Conservation strategies for understanding and combating the primate bushmeat trade on Bioko Island, Equatorial Guinea

Drew T. Cronin1,2,3,4 | Paul R. Sesink Clee2,3,4 | Matthew W. Mitchell2,3,4 | Demetrio Bocuma Meñe2,3,4 | David Fernández4,5 | Cirilo Riaco4 | Maximiliano Fero Meñe4,6 | Jose Manuel Esara Echube4,7 | Gail W. Hearn2,3,4 | Mary Katherine Gonder2,3,4

1 SMART Partnership, Wildlife Conservation Society, Bronx, New York
2 Department of Biology, Drexel University, Philadelphia, Pennsylvania
3 Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, Pennsylvania
4 Bioko Biodiversity Protection Program, Malabo, Bioko Norte, Guinea Ecuatorial
5 Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
6 Oficina de Investigación, la Universidad Nacional de Guinea Ecuatorial, Malabo, Bioko Norte, Guinea Ecuatorial
7 Facultad del Medio Ambiente, la Universidad Nacional de Guinea Ecuatorial, Malabo, Bioko Norte, Guinea Ecuatorial

Correspondence
Drew T. Cronin, SMART Partnership, Wildlife Conservation Society, Bronx, NY. Email: cronin.drew@gmail.com

Funding information
ExxonMobil Foundation; Mobil Equatorial Guinea, Inc.; U.S. Fish and Wildlife Service, Los Angeles Zoo; International Primatological Society, Primate Conservation, Inc.; International Primate Protection League

Bioko Island, Equatorial Guinea is among the important places in Africa for the conservation of primates, but a cultural preference for bushmeat and a lack of effective law enforcement has encouraged commercial bushmeat hunting, threatening the survival of the remaining primate population. For over 13 years, we collected bushmeat market data in the Malabo market, recording over 35,000 primate carcasses, documenting “mardi gras” consumption patterns, seasonal carcass availability, and negative effects resulting from government intervention. We also conducted forest surveys throughout Bioko’s two protected areas in order to localize and quantify primate populations and hunting pressure. Using these data, we were able to document the significant negative impact bushmeat hunting had on monkey populations, estimate which species are most vulnerable to hunting, and develop ecological niche models to approximate the distribution of each of Bioko’s diurnal primate species. These results also have allowed for the identification of primate hotspots, such as the critically important southwest region of the Gran Caldera Scientific Reserve, and thus, priority areas for conservation on Bioko, leading to more comprehensive conservation recommendations. Current and future efforts now focus on bridging the gap between investigators and legislators in order to develop and effectively implement a management plan for Bioko’s Gran Caldera Scientific Reserve and to develop a targeted educational campaign to reduce demand by changing consumer attitudes toward bushmeat. Using this multidisciplinary approach, informed by biological, socioeconomic, and cultural research, there may yet be a positive future for the primates of Bioko.

KEYWORDS
Bioko, bushmeat, conservation, ecological niche models, hunting, red colobus

1 INTRODUCTION

The hunting of wildlife for human consumption is common in tropical forests throughout the world, as bushmeat plays a prominent economic and dietary role for many rural populations (Fa, Peres, & Meeuwig, 2002; Milner-Gulland & Bennett, 2003; Robinson & Bennett, 2000), and wildlife declines and, in some cases extirpations, have been well documented (Butynski, Schaaf, & Hearn, 1997; McGraw, 1998; Oates, Abedi-Lartey, McGraw, Struhsaker, & Whitesides, 2000; Robinson & Bennett, 2000; Wilkie & Carpenter, 1999). In the Gulf of Guinea forests of central Africa in particular, bushmeat hunting is especially extensive. This region contains some of the highest human population densities in all of Africa (e.g., >500 people/km²) (Oates, Bergl, & Linder, 2004), and the volume of bushmeat for sale in its markets is estimated at approximately 12,000 tons per year (Fa et al., 2006).
estimates of maximum sustainable production, most taxa hunted for bushmeat are overexploited; potentially more than six times sustainable levels (Bennett, 2002; Bennett et al., 2002; Fa & Brown, 2009). However, not all wildlife species are equally threatened by hunting. Factors such as ecological flexibility (e.g., broad dietary breadth, ability to exploit numerous habitats), anti-predator behavior, and life history traits can influence species’ vulnerability to hunting (Linder & Oates, 2011; McGraw, 2007; Struhsaker, 1999). Diurnal primates, for example, are particularly threatened, with over 70% of species in the region thought to be hunted unsustainably (Fa & Brown, 2009), despite most species receiving at least some level of legal protection under both national and international legislation (e.g., CITES, African Convention on the Conservation of Nature and Natural Resources). Primates play a vital role in ecosystem functioning in terms of seed dispersal, and the preservation of primate populations is critically important for the maintenance of forest structure and forest regeneration (Chapman & Onderdonk, 1998; Poulsen, Clark, & Smith, 2001; Wrangham, Chapman, & Chapman, 1994). Declines and/or losses of these species can lead to cascading negative ecological consequences, including reductions in the number of large hardwood trees, a transition toward fast-growing, low-density pioneer species, and declines in the overall tree community diversity, threatening the persistence of the ecosystems they inhabit and the people who depend on them (Abernethy, Coad, Taylor, Lee, & Maisels, 2013; Chapman & Onderdonk, 1998; Effiom et al., 2013; Laurance et al., 2012; Terborgh et al., 2008; Vanthomme, Belle, & Forget, 2010).

Hundreds of millions of dollars have been spent on conservation in central Africa, leading to the development and implementation of numerous strategies to better understand and combat the bushmeat trade, which have been met with varied levels of success (Pailler, 2005; Pyhälä, Osuna Orozco, & Counsell, 2016). Development objectives, such as poverty alleviation, are widely utilized and have improved livelihoods of some of those dependent on forest resources, but real conservation effectiveness is rare and often not evaluated (Roe et al., 2015), and as stand-alone measures, development objectives have had minimal success in reducing bushmeat consumption (Astars, 2009; Oates, 1999; Robinson & Bennett, 2002). In the Oban Division of the Cross River National Park, for example, despite a proposed budget of 18.43 million European Currency Units over a 7-year period (most of which went to development projects and international consultants), high-intensity unregulated hunting in the park led to low mammal densities (Oates, 1999). Heavy hunting in the park has continued since Oates’ account, resulting in extremely low mammal densities, and local communities in the vicinity of the park are now “somewhat antagonistic” due to unfulfilled development promises stemming from the creation of the park (Morgan et al., 2011; Morgan, Abwe, Dixon, & Astaras, 2011). Furthermore, many development projects struggle to meet their own objectives due to limited funds, capacity, and available time (Wicander & Coad, 2015). Forest guard patrols in protected areas have shown to be successful at reducing hunting (Bruner, Gullison, Rice, & da Fonseca, 2001; Campbell, Kuehl, Diarrassouba, N’Goran, & Boesch, 2011; Corlett, 2007; de Merode & Cowlishaw, 2006; Hilborn et al., 2006; Rowcliffe, de Merode, & Cowlishaw, 2004; Tranquilli et al., 2012), but they do not fully address the problem of bushmeat demand. These patrols often lack adequate financial resources (Njuh Fuø & Memuna Semi, 2011; Oates et al., 2004), can be ineffective if improperly implemented, and, in some cases, have contributed to conflicts with local communities (Pyhälä et al., 2016). Blanket criminalization of hunting and consumption could deter hunting if properly enforced, but enforcement regimes are often ineffective or absent, and, as such, have been relatively unsuccessful in reducing the overall trade (Barnes, 1996; Biggs, Courchamp, Martin, & Possingham, 2013; Burton, 1999; Miron, 1998; Rivalan et al., 2007). Domestication of bushmeat species has been proposed as a way to alleviate demand (Cooper, 1995; Grande Vega, Carpinetti, Duarte, & Fa, 2013; Jori, Mensah, & Adjano, 1995), but it has been shown to be economically inviable in the absence of enforcement, while wild meat remains essentially a free good (Brooks, Robertson, & Bell, 2010; Mockrin, Bennett, & LaBruna, 2005; Nasi et al., 2008). Despite readily available protein alternatives at cheaper prices, taste and cultural preferences for bushmeat contribute to the persistence of its high demand (Browen-Jones & Pendry, 1999; East, Kumpel, Milner-Gulland, & Rowcliffe, 2005; Kümpel et al., 2007; Morra, Hearn, & Buck, 2009; Reid, Morra, Bohome, & Fernández, 2005; Schenck et al., 2006). Education in order to change perceptions toward wildlife and conservation may have long lasting impacts, but societal change is often a slow process, and too many species require solutions in the short-term in order to ensure their persistence. Thus, education and outreach should be critical components of any comprehensive strategy, but they do not address the inherent immediacy of the bushmeat crisis. What is clear is that there is no panacea for the bushmeat crisis and that our understanding of how to most effectively solve the problem remains unclear, largely due to the extremely complex nature of the bushmeat trade, spanning from individual actors to national and international-level policy considerations. No single solution can stand alone in the face of such an intricate problem; rather, we need to address the bushmeat trade from as many angles as possible.

It has long been said, however, that conservation is a crisis discipline (Soulé, 1985), and some of the best laid theories often fail victim to limitations of funding, logistics, and the realities on the ground (Cronin, Libalah, Bergl, & Hearn, 2014; James, Green, & Paine, 1999). Due to these limitations, researchers in central Africa have often focused their efforts on a particular niche, for example, socioeconomic or ecology (Brashares, Golden, Weinbaum, Barrett, & Okello, 2011; Foerster et al., 2012), with the aim of contributing data to an overarching conservation effort. Recent studies (e.g., Fa, Olivero, et al. [2015], Nasi & Van Vliet [2011], Ziegler et al. [2016]) have begun to broaden the focus to provide regional understanding and scope, while still providing great specificity in the details of their findings. However, there have been few instances where it has been possible to develop and implement a long-term multidisciplinary approach tailored to a particular site; where both research and conservation activities could be implemented in an area small enough to feasibly manage multiple projects as well as monitor progress.

Bioko Island, Equatorial Guinea provides a unique opportunity to study the bushmeat trade and its effects on primate populations in central Africa. The Bioko Biodiversity Protection Program (BBPP), an academic partnership between Drexel University and the Universidad Nacional de Guinea Ecuatorial (UNGE), has carried out research and
conservation activities, and has been spearheading conservation efforts on Bioko since the program’s inception in 1998. In recent years, however, the BBPP has developed and implemented a more comprehensive approach to biodiversity conservation on Bioko, leveraging the strength of its long-term conservation and monitoring programs to shift to a more results-based approach that encompasses current education, research, and planning techniques. In this review, we aim to (1) detail the multifaceted conservation framework (Figure 1) currently being employed by the BBPP; (2) synthesize recent BBPP research to summarize current knowledge on the status of wildlife and conservation efforts on Bioko; (3) demonstrate how we are aggregating results to prioritize conservation efforts; and (4) provide conservation recommendations to improve protection of Bioko’s primate populations.

1.1 Bioko Island: A bushmeat case study

Bioko Island, Equatorial Guinea (2,017 km²) is a small volcanic island in the Gulf of Guinea, just 37 km off the coast of Cameroon (Figure 2). The island has been recognized as a hotspot for biodiversity (Myers, Mittermeier, Mittermeier, da Fonseca, & Kent, 2000; Oates et al., 2004), owing in part to its small size, location, and biogeographic history, as well as its seven diurnal primate taxa (Table 1), which make it one of the highest priority sites in Africa for the conservation of primates (Oates, 1996). Human population density varies widely on Bioko, from >100 people/km² in Malabo in the north to <10 people/km² in the south (Albrechtsen, Fa, Barry, & Macdonald, 2006). Much of the island’s biodiversity occurs within two protected areas that comprise approximately 40% of the island, Pico Basilé National Park (PBNP) (330 km²) and the Gran Caldera Scientific Reserve (GCSR) (510 km²). Since the late 1990s, urban development surrounding Malabo has expanded greatly, but due to a combination of rugged terrain, isolation, heavy rainfall, and an island-wide ban on logging activities (Republic of Equatorial Guinea, 1991), large swaths of intact forests remain, especially within PBNP and GCSR (Zafra-Calvo et al., 2010). Despite the readily available intact habitats and biological wealth of Bioko, there are neither management plans for its protected areas, nor detailed enforcement strategies in place with which to effectively conserve its biodiversity.

Bioko Island provides a unique opportunity for the study of the bushmeat trade. Bushmeat hunting is the primary threat to the persistence of primates on Bioko. Government attempts to regulate the bushmeat trade in Equatorial Guinea have so far focused on reducing supply by regulating hunting (Republic of Equatorial Guinea, 1988), banning hunting inside protected areas (Republic of Equatorial Guinea, 2000, 2003), and prohibiting the hunting, sale, and consumption of primates (Republic of Equatorial Guinea, 2007). Each of these legislative efforts have ultimately been toothless, however, as objectives have been too broad, unfeasible (e.g., no staff/infrastructure to enforce laws in protected area), and/or lacking detailed strategies for funding and implementation. As a result, forests and protected areas are entirely unmanaged and hunting is extensive throughout the island, both outside (legally) and inside (illegally) of protected areas (Cronin, Riaco, & Hearn, 2013; Cronin et al., 2016; Grande Vega et al., 2013; Grande-Vega, Farfán, Ondo, & Fa, 2016). This hunting is conducted nearly exclusively for profit, predominantly by commercial hunters from the mainland sector of Equatorial Guinea (Albrechtsen, Macdonald, Johnson, Castelo, & Fa, 2007; Grande Vega et al., 2013; Hearn, Morra, & Butynski, 2006; Reid et al., 2005). The market structure and taxonomic profile are relatively similar to other regional markets (Albrechtsen et al., 2007; Cronin, Woloszynek, et al., 2015; Fa, Yuste, & Castelo, 2000). The bushmeat trade on Bioko is confined to a relatively small, contained (insular) system (barring easily identifiable imports from the mainland), with simple transport routes (Fa, 2000), and consumption primarily restricted to Malabo (Albrechtsen et al., 2007). Malabo’s population is not dependent on bushmeat, as alternative protein sources are readily available, and bushmeat contributes an insignificant proportion of the population’s minimum protein requirement (Albrechtsen et al., 2006; Grande Vega et al., 2013; Morra et al., 2009; Reid et al., 2005) and fulfills only a fraction of the economic needs for relatively few individuals (Albrechtsen et al., 2006; Reid et al., 2005). Rather, it seems that consumption of bushmeat, and especially of primates, is associated with wealth and status (Albrechtsen et al., 2006; Cronin, Woloszynek, et al., 2015; Reid et al., 2005). As a result, larger vertebrates, specifically monkeys, are in decline on Bioko (Cronin, Becuma Meñe, et al., 2015; Cronin et al., 2010, 2013; Grande-Vega et al., 2016; Hearn et al., 2006). This situation is exacerbated by the recent completion of a new highway bisecting the GCSR (Figure 2), providing easy access to previously inaccessible areas, creating new opportunities for illegal exploitation of wildlife and forest resources, stimulating new interest in development activities at Ureca, and facilitating establishment of (unregulated) tourism in the GCSR.

1.2 Bushmeat market surveys

At the time of the first contemporary conservation assessment of primates on Bioko, primate populations were relatively abundant, but researchers also documented the existence of a bushmeat market on Bioko and warned of the potential negative impacts hunting could have on the island’s primates (Butynski & Koster, 1994). Subsequent studies documented the extent of the market, and demonstrated that throughout the 1990s and early 2000s, wildlife on Bioko was heavily exploited, with some species, including primates, hunted unsustainably (Albrechtsen et al., 2007; Fa, Juste, Delval, & Castroviejo, 1995; Hearn et al., 2006; Juste, Fa, Delval, & Castroviejo, 1995; Morra et al., 2009). These studies formed a critical baseline for conservation
planning, but lacking a true temporal component, were only able to provide general “snapshot” details of market characteristics and trends. Cronin, Woloszynek, et al. (2015), however, conducted a comprehensive bushmeat market study using long-term data collected between October 1997 and September 2010, which allowed for the detection of short- and long-term effects of market interventions, species-specific hunting patterns within taxonomic groupings, and seasonality in hunting patterns across several years. Market data were classified into groups (e.g., primates) and analyzed relative to three distinct periods based on conservation activities, government interventions, and notable market changes using an intervention model (Box & Tiao, 1975) and suite of time series analyses (see Cronin, Woloszynek, et al. (2015) for an in-depth description of methodology). Over 197,000 carcasses from 45 different taxa were recorded during the course of the study. More than 35,000 of these carcasses were primates, making up about 18% of the entire volume of the market.

TABLE 1 The diurnal primates of Bioko Island, Equatorial Guinea and their degree of threat status at the species and subspecies levels (IUCN, 2016)

Common name	Binomial name	Red list category
Bioko black colobus^a	*Colobus satanas satanas*	Vulnerable
Pennant’s red colobus^{ab}	*Procolobus pennantii pennantii*	Critically endangered
Bioko drill^b	*Mandrillus leucophaeus poensis*	Endangered
Bioko Preuss’s monkey^a	*Allochrocebus preussi insularis*	Endangered
Bioko red-eared monkey^c	*Cercopithecus erythrotis erythrotis*	Vulnerable
Crowned monkey	*Cercopithecus pogonias pogonias*	Least concern
Bioko putty-nosed monkey^c	*Cercopithecus nictitans martini*	Least concern

Taxonomic classification follows Grubb et al. (2003), except for Preuss’s monkey, which is allocated to the genus *Allochrocebus* following Grubb (2006). Table adapted from Cronin et al. (2016).

^aRecognized by Grubb et al. (2003) as subspecies endemic to Bioko.

^bRecognized by Groves (2007; *Pilocolobus pennantii*) and Oates (2011; *Procolobus pennantii*) as a species endemic to Bioko.

^cRecognized by Oates (2011) and Mittermeier, Rylands, and Wilson (2013) as an subspecies endemic to Bioko.
(Cronin, Woloszynek, et al., 2015). The overall market grew significantly over time concurrent to a transition toward increased shotgun hunting. The volume of primate carcasses in the market also increased gradually until October 2007 (Figure 3a), when the hunting, sale, and consumption of primates were banned by Presidential Decree (Republic of Equatorial Guinea, 2007). As a result, the primate carcass rate temporarily dropped to nearly zero carcasses/market day, but then swiftly increased to rates 3–4 higher than pre-ban, reaching a maximum of 37.42 carcasses/market day in April 2010. Cronin, Woloszynek, et al. (2015) termed this pattern a “mardi gras” mentality in relation to attempted conservation interventions, in which bushmeat volume actually increased following implementation of the intervention largely due to a lack of enforcement as market players sought to maximize their gains before the potential effects of the legislation could take hold. Not all primate taxa were hunted equally, however, as interspecific differences revealed via trend analyses shed light on the drivers of the rapid increase in the overall primate carcass rate following the decree. Five of the seven primates occurred in the market at a significantly greater rate in the period following the primate hunting ban, but two species (Piliocolobus pennantii and Cercopithecus nictitans) did not follow the same pattern (Figure 3b). As a result of both environmental factors and a history of unrestricted hunting, populations of these two species are restricted to the remote southern extent of Bioko within the GCSR (Figure 3c) (Butynski & Koster, 1994; Cronin, Bocuma Meñe, et al.; Cronin et al., 2013, 2016), suggesting that a combination of isolation and long-term BBPP conservation activities focused on the area, have provided at least passive protection from hunting. Furthermore, due to their limited geographic range, these species can serve as indicator species, alerting us to hunting activity in particular areas of the GCSR.

1.3 Forest surveys

While many bushmeat studies have been conducted on Bioko, there have been fewer comprehensive field surveys for primates. Rather, the emphasis has been on maintaining a localized, yet regular, long-term monitoring and research effort (Cronin et al., 2010; Hearn et al., 2004, 2006) in order to provide passive protection in key areas. Although there have been myriad conservation benefits to this program, more broadly-focused, systematically designed surveys were necessary to better estimate the status of primate populations and hunting intensity. In order to investigate the impact of hunting on wild primate populations, targeted forest surveys were conducted throughout the GCSR at three sites representative of differing levels of human access and activity: Moraka Playa, Ureca, and Belebu (Figure 2) (Cronin et al., 2016). Moraka Playa, in the remote southwest, had very little hunting and was over 30 km on foot from the nearest road. Ureca, the only village within the GCSR, was located about 22 km over land from the nearest road and at the time had a population of approximately 80 people. Ureca was considered to have moderate levels of human activity due to military activity around the reserve (Figure 2).

Unsurprisingly, primate abundance was negatively associated with shotgun hunting (Cronin et al., 2016). Primate encounter rates were significantly lower at Belebu than at either of the other two sites, while concurrently shotgun hunting was highest at Belebu (Table 2). Although these data indicated that hunting was adversely impacting the overall primate population, they did not explain how individual species were affected by differing levels of hunting pressure. A “hunting response index” (HRI) was developed in order to infer species-specific vulnerability (Figure 4). An HRI has been used before (e.g., Linder and Oates [2011]) to provide an estimate of vulnerability to hunting by comparing relative differences in species’ encounter rates between

![Figure 3](image-url)
highly and lowly hunted forests while controlling for habitat type. HRI values of less than one suggest that a species is vulnerable to hunting, values greater than one suggest the species may be resilient, and a value equal to one suggests no effect from hunting. Both *Cercopithecus erythrotis* and *C. nictitans* exhibited some resiliency to hunting, which in the case of *C. nictitans* supports results from Linder and Oates’ (2011) study in Korup National Park in Cameroon, as well as reports of relatively high densities of *C. nictitans* in other heavily hunted forests throughout the region (Garcia & Mba, 1997; Matthews & Matthews, 2002; Muchaal & Ngandjui, 1999). In contrast, the other four primate species were all vulnerable to hunting, as each was encountered less in heavily hunted forests (Figure 4). *P. pennantii* was most vulnerable to hunting, a trait it shares with many other highly threatened forms of red colobus across Africa (Struhsaker, 2005). This vulnerability has been attributed to its high degree of ecological specialization (e.g., limited dietary and habitat flexibility), as well as its large body and group size, and slow and ineffective anti-predator responses (González-Kirchner, 1997; McGraw, 2007; Struhsaker, 1999).

1.4 Biomonitoring and research presence

Forest guards can be beneficial in combating the illegal harvesting of wildlife (Bruner et al., 2001; Campbell et al., 2011; Corlett, 2007; de Merode & Cowlishaw, 2006; Hilborn et al., 2006; Rowcliffe et al., 2004; Tranquilli et al., 2012), and are believed to be the most cost-effective and expeditious solution to poaching, as well as an integral part of effective long-term protected area planning (Bennett, 2011). On Bioko, however, there are no management strategies for the island’s protected areas, nor have any governmental enforcement activities, such as forest patrols, been implemented. Since 1998, the BBPP has sought to fill that role by employing a community-based research and monitoring program within the GCSR. Teams of trained monitors, all of whom are hired locally, collect data on the status of hunting, primate populations, and nesting marine turtles throughout the GCSR. In addition to collecting vital data on the status of wildlife and hunting in the reserve, their presence in the forests has proven successful as a deterrent to hunting, despite lacking any official enforcement capacity (CR, pers. obs.). Employment of the monitoring and research teams has also provided an alternative livelihood for the local communities of Ureca and Moka (Figure 2), and, in doing so, converted a number of former hunters to enthusiastic conservationists. Furthermore, data collected by the monitoring teams have been vital to BBPP’s efforts, contributing to a number of reports and publications advancing the cause of biodiversity conservation on Bioko (Cronin et al., 2010; Cronin et al., 2013, 2016; Cronin, Bocuma, Meñe, et al., 2015; Fitzgerald, Ordway, Honarvar, & Hearn, 2011; Hearn et al., 2006; Rader, Ela Mba, Morra, & Hearn, 2006), as distilling data into formats understandable to policy makers as well as the general population is key to the development of successful wildlife management plans.

1.5 Ecological niche models

One of the most significant inhibitions to our greater understanding of primate ecology and abundance on Bioko is access. Bioko’s climate is one

Survey transect	Hunting intensity (signed/km)	Survey effort (km)	Sighting Frequency (groups/km)
Moraka	0.05 210.48		0.11 (17) 0.22 (30) 0.49 (111) 0.64 (133) 0.62 (131) 0.05 (13) 0.06 (6) 0
Ureca	0.29 99.25		0.10 (9) 0.04 (5) 0.19 (16) 0.93 (95) 0.44 (43) 0.05 (6) 0.01 (1) 0
Belebu	2.89 106.67		0.01 (1) 0.02 (1) 0.11 (9) 0.11 (9) 0.05 (6) 0.01 (1) 0

The number of primate group sightings is in parentheses. Table adapted from Cronin et al. (2016).
of the wettest in the world with over 10,000 mm of rain annually (Font Tullot, 1951; Nosti, 1947), and its rugged terrain has left steep and deep ravines unexplored, and restricted potential areas for primate surveys, especially during the wet season, when access and mobility are extremely limited. As a result, our inferences about primate distributions could not adequately account for inaccessible areas and/or range shifts. We have been able to overcome these hurdles by generating ecological niche models (ENMs) using the program Maxent (Phillips, Anderson, & Schapire, 2006). ENMs were developed specifically to maximize the utility of presence-only data collected in similar situations (Elith et al., 2011), and have been used successfully elsewhere to model primate distributions (Blair, Sterling, Dusch, Raxworthy, & Pearson, 2013; Etienne, Funwi-Gabga, Tagg, Hens, & Indah, 2013; Sesink Clee et al., 2015). Using forest survey data collected between 2008 and 2014, we developed species distribution models for each of Bioko’s seven diurnal primate species (Cronin, Bocuma, Meñe, et al., 2015). In order to best inform overall primate conservation, we combined individual species distributions to create a heat map depicting hotspots of primate species richness on Bioko (Figure 5a) (Cronin, Bocuma, Meñe, et al., 2015). The modeling of primate abundances and distributions in a scientifically accurate manner clearly illustrates the importance of the GCSR to the conservation of primate diversity on Bioko and has proven to be an effective tool for the communication of the importance of priority conservation zones on the island (Figure 5b). The southern slope of Bioko, from the peaks of the Gran Caldera and Pico Biafo down to the southern beaches, is likely to be the only remaining place where over five species of diurnal primates remain on the island. Even more critical is the Gran Caldera itself, the last vestige of truly remote forest on Bioko, which maintains populations of all seven species in an area of under 15 km².

1.6 | Understanding human use

In order to fully understand the bushmeat trade on Bioko, or indeed anywhere the trade occurs, it is important to understand the socioeconomic and cultural drivers that motivate people to hunt illegally and consume wildlife. Despite the wealth of data gained from studies of the market and wild primate populations, a lack of contemporary data on these drivers following the dramatic expansion of the Equatoguinean economy since the late 1990s (Central Intelligence Agency, 2016; The World Bank, 2016) has limited our ability to effectively target education, outreach, and conservation strategies. In an attempt to fill these gaps in our understanding of the bushmeat trade on Bioko, we conducted a series of questionnaires, a methodology which has proven useful in elucidating patterns of bushmeat consumption and preferences (East et al., 2005; Jenkins et al., 2011; Kümpel, Milner-Gulland, Cowlishaw, & Rowcliffe, 2010; Schulte-Herbrüggen, Cowlishaw, Homewood, & Rowcliffe, 2013). Over 700 public surveys were conducted between June 2013 and September 2014 at various sites in Malabo and in villages throughout Bioko (Bocuma Meñe, 2016). Results suggested that bushmeat consumption on Bioko is indeed driven by cultural preferences, predominantly in the two major ethnic groups, Fang and Bubi, which make up the majority of the island’s population. Fang and Bubi respondents consumed bushmeat at a similar frequency (DF = 3; p > 0.05), and reported that bushmeat was their preferred protein source (DF = 1; p > 0.05). However, differences existed among ethnic groups in regards to preferred bushmeat type; Fang respondents had a higher preference for primates (Fisher’s Exact Test; p < 0.05). These findings were similar to Fa, Juste, Burn, and Broad (2002) in which they reported that in 1990–1991 the Fang also had a significant preference for primates. This suggests that certain cultural preferences may transcend significant economic growth and changes in the bushmeat market (Cronin, Woloszynek, et al., 2015), and the erosion of other seemingly entrenched societal norms related to consumption (e.g., a taboo on eating Colobus satanas) (Colell, Mate, & Fa, 1994; Kümpel et al., 2008). In a comparison of two hunting villages, one Bubi and one Fang, Grande Vega et al. (2013) also found that only Fang hunters targeted monkeys. However, this may be confounded by the fact that Fang hunters had guns, while Bubis have had limited gun ownership since 1998 (Grande Vega et al., 2013). These findings highlight the importance of understanding the heterogeneity of local cultures as they relate to variability in bushmeat market drivers, and, as a result, how best to tailor conservation approaches to account for these differences (Walters, Schleicher, Hymas, & Coad, 2015). For example, our results suggest that education and outreach efforts aimed at reducing primate hunting and consumption through behavioral change should be tailored to address Fang cultural preferences.

2 | DISCUSSION

A broadly-based, holistic understanding of the status of primates and conservation on Bioko is required in order to engage with policy makers to design and implement effective conservation priorities. To that end, our goal is to leverage the strengths of the BBPP: (1)
numerous longitudinal datasets; (2) a successful academic partnership with UNGE, long-term history in the villages of both Ureca and Moka; (3) and a continuous research and biomonitoring presence in the GCSR, to advocate for a movement toward conservation lead and supported by the government.

2.1 | Focusing conservation efforts: Primates as umbrella species

A good example of our strategy in practice is the case of Pennant’s red colobus (*P. pennantii*), which illustrates the biological importance of the GCSR, as well as the utility of using primates as umbrella species for conservation on Bioko. *P. pennantii* is perennally considered among the world’s most endangered primates (Cronin, Hearn, & Oates, 2014; Mittermeier et al., 2007, 2010). Previous work has suggested that *P. pennantii* is the only primate species endemic to Bioko (Groves, 2007; Groves & Ting, 2013; Oates, 2011), despite high subspecific endemism among the other six species (Oates, 2011), and that it is also the most vulnerable primate to the impacts of hunting on the island (Cronin et al., 2016). Forest surveys have suggested that the population size of *P. pennantii* has declined significantly since 2006 (Cronin, unpublished data), and that its geographic distribution (Cronin, Bocuma, Meñe, et al., 2015; Cronin et al., 2013, 2016) is restricted entirely within the boundaries of the GCSR to an area nearly half the size of previous estimates (IUCN, 2016; Oates, 2011). Furthermore, the distribution of *P. pennantii* encompasses not only the areas with the highest species richness of monkeys on Bioko, but also much of the critical sea turtle nesting habitat along the southern beaches of the GCSR (Figure 6). Thus, if *P. pennantii* can be effectively conserved, it will serve as an umbrella for the conservation of many other threatened taxa (e.g., white-bellied pangolins, *Phataginus tricuspis*; Ogilby’s duiker *Cephalophus ogilbyi ogilbyi*; and leatherback turtles *Dermochelys coriacea*) and habitats, including the Gran Caldera itself and a large swath of contiguous forest along an elevational gradient from sea level to over 2,200 m.

2.2 | Conservation recommendations

Securing the long-term future of the GCSR will require a multifaceted approach, including (1) the development and implementation of an adaptive, evidence-based management plan; (2) strengthening of the legal basis for protection of the GCSR; (3) the empowerment of the National Institute of Forestry Development and Protected Area Management (INDEFOR-AP) and the Ministry of Forests and the Environment, the federal entities tasked with management of protected areas; (4) increased law enforcement effectiveness; and (5) committed involvement from the Government of Equatorial Guinea in order to not only stop illegal hunting, but also to mitigate impacts from its own development plans.

A critical problem that must be addressed is the commitment of the Equatoguinean government to biodiversity conservation, namely through support for protected areas and their management. Equatorial Guinea is far from unique in this situation, as many African rain forest protected areas are underfunded by 50–80% of their necessary annual operating costs (Bruner, Gullison, & Balmford, 2004; Wilkie, Carpenter, & Zhang, 2001), and at least 75% lack a secure, long-term funding program (Struhsaker, Struhsaker, & Siex, 2005). In a comprehensive analysis, Struhsaker et al. (2005) estimated that the annual cost of operating a protected area in African rain forests was between 23 and...
208 USD/km², noting however, that these levels were believed to be insufficient, and that even doubling estimates to about 400 USD/km² would still have left the costs significantly lower than protected areas in developed nations (James, Green, et al., 1999). Blom (2004) had similar results, estimating that the average yearly expenditure to achieve effective management at numerous protected areas across Cameroon, Equatorial Guinea, Gabon, and Central African Republic was approximately 212 USD/km². Given the high abundance and diversity of species in these forests (e.g., Oates et al., 2004), this suggests that investment in African rain forest protected areas is highly cost-effective (Bruner et al., 2004). Using the doubled approximations from Struhsaker et al. (2005), 400 USD per km² would be approximately 495 USD per km² after adjusting for inflation, resulting in an annual operating cost of just 415,800 USD for Bioko’s two protected areas (Cronin et al., 2014b). Assuming a gross domestic product (GDP) for Equatorial Guinea of 15.53 Billion USD (The World Bank, 2014), of which the forestry sector comprises approximately 1.3% (≈201.9 million USD) (Bizimana, Gallardo, & Pla, 2014), the effective operation of Bioko’s protected areas represent only 0.003% of the annual GPD and 0.22% of the forestry sector. It should be noted, however, that both above estimates assume that there is at least some existing infrastructure with which Bioko’s protected areas could be operated effectively (e.g., equipment and personnel). Despite the minimal costs relative to overall government expenditures, and the strong motivation of INDEFOR-AP to expand their management and conservation efforts, protected areas currently have insufficient infrastructure, personnel, and capital with which to operate in any impactful manner on Bioko. As a result, it is perhaps more realistic to estimate that in the near-term, initial investments must be higher to develop sufficient infrastructure and capacity with which to begin to actively manage protected areas. This serves to illustrate the scale of underinvestment in protected areas and their management in Equatorial Guinea despite its globally recognized biological wealth and the government’s declaration of environmental conservation as one of the country’s “Five Pillars” of reform (Quorvis Communications, 2010).

Far from simply detrimental to Bioko’s primates and other flora and fauna, this also represents a significant economic loss at both local and national scales, which if acknowledged, could help tip the scales in favor of improved conservation. Bioko’s ecosystems provide services that are of vital importance to the well-being, health, and prosperity of the country and its citizens, yet they are often overlooked due to the enigmatic nature of valuating ecosystem services. In a global assessment, Costanza et al. (2014) posited that tropical forests should be valued at 5282 USD/hectare/year for their services. Based on this estimate, the services provided by Bioko’s two PAs should be valued at
approximately 452 million USD/year. Furthermore, James, Gaston, and Balmford (1999) estimated that roughly 10 billion USD per year are spent safeguarding the world’s protected areas, from which approximately 600 billion USD/year is generated in direct in-country expenditure from visitors to these areas (Balmford et al., 2015). Unfortunately, visitors to Equatorial Guinea are scarce, as it is considered among the least visited countries in the world (Mark, 2015), meaning generating large-scale profits from ecotourism will be difficult in the near-term. However, if some policies were amended to make it easier to visit and transit throughout the country, there is significant potential for ecotourism on Bioko due to its intact forests, expansive beaches, and abundant wildlife, including high densities of both diurnal primates and marine turtles. We recognize that these values are rough estimates and that there are inherent limitations in detailed valuations of ecosystem services or potential future tourism expenditures, but, in general, evidence suggests that increased investments in protected areas and their management could yield substantial returns.

Given the current conditions and the task ahead, government-led conservation efforts should be prioritized on Bioko in order to concentrate efforts how and where they are likely to have the maximum possible conservation benefit. Initial efforts should focus on the protection of primates and marine turtles, the taxa most threatened by current offtake patterns. The optimal scenario for the preservation of primates would be a complete ban on shotgun hunting, which accounts for over 90% of all primate carcasses (Cronin, Woloszynek, et al., 2015; Grande Vega et al., 2013). Albrechtsen, Fa, Davidsen, and Macdonald (2004) tested this policy in a model based on Bioko, which also included manipulating market prices for larger animals and increased incomes from alternative livelihoods. The gun hunting ban performed best, not just for the protection of large animals, but also for the conservation of small animals and for reducing the size of the hunting population. Guns have been confiscated previously on Bioko in 1974 (Butynski & Koster, 1994), to the benefit of wildlife, and more recently Grande Vega et al. (2013) reported that during her study, no primates were killed in the village of Basilé Bubi, where there were no guns. It seems, then, that if enacted and effectively enforced, that a ban on gun hunting would considerably improve the long-term viability of Bioko’s primate populations.

Other measures, such as enforcement of existing legislation, could also be rapidly implemented by the Government of Equatorial Guinea, and may significantly reduce the amount of primate hunting by effecting barriers to the bushmeat trade. The primate hunting ban, for instance, includes prohibitive fines (approximately 200–1000 USD/money) (Republic of Equatorial Guinea, 2007), which could disincentivize hunting by threatening a significant portion of hunters’ annual hunting income (∼480–1,868 USD/year) (Fa et al., 2000; Grande Vega et al., 2013). Enforcement could begin in the immediate future at preexisting roadblocks on the two direct routes between catchment areas and Malabo where travelers are already required to stop and periodically show documentation (Figure 5b). These checkpoints should be supplemented with personnel from INDEFOR-AP tasked with randomized vehicle searches, and supported by military personnel trained in environmental legislation and enforcement. Additional motivation for search and seizure of the citizens may have pitfalls (i.e., the potential for extortion by military staff), but if individuals were supported sufficiently enough to promote compliance with the law, these checkpoints would be well suited to stemming the transport of the majority of bushmeat to Malabo.

Perhaps the most practical solution would be the implementation of forest guards (Bennett, 2011), which has been successful elsewhere in reducing hunting and improving the effectiveness of protected areas (Bruner et al., 2001; Campbell et al., 2011; Corlett, 2007; de Merode & Cowlishaw, 2006; Hilborn et al., 2006; Rowcliffe et al., 2004; Tranquilli et al., 2012). Intensive monitoring for bushmeat hunting could be conducted by these forest guards (or in the immediate future, the trained military personnel) stationed at “ranger bases” situated at key protected area access points, and by randomized searches of those transiting into and out of protected areas by INDEFOR-AP staff. By focusing on these natural “choke points,” guards may be more effective than with a more generalized enforcement scheme. The development and implementation of a “ranger base” or restricted access point at Belebu is especially important to the long-term future of the GCSR (Figure 5b). It provides the only vehicular access into the GCSR and to the southern extent of Bioko. The highest richness and densities of wildlife are found in this area, providing a biological incentive for protection, but the southern beaches area also a major tourist attraction, and the inability to control access and to generate profits that could then be put back into the management of the GCSR represents a significant missed economic opportunity.

A more broadly focused, systematic program of regular forest patrols covering the entirety of Bioko’s protected areas should also be implemented in the long-term, but in the beginning, we recommend that patrol efforts be prioritized following the conservation prioritization framework we developed using our ecological niche model results (Figure 5b). This framework was created to maximize conservation effectiveness based on amounts of total coverage, as well as the estimated relative investment necessary to effectively patrol the area. We also recommend that forest guard positions eventually be staffed by people living in or alongside protected areas (e.g., Ureca, Moka, Belebu, Moeri, Basilé Fang), as they are best suited for the positions given their local knowledge of the area they will be patrolling. This will aid in the success of the guard program by attaching an economic value to the stewardship of wildlife, and by helping to empower and engage local communities in the process of conservation.

The highest priority zone is the southwestern sector of the GCSR, which should be considered a “critical zone” in each of the following management strategies (Figure 5b). Using patrols to make this area a “no-take zone” could be enforced more easily than any offtake restrictions (Milner-Gulland & Bennett, 2003), as it is already protected passively via isolation, difficult terrain, and limited access from the ocean. This area contains all seven diurnal primate taxa at densities higher than elsewhere on Bioko, and has significantly less hunting than other sites (Cronin, Bocuma Meñe, et al., 2015; Cronin et al., 2016). It also holds the highest densities of Mandrillus leucophaeus and C. satanas on the island, as well as the entire population of P. pennantii (Cronin, Bocuma Meñe, et al., 2015; Cronin et al., 2016; Cronin, unpublished data). In addition to primates, conservation of this zone would protect...
most of the critical nesting habitat of the four species of marine turtle that nest on the island, as the two “ranger camps” (Moraka and Moaba) are also the only safe sites for landing small boats, a tactic employed by both terrestrial and marine poachers (Figure 5B). Thus, by concentrating anti-poaching efforts in the region, guards would be able to maximize conservation benefits at minimal cost.

The second priority zone is, in effect, an extension of the first zone to include the entire southern extent of Bioko (Figure 5b). This would be potentially more of an investment to monitor as it is a larger area, but delineation would be slightly less arbitrary than the first priority zone, and thus, may be easier to enforce. This zone is delineated with a relatively straight line from east to west across the spine of the southern highlands, encompassing the northern rim of the Gran Caldera, but passing below the pastures on the slopes of Pico Biao. This conservation zone would contain an identical faunal species assemblage, but would likely also encompass the entire range of C. nictitans. Protecting this zone would also conserve the entirety of the unique monsoon forest habitat type as well as afromontane formations on the two peaks.

The third priority would be to simply protect the currently delineated protected areas (Figure 5b). This is, perhaps, the best place to start, as the protected areas already legally exist, and would require no new designation. This strategy is aided, like the previous two, by the fact that they were originally created since much of the terrain they encompass was deemed inferior for agriculture and overly difficult to access and exploit. In spite of their legal status and difficult terrain, development continues to gradually progress inside Bioko’s protected areas with little consideration of their status. Future projects occurring within the protected areas should be subjected to an environmental impact assessment and/or oversight by INDEFOR-AP in order to promote INDEFOR-AP’s legal mandate to manage Equatorial Guinea’s protected areas and to ensure it meets the conservation and development goals of the protected areas’ management plans.

Finally, given the extensive territorial waters of Equatorial Guinea, the commercial fishing sector represents a much underutilized resource, but also an opportunity to reduce pressure on Bioko’s terrestrial wildlife. Fish availability and bushmeat demand have been shown to be directly linked (Brashares et al., 2004), thus increased availability of fresh fish may help to alleviate demand for terrestrial wildlife. Malabo consumers have a preference for fresh meat (Reid et al., 2005), but the only commercial sources of meat currently “produced locally” are bushmeat and fish (Albrechtsen et al., 2006), as well as the occasionally available “cebu” beef (humped cattle). The organization and improvement of the Equatoguinean national fishing fleet may reduce pressure on Bioko’s terrestrial wildlife. Furthermore, increasing numbers of non-African fleets are fishing in the Gulf of Guinea, heavily exploiting stocks to the point of decline (Pauly & Zeller, 2016; Pauly et al., 2014), and forcing small scale fisheries to compete with industrial fleets (Belhabib, Sumaila, & Pauly, 2015; Pauly & Zeller, 2016). If fish stocks do not begin to be managed more effectively for the Equatoguinean population, the supply of fish will decline, likely leading to increased demand for bushmeat (Brashares et al., 2004).

2.3 Cultivating a culture of conservation

Despite the significant issues discussed above and Equatorial Guinea’s rapid and ongoing development, there are still many reasons to remain optimistic about the future of conservation on Bioko. Human population densities remain low throughout much of the island, and large areas of forest remain intact and relatively inaccessible. Over the last 15 years, UNGE’s School of Environmental Sciences has grown from an annual enrollment of fewer than 15 students to over 400, and the school is UNGE’s most successful and productive academic unit. There are increasing indicators that the Equatoguinean government, via INDEFOR-AP and the Ministry of Forests and the Environment, is interested in taking a more active role in preserving its natural heritage. INDEFOR-AP has recently become more proactive on Bioko, designating Conservators for the two protected areas, partnering with BBPP to deploy INDEFOR-AP ecoguards in Ureca and along the southern beaches, and collaborating with both BBPP and Ecoguinea to train a cadre of future ecoguards from villages around the borders of Bioko’s protected areas. There have been periodic confiscations of captured wildlife and bushmeat (Ayecaba & Ortega, 2014), as well as an outreach campaign which distributed pamphlets explaining the primate hunting ban (Republic of Equatorial Guinea, 2007) and the dangers of hunting monkeys. The Equatoguinean government has also made commitments to work with partners, including the BBPP, Ecoguinea, the United Nations Development Program–Global Environmental Facility (UNDP–GEF) and the Wildlife Conservation Society (WCS), to improve management of protected areas, to develop a comprehensive national strategy for management of its protected areas, and to work toward gaining recognition for Bioko Island as UNESCO Biosphere Reserve (Engonga Oson, Michá Ondó, & Ferrer Núñez, 2015).

ACKNOWLEDGMENTS

We would like to thank the government of Equatorial Guinea and the Universidad Nacional de Guinea Ecuatorial for permission to conduct this research. We would also like to thank H.E. Carlos NzeNsuga, H.E. Filiberto Ntutumu, Reginaldo Aguila Biacho, Valentín Mohoso Sepa, Thomas M. Butynski, Sally Vickland, Tonnie Choueiri, Gránne McCabe, Jacob R. Owens, Richard A. Bergl, Joshua M. Linder, Michael P. O’Connor, Wayne A. Morra, Heidi Rader, Cristina Perella, María Grande Vega, John Fa, and all the many colleagues, assistants, and students who have contributed to this project. Finally, we would like to thank Mary E. Blair, Minh D. Le, and Eleanor J. Sterling for organizing the symposium on Multidisciplinary Studies of Wildlife Trade in Primates at IPS Hanoi. No IACUC approval was needed for this review, but all individual studies referenced herein were carried out with IACUC approval from Drexel University and adhered to the American Society of Primatologists (ASP) Principles for the Ethical Treatment of Non-Human Primates. All work was conducted under appropriate permits issued from the Universidad Nacional de Guinea Ecuatorial. This BBPP is supported primarily by the ExxonMobil Foundation, Mobil Equatorial Guinea, Inc., and the U.S. Fish and Wildlife Service. Additional support for the projects
described here came from the Los Angeles Zoo, the International Primatological Society, Primate Conservation, Inc., and the International Primate Protection League.

REFERENCES

Abernhethy, K. A., Coad, L., Taylor, G., Lee, M. E., & Maisels, F. (2013). Extent and ecological consequences of hunting in Central African rainforests in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 368, 20120303. https://doi.org/10.1098/rstb.2012.0303

Albrechtsen, L., Fa, J. E., Barry, B., & Macdonald, D. W. (2006). Contrasts in availability and consumption of animal protein in Bioko Island, West Africa: The role of bushmeat. Environmental Conservation, 32(4), 34–348.

Albrechtsen, L., Fa, J. E., Davidsen, P., & Macdonald, D. W. (2004). Making measures? Proceedings from the 2004 International System Dynamics Conference. Oxford, UK: Keble College.

Albrechtsen, L., Macdonald, D. W., Johnson, P. J., Castelo, R., & Fa, J. E. (2007). Faunal loss from bushmeat hunting: Empirical evidence and policy implications in Bioko island. Environmental Science & Policy, 10(7-8), 654–667.

Astaras C. (2009). Ecology and status of the drill (Mandrillus leucophaeus) in Korup National Park, Southwest Cameroon: Implications for conservation. Göttingen: University of Göttingen.

Ayecaba, P. C., & Ortega, I. (2014). The Ministry of Fisheries alerts on the prohibition of hunting and eating monkeys. Available online at: http://www.guinearegionalpress.com/noticia.php?id = 4945&lang=en: Republic of Equatorial Guinea Press and Information Office.

Balmford, A., Green, J. M. H., Anderson, M., Berestof, J., Huang, C., Naidoo, R., … Manica, A. (2015). Walk on the wild side: Estimating the global magnitude of visits to protected areas. PLoS Biology, 13(2), e1002074.

Barnes, J. I. (1996). Changes in the economic use value of elephant in southern Africa. Ocean & Coastal Management, 111, 72–81.

Bennett, E. L. (2002). Is there a link between wild meat and food security? Conservation Biology, 16(3), 570–592.

Bennett, E. L. (2011). Another inconvenient truth: The failure of enforcement systems to save charismatic species. Oryx, 45(4), 476–479.

Belhadi, D., Sumaila, U. R., & Pauly, D. (2015). Feeding the poor: Contribution of West African fisheries to employment and food security. Ocean & Coastal Management, 111, 72–81.

Biggs, D., Courchamp, F., Martin, R., & Possingham, H. P. (2013). Legal trade of Africa’s Rhino Horns. Science, 339, 1038–1039.

Bizimana, G., Gallardo, G., & Pla, L. (2014). African Economic Outlook: Equatorial Guinea. African Development Bank, Development Center of the Organisation for Economic Co-Operation and Development, and United Nations Development Programme. Available online at: www.africaneconomicoutlook.org.

Blair, M. E., Sterling, E. J., Dusch, M., Rayworth, C. J., & Pearson, R. G. (2013). Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar. Journal of Evolutionary Biology, 26(8), 1790–1801.

Blom, A. (2004). An estimate of the costs of an effective system of protected areas in the Niger Delta—Congo Basin Forest Region. Biodiversity and Conservation, 13, 2661–2678.

Bocuma Meñe D. (2016). Assessing attitudes towards biodiversity conservation among citizens on Bioko Island, Equatorial Guinea and Cameroon. Philadelphia, PA: Drexel University.

Bowen-Jones, E., & Pendry, S. (1999). The threat to primates and other mammals from the bushmeat trade in Africa, and how this threat could be diminished. Oryx, 33(3), 233–246.

Box, G. E. P., & Tiao, G. C. (1975). Intervention analysis with applications to economic and environmental problems. Journal of the American Statistical Association, 70(349), 70–79.

Brashares, J. S., Arcese, P., Sam, M. K., Coppolillo, P. B., Sinclair, A. R., & Balmford, A. (2004). Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science, 306(5699), 1180–1183.

Brashares, J. S., Golden, C. D., Weinbaum, K. Z., Barrett, C. B., & Okello, G. V. (2011). Economic and geographic drivers of wildlife consumption in rural Africa. Proceedings of the National Academy of Sciences, 108(34), 13931–13936.

Brooks, E. G. E., Robertson, S. I., & Bell, D. J. (2010). The conservation impact of commercial wildlife farming of porcupines in Vietnam. Biological Conservation, 143, 2808–2814.

Bruner, A. G., Gullison, R. E., & Balmford, A. (2002). Financial costs and shortfalls of managing and expanding protected-area systems in developing countries. Bioscience, 54(12), 1119–1126.

Bruner, A. G., Gullison, R. E., Rice, R. E., & da Fonseca, G. A. B. (2001). Effectiveness of parks in protecting tropical biodiversity, Science, 291(252), 125–128.

Burton, M. (1999). An assessment of alternative mechanisms of estimating the effect of ivory trade ban on poaching effort. Ecological Economics, 30, 93–106.

Byutynski, T. B., Schaaf, C. D., & Hearn, G. W. (1997). African Buffalo Syncerus caffer extirpated on bioko island. Journal of African Zoology, 111, 57–61.

Byutynski, T. M., & Koster, S. H. (1994). Distribution and conservation status of primates in Bioko Island, Equatorial Guinea. Biodiversity and Conservation, 3(9), 893–909.

Campbell, G., Kuehl, H., Diarrassouba, A., N’Goran, P. K., & Boesch, C. (2011). Long-term research sites as refugia for threatened and overharvested species. Biology Letters, 7, 723–726.

Central Intelligence Agency. (2016). The World Factbook 2016-2017. Washington, DC: Central Intelligence Agency. Available online at: https://www.cia.gov/library/publications/the-world-factbook/index.html.

Chapman, C. A., & Onderdonk, D. A. (1998). Forests without primates: Primate/plant codependency. American Journal of Primatology, 45(1), 127–141.

Colell, M., Mates, C., & Fa, J. E. (1994). Hunting among Moka-Bubis in Bioko –Dynamics of faunal exploitation at the village level. Biodiversity and Conservation, 3(9), 939–950.

Cooper, J. E. (1995). Wildlife species for sustainable food production. Biodiversity and Conservation, 4, 215–219.

Corlett, R. T. (2007). The impact of hunting on the mammalian fauna of tropical Asian forests. Biotropica, 39(3), 292–303.

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., … Turner, R. K. (2014). Changes in the global value of ecosystem services. Global Environmental Change, 26, 152–158.

Cronin, D. T., Bocuma Meñe, D., Butynski, T. B., Echube, J. M. E., Hearn, G. W., Honarvar, S., … Bohme, C. P. (2010). Opportunities Lost: The Rapidly Deteriorating Conservation Status of the Monkeys on Bioko Island, Equatorial Guinea (2010). Philadelphia, PA: A report to the Government of Equatorial Guinea by the Bioko Biodiversity Protection Program, Drexel University.
Cronin, D. T., Riaco, C., & Hearn, G. W. (2013). Survey of threatened monkeys in the Ildyri River Valley Region, southeastern Bioko Island, Equatorial Guinea. *African Primates, 8*, 1–8.

Cronin, D. T., Hearn G. W., & Oates J. F. (2014). Bioko Red Colobus *Piliocolobus pennantii pennantii* (Waterhouse, 1838). In C. Schwitzer, R. A. Mittermeier, A. B. Rylands, L. A. Taylor, F. Chiozzi, E. A. Williamson, & F. E. Clark (Eds.), *Primates in peril: The world’s 25 most endangered primates 2012-2014* (pp. 17–19). Arlington, VA: IUCN SSC Primate Specialist Group (PSG), International Primatological Society (IPS), Conservation International (CI), and Bristol Zoological Society.

Cronin, D. T., Libalah, M. B., Bergl, R. A., & Hearn, G. W. (2014). Biodiversity and conservation of tropical montane ecosystems in the Gulf of Guinea, West Africa. *Arctic, Antarctic and Alpine Research, 46*(4), 891–904.

Cronin, D. T., Bocumba Meñe, D., Perella, C., Fernández, D., Hearn, G. W., & Gonder, M. K. (2015). The Future of the Biodiversity of the Gran Caldera Scientific Reserve: Translating Science into Policy to Develop an Effective Management Plan for the Gran Caldera Scientific Reserve. Philadelphia, PA: Report prepared for the ‘Symposium on the Future of the Biodiversity of the Gran Caldera Scientific Reserve’ by the Bioko Biodiversity Protection Program. p 42.

Cronin, D. T., Woloszynek, S., Morra, W. A., Honarvar, S., Linder, J. M., Gonder, M. K., & Hearn, G. W. (2015). Long-term urban market dynamics reveal increased bushmeat carcass volume despite economic growth and proactive environmental legislation on Bioko Island, Equatorial Guinea. *PloS ONE, 10*(7), e0134464.

Cronin, D. T., Riaco, C., Linder, J. M., Bergl, R. A., Gonder, M. K., O’Connor, M. P., & Hearn, G. W. (2016). Impact of gun-hunting on monkey species and implications for primate conservation on Bioko Island, Equatorial Guinea. *Biological Conservation, 179*, 180–189.

de Merode, E., & Cowléshaw, G. (2006). Species protection, the changing informal economy, and the politics of access to the bushmeat trade in the democratic republic of Congo. *Conservation Biology, 20*(4), 1262–1271.

East, T., Kumpel, N. F., Milner-Gulland, E. J., & Rowcliffe, J. M. (2005). Determinants of urban bushmeat consumption in Rio Muni, Equatorial Guinea. *Biological Conservation, 126*(2), 206–215.

Effiom, E. O., Nuñez-Iturri, G., Smith, H. G., Ottosson, U., & Olsson, O. (2013). Bushmeat hunting changes regeneration of African rainforests. *Proceedings of the Royal Society B: Biological Sciences, 280*(1759), 20120303. https://doi.org/10.1098/rspb.2012.0303.

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. *Diversity and Distributions, 17*(1), 43–57.

Engonga Osono S. F., Michá Ondó A., & Ferrer Núñez P. (2015). In Dirección General Medio Ambiente MdPyMA (Ed.), *Estrategia Nacional y Plan de Acción para la Conservación de la Diversidad Biológica (ENPADIB)*. Malabo, Guinea Ecuatorial: República de Guinea Ecuatorial.

Etíendem, D. N., Funwi-Gabga, N., Tagg, N., Hens, L., & Indah, E. K. (2013). The cross river gorillas (*Gorilla gorilla diehli*) at mawambi hills, south-west Cameroon: Habitat suitability and vulnerability to anthropogenic disturbance. *Folia Primatologica, 84*(1), 18–31.

Fa J. E. (2000). Hunted animals in Bioko Island, west africa: Sustainability and future. In J. G. Robinson, & E. L. Bennett (Eds.), *Hunting for sustainability in tropical forests*. New York, NY: Columbia University Press.

Fa J. E., & Brown, D. (2009). Impacts of hunting on mammals in African tropical moist forests: A review and synthesis. *Mammal Review, 39*, 231–264.

Fa J. E., Juste, J., Delval, J. P., & Castroviejo, J. (1995). Impact of market hunting on mammal species in Equatorial Guinea. *Conservation Biology, 9*(5), 1107–1115.

Fa J. E., Juste, J. E. G., & Castelo, R. (2000). Bushmeat markets on Bioko Island as a measure of hunting pressure. *Conservation Biology, 14*(6), 1602–1613.

Fa J. E., Juste, J., Burn, R. W., & Broad, G. (2002). Bushmeat consumption and preferences of two ethnic groups in Bioko Island, West Africa. *Human Ecology, 30*(3), 397–416.

Fa J. E., Peres, C. A., & Meeuwis, J. (2002). Bushmeat exploitation in tropical forests: An intercontinental comparison. *Conservation Biology, 16*(1), 232–237.

Fa J. E., Seymour, S., Dupain, J., Amin, R., Albrechtsen, L., & Macdonald, D. (2006). Getting to grips with the magnitude of exploitation: Bushmeat in the Cross-Sanaga rivers region, Nigeria and Cameroon. *Biological Conservation, 129*(4), 497–510.

Fa J. E., Olivero, J., Farfán, M. A., Márquez, A. L., Duarte, J., Nackoney, J., . . . Vargas, J. M. (2015). Correlates of bushmeat in markets and depletion of wildlife. *Conservation Biology, 29*(3), 805–815.

Fa J. E., Olivero, J., Real, R., Farfán, M. A., Márquez, A. L., Vargas, J. M., . . . Nasi, R. (2015). Disentangling the relative effects of bushmeat availability on human nutrition in central Africa. *Scientific Reports, 5*, Article number: 8168. DOI:10.1038/srep08168.

Fitzgerald, D. B., Ordway, E., Honarvar, S., & Hearn, G. W. (2011). Challenges confronting sea turtle conservation on bioko island, Equatorial Guinea. *Chelonia Conservation and Biology, 10*, 177–180.

Foerster, S., Wilkie, D. S., Morelli, G. A., Demmer, J., Starkey, M., Telfer, P., & Lewbel, A. (2012). Correlates of bushmeat hunting among remote rural households in Gabon. *Central Africa. Conservation Biology, 26*(2), 335–344.

Font Tullot, I. (1951). El Clima de las Posesiones Españoles del Golfo de Guinea. Madrid: Consejo Superior de Investigaciones Científicas, Instituto de Estudios Africanos.

García, J. E., & Mba, J. (1997). Distribution, status and conservation of primates in monte alen national park, Equatorial Guinea. *Oryx, 31*, 67–76.

Golden, C. D., Fernald, L. C., Brashears, J. S., Rasolofoninaia, B. J., & Kremen, C. (2011). Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. *Proceedings of the National Academy of Sciences, 108*(49), 19653–19656.

González-Kirchner, J. P. (1997). Behavioural ecology of two sympatric colobines on Bioko Island, Equatorial Guinea. *Folia Zoologica, 46*(2), 97–104.

Grande-Vega, M., Farfán, M., Ondo, A., & Fa, J. E. (2016). Decline in hunter oftake of blue duikers in Bioko Island, Equatorial Guinea. *African Journal of Ecology, 54*(1), 49–58.

Grande Vega, M., Carpinetti, B., Duarte, J., & Fa, J. E. (2013). Contrasts in livelihoods and protein intake between commercial and subsistence bushmeat hunters in two villages on Bioko Island, Equatorial Guinea. *Conservation Biology, 27*(3), 576–587.

Groves C., & Ting N. (2013). Pennant’s red colobus *Piliocolobus pennantii*. In R. A. Mittermeier, A. Rylands, & D. E. Wilson (Eds.), *Handbook of the Mammals of the World (pp. 707–708)*. Barcelona: Lynx Edicions.

Groves, C. P. (2007). The taxonomic diversity of the Colobinae of Africa. *Journal of Anthropological Sciences, 85*, 7–34.

Grubb, P. (2006). Geospecies and superspecies in the African primate fauna. *Primate Conservation, 20*, 75–78.

Grubb, P., Butynski, T. M., Oates, J. F., Bearder, S. K., Disotell, T. R., Groves, C. P., & Struhsaker, T. T. (2003). Assessment of the diversity of African primates. *International Journal of Primatology, 24*(6), 1301–1357.

Hearn, G. W., Morra, W., & Butynski, T. B. (2006). Monkeys in Trouble: The rapidly deteriorating conservation status of the monkeys on Bioko Island, Equatorial Guinea. Glenside, Pennsylvania: Bioko Biodiversity Protection Program, Arcadia University.

Hearn, G. W., Ross, C., Francisco, J. G., Sobrado, D. F., Mba, M. A. E., Bohome, C. P., & Morra, W. A. (2004). Monkey group encounter rates
Oates, J. F., Abedi-Lartey, M., McGraw, W. S., Struhsaker, T. T., & Whitesides, G. H. (2000). Extinction of a West African red colobus monkey. Conservation Biology, 14(4), 1526–1532.

Oates, J. F., Bergl, R. A., & Linder, J. M. (2004). Africa’s Gulf of Guinea Forests: Biodiversity Patterns and Conservation Priorities. Advances in Applied Biodiversity Science (6): Wildlife Conservation Society (WCS), New York, and Center for Applied Biodiversity Science (CABS), Conservation International, Washington, DC.

Pailier, S. (2005). The necessity, complexity and difficulty of resolving the bushmeat crisis in West-Central Africa. Journal of Development and Social Transformation, 2, 99–107.

Pauly, D., Rader, H., Ela Mba, M. A., Morra, W. A., & Hearn, G. W. (2006). Marine tropical forests. In M. Peeters, V. Courgnaud, B. A. Abela, P. Auzel, X. Pourrut, F. Bibollet-Ruche, B. Schulte-Herbrüggen, G. Cowlishaw, K. Homewood, & J. M. Rowcliffe (Eds.), Emerging infectious diseases of wild animals: Risk to human health from a plethora of Simian immunodeficiency viruses in primate bushmeat. Emerging Infectious Diseases, 8(5), 451–457.

Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

Poulten, J. R., Clark, C. J., & Smith, T. B. (2001). Seed dispersal by a diurnal primate community in the Dja Reserve, Cameroon. Journal of Tropical Ecology, 17(6), 787–808.

Pyhäjä, A., Osuna Orozco, A., & Counsell, S. (2016). Protected areas in the Congo Basin: Failing both people and biodiversity? Under the Canopy Series. London, U.K.: Rainforest Foundation UK.

Quorvis Communications. (2010). Equatorial Guinea President Pledges Environmental Conservation. Available online at: http://www.prnewswire.com/news-releases/equatorial-guinea-president-pledges-environmental-conservation-97605059.html: Quorvis Communications, LLC.

Rader, H., Ela Mba, M. A., Morra, W. A., & Hearn, G. W. (2006). Marine turtles on the southern coast of Bioko Island (Gulf of Guinea, Africa) 2001–2005. Marine Turtle Newsletter, 111, 8–10.

Reid, J., Morra, W. A., Bohome, C. P., & Fernández, D. (2005). The economics of the monkey trade in bioko. Equatorial Guinea. Santa Cruz, CA: Conservation Strategy Fund.

Republic of Equatorial Guinea. (1988). Law Regulating Wildlife. Hunting and Protected Areas. Law num 8/1988. Republic of Equatorial Guinea.

Republic of Equatorial Guinea. (1991). Large scale logging activities are prohibited on Bioko Island. Decree num 55/1991. Republic of Equatorial Guinea.

Republic of Equatorial Guinea. (2000). Protected Areas Law. Law num 4/2000. Republic of Equatorial Guinea.

Republic of Equatorial Guinea. (2003). Environmental Regulation Law in the Republic of Equatorial Guinea. Law num 7/2003. Republic of Equatorial Guinea.

Republic of Equatorial Guinea. (2007). Hunting and consumption of monkeys and other primates in the republic of Equatorial Guinea is prohibited. Decree num 72/2007. Republic of Equatorial Guinea.

Rivalan, P., Delmas, V., Angulo, E., Bull, L. S., Hall, R. J., Courchamp, F., & Leader-Williams, N. (2007). Can bans stimulate wildlife trade? Nature, 447(7144), 529–530.

Robinson, J. G., & Bennett, E. L. (Eds.). (2000). Hunting for sustainability in Tropical Forests. New York, NY: Columbia University Press.

Robinson, J. G., & Bennett, E. L. (2002). Will alleviating poverty solve the bushmeat crisis? Oryx, 36(4), 332–332.

Roe, D., Booker, F., Day, M., Zhou, W., Allebone-Webb, S., Hill, N. A. O., Kumpel, N., … Sunderland, T. C. H. (2015). Are alternative livelihood projects effective at reducing local threats to specified elements of biodiversity and/or improving or maintaining the conservation status of those elements? Environmental Evidence, 4(1), 22.

Rouquet, P., Froment, J.-M., Bermejo, M., Kilbourn, A., Karesh, W., Reed, P., … Leroy, E. M. (2005). Wild animal mortality monitoring and human Ebola outbreaks, Gabon and Republic of Congo, 2001–2003. Emerging Infectious Diseases, 11(2), 283–290.

Rowcliffe, J. M., de Merode, E., & Cowlishaw, G. (2004). Do wildlife laws work? Species protection and the application of a prey choice model to poaching decisions. Proceedings of the Royal Society of London Series B: Biological Sciences, 271, 2631–2636.

Schenck, M., Nsame Effa, E., Starkey, M., Wilkie, D., Abernethy, K., Telfer, P., … Treves, A. (2006). Why people eat bushmeat: Results from two-choice, taste tests in Gabon, Central Africa. Human Ecology, 34(3), 433.

Schulte-Herbrüggen, B., Cowlishaw, G., Homewood, K., & Rowcliffe, J. M. (2013). The importance of bushmeat in the livelihoods of west african cash-crop farmers living in a faunally-depleted landscape. PLoS ONE, 8(8), e72807.

Sesinck Clee, P. R., Abwe, E. E., Ambahe, R. D., Anthony, N. M., Fotso, R., Locatelli, S., … Goender, M. K. (2015). Chimpanzee population structure in Cameroon and Nigeria is associated with habitat variation that may be lost under climate change. BMC Evolutionary Biology, 15(2), 1–13.

Solté, M. (1985). What is conservation biology? Bioscience, 35, 727–734.

Struhsaker T. T. (1999). Primate communities in Africa: The consequence of longterm evolution or the artifact of recent hunting. In J. G. Fleagle, C. Janson, & K. E. Reed (Eds.), Primate communities. (pp. 289–294). Cambridge: Cambridge University Press.

Struhsaker, T. T. (2005). Conservation of red colobus and their habitats. International Journal of Primatology, 26(3), 525–538.

Struhsaker, T. T., Struhsaker, P., & Siex, K. (2005). Conserving Africa’s rain forests: problems in protected areas and possible solutions. Biological Conservation, 123(1), 45–54.

Terborgh, J., Nunez-Iturri, G., Pitman, N. C. A., Valverde, F. H. C., Alvarez, P., Swamy, V., & Paine, C. E. T. (2008). Tree recruitment in an empty forest. Ecology, 89(6), 1757–1768.

The World Bank. (2014). Equatorial Guinea—GDP (current US Dollars). Available online at: http://data.worldbank.org/country/equatorialguinea?display = default

The World Bank. (2016). World Development Indicators: Equatorial Guinea. Available online at: http://data.worldbank.org/country/equatorialguinea#cp_fin

Tranquilli, S., Abedi-Lartey, M., Amsini, F., Arranz, L., Asamoah, A., Babafemi, O., … Kuehl, H. (2012). Lack of conservation effort rapidly increases African great ape extinction risk. Conservation Letters, 5(1), 48–55.

Vanthomme, H., Belle, B., & Forget, P. M. (2010). Bushmeat hunting alters recruitment of large-seeded plant species in Central Africa. Biotropica, 42(6), 672–679.

Walters, G., Schleicher, J., Hymas, O., & Coad, L. (2015). Evolving hunting practices in Gabon: Lessons for community-based conservation interventions. Ecology and Society, 20(4).

Wicander, S., & Coad L. (2015). Learning our lessons: A review of alternative livelihoods projects in Central Africa. Oxford, UK: ECI, University of Oxford and Gland, Switzerland: IUCN.
Wilkie, D. S., & Carpenter, J. F. (1999). Bushmeat hunting in the Congo Basin: An assessment of impacts and options for mitigation. *Biodiversity and Conservation, 8*(7), 927–955.

Wilkie, D. S., Carpenter, J. F., & Zhang, Q. (2001). The under-financing of protected areas in the Congo Basin: So many parks and so little willingness-to-pay. *Biodiversity & Conservation, 10*(5), 691–709.

Wrangham, R. W., Chapman, C. A., & Chapman, L. J. (1994). Seed dispersal for forest chimpanzees. *Journal of Tropical Ecology, 10*, 355–368.

Zafra-Calvo, N., Cerro, R., Fuller, T., Lobo, J. M., Rodriguez, M. A., & Sarkar, S. (2010). Prioritizing areas for conservation and vegetation restoration in post-agricultural landscapes: A Biosphere Reserve plan for Bioko, Equatorial Guinea. *Biological Conservation, 143*(3), 787–794.

Ziegler, S., Fa, J. E., Wohlfart, C., Streit, B., Jacob, S., & Wegmann, M. (2016). Mapping bushmeat hunting pressure in Central Africa. *Biotropica, 48*(3), 405–412.

How to cite this article: Cronin DT, Sesink Clee PR, Mitchell MW, et al. Conservation strategies for understanding and combating the primate bushmeat trade on Bioko Island, Equatorial Guinea. *Am J Primatol, 2017;79:e22663*. https://doi.org/10.1002/ajp.22663