COHOMOLOGICAL DIMENSION WITH RESPECT TO THE LINKED IDEALS

MARYAM JAHANGIRI1 AND KHADIJEH SAYYARI2

Abstract. Let R be a commutative Noetherian ring. Using the new concept of linkage of ideals over a module, we show that if a is an ideal of R which is linked by the ideal I, then $\text{cd} (a, R) \in \{ \text{grade } a, \text{cd} (a, H^\text{grade}_I a(R)) + \text{grade } a \}$, where $\mathfrak{c} := \bigcap_{p \in \text{Ass } R} \mathfrak{p} - V(a)$ p. Also, it is shown that for every ideal b which is geometrically linked with a, $\text{cd} (a, H^\text{grade}_b b(R))$ does not depend on b.

1. Introduction

Let R be a commutative Noetherian ring, a be an ideal of R and M be an R-module. For each $i \in \mathbb{Z}$, $H^i_a(M)$ denotes the i-th local cohomology module of M with respect to a (our terminology on local cohomology modules comes from [1]). Vanishing of these modules is an important problem in this topic and it attracts lots of interest, see for example [7] and [12]. One of the most various invariants in local cohomology theory is the cohomological dimension of M with respect to the ideal a, i.e.

$$\text{cd} (a, M) := \text{Sup } \{ i \in \mathbb{N}_0 | H^i_a(M) \neq 0 \}.$$

In this paper, we consider the cohomological dimension of M with respect to the "linked ideals" over it.

Following [13], two proper ideals a and b in a Cohen-Macaulay local ring R is said to be linked if there is a regular sequence \underline{x} in their intersection such that $a = (\underline{x}) :_R b$ and $b = (\underline{x}) :_R a$. In a recent paper, [5], the authors introduced the concept of linkage of ideals over a module and studied some of its basic properties. Let a and b be two non-zero ideals of R and M denotes a non-zero finitely generated R-module. Assume that $aM \neq M \neq bM$ and let $I \subseteq a \cap b$ be an ideal generating by an M-regular sequence. Then the

\footnotesize
\textbf{2010 Mathematics Subject Classification.} 13C40, 13D45.
\textbf{Key words and phrases.} Linkage of ideals, local cohomology modules.
ideals a and b are said to be linked by I over M, denoted by $a \sim_{(I;M)} b$, if $bM = IM :_M a$ and $aM = IM :_M b$. This concept is the classical concept of linkage of ideals in [13], where $M = R$. Note that these two concepts do not coincide [5, 2.6] although, in some cases they do (e.g. Example [5, 2.4]). We can also characterize linked ideals over R, see [6, 2.7].

As an application of this generalization, one may characterize Cohen-Macaulay modules in terms of the type of linked ideals over it, see [6, 3.5].

In this paper, we consider the above generalization of linkage of ideals over a module and, among other things, study the cohomological dimension of an R-module M with respect to the ideals which are linked over M. In particular, in Theorem 2.7 we show that if a is an ideal of R which is linked by I over M, then

$$\text{cd} (a, M) \in \{ \text{grade } M a, \text{cd} (a, H^{\text{grade } M a}_c (M)) + \text{grade } M a \},$$

where $c := \bigcap_{p \in \text{Ass } M} M / V(a)_p$.

And in Corollary 2.11 it is shown that for every ideal b which is geometrically linked with a over M, $\text{cd} (a, H^{\text{grade } M b}_b (M))$ is constant and does not depend on b.

Also, we show that if $\text{cd} (b, R) < \dim (R)$ for any linked ideal b over R, then $\text{cd} (a, R) < \dim (R)$ for any ideal a (Corollary 2.17).

Throughout the paper, R denotes a commutative Noetherian ring with $1 \neq 0$, a and b are two non-zero proper ideals of R and M denotes a non-zero finitely generated R-module.

2. Cohomological dimension

The cohomological dimension of an R-module X with respect to a is defined by

$$\text{cd} (a, X) := \text{Sup } \{ i \in \mathbb{N}_0 | H^i_a (X) \neq 0 \}.$$

It is a significant invariant in local cohomology theory and attracts lots of interest, see for example [7] and [12]. In this section, we study this invariant via "linkage". We begin by the definition of our main tool.

Definition 2.1. Assume that $aM \neq M \neq bM$ and let $I \subseteq a \cap b$ be an ideal generated by an M-regular sequence. Then we say that the ideals a
and \(b \) are linked by \(I \) over \(M \), denoted \(a \sim_{(I; M)} b \), if \(bM = IM :_{M} a \) and \(aM = IM :_{M} b \). The ideals \(a \) and \(b \) are said to be geometrically linked by \(I \) over \(M \) if \(aM \cap bM = IM \). Also, we say that the ideal \(a \) is linked over \(M \) if there exist ideals \(b \) and \(I \) of \(R \) such that \(a \sim_{(I; M)} b \). A is \(M \)-selflinked by \(I \) if \(a \sim_{(I; M)} a \). Note that in the case where \(M = R \), this concept is the classical concept of linkage of ideals in [13].

The following lemma, which will be used in the next proposition, finds some relations between local cohomology modules of \(M \) with respect to ideals which are linked over \(M \).

Lemma 2.2. Assume that \(I \) is an ideal of \(R \) such that \(a \sim_{(I; M)} b \). Then

1. \(\sqrt{I + \text{Ann } M} = \sqrt{(a \cap b) + \text{Ann } M} \). In particular, \(H_{a \cap b}^{i}(M) \cong H_{I}^{1}(M), \) for all \(i \).
2. Let \(I = 0 \). Then, \(\sqrt{0 :_{\text{Ann } M} a} = \sqrt{\text{Ann } aM} = \sqrt{\text{Ann } bM} \). Therefore, \(H_{\text{Ann } bM :_{M} a}^{i}(M) \cong H_{\text{Ann } aM}^{i}(M) \cong H_{b}^{i}(M) \). In other words, if \(M \) is faithful, then \(H_{a}^{i}(M) \cong H_{0 :_{M} a}^{i}(M) \).

Proof. (i) Let \(r \in ab \). By the assumption, \(rM \subseteq IM \). Therefore, in view of [8, 2.1], there exist an integer \(n \) and \(b_{1}, ..., b_{n} \in I \) such that \((r^{n} + r^{n-1}b_{1} + ... + b_{n})M = 0 \). This implies that \(r + \text{Ann } M \subseteq \sqrt{I + \text{Ann } M} \), as desired. Now, the result follows using [1, 4.2.1].

(ii) Let \(r \in \text{Ann } aM \). Then, by the assumption, \(rM \subseteq bM \) and using similar argument in part (i) one can see that \(r + \text{Ann } M \subseteq \sqrt{\text{Ann } bM} \). Also, via the fact that \(ab \subseteq \text{Ann } M \), \(\sqrt{\text{Ann } aM} \subseteq 0 :_{\text{Ann } M} a \). This proves the desired equalities. Now, the isomorphisms between local cohomology modules follows using [1, 4.2.1].

Proposition 2.3. Let \(I \) be an ideal of \(R \) such that \(a \sim_{(I; M)} b \) and set \(t := \text{grade }_{M} I \). Then \(\text{cd } (a + b, M) \leq \text{Max } \{ \text{cd } (a, M), \text{cd } (b, M), t + 1 \} \). Moreover, if \(\text{cd } (a + b, M) \geq t + 1 \), e.g. \(a \) and \(b \) are geometrically linked over \(M \), then the equality holds.

Proof. Note that \(H_{I}^{i}(M) = 0 \) for all \(i \neq t \), by [1, 1.3.9 and 3.3.1]. Now, the result follows from 2.2 and using the Mayer-Vietoris sequence.
\[... \rightarrow H_{a \cap b}^1(M) \rightarrow H_{a+b}^{i+1}(M) \rightarrow H_a^{i+1}(M) \oplus H_b^{i+1}(M) \rightarrow H_{a \cap b}^{i+1}(M) \rightarrow ... \]

The following corollary, which is immediate by the above proposition, shows that, in spite of [3, 21.22], parts of an \(R \)-regular sequence can not be linked over \(R \).

Corollary 2.4. Let \((R, m) \) be local and \(x_1, ..., x_n \in m \) be an \(R \)-regular sequence, where \(n \geq 4 \). Then \((x_{i_1}, ..., x_{i_j}) \sim (x_{i_{j+1}}, ..., x_{i_{2j}}) \), for all \(1 < j \leq \left\lfloor \frac{n}{2} \right\rfloor \) and any permutation \((i_1, ..., i_{2j}) \) of \(\{1, ..., 2j\} \).

Let \(M \neq aM \). It is well-known, by [1, 1.3.9], that \(\text{grade}_M a \leq \text{cd}_M (a, M) \). Then \(M \) is said to be relative Cohen-Macaulay with respect to \(a \) if

\[\text{cd}_M (a, M) = \text{grade}_M a. \]

In the following proposition we compute the cohomological dimension of an \(R \)-module \(M \) with respect to \(a \) in two cases.

Proposition 2.5. Let \(I \) be an ideal of \(R \) generating by an \(M \)-regular sequence of length \(t \) and \(a \sim (I; M) b \).

(i) If \(M \) is relative Cohen-Macaulay with respect to \(a + b \), then \(H_a^i(M) = 0 \) for all \(i \notin \{\text{grade}_M a, \text{grade}_M a + b\} \).

(ii) If \(I = 0 \), then \(\text{cd}_M (a, M) = \text{cd}_M (a, \frac{M}{bM}) \).

Proof. (i) Using the assumption, \(H_{a \cap b}^i(M) = 0 \) for all \(i \neq t \). Now, the result follows from the isomorphism \(H_{a+b}^i(M) \cong H_a^i(M) \oplus H_b^i(M) \), for all \(i > t + 1 \), and the surjective map

\[H_{a+b}^{t+1}(M) \rightarrow H_a^{t+1}(M) \oplus H_b^{t+1}(M) \rightarrow 0, \]

which are deduced by the Mayer-Vietoris sequence.

(ii) It follows from the fact that \(bM \) is \(a \)-torsion.

\[\square \]

The following lemma will be used in the rest of the paper.
Lemma 2.6. Let \(I \) be a proper ideal of \(R \) such that \(a \sim_{(I;M)} b \). Then, \(\frac{M}{aM} \) can be embedded in finite copies of \(\frac{M}{IM} \).

Proof. Assume that \(F \to \frac{R}{I} \to \frac{R}{b} \to 0 \) is a free resolution of \(\frac{R}{b} \) as \(\frac{R}{I} \)-module. Then, using \(\ast := \text{Hom}_{\frac{R}{I}}(-, \frac{M}{IM}) \), we get the exact sequence \(0 \to (\frac{R}{b})^\ast \to (\frac{R}{I})^\ast \xrightarrow{f} F^\ast \), where \(\frac{M}{aM} \cong \text{Im}(f) \subseteq F^\ast \cong \bigoplus \frac{M}{IM} \).

\[\square \]

The next theorem, which is our main result, provides a formula for \(\text{cd} (a, M) \) in the case where \(a \) is linked over \(M \).

Theorem 2.7. Let \(I \) be an ideal of \(R \) generating by an \(M \)-regular sequence such that \(\text{Ass} \frac{M}{IM} = \text{Min} \text{Ass} \frac{M}{IM} \) and \(a \) is linked by \(I \) over \(M \). Then

\[\text{cd} (a, M) \in \{ \text{grade} \frac{M}{M} a, \text{cd} (a, H_{c}^{\text{grade} \frac{M}{M} a}(M)) + \text{grade} \frac{M}{M} a \}, \]

where \(c := \bigcap_{p \in \text{Ass} \frac{M}{aM} - V(a)} p \).

Proof. Note that, by 2.6, \(\text{Ass} \frac{M}{aM} \subseteq \text{Ass} \frac{M}{IM} \). Set \(t := \text{grade} \frac{M}{M} a \). Without loss of generality, we may assume that \(\text{cd} (a, M) \neq t \). Hence, there exists \(p \in \text{Ass} \frac{M}{IM} - V(a) \), else, \(\sqrt{I} + \text{Ann} \frac{M}{M} = \sqrt{a} + \text{Ann} \frac{M}{M} \) which implies that \(\text{cd} (a, M) = t \). We claim that

\[\text{(2.1)} \quad \text{grade} \frac{M}{M} (a + c) > t. \]

Suppose the contrary. So, there exist \(p \in \text{Ass} \frac{M}{IM} \) and \(q \in \text{Ass} \frac{R}{c} \) such that \(a + q \subseteq p \). By the assumption, \(p = q \) which is a contradiction to the structure of \(c \).

Let \(A := \{ p | p \in \text{Ass} \frac{M}{IM} \cap V(a) \} \). Then, in view of 2.6,

\[\sqrt{a + \text{Ann} \frac{M}{M}} = \bigcap_{p \in \text{Min} \text{Ass} \frac{M}{aM}} p \geq \bigcap_{p \in A} p. \]

On the other hand, let \(p \in \text{Min} A \). Then, there exists \(q \in \text{Min} \text{Ass} \frac{M}{aM} \) such that \(q \subseteq p \). Hence, again by 2.6, \(q \in A \) and, by the structure of \(p, q = p \). Therefore,

\[\text{(2.2)} \quad \sqrt{a + \text{Ann} \frac{M}{M}} = \bigcap_{p \in A} p. \]
Whence, using (2.2), it follows that
\[\sqrt{I} + \text{Ann } M = \bigcap_{p \in \text{Ass } \frac{M}{IM}} p = \bigcap_{p \in \text{Ass } \frac{M}{IM}} p \cap c = \sqrt{a} \cap c + \text{Ann } M. \]

Now, in view of (2.1), we have the following Mayer-Vietoris sequence
\[(2.3) \quad 0 \rightarrow H^t_a(M) \oplus H^t_c(M) \rightarrow H^t_I(M) \rightarrow N \rightarrow 0 \]
for some \(a \)-torsion \(R \)-module \(N \). Applying \(\Gamma_a(\cdot) \) on (2.3), we get the exact sequence
\[0 \rightarrow H^t_a(M) \oplus \Gamma_a(H^t_c(M)) \rightarrow \Gamma_a(H^t_I(M)) \rightarrow N \overset{f}{\rightarrow} H^1_a(H^t_c(M)) \rightarrow H^1_a(H^t_I(M)) \rightarrow 0 \]
and the isomorphism
\[H^i_a(H^t_I(M)) \cong H^i_a(H^t_c(M)), \text{ for all } i > 1. \]

Also, using [10, 3.4], we have \(H^{i+t}_a(M) \cong H^i_a(H^t_I(M)) \), for all \(i \in \mathbb{N}_0 \). This implies that
\[
H^i_a(M) \begin{cases}
\cong H^{i-t}_a(H^t_I(M)) & \text{if } i > t + 1, \\
\cong H^i_a(H^t_I(M)) & \text{if } i = t + 1, \\
\neq 0 & \text{if } i = t, \\
0 & \text{otherwise.}
\end{cases}
\]

Now, the result follows from the above isomorphisms.

The following corollary, which follows from the above theorem, provides a precise formula for \(\text{cd } (a, M) \) in the case where \(a \) is geometrically linked over \(M \) and shows how far \(\text{cd } (a, M) \) is from grade \(M^a \). Note that by [1, 1.3.9], \(\text{grade } M^a \leq \text{cd } (a, M) \).

Corollary 2.8. Let \(I \) be an ideal of \(R \) generating by an \(M \)-regular sequence and \(a \) and \(b \) be geometrically linked by \(I \) over \(M \). Also, assume that \(M \) is not relative Cohen-Macaulay with respect to \(a \). Then
\[\text{cd } (a, M) = \text{cd } (a, H^{\text{grade } M^a}(M)) + \text{grade } M^a. \]
Proof. First, we show that

\[(2.4) \quad \{p | p \in \text{Ass} \frac{M}{IM} - V(a)\} = \{p | p \in \text{Ass} \frac{M}{IM} \cap V(b)\}.
\]

Let \(p \in \text{Ass} \frac{M}{IM} - V(a)\). Then, by 2.2(i), \(p \in V(b)\). On the other hand, if \(p \in \text{Ass} \frac{M}{IM} \cap V(b)\) then \(p \not\in a\), else,

\[0 : \frac{M}{IM} a \cap 0 : \frac{M}{IM} b = 0 : \frac{M}{IM} a + b \neq 0,
\]

which is a contradiction.

Now, in view of [5, 2.8(iii)],

\[\sqrt{b + \text{Ann} M} = \bigcap_{p \in \text{Ass} \frac{M}{IM} \cap V(b)} p.
\]

This, in conjunction with (2.4), implies that

\[\sqrt{b + \text{Ann} M} = \bigcap_{p \in \text{Ass} \frac{M}{IM} - V(a)} p.
\]

Now, the result follows using similar argument as used in the proof of theorem 2.7. \(\square\)

Proposition 2.9. Let \(I\) be an ideal of \(R\) generating by an \(M\)-regular sequence and \(a\) and \(b\) be geometrically linked by \(I\) over \(M\). Then \(\text{grade} M a + b = \text{grade} M I + 1\).

Proof. Assume that \(a\) and \(b\) are geometrically linked by some \(M\)-regular sequence \(I\) of length \(t\) over \(M\). Then \(a\) and \(b\) are geometrically linked by zero over \(\frac{M}{IM}\). In view of the fact that \(\text{grade} M a + b = \text{grade} \frac{M}{IM} (a + b) + t\), one can replace \(M\) by \(\frac{M}{IM}\) and assume that \(I = 0\). Hence, it is enough to show that \(\text{grade} M a + b = 1\).

Let \(p \in V(a + b)\). By [5, 2.12], \(aR_p\) and \(bR_p\) are geometrically linked by zero over \(M_p\). In conjunction with the facts that \(\text{grade} M a + b \leq \text{grade} M_p (a + b) R_p\) and \(\text{grade} M a + b \geq 1\), it is enough to show that \(\text{grade} M_p (a + b) R_p = 1\). Therefore, one may assume that \(R\) is local.

On the contrary, assume that \(\text{grade} M a + b > 1\). Using the long exact sequence

\[0 \to \text{Hom} \left(\frac{R}{a + b}, M \right) \to \text{Hom} \left(\frac{R}{a}, M \right) \oplus \text{Hom} \left(\frac{R}{b}, M \right) \to \text{Hom} \left(\frac{R}{a \cap b}, M \right) \to \text{Ext}^1_R \left(\frac{R}{a + b}, M \right)
\]
and the assumption \((a \cap b)M \subseteq aM \cap bM = 0\), we get
\[M \cong aM \oplus bM. \]

By the fact that \(abM = 0\) we get, for any \(i > 0\), \(b^iM = bM\). Then, by krull theorem, \(bM = 0\) and so \(aM = M\), which is a contradiction. □

Remark 2.10.

(i) An ideal can be linked with more than one ideal. As an example, let \(R\) be local and \(x, y, z\) be an \(M\)-regular sequence. Then, \(Rx\) is geometrically linked with \(Ry\) and \(Rz\) over \(M\).

(ii) Let \(a\) and \(b\) be geometrically linked by \(I\) over \(R\). Then, by [6, 2.4], \(\sqrt{a}\) is linked by \(I\). In particular, \(\sqrt{a}\) is linked by every ideal \(I' \subset \sqrt{a}\) which is generated by a maximal \(R\)-sequence in \(a\). Indeed, by [5, 2.8] and [4, Theorem 1],

\[\text{Ass} \frac{R}{a} = V(a) \cap \text{Ass} \frac{R}{I} = \text{Ass} \text{Hom}_R(\frac{R}{a}, \frac{R}{I}) = V(a) \cap \text{Ass} \frac{R}{I}, \]

which, in view of [6, 2.4], implies that \(\sqrt{a}\) is linked by \(I'\).

The following corollary shows that for all ideals \(b\) which are geometrically linked with \(a\) over \(M\), \(\text{cd} (a, H^\text{grade}_{Mb}(M))\) is constant.

Corollary 2.11. Let \(a\) be linked over \(M\). Then, for every ideal \(b\) which is geometrically linked with \(a\) over \(M\), \(\text{cd} (a, H^\text{grade}_{Mb}(M))\) is constant. In particular,

\[\text{cd} (a, H^\text{grade}_{Mb}(M)) = \begin{cases} 1, & M \text{ is relative Cohen-Macaulay with respect to } a, \\ \text{cd} (a, M) - \text{grade}_M a, & \text{otherwise.} \end{cases} \]

Proof. Assume that \(M\) is relative Cohen-Macaulay with respect to \(a\) and \(a\) and \(b\) are geometrically linked by some \(M\)-regular sequence \(I\) of length \(t\) over \(M\). Then, by [5, 2.8], we have the following Mayer-Vietoris sequence

\[0 \rightarrow H^i_a(M) \oplus H^i_b(M) \rightarrow H^i_M(M) \rightarrow N \rightarrow 0 \]
for some a-torsion R-module N. Applying $\Gamma_a(-)$ on (2.5), we get the exact sequence

$$H_a^{i-1}(N) \rightarrow H_a^i(H_b^i(M)) \rightarrow H_a^i(H_t^i(M)),$$

for $i > 1$. Now, by [10, 3.4] and the assumption, we get $H_a^i(H_b^i(M)) = 0$, for $i > 1$. On the other hand, again by [5, 2.8], $\Gamma_a(H_b^i(M)) = 0$.

Therefore, using the convergence of spectral sequences

$$H_a^i(H_b^i(M)) \Rightarrow H_a^{i+j}(M)$$

and the assumption, we get $H_a^1(H_b^i(M)) \cong H_a^{i+1}(M)$. Now, by 2.9, $H_a^1(H_b^i(M)) \neq 0$ and $\text{cd} (a, H_b^\text{grade}_a(M)) = 1$.

In the case where M is not relative Cohen-Macaulay with respect to a, the result follows from 2.8.

\[\Box\]

Convention 2.12. Assume that I is an ideal of R which is generated by an M-regular sequence. We define the set

$$S_{(I:M)} := \{a \subset R| I \subsetneq a, a = IM :_R IM :_M a\}.$$

$S_{(I:R)}$ actually contains all linked ideals by I.

The following proposition, which is needed in the next two items, shows that any ideal a with $aM \neq M$ can be embedded in a radical ideal a' of $S_{(I:M)}$ for some I.

Proposition 2.13. Assume that $aM \neq M$. Then,

(i) There exists an ideal I, generating by an M-regular sequence, such that a can be embedded in a radical element a' of $S_{(I:M)}$ with $\text{grade}_M a' = \text{grade}_M a =: t$. Also, a' can be chosen to be the smallest radical ideal with this property.

(ii) Let a' be as in (i). Then $\text{Ass} H_a^1(M) = \text{Ass} \frac{R}{a'}$. In particular, $a' = \bigcap_{p \in \text{Ass} H_a^1(M)} p$ and it is independent of the choice of the ideal I.

Proof. (i) Let $x_1, \ldots, x_t \in a$ be an M-regular sequence such that $a \subset Z_R(\underbrace{M}_{(x_1, \ldots, x_t)_M})$. Replacing (x_1, \ldots, x_t) with (x_1, \ldots, x_t), we may assume, in addition, that $x_1, \ldots, x_t \notin a$ and it is not a prime ideal. Set $\Lambda :=
\{p \mid p \in \text{Ass}(\frac{M}{(x_1, \ldots, x_t)M}), a \subseteq p\} \text{ and } a' = \cap_{p \in \Lambda} p. \text{ Then, setting } I := (x_1, \ldots, x_t) \text{ and using [6, 2.4], } a \subseteq a' \text{ is a radical ideal of } S(I; M).

Assume that there exists a radical ideal c \in S(I; M) \text{ such that } a \subseteq c. \text{ Hence, by [6, 2.4](iii), } \text{Ass } \frac{R}{c} \subseteq \text{Ass } \frac{M}{IM} \cap V(a) = \Lambda. \text{ Therefore, } a' \subseteq c.

(ii) By [4, Theorem 1] and [14, 1.4], we have
\[
\text{Ass } H^t_a(M) = \text{Ass } \text{Ext}^t_R(R_a, M).
\]
Also, using the above notations and in view of [2, 1.2.4 and 1.2.27],
\[
\text{Ass } \text{Ext}^t_R(R_a, M) = \text{Ass } \text{Hom}_R(R_a, M) = V(a) \cap \text{Ass } \frac{M}{IM} = \text{Ass } \frac{R}{a'}.\]

Now, by the above equalities, we have
\[
a' = \bigcap_{p \in \text{Ass } H^t_a(M)} p.
\]

\[\square\]

Corollary 2.14. Let a be a linked ideal over M. Then, \(\sqrt{a + \text{Ann } M} = \bigcap_{p \in \text{Ass } H^t_a(M)} p.\)

Proof. It follows from [6, 2.4](v) and the above proposition. \[\square\]

The following theorem provides some conditions in order to have \(cd(a, M) < \dim M.\)

Theorem 2.15. Let \((R, m)\) be local and \(x = x_1, \ldots, x_t\) be an M-regular sequence of length t. Assume that \(H^t_{p \text{ dim } M}(M) = 0\) for all \(p \in \text{Ass } R_{(x)M}^M.\) Then, \(H^t_{a \text{ dim } M}(M) = 0\) for any ideal \(a \supseteq (x)\) with \(\text{grade } M a = t.\)

Proof. Let \(n := \dim M\) and \(b \in S((x); M)\) be a radical ideal. Then, by [6, 2.4], \(b = \bigcap_{i=1}^l p_i\) for some \(l \in \mathbb{N}\) and \(p_1, \ldots, p_l \in \text{Ass } R_{(x)M}^M.\) By the assumption, \(H^n_b(M) = 0\) when \(l = 1.\) In the case \(l > 1,\) set \(c = \bigcap_{i=2}^l p_i.\) Then, using the Mayer-Vietoris sequence
\[
\ldots \rightarrow H^n_{p_1}(M) \oplus H^n_c(M) \rightarrow H^n_b(M) \rightarrow 0
\]
and the inductive hypothesis, we have \(H^n_b(M) = 0.\)

Now, let \(a \supseteq (x)\) be an ideal with \(\text{grade } M a = t.\) Then, by 2.13, there exists a radical ideal \(b \in S((x); M)\) such that \(a \subseteq b.\) Let \(b = a + (y_1, \ldots, y_m).\) Then, using induction on \(m\) and [1, 8.12], it is straightforward to see that there exists an onto homomorphism \(H^n_b(M) \rightarrow H^n_a(M) \rightarrow 0,\) and the result follows.
Remark 2.16. Let the situations be as in the above theorem and assume, in addition, that \((R, \mathfrak{m})\) is complete. Let \(\mathfrak{a} \supseteq (x)\) be an ideal with grade \(M \mathfrak{a} = t\). Then, the Lichtenbaum-Hartshorne Theorem shows that \(\mathfrak{a}\) can not be coprimary with a member of \(\text{Assh } M\), i.e. there is no \(\mathfrak{p} \in \text{Assh } M\) with \(\sqrt{\mathfrak{a} + \mathfrak{p}} = \mathfrak{m}\).

Corollary 2.17. There is a linked ideal \(\mathfrak{b}\) over \(R\) such that \(H^\dim R(R) \neq 0\).

References

1. M. P. Brodmann and R. Y. Sharp, *Local cohomology: an algebraic introduction with geometric applications*. Cambridge Studies in Advanced Mathematics. 60. Cambridge University Press, Cambridge, (1998).
2. W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge Studies in Advanced Mathematics, 39. Cambridge University Press, Cambridge (1993).
3. D. Eisenbud, *Commutative algebra with a view toward algebraic geometry*, Graduate Texts in Math., vol. 150, Springer-Verlag, Berlin and New York, (1995).
4. M. Hellus, *The set of associated primes of a local cohomology module*, Jornal of Algebra, 237 (2001) 406-419.
5. M. Jahangiri and Kh. Sayyari, *Linkage of ideals over a module*, arxiv: 1709.3268v3.
6. M. Jahangiri and Kh. Sayyari, *Charaterization of some special rings via linkage*, arxiv: 1803.02582.
7. G. Lyubeznik, *On the vanishing of local cohomology in characteristic \(p > 0\)*, Compositio Math. 142 (2006) 207-221.
8. H. Matsumura, *Commutative ring theory*, Cambridge University Press, (1986).
9. A. Martsinkovsky and J. R. Strooker, *Linkage of modules*, Jornal Algebra 271 (2004) 587-626.
10. U. Nagel and P. Schenzel, *Annihilator and Castelnuovo-Mumford regularity*, in: Commutative Algebra: Syzygies, Multiplicities and Birational Algebra, in: Contemp. Math., vol. 159, Amer. Math. Soc, Providence, RI, 1994, pp. 307-328.
11. M. Noether, *Zur Grundlegung der Theorie der algebraischen Raumcurven*, Jornal fr die reine und angewandte Math. 93 (1882) 271-318.
12. A. Ogus, *Local cohomological dimensional of algebra varieties*, Annals of math. 98(2) (1973) 327-365.
13. C. Peskine and L. Szpiro, *Liasion des variétés algébriques*, I, Inv. math. 26 (1974) 271-302.
14. A. K. Singh and U. Walther, *Local cohomology and pure morphisms*, Illinois Jornal of mathematics, 51(1)(2007) 287-298.
1,2 Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran.

E-mail address: jahangiri@khu.ac.ir, std-sayyari@khu.ac.ir