Overview of Flow and Hydrodynamic Modeling of Nuclear Collisions

Matthew Luzum1,2

1 McGill University, 3600 University Street, Montreal QC H3A 2TS, Canada
2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: matthew.luzum@physics.mcgill.ca

Abstract. I give a brief overview of flow phenomena in relativistic heavy-ion collisions and the hydrodynamic models used to simulate these systems, aimed at new and young researchers, such as those attending the Hot Quarks 2012 conference.

1. Introduction

In an ultrarelativistic heavy-ion collision, experimenters detect the particles exiting the collision region after the initial collision and any further interactions have long ceased. This consists of anywhere from a few hundred to a few thousand charged hadrons, in addition to neutral hadrons, leptons, and electromagnetic radiation. With this information, we are tasked with inferring as much as we can about the dynamics of the collision and properties of any medium that may have been created during the short duration of the system evolution—hopefully a new, deconfined, phase of matter called the Quark-Gluon Plasma.

2. Measurements

After collecting this information for a large set of collision events, the events are sorted into centrality classes, and analyzed. Centrality selection is usually closely related to the total number of particles produced in a collision, which in a heavy-ion collision is closely related to impact parameter [1] (the latter relationship being much weaker for, e.g., proton-nucleus collisions [2], which were a topic of significant interest when brand new data were presented at this conference [3]). For the set of events in each centrality class, various observables are measured.

In general, the particles detected in a given collision event are governed by some underlying probability distribution, whose azimuthal dependence is often written as a Fourier series:

\[
\frac{dN}{dp_T d\eta d\phi} = \frac{1}{2\pi} \frac{dN}{dp_T d\eta} \left[1 + \sum_{n=1}^{\infty} v_n \cos n(\phi - \Psi_n) \right].
\]

(1)

For a general distribution, the coefficients v_n and orientation angles Ψ_n can depend on transverse momentum p_T and pseudorapidity η, and there can be a different probability distribution for each type of particle and for each collision event (even within a narrow centrality bin).
These coefficients are of significant interest. However, the number of particles detected in a single event is typically insufficient to accurately map out this azimuthal anisotropy of the underlying probability distribution—a single-event measurement of \(v_n \) will typically have at least a 50% statistical uncertainty or worse. Therefore, experimenters look at correlations between detected particles, averaged over an ensemble of events.

The simplest example is a correlation between pairs of particles that are both detected coming from the same event. If each particle in a pair is restricted to be in a narrow bin in phase space, an event-averaged pair correlation can span 5 degrees of freedom: the transverse momentum and pseudorapidity of each particle, and the relative azimuthal angle. (Each collision has a random orientation in azimuth, so one can only measure rotationally invariant event-averaged quantities, and no meaningful information about the average azimuthal angle of the pair can be measured).

The probability distribution of pairs is determined by the underlying one-particle distribution, plus any intrinsic correlation between particle pairs \(\delta \). One can again write the azimuthal dependence as a Fourier series, this time with respect to the relative azimuthal angle between the pair, \(\Delta \phi \) [4],

\[
\frac{dN_{\text{pairs}}}{dp_T^a dp_T^b d\eta^a d\eta^b d\phi^a d\phi^b} = \frac{dN}{dp_T^a d\eta^a d\phi^a} \frac{dN}{dp_T^b d\eta^b d\phi^b} + \delta,
\]

where \((a,b)\) represent bins in transverse momentum and pseudorapidity for the first and second particle, respectively, and any sine term is omitted since it vanishes when averaging over events. The resulting event-averaged Fourier coefficients thus in general measure the quantities:

\[
\langle V_n \Delta \rangle = \langle v_n^a v_n^b \cos n(\Psi_n^a - \Psi_n^b) \rangle + \langle \delta_n \rangle.
\]

If one can choose pairs such that \(\delta_n \) is negligible, and if \(\Psi_n^a \approx \Psi_n^b \), this simplifies to

\[
\langle V_n \Delta \rangle \approx \langle v_n^a v_n^b \rangle.
\]

It is believed that these are reasonably good approximations, and measurements of differential and integrated flow are derived from this observable. E.g., an integrated measurement \(v_n \{2\} \) is the square root of this quantity when neither particle is restricted to a particular bin in phase space [5]:

\[
v_n \{2\} = \sqrt{\langle V_n \Delta \rangle} \approx \sqrt{\langle v_n^2 \rangle}.
\]

It should be noted, however, that it is difficult to determine whether experimental procedures such as imposing a gap in pseudorapidity between the pair really accomplishes the former condition, and the latter is not exactly satisfied even in a purely hydrodynamic calculation [6, 7]. Nevertheless, they are well-defined observables in any case, that can easily be calculated in any theory.

Similarly, one can gain more information about, e.g., the event-by-event distribution of \(v_n \) coefficients and correlations between \(\Psi_n \) angles by looking at correlations between more than two particles [8, 9] or performing more complicated analyses [10, 11].

3. Hydrodynamic Models
If there is a sufficient separation between macroscopic and microscopic scales; that is, if a medium is created whose constituents interact strongly enough, the system is described by relativistic
hydrodynamics. Models that include hydrodynamic evolution have been quite successful at describing a large number of correlation observables. Along with various other observables involving high momentum particles (“jet quenching”) and heavy flavor bound states (“J/Ψ” suppression), this has lead to the standard interpretation of a strongly coupled quark gluon plasma having been produced in these collisions.

The equations of ideal relativistic fluid dynamics are given simply by conservation equations (energy, momentum, and any relevant conserved charges),

$$\partial_\mu T^{\mu\nu} = 0,$$

under the assumption of isotropy in the zero-momentum frame:

$$T^{\mu\nu} = T^{\mu\nu}_{\text{ideal}} = (\epsilon + p)u^\mu u^\nu - pg^{\mu\nu},$$

$$j^\mu = j^\mu_{\text{ideal}} = n_i u^\mu,$$

where ϵ is the energy density in the zero momentum frame (“local rest frame”, $T^{0i} = 0$), u^μ is the velocity relating this frame to the lab frame, p is the isotropic pressure, and n_i the conserved charge density in the local rest frame. For example, a system in local thermal equilibrium will have this isotropic form, and is therefore described by these equations. Small deviations from local thermal equilibrium can be described by adding terms to these ideal forms, with each term having a corresponding transport coefficient (shear viscosity η, bulk viscosity ζ, etc.).

$$T^{\mu\nu} = T^{\mu\nu}_{\text{ideal}} + \Pi^{\mu\nu},$$

$$\Pi^{\mu\nu} \equiv \eta \nabla^\mu u^\nu + \zeta \partial_\mu u^\nu (g^{\mu\nu} - u^\mu u^\nu) + ...$$

Here $\nabla^\mu u^\nu$ is the gradient of the fluid velocity, $\partial^\mu u^\nu$, made traceless and orthogonal to the fluid velocity, while the second term is proportional to the trace. The transport coefficients are determined by the underlying dynamics of the medium in question, with the rule of thumb that stronger interactions result in smaller viscosity. The formalism is valid if the length scale set by these transport coefficients is much smaller than the macroscopic length scale set by the gradients.

Finally, the equations are closed by an equation of state $p = p(\epsilon)$.

Thus, a system in this regime has universal behavior, with the only connection to the microscopic physics of the medium in question coming through the equation of state and transport coefficients. These can be calculated from an underlying theory (e.g., the equation of state can be reliably calculated with lattice QCD) or taken as free parameters and constrained by experimental data.

To model a heavy-ion collision, one must also have a description of the earliest stages of the collision, in order to provide initial conditions that can be evolved in time with hydrodynamics. This early stage is not well understood, and a number of models have been used to generate initial conditions, using various physical pictures and assumptions. These include MC-Glauber [12, 13], NEXUS [14, 15], EPOS [16, 17], UrQMD [18, 19], AMPT [20, 21], DIPSY [22, 23, 24], MC-KLN [25, 26], MC-rcBK [27, 24], IP-Glasma [28, 29], etc., and there is much ongoing study [30].

Finally, at the end of the hydrodynamic evolution, one must convert from a fluid to a particle description. The formalism for this is the Cooper-Frye formalism [31], which is well-understood in the ideal case, but has significant uncertainties in the viscous case, since it depends on the microscopic dynamics of the system [32]. Essentially, particles are emitted independently from a fluid cell with a distribution in the fluid rest frame

$$f(p^\mu) = f_0(p \cdot u) + \delta f(p^\mu).$$
In ideal hydrodynamics, one has a thermal distribution f_0, while in general there is a viscous correction δf. These particles are often simply treated as free particles (which can decay if they are unstable), or one can allow rescattering in a kinetic description (e.g., using models such as UrQMD [18, 33] or JAM [34, 26]).

4. Results

Most models for the initial conditions are relatively smooth and uniform in the longitudinal direction—QCD matter tends to form flux tubes or string-like structures between the leading edge of colliding nuclei. This causes the distribution of particles (Eq. (1)) to vary slowly with (pseudo-)rapidity, and therefore causes the distribution of pairs to depend little on relative pseudorapidity $\Delta \eta$. On the other hand, the asymmetry v_n causes correlation of particles in relative azimuth $\Delta \phi$ according to Eq. (4). This agrees with the observed long-range structure of measured two-particle correlations, which in particular see a large number of particle pairs with the same azimuthal angle, but very different pseudorapidity (the “ridge”), which is difficult to explain in the absence of collective behavior in the collision system.

Various other generic features of correlations are also consistent with a hydrodynamic interpretation [35, 36], and actual hydrodynamic calculations have been very successful at describing a large number of 2-, 3-, 4-, 5-particle correlations and beyond [15, 37, 38]. Nevertheless, work is ongoing in understanding as much as we can about the correlations seen in these experiments, and what information we can extract from these data.

5. Summary

This was a brief overview of flow phenomena and hydrodynamic calculations in relativistic heavy-ion collisions, giving enough context and terminology for a young physicist to begin to read current literature of the field.

Acknowledgments

Funding was provided by the Natural Sciences and Engineering Research Council of Canada

References

[1] Abelev B et al. (ALICE Collaboration) 2013 (Preprint 1301.4361)
[2] Bozek P 2012 Phys.Rev. C85 014911 (Preprint 1112.0915)
[3] Chatrchyan S et al. (CMS Collaboration) 2013 Phys.Lett. B718 795–814 (Preprint 1210.5482)
[4] Ollitrault J Y, Poskanzer A M and Voloshin S A 2009 Phys.Rev. C80 014904 (Preprint 0904.2315)
[5] Luzum M and Ollitrault J Y 2013 Phys.Rev. C87 044907 (Preprint 1209.2323)
[6] Gardim F G, Grassi F, Luzum M and Ollitrault J Y 2013 Phys.Rev. C87 031901 (R) (Preprint 1211.0989)
[7] Heinz U W, Qiu Z and Shen C 2013 (Preprint 1302.3535)
[8] Blaizer R S, Luzum M and Ollitrault J Y 2013 Phys.Rev. C84 034910 (Preprint 1104.4740)
[9] Bilandzic A (ALICE Collaboration) 2012 (Preprint 1210.6222)
[10] Jia J (ALAS Collaboration) 2012 (Preprint 1209.4232)
[11] Timmins A R (ALICE Collaboration) 2013 (Preprint 1301.6084)
[12] Miller M L, Reygers K, Sanders S J and Steinberg P 2007 Ann.Rev.Nucl.Part.Sci. 57 205–243 (Preprint nucl-ex/0701025)
[13] Bozek P 2012 Phys.Lett. B717 287–290 (Preprint 1208.1887)
[14] Drechsler H, Ilindik M, Ostapchenko S, Pierog T and Werner K 2001 Phys.Rept. 350 93–289 (Preprint hep-ph/0007198)
[15] Gardim F G, Grassi F, Luzum M and Ollitrault J Y 2012 Phys.Rev.Lett. 109 202302 (Preprint 1203.2882)
[16] Werner K 2008 Nucl.Phys.Proc.Suppl. 175–176 81–87
[17] Werner K 2012 (Preprint 1205.3379)
[18] Petersen H, Bleicher M, Bass S A and Stocker H 2008 (Preprint 0805.0567)
[19] Petersen H, La Placa R and Bass S A 2012 AIP Conf.Proc. 1441 777–779
[20] Zhang B, Ko C, Li B A and Lin Z w 2000 Phys.Rev. C61 067901 (Preprint nucl-th/9907017)
[21] Pang L, Wang Q and Wang X N 2012 (Preprint 1211.1570)
[22] Arneodo M, Lamberti I and Ryskin M 1997 Comput. Phys. Commun. 100 195–214 (Preprint hep-ph/9610286)
[23] Flensburg C 2012 Prog. Theor. Phys. Suppl. 193 172–175
[24] Luzum M and Ollitrault J Y 2012 Nucl. Phys. A (Preprint 1210.6010)
[25] Drescher H J and Nara Y 2007 Phys. Rev. C76 041903 (Preprint 0707.0249)
[26] Hirano T, Huovinen P, Murase K and Nara Y 2013 Prog. Part. Nucl. Phys. 70 108–158 (Preprint 1204.5814)
[27] Dumitru A and Nara Y 2012 Phys. Rev. C85 034907 (Preprint 1201.6382)
[28] Schenke B, Tribedy P and Venugopalan R 2012 Phys. Rev. Lett. 108 252301 (Preprint 1202.6646)
[29] Gale C, Jeon S, Schenke B, Tribedy P and Venugopalan R 2013 Phys. Rev. Lett. 110 012302 (Preprint 1209.6330)
[30] Chen G and Fries R J 2012 (Preprint 1212.4119)
[31] Cooper F and Frye G 1974 Phys. Rev. D10 186
[32] Dusling K, Moore G D and Teaney D 2010 Phys. Rev. C81 034907 (Preprint 0909.0754)
[33] Petersen H, Steinheimer J, Burau G, Bleicher M and Stocker H 2008 Phys. Rev. C78 044901 (Preprint 0806.1695)
[34] Nara Y, Otuka N, Ohnishi A, Niita K and Chiba S 2000 Phys. Rev. C61 024901 (Preprint nucl-th/9904059)
[35] Luzum M 2011 Phys. Lett. B696 499–504 (Preprint 1101.5773)
[36] Sorensen P, Bolliet B, Mocsy A, Pandit Y and Pruthi N 2011 Phys. Lett. B705 71–75 (Preprint 1102.1403)
[37] Schenke B, Jeon S and Gale C 2012 Phys. Rev. C85 024901 (Preprint 1109.6289)
[38] Qiu Z and Heinz U 2012 Phys. Lett. B717 261–265 (Preprint 1208.1200)