Study of $B^0 \rightarrow \rho^\pm \pi^\mp$ Time-dependent CP Violation at Belle

C. C. Wang, K. Abe, K. Abe, T. Abe, I. Adachi, H. Aihara, Y. Asano, T. Aushev, A. M. Bakich, Y. Ban, A. Bay, I. Bedny, U. Bitenc, I. Bizjak, S. Blyth, A. Bondar, A. Bozek, M. Bračko, T. E. Browder, P. Chang, Y. Chao, K.-F. Chen, W. T. Chen, B. G. Cheon, S.-K. Choi, Y. Choi, A. Chuvikov, S. Cole, M. Dash, L. Y. Dong, J. Dragic, A. Drutskoy, S. Eidelman, V. Eiges, T. Gershon, G. Gokhroo, R. Guo, J. Haba, N. C. Hastings, K. Hayasaka, H. Hayashi, M. Hazumi, T. Hokuue, Y. Hoshi, S. Hou, W.-S. Hou, Y. B. Hsiung, T. Iijima, A. Imoto, K. Inami, A. Ishikawa, H. Ishino, K. Itoh, R. Itoh, H. Iwasaki, Y. Iwasaki, H. Kakuno, J. H. Kang, J. S. Kang, P. Kapusta, N. Katayama, T. Kawasaki, H. R. Khan, H. Kichimi, H. J. Kim, K. Kinoshita, P. Križan, P. Krokovvny, S. Kumar, J. S. Lange, S. E. Lee, Y.-J. Lee, T. Lesiak, J. Li, A. Limosani, S.-W. Lin, J. MacNaughton, T. Matsumoto, A. Matyja, Y. Mikami, W. Mitaroff, H. Miyata, R. Mizuk, D. Mohapatra, T. Mori, Y. Nagasaka, T. Nakadaira, E. Nakano, M. Nakao, Z. Natkaniec, S. Nishida, O. Nitoh, T. Nozaki, S. Ogawa, T. Ohshima, T. Okabe, S. Okuno, S. L. Olsen, W. Ostrowicz, H. Ozaki, P. Pakhlov, C. W. Park, N. Parslow, L. S. Peak, L. E. Piilonen, F. J. Romańka, M. Rozanska, H. Sagawa, Saitoh, Y. Sakai, N. Sato, T. Schietinger, O. Schneider, J. Schümann, A. J. Schwartz, S. Semenov, K. Senyo, M. E. Sevior, H. Shibuya, J. B. Singh, A. Somov, R. Stamen, S. Stanić, M. Starić, K. Sumisawa, T. Sumiyoshi, S. Y. Suzuki, O. Tajima, F. Takasaki, K. Tamai, M. Tanaka, G. N. Taylor, Y. Teramoto, X. C. Tian, K. Trabelsi, T. Tsukamoto, S. Uehara, T. Uglow, K. Ueno, S. Uno, G. Varner, K. E. Varvell, S. Villa, C. H. Wang, M.-Z. Wang, M. Watanabe, B. D. Yabsley, Y. Yamada, A. Yamaguchi, Y. Yamashita, M. Yamauchi, J. Ying, Y. Yusa, J. Zhang, L. M. Zhang, Z. P. Zhang, V. Zhilich, T. Ziegler, and D. Žontar

(The Belle Collaboration)

1 Budker Institute of Nuclear Physics, Novosibirsk
2 Chonnam National University, Kwangju
3 University of Cincinnati, Cincinnati, Ohio 45221
4 University of Frankfurt, Frankfurt
5 Gyeongsang National University, Chinju
6 University of Hawaii, Honolulu, Hawaii 96822
7 High Energy Accelerator Research Organization (KEK), Tsukuba
8 Hiroshima Institute of Technology, Hiroshima
9 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
10 Institute of High Energy Physics, Vienna
11 Institute for Theoretical and Experimental Physics, Moscow
12 J. Stefan Institute, Ljubljana
13 Kanagawa University, Yokohama
14 Korea University, Seoul
15 Kyungpook National University, Taegu
16 Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
17 University of Ljubljana, Ljubljana
18 University of Maribor, Maribor
19 University of Melbourne, Victoria
20 Nagoya University, Nagoya
21 Nara Women's University, Nara
22 National Central University, Chung-li
23 National Kaohsiung Normal University, Kaohsiung
24 National United University, Miao Li
25 Department of Physics, National Taiwan University, Taipei
26 H. Niewodniczanski Institute of Nuclear Physics, Krakow
27 Nihon Dental College, Niigata
28 Niigata University, Niigata
29 Osaka City University, Osaka
30 Osaka University, Osaka
31 Panjab University, Chandigarh
32 Peking University, Beijing
33 Princeton University, Princeton, New Jersey 08545
34 University of Science and Technology of China, Hefei
35 Seoul National University, Seoul
36 Sungkyunkwan University, Suwon
37 University of Sydney, Sydney NSW
38 Tata Institute of Fundamental Research, Bombay
39 Toho University, Funabashi
40 Tohoku Gakuin University, Tagajo
41 Tohoku University, Sendai
42 Department of Physics, University of Tokyo, Tokyo
43 Tokyo Institute of Technology, Tokyo
44 Tokyo Metropolitan University, Tokyo
45 Tokyo University of Agriculture and Technology, Tokyo
46 University of Tsukuba, Tsukuba
47 Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
48 Yonsei University, Seoul
Abstract

We present a time-dependent analysis of CP violation in $B^0 \to \rho^\pm \pi^\mp$ decays based on a 140 fb$^{-1}$ data sample collected at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We fully reconstruct one neutral B meson in the $\rho^\pm \pi^\mp$ final state and identify the flavor of the accompanying B meson from its decay products. We obtain the charge asymmetry $A_{\rho\pi}^{CP} = -0.16 \pm 0.10\text{(stat)} \pm 0.02\text{(syst)}$. An unbinned maximum likelihood fit to the proper-time distributions yields $C_{\rho\pi} = 0.25 \pm 0.17\text{(stat)}^{+0.02}_{-0.06}\text{(syst)}$, $\Delta C_{\rho\pi} = 0.38 \pm 0.18\text{(stat)}^{+0.02}_{-0.04}\text{(syst)}$, $S_{\rho\pi} = -0.28 \pm 0.23\text{(stat)}^{+0.10}_{-0.08}\text{(syst)}$, and $\Delta S_{\rho\pi} = -0.30 \pm 0.24\text{(stat)} \pm 0.09\text{(syst)}$. The direct CP violation parameters for $B \to \rho^+\pi^-$ and $B \to \rho^-\pi^+$ decays are $A_{\rho\pi}^{+} = -0.02 \pm 0.16\text{(stat)}^{+0.05}_{-0.02}\text{(syst)}$ and $A_{\rho\pi}^{-} = -0.53 \pm 0.29\text{(stat)}^{+0.09}_{-0.04}\text{(syst)}$.

PACS numbers: 11.30.Er, 12.15.Hh, 13.25.Gv, 14.40.Nd
In the Standard Model (SM) of elementary particles, CP violation arises from the Kobayashi-Maskawa (KM) phase in the weak-interaction quark-mixing matrix. Recently, the Belle and BaBar collaborations reported results on CP violation via $b \to u\bar{d}d$ transitions in $B \to \pi^+\pi^−$ decays, which are related to the CP violation parameter ϕ_2. Here we present a study of $B \to \rho^±\pi^±$, which is another ϕ_2 related decay. Since $B \to \rho^±\pi^±$ is not a CP eigenstate decay, four decay modes with different charge and flavor combinations in the neutral B system must be considered.

In the decay chain $\Upsilon(4S) \to B^0\bar{B}^0 \to (\rho^±\pi^±)f_{\text{tag}}$, one of the B mesons decays at time $t_{\rho\pi}$ to $\rho^±\pi^±$ and the other meson decays at time t_{tag} to a final state f_{tag} that distinguishes between B^0 and \bar{B}^0. The decay rate for $B^0(\bar{B}^0) \to \rho^±\pi^±$ has a time dependence given by

$$\mathcal{P}_{\rho^±\pi^±}(\Delta t) = (1 \pm \mathcal{A}_{CP}^{\rho\pi}) \frac{e^{-|\Delta t/\tau_{B^0}|}}{8\tau_{B^0}} \times \{1 + q \cdot [S_{\rho\pi} \pm \Delta S_{\rho\pi} \sin(\Delta m_{d}\Delta t) - (C_{\rho\pi} \pm \Delta C_{\rho\pi}) \cos(\Delta m_{d}\Delta t)]\},$$

where τ_{B^0} is the B^0 lifetime, Δm_d is the mass difference between the two B^0 mass eigenstates, $\Delta t = t_{\rho\pi} - t_{\text{tag}}$, and the b-flavor charge $q = +1(-1)$ when the tagging B meson is a $B^0(\bar{B}^0)$. The time and flavor integrated charge asymmetry $\mathcal{A}_{CP}^{\rho\pi}$ is defined as

$$\mathcal{A}_{CP}^{\rho\pi} = \frac{N(\rho^+\pi^-) - N(\rho^-\pi^+)}{N(\rho^+\pi^-) + N(\rho^-\pi^+)};$$

where $N(\rho^+\pi^-)$ and $N(\rho^-\pi^+)$ are the sum of the yields for B^0 and \bar{B}^0 decays to $\rho^+\pi^-$ and $\rho^-\pi^+$, respectively. The mixing-induced CP violation parameter $S_{\rho\pi}$ is related to ϕ_2 and $C_{\rho\pi}$ is the flavor-dependent direct CP violation parameter. The asymmetry between the decay rates, $\Gamma(B^0 \to \rho^+\pi^-) + \Gamma(\bar{B}^0 \to \rho^-\pi^+)$ and $\Gamma(B^0 \to \rho^-\pi^+) + \Gamma(\bar{B}^0 \to \rho^+\pi^-)$, is described by $\Delta C_{\rho\pi}$, while the strong phase difference between the amplitudes contributing to $B^0 \to \rho\pi$ decays is described by $\Delta S_{\rho\pi}$. These parameters are related to ϕ_2 as $S_{\rho\pi} \pm \Delta S_{\rho\pi} = \sqrt{1 - (C_{\rho\pi} \pm \Delta C_{\rho\pi})^2} \sin(2\phi_{2\text{eff}} \pm \delta)$, where $2\phi_{2\text{eff}} = \arg[(q/p)(\Delta_{\rho\pi}/A_{\rho\pi})]$ and $\delta = \arg[A_{\rho\pi}/A_{\rho\pi}^\dagger]$, $\arg[q/p]$ is the B^0-\bar{B}^0 mixing phase. The terms $A_{\rho\pi}^\dagger$ and $A_{\rho\pi}$ denote the transition amplitudes for the processes $B^0(\bar{B}^0) \to \rho^+\pi^- + B^0(\bar{B}^0) \to \rho^-\pi^+$, respectively. The angles $\phi_{2\text{eff}}$ are equal to ϕ_2 if there is no penguin contribution. The effect of direct CP violation can also be expressed in terms of another set of parameters, $A_{\rho\pi}^{\pm\mp}$ and $A_{\rho\pi}^{\mp+}$:

$$A_{\rho\pi}^{\pm\mp} = \frac{N(B^0 \to \rho^\mp\pi^\pm) - N(\bar{B}^0 \to \rho^\pm\pi^\mp)}{N(B^0 \to \rho^+\pi^-) + N(\bar{B}^0 \to \rho^-\pi^+)}$$

$$= \pm \mathcal{A}_{CP}^{\rho\pi} \pm C_{\rho\pi} \pm \mathcal{A}_{CP}^{\rho\pi} \cdot \Delta C_{\rho\pi}.$$
at the KEKB asymmetric-energy e^+e^- collider, which collides 8.0 GeV e^- and 3.5 GeV e^+ beams. The $\Upsilon(4S)$ is produced with a Lorentz boost of $\beta\gamma = 0.425$ nearly along the electron beamline. Since the B^0 and \bar{B}^0 mesons are approximately at rest in the $\Upsilon(4S)$ center-of-mass system (CM), Δt can be determined from Δz, the displacement in z between the $\rho^\pm\pi^\mp$ and f_{tag} decay vertices: $\Delta t \simeq (z_{\rho^\pm\pi^\mp} - z_{f_{\text{tag}}})/\beta\gamma c$. The z axis is anti-parallel to the positron beam.

The Belle detector is a large-angle general purpose spectrometer that consists of a silicon vertex detector (SVD), a central drift chamber (CDC), an array of aerogel threshold Čerenkov counters (ACC), time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux return located outside of the coil is instrumented to detect K^0_L mesons and identify muons.

To reconstruct $B^0 \to \rho^\pm\pi^\mp$ candidates, we combine pairs of oppositely charged tracks with π^0 candidates. Each charged track is required to have transverse momenta greater than 100 MeV/c in the laboratory frame. Charged tracks are identified as pions by combining information from the ACC, CDC and TOF. Electron-like tracks are rejected. The γ energies for π^0 candidates are required to be greater than 50 MeV if the photon is detected in the barrel ECL (32° $< \theta < 129^\circ$); otherwise, the energy is required to be larger than 100 MeV, where θ denotes the polar angle with respect to the z-axis. The π^0 candidates are selected from $\gamma\gamma$ pairs in invariant masses in the range 0.118 GeV/$c^2 < M_{\gamma\gamma} < 0.150$ GeV/c^2, and momentum larger than 200 MeV/c in the laboratory frame. In addition, we require $|\cos \theta_{\text{dec}}^\rho| < 0.95$, where θ_{dec}^ρ is defined as the angle between the photon flight direction and the boost direction from the laboratory system in the π^0 rest frame, and we require the χ^2 of the π^0 mass-constrained fit to be less than 50.

B meson candidates are reconstructed using the beam-energy constrained mass $M_{bc} \equiv \sqrt{E_{\text{beam}}^2 - P_B^2}$ and the energy difference $\Delta E \equiv E_B - E_{\text{beam}}$. The variables E_B and P_B are the reconstructed energy and momentum of the B candidate in the CM frame, and E_{beam} is the CM beam energy. The B candidates in the region with $M_{bc} > 5.2$ GeV/c^2 and -0.3 GeV $< \Delta E < 0.2$ GeV are selected. The signal region is defined as $M_{bc} > 5.27$ GeV/c^2 and -0.10 GeV $< \Delta E < 0.08$ GeV. The $B \to \rho^\pm\pi^\mp$ candidates are formed from 3-body $B \to \pi^+\pi^-\pi^0$ decays with a $\pi^\pm\pi^0$ invariant mass in the range 0.57 GeV/$c^2 < M_{\pi^\pm\pi^0} < 0.97$ GeV/c^2 and ρ helicity $|\cos \theta_{\text{hel}}^\rho| > 0.5$, where θ_{hel}^ρ is defined as the angle between the charged pion direction and the B^0 direction in the ρ rest frame. To avoid the region where the $\rho^+\pi^-$ and $\rho^-\pi^+$ contributions interfere, we exclude candidates with both $M_{\pi^+\pi^-}$ and $M_{\pi^-\pi^0}$ smaller than 1.22 GeV/c^2. Candidates with $M_{\pi^+\pi^-} < 0.97$ GeV/c^2 are removed to avoid the region where the $\rho^+\pi^-$ or $\rho^-\pi^+$ bands overlap with $\rho^0\pi^0$.

To suppress the dominant $e^+e^- \to qq$ continuum background ($q = u, d, s, c$), we form the likelihood ratio $\mathcal{R} = \mathcal{L}_s / (\mathcal{L}_s + \mathcal{L}_{\text{bkg}})$, where \mathcal{L}_s and \mathcal{L}_{bkg} are likelihood functions for signal and continuum events, respectively. We use a Fisher discriminant based on five modified Fox-Wolfram moments, and the CM flight direction of the B (θ_B) with respect to the z-axis to form the likelihood function. The signal likelihood \mathcal{L}_s is determined from a GEANT-based Monte Carlo (MC), and \mathcal{L}_{bkg} is based on M_{bc} sideband data, $M_{bc} < 5.26$ GeV/c^2. The continuum background is reduced by requiring \mathcal{R} to be greater than 0.8. If there is more than one candidate in an event, we select the candidate with the smallest sum of the χ^2 for the $\pi^+\pi^-$ vertex fit and the π^0 mass-constrained fit.

The flavor of the accompanying B meson is identified from the decay products not associated with the reconstructed $B^0 \to \rho^\pm\pi^\mp$ decay. We use the same method as used for
FIG. 1: ΔE (top) and M_{bc} (bottom) projections for the result of the 2-D unbinned likelihood fit. The plots on the left are the results for the $\rho^+\pi^-$ candidates, while those on the right show the results for the $\rho^-\pi^+$ candidates.

the Belle sin $2\phi_1$ measurement \cite{8, 9}. Two parameters q and r are used to describe the flavor tagging information. The parameter q is defined in Eq. 1 and the parameter r is a MC-determined quality factor that ranges from $r = 0$ for no flavor discrimination to $r = 1$ for unambiguous flavor assignment. It is used only to sort data into six r intervals. The wrong tag fractions for B^0 and B^0 are obtained from $B \to D^{*}\ell\nu$, $D^*\pi$, $D^*\rho$, and $D\pi$ data for the six r intervals.

The vertex reconstruction algorithm is the same as that used for the sin $2\phi_1$ analysis \cite{8}. The vertex positions for $\rho^\pm\pi^\mp$ and f_{tag} decays are reconstructed from charged tracks with associated SVD hits and an interaction point constraint. The vertex for f_{tag} is determined from all well-reconstructed tracks excluding the tracks from the $B^0 \to \rho^\pm\pi^\mp$ decay and K^0_S candidates.

Figure 1 shows the ΔE (M_{bc}) distribution in the M_{bc} (ΔE) signal region for $B^0 \to \rho^\pm\pi^\mp$ candidates after flavor tagging and vertex reconstruction. The $\rho^\pm\pi^\mp$ signal yields are extracted from an unbinned maximum-likelihood fit to the two-dimensional ($M_{bc}, \Delta E$) distribution. The backgrounds are categorized as continuum $q\bar{q}$, $b \to c$ transitions ($B\bar{B}$),
FIG. 2: Signal yields as functions of (left) $M_{\pi\pi}$ and (right) $\cos\theta^0_{\text{hel}}$ in data. The histograms show the results of $B \to \rho^{\pm}\pi^\mp$ MC simulation with areas normalized to the total signal yield.

$B \to \rho K$, and rare charmless decays other than $B \to \rho K$ (rare B). The distributions for $\rho\pi$, $B\bar{B}$, ρK, and rare B events are obtained from MC.

The $\rho\pi$ signal PDF contains two components: signal events reconstructed with the correct charge ($P_{\rho\pi}$) and those with incorrect charge ($P_{\text{wc}}^{\rho\pi}$). The fraction of events with incorrect charge in the signal region due to combinations that include a random π^0 is estimated to be 2.7% from MC and is fixed in the fit. The signal PDF shape is modeled by a smoothed histogram. The ΔE distributions for $B \to \rho\pi$ signal are parameterized separately for π^0 momentum below and above 1.2 GeV/c in the laboratory frame. The ΔE widths for $\rho\pi$ and ρK are calibrated from $D^{*0} \to D^{0}[K^−π^+]π^0$ data. The $B^+ \to D^{*0}[K^−π^+π^0]π^+$ mode is used to calibrate the ΔE and M_{bc} peak positions. The M_{bc} and ΔE distributions for the continuum $q\bar{q}$ are parametrized by an ARGUS background function \[10\] and a linear function, respectively. The contributions from $B \to \rho K$ (with $B = (9.0 \pm 1.6) \times 10^{-6}$ \[11\]) and rare B decays are fixed in the fit, while the yields for $B \to \rho\pi$ signal, $B\bar{B}$ and continuum backgrounds, and the shape parameters for continuum are floated. We obtain 483 ± 46 $B \to \rho^{\pm}\pi^\mp$ events, and obtain a time and flavor integrated charge asymmetry $A_{\text{CP}}^{\rho\pi} = -0.16 \pm 0.10$ (stat). The estimated yields for $B \to \rho\pi$, $B \to \rho K$, $q\bar{q}$, $B\bar{B}$ and rare B in the signal region are 328.7, 11.2, 833.0, 23.3 and 18.8, respectively. We remove the requirements on $M_{\pi^\pm\pi^0}$ and $\cos\theta^0_{\text{hel}}$ and examine these distributions to verify that the signals reconstructed as $B \to \pi^+\pi^-\pi^0$ are from the two-body decay $B \to \rho\pi$. Figure 2 shows the signal yields in bins of $M_{\pi^\pm\pi^0}$ and $\cos\theta^0_{\text{hel}}$ for data.

The CP violation parameters are obtained from an unbinned maximum-likelihood fit to the observed proper-time distribution for the $B \to \rho\pi$ candidates in the ($M_{bc}, \Delta E$) signal region. The likelihood function describing the proper-time distribution is

$$L = \prod_{i=1}^{N} \left\{ f_{\rho\pi} P_{\rho\pi}(\Delta t_i) + f_{\text{wc}}^{\rho\pi} P_{\rho\pi}^{\text{wc}}(\Delta t_i) + f_{\rho K} P_{\rho K}(\Delta t_i) + f_{q\bar{q}} P_{q\bar{q}}(\Delta t_i) + f_{B\bar{B}} P_{B\bar{B}}(\Delta t_i) + f_{\text{rare}B} P_{\text{rare}B}(\Delta t_i) \right\},$$

where the weighting functions f_m ($m = \rho\pi$, ρK, $q\bar{q}$, $B\bar{B}$, and rare B) are determined on
an event-by-event basis as functions of M_{bc} and ΔE for each flavor tagging τ interval and π^0 momentum range in the laboratory system. The time-dependent probability density functions (Δt PDFs) $P_{\rho\pi}(\Delta t_i)$ for $B \to \rho \pi$ and $P_{\rho K}(\Delta t_i)$ for $B \to \rho K$ are obtained from the true PDFs convolved with the Δt resolution function used in the sin$2\phi_1$ measurement. The true PDF for $B \to \rho t$ is given by Eq.1 modified to incorporate the effect of incorrect flavor tagging. The PDF for $B \to \rho \pi$ signal reconstructed with incorrect charge, $P_{\rho \pi}^{wC}(\Delta t_i)$, is given by $P_{\rho \pi}(\Delta t_i)$. For $B \to \rho K$, $C = S = \Delta S = 0$, $\Delta C = -1$, and $\mathcal{A}^{\rho K} = 0$ is assumed. The resolution function consists of the detector resolution, the shift in vertex position due to secondary tracks originating from charmed particle decays, and smearing due to the approximation $\Delta t \simeq (z_{t-\pi^+} - z_{\text{tag}})/\beta \gamma c$. The Δt PDFs for other backgrounds are all parameterized as $P_j = (1 - f_j)\delta(\Delta t - \mu_j) + f_j\exp(-|\Delta t - \mu_j|/\tau_j)$ convolved with $R_j (j = q\bar{q}, B\bar{B}$ and rare B), where f_j is the fraction of the background with effective lifetime τ_j. The resolution-like function R_j for background is given by two Gaussians. The parameters of the Δt PDF for $q\bar{q}$ background are obtained from a fit to sideband data (5.2 GeV/$c^2 < M_{bc} < 5.26$ GeV/c^2 and $\Delta E > -0.15$ GeV). The parameters of the Δt PDFs for $B\bar{B}$ and rare B are obtained from a fit to MC.

The maximum likelihood fit to the 1,215 $\rho \pi$ candidates gives $C_{\rho\pi} = 0.25 \pm 0.17^{+0.02}_{-0.06}$, $\Delta C_{\rho\pi} = 0.38 \pm 0.18^{+0.02}_{-0.04}$, $S_{\rho\pi} = -0.28 \pm 0.23^{+0.10}_{-0.08}$ and $\Delta S_{\rho\pi} = -0.30 \pm 0.24 \pm 0.09$, where the first (second) errors are statistical (systematic). The correlation between $C_{\rho\pi}$ and $\Delta C_{\rho\pi}$ is 0.271 and that between $S_{\rho\pi}$ and $\Delta S_{\rho\pi}$ is 0.284, while correlations between other variables are smaller. The data and fit result are shown in Fig. 3.

The systematic error in $\mathcal{A}_{CP}^{\rho \pi}$ includes a possible background asymmetry (± 0.010) and charge asymmetry in the tracking (± 0.012). The charge dependence of tracking efficiency is studied using $D^0 \to K^-\pi^+$ decays from inclusive $D^{*+} \to D^0\pi^+$ and selecting the momentum region corresponding to $B^0 \to \rho^+\pi^-$ decays. The systematic errors for time-dependent measurements include the uncertainties in the vertex reconstruction, background fraction, background Δt PDF, wrong-tag fractions, $\rho \pi$ and ρK Δt resolution functions, physics parameters ($\tau_B, \Delta m_d$, $\mathcal{A}_{\rho K}$, $\mathcal{A}_{\rho\pi}$) and fitting bias. The fitting bias is estimated from MC pseudo-experiments. All other systematic uncertainties are obtained by varying parameters within their errors and repeating the fit. The dominant source of systematic error is the vertex reconstruction ($^{+0.012}_{-0.055}$ for $C_{\rho\pi}$, $^{+0.011}_{-0.038}$ for $\Delta C_{\rho\pi}$, $^{+0.094}_{-0.073}$ for $S_{\rho\pi}$, and $^{+0.089}_{-0.092}$ for $\Delta S_{\rho\pi}$).

We perform various consistency checks. We examine the stability of the results as the R selection criterion is varied and the asymmetry of the Δt distributions for events in the sideband region. No significant variation or asymmetry is observed. We measure the B^0 lifetime with the $B^0 \to \rho^+\pi^-$ candidates and find $\tau_{B^0} = 1.56^{+0.13}_{-0.12}$ ps, which is consistent with the world average value 12.

The extraction of ϕ_2 from measurements of time-dependent CP violation parameters in $B \to \rho^+\pi^-$ decays has been studied in several theoretical approaches 14,15. A Grossman-Quinn type bound 16 based on isospin (SU(2) symmetry) does not significantly limit the penguin diagram contribution due to the large branching fraction for $B^0 \to \rho^0\pi^0$ 17. Since the number of measurable quantities (six including $B(B^0 \to \rho^+\pi^-)$) are not sufficient to completely describe the amplitudes for $B^0 \to \rho^+\pi^-$ decay (8 free parameters), either specific models or additional assumptions are involved, such as QCD factorization 14 or SU(3) flavor symmetry 1. A recent approach assuming broken flavor-SU(3) implies $\phi_2 = (102 \pm 11 \pm 15)^\circ$ using our results 15. The first error is experimental while the second is the uncertainty due to SU(3) breaking effects.

In summary, using 152×10^6 $B\bar{B}$ pairs, we have measured CP violation parameters
for $B^0 \rightarrow \rho^\pm \pi^\mp$ decays. We obtain $A^\rho_{CP} = -0.16 \pm 0.10 \pm 0.02$, $C_{\rho\pi} = 0.25 \pm 0.17_{-0.06}^{+0.02}$, $\Delta C_{\rho\pi} = 0.38 \pm 0.18_{-0.04}^{+0.02}$, $S_{\rho\pi} = -0.28 \pm 0.23_{-0.08}^{+0.10}$ and $\Delta S_{\rho\pi} = -0.30 \pm 0.24 \pm 0.09$. These give the direct CP violation parameters $A^\pm_{\rho\pi} = -0.02 \pm 0.16_{-0.02}^{+0.02}$ and $A^{+\pm}_{\rho\pi} = -0.53 \pm 0.29_{-0.04}^{+0.09}$. These results are consistent with a previous measurement $^{[13]}$. We find no significant mixing-induced or direct CP violation in $B^0 \rightarrow \rho^\pm \pi^\mp$.

We thank the KEKB group for the excellent operation of the accelerator, the KEK Cryogenics group for the efficient operation of the solenoid, and the KEK computer group and the NII for valuable computing and Super-SINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC (contract...
No. 10175071, China); DST (India); the BK21 program of MOEHRD and the CHEP SRC program of KOSEF (Korea); KBN (contract No. 2P03B 01324, Poland); MIST (Russia); MESS (Slovenia); NSC and MOE (Taiwan); and DOE (USA).

* on leave from Fermi National Accelerator Laboratory, Batavia, Illinois 60510
† on leave from Nova Gorica Polytechnic, Nova Gorica

[1] M. Kobayashi and T. Maskawa, Progr. Theor. Phys. 49, 652 (1973).
[2] Belle Collaboration, K. Abe et al., Phys. Rev. D 68, 012001 (2003).
[3] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 281802 (2002).
[4] J. Charles et al., hep-ph/0406184
[5] S. Kurokawa and E. Kikutani, Nucl. Instr. and Meth. A 499, 1 (2003).
[6] Belle Collaboration, A. Abashian et al., Nucl. Instr. and Meth. A 479, 117 (2002).
[7] G. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581, (1978).
[8] Belle Collaboration, K. Abe et al., hep-ex/0308036 BELLE-CONF-0353.
[9] H. Kakuno et al., hep-ex/0403022, to appear in Nucl. Instr. and Meth.
[10] ARGUS Collaboration, H. Albrecht et al., Phys. Lett. B 241 278 (1990).
[11] Heavy Flavor Averaging Group, http://www.slac.stanford.edu/xorg/hfag/.
[12] K. Hagiwara et al., Phys. Rev. D 67, 010001 (2002) and 2003 off-year partial update for the 2004 edition.
[13] BaBar Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 201802 (2003).
[14] G. Kramer et al., Z. Phys. C 66, 429 (1995); N.G. Deshpande et al., Phys. Lett. B 473, 141 (2000); A. Ali et al., Phys. Rev. D 59, 014005 (1999); M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).
[15] M. Gronau and J. Zupan, hep-ph/0407002
[16] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990); Y. Grossman and H. Quinn, Phys. Rev. D 58, 017504 (1998);
[17] Belle Collaboration, J. Dragic, T. Gershon et al., hep-ex/0405068