Preterm birth is associated with immune dysregulation which persists in infants exposed to histologic chorioamnionitis: a descriptive study

Gemma Sullivan¹, Paola Galdi¹, Nis Borbye-Lorenzen², David Q. Stoye¹, Gillian J. Lamb¹, Margaret J. Evans³, Kristin Skogstrand², Siddharthan Chandran⁴,⁵, James P. Boardman¹,⁴

¹ MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
² Danish Center for Neonatal Screening, Statens Serum Institut, Copenhagen, Denmark
³ Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, UK
⁴ Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
⁵ MRC Centre for Regenerative Medicine, University of Edinburgh, UK

Running title: Histologic chorioamnionitis and immune dysregulation

Corresponding author:
Dr. Gemma Sullivan
MRC Centre for Reproductive Health, Queen’s Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
Email: gemma.sullivan@ed.ac.uk
Telephone: +44 131 242 2567

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objective. To characterise the umbilical cord blood immune profile in preterm infants compared to term-born controls and the postnatal immune response following exposure to histologic chorioamnionitis (HCA) in preterm infants.

Design. Descriptive, observational cohort study.

Setting. Edinburgh, UK.

Population. 118 preterm infants (mean gestational age 29+0 weeks, range 23+2 to 32+0) and 59 term-born controls.

Methods. Placental histopathology was used to identify reaction patterns indicative of HCA, and a customised immunoassay of 24 inflammatory markers and trophic proteins selected to reflect the perinatal immune response was performed on umbilical cord blood in term and preterm participants and postnatal day 5 blood in the preterm group.

Results. The umbilical cord blood immune profile classified gestational age category with 86% accuracy (95% CI 0.78-0.92), p-value=1.242x10^-14. Pro-inflammatory proteins IL-6, MCP-1 and CRP were elevated in the cord blood of preterm infants whilst BDNF, C3, C9, IL-18, MMP-9 and RANTES were decreased, compared to infants born at term. In preterm infants, exposure to HCA was associated with elevations in 5 immune proteins on postnatal day 5 (BDNF, C3, IL-8, MIP-1β and MMP-9) when compared to preterm infants who were not exposed.

Conclusion. Preterm birth is associated with a distinct immune profile in umbilical cord blood and infants exposed to HCA experience specific alterations in immune function that persist to day 5 of postnatal life.
Keywords. brain derived neurotrophic factor, complement, cytokine, fetal inflammatory response, human, inflammation, innate immunity, interleukin, preterm birth
Introduction

Perinatal immune processes have a crucial role in neurodevelopment and early life inflammatory exposures are associated with an increased risk of neuropsychiatric disorders such as autism spectrum disorder, schizophrenia, bipolar disorder and depression. Preterm infants may be exposed to multiple episodes of perinatal infection/inflammation and are particularly vulnerable to brain injury resulting from a dysregulated immune response during a critical period of CNS development.

Preterm infants have a distinct immune profile in umbilical cord blood and cerebrospinal fluid that includes higher levels of pro-inflammatory cytokines and lower levels of growth factors when compared to term-born controls but there is uncertainty about the extent to which this is influenced by antenatal factors, environmental exposures and/or developmental regulation. Histologic chorioamnionitis (HCA) is strongly associated with preterm birth and increases the risk of neonatal morbidities including lung disease, intraventricular haemorrhage, sepsis and necrotising enterocolitis. HCA has also been implicated in the development of white matter injury, cerebral palsy and neurodevelopmental impairment and this may be mediated by specific pro-inflammatory cytokines.

When HCA involves a fetal inflammatory response (FIR), these risks appear to be increased further, suggesting that organ injury is mediated by a systemic fetal inflammatory response syndrome (FIRS). FIRS was initially defined using threshold values of IL-6 concentration in umbilical cord blood although subsequent studies have shown that histopathological FIR is associated with elevated concentrations of cytokines (IL-1β, IL-6 and TNF-α), chemokines (IL-8, MCP-1, MIP-1β, RANTES), matrix metalloproteinases (MMP-1 and MMP-9) and CRP.
some preterm infants, blood concentrations of inflammatory mediators remain elevated for weeks after birth27,28 and may be associated with higher circulating levels of neurotrophic growth factors29. However, neurotrophic capability following exposure to intrauterine inflammation is not well understood and previous study designs leave uncertainty about the role of the complement system in perinatal inflammation, which plays a critical role in the innate immune response.

Preterm infants could benefit from immunomodulatory therapies in the perinatal period but development of rational treatment strategies requires improved characterisation of the neonatal immune profile and the postnatal response to HCA. In this study, an immunoassay of 24 analytes customised to reflect the perinatal immune response was used to analyse profiles from umbilical cord and postnatal blood with placental histopathology to (1) characterise the intrauterine immune environment of preterm infants compared to term-born controls, and (2) test the hypothesis that exposure to histologic chorioamnionitis is associated with an altered immune and neurotrophic profile in the first week after very preterm birth.

\textbf{Materials and Methods}

\textbf{Study population}

Participants were 177 infants, 118 very preterm (mean gestational age 29+0 weeks, range 23+2 to 32+0) and 59 term-born controls, delivered at the Royal Infirmary of Edinburgh, UK and recruited to a longitudinal study of the effect of preterm birth on brain development30. Ethical approval was obtained from the UK National Research Ethics Service and parents provided written informed consent (South East Scotland Research Ethics Committee 16/SS/0154). Subsets were used to characterise the
umbilical cord blood immune profile of preterm infants when compared to term-born controls (n=114), and the immune profile on postnatal day 5 in preterm infants who were exposed to HCA compared to those not exposed (n=96).

Dried blood spot sample analysis

Dried blood spot samples (DBSS) were taken from the umbilical cord following delivery for both preterm cases and term-born controls. For preterm infants, an additional sample was collected on day 5 of life. A customised multiple sandwich immunoassay based on meso-scale technology was used to measure blood spot levels of Interleukin(IL)1-β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17, IL-18, Monocyte chemotactic protein-1 (MCP-1), Macrophage inflammatory protein-1α (MIP-1α), Macrophage inflammatory protein-1β (MIP-1β), Tumor necrosis factor-α (TNF-α), Tumor necrosis factor-β (TNF-β), Brain-derived neurotropic factor (BDNF), Granulocyte-macrophage colony-stimulating factor (GM-CSF), Interferon-γ (IFN-γ), C-reactive protein (CRP), matrix-metalloproteinase 9 (MMP-9), Regulated upon activation, normal T cell expressed and secreted (RANTES) and Complement components C3, C5a and C9.

Two 3.2 mm disks from the DBSS were punched into each well of Nunc 96-well polystyrene microwell plates (#277143, Thermo Fisher Scientific). 130 µl extraction buffer (PBS containing 1% BSA (Sigma Aldrich #A4503), 0.5% Tween-20 (#8.22184.0500, Merck Millipore), and complete protease inhibitor cocktail (#11836145001, Roche Diagnostics) was added to each well, and the samples were incubated for 1 hour at room temperature on a microwell shaker set at 900 rpm. The extracts were analysed using U-plex plates (Meso-Scale Diagnostics (MSD),
Maryland, US) coated with antibodies specific for IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-12, IL-17, TNF-α, MIP-1β on one plate (#K15067 customized) and BDNF, GM-CSF, IL-10, IL-18, IFN-γ, TNF-β, MCP-1, MIP-1α on another (#K151AC customized) (both MSD). Supplier’s instructions were followed, and extracts were analysed undiluted. A third multiplex analysis was developed in-house applying extracts diluted 1:10 in diluent 7 (#R54BB, MSD) using antibodies specific for C3 (HYB030-07 and HYB030-06, SSI Antibodies, Copenhagen, Denmark), C5a (10604-MM04 and 10604-MM06, Sino Biological, Eschborn, Germany), C9 (R-plex kit #F21XZ, MSD), MMP-9 (BAF911 and MAB911), RANTES (MAB278 and AF278NA) and CRP (BAM17072 and MAB1701) (all R&D Systems, Minneapolis, US) for coating the U-plex plate and for detection, respectively. Coating antibodies (used at 1 μg/mL, except CRP used at 10 ng/mL) were biotinylated (using EZ-Link Sulfo-NHS-LC-Biotin #21327, Thermo Fisher Scientific) in-house (if not already biotinylated at purchase) and detection antibodies were SULFO-tagged (R91AO, MSD), both at a challenge ratio of 20:1. The following calibrators were used: C3: #PSP-109 (Nordic Biosite, Copenhagen, DK), C5a: #10604-HNAE (Sino Biological), C9: #F21XZ (from R-plex kit, MSD), MMP-9: #911-MP, RANTES: #278-RN and CRP: #1707-CR/CF (all from R&D Systems). Calibrators were diluted in diluent 7, detection antibodies (used at 1 μg/mL, except CRP used at 100 ng/mL) were diluted in diluent 3 (#R50AP, MSD). Controls were made in-house from part of the calibrator solution in one batch, aliquoted in portions for each plate and stored at -20°C until use. The samples were prepared on the plates as recommended from the manufacturer and were immediately read on the QuickPlex SQ 120 (MSD). Analyte concentrations were calculated from the calibrator curves on each plate using 4PL logistic regression using the MSD Workbench software. Intra-assay variations were calculated from 16
measurements of a pool of the same control sample on the same plate. Inter-assay variations were calculated from controls analysed in duplicate on each plate during the sample analysis, 4 plates in total. Limits of detection were calculated as 2.5 standard deviations from duplicate measurements of the zero calibrator. The higher detection limit was defined as the highest calibrator concentration. Median intra-assay variation was 8.2% and median inter-assay variation was 11.1%. Detection limits are detailed in Table S1.

Placental examination

Placental examination was performed by an experienced perinatal pathologist (M.J.E.) and placental reaction patterns were reported according to the site of inflammation, using a structured system 31. HCA was defined as the presence of an inflammatory response in the placental membranes of any grade or stage. Maternal inflammatory response (MIR) was defined as the presence of chorionitis, chorioamnionitis or intervillitis. Fetal inflammatory response (FIR) was defined as the presence of vasculitis in the chorionic plate or funisitis involving any vessel of the umbilical cord.

Statistical analysis

Participant characteristics were compared using Student’s T test or Mann-Whitney U to compare distributions, and Chi-square tests were used to compare proportions. Analytes with values less than the level of detection (<LOD) were assigned the lowest detectable level prior to statistical analysis, and analytes with concentrations <LOD in ≥75% of samples were excluded from subsequent statistical analysis.
To investigate group differences in blood immune mediator profiles, the Mann-Whitney U was used with Bonferroni correction for multiple tests. Principal component analysis (PCA) was used to identify analytes contributing to variance in the cord blood profile and analytes that contributed to PCs with eigenvalues >1 were then entered as independent variables in a logistic regression model to predict preterm or term category. Analytes contributing to variability within PCs predictive of gestational category were then investigated individually using Spearman’s rank order correlation to identify developmentally regulated analytes most strongly correlated with gestational age.

For mediators differentially expressed on day 5, exploratory analyses were performed to characterise the trajectory of immune mediators from birth to postnatal day 5 in association with HCA. Statistical analyses were performed using SPSS version 24.0 (IBM Corp., Armonk, NY), with the exception of PCA, which was performed using R version 3.6.1 (R Core Team, 2019).

Results

Participants

The clinical characteristics of participants are shown in Table 1.
Table 1. Clinical characteristics of participants.

	Preterm n= 118	Term n= 59
Mean gestational age, weeks (range)	$29^{+\text{II}}$ ($23^{+\text{II}}$ to $32^{+\text{III}}$)	$39^{+\text{IV}}$ ($37^{+\text{III}}$ to $42^{+\text{III}}$)
Birthweight, g (SD)	1213 (408)	3549 (515)
Male sex, n (%)	67 (57)	30 (51)
Maternal demographics		
BMI, mean (SD)	27.7 (7.3)	26.4 (5.5)
Current smoker, n (%)	18 (15)	1 (2)
SIMD2016 quintile, n (%)		
1	23 (20)	5 (8)
2	22 (19)	6 (10)
3	26 (22)	11 (19)
4	20 (17)	17 (29)
5	23 (20)	20 (34)
Not known	4	
Pregnancy complications, n (%)		
Pre-eclampsia	13 (11)	3 (5)
Prolonged rupture of membranes	27 (23)	0 (0)
Delivery mode, n (%):		
Vaginal	48 (41)	23 (39)
Emergency caesarean	70 (59)	10 (17)
-Pre-labour	48 (69)	1 (10)
-In labour	22 (31)	9 (90)
Elective caesarean	0 (0)	26 (44)
Any labour, n (%)	70 (59)	32 (54)
Histologic chorioamnionitis, n (%)	41 (35)	10 (17)
MIR+ FIR-	18 (44)	2 (20)
MIR+ FIR+	23 (56)	8 (80)
Antenatal steroids (%)	112 (95)	NA
Antenatal magnesium sulphate (%)	108 (92)	NA
Early onset sepsis (%)	9 (8)	0
Late onset sepsis (%)	14 (12)	0
Bronchopulmonary dysplasia (%)	32 (27)	NA
Necrotizing enterocolitis (%)	8 (7)	NA
Retinopathy of prematurity (%)	8 (7)	NA
Deaths before discharge (%)	10 (9)	NA

SIMD2016: Scottish Index of Multiple Deprivation 2016. Prolonged rupture of membranes for >24 hours before delivery. Sepsis: Positive blood culture with a pathogenic organism and/or antibiotic treatment course for ≥5 days. Early-onset sepsis: <72 hours after birth, late-onset sepsis: >72 hours after birth. Bronchopulmonary dysplasia: supplemental oxygen therapy or respiratory support at 36 $^{+\text{II}}$ weeks gestational age. Necrotizing enterocolitis: medical treatment for ≥7 days or surgical treatment. Retinopathy of prematurity requiring treatment with laser therapy. Prolonged rupture of membranes >24 hours.
Umbilical cord blood profile associated with preterm birth

DBSS were obtained from the umbilical cord of 55 preterm infants and 59 term-born controls. 10 analytes (GM-CSF, IFN-γ, IL-2, IL-4, IL-5, IL-10, IL-12, IL-17, MIP-1α and TNF-β) were <LOD in ≥75% of samples and were therefore excluded from subsequent analysis. Median and interquartile range of analytes are shown in Table 2.

Table 2. Cord blood analytes in preterm infants and term-born controls.

Analyte (pg/ml)	Median Preterm n=55	Q1, Q3 Preterm n=55	Median Term n=59	Q1, Q3 Term n=59	p-value
BDNF	22.27	6.04, 36.90	62.33	43.18, 113.68	<0.001
C3	3081995.73	1858060.85, 4569905.86	4447458.83	3520957.75, 5613382.51	<0.001
C5a	3694.52	2420.56, 11470.85	7136.48	4059.83, 9443.64	0.028
C9	1236.73	215.00, 6901.99	12628.69	3608.60, 43156.07	<0.001
CRP	100.88	89.00, 12054.79	89.00	89.00, 89.00	<0.001
IL-1β	0.26	0.26, 0.49	0.11	0.02, 0.34	0.009
IL-6	0.45	0.45, 6.00	0.45	0.45, 0.45	<0.001
IL-8	12.05	5.75, 81.08	8.29	4.89, 14.71	0.049
IL-18	25.62	10.35, 38.34	41.27	27.50, 54.78	<0.001
MCP-1	109.09	68.69, 210.75	48.12	38.54, 66.63	<0.001
MIP-1β	12.01	7.47, 18.82	9.72	6.88, 18.24	0.397
MMP-9	14000.68	4485.50, 40077.02	155885.89	87194.67, 358084.73	<0.001
RANTES	1460.12	702.74, 2754.37	3127.55	1817.10, 5295.39	<0.001
TNF-α	0.27	0.27, 0.37	0.27	0.27, 0.27	0.521
There were significant group differences for 9 immune mediators (p<0.004, Bonferroni corrected). Pro-inflammatory proteins IL-6, MCP-1 and CRP were elevated in the cord blood of preterm infants whilst BDNF, C3, C9, IL-18, MMP-9 and RANTES were decreased compared to controls born at term. PCA showed that five principal components (eigenvalues>1) explained 76% of the variance in the cord blood profile with the majority of variance explained by the first two components (25% and 20% respectively, Table S2). Projection of individual inflammatory profiles onto the first two principal components is shown in Figure 1.

Figure 1. Projection of individual cord blood inflammatory profiles onto the first two principal components, grouped by gestational age category.

In a logistic regression model to predict preterm or term category based on cord blood profile, principal components predicted gestational age category with a classification accuracy of 86% (95% CI 0.78-0.92), p value = 1.242x10^{-14} (Table S3). The percentage contribution of each analyte to the principal components is shown in Figure S1. Amongst immune mediators contributing to variability within the principal components that predicted gestational category, correlation analysis showed that
cord blood MMP-9 and BDNF were highly correlated with gestational age at birth (rho >0.65, p<0.001) (Table S4).

Histologic chorioamnionitis is associated with an altered immune profile on day 5 after very preterm birth

Of 96 preterm infants with day 5 samples, 31 (32%) were exposed to HCA. Infants with HCA exposure had lower GA at birth than infants without HCA: mean GA 28+2 weeks versus 29+4 weeks (p=0.004). Infants exposed to HCA were more likely to have been delivered vaginally (p<0.001) and more likely to have prolonged rupture of membranes prior to delivery (p<0.001). There were no statistically significant group differences in birthweight, infant sex, exposure to antenatal corticosteroids or magnesium sulphate for fetal neuroprotection, or early onset sepsis (Table S5).

5 immune proteins on day 5 of life had a median level in preterm infants exposed to HCA outside the IQR for preterm infants who were not exposed: BDNF, C3a, IL-8, MIP-1β and MMP-9 (Table S6). In exploratory analyses we considered the trajectory of analytes over time in a subset of 33 preterm infants who had blood obtained from the umbilical cord at delivery and on postnatal day 5. Fourteen infants (42%) were exposed to HCA and eight of those (57%) had evidence of FIR. The 5 mediators that were elevated on day 5 in association with HCA showed markedly different trajectories from birth, and this was influenced by placental histological evidence of a fetal inflammatory response (Figure 2).
Figure 2. Analyte trajectories from umbilical cord to postnatal day 5 in preterm infants exposed to histologic chorioamnionitis compared to those not exposed.

BDNF and C3 were elevated at both time points in infants with evidence of placental FIR. The differences in cord blood concentrations of IL-8 and MIP-1β in infants with FIR compared to those without were less discriminatory by day 5 whilst altered MMP-9 expression emerged in the postnatal period.

Discussion

Main findings

By combining placental histopathology with a customised array of immune mediators in umbilical cord blood and postnatal blood from a large group of mother-infant dyads, this study characterises differences in the systemic immune profile of very preterm infants compared with term-born controls, and demonstrates that exposure to HCA with evidence of a fetal inflammatory response is associated with postnatal immune dysregulation on day 5 after birth.
The umbilical cord blood immune profile was distinctly pro-inflammatory in preterm infants with significant elevations in proteins associated with the acute phase response: IL-6, MCP-1 and CRP. In contrast, six proteins were elevated in healthy term-born controls, suggesting developmental regulation with increasing gestational age: BDNF, C3, C9, IL-18, MMP-9 and RANTES. Five proteins were increased on postnatal day 5 in preterm infants exposed to HCA compared to preterm infants without HCA: BDNF, C3, IL-8, MIP-1β and MMP-9. Our findings are consistent with previous studies showing that the neonatal systemic inflammatory response can be dysregulated and prolonged in the weeks after preterm birth\(^4,27,28,32\), but additionally suggest that this is programmed by a fetal inflammatory response.

Strengths and limitations

We investigated a large number of inflammation-associated proteins representative of the perinatal immune response in the newborn, and used a data driven approach to characterise the inflammatory profile associated with very preterm birth and exposure to HCA.

A limitation of the study is that the concentration of anti-inflammatory cytokines IL-4 and IL-10 were below the level of detection in our participants and so inferences about the balance of damaging and protective factors could not be explored. Another limitation is that amniotic fluid was not available for microbial analysis. Recent transcriptomic studies have shown that the presence of a fetal inflammatory response is more strongly associated with microbial invasion rather than sterile inflammation\(^33\) but an alternative study design would be required to investigate...
differences in the postnatal immune profile of infants exposed to intra-amniotic
infection compared to sterile inflammation.

Whilst we found an altered trajectory of immune mediators in association with a fetal
inflammatory response on postnatal day 5, a larger sample size would be required to
perform sub-group analyses based on gestational age or sex and to investigate
possible confounding by postnatal events.

Interpretation

BDNF expression has previously been shown to correlate with gestational age and
postnatal age \(^{29,34}\) but here we show upregulation in preterm infants exposed to
HCA. BDNF belongs to the family of neurotrophins: an important group of signaling
molecules responsible for neuronal growth, maturation and synaptic plasticity during
development \(^{35}\). Prematurity, placental dysfunction and fetal growth restriction have
all been associated with reduced levels of BDNF \(^{29,36-38}\) which may have important
implications for long-term brain health. Reduced BDNF in the neonatal period has
been associated with increased risk of developing ASD \(^{39}\) whilst elevated BDNF in
the weeks after preterm birth is associated with better cognitive performance in
childhood \(^{40,41}\).

C3 was identified as a novel postnatal marker of exposure to intrauterine
inflammation. The complement cascade plays a key role in the innate immune
response \(^{42}\) but is a potent inflammatory system which when dysregulated can cause
significant tissue damage following injury. The complement cascade can be
activated through several mechanisms, but all component pathways converge at
Complement protein C3 \(^{43}\). C3 participates in multiple key processes affecting
developing brain architecture, including tagging of synapses for pruning by microglia.

The complement system is under-developed in preterm infants and complement regulators are low, which may contribute to an uncontrolled complement response in the context of inflammation. We have previously shown that the downstream anaphylatoxin, C5a is elevated in the CSF of preterm infants when compared to term-born controls and numerous studies beyond the neonatal period have also implicated complement C3 dysregulation in CNS pathology including neurodevelopmental disorders, multiple sclerosis, traumatic brain injury and neurodegeneration.

MMP-9 on postnatal day 7 has previously been shown to correlate with the severity of funisitis following extremely preterm birth. MMP-9 is a member of the zinc-dependent endopeptidases that prototypically cleave extracellular matrix (ECM), cell adhesion molecules and cell surface receptors. Matrix-metalloproteinases also modulate the inflammatory response through the regulation of endothelial barrier function, cytokine activity and chemotactic gradient formation.

The ECM is a key regulator of neural network development and plasticity through the stabilization of synaptic contacts. Dysregulation of MMP-9 during a critical window of CNS vulnerability may therefore have long-term consequences on structural connectivity. MMP-9 is higher in the CSF of preterm infants when compared to term-born controls and also higher amongst preterm infants with post haemorrhagic ventricular dilatation (PHVD) when compared to those without brain injury.

Elevated plasma MMP-9 is also associated with hypoxic-ischemic encephalopathy, correlating with severity of injury in human infants born at term.
Our data suggest that systemic fetal inflammation modulates neurotrophic capability and complement system activation in the perinatal period. Future work is needed to explore whether this altered immune profile extends beyond the first weeks of life and to investigate the relationship between these immune mediators and lung disease, gastrointestinal complications and neurodevelopmental outcomes following preterm birth.

Conclusions

By combining placental histopathology with a comprehensive assessment of immune mediators, we have shown that very preterm infants have a distinct pro-inflammatory profile in umbilical cord blood and the immune profile of infants exposed to HCA remains altered on day 5 after birth. These results focus research attention on improved detection of fetuses exposed to intrauterine inflammation and they suggest there may be a therapeutic window for targeted intervention that could reduce the risk of co-morbidities associated with HCA.

Acknowledgements

We are grateful to the families who consented to participate in the study.

Disclosure of interests

The authors report no financial disclosures or conflicts of interest.

Contribution to authorship

G.S. conceived and designed the study, acquired and analysed data, and drafted the article.
P.G., M.J.E. analysed data and revised the article critically for important intellectual content.

N.B-L., K.S. acquired data, analysed data and revised the article critically for important intellectual content.

D.Q.S., G.J.L. acquired data, and revised the article critically for important intellectual content.

S.C. supervised acquisition of data and revised the article critically for important intellectual content.

J.P.B. conceived and designed the study, supervised acquisition of data, analysed data and drafted the article.

All authors approved the final submitted version.

Details of ethics approval

Ethical approval was obtained from the UK National Research Ethics Service (South East Scotland Research Ethics Committee 16/SS/0154).

Funding

Financial support for this study was provided by Theirworld (www.theirworld.org).

This work was undertaken in the Medical Research Council Centre for Reproductive Health, which is funded by a Medical Research Council Centre grant (Medical Research Council G1002033).
1. Al-Haddad BJS, Oler E, Armistead B, Elsayed NA, Weinberger DR, Bernier R, et al. The fetal origins of mental illness. American journal of obstetrics and gynecology. 2019 Dec;221(6):549-62.
2. Pape K, Tamouza R, Leboyer M, Zipp F. Immunoneuropsychiatry - novel perspectives on brain disorders. Nature reviews Neurology. 2019 Jun;15(6):317-28.
3. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS, et al. The role of inflammation in perinatal brain injury. Nature reviews Neurology. 2015 Apr;11(4):192-208.
4. Skogstrand K, Hougaard DM, Schendel DE, Bent NP, Svaerke C, Thorsen P. Association of preterm birth with sustained postnatal inflammatory response. Obstetrics and gynecology. 2008 May;111(5):1118-28.
5. Matoba N, Yu Y, Mestan K, Pearson C, Ortiz K, Porta N, et al. Differential patterns of 27 cord blood immune biomarkers across gestational age. Pediatrics. 2009 May;123(5):1320-8.
6. Boardman JP, Ireland G, Sullivan G, Pataky R, Fleiss B, Gressens P, et al. The Cerebrospinal Fluid Inflammatory Response to Preterm Birth. Frontiers in physiology. 2018;9:1299.
7. Romero R, Gömez R, Chaiworapongs T, Conoscenti G, Kim JC, Kim YM. The role of infection in preterm labour and delivery. Paediatric and perinatal epidemiology. 2001 Jul;15 Suppl 2:41-56.
8. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. The New England journal of medicine. 2000 May 18;342(20):1500-7.
9. Bose C, Laughon M, Allred EN, Van Marter LJ, O'Shea TM, Ehrenkranz RA, et al. Blood protein concentrations in the first two postnatal weeks that predict bronchopulmonary dysplasia among infants born before the 28th week of gestation. Pediatric research. 2011 Apr;69(4):347-53.
10. Villamor-Martinez E, Álvarez-Fuente M, Ghazi AMT, Degraeuwe P, Zimmermann LJ, Kramer BW, et al. Association of Chorioamnionitis With Bronchopulmonary Dysplasia Among Preterm Infants: A Systematic Review, Meta-analysis, and Metaregression. JAMA network open. 2019 Nov 1;2(11):e1914611.
11. Been JV, Lievense S, Zimmermann LJ, Kramer BW, Wolfs TG. Chorioamnionitis as a risk factor for necrotizing enterocolitis: a systematic review and meta-analysis. The Journal of pediatrics. 2013 Feb;162(2):236-42.e2.
12. Hofer N, Kothari R, Morris N, Müller W, Resch B. The fetal inflammatory response syndrome is a risk factor for morbidity in preterm neonates. American journal of obstetrics and gynecology. 2013 Dec;209(6):542.e1-e11.
13. Ozalkaya E, Karatekin G, Topcuoğlu S, Gürsoy T, Ovualı F. Morbidity in preterm infants with fetal inflammatory response syndrome. Pediatrics international : official journal of the Japan Pediatric Society. 2016 Sep;58(9):850-4.
14. Francis F, Bhat V, Mondal N, Adhisivam B, Jacob S, Dorairajan G, et al. Fetal inflammatory response syndrome (FIRS) and outcome of preterm neonates - a prospective analytical study. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2019 Feb;32(3):488-92.
15. Venkatesh KK, Leaviton A, Hecht JL, Joseph RM, Douglass LM, Frazier JA, et al. Histologic chorioamnionitis and risk of neurodevelopmental impairment at age 10
years among extremely preterm infants born before 28 weeks of gestation. American journal of obstetrics and gynecology. 2020 2020/05/07/.

16. Shatrov JG, Birch SC, Lam LT, Quinlivan JA, McIntyre S, Mendz GL. Chorioamnionitis and cerebral palsy: a meta-analysis. Obstetrics and gynecology. 2010 Aug;116(2 Pt 1):387-92.

17. Leviton A, Allred EN, Kuban KC, Hecht JL, Onderdonk AB, O'Shea T M, et al. Microbiologic and histologic characteristics of the extremely preterm infant's placenta predict white matter damage and later cerebral palsy. the ELGAN study. Pediatric research. 2010 Jan;67(1):95-101.

18. Anblagan D, Pataky R, Evans MJ, Telford EJ, Serag A, Sparrow S, et al. Association between preterm brain injury and exposure to chorioamnionitis during fetal life. Scientific reports. 2016 Dec 1;6:37932.

19. Sullivan G, Galdi P, Cabez MB, Borbye-Lorenzen N, Stoye DQ, Lamb GJ, et al. Interleukin-8 dysregulation is implicated in brain dysmaturation following preterm birth. Brain, behavior, and immunity. 2020 2020/11/01/;90:311-8.

20. Gomez R, Romero R, Ghezzi F, Yoon BH, Mazor M, Berry SM. The fetal inflammatory response syndrome. American journal of obstetrics and gynecology. 1998 Jul;179(1):194-202.

21. Gotsch F, Romero R, Kusanovic JP, Mazaki-Tovi S, Pineles BL, Erez O, et al. The fetal inflammatory response syndrome. Clinical obstetrics and gynecology. 2007 Sep;60(3):652-83.

22. Hecht JL, Fichorova RN, Tang VF, Allred EN, McElrath TF, Leviton A. Relationship Between Neonatal Blood Protein Concentrations and Placenta Histologic Characteristics in Extremely Low GA Newborns. Pediatric research. 2011 Jan;69(1):68-73.

23. Døllner H, Vatten L, Halgunset J, Rahimipoor S, Austgulen R. Histologic chorioamnionitis and umbilical serum levels of pro-inflammatory cytokines and cytokine inhibitors. BJOG : an international journal of obstetrics and gynaecology. 2002 May;109(5):534-9.

24. Mestan K, Yu Y, Thorsen P, Skogstrand K, Matoba N, Liu X, et al. Cord blood biomarkers of the fetal inflammatory response. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2009 May;22(5):379-87.

25. Armstrong-Wells J, Donnelly M, Post MD, Manco-Johnson MJ, Winn VD, Sebire G. Inflammatory predictors of neurologic disability after preterm premature rupture of membranes. American journal of obstetrics and gynecology. 2015 Feb;212(2):212.e1-9.

26. Kacerovsky M, Cobo T, Andrys C, Musilova I, Drahosova M, Hornychova H, et al. The fetal inflammatory response in subgroups of women with preterm prelabor rupture of the membranes. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2013 May;26(8):795-801.

27. Leviton A, Hecht JL, Allred EN, Yamamoto H, Fichorova RN, Dammann O. Persistence after birth of systemic inflammation associated with umbilical cord inflammation. Journal of reproductive immunology. 2011 Aug;90(2):235-43.

28. Dammann O, Allred EN, Fichorova RN, Kuban K, O'Shea TM, Leviton A. Duration of Systemic Inflammation in the First Postnatal Month Among Infants Born Before the 28th Week of Gestation. Inflammation. 2016 Apr;39(2):672-7.
29. Leviton A, Allred EN, Yamamoto H, Fichorova RN, Kuban K, O'Shea TM, et al. Antecedents and correlates of blood concentrations of neurotrophic growth factors in very preterm newborns. Cytokine. 2017 Jun;94:21-8.

30. Boardman JP, Hall J, Thrippleton MJ, Reynolds RM, Bogaert D, Davidson DJ, et al. Impact of preterm birth on brain development and long-term outcome: protocol for a cohort study in Scotland. BMJ Open. 2020;10(3):e035854.

31. Redline RW, Faye-Petersen O, Heller D, Qureshi F, Savell V, Vogler C. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatric and developmental pathology: the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society. 2003 Sep-Oct;6(5):435-48.

32. Liston A, Carr EJ, Linterman MA. Shaping Variation in the Human Immune System. Trends in immunology. 2016 Oct;37(10):637-46.

33. Motomura K, Romero R, Galaz J, Tarca AL, Done B, Xu Y, et al. RNA Sequencing Reveals Distinct Immune Responses in the Chorioamniotic Membranes of Women with Preterm Labor and Microbial or Sterile Intra-amniotic Inflammation. Infection and Immunity. 2021;89(5):e00819-20.

34. Huang EJ, Reichardt LF. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677-736.

35. Matoba N, Ouyang F, Mestan KK, Porta NF, Pearson CM, Ortiz KM, et al. Cord blood immune biomarkers in small for gestational age births. Journal of developmental origins of health and disease. 2011 Apr;2(2):89-98.

36. D'Angelo A, Ceccanti M, Petrella C, Greco A, Tirassa P, Rosso P, et al. Role of neurotrophins in pregnancy, delivery and postpartum. European journal of obstetrics, gynecology, and reproductive biology. 2020 Apr;247:32-41.

37. Flöck A, Weber SK, Ferrari N, Fietz C, Graf C, Fimmers R, et al. Determinants of brain-derived neurotrophic factor (BDNF) in umbilical cord and maternal serum. Psychoneuroendocrinology. 2016 Jan;63:191-7.

38. Skogstrand K, Hagen CM, Borbye-Lorenzen N, Christiansen M, Bybjerg-Grauholm J, Baekvad-Hansen M, et al. Reduced neonatal brain-derived neurotrophic factor is associated with autism spectrum disorders. Translational psychiatry. 2019 Oct;7(9):252.

39. Kuban KCK, Heeren T, O'Shea TM, Joseph RM, Fichorova RN, Douglass L, et al. Among Children Born Extremely Preterm a Higher Level of Circulating Neurotrophins Is Associated with Lower Risk of Cognitive Impairment at School Age. The Journal of pediatrics. 2018 Oct;201:40-8.e4.

40. Leviton A, Joseph RM, Fichorova RN, Allred EN, Gerry Taylor H, Michael O'Shea T, et al. Executive Dysfunction Early Postnatal Biomarkers among Children Born Extremely Preterm. Journal of neuroimmune pharmacology: the official journal of the Society on Neuromune Pharmacology. 2019 Jun;14(2):188-99.

41. Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement System Part II: Role in Immunity. Frontiers in immunology. 2015 May;26(6):257.

42. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I – Molecular Mechanisms of Activation and Regulation. Frontiers in immunology. 2015 2015-June-02;6(262).
44. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012 May 24;74(4):691-705.

45. Gorelik A, Sapir T, Ben-Reuven L, Reiner O. Complement C3 Affects Rac1 Activity in the Developing Brain. Front Mol Neurosci; 2018. p. 150.

46. McGreal EP, Hearne K, Spiller OB. Off to a slow start: under-development of the complement system in term newborns is more substantial following premature birth. Immunobiology. 2012 Feb;217(2):176-86.

47. Grumach AS, Ceccon ME, Rutz R, Fertig A, Kirschfink M. Complement profile in neonates of different gestational ages. Scandinavian journal of immunology. 2014 Apr;79(4):276-81.

48. Fragopoulou AF, Qian Y, Heijtz RD, Forssberg H. Can Neonatal Systemic Inflammation and Hypoxia Yield a Cerebral Palsy-Like Phenotype in Periadolescent Mice? Molecular neurobiology. 2019 2019/10/01;56(10):6883-900.

49. Magdalon J, Mansur F, Teles e Silva AL, de Goes VA, Reiner O, Sertié AL. Complement System in Brain Architecture and Neurodevelopmental Disorders. Frontiers in neuroscience. 2020 2020-February-05;14(23).

50. Werneburg S, Jung J, Kunjamma RB, Ha SK, Luciano NJ, Willis CM, et al. Targeted Complement Inhibition at Synapses Prevents Microglial Synaptic Engulfment and Synapse Loss in Demyelinating Disease. Immunity. 2020 Jan 14;52(1):167-82.e7.

51. Alawieh A, Langley EF, Weber S, Adkins D, Tomlinson S. Identifying the Role of Complement in Triggering Neuroinflammation after Traumatic Brain Injury. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2018 Mar 7;38(10):2519-32.

52. Wu T, Dejanovic B, Gandham VD, Gogineni A, Edmonds R, Schauer S, et al. Complement C3 Is Activated in Human AD Brain and Is Required for Neurodegeneration in Mouse Models of Amyloidosis and Tauopathy. Cell reports. 2019 Aug 20;28(8):2111-23.e6.

53. Singleton B. Matrix metalloproteinases as regulators of inflammatory processes. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2017 2017/11/01;1864(11, Part A):2036-42.

54. Reinhard SM, Razak K, Ethell IM. A delicate balance: role of MMP-9 in brain development and pathophysiology of neurodevelopmental disorders. Frontiers in cellular neuroscience. 2015 2015-July-29;9(280).

55. Okamoto T, Takahashi S, Nakamura E, Nagaya K, Hayashi T, Shirai M, et al. Increased expression of matrix metalloproteinase-9 and hepatocyte growth factor in the cerebrospinal fluid of infants with posthemorrhagic hydrocephalus. Early human development. 2010 Apr;86(4):251-4.

56. Walsh BH, Boylan GB, Kenny LC, Dempsey EM, Murray DM, Neonatal Brain Research G. Targeted Biomarker Discovery in Hypoxic-Ischemic Encephalopathy; Correlation with Early Continuous EEG. Pediatric research. 2011 2011/11/01;70(5):134-4.

57. Bednarek N, Svedin P, Garmotel R, Favrais G, Loron G, Schwendiman L, et al. Increased MMP-9 and TIMP-1 in mouse neonatal brain and plasma and in human neonatal plasma after hypoxia–ischemia: a potential marker of neonatal encephalopathy. Pediatric research. 2012 2012/01/01;71(1):63-70.

58. Savard A, Brochu M-E, Chevin M, Guiraut C, Grbic D, Sébire G. Neuronal self-injury mediated by IL-1β and MMP-9 in a cerebral palsy model of severe
neonatal encephalopathy induced by immune activation plus hypoxia-ischemia.
Journal of neuroinflammation. 2015 2015/05/30;12(1):111.