Study on working bodies of the soil preparation machine for sowing potatoes

B Mirzaev\(^1\), F Mamatov\(^{2,3}\), U Kodirov\(^3\)*, and X Shirinboyev\(^3\)

\(^1\)Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, 100000 Tashkent, Uzbekistan
\(^2\)Karshi branch of Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, 180119 Karshi, Uzbekistan
\(^3\)Karshi Engineering Economic Institute, 180100 Karshi, Uzbekistan

*Email: uchqun.1277@mail.ru

Abstract. The purpose of the study is to substantiate the parameters of the guide knife and the loosening pointed leg of the machine. The basic principles and methods of classical mechanics, mathematical analysis and statistics were used in this study. Theoretical studies were carried out to determine the parameters of the guide knife and the loosening pointed leg of the machine. It is established that to ensure the required value of the crest height with minimal energy consumption, the height and length of the guide knife should be 8 and 15 cm, respectively, the angle of the knife blade to the horizon - 30\(^\circ\), the longitudinal distance from the toe of the ploughshare body of the knife toe – 13 cm. To ensure the required crumbling of the soil, the width of the pointed loosening paw should be 15 cm.

1. Introduction

Many factors, such as arable land, climate, population, and resources, are now affecting worldwide potato production and food security [1, 2]. To ensure long-term food security, it is critical to achieve high quality, high yield, enhanced efficiency, and sustainability in potato production, as well as to expedite potato industrialization [3].

There are various elements that influence worldwide potato production, one of which is mechanization, which is critical for increasing potato production and yield per unit area. Potato production is divided into three stages: planting, cultivating, and harvesting. Planting is one of the most essential components of potato
production, as it is complex, labor-intensive, and difficult to mechanize, and has a significant impact on potato production quality and final output [4]. Tillage, ditching, spraying, seeding, fertilizing, ridging, and other aspects of the planting process can be separated. These functions are done by multiple machines, or even by one machine in a single pass over the field, depending on the planting method used. Mechanized potato planting has the advantages of reducing labor intensity, increasing working efficiency, and ensuring seeding quality.

In the world, the leading place is occupied by the development and application of energy-saving and high-performance machines for tillage [5, 6] and preparing it for sowing. At the same time, much attention is paid to the development of machines that perform all the technological processes of tillage and preparing it for sowing potatoes on ridges in one pass through the field.

Mamatov [7-29], Mirzaev [10-18, 20-27, 29], Kurdyumov et al. [32], Lakhmakov [33] and others were engaged in research on the creation and use of combined machines for processing and preparing soil for sowing agricultural crops, substantiating the parameters of working bodies, as well as studying their processes of interaction of working bodies with the soil.

However, these studies do not sufficiently study the issues of tillage for sowing potatoes with the simultaneous formation of ridges that ensure high quality work with minimal energy costs. Hence, the purpose of the study is to substantiate the parameters of the guide knife and the loosening pointed leg of the machine.

2. Methods
The basic principles and methods of classical mechanics, mathematical analysis and statistics were used in this study. In order to substantiate the constructive scheme of the machine implementing the proposed technology and the types of working bodies, the constructions of the machines preparing the fields for planting were created in detail by the researchers.

3. Results
As a result, a constructive scheme of the machine was developed, which implements the technology of preparing the soil for planting potatoes for planting (Figure 1). It includes frame 1, tractor mounting bracket 2, base wheels 3, frame-mounted recesses 4, axle softener claws 5, right and left swivel housings 6 and 7, guide blades 8 and The profile consists of 9 reels.

The main working bodies of the machine are the body with a guide plate and a pointed flat-cutting paw. Depending on the nature of the machine, we can determine the parameters of the blade and the axle.

The guide blade is attached to the edge of the 4 l ploughshare (Figure 2). Its main parameters are the distance from the beak to the blade \(l_{gb} \); length and height of guide blade \(l_p \) and \(h_{gp} \); the angle of inclination of the blade of the guide blade relative to the horizon \(\alpha_p \); \(i_o \) the sharpening angle of the blade is thread.
Figure 1. Layout of work tools on the frame: 1 – frame; 2 – wing share; 3 – base wheel; 4 – deep softener; 5 – axial softening claw; 6 and 7 – right and left turning bodies; 8 – guide knife; 9 – profile roller

Figure 2. Diagram for determining the parameters of the guide blade

We determine the angle of inclination of the blade with respect to the horizon by the following expression from the condition of sliding the soil along it.

$$\alpha_p \leq \frac{\pi}{4} - \frac{\varphi_1}{2},$$ \hspace{1cm} (1)

where φ_1 – is the angle of friction of the soil with the blade.
We put the known values of \varnothing_1 (25-30°) in this expression and determine that the angle α_p should be in the range 30-33° and assume $\alpha_p = 30°$.

We choose the height of the guide blade in order to minimize the interaction of the blade with the wall. Due to the fact that the housing works in a completely closed cutting position, the upper edge of the blade is crushed at the beginning of the rotation of the blade. The height of the blade, which guides the blade, can be determined by setting the rest of the blade from crushing and eliminating its interaction with the wall.

$$h_p \geq a - b_k \cdot \tan \tau - \Delta_p,$$

We determine that the minimum height of the blade, which is directed to the expression (2) by $b_k = 0.2$ m, $\Delta_p = 0.05$ m and $\tau = 6°$, is not less than 79 mm. We assume $h_p = 80$ mm.

At the beginning of the rotation of the pelvis, the pelvis is in a state of tension due to the compression of its inner upper edges. In this case, it is difficult for the blade to penetrate the blade, which can lead to the accumulation of soil in front of the housing and disruption of the technological process at the beginning. Therefore, it is advisable to place the blade as close as possible to the line of the ploughshare beak in the direction of movement. In this case, the crushing of the slab with the wall is replaced by the crushing of the soil with a steel knife. Plus, you'll be getting rid of clutter you don't need. Due to the design difficulties associated with the installation of the blade, the blade nozzle can be installed at the following distances from the body ploughshares nozzle.

$$l_{lp} = (0.5 \div 0.6) h_p \cdot \tan \gamma_l.$$

Substituting $b_k=0.2$ m and $\gamma_l=42°$ into expression (3), we determine that the longitudinal distance from the beak of the body ploughshares to the beak of the blade is $l_{lp} = 0.22$ m.

From Fig.2, we determine the length of the guide blade by the following formula

$$l_p = b_k \cdot \tan \gamma_l - l_{lp} + \Delta l,$$

where b_k – is the width of the ploughshare heel; Δl – is the length of the blade, which allows the blade to touch the wall of the ridge after rising above the heel of the ploughshare.

Because the blade has a trapezoidal shape

$$\Delta l = h_p \cos \alpha_p.$$

Substituting the value of h_p for expression (5) into expression (2), we obtain

$$\Delta l = (a - b_k \cdot \tan \tau - \Delta_p) \cos \alpha_p.$$

In that case

$$l_p = b_k \cdot \tan \gamma_l - l_{lp} + h_p \cos \epsilon + \frac{a - b_k \cdot \tan \tau - \Delta_p - \Delta l}{\cos \alpha_p}.$$

Add the values $b_k=0.2$ m, $\gamma_p=42°$, $a = 15$ cm, $l_{lp} = 0.22$ m, $\Delta_p = 0.05$ m, $\epsilon=25°$, $\tau = 6°$ and $\alpha_p = 30°$ to the expression (7). Calculated calculations showed that the
length of the guide blade was 0.14 m.

The gravitational resistance of the guide blade is the resistance of its blade, bevel and sides (Figure 3).

\[
R_{xp} = R_{xp}^f + R_{xp}^l + R_{xp}^r. \tag{8}
\]

![Figure 3. Scheme for determining the forces acting on the blade](image)

The resistance of the blade, chamfer and sides of the guide blade to the impact soil can be determined by the following formulas: where \(\delta \) – is the resistance of the soil to crushing in the horizontal direction; \(\beta_p \) – is the sharpening angle of the guide blade; \(f \) – is the coefficient of friction of the soil on the steel; \(\rho_1 \) – is the specific pressure of the soil on the sides of the blade, Pa; \(p \) – is the specific pressure of the soil in the chamfer, Pa.

Then

\[
R_{xp} = \sigma h_p \delta (1 + f \cos \alpha_p) + p \frac{t_p}{\sin \beta_p} h_p (1 + f \cos \alpha_p) + 2 f \rho_1 (l_p - h_p \cot \alpha_p) h_p, \tag{12}
\]

\(h_p = 0.1 \text{ m}; \ l_p = 0.032 \text{ m}; \ \sigma = 2,10^5 \text{ Pa}; \ d = 0.004 \text{ m}; \ f = 0.95; \ r = 1,9210^4 \text{ Pa}; \ r_1 = 1,64 \cdot 10^5 \text{ Pa}; \ b_l = 25^\circ; \) Assuming \(h_p = 25^\circ \) and \(t_p = 0.006 \text{ m}, \) the calculations carried out by expression (12) show that the tensile resistance of the guide plate in the velocity range 1.5-2.0 m/s is 157,8 N showed.

The total resistance of the housing with the guide blade
Calculations from expression (13) showed that the total resistance of the guide blade housing in the velocity range of 1.5 – 2.0 m/s was 2065 – 2138 N.

We choose an oversized softening pad as a softener to be installed in front of the housings. It cuts weeds to a depth of 8-10 cm and grinds the soil well. We determine the part of the row spacing that the softener softens, that is, the width of its coverage, provided that the softener claws along the axis of symmetry of the formed groove. From Figure 4:

\[
R_{k} = \left(a_{b} - \frac{1}{2} b_{l}^{2} \sin \delta \right) \left(K + \alpha \nu^{2} \right) + \sigma h_{p} \hat{\delta} \left(1 + f \cos \alpha_{p} \right) + \overline{p} \frac{t_{p}}{\sin \beta_{n}} \nu_{p} \left(1 + f \cos \alpha_{p} \right) + 2 f \rho_{l} \left(l_{p} - h_{p} \cos \alpha_{p} \right) h_{p}.
\]

(13)

where

\[
\nu_{p} = \overline{B_{k}} - \overline{b_{l}} - 2 \left(a_{c} - a_{p} \right) \cos \psi_{1}.
\]

(14)

4. Conclusions

It is established that to ensure the required value of the height of the ridge with minimal energy consumption, the height and length of the guide knife should be 8 and 15 cm, respectively, the angle of the knife blade to the horizon – 30º, the longitudinal distance
from the toe of the ploughshare body of the knife toe – 13 cm. Additionally, the width of the pointed loosening foot should be 15 cm to ensure the required crumbling of the soil.

References

[1] Mcleod CD, Misener GC, Tai G, Caissie RA 1992 Precision seeding device for true potato seed Am. Potato J. 69 255–264.
[2] Parajuli R, Matlock MD, Thoma G 2021 Cradle to grave environmental impact evaluation of the consumption of potato and tomato products Sci. Total Environ. 758 143662.
[3] Jong DH 2016 Impact of the potato on society Am. J. Potato Res. 93 415–429.
[4] Buitenwerf H, Hoogmoed WB, Lerink P, Muller J 2006 Assessment of the behaviour of potatoes in a cup-belt planter Biosyst. Eng. 95 35–41.
[5] Lou S, He J, Li H, Wang Q, Lu C, Liu W, Liu P, Zhang Z, Li H 2021 Current Knowledge and Future Directions for Improving Subsoiling Quality and Reducing Energy Consumption in Conservation Fields Agriculture 11(7) 575.
[6] Rusu T 2014 Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage International Soil and Water Conservation Research 2(4) 42-49.
[7] Mamatov FM, Eshdavlatov E, Suyunov A 2020 The Shape of the Mixing Chamber of the Continuous Mixer J Adv Research in Dynamical & Control Systems 12 2016-2023.
[8] Mamatov F, Ergashev I, Ochilov S, Pardaev X 2020 Traction Resistance of Soil Submersibility Type "Paraplu" J Adv Research in Dynamical & Control Systems 12 2154-2161.
[9] Aldoshin N, Mamatov F, Ismailov I, Ergashov G 2020 Development of combined tillage tool for melon cultivation, In Proceedings: 19th International Conference on Engineering for Rural Development, Jelgava.
[10] Umurzakov U, Mirzaev B, Mamatov F, Ravshanov H, Kurbonov S 2019 A rationale of broach-plow’s parameters of the ridge-stepped ploughing of slopes IOP Conf. Series: Earth and Environmental Science 403 012163.
[11] Mirzaev B, Mamatov F, Chuyanov D, Ravshanov X, Shodmonov G, Tavashov R, Fayzullahyev X 2019 Combined machine for preparing soil for cropping of melons and gourds IOP Conf. Ser.: Earth Environ. Sci. 403 012158.
[12] Mirzaev B, Mamatov F, Ergashev I, Ravshanov H, Mirzaxodjaev Sh, Kurbanov Sh, Kodirov U, Ergashev G 2019 Effect of fragmentation and pacing at spot ploughing on dry soils E3S Web of Conferences 135 01065.
[13] Mamatov F, Mirzaev B, Shoumarova M, Berdimuratov P, Khodzhaev D 2019 Comb former parameters for a cotton seeder International Journal of Engineering and Advanced Technology 9 4824-4826.
[14] Mamatov F, Mirzaev B, Batirov Z, Toshtemirov S, Tursunov O, Bobojonov L 2020 Justification of machine parameters for ridge forming with simultaneous application of fertilizers IOP Conf. Series: Materials Science and Engineering 883 012165.
[15] Mirzaev B, Mamatov F, Avazov I, Mardonov S 2019 Technologies and technical means for anti-erosion differentiated soil treatment system E3S Web of Conferences 97 05036.
[16] Aldoshin N, Didmanidze O, Mirzayev B, Mamatov F 2019 Harvesting of mixed crops by axial rotary combines, In Proceedings: 7th International Conference on Trends in Agricultural Engineering, Prague, Czech Republic, pp. 20-26.
[17] Mirzaev B, Mamatov F, Aldoshin N, Amonov M 2019 Anti-erosion two-stage tillage by ripper, In Proceedings: 7th International Conference on Trends in Agricultural Engineering, Prague, Czech Republic, pp. 391-396.

[18] Mirzaev B, Maxatov F, Ergashev I, Islomov Yo, Toshtemirov B 2019 Tursunov O. Restoring degraded rangelands in Uzbekistan Procedia Environmental Science, Engineering and Management 6 395-404.

[19] Uzakov ZU, Mamatov FM, Begulov O 2019 Implementation of object-oriented Programming technology in the one-dimensional oil displacement problem, International Conference on information Science and Communications Technologies, Tashkent, Uzbekistan.

[20] Mamatov F, Mirzaev B, Berdimuratov P, Turkmenov Kh, Muratov L, Eshchanova G 2020 The stability stroke of cotton seeder moulder IOP Conf. Series: Materials Science and Engineering 883 012145.

[21] Mamatov, F., Mirzaev, B., Tursunov, O 2019 A Justification of Broach-Plow’s Parameters of the Ridge-Stepped Plowing E3S Web of Conferences 97 05035.

[22] Ahmedov BJ, Mirzaev BS, Mamatov FM, Khodzhaev DA, Julliev MK 2020 Integrating of gis and gps for ionospheric perturbations in d- And f-layers using vlf receiver, InterCarto InteGIS 26 547-560.

[23] Mamatov F, Mirzaev B, Tursunov O, Ochilov S, Chorieva D 2020 Reliability, physico-mechanical and technological properties of soil in the cotton growing area IOP Conf. Series: Earth and Environmental Science 614 012169.

[24] Shamsutdinov Z, Ubaydullaev Sh, Shamsutdinov N, Mirzaev B, Mamatov F, Chorshabiyev N 2020 The concept of the phytogenic field: theory, research experience and practical significance IOP Conf. Series: Earth and Environmental Science 614 012164.

[25] Umurzakov U, Mamatov F, Aldoshin N, Mirzaev B 2020 Exploration of tillage technologies in the Republic of Uzbekistan IOP Conf. Series: Earth and Environmental Science 614 012168.

[26] Mamatov F, Aldoshin N, Mirzaev B, Ravshanov H, Kurbanov Sh, Rashidov N 2021 Development of a frontal plow for smooth, furless plowing with cutoffs IOP Conf. Series: Materials Science and Engineering 1030 012135.

[27] Mamatov F, Mirzaev B, Mirzahodzhaev Sh, Uzakov Z, Choriyeva D 2021 Development of a front plow with active and passive working bodies IOP Conf. Series: Materials Science and Engineering 1030 012164.

[28] Mamatov FM, Eshdavlatov E, Suyuno A 2020 Continuous Feed Mixer Performance Journal of Advanced Research in Dynamical and Control Systems 12 2195-2200.

[29] Mamatov F, Ergashev I, Mirzaev B, Pardaev X, Choriyeva D 2021 Research of the Penetration Process of the Frontal Plow Journal of Physics: Conference Series 1779 012002.

[30] Mamatov FM, Kodirov UI 2016 Energy-recourse machine for preparing soil for planting root crops on ridges European Science Review 11 125-126.

[31] Kodirov U, Aldoshin N, Ubaydullaev Sh, Sharipov E, Muqimov Z, Tulaganov B 2020 The soil preparation machine for seeding potatoes on comb IOP Conf. Series: Materials Science and Engineering 883 012143.

[32] Kurdyumov V I Zykin E S Sharonov I A 2013 Optimization of constructive pairs of meters of the combing machine of a row cultivator, News of the International Academy of Agricultural Education, Sankt-Petersburg, Russia.
[33] Lahmakov VS 1989 Soil preparation with cutting ridges for potatoes with a combination machine, Candidate of Technical Science Dissertation, Minsk, Belarus.