Novel multi-layer plastic-scintillator-based solid active proton target for inverse-kinematics experiments

D. T. Trana,b, S. Terashimac, H. J. Onga,*, K. Hirakawaa, Y. Matsudad, N. Aoia, M. N. Harakehe,f, M. Itohd, T. Kawabatag, A. Kohdaa, S. Y. Matsumotob, T. Nishii, J. Okamotod, I. Tanihataa,c

aResearch Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan
bInstitute of Physics, Vietnam Academy of Science and Technology, Hanoi 10000, Vietnam
cSchool of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
dCyclotron and Radioisotope Center (CYRIC), Tohoku University, Sendai, Miyagi 980-8578, Japan
eKVI Center for Advanced Radiation Technology, University of Groningen, 9747 AA Groningen, The Netherlands
fGSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany
gDepartment of Physics, Osaka University, Osaka 560-0043, Japan
hDepartment of Physics, Kyoto University, Kyoto 606-8502, Japan
iRIKEN Nishina Center, Saitama 351-0198, Japan

Abstract

We have constructed and tested a novel plastic-scintillator-based solid-state active proton target for use in nuclear spectroscopic studies with nuclear reactions induced by an ion beam in inverse kinematics. The active target system, named Stack Structure Solid organic Scintillator Active Target (S4AT), consists of five layers of plastic scintillators, each with a 1-mm thickness. To determine the reaction point in the thickness direction, we exploit the difference in the energy losses due to the beam particle and the charged reaction product(s) in the scintillator material. S4AT offers the prospect of a relatively thick target while maintaining a good energy resolution. By considering the relative energy loss between different layers, the energy loss due to unreacted beam particles can be eliminated. Such procedure, made possible by the multi-layer structure,
is essential to eliminate the effect of unreacted accompanying beam particles, thus enabling its operation at a moderate beam intensity of up to a few Mcps. We evaluated the performance of S^4AT by measuring the elastic proton-proton scattering using a 70-MeV proton beam at Cyclotron and Radioisotope Center (CYRIC), Tohoku University.

Keywords: Multi-layer plastic scintillators, Solid-state active target, Radioactive isotope beam, Inverse kinematics

1. Introduction

Nuclei beyond the beta-stability line, commonly known as radioactive isotopes or unstable nuclei, are currently at the forefront of nuclear physics research. Over the last few decades, extensive experiments using radioactive-isotope (RI) beams have revealed various exotic and fascinating features of nuclear structure and dynamics hitherto unknown in nuclei on or near the β-stability line. Of particular interest are the formation of neutron-halo structure [1] and evolution of nuclear magic numbers [2, 3, 4] in neutron-rich nuclei. While the exact mechanisms for both phenomena have remained unclear, it seems that the tensor interactions may play an important role [5, 6]. The observations of possible effect of the tensor interactions in ^{16}O via (p,d) [7] and (p,dp) [8] reactions on ^{16}O at high-momentum transfer have opened up new possibilities to understand the effect of tensor interactions on the structure of atomic nuclei.

The unstable nuclei, with long isotopic chains, provide the ideal platforms for systematic studies using nuclear reactions. The increasing availability of a wide range of highly- or moderately-intense RI beam species, and developments of more complex and sophisticated detector systems such as multi-strip silicon arrays [9, 10] and active gaseous target detector systems [11, 12, 13, 14, 15] have enhanced the prospect for spectroscopic studies of unstable nuclei with nuclear reactions. One of the most versatile experimental methods via nuclear reactions is the missing-mass spectroscopy. In this method, the momentum/momenta of
the reaction product(s), usually light ion(s), is/are measured. The momentum information obtained is then used to reconstruct the excitation energy of the residual nucleus right after the reaction, and to determine physical observables such as differential cross sections. To ensure sufficient separation for the ground and different excited states in the residual nucleus, it is important to attain good momentum resolution. For experiments with stable beams and stable target nuclei, a good momentum resolution is usually fulfilled by using a thin target. The same prescription, however, is seldom applicable to experiments with RI beams due to their limited beam intensities. Hence, to increase luminosity and thereby improve the experimental feasibility, it is essential to increase the target thickness whenever possible. The use of a thicker target, however, may result in the degradation of the momentum resolution due to the uncertainty in the depth of reaction vertex.

Here, we report on the development of a novel multi-layer solid-state active proton target, named Stack Structure Solid organic Scintillator Active Target (S4AT). The device consists of ordinary commercial plastic scintillators, and is therefore highly affordable and flexible; such advantages have already been demonstrated by the recently developed S4 neutron detector \cite{16}. S4AT offers a versatile alternative proton (or deuteron) target for spectroscopic studies with radioactive isotope (RI) beams using nuclear reactions, especially reactions that result in more than one charged particle being ejected, in inverse kinematics. Because the total energy loss of charged particles in the scintillator material differs significantly before and after such reactions, one can determine the reaction point in the thickness direction by measuring the energy-loss distribution across different layers of the active target. This reaction-depth determination capability allows the use of a relatively thick target while maintaining a relatively good energy resolution. The multi-layer structure is of importance because it provides a means to subtract the energy loss due to unreacted beam particles through consideration of the energy-loss difference between adjacent layers. Such feature is essential to eliminate the effect of accompanying unreacted beam (pile-up) particles. These depth-sensitive and pile-up elimination capabilities,
together with the short decay time of the plastic scintillator, enable its operation at a moderate beam intensity of up to a few Mcps. To assess the performance of S4AT, we have conducted a test experiment using elastic proton scattering with a 70-MeV proton beam at Cyclotron and Radioisotope Center (CYRIC), Tohoku University.

The article is organized as follows. In Section 2, we describe the basic principle for vertex determination and the prototype system. The test experiment is presented in Section 3. The data analysis and results are presented in Section 4. Finally, a summary and the future prospects are given in Section 5.

2. Principle for vertex determination and prototype

The present S4AT prototype was designed so as to achieve depth resolution below 0.29 mm (in sigma), or $1/\sqrt{12}$ mm, for the reaction vertex. This depth resolution is necessary to meet our requirement for excitation energy resolutions of about 1 MeV in $p(\text{6He},d)$ and $p(\text{6Li},d)$ reaction measurements in inverse kinematics using 400 – 800 MeV/u secondary beams at GSI Helmholtzzentrum fr Schwerionenforschung GmbH, Darmstadt. The goal of the experiment is to observe possible different effects of tensor interactions in the ground states of 6He and 6Li17. In this section, we describe the principle for vertex determination and the constructed prototype.

2.1. Principle for vertex determination

The left diagram of Fig.1 shows a conceptual drawing of a three-layer plastic-scintillator active-target system. Here, we consider two identical charged beam particles, denoted by A and B, with the same kinetic energy. The particle A reacts with the detector-target nucleus to produce two charged particles C and D. The particle B, on the other hand, traverses the material medium without undergoing any nuclear reaction, losing its energy very gradually in the three plastic scintillators. In the A-induced reactions, however, the measured energy losses in the three layers are very different; the energy loss increases sharply in
Figure 1: Conceptual drawing of a three-layer plastic-scintillator active-target system. A and B represent two identical charged beam particles with the same kinetic energy. Whereas A reacts with the detector-target nucleus to produce charged particles C and D, B traverses the material medium without undergoing any nuclear reaction, losing its energy very gradually in the three plastic scintillators. For the A-induced event, however, the measured energy losses in the three layers are very different; the energy loss increases sharply in the second and third layers as compared to the case for the particle B. Right graph shows the energy loss (symbols) and cumulative energy loss (lines) of charged particles in an experiment with a 6He beam. The filled (open) symbol and solid (dotted) line correspond to the A (B)-induced event. See text for details.
the second and third layers as compared to the case for the particle B. Hence, by measuring the energy loss in each of the three layers, and considering the energy-loss distribution across the layers, we can determine the reaction point in the thickness direction.

The present active target can be used in experiments with nuclear reactions in both normal and inverse kinematics, although its usefulness in the former may be limited. Some examples of the A-induced reactions in normal kinematics are elastic proton-proton 1H(p,p) and proton-deuteron 2H(p,p) scatterings. For reactions in inverse kinematics, a beam of the nucleus of interest, usually with a kinetic energy of the order of several tens of MeV to several GeV, bombards a target. The A-induced reaction then represents reactions in which a beam-like and a target-like particles emerge from the target. Possible reactions include elastic and inelastic scatterings off a proton or deuteron target, transfer reactions such as (p,d), (d,p), (d,t) and (d,3He), charge-exchange reactions such as (p,n) and (d,2p), proton knockout reactions and multi-nucleon transfer reactions.

To demonstrate the working principle of S4AT, we consider the p(6He,d) reaction induced by a 400-MeV/u 6He beam, and a layer thickness of 1 mm for S4AT. In this reaction, the incident 6He beam particle (particle A) is stripped of a neutron by a target proton in S4AT, leaving the residual ion 5He (particle C) in its ground or excited state. The neutron and the proton stick together to form a deuteron (particle D). Since 5He is particle unbound, it decays almost immediately into a neutron and an α particle. Compared to charged particles, neutrons interact very weakly with matter via the electromagnetic interactions, and thus the measured energy loss in S4AT is mainly contributed by the deuteron and α. For simplicity, we consider reaction kinematics where both deuteron and α move in the beam direction. Assuming that the reaction occurs at the centre of the second layer, the energy of 6He right before the reaction, and those of deuteron and α right after the reaction are 399.7 MeV/u, 31.7 MeV/u and 476.7 MeV/u, respectively. The energy loss by the charged particles in each layer of the plastic scintillators and the cumulative energy loss are shown by the filled symbols and solid line on the right graph of Fig.1, respectively. The
open symbols and dotted line represent the distributions for the non-reacted (B) event. As will be shown in Section 4, for single-hit events, the total energy loss (or even the energy loss in individual layers if the energy resolution is sufficiently good) has a one-to-one correspondence with the depth of reaction. The layer thickness of 1 mm was decided based on a simple evaluation using a Monte Carlo simulation, and after taking into account the energy losses and the energy resolution of the plastic scintillators.

The one-to-one correspondence between energy loss and reaction depth may become obscure in the presence of multi-hit events. The probability for multi-hit events increases with increasing beam intensity. The admixture of the B-like particles in the reaction channel of interest will alter the energy-loss distributions, and may in some cases, degrade the energy resolution and undermine its performance as an active target. Such an effect of non-reacted particle(s) can be eliminated by considering the energy-loss difference between adjacent layers. The depth information is reflected in the correlation between energy-loss differences of two pairs of adjacent-layer combinations. This method will be discussed in Section 4.3.

2.2. $S^4 AT$ prototype

We have constructed a prototype $S^4 AT$ system. Figure 2 shows a schematic drawing of the $S^4 AT$ prototype. The prototype consists of five 1-mm-thick NE-102E-equivalent plastic scintillators, each with a sensitive area of 50 (width) \times 30 (height) mm2. For better light collection and to avoid light leakage, each plastic scintillator is wrapped with a 9-μm-thick aluminized Mylar foil; the foil covers four surfaces which include the two large-area surfaces of the scintillator. The unwrapped sides of the scintillators are connected to two 16-channel Linear Array Multi-Anode Photomultiplier Tube (MAPMT) assemblies H10515B-20 from Hamamatsu Photonics, with which the light outputs are read out. Each anode has a 0.8\times16 mm2 sensitive area, and the pitch size of the anodes is 1.0 mm. To prevent light leakage from neighbouring scintillators, the plastic scintillators are arranged in parallel at intervals of 1 mm. An opaque support
made of Monomer-Cast (MC) Nylon with rectangular holes, also at intervals of 1 mm and sufficient to allow the plastic scintillators through, was mounted before the photocathode on each side of the scintillators to fix their positions.

3. Experiment

The constructed S4AT prototype was tested using elastic proton scattering induced by a 70-MeV proton beam at the 41st beam line of CYRIC, Tohoku University. This reaction was selected because of the similarity between the energy losses of the proton beam and the scattered protons with those of the charged particles in the p(6He,d) reaction with a 400-MeV/u 6He beam, as well as the relatively large cross section and high luminosity. Fig. 3 shows a schematic layout of the experimental setup. The S4AT system was mounted on a target ladder with the 50×30-mm2 surface perpendicular to the beam, and placed at the centre of a scattering chamber. We define the axis along the beam direction as the z axis; the x axis is defined as shown in Fig. 3 while the y axis is the axis emerging perpendicularly from the plane of the paper. The S4AT layers
Figure 3: Schematic layout of the experimental setup. The scale factor is arbitrary; the size of \(S^4 \text{AT} \) and the thickness of silicon-strip detectors have been exaggeratedly enlarged for clarity.

From upstream to downstream are denoted as L1 – L5 according to their orders in the beam direction. For convenience, we ignore the gap between layers, and define the upstream surface of L1 and the downstream surface of L5 as \(z = 0 \) and 5 mm, respectively. In addition to \(S^4 \text{AT} \), we also mounted a 170-\(\mu \)m-thick polyethylene (CH\(_2\)) target on the target ladder, and used it several times during the experiment to monitor the stability of the beam-energy spread and detector resolution.

To evaluate the depth resolution of \(S^4 \text{AT} \) and to enable selection of the elastic scattering channel, we placed two sets of Si-CsI(Tl) telescopes at around 45° with respect to the incident proton beam. The Si-CsI(Tl) telescope with an active area of 50×50 mm\(^2\) consists of a 300-\(\mu \)m-thick single-sided silicon-strip detector (SSD) with 10 strips from Hamamatsu Photonics and a 55-mm-thick thallium-doped caesium iodide scintillation crystal from Institute of Modern Physics, Chinese Academy of Sciences. The distance from the target position to the SSDs was about 30 cm. The proton scattering angles were determined from their hit positions on the SSDs, while the kinetic energies were determined
from the energy losses in SSDs and CsI(Tl) detectors. The angle subtended by
one strip of the SSD, with a 5-mm width, is about 1°. The rear part of the
CsI(Tl) crystal (with a thickness of 30 mm) is cut into a trapezoid shape with a
reduced area of 30 mm × 30 mm, and is attached to a Si-PIN photodiode S3584-
08 from Hamamatsu Photonics. The charge signals from the SSDs and Si-PIN
photodiodes were collected and processed by 16-channel charge-sensitive pream-
plifiers MPR-16 (from Mesytec GmbH & Co) and KPA-16 (from Kaizuworks),
respectively. The output signals were later processed by Mesytec’s MSCF-16
shaping amplifiers before being fed to 32-channel peak-sensing analog-to-digital
converters (MADC-32).

For S4AT, the output signals from MAPMT were sent to a photonmultiplier
amplifier. One of the two outputs from each channel was sent through a cable de-
lay before being fed into a 32-channel charge-to-digital converter (CAEN V792)
module; the other output was fed into a leading-edge discriminator to generate
a timing signal, which was mainly used to determine the beam intensity.

Measurements were performed using proton beams with intensities ranging
from about 75 kcps to 3.6 Mcps. The beam intensities were determined combin-
ing the scaler information for S4AT and the telescopes, as well as the relative
event numbers from measurements with different beam intensities. For the
measurements with the CH\textsubscript{2} target, a beam intensity of about 0.8 nA was used.
Data acquisition was performed with the logic OR signal of the SSD signals as
trigger using the software package babirlDAQ [18].

4. Data analysis and results

The data analyses were performed using the object-oriented data analysis
framework, ROOT [19]. Fig. [14a] shows the correlation between the energy loss
(\(\Delta E_L\)) and total energy loss (\(E_L\)) of charged particles in the left SSD and the
left SSD-CsI(Tl) telescope for the measurement with the CH\textsubscript{2} target. Three loci
corresponding to protons, deuterons and tritons are observed. These particles
originated from elastic and inelastic proton scatterings on proton (the dense
Figure 4: Energy loss (ΔE) and total energy loss (E) of charged particles in the SSD and SSD-CsI(Tl) detectors during the measurement with the CH$_2$ target. (a) A scatter plot showing the correlation between the measured E_L and ΔE_L in the left Si-CsI(Tl) telescope. (b) Correlation between the total energy loss measured by the left telescope (E_L) and the summed energy loss in the left and right telescopes ($E_{tot} \equiv E_L + E_R$). The dense locus corresponds to the proton-proton elastic scattering events.

The small clusters distributed along the proton and deuteron loci correspond to the ground and excited states in 12C and 11C. These states, together with the proton-proton elastic scattering events measured at different angles, were used for the energy calibration of the SSD and CsI(Tl) detectors. Fig. 4(b) shows the correlation between the total energy losses measured by the left telescope (E_L) and the summed energy loss in the left and right telescopes ($E_{tot} \equiv E_L + E_R$). The dense locus corresponds to proton-proton elastic scattering events.

The energy resolution of the telescopes for proton scattering was evaluated using the observed discrete states in 12C as well as the proton elastic scattering events during the measurement with the CH$_2$ target. Since the energy resolutions of the SSDs were below 0.2% for 1-MeV energy loss of protons, and the elastically-scattered protons only deposited less than 5% of their energies in the SSDs compared to the CsI(Tl), we considered only the resolutions of the CsI(Tl) detectors. The widths of the observed discrete states can be attributed to the...
Figure 5: (a) Scatter plot from the measurement with S4AT at 75-kcps beam intensity showing the correlations between the measured E_L and ΔE_L with the left Si-CsI(Tl) telescope. The red polygon indicates the typical gate used to select elastically-scattered protons. (b) The total energy loss measured by the left (E_L) and the summed energy loss in the left and right telescopes (E_{tot}) after applying the proton gates from the left and right telescopes. The black arrow in (b) indicates roughly the depth position of the reaction vertex in the beam direction (L1 – L5). The vertical dashed lines in the figure indicate the positions of z=0 and 5 mm, and are only a guide for the eye. The inclined solid line is the equal-energy line which represents the elastically-scattered protons with the same scattering angle.
beam-energy spread, the effect of the target thickness, which includes reaction depth dependence and energy straggling, energy spread due to the reaction kinematics, and the energy resolutions of the CsI(Tl) detectors. To understand the detector response, we performed Monte Carlo simulations with the GEANT4 toolkit [20], taking into account the experimental setup, reaction kinematics, beam-energy spread and intrinsic energy resolutions of the detectors. The energy spread due to the target thickness contributes only about 7% (in terms of squared relative uncertainty) to the observed width, and is thus negligible. From comparison between the simulations and the experimental data, the beam-energy spread was found to be less than 200 keV (in sigma). The relative energy resolutions of the CsI(Tl) detectors thus determined consist of three terms [21], namely the stochastic, electronic-noise and constant terms as shown below:

\[
\frac{\sigma(E)}{E} = \frac{k_{\text{stochastic}}}{\sqrt{E}} + \frac{k_{\text{electronic}}}{E} + k_{\text{constant}}.
\]

(1)

\(k_{\text{stochastic}}\), \(k_{\text{electronic}}\) and \(k_{\text{constant}}\) are the coefficients with typical values of -0.61 MeV\(^{1/2}\), +2.55 MeV and +0.04, respectively, assuming a 200-keV beam-energy spread. This relation was later used in the simulations for the measurements with \(S^4\)AT.

Figure 5(a) shows similar \(E_L - \Delta E_L\) plot but for the measurement with \(S^4\)AT using a 75-kcps proton beam. The red polygon indicates the typical gate used to select elastically-scattered protons. A similar gate was also defined for the right SSD-CsI(Tl) telescope, and the combined gates were taken as the ‘pp-elastic’ proton gates. Figure 5(b) shows the \(E_L\) versus \(E_{\text{tot}}\) plot for the measurement with \(S^4\)AT after applying the ‘pp-elastic’ proton gates. The \(E_L-E_{\text{tot}}\) plot is more widely distributed compared to the case for the \(\text{CH}_2\) target. The black arrow indicates roughly the depth position of the reaction vertex in the beam direction (L1 – L5). The vertical dashed lines in the figure indicate the positions of \(z=0\) and 5 mm, and are only a guide for the eye. The inclined solid line is the equal-energy line which represents the elastically-scattered protons with the same scattering angle. Protons with larger (smaller) scattering angles are distributed below (above) the equal-energy line. The energy spread is larger for reactions in
L1 than in L5, and for larger scattering angles than for smaller scattering angles, because the scattered protons had to penetrate more materials before reaching the telescopes, and therefore are subjected to more energy-loss straggling and multiple Coulomb scattering.

To determine the depth of the reaction vertex, we apply three methods using the following information: (i) the total energy loss of the scattered protons in the telescopes, (ii) the total energy loss of charged particles in S4AT, and (iii) energy-loss differences between different layers of S4AT.

4.1. Vertex determination with SSD-CsI(Tl) telescope

![Figure 6: (a) Total energy loss in the left telescope (E_L) against the corrected summed energy loss ($E_{\text{corr}}^{\text{tot}}$) for the measurement with S4AT at 75-kcps beam intensity. (b) Reaction vertex distribution reconstructed from the total proton energies measured with the left and right SSD-CsI(Tl) telescopes. Only pp-elastic protons have been selected. The red-dotted histogram shows the results of the Monte Carlo simulation.](image)

The depth of the reaction vertex was first determined using the summed kinetic energy of the pp-elastic protons measured by the two SSD-CsI(Tl) telescopes. For a reaction at a depth position z_r, the total kinetic energy of the scattered protons (denoted by p_L and p_R) right after the reaction, denoted by $E_{\text{tot}}(z = z_r)$, is equal to the kinetic energy of the proton beam right before the reaction $E_B(z_r)$. $E_B(z_r)$ is unique if we assume a parallel proton beam. The
kinetic energies of $p_L [E_L(z_r; \theta_L, z = z_r)]$ and $p_R [E_R(z_r; \theta_R, z = z_r)]$ depend on their scattering angles (θ_L and θ_R). p_L and p_R penetrated the S4AT detector, losing part of their energies before being stopped and detected by the SSD-CsI(Tl) telescopes. For simplicity, the kinetic energies of the protons measured by the left and right telescopes are denoted by E_L and E_R, respectively. In principle, $E_L + E_R \equiv E_{\text{tot}}$ should have a one-to-one correspondence with the reaction depth. However, as can be seen in Fig. 5(b), the E_{tot} distribution is skewed especially for protons with larger scattering angles (smaller E_L) due to their larger energy spread. This skewing effect was estimated using Monte Carlo simulations, and E_{tot} was corrected for each E_L value. The corrected distribution ($E_{\text{corr}}^{\text{tot}}$) is shown in Fig. 6(a). In this way, we obtained a linear conversion function between the total energy of the scattered protons and the reaction depth. The reconstructed depth distribution is shown in Fig. 6(b). For comparison, the depth distribution reconstructed from Monte Carlo simulation data is also shown (the red-dotted histogram). Overall, the simulation reproduced the experimental data very well.

It is important to note that the resolution of the reaction depth determined...
with the telescopes remained almost the same up to 3.6-Mcps proton beam, as shown in Fig. 7. The detected events reacted in L1, which include the events at \(z < 0 \) mm, are about 16% less compared to other layers, due likely to reduced acceptance of the telescopes for protons with large scattering angles. These missing events correspond to about 2% of the expected total pp-elastic events assuming that the elastic scattering cross section remains constant in all layers.

4.2. Vertex determination with \(S^4AT: \) Total energy-loss method

The depth of the reaction vertex can be determined by simply considering cumulative (total) energy loss of charged particles in \(S^4AT \). This is equivalent to replacing the five layers by a single 5-mm-thick plastic scintillator. In this method, the total energy loss of the proton beam before reaction and the two protons (\(p_L \) and \(p_R \)) after reaction in \(S^4AT \) is measured. The total energy loss in \(S^4AT \) decreases with increasing \(z_r \) because \(p_L \) and \(p_R \), which have lower energies, penetrate through thinner plastic scintillator material. Fig. 8(a) shows the correlation between total energy loss (denoted by \(Q_{AT\text{sum}} \)) and the reaction depth determined using the SSD-CsI(Tl) telescopes as described in Section 4.1. Here, only events within the ‘pp-elastic gates’ have been selected. Events due to pile-up, which manifest in the form of energy-loss shifts as shown by the arrows, in \(S^4AT \) are clearly observed. The energy resolution for 1-MeV energy loss of a proton beam in a layer of \(S^4AT \) was about 18% at 75-kcps beam intensity. As will be discussed in Section 4.4 the reaction depth resolution depends on the energy resolution of \(S^4AT \).

To reconstruct the reaction depth from \(Q_{AT\text{sum}} \), we derived a conversion formula using the single-hit events in Fig. 8(a). The resulting reaction depth (denoted by \(z_{AT\text{Qsum}} \)) is plotted against \(z_r \) determined by the telescopes (denoted by \(z_{Tel} \)) in Fig. 8(b). For comparison, similar plots for the measurement with 740-kcps proton beam are shown in Figs. 8(c) and (d). The energy resolution deteriorates due to the increased pile-up events. It is important to note that although the single-hit, double-hit and even the triple-hit loci are still distinguishable, without the depth information from the telescope, it will be difficult
Figure 8: (a)(c)(e) Total energy loss in S4AT versus the reaction depth determined using the SSD-CsI(Tl) telescopes z_{Tel}^T, and (b)(d)(f) reaction depth reconstructed from the total energy loss in S4AT, $z_T^{ATQ\text{sum}}$ versus z_{Tel}^T. (a) and (b), (c) and (d), (e) and (f) are for measurements with 75-kcps, 740-kcps and 3.6-Mcps beams, respectively. The arrows in (a) – (d) indicate shifts due to pile-ups.
to efficiently determine the reaction depth. The condition worsened at 3.6-Mcps beam intensity as shown in Figs. 8(e) and (f). Besides the deterioration in the energy and reaction depth resolutions, one observes, by comparing Fig. 8(e) with those of (c) and (a), clear reduction in the pulse heights of all anode signals. Such reduction is due to possible increased electron current which results in a drop in the interstage voltages for the dynodes in the MAPMTs, and consequently reduced collection efficiency and secondary electron emission. Although the gain-quenching effect can be addressed by modifying the last few stages of the MAPMTs to allow additional power supply boosters, the pile-up events will represent the major challenge for this method at a high-counting rate. In the next section, we demonstrate a novel method to address this issue.

4.3. Vertex determination with S4AT: Energy-loss difference method

As mentioned earlier, the presence of nonreacted beam particle(s) in a reaction event results in a shift in the measured energy loss. For intermediate-energy beam passing through thin layers of plastic scintillators, the energy loss of a beam particle in each layer is almost constant. Hence, this energy-loss shift, i.e. the effect of pile-up, can be eliminated by taking the energy-loss difference between adjacent layers. The simplest method is to consider energy loss in every single layer. Fig. 9(a) shows the scatter plot for the energy-loss difference between L2 and L3 ($\Delta E_{L3} - \Delta E_{L2}$) against the energy-loss difference between L1 and L2 ($\Delta E_{L2} - \Delta E_{L1}$) for the measurement with 75-kcps proton beam. Here, we have selected only coincident protons using the telescopes. Different points on the sides of the triangular locus correspond to different reaction depth in layers L1 – L3. The arrows indicate the direction of the depth position. The dense elliptical events correspond to events reacted in L4 and L5. Similar correlations can be obtained by considering other combinations of energy-loss difference, and used to determine the reaction depth. This single-layer energy-loss-difference method, however, is subject to inherent uncertainties around the borders of adjacent layers, which correspond to the corners of the triangular locus in Fig. 9(a). For comparison, we plot the reaction depth reconstructed
Figure 9: (a) Energy-loss difference between L2 and L3 ($\Delta E_{L3} - \Delta E_{L2}$) versus energy-loss difference between L1 and L2 ($\Delta E_{L2} - \Delta E_{L1}$). The arrows indicate the direction of the depth position from L1 to L3. (b) Reaction depth, $z_{AT-SLQrel}^T$, reconstructed from single-layer energy-loss-difference method versus z_{Tel}^T. (c) – (d) and (e) – (f) are similar plots for the measurements with 740-kcps and 3.6-Mcps beams, respectively.
Figure 10: (a) Correlation between $\Delta E_{L_{1}+L_{2}} - \Delta E_{L_{3}+L_{4}}$ and $\Delta E_{L_{3}+L_{4}} - 2\Delta E_{L_{5}}$. (b) Reaction depth, denoted as $z_{ATQrel;1}^{ATQrel;1}$, reconstructed from the multi-layer energy-loss-difference correlation shown in (a) versus z_{Tel}^{Tel}. (c) Correlation between $\Delta E_{L_{2}+L_{3}} - \Delta E_{L_{4}+L_{5}}$ and $\Delta E_{L_{4}+L_{5}} - 2\Delta E_{L_{1}}$. The coloured events correspond to the events in the three regions separated by the two lines shown in (b). (d) Reaction depth, denoted as $z_{ATQrel;2}^{ATQrel;2}$, reconstructed from the multi-layer energy-loss-difference correlation shown in (c) versus z_{Tel}^{Tel}. The data are from measurements with 75-kcps proton beam.
from this method, denoted as $z_{\text{AT}}^{-\text{SLQrel}}$ against $z_{\text{Tel}}^{-\text{Tel}}$ in Fig. 9(b). Figs. 9(c) and (d) show similar plots as (a) and (b) but for the measurement with the 740-kcps beam. The loci in Fig. 9(c) are almost identical to those in Fig. 9(a), although the resolution looks slightly worse. Similar plots for the measurement with the 3.6-Mcps beam are shown in Figs. 9(e) and (f). Although the energy-loss differences shrink due to gain shift of the MAPMTs, it is still possible to determine the reaction depth by applying a universal scaling since the gain shift is common for all anodes. However, the uncertainties around the borders of adjacent layers and consequently, the depth resolutions deteriorate due to the worsening energy resolutions of the scintillators.

As a counter measure, we consider the correlation between $(\Delta E_{L1} + \Delta E_{L2}) - (\Delta E_{L3} + \Delta E_{L4})$ and $(\Delta E_{L3} + \Delta E_{L4}) - (2\Delta E_{L5})$. For simplicity, we rewrite $\Delta E_{L1} + \Delta E_{L2} = \Delta E_{L1+L2}$ and $\Delta E_{L3} + \Delta E_{L4} = \Delta E_{L3+L4}$. As an example, we show the correlation for the measurement with 75-kcps proton beam in Fig. 10(a). Notice that the L1-L2 (or L3-L4) border now lies on the straight locus AB (BC), which forms one of the sides of the open triangle. Besides addressing the border issue, summing the energy losses in two layers also helps to improve the energy resolution. This method, called the multi-layer energy-loss-difference method, consists of two stages of procedures. In the first stage, we used the correlation in Fig. 10(a) to determine the reaction depth. The procedures in the first stage are described as follows:

1. Determine central lines of the loci along L1 – L2, L3 – L4 and L5, as shown by the dashed lines in Fig. 10(a).
2. Determine the interior bisectors, lines denoted by “u” and “v”, of the angles formed by ABC and BCD, as well as line “w”; the line “w” is parallel to the vertical axis, and corresponds to the minimum position of the projected $\Delta E_{L1+L2} - \Delta E_{L3+L4}$ distribution.
3. Divide the scatter plot into three straight loci using combinations of lines.
4. For each straight locus, determine a linear conversion formula for the reaction depth.
The reconstructed reaction depth, denoted as $z_{i}^{ATQrel;1}$, is plotted against z_{i}^{Tel} in Fig. 10(b). As shown in the figure, the uncertainties in the reconstructed reaction depth are relatively large near the borders of L2 – L3 and L4 – L5.

![Figure 11](image)

Figure 11: (a) Reaction depth $z_{i}^{ATQrel;2}$ versus z_{i}^{Tel}, and (b) $z_{i}^{ATQrel;2}$ distribution for the measurement with 1.6-Mcps proton beam.

To reduce the uncertainties around the borders and improve the reaction depth determination, we consider, in the second stage, the correlation between $(\Delta E_{L3} + \Delta E_{L2}) - (\Delta E_{L5} + \Delta E_{L4})$ and $(2\Delta E_{L1}) - (\Delta E_{L5} + \Delta E_{L4})$, as shown in Fig. 10(c). By dividing $z_{i}^{ATQrel;1}$ into three regions, as indicated by E, F and G in Fig. 10(b), and selecting each region, three straight loci corresponding to the reaction depth in L1, L2 – L3 and L4 – L5 can be obtained. These straight loci were then used to determine the reaction depth, $z_{i}^{ATQrel;2}$. The reaction depth thus obtained is plotted against z_{i}^{Tel} in Fig. 10(d).

We applied this method to measurements with various beam intensities. Fig. 11 shows (a) the correlation between the reconstructed reaction depths using S4AT ($z_{i}^{ATQrel;2}$) and the telescopes (z_{i}^{Tel}), and (b) the projected $z_{i}^{ATQrel;2}$ distribution for the measurement with 1.6-Mcps proton beam. The dashed lines in Fig. 11(b) have been added for reference. The reacted events in L1, which include also the events below 0 mm in Fig. 11(b), are about 28% less than in
other layers. As mentioned in Section 4.1, 16% of the pp-elastic protons from L1 failed to reach the telescopes. The other 12% missing events are fairly accounted for by mis-reconstructions of reaction depth as shown by the four components in Fig. 11(a): missing A (-6%) and B (-20%) components, and additional C (+9%) and D (+6%) components. These mis-reconstructions are due to the unresolved events in L1 and L5 around the vertical “w” line in Fig. 10(a) (components A and D), and in L1 and L2 around the intersection of the lines E and F in Fig. 10(c) (components B and C). Such unresolved events can be reduced by improving the energy resolution of the S^4AT system.

4.4. Resolution and tracking efficiency

![Figure 12: $\Delta z_{AT} \equiv z_{AT} - z_{Tel}$ distributions for (a) $z_{AT} = z_{ATQsum}$ and (b) $z_{AT} = z_{ATQrel;2}$ for the measurements with 1.6-Mcps proton beam. The solid-vertical lines with arrows indicate the ranges for $|\Delta z_{AT}| \leq 2.33\sigma_{z_{AT}}$, where $\sigma_{z_{AT}}$ is the root-mean-square width of the Δz_{AT} distribution around 0.]

The performance of S^4AT is evaluated in terms of the depth position resolution and tracking efficiency. To evaluate the depth position resolution, we consider the difference between the reaction depth determined using the telescopes and the one with S^4AT:

$$\Delta z_{AT} \equiv z_{AT} - z_{Tel},$$ (2)
where AT is “ATQsum” or “ATQrel:2”. The Δz^{AT} distributions are shown in Figs. 12(a) and (b). The root-mean-square width of the Δz^{AT} distribution around 0, denoted as σ_{z}^{AT}, is taken as the effective depth position resolution, which is attributed to the intrinsic energy resolutions of the plastic scintillators and the telescopes. The tracking efficiency is defined as

$$\epsilon_{z}^{AT} \equiv N(|\Delta z^{AT}| \leq 2.33\sigma_{z}^{AT})/N(-1 < z_{Tel} < 6),$$

where $N(|\Delta z^{AT}| \leq 2.33\sigma_{z}^{AT})$ represents the number of events with Δz^{AT} within 2.33σ_{z}^{AT} or 98% coincidence level, and $N(-1 < z_{Tel} < 6)$ the number of events successfully tracked by the telescopes. The dependences of σ_{z}^{AT} and ϵ_{z}^{AT} on the beam intensity are plotted in Fig. 13. The results show that σ_{z}^{ATQsum} (ϵ_{z}^{ATQsum}) increases (decreases) with increasing beam intensity. It is extremely difficult or even impossible to determine the reaction depth for beam intensities beyond 1.6 Mcps. This issue does not arise with the multi-layer energy-loss-difference method. Although $\sigma_{z}^{ATQrel:2}$ worsens slightly, increasing from about 0.18 mm at 75 kcps to about 0.23 at 1.6 Mcps, we achieved a resolution of about 0.31 mm at 3.6 Mcps. The tracking efficiency $\epsilon_{z}^{ATQrel:2}$ remains high at 90% even at 3.6 Mcps.
The actual depth resolution of S^4AT is expected to be better than the effective depth resolution $\sigma_{z,ATQrel;2}^2$. As an example, we estimated the actual depth position resolutions for S^4AT and the Si-CsI(Tl) telescopes using Monte Carlo simulations taking into account the experimental conditions. For simplicity, we considered the case with a 75-kcps proton beam. Since the actual reaction depth position for each event is known in the simulation, one can calculate the deviations of the simulated reconstructed depth positions with S^4AT and the Si-CsI(Tl) telescopes from the actual reaction depth position. The depth position resolutions, defined as the root-mean-square widths of the deviation distributions, were estimated to be about 0.14 and 0.13 mm for S^4AT and the Si-CsI(Tl) telescopes, respectively.

![Figure 14: Dependence of reaction depth resolution on intrinsic energy resolution of the plastic scintillators.](image)

Finally, it is useful to understand the effect of the intrinsic energy resolution of the multi-layer plastic scintillators on the depth resolution of S^4AT. To investigate the dependence on the intrinsic energy resolution, we performed Monte Carlo simulations based on the present experimental setup. For simplicity, we assumed that all layers have the same intrinsic energy resolutions. By artificially
changing the intrinsic energy resolution, we performed simulations to estimate the depth resolution σ_{ATQrel}^2. The results are plotted in Fig. 14 as a function of energy resolution for 1-MeV energy loss of a proton in a layer of S^4AT, which is denoted by $\sigma_{ATQ,L}$. As mentioned earlier, $\sigma_{ATQ,L}$ was about 18% at 75-kcps beam intensity in the present work. This relatively poor intrinsic energy resolution was due to light leakage into neighbouring anode strips, which resulted in a relatively low light collection efficiency (about 60%) in one anode strip. Further reduction in $\sigma_{ATQ,L}$ is anticipated in future experiments by adding back the output signals from neighbouring anodes.

5. Summary and future prospects

We have constructed and tested a novel prototype solid-state active proton target, named Stack Structure Solid organic Scintillator Active Target (S^4AT), for use in nuclear spectroscopic studies with nuclear reactions in inverse kinematics. The solid active target consists of five layers of plastic scintillators, each with a 1-mm thickness. S^4AT offers the capability to determine the reaction depth through exploitation of the difference between the energy losses of a charged beam particle and charged reaction products in the scintillator material. By considering the relative energy loss between different layers, the energy loss due to unreacted beam particles can be eliminated. The ability to eliminate pile-up effects enables its operation at a moderate beam intensity of up to a few Mcps. To evaluate its performance, we have performed an elastic proton-proton measurement using a 70-MeV proton beam at Cyclotron and Radioisotope Center (CYRIC), Tohoku University. The depth resolution achieved was below 0.3 mm (in sigma) at 3.6-Mcps proton beam intensity.

One of the two remaining issues is the gain shift, which will be the most critical issue for operation at higher beam intensity. To address this issue, we plan to introduce additional power supply boosters to the last few stages of the MAPMT. The other issue is related to its performance with different types of beam. The present test experiment was performed using a proton beam from
a cyclotron. It will be useful and important also to perform a test experiment using a beam from a synchrotron accelerator, because of the difference in the time structure of the beam, i.e. the pile-up frequency.

The present system offers the prospect of a relatively thick target while maintaining a good energy resolution. It is worth noting that by replacing the plastic scintillators with the deuterated ones such as the BC436 [22], one can also construct a solid-state active deuteron target system.

Acknowledgment

The authors thank the CYRIC operators for the stable proton beam and the CYRIC administrative staff for support. We also acknowledge hardware support from T. Furuno and J. Zenihiro. This work was partially supported by Hirose International Scholarship Foundation, the National Natural Science Foundation of China under Contracts No. 11235002, No. 11375023, No. 11475014, and No. 11575018, and the National Key R & D program of China (2016YFA0400504).

References

[1] I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, N. Takahashi, Measurements of interaction cross sections and nuclear radii in the light p-shell region, Physical Review Letters 55 (1985) 2676 – 2679. doi:10.1103/PhysRevLett.55.2676

[2] O. Sorlin, M. G. Porquet, Nuclear magic numbers: New features far from stability, Progress in Particle and Nuclear Physics 61 (2008) 602 – 673. doi:10.1016/j.ppnp.2008.05.001

[3] T. Nakamura, H. Sakurai, H. Watanabe, Exotic nuclei explored at in-flight separators, Progress in Particle and Nuclear Physics 97 (2017) 53 – 122. doi:10.1016/j.ppnp.2017.05.001
[4] D. T. Tran, H. J. Ong, G. Hagen, T. D. Morris, N. Aoi, T. Suzuki, Y. Kanada-En’yo, L. S. Geng, S. Terashima, I. Tanihata, T. T. Nguyen, Y. Ayyad, P. Y. Chan, M. Fukuda, H. Geissel, M. N. Harakeh, T. Hashimoto, T. H. Hoang, E. Ideguchi, A. Inoue, G. R. Jansen, R. Kanungo, T. Kawabata, L. H. Khiem, W. P. Lin, K. Matsuta, M. Mihara, S. Momota, D. Nagae, N. D. Nguyen, D. Nishimura, T. Otsuka, A. Ozawa, P. P. Ren, H. Sakaguchi, C. Scheidenberger, J. Tanaka, M. Takechi, R. Wada, T. Yamamoto, Evidence for prevalent $z=6$ magic number in neutron-rich carbon isotopes, Nature Communications 9 (2018) 1594. doi:10.1038/s41467-018-04024-y

[5] T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe, Y. Akaishi, Evolution of nuclear shells due to the tensor force, Physical Review Letters 95 (2005) 232502. doi:10.1103/PhysRevLett.95.232502

[6] T. Myo, K. Kato, H. Toki, K. Ikeda, Roles of tensor and pairing correlations on halo formation in 11Li, Physical Review C 76 (2007) 024305. doi:10.1103/PhysRevC.76.024305

[7] H. J. Ong, I. Tanihata, A. Tamii, T. Myo, K. Ogata, M. Fukuda, K. Hirota, K. Ikeda, D. Ishikawa, T. Kawabata, H. Matsubara, K. Matsuta, M. Mihara, T. Naito, D. Nishimura, Y. Ogawa, H. Okamura, A. Ozawa, D. Y. Pang, H. Sakaguchi, K. Sekiguchi, T. Suzuki, M. Taniguchi, M. Takashina, H. Toki, Y. Yasuda, M. Yosoi, J. Zenihiro, Probing effect of tensor interactions in 16O via (p,d) reaction, Physics Letters B 725 (2013) 277 – 281. doi:10.1016/j.physletb.2013.07.038

[8] S. Terashima, L. Yu, H. J. Ong, I. Tanihata, S. Adachi, N. Aoi, P. Y. Chan, H. Fujioka, M. Fukuda, H. Geissel, G. Gey, J. Golak, E. Haettner, C. Iwamoto, T. Kawabata, H. Kamada, X. Y. Le, H. Sakaguchi, A. Sakaue, C. Scheidenberger, R. Skibinski, B. H. Sun, A. Tamii, T. L. Tang, D. T. Tran, K. Topolnicki, T. F. Wang, Y. N. Watanabe, H. Weick, H. Witaa, G. X. Zhang, L. H. Zhu, Dominance of tensor correlations in high-momentum nu-
cleon pairs studied by (p,pd) reaction, Physical Review Letters 121 (2018) 242501. doi:10.1103/PhysRevLett.121.242501

[9] E. Pollacco, D. Beaumel, P. Roussel-Chomaz, E. Atkin, P. Baron, J. P. Baronick, E. Becheva, Y. Blumenfeld, A. Boujrad, A. Drouart, F. Druillole, P. Edelbruck, M. Gelin, A. Gillibert, C. Houarner, V. Lapoux, L. Lavergne, G. Leberthe, L. Leterrerier, V. L. Ven, F. Lugiez, L. Nalpas, L. Olivier, B. Paul, B. Raine, A. Richard, M. Rouger, F. Saillant, F. Skaza, M. Tripon, M. Vilmay, E. Wanlin, M. Wittwer, MUST2: A new generation array for direct reaction studies, The European Physical Journal A - Hadrons and Nuclei 25 (2005) 287 – 288. doi:10.1140/epjad/i2005-06-162-5

[10] M. S. Wallacea, M. A. Famiano, M. J. van Goethem, A. M. Rogers, W. G. Lynch, J. Clifford, F. Delaunay, J. Lee, S. Labostov, M. Mocko, L. Morris, A. Moroni, B. E. Nett, D. J. Oostdyk, R. Krishnasamy, M. B. Tsang, R. T. de Souza, S. Hudan, L. G. Sobotka, R. J. Charity, J. Elson, G. L. Engel, The high resolution array (HiRA) for rare isotope beam experiments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 583 (2007) 302 – 312. doi:10.1016/j.nima.2007.08.248

[11] T. Hashimoto, H. Ishiyama, T. Ishikawa, T. Kawamura, K. Nakai, Y. X. Watanabe, H. Miyatake, M. H. Tanaka, Y. Fuchi, N. Yoshikawa, S. C. Jeong, I. Katayama, T. Nomura, T. Furukawa, S. Mitsuoka, K. Nishio, M. Matsuda, H. Ikezoe, T. Fukuda, S. K. Das, P. K. Saha, Y. Mizoi, T. Komatsubara, M. Yamaguchi, Y. Tagishi, Gated multiple-sampling and tracking proportional chamber: New detector system for nuclear astrophysical study with radioactive nuclear beams, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 556 (2006) 339 – 349. doi:10.1016/j.nima.2005.10.018

[12] C. E. Demonchy, W. Mittig, H. Savajols, P. Roussel-Chomaz, M. Chartier,
B. Jurado, L. Giot, D. Cortina-Gil, M. Caamaño, G. Ter-Arkipian, A. Fomichev, A. Rodin, M. S. Golovkov, S. Stepanyan, A. Gillibert, E. Pollacco, A. Obertelli, H. Wang, MAYA, a gaseous active target, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 573 (2007) 145 – 148. doi:10.1016/j.nima.2006.11.025

[13] D. Suzuki, M. Ford, D. Bazin, W. Mittig, W. G. Lynch, T. Ahn, S. Aune, E. Galyaev, A. Fritsch, J. Gilbert, F. Montes, A. Shore, J. Yurkon, J. J. Kolata, J. Browne, A. Howard, A. L. Roberts, X. D. Tang, Prototype AT-TPC:toward a new generation active target time projection chamber for radioactive beam experiments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 691 (2012) 39 – 54. doi:10.1016/j.nima.2012.06.050

[14] S. Ota, H. Tokieda, C. S. Lee, Y. N. Watanabe, CNS active target (CAT) for missing mass spectroscopy with intense beams, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 305 (2015) 907 – 911. doi:10.1007/s10967-015-4130-5

[15] T. Furuno, T. Kawabata, H. J. Ong, S. Adachi, Y. Ayyad, T. Baba, Y. Fujikawa, T. Hashimoto, K. Inaba, Y. Ishii, S. Kabuki, H. Kubo, Y. Matsuda, Y. Matsuoka, T. Mizumoto, T. Morimoto, M. Murata, T. Sawano, T. Suzuki, A. Takada, J. Tanaka, I. Tanihata, T. Tanimori, D. T. Tran, M. Tsumura, H. D. Watanabe, Performance test of the MAIKo active target, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 908 (2018) 215 – 224. doi:10.1016/j.nima.2018.08.042

[16] L. Yu, S. Terashima, H. J. Ong, P. Y. Chan, I. Tanihata, C. Iwamoto, D. T. Tran, A. Tamii, N. Aoi, H. Fujioka, G. Gey, H. Sakaguchi, A. Sakaue, B. H. Sun, T. L. Tang, T. F. Wang, Y. N. Watanabe,
G. X. Zhang, Multi-layer plastic scintillation detector for intermediate- and high-energy neutrons with n-γ discrimination capability, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 866 (2017) 118 – 128. doi:10.1016/j.nima.2017.05.044

[17] W. Horiuchi, Y. Suzuki, Momentum distribution and correlation of two-nucleon relative motion in 6He and 6Li, Physical Review C 76 (2007) 024311. doi:10.1103/PhysRevC.76.024311

[18] H. Baba, T. Ichihara, T. Ohnishi, K. Yoshida, Y. Watanabe, S. Ota, S. Shimoura, New data acquisition system for the RIKEN radioactive isotope beam factory, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 616 (2010) 65 – 68. doi:10.1016/j.nima.2010.02.120

[19] R. Brun, F. Rademakers, ROOT – an object oriented data analysis framework, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 389 (1997) 81 – 86. doi:10.1016/S0168-9002(97)00048-X

[20] S. Agostinelli, J. Allison, et al., GEANT4 – a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 (2003) 250 – 303. doi:10.1016/S0168-9002(03)01368-8

[21] R. M. Brown, D. J. A. Cockerill, Electromagnetic calorimetry, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 666 (2012) 47 – 79. doi:10.1016/j.nima.2011.03.017

[22] J. Frenje, S. Conroy, G. Ericsson, J. Killne, P.-U. Renberg, E. Traneus, Deuterated plastic scintillator for proton detection in a neutron background, Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 376
(1996) 462 – 465. doi:10.1016/0168-9002(96)00162-3