Metal Preferences and Metallation*

Published, JBC Papers in Press, August 26, 2014, DOI 10.1074/jbc.R114.588145

Andrew F. Foster, Deenah Osman, and Nigel J. Robinson

From the Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom

The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ~25% acquiring preassembled metal cofactors. The remaining ~70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells.

This narrative sets out, with examples, how cells assist metallation. Such assistance is vital because the physical and chemical properties of proteins tend to select essential divalent metal ions with a ranked order of preference that follows the Irving-Williams series (1).

\[\text{Mg}^{2+} < \text{Mn}^{2+} < \text{Fe}^{2+} < \text{Co}^{2+} < \text{Ni}^{2+} < \text{Cu}^{2+} < \text{Zn}^{2+} \]

Competitive metals must be kept out of binding sites for the weaker binding ions. Cupric ions are at the top of the series, although their order with respect to zinc can flip (2). In the reducing conditions of the cytoplasm, cuprous (Cu\(^+\)) rather than cupric (Cu\(^{2+}\)) ions are expected to predominate, but these ions can also form tight complexes, especially with sites that contain sulfur ligands (3). In the periplasm of bacterial cells, ferric (Fe\(^{3+}\)) rather than ferrous (Fe\(^{2+}\)) ions often dominate (4). Ferric ions are retained in solution in organic complexes that can be exceptionally tight and include binding proteins such as the ferric-binding protein (Fbp) in the bacterial periplasm (5).

Because proteins are not rigid, the scope for steric selection of metal cofactors is imperfect. Mismetllation can exploit a subset of ligands and/or distort the native binding geometry. Typically, a protein becomes inactive if one or more residues of an active metal site are recruited to an alternative site, perhaps with alternative geometry, by a more competitive metal. For example, glyoxalase of Clostridium acetobutylicum (GlxI) is activated by nickel or cobalt, both of which assume octahedral geometries, whereas zinc binds tightly in trigonal bipyramidal geometry and inactivates this isoform of the enzyme (6).

Correct metallation in vivo is favored because the cytoplasm is a metal-controlled environment. For example, two periplasmic cups (manganese MncA and cupric CucA) from a model cyanobacterium bind metal via analogous ligand sets within analogous folds (Fig. 1), yet in vitro they acquire different metals. MncA and CucA both show in vivo metal preferences that match the Irving-Williams series, which is especially problematic for MncA. A 10,000× and 100,000× excess of manganese is required at MncA folding in order for manganese to outcompete cupric or zinc ions, respectively (7). Cuprous ions can also outcompete manganese. Manganese MncA has oxalate decarboxylase activity, whereas neither the zinc nor the copper forms are active (7). CucA is a Sec substrate that folds in the periplasm on secretion, whereas MncA is a Tat substrate. The Tat system translocates prefolded proteins, and hence MncA folds within the cytoplasm before export (7, 8). In this way, MncA entraps manganese before exposure to copper and zinc in the periplasm. In the cytoplasm, at the site of MncA folding, copper and zinc must be at least 10,000 and 100,000× less available than manganese. This must reflect the relative buffered concentrations of these three metals plus, hypothetically, a manganese delivery system for MncA.

When Metals Compete with Other Metals for Proteins

Metal availability within cells is restricted such that proteins compete with other molecules, including other proteins, for limited pools of the most competitive metals. Dudev and Lim (9) have assessed the physical and chemical properties of metals and proteins that influence metal preferences. These include valence, ionic radius, coordination geometry, ligand number, second-shell ligands, effects of the protein matrix, and ligand characteristics (net charge, dipole moment and polarizability, charge-donating/-accepting ability, and denticity) (9). Despite these opportunities to tune metal preferences, in vitro metallation is typically aberrant when essential metals simply compete with each other for proteins (7).

Zinc and magnesium are the most commonly utilized metal cofactors (~16 and ~9% of all enzymes, respectively) (10), and they dominate the subset of metalloenzymes lacking a defined delivery system, representing ~78% of this group (Table 1). Empirically, zinc is known to replace magnesium to inactivate enzymes including β-galactosidase (11), tyrosine kinases (12), and magnesium alkaline phosphatase (13, 14). The calculated free energies for replacing magnesium with zinc in rigid or flexible sites implies that zinc will always be favored over magnesium in mono- and binuclear binding pockets, with ΔG for replacement in flexible, neutral sites ranging from ~10 to ~29 kcal mol\(^{-1}\) (15). The incorporation of magnesium into chlorophyll to mettallate chlorophyll-binding proteins is a special case that exploits delivery systems and is therefore considered separately in a later section of this minireview.

Iron and manganese are the next most common cofactors estimated to be exploited by ~8 and ~6% of enzymes (10). These ions account for most (~18%) of the remaining fraction
The abbreviations used are: ARD, acireductone dioxygenase; SOD, superoxide dismutase; CCS, copper chaperone for superoxide dismutase.

A subset of metal cofactors becomes kinetically trapped in proteins. The correct geometry can stabilize the fold, offering, in effect, the potential for proofreading of metal occupancy based upon second coordination shell interactions. For example, manganese in the copper-cupin CucA is readily replaced upon incubation with copper, but in the structurally related manganese-cupin MncA, manganese becomes trapped at folding and refractory to subsequent replacement by copper (7). Thus, folding and metal trapping are uncoupled from manganese binding to CucA, where this is mismetallation, but coupled to manganese binding in MncA. To date, in vitro biochemical studies of metal binding preferences of proteins have not included protein folding chaperones such as Hsp70 or its co-chaperones and nucleotide exchange factors. Association of chaperones with exposed hydrophobic patches of nascent proteins impacts upon the energetics of protein folding (20), but it remains to be tested whether or not this sometimes imposes a bias in favor of the correct metal.

Metal Delivery Pathways

Fidelity in metallation with two competitive metals, nickel and copper, is typically assisted by metallochaperones (21–23). The term “metallochaperone” describes a collection of proteins, for a diversity of metals, which differ in their biochemical mechanisms. Known nickel chaperones, which include HypB, interact with a battery of other proteins with consumption of nucleotide cofactors aiding metal insertion (21, 22). When Helicobacter pylori HypB aberrantly binds zinc its GTPase, activity is not triggered, and in this way, cofactor delivery becomes selective for nickel (24). Known copper chaperones do not require nucleotide cofactors. Both copper and nickel chaperones introduce a kinetic bias into the partitioning of metals by engaging in specific protein–protein interactions that recognize the correct partners (23). Such interactions also orientate the donor and acceptor ligands to encourage facile ligand exchange (25).

Preassembled complex metal cofactors include cobalamin (cobalt), iron-sulfur clusters, heme and siroheme (iron), molybdopterin (molybdenum), F430 (nickel), and chlorophyll (magnesium). Discrimination between these more elaborate molecular assemblies as opposed to individual metal ions at cofactor selection is less challenging, but nonetheless may be aided by delivery proteins. For example, monothiol glutaredoxins (Grxs) and BolA proteins play roles in [FeS] cluster delivery as well as iron sensing (26), with yeast strains deficient in Grx3 and Grx4 exhibiting defects in multiple iron-dependent enzymes (27, 28); NafL assists in the insertion of molybdopterin into nitrate reductase in E. coli cells (29), and CcmF functions as a heme chaperone in the periplasm of E. coli, delivering its cargo to CcmF for insertion into cytochrome c (30).

Metallochaperones that contribute toward fidelity in partitioning metals during complex cofactor assembly include chelatases for heme, cobalamin, and chlorophyll (31, 32) and MoeA for molybdopterin (33). Ferrochelatases, for example, can catalyze the insertion of metals other than iron into tetrapyrroles, such that zinc protoporphyrin IX becomes diagnostic for some iron deficiencies (34). The metal preferences and metallation of metallochaperones warrant investigation.

Uncertain Metallation in Vivo and Cambialistic Proteins

With a few pioneering exceptions (16, 17), the extent of mismetallation in vivo is unknown. Current methods for native metalloproteomics are neither global nor high throughput (7, 18), and so the extent of post-translational regulation through metallation is unclear. The picture is further complicated because multiple metals support catalysis in so-called cambialistic enzymes. Acireductone dioxygenase (ARD)2 from Klebsiella oxytoca is currently a rare example of an enzyme that can catalyze two different reactions dependent upon metal occupancy (19). Iron-ARD is widespread, and the nickel-ARD-dependent pathway has been observed in Bacillus subtilis and Escherichia coli, but both forms have been recovered from K. oxytoca. However, there is currently no evidence that both forms of the enzyme confer a selective advantage to K. oxytoca. Fractional occupancies of ARD with nickel and iron remain to be investigated in vivo, as does the tantalizing possibility that metallation is switched to match metabolic need.

Conformationally Trapped Metals and Opportunities for Proofreading of Metallation

There is scope for mismetallated proteins to be selectively degraded or recycled or to remain in a partially unfolded state.

2 The abbreviations used are: ARD, acireductone dioxygenase; SOD, superoxide dismutase; CCS, copper chaperone for superoxide dismutase.
The majority of copper proteins are secreted, and copper efflux from the cytosol is driven by P₁-type ATPases that acquire copper from metallochaperones such as Atx1 (35, 36). Exactly how copper is then handed to nascent proteins post-secretion is the topic of current investigations. Oddly, CucA in the cyanobacterial periplasm has impaired metallation in mutants missing periplasmic copper chaperone CusF and (39, 40).

Evaluating the Contribution of Delivery Pathways to Metallation

To estimate the fractions of metalloproteins that bind pre-assembled cofactors or are otherwise metallated via metallochaperones, the Metal MACiE database has been interrogated. Metal MACiE is a manually curated catalogue of enzymes that require metals for their catalytic mechanisms and for which a protein structure has been determined (41). Metal ions solely performing structural roles in proteins that are not enzymes are not annotated in Metal MACiE. This is liable to lead to an under-representation of zinc, which is widely used in zinc fingers (42). With such limitations in mind, Metal MACiE can be used to make first approximations of the proportions of enzymes with various metal centers. Table 1 lists the types of sites in the database, noting where proteins are known to assist in metal delivery directly to nascent cupro-proteins (38). There is evidence of interaction between *E. coli* periplasmic copper chaperone CusF and P₁-type ATPase CopA, whereas periplasmic copper chaperone CueP is required for metallation of SodCII in *Salmonella enterica* sv. *Typhimurium* (39, 40).

TABLE 1
Types of metal sites and metal delivery pathways in Metal MACiE

Metal and site type	Example enzyme from Metal MACiE	Delivery pathway/chaperone	% of Metal MACiE total (a,b,c)
Magnesium			
Mononuclear	Adenylate cyclase (M0058)	None known	38
Trinuclear (magnesium)	Trichodiene synthase (M0262)	None known	3
Manganese			
Mononuclear	Xylose isomerase (M0308)	None known	8
Trinuclear (manganese or zinc)	Deoxyribonuclease IV (M0011)	None known	<1
Iron			
Mononuclear	Catechol 2,3-dioxygenase (M0034)	None known	3
Dinuclear (FeFe)	Ferredoxin hydrogenase (M0127)	HydE/G provide iron as [FeS], production of which is dependent on CyaY	<1
Dinuclear (NiFe)	Cytochrome c₃ hydrogenase (M0126)	Assembly of cyano-, carbonyl-coordinated iron occurs on HypD; source of iron is unknown	<1
Dinuclear (ZnFe)	Purple acid phosphatase (M0043)	None known	<1
Heme	Ubiquinol-cytochrome c reductase (M0208)	Iron chelatase	7
Iron-sulfur cluster	Aldehyde oxidase (M0105)	CyaY	14
Cobalt			
Mononuclear	Thiocyanate hydrolase (M0284)	None known	2
Cobalmin	Methionine synthase (M0268)	ChnX	2
Nickel			
Dinuclear (NiFe)	Cytochrome c₃ hydrogenase (M0126)	HypA/HypB/SlyD	<1
Dinuclear (NiNi)	Urease (M0087)	UreE/UreG	<1
Factor-430	Coenzyme B sulfoethylthiotransferase (M0156)	None known	<1
Copper			
Mononuclear	Copper-zinc SOD (M0138)	CCS (and others)	2 (c) 1 (e)
Dinuclear (CuCu)	Tyrosinase (M0125)	Atx1 (and others)	1
Dinuclear (CuMo)	Carbon-monoxide dehydrogenase (M0107)	None known	<1
Zinc			
Mononuclear	Alcohol dehydrogenase (M0256)	None known	11
Dinuclear (ZnZn)	Beta lactamase (M0015)	None known	2
Dinuclear (ZnFe)	Purple acid phosphatase (M0043)	None known	<1
Trinuclear (zinc)	Phospholipase C (M0027)	None known	1
Molybdenum			
Molybdopterin	Xanthine dehydrogenase (M0139)	MoeA	2
FeMo cofactor	Nitrogenase (M0212)	CyaY, NiFH	<1
Dinuclear (CuMo)	Carbon-monoxide dehydrogenase (M0107)	None known	<1

(a) Metal MACiE identifier shown in parentheses.
(b) Total excludes calcium enzymes represented in Metal MACiE.
(c) Hetero-dinuclear sites count as one site for each metal ion, and homo di- and tri-nuclear sites count as one site.
(e) Known delivery pathways.
(f) Unknown delivery pathways.

OCTOBER 10, 2014 • VOLUME 289 • NUMBER 41
lochaperones. In common with other photosynthetic organisms, they have a high demand for metals (44), but they also have delivery proteins for an especially wide range of metals: Atx1 for copper to thylakoids (45), UreE and HypA/B for nickel to urease and hydrogenase (46), ferrochelatase for iron to heme and siroheme (47), magnesium chelatase for magnesium to chlorophyll (48), CbiX for cobalt to cobalamin (plants in contrast do not make cobalamin) (49), MoeA for molybdenum to molybdopterin, CyaY for iron to iron-sulfur clusters, and possibly PratA for manganese to photosystem II (50). A set of metal competition experiments between the purified cyanobacterial metallochaperones could establish whether or not their relative metal affinities simply enable metals to partition to the correct delivery pathway. This in turn would resolve the metallation challenge for ~30% of metalloenzymes.

Alternatively, metallochaperones might directly acquire metal from importers assisted by specific protein interactions. The idea that inward metal transport is coupled to the loading of delivery pathways, to channel metals to sites of metalloenzyme assembly, is widely envisioned but sparsely evidenced. Notably, analyses of yeast mutants did not identify any single copper donor for either of two copper metallochaperones (51). Nonetheless, there is evidence that the copper chaperone for superoxide dismutase (CCS) can interact with membranes and with the copper importer Ctr1 (52), and metal transfer to Atx1 has also been observed in vitro using a cytosolic domain of Ctr1 (53). Nickel imported by the Nik system is destined for hydrogenase and largely unavailable to nickel-responsive transcriptional regulators (54), which might also suggest direct handover of nickel to HypA/B. However, evidence that the substrate for the Nik importer is a nickel-histidine complex provides an alternative explanation for these observations if HypA/B can preferentially acquire nickel from nickel-histidine (55). There is evidence that a mitochondrial iron importer mitoferrin-1 interacts with a ferrochelatase for heme biogenesis (56). This iron supply pathway cannot be “hardwired” exclusively for iron if zinc protoporphyrin IX accumulates under iron deficiency (34). Iron-sulfur clusters are the targets for surplus cobalt and copper (57–60). Both cobalt and copper directly destabilize the assembled cluster on the scaffold proteins and, at least for cobalt, it is known that the resultant mixed cluster can be delivered to apo-proteins (58, 59). Thus, imperfect metal preferences of delivery systems can sometimes propagate mismetallation.

Metallochaperone-catalyzed delivery of the more competitive metals, such as nickel and copper, enables cells to more efficiently cofactor a subset of proteins with these ions. However, viewed from a different perspective, such metal delivery supports metallation at low buffered concentrations sufficient to exclude these elements from binding sites for metals lower down the Irving-Williams series (1). For example, cyanobacterial mutants missing the copper metallochaperone Atx1 show phenotypes indicative of the mismetallation of binding sites for other metals with copper (61).

The Set Points for Metal Homeostasis

The buffered (rather than total) set points for metals can vary between cell types and intracellular compartments and throughout the lifetime of a cell. Nonetheless, magnesium appears to be universally held at ~10^{-3} M inside cells (Fig. 2, gray bars), about 10 times less than the concentration in sea water and 10 times more than typical concentrations in fresh water (62, 63). Proteins that require ferrous ions often exhibit affinities of ~10^{-7} M, which is suggested to match the ferrous concentration in the sulfide-rich anaerobic conditions when life first evolved (64). By determining the ferrous affinity of glutathione (glutathione has a concentration of ~2–10 mM within the cytoplasm), and assuming that this complex is a major component of the cytosolic iron pool, a value in the region of 10^{-6} to 10^{-7} M for the buffered concentration of ferrous iron is plausible (65) (Fig. 2, gray bars).

The cytosolic concentration of manganese has been estimated to be comparable with ferrous iron (66, 67) (Fig. 2, gray bars). However, manganese concentrations may be elevated within organelles such as the chloroplast or mitochondria where there is high demand. In a bacterial cytosol, the concentration of manganese can vary. For example, in response to oxidants, manganese is elevated to correctly metallate manganese superoxide dismutase (SOD) (16). Nickel- and cobalt-requiring enzymes are thought to have been more prevalent in early anaerobic life, and Fraústo da Silva and Williams (62) suggest that these two metals are unlikely to have ever exceeded 10^{-10} M in the cytosol (Fig. 2, gray bars).

Zinc-binding sites in most proteins have affinities that are typically 10^{-11} M or tighter (68). The use of either synthetic or genetically encoded zinc-responsive fluorophores has placed buffered zinc concentrations within the cytosol of bacteria and eukaryotic cells in the 10^{-12} to 10^{-10} M range (69–72). Buffered cytosolic copper concentrations have been estimated to be
Discern Metals One from Another

By setting the metal affinities of metal sensors such that those for the most competitive metals are the tightest, the control of metal efflux, metal influx, and metal sequestration and the switching of metabolism to spare limiting metals are thus primed to maintain the buffered metal concentrations as an inverse function of the Irving-Williams series. Under this regime, subtle differences in the relative metal preferences of metalloenzymes now become sufficient to enable correct in vivo metallation.

How a Cell’s Set of Metal Sensors Acts in Concert to Discern Metals One from Another

The actions of metal sensors help maintain buffered metal concentrations, and these concentrations in turn influence which metals are acquired by ∼70% of metalloenzymes. Thus, the metal specificity of metal sensors becomes a dominant factor in the fidelity of metallation. The proportion also becomes even higher than 70% if some metallochaperones are metallated from buffered metal pools. Metal-sensing, DNA-binding transcriptional regulators have been extensively characterized in bacteria (78, 79) and identified for copper, iron, and zinc in yeast (80, 81). However, where metal affinities have been measured for multiple metals, the metal preferences of bacterial metal sensor proteins again tend to simply abide by the Irving-Williams series (78, 79, 82).

Affinity, Access (Kinetics), and Allostery

A series of publications in the first decade of this century revealed that metal specificity of metal sensors can be determined by three factors. First, metal affinity contributes toward metal selectivity. Second, the allosteric mechanism connecting metal binding to altered DNA binding or to gene activation can respond selectively to different metals. Finally, the kinetics of access can differ for different sensors, for example due to delivery proteins (10, 82).

Relative Affinity, Access and Allostery

Relative affinity, access, and relative allostery in a complement of metal sensors influences the metals detected in vivo. Calculated fractional occupancy of InrS, Zur, ZiaR, and CoaR with Ni(II), Zn(II), and Co(II) as the concentration of these elements changes: Fractional occupancy:

\[\frac{[\text{Metal}]_{\text{buffered}}}{K_{\text{Metal}}} = \frac{[\text{Metal}]_{\text{buffered}}}{[\text{Metal}]_{\text{buffered}} + [\text{Metal}]_{\text{buffer}}} \]

Figures 3a and 3b show the simulated curves for the relative affinity (K_{Metal}) and relative access (K_{Metal}/[Metal]) of these sensors with varying metal concentrations. The selectivity of nickel correlates with relative nickel affinity, of zinc with relative allostery (83–85).

What sustains these different buffered metal concentrations? An expectation is that this relates to detection thresholds of sensors that control homeostasis for the respective metals. There are pitfalls in the estimation of K_{Metal}, especially for tighter binding elements (77), generating a jumble of erroneous values. Nonetheless, mindful of this caveat, a remarkable correlation exists between estimates of K_{Metal} for metal sensors and estimates for buffered cytosolic metal concentrations (Fig. 2). This observation is consistent with the intracellular set point for metal homeostasis being a function of these sensor affinities. By setting the metal affinities of metal sensors such that those for the most competitive metals are the tightest, the control of metal efflux, metal influx, and metal sequestration and the switching of metabolism to spare limiting metals are thus primed to maintain the buffered metal concentrations as an inverse function of the Irving-Williams series. Under this regime, subtle differences in the relative metal preferences of metalloenzymes now become sufficient to enable correct in vivo metallation.
MINIREVIEW: Metal Preferences and Metallation

affinity, and the detection of zinc correlates with relative free energy coupling DNA binding to zinc binding (relative allostery), but a substantial kinetic contribution is invoked in the selective detection of cobalt (relative access) (83–85) (Fig. 3).

To elaborate, InrS possesses the tightest nickel affinity in this set of metal sensors (83). Thus, as the buffered concentration of nickel rises, provided the distribution of nickel among the sensors approximates to the thermodynamic equilibrium state, InrS will trigger nickel efflux before the concentration becomes sufficiently high for nickel to aberrantly bind to any of the other sensors (Fig. 3a) (83). This assumes roughly equivalent numbers of molecules of each sensor per cell (a parameter that in the future needs to be measured). Cognizant of the challenges in determining protein-metal affinities and noting the weak $K_{Ni}(n)$ of ZiaR and Zur, a series of interprotein competition experiments also confirmed that nickel partitions from each of the other sensors to InrS (83).

In contrast to nickel, cobalt affinities do not correlate with in vivo specificities; rather, cobalt-sensing CoaR has the weakest $K_{Co}(n)$ of the set of sensors (84), (Fig. 3a). Moreover, in vitro, cobalt promotes DNA association by Zur and DNA dissociation by ZiaR, yet neither ZiaR nor Zur responds to cobalt in vivo under conditions in which CoaR responds (84). This implies that cobalt is channeled to CoaR and away from ZiaR and Zur with their tighter cobalt affinities. There is evidence that CoaR is membrane-associated, and cobalt acquisition may involve channeling via the cobalamin biosynthetic complex, which is also membrane-associated. Additionally, there is evidence that CoaR may not solely sense cobalt directly, but also detect an intermediate in the B12 assembly pathway (84). In summary, CoaR has preferential access to the cobalt effector relative to ZiaR and Zur.

The zinc affinity of InrS is comparable with the sensory sites of ZiaR and Zur (Fig. 3a), yet following prolonged zinc exposure, ZiaR responds but InrS does not. Critically, although the allosteric mechanism of InrS is capable of responding to zinc, the coupling free energy linking zinc binding to DNA binding ($\Delta G^\circ_{C} \text{ zinc-sensor-DNA}$) is greater for ZiaR than for InrS (85), (Fig. 3b). In short, zinc is a more effective derepressor of ZiaR than of InrS. Thus, at some equivalent fractional zinc occupancies, a greater proportion of InrS relative to ZiaR will be bound to DNA. InrS can thereby repress its gene target, whereas the ZiaR target remains derepressed. This exemplifies how relative coupling free energy ΔG°_{C} that is relative allosteric effectiveness, in a complement of metal sensors can also dictate selectivity (Fig. 3b).

Improbable Kinetics and Associative Metallation

Metal affinities of metal sensors for the most competitive metals such as nickel, zinc, and copper are so tight that it is not credible for metal partitioning to and from solution to reach equilibrium in a viable timeframe. The off-rates are too slow. However, this assumes dissociative metal exchange. As an alternative, associative metal exchange can occur to/from labile metal sites of proteins (including metal sensors) and components of a polydispersive buffer. This ill-defined buffer is composed of small molecules such as amino acids, glutathione, organic acids, and inorganic ligands, plus weak adventitious ligands on the surface of macromolecules, specific buffering proteins, and a subset of the delivery proteins. Rates of metal exchange in cells can thus be unexpectedly fast, and can swiftly approach the equilibrium state. Moreover, such a process of associative ligand exchange through a polydispersive buffer can operate at buffered concentrations below 10^{-9} M, the theoretical threshold for one atom per cell volume in a bacterium such as E. coli (88).

For the most competitive metals, the fully hydrated pool is indeed estimated to be below 10^{-9} M and thus equates to less than one (free) atom per cell at any instant (88, 89) (Fig. 2). In relation to Fig. 3 and the example in the preceding section, InrS does transiently respond to zinc in vivo, whereas the response of ZiaR is persistent. The buffered concentration of zinc would have to fall below 10^{-11} M for a protein with the $K_{Zn}(n)$ of InrS to have less than full zinc occupancy to restore repression. Under these conditions, persistent ZiaR must therefore detect a pool of exchangeable zinc that is buffered at least 2 orders of magnitude below $\sim 10^{-9}$ M (85). One explanation is that ZiaR is metallated through associative ligand exchange with a polydispersive buffer rather than depending upon a hydrated pool of zinc ions. By way of illustration, the equations in Fig. 4 represent the transfer of zinc from InrS to ZiaR (i) by a dissociative process requiring the slow release of zinc from InrS to the hydrated state, and (ii) by potentially swift associative exchange with ligands of a buffer.

Prospective: The Elements of Biotechnology and Biomedicine

With such a large proportion of enzymes requiring metals, discord between their metal binding preferences and metal requirements has implications for biological chemistry, as well as applications in biotechnology and biomedicine. For example, knowledge of the in vivo metallation states of components of metabolic and signaling networks is required to improve the accuracy of systems biology computations. Synthetic biology aims to engineer cells for new purposes. Success may often depend upon an ability to coincidentally rewire the circuitry for enzyme metallation.

REFERENCES

1. Irving, H., and Williams, R. J. (1948) Order of stability of metal complexes. Nature 162, 746–747
2. Johnson, D. A., and Nelson, P. G. (1995) Factors determining the ligand field stabilization energies of the hexaqua 2+ complexes of the first transition series and the Irving-Williams order. Inorg. Chem. 34, 5666–5671
3. Davis, A. V., and O’Halloran, T. V. (2008) A place for thioether chemistry in cellular copper ion recognition and trafficking. Nat. Chem. Biol. 4, 148–151
4. Schalk, I. J., Yue, W. W., and Buchanan, S. K. (2004) Recognition of iron-free siderophores by TonB-dependent iron transporters. Mol. Microbiol. 54, 14–22
5. Parker Siburt, C. J., Mietzner, T. A., and Crumbliss, A. L. (2012) FbpA —
a bacterial transferrin with more to offer. Biochim. Biophys. Acta 1820, 379–392.
6. Suttisananee, U., Lau, K., Lagishtety, S., Rao, K. N., Swaminathan, S., Sauber, J. M., Burley, S. K., and Honek, J. F. (2011) Structural variation in bacterial glycolalase I enzymes: investigation of the metalloenzyme glycolalase I from Clostridium acetobutylicum. J. Biol. Chem. 286, 38367–38374.
7. Tottey, S., Waldron, K. J., Firbank, S. J., Reale, B., Bessant, C., Sato, K., Cheek, T. R., Gray, J., Banfield, M. J., Dennison, C., and Robinson, N. J. (2008) Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455, 1138–1142.
8. Cvetkovic, A., Menon, A. L., Thorgersen, M. P., Scott, J. W., Poole, F. L., Hartl, F. U., and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Rev. Microbiol. 164, 505–534.
9. Hung, H. C., and Chang, G. G. (2001) Differentiation of the slow-binding lent metal cation requirement of protein tyrosine kinase CSK.
10. Robinson, N. J., and Winge, D. R. (2010) Copper metallochaperones. Nature 460, 823–830.
11. Fernandes, S., Geueke, B., Delgado, O., Coleman, J., and Hatti-Kaul, R. (2011) Metalprotein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Res. Microbiol. 164, 505–534.
12. Imlay, J. A. (2014) The mismetallation of enzymes during oxidative stress.
13. Robinson, N. J. (2002) A copper metallochaperone for photosynthesis and nickel proteins.
14. Mapolelo, D. T., Zhang, B., Randeniya, S., Albetel, A. N., Li, H., Couturier, J., Outten, C. E., Rouhier, N., and Johnson, M. K. (2013) Monothiol glutaredoxins and A-type proteins: partners in Fe-S cluster trafficking. Dan-
for single-helix proteins resembling part of the light-harvesting proteins from higher plants. *Biochemistry* 38, 9397–9404.

48. Jensen, P. E., Gibson, L. C., Henningsten, K. W., and Hunter, C. N. (1996) Expression of the *chil*, *chld*, and *chilH* genes from the Cyanobacterium *Synechocystis PCC6803 in Escherichia coli* and demonstration that the three cognate proteins are required for magnesium–protoporphyrin chelatase activity. *J. Biol. Chem.* 271, 16662–16667.

49. Leech, H. K., Raux, E., McLean, K. J., Munro, A. W., Robinson, N. J., Borrell, G., P., Malten, M., Jahn, D., Rigby, S. E., Heathcot, P., and Warren, M. J. (2003) Characterization of the cobaltchelotenate CbiX/evidence for a 4Fe–4S center housed within an MXXCCX motif. *J. Biol. Chem.* 278, 41900–41907.

50. Stengel, A., Gügel, I. L., Hilger, D., Rengstl, B., Jung, H., and Nickelsen, J. (2012) Initial steps of photosystem II *de novo* assembly and preloading with manganese take place in biogenesis centers in *Synechocystis*. *Plant Cell* 24, 660–677.

51. Portnoy, M. E., Schmidt, P. J., Rogers, R. S., and Culotta, V. C. (2001) Metal transporters that contribute copper to metallochaperones in *Saccharomyces cerevisiae*. *Mol. Genet. Genomics* 265, 873–882.

52. Pope, C. R., De Feo, C. J., and Unger, V. M. (2013) Cellular distribution of copper to superoxide dismutase involves scaffolding by membranes. *Proc. Natl. Acad. Sci. U.S.A.* 110, 20491–20496.

53. Xiao, Z., and Wedd, A. G. (2002) A C-terminal domain of the membrane copper pump Ctx1 exchanges copper(I) with the copper chaperone Atx1. *Chem. Commun. (Camb)* 21, 588–589.

54. Rowe, J. L., Starnes, G. L., and Chivers, P. T. (2005) Complex transcriptional control links NikABCDE-dependent nickel transport with hydrogenase expression in *Escherichia coli*. *J. Bacteriol.* 187, 6317–6323.

55. Chivers, P. T., Benanti, E. L., Heil-Chapelaíne, V., Iwig, I. S., and Rowe, J. L. (2012) Identification of Ni-(*-1)*Ni as a substrate for NikABCDE-dependent nickel uptake in *Escherichia coli*. *Metallomics* 4, 1043–1050.

56. Chen, W., Dailey, H. A., and Paw, B. H. (2010) Ferrochelatase forms an intracellular cell controls. *Proc. Natl. Acad. Sci. U.S.A.* 107, 5980–5985.

57. Leech, H. K., Raux, E., McLean, K. J., Munro, A. W., Robinson, N. J., Borrell, G., Malten, M., Jahn, D., Rigby, S. E., Heathcot, P., and Warren, M. J. (2003) Characterization of the cobaltchelotenate CbiX/evidence for a 4Fe–4S center housed within an MXXCCX motif. *J. Biol. Chem.* 278, 41900–41907.

58. Chillappagari, S., Seubert, A., Trip, H., Kuipers, O. P., Marahiel, M. A., Thorgersen, M. P., and Downs, D. M. (2007) Cobalt targets multiple

59. Chillappagari, S., Seubert, A., Trip, H., Kuipers, O. P., Marahiel, M. A., Thorgersen, M. P., and Downs, D. M. (2007) Cobalt targets multiple

60. Thorgersen, M. P., and Downs, D. M. (2007) Cobalt targets multiple

61. Tottey, S., Patterson, C. J., Banci, L., Bertini, I., Felli, I. C., Pavelkova, A., Dainty, S. J., Pernil, R., Waldron, K. J., Foster, A. W., and Robinson, N. J. (2009) How do bacterial cells ensure metalloproteins get the correct metal? *Nat. Rev. Microbiol.* 7, 25–35.

62. Foster, A. W., Patterson, C. J., Pernil, R., Hess, C. R., and Robinson, N. J. (2012) Cytosolic Ni(II) sensor in cyanobacterium: nickel detection follows nickel affinity across four families of metal sensors. *J. Biol. Chem.* 287, 12142–12151.

63. Rutherford, J. C., Cavet, J. S., and Robinson, N. J. (1999) Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt–exporting variant CpxA-type ATPase. *J. Biol. Chem.* 274, 25827–25832.

64. Thewliss, C., Robinson, N. J., and Turner-Cavet, J. S. (1998) An SmtB-like repressor from *Synechocystis PCC 6803 regulates a zinc exporter. Proc. Natl. Acad. Sci. U.S.A.* 95, 10728–10733.

65. Otten, C. E., and O’Halloran, T. V. (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. *Science* 292, 2488–2492.

66. Changel, A., Chen, K., Xue, Y., Holschen, J., Otten, C. E., O’Halloran, T. V., and Mondragón, A. (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueB. *Science* 301, 1383–1387.

67. Wang, D., Hosteen, O., and Fierke, C. A. (2012) ZnT-mediated transcription of *znT*4 responds to nanomolar intracellular free zinc. *J. Inorg. Biochem.* 111, 173–181.

68. Alatossava, T., Jütte, H., Kuhn, A., and Kellenberger, E. (1985) Manipulation
of intracellular magnesium content in polymyxin B nonapeptide-sensitized
Escherichia coli by ionophore A23187. J. Bacteriol. 162, 413–419
92. Mills, S. A., and Marletta, M. A. (2005) Metal binding characteristics and
role of iron oxidation in the ferric uptake regulator from Escherichia coli.
Biochemistry 44, 13553–13559
93. Iwig, J. S., Leitch, S., Herbst, R. W., Maroney, M. J., and Chivers, P. T.
(2008) Ni(II) and Co(II) sensing by Escherichia coli RcnR. J. Am. Chem.
Soc. 130, 7592–7606
94. Chivers, P. T., and Sauer, R. T. (2002) NikR repressor: high-affinity nickel
binding to the C-terminal domain regulates binding to operator DNA.
Chem. Biol. 9, 1141–1148
95. Dann, C. E., 3rd, Wakeman, C. A., Sieling, C. L., Baker, S. C., Irnov, I., and
Winkler, W. C. (2007) Structure and mechanism of a metal-sensing reg-
ulatory RNA. Cell 130, 878–892
96. Ma, Z., Faulkner, M. J., and Helmann, J. D. (2012) Origins of specificity
and cross-talk in metal ion sensing by Bacillus subtilis Fur. Mol. Micro-
biol. 86, 1144–1155
97. Ma, Z., Cowart, D. M., Scott, R. A., and Giedroc, D. P. (2009) Molecular
insights into the metal selectivity of the copper(II)-sensing repressor
CsoR from Bacillus subtilis. Biochemistry 48, 3325–3334
98. Ma, Z., Gabriel, S. E., and Helmann, J. D. (2011) Sequential binding and
sensing of Zn(II) by Bacillus subtilis Zur. Nucleic Acids Res. 39,
9130–9138
99. Grossoehme, N., Kehl-Fie, T. E., Ma, Z., Adams, K. W., Cowart, D. M.,
Scott, R. A., Skaar, E. P., and Giedroc, D. P. (2011) Control of copper
resistance and inorganic sulfur metabolism by paralogous regulators in
Staphylococcus aureus. J. Biol. Chem. 286, 13522–13531
100. Pennella, M. A., Arunkumar, A. I., and Giedroc, D. P. (2006) Individual
metal ligands play distinct functional roles in the zinc sensor Staphylo-
coccus aureus CzrA. J. Mol. Biol. 356, 1124–1136