Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Nucleoside analogs for management of respiratory virus infections: mechanism of action and clinical efficacy
Annelies Stevaert1, Elisabetta Groaz2,3 and Lieve Naesens1

The COVID-19 pandemic has accelerated the development of nucleoside analogs to treat respiratory virus infections, with remdesivir being the first compound to receive worldwide authorization and three other nucleoside analogs (i.e. favipiravir, molnupiravir, and bemnifosbuvir) in the pipeline. Here, we summarize the current knowledge concerning their clinical efficacy in suppressing the virus and reducing the need for hospitalization or respiratory support. We also mention trials of favipiravir and lumicitabine, for influenza and respiratory syncytial virus, respectively. Besides, we outline how nucleoside analogs interact with the polymerases of respiratory viruses, to cause lethal virus mutagenesis or disturbance of viral RNA synthesis. In this way, we aim to convey the key findings on this rapidly evolving class of respiratory virus medication.

Addresses
1 Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49 box 1043, B-3000 Leuven, Belgium
2 Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49 box 1041, B-3000 Leuven, Belgium
3 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy

Corresponding author: Lieve Naesens (lieve.naesens@kuleuven.be)

Introduction
The awareness that airborne viruses can be a global threat peaked after the emergence of the last influenza pandemic (2009) and the severe acute respiratory syndrome (SARS, 2003) and Middle East respiratory syndrome (MERS, 2012) coronaviruses (CoVs). Nonetheless, the COVID-19 pandemic hit the world unprepared, resulting in an estimated 18.2 million excess deaths over only two years [1]. For seasonal influenza, the excess mortality is rated at ∼469 000 deaths per year [2], while respiratory syncytial virus (RSV) causes each year up to 199 000 fatalities [3]. Even outside pandemics, the medical and socioeconomic burden of respiratory viruses is immense, considering the diversity in virus species and disease manifestations. Rhinoviruses and endemic human CoVs are the main cause of common cold, a self-limiting infection of the upper respiratory tract. For respiratory adenoviruses, RSV, metapneumovirus, and parainfluenza virus, the disease outcome depends on the person’s immune status and age, with infants and elderly being at higher risk. This is also true for SARS-CoV-2 and influenza virus, which can cause a life-threatening and highly inflammatory disease ('cytokine storm') when invading the lower respiratory tract [4]. This explains the use of dexamethasone for severe COVID-19 patients requiring respiratory support.

Vaccination against respiratory viruses is currently limited to influenza and COVID-19. Despite being clearly effective, these vaccines do not offer full protection, leaving frail persons at risk of severe infection requiring hospitalization. In these patients, antiviral drugs can be life-saving. Besides, these medicines may help to prevent virus spread in outbreak situations. In this concise review, we provide an update on nucleoside analogs that are already in clinical use or in the pipeline to treat respiratory virus infections (see Table 1 for a summary of selected trials).

Stricto sensu, the term nucleoside analog refers to a molecule composed of a nucleobase and sugar (e.g. ribose) moiety, while extension with a phosphate or phosphonate group yields a nucleotide analog. Since the anionic phosph(on)ate group diminishes cell permeability and the phosphate linkage is prone to esterase cleavage, prodrug concepts were developed in which the phosph(on)ate is masked by lipophilic moieties. To exert antiviral effect, nucleoside/nucleotide analogs require one, two, or three intracellular phosphorylations. For oral prodrugs, the activation process starts with cleavage to the free nucleoside/nucleotide, during absorption or first-pass. In most cases, the nucleoside-5′-triphosphate form is the active metabolite, since it binds to the viral polymerase and uses the mechanisms specified below to disturb viral nucleic acid synthesis. Alternatively, indirect inhibition of this process occurs when the drug targets a cellular enzyme of the purine or pyrimidine synthesis pathway, leading to depletion of one of the natural nucleoside-5′-triphosphates.
Table 1

Drug name	Study designa	Patient characteristics	Effect of drug treatment	NCT number	Reference
Favipiravir	Phase-3 RCT (vs. placebo)	Otherwise healthy adults with uncomplicated influenza	Lower virus titers	NCT02026349 and NCT02008344	[23]
Favipiravir	Phase-2 RCT (vs. SOC)	Hospitalized COVID-19 patients with mild-to-severe disease	Shorter duration of viral shedding	NCT04358549	[25]
Favipiravir	Phase-3 RCT (vs. SOC)	Nonhospitalized patients with mild-to-moderate COVID-19 and at risk of severe disease	Shorter time to clinical improvement	NCT04501783	[26]
Molnupiravir	Phase-3 RCT (vs. placebo)	Hospitalized COVID-19 patients	Lower rate of hospitalization or death, lower need for respiratory support	NCT04575597	[41,74]
Molnupiravir	Phase-2/3 RCT (vs. placebo)	Nonhospitalized patients with mild-to-moderate COVID-19 and at risk of severe disease	No effect on time to recovery	NCT04575584	[42]
Remdesivir	Phase-3 RCT (vs. placebo)	Hospitalized COVID-19 patients	Shorter time to recovery	NCT04280705	[59,60]
Remdesivir	Phase-3 RCT (vs. SOC)	Hospitalized COVID-19 patients	Lower rate of clinical deterioration, lower need for respiratory support	NCT04330690	[61]
Remdesivir	Phase-3 RCT (vs. placebo)	Nonhospitalized COVID-19 patients at risk of severe disease	Lower need for respiratory support	NCT04501952	[62]
Bemnifosbuvir	Phase-3 RCT (vs. placebo)	Nonhospitalized COVID-19 patients with mild-to-moderate disease	Lower rate of hospitalization	NCT04889040	Unpublished
Lumicitabinea	Phase-2a RCT (vs. placebo)	Healthy adults challenged with RSV	Lower virus titers, lower symptom scores	NCT02094365	[69]
Galidesivira	Phase-1b RCT (vs. placebo)	Hospitalized patients with moderate-to-severe COVID-19	Lower virus titers	NCT03891420	[71]

*a No longer in development for the indicated virus infection.

b RCT, randomized controlled trial; SOC, standard-of-care.

https://ateapharma.com/covid-19/bemnifosbuvir/
Ribavirin
First reported in 1972, the broad antiviral agent ribavirin (Figure 1) is still in use as a last resort against viruses for which specific medication is lacking. It inhibits viral RNA synthesis via different indirect or direct mechanisms, not all covered here [5]. For influenza virus, direct inhibition of the viral RNA-dependent RNA polymerase (RdRp) requires high concentrations of the ribavirin-5′-triphosphate metabolite. This makes (GTP) guanosine-5′-triphosphate depletion, due to an inhibitory effect of ribavirin-5′-monophosphate (RBV-MP) on the cellular inosine-5′-monophosphate dehydrogenase enzyme, an equally plausible mechanism [6]. Ribavirin has reasonable in vitro activity against influenza virus and RSV, which both accumulate transition mutations when cultured under ribavirin [6,7]. Its poor efficacy against CoV [8] seems related to the ability of CoV nsp14 exonuclease (ExoN) to remove RBV-MP once it is incorporated in viral RNA [9].

The American Society of Transplantation recently recommended aerosolized or oral ribavirin for RSV-infected lung or other solid organ transplant recipients [10]. For infants, prophylaxis with the RSV-specific antibody palivizumab is advised. Early clinical trials did not support the use of ribavirin for influenza. Its efficacy against SARS-CoV-2 is the subject of ongoing trials. A study of 2003, conducted in SARS patients, indicated that the adverse effects of high-dose ribavirin, such as anemia, were too serious to justify its use [11]. The daily dose tested in this trial was ∼3-fold higher than that used for hepatitis C virus (HCV) infections.

Favipiravir
Favipiravir (T-705) requires conversion to its ribosyl-5′-triphosphate (FPV-RTP) metabolite to interfere with viral RNA synthesis [12]. Its poorly efficient phosphorylation [13] partially explains why this drug requires high dosing. Alike ribavirin, favipiravir carries a rotating carboxamide moiety (Figure 2), generating a pseudobase that mimics guanine but also adenine. As a result, virus exposed to favipiravir accumulates G→A and C→U mutations in its genome, as first demonstrated in influenza virus-infected cell cultures [14] and later confirmed in SARS-CoV-2-infected cells [15] and hamsters [16]. The antiviral effect of favipiravir thus seems to rely on ‘error catastrophe’: virus mutagenesis leading to the formation of noninfectious particles. Alternatively, the compound may cause termination of viral RNA synthesis, as evident from studies with FPV-RTP and influenza virus RdRp, yielding an IC₅₀ value of ∼3 µM [6,17]. The consecutive incorporation of two FPV-RTP molecules is key to obtain the delayed chain-terminating effect (Figure 2) [17,18] and induces influenza virus RdRp backtracking, as evident from recent biochemical and (cryo-EM) cryogenic electron microscopy studies with the 6-defluorinated analog of FPV-RTP [19]. In the stalled complex, the pseudobase interacts with PB1-Lys229 [19], rationalizing why this residue is associated with viral resistance to favipiravir [20]. Nevertheless, double FPV-RTP incorporation is fairly unlikely to occur in infected cells, considering that the inhibitor needs to compete with high concentrations of the natural (NTPs) nucleoside-5′-triphosphates. The more likely effect, insertion of a single FPV-RTP molecule, permits further extension and, due to its ambiguous base pairing with C and U, can result in transition mutations [17,18].

Regarding CoV polymerase, SARS-CoV RdRp [= non-structural protein 12 (nsp12) complexed to nsp7 and nsp8] was shown to readily incorporate FPV-RTP as a GTP analog, with elongation to full-length products [15]. Apparently, its incorporation as an ATP analog (i.e. opposite to uracil) causes some stalling but still allows chain extension. On the other hand, another study observed inefficient incorporation of FPV-RTP by SARS-CoV-2 nsp12, in line with cryo-EM evidence that its β-phosphate is not optimally oriented in the catalytic site.
On a general note, conducting these biochemical experiments is complicated by the fact that the fluorine atom of favipiravir renders its ribosylated forms chemically unstable. Favipiravir exhibits broad in vitro and in vivo activity against many RNA viruses but particularly influenza-A and -B viruses. Thus far, only one study succeeded in selecting resistant influenza virus in cell culture, implying a high barrier for drug resistance. This drug is approved in Japan for oral use against influenza viruses unresponsive to the common drugs. In two phase-3 trials in adults with uncomplicated influenza, favipiravir was shown to reduce virus titers, whereas the alleviation of symptoms was less consistent. Owing to possible teratogenic effects, it is not recommended for pregnant and lactating women, while men should adhere to contraceptive methods when taking the drug.

Soon after the appearance of SARS-CoV-2, favipiravir was proposed as a candidate drug, although its in vitro activity against this virus is weak when compared with influenza virus. Accordingly, it likely requires relatively high dosing for COVID-19. In a phase-2 trial in patients hospitalized with mild-to-severe COVID-19, the favipiravir group showed more rapid viral clearance than those receiving standard-of-care. In a phase-3 trial in patients with mild-to-moderate COVID-19 pneumonia, favipiravir shortened the time to clinical improvement by about four days. The conclusion that favipiravir shortens the duration of SARS-CoV-2 shedding and symptoms was also reached in a meta-analysis of 157 reported studies. The positive outcome is limited by the drug’s adverse effects (e.g. hyperuricemia) and teratogenic potential. Also, early initiation after symptom onset seems needed to maximize the effect.

To solve the drawback of favipiravir’s low potency, more potent analogs are desirable. Its simple pyrazinecarboxamide structure seems to tolerate some variations. Alternatively, prodrug strategies may help to bypass inefficient steps in the metabolic activation pathway from favipiravir to FPV-RTP. For T-1105 (the favipiravir analog lacking the 6-fluorine), conversion of the 5′-mono- into 5′-diphosphate form proved to be the rate-limiting step in cell culture models.

Molnupiravir

Molnupiravir (EIDD-2801, MK-4482) is the oral 5′-iso-propyl ester prodrug of N4-hydroxycytidine (NHC, EIDD-1931) (Figure 2), with NHC-5′-triphosphate (NHC-TP) being the active metabolite. NHC is a broad anti-RNA virus nucleoside analog that was first identified in a HCV replicon study. The promising activity of oral NHC/molnupiravir in animal models for...
influenza virus [31], RSV [32], or CoV [33–36] infection, supports its broad development for respiratory virus infections. All these viruses accumulate mutations in their RNA genome, when cultured under NHC. In MERS-CoV-infected mice, the molnupiravir-driven mutagenesis correlated with the reduction in viral load [33]. The mutagenic effect of NHC (already observed in bacteria in the 1970s) is explained by its tautomerizing base that mimics cytosine and uracil [37]. Biochemical studies with NHC-TP and SARS-CoV-2 RdRp (= nsp12–nsp7–nsp8) indicate that RNA mutagenesis occurs in two steps [38,39] (Figure 2). First, the compound is incorporated without stalling RNA extension, and occurs opposite to guanine but also, to a lesser extent, opposite to adenine. Second, once present in the RNA template, NHC directs incorporation of either the correct or incorrect nucleotide, resulting in mutated RNA products. Cryo-EM analysis confirmed that the NHC base stably pairs with guanine and adenine, in the RdRp active site of SARS-CoV-2 nsp12 [39]. Furthermore, NHC appears to resist excision by CoV nsp14 ExoN [40]. This proofreading activity is characteristic of CoVs but lacking in other RNA viruses.

The clinical development of molnupiravir accelerated in the past two years. In the MOVe-OUT phase-3 trial in nonhospitalized unvaccinated adults with mild-to-moderate COVID-19, the drug was found to significantly reduce the risk of hospital admission or death, compared with placebo [41]. Since no safety issues arose, molnupiravir received authorization in the United Kingdom for the treatment of outpatients with COVID-19, as well as Emergency Use Authorization by the (FDA) Food and Drug Administration. More clinical data are pending. In a trial in hospitalized COVID-19 patients, oral molnupiravir did not shorten the time to recovery [42]. Hence, the drug seems to be most effective when initiated early in outpatients with mild-to-moderate COVID-19. It has a favorable pharmacokinetic and safety profile [43] but is not recommended during pregnancy or breastfeeding, due to reproductive toxicity observed in animals exposed to high doses. Cell culture findings indicate that prolonged exposure to NHC is devoid of mitochondrial toxicity [44] but may give mutations in cellular DNA [45].

Remdesivir

Remdesivir is the arylxophosphoramidate prodrug of the 5'-monophosphate form of GS-441524, a 1'-cyano-substituted C-nucleoside analog. In enzymatic assays with SARS-CoV-2 RdRp, the 5'-triphosphate of GS-441524 (RDV-TP) causes delayed stalling or chain termination, depending on the method used (Figure 3). Being efficiently incorporated as an ATP analog [46–49], RDV-TP initially allows chain elongation via its 3'-hydroxyl group. However, RNA extension is stalled after addition of three nucleotides [47,48,50], due to steric clash between the 1'-cyano group of the incorporated GS-441524 and RdRp active site [48,50,51]. RdRp stalling can be overcome at relatively high yet physiologically relevant concentrations of the natural NTPs [48,50,52]. In addition, RDV may act during the next round of RNA synthesis, by compromising the efficiency of UTP incorporation opposite to template RDV [53]. Moreover, although the relation between the RdRp stalling effect and potential recognition by CoV nsp14 ExoN remains to be clarified, the fivefold higher antiviral activity of remdesivir against an ExoN-deficient CoV [54] suggests that the drug is somehow affected by this mechanism of excision.

After remdesivir was discovered as a broad anti-RNA virus agent, it was first developed to treat Ebola virus infection. With regard to respiratory viruses, it has cell culture activity against CoVs and RSV, but not influenza virus [55]. The EC50 value depends on whether remdesivir or GS-441524 is tested, and on the cell line used. Remdesivir was developed to bypass the first inefficient phosphorylation of GS-441524, but unfortunately requires intravenous administration. This inconvenience might be solved by an inhaled remdesivir formulation [56] or oral prodrug of GS-441524 [57]. Validation of these concepts in mice is hindered by the rapid metabolic inactivation of RDV in this species [58].

Remdesivir was the first nucleoside analog to receive wide approval or Emergency Use Authorization for COVID-19. In the pivotal ACTT-1 trial in hospitalized patients [59], it shortened the median recovery time to 10 days, compared with 15 days in the placebo group. The drug also reduces the rate of clinical deterioration and dependence on respiratory support [60,61]. Earlier treatment seems even better, since a study in nonhospitalized COVID-19 patients with high risk for complications [62] showed that a three-day course with intravenous remdesivir lowered the risk for hospitalization or death by 87%, compared with placebo. The safety profile is acceptable.

Bemnifosbuvir

Bemnifosbuvir (AT-527, RO7496998) is an orally administered dual prodrug of 2'-fluoro-2'-C-methyl-guanosine-5'-monophosphate, bearing an arylxophosphoramidate part and N6-methylated nucleobase (Figure 3). The two 2'-substituents render the 5'-triphosphate form (encoded AT-9010) an immediate chain terminator toward SARS-CoV-2 RdRp, and weak excision by nsp14 ExoN reinforces the inhibitory effect [63]. In a cryo-EM study revealing the binding mode of AT-9010 in the RdRp active site of SARS-CoV-2 nsp12, an additional AT-9010 molecule was found to occupy a so-far unknown cavity in the ‘nidovirus RdRp-associated nucleotidyl transferase’ (NiRAN) domain of nsp12 [63]. In enzymatic assays, AT-9010 [63] but also RDV-TP [64] proved able to inhibit NiRAN-mediated nucleotidyl
transferase reactions, suggesting that these nucleoside analogs might halt CoV RNA synthesis based on more than a single mechanism. Guanosine analogs may be better at combining these two activities, considering that the NiRAN-binding site appears to be GTP-specific [63,65].

Bemnifosbuvir recently completed a phase-3 trial (ClinicalTrials.gov identifier: NCT04889040) in outpatients with mild-to-moderate COVID-19. A study in nonhuman primates showed that oral lumicitabine is converted to ALS-8112, which enters the respiratory tract to give high levels of ALS-8112-TP [68]. This active metabolite has a long intracellular half-life of \(\sim 29 \) h. In a placebo-controlled trial in healthy adults challenged with RSV, oral lumicitabine reduced the duration of virus shedding and disease parameters [69]. Nevertheless, its clinical development was halted in 2019.

Lumicitabine

Lumicitabine (ALS-8176, ALS-008176, JNJ-64041575) is an oral 3',5'-diester prodrug of 2'-fluoro-4'-chloromethyl-cytidine (ALS-8112) (Figure 1). This nucleoside analog inhibits the replication of RSV, metapneumovirus, and parainfluenza virus, but not of influenza virus and rhinovirus [66]. The 5'-triphosphate form (ALS-8112-TP) is efficiently recognized by RSV RdRp to cause immediate chain termination, with the 4'-chloromethyl being a key substituent for polymerase selectivity [66]. Also, the related compound 4'-fluorouridine possesses favorable selectivity for inhibition of RSV and SARS-CoV-2 [67].

A study in nonhuman primates showed that oral lumicitabine is converted to ALS-8112, which enters the respiratory tract to give high levels of ALS-8112-TP [68]. This active metabolite has a long intracellular half-life of \(\sim 29 \) h. In a placebo-controlled trial in healthy adults challenged with RSV, oral lumicitabine reduced the duration of virus shedding and disease parameters [69]. Nevertheless, its clinical development was halted in 2019.

Galidesivir

Galidesivir (BCX4430, immucillin A, Figure 1) has a particularly broad anti-RNA virus spectrum that covers Ebola virus and flaviviruses, besides influenza virus, RSV, CoV, and rhinovirus [70]. Although the inhibitory mechanism toward the RdRp enzymes of these viruses has not yet been revealed, experiments with HCV RdRp support the qualification of BCX4430-5'-triphosphate as a delayed nonobligate chain terminator acting as an analog of ATP [70]. X-ray crystallographic or cryo-EM data are still lacking but may help to explain how the iminosugar moiety precisely interacts with viral RdRp enzymes to stop RNA synthesis.
In dose-ranging studies in healthy individuals, galidesivir proved to be safe and generally well tolerated [71]. A trial conducted in 2020 to evaluate intravenous galidesivir in hospitalized COVID-19, demonstrated dose-dependent reduction in the SARS-CoV-2 viral load in the airways. At the time of writing, galidesivir was however no longer under development for COVID-19 [71].

Brincidofovir

Although the focus of this review lies on RNA viruses, respiratory infections can also be caused by DNA viruses, specifically some types of adenovirus (Ad). Ads have broad tropism for diverse organs, not limited to the respiratory tract, and can cause severe disseminated disease in immunocompromised individuals. They are inhibited by brincidofovir (CMX001, Figure 1), a lipid-conjugated oral prodrug of the acyclic nucleoside phosphonate cidofovir. Compared with intravenous cidofovir, oral brincidofovir attains higher intracellular concentrations of cidofovir diphasphate (CDV-pp). In enzymatic assays with Ad5 polymerase, CDV-pp acts as a (dCTP) 2′-deoxyctydine-5′-triphosphate-competitive non-obligate chain terminator, while high concentrations cause direct arrest of Ad DNA synthesis [72].

Brincidofovir is currently authorized to treat potential outbreaks of smallpox, and passed phase-2/3 trials for Ad infections. Preemptive brincidofovir appeared superior to cidofovir in controlling Ad viremia in pediatric hematopoietic stem cell transplant recipients [73]. Brincidofovir lacks the nephrotoxicity of cidofovir but is associated with gastrointestinal side effects.

Conclusion and outlook

In recent years, the development of nucleoside analogs against respiratory viruses has shown clear progress for coronavirus and influenza virus, however, the field has been evolving more slowly in the case of RSV (along with the related metapneumovirus and parainfluenza virus), adenovirus, and particularly rhinovirus. For all these viruses, the acute nature of the airway infection urges antiviral drug initiation as soon as possible after symptom onset. Accordingly, the FDA recently expanded its approval of remdesivir to include not only hospitalized COVID-19 patients, but also outpatients risking severe disease. Besides, nucleoside analogs might help to limit the spread of respiratory viruses within the community, but their utility for this purpose has not yet been demonstrated. To accomplish this wider use, oral drugs appear more suitable than drugs that require injection or inhalation.

One of the main assets of nucleoside analogs is the potential to cover diverse viruses and allow for a tunable antiviral profile by introducing minor chemical modifications. They can act by diverse biochemical mechanisms, not strictly limited to immediate or delayed chain termination and virus mutagenesis. This versatility implicates that discovering novel nucleoside analog leads is still possible, although this may require extensive medicinal chemistry efforts to generate different combinations of modified sugar and base moieties.

The dependence on metabolic activation may represent a hurdle, since poor phosphorylation to the active 5′-triphosphate form can render a nucleoside analog virtually inactive. Overcoming this bottleneck requires better understanding of which prodrug concepts are superior at enhancing drug disposition in the respiratory tract. Therefore, the design of nucleoside analogs to treat respiratory virus infections is, more than ever, alive and kicking.

Funding

The authors’ research is supported by funding from the European Union’s Innovative Medicines Initiative (IMI) under Grant Agreement 101005077 [Corona Accelerated R&D in Europe (CARE) project], Fundació La Marató de TV3, Spain (Projects No. 201832-30 and No. 202135-30), and a KU Leuven C2E grant (Project No. C24E/22/035).

Conflict of interest statement

None.

Data Availability

No data were used for the research described in the article.

Acknowledgements

We thank our team members who provide invaluable contributions to our antiviral research, and we wish to apologize to all colleagues whose relevant work could not be cited in this short review. Chemical structures were drawn with ChemDraw and protein structures were visualized with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from (NIH) National Institutes of Health P41-GM103311. Figure 2 is partly created with BioRender.com.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest.

1. COVID-19 Excess Mortality Collaborators: Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21. *Lancet* 2022, 399:1513–1536.

2. Iuliano AD, Roguski KM, Chang HH, Muscatello DJ, Palekar R, Tempia S, Cohen C, Gran JM, Schanzer D, Cowling BJ, et al.: Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. *Lancet* 2018, 391:1285-1300.
Antiviral strategies

3. Mazur NI, Martinon-Torres F, Baraldi E, Fauroux B, Greenough A, Heikkinnen T, Manzoni P, Mejias A, Nair H, Papadopoulos NG, et al.: Lower respiratory tract infection caused by respiratory syncytial virus: current management and new therapeutics. Lancet Respir Med 2015, 3:888-900.

4. Fletrage T, Boyd DF, Meliopoulos V, Thomas PG, Schultz-Cherny S: Influenza virus and SARS-CoV-2: pathogenesis and host responses in the respiratory tract. Nat Rev Microbiol 2021, 19:425-441.

5. Graci JD, Cameron CE: Mechanisms of action of ribavirin against distinct viruses. Rev Med Virol 2006, 16:37-48.

6. Vanderlinden E, Vrancken B, Van Houdt J, Rajwanshi VK, Gillemot S, Andrei G, Leney P, Naesens L: Distinct effects of T-705 (favipiravir) and ribavirin on influenza virus replication and viral RNA synthesis. Antimicrob Agents Chemother 2016, 60:6679-6691.

7. Aljabr W, Touzelet O, Pollakis G, Wu W, Munday DC, Hughes M, Castro-Hartmann P, Qian P, Sader K, Dent K, et al.: Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proc Natl Acad Sci USA 2021, 118:e20219461118.

8. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020, 30:269-271.

9. Ferron F, Subisis L, Silveira De Morais AT, Le NTT, Sevajol M, Glausi L, Decoly E, Vornheim C, Bricogne G, Canard B, et al.: Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proc Natl Acad Sci USA 2018, 115:E162-E171.

10. Manoel O, Estabrook M: RNA viral respiratory infections in solid organ transplant recipients: guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019, 33:e13511.

11. Muller MP, Dreesen L, Raboud J, McGee A, Rea E, Richardson SE, Mazzulli T, Leeb M, Louie M: Adverse events associated with high-dose ribavirin: evidence from the Toronto outbreak of severe acute respiratory syndrome. Pharmacotherapy 2007, 27:494-503.

12. Furuta Y, Gonen BB, Takahashi K, Shiraki K, Smeef DF, Barnard DL: Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antivir Res 2013, 100:446-454.

13. Naesens L, Gudatt LW, Keough DT, van Kuijlenburg AB, Meijer J, Vande Voorden J, Bajzar E: Role of human hypoxanthine-guanine phosphoribosyltransferase in activation of the antiviral agent T-705 (favipiravir). Mol Pharmacol 2013, 84:615-629.

14. Baranovich T, Wong SS, Armstrong J, Marjuki H, Webby RJ, Webster RG, Govorkova EA: T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol 2013, 87:3741-3751.

15. Shannon A, Selisko B, Le NT, Huchting J, Touret F, Piorkowski G, Fattorini V, Decoly E, Meier C, et al.: Rapid incorporation of favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nat Commun 2020, 11:4682.

16. Driouich JS, Cochin M, Lingas G, Moureau G, Touret F, Petit PR, Piorkowski G, Barthelemy K, Laprie C, Coutard B, et al.: Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model. Nat Commun 2021, 12:1735.

17. Jin Z, Smith LR, Rajwanshi VK, Kim B, Deval J: The ambiguous base-pairing and high substrate efficiency of T-705 (Favipiravir) ribofuranosyl 5'-triphosphate towards influenza A virus polymerase. PLoS One 2013, 8:e68347.

18. Wang Y, Yuan C, Xu X, Chong TH, Zhang L, Cheung PP, Huang X: The mechanism of action of T-705 as a unique delayed chain terminator on influenza virus polymerase transcription. Biophys Chem 2021, 277:106652.

19. Koubt T, Dubankova A, Dmova P, Donati E, Vidossich P, Speranzini V, Pfiff A, Huchting J, Meier C, De Vivo M, et al.: Backtracking of influenza polymerase upon competitive incorporation of nucleoside analogue T1106 directly observed by high-resolution cryo-electron microscopy. bioRxiv 2022, https://doi.org/10.1101/2022.06.10.495428.

20. Goldhill DH, Te Velthuis AJW, Fletcher RA, Langat P, Zambon M, Lackenby A, Barclay WS: The mechanism of resistance to favipiravir in influenza. Proc Natl Acad Sci USA 2018, 115:11613-11618.

21. Naydenova K, Muir KW, Wu LF, Zhang Z, Coscia F, Peet MJ, Castro-Hartmann P, Qian P, Sader K, Dent K, et al.: Structure of the SARS-CoV-2 RNA-dependent RNA polymerase in the presence of favipiravir-RTP. Proc Natl Acad Sci USA 2021, 118:e20219461118.

22. Huchting J, Winkler M, Nesser H, Meier C: Synthesis of T-705-ribonucleoside and T-705-ribonucleotide and studies of chemical stability. ChemMedChem 2017, 12:652-659.

23. Hayden FG, Lenk RP, Storins L, Oldham-Creamer C, Kang LL: Epstein C: Favipiravir treatment of uncomplicated influenza in adults: results of two Phase 3, randomized, double-blind, placebo-controlled trials. J Infect Dis 2022 226:1790-1799, https://doi.org/10.1093/infdis/jiac135.

Detailed report of clinical efficacy and safety data for favipiravir in two phase-3 trials for influenza.

24. Beigel JH, Hayden FG: Influenza therapeutics in clinical practice-challenges and recent advances. Cold Spring Harb Perspect Med 2021, 11:a038463.

25. Finberg RW, Ashraf M, Bulg J, Ayaode F, Marathe JG, Issa NC, Wang JP, Jaijakul S, Baden LR, Epstein C: US2021 study: a Phase 2, randomized proof-of-concept trial of favipiravir for the treatment of COVID-19. Open Forum Infect Dis 2021, 8:ofoab563.

26. Ruzhentsova TA, Oseynshyuk RA, Soluyanova TN, Dmitriko EP, Mustataev DM, Pokrovskiy KA, Markova N, Rusanova MG, Kostina NE, Agafina AS, et al.: Phase 3 trial of coronavir (favipiravir) in patients with mild to moderate COVID-19. Am J Transl Res 2021, 13:12575-12587.

27. Hung DT, Ghula S, Aziz JMA, Makram AM, Tawfik GM, Abaadz IA, Panchatnarn RA, Ibrahim AM, Shabouk MB, Turnage M, et al.: The efficacy and adverse effects of favipiravir on patients with COVID-19: a systematic review and meta-analysis of published clinical trials and observational studies. Int J Infect Dis 2022, 120:217-227.

28. Wang G, Wan J, Hu Y, Wu X, Prhace M, Dyatkina N, Rajwanshi VK, Smith DB, Jekle A, Kinkade A, et al.: Synthesis and anti-influenza activity of pyridine, pyridazine, and pyrimidine C-nucleosides as favipiravir (T-705) analogues. J Med Chem 2016, 59:4611-4624.

29. Huchting J, Vanderlinden E, Winkler M, Nesser H, Naesens L, Meier C: Prodrugs of the phosphoribosylated forms of hydroxypropyrazinecarboxamide pseudobase T-705 and its de-fluoro analogue T-1105 as potent influenza virus inhibitors. J Med Chem 2018, 61:6913-6920.

30. Stuyver LJ, Whitaker T, McBrayer TR, Hernandez-Santiago BI, Losita S, Tharnish PM, Ramesh M, Chu CK, Jordan R, Shi J, et al.: Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture. Antimicrob Agents Chemother 2003, 47:244-254.

31. Toots M, Yoon JJ, Cox RM, Hart M, Sticher ZM, Makhsous N, Plesker R, Barrena AH, Reddy PG, Mitchell DG, et al.: Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelium. Sci Transl Med 2019, 11:eaax3866.

32. Yoon JJ, Toots M, Lee S, Lee ME, Ludeke B, Luczo JM, Ganti K, Cogny RM, Sticher ZM, Edgardt V, et al.: Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses. Antimicrob Agents Chemother 2018, 62:e00766-18.

33. Sheahan TP, Simms AC, Zhou S, Graham RL, Prijurjsk AJ, Agostini ML, Leist SR, Schafer A, Dinnon KH 3rd, Stevens LJ, et al.: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020, 12 eaabb5883.
Nucleoside analogs for respiratory viruses

Steaert, Groaz and Naesens

In vitro and in vivo study establishing molnupiravir as a broad coronaviru sis inhibitor that acts by viral RNA mutagenesis.

34. Cox RM, Wolf JD, Plemper RK: Therapeutically administered ribonucleoside analogs MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets. Nat Microbiol 2021, 6:11-18.

35. Wahl A, Gralinski LE, Johnson CE, Yao W, Kovarova M, Dinon KH 3rd, Liu H, Madden VJ, Krzyztek HM, De C, et al.: SARS-CoV-2 infection is effectively treated and prevented by EIDD-2801. Nature 2021, 591:451-457.

36. Rosenke K, Hansen F, Schwarz B, Feldmann F, Haddock E, Rosenke R, Barbian K, Meade-White K, Okumura A, Leventhal S, et al.: Orally delivered MK-4482 inhibits SARS-CoV-2 replication in the Syrian hamster model. Nat Commun 2021, 12:2295.

37. Malone B, Campbell EA: Molnupiravir: coding for catastrophe. Nat Struct Mol Biol 2021, 28:706-708.

38. Gordon CJ, Tchesnokov EP, Schinazi RF, Götte M: Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. J Biol Chem 2021, 297:100770.

39. Kabinger F, Stiller C, Schmitzova J, Dienemann C, Kocinkova D, Perry JK, Gordon CJ, Woolner E, Kocinkova D, Perry JK, et al.: Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Med Mol Biol 2021, 29:740-746.

Using a combination of biochemical and cryo-EM analyses, the authors reveal how the 5'-triphosphate form of molnupiravir acts as an RNA mutagen toward SARS-CoV-2 RdRp.

40. Agostini ML, Pruissjers AJ, Chappell JD, Gribble J, Lu X, Andres EL, Bluemling GR, Lockwood MA, Sheahan TP, Sims AC, et al.: Small-molecule antiviral beta-D-N (4)-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. J Virol 2019, 93:e01348-19.

41. Jayk Bernal A, Gomes da Silva MM, Musungaike DB, Kovalchuk E, Gonzalez A, Delos Reyes V, Martin-Quiros A, Caraco Y, Williams-Diaz A, Brown ML, et al.: Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med 2022, 386:509-520.

Phase-3 trial demonstrating the efficacy of molnupiravir in reducing hospitalization and death in nonhospitalized COVID-19 patients.

42. Arribas JR, Bhagani S, Lobo SM, Khartevnaya I, Mateu L, Fishchuk R, Park WV, Hussein K, Kim SW, Ghosn J, et al.: Comparative therapeutic efficacy of remdesivir and molnupiravir in COVID-19 patients hospitalized with COVID-19. NEJM Evid Evid 2022, EVIDoa2100044.

43. Painter WP, Holman W, Bush JA, Almazedi F, Malik H, Ernat N, Morin MJ, Szewczyk LJ, Painter GR, Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum molecule antiviral beta-D-N (4)-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. J Virol 2019, 93:e01348-19.

44. Sticher ZM, Lu G, Mitchell DG, Marlow J, Moellering L, Bluemling GR, Guthrie DB, Natchus MG, Painter GR, Kolyvakho AV, Analysis of the potential for N (4)-Hydroxycytidine to inhibit mitochondrial replication and function. Antimicrob Agents Chemother 2020, 64:e01719-19.

45. Zhu S, Hill CS, Sarkar S, Tse LV, Woodburn BMD, Schinazi RF, Sheahan TP, Baric RS, Heise MT, Swanstrom R, β-D-N4'-hydroxycytidine inhibits SARS-CoV-2 through lethal mutagenesis but is also mutagenic to mammalian cells. J Infect Dis 2021, 224:415-419.

46. Yin W, Mao C, Luan X, Shen DD, Shen Q, Su H, Wang X, Zhou F, Zhao W, Gao M, et al.: Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020, 368:1499-1504.

47. Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP, Gotte M: Remdesivir is a direct-acting antiviral that inhibits a coronavirus RNA-dependent RNA polymerase by remdesivir reveals a second mechanism of action. J Biol Chem 2020, 295:16156-16165.

48. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R, et al.: Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exonuclease. MBio 2018, 9:e00221-18.

49. Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, Siegel D, Perron M, Bannister R, Hui HO, et al.: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016, 531:381-385.

50. Vermillion MS, Murakami E, Ma B, Pitts J, Tomsinson A, Rautiola D, Babusis D, Irshad H, Seigel D, Kim G, et al.: Inhaled remdesivir reduces viral burden in a nonhuman primate model of SARS-CoV-2 infection. Sci Trans Med 2022, 14:aab1828.

51. Cox RM, Wolf JD, Lieber CM, Sourijant J, Lin MJ, Babusis D, DuPont V, Chan J, Barrett KT, Lye D, et al.: Oral prodrug of remdesivir parent GS-441524 is efficacious against SARS-CoV-2 in ferrets. Nat Commun 2021, 12:6415.

52. Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO, et al.: Comparative therapeutics efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020, 11:222.

53. Beigel JH, Tomashke KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetskemyer A, Kline S, et al.: Remdesivir for the treatment of Covid-19 - final report. N Engl J Med 2020, 383:1813-1826.

54. Fintzi J, Bonnett T, Sweeney DA, Huprikar NA, Ganesan A, Frank MG, McLellan SLF, Dodd LE, Tebas P, Mehta AK: Deconstructing the treatment effect of remdesivir in the Adaptive Coronavirus Disease 2019 (COVID-19) Treatment Trial-1: implications for critical care resource utilization. Clin Infect Dis 2022, 74:2209-2217.

55. Ali K, Azher T, Baqi M, Binnie A, Borgis S, Carrier FM, Cavayas YA, Chagnon N, Cheng MP, Conly J, et al.: Remdesivir for the treatment of patients in hospital with COVID-19 in Canada: a randomized controlled trial. CMAJ 2022, 194:E242-E251.

56. Gottlieb RL, Vaca CE, Paredes R, Mera J, Webb BJ, Perez G, Oguchi G, Ryan P, Nielsen BU, Brown M, et al.: Early remdesivir to prevent progression to severe Covid-19 in outpatients. N Engl J Med 2022, 388:305-315.

57. Shannon A, Fattorini V, Sama B, Selisko B, Feracci M, Falcou C, Aufrère F, El Kazzi P, Delpal A, Decrolle E, et al.: A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase. Nat Commun 2022, 13:621.

Establishes how the 5'-triphosphate form of bemefosibuvir inhibits SARS-CoV-2 RNA synthesis and binds to the RdRp site of snp12 as well as a new drug pocket in its NiRAN domain.

www.sciencedirect.com

Current Opinion in Virology 57 (2022) 101279
64. Walker AP, Fan H, Keown JR, Knight ML, Grimes JM, Fodor E: The SARS-CoV-2 RNA polymerase is a viral RNA capping enzyme. Nucleic Acids Res 2021, 49:13019-13030.

65. Malone BF, Perry JK, Olinares PDB, Chen J, Appelby TK, Feng JY, Bilello JP, Ng H, Sotiris J, Ebrahim M, et al.: Structural basis for substrate selection by the SARS-CoV-2 replicase. bioRxiv 2022, https://doi.org/10.1101/2022.05.20.492815

66. Deval J, Hong J, Wang G, Taylor J, Smith LK, Fung A, Stevens SK, Liu H, Jin Z, Dyatkina N, et al.: Molecular basis for the selective inhibition of respiratory syncytial virus RNA polymerase by 2'-fluoro-4'-chloromethyl-cytidine triphosphate. PLoS Pathog 2015, 11:e1004995.

67. Sourimant J, Lieber CM, Aggarwal M, Cox RM, Wolf JD, Yoon JJ, Toots M, Ye C, Sticher Z, Kelykhalaov AA, et al.: 4'-Fluorouridine is an oral antiviral that blocks respiratory syncytial virus and SARS-CoV-2 replication. Science 2022, 375:161-167.

68. Jordan PC, Stevens SK, Deval J: Nucleosides for the treatment of respiratory RNA virus infections. Antivir Chem Chemother 2018, 26:2040206618764483.

69. DeVincenzo JP, McClure MW, Symons JA, Fathi H, Westland C, Chanda S, Lambkin-Williams R, Smith P, Zhang Q, Beigelman L, et al.: Activity of oral ALS-008176 in a respiratory syncytial virus challenge study. N Engl J Med 2015, 373:2048-2058.

70. Warren TK, Wells J, Panchal RG, Stuthman KS, Garza NL, Van Tongeren SA, Dong L, Retterer CJ, Eaton BP, Pegoraro G, et al.: Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature 2014, 508:402-405.

71. Julander JG, Demarest JF, Taylor R, Godwin BB, Walling DM, Mathis A, Babu YS: An update on the progress of galidesivir (BCX4430), a broad-spectrum antiviral. Antivir Res 2021, 195:105180.

72. Chamberlain JM, Sortino K, Sethna P, Bae A, Lanier R, Bambara RA, Dewhurst S: Cidofovir diphosphate inhibits adenovirus 5 DNA polymerase via both nonobligate chain termination and direct inhibition, and polymerase mutations confer cidofovir resistance on intact virus. Antimicrob Agents Chemother 2019, 63:e01925-01918.

73. Hiwarkar P, Amrolia P, Sivaprakasam P, Lum SH, Doss H, O’Rafferty C, Petterson T, Patrick K, Silva J, Slatter M, et al.: Brincidofovir is highly efficacious in controlling adenoviremia in pediatric recipients of hematopoietic cell transplant. Blood 2017, 129:2033-2037.

74. Johnson MG, Puenpatom A, Moncada PA, Burgess L, Duke ER, Ohmagari N, Wolf T, Bassetti M, Bhagani S, Ghosn J, et al.: Effect of molnupiravir on biomarkers, respiratory interventions, and medical services in COVID-19: a randomized, placebo-controlled trial. Ann Intern Med 2022, 175:1126-1134.

75. Liu C, Shi W, Becker ST, Schatz DG, Liu B, Yang Y: Structural basis of mismatch recognition by a SARS-CoV-2 proofreading enzyme. Science 2021, 373:1142-1146.