Adaptability evaluation of improved Tomato (*Lycopersicon esculentum* Mill.) varieties for yield and other quantitative traits in Arba Minch, Southern Ethiopia

Gezahegn Fikre*, Awoke Mensa and Alemayehu Wodaje

Received 19 February 2022, Revised 10 May 2022, Accepted 25 June 2022, Published online 30 June 2022

A B S T R A C T

Tomato is one of the important vegetables grown all over the world for its nutritious and economic value. Varietal improvement for high yielding, pest resistance and tolerance, drought tolerance and processing quality traits are vital thereby to enhance production and productivity of the crop. Due to lack of improved varieties in the study area, local productivity of tomato is challenged and its production is very limited. Hence, identification of improved tomato varieties that are adaptable, high yielding and disease resistant is crucial before dissemination to boost its productivity in the study area. Therefore, this experiment was conducted at Arba Minch to evaluate ten improved tomato varieties for yield and yield components under irrigation condition using randomized complete block design replicated three times. ANOVA result indicated that there is a significant variation among tested varieties in all studied parameters. The mean total yield and number of fruits plant\(^{-1}\) of tomato varieties varied from 4,991.1 to 11,215 kg ha\(^{-1}\) and 13.33 to 36.53 fruits plant\(^{-1}\), respectively. ‘Melkashola’ scored the highest marketable yield (9,438 kg ha\(^{-1}\)) and total yield (11,216 kg ha\(^{-1}\)) being followed by ‘Bishola’ (8,756 kg ha\(^{-1}\)) and ‘Melkasalsa’ (8,367 kg ha\(^{-1}\)). On the other hand, ‘Melkasalsa’ and ‘Miya’ with moderately high yield might also be regarded as other potential varieties. Therefore, the first three varieties are recommended for cultivation in the study area and similar agro-ecology.

Keywords: Evaluation, Fruit yield, Irrigation, Melkashola, Varieties

*Corresponding author’s email: fikregezahegn@gmail.com (Gezahegn Fikre)

Cite this article as: Fikre, G., Mensa A., and Wodaje A. 2022. Adaptability evaluation of improved tomato (*Lycopersicon esculentum* Mill.) varieties for yield and other quantitative traits in Arba Minch, Southern Ethiopia. *Int. J. Agril. Res. Innov. Tech.* 12(1): 79-83. https://doi.org/10.3329/ijarit.v12i1.61035

Introduction

Tomato (*Lycopersicon esculentum* Mill.) belongs to the family Solanaceae and it is the most important vegetable crop consumed as both fresh and processed. In terms of production, tomato ranked second after potato, whereas as a processing crop, it ranks first among all vegetables (AGRISNET, 2010). Due to its multiple uses and being nutritious (AVRDC, 2004), tomato is the most popular and widely cultivated crop. It is grown all over the world while China is the leading tomato producer in the world with an annual production of 58.968 million tons (FAOSTAT, 2017).

Ethiopia has diverse agro-ecologies that allow the country to produce different crops including tomatoes in different cropping seasons. The shortage of varieties and recommended information packages, poor irrigation systems, lack of information on soil fertility, diseases and insect pests, high postharvest loss, lack of awareness of existing improved technology, and poor marketing system are the major challenges in Ethiopian tomato production (Lemma, 2002). However, tomato is mostly grown under irrigation conditions in the country due to high disease pressure in the rainy season. Oromiya and Southern Nations, Nationalities and Peoples’ (SNNP) are the two major tomato-producing regions of Ethiopia. According to Central Statistical Agency (CSA) (2017) of Ethiopia, about 6298.63 ha of land were covered by tomato with the total production of 28,664,83 tons during the 2016-2017 cropping season. Gamo and Gofa zones are among the potential areas for tomato production in the SNNP regional state. In Gamo...
zone, small-scale farmers of the Arba Minch Zuria and Mirab Abaya districts widely cultivate tomato using irrigation mainly for income generation due to multiple harvesting opportunities that the crop has. However, the productivity of tomato was not more than 6 ton ha⁻¹ both at national and regional levels in the last five years due to many factors. The use of low yielding tomato varieties and diseases and insect pest occurrence are among the major factors that affect the productivity of the crop in Arba Minch area. These can be solved by either adopting or generating improved crop technologies for specific localities. Therefore, this study was conducted to evaluate the adaptability of released tomato varieties under irrigation conditions in Arba Minch area, Southern Ethiopia.

Materials and Methods

Description of the study area

The experiment was conducted at Chano Mille research site of the Arba Minch Agricultural Research Center under irrigation conditions during the 2017 cropping season. Geographically, the study site is located between a latitude of 5°37' - 6°21' and a longitude of 37°31' - 37°67' at 485 km south of Addis Ababa, the capital city of Ethiopia. The altitude of the site is 1216 meters above sea level. The area received an average rainfall of 752.9 mm with maximum and minimum temperatures of 31.7 and 17.5°C, respectively, in the cropping season (Arba Minch Meteorology Station, 2018).

Experimental Materials

Table 1. Description of the tomato varieties used for the experiment.

S/No	Variety name	Year of release	Environmental requirements	Growth habit	Maturity (days)	Research Yield (Q ha⁻¹)	Utilization
1	Cochore	2007	Altitude (m): 800-2000, Rainfall (mm): 1400	Determinate	100-120	350	Processing
2	Miya	2007		Indeterminate	82	471	Fresh
3	Fetan	2005		Determinate	78-80	454	Fresh
4	ARP d2	2012		Determinate	100-120	394	Fresh
5	Bishola	2005		Determinate	85-90	340	Fresh
6	Melkashola	1998		Determinate	100-120	430	Processing
7	Chali	2007		Determinate	110-120	300	Processing
8	Melkasaalsa	1998		Determinate	100-110	320	Processing
9	Metadel	2005		Indeterminate	78-80	345	Fresh
10	Eshete	2005		Determinate	75-80	---	---

Source: Adapted from Tujuba and Ayana (2020); Balcha et al. (2015)

Data collection and analysis

Data were collected for plant height, number of fruits plant⁻¹, number of fruit clusters plant⁻¹, average fruit diameter, and average fruit weight on the basis of five sample plants randomly taken from the central rows while fruit yield related data (marketable, unmarketable and total fruit yield) were recorded on a plot basis. These data were analyzed by using analysis of variance via Statistical Analysis System (SAS) software version 9.2. Least significant difference (LSD) at 5% level of significance was used for mean separation for the treatment that had a significant effect.
Results and Discussion

Analysis of Variance (ANOVA)

Mean squares of the tested characters are presented in Table 2. ANOVA revealed that highly significant differences among the tested varieties (P≤0.001) were observed for four characters (number of fruits plant⁻¹, number of clusters plant⁻¹, average fruit diameter and average fruit weight) whereas highly significant differences at (p≤0.01) were observed for characters namely; plant height, marketable yield and total yield. The rest showed insignificant differences among the varieties under study.

Table 2. Analysis of variance (Mean squares) for the characters of 10 tomato varieties evaluated at Chano Mille, Arba Minch (2017).

Source of Variation	Range of Means	Mean Squares	CV (%)	GM	LSD(0.05)			
	Min.	Max.	Replication (d.f=2)	Treatment (d.f=9)	Error (d.f=18)			
Days to 50% flowering (days)	57.70	66.30	1.90ns	24.87ns	14.64	6.10	62.60	6.56
Days to 50% fruit set (days)	71.70	76.00	4.43ns	5.26ns	2.36	2.08	73.67	2.63
Days to 90% maturity (days)	93.70	99.00	0.10ns	11.64 ns	7.98	2.94	96.20	4.84
Plant height (cm)	56.30	82.40	47.03ns	153.01*	52.46	10.81	67.03	12.42
Branch number	4.30	6.20	0.60ns	0.99ns	0.55	14.44	5.14	1.27
Number of fruits plant⁻¹	1.12	1.55	0.10***	0.07***	0.01	9.33	1.31	0.21
Number of clusters plant⁻¹	4.13	8.60	9.27***	4.38***	0.96	16.61	5.90	1.68
Fruit diameter (cm)	11.53	20.80	0.12ns	28.41***	2.41	9.57	16.20	2.66
Average fruit weight (g)	45.80	142.80	43.37ns	3,023.36***	530.82	25.01	92.11	39.52
Marketable yield (Kg ha⁻¹)	3,848.44	9437.78	486644391.7***	1094962556***	328891442	26.86	679067	3110.90
Unmarketable yield (Kg ha⁻¹)	34.54	48.25	175.98	55.65	53.59	17.27	42.98	12.56
Total fruit yield (Kg ha⁻¹)	4991.11	11215.56	66570708.00***	129778771.0*	4797186.90	25.45	8607.42	3757.10

C.V= Coefficient of Variation, GM= Grand mean; *, ** and ***, are significant at P≤0.05, P≤0.01 and P≤0.001 respectively and ns=not significant at P>0.05.

Plant height and branches

The mean values for plant height ranged between 56.3 cm ('Fetan') and 82.4 cm ('Eshe'). The highest plant was 'Eshe' followed by 'Melkasalsa' and 'Bishola' while the shortest were 'Fetan', 'Cochore' and 'Melkasalsa' (Table 3). Tallness, shortness, and other morphological differences are varietal characteristics, which are controlled and expressed by certain genes. 'Melkasalsa' performed to be mature earlier than others, followed by 'Melkasalsa' and 'Metadel' whereas ARP-d2 was the late maturing one. The maximum number of primary branches plant⁻¹ was recorded in the varieties 'Bishola' (6.2), 'Melkasalsa' (5.67), and 'Fetan' (5.33) and the minimum number of primary branches plant⁻¹ was recorded in varieties, 'Miya' (4.33) and 'ARP-d2' (4.44). These findings are in agreement with the work of Shibiru (2016) who reported 5.67 primary branches plant⁻¹ under field conditions. The results are also in close conformity with the findings of Meseret et al. (2012) who reported that significant variations among the varieties of tomato for the number of branches plant⁻¹.

Number of fruit plant⁻¹ and number of fruit clusters plant⁻¹

The mean values of fruit clusters plant⁻¹ laid between 13.33 (1.12) and 36.53 (1.55) while the number of clusters plant⁻¹ ranged from 4.4 to 8.27. The number of fruits plant⁻¹ were significantly (P<0.001) different among the clusters plant⁻¹, average fruit diameter and average fruit weight) whereas highly significant differences among the tested varieties (P≤0.001) were observed for characters namely; plant height, marketable yield and total yield. The rest showed insignificant differences among the varieties under study.

The maximum number of fruits plant⁻¹ was obtained with 'Melka shola' (36.53(1.55)) followed by 'Bishola' (30.88(1.55)) and the minimum number was in varieties, 'Fetan' (15.06 (1.17)) and 'Metadel' (13.33(1.12)). On the other hand, 'Melkasalsa', 'Miya' and 'Cochoro' also showed the moderate fruit number plant⁻¹. This result agrees with Meseret et al. (2012) who reported that 'Fetan' variety showed the lowest fruit number when compared with other treatments in their experiment. The result showed an increasing tendency in the number of branches plant⁻¹ with an increase in the fruit number. These results are also in close conformity with the findings of Sharma and Rastogi (1993) who reported significant variations among cultivars of tomato for the number of branches and fruits plant⁻¹.

Number of clusters plant⁻¹, number of fruits cluster⁻¹, and fruits plant⁻¹ are the most important yield attributes in tomato (Pandey et al., 2006). Among the varieties tested, the maximum number of clusters plant⁻¹ (8.27) was recorded in Bishola followed by Melkasshola (7.27) and the least number of clusters plant⁻¹ was observed in Fetan (4.40) followed by Eshe (4.80). This study was in agreement with the findings of Kah et al. (2006) and Abrar et al. (2011) who indicated that the average number of clusters plant⁻¹ lay between 2.27 and 5.89.
Table 3. Mean performance of ten tomato varieties evaluated at Chano Mille, Arba Minch during the 2017 cropping season.

Varieties	Plant height (cm)	Branch Number	No of Fruit Clusters plant⁻¹	No of Fruits plant⁻¹
Melkashola	71.07ab	5.67ab	7.27ab	36.5a
Melkasalsa	60.60bc	5.20abc	5.60bcd	28.9bc
Cochore	60.40bc	4.93abc	6.47bc	22.1bcd
Metadel	67.47bc	4.67bc	5.13cd	13.3e
Chali	67.40bc	5.27abc	5.60bcde	19.5ecd
Fetan	56.27c	5.33abc	4.40d	15.1de
Bishola	68.93ab	6.20a	8.27a	35.8b
Miya	67.80bc	4.33c	6.47bc	24.7abd
Eshete	82.40a	5.40abc	4.80cd	16.9cd
ARP-d2	67.93bc	4.40bc	5.00cd	15.9de
LSD	12.42	1.30	1.68	2.1
CV (%)	10.81	14.44	16.61	9.33

Means within the same column with the same letter are not significantly different at P≤0.05.

Fruit diameter and single fruit weight

Equatorial diameters of the fruits and single fruit weight were significantly (P<0.001) different among the varieties (Table 4). The mean values lay between 11.53 cm and 20.80 cm and among the treated varieties, ‘Eshete’ (20.80) showed the highest fruit diameter. Except for ‘Bishola’, ‘Melkashola’ & ‘Melkasalsa’, all rest varieties had relatively maximum fruit diameter. Data in (Table 3) revealed that the variety ‘Eshete’ with 142.80 g single fruit weight plant⁻¹ was significantly high yielder when compared to ‘Metadel’, ‘Cochore’ and ‘Fetan’, which gave a remarkably good fruit weight plant⁻¹ of 126.73 g, 107.40 g and 116.67 g respectively. The minimum single fruit weight plant⁻¹ (45.80 g) was recorded for ‘Melkasalsa’ followed by ‘Melkashola’ (58.00 g) and Bishola (59.63 g). Jiregna (2013) also reported differences in fruit weight among varieties of tomato, which confirms our findings.

** Marketable Yield, Unmarketable Yield and Total Yield**

In this field study, the marketable and total fresh yield results indicated significant variations among the varieties (at P<0.01 and P<0.05), respectively (Table 4). The highest marketable yield (9,438 kg ha⁻¹) was recorded in Melkashola followed by Bishola (8,756 kg ha⁻¹) and Melkasalsa (8,367 kg ha⁻¹), respectively. The rest varieties had higher yield ha⁻¹ except for ‘Fetan’, which gave the lowest marketable yield (3,284 kg ha⁻¹). Similar finding was reported by Shibiru (2016) which confirms our result by recording the highest marketable yield for a variety ‘Melkashola’.

Table 4. Mean performance of yield and yield contributing traits of ten tomato varieties tested at Chano Mille, Arba Minch (2017).

Varieties	Fruit diameter (cm)	Single fruit weight (g)	Marketable Yield (kg ha⁻¹)	Unmarketable Yield (kg ha⁻¹)	Total Yield (kg ha⁻¹)
Melkashola	13.33d	58.00d	9438a	1777.8(41.57)ab	11,216a
Melkasalsa	12.07d	45.80e	8367ab	1800.9(42.34)ab	10,168a
Cochore	16.60c	107.40abc	6116bc	1820.0(41.43)ab	7936abc
Metadel	19.73ab	126.73ab	6760abc	2402.2(48.15)a	9162ab
Chali	16.13c	84.47cde	6518abc	2162.2(46.23)a	8680abc
Fetan	18.00bc	116.67abc	3284d	1706.7(41.12)ab	4991c
Bishola	11.53d	59.63e	8756ab	2397.8(48.26)a	11,531a
Miya	16.67c	85.73cd	7658ab	1475.6(37.94)ab	9133ab
Eshete	20.80a	142.80a	6171bcd	1806.7(42.24)a	7978abc
ARP-d2	17.13bc	93.87bcd	4440cd	1217.8(34.54)b	5658abc
LSD	2.66f	39.522	3110.9(42.34)ab	3757.1(41.57)ab	7357100
CV (%)	9.57	25.01	26.86	17.27	25.45

Within the same column with the same letter are not significantly different at P<0.05 and figures in the parentheses are transformed values.

Conclusions and Recommendations

Evaluation of improved tomato technologies for adaptability, fruit yield, and yield related parameters is very important in Arba Minch, South Ethiopia. Arba Minch area has the potential for the production of tomatoes since off-season production through irrigation is easily applicable in the area, especially Mirab Abaya and Arba Minch Zuria districts. Therefore, an
experiment was designed with the objective to evaluate tomato varieties for yield and other quantitative parameters. This investigation allowed us to infer that ‘Melkashola’ and ‘Bishola’ were the best-performing varieties under the irrigated season in Arba Minch and hence can be suggested for commercial cultivation. ‘Melkasalsa’ and ‘Miya’ with moderately higher yield might also be regarded as other potential varieties. Therefore, these three varieties could be recommended for popularization and adoption in the study area(s) with similar agro-ecology.

Acknowledgement

The authors would like to thank South Agricultural Research Institute (SARI) and Arba Minch Agricultural Research Center (AMARC) for providing research facilities. The crop technical assistants and other staff members of AMARC are highly acknowledged for their support in trial management and data collection.

References

Abrar, H. S., Shams, U. I., Noor, U. I. and Saifdar, H. 2011. Evaluation of two nutrient solutions for growing tomatoes in non-circulating hydroponics systems. J. Agric. 27 (4): 558-567.

AGRISNET. 2010. Tomato. Department of Agriculture, Sikkim, India. pp. 1-10.

Arba Minch Meteorology Station. 2018. Monthly Rainfall, Minimum and Maximum Temperature Data (unpublished) for Arba Minch Zuria District Recorded at Arba Minch Meteorology Station during 2017 Cropping Season. Arba Minch, Ethiopia.

AVRDC. 2004. Medium-term plan: 2004-2006. High lights. AVRDC-The World Vegetable Center, Shanhua, Taiwan. 599p.

Balcha, K., Belew, D. and Nego, J. 2015. Evaluation of tomato (Lycopersicon esculentum Mill.) varieties for seed yield and yield components under Jimma condition, South Western Ethiopia. J. Agron. 14(4): 292-297.

https://doi.org/10.3923/ja.2015.292.297

CSA. 2017. Report of Federal Democratic Republic of Ethiopia, Statistical Report on Socio-Economic Characteristics of the Population in Agricultural Households, Land Use, Area and Production of Crops. Volume I, Statistical Bulletin 586. Central Statistical Agency, Addis Ababa, Ethiopia. p.15.

FAOSTAT. 2017. Food and Agriculture Organization of the United Nations. Rome, Italy. 255p.

http://www.fao.org/faostat/en/#data/QC/

Jiregna, T.D. 2013. Evaluation of agronomic performance and lycopene variation in tomato (Lycopersicon esculentum Mill.) genotypes in Mizan, South western Ethiopia. World Appl. Sci. J. 27 (11): 1450-1454.

Khah, E.M., Kakava, E., Mavromatis, A., Chachalis, D. and Goulas, C. 2006. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open field. J. Appl. Hort. 8(1): 3-7.

https://doi.org/10.37855/jah.2006.v08i01.01

Lemma, D. 2002. Research experience and production prospects Ethiopian Agricultural Research Organization (EARO), Addis Ababa, Ethiopia. pp. 20-28.

Meseret, D., Ali, M. and Kassahun, B. 2012. Evaluation of tomato (Lycopersicon esculentum Mill.) genotypes for yield and yield components. African J. Plant Sci. Biotech. 4(1): 5-49.

MoA. 2013. Crop Variety Registry, Animal and Plant Health Regulatory Directorate. Issue No 3-17. Ministry of Agriculture, Addis Ababa, Ethiopia. p.65

Pandey, Y. R., Pun, A. B. and Upadhyay, K. P. 2006. Participatory varietal evaluation of rainy season tomato under plastic house condition. Nepal Agric. Res. J. 7: 11-15. http://doi.org/10.3126/narj.v7i0.1860

Sharma, S. K. and Rastogi, K.B. 1993. Evaluation of some tomato cultivars for seed production under mid hill conditions of Himachal Pradesh. Anna. Agric. Res. India. 14(4): 494-496.

Shibiru, T. 2016. Evaluation of improved tomato varieties (Lycopersicon esculentum Mill.) performance against major insect pests under open field and glasshouse conditions Int. J. Res. Stud. Agril. Sci. 2: 1-7. http://doi.org/10.20431/2454-6224.0203001

Tujuba, M. and Ayana, N.G. 2020. Evaluation of released tomato (Lycopersicon Esculentum Mill.) varieties for fruit yield quality parameters in Western Ethiopia. Agril. Biol. Sci. J. 6(2): 100-113.