Regularized Singular Value Decomposition and Application to Recommender System

Shuai Zheng, Chris Ding, Feiping Nie
University of Texas at Arlington
zhengsl123@gmail.com, chqding@uta.edu, feipingnie@gmail.com

Abstract
Singular value decomposition (SVD) is the mathematical basis of principal component analysis (PCA). Together, SVD and PCA are one of the most widely used mathematical formalism/decomposition in machine learning, data mining, pattern recognition, artificial intelligence, computer vision, signal processing, etc. In recent applications, regularization becomes an increasing trend. In this paper, we present a regularized SVD (RSVD), present an efficient computational algorithm, and provide several theoretical analysis. We show that although RSVD is non-convex, it has a closed-form global optimal solution. Finally, we apply RSVD to the application of recommender system and experimental result show that RSVD outperforms SVD significantly.

1 Introduction
Singular value decomposition (SVD), its statistical form principal component analysis (PCA) and Karhunen-Loeve Transform in signal processing, are one of the most widely used mathematical formalism/decomposition in machine learning, data mining, pattern recognition, artificial intelligence, computer vision, signal processing, etc...

Mathematically, SVD can be seen as the best low-rank approximation to a rectangle matrix. The left and right singular vectors are mutually orthogonal, and provide orthogonal basis for row and column subspaces. When the data matrix are centered as in most statistical analysis, the singular vectors become eigenvectors of the covariance matrix and provide mutually uncorrelated/de-correlated subspaces which are much easier to use for statistical analysis. This form of SVD is generally referred to as PCA, and is widely used in statistics.

In its most simple form, SVD/PCA provides the most widely used dimension reduction for pattern analysis and data mining. SVD/PCA has numerous applications in engineering, biology, and social science 1 12 23 27 26 29 25, such as handwritten zip code classification 5, human face recognition 9, gene expression data analysis 11, recommender system 24. As many big data, deep learning, cloud computing technologies were developed 31 32 30, SVD/matrix decomposition has been integrated into commercial big data platforms, such as Hadoop Mahout framework.

In recent developments of machine learning and data mining, regularization becomes an increasing trend. Adding a regularization term to the loss function can increase the smoothness of the factor matrices and introduce more zero components to the factor matrices, such as sparse PCA 19 8. Sparse PCA has many applications in text mining, finance and gene data analysis 24 3. Minimal Support Vector Machine 28 enforces sparsity on the number of support vectors. In this paper, we present a regularized SVD (RSVD), present an efficient computational algorithm, and provide several theoretical analysis. We show that although the RSVD is a non-convex formulation, it has a global optimal closed-form solution. Finally, we apply RSVD to recommender system on four real life datasets. RSVD based recommender system outperforms the standard SVD based recommender system.

Notations. In this paper, matrices are written in uppercase letters, such as X, Y. $\text{Tr}(X)$ denotes the trace operation for matrix X.

2 Regularized SVD (RSVD)
Assume there is a matrix $X \in \mathbb{R}^{n \times m}$. Regularized SVD (RSVD) tries to find low-rank approximation using regularized factor matrices U and V. The objective function is proposed as

$$J_1 = ||X - UV^T||_F^2 + \lambda ||U||_F^2 + \lambda ||V||_F^2,$$

(1)

where low-rank regularized factor matrices $U \in \mathbb{R}^{n \times k}$ and $V \in \mathbb{R}^{m \times k}$, k is the rank of regularized SVD. Minimizing Eq.(1) is a multi-variable problem. We will now present a faster Algorithm 1 to solve this problem.

Eq.(1) can be minimized in 2 steps:

A1. Fixing V, solve U. Take derivative of Eq.(1) with respect to U and set it to zero,

$$\frac{\partial J_1}{\partial U} = -XV + UV^TV + \lambda U = 0.$$

(2)

Thus we have Eq.(3):

$$U = XV(V^TV + \lambda I)^{-1}.$$

(3)
Algorithm 1: Regularized SVD (RSVD)

Input: Data matrix $X \in \mathbb{R}^{m \times m}$, rank k, regularization weight parameter λ

Output: Factor matrices $U \in \mathbb{R}^{m \times k}$, $V \in \mathbb{R}^{m \times k}$

1: Initialize matrix V using a random matrix
2: repeat
3: Compute U using Eq. (6)
4: Compute V using Eq. (9)
5: until J_1 converges

A2. Fixing U, solve V. Take derivative of Eq. (1) with respect to V and set it to zero,

$$\frac{\partial J_1}{\partial V} = -XTU + VU^TU + \lambda V = 0.$$ \hspace{1cm} (4)

Thus we can get the solution Eq. (5):

$$V = X^TU(U^TU + \lambda I)^{-1}.$$ \hspace{1cm} (5)

It is easy to prove that function value J_1 is monotonically decreasing. To minimize objective function of Eq. (1), we propose an iterative Algorithm 1. We initialize V using a random matrix. Then we minimize Eq. (1) iteratively, until it converges. The converge speed is actually affected by the regularization weight parameter λ. In experiment section, we will show that RSVD converges faster than SVD ($\lambda = 0$).

Will the random initialization of matrix V in step 1 of Algorithm 1 affect the final solution? Is the solution of Algorithm 1 unique? Below, we present theoretical analysis and rigorously prove that there is a unique global solution and the above iterative algorithm converge to the global solution.

3 RSVD solution is in SVD subspace

Here we establish two important theoretical results: Theorems 1 and 2 which show RSVD solution is in SVD subspace.

The singular value decomposition (SVD) of X is given as

$$X = F\Sigma G^T,$$ \hspace{1cm} (6)

where $F = (f_1, \ldots, f_r) \in \mathbb{R}^{m \times r}$ are the left singular vectors, $G = (g_1, \ldots, g_r) \in \mathbb{R}^{m \times r}$ are the right singular vectors, $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r) \in \mathbb{R}^{r \times r}$ contains singular values, and r is the rank of X. The singular vectors are sorted in decreasing order.

We now present Theorem 1 and 2 to show that RSVD solution is in subspace of SVD solution. Let V be the optimal solution of RSVD. Let the QR decomposition of $V \in \mathbb{R}^{m \times k}$ be

$$V = V_\perp \Omega,$$ \hspace{1cm} (7)

where $V_\perp \in \mathbb{R}^{m \times k}$ is an orthonormal matrix and $\Omega \in \mathbb{R}^{k \times k}$ is an upper triangular matrix.

Theorem 1. Matrix Ω in Eq. (7) is a diagonal matrix.

Proof. Substituting Eq. (3) back into Eq. (1), we have a formulation of U only:\n
$$J_1(V) = \text{Tr}(X^TX \cdot X^TV(\Sigma V + \lambda I)^{-1}V^T + \lambda V^T V).$$ \hspace{1cm} (8)

Using Eq. (7) and fixing V_\perp, we have

$$J_1(\Omega) = \text{Tr}(A - B\Omega + \lambda I)^{-1} + \lambda \Omega V_{\perp}.$$ \hspace{1cm} (9)

where $A = X^TX$, $B = V_{\perp}^TXV_{\perp}$ are independent of Ω. Theorem 1 proves (L1).

To prove (L2), we see that when $V_{\perp} = G$,

$$J_1(V_{\perp}) = \text{Tr}(A - G^T \Sigma^2 G^T G \Sigma^2 D + E) = J_0,$$ \hspace{1cm} (10)

where $A = X^TX$, $D = \Omega(\Omega^T \Omega + \lambda I)^{-1} \Omega^T$, E is independent of V_{\perp}.

We now show that (L1) For any V_{\perp}, $J_1(V_{\perp})$ has a lower bound J_0: \n
$$J_1(V_{\perp}) \geq J_0 = \text{Tr}(A - \Sigma^2 D + E),$$ \hspace{1cm} (12)

and (L2) the optimal $V_{\perp}^* = G$.

To prove (L2), we use Von Neumann’s trace inequality, which states that for any two matrices P, Q, with diagonal singular value matrices Λ_P and Λ_Q, the inequality $|\text{Tr}(PQ)| \leq \text{Tr}(\Lambda_P \Lambda_Q)$ always holds.

Adding constant matrices A, E and notice the negative sign, the inequality Eq. (14) gives the lower bound Eq. (12). This proves (L1).

4 Closed form solution of RSVD

The key results of this paper is that although RSVD is non-convex, we can obtain the global optimal solution, as below.

Using Theorems 1 and 2, we now present the closed form solution of RSVD. Given Eq. (3) and Eq. (7), as long as we have Ω_{\perp}, we can get the closed form solution of RSVD U and V. The closed form solution is presented in Theorem 3.

Theorem 3. Let SVD of the input data X be $X = F\Sigma G^T$ as in Eq. (6). Let (U^*, Σ^*, V^*) be the global optimal solution of RSVD. We have

$$U^* = F_k, \Sigma^* = G_k \Omega$$ \hspace{1cm} (15)

where $F_k = (f_1, \ldots, f_k)$, $G_k = (g_1, \ldots, g_k)$, and $\Omega = \text{diag}(\omega_1, \ldots, \omega_k) \in \mathbb{R}^{k \times k}$,

$$\omega_i = \sqrt{\sigma_i - \lambda} e_i, \quad i = 1, \ldots, k$$ \hspace{1cm} (16)
Substituting Eq. (7) back to Eq. (8) and using $G^T G = I$, we have
\[J_1(\Omega) = \text{Tr}(A - \Sigma^2 \Omega^2 (\Omega^2 + \lambda I)^{-1} + \lambda \Omega^2), \] (17)
where $A = G \Sigma^2 G^T$ is a constant independent of Ω. Noting that all the matrices are diagonal, we can minimize J_1 element-wisely with respect to ω_i, $i = 1, \ldots, k$. Taking the derivative of J_1 respect to ω_i and setting it to zero, we have
\[\omega_i^2 = (\sigma_i - \lambda)_+, \] (18)
because $\omega_i \geq 0$. From this, we finally have Eq. (16).

One consequence of Theorem 3 is that the choice of parameter λ becomes obvious: it should be closely related to parameter k, the rank of U, V.

We should set λ such that $\{\omega_i\} \geq 0$ so that no columns of U, V are wasted.

Another point to make is that directly computing U, V from Algorithm 1 is generally faster than compute the SVD of X, because generally, k are much smaller than rank(X), thus computing full rank SVD of X is not necessary.

Computational complexity analysis. From Theorem 3, a single SVD computation can obtain the global solution. If we desire a strong regularization, we set λ large, and compute SVD up to the appropriate rank using Eq. (18). The computation complexity is $O(k(n + m) \min(n, m))$. We may use Algorithm 1 to directly compute RSVD without computing SVD. Theoretically, this is faster than computing the SVD because the regularization term $(V^T V + \lambda I)^{-1}$ makes Algorithm 1 converge faster for larger regularization λ. The computation complexity is $O(kmn)$. Inverting the $k \times k$ matrix $(V^T V + \lambda I)$ is fast since k is typically much smaller than $\min(n, m)$.

Numerical experiments are given below.

5 Application to Recommender Systems

Recommender system generally uses collaborative filtering. This is often viewed as a dimensionality reduction problem and their best-performing algorithm is based on singular value decomposition (SVD) of a user ratings matrix. By exploiting the latent structure (low rank) of user ratings, SVD approach eliminates the need for users to rate common items. In recent years, SVD approach has been widely used as an efficient collaborative filtering algorithm.

User-item rating matrix X generally is a very sparse matrix with only values 1,2,3,4,5. Zeros elements imply that matrix entry has not been filled because each user usually only rates a few items. Similarly, each item is only rated by a small subset of users. Thus recommender system is in essence of estimating missing values of the rating matrix.

Assume we have a user-item rating matrix $X \in \mathbb{R}^{n \times m}$, where n is the number of users and m is the number of items (i.g., movies). Some ratings in matrix X are missing. Let Ω be the set of i, j indexes that the matrix element has been set. Recommender system using SVD solves the following problem:
\[
\min_{U, V} \|X - UV^T\|_F^2, \tag{19}
\]
with fixed rank k of U, V, where for any matrix A, $\|A\|_1^2 = \sum_{(i,j) \in \Omega} A_{ij}^2$.

Low-rank U and V can expose the underlying latent structure. However, because X is sparse, U, V is forced to match a sparse structure and thus could overfit. Adding a regularization term will make U and V more smooth, and thus could reduce the overfitting. For this reason, we propose the regularized SVD recommender system as the following problem
\[
\min_{U,V} \|X - UV^T\|_F^2 + \lambda \|U\|_F^2 + \lambda \|V\|_F^2. \tag{20}
\]
Both Eqs. (19) and (20) are solved by an EM-like algorithm.

6 Experiments

Here we compare recommender systems using the Regularized SVD of Eq. (20) and classical SVD of Eq. (19) on four datasets.

Datasets

- **MovieLens** [7] [10] This data set consists of 100,000 ratings from 943 users on 1,682 movies. Each user has at least 20 ratings and the average number of ratings per user is 106.

Table 1: Recommender system datasets.

Data	user (n)	item (m)
MovieLens	943	1682
RottenTomatoes	931	1274
Jester1	1731	100
Jester2	1706	100

![Figure 1: RSVD convergence speed comparison at different λ, see Eq. (23).](image-url)
The average number of ratings per user is 37.

In our experiments, we choose 1,731 users with each user having 40 or less joke ratings. The Jester1 dataset contains 24,983 users and is the 1st .zip file of Jester data. In our experiments, we choose 1,706 users with each user having 40 or less joke ratings. The Jester2 dataset contains 23,500 users and is the 2nd .zip file of Jester data. In our experiments, we choose 1,731 users with each user having 40 or less joke ratings. The average number of ratings per user is 17.

Following standard approach, we convert all rated entries to 1 and all missing value entries remains zero. The evaluation methodology is: (1) construct training data by converting some 1s in the rating matrix into 0s, which is called “mask-out”, (2) check if recommender algorithms can correctly recommend these masked-out ratings. Suppose we are given a set of user-item rating records, namely X ∈ ℜn×m, where n is user number and m is item number. Each row of X denotes one user. To evaluate the performance of a recommender system algorithm, we need to know how accurate this algorithm can predict those 1s. We refer to the original data matrix as ground truth and mask out some ratings for some selected users. The mask-out process is as follows:

1. Find training users: those users with more than t rat-
From Theorem 2, we know that the solution of RSVD should be the same SVD subspace that has the highest scores (score) after using recommendation algorithm.

Recall and precision are then defined as follows:

$$
\text{Recall} = \frac{\text{size of set } H}{\text{size of set } M} \quad \text{Precision} = \frac{\text{size of set } H}{\text{size of set } T}
$$

(21)

$$
F_1 = \frac{2 \times \text{Recall} \times \text{Precision}}{\text{Recall} + \text{Precision}}
$$

(22)

We will get a pair of recall and precision using each N. In experiments, we use N from 1 to 2r_{mask}, where r_{mask} is the number of ratings masked out per user. Thus, we can get a precision-recall curve in this way.

6.3 RSVD convergence speed comparison

Convergence speed is important for a faster iterative algorithm. We will compare the convergence speed of RSVD with iterative SVD algorithm ($\lambda = 0$). We define residual dV_t to measure the difference of V_t and V_{t-1} in two consecutive iterations:

$$
dV_t = \|V_t - V_{t-1}\|_F.
$$

(23)

where t is the iteration number of Algorithm 1. We compare RSVD with SVD ($\lambda = 0$) using different regularization weight parameter $\lambda = 3, 5, 10$. Figure 1 shows the dV_t decreases quickly along with iterations and RSVD converges faster than SVD.

6.4 RSVD share the same SVD subspace

From Theorem 2, we know that the solution of RSVD should be in the subspace of SVD solution. Formally, let U_t, V_t be the solution of RSVD after t iterations, F, G be the solution of SVD, $X = FG^T$. We now introduce Eq. (24) and Eq. (25)

Table 2: Training data parameter settings.

Data	t	n_{user}	n_{rating}	n_{mask}
MovieLens	100	361	106	90
RottenTomates	40	86	17	35
Jester1	37	803	37	35
Jester2	37	774	37	35
to measure the difference between U_t, V_t and F, G. r_1^t and r_2^t are defined as
\[r_1^t = \| U_t - FA_t \|_F^2, \] (24)
\[r_2^t = \| V_t - GB_t \|_F^2. \] (25)

In order to minimize r_1^t and r_2^t, the solution of A_t and B_t can be given as:
\[A_t = (F^T F)^{-1} F^T U_t, \] (26)
\[B_t = (G^T G)^{-1} G^T V_t. \] (27)

Substituting Eq.(26) and Eq.(27) back to Eq.(24) and Eq.(25), we get the minimized residual r_1^t and r_2^t. If r_1^t and r_2^t are equal to 0, it means that RSVD solution U_t and V_t share the same subspace as SVD solution F and G. Figure 2 shows residual r_1^t and r_2^t converges to 0 after a few iterations.

6.5 Convergence of recommender system solution

Solutions to the recommender systems Eqs. (19, 20) converge. The EM-like algorithm has been shown effective in solving recommender systems [20, 14, 15]. We show the solution $(X_t)_{t=1}^T$ converges after t iterations of EM-like iterations by using the difference,
\[dX_t = \frac{1}{\sqrt{N_\Omega}} \| X_t - X_{t-1} \|_2. \] (28)

where N_Ω is size of set Ω. Figure 3 shows the experiment result of dX_t. As we can see, for all the 4 datasets, the solution converges in about 100 to 200 iterations.

6.6 Precision-Recall Curve

In this part, we compare the precision and recall of RSVD and SVD using different rank k and regularization weight parameter λ. We use these k and λ settings because both RSVD and SVD models with these settings produce the best precision and recall. All the curves are the average results of 5 random runs.

Figure 4 shows MovieLens data using SVD and RSVD with rank $k = 3, 5, 7, 9$. For each rank k, we compare SVD and RSVD with regularization weight parameter $\lambda = 3, 5, 10$. As we can see, for each rank k, RSVD performs better than SVD generally. Choosing λ properly could improve SVD algorithm and achieve the best precision and recall results.

Figure 5 shows RottenTomatoes data using SVD and RSVD with rank $k = 3, 5, 7, 9$. In all figures, RSVD with $\lambda = 5$ performs the best.

Figure 6 shows Jester1 data using SVD and RSVD with rank $k = 14, 16, 18, 20$. It is very easy to find that RSVD with $\lambda = 5, 10$ produce the best precision result for this data.

Figure 7 shows Jester2 data using SVD and RSVD with rank $k = 14, 16, 18, 20$. We can see from the results that RSVD with $\lambda = 5, 10$ produce the best precision result. As in Jester1 data, RSVD algorithm improves SVD significantly.

6.7 F_1 measure

F_1 measure combines precision and recall at the same time and can be used a good metric. F_1 measure is defined in Eq. (22). Since each N gives a pair of precision and recall, we use F_1 measure when $N = n_{\text{mask}}$ as the standard. Because $N = n_{\text{mask}}$, if all the masked-out ratings are predicted correctly, the size of set Ω can be exactly n_{mask}, which means recall is 1. F_1 measure ranges from 0 to 1. A higher F_1 measure (close to 1) means that an algorithm has better performance.

Table 3 shows the F_1 measure of the four datasets. Each row denotes a dataset with a specific rank k. The best F_1 measure is denoted in bold. As we can see, for all the datasets and ranks that we experimented, $\lambda = 5$ is a good setting that produces the highest F_1 measure. In all, RSVD performs much better than SVD in terms of F_1 measure. In applications, we can test different λ and rank k setting to find the best setting for specific problems.

7 Conclusion

In conclusion, SVD is the mathematical basis of principal component analysis (PCA). We present a regularized SVD (RSVD), present an efficient computational algorithm, and provide several theoretical analysis. We show that although RSVD is non-convex, it has a closed-form global optimal solution. Finally, we apply regularized SVD to the application of recommender system and experimental results show that regularized SVD (RSVD) outperforms SVD significantly.

References

[1] O. Alter, P. O. Brown, and D. Botstein. Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences, 97(18):10101–10106, 2000.

[2] D. Billsus and M. J. Pazzani. Learning collaborative information filters. In ICML, volume 98, pages 46–54, 1998.

[3] A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. Lanckriet. A direct formulation for sparse pca using semidefinite programming. SIAM review, 49(3):434–448, 2007.
[4] M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. *ACM Transactions on Information Systems (TOIS)*, 22(1):143–177, 2004.

[5] J. Friedman, T. Hastie, and R. Tibshirani. *The elements of statistical learning*, volume 1. Springer Series in Statistics New York, 2001.

[6] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. *Information Retrieval*, 4(2):133–151, 2001.

[7] GroupLens. GroupLens research group. http://www.grouplens.org 2014.

[8] Y. Guan and J. G. Dy. Sparse probabilistic principal component analysis. In *International Conference on Artificial Intelligence and Statistics*, pages 185–192, 2009.

[9] P. J. Hancock, A. M. Burton, and V. Bruce. Face processing: Human perception and principal components analysis. *Memory & Cognition*, 24(1):26–40, 1996.

[10] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In *Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval*, pages 230–237. ACM, 1999.

[11] IMDB. Imdb website. http://www.imdb.com 2014.

[12] I. Jolliffe. *Principal component analysis*. Wiley Online Library, 2005.

[13] G. Karypis. Evaluation of item-based top-n recommendation algorithms. In *Proceedings of the tenth international conference on Information and knowledge management*, pages 247–254. ACM, 2001.

[14] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. *Computer*, 42(8):30–37, 2009.

[15] M. Kurucz, A. A. Benczúr, and K. Csalogány. Methods for large scale svd with missing values. In *Proceedings of KDD Cup and Workshop*, volume 12, pages 31–38. Citeseer, 2007.

[16] RottenTomatoes. Rotten tomatoes website. http://www.rottentomatoes.com 2014.

[17] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Application of dimensionality reduction in recommender system-a case study. Technical report, DTIC Document, 2000.

[18] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In *Proceedings of the 10th international conference on World Wide Web*, pages 285–295. ACM, 2001.

[19] H. Shen and J. Z. Huang. Sparse principal component analysis via regularized low rank matrix approximation. *Journal of multivariate analysis*, 99(6):1015–1034, 2008.

[20] N. Srebro and T. Jaakkola. Weighted low-rank approximations. In *ICML*, volume 3, pages 720–727, 2003.

[21] D. Williams, S. Zheng, X. Zhang, and H. Jamjoom. Tidewatch: Fingerprinting the cyclicity of big data workloads. In *INFOCOM, 2014 Proceedings IEEE*, pages 2031–2039. IEEE, 2014.

[22] Y. Yang and X. Liu. A re-examination of text categorization methods. In *Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval*, pages 42–49. ACM, 1999.

[23] X. Zhang, Z.-Y. Shae, S. Zheng, and H. Jamjoom. Virtual machine migration in an over-committed cloud. In *Network Operations and Management Symposium (NOMS), 2012 IEEE*, pages 196–203. IEEE, 2012.

[24] Y. Zhang, A. dAspremont, and L. El Ghaoui. Sparse pca: Convex relaxations, algorithms and applications. In *Handbook on Semidefinite, Conic and Polynomial Optimization*, pages 915–940. Springer, 2012.

[25] S. Zheng. *Machine Learning: Several Advances in Linear Discriminant Analysis, Multi-View Regression and Support Vector Machine*. PhD thesis, The University of Texas at Arlington, 2017.

[26] S. Zheng, X. Cai, C. H. Ding, F. Nie, and H. Huang. A closed form solution to multi-view low-rank regression. In *AAAI*, pages 1973–1979, 2015.

[27] S. Zheng and C. Ding. Kernel alignment inspired linear discriminant analysis. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, pages 401–416. Springer Berlin Heidelberg, 2014.

[28] S. Zheng and C. Ding. Minimal support vector machine. *arXiv preprint arXiv:1804.02370*, 2018.

[29] S. Zheng, F. Nie, C. Ding, and H. Huang. A harmonic mean linear discriminant analysis for robust image classification. In *Tools with Artificial Intelligence (ICTAI), 2016 IEEE 28th International Conference on*, pages 402–409. IEEE, 2016.

[30] S. Zheng, K. Ristovski, A. Farahat, and C. Gupta. Long short-term memory network for remaining useful life estimation. In *Prognostics and Health Management (ICPHM), 2017 IEEE International Conference on*, pages 88–95. IEEE, 2017.

[31] S. Zheng, Z.-Y. Shae, X. Zhang, H. Jamjoom, and L. Fong. Analysis and modeling of social influence in high performance computing workloads. In *European Conference on Parallel Processing*, pages 193–204. Springer Berlin Heidelberg, 2011.

[32] S. Zheng, A. Vishnu, and C. Ding. Accelerating deep learning with shrinkage and recall. In *Parallel and Distributed Systems (ICPADS), 2016 IEEE 22nd International Conference on*, pages 963–970. IEEE, 2016.

[33] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. *Journal of computational and graphical statistics*, 15(2):265–286, 2006.