A COMPARISON BETWEEN INTRA-ARTICULAR 0.2% ROPIVACAINE AND 0.25% BUPIVACAINE FOR POST-OPERATIVE ANALGESIA FOLLOWING DAY-CARE ARTHROSCOPIC KNEE SURGERIES

SAI KAUSHIK P H1, SHAILA S KAMATH1*, SURENDRU U KAMINUATH2

1Department of Anaesthesiology, Kasturba Medical College, Mangalore, Manipal University, Manipal, Karnataka, India. 2Department of Orthopaedics, Kasturba Medical College, Mangalore, Manipal University, Manipal, Karnataka, India. Email: shailakamath@ymail.com

ABSTRACT

Objectives: The objective is to compare the effectiveness of intra-articular injection of ropivacaine and bupivacaine in providing pain relief after arthroscopic knee surgery.

Methods: A total of 60 patients of both genders aged 20–60 years, the American Society of Anesthesiologists physical Status I and II, undergoing day-care arthroscopic knee surgery under spinal anesthesia, were assigned into two groups randomly. Group 1 received 10 ml of 0.2% ropivacaine, while Group 2 received 10 ml of 0.25% bupivacaine intra-arterially at the end of the procedure. Pain was assessed for 24 h postoperatively using visual analog scale (VAS) and diclofenac sodium given as rescue analgesia when VAS >3. Time of first analgesic request and total rescue analgesic were noted and compared. Statistical analysis used: Students unpaired t-test and Chi-square test and Mann–Whitney test “Z” value wherever appropriate. A p<0.05 was considered statistically significant.

Results: Based on comparable demographic profiles, time for the requirement of first post-operative rescue analgesia (262.4±57.13 vs. 256.3±44.4) min and total mean rescue analgesic requirement was 152.50±57.367 vs. 142.50±41.07 mg in Groups 1 and 2, respectively. Group 1 showed slightly prolonged duration of analgesia, but total analgesic requirement was more than Group 2. However, comparing the duration of analgesia and total analgesic requirement showed no statistically significant difference between the groups (p>0.05).

Conclusion: Both ropivacaine and bupivacaine injected intra-articularly have similar efficacy statistically in relieving post-operative pain in day-care arthroscopic knee surgery.

Keywords: Surgical pain, Local anesthetic, Analgesia.

INTRODUCTION

Arthroscopic knee surgery is a commonly performed minimally invasive surgical procedure on an outpatient basis. Its association with varying amounts of pain postoperatively, even in less complex procedures such as diagnostic arthroscopy or arthroscopic meniscectomies, is a concern though [1,2]. The hypothesized reason being irritation at the free nerve endings of synovial tissue and anterior pad of fat during surgical excision and resection [3]. Undoubtedly, post-operative pain which is poorly controlled often has an unfavorable impact on the patient’s psychology causing discomfort, dissatisfaction, and hampering early ambulation and thus discharges from the hospital [1,4]. Using different analgesics and multimodal regimens also fail to achieve complete analgesia sometimes.

Multiple strategies for pain relief include systemic drug administration (nonsteroidal anti-inflammatory drugs, narcotics) [5]. Peripheral nerve blocks or central blocks [6,7], and not long ago, intra-articular injection of various local anesthetic agents has become popular in clinical practice [2]. Drugs such as ketorolac, α2-agonists [8], opioids [3,9], and local anesthetics [10,11] have been tried to interrupt the pain pathway. Usage of these drugs in combination, called as the multimodal approach, is usually sufficient for providing analgesia in the initial post-operative period [12].

Optimal pain relief in a day-care surgery perioperatively should be adequate and also safe, causing minimal side effect [3,13,14]. Intra-articular route of drug administration is an example for the management of pain after joint surgery utilizing the peripheral receptors [3]. Different authors in their previous studies with intra-articular ropivacaine [1,15], fentanyl [16], dexmedetomidine [11], levobupivacaine, and morphine [17] proved their efficacy in providing post-operative analgesia.

There are no direct comparative trials between these two agents with similar dosage and concentration for arthroscopic knee surgeries is available, by intra-articular route at the end of knee arthroscopic surgery; however, these two agents with similar dosage are compared in pediatric supracondylar fractures for post-operative pain management [18]. Therefore, we undertook this study to compare the post-operative analgesic efficiency of ropivacaine (0.2%) and bupivacaine (0.25%) in intra-articular route following day-care arthroscopic knee surgery.

METHODS

This study was a randomized, prospective, comparative study conducted at our institution from November 2014 to July 2016, after obtaining the approval from the Institutional Scientific and Ethics Committee.

Sample size was calculated using the following formula:

\[n = \frac{2(Z_t + Z_\beta)^2 \sigma^2}{d^2} \]

Power of the study:

- \(Z_t = 1.96 \) at 95% confidence level.
- \(Z_\beta = 1.28 \) at 90% power.
- \(\sigma \) = Combination of standard deviation.
- \(d \) = Mean difference between groups.
A total of 60 adult patients of either gender aged 20–60 years, the American Society of Anesthesiologists I and II, undergoing arthroscopic knee surgery under spinal anesthesia, were randomized into two groups after taking written informed consent. Each group had 30 patients and group “1” - 10 ml 0.2% ropivacaine was given and group “2” - 10 ml 0.25% bupivacaine was given. The patients were divided into 2 equal groups using block randomization.

Patients who refused for the study or with a known allergy, hypertensive, MAP <65 mmHg during intra-articular injection, pregnancy, lactating mothers, hepatic/renal/cardio-pulmonary abnormality, bleeding diathesis, or local skin infections were excluded from the study.

After a thorough pre-anesthetic evaluation and NPO status for a minimum of 6 h before surgery was ensured, a brief description was also given about the 10 cm visual analog scale (VAS) (0 - no pain to 10 - worst imaginable pain). Investigations such as hemoglobin %, total leukocyte count, differential count, platelet count, bleeding profile, and in few patients where indicated, random blood sugar, blood urea, serum creatinine, and also electrocardiogram and chest X-ray were asked. Patients were pre-medicated with tablet lorazepam 50 mcg/kg orally in the night before the surgery.

The anesthetic technique was standardized for all patients. Under all aseptic precautions, lumbar puncture was performed in the left lateral position at L3-L4 or L4-L5 interspaceal level with 25-gauge quincke babcock spinal (QBS) needle by an anesthesiologist with a minimum of 2 years experience. 3 ml (15 mg) of 0.5% hyperbaric bupivacaine was injected into the subarachnoid space, and the patient was positioned supine. After 5 min of subarachnoid injection, arthroscopic procedure was allowed to start, after confirming the level of block. At the end of the surgery before skin closure, study drug was administered by the surgeon into the intra-articular space. Heart rate, non-invasive blood pressure, and pain VAS score were recorded at 1st, 2nd, 4th, 6th, 9th, 12th, 16th, and 20th post-operative hours. Injection diclofenac 75 mg IV was given as rescue analgesia if VAS ≥3. First post-operative analgesia request time and total diclofenac used in the first 24 h were recorded. All the data were gathered by an observer who was unaware of patients’ group assignment.

Statistical analysis was carried out using the Students unpaired t-test and Chi-square test and Mann-Whitney test ‘Z’ value. A p<0.05 was considered statistically significant.

RESULTS

Demographic profile including age, sex, and weight of the patients was compared using students t-test and Chi-square test which showed no significant difference between the groups (Table 1). Heart rate and mean arterial pressure were analyzed using t-test and Mann-Whitney test for comparing change from baseline values.

The mean age of patients in Group 1 was 40.10 (±12.92) years and Group 2 was 39.57 (±12.67) years which were statistically non-significant. The male:female ratio in both groups was similar and statistically insignificant. The mean weight of the patients in Group 1 was 61.23 kg and Group 2 was 63.9 kg which was statistically not significant (Table 1).

Comparison of change in the heart rate from baseline in each group and between the groups. At 2nd h (p=0.380), 4th h (p=0.281), 12th h (p=0.033), and 20th h (p=0.014), the change from baseline was statistically significant implying the possibility of pain during that time. Looking at the mean values during these hours reveal that ropivacaine group produced lesser change in the heart rate post-operatively compared to bupivacaine group which may be attributed to better analgesia (Table 2).

Table 3 presents the comparison of mean arterial pressures with SD between both the groups which revealed no significant differences between both the groups.

While comparing the total mean duration of analgesia provided by the drugs, the mean duration in Group 1 was 262.43 min (±57.132) and median value being 242 min compared with Group 2 which was 256.30 min (±44.400) and median value being 242.50 min implying that ropivacaine provided slightly prolonged analgesia compared to bupivacaine but comparing the two groups showed no statistically significant difference (p=0.644) (Table 4).

While comparing the total mean analgesic requirement of diclofenac as rescue analgesia. Group 1 required 152.50 mg (±57.37), while Group 2 required 142.50 mg (±41.08) which was statistically not significant. (p=0.441) (Table 5).

Although ropivacaine group required more rescue analgesia than bupivacaine, it does not differ much indicating similar efficacy of both the drugs. When the VAS score of the patient was ≥3, rescue analgesia was given. The minimum and maximum scores in Group 1 were 4 and 6, respectively. In Group 2, minimum score was 3 and maximum score was 7. The mean scores being 4.90 (±0.76) in Group 1 and 4.67 (±0.96) in Group 2 did not differ much (p=0.300), and hence, not statistically significant, implying similar analgesia between both the groups (Table 6).

DISCUSSION

In our study, the noteworthy finding was that both intra-articular 10 ml bupivacaine 0.25% and 10 ml ropivacaine 0.2% reduce pain in the first few hours of post-operative period after knee arthroscopy. Ropivacaine and bupivacaine were almost equally efficient in providing analgesia at rest for at least 4–6 h postoperatively. Ropivacaine provided better pain relief in the immediate post-operative period for most patients although the total diclofenac requirement is more in this group. Bupivacaine being one of the most commonly used local anesthetics also provided a similar quality of analgesia comparable to ropivacaine.

Bupivacaine group required a lesser amount of diclofenac over 24-h period.

Factors influencing the post-operative analgesia are age and sex, experience of the surgeon, and activity levels postoperatively. The pharmacokinetics of bupivacaine after intra-articular administration has been well studied previously in few studies [4,9,19,20] when compared to ropivacaine. It is relatively safer than bupivacaine. Nevertheless, no side effects or symptoms of any toxicity were observed in either of the groups in the present study.

In 1989, Chirwa et al. [12] conducted a double-blinded randomized controlled trial (RCT) where intrarticular 0.5% bupivacaine (Marcaine) was compared with a saline placebo. Intra-articular bupivacaine was shown to be an effective and safe method of achieving analgesia after arthroscopic meniscectomy. Calnet et al. [21] performed a study using 10 cc bupivacaine 0.25% for patients with arthroscopic partial meniscectomies, and Dal et al. [22] conducted a study using 20 cc of bupivacaine 0.5% and concluded 0.5% to be more effective for 24 h in even smaller groups of 15 patients scheduled for arthroscopy.

There have been a few contradictory studies where intra-articular bupivacaine has not shown any superiority to other analgesics.

Table 1: Demographic profile using students t-test and Chi-square test

Patient variables	Group 1	Group 2	p
Mean age (SD)	40.10 years (±12.92)	39.57 years (±12.67)	0.872 (NS)
Mean weight (SD)	61.23 kg (±8.29)	63.9 kg (±8.38)	0.221 (NS)
Sex M/F	18/12	18/12	1.00 (NS)

SD: Standard deviation
administered through the same route. For example, Marret et al. [15] could not prove 30 cc bupivacaine 0.5% to be more effective compared to saline in a power analysis based, small sample-sized randomized trial. However, recently another study by Sun et al. [23] which was a systematic electronic literature search (through April 2014) conducted to identify those RCTs that addressed the safety and efficacy of a single administration of IA bupivacaine for pain management after arthroscopic knee surgery concluded that the use of single-dose of bupivacaine intra-articularly is effective for post-operative pain relief in patients undergoing arthroscopic surgery of the knee, with reliable short-term safety.

Convery et al. [4] documented lower pain scores by verbal rating when ropivacaine 150 mg was compared with bupivacaine 100 mg. Franceschi et al. [2] conducted a study which proved that 20 cc ropivacaine 0.75% to be superior to 20 cc saline as placebo for the first 4 h at least. They concluded that ropivacaine is a safe, site-specific, and long-lasting anesthetic drug with an earlier onset than morphine and almost the same duration as morphine, but these results were contradicted by Rautoma et al. [24] in a study performed under spinal anesthesia using 20 cc ropivacaine 0.75% compared to placebo after 8 h of post-operative period.

In a study by Samoladas et al. [1], comparing 10 ml and 20 ml of ropivacaine 0.75% showed that intra-articular use of ropivacaine is effective in reducing post-operative pain minimizing the use of systemic analgesia. These results were in concordance with the study conducted by Campo et al. [25], using 10 cc bupivacaine 0.5% and 10 cc ropivacaine 0.75% compared to saline.

Table 2: The comparison of change in the heart rate from baseline in each group and between the groups, using t-test and Mann–Whitney test

Time	Groups	Change Mean±SD	Mann–Whitney test Z value	p
At 1st h	Group 1	14.900 ± 5.803	1.346	0.184
	Group 2	16.667 ± 4.245		
At 2nd h	Group 1	12.067 ± 6.136	2.123	0.038
	Group 2	15.067 ± 4.719		
At 4th h	Group 1	8.400 ± 6.044	2.249	0.028
	Group 2	11.533 ± 4.659		
At 6th h	Group 1	6.200 ± 6.713	1.775	0.081
	Group 2	9.033 ± 5.599		
At 9th h	Group 1	5.533 ± 5.958	1.925	0.059
	Group 2	8.100 ± 4.221		
At 12th h	Group 1	5.800 ± 6.110	2.182	0.033
	Group 2	8.667 ± 3.800		
At 16th h	Group 1	4.467 ± 6.230	1.418	0.161
	Group 2	6.633 ± 5.886		
At 20th h	Group 1	2.800 ± 6.759	2.525	0.014
	Group 2	6.400 ± 3.000		

SD: Standard deviation

Table 3: Comparison of mean arterial pressures using t-test and Mann–Whitney test

Time	n	Mean±SD	95% confidence interval for mean	t	p		
			Lower bound	Upper bound			
Baseline	Group 1	30	100.17±10.359	96.30	104.03	0.389	0.699
	Group 2	30	99.23±8.089	96.21	102.25		
At 1st	Group 1	30	82.17±9.976	78.44	85.89	0.407	0.685
	Group 2	30	83.10±7.608	80.26	85.94		
At 2nd	Group 1	30	83.09±10.257	79.26	86.92	0.842	0.403
	Group 2	30	85.39±10.890	81.32	89.46		
At 4th	Group 1	30	89.37±9.779	85.72	93.02	0.370	0.713
	Group 2	30	88.50±8.320	85.39	91.61		
At 6th	Group 1	30	91.50±9.081	88.11	94.89	0.016	0.987
	Group 2	30	91.53±7.152	88.86	94.20		
At 9th	Group 1	30	94.93±7.674	92.07	97.80	0.108	0.914
	Group 2	30	94.73±6.622	92.26	97.21		
At 12th	Group 1	30	94.88±8.323	91.69	97.91	0.636	0.527
	Group 2	30	93.47±7.899	90.52	96.42		
At 16th	Group 1	30	93.17±18.357	86.31	100.02	0.658	0.513
	Group 2	30	95.67±9.799	92.01	99.33		
At 20th	Group 1	30	97.27±7.153	94.60	99.94	0.147	0.884
	Group 2	30	97.00±6.928	94.41	99.59		

SD: Standard deviation
Both bupivacaine and ropivacaine have proven to have systemic concentrations, below known toxic levels are safe to use intra-articularly [20,26,27]. There was no occurrence of any symptoms of toxicity in either of the groups. This may be attributed to the low volume and concentration of both the drugs used in our study.

However, a few study reports have shown chondrotoxic effects of bupivacaine in vitro as well as in vivo [28-30]. Ropivacaine 0.5% also has chondrotoxic effects, although to a less extent than bupivacaine 0.5% when tested in vitro [15,20,24,27,31,32]. Both substances appear to display a dose-dependent effect, making a low dose intra-articular injection strategy possibly the least harmful [31]. In a study, other modes of post-operative analgesia like epidural bupivacaine have been discussed [33]. In a review article by Vidya and Felicita, it is stated that intra-articular local anesthetic was more effective when compared to piroxicam [34].

Thus, either bupivacaine or ropivacaine can be used intra-articularly for post-operative analgesia, but low concentration and lesser volumes can be used with considerable safety.

Limitation of our study includes the post-operative sensory blockade after spinal anesthesia. The analgesic effect of intra-articular local anesthetics might be confounded due to the difference in the variable time for emergence from the sensory blockade.

CONCLUSION
We conclude that despite the limitation in our study we encourage the usage of either ropivacaine or bupivacaine intra-articularly for post-operative analgesia as no adverse effects were noted. Both the drugs effectively provided post-operative analgesia and reduced the need for rescue analgesia.

ACKNOWLEDGMENT
The authors acknowledge the help and support of Kasturba Medical College, Mangalore and Manipal University, Manipal, India, in conducting this study.

REFERENCES
1. Samoladas EP, Chalidis B, Fotiadis H, Terzidis I, Ntobas T, Kointzis M. The intra-articular use of ropivacaine for the control of post knee arthroscopy pain. J Orthop Surg Res 2006;23:117.
2. Franceschi F, Rizzello G, Cataldo R, Denaro V. Comparison of morphine and ropivacaine following knee arthroscopy. Arthroscopy 2001;17:477-80.
3. Das A, Majumdar S, Kundu R, Mitra T, Mukherjee A, Hajra BK, et al. Pain relief in day care arthroscopic knee surgery: A comparison between intra-articular ropivacaine and levobupivacaine: A prospective, double-blinded, randomized controlled study. Saudi J Anaesth 2014;8:368-73.
4. Convery PN, Milligan KR, Quinn P, Sjövall J, Gustafsson U. Efficacy and uptake of ropivacaine and bupivacaine after single intra-articular injection in the knee joint. Br J Anaesth 2001;87:570-6.
5. Gupta A, Axelsson K, Allvin R, Liska-hackzell J, Rawal N, Althoff B, et al. Postoperative pain following knee arthroscopy. The effects of intra-articular ketorolac and/or morphine. Reg Anesth Pain Med 1999;24:225-30.
6. Chan ST. Intra-articular morphine and bupivacaine for pain after therapeutic arthroscopic knee surgery. Singapore Med J 1995;36:35-7.
7. Gürkan Y, Kilickan L, Buluc L, Mucizininoglu S, Toker K. Effects of diclofenac and intra-articular morphine/bupivacaine on postarthroscopic pain control. Minerva Anestesiol 1999;65:741-5.
8. Foster RH, Markham A. Levobupivacaine: A review of its pharmacology and use as a local anesthetic. Drugs 2000;59:551-79.
9. Scott DB, Lee A, Fagan D, Bowler GM, Bloomfield P, Lundh R, et al. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 1989;69:563-9.
10. Vainionpää VA, Haavisto ET, Huha TM, Korpi KJ, Nauletin LS, Hollmén AI, et al. A clinical and pharmacokinetic comparison of ropivacaine and bupivacaine in axillary plexus block. Anesth Analg 1995;81:534-8.
11. Al-Metwalli RR, Movafi HA, Ismail SA, Siddiqui AK, Al-Ghamdi AM, Shafi MA, et al. Effect of intra-articular dexmedetomidine on postoperative analgesia after arthroscopic knee surgery. Br J Anaesth 2008;101:395-9.
12. Chirwa SS, Maclod EA, Day B. Intraarticular bupivacaine (Marcaine) after arthroscopic meniscectomy: A randomized double-blind controlled study. Arthroscopy 1989;5:333-5.
13. Dye SF, Vaapel GL, Dye CC. Conscious neurosensory mapping of the internal structures of the human knee without intraarticular anesthesia. Am J Sports Med 1998;26:773-7.
14. Rawal N. Analgesia for day-case surgery. Br J Anaesth 2001;87:73-87.
15. Marret E, Gentili M, Bonnet MP, Bonnet F. Intra-articular ropivacaine 0.75% and bupivacaine 0.50% for analgesia after arthroscopic knee surgery: A randomized prospective study. Arthroscopy 2005;21:313-6.
16. Mandal P, Saudagar AH. Intra-articular fentanyl for analgesia following arthroscopic knee surgery. Indian J Anaesth 2002;46:107-10.
17. Ersan Ö, Akkaya T, Arık E, Ateş Y. Intra-articular levobupivacaine, lornoxicam and morphine analgesia after knee arthroscopy: A randomized, controlled trial. Acta Orthopaed Traumatol Turc 2012;46:411-5.
18. Georgopoulos G, Carry P, Pan Z, Chang F, Hearse T, Rhodes J, et al. The efficacy of intra-articular injections for pain control following the closed reduction and percutaneous pinning of pediatric supracondylar humeral fractures: A randomized controlled trial. J Bone Joint Surg Am 2012;94:1633-42.
19. Wasudev G, Smith BE, Limbird TJ. Blood levels of bupivacaine after...
arthroscopy of the knee joint. Arthroscopy 1990;6:40-2.

20. Kaeding CC, Hill JA, Katz J, Benson L. Bupivacaine use after knee arthroscopy: Pharmacokinetics and pain control study. Arthroscopy 1990;6:33-9.

21. Calmet J, Esteve C, Boada S, Giné J. Analgesic effect of intra-articular ketorolac in knee arthroscopy: Comparison of morphine and bupivacaine. Knee Surg Sports Traumatol Arthrosc 2004;12:552-5.

22. Dal D, Tetik O, Alhunkaya H, Tetik O, Doral MN. The efficacy of intra-articular ketamine for postoperative analgesia in outpatient arthroscopic surgery. Arthroscopy 2004;20:300-5.

23. Sun QB, Liu SD, Meng QJ, Qu HZ, Zhang Z. Single administration of intra-articular bupivacaine in arthroscopic knee surgery: A systematic review and meta-analysis. BMC Musculoskelet Disord 2015;16:21.

24. Rautoma P, Santanen U, Avela R, Luurila H, Perhoniemi V, Erkola O, et al. Diclofenac premedication but not intra-articular ropivacaine alleviates pain following day-case knee arthroscopy. Can J Anaesth 2000;47:220-4.

25. Campo MM, Kerkhoffs GM, Sierevelt IN, Weeseman RR, Van der Vis HM, Albers GH, et al. A randomised controlled trial for the effectiveness of intra-articular ropivacaine and bupivacaine on pain after knee arthroscopy: The DUPRA (DUp local pain relief after arthroscopy)-trial. Knee Surg Sports Traumatol Arthrosc 2013;20:239-44.

26. Weiker GG, Kauvila TE, Pippinger CE. Serum lidocaine and bupivacaine levels in local technique knee arthroscopy. Am J Sports Med 1991;19:499-502.

27. Ng HP, Nordström U, Axelsson K, Perniola AD, Gustav E, Rythberg L, et al. Efficacy of intra-articular bupivacaine, ropivacaine, or a combination of ropivacaine, morphine, and ketorolac on postoperative pain relief after ambulatory arthroscopic knee surgery: A randomized double-blind study. Reg Anesth Pain Med 2006;31:26-33.

28. Chu CR. In vivo effects of single intra-articular injection of 0.5% bupivacaine on articular cartilage. J Bone Jt Surg 2010;92:599.

29. Chu CR, Izzo NJ, Coyle CH, Papas NE, Logar A. The in vitro effects of bupivacaine on articular chondrocytes. J Bone Jt Surg 2008;90:814-20.

30. Chu CR, Izzo NJ, Papas NE, Fu FH. In vitro exposure to 0.5% bupivacaine is cytotoxic to bovine articular chondrocytes. Arthroscopy 2006;22:693-9.

31. Grishko V, Xu M, Wilson G, Pearsall AW. Apoptosis and mitochondrial dysfunction in human chondrocytes following exposure to lidocaine, bupivacaine, and ropivacaine. J Bone Jt Surg 2010;92:609-18.

32. Møniche S, Mikkelsen S, Wetterslev J, Dahl JB. A systematic review of intra-articular local anesthesia for postoperative pain relief after arthroscopic knee surgery. Reg Anesth Pain Med 1999;24:430-7.

33. Venkatraman R, Sandhya R. Evaluation of efficacy of epidural butorphanol tartrate for postoperative analgesia. Int J Pharm Pharm Sci 2015;7:54-8.