Data Article

Hydro-geometrical data analyses of River Atuwara at Ado-Odo/Otta, Ogun State

Adebanji S. Ogbiye, Olumuyiwa O. Onakunle, David O. Omole

Department of Civil Engineering, Covenant University, Ota, Ogun State, Nigeria
Department of Civil and Environmental Engineering, University of Lagos, Akoka, Yaba, Lagos, Nigeria

A R T I C L E I N F O

Article history:
Received 22 February 2018
Accepted 18 April 2018
Available online 25 April 2018

Keywords:
Atuwara River
Hydro-geometry
Water transport
Regression analysis
Particle transport modelling

A B S T R A C T

The dataset analyzed in this article contains spatial and temporal values of the hydro-geometric parameters of River Atuwara. The hydro-geometrical data analyses of various sampling point on River Atuwara was examined and their geometric properties were taken with the use of a paddled boat, depth meter and global positioning system (GPS). The co-ordinates, width, depth, slopes, area, velocity, flow were gotten in-situ while the area and wetted perimeter were computed ex-situ. The statistical relationships between separate variables were considered using scatter plots and regression line equations. Inferences drawn from various variable comparisons can be used to validate predictive models for various time seasons.

© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area	River Engineering, Water quality modelling
More specific subject area	Water transport modeling and simulation
Type of data	Table, image, text file, graph, figure
How data was acquired	The referenced sampling points of the Atuwara river were taken with paddled boat and a depth finder. A global positioning system (GPS)

* Corresponding author at: Department of Civil Engineering, Covenant University, Ota, Ogun State, Nigeria.
E-mail address: muyiwaslips@yahoo.co.uk (O.O. Onakunle).

https://doi.org/10.1016/j.dib.2018.04.071
2352-3409/© 2018 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Data format: Raw and analyzed

Experimental factors: The study assumes that an irregular channel cross-sections can be represented with hydraulically equivalent (that is, area to wetted perimeter remains the same) trapezoidal cross-sections. Also, the processed hydro-geometric data assumes the top-width of each cross-section were unchanged.

Experimental features: Very brief experimental description

Data source location: River Atuwara; located in Ado-Odo/Otta local government in the Southwestern part of Nigeria

Data accessibility: All the data are present in the data article.

Value of the data

The hydro-geometric data presented are suggestive for the following purposes:

- The data can be used to develop some numerical models that simulate and predict the transport and fate of organic pollutants in the environment [1–7].
- The dataset helps to describe the temporal and spatial behavior of pollutants and nutrients in the Atuwara River.
- These field observatory data can be used to validate predictive model for various hydrological seasons.
- The hydro-geometric data set can serve as an indicator to decision makers for consideration of current and futuristic water pollution controls.

1. **Data**

The dataset comprises of hydro-geometric analyses of selected sampling points on the River Atuwara, located in Ado-Odo/Otta, in southwest Nigeria. The hydro-geometric data was collected with the use of equipment such as depth meter, paddled boat, tape measure, and a global positioning system. Fig. 3 is illustrative of the hydro-geometric data collection process. Geometric values are shown in Table 1, with their respective unit standards. Relationships between various units of measurement were derived statistically and presented in Figs. 4–6.

2. **Experimental design, materials and methods**

Hydro-geometric data (such as depth, width and side slopes) of the Atuwara River were collected along Sixteen referenced points. The Sixteen referenced points (which is perpendicular to the direction of the river flow) were taken with the use of a boat and a Speedtech portable depth sounder. A global positioning system (GPS) unit was used to get the location of the sixteen-referenced point within Atuwara river. Fig. 2 shows the River Atuwara Watershed and built-up areas, while Fig. 1 is a plot of cross-section within the Atuwara river system, and their respective hydro-geometric channel label.

A digital elevation model (DEM) through the use of GPS is used to derive slope, slope length, aspect and other related parameters. The GPS, a global positioning system (Garmin GPS map 76) is navigating equipment. It is a small hand held receivable used to provide global positioning information (accurate to within 10–20 m). It is a cheap, flexible, convenient and relatively accurate device used to determine the position of people and devices naming anywhere around the globe. Values from Chow (1959) were used to estimate the Manning’s roughness coefficient. The oxygen reaeration
S/No.	Coordinates	Way points	Relative distance to STA-Atuara upstream (km)	Station description	WIDTH (m) (Top (B))	WIDTH (m) (Bottom (B₀))	WIDTH (m) (Left Mid Right Mean (H))	Area (m²)	Sides slope	Area (m²)	Velocity (m s⁻¹)	Flow (m³ s⁻¹)	Manning’s Wetted perimeter (m)	Oxygen resaeration	Dispersion				
1	523883	STA 0	Atuara Upstream	STA 0 Atuara	13.1	11.56	10.6	10.6	0.41	1.04	3.18	0.43	13.899	3.452	4.93				
2	STB 0.19		Abattoir	STB 0.19 Abattoir	4.3	2.85	0.71	0.74	1	1.05	3.18	0.43	4.956	4.048	4.722				
3	STC 0.24		Abattoir Downstream	STC 0.24 Abattoir	8.4	6.74	0.86	0.97	1.21	1.13	7.58	0.43	9.598	2.698	5.743				
4	STD 1.21		Sona Upstream	STD 1.21 Sona	16.2	14.23	0.89	1.08	1.26	1.53	22.84	0.42	9.594	1.521	8.79				
5	STE 1.26		Sona Downstream	STE 1.26 Sona	8.6	6.51	1.14	0.95	1.61	1.34	11.78	0.38	4.477	1.051	7.727				
6	STF 2.78		Ewupe Upstream	STF 2.78 Ewupe	10.4	7.96	0.99	1.45	1.4	2.05	17.26	0.38	6.56	1.133	9.362				
7	STG 2.83		Ewupe Upstream	STG 2.83 Ewupe	13.4	10.81	1.02	1.57	1.44	2.22	23.58	0.4	9.434	1.065	10.45				
8	STH 3.08		Ewupe Downstream	STH 3.08 Ewupe	13.5	11.56	1.02	0.92	1.51	1.3	20.38	0.39	7.95	1.323	8.741				
9	STJ 4.67		Afara Meje	STJ 4.67 Afara Meje	16.9	15.26	1.32	2.96	1.87	4.19	36.34	0.41	14.897	0.798	13.083				
10	STK 7.94		Ekusere	STK 7.94 Ekusere	11.8	8.23	2.34	2.71	3.31	1.74	24.66	0.34	8.385	0.758	10.547				
11	STL 8.36		Ekusere Downstream	STL 8.36 Ekusere	8.9	6.53	1.51	2.56	2.13	1.22	14.6	0.36	5.255	1.123	8.764				
12	STM 9.28		Igboloye Downstream	STM 9.28 Igboloye	9.4	6.1	1.79	2.22	1.51	1.84	2.53	1.23	5.535	0.891	8.74				
13	STP 9.88		Igboloye Upstream	STP 9.88 Igboloye	10.2	6.87	2.25	2.06	1.8	1.8	3.18	1.53	5.141	0.861	7.481				
14	STQ 9.88		Igboloye Discharge	STQ 9.88 Igboloye	12.3	9.62	1.94	2.19	1.62	1.05	19.93	0.31	6.177	1.061	7.454				
15	STR 10.71		Igboloye 100 m Downstream	STR 10.71 Igboloye	11.2	7.35	3.45	1.79	0.4	1.88	4.88	0.57	6.106	0.821	8.092				
16	516392	STS 10.81	Iju Water Works	516392 STS Iju Water Works	16.9	10.46	5.02	3.11	1.39	3.17	7.09	1.96	15.62	0.32	4.995	0.004	25.362	0.394	4.387
was gotten through Eq. (1) (O'Connor-Dobbins Formula) [6].

$$K_a = 3.93 \frac{U^{0.5}}{H^{1.5}}$$

(1)

K_a = Oxygen reaeration, H = Depth (m), U = Velocity (m/s).

The dispersion was analysed as the function of Eq. (2) [8]. Where D = Dispersion (L^2/T).
Fig. 3. Hydro-geometric measurement on River Atuwara.

\[
y = -0.0012x + 0.3889
\]

Fig. 4. Velocity of River Atuwara against the area.

\[
y = -0.094x + 3.1406
\]

Fig. 5. Oxygen reaeration of River Atuwara against the area.
\[d = \text{depth or stage (L)} \]

\[D = \frac{0.01V^2W^2}{dU^*} \]

\[g = \text{acceleration due to gravity (L/T}^2) = 9.8 \text{ m/s}^2, \ s = \text{slope (L/L) (channel slope), } W = \text{width (L)} \]

\[U^* = \sqrt{gHS}, H = \text{mean depth or (d)} \]

2.1. Study area

River Atuwara, located in Ado-Odo/Otta local government with co-ordinates 523883N 745372E in Ogun state. River Atuwara moves transversely toward other neighboring villages and serve as a water source [9,10]. Fig. 2 shows the river and other built-up areas. The course of River Atuwara flows westward toward the Atlantic Ocean.

2.2. Data collection and processing

After collecting the hydro-geometric cross-sectional data, the hydro-geometric data was analyzed with the use of Microsoft office (Excel). The study assumes that an irregular channel cross-sections can be represented with hydraulically equivalent (that is, area to wetted perimeter remains the same) trapezoidal cross-sections as shown in Fig. 1. The hydro-geometric data was processed to determine the average depth of each cross-section, assuming the top-width of each cross-section were unchanged. Methods and processes of measurements, data collection and recordings employed along the river course are shown in Fig. 3.

2.3. Statistical analyses

The statistics analyses such as comparison of various unit of measurements are applied. The statistical summaries are shown in Figs. 4–6. The relationship between two-compared variable can obtained through the coefficient of the x-variable (gradient) in the regression equation indicated in Figs. 4–6. Negative gradient indicates inverse relationship while positive gradient shows direct relationships.

Funding

The authors received no direct funding for this research.
Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.04.071.

References

[1] J. Cheng, K. Wang, J. Yu, Z. Yu, X. Yu, Z. Zhang, Chemosphere Distribution and fate modeling of 4-nonylphenol, 4-octylphenol, and bisphenol A in the Yong River of China, Chemosphere 195 (2018) 594–605.

[2] E. Hendriarianti, Hydrogeometry and water quality data analysis for one dimension water quality modelling of Lesti River at Malang Regency, J. Appl. Environ. Biol. Sci. 2 (6) (2012) 232–243.

[3] C. Wang, Y. Feng, P. Gao, N. Ren, B. Li, Science of the total environment simulation and prediction of phenolic compounds fate in Songhua River, China, Sci. Total Environ. 431 (2012) 366–374.

[4] G.B. Mcbride, S.C. Chapra, New hydroepidemiological models of indicator organisms and zoonotic pathogens in agricultural watersheds, Ecol. Modell. 222 (13) (2011) 2083–2102.

[5] R.B. Ambrose, T.A. Wool, WASP8 stream transport – model theory and user’s guide supplement to Water Quality Analysis Simulation Program (WASP) user documentation, Atlanta Ga (2017).

[6] D.O. Omole, E.O. Longe, A.G. Musa, An approach to reaeration coefficient modeling in local surface water quality monitoring, Environ. Model Assess. 18 (1) (2013) 85–94.

[7] D.O. Omole, A.A. Badejo, J.M. Ndambuki, A.G. Musa, W.K. Kupolati, Analysis of auto-purification response of the Apies River, Gauteng, South Africa, to treated wastewater effluent, Water SA 42 (2) (2016) 225–231.

[8] H.B. Fischer, Mixing in Inland and Coastal Waters, Academic Press (1979) 483.

[9] I.K. Adewumi, A.S. Ogbiye, E.O. Longe, D.O. Omole, Effect of industrial effluents on water quality of River Atuwara in Ota, Edited by, in: R. Adeyemo (Ed.), Urban Agriculture, Cities and Climate Change Environmental Research, Ecology and Landscape conservation, Cuvalier Verlag, Göttingen, Germany, 2011, pp. 272–280.

[10] D.O. Omole, E.O. Longe, Re-aeration coefficient modeling: a case study of river Atuwara in Nigeria, Res J Appl. Sci. Eng. Technol. 4 (10) (2012).