The plethora of *Tubeufiaceae* in lakes of the northwestern Yunnan plateau, China

Long-Li Li, Hong-Wei Shen, Dan-Feng Bao, Dhanushka N. Wanasinghe, Yong-Zhong Lu, Yuan Feng and Zong-Long Luo

The diversity of lignicolous freshwater fungi in northwestern Yunnan, China, has been studied for several years in the College of Agriculture and Biological Science, at Dali University. Over the last 5 years, we published two new genera and nine new species of *Tubeufiaceae* from northwestern Yunnan. This study focused on introducing tubeufia-like hyphomycetous fungi found in freshwater lakes in the northwestern Yunnan plateau. Eleven fresh collections of tubeufiaceous taxa were gathered and identified. Among them, a new genus, *Neomanoharachariella*, is introduced to accommodate *Neomanoharachariella aquatica*, which is characterized by a light brown to dark brown color, dicytoseptate, and broadly oval to ellipsoid and well-developed conidiophores.

Two new species, viz., *Neohelicosporium suae* and *Parahelicomyces suae*, one new record, *Helicoma rufum*, and three new collections, namely, *H. rugosum*, *P. hyalosporus*, and *Tubeufia cylindrothecia* are introduced based on morphological evidence and molecular phylogenetic analysis of combined ITS, LSU, tef 1-α, and RPB2 sequence data. Detailed descriptions and illustrations of these species are provided, and a morphological comparison with similar taxa is discussed.

KEYWORDS

Dothideomycetes, lignicolous freshwater fungi, helicosporous hyphomycetes, morphology, multigene phylogeny

Introduction

Lignicolous freshwater fungi are an important group of organisms, involved in nutrient cycling by decaying submerged wood (Hyde et al., 2016a; Shen et al., 2022). Yunnan Province is one of the richest biodiversity hotspots, containing abundant resources of lignicolous freshwater fungi, with more than 281 species reported since 1986 (Shen et al., 2022). Among lignicolous freshwater fungi, *Tubeufiaceae* is one of the most species-rich groups in *Dothideomycetes*. *Tubeufiaceae* was introduced by Boonme et al. (2014) based on molecular phylogenetic analysis to accommodate *Tubeufiaceae*. Liu et al. (2017) treated *Bezierromycetaceae* and *Wiesneriomycetaceae* as accepted families.
in Tubeufiales based on divergence time estimates. To date, Tubeufiales contains three families, viz., Bezerrymycetaceae, Tubeufiaceae, and Wiesneriomyctaceae. The majority of Tubeufiaceae comprised freshwater taxa (Doilom et al., 2017; Lu et al., 2018a;b; Dong et al., 2020; Hongsanan et al., 2020). The family was established by Barr (1979) based on the generic type Tubeufia (Penzig and Saccardo, 1897). In the last decade, several studies of Tubeufiaceae have been published, with many species reported in freshwater habitats; most of them were asexual morphs (Boonmee et al., 2011; Hyde et al., 2016b, 2017; Brahmanage et al., 2017; Luo et al., 2017; Liu et al., 2018; Lu et al., 2018a,b). Lu et al. (2018b) reappraised and provided an updated phylogenetic tree for Tubeufiales which included 13 new genera, and expanded the circumscription of the type family Tubeufiaceae. To date, Tubeufiaceae includes 47 genera. They are widely distributed in tropical, subtropical, and temperate regions (Boonmee et al., 2011, 2014; Luo et al., 2017; Lu et al., 2018b), and most taxa are saprobic on woody substrates in terrestrial and freshwater habitats (Cai et al., 2003; Zhao et al., 2007; Lu et al., 2018b).

Members of Tubeufiaceae are a group of microfungi that are morphologically fascinating (Zhao et al., 2007) and have helicosporous hyphomycetes. Tubeufiaceae has been reported as sexual and asexual morphs. Asexual morphologies are mostly found as helicosporous hyphomycetes, while some are phragmosporous and chlamydosporous conidia (Lu et al., 2018b; Dong et al., 2020). Helicosporous hyphomycetes make up a large part of the order Tubeufiales. They are known to be present in many genera, such as Acanthohelicosporium, Berkleasmium, Chlamydotubeufia, Dematiohelicosporum, Helicangiopsis, Helicodochium, Helicothalminus, Helicoma, Helicomyces, Helicostephanospora, Neohelicosporium, Neoacanthostigma, Neohelicomyces, Neohelicomyces, Parahelicomyces, and Tubeufia (Boonmee et al., 2011, 2014; Brahmanage et al., 2017; Lu et al., 2017a,b,c; 2018a,b; Luo et al., 2017; Liu et al., 2018). Chlamydosporous and phragmosporous hyphomycetes in Tubeufiaceae are reported in Aquaphila, Berkleasmium, Chlamydotubeufia, Dictyospora, Helicoma, Kamalomyces, Neohelicosporium, Tamhinispora, and Tubeufia (Lu et al., 2018b). Their sexual morphs are characterised by superficial ascomata, bitunicate asc, and hyaline to pale brown, elongate, obvoid or oblong, and septate ascospores (Barr, 1986; Kodsueb et al., 2006; Boonmee et al., 2011, 2014; Brahmanage et al., 2017; Lu et al., 2018b).

Helicoma was introduced by Corda (1837) with the type species H. muelleri. It is one of the earliest described helicosporous genus (Morgan, 1892; Linder, 1929; Moore, 1955). Helicoma includes two asexual morphs, one is characterized by conidia pleurogenous, helicoid, becoming loosely coiled in water, conidiogenous cells with denticles, and tooth-like protrusions. Other conidia are acrogenous, helicoid, circinate, tapering toward the apex, truncating at the base, and not becoming loose in water (Lu et al., 2018b). Neohelicosporium was introduced by Lu et al. (2018a) based on phylogenetic and morphological evidence. Currently, 24 species are accepted in the genus, of which 11 species were reported in freshwater habitats. Pseudohelicomyces was established by Lu et al. (2018b) to accommodate five species, viz., Ps. aquaticus, Ps. hyalosporus, Ps. indicus, Ps. paludosus, and Ps. talbotii (type species) based on multi-gene phylogenetic analysis. However, following previous publications, this generic name has an older homonym: Pseudohelicomyces (Valenzuela and Garnica, 2000), and this rendered the Pseudohelicomyces described by Lu et al. illegitimate. Lu et al. (2020) provided a proposal to conserve Pseudohelicomyces (Tubeufiaceae) against Pseudohelicomyces (Hymenogastraceae). Hsieh et al. (2021) established Parahelicomyces to replace Pseudohelicomyces and transferred all species of Pseudohelicomyces to Parahelicomyces. Until recently, nine species are accepted in Parahelicomyces (Lu et al., 2018b; Li et al., 2022; Tian et al., 2022). Tubeufia is the largest genus in Tubeufiaceae and is commonly reported as saprobes on submerged decaying wood in freshwater habitats (Ho et al., 2001; Cai et al., 2002; Liu et al., 2018; Lu et al., 2018b; Jayasiri et al., 2019). Members of Tubeufiaceae are mostly saprobic and widely distributed and are often found on woody substrates in terrestrial and freshwater habitats (Lu et al., 2018b). The southern China areas of Guangdong, Guangxi, Guizhou, Hubei, Yunnan, and other subtropical or tropical regions are very suitable for the growth and distribution of Tubeufiaceae fungi (Cai et al., 2002; Liu et al., 2018; Lu et al., 2018a,b).

During our investigation of freshwater fungi on submerged decaying wood, more than 100 specimens of freshwater hyphomycetes were collected from the lakes in the northwestern Yunnan plateau. This article aims to introduce eleven helicosporous hyphomycetes which were collected from the Luguhu and Shudu lakes. Phylogenetic analyses of combined ITS, LSU, tef 1-α, and RP22 sequence data place them in Helicoma, Neohelicosporium, Parahelicomyces, and Tubeufia. A new genus Neomanoharachariella and three new species, viz., Neomanoharachariella aquatica, Neohelicosporium suae, and Parahelicomyces suae are introduced with morphological and phylogenetic evidence. Helicoma rugosum is newly recorded in freshwater habitats for the first time in China. In addition, we combine Helicoma sp. (HKUCC 9118) as H. rugosum (HKUCC 9118) according to multi-gene phylogeny analysis and morphological evidence. Three known species, namely, Helicoma rugosum, Parahelicomyces hyalosporus, and Tubeufia cylindrothecia, are also accounted. Full descriptions, color photo plates of the species, and an updated phylogenetic tree for Tubeufiaceae are provided. This study provides a case study for lakes as a worthwhile niche area for the further study of hyphomycetous associations and hints that these lakes in the Yunnan plateau may potentially host numerous unknown fungal species.
Materials and methods

Collection, isolation, and morphology

Specimens of submerged decaying wood were collected from the Luguhu and Shuduhu lakes in the northwestern Yunnan province of China and were taken to the laboratory in ziplock plastic bags. The specimens were incubated at room temperature for 1 week in plastic boxes lined with moistened tissue paper. Specimen observations and isolation were performed by following the protocols provided by Liu et al. (2018) and Senanayake et al. (2020). Macromorphological characteristics of samples were observed using an Optec SZ 760 compound stereomicroscope. Temporarily prepared microscope slides were placed under a Nikon ECLIPSE Ni-U compound stereomicroscope for observation and micro-morphological-photography. The morphologies of colonies on native substrates were photographed with a Nikon SMZ1000 stereo zoom microscope. Single spore isolation was performed according to the following steps: the conidia suspension from specimens was transported using a sterilized pipette, placed on potato dextrose agar (PDA), and incubated at room temperature overnight. Germinated conidia were transferred to new PDA/malt extract agar (MEA) (Beijing land bridge technology CO., LTD., China) plates and incubated at room temperature (25°C). The specimens were deposited in the Herbarium of Cryptogams Kunming Institute of Botany, Academia Sinica (KUN-HKAS), Kunming, China. Living cultures were deposited in the China General Microbiological Culture Collection Center (CGMCC), Beijing, China, and the Kunming Institute of Botany Culture Collection Center, Kunming, China (KUNCC). Mycobank numbers were registered (https://www.mycobank.org). New species were established following the recommendations outlined by Chethana et al. (2021).

DNA extraction, PCR amplification, and sequencing

Fungal mycelium was removed from the surfaces of colonies that were grown on PDA or MEA for 4–6 weeks and transferred to a 1.5 ml centrifuge tube. A Trelief TM Plant Genomic DNA Kit (TSP101-50) was used to extract DNA from the ground mycelium according to the manufacturer's instructions. Four gene regions; ITS, LSU, tef 1-α, and RPB2 were amplified using ITS5/ITS4, LR0R/LR5 (Vilgalys and Hester, 1990), 983F/2218R, and RPB2-5F/RPB2-7CR (Liu et al., 1999). The PCR mixture was prepared as follows: 12.5 μl of 2 × Taq Master Mix (Genes and Biotech Co., Ltd), 1 μl of each primer, 1 μl of genomic DNA extract, and 9.5 μl of deionized water. The PCRs of ITS, LSU, tef 1-α, and RPB2 genes were processed as described in Su et al. (2015). PCR amplification was confirmed on 1% agarose electrophoresis gels stained with ethidium bromide. Sequencing was carried out by Tsingke Biological Engineering Technology and Services Co., Ltd (Yunnan, P.R. China).

Sequence alignment

Sequences were assembled using BioEdit. A BLAST search was performed on sequences with high similarity indices to find the closest matches with taxa in Tubeufaccae and in recently published data (Luo et al., 2017; Lu et al., 2018b; Dong et al., 2020). All consensus sequences and the reference sequences were automatically aligned with MAFFT version 7.0 (Kuraku et al., 2013; Katoh et al., 2019). Aligned sequences of each gene region (ITS, LSU, tef 1-α, and RPB2) were combined and manually improved using BioEdit v. 7.0 (Hall, 1999). Ambiguous regions were excluded from the analysis and gaps were treated as missing data.

Phylogenetic analyses

Phylogenetic analyses were performed using maximum likelihood (ML) and Bayesian tree building criteria. Maximum likelihood (ML) analysis was carried out using RAxML-HPC2 on XSEDE (8.2.12) (Stamatakis, 2006; Stamatakis et al., 2008) on the CIPRES Science Gateway website (Miller et al., 2010; http://www.phylo.org/portal2) and the estimated proportion of invariant sites was determined using the GTR+Γ+I model. Bayesian analyses were performed using MrBayes v. 3.1.2. (Ronquist and Huelsenbeck, 2003). The model of each gene was estimated using MrModeltest 2.3, and the GTR + I + G model was the best-fit model for ITS, LSU, tef 1-α, and RPB2 Bayesian analyses. Posterior probabilities (PP) (Ranala and Yang, 1996) were performed by Markov chain Monte Carlo sampling (BMCMC) in MrBayes v.3.1.2 (Liu et al., 2012). Six simultaneous Markov chains were run for 10 million generations, and trees were sampled every 100th generation (resulting in 100,000 trees). The first 20,000 trees, representing the burn-in phase of the analyses, were discarded and the remaining 80,000 (post-burning) trees were used for calculating PP in the majority rule consensus tree (Cai et al., 2006; Liu et al., 2012). Phylogenetic trees were represented by FigTree v. 1.4.0 and edited in Microsoft Office PowerPoint 2016. Newly-generated sequences in this study were submitted to GenBank, and the strain information used in this paper is provided in Table 1.

Results

Phylogenetic analyses

Phylogenetic analyses of combined ITS, LSU, tef 1-α, and RPB2 sequences comprised a total of 3,316 characters
Taxa	Strain	GenBank Accession No.			
		ITS	LSU	tef 1-α	RPB2
Acanthohelicospora pinicola³	MFLUCC 10-0116	KF301526	KF301534	KF301555	–
Acanthohelicospora scopula	ANM 386	GQ856141	GQ850489	–	–
Acanthostigmina multisepatum	ANM 475	GQ856145	GQ850492	–	–
Acanthostigmina multisepatum	ANM 665	GQ856144	GQ850493	–	–
Acanthotubeufia filiforme³	ANM 101	–	–	GQ850495	–
Acanthotubeufia filiforme	ANM 514	GQ856146	GQ850494	–	–
Acanthotubeufia alliicans	BCC 3463	DQ341097	DQ341100	–	–
Acanthotubeufia alliicans	BCC 3520	DQ341098	DQ341102	–	–
Acanthotubeufia alliicans	BCC 3543	DQ341106	DQ341101	–	–
Acanthotubeufia alliicans	MFLUCC 16-0010	KX454165	KX454166	KX177034	MF535255
Acanthotubeufia alliicans	MFLUCC 16-0020	KX454167	KX454168	–	MF535256
Berkleasmium aquaticum³	MFLUCC 17-0049	KY790444	KY790432	KY792608	MF535268
Berkleasmium fusiforme³	MFLUCC 17-1978	MHS588693	MHS58820	MHS50884	MHS50107
Berkleasmium guangxiense³	MFLUCC 17-0042	KY790448	KY790436	KY792612	MF535270
Berkleasmium longiporum³	MFLUCC 17-1999	MHS588698	MHS58825	MHS50889	MHS51012
Boerlagiomyces macrospora³	MFLUCC 12-0388	KU144927	KU764712	KU872570	–
Botryosphaeria dothidea	CBS 115476	KF66151	DQ678051	DQ767637	DQ677944
Chlamydotubeufia cylindrica³	MFLUCC 16-1130	MHS587020	MHS58830	MHS50893	MHS51018
Chlamydotubeufia huaiyangplaensis³	MFLUCC 10-0926	–	–	–	–
Chlamydotubeufia krabeniensis³	MFLUCC 16-1134	KHY78767	KHY78759	KHY792598	MF535261
Dematiohelicoma pulchrum	MUCL 39827	AY916457	AY856872	–	–
Dematiohelicomyces helicosporus³	MFLUCC 16-0213	KX454169	KX454170	KY170355	MF535258
Dematiohelicomyces helicosporus	MFLUCC 16-0003	MHS587030	MHS58831	MHS50894	MHS51019
Dematiohelicomyces helicosporus	MFLUCC 16-0007	MHS587040	MHS58832	MHS50895	MHS51020
Dematiohelicosporus guttulatum³	MFLUCC 17-2011	MHS587050	MHS58833	MHS50896	MHS51021
Dematiohelicosporus chiangraiensis³	MFLUCC 10-0115	JN865210	JN865198	–	–
Dictyospora thailandica³	MFLUCC 16-0001	KY873627	KY873622	KY873286	MHS51023
Dictyospora thailandica	MFLUCC 11-0512	KF301528	KF301536	–	–
Dictyospora thailandica	MFLUCC 16-0215	KY873628	KY873623	KY873287	–
Helicangiospora lignicola³	MFLUCC 11-0378	KF301523	KF301531	KF301552	–
Helicocarctatus aquaticus¹	MFLUCC 17-1996	MHS587070	MHS58835	MHS50898	MHS51024
Helicocarctatus thailandicus¹	MFLUCC 18-0332	–	ON764311	MK341685	–
Helicodochium aquaticum	MFLUCC 16-0008	MHS587080	MHS58836	MHS50899	MHS51025
Helicodochium aquaticum⁷	MFLUCC 17-2016	MHS587090	MHS58837	MHS50900	MHS51026
Helicohyalinum aquaticum	MFLUCC 16-1131	KY873625	KY873620	KY873284	MF535257
Helicohyalinum infundibulum³	MFLUCC 16-1133	MHS58712	MHS58840	MHS50903	MHS51029
Helicoma ambians	UAMH 10533	AY916451	AY856916	–	–
Helicoma ambians	UAMH 10534	AY916450	AY856869	–	–
Helicoma aquaticum³	MFLUCC 17-2025	MHS58713	MHS58841	MHS50904	MHS51030
Helicoma bruneisporum³	MFLUCC 17-1983	MHS58714	MHS58842	MHS50905	MHS51031
Helicoma demissi	NBRC 30667	AY916455	AY856897	–	–
Helicoma fusiforme³	MFLUCC 17-1981	MHS58715	–	MHS50906	–
Helicoma guttulatum³	MFLUCC 16-0022	KX454171	KX454172	MF535254	MHS51032
Helicoma hongkongense	MFLUCC 17-2005	MHS58716	MHS58843	MHS50907	MHS51033

(Continued)
TABLE 1 (Continued)

Taxa	Strain	GenBank Accession No.			
	ITS	LSU	tef 1-α	RPB2	
Helicoma khunkornensis	MFLUCC 10–0119	JN865203	JN865191	KF301559	–
Helicoma linderi	NBRC 9207	AY916454	AY856895	–	–
Helicoma longisporum	MFLUCC 16–0002	MHH8717	MHH58844	MHH50908	MHH51034
Helicoma longisporum	MFLUCC 16–0005	MHH58718	–	MHH50909	MHH51035
Helicoma longisporum	MFLUCC 16–0211	MHH58719	MHH58845	MHH50910	MHH51036
Helicoma longisporum	MFLUCC 17–1997	MHH58720	MHH58846	MHH50911	MHH51037
Helicoma miscanathi	MFLUCC 11–0375	KF301525	KF301533	KF301554	–
Helicoma muelleri	CBS 964.69	AY916453	AY856877	–	–
Helicoma muelleri	UBC F13877	AY916452	AY856917	–	–
Helicoma multiseptatum	GZCC 16–0080	MHH58721	MHH58847	MHH50912	MHH51038
Helicoma nematosporum	MFLUCC 16–0001	MHH58722	MHH58848	MHH50913	MHH51039
Helicoma rubriappendiculatum	MFLUCC 18–0491	MHH58723	MHH58849	MHH50914	MHH51040
Helicoma rafum	MFLUCC 17–1806	MHH58724	MHH58850	MHH50915	–
Helicoma rafum	CGMCC 3.2354	OP184080	OP184069	OP186053	OP186061
Helicoma rugosum	ANM 196	GQ856138	GQ850482	–	–
Helicoma rugosum	ANM 953	GQ856139	GQ850483	–	–
Helicoma rugosum	ANM 1169	–	GQ850484	–	–
Helicoma rugosum	JCM 2739	–	AY856888	–	–
Helicoma rugosum	HKUCC 9118	–	AY849966	–	–
Helicoma septoconstrictum	MFLUCC 17–1993	MHH58725	MHH58851	MHH50916	MHH51041
Helicoma septoconstrictum	MFLUCC 17–2001	MHH58726	MHH58852	MHH50917	MHH51042
Helicoma siamensi	MFLUCC 10–0120	JN865204	JN865192	KF301558	–
Helicoma tectonica	MFLUCC 12–0563	KU144928	KU764713	KU872751	–
Helicoma vaccinii	CBS 216.90	AY916486	AY856879	–	–
Helicomyces hyalosporus	GZCC 16–0070	MHH58728	MHH58854	MHH50919	MHH51047
Helicomyces hyalosporus	MFLUCC 17–0051	MHH58731	MHH58857	MHH50922	MHH51048
Helicomyces torquatus	MFLUCC 16–0217	MHH58732	MHH58858	MHH50923	MHH51048
Helicomyces chiayiensis	BCRC FU30842	LC316604	–	–	–
Helicomyces colligatus	MFLUCC 16–1132	MHH58727	MHH58853	MHH50918	MHH51043
Helicosporium flavidum	MFLUCC 16–1230	KY873626	KY873621	KY873285	–
Helicosporium tateosporum	MFLUCC 16–0226	KY321324	KY321327	KY792601	MHH51056
Helicosporium vesicarium	MFLUCC 17–1795	MHH58739	MHH58864	MHH50930	MHH51055
Helicotrunatum palmigenum	NBRC 32663	AY916480	AY856898	–	–
Helicotubefia guangxiensis	MFLUCC 17–0040	MHH90018	MHH90023	MHH90028	MHH90033
Helicotubefia hydei	MFLUCC 17–1980	MHH90021	MHH90026	MHH90031	MHH90036
Helicotubefia jonesii	MFLUCC 17–0043	MHH90020	MHH90025	MHH90030	MHH90035
Kamalomyces thailandicus	MFLUCC 11–0158	MFS06883	MFS06881	MFS06885	–
Kamalomyces thailandicus	MFLUCC 13–0233	MFS06884	MFS06882	MFS06886	–
Manonarakarhiella tectonia	MFLUCC 12–0170	KU144935	KU784705	KU872762	–
Muritulchra aquatica	DLUCC 0671	KY320531	KY320548	–	–
Muritulchra aquatica	KUMCC 15–0245	KY320533	KY320550	KY320563	MHH51057
Muritulchra aquatica	KUMCC 15–0276	KY320534	KY320551	KY320564	MHH51058
Muritulchra aquatica	MFLUCC 15–0249	KY320532	KY320549	–	–
Neocanthurigaster fusiforme	MFLUCC 11–0510	KF301529	KF301537	–	–

(Continued)
Taxa	Strain	GenBank Accession No.			
		ITS	LSU	tef 1-α	RPB2
Neochlamydotubeufia fusiformis\(^2\)	MFLUCC 16–0016	MH558740	MH558865	MH550931	MH551059
Neochlamydotubeufia fusiformis\(^2\)	MFLUCC 16–0214	MH558741	MH558866	MH550932	MH551060
Neochlamydotubeufia khunkornensis\(^2\)	MFLUCC 16–0118	JN865202	JN865190	KF301564	–
Neochlamydotubeufia khunkornensis	MFLUCC 16–0025	MH558742	MH558867	MH550933	MH551061
Neohelicoma fagacearum\(^2\)	MFLUCC 11–0379	KF301524	KF301532	KF301553	–
Neohelicomycetes aquaticus\(^2\)	KUMCC 15–0470	KX454173	KX454174	–	MH51067
Neohelicomycetes grandisporus\(^2\)	MFLUCC 16–1106	KY320530	KY320547	–	MH51068
Neohelicomycetes submersus\(^2\)	MFLUCC 16–0993	KY320528	KY320545	KY320561	MH51066
Neohelicosporium abuense	CBS 101688	AY916470	AY916085	–	–
Neohelicosporium acrogenisporum	MFLUCC 17–2019	MH558746	MH558871	MH550937	MH51069
Neohelicosporium aquaticum\(^2\)	MFLUCC 17–1519	MF467916	MF467929	MF535242	MF535272
Neohelicosporium arundinellum	ANM 718	GQ856140	GQ850485	–	–
Neohelicosporium bambuscola\(^2\)	MFLUCC 21–0156	OL608157	OL608146	OL64517	OL64523
Neohelicosporium ellipsoides\(^2\)	MFLUCC 16–0229	MH558748	MH558873	MH550939	MH51071
Neohelicosporium fusiformis\(^2\)	MFLUCC 16–0642	MG017612	MG017613	MG017614	–
Neohelicosporium grisum	UAMH 1694	AY916873	AY856902	–	–
Neohelicosporium guangxianense	GZCC 16–0686	MH558749	MH558874	MH550940	MH51072
Neohelicosporium guangxianense	MFLUCC 17–1522	MF467922	MF467935	MF535248	MF535278
Neohelicosporium hyalosporum\(^2\)	GZCC 16–0076	MF467923	MF467936	MF535249	MF535279
Neohelicosporium irregulare\(^2\)	MFLUCC 17–1796	MH55875	MH558877	MH550943	MH51075
Neohelicosporium krabense	MFLUCC 16–0224	MH558754	MH558879	MH550945	MH51077
Neohelicosporium laxisporum\(^2\)	MFLUCC 17–2027	MH558755	MH558880	MH550946	MH51078
Neohelicosporium morganii	CBS 281.54	MH857331	MH868874	–	–
Neohelicosporium morganii	CBS 222.58	AY916469	AY856880	–	–
Neohelicosporium ovoidesporum\(^2\)	GZCC 16–0064	MH558756	MH558881	MH550947	MH51079
Neohelicosporium panacheum	CBS 257.59	MH857857	–	–	–
Neohelicosporium parvisporum	GZCC 16–0078	MF467924	MF467937	MF535250	MF535280
Neohelicosporium parvisporum	MFLUCC 17–1523	MF467926	MF467939	MF535252	MF535282
Neohelicosporium sp.	HKUCC 10235	–	AY849942	–	–
Neohelicosporium sp.	CBS 189.95	AY916472	AY856882	–	–
Neohelicosporium submersum	MFLUCC 17–2376	NR_171979	MN913738	–	–
Neohelicosporium sueae\(^2\)	CGMCC 3.23541	OP184079	OP184068	OP186052	OP265702
Neohelicosporium taiwanense\(^7\)	BCRC FU30841	LC316603	–	–	–
Neohelicosporium thailandicum\(^7\)	MFLUCC 16–0221	MF467928	MF467941	MF535253	MF535283
Neomanoharachariella aquatica\(^7\)	CGMCC 3.23539	OP184074	OP184063	OP186047	OP186058
Neomanoharachariella aquatica\(^7\)	CGMCC 3.23540	OP184075	OP184064	OP186048	OP186059
Neotubeufia krahensi\(^2\)	MFLUCC 16–1125	MG012031	MG012024	MG012010	MG012017
Parahelicomyces aquaticus\(^2\)	MFLUCC 16–0234	MH558766	MH558891	MH550958	MH51092
Parahelicomyces changmaicensis\(^2\)	MFLUCC 21–0159	OL697884	OL608145	OL645154	OL645242
Parahelicomyces hyalosporus	CBS 283.51	AY916464	AY856881	DA77928	DA77981
Parahelicomyces hyalosporus	KUMCC 15–0281	KY320526	KY320543	KY320559	MH51089
Parahelicomyces hyalosporus	KUMCC 15–0322	KY320525	KY320542	KY320558	–

(Continued)
Taxa	Strain	GenBank Accession No.	ITS	LSU	tef 1-α	RPB2
Parahelicomyces hyalosporus	KUMCC 15–0411	KY320527	KY320544	KY320560	–	
Parahelicomyces hyalosporus	KUMCC 15–0430	KY320524	KY320541	KY320557	–	
Parahelicomyces hyalosporus	MFLUCC 15–0343	KY320523	KY320540	–	–	
Parahelicomyces hyalosporus	CGMCC 3.23353	OP184073	OP184062	OP186046	OP186057	
Parahelicomyces hyalosporus	KUNCC 22–12443	OP184076	OP184065	OP186049	–	
Parahelicomyces hyalosporus	KUNCC 22–12444	OP184077	OP184066	OP186050	OP186060	
Parahelicomyces indicus	CBS 374.93	AY916477	AY856885	–	–	
Parahelicomyces menglunicus	KUN HKAS 85795	MK335914	–	MK335916	–	
Parahelicomyces paludosus	CBS 120503	DQ341095	DQ341103	–	–	
Parahelicomyces querus	MFLUCC 17–0895	MK347720	MK347934	MK360077	MK434906	
Parahelicomyces suae	CGMCC 3.23353	OP184072	OP184061	OP186045	OP186056	
Parahelicomyces suae	CGMCC 3.23358	OP184081	OP184070	OP186054	–	
Parahelicomyces tallouei	MUCL 33010	AY916465	AY856874	–	–	
Parahelicomyces talbotii	MFLUCC 17–2021	MH558765	MH558890	MH550957	MH551091	
Parahelicomyces yunnanensis	CGMCC 3.20429	MZ092717	MZ841658	–	OM022000	
Pleuro helicosporium parvisporum	MFLUCC 17–1982	MH558764	MH558899	MH550956	MH551088	
Pseudo helicoon gigantisporum	BCC 3550	AY916467	AY856904	–	–	
Pseudo helicoon subglobosum	BCRC FU30843	LC316607	LC316610	–	–	
Tamhinspora indica	NFOCC 2924	KC469282	KC469283	–	–	
Tamhinspora ruminocarii	NFOCC 4231	MG263746	MG263745	–	–	
Thaxteriellopsis lignicola	MFLUCC 10–0123	JN865207	JN865195	KF301562	–	
Thaxteriellopsis lignicola	MFLUCC 10–0124	JN865208	JN865196	KF301561	–	
** Tubefusia abundata**	ATCC 42524	AY916458	AY856911	–	–	
** Tubefusia aquatica**	MFLUCC 16–1249	KY320522	KY320539	KY320556	MH551142	
** Tubefusia aquatica**	MFLUCC 17–1794	MH558770	MH558895	MH550962	MH551096	
** Tubefusia bambusicola**	MFLUCC 17–1803	MH558771	MH558896	MH550963	MH551097	
** Tubefusia brevis**	MFLUCC 17–1799	MH558772	MH558897	MH550964	MH551098	
** Tubefusia brunnea**	MFLUCC 17–2022	MH558773	MH558898	MH550965	MH551099	
** Tubefusia chiangmaiensis**	MFLUCC 11–0514	KF301530	KF301538	KF301557	–	
** Tubefusia chiangmaiensis**	MFLUCC 17–1801	MH558774	MH558899	MH550966	MH551100	
** Tubefusia chlamydospora**	MFLUCC 16–0223	MH558775	MH558900	MH550967	MH551011	
** Tubefusia cocci**	MFLUCC 22–0001	OM102544	OL985957	OM354866	OM354941	
** Tubefusia cylindrothecia**	MFLUCC 16–1253	KY320519	KY320536	KY320553	–	
** Tubefusia cylindrothecia**	MFLUCC 16–1283	KY320518	KY320535	KY320552	MH551143	
** Tubefusia cylindrothecia**	MFLUCC 17–1792	MH558776	MH558901	MH550968	MH551102	
** Tubefusia cylindrothecia**	MFLUCC 11–0076	MT627709	MN913702	–	–	
** Tubefusia cylindrothecia**	MFLUCC 10–0919	MT627710	MN913701	–	–	
** Tubefusia cylindrothecia**	CGMCC 3.23352	OP184071	OP184060	OP186044	OP186055	
** Tubefusia dictyospora**	MFLUCC 17–1805	MH558778	MH558903	MH550970	MH55104	
** Tubefusia eccentrica**	GZCC 16–0084	MH558781	MH558906	MH550973	MH55107	
** Tubefusia eccentrica**	MFLUCC 17–1524	MH558782	MH558907	MH550974	MH55108	
** Tubefusia entadae**	MFLU 18–2102	NR633232	–	–	–	
** Tubefusia fanghengensis**	MFLUCC 17–0047	MH558783	MH558908	MH550975	MH55109	
** Tubefusia filiformis**	MFLUCC 16–1128	–	KY092407	KY117028	MFS35284	

(Continued)
TABLE 1 (Continued)

Taxa	Strain	GenBank Accession No.			
	ITS	LSU	tef 1-α	RPB2	
Tubeufia filiformis	MFLUCC 16–1135	KY092416	KY092411	KY117032	MF535285
Tubeufia geniculataT	BCRC FU30849	LC335817	–	–	–
Tubeufia geniculata	NCYU U2–1B	LC335816	–	–	–
Tubeufia guangxiensis	MFLUCC 17–0045	MG012025	MG012018	–	–
Tubeufia heichianusT	MFLUCC 17–0052	MJ558785	MJ558810	MJ550978	MJ551112
Tubeufia hyalospora	MFLUCC 15–1250	MJ558786	MJ558811	MJ550979	–
Tubeufia inaequalis	MFLUCC 17–0053	MJ558789	MJ558814	MJ550982	MJ551115
Tubeufia javanica	MFLUCC 12–0545	JY800034	JY800036	–	–
Tubeufia krabiensis	MFLUCC 16–0228	MJ558792	MJ558917	MJ550985	MJ551118
Tubeufia latispora	MFLUCC 16–0219	KY092417	KY092412	KY117033	MF535286
Tubeufia laxispora	MFLUCC 16–0232	KY092413	KY092408	KY117029	MF535287
Tubeufia laxispora	MFLUCC 17–2023	MJ558794	MJ558919	MJ550987	MJ551121
Tubeufia lilliputiae	NBRC 32664	AY916483	AF386899	–	–
Tubeufia longihelicospora	MFLUCC 16–0753	MZ835531	MZ835655	MZ67106	–
Tubeufia longihelicospora	MFLUCC 21–0151	OL606156	OL606149	OL64520	OL64526
Tubeufia longiseta	MFLUCC 15–0188	KU940133	–	–	–
Tubeufia machaerinae	MFLUCC 17–0055	MJ558795	MJ558920	MJ550988	MJ551122
Tubeufia mackenzieiT	MFLUCC 16–0222	KY092415	KY092410	KY117031	MF535288
Tubeufia nigroseptumT	CGMCC 3.20430	MZ092716	MZ093187	OM022002	OM022001
Tubeufia parvispora	MFLUCC 17–1992	MJ558796	MJ558921	MJ550989	MJ551123
Tubeufia parvispora	MFLUCC 17–2009	MJ558798	MJ558923	MJ550991	MJ551125
Tubeufia rooseholicospora	MFLUCC 15–1247	KX454177	KX454178	–	MJ551144
Tubeufia rubraT	GZCC 16–0881	MZ853187	MJ558926	MJ550994	MJ551128
Tubeufia sahyadriensisT	NFCCI 4252	MH033849	MH033850	MH033851	–
Tubeufia sessilis	MFLUCC 16–0021	MJ558803	–	MJ550996	MJ551130
Tubeufia symphydylaspora	GZCC 16–0049	MJ558804	MJ558928	MJ550997	MJ551131
Tubeufia symphydylaspora	GZCC 16–0051	MJ558805	MJ558929	MJ550998	MJ551132
Tubeufia sympodihylospora	MFLUCC 17–0044	MJ558806	MJ558930	MJ550999	MJ551133
Tubeufia sympodilaxispora	MFLUCC 17–0048	MJ558808	MJ558932	MJ551001	MJ551135
Tubeufia taiwanensis	BCRC FU30844	LC316605	–	–	–
Tubeufia tectonaeT	MFLUCC 12–0392	KU144923	KU764706	KU872763	–
Tubeufia tectonae	MFLUCC 16–0235	MJ558809	MJ558833	MJ551002	MJ551136
Tubeufia tratensisT	MFLUCC 17–1993	MJ558811	MJ558835	MJ551004	MJ551138
Tubeufia xylophila	GZCC 16–0038	MJ558812	MJ558836	MJ551005	MJ551139
Tubeufia xylophila	MFLUCC 17–1520	MJ558813	MJ558937	MJ551006	MJ551140

Ex-type strains are indicated by T after the species name. Newly generated sequences are indicated in bold. The symbol “–” indicates information unavailable.

including gaps, ITS (1–534 bp), LSU (535–1,362 bp), tef 1-α (1,363–2,273 bp), and RPB2 (2,274–3,316 bp) including 217 strains, with Botryosphaeria dothidea (CBS 115476) as the outgroup taxon. RAxML and Bayesian analyses of the combined dataset resulted in phylogenetic reconstructions with largely similar topologies. The result of ML analyses with a final likelihood value of −53,732.520635 is shown in Figure 1. Alignment exhibits 1,618 distinct alignment patterns; the proportion of gaps and completely undetermined characters in this alignment is 27.38%. Gamma distribution shape
Phylogenetic analyses showed that the new isolates were nested in *Tubeufiaceae* with close affinities to four exciting genera, *viz.*, *Helicoma*, *Neohelicosporium*, *Parahelicomyces*, *Tubeufia*, and the new genus *Neomanoharachariella*, forming a distinct clade among the genera of *Tubeufiaceae*. KUNCC 22–12445 and CGMC 3.23543 clusted within *Helicoma*, sister to *Helicom rugosum* (ANM 196, ANM 953, ANM 1169, and JCM 2739) with 97% ML and 0.99 PP support values. Another strain, CGMC 3.23543 nested in *H. rubriappendiculatum* (MFLUCC 18–0491) and *H. rufum* (MFLUCC 17–1806) with 87% ML and 0.99 PP support values. CGMC3.23541 nested in *N. morganii* (CBS 281.54) with strong bootstrap support (100% ML/1.00 PP). CGMC3.23539 and CGMC 3.23540 clusted as a monophyletic clade sister to *Helicocartatus aquaticus* (MFLUCC 17–1996) and *H. tailandicus* (MFLUCC 18–0332). Three new collections (CGMC 3.23535, KUNCC 22–12443, and KUNCC 22–12444) clusted within *Parahelicomyces hyalosporus* (CBS 283.51, MFLUCC 15–0343, KUMCC 15–0430, KUMCC 15–0411, KUMCC 15–0322, and KUMCC 15–0281) with 100% ML and 1.00 PP support. CGMC 3.23534 and CGMC 3.23538 formed a sister lineage to *Parahelicomyces yunnanensis* (CGMC 3.20429) with 90% ML and 1.00 PP support. CGMC 3.23552 clusted with five strains of *Tubeufia cylindrothecia* (MFLUCC 10–0919, MFLUCC 11–0076, MFLUCC 16–1253, MFLUCC 16–1283, and MFLUCC 17–1792) with 100% ML and 1.00 PP support.

Taxonomy

Helicoma rugosum (C. Booth) Boonmee and K.D. Hyde [as 'rugosa'], Fungal Divers. 68: 266 (2014), Figure 2

Index Fungorum: IF 340543; *Facesoffungi number*: FoF 02650

Saprobit on submerged decaying wood in the lake.

Asexual morph: Hyphomycetous, helicosporous. Colonies on natural substrate superficial, effuse, discrete, dilute, and light brown to brown. Mycelium composed of partly immersed, partly superficial, septate, pale brown to brown, branched hyphae, with masses of crowded, glistening conidia. Conidiophores 95–151 µm long, 5·4–6·8 µm wide (S = 122.6 × 6 µm, n = 20), macronematous, mononematous, straight to slightly bent, unbranched, septate, cylindrical, erect, pale brown to brown, and smooth-walled. Conidiogenous cells 9–12 µm long, 5–6 µm wide, holoblastic, mono- to polyblastic, integrated, intercalary, cylindrical, with denticles, tiny tooth-like protrusions (0.9–2.6 µm long, 0.5–1.7 µm wide), brown, and smooth-walled. Conidia 60.7–85.5 µm diameter, conidial filament 4–8.5 µm wide (S = 73 × 4.4 µm, n = 20), 216–290 µm long, slightly coiled 1.0–2.5 times, pleurogenous, helicoid, rounded at tip, septate, becoming loosely coiled in water, guttulate, pale brown, and smooth-walled. Sexual morph: not observed.

Culture characteristics: Conidia germinating on PDA and germ tubes produced from conidia within 12 h. Colonies growing on PDA, irregular, center umbonate, with a rough surface, wrinkle, edge undulate, reaching 10–15 mm in 2 weeks at 26°C, and pale brown to brown in the PDA medium. Mycelium superficial and partially immersed, branched, septate, hyaline to pale brown, and smooth-walled.

Material examined: China, Yunnan Province, Lugubu lake, on submerged decaying wood, 22 October 2021 (Altitude: 2,625 m, 27°42′41″N, 100°46′48″E), Long-Li Li, L-1013 (KUN-HKAS 124608), living culture, KUNCC 22–12445.

Notes: *Helicom rugosum* was reported by Boonmee et al. (2014) to combine *Sphaeria helicoma*, *Thaxteriella helicoma*, and *Tubeufia rugosa* based on phylogenetic and morphological evidence. *H. rugosum* (KUNCC 22–12445) resembles *H. rufum*, presenting macronematous, mononematous, unbranched or branched, septate conidiophores, holoblastic, mono- to ployblastic conidiogenous cells, helicoid, and septate conidia. However, *H. rugosum* (KUNCC 22–12445) is distinct from *H. rufum* as it has shorter and narrower conidiophores (95–151 × 5·4–6·8 vs. 110–210 × 7·8–5·3 µm, longer and wider conidia (60.7–85·5 × 4·4–8·8 vs. 35·45 × 4·5–5·5 µm), and shorter conidial filaments (216–290 × 4–5 vs. 240–410 × 4·5–5·5 µm). Furthermore, *H. rufum* produces a reddish brown pigment in the PDA medium in 7 days but *H. rugosum* lacks this characteristic. In the phylogenetic analyses, *H. rugosum* (KUNCC 22–12445) cluster together with *H. rugosum* (ANM 196, ANM 1169, ANM 953, and JCM 2739) and *Helicoma* sp. (HKUCC 9118) with strong support (91% ML and 0.99 PP). In this study, we introduce our new collection with *Helicoma* sp. (HKUCC 9118) as *H. rugosum* because of identical LSU nucleotide sequences and morphological characteristics. Our fresh collection is morphologically similar to *Helicoma* sp. (HKUCC 9118) (Kodsueb et al., 2004) in terms of conidiogenous cells with tiny tooth-like protrusions, denticil, conidiophores brownish-gray, upright, and the same conidia size (61–86 × 4–5 vs. 37–86·4 × 4·6–5·4 µm). Furthermore, both of their morphologies fitting into the generic group *Helicoma*, and the analyses show that they should be the same species.

Helicoma rufum Y.Z. Lu, J.C. Kang, and K.D. Hyde, Fungal Divers. 92: 183 (2018), Figure 3

Index Fungorum: IF 554843; *Facesoffungi number*: FoF 04718

Saprobit on submerged decaying wood in the lake.

Asexual morph: Hyphomycetous, helicosporous. Colonies...
superficial, effuse, gregarious, and brown. Mycelium composed of immersed, partly superficial, hyaline to pale brown, septate, branched hyphae, with masses of crowded, glistening conidia. Conidiophores 136–209 µm long, 6–7 µm wide (± = 173 ± 6.5 µm, n = 30), macronematous, mononematous, cylindrical, erect, straight to slightly bent, mostly unbranched, septate, the lower part brown and the upper part pale yellow, and smooth-walled. Conidiogenous cells 12–14 µm long, 5–7 µm wide, holoblastic, mononematous, integrated, intercalary, cylindrical, with denticles, rising laterally from the lower portion of conidiophores as tiny tooth-like protrusions (2.7–3.9 µm long, 1.5–2.3 µm wide), brown, and smooth-walled. Conidia 57–104 µm diameter, conidial filament 3.4–5.2 µm wide (± = 80.6 ± 4.3 µm, n = 20), 248–327 µm long, solitary, pleurogenous, helicoid, rounded at tip, septate, slightly constricted at septa, loosely coiled 1.5–3.5 times, becoming loosely coiled in water, guttulate, hyaline to pale brown, and smooth-walled. Sexual morph: not observed.

Culture characteristics: Conidia germinating on PDA within 12 h and many germ tubes produced from conidium cells. Colonies growing on PDA, reaching 25 mm, and started producing reddish brown pigment in 3 weeks at 26°C, brown to reddish brown in the PDA medium, irregular, with a
FIGURE 1 (Continued)
FIGURE 1
Phylogram generated from maximum likelihood analysis (RAxML) of Tubeufiaceae based on ITS, LSU, tef-1-α, and RPB2 sequence data. Maximum likelihood bootstrap values equal to or above 75% and Bayesian posterior probabilities (PP) equal to or above 0.95 are given above the nodes. The tree is rooted at Botryosphaeria dothidea CBS 115476. Newly-generated sequences are indicated in red. Ex-type strains are indicated in black/red bold.

flat surface, edge slightly undulate. Mycelium superficial and partially immersed, branched, septate, hyaline to pale brown, and smooth-walled.

Material examined: China, Yunnan Province, Luguhu lake, on submerged decaying wood (Altitude: 2,717 m, 27° 42′41″N, 100° 46′48″E), 21 October 2021, Long-Li Li, L-1032 (KUN-HKAS 124609), living cultures, CGMCC 3.23543 = KUNCC 22–12439.

Notes: Helicoma rufum was introduced by Lu et al. (2018b) on decaying wood in a mountain in Thailand. The new isolate L-1032 collected from freshwater habitats was identified as H. rufum based on the phylogenetic analyses and the morphological features. Our new collection CGMCC 3.23543 clusters in the same clade with H. rufum (MFLUCC 17–1806) except for the conidia diameter (57–104 vs. 35–45 µm long). The nucleotide comparisons show 4 bp, 1 bp, and 2 bp of ITS, LSU, and tef-1-α differences between the new isolate CGMCC 3.23543 and H. rufum (MFLUCC 17–1806). Between H. rubriappendiculatum (MFLUCC 18–0491) and H. rufum (CGMCC 3.23543), there are 4, 2, and 6 bp of ITS, LSU, and tef-1-α differences; compared with H. rubriappendiculatum, H. rufum (CGMCC 3.23543) produces a reddish brown pigment in the PDA medium and presents a longer conidia diameter (57–104 vs. 25–35 µm), lacking the characteristic red appendant near the apex in conidiophores. Thus, we identify the new isolate as H. rufum based on both phylogenetic analyses and morphological characteristics. This is the first report of H. rufum in freshwater habitats and its occurrence in China.
FIGURE 2
Helicoma rugosum (KUN–HKAS 124608). (a,b) Colony on decaying wood. (c–f) Conidiophores with attached conidia. (g,h) Conidiogenous cells. (i–l) Conidia. (n) Germinating conidium. (o,p) Colony on PDA observed from above and below. Scale bars: (c,d) 30 µm, (e) 50 µm, (f) 50 µm, (g,h) 10 µm, and (i–n) 20 µm.
FIGURE 3

Helicoma rufum (KUN-HKAS 124609). (a,b) Colony rises from mycelium on natural wood substrate. (c–f) Conidiophores with attached conidia. (g,h) Conidiogenous cells. (i–l) Conidia. (m) Germinating conidium. (n,o) Culture on PDA. Scale bars: (c–f) 60 μm, (g,h) 10 μm, and (i–m) 20 μm.
FIGURE 4

Neohelicosporium suae (KUN-HKAS 124610, holotype). (a) Colony on decaying wood. (b,c,e) Conidiophores with attached conidia. (d) Conidiophores. (f–h) Conidiogenous cells. (i–l) Conidia. (m) Germinating conidium. (n,o) Colony on PDA observed from above and below. Scale bars: (b,c) 30 μm, (d,e) 20 μm, and (f–m) 10 μm.
Neohelicosporium suae L.L. Li, H.W. Shen and Z.L. Luo, sp. nov.

MycoBank number: MB 845321, Figure 4

Holotype—KUN-HKAS 124610

Etymology—“suae” (Lat.) in memory of the Chinese mycologist Prof. Hong-Yan Su (4 April 1967–3 May 2022).

Saprobi on submerged decaying wood in the lake. Asexual morph: Hyphomycetous, helicosporous. Colonies on substratum superficial, effuse, and white. Mycelium composed of superficial, partly immersed, brown, septate, branched hyphae, with crowded by conidial masses. Conidiophores 52–97 µm long, 4.2–5.1 µm wide (x = 75 × 4.7 µm, n = 20), macronematous, mononematous, erect, cylindrical, unbranched or less branched, 3–6-septate, hyaline to pale brown, and smooth-walled. Conidiogenous cells 15–27 µm long, 3.5–5.1 µm wide (x = 21 × 4.2 µm, n = 20), holoblastic, mono- to polyblastic, cylindrical, truncate at apex after conidial secession. Conidia germinating on PDA within 8 h. Colonies growing on PDA, circular, with a flat surface, edge entire, reaching 28 mm in 3 weeks at room temperature, pale brown to brown in the MEA medium. Mycelium superficial and partially immersed, branched, septate, hyaline to pale brown, and smooth-walled. Sexual morph: not observed.

Culture characteristics: Conidia germinating on PDA within 8 h. Colonies growing on PDA, circular, with a flat surface, edge entire, reaching 28 mm in 3 weeks at room temperature, pale brown to brown in the MEA medium. Mycelium superficial and partially immersed, branched, septate, hyaline to pale brown, and smooth-walled.

Material examined: China, Yunnan Province, Luguhu lake, on submerged decaying wood in the lake (Altitude: 2.242 m, 26°48′29″N, 100°43′4.8″E), 21 October 2021, Long-Li Li, L-1030 (KUN-HKAS 124610, holotype), ex-type cultures, CGMCC 3.23541 = KUNCC 22–12438.

Notes: Neohelicosporium suae is introduced as a new species based on morphological and phylogenetic evidence. In phylogeny, N. suae (CGMCC 3.23541) is a sister to N. morganii with strong bootstrap support (100% ML and 1.00 PP). Based on pairwise nucleotide comparisons, the new strain N. suae (CGMCC3.23541) is different from N. morganii (CBS 281.54) in 9/532 bp (1.69%) of the ITS and 3/804 bp (0.37%) of the LSU. Morphologically, N. suae can be distinguished from N. morganii: the conidiophores of N. suae are unbranched or less branched, the latter are branched and shorter (52–97 µm long, 4.2–5.1 µm wide vs. up to 145 µm long, 5–7 µm wide) (Zhao et al., 2007), and the number of septa is more than 6. The conidiogenous cells of N. suae are 15–27 µm long, swollen, with longer and wider denticles (2–3 × 1.5–2.4 vs. 1–2.5 × 0.5–1.5 µm), terminal, whereas N. morganii displays no swelling. Furthermore, N. suae is distinct from N. morganii, presenting distinguished conidia characteristics in terms of a larger diameter (45–55 × 5–7 vs. 17–23 × 3–4 µm).

Neomanoharachariella L.L. Li, H.W. Shen, and Z.L. Luo, gen. nov.

MycoBank number: MB 845535

Etymology—The generic epithet, neo (Lat., new), refers to the similarity to Manoharachariella.

Saprobi on decaying wood in the lake. Asexual morph: Hyphomycetous, dictyosporous. Colonies on the substratum superficial, effuse, and dark brown. Conidiophores macronematous, mononematous, erect, cylindrical, unbranched, straight or flexuous, paler, and smooth-walled. Conidiogenous cells monoblastic, integrated, terminal, cylindrical, subhyaline to pale brown, and smooth-walled. Conidia holoblastic smooth, shiny, simple, broadly oval to ellipsoid, muriform, tuberculous at the top, white and pale brown when immature, becoming dark to black when mature, and pale yellow at the basal cell and brown at other parts. Sexual morph: not observed.

Type species: Neomanoharachariella aquatica L.L. Li, H.W. Shen, and Z.L. Luo.

Notes: Neomanoharachariella is morphologically similar to Chlamydotubeufia, Dictyospora, and Neochlamydotubeufia, presenting dictyoseptate, broadly oval to ellipsoid, and darkened to black when matured conidia. However, Neomanoharachariella can be distinguished from other chlamydotubeufial genera by well-developed conidiophores. The morphological characteristics allow the assignment of Neomanoharachariella to Tubefiaceae. In phylogeny, it formed a well-separated clade from all other genera of Tubefiaceae (Figure 5). The molecular phylogenetic studies indicate its placement in Tubefiaceae as a genus that is phylogenetically close to the genera, Berkleiasium, Dictyospora, Helicoarctatus, Helicoma, and Helicosporium.

Neomanoharachariella aquatica L.L. Li, H.W. Shen, and Z.L. Luo, sp. nov.

MycoBank number: MB 845536, Figure 5

Holotype—KUN-HKAS 124611

Etymology—“aquatica” referring to the aquatic habitat of this fungus.

Saprobi on decaying woods in the lake. Asexual morph: hyphomycetous, dictyosporous. Colonies on the substratum superficial, effuse, and dark brown. Conidiophores 20–31 µm long, 3.5–4.2 µm wide (x = 25 × 4 µm, n = 20), macronematous, mononematous, erect, cylindrical, unbranched, straight or flexuous, paler, and smooth-walled. Conidiogenous cells monoblastic, integrated, terminal, cylindrical, subhyaline to pale brown and smooth-walled. Conidia 37–61 µm long, 17–32 µm wide (x = 49 × 24 µm, n = 20), muriform 8–10-transversely septate, with 1–4-longitudinal septa, smooth, shiny, simple, broadly oval to ellipsoid, tuberculous at the top, hyaline to pale brown when immature, becoming dark to black when mature, and pale yellow at the basal cell and brown at other parts. Sexual morph: not observed.
Neomanoharachariella aquatica (KUN-HKAS 124611, holotype). (a, b) Colony erect on decaying wood. (c–e) Conidiophores with attached conidia. (f,g) Conidiogenous cells. (h–m) Conidia. (n) Germinating conidium. (o, p) Culture on PDA. Scale bars: (c, e) 25 µm, (f, g) 5 µm, (h–j) 15 µm, and (d, k–m) 20 µm.
Culture characteristics: Conidia germinating on PDA within 12 h. Colonies growing on PDA, circular, with a flat surface, edge entire, reaching 15 mm in 3 weeks at 26°C, and brown to dark brown in the PDA medium. Mycelium superficial and partially immersed, branched, septate, hyaline to pale brown, and smooth-walled.

Material examined: China, Yunnan Province, Shuduhu lake, on submerged decaying wood (Altitude: 3,578 m, 27°54′24″N, 99°57′15″E), 25 August 2020, Zheng-Quan Zhang, L-190 (KUN-HKAS 124611, holotype), ex-type cultures, CGMCC 3.23539 = KUNCC 22–12437; China, Yunnan Province, Shuduhu lake, on submerged decaying wood (Altitude: 3,578 m, 27°54′24″N, 99°57′15″E), 25 August 2020, Zheng-Quan Zhang, L-281 (KUN-HKAS 124612), living cultures, CGMCC 3.23540 = KUNCC 22–12442.

Notes: The new collection can be easily distinguished from other Tubeufiaceae genera by the long oval and dictyosporous conidia with well-developed conidiophores. In the phylogenetic analyses, Neomanoharachariella aquatica shares a sister relationship to Helicoarctatus aquaticus (MFLUCC 17–1996) and H. thailandicus (MFLUCC 18–0332). However, there are great differences in morphology: the asexual morph of H. aquaticus and H. thailandicus are helicosporous, and our new collection is dictyosporous. H. aquaticus and H. thailandicus are characterized by setiform, unbranched, septate conidiophores, holoblastic, mono- to poly-blastic, denticulate conidigenous cells, pleurogenous, helicosporous, holoblastic, multi-septate, guttulate, and hyaline conidia. Based on pairwise nucleotide comparisons, the new strain CGMCC 3.23540 is different from the type species Helicoarctatus aquaticus (MFLUCC 17–1996) in 30/541 bp (5.54%) of the ITS, 24/805 bp (2.98%) of the LSU, 74/875 bp (8.46%) of the tef 1-α, and 154/1045 bp (14.74%) of the RPB2. In addition, Neomanoharachariella aquatica is most similar to the asexual state of Chlamydotubeufia hyaikangplaensis, but the conidia of N. aquatica are shorter (37–61 × 17–32 vs. 50–77 × 39–42) and presenting erect, unbranched, and smooth-walled conidiophores; the phylogenetic analyses also clearly segregate it from C. huaikangplaensis. We therefore identify the newly obtained taxon as Neomanoharachariella aquatica sp. nov.

Parahelicomyces hyalosporus (Y.Z. Lu, J.K. Liu, and K.D. Hyde) S. Y. Hsieh, Goh, and C. H. Kuo, Mycol. Prog. 20(2): 182 (2021) Figure 6

Index Fungorum: IF 554888; Facesoffungi number: FoF 04812
Saprobidic on submerged decaying woods in the lake. Asexual morph: Hyphomycetous, helicosporous. Colonies on wood substrate superficial, effuse, gregarious, and hyaline to white. Mycelium composed of partly immersed, partly superficial, pale brown, septate, anastomosing, reaping, with masses of crowded conidia. Conidiophores 60–142 × 4–5.2 µm wide (X = 101 × 4.6 µm, n = 10), macronematous, mononematous, cylindrical, branched, septate, hyaline to pale brown, and smooth-walled. Conidigenous cells 5–10 × 1–4 µm wide, holoblastic, mono-to poly-blastic, integrated, terminal or intercalary, cylindrical, truncate at apex after conidial secession, hyaline to pale brown, and smooth-walled. Conidia 40–56.7 × 3.5–4.5 µm in diameter, and conidial filaments 3.5–4.5 × 4 µm wide (X = 48 × 4 µm, n = 20), 145–180 × 1.5 µm long, loosely coiled 1–2.5 times, solitary, pleurogenous or acropleurogenous, helicoid, rounded at tip, multi-septate, becoming loosely coiled in water, guttulate, hyaline, and smooth-walled. Sexual morph: not observed.

Culture characteristics: Conidia germinating on PDA within 12 h; many germ tubes produced from conidium cells. Colonies growing on PDA, circular, with umbonate surface, edge dulate, and brown to dark brown in PDA medium, reaching 20 mm in 3 weeks at 26°C, and brown to dark brown in the PDA medium. Mycelium superficial and partially immersed, branched, septate, hyaline to pale brown, and smooth-walled.

Material examined: China, Yunnan Province, Luguhu lake, on submerged decaying wood (Altitude: 2,698 m, 27°41′11″N, 100°48′18″E), 5 March 2021, Zheng-Quan Zhang, L-159 (KUN-HKAS 124603), living cultures, CGMCC 3.23535 = KUNCC 22–12436; China, Yunnan Province, Luguhu lake, on submerged decaying wood (Altitude: 2,734 m, 27°45′18″N, 100°46′42″E), 5 March 2021, Zheng-Quan Zhang, L-315 (KUN-HKAS 124606), living culture, KUNCC 22–12443; China, Yunnan Province, Luguhu lake, on submerged decaying wood (Altitude: 2,794 m, 27°45′02″N, 100°51′02″E), 5 March 2021, Zheng-Quan Zhang, L-326 (KUN-HKAS 124605), living cultures, CGMCC 3.23537 = KUNCC 22–12444.

Notes: Parahelicomyces hyalosporus was first introduced as Pseudohelicomyces hyalosporus by Lu et al. (2018b) based on morphological and phylogenetic evidence. Hsieh et al. (2021) transferred it to Parahelicomyces as the genus Pseudohelicomyces, an older homonynym and illegitimate. In this paper, three newly-obtained isolates were identified as Parahelicomyces hyalosporus, and the morphology characteristics fit well with Parahelicomyces hyalosporus; the conidiophores macronematous, mononematous, branched, septate, conidigenous cells with denticles, holoblastic, mono- to poly-blastic, intercalary or terminal, determinate or sympodial and pleurogenous or acropleurogenous, conidia helicoid, multi-septate, and hyaline to pale brown. Species of the P. hyalosporus are widely found in lakes and streams of freshwater habitats in China and Thailand (Luo et al., 2017; Lu et al., 2018b; Li et al., 2022). Based on pairwise nucleotide comparisons, ITS and LSU are identical between the type species (MFLUCC 15–0343) and P. hyalosporus (CGMCC 3.23535).

Parahelicomyces suae I.L. Li, H.W. Shen, and Z.L. Luo, sp. nov.

Mycobank number: MB 845534, Figure 7
Holotype—KUN-HKAS 124604
Etymology—“suae” (Lat.) in memory of the Chinese mycologist Prof. Hong-Yan Su (4 April 1967–3 May 2022).
Saprobidic on submerged decaying woods in the lake. Asexual morph: Hyphomycetous, helicosporous. Colonies on the wood substratum superficial, effuse, gregarious, and white. Mycelium...
Parahelicomyces hyalosporus (KUN-HKAS 124603). (a) Colony on decaying wood. (b–d) Conidiophores with attached conidia and lateral minute polyblastic denticles. (e,f,i,j) Conidiogenous cells. (g,h,k–p) Conidia. (p,q) Colony on PDA observed from above and below. Scale bars: (b) 50 µm, (c,d) 40 µm, and (e–p) 10 µm.
Parahelicomyces suae (KUN-HKAS 124604, holotype). (a) Colony on decaying wood. (b–d) Conidiophores with attached conidia. (e–h) Conidiogenous cells. (i–m) Conidia. (n) Germinating conidium. (o,p) Colony on MEA observed from above and below. Scale bars: (b) 70 μm, (c) 60 μm, (d) 30 μm, (e–h,n) 10 μm, and (i) 15 μm.
composed of partly immersed, partly superficial, hyaline to pale brown, septate, abundantly branched hyphae, with masses of crowded, glistening conidia. Conidiophores 114.8–173.5 µm long, 3–4 µm wide (\(\bar{x} = 144 \times 3.5 \mu m, n = 20\), macroconidiate, conidial, branched or unbranched, erect, septate, dark brown at base, becoming hyaline toward apex, and smooth-walled. Conidiogenous cells 12–18 µm long, 3–4 µm wide, sympodial, holoblastic, monoblastic, integrated, terminal, cylindrical, truncate at apex after conidial secession, denticles or bladder-like cells, hyaline to pale brown, and smooth-walled. Conidia 29–36 µm diameter, conidial filament 1.8–2.2 µm wide (\(\bar{x} = 32.5 \times 2 \mu m, n = 20\)), 103–121 µm long, coiled 1–3.5 times, solitary, helicoid, rounded at tip, young conidia have indistinct septate, not easily loosely coiled in water, guttulate, hyaline, and smooth-walled. Sexual morph: not observed.

Culture characteristics: Conidia germinating on PDA within 12 h and many germ tubes produced from conidium cells. Colonies growing on MEA, reaching 14 mm diameter in 2 weeks at 26°C, circular, with a flat surface, edge entire, and pale brown to brown in the MEA medium. Mycelium superficial and partially immersed, branched, septate, hyaline to pale brown, and smooth. **Material examined:** China, Yunnan Province, Luguhu lake, on submerged decaying wood in the lake. Material examined: China, Yunnan Province, Luguhu lake, on submerged decaying wood in the lake (Altitude: 2,698 m, 27°41′11″N, 100°48′18″E), 3 March 2021, Sha Luan, L-158 (KUN-HKAS 124604, holotype), ex-type cultures, CGMCC 3.23534 = KUNCC 22–12435; China, Yunnan Province, Luguhu lake, on submerged decaying wood in the lake (Altitude: 2,698 m, 27°42′43″N, 100°44′56″E), 3 March 2021, Long-Li Li, L-1038, (KUN-HKAS 124607), living cultures, CGMCC 3.23538 = KUNCC 22–12440.

Notes: Parahelicomyces suae is introduced as a new species from Luguhu lake in Yunnan, China. In phylogeny, P. suae constitutes a strongly supported independent lineage basal to P. yunnanensis. Compared with CGMCC 3.20429, there are 5/563 (0.89%), 11/1048 bp (1.05%) base pair differences in the ITS and RPB2 regions between these two species. Morphologically, compared with P. yunnanensis, the conidia of P. suae are shorter (103–121 vs. 104–156 µm). In addition, our isolate conidia are not easily loosely coiled in water, conidiogenous cells with denticulate, and hyaline. Therefore, we identify the isolate as a new species of P. suae.

Tubefia cylindrothecia (Seaver) Hohn Sber. Akad. Wiss. Wien, Math.-naturw. Kl., Abt. 1 128: 562 (1919), Figure 8

Index Funorum: IF 340543; Facesofungi number: FoF 02650

Saprobiecic on decaying wood in the lake. **Asexual morph:** Hyphomycetous, helicosporous. Colonies on the substratum superficial, effuse, gregarious, and white to pale brown. Mycelium composed of partly immersed, partly superficial, hyaline to pale brown, septate, abundantly branched hyphae, with masses of crowded, glistening conidia. Conidiophores 97–200 µm long, 5–6 µm wide (\(\bar{x} = 148 \times 5.5 \mu m, n = 30\), macroconidiate, mononematous, cylindrical, branched or unbranched, erect, flexuous, pale brown to brown, and smooth-walled. Conidiogenous cells 10.4–17 × 4–6 µm (\(\bar{x} = 13.7 \times 5 \mu m, n = 30\), holoblastic, mono- to polyblastic, integrated, intercalary or terminal, cylindrical, repeatedly genulate, truncate at the apex after conidial secession, each with single or several conidia hyaline to pale brown, and smooth-walled. Conidia 41.6–57.8 µm diameter and conidial filament 3.7–4.9 µm wide (\(\bar{x} = 50 \times 4.3 \mu m, n = 30\)), 105–206 µm long, coiled 1.5–3.5 times, solitary, acrogenous or acropleurogenous, helicoid, rounded at tip, becoming loosely coiled in water, guttulate, young Conidia hyaline and pale brown when edged, and smooth-walled. Sexual morph: not observed.

Culture characteristics: Conidia germinating on PDA within 12 h. Colonies growing slowly on CMA, reaching 15 mm diameter after 2 weeks at 26°C, effuse, the middle is dark, velvety to hairy, edge undulate, brown to dark brown in the CMA medium, mycelium superficial, effuse, with irregular edge, and hyphae pale yellow to brown.

Material examined: China, Yunnan Province, Luguhu lake, on submerged decaying wood (Altitude: 2,734 m, 27°45′18″N, 100°46′42″E), 5 March 2021, Zheng-Quan Zhang, L-157 (KUN-HKAS 124602), living cultures, CGMCC 3.23552 = KUNCC 22–12434.

Notes: The asexual morph of Tubefia cylindrothecia was first reported by Luo et al. (2017) and later encountered by Lu et al. (2018b) in freshwater habitats. In this study, the newly obtained collection has longer conidiophores (97–200 vs. 50–81 µm) and shorter conidia (105–206 vs. 256–314 µm) compared with the holotype (Luo et al., 2017). However, their ITS, LSU, tef 1-α, and RPB2 sequence data are identical; we therefore identify it as Tubefia cylindrothecia.

Discussion

The modern classification of Tubefiaceae was established by Boonmee et al. (2014), based on phylogenetic analyses and morphology. However, there are still taxonomic confusions in this group, especially in those types with helicosporous assexual morphs; their morphologically-based intergeneric classifications are controversial. Some species have been transferred or are synonymous to other genera of Tubefiaceae, for example, Helicosporm pannosum, Neohelicosporium griseum, and N. morganii have been transferred several times. The asexual state of Neomanoharachariella is dictyosporous conidia. It is a unique tubefiaceous fungus with broadly oblong, elongate, multisepate, muriform conidia, at first pale brown, becoming dark brown, with well-developed conidiophores, and basal cells are hyaline and bulging. These characteristics make it distinct from all related Tubefiaceae genera and is hence
FIGURE 8
Tubeufia cylindrothecia (KUN-HKAS 124602). (a,b) Colony on decaying wood. (c) Conidiophores with attached conidia. (d) Conidiophores. (e–h) Conidiogenous cells. (i–m) Conidia. (n) Germinating conidium. (o,p) Colony on CMA observed from above and below. Scale bars: (c) 70 µm, (d,e) 20 µm, and (f–n) 10 µm.
proposed as a new genus. Phylogenetic analyses based on ITS, LSU, tef 1-α, and tefB2 sequence (Figure 1) also distinguish N. aquatica from other dictyosporous members of Tubeufiaceae. The new genus is related to Helicoarctatus aquaticus (MFLUCC 17–1996) and Helicoarctatus thailandicus (MFLUCC 18–0332) which formed a distinct clade. The phylogenetic analyses also clearly segregated other dictyosporous genera of Tubeufiaceae such as Chlamydotubeufia, Dictyospora, Manoharachariella, and Tamhinispora in well-differentiated monophyletic lineages.

An abundance of lakes is a major feature of the Yunnan plateau. In recent years, lignicolous freshwater fungi were investigated in Yunnan, in nine freshwater lakes on the plateau. These lakes are distributed in high-altitude areas and most of them are depression pools formed by the subsidence of faults, with no water channels connected (Yang et al., 2004; Shen et al., 2022). Because of their unique development, formation, and relative isolation, each lake possesses its own unique species. In this study, we have also examined seven tubeufiaceous species collected from these plateau lakes. Of which, three were introduced as new species and a new genus Neomanoharachariella, while four were identified as existing species based on phylogenetic analyses and morphological characteristics. The nine species were placed in Helicoma, Neohelicosporium, Parahelicomyces, and Tubeufia. This study provides a case study for lakes as a worthwhile niche area of hyphomycetous associations. Parahelicomyces is well studied, and eight species in this genus have sequence data in the GenBank. For the common and confusing genera Helicoma, Neohelicosporium, and Tubeufia, morphological characteristics (conidiophores, conidiogenous cells, and conidia including size and color) and phylogenetic analyses are essential to distinguish them.

In conclusion, some tubeufiaceous species have the potential to produce new structural and active secondary metabolites (Mao et al., 2014; Lu et al., 2018a). Fang et al. (2019) tested and reported that most Tubeufiaceae species have certain antibacterial and anti-tumor activities in vitro. At present, few studies have reported secondary degradation products of Helicoma, Helicomyces, and Helicosporium species. In view of the potential to produce active compounds, and the reports on secondary metabolites of Tubeufiaceae, the prospect of active research is broad, and it is very possible to obtain new compounds with various biological activities from Tubeufiaceae.

Data availability statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article-supplementary material.

Author contributions

I-LL conducted the experiments, analyzed the data, and wrote the manuscript. D-FB, DW, and Y-ZL revised the manuscript. H-WS planned the experiments and analyzed the data. Z-LL planned and funded the experiments. YF conducted the experiments. All authors contributed to the article and approved the submitted version.

Funding

This work was mainly supported by the National Natural Science Foundation of China (Project ID: 32060005 and 31900020) and the Yunnan Fundamental Research Project (Grant Nos. 202101AU070137 and 202201AW070001).

Acknowledgments

I-LL is grateful to Xi Fu and Jun He for sharing their knowledge of morphology and phylogeny. Sha Luan and Zheng-Quan Zhang are thanked for their help with sample collection. DW thanks the CAS President’s International Fellowship Initiative (PIFI) for funding his postdoctoral research (number 2021FYB0005), the National Science Foundation of China (NSFC) under the project code 32150410362, and the Yunnan Fundamental Research Project (number 2021FYB0005), the National Science Foundation of China (NSFC) under the project code 32150410362, and the Postdoctoral Fund from the Human Resources and Social Security Bureau of Yunnan Province. Xin-Wei Wan, Ming-Hui Chen, and Yuan-Yue Zhang are acknowledged for their help with DNA extraction and PCR amplification. The author also thank Shaun Pennycook for checking species names.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
of the 2010 Gateway Computing Environments Workshop (GCE), 1–8. doi: 10.1109/GCE.2010.5676129

Moore, R. T. (1955). Index to the helicosporae. Mycologia 47, 90–103.

Morgan, A. P. (1892). North American helicosporae. J. Cincinnati. Soc. Nat. Hist. 15, 39–52.

Penzig, O. A. J., and Saccardo, P. A. (1897). Diagnoses fungorum novorum in Insula Java collectorum. Series secunda. Malpighia 11, 491–530.

Ranal, B., and Yang, Z. (1996). Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evolut. 43, 304–311. doi: 10.1007/BF02338839

Renquist, F., and Hulsenbeck, J. P. (2003). MrBayes3: bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. doi: 10.1093/bioinformatics/btg180

Senanayake, I. C., Rathnayaka, A. R., Marasinghe, D. S., Calabon, M. S., Gentekaki, E., Wanasinghe, D. N., et al. (2020). Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. Mycosphere 11, 2678–2754. doi: 10.5943/mycosphere/11/1/20

Shen, H. W., Bao, D. F., Bhat, D. J., Su, H. Y., and Luo, Z. L. (2022). Lignicolous freshwater fungi in Yunnan Province, China: an overview. Mycology 13, 119–132. doi: 10.1080/21501203.2022.2058638

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. doi: 10.1093/bioinformatics/btl446

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Syst. Biol. 75, 758–771. doi: 10.1080/10635150802429642

Su, H. Y., Udayanga, D., Luo, Z. L., Manamgoda, D. S., Zhao, Y. C., Yang, J., et al. (2015). Hyphomycetes from aquatic habitats in Southern China: species of Curvularia (Pleosporaceae) and Phragmocephala (Melanomataceae). Phytotaxa 226, 201–216. doi: 10.11646/phytotaxa.226.3.1

Tian, X. G., Karunaratna, S. C., Xu, R. J., Lu, Y. Z., Suwannarach, N., Mapook, A., et al. (2022). Three new species, two new records and four new collections of Tubeufiaceae from Thailand and China. JOF 8, 206. doi: 10.3390/jof8020206

Valenzuela, E., and Garnica, S. (2000). Pseudohelicomyces, a new anamorph of Psilocybe. Mycol. Res. 104, 738–741. doi: 10.1017/S0953756299002117

Vilgalys, R., and Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172, 4238–4246.

Yang, Y., Tian, K., Hao, J., Pei, S., and Yang, Y. (2004). Biodiversity and biodiversity conservation in Yunnan, China. Biodivers. Conserv. 13, 813–826. doi: 10.1023/B:BIOC.0000011728.46562.3c

Zhao, G. Z., Liu, X., and Wu, W. (2007). Helicosporous hyphomycetes from China. Fungal Divers. 26, 313–524.