On the Beer Index of Convexity and Its Variants

Martin Balko, Vít Jelínek, Pavel Valtr, and Bartosz Walczak

Charles University in Prague,
Czech Republic

June 21, 2016
Measuring convexity

How to measure convexity of a given polygon?

There are (at least) two known approaches.
Measuring convexity

- How to measure convexity of a given polygon?
Measuring convexity

- How to measure convexity of a given polygon?
Measuring convexity

- How to measure convexity of a given polygon?

More convex

Less convex
Measuring convexity

- How to measure convexity of a given polygon?

- There are (at least) two known approaches.
Measuring convexity via a largest convex subset
Let S be a subset of the plane with finite positive $\lambda_2(S)$.
Let S be a subset of the plane with finite positive $\lambda_2(S)$.

The convexity ratio $c(S)$ of S is the supremum of the measures of convex subsets of S divided by $\lambda_2(S)$.
Let S be a subset of the plane with finite positive $\lambda_2(S)$.

The **convexity ratio** $c(S)$ of S is the supremum of the measures of convex subsets of S divided by $\lambda_2(S)$.
Measuring convexity via a largest convex subset

- Let S be a subset of the plane with finite positive $\lambda_2(S)$.
- The convexity ratio $c(S)$ of S is the supremum of the measures of convex subsets of S divided by $\lambda_2(S)$.
Measuring convexity via visibility

Points $A, B \in S$ see each other in S if we have $AB \subseteq S$.

The Beer index of convexity $b(S)$ of S is the probability that two randomly chosen points from S see each other in S.

That is, $b(S) := \frac{\lambda^4(\{A, B \in S \times S : AB \subseteq S\})}{\lambda^2(S)^2} \in [0, 1]$.

First studied by G. Beer in the 1970s.
Measuring convexity via visibility

Points $A, B \in S$ see each other in S if we have $\overline{AB} \subseteq S$.

First studied by G. Beer in the 1970s.
Measuring convexity via visibility

- Points $A, B \in S$ see each other in S if we have $AB \subseteq S$.
- The Beer index of convexity $b(S)$ of S is the probability that two randomly chosen points from S see each other in S. First studied by G. Beer in the 1970s.
Measuring convexity via visibility

- Points $A, B \in S$ see each other in S if we have $AB \subseteq S$.
- The Beer index of convexity $b(S)$ of S is the probability that two randomly chosen points from S see each other in S.
- That is,

$$b(S) := \frac{\lambda_4(\{(A, B) \in S \times S : \overline{AB} \subseteq S\})}{\lambda_2(S)^2} \in [0, 1].$$

First studied by G. Beer in the 1970s.
Points $A, B \in S$ see each other in S if we have $AB \subseteq S$.

The Beer index of convexity $b(S)$ of S is the probability that two randomly chosen points from S see each other in S.

That is,

$$b(S) := \frac{\lambda_4(\{(A, B) \in S \times S: \overline{AB} \subseteq S\})}{\lambda_2(S)^2} \in [0, 1].$$

First studied by G. Beer in the 1970s.
Measuring convexity via visibility

- Points \(A, B \in S \) see each other in \(S \) if we have \(\overline{AB} \subseteq S \).
- The Beer index of convexity \(b(S) \) of \(S \) is the probability that two randomly chosen points from \(S \) see each other in \(S \).
- That is,

\[
b(S) := \frac{\lambda_4(\{(A, B) \in S \times S: \overline{AB} \subseteq S\})}{\lambda_2(S)^2} \in [0, 1].
\]

- First studied by G. Beer in the 1970s.
Measuring convexity via visibility

- Points \(A, B \in S \) see each other in \(S \) if we have \(AB \subseteq S \).
- The Beer index of convexity \(b(S) \) of \(S \) is the probability that two randomly chosen points from \(S \) see each other in \(S \).
- That is,

\[
b(S) := \frac{\lambda_4(\{(A, B) \in S \times S : AB \subseteq S\})}{\lambda_2(S)^2} \in [0, 1].
\]

- First studied by G. Beer in the 1970s.
A lower bound on $b(S)$

We are interested in a relationship between $c(P)$ and $b(P)$.

Observation
For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $c(P) \leq \frac{1}{n}$ and $b(P) \geq \frac{1}{n} - \varepsilon$ for any $\varepsilon > 0$.

Thus $b(P)$ is not bounded from above by a sublinear function of $c(P)$.
A lower bound on $b(S)$

- We are interested in a relationship between $c(S)$ and $b(S)$.

Observation
For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $c(P) \leq 1/n$ and $b(P) \geq 1/n - \varepsilon$ for any $\varepsilon > 0$.

Thus $b(P)$ is not bounded from above by a sublinear function of $c(P)$.
A lower bound on $b(S)$

- We are interested in a relationship between $c(S)$ and $b(S)$.

Observation

For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $c(P) \leq \frac{1}{n}$ and $b(P) \geq \frac{1}{n} - \varepsilon$ for any $\varepsilon > 0$.
A lower bound on \(b(S) \)

- We are interested in a **relationship between** \(c(S) \) and \(b(S) \).

Observation

For every \(n \in \mathbb{N} \) there is a simple polygon \(P \) satisfying \(c(P) \leq \frac{1}{n} \) and \(b(P) \geq \frac{1}{n} - \varepsilon \) for any \(\varepsilon > 0 \).
A lower bound on $b(S)$

- We are interested in a relationship between $c(S)$ and $b(S)$.

Observation

For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $c(P) \leq \frac{1}{n}$ and $b(P) \geq \frac{1}{n} - \varepsilon$ for any $\varepsilon > 0$.

Thus $b(P)$ is not bounded from above by a sublinear function of $c(P)$.

![Polygon diagram]
We are interested in a relationship between \(c(S)\) and \(b(S)\).

Observation

For every \(n \in \mathbb{N}\) there is a simple polygon \(P\) satisfying \(c(P) \leq \frac{1}{n}\) and \(b(P) \geq \frac{1}{n} - \varepsilon\) for any \(\varepsilon > 0\).
A lower bound on $b(S)$

- We are interested in a relationship between $c(S)$ and $b(S)$.

Observation

For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $c(P) \leq \frac{1}{n}$ and $b(P) \geq \frac{1}{n} - \varepsilon$ for any $\varepsilon > 0$.

Thus $b(P)$ is not bounded from above by a sublinear function of $c(P)$.

![Diagram](image_url)
A lower bound on $b(S)$

- We are interested in a relationship between $c(S)$ and $b(S)$.

Observation

For every $n \in \mathbb{N}$ there is a simple polygon P satisfying $c(P) \leq \frac{1}{n}$ and $b(P) \geq \frac{1}{n} - \varepsilon$ for any $\varepsilon > 0$.

Thus $b(P)$ is not bounded from above by a sublinear function of $c(P)$.
Upper bounds on \(b(S) \)

Theorem (Cabello et al., 2014)
Every weakly star-shaped polygon \(P \) satisfies \(b(P) \leq 18 \ c(P) \).

In a weakly star-shaped set \(S \), there is a line segment in \(S \) that sees the entire \(S \).
Up to a constant, this is the best possible.

Theorem (Cabello et al., 2014)
Every simple polygon \(P \) satisfies \(b(P) \leq 12 \ c(P) \left(1 + \log \frac{1}{c(P)} \right) \).

Conjecture (Cabello et al., 2014)
There is a constant \(\alpha > 0 \) so that for every simple polygon \(P \) we have \(b(P) \leq \alpha \ c(P) \).
Upper bounds on $b(S)$

- What about an upper bound on $b(S)$?
Upper bounds on $b(S)$

What about an upper bound on $b(S)$?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies $b(P) \leq 18 c(P)$.

Conjecture (Cabello et al., 2014)

There is $\alpha > 0$ so that for every simple polygon P we have $b(P) \leq \alpha c(P)$.
Upper bounds on $b(S)$

- What about an upper bound on $b(S)$?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies $b(P) \leq 18c(P)$.

- In a weakly star-shaped set S, there is a *line segment* in S that sees the entire S.
Upper bounds on $b(S)$

- What about an upper bound on $b(S)$?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies $b(P) \leq 18 c(P)$.

- In a **weakly star-shaped** set S, there is a *line segment* in S that sees the entire S.
- Up to a constant, this is the best possible.
Upper bounds on $b(S)$

- What about an upper bound on $b(S)$?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies $b(P) \leq 18 c(P)$.

- In a weakly star-shaped set S, there is a line segment in S that sees the entire S.
- Up to a constant, this is the best possible.

Theorem (Cabello et al., 2014)

Every simple polygon P satisfies $b(P) \leq 12 c(P) \left(1 + \log_2 \frac{1}{c(P)}\right)$.
Upper bounds on $b(S)$

- What about an upper bound on $b(S)$?

Theorem (Cabello et al., 2014)

Every weakly star-shaped polygon P satisfies $b(P) \leq 18 \ c(P)$.

- In a weakly star-shaped set S, there is a line segment in S that sees the entire S.
- Up to a constant, this is the best possible.

Theorem (Cabello et al., 2014)

Every simple polygon P satisfies $b(P) \leq 12 \ c(P) \left(1 + \log_2 \frac{1}{c(P)}\right)$.

Conjecture (Cabello et al., 2014)

There is $\alpha > 0$ so that for every simple polygon P we have $b(P) \leq \alpha \ c(P)$.
The main result

Theorem

Every set \(S \subseteq \mathbb{R}^2 \) with simply connected components satisfies \(b(S) \leq 180c(S) \).

Gives a positive answer to the previous conjecture.

Up to a constant this is the best possible.

We cannot omit the assumption about simple connectivity:

In fact, \(S := [0,1]^2 \setminus Q^2 \) gives \(c(S) = 0 \) and \(b(S) = 1 \).
The main result

Theorem

Every set \(S \subseteq \mathbb{R}^2 \) with simply connected components satisfies \(b(S) \leq 180 c(S) \).
The main result

Theorem

Every set $S \subseteq \mathbb{R}^2$ with simply connected components satisfies $b(S) \leq 180 c(S)$.

- Gives a positive answer to the previous conjecture.
The main result

Theorem

Every set $S \subseteq \mathbb{R}^2$ with simply connected components satisfies $b(S) \leq 180 c(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
The main result

Theorem

Every set \(S \subseteq \mathbb{R}^2 \) with simply connected components satisfies \(b(S) \leq 180 \, c(S) \).

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:
The main result

Theorem

Every set $S \subseteq \mathbb{R}^2$ with simply connected components satisfies $b(S) \leq 180 \ c(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

$$n \times n$$
The main result

Theorem

Every set $S \subseteq \mathbb{R}^2$ with simply connected components satisfies $b(S) \leq 180 \ c(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

\[c(P) \sim 1/n \]
The main result

Theorem

Every set $S \subseteq \mathbb{R}^2$ with simply connected components satisfies $b(S) \leq 180 c(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:
The main result

Theorem

Every set $S \subseteq \mathbb{R}^2$ with simply connected components satisfies $b(S) \leq 180 c(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

![Diagram](attachment:image.png)

$b(P) = 1$
The main result

Theorem
Every set $S \subseteq \mathbb{R}^2$ with simply connected components satisfies $b(S) \leq 180 \, c(S)$.

- Gives a positive answer to the previous conjecture.
- Up to a constant this is the best possible.
- We cannot omit the assumption about simple connectivity:

$$b(P) = 1$$

- In fact, $S := [0, 1]^2 \setminus \mathbb{Q}^2$ gives $c(S) = 0$ and $b(S) = 1$.
Sketch of the proof

Main idea: assign a set $R(A) \subseteq \mathbb{R}^2$ of measure $O(c(S) \lambda_2(S))$ to every $A \in S$ such that for every $B \subseteq S$ we have $B \in R(C)$ or $C \in R(B)$.

Step 1: Reduce S to a bounded simply-connected open set.

Step 2: Partition S into weakly star-shaped sets.

Step 3: For $A \in S$, define $R(A)$ (as a union of three trapezoids).
Sketch of the proof

- **Main idea:** assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- **Step 1:** Reduce S to a bounded simply-connected open set.

- **Step 2:** Partition S into weakly star-shaped sets.

- **Step 3:** For $A \in S$, define $\mathcal{R}(A)$ (as a union of three trapezoids).
Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.
Sketch of the proof

- **Main idea:** assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- **Step 1:** Reduce S to a bounded simply-connected open set.
Sketch of the proof

- **Main idea:** assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- **Step 1:** Reduce S to a bounded simply-connected open set.
Sketch of the proof

- **Main idea:** assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

 - **Step 1:** Reduce S to a bounded simply-connected open set.
Sketch of the proof

- **Main idea:** assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- **Step 1:** Reduce S to a bounded simply-connected open set.
Sketch of the proof

- **Main idea**: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- **Step 1**: Reduce S to a bounded simply-connected open set.
Sketch of the proof

- **Main idea:** assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- **Step 1:** Reduce S to a bounded simply-connected open set.
- **Step 2:** Partition S into weakly star-shaped sets.
Sketch of the proof

- **Main idea:** assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- **Step 1:** Reduce S to a bounded simply-connected open set.
- **Step 2:** Partition S into weakly star-shaped sets.
Sketch of the proof

- **Main idea**: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- **Step 1**: Reduce S to a bounded simply-connected open set.
- **Step 2**: Partition S into weakly star-shaped sets.
Sketch of the proof

- **Main idea:** assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- **Step 1:** Reduce S to a bounded simply-connected open set.
- **Step 2:** Partition S into weakly star-shaped sets.
Sketch of the proof

- **Main idea:** assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- **Step 1:** Reduce S to a bounded simply-connected open set.
- **Step 2:** Partition S into weakly star-shaped sets.
- **Step 3:** For $A \in S$, define $\mathcal{R}(A)$ (as a union of three trapezoids).
Sketch of the proof

- **Main idea:** assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- **Step 1:** Reduce S to a bounded simply-connected open set.
- **Step 2:** Partition S into weakly star-shaped sets.
- **Step 3:** For $A \in S$, define $\mathcal{R}(A)$ (as a union of three trapezoids).
Main idea: assign a set $\mathcal{R}(A) \subseteq \mathbb{R}^2$ of measure $O(c(S)\lambda_2(S))$ to every $A \in S$ such that for every $BC \subseteq S$ we have $B \in \mathcal{R}(C)$ or $C \in \mathcal{R}(B)$.

- **Step 1**: Reduce S to a bounded simply-connected open set.
- **Step 2**: Partition S into weakly star-shaped sets.
- **Step 3**: For $A \in S$, define $\mathcal{R}(A)$ (as a union of three trapezoids).
Sketch of the proof

- **Main idea:** assign a set \(\mathcal{R}(A) \subseteq \mathbb{R}^2 \) of measure \(O(c(S)\lambda_2(S)) \) to every \(A \in S \) such that for every \(BC \subseteq S \) we have \(B \in \mathcal{R}(C) \) or \(C \in \mathcal{R}(B) \).

- **Step 1:** Reduce \(S \) to a bounded simply-connected open set.
- **Step 2:** Partition \(S \) into weakly star-shaped sets.
- **Step 3:** For \(A \in S \), define \(\mathcal{R}(A) \) (as a union of three trapezoids).
Higher-order Beer index

The main result fails in higher dimensions.

We introduce the following new parameter.

For \(k \in \mathbb{N} \) and \(S \subseteq \mathbb{R}^d \), let the \(k \)-index of convexity \(b_k(S) \) of \(S \) be the probability that the convex hull of randomly chosen \(k+1 \) points from \(S \) is contained in \(S \).

That is, \(b_k(S) := \frac{\lambda_{d+1}}{\lambda_d} \left(\frac{{\binom{k+1}{1}}}{\binom{d+k+1}{d}} \right) \left(\frac{1}{\lambda_d(S)} \right)^{k+1} \).

Note that \(b_k(S) \in [0, 1] \) and \(b_1(S) = b(S) \).
Higher-order Beer index

- The main result fails in higher dimensions.

For \(k \in \{0, 1, \ldots, d\} \) and \(S \subseteq \mathbb{R}^d \), let the \(k \)-index of convexity \(b_k(S) \) of \(S \) be the probability that the convex hull of randomly chosen \(k + 1 \) points from \(S \) is contained in \(S \). That is,

\[
b_k(S) := \frac{\lambda_{k+1}(S)}{\lambda_d(S)}
\]

Note that \(b_k(S) \in [0, 1] \) and \(b_1(S) = b(S) \).
Higher-order Beer index

- The main result fails in higher dimensions.
Higher-order Beer index

- The main result fails in higher dimensions.

\[c(P) \sim \frac{1}{n} \]

\[b(P) = 1 \]
Higher-order Beer index

- The main result fails in higher dimensions.
 \[c(P) \sim \frac{1}{n} \]
 \[b(P) = 1 \]

- We introduce the following new parameter.
Higher-order Beer index

- The main result fails in higher dimensions.

\[c(P) \sim \frac{1}{n} \quad b(P) = 1 \]

- We introduce the following new parameter.
- For \(k \in [d] \) and \(S \subseteq \mathbb{R}^d \), let the \textit{k-index of convexity} \(b_k(S) \) of \(S \) be the probability that the convex hull of randomly chosen \(k + 1 \) points from \(S \) is contained in \(S \).
Higher-order Beer index

- The main result fails in higher dimensions.

\[c(P) \sim 1/n \quad b(P) = 1 \]

- We introduce the following new parameter.
- For \(k \in [d] \) and \(S \subseteq \mathbb{R}^d \), let the *k-index of convexity* \(b_k(S) \) of \(S \) be the probability that the convex hull of randomly chosen \(k + 1 \) points from \(S \) is contained in \(S \).
- That is,

\[
b_k(S) := \frac{\lambda_{(k+1)d}(\{(A_1, \ldots, A_{k+1}) \in S^{k+1}: \text{Conv}\{A_1, \ldots, A_{k+1}\} \subseteq S\})}{\lambda_d(S)^{k+1}}.
\]
The main result fails in higher dimensions.

\[c(P) \sim 1/n \quad \text{b}(P) = 1 \]

We introduce the following new parameter.
For \(k \in [d] \) and \(S \subseteq \mathbb{R}^d \), let the \(k \)-index of convexity \(b_k(S) \) of \(S \) be the probability that the convex hull of randomly chosen \(k + 1 \) points from \(S \) is contained in \(S \).

That is,

\[
b_k(S) := \frac{\lambda_{(k+1)d}(\{(A_1, \ldots, A_{k+1}) \in S^{k+1} : \text{Conv}\{A_1, \ldots, A_{k+1}\} \subseteq S\})}{\lambda_d(S)^{k+1}}.
\]

Note that \(b_k(S) \in [0, 1] \) and \(b_1(S) = b(S) \).
Few observations

We have $b_1(S) \geq b_2(S) \geq \cdots \geq b_d(S)$.

For general set S only $b_d(S)$ admits a nontrivial upper bound in $c(S)$.

The set $S' := [0,1]_d \setminus Q_d$ satisfies $c(S') = 0$ and $b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1$.

Is there a nontrivial upper bound on $b_d(S)$? Lower bounds?

In the plane this is not the original problem.
Few observations

- We have $b_1(S) \geq b_2(S) \geq \cdots \geq b_d(S)$.
Few observations

- We have $b_1(S) \geq b_2(S) \geq \cdots \geq b_d(S)$.
- For general set S only $b_d(S)$ admits a nontrivial upper bound in $c(S)$.
Few observations

- We have $b_1(S) \geq b_2(S) \geq \cdots \geq b_d(S)$.
- For general set S only $b_d(S)$ admits a nontrivial upper bound in $c(S)$.
 - The set $S' := [0, 1]^d \setminus \mathbb{Q}^d$ satisfies $c(S') = 0$ and
 \[b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1. \]
Few observations

- We have $b_1(S) \geq b_2(S) \geq \cdots \geq b_d(S)$.
- For general set S only $b_d(S)$ admits a nontrivial upper bound in $c(S)$.
 - The set $S' := [0,1]^d \setminus \mathbb{Q}^d$ satisfies $c(S') = 0$ and
 \[b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1. \]
- Is there a nontrivial upper bound on $b_d(S)$? Lower bounds?
Few observations

- We have \(b_1(S) \geq b_2(S) \geq \cdots \geq b_d(S) \).
- For general set \(S \) only \(b_d(S) \) admits a nontrivial upper bound in \(c(S) \).
 - The set \(S' := [0, 1]^d \setminus \mathbb{Q}^d \) satisfies \(c(S') = 0 \) and
 \[
 b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1.
 \]
- Is there a nontrivial upper bound on \(b_d(S) \)? Lower bounds?
- In the plane this is not the original problem.
Few observations

- We have \(b_1(S) \geq b_2(S) \geq \cdots \geq b_d(S) \).
- For general set \(S \) only \(b_d(S) \) admits a nontrivial upper bound in \(c(S) \).
 - The set \(S' := [0, 1]^d \setminus \mathbb{Q}^d \) satisfies \(c(S') = 0 \) and
 \[
 b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1.
 \]
- Is there a nontrivial upper bound on \(b_d(S) \)? Lower bounds?
- In the plane this is not the original problem.
Few observations

- We have $b_1(S) \geq b_2(S) \geq \cdots \geq b_d(S)$.
- For general set S only $b_d(S)$ admits a nontrivial upper bound in $c(S)$.
 - The set $S' := [0,1]^d \setminus \mathbb{Q}^d$ satisfies $c(S') = 0$ and
 \[
 b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1.
 \]
- Is there a nontrivial upper bound on $b_d(S)$? Lower bounds?
- In the plane this is not the original problem.
Few observations

- We have $b_1(S) \geq b_2(S) \geq \cdots \geq b_d(S)$.
- For general set S only $b_d(S)$ admits a nontrivial upper bound in $c(S)$.
 - The set $S' := [0, 1]^d \setminus \mathbb{Q}^d$ satisfies $c(S') = 0$ and
 \[b_1(S') = b_2(S') = \cdots = b_{d-1}(S') = 1.\]
- Is there a nontrivial upper bound on $b_d(S)$? Lower bounds?
- In the plane this is not the original problem.
Our results for $b_d(S)$

Theorem
For every $d \geq 2$, there is $\beta = \beta(d) > 0$ such that every $S \subseteq \mathbb{R}^d$ satisfies $b_d(S) \leq \beta c(S)$.

We do not know whether this upper bound is the best possible. It is optimal up to a logarithmic factor.

Theorem
For every $d \geq 2$, there is $\gamma = \gamma(d) > 0$ such that for every $\varepsilon \in (0, 1]$, there is a set $S \subseteq \mathbb{R}^d$ satisfying $c(S) \leq \varepsilon$ and $b_d(S) \geq \gamma \varepsilon \log_2 \frac{1}{\varepsilon}$, and in particular, we have $b_d(S) \geq \gamma c(S) \log_2 \frac{1}{c(S)}$.
Our results for $b_d(S)$

Theorem

For every $d \geq 2$, there is $\beta = \beta(d) > 0$ such that every $S \subseteq \mathbb{R}^d$ satisfies $b_d(S) \leq \beta c(S)$.
Our results for $b_d(S)$

Theorem

For every $d \geq 2$, there is $\beta = \beta(d) > 0$ such that every $S \subseteq \mathbb{R}^d$ satisfies $b_d(S) \leq \beta c(S)$.

- We do not know whether this upper bound is the best possible.
Our results for $b_d(S)$

Theorem

For every $d \geq 2$, there is $\beta = \beta(d) > 0$ such that every $S \subseteq \mathbb{R}^d$ satisfies $b_d(S) \leq \beta c(S)$.

- We do not know whether this upper bound is the best possible.
- It is optimal up to a logarithmic factor.
Our results for $b_d(S)$

Theorem

For every $d \geq 2$, there is $\beta = \beta(d) > 0$ such that every $S \subseteq \mathbb{R}^d$ satisfies $b_d(S) \leq \beta \, c(S)$.

- We do not know whether this upper bound is the best possible.
- It is optimal up to a logarithmic factor.

Theorem

For every $d \geq 2$, there is $\gamma = \gamma(d) > 0$ such that for every $\varepsilon \in (0, 1]$, there is a set $S \subseteq \mathbb{R}^d$ satisfying $c(S) \leq \varepsilon$ and $b_d(S) \geq \gamma \frac{\varepsilon}{\log_2 1/\varepsilon}$, and in particular, we have $b_d(S) \geq \gamma \frac{c(S)}{\log_2 1/c(S)}$.
Open problems

Is there a linear upper bound on $b^{d-1}(S)$ for 'topologically nice' sets S?

Conjecture
For every $d \geq 2$, there is $\alpha = \alpha(d) > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set whose every component is contractible, then $b^{d-1}(S) \leq \alpha c(S)$.

Does large $b(S)$ imply existence of large triangle with boundary in S?

More generally, is this true for $b^k(S)$ and k-skeletons $\text{Skel}_k(T)$?

Conjecture
For every $k, d \in \mathbb{N}$ such that $1 \leq k \leq d$ and every $\varepsilon > 0$, there is a $\delta > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set with $b^k(S) \geq \varepsilon$, then there is a simplex T such that $\lambda^d(T) \geq \delta \lambda^d(S)$ and $\text{Skel}_k(T) \subseteq S$.

Thank you.
Open problems

- Is there a linear upper bound on $b_{d-1}(S)$ for ‘topologically nice’ sets S?
Open problems

- Is there a linear upper bound on $b_{d-1}(S)$ for ‘topologically nice’ sets S?

Conjecture

For every $d \geq 2$, there is $\alpha = \alpha(d) > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set whose every component is contractible, then $b_{d-1}(S) \leq \alpha c(S)$.

Thank you.
Is there a linear upper bound on $b_{d-1}(S)$ for ‘topologically nice’ sets S?

Conjecture

For every $d \geq 2$, there is $\alpha = \alpha(d) > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set whose every component is contractible, then $b_{d-1}(S) \leq \alpha c(S)$.

Does large $b(S)$ imply existence of large triangle with boundary in S?
Open problems

- Is there a linear upper bound on $b_{d-1}(S)$ for ‘topologically nice’ sets S?

Conjecture

For every $d \geq 2$, there is $\alpha = \alpha(d) > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set whose every component is contractible, then $b_{d-1}(S) \leq \alpha c(S)$.

- Does large $b(S)$ imply existence of large triangle with boundary in S?
- More generally, is this true for $b_k(S)$ and k-skeletons $\text{Skel}_k(T)$?
Open problems

- Is there a linear upper bound on $b_{d-1}(S)$ for ‘topologically nice’ sets S?

Conjecture

For every $d \geq 2$, there is $\alpha = \alpha(d) > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set whose every component is contractible, then $b_{d-1}(S) \leq \alpha c(S)$.

- Does large $b(S)$ imply existence of large triangle with boundary in S?
- More generally, is this true for $b_k(S)$ and k-skeletons $\text{Skel}_k(T)$?

Conjecture

For every $k, d \in \mathbb{N}$ such that $1 \leq k \leq d$ and every $\varepsilon > 0$, there is a $\delta > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set with $b_k(S) \geq \varepsilon$, then there is a simplex T such that $\lambda_d(T) \geq \delta \lambda_d(S)$ and $\text{Skel}_k(T) \subseteq S$.

Thank you.
Open problems

- Is there a linear upper bound on $b_{d-1}(S)$ for ‘topologically nice’ sets S?

Conjecture

For every $d \geq 2$, there is $\alpha = \alpha(d) > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set whose every component is contractible, then $b_{d-1}(S) \leq \alpha c(S)$.

- Does large $b(S)$ imply existence of large triangle with boundary in S?
- More generally, is this true for $b_k(S)$ and k-skeletons $\text{Skel}_k(T)$?

Conjecture

For every $k, d \in \mathbb{N}$ such that $1 \leq k \leq d$ and every $\varepsilon > 0$, there is a $\delta > 0$ such that if $S \subseteq \mathbb{R}^d$ is a set with $b_k(S) \geq \varepsilon$, then there is a simplex T such that $\lambda_d(T) \geq \delta \lambda_d(S)$ and $\text{Skel}_k(T) \subseteq S$.

Thank you.