NEW REST WAVELENGTH DETERMINATIONS FOR SEVEN MID-INFRARED FINE-STRUCTURE LINES BY ISO-SWS

H. FEUCHTGRUBER AND D. LUTZ
Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, D-85741 Garching, Germany; fgb@mpe.mpg.de
AND
D. A. BEINTEMA
SRON Laboratory for Space Research, P.O. Box 800, 9700 AV Groningen, Netherlands
Received 2001 March 22; accepted 2001 May 11

ABSTRACT
Observations of the planetary nebulae NGC 6302, NGC 6543, and NGC 7027 by the Short Wavelength Spectrometer (SWS) on board the Infrared Space Observatory (ISO) have been used to determine rest wavelengths of spectral lines. We report on improved accuracies for wavelengths of seven mid-infrared ionic fine-structure lines.

Subject headings: atomic data — infrared: ISM — infrared: ISM: lines and bands — line: identification

1. INTRODUCTION
Mid-infrared atomic fine-structure lines are important probes for a variety of astrophysical environments such as planetary nebulae (e.g., Beintema et al. 1996), shocked regions (e.g., Oliva et al. 1999), and galaxies (e.g., Lutz et al. 2000). Owing to their low magnetic dipole transition probabilities the lines are usually optically thin ($\tau < 10^{-2}$ to a few), and measurements of these lines give handles on luminosities and spatial distribution of abundant atoms and ions. In addition they provide also valuable information on the density, temperature, and ionization structure of targets with little or no dependence on the dust extinction that hampers observations in the visible. Accurate laboratory measurements of highly ionized species are difficult, and line rest wavelengths are mostly based on energy level differences reconstructed from UV and optical spectroscopy. The knowledge of accurate rest wavelengths of these lines will enhance their diagnostic value for many spectroscopic studies in the mid-infrared wavelength range.

New wavelength determinations by the Short Wavelength Spectrometer (SWS; de Graauw et al. 1996) on board the Infrared Space Observatory (ISO) (Kessler et al. 1996) have been reported by Feuchtgruber et al. (1997; hereafter Paper I). The observations therein were taken early during the ISO mission, and the subsequent analysis was focused mainly on bright lines. Long-integration observations of NGC 6302, NGC 6543, and NGC 7027 obtained later during the operational lifetime of ISO revealed another seven lines for which SWS data provide improved accuracies on their rest wavelengths. Thus, the present work represents an extension of Paper I towards fainter lines. Transitions from [Cl IV], [Cl V], [Ca IV], Ca [VI], and [Al VI] were measured in the SWS AOT06 grating mode, while the 21.8 μm line of [Ar III] was detected with the SWS Fabry-Perot (FP) mode, improving significantly on its accuracy as compared to the SWS grating observation reported in Paper I.

The accuracy of the SWS wavelength calibration was established initially by Valentijn et al. (1996) down to an uncertainty of 0.5–1.0 steps of the grating scanner. This value, translated from its instrumental unit into wavelength, typically corresponds to $\lambda/\Delta\lambda = 1 \times 10^5$. The nominal two-step uncertainty of the FP at 21.8 μm corresponds to $\lambda/\Delta\lambda = 1 \times 10^3$. While the FP wavelength calibration has proven to be stable throughout the whole ISO mission, the SWS grating wavelength calibration has shown a slight shift in time (≈ 0.1 step per month). Regular calibration observations of the internal SWS grating calibration source and external astronomical wavelength calibration targets have, however, allowed us to maintain the initial accuracy by interpolation between the various measurements. For more details regarding the accuracy of wavelengths in SWS observations see Paper I and Valentijn et al. (1996).

2. OBSERVATIONS AND DATA REDUCTION
We have analyzed observations, taken in SWS AOT06 grating mode of the planetary nebulae NGC 6302 and NGC 7027. NGC 6543 has been observed in SWS AOT07 Fabry-Perot mode. The rich SWS spectra of these targets are discussed e.g., by Beintema et al. (1996), Pottasch et al. (1996), Beintema & Pottasch (1999), and Pottasch & Beintema (1999). Here we focus exclusively on wavelength determination and report only on those lines observed by SWS for which we could improve on the accuracy of the rest wavelengths.

The data reduction of all measurements was done using the SWS Interactive Analysis software (SIA; Wieprecht et al. 1998) package on ISO pipeline products of version OLP 8.4. Particular attention has been paid to remove instrumental fringing in the wavelength range between 12 and 29 μm by the dedicated Fourier filtering modules of SIA. The same procedure was used as for Paper I. Gaussian fits to the spectral lines provided the center wavelengths, which were corrected for the heliocentric radial velocity and for the mean ISO radial velocity. Typical velocity changes during an observation were less than 0.3 km s$^{-1}$, and so could be neglected. The observed profiles of all lines with new wavelengths are presented in Figure 1.

2.1. Use of Reference Lines
Small pointing errors and spatial inhomogeneities of the targets can induce apparent velocity shifts in SWS grating...
222 FEUCHTGRUBER, LUTZ, & BEINTEMA Vol. 136

Fig. 1.—Observed fine-structure lines: [Al VI], [Ca VII], and [Cl IV] (20.3 μm) from NGC 6302; [Ca V], [Cl V], and [Cl IV] (11.76 μm) from NGC 7027; and [Ar II] from NGC 6543.

We have corrected for this effect using reference lines of accurately known wavelengths observed in the same SWS aperture during the same observation. Details of this strategy are given in Paper I and will not be repeated here. Although at similar accuracy, some reference lines with rest wavelengths determined in Paper I have been used (see Table 2) to improve on fixing the reference frame and to illustrate the good agreement with the more accurate reference lines.

The new wavelength determinations together with some other line properties are summarized in Table 1. The framework of fine-structure and hydrogen or helium recombination reference lines that were used for the individual observations of our targets is listed in Table 2. The offsets reflect the pointing error and the effects of the spatial structure of the source of the particular observation. Together with the uncertainty of the literature wavenumber, the “SWS uncertainty” in Table 2 is propagated into the uncertainty of new wavelength determinations that are tied to this line.

Apart from literature wavenumbers, Table 2 also includes a rest wavenumber for NGC 6302 that was determined during the independent observation by the SWS FP on NGC 6543.

2.2. NGC 6302

The SWS grating observation of NGC 6302 was carried out on 1997 February 20. The total integration time was 8532 s. Beintema & Pottasch (1999) have presented the first analysis of this AOT SWS06 observation and provided an extensive line list for the SWS wavelength range. From this observation we derived improved rest wavelengths for the

Ion	Transition (u→l)	Vacuum Wavelength* (μm)	Rest Wavenumber* (cm⁻¹)	Xlower (eV)	Xupper (eV)	Observation Date	Target
[Al VI]	3P₁→3P₂	3.65971 ± (62)	2732.46 ± (46)	153.83	190.48	1997 Feb 20	NGC 6302
[Ca VII]	3P₂→3P₁	4.0858 ± (12)	2447.5 ± (7)	108.78	127.20	1997 Feb 20	NGC 6302
[Ca V]	3P₁→3P₂	4.15937 ± (62)	2404.21 ± (36)	67.27	84.50	1996 Oct 19	NGC 7027
[Cl IV]	2P₃→2P₁	6.70667 ± (62)	1491.05 ± (14)	53.46	67.82	1996 Oct 19	NGC 7027
[Ar III]	3P₀→3P₁	20.3107 ± (21)	492.351 ± (51)	39.61	53.46	1997 Feb 20	NGC 6302

* Numbers in parentheses give errors on last decimals; Xlower and Xupper denote excitation and ionization potentials.
 b Grating scan.
 c Fabry-Perot line scan.
three lines reported in Table 1. The [Cl IV] line has escaped the analysis by Beintema & Pottasch, who quote an upper limit to the line flux. For the faint lines of [Al VI] and [Ca VII] the uncertainties of the wavelength determinations are dominated by detector noise.

From the analysis of the set of reference lines (see Table 2), measured at similar wavelength and with the same SWS aperture, the observed lines in NGC 6302 had to be shifted by -4 ± 1 km s$^{-1}$ for [Cl IV] and -26 ± 1 km s$^{-1}$ for [Al VI] and [Ca VII] with respect to the heliocentric velocity of -39 ± 2 km s$^{-1}$ given by Acker et al. (1992), probably owing to a pointing error. Note that a pointing error may translate into different shifts for the short- and long-wavelength sections of SWS because their beam profiles are centered on slightly different positions on the sky (Salama 2000) and since the velocity shift corresponding to a given angular shift differs for different order and aperture combinations.

2.3. NGC 6543

The ionic line from [Ar III] at 21.83 μm has been detected by the ISO SWS FP during an observation of 6750 s on 1997 February 11. The wavelengths from the [Ne III] line at 15.5 μm and of the [S III] line at 18.71 μm were remeasured during the same observation. Both reproduce the results from Paper I within their quoted uncertainties, confirming the assumption of sufficient velocity and spatial averaging across the target through the SWS slit sizes, since the [Ne III] wavelength was originally determined on NGC 7027 and the [S III] line was observed at a different position angle of the SWS slit on NGC 6543. The heliocentric velocity correction of -66.1 ± 0.4 km s$^{-1}$ for NGC 6543 has been taken from Schneider et al. (1983). The determined rest wavelength for the [Ar III] transition is in agreement with the SWS grating result from Paper I; however, its accuracy is now significantly improved.

2.4. NGC 7027

The planetary nebula NGC 7027 was observed with SWS on 1996 October 19. The total integration time of the AOT06 observation was 7962 s. New wavelengths have been determined for ionic lines of [Ca VI], [Cl IV] and [Cl V]. The data are presented in Figure 1 and their new rest wavelengths in Table 1. For this observation we found a mean shift of $+24$ km s$^{-1}$ of the reference lines (Table 2) with respect to the heliocentric velocity of $+8.8 \pm 0.6$ km s$^{-1}$ from Schneider et al. (1983).

3. CONCLUSIONS

Extending the results of Paper I towards fainter lines, the ISO Short Wavelength Spectrometer has been used to obtain new rest wavelengths for seven mid-infrared fine-structure lines. Six of these are from species with lower ionization potentials ≤ 40 eV, detectable in high-excitation planetary nebulae and active galactic nuclei.

This work was supported by DARA grants 50 QI9402 3 and 50 QI 8610 8.
REFERENCES

Acker, A., et al. 1992, Strasbourg-ESO Catalogue of Galactic Planetary Nebulae (Garching: ESO)
Beintema, D. A., et al. 1996, A&A, 315, L253
Beintema, D. A., & Pottasch, S. R. 1999, A&A, 347, 942
Black, J. H., & van Dishoeck, E. F. 1987, ApJ, 322, 412
de Graauw, Th., et al. 1996, A&A, 315, L49
Feuchtgruber, H., et al. 1997, ApJ, 487, 962 (Paper I)
Kelly, D. M., & Lacy, J. H. 1995, ApJ, 454, L161
Kessler, M. F. K., et al. 1996, A&A, 315, L27
Lutz, D., Sturm, E., Genzel, R., Moorwood, A. F. M., Alexander, T., Netzer, H., & Sternberg, A. 2000, ApJ, 536, 697
Oliva, E., Moorwood, A. F. M., Drapatz, S., Lutz, D., & Sturm, E. 1999, A&A, 343, 943
Pottasch, S. R., & Beintema, D. A. 1999, A&A, 347, 975
Pottasch, S. R., Beintema, D. A., Dominguez-Rodriguez, F. J., Schaeidt, S., Valentijn, E., & Vandenbussche, B. 1996, A&A, 315, L261
Salama, A. 2000, in ISO Byond Point Sources: Studies of Extended Infrared Emission, ed. R. Laureijs, K. Leech, & M. F. Kessler (ESA SP-455; Noordwijk: ESA), 7
Schneider, S. E., Terzian, Y., Purgathofer, A., & Perinotto, M. 1983, ApJS, 52, 399
Valentijn, E. A., et al. 1996, A&A, 315, L60
van Hoof, P. A. M., & Verner, D. A. 1997, in First ISO Workshop on Analytical Spectroscopy, ed. A. M. Heras (ESA SP-419; Noordwijk: ESA), 273
Wieprecht, E., et al. 1998, in ASP Conf. Ser. 145, Astronomical Data Analysis Software and Systems VII, ed. R. Albrecht, R. N. Hook, & H. A. Bushhouse (San Francisco: ASP), 279
Yamada, C., Kanamori, H., & Hirota, E. 1985, J. Chem. Phys., 83, 552