The LUCIFER/CUPID-0 demonstrator: searching for the neutrinoless double-beta decay with Zn82Se scintillating bolometers

D. R. Artusa1,2, A. Balzoni3,4, J. W. Beeman5, F. Bellini1,4, M. Biassoni6,7, C. Brofferio6,7, A. Camacho8, S. Capelli6,7, L. Cardani4,9, P. Carniti6,7, N. Casali3,4, L. Cassina6,7, M. Clemenzi6,7, O. Cremonesi7, A. Cruciani4, A. D’Addabbo2, I. Dafinei4, S. Di Domizio10,11, M. L. di Verci2, F. Ferroni3,4, L. Gironi6,7, A. Giuliani12,13, C. Gotti6,7, G. Keppel8, M. Maino6,7, M. Mancuso12,13, M. Martinez3,4, S. Morganti3, S. S. Nagorny14, M. Nastasi6,7, S. Nisi2, C. Nones15, D. Orlandi2, L. Pagnanini14, M. Pallavicini10,11, V. Palmieri8, L. Pattavina2, M. Pavan6,7, G. Pessina7, V. Pettinacci3,4, S. Pirro2, S. Pozzi6,7, E. Previtali7, A. Puia6,7, C. Rusconi7,13, K. Schaffner14,*, C. Tomei4, M. Vignati4, A. Zolotarova15

1Department of Physics and Astronomy, University of South Carolina, Columbia, SC-29208 - USA
2INFN - Laboratori Nazionali del Gran Sasso, Assergi (L’Aquila) I-67010 - Italy
3Dipartimento di Fisica - Sapienza Università di Roma, I-00185 Roma - Italy
4INFN - Sezione di Roma 1, I-00185 Roma - Italy
5Lawrence Berkeley National Laboratory, Berkeley, California 94720 - USA
6INFN - Sezione di Milano Bicocca, Milano I-20126 - Italy
7INFN - Sezione di Milano Bicocca, Milano I-20126 - Italy
8INFN - Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020 - Italy
9Physics Department - Princeton University, Washington Road, 08544, Princeton - NJ, USA
10INFN - Sezione di Genova, I-16146 Genova - Italy
11Dipartimento di Fisica, Università di Genova, I-16126 Genova - Italy
12CSNSM Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, F-91405 Orsay - France
13Institut d’Astrophysique de Paris, Université Pierre et Marie Curie, F-75014 Paris - France
14Gran Sasso Science Institute, I-67100 L’Aquila - Italy
15CEA, Irfu, SPP Centre de Saclay, F-91191 Gif-sur-Yvette - France

E-mail: karoline.schaeffner@lngs.infn.it

Abstract. Future experiments on neutrinoless double-beta decay with the aim of exploring the inverted hierarchy region have to employ detectors with excellent energy resolution and zero background in the energy region of interest. Cryogenic scintillating bolometers turn out to be a suitable candidate since they offer particle discrimination: the dual channel detection of the heat and the scintillation light signal allows for particle identification. In particular such detectors permit for a suppression of \(\alpha\)-induced backgrounds, a key-issue for next-generation tonne-scale bolometric experiments.

We report on the progress and current status of the LUCIFER/CUPID-0 demonstrator, the first array of scintillating bolometers based on enriched Zn82Se crystals which is expected to start data taking in 2016 and the potential of this detection technique for a future tonne-scale bolometric experiment after CUORE.

1. Introduction

The Neutrinoless Double Beta Decay (0\(\nu\)DBD) \cite{1} is an extremely rare and hypothetical process where the parent nucleus decays by the simultaneous emission of two beta-particles only. A positive detection requires according to common theories the neutrino to be of Majorana nature \cite{2} and thus the presence of physics beyond the Standard Model of particle physics. For future bolometric experiments on 0\(\nu\)DBD,
with the goal to entirely explore the inverted hierarchy region of the neutrino mass [3], three requirements are of pivotal importance: first a reduction of present background in the energy region of interest (ROI) in direction of a zero-background framework, second an increase in active isotope mass by applying enriched crystals only and third excellent energy resolution in the ROI. These challenges are planned to be met within CUPID (CUORE Upgrade with Particle Identification) [4, 5], a project which at the moment is following different lines of research and development in order to identify the most promising approach for a tonne-scale future bolometric experiment, planned to be hosted in the CUORE [6] infrastructure.

2. CUPID-0

Figure 1. The CUPID-0 experimental layout. (a) Lateral view of a Zn82Se crystal enclosed by two light detectors. Both crystal and light detector are fixed in a copper structure using PTFE elements. Top (b) and 3D (c) image of the CUPID-0 detector array housing in total 5 towers. (d) 3D image of the CUPID-0 array as mounted in the dilution refrigerator.

Figure 2. Photograph of a single Zn82Se crystal surrounded by reflective foil and its Ge light detector (top) as assembled for the first test run. See text for details.

LUCIFER/CUPID-0, the first demonstrator within the frame of CUPID, will run an array of 24 enriched Zn82Se and two natural ZnSe crystals (equivalent of 5.3 kg of 82Se, Q-value is 2997.0±0.3 keV [7]) arranged in five towers and hosted in the Hall A cryostat (former CUORICINO [8] and CUORE-0 [9]) at the underground site Laboratori Nazionali del Gran Sasso in central Italy. The 96.3% enriched and radiopure 82Se powder [10] was produced at URENCO Stable Isotop Group. The Zn82Se synthesis and crystal growth was performed at the Institute for Scintillation Materials in Kharkov, Ukraine. Each crystal (~44 mm in diameter and between (21-55) mm in height) is faced to a cryogenic light detector (Ge-LD) [11] consisting of a thin germanium wafer (44 mm in diameter, 170 μm in thickness) which is coated with a layer of SiO$_2$ (70 nm) for better light absorption. In order to read the thermal signals both the crystal and the Ge-LD are equipped with Neutron Transmutation Doped (NTD) Ge thermistors using a semi-automatic gluing system. In order to correct offline for thermal drifts a Si Joule heater is in addition attached to each crystal. A detailed overview of the detectors as mounted in their setup using NOSV tough pitch copper structures is shown in Figure 1.

3. First Zn82Se measurement

A first test of three of the 24 enriched Zn82Se crystals, mounted as a single tower in the Hall C underground R&D facility of the Laboratori Nazionali del Gran Sasso was carried out in order to assess the detector performance parameters [12].

In Figure 2 a single module consisting of a Ge-LD equipped with NTD and heater is shown on top of
a Zn82Se crystal which is surrounded by reflective foil. In order to study particle discrimination and energy resolution, the detectors were exposed to the following radioactive sources: an external 232Th-source, temporarily irradiating the Zn82Se crystals to allow for energy calibration; a smeared Sm α-source (0.2-2.3 MeV), permanently placed in vicinity of each crystal, in order to evaluate the particle discrimination power between β/γ-events and α-events in the ROI; a 55Fe source (5.9 keV and 6.4 keV X-rays) irradiating the Ge-LD for their direct energy calibration.

Particle discrimination in scintillating Zn82Se crystals can be achieved via two different parameters: first, the ratio of light to heat signal (referred to as light yield) and second, via the pulse shape of the light signal which exhibits a strong dependence on the particle type [13]. The inset of Figure 3 demonstrates the time development of light pulses produced by a β/γ (red) and an α (blue) interaction at an energy of 2.6 MeV. In Figure 3 we show the shape parameter of a Ge-LD plotted versus the energy deposited in the Zn82Se-1 [12]. The two distributions resulting from β/γ-interactions (red band) and α-interactions (blue band) in the crystal are well separated. The green dashed line indicates the Q-value of 82Se. The high potential of α-background rejection in the ROI for 0νDBD of this detection approach is clearly visible.

![Figure 3. Shape parameter of the light pulses vs. energy deposited in the Zn82Se-1. The boundaries indicate the 2σ (continuous) and 3σ (dotted) regions where β/γ (red) and α-events (blue) are expected. The αs from the smeared Sm-source (< 2.5 MeV) and from internal bulk contaminations (> 5 MeV) can be well discriminated from β/γ-events. Inset: time development of a light pulse produced by a β/γ-and α-event.](image)

4. CONCLUSION

The successful operation of the first three enriched Zn82Se crystals did prove that detector performance is excellent in energy resolution (30 keV FWHM at the Q-value of 82Se) and particle identification. With a total of 24 enriched Zn82Se crystals (equivalent of 5.3 kg of 82Se) and an expected background level of $<\!1.5\times10^{-3}$ counts/(keV kg y) in the region of interest CUPID-0 will reach a sensitivity which is comparable to existing experiments. The detector mounting and commissioning of the CUPID-0 demonstrator is planned to be completed this autumn and first data are expected still within 2016.

Acknowledgments

This work was partially supported by the LUCIFER experiment, funded by ERC under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement n. 247115, funded within the ASPERA 2nd Common Call for R&D Activities.

References

[1] Dell’Oro S et al., Adv. High Energ. Phys. 2016 2162659.
[2] Majorana E 1937 Il Nuovo Cimento 14 171.
[3] Artusa D R, et al., 2014 Eur. Phys. J. C 74 (10) 3096.
[4] Wang G, et al., arXiv:1504.03612 2015.
[5] Wang G, et al., arXiv:1504.03599 2015.
[6] Artusa D R, et al., Adv. High Energ. Phys. 2015 879871.
[7] Lincoln D L, et al., 2013 Phys. Rev. Lett. 110 012501.
[8] Andreotti E, et al., 2011 Astropart. Phys. 34 822831.
[9] Alfonso K, et al., 2015 Phys. Rev. Lett. 115 (10) 102502.
[10] Beeman J W, et al., 2015 Eur. Phys. J. C 75 (12) 591.
[11] Beeman J W, et al., 2013 JINST 8 P07021.
[12] Artusa D R, et al., 2016 Eur. Phys. J. C 76 364.
[13] Beeman J W et al., 2013, JINST 8 P05021.