INTRODUCTION

Entamoeba histolytica has affected 50 million people of the world’s population annually with the prevalence of 50% of the general population it is estimated to cause >100,000 deaths per year [1,2]. The prevalence of amebiasis varies from 1% in industrialized countries to 50%–80% in tropical countries [3]. It also represents the second largest cause of mortality from infection with parasitic protozoa after malaria [4].

At present, metronidazole is the therapeutic drug of choice for the treatment of amebiasis [5], but it experiences drug resistance by E. histolytica [6], resulting in the need for increased doses to overcome the infection [7]. However, this drug has several untoward side effects such as headache, metallic taste in the mouth, and vomiting as well as neurotoxicity [8,9]. E. histolytica parasite has registered some level of resistance to most of the medicines rendering them ineffective [10], in addition, the risk of potential mutagenicity, carcinogenicity, and side effects of metronidazole, and taking into account, the development of resistant strains of E. histolytica against metronidazole, new, more effective, and safer antiprotozoal agents is urgently required [9,11]. In developing countries, medicinal plants are popular because their effective, and safer antiprotozoal agents is urgently required [9,11].

The present study deals with the preliminary phytochemical screening of Tamarindus indica extracts and investigates its antiamebic effect against Entamoeba histolytica in vitro. The phytochemical screening shows that T. indica contains alkaloids, flavonoids, phenol, and tannins. T. indica extracts (aqueous and ethanolic) were added to culture media E. histolytica. It was observed that E. histolytica count reduced to zero after 72 h and 96 h when 15 mg/ml of aqueous and ethanolic extracts were added, respectively. It is also revealed that there is no cytotoxicity against erythrocytes even when high concentration of plant leaves extract is used.

MATERIALS AND METHODS

Collection of plant sample

T. indica leaves (Fig. 1a) were collected from Rozabagh garden. The collected plant was identified botanically by Dr. Rafiuddin Naser Department of Botany Maulana Azad College, Aurangabad. The leaves were washed well under tap water, then dried in the laboratory in the absence of sunlight and left for two weeks. The leaves were flipped daily to remove damaged leaves and to prevent moisture. When the dried leaves were ready, they were grind with an electric grinder until they became soft powder. The powder was preserved in bottles at 4°C in refrigerator.

Preparation of plant extracts

The following procedures were used to prepare aqueous and ethanolic 70% extract [14].

Preparation of aqueous extracts

About 40 g of dry plant powder was taken in a beaker and 400 ml of distilled water was added. Then, the mixture was stirred with a magnetic stirrer for 24 h. It was then sprayed by four layers of gauze cloth to separate the large fibers. The filter was then separated by centrifuge at 3000 rpm for 10 min. The extract was evaporated by leaving it in an incubator at a temperature of 50°C for 24 h. The extract was weighed and kept in refrigerator in sterilized and dark glass containers.

Preparation of ethanolic extracts

About 40 g of dry plant powder was weighed and transferred to Soxhlet extraction. 400 ml of ethanol was added to it. The plant materials were extracted at 50–55°C, till the color extract disappeared. The solvent was evaporated by rotary evaporator. The dry mass was transferred to incubator and kept for 24 h 50°C. It was weighed and kept in refrigerator in sterilized and dark colored containers.

ABSTRACT

Objective: The present study deals with preliminary phytochemical screening of Tamarindus indica extracts and investigates its antiamebic effect against Entamoeba histolytica in vitro.

Methods: E. histolytica was isolated from stools of patients with amebic dysentery and cultivated in lock-egg medium. The leaves extract was added to check its antiamebic activity.

Results: The phytochemical screening shows that T. indica contains alkaloids, flavonoids, phenol, and tannins. T. indica extracts (aqueous and ethanolic) were added to culture media E. histolytica. It was observed that E. histolytica count reduced to zero after 72 h and 96 h when 15 mg/ml of aqueous and ethanolic extracts were added, respectively. It is also revealed that there is no cytotoxicity against erythrocytes even when high concentration of plant leaves extract is used.

Conclusion: The in vitro sensitivity of T. indica leaves extract against the E. histolytica is established.

Keywords: Entamoeba histolytica, Tamarindus indica, Phytochemical.
The concentration became 200 mg/ml for each plant extract. The extracts with concentration 2.5, 5, 10, 15, and 20 mg/ml were prepared from the stock solution according to the following equation: \[C_1V_1 = C_2V_2 \]

Preparation of parasites

The density of population of the parasite grown in the medium was counted by hemocytometer and eosin stain (1%). A drop from between the liquid and the solid of the culture medium parasite was taken and placed on a clean glass slide, and then, a drop of 1% eosin stain was added. After it was well mixed, 10 µl was withdrawn by pipette and placed on a hemocytometer and examined under microscope (40×) magnification strongly. The total number of parasites was calculated by applying the following formula:

Total number of parasite=number of parasites in four large squares \(\times 2500 \times 2 \) [26]. The \(80 \times 10^3 \) cell/ml of \(E. histolytica \) was added and incubated with the different concentrations of extract plant in lock-egg (LE) medium for 24, 48, 72, and 96 h.

Determination of cytotoxicity of \(T. indica \) extracts

Rating cellular toxicity of aqueous and ethanol extract of \(T. indica \) has been determined as per literature [27].

Statistical analysis

Data were analyzed using general treatment structure (no blocking), factorial experiment, with three replications using GenStat 5.2 at \(p \leq 0.05 \) and were considered statistically significant.

RESULTS AND DISCUSSION

The effectiveness of \(T. indica \) on \(E. histolytica \) parasite cultured in LE medium has been examined. The test result has been shown in Fig. 1a-c.

In vitro activity of aqueous extract and ethanolic extract of \(T. indica \) against \(E. histolytica \)

Table 1 shows the effect of aqueous and ethanolic extracts of \(T. indica \) on \(E. histolytica \) in vitro, respectively. The results of the present study show that there are statistically significant differences at \(p \leq 0.05 \) for different extraction methods of \(T. indica \). The ethanolic extract had more effect in reducing the numbers of \(E. histolytica \) as compared to the aqueous extract. The average number of \(E. histolytica \) in the presence of the ethanolic extract was 32.18×10^3 cell/ml while the general means of aqueous extract were 37.15×10^3 cell/ml (Fig. 2a). This is due to the ability of the substances to become solubility in ethanol more than in the water, and thus, the ability of the ethanol extract is more than aqueous extract in the inhibition of microorganisms.

The aqueous extract had a statistically significant effect at \(p \leq 0.05 \) on the reduction of \(E. histolytica \) by increasing the concentration and increasing the time (Table 1), compared to the control but less than the ethanolic extract. The concentration of 20 mg/ml of each of the aqueous and ethanolic extracts for the \(T. indica \) shows that \(E. histolytica \) numbers have decreased to zero after 72 h of incubation as well as concentrations of 10 and 15 mg/ml of both aqueous and ethanolic extracts show that \(E. histolytica \) numbers have decreased to zero after 96 h of incubation (Fig. 2b). This is due to the toxic compounds which are present in the extracts and their effect in the ameba cell membrane directly. Through penetrating into the cell, this leads to killing the ameba or affecting the process of synthesis of proteins inside the parasite body [28]. The activity inhibited by ethanolic extract against \(E. histolytica \) could be the result of the phytochemical constituents present in them. Alkaloids, flavonoids, tannins, and saponins found in ethanolic extract have been known to be responsible for activities such as antimicrobial, analgesic, anti-inflammatory, and antioxidant [29-32]. It is clear that there are no statistically significant differences at \(p \leq 0.05 \) between the concentrations of 20, 15, and 10 mg/ml of aqueous and alcohol extracts ever at time 72 and 96 h. There are also no statistically significant differences between concentrations of 5, 10, 15, and 20 mg/ml of the ethanolic extract after 96 h of incubation (Fig. 2d). Those terpenes are active against protozoan parasites [33]. This could be the reason for
Asian J Pharm Clin Res, Vol 12, Issue 2, 2019, 507-512

Mehdi et al.

The activity exhibited by our plant. It is reported that extracts of plant containing tannins and alkaloids possess activity against diarrhea-causing parasite *E. histolytica* [34].

The activities exhibited by *T. indica* against *E. histolytica* could also be attributed to the phytochemical constituents present in *T. indica*.

E. histolytica: *Entamoeba histolytica*, *T. indica*: *Tamarindus indica*, LSD: Least significant differences

Table 1: Effect of aqueous and ethanolic extracts of *T. indica* against *E. histolytica* in vitro

Extracts	Concentration	Experimental period (Number of *E. histolytica*×10^3)	24 h	48 h	72 h	96 h	Means
Aqueous	Control	131.67	161.25	93.75	29.67	104.08	
	2.5 mg/ml	79.50	59.67	33.33	18.87	47.84	
	5 mg/ml	57.03	40.77	30.70	7.27	33.94	
	10 mg/ml	42.67	28.25	2.92	0.00	18.46	
	15 mg/ml	33.33	13.87	1.20	0.00	12.10	
	20 mg/ml	19.67	6.25	0.00	0.00	6.48	
Means	Aqueous	60.64	51.68	26.98	9.30	37.15	
Ethanol	Control	123.50	157.67	71.83	25.07	94.52	
	2.5 mg/ml	81.33	47.30	36.67	12.60	44.48	
	5 mg/ml	53.53	34.07	24.63	4.17	29.10	
	10 mg/ml	35.00	20.80	0.83	0.00	14.16	
	15 mg/ml	20.83	7.40	0.60	0.00	7.21	
	20 mg/ml	9.50	5.00	0.00	0.00	3.62	
Means	Ethanol	53.95	45.37	22.43	6.97	32.18	
LSD 5%	Extract=3.395, Concentration=5.881, Tim=4.802						

Table 2: Average variation in habitation capacity of extracts on *E. histolytica*

Concentration	Experimental period (Number of *E. histolytica*×10^3)	24 h	48 h	72 h	96 h	Means
Control	127.58	159.46	82.79	27.37	93.30	
2.5 mg/ml	80.42	53.48	35.00	15.73	46.16	
5 mg/ml	55.28	37.42	27.67	5.72	31.52	
10 mg/ml	38.83	24.52	1.87	0.00	16.31	
15 mg/ml	27.08	10.63	0.00	0.00	9.65	
20 mg/ml	14.58	5.62	0.00	0.00	5.05	
Means	57.30	48.52	24.71	8.14	34.67	
LSD 5%	11.762					

LSD: Least significant differences, *E. histolytica*: *Entamoeba histolytica*

The activities exhibited by *T. indica* against *E. histolytica* could also be attributed to the phytochemical constituents present in *T. indica*.

T. indica is known to contain tannins [35,36] which have been found to be active against diarrhea-causing parasites. Tannins and alkaloids are known to be responsible for anti-inflammatory and antimicrobial activities of some medicinal plants [37]. In diarrheal conditions including amebiasis and giardiasis, inflammation plays a major role by altering the gut sensorimotor function and also compromises the gut walls making it possible for the parasites to permeate [38].

Fig. 2: Variation of the mean number of *Entamoeba histolytica* with (a) effect of extraction methods, (b) effect of aqueous extract, (c) effect of ethanolic extract, (d) average effect of *T. indica* extracts concentration
The flavonoids found in medicinal plants were responsible for the antiamebic activity [39]. Both the plant extracts exhibited activities against *E. histolytica* have been found to contain flavonoids, and hence, the flavonoids may be responsible for the *E. histolytica* death. Flavonoids have been distinguished with characteristics in their reactivity with proteins related polymers for bacteria [40], and there are other mechanisms for growth inhibition of microorganisms by phenolic compounds may be due to iron deprivation or hydrogen bonding with vital proteins [41].

Triterpenes and saponins are also responsible for anti-parasite activity and most of the extracts were found to contain saponins [42]. For the ethanolic and aqueous extracts, it is known that triterpenes are found in the leaves [43].

To check the interaction between concentrations of extract with respect to time, we have taken average inhibition for aqueous as well as ethanolic extract against it and represented in (Table 2) the following equation:

$$\text{Average inhibition} = \frac{I_1 + I_2}{2}$$

Where, I_1 is the aqueous extract inhibition and I_2 is the ethanolic extract inhibition.

In the present study, it has been shown that the interaction between time and concentration (Table 2) has a significant effect at p<0.05 on decreasing $E. histolytica$ number in culture. The concentrations of 15 and 20 mg/ml decreased $E. histolytica$ number to zero at time of 72 h of incubation, and the concentration of 10 mg/ml decreased the $E. histolytica$ number to zero at time of 96 h of incubation. Furthermore, there are no statistically significant differences at p<0.05 at 24 and 48 h for 20 mg/ml concentration as well as for 10 mg/ml concentration at 72 and 96 h (Fig. 2e). It was observed that the higher concentration yielded higher severity scores than the lower concentration for all the extracts. It was also observed that effects of compounds were proportional to the time. The longer the time of incubation, the more pronounced the effects. This may be due to the fact that an increase in time leads to an increase in the penetration of the active substances of the parasite membranes, and then, these substances destroy them or cause the parasite to become weak. Furthermore, high concentration provides more space to influence the parasite than the lower concentration. This could be done through the interpenetration of this concentration with the external membrane of the parasite. This could affect the tubulins present in the membrane. This concentration made a hole in the membrane which led to the exodus of the parasite’s contents and then led to its death.

Phytochemical screening of *T. indica* leaves extracts

From the phytochemical screening, *T. indica* (Table 3) was found to contain flavonoids, glycosides, phenols, resins, saponins, tannins, furocoumarins, triterpenoids, and carbohydrates in both extracts. The ethanolic extract contains alkaloids and coumarins while aqueous extract does not contain alkaloids and coumarins as in line with the reported elsewhere [44] but differs in the detection of tannins and flavonoids (in aqueous leaves extract) which was found to be absent in all the extracts during the experiment. It is in agreement with Nwodo

These results indicate the ability of water and ethanol to extract many active substances. The containment of the *T. indica* plant on the above-mentioned chemicals enhances the possibility of using it medically to treat many diseases.

pH evaluation *T. indica* extracts

The pH values of the aqueous and ethanolic extract of *T. indica* plant indicate (Table 4) the acidity of these extracts in general. It shows that the ethanolic extract of *T. indica* leaves has the higher acid value than the aqueous extract. The pH of the ethanolic extract was 2.85 while the pH of the aqueous extract was 3.75.

The low pH of the extracts may reflect the presence of high levels of oxalic acid, ascorbic acid, and, particularly, a tartaric acid which is
Table 4: pH evaluation T. indica extracts

Type of extract	pH
Ethanolic extract	2.85
Aqueous extract	3.75

Table 5: Determination of the cytotoxicity of T. indica extracts

Hemolysis	1	2	3	4	5
Ethanol Extract	Aqueous Extract	Normal	Tap	Water	Blood
-	-	+	-	+	-
-	-	-	-	+	-

+=No hemolysis, +=Hemolysis

Acidity may not play an essential role in the elimination of E. histolytica parasite when low concentrations are used in vitro experiments during a relatively short exposure period as in the current research. Low concentrations cannot make a significant change in the medium in which the E. histolytica lives. The importance of conducting cytotoxicity tests in determining the highest concentrations in which acidity plays an effective role can be used as a therapeutic dose against the pathogen which has no harmful side effects.

CONCLUSION

The ethanolic extract and aqueous extract of T. indica used in this study possessed antiamoebic activity in vitro. It showed that the ethanolic extract has the strongest antiamoebic activity compared to the aqueous extract. It was concluded that these ethanolic and aqueous extracts could be sources of new antiparasitic agents. Thus, there is a need to perform bioactivity-guided isolation and characterization of the active compounds responsible for the antiparasitic activities previously mentioned.

REFERENCES

1. Ximénez C, Morán P, Rojas L, Valadez A, Gómez A. Reassessment of the epidemiology of amebiasis: State of the art. Infect Genet Evol 2009;9:1025-32.
2. Abhyankar MM, Shiral S, Gilchrist CA, Bhattacharya A, Petri WA. The Entamoeba histolytica serum-inducible transmembrane kinase EhTMKB1–9 is involved in intestinal amebiasis. Int J Parasitol Drugs Drug Resist 2012;2:243-8.
3. Araújo J, García ME, Díaz-Suárez O, Urdaneta H. Amebiasis: Importance of the diagnosis and treatment. Minireview. Invest Clin 2008;49:265-71.
4. Parija SC, Khairnar K. Mutation detection analysis of a region of 16S-like ribosomal RNA gene of Entamoeba histolytica, Entamoeba dispers, and Entamoeba moshkovskii. BMC Infect Dis 2008;8:131.
5. Issa R. Tropical parasitic lung diseases. Int J Pharm Pharm Sci 2013;7:2-12.
6. Wassmann C, Hellberg A, Tannich E, Bruchhaus I. Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J Biol Chem 1999;274:26051-6.
7. Conde-Bonfil MD, de la Mora-Zerpa C. Entamoeba histolytica: Un desafío vigente. Salud Pública Mèx 1992;34:335-41.
8. Bendesky A, Menéndez D. Metronidazole: Ulna visión integral. Rev Fac Med UNAM 2001;44:255-9.
9. Bautista E, Calzada F, Ortega A, Yépez-Mulia L. Antiprotozoal activity of flavonoids isolated from Mimosa tenuiflora (Fabaceae- Mimosoideae). J Mex Chem Soc 2011;55:251-3.
10. Quintanilla-Licea R, Mata-Cárdenas BD, Vargas-Villarreal J, Bazaldúa-Rodríguez AF, Kavimngeles-Hernández I, Garza-González JN, et al. Antiprotozoal activity against Entamoeba histolytica of plants used in northeast Mexican traditional medicine. Bioactive compounds from Lippia graveolens and Ruta chalepensis. Molecules 2014;19:21044-65.
11. Singh S, Bharti N, Mohapatra PP. Chemistry and biology of synthetic and naturally occurring antiamoebic agents. Chem Rev 2009;109:1900-47.
12. Sawangiareon N, Sawangiareon K, Poopnanag P. Effects of Piper longum fruit, Piper sarmentosum root and Quercus infectoria nut gall on caecal amebiasis in mice. J Ethnopharmacol 2004;91:357-60.
13. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012;75:311-35.
14. Harborne JB. Phytochemical Methods. 2nd ed. New York: Chapman and Hall London; 1984. p. 288.
15. Harborne J. Phytochemical Methods, a Guide to Modern Techniques.
of Plant Analysis. London: Chapman and Hall publications, Ltd.; 1973. p. 159-65.
16. NewallCA, Anderson LA, Phillipson JD. Herbal Medicines. A Guide for Health-care Professionals. London, UK: Pharma Press; 1996. p. 296.
17. Jones WR. The experimental infection of rats with Entamoeba histolytica; with a method for evaluating the anti-amebic properties of new compounds. Ann Trop Med Parasitol 1946;40:130-40.
18. Hallinan FA, Michaelson JB, De Lamater JN. The cultivation of Entamoeba histolytica in a defined mediumI, 2. Am J Trop Med Hyg 1950;363-9.
19. Harinasuta C, Harinasuta T. Studies on the growth in vitro of strains of Entamoeba histolytica. Ann Trop Med Parasitol 1955;49:331-50.
20. Garvey JS, Cremer NE, Sussdorf M, Bruceantin, a potent amoebicide. J Pharm Sci 2013;75:122-5.
21. Packaging of the flavonoid (−)-epicatechin. Het XG, Mocek U, Floss HG, Cáceres A, Girón L, Buckley H, et al. The effects of certain toxic substances and gas formation in cultures of Entamoeba histolytica and a single species of symbiotic bacteria. Am J Hyg 1943;37:310-19; 2013;7:2193-8.
22. Brand TV, Rees CW, Jacobs L, Reakdon LV. Studies on reducing substances and gas formation in cultures of Entamoeba histolytica. Am J Trop Med Hyg 1943;37:310-19; 2013;7:2193-8.
23. Obulesu G, Hanumanthappa AR, Reddy PE. A study of stool sample from HIV positive and HIV negative at Andhra Pradesh. Asian J Pharm Clin Res 2018;11:394-7.
24. GillinFD, Reiner DS, Suffness M. Bruceantin, a potent amoebicide. Am J Trop Med Hyg 1943;37:310-19; 2013;7:2193-8.
25. Issa R. Non-pathogenic protozoa (review article). Int J Pharm Pharm Sci 2010;4:24-5.
26. Hansen BE. Sample splitting and threshold estimation. Econometrica 1982;2:342-5.
27. Hill DR. Issues in diagnosis and management. Infect Dis Clin N Am 1993;7:503-25.
28. Metspalu L, Hiiesaar K, Jõudu J, Kuusik A. The Effects of Certain Toxic substances and gas formation in cultures of Entamoeba histolytica and a single species of symbiotic bacteria. Am J Hyg 1943;37:310-19; 2013;7:2193-8.
29. Ateufack G, Yousseu WN, Feudjio BD, Sama LF, Kuiate J, Kamanyi A. The flavonoid (−)-epicatechin affects cytoskeleton proteins and functions in Entamoeba histolytica. J Proteomics 2014;111:74-85.
30. Padalita H, Moteriya P, Chanda S. Phytochemical analysis and effect of solvents on antibacterial activity of Tamarindus indica Leaf and stem? Int J Curr Eng Technol 2015;5:2716-21.
31. Abukakar MG, Ukwuani AN, Shehu RA. Phytochemical screening and antibacterial activity of Tamarindus indica pulp extract. Asian J Biochem 2008;3:134-8.
32. XuHX, Lee SF. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res 2001;15:39-43.
33. Hill DR. Studies on the growth in vitro of strains of Entamoeba histolytica. Am J Trop Med Hyg 1943;37:310-19; 2013;7:2193-8.
34. McGaw LJ, Jäger AK, Van Staden J. Antibacterial, anthelmintic and anti-amebic activity in South African medicinal plants. J Ethnopharmacol 2000;68:575-603.
35. Padalita H, Moteriya P, Chanda S. Phytochemical analysis and effect of solvents on antibacterial activity of Tamarindus indica Leaf and stem? Int J Curr Eng Technol 2015;5:2716-21.
36. Padalita H, Moteriya P, Chanda S. Phytochemical analysis and effect of solvents on antibacterial activity of Tamarindus indica Leaf and stem? Int J Curr Eng Technol 2015;5:2716-21.
37. Padalita H, Moteriya P, Chanda S. Phytochemical analysis and effect of solvents on antibacterial activity of Tamarindus indica Leaf and stem? Int J Curr Eng Technol 2015;5:2716-21.
38. Hill DR. Issues in diagnosis and management. Infect Dis Clin N Am 1993;7:503-25.
39. Bolahos V, Diaz-Martinez A, Soto J, Rodriguez MA, Lopez-Camarillo C, Marchat LA, et al. The flavonoid (−)-epicatechin affects cytoskeleton proteins and functions in Entamoeba histolytica. J Proteomics 2014;111:74-85.
40. Haslam E. Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. J Nat Prod 1996;59:205-15.
41. Scalbert A. Antimicrobial properties of tannins. Phytochemistry 1991;30:3875-83.
42. Kampanzi AK, Schmid C, Brun R, Kone MW, Traore D. Antitrypanosomal and antiplasmodial activity of medicinal plants from Cote d’Ivoire. J Ethnopharmacol 2004;90:221-7.
43. McGaw LJ, Jäger AK, Van Staden J. Antibacterial, anthelmintic and anti-amebic activity in South African medicinal plants. J Ethnopharmacol 2000;68:575-603.
44. McGaw LJ, Jäger AK, Van Staden J. Antibacterial, anthelmintic and anti-amebic activity in South African medicinal plants. J Ethnopharmacol 2000;68:575-603.
45. McGaw LJ, Jäger AK, Van Staden J. Antibacterial, anthelmintic and anti-amebic activity in South African medicinal plants. J Ethnopharmacol 2000;68:575-603.
46. McGaw LJ, Jäger AK, Van Staden J. Antibacterial, anthelmintic and anti-amebic activity in South African medicinal plants. J Ethnopharmacol 2000;68:575-603.
47. McGaw LJ, Jäger AK, Van Staden J. Antibacterial, anthelmintic and anti-amebic activity in South African medicinal plants. J Ethnopharmacol 2000;68:575-603.