A new 2-D DOA estimation method based on coprime array MIMO radar

Fei, Zhang
School of Information Science and Engineering, Southeast University, School of Electronic and Information, Jiangsu University of Science and Technology
zjzf@just.edu.cn

Aisuo, Suo
School of Electronic and Information, Jiangsu University of Science and Technology
kimaisuo@outlook.com

Zijing, Zhang
School of Electronic and Information, Jiangsu University of Science and Technology
zzj1024685030@outlppk.com

Luxi Yang
School of Information Science and Engineering, Southeast University
lxyang@seu.edu.cn

ABSTRACT
Aiming at the problem that traditional Direction of Arrival (DOA) estimation methods cannot handle multi-source with high accuracy while increasing the degree of freedom, proposing a new two-dimensional DOA estimation method based on coprime array MIMO radar (SM-MIMO-CA). Firstly, to ensure the accuracy of multi-source estimation under the finite number of array elements, proposing a new array model based on coprime array MIMO radar (MIMO-CA). Array model uses a special combination of irregular transmitting array and uniform linear array receiving array. Besides, to decrease the complexity and raise the accuracy of two-dimensional DOA estimation, proposing a new DOA estimation method based on coprime array MIMO radar. This method uses the sparse array topology of virtual array elements to analyze a larger number of sources, and combines the compressed sensing method to process the sparse array. This method obtains a larger array aperture with a smaller number of elements, and improves the resolution of the azimuth angle, so the DOA estimation accuracy is improved and the complexity is reduced. Finally, experiments are verified the effectiveness and reliability of the SM-MIMO-CA in improving the degree of freedom of the array, decreasing the complexity, and enhancing the accuracy of DOA.

CCS CONCEPTS
• Computing methodologies; • Modeling and simulation; • Model development and analysis; • Model verification and validation; • Simulation theory; • Systems theory; • Theory of computation; • Design and analysis of algorithms; • Data structures design and analysis; • Data compression;

1 INTRODUCTION
In the uniform linear array of the traditional direction of arrival estimation (DOA) method, the estimable target sources’ number is less than the array elements’ number. Classical methods such as MUSIC method [1-2] or ESPRIT method [3-4] use N array elements to estimate at most $N-1$ target signals, and the array’s degree of freedom (DOF) is limited. Therefore, in the case of a certain number of array elements, how to optimize the array structure to obtain a bigger array caliber to enhance DOA estimation accuracy and multi-target resolution has always been a hot issue for scholars [1-6].

In recent years, with the continuous in-depth study of the array element structure, scholars have proposed many non-uniform array structures [7-8]. For example, the coprime Array [8-11]. To enhance the ability of two-dimensional DOA estimation, a multi-input multiple-output (MIMO) radar is proposed [12-13]. Although, the references [14-15] combine MIMO and a coprime array to estimate DOA, the coprime array still uses a uniform linear array, which does not have very high accuracy for two-dimensional DOA estimation. Reference [16] proposed the use of compressed sensing for sparse matrix processing, however, it’s not used in the MIMO coprime array structure. Reference [17] proposes a fast DOA estimation method for Nand $N + 1$ parallel uniform linear arrays, but when there are many sources, additional matching is required and the sensors are not fully utilized. References [18-19] proposed a new array, but in the case that array has the same number of elements, it is impossible to detect more sources.

Therefore, this paper proposes a new MIMO array-based coprime array combination (MIMO-CA). The transmitting array of the array combination is a special irregular array, and the receiving
array is a uniform linear array. Then, using the new array (MIMO-CA) proposed in this paper, this paper combines the methods of compressed sensing [20], and proposes a new two-dimensional DOA method based on sparse matrix. First of all, the method can be realized by constructing an equivalent array of sparse array, that is, using the sparse array topology of virtual array elements to analyze a larger number of two-dimensional DOA sources, and can be able to match the corresponding angle. Besides, by converting the two-dimensional DOA estimation problem into two 1-D DOA estimation problems, only one variable can be estimated, thus reducing the computational complexity. Then, when information sources’ number is greater or equal to the number of array elements, a virtual differential array is established, and least squares operations and sparse reconstruction are performed. The sparse matrix is processed through compressed sensing, so that M + 4 array elements can identify 2M² sources.

2 ARRAY CONFIGURATION AND SIGNAL MODEL

2.1 Array model

Following the guidelines throughout this template will also improve the accessibility of your manuscript and increase the audience for your work. Ensure that heading styles are applied as instructed, tables are created using Word’s table feature (rather than an image), figures have a text equivalent, and list styles are applied as instructed.

The number of transmit arrays targeted by MIMO is 4, and the receive arrays are M. Because of the nature of the MIMO array model, the array could be virtualized so that the number of virtualized arrays is 4M. In Figure 1, the array arrangement of the transmitting array, and receiving array is Muniform linear arrays with 2Md-spacing along the x-axis direction. Where, d = λ/2.

According to the nature of the MIMO radar, the virtual array is obtained, and then when constructing the co-prime array, just discard the last element of sub-array 2 to form the co-prime array. The result is shown in Figure 2

The coprime array has three sparse linear uniform arrays. Sub-array 1 has 2Marray elements, and the array element spacing is Mm, and sub-arrays 2 and 3 have M−1and Marray elements, and the array element spacing is 2Md. Array element spacing is λ/2. By choosing M ∈ N⁺ and 2M ∈ N⁺ to be relatively prime (where N⁺ is represented as a set of positive integers). For simple distinction, let 2M = N. Then the array sensor is located at:

\[
\{ (x, y) \mid (0, 2Mmd) \cup (d, Nm_1d) \cup (d + Ld, MNd + Nm_2d) \}
\] (1)

Where 2m ∈ [0, 2M − 1], m₁ ∈ [1, M − 1], m₂ ∈ [0, M − 1], n, m₁, m₂ ∈ N⁺.

2.2 Signal model

These sub-arrays are not collinear, and are set in parallel at distances and Ld, (L ∈ N⁺) respectively, that is, the minimum unit spacing along the x-axis. Then the signal output as follow:

\[
x(l) = [a_1(\theta_1, \varphi_1) \otimes a_i(\theta_1, \varphi_1), a_1(\theta_2, \varphi_2) \otimes a_i(\theta_2, \varphi_2), \ldots, a_1(\theta_k, \varphi_k) \otimes a_i(\theta_k, \varphi_k)] S(l) + n(l)
\] (2)

Where \(\theta_k, \varphi_k \) are the angles of the k-th source respectively. \(\otimes \) is expressed as the Kronecker product. \(n(l) \) is another noise vector.\(a_i(\theta_k, \varphi_k) = a_i(\theta_k, \varphi_k) \otimes a_i(\theta_k, \varphi_k) \) and \(a_i(\theta_k, \varphi_k) = a_i(\theta_k, \varphi_k) \otimes a_i(\theta_k, \varphi_k) \). Let \(a_i(\theta_k, \varphi_k) \otimes a_i(\theta_k, \varphi_k) = a_i(\theta_k, \varphi_k), \) assume that the relationship after virtual is:

\[
x_i(t) = \sum_{q=1}^{Q} a_i(\theta_q, \varphi_q) e^{j2\pi \frac{\lambda}{M} \sin(\theta_q)\cos(\phi_q) s_q(t) + n_i(t)
\] (3)

Where,

\[
a_i(\theta_q, \varphi_q) = [e^{j2\pi \frac{y_{q1}^1}{M} \sin(\theta_q)\cos(\phi_q)}, \ldots, e^{j2\pi \frac{y_{qJ}^1}{M} \sin(\theta_q)\cos(\phi_q)}]^T
\] (4)

Formula (4) represents \((\theta_q, \varphi_q) \) corresponding to the steering vector of the i-th sub-array, where \(q = 1, \ldots, Q, i = 1, 2, 3, y_{qj}^1, 1 \leq j \leq N_i^q \) is the y coordinate of the i-th sensor. \(N_i^q \) is the total number of sensors in the i-th sub-array. \(x_i(t) \) is the i-th sub-array’s position along the x-axis. The noise vector element is in the i-th sub-array \(n_i(t) \).

In order to avoid the need for spectral peak search like MUSIC algorithm and Capon algorithm, the problem of 2-D DOA estimation is converted into two 1-D problems. \(\alpha_q, \beta_q \in [0°, 180°] \) are respectively expressed as the angle between the incident direction and the y direction and the x direction. The relationship between \(\alpha_q, \beta_q \) and \(\theta_q, \varphi_q \) is:

\[
\cos(\alpha_q) = \sin(\theta_q) \sin(\varphi_q)
\] (5)

\[
\cos(\beta_q) = \sin(\theta_q) \cos(\varphi_q)
\] (6)

Therefore, received data vector in the formula (3) is:

\[
x_i(t) = \sum_{q=1}^{Q} a_i(\alpha_q) e^{j2\pi \frac{\lambda}{M} \cos(\beta_q) s_q(t) + n_i(t)
\] (7)

The corresponding steering vector is:

\[
a_i(\alpha_q) = [e^{j2\pi \frac{\lambda}{M} \cos(\alpha_q)}, \ldots, e^{j2\pi \frac{\lambda}{M} \cos(\alpha_q)}]^T
\] (8)
On the premise of satisfying the conditions of $Q < N_r Q$ to obtain the noise subspace, an effective method is proposed in this section to achieve the equivalence of the difference array with a larger number of DOF. In addition, enhancing the estimation accuracy of DOA by the group sparse array technology, and the differential covariance formulas of $x_i(t)$ and $x_k(t)$ are constructed:

$$R_{x_k} = E[x_i(t) x_k^H(t)] = \sum_{a_q=1}^{Q} a_q^2 e^{j2\pi (x_q - x_k) \cos(\beta_i)} a_q^H a_q$$

$$+ n_i(t)n_k^H(t) = \begin{pmatrix} A_i R_{x_k} A_i^H & A_i \sigma_n^2 N_q^H \end{pmatrix}$$

\[\text{where } R_{x_k} = E[s(t) H(t)] = \text{diag}([\sigma_1^2, \ldots, \sigma_Q^2]) \text{is the covariance matrix of the } Q \times Q \text{dimensional signal. In addition,}

\[D_i = b_i R_{x_k} = \text{diag}\left\{e^{j2\pi (x_q - x_k) \cos(\beta_i)}, \ldots, e^{j2\pi (x_q - x_k) \cos(\beta_Q)}\right\}\]

When $i = k$, it becomes the identity matrix. Quantify the matrix R_{x_k} to obtain the following measurement vector:

$$z_{ik} = \text{vec}(R_{x_k}) = \begin{pmatrix} \tilde{A}_{ik} b_{ik} \end{pmatrix}, \quad i \neq k$$

Where,

$$\tilde{A}_{ik} = [\tilde{a}_{ik}(\alpha_1), \ldots, \tilde{a}_{ik}(\alpha_Q)]$$

$$b_{ik} = [\sigma_1^2 e^{j2\pi (x_q - x_k) \cos(\beta_1)}, \ldots, \sigma_Q^2 e^{j2\pi (x_q - x_k) \cos(\beta_Q)}]^T$$

Due to the relatively prime nature of M and N, the DOF in the common array is greatly increased, so that more information sources N_r can be estimated with fewer array elements.

3 2-D DOA ESTIMATION METHOD

The next subsections provide instructions on how to insert figures, tables, and equations in your document.

3.1 2-D DOA estimation method for sparse array

The signal vector, $Z_{ik}, 1 \leq i, k \leq 3$ in equation (11), can be sparsely expressed on the entire discrete angle grid as:

$$z_{ik} = \begin{pmatrix} \tilde{A}_{ik} b_{ik} \end{pmatrix}, \quad \text{where } \tilde{A}_{ik} = [\tilde{a}_{ik}(\alpha_1), \ldots, \tilde{a}_{ik}(\alpha_Q)]$$

\[b_{ik} = [\sigma_1^2 e^{j2\pi (x_q - x_k) \cos(\beta_1)}, \ldots, \sigma_Q^2 e^{j2\pi (x_q - x_k) \cos(\beta_Q)}]^T\]

The respective steering vector of each vector z_{ik} is:

$$\Phi_{ik} = \begin{pmatrix} \bar{A}_{ik} \end{pmatrix}, \quad \text{where } \bar{A}_{ik} = [\tilde{a}_{ik}(\alpha_1), \ldots, \tilde{a}_{ik}(\alpha_Q)]$$

Where, \tilde{A}_{ik} is the sparse vector, and its non-zero entry position corresponds to the DOA estimated by a_q, $q = 1, \ldots, Q$. For not the same sub-arrays, non-zero items usually have different values and share the same position when searching [10]. In other words, b_{ik} exhibits a set of sparsity on all pairs of sub-arrays. Therefore, the estimation of a_q, $q = 1, \ldots, Q$ can be solved in the sparse reconstruction framework [10, 16]. In this paper, the complex multi-task Bayesian compressed sensing method is introduced into the SM-MIMO-CA method [10, 20].

Using self-lag and cross-lag, this paper re-arranged the vector z_{ik} so that the algorithm effectively reduces the grid error.

$$z_{ik} = \Phi_{ik} b_{ik} + \epsilon_{ik}, \quad 1 \leq i, k \leq 3$$

Where ϵ_{ik} is the noise subspace, an effective method is proposed in this section to achieve the equivalence of the difference array with a larger number of DOF. In addition, enhancing the estimation accuracy of DOA by the group sparse array technology, and the differential covariance formulas of $x_i(t)$ and $x_k(t)$ are constructed:
\[b_{ik} = (\hat{A}^H \hat{A})^{-1} \hat{A}^H \hat{b}_k, i \neq k \]

(27)

Where,

\[\hat{A}_{ik} = [a_{ik}(\hat{a}_1), ..., a_{ik}(\hat{a}_q)] \]

(28)

Therefore: \(\hat{\beta}_q, q = 1, ..., Q \) estimates:

\[\hat{\beta}_q = \cos^{-1}(-\text{phase}(\hat{b}_q)/\pi) \]

(29)

Where, \(\hat{b}_q \) is the \(q \)-th element of vector \(\hat{b}_{ik} \), so \(\hat{\beta}_q \) automatically matches \(\hat{a}_q \), and \(\hat{a}_q \) can be obtained in the same way, so by formulas (6) and (7)

\[\hat{\theta}_q = \sin^{-1}[\sqrt{\cos^2(\hat{a}_q) + \cos^2(\hat{\beta}_q)}] \]

(30)

\[\hat{\phi}_q = \tan^{-1}\frac{\cos(\hat{a}_q)}{\cos(\hat{\beta}_q)} \]

(31)

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Degree of Freedom Analysis

In the case of one-dimensional, the obtained co-array is equivalent to the traditional coprime array, that is, the number of estimated signals can reach: \(Q_{av} = MN \), that is, \(Q_{av} = M^2 \). For a given number of physical antennas \(N_t = 2M + N - 1 = 4M - 1, Q_{av} \) can be obtained in the following form:

The maximum number of sources can be estimated:

\[Q_{av} = MN = M^2 \]

(32)

Subject to:

\[N_t = 2M + N - 1 = 4M - 1, M < N, M, N \in \mathbb{N}^+ \]

(33)

Making them as equal as possible. Under these circumstances, estimated signals \(Q_{av} \) ’s maximum number is:

\[Q_{\text{max}} = \left\lfloor \frac{N_t(N_t + 2)}{8} \right\rfloor \]

(34)

As shown in Figure 3 above, we compare the \(Q_{\text{max}} \) value of this method with the TDUL-PM method, TPAUL method, PUL-RARE method, TDSR-CS in the references [21], [19], [23], [24] The methods are compared in the Figure 3. Although the value of \(Q_{\text{max}} \) of all methods increases with the increase of \(N_t \), and SM-MIMO-CA and TPAUL are obviously better than other methods.

4.2 Two-dimensional DOA estimation performance comparison

4.2.1 The relationship between signal-to-noise ratio and mean square error

To verify the ability of the two-dimensional DOA estimation of SM-MIMO-CA, the SM-MIMO-CA is compared with the TPAUL [21], the TDUL-PM [19], the TDSR-CS [23] and the PUL-RARE [24]. Perform 100 Monte Carlo simulations for each method.

Where, the number of Monte Carlo experiments is \(I \), and sources’ number is \(Q \). Let \(M = 4 \), that is, the array configuration of the \(N_t = 4M - 1 = 15 \) antenna. In addition, let \(L = 20 \). Assume that \(\theta \)-field sources with the same power are on the elevation plane \((\theta_q, \phi_q) \), where \(\theta_q \in [0^\circ, 90^\circ], \phi_q \in [-90^\circ, 90^\circ], q = 1, ..., Q \). The grid interval in the angular space is set to 0.1\(^\circ\), and \(a = b = c = d = 0 \).

Figure 4 and Figure 5 show the use of SM-MIMO-CA method and TPAUL method, TDUL-PM method, TDSR-CS method, PUL-RARE method when \(Q = 3, T = 500 \). The estimated performance is compared, and the RMSE changes of the method under not the same signal-to-noise ratios (SNR) are investigated. By comparing RMSE under different SNR, it is concluded that SM-MIMO-CA has
Aiming at the problem that traditional array signal processing methods cannot handle multiple sources with high accuracy while increasing the DOF, this paper proposes SM-MIMO-CA method. First of all, a new MIMO coprime array model is proposed, which can effectively estimate multiple sources with a smaller number of arrays, and improve the DOF and accuracy of DOA estimation. Besides, based on the array model, SM-MIMO-CA method is proposed. This method combines compressed sensing theory to process the MIMO coprime array that has been sparsely processed, reducing the computational complexity. Experiments show that this method can effectively distinguish a large number of signal sources, and has a higher accuracy of angle estimation and enhance DOA estimation’s DOF.

5 CONCLUSION

Aiming at the problem that traditional array signal processing methods cannot handle multiple sources with high accuracy while increasing the DOF, this paper proposes SM-MIMO-CA method. First of all, a new MIMO coprime array model is proposed, which can effectively estimate multiple sources with a smaller number of arrays, and improve the DOF and accuracy of DOA estimation. Besides, based on the array model, SM-MIMO-CA method is proposed. This method combines compressed sensing theory to process the MIMO coprime array that has been sparsely processed, reducing the

Acknowledgments

The authors would like to thank Jianjun Tu and Wenbing Liu for their academic support, and I can finish the thesis successfully.

References

[1] Anil Adya, Paramvir Balh, Jitendra Padhye, Alec Wolman, and Lidong Zhou. A multi-radio unification protocol for IEEE 802.11 wireless networks. In Proceedings of the IEEE 1st International Conference on Broadnets Networks (BroadNets’04). IEEE, Los Alamitos, CA, 210–217. https://doi.org/10.1109/BROADNETS. 2004.8
[2] R. Schmidt (1986). Multiple emitter location and signal parameter estimation. in IEEE Transactions on Antennas and Propagation, 34(3), 276-280.
[3] L. He, et al. (2018). Noncircular Signal DOA Estimation with Reduced Dimension MUSIC for Coprime Linear Array. 2018 4th Annual International Conference on Network and Information Systems for Computers (ICNISC).
[4] R. Roy and T. Kailath (1986). ESPRIT-estimation of signal parameters via rotational invariance techniques. in IEEE Trans. On Acoustics, Speech, and Signal Processing, 37(7), 984-995.
[5] P. Ma, J. Li, F. Xu and X. Zhang (2021). Hole-Free Coprime Array for DOA Estimation. Augmented Uniform Co-Arrow. in IEEE Signal Processing Letters, 28, 36-40.
[6] X. Li, J. Chen, W. Tan and W. Yang (2019). Gridless DOA estimation method for monostatic MIMO array base on covariance matrix reconstruction. Systems Engineering and Electronics, 42(5), 969-977.
[7] S. Qin, Y. D. Zhang and M. G. Amin (2020). Improved two-dimensional DOA estimation using parallel coprime arrays. Signal processing, 172(2),107428.1-107428.9.
[8] C. Liu and P. P. Vaidyanathan (2016). Super nested arrays: Linear sparse arrays with reduced mutual coupling—Part II: High-order extensions. in IEEE Transactions on Signal Processing, 64(16), 4203-4217.
[9] J. Liu, Y. Zhang, Y. Lu, S. Ren and S. Cao (2017). Augmented nested arrays with enhanced DOF and reduced mutual coupling. IEEE Trans. Signal Process., 65(21), 5549–5564.
[10] G. Wang, Z. Fei and S. Ren (2021). 2D DOA Estimation Exploiting Vertical Synthetic Planar Arrays. in IEEE Access, 9, 3497-3507.
[11] S. Qin, Y. D. Zhang and M. G. Amin (2020). Improved two-dimensional DOA estimation using parallel coprime arrays. Signal processing, 172(2),107428.1-107428.9.
[12] Z. Meng, and W. Zhou. (2020). Robust adaptive beamforming for coprime array with steering vector estimation and covariance matrix reconstruction. IET Communications, 14, 2749-2758.
[13] F. Wen, Z. Zhang and X. Zhang (2019). CRBs for direction-of-departure and direction-of-arrival estimation in collocated MIMO radar in the presence of unknown spatially coloured noise. IET Radar Sonar Navig., 13 (4), 530–537.
[14] F. Wen (2019). Computationally efficient DOA estimation algorithm for MIMO radar with imperfect waveforms. IEEE Commun. Lett., 23 (6), 1037–1040.
[15] J. Li, L. He, Y. He and X. Zhang (2019). Joint direction of arrival estimation and array calibration for coprime MIMO radar. Digital Signal Processing, 94, 67-74.
[16] W. Zhou, Q. Wang and J. Wang (2019). DOA estimation for monostatic MIMO radar based on unfolded coprime array. Journal of Nanjing University of Posts and Telecommunications: Natural Science Edition, 39(6):1-8.
[17] R. Bautista and J. R. Buck (2019). Detecting Gaussian Signals Using Coprime Sensor Arrays in Spatially Correlated Gaussian Noise. IEEE Transactions on Signal Processing, 67(5),1296-1306.
[18] W. So (2003). A fast algorithm for 2-D direction-of-arrival estimation. Signal Processing, 83, 1827–1831.
[19] N. Tayem and H. M. Ewon (2006). Azimuth and elevation angle estimation with no failure and no eigen decomposition. Signal Processing, 86(1),18-16.
[20] H. Chen, C. Hou, Q. Wang, et al. (2015). Improved Azimuth/Elevation Angle Estimation Algorithm for Three-Parallel Uniform Linear Arrays. IEEE Antennas & Wireless Propagation Letters, 14,329-332.
[21] Q. Wu, Y. D. Zhang, M. G. Amin and B. Himed (2014). Complex multitask Bayesian compressive sensing. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 3375-3379.
[22] G. Cawley and N. L. C. Talbot (2005). Sparse Bayesian learning and the relevance vector machine—Part II: High-order extensions. in IEEE Trans. On Acoustics, Speech, and Signal Processing, 65(21), 5549–5564.
[23] J. Li, X. Zhang and C. Han (2012). Improved two-dimensional DOA estimation algorithm for two-parallel uniform linear arrays using propagator method. Signal Processing, 92, 756-766.
[24] Z. Yi, X. Xu, Y. A. Sheikh, et al. (2016). A rank-reduction based 2-D DOA estimation algorithm for three parallel uniform linear arrays. Signal Processing, 120(MAR.), 305-310.

[25] J. Li, D. Jiang and X. Zhang (2018). Sparse representation based two-dimensional direction of arrival estimation using co-prime array. Multidimensional Systems and Signal Processing, 29, 35–47.