Data Article

Dataset of energetically accessible structures of MgCl₂/TiCl₄ clusters for Ziegler-Natta catalysts

Gentoku Takasao a, Toru Wada a,b, Ashutosh Thakur a, Patchanee Chammingkwan a,b, Minoru Terano a,b, Toshiaki Taniike a,b,∗

a Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
b DPI, P.O. Box 902, 5600 AX, Eindhoven, the Netherlands

A R T I C L E I N F O

Article history:
Received 16 November 2020
Revised 9 December 2020
Accepted 10 December 2020
Available online 15 December 2020

Keywords:
Ziegler-Natta catalyst
Genetic algorithm
Structure determination
Density functional theory
MgCl₂
TiCl₄

A B S T R A C T

This data article provides a dataset of the energetically accessible structures including the most stable structures of xMgCl₂/yTiCl₄ nanoplates (x = 6–19, y = 0–4). TiCl₄-capped MgCl₂ nanoplates are regarded as the building block of the Ziegler–Natta catalyst. The most stable structures were determined for MgCl₂/TiCl₄ nanoplates of different sizes and chemical compositions using a combination of the genetic algorithm and the DFT geometry optimization. The evolution in the genetic algorithm produced a number of meta-stable structures. A set of isomeric structures having similar energy to the most stable structure (termed energetically accessible structures) are provided as realistic models of MgCl₂/TiCl₄ nanoplates. These structures are useful for further investigation on the structural distribution of Ti species on MgCl₂ regarding the Ziegler-Natta catalyst.

© 2020 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Catalysis
Specific subject area	Heterogeneous Ziegler-Natta catalyst
Type of data	A collection of geometry-optimized atom coordinates in the cartesian coordinate file (.car) format in angstroms
How data were acquired	Materials Studio DMol³ version 2017
Data format	Raw and Filtered
Parameters for data collection	Perdew–Burke–Ernzerhof (PBE) GGA exchange-correlation functional Double-numerical basis set with polarization functions (DNP) with effective core potential
Description of data collection	722 structure models of xMgCl2/yTiCl4 nanoplates (x = 6–19, y = 0–4) obtained through non-empirical structure determination based on a combination of the genetic algorithm and the DFT geometry optimization.
Data source location	Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
Data accessibility	Repository name: Mendeley Data Data identification number: DOI: 10.17632/c2cv8pg5d8.2 Direct URL to data: https://data.mendeley.com/datasets/c2cv8pg5d8/2
Related research article	Gentoku Takasao, Toru Wada, Ashutosh Thakur, Patchanee Chammingkwan, Minoru Terano and Toshiaki Taniike, Insight into Structural Distribution of Heterogeneous Ziegler–Natta Catalyst from Non-empirical Structure Determination, J. Catal. In Press. https://doi.org/10.1016/j.jcat.2020.11.005

Value of the Data

Computational chemistry in the field of Ziegler-Natta catalyst conventionally assumed ideal surfaces of MgCl2. However, the building block of the actual catalyst is nano-sized and the resultant non-ideality of surfaces would lead to a structural distribution. Here provided energetically accessible structures for xMgCl2/yTiCl4 nanoplates are useful to study such a distribution.

The dataset is useful for researchers in the field of heterogeneous olefin polymerization catalysts.

The dataset provides energetically accessible structures as realistic models of MgCl2/TiCl4. They could be used to investigate the nature and the distribution of TiCl4 (or its activated form) in relation to Ziegler-Natta catalysis. They also withstand models for interpreting experimental spectroscopic observations.

1. Data Description

The dataset presented in this article provides energetically accessible structures including the most stable structures for xMgCl2/yTiCl4 clusters (x = 6–19, y = 0–4; [Ti] < 10 wt%). These structures were obtained in the course of the structure determination using a combination of the genetic algorithm and the DFT geometry optimization. Here, energetically accessible structures are termed as the isomeric structures whose energies are not greater than 6 kcal/mol with respect to the most stable structure.

The zip file contains 722 structure files, which are organized into folders according to size and chemical composition. All the structure files (in Angstrom) are provided as cartesian coordinate files (.car) and named as follows: “xMgCl2_yTiCl4_z.car”, where z corresponds to the energetic order within the same size and composition.

Absolute energies in Hartree that were computed are summarized in “xMgCl2_yTiCl4.csv”.

2. Experimental Design, Materials and Methods

The dataset in this paper was obtained by non-empirical structure determination for xMgCl2/yTiCl4 (x = 6–19, y = 0–4; [Ti] < 10 wt%) [1]. The program for the non-empirical structure
determination was developed in our previous paper [2]. The program particularly targets TiCl$_4$-capped MgCl$_2$ nanoplates whose lateral surfaces are capped with TiCl$_4$ molecules. The energies of structures are determined by DFT geometry optimization, and they are used to updates the structures to lower the energy. The program collects newly generated structures to a database in the process of evolution without allowing registration of redundant structures. Further details of the program are given in the literature [2].

The structure determination was performed until the solution satisfied the requirement that multiple runs independently converged to the same physicochemically reasonable structure after a sufficient number of generations. The solution thus obtained by the genetic algorithm was regarded as the optimal one, i.e. the most stable structure.

The size of 6–19MgCl$_2$ was chosen with a consideration of a balance between computational feasibility and actuality. 19MgCl$_2$, which has a size of about 1.5 nm, was not far from the experimentally determined size of primary particles (ca. 2.4–4.0 nm) [3–6]. The number of TiCl$_4$ molecules ([Ti] < 10 wt%) referred to a typical Ti content of commercial Ziegler–Natta catalysts, which is 1–3 wt% for propylene polymerization and up to 10 wt% for ethylene polymerization [7].

The DFT geometry optimization was performed by DMol3 of Materials Studio with the following conditions: The GGA PBE for the exchange-correlation functional [8], and the DNP basis set [9] with effective core potentials [10,11]. The convergence criteria for geometry optimization were set to 0.01255 kcal/mol in energy, 2.510 kcal/(mol Å) in force, and 0.005 Å in displacement. Thermal smearing was used to improve the self-consistent field (SCF) convergence with a value of 0.005 Hartree. The orbital cutoff radius was set to 4.300 Å.

From the structures obtained as described above, the energetically accessible structures were extracted. Here, the word “energetically accessible structures” indicates the isomeric structures (i.e. metastable structures) whose energies are not greater than 6 kcal/mol with respect to the most stable structure.

Ethics Statement

This work does not involve the use of human subjects and animal experiments.

CRediT Author Statement

Gentoku Takasao: Methodology, Software, Formal Analysis, Data Curation. Writing- Original draft preparation.

Toru Wada: Validation, Writing - Review & Editing. **Ashutosh Thakur**: Validation.

Patchanee Chammingkwan: Validation. **Minoru Terano**: Validation. **Toshiaki Taniike**: Conceptualization, Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

The work of Toru Wada, Patchanee Chammingkwan, Minoru Terano, and Toshiaki Taniike forms a part of the research programme of DPI, project #802.
References

[1] G. Takasao, T. Wada, A. Thakur, P. Chammingkwan, M. Terano, T. Taniike, Insight into structural distribution of heterogeneous Ziegler–Natta catalyst from non-empirical structure determination, J. Catal. (2020), doi:10.1016/j.jcat.2020.11.005.

[2] G. Takasao, T. Wada, A. Thakur, P. Chammingkwan, M. Terano, T. Taniike, Machine learning-aided structure determination for TiCl₄-capped MgCl₂ nanoplate of heterogeneous Ziegler–Natta catalyst, ACS Catal. 9 (2019) 2599–2609, doi:10.1021/acscatal.8b05080.

[3] R. Zannetti, C. Marega, A. Marigo, A. Martorana, Layer-lattices in Ziegler–Natta catalysts, J. Polym. Sci. B Polym. Phys. 26 (1988) 2399–2412, doi:10.1002/polb.1988.090261202.

[4] A. Marigo, C. Marega, R. Zannetti, G. Morini, G. Ferrara, Small- and wide-angle X-ray scattering analysis of Ziegler-Natta catalysts: structural disorder, surface area and activity, Eur. Polym. J. 36 (2000) 1921–1926, doi:10.1016/S0014-3057(99)00250-5.

[5] M. Chang, X. Liu, P.J. Nelson, G.R. Munzing, T.A. Gegan, Y.V. Kissin, Ziegler-Natta catalysts for propylene polymerization: morphology and crystal structure of a fourth-generation catalyst, J. Catal. 239 (2006) 347–353, doi:10.1016/j.jcat.2006.02.009.

[6] T. Wada, G. Takasao, A. Piovano, M. D’Amore, A. Thakur, P. Chammingkwan, P.C. Bruzzese, M. Terano, B. Civalleri, S. Bordiga, E. Groppo, T. Taniike, Revisiting the identity of δ-MgCl₂: part I. Structural disorder studied by synchrotron X-ray total scattering, J. Catal. 385 (2020) 76–86, doi:10.1016/j.jcat.2020.03.002.

[7] N. Pasquini, A. Addeo, Catalysts for polymerization, in: Polypropylene Handbook, 2nd ed., Hanser Gardner Publications, Boca Raton, 2005, pp. 11–112, doi:10.1109/MIE.1997.583433.

[8] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868, doi:10.1103/PhysRevLett.77.3865.

[9] B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 92 (1990) 508–517, doi:10.1063/1.458452.

[10] M. Dolg, U. Wedig, H. Stoll, H. Preuss, Energy-adjusted ab initio pseudopotentials for the first row transition elements, J. Chem. Phys. 86 (1987) 866–872, doi:10.1063/1.452288.

[11] A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuß, Ab initio energy-adjusted pseudopotentials for elements of groups 13–17, Mol. Phys. 80 (1993) 1431–1441, doi:10.1080/00268979300103121.