This paper presents an abstract, mathematical formulation of classical propositional logic. It proceeds layer by layer: (1) abstract, syntax-free propositions; (2) abstract, syntax-free contraction-weakening proofs; (3) distribution; (4) axioms \( p \lor p \).

Abstract propositions correspond to objects of the category \( G(\text{Rel}^L) \) where \( G \) is the Hyland-Tan double glueing construction, \( \text{Rel} \) is the standard category of sets and relations, and \( L \) is a set of literals. Abstract proofs are morphisms of a tight orthogonality subcategory of \( G \leq (\text{Rel}^L) \), where we define \( G \leq \) as a lax variant of \( G \). We prove that the free binary product-sum category (contraction-weakening logic) over \( L \) is a full subcategory of \( G(\text{Rel}^L) \), and the free distributive lattice category (contraction-weakening-distribution logic) is a full subcategory of \( G \leq (\text{Rel}^L) \). We explore general constructions for adding axioms, which are not \( \text{Rel} \)-specific or \( (p \lor p) \)-specific.

1 Introduction

Abstract propositions. Typically logicians define a proposition or formula as a labelled tree. Using de Morgan duality (\( \neg(A \land B) = \neg A \lor \neg B \) etc.) one needs only trees labelled by literals (variables and their duals) and constants on leaves and \( \lor \) and \( \land \) on internal nodes. To quotient by associativity and commutivity, one may use graphs (cographs or \( P_4 \)-free graphs [CLSB81]), for example,

\[
(p \lor q) \land (p \lor \neg p) \quad \Rightarrow \quad \begin{array}{c}
p \\
q
\end{array} \begin{array}{c}
p \\
\neg p
\end{array}
\]

drawing an edge between leaves iff they meet in the parse tree at a \( \land \). In this paper we go a step further, and define an abstract proposition as a set of leaves together with a set of subsets, called resolutions. For example,

\[
\begin{array}{c}
p \\
q \\
\neg p
\end{array}
\]

has the four leaves of the formula/graph depicted earlier, and two resolutions, the maximal independent sets (maximal co-cliques) of the graph. Any syntactic proposition can be reconstructed from its abstract leaf/resolution presentation. (The terminology ‘resolution’ here comes from the definition of MALL proof net [HG03].)

A key advantage of this abstraction is a crisp mathematical treatment of the logical units/constants false 0 and true 1. In the traditional syntactic world, 0 and 1 have the same stature as literals, taking up actual ink on the page as labelled leaves. They are artificially dual to each other, by fiat, and artificially act as units for syntactic \( \lor \) and \( \land \). The graphical representation gets closer to a nice treatment of units: the empty graph \( \epsilon \) is a unit for the operations \( \lor \) and \( \land \) (union and join) on graphs; however then one has degeneracy \( \epsilon = 0 = 1 \), so one must resort once again to artificially promoting 0 and 1 to actual labelled vertices, and the units remain ad hoc.

Abstract propositions succeed in having both units empty (no leaves), hence mathematically crisp as units for the operations \( \lor \) and \( \land \), without identifying them (as in the graph case \( \epsilon = 0 = 1 \)):

\[
\begin{array}{c}
\epsilon
\end{array}
\]

The unit 1 has no leaves and no resolution, and 0 has no leaves with one (empty) resolution.

Abstract proofs. Abstract propositions correspond to certain objects of the category \( G(\text{Rel}^L) \) studied in [Hug04a], where

- \( G \) is the Hyland-Tan double glueing construction [Tan97],
- \( \text{Rel} \) is the standard category of sets and relations, and
Figure 1: The four abstract proofs \( p \land p \rightarrow p \land p \) and dually, \( p \lor p \rightarrow p \lor p \). Each proof is a \( G(\text{Rel}^L) \) morphism, a binary relation between leaves which satisfies the resolution condition. The top row shows the eight morphisms in syntactic form. The bottom row shows the same morphisms between the corresponding abstract propositions, where the target propositions are specified by their resolutions (curved regions), and the source propositions by their coresolutions (rectangular regions). Note that the resolution condition is satisfied: there is a unique edge between any output resolution (curved region) and input coreolution (square region). The resolution condition characterises free binary product-sum categories.

- \( L = \{ p, p, q, \ldots \} \) is a set of literals.

Thus a \( G(\text{Rel}^L) \) morphism \( A \rightarrow B \) provides an off-the-shelf notion of an abstract proof of \( B \) from \( A \). By definition, a \( G(\text{Rel}^L) \) morphism is a certain kind of binary relation between the leaves of \( A \) and the leaves of \( B \). Figure 1 shows the four morphisms \( p \land p \rightarrow p \land p \), and dually, the four morphisms \( p \lor p \rightarrow p \lor p \). By definition of double glueing, a morphism \( R \) must satisfy:

(R) Resolution condition. \( R \) pulls resolutions backwards and pushes coresolutions forwards.

More precisely, \( R : A \rightarrow B \) maps resolutions of \( B \) to resolutions of \( A \), and coresolutions of \( A \) to coresolutions of \( B \), where a coresolution of \( X \) is a resolution of its dual \( \neg X \). In the special case that \( A \) and \( B \) are syntactic propositions, this coincides with the usual resolution condition on MALL proof nets [HG03]:

(R') Resolution condition. \( R \) has a unique edge between any output resolution and input coresolution.\(^1\)

We prove:

Theorem. \( G(\text{Rel}^K) \) contains as a full subcategory the free binary product-sum category generated by the set \( K \).

Thus we obtain an abstract, syntax-free formulation of pure contraction-weakening logic over a set of atoms \( K \): every morphism (abstract proof) \( A \rightarrow B \) is a composite of the units of the product/sum adjunctions, the natural transformations (inferences)

\[
\begin{align*}
\pi_i & : A_1 \land A_2 \rightarrow A_i \quad \text{(projection)} \\
\iota_i & : A_i \rightarrow A_1 \lor A_2 \quad \text{(injection)} \\
\delta & : A \rightarrow A \land A \quad \text{(diagonal)} \\
\epsilon & : A \lor A \rightarrow A \quad \text{(codiagonal)}
\end{align*}
\]

Adding distribution. The obvious candidates for a distribution has just one edge, i.e., \( R \) is simply a set of edges. The main text quotes this condition with \( \Gamma = A \rightarrow B = \neg X \lor B \). A resolution of \( \neg X \lor B \) is a union of a coreolution of \( A \) and a resolution of \( B \).

\(^1\) Recall from [HG03] the resolution condition on a set \( R \) of linkings on a sequent or proposition \( \Gamma \): \( R \) has a unique linking on any resolution of \( \Gamma \). In the current pure additive (i.e., product-sum) setting every linking on a sequent or proposition \( \Gamma \) has just one edge, i.e., \( R \) is simply a set of edges. The main text quotes this condition with \( \Gamma = A \rightarrow B = \neg X \lor B \). A resolution of \( \neg X \lor B \) is a union of a coreolution of \( A \) and a resolution of \( B \).
fail the resolution condition. They are not \( G(\text{Rel}^L) \) morphisms. Condition \((\mathcal{R})\) fails because the image of an output resolution is strictly larger than an input resolution:

\[
\begin{align*}
(A \land B) \lor (A \land C) & \quad \quad \quad (A \land (B \lor C)) \\
A \land (B \lor C) & \quad \quad \quad (A \lor (B \land C))
\end{align*}
\]

and uniqueness fails in the MALL resolution condition \((\mathcal{R}')\) since there are two edges between an output resolution and an input coresolution:

\[
\begin{align*}
A & \quad \quad \quad A \\
A & \quad \quad \quad C
\end{align*}
\]

(Both failures depicted above apply to both distributions.)

These failures suggest naively relaxing the resolution conditions, to admit distribution:

\[\leq\]

\[\leq\]

\[\leq\]

\[\leq\]

\[\leq\]

\[\leq\]

\[\leq\]

\[\leq\]

Here a super-(co)resolution is a superset of a (co)-resolution. Thus we have relaxed \((\mathcal{R})\) in the obvious way, admitting the first failure \(1\) depicted above, by allowing the images of (co)resolutions to spill beyond (co)resolutions. Similarly, we relax \((\mathcal{R}')\) in the obvious way to admit the second failure \(2\) depicted above, by simply dropping uniqueness:

\[\leq\]

\[\leq\]

\[\leq\]

\[\leq\]

\[\leq\]

\[\leq\]

\[\leq\]

\[\leq\]

\[\leq\]

Just as \((\mathcal{R}')\) coincided with \((\mathcal{R})\) on syntactic propositions, so \((\mathcal{R}')\) coincides with \((\mathcal{R})\).

We define the lax double glued category \( G_{\leq}(\text{Rel}^K) \) using \((\mathcal{R})\) in place of \((\mathcal{R})\). Surprisingly, this completely naïve relaxation of the resolution conditions, stimulated by the distribution failures, works:

**Theorem.** \( G_{\leq}(\text{Rel}^K) \) contains as a full subcategory the free distributive lattice category generated by the set \( K \).

Došen and Petrić [DP04] define a distributive lattice category as a binary product-sum category with a distribution, satisfying certain coherence laws. Thus we obtain an abstract, syntax-free formulation of contraction-weakening-distribution logic over a set of atoms \( K \).

**Axioms.** The final step to an abstract, syntax-free formulation of classical propositional logic is to add axioms \( 1 \rightarrow p \lor \overline{p} \) (hence by duality, also \( \overline{p} \land p \rightarrow 0 \)). We explore three natural but distinct ways of achieving this. The first two constructions are quite general, and are not specific to our \( \text{Rel} \)-based abstract proposition approach, nor to the specific axioms \( p \lor \overline{p}, q \lor \overline{q}, \ldots \). The third approach is more ad hoc and limited, being \( \text{Rel} \)-specific and \( (p \lor \overline{p}) \)-specific, but the style is more conventional in the literature. The three approaches are portrayed schematically in Figure 2.

(a) **Universal axiom construction.** Let the (potentially infinite) abstract proposition \( \text{AX} \), the universal axiom, be the product of all \( p \lor \overline{p} \) for complementary literals in \( L \). Its dual \( \text{CUT} = \neg \text{AX} \) is the universal cut. The universal boolean category \( \mathcal{B}_U \) has the objects of \( G_{\leq}(\text{Rel}^K) \) and a morphism \( f : A \rightarrow B \) is a \( G_{\leq}(\text{Rel}^K) \) morphism

\[
\text{AX} \land A \quad f \quad B \lor \text{CUT}
\]

Composition \( f : g \) is defined in the obvious way, via linear distribution \( l \) at the interface. See Figure 2(a).

(b) **Local axiom construction.** The local boolean category \( \mathcal{B}_L \) has objects as above, but a morphism \( A \rightarrow B \) is a \( G_{\leq}(\text{Rel}^K) \) morphism \( a \land A \rightarrow B \lor \beta \) for \( a \) a product of axioms and \( \beta \) a sum of cuts. Composition is again defined in the obvious way, via linear distribution. See Figure 2(b).
Related work. The category \( G(\text{Rel}^K) \) was studied extensively in [Hug04a], where it was shown to fully embed the category of bixtensional Chu spaces over \( K \) [Bar79, Bar98]. The definition of abstract proposition goes via a tight orthogonality [HS03] in \( G(\text{Rel}^K) \), related to totality spaces [Loa94]. The observation that the MALL resolution condition [HG03] characterises the free binary product-sum category was in [Hug02] in a more syntactic guise (via the deductive system in [CS01]): prior to that, Hongde Hu had already characterised the free binary product-sum category in a similar manner, using \( P_2 \)-free graphs (contractible coherence spaces) [Hu99]. In a syntactic setting, [LS05] also observes that relaxing uniqueness in the MALL resolution condition yields a classical proof net. The classical proof nets sketched in [Gir91] are fleshed out in [Rob03]. An abstract notion of classical proof net is presented in [Hug04b]. Categorical generalisations of boolean algebras are presented in [FP04] and [DP04].

2 Abstract propositions

Let \((X, S)\) be a set system, i.e., a set \(X\) and a set \(S\) of subsets of \(X\). Subsets \(s, t \subseteq X\) are orthogonal, denoted \(s \perp t\), if they intersect in a single point. The orthogonal of \(S\) is

\[ S^\perp = \{t \subseteq X : t \perp s \text{ for all } s \in S\} \]

Fix a set of literals \(L = \{p, \overline{p}, q, \overline{q}, \ldots\}\).

\begin{definition}
An abstract proposition \((X, S)\) is a set \(X\) of Hu’s work.
\end{definition}
of leaves, each labelled by a literal, and a set \( S \) of subsets of \( X \), called resolutions, satisfying:

- Double orthogonal: \( S^\perp\perp = S \).

Every syntactic \( \land \lor \)-formula \( \phi \) over the set of literals \( L \) (e.g. \( (p \lor q) \land (p \lor \overline{q}) \)) defines an abstract formula \( (X, S) \) with \( X \) the leaves of \( \phi \): let \( (X, E) \) be the simple graph with an edge \( xy \in E \) iff the leaves \( x \) and \( y \) meet at a \( \land \) in the parse tree of \( \phi \), and let \( S \) be the set of maximal stable sets of \( (X, E) \). (A stable set of a graph is a maximal set of vertices which contains no edge.) This represents \( \phi \) modulo associativity and commutativity of \( \land \) and \( \lor \). See page 1 for an example. Any abstract proposition so obtained is syntactic.

We define the following constants and operations.

- \( \text{True} \). \( 1 = (\emptyset, \emptyset) \), no leaves and no resolutions.
- \( \text{False} \). \( 0 = (\emptyset, \{\emptyset\}) \), no leaves and the empty resolution.
- \( \text{Negation/not} \). \( \neg(X, S) = (\overline{X}, S^\perp) \), where \( \overline{X} \) relabels positive literals \( p \) to negative literals \( \overline{p} \), and vice versa.
- \( \text{Sum/union/or} \). \( (X, S) \lor (Y, T) = (X + Y, \{s + t : s \in S, t \in T\}) \).

Thus the sum \( A \lor B \) takes disjoint union on leaves, and a resolution of \( A \lor B \) is the union of a resolution of \( A \) and a resolution of \( B \).

- \( \text{Product/join/and} \). \( A \land B = \neg(\neg A \lor \neg B) \).

Note that \( \neg\neg A = A \), \( A \land 1 = A \) and \( A \lor 0 = A \).

**Abstract truth.** An abstract proposition is true if every resolution contains a complementary pair of leaves (e.g. \( p \) and \( \overline{p} \)). Thus the constant \( 1 \) defined above (depicted on page 1) is true (since it has no resolution) but \( 0 \) is not (since it has an empty resolution). This definition of truth simply extends a well-known characterisation of truth for syntactic formulas: a syntactic formula \( A \) is true iff every component of its conjunctive normal form\(^3\) \( \text{CNF}(A) \) contains a complementary pair, and resolutions of \( A \) are in bijection with components of \( \text{CNF}(\overline{A}) \). The abstract leaf/resolution representation of propositions can be seen as “\( \text{CNF} + \) superposition information”, where the latter indicates which literal occurrences in different components of \( \text{CNF}(A) \) came from the same occurrence in \( A \).

### 3 Abstract proofs

Abstract propositions correspond to objects of the category \( \mathbb{G}(\text{Rel}^\perp) \) where \( \mathbb{G} \) is the Hyland-Tan double glueing construction and \( \text{Rel} \) is the standard category of sets and relations: \( (X, S) \) corresponds to the \( \mathbb{G}(\text{Rel}^\perp) \) object \( (X, S^\perp, S) \). This category fully embeds the category of bicontensional Chu spaces over \( L \). Abstract propositions correspond precisely to the objects of the tight orthogonality subcategory, in the sense of \([HS03]\). The morphisms of \( \mathbb{G}(\text{Rel}^\perp) \) provide a ready-made notion of abstract proof. A coresolution of an abstract proposition \( (X, S) \) is an element of \( S^\perp \). An abstract proof \( (X, S) \rightarrow (Y, T) \) between abstract propositions is a binary relation \( R \) between \( X \) and \( Y \) which respects labelling, i.e., \( xRy \) only if \( x \) and \( y \) are labelled with the same literal, and satisfies:

- **(R) Resolution condition.** \( R \) pulls resolutions backwards and pushes coresolutions forwards.\(^4\)

More precisely, the inverse image of \( R \) is a function \( T \rightarrow S \) and the direct image of \( R \) is a function \( S^\perp \rightarrow T^\perp \). As discussed in the Introduction, this coincides with the usual resolution condition on MALL proof nets \([HG03]\).

**Proposition 1** Between syntactic propositions, the resolution condition \( (R) \) on \( R : A \rightarrow B \) coincides with:

- **(R) Resolution condition.** \( R \) has a unique edge between any output resolution and input coresolution.

---

\(^3\)The result of exhaustively applying (co)distribution \( A \land (B \land C) \rightarrow (A \land B) \land (A \land C) \).

\(^4\)For logical reasons, we have taken resolutions as the contravariant part, so the “co” is opposite to usual \( \mathbb{G}(C) \). In the general \( \mathbb{G}(C) \) case, the sets of resolutions and coresolutions are independent, rather than the one determining the other by orthogonality, as we have with abstract propositions.
Lemma 1 (Distribution factorisation) Any \( D_K \) morphism \( R : A \land (B \lor C) \to D \) factorises through distribution \( d \), i.e., there exists \( R' \) such that \( R \) equals
\[
A \land (B \lor C) \xrightarrow{d} (A \land B) \lor (A \land C) \xrightarrow{R'} D.
\]
Proof. Core solutions of $A \land (B \lor C)$ are in bijection with core solutions of $(A \land B) \lor (A \land C)$. Thus the $R'$ induced by $R$ in the obvious way (duplicating every edge from a leaf of $A$) is well-defined, and factorises through distribution. □

Let $\text{mix } m_{A,B} : A \land B \to A \lor B$ be the composite $A \land B \to A \land (Z \lor B) \to (A \land Z) \lor (A \land B) \to A \lor B$ of injection, distribution and a two projections, for some $Z$. Thus the binary relation of $m_{A,B}$ is simply the identity between leaves.

**Lemma 2 (Mix-softness factorisation)** Any $D_K$ morphism $R : A \to B$ with $A$ a pure product\(^5\) and $B$ a pure sum is $\text{mix-soft}$: unless $R$ is the identity on a single leaf, it factorises through an injection, a projection, or mix.

Proof. If any leaf is not covered, $R$ factorises through an injection or a projection. Otherwise, assuming $R$ is not the identity on a single leaf, it factorises through mix at whichever of $A$ or $B$ contains more than one leaf. □

Proof (of Theorem 2). Coherence of distributive lattice categories with respect to a faithful functor to $\text{Rel}$ was proved in [DP14], and $\text{Rel}$ is the underlying morphism category of $G_\leq(\text{Rel}^L)$. Thus we need only show that every morphism of $D_K$ is canonical, i.e., generated from the canonical maps defining a distributive lattice category.

Given $R : A \to B$, using the distribution factorisation lemma we may assume $A$ is in disjunctive normal form (a sum of products of leaves), and since $D_K$ has sums, we may further assume $A$ is a pure product of leaves. Dually, we may assume $B$ is a sum of leaves. Apply the mix-softness factorisation lemma. □

Note that the above proof, in terms of the two factorisation lemmas, amounts to a Whitman-style characterisation theorem for free distributive lattice categories.\(^6\) (See [Hu99] for the pure binary product-sum case.)

5 Axioms

So far, with the lax double glued category $G_\leq(\text{Rel}^L)$, we have an abstract setting for contraction-weakening-distribution logic. The setting is canonical in the sense that it fully embeds the free distributive lattice category. The category $G_\leq(\text{Rel}^L)$ is also equipped with a duality $\neg$, a contravariant full and faithful functor (a de Morgan duality). The final step to an abstract, syntax-free formulation of classical propositional logic is to add axioms $1 \to p \lor \neg p$ (hence by duality, also cuts $\neg p \land p \to 0$).

We explore three natural but distinct ways of achieving this. Each was discussed and motivated in the Introduction, and the idea behind composition was sketched in Figure 2.

The first two constructions are quite general, and are not specific to our $\text{Rel}$-based abstract proposition approach, nor to the specific axioms $p \lor \neg p, q \lor \neg p, \ldots$. The third approach is more ad hoc and limited, being $\text{Rel}$-specific and $(p \lor \neg p)$-specific, but the style is more conventional in the literature, e.g. [KM71, Gir87, BCST96].

5.1 Universal axiom construction

Let the (potentially infinite) abstract proposition $AX$, the universal axiom, be the product of all $p \lor \neg p$ for complementary literals in $L$. Its dual $\text{CUT} = \neg AX$ is the universal cut. The universal boolean category $B^\text{ult}_L$ has the objects of $G_\leq(\text{Rel}^L)$ and a morphism $f : A \to B$ is a $G_\leq(\text{Rel}^L)$ morphism $AX \land A \quad \underline{f} \quad B \lor \text{CUT}$

Composition $g$ is defined in the obvious way, via linear distribution $l$ at the interface:

\[
\begin{array}{c}
AX \land A
\
(\pi_1, f)
\
AX \land (B \lor \text{CUT})
\
l
\quad (AX \land B) \lor \text{CUT}
\
[g, i_2]
\
C \lor \text{CUT}
\end{array}
\]

\[^5\text{i.e., } A \text{ is a product of one or more leaves, i.e., } A = (X, S) \text{ with } S \text{ comprising every singleton } \{x\} \text{ for } x \in X.\]

\[^6\text{Hence the generality of defining mix as a distribution composite, rather than directly as the identity binary relation between leaves.}\]
On syntactic propositions, there is a morphism \( A \to B \) iff \( A \Rightarrow B = \neg A \lor B \) is true. An abstract classical proof of \( A \) in \( B^a_L \) is a morphism \( 1 \to A \). Thus \( A \) has an abstract classical proof in \( B^a_L \) iff it is true.

5.2 Local axiom construction

This construction is similar to the one above. The local boolean category \( B^a_L \) has objects as above, but a morphism \( A \to B \) is a \( G_\leq (\text{Rel}^K) \) morphism \( a \land A \to B \land \beta \) for \( a \) a product of (zero or more) axioms \( p \land \vec{p} \) and \( \beta \) a sum of (zero or more) cuts \( \vec{p} \land p \). Composition is again defined in the obvious way, via associativity and linear distribution at the interface:

\[
\begin{align*}
(b \land a) \land A \\
\text{assoc} \\
b \land (a \land A) \\
id \land f \\
b \land (B \lor \beta) \\
\_ \\
(b \land B) \lor \beta \\
g \lor id \\
(C \lor \gamma) \lor \beta \\
\text{assoc} \\
C \lor (\gamma \lor \beta)
\end{align*}
\]

See Figure 2(b) for a schematic supressing canonical maps.

5.3 Linkings

Although the following approach is more ad hoc, in that it does not generalise as the two constructions above, it is a standard idea in linear logic \([\text{Gir87}]\), traceable as far back as Kelly-Mac Lane graphs for closed categories \([\text{KM71}]\). Let Link denote the category of sets and linkings, where a linking \( X \to Y \) is a simple graph on the disjoint union \( X \cup Y \). Composition is the usual alternating path composition (see Figure 2(c)). Let the category \( \text{Link}_L \) be the homset extension of \( G_\leq (\text{Rel}^K) \) obtained by permitting arbitrary linkings between leaves which respect labelling (with edges of \( A \to B \) within \( A \) or \( B \) going between dual leaves \( p \to \vec{p} \)). Since Link is compact closed under disjoint union, \( \text{Link}_L \) is star-autonomous under \( \land \). Let \( B^a_L \) the linking boolean category, be the restriction of \( \text{Link}_L \) to syntactic propositions while retaining the lax MALL resolution condition \((\mathcal{R}_\leq')\) from \( G_\leq (\text{Rel}^K) \), i.e., there is an edge in every resolution of \( A \Rightarrow B = \neg A \lor B \). Since the ambient category \( \text{Link}_L \) is star-autonomous, and objects are syntactic, by a routine structural induction \((\mathcal{R}_\leq')\) is preserved by composition. It is immediate from \((\mathcal{R}_\leq')\) that \( A \Rightarrow B \) is true iff there is a morphism \( A \to B \). The lax MALL resolution condition is also studied in \([\text{LS05}]\), in a more syntactic setting.

References

[Bar79] M. Barr. *-Autonomous categories, volume 752 of *Lecture Notes in Mathematics*. Springer-Verlag, 1979.

[Bar98] M. Barr. The separated extensional chu category. *Theory and Applic. Categories*, 4(6):137–147, 1998.

[BCST96] R. F. Blute, J. R. B. Cockett, R. A. G. Seely, and T. H. Trimble. Natural deduction and coherence for weakly distributive categories. *Journal of Pure and Applied Algebra*, 113:229–296, 1996.

[CLSB81] D.G. Corneil, H. Lerchs, and L.K. Stewart-Burlingham. Complement reducible graphs. *Disc. Appl. Math.*, 1981.

[CS01] R. Cockett and R. Seely. Finite product-sum logic. *Theory and Applic. Categories*, 8(5):63–99, 2001.

[DP04] K. Došen and Z. Petrić. Proof-Theoretical Coherence. Preprint, Mathematical Institute, Belgrade, 2004.

[FP04] C. Führmann and D. Pym. On the geometry of interaction for classical logic. In *Proc. Logic in Computer Science ’04*, 2004.

[Gir87] J.-Y. Girard. Linear logic. *Theoretical Computer Science*, 50:1–102, 1987.

[Gir91] J.-Y. Girard. A new constructive logic: Classical logic. *Mathematical Structures in Computer Science*, 1(3):255–296, 1991.

[HG03] D.J.D. Hughes and R. van Glabbeek. Proof nets for unit-free multiplicative additive linear logic (extended abstract). *Proc. Logic in Computer Science ’03*, 2003.
[HS03] J.M.E. Hyland and A. Schalk. Glueing and orthog-
onality for models of linear logic. *Theoretical Com-
puter Science*, 294:183–231, 2003.

[Hu99] H. Hu. Contractible spaces and maximal maps. *Ele-
ctronic Notes in Theor. Comp. Sci.*, 20, 1999.

[Hug02] D.J.D. Hughes. A canonical graphical syntax for
non-empty finite products and sums. Technical
report, http://boole.stanford.edu/~dominic/papers,
2002.

[Hug04a] D.J.D. Hughes. Intensional double glueing, bie-
tensional collapse, and the Chu construction. In
*Mathematical Foundations of Programming Seman-
tics*, volume 83 of *Electronic Notes in Theoretical
Computer Science*. Elsevier, 2004.

[Hug04b] D.J.D. Hughes. Proofs without syntax. Submitted
for publication. Math.LO/0408282 at arXiv.org;
http://boole.stanford.edu/~dominic/papers, August
2004.

[Joy95] A. Joyal. Free bicomplete categories. *Math. Reports,
XVII*:219–225, 1995.

[KM71] G.M. Kelly and S. Mac Lane. Coherence in closed
categories. *J. Pure and Applied Algebra.*, 1:97–140,
1971.

[Loa94] R. Loader. Linear logic, totality and full complete-
ness. In *Proc. 9th Annual IEEE Symp. on Logic in
Computer Science, Paris, July 1994*, pages 292–298.
IEEE Computer Society Press, 1994.

[LS05] F. Lamarche and L. Straßburger. Naming proofs in
classical propositional logic. In *Proc. Typed Lambda
Calculus ’05*, Lecture Notes in Computer Science,
2005. To appear.

[Pow98] J. Power. 2-Categories. *BRICS Notes Series NS-98-
7*, 1998.

[Rob03] E. Robinson. Proof nets for classical logic. *J. Logic
and Computation*, 13(5):777–797, 2003.

[Tan97] A. Tan. *Full Completeness Results for Models of
Linear Logic*. PhD thesis, Cambridge, Oct 1997.