Dataset for amiodarone adverse events compared to placebo using data from randomized controlled trials

Morgan K. Moroia, Mohammed Ruziehb, *, Nader M. Aboujamousc, Mehrdad Ghahramanib, Gerald V. Naccarellib, John Mandrolad, Andrew J. Foyb

a Penn State College of Medicine, Hershey, PA, USA
b Penn State Heart and Vascular Institute, Hershey, PA, USA
c Penn State Department of Internal Medicine, Hershey, PA, USA
d Baptist Health Louisville, Louisville, KY, USA

Abstract

The dataset presented here provides a detailed description of the adverse events of amiodarone versus placebo using data from 43 randomized controlled trials. Two authors (M.M., M.R.) independently extracted the data. The dataset also includes baseline patient characteristics, amiodarone loading and maintenance doses, as well as forest plots describing the relative risk (RR) of developing an adverse event related to the pulmonary, thyroid, hepatic, cardiac, skin, gastrointestinal, neurological, and ocular systems. The Mantel-Haenszel random effects model was used to determine the relative risk of adverse events of amiodarone compared to placebo. This dataset is complementary to our article “Meta-analysis Comparing the Relative Risk of Adverse Events for Amiodarone Versus Placebo”, which was published in the American Journal of Cardiology [1]. The data can be used to assess certain adverse events and their relation to amiodarone loading and/or maintenance dose.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The raw dataset contains the number of events and number of patient-year for the amiodarone and placebo arm of each study (reads in xlsx format, each organ system in a separate sheet). Patients’ characteristics are summarized in Tables 1 and 2. The number and incident rate of events are listed in Table 4. The rate of adverse events in the amiodarone arm for each organ system, and the rate of drug discontinuation compared to placebo are illustrated in Figs. 1–9.

2. Experimental design, materials, and methods

The protocol was developed by three authors (M.M., M.R., A.F.) and revised by all authors. PubMed, Google Scholar, the Cochrane Central Register for randomized controlled trials, and ClinicalTrials.gov were searched for studies that analyzed the use of amiodarone regardless of indication or efficacy of therapy (latest search was conducted on October 10, 2018). Articles were identified using key search terms: amiodarone, adverse events, side effects, placebo, atrial fibrillation, atrial flutter, ventricular tachycardia, arrhythmias, liver, skin, thyroid, eye, and lung.
Baseline patient characteristics. Forty-three randomized control trials \([2–20]\) were studied, and 11,395 patients were included (5792 patients in the amiodarone group, 5603 patients in the placebo group). Average age was 62.0 years for patients receiving amiodarone and 62.3 years for patients receiving placebo. Follow up time ranged from 1 week–6 months for studies with follow up \(<\)12 months. Indications for amiodarone therapy were suppression of atrial and ventricular arrhythmias, and maintenance dose for amiodarone ranged from 200 to 600 mg daily. Raw data for the adverse events is provided in the supplement material.

First author	Year	Medical condition	Percent with IHD	Reason for intervention	Mean follow-up (days)	Mean Age (yrs)	Male Gender (%)
Greco 1989		Patients with anterior MI	100%	Reduce mortality and morbidity	Until discharge	160	54 85
Hamer 1989		Congestive heart failure	18% 60%	Arrhythmia control, exercise tolerance and ventricular function	Until discharge	180	10 20 mg/kg
Hohnloser 1991	Post CABG	NA 100%	Suppression of SVT and ventricular arrhythmias	4	1125	4	
Meyer 1993		Stable angina	59% 100%	Limiting angina pectoris	60 400	30 200 50	
Mahmarian 1994	Systolic heart failure and NSVT	24% 49%	Suppression of ventricular arrhythmias	90 422	30 50 or 100 54		
Donovan 1995		Patients with recent-onset AF	NA 48%	Restoration of sinus rhythm	Until discharge	15 7 mg/kg	
Galve 1996		Newly diagnosed AF	NA NA	Rhythm control	1200 5 mg/kg	1 1 N/A	
Gentile 1996		Elderly patients with systolic heart failure	<40% 61%	Reduce sudden cardiac death	180 400	30 100 150	
Daoud 1997		Patients undergoing open heart surgery	48% 60%	Prevention of post-op AF	30 200–1000	13 ± 7	
Kochiadakis 1998	Patients with recent onset AF	50% NA	Restoration of sinus rhythm	1 2100 3000	1 1 N/A N/A		
Cotter 1999		Patients with paroxysmal AF	Majority 43%	Restoration of sinus rhythm	30 2100	3000	
Kochiadakis 1999	Patients with persistent AF	<45% 50% NA	Restoration of sinus rhythm	30 460 20 mg/kg	28 28		
Redle 1999		Patients undergoing CABG	49% 100%	Prevention of post-op AF	10 430	11 11	
Bianconi 2000	Patients with AF or AFL	NA 15%	Acute termination of AF or flutter	3–7 5 mg/kg	1 1 N/A N/A		
Elizari 2000		Patients with acute MI	NA 100%	Reduce morbidity/mortality	180 900	3 N/A N/A	

(continued on next page)
First author	Year	Medical condition	Average Ejection fraction	Percent with IHD	Reason for intervention	Mean follow-up (days)	Average Load Dose (mg/day)	Load (# of days)	Average Maintenance Dose (mg/day)	Maintenance (# of days)	No. of Pts	Mean age (yrs)	Male Gender (%)	Placebo arm No. of Pts	Mean age (yrs)	Male Gender (%)
Lee	2000	Patients undergoing CABG	59%	100%	Prevention of post-op AF	18	150 + 0.4/kg	8	N/A	N/A	74	66	54	76 65 55		
Peuhkurinen	2000	Patients with recent-onset AF	63%	21%	Restoration of sinus rhythm	1	30 mg/kg	1	N/A	N/A	31	56	81	31 62 65		
Vardas	2000	Patients with AF	51%	NA	Restoration of sinus rhythm	30	600	28	N/A	N/A	108	64	49.1	100 65 49		
Giri	2001	Patients undergoing CABG, valve or combined	43%	98%	Prevention of post-op AF	9	1000	6; 10	N/A	N/A	120	72.7	78	100 72.5 74		
Maras	2001	Patients undergoing CABG	44%	100%	Prevention of post-op AF	7	325	8	N/A	N/A	159	58.3	80	156 57.3 76		
White	2002	Patients undergoing open heart surgery	43%	35%	Prevention of post-op AF	21–42	1200–1400	>10; >6	N/A	N/A	120	72.6	78.3	100 72.5 74		
Yagdi	2003	Patients undergoing CABG	48%	100%	Prevention of post-op AF	30	400–600 + 10/kg	2; 5; 5	N/A	N/A	77	59.3	80.5	80 61.1 73.7		
Auer	2004	Patients undergoing open heart surgery	69%	64%	Prevention of post-op AF	12	667	9	N/A	N/A	63	64	58.7	65 63 58.5		
Mitchell	2005	Patients undergoing CABG, valve replacement, repair	58%	75%	Prevention of post-op atrial tachyarrhythmia	13	10 mg/kg	13	N/A	N/A	299	61.3	82.6	302 61.9 81.8		
Alcalde	2006	Patients undergoing CABG	53%	100%	Prevention of post-op AF & AFL	10	1800	1–3	N/A	N/A	46	61	63	47 61.1 70.2		
Budeus	2006	Patients undergoing CABG	63%	100%	Prevention of post-op AF	0.5	640	N/A	7	N/A	55	64.9	87.3	55 66.7 76.4		
Zebis	2007	Patients undergoing CABG	55%	100%	Prevention of post-op AF	30	1200	N/A	5	N/A	125	67	86	125 67 80		
Gu	2009	Patients undergoing off-pump CABG	61%	100%	Prevention of post-op AF	21	200 + 70 mg/kg	17	N/A	N/A	100	73.6	75	110 74.2 72		
Balla	2011	Newly diagnosed AF	NA	NA	Rhythm control for AF	1	30 mg/kg	1	N/A	N/A	40	58.9	72.5	40 58.6 60		
Khitri	2012	AF, AFL	59%	15%	Rhythm control	90	330	30	200	60	108	64.9	73.1	162 62.4 64.9		
Riber	2013	Lung cancer surgery	NA	2%	Prevention of post-op AF	30	1200	5	N/A	N/A	122	66	49	120 67 47		
Darkner	2014	AF patients undergoing RFA	50%	7%	Rhythm control after ablation	180	400	30	200	26	104	62	81	108 61 86		

AF: Atrial fibrillation, AFL: Atrial flutter, CABG: Coronary artery bypass graft, IHD: Ischemic heart disease, MI: myocardial infarction, NA: Not available, NSVT: Non-sustained ventricular tachycardia, RFA: Radiofrequency ablation.
Baseline patient characteristics. Forty-three randomized control trials [2–20] were studied, and 11,395 patients were included (5792 patients in the amiodarone group, 5603 patients in the placebo group). Average age was 62.0 years for patients receiving amiodarone and 62.3 years for patients receiving placebo. Follow up time ranged from 12–54 months in studies with follow up ≥ 12 months. Indications for amiodarone therapy were suppression of atrial and ventricular arrhythmias, and maintenance dose for amiodarone ranged from 200 to 600 mg daily. Raw data for the adverse events is provided in the supplement material.

First author	Year	Medical condition	Average ejection fraction	Percent with IHD	Reason for intervention	Mean follow-up (months)	Average Load dose (mg/day)	Average Load (day)	Average maintenance dose (mg)	Average maintenance (days)	Amiodarone arm	Placebo arm					
Nicklas	1991	Heart failure and frequent ventricular ectopy	20%	52%	Reduce sudden cardiac death	12	400	28	200	215	49	56	83.7	52	59	86.5	
Ceremuzynski	1992	Post MI	Majority > 40%	100%	Reduce mortality and ventricular arrhythmias	Improve mortality	12	800	7	200–400	306	305	59.4	71.1	308	58.6	68.2
Singh[36]	1995	Patients with CHF and vent arrhythmia	<40%	71%	Resuscitated ventricular fibrillation or arrhythmic death	All-cause mortality	45	800	14	328	1246	336	65	99.1	338	66.1	98.8
Cairns	1997	Survivors of MI with frequent or repetitive PVCs	NA	100%	Evaluate pulmonary toxicity	21.5	20/kg	14	200–400	365–730	606	64	82.5	596	64	82	
Julian	1997	Survivors of MI and EF ≤ 40%	30%	35%	Evaluate pulmonary toxicity	21	450	112	200	253–618	743	59.6	83.8	743	60.2	84.9	
Singh	1997	Patients with CHF, COPD and patients undergoing surgery	25–30%	NA	Evaluate pulmonary toxicity	45	800	14	300–400	365–1620	269	65	N/A	250	65.8	N/A	
Kochiadakis	2000	Paroxysmal AF	55%	NA	Rhythm control	22	12.5/kg	14	200	720	65	63.2	52.3	60	62.8	51.7	
Channer	2004	Persistent AF undergoing DCCV	59%	30%	Rhythm control	54	800	14	200	364	61	66	77	38	68	79	
Vora	2004	Patients with chronic rheumatic AF	56%	NA	Rhythm or rate control	12	600	10	200	355	48	39.5	47.9	48	38	45.8	
Singh	2005	Persistent AF	25%	1%	Rhythm control	12	700	28	200–300	>365	267	67.1	99.3	137	67.7	99.3	
Vilvanathan	2016	AF in patients post BMV	58%	1%	Rhythm control for AF	12	500	28	200	365	44	38.8	20.5	45	37.6	34.1	

AF: Atrial fibrillation, BMV: balloon mitral valvuloplasty, CHF: congestive heart failure, COPD: chronic obstructive pulmonary disease, DCCV: direct current cardioversion, EF: Ejection fraction, IHD: Ischemic heart disease, MI: myocardial infarction, NA: Not available, PVC: premature ventricular contraction.
Table 3
Risk of bias. Majority of trials included in this analysis were double blinded, decreasing both performance and detection biases.

Bias	Study	Judgement	Support for Judgement
Random sequence generation	Greco 1989	Low risk	Randomized on a consecutive basis
(selection bias)	Hamer 1989	Unknown	Unclear method of randomization
	Hohnloser 1991	Unknown	Unclear method of randomization
	Nicklas 1991	Unknown	Unclear method of randomization
	Ceremuzynski 1992	Unknown	Unclear method of randomization
	Meyer 1993	Unknown	Unclear method of randomization
	Mahmaran 1994	Unknown	Unclear method of randomization
	Donovan 1995	Unknown	Unclear method of randomization
	Singh 1995	Unknown	Unclear method of randomization
	Galve 1996	Low risk	Randomized on a consecutive basis
	Gentile 1996	Unknown	Unclear method of randomization
	Cairns 1997	Low risk	Computer generated randomization
	Daoud 1997	Unknown	Unclear method of randomization
	Julian 1997	Low risk	Computer generated randomization
	Singh 1997	Unknown	Unclear method of randomization
	Kochiadakis 1998	Low risk	Randomized on a consecutive basis
	Cotter 1999	Unknown	Unclear method of randomization
	Kochiadakis 1999	Low risk	Randomized on a consecutive basis
	Redle 1999	Unknown	Unclear method of randomization
	Bianconi 2000	Unknown	Unclear method of randomization
	Elizari 2000	Low risk	Random numeric sequence
	Kochiadakis 2000	Unknown	Unclear method of randomization
	Lee 2000	Unknown	Unclear method of randomization
	Peuhkurinen 2000	Unknown	Unclear method of randomization
	Vardas 2000	Unknown	Unclear method of randomization
	Giri 2001	Unknown	Unclear method of randomization
	Maras 2001	Unknown	Unclear method of randomization
	White 2002	Low risk	Computer generated randomization
	Yagdi 2003	Unknown	Unclear method of randomization
	Auer 2004	Low risk	Randomization table
	Channer 2004	Low risk	Random numeric sequence
	Vora 2004	Unknown	Unclear method of randomization
	Mitchell 2005	Low risk	Computer generated randomization
	Singh 2005	Low risk	Permuted-block randomization
Study Year	Allocation Concealment	Risk Level	Method of Randomization
-------------	------------------------	------------	---
Alcalde 2006	Unknown	Unclear	Method
Budeus 2006	Low risk	Computer	Generated Randomization
Zebis 2007	Low risk	Computer	Generated Randomization
Gu 2009	Low risk	Computer	Generated Randomization
Balla 2011	Low risk	Number	Assignment by Envelope
Darkner 2012	Low risk	Randomization Code	
Khitri 2012	Unknown	Unclear	Method
Riber 2013	Low risk	Computer	Generated Randomization
Vilvanathan 2016	Unknown	Unclear	Method
Greco 1989	High risk	Randomized on a consecutive basis	
Hamer 1989	Unknown	Unclear	Method
Hohnloser 1991	Unknown	Unclear	Method
Nicklas 1991	Unknown	Unclear	Method
Ceremuzynski 1992	Unknown	Unclear	Method
Meyer 1993	Unknown	Unclear	Method
Mahmarian 1994	Unknown	Unclear	Method
Donovan 1995	Unknown	Unclear	Method
Singh 1995	Unknown	Unclear	Method
Galve 1996	High risk	Randomized on a consecutive basis	
Gentile 1996	Unknown	Unclear	Method
Cairns 1997	Low risk	Computer	Generated Randomization
Daoud 1997	Unknown	Unclear	Method
Julian 1997	Low risk	Computer	Generated Randomization
Singh 1997	Unknown	Unclear	Method
Kochiadakis 1998	High risk	Randomized on a consecutive basis	
Cotter 1999	Unknown	Unclear	Method
Kochiadakis 1999	High risk	Randomized on a consecutive basis	
Redle 1999	Unknown	Unclear	Method
Bianconi 2000	Unknown	Unclear	Method
Elizari 2000	Low risk	Random	Numeric Sequence
Kochiadakis 2000	Unknown	Unclear	Method
Lee 2000	Unknown	Unclear	Method
Peuhkurinen 2000	Unknown	Unclear	Method
Vardas 2000	Unknown	Unclear	Method
Study	Risk Level	Randomization Method	
---------------	------------	---------------------------------------	
Giri 2001	Low Risk	Unclear method of randomization	
Maras 2001	Low Risk	Computer generated randomization	
White 2002	Low Risk	Computer generated randomization	
Yagdi 2003	Low Risk	Computer generated randomization	
Auer 2004	Low Risk	Randomization table	
Channer 2004	Low Risk	Random numeric sequence	
Vora 2004	Low Risk	Computer generated randomization	
Mitchell 2005	Low Risk	Computer generated randomization	
Singh 2005	Low Risk	Permuted-block randomization	
Alcalde 2006	Low Risk	Computer generated randomization	
Budeus 2006	Low Risk	Computer generated randomization	
Zebis 2007	Low Risk	Computer generated randomization	
Gu 2009	Low Risk	Computer generated randomization	
Balla 2011	Low Risk	Number assignment by envelope	
Darkner 2012	Low Risk	Randomization code	
Khitri 2012	Low Risk	Computer generated randomization	
Riber 2013	Low Risk	Computer generated randomization	
Vilvanathan 2016	Low Risk	Computer generated randomization	

Blinding of participants and personnel (performance bias):

Study	Risk Level	Blinding Details
Greco 1989	High Risk	Participants were not blinded
Hamer 1989	Low Risk	Double blinded design
Hohnloser 1991	High Risk	Participants were not blinded
Nicklas 1991	Low Risk	Double blinded design
Ceremuzynski 1992	Low Risk	Double blinded design
Meyer 1993	Low Risk	Double blinded design
Mahmarijan 1994	Low Risk	Double blinded design
Donovan 1995	Low Risk	Double blinded design
Singh 1995	Low Risk	Double blinded design
Galve 1996	Unknown	Blinding not specified
Gentile 1996	Low Risk	Double blinded design
Cairns 1997	Low Risk	Double blinded design
Daoud 1997	Low Risk	Double blinded design
Julian 1997	Low Risk	Double blinded design
Singh 1997	Low Risk	Double blinded design
Study	Risk	Design
------------------	--------	-------------------------
Kochiadakis 1998	Low	Double blind design
Cotter 1999	Unknown	Blinding not specified
Kochiadakis 1999	Low	Participants were blinded
Redle 1999	Low	Double blinded design
Bianconi 2000	Low	Double blinded design
Elizari 2000	Low	Double blinded design
Kochiadakis 2000	Low	Participants were blinded
Lee 2000	Low	Double blinded design
Peukhurinen 2000	Unknown	Blinding not specified
Vardas 2000	Unknown	Blinding not specified
Giri 2001	Low	Double blinded design
Maras 2001	Low	Double blinded design
White 2002	Low	Double blinded design
Yagdi 2003	Low	Double blinded design
Auer 2004	Low	Double blinded design
Channer 2004	Low	Double blinded design
Vora 2004	Low	Double blinded design
Mitchell 2005	Low	Double blinded design
Singh 2005	Low	Double blinded design
Alcalde 2006	Low	Double blinded design
Budeus 2006	Low	Double blinded design
Zebis 2007	Low	Double blinded design
Gu 2009	Low	Double blinded design
Balla 2011	Low	Participants were blinded
Darkner 2012	Low	Double blinded design
Khitri 2012	Unknown	Blinding not specified
Riber 2013	Low	Double blinded design
Vilvanathan 2016	Unknown	Blinding not specified

Blinding of outcome assessment (detection bias)

Study	Risk	Design	
Greco 1989	High	Outcome assessors were not blinded	
Hamer 1989	Low	Double blinded design	
Hohnloser 1991	High	Outcome assessors were not blinded	
Nicklas 1991	Low	Double blinded design	
Ceremuzynski 1992	Low	Double blinded design	
Study	Risk Level	Design	
------------------	------------	--------------------	
Meyer 1993	Low	Double blinded	
Mahmarian 1994	Low	Double blinded	
Donovan 1995	Low	Double blinded	
Singh 1995	Low	Double blinded	
Galve 1996	Unknown	Blinding not specified	
Gentile 1996	Low	Double blinded	
Cairns 1997	Low	Double blinded	
Daoud 1997	Low	Double blinded	
Julian 1997	Low	Double blinded	
Singh 1997	Low	Double blinded	
Kochiadakis 1998	Low	Double blinded	
Cotter 1999	Unknown	Blinding not specified	
Kochiadakis 1999	High	Outcome assessors were not blinded	
Redle 1999	Low	Double blinded	
Bianconi 2000	Low	Double blinded	
Elizari 2000	Low	Double blinded	
Kochiadakis 2000	High	Outcome assessors were not blinded	
Lee 2000	Low	Double blinded	
Peuhkurinen 2000	Unknown	Blinding not specified	
Vardas 2000	Unknown	Blinding not specified	
Giri 2001	Low	Double blinded	
Maras 2001	Low	Double blinded	
White 2002	Low	Double blinded	
Yagdi 2003	Low	Double blinded	
Auer 2004	Low	Double blinded	
Channer 2004	Low	Double blinded	
Vora 2004	Low	Double blinded	
Mitchell 2005	Low	Double blinded	
Singh 2005	Low	Double blinded	
Alcalde 2006	Low	Double blinded	
Budeus 2006	Low	Double blinded	
Zebis 2007	Low	Double blinded	
Gu 2009	Low	Double blinded	
Balla 2011	High	Outcome assessors were not blinded	
Darkner 2012	Low	Double blinded	
Khitri 2012	Unknown	Blinding not specified	
Riber 2013	Low	Double blinded	
Incomplete outcome data addressed (attrition bias)	Vilvanathan 2016	Unknown	Blinding not specified
--	------------------	---------	------------------------
Greco 1989	Low risk	No significant attrition	
Hamer 1989	Low risk	No significant attrition	
Hohnloser 1991	Low risk	No significant attrition	
Nicklas 1991	Low risk	No significant attrition	
Ceremuzynski 1992	Low risk	No significant attrition	
Meyer 1993	Low risk	No significant attrition	
Mahmarian 1994	Low risk	No significant attrition	
Donovan 1995	Low risk	No significant attrition	
Singh 1995	Low risk	No significant attrition	
Galve 1996	Low risk	No significant attrition	
Gentile 1996	Low risk	No significant attrition	
Cairns 1997	Low risk	No significant attrition	
Daoud 1997	Low risk	No significant attrition	
Julian 1997	Low risk	No significant attrition	
Singh 1997	Low risk	No significant attrition	
Kocsiadakis 1998	Low risk	No significant attrition	
Cotter 1999	Low risk	No significant attrition	
Kocsiadakis 1999	Low risk	No significant attrition	
Redle 1999	Low risk	No significant attrition	
Bianconi 2000	Low risk	No significant attrition	
Elizari 2000	High risk	Early study termination	
Kocsiadakis 2000	Low risk	No significant attrition	
Lee 2000	Low risk	No significant attrition	
Peukurinen 2000	Low risk	No significant attrition	
Vardas 2000	Low risk	No significant attrition	
Giri 2001	Low risk	No significant attrition	
Maras 2001	Low risk	No significant attrition	
White 2002	Low risk	No significant attrition	
Yagdi 2003	Low risk	No significant attrition	
Auer 2004	Low risk	No significant attrition	
Channer 2004	Low risk	No significant attrition	
Vora 2004	Low risk	No significant attrition	
Year	Risk	Attrition	
-----------	-------	--------------------	
Mitchell 2005	Low risk		
Singh 2005	Low risk	No significant attrition	
Alcalde 2006	Low risk	No significant attrition	
Budeus 2006	Low risk	No significant attrition	
Zebis 2007	Low risk	No significant attrition	
Gu 2009	Low risk	No significant attrition	
Balla 2011	Low risk	No significant attrition	
Darkner 2012	Low risk	No significant attrition	
Khatri 2012	Low risk	No significant attrition	
Riber 2013	Low risk	No significant attrition	
Vilvanathan 2016	Low risk	No significant attrition	

Selective reporting (reporting bias)

Year	Risk
Greco 1989	Low risk
Hamer 1989	Low risk
Hohnloser 1991	Low risk
Nicklas 1991	Low risk
Ceremuzynski 1992	Low risk
Meyer 1993	Low risk
Mahmarian 1994	Low risk
Donovan 1995	Low risk
Singh 1995	Low risk
Galve 1996	Low risk
Gentile 1996	Low risk
Cairns 1997	Low risk
Daoud 1997	Low risk
Julian 1997	Low risk
Singh 1997	Low risk
Kochiadakis 1998	Low risk
Cotter 1999	Low risk
Kochiadakis 1999	Low risk
Redle 1999	Low risk
Bianconi 2000	Low risk
Elizari 2000	Low risk
Kochiadakis 2000	Low risk
Lee 2000	Low risk
References of all identified studies were also hand-searched for inclusion to identify additional relevant studies [1].

All articles were then independently reviewed for inclusion in this analysis by two authors (M.M., M.R.). Inclusion criteria were: 1) randomized control trial, 2) documentation of adverse events and drug discontinuation due to adverse events, 3) presence of placebo arm. Data on sample size, follow up, and outcomes were then extracted. Discrepancies were discussed and resolved by consensus.

Primary outcomes of this analysis were pulmonary, hepatic, thyroid, ocular, cardiac, skin, and neurological adverse events, as well as drug discontinuation related to adverse side effects. Specific adverse events within each organ system were also reported. All adverse events were presented as incident rate per 10,000 person-years.

The Cochrane Risk of Bias table and the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) System were utilized to determine risk of bias and quality of the outcomes in all trials incorporated into this analysis (Table 3).

RevMan version 5.3 (The Nordic Cochrane Center, The Cochrane Collaboration; Copenhagen, Denmark) was used to conduct the primary analysis. Relative risk (RR) was determined for all studies using the Mantel-Haenszel random effects model with 95% confidence interval (CI) to establish the likelihood of adverse events. A secondary analysis was also performed to determine the RR for studies with follow up < 12 months and ≥12 months. Sensitivity analyses were used to show the robustness of the results. Heterogeneity was calculated using I², a value which represents the percentage of variability in the effect risk estimate among studies due to heterogeneity rather than chance (I² <25% considered as low, I² between 25% and 75% as intermediate, I² >75% considered as high). Begg’s funnel plots method was utilized to investigate potential publication bias. A p-value of <0.05 was used to determine statistical significance.

Reference	Risk
Peuhkurinen 2000	Low risk
Vardas 2000	Low risk
Giri 2001	Low risk
Maras 2001	Low risk
White 2002	Low risk
Yagdi 2003	Low risk
Auer 2004	Low risk
Channer 2004	Low risk
Vora 2004	Low risk
Mitchell 2005	Low risk
Singh 2005	Low risk
Alcalde 2006	Low risk
Budeus 2006	Low risk
Zebis 2007	Low risk
Gu 2009	Low risk
Balla 2011	Low risk
Darkner 2012	Low risk
Khitri 2012	Low risk
Riber 2013	Low risk
Vilvanathan 2016	Low risk

Highlighted are studies with follow up ≥ 12 months.
Organ System	Follow Up ≥ 12 Months, No. of Events (Events/10,000 Patient Year)	All, No. of Events (Events/10,000 Patient Year)				
	Amiodarone Arm	Placebo	RR (95% CI), P value	Amiodarone Arm	Placebo	RR (95% CI), P value
Pulmonary Adverse Events						
Pulmonary Fibrosis	8 (13)	6 (11)	8 (12)	6 (11)		
Cough	0 (0)	0 (0)	1 (1)	0 (0)		
Lung Infiltrates	0 (0)	0 (0)	1 (1)	0 (0)		
Unspecified	77 (124)	40 (70)	77 (115)	40 (65)		
Total	85 (136)	46 (81)	1.74 (1.21–2.50), 0.003	87 (129)	46 (74)	1.77 (1.24–2.52), 0.002
Thyroid Adverse Events						
Clinical Hyperthyroidism	19 (36)	4 (8)	19 (33)	5 (9)		
Clinical Hypothyroidism	27 (52)	0 (0)	27 (47)	0 (0)		
Subclinical Change in TFT	13 (25)	3 (6)	40 (70)	8 (15)		
Unspecified	24 (46)	5 (11)	29 (51)	9 (17)		
Total	83 (159)	12 (25)	5.32 (2.99–9.44), < 0.001	115 (201)	22 (42)	4.44 (2.87–6.89), < 0.001
Liver Adverse Events						
Liver Failure	0 (0)	0 (0)	0 (0)	0 (0)		
Elevated Liver Enzymes	8 (15)	3 (6)	10 (18)	5 (10)		
Unspecified	21 (40)	8 (17)	21 (37)	8 (15)		
Total	29 (56)	11 (23)	2.42 (1.23–4.74), 0.01	31 (54)	13 (25)	2.27 (1.20–4.29), 0.01
Cardiac Adverse Events						
Bradycardia/Rhythmias	100 (192)	34 (72)	267 (468)	128 (244)		
Hypotension	0 (0)	0 (0)	98 (172)	65 (124)		
Long QT	5 (10)	0 (0)	18 (32)	0 (0)		
Torsade de Pointes	0 (0)	0 (0)	0 (0)	0 (0)		
Worsening Heart Failure	1 (2)	1 (2)	5 (9)	5 (10)		
Unspecified Conduction Disease	0 (0)	0 (0)	46 (81)	32 (61)		
Unspecified	0 (0)	0 (0)	6 (11)	6 (11)		
Total	106 (203)	35 (74)	2.76 (1.91–3.98), < 0.001	440 (771)	236 (450)	1.94 (1.39–2.71), < 0.001
Skin Adverse Events						
Blue/Gray Discoloration of Skin	2 (4)	3 (6)	2 (4)	3 (6)		
Photosensitivity	1 (2)	0 (0)	11 (19)	0 (0)		
Unspecified Rash/Flushing	21 (40)	9 (19)	33 (58)	9 (17)		
Total	24 (46)	12 (25)	1.51 (0.73–3.11), 0.26	46 (81)	12 (23)	1.99 (1.04–3.78), 0.04
GI Adverse Events						
Dyspepsia/Nausea/Vomiting	20 (38)	16 (34)	122 (214)	74 (141)		
Diarrhea	0 (0)	0 (0)	8 (14)	4 (8)		
Unspecified	35 (67)	25 (53)	62 (109)	33 (63)		
Total	55 (105)	41 (86)	1.36 (0.91–2.04), 0.14	192 (336)	111 (212)	1.63 (1.18–2.24), 0.003
Neuro adverse events	Ataxia or gait disturbances	Headache	Dizziness	Tremor	Peripheral neuropathy	Unspecified
----------------------	----------------------------	----------	-----------	--------	-----------------------	-------------
	17 (33)	6 (13)	17 (30)	6 (11)		
Ocular adverse events	Corneal microdeposits	9 (17)	0 (0)	9 (16)	0 (0)	
	19 (40)	0 (0)	0 (0)	1 (2)	0 (0)	
	Blue vision spots	0 (0)	0 (0)	1 (2)	0 (0)	
	Unspecified	10 (19)	5 (11)	10 (18)	5 (10)	
Total	19 (36)	5 (11)	4.41 (0.48–0.86), 0.19	21 (37)	5 (10)	3.01 (0.87–10.36), 0.08
Drug discontinuation	552 (1230)	284 (650)	2.01 (1.46–2.78), < 0.001	795 (1614)	431 (896)	1.79 (1.45–2.19), < 0.001
Table 1: Pulmonary adverse events

Study or Subgroup	Amiodarone Events	Placebo Events	Risk Ratio M-H, Random, 95% CI Year
Hamer 1989	0 8 0 7		Not estimable 1989
Greco 1989	0 7 0 7		Not estimable 1989
Nicklas 1991	0 49 0 52		Not estimable 1991
Ceremuzynski 1992	1 305 0 308 1.2% 3.03 [0.12, 74.07] 1992		
Meyer 1993	0 5 0 5		Not estimable 1993
Mahmoran 1994	0 8 0 4		Not estimable 1994
Singh 1995	10 1260 4 1268 9.4% 2.52 [0.79, 8.00] 1995		
Donovan 1995	0 1 0 1		Not estimable 1995
Galve 1996	0 2 0 2		Not estimable 1996
Gentle 1996	0 12 0 11		Not estimable 1996
Cairns 1997	23 1086 7 1068 17.8% 3.23 [1.39, 7.50] 1997		
Julian 1997	39 1300 30 1300 57.3% 1.30 [0.81, 2.08] 1997		
Singh 1997	10 1009 4 938 9.5% 2.32 [0.73, 7.38] 1997		
Daoud 1997	0 5 0 5		Not estimable 1997
Kochiadakis 1998	0 0 0 0		Not estimable 1998
Kochiadakis 1999	0 3 0 3		Not estimable 1999
Redu 1999	0 2 0 2		Not estimable 1999
Cotter 1999	0 4 0 4		Not estimable 1999
Lee 2000	0 4 0 4		Not estimable 2000
Kochiadakis 2000	0 119 0 110		Not estimable 2000
Peuhkurinien 2000	0 0 0 0		Not estimable 2000
Vardas 2000	0 9 0 8		Not estimable 2000
Bianconi 2000	0 1 0 1		Not estimable 2000
Elizari 2000	1 271 0 266 1.2% 2.94 [0.12, 71.97] 2000		
Maras 2001	0 3 0 3		Not estimable 2001
Giri 2001	0 3 0 3		Not estimable 2001
White 2002	0 15 0 13		Not estimable 2002
Yagdi 2003	0 6 0 7		Not estimable 2003
Channer 2004	0 275 0 171		Not estimable 2004
Auer 2004	0 2 0 2		Not estimable 2004
Vora 2004	0 48 0 48		Not estimable 2004
Singh 2005	2 734 1 377 2.2% 1.03 [0.09, 11.29] 2005		
Mitchell 2005	1 12 0 12 1.3% 3.00 [0.13, 67.06] 2005		
Alcaldé 2006	0 1 0 1		Not estimable 2006
Budeus 2006	0 2 0 2		Not estimable 2006
Zebis 2007	0 10 0 10		Not estimable 2007
Gu 2009	0 5 0 6		Not estimable 2009
Balla 2011	0 0 0 0		Not estimable 2011
Khitri 2012	0 27 0 41		Not estimable 2012
Darkner 2012	0 52 0 54		Not estimable 2012
Riber 2013	0 10 0 10		Not estimable 2013
Vilvanathan 2016	0 44 0 45		Not estimable 2016

Total (95% CI): 6719 6179 100.0% 1.77 [1.24, 2.52]

Total events: 87 46

Heterogeneity: Tau² = 0.00; Chi² = 4.73, df = 7 (P = 0.69); I² = 0%

Test for overall effect: Z = 3.13 (P = 0.002)

Fig. 1. Pulmonary adverse events. “Total” represents total events per 10,000 person-years. The incident rate of pulmonary adverse events per 10,000 person-years was higher in the amiodarone group versus placebo (129 vs 74; RR: 1.77; 95% CI [1.24–2.52], P = 0.002, I²: 0%).
Fig. 2. Thyroid adverse events. "Total" represents total events per 10,000 person-years. The incident rate of thyroid adverse events per 10,000 person-years was higher in the amiodarone group versus placebo (201 vs 42; RR: 4.44; 95% CI [2.87–6.89], P < 0.001, I²: 0%).
Fig. 3. Liver adverse events. "Total represents total events per 10,000 person-years. Liver adverse events were rare, but the rate of liver adverse events per 10,000 person-years was still higher in the amiodarone group versus placebo (54 vs 25; RR: 2.27; 95% CI [1.20–4.29]; P = 0.01, I^2: 0%)."
Fig. 4. Cardiac adverse events. “Total” represents total events per 10,000 person-years. Cardiac adverse events were the most commonly reported adverse events for both groups. The incident rate of cardiac adverse events per 10,000 person-years was higher in patients receiving amiodarone versus placebo (771 vs 450; RR: 1.94; 95% CI [1.39–2.71], P = 0.0001, I²: 23%).
The incident rate of skin adverse events was higher in the amiodarone group versus placebo (81 vs 23; RR: 1.99; 95% CI [1.04–3.78], P = 0.04, I²: 0%).

Fig. 5. Skin adverse events. “Total” represents total events per 10,000 person-years.
Fig. 6. Gastrointestinal adverse events. “Total” represents total events per 10,000 person-years. The incident rate of gastrointestinal adverse events was higher in patients receiving amiodarone compared to those receiving placebo (336 vs 212; RR: 1.63; 95% CI [1.18–2.24], P = 0.003, I²: 14%).

Study or Subgroup	Amiodarone Events	Total	Placebo Events	Total	Weight	Risk Ratio M-H, Random, 95% CI	Year
Greco 1989	0	7	0	7	Not estimable	1989	
Harner 1989	4	8	0	7	1.3% 8.00 [0.51, 126.67]	1989	
Nicklas 1991	0	49	0	52	Not estimable	1991	
Cermenyński 1992	0	305	2	308	1.1% 0.20 [0.01, 4.19]	1992	
Meyer 1993	0	5	0	5	Not estimable	1993	
Mahmariyan 1994	0	8	0	4	Not estimable	1994	
Donovan 1995	0	1	0	1	Not estimable	1995	
Singh 1995	20	1260	16	1268	17.2% 1.26 [0.65, 2.42]	1995	
Galve 1996	0	2	2	2	1.5% 0.20 [0.02, 2.64]	1996	
Gentile 1996	0	12	0	11	Not estimable	1996	
Dassou 1997	1	5	1	5	1.6% 1.00 [0.08, 11.99]	1997	
Julian 1997	22	1300	15	1300	17.2% 1.47 [0.76, 2.81]	1997	
Cairns 1997	13	1086	8	1068	10.9% 1.60 [0.67, 3.84]	1997	
Kochiadakis 1998	0	0	0	0	Not estimable	1998	
Cotter 1999	0	4	0	4	Not estimable	1999	
Kochiadakis 1999	0	3	0	3	Not estimable	1999	
Redle 1999	2	2	0	2	1.5% 5.00 [0.38, 66.01]	1999	
Bianconi 2000	0	1	0	1	Not estimable	2000	
Elizas 2000	0	271	0	266	Not estimable	2000	
Lee 2000	0	4	0	4	Not estimable	2000	
Peuhkurinen 2000	4	0	2	0	Not estimable	2000	
Yardas 2000	0	9	0	8	Not estimable	2000	
Kochiadakis 2000	0	119	0	110	Not estimable	2000	
Giri 2001	32	3	16	3	Not estimable	2001	
Maras 2001	0	3	0	3	Not estimable	2001	
White 2002	32	15	16	13	Not estimable	2002	
Yapli 2003	0	6	0	7	Not estimable	2003	
Auer 2004	13	2	13	2	Not estimable	2004	
Yora 2004	0	48	0	48	Not estimable	2004	
Channer 2004	0	275	0	171	Not estimable	2004	
Mitchell 2005	8	12	6	12	15.8% 1.33 [0.67, 2.67]	2005	
Singh 2005	0	734	0	377	Not estimable	2005	
Budeus 2006	3	2	0	2	Not estimable	2006	
Acalde 2006	1	1	1	1	7.1% 1.00 [0.32, 3.10]	2006	
Zebis 2007	0	10	0	10	Not estimable	2007	
Gu 2009	2	5	1	6	2.3% 2.40 [0.30, 19.34]	2009	
Balle 2011	2	0	0	0	Not estimable	2011	
Khtri 2012	7	27	5	41	8.2% 2.13 [0.75, 6.01]	2012	
Darkeni 2012	26	52	7	54	14.2% 3.86 [1.84, 8.11]	2012	
Riber 2013	0	10	0	10	Not estimable	2013	
Vilvanathan 2016	0	44	0	45	Not estimable	2016	

Total (95% CI) 5710 5241 100.0% 1.63 [1.18, 2.24]

Total events 192 111

Heterogeneity: Tau² = 0.05; Chi² = 13.88, df = 12 (P = 0.31); I² = 14%

Test for overall effect: Z = 2.96 (P = 0.003)
Fig. 7. Neurological adverse events. "Total" represents total events per 10,000 person-years. The incident rate of neurological adverse events per 10,000 person-years was higher in the amiodarone group versus placebo (140 vs 76; RR: 1.93; 95% CI [1.41–2.65], P < 0.001, I²: 0%).
Fig. 8. Ocular adverse events. "Total" represents total events per 10,000 person-years. The incident rate of ocular adverse events per 10,000 person-years was higher in patients receiving amiodarone versus placebo; however, this never reached statistical significance (37 vs 10; RR: 3.01; 95% CI [0.87–10.36], P = 0.08, I²: 30%).

Study or Subgroup	Amiodarone Events	Amiodarone Total	Placebo Events	Placebo Total	Weight	Risk Ratio M-H, Random, 95% CI Year	Risk Ratio M-H, Random, 95% CI
Greco 1989	0	7	0	7	Not estimable	1989	
Hamer 1989	1	8	0	7	13.2%	2.67 [0.13, 56.63] 1989	
Nicklas 1991	0	49	0	52	Not estimable	1991	
Cerezuynski 1992	9	305	0	308	14.8%	19.19 [1.12, 328.20] 1992	
Meyer 1993	0	5	0	5	Not estimable	1993	
Mahmalian 1994	0	8	0	4	Not estimable	1994	
Donovan 1995	1	1	0	1	17.6%	3.00 [0.24, 37.67] 1995	
Singh 1995	0	1260	0	1268	Not estimable	1995	
Gentile 1996	0	12	0	11	Not estimable	1996	
Galve 1996	0	2	0	2	Not estimable	1996	
Daoud 1997	0	5	0	5	Not estimable	1997	
Julian 1997	5	1300	5	1300	40.1%	1.09 [0.29, 4.45] 1997	
Cairns 1997	5	1086	0	1068	14.4%	10.82 [0.60, 195.40] 1997	
Kochiakdis 1998	0	0	0	0	Not estimable	1998	
Cotter 1999	0	4	0	4	Not estimable	1999	
Kochiakdis 1999	0	3	0	3	Not estimable	1999	
Redle 1999	0	2	0	2	Not estimable	1999	
Eliari 2000	0	271	0	266	Not estimable	2000	
Lee 2000	0	4	0	4	Not estimable	2000	
Peuhkurinen 2000	0	0	0	0	Not estimable	2000	
Vardas 2000	0	9	0	8	Not estimable	2000	
Kochiakdis 2000	0	119	0	110	Not estimable	2000	
Bianconi 2000	0	1	0	1	Not estimable	2000	
Giri 2001	0	3	0	3	Not estimable	2001	
Maras 2001	0	3	0	3	Not estimable	2001	
White 2002	0	15	0	13	Not estimable	2002	
Yaghi 2003	0	6	0	7	Not estimable	2003	
Auer 2004	0	2	0	2	Not estimable	2004	
Vora 2004	0	48	0	48	Not estimable	2004	
Chaner 2004	0	275	0	171	Not estimable	2004	
Singh 2005	0	734	0	377	Not estimable	2005	
Mitchell 2005	0	12	0	12	Not estimable	2005	
Budeus 2006	0	2	0	2	Not estimable	2006	
Alcalde 2006	0	1	0	1	Not estimable	2006	
Zebris 2007	0	10	0	10	Not estimable	2007	
Gu 2009	0	5	0	6	Not estimable	2009	
Ball 2011	0	0	0	0	Not estimable	2011	
Khtri 2012	0	27	0	41	Not estimable	2012	
Darkner 2012	0	52	0	54	Not estimable	2012	
Riber 2013	0	10	0	10	Not estimable	2013	
Vilvanathan 2016	0	44	0	45	Not estimable	2016	

Total (95% CI): 5710 5241 100.0% 3.01 [0.87, 10.36]

Total events: 21

Heterogeneity: Tau² = 0.59; Chi² = 5.69, df = 4 (P = 0.22); I² = 30%

Test for overall effect: Z = 1.74 (P = 0.08)
Fig. 9. Rates of drug discontinuation. "Total" represents total events per 10,000 person-years. The incident rate of drug discontinuation secondary to side effects per 10,000 person-years was higher in the amiodarone group versus placebo (1614 vs 896; RR: 1.79; 95% CI [1.45–2.19], P < 0.001, I²: 43%).
Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104835.

References

[1] M. Ruzieh, M.K. Moroi, N.M. Aboujamous, M. Ghahramani, G.V. Naccarelli, J. Mandrola, A.J. Foy, Meta-analysis comparing the relative risk of adverse events for amiodarone versus placebo, 50002–9149(19)31046-X, Am. J. Cardiol. (2019), https:// doi.org/10.1016/j.amjcard.2019.09.008 [Epub ahead of print].

[2] R. Greco, D.’Alterio, M. Schiattarella, B. Musto, S. Wolff, A.S. Boccia, N. Mininni. Intravenous amiodarone in acute anterior myocardial infarction: a controlled study, Cardiovasc. Drugs Ther. 2 (6) (1989) 791–794.

[3] A.W. Hamer, L.B. Alkes, J.A. Johns, Beneficial effects of low dose amiodarone in patients with congestive cardiac failure: a placebo-controlled trial, J. Am. Coll. Cardiol. 14 (7) (1989) 1768–1774.

[4] S.H. Hohnloser, T. Meinertz, T. Dammacher, K. Steiert, E. Jahnchen, M. Zehender, G. Freidrich, H. Just, Electrocardiographic and antiarrhythmic effects of intravenous amiodarone: results of a prospective, placebo-controlled study, Am. Heart J. 121 (1 Pt 1) (1991) 89–95.

[5] B.J. Meyer, F.W. Amann, Additional antiangiogenic efficacy of amiodarone in patients with limiting angina pectoris, Am. Heart J. 125 (4) (1993) 996–1001.

[6] J.J. Mahmarian, F.W. Smart, J.A. Moyé, J.B. Young, M.J. Francis, C.L. Kingsry, M.S. Verani, C.M. Pratt, Exploring the minimal dose of amiodarone with antiarrhythmic and hemodynamic activity, Am. J. Cardiol. 74 (7) (1994) 681–686.

[7] K.D. Donovan, B.M. Power, B.E. Hockings, G.J. Dobb, K.Y. Lee, Intravenous flecainide versus amiodarone for recent-onset atrial fibrillation, Am. J. Cardiol. 75 (10) (1995) 693–697.

[8] E. Galve, T. Rius, R. Ballester, M.A. Artaza, J.M. Arnau, D. Garcia-Dorado, J. Soler-Soler, Intravenous amiodarone in treatment of recent-onset atrial fibrillation: results of a randomized, controlled study, J. Am. Coll. Cardiol. 27 (5) (1996) 1079–1082.

[9] S. Gentile, A. Vignoli, G. Tommasielli, P. Guadalerio, G. Mirra, D. Manzella, A. Varricchio, D. Simeone, M. Varricchio, Effect of low dose Amiodarone on the incidence of sudden death in elderly patients with congestive heart failure: a double-blind, placebo-controlled study, Arch. Gerontol. Geriat. 22 (Suppl. 1) (1996) 191–195.

[10] E.G. Daoud, S.A. Strickberger, K.C. Man, R. Goyal, G.M. Deeb, S.F. Bolling, F.D. Pagani, C. Bitar, M.D. Meissner, F. Morady, Preoperative amiodarone as prophylaxis against atrial fibrillation after heart surgery, N. Engl. J. Med. 337 (25) (1997) 1785–1791.

[11] G.E. Kochiadakis, N.E. Igoumenidis, E.N. Simantirakis, M.E. Marketou, F.I. Parthenakis, N.E. Mezilis, P.E. Vardas, Intravenous propafenone versus intravenous amiodarone in the management of atrial fibrillation of recent onset: a placebo-controlled study, Pacing Clin. Electrophysiol. 21 (11 Pt 2) (1998) 2475–2479.

[12] G. Cotter, C. Matt, E. Kaluski, E. Metzker-Cotter, M. Koren, I. Litinsky, R. Simantov, Y. Moskovich, R. Zaidenstein, E. Peleg, Z. Vered, A. Golik, Conversion of recent onset paroxysmal atrial fibrillation to normal sinus rhythm: the effect of no treatment and high-dose amiodarone. A randomized, placebo-controlled study, Eur. Heart J. 20 (24) (1999) 1833–1842.

[13] G.E. Kochiadakis, N.E. Igoumenidis, M.C. Solomou, M.D. Kaleboubas, G.I. Chlouverakis, P.E. Vardas, Efficacy of amiodarone for the termination of persistent atrial fibrillation, Am. J. Cardiol. 83 (1) (1999) 58–61.

[14] J.D. Redlie, S. Khurana, R. Marzan, P.A. McCullough, J.R. Stewart, D.C. Westveer, W.W. O’Neill, J.S. Bassett, N.A. Tepe, H.I. Frumin, Prophylactic oral amiodarone compared with placebo for prevention of atrial fibrillation after coronary artery bypass surgery, Am. Heart J. 138 (1 Pt. 1) (1999) 144–150.

[15] L. Bianconi, A. Castro, M. Dinelli, P. Albani, A. Pappalardo, E. Richardi, M. Santini, Comparison of intravenously administered dofetilide versus amiodarone in the acute termination of atrial fibrillation and flutter. A multicentre, randomized, double-blind, placebo-controlled study, Eur. Heart J. 21 (15) (2000) 1265–1273.

[16] M.V. Elizari, J.M. Martinez, C. Belziti, M. Ciruzzi, R. Perez de la Hoz, A. Sinisi, J. Carbajales, O. Scapin, J. Garguechivich, L. Girotti, A. Cagide, Morbidity and mortality following early administration of amiodarone in acute myocardial infarction. GEMICA study investigators, GEMA Group, Buenos Aires, Argentina. Grupo de Estudios Multicentricos en Argentina, Eur. Heart J. 21 (3) (2000) 198–205.

[17] S.H. Hohnloser, T. Meinertz, T. Dammacher, K. Steiert, E. Jahnchen, M. Zehender, G. Freidrich, H. Just, Electrocardiographic and antiarrhythmic effects of intravenous amiodarone: results of a prospective, placebo-controlled study, Cardiovasc. Drugs Ther. 2 (6) (1989) 791–794.

[18] K. Peuhkurinen, M. Niemelä, A. Ylitalo, M. Linnaluoto, M. Lilja, J. Juvonen, Effectiveness of amiodarone as a single oral dose for recent-onset atrial fibrillation, Am. J. Cardiol. 85 (4) (2000) 462–465.

[19] P.E. Vardas, G.E. Kochiadakis, N.E. Igoumenidis, A.M. Tsatsakis, E.N. Simantirakis, G.I. Chlouverakis, Amiodarone as a first-choice drug for restoring sinus rhythm in patients with atrial fibrillation: a randomized, controlled study, Chest 117 (6) (2000) 1538–1545.

[20] S. Fass, C.M. White, A.B. Dunn, K. Felton, L. Freeman-Bosco, P. Reddy, J.P. Tsikouris, H.A. Wilcox, J. Kluger, Oral amiodarone for prevention of atrial fibrillation after open heart surgery, the Atrial Fibrillation Suppression Trial (AFIST): a randomised placebo-controlled trial, Lancet 357 (9259) (2001) 830–836.