Therapeutic opportunities of edible antiviral plants for COVID-19

Bhoomika Patel1 · Supriya Sharma2 · Nisha Nair2 · Jaseela Majeed2 · Ramesh K. Goyal2 · Mahaveer Dhobi2

Received: 2 September 2020 / Accepted: 25 January 2021 / Published online: 15 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
The pandemic of Serious Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) that produces corona virus disease (COVID-19) has challenged the entire mankind by rapidly spreading globally in 210 countries affecting over 25 million people and about 1 million deaths worldwide. It continues to spread, afflicting the health system globally. So far there is no remedy for the ailment and the available antiviral regimens have been unsatisfactory for the clinical outcomes and the mode of treatment has been mainly supportive for the prevention of COVID-19-induced morbidity and mortality. From the time immortal the traditional plant-based ethno-medicines have provided the leads for the treatment of infectious diseases. Phytopharmaceuticals have provided potential and less toxic antiviral drugs as compared to conventional modern therapeutics which are associated with severe toxicities. The ethnopharmacological knowledge about plants has provided food supplements and nutraceuticals as a promise for prevention and treatment of the current pandemic. In this review article, we have attempted to comprehend the information about the edible medicinal plant materials with potential antiviral activity specifically against RNA virus which additionally possess property to improve immunity along with external and internal respiration and exhibit anti-inflammatory properties for the prevention and treatment of the disease. This will open an arena for the development of novel nutraceutical herbal formulations as an alternative therapy that can be used for the prevention and treatment of COVID-19.

Keywords Antiviral · Nutraceutical · Edible plants · Coronavirus · COVID-19

Introduction
In Wuhan, China in December 2019, a newly emergent novel coronavirus SARS-CoV-2 was reported to cause severe acute respiratory tract infections, coronavirus disease 2019 (COVID-19) [1]. After the first case of corona reported from Wuhan, there has been an unprecedented outbreak of COVID-19. As of the last week of August 2020, over 25 million cases of this disease have been reported from 210 countries with 3.32% deaths [2, 3]. The United Nations called the pandemics of COVID-19 as the worst global humanitarian crisis since World War II. Countries all over the world are taking aggressive steps and adopting all possible preventive measures to combat the spread of this disease. The disease is associated with high mortality risk (2–8% in different countries), a very high transmission rate combined with the lack of WHO or FDA approved specific prophylactic vaccines or therapeutic protocols for the effective prevention, treatment or management of the disease. A typical viral disease mechanism involves the entry of virus into the host via specific receptor, followed by uncoating, transcription and genome synthesis finally forming viral assembly and releasing of multiple copies in the host. The antiviral drugs are designed to act on such varied targets (Fig. 1).

The current treatment appears to be mainly supportive in nature [4, 5]. From time immemorial, herbal medicine has provided remedies for majority of the diseases, for e.g., digitalis and reserpine for cardiac patients, artemisinin and quinine for malaria, vincristine and vinblastine for cancer. Some potential drug candidates including blockbuster antivirals like Remdesivir, Hydroxychloroquine, Lopinavir, Ritonavir, APN01 or Favipiravir are being tested for clinical trials across the globe. Still no therapy has been found to be effective or devoid of deleterious effects against COVID-19 as of now [6–8]. Keeping in view the shortcomings...
associated with available antiviral drugs therapies, i.e. viral resistance coupled with the problem of viral latency and conflicting efficacy in recurrent infection in immunocompromised patients, there is an increasing need for search of new compounds and therapy with antiviral activity that are highly efficacious and cost-effective for the management and control of viral infections. Moreover, the viral infections caused by Coronaviruses, Human immunodeficiency virus, Ebola virus, Nipah virus, Influenza virus, Enterovirus, Swine flu, Bird flu, Zika Virus, Hepatitis B and C, etc. have risen significantly and natural products play a vital role in the cure for some with no or less harmful effects [9, 10]. Novel bioactive phytomolecules bearing credible therapeutic potential against such viral diseases is the prime focus of the current medical research in order to gain an upper edge over such widespread infections and prevent the future ones [11, 12]. Identification of the antiviral mechanisms from these natural agents has shed light for further research targeting virus–host–specific interactions.

Indian subcontinent has been recognized as a treasure home for various plant species due to its varied agro-climatic zones and suitable topographical conditions and is placed among the list of top 12 mega diversity countries of the world. The Indian subcontinent is endowed with rich and diverse flora about which the ethnobotanical literature describes use as plant extracts, infusions and powders for diseases of infectious nature [13]. These medicinal herbs provide a wide approach in managing several diseases, including viral respiratory infections by modulating immune system and inflammatory responses. AYUSH system of medicine has provided a basic approach on prevention of infection through dietary modification, lifestyle management,

Fig. 1 Typical viral disease mechanism and various targets for antiviral drugs
remedies to boost immune system and preventive interventions based on the symptom [14]. Around 65–80% of the world population residing in developing countries utilizes traditional herbs in their primary health treatment. Additionally, the interest in the study of herbs have aroused due to their phytoactive/phytotherapeutic agents which can be utilized in the form of nutraceuticals, which possess drug-like actions, and in some cases can be traced directly through the existing links between a local and biomedical use [15]. The lack of preventive and curative treatment of COVID-19 till date compels the researchers to look onto therapeutic alternatives that can be added in our daily diets in order to both prevent and cure such life-threatening infections and provide long-term protection. For centuries, numerous plants have been used in daily diets which serve as folk remedies by supporting the body system in one way or the other [16].

This review aims to bring focus on the detailed information about herbal flora with antiviral activities that can be explored for development of novel nutraceutical herbal formulations. Advancement in separation technologies, adoption of modern drug discovery and the development of vector-based strategies for antiviral screening purposes offers a promise for edible medicinal plants usage in daily diet, and may serve as an alternative therapy for treatment of this pandemic and prevention of another one. The article also aimed to merge the ethnopharmacological knowledge with the modern technologies to devise drug targets for the SARS-COV-2 virus and identification of potential candidates from natural sources which may offer some preventive or even therapeutic value.

Pathogenesis of COVID-19 and strategy for using edible plants

For a better insight on how nutraceuticals or phytomolecules can effectively work against novel coronaviruses, it is imperative to understand the structural characteristics and culpable targets and receptors associated with it. Moreover, understanding the mechanism of action of conventional antivirals and liable targets for drug designing may be useful for development of therapy regimen for COVID-19 from natural sources. SARS-CoV-2 like other HCoVs is positive-sense single-stranded RNA viruses with two groups of protein forming its characteristic markers: structural protein, such as Spike (S), Nucleocapsid (N), Matrix (M), Envelope (E); and non-structural proteins such as nsp12-RNA-dependent RNA polymerase (RdRp), Nsp3- Papain-like proteinases, Nsp5-3C-like main protease and nsp13 SARS-CoV helicase [17, 18]. Primarily, nsp13 helicase, 3CL protease, nsp12-RNA-dependent RNA polymerase (RdRp) become primary target for drug development. Apart from these proteins, the viral spike glycoprotein (S) initial attachment and internalization within host cells ACE-2 receptor can also be targeted to prevent viral entry into newer host cells [19]. SARS-CoV-2 recognizes human angiotensin-converting-enzyme-2 (ACE-2), thereby proving its essentiality for host cell entry by invasion of alveolar epithelial cells, subsequent viral replication and primary host lung cells infection as ACE-2 is highly expressed in the heart, lungs, intestine, kidney and blood vessels [20]. The expression of ACE-2 is substantially increased in patients with diabetes and hypertension and the connecting link to this associated comorbidity has been the angiotensin-converting-enzyme-2 (ACE-2) receptor as it is the site of virus multiplication, and thus a strategy has been devised to develop antiviral newer drugs considering the ACE-2 as an attractive target [21]. Various plants produce phytomolecules that can be utilized in targeting these viral targets and so has been done previously in case of other viral diseases like SARS, HIV, HCV, etc. [22–24].

At the molecular level, the virus SARS-CoV-2 binds to the angiotensin-converting-enzyme-2 (ACE-2) present in the lungs of the human host. Binding of the virus to the host cells through its trimeric spike glycoprotein makes this protein a key target for potential therapies and diagnostics. It was reported that in SARS-CoV-2, the S2 subunit in each spike monomer contains a fusion peptide, a transmembrane domain, and cytoplasmic domain which is highly conserved and could be a possible target for antiviral (anti-S2) compounds [25]. There occurs multiplication of the viruses that induces cellular responses. There occurs infiltration of huge number of inflammatory cells which comprise innate immune cells and adaptive immune cells [26, 27]. Neutrophils are majorly the innate immune cells which produce injury to lungs [28]. On the other hand, the adaptive immune cells are majorly the T cells viz. cytotoxic CD8+ T cells which not just kill virus but again contribute injury to lungs [29]. This accelerates the progression of systemic inflammatory response, leading to extensive increase in various cytokines like TNFα, IL1, IL6, IL10, etc. This is termed as the cytokine surge. Due to increase in various cytokines, there occurs inflammation and apoptosis of Type-1 and Type-2 cells in the alveoli. This interrupts the functions of oxygen transport resulting in cell death in alveoli of the lungs and causing Acute Respiratory Distress or syndrome (ARDS) [30]. Figure 2 depicts the pathogenesis of disease leading to cytokine storm and multiple organ dysfunction and ultimately death.

Among the proposed mechanisms of pulmonary injury caused by SARS-CoV-2, there is a “cytokine storm” triggered by an imbalanced response by type-1 and type-2 T helper (Th) cells leading to an uncontrolled and generalized inflammatory response [31]. Increased pro-inflammatory cytokines (Interferon y, interleukin (IL-) 1β, IL-6, IL-12) and chemokines (CXCL10 and CCL2) circulating in the body are associated with pulmonary inflammation.
Fig. 2 Pathogenesis of COVID-19
and ARDS pathogenesis due to inflammatory injury to the alveolar-capillary membrane, resulting in increased lung permeability and the exudation of protein-rich pulmonary edema fluid into the airspaces culminating into respiratory insufficiency and the main causes of complications leading to multi-organ failure [32]. Antiviral plants with added anti-inflammatory properties protecting the lung against infections can be investigated, for that matter, to have a synergetic therapy.

Weak immune mechanisms coupled with cytokine surge is one of the major causes that finally leads to decreased cellular oxygenation at the level of alveoli, has been reported to be the main cause of death in COVID-19. Apart from this respiratory damage there occurs thrombotic events involving open reading frames (ORFs) especially the ORF8 proteins which upon binding with SARS-COV2 leading to dissociation of iron from the 1-beta chain of hemoglobin getting attached to the surface glycoprotein porphyrin and thereby resulting in failure of internal respiration [33].

SARS-CoV2 has a longer incubation period of 2–14 days on an average inside the human body, probably due to their immune evasion properties, efficiently escaping host immune detection at the early stage of infection [34]. Herbal preparations that possess immunomodulatory activity may serve as prophylactic treatment, if added in daily diet, for prevention of infection acquisition during this spell of critical community level spread and help contain the disease in community as well as help faster healing post infection. Considering the above strategies for treatment, management and prevention of COVID-19, a search for potential plants with above properties can help to devise natural plant-derived antiviral agents against the pandemic disease.

Edible plants exhibiting antiviral property against RNA viruses: initial signals for COVID-19

The secondary metabolites obtained from herbal drugs can also be utilized as nutraceuticals and can become a lead compound in the treatment therapy [35]. Studies have also shown promising results of nutraceuticals and phyto molecules in various pathological complications such as diabetes, atherosclerosis, cardiovascular diseases (CVDs), cancer and neurological disorders [14]. Since ages, herbs of Indian origin have been implemented in treatment and as preventive strategies for several diseases that include respiratory viral infections as the benefit of usage of these herbs against viral respiratory infections lies in immune stimulation and inflammation modulating effects. The AYUSH systems of medicine also promotes prevention of COVID-19 through lifestyle modification as well as dietary management and prophylactic interventions for improving the immunity [31]. All these have led to a revival of interest in herbal medicines, novel nutraceuticals and herbal formulations with antiviral potency based on any of the potential plants. Looking into the results of previously deciphered phytochemical-directed researches, a wide variety of phytomolecules present in Indian forest biodiversity can point towards their capability to be manipulated into devising antiviral drugs for SARS-CoV-2. Table 1 provides detailed information on edible plants used as food or nutraceutical showing antiviral activity against RNA viruses, their potential to be explored against COVID-19 on the basis of antiviral activity against various RNA viruses, their active phytoconstituents bearing potential anti-coronaviral activity and mechanism of action.

Plants preventing entry of virus in the host

It has been reported that flavonoids can bind to the functional domains of the SARS-CoV-2S protein, a viral surface glycoprotein required for initial attachment and internalization within host cells. Emodin from plants of family polygonaceae can block the interaction with the SARS-cov2 coronavirus spike protein by inhibiting the 3a ion channel of SARS-CoV and HCoV-OC43 [36]. Lectins, the natural proteins, also target the sugar moieties of a SARS-CoV spike protein. In time-of-addition assay conducted to understand mechanism of antiviral action, glucose-, galactose-, N-acetyl glucosamine- and N-acetyl galactosamine binding lectins and most importantly mannose binding lectin indicated their interference with virus attachment to spike protein making them early entry inhibitors. Lectins also carry prophylactic potentials as it agglutinates viral particles by binding to it, thereby not allowing it to bind to human cell receptors and complete its pathogenic cycle [37]. As SARS-CoV-2 also uses host receptor ACE-2 for the cellular entrance similar to SARS-CoV [38], medicinal herbs with the capacity to target ACE-2 therefore holds a promising effect in the prevention and infection of SARS-CoV-2. Various edible medicinal plants, including *Cynara scolymus* [39], *Cassia occidentalis* [40] and *Punica granatum* [41], have shown enzyme inhibitory effects, and the same can be explored for inhibition of ACE2 also.

Plants inhibiting viral replication

Studies on edible plants, such as *Glycyrrhiza glabra* [42], *Allium sativum* [43], showed the inhibition of viral replication of SARS-CoV that can be further utilized as leads against SARS-CoV-2, due to similar homology between SARS-CoV and SARS-CoV-2 [44]. Edible antiviral plants like *Aloe vera* [45], *Gingko* [46], *Olea europaea* [47], *Cicer arietinum* [48], *Nigella sativa* [49], *Agrimonia pilosa* [50], *Commelina communis* [51], *Mangifera indica* [52], *Syzygium cumini* [53] that showed effects against influenza virus
S. No.	Plant species /family	Common name	Major chemical constituents	Used as	Virus type	Extract type/active compound	Mechanism of action
1	*Abutilon indicum* L. (Sweet)/Malvaceae	Indian lantern flower, Indian mallow, Kanghi	β-Sitosterol, asparagine [86]	Food [87]	Anti-mouse coronaviral activity (a surrogate of SARS-CoV) [66]	Aerial parts methanol extract [66]	Mechanism not clear
2	*Acalypha indica* L./Euphorbiaceae	Indian-nettle, Copper-leaf, Kuppi, Kuppikhokhali	Acalyphin, kaempferol [88]	Food [89]	Vesicular stomatitis virus [90]	Ethanolic leaf extract [90]	Inhibitory activity by protein interaction [90]
3	*Aegle marmelos* (L.) Correa/Rutaceae	Bael	Marmin, marmesin [62]	Food [91]	Human coxsackieviruses B1-B6 infection [62]	Methanolic and aqueous methanolic (1:1) extract of Leaves, stem, stem bark, root, root bark/Marmelide [62]	Inhibits viral replication [62]
4	*Agrimonia pilosa* Ledeb./Rosaceae	Hairy agrimony	Catechin, hyperoside [50]	Food [92]	Influenza virus [50]	Whole plant ethanol extract/Flavonoids (catechin, hyperoside, quercetin, and rutin) [50]	Reacts with viral membrane, inhibits viral replication and viral mRNA synthesis [50]
5	*Allium sativum* L./Amaryllidaceae	Garlic	Allicin, Alliin [43]	Nutraceutical [93], Spice [94]	SARS-CoV [37], Parainfluenza-3, Human rhinovirus, Vesicular stomatitis virus [43]	Lectin (ASA, ASA1) [37], fresh garlic clove extract/Ajoene, allicin, allyl methyl thiosulfinate, methyl allyl thiosulfinate [43]	Interferes with the glycans on the spike protein during virus entry and virus release [37], Inhibits viral adsorption or penetration [43]
6	*Aloe vera* (L.) Burm. f./Asphodelaceae	Aloe vera, Gwarpatha, Ghritkumari	Polysaccharides, aloin [95]	Food [95]	Influenza A virus [96]	Aqueous leaf extract/poly saccharide [96]	Inhibits viral attachment to host cell [96]
7	*Areca nut* L./Areaceae	Supari, Betelnut	Arecoline, guvacine [97]	Mouth fresher [98]	Human immunodeficiency virus type 1 [2]	Aqueous and methanolic seed extract/arecatanins [2]	Inhibition of HIV type-1 protease enzyme [2]
8	*Artemisia annua* L./Asteraceae	Sweet sagwort	Artemisinin [99]	Spice [100]	SARS-CoV [67]	Whole plant ethanol extract [66]	Mechanism not clear
9	*Azadirachta indica* A. Juss./Meliaceae	Neem, Indian-lilac	Azadirachtin [101]	Nutraceutical [101]	Group B Coxsackieviruses [72]	Methanolic leaf extract/Flavonoids, triterpenes [72]	Inhibits viral replication [72]
10	*Camellia sinensis* (L.) Kuntze/Theaceae	Black tea, Common tea, Green tea	Epigallocatechin gallate [102]	Beverage [103]	Bovine coronavirus [75], Influenza virus [104], HIV-1 [102]	Epigallocatechin gallate [75], Aqueous leaf extract/Catechins [104], Hot aqueous leaf extract/Epigallocatechin gallate [102]	Inhibitory effect by interacting with spike glycoprotein [75], Inhibits various virus lifecycle steps [104, 102]
S. No.	Plant species /family	Common name	Major chemical constituents	Used as	Virus type	Extract type/active compound	Mechanism of action
--------	-----------------------	-------------	----------------------------	---------	------------	-----------------------------	-------------------
11	*Cassia occidentalis* L./Fabaceae	Coffee senna	Rhein, emodin [105]	Food [106]	Human immunodeficiency virus [40]	Methanolic leaf extract [40]	Inhibiting HIV reverse transcriptase activity [40]
12	*Cicer arietinum* L./Fabaceae	Chick Pea, Bengal gram	Dietary minerals [107]	Food [107]	Parainfluenza-3 virus [48]	Methanolic extract of seed, fruit skin and aerial part/Phenolic compounds [48]	Inhibits parainfluenza-3 virus [48]
13	*Commelina communis* L./Commelinaceae	Asiatic dayflower	Homonojirimycin [108]	Food [109]	Influenza virus [108]	Ethanolic leaf and stem extract/Homonojirimycin [108]	Prevents inflammatory responses and strengthen host resistance against viral infection by activating secretion of IFN- and IL-10 [108]
14	*Curcuma longa* L./Zingiberaceae	Haldi, turmeric	Curcumin [110]	Spice [111]	Respiratory syncytial virus [110]	Curcumin [110]	Inhibit viral replication [110]
15	*Cynara Scolymus* L./Asteraceae	Globe artichoke, Sharifa	Cynaropicrin [39]	Food, nutraceutical [112]	Hepatitis C virus [39]	Cynaropicrin [39]	Inhibits viral cell-entry [39]
16	*Embelia ribes* Burm. f./Primulaceae	Vidanga	Embelin [59]	Nutraceutical [113]	Influenza A virus (H1N1) [59]	Ethyl acetate fruit extract/Embelin [59]	Inhibits viral replication [59]
17	*Eugenia jambolana* Lam./Myrtaceae	Jamun, Jambul	Delphinidin, petunidin [114]	Food [114]	Influenza virus (H5N1) [115]	Methanolic, hydromethanolic and aqueous leaf extract; aqueous bark extract [115]	Interferes with viral envelop that are necessary for adsorption or entry into host cells [115]
18	*Gingko biloba* L./Ginkgoaceae	Maidenhair-tree, Ginkgo	Ginkgetin [46]	Nutraceutical [116]	Influenza virus [46]	Ginkgetin [46]	Inhibition of viral sialidase activity [46]
19	*Glycyrrhiza glabra* L./Fabaceae	Liquorice, Mulethi	Glycyrrhizin [42]	Nutraceutical [117], sweetener[118]	SARS-CoV [42]	Glycyrrhizin [42]	Inhibits viral adsorption, penetration and replication [42]
20	*Gynnema sylvestre* (Retz.) Schult./Apocynaceae	Gymnema, miracle-fruit, Gudmar	Gymnemic acid [119]	Nutraceutical [119]	Anti-mouse coronaviral activity (a surrogate of SARS-CoV) [66]	Aerial parts methanol extract [66]	Mechanism not clear
21	*Hibiscus sabdariffa* L./Malvaceae	Roselle, Indian-sorrel, Lal ambari	Hibiscus acid, citric acid [120]	Food [120]	H5N1 highly pathogenic avian influenza virus [121]	Aqueous tea extract [121]	Inhibited viral replication and viral antigens and genes expression [121]
22	*Leucas aspera* (Wild.) Link/Lamiaceae	Tumba, Chota halkusa	Asperphenamate, sitosterol [122]	Food [122]	Anti-mouse coronaviral activity (a surrogate of SARS-CoV) [66]	Aerial parts methanol extract [66]	Mechanism not clear
S. No.	Plant species /family	Common name	Major chemical constituents	Used as	Virus type	Extract type/active compound	Mechanism of action
-------	----------------------	-------------	-----------------------------	--------	-----------	-----------------------------	---------------------
23	*Mangifera indica* L./Anacardiaceae	Mango	Mangiferin [123]	Food [124]	H2N2 influenza A virus, coxsackie B3 virus [52]	Hydroalcoholic stem bark extract/Penta-O-galloyl-glucose, tetra-O-galloyl-glucose [52]	Inhibits influenza neuraminidase and coxsackie virus 3C protease [52]
24	*Momordica charantia* L./Cucurbitaceae	Karela, Bitter gourd, Bitter melon	Momordicine, Charantin [125]	Food [125]	Human immunodeficiency virus [126]	MAP30 protein [126]	Inhibit various stages of viral life cycle [126]
25	*Moringa oleifera* Lam./Moringaceae	Drumstick tree	Quercetin, Linolenic acid [76]	Food [127]	Human immunodeficiency virus type-1 [128]	Methanolic, ethyl ether and aqueous extract of leaves/Saponins, tannins, flavonoids [128]	Inhibits viral replication [128]
26	*Myrica esculenta* Buch.-Ham. Ex D. Don./Myricaceae	Kaphal, Bayberry	Myricetin, gallic acid [54] [129]	Food [130]	SARS-CoV [54]	Myricetin [54]	Inhibits helicase protein [54]
27	*Nigella sativa* L./Ranunculaceae	Black Cumin, Kalonji	Thymoquinone, thymol [49] [131]	Spice [132]	H9N2 avian influenza virus [49]	Dried seeds/Thymoquinone [49]	Inhibit viral replication [49]
28	*Ocimum sanctum* L./Lamiaceae	Basil, Tulsi	Eugenol, linolenic acid [133]	Herbal tea [133]	Human immunodeficiency virus [57]	Aerial parts methanolic extract/Flavonoids [57]	Inhibit protease enzyme [57]
29	*Olea europaea* L./Oleaceae	Olive	Oleuropein [47]	Edible oil [134]	Viral hemorrhagic septicemia virus [47]	Ethanolic leaf extract/ Oleuropein [47]	Direct inactivation, interacts with viral envelope [47]
30	*Phaseolus vulgaris* L./Fabaceae	Bean, Rajma	Phaseolin [135]	Food [135]	Human immunodeficiency virus type-1 [58]	Crude bean extract/ Homodimeric lectin [58]	Inhibits HIV reverse transcriptase and alphasglucosidase [58]
31	*Phyllanthus emblica* L./Phyllanthaceae	Amla, Indian Gooseberry	Phyllantidine, phyllantine [136]	Food [137]	Human immunodeficiency virus [138]	Methanolic fruit extract [138]	Inhibits HIV reverse transcriptase [138]
32	*Punica granatum* L./Lythraceae	Pomegranate	Polyphenols, ursolic acid [139] [140]	Food [139]	Influenza A virus [141]	Ethanolic peel extract [141]	Inhibits HIV reverse replication [141]
33	*Solanum nigrum* L./Solanaceae	Black Nightshade, Makoi	Solanine, solamargine [142]	Food [142]	Hepatitis C virus [65]	Chloroform and methanol seed extract [65]	Inhibits NS3 protease [65]
34	*Syzygium cumini* (L.) Skeels/Myrtaceae	Jaman, Jambolan	Ellagic acid, gallic acid [143]	Food [143]	Avian influenza virus (H5N1) [53]	Aqueous leaf extract, aqueous bark extract [53]	Interfere with viral envelop or mask viral structures which are necessary for adsorption or entry into host cells [53]
can be studied rigorously to investigate any relatable target between SARS-CoV-2 and influenza virus. Myricetin and scutellarein can act as novel chemical inhibitors of the SARS coronavirus helicase, nsP13 [54]. Flavonoids isolated from medicinal plants have been reported to show antiviral activity. Quercetin, epigallocatechin gallate and gallocatechin gallate showed inhibitory activity against 3CLpro of SARS-CoV [55]. Plants showing inhibitory effects on HIV proteases, such as Eugenia jambolana, Areca nut [56], can be investigated for their effects on SARS-CoV-2. Similarly, plants like Ocimum sanctum [57], Phaseolus vulgaris [58], Phyllanthus emblica [59] having HIV reverse transcriptase activity can also be studied against SARS-CoV-2. Plants like Solanum nigrum [60] have been known to target the reverse transcriptase activity of HIV and can be studied for activity against SARS-CoV-2 as well; betulinic acid, savinin and some plant-based phenolic compounds are competitive inhibitors of SARS-CoV 3CL protease [61].

Azadirachta indica inhibits viral replication in Group B Coxsackieviruses virus and can be investigated for their possible effects against SARS-CoV-2 [62]. Another herb Aegle marmelos inhibited viral replication in human coxsackieviruses B1-B6 infection and can be used in the study against SARS-CoV-2 [62]. Another potential target that can be utilized for the inhibition of CoV replication is proteases [63]. Trachyspermum ammi [64] and Solanum nigrum [65] inhibited viral protease enzymes in hepatitis C virus (HCV) infection. Acalypha indica showed selective anti-VSV activity by protein interaction [64], and Ocimum sanctum also inhibited HIV protease enzyme [57]; therefore these plants can be studied against SARS-CoV-2 as they may target protease enzymes.

Plants inhibiting viral envelop formation

Sambucus ebulus has been known to inhibit the activity of enveloped viruses and can also be used to target this virus. Though the detailed mechanism remains unclear, *Sambucus ebulus* is indicated to inhibit the entry of enveloped viruses owing to the presence of lectins that block viral entry. Phenolic compounds like quertin 3–0-glucoside and isorhamnetin present in the plant have previously demonstrated the prophylactic potential against Ebola virus. The flavonoids, diosgenin and yomogenin of *Sambucus* species also showed viral entry inhibition against Hepatitis C viruses [61].

Antiviral plants with unknown mechanism

A study on Abutilon indicum, Gymnema sylvestre, Leucas aspera showed anti-mouse coronaviral activity which is a surrogate of human SARS virus but its mechanism of action is still unexplored and requires more research in this area [66]. *Leucas aspera* has been shown to have anti-MCV and
anti-HSV activities, *Abutilon indicum* extract was found active against influenza virus and Sindbis virus which is a surrogate to Hepatitis B virus. Gymnemic acid from *Gymnema sylvestre* has virucidal activity against Asian influenza virus, whereas *Artemisia annua* showed inhibitory effects against SARS-CoV and likely against SARS-CoV-2 but their mechanism of action is still unknown [67].

Plants used in respiratory distress

As SARS-CoV-2 causes respiratory distress, plants used in human respiratory syncytial virus (HRSV) infection, such as *Zingiber officinale* [68], *Olea europaea* [47], *Terminalia chebula* [69], might act as a preventive treatment in COVID-19. Aqueous rhizome extract of *Zingiber officinale* contains alllicin which acts against HRSV by reducing the plaque formation in respiratory mucosa induced by stimulation of the respiratory mucosal cells to secrete IFN-β. *Olea europaea* act via multiple antiviral mechanisms: interfering with critical amino acid production essential for viruses, preventing virus assembly at the cell membrane, penetrating infected cells and stopping the viral replication or else primarily by neutralizing the production of reverse transcriptase and protease [47, 68]. On the other hand, Chebulagic acid and chebulinic acid from *Terminalia chebula* have shown efficacy to inhibit virus attachment and penetration comparable to Acyclovir as well as implement neuraminidase-mediated viral release similar to the antiviral drug oseltamivir [69]. Curcumin (diferuloylmethane), which is found in the spice *Curcuma longa*, exhibits anti-inflammatory as well as immunomodulatory activity by inhibiting PHA-induced T-cell proliferation, interleukin-2 production, NO generation, and lipopolysaccharide-induced nuclear factor-kappa B (NF-kappa B), augments NK cell cytotoxicity as well as inhibits cell proliferation and cytokine production by inhibiting NF-kappa B target genes involved in the induction of these immune parameters [70].

Edible antiviral plants with additional activity against Covid-19

Medicinal plants such as *Hibiscus sabdariffa* [71], *Ocimum sanctum* [57], *Azadirachta indica* [72], contain flavonoids which can be exploited for the development of the active compounds against COVID-19. Although numerous plants have been studied, a lot of scientific data are required to confirm their effects and hence further research needs to be maneuvered towards this direction. It should be noted that increased inflammatory responses occurs in the patients with COVID-19 which increases the death rate of the patients [73]; therefore anti-inflammatory herbal drugs like *Withania somnifera* [74], *Zingiber officinale* [68], *Camellia sinensis* [75], *Nigella sativa* [49], *Moringa oleifera* [76], *Agrimonia Pilosa* [50], *Momordica charantia* [77] can be investigated in supportive treatment against COVID-19 and can be incorporated in daily routine diet of patients, which could produce a reduction in the severity and mortality rate of the patients suffering from the disease. A study on herbal formulas also suggested that immunomodulators might show preventive effects against viral infections and likely COVID-19 [78, 79]. Edible herbs and nutraceuticals such as *Allium sativum*, *Zingiber officinale*, *Glycyrrhiza glabra*, *Olea europaea*, *Cicer arietinum*, *Camellia sinensis* can boost immune system, preventing the body from invading viruses [37]. As mentioned earlier, ACE2 is the entry point for the SARS-CoV-2. Considering this, search for the antiviral plants with added ACE2 inhibition property, anti-inflammatory and immunomodulatory activity should be the future line for research. Table 2 provides the details of the antiviral plants that show potential ACE inhibition, anti-inflammatory and/or immunomodulatory activity.

Clinical evidence of SARS treatment using herbals: paving the way for optimistic future

An epidemic of severe acute respiratory syndrome (SARS) that began in 2002 saw extensive usage and treatment with phytomolecules as auxiliary therapy to conventional medicine. Several anti-SARS formulae were recommended by the Ministry of Health of China to be used along conventional antiviral drugs. The very fact is that SARS-CoV-2 virus shares a striking similarity of 79.5% genetic homology to the SARS-CoV and MERS coronavirus as both are descendants of bat coronaviruses within the beta coronavirus genus [38]; this high genetic similarities between SARS-CoV-2 and SARS or MERS point towards the notion that inspiration of traditional medications as well as herbal remedies could be a potential approach for treating SARSCoV-2 infection. This argument was also supported by a paper by Chen et al. (2007) studied and reported that treatment with herbal drugs which consisted of more than different herbal medicines including *Anemarrhena asphodeloides* Bunge, *Atractylodes macrocephala* Koidz., *Aspidium, Artemisia annua* L., *Bupleurum chinense* DC., *Paonia mascula* (L.) Mill., *Coptis chinensis* Franch., *Coptis deltoidea*, *Coptis teeta* Wall., *Curcuma, Salvia miltiorrhiza* Bunge, *Fritillaria* was more effective in clearing up the lung infiltrate as well as shortening the time to abatement of a fever in SARS-infected patients than conventional treatment alone. The study also suggests that adjunctive use of medicinal
plants and phytomolecules could significantly bring the average daily use of corticosteroids for reducing inflammatory responses as well as in tackling the issue of low counts of CD4+ and CD8+. The patients who had received integrative medicine in the study showed to recover the lymphocyte cells with marked higher CD4+ counts at the end of study [80].

In another study by Hsu et al., four of the severely confirmed SARS patients received routine supplementary treatment with combination of herbs: Bupleurum chinense, Gardenia jasminoides, Siler divaricatum, Scutellaria baicalensis, Notopterygium incisum, Schizonepeta tenifolia, Poria cocos, Paonia lactiflora Pallas, Paonia veitchii Lynch, Pinellia ternata, Platycodon grandiflorum and Ophiopogon japonicus showed less morbidity than the patient on western medicine and placebo [81]. While in a controlled clinical study by Hsu et al. (2006), the adjuvant treatment with plant-derived pharmaceuticals resulted in marked improvement of symptoms and shortened the disease course [82], in another study by Cinatl et al. (2003)

S. No.	Plant species/family	Anti-inflammatory	Immunomodulatory	ACE inhibitor
1.	Abutilon indicum L. (Sweet)	Yes [153]	Yes [154]	No
2.	Acalypha indica L	Yes [88]	Yes [155]	No
3.	Aegle marmelos (L.) Correa	Yes [156]	Yes [157]	No
4.	Agrimonia pilosa Ledeb	Yes [158]	No	No
5.	Allium sativum L	Yes [159]	Yes [160]	Yes [161]
6.	Aloe vera (L.) Burm. f	Yes [162]	Yes [163]	No
7.	Areca nut L	Yes [97]	No	Yes [56]
8.	Artemisia annua L	Yes [99]	Yes [164]	No
9.	Azadirachta indica A. Juss	Yes [165]	Yes [166]	Yes [167]
10.	Camellia sinensis (L.) Kuntze	Yes [168]	Yes [169]	Yes [170]
11.	Cassia occidentalis L	Yes [171]	Yes [160]	Yes [41]
12.	Cicer arietinum L	Yes [172]	Yes [173]	Yes [174]
13.	Commelina communis L	Yes [175]	No	No
14.	Curcuma longa L	Yes [176]	Yes [177]	Yes [178]
15.	Cynara scolymus L	Yes [179]	No	Yes [41]
16.	Embelia ribes Burm. f	Yes [180]	Yes [181]	Yes [41]
17.	Eugenia jambolana Lam	Yes [182]	Yes [183]	Yes [184]
18.	Ginkgo biloba L	Yes [185]	Yes [186]	Yes [187]
19.	Glycyrrhiza glabra L	Yes [188]	Yes [189]	No
20.	Gymnema sylvestre (Retz.) Schult	Yes [190]	Yes [191]	No
21.	Hibiscus sabdariffa L	Yes [192]	Yes [193]	Yes [194]
22.	Leonurus asperum (Wild.) Link	Yes [195]	Yes [196]	No
23.	Mangifera indica L	Yes [197]	Yes [198]	Yes [123]
24.	Momordica charantia L	Yes [77]	Yes [199]	Yes [200]
25.	Moringa oleifera Lam	Yes [76]	Yes [201]	Yes [202]
26.	Myrica esculenta Buch.-Ham. Ex D. Don	Yes [203]	No	Yes [204]
27.	Nigella sativa L	Yes [205]	Yes [206]	Yes [207]
28.	Ocimum sanctum L	Yes [208]	Yes [209]	Yes [210]
29.	Olea europaea L	Yes [211]	Yes [212]	Yes [213]
30.	Phaseolus vulgaris L	Yes [214]	Yes [78]	Yes [215]
31.	Phyllanthus emblica L	Yes [136]	Yes [216]	No
32.	Panax ginseng L	Yes [217]	Yes [218]	Yes [41]
33.	Silybum marianum L	Yes [219]	Yes [220]	No
34.	Syzygium cumini (L.) Skeels	Yes [221]	Yes [183]	Yes [184]
35.	Terminalia chebula Retz	Yes [144]	Yes [222]	Yes [223]
36.	Trachyspermum ammi (L.) Sprague ex Turrill	Yes [146]	Yes [224]	No
37.	Withania somnifera (L.) Dunal	Yes [225]	Yes [226]	Yes [227]
38.	Zingiber officinal Roscoe	Yes [228]	Yes [229]	Yes [230]
Glycyrrhizin, an active constituent in liquorice root, showed potential inhibition of replication of clinical isolates of SARS virus [42]. Chloroquine phosphate extracted from the bark of cinchona trees and hydroxychloroquine are being currently used for treating COVID-19 patients [83]. Qingfei Paidu Decoction (QPD), a Chinese decoction of medicinal plants comprising *phedra sinica*, *Glycyrrhiza glabra*, *Prunus armeniaca* Linne var. *ansu* Maximowicz, *Prunus mandshurica* Koehne var. *glabra* Nakai, *Cinnamomum cassia* (L.) Presl, *Alisma orientale* (Sam.) Juzep, *Polyporus*, *Aster Koehne* var. *glabra* showed improved and 212 of the cases had stable symptoms of 51 cases disappeared, symptoms of 268 cases were cured as well as discharged, whereas clinical symptoms of 51 cases disappeared, symptoms of 268 cases showed improved and 212 of the cases had stable symptoms without aggravation [85].

Summary and conclusion

Despite the fact that a number of drug candidates are being tested for clinical trials for COVID-19 across the globe, no therapy has yet been found to be effective. Thus, there is need to look into any alternative solutions. Natural compounds have been used since decades in controlling infectious diseases. Based on previous experiences of corona virus outbreaks (SARS-CoV in 2002 and MERS CoV in 2012), seasonal epidemics caused by various viruses showing effectiveness of natural products in the treatment of HIV, HCV and Influenza, herbal drugs and their phytoconstituents could be developed as a potential drug candidate against SARS-CoV-2. To be an effective therapy in treatment of COVID-19, the phytoconstituents need to be studied for their therapeutic value. The nutraceuticals thus developed may serve as adjuvant and complementary treatment to help the population in coping with such maliciously infectious pandemics and thereby protect the global population from current and future pandemics.

Compliance with ethical standards

Conflicts of interest The authors declare that there is no conflict of interest regarding the publication of this article.

References

1. WHO (2020) Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: interim guidance, 13 March 2020. World Health Organization, https://www.who.int/publications/i/item/clinical-management-of-severe-acute-respiratory-infection-sari-when-covid-19-disease-is-suspected
2. Kusumoto IT, Nakabayashi T, Kida H, Miyashiro H, Hattori M, Namba T, Shimotohno K (1995) Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease. Phytother Res 9(3):180–184. https://doi.org/10.1002/ptr.2650090305
3. University JH (2020) COVID-19 Dash board by the Center for Systems Science and Engineering (CSSE) at JHU. https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48eefcd6. Accessed 13 May 2020
4. Dayer MR, Taleb-Gassabi S, Dayer MS (2017) Lopinavir; a potent drug against coronavirus infection: insight from molecular docking study. Arch Clin Infect Dis. https://doi.org/10.5812/archcid.13823
5. Omolo C, Soni N, Fasiku V, Mackraj I, Govender T (2020) Update on therapeutic approaches and emerging therapies for SARS-CoV-2 virus. Eur J Pharmacol. https://doi.org/10.1016/j.ejphar.2020.173348
6. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, Fu S, Gao L, Cheng Z, Lu Q (2020) Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395(10236):1569–1578. https://doi.org/10.1016/S0140-6736(20)31022-9
7. Schrezenmeier E, Dörner T (2020) Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16(3):155–166. https://doi.org/10.1038/s41584-020-0372-x
8. Jorge A, Ung C, Young LH, Melles RB, Choi HK (2018) Hydroxychloroquine retinopathy—implications of research advances for rheumatology care. Nat Rev Rheumatol 14(12):693–703. https://doi.org/10.1038/s41584-018-0111-8
9. Vijayan P, Raghu C, Ashok G, Dhanaraj S, Suresh B (2004) Antiviral activity of medicinal plants of Nilgiris. Indian J Med Res 120:24–29
10. Lin L-T, Hsu W-C, Lin C-C (2014) Antiviral natural products and herbal medicines. J Tradit Complement Med 4(1):24–35. https://doi.org/10.4103/2225-4110.124355
11. Chung T, Kim J, Kim M, Choi S, Kim S, Chung J, Lee I, Kim SH, Hahn K, Lee I (1995) Investigation of Korean plant extracts for potential phytotherapeutic agents against B-virus hepatitis. Phytother Res 9(6):429–434. https://doi.org/10.1002/ptr.900609
12. Akram M, Tahir IM, Shah SMA, Mahmood Z, Altaf A, Ahmad K, Munir N, Daniyal M, Nasir S, Meheboob H (2018) Anti-viral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxsackievirus: a systematic review. Phytother Res 32(5):811–822. https://doi.org/10.1002/ptr.6024
13. Vijayalatha S (2004) An Ornamental garden with medicinal plants an indirect approach for conservation of medicinal plants. J Indian J Arecanut Spices Med Plants 6(3):98–107. https://doi.org/10.1002/mnfr.201601066
14. Zhao J (2007) Nutraceuticals, nutritional therapy, phytonutrients, and phytotherapy for improvement of human health: a perspective on plant biotechnology application. Recent Pat Biotechnol 1(1):75–97. https://doi.org/10.2174/187220807798158393
15. Patra JK, Das G, Kumar S, Thatoi H (2019) Ethnopharmacology and Biodiversity of Medicinal Plants. CRC Press, pp 470
16. Vanden Bergh D, Vlietinck A, Van Hoof L (1986) Plant products as potential antiviral agents. Bull Inst Pasteur 84(2):101–147. https://doi.org/10.3923/bjap.2011.1125.1152
17. Elfiyky AA (2020) Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci 248:117477. https://doi.org/10.1016/j.lfs.2020.117477
18. Barnard DL, Kumaki Y (2011) Recent developments in anti-severe acute respiratory syndrome coronavirus chemotherapy. Future Virol 6(5):615–631. https://doi.org/10.2217/fvl.11.33
19. Belouzard S, Millet JK, Licitra BN, Whittaker GR (2012) Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4(6):1011–1033. https://doi.org/10.3390/v4061011
20. Wan Y, Shang J, Graham R, Baric RS, Li F (2020) Receptor recognition by the novel Coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS Coronavirus. J Virol 94(7):e00127-e1120. https://doi.org/10.1128/JVI.00127-20
21. Majeed J, Ajmera P, Goyal RK (2020) Delineating clinical characteristics and comorbidities among 206 COVID-19 deceased patients in India: Emerging significance of renin angiotensin system derangement. Diabetes Res Clin Pract. https://doi.org/10.1016/j.diabres.2020.108349
22. Scotti N, Buonaguro L, Tornesello ML, Cardi T, Buonaguro FM (2010) Plant-based anti-HIV-1 strategies: vaccine molecules and antiviral approaches. Expert Rev Vaccines 9(8):925–936. https://doi.org/10.1586/erv.10.79
23. Huo Y-T, Wu S-L, Chen J-C, Li C-C, Hsiong C-Y (2007) Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res 74(2):92–101. https://doi.org/10.1016/j.antiviral.2006.04.014
24. Reddy BU, Mullick R, Kumar A, Sudha G, Srinivasan N, Das S (2014) Small molecule inhibitors of HCV replication from pomegranate. Sci Rep 4:5411. https://doi.org/10.1038/srep05411
25. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R (2020) Features, evaluation and treatment coronavirus (COVID-19). In: StatPearls [internet]. StatPearls Publishing.
26. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8(4):420–422. https://doi.org/10.1016/S2213-2600(20)30076-X
27. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao S-Y (2020) Pulmonary pathology of early phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol 15(5):700–704. https://doi.org/10.1016/j.jtho.2020.02.010
28. Tomar B, Anders H-J, Desai J, Mulay SR (2020) Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19. Cells 9(6):1383. https://doi.org/10.3390/cells9061383
29. Small BA, Dressel SA, Lawrence CW, Drake DR III, Stoler MH, Enelow RJ, Braichite TJ (2001) CD8+ T cell–mediated injury in vivo progresses in the absence of effector T cells. J Exp Med 194(12):1835–1846. https://doi.org/10.1084/jem.194.12.1835
30. Channappanavar R, Perlman S (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. In: Seminars in immunopathology vol 39. Springer Berlin Heidelberg., pp 529–539. doi: https://doi.org/10.1007/s00281-017-0629-x
31. Rizzo P, Dalla Sega FV, Fortini F, Marracino L, Raperzzi C, Ferrari R (2020) COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Res Cardiol 115(3):31. https://doi.org/10.1007/s00395-020-0791-5
32. Ye Q, Wang B, Mao J (2020) The pathogenesis and treatment of the cytokine storm in COVID-19. J Infect 8(6):607–613. https://doi.org/10.1016/j.jinf.2020.03.037
33. Letko M, Marzi A, Munster V (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5:562–569. https://doi.org/10.1038/s41564-020-0668-y
34. Prompetchara E, Ketloy C, Palaga T (2020) Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 38(1):1–9. https://doi.org/10.1016/j.apai.2020.01.003
35. Heinrich M, Gibbons S (2001) Ethnopharmacology in drug discovery: an analysis of its role and potential contribution. J Pharm Pharmacol 53(4):425–432. https://doi.org/10.1211/AJP-200220-0772
36. Schwarz S, Wang K, Yu W, Sun B, Schwarz W (2011) Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res 90(1):64–69. https://doi.org/10.1016/j.antiviral.2011.02.008
37. Keyaerts E, Vigen L, Panneckoucke C, Van Damme E, Peumans W, Egberink H, Balzarini J, Van Ranst M (2007) Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res 75(3):179–187
38. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273. https://doi.org/10.1038/s41586-020-2012-7
39. Elsebai MF, Mocan A, Atanasov AG (2016) Cynaropicrin: a comprehensive research review and therapeutic potential as an anti-hepatitis C virus agent. Front Pharmacol 7:472. https://doi.org/10.3389/fphar.2016.00472
40. Lunavath V, Estari (2012) Inhibition of Human Immunodeficiency Virus (HIV-1) Reverse Transcriptase by Casia occidentalis (L) Plant Extract. Int J Eng Res 3 (7)
41. Khan MY, Kumar V (2018) Mechanism & inhibition kinetics of bioassay-guided fractions of Indian medicinal plants and foods as ACE inhibitors. J Tradit Complement Med 9(1):73–84. https://doi.org/10.1016/j.jtcme.2018.02.001
42. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr H (2003) Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. The Lancet 361(9374):2045–2046. https://doi.org/10.1016/s0140-6736(03)13615-x
43. Weber ND, Andersen DO, North JA, Murray BK, Lawson LD, Hughes BG (1992) In vitro virucidal effects of Allium sativum.
75. Matsumoto M, Mukai T, Furukawa S, Ohori H (2005) Inhibitory effects of epigallocatechin gallate on the propagation of bovine coronavirus in Mardin-Darby bovine kidney cells. Anim Sci J 76(5):507–512. https://doi.org/10.111/j.1740-0929.2005.00297.x

76. Coppin JP, Xu Y, Chen H, Pan M-H, Ho C-T, Juliani R, Simon JE, Wu Q (2013) Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J Funct Foods 5(4):1892–1899. https://doi.org/10.1016/j.jff.2013.09.010

77. Lii CK, Chen HW, Yun WT, Liu KL (2009) Suppressive effects of wild bitter gourd (Momordica charantia Linn. var. abrebieta) fruit extracts on inflammatory responses in RAW 264.7 macrophages. J Ethnopharmacol 122(2):227–233. https://doi.org/10.1016/j.jep.2009.01.028

78. Chan YS, Wong JH, Fang EF, Pan W, Ng TB (2013) A hemagglutinin from northeast red beans with immunomodulatory activity and anti-proliferative and apoptosis-inducing activities toward tumor cells. Protein Pept Lett 20(10):1159–1169. https://doi.org/10.1016/j.jep.2009.01.028

79. Ding X, Zhu F, Gao S (2012) Purification, antitumour and anti-inflammatory activity of water-extractable and alkali-extractable polysaccharides from Solanum nigrum L. Food Chem 131(2):677–684. https://doi.org/10.1016/j.foodchem.2011.09.060

80. Chen Y, Guo JJ, Healy DP, Zhan S (2007) Effect of integrated traditional Chinese medicine and western medicine on the treatment of severe acute respiratory syndrome: a meta-analysis. Pharmacy Practice 5(1):1–9

81. Hsu C-H, Hwang K-C, Chao C.-L, Chang SG, Ker C-C, Chien L-C, Ho M-S, Lin J-G, Chen Y-M, Chou P (2006) The lesson of supplementary treatment with Chinese medicine on severe laboratory-confirmed SARS patients. Am J Chin Med 34(06):927–935. https://doi.org/10.1142/S0192415X06004405

82. Hsu C-H, Hwang K-C, Chao C-L, Chang SG, Ho M-S, Chou P (2006) Can herbal medicine assist against avian flu? Learning from the experience of using supplementary treatment with Chinese medicine on SARS or SARS-like infectious disease in 2003. J Altern Complement Med 12(6):505–506. https://doi.org/10.1089/acm.2006.12.505

83. Colson P, Rolain J-M, Lagier J-C, Rolain J-M, Raoult D (2020) Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2020.105932

84. New Coronavirus Pneumonia Diagnosis and Treatment Program (2020) Office of the National Health and Health Commission Office of the State Administration of Traditional. http://www.nhc.gov.cn/xcs/zhengcwj/202002/8334a8326dd94d329df351d7d8aa8e2c.shtml. Accessed 3 May 2020

85. Xu X-W, Wu X-X, Jiang X-G, Xu K-J, Ying L-J, Ma C-L, Li L-C, Ho M-S, Lin J-G, Chen Y-M, Chou P (2006) The lesson of supplementary treatment with Chinese medicine on severe laboratory-confirmed SARS patients. Am J Chin Med 34(06):927–935. https://doi.org/10.1142/S0192415X06004405

86. Sun Z, Yu C, Wang W, Yu G, Zhang T, Zhang L, Zhang J, Wei K Aloe Polysaccharides Inhibit Influenza A Virus Infection-A Promising Natural Anti-flu Drug. Front Microbiol 9 (2338). doi:https://doi.org/10.3389/fmicrob.2018.02338

87. Khan S, Mehmoond MH, Ali ANA, Ahmed FS, Dar A, Gilani A-H (2011) Studies on anti-inflammatory and analgesic activities of betel nut in rodents. J Ethnopharmacol 135(3):654–661. https://doi.org/10.1016/j.jep.2011.01.064

88. Fazal F, Mane PP, Rai MP, Thilakachand KR, Bhat HP, Kamble PS, Palatty PL, Baliga MS (2014) The phytochemistry, traditional uses and pharmacology of Piper betel linn (Betel Leaf): a pan-asian medicinal plant. Chin J Integr Med. https://doi.org/10.1007/s11655-013-1334-1

89. Melillo de Magalhães P, Dupont I, Hendrickx A, Joly A, Raas T, Dessy S, Sergent T, Schneider Y (2012) Anti-inflammatory effect and modulation of cytochrome P450 activities by Artemisia annua tea infusions in human intestinal Caco-2 cells. Food Chem 134(2):864–871. https://doi.org/10.1016/j.foodchem.2012.02.195

90. Agize M (2016) Ethnobotany of spice and condiment plants and the associated indigenous knowledge on management, utilization and conservation of them in and around home gardens in Loma and Gena Bosa Districts (Weredas) of Dawuro Zone, Southern Ethiopia. Int J Agric Innov Res 4(3):426–442

91. Keservani RK, Kesharwani RK, Sharma AK, Vyas N, Chodkar A (2010) Nutritional supplements: an overview. J Curr Pharm Res Rev 1(1):59–75

92. Yamaguchi K, Honda M, Ikigai H, Hara Y, Shimamura T (2002) Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Res 53(1):19–34. https://doi.org/10.1016/S0166-3542(01)00189-9

93. Harbowy ME, Balentine DA, Davies AP, Cai Y (1997) Tea and safety of aloe vera products: a review. J Food Sci Technol 44(5):525–533. https://doi.org/10.1016/s1319-7141(05)80036-1

94. Baliga MS, Manikandan M, Jafar A, Sakthivel P, Geetha S, Reddy KN, Pattanaik C, Reddy CS, Raju VS (2007) Traditional Chinese medicine on SARS or SARS-like infectious disease in China: an in vitro study. Food Chem 170:430–436. https://doi.org/10.1016/j.foodchem.2014.08.031

95. Ali A, Mackeen M, El-Sharkawly S, Hamidi J, Ismaili NOR, Ahmad H, Lajisi F (1996) Antiviral and cytotoxic activities of some plants used in Malaysian indigenous medicine. Pertanika J Trop Agric Sci 19:129–136

96. Ali A, Mackeen M, El-Sharkawly S, Hamidi J, Ismaili NOR, Ahmad H, Lajisi F (1996) Antiviral and cytotoxic activities of some plants used in Malaysian indigenous medicine. Pertanika J Trop Agric Sci 19:129–136

97. Baliga MS, Manikandan M, Jafar A, Sakthivel P, Geetha S, Reddy KN, Pattanaik C, Reddy CS, Raju VS (2007) Traditional Chinese medicine on SARS or SARS-like infectious disease in China: an in vitro study. Food Chem 170:430–436. https://doi.org/10.1016/j.foodchem.2014.08.031

98. Ali A, Mackeen M, El-Sharkawly S, Hamidi J, Ismaili NOR, Ahmad H, Lajisi F (1996) Antiviral and cytotoxic activities of some plants used in Malaysian indigenous medicine. Pertanika J Trop Agric Sci 19:129–136

99. Baliga MS, Manikandan M, Jafar A, Sakthivel P, Geetha S, Reddy KN, Pattanaik C, Reddy CS, Raju VS (2007) Traditional Chinese medicine on SARS or SARS-like infectious disease in China: an in vitro study. Food Chem 170:430–436. https://doi.org/10.1016/j.foodchem.2014.08.031
vegetables consumed by tribes of south India. Plant Foods Hum Nutr 56(3):225–238. https://doi.org/10.1023/a:1011252320907
123. Costa H, Ronchi S, Brasil G, Nascimento A, Lima E, Scherer R, Romão W, Boeçhat G, Lenz D, Fonza M, Bissoli N, Endringer D, Andrade T (2015) Phytochemical and in vitro and in vivo biological investigation on the antihypertensive activity of mango leaves (Mangifera indica L.). Ther Adv Cardiovasc Dis 9(5):244–256. https://doi.org/10.1177/1759447115572958
124. Moxon AJ, de Troconis NG (1982) Volatile flavour components of mango fruit. Phytochemistry 21(10):2523–2526. https://doi.org/10.1016/0031-9422(82)85249-7
125. Morton JB (1967) The balsam pear—an edible, medicinal and toxic plant. Econ Bot 21(1):57–68. https://doi.org/10.1007/bf02078017
126. Lee-Huang S, Huang PL, Chen HC, Huang PL, Bourinbaiar A, Huang HI, Kung HF (1995) Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene 161(2):151–156. https://doi.org/10.1016/0378-1196(95)00186-a
127. Sánchez-Machado D, Núñez-Gastélum JA, Reyes Moreno C, Ramirez-Wong B, López-Cervantes J (2010) Nutritional quality of edible parts of Moringa oleifera. Food Anal Methods 3(3):175–180. https://doi.org/10.5897/IJAB2013.12343
128. Rawat S, Jugran A, Giri L, Bhatt I, Rawal R (2011) Assessment of antioxidant properties in fruits of Myrica esculenta: a popular wild edible species in Indian Himalayan region. Evid Based Complement Alternat Med 2011:8. https://doi.org/10.1093/ecam/nee055
129. Makhd K, Lynser MB, Pala KHM (2014) Marketing of indigenous fruits: a source of income among Khasi Women of Meghalaya, North East India. J Agric Sci 5:1–9. https://doi.org/10.1016/j.ags.2014.05.002
130. Makhd K, Lynser MB, Pala KHM (2014) Marketing of indigenous fruits: a source of income among Khasi Women of Meghalaya, North East India. J Agric Sci 5:1–9. https://doi.org/10.1016/j.ags.2014.05.002
131. Subbati A, Lalgee LJ, Jalsa NK (2019) Efficient extraction of black cumin (Nigella sativa L.) seed oil containing thymol, using liquefied dimethyl ether (DME). J Food Process Preserv 43(4):1391
132. Dubey PN, Singh B, Mishra B, Kanti K, Solanki R (2016) Nigella (Nigella sativa): a high value seed spice with immense medicinal potential. Indian J Agric Sci 86:967–979
133. Cohen MM (2014) Tulsi (Ocimum sanctum): a herb for all reasons. J Ayurveda Integr Med 5(4):251–259. https://doi.org/10.4103/0975-9476.146554
134. Ghanbari R, Anwar F, Alkharfy KM, Gilani AH, Saari N (2012) Protective effect of homonojirimycin from Glycyr rhiza Glabra Linn.: a mini-review. J Anal Pharm Res 5(5):156.
135. Ghanbari R, Anwar F, Alkharfy KM, Gilani AH, Saari N (2012) Protective effect of homonojirimycin from Glycyr rhiza Glabra Linn.: a mini-review. J Anal Pharm Res 5(5):156.
136. Ihantola-Vormisto A, Summanen J, Kankaanranta H, Vuorela D, Andrade T (2015) Phytochemical and in vitro and in vivo biological investigation on the antihypertensive activity of mango leaves (Mangifera indica L.). Ther Adv Cardiovasc Dis 9(5):244–256. https://doi.org/10.1177/1759447115572958
137. Estari M, Venkanna L, Sripriya D, Lalitha R (2012) Human biological investigation on the antihypertensive activity of mango leaves (Mangifera indica L.). Ther Adv Cardiovasc Dis 9(5):244–256. https://doi.org/10.1177/1759447115572958
138. Ihantola-Vormisto A, Summanen J, Kankaanranta H, Vuorela D, Andrade T (2015) Phytochemical and in vitro and in vivo biological investigation on the antihypertensive activity of mango leaves (Mangifera indica L.). Ther Adv Cardiovasc Dis 9(5):244–256. https://doi.org/10.1177/1759447115572958
139. Morton JB (1960) The emblic (Phyllanthus emblica L.). Econ Bot 14:119–128
140. Estari M, Venkanna L, Sripriya D, Lalitha R (2012) Human Immunodeficiency Virus (HIV-1) reverse transcriptase inhibitory activity of Phyllanthus emblica plant extract. Biol Med 4(4):178–182
141. Al-Maiman SA, Ahmad D (2002) Changes in physical and chemical properties during pomegranate (Punica granatum L.) fruit

106. Manikandaselvi S, Vadivel V, Brindha P (2016) Studies on physicochemical and nutritional properties of aerial parts of Cassia occidentalis L. J Food Drug Anal 24(3):508–515
107. Ibiriki H, Knewton SJ, Grusak MA (2003) Chickpea leaves as a vegetable green for humans: evaluation of mineral composition. J Sci Food Agric 83(9):945–950. https://doi.org/10.1002/jsfa.1427
108. Zhang GB, Tian LQ, Li YM, Liao YF, Li J, Bing FH (2013) Protective effect of homonojirimycin from Commelina communis (dayflower) on influenza virus infection in mice. Phytomedicine 20(11):964–975. https://doi.org/10.1016/j.phymed.2013.04.009
109. Britta MO, Ho Thi T, Hoang Nghia D, Nguyen Nhu Xuan D (2003) Food, feed or medicine: the multiple functions of edible wild plants in Vietnam. Econ Bot 57(1):103–117. https://doi.org/10.1663/0013-0001-0001
110. Obata K, Koijima T, Masaki T, Okabayashi T, Yokota S, Hirakawa S, Nomura K, Takasawa M, Manaka S, Fuchimoto J, Fujii N, Tsutsuhi M, Himi T, Sawada N (2013) Curcumin prevents replication of respiratory syncytial virus and the epithelial responses to it in human nasal epithelial cells. PLoS ONE 8(9):e70225. https://doi.org/10.1371/journal.pone.0070225
111. Prasad S, Aggarwal BB (2011) Turmeric, the golden spice: a popu-
143. Tavares IMdC, Lago-Vanzela ES, Rebello LPG, Ramos AM, Kuete V (2014) Chapter 22-physical, hematological, and functional properties of black cumin seed (Nigella sativa L.) extract. Food Res Int 82:1–13. https://doi.org/10.1016/j.foodres.2016.01.014

144. Yang MH, Ali Z, Khan IA, Khan SI (2014) Anti-inflammatory activity of constituents isolated from Punica granatum (pomegranate) in animals. Indian J Pharmacol 56(9):1015–1020. https://doi.org/10.4103/0253-7613.147325

145. Bhuvaneswari K, Michael D (2000) Immunomodulation by leaf extract of Acalypha indica Linn in Oreochromis mossambicus (Peters). Hydrobiologia 430(1):113–120

146. Benni JM, Jayanthi MK, Suresha RN (2011) Evaluation of the anti-inflammatory activity of Aegle marmelos (Bilwa) root. Indian J Pharmacol 43(4):393–397. https://doi.org/10.4103/0010-260X-763183108

147. Srivastava KC (1988) Extract of a spice-Omum (Aegle marmelos (L.) Skeels). Food Res Int 82(1):285–291

148. Cai Z, Zhang G, Tang B, Liu Y, Fu X, Zhang X (2015) Potential of garlic (Allium sativum) in lowering high blood pressure: mechanisms of action and clinical relevance. Int J Hypertens 73(2):235–240. https://doi.org/10.4103/0250-474X.91571

149. Chen BT, Li WX, He RR, Li YF, Tsoi B, Zhai YJ, Kurihara H (2014) Interactions of the active components of Punica granatum (pomegranate) with the essential renal and hepatic human Solute Carrier transporters. Pharm Biol 52(12):1510–1517

150. Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC (2013) Fresh food as a food source. Food Chem 40(2):213–219. https://doi.org/10.1016/j.foodchem.2012.08.001

151. Connors MS, Monnier MV, Hare RF, Kastenmeier M, Li HH, Bolnad J, Van Wysse M, Bucci S (2011) Calpulin activity of constituents isolated from Terminalia chebula Retz. Food Res Int 54(1):155–161. https://doi.org/10.1016/j.foodres.2011.01.014

152. Nair KPP (2013) Chapter 26- Ginger as a Spice and Flavorant. In: Toxicological Survey of African Medicinal Plants. Elsevier, pp 635–657. https://doi.org/10.1016/B978-0-12-800018-2.00022-4

153. Tripathi P, Chauhan NS, Patel JR (2012) Anti-inflammatory activity of Abutilon indicum extract. Nat Prod Res 26(17):1659–1661. https://doi.org/10.1080/14786419.2011.616508

154. Dashputre N, Naikwade N (2010) Immunomodulatory Activity of Abutilon Indicum linn on Albino Mice. Int J Pharm Sci Res 1(3):178–184

155. Dong J, Xu X, Liang Y, Head R, Bennett L (2011) Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method. Food Chem 134(1):291–297.
Food Funct 2(6):310–319. https://doi.org/10.1016/j.foodchem.2011.09.060

Gopakumar S, Latha P, Shine VJ, Anuja G, Suja S, ShyamaPeriyarRajasekharan SSPSS (2010) Anti-allergic, anti-inflammatory and anti-lipidperoxidant effects of Cassia occidentalis Linn. Indian J Exp Biol 48(5):494–498

Doppalapudi SC, Sandhya L, Reddy Y, Naraguraja S, Shafleen S (2012) Anti-inflammatory activity of Cicer arietinum seed extracts. Asian J Pharm Clin Res 5:64–68

Sathyanarayana S, Kumar P, Prashanth H (2019) Pectic polysaccharides have relatively potent immunomodulatory activity compared to their hydrolysates from chickpea (Cicer arietinum L.) husk. Indian J Nutr Diet 56(2):94. https://doi.org/10.21048/ijnd.2019.56.2.22687

Bhagyawant SS, Narvekar DT, Gupta N, Bhadkaria A, Gautam AK, Srivastava N (2019) Chickpea (Cicer arietinum L.) lectin exhibit inhibition of ACE-I, α-amylase and α-glucosidase activity. Protein Pept Lett 26(7):494–501. https://doi.org/10.2174/0929866526666190327130037

Mensah AY, Mireku EA, Damaoh AO, Amponsah IK (2014) Anti-inflammatory and antioxidant activities of Commelina diffusa (Commelinaeaceae). World J Pharm Sci 2(10):1159–1165

Jurenka JS (2009) Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev 14(2):141–153

Chandrasekaran CV, Sundarajan K, Edwin JR, Gururaja GM, Mundkinajeddu D, Agarwal A (2013) Immune-stimulatory and anti-inflammatory activities of Curcuma longa extract and its polysaccharide fraction. J Pharm Pharmacogn Res 5(2):71–79. https://doi.org/10.4103/0974-8490.110527

Lekshmi PC, Arimboor R, Anuja G, ShyamaPeriyarRajasekharan SSPSS (2010) Anti-allergic, anti-inflammatory and anti-lipidperoxidant effects of Cassia occidentalis Linn. Indian J Exp Biol 48(5):494–498

Kaur S, Sharma N, Nehru B (2018) Anti-inflammatory effects of Ginkgo biloba extract against trimethyltin-induced hippocampal neuronal injury. Inflammopharmacology 26(1):87–104. https://doi.org/10.1007/s10787-017-0396-2

Xu AH, Ren L, Zheng YY, Chen HS (2008) Immunomodulatory effect of Ginkgo biloba exocarp polysaccharides on immunosuppressive mice induced by cyclophosphamide. Chin J Pharmcol Toxicol 22(1):69–72

Ma FF, Wang H, Wei CK, Thakur K, Wei ZJ, Jiang L (2018) Three novel ACE inhibitory peptides isolated from Ginkgo biloba seeds: purification purification, inhibitory kinetic and mechanism. Front Pharmcol 9:1579. https://doi.org/10.3389/fphar.2018.01579

Frattarulo L, Carullo G, Brindisi M, Mazzotta S, Bellissimo L, Rago V, Curcio R, Dolev V, Aiello F, Cappello AR (2019) Antioxidant and anti-inflammatory activities of flavanones from Glycerrhiza glabra L. (licorice) leaf phytocomplexes: identification of licoflavonane as a modulator of NF-κB/MAPK pathway. Antioxidants. PLoS ONE 8(6):186. https://doi.org/10.3390/antiox8060186

Mitra Mazumder P, Pattnayak S, Parvani H, Sasmal D, Rathinavelusamy P (2012) Evaluation of immunomodulatory activity of Glycyrrhiza glabra L. roots in combination with zing. Asian Pac J Trop Biomed 2(1):S15–S20. https://doi.org/10.1016/S2221-1691(12)60122-1

Malik J, Manvi FV, Alagawadi KR, Noolvi M (2008) Evaluation of anti-inflammatory activity of Gymnema sylvestre leaves extract in rats. Int J Green Pharm. https://doi.org/10.4103/0973-8258.41184

Singh VK, Dwivedi P, Chaudhary BR, Singh R (2015) Immunomodulatory effect of gymnema sylvestre (RBr), leaf extract: an in vitro study in rat model. PLoS ONE 10(10):e0139631. https://doi.org/10.1371/journal.pone.0139631

Bayani GFE, Marpaung NLE, Simorangkir DAS, Sianipar IR, Ibrahim N, Kortinah NT, Mansur IG, Purba JS, Ilyas EI (2018) Anti-inflammatory effects of Hibiscus Sabdariffa Linn. on the IL-1β/IL-1α ratio in plasma and hippocampus of overtrained rats and correlation with spatial memory. Kobe J Med Sci 64(2):E73–E83

Fakeye TO, Pal A, Bawankule DU, Kanhaja SP (2008) Immunomodulatory effect of extracts of Hibiscus sabdariffa L. (Family Malvaceae) in a mouse model. Phytother Res 22(5):664–648. https://doi.org/10.1002/ptr.2370

Ojeda D, Jimenez-Ferrer E, Zamilpa A, Herrera-Arellano A, Tortoriello J, Alvarez L (2010) Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. J Ethnopharmacol 127(1):7–10. https://doi.org/10.1016/j.jep.2009.09.059

Patil N, Kotian R, Reddy S, Nayak V, Bairy L, Parida A, Malalur C (2014) Evaluation of anti-inflammatory activity of alcoholic extract of leaves of Leucas Aspera in albino rats. Int J Pharm Sci Dev (2)

Augustine B, Dash S, Lahkar M, Amara V, Samudrala P, Thomas J (2014) Evaluation of immunomodulatory activity of ethyl acetate extract of Leucas aspera in Swiss albino mice. Int J Green Pharm 8(2):84. https://doi.org/10.4103/0973-8258.129574

Knödler M, Jr C, Wenzig EM, Bauer R, Lacorn M, Beifuss U, Carle R, Schieber A (2008) Anti-inflammatory 5-(11′Z-heptadecenyl)- and 5-(8′Z,11′Z-heptadecadienyl)-resorcinols from mango (Manifigera indica L.) peels. Phytochemistry 69(4):988–993. https://doi.org/10.1016/j.phytochem.2007.10.013

Makare N, Bodhankar S, Rangari V (2001) Immunomodulatory activity of alcoholic extract of Manifigera indica L. in mice. J Ethnopharmacol 78(2):133–137. https://doi.org/10.1016/S0378-8741(01)00326-9

Juvekar A, Hule A, Sakat S, Chaughule V (2009) In vitro and in vivo evaluation of immunomodulatory activity of methanol extract of Momordica charantia fruits. Drug Invent Today 1(2):89–94
200. Priyanto AD, Doerkson RJ, Chang CI, Sung W-C, Widjanarko SB, Kusnadi J, Lin YC, Wang TC, Hsu JL (2015) Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. J Proteom 128:424–435. https://doi.org/10.1016/j.jprot.2015.08.018

201. Anudeep S, Prasanna VK, Adya SM, Radha C (2016) Characterization of soluble dietary fiber from Moringa oleifera seeds and its immunomodulatory effects. Int J Biol Macromol 91:656–662. https://doi.org/10.1016/j.ijbiomac.2016.06.013

202. Abdulazeez A, Ajiboye O, Wudil A, Abubakar H (2016) Partial purification and characterization of angiotensin converting enzyme inhibitory alkaloids and flavonoids from the leaves and seeds of Moringa oleifera. Adv biol biotechnol 5:1–11. https://doi.org/10.9734/jabb/2016/21974

203. Patel KG, Rao NJ, Gajera VG, Bhatt PA, Patel KV, Gandhi TR (2016) Anti-allergic activity of stem bark of Myrica esculenta Buch-Ham (Myricaceae). J Young Pharm 2(1):74–78. https://doi.org/10.4103/0975-1483.62219

204. Nguyen XN, Phan VK, Chau VM, Bui HT, Nguyen XC, Vu KT, le Hoang TA, Jo SH, Jang HD, Kwon YI, Kim YH (2010) A new monoterpene glycoside from Myrica esculenta and the inhibition of Angiotensin-I-converting enzyme. Chem Pharm Bull 58:1408–1410. https://doi.org/10.1248/cpb.58.1408

205. Ikhsan M, Hiedayati N, Maeyama K, Nurwidya F (2018) Nigella sativa as an anti-inflammatory agent in asthma. BMC Res Notes 11(1):744–744. https://doi.org/10.1186/s13104-018-3858-8

206. Boskabady MH, Keyhanmanesh R, Khameneh S, Doostdar Y, Vezza T, Algieri F, Rodríguez-Nogales A, Garrido-Mesa J, Kalabharathi HL, Suresha RN, Pragathi B, Pushpa VH, Sutopo CCY, Sutrisno A, Wang LF, Hsu JL (2020) Identification, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins. J Proteom 128:424–435. https://doi.org/10.1016/j.jprot.2020.02.010

207. Kalabharathi HL, Suresha RN, Pragathi B, Pushpa VH, Satish AM (2011) Anti inflammatory activity of fresh tulsi (Ocimum sanctum (L.) Sprague"). Indian J Tradit Know 16(3):506–513. https://doi.org/10.1080/13880200500530542

208. Shivaprasad NH, Kharya MD, Rana AC, Mohan S (2006) Preliminary immunomodulatory activities of the aqueous extract of Terminalia chebula Retz. Phytother Res 20(4):45–50. https://doi.org/10.1002/ptr.265004103

209. Shruthi RR, Venkatesh Y, Gudipati M (2017) In vitro immunomodulatory potential of macromolecular components derived from the aqueous extract of ajowan [Trachyspermum ammi (L.) Sprague]. Indian J Tradit Know 16(3):506–513

210. Gupta A, Singh S (2014) Evaluation of anti-inflammatory effect of Withania somnifera root on collagen-induced arthritis in rats. Pharm Biol 52(3):308–320. https://doi.org/10.1186/s12996-016-1466-5

211. Davis L, Kuttan G (2000) Immunomodulatory activity of Withania somnifera. J Ethnopharmacol 71(1–2):193–200. https://doi.org/10.1016/s0378-8741(99)00206-8

212. Ravindran R, Sharma N, Roy S, Thakur A, Ganesh S, Kumar S, Devi J, Rajkumar J (2015) Interaction studies of Withania somnifera’s key metabolite withafarin a with different receptors associated with cardiovascular disease. Curr Comput Aided Drug Des 11(3):212–221. https://doi.org/10.2174/1573409912666151106115848

213. Funk JL, Frye JB, Oyarzo JN, Chen J, Zhang H, Timmermann BN (2016) Anti-inflammatory effects of the essential oils of genger (Zingiber officinale Roscoe) in experimental
rheumatoid arthritis. Pharmanutrition 4(3):123–131. https://doi.org/10.1016/j.phanu.2016.02.004

229. Amri M, Touil-Boukoffa C (2016) In vitro anti-hydatic and immunomodulatory effects of ginger and [6]-gingerol. Asian Pac J Trop Med 9(8):749–756. https://doi.org/10.1016/j.apjtm .2016.06.013

230. Akinyemi A, Ademiluyi A, Oboh G (2014) Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet. J Med Food. https://doi.org/10.1089/jmf.2012.0264

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.