Studies on Visual Environment Phenomena of Urban Areas: A Systematic Review

Rizky Amalia Achsani¹, Surjamanto Wonorahardjo²

¹,²Department of Architecture, SAPPD, Bandung Institute of Technology, INDONESIA

¹rizky.amalia7@gmail.com

Abstract. The visual environment in the development of urban areas plays an essential role, especially in the case of Transit-Oriented Development (TOD). The development of TOD facilitates many human activities, so it requires a high-quality visual environment. This study aims to identify and map visual environment phenomena that occur in TOD using a keyword from eight TOD principles and analyze through a systematic review method. Two hundred sixty articles are selected from scopus.com and go through the analysis process, and only 31 articles used in this review. The results arranged based on its importance at TOD: visual performance, visual comfort, and visual experience. Based on the phenomena in visual performance, stakeholders must consider the fulfilment of users activities, namely cyclist, elderly, and pedestrian. Based on phenomena in visual comfort, stakeholders must consider all places in the urban area, namely neighbourhood, building, and street. Lastly, based on phenomena in visual experience, stakeholders must consider the effect on the health, social life and safety of users and also the face of the city. The purpose of this mapping is to raise awareness of its importance and drive more research in the field of the visual environment in urban areas. The stakeholders can consider this mapping to determine the TOD development policy.

1. Introduction

Transit-oriented development is an urban development approach that integrates land use, transportation, people, activity, and opportunities. There are eight main principles of TOD, namely, walk, cycle, connect, transit, mix, densify, compact, and shift [1]. The adaptation of the TOD concept can provide a livable, accessible, and attractive urban environment. Some elements of urban design that show positive results can use by taking local context into account [2]. Some studies have begun to look at the possibility of TOD concept in big cities like Seoul and Bandung [3, 4].

The built environment is the interaction between humans and light. Humans need sunlight to meet their biological needs; give hints about the three-dimensional shape around them, and provide information about the orientation and the weather conditions [5]. Night street lights increase visibility, provide direction, and contribute to human perception of comfort and safety at night [6]. By providing an excellent visual environment, it can foster comfortable and pleasant feelings following the intended use of space [4].

There is not much research on the visual environment of urban areas, especially in the TOD area. Several studies related to the TOD try to compare it to green urbanism, wind environment, and thermal comfort. [7, 8, 9]. Physical design (visual quality and livability) is an essential aspect of TOD planning [2]. Therefore, knowledge mapping in the field of the visual environment in urban areas is needed. The study
aims to identify and map the phenomena regarding the visual environment of urban areas through a systematic review. So, it will raise awareness and drive more research in the field of the visual environment in urban areas.

2. Methodology

The method used in this literature review is a systematic review. The study used a systematic method through 4 stages: identification, screening, eligibility, and included [10]. The analysis conduct from September 2019 to February 2020.

Table 1. Keywords from TOD Principle

No	TOD Principle	Keywords
1	Walk	Visual, frontage, walk, urban, area, visual, spatial, material
2	Cycle	Visual, cycling, network, urban, area
3	Connect	Pedestrian, safety, visual, walk
4	Transit	Public, transit, visual, comfort
5	Mix	Visual, access, park, vegetation, urban, night, active, lightscape, livability
6	Densify	Urban, area, outdoor, density, visual, permeability, visual, high, building, quality, life, glare, pollution, sunlight
7	Compact	Compact, urban, area, visual, spatial, surface, tropic, weather
8	Shift	Roadway, visual, comfort, quality

In the identification stage, the article accessed via scopus.com (IP address: Institut Teknologi Bandung). The search only focuses on the peer-review journal and empirical studies. By using the search string or keyword from eight TOD principles, obtained 260 articles (see table 1). Nineteen duplicate articles excluded, so only 241 articles process to the screening stage. Based on analyzing the title and abstract, 154 articles that not contain topics in the urban visual environment, non-English publication, paper review, books, or report excluded. A total of 87 full-text articles were downloaded and entered the eligibility stage. In the eligibility stage, 56 articles that do not have topics in the urban visual environment, review paper, or books excluded. Subsequently, only 31 full-text articles reviewed in this study.

![Figure 1. Systematic review process](image)

3. Findings

The findings obtained from 31 articles divided into three categories based on the image forming process that occurs through the human eye [11]. The phenomena arranged on its importance in TOD, namely visual performance, visual comfort, and visual experience.
Visual performance is a term that describes the speed and accuracy in processing visual stimuli that defined through the adaptation of luminance, contrast, and size of target objects [12]. Five articles have a topic in visual performance. The phenomena divided into three categories based on users of the urban environment, namely cyclists, elderly, and pedestrians. From a cyclist's visual behaviour, the discontinuity of the path (i.e., intersections and crosswalks), presence of pedestrians, physical and visual separation are important visual objects that need attention to not endanger themselves [13]. Elderly need time to visual exploration of the surrounding environment before deciding to cross the street [14]. Path designs such as car-free islands, pavements, lanes, and curb must minimize the risks that could endanger them [15]. In recent years, a new phenomenon has emerged, namely, pedestrians using their cellphones when using sidewalks. Research shows that mobile phones affect adaptation to where humans see (visual search behaviour) [16]. Consideration of visual quality in outdoor activities is something that must be considered [17].

3.2 Visual Comfort
Visual comfort interpreted as the 'absence of visual discomfort' [18]. Visual dis(comfort) can be in the form of disability glare, discomfort glare, dazzling glare, or insufficient contrast [11]. Ten articles have a topic in visual comfort. The phenomena divided into three categories based on spaces in the urban environment, namely neighbourhood, building, and street. A lower score in height, density, and
cleanliness of the neighbourhood result in higher visual comfort [19]. There are two visual comfort phenomena in the building, namely, colour scape and glare. The colour scape or architectural colour tones in the urban areas affect the visual comfort of pedestrian and road users, especially in hazy weather [20].

Figure 3. Architectural colour tones in hazy and clear weather
Source: [20]

The glare phenomenon in the building occurred because of material and the form of the building. Visual comfort deteriorates with albedo increasing. However, there are indications that humans would prefer to use natural materials with low albedo to reduce glare from road/roof coatings such as grass [21, 22].

Figure 4. Material albedo of road or roof
Source: [22]

The combination of facade materials (such as glass curtain wall, highly reflective material, and heliostat fields) and specular form of the building can be the source of glare [23, 24, 25, 26, 27]. The source of glare in urban areas can cause visual discomfort for pedestrians and road users. The planner, designer, and engineer should understand this complicated relationship for designing a visually better city [28].

Figure 5. Glare from façade reflections
Source: [23, 24, 25, 28]
There is also some visual discomfort from urban comfort that researcher found, which are:

a. Glare from the low point of the sun in the morning and afternoon, especially on roads with a west and east orientation.
b. Glare from objects in urban environments such as cars in parking lots and urban street furniture.
c. Reduced visibility due to excessive contrast.

![Figure 6. Another visual environment phenomena in urban areas: left (a), middle (b), right (c)](image)

3.3 Visual Experience

There are three aspects of visual experience, namely perceptual clarity, evaluative impression, and spaciousness. Even so, humans have high selectivity in the process of visual experience and try to find meaningful information in it [29]. Sixteen articles have a topic in visual experience. The phenomena divided into three categories, namely transparency, visual integration, and night light.

There are three topics in transparency, namely, visual permeability, beautiful scenery, and visual pollution. Visual permeability of groundfloor frontages increased activities on the sidewalk [30]. Large trees in the urban environment block the view but also create beautiful scenery [31]. Street greenery should be a priority strategy in promoting high visual quality [32]. Visual pollution is objects or graphics in the urban area that give an impression of disorder face of the city. Understanding the mechanism for quantification of visual pollution can help planners and the government to understand the prevalence of visual pollution [33, 34].

![Figure 7. Visual Pollution and method to calculate it source: [33]](image)

The urban area needs a visual integration to nature and neighbourhood. There is proof that nature visibility and spatial connectivity influence social interaction in the neighbourhood [35]. Some people prefer views of water more than grass [36] or vice versa [37], but both of them have a substantial effect on visual quality [38]. Using water elements can have a similar effect of fascination and "being away" [39]. Higher visual integration of public transportation in the neighbourhood leads to a better integrated spatial structure within complex [40]. Visibility of layout and spatial configuration of a neighbourhood affect social networks and cohesion [41].
Figure 8. Urban elements: water and trees
source: [38]

Night light consists of lightscape and safety. Lightscape can be the range of visual impressions of the space [42], and the nocturnal image that involves both technical and cultural aspects [43]. Safety and security at night is an essential function of the night light. Street lighting needs to pay attention to the ability of lights to respond to dry and also wet roads [44]. Human vision also needs to be integrated into the future planning process of smart street lighting systems [45].

Figure 9. Smart city lighting
Source: [45]

4. Discussion
From the literature review, several visual environment phenomena found in the urban area. The use of keywords from the eight principles of TOD and the method of systematic review allows the discovery of various visual environment phenomena typical of TOD. Based on its importance at TOD, the phenomenon arranged in order: visual performance, visual comfort, and visual experience to make it easier to see the application in TOD.

No	Visual Environment	Phenomenon and Application in TOD
1.	Visual Performance	1. Visual and physical separation for cyclists and pedestrians.
2. Path design must consider the elderly and users with special needs.
3. The use of signage on the surface of pedestrian space and roads will be more accommodating to users visual search behavior, compared to signage poles that are difficult to be accessed visually by some users. |
| 2. | Visual Comfort | 1. High, density and cleanliness of the neighbourhood.
2. Glare caused by building material and form.
3. Weather type and visibility capabilities of road users and pedestrians. |
3. Visual Experience

1. Transparency between shops and pedestrian spaces, green spaces in the city, and visual pollution provides a variety of face of the city and visual experience.
2. Visual integration with nature and the neighbourhood will have a positive impact on the user's health and social life.
3. The night light is not only used to provide safe and secure in any weather but also can create an impression and nocturnal image.

5. Conclusion

Stakeholders must consider the visual environment in the development of urban areas. Based on its importance at TOD, the phenomena arranged in order: visual performance, visual comfort, and visual experience. Based on the phenomena in visual performance, stakeholders must consider the fulfilment of users activities, namely cyclist, elderly, and pedestrian. Some of the phenomena that need to be mention are the visual and physical separation for cyclist and pedestrian, path design for elderly and users with special needs, and signage that accommodate visual search behaviour from users. Based on phenomena in visual comfort, stakeholders must consider all places in the urban area, namely neighbourhood, building, and street. Some phenomena that need to be mention are density, cleanliness, and glare of building and neighbourhood, also people's visibility in any type of weather. Lastly, based on phenomena in visual experience, stakeholders must consider the effect on the health, social life and safety of users and also the face of the city. Some of the phenomena that need to be mention are transparency, visual integration, and safety at night.

Understanding this visual phenomena map can raise awareness of its importance and drive more research in the field. Designers, urban planners, and engineers can use this mapping to consider and to make decisions about urban planning, especially in the development of TOD.

References

[1] Institute for Transportation and Development Policy. 2017. TOD Standard 3rd ed: New York. https://itdpdotorg.wpengine.com/wp-content/uploads/2017/06/TOD_printable.pdf
[2] Jacobson, J., & Forsyth, A. (2008). Seven American TODs: Good practices for urban design in transit-oriented development projects. Journal of transport and land use, 1(2), 51-88.
[3] Sung, H., & Oh, J. T. (2011). Transit-oriented development in a high-density city: Identifying its association with transit ridership in Seoul, Korea. Cities, 28(1), 70-82.
[4] Widyahari, N.L.A. and Indradjati, P.N., 2015. The potential of transit-oriented development (TOD) and its opportunity in Bandung Metropolitan Area. Procedia Environmental Sciences, 28, pp.474-482.
[5] Lam, W., 1977. Perception and lighting as formgivers for architecture.
[6] Knight, C., 2010. Field surveys of the effect of lamp spectrum on the perception of safety and comfort at night. Lighting Research & Technology, 42(3), pp.313-329.
[7] Cervero, R., & Sullivan, C. (2011). Green TODs: marrying transit-oriented development and green urbanism. International journal of sustainable development & world ecology, 18(3), 210-218.
[8] Hsieh, C. M., Ni, M. C., & Tan, H. (2014). Optimal wind environment design for pedestrians in transit–oriented-development planning. Journal of Environmental Protection and Ecology, 15(3A), 1385-1392.
[9] DeVeau, M. (2011). Strategies to address the climatic barriers to walkable, transit-oriented communities in Florida.
[10] Moher, D., Liberati, A., Tetzlaff, J. and Altman, D.G., 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Annals of internal medicine, 151(4), pp.264-269.
[11] de Kort, Y.A., 2019. Tutorial: Theoretical Considerations When Planning Research on Human Factors in Lighting. Leukos, 15(2-3), pp.85-96.
[12] Rea, M.S. and Ouellette, M.J., 1991. Relative visual performance: A basis for application. Lighting Research & Technology, 23(3), pp.135-144.

[13] Mantuano, A., Bernardi, S., & Rupi, F. (2017). Cyclist gaze behavior in urban space: An eye-tracking experiment on the bicycle network of Bologna. Case studies on transport policy, 5(2), 408-416.

[14] Dommes, A., Cavallo, V., Dubuisson, J. B., Tournier, I., & Vienne, F. (2014). Crossing a two-way street: comparison of young and old pedestrians. Journal of safety research, 50, 27-34.

[15] Dommes, A., Le Lay, T., Vienne, F., Dang, N. T., Beaudoin, A. P., & Do, M. C. (2015). Towards an explanation of age-related difficulties in crossing a two-way street. Accident Analysis & Prevention, 85, 229-238.

[16] Timmis, M. A., Bijl, H., Turner, K., Basevitch, I., Taylor, M. J., & van Paridon, K. N. (2017). The impact of mobile phone use on where we look and how we walk when negotiating floor based obstacles. PLoS one, 12(6).

[17] Rossi, F., Anderini, E., Castellani, B., Nicolini, A. and Morini, E., 2015. Integrated improvement of occupants' comfort in urban areas during outdoor events. Building and Environment, 93, pp.285-292.

[18] Boyce, P.R., 2014. Human factors in lighting. Crc Press.

[19] Chan, I. Y., & Liu, A. M. (2018). Effects of neighborhood building density, height, greenspace, and cleanliness on indoor environment and health of building occupants. Building and Environment, 145, 213-222.

[20] Liu, Y., Kang, J., Zhang, Y., Wang, D. and Mao, L., 2016. Visual comfort is affected by urban colorscape tones in hazy weather. Frontiers of Architectural Research, 5(4), pp.453-465.

[21] Rosso, F., Pisello, A.L., Pignatta, G., Castaldo, V.L., Piselli, C., Cotana, F. and Ferrero, M., 2015. Outdoor thermal and visual perception of natural cool materials for roof and urban paving. Procedia Engineering, 118, pp.1325-1332.

[22] Rosso, F., Pisello, A.L., Cotana, F. and Ferrero, M., 2016. On the thermal and visual pedestrians' perception about cool natural stones for urban paving: A field survey in summer conditions. Building and Environment, 107, pp.198-214.

[23] Shih, N.J. and Huang, Y.S., 2001. A study of reflection glare in Taipei. Building Research & Information, 29(1), pp.30-39.

[24] Schiler, M. and Valmont, E., 2006. Urban environmental glare: the secondary consequence of highly reflective materials. In 23rd Conference on Passive and Low Energy Architecture.

[25] Suk, J. Y., Schiler, M., & Kensek, K. (2017). Reflectivity and specularity of building envelopes: how materiality in architecture affects human visual comfort. Architectural Science Review, 60(4), 256-265.

[26] González-Pardo, A., González-Aguilar, J. and Romero, M., 2014. Determination of glint and glare of heliostat fields integrated on building façades. Energy Procedia, 57, pp.331-340.

[27] González-Pardo, A., González-Aguilar, J. and Romero, M., 2015. Analysis of glint and glare produced by the receiver of small heliostat fields integrated in building façades. Methodology applicable to conventional central receiver systems. Solar Energy, 121, pp.68-77.

[28] Ishak, N.M., Hien, W.N., Jenatabadi, H.S., Ignatius, M. and Yaman, R., 2018, February. The effect of building facade reflectivity on urban dwellers in tropics. In IOP Conference Series: Earth and Environmental Science (Vol. 117, No. 1, p. 012038). IOP Publishing.

[29] Flynn, J.E., Spencer, T.J., Martyniuk, O. and Hendrick, C., 1973. Interim study of procedures for investigating the effect of light on impression and behavior. Journal of the Illuminating Engineering Society, 3(1), pp.87-94.

[30] Hassan, D. M., Moustafa, Y. M., & El-Fiki, S. M. (2019). Ground-floor façade design and staying activity patterns on the sidewalk: A case study in the Korba area of Heliopolis, Cairo, Egypt. Ain Shams Engineering Journal, 10(3), 453-461.
[31] Fisher-Gewirtzman, D. A. F. N. A. (2017, July). Can 3D Visibility Calculations along a Path Predict the Perceived Density of Participants Immersed in a Virtual Reality Environment?. In Proceedings of the Eleventh International Space Syntax Symposium (pp. 160-1).

[32] Ye, Y., Zeng, W., Shen, Q., Zhang, X., & Lu, Y. (2019). The visual quality of streets: A human-centred continuous measurement based on machine learning algorithms and street view images. Environment and Planning B: Urban Analytics and City Science, 46(8), 1439-1457.

[33] Wakil, K., Naeem, M.A., Anjum, G.A., Waheed, A., Thaheem, M.J. and Nawaz, R., 2019. A Hybrid Tool for Visual Pollution Assessment in Urban Environments. Sustainability, 11(8), p.2211.

[34] Chmielewski, S., Lee, D.J., Tompalski, P., Chmielewski, T.J. and Wężyk, P., 2016. Measuring visual pollution by outdoor advertisements in an urban street using intervisibilty analysis and public surveys. International Journal of Geographical Information Science, 30(4), pp.801-818.

[35] Munro, K., & Grierson, D. (2017). Linking space and nature syntaxes: The influence of a natural view through observed behaviour at Arcosanti, Arizona, USA. In Handbook of Theory and Practice of Sustainable Development in Higher Education (pp. 137-158). Springer, Cham.

[36] Wang, X., & Rodiek, S. (2019). Older Adults’ Preference for Landscape Features Along Urban Park Walkways in Nanjing, China. International journal of environmental research and public health, 16(20), 3808.

[37] Hong, J. Y., & Jeon, J. Y. (2013). Designing sound and visual components for enhancement of urban soundscapes. The Journal of the Acoustical Society of America, 134(3), 2026-2036.

[38] Polat, A.T. and Akay, A., 2015. Relationships between the visual preferences of urban recreation area users and various landscape design elements. Urban Forestry & Urban Greening, 14(3), pp.573-582.

[39] Masullo, M., Maffei, L., Pascale, A., & Senese, V. P. (2017, December). An alternative noise mitigation strategy in urban green park: a laboratory experiment. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings (Vol. 255, No. 4, pp. 3006-3012). Institute of Noise Control Engineering.

[40] Parvin, A., Min, A. Y., & Beisi, J. (2008). Effect of visibility on multilevel movement: a study of the high-density compact built environment in Hong Kong. Urban Design International, 13(3), 169-181.

[41] Raman, S. (2010). Designing a liveable compact city: physical forms of city and social life in urban neighbourhoods. Built environment, 36(1), 63-80.

[42] Rowe, A. (2012). Within an ocean of light: creating volumetric lightscapes. In ACM SIGGRAPH 2012 Art Gallery (pp. 358-365).

[43] Valetti, L., Pellegrino, A., & Aghemo, C. (2019). Cultural landscape: Towards the design of a nocturnal lightscape. Journal of Cultural Heritage.

[44] Yooomak, S., & Ngoapitakkul, A. (2018). The Study of Lighting Quality of LED and HPS Luminaires Based on Various Road Surface Properties. In E3S Web of Conferences (Vol. 72, p. 01005). EDP Sciences.

[45] Navvab, M., Bisegna, F. and Guglielmetti, F., 2018, June. Smart City Roadway Lighting System Evaluation from Driver's Field of View. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-6). IEEE.

Acknowledgment
This publication and research was supported by ITB (Institut Teknologi Bandung) Multidisciplinary Research program 2019 contract 109/II.B04.1/PL/2019 and Indonesia Endowment Fund for Education (Beasiswa LPDP).