Response of deficit drip irrigation on production and growth parameters of capsicum (capsicum annuum) inside naturally ventilated polyhouse

Dimple1, S R Bhakar1, S S Lakhawat2, Jitendra Rajput3, H K Mittal1 and Mahesh Kothari1

1Department of Soil and Water Engineering, College of Technology and Engineering, Maharana Pratap University of Agriculture and Technology, Udaipur-313001, Rajasthan, India
2Department of Horticulture, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur-313001, Rajasthan, India
3KVK, Piprakothi East Champaran-845429, Bihar, India

E-mail: dimpibachchan20@gmail.com

Abstract. A field experiment was conducted during March-August 2017 at Plasticulture farm College of Technology & Engineering, Udaipur. Randomized block design (RBD) was adopted for conducting field trial with six levels of irrigation viz., 100, 90, 80, 70, 60 and 100% (control without mulch) of crop evapotranspiration and 4 replication. Capsicum (shimla mirch locally known in Udaipur) cv Indra was irrigated with drip irrigation (also known as trickle irrigation) technique. Measurements of crop biometric parameters namely plant height, number of leaves and individual fruit weight was done at pre scheduled time throughout the crop season. Results revealed that biometric parameters found maximum in case of 80% irrigation level whiles minimum in 60% irrigation level treatment. The highest yields (42.64 t/ha) was also recorded in the same treatment. Therefore, it can conclude that by scheduling irrigation to meet 80% of crop ET will result in optimum crop yields and enhances crop water use efficiency of capsicum grown inside naturally ventilation polyhouse (NVPH).

1 Introduction
Capsicum is a vegetable crop grown throughout the world in wide range of climatic conditions. South Korea and Saudi Arabia are leading importers of capsicum [1]. Plastic mulches minimise the losses occurred due to the weed, trash and also used in crop cultivation [2]. Maximum net-return found by the use of silver-black mulch and also very economical [3]. The trickle irrigation use, increases water use efficiency (60-200 %), water saving (20-60%), fertilization requirement reduction (20-30 %) and (7-25 %) yield increases than traditional method of irrigation [4]. Estimation of crop evapotranspiration and determination of crop water demand enable proper irrigation scheduling which could enhance water use efficiency and crop production [5].

Deficit irrigation (DI) is the water saving technique in which crops are exhibited to a some level of water stress either during a particular period or throughout the complete growing season [6]. Deficit irrigation as technique through which crop root zone partially met the water than that of required evapotranspiration [7]. DI is an adequate strategy for sunflower and irrigation is excessively important
between flowering and maturity stage of sunflower [8]. During 2014-2015 shimla mirch production of the India was 172 thousand tonne from 30 thousand hectare [9].

There is few information reported on shimla mirch response to different irrigation water levels. Therefore, present study was carried out to determine the response of shimla mirch under trickle irrigation in naturally NVPH.

2 Methods and materials
2.1 Experimental site
Udaipur is located at South side of the Rajasthan at 24º 35’31.5” to 24º 35’38.5” N-latitude, 73º 44’18.2” to 73º 44’21.1” E-longitude at the elevation 582.17 m above mean sea level, average annual rainfall of this place is 654.3 mm, the maximum and minimum temperatures are 46 °C and 5 °C respectively [10].

The daily irrigation water requirement was estimated using Food and Agriculture Organization Penman-Monteith equation. The flow requirement per plant was estimated using given formula:

\[ W_r = \frac{\text{Crop area} \times \text{ET}_0 \times K_c \times W_a}{E_u \times 10,000} \]  

Where,
- \( W_r \) = water requirement, (lit/hour/plant),
- \( \text{Crop area} \) = row to row spacing (cm) × plant to plant spacing (cm) of the crop,
- \( \text{ET}_0 \) = reference evapotranspiration, (mm/day),
- \( K_c \) = crop coefficient,
- \( W_a \) = percent wetted area of total crop area,
- \( E_u \) = uniformity coefficient of drip system, decimal

\[ t = W_r / q \]  

Where, \( q \) = the average emitter flow rate, liter/hr, \( t \) = the time of irrigation, hr.

3 Physiological parameter and yield of crop
3.1 Biometry measures
3.1.1 Mean plant height & mean number of leaves per plant. 5 plants were selected randomly and marked in each treatment for the observing of average plant height, and mean of number of leaves per plant were work out at 30, 60, 90, 120 and 150 DAT (days after transplanting of shimla mirch to the polyhouse).

3.2 Procreation parameters
3.2.1 Per plant count of flowers. Fully opened flowers were counted, summed, mean was calculated at 30, 60, 90, 120, and 150 days for each selected plant.
3.2.2 Per plant count of fruits. Mature fruits that were harvested from the selected plants in each picking were recorded until the final harvest.
3.2.3 Percent fruit sets. Number of fruit sets were counted and recorded at regular interval during the growing season and % fruit sets were estimated by formula:

\[ \text{Per cent fruit sets} = \frac{\text{No. of fruit sets}}{\text{No. of flower tagged}} \times 100 \]  

3.3 Yields parameters
3.3.1 Individual fruit weight (gm). Individual fruits weight from the tagged plants weighed and average readings were recorded in grams.
3.3.2 Fruit yields (kg). The weight of marketable fruits harvested from all treatment was quantified till last harvest and overall yield of fruits per plant was expressed in kilograms.
3.3.3 Fruit yields (tonnes/hectare). Fruit yields for each treatment were obtained by choosing plant in each replication.
4 Statistical analysis
The statistical analyses of data were carried out by statistical method known as “Analysis of variance” (ANOVA) appropriate for the “Randomized Block Design.” The standard error (SE) for each factor and their interaction was found out. Wherever, the outcomes vary significantly, critical difference (CD) at five % level of significance was calculated.

5 Results & discussion
5.1 Biometry measures
5.1.1 Mean plant height and mean no. of leaves per plant. Plant height and leaves data were affected by irrigation treatments as shown in Figure 1 & 2. At 30 DAT, plant height and no. of leaves were observed maximum 73.25 cm and 20 in T₃ (trickle irrigation with 80 % of ETₑ with mulch) treatment, which is significantly good than rest five irrigation treatments. The minimum height of plant and no. of leaves, 65.05 cm, & 16 were recorded in T₅ treatment. Similar trends were noticed at 60 DAT, 90 DAT, and 120 DAT and at the 150 DAT. The result data clearly indicates impact of the irrigation treatments were obtained significant at 5% level of significance.

Mulch application increases the soil temperature results in increased microbiological activity of the crop root zone which increases the availability of nutrients to the plant. The results of higher growth rate in T₃ treatment were also reported by Arya et al., [11] for shimla mirch crop. Count of no. of leaves per plant were highest (57.28) in treatment T₃ at 150 DAT. Sharma et al., [12] also found the same trend for tomato crop.

5.2 Procreation parameters
5.2.1 Per plant flowers count. Average cumulative per plant flowers count at different growth stages of crop were affect by different irrigation treatments as shown in Figure 3. At 60 DAT, among the six
irrigation treatments, maximum 9.21 in T$_3$. Lowest per plant flower count 6 was observed in T$_5$ treatment.

5.2.2 Per plant fruit count and percent sets of fruits. Graphical representation of mean values per plant fruit count and percent sets of fruits is shown in Figure 4 and 5. At last harvesting (150 DAT), among the six different irrigation treatments, cumulative per plant fruit count were observed highest 11.31 in T$_3$ treatment, which is significantly good over in the all rest treatments.

![Figure 3. Flowers/ plant affected by deficit irrigation.](image)

![Figure 4. Number of fruits/plant influenced by deficit irrigation.](image)

The highest percent fruit sets (51.07 %) was recorded in treatment T$_3$, followed by treatment T$_2$ (47.16%). This could be results of increased fruit production per plant due to higher fruit sets percent under the polyhouse because of less interference of adverse climatic conditions.

5.2.3 Yields Parameters. Mean values of single weight of fruit and fruit yields per hectare (t/ha) is represented in Figure 6 and Figure 7, respectively. ANOVA table of fruit yield (t/ha) shown in table 1. Among the different irrigation treatments, maximum single weight of fruit (94.33 gm) was recorded under treatment T$_3$ and minimum (42.53 gm) was recorded under treatment T$_5$. 
Table 1. Statistical values of fruit yield (t/ha).

| SOV* | Df** | SS*** | MSS**** | F-cal | F-tab |
|------|------|-------|----------|-------|-------|
| Replication | 3 | 439.11 | 146.37 | 12.21 |       |
| Treatment | 5 | 2361.43 | 472.29 | 39.39 | 2.90  |
| Error | 15 | 179.84 | 11.99   |       |       |
| Total | 23 | 2980.38 | 129.58  |       |       |

$SE_m = 1.73$, Critical difference (5%) = 5.22, Coefficient of variance (%) = 13.74

*Source of variation
**Degree of freedom
***Sum of squares
****Mean squares

Figure 5. Percent sets of fruit influenced by deficit irrigation.

Figure 6. Single weight of fruit affected by deficit irrigation.
Figure 7. Effect of deficit irrigation on fruit yields.

The fruit weight influences total production of shimla mirch. Average fruit weight obtained in treatment T3 was more than what had been found in treatment T5. This increment in the crop yield is due to increase dimension that is was largely due to the increased length and breadth and ultimately volume of the fruit. This enhancement of fruit size is due to optimum absorption of essential nutrients and existence of favourable environment in the crop root zone for better growth. Harmanto et al., [13] have also mentioned similar kind of results for tomato crop. The marketable fruit yields of shimla mirch was higher (1065.98 gm/plant and 42.64 t/ha) in treatment T3 as compared to treatment T5 (298.98 gm/plant and 11.96 t/ha).

6 Conclusions
Deficit irrigation is an advance and recent water saving approach appropriate in water scarce regions. It has a vast scope to enhance crop water productivity in the dry, sub-humid agro-climatic conditions of Udaipur. This study concluded that saving of 10-20 per cent of water can be achieved using deficit irrigation technique. Statistical analysis depicted that irrigation treatment T3 found best and treatment T5 least reproductive in terms of both crop growth and yields production of plant. Trickle irrigation applied with 80 per cent of ETc was found to be the optimum irrigation amount. The maximum shimla mirch yields of 42.64 tonnes/ha was obtained under this treatment.

References
[1] Shukla C 2013. Scheduling of irrigation for capsicum crop under protected cultivation. M.Tech. Thesis submitted to College of Technology and Engineering, MPUAT, Udaipur (Rajasthan). p 1.
[2] Ngouajio M and Ernest J 2004. Light transmission through colored polyethylene mulches affects weed populations. *Horticulture Science* 39(6) 1302-1304. Crossref
[3] Parmar H N, Polara N D and Viradiya R R 2013. Effect of mulching material on growth, yields and quality of watermelon (Citrullus Lanatus Thunb) cv. Kiran. *Universal Journal of Agricultural Research*, 1(2) 30-37.
[4] Kaushal A, Patole R and Singh K G 2012. Trickle irrigation in sugarcane: A review, *Journal of Agriculture Review*, 33 211–219.
[5] Fisher D K 2012. Simple weighing lysimeters for measuring evapotranspiration and developing crop coefficients, *Int. J. Agric. Biol. Eng.*, 5(3) 35-43. Crossref
[6] Patane C, Tringali S and Sortino O 2011. Effects of deficit irrigation on biomass, yields, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. * Scientia Horticulturae*, 129(4) 590-596.
[7] Owusu-Sekyere J D, Sam-Amoah L K, Teye E and Osei B P 2012. Crop coefficient (kc), water requirement and the effect of deficit irrigation on tomato in the coastal savannah zone of Ghana. *International Journal of science and nature, 3*(1) 2229-6441. Crossref

[8] Todorovic M, Albrizio R and Zivotic L 2007. Deficit irrigation of sunflower under Mediterranean environment conditions. In N. Lamaddalena, C. Bogliotti, M. Todorovic, & A. Scardigno (Eds.), *Water saving in Mediterranean agriculture and future research needs, 1* 153-168.

[9] Anonymous 2015. Horticulture Statistics Division, Department of Agriculture, Cooperation & Farmers Welfare Ministry of Agriculture & Farmers, Welfare, GOI Published in India by Oxford University Press, YMCA Library Building, New Delhi, India.

[10] Dimple, Bhakar S R, Lakhawat S S and Kothari M 2017. Effect of deficit irrigation and plastic mulch on yield and water use efficiency of drip irrigated capsicum under naturally ventilated polyhouse. *Int.J.Curr.Microbiol.App.Sci. 6*(12).

[11] Arya C K, Purohit R C, Dashora L K, Singh P K and Kothari M 2017. Estimation of Irrigation Water Requirement of Drip Irrigated Bell Pepper (*capsicum annuum* l.var. *Grossum*) in Jhalawar District of Rajasthan. *Chemical Science Review and Letters, 6* 225-230. Crossref

[12] Sharma P, Kothari M and Lakhawat S S 2015. Water requirement on drip irrigated tomatoes grown under shade net house. *Engineering and Technology in India, 6* 12-18. Crossref

[13] Harmanto, Salokhe V M, Babal M S and Tantau H J 2005. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. *Agricultural Water Management, 71* 225-242. Crossref