2-Methoxystypandrone inhibits signal transducer and activator of transcription 3 and nuclear factor-κB signaling by inhibiting Janus kinase 2 and IκB kinase

Shan Kuang,1,3 Chunting Qi,1,3 Jiawei Liu,2,3 Xiaoxiao Sun,1 Qing Zhang,1 Zhenhua Sima,2 Jingli Liu,1 Wuguo Li2 and Qiang Yu1

1Division of Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai; 2Ministry of Education Key Laboratory of Chinese Medicinal Plants Resource from Lingnan, Research Center of Medicinal Plants Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China

Key words
2-Methoxystypandrone, anticancer drug, Janus kinase 2
Signaling transducer and activator of transcription 3 pathway, natural compound, tumor necrosis factor-α/nuclear factor-κB pathway

Correspondence
Qiang Yu, Shanghai Institute of Materia Medica, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
Tel: 86-21-50801790; Fax: 86-21-5080-0306; E-mail: qyu@sibs.ac.cn

These authors contributed equally to the paper.

Funding information
China Ministry of Science and Technology Key New Drug Creation and Manufacturing Program (2013ZX09102015).
China Ministry of Science and Technology Research (2013ZX10002010-009). China National Natural Science Foundation (91373432, 31129004, 91129701 and 91213304). National Science and Technology 973 (2012CB910704 and 2013CB910900).

Received September 13, 2013; Revised January 16, 2014; Accepted January 18, 2014
Cancer Sci 105 (2014) 473–480
doi: 10.1111/cas.12359

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that mediates cytokines and growth factors-directed transcription. An activated STAT3 by itself can cause cellular transformation and directly contributes to oncogenesis. Constitutive activation of STAT3 signaling is associated with enhanced cell proliferation in many different tumors, including breast, prostate, head and neck, skin and colon cancer, and melanoma. Small molecule inhibitors of Janus kinase 2 (JAK2)/STAT3 pathway are reported to be effective antitumor agents in both cancer cell lines and animal models. Therefore, targeting the JAK2/STAT3 pathway is a promising strategy for treating human tumors.

Nuclear factor-κB (NF-κB) and its pathway regulators modulate the expression of genes involved in inflammation, cell survival and proliferation. Constitutive activation of NF-κB pathway is a common feature of a variety of hematological and solid tumors, demonstrating that NF-κB plays an important role in carcinogenesis. Given the importance of the NF-κB pathway in tumor development, many inhibitors of this pathway are under investigation for cancer therapy.

The root of Polygonum cuspidatum Sieb. et Zucc. (Polygonaceae) is a well-known traditional Chinese medicinal herb that is used to treat various inflammatory diseases and cancer. Although several active components such as emodin and resveratrol extracted from the root of P. cuspidatum have been reported to exhibit anticancer activities, the molecular targets and modes of action of P. cuspidatum remain unclear.

In our previous study we reported that 2-methoxystypandrone (2-MS), isolated from the root of P. cuspidatum, is a potent inhibitor of interleukin-6 (IL-6)/STAT3 signaling. In the present study we investigate the molecular mechanisms of 2-MS and find that 2-MS inhibits both the IL-6-induced and the constitutively-activated STAT3 in human cancer cell lines through inhibition of the JAK2 kinase. In addition, 2-MS inhibits tumor necrosis factor-α (TNF-α)/NF-κB signaling.
pathway through inhibition of IxK kinase β (IKKβ). Furthermore, 2-MS inhibits growth and induces death of cancer cells. Our data strongly support the notion that 2-MS is a novel dual inhibitor of JAK2 and IKKβ kinases and is a promising anticancer drug candidate.

Materials and Methods

Reagents and antibodies. 2-Methoxystypandrone was isolated from the root of *P. cuspidatum* Sieb, as reported previously;[21] DTT and MTT were purchased from Genebase (Shanghai, China); GSH was obtained from Shanghai Sibas Bioscience (Shanghai, China); IL-6 and IFN-α were from Peprotech (Saint Paul, MN, USA); TNF-α was from R&D Systems (Minneapolis, MN, USA); IFN-γ was obtained from Shanghai Clone (Shanghai, China); anti-phosphorylated STAT3 (Tyr705), anti-phophorylated JAK2 (Tyr1007/1008), anti-JAK2, anti-phophorylated JAK1 (Tyr1022/1023), anti-JAK1, anti-phophorylated TYK2 (Tyr1054/1055), anti-TYK2, anti-phosphorylated IxB-α (Ser32/36), anti-IxB-β, anti-phosphorylated IKK-α (Ser176/180) for IKKα and Ser177/181 for IKKβ and anti-IKK-α antibodies were obtained from Cell Signaling Technology (Boston, MA, USA); anti-STAT3, anti-GP130 and anti-α-Fibronectin antibodies were from Santa Cruz Biotechnology (Dallas, TX, USA); anti-β-Actin antibody was from Abmart (Shanghai, China); anti-GAPDH antibody was obtained from Kang Chen Bioscience (Shanghai, China); secondary HRP-conjugated antibodies were from Multi Sciences Biotech (Hangzhou, China); and the Apoptosis Detection Kit was from Shanghai MabYueEr Bioscience (Shanghai, China).

Cell lines and culture. HEK293/NF-xB cells, gifts from Professor Xin-Yuan Fu (National University of Singapore), were stably transfected with an NF-xB-responsive firefly luciferase reporter plasmid, and all other cell lines were obtained from the American Type Culture Collection. HEK293/NF-xB, HeLa, MCF-7, U87MG and SK-OV-3 cells were cultured in DMEM (Gibco, Grand Island, NY, USA) supplemented with 10% (v/v) FBS (Gibco), 100 μg/mL ampicillin and 100 μg/mL streptomycin. Jurkat, U937, THP-1, 786-0, Bel-7404, PC-3, BGC, A549 and H460 cells were grown in RPMI 1640 medium (Gibco) supplemented with 10% FBS, 100 μg/mL ampicillin and 100 μg/mL streptomycin. DU-145 cells were cultured in RPMI 1640 medium supplemented with 10% FBS, 2 mM L-glutamine, 100 μg/mL ampicillin and 100 μg/mL streptomycin. HepG2 cells were cultured in Minimum Essential Medium α medium (Gibco) supplemented with 10% (v/v) FBS, 100 μg/mL ampicillin and 100 μg/mL streptomycin. All cell lines were cultured at 37°C in a humidified atmosphere of 95% air and 5% CO2.

Luciferase assay. HEK293/NF-xB cells were seeded into 96-well cell culture plates and allowed to grow for 48 h and cells were then treated with 2-MS for 2 h followed by stimulation with 2 ng/mL TNF-α for 5 h. Luciferase activity was determined using the Promega luciferase kits according to the manufacturer's instruction (Promega, Madison, WI, USA). All luciferase assay experiments were repeated at least twice.

MTT assay. Cell growth rate was measured by MTT assay. Briefly, approximately 4500–12 000 cells were seeded into 96-well plates. After 24 h, cells were treated with vehicle control (DMSO) or compounds for 72 h. After treatment, 30 μL MTT (5 mg/mL) were added to the culture medium. After incubating for 3 h at 37°C, the cells were solubilized in 100 μL “Triplex Solution” (10% SDS-5% isobutanol-12 mM HCl) for 16 h, and then the absorbance of each well was measured at 595 nm with a spectrophotometer (TECAN infinite F200; TECAN, Männedorf, Switzerland).

Western blot analysis. Cells were lysed with ice-cold 1 x Lysis buffer (Sigma-Aldrich, Saint Louis, MO, USA) and then samples were boiled for 10 min. Proteins were separated by 8% sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to a nitrocellulose membrane (from Millipore, Darmstadt, Hesse, Germany). Membranes were blocked with 5% nonfat dry milk in TBST (1% Tween 20) for 1 h at room temperature. Then they were subjected to primary antibodies in 5% BSA in TBST at 4°C overnight. Membranes were then washed with TBST and incubated with peroxidase-conjugated secondary antibodies at room temperature for 1 h. After washing with TBST, immune complexes on the membranes were detected by enhanced chemiluminescence (Millipore).

Janus kinase 2 and IxK kinase β in vitro kinase assay. The JAK2 (IKKβ) in vitro kinase assay was performed using JAK2 (IKKβ) immunoprecipitates, an HTScan JAK2 (IKKβ) Kinase Assay Kit (Cell Signaling Technology) and Streptavidin coated 96-well plates (Sigma). Briefly, HeLa cell (in IKKβ assay, HEK293 cells were transfected with plasmids encoding IKKβ-FLAG 24 h before lysis) growth in 10-cm dish with 90% confluence was stimulated with 30 ng/mL IL-6 for 5 h. IKKβ assay, no stimulation, and then 1 mL lysis buffer (50 mM HEPES [pH 7.4], 150 mM NaCl, 0.15% Triton X-100, 0.5 mM DTT [no DTT in IKKβ assay], 2 mM sodium orthovanadate [Na 3VO4], 2 mM sodium fluoride [NaF], 1 mM PMSF and protease inhibitor cocktail [Sigma, 1:1000]) on ice for 30 min. Cell lysates were centrifuged and centrifugal to remove the pellet. The lysates were immunoprecipitated with 1:100 (v/v) JAK2 (Santa Cruz Biotechnology) or FLAG antibody (Abmart) at 4°C for 3 h and then 1:10 (v/v) Protein A/G Plus Agarose (Santa Cruz Biotechnology) was added to the lysates at 4°C for about 16 h. The JAK2 or IKKβ immunoprecipitates were then centrifuged and washed twice with lysis buffer and once with kinase reaction buffer (60 mM HEPES [pH 7.5], 5 mM MgCl2, 5 mM MnCl2, 25 μM Na2VO3, 200 μM ATP and 0.5 mM DTT [no DTT in IKKβ assay]). JAK2 or IKKβ immunoprecipitates were incubated with DMSO or 2-MS for 5 min and then subjected to kinase reaction at 25°C for 30 min in a final volume of 50 μL kinase reaction buffer containing 1.5 μM FLT3 (Try589) or IxB-(Ser32) biotinylated peptide substrate. Samples were then processed according to the protocol for the HTScan JAK2 (IKKβ) Kinase Assay Kit (Cell Signaling Technology).

Thin layer chromatography and electrospray ionization mass spectrometry analysis. TLC was carried out on pre-coated silica gel F254 plates (Merck, Darmstadt, Germany); these plates were first run successively in methanol solvent system up to the upper edge in order to eliminate impurities. The plates then were dried, and subsequently reactivated by heating at 125°C for 60 min, 2-MS (0.3 mg) and DTT (0.7 mg) were dissolved in 100 μL of acetone, and applied quantitatively, either as spots, or in bands (1 × 20 cm) as with fine glass capillaries. TLC spots were developed in the CHCl3-MeOH (4:1, v/v) solvent system and scanned under UV-366 nm using the Camag TLC Visualizer (Muttenz, Switzerland). The yellow TLC bands of Michael adducts of DTT to 2-MS were scraped from the plates and eluted in acetonitrile. The resultant solution was filtered through a 45-μm filter for a negative-mode electrospray ionization mass spectrometry (ESI-MS) analysis. ESI-MS was performed on...
Results

2-Methoxystypandrone inhibited both interleukin-6-induced and constitutively-activated signal transducer and activator of transcription 3 in human tumor cells. We screened an extract library of Chinese medicinal herbs for their inhibitory effect on STAT3 signaling using a STAT3 responsive luciferase reporter gene-transfected HepG2 cell line and found 2-MS (Fig. 1), which inhibited STAT3 activity in both a luciferase assay using the HepG2 cells and a western blotting assay using MDA-MB-231 cells.

To confirm the inhibitory effects of 2-MS on the JAK2/STAT3 signaling pathway, we examined its effects on the IL-6-induced phosphorylation/activation of STAT3. 2-MS inhibited both the IL-6-induced and the constitutive phosphorylation/activation of STAT3 in a dose-dependent manner in HeLa cells (Fig. 2a,c). The inhibition was rapid. A 15-min treatment was sufficient to block the activation (Fig. 2b), suggesting direct inhibition of the STAT3 phosphorylation. 2-MS also significantly inhibited the constitutive activation of STAT3 in human tumor cells.

2-Methoxystypandrone inhibited Janus kinase 2 and IκB kinase in vitro kinase activity. The inhibitory effect of 2-MS on STAT3 activation suggested that 2-MS might interfere with the upstream components of the STAT3 signaling pathway. Because JAK2 is the major kinase to activate STAT3 while GP130 is important for tyrosine phosphorylation of JAK2 in the IL-6/STAT3 pathway, we first analyzed the effects of 2-MS on the expression and phosphorylation of JAK2 and the expression of GP130. In HeLa cells, 10 μM 2-MS significantly inhibited phosphorylation of JAK2 (Y1007/1008), while it had no effects on the expressions of JAK2 and GP130 (Fig. 3a). In addition, 10 μM 2-MS significantly inhibited the phosphorylation of JAK2 (Y1007/1008) in HeLa cells without IL-6 stimulation, further suggesting that JAK2 is the direct target of 2-MS (Fig. 3b).

We next analyzed whether 2-MS directly inhibits the JAK2 kinase activity in vitro. We immunoprecipitated the JAK2 kinase from HeLa cells and performed an in vitro kinase assay. We found that 10 μM 2-MS significantly inhibited JAK2 in vitro kinase activity (Fig. 3c), suggesting that 2-MS is a direct JAK2 kinase inhibitor. In order to investigate the specificity of 2-MS, we tested the effects of 2-MS on eight different human tyrosine or serine/threonine kinases. 50 μM 2-MS had almost no effect on them, except for a 25% inhibition on IKKα (Fig. 3d). 2-MS also has no effect on epidermal growth factor signaling pathway in HeLa cells (Fig. S1). We next confirmed the inhibition effects of 2-MS on IKKβ kinase activity in vitro. We immunoprecipitated the IKKβ kinase from HEK293 cells and performed an in vitro kinase assay. As shown in Fig. 3e, 2-MS inhibited IKKβ in vitro kinase activity in a dose-dependent manner. We also examined the effects of 2-MS on JAK1 and TYK2, which are two other kinases of the JAK family. As shown in Fig. S2, 10 μM 2-MS significantly inhibited the IFN-γ-induced phosphorylation of JAK1 (Tyr1022/1023) and the IFN-α-induced phosphorylation of TYK2 (Tyr1054/1055). Thus, 2-MS is likely a pan-JAK inhibitor.

2-Methoxystypandrone inhibited tumor necrosis factor-α-induced NF-κB signal transduction, phosphorylation of inhibitor of nuclear factor-κB (IκB-α) and IκB kinase in human tumor cells. Activation of IKK in response to stimuli of various cytokines is a key event in NF-κB signaling, which is important for tumor cell survival and growth. To fully understand the
effects of 2-MS on tumor cells, we next investigated the effects of 2-MS on NF-κB signaling pathway.

We examined the effects of 2-MS on the NF-κB signaling pathway using an NF-κB responsive luciferase reporter gene-transfected HEK293 cell line. We found that 2-MS inhibited TNF-α-induced NF-κB responsive reporter gene activity in a dose-dependent manner, with a half-maximal inhibition dose of 3 μM (Fig. 4a). Parallel to inhibition of NF-κB signaling, 2-MS only slightly decreased the cell number of HEK293 cells (Fig. 4b), suggesting that the inhibition effect of 2-MS on NF-κB signaling was not caused by reduced cell number.

Activation of NF-κB signaling requires phosphorylation of IκB-α. Hence, we examined the effects of 2-MS on the phosphorylation of IκB-α. As shown in Figure 4(c), 2-MS significantly inhibited the TNF-α-induced phosphorylation of IκB-α.
in HeLa, DU-145 and A549 cells at a concentration of 10 μM.

After phosphorylation, IκB-α undergoes a proteasome-mediated degradation. Therefore, the changes of IκB-α are the opposite of that of phosphorylated IκB-α (Fig. 4c). Because IKK is the major upstream kinase of IκB-α and its activity is strongly suppressed by DTT or GSH, we used two thiol-containing compounds, DTT or GSH, to compete with JAK2 or IKK αβ-thiol groups. The thiol groups of cysteines in JAK2 and IKK αβ are reported to be important for their kinase activities and several compounds with thiol-reactive groups have been found to covalently modify JAK2 and IKK αβ (23-26). Therefore, we investigated whether the inhibitory effects of 2-MS on JAK2 or IKK αβ kinase activity were through interaction with their cysteine thiols. We used two thiol-containing compounds, DTT or GSH, to compete with JAK2 or IKK αβ on incubating with 2-MS to test whether the inhibitory effects of 2-MS on the STAT3 or NF-κB pathway could be alleviated by the two thiol-containing compounds. As shown in Figure 5(a) and (c), after incubation with DTT or GSH, the inhibitory effects of 2-MS on STAT3 and NF-κB pathways were abolished. Therefore, 2-MS may inhibit the STAT3 and NF-κB pathways through interacting with the thiols of JAK2 and IKK αβ via its αβ-thiol unsaturated carboxyl groups. To further demonstrate the 2-MS-thiol interaction, 2-MS was mixed with DTT to induce a chemical reaction of Michael addition. The proposed reaction site of 2-MS is illustrated in Figure 6(a). The Michael adducts of DTT to 2-MS were then examined using TLC and ESI-MS analysis, which detected one product at m/z 412.97 [2-MS + DTT-H]+, indicating the addition of DTT to 2-MS (Fig. 6b,c). The results strongly support the possibility that 2-MS reacts with the cysteine thiols of JAK2 and IKK αβ.

We also found that the inhibition effects of 2-MS on the STAT3 and NF-κB pathways lasted as long as 4 h after a pulse treatment with the compound (Fig. 5b,d), indicating that 2-MS irreversibly inhibits JAK2 and IKK αβ, probably through covalent modification of JAK2 and IKK αβ.

Taken together, these data suggest that 2-MS may covalently modify JAK2 and IKK αβ and inhibit their kinase activities.

Effects of 2-methoxystypandrone on signal transducer and activator of transcription 3 and nuclear factor-κB signaling can be reversed by DTT or GSH and were irreversible. As shown in Fig. 1, 2-MS contains three αβ-thiol unsaturated carboxyl groups which are reactive with thiols. The results of cytotoxicity of JAK2 and IKK αβ are reported to be important for their kinase activities and several compounds with thiol-reactive groups have been found to covalently modify JAK2 and IKK αβ (23-26). Therefore, we investigated whether the inhibitory effects of 2-MS on JAK2 or IKK αβ kinase activity were through interaction with their cysteine thiols. We used two thiol-containing compounds, DTT or GSH, to compete with JAK2 or IKK αβ on incubating with 2-MS to test whether the inhibitory effects of 2-MS on the STAT3 or NF-κB pathway could be alleviated by the two thiol-containing compounds. As shown in Figure 5(a) and (c), after incubation with DTT or GSH, the inhibitory effects of 2-MS on STAT3 and NF-κB pathways were abolished. Therefore, 2-MS may inhibit the STAT3 and NF-κB pathways through interacting with the thiols of JAK2 and IKK αβ via its αβ-thiol unsaturated carboxyl groups. To further demonstrate the 2-MS-thiol interaction, 2-MS was mixed with DTT to induce a chemical reaction of Michael addition. The Michael adducts of DTT to 2-MS were then examined using TLC and ESI-MS analysis, which detected one product at m/z 412.97 [2-MS + DTT-H]+, indicating the addition of DTT to 2-MS (Fig. 6b,c). The results strongly support the possibility that 2-MS reacts with the cysteine thiols of JAK2 and IKK αβ.

We also found that the inhibition effects of 2-MS on the STAT3 and NF-κB pathways lasted as long as 4 h after a pulse treatment with the compound (Fig. 5b,d), indicating that 2-MS irreversibly inhibits JAK2 and IKK αβ, probably through covalent modification of JAK2 and IKK αβ.

Taken together, these data suggest that 2-MS may covalently modify JAK2 and IKK αβ and inhibit their kinase activities.

2-Methoxystypandrone inhibited growth of human cancer cells. The STAT3 and NF-κB signaling pathways play an important role in tumor cell survival and growth. Therefore, we analyzed the effects of 2-MS on the growth and survival of a panel of human tumor cell lines. We first examined the 2-MS’s effects on HeLa cells using a real-time cell analysis system. As shown in Figure 7(a), 2-MS exhibited inhibitory effects on HeLa cells and 10 μM 2-MS totally inhibited the cell growth. 2-MS inhibited the growth of all human tumor cell lines examined with an IC50 between 2.5 to 12.5 μM (Figure 7b). Many STAT3 and NF-κB pathway inhibitors inhibit cell growth by inducing apoptosis (9-14,24,25). Therefore, we tested the ability of 2-MS to induce apoptosis. As shown in Figure 7(c), 2-MS mostly induced necrosis of the tumor cells, as indicated by the single PI staining. We also examined the effects of 2-MS on the PARP cleavage in the tumor cells. However, we did not detect the PARP cleavage caused by 2-MS (data not shown).

As a kinase inhibitor of JAK2 and IKK αβ, 2-MS effectively inhibits the STAT3 and NF-κB signaling pathways and growth of cancer cells. We examined whether the growth inhibition effects of 2-MS on cancer cells are related to the activation status of STAT3 or NF-κB pathway. As shown in Figure 7(d) and (e), prostate cancer cell lines DU-145, PC-3 (which have constitutively activated NF-κB pathway) and non-small-cell lung cancer (NSCLC) cell line A549 (which has constitutively activated STAT3 pathway) cells are significantly more sensitive than H460 cells (NSCLC cell line which lacked constitutively activated NF-κB pathway or STAT3 pathway) to growth inhibition of 2-MS. Taken together, these data demonstrate the potential of 2-MS to inhibit growth and induce cell death of human cancer cells, particularly those with constitutively activated STAT3 and/or NF-κB pathway.

Discussion

The root of *P. cuspidatum* is used as a traditional Chinese medicine to treat cancer (18). Although many active components from the root of *P. cuspidatum* have been reported to be kinase inhibitors (27) only a few have been found to inhibit JAK2 or IKK αβ, respectively (20-28). Here we report the identification of a new dual JAK2 and IKK αβ kinase inhibitor, 2-MS, from the root of *P. cuspidatum*. Because both STAT3 and NF-κB pathways play...
important roles in oncogenesis and tumor growth, elucidating the molecular mechanisms of 2-MS in regulating the STAT3 and NF-κB pathways will help us to understand and better use 2-MS in cancer treatment.

2-Methoxystypandrone is a potent inhibitor of the STAT3 and NF-κB pathways. It inhibited the IL-6-induced and the constitutive activation of STAT3 as well as the TNF-α-induced activation of NF-κB. 2-MS inhibited tumor cell growth, especially those with activated STAT3 and/or NF-κB pathway. The direct targets of 2-MS are JAK2 and IKKβ kinases. 2-MS specifically inhibited JAK2 and IKKβ kinase activities while had little effect on the activities of seven other kinases analyzed.

The exact mechanisms of 2-MS inhibiting the JAK2 and IKKβ kinases are not clear. However, we have several lines of evidence suggesting that 2-MS may inhibit the JAK2 and IKKβ kinase activities by covalently interacting with the JAK2 and IKKβ proteins. First, 2-MS has three α,β-unsaturated carbonyl groups which are thiol-reactive and formed covalent linkages with DTT. Second, the inhibitory effects of 2-MS on the STAT3 and NF-κB pathways were abolished after incubating with DTT or GSH, suggesting that the α,β-unsaturated carbonyl groups in 2-MS are active groups that may form adducts with the thiols of the cysteins in the JAK2 and IKKβ proteins. Third, the inhibition effects of 2-MS on STAT3 and NF-κB pathways lasted for as long as 4 h after a pulse treatment with the compound, suggesting that the inhibition effects of 2-MS were irreversible. Taken together, these data suggest that 2-MS may covalently modify JAK2 and IKKβ and inhibit their kinase activities.

Constitutively-activated STAT3 and/or NF-κB pathway contribute to malignant progression by preventing apoptosis. Many small molecule inhibitors of the STAT3 or NF-κB pathway inhibit tumor cell growth and induce apoptosis. However, our data demonstrated that 2-MS induced necrosis instead of apoptosis of HeLa cells,
2-MS also did not cause PARP cleavage in HeLa and some other cancer cells (data not shown). It is possible that 2-MS has other targets in addition to JAK2 and IKKβ kinases and the cell death induced by 2-MS is probably a result of the combination effects of these targets. In summary, our data reveals that 2-MS, a natural compound isolated from *P. cupidatum*, potently inhibits the STAT3 and NF-κB pathways through specifically inhibiting the JAK2 and IKKβ kinase activities. Furthermore, 2-MS demonstrates strong anticancer activity on a panel of cancer cell lines. These data strongly indicate that 2-MS is a new anticancer drug candidate.

Acknowledgments

This work was supported by China Ministry of Science and Technology Key New Drug Creation and Manufacturing Program Grant 2013ZX09102015, China Ministry of Science and Technology Research Grant 2013ZX10002010-009, China National Natural Science Foundation Grants 81373432, 31129004, 91129701 and 91213304, and National Science and Technology 973 Grants 2012CB910704 and 2013CB910900.

Disclosure Statement

The authors have no conflict of interest.

References

1. Bromberg JF, Wrzeszczynska MH, Devgan G et al. Stat3 as an Oncogene. *Cell* 1999; 98: 295–303.
2. Bowman T, Garcia R, Turkson J et al. STATs in oncogenesis. *Oncogene* 2000; 19: 2474–88.
3. Garcia R, Bowman TL, Guillian N, et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. *Oncogene* 2001; 20: 2499–513.
4. Mora LB, Buettner R, Seigne J et al. Constitutive activation of STAT3 in human prostate tumors and cell lines direct inhibition of STAT3 signaling induces apoptosis of prostate cancer cells. *Cancer Res* 2002; 62: 6659–66.
5. Kijima T, Niwa H, Steinman RA et al. STAT3 activation abrogates growth factor dependence and contributes to head and neck squamous cell carcinoma tumor growth in vivo. *Cell Growth Differ* 2002; 13: 355.
6. Chan KS, Carbaljol S, Kiguchi K et al. Epidermal growth factor receptor-mediated activation of Stat3 during multistage skin carcinogenesis. *Cancer Res* 2004; 64: 2382–9.
7. Corvinus FM, Orth C, Morrill R et al. Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. *Neoplasia* 2005; 7: 545.
8. Niu G, Bowman T, Huang M et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. *Oncogene* 2002; 21: 7001.
9. Blaskovich MA, Sun J, Cantor A et al. Discovery of JSH-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription...
3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 2003; 63: 1270–9.
10 Iwamatsu A, Szymanski S, Iwado E et al. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Oncogene 2007; 26: 2435–44.
11 Burger R, Le Gouill S, Tai Y-T et al. Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo. Mol Cancer Ther 2009; 8: 26–35.
12 Lin L, Hutzen B, Zuo M et al. Novel STAT3 phosphorylation inhibitors exhibit potent growth-suppressive activity in pancreatic and breast cancer cells. Cancer Res 2010; 70: 2445–54.
13 Schust J, Sperl B, Hollis A et al. Static: a small-molecule inhibitor of STAT3 activation and dimerization. Chem Biol 2006; 13: 1235–42.
14 Hedvat M, Huszar D, Herrmann A et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 2009; 16: 487–97.
15 Perkins ND. Integrating cell-signaling pathways with NF-κB and IKK function. Nat Rev Mol Cell Biol 2007; 8: 49–62.
16 Basseres D, Baldwin A. Nuclear factor-κB and inhibitor of κB kinase pathways in oncogenic initiation and progression. Oncogene 2006; 25: 6817–30.
17 Karin M, Yamamoto Y, Wang QM. The IKK NF-κB system: a treasure trove for drug development. Nat Rev Drug Discov 2004; 3: 17–26.
18 Lin Y-W, Yang F-J, Chen C-L et al. Free radical scavenging activity and antiproliferative potential of Polygonum cuspidatum root extracts. J Nat Med 2010; 64: 146–52.
19 Sinivas G, Babykutty S, Sathiadevan PP et al. Molecular mechanism of emodin action: transition from laxative ingredient to an antitumor agent. Med Res Rev 2007; 27: 591–608.
20 Savouret J, Quene M. Resveratrol and cancer: a review. Biomed Pharmacother 2002; 56: 84–7.
21 Liu J, Zhang Q, Chen K et al. Small-molecule STAT3 signaling pathway modulators from Polygonum cuspidatum. Planta Med 2012; 78: 1568–70.
22 Narazaki M, Witthuhn BA, Yoshida K et al. Activation of JAK2 kinase mediated by the interleukin 6 signal transducer gp130. Proc Nat Acad Sci USA 1994; 91: 2285–9.
23 Duhe RJ, Evans GA, Erwin RA et al. Nitric oxide and thiol redox regulation of Janus kinase activity. Proc Nat Acad Sci USA 1998; 95: 126–31.
24 Ahmad R, Raina D, Meyer C et al. Triterpenoid CDDO-Me blocks the NF-κB pathway by direct inhibition of IKKβ on Cys-179. J Biol Chem 2006; 281: 35764–9.
25 Pandey MK, Sung B, Kunnamakkara AB et al. Berberine modifies cytokine 179 of IκBα kinase, suppresses nuclear factor-κB-regulated antiapoptotic gene products, and potentiates apoptosis. Cancer Res 2008; 68: 5370–9.
26 Pandey MK, Sandur SK, Sung B, et al. A tetrahydroxychalcone, inhibits nuclear factor (NF)-κB and NF-κB-regulated gene expression through direct inhibition of IκBα kinase β on cytokine 179 residue. J Biol Chem 2007; 282: 17340–50.
27 Jayatilake GS, Jayasuriya H, Lee E-S et al. Kinase inhibitors from Polygonum cuspidatum. J Nat Prod 1993; 56: 1805–10.
28 Muto A, Hori M, Sasaki Y et al. Emodin has a cytotoxic activity against human multiple myeloma as a Janus–activated kinase 2 inhibitor. Mol Cancer Ther 2007; 6: 987–94.
29 Escajega R, Fuentes-Alexandro S, Garcia-Carrasco M et al. The transcription factor nuclear factor-kappa B and cancer. Clin Oncol 2007; 19: 154–61.
30 Chiou W, Liao J, Huang C et al. The JAK2 inhibitor AZD1480 represses RANKL–Mediated osteoclastogenesis by down-regulating formation of TRAF6–TAK1 signaling complexes. Br J Pharmacol 2010; 161: 321–35.
31 Singh SB, Graham PL, Reamer RA et al. Discovery, total synthesis, HRV 3C-protease inhibitory activity, and structure–activity relationships of 2-methoxystypandrone and its analogues. Bioorg Med Chem Lett 2001; 11: 3143–6.
32 Li YB, Lin ZQ, Zhang ZJ et al. Protective, antioxidative and antiapoptotic effects of 2-methoxy-β-acetyl-7- methyljuglone. Planta Med 2011; 77: 354–61.