 \pi G}$, $g_{\mu\nu}$ is the metric tensor, $g = \det(g_{\mu\nu})$, R is the Ricci scalar associated to $g_{\mu\nu}$, and $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$. Furthermore we work in the weak field approximation, i.e. $g_{\mu\nu} = g_{\mu\nu} + \kappa h_{\mu\nu}$, where $h_{\mu\nu}$ is the graviton field. We consider the elastic scattering process $A(p_1, \epsilon_1) + \phi(p_2) \to \phi(p_3) + A(p_4, \epsilon_4)$, where $p_1^2 = p_3^2 = m_A^2$, $p_2^2 = p_4^2 = m_\phi^2$, and ϵ_1, ϵ_4 are the polarization vectors of the incoming and outgoing vector particles. We work in the center-of-mass (COM) frame in which the momentum transfer takes the form $q^\mu = p_2^\mu - p_1^\mu = (0, q)$. Momenta are decomposed [136, 137] as $p_1 = \tilde{p}_1 - q/2$, $p_2 = \tilde{p}_2 + q/2$, $p_3 = \tilde{p}_2 - q/2$, $p_4 = \tilde{p}_1 + q/2$, with $\tilde{p}_1 \cdot q = 0$. In the COM frame the spatial momenta read $p_1 = -p_2 = \vec{p} - q/2 \equiv \vec{p}$ and $E_{A,\phi} = \sqrt{m_A^2 + \vec{p}^2}$. We express the scattering amplitude in terms of the variables $\{m_A, m_\phi, \sigma, q^2\}$ with $\sigma = \frac{p_1 \cdot p_2}{m_A m_\phi}$.

We numerically compute the tree-level, one- and two-loop scattering amplitudes employing the multi-loop numerical unitarity method [129–133], as implemented in the CARAVEL framework [138], using finite field arithmetic to allow for the reconstruction of corresponding analytic expressions [139, 140]. This framework has already been used in the calculation of two-loop amplitudes in gravity [141] and we have extended it here to allow the handling of massive particles. We have also included the interaction vertices needed in our calculation from the Lagrangian in Eq. (1) with the help of the XACT [142, 143] package.

We decompose the scattering amplitudes in terms of 5 form factors $\mathcal{M} = \sum_{n=1}^5 M_n T_n$, $T_n = \epsilon_{\mu\nu} T^\mu_{\nu} e_{4,\nu}$, with

$$\{ T^\mu_{1,2}, \ldots, T^\mu_{5} \} = \{ q_1^{\mu\nu}, q_1^{\mu\nu} q_2^{\mu\nu}, q_2^{\mu\nu} q_2^{\mu\nu}, q_1^{\mu\nu} q_2^{\mu\nu} q_2^{\mu\nu}, q_1^{\mu\nu} q_2^{\mu\nu} q_2^{\mu\nu} \},$$

where $a^{(\mu\nu)} = a^{\mu\nu} + a^{\nu\mu}$ and $a^{(\mu\nu)} = a^{\mu\nu} - a^{\nu\mu}$. The form factors M_n are obtained by computing 5 different helicity amplitudes and solving numerically for them. Parity invariance and crossing symmetry imply that only $M_{1,2,3,4}$ are present in the amplitude, though M_5 is present in the integrand before loop integration.

To perform the loop integration we employ integration-by-parts (IBP) identities [155], obtained with the FIRE 6 [156] program. This step is highly simplified by employing finite field values for the kinematic invariants and truncating the IBP relations by taking into account the power counting of the contributions relevant to the classical result. After doing an univariate rational reconstruction of the master-integral coefficients in q^2, we expand in a Laurent series all master integrals and their coefficients for small momentum transfer q^2 and in ϵ, using the results of Ref. [137] and keeping terms up to $O((q^2)^0)$. The coefficients in this double expansion are yet-unknown rational functions in the variables $\{m_A, m_\phi, \sigma\}$. We then employ multiple numerical evaluations to perform a multivariate rational reconstruction [140]. We are able to reconstruct the analytic expressions for the relevant classical terms of all required amplitudes by employing modest computational resources. The resulting amplitudes are given in the supplemental material, which includes computer-readable files [157].

EFFECTIVE FIELD THEORY

We employ effective field theory (EFT) techniques [16, 109, 134] to extract the two-body Hamiltonian for our system. We construct a non-relativistic EFT with non-local contact interactions described by the Lagrangian

$$L_{\text{EFT}} = \int k \hat{\phi}^1(-k) \left(i \partial_t - \sqrt{k^2 + m_\phi^2} \right) \hat{\phi}(k) + \int k \hat{\phi}^{1,i}(-k) \left(i \partial_t - \sqrt{k^2 + m_A^2} \right) \hat{\phi}(k) + \int k \hat{\phi}^{1,i}(k') \hat{\phi}^{1,i}(k') \hat{\phi}^{1,i}(-k') \hat{\phi}(-k),$$

with $\int k = \frac{d^3k}{(2\pi)^3}$. The fields $\hat{\phi}$ and $\hat{\phi}^{1,i}$ are defined in their respective rest frames. The potential \hat{V}_{ij} can be decomposed into different spin operators according to

$$\hat{V}_{ij}(k,k') = \sum_{n=1}^4 \hat{V}^{(n)}(k,k') O_{ij}^{(n)} \left(\frac{k + k'}{2}, k' - k \right),$$
where the non-relativistic tensor structures \(O^{ij}_n(\mathbf{p}, \mathbf{q}) \) are

\[
\{ O^{ij}_1, \ldots, O^{ij}_4 \} = \{ \delta^{ij}, \mathbf{p}^i \mathbf{q}^j, \mathbf{q}^i \mathbf{q}^j, \mathbf{q}^i \mathbf{p}^j \mathbf{p}^j \} .
\]

To connect to the classical spin we relate the non-relativistic tensor structures to spin operators using the representation \((S_i)_{jk} = -i\epsilon_{ijk}\). We find

\[
\begin{align*}
O_1 &= 1, \\
O_2 &= -i(q \times \mathbf{p}) \cdot S, \\
O_3 &= \frac{1}{2} q^2 S^2 - (q \cdot S)^2, \\
O_4 &= q^2 \left(\frac{1}{2} \mathbf{p}^2 S^2 - (\mathbf{p} \cdot S)^2 \right),
\end{align*}
\]

where we defined \(O_n \equiv O^{ij}_n(\mathbf{p}, \mathbf{q}) \hat{A}^{1-i}(\mathbf{p} - q/2) \hat{A}^j(\mathbf{p} + q/2) \). We ignore the Casimir operator \(O_5 = q^2 S^2 \) in the amplitude calculation for simplicity in this initial study, though we determine its coefficient in the potential by requiring consistency with the results of Ref. [119] in the aligned-spin limit.\(^2\) Note that the polarization tensor representation of \(O^{ij}_n \) in Eq. (5) can be used within conventional dimensional regularization for computing divergent EFT amplitudes, while the spin operators in Eq. (6) are intrinsically 3-dimensional and are used to represent the finite potential obtained by EFT matching. We normalize the coefficients of the operators in Eq. (4) including dimensional regularization factors as

\[
\tilde{V}^{(n)}(k, k') = \frac{(4\pi)^{3/2-\epsilon}}{q^2} \sum_{L, Q=0}^{\infty} \left(\frac{\mu^2}{q^2} \right)^{L \epsilon} \frac{G^{L+1}_k |q|^{L+Q}}{2(L+1)(1-2\epsilon)} \times \frac{\Gamma \left[1 - \frac{1}{2} \frac{1}{(1-2\epsilon)(L+1)} \right]}{\Gamma \left[\frac{1}{2} (1-2\epsilon)(L+1) \right]} \tilde{c}^{(n)}_{L+1, Q}(k^2),
\]

where \(q = k' - k \) and \(\mu \) is the dimensional regularization scale, while \(L \) denotes the loop order and \(Q \) the additional powers of \(\hbar \) beyond the classical limit. The unknown coefficients \(\tilde{c}^{(n)}_{L, Q}(k^2) \) are fixed by matching the EFT and full-theory amplitudes.

\[\text{FIG. 1. The EFT amplitude is given by iterated bubble diagrams. Blue (red) lines refer to scalar (vector) particles. Each potential } \tilde{V} \text{ has a perturbative expansion in terms of } \kappa.\]

The EFT amplitude is given by iterated bubble diagrams [16], see Fig. 1. We start by decomposing the numerator of each diagram in terms of the operators \(O_n \) by explicitly constructing projectors. Then, we follow the procedure outlined in Ref. [16], i.e. we integrate out energy components of the loop momenta using the residue theorem. Then the propagators are expanded for \(|q| \) in the soft region \(\ell \sim |q| \), yielding the amplitude in terms of the \textit{linearized} (3 \& 2\epsilon)-dimensional master integrals of Ref. [137]. We then obtain the \(L \)-loop EFT amplitude as an expansion in \(|q| \),

\[
\mathcal{M}^{(L)}_{\text{EFT}} = \left(\frac{k}{q} \right)^{2+2L} \left(\frac{\mu^2}{q^2} \right)^{L \epsilon} \sum_{n=1}^{\infty} \frac{c^{(n)}_{L+1,k}}{|q|^{2L+2\epsilon}} O_n .
\]

As explained in Refs. [101, 109] to perform the matching to the relativistic loop amplitude the relativistic tensor structures \(T_n \) have to be converted into non-relativistic counterparts \(O_n \). The necessary relations are given in the supplemental material [157].

Let us discuss the differences between the EFT matching procedure that we have employed and the one introduced in Ref. [16] and later used in Refs. [18, 19] at the two-loop order and in Ref. [109] for the case of spin. In these references, the integration of the relativistic amplitude is performed by an expansion and resummation in the velocity. In this process IR-divergent integrals are kept unevaluated and explicitly matched to the corresponding EFT integrals, therefore strictly speaking no dimensional regularization is required. However, this strategy relies on subtle arguments for the cancellation of evanescent effects, i.e. terms subleading in \(\epsilon \) or \(|q| \) at lower loops being promoted to physically-significant terms after multiplying divergent iteration integrals. Here we explicitly evaluate all such subleading terms in dimensional regularization in a transparent manner. This makes it natural to use dimensional regularization in an relativistic approach to conservative classical dynamics as introduced in Ref. [137] in conjunction with treating the EFT in dimensional regularization as described in this letter.

\section*{CLASSICAL HAMILTONIAN}

The result of the EFT calculation described before are the matching coefficients \(\tilde{c}^{(n)}_{L+1} = \tilde{c}^{(n)}_{L+1,0} \). For the spin-orbit coupling we find

\[
\tilde{c}^{(2)}_{L+1} = \tilde{c}^{(2)}_{L+1, \text{red}} + \gamma_1 \tilde{c}^{(2)}_{L+1, \text{iter}} + \frac{\gamma_1}{m_A} (\gamma_1 + 1) ,
\]

with \(\gamma_1 = E_A/m_A \). The coefficients \(\tilde{c}^{(2)}_{L+1, \text{red}} \) are related to the scalar coupling [18, 19], while the \(\tilde{c}^{(2)}_{L+1, \text{iter}} \) are given in terms of lower-order coefficients. We find

2 Up to \(O(G^2) \), this could be fixed by conjectured relations between different spin structures in Refs. [112] and [113].
\[
\tilde{c}_{1,\text{red}}^{(1)}(k^2) = \frac{m_A^2 m_\phi^2}{E^2 \xi} (1 - 2\sigma^2), \quad \tilde{c}_{2,\text{red}}^{(1)}(k^2) = \frac{3(m_\phi + m_A)m_\phi^2 m_A^2}{4E^2 \xi} (1 - 5\sigma^2),
\]
\[
\tilde{c}_{3,\text{red}}^{(1)}(k^2) = \frac{m_A^2 m_\phi^2}{E^2 \xi} \left[-\frac{2}{3} m_A m_\phi \left(\frac{\arccosh(\sigma)}{\sqrt{\sigma^2 - 1}} \right) \left(-12\sigma^4 + 36\sigma^2 + 9 \right) + 2\sigma^3 - 19\sigma \right] - 2(m_\phi^2 + m_A^2) (6\sigma^2 + 1),
\]
\[
\tilde{c}_{1,\text{red}}^{(2)}(k^2) = -\frac{2\sigma m_\phi}{E^2 \xi}, \quad \tilde{c}_{2,\text{red}}^{(2)}(k^2) = \frac{m_\phi (4m_A + 3m_\phi) \sigma (5\sigma^2 - 3)}{4E^2 \xi (\sigma^2 - 1)},
\]
\[
\tilde{c}_{3,\text{red}}^{(2)}(k^2) = \frac{m_\phi}{E^2 (\sigma^2 - 1)^2} \left[-2m_\phi^2 \sigma (3-12\sigma^2 + 10\sigma^4) - \left(\frac{1}{2} \right) \frac{1}{2} \frac{27\sigma^2 - 52\sigma^4 + 10\sigma^6}{\sigma^2 - 1} \right] m_A m_\phi - m_\phi^2 \sigma \left(\frac{7}{2} - 14\sigma^2 + 12\sigma^4 \right)
\]
\[
+ \frac{(4m_A + 3m_\phi)E}{4} \sigma (2\sigma^2 - 1)(5\sigma^2 - 3) + 4m_A m_\phi \sigma (\sigma^2 - 6) (2\sigma^2 + 1) \sqrt{\sigma^2 - 1} \arccosh(\sigma),
\]
\[
\tilde{c}_{1,\text{iter}}^{(2)}(k^2) = 0, \quad \tilde{c}_{2,\text{iter}}^{(2)}(k^2) = \frac{E_\xi}{\xi} \tilde{c}_{1,\text{iter}}^{(1)}(k^2) + \tilde{c}_{1,\text{iter}}^{(1)}(k^2) \left(\frac{2E^2 \xi + 1}{2E} - \frac{1}{\xi - 3} \right),
\]
\[
\tilde{c}_{3,\text{iter}}^{(2)}(k^2) = \left(\frac{c_1}{c_1} \right)^2 (\frac{2}{3} E^2 \xi \xi \frac{\partial c_1^{(2)}}{\partial k^2}) + \left(\xi \left(3 - \frac{E^2 \xi}{k^2} \right) - 1 \right) \frac{\partial c_1^{(2)}}{\partial k^2} + c_1^{(2)} \left(\frac{2 - 2}{E^2} + \frac{3\xi - 1}{k^2} \right),
\]
\[
+ \frac{1}{3} E^2 \xi \left(\frac{\partial c_1^{(2)}}{\partial k^2} - 2E \xi \frac{\partial c_1^{(2)}}{\partial k^2} \right) \frac{E^2 \xi}{2k^2} + \frac{c_1^{(2)}}{2} \left(\frac{1}{E^2} + \frac{2\xi - 1}{k^2} \right) \right) - \frac{1}{6} E^2 \xi^2 \left(\frac{c_1}{c_1} \right)^3.
\]

where \(E = E_A + E_\phi \) and \(\xi = E_A E_\phi / E^2 \). These expressions represent our results for the spin-orbit term in the momentum-space potential in Eq. (7). The corresponding results for the quadratic-in-spin terms are given in the supplemental material [157]. Finally, we convert to position space and obtain the Hamiltonian by computing the Fourier transform of the potential in Eq. (7). The resulting Hamiltonian reads

\[
H = \sqrt{\mathbf{p}^2 + m_A^2} + \sqrt{\mathbf{p}^2 + m_\phi^2} + V^{(1)}(\mathbf{r}^2, \mathbf{p}^2)
+ V^{(2)}(\mathbf{r}^2, \mathbf{p}^2) \frac{\mathbf{L} \cdot \mathbf{S}}{r^2} + V^{(3)}(\mathbf{r}^2, \mathbf{p}^2) \frac{(\mathbf{r} \cdot \mathbf{S})^2}{r^4}
+ V^{(4)}(\mathbf{r}^2, \mathbf{p}^2) \frac{(\mathbf{p} \cdot \mathbf{S})^2}{r^2} + V^{(5)}(\mathbf{r}^2, \mathbf{p}^2) \frac{S^2}{r^2},
\]

where each coefficient is expanded as

\[
V^{(n)}(\mathbf{r}^2, \mathbf{p}^2) = \sum_{L=1}^{3} \left(\frac{G}{r} \right)^L c_L^{(n)}(\mathbf{p}^2) + O(G^4).
\]

The scalar potential \(V^{(1)}(\mathbf{r}^2, \mathbf{p}^2) \) coincides with the results of Ref. [18, 19]. The \(c_L^{(n)}(\mathbf{p}^2) \) coefficients are provided in the supplemental material [157] as linear sums of the \(\tilde{c}_{L,0}^{(n)}(\mathbf{p}^2) \) coefficients in Eq. (7).

Validation. We performed several checks of our computational framework in dimensional regularization. We checked that the EFT amplitudes reduce to their scalar counterparts given in Eq. (10.6) of Ref. [19] when setting \(\tilde{c}_{L,Q} = 0 \) for \(n > 1 \). Even more, we reproduced the two-loop matching coefficients of Refs. [18, 19]. For the EFT calculation including spin, we cross checked our tree-level and one-loop matching coefficients against Refs. [110, 158]. The scalar coefficients up to one-loop are also in agreement with Ref. [159] to all orders in \(\epsilon \). Beyond one-loop we checked explicitly the cancellation of the *super-classical* terms, i.e. unphysical terms behaving as powers of \(\sqrt{1/\hbar} \sim 1/|q| \), where we observe a non-trivial interplay between the various matching coefficients. Furthermore the coefficients extracted in this way are finite in the non-relativistic limit \(|p| \ll 1 \) (this can be seen explicitly from the post-Newtonian expanded coefficients provided in the supplemental material [157]).
computed conservative potential to obtain the impulse in either the limit of an aligned spin or the limit of a spinless probe moving in a Kerr background. After translating to the covariant spin formalism using the procedure of Refs. [91, 97], the impulse agrees with the recent world-line QFT result of Ref. [119] in either of the two above limits, when specializing to the Kerr black hole case. The result is also consistent with the scattering angle in the probe limit obtained in Ref. [98]. Furthermore, the velocity expansion of our Hamiltonian is consistent with the next-to-next-to-leading order post-Newtonian results for spin-orbit and spin-squared coupling [79, 80] calculated by the EFTofPNG package [160], after finding a canonical transformation.3

OBSERVABLES FROM THE KMOC FORMALISM

We employ the full-theory amplitudes we obtained to compute classical gravitational observables using the KMOC formalism [17]. In this formalism, a change of classical variable \(O \), associated with any operator \(\mathcal{O} \), between in and out states is measured as \(\Delta O = \langle \text{out} | \mathcal{O} | \text{out} \rangle - \langle \text{in} | \mathcal{O} | \text{in} \rangle \). Relating in and out states by the S-matrix allows to reformulate the problem in terms of classical variable \(O \). KMOC formalism [17]. In this formalism, a change of classical variable \(O \) can be expanded with

\[
\Delta O = \int \frac{d^D q}{(2\pi)^{D-2}} \delta(-2p_1 \cdot q) \delta(2p_2 \cdot q) e^{ib \cdot q} (\mathcal{I}_{O,v} + \mathcal{I}_{O,r})
\]

where \(\mathcal{I}_{O,v} \) is the virtual kernel obtained from virtual amplitudes, while \(\mathcal{I}_{O,r} \) is the real kernel depending on cut amplitudes with phase-space integration. We begin with obtaining kernels \(\mathcal{I}_v \) and \(\mathcal{I}_r \) in order to compute the momentum impulse \(\Delta p_1 \) (corresponding to the momentum operator \(P_1 \)). The spinless case has been discussed in Ref. [161] and we highlight new features introduced by polarizations and spins here. The virtual kernel \(\mathcal{I}_{\Delta p,v}^{\mu} \) is simply \(q^\mu M \), which can be expanded with the tensors in Eq. (2). For the conservative dynamics we only need to consider two-particle cuts and the real kernel takes the form

\[
\mathcal{I}_{\Delta p,v}^{\mu} = \int d\Phi_2 \sum_{\epsilon_1} \ell^\mu M_{\epsilon_1},M_{\epsilon_1}^*,
\]

where \(d\Phi_2 \) is the two-body phase-space measure and \(M_{\epsilon_1} \) are amplitudes for the processes \(A(p_1, \epsilon_1) + \phi(p_2) \rightarrow \phi(p_1 + \ell) + A(p_2 - \ell, \epsilon_2) \), and \(\phi(p_1 + \ell) + A(p_2 - \ell, \epsilon_2) \rightarrow \phi(p_3) + A(p_4, \epsilon_4) \), respectively. The sum runs over the polarizations of the vector particles in the cut. These one-loop integrals can be evaluated directly through sub-loop integration, for details see Ref. [21]. To expand the double-cut in terms of form factors, we need the additional tensor structures

\[
\{ T_6^{\mu \nu}, \ldots, T_3^{\mu \nu} \} = \{ p_2^\mu n^\nu, p_2^\nu n^\mu, q^{\mu} n^\nu, q^{\nu} n^\mu \},
\]

where \(n^\mu = \epsilon^{\mu \nu \rho \sigma} q_\nu p_{1,\rho} p_{2,\sigma} \). After combining \(\mathcal{I}_v \) and \(\mathcal{I}_r \), we find that all super-classical terms cancel.

The next step is to translate the polarization vectors into spin vectors. Following Ref. [135], we first boost the polarization vector \(\epsilon_1^2 \) into the frame of \(p_1 \). With the Pauli-Lubanski operator \(\mathcal{W}^\mu = \epsilon^{\mu \nu \rho \sigma} P_\nu J_\rho J_\sigma / 2 \), we define the spin vector \(s_1^\mu \) as the expectation value of \(\mathcal{W}_1^\mu / m_1 \). It is straightforward to convert from \(\epsilon_1 \) to \(s_1 \) given \(s_1^\mu = i\epsilon^{\mu \nu \rho \sigma} p_{1,\nu} \epsilon_\sigma(p_1) \epsilon_\rho(p_1) / m_1 \). Finally, we perform the Fourier transform from the momentum space to the impact parameter space as in Eq. (18). We compare our momentum impulse results up to \(O(G^3) \) with Ref. [91, 119] and find agreement in the Kerr black hole case. This serves as yet another check on the correctness of our amplitude and confirms the practical value of the KMOC formalism at nontrivial PM orders beyond the spinless case [21, 161]. There is no obstruction to computing other observables such as the spin kick using the KMOC formalism, which we leave to future work.

CONCLUSIONS

In this letter we have presented the conservative two-body Hamiltonian for a compact binary system with a spinning black hole at \(O(G^3) \) with exact velocity dependence and including terms linear and quadratic in spin. Though obtained from scattering, the Hamiltonian is directly applicable to bound orbits. This is especially valuable since analytic continuation for observables in these two kinds of orbits, through the boundary-to-bound map [162–164], has not been worked out for generic spin configurations. The computation employs powerful modern scattering amplitude techniques, including numerical unitary, integration-by-parts identities, expansion-by-regions and functional reconstruction algorithms.

We have shown that the effective field theory approach to study the binary dynamics with spin [109, 123] can be applied in complex high-order calculations. Furthermore, we have performed matching calculations for the effective field theory of Ref. [16] at the two-loop level, for both the spinless case and spinning case, fully within dimensional regularization for the first time. We have also demonstrated the power of the KMOC formalism beyond the lowest order in \(G \) for spinning binary dynamics.

There are many directions to extend the applicability of our framework. For instance, one can study Hamiltonian terms with higher powers in spin by con-

3 We thank Justin Vines for carrying out the check, and thank Jan Steinhoff for sharing a private code used for the canonical transformation and comparison.
considering minimally-coupled massive higher-spin particles [102, 123, 165]. Also including finite-size [166–173] and radiation [120, 150, 174–192] effects is an interesting possibility of relevance for phenomenological studies in gravitational wave detectors. Finally, our framework can be extended beyond the third-post-Minkowskian order following progress in the spinless case [24, 25, 27, 28].

Acknowledgements: We thank Harald Ita for collaboration during the initial phase of the project. We thank Jan Steinhoff and Justin Vines for their expertise and timely help in checking the consistency of our Hamiltonian with known post-Newtonian results. We thank Andres Luna, Chia-Hsien Shen, Dimitrios Kosmopoulos, Fei Teng, Justin Vines, Radu Roiban, and Zvi Bern for insightful discussions and/or comments on the manuscript. The work of F.F.C. and M.K. is supported in part by the U.S. Department of Energy under grant DE-SC0010102. G.L. is supported in part by the National Natural Science Foundation of China Grants No. 11935013. M.Z.’s work is supported in part by the U.K. Royal Society through Grant URF R1 20109. M.S.R. thanks the Higgs Centre for Theoretical Physics at the University of Edinburgh for hospitality and the Mani L. Bhaumik Institute for generous support.

The computing for this project was performed on the HPC cluster at the Research Computing Center at the Florida State University (FSU). For the purpose of open access, the author have applied a Creative Commons Attribution (CC BY) license to any Author Accepted Manuscript version arising from this submission.

Supplementary Material

Here we summarize the form factor decomposition of the $2 \rightarrow 2$ scattering amplitudes in Eq. (2) of the main text in conventional dimensional regularization.

Tree Level

We decompose the tree-level scattering amplitude according to

$$
\mathcal{M}^{(0)} = \left(\frac{\kappa}{2}\right)^2 \frac{1}{q^2} \sum_{n=1}^{4} M_n^{(0)} T_n + \mathcal{O}(|q|^0) ,
$$

with

$$M_1^{(0)} = 2m_A^2 m_\phi^2 \left(\frac{1}{1-\epsilon} - 2\sigma^2 \right) , \quad M_2^{(0)} = \frac{2m_\phi^2}{1-\epsilon} , \quad M_3^{(0)} = 2 , \quad M_4^{(0)} = -4m_A m_\phi \sigma .
$$

One Loop

The one-loop scattering amplitude is given in the form of

$$
\mathcal{M}^{(1)} = \left(\frac{\kappa}{2}\right)^4 \frac{1}{q^2} \sum_{n=1}^{4} \sum_{k=0}^{2} M_n^{(1,k)} |q|^k T_n + \mathcal{O}(|q|) .
$$

The super-classical terms are given by

$$
M_1^{(1,0)} = -\frac{2m_A^3 m_\phi^3}{\sqrt{\sigma^2-1}} f_2 \left(\frac{1}{1-\epsilon} - 2\sigma^2 \right)^2 ,
$$

$$
M_2^{(1,0)} = -\frac{m_A m_\phi^3}{(1-2\epsilon)\sqrt{\sigma^2-1}} \left[\frac{2 - 3\epsilon}{(1-\epsilon)^2} - 4\sigma^2(1-\epsilon) \right] ,
$$

$$
M_3^{(1,0)} = \frac{m_A m_\phi}{\sqrt{\sigma^2-1}} f_2 \left[\frac{1 - 2\epsilon}{2(\sigma^2-1)(1-\epsilon)^2} + 4\sigma^2 - \frac{2\epsilon}{(1-\epsilon)(1-2\epsilon)} \right] ,
$$

$$
M_4^{(1,0)} = \frac{4m_A^3 m_\phi^2 \sigma}{\sqrt{\sigma^2-1}} f_2 \left[\frac{1}{1-\epsilon} - 2\sigma^2 \right] .
$$
The classical contributions read

\[M^{(1,1)}_1 = \frac{m^2 m_\phi^2 (m_A + m_\phi)}{4(\sigma^2 - 1)} f_1 \frac{1 - 2\epsilon}{(1 - \epsilon)^2} \left(-3 + (3 - 4\epsilon)\sigma^2 (6 - (5 - 4\epsilon)\sigma^2) \right), \]

\[M^{(1,1)}_2 = \frac{f_1}{32(\sigma^2 - 1)} \left[\frac{(5 - 4\epsilon)(1 - 12\epsilon + 4\epsilon^2)}{(1 - \epsilon)^2} m_A \sigma^4 - \frac{4(5 - 2\epsilon)(1 - 2\epsilon)}{(1 - \epsilon)^2} m_\phi \right. \\
\left. + \frac{4(1 - \epsilon)(5 - 2\epsilon)(3 - 4\epsilon)}{(1 - \epsilon)^2} m_\phi \sigma^2 - \frac{27 - \epsilon(67 - 4\epsilon(14 - 3\epsilon))}{(1 - \epsilon)^3} m_A \right] + \frac{(78 - 2\epsilon(147 - 2\epsilon)(113 - 2\epsilon)(35 - 6\epsilon))}{(1 - \epsilon)^3} m_\sigma \sigma^2, \]

\[M^{(1,1)}_3 = \frac{f_1}{16(\sigma - 1)^2} \left[\frac{2 - 4\epsilon(5 - 4\epsilon)}{(1 - \epsilon)^2} m_\phi - \frac{8(1 - 2\epsilon)(3 - 4\epsilon)}{(1 - \epsilon)^2} m_\phi \sigma^2 + \frac{2(1 - 2\epsilon)(5 - 4\epsilon)(3 - 4\epsilon)}{(1 - \epsilon)^2} m_\phi \sigma^4 \right. \\
\left. + \frac{9 - 10\epsilon + 8\epsilon^2}{(1 - \epsilon)^2} m_A - \frac{2(33 - 2\epsilon(45 - 4\epsilon(11 - 4\epsilon)))}{(1 - \epsilon)^2} m_\sigma \sigma^2 + \frac{(5 - 4\epsilon)(13 - 2\epsilon(15 - 8\epsilon))}{(1 - \epsilon)^2} m_A \sigma^4 \right], \]

\[M^{(1,1)}_4 = \frac{m_A m_\phi}{4(\sigma^2 - 1)} f_1 \frac{1 - 2\epsilon}{1 - \epsilon} \left[m_A (12 - (5 - 4\epsilon)\sigma^2) + m_\phi \left(\frac{3(3 - 4\epsilon) - (5 - 4\epsilon)(3 - 4\epsilon)\sigma^2}{1 - \epsilon} \right) \right]. \]

And finally, the quantum corrections correspond to

\[M^{(1,2)}_1 = \frac{m_A m_\phi f_2}{\sqrt{\sigma^2 - 1}} \left[\frac{\epsilon}{2} \left(\frac{1 - \epsilon - 2\epsilon^2}{\sigma^2 - 1} \right)^2 \frac{m_A + m_\phi}{\sigma^2 - 1} - m_\phi \left(\frac{1 + 2\epsilon}{2(1 - \epsilon)(1 - 2\epsilon) - 4\epsilon - 2\epsilon^2 + 2\epsilon^4} \right) \right], \]

\[M^{(1,2)}_2 = \frac{m_\phi f_2}{8(\sigma^2 - 1)^{3/2}} \frac{1}{(1 - 2\epsilon)(1 - \epsilon)^2} \left[- \frac{2(1 - 6\epsilon + 3\epsilon^2)}{(1 - \epsilon)^2} \frac{m_\phi^2}{m_A} + \frac{8(44\epsilon + 64\epsilon^3 - 40\epsilon^4 + 8\epsilon^4)}{(1 - \epsilon)^2} \frac{m_\phi^2 \sigma^2}{m_A} \right. \\
\left. - 4(1 - 7\epsilon + 7\epsilon^2) m_\phi \sigma + 16(1 - \epsilon)^2 (1 - 4\epsilon + \epsilon^2) m_\phi \sigma^3 - (1 - 4\epsilon + 6\epsilon^2) m_A \right. \\
\left. + 4\epsilon (1 + 3\epsilon - 6\epsilon^2 + 2\epsilon^3) m_A \sigma^2 + 8(1 - \epsilon)^2 (1 - 4\epsilon) m_A \sigma^4 \right], \]

\[M^{(1,2)}_3 = \frac{f_2}{m_A m_\phi (\sigma^2 - 1)^{3/2}} \frac{1}{8(1 - 2\epsilon)} \left[\frac{3}{1 - \epsilon} m_A^2 - 4(6 - \epsilon(7 - 4\epsilon)) m_A^2 \sigma^2 + 8(1 - \epsilon)(3 - 2\epsilon) m_A^2 \sigma^4 \right. \\
\left. - \frac{1 + \epsilon}{(1 - \epsilon)^2} m_\phi^2 \frac{4 - 2\epsilon(13 - 2\epsilon(10 - \epsilon(9 - 4\epsilon)))}{(1 - \epsilon)^2} m_\phi \sigma^2 + \frac{8 - 16\epsilon(2 - (2 - \epsilon)\epsilon)}{1 - \epsilon} m_\phi \sigma^4 \right. \\
\left. - \left(\frac{16 - \epsilon}{1 - \epsilon} \right) m_A m_\phi \sigma + 8(3 - 4\epsilon) e m_A m_\phi \sigma^3 + 16(1 - \epsilon)(1 - 2\epsilon) m_A m_\phi \sigma^5 \right], \]

\[M^{(1,2)}_4 = \frac{f_2}{(\sigma^2 - 1)^{3/2}} \left[\frac{m_A^2 \sigma - 2(1 - \epsilon) m_A^2 \sigma^3 + \frac{1}{4(1 - \epsilon)^2} m_A m_\phi - \frac{\epsilon}{1 - \epsilon} m_A m_\phi \sigma^2 - (2 - 4\epsilon) m_A m_\phi \sigma^4}{(1 - \epsilon)^2} \right. \\
\left. + \left(\frac{1}{2(1 - \epsilon) + \frac{1}{2(1 - \epsilon)^2} - \frac{1}{1 - 2\epsilon} \right) m_\phi \sigma - \left(1 - 2\epsilon - \frac{1}{1 - 2\epsilon} + \frac{2}{1 - \epsilon} \right) m_\phi \sigma^3 \right]. \]

Here, we have defined

\[f_1 = \frac{1}{4\pi} \left(\frac{4\pi\mu^2}{q^2} \right)^\epsilon \frac{\Gamma(\frac{1}{2} - \epsilon)\Gamma(\frac{1}{2} + \epsilon)}{2\sqrt{\pi}\Gamma(1 - 2\epsilon)}, \quad f_2 = \frac{1}{4\pi} \left(\frac{4\pi\mu^2}{q^2} \right)^\epsilon \frac{\Gamma(\frac{1}{2} - \epsilon)\Gamma(1 + \epsilon)}{4\Gamma(-2\epsilon)}. \]

Two Loops

The two-loop scattering amplitude is given in the form of

\[M^{(2)} = -\left(\frac{\kappa}{2} \right)^6 \frac{1}{q^2} N^{\sum_{n=1}^{4} \sum_{k=0}^{2} M^{(2, k)}_n |q|^k T_n + \mathcal{O}(|q|)}, \]
where we keep a normalization factor of

\[
N = \left(\frac{n^2}{q^2} \right)^{2\epsilon} = \left(\frac{\mu^2}{q^2} \right)^{2\epsilon} \left(\frac{\epsilon^{\gamma_E}}{4\pi} \right)^{-2\epsilon}
\] (38)

unexpanded. Note that, at the \(O(1/|q|)\) order all master integrals are purely imaginary and therefore do not contribute to the classical limit. Furthermore, to extract the classical terms it is enough to know the \(1/\epsilon\) poles of the scattering amplitudes which are equal to \(-1/2\) times the coefficients of \(\log(q^2)\). With this, for the super-classical terms at \(O(1/q^2)\) we obtain

\[
M_1^{(2,0)} = \frac{m_A^4 m_\phi^4 (1 - 2\sigma^2)^2}{(8\pi)^2 (\sigma^2 - 1)^2} \left[\frac{1 - 2\sigma^2}{\epsilon^2} + \frac{3}{\epsilon} \right] + O(\epsilon^0)
\] (39)

\[
M_2^{(2,0)} = \frac{m_A^4 m_\phi^4 (1 - 2\sigma^2)}{(8\pi)^2 (\sigma^2 - 1)^2} \left[\frac{1 - 2\sigma^2}{\epsilon^2} + \frac{4 - 2\sigma^2}{\epsilon} \right] + O(\epsilon^0)
\] (40)

\[
M_3^{(2,0)} = \frac{m_A^2 m_\phi^2 (1 - 2\sigma^2)}{(16\pi)^2 (\sigma^2 - 1)^2} \left[\frac{(2\sigma^2 - 1)(1 - 8\sigma^2 + 8\sigma^4)}{\epsilon^2} + \frac{2(3 - 8\sigma^2)(\sigma^2 - 1)}{\epsilon} \right] + O(\epsilon^0)
\] (41)

\[
M_4^{(2,0)} = -\frac{m_A^2 m_\phi^2}{(4\pi)^2 (\sigma^2 - 1)^2} \left[\frac{1 - 2\sigma^2}{2\epsilon} + \frac{1}{\epsilon} \right] + O(\epsilon^0)
\] (42)

The super-classical terms at \(O(1/|q|)\) are given by

\[
M_1^{(2,1)} = -3 m_A^3 m_\phi^3 (m_A + m_\phi) \left(\frac{1}{\epsilon} - 2\log(2) \right) + O(\epsilon) \] (43)

\[
M_2^{(2,1)} = -\frac{3 m_A^3 m_\phi}{2(32\pi)^2 (\sigma^2 - 1)^{3/2}} \left\{ (2\sigma^2 - 1) \left(m_\phi (20(1 - 3\sigma^2) + m_A (27 - 78\sigma^2 - 5\sigma^4)) \left[\frac{1}{\epsilon} - 2\log(2) \right] \right) \\
+ \frac{4}{3} m_\phi (-13 - 97\sigma^2 + 156\sigma^4) + m_A \left(-195 + 138\sigma^2 + 45\sigma^4 + 244\sigma^6 \right) \right\} + O(\epsilon) \] (44)

\[
M_3^{(2,1)} = \frac{3 m_A^2 m_\phi}{(32\pi)^2 (\sigma^2 - 1)^{3/2}} \left\{ (m_A (2\sigma^2 - 1)(9 - 66\sigma^2 + 65\sigma^4) - m_\phi (2 - 28\sigma^2 + 78\sigma^4 - 60\sigma^6)) \left[\frac{1}{\epsilon} - 2\log(2) \right] \\
+ \frac{2}{3} (m_\phi (7 - 134\sigma^2 + 327\sigma^4 - 192\sigma^6) + m_A (-66 + 249\sigma^2 - 264\sigma^4 + 89\sigma^6)) \right\} + O(\epsilon) \] (45)

\[
M_4^{(2,1)} = -\frac{m_A^2 m_\phi^2}{(16\pi)^2 (\sigma^2 - 1)^{3/2}} \left\{ (4m_A + 3m_\phi)(3 - 11\sigma^2 + 10\sigma^4) \left[\frac{1}{\epsilon} - 2\log(2) \right] \\
+ m_\phi (3 + 47\sigma^2 - 64\sigma^4) + 4m_A (3 + 6\sigma^2 - 13\sigma^4) \right\} + O(\epsilon) \] (46)
The classical terms are

\[
M^{(2,2)}_1 = \frac{1}{\epsilon^2} \left[\frac{m_A^4(1 - 2\sigma^2)}{4m_A^2}\left(1 + \frac{q^2}{4m_A^2(1 + \gamma_1)}\right) + \frac{m_A^2(3 - 4\sigma^2)}{4m_A^2(1 + \gamma_1)}\left(1 + \frac{q^2}{8m_A^2(1 + \gamma_1)}\right) + \frac{m_A^2(1 - 8\sigma^2 + \sigma^4)}{2m_A^2(1 + \gamma_1)}\right] + O(\epsilon^0),
\]

\[
M^{(2,2)}_2 = \frac{1}{\epsilon^2} \left[\frac{m_A^2(1 - 2\sigma^2)(1 - 4\sigma^2)}{4m_A^2(1 + \gamma_1)} + \frac{m_A^2(2\sigma^2 - 2)(1 - 8\sigma^2)}{4m_A^2(1 + \gamma_1)} + \frac{m_A^2(1 - 4\sigma^2)(1 - 8\sigma^2)}{4m_A^2(1 + \gamma_1)}\right] + O(\epsilon^0),
\]

\[
M^{(2,2)}_3 = \frac{1}{\epsilon^2} \left[\frac{m_A^2(1 - 2\sigma^2)(1 - 8\sigma^2)}{4m_A^2(1 + \gamma_1)} + \frac{m_A^2(2\sigma^2 - 2)(1 - 8\sigma^2)}{4m_A^2(1 + \gamma_1)} + \frac{m_A^2(1 - 4\sigma^2)(1 - 8\sigma^2)}{4m_A^2(1 + \gamma_1)}\right] + O(\epsilon^0),
\]

\[
M^{(2,2)}_4 = \frac{1}{\epsilon^2} \left[\frac{m_A^2(1 - 2\sigma^2)(1 - 4\sigma^2)}{4m_A^2(1 + \gamma_1)} + \frac{m_A^2(2\sigma^2 - 2)(1 - 8\sigma^2)}{4m_A^2(1 + \gamma_1)} + \frac{m_A^2(1 - 4\sigma^2)(1 - 8\sigma^2)}{4m_A^2(1 + \gamma_1)}\right] + O(\epsilon^0).
\]

Polarization Tensors in Non-Relativistic EFT

In this section we give the expansion of the relativistic tensors \(T_n = \epsilon_{i,\mu}T^{\mu\nu}_{\nu}\epsilon^*_{\lambda,\nu}\) from Eq. (2) of the main text in terms of operators \(O_n\) defined by rest-frame polarization vectors (see Eq. (6) of the main text).

\[
T_1 = -O_1 + \frac{O_2}{m_A^2(1 + \gamma_1)} \left(1 + \frac{q^2}{4m_A^2(1 + \gamma_1)}\right) - \frac{O_3}{m_A^2(1 + \gamma_1)} \left(1 + \frac{q^2}{8m_A^2(1 + \gamma_1)}\right) + \frac{O_4}{2m_A^2(1 + \gamma_1)^2},
\]

\[
T_2 = -\frac{O_2}{2m_A^2(1 + \gamma_1)} \left(1 + \frac{q^2}{4m_A^2(1 + \gamma_1)}\right) + O_3 \left(1 + \frac{q^2}{4m_A^2(1 + \gamma_1)}\right)^2 - \frac{O_4}{4m_A^2(1 + \gamma_1)^2},
\]

\[
T_3 = -\frac{O_2}{2m_A^2} \left(E(E - m_A) - \frac{(2E - m_A)q^2}{4m_A(1 + \gamma_1)} + \frac{q^2}{16m_A^2(1 + \gamma_1)^2}\right) + \frac{O_4}{4m_A^2} \left((E - m_A) - \frac{q^2}{4m_A(1 + \gamma_1)}\right)^2
\]

\[
- \frac{O_4}{m_A^2} \left(E - \frac{q^2}{4m_A(1 + \gamma_1)}\right)^2,
\]

\[
T_4 = -\frac{O_2}{2m_A^2} \left(E + \frac{(E - m_A)q^2}{8m_A^2(1 + \gamma_1)^2}\right) + O_3 \left(-1 + \frac{E}{m_A} + \frac{(E - 2m_A)q^2}{4m_A^2(1 + \gamma_1)} - \frac{q^2}{16m_A^2(1 + \gamma_1)^2}\right)
\]

\[
- \frac{O_4}{m_A^2} \left(E - \frac{q^2}{4m_A(1 + \gamma_1)}\right),
\]

where \(E = E_A + \phi\), \(\gamma_1 = E_A/m_A\) and, for brevity, \(O_n \equiv \hat{e}_i^* O_n^{ij}(\hat{p},q)\hat{e}_j^*\) (where the \(\hat{e}_i\) are the 3-dimensional rest frame polarization vectors). Note that these expressions are not truncated in \(|q|\).
Post-Newtonian expanded coefficients

The coefficients computed in the main text can directly be expanded in the non-relativistic limit \(|\mathbf{p}| \ll 1\). Expressions including up to \(\mathcal{O}(p^4)\) are given in the ancillary files to this manuscript\(^4\), here we only list the first two orders.

\[
\begin{align*}
\tilde{c}_3^{(1)} &= - \frac{1}{4} m_A m_\phi \left(m_A^2 + 8 m_A m_\phi + m_\phi^2 \right) - \frac{p^2 \left(517 m_A^2 m_\phi^2 + 230 m_A^2 m_\phi + 25 m_A^4 + 230 m_A m_\phi^3 + 25 m_\phi^4 \right)}{8 m_A m_\phi} + \mathcal{O}(p^4), \\
\tilde{c}_3^{(2)} &= - \frac{1490 m_A^3 m_\phi^2 + 1428 m_A^2 m_\phi^3 + 636 m_A^4 m_\phi + 84 m_\phi^5 + 570 m_A m_\phi^4 + 75 m_\phi^5}{24 m_A (m_A + m_\phi)^2} \\
&\quad - \frac{p^2 \left(40225 m_A^4 m_\phi^2 + 34882 m_A^3 m_\phi^3 + 12034 m_A^2 m_\phi^4 + 19940 m_\phi^5 + 3384 m_A^6 + 478 m_A m_\phi^5 - 315 m_\phi^6 \right)}{96 m_A^3 m_\phi^2 (m_A + m_\phi)^2} + \mathcal{O}(p^4), \\
\tilde{c}_3^{(3)} &= \frac{m_\phi \left(2025 m_A^2 m_\phi^2 + 1000 m_A^3 m_\phi + 132 m_A^4 + 1381 m_A m_\phi^3 + 264 m_\phi^4 \right)}{240 m_A (m_A + m_\phi)^2} \\
&\quad + \frac{p^2 \left(515832 m_A^2 m_\phi^2 + 659844 m_A^3 m_\phi^3 + 339726 m_A^2 m_\phi^4 + 158568 m_A^3 m_\phi^5 + 14448 m_\phi^6 + 45280 m_A m_\phi^5 - 6027 m_\phi^6 \right)}{6720 m_A^3 m_\phi^2 (m_A + m_\phi)^2} + \mathcal{O}(p^4), \\
\tilde{c}_3^{(4)} &= \frac{119982 m_A^4 m_\phi^2 + 111716 m_A^3 m_\phi^3 + 33749 m_A^2 m_\phi^4 + 49536 m_A^3 m_\phi^5 + 5628 m_\phi^6 - 4973 m_A m_\phi^5 - 2891 m_\phi^6}{6720 m_A^3 m_\phi^2 (m_A + m_\phi)^2} \\
&\quad + \frac{p^2 \left(965286 m_A^4 m_\phi^2 + 2559750 m_A^3 m_\phi^3 + 1043018 m_A^2 m_\phi^4 - 1657386 m_A^3 m_\phi^5 - 1397739 m_A^4 m_\phi^6 \right)}{80640 m_A^3 m_\phi^2 (m_A + m_\phi)^2} + \mathcal{O}(p^4), \\
\tilde{c}_3^{(5)} &= \frac{m_\phi \left(1765 m_A^2 m_\phi^2 + 1520 m_A^3 m_\phi + 432 m_A^4 + 901 m_A m_\phi^3 + 214 m_\phi^4 \right)}{960 m_A (m_A + m_\phi)^2} \\
&\quad + \frac{p^2 \left(348602 m_A^2 m_\phi^2 + 432624 m_A^3 m_\phi^3 + 225346 m_A^2 m_\phi^4 + 106768 m_A m_\phi^5 + 4648 m_\phi^6 + 33380 m_A m_\phi^5 - 5537 m_\phi^6 \right)}{26880 m_A^3 m_\phi^2 (m_A + m_\phi)^2} + \mathcal{O}(p^4).
\end{align*}
\]

* ffebres@hep.fsu.edu
* mkraus@hep.fsu.edu
* linguandak@pku.edu.cn
* mrf@physics.ucla.edu
* mao.zeng@ed.ac.uk

[1] B. P. Abbott et al. (LIGO Scientific, Virgo), “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc].
[2] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA), “GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run,” 2021, arXiv:2111.03606 [gr-qc].
[3] M Punturo et al., “The einstein telescope: a third-generation gravitational wave observatory,” Classical and Quantum Gravity 27, 194002 (2010).
[4] David Reitze et al., “Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO,” Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833 [astro-ph.IM].

\(^4\) We include five computer files, including amplitudes computed in the full theory [FullTheory_Amplitudes.m], amplitudes computed from the EFT [EFT_Amplitudes.m], translations between relativistic and non-relativistic tensors in Eqs. (3) and (7) [Tensor_expansion.m], and the matching coefficients defined in Eq. (8) [Coefficients.m] as well as non-relativistic expansions thereof [CoefficientsExpanded.m].
[36] Donato Bini, Thibault Damour, and Andrea Geralico, “Binary dynamics at the fifth and fifth-and-a-half post-Newtonian orders,” Phys. Rev. D **102**, 024062 (2020), arXiv:2003.11891 [gr-qc].

[37] Donato Bini, Thibault Damour, and Andrea Geralico, “Sixth post-Newtonian local-in-time dynamics of binary systems,” Phys. Rev. D **102**, 024061 (2020), arXiv:2004.05407 [gr-qc].

[38] Donato Bini, Thibault Damour, Andrea Geralico, Stefano Laporta, and Pierpaolo Mastrolia, “Gravitational dynamics at $O(G^6)$: perturbative gravitational scattering meets experimental mathematics,” (2020), arXiv:2008.09389 [gr-qc].

[39] Donato Bini, Thibault Damour, Andrea Geralico, Stefano Laporta, and Pierpaolo Mastrolia, “Gravitational scattering at the seventh order in G: nonlocal contribution at the sixth post-Newtonian accuracy,” Phys. Rev. D **103**, 044038 (2021), arXiv:2012.12918 [gr-qc].

[40] Alessandra Buonanno, Bala Iyer, Evan Ochsner, Yi Pan, and B. S. Sathyaprakash, “Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors,” Phys. Rev. D **80**, 084043 (2009), arXiv:0907.0700 [gr-qc].

[41] Duncan A. Brown, Ian Harry, Andrew Lundgren, and Alexander H. Nitz, “Detecting binary neutron star systems with spin in advanced gravitational-wave detectors,” Phys. Rev. D **86**, 084017 (2012), arXiv:1207.6406 [gr-qc].

[42] Emily Baird, Stephen Fairhurst, Mark Hannam, and Patricia Murphy, “Degeneracy between mass and spin in black-hole-binary waveforms,” Phys. Rev. D **87**, 024035 (2013), arXiv:1211.0546 [gr-qc].

[43] N. V. Krishnendu and Frank Ohme, “Interplay of spin-precession and higher harmonics in the parameter estimation of binary black holes,” Phys. Rev. D **105**, 064012 (2022), arXiv:2110.00766 [gr-qc].

[44] B. M. Barker and R. F. O’Connell, “Derivation of the equations of motion of a gyroscope from the quantum theory of gravitation,” Phys. Rev. D **2**, 1428–1435 (1970).

[45] B. M. Barker and R. F. O’Connell, “Gravitational Two-Body Problem with Arbitrary Masses, Spins, and Quadrupole Moments,” Phys. Rev. D **12**, 329–335 (1975).

[46] Lawrence E. Kidder, Clifford M. Will, and Alan G. Wiseman, “Spin effects in the inspiral of coalescing compact binaries,” Phys. Rev. D **47**, R4183–R4187 (1993), arXiv:gr-qc/9211025.

[47] Lawrence E. Kidder, “Coalescing binary systems of compact objects to post-Newtonian 5/2 order. 5. Spin effects,” Phys. Rev. D **52**, 821–847 (1995), arXiv:gr-qc/9506022.

[48] Hideyuki Tagoshi, Akira Ohashi, and Benjamin J. Owen, “Gravitational field and equations of motion of spinning compact binaries to 2.5 post-Newtonian order,” Phys. Rev. D **63**, 044006 (2001), arXiv:gr-qc/0010014.

[49] Guillaume Faye, Luc Blanchet, and Alessandra Buonanno, “Higher-order spin effects in the dynamics of compact binaries. I. Equations of motion,” Phys. Rev. D **74**, 104033 (2006), arXiv:gr-qc/0605139.

[50] Luc Blanchet, Alessandra Buonanno, and Guillaume Faye, “Higher-order spin effects in the dynamics of compact binaries. II. Radiation field,” Phys. Rev. D **74**, 104034 (2006), Erratum: Phys.Rev.D 75, 049903 (2007), Erratum: Phys.Rev.D 81, 089901 (2010), arXiv:gr-qc/0605140.

[51] Thibault Damour, Piotr Jaranowski, and Gerhard Schaefer, “Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling,” Phys. Rev. D **77**, 064032 (2008), arXiv:0711.1048 [gr-qc].

[52] Jan Steinhoff, Steven Hertog, and Gerhard Schaefer, “On the next-to-leading order gravitational spin(1)-spin(2) dynamics,” Phys. Rev. D **77**, 081501 (2008), arXiv:0712.1716 [gr-qc].

[53] Jan Steinhoff, Gerhard Schaefer, and Steven Hertog, “ADM canonical formalism for gravitating spinning objects,” Phys. Rev. D **77**, 104018 (2008), arXiv:0805.3136 [gr-qc].

[54] Jan Steinhoff, Steven Hertog, and Gerhard Schaefer, “Spin-squared Hamiltonian of next-to-leading order gravitational interaction,” Phys. Rev. D **78**, 101503 (2008), arXiv:0809.2200 [gr-qc].

[55] Sylvain Marsat, Alejandro Bohe, Guillaume Faye, and Luc Blanchet, “Next-to-next-to-leading order spin-orbit effects in the equations of motion of compact binary systems,” Class. Quant. Grav. **30**, 055007 (2013), arXiv:1210.4143 [gr-qc].

[56] Steven Hertog, Jan Steinhoff, and Gerhard Schaefer, “Reduced Hamiltonian for next-to-leading order Spin-Squared Dynamics of General Compact Binaries,” Class. Quant. Grav. **27**, 135007 (2010), arXiv:1002.2093 [gr-qc].

[57] Steven Hertog, Jan Steinhoff, and Gerhard Schaefer, “On the comparison of results regarding the post-Newtonian approximate treatment of the dynamics of extended spinning compact binaries,” J. Phys. Conf. Ser. **484**, 012018 (2014), arXiv:1205.4530 [gr-qc].

[58] Alejandro Bohe, Sylvain Marsat, Guillaume Faye, and Luc Blanchet, “Next-to-next-to-leading order spin-orbit effects in the near-zone metric and precession equations of compact binaries,” Class. Quant. Grav. **30**, 075017 (2013), arXiv:1212.5520 [gr-qc].

[59] Johannes Hartung, Jan Steinhoff, and Gerhard Schaefer, “Next-to-next-to-leading order post-Newtonian linear-in-spin binary Hamiltonians,” Annalen Phys. **525**, 359–394 (2013), arXiv:1302.6723 [gr-qc].

[60] Sylvain Marsat, Luc Blanchet, Alejandro Bohe, and Guillaume Faye, “Gravitational waves from spinning compact object binaries: New post-Newtonian results,” (2013) arXiv:1312.5375 [gr-qc].

[61] Alejandro Bohé, Guillaume Faye, Sylvain Marsat, and Edward K. Porter, “Quadratic-in-spin effects in the orbital dynamics and gravitational-wave energy flux of compact binaries at the 3PN order,” Class. Quant. Grav. **32**, 195010 (2015), arXiv:1501.01529 [gr-qc].

[62] Donato Bini, Andrea Geralico, and Justin Vines, “Hyperbolic scattering of spinning particles by a Kerr black hole,” Phys. Rev. D **96**, 084044 (2017), arXiv:1707.09814 [gr-qc].

[63] Nils Siemonsen, Jan Steinhoff, and Justin Vines, “Gravitational waves from spinning binary black holes at the leading post-Newtonian orders at all orders in spin,” Phys. Rev. D **97**, 124046 (2018), arXiv:1712.08603 [gr-qc].

[64] Rafael A. Porto, “Post-Newtonian corrections to the motion of spinning bodies in NRGR,” Phys. Rev. D **73**, 104031 (2006), arXiv:gr-qc/0511061.
[65] Rafael A. Porto and Ira Z. Rothstein, “The Hyperfine Einstein-Infeld-Hoffmann potential,” Phys. Rev. Lett. 97, 021101 (2006), arXiv:gr-qc/0604099.
[66] Rafael A. Porto and Ira Z. Rothstein, “Comment on ‘On the next-to-leading order gravitational spin(1) - spin(2) dynamics’ by J. Steinhoff et al.,” (2007), arXiv:0712.2032 [gr-qc].
[67] Rafael A. Porto and Ira Z. Rothstein, “Spin(1)Spin(2) Effects in the Motion of Inspiring Compact Binaries at Third Order in the Post-Newtonian Expansion,” Phys. Rev. D 78, 044012 (2008), [Erratum: Phys.Rev.D 81, 029904 (2010)], arXiv:0802.0720 [gr-qc].
[68] Michele Levi, “Next to Leading Order gravitational Spin1-Spin2 coupling with Kaluza-Klein reduction,” Phys. Rev. D 82, 064029 (2010), arXiv:0802.1508 [gr-qc].
[69] Rafael A Porto and Ira Z. Rothstein, “Next to Leading Order Spin(1)Spin(1) Effects in the Motion of Inspiring Compact Binaries,” Phys. Rev. D 78, 044013 (2008), [Erratum: Phys.Rev.D 81, 029905 (2010)], arXiv:0804.0260 [gr-qc].
[70] Rafael A. Porto, “Next to leading order spin-orbit effects in the motion of inspircing compact binaries,” Class. Quant. Grav. 27, 205001 (2010), arXiv:1005.5730 [gr-qc].
[71] Michele Levi, “Next to Leading Order gravitational Spin-Orbit coupling in an Effective Field Theory approach,” Phys. Rev. D 82, 104004 (2010), arXiv:1006.4139 [gr-qc].
[72] Rafael A. Porto, Andreas Ross, and Ira Z. Rothstein, “Spin induced multipole moments for the gravitational wave flux from binary inspirals to third Post-Newtonian order,” JCAP 03, 009 (2011), arXiv:1007.1312 [gr-qc].
[73] Johannes Hartung and Jan Steinhoff, “Next-to-next-to-leading order post-Newtonian spin(1)-spin(2) Hamiltonian for self-gravitating binaries,” Annalen Phys. 523, 919–924 (2011), arXiv:1107.4294 [gr-qc].
[74] Michele Levi, “Binary dynamics from spin1-spin2 coupling at fourth post-Newtonian order,” Phys. Rev. D 85, 064043 (2012), arXiv:1107.4322 [gr-qc].
[75] Rafael A. Porto, Andreas Ross, and Ira Z. Rothstein, “Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 Post-Newtonian order,” JCAP 09, 028 (2012), arXiv:1203.2962 [gr-qc].
[76] Michele Levi and Jan Steinhoff, “Equivalence of ADM Hamiltonian and Effective Field Theory approaches at next-to-next-to-leading order spin1-spin2 coupling of binary inspirals,” JCAP 12, 003 (2014), arXiv:1408.5762 [gr-qc].
[77] Michele Levi and Jan Steinhoff, “Leading order finite size effects with spins for inspircing compact binaries,” JHEP 06, 059 (2015), arXiv:1410.2601 [gr-qc].
[78] Michele Levi and Jan Steinhoff, “Spinning gravitating objects in the effective field theory in the post-Newtonian scheme,” JHEP 09, 219 (2015), arXiv:1501.04956 [gr-qc].
[79] Michele Levi and Jan Steinhoff, “Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme,” JCAP 01, 011 (2016), arXiv:1506.05056 [gr-qc].
[80] Michele Levi and Jan Steinhoff, “Next-to-next-to-leading order gravitational spin-squared potential via the effective field theory for spinning objects in the post-Newtonian scheme,” JCAP 01, 008 (2016), arXiv:1506.05794 [gr-qc].
[81] Michele Levi and Jan Steinhoff, “Complete conservative dynamics for inspircing compact binaries with spins at the fourth post-Newtonian order,” JCAP 09, 029 (2016), arXiv:1607.04252 [gr-qc].
[82] Natalia T. Maia, Chad R. Galley, Adam K. Leibovich, and Rafael A. Porto, “Radiation reaction for spinning bodies in effective field theory I: Spin-orbit effects,” Phys. Rev. D 96, 084064 (2017), arXiv:1705.07893 [gr-qc].
[83] Natalia T. Maia, Chad R. Galley, Adam K. Leibovich, and Rafael A. Porto, “Radiation reaction for spinning bodies in effective field theory II: Spin-spin effects,” Phys. Rev. D 96, 084065 (2017), arXiv:1705.07938 [gr-qc].
[84] Michèle Levi, Stavros Mougiakakos, and Mariana Vieira, “Gravitational cubic-in-spin interaction at the next-to-leading post-Newtonian order,” JHEP 01, 036 (2021), arXiv:1912.06276 [hep-th].
[85] Michèle Levi, Andrew J. McLeod, and Matthew Von Hippel, “N^3LO gravitational spin-orbit coupling at order G^4,” JHEP 07, 115 (2021), arXiv:2003.02827 [hep-th].
[86] Michèle Levi, Andrew J. McLeod, and Matthew Von Hippel, “N^3LO gravitational quadratic-in-spin interactions at G^4,” JHEP 07, 116 (2021), arXiv:2003.07890 [hep-th].
[87] Andrea Antonelli, Chris Kavanagh, Mohammed Khalil, Jan Steinhoff, and Justin Vines, “Gravitational spin-orbit coupling through third-subleading post-Newtonian order: from first-order self-force to arbitrary mass ratios,” Phys. Rev. Lett. 125, 011103 (2020), arXiv:2003.11391 [gr-qc].
[88] Michele Levi and Fei Teng, “NLO gravitational quartic-in-spin interaction,” JHEP 01, 066 (2021), arXiv:2008.12280 [hep-th].
[89] Andrea Antonelli, Chris Kavanagh, Mohammed Khalil, Jan Steinhoff, and Justin Vines, “Gravitational spin-orbit and aligned spin1-spin2 couplings through third-subleading post-Newtonian orders,” Phys. Rev. D 102, 124024 (2020), arXiv:2010.02018 [gr-qc].
[90] Walter D. Goldberger, Jingping Li, and Ira Z. Rothstein, “Non-conservative effects on spinning black holes from world-line effective field theory,” JHEP 06, 053 (2021), arXiv:2012.14869 [hep-th].
[91] Zhengwen Liu, Rafael A. Porto, and Zixin Yang, “Spin Effects in the Effective Field Theory Approach to Post-Minkowskian Conservative Dynamics,” JHEP 06, 012 (2021), arXiv:2102.10059 [hep-th].
[92] Gihyuk Cho, Brian Pardo, and Rafael A. Porto, “Gravitational radiation from inspircing compact objects: Spin-spin effects completed at the next-to-leading post-Newtonian order,” Phys. Rev. D 104, 024037 (2021), arXiv:2103.14612 [gr-qc].
[93] Jung-Wook Kim, Michèle Levi, and Zhewei Yin, “Quadratic-in-spin interactions at fifth post-Newtonian order probe new physics,” (2021), arXiv:2112.01509 [hep-th].
[94] Gihyuk Cho, Rafael A. Porto, and Zixin Yang, “Gravitational radiation from inspircing compact objects: Spin effects to fourth Post-Newtonian order,” (2022), arXiv:2201.05138 [gr-qc].
full theory [FullTheory_Amplitudes.m], amplitudes computed from the EFT [EFT_Amplitudes.m], translations between relativistic and non-relativistic tensors in Eqs. (2) and (6) [Tensor_expansion.m], and the matching coefficients defined in Eq. (7) [Coefficients.m] as well as non-relativistic expansions thereof [Coefficients_Expanded.m].

[158] Barry R. Holstein and Andreas Ross, “Spin Effects in Long Range Gravitational Scattering,” (2008), arXiv:0802.0716 [hep-ph].

[159] Andrea Cristofoli, Poul H. Damgaard, Paolo Di Vecchia, and Carlo Heissenberg, “Second-order Post-Minkowskian scattering in arbitrary dimensions,” JHEP 07, 122 (2020), arXiv:2003.10274 [hep-th].

[160] Michele Levi and Jan Steinhoff, “EFTofPNG: A package for high precision computation with the Effective Field Theory of Post-Newtonian Gravity,” Class. Quant. Grav. 34, 244001 (2017), arXiv:1705.06309 [gr-qc].

[161] Enrico Herrmann, Julio Parra-Martinez, Michael S. Ruf, and Mao Zeng, “Gravitational Bremsstrahlung from Reverse Unitarity,” Phys. Rev. Lett. 126, 201602 (2021), arXiv:2101.07255 [hep-th].

[162] Gregor Kälín and Rafael A. Porto, “From Boundary Data to Bound States,” JHEP 01, 072 (2020), arXiv:1910.03008 [hep-th].

[163] Gregor Kälín and Rafael A. Porto, “From boundary data to bound states. Part II. Scattering angle to dynamical invariants (with twist),” JHEP 02, 120 (2020), arXiv:1911.09130 [hep-th].

[164] Gihyuk Cho, Gregor Kälín, and Rafael A. Porto, “From boundary data to bound states. Part III. Radiative effects,” JHEP 04, 154 (2022), arXiv:2112.03976 [hep-th].

[165] Marco Chiadaroo, Henrik Johansson, and Paolo Pichini, “Compton black-hole scattering for s ≤ 5/2,” JHEP 02, 156 (2022), arXiv:2107.14779 [hep-th].

[166] Clifford Cheung and Mikhail P. Solon, “Tidal Effects in the Post-Minkowskian Expansion,” Phys. Rev. Lett. 125, 191601 (2020), arXiv:2006.06665 [hep-th].

[167] Gregor Kälín, Zhengwen Liu, and Rafael A. Porto, “Conservative Tidal Effects in Compact Binary Systems to Next-to-Leading Post-Minkowskian Order,” Phys. Rev. D 102, 124025 (2020), arXiv:2008.06047 [hep-th].

[168] Zvi Bern, Julio Parra-Martinez, Radu Roiban, Eric Sawyer, and Chia-Hsien Shen, “Leading Nonlinear Tidal Effects and Scattering Amplitudes,” JHEP 05, 188 (2021), arXiv:2010.08559 [hep-th].

[169] Clifford Cheung, Nabha Shah, and Mikhail P. Solon, “Mining the Geodesic Equation for Scattering Data,” Phys. Rev. D 101, 044039 (2020), arXiv:2001.00352 [gr-qc].

[170] Donato Bini, Thibault Damour, and Andrea Geralico, “Scattering of tidally interacting bodies in post-Minkowskian gravity,” Phys. Rev. D 101, 044039 (2020), arXiv:2001.00352 [gr-qc].

[171] Kays Haddad and Andreas Helset, “Tidal effects in quantum field theory,” JHEP 12, 024 (2020), arXiv:2008.04920 [hep-th].

[172] Rafael Aoude, Kays Haddad, and Andreas Helset, “Tidal effects for spinning particles,” JHEP 03, 097 (2021), arXiv:2012.05256 [hep-th].

[173] Stavros Mougialis, Massimiliano Maria Riva, and Filippo Vernizzi, “Gravitational Bremsstrahlung with tidal effects in the post-Minkowskian expansion,” (2022), arXiv:2204.06556 [hep-th].

[174] Andrés Luna, Ricardo Monteiro, Isobel Nicholson, Donal O’Connell, and Chris D. White, “The double copy: Bremsstrahlung and accelerating black holes,” JHEP 06, 023 (2016), arXiv:1603.05737 [hep-th].

[175] Walter D. Goldberger and Alexander K. Ridgway, “Radiation and the classical double copy for color charges,” Phys. Rev. D 95, 125010 (2017), arXiv:1611.03493 [hep-th].

[176] Walter D. Goldberger, Siddharth G. Prabhu, and Jedidiah O. Thompson, “Classical gluon and graviton radiation from the bi-adjoint scalar double copy,” Phys. Rev. D 96, 065009 (2017), arXiv:1705.09263 [hep-th].

[177] Walter D. Goldberger and Alexander K. Ridgway, “Bound states and the classical double copy,” Phys. Rev. D 97, 085019 (2018), arXiv:1711.09493 [hep-th].

[178] David Chester, “Radiative double copy for Einstein-Yang-Mills theory,” Phys. Rev. D 97, 084025 (2018), arXiv:1712.08684 [hep-th].

[179] Walter D. Goldberger, Jingping Li, and Siddharth G. Prabhu, “Spinning particles, axion radiation, and the classical double copy,” Phys. Rev. D 97, 105018 (2018), arXiv:1712.09250 [hep-th].

[180] Chia-Hsien Shen, “Gravitational Radiation from Color-Kinematics Duality,” JHEP 11, 162 (2018), arXiv:1806.07388 [hep-th].

[181] Walter D. Goldberger and Jingping Li, “Strings, extended objects, and the classical double copy,” JHEP 02, 092 (2020), arXiv:1912.01650 [hep-th].

[182] Gabriel Luz Almeida, Stefano Foffa, and Riccardo Sturani, “Classical Gravitational Self-Energy from Double Copy,” JHEP 11, 165 (2020), arXiv:2008.06195 [gr-qc].

[183] Marcello Ciafaloni, Dimitri Colferai, and Gabriele Veneziano, “Infrared features of gravitational scattering and radiation in the eikonal approach,” Phys. Rev. D 99, 066008 (2019), arXiv:1812.08137 [hep-th].
[188] Alok Laddha and Ashoke Sen, “Classical proof of the classical soft graviton theorem in D>4,” Phys. Rev. D 101, 084011 (2020), arXiv:1906.08288 [gr-qc].

[189] Athira P. V. and A. Manu, “Classical double copy from Color Kinematics duality: A proof in the soft limit,” Phys. Rev. D 101, 046014 (2020), arXiv:1907.10021 [hep-th].

[190] Arnab Priya Saha, Biswajit Sahoo, and Ashoke Sen, “Proof of the classical soft graviton theorem in D = 4,” JHEP 06, 153 (2020), arXiv:1912.06413 [hep-th].

[191] A. Manu, Debodirna Ghosh, Alok Laddha, and P. V. Athira, “Soft radiation from scattering amplitudes revisited,” JHEP 05, 056 (2021), arXiv:2007.02077 [hep-th].

[192] Biswajit Sahoo, “Classical Sub-subleading Soft Photon and Soft Graviton Theorems in Four Spacetime Dimensions,” JHEP 12, 070 (2020), arXiv:2008.04376 [hep-th].