Draft genome sequence of *Micromonospora* sp. DSW705 and distribution of biosynthetic gene clusters for depsipeptides bearing 4-amino-2,4-pentadienoate in actinomycetes

Hisayuki Komaki1*, Natsuko Ichikawa2, Akira Hosoyama2, Moriyuki Hamada1, Enjuro Harunari3, Arisa Ishikawa3 and Yasuhiro Igarashi3

Abstract

Here, we report the draft genome sequence of *Micromonospora* sp. DSW705 (=NBRC 110037), a producer of antitumor cyclic depsipeptides rakicidins A and B, together with the features of this strain and generation, annotation, and analysis of the genome sequence. The 6.8 Mb genome of *Micromonospora* sp. DSW705 encodes 6,219 putative ORFs, of which 4,846 are assigned with COG categories. The genome harbors at least three type I polyketide synthase (PKS) gene clusters, one nonribosomal peptide synthetase (NRPS) gene clusters, and three hybrid PKS/NRPS gene clusters. A hybrid PKS/NRPS gene cluster encoded in scaffold 2 is responsible for rakicidin synthesis. DNA database search indicated that the biosynthetic gene clusters for depsipeptides bearing 4-amino-2,4-pentadienoate are widely present in taxonomically diverse actinomycetes.

Keywords: Actinomycete, BE-43547, *Micromonospora*, Nonribosomal peptide synthetase, Polyketide synthase, Rakicidin, Taxonomy, Vinylamycin

Introduction

In our screening of antitumor compounds from rare actinomycetes, *Micromonospora* sp. DSW705 collected from deep seawater was found to produce rakicidins A and B. Rakicidins are fifteen-membered cyclic depsipeptides comprising three amino acids and a modified fatty acid. The most intriguing feature of rakicidins is the presence of a rare unusual amino acid, 4-amino-2,4-pentadienoate (APDA) in their cyclic structures, which is present only in a limited range of secondary metabolites of actinomycetes [1–3]. To date, five rakicidin congeners have been reported; rakicidins A, B, and E were isolated from *Micromonospora*, and rakicidins C and D from *Streptomyces* [4–7]. Recently, we disclosed the biosynthetic gene (*rak*) cluster for rakicidin D through the genome analysis of *Streptomyces* sp. MWV064 and proposed its biosynthetic pathway [8]. In this study, the whole genome shotgun sequencing of *Micromonospora* sp. DSW705 was conducted to assess its potential in secondary metabolism, to identify the biosynthetic genes for rakicidins A and B, and to make a comparative analysis with the gene cluster of rakicidin D in *Streptomyces* sp. MWV064. We here report the draft genome sequence of *Micromonospora* sp. DSW705, together with the taxonomical identification of the strain, description of its genome properties, and annotation of the rakicidin gene cluster. Furthermore, we investigated distribution of the rak-like clusters in other bacterial strains to evaluate the gene distribution in taxonomically diverse actinomycetes.

* Correspondence: komaki-hisayuki@nite.go.jp
1Biological Resource Center, National Institute of Technology and Evaluation, Chiba, Japan
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Organism information
Classification and features
In the screening of antitumor compounds from rare actinomycetes, *Micromonospora* sp. DSW705 was isolated from deep seawater collected in Toyama Bay, Japan and found to produce BU-4664 L and rakicidins A and B (unpublished). The general feature of this strain is shown in Table 1. This strain grew well on ISP 2 and ISP 4 agars.

Table 1

MIGS ID	Property	Term	Evidence code

Evidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [32]

On ISP 7 agars, the growth was poor. No growth was observed on ISP 5 agar. No aerial mycelia were observed. Substrate mycelium was orange, turning dark brown on sporulation on ISP 2 agar. No diffusible pigment was observed on ISP 2, ISP 3, ISP 4, ISP 5, ISP 6, and ISP 7 agar media. The strain bored single spore on short sporophore. The spores were spherical (0.7–0.8 μm in diameter) with wrinkle surface. A scanning electron micrograph of the strain is shown in Fig. 1. Growth occurred at 20–45 °C (optimum 37 °C) and pH 5–8 (optimum pH 7). Strain DSW705 exhibited growth with 0–3 % (w/v) NaCl (optimum 0 % NaCl). Strain DSW705 utilized arabinose, fructose, glucose, raffinose, sucrose, and xylose for growth. This strain was deposited in the NBRC culture collection with the registration number of NBRC 110037. The genes encoding 16S rRNA were amplified by PCR using two universal primers, 9 F and 1541R. After purification of the PCR product by AMPure (Beckman Coulter), the sequencing was carried out according to an established method [9]. Homology search of the sequence by EzTaxon-e [10] indicated the highest similarity (99.66 %, 1448/1453) to *Micromonospora chalcea* DSM 43026 T (X92594) as the closest type strain. A phylogenetic tree was reconstructed using ClustalX2 [11] and NJPlot [12] on the basis of the 16S rRNA gene sequence together with those of taxonomically close type strains showing over 98.5 % similarities. Evolutionary distances were calculated using Kimura’s two-parameter model [13]. The tree has been deposited into TreeBase (http://purl.org/phylo/treebase/phylows/study/TB2:S19405). In the phylogenetic tree, strain DSW705 and *M. chalcea* DSM 43026 T (X92594) formed a monophyletic cluster with a bootstrap resampling value of 100 % (Fig. 2).

Fig. 1 Scanning electron micrograph of *Micromonospora* sp. DSW705 grown on 1/2 ISP 2 agar for 7 days at 28 °C. Bar, 2 μm.
Chemotaxonomic data

The isomer of dippaminopimelic acid in the whole-cell hydrolysate was analyzed according to the method described by Hasegawa et al. [14]. Isoprenoid quinones and cellular fatty acids were analyzed as described previously [15]. The whole-cell hydrolysate of strain DSW705 contained meso-diaminopimelic acid as its diagnostic peptidoglycan diamino acid. The predominant menaquinone was identified as MK-10(H4); MK-9(H4), MK-10(H2), and MK-10(H6) were also detected as minor components. The major cellular fatty acids were found to be iso-C16:0, iso-C15:0 and anteiso-C17:0.

Genome sequencing information

Genome project history

In collaboration between Toyama Prefectural University and NBRC, the organism was selected for genome sequencing to elucidate the rakingidin biosynthetic pathway. The draft genome sequences have been deposited in the INSDC database under the accession number BBVA01000001-BBVA01000024. The project information and its association with MIGS version 2.0 compliance are summarized in Table 2 [16].

Growth conditions and genomic DNA preparation

Micromonospora sp. DSW705 was deposited in the NBRC culture collection with the registration number of NBRC 110037. The monoisolale of strain DSW705 was grown on a polycarbonate membrane filter (Advantec) on double...
diluted NBRC 227 agar medium (0.2 % yeast extract, 0.5 % malt extract, 0.2 % glucose, 2 % agar, pH 7.3) at 28 °C. High quality genomic DNA for sequencing was isolated from the mycelia using an EZ1 DNA Tissue Kit and a Bio Robot EZ1 (Qiagen) according to the protocol for extraction of nucleic acid from Gram-positive bacteria. The size, purity, and double-strand DNA concentration of the genomic DNA were measured by pulsed-field gel electrophoresis, ratio of absorbance values at 260 nm and 280 nm, and Quant-IT PicoGreen dsDNA Assay Kit (Life Technologies), respectively, to assess the quality of genomic DNA.

Genome sequencing and assembly
Shotgun and paired-end libraries were prepared and subsequently sequenced using 454 pyrosequencing technology and HiSeq1000 (Illumina) paired-end technology, respectively (Table 2). The 36 Mb shotgun sequences and 682 Mb paired-end sequences were assembled using Newbler v2.6 and subsequently finished using GenoFinisher [17] to yield 24 scaffolds larger than 500 bp. The N50 was 629,027 bp.

Genome annotation
Coding sequences were predicted by Prodigal [18] and tRNA-scanSE [19]. The gene functions were annotated by an in-house genome annotation pipeline, and searched for domains related to polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) using the SMART and PFAM domain databases. PKS and NRPS gene clusters and their domain organizations

Gene cluster	Encoded in	No. of modular PKS and NRPS genes	No. of modules	Backbone of predicted product
pks/nrps-1 (rak) scaffold 2	6	7	R-C-C2-Ser-C2-Gly-X	
pks/nrps-2 scaffold 2	6	6	X-X-X?-C2-Ser	
pks/nrps-3 scaffold 2	5	6	X-X?-C2-Asn-Ser	
pk-1 scaffold 2	12	33	R-C2-C	

The total is based on the total number of protein coding genes in the genome

The total is based on the total number of protein coding genes in the genome

Table 4 Number of genes associated with general COG functional categories

Code	Value	% of Total	Description
J	234	4.8	Translation, ribosomal structure and biogenesis
A	1	0.02	RNA processing and modification
K	606	12.5	Transcription
L	285	5.9	Replication, recombination and repair
B	2	0.04	Chromatin structure and dynamics
D	63	1.3	Cell cycle control, Cell division, chromosome partitioning
V	125	2.6	Defense mechanisms
T	315	6.5	Signal transduction mechanisms
M	281	5.8	Cell wall/membrane biogenesis
N	37	0.76	Cell motility
U	77	1.6	Intracellular trafficking and secretion
O	174	3.6	Posttranslational modification, protein turnover, chaperones
C	345	7.1	Energy production and conversion
G	475	9.8	Carbohydrate transport and metabolism
E	587	12.1	Amino acid transport and metabolism
F	110	2.2	Nucleotide transport and metabolism
H	221	4.5	Coenzyme transport and metabolism
I	277	5.7	Lipid transport and metabolism
P	344	7.1	Inorganic ion transport and metabolism
Q	282	5.8	Secondary metabolites biosynthesis, transport and catabolism
R	984	20.3	General function prediction only
S	457	9.4	Function unknown
-	1,373	28.3	Not in COGs

*Although antiSMASH predicted that the AT domain incorporates malonyl-CoA as the substrate, the signature sequence for substrate determination is not HAFHS for malonyl-CoA but TSSHS likely for methylmalonyl-CoA [33]
were determined as reported previously [9] and using antiSMASH [20]. Substrates of adenylation (A) and acyltransferase (AT) domains were predicted using antiSMASH. BLASTP search against the NCBI nr databases were also used for predicting function of proteins encoded in the rak cluster.

Genome properties

The total size of the genome is 6,795,311 bp and the GC content is 72.9 % (Table 3), similar to other genome-sequenced *Micromonospora* members. Of the total 6,273 genes, 6,219 are protein-coding genes and 54 are RNA genes. The classification of genes into COGs functional categories is shown in Table 4. As for secondary metabolite pathways by modular PKSs and NRPSs, *Micromonospora* sp. DSW705 has at least three hybrid PKS/NRPS gene clusters, three type I PKS gene clusters, and one NRPS gene clusters. According to the assembly line mechanism [21], we predicted the chemical structures which each cluster would synthesize (Table 5), suggesting the

Table 6 ORFs in the rakicidin-biosynthetic gene cluster of *Micromonospora* sp. DSW705

MSP03_02_ (locus tag)	Size (aa)	Deduced function	Protein homolog [origin]	Identity/similarity (%)	Accession number
06020	1,046	Transcriptional regulator	Transcriptional regulator [Micromonospora purpureochromogenes]	95/95	WP_030498969
06030	564	Monoxygenase	Monoxygenase [Micromonospora purpureochromogenes]	94/95	WP_030498970
06040	314	Unknown	Hypothetical protein [Salinispora pacifica]	66/75	WP_027650590
06050	674	Unknown	LigA protein [Micromonospora sp. M42]	99/99	EWM62996
06060	2,944	PKS	Hypothetical protein [Micromonospora purpureochromogenes]	95/96	WP_036342114
06070	1,608	PKS	Non-ribosomal peptide synthetase [Micromonospora sp. M42]	93/93	EWM63000
06080	1,123	NRPS	Non-ribosomal peptide synthetase [Micromonospora sp. M42]	99/100	EWM63002
06090	1,883	PKS	Beta-ketoacyl synthase [Micromonospora purpureochromogenes]	97/97	WP_030498975
06100	1,517	NRPS	Hypothetical protein, partial [Micromonospora purpureochromogenes]	97/97	WP_036342201
06110	1,563	NRPS	Hypothetical protein [Micromonospora purpureochromogenes]	95/95	WP_030498977
06120	570	ABC transporter	Pyoverdine ABC transporter permease/ATP-binding protein [Micromonospora sp. M42]	100/100	EWM63008
06130	287	Type-II thioesterase	Gramicidin S biosynthesis protein GrsT [Micromonospora sp. M42]	98/98	EWM63009
06140	955	NRPS	Non-ribosomal peptide synthetase [Micromonospora sp. M42]	99/99	EWM63010
06150	329	Asparagine oxygenase	Clavaminate synthase [Micromonospora sp. M42]	100/100	EWM63011
06160	771	Transporter	Membrane protein mmpL11 [Micromonospora sp. M42]	99/99	EWM63012
potential of *Micromonospora* sp. DSW705 to produce diverse polyketide- and nonribosomal peptide-compounds as secondary metabolites.

Insights from the genome sequence

Rakicidin biosynthetic gene cluster in *Micromonospora* sp. DSW705

Our previous study revealed that rakicidin is synthesized by a hybrid PKS/NRPS gene cluster. Its domain organization is shown in Fig. 3a [8]. Among the three hybrid PKS/NRPS gene clusters present in the *Micromonospora* sp. DSW705 genome shown in Table 5, only pks/nrps-1 shows the same domain organization as the rak cluster of *Streptomyces* sp. MWW064 (Fig. 3b). Since this gene cluster encodes all the enzymes necessary for assembling the rakicidin core structure, this cluster was confirmed as a rak cluster (Table 6). Gene organizations of the clusters for rakicidin D in *Streptomyces* sp. MWW064 (Fig. 3a) and rakicidins A and B in *Micromonospora* sp. DSW705 (Fig. 3b) are
essentially identical. Proposed biosynthetic pathway for rakicidins in *Micromonospora* sp. DSW705 is illustrated in Fig. 3b.

Biosynthetic gene clusters for rakicidins and the related compounds in other strains

Since the BLAST analysis shown in Table 6 suggests that other *Micromonospora* strains such as *M. purpureochromogenes* and *Micromonospora* sp. M42 may possess rak clusters, hybrid PKS/NRPS gene clusters similar to rak clusters were searched for bacterial strains whose genome sequences and the ORF information are available in the GenBank database. We carried out BLAST search using RakEF sequence of *Micromonospora* sp. DSW705 and *Streptomyces* sp. MWW064 as the queries, and then analyzed each of the gene clusters encoding RakEF orthologues using antiSMASH [20] and manually if necessary. As shown in Fig. 4, three *Micromonospora*, 19 *Streptomyces*, three *Frankia*, one *Nocardiopsis*, one *Salinispora*, and two *Kitasatospora* strains were found to possess hybrid PKS/NRPS gene clusters encoding RakEF orthologues. On the basis of the domain organizations and amino-acids substrates of A domains, these gene clusters can be classified into four groups (Fig. 4).

M. purpureochromogenes NRRL B-2672 harbors a rak cluster as same as *Micromonospora* sp. DSW705 and *Streptomyces* sp. MWW064. *Micromonospora* sp. M42 also possesses almost the same cluster, but the methyltransferase (MT) domain in module 5 (m5) is not present and some ORFs are fragmented (Fig. 4a).

Eighteen gene clusters categorized into Fig. 4b have domain organizations similar to rak clusters but the substrate of A domain in m6 was predicted to be L-valine. As vinylamycin and microtermolide contain a valine residue in their depsipeptide structure [1, 2], the four gene clusters of "*Streptomyces rubellomurinus*" ATCC 31215 and three *Frankia* strains were proposed to be responsible for vinylamycin biosynthesis. A plausible biosynthetic pathway for vinylamycin is illustrated in Fig. 5a. If the loading modules incorporate a C₃ unit or LMs encode an AT domain for a C₃ starter instead of the CoA-ligase domain, the

Fig. 5 Putative biosynthetic pathways for vinylamycin (a) and BE-43547 (b)
cluster is likely responsible for microtermolide biosynthesis. The remaining 14 strains in Fig. 4b lack a KR domain in m2. In the clusters of eight among the 18 strains, NRPSs for m5 and m6 are encoded the complementary strands, although the cluster of *Streptomyces durhamensis* NRRL ISP-5539 was not completely sequenced. Steptomyces sp. 769 does not have the PKS for LM and m1. In the cluster of Steptomyces sp. MspMP-M5, the PKS likely for LM have the PKS for LM and m1. In the clusters of *Streptomyces durhamensis* NRRL ISP-5539, the PKS likely for LM lacks a LM, and some domains are distinct from those of other strains. The cluster of *Nocardiposis* sp. CNS639 likely lacks a LM, and some domains are distinct from those of other strains.

Gene clusters of *Salinispora arenicola* CNR107 and *Micromonospora* sp. RV43 contain three NRPS modules at m3, m4, and m6, which were predicted to incorporate glycine, serine, and glycine, respectively. Only BE-43547 is known as a depsipeptide containing two glycines and APDA moiety. According to the domain organization, these two clusters are proposed to be involved with BE-43547 production as illustrated in Fig. 5b.

Figure 4d shows gene clusters in which the last NRPS module incorporates amino acids different from those of the other three groups described above. Five gene clusters shown in green were predicted to incorporate L-tyrosine into the polyketide/nonribosomal peptide chains by m6. Since depsipeptides bearing...
both tyrosine and APDA residues are not known, products from these clusters may be structurally novel. Two gene clusters of *Streptomyces celluloflavas* NRRL B-2493T and *Streptomyces albus* subsp. *albus* NRRL B-2513 showed the same domain organization as *rak* clusters, but NRPS substrate prediction suggests incorporation of L-glutamate and L-tryptophan/β-hydroxy-tyrosine (bht) by m6, respectively. Because rakicidin analogues containing these amino acids in place of the asparagine residue have not been reported, production of novel APDA-containing peptides is expected in these strains.

Distribution of the gene clusters among genome-sequenced strains

Whole genome sequencing has been performed for a large number of actinomycete strains. At present, genome sequences of over 227 *Streptomyces* species, eight species and six strains of *Kitasatospora*, eight species and seven strains of *Micromonospora*, three *Salinispora* species, one species and 97 strains of *Frankia*, and 18 species and 6 strains of *Nocardopsis* are available from the GenBank database. Among them, 29 strains possess the *rak*-like gene clusters. To investigate the correlation between evolution and secondary metabolite gene distribution, strains harboring the *rak*-like gene clusters (shaded in black) were mapped onto the phylogenetic tree of genome-sequenced strains based on 16S rRNA gene sequences (Fig. 6). *Micromonospora* strains are divided into two clades, one of which includes three rakicidin-producers and one BE-43547-producer. Strain MWW064 is the only *Streptomyces* that possesses the *rak* cluster other than *Micromonospora*. In contrast, vinylamycin-related gene clusters, shown in blue, are distributed in taxonomically diverse *Streptomyces* strains. It is noteworthy that two *Frankia* strains have the same gene cluster whereas only four compounds have been described for *Frankia* species [22]. This genus should be more examined for secondary metabolite production. BE-43547 gene clusters are present only in two strains of two genera belonging to the family *Micromonosporaceae* in this analysis. But, since this compound was originally found from *Streptomyces* [3], the gene cluster must also be present in the genus *Streptomyces*. Presence of gene clusters for depsipeptides containing a tyrosine residue is limited to the genus *Kitasatospora* and phylogenetically close *Streptomyces* members. The *S. celluloflavas* NRRL B-2493T gene cluster shows a similar domain organization to those of *rak* clusters stated above, but this strain is not taxonomically close to rakicidin producers.

Conclusions

The 6.8 Mb draft genome of *Micromonospora* sp. DSW705, a producer of rakicidins A and B isolated from deep seawater, has been deposited at GenBank/ENA/DBJ under the accession number BBVA00000000. This strain contains seven PKS and NRPS gene clusters, from which rakicidin-biosynthetic gene cluster was identified. Gene clusters for the synthesis of rakicidins or the related compounds are present in taxonomically diverse actinomycete strains, belonging to *Micromonospora* and *Salinispora*, *Frankia*, *Nocardipos*, *Kitasatospora*, and *Streptomyces*. These findings provide useful information for discovering new and diverse depsipeptides bearing the APDA unit, and accelerate understanding of relationship between taxonomy and secondary metabolite gene distribution, and will possibly provide the insight regarding to the evolution of secondary metabolite genes.

Abbreviations

A: Adenylation; ABC: ATP-binding cassette; ACP: Acyl carrier protein; APDA: 4-amino-2,4-pentadienoate; AT: Acyltransferase; ATP: Adenosine triphosphate; bht: β-hydroxy-tyrosine; C: Condensation; CoA: Coenzyme A; CoL: CoA ligase; DDBJ: DNA Data Bank of Japan; DH: Dehydratase; E: Epimerization; ER: Enoylreductase; ISP: International *Streptomyces* project; KR: Ketoreductase; KS: Ketosynthase; LM: Loading module; m: Module; MT: Methyltransferase; NBRC: Biological Resource Center, National Institute of Technology and Evaluation; NRPS: Nonribosomal peptide synthetase; PKS: Polyketide synthase; T: Thiolation

Acknowledgements

This research was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Culture, Sports, and Technology of Japan to YJ. We also thank Dr. Akane Kimura, Ms. Yuko Kitahashi, Ms. Satomi Saitou and Ms. Chiyoko Shibata for assistance to this study.

Authors’ contributions

HK analysed biosynthetic gene clusters and drafted the manuscript. NI annotated the genome sequences. AH sequenced the genome. MH performed chemotaxonomic experiments. EH examined the features of the strain. AI predicted products of gene clusters similar to *rak* clusters. YI designed this study and edited the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing of interests.

Author details

1Biological Resource Center, National Institute of Technology and Evaluation, Chiba, Japan. 2NBRC, Tokyo, Japan. 3Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama, Japan.

Received: 1 April 2016 **Accepted:** 12 October 2016

Published online: 22 October 2016

References

1. Carr G, Poulsen M, Klassen JL, Hou Y, Wyche TP, Bugni TS, Currie CR, Clardy J. Microteomolides A and B from termit-associated *Streptomyces* sp. and structural revision of vinylamycin. Org Lett. 2012;14(11):2822–5.
2. Igarashi M, Shida T, Sasaki Y, Kinoshita N, Naganawa H, Hamada M, Takeuchi T. Vinylamycin, a new depsipeptide antibiotic, from *Streptomyces* sp. J Antibiot. 1999;52(10):873–9.
3. Nishioha K, Nakajima S, Nagashima M, Kojiri K, Suda H. BE-43547 series substances, their manufacture with *Streptomyces* species, and their use as antitumor agents. Japan Patent. 1998. JP 10147594 A. 19980602.
4. Igarashi Y, Shinohara K, Miyaraga S, Oku N, Onaka H, Sakurai H, Saiki I, Kitani S, Nihi T, Wimonsirawade W, et al. Rakicidin D, an inhibitor of tumor cell invasion from marine-derived *Streptomyces* sp. J Antibiot. 2010;63(9):563–5.
5. McBrien KD, Berry RL, Lowe SE, Neddermann KM, Bursuker I, Huang S, Kohr SE, Leet JE. Rakicidins, new cytotoxic lipopeptides from *Micromonospora* sp. fermentation, isolation and characterization. J Antibiot. 1995;48(12):1446–52.
6. Oku N, Matoba S, Yamazaki YM, Shimasaki R, Miyanaga S, Igarashi Y. Complete stereochemistry and preliminary structure-activity relationship of rakiadin A, a hypoxia-selective cytotoxin from Microcystis sp. Microbiol. 2014;77(11):2561–3.

7. Hu J, Wunderlich D, Sattler I, Feng X, Grabley S, Thiericke R. Rakiadin C, a new cyclic depsipeptide from Streptomyces sp. European J Org Chem. 2000;19:3335–6.

8. Komaki H, Ishikawa A, Ichikawa N, Hosoyama A, Hamada M, Hanurai E, Nihira T, Panbangred W, Igarashi Y. Draft genome sequence of Streptomyces sp. MW0064 for elucidating the rakiadin biosynthetic pathway. Stand Genomic Sci. 2016;11(1):83. doi:10.1186/s40793-016-0205-3.

9. Komaki H, Ishikawa A, Fujita N, Igarashi Y. Draft genome sequence of marine-derived Streptomyces sp. TP-A0098, a producer of anti-MRSA antibiotic tylicamycins. Stand Genomic Sci. 2015;10:58.

10. Kim OS, Cho YJ, Lee K, Park SC, Jeon YS, Yi H, et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylogenotypes that represent uncultured species. Int J Syst Evol Microbiol. 2012;62(Pt 3):716–21.

11. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.

12. Perriere G, Gouy M. WWW-query: an on-line retrieval system for biological sequence banks. Biochimie. 1996;78(5):364–9.

13. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20.

14. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29(4):319–22.

15. Hamada M, Yamamura H, Komukai C, Tamura T, Suzuki K, Hayakawa M. Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot. 2017;70(5):375–80.

16. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Baez-Cancino J, Barrett D, Blin K, et al. antiSMASH 2.0: an integrated platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 2013;41(Web Server issue):W204–14.

17. Fischbach MA, Walsh CT. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev. 2006;106(8):3468–96.

18. CRiNetBase. Dictionary of Natural Products on DVD-ROM, version 19.1. London: Chapman & Hall; 2014.

19. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87(12):4576–9.

20. Koch C, Kroppenstedt RM, Rainey FA, Stackebrandt E. 16S ribosomal DNA analysis of the genera Micromonaspora, Actinoplanes, Catellatospora, Catenuloplanes, Daedylsporangium, and Pilkimelia and emendation of the family Micromonosporaceae. Int J Syst Bacteriol. 1996;46:765–8.

21. Kralikov NA. Ray fungi and related organisms. Actinomyceteces, Akademii Nauk, Moscow, 1938. p. 272.

22. Ørskov J. Investigations into the morphology of the ray fungi. Copenhagen: Levin and Munksgaard; 1923.

23. Aashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.

24. Kakavas SJ, Katz L, Stassi D. Identification and characterization of the niddamycin polypeptide synthase genes from Streptomyces caesletis. J Bacteriol. 1997;179(23):7515–22.

25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.