Quartz: Superoptimization of Quantum Circuits
(Extended Version)*

Mingkuan Xu
Carnegie Mellon University
Pittsburgh, PA, USA
mingkuan@cmu.edu

Zikun Li
University of California, Los Angeles
Los Angeles, CA, USA
lizikun_outlook.com

Oded Padon
VMware Research
Palo Alto, CA, USA
oded.padon@gmail.com

Sina Lin
Microsoft
Mountain View, CA, USA
silin@microsoft.com

Jessica Pointing
University of Oxford
Oxford, United Kingdom
jessica.pointing@physics.ox.ac.uk

Auguste Hirth
University of California, Los Angeles
Los Angeles, CA, USA
ahirth@ucla.edu

Henry Ma
University of California, Los Angeles
Los Angeles, CA, USA
hetm@ucla.edu

Jens Palsberg
University of California, Los Angeles
Los Angeles, CA, USA
palsberg@cs.ucla.edu

Alex Aiken
Stanford University
Stanford, CA, USA
aiken@cs.stanford.edu

Umut A. Acar
Carnegie Mellon University
Pittsburgh, PA, USA
umut@cs.cmu.edu

Zhihao Jia
Carnegie Mellon University
Pittsburgh, PA, USA
zhihao@cmu.edu

Abstract
Existing quantum compilers optimize quantum circuits by applying circuit transformations designed by experts. This approach requires significant manual effort to design and implement circuit transformations for different quantum devices, which use different gate sets, and can miss optimizations that are hard to find manually. We propose Quartz, a quantum circuit superoptimizer that automatically generates and verifies circuit transformations for arbitrary quantum gate sets. For a given gate set, Quartz generates candidate circuit transformations by systematically exploring small circuits and verifies the discovered transformations using an automated theorem prover. To optimize a quantum circuit, Quartz uses a cost-based backtracking search that applies the verified transformations to the circuit. Our evaluation on three popular gate sets shows that Quartz can effectively generate and verify transformations for different gate sets. The generated transformations cover manually designed transformations used by existing optimizers and also include new transformations. Quartz is therefore able to optimize a broad range of circuits for diverse gate sets, outperforming or matching the performance of hand-tuned circuit optimizers.

CCS Concepts: • Software and its engineering → Compilers; • Hardware → Quantum computation.

Keywords: quantum computing, superoptimization

1 Introduction
Quantum computing comes in many shapes and forms. There are over a dozen proposals for realizing quantum computing in practice, and nearly all these proposals support different kinds of quantum operations, i.e., instruction set architectures (ISAs). The increasing diversity in quantum processors makes it challenging to design optimizing compilers for quantum programs, since the compilers must consider a variety of ISAs and carry optimizations specific to different ISAs.

To reduce the execution cost of a quantum circuit, the most common form of optimization is circuit transformations that substitute a subcircuit matching a specific pattern with a functionally equivalent new subcircuit with improved performance (e.g., using fewer quantum gates). Existing quantum compilers generally rely on circuit transformations manually designed by experts and applied greedily. For example, Qiskit [5] and tket [28] use greedy rule-based strategies to optimize a quantum circuit and perform circuit transformations whenever applicable. VqC [15] formally verifies circuit transformations but still requires users manually specify them. Although rule-based transformations can reduce the cost of a quantum circuit, they have two key limitations.

First, because existing optimizers rely on domain experts to design transformations, they require significant human effort and may also miss subtle optimizations that are hard to discover manually, resulting in sub-optimal performance.

Second, circuit transformations designed for one quantum device do not directly apply to other devices with different ISAs, which is problematic in the emerging diverse quantum

*This is the extended version of a paper presented in PLDI 2022 [33]. This version includes an additional appendix with detailed results.
computing landscape. For example, IBMQX5 \([12]\) supports the \(U_1\), \(U_2\), and \(\text{CNOT}\) gates, while Rigetti Agave [26] supports the \(R_x(\pm \frac{\pi}{2})\), \(R_x(\pi)\), \(R_x(\lambda)\), and \(\text{CZ}\) gates. As a result, circuit transformations tailored for IBMQX5 cannot optimize circuits on Rigetti Agave, and vice versa.

Recently, Quanto [25] proposed to automatically discover transformations by computing concrete matrix representations of circuits. Its main restriction is that it does not discover symbolic transformations, which are needed to deal with common parametric quantum gates in a general way.

This paper presents Quartz, a quantum circuit superoptimizer that automatically generates and verifies symbolic circuit transformations for arbitrary gate sets, including parametric gates. Quartz provides two key advantages over existing quantum circuit optimizers. First, for a given set of gates, Quartz generates symbolic circuit transformations and formally verifies their correctness in a fully automated way, without any manual effort to design or implement transformations. Second, Quartz explores a more comprehensive set of circuit transformations by discovering all possible transformations up to a certain size, outperforming existing optimizers with manually designed transformations.

ECC sets. We introduce equivalent circuit classes (ECCs) as a compact way to represent circuit transformations. Each ECC is a set of functionally equivalent circuits, and two circuits from an ECC form a valid transformation. We say that a transformation is subsumed by an ECC set (a set of ECCs) if the transformation can be decomposed into a sequence of transformations, each of which is a pair of circuits from the same ECC in the ECC set. We use \((n, q)\)-completeness to assess the comprehensiveness of an ECC set—an ECC set is \((n, q)\)-complete if it subsumes all valid transformations between circuits with at most \(n\) gates and \(q\) qubits.

Overview. Figure 1 shows an overview of Quartz, which uses an interleaving approach: it iteratively generates candidate circuits, eliminates redundancy, and verifies equivalences. In the \(j\)-th iteration, Quartz generates a \((j, q)\)-complete ECC set based on the \((j-1, q)\)-complete ECC set from the previous iteration. The generated ECC set may contain redundant transformations. We introduce RepGen, a representative-based circuit generation algorithm that uses a \((j-1, q)\)-complete ECC set to generate circuits for a \((j, q)\)-complete ECC set with fewer redundancies. The circuits are sent to the circuit equivalence verifier, which formally verifies equivalence between circuits and produces a \((j, q)\)-complete ECC set. After generating an \((n, q)\)-complete ECC set, Quartz employs several pruning techniques to further eliminate redundancies. Finally, Quartz’s circuit optimizer applies the discovered transformations to optimize an input circuit.

Circuit Generator. Given a gate set and a circuit size \(n\), Quartz’s circuit generator generates candidate circuits of size at most \(n\) using the RepGen algorithm, which avoids generating all possible circuits (of which there are exponentially many) while ensuring \((n, q)\)-completeness. To this end, RepGen iteratively constructs ECC sets, from smaller to larger. For each ECC, RepGen selects a representative circuit and constructs larger circuits by extending these representatives.

To discover equivalences between circuits, RepGen uses random inputs to assign a fingerprint (i.e., a hash) to each circuit and checks only the circuits with the same fingerprint. We prove an upper bound on the running time of RepGen in terms of the number of representatives generated. For the gate sets considered in our evaluation, RepGen reduces the number of circuits in an ECC set by one to three orders of magnitudes while maintaining \((n, q)\)-completeness.

Circuit Equivalence Verifier. Quartz’s circuit equivalence verifier checks if two potentially equivalent circuits are indeed functionally equivalent. A major challenge is dealing with gates that take one or multiple parameters (e.g., \(U_1\), \(U_2\), and \(U_5\) in IBMQX5, and \(R_6\) in Rigetti Agave). For candidate equivalent circuits, Quartz checks whether they are functionally equivalent for arbitrary combinations of parameter assignments and quantum states. To this end, Quartz computes symbolic matrix representations of the circuits. The resulting verification problem involves trigonometric functions and, in the general case, a quantifier alternation; Quartz soundly eliminates both and reduces circuit equivalence checking to SMT solving for quantifier-free formulas over the theory of nonlinear real arithmetic. The resulting SMT queries are efficiently solved by the Z3 [10] SMT solver.

Circuit Pruning. Having generated an \((n, q)\)-complete ECC set, Quartz optimizes circuits by applying the transformations specified by the ECC set. To improve the efficiency of this optimization step, described next, Quartz applies several pruning techniques to eliminate redundant transformations.

![Figure 1. Quartz overview.](image-url)
Circuit Optimizer. Quartz’s circuit optimizer uses a cost-based backtracking search algorithm adapted from TASO [17] to apply the verified transformations. The search is guided by a cost model that compares the performance of different candidate circuits (in our experiments the cost is given by number of gates). Quartz targets the logical optimization stage in quantum circuit compilation. That is, Quartz operates before qubit mapping where logical qubits are mapped to physical qubits while respecting hardware constraints [11, 31].

Evaluation. Our evaluation on three gate sets derived from existing quantum processors shows that Quartz can generate and verify circuit transformations for different gate sets in under 30 minutes (using 128 cores). For logical circuit optimization, Quartz matches and often outperforms existing optimizers. On a benchmark of 26 circuits, Quartz obtains average gate count reductions of 29%, 30%, and 49% for the Nam, IBM, and Rigetti gate sets; the corresponding reductions by existing optimizers are 27%, 23%, and 39%.

2 Symbolic Quantum Circuits

To support parametric gates, Quartz introduces symbolic quantum circuits and circuit transformations. The latter are represented compactly using equivalent circuit classes (ECCs). This section introduces these concepts.

Quantum circuits. Quantum programs are represented as quantum circuits [24], as shown in Figure 2a, where each horizontal wire represents a qubit, and boxes on these wires represent quantum gates. The semantics of a quantum circuit over q qubits is given by a $2^q \times 2^q$ unitary complex matrix. This matrix can be computed from matrices of individual gates in a compositional manner, using matrix multiplications (for sequential composition of subcircuits that operate on the same qubits) and tensor products (for parallel composition of subcircuits that operate on different qubits). For example, the matrix for the circuit of Figure 2a is $U_1(-\pi) \otimes H \otimes H \cdot (U_2(\frac{\pi}{2}, \pi) \otimes CNOT) \cdot (CNOT \otimes I)$.

A circuit C' is a subcircuit of C if, for some qubit permutation, the matrix computation for C can be structured as $\ldots \cdot (M_{C'} \otimes I \otimes \cdots \otimes I) \cdot \ldots$, where $M_{C'}$ is the matrix for C'. For example, the green box in Figure 2a highlights a subcircuit, while the red dashed area is not a subcircuit. The subcircuit notion is invariant under qubit permutation; e.g., the X and U_1 gates in Figure 2a also form a subcircuit. A circuit’s matrix is invariant under replacing one subcircuit with another that has the same matrix (but possibly different gates), which underpins peephole optimization for quantum circuits.

Many gates supported by modern quantum devices take real-valued parameters. For example, the IBM quantum device supports the U_1 gate which takes one parameter and rotates a qubit about the x-axis (on the Bloch sphere), and the U_2 gate which takes two parameters for rotating about the x- and z-axes. The matrix representations of U_1 and U_2 are:

$$U_1(\theta) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}, \quad U_2(\phi, \lambda) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -e^{i\lambda} \\ e^{i\phi} & e^{i(\phi+\lambda)} \end{pmatrix} \quad (1)$$

Symbolic circuits. To support superoptimization of circuits with parametric gates, Quartz discovers transformations between symbolic quantum circuits, as shown in Figure 2b, which include (symbolic) parameters ($\theta, \phi, \lambda, \delta$, etc.) and arithmetic operations on these parameters, and are formalized below. Using such circuits, Quartz can represent transformations such as the one illustrated in Figure 2c.

The semantics of a symbolic quantum circuit, denoted $\llbracket C \rrbracket$, has type $\mathbb{R}^m \rightarrow \mathbb{C}^{2^q \times 2^q}$ where C is a circuit over m (symbolic) parameters and q qubits. For a vector of parameter values $\vec{p} \in \mathbb{R}^m$, $\llbracket C \rrbracket(\vec{p})$ is a $2^q \times 2^q$ unitary complex matrix representing a (concrete) quantum circuit over q qubits. For example, eq. (1) can be seen as defining the semantics of U_1 and U_2 as single-gate symbolic quantum circuits. The semantics of a multi-gate symbolic circuit (e.g., Figure 2b) is derived from that of single-gate circuits using matrix multiplications and tensor products exactly as for concrete circuits. Henceforth, we use circuits to mean symbolic quantum circuits.

Circuit equivalence and transformations. In quantum computing, the states $|\psi\rangle$ and $e^{i\beta} |\psi\rangle$ ($\beta \in \mathbb{R}$) are equivalent up to a global phase, and from an observational point of view they are identical [24]. This leads to the following circuit-equivalence definition that underlies Quartz’s optimization.

Definition 1 (Circuit Equivalence). Two symbolic quantum circuits C_1 and C_2 are equivalent if:

$$\forall \vec{p} \in \mathbb{R}^m. \exists \beta \in \mathbb{R}. \llbracket C_1 \rrbracket(\vec{p}) = e^{i\beta} \llbracket C_2 \rrbracket(\vec{p}). \quad (2)$$

That is, two circuits are equivalent if for every valuation of the parameters they differ only by a phase factor. The phase factor may in some cases be constant, but generally it may be different for different parameter values. For example, the
is determined by the gate set \(\mathcal{G} \) (finite set of possibly parametric gates) as well as a specification \(\Sigma \) of how parameter expressions may be constructed; e.g., a finite set of arithmetic operations and some bounds on the depth of expressions or the number of times each parameter can be used, ensuring finiteness of every \(C^{(n,q,m)} \). Henceforth, we fix the gate set \(\mathcal{G} \), the parameter-expression specification \(\Sigma \), and the number of parameters \(m \); and elide \(m \) by writing \(C^{(n,q)} \).

A transformation \((C_T, C_R)\) is subsumed by an ECC set if there is a circuit rewriting from \(C_T \) to \(C_R \) that only uses transformations included in the ECC set.

Definition 2 \((n,q)\)-Completeness. Given \(\mathcal{G} \), \(\Sigma \), and \(m \) as above, an ECC set is \((n,q)\)-complete (for \(\mathcal{G} \), \(\Sigma \), and \(m \)) if it subsumes all circuit transformations over \(C^{(n,q)} \).

An \((n,q)\)-complete ECC set can be used to rewrite any two equivalent circuits with at most \(n \) gates over \(q \) qubits to each other. Any ECC set is by default \((0,q)\)-complete because any transformation involves at least one gate in the target or rewrite circuits. An ECC set is \((1,q)\)-complete if it subsumes all possible transformations between single gates. Sections 3 to 5 describe our approach for constructing a verified \((n,q)\)-complete ECC set.

3 Circuit Generator

Quartz builds an \((n,q)\)-complete ECC set using the RepGen algorithm, developed in this section, which interleaves circuit generation and equivalence verification (see Figure 1).

3.1 The RepGen Algorithm

A straightforward way to generate an \((n,q)\)-complete ECC set is to examine all circuits in \(C^{(n,q)} \), but there are exponentially many such circuits. To tackle this challenge, RepGen uses representative-based circuit generation, which significantly reduces the number of circuits considered. The key idea is to extend a \((j,q)\)-complete ECC set to a \((j+1,q)\)-complete set by selecting a representative circuit for each ECC and using these representatives to build larger circuits.

Sequence representation for circuits. RepGen represents a circuit as a sequence of instructions that reflects a topological ordering of its gates (i.e., respecting dependencies). E.g., a possible sequence for the circuit in Figure 2b is: \(U_1 \theta \); \(U_2 \phi \lambda + \delta \); \(H \); \(X \); \(CNOT \ 1 \ 2 \); \(CNOT \ 0 \). We write \(() \) for the empty sequence and \(L.(g.i) \) for appending gate \(g \in \mathcal{G} \) with arguments \(i \) (parameter expressions and qubit indices) to sequence \(L \); e.g., for the second instruction above \(g = U_2 \) and \(i = (2\phi, \lambda + \delta, 0) \). Different sequences may represent the same circuit; e.g. the \(U_2 \) and \(X \) instructions above can be swapped. RepGen eliminates some of this redundancy by the same mechanism it uses for avoiding redundancy due to circuit equivalence.

We use \(|L|\), \(\text{DropFirst}(L) \), and \(\text{DropLast}(L) \) to denote the number of gates in a circuit \(L \), its suffix with \(|L| - 1 \) gates,
Algorithm 1 RepGen.

1: Input: Number of gates \(n \) and qubits \(q \).
2: Output: \((n, q)\)-complete ECC set.
3: \(\mathcal{D} = \emptyset \) // Hash table of circuit sets indexed by fingerprint
4: \(\mathcal{D}[\text{Fingerprint}(())] = \{()\} \) // Initialize with empty circuit
5: \(\mathcal{R}_0 = \{()\} \) // Representative sets with 0 gates
6: \(\mathcal{S}_0 = \emptyset \) // (0, q)-complete ECC set
7: for \(j = 1 \) to \(n \) do
8: // Step 1: construct circuits (sequences) with \(j \) gates
9: for each circuit \(L \in \mathcal{R}_{j-1} \) such that \(|L| = j - 1 \) do
10: for each gate \(g \in G \) do
11: for each \(i \) such that \(L' = L + (g, i) \) satisfies \(\Sigma \) do
12: if \(\text{DropFirst}(L') \in \mathcal{R}_{j-1} \) then
13: add \(L' \) to \(\mathcal{D}[\text{Fingerprint}(L')] \)
14: // Step 2: examine circuits with equal fingerprints
15: \(\mathcal{S}_j = \bigcup \{\text{Eccify}(y) : y = \mathcal{D}[f] \text{ for some } f\} \)
16: \(\mathcal{R}_j = \{\min(E) : E \in S_j\} \) // Under \(< \) (Definition 3)
17: return \(\{E \in \mathcal{S}_n : |E| \geq 2\} \) // Ignore singleton ECCs
18: // Partition circuits into verified ECCs
19: function Eccify(y)
20: \(\tilde{S} = \emptyset \) // Set of ECCs for circuits in \(y \)
21: for each circuit \(C \in y \) do
22: if \(C \) is equivalent to a circuit in ECC \(E \in \tilde{S} \) then
23: \(\tilde{S} = \tilde{S} \setminus \{E\} \cup \{E \cup \{C\}\} \) // Add \(C \) to \(\tilde{S} \)
24: else
25: \(\tilde{S} = \tilde{S} \cup \{\{C\}\} \) // Create a new ECC for \(C \)
26: return \(\tilde{S} \)

and its prefix with \(|L| - 1 \) gates. Note that each of the latter two represents a subcircuit.

We fix an arbitrary total order over single-gate circuits (i.e., \(C^{(1, q)} \)), and lift it to a total order of circuits (i.e., sequences).

Definition 3 (Circuit Precedence). We say \(L_1 \) precedes \(L_2 \), written \(L_1 < L_2 \), if \(|L_1| < |L_2| \), or if \(|L_1| = |L_2| \) and \(L_1 \) is lexicographically smaller than \(L_2 \).

Algorithm 1 lists the RepGen algorithm, which proceeds in rounds and maintains a database \(\mathcal{D} \) of circuits grouped by fingerprints (defined below), a \((j, q)\)-complete ECC set \(S_j \), and a representative set (set of representatives) \(\mathcal{R}_j \) for ECCs in \(S_j \). The \(j \)-th round produces a \((j, q)\)-complete ECC set from the \((j - 1, q)\)-complete ECC set generated in the previous round. Each round proceeds in two steps.

Step 1: Constructing circuits. Before the first round, the initial ECC set is \(S_0 = \emptyset \) and the representative set is \(\mathcal{R}_0 = \{()\} \), i.e., a singleton ECC consisting of the empty circuit (over \(q \) qubits). In the \(j \)-th round, RepGen uses the \((j - 1, q)\)-complete ECC set \(S_{j-1} \) and its representative set \(\mathcal{R}_{j-1} \) computed previously, and constructs possible size-\(j \) circuits by appending a single gate to each circuit in \(\mathcal{R}_{j-1} \) with size \(j - 1 \). RepGen enumerates all possible gates \(g \) and arguments \(i \) according to \(G \) and \(\Sigma \). For each generated circuit \(L' \), RepGen checks if \(\text{DropFirst}(L') \) is a representative from the previous round. If so, RepGen concludes that \(L' \) extends existing representatives and must be considered in generating \(S_j \). Otherwise, circuit \(L' \) is considered redundant and ignored. We prove the correctness of RepGen in Theorem 2.

To identify potentially equivalent circuits, RepGen computes circuit fingerprints, and uses them as keys for storing circuits in the hash table \(\mathcal{D} \). The fingerprint is computed using fixed, randomly selected parameter values and quantum states. Recall that for a circuit \(C \) over \(q \) qubits and \(m \) parameters, and parameter values \(p \in \mathbb{R}^m \), \(\|C\| (p) \) is a (concrete) \(2^q \times 2^q \) complex matrix. The fingerprint of a circuit \(C \) is

\[
\text{Fingerprint}(C) = \left\langle |\psi_0\rangle | C \right| \left(\bar{p}_0\right) |\psi_1\rangle \right),
\]

where the parameter values \(\bar{p}_0 \) and quantum states \(|\psi_0\rangle \) and \(|\psi_1\rangle \) are fixed and randomly selected, and \(|\cdot| \) denotes modulus of a complex number. With infinite precision, eqs. (2) and (3) ensure that equivalent circuits have identical fingerprints. This section presents and analyzes RepGen assuming infinite precision, while Section 7.1 presents an adaptation for finite-precision floating-point arithmetic.

Step 2: Examining circuits with equal fingerprints. In Step 1, RepGen generates circuits and stores them in the hash table \(\mathcal{D} \) grouped by their fingerprints. In Step 2, RepGen partitions each set \(y = \mathcal{D}[f] \) of potentially equivalent circuits into a verified ECC set using the function Eccify. Eccify considers each circuit in \(y \) and checks if it is equivalent to some existing ECC in \(y \) by querying the verifier (Section 4); the circuit is then either added to the matching ECC, or becomes a new singleton ECC. RepGen then combines the ECC sets for each \(y \) to get the ECC set \(S_j \).

Having constructed an ECC set \(S_j \), RepGen computes \(S_j \)’s representative set \(\mathcal{R}_j \), which is the set of representatives of the ECCs in \(S_j \) (Algorithm 1 line 16). The representative of an ECC is its \(< \)-minimum circuit (Definition 3). During the operation of RepGen, singleton ECCs are important: their representatives must be considered when generating circuits in the next round, and they may grow to non-singleton ECCs as more circuits are generated. However, singleton ECCs in \(S_n \) ultimately yield no transformations, so we remove them from the result of the RepGen algorithm (line 17).

3.2 Correctness of RepGen

When constructing circuits of size \(j \) (in round \(j \)), RepGen only considers circuits \(L' \) that extend previously constructed representatives, i.e., \(\text{DropLast}(L') \in \mathcal{R}_{j-1} \), and only when the extension leads to \(\text{DropFirst}(L') \in \mathcal{R}_{j-1} \). In this section we prove that in spite of that, RepGen always generates an \((n, q)\)-complete ECC set. Below we use \(D_j \) to denote the value of \(\mathcal{D} \) after Step 1 in RepGen’s \(j \)-th round (i.e., at Algorithm 1 line 15) and \(D_0 \) for the initial value of \(\mathcal{D} \) (line 4).

Lemma 1. Algorithm 1 maintains the following invariants (for any \(1 \leq j \leq n \), and writing \(\subseteq \) for Hoare ordering, i.e., \(X \subseteq Y \iff \forall X \in X. \exists Y \in Y. X \subseteq Y \)):
1. \(D_{j-1} \subseteq D_{j} \), \(S_{j-1} \subseteq S_{j} \), and \(R_{j-1} \subseteq R_{j} \);
2. for any \(L \in C^{(n,q)} \), \(L \in \bigcup D_{j} \) iff \(|L| \leq j \) and either \(L = () \) or \(\text{DropFirst}(L) \), \(\text{DropLast}(L) \in R_{j-1} \); and
3. for any \(L \in C^{(n,q)} \), \(L \in R_{j} \) iff \(|L| \leq j \) and \(L \) does not have a \(<\)-smaller equivalent circuit in \(C^{(n,q)} \).

Proof: For item 1, \(D_{j-1} \subseteq D_{j} \) and \(S_{j-1} \subseteq S_{j} \) follow from the monotonic updating of \(D \) (i.e., circuits are only added), and from monotonicity (w.r.t. Hoare ordering) of \(\text{Eccify} \). To see that \(R_{j-1} \subseteq R_{j} \), observe that in the \(j \)-th round, all circuits constructed are of size \(j \), so any circuit added to an existing \(\text{Eccify} \) has more gates than its representative in \(R_{j-1} \), which will therefore remain its representative in \(R_{j} \) (recall that if \(|L| < |L'|\) then \(L < L' \)).

We prove item 2 by induction on \(j \). Both the base case \((j = 1)\) and the induction step follow from Algorithm 1 lines 9–13, combined with item 1 and either the definition of \(D_{k} \) or the induction hypothesis.

We prove item 3 by induction on \(j \). Slightly generalizing from the statement above, we take the base case to be \(j = 0 \), which follows from line 5. In the induction step, for sufficiency, consider a circuit \(L, 1 \leq |L| \leq j \), with no \(<\)-smaller equivalent circuit. (The \(|L| = 0 \) case follows from line 5 and item 1.) Both \(\text{DropFirst}(L) \) and \(\text{DropLast}(L) \) are of size \(\leq j - 1 \) with no \(<\)-smaller equivalent circuits (if either had a \(<\)-smaller equivalent circuit, we could use it to construct a \(<\)-smaller equivalent circuit for \(L \)). By the induction hypothesis, \(\text{DropFirst}(L) \), \(\text{DropLast}(L) \in R_{j-1} \), so by item 2, \(L \in \bigcup D_{j} \). By lines 15–16, \(R_{j} \) includes the \(\leq \)-minimal element of each class of equivalent circuits in \(\bigcup D_{j} \), so it must include \(L \). Necessity follows from sufficiency, combined with the fact that two circuits in \(R_{j} \) cannot be equivalent and that \(R_{j} \) does not contain circuits of size greater than \(j \).

Theorem 2 (\textsc{RepGen}). In Algorithm 1, every \(S_{j} \) (\(0 \leq j \leq n \)) is a \((j,q)\)-complete \(\text{Ecc} \) set, and the algorithm returns an \((n,q)\)-complete \(\text{Ecc} \) set.

Proof: We proceed using proof by contradiction. Let \(j \) be the smallest such that \(S_{j} \) is not \((j,q)\)-complete. We must have \(j > 0 \), with \(S_{j-1} \) \((j-1,q)\)-complete, and by Lemma 1 item 1 \(S_{j-1} \) is also \((j-1,q)\)-complete. (As \(S_{j-1} \subseteq S_{j} \), \(S_{j} \) only includes more transformations.) Let \((L, L')\) be the minimal (under the pairwise lexicographic lifting of \(<\)\) pair of equivalent circuits of size \(\leq j \) that cannot be rewritten to each other using transformations included in \(S_{j} \). We must have \(|L'| = j \), since otherwise \(|L|, |L'| \leq j - 1 \), but \(S_{j} \) is \((j-1,q)\)-complete.

If \(\text{DropFirst}(L') \) has a \(<\)-smaller equivalent circuit, then \(S_{j} \) can rewrite \(L' \) to a \(<\)-smaller equivalent circuit, which it must also not be able to rewrite to \(L \), contradicting the minimality of \(L' \). Therefore, \(\text{DropFirst}(L') \) does not have a \(<\)-smaller equivalent circuit; The same argument works \(\text{DropLast}(L') \). Therefore, by using Lemma 1 item 3 we get \(\text{DropFirst}(L'), \text{DropLast}(L') \in R_{j-1} \), and by Lemma 1 item 2, \(L' \in D_{j} \). But if \(L' \in D_{j} \) then either \(S_{j} \) includes a transformation that rewrites \(L' \) to a smaller equivalent circuits, that it cannot rewrite to \(L \), contradicting the minimality of \(L' \); or \(L' \) does not have a \(<\)-smaller equivalent circuit, contradicting the definition of the pair \((L, L')\). □

3.3 Complexity of \textsc{RepGen}

We analyze the time complexity of \textsc{RepGen} (its space complexity is the same). First, observe that the number of single-gate circuits \(|C^{(1,q)}| - 1\), which is determined by the gate set \(\mathcal{G} \), parameter-expression specification \(\Sigma \), number of qubits \(q \), and parameters \(m \), provides an upper bound for the number of single-gate extensions of any existing circuit. (The \(-1\) is due to \(() \in C^{(1,q)} \).) This characteristic of \(\mathcal{G}, \Sigma, q, m \), denoted \(\text{ch}(\mathcal{G}, \Sigma, q, m) = |C^{(1,q)}| - 1 \), bounds the number of iterations of the loops in Algorithm 1 lines 10 and 11 in each round. (The bound may not be tight as \(\Sigma \) may impose more restrictions, e.g., single use of parameters.)

While \(\Sigma_{j=1}^{n} \text{ch}(\mathcal{G}, \Sigma, q, m)^j \) provides a trivial upper bound on the complexity of \textsc{RepGen}, the following theorem shows that \textsc{RepGen}'s running time can be bounded using the number of resulting representatives \(|R_n|\). In practice, this number is significantly smaller than \(\text{ch}(\mathcal{G}, \Sigma, q, m)^n \) (see Table 5).

Theorem 3 (Complexity of \textsc{RepGen}). The time complexity of Algorithm 1, excluding the verification part (line 15), is

\[
O(|R_n| \cdot \text{ch}(\mathcal{G}, \Sigma, q, m) \cdot n).
\]

Proof. The \(j \)-th round of Algorithm 1 considers circuits from \(R_{j-1} \) with size \(j - 1 \), and for each one it considers at most \(\text{ch}(\mathcal{G}, \Sigma, q, m) \) possible extensions. It takes \(O(n) \) to construct a new circuit and add it to \(D \). (We assume \(O(1) \) complexity for hash table insert and lookup, i.e., we use average and amortized complexity.) Summing over all rounds of Algorithm 1, and recalling that \(R_{j} \subseteq R_{n} \) (Lemma 1 item 1):

\[
\sum_{j=1}^{n} |\{L \in R_{j-1} : |L| = j - 1\}| \cdot \text{ch}(\mathcal{G}, \Sigma, q, m) \cdot n
\leq |R_n| \cdot \text{ch}(\mathcal{G}, \Sigma, q, m) \cdot n.
\]

Note that if \(\mathcal{G}, \Sigma, q, m \) are considered as constant then the time complexity of Algorithm 1 is \(O(|R_n| \cdot n) \).

Table 5 lists some empirical \(\text{ch}(\mathcal{G}, \Sigma, q, m) \) and \(|R_n| \) values.

4 Circuit Equivalence Verifier

Given two circuits \(C_{1} \) and \(C_{2} \) over \(q \) qubits and \(m \) parameters, the verifier checks if they are equivalent (i.e., up to a global phase). Recalling eq. (2), that means checking if \(\forall \beta \in \mathbb{R}^{m} \exists \beta \in \mathbb{R} \cdot \|C_{1}(\beta)\| = \|C_{2}(\beta)\| \). Note that the equality here is between two \(2^q \times 2^q \) complex matrices.

There are two challenges in automatically checking eq. (2). One is the quantifier alternation, which may be needed to account for global phase; the other is the use of trigonometric
function, which is common in quantum gates’ matrix representations. For example, the U_3 gate supported by the IBM quantum processors has the following matrix representation:

$$
\begin{bmatrix}
\cos\left(\frac{\theta}{2}\right) & -e^{i\lambda}\sin\left(\frac{\theta}{2}\right) \\
e^{i\phi}\sin\left(\frac{\theta}{2}\right) & e^{i(\phi+\lambda)}\cos\left(\frac{\theta}{2}\right)
\end{bmatrix}.
$$

(4)

While some SMT solvers support quantifiers and trigonometric functions [8, 9], our preliminary attempts showed they cannot directly prove eq. (2) for the circuit transformations generated by Quartz. Our verification approach is therefore to reduce eq. (2) to a quantifier-free formula over nonlinear real arithmetic by eliminating both the quantification over β and the trigonometric functions. The resulting verification conditions are then checked using the Z3 [10] SMT solver. This approach can efficiently verify all circuit transformations generated in our experiments (Section 7.4).

Phase factors. To eliminate the existential quantification over the phase β, we search over a finite space of linear combinations of the parameters \tilde{p} for a value that can be used for β. We consider $\beta(\tilde{p}) = \tilde{a} \cdot \tilde{p} + b$, where $\tilde{a} \in A$ and $b \in B$ for some finite sets $A \subseteq \mathbb{R}^m$ and $B \subseteq \mathbb{R}$. (Our experimentation with various combinations of quantum gates suggested that $\tilde{a} \neq 0$ is sometimes needed, so we develop the mechanism with this generality; however, in the experiments reported in Section 7, constant phase factors, i.e. $\tilde{a} = 0$, turned out to be sufficient for the three gate sets and the parameter specifications used.) Given circuits C_1 and C_2, we find candidates for the coefficients \tilde{a} and b using an approach similar to the one we use for generating candidate transformations. We select random parameter values \tilde{p}_0 and quantum states $\ket{\psi_0}$ and $\ket{\psi_1}$ and find all combinations of \tilde{a} and b as above that satisfy the following equation up to a small floating-point error (note that unlike eq. (3), $\cdot | 1$ is not used):

$$
\bra{\psi_0} C_1(\tilde{p}_0) \ket{\psi_1} = e^{i(\tilde{a} \cdot \tilde{p} + b)} \cdot \bra{\psi_0} C_2(\tilde{p}_0) \ket{\psi_1},
$$

(5)

For every such candidate coefficients \tilde{a} and b, we then attempt to verify following equation,

$$
\forall \tilde{p} \in \mathbb{R}^m, C_1(\tilde{p}) = e^{i(\tilde{a} \cdot \tilde{p} + b)} C_2(\tilde{p}),
$$

(6)

which unlike eq. (2), does not existentially quantify over β. If eq. (6) holds for some candidate coefficients, then C_1 and C_2 are verified to be equivalent. Otherwise, we consider the transformation given by C_1 and C_2 to fail verification, but that case did not occur in our experiments.

Trigonometric functions. Matrices of parametric quantum gates we encountered only use their parameters inside arguments to sin or cos (after applying Euler’s formula). Under this assumption, we reduce eq. (6) to nonlinear real arithmetic in three steps. First, we eliminate expressions such as $\frac{\theta}{2}$ that occur in some quantum gates (e.g., eq. (4)) by introducing a fresh variable $\theta' = \frac{\theta}{2}$ and substituting $\theta' + \theta''$ for θ. After this step, all arguments to sin and cos are linear combinations of variables and constants (e.g., from phase factors) with integer coefficients. Second, we exhaustively apply Euler’s formula $e^{i\theta} = \cos \phi + i \sin \phi$, and trigonometric identities for parity and sum of angles: $\sin(-x) = -\sin(x)$, $\cos(-x) = \cos(x)$, $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$, and $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$. After these steps, sin and cos are only applied to atomic terms (variables and constants). For each constant c, we require precise symbolic expressions for $\sin(c)$ and $\cos(c)$ (e.g., $\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$), and eliminate sin and cos over constants using these expressions. Third, for every variable t such that $\sin(t)$ or $\cos(t)$ is used we substitute s_t for $\sin(t)$ and c_t for $\cos(t)$, where s_t and c_t are fresh variables with a constraint $s_t^2 + c_t^2 = 1$, which fully eliminates trigonometric functions.

Ultimately, Z3 can check the transformed version of eq. (6) using the theory of quantifier-free nonlinear real arithmetic.

During the development of Quartz we occasionally encountered verification failures, but these were due to implementation bugs, and the counterexamples obtained from Z3 were useful in the debugging process. Thus, verification is useful not only to ensure the ultimate correctness of the generated transformations, but also in the development process.

5 Pruning Redundant Transformations

Quartz applies two pruning steps after RepGen generates an (n, q)-complete ECC set to further eliminate redundancy. These steps maintain (n, q)-completeness while reducing the number of transformations the optimizer needs to consider.

5.1 ECC Simplification

All ECCs generated by RepGen have circuits with exactly q qubits. For each ECC, a qubit (or a parameter) is unused if all circuits in the ECC do not operate on the qubit (or the parameter). An ECC simplification pass removes all unused qubits and parameters from each ECC. After this pass some ECCs may become identical, among which only one is kept.
Because there is no specific order on parameters in a circuit, Quartz also finds identical ECCs under a permutation of the parameters and maintains only one of them.

5.2 Common Subcircuit Pruning
Quartz eliminates transformations whose target and rewrite circuits include a common subcircuit at the beginning or the end. Figure 4 illustrates this common subcircuit pruning; the common subcircuit is highlighted in grey. Theorem 4 explains why such transformations are always redundant.

Definition 4. A subset of gates C' in a circuit C is a subcircuit at the beginning of C if all gates in C' are topologically before all gates in $C \setminus C'$. Similarly, a subset of gates C' in a circuit C is a subcircuit at the end of C if all gates in C' are topologically after all gates in $C \setminus C'$.

Theorem 4. For any two quantum circuits C_1 and C_2 with a common subcircuit at the beginning or the end, if C_1 and C_2 are equivalent, then eliminating the common subcircuit from C_1 and C_2 generates two equivalent circuits.

Proof. Recall that $\left\langle C \right\rangle (p)$ (for all p, we elide p in this proof) denotes the matrix representation of circuit C. Let $\left\langle C \right\rangle ^\dagger$ be the conjugate transpose of $\left\langle C \right\rangle$, and recall that if $\left\langle C \right\rangle$ is unitary, we have $\left\langle C \right\rangle ^\dagger \left\langle C \right\rangle = \left\langle C \right\rangle \left\langle C \right\rangle ^\dagger = I$. Let C_1 denote the common subcircuit shared by C_1 and C_2. Let C'_1 and C'_2 represent the new circuits obtained by removing C_1 from C_1 and C_2. When C_i is a common subcircuit at the beginning of C_1 and C_2, the matrix representations for the new circuits are $\left\langle C'_i \right\rangle = \left\langle C_i \right\rangle ^\dagger \left\langle C_i \right\rangle$, where $i = 1, 2$. Equivalence between C_1 and C_2 implies the existence of β such that $\left\langle C_1 \right\rangle = e^{i\beta} \left\langle C_2 \right\rangle$, therefore $\left\langle C'_i \right\rangle = e^{i\beta} \left\langle C'_i \right\rangle$. The case where C_i is a common subcircuit at the end is similar. □

Theorem 4 shows that every transformation pruned in common subcircuit pruning must be subsumed by other transformations (assuming initial (n, q)-completeness).

Observe that if two circuits have a common subcircuit at the beginning (resp. the end), then they must have a common gate at the beginning (resp. the end). Therefore, to implement common subcircuit pruning, Quartz only checks for a single common gate at the beginning or the end.

6 Circuit Optimizer
Quartz’s circuit optimizer applies the verified transformations generated by the generator to find an optimized equivalent circuit for a given input circuit (see Figure 1).

A key step is computing $\text{APPLY}(C, T)$, the set of circuits that can be obtained by applying transformation $T = (C_T, C_R)$ to circuit C. This involves finding all possible ways to match C_T with a subcircuit of C. Quartz’s optimizer uses a graph representation for circuits, explained below, to implement this operation. In the graph representation, subcircuits correspond to convex subgraphs, and Quartz adapts the graph-matching procedure from TASO [17] to find all matches between C_T and a convex subgraph of C.

In the graph representation, a circuit C over q qubits is represented as a directed graph G, where each gate over d qubits is a vertex with in- and out-degree d. Edges are labeled to distinguish between qubits in multi-qubit gates (e.g., the control and target qubits of a CNOT gate). G also includes q sources and sinks, one for each qubit. Figure 5 illustrates the graph representation of Figure 2a’s circuit. As the figure also illustrates, subcircuits correspond to convex subgraphs.

The optimizer first converts an (n, q)-complete ECC set into a set of transformations (in the graph representation). For each ECC with x equivalent circuits C_1, \ldots, C_x, the optimizer considers a pair of transformations between the representative and each other circuit. For example, if C_1 is the representative circuit in the ECC, then the optimizer considers transformations $C_1 \rightarrow C_i$ and $C_1 \rightarrow C_1$ for $1 \leq i \leq x$. These $2(x - 1)$ transformations guarantee that any two circuits from the same ECC are reachable from each other.

To optimize an input circuit using the above transformations, the optimizer uses a cost-based backtracking search algorithm adapted from TASO [17, 18]. The search is guided by a cost function $\text{Cost}(\cdot)$ that maps circuits to real numbers. In our evaluation, the cost is given by the number of gates in a circuit, but other cost functions are possible.

Algorithm 2 shows the pseudocode of our search algorithm. To find an optimized circuit, candidate circuits are maintained in a priority queue Q. At each iteration the lowest-cost circuit C is dequeued, and Quartz applies all transformations to get equivalent new circuits C_{new}, which are enqueued into Q for further exploration. Circuits considered in the past are ignored using D_{seen}.

The search is controlled by a hyper-parameter γ. Quartz ignores candidate circuits whose cost is greater than γ times the cost of current best circuit C_{best}. The parameter γ trades off between search time and the search’s ability to avoid local minima. For $\gamma = 1$, Algorithm 2 becomes a greedy search that only accepts transformations that strictly improve cost.

1For a graph G, G' is a convex subgraph of G if for any two vertices u and v in G', every path in G from u to v is also contained in G'.

Figure 5. Graph representation for Figure 2a’s circuit. The green box (subcircuit, also convex subgraph) and red dashed area (not a subcircuit, also non-convex subgraph) match those of Figure 2a.
Quartz is publicly available as an open-source project [4] and also in the artifact supporting this paper [32].

7.1 Implementation

Floating-point arithmetic. The RepGen algorithm as presented in Section 3 uses real-valued fingerprints, where two equivalent circuits always have the same fingerprint. Our implementation of RepGen uses floating-point arithmetic, which introduces some imprecision that can potentially lead to different fingerprints for equivalent circuits. To account for this imprecision, the implementation assumes there exists an absolute error threshold E_{max}, such that fingerprints of equivalent circuits differ by at most E_{max} when computed with floating-point arithmetic. The implementation therefore computes, using floating-point arithmetic, the integer $\left\lfloor \frac{\text{Fingerprint}(C)}{E_{max}} \right\rfloor$, and uses it as the key for storing circuit C in D. Under our assumption, equivalent circuits may still have different integer hash keys, but they may differ only by 1. Therefore, the implementation introduces an additional step after line 15 of Algorithm 1, in which ECCs that correspond to circuits with hash keys h and $h + 1$ are checked for equivalence and merged if found equivalent. In our experiments we set $E_{max} = 10^{-15}$ based on preliminary exploration of the floating-point errors that occur in practice.

Supported gate sets. Quartz is a generic quantum circuit optimizer supporting arbitrary gate sets, and it accepts a gate set G as part of its input. In our experiments, input circuits are given over the “Clifford + T” gate set: $H, T, T^\dagger, S, S^\dagger$, and CNOT; and output (optimized) circuits are in one of the three gate sets listed in Table 1: Nam, IBM, and Rigetti. Nam is a gate set commonly used in prior work [15, 23], IBM is derived from the IBMQX5 quantum processor [12], and Rigetti is derived from the Rigetti Agave quantum processor [3, 26].
To generate and verify circuit transformations for a new gate set, Quartz only requires, for each gate, a specification of its matrix representation as a function of its parameters, such as eq. (1). To optimize circuits, a translation procedure of input circuits to the new gate set is also required unless input circuits are provided in the new gate set.

Rotation merging and Toffoli decomposition. Before invoking Quartz’s optimizer, Quartz preprocesses circuits by applying two optimizations: rotation merging and Toffoli decomposition [23]. Our preliminary experiments showed that an approach solely based on local transformations and a cost-based search cannot reproduce these optimization passes for large circuits. Rotation merging combines multiple R_z/U_1 gates that may be arbitrarily far apart (separated by X or $CNOT$ gates), and appears difficult to be represented as local circuit transformations. Toffoli decomposition decomposes a Toffoli gate into the Nam gate set, which involves simultaneous transformation of 15 quantum gates and interacts with rotation merging [23, p. 11]. We therefore implement these two optimization passes from prior work [23] as preprocessing step. Toffoli decomposition requires selecting a polarity for each Toffoli gate, which is computed heuristically by prior work [23]. Instead, we use a greedy approach: we process the Toffoli gates sequentially and for each gate we consider both polarities and greedily pick the one that results in fewer gates after rotation merging.

For the Nam and IBM gate sets, Quartz directly applies rotation merging and Toffoli decomposition as a preprocessing step before the optimizer. For the Rigetti gate set, which includes CZ rather than $CNOT$, the algorithm from the prior work [23] is not directly applicable; therefore, Quartz uses several additional preprocessing steps, as follows. Rather than directly transpiling an input circuit to Rigetti, Quartz first transpiles it to Nam and applies Toffoli decomposition and rotation merging. Next, Quartz rewrites each $CNOT$ gate to a sequence of H, CZ, H gates, cancels out adjacent H or CZ pairs, and then fully converts the circuit to Rigetti by transforming X to $R_z(\pi)$ and H to $R_x(\pi) \cdot R_z(\frac{\pi}{2}) \cdot R_y(\frac{\pi}{2}) \cdot R_z(-\frac{\pi}{2})$. Ultimately, Quartz invokes the optimizer, using a suitable (n, q)-complete ECC set for Rigetti. Note that elimination of adjacent H or CZ pairs during the translation from Nam to Rigetti leads to more optimized circuits: a pair of adjacent H gates (that are canceled out) would otherwise be transformed into a sequence of eight R_z and R_y gates that cannot be canceled out by Quartz since the cancellation is only correct for specific parameter values, while Quartz considers symbolic transformations valid for arbitrary parameter values.

Symbolic parameter expressions. As explained in Section 2, Quartz assumes a fixed number of parameters m and a specification Σ for parameter expressions used in circuits. Quartz takes m as input, and supports a flexible form for Σ defined by a finite set of parameter expressions and either allowing or disallowing parameters to be used more than once in a circuit.

Our experiments use $m = 2$ for the Nam and Rigetti gate sets, and $m = 4$ for the IBM gate set because it contains gates with up to three parameters. For Σ, we consider the expressions p_i, $2p_i$ and $p_i + p_j$ where $0 \leq i < m$ and $i < j < m$ (recall that $\vec{p} \in \mathbb{R}^m$ is the vector of parameters), and restrict each parameter to be used at most once in a circuit. This restriction significantly reduces the number of circuits RepGen considers, especially for the IBM gate set because the U_3 gate requires three parameter expressions.

As explained in Section 4, the verifier searches for phase factors of the form $a \cdot \vec{p} + b$. In our experiments we used $a \in \{-2, -1, 0, 1, 2\}^m$ and $b \in \{0, \frac{2\pi}{7}, \frac{4\pi}{7}, \ldots, \frac{6\pi}{7}\}$, which proved to be useful and sufficient in our preliminary experimentation with various gates. We later found that for the gate sets of Table 1, $a = 0$ is actually sufficient. That is, these gate sets do not admit any transformations with parameter-dependent phase factors for the circuits we considered; they do however need various constant phase factors.

1. Quartz can in principle be used to optimize for other metrics, e.g. number of $CNOT$ or T gates, but here we focus on total gate count.
All experiments were performed on an m6i.32xlarge AWS EC2 instance with a 128-core CPU and 512 GB RAM.

7.3 Circuit Optimization Results

Nam gate set. Table 2 compares Quartz to Qiskit [5], Nam [23], and voqc [15] for the Nam gate set. (The performance of t|ket⟩ [28] for this gate set is similar to Qiskit, see [15].) The table also shows the gate count following Quartz’s preprocessor steps (rotation merging and Toffoli decomposition, see Section 7.1). Quartz outperforms Qiskit and voqc on almost all circuits, indicating that it discovers most transformations used in these optimizers and also explores new optimization opportunities arising from new transformations and from the use of a cost-guided backtracking search (rather than a greedy approach, e.g., see Figure 6).

Quartz achieves on-par performance with Nam [23], a circuit optimizer highly tuned for this gate set. Nam applies a set of carefully chosen heuristics such as floating \mathcal{R}_t gates and canceling one- and two-qubit gates (see [23] for more detail). While Quartz’s preprocessor implements two of Nam’s optimization passes, the results of the preprocessor alone are not close to Nam. By using the automatically generated transformations, Quartz is able to perform optimizations similar to some of Nam’s other hand-tuned optimizations, and even outperform Nam on roughly half of the circuits.

For mod5_4, we observed significant variability between runs, caused by randomness in ordering circuits with the same cost in the priority queue (Q in Algorithm 2). Therefore, Table 2 reports the median result from seven runs as well as individual results. This variability also suggests that Quartz’s performance can be improved by running the optimizer multiple times and taking the best discovered circuit, or by applying more advanced stochastic search techniques [21].

IBM gate set. Table 3 compares Quartz with Qiskit [5], t|ket⟩ [28], and voqc [15] on the IBM gate set. Qiskit and t|ket⟩ include a number of optimizations specific to this gate set, such as merging any sequence of U_1, U_2, and U_3 gates into a single gate [2] and replacing any block of consecutive gates z into a single gate U [2]. Therefore, Table 3 shows the gate count following Quartz’s preprocessor (Section 7.1).

We observe that for the gf2n mult circuits, Quartz’s preprocessor outperforms Nam. We attribute this difference to our greedy Toffoli decomposition, discussed in Section 7.1, which happens to work well for these circuits.
Table 4. Gate count results for the Rigetti gate set. The best result for each circuit is in bold. "Quartz Preprocess" lists gate count after Quartz’s preprocessor (Section 7.1).

Circuit	Orig. Quilc	t{kset}	Quartz Preprocess	Quartz End-to-end
adder_8	5324	3345	3726	4244
barenc_tof_3	332	203	207	256
barenc_tof_4	656	390	408	500
barenc_tof_5	980	607	609	744
barenc_tof_10	2600	1552	1614	1964
csla_mux_3	1030	614	641	754
csum_mux_9	2296	1540	1542	1736
gf2^4_mult	1315	809	827	1020
gf2^5_mult	2033	1301	1277	1573
gf2^6_mult	2905	1797	1823	2235
gf2^7_mult	3931	2427	2465	3021
gf2^8_mult	5237	3208	3276	4033
gf2^9_mult	6445	4070	4037	4933
gf2^10_mult	7933	4977	4967	6048
mod5_4	369	211	238	293
mod_mult_55	657	420	452	531
mod_red_21	1480	880	1020	1166
qla_adder_10	3079	1884	2464	3636
qla_com_7	2512	1540	1606	1954
qla_mod_7	5130	3164	3202	4029
rc_adder_6	1186	706	747	984
tof_3	255	150	160	201
tof_4	425	271	270	333
tof_5	595	354	380	465
tof_10	1445	878	930	1125
vbe_adder_3	900	534	557	705

Geo. Mean Reduction | -38.6% | 36.3% | 21.9% | 49.4% |

† Quilc supports up to 32 qubits while qcla_adder_10 has 36.

1-qubit gates by a single U_3 gate [1]. Quartz is able to automatically discover some of these gate-specific optimizations by representing them each as a sequence of transformations. Overall, Quartz outperforms these existing compilers.

Rigetti gate set. Table 4 compares Quartz with Quilc [29] and t{kset} [28] on the Rigetti gate set. Quartz significantly outperforms t{kset} and Quilc on most circuits, even though Quilc is highly optimized for this gate set. We also note that while we employ some simplifications in the preprocessing phase for the Rigetti gate set (see Section 7.1), most of the reduction in gate count comes from the optimization phase.

7.4 Analyzing Quartz’s Generator and Verifier

We now examine Quartz’s circuit generator and circuit equivalence verifier. Table 5 shows the run times of the entire generation procedure and also the time out of that spent in verification, for each of the three gate sets and for varying values of n, while fixing $q = 3$. The table also lists the number of resulting circuit transformations $|T|$, the size of the resulting representative set $|R_n|$, and the characteristic (see Algorithm 1 and Theorem 3). For all gate sets, $|T|$ and $|R_n|$ grow exponentially with n. In spite of this exponential

Table 5. Metrics for Quartz’s generator, when generating (n, q)-complete ECC sets for $q=3$ and varying values of n for the three gate sets. $|T|$ is the resulting number of transformations, $|R_n|$ is the size of the resulting representative set, and ch is the characteristic (see Algorithm 1 and Theorem 3).

| Circuit | n | $|T|$ | $|R_n|$ | Verification Time (s) | Total Time (s) |
|-------------|-----|-------|---------|-----------------------|----------------|
| adder_8 | 2 | 62 | 397 | 1.2 | 1.3 |
| | 3 | 196 | 4,179 | 2.6 | 3.7 |
| | 4 | 1,304 | 36,177 | 8.5 | 21.4 |
| | 5 | 8,002 | 269,846 | 49.5 | 174.7 |
| | 6 | 56,152| 1,777,219| 370.3 | 1,400.4 |
| | 7 | 379,864| 10,432,127| 2,673.6 | 10,461.2 |
| barenc_tof_3| 2 | 1,912 | 22,918 | 22.9 | 38.6 |
| | 3 | 6,086 | 224,281 | 100.4 | 225.9 |
| | 4 | 16,748| 1,532,185| 356.9 | 1,290.0 |
| | 5 | 225,068| 7,847,203| 1,844.8 | 8,363.1 |
| barenc_tof_4| 2 | 66 | 361 | 1.3 | 1.5 |
| | 3 | 66 | 3,143 | 2.6 | 3.7 |
| | 4 | 224 | 22,043 | 5.8 | 15.4 |
| | 5 | 2,396 | 134,423 | 22.7 | 100.2 |
| | 6 | 15,464| 729,842 | 132.0 | 675.3 |
| barenc_tof_5| 2 | 178 | 2,708 | 1.3 | 1.5 |
| | 3 | 382 | 27,094 | 2.6 | 3.7 |
| | 4 | 468 | 134,423 | 5.8 | 15.4 |
| | 5 | 2,912 | 134,423 | 22.7 | 100.2 |
| | 6 | 15,464| 729,842 | 132.0 | 675.3 |
| barenc_tof_10| 2 | 778 | 469 | 51 (15x) | 51 (15x) |
| | 3 | 17,518| 965 | 117 (150x) | 117 (150x) |
| | 4 | 367,843| 2,293 (160x)| 548 (671x) | 203 (1,812x) |
| | 5 | 7,354,093| 10,568 (696x)| 4,949 (1,486x) | 2,337 (3,147x) |
| | 6 | 141,763,468| 58,193 (2,436x)| 35,690 (5,972x) | 15,240 (9,302x) |

† For Rigetti, $n = 2$ and $n = 3$ result in identical transformations—each 3-gate transformation is subsumed by 2-gate transformations in a way identified by Quartz.
growth, the generator and verifier can generate, in a reason- able run time of a few hours, an \((n, q)\)-complete ECC set for values of \(n\) and \(q\) that are sufficiently large to be useful for circuit optimization. The growth in number of transformations significantly affects the optimizer. For Nam and IBM, our selected values of \(n = 6\) and \(n = 4\) result in a similar order of magnitude for \(|\mathcal{T}|\). For Rigetti, we use \(n = 2\), resulting in much smaller \(\mathcal{T}\). This choice is related to the fact that circuits in the Rigetti gate set are larger by roughly an order of magnitude compared to Nam and IBM (compare “Orig.” in Table 4 with Tables 2 and 3; see discussion in Section 7.5).

We now evaluate the effectiveness of \(\text{RepGen}\) and the pruning techniques described in Section 5 for reducing the number of circuits Quartz must consider (which is closely correlated with the number of resulting transformations). To evaluate the relative contribution of each technique, Table 6 reports the number of circuits considered when applying: (i) \(\text{RepGen}\) without additional pruning, (ii) \(\text{RepGen}\) combined with ECC simplification, and (iii) \(\text{RepGen}\) combined with both ECC simplification and common subcircuit pruning; and compares each of these to a brute force approach of generating all possible circuits with up to \(q\) qubits and \(n\) gates. Both \(\text{RepGen}\) and the pruning techniques play an important role in eliminating redundant circuits while preserving \((n, q)\)-completeness. Ultimately, \(\text{RepGen}\) and the pruning techniques reduce the number of transformations the optimizer must consider by one to three orders of magnitude.

7.5 Analyzing Quartz’s Circuit Optimizer

We now examine Quartz’s circuit optimizer when using an \((n, q)\)-complete ECC set for varying values of \(n\) and \(q\). For this study we focus on the Nam gate set, and compare different values for \(n\) and \(q\) by the optimization effectiveness they yield, defined as the reduction in geometric mean gate count over all circuits (as in the bottom line of Table 2). For mod5,4, when \(q = 3\) and \(3 \leq n \leq 7\), we use the median of 7 runs due to the variability discussed in Section 7.3.

As we increase \(n\) and \(q\) we expect Quartz’s optimizer to: (i) be able to reach more optimized circuits, and (ii) require more time per search iteration. Both of these follow from the fact that increasing \(n\) and \(q\) yields more transformations. Under a fixed search time budget, we expect the increased cost of search iterations to reduce the positive impact of larger \(n\)’s and \(q\)’s. Because each iteration (Algorithm 2) considers a candidate circuit \(C\) and computes \(\text{Apply}(C, T)\) for each transformation \(T \in \mathcal{T}\), the cost per iteration scales linearly with the number of transformations \(|\mathcal{T}|\). Since \(|\mathcal{T}|\) varies dramatically as \(n\) and \(q\) change, we expect the second effect (slowing down the search) to be significant, especially for large circuits which typically require more search iterations (and additionally increase apply’s running time).

Figure 7 shows optimization effectiveness (reduction in geometric mean gate count) for varying values of \(n\) and \(q\), under a search timeout of 24 hours. The figure supports the tradeoff discussed above. Using too small values for \(n\) and \(q\) results in low effectiveness, and as we increase \(n\) or \(q\) effectiveness increases but then starts decreasing, as the negative impact of the large number of transformations starts outweighing their benefit. (See Table 8 for \(|\mathcal{T}|\) in each configuration.) As expected, the optimal setting for \(n\) and \(q\) generally varies across circuits—smaller circuits tend to be better optimized with larger values of \(n\) (Table 7). Still, Figure 7 shows that there are several settings that yield good overall results: \(3 \leq n \leq 6\) for \(q = 3\), and \(3 \leq n \leq 4\) for \(q = 4\).

Figure 8 shows how the search time impacts optimization for different choices for \(n\) (focusing on \(q = 3\)). For each value of \(n\), we observe a quick initial burst, followed by a gentle increase. At the end of the initial burst, effectiveness monotonically decreases as \(n\) increases, for all \(3 \leq n \leq 6\). As time progresses the gaps diminish and eventually the order is reversed: at around 21 hours \(n = 6\) surpasses \(n = 3\). The settings \(n = 2\) and \(n = 7\) yield poor effectiveness: \(n = 2\) does not contain an adequate number of transformations and quickly saturates the search time, while \(n = 7\) contains too many transformations and progresses too slowly.

Figure 8 also shows the effectiveness of a hypothetical run constructed by taking the best setting for each circuit at each time. This “best” curve considerably outperforms the others, because the best setting for \(n\) varies across circuits with different sizes.

\(^{3}\)For example: with \(q = 3\), \(|\mathcal{T}| = 196\) for \(n = 3\) and \(|\mathcal{T}| = 56,152\) for \(n = 6\); with \(q = 4\), \(|\mathcal{T}| = 208\) for \(n = 3\) and \(|\mathcal{T}| = 273,532\) for \(n = 6\) (see Table 8). We were unable to generate a \((7, 4)\)-complete ECC set using 512 GB of RAM.

\(^{3}\)Interestingly, \(q = 3; 3 \leq n \leq 6\) cover the best optimization results for all circuits obtained among all configurations considered in Figure 7 (Table 7).
While our approach builds on some of the techniques developed in prior work, Quartz is the first quantum circuit optimizer that can automatically generate and verify symbolic circuit transformations for arbitrary gate sets.

Superoptimization. Superoptimization is a compiler optimization technique originally designed to search for an optimal sequence of instructions for an input program [22]. Our approach to generating quantum circuit transformations by tracking equivalent classes of circuits is inspired by prior work in automatically generating peephole optimizations for the X86 instruction set [7, 14] and generating graph substitutions for tensor algebra [17, 30, 34].

TASO [17] is a tensor algebra superoptimizer that optimizes computation graphs of deep neural networks using automatically generated graph substitutions. TENSAT [34] reuses the graph substitutions discovered by TASO and employs equality saturation for tensor graph superoptimization. While Quartz draws inspiration from TASO and uses a similar search procedure, it is significantly different from prior superoptimization works because it targets quantum computing, which leads to a different semantics (i.e., using complex matrices) as well as a different notion of program equivalence (i.e., up to a global phase). Verifying quantum circuit transformations therefore uses different techniques compared to other superoptimization contexts. Applying equality saturation as in TENSAT [34] for optimizing quantum circuits is an interesting avenue for future work.

8 Related Work

Quantum circuit compilation. Several optimizing compilers for quantum circuits have been recently introduced and are being actively developed: Qiskit [5] and trotket [28] support generic gate sets; Quilc [29] is tailored to Rigetti Agave quantum processors; voqc [15] is formally verified in Coq. CertiQ [27] is a framework for writing and verifying Qiskit compiler passes. Nam et al. [23] develop heuristics tailored to the \{H, X, R, CNOT\} gate set. Unlike Quartz, these systems rely on quantum-computing experts to design, implement, and verify transformations.

Quanto [25] automatically discovers transformations by computing concrete matrix representations of circuits. It supports parameters only by considering concrete values, and unlike Quartz it does not discover or verify symbolic transformations, which are the source of many of the challenges Quartz deals with. Quanto uses floating-point matrix equality to identify equivalence between circuits, while Quartz uses a combination of fingerprinting, SMT-based verification, the RepGen algorithm, and other pruning techniques, which are needed since symbolic parameters greatly increase the number of possible circuits in the generation procedure.

Different from the aforementioned quantum optimizers that consider circuit transformations, PyZX [26] employs ZX-diagrams as an intermediate representation for quantum circuits and uses a small set of complete rewrite rules in ZX-calculus [13, 16] to simplify ZX-diagrams, which are finally converted back into quantum circuits.

9 Conclusion and Future Work

We have presented Quartz, a quantum circuit superoptimizer that automatically generates and verifies circuit transformations for arbitrary gate sets with symbolic parameters. While Quartz shows that a superoptimization-based approach to optimizing quantum circuits is practical, we believe there are many opportunities for further improvement. As discussed in Section 7.5, Quartz’s current search algorithm limits the number of transformations that can be effectively utilized. Improving the search algorithm may therefore lead to better optimization using \((n, q)\)-complete ECC sets for larger values of \(n\) and \(q\), which may also require improving the generator. Another limitation of Quartz that suggests opportunity for future work is that it only targets the logical circuit optimization stage and does not consider qubit mapping. Applying superoptimization to jointly optimize circuit logic and qubit mapping is both challenging and promising.

Acknowledgments

We thank the anonymous PLDI reviewers and our shepherd, Xiaodi Wu, for their feedback. This work was partially supported by the National Science Foundation under grant numbers CCF-2115104, CCF-2119352, and CCF-2107241.
Quartz: Superoptimization of Quantum Circuits (Extended Version)

References

[1] 2021. Qiskit ConsolidateBlocks. https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.ConsolidateBlocks.html.

[2] 2021. Qiskit Optimizer1qGates. https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.Optimize1qGates.html.

[3] 2021. Rigetti Gates. https://pyquil-docs.rigetti.com/en/v2.7.0/api/qubits/gates.html.

[4] 2022. The Quartz Quantum Circuit SuperOptimizer. https://github.com/quantumCompiler/quartz.

[5] Gadi Aleksandrowicz, Thomas Alexander, Panagiotis Barkoutsos, Luciano Bello, Yael Ben-Haim, David Bucher, Francisco Jose Cabrera-Hernández, Jorge Carballo-Franquis, Adrian Chen, Chun-Fu Chen, Jerry M. Chow, Antonio D. Córcoles-Gonzales, Abigail J. Cross, Andrew Cross, Juan Cruz-Benito, Chris Culver, Salvador De La Puente González, Enrique De La Torre, Delton Ding, Eugene Dumitrescu, Ivan Duran, Pieter Eendebak, Mark Everitt, Ismael Faro Sertage, Albert Frisch, Andreas Fuhrer, Jay Gambetta, Borja Godoy Gago, Juan Gomez-Mosquera, Donny Greenberg, Ikko Hamamura, Voytech Havlicek, Joe Hellmers, Lukasz Herok, Hiroshi Horii, Shaohao Hu, Takashi Imamichi, Toshinari Itoko, Ali Javadi-Abhari, Naoki Kanazawa, Anton Karazeev, Kevin Krsulich, Peng Liu, Yang Lung, Yunho Maeng, Manoel Marques, Francisco Jose Martin-Fernández, Douglas T. McClure, David McKay, Srujan Meesala, Antonio Mezzacapo, Nikołaj Moll, Diego Moreira Rodri­gues, Giacomo Nannicini, Paul Nation, Pauline Ollitrault, Lee James O’ Riordan, Hanhee Paik, Jesús Pérez, Anna Phan, Marco Pistoia, Vik­tor Prutyanyov, Max Reuter, Julia Rice, Abdón Rodríguez Davila, Raymond Harry Putra Rudy, Mingi Rya, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav Setia, Yunong Shi, Adenilton Silva, Yukio Sir­aiuchi, Seyon Sivarajah, John A. Smolin, Mathias Soeken, Hitomi Taka­hashi, Ivano Tavernelli, Charles Taylor, Pete Taylor, Kenso Trabing, Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wildstrom, Jessica Wilson, Eric Winston, Christopher Wood, Stephen Wood, Stefan Wörner, Ismail Yunus Akhalwaya, and Christa Zoufal. 2019. Qiskit: An Open-source Framework for Quantum Computing. https://doi.org/10.5281/zenodo.2562111

[6] Matthew Amy, Dmitri Maslov, and Michele Mosca. 2014. Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 33, 10 (2014), 1476–1489. https://doi.org/10.1109/TCAD.2014.2341953

[7] Sorav Bansal and Alex Aiken. 2006. Automatic Generation of Peephole Superoptimizers. SIGOPS Oper. Syst. Rev. 40, 5 (Oct. 2006), 394–403. https://doi.org/10.1145/1169817.1169896

[8] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In Computer-Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6806). Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer, 171–177. https://doi.org/10.1007/978-3-642-22110-1_14

[9] Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco Roveri, and Roberto Sebastiani. 2017. Satisfiability Modulo Transcendental Functions via Incremental Linearization. In Automated Deduction -CADE 26 - 26th International Conference on Automated Deduction, Gothen­burg, Sweden, August 6-11, 2017. Proceedings (Lecture Notes in Computer Science, Vol. 10395). Leonardo de Moura (Ed.). Springer, 95–113. https://doi.org/10.1007/978-3-319-63046-5_7

[10] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science, Vol. 4963). C. Ramakrishnan and Jakob Rehof (Eds.). Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[11] Yongshan Ding, Adam Holmes, Ali Javadi-Abhari, Diana Franklin, Margaret Martonosi, and Frederic T. Chong. 2018. Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures. In 51st Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018. IEEE Computer Society, 838–840. https://doi.org/10.1109/MICRO.2018.00072

[12] Eugene F Dumitrescu, Alex J McCaskey, Gaute Hagen, Gustav R Jansen, Titus D Morris, T Papenbroek, Raphael C Pooser, David Jarvis Dean, and Pavel Lougovski. 2018. Cloud quantum computing of an atomic nucleus. Physical review letters 120, 21 (2018), 210501.

[13] Amar Hadi­zhanasovic, Kang Feng Ng, and Quan­long Wang. 2018. Two Complete Axiomatizations of Pure-State Qubit Quantum Computing. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18). Association for Computing Machinery, New York, NY, USA, 502–511. https://doi.org/10.1145/3209108.3209128

[14] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. 2016. Stratified Synthesis: Automatically Learning the X86-64 Instruction Set. In Proceedings of the 57th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara, CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 237–250. https://doi.org/10.1145/2908080.2908121

[15] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. 2021. A Verified Optimizer for Quantum Circuits. Proc. ACM Program. Lang. 5, POPL, Article 37 (Jan. 2021), 29 pages. https://doi.org/10.1145/3434318

[16] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. 2018. A Complete Axiomatization of the ZX-Calculus for Clifford+T Quantum Mechanics. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18). Association for Computing Machinery, New York, NY, USA, 559–568. https://doi.org/10.1145/3209108.3209131

[17] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019. TASO: Optimizing Deep Learning Computation with Automatic Generation of Graph Substitutions. In Proceedings of the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Machinery, New York, NY, USA, 47–62. https://doi.org/10.1145/3341301.3359630

[18] Zhihao Jia, James Thomas, Todd Warszawski, Mingyu Gao, Matei Zaharia, and Alex Aiken. 2019. Optimizing DNN Computation with Relaxed Graph Substitutions. In Proceedings of the 2nd Conference on Systems and Machine Learning (SysML’19).

[19] Aleks Kissinger and John van de Wetering. 2019. Reducing T-count with the ZX-calculus. arXiv preprint arXiv:1903.10477 (2019).

[20] Aleks Kissinger and John van de Wetering. 2020. PyZX: Large Scale Automated Diagrammatic Reasoning. Electronic Proceedings in Theoretical Computer Science 318 (may 2020), 229–241. https://doi.org/10.4204/eptcs.318.14

[21] Jason R. Koenig, Oded Padon, and Alex Aiken. 2021. Adaptive restarts for stochastic synthesis. In PLDI ‘21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June 20-25, 2021. Stephen N. Freund and Eran Yahav (Eds.). ACM, 696–709. https://doi.org/10.1145/3453483.3454071

[22] Henry Massalin. 1987. Superoptimizer: A Look at the Smallest Program. Lang. Synth. Autom. 51, 122 (1987), 237–250.

[23] Eugene F Dumitrescu, Alex J McCaskey, Gaute Hagen, Gustav R Jansen, Titus D Morris, T Papenbroek, Raphael C Pooser, David Jarvis Dean, and Pavel Lougovski. 2018. Cloud quantum computing of an atomic nucleus. Physical review letters 120, 21 (2018), 210501.

[24] M. Nielsen and I. Chuang. 2001. Quantum Computation and Quantum Information. Cambridge University Press.
[25] Jessica Pointing, Oded Padon, Zhihao Jia, Henry Ma, Auguste Hirth, Jens Palsberg, and Alex Aiken. 2021. Quanto: Optimizing Quantum Circuits with Automatic Generation of Circuit Identities. arXiv:2111.11387 (2021). https://doi.org/10.48550/arXiv.2111.11387

[26] Matthew Reagor, Christopher B. Osborn, Nikolas Tzek, Alexa Staley, Guenevere Prawroatmodjo, Michael Scheer, Nasser Alidoust, Eyob A. Sete, Nicolas Didier, Marcus F. da Silva, and et al. 2018. Demonstration of universal parametric entangling gates on a multi-qubit lattice. Science Advances 4, 2 (Feb 2018). https://doi.org/10.1126/sciadv.aao3603

[27] Yunong Shi, Runzhou Tao, Xupeng Li, Ali Javadi-Abhari, Andrew W. Cross, Frederic T. Chong, and Ronghui Gu. 2020. CertIQ: A Mostly-automated Verification of a Realistic Quantum Compiler. arXiv:1908.08963 [quant-ph]

[28] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan. 2020. t|ket⟩: a retargetable compiler for NISQ devices. Quantum Science and Technology 6, 1 (Nov 2020), 014003. https://doi.org/10.1088/2058-9565/ab8e92

[29] Mark Skillbeck, Eric Peterson, appleby, Erik Davis, Peter Karakekas, Juan M. Bello-Rivas, Daniel Kochmanski, Zach Beane, Robert Smith, Andrew Shi, Cole Scott, Adam Paszke, Eric Hulburd, Matthew Young, Aaron S. Jackson, BHAVISHYA, M. Sohaib Alam, Wilfredo Velázquez-Rodríguez, c. b. osborn, fengdlm, and jmatekeyrigetti. 2020. rigetti/quilc: v1.21.0. https://doi.org/10.5281/zenodo.3967926

[30] Haojie Wang, Jidong Zhai, Mingyu Gao, Xizuan Ma, Shizhi Tang, Liyan Zheng, Yuanzhi Li, Kaiyuan Rong, Yuanyong Chen, and Zhihao Jia. 2021. PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections. In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21). 37–54.

[31] Xin-Chuan Wu, Dripto M. Debroy, Yongshan Ding, Jonathan M. Baker, Yuri Alexeev, Kenneth R. Brown, and Frederic T. Chong. 2021. TILT: Achieving Higher Fidelity on a Trapped-Ion Linear-Tape Quantum Computing Architecture. In IEEE International Symposium on High-Performance Computer Architecture, HPCA 2021, Seoul, South Korea, February 27 - March 3, 2021. IEEE, 153–166. https://doi.org/10.1109/HPCA51647.2021.00023

[32] Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing, Auguste Hirth, Henry Ma, Jens Palsberg, Alex Aiken, Umut A. Acar, and Zhihao Jia. 2022. Artifact for PLDI 2022 paper: Quartz: Superoptimization of quantum circuits. https://doi.org/10.5281/zenodo.6330242

[33] Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing, Auguste Hirth, Henry Ma, Jens Palsberg, Alex Aiken, Umut A. Acar, and Zhihao Jia. 2022. Quartz: Superoptimization of quantum circuits. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation (PLDI ’22), June 13–17, 2022, San Diego, CA, USA. ACM. https://doi.org/10.1145/3519939.3523433

[34] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max Willsey, Sudip Roy, and Jacques Pienaar. 2021. Equality Saturation for Tensor Graph Superoptimization. In Proceedings of Machine Learning and Systems, A. Smola, A. Dimakis, and I. Stoica (Eds.), Vol. 3. 255–268.
A Detailed Results

Table 7 shows the final gate count for each circuit for varying \(n \) and \(q \) after a 24-hour search timeout, with the best results of each circuit highlighted. Interestingly, \(q = 3 \) with \(3 \leq n \leq 6 \) covers the best optimization results for all circuits obtained among all configurations considered in the table. As circuits are sorted in the order of original size in the table, we can see that when \(q = 3 \), small circuits tend to be better optimized with larger values of \(n \), and larger circuits tend to be better optimized with smaller values of \(n \).

Table 8 shows the run times of the entire generation procedure, and also the time out of that spent in verification, for each of the ECC set used in Table 7. The table also lists the number of resulting circuit transformations \(|\mathcal{T}|\) for each \(n \) and \(q \), and the characteristic for each \(q \) (see definition in Section 3.3).

Figures 9 to 34 show plots akin to Figure 7 and Figure 8 for each circuit. In each figure, the left plot shows the optimization result with \((n,q)\)-complete ECC sets for varying \(n \) and \(q \) after a 24-hour search timeout. The right plot shows the optimization result over time for \(q = 3 \) and \(2 \leq n \leq 7 \). Each 24-hour result on the right plot corresponds to a green round marker \((q = 3)\) on the left plot.

Among these figures, Figure 23 shows the median run for mod5_4. The median run is defined to be the run with the final gate count being the median of the 7 runs. We present the results of all 7 runs for mod5_4 for \(q = 3 \) and \(3 \leq n \leq 7 \) in Figure 35.
Table 7. Gate count results for the Nam gate set when using \((n, q)\)-complete ECC sets with varying values of \(n\) and \(q\), and a search timeout of 24 hours. "Pr." shows the result when \(n = 0\) or \(n = 1\): the ECC set is empty, so the results match the "Quartz Preprocess" column of Table 2. When \(q = 1\), the results are the same when \(2 \leq n \leq 7\).

Circuit	Orig.	Pr.	\(q = 1\)	\(q = 2, n = _\)	\(q = 3, n = _\)	\(q = 4, n = _\)
tof_3	45	39	35	35	35	35
barenc_tof_3	58	46	42	42	42	42
mod5_4	63	51	51	51	51	51
tof_4	75	63	55	55	55	55
tof_5	105	87	75	75	75	75
barenc_tof_4	114	86	78	78	78	78
mod_mult_55	119	105	97	94	94	94
vbe_adder_3	150	115	95	95	95	95
barenc_tof_5	170	126	114	114	114	114
csla_mux_3	170	164	160	152	152	152
rc_adder_6	200	174	154	152	152	152
gf2^4_mult	225	186	186	180	180	180
tof_10	255	207	175	175	175	175
mod_red_21	278	236	202	202	202	202
gf2^5_mult	347	287	287	279	279	279
csum_mux_9	420	308	308	308	308	308
qcla_com_7	443	349	293	293	293	293
barenc_tof_10	450	326	294	294	294	294
gf2^6_mult	495	401	401	391	391	391
qcla_adder_10	521	450	416	416	416	416
gf2^7_mult	669	543	543	531	531	531
gf2^8_mult	883	703	703	703	703	703
qcla_mod_7	884	727	657	657	657	657
adder_8	900	732	640	640	640	640
gf2^9_mult	1095	879	879	879	879	879
gf2^10_mult	1347	1062	1062	1058	1058	1058
Figure 9. adder_8 (900 gates).

Figure 10. barenco_tof_3 (58 gates).

Figure 11. barenco_tof_4 (114 gates).
Figure 12. bareco_tof_5 (170 gates).

Figure 13. bareco_tof_10 (450 gates).

Figure 14. csla_mux_3 (170 gates).
Figure 15. csum_mux_9 (420 gates).

Figure 16. gf24_mult (225 gates).

Figure 17. gf25_mult (347 gates).
Figure 18. \texttt{gf2^6_mult} (495 gates).

Figure 19. \texttt{gf2^7_mult} (669 gates).

Figure 20. \texttt{gf2^8_mult} (883 gates).
Figure 21. $gf_2^{9\text{-}\text{mult}}$ (1095 gates).

Figure 22. $gf_2^{10\text{-}\text{mult}}$ (1347 gates).

Figure 23. mod5_4 (63 gates).
Figure 24. mod_mult_55 (119 gates).

Figure 25. mod_red_21 (278 gates).

Figure 26. qc1a_adder_10 (521 gates).
Figure 27. qcla_com_7 (443 gates).

Figure 28. qcla_mod_7 (884 gates).

Figure 29. rc_adder_6 (200 gates).
Figure 30. tof_3 (45 gates).

Figure 31. tof_4 (75 gates).

Figure 32. tof_5 (105 gates).
Figure 33. tof_10 (255 gates).

Figure 34. vbe_adder_3 (150 gates).
Figure 35. 7 runs of mod5_4 with a \((n, 3)\)-complete ECC set for each \(3 \leq n \leq 7\). Each marker denotes one run. For example, the three markers on the 57.1%-reduction line of \(n = 5\) show three runs resulting in 27 gates after 24 hours.