Stable exponential cosmological solutions with zero variation of $G$ and three different Hubble-like parameters in the Einstein–Gauss–Bonnet model with a $\Lambda$-term

K. K. Ernazarov$^1$, V. D. Ivashchuk$^{1,2,a}$

$^1$ Institute of Gravitation and Cosmology, RUDN University, 6 Miklukho-Maklaya ul., Moscow 117198, Russia
$^2$ Center for Gravitation and Fundamental Metrology, VNIIMS, 46 Ozyornaya ul., Moscow 119361, Russia

Received: 17 May 2017 / Accepted: 1 June 2017 / Published online: 16 June 2017
© The Author(s) 2017. This article is an open access publication

Abstract We consider a $D$-dimensional gravitational model with a Gauss–Bonnet term and the cosmological term $\Lambda$. We restrict the metrics to diagonal cosmological ones and find for certain $\Lambda$ a class of solutions with exponential time dependence of three scale factors, governed by three non-coinciding Hubble-like parameters $H > 0, h_1$ and $h_2$, corresponding to factor spaces of dimensions $m > 2, k_1 > 1$ and $k_2 > 1$, respectively, with $k_1 \neq k_2$ and $D = 1 + m + k_1 + k_2$. Any of these solutions describes an exponential expansion of $3d$ subspace with Hubble parameter $H$ and zero variation of the effective gravitational constant $G$. We prove the stability of these solutions in a class of cosmological solutions with diagonal metrics.

1 Introduction

In this paper we consider a $D$-dimensional gravitational model with Gauss–Bonnet term and cosmological term $\Lambda$. The so-called Gauss–Bonnet term appeared in string theory as a first order correction (in $\alpha'$) to the effective action $\lbrack 1–4\rbrack$.

We note that at present the Einstein–Gauss–Bonnet (EGB) gravitational model and its modifications, see $\lbrack 5–28\rbrack$ and the references therein, are intensively studied in cosmology, e.g. for possible explanation of accelerating expansion of the Universe which follow from supernova (type Ia) observational data $\lbrack 29–31\rbrack$.

In Ref. $\lbrack 28\rbrack$ we were dealing with the cosmological solutions with diagonal metrics governed by $n > 3$ scale factors depending upon one variable, which is the synchronous time variable. We have restricted ourselves by the solutions with exponential dependence of scale factors and have presented a class of such solutions with two scale factors, governed by two Hubble-like parameters $H > 0$ and $h < 0$, which correspond to factor spaces of dimensions $m > 3$ and $l > 1$, respectively, with $D = 1 + m + l$ and $(m, l) \neq (6, 6), (7, 4), (9, 3)$. Any of these solutions describes an exponential expansion of $3d$ subspace with Hubble parameters $H > 0$ $\lbrack 32\rbrack$ and has a constant volume factor of $(m-3+l)$-dimensional internal space, which implies zero variation of the effective gravitational constant $G$ either in a Jordan or in an Einstein frame $\lbrack 33, 34\rbrack$; see also $\lbrack 35–37\rbrack$ and the references therein. These solutions satisfy the most severe restrictions on variation of $G$ $\lbrack 38\rbrack$.

We have studied the stability of these solutions in a class of cosmological solutions with diagonal metrics by using results of Refs. $\lbrack 24, 26\rbrack$ (see also approach of Ref. $\lbrack 22\rbrack$) and have shown that all solutions, presented in Ref. $\lbrack 28\rbrack$, are stable. It should be noted that two special solutions for $D = 22, 28$ and $\Lambda = 0$ were found earlier in Ref. $\lbrack 21\rbrack$; in Ref. $\lbrack 24\rbrack$ it was proved that these solutions are stable. Another set of six stable exponential solutions, five in dimensions $D = 7, 8, 9, 13$ and two for $D = 14$, were considered earlier in $\lbrack 27\rbrack$.

In this paper we extend the results of Ref. $\lbrack 28\rbrack$ to the case of solutions with three non-coinciding Hubble-like parameters. The structure of the paper is as follows. In Sect. 2 we present a setup. A class of exact cosmological solutions with diagonal metrics is found for certain $\Lambda$ in Sect. 3. Any of these solutions describes an exponential expansion of $3d$ subspace with Hubble parameter $H$ and zero variation of the effective gravitational constant $G$. In Sect. 4 we prove the stability of the solutions in a class of cosmological solutions with diagonal metrics. Certain examples are presented in Sect. 5.

$^a$e-mail: ivashchuk@mail.ru
2 The cosmological model

The action of the model reads

\[ S = \int_M d^Dz \sqrt{|g|} (\alpha_1 R[g] - 2\Lambda) + \alpha_2 \mathcal{L}_2[g], \]  

(2.1)

where \( g = g_{MN} dz^M \otimes dz^N \) is the metric defined on the manifold \( M \), \( \dim M = D, \ |g| = |\det(g_{MN})|, \) \( \Lambda \) is the cosmological term, \( R[g] \) is scalar curvature,

\[ \mathcal{L}_2[g] = R_{MNPQ} R^{MNPQ} - 4 R_{MN} R^{MN} + R^2 \]

is the standard Gauss–Bonnet term and \( \alpha_1, \alpha_2 \) are nonzero constants.

We consider the manifold

\[ M = \mathbb{R} \times M_1 \times \cdots \times M_n \]  

(2.2)

with the metric

\[ g = -dt \otimes dt + \sum_{i=1}^n B_i e^{2v_i} dy^i \otimes dy^i, \]  

(2.3)

where \( B_i > 0 \) are arbitrary constants, \( i = 1, \ldots, n \), and \( M_1, \ldots, M_n \) are 1-dimensional manifolds (either \( \mathbb{R} \) or \( S^1 \)) and \( n > 3 \).

The equations of motion for the action (2.1) give us the set of polynomial equations [24]

\[ E = G_{ij} v^i v^j + 2\Lambda - \alpha G_{ijkl} v^i v^j v^k v^l = 0, \]  

(2.4)

\[ Y_i = \left[ 2G_{ij} v^j - 3\frac{\alpha}{2} G_{ijkl} v^j v^k v^l \right] \sum_{i=1}^n v^i - 2\frac{\alpha}{3} G_{ij} v^i v^j \]

\[ + \frac{8}{3} \Lambda = 0, \]  

(2.5)

\( i = 1, \ldots, n \), where \( \alpha = \alpha_2/\alpha_1. \) Here

\[ G_{ij} = \delta_{ij} - 1, \quad G_{ijkl} = G_{ij} G_{kl} - G_{ik} G_{jl} - G_{ij} G_{kl}, \]  

(2.6)

are, respectively, the components of two metrics on \( \mathbb{R}^n \) [16,17]. The first one is a 2-metric and the second one is a Finslerian 4-metric. For \( n > 3 \) we get a set of fourth-order polynomial equations.

We note that for \( \Lambda = 0 \) and \( n > 3 \) the set of Eqs. (2.4) and (2.5) has an isotropic solution \( v^1 = \cdots = v^n = H \) only if \( \alpha < 0 \) [16,17]. This solution was generalized in [19] to the case \( \Lambda \neq 0 \).

It was shown in [16,17] that there are no more than three different numbers among \( v^1, \ldots, v^n \) when \( \Lambda = 0 \). This is valid also for \( \Lambda \neq 0 \) if \( \sum_{i=1}^n v_i^j \neq 0 \) [26].

3 Solutions with constant G

In this section we present a class of solutions to the set of equations (2.4), (2.5) of the following form:

\[ v = (H, H, H, \frac{k_1}{m-3}, H, h_1, \ldots, h_1, h_2, \ldots, h_2). \]  

(3.1)

"our" space internal space

where \( H \) is the Hubble-like parameter corresponding to an \( m \)-dimensional factor space with \( m > 2 \), \( h_1 \) is the Hubble-like parameter corresponding to an \( k_1 \)-dimensional factor space with \( k_1 > 1 \) and \( h_2 (h_2 \neq h_1) \) is the Hubble-like parameter corresponding to an \( k_2 \)-dimensional factor space with \( k_2 > 1 \).

We split the \( m \)-dimensional factor space into the product of two subspaces of dimensions 3 and \( m - 3 \), respectively. The first one is identified with "our" 3d space, while the second one is considered as a subspace of \((m-3+k_1+k_2)\)-dimensional internal space.

We put

\[ H > 0 \]  

(3.2)

for a description of an accelerated expansion of a 3-dimensional subspace (which may describe our Universe) and also put

\[ (m-3)H + k_1h_1 + k_2h_2 = 0 \]  

(3.3)

for a description of a zero variation of the effective gravitational constant \( G \).

We remind the reader that the effective gravitational constant \( G = G_{eff} \) in the Brans–Dicke–Jordan (or simply Jordan) frame [33] (see also [34]) is proportional to the inverse volume scale factor of the internal space; see [35–37] and references therein.

Due to (3.1) "our" 3d space expands isotropically with Hubble parameter \( H \), while the \((m-3)\)-dimensional part of the internal space expands isotropically with the same Hubble parameter \( H \) too. Here, like in Ref. [28], we consider for cosmological applications (in our epoch) the internal space to be a compact one, i.e. we put in (2.2) \( M_1 = \cdots = M_n = S^1 \). We put the internal scale factors corresponding to present time \( t_0 \): \( a_j(t_0) = B_j^{1/2}\exp(v^j(t_0)), j = 4, \ldots, n \), (see (2.3)) to be small enough in comparison with the scale factor of "our" space for \( t = t_0 \): \( a(t_0) = B^{1/2}\exp(Ht_0) \), where \( B_1 = B_2 = B_3 = B \).

According to the ansatz (3.1), the \( m \)-dimensional factor space is expanding with the Hubble parameter \( H > 0 \), while the \( k_i \)-dimensional factor space is contracting with the Hubble-like parameter \( h_i < 0 \), where \( i \) is either 1 or 2.

Now we consider the ansatz (3.1) with three Hubble parameters \( H, h_1 \) and \( h_2 \) which obey the following restrictions:
Using this fact and Eqs. (3.4) and (3.10) we reduce the system (3.13) to the following one:

\[ E = 0, \quad Q_{hh_1} = -\frac{1}{2\alpha}, \quad Q_{h_1h_2} = -\frac{1}{2\alpha}, \quad \text{(3.14)} \]

Using the identity

\[ Q_{hh_1} - Q_{h_1h_2} = (H - h_2)(-S_1 + H + h_1 + h_2), \quad \text{(3.15)} \]

we reduce the set of equations (3.14) to the equivalent set

\[ E = 0, \quad Q = -\frac{1}{2\alpha}, \quad H + h_1 + h_2 - S_1 = 0. \quad \text{(3.16)} \]

Here we put \( Q = Q_{h_1h_2} \), though other choices, \( Q = Q_{hh_1} \) or \( Q = Q_{Hh_2} \), give us equivalent sets of equations. Thus the set of \((n + 1)\) polynomial equations (2.4), (2.5) under ansatz (3.1) and restrictions (3.4) is imposed is reduced to a set (3.16) of three polynomial equations (of fourth, second and first orders). This reduction is a special case of the more general prescription from Ref. [20].

Using the condition (3.3) of zero variation of \( G \) and the linear equation from (3.16) we obtain for \( k_1 \neq k_2 \),

\[ h_1 = \frac{m + 2k_2 - 3}{k_2 - k_1}H, \quad h_2 = \frac{m + 2k_1 - 3}{k_1 - k_2}H. \quad \text{(3.17)} \]

For \( k_1 = k_2 \) we get \( H = 0 \), which is not appropriate for our consideration.

The substitution of (3.17) into relation \( Q_{h_1h_2} = -\frac{1}{2\alpha} \) gives us the following relation:

\[ \frac{P}{(k_2 - k_1)^2}H^2 = -\frac{1}{2\alpha}. \quad \text{(3.18)} \]

for \( k_1 \neq k_2 \), where

\[ P = P(m, k_1, k_2) = -(m + k_1 + k_2 - 3)(m(k_1 - k_2 - 2) + k_2(2k_1 - 5) + k_2(2k_1 - 5) + 6) \neq 0. \quad \text{(3.19)} \]

which implies

\[ H = |k_1 - k_2|(-2\alpha P)^{-1/2}, \quad \alpha P < 0. \quad \text{(3.20)} \]

It may be readily verified that

\[ P = P(m, k_1, k_2) < 0 \quad \text{(3.21)} \]

for all \( m > 2, k_1 > 1, k_2 > 1, k_1 \neq k_2 \) and hence our solutions take place for \( \alpha > 0 \).

The substitution of (3.17) into (3.5) gives us

\[ 2\Lambda = -F_1H^2 - F_2H^4 \quad \text{(3.22)} \]

where

\[ F_1 = \frac{1}{(k_2 - k_1)^2}[(k_1 + k_2)m^2 + (k_1^2 + 6k_1k_2 + k_2^2 - 6k_1 - 6k_2)m - 9(k_1^2 + k_2^2 - k_1 - k_2) + 2(2k_1 + 2k_2 - 3)k_1k_2] \]

(3.23)
and
\[
F_2 = -\frac{3α(m - 3 + k_1 + k_2)}{(k_2 - k_1)^4} [(k_1 + k_2)(k_1 + k_2 - 2)m^3 \\
+ (k_1 + k_2)(k_1^2 + k_2^2 + 10k_1k_2 - 15(k_1 + k_2) + 18)m^2 \\
- (12k_1^3 + 15k_2^3 - 63(k_1^2 + k_2^2) + 54(k_1 + k_2)) \\
- 24(k_1^2 + k_2^2) \\
- 42(k_1 + k_2 + 16k_1k_2 + 63k_1k_2)m \\
+ 27(k_1^2 + k_2^2) - 81(k_1^2 + k_2^2) + 54(k_1 + k_2) \\
- (40k_1^2 + k_2^2) - 16(k_1 + k_2 - 6)k_1k_2 + 162 \\
- 153(k_1 + k_2)k_1k_2].
\]

Equations (3.27) and (3.28) may be used in a context of (1/D)-expansion for large $D$ in the model under consideration; see [25] and the references therein.

4 The proof of stability

Here, as in [28], we have due to (3.3)

\[
K = K(v) = \sum_{i=1}^{n} v^i = 3H > 0.
\]

Let us put the restriction

\[
\text{det}(L_{ij}(v)) \neq 0
\]

on the matrix

\[
L = (L_{ij}(v)) = (2G_{ij} - 4\alpha G_{ijkl}v^k v^l).
\]

We recall that, for a general cosmological setup with the metric

\[
g = -dr \otimes dr + \sum_{i=1}^{n} e^{2β_i(t)} dy^i \otimes dy^i,
\]

we have the set of equations [24]

\[
E = G_{ij} h^i h^j + 2Λ - αG_{ijkl}v^i h^j h^l = 0,
\]

\[
Y_i = \frac{dL_i}{dr} + \left( \sum_{j=1}^{n} h^j \right) L_i - \frac{2}{3} (G_{ij} h^i h^j - 4Λ) = 0,
\]

where $h^i = \dot{v}^i$,

\[
L_i = L_i(h) = 2G_{ij} h^j - \frac{4}{3} αG_{ijkl} h^i h^j h^l,
\]

\[
i = 1, \ldots, n.
\]

Due to the results of Ref. [26] a fixed point solution ($h^i(t) = (v^i)$ ($i = 1, \ldots, n; n > 3$) to Eqs. (4.5), (4.6) obeying restrictions (4.1), (4.2) is stable under perturbations,

\[
h^i(t) = v^i + δh^i(t),
\]

\[
i = 1, \ldots, n, \text{ as } t \to + \infty.
\]

In order to prove the stability of solutions we should prove Eq. (4.2). First, we show that for the vector $v$ from (3.1), obeying Eqs. (3.4) the matrix $L$ has a block-diagonal form,

\[
(L_{ij}) = \text{diag}(L_{iν}, L_{αβ}, L_{ab}).
\]
where here and in what follows: \( \mu, \nu = 1, \ldots, m; \alpha, \beta = m + 1, \ldots, m + k_1 \) and \( a, b = m + k_1 + 1, \ldots, n. \)

Indeed, denoting \( S_{ij} = G_{ijkl}v^k v^l \) we get from (3.8)

\[
S_{ij} = \frac{1}{3} \frac{\partial}{\partial v^j} (G_{ijkl} v^k v^l) \\
= S_{ij}^2 - S_{ij} + 2(v^j)^2 + 2(v^j)^2 + 2v^j v^j - 2S_1 (v^j + v^j) \\
+ \delta_{ij} (S_2 - S_1^2 + 4S_1 v^j - 6(v^j)^2). \tag{4.10}
\]

Here we use the notation \( S_k = \sum_{i=1}^m (v^i)^k \) and the identity

\[
\frac{\partial}{\partial v^j} S_k = k (v^j)^{k-1}. \tag{3.11}
\]

It follows from (3.11) and (4.10) that

\[
S_{hh} = S_{\mu \alpha} = S_{\alpha \mu} = Q_{hh}, \tag{4.11}
\]

\[
S_{h1} = S_{\mu \alpha} = S_{\alpha \mu} = Q_{h1}, \tag{4.12}
\]

\[
S_{h1} = S_{\alpha \alpha} = Q_{h1}, \tag{4.13}
\]

and hence \( L_{H} = L_{H} = 0, L_{H} = L_{H} = 0 \) and \( L_{aa} = L_{aa} = 0 \) due to Eq. (3.12). Thus, the matrix \( (L_{ij}) \) is block-diagonal.

For the other three blocks we have

\[
L_{\mu \nu} = G_{\mu \nu}(2 + 4\alpha S_{HH}), \tag{4.14}
\]

\[
L_{\alpha \beta} = G_{\alpha \beta}(2 + 4\alpha S_{h1}), \tag{4.15}
\]

\[
L_{\alpha \beta} = G_{\alpha \beta}(2 + 4\alpha S_{h1}), \tag{4.16}
\]

where

\[
S_{hi} = S_1^2 - S_2^2 + 6h_2^2 - 4S_1 h_i. \tag{4.17}
\]

\[
i = 0, 1, 2 \text{ and } h_0 = H. \text{ Here we denote } S_{HH} = S_{\mu \alpha}, \mu \neq \nu; \text{ and } S_{h1} = S_{\mu \alpha}, \mu \neq \beta \text{ and } S_{h1} = S_{\alpha \alpha}, a \neq b.
\]

Due to Eqs. (4.9), (4.14), (4.15), (4.16) the matrix (4.9) is invertible if and only if \( m > 1, k_1 > 1, k_2 > 1 \) and

\[
S_{hi} \neq -\frac{1}{2\alpha}, \tag{4.18}
\]

\[
i = 0, 1, 2.
\]

Now, we prove that inequalities (4.18) are satisfied for the solutions under consideration. Let us suppose that (4.18) is not satisfied for some \( i_0 \in \{0, 1, 2\}, \text{i.e.} \)

\[
S_{hi_0} = S_1^2 - S_2^2 + 6h_2^2 - 4S_1 h_{i_0} = -\frac{1}{2\alpha}. \tag{4.19}
\]

Let \( i_1 \in \{0, 1, 2\} \) and \( i_1 \neq i_0 \). Then using Eqs. (3.11) and (3.12) we get

\[
Q_{hi_0} = S_{hi_0} = 2(h_{i_1} - h_{i_0})(2h_{i_0} + h_{i_1} - S_1) = 0, \tag{4.20}
\]

which implies

\[
2h_{i_0} + h_{i_1} - S_1 = 0. \tag{4.21}
\]

But due to (3.16)

\[
h_{i_0} + h_{i_1} + h_{i_2} - S_1 = 0, \tag{4.22}
\]

where \( i_2 \in \{0, 1, 2\} \) and \( i_2 \neq i_0, i_2 \neq i_1 \). Subtracting (4.22) from (4.21) we obtain \( h_{i_0} - h_{i_2} = 0 \), i.e. \( h_{i_0} = h_{i_2} \). But due to restrictions (3.4) we have \( h_{i_0} \neq h_{i_2} \). We are led to a contradiction, which proves the inequalities (4.18) and hence the matrix \( L \) from (4.9) is invertible \( (m > 2, k_1 > 1, k_2 > 1) \), i.e.

Eq. (4.2) is obeyed. Thus, the solutions under consideration are stable.

### 5 Examples

Here we present several examples of stable solutions under consideration.

#### 5.1 The case \( m = 3 \)

Let us consider the case \( m = 3 \). From (3.25) we get

\[
\Lambda = -\frac{1}{4\alpha \sqrt{140\alpha}} \times \left( \frac{1}{k_1 - k_2 - k_2} \right) \left( 3(k_1^3 + k_2^3) - (2(k_1^2 + k_2^2) + (k_1 + k_2)(3 + 2k_1 k_2) - 8k_1 k_2) k_1 k_2 \right). \tag{5.1}
\]

For \( (m, k_1, k_2) = (3, 3, 2) \) we have \( P = -70 \),

\[
\Lambda = \frac{213}{980\alpha} \tag{5.2}
\]

and

\[
H = \frac{1}{\sqrt{140\alpha}}, \quad h_1 = -4H, \quad h_2 = 6H. \tag{5.3}
\]

Now we put \( (m, k_1, k_2) = (3, 4, 2) \). We obtain \( P = -120 \),

\[
\Lambda = \frac{21}{100\alpha}, \tag{5.4}
\]

and

\[
H = \frac{1}{2\sqrt{15\alpha}}, \quad h_1 = -2H, \quad h_2 = 4H. \tag{5.5}
\]

According to our analysis from the previous section both solutions are stable.

#### 5.2 Examples for \( m = 4 \) and \( m = 5 \)

Now we present other examples of stable solutions for \( m = 4 \) and \( m = 5 \).
First we put \((m, k_1, k_2) = (4, 3, 2)\). We find \(P = -102\) and
\[
\Lambda = \frac{123}{578 \alpha}.
\]
(5.6)
In this case we obtain
\[
H = \frac{1}{\sqrt{204 \alpha}}, \quad h_1 = -5H, \quad h_2 = 7H.
\]
(5.7)
Now we enlarge the value of \(m\) by putting \((m, k_1, k_2) = (5, 3, 2)\). We find \(P = -140\),
\[
\Lambda = \frac{589}{2800 \alpha},
\]
(5.8)
and
\[
H = \frac{1}{\sqrt{280 \alpha}}, \quad h_1 = -6H, \quad h_2 = 8H.
\]
(5.9)

We note that in all examples above \(\Lambda > 0\).

6 Conclusions

We have considered the \(D\)-dimensional Einstein–Gauss–Bonnet (EGB) model with the \(\Lambda\)-term and two constants \(\alpha_1\) and \(\alpha_2\). By using the ansatz with diagonal cosmological metrics, we have found, for certain \(\Lambda = \Lambda(m, k_1, k_2)\) and \(\alpha = \alpha_2/\alpha_1 < 0\), a class of solutions with exponential time dependence of three scale factors, governed by three different Hubble-like parameters \(H > 0\) and \(h_1 \) and \(h_2\), corresponding to submanifolds of dimensions \(m > 2, k_1 > 1, k_2 > 1\), respectively, with \(k_1 \neq k_2\) and \(D = 1 + m + k_1 + k_2\). Here \(m > 2\) is the dimension of the expanding subspace.

Any of these solutions describes an exponential expansion of “our” \(3\)-dimensional subspace with the Hubble parameter \(H > 0\) and anisotropic behaviour of \((m - 3 + k_1 + k_2)\)-dimensional internal space: expanding in \((m - 3)\) dimensions (with Hubble-like parameter \(H\)) and either contracting in \(k_1\) dimensions (with Hubble-like parameter \(h_1\)) and expanding in \(k_2\) dimensions (with Hubble-like parameter \(h_2\)) for \(k_1 > k_2\) or expanding in \(k_1\) dimensions and contracting in \(k_2\) dimensions for \(k_1 < k_2\). Each solution has a constant volume factor of internal space and hence it describes zero variation of the effective gravitational constant \(G\). By using the results of Ref. [26] we have proved that all these solutions are stable as \(t \to +\infty\). We have presented several examples of stable solutions for \(m = 3, 4, 5\).

Acknowledgements This paper was funded by the Ministry of Education and Science of the Russian Federation in the Program to increase the competitiveness of Peoples Friendship University (RUDN University) among the world’s leading research and education centers in the 2016–2020 and by the Russian Foundation for Basic Research, Grant No.16-02-00602.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.

References

1. B. Zwiebach, Curvature squared terms and string theories. Phys. Lett. B 156, 315 (1985)
2. E.S. Fradkin, A.A. Tseytlin, Effective field theory from quantized strings. Phys. Lett. B 158, 316–322 (1985)
3. E.S. Fradkin, A.A. Tseytlin, Effective action approach to superstring theory. Phys. Lett. B 160, 69–76 (1985)
4. D. Gross, E. Witten, Superstrings modifications of Einstein’s equations. Nucl. Phys. B 277, 1 (1986)
5. H. Ishihara, Cosmological solutions of the extended Einstein gravity with the Gauss–Bonnet term. Phys. Lett. B 179, 217 (1986)
6. N. Deruelle, On the approach to the cosmological singularity in quadratic theories of gravity: the Kasner regimes. Nucl. Phys. B 327, 253–266 (1989)
7. S. Nojiri, S.D. Odintsov, Introduction to modified gravity and gravitational alternative for Dark Energy. Int. J. Geom. Methods Mod. Phys. 4, 115–146 (2007), arXiv:hep-th/0601213
8. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, S. Zerbini, One-loop effective action for non-local modified Gauss–Bonnet gravity in de Sitter space. Eur. Phys. J. C 64(3), 483–494 (2009), arXiv:0905.0543
9. E. Elizalde, A.N. Makarenko, V.V. Obukhov, K.E. Osetrin, A.E. Filippov, Stationary vs. singular points in an accelerating FRW cosmology derived from six-dimensional Einstein–Gauss–Bonnet gravity. Phys. Lett. B 644, 1–6 (2007), arXiv:hep-th/0611213
10. K. Bamba, Z.-K. Guo, N. Ohta, Accelerating cosmologies in the Einstein–Gauss–Bonnet theory with dilaton. Progr. Theor. Phys. 118, 879–892 (2007), arXiv:0707.4334
11. A. Toporensky, P. Tretyakov, Power-law anisotropic cosmological solution in 5+1 dimensional Gauss–Bonnet gravity. Gravit. Cosmol. 13, 207–210 (2007), arXiv:0708.1346
12. S.A. Pavluchenko, A.V. Toporensky, A note on differences between \((4 + 1)\)- and \((5 + 1)\)-dimensional anisotropic cosmology in the presence of the Gauss-Bonnet term. Mod. Phys. Lett. A 24, 513–521 (2009)
13. I.V. Kirnos, A.N. Makarenko, Accelerating cosmologies in Lovelock gravity with dilaton. Open Astron. J. 3, 37–48 (2010). arXiv:0903.0083
14. S.A. Pavluchenko, On the general features of Bianchi-I cosmological models in Lovelock gravity. Phys. Rev. D 80, 107501 (2009), arXiv:0906.0141
15. I.V. Kirnos, A.N. Makarenko, S.A. Pavluchenko, A.V. Toporensky, The nature of singularity in multidimensional anisotropic Gauss–Bonnet cosmology with a perfect fluid. Gen. Relat. Gravit. 42, 2633–2641 (2010), arXiv:0906.0140
16. V.D. Ivashchuk, On anisotropic Gauss–Bonnet cosmologies in \((n + 1)\) dimensions, governed by an \(n\)-dimensional Finslerian 4-metric. Gravit. Cosmol. 16(2), 118–125 (2010). arXiv:0909.5462
17. V.D. Ivashchuk, On cosmological-type solutions in multidimensional model with Gauss–Bonnet term. Int. J. Geom. Methods Mod. Phys. 7(5), 797–819 (2010). arXiv:0910.3426
18. K.-I. Maeda, N. Ohta, Cosmic acceleration with a negative cosmological constant in higher dimensions. JHEP 1406, 095 (2014). arXiv:1404.0561

19. D. Chirkov, S. Pavluchenko, A. Toporensky, Exact exponential solutions in Einstein–Gauss–Bonnet flat anisotropic cosmology. Mod. Phys. Lett. A 29, 1450093 (11 pages) (2014). arXiv:1401.2962

20. D. Chirkov, S.A. Pavluchenko, A. Toporensky, Non-constant volume exponential solutions in higher-dimensional Lovelock cosmologies. Gen. Relat. Gravit. 47, 137 (33 pages) (2015). arXiv:1501.04360

21. V.D. Ivashchuk, A.A. Kobtsev, On exponential cosmological type solutions in the model with Gauss–Bonnet term and variation of gravitational constant. Eur. Phys. J. C 75, 177 (12 pages) (2015). arXiv:1503.00860

22. S.A. Pavluchenko, Stability analysis of exponential solutions in Lovelock cosmologies. Phys. Rev. D 92, 104017 (2015). arXiv:1507.01871

23. S.A. Pavluchenko, Cosmological dynamics of spatially flat Einstein–Gauss–Bonnet models in various dimensions: low-dimensional $\Lambda$-term case. Phys. Rev. D 94, 084019 (2016). arXiv:1607.07347

24. K.K. Ernazarov, V.D. Ivashchuk, A.A. Kobtsev, On exponential solutions in the Einstein–Gauss–Bonnet cosmology, stability and variation of $G$. Gravit. Cosmol. 22(3), 245–250 (2016)

25. F. Canfora, A. Giacomini, S.A. Pavluchenko, A. Toporensky, Friedmann dynamics recovered from compactified Einstein–Gauss–Bonnet cosmology. arXiv:1605.00041

26. V.D. Ivashchuk, On stability of exponential cosmological solutions with non-static volume factor in the Einstein–Gauss–Bonnet model. Eur. Phys. J. C 76, 431 (2016). arXiv:1607.01244v2

27. V.D. Ivashchuk, On stable exponential solutions in Einstein–Gauss–Bonnet cosmology with zero variation of $G$. Gravit. Cosmol. 22(4), 329–332 (2016). See corrected version in arXiv:1612.07178

28. K.K. Ernazarov, V.D. Ivashchuk, Stable exponential cosmological solutions with zero variation of $G$ in the Einstein–Gauss–Bonnet model with a $\Lambda$-term. Eur. Phys. J. C 77, 89 (2017). arXiv:1612.08451

29. A.G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

30. S. Perlmutter et al., Measurements of Omega and Lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

31. M. Kowalski, D. Rubin et al., Improved cosmological constraints from new, old and combined supernova datasets. Astrophys. J. 686(2), 749–778 (2008). arXiv:0804.4142

32. P.A.R. Ade et al., [Planck Collaboration], Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014). arXiv:1303.5076

33. M. Rainer, A. Zhuk, Einstein and Brans–Dicke frames in multi-dimensional cosmology. Gen. Relat. Gravit. 32, 79–104 (2000). arXiv:gr-qc/9808073

34. V.D. Ivashchuk, V.N. Melnikov, Multidimensional gravity with Einstein internal spaces. Gravit. Cosmol. 2(3), 211–220 (1996). arXiv:hep-th/9612054

35. K.A. Bronnikov, V.D. Ivashchuk, V.N. Melnikov, Time variation of gravitational constant in multidimensional cosmology. Nuovo Cimento B 102, 209–215 (1998)

36. V.N. Melnikov, Models of G time variations in diverse dimensions. Front. Phys. Chin. 4, 75–93 (2009)

37. V.D. Ivashchuk, V.N. Melnikov, On time variations of gravitational and Yang–Mills constants in a cosmological model of superstring origin. Gravit. Cosmol. 20(1), 26–29 (2014). arXiv:1401.5491

38. E.V. Pitjeva, Updated IAA RAS planetary ephemerides-EPM2011 and their use in scientific research. Astron. Vestnik 47(5), 419–435 (2013). arXiv:1308.6416