EINSTEIN-KÄHLER METRICS ON SYMMETRIC TORIC FANO MANIFOLDS

VICTOR V. BATYREV
Mathematisches Institut, Universität Tübingen
Auf der Morgenstelle 10, 72076 Tübingen, Germany
e-mail: batyrev@bastau.mathematik.uni-tuebingen.de

and

ELENA N. SELIVANOVA∗
Nizhny Novgorod State Pedagogical University
Nizhny Novgorod, Russia
e-mail: libr@appl.sci-nnov.ru

Abstract

Let X be a complex toric Fano n-fold and $\mathcal{N}(T)$ the normalizer of a maximal torus T in the group of biholomorphic authomorphisms $Aut(X)$. We call X symmetric if the trivial character is a single $\mathcal{N}(T)$-invariant algebraic character of T. Using an invariant $\alpha_G(X)$ introduced by Tian, we show that all symmetric toric Fano n-folds admit an Einstein-Kähler metric. We remark that so far one doesn’t know any example of a toric Fano n-fold X such that $Aut(X)$ is reductive, the Futaki character of X vanishes, but X is not symmetric.

∗Supported by Arbeitsbereich “Analysis” at University of Tübingen
1 Introduction

Let X be a n-dimensional compact complex manifold with positive first Chern class $c_1(X)$, $g = \{g_{i\overline{j}}\}$ a Kähler metric on X such that the corresponding 2-form

$$\omega_g = \frac{\sqrt{-1}}{2\pi} \sum_{i,j=1}^{n} g_{i\overline{j}} dz_i \wedge d\overline{z}_j$$

represents $c_1(X)$. It is well-known that the Ricci curvature of g,

$$Ric(g) = \frac{\sqrt{-1}}{2\pi} \sum_{i,j=1}^{n} R_{i\overline{j}} dz_i \wedge d\overline{z}_j,$$

also represents $c_1(X)$. The metric g is called Einstein-Kähler if $Ric(g) = \omega_g$.

Let $Aut(X)$ be the group of biholomorphic automorphisms of X and $Lie(Aut(X))$ the Lie algebra of $Aut(X)$. In 1957, Matsushima proved that if X admits an Einstein-Kähler metric then $Aut(X)$ is a reductive algebraic group [9]. In 1983, Futaki introduced a linear function $F_X : Lie(Aut(X)) \to \mathbb{C}$, so called Futaki character, which vanishes provided X admits an Einstein-Kähler metric [7]. Futaki has conjectured that the condition $F_X = 0$ is sufficient for the existence of an Einstein-Kähler metric on X. Recently Tian disproved this conjecture [20]. This shows that the problem of finding a sufficient condition for the existence of an Einstein-Kähler metric is rather subtle.

In this paper we restrict ourselves to the case of compact complex manifolds X with positive first Chern class which are toric (see [4, 5, 6, 14]). If X is a toric Fano n-fold, then a maximal torus $T \cong (\mathbb{C}^*)^n \subset Aut(X)$ has an open dense orbit $U \cong T \subset X$. Denote by $M \cong \mathbb{Z}^n$ the group of algebraic characters of T. Then the Lie algebra $Lie(T)$ of T can be identified with $N \otimes_{\mathbb{Z}} \mathbb{C}$, where $N := Hom(M, \mathbb{Z})$ the dual group. Using the anticanonical embedding $X \hookrightarrow \mathbb{P}^m$ and a Kähler metric g on X induced by the Fubini-Study metric on \mathbb{P}^m, we obtain a natural moment map

$$\mu_g : X \to M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$$

whose image is a convex polyhedron Δ. The polyhedron Δ is reflexive, and X can be recovered from Δ as projectivization $X = \mathbb{P}_\Delta = Proj S_\Delta$, where S_Δ is the graded semigroup \mathbb{C}-algebra of lattice points in the cone over Δ (see [2]). We denote by $R(\Delta)$ the set of all M-lattice points contained in relative interiors of codimension-1 faces of Δ. It is well-known that $Aut(X)$ is reductive if and only if the set $R(\Delta)$ is centrally symmetric: $R(\Delta) = -R(\Delta)$. It has been shown by Mabuchi that if $Aut(X)$ is reductive, then the Futaki character F_X vanishes if and only if the barycenter $b(\Delta) \in M_{\mathbb{R}}$ of the polyhedron Δ is zero. Using this result and the complete classification of toric Fano 3-folds due to the first author [1] and
Let X be a smooth projective toric n-fold. Denote by $\mathcal{N}(T) \subset Aut(X)$ the normalizer of a maximal torus T. The group $\mathcal{N}(T)$ naturally acts on T by conjugations. This induces a linear action of $\mathcal{N}(T)$ on the group of algebraic characters $M = \text{Hom}_{\text{alg}}(T, \mathbb{C}^*)$. Since T acts trivially on M, the latter determines a linear representation of the finite group $W(X) := \mathcal{N}(T)/T$ by integral-valued $n \times n$-matrices from $GL(M) \cong GL(n, \mathbb{Z})$. We call X symmetric, if the trivial character is a single $W(X)$-invariant (or, equivalently, $\mathcal{N}(T)$-invariant) algebraic character of T:

$$M^{W(X)} := \{ \chi \in M : \chi^g = \chi \text{ for all } g \in W(X) \} = 0.$$

Our main result is the following:

Theorem 1.1 Let X be a symmetric toric Fano n-fold. Then X admits an Einstein-Kähler metric.

It follows immediately from the definition of symmetric Fano manifolds that if $X = \mathbb{P}_\Delta$ is symmetric, then the barycenter of Δ is zero. By theorem of Matsushima [4], one also gets:

Corollary 1.2 If $X = \mathbb{P}_\Delta$ is a symmetric toric Fano n-fold, then

$$R(\Delta) = -R(\Delta).$$

It would be interesting to know whether there exists a direct proof of 1.2 without using [4]. We remark our theorem covers all already known examples of toric Fano n-folds ($n \leq 4$) whose Futaki character vanish and whose authomorphism group is reductive. It would be interesting to know whether there exists an example of a toric Fano n-fold X such that $F_X = 0$, $Aut(X)$ is reductive, but X is not symmetric. Moreover, it is still unknown whether the condition $F_X = 0$ and \{Aut(X) is reductive\} is sufficient for the existence of an Einstein-Kähler metric on toric Fano manifolds of arbitrary dimension n.

The paper is organized as follows. In Section 2 we remind the definition of the invariant $\alpha_G(X)$ introduced by Tian and its connection to solutions of complex Monge-Ampère equations obtained by the continuity method. In Section 3 we give a
proof of Theorem 1.1. In Section 4 we discuss several series of examples of symmetric toric Fano manifolds which include all examples of Einstein-Kähler toric Fano manifolds of dimension \(n \leq 4 \).

The authors would like to thank Professors Gerhard Huisken and Neil Trudinger for helpful discussions. The second author wish to thank Arbeitsbereich “Analysis” at University of Tübingen for hospitality and financial support.

\section{Tian invariant \(\alpha_G(X) \)}

Let \(X \) be a \(n \)-dimensional compact complex manifold with positive first Chern class \(c_1(X) \) and \(G \) a compact subgroup of \(Aut(X) \). Choose a \(G \)-invariant Kähler metric \(g = \{ g_{i\bar{j}} \} \) on \(X \) such that

\[
\omega_g = \frac{-1}{2\pi} \sum_{i,j=1}^{n} g_{i\bar{j}} dz_i \wedge d\bar{z}_j
\]

represents \(c_1(X) \). One has a natural \(G \)-invariant volume form \(dV_g \) on \(X \)

\[
dV_g := \frac{\omega_g^n}{n!}, \quad Vol_g(X) := \int_X dV_g = \frac{c_1^n(X)}{n!}.
\]

It is well-known that the problem of finding an Einstein-Kähler metric on \(X \) is equivalent to solving the following complex Monge-Ampère equation for smooth real-valued functions \(\varphi \) on \(X \):

\[
\det \left(g_{i\bar{j}} + \frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j} \right) = \det(g_{i\bar{j}}) e^{F-t\varphi}, \quad \forall t \in [0, 1] \tag{1}
\]

where the smooth real-valued function \(F \) is defined by the conditions:

\[
\frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j} = R_{i\bar{j}} - g_{i\bar{j}}, \quad \int_X e^F dV_g = Vol_g(X).
\]

If \(\varphi \) is a solution of (1) for \(t = 1 \), then

\[
g'_{i\bar{j}} := g_{i\bar{j}} + \frac{\partial^2 \varphi}{\partial z_i \partial \bar{z}_j}
\]

is an Einstein-Kähler metric on \(X \). By famous theorem of Yau, there exists always a solution of (1) for all \(t \in [0, \varepsilon) \) if \(\varepsilon \) is sufficiently small. Using the continuity method, one can show that the existence of a solution \(\varphi \) for \(t = 1 \) is equivalent to zero-order \textit{a priori} estimates of \(\varphi \).

Let us recall the definition of an invariant \(\alpha_G(X) \) introduced by Tian [18]:

\[
\alpha_G(X) := \frac{\int_X \omega^n_g}{\int_X dV_g}.
\]
Definition 2.1 Let $P_G(X,g)$ be the set of all C^2-smooth G-invariant real-valued functions ϕ such that $\sup_X \phi = 0$ and

$$\omega_g + \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \phi$$

is a nonnegative $(1,1)$-form. Then **Tian invariant** $\alpha_G(X)$ is defined as supremum of all $\lambda > 0$ such that

$$\int_X e^{-\lambda \phi} dV_g \leq C(\lambda) \quad \forall \phi \in P_G(X,g),$$

where $C(\lambda)$ is a positive constant depending only on λ, g and X.

Remark 2.2 It is easy to show that $\alpha(X)$ doesn’t depend on the choice of a G-invariant metric g. Moreover, $\alpha_G(X)$ doesn’t change if in the above definition we replace $P_G(X,g)$ by a smaller subset consisting of all C^∞-smooth G-invariant real-valued functions ϕ such that $\sup_X \phi = 0$ and

$$\omega_g + \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \phi$$

is a positive definite $(1,1)$-form (see [19]).

Deriving a zero-order *a priori* estimate for the solutions of (1), Tian has proved the following important result ([18], Theorems 2.1 and 4.1):

Theorem 2.3 Let X be a Fano n-fold and $G \subset Aut(X)$ is a compact subgroup such that

$$\alpha_G(X) > \frac{n}{n+1}.$$

Then X admits an Einstein-Kähler metric.

3 Main theorem

Throughout this section we use standard notations from the theory of toric varieties (see e.g. [4]). Let M be a free abelian group of rank n, $N = Hom(M, \mathbb{Z})$ the dual group, $M_\mathbb{R} := M \otimes \mathbb{Z} \mathbb{R}$, $N_\mathbb{R} := N \otimes \mathbb{Z} \mathbb{R}$. Denote by $(*,*) : M_\mathbb{R} \times N_\mathbb{R} \to \mathbb{R}$ the canonical nondegenerate pairing. Let $X = X_\Sigma$ be a smooth projective toric n-fold defined by a complete fan Σ of regular cones $\sigma \subset N_\mathbb{R}$. Then a maximal torus $T \subset Aut(X)$ acting on X has an open dense orbit $U \subset X$. The normalizer $N(T) \subset Aut(X)$ of T has a natural action on U. Let us set $W(X) := N(T)/T$. By functorial properties of toric varieties (see [4], §5), one immediately obtains:

Proposition 3.1 Let $X = X_\Sigma$ be a smooth projective toric n-fold defined by a complete regular polyhedral fan Σ. Then the group $W(X)$ is isomorphic to the finite group of all symmetries of Σ, i.e., $W(X)$ is isomorphic to a subgroup of $GL(M) \cong GL(n, \mathbb{Z})$ consisting of all elements $\gamma \in GL(M)$ such that $\gamma(\Sigma) = \Sigma$.

5
Since the open subvariety \(U \subset X \) is a principal homogeneous space of \(T \), we can identify \(U \) with \(T \) by choosing an arbitrary point \(x_0 \in U \). This identification defines a splitting of the short exact sequence

\[
1 \to T \to \mathcal{N}(T) \to \mathcal{W}(X) \to 1,
\]
i.e., an embedding \(\mathcal{W}(X) \hookrightarrow \mathcal{N}(T) \subset \text{Aut}(X) \). We denote by \(\mathcal{W}(X, x_0) \) the image of \(\mathcal{W}(X) \) in \(\text{Aut}(X) \) under this embedding. Denote by \(\mathcal{K}(T) \cong (S^1)^n \) the maximal compact subgroup in \(T \). In the sequel we shall use the canonical isomorphism \(T/\mathcal{K}(T) \cong N_\mathbb{R} \) and the isomorphism \(U/\mathcal{K}(T) \cong N_\mathbb{R} \) which identifies the orbit \(\mathcal{K}(T)x_0 \) with the zero element \(0 \in N_\mathbb{R} \). The last isomorphism shows that the \(\mathcal{N}(T) \)-action on \(U \) descends to a linear action of \(\mathcal{W}(X) \) on \(N_\mathbb{R} \). If one chooses an integral basis \(e_1, \ldots, e_n \) of \(N \) and the dual basis \(e_1^*, \ldots, e_n^* \) of \(M \), then the induced isomorphisms \(N_\mathbb{R} \cong \mathbb{R}^n \), \(M_\mathbb{R} \cong \mathbb{R}^n \) and \(T \cong (\mathbb{C}^*)^n \) allow to introduce affine logarithmic coordinates \(y_i = \log |z_i| \) (\(i = 1, \ldots, n \)) on \(N_\mathbb{R} \), where \(z_1, \ldots, z_n \) the standard holomorphic coordinate system on \((\mathbb{C}^*)^n \). We choose \(G \) to be the maximal compact subgroup in \(\mathcal{N}(T) \) generated by \(\mathcal{W}(X, x_0) \) and \(\mathcal{K}(T) \), so that we have the short exact sequence

\[
1 \to \mathcal{K}(T) \to G \to \mathcal{W}(X) \to 1.
\]

Now we assume that a projective toric \(n \)-fold \(X \) has positive first Chern class. In this case, one obtains a convex \(\mathcal{W}(X) \)-invariant polyhedron \(\Delta \subset M_\mathbb{R} \) defined by the affine linear inequalities \(\langle y, e \rangle \leq 1 \) where \(e \) runs over all primitive integral generators \(e \) of 1-dimensional cones \(\sigma = \mathbb{R}_{\geq 0} e \in \Sigma \). Let \(L(\Delta) = \{v_0, v_1, \ldots, v_m\} := M \cap \Delta \). Then \(v_0, v_1, \ldots, v_l \) determine algebraic characters \(\chi_i : T \to \mathbb{C}^* \) of \(T \) (\(i = 0, \ldots, m \)). Moreover, we have

\[
|\chi_i(x)| = e^{\langle v_i, y \rangle}, \quad i = 0, \ldots, m,
\]
where \(y \) is the image of \(x \) under the canonical projection \(\pi : T \to N_\mathbb{R} \). Let us define the function \(u : U \to \mathbb{R} \) as follows:

\[
u := \log(\sum_{i=0}^{m} |\chi_i(x)|), \quad x \in U \approx T.
\] (2)

Since \(u \) is \(\mathcal{K}(T) \)-invariant, \(u \) descends to a function \(\tilde{u} : N_\mathbb{R} \to \mathbb{R} \) defined as

\[
\tilde{u} := \log(\sum_{i=0}^{m} e^{\langle v_i, y \rangle}), \quad y \in N_\mathbb{R}.
\] (3)

Since \(L(\Delta) \) is \(\mathcal{W}(X) \)-invariant, one obtains the following \(G \)-equivariant moment map

\[
\mu_{\tilde{u}} : N_\mathbb{R} \to M_\mathbb{R},
\]

\[
y = (y_1, \ldots, y_n) \mapsto \text{Grad} \tilde{u} := \left(\frac{\partial \tilde{u}}{\partial y_1}(y), \ldots, \frac{\partial \tilde{u}}{\partial y_n}(y) \right)
\]
which is a diffeomorphism of \(N_\mathbb{R} \) with the interior of the polyhedron \(\Delta \).
Consider the G-invariant hermitian metric $g = \{g_{ij}\}$ on X such that the restriction of the corresponding to g differential 2-form on U is defined by

$$\omega_g = \frac{-1}{2\pi} \partial \bar{\partial} u.$$

We remark that the metric g is exactly the pull-back of the Fubuni-Study metric form \mathbb{P}^m with respect to the anticanonical embedding $X \hookrightarrow \mathbb{P}^m$ defined by the algebraic characters $\chi_0, \chi_1, \ldots, \chi_m$. Then the restriction of the moment $\mu_g : X \rightarrow M_R$ to U is exactly the composition of the canonical projection $\pi : T \rightarrow N_R$ and $\mu_{\tilde{u}} : N_R \rightarrow M_R$. In particular, $\Delta = \mu_g(X)$.

Using the above considerations, one can derive from the complex Monge-Ampère equation (1) for a G-invariant function $\varphi : X \rightarrow \mathbb{R}$ the real Monge-Ampère equation

$$\det \left(\frac{\partial^2 (\tilde{u} + \tilde{\varphi})}{\partial y_i \partial y_j} \right) = \exp(-\tilde{u} - t \tilde{\varphi}), \quad \forall t \in [0, 1], \quad (4)$$

where $\tilde{\varphi}$ is a smooth $\mathcal{W}(X)$-invariant real-valued function on N_R obtained as descent of $\varphi|_U$ to N_R.

Proposition 3.2 Let X be a toric Fano n-fold with G-action as above. Denote by dy the volume n-form on $N_R(\cong \mathbb{R}^n)$ corresponding to the Haar measure on N_R normalized by the lattice $N \subset N_R$. Let $\tilde{\alpha}_G(X)$ be the supremum of all $\lambda > 0$ such that

$$\int_{N_R} e^{-\lambda \tilde{u} - \bar{\tilde{u}}} dy \leq \tilde{C}(\lambda), \quad \forall \tilde{\varphi} \in P_G(N_R, \tilde{u}),$$

where $P_G(N_R, \tilde{u})$ is the set of all C^2-smooth $\mathcal{W}(X)$-invariant functions $\tilde{\varphi} : N_R \rightarrow \mathbb{R}$ such that $\tilde{u} + \tilde{\varphi}$ is upper convex, $\sup_X \tilde{\varphi} = 0$, and $|\tilde{\varphi}|$ is bounded on the whole N_R. Then

$$\tilde{\alpha}_G(X) \leq \alpha_G(X).$$

Proof. Let ϕ be an element of $P_G(X, g)$. Since ϕ is $\mathcal{K}(T)$-invariant, the restriction of ϕ to U descends to a smooth C^2-function real-valued $\tilde{\phi}$ on $N_R(\cong U/\mathcal{K}(T))$. Moreover, it follows from G-variance of ϕ that $\tilde{\phi}$ is invariant under the finite group $\mathcal{W}(X)$ acting linearly on N_R. The nonnegativity of the $(1, 1)$-form

$$\omega_g + \frac{-1}{2\pi} \partial \bar{\partial} \phi = \frac{-1}{2\pi} \partial \bar{\partial} (\tilde{u} + \phi)$$

immediately implies that the matrix

$$\left(\frac{\partial^2 (\tilde{u} + \tilde{\phi})}{\partial y_i \partial y_j} \right)$$

is nonnegative definite, i.e., $\tilde{u} + \tilde{\phi}$ is an upper convex function on N_R. Let $d\theta$ be a volume n-form defining the canonically normalized Haar measure on the compact group $\mathcal{K}(T)$. We remark that the restriction of the volume $2n$-form dV_g to
\[U \cong T \text{ equals } he^{-u}dyd\theta, \text{ where } h \text{ is a smooth real-valued bounded function on } X. \]

Therefore, the inequality
\[\int_X e^{-\lambda \phi}dV \leq C(\lambda) \quad \forall \phi \in P_G(X, g) \]

immediately follows from
\[\int_{N_{\mathbb{R}}} e^{-\lambda \tilde{u}}dy \leq \tilde{C}(\lambda) \quad \forall \tilde{\phi} \in P_G(N_{\mathbb{R}}, \tilde{u}). \]

Thus, we have \(\tilde{\alpha}_G(X) \leq \alpha_G(X). \)

Proposition 3.3 Let \(X = \mathbb{P}_{\Delta} \) be a toric Fano \(n \)-fold and \(\tilde{u} \) the function defined by (3). Choose \(\tau \) to be an arbitrary positive real number. Then

\[\int_{N_{\mathbb{R}}} e^{-\tau \tilde{u}}dy \leq \frac{\nu(\Delta)}{\tau^n}, \]

where \(\nu(\Delta) \) is the number of vertices of \(\Delta \).

Proof. Let \(\nu(\Delta) = l \). Denote by \(w_1, \ldots, w_l \) all vertices of \(\Delta \). It follows from the formula (3) that for all \(y \in N_{\mathbb{R}} \) we have
\[\tilde{u}(y) > \langle w_j, y \rangle, \quad j = 1, \ldots, l, \]

and hence \(\tilde{u}(y) > \overline{u}(y) \), where \(\overline{u} := \max_{j=1,\ldots,l} \langle w_j, y \rangle \). Therefore, we obtain
\[\int_{N_{\mathbb{R}}} e^{-\tau \tilde{u}}dy \leq \int_{N_{\mathbb{R}}} e^{-\tau \overline{u}}dy. \]

It follows from definition of \(\Delta \) that \(l \) is exactly the number of \(n \)-dimensional cones \(\sigma_1, \ldots, \sigma_l \) in the fan \(\Sigma \) defining \(X \). Moreover, \(\overline{u} \) is a continuous piecewise linear function whose restriction to \(\sigma_j \) equals \(\langle w_j, y \rangle \). On the other hand,
\[\int_{\sigma_j} e^{-\tau \overline{u}}dy = \int_{\mathbb{R}_{\geq 0}^n} e^{-\tau (y_1 + \cdots + y_n)}dy_1 \cdots dy_n = \prod_{i=1}^n \left(\int_{\mathbb{R}_{\geq 0}} e^{-\tau y_i}dy_i \right) = \frac{1}{\tau^n}, \]

since every \(n \)-dimensional cone \(\sigma_j \in \Sigma \) (\(j = 1, \ldots, l \)) is generated by a basis of the lattice \(N \). Using \(N_{\mathbb{R}} = \sigma_1 \cup \cdots \cup \sigma_l \) together with (3) and (5), we come to the required inequality. \(\Box \)

The next statement plays the crucial role in the proof of Theorem 1.1:

Theorem 3.4 Let \(X = \mathbb{P}_{\Delta} \) be a symmetric toric Fano \(n \)-fold and \(\tilde{\phi} \) is an arbitrary function from \(P_G(N_{\mathbb{R}}, \tilde{u}) \). Then
\[\tilde{u}(y) + \tilde{\phi}(y) \geq 0 \quad \forall y \in N_{\mathbb{R}}. \]
Proof. Let \(\tilde{\phi} \) be an arbitrary function from \(P_G(N_R, \check{u}) \). Consider the following moment map:

\[
\mu_{\check{u} + \tilde{\phi}} : N_R \to M_R, \\
y = (y_1, \ldots, y_n) \mapsto \text{Grad} (\check{u} + \tilde{\phi})(y) := \left(\frac{\partial (\check{u} + \tilde{\phi})}{\partial y_1}(y), \ldots, \frac{\partial (\check{u} + \tilde{\phi})}{\partial y_n}(y) \right).
\]

First of all we show that \(\mu_{\check{u} + \tilde{\phi}}(N_R) \subset \Delta \). Let \(z = \mu_{\check{u} + \tilde{\phi}}(y') \) for some \(y' \in N_R \). It follows from the convexity of \(\check{u} + \tilde{\phi} \) that for all \(y \in N_R \) one has

\[
\check{u}(y) + \tilde{\phi}(y) \geq \langle z, y - y' \rangle + \check{u}(y') + \tilde{\phi}(y').
\]

In other words, the function \(\check{u}(y) + \tilde{\phi}(y) - \langle z, y \rangle \) attains the global minimum at \(y' \in N_R \). Let \(\{w_1, \ldots, w_l\} \) be the set of all vertices of \(\Delta \) and \(\overline{\mu} := \max_{j=1,\ldots,l} \langle w_j, y \rangle \) the piecewise linear function as in the proof of [3.3]. Using obvious inequalities

\[
\log l + \overline{\mu} \geq \check{u} \geq \overline{\mu}
\]

and the fact that \(\tilde{\phi} \) is globally bounded on \(N_R \), we conclude that the piecewise linear function \(\overline{\mu}(y) - \langle z, y \rangle \) is bounded from below on the whole \(N_R \). The latter is possible only if \(\overline{\mu}(y) - \langle z, y \rangle \geq 0 \) for all \(y \in N_R \). Since \(\overline{\mu}(e) = 1 \) for all primitive integral generators of 1-dimensional cones \(\sigma \in \Sigma \), we obtain that for all these generators holds \(\langle z, e \rangle \leq 1 \), i.e., \(z \in \Delta \).

Since \(\sup_{N_R} \tilde{\phi} = 0 \), there exists a sequence \(\{q_k\}_{k \geq 1} \) of points \(q_k \in N_R \) such \(-1/k \leq \tilde{\phi}(q_k) \leq 0 \). Denote \(z_k = \mu_{\check{u} + \tilde{\phi}}(q_k) \). Since all \(z_k \) belong to \(\Delta \), we can assume without loss of generality that

\[
\lim_{k \to \infty} z_k = z \in \Delta
\]

(otherwise one chooses an appropriate subsequence of \(\{q_k\}_{k \geq 1} \)). It follows from the convexity of \(\check{u} + \tilde{\phi} \) that for all \(y \in N_R \) and all \(k \geq 1 \) one has

\[
\check{u}(y) + \tilde{\phi}(y) - \langle z_k, y \rangle \geq \check{u}(q_k) + \tilde{\phi}(q_k) - \langle z_k, q_k \rangle.
\]

Now we remark that \(\check{u}(q_k) \geq \overline{\mu}(q_k) \geq \langle z_k, q_k \rangle \) for all \(k \geq 1 \), because \(z_k \) is contained in \(\Delta \). Therefore, we have

\[
\check{u}(y) + \tilde{\phi}(y) - \langle z_k, y \rangle \geq -1/k, \quad \forall y \in N_R.
\]

Taking limit \(k \to \infty \), we obtain

\[
\check{u}(y) + \tilde{\phi}(y) - \langle z, y \rangle \geq 0, \quad \forall y \in N_R.
\]

(8)

We set \(r := |\mathcal{W}(X)| \) and consider the points \(z, \gamma_1 z, \ldots, \gamma_{r-1} z \), where \(\{\gamma_1, \ldots, \gamma_{r-1}\} \) the set of all elements of \(\mathcal{W}(X) \) which are different from the identity. Since \(\check{u} + \tilde{\phi} \) is \(\mathcal{W}(X) \)-invariant, we obtain from (8) \(r - 1 \) additional inequalities:

\[
\check{u}(y) + \tilde{\phi}(y) - \langle \gamma_j z, y \rangle \geq 0, \quad \forall y \in N_R, \quad j = 1, \ldots, r - 1.
\]

(9)
Now we remark that
\[z' := z + \sum_{j=1}^{r-1} \gamma_j z \]
is obviously $\mathcal{W}(X)$-invariant. Using the fact that X is a symmetric Fano n-fold, we conclude that $z' = 0$. Summing the inequalities in (8) and (9), we obtain
\[\tilde{u}(y) + \tilde{\phi}(y) \geq 0 \quad \forall y \in N_R. \]

\[\blacksquare \]

Proof of Theorem 1.1. Choose arbitrary $\lambda \in (0, 1)$ and $\tilde{\phi} \in P_G(N_R, \tilde{u})$. Using 3.4 and 3.3, we obtain
\[
\int_{N_R} e^{-\lambda \tilde{\phi} - \tilde{u}} dy = \int_{N_R} e^{-\lambda (\tilde{\phi} + \tilde{u})} e^{(\lambda - 1)\tilde{u}} dy \leq \sup_{N_R} \left\{ e^{-\lambda (\tilde{\phi} + \tilde{u})} \right\} \int_{N_R} e^{(\lambda - 1)\tilde{u}} dy \leq \frac{v(\Delta)}{(1 - \lambda)^n}.\]

Therefore, $\tilde{\alpha}_G \geq 1$. By 3.2 and 2.3, we conclude that X admits an Einstein-Kähler metric. \[\blacksquare \]

4 Some examples

In this section we consider series of examples of symmetric toric Fano n-folds which include many already known examples of toric Einstein-Kähler manifolds.

Example 4.1 Let V_k smooth projective toric Fano n-fold ($n = 2k$) defined by a fan Σ of regular polyhedral cones whose generators are $\pm e_1, \ldots, \pm e_n, \pm (e_1 + \cdots + e_n)$, where e_1, \ldots, e_n is an integral basis of the lattice N. The toric Fano n-fold V_k has been introduced by Voskresensky and Klyachko [22]. Since the corresponding polyhedron $\Delta = \Delta(V_k)$ is centrally symmetric, V_k is a symmetric toric Fano n-fold (see 3.1). We remark that V_1 is \mathbb{P}^2 with 3 points blown-up. The existence of an Einstein-Kähler metric on V_1 was proved by Siu [17], Tian-Yau [21], and Nadel [10]. The existence of an Einstein-Kähler metric on the 4-fold V_2 was proved by Nakagawa in [11] using results of Nadel [10].

Example 4.2 Let k, m be integers satisfying the condition $1 \leq k \leq m$. Denote by $S_{m,k}$ toric Fano n-fold ($n = 2m + 1$) which is the projectivization $\mathbb{P}(E)$ of the split bundle $E = \mathcal{O} \oplus \mathcal{O}(k, -k)$ over $\mathbb{P}^m \times \mathbb{P}^m$. This toric manifold is defined by a fan Σ whose cones have the following $2m + 4$ generators:
\[e_1, \ldots, e_{2m}, \pm e_{2m+1}, -(e_1 + e_2 + \cdots + e_m + ke_{2m+1}), \]
\[-(e_{m+1} + e_{m+2} + \cdots + e_{2m} - ke_{2m+1}), \]
where \(e_1, \ldots, e_{2m+1} \) is an integral basis of \(N \). There exist an authomorphisms \(\alpha \) of \(\Sigma \) of order \(m + 1 \) such that

\[
\alpha(e_{2m+1}) = e_{2m+1}, \quad \alpha(e_i) = e_{i+1}, \quad \alpha(e_{i+m}) = e_{i+m+1}, \quad i = 1, \ldots, m - 1;
\]

\[
\alpha(e_m) = -(e_1 + \ldots + e_m + ke_{2m+1}), \quad \alpha'(e_{2m}) = -(e_{m+1} + \ldots + e_{2m} - k e_{2m+1}).
\]

There exists an authomorphism \(\beta \) of order 2 defined by

\[
\beta(e_{2m+1}) = -e_{2m+1}, \quad \beta(e_i) = e_{i+m}, \quad \beta(e_{i+m}) = e_i, \quad i = 1, \ldots, m.
\]

The common fix point set of \(\alpha \) and \(\beta \) is exactly \(0 \in \mathbb{N}_\mathbb{R} \). By [3,1], \(S_{m,k} \) is a symmetric toric Fano \(n \)-fold.

The Einstein-Kähler manifold \(S_{m,k} \) was discovered by Sakane [15]. The existence of an Einstein-Kähler metric on \(S_{m,k} \) was obtained by Mabuchi using another method (see (10.3.2) in [3]). We remark that \(S_{m,1} \) is isomorphic to \(\mathbb{P}^{2m+1} \) blown-up at two skew \(m \)-dimensional subspaces. The existence of an Einstein-Kähler metric on \(S_{m,1} \) was proved independently by Nadel ([10], Example 6.4).

Example 4.3 Choose integers \(k, m \) such that \(0 \leq k \leq m \). In [12], Nakagawa introduced a toric Fano \(n \)-fold \(X_{m,k} \) \((n = 2m + 2) \) defined by a fan \(\Sigma \) whose \(2m + 8 \) generators are

\[
e_1, \ldots, e_{2m}, \pm e_{2m+1}, \pm e_{2m+2}, \pm(e_{2m+1} + e_{2m+2}),
\]

\[
-(e_1 + \ldots + e_m - k e_{2m+1}), \quad -(e_{m+1} + \ldots + e_{2m} + k e_{2m+1}).
\]

There exist an authomorphism \(\alpha \) of \(\Sigma \) of order \(m + 1 \) such that

\[
\alpha(e_{2m+1}) = e_{2m+1}, \quad \alpha(e_{2m+2}) = e_{2m+2},
\]

\[
\alpha(e_i) = e_{i+1}, \quad \alpha(e_{i+m}) = e_{i+m+1}, \quad i = 1, \ldots, m - 1;
\]

\[
\alpha(e_m) = -(e_1 + \ldots + e_m - k e_{2m+1}), \quad \alpha(e_{2m}) = -(e_{m+1} + \ldots + e_{2m} + k e_{2m+1}).
\]

On the other hand, there exists an authomorphism \(\beta \) of \(\Sigma \) of order 2 defined by

\[
\beta(e_i) = e_{i+m}, \quad \beta(e_{i+m}) = e_i, \quad i = 1, \ldots, m;
\]

\[
\beta(e_{2m+1}) = -e_{2m+1}, \quad \beta(e_{2m+2}) = -e_{2m+2}.
\]

The common fix point set of \(\alpha \) and \(\beta \) is exactly \(0 \in \mathbb{N}_\mathbb{R} \). By [3,1], \(X_{m,k} \) is a symmetric toric Fano \(n \)-fold. The existence of an Einstein-Kähler metric on \(X_{m,k} \) was proved by Nakagawa in [11] using results of Nadel [12].
Example 4.4 Let W_m be $\mathbb{P}^m \times \mathbb{P}^m$ blown-up along $m+1$ codimension-2 subvarieties $Z_i \cong \mathbb{P}^{m-1} \times \mathbb{P}^{m-1}$ defined by the equations $z_i = 0$, $z_i' = 0$ ($i = 0, 1, \ldots, m$), where $(z_0 : z_1 : \cdots : z_m)$ and $(z_0' : z_1' : \cdots : z_m')$ are homogeneous coordinates on two \mathbb{P}^m's. The toric manifold W_m is determined by a $2m$-dimensional fan $\Sigma \subset N_\mathbb{R}$ whose cones have the following $3m+3$ generators

$$e_1, \ldots, e_{2m}, -(e_1 + \ldots + e_m), -(e_{m+1} + \ldots + e_{2m}), -(e_1 + \ldots + e_{2m}),$$

$$e_i + e_{i+m}, \ i = 1, \ldots, m,$$

where e_1, \ldots, e_{2m} is an integral basis of N. There exists an automorphism α of Σ of order $m + 1$ such that

$$\alpha(e_i) = e_{i+1}, \ \alpha(e_{i+m}) = e_{i+m+1}, \ i = 1, \ldots, m - 1,$$

$$\alpha(e_m) = -(e_1 + \ldots + e_m), \ \alpha(e_{2m}) = -(e_{m+1} + \ldots + e_{2m}).$$

On the other hand, there exists an automorphism β of Σ of order 2 defined by

$$\beta(e_i) = e_{i+m}, \ \beta(e_{i+m}) = e_i, \ i = 1, \ldots, m.$$

The common fix point set of α and β is exactly $0 \in N_\mathbb{R}$. By [1], W_m is a symmetric toric Fano n-fold ($n = 2m$).

We remark that $W_1 = V_1$ is again \mathbb{P}^2 with 3 points blown-up. The toric Fano 4-fold W_2 is exactly the single one missed in the table [3]. In particular, we come to conclusion that there exist exactly 12 different Einstein-Kähler toric Fano 4-folds (cf. [12, 13] and [16], Example 4.7).

We remark that any Einstein-Kähler toric Fano manifold X of dimension $n \leq 4$ which can not be decomposed into a product of lower dimensional varieties is either a projective space, or one of the toric Fano manifolds from 4.1-4.4.

References

[1] V. Batyrev, Toroidal Fano 3-folds, Math. USSR, Izv. 19 (1982), 13-25.

[2] V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Alg. Geom. 3, No.3 (1994), 493-535.

[3] V. Batyrev, On the classification of toric Fano 4-folds, [math.AG/9801107].

[4] V. I. Danilov, Geometry of toric varieties, Russ. Math. Surv. 33, No.2 (1978), 97-154.

[5] G. Ewald, Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics, 168, New York, Springer (1996).

[6] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Studies 131, Princeton Univ. Press, 1993.
[7] A. Futaki, *An obstruction to the existence of Einstein Kähler metrics*, Invent. Math. 73 (1983), 437-443.

[8] T. Mabuchi, *Einstein-Kähler forms, Futaki invariants and convex geometry on toric Fano varieties*, Osaka J. Math. 24 (1987), 705-737.

[9] Y. Matsushima, *Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kaehlerienne*, Nagoya Math. J. 11 (1957), 145-150.

[10] A. Nadel, *Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature*, Ann. Math., II. Ser. 132, No.3 (1990), 549-596.

[11] Y. Nakagawa, *Einstein-Kähler toric Fano fourfolds*, Tohoku Math. J., II. Ser. 45, No.2 (1993), 297-310.

[12] Y. Nakagawa, *Classification of Einstein-Kähler toric Fano fourfolds*, Tohoku Math. J., II. Ser. 46, No.1 (1994), 125-133.

[13] Y. Nakagawa, *Combinatorial Formulae for Futaki Characters and Generalized Killing Forms on Toric Fano Orbifolds*, Preprint 1997.

[14] T. Oda, *Convex Bodies and Algebraic Geometry - An introduction to the theory of toric varieties*, Ergebnisse Math. Grenzgeb. (3), Vol. 15, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988.

[15] Y. Sakane, *Examples of compact Einstein Kähler manifolds with positive Ricci tensor*, Osaka J. Math. 23 (1986), 585-616.

[16] H. Sato, *Toward the classification of higher-dimensional toric Fano varieties*, Preprint, November 29, 1998.

[17] Y.-T. Siu, *The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group*, Ann. Math., II. Ser. 127, No.3 (1988), 585-627.

[18] G. Tian, *On Kähler-Einstein metrics on certain Kaehler manifolds with $c_1(M) > 0$*, Invent. Math. 89 (1987), 225-246.

[19] G. Tian, *Kähler-Einstein metrics on algebraic manifolds*, Proc. Int. Congr. Math., Kyoto/Japan 1990, Vol. I (1991), 587-598.

[20] G. Tian, *Kähler-Einstein metrics with positive scalar curvature*, Invent. Math. 130, No.1 (1997), 1-37.

[21] G. Tian, S.-T. Yau, *Kähler-Einstein metrics on complex surfaces with $C_1 > 0$*, Commun. Math. Phys. 112 (1987), 175-203.

[22] V. E. Voskresenskij, A.A. Klyachko, *Toroidal Fano varieties and root systems*, Math. USSR, Izv. 24 (1985), 221-244.
[23] K. Watanabe, M. Watanabe, *The classification of Fano 3-folds with torus embeddings*, Tokyo J. Math. 5 (1982), 37-48.