Abstract

Gestational diabetes mellitus (GDM) is a glucose intolerance initially diagnosed throughout the 2nd and 3rd trimester of pregnancy. The purpose of this study was to estimate postpartum diabetes reassessment rates in women with GDM by identifying the persistence of glycemic changes and associated factors. The research is characterized as a retrospective cohort, investigating the postpartum follow-up data from 2010 to 2018. The mothers were divided into two groups: one with normal oral glucose tolerance tests (OGTT) and another group with abnormal tests. Subsequently, a comparison of variables between the two groups was performed considering: the average time for the development of GDM, maternal age, body mass index, gestational age at diagnosis, type of treatment used and postpartum return. Multinomial logistic regression calculations were performed. Data from 578 pregnant women were used and from these, 263 (45.50%) who returned after delivery were evaluated, 197 (74.90%) represented the normoglycemic group and 66 (25.09%) the group with glycemic changes. 41 (15.59%) had carbohydrate intolerance and 25 (9.5%) developed type 2 diabetes mellitus. There was no increased chance of altered OGTT postpartum with maternal ages >35 years, obesity and type of treatment used during prenatal care. Consecutively, the statistical data showed an increased chance of altered OGTT in the second trimester diagnosis of GDM (3.493% CI95% 1.570-7.770), and, concomitantly, glycosylated hemoglobin A1C fraction was >5.8 during prenatal care (3.014 CI95% 1.084-8.380). Moreover, the diagnosis in the third trimester was demonstrated as having a protective effect (0.484 95% CI 0.271-0.865). Less than 50% of the patients returned, and of these, 25% had altered OGTT. This study points to an increased risk of altered OGTT when GDM is diagnosed in the second trimester of pregnancy. Thus, a diagnosis in the second gestational trimester and a glycosylated hemoglobin fraction >5.8 increased the chances of altered OGTT, meanwhile, a diagnosis in the third trimester decreased the chances of OGTT alterations postpartum.

Keywords: Pregnancy. Glycemic index. Gestational diabetes.

INTRODUCTION

Diabetes mellitus is a metabolic disease that affects carbohydrate, protein and lipid metabolism. This syndrome may manifest itself as a lack of insulin either when the body stops producing it, or when its production is inefficient and/or existing insulin fails to be use. The first leads to the onset of type 1 diabetes mellitus (DM1), while the second leads to the onset of type 2 diabetes mellitus (DM2)³.

Gestational diabetes mellitus (GDM) is described as glucose intolerance of various levels with onset or first diagnosis during the second or third trimester of pregnancy. It has an incidence of 3% to 8% in pregnant women² and may or may not persist after delivery³. The importance of diagnosing GDM in clinical practice stems from the risk to the mother of having diabetes in the future, as studies indicate GDM as an early marker of postpartum DM2, even with the disappearance of the condition.

DOI: 10.15343/0104-7809.20194304902915
after birth. Postpartum women with a history of GDM are indicated for reevaluation of whether or not abnormal glucose tolerance changes within 6 to 12 weeks after labor. If the tests show a normal result, the reassessment could be done every 3 years. Patients with fasting glucose and/or glucose tolerance altered should be reevaluated every year.

Some studies have already shown that the establishment of T2DM can be delayed or avoided in high-risk groups through lifestyle changes or medication use. Therefore, the identification of possible characteristics associated with the development of T2DM in women with GDM could contribute to risk stratification, aiming at prevention. The aim of the study was to reassess the postpartum glycemic index of women with a history of GDM and to identify associations between pregnancy characteristics and progression to different glycemic outcomes.

METHODOLOGY

This is a retrospective observational cohort study. Data from 578 pregnant women attended at the maternity service of the Unimed Hospital Center in Joinville-SC, Brazil, who had a diagnosis of GDM between January 2010 and May 2018 were used. Clinical data were collected for the development of postpartum diabetes in electronic medical records and physical medical records.

These mothers underwent the 75g oral glucose tolerance test (OGTT) between 45 and 60 days postpartum, and were divided into 2 groups, one with normal OGTT and one with altered OGTT. The variables were compared between the two groups. The study protocol followed the norms of Resolution No. 466 from December 12, 2012 of the National Health Council, of the Ministry of Health considering the respect for human dignity and the special protection due to participants in scientific research involving human beings. This study received approval under opinion number 2.335.419 of the Research Ethics Committee (CEP) of the Hans Dieter Schmidt Regional Hospital, SC, Brazil.

Diagnostic values for GDM were determined as follows in OGTT with 75g glucose load: fasting glucose 92 to 125 mg/dL, after 1 hour ≥180 mg/dL or after 2 hours from 153 to 199 mg/dL. A single atypical value is sufficient to diagnose GDM. According to criteria published by the World Health Organization, the classification for carbohydrate intolerance is when fasting glucose between >110 and <126 mg/dL, or two hours after between ≥140 and <200 mg/dL. The diagnosis of diabetes mellitus (DM) occurs when fasting blood glucose is ≥126mg/dL, or ≥200 mg/dL two hours later.

The pregnant women chosen were those who developed GDM and returned postpartum for glycemic evaluation from 2010 to 2018, aged over 18 years, regardless of the gestational age of diagnosis, and whose surveillance, delivery and postpartum reclassification occurred in this maternity ward. Pregnant women with incomplete medical records and patients who did not return for glycemic reevaluation were excluded.

Postpartum follow-up data for these women concerning clinical profile, mean time to develop GDM, and other clinical details such as maternal age, BMI, gestational age at diagnosis, type of treatment used, and postpartum follow-up were evaluated. Characteristics of newborns such as weight, type of delivery, gestational age at delivery and a classification comparing weight and gestational age as small for gestational age (SGA), appropriate for gestational age (AGA) or large for gestational age (LGA) were also evaluated.

All the information obtained was released in the Microsoft Excel version 2016 software and later analyzed using the Statistical Package for the Social Science (SPSS) version 21.0 software. Quantitative variables were presented as means and standard deviations, and qualitative variables were as absolute and relative frequencies. Once the normality of distribution of the characteristics studied by the Kolmogorov-Smirnov test was confirmed, the T-test for normally distributed quantitative variables was applied. When the assumption of normality was rejected, the non-parametric Mann Whitney test was used. For qualitative variables, the chi-squared test (or Fisher’s exact
Of the patients treated, 263 (45.50%) returned after delivery for reassessment of glycemic status were analyzed, and of these, 197 (74.90%) represented the group without glycemic alterations and 66 (25.09%) represented the group with glycemic alterations. In the group with glycemic alterations, 41 (15.59%) were carbohydrate intolerant and 25 (9.5%) developed T2DM. There were no pregnant women excluded. The diagnosis made in the second trimester was approximately three times more likely to change in OGTT, and the third trimester demonstrated a protective effect; both were significant. HbA1C >5.8 during prenatal care was almost three times more likely to develop postpartum glucose intolerance or T2DM.

The characteristics of pregnant women, shown in Table 1, show the group profile: age and body mass index (BMI). In the studied population no difference was found between the groups.

Table 2 shows data related to GDM, such as glycemic control, type of treatment (diet, metformin or insulin), gestational age at diagnosis and glycosylated hemoglobin A1C fraction (HbA1C). There was a difference in gestational age at diagnosis (p=0.041). It was found that in both groups the diagnosis in the second and third trimester was different (p = 0.014 and p=0.007). There was no difference regarding the type of treatment, however, the option to perform the treatment with a diet had a p-value close to significance (p=0.057). No difference in HbA1C values between groups was demonstrated.

Regarding the characteristics of the newborns (NB), shown in Table 3, there was a higher prevalence of cesarean delivery when compared to the number of vaginal deliveries in both groups. However, the type of delivery did not differ in this population. There was also no difference regarding gestational age of delivery, the size of the newborn and referral to the intensive care unit (ICU). Regarding hypoglycemia in newborns due to GDM, this study found a p-value close to significance.

Amidst the findings, we found no increased chance of altered OGTT postpartum at maternal ages >35 years or with obesity. The diagnosis of GDM made in the first trimester was not significant. However, being diagnosed in the second trimester was approximately three times more likely to develop postpartum glycemic changes. On the other hand, the diagnosis made in the third trimester proved to be a protective factor. The type of GDM treatment was not statistically relevant. As for those with HbA1C >5.8, they were almost three times more likely to develop postpartum glucose intolerance or DM2, according to Table 4.

Table 1 – General characteristics of pregnant women according to normal and altered glycemic index, between January 2010 and May 2018 in the maternity ward of the Unimed Hospital Center in Joinville, SC, Brazil.

Characteristics	Normal N=197	OGTT (altered) N=66	P-value
Age	31.51 ± 4.99	32.39 ± 4.60	0.680
BMI	26.84 ± 4.96	27.68 ± 5.43	0.536
Low weight	2.03	3.03	0.643
Normal	38.57	36.36	0.748
Obese	59.39	60.60	0.862

*Student’s T Test; † Mann-Whitney test; ‡ Fisher test; § Chi-squared test; BMI-body mass index, OGTT-oral glucose tolerance test.
Table 2 – Characteristics of glycemic control, type of treatment, age of diagnosis and glycosylated hemoglobin, between January 2010 and May 2018 at the maternity hospital of Unimed Hospital in Joinville, SC, Brazil.

Characteristics	Normal (N=197)	OGTT (altered) N=66	P-value		
GA	27.81 ±5.94	25.05 ±5.96	*0.014		
1st Trimester	10	5.07	5	7.57	†0.541
2nd Trimester	46	23.35	26	39.39	†0.014
3rd Trimester	141	71.57	35	53.03	†0.007
Diet	72	36.54	16	24.24	†0.057
MTF	76	38.57	30	45.45	†0.338
Insulin	49	24.87	20	30.30	†0.423
HBA1C 3T	5.22 ±0.49	5.34 ±0.54	†0.422		

*Mann-Whitney test; † Fisher test; BMI: body mass index; GA: Gestational age; TTO: treatment; MTF: metformin; HBA1C 3T: glycosylated hemoglobin, OGTT: oral glucose tolerance test.

DISCUSSION

In Brazil, according to the Unified Health System (SUS) using the diagnostic criteria currently proposed in the literature8-10, it is estimated that the prevalence of GDM is approximately 18%. Pregnant women diagnosed with GDM have a risk of developing glucose intolerance or postpartum T2DM, which indicates the need for greater vigilance as well as proper screening of this population7,11-15.

In the midst of this context, the American College of Gynecology and Obstetrics is mandatorily predicting postpartum follow-ups for screening for glucose intolerance or T2DM16. Although screening has increased over the past decade, it is still inefficient in Brazil. In the present study, women with GDM who returned to the glycemic control screening represented 45.5% of the research sample. These results are lower than those found by the American College and other developed countries, such as Australia, that have major concerns for screenings, indicating postpartum segment levels of 74 and 73%, respectively16,17.

However, a recent report from a similar patient population in Boston (USA)18 and a study by Thomas Jerfferson University of Philadelphia...
Glycemic changes in women after gestational diabetes mellitus (GDM) are a significant concern. Women with GDM are of reproductive age, and the progression of pathologies, such as structural defects in the eggs and the frequency of chronic diseases, increases with age. As the age of the pregnant woman increases, the likelihood of structural defects in the eggs and the frequency of chronic pathologies, which makes the reproductive history more complicated.

The prevalence of postpartum T2DM was 9.5%, a percentage similar to that described in the international literature, which reports 3-14%20-21. This variation in relation to the prevalence rates of GDM in the various studies evaluated must have occurred due to a dependence on the characteristics of the population and the methods used for screening and diagnosis of the disease. Some authors, for example, identified maternal weight gain and BMI as significant; however, the present study did not identify their relevance2,7,22.

The data from the current study show that 60.6% of patients who developed glycemic alterations were classified as obese. Obesity has been identified as one of the main risk factors for T2DM, as it is responsible for the glucose-insulin homeostasis disorder. This results in several pathophysiological changes such as reduced insulin extraction from the liver, with increased hepatic glucose production and decreased glucose uptake by muscle tissue. Although there are references indicating a BMI greater than 25 kg/m² as a higher chance7,23, the follow-up of the study did not show clinical relevance in its statistical significance.

Regarding the associations between mother's age and OGTT alterations, the present study identified that a maternal age >35 years does not demonstrate a significantly increased chance of altering OGTT. Other studies have also stated that age does not imply a higher chance for the diagnosis of T2DM21,24,25. These findings may be explained by the fact that fertility declines gradually until the age of 35, and then rapidly declines after this age. As the age of the pregnant woman increases, the increased likelihood of structural defects in the eggs and the frequency of chronic pathologies, which makes the reproductive history progressively more complicated.

It is noteworthy that the population of women with GDM is of reproductive age, and postpartum screening and subsequent diagnoses of diabetes affect not only mothers but also future pregnancies. Therefore, the risk of complications, especially stillbirths and congenital anomalies, may be reduced with optimal glycemic control before subsequent pregnancy26.

Although there are studies that considered GDM diagnosed in the first trimester as having a greater chance of alterations2,7, this analysis diverged with the present research, which indicated a greater chance in the second trimester. In addition, it was found that diagnoses in the third trimester have clinical and statistical relevance as a protective factor for the development of glycemic alterations. One possibility, which does not corroborate the literature regarding diagnosis in the first trimester, would be the small population found in this study of only 15 pregnant women.

The variable between carbohydrate intolerant patients and patients with T2DM, regarding the type of treatment, was considered to be a potential factor to revert maternal and neonatal adversities2,22. In this study, there was no difference regarding the type of treatment, however, the option of dieting was nearly to significance. According to the comparative publication of the drugs, there are no changes in perinatal outcomes in patients with GDM12. This information differs from research that has shown insulin as being a higher risk factor for postpartum T2DM evolution7,22; perhaps because they did not use metformin in the treatment of GDM or carried out the diet incorrectly. Considering this aspect, Polish findings identified in recent works have assessed that the use of insulin during pregnancy would be one of the reasons for adherence to postpartum screening27.

Patients in the current study with HbA1c rates greater than 5.8 were three times more likely to develop postpartum glucose intolerance or T2DM. In contrast, the literature described a six-fold increased chance7,28. Results indicate that HbA1c may be a useful measure for identifying patients with GDM who are at a higher risk for abnormal postpartum glucose.

Regarding the results of the newborns, the mean gestational age at delivery was similar between the two groups, corroborating other studies described in the literature14,22,29. There was a higher prevalence of cesarean delivery in both groups when compared to the number of
vaginal deliveries; unlike a study conducted in Portugal that reported a reduction in the number of caesarean sections in diabetic patients.22

It is necessary to highlight some limitations of the present study because it is based on the information recorded in an electronic medical record. However, we consider that the issue highlighted in the article is relevant to clinical practice, given the increase in cases of GDM and its consequences for women, as well as for children. Thus, it is extremely important to have data on postpartum GDM assessment and analyses for a better understanding of the topic, as well as providing information for risk stratification and contributing to the prevention of T2DM with early treatment.

Thus, strategies to increase the rate of return to assess postpartum glycemic status and eventually prevent T2DM include orienting the patients on the importance of this reevaluation during pregnancy and the immediate postpartum period, and even contacting the patients via telephone calls if they do not attend the appointment. Therefore, postpartum interventions are necessary, as well as health policies that make women aware of and ensure their return after childbirth; especially, since lifestyle changes through diet, physical activity, and medication, when well-indicated, have benefitted this population7,26,27,31,32.

CONCLUSION

This research showed changes in OGTT in 25% of patients who returned postpartum. There is an increased risk of altered OGTT when the diagnosis of GDM occurs in the second trimester. Thus, a diagnosis in the second trimester and a glycosylated hemoglobin fraction >5.8 was associated with an increased chance, and diagnosis in the third trimester was associated with a decreased chance of postpartum OGTT changes.

REFERENCES

1. Ferreira VA, Marques S, Campos BDE. Avanços farmacológicos no tratamento do diabetes tipo 2. Brazilian J Surg Clin Res. 2014;8(1):72–8.
2. Alves JM, Stollmeier A, Leite IG, Pilger CG, Detsch JCM, Radominski RB, et al. Postpartum Reclassification of Glycemic Status in Women with Gestational Diabetes mellitus and Associated Risk Factors. Rev Bras Ginecol Obstet. 2016;38(6):381–90.
3. Carocha A, Rio C, Amaral N, Aleixo F, Rocha T. [Diabetes in pregnancy - postpartum screening]. Acta Med Port. 2012;25(3):165–8.
4. Carter EB, Martin S, Temming LA, Colditz GA, Macones GA, Tuuli MG. Early versus 6–12 week postpartum glucose tolerance testing for women with gestational diabetes. J Perinatol. 2017;389–91.
5. Araújo MFM, Pessoa SMF, Damasceno MMC, Zanetti ML. Diabetes gestacional na perspectiva de mulheres grávidas hospitalizadas. Rev Bras Enferm. 2013;66(2):222–7.
6. Petroni LM, Silva TC da, Santos ADL, Marcon SS, Mathías TA de F. Convivendo com a gestante de alto risco: a percepção do familiar. Ciência, Cuid e Saúde. 2012;11(3):535–41.
7. Universidade Federal Do Paraná Jacy Maria Alves Reclassificação Pós-Parto Do Estado Glicêmico Em Mulheres Com Diabetes mellitus Gestacional Jacy Maria Alves Reclassificação Pós-Parto Do Estado Glicêmico Em Mulheres Com Diabetes mellitus Gestacional E. 2015; 131(1):S173–211.
8. Hod M, Kapur A, Sacks DA, Hadar E, Agarwal M, Di Renzo GC, et al. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care #. Int J Gynecol Obstet. 2015;131(1):S173–211.
9. Metzger BE. International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(3):676–82.
10. Trujillo J, Vigo A, Reichelt A, Duncan BB, Schmidt ML. Fasting plasma glucose to avoid a full OGTT in the diagnosis of gestational diabetes. Diabetes Res Clin Pract. 2014;105(3):322–6.
11. Reichelt AJ, Oppermann MLR. perspectivas Trabalho em Diabetes e Gravidez. 2001;46.
12. Corróa FHS, Gomes M de B. Acompanhamento Ambulatorial de Gestantes com Diabetes mellitus no Hospital Universitário Pedro Ernesto - UERJ. Arq Bras Endocrinol e Metabol. 2004; 48(4):499–504.
13. Nogueira AI, Santos JSS, Santos LLB, Salomon IMM, Abrantes MM, Aguilar RALP. Diabetes Gestacional: perfil e evolução de um grupo de pacientes do Hospital das Clínicas da UFMG. Rev Médica Minas Gerais. 2011; 21(1):32–41.
14. Massucatti, L.A; Pereira, R.A; Maioli T. Prevalência De Diabetes Gestacional Em Unidades De Saúde Básica. Rev Enferm e atenção à...
Saúde. REAS UFTM. 2012; 1(1):70–9.
15. Pereira BG. Diabetes gestacional: seguimento após o parto. Rev Bras Ginecol Obs. 2014;36(11):10–2.
16. Gabbe SG, Gregory RP, Power ML, Williams SB, Schulkin J. Management of diabetes mellitus by obstetrician-gynecologists. Obstet Gynecol. 2004; 103(6):129–34.
17. Morrison MK, Collins CE, Love JM. Postnatal testing for diabetes in Australian women following gestational diabetes mellitus. Aust New Zeal J Obstet Gynaecol. 2009; 49(3):494–8.
18. Rosenbloom JL, Blanchard MH. Compliance with Postpartum Diabetes Screening Recommendations for Patients with Gestational Diabetes. J Women’s Heal [Internet]. 2017;00(00):jwh.2017.6477. Available from: http://online.liebertpub.com/doi/10.1089/jwh.2017.6477
19. Almario C V., Ecker T, Moroz LA, Bucovetsky L, Berghella V, Baxter JK. Obstetricians seldom provide postpartum diabetes screening for women with gestational diabetes. Am J Obstet Gynecol. 2008; 198(5):1–5.
20. Kitzmiller JL, DangKilduff L, Taslimi MM. Gestational diabetes after delivery: Short-term management and long-term risks. Diabetes Care. 2007;30(SUPPL 2);
21. S.Y. K, N.P. D, C.L. R. Diabetes during Pregnancy: Surveillance, Preconception Care, and Postpartum Care. J Women’s Heal [Internet]. 2018;27(6):536–41. Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L621753189%0Ahttp://dx.doi.org/10.1089/jwh.2018.7052
22. Massa AC, Rangel R, Cardoso M, Campos A. Gestational diabetes and the new screening test’s impact [Diabetes gestacional e o impacto do actual rastreio]. Acta Med Port. 2015;28(1):29–34.
23. Oliveira MIV De, Bezerra MGA, Filho JGB, Veras MACE, Bezerra JP. Perfil De Mães E Recém-Nascidos Na Presença Do Diabetes mellitus Gestacional Profile of Mothers and Newborns in the Presence of Gestational Diabetes mellitus. Rev Rene. 2009; 10(4):28–36.
24. American College of Obstetricians and Gynecologists. Weight gain during pregnancy. Committee Opinion. 2013. 1250–1253 p.
25. Sivaraman SC, Vinnamala S, Jenkins D. Gestational Diabetes and Future Risk of Diabetes. J Clin Med Res @BULLET. 2013; 5(2):92–6.
26. Action I. Trends in Postpartum Diabetes Screening Histories of Gestational Diabetes mellitus. Diabetes. 2009; 32(2):18–23.
27. Vieira EMF. Estudo do teor de sódio em pão e sua relação com as doenças cardiovasculares: trabalho de investigação. 2007; Available from: http://repositorio-aberto.up.pt/handle/10216/54810
28. Katon J, Reiber G, Williams MA, Yanez D, Miller E. Hemoglobin A1C and Postpartum Abnormal Glucose Tolerance Among Women with Gestational Diabetes. Obs Gynecol. 2013;119(3):566–74.
29. Silva JC, Bertini AM, Ribeiro TE, Carvalho LS de, Melo MM, Barreto Neto L. Fatores relacionados à presença de recém-nascidos grandes para a idade gestacional em gestantes com diabetes mellitus gestacional. Rev Bras Ginecol e Obs. 2009;31(1):5–9.
30. Gestantes EM De, Sales APM, Jorge SM, Foss MC. Evolução Materno-Fetal de Gestantes Diabéticas Seguidas no HC-FMRP-USP no Período de 1992-1999. 2001;45.
31. Stasenko M, Cheng YW, McLean T, Jelin AC, Rand L, Caughhey AB. Postpartum follow-up for women with gestational diabetes mellitus. Am J Perinatol. 2010;27(9):737–42.
32. Lawrence JM, Black MH, Hsu JW, Chen W, Sacks DA. Prevalence and timing of postpartum glucose testing and sustained glucose dysregulation after gestational diabetes mellitus. Diabetes Care. 2010;33(3):569–76.

Received in may 2019.
Accepted in september 2019.
Alterações glicêmicas em mulheres pós-diabetes mellitus gestacional

Pâmella Hellmann*
Maria Aline Santana Trindade*
Luiza Domingues da Fonseca*
Iramar Baptista do Nascimento**
Jean Carl Silva*

Resumo

O diabetes mellitus gestacional (DMG) é uma intolerância à glicose com o primeiro diagnóstico ao longo do 2º e 3º trimestre da gestação. O propósito deste estudo foi estimar as taxas de reavaliação de diabetes pós-parto em mulheres com DMG identificando a persistência das alterações glicêmicas e fatores associados. A pesquisa caracteriza-se como uma coorte retrospectiva, apontando os dados de seguimento pós-parto no período de 2010 a 2018. As puérperas foram divididas em dois grupos: um com teste oral de tolerância à glicose (TOTG) normal e outro grupo com alteração. Subsequentemente, uma comparativa de variáveis entre os dois grupos: o tempo médio para o desenvolvimento de DMG, idade materna, índice de massa corporal, idade gestacional no momento do diagnóstico, tipo de tratamento utilizado e retorno pós-parto. Realizou-se cálculos de regressão logística multinomial. Foram utilizados os dados de 578 gestantes e, destas, avaliaram-se 263 (45,50%) que retornaram após o parto, 197 (74,90%) representaram o grupo de normoglicêmicas e 66 (25,09%) o grupo com alterações glicêmicas. 41 (15,59%) apresentaram intolerância aos carboidratos e 25 (9,5%) desenvolveram diabetes mellitus tipo 2. Não se identificou aumento de chance de TOTG alterado no pós-parto na idade materna >35 anos, na obesidade e no tipo de tratamento utilizado durante o pré-natal. Consecutivamente, os dados estatísticos apontaram um aumento da chance de TOTG alterado no diagnóstico de DMG realizado no segundo trimestre (3,493 IC95% 1,570-7,770) e, concomitantemente, na hemoglobina glicosilada fração A1C >5,8 durante o pré-natal (3,014 IC95% 1,084-8,380). Já o diagnóstico no terceiro trimestre apresentou-se como um efeito protetor (0,484 IC95% 0,271-0,865). Uma porcentagem inferior à 50% das pacientes retornaram, e destas, 25% apresentou alteração no TOTG. O estudo aponta um risco aumentado de TOTG alterado quando acontece o diagnóstico de DMG no segundo trimestre de gestação. Desta forma, o diagnóstico no segundo trimestre gestacional e a hemoglobina glicosilada fração >5,8, aumentaram as chances, e o diagnóstico no terceiro trimestre diminuíram as chances de alteração no TOTG pós-parto.

Palavras-chave: Gravidez. Índice glicêmico. Diabetes gestacional.

INTRODUÇÃO

O diabetes mellitus é uma doença metabólica que afeta o metabolismo dos carboidratos, como também de proteínas e de lipídeos. Essa síndrome pode se manifestar na falta de insulina, quando o corpo deixa de produzi-la, ou pela sua produção ineficiente e/ou falha ao utilizar a insulina existente. A primeira leva ao aparecimento do diabetes mellitus tipo 1 (DM1), já a segunda ao aparecimento do diabetes mellitus tipo 2 (DM2)¹.

O diabetes mellitus gestacional (DMG) é descrito como intolerância à glicose de níveis diversos com início ou primeiro diagnóstico ao longo do segundo ou terceiro trimestres da gestação, com incidência de 3% a 8% das gestantes² e pode ou não persistir após o parto¹. A importância do diagnóstico de DMG na prática clínica advém do risco para a mãe de apresentar diabetes no futuro, visto que estudos indicam o DMG como um marcador precoce de DM2 pós-parto, mesmo com o desaparecimento da condição após o nascimento⁵,⁶.

Puérperas com histórico de DMG são

DOI: 10.15343/0104-7809.20194304902915

*Universidade da Região de Joinville – UNIVILLE. Joinville/SC, Brasil.
**Universidade do Estado de Santa Catarina - CEPLAN / UDESC. São Bento do Sul/SC, Brasil.
E-mail: iramar.nascimento@udesc.br
indicadas para reavaliação da perseverança ou não de alterações anormais de tolerância à glicose dentro de 6 a 12 semanas após o trabalho de parto. Se os testes apontarem um resultado normal, a reavaliação poderia ser feita a cada 3 anos. Pacientes com glicose de jejum e/ou tolerância de glicose alterada devem ser reavaliadas todos os anos².

Alguns estudos já demonstraram que o estabelecimento do DM2 pode ser adiado ou evitado em grupos de alto risco através de mudanças no estilo de vida ou uso de medicamentos⁶,⁷. Portanto, a identificação de possíveis características associadas com o desenvolvimento de DM2 em mulheres com DMG poderia contribuir para a estratificação do risco, visando a prevenção. O objetivo do estudo foi reavaliar o índice glicêmico no pós-parto de mulheres com história de DMG e identificar associações entre as características da gravidez e a progressão para diferentes resultados glicêmicos.

METODOLOGIA

Trata-se de um estudo de coorte retrospectivo observacional. Foram utilizados dados de 578 gestantes atendidas no serviço da maternidade do Centro Hospitalar da Unimed em Joinville-SC, Brasil, que tiveram o diagnóstico de DMG entre janeiro de 2010 e maio de 2018. Foram coletados dados clínicos para o desenvolvimento do diabetes pós-parto em registros médicos eletrônicos e prontuários físicos.

Essas puérperas realizaram o teste oral de tolerância à glicose (TOTG) 75g entre 45 e 60 dias pós-parto, e foram divididas em 2 grupos, um com TOTG normal e outro com TOTG alterado. As variáveis foram comparadas entre os dois grupos. O protocolo do estudo seguiu as normativas da resolução nº 466, de 12 de dezembro de 2012 do Conselho Nacional de Saúde, do Ministério de Saúde considerando o respeito pela dignidade humana e pela especial proteção devida aos participantes das pesquisas científicas envolvendo seres humanos. Esta pesquisa recebeu o número 2.335.419 no parecer do Comitê de Ética e Pesquisa (CEP) do Hospital Regional Hans Dieter Schmidt/SC – Brasil.

Os valores de diagnóstico de DMG foram determinados como os seguintes no TOTG com carga de 75g de glicose: glicemia de jejum 92 a 125 mg/dL, após 1 hora ≥ 180 mg/dL ou após 2 horas de 153 a 199 mg/dL. Um único valor atípico é suficiente para diagnosticar o DMG. De acordo com os critérios publicados pela Organização Mundial da Saúde a classificação para intolerância aos carboidratos é quando glicemia de jejum >110 entre <126 mg/dl e duas horas após ≥ 140 e < 200 mg/dl. O diagnóstico do diabetes mellitus (DM) ocorre quando a glicemia de jejum ≥ 126mg/dl ou duas horas após ≥200 mg/dl.

Foram incluídas as gestantes que desenvolveram DMG e retornaram no pós-parto para avaliação glicêmica no período de 2010 a 2018, com idade acima de 18 anos, independentemente da idade gestacional de diagnóstico, cuja vigilância, parto e reclassificação pós-parto ocorreram nessa maternidade. Foram excluídas as gestantes com dados incompletos no prontuário e as pacientes que não retornaram para a reavaliação glicêmica.

Foram avaliados os dados de seguimento pós-parto naquelas mulheres sobre o perfil clínico, o tempo médio para o desenvolvimento de DMG e outros detalhes clínicos, como idade materna, IMC, idade gestacional no momento do diagnóstico, tipo de tratamento utilizado e retorno pós-parto. Também foram avaliadas características dos recém-nascidos como peso, tipo de parto, idade gestacional do parto e classificação relacionando peso e idade gestacional em pequeno para idade gestacional (PIG), adequado para a idade gestacional (AIG) ou grande para idade gestacional (GIG).

Todas as informações obtidas foram lançadas no software Microsoft Excel versão 2016 e posteriormente analisadas através do software Statistical Package for the Social Science (SPSS) versão 21.0. As variáveis quantitativas foram apresentadas através de médias e desvios-padrão e as qualitativas através de frequências absolutas e relativas. Uma vez confirmada a normalidade de distribuição das características estudadas pelo teste de Kolmogorov-Smirnov, aplicamos o Teste T para as variáveis quantitativas com distribuição normal, e quando a suposição de normalidade...
foi rejeitada, utilizou-se o teste não-paramétrico de Mann Whitney. Para as variáveis qualitativas, foi aplicado o teste qui-quadrado (ou exato de Fisher para frequências menores de 5). Em todos os modelos analíticos foram considerados significativos valores p inferiores a 0,05. Foram construídos modelos de regressão logística multinominal para cálculo de razão de chance, de modo a examinar os fatores relacionados ao desfecho TOTG alterado, considerando as variáveis de confusão.

RESULTADOS

Das pacientes atendidas, foram analisadas 263 (45,50%) que retornaram após o parto para a reavaliação do estado glicêmico, e dessas, 197 (74,90%) representaram o grupo sem alterações glicêmicas e 66 (25,09%) representaram o grupo com alterações glicêmicas. No grupo com alterações glicêmicas, 41 (15,59%) são intolerantes aos carboidratos e 25 (9,5%) desenvolveram DM 2. Não houveram gestantes excluídas. Permaneceu significativo o diagnóstico realizado no segundo trimestre que se apresentou com, aproximadamente, três vezes mais chance para alteração no TOTG e terceiro trimestre, que se apresentou como um efeito protetor. Quanto à HbA1C>5,8, durante o pré-natal, apresentou uma chance quase três vezes maior de desenvolver intolerância a glicose ou DM2 no pós-parto.

As características das gestantes, demonstradas na Tabela 1, apresentam o perfil do grupo: idade e índice de massa corporal (IMC). Na população estudada não foi encontrada diferença entre os grupos.

Na Tabela 2 estão os dados relacionados ao DMG, como controle glicêmico, tipo de tratamento (dieta, metformina ou insulina), idade gestacional do diagnóstico e hemoglobina glicosilada fração A1C (HbA1C). Houve uma diferença quanto à idade gestacional do diagnóstico (p=0,041). Foi encontrado que, em ambos os grupos, o diagnóstico no segundo e terceiro trimestre foi diferente (p=0,014 e p=0,007). Quanto ao tipo de tratamento, não houve diferença, porém, a opção de realizar o tratamento com dieta se mostrou com um “p” próximo à significância (p=0,057). Não foi evidenciada diferença dos valores HbA1C entre os grupos.

No que diz respeito às características do recém-nascido (RN), demonstradas na Tabela 3, houve maior prevalência de parto cesariana quando comparado ao número de partos vaginais em ambos os grupos. Porém, o tipo de parto não apresentou diferença nessa população. Também não foi encontrada diferença em relação à idade gestacional do parto, ao tamanho do RN e encaminhamento para unidade de tratamento intensivo (UTI). Quanto à hipoglicemia nos RN, decorrente do DMG, este estudo encontrou um p próximo à significância.

Em meio aos achados, não encontramos aumento de chance de TOTG alterado no pós-parto na idade materna >35 anos e na obesidade. O diagnóstico de DMG realizado no primeiro trimestre não foi significante. Entretanto, ser diagnosticado no segundo trimestre se mostrou com, aproximadamente, três vezes mais chance de desenvolver alterações glicêmicas no pós-parto. Por outro lado, o diagnóstico realizado no terceiro trimestre se mostrou como um fator de proteção. O tipo de tratamento do DMG não apresentou relevância estatística. Quanto à HbA1C>5,8, apresentou uma chance quase três vezes maior de desenvolver intolerância a glicose ou DM2 no pós-parto, de acordo com a tabela-4.

**Tabela 1 – Características gerais das gestantes de acordo com o índice glicêmico normal e alterado, entre janeiro de 2010 e maio de 2018 na maternidade do Centro Hospitalar da Unimed em Joinville, SC, Brasil.

Características	Normal N=197	TOTG (alterado) N=66	Teste P
Idade	31,51 ± 4,99	32,39 ± 4,60	*0,680
IMC	26,84 ± 4,96	27,68 ± 5,43	†0,536
Baixo peso	4,20 ± 2,03	2,30 ± 2,03	‡0,643
Normal	76,38,57	36,36	§0,748
Obesa	117,59,39	60,60	&0,862

*Teste T student; † Teste Mann-Whitney; ‡ Teste Fisher; § Teste Qui-quadrado;
IMC-índice de massa corpórea, TTOG-teste oral de tolerância a glicose.
Tabela 2 – Características do controle glicêmico, tipo de tratamento, idade do diagnóstico e hemoglobina glicosilada, entre janeiro de 2010 e maio de 2018 na maternidade do Centro Hospitalar da Unimed em Joinville-SC, Brasil.

Características	Normal N=197	TOTG (alterado) N=66	Teste P
IG	27,81 ±5,94	25,85 ±5,96	0,041
1º Trimestre	10 5,07 5	7,57 10,541	
2º Trimestre	46 23,35 26	39,39 0,014	
3º Trimestre	141 71,57 35	53,03 0,007	
TOT			
Dieta	72 36,54 16	24,24 0,057	
MTF	76 38,57 30	45,45 0,338	
Insulina	49 24,87 20	30,30 0,423	
HBA1C 3T	5,22 ±0,49	5,34 ±0,54 0,422	

*Teste Mann-Whitney; †Teste Fisher; TTO-tratamento; MTF-metformina; HBA1C 3T: hemoglobina glicosilada, TOTG-teste oral de tolerância a glicose.

Tabela 3 – Características dos recém-nascidos de acordo com o índice glicêmico normal e alterado das gestantes, entre janeiro de 2010 e maio de 2018 na maternidade do Centro Hospitalar da Unimed em Joinville-SC, Brasil.

Características	Normal N=197	TOTG (alterado) N=66	Teste P
PN	31 15,73 14	21,21 0,282	
CS	166 84,26 52	78,78 0,332	
Peso RN	3187,59 ±444,74	3250,49 ±386,65 10,663	
IG do parto	38,36 ±1,35	38,09 ±1,32 0,478	
PIG	0 0 0 0		
AIG	134 68,02 46	69,69 0,746	
GIG	63 31,97 20	30,30 0,746	
Hipoglicemia	14 7,10 10	15,15 0,054	
UTI	10 5,07 5	7,57 0,466	

*Teste Qui-quadrado; †Teste Mann-Whitney; ‡Teste Fisher; PN-parto normal; CS-cesariana; RN-recém-nascido; IG-idade gestacional; PIG-pequeno para a idade gestacional; AIG-adequado para a idade gestacional; GIG-grande para a idade gestacional; UTI-unidade de terapia intensiva; TOTG-teste oral de tolerância a glicose.

Tabela 4 – Razão de chances de desenvolver alterações glicêmicas no pós-parto entre janeiro de 2010 e maio de 2018 na maternidade do Centro Hospitalar da Unimed em Joinville-SC, Brasil.

Características	Normal/alterado	P	RC	IC95%
Idade>35a	81/55	0,849	1,080	0,490-2,378
Obesidade	40/117	0,403	0,719	0,331-1,558
1º trimestre	5/10	0,119	3,401	0,729-15,871
2º trimestre	26/46	0,002	3,493	1,570-7,770
3º trimestre	35/141	0,014	0,484	0,271-0,865
Dieta	16/72	0,060	0,545	0,289-1,025
MTF	30/76	0,338	1,314	0,751-2,297
Insulina	20/49	0,424	1,283	0,695-2,377
HBA1C ≥5,8	21/169	0,034	3,014	1,084-8,380

MTF-metformina; HBA1C-hemoglobina glicosilada fração A1C.; RC-razão de chance.
DISCUSSÃO

No Brasil, de acordo com o Sistema Único de Saúde (SUS), estima-se que a prevalência do DMG seja de aproximadamente 18%, utilizando-se os critérios diagnósticos atualmente propostos na literatura8-10. As gestantes diagnosticadas com DMG exibem um risco de desenvolver intolerância à glicose ou DM2 pós-parto, o que indica a necessidade de realização de uma maior vigilância como também de um rastreio adequado dessa população7,11-15.

Em meio a esse contexto, o Colégio Americano de Ginecologia e Obstetrícia prevê com obrigatoriedade o retorno pós-parto para rastreio de intolerância à glicose ou DM216. Apesar de o rastreamento ter aumentado na última década ainda é ineficiente no Brasil. No presente estudo as mulheres com DMG que retornaram para o rastreio de controle glicêmico representaram 45,5% da amostra de pesquisa. Esses resultados são menores do que os achados do Colégio Americano e de países desenvolvidos, como a Austrália, que apresentam uma grande preocupação no rastreamento, indicando níveis de segmento pós-parto de 74 e 73%, respectivamente16,17.

Entretanto, um relatório recente de uma população de pacientes similar em Boston (EUA)18 e um estudo realizado pela Universidade Thomas Jefferson da Filadélfia (EUA)19 relataram que, respectivamente, apenas 23,4% e 20% dos pacientes receberam encaminhamento de obstetras-ginecologistas para testes de triagem após o parto. Este estudo evidenciou um percentual de retorno mais satisfatório. Diante disso, parece existir uma dificuldade em captar as pacientes após o parto e as hipóteses sugeridas por diferentes pesquisadores é de que o primeiro reteste coincide com o período de adaptação da mulher ao RN e à falta de indicação por parte da equipe médica2,7.

A prevalência de DM2 pós-parto foi de 9,5%, sendo uma percentagem semelhante a dados descritos na literatura internacional, que refere 3-14%20,21. Essa variação, em relação aos percentuais de prevalência do DMG, nos diversos estudos avaliados, deve ocorrer devido a uma dependência das características da população e dos métodos utilizados para rastreamento e diagnóstico da doença. Alguns autores, por exemplo, identificaram o ganho de peso materno e o IMC como significantes, porém, o presente estudo não identificou relevância2,14,22.

O levantamento de dados do atual estudo apresenta que 60,6% das pacientes que desenvolveram alterações glicêmicas estavam classificadas como obesas. A obesidade tem sido apontada como um dos principais fatores de risco para DM2, por ser responsável pelo distúrbio na homeostase glicose-insulina. Isso resulta em várias alterações fisiopatológicas como a menor extração de insulina pelo fígado, com aumento da produção hepática de glicose e diminuição da captação de glicose pelo tecido muscular. Apesar de existirem referências7,23 apontando o IMC superior a 25 kg/m² como chance maior, o seguimento da pesquisa não mostrou relevância clínica em sua significância estatística.

Sobre as associações entre idade da mãe e alterações de TOTG, o presente estudo identificou que a idade materna >35 anos não apresenta significância para o aumento de chances em alterações de TOTG. Já outras pesquisas afirmaram que a idade não significa chance maior para o diagnóstico de DM221,24,25. Estes achados podem ser explicados pelo fato do declínio da fertilidade ser gradual até os 35 anos, acentuando-se após essa idade. Com o avançar da idade aumenta a probabilidade de defeitos estruturais nos óvulos, frequência de patologias crônicas, o que torna a história reprodutiva ser progressivamente mais complicada à medida que aumenta a faixa etária da gestante.

Vale ressaltar que a população de mulheres com DMG é de idade reprodutiva, e a triagem pós-parto e os diagnósticos subsequentes de diabetes afetam não apenas as mães, mas também as futuras gestações. Portanto, o risco de complicações, principalmente natimortos e anomalias congênitas, pode ser reduzido com o controle glicêmico ideal antes da gravidez subsequente26.

Embora existam escritos que consideraram DMG diagnosticado no primeiro trimestre com chances de maiores alterações2,7, esta análise...
referida divergiu com a presente pesquisa, indicando maiores chances no segundo trimestre. Além disso, foi encontrado que diagnósticos no terceiro trimestre apresentam relevância clínica e estatística como fator de proteção para o desenvolvimento de alterações glicêmicas. Uma possibilidade para não corroborar com a literatura, em relação ao diagnóstico no primeiro trimestre, seria a pequena população encontrada nesse estudo, de apenas 15 gestantes.

O desfecho entre as pacientes intolerantes aos carboidratos e pacientes com DM2, quanto ao tipo de tratamento, foi considerado como potencial para reverter às adversidades maternas e neonatais. Neste estudo, não houve diferença quanto ao tipo de tratamento, porém, a opção de realizar dieta se mostrou próxima à significância. Conforme publicação comparativa dos fármacos, não há alterações nos desfechos perinatais de pacientes com DMG. Essas informações divergem de pesquisas que demonstraram a insulina como maior chance de risco para evolução de DM2 no pós-parto, talvez porque não tenham utilizado metformina no tratamento da DMG ou tenham realizado a dieta de forma incorreta. Considerando esse aspecto, achados poloneses identificados em obras recentes avaliaram que o uso de insulina durante a gestação seria uma das justificativas de aderência ao rastreamento pós-parto.

As pacientes do atual estudo com taxas de HbA1c maior que 5,8 apresentaram uma chance três vezes maior de desenvolver intolerância a glicose ou DM2 no pós-parto. Em contrapartida, a literatura descreveu uma chance aumentada em seis vezes. Os resultados indicam que a HbA1c pode ser uma medida útil para identificar pacientes com DMG com maior risco de glicose anormal no pós-parto.

CONCLUSÃO

Esta pesquisa evidenciou alterações no TOTG em 25% dos pacientes que retornaram no pós-parto. Existe um risco aumentado de TOTG alterado, quando acontece o diagnóstico de DMG no segundo semestre. Quanto aos resultados dos RN, a média de idade gestacional no parto foi semelhante entre os dois grupos corroborando com outros estudos descritos na literatura. Houve maior prevalência de parto cesariano nos dois grupos, quando comparado ao número de partos vaginais, diferentemente de um estudo realizado em Portugal que registrou uma redução do número de cesarianas em pacientes diabéticas.

É necessário ressaltar algumas limitações do presente estudo por conta de se basear em registro das informações em prontuário eletrônico. Entretanto, consideramos que o assunto destacado no artigo seja relevante para a prática clínica, visto o aumento dos casos de DMG e suas consequências para a mulher, e também para a criança. Dessa maneira, é de extrema importância que se tenha dados sobre a avaliação do DMG no pós-parto e análise desses para uma melhor compreensão do tema, além de fornecer informações para a estratificação do risco e contribuir para a prevenção de DM2 com um tratamento precoce.

Dessa forma, estratégias para aumentar a taxa de retorno para a avaliação do estado glicêmico após o parto e, eventualmente, prevenir o DM2, incluem orientação sobre a importância dessa reavaliação durante a gestação e no pós-parto imediato e, até mesmo, o contato com as pacientes através de ligações telefônicas, caso elas não compareçam na data da consulta. Portanto, intervenções pós-parto são necessárias, assim como políticas de saúde que conscientizem essas mulheres e assegurem seu retorno após o parto, uma vez que mudanças no estilo de vida através de dietas, atividade física e medicamentos quando bem indicados, demonstraram benefícios nessa população.
REFERÊNCIAS

1. Ferreira VA, Marques S, Campos BDE. Avanços farmacológicos no tratamento do diabetes tipo 2. Brazilian J Surg Clin Res. 2014;8(1):72–8.
2. Alves JM, Stollmeier A, Leite IG, Pilger CG, Detsch JCM, Radominski RB, et al. Postpartum Reclassification of Glycemic Status in Women with Gestational Diabetes Mellitus and Associated Risk Factors. Rev Bras Ginecol Obstet. 2016;38(8):381–90.
3. Carocha A, Rijo C, Amaral N, Alexio F, Rocha T. [Diabetes in pregnancy - postpartum screening]. Acta Med Port. 2012;25(3):165–8.
4. Carter EB, Martin S, Temmna LA, Colditz GA, Macons GA, Tuuli MG. Early versus 6–12 week postpartum glucose tolerance testing for women with gestational diabetes. J Perinatol. 2017;389–91.
5. Araújo MFM, Pessoa SMF, Damasceno MMC, Zanetti ML. Diabetes gestacional na perspectiva de mulheres grávidas hospitalizadas. Rev Bras Enferm. 2013;66(2):222–7.
6. Petroni LM, Silva TC da, Santos ADL, Marcon SS, Mathias TA de F. Convivendo com a gestante de alto risco: a percepção do familiar. Ciência, Cuid e Saúde. 2012;31(3):535–41.
7. Universidade Federal Do Paraná Jacy Maria Alves Reclassificação Pós-Parto Do Estado Glicêmico Em Mulheres Com Diabetes Mellitus Gestacional. Jacy Maria Alves Reclassificação Pós-Parto Do Estado Glicêmico Em Mulheres Com Diabetes Mellitus Gestacional E. 2015; 21(1):32–41.
8. Hod M, Kapur A, Sacks DA, Hadar E, Agarwal M, Di Renzo GC, et al. The International Federation of Gynecology and Obstetrics (FIGO) Initiative on gestational diabetes mellitus: A pragmatic guide for diagnosis, management, and care. Int J Gynecol Obstet. 2015;131(1):S173–211.
9. Metzger BE. International Association of Diabetes and Pregnancy Study Groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33(6):676–82.
10. Trujillo J, Vigo A, Reichelt A, Duncan BB, Schmidt ML. Fasting plasma glucose to avoid a full OGTT in the diagnosis of gestational diabetes. Diabetes Res Clin Pract. 2014;105(3):322–6.
11. Reichelt AJ, Oppermann MLR, perspectivas Trabalho em Diabetes e Gravidez. 2001;46.
12. Corrêa FHS, Gomes M de B. Acompanhamento Ambulatorial de Gestantes com Diabetes Mellitus no Hospital Universitário Pedro Ernesto - UERJ. Arq Bras Endocrinol e Metabol. 2004; 48(4):499–504.
13. Nogueira AI, Santos JSS, Santos LLB, Salomon IMM, Abrantes MM, Aguiar RALP. Diabetes Gestacional: perfil e evolução de um grupo de pacientes do Hospital das Clínicas da UFMG. Rev Médica Minas Gerais. 2011; 21(1):32–41.
14. Massucatti LA; Pereira, RA; Maioli T. Prevalência De Diabetes Gestacional Em Unidades De Saúde Básica. Rev Enferm e atenção à Saúde. REAS UFTM. 2012; 1(1):70–9.
15. Pereira BG. Diabetes gestacional : seguimento após o parto. Rev Bras Ginecol Obstet. 2014;36(11):10–2.
16. Gabbe SG, Gregory RP, Power ML, Williams SB, Schulkin J. Management of diabetes mellitus by obstetrician-gynecologists. Obstet Gynecol. 2004; 103(6):1229–34.
17. Morrison MK, Collins CE, Lowe JM. Postnatal testing for diabetes in Australian women following gestational diabetes mellitus. Aust New Zeal J Obstet Gynaecol. 2009; 49(5):494–8.
18. Rosenbloom JI, Blanchard MH. Compliance with Postpartum Diabetes Screening Recommendations for Patients with Gestational Diabetes. J Women’s Health [Internet]. 2017;00(00):jwh.2017.6477. Available from: http://online.liebertpub.com/doi/10.1089/jwh.2017.6477.
19. Almario C V., Ecker T, Moroz LA, Bucovetsky L, Berghella V, Baxter JK. Obstetricians seldom provide postpartum diabetes screening for women with gestational diabetes. Am J Obstet Gynecol. 2008; 198(5):1–5.
20. Kitzmiller JL, Dang-Kilduff L, Taslimi MM. Gestational diabetes after delivery: Short-term management and long-term risks. Diabetes Care. 2007;30(SUPPL. 2).
21.S.Y. K, N.P. D, C.L. R. Diabetes during Pregnancy: Surveillance, Preconception Care, and Postpartum Care. J Women’s Health [Internet]. 2018;27(5):536–41. Available from: http://www.embase.com/search的结果/subaction=viewrecord&from=export&id=L621757389%0Ahttp://dx.doi.org/10.1089/jwh.2018.7052
22. Massa AC, Rangel R, Cardoso M, Campos A. Gestational diabetes and the new screening test’s impact [Diabetes gestacional e o impacto do actual rearrastre]. Acta Med Port. 2015;28(1):29–34.
23. Oliveira MIV De, Bezerra MGA, Filho JGB, Veras MACE, Bezerra JP. Perfil De Mães E Recém-Nascidos Na Presença Do Diabetes Gestacional Jacy Maria Alves Reclassificação Pós-Parto Do Estado Glicêmico Em Mulheres Com Diabetes Mellitus Gestacional. 2015; 21(1):72–8.
24. Corrêa FHS, Gomes M de B. Acompanhamento Ambulatorial de Gestantes com Diabetes Mellitus no Hospital Universitário Pedro Ernesto - UERJ. Arq Bras Endocrinol e Metabol. 2004; 48(4):499–504.
25. Sivaraman SC, Vinnamala S, Jenkins D. Gestational Diabetes and Future Risk of Diabetes. J Clin Med Res @BULLET. 2013; 5(2):92–6.
26. Action I. Trends in Postpartum Diabetes Screening Histories of Gestational Diabetes Mellitus. Diabetes. 2009; 32(2):18–23.
27. Vieira EMF. Estudo do teor de sódio em pão e sua relação com as doenças cardiovasculares : trabalho de investigação. 2007; Available from: http://repositorio-aberto.up.pt/handle/102016/54810
28. Katon J, Reiber G, Williams MA, Yanzer D, Miller E. Hemoglobin A1C and Postpartum Abnormal Glucose Tolerance Among Women with Gestational Diabetes. Obstet Gynecol. 2004;103(6):1229–34.
29. Gabbe SG, Gregory RP, Power ML, Williams SB, Schulkin J. Management of diabetes mellitus by obstetrician-gynecologists. Obstet Gynecol. 2004; 103(6):1229–34.
30. Morrison MK, Collins CE, Lowe JM. Postnatal testing for diabetes in Australian women following gestational diabetes mellitus. Aust New Zeal J Obstet Gynaecol. 2009; 49(5):494–8.
31. Rosenbloom JI, Blanchard MH. Compliance with Postpartum Diabetes Screening Recommendations for Patients with Gestational Diabetes. J Women’s Health [Internet]. 2017;00(00):jwh.2017.6477. Available from: http://online.liebertpub.com/doi/10.1089/jwh.2017.6477.
32. Almario C V., Ecker T, Moroz LA, Bucovetsky L, Berghella V, Baxter JK. Obstetricians seldom provide postpartum diabetes screening for women with gestational diabetes. Am J Obstet Gynecol. 2008; 198(5):1–5.
33. Kitzmiller JL, Dang-Kilduff L, Taslimi MM. Gestational diabetes after delivery: Short-term management and long-term risks. Diabetes Care. 2007;30(SUPPL. 2).
34. Oliveira MIV De, Bezerra MGA, Filho JGB, Veras MACE, Bezerra JP. Perfil De Mães E Recém-Nascidos Na Presença Do Diabetes Mellitus Gestacional Profile of Mothers and Newborns in the Presence of Gestational Diabetes Mellitus. Rev Rene. 2009; 10(4):28–36.
35. American College of Obstetricians and Gynecologists. Weight gain during pregnancy. Committee Opinion. 2013. 1250-1253 p.
36. Action I. Trends in Postpartum Diabetes Screening Histories of Gestational Diabetes Mellitus. Diabetes. 2009; 32(1):18–23.
37. Vieira EMF. Estudo do teor de sódio em pão e sua relação com as doenças cardiovasculares : trabalho de investigação. 2007; Available from: http://repositorio-aberto.up.pt/handle/102016/54810
38. Katon J, Reiber G, Williams MA, Yanzer D, Miller E. Hemoglobin A1C and Postpartum Abnormal Glucose Tolerance Among Women with Gestational Diabetes. Obstet Gynecol. 2004;103(6):1229–34.