Sensorimotor connectivity in Parkinson’s disease: the role of functional neuroimaging

Alessandro Tessitore1,2,*, Alfonso Giordano2,3, Rosa De Micco1,2, Antonio Russo1,2 and Gioacchino Tedeschi1,2

INTRODUCTION

Parkinson’s disease (PD), the second most common neurodegenerative disease worldwide, is characterized by bradykinesia and at least one of tremor, rigidity, and postural instability (1). Although recent advances in neuroimaging have provided new insights into the pathophysiology of the disease, the diagnosis of PD remains clinical; based upon the presence of cardinal motor symptoms (2). Neuroimaging of PD has been historically dominated by positron emission tomography (PET) and single-photon emission computed tomography (SPECT) studies using a variety of dopaminergic radiotherapeutics that focus on striatal measures of nigrostriatal neurons (3). Concurrently, fluorodeoxyglucose–PET has been used to image abnormal covariance patterns of cortical and subcortical regional metabolism that correlate with motor and cognitive impairment (4). On the other hand, conventional brain MRI is currently limited to the differential diagnosis between idiopathic PD and atypical or secondary parkinsonism or to prognosticate, and to locate the targets for functional neurosurgery (5). However, the use of 7-T MRI scanners has recently allowed to detect anatomical changes in nigral morphology in PD, which may represent, in the near future, a reliable MRI biomarker of PD diagnosis (6, 7). Nevertheless, in the last decades, the rapid evolution of advanced MRI techniques has allowed us to further investigate the progression of nigral and extra-nigral degeneration with greatly improved spatial resolution and a minimal invasiveness. Moreover, functional MRI (fMRI) techniques have offered the possibility to directly measure the brain’s activity and connectivity in patients with PD both in early and complicated stage of the disease. Therefore, morphological and fMRI techniques may shed lights on pathophysiological mechanisms of PD and its disease and treatment-related complications. The most commonly used method, among fMRI techniques, is the measurement of blood oxygen level dependent (BOLD) signal, based on the differences between magnetic characteristics of oxyhemoglobin (diamagnetic) and deoxyhemoglobin (paramagnetic). In the brain, neuronal activity increases consistently with blood flow and oxyhemoglobin and could be hence visualized by changes in the BOLD contrast. This neuroimaging technique enables to explore brain function and connectivity with high temporal and spatial resolution (8). More recently, fMRI in the absence of experimental tasks and behavioral responses, performed with the patient in a relaxed “resting” state (RS-fMRI), has allowed for the exploration of brain connectivity between functionally linked cortical regions (9), the so-called resting-state networks (RSNs). The most commonly reported RSNs are the default mode network, the fronto-parietal network, and the sensorimotor network (9), which is crucial for the execution of voluntary movements and functionally connects regions within the supplementary motor area (SMA) and the primary motor cortex (M1) (10, 11). The aims of the following review are (1) to present an overview of recent fMRI reports investigating the activity and connectivity of sensorimotor areas in patients with PD using both task-related and “resting-state” fMRI analysis (2) to elucidate potential pathophysiological mechanisms underlying dyskinetic motor complications in the advanced stage of PD.

Keywords: Parkinson’s disease, advanced MRI techniques, task-related functional MRI, resting-state functional MRI, seed approach, independent component analysis, sensorimotor network, dyskinetic motor complications

The diagnosis of Parkinson’s disease (PD) remains still clinical; nevertheless, in the last decades, the rapid evolution of advanced MRI techniques has made it possible to detect structural and, increasingly, functional brain changes in patients with PD. Indeed, functional MRI (fMRI) techniques have offered the opportunity to directly measure the brain’s activity and connectivity in patients with PD both in early and complicated stage of the disease. The aims of the following review are (1) to present an overview of recent fMRI reports investigating the activity and connectivity of sensorimotor areas in patients with PD using both task-related and “resting-state” fMRI analysis (2) to elucidate potential pathophysiological mechanisms underlying dyskinetic motor complications in the advanced stage of PD.

TASK-RELATED fMRI STUDIES

In the last decades, fMRI studies, employing motor tasks requiring motor selection and initiation (12–14), have consistently shown an abnormal activation of different areas of the motor network.
in patients with early and late-stage PD. The integrity of this network is required not only to perform a voluntary movement but also for readiness for a future motor task. These functional changes have been correlated both to bradykinesia and to the severity of the disease (i.e., Hoehn and Yahr stage). Specifically, these studies have commonly revealed hypoactivation of the SMA, and hyperactivation of cerebellum and other cortical motor regions, such as premotor (PMC), primary motor (M1), and parietal cortices in patients with PD compared to age-related healthy controls. It is noteworthy that these results have shown striking similarity with the pattern of altered cerebral metabolic activity observed with PET in patients with PD (15–18). Levodopa or apomorphine administration (12, 19), ventral posterolateral pallidotomy (20), or deep brain stimulation of the subthalamic nucleus (STN) (21) can relatively normalize the reduced activation of the SMA, and decrease the overactivation of other cortical regions. Because the SMA contributes to the preparation and execution of learned motor sequences (22–24), its decreased activation may be an important factor contributing to the lack of readiness and to the difficulty in initiating voluntary movements in patients with PD. Moreover, the hyperactivation of cortico-cerebellar regions may reflect a functional compensation for the defective basal ganglia in motor control. In other words, patients with PD may need compensatory activity of other motor circuits to overcome their difficulty in performing self-initiated movements (25). The compensation operated by the cerebellum could be achieved through the cerebello-thalamo-cortical loop or more directly through direct projections from the cerebellum to the basal ganglia (26, 27). Yu and colleagues (27) have found a significant negative correlation between the BOLD response in the putamen and the contralateral cerebellum, confirming cerebellar compensatory role in patients with PD. On the other hand, no significant correlation between the putamen and M1 was found and M1 hyperactivation was positively correlated only with the severity of upper limb rigidity. The increased connectivity between the M1 and pre-SMA has not only a compensatory role but could also reflect primary pathophysiological changes of PD, as a consequence of the inability to inhibit contextually inappropriate circuits (21, 28). Although several imaging studies on PD have reported similar findings (13, 19, 29), Buhmann and colleagues (19) have observed, in “drug-naïve” patients with PD while performing a simple, auditory-paced random finger-opposition task, a reduced activation of M1, which was partially restored only after levodopa intake. Thus, it is possible that the strengthened connectivity of the M1 and the related compensatory functional reorganization may be induced by the prolonged dopaminergic treatment. Functional reorganization of M1, indeed, is absent in “drug-naïve” patients with PD and hypoactivation of this brain region reflects the decreased input arising from the subcortical motor loop, which is partially restored by dopaminergic treatment.

RESTING-STATE fMRI STUDIES

The interpretation of these functional changes may be confounded by the fact that patients with PD have difficulty with performing motor tasks. RS-fMRI can overcome this problem by providing an index of connectivity across the whole brain. For this reason, a number of studies have applied RS-fMRI technique to investigate sensorimotor network connectivity in patients with PD (30–37). These reports have commonly demonstrated a disrupted functional integration in corticostriatal loops. Wu and colleagues (36), using a regional homogeneity approach, have demonstrated a decreased functional connectivity in the SMA, left dorsal lateral prefrontal cortex (DLPFC), and putamen and an increased cerebellar connectivity in patients with PD without dopaminergic medication for at least 12 h ("off-state"). The decreased SMA and basal ganglia connectivity was negatively correlated with the unified Parkinson’s disease rating scale (UPDRS) score, whereas a positive correlation was identified between increased cerebellar connectivity and the UPDRS score. Thus, this suggests that as the disorder progresses, resting-state neuronal activity in the SMA and basal ganglia becomes more abnormal and, at the mean time, the compensatory effect in the cerebellum is more significant. Previous fMRI and PET reports (19, 29, 38, 39) have already highlighted the involvement of DLPFC in patients with PD. The decreased connectivity of this region is probably related to the reduction in the attention to action and in performance monitoring typically observed in patients with PD. In another connectivity study by the same group (37), an increased connectivity in the right M1 and a decreased connectivity in the left putamen were confirmed in patients with PD. Moreover, an inferior parietal lobe (iPL) and a PMC disconnection with the pre-SMA were also detected. Thus, greater PD-related connectivity changes occur in networks linked to preparation and initiation rather than in those involved in motor execution. Indeed, iPL and PMC are related to the integration between motor selection and external information and selection of movements into a precise plan, respectively (22, 40, 41). The increased resting-state connectivity between the pre-SMA and right M1 confirms the potential compensation for the described decreased motor network connectivity in PD. In the first placebo-controlled RS-fMRI study, exploring the intrinsic sensorimotor network functional connectivity in “drug-naive” patients with PD (42), we have demonstrated a decreased regional connectivity in the SMA in the “off-state,” which was partially restored only after levodopa administration. Moreover, a region of interest (ROI) analysis of the sensorimotor network functional connectivity in the basal ganglia and thalamus revealed that levodopa significantly increased the participation of these subcortical regions to the sensorimotor network activity. Finally, no statistically significant differences were detected between the groups in the M1 connectivity, confirming that the compensatory functional reorganization may be related to prolonged dopaminergic treatment rather than PD per se. Dopaminergic modulation of resting-state functional connectivity in “drug-naive” patients with PD has also been evaluated using a correlation analysis with dopamine levels in the striatum, assessed quantitatively by FP-CIT PET (43). Choosing four ROIs, posterior cingulate cortex (PCC), putamen (anterior and posterior), and caudate, the authors found that the DLPFC was the primary dopamine-dependent cortical region that was functionally connected with the anterior and posterior putamen. Moreover, patterns of dopamine-dependent positive functional connectivity varied depending on the location of the striatal seeds; dopamine-dependent functional connectivity from the caudate predominantly overlaid pericentral cortical areas, whereas dopamine-dependent structures that were
functionally connected to the posterior putamen predominantly involved cerebellar areas. Finally, there were cortical areas where the cortico–cortical or striato–cortical connectivity were negatively associated with the dopaminergic status in the posterior putamen. Therefore, dopamine deficiency may lead to alterations in resting-state functional connectivity and reorganization of striato-cortical functional network in patients with PD. This may be one of mechanisms underlying impaired sensorimotor integration in PD. According to Braak staging (44), the pathologic process of PD, occurring primarily in the brainstem, pursues an ascending course reaching the neocortex in the final stage; thus, subcortical involvement prevails throughout the course of PD and functional changes in the basal ganglia lie at the heart of PD. Based on this a number of seed based RS-fMRI studies (31, 32, 45), using left and right putamen, caudate, and amygdala as seeds, have shown a significantly reduced connectivity within mesolimbic–striatal and corticostriatal loops in “drug-naive” PD patients. In these studies, both anterior and posterior putamen showed a decreased connectivity pattern with their contralateral putamen and mesolimbic regions, especially in amygdala, hippocampus, olfactory area, and posterior rectus, whereas the posterior putamen presented a more prominent decreased pattern extending to sensorimotor cortex. The caudate connectivity pattern was relatively spared. Functional connectivity analysis of the amygdala also showed coherent reduced connectivity pattern with the putamen. Moreover, putamen connectivity with amygdala, a limbic region crucial for emotional processing (45) was significantly correlated with non-motor symptoms (47–49). This fMRI resting-state study provides an additional biomarker for an early diagnosis of PD.

SENSORIMOTOR CONNECTIVITY IN DYSKINETIC PHASE

Long-term levodopa treatment is complicated by the gradual development of involuntary movements referred to as levodopa-induced dyskinesias (LID). Recent studies have evidenced a substantial progress in understanding the cellular and molecular mechanisms, which underlie dyskinesias (54, 55). Hypersensitivity of striatal medium spiny neurons to pulsatile dopamine receptor stimulation during task-related corticostriatal activation of glutamate receptors seem to play a crucial role to the development of these motor complications (56). Neuroimaging studies of dyskinesias in humans are sparse, because dyskinesias cause movement artifacts impairing data quality. Ceresa and colleagues (57), comparing patients with PD with and without LID during execution of externally and internally triggered visuomotor tasks, showed significant SMA hyperactivity and hypoactivity in the right inferior prefrontal gyrus only in patients with LID. However, it remains unclear how intake of levodopa modulates neural activity in patients with dyskinesias. More recently, Herz and colleagues (58) performed a task-related fMRI experiment in the time window between the intake of levodopa and the onset of motor complication in dyskinetic vs. non-dyskinetic patients with PD, which were asked to produce a mouse click with the right or left hand or no action (No-Go). During No-Go trials, patients with PD, who would later develop dyskinesias, showed an abnormal gradual increase of activity in the pre-SMA and the bilateral putamen during the first 20 min after levodopa intake. This rapidly emerging hypersensitivity of putamen and pre-SMA in the context of movement suppression (No-Go) and in the pre-dyskinesia period might reflect an unphysiological facilitation or impaired inhibition, via striatal D2-type receptors (56), of motor programs, resulting in aberrant activity in interconnected cortical areas.

CONCLUSION

In conclusion, although the diagnosis of PD remains still clinical, functional imaging studies can provide great insights into connectivity changes and pathogenic processes in PD. Task-related fMRI studies have shown an abnormal activation of different areas of the motor network in patients with early and late-stage PD related to cardinal clinical features. More recently, RS-fMRI techniques have been used to investigate sensorimotor network connectivity in patients with PD confirming a disrupted functional integration in corticostriatal loops. Therefore, in the near future, the practical application of these techniques may provide a better understanding of disease- and treatment-related complications and a reliable MRI biomarker for an early diagnosis of PD.

REFERENCES

1. Iankovic I. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry (2008) 79:368–76. doi:10.1136/jnnp.2007.131045
1. Hughes AJ, Ben-Shlomo Y, Daniel SE, Lees AJ. What features improve the accuracy of clinical diagnosis in Parkinson’s disease: a clinicopathologic study. 1992. Neurology (1992) 57(10 Suppl 3):S34–S8.

2. Nandhagopal R, McKeown MJ, Stoessl AJ. Functional imaging in Parkinson’s disease. *Neurology* (2006) 70:178–88. doi:10.1212/01.wnl.0000103432.92489.90

3. Edelberg D. Metabolic brain networks in neurodegenerative disorders: a functional imaging approach. *Trends Neurosci* (2009) 32:548–57. doi:10.1016/j.tins.2009.06.003.

4. Stoessl AJ. Neuroimaging in Parkinson’s disease. *Neurotherapeutics* (2011) 8(2):817–80. doi:10.1016/j.nurt.2010.09.007

5. Kwon DH, Kim JM, Oh SH, Jeong HJ, Park SY, Oh ES, et al. Seven-Tesla magnetic resonance images of the substantia nigra in Parkinson disease. *Ann Neurol* (2012) 71:627–77. doi:10.1002/ana.22592.

6. Cosottini M, Frosini D, Pesaresi I, Costagli M, Biagi L, Ceravolo R, et al. MR imaging of the substantia nigra at 7 T enables diagnosis of Parkinson disease. *Neurology* (2005) 64:2713–21. doi:10.1212/01.wnl.0000181519.51820.ae

7. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. *Proc Natl Acad Sci U S A* (1990) 87:9868–72. doi:10.1073/pnas.87.24.9868.

8. Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Sturm CJ, Smith SM, et al. Consistent resting-state networks across healthy subjects. *Proc Natl Acad Sci U S A* (2006) 103:13848–53. doi:10.1073/pnas.0601471103.

9. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Brain functional magnetic resonance imaging with contrast dependent on blood oxygenation. *Proc Natl Acad Sci U S A* (1995) 92:5351–7. doi:10.1073/pnas.92.10857.1995.

10. Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. The metabolic topography of parkinsonism. *Ann Neurol* (1995) 38:151–61. doi:10.1002/ana.410320206.

11. Edelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. The metabolic topography of parkinsonism. *J Cereb Blood Flow Metab* (1994) 14:283–81. doi:10.1097/00004156-199408000-00009.

12. Deiber MP, Passingham RE, Colebatch JG, Friston KJ, Nixon PD, Frackowiak RS. Cortical areas and the selection of movement: a study with positron emission tomography. *Cortical areas and the selection of movement: a study with positron emission tomography. 1992. 125:163–74. doi:10.1515/REVNEURO.1992.3.3.163.

13. Esposito F, Tessitore A, Giordano D, De Micco R, Paccone A, Conforti R, et al. Rhythm-specific modulation of the sensorimotor network in drug-naïve patients with Parkinson’s disease by levodopa. *Brain* (2013) 136:710–25. doi:10.1093/brain/awt007.

14. Grafton ST. Non-invasive mapping of the human motor cortex with PET. *Rev Neurosci* (1992) 3:163–74. doi:10.1515/REVNEURO.1992.3.3.163.

15. Luo C, Song W, Chen Q, Zheng Z, Chen K, Cao B, et al. Reduced functional connectivity in early-stage drug-naïve Parkinson’s disease: a resting-state fMRI study. *NeuroImage* (2013) 75:532–43. doi:10.1016/j.neuroimage.2013.08.018.

16. Volkman J. Deep brain stimulation for Parkinson’s disease. *Parkinsonism Relat Disord* (2007) 13(Suppl 3):S562–5. doi:10.1016/S1353-8020(08)70050-6.

17. Brown P. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. *Mov Disord* (2003) 18:357–63. doi:10.1002/mds.10358.
48. Fogelson N, Williams D, Tijssen M, van Bruggen G, Speelman H, Brown P. Different functional loops between cerebral cortex and the subthalamic area in Parkinson’s disease. *Cereb Cortex* (2006) 16:64–75. doi:10.1093/cercor/bhi084

49. Lalo E, Thobois S, Sharott A, Polo G, Mertens P, Pogosyan A, et al. Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. *J Neurosci* (2008) 28:3008–16. doi:10.1523/JNEUROSCI.5295-07.2008

50. Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D. Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. *J Neurophysiol* (2007) 98:3525–37. doi:10.1152/jn.00808.2007

51. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. *Trends Neurosci* (1990) 13:266–71. doi:10.1016/0166-2236(90)90107-L

52. DeLong MR. Primate models of movement disorders of basal ganglia origin. *Trends Neurosci* (1990) 13:281–5. doi:10.1016/0166-2236(90)90110-V

53. Szewczyk-Krolkowski K, Menke RA, Rolinski M, Duff E, Salimi-Khorshidi G, Filippini N, et al. Functional connectivity in the basal ganglia network differentiates PD patients from controls. *Neurology* (2014) 83:208–14. doi:10.1212/WNL.0000000000000592

54. Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B. Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. *Lancet Neurol* (2010) 9:1106–17. doi:10.1016/S1474-4422(10)70218-0

55. Jenner P. Molecular mechanisms of L-DOPA-induced dyskinesia. *Nat Rev Neurosci* (2008) 9:665–77. doi:10.1038/nrn2471

56. Cenci MA, Lundblad M. Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. *J Neurochem* (2006) 99:381–92. doi:10.1111/j.1471-4159.2006.04124.x

57. Cerasa A, Pugliese P, Messina D, Morelli M, Gioia MC, Salome M, et al. Prefrontal alterations in Parkinson’s disease with levodopa-induced dyskinesia during fMRI motor task. *Mov Disord* (2012) 27:364–71. doi:10.1002/mds.24017

58. Herz DM, Haagensen BN, Christensen MS, Madsen KH, Rowe JB, Løkkegaard A, et al. The acute brain response to levodopa heralds dyskinesias in Parkinson disease. *Ann Neurol* (2014) 75:829–36. doi:10.1002/ana.24138

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 17 July 2014; accepted: 04 September 2014; published online: 24 September 2014.

Citation: Tessitore A, Giordano A, De Micco R, Russo A and Tedeschi G (2014) Sensorimotor connectivity in Parkinson’s disease: the role of functional neuroimaging. *Front. Neurol.* 5:180. doi: 10.3389/fneur.2014.00180

This article was submitted to Movement Disorders, a section of the journal *Frontiers in Neurology*. Copyright © 2014 Tessitore, Giordano, De Micco, Russo and Tedeschi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.