Static, Dynamic and Progressive Collapse Analysis of Multi Storey (G+10) Residential Building by ETABS Software

Ponnana Ramprasad, Madhusmita Moharana, Ch. Chandra Mouli

Abstract: This project presents an attempt to do static, dynamic and progressive collapse analysis of multi story (G+10) residential building by ETABS (Extended 3D Analysis of Building Systems). ETABS is software that helps to anatomization and design of low and high-rise buildings and frame structures. In this project G+10 RC frame building is analysis statically (linear method) and dynamically (Response Spectrum method) along with Progressive Collapse analysis. All the members of the project are analyzed as per Indian codes IS 456:2000, IS 800:2007, and IS 1893:2002 (part1) code using this software. Here the result for Story stiffness, Base shear, Story shear, Overturning moments, Maximum displacement, and Story Drift is compared between static and dynamic results for Zone2-(case1), Zone3-(case2), Zone4-(case3), Zone5-(case4) with medium soil type and for Progressive Collapse analysis GSA guidelines are followed. As per GSA guidelines three column removal cases for each case1, case2, case3, and case4 individually studied, namely Corner column removal, Exterior column removal and interior column removal at ground floor. For all three cases linear analysis study has been undertaken and DCR ratios are evaluated. Member having DCR ratio greater than 2 will going to fail for corresponding column removal case.

Key Words: Static analysis, Dynamic analysis, Progressive collapse analysis, GSA Guidelines.

1. INTRODUCTION

For proper design of the building, the building should be check statically and dynamically under different load condition so; that the building is safe from different types of disaster which is likely to come after the construction of the building is over. Generally, we consider Self weight, dead loads, Live Loads, wind loads and Earthquake loads for Static and dynamic Analysis. However, after doing static and dynamic analysis also we not sure the structure is safe against local failure due to sudden loss of Column in the structure or abnormal loading like blast of cylinder or due to terrorist attack. So, we have move one step further and check our building against failure of Column at different location in ground floor as per General Service Administration (GSA) guidelines.

1.1 GUIDELINES OF GSA

1.1.1 Facility security levels (FSL):

The facility security level resolve to define the norms and process for determining the FSL of a federal facility, which categorizes facilities, depend on the analysis of several security-related facility factors, including its target attractiveness, as well as its value or criticality.

1.1.2 FSL I & II:

Specified the low occupancy and risk level correlated with these types of facilities, progressive collapse design is not preferred for FSL I and II, irrespective of the number of floors.

1.1.3 FSL III &IV:

These Guidelines are relevant to FSL III and IV buildings with four stories or more sustained from the lowest point of exterior grade to the highest point of elevation. Uninhabited floors such as mechanical penthouses or parking shall not be considered a story. It shall implement both the Alternate Path and Redundancy design procedures.

1.1.4 FSL V:

These Guidelines are used for all FSL V buildings regardless of number of floors. FSL V facilities shall implement the Alternate Path method for identification of vertical load resisting element removal area. Redundancy design procedures not required for FSL V facilities.

II. LITERATURE REVIEW

- Sana Fatema et.al (2016)\(^2\) have publish a journal on “Progressive Collapse of Reinforced Concrete” as per GSA guidelines using ETABS software in International Journal of Emerging Trends in Science and Technology for evaluation of Progressive collapse linear static method and nonlinear static method of analysis has been used and they have concluded that shear in beam is not critical in any case, Columns are also not critical in Progressive collapse. But by Linear static analysis and nonlinear static it was observed that beams are going to fail in flexure.

- GirumMindaye et.al (2016)\(^9\) have publish a journal on “Seismic Analysis of a Multistory RC Frame Building in Different Seismic Zones” in International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET) which compares the story Stiffness, Base shear, Lateral force, Story Shear, Story displacement, Overturning moments and story drift statically and dynamically for different Zones cases.
B. Srikanth et al (2013) has published a journal on “Comparative Study of Seismic Response for Seismic Coefficient and Response Spectrum Methods” to analyze 20 storied building by both methods. In Response Spectrum Method, the time periods, natural frequencies and mode shape coefficients were calculated by MATLAB program then remaining process was done by manually. The modal combination rule for Response Spectrum Analysis was SRSS. The main parameters considered in that study was to compare the seismic performance of different Zones i.e. II and V were Base Shear, Story Moment and lateral forces.

III. METHODOLOGY
To understand the basic requirements such as safety, durability, economy, aesthetic appearance, feasibility, practicability and acceptability following methodology is followed.

3.1. Study of different Zones and Soil data collection:

For the analysis of the building, we have taken 4 cases in each Zone. The Soil bearing Capacity is assumed to be 200 KN/m² with wind Speed of 50 m/s along X direction (0° and 180°) and along Y direction (90° and 270°).

3.2. Modeling and Loading:
In ETABS first Modeling of multistory building which is to be analysis is done. In modeling material to be used to build the structure is defined. The input dates used for modeling are described below:
- Building type: G+10 Residential Building
- Plan area: 20(m)*20(m)
- Beam size: 300(mm)*300 (mm)
- Column size: 350(mm)*350 (mm)
- Beam clear cover to Longitudinal Rebar Group centroid: 35 mm
- Column clear cover to confinement Bars: 40 mm
- Slab thickness: 150mm
- Typical story height: 3m
- Bottom story height: 3m
- Live load, LL: 3kN/m² External Wall load: 10.4 KN/m
- Partition and floor finishing load, FL: 1.5kN/m²
- Soil type: Type II (Medium Soil)
- Materials: M30 and Fe415 Grade
- Soil Bearing Capacity 200 KN/m²

3.3 Comparison of Static and Dynamic output:
After modeling and loading is done, the model is checked and design is done. The result for the for Story stiffness, Base shear, Story Shear, Overturning moments, Maximum displacement, and Story Drift is compared between static and dynamic results for Zone 2(case1), 3(case2), 4(case3), 5(case4).

Static loads are varies steadily. But dynamic loads are changes with time quickly in comparison to the structure's natural frequency. Due to change of loading steadily or quickly , the response of the structures varies static or dynamic analysis.

3.4 For Linear Static PC Analysis:
PCA by Linear Static is accomplishing as per General Service Administration (GSA) guidelines. Columns are removed methodically.. Here 3 case of column removal (Corner column, Exterior column and Interior column) are studied. Due to column removal cases identification of critical sections is done the DCR values are estimated. Because of high shear capacity DCR ratio is not evaluation for Shear of beam and in no case DCR of shear of beam will exceed more than one. Load combination as per GSA GLD = 2 (1.2Dead Load + 0.5Live Load) for column removal region Combination and G = (1.2DL + 0.5LL) for other.
IV. RESULT AND DISCUSSIONS

The result evaluated for the Story Stiffness, Base Shear, Story Shear, Overturning Moment, Maximum Story displacement and Story Drift for Case1, Case2, Case3, Case4 are shown in respective Table and Graph and with discussions.

STORY STIFFNESS

Table: 1 Story Stiffness in X and Y direction

Story	Static X(KN/m)	Dynamic X(KN/m)	Static Y(KN/m)	Dynamic Y(KN/m)
1	264569.764	297471.346	295236.4	298234.91
2	196129.382	198180.872	196701.6	198787.71
3	187733.55	189977.405	188139.4	189520.81
4	165986.177	168720.633	166639.1	168145.92
5	184433.870	186330.067	184734.5	186623.35
6	182179.331	183599.696	182220.1	183658.55
7	18059.478	182872.161	180486.6	182966.11
8	177905.304	180224.076	177567.1	180212.95
9	17092.282	179021.728	170151.1	178583.61
10	13016.896	130583.502	128911.2	138914.3

From figure 2.1 and 2.2, it was observed that there was increment in Shear Stiffness by 6.93% and 7.2% when compared Static Story Stiffness in X direction with respect to Static Stiffness in Y direction.

BASE SHEAR TABLE

Table: 2 Linear Static Analysis Base Shear and Response Spectrum Analysis Base Shear

Case	Linear Static Analysis Base Shear	Response Spectrum Analysis Base Shear
	X(KN/m)	Y(KN/m)
Case1	282.8	283.0
Case2	452.4	452.9
Case3	679.6	679.2
Case4	1017.9	1018.8

From figure 3.1, it was observed that there was increment in base shear by 0.07%, 0.08% 0.08% and 0.08% when compared Static base shear in X direction with respect to Static base Shear in Y direction in Case 1, Case 2, Case3 and Case4 respectively.

Figure: 3.1 Linear Static Analysis Base Shear

From figure 3.2, it was observed that there was increment in base shear by 0.03%, 0.02%, 0.03%, 0.03% when compared Dynamic base shear in X direction with respect to Dynamic base Shear in Y direction in Case1, Case 2 Case3 and Case4 respectively.

Figure: 3.2 Response Spectrum Analysis of Base Shear

From figure 3.3, it was observed that there was increment in base shear by 0.11% when compared Dynamic base shear in X direction with respect to Dynamic base Shear in Y direction in Case1, Case2, Case3 and Case4 respectively.

Figure: 3.3 Base Shear in X-direction

Figure: 3.4 Base Shears in Y-direction
From figure 3.4, it was observed that there was no variation between Static Base shear and Dynamic Base Shear in Y direction.

STORY SHEAR

Table: 3.1 Case 1: Story Shear in X and Y Direction

Story	Static (KN)	Dynamic (KN)
1	724.142	716.081
2	719.298	689.103
3	709.122	642.691
4	661.012	606.372
5	962.475	684.094
6	652.254	503.491
7	561.536	456.842
8	483.368	400.251
9	129.909	132.767
10	258.079	231.087
11	104.028	95.147

Figure 4.1 Case 1: Story Shear in X and Y Direction

From figure 4.1, it was observed that there was a decrement in Story Shear by 23.19%,18.94% in X-direction and Y-direction respectively in 6th Story when compared to Static Story Shear with respect to Dynamic Story Shear in Case 1.

Table: 3.2 Case 2: Story Shear in X and Y Direction

Story	Static (KN)	Dynamic (KN)
1	482.761	477.947
2	479.528	470.446
3	472.748	468.408
4	460.753	455.914
5	443.669	439.787
6	413.506	395.660
7	374.357	342.428
8	522.245	506.859
9	255.194	217.113
10	171.258	154.657
11	69.952	63.431

Figure 4.2 Case 2: Story Shear in X and Y Direction

From figure 4.2, it was observed that there was a decrement in Story Shear by 23.19%,23.36% in X-direction and Y-direction respectively in 6th Story when compared to Static Story Shear with respect to Dynamic Story Shear in Case 2.

Table: 3.3 Case 3: Story Shear in X and Y Direction

Story	Static (KN)	Dynamic (KN)
1	1080.315	1076.426
2	1076.042	1033.763
3	1063.687	951.0465
4	1045.086	909.0874
5	993.705	853.4452
6	930.380	752.2359
7	842.301	634.0623
8	726.052	599.4121
9	574.199	495.4558
10	385.315	346.6302
11	187.924	142.7128

Figure 4.3 Case 3: Story Shear in X and Y Direction

From figure 4.3, it was observed that there was a decrement in Story Shear by 23.19%,23.36 % in X-direction in Y-direction respectively in 6th Story when compared to Static Story Shear with respect to Dynamic Story Shear in Case 3.

Table: 3.4 Case 4: Story Shear in X and Y Direction

Story	Static (KN)	Dynamic (KN)
1	7400.872	5899.346
2	6945.746	6115.325
3	6594.971	5467.690
4	470.906	307.913
5	802.426	626.801
6	3016.419	2404.708
7	2138.053	1827.685
8	1556.215	1392.929
9	923.018	932.586
10	542.639	403.115
11	131.408	119.097

Figure 4.4 Case 4: Story Shear in X and Y Direction

From figure 4.4, it was observed that there was a decrement in Story Shear by 23.19%, 23.36% in X-direction and Y-direction respectively in 6th Story when compared to Static Story Shear with respect to Dynamic Story Shear in Case 4.

OVERTURNING MOMENT

Table: 4.1 Case 1: Overturning Moment in X and Y Direction

Story	Static (KNm)	Dynamic (KNm)
1	7400.872	5899.346
2	6945.746	6115.325
3	6594.971	5467.690
4	470.906	307.913
5	802.426	626.801
6	3016.419	2404.708
7	2138.053	1827.685
8	1556.215	1392.929
9	923.018	932.586
10	542.639	403.115
11	131.408	119.097
From figure 5.1, it was observed that there was a decrement in Story Overturning Moments by 28.21%, 28.05% in X-direction and Y-direction respectively in 3rd Story when compared to Static Story Overturning Moments with respect to Dynamic Story Overturning Moments in Case1.

Table 4.2 Case 2: Overturning Moment in X and Y Direction

Story	Static(KNm)	Dynamic(KNm)	Static(KNm)	Dynamic(KNm)
Base	11840.9	9438.95	9131.5	9466.07
	2931.6	9781.11	10385.3	9341.01
	7582.65	8780.04	7526.72	9871.8
	6140.35	8305.08	6141.47	9283.17
	4832.39	8347.53	4810.53	3848.17
	5891.91	2924.58	3579.02	2924.58
	2400.14	2069.07	2659.95	2068.29
	1490.43	1209.38	1480.21	1298.96
	724.21	651.385	723.415	651.134
	210.03	199.466	209.487	199.286

From figure 5.2, it was observed that there was a decrement in Story Overturning Moments by 28.21% in X-direction and increment by 28.05% Y-direction respectively in 3rd Story when compared to Static Story Overturning Moments with respect to Dynamic Story Overturning Moments in Case2.

Table 4.3 Case 3: Overturning Moment in X and Y Direction

Story	Static(KNm)	Dynamic(KNm)	Static(KNm)	Dynamic(KNm)
Base	11840.9	9438.95	9131.5	9466.07
	2931.6	9781.11	10385.3	9341.01
	7582.65	8780.04	7526.72	9871.8
	6140.35	8305.08	6141.47	9283.17
	4832.39	8347.53	4810.53	3848.17
	5891.91	2924.58	3579.02	2924.58
	2400.14	2069.07	2659.95	2068.29
	1490.43	1209.38	1480.21	1298.96

From figure 5.3, it was observed that there was a decrement in Story Overturning Moments by 28.2% in X-direction and increment by 28.05% Y-direction respectively in 3rd Story when compared to Static Story Overturning Moments with respect to Dynamic Story Overturning Moments in Case3.

Table 4.4 Case 4: Overturning Moment in X and Y Direction

Story	Static(KNm)	Dynamic(KNm)	Static(KNm)	Dynamic(KNm)
Base	11840.9	9438.95	9131.5	9466.07
	2931.6	9781.11	10385.3	9341.01
	7582.65	8780.04	7526.72	9871.8
	6140.35	8305.08	6141.47	9283.17
	4832.39	8347.53	4810.53	3848.17
	5891.91	2924.58	3579.02	2924.58
	2400.14	2069.07	2659.95	2068.29
	1490.43	1209.38	1480.21	1298.96

From figure 5.4, it was observed that there was a decrement in Story Overturning Moments by 28.21% in X-direction and increment by 0.075% Y-direction respectively in 3rd Story when compared to Static Story Overturning Moments with respect to Dynamic Story Overturning Moments in Case4.

MAXIMUM STORY DISPLACEMENT

Table 5.1 Case 1: Maximum Story Displacement in X and Y Direction

Story	Static(mm)	Dynamic(mm)	Static(mm)	Dynamic(mm)
Base	2.946	2.947	2.058	2.553
	2.591	2.637	3.991	4.129
	6.371	6.093	6.246	6.684
	0.403	7.191	0.441	7.185
	7.453	8.613	7.498	8.6
	8.366	9.930	8.415	9.593
	9.131	11.019	9.192	11.011
	0.759	11.017	0.838	11.019
	10.139	12.549	10.214	12.546
	10.356	12.585	10.438	12.899
From figure 6.1, it was observed that there was an increment in Maximum Story Displacement by 24.45%, 23.48% in X-direction and Y-direction respectively in 11th Story when compared to Static Maximum Story Displacement with respect to Dynamic Maximum Story Displacement in Case 1.

Table 5.2 Case 2: Maximum Story Displacement in X and Y Direction

Story	X-Direction	Y-Direction		
Static (mm)	Dynamic (mm)	Static (mm)	Dynamic (mm)	
1	4.093	3.977	0	0
2	6.619	6.257	6.497	6.289
3	9.197	8.553	9.094	8.593
4	11.619	10.245	11.496	10.803
5	13.776	12.125	13.676	12.097
6	15.839	13.836	15.624	13.471
7	17.631	15.609	17.418	15.308
8	19.071	15.567	18.862	15.577
9	20.679	16.222	20.474	16.143
10	20.62	16.257	20.422	16.17

From figure 6.2, it was observed that there was a decrement in Maximum Story Displacement by 24.44%, 23.49% in X-direction and Y-direction respectively in 11th Story when compared to Static Maximum Story Displacement with respect to Dynamic Maximum Story Displacement in Case 2.

Table 5.3 Case 3: Maximum Story Displacement in X and Y Direction

Story	X-Direction	Y-Direction		
Static (mm)	Dynamic (mm)	Static (mm)	Dynamic (mm)	
1	6.14	5.966	6.138	5.949
2	9.229	8.56	9.011	8.433
3	13.684	12.55	13.342	12.357
4	17.269	16.267	17.244	16.185
5	20.629	17.809	20.484	17.709
6	23.759	20.078	23.736	20.077
7	26.447	21.914	26.427	21.902
8	29.507	23.335	28.583	23.216
9	30.317	24.335	30.311	24.215
10	30.931	24.855	30.933	25.051

From figure 6.3, it was observed that there was a decrement in Maximum Story Displacement by 24.45%, 23.48% in X-direction and Y-direction respectively in 11th Story when compared to Static Maximum Story Displacement with respect to Dynamic Maximum Story Displacement in Case 3.

Table 5.4 Case 4: Maximum Story Displacement in X and Y Direction

Story	X-Direction	Y-Direction		
Static (mm)	Dynamic (mm)	Static (mm)	Dynamic (mm)	
1	0	0	0	0
2	9.209	8.949	9.191	8.951
3	11.493	10.797	11.366	10.115
4	20.496	18.795	20.162	18.889
5	25.905	23.651	25.566	23.183
6	30.997	26.831	30.559	26.694
7	35.659	30.117	35.604	30.31
8	39.67	32.871	39.661	33.003
9	42.911	35.025	42.89	35.274
10	45.176	36.499	45.167	36.772
11	46.396	37.282	46.4	37.276

From figure 6.4, it was observed that there was a decrement in Maximum Story Displacement by 24.45%, 23.48% in X-direction and Y-direction respectively in 11th Story when compared to Static Maximum Story Displacement with respect to Dynamic Maximum Story Displacement in Case 4.

STORY DRIFT

Table 6.1 Case 1: Story Drift in X and Y Direction

X-Direction	Y-Direction			
Static (mm)	Dynamic (mm)	Static (mm)	Dynamic (mm)	
1	1.024	1.004	1.03	1.001
2	1.52	1.44	1.52	1.44
3	1.574	1.47	1.57	1.42
4	1.55	1.39	1.54	1.32
5	1.49	1.27	1.48	1.23
6	1.409	1.13	1.409	1.13
7	1.28	1.056	1.28	1.035
8	1.135	0.912	1.135	0.912
9	0.897	0.752	0.897	0.753
10	0.626	0.538	0.626	0.539
11	0.336	0.286	0.336	0.286

From figure 7.1, it was observed that there was a decrement in Story Drift by 19.65%, 19.02% in X-direction and Y-direction respectively in 7th Story when compared to Static Story Drift with respect to Dynamic Story Drift in Case 1.
From figure 7.2, it was observed that there was a decrement in Story Drift by 23.95%, 24.08% in X-direction and Y-direction respectively in 7th Story when compared to Static Story Drift with respect to Dynamic Story Drift in Case2.

From the figure 8.1 and 8.2, it was observed that there was continuous decrease in DCR value from bottom Story to top Story which concludes that the failure is more at bottom Story than top Story.

From the figure 8.3 and 8.4, it was observed that there was continuous decrease in DCR value from bottom Story to top Story which concludes that the failure is more at bottom Story than top Story and it was also found that in figure 8.3, the 11th Story beam was safe against Progressive Collapse.

From figure 7.4, it was observed that there was a decrement in Story Drift by 23.91%, 24.09% in X-direction and Y-direction respectively in 7th Story when compared to Static Story Drift with respect to Dynamic Story Drift in Case4.

From the figure 8.1 and 8.2, it was observed that there was continuous decrease in DCR value from bottom Story to top Story which concludes that the failure is more at bottom Story than top Story.

From the figure 8.3 and 8.4, it was observed that there was continuous decrease in DCR value from bottom Story to top Story which concludes that the failure is more at bottom Story than top Story and it was also found that in figure 8.3, the 11th Story beam was safe against Progressive Collapse.
From the figure 8.5 and 8.6, it was observed that there was continuous decrease in DCR value from bottom Story to top Story which concludes that the failure is more at bottom Story than top Story and it was also found that in figure 8.6, the 11th Story beam was safe against Progressive Collapse.

From the figure 8.7 and 8.8, it was observed that there was continuous decrease in DCR value from bottom Story to top Story which concludes that the failure is more at bottom Story than top Story.

From the figure 8.9 and 8.10, it was observed that there was continuous decrease in DCR value from bottom Story to top Story which concludes that the failure is more at bottom Story than top Story and it was also found that in figure 8.9, the 11th Story beam was safe against Progressive Collapse.

From the figure 8.11 and 8.12, it was observed that there was continuous decrease in DCR value from bottom Story to top Story which concludes that the failure is more at bottom Story than top Story and it was also found that in figure 8.12, the 3rd, 4th, 5th, 6th, 7th, 8th, 11th Story beam was safe against Progressive Collapse.

V. CONCLUSION

After doing Static, Dynamic and progressive Analysis following conclusion were made:

For Static and Dynamic Result:

- There is an increment in Story Stiffness by 6.93%, 7.2% in X and Y-direction respectively when compared to Static Story Stiffness with respect to its Dynamic Story Stiffness.
- The maximum variation in Linear Base Shear is by 0.08% and in Dynamic Base Shear is by 0.03%.
- There is a decrement in Story Shear by 23.19%, 23.36% in X-direction and Y-direction respectively when compared to Static Story Shear with respect to its Dynamic Story Shear.
- The maximum variation of Story Overturning Moments is by 28.21%, 28.05% in X-direction and Y-direction respectively when compared to Static Story Overturning Moments with respect to its Dynamic Story Overturning Moments.
- The maximum variation of Maximum Story Displacement is by 24.45%, 24.49% in X-direction and Y-direction respectively when compared to Static Maximum Story Displacement with respect to its Dynamic Maximum Story Displacement.
- There is a decrement in Story Drift by 23.95%, 24.09% in X-direction and Y-direction respectively when compared to Static Story Drift with respect to its Dynamic Story Drift.

For Progressive Collapse Result:

- It was observed that there is continuous decrease in DCR value from bottom Story to top Story, which conclude that the failure is more at bottom Story than top Story and it was also found that in Case 1, Case 2 and Case 3 for Interior Column Removal Case, beam in the 11th Story is safe against PC.
- It was also observed that in Case 4 of Interior Column Removal Case, beam in 3rd, 4th, 5th, 6th, 7th, 8th, 11th Story were safe against Progressive Collapse.
- The Special Moment Resistance Frame (SMRF) by IS 456:2000 does not provide resistance to progressive Collapse. The SMRF frames are designed for lateral loads and PC failure on these frames due to gravity load.

REFERENCES

1. General Services Administration (GSA). (2003). Progressive collapse analysis and design guidelines for New federal office buildings and major modernization projects, GSA.
2. Reference ETABS 2015. Version 15, Extended 3-D Analysis of Building Systems, Computers and Structures, Inc., Berkeley.
3. Mrs. Mir Sana Fatema, Prof. A.A. Hamane “Progressive Collapse of Reinforced Concrete” in International Journal of Emerging Trends in Science and Technology ,IETST, Vol.[03][Issue][12][Pages,4846–4854][December][ISSN,2348-9480].
4. GirumMindaye, Dr. ShaikYajdani “Seismic Analysis of a Multistory RC Frame Building in Different Seismic Zones” in International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, Issue 9, September 2016.

5. B. Srikanth, V. Ramesh “Comparative Study of Seismic Response for Seismic Coefficient and Response Spectrum Methods” in International Journal of Engineering Research and Applications, ISSN: 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1919-1924.

AUTHORS PROFILE

PONNANA RAMPRASAD, M.Tech(Ph.D), Department of Civil engineering, Assistant Professor, Aditya Institute of Technology & Management, K.Kotturu, India.

MADHUSMITA MOHARANA, M.Tech, Department of Civil engineering, Aditya Institute of Technology & Management, K.Kotturu, India.

CH. CHANDRA MOULI, M.Tech(Ph.D), Department of Civil engineering, Sr. Assistant Professor, Aditya Institute of Technology & Management, K.Kotturu, India.