Precise measurement of energy of the first excited state of 115Sn ($E_{\text{exc}} \simeq 497.3$ keV)

V. A. Zheltonozhsky, A. M. Savrasov(a), N. V. Strilchuk and V. I. Tretyak

Institute for Nuclear Research - 03028 Kyiv, Ukraine

received 19 October 2017; accepted in final form 8 February 2018
published online 2 March 2018

PACS 23.20.Lv – γ transitions and level energies
PACS 25.40.Kv – Charge-exchange reactions
PACS 27.60.+j – 90 ≤ A ≤ 149

Abstract – Single beta decay of 115In to the first excited level of 115Sn ($E_{\text{exc}} \simeq 497.3$ keV) is known as β-decay with the lowest Q_β value. To determine the Q_β precisely, one has to measure very accurately the E_{exc} value. A sample of tin enriched in 115Sn to 50.7% was irradiated by a proton beam at the U-120 accelerator of INR, Kyiv. The 115Sb radioactive isotope, created in the 115Sn(p,n)115Sb reaction, decays with $T_{1/2} = 32$ min to 115Sn populating the 497 keV level with $\simeq 96\%$ probability. The total statistics of $\sim 10^5$ counts collected in the 497 keV peak in a series of measurements, the exact description of the peak shape and the precisely known calibration points around the 497 keV peak allowed to obtain the value $E_{\text{exc}} = 497.342(3)$ keV, which is the most precise to-date. This leads to the following $Q_\beta^* $ value for the decay 115In \rightarrow^{115}Sn* : $Q_\beta^* = 147 \pm 10$ eV.

Copyright © EPLA, 2018

Introduction. – While the 115In isotope is present in a natural mixture of elements with a big abundance of $\delta = 95.719(52)\%$ [1], it is unstable in relation to the beta decay. The nuclear decay 115In \rightarrow^{115}Sn is characterized by one of the longest half-life for the observed single β^--decays: $T_{1/2} = 4.41(25) \times 10^4$ y [2,3] (for the ground state to the ground state, g.s. to g.s., transitions). Until 2005, this process was considered as 100% g.s. to g.s., but in 2005 also the decay to the first excited level of 115Sn was observed for the first time [4,5] in the measurements of a sample of metallic indium (mass of 929 g) during 2762 h with 4 HPGe detectors ($\simeq 225$ cm3 each) installed deep underground at the Laboratori Nazionali del Gran Sasso (Italy, 3600 m of water equivalent, m w.e.). The branching ratio of the decay was measured as $b = (1.18 \pm 0.31) \times 10^{-6}$ that corresponds to partial half-life $T_{1/2} = (3.73 \pm 0.98) \times 10^{20}$ y [4]. The atomic mass difference Δm_a between 115In and 115Sn (equal to the energy release Q_β in 115In β-decay) at the time of measurements of ref. [4] was known with quite low accuracy: $Q_\beta = 499 \pm 4$ keV [6]; however, in 2009 it was measured with the extremely high accuracy of 10 eV: $Q_\beta = 497.489 \pm 0.010$ keV [7]. Taking into account that the energy of the 115Sn first excited level was known as $E_{\text{exc}} = 497.334 \pm 0.022$ keV [3], the energy release in the 115In \rightarrow^{115}Sn* is equal to $Q_\beta^* = 155 \pm 24$ eV that is the lowest known Q_β value among the observed β-decays (the next one is $Q_\beta = 2.467 \pm 0.002$ keV for 187Re [8]). The decay scheme of 115In \rightarrow^{115}Sn is shown in fig. 1. Observation [4] was confirmed in measurements of In sample (2566 g) at the HADES underground laboratory (Belgium, 500 m w.e.) with 3 HPGe detectors; slightly more precise values of half-life were obtained: $T_{1/2} = (4.1 \pm 0.6) \times 10^{20}$ y [9] and $T_{1/2} = (4.3 \pm 0.5) \times 10^{20}$ y [10]. As was noted in [4,5], the β-decay with such a low Q_β value potentially can be used to limit (or to measure) the neutrino mass, in particular, looking for deviation of the energy β spectrum from the theoretical shape; the β-decay was calculated in [11] taking into account that it is classified as 2-fold forbidden and unique ($\Delta J^A = 3^+$) and differs from the allowed shape. Half-life for the 115In \rightarrow^{115}Sn* process was calculated in [9,12] as a function of the Q_β^* value; however, for $Q_\beta^* = 155 \pm 24$ eV defined in [7] the disagreement was by ~ 1 order of magnitude that probably is related to atomic effects which are poorly known yet at low energies and were not taken into account in the calculations.

A list of other potentially interesting candidates with low Q_β^* values is given in [13–16]; it should be noted that they are not observed yet, and Q_β values are known with the low accuracy of ~ 1 keV (or worse).
The uncertainty of 24 eV in the Q_{β}^3 value is defined mainly by the 22 eV uncertainty in our knowledge of the energy of the 115Sn excited level: $E_{\text{exc}} = 497.334(22)$ keV [3]. The situation is even paradoxical to some extent: we know the absolute values of 115In and 116Sn masses of ~ 100 GeV (and their difference) with better accuracy than the level energy of ~ 0.5 MeV. It is clear that a new, more exact measurement of the energy of the first excited level of 115Sn is highly desirable.

Very recently this energy was precisely measured using the 114Sn(n,γ)115Sn reaction with cold neutrons and 30 mg Sn target enriched in 70% in the 114Sn isotope; the result is: $E_{\text{exc}} = 497.316 \pm 0.007$ keV, that leads to $Q_{\beta}^3 = 173 \pm 12$ eV [17].

We present here the results obtained in an alternative approach: by investigating the decay of radioactive 115Sb ($T_{1/2} = 32$ min) which was obtained in the 115Sn(p,n)116Sb reaction by irradiation of a sample of Sn. The 115Sb nuclide decays mainly ($\approx 96\%$) to the 497 keV level of 115In that ensures an effective collection of statistics in the peak of interest.

Experimental measurements. – The sample of tin enriched in 115Sn to 50.7% (the natural isotopic abundance of 115Sn is $\delta = 0.34\%$ [1]) with mass of 0.23 g and thickness of 50 mg/cm² was irradiated by beam of protons with energy 6.8 MeV at the U-120 accelerator of the Institute for Nuclear Research, Kyiv (KINR). The intensity of the beam was equal to $6.3 \times 10^{12} \text{ p \cdot cm}^{-2} \cdot \text{s}^{-1}$, and the cross-section for the 115Sn(p,n)116Sb reaction is $\sigma \approx 100$ mb [18].

Energies of the emitted γ quanta were measured by a HPGe detector (CANBERRA; 18\% efficiency relatively to $\odot 3\% \times 3\%$ NaI(Tl) detector at 1332 keV) which had energy resolution FWHM = 1.1 keV at $E = 497$ keV. The standard analogue CANBERRA and ORTEC electronics was used in the experiment. The counting rate varied from 20 to 100 counts/s during the measurements.

For an accurate determination of the energy of the 497 keV γ-rays, we used the calibration γ lines, not far from the energy of interest, those energies are known with high precision: 7Be ($T_{1/2} = 53$ d) with $E_{\gamma} = 477.6035(20)$ keV; 124Sb ($T_{1/2} = 60$ d) with $E_{\gamma} = 602.7260(23)$ keV; and 137Cs ($T_{1/2} = 30$ y) with $E_{\gamma} = 661.6573(2)$ keV [19,20]. In addition, the γ lines of the 115Cd radioactive isotope ($T_{1/2} = 53$ h) were used: $E_{\gamma} = 492.3514(4)$ keV (which is very close to the 497 keV line of interest) and $E_{\gamma} = 527.9017(7)$ keV [3]. 115Cd was produced in reaction 114Cd(n,γ)115Cd with the Cd target enriched in 114Cd to 99% (the natural abundance is 28.8%) at the KINR nuclear reactor. The strong annihilation line at 510.999 keV in the measured spectra was not used for calibration due to its bigger natural broadness but was used for additional control.

Measurements with the HPGe detector were performed for the mixed 7Be +115Cd +124Sb + 137Cs +115Sb source. After each 30 min, we added to the source additional 115Sb activity to keep stable the accumulation rate of the 497 keV peak and the dead time of the detector. Three irradiations of the Sn sample by p beam were performed, and 4 series of measurements with the HPGe detector were done after each irradiation. Totally 12 spectra were obtained, with statistics of $(3-4) \times 10^4$ counts in the 497 keV peak in each of them.

After each of the series, also longer measurements during 4-6 h were performed for estimation of the non-linearity of the energy scale. Parts of the obtained spectra around the 497 keV region are shown in fig. 2: measured during the first 30 min (left) and during 12 h (right).

Results and discussion. – For the accurate determination of the energy of a peak, not only precisely known calibration points should be located near the peak of interest but also the exact description of the shapes of measured peaks and background under the peaks is extremely important. To fit the experimental spectra, we use the WinSpectrum code [21]. It describes the peak as the Gaussian with left and right tails which often appear due to the incorrect regeneration of the constant fraction of a spectrometer signal. The background is described by a quadratic polynomial; a step present under each peak due to the photoelectrons escape outside the sensitive volume of the detector is also taken into account. More details can be found in [21]. Figure 3 shows part of one of the spectra with the fitted peaks as an example.

All the spectra were processed individually with their own individual backgrounds. Results for the obtained energies of the precisely known lines around the 497.3 keV peak of interest are given in table 1.

In addition to the analytical description of the peaks, the experimentally measured shape of the 7Be γ line at 477.6035 keV was also used in the fitting procedures as a reference allowing to describe distortions of the peaks at 470–500 keV from the pure Gaussian in the same manner. The difference in positions of the γ lines, obtained by these two methods, was not greater than 1 eV.

To estimate a drift of the data acquisition system and the non-linearity of the energy scale in the region of interest, we used two reference lines known with...
Precise measurement of energy of the first excited state of 115Sn ($E_{\text{exc}} \simeq 497.3$ keV)

![Image](image-url)

Fig. 2: Parts of the energy spectra around the 497 keV region accumulated with the irradiated Sn sample during 30 min (left) and 12 h (right). The line at 484 keV results from the reaction 114Cd(n,γ)115Cd. The lines with energies of 511 keV (120Sb), 564 keV (122Sb) and 603 keV (124Sb) result from the (p,n) reaction on 120Sn, 122Sn and 124Sn, respectively; these isotopes were present in the used Sn target with abundance of: 120Sn (6.5%), 122Sn (1%) and 124Sn (1%).

![Image](image-url)

Fig. 3: Part of one of the spectra with the fitted peaks in the region of the 497.3 keV peak of interest.

high accuracy: $E_\gamma = 477.6035(20)$ keV from 7Be and $E_\gamma = 661.657(3)$ keV from 137Cs (see fig. 2). In measurements with the generated 115Sb, the position of the 115Cd line, $E_\gamma = 492.351(4)$ keV, located very close to our line of 497.3 keV, was controlled. In long (4-6 h) expositions without generated 115Sb, positions of lines $E_\gamma = 477.6035(20)$ keV, $E_\gamma = 661.657(3)$ keV and $E_\gamma = 492.351(4)$ keV were controlled. The geometry of the targets in these expositions was the same as in measurements with 115Sb. In all the measurements, the shift of the energy scale was linear in the region of interest 477–662 keV, and non-linearity for $E_\gamma = 492.351(4)$ keV —and thus for our line too— was not greater than 1 eV.

The gamma line with energy $E_\gamma = 477.6035(20)$ keV was always used as the left reference point because of the lowest uncertainty of 2 eV and quite close location to our line of 497.3 keV. As the right reference point, different lines at $E_\gamma = 527.901(7)$ keV, $E_\gamma = 602.7260(23)$ keV and $E_\gamma = 661.657(3)$ keV were tested. However, the line at 527.901(7) keV has a relatively big table uncertainty of 7 eV, and $E_\gamma = 602.7260(23)$ keV —quite big error bars due to lower statistics in this peak. Thus for the final estimation of errors in the energy scale calibration, two lines were chosen: $E_\gamma = 477.6035(20)$ keV and $E_\gamma = 661.657(3)$ keV. Using these lines in 12 measurements, we obtained the weighted average uncertainty of 2 eV. For other pairs, this value was greater.

Difference in the determined energy of the 497.3 keV peak in different spectra was inside the error bars obtained in the fitting procedure, i.e., 3–4 eV (see table 1). The weighted average energy and uncertainty after 12 measurements were calculated using the standard formulas

$$
\langle E \rangle = \frac{\sum_{i=1}^{12} w_i E_i}{\sum_{i=1}^{12} w_i}, \quad \frac{1}{\sigma_E^2} = \sum_{i=1}^{12} \frac{1}{\sigma_i^2}, \quad w_i = \frac{1}{\sigma_i^2},
$$

where E_i and σ_i are the energies and uncertainties in individual measurements given in table 1. The obtained uncertainty was equal to 1.1 eV. The total uncertainty of the determination of the 115Sb line was calculated as the square root of quadratically added uncertainty of the line $E_\gamma = 477.6035$ keV —2 eV, calibration uncertainty —2 eV, and weighted average statistical uncertainty —1.1 eV, which results in the final value of 3 eV.

Similar procedures for processing the spectra were used in our previous work [22] for precise measurement (with 3 eV uncertainty) of the energy of the first excited level of 197Au.

Fit of the measured experimental spectrum allowed to obtain the following value for the energy of 115Cd 492 keV peak (which is very close to our 497 keV peak of interest): $E_\gamma = 492.350(3)$ keV, which is in excellent agreement with the table value of 492.351(4) [3].

For the energy of the 497 keV line, the obtained result is: $E_\gamma = 497.341(3)$ keV. Correcting for the recoil of the 115Sn nucleus, we calculate the energy of the first excited level of 115Sn: $E_{\text{exc}} = 497.342(3)$ keV. This value is in a good agreement with the evaluated data in ref. [3]: 497.334(22) keV. However, it differs by 3.4σ from the recent result $E_{\text{exc}} = 497.316(7)$ keV [17].

12001-p3
Table 1: Results for the obtained energies of lines around the 497.3 keV peak of interest for 12 individual spectra.

Spectrum number	Nuclide	Table E (keV)	Fitted energy (keV)
	7Be	477.6035(20)	477.603(3) 477.603(4) 477.604(4)
	115Cd	492.351(4)	492.350(3) 492.348(4) 492.351(3)
	115Sb	497.3	497.339(4) 497.328(4) 497.340(4)
	115Cd	527.901(7)	527.903(9) 527.854(2) 527.900(7)
	124Sb	602.7260(23)	602.723(3) 602.715(16) 602.717(7)
	137Cs	661.657(3)	661.656(3) 661.656(4) 661.655(4)
	7	7Be 477.6035(20) 477.602(4) 477.604(2) 477.605(3)	
		115Cd 492.351(4) 492.347(3) 492.352(4) 492.349(2)	
		115Sb 497.3 497.341(4) 497.338(3) 497.336(4)	
		115Cd 527.901(7) 527.901(8) 527.873(6) 527.901(5)	
		124Sb 602.7260(23) 602.718(13) 602.722(14) 602.716(9)	
		137Cs 661.657(3) 661.656(2) 661.658(2)	
	4	7Be 477.6035(20) 477.601(3) 477.600(4) 477.603(5)	
		115Cd 492.351(4) 492.353(4) 492.352(3) 492.353(2)	
		115Sb 497.3 497.350(4) 497.346(4) 497.349(3)	
		115Cd 527.901(7) 527.895(4) 527.883(9) 527.901(8)	
		124Sb 602.7260(23) 602.725(6) 602.714(15) 602.719(9)	
		137Cs 661.657(3) 661.659(4) 661.655(3) 661.654(4)	
	7	7Be 477.6035(20) 477.604(3) 477.603(3) 477.605(3)	
		115Cd 492.351(4) 492.349(3) 492.347(4) 492.351(3)	
		115Sb 497.3 497.344(4) 497.331(4) 497.349(4)	
		115Cd 527.901(7) 527.862(11) 527.888(10) 527.896(9)	
		124Sb 602.7260(23) 602.722(7) 602.721(8) 602.722(5)	
		137Cs 661.657(3) 661.658(3) 661.655(4) 661.660(2)	

Taking into account the 115In - 115Sn atomic mass difference of 497.489(10) keV [7], our value of 115Sn* E_{exc} leads to the following Q^*_β value for the decay 115In \rightarrow^{115}Sn*: $Q^*_\beta = 147 \pm 10$ eV.

Conclusion. – Creating the 115Sb isotope in the reaction 115Sn(p,n)115Sb by the irradiation of the Sn sample by the proton beam and exactly measuring the energy of the main γ quantum of 497 keV emitted in the 115Sb decay, we obtained the following value for the energy of the first excited state of 115Sn: $E_{\text{exc}} = 497.342(3)$ keV. This is the most precise measurement to-date. It is in agreement with the evaluated data of 497.334(22) keV [3] but in 3.4σ disagreement with the recent result 497.316(7) keV [17].

The new value is obtained for the energy release in the β-decay of 115In to the first excited state of 115Sn: $Q^*_\beta = 147 \pm 10$ eV. This result leads to a better agreement of the experimental partial half-life for this β-decay with the theoretical calculations of ref. [12] but a big difference still exists demanding to account new effects for the $T_{1/2}$ calculations of β-decays with extremely low Q_β values.

REFERENCES

[1] MEJIA J. et al., Pure Appl. Chem., 88 (2016) 293.
[2] PFLEIFER L., MILLS A. P. Jr., RAGHAVAN R. S. and CHANDROSS E. A., Phys. Rev. Lett., 41 (1978) 63.
[3] BLACHOT J., Nucl. Data Sheets, 113 (2012) 2391.
[4] CATTADORI C. M. et al., Nucl. Phys. A, 748 (2005) 333.
[5] CATTADORI C. M. et al., Phys. At. Nucl., 70 (2007) 127.
[6] AUDI G. et al., Nucl. Phys. A, 729 (2003) 337.
Precise measurement of energy of the first excited state of 115Sn ($E_{\text{exc}} \simeq 497.3$ keV)

[7] Mount B. J. et al., Phys. Rev. Lett., 103 (2009) 122502.
[8] Wang M. et al., Chin. Phys. C, 41 (2017) 030003.
[9] Wieslander E. et al., Phys. Rev. Lett., 103 (2009) 122501.
[10] Andreotti E. et al., Phys. Rev. C, 84 (2011) 044605.
[11] Dvornicky R. and Simkovic F., AIP Conf. Proc., 1417 (2011) 33.
[12] Mustonen M. T. and Suhonen J., J. Phys. G, 37 (2010) 064008.
[13] Mustonen M. T. and Suhonen J., AIP Conf. Proc., 1304 (2010) 401.
[14] Mustonen M. T. and Suhonen J., Phys. Lett. B, 703 (2011) 370.
[15] Haaranen M. and Suhonen J., Eur. Phys. J. A, 49 (2013) 93.
[16] Suhonen J., Phys. Scr., 89 (2014) 054032.
[17] Urban W., et al., Phys. Rev. C, 94 (2016) 011302.
[18] Skakun Ye and Rauscher T., PoS(NIC-IX) (2006) 204.
[19] Firestone R. B. et al., Table of Isotopes, 8th edition (John Wiley & Sons, New York) 1996 and CD update, 1998.
[20] Be M.-M. and Chechev V. P., Nucl. Instrum. Methods A, 728 (2013) 157.
[21] Strilchuk N. V., The WinSpectrum manual (2000).
[22] Kirischuk V., Savrasov A., Strilchuk N. and Zheltonozhsky V., EPL, 97 (2012) 32001.