Fluctuation-dissipation relationship in chaotic dynamics

Bidhan Chandra Bag and Deb Shankar Ray *

Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, INDIA.

Abstract

We consider a general N-degree-of-freedom dissipative system which admits of chaotic behaviour. Based on a Fokker-Planck description associated with the dynamics we establish that the drift and the diffusion coefficients can be related through a set of stochastic parameters which characterize the steady state of the dynamical system in a way similar to fluctuation-dissipation relation in non-equilibrium statistical mechanics. The proposed relationship is verified by numerical experiments on a driven double well system.

PACS number(s) : 05.45.-a, 05.70.Ln, 05.20.-y
I. INTRODUCTION

Although deterministic in principle classically chaotic motion is stochastic in nature. Ever since the early numerical study of Chirikov mapping [1] revealed that the motion of a phase space variable can be characterized by a simple random walk diffusion equation, attempts have been made to describe the chaotic motion in terms of Langevin or Fokker-Planck equations [1,2]. It is therefore easy to comprehend a close connection between classical chaos and statistical mechanics. Two distinct situations arise in this context. The first one concerns whether classical chaos may serve as a basis for classical statistical mechanics since the ultimate justification of the postulates of statistical mechanics like Boltzmann hypothesis of molecular chaos, ergodicity or the postulate of equal a priori probability rests on the dynamics of each particle [3–5]. The second one concerns the following: Given that the classical chaotic motion is stochastic how and to what extent one can realize the formulation of statistical mechanics for useful description of classical chaos [6–21] keeping in mind that one essentially deals here with a few-degree-of-freedom system. The present paper addresses the second issue.

The emergence of stochastic behaviour of the classically chaotic system is due to the loss of correlation of initially nearby trajectories. This is reflected in the nature of the largest Lyapunov exponent [22] whose calculation rests on the linear equation of motion for the separation of these trajectories. When chaos has fully set in, the time dependence of the linear stability matrix or Jacobian of the system [23] in the equation of motion in the tangent space can be described as a stochastic process since the phase space variables behave as stochastic variables. In a number of recent studies we have shown [17–21] that this fluctuation of the Jacobian is amenable to a theoretical description in terms of the theory of multiplicative noise. This allows us to realize a number of important results of nonequilibrium statistical mechanics, like Kubo relation [17], fluctuation-decoherence relation [18], exponential divergence of quantum fluctuations [19,21], thermodynamically inspired quantities, e.g., entropy production in chaotic dynamics. Based on a Fokker-Planck description in the tan-
gent space where the drift and the diffusion coefficients explicitly depend on the phase space variables or dynamical properties of the system, we show that a connection between the two moments in terms of the stochastic parameters which characterize the long time limit of the dynamical system can be established in the spirit of fluctuation-dissipation relation. We verify the theoretical proposition by numerical experiments on a simple dissipative system.

The rest of the paper is organized as follows: In Sec. II we introduce a Fokker-Planck description of the dynamical system in the tangent space and identify the drift and diffusion coefficients which are the functions of fluctuations of the phase space variables. This is followed by solving the Fokker-Planck equation for the steady state distribution required for the calculation of long time averages in Sec III. In Sec. IV the dynamical stochastic parameters which characterize the long time behaviour of the system are introduced. The first one of them is a well-known stochastic parameter closely related to Kolmogorov entropy. With the help of these stochastic parameters we establish a connection between the drift and diffusion coefficients of the Fokker-Planck equation in the spirit of fluctuation-dissipation relation in nonequilibrium statistical mechanics. In Sec. V we illustrate the general method by an explicit numerical example to verify the theoretical proposition. The paper is concluded in Sec. VI.

II. A FOKKER-PLANCK EQUATION FOR DISSIPATIVE CHAOTIC DYNAMICS

We are concerned here with a general N-degree-of-freedom system whose Hamiltonian is given by

\[H = \sum_{i=1}^{N} \frac{p_i^2}{2m_i} + V(q_i, t), \quad i = 1 \cdots N \]

(1)

where \(\{q_i, p_i\} \) are the co-ordinate and momentum of the i-th degree-of-freedom, respectively, which satisfy the generic form of equations

\[\dot{q}_i = \frac{\partial H}{\partial p_i} \quad \text{and} \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}. \]

(2)
We now make the Hamiltonian system dissipative by introducing $-\gamma p_i$ on the right hand side of the second of Eqs.(2). For simplicity we assume γ to be the same for all the N degrees of freedom. By invoking the symplectic structure of the Hamiltonian dynamics as

$$z_i = \begin{cases}
q_i & \text{for } i = 1 \cdots N , \\
p_{i-N} & \text{for } i = N + 1, \cdots 2N .
\end{cases}$$

and defining I as

$$I = \begin{bmatrix} 0 & E \\
-E & -\gamma E \end{bmatrix}$$

where E is an $N \times N$ unit matrix, and 0 is an $N \times N$ null matrix, the equation of motion for the dissipative system can be written as

$$\dot{z}_i = \sum_{j=1}^{2N} I_{ij} \frac{\partial H}{\partial z_j} .$$

(3)

We now consider two nearby trajectories, z_i, \dot{z}_i and $z_i + X_i$, $\dot{z}_i + \dot{X}_i$ at the same time t in $2N$ dimensional phase space. The time evolution of separation of these trajectories is then determined by

$$\dot{X}_i = \sum_{j=1}^{2N} J_{ij}(t)X_j$$

(4)

in the tangent space $\{X_i\}$, where

$$J_{ij} = \sum_k I_{ik} \frac{\partial^2 H}{\partial z_k \partial z_j} .$$

(5)

Therefore the $2N \times 2N$ linear stability matrix J assumes the following form

$$J = \begin{bmatrix} 0 & E \\
M(t) & -\gamma E \end{bmatrix}$$

(6)

where M is an $N \times N$ matrix. Note that the time dependence of stability matrix $J(t)$ is due to the second derivative $\frac{\partial^2 H}{\partial z_k \partial z_j}$ which is determined by the equation of motion (3).

The procedure for calculation of X_i and the related quantities is to solve the trajectory
equation (3) simultaneously with Eq.(4). Thus when the dissipative system described by (3) is chaotic, J(t) becomes (deterministically) stochastic due to the fact that z_i-s behave as stochastic variables and the equation of motion (3) in the tangent space can be interpreted as a stochastic equation \cite{17-21}.

In the next step we shall be concerned with a stochastic description of J(t) or M(t). For convenience we split up M into two parts as

\[M = M_0 + M_1(t) \] (7)

where \(M_0\) is independent of variables \(\{z_i\}\) and therefore behaves a sure or constant part and \(M_1\) is determined by the variables \(\{z_i\}\) for \(i = 1 \cdots 2N\). \(M_1\) refers to the fluctuating part.

We now rewrite the equation of motion (3) in tangent space as

\[\dot{X} = JX = L(\{X_i\}, \{z_i\}) \] (8)

where \(X\) and \(L\) are the vectors with \(2N\) components. Corresponding to (7) \(L\) in (8) can be split up again to yield

\[\dot{X} = L^0(X) + L^1(X, \{z_i(t)\}) , \quad i = 1 \cdots 2N \] (9)

Eq.(4) indicates that Eq.(8) is linear in \(\{X_i\}\). Eqs.(4), (3) and (8) express the fact the first \(N\) components of \(L^1\) are zero and the last \(N\) components of \(L^1\) are the functions of \(\{X_i\}\) for \(i = 1 \cdots N\). The fluctuation in \(L^1_i\) is caused by the chaotic variables \(\{z_i\}\)-s. This allows us to write the following relation (which will be used later on),

\[\nabla_X \cdot L^1 \phi(\{X_i\}) = L^1 \cdot \nabla_X \phi(\{X_i\}) \] (10)

where \(\phi(\{X_i\})\) is any function of \(\{X_i\}\). \(\nabla_X\) refers to differentiation with respect to components \(\{X_i\}\) (explicitly \(X_i = \Delta q_i\) for \(i = 1 \cdots N\) and \(X_i = \Delta p_i\) for \(i = N + 1 \cdots 2N\)).

Note that Eq.(3) by virtue of (8) is a linear stochastic differential equation with multiplicative noise where the noise is due to \(\{z_i\}\) determined by equation of motion (3). This is the starting point of our further analysis.
Eq.\((9)\) determines a stochastic process with some given initial conditions \(\{X_i(0)\}\). We now consider the motion of a representative point \(X\) in \(2N\) dimensional tangent space \((X_1 \cdots X_{2N})\) as governed by Eq.\((9)\). The equation of continuity which expresses the conservation of points determines the variation of density function \(\phi(X,t)\) in time as given by

\[
\frac{\partial \phi(X,t)}{\partial t} = -\nabla_X \cdot L(t)\phi(X,t) .
\]

Expressing \(A_0\) and \(A_1\) as

\[
A_0 = -\nabla_X \cdot L^0 \quad \text{and} \quad A_1 = -\nabla_X \cdot L^1
\]

we may rewrite the equation of continuity as

\[
\frac{\partial \phi(X,t)}{\partial t} = [A_0 + \alpha A_1(t)]\phi(X,t) .
\]

It is easy to recognize that while \(A_0\) denotes the sure part \(A_1\) contains the multiplicative fluctuations through \(\{z_i(t)\}\). \(\alpha\) is a parameter introduced from outside to keep track of the order of fluctuations in the calculations. At the end we put \(\alpha = 1\).

One of the main results for the linear equations of the form with multiplicative noise may now be in order \([25]\). The average equation of \(\langle \phi \rangle\) obeys \([P(x,t) \equiv \langle \phi \rangle],\)

\[
\dot{P} = \left\{ A_0 + \alpha A_1(t) + \alpha^2 \int_0^\infty d\tau \langle \langle A_1(t) \exp(\tau A_0) A_1(t - \tau) \rangle \rangle \exp(-\tau A_0) \right\} P(x,t) .
\]

The above result is based on second order cumulant expansion and is valid when fluctuations are small but rapid and the correlation time \(\tau_c\) is short but finite or more precisely

\[
\langle \langle A_1(t) A_1(t') \rangle \rangle = 0 \quad \text{for} \quad |t - t'| > \tau_c.
\]

We have, in general, \(\langle A_1 \rangle \neq 0\). Here \(\langle \cdot \cdot \cdot \rangle\) implies \(\langle \langle \zeta_i \zeta_j \rangle \rangle = \langle \zeta_i \zeta_j \rangle - \langle \zeta_i \rangle \langle \zeta_j \rangle\).

The Eq.\((14)\) is exact in the limit \(\tau_c \to 0\). Making use of relation \((12)\) in \((14)\) we obtain

\[
\frac{\partial P}{\partial t} = \left\{ -\nabla \cdot L^0 - \alpha \langle \nabla \cdot L^1 \rangle + \alpha^2 \int_0^\infty d\tau \langle \langle \nabla \cdot L^1(t) \exp(-\tau \nabla \cdot L^0) \rangle \rangle \nabla \cdot L^1(t - \tau) \rangle \rangle \exp(\tau \nabla \cdot L^0) \right\} P .
\]

6
The above equation can be transformed into the following Fokker-Planck equation ($\alpha = 1$) for probability density function $P(X,t)$, (the details are given in the Appendix A);

$$\frac{\partial P(X,t)}{\partial t} = -\nabla . F P + \sum_{i,j} D_{ij} \frac{\partial^2 P}{\partial X_i \partial X_j}$$

(17)

where,

$$F = L^0 + \langle L^1 \rangle + Q$$

(18)

and Q is a $2N$-dimensional vector whose components are defined by

$$Q_j = - \int_0^\infty \langle \langle R'_j \rangle \rangle d\tau d_1(\tau) d_2(\tau)$$

(19)

Here the determinants $Det_1(\tau)$, $Det_2(\tau)$ and R'_j are given by

$$Det_1(\tau) = \left| \frac{dX^{-\tau}}{dX} \right| \quad \text{and} \quad Det_2(\tau) = \left| \frac{dX}{dX^{-\tau}} \right|$$

and

$$R'_j = \sum_i \langle L^1_i(X,t) \frac{\partial}{\partial X_i} \sum_k L^1_k(X^{-\tau},t-\tau) \frac{\partial X_j}{\partial X_k} \rangle .$$

(20)

It is easy to recognize F as an evolution operator. Because of the dissipative perturbation we note that $\text{div } F < 0$.

The diffusion coefficient D_{ij} in Eq.(17) is defined as

$$D_{ij} = \int_0^\infty \sum_k \langle \langle L^1_i(X,t) L^1_k(X^{-\tau},t-\tau) \frac{dX_j}{dX_k} \rangle \rangle Det_1(\tau) Det_2(\tau) d\tau$$

(21)

We have followed closely van Kampen’s approach [25] to generalized Fokker-Planck equation (17). Before concluding this section several critical remarks regarding this derivation need attention:

First, the stochastic process $M_1(t)$ determined by $\{z_i\}$ is obtained exactly by solving equations of motion (3) for the chaotic motion of the system. It is therefore necessary to emphasize that we have not assumed any special property of noise, such as, $M_1(t)$ is Gaussian or δ-correlated. We reiterate Van Kampen’s emphasis in this approach.

Second, the only assumption made about the noise is that its correlation time τ_c is short but finite compared to the coarse-grained timescale over which the average quantities evolve.
Third, we take care of fluctuations up to second order which implies that the deterministic noise is not too strong.

Eq. (17) is the required Fokker-Planck equation in the tangent space \(\{X_i\} \). Note that the drift and diffusion coefficients are determined by the phase space \(\{z_i\} \) properties of the chaotic system and directly depend on the correlation functions of the fluctuations of the second derivatives of the Hamiltonian (\(H \)).

III. THE STEADY STATE DISTRIBUTION AND THE CALCULATION OF AVERAGES

In what follows we shall be concerned with the long time limit of the dynamical system. Thus the steady state distribution of the tangent space co-ordinates \(X_i(i = 1 \cdots 2N) \) are specially relevant for the present purpose. To make all these co-ordinates dimensionless we use the following transformations in Eq. (17)

\[
\tau' = \omega' t, \\
y_i = \frac{X_i}{d_0} \quad \text{for } i = 1 \cdots N, \\
y_i = \frac{X_i}{\omega'd_0} \quad \text{for } i = N + 1 \cdots 2N,
\]

(22)

where \(\omega' \) is a scaling constant having dimension of reciprocal of time (a possible choice is the linearized frequency of the dynamical system) and \(\tau' \) becomes a dimensionless variable. \(d_0 \) is a constant (to be specified later) having the dimension of length. The resulting Fokker-Planck Eq. (17) reduces to

\[
\frac{\partial P(y, \tau')}{\partial \tau'} = -\nabla' F'(y) P + \sum_{i,j} D'_{ij}(y) \frac{\partial^2 P}{\partial y_i \partial y_j}.
\]

(23)

Note that Eq. (23) is independent of \(d_0 \) since \(F(X) \) is linear in \(\{X_i\} \) and \(D(X) \) is quadratic in \(\{X_i\} \). Next we consider the stationary state of the system \((\frac{\partial P}{\partial \tau'} = 0) \) and make use of the following linear transformation (with \(\alpha_{2N} = 1 \))
\[U = \sum_{i=1}^{2N} \alpha_i y_i \]

in Eq.(23) to obtain the equation for steady state probability distribution \(P_s(U) \) :

\[
\frac{\partial}{\partial U} \lambda U P_s(U) + D_s \frac{\partial^2 P_s}{\partial U^2} = 0 .
\]

(25)

\(\alpha_i \)-s \((i = 1 \cdots 2N - 1)\) are the constants to be determined. Here

\[
\lambda U = -\sum_i \alpha_i F'_i(y)
\]

(26)

and

\[
D_s = \sum_{i,j} D'_{ij} \alpha_i \alpha_j ,
\]

(27)

and we disregard the time dependence of \(D' \) under weak noise approximation, to treat \(D' \) as a constant in the usual way.

Putting (24) in (26) and comparing the coefficients of \(y_i \) on both sides we obtain 2\(N \) algebraic equation (for \(\alpha_i \)......\(\alpha_{2N-1} \) and \(\lambda \)). The set \(\{ \alpha_i \} \) and \(\lambda \) are therefore known.

The exact steady state solution, \(P_s \) has the well known Gaussian form which is given by

\[
P_s(\{y_i\}) = N \exp \left(-\frac{\lambda}{2D_s} \sum_{i,j} \alpha_i \alpha_j y_i y_j \right) ,
\]

(28)

where \(N \) is the normalization constant. Eq.(28) expresses the probability distribution of tangent space co-ordinates of the dynamical system in the long time limit. The important relevant quantity which measures the separation of initially nearby trajectories when the system has attained the stationary state can be computed by calculating the average of \(\sum_{i=1}^{2N} y_i^2 \). Making use of the distribution (28) we obtain

\[
\left\langle \sum_{i=1}^{2N} y_i^2 \right\rangle = \frac{D_s}{\lambda} \sum_{i=1}^{2N} \frac{1}{\alpha_i^2}
\]

(29)

Note that the average as calculated above is a function of \(D_s \), \(\lambda \) and \(\alpha_i \)-s which are dependent on the phase space properties of the dynamical system.
IV. STOCHASTIC PARAMETERS, CONNECTION BETWEEN D_s AND λ; FLUCTUATION-DISSIPATION RELATION

Eq.(25) is a steady state Fokker-Planck equation in tangent space with linear drift and constant diffusion coefficients where the co-ordinates have been expressed as dimensionless variables $\{y_i\}$. λ and D_s are the first and second moments, respectively, of the underlying stochastic process. Our objective here is seek for a connection between the two moments. In standard nonequilibrium statistical mechanics this connection is expressed by the fluctuation-dissipation relation through temperature, an equilibrium parameter characterizing the equilibrium state. Our approach here is to follow a somewhat similar procedure. This implies that we search for the stochastic parameters which characterize the long time limit of the nonlinear dynamical system. We show that an appropriate relation between D_s and λ can be established through these parameters.

An important parameter proposed many years ago by Casartelli et. al. [24] (a precursor for the largest Lyapunov exponent used as a measure of regularity or chaoticity of a nonlinear dynamical system) is the long time average of $\ln \frac{d(t)}{d_0}$ where d_0 is the separation of the two initially nearby trajectories and $d(t)$ is the corresponding separation at some time t. To express $d(t)$ (having dimension of length) we write $d(t) = [\sum_{i=1}^{N} (X_i)^2 + \sum_{i=N+1}^{2N} (\frac{X_i}{\omega})^2]^\frac{1}{2}$. $d(t)$ is determined by solving numerically Eqs. (3) and (4) simultaneously or their appropriately transformed version for the initial condition z_0 corresponding to Eq.(3). In going from j-th to $j+1$-th step of iteration in course of time evolution any of the components of X say X_i has to be initialized as $X_i^{j0} = \frac{X_i}{d_j} d_0$. This initialization implies that at each step iteration starts with same magnitude of d_0 but the direction of d_0 for step $j+1$ is that of $d(t)$ for j-th step (considered in terms of the ratio $\frac{X_i}{d_j}$). For a pictorial illustration we refer to Fig.1 of Ref. [22]. j-th time of iteration implies $t = jT$ ($j = 1, 2 \cdots \infty$) and T is the characteristic time which corresponds to the shortest ensemble averaged period of nonlinear dynamical system. Thus following Casartelli et. al. [24] a stochastic parameter can be defined by the following time average of $\ln \frac{d_j}{d_0}$ as
\[\sigma_n(t, z_0, d_0) = \frac{1}{n} \sum_j^n \ln \frac{d_j}{d_0} \]

(30)

It has been shown [24] that as \(n \to \infty \) \(\sigma_n \) has a definite value. For the disordered system it is positive and for the regular system it is zero. The difference of \(\sigma_n \) from the largest Lyapunov exponent is also noteworthy. Our object here is to generalize (30) by defining the other higher order moments (higher than the first \(\sigma_{n \to \infty} \)). To express these quantities we define first

\[\sigma' = \ln \frac{d(t)}{d_0} \]

(31)

We now make use of the transformation (22) to express \(d(t) \) as a dimensionless quantity in terms of \(\sigma' \) as follows:

\[\ln \sum_{i=1}^{2N} y_i^2 = 2\sigma' \]

(32)

The method of cumulant expansion on the other hand tells us that the average of the sum of \(y_i^2 \) can be written as

\[\langle \sum_{i=1}^{2N} y_i^2 \rangle = \exp \left(\sum_m A_m \right) \quad m = 1, 2, 3, \ldots \]

(33)

where \(A_m \)-s result from cumulants of the stochastic quantity \(2\sigma' \). \(A_m \)-s are calculated dynamically from the following relations

\[\begin{align*}
A_1 &= m_1, \\
A_2 &= \frac{1}{2!} [m_2 - m_1^2], \\
A_3 &= \frac{1}{3!} [m_3 - 3m_1 m_2 + 2m_1^3], \\
A_4 &= \frac{1}{4!} [m_4 - 3m_2^2 - 4m_1 m_3 + 12m_1^2 m_2 - 6m_1^4] \quad \text{etc.}
\end{align*} \]

(34)

where \(m_k = \frac{2^k}{n} \sum_{j=1}^n \left(\ln \frac{d_j}{d_0} \right)^k \) \([k = 1, 2, 3, 4, \ldots] \). In the spirit of Ref. [24] we enquire, whether these moments/cumulants reach their steady state values in the long time limit. We have numerically examined the dependence of \(m_k \)-s on various parameters. The parameters are \(n \), the time, \(d_0 \), the measure of initial separation, the characteristic time \(T \) (j-th time of iteration implies \(t = jT, j = 1, 2, \ldots \infty \)). Our observation is that the limit \(m_k \) or limit \(A_m \) as \(n \to \infty \) seems to exist in all cases. We have examined [26] these limits for a number
of test cases, e. g. , for Lorentz system, Henon-Heiles system and others. In Fig.(1) we exhibit a typical representative long time behaviour of the cumulants $A_m (m = 1 \text{ to } 4)$ for a driven double well potential system discussed in the next section. It is apparent that they attain their long time limits as $n \to \infty$. Secondly, the first two cumulants are much higher compared to others The first moment is the stochastic parameter defined by Casartelli et. al. \cite{24} as a quantity closely related to Kolmogorov entropy. We are therefore led to believe that the quantities A_m-s characterize the long time limit or the steady state of a dynamical system.

The relations (33) and (29) can now be combined to give

$$D_s = \frac{\lambda}{\sum_{i=1}^{2n} \alpha_i^2} \exp \left(\sum_m A_m \right).$$

The above relation is the central result of this paper. This establishes a connection between the drift and the diffusion coefficients of the Fokker-Planck equation (25) through the stochastic parameters characterizing long time behaviour of the nonlinear dynamical system. It must be emphasized that both the drift λ and the diffusion D_s coefficients arise from the deterministic stochasticity implied in the dynamical equation of motion (3). The relation (35) is therefore reminiscent of the familiar fluctuation-dissipation relation.

A few points regarding the relation (35) are in order. It is important to note that the fluctuation-dissipation relation in conventional nonequilibrium statistical mechanics is valid for a stochastic system for which the noise is internal. The spiritual root of this relation lies at the dynamic balance between the input of energy into the system from the fluctuations of the surrounding and the output of energy from the system due to its dissipation into the surrounding. The system-reservoir model \cite{27, 28} developed over the last few decades suggests that the coupling between the system and the reservoir is responsible for a common origin of drift and diffusion. In the present theory this common mechanism is the fluctuations of the phase space variables (or second derivative of the Hamiltonian) inherent in both the drift λ and the diffusion D_s coefficients of the Fokker-Planck equation. We point out that the relation is still valid for the pure Hamiltonian system ($\gamma = 0$). For this reason the
relation (35) is somewhat formal in contrast to the standard fluctuation-dissipation relation.

V. AN EXAMPLE AND NUMERICAL VERIFICATION

To illustrate the theory developed above, we now choose a driven double-well oscillator system with Hamiltonian

\[H = \frac{p_1^2}{2} + aq_1^4 - bq_1^2 + \epsilon q_1 \cos \Omega t \]

where \(p_1 \) and \(q_1 \) are the momentum and position variables of the system. \(a \) and \(b \) are the constants characterizing the potential. \(\epsilon \) includes the effect of coupling constant and the driving strength of the external field with frequency \(\Omega \). This model has been extensively used in recent years for the study of chaotic dynamics [17,18,29].

The dissipative equations of motion for the tangent space variables \(X_1 \) and \(X_2 \) corresponding to \(q_1 \) and \(p_1 \) (Eq.8) read as follows:

\[
\frac{d}{dt} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \mathcal{J} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}, \quad \begin{cases}
\Delta q_1 = X_1 \\
\Delta p_1 = X_2
\end{cases},
\]

(37)

where \(\mathcal{J} \) as expressed in our earlier notation \(z_1 = q_1 \) and \(z_2 = p_1 \) is given by

\[
\begin{pmatrix}
0 & 1 \\
\zeta(t) + 2b & -\gamma
\end{pmatrix},
\]

where \(\zeta(t) = -12a z_1^2 \). Eq. (37) is thus rewritten as

\[
\frac{d}{dt} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = L^0 + L^1
\]

(38)

with

\[
L^0 = \begin{pmatrix}
X_2 \\
2bX_1 - \gamma X_2
\end{pmatrix} \quad \text{and} \quad L^1 = \begin{pmatrix}
0 \\
\zeta(t)X_1
\end{pmatrix},
\]

where \(L^0 \) and \(L^1 \) are the constant and the fluctuating parts (vectors), respectively. The fluctuation in \(L^1 \), i.e., in \(\zeta(t) \) is due to stochasticity of the following chaotic dissipative dynamical equations of motion;
\[\dot{z}_1 = z_2 \quad \text{and} \quad \dot{z}_2 = -az_1^3 + 2b z_1 - \epsilon \cos \Omega t - \gamma z_2. \]

(39)

The result of Eq.(39) can then be applied and after some algebra the Fokker-Planck equation (17) for the dissipative driven double-well oscillator assumes the following form:

\[\frac{\partial P}{\partial t} = -X_2 \frac{\partial P}{\partial X_1} - \omega^2 X_1 \frac{\partial P}{\partial X_2} + \gamma \frac{\partial}{\partial X_2} (X_2 P) + D_{21} \frac{\partial^2 P}{\partial X_2 \partial X_1} + D_{22} \frac{\partial^2 P}{\partial X_2^2} \]

(40)

where

\[D_{21} = X_1^2 \int_0^\infty \langle \langle \zeta(t) \zeta(t - \tau) \rangle \rangle \tau e^{-\gamma \tau} d\tau \]

and

\[D_{22} = X_1^2 \int_0^\infty \langle \langle \zeta(t) \zeta(t - \tau) \rangle \rangle e^{-\gamma \tau} d\tau - X_1 X_2 \int_0^\infty \langle \langle \zeta(t) \zeta(t - \tau) \rangle \rangle \tau e^{-\gamma \tau} d\tau \]

(41)

with

\[\omega^2 = 2b + c + c_2, \quad c_2 = \int_0^\infty \langle \langle \zeta(t) \zeta(t - \tau) \rangle \rangle \tau e^{-\gamma \tau} d\tau \quad \text{and} \quad c = \langle \zeta \rangle. \]

(42)

The similarity of the equation (40) to generalized Kramers’ equation can not be overlooked. This suggests a clear interplay of chaotic diffusive motion and dissipation in the dynamics.

Using the transformation (22) Eq.(40) can be written as

\[\frac{\partial P}{\partial \tau} = -y_2 \frac{\partial P}{\partial y_1} - \omega^2 y_1 \frac{\partial P}{\partial y_2} + \gamma \frac{\partial}{\partial y_2} (y_2 P) + D'_{21} \frac{\partial^2 P}{\partial y_2 \partial y_1} + D'_{22} \frac{\partial^2 P}{\partial y_2^2} \]

(43)

where

\[\omega^2 = \frac{\omega^2}{\omega^2}, \quad \gamma = \frac{\gamma}{\omega'}, \quad D'_{21} = \frac{y_1^2(0)}{\omega^2} \int_0^\infty \langle \langle \zeta(\tau') \zeta(\tau' - \tau) \rangle \rangle \tau e^{-\gamma \tau} d\tau \quad \text{and} \]

\[D'_{22} = \frac{y_1^2(0)}{\omega^2} \int_0^\infty \langle \langle \zeta(\tau') \zeta(\tau' - \tau) \rangle \rangle e^{-\gamma \tau} d\tau - \frac{y_1(0)y_2(0)}{\omega'} \int_0^\infty \langle \langle \zeta(\tau') \zeta(\tau' - \tau) \rangle \rangle \tau e^{-\gamma \tau} d\tau \]

(44)

and the time dependence of \(y_1 \) and \(y_2 \) in the diffusion coefficients have been frozen under weak noise approximation.

Now using the linear transformation (24) in Eq.(43) we obtain in the stationary state
\[
\frac{\partial}{\partial U} \lambda U P_s + D_s \frac{\partial^2 P_s}{\partial U^2} = 0
\] \hspace{1cm} (45)

where

\[
U = \alpha_1 y_1 + y_2 \quad \text{and} \quad \lambda U = -\alpha_1 y_2 - \bar{\omega}^2 y_1 + \bar{\gamma} y_2
\] \hspace{1cm} (46)

and

\[
D_s = D'_{22}
\] \hspace{1cm} (47)

where for simplicity it has been assumed that \(D'_{21}\) is much small compared to the Markovian contribution \(D'_{22}\).

Comparing the coefficients of \(y_1\) and \(y_2\) on both sides of Eq.(46) we obtain

\[
\lambda \alpha_1 = -\bar{\omega}^2 \quad \text{and} \quad \lambda = -\alpha_1 + \bar{\gamma}
\]

Therefore we have

\[
\alpha_1 = \frac{\bar{\gamma} - \sqrt{\bar{\gamma}^2 + 4\bar{\omega}^2}}{2} \quad \text{and} \quad \lambda = \frac{\bar{\gamma} + \sqrt{\bar{\gamma}^2 + 4\bar{\omega}^2}}{2} \hspace{1cm} . (48)
\]

Here the negative value of \(\alpha_1\) is taken to make \(\lambda\) positive for a physically allowed solution of the steady state distribution (49). The solution of Eq.(45) is given by

\[
P_s = N \exp \left(-\frac{\lambda}{2D_s} (\alpha_1 y_1^2 + 2\alpha_1 y_1 y_2 + y_2^2) \right) . \hspace{1cm} (49)
\]

With the help of above distribution the average quantities in tangent space can be calculated. Thus we have

\[
\langle y_1^2 + y_2^2 \rangle = \frac{D_s}{\lambda} \left(\frac{1}{\alpha_1^2} + 1 \right) \hspace{1cm} . (50)
\]

The fluctuation dissipation relation (35) can then be obtained by combining (50) with (33) as follows ;

\[
D_s = \frac{\lambda}{(\frac{1}{\alpha_1^2} + 1)} \exp \left(\sum_m A_m \right) . \hspace{1cm} (51)
\]
\(\lambda \) and \(\alpha_1 \) are to be calculated using (48). For these we require explicit numerical evaluation of \(\omega^2 \) as defined in (43) and (44). The dissipative chaotic motion is governed by equations (37) and (39). We choose the following values of the parameters \(a = 0.5, b = 10, \epsilon = 10, \Omega = 6.07 \) and \(\gamma = 0.001 \). The coupling-cum-field strength \(\epsilon \) has been varied from set to set. We choose the initial conditions \(z_1(0) = -3.5 \) and \(z_2(0) = 0 \) which ensures strong global chaos. Note that \(c_2 \) as expressed in (42) and in the diffusion coefficients are the integrals over the correlations of \(\zeta(t) (\zeta(t) \) is the fluctuating part of the second derivative of the potential \(V(z) \) and is given by \(\zeta(t) = -12az_1^2 \)). To calculate the correlation function \(\langle \langle \zeta(t)\zeta(t - \tau) \rangle \rangle \) and the average \(\langle \zeta(t) \rangle \) it is necessary to determine long time series in \(\zeta(t) \) by numerically solving the classical equation of motion (39). The next step is to carry out the averaging over the time series. For further details of the numerical procedure we refer to the earlier work [19, 21]. On the other hand the cumulants \(A_m (m = 1, 2, 3, 4) \) (as defined in (34) and (35)) are calculated from Eqs.(37) and (39) directly. The method has already been outlined in Sec.(IV) and in Ref. [24]. We then plot the theoretically calculated values of \(D_s \) from the evaluation of \(\lambda, \alpha_1 \) and the cumulants for several values of the coupling constant \(\epsilon \) (Eq.36) and compare them with the diffusion coefficients obtained from the direct numerical integration of Eqs.(39) and (37) with the appropriate transformation (22) for the corresponding values of \(\epsilon \). The result is shown in Fig. 2. It may be noted that the theoretical and numerical results are in good agreement. The validity of the fluctuation-dissipation relation as proposed in Eq.(35) is therefore reasonably satisfactory.

VI. CONCLUSIONS

The crucial question of instability of classical motion essentially rests on the linear stability matrix or Jacobian matrix associated with the equations of motion. While the linear stability analysis around the fixed points is based on the assumption of constancy of this matrix we take full account of the time dependence of the quantity in the chaotic regime by considering it to be a stochastic process, since the phase variables behave stochastically.
Based on a Fokker-Planck description in the tangent space we trace the origin of chaotic diffusion and drift in the correlation of fluctuations of the linear stability matrix.

The main conclusions of this study are the following:

(i) We show that a class of dynamical stochastic parameters which attain their steady state values in the long time limit of the dynamical system may be used to characterize the dynamical steady state of the system. The first one of them which was proposed by Casartelli et. al. [24] several years ago as a measure of the chaoticity of the system is closely related to Kolmogorov entropy.

(ii) We establish a connection between the drift and the diffusion coefficients of the Fokker-Planck equation and the dynamical stochastic parameters in the spirit of fluctuation-dissipation relation. The realization of this relation in chaotic dynamics therefore carries the message that although comprising a few degrees of freedom a chaotic system may behave as a statistical mechanical system (although in a somewhat different sense).

The theoretical relations proposed here are generic for N-degree-of-freedom chaotic Hamiltonian system with or without dissipation and have been verified by numerical analysis of a driven nonlinear dissipative system. We hope that the present approach will find useful application in searching for the related thermodynamically inspired quantities in few-degree-of-freedom systems.

ACKNOWLEDGMENTS

B. C. Bag is indebted to the Council of Scientific and Industrial Research (C.S.I.R.), Government of India, for a fellowship.
APPENDIX A: THE DERIVATION OF THE FOKKER-PLANCK EQUATION

We first note that the operator $e(-\tau \nabla \cdot L^0)$ provides the solution of the equation [Eq.(13), $\alpha = 0$]

$$\frac{\partial f(X,t)}{\partial t} = -\nabla_X \cdot L^0 f(X,t)$$

(A1)

f signifies the “unperturbed” part of P which can be found explicitly in terms of characteristic curves. The equation

$$\dot{X} = L^0(X)$$

(A2)

determines for a fixed t a mapping from $X(\tau = 0)$ to $X(\tau)$, i.e., $X \rightarrow X^\tau$ with inverse $(X^\tau)^{-\tau} = X$. The solution of (A1) is

$$f(X,t) = f(X^{-t},0) \left| \frac{dX^{-t}}{dX} \right| = e\left[-t\nabla \cdot F_0\right] f(X,0).$$

(A3)

$\left| \frac{d(X^{-t})}{d(X)} \right|$ being a Jacobian determinant. The effect of $e(-t\nabla \cdot L^0)$ on $f(X)$ is as

$$e(-t\nabla \cdot L^0) f(X,0) = f(X^{-t},0) \left| \frac{dX^{-t}}{dX} \right| .$$

(A4)

This simplification in Eq.(16) yields

$$\frac{\partial P}{\partial t} = \left\{ -\nabla \cdot L^0 - \alpha \langle \nabla \cdot L^1 \rangle + \alpha^2 \int_0^\infty d\tau \left| \frac{dX^{-\tau}}{dX} \right| \right\} \left\langle \langle \nabla \cdot L^1(X,t) \nabla_{-\tau} \cdot L^1(x^{-\tau},t-\tau) \rangle \rangle \left| \frac{dX}{dX^{-\tau}} \right| \right\} P .$$

(A5)

Now to express the Jacobian, $X^{-\tau}$ and $\nabla_{-\tau}$ in terms of ∇ and X we solve Eq.(A2) for short time (this is consistent with the assumption that the fluctuations are rapid [24]).

We now write the solution of Eq.(A2) [using Eqs.(4-6)] as follows ;

$$\begin{pmatrix} X_{1-\tau} \\ \vdots \\ X_{N-\tau} \end{pmatrix} = -\tau \begin{pmatrix} X_{N+1} \\ \vdots \\ X_N \end{pmatrix} + \begin{pmatrix} X_1 \\ \vdots \\ X_N \end{pmatrix} = \begin{pmatrix} \bar{G}_1(X) \\ \vdots \\ \bar{G}_N(X) \end{pmatrix}$$

(A6)

and
\[
\begin{pmatrix}
X_{N+1}^{-\tau} \\
\vdots \\
X_{2N}^{-\tau}
\end{pmatrix} = e^{\gamma\tau}
\begin{pmatrix}
X_{N+1} \\
\vdots \\
X_{2N}
\end{pmatrix} - \tau
\begin{pmatrix}
G_{N+1}(X) \\
\vdots \\
G_{2N}(X)
\end{pmatrix} =
\begin{pmatrix}
\tilde{G}_{N+1}(X) \\
\vdots \\
\tilde{G}_{2N}(X)
\end{pmatrix}
\tag{A7}
\]

Here the terms of \(O(\tau^2)\) are neglected. Since the vector \(X^{-\tau}\) is expressible as a function of \(X\) we write

\[
X^{-\tau} = \tilde{G}(X),
\tag{A8}
\]

and the following simplification holds good;

\[
L^1(X^{-\tau}, t - \tau) \cdot \nabla_{-\tau} = L^1(\tilde{G}(X), t - \tau) \cdot \nabla_{-\tau}
= \sum_k L^1_k(\tilde{G}(X), t - \tau) \frac{\partial}{\partial X_{-\tau}^k}
= \sum_j \sum_k L^1_k(G(X), t - \tau) g_{jk} \frac{\partial}{\partial X_j}
; \quad j, k = 1 \cdots 2N
\tag{A9}
\]

where

\[
g_{jk} = \frac{\partial X_j}{\partial X_{-\tau}^k}
\tag{A10}
\]

In view of Eqs. (A6) and (A7) we note:

if \(j = k \) then \(g_{jk} = 1, \quad k = 1 \cdots N \)
\[
= e^{-\gamma\tau}, \quad k = N + 1 \cdots 2N
\]

if \(j \neq k \) then \(g_{jk} \propto -\tau e^{-\gamma\tau} \) or 0

Thus \(g_{jk} \) is a function of \(\tau \) only. Let

\[
R_j = \sum_k L^1_k(\tilde{G}(X), t - \tau) g_{jk}
\tag{A11}
\]

From Eqs. (6), (7) and (A8) we write

\[
L^1_i(X^{-\tau}, t - \tau) = L^1_i(\tilde{G}(X), t - \tau) = 0 \quad \text{for} \quad i = 1 \cdots N
\tag{A12}
\]
So the conditions (A11), (A12) and (A6) imply that

\[R_j(X, t - \tau) = R_j(X_1 \cdots X_N, t - \tau) \quad \text{for } j = 1 \cdots N \]
\[R_j(X, t - \tau) = R_j(X_1 \cdots X_{2N}, t - \tau) \quad \text{for } j = N + 1 \cdots 2N \] \hspace{1cm} (A13)

We next carry out the following simplifications of \(\alpha^2 \)-term in Eq.(A5). We make use of the relation (10) to obtain

\[
L^1(X, t) \cdot \nabla \sum_j R_j \frac{\partial}{\partial X_j} P(X, t) = \sum_i L^1_i(X, t) \sum_j R_j \frac{\partial}{\partial X_j} P(X, t)
\]
\[= \sum_{i,j} L^1_i(X, t) R_j \frac{\partial^2}{\partial X_i \partial X_j} P(X, t) + \sum_{j} R'_j \frac{\partial}{\partial X_j} P(X, t) \] \hspace{1cm} (A14)

where

\[R'_j = \sum_i L^1_i(X, t) \frac{\partial}{\partial X_i} R_j \] \hspace{1cm} (A15)

The conditions (A12) and (A13) imply that

\[R'_j = 0 \quad \text{for } j = 1 \cdots N \]
\[R'_j = R'_j(X_1 \cdots X_N, t - \tau) \neq 0; \quad \text{for } j = N + 1 \cdots 2N \] \hspace{1cm} (A16)

By (A16) one has

\[R' \cdot \nabla P(X, t) = \nabla . R' P(X, t) \] \hspace{1cm} (A17)

Making use of Eqs.(10), (A9), (A14) and (A17) in Eq.(A5) we obtain the Fokker-Planck equation (17).
REFERENCES

[1] G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford in *Stochastic Behaviour in Classical and Hamiltonian Systems*, Lecture notes in Physics, Vol. 83, edited by G. Casati and J. Ford (Springer, Berlin, 1979).

[2] A. J. Lichtenberg and M. Lieberman, *Regular and Stochastic Motion* (Springer-Verlag, New York, 1983).

[3] See, for example, J. K. Bhattacharjee, *Statistical Physics : Equilibrium and Non-Equilibrium Aspects* (Allied Publishers Limited, New Delhi, 1997).

[4] S. K. Ma, *Statistical Mechanics* (World Scientific, Singapore, 1982).

[5] P. Gaspard, *Chaos, Scattering and Statistical Mechanics* (Cambridge University Press, New York, 1998).

[6] T. Kai and Tomita, Prog. Theo. Phys. 64 1532 (1980).

[7] Y. Takahasi and Y. Oono, Prog. Theo. Phys. 71 851 (1984).

[8] M. Widom, D. Densimon, L. P. Kadanoff and S. J. Shenkar, J. Stat. Phys. 32 443 (1983).

[9] V. L. Berdichevsky and M. V. Alberti, Phys. Rev. A 44 858 (1991).

[10] P. Grassberger and I. Procaccia, Physica D 13 34 (1984).

[11] M. Bianucci, L. Bonci, G. Trefan, and B. J. West P. Grigolini, Phys. Lett. A. 174 337 (1993).

[12] M. Bianucci, R. Mannella, X. Fan, P. Grigolini and B. J. West, Phys. Rev. E 47 1510 (1993).

[13] W. H. Zurek and J. P. Paz, Phys. Rev. Lett. 72 2508 (1994).

[14] A. K. Pattanayak and P. Brumer, Phys. Rev. Lett. 79 4131 (1997).
[15] D. Cohen, Phys. Rev. Lett. 78 2878 (1997).

[16] A. K. Pattanayak, Phys. Rev. Lett. 83 4526 (1999).

[17] S. Chaudhuri, G. Gangopadhyay and D. S. Ray, Phys. Rev. E 47 311 (1993).

[18] S. Chaudhuri, G. Gangopadhyay and D. S. Ray, Phys. Rev. E 52 2262 (1995).

[19] S. Chaudhuri, G. Gangopadhyay and D. S. Ray, Phys. Rev. E 54 2359 (1996).

[20] B. C. Bag, S. Chaudhuri, J. Ray Chaudhuri and D. S. Ray, Physica D 125 47 (1999)

[21] B. C. Bag and D. S. Ray, J. Stat. Phys. 96 271 (1999).

[22] G. Benettin, L. Galgani and J. Strelcyn, Phys. Rev. A 14 2338 (1976).

[23] R. F. Fox and T. C. Elston, Phys. Rev. E 49 3683 (1994).

[24] M. Casartelli, E. Diana, L. Galgani and A. Scotti, Phys. Rev. A 13 1921 (1976).

[25] N. G. van Kampen, Phys. Rep. 24 171 (1976).

[26] B. C. Bag and D. S. Ray, Unpublished results.

[27] W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973).

[28] G. Gangopadhyay and D. S. Ray in Advances in Multiphoton Processes and Spectroscopy,
Vol. 8, edited by S. H. Lin, A. A. Villayes and F. Fujimura (World Scientific, Singapore, 1993).

[29] W. A. Lin and L. E. Ballentine, Phys. Rev. Lett. 65 2927 (1990).
FIGURES

FIG. 1. The first four dimensionless cumulants A_1, A_2, A_3 and A_4 are plotted against dimensionless time for the dynamical system described by Eq.(39).

FIG. 2. The diffusion coefficients calculated numerically (marked as dark squares) using Eqs. (38) and (39) after transformation (22) are compared with theoretically obtained values (marked as circles) using Eq.(51) for several values of the coupling-cum-external field strength ϵ (units are arbitrary).
B. C. Bag and D. S. Ray

Fig. 1
B. C. Bag and D. S. Ray

Fig. 2