A diabetes-associated genetic variant is associated with diastolic dysfunction and cardiovascular disease

John Molvin1,2*, Amra Jujic1,2, Peter M. Nilsson1,3, Margret Leosdottir2, Ulf Lindblad4, Bledar Daka4, Louise Bennet1,5, Lennart Råstam1, Valeriya Lyssenko6,7 and Martin Magnusson1,2,8

1Department of Clinical Sciences, Clinical Research Center, Lund University, Malmö, Sweden; 2Department of Cardiology, Skåne University Hospital, Malmö, Sweden; 3Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden; 4Institute of Medicine, Department of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 5Center for primary health care research, Skåne University Hospital, Malmö, Sweden; 6Steno Diabetes Center A/S, Gentofte, Denmark; 7Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Center, Lund University, Sweden; 8Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden

Abstract

Aims Although the epidemiological association between Type 2 diabetes and congestive heart failure (CHF) as well as cardiovascular disease (CVD) is well established, associations between diabetes-related single-nucleotide polymorphisms (SNPs), CHF, and CVD have been surprisingly inconclusive. Our aim is to examine if 43 diabetes-related SNPs were associated with prevalent diastolic dysfunction assessed by echocardiography and incident CVD and/or CHF.

Methods and results We genotyped 43 SNPs that previously reported genome-wide significant associations with Type 2 diabetes, in 1444 subjects from the population-based Malmö Preventive Project-Re-examination Study (MPP-RES) (mean age 68 years; 29% women, 36% prevalent diabetes) (discovery cohort) and in 996 subjects from the VARA cohort (mean age 51 years, 52% women, 7% prevalent diabetes) (replication cohort). Multivariable logistic regression was assessed. Genetic variants that reached significant association with diastolic dysfunction in both cohorts were then analysed for association with incident CVD/CHF in a larger sample of the MPP-RES cohort (3,407 cases and 11,776 controls, median follow up >30 years) using Cox regression analysis. A common variant at the HNF1B [major allele (T) coded, also the risk allele for diabetes] was the only SNP associated with increased risk of prevalent diastolic dysfunction in both the discovery [MPP-RES; odds ratio (OR) 1.21, P = 0.024], and the replication cohort (VARA; OR 1.38, P = 0.042). Cox regression analysis showed that carriers of the T-allele of rs757210 had an increased risk of future CVD (HR 1.05, P = 0.042). No significant association was seen for incident CHF.

Conclusions The diabetes susceptibility locus HNF1B is associated with prevalent diastolic dysfunction in two independent Swedish cohorts as well as incident cardiovascular disease.

Keywords Congestive heart failure; Cardiovascular disease; Diabetes; Diastolic dysfunction; HNF1B; rs757210; single nucleotide polymorphism

Received: 23 April 2019; Revised: 18 October 2019; Accepted: 11 November 2019
*Correspondence to: John Molvin, MD Department of Cardiology, Inga Marie Nilssons gata 46, floor 2, Skåne University Hospital, SE 205 02 Malmö, Sweden. Telephone: +46-40-337274, Fax: +46-40-331902. Email: john.molvin@gmail.com

Introduction

Diastolic dysfunction is considered the earliest manifestation of diabetes-induced left ventricular dysfunction1 and is itself a risk factor for incident congestive heart failure (CHF) and cardiac death.2

Diastolic dysfunction is common in the general population and, especially in patients with diabetes, diastolic dysfunction is associated with increased all-cause mortality, even in its milder forms.3–5 Compared with normoglycemic subjects, both the incidence and the prevalence of CHF is significantly higher in diabetes patients, and it also carries a worse prognosis,6,7 but the underlying mechanisms remain incompletely understood.1,8

Although the epidemiological association between diabetes and CHF is well established,9 associations between
diabetes-related single-nucleotide polymorphisms (SNPs), with CHF and cardiovascular disease (CVD) have been surprisingly inconclusive, and the effect on CVD risk has been lower than expected.\(^\text{11}\) The structural and functional harmful effects on the cardiovascular system induced by glucometabolic disturbances represent a continuum, present before actual diabetes manifests.\(^\text{12,13}\) Therefore, another, and maybe more physiologically appealing, approach is to examine the associations between diabetes-related SNPs with signs of functional but subclinical heart disease (e.g. diastolic dysfunction) as measured by echocardiographic examinations (UCG) and thereafter investigate their association with development of CVD and CHF.

Hence, our aim in this observational study was to investigate SNPs with documented association with diabetes and their further association with one of the earliest signs of left ventricular dysfunction (i.e. diastolic dysfunction) in two independent Swedish population UCG cohorts: the population-based Malmö Preventive Project-Re-examination Study UCG (MPP-RES UCG) and the VARA UCG. The SNPs associated with diastolic dysfunction were then analysed regarding prediction of incident CVD and CHF in the whole Malmö Preventive Project-Re-examination Study (MPP-RES).

**Methods**

**Study samples**

**The Malmö Preventive Project Re-examination cohort and the Malmö Preventive Project Re-examination cohort echocardiographic cohort**

Between 1974 and 1992, birth cohorts (men born in 1921, 1926–42, 1944, 1946, and 1948-49; women born in 1926, 1928, 1930–36, 1938, 1941–42, and 1949) of inhabitants residing in Malmö, Sweden, were invited to participate in a large cohort study The Malmö Preventive Project (MPP) with a total of 33,346 participants (67% men, attendance rate 71%, mean age 46 ± 7 years). Between 2002 and 2006, a re-examination of 18,240 surviving MPP participants, the MPP-RES was conducted (63% men, 72% attendance rate, mean age 69 ± 6 years). All participants filled a self-administered questionnaire on lifestyle and medical history. Height and weight were measured in light indoor clothing, waist circumference was measured, and body mass index (BMI) was calculated (kg/m\(^2\)). Blood pressure (BP) and pulse rate were measured twice in the supine position after 10 min of rest, and blood samples were drawn after an overnight fast.

Out of the 18,240 participants, 15,215 were successfully genotyped for HNF1B rs757210 and had valid measurements of all covariates (age, sex, and BMI) (Figure 2). In a subsample of 1792 participants, UCG recordings were carried out. These subjects were randomly selected from groups defined by glucometabolic status: normal fasting plasma glucose (FPG) (≤6.0 mmol/L); impaired FPG; new-onset Type 2 diabetes mellitus; and prevalent diabetes mellitus. Subjects with glucometabolic disturbances were oversampled to ensure sufficient numbers of subjects studied from each group. A full description of this study population has been presented elsewhere.\(^\text{14}\) Of these, 1444 had valid measurements of all UCG measurements and covariates (systolic BP and diastolic BP, prevalent diabetes and information of antihypertensive medication) and were successfully genotyped for HNF1B rs757210. The number of successfully genotyped subjects for the other 42 diabetes-associated SNPs at 42 different genes is shown in Table 4. See Figure 1 for a flowchart describing the MPP-RES and MPP-RES UCG cohorts.

**The VARA echocardiographic cohort—replication cohort**

Within the framework of the Skaraborg Project, this study includes data from a representative population in Vara, a small community in a rural area in Southwestern of Sweden. Residents in Vara were randomly selected from the population census register stratified by sex and 5 years age groups between 30 and 74 years. Individuals below age 50 were oversampled three times as compared with those who were older. Participation was based on three criteria: (i) a study visit to the nurse for a physical examination, (ii) blood sampling, and (iii) filling the questionnaires. Between 2001 and 2003, 1811 unrelated participants were accordingly included (attendance rate 82%). These participants were then consecutively invited to a separate visit for an UCG examination. In total, 1058 subjects were successfully examined (51% female), and the presence or absence of diastolic dysfunction could be determined for 1044 participants. After excluding subjects with unsuccessful genotyping, 996 participants were included in this study. A full description of this study population has been presented elsewhere.\(^\text{15}\)

**Ethical consent**

All participants in this study signed a written informed consent form. The study was approved by The Ethics Committee at Lund University, Sweden (MPP-RES and MPP-RES UCG cohorts) and at the University of Gothenburg, Sweden (VARA UCG).

**Echocardiography**

In MPP-RES, two experienced sonographers carried out all echocardiograms using an Acuson Sequoia, Mountain View, CA, USA (3V2c transducer) or Sonos 5500 Philips, Andover, MA, USA (S3 transducer). The two sonographers analysed images independently from a random subsample of subject to test inter-observer and intra-observer variability, which was 13.0% and 10.5% for intraventricular end-diastolic septum diameter and 4.1% and 3.3% for left ventricular end-diastolic...
diameter. Both sonographers were experienced and blinded to clinical data.

In VARA UCG, all UCG examinations were performed by the same cardiologist using a General Electrics VingMed S5 System, operating with a 3.5 MHz-probe, and data were stored in the EchoPac System. In Vara, all UCG examinations were conducted by the same cardiologist; no tests for inter-observer variability were undertaken.

Internal left and right ventricular dimensions were evaluated from parasternal long axis view according to the recommendations of the European Association of Echocardiography. Measurements of wall thickness were obtained in two-dimensional end-diastolic parasternal long axis view during a single heart cycle if recordings were homogeneous, otherwise a mean of three to five measurement of different heart cycles was used. Pulsed-wave tissue Doppler imaging was performed in apical views according to clinical standards, and diastolic function was graded using the following grading scheme: normal or Grade I mild or Grade II (impaired relaxation pattern), moderate or Grade III (pseudo-normal left ventricular filling), and severe (restrictive filling) or Grade IV.16 Grades II, III, and IV were grouped together because of the relatively small number of subjects in the groups III and IV and referred to as diastolic dysfunction. Additional analyses that compared normal diastolic function with mild diastolic dysfunction (Grade II) as well as normal function compared with moderate and severe diastolic dysfunction (Grade III + IV) were also performed.

All analyses were performed offline using Xcelera software (Philips, Amsterdam, the Netherlands).

**Laboratory assays**

All FPG analyses were performed by the Department of Clinical Chemistry, Malmö University Hospital applying a national standardization and quality control system (Beckman Coulter LX20, Beckman Coulter Inc, Brea, USA).

**Genotyping**

In the study, 18 240 MPP-RES participants were genotyped with reference to a panel of containing 43 SNPs from genome-wide association studies for Type 2 diabetes and glycemic traits. Genotyping was performed with the use of matrix-assisted laser desorption–ionization time-of-flight mass spectrometry on the Mass Array iPLEX (Sequenom, San Diego, CA, USA). Replication genotyping for HNF1B rs757210 in 996 VARA UCG participants was performed using the allelic discrimination assay-by-design method on ABI 7900 (Applied Biosystem). All SNPs had a call rate of >95% and fulfilled the Hardy–Weinberg equilibrium ($P > 0.05$).

**Definition of endpoints**

Because the genome is fixed and not altered over time, we chose to examine the incidence of CVD and CHF starting from the baseline examination of MPP (conducted between 1974 and 1992) even though the genotyping was performed at MPP-RES (between 2002 and 2006) examination, to increase
the number of incident cases of CVD and CHF. Thus, all the study participants were followed from the baseline examination of MPP until the first hospitalization attributable to CHF, CVD, death, emigration from Sweden or 31 December 2014, whichever came first. We applied linkage of the unique 10-digit personal identification number with the Swedish National Hospital Discharge Register, and the Swedish National Cause of Death Register. The occurrence of the first hospitalization because of CHF episode was ascertained from Swedish National Hospital Discharge Register using diagnosis codes 428 for the 9th Revision (ICD-9), and I50 or I11.0 for the 10th Revision (ICD-10) if CHF was listed as a primary diagnosis. A cardiovascular event was defined as fatal or non-fatal myocardial infarction (ICD-9 code 410, and ICD10 code I21), death due to chronic ischemic heart disease (ICD-9 code 411, 412, 414 and ICD-10 codes I24, I25.1-I25.9) or fatal or non-fatal ischemic stroke (ICD-9 codes 430, 431, 434, 436, and ICD-10 codes I60, I61, I63, I64), whichever came first. The end points were retrieved by data linkage with the Swedish National Hospital Discharge and Swedish Cause of Death Registers (only myocardial infarction and ischemic heart disease) as well as to a local stroke register of Malmö. High case-validity in these registers has previously been described for both CHF and CVD.17,18

Other definitions
Anti-hypertensive drug treatment was defined as use of one or more of the following: β-receptor blockers, calcium channel blockers, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, thiazides, mineralocorticoid receptor antagonists, and loop diuretics. Prevalent hypertension was defined as the presence of either one or more of the following at inclusion: systolic BP > 140 mmHg and/or diastolic BP > 90 mmHg and/or antihypertensive treatment and/or treatment by the time of the third visit. Diabetes was defined as previously known diabetes mellitus Type 1 or 2, whereas new-onset diabetes mellitus Type 2 was defined by either two separate measurements of FPG ≥ 7.0 mmol/L or one single measurement ≥11.1 mmol/L.

Statistical analysis
Continuous variables were expressed as mean ± standard deviation (SD). In the MPP-RES UCG and VARA UCG cohorts, prevalent diastolic dysfunction was modelled as the dependent variable in logistic regression with the 43 genotypes as independent variables using additive models with the diabetes risk alleles coded. All modelling was performed in models adjusted for age and sex (Model 1) and for age, sex, systolic, and diastolic BP, hypertensive treatment and diabetes status (Model 2). A Cox regression model was applied to study the effect of rs757210 (major allele TT coded) on incident CVD and CHF, adjusting for age, gender and BMI at baseline examination, entering time variable defined as follow-up time between baseline screening and the date of incident CVD and incident CHF in the entire MPP-RES cohort. A two-tailed significance level of $P < 0.05$ was considered statistically significant. All calculations were done in SPSS 23.0 (SPSS Inc, Illinois, US).

Results
Baseline characteristics for the entire populations (MPP-RES UCG, VARA UCG, and MPP) are presented in Table 1. Subgroup characteristics (subjects without, and subjects with diastolic dysfunction in the MPP-RES UCG, and the VARA UCG) are presented in Table 2.

In the MPP RES UCG, subjects with diastolic dysfunction were older ($P < 0.0001$), more likely to be female ($P = 0.006$), and had more cases of prevalent hypertension ($P = 0.016$) and diabetes ($P = 0.032$) compared with subjects without diastolic dysfunction (Table 2). In the VARA UCG, subjects with diastolic dysfunction were older ($P < 0.001$), more likely to be female ($P = 0.014$), had higher systolic BP ($P < 0.001$), diastolic BP ($P > 0.001$), BMI ($P < 0.001$), and had more cases of prevalent hypertension ($P < 0.001$) and diabetes ($P < 0.001$ (Table 2). Genotype frequencies of rs757210 are presented in Table 3.

Diabetes associated single-nucleotide polymorphisms and their relation to diastolic dysfunction
All 43 Type 2 diabetes-associated SNPs were coded for their formerly shown diabetes risk alleles and tested for associations with prevalent diastolic dysfunction in the MPP-RES UCG, which was the discovery cohort (Table 4). In the fully adjusted logistic regression analysis (Model 2) of the MPP-RES UCG cohort, common variants in three genes were positively associated ($P < 0.05$) with risk of prevalent diastolic dysfunction, ADAMTS9 [Odds ratio (OR), 1.22, $P = 0.041$], HNF1B (OR, 1.21, $P = 0.024$), TSPAN8 (OR, 1.26, $P = 0.018$), and common variants in three genes were negatively associated with prevalent diastolic dysfunction, HNF1A (OR, 0.78; $P = 0.012$), TCF7L2 (OR, 0.82, $P = 0.024$), NOTCH2 (OR, 0.72, $P = 0.020$). When these six SNPs were tested in the replication cohort (VARA UCG), only one SNP reached nominal significant association ($P < 0.05$) with diastolic dysfunction in the fully adjusted logistic regression analysis; HNF1B rs757210 (OR, 1.38, $P = 0.042$ (Table 4). Although the HNF1B rs757210 was significantly associated with all types of prevalent diastolic dysfunction, there was a tendency for a stronger association with more severe degrees of diastolic dysfunction as described in Table 5.
Table 1 Baseline characteristics of the study population in the Malmö Preventive Project-Re-examination echocardiographic study, VARA echocardiography, and the Malmö Preventive Project-Re-examination

| Characteristic          | MPP-RES UCG | VARA UCG | MPP-RES |
|-------------------------|-------------|----------|---------|
| N                       | 1444        | 996      | 15 215  |
| Sex (% women)           | 28.3        | 52.1     | 37.9    |
| Age (years)             | 67.4 (±5.7) | 50.6 (±12) | 46.7 (±6.2) |
| Systolic BP (mmHg)      | 147.3 (±20.3) | 124.5 (±17.0) | 131.0 (±15.8) |
| Diastolic BP (mmHg)     | 84.6 (±10.6) | 71.2 (±10.0) | 85.2 (±9.3) |
| Body mass index (kg/m²) | 28.3 (±4.2) | 27.0 (±4.5) | 24.4 (±3.4) |
| Antihypertensive treatment (%) | 49.0 | 12.1 | 4.9 |
| Hypertension (%)        | 58.2        | 18.3     | 27.4    |
| Prevalent diabetes      | 36.7        | 7.2      | 2.5     |

Table 2 Characteristics (subjects without, and with diastolic dysfunction in the Malmö Preventive Project-Re-examination echocardiography and the VARA echocardiography)

| Characteristic          | MPP-RES UCG | VARA UCG | P-value |
|-------------------------|-------------|----------|---------|
| N                       |             |          |         |
| Sex (% women)           |             |          |         |
| Age (years)             | 65.2 (±5.7) | 68.4 (±5.4) | <0.001 |
| Systolic BP (mmHg)      | 147.2 (±20.0) | 147.4 (±20.4) | 0.894 |
| Diastolic BP (mmHg)     | 85.2 (±10.1) | 84.3 (±10.8) | 0.108 |
| Body mass index (kg/m²) | 28.1 (±4.2) | 28.3 (±4.2) | 0.454 |
| Antihypertensive treatment (%) | 46.2 | 47.4 | 0.680 |
| Hypertension (%)        | 74.8        | 80.6     | 0.016   |
| Prevalent diabetes      | 34.4        | 37.8     | 0.032   |

AHT, antihypertensive treatment; BP, blood pressure; DD, diastolic dysfunction; MPP-RES, Malmö Preventive Project-Re-examination; UCG, echocardiography.

HNF1B rs757210 and association to incident cardiovascular disease and congestive heart failure

In the entire MPP-RES, of the 15 215 subjects who were successfully genotyped for rs757210 and had valid measurements of all covariates, 32 subjects with prevalent CVD at baseline MPP examination were excluded, leaving 15 183 subjects entered in the Cox regression analysis for incident CVD. The median follow-up from the baseline MPP examination time to first CVD event was 31 years (interquartile range 8). There were 3407 cases of CVD events and 11 776 controls. Carriers of the major T-allele had increased risk of incident CVD with a hazard ratio of 1.051 (95% confidence interval HR 1.002–1.102, P = 0.042).

The median follow-up from the baseline MPP examination time to first CHF event was 32 years (interquartile range 6). There were no cases with prevalent CHF at MPP baseline examination. During follow-up, 976 cases of incident CHF were registered. Being carrier of the major T-allele had no association with incident CHF (HR 0.98, 95% CI; 0.90–1.07, P = 0.647).

Discussion

Key findings

To the best of our knowledge, this study is the first to investigate diabetes predisposing genetic variants and their association with diastolic dysfunction. Our main finding was the association of the HNF1B rs757210 locus with increased risk of prevalent diastolic dysfunction in two independent population cohorts. In addition, HNF1B rs757210 predicted increased risk of incident CVD but not with incident CHF.

Physiological relevance of HNF1B

Hepatocyte nuclear factor 1B is a homeodomain-containing transcription factor and was initially discovered as a monoclonal diabetes gene and is also commonly associated with renal cysts, which led to the description of the renal cysts and diabetes syndrome. Since then, many additional clinical features associated with mutations in HNF1B have become evident, such as pancreatic hypoplasia, genital tract malformations, abnormal liver function, hypomagnesaemia, hyperuricemia, and early-onset gout.

Our review of the present literature has not found any studies linking HNF1B to cardiac function or to CVD. The rs757210 is an intronic SNP with a minor allele frequency of 0.36. In addition to its association with diabetes, it is also associated with prostate cancer and ovarian cancer. Our review of the present literature has not found any studies linking HNF1B to cardiac function or to CVD. Our finding of HNF1B and increased risk of prevalent diastolic dysfunction was independent of its predisposition to diabetes and may therefore represent a novel link between diabetes and cardiac dysfunction.
Table 3 Genotype frequencies of rs757210

| SNP                 | MPP-RES UCG | VARA UCG | MPP-RES |
|---------------------|-------------|----------|---------|
|                     | Frequency (n) | Percent (%) | Frequency (n) | Percent (%) | Frequency (n) | Percent (%) |
| ADRA2A_R510885122   | 1491        | 1.03     | 0.82    | 1.31    | 0.78         |
| FAM148B_R51071657   | 1492        | 1.05     | 0.89    | 1.24    | 0.55         |
| CRY2_R511605924     | 1491        | 1.09     | 0.93    | 1.27    | 0.30         |
| ZFAND_R511634397    | 1493        | 1.09     | 0.92    | 1.28    | 0.34         |
| CHCHD9_R513292136   | 1490        | 1.09     | 0.81    | 1.45    | 0.58         |
| HMGA2_R51531343     | 1494        | 0.96     | 0.71    | 1.29    | 0.78         |
| CENTD2_R51552224    | 1493        | 1.04     | 0.84    | 1.29    | 0.73         |
| FADS1_R5174550      | 1490        | 0.99     | 0.83    | 1.18    | 0.93         |
| DGKB_R52191349      | 1451        | 0.92     | 0.78    | 1.09    | 0.33         |
| PROX1_R5340874      | 1484        | 1.04     | 0.89    | 1.22    | 0.62         |
| IRS1_R54675905      | 1494        | 0.88     | 0.60    | 1.30    | 0.52         |
| GAPC2_R560887       | 1492        | 0.96     | 0.80    | 1.14    | 0.63         |
| GCKR_R5780094       | 1490        | 0.88     | 0.75    | 1.03    | 0.11         |
| MADD_R57944584      | 1487        | 0.86     | 0.71    | 1.03    | 0.10         |
| HNF1A_R5795179      | 1486        | 0.77     | 0.63    | 0.94    | 0.01         |
| HNF1A_R5795179b     | 910         | 1.10     | 0.72    | 1.68    | 0.65         |
| PRC1_R58042680      | 1489        | 1.04     | 0.87    | 1.25    | 0.65         |
| TSPAN8_R5961581b    | 990         | 0.86     | 0.61    | 1.20    | 0.37         |

Genotype frequencies of rs757210 in MPP-RES-UCG and MPP-RES. Major allele represented by T, minor allele represented by C. MPP-RES, Malmö Preventive Project-Re-examination; UCG, echocardiography.

Table 4 Diabetes-associated single-nucleotide polymorphisms’ association with prevalent diastolic dysfunction in the Malmö Preventive Project-Re-examination echocardiography study and VARA echocardiography cohort

| SNP            | n     | ORa    | 95% CI Lower | 95% CI Upper | P-value |
|----------------|-------|--------|--------------|--------------|---------|
| TSPAN8_rs7961581 | 1291  | 1.26   | 1.04         | 1.54         | 0.02    |
| TSPAN8b_rs7961581 | 990   | 0.86   | 0.61         | 1.20         | 0.37    |

Diastolic dysfunction and diabetes

Subclinical diastolic dysfunction is widespread in the diabetic population with a prevalence ranging from 25% to 78%.3–25 In the MPP-RES UCG cohort, the prevalence of any degree of diastolic dysfunction was 68% regardless of diabetes status. However, the cohort was originally designed to study patients with glucometabolic disturbances (37% of subjects had diabetes), which can explain the higher occurrence of diastolic dysfunction in the MPP-RES UCG cohort compared with the VARA UCG cohort where only 7.2% had prevalent diabetes (Tables 1 and 2).

Genetic susceptibility for diabetes with cardiovascular disease

A large meta-analysis using Mendelian randomization previously supported a causal relationship between diabetes and coronary heart disease by showing that increased genetic risk of diabetes leads to increased risk of coronary heart disease.26 In the CARDIOGRAM cohort, 44 genetic variants associated with diabetes were analysed; 10 SNPs were found significantly associated with coronary artery disease (CAD). It was, however, surprising that the effects on CAD risk by the diabetes-related SNPs reported in this study appeared to be far lower than what would be expected based on the effects of risk alleles on diabetes.11 One possible explanation to these findings might be that diabetes related SNPs impact on future CAD is mediated and driven by early subclinical signs of heart disease (e.g. diastolic dysfunction) and atherosclerosis.
Qi et al.\textsuperscript{10} combined 36 genetic variants predisposing to diabetes and showed that this genetic predisposition score was associated with increased risk of CVD in patients with diabetes. However, this finding was significantly weakened after adjusting for HbA1c, suggesting that the genetic predisposition might actually reflect the degree of hyperglycemia.

In a study from the European Prospective Investigation into Cancer and Nutrition Norfolk study, \textsuperscript{28} 38 common genetic variants associated with diabetes were analysed and found to be associated with CAD.\textsuperscript{27} Similar to the above-mentioned study, most of the associations was attenuated when adjusting for incident and prevalent diabetes. However, one of the 38 SNPs, \textit{CDKAN2A/B rs564398}, remained significantly associated with incident coronary disease even after adjusting for incident and prevalent diabetes and may represent a glucose–insulin independent link between coronary heart disease and diabetes, which warrants further studies in line with our findings.

In a recent study following 6501 subjects over 17 years, genetic predisposition to diabetes was associated with all-cause mortality after adjusting for BMI, social, and lifestyle factors and traditional clinical risk factors.\textsuperscript{29} Based on their findings, they suggested that lifestyle intervention, for example, weight control, may be especially important for lowering mortality risk in individuals with a high genetic predisposition for diabetes. This line of reasoning may be applicable to our findings, where a genetic predisposition to diastolic dysfunction in an individual, may warrant lifestyle and/or pharmaceutical intervention.

Interestingly, in a cross-sectional study, the same research group analysed genetic predisposition to diabetes and association with subclinical atherosclerosis including coronary artery or abdominal aortic calcium score, common and internal carotid artery intima-media thickness, and ankle-brachial index but were unable to find any association.\textsuperscript{29} This parallels our study, as it is reasonable to suggest that subclinical diastolic dysfunction is to the diabetic heart, what subclinical atherosclerosis is to the diabetic vessels. However, in our study, although the analyses of associations between UCG findings and genetic variants were cross-sectional and thus not eligible for any conclusions regarding causality, we found an association between genetic predisposition to diabetes and subclinical cardiac dysfunction. This warrants further studies because diastolic dysfunction can progress to clinical heart failure and is the very hallmark of heart failure with preserved ejection fraction for which there is no convincing treatment.\textsuperscript{30,31}

### Study limitations

An important strength of the current study is the use of two well-characterized prospective community-based large UCG cohorts. Our discovery cohort and replication cohort differ in many baseline characteristics that are central in the assessment of diastolic dysfunction such as age, prevalence of hypertension and diabetes which may have influenced the results. However, we tried to adjust for these differences in the multivariable logistic regression analysis. The cross-sectional nature of the study prevents any conclusions concerning causality of the findings regarding \textit{HNF1B rs757210} and prevalent diastolic dysfunction.

### Clinical implications

Diabetes is an independent risk factor for heart failure and its earliest manifestation of left ventricular dysfunction is diastolic dysfunction, which progresses to clinical heart failure\textsuperscript{30} and is in itself associated with increased mortality.\textsuperscript{2} Studies suggest that this myocardial decline begins even in the pre-diabetic stage.\textsuperscript{12,13} Common genetic pathways between diabetes and CVD can possibly not only identify patients with high risk of developing cardiovascular complications and benefitting from heightened clinical vigilance but also provide future drug targets.

### Conclusions

Our findings suggest a possible common genetic susceptibility to diabetes and diastolic dysfunction through \textit{HNF1B rs757210}, which is also associated with increased incidence of cardiovascular disease.

---

\textbf{Table 5} \textit{HNF1B rs757210 association with grades of diastolic dysfunction}

| DD grade | MPP-RES UCG | VARA UCG |
|----------|-------------|-----------|
|          | \(n\) | OR\textsuperscript{a} | 95% CI | P-value | \(n\) | OR\textsuperscript{a} | 95% CI | P-value |
| I        | 561 | 1.0 (referent) |         |         | 863 | 1.0 (referent) |         |         |
| II       | 736 | 1.21 | 1.01–1.45 | 0.036 | 133 | 1.38 | 1.01–1.88 | 0.042 |
| III + IV | 337 | 1.27 | 1.02–1.58 | 0.033 | 0 | NA | NA | NA |

DD, diastolic dysfunction: I normal, II impaired relaxation, III pseudonormaliz, IV restrictive; MPP-RES, Malmö Preventive Project-Re-examination echocardiography; NA, no subjects with DD Grade III + IV in the VARA UCG cohort; OR, odds ratio; UCG, echocardiography.\textsuperscript{a}Adjusted for sex, age, systolic blood pressure, diastolic blood pressure, antihypertensive treatment and diabetes status.

---

\textsuperscript{10} Qi et al.  
\textsuperscript{12} Studies  
\textsuperscript{13} Common
Conflict of interest

None declared.

Funding

Dr Magnusson was supported by grants from the Wallenberg Centre for Molecular Medicine, Lund University (ALFSKANE-675271), Medical Faculty of Lund University (ALFSKANE-432021) (ALFSKANE-436111), Skåne University Hospital, the Crafoord Foundation, the Ernhold Lundstroms Research Foundation, Region Skåne, the Hulda and Conrad Mossfelt Foundation, the Southwest Skåne’s Diabetes Foundation, the Kocksa foundation, the Research Funds of Region Skåne and the Swedish Heart and Lung foundation (2015-0322).

Authors’ contributions

JM, PMN, ML, UL, LB, LR, BD, VL and MM contributed to statistical analysis. JM, LR, BD, VL, MM contributed to important intellectual content. JM, AJ, PMN, ML, UL, LR, LB, BD, VL and MM critically revised the manuscript. JM, AJ, PMN, BD and MM drafted the manuscript. JM, AJ, ML, BD and MM analysed and interpreted data. JM, ML, BD and MM conceived the study concept and design. JM, ML, BD, UL and MM acquired data. JM, AJ, PMN, BD and MM acquired funding. PMN provided administrative, technical, or material support. JM, BD, UL, LR and MM supervised the study. JM, UL, BD, LR and MM are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Ethics approval and consent to participate

The study was approved by The Ethics committee at Lund University, Sweden (MPP-RES and MPP-RES UCG cohorts) and at the University of Gothenburg, Sweden (VARA UCG).

Consent for publication

All participants in this study signed a written informed consent form.

Availability of data and material

Data will be available upon request.

References

1. van Heerebeek L, Somsen A, Paulus WJ. The failing diabetic heart: focus on diastolic left ventricular dysfunction. Curr Diab Rep 2009; 9: 79–86.
2. Bella JN, Palmieri V, Roman MJ, Liu JE, Welty TK, Lee ET, Fabsitz RR, Howard BV, Devereux RB. Mitral ratio of peak early to late diastolic filling velocity as a predictor of mortality in middle-aged and elderly adults: the Strong Heart Study. Circulation 2002; 105: 1928–1933.
3. Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 2003; 289: 194–202.
4. Boyer JK, Thanigaraj S, Schechtman KB, Perez JE. Prevalence of ventricular diastolic dysfunction in asymptomatic normotensive patients with diabetes mellitus. Am J Cardiol 2004; 93: 870–875.
5. Zabalgoitia M, Ismaeel MF, Anderson L, Maklady FA. Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am J Cardiol 2001; 87: 320–323.
6. Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC Jr. Heart failure prevalence, incidence, and mortality in elderly with diabetes. Diabetes Care 2004; 27: 699–703.
7. Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation 1979; 59: 8–13.
8. Dhingra R, Vasan RS. Diabetes and the risk of heart failure. Heart Fail Clin 2012; 8: 125–133.
9. Kannel WB. Incidence and epidemiology of heart failure. Heart Fail Rev 2000; 5: 167–173.
10. Qi Q, Meigs JB, Rexrode KM, Hu FB, Qi L. Diabetes genetic predisposition score and cardiovascular complications among patients with type 2 diabetes. Diabetes Care. 2013; 36: 737–739.
11. Jansen H, Loley C, Lieb W, Pencina MJ, Nelson CP, Kathiresan S, Peloso GM, Voight BF, Reilly MP, Assimes TL, Boerwinkle E, Hengstenberg C, Laaksonen R, McPherson R, Roberts R, Thorsteinsdottir U, Peters A, Gieger C, Rawal R, Thompson JR, König IR, CARDIoGRAM consortium, Vasan RS, Erdmann J, Samani NJ, Schunkert H. Genetic variants primarily associated with type 2 diabetes are related to coronary artery disease risk. Atherosclerosis 2015; 241: 419–426.
12. Ingelsson E, Sundstrom J, Arnlov J, Zethelius B, Lind L. Insulin resistance and risk of congestive heart failure. JAMA 2005; 294: 334–341.
13. Matsushita K, Blecker S, Pazin-Filho A, Bertoni A, Chang PP, Coresh J, Selvin E. The association of hemoglobin a1c with incident heart failure among people without diabetes: the atherosclerosis risk in communities study. Diabetes 2010; 59: 2020–2026.

ESC Heart Failure 2020; 7: 345–353 DOI: 10.1002/ehf2.12573
14. Leosdottir M, Willenheimer R, Plehn J, Borgquist R, Gudmundsson P, Harris TB, Launer LJ, Björnsdotir H, Nilsson PM, Gudnason V. Myocardial structure and function by echocardiography in relation to glucometabolic status in elderly subjects from 2 population-based cohorts: a cross-sectional study. Am J Heart 2010; 159: 414–420 e4.

15. Ingelsson E, Bennett L, Ridderstrale M, Soderstrom M, Rastam L, Lindblad U. The PPARGC1A Gly482Ser polymorphism is associated with left ventricular diastolic dysfunction in men. BMC Cardiovasc Disord 2008; 8: 37.

16. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 2009; 22: 107–133.

17. Ingelsson E, Arnljov L, Sundstrom J, Lind L. The validity of a diagnosis of heart failure in a hospital discharge register. Eur J Heart Fail 2005; 7: 787–791.

18. Hammar N, Alfredsson L, Rosen M, Spetz GL, Kahan T, Ysberg AS. A national record linkage to study acute myocardial infarction incidence and case fatality in Sweden. Int J Epidemiol. 2001; 30: S30–S34.

19. El-Khairi R, Vallier L. The role of hepatocyte nuclear factor 1beta in disease and development. Diabetes Obes Metab. 2016; 18: 23–32.

20. Bingham C, Bulman MP, Ellard S, Allen LL, Lipkin GW, Hoff WG, Woolf AS, Rizzoni G, Novelli G, Nicholls AJ, Hattersley AT. Mutations in the hepatocyte nuclear factor-1beta gene are associated with familial hypoplastic glomerulocystic kidney disease. Am J Hum Genet 2001; 68: 219–224.

21. Clossold RL, Hamilton AJ, Hattersley AT, Ellard S, Bingham C. HNF1B-associated renal and extra-renal disease-an expanding clinical spectrum. Nat Rev Nephrol 2015; 11: 102–112.

22. Winckler W, Weedon MN, Graham RR, McCarroll SA, Purcell S, Almgren P, Tuomi T, Gaudet D, Boström KB, Walker M, Hitman G, Hattersley AT, McCarthy M, Ardlie KG, Hirschhorn JN, Daly MJ, Frayling TM, Groop L, Altshuler D. Evaluation of common variants in the six known maturity-onset diabetes of the young (MODY) genes for association with type 2 diabetes. Diabetes 2007; 56: 685–693.

23. Machiela MJ, Lindstrom S, Allen NE, Haiman CA, Albanes D, Barricarte A, Berndt SI, Bueno-de-Mesquita HB, Chanock S, Gazzano JM, Gapstur SM. Association of type 2 diabetes susceptibility variants with advanced prostate cancer risk in the Breast and Prostate Cancer Cohort Consortium. Am J Epidemiol 2012; 176: 1121–1129.

24. Pharoah PD, Tsai YY, Ramus SJ, Phelan CM, Goode EL, Lawrence K, Buckley M, Fridley BL, Tyer JP, Shen H, Weber R. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet. 2013; 45: 362–370 70e1-2.

25. Boonman-de Winter LJ, Rutten FH, Cramer MJ, Landman MJ, Liem AH, Rutten GE, Hoes AW. High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetesologia 2012; 55: 2154–2162.

26. Ahmad OS, Morris JA, Mujammar M, Forgetta V, Leong A, Li R, Turgeon M, Greenwood CM, Thanassoulis G, Meigs JB, Sladek R. A Mendelian randomization study of the effect of type-2 diabetes on coronary heart disease. Nat Commun 2015; 6: 7060.

27. Pfister R, Barnes D, Luben RN, Khaw KT, Wareham NJ, Langenberg C. Individual and cumulative effect of type 2 diabetes genetic susceptibility variants on risk of coronary heart disease. Diabetologia 2011; 54: 2283–2287.

28. Leong A, Porneala B, Dupuis J, Florez JC, Meigs JB. Type 2 diabetes genetic predisposition, obesity, and all-cause mortality risk in the U.S.: a multiethnic analysis. Diabetes Care 2016; 39: 539–546.

29. Dauriz M, Porneala BC, Guo X, Bielak LF, Peyser PA, Durant NH, Carnethon MR, Bonadonna RC, Bonora E, Bowden DW, Florez JC, Fornage M, Hivert MF, Jacobs DR Jr, Kabagambe KE, Lewis CE, Murabito JM, Rasmussen-Torvik LJ, Rich SS, Vassy JL, Yao J, Carr JJ, Kardia SL, Siscovick D, O’Donnell CJ, Rotter JI, Dupuis J, Meigs JB. Association of a 62 variants type 2 diabetes genetic risk score with markers of subclinical atherosclerosis: a transethnic, multicenter study. Circ Cardiovasc Genet 2015; 8: 507–515.

30. Aurigemma GP, Gottdiener JS, Shemanski L, Gardin J, Kitzman D. Predictive value of systolic and diastolic function for incident congestive heart failure in the elderly: the cardiovascular health study. J Am Coll Cardiol 2001; 37: 1042–1048.

31. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Fang V, González-Juanatey JR, Harjola VP, Janszewska EA, Jessup M, Linde C, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P; ESC Scientific Document Group 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Rev Esp Cardiol (Engl Ed) 2016; 69:1167.