FATORES ASSOCIADOS À PRESENÇA ISOLADA E SIMULTÂNEA DE EXCESSO DE PESO E OBESIDADE ABDOMINAL EM ADOLESCENTES

Associated factors with the isolated and simultaneous presence of overweight and abdominal obesity in adolescents

Tiago Rodrigues de Lima\(^a\)*, Mikael Seabra Moraes\(^b\), Joaquim Huaina Cintra Andrade\(^a\), Joni Márcio de Farias\(^b\), Diego Augusto Santos Silva\(^b\)

RESUMO

Objetivo: Analisar os fatores sociodemográficos e do estilo de vida associados ao excesso de peso (EP), à obesidade abdominal (OA) e à presença simultânea de EP e OA em adolescentes do Sul do Brasil.

Métodos: Estudo transversal de base escolar realizado com 583 adolescentes (11 a 17 anos) da cidade de Criciúma, Santa Catarina. O EP foi avaliado pelo índice de massa corpórea (IMC) e a OA, mediante perímetro da cintura (PC). As variáveis independentes analisadas foram sexo, idade, escolaridade materna, dieta balanceada, atividade física, uso de cigarro, uso de álcool em excesso e tempo de tela. Utilizou-se regressão logística binária para estimar as razões de chances (RC) e intervalos de confiança de 95% (IC95%).

Resultados: Os meninos tiveram 58% de chances a mais de terem EP (RC 1,58; IC95% 1,08–2,29; p<0,05). Menor faixa etária (11 a 14 anos) foi diretamente associada a maiores chances de EP (RC 6,07; IC95% 4,05–9,11; p<0,05). Adolescentes cujas mães tinham maior escolaridade apresentaram 75% de chances a mais de terem OA (RC 1,75; IC95% 1,01–3,00; p<0,05). Maiores chances para a simultaneidade EP e OA (RC 1,84; IC95% 1,01–3,34; p<0,05) foram identificadas nos adolescentes de menor faixa etária (11 a 14 anos).

Conclusões: Meninos e menor faixa etária (11 a 14 anos) estiveram associados a maiores chances para EP. Os adolescentes cujas mães estudaram nove anos ou mais apresentaram maiores chances de terem OA. Menor faixa etária (11 a 14 anos) esteve associada a maiores chances para a presença simultânea de EP e OA.

Palavras-chave: Epidemiologia; Saúde do adolescente; Fatores de risco; Saúde pública; Estudos transversais.

ABSTRACT

Objective: To analyze the sociodemographic and lifestyle factors associated with excessive weight (EW), abdominal obesity (AO) and the simultaneous presence of EW and AO in adolescents from Southern Brazil.

Methods: Cross-sectional study with 583 adolescents (11 to 17 years old) of Criciúma, Santa Catarina, Brazil. EW was assessed by body mass index (BMI) and AO by waist circumference (WC). The independent variables analyzed were gender, age, maternal schooling, balanced diet, physical activity, cigarette use, excessive alcohol use and screen time. Binary logistic regression was used to estimate Odds Ratios (OR) and 95% confidence intervals (95%CI).

Results: Boys had 58% higher likelihood of having EW (OR 1.58; 95%CI 1.08–2.29; p<0.05). Younger age group (11 to 14 years) was directly associated with higher likelihood of EW (OR 6.07; 95%CI 4.05–9.11; p<0.05). Adolescents whose mothers had higher education had 75% more likelihood of having AO (OR 1.75; 95%CI 1.01–3.00; p<0.05). Higher likelihood for EW and AO (OR 1.84; 95%CI 1.01–3.34; p<0.05) was identified in younger adolescents (11 to 14 years).

Conclusions: Boys and younger age (11 to 14 years) were associated with a higher likelihood of EW. Adolescents whose mothers studied nine years or more were more likely to have AO. The younger age group (11 to 14 years) was associated with greater chances for the simultaneous presence of EW and AO.

Keywords: Epidemiology; Adolescent health; Risk factors; Public health; Cross-sectional studies.

\(^a\) Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil.
\(^b\) Universidade do Extremo Sul Catarinense, Criciúma, SC, Brasil.

Autor correspondente. E-mail: tiagopersonaltrainer@gmail.com (T.R. Lima).

Recebido em 23 de outubro de 2018; aprovado em 24 de janeiro de 2019; disponível on-line em 24 de abril de 2020.
INTRODUÇÃO

O sobrepeso e a obesidade em crianças e adolescentes estão entre os maiores problemas de saúde pública global. No Brasil, pesquisa realizada durante os anos de 2013 e 2014 com amostra representativa de escolares verificou que 17,1% dos adolescentes de 12 a 17 anos tinham sobrepeso e 8,4%, obesidade. Em adolescentes, níveis elevados de excesso de peso (EP) estiveram diretamente associados à dislipidemia, à intolerância à glicose e à hipertensão. Da mesma forma, a obesidade abdominal (OA) em adolescentes esteve diretamente associada à síndrome metabólica e à inflamação sistêmica, precursora da aterosclerose. Estudos relacionados à presença isolada do EP ou da OA foram extensamente descritos na literatura.

Contudo, informações relacionando a presença simultânea desses fatores (EP e OA) são menos frequentes. Os fatores de risco à saúde, quando presentes em um mesmo indivíduo de forma simultânea, exercem efeito sinérgico, ou seja, o risco para futuras doenças é aumentado em comparação com o somatório dos efeitos de cada fator de risco de forma isolada.

Aspectos individuais, como fatores sociodemográficos, foram estudados na literatura e, em geral, identificou-se que o sexo masculino, o acréscimo dos anos de vida entre os adolescentes e a maior escolaridade materna associaram-se a maiores chances para a presença isolada de EP e OA. Particularidades relacionadas ao estilo de vida em adolescentes foram diretamente associadas à presença isolada de EP e OA, como maior consumo de alimentos não saudáveis, baixos níveis de atividade física, uso de álcool, tabagismo e tempo de tela excessivo. Contudo, pouco se sabe sobre a associação desses fatores com a simultaneidade de EP e OA em adolescentes, em que tais informações poderiam contribuir para a elaboração de intervenções melhor direcionadas com o objetivo de reduzir agravos em saúde relacionados à obesidade.

Dessa forma, o objetivo do presente estudo foi investigar os fatores sociodemográficos (sexo, faixa etária e escolaridade materna) e do estilo de vida (prática de atividade física, dieta balanceada, uso de cigarro, uso de álcool em excesso e comportamento sedentário baseado em tempo de tela) associados à presença isolada e simultânea do EP e da OA em adolescentes (11 a 17 anos) de uma cidade do Sul do Brasil.

MÉTODO

Estudo epidemiológico de base escolar com delineamento transversal desenvolvido em 2016 na cidade de Criciúma, Santa Catarina, Brasil. O município possui índice de desenvolvimento humano (IDH) de 0,788, considerado alto, e esperança de vida ao nascer de 75,8 anos.

O estudo foi aprovado pelo Comitê de Ética em Pesquisa com Seres Humanos da Universidade do Extremo Sul Catarinense (CEP/Unesc), conforme Parecer nº 1.125.725, em 26 de junho de 2015, e integra a pesquisa “Associação entre o estado de saúde, comportamentos de risco e nível de atividade física de adolescentes de escolas públicas da Cidade de Criciúma – SC”. Os adolescentes que participaram da pesquisa assinaram o termo de consentimento e os pais/responsáveis, o termo de consentimento livre e esclarecido (TCLE), autorizando a participação dos adolescentes na pesquisa. A aplicação dos questionários foi efetuada em sala de aula. A equipe de avaliadores participou de uma capacitação prévia para padronização dos procedimentos de coleta de dados.

A população-alvo deste estudo foi composta de 17.000 adolescentes da rede pública estadual, municipal e do ensino privado, integrantes do 5º ano do ensino fundamental ao 3º ano do ensino médio da cidade de Criciúma, Santa Catarina, Brasil. Para o cálculo do tamanho da amostra do macroprojeto foram considerados como desfechos principais o EP, os baixos níveis de atividade física e os baixos níveis de aptidão aeróbia. Considerando as publicações anteriores na cidade investigada, estimou-se prevalência para esses desfechos de 30% (EP) ou de 70% (baixos níveis de atividade física e baixos níveis de aptidão aeróbica). O nível de confiança adotado foi de 95%, o erro estimado em cinco pontos percentuais, efeito de delineamento de 1,5 e acréscimo de 20% para eventuais perdas e recusas.

Para seleção dos escolares, recorreu-se ao procedimento de amostragem por conglomerados em dois estágios: a escola (conforme rede de ensino — municipal, estadual e privada) foi a unidade amostral do primeiro estágio, e as turmas, do segundo estágio. Todas as escolas com ensino fundamental (a partir do 5º ano) e ensino médio foram consideradas elegíveis para inclusão no estudo. No primeiro estágio, adotou-se como critério de estratificação a rede de ensino, conforme a série escolar. Dessa forma, foram sorteadas proporcionalmente mais escolas na rede de ensino que possuam maior quantidade de séries. No segundo estágio, considerou-se a densidade de turmas nas escolas sorteadas como critério para sorteio daquelas em que a pesquisa seria aplicada. Todos os estudantes das turmas sorteadas foram convidados a participar do estudo.

Na pesquisa, foram incluídos adolescentes entre 11 e 17 anos de idade. Previamente à coleta de dados, considerou-se como critérios de exclusão:

- Problemas de saúde que impediam a realização de testes físicos, como estudantes com alguma necessidade especial (cegueira e deficiência física, por exemplo). Nas escolas sorteadas, não foram constatados casos desse tipo (ou, ao menos, não foram relatados pelos diretores de ensino e/ou adolescentes).
• Grávidas ou adolescentes que tiveram filhos nos seis meses anteriores à coleta de dados.

Os adolescentes que se recusaram a participar da pesquisa e os que não apresentaram o TCLE assinado pelos pais/responsáveis não foram incluídos no estudo (Figura 1).

O índice de massa corporal (IMC) e o perímetro da cintura (PC) foram as medidas utilizadas para a classificação do EP e da OA, respectivamente. A estatura foi coletada por meio de estadiômetro com tripé da marca Sanny® (São Paulo, Brasil), e a massa corporal, com balança digital da marca G-tech® (Zhongshan, China). Para a classificação dos resultados em relação ao status

Figura 1 Fluxograma do processo de amostragem do presente estudo.
de peso foram utilizados os pontos de corte em escore Z propostos pela Organização Mundial de Saúde (OMS), em que a definição de sobrepeso é de >+1 desvio padrão e a de obesidade, >+2 desvios padrões. Na presente pesquisa, os estudantes classificados acima de >+1 desvio padrão foram considerados com “excesso de peso” (EP), e aqueles abaixo dessa classificação, com “peso normal”.

O PC foi medido no plano horizontal, no ponto médio entre a margem inferior da última costela e a borda superior da crista ilíaca, com fita antropométrica da marca Sanny (São Paulo, Brasil). Para crianças e adolescentes, usaram-se os pontos de corte propostos anteriormente, que definiram como OA os valores de percentil ≥90, de acordo com o sexo e a idade.

Além dos indicadores supracitados, avaliou-se a presença simultânea de EP e OA no mesmo indivíduo. Os adolescentes que tinham, concomitantemente, EP e OA foram classificados com presença simultânea de EP e OA.

O sexo foi categorizado em “masculino” e “feminino”; a idade foi coletada em anos completos e, posteriormente, dichotomizada em “11 a 14” e “15 a 17” anos; e a escolaridade da mãe foi coletada em anos completos e categorizada em “até oito anos de estudo” e “nove anos ou mais de estudo”.

A frequência de dieta balanceada foi avaliada por questionário validado para o Brasil. O item apresentava a sentença “Eu como uma dieta balanceada?” e as seguintes opções de resposta: 1) quase nunca; 2) raramente; 3) algumas vezes; 4) com relativa frequência; e 5) quase sempre. Considerou-se “frequente” quem respondeu às opções 4 ou 5, e as demais opções (1, 2 e 3) foram classificadas como alimentação “pouco frequente”.

A atividade física foi avaliada por questão por meio da versão brasileira do questionário Youth Risk Behavior Surveillance (YRBSS), utilizado nos Estados Unidos e validado para a população brasileira. A pergunta utilizada para avaliar a atividade física global foi: “Durante os últimos sete dias, em quantos dias você foi ativo fisicamente por pelo menos 60 minutos por dia? (considerar atividade física de intensidade moderada e/ou vigorosa)”. Esse questionamento teve as respostas categorizadas em “pouco ativo” (zero a seis dias) e “ativo” (sete dias), uma vez que a literatura reportou que atividade física de intensidade moderada ou vigorosa realizada sete dias por semana por no mínimo 60 minutos, traz benefícios à saúde do adolescente.

O uso de cigarro foi coletado por meio da pergunta “Você fuma cigarros?”. Os indivíduos que afirmaram nunca ter fumado foram considerados saudáveis, e aqueles que afirmaram consumir mais que dez cigarros por dia; entre um e dez cigarros por dia; nenhum cigarro nos últimos seis meses; e nenhum cigarro no ano passado foram considerados grupo de risco.

O questionamento em relação ao uso excessivo de álcool foi avaliado com base em questão do questionário YRBSS. A pergunta em relação ao uso de álcool foi: “Durante os últimos 30 dias, em quantos dias você tomou cinco ou mais doses de bebida alcoólica em uma mesma ocasião?”. Os que responderam que tomaram essa quantidade de álcool pelo menos uma vez no intervalo de tempo em questão foram considerados grupo de risco para consumo de bebida alcoólica.

O comportamento sedentário baseado em tempo de tela foi investigado por meio do questionário validado para adolescentes do Brasil. Para a definição do tempo de tela total — televisão (TV), computador (PC) e videogame (VG) —, usou-se as recomendações da literatura. Essas variáveis foram posteriormente categorizadas em tempo menor que quatro horas/dia de tempo de tela e tempo maior ou igual a quatro horas/dia de tempo de tela.

Foi aplicada estatística descritiva (frequências absoluta e relativa) e inferencial (teste do qui-quadrado com correção de Rao-Scott). Posteriormente, empregou-se modelos de regressão logística binária, com estimativa de razões de chances (RC) e intervalos de confiança de 95% (IC95%). Foram testadas interações entre todas as variáveis independentes entre si, considerando p<0,10.

Na análise ajustada do EP, da OA e da presença simultânea de EP e OA com as demais variáveis independentes, todas as variáveis foram inseridas no mesmo nível, independentemente do valor p na análise bruta, permanecendo no modelo aquelas com p<0,20, segundo método backward. Para avaliação do modelo final entre as variáveis independentes com cada desfecho, estímou-se o pseudo R², a razão de verossimilhança, o Critério de Informação de Akaike (AIC) e o Critério de Informação Bayesiano (BIC), que indicaram que os modelos finais, avaliando a relação entre EP, OA e presença simultânea de EP e OA com as demais variáveis independentes, estavam ajustados entre si.

A significância das variáveis inseridas nos modelos foi verificada por meio do teste de Wald, em que p<0,05 indica associação. O programa Stata® (StataCorp, College Station, Texas, Estados Unidos), versão 13.0, foi utilizado para as análises de dados. O pesquisador responsável pela análise estatística dos dados não participou da coleta das informações.

RESULTADOS

O presente estudo contou com a participação de 583 adolescentes. Todos os investigados do inquérito possuíam informação em relação às variáveis dependentes do estudo (EP — IMC; OA — PC), não tendo sido contabilizadas perdas em relação ao total de avaliados. A prevalência de adolescentes com EP foi de 33,6%; com OA, 11,7%; e a prevalência simultânea do EP e da OA foi de 10,3%. A Tabela 1 apresenta essas prevalências conforme as variáveis independentes.
Tabela 1 Distribuição da amostra de acordo com o excesso de peso, a obesidade abdominal e a presença simultânea de excesso de peso e obesidade abdominal em adolescentes escolares de Criciúma, Santa Catarina, Brasil, 2016.

Variáveis	n (%)	Excesso de peso*a	Obesidade abdominal*b	Excesso de peso e obesidade abdominal*b					
	n	% (IC95%)	p-valor	n	% (IC95%)	p-valor	n	% (IC95%)	p-valor
Total	583 (100,0)	196 (29,9–37,5)		68 (9,3–14,6)	59 (7,9–12,8)				
Sexo									
Masculino	283 (48,5)	109 (48,5–62,5)	0,01 a	27 (28,6–52,0)	<0,12				
Feminino	300 (51,5)	87 (37,5–51,5)		41 (48,0–71,4)		32 (41,1–66,8)			
Faixa etária (anos)									
11 a 14	308 (52,8)	156 (73,3–84,7)	0,01 a	36 (50,8–64,7)	0,98	36 (57,7–72,8)			
15 a 17	275 (47,2)	49 (15,3–26,7)		32 (35,3–59,2)					
Escolaridade materna									
≤8 anos	258 (44,2)	100 (43,9–58,0)	0,02 a	22 (22,1–44,6)	0,03 a	21 (24,2–48,9)			
9 anos ou mais	325 (55,8)	96 (42,0–56,0)		46 (55,4–77,9)		38 (51,1–75,8)			
Dieta balanceada									
Frequentemente	279 (47,8)	94 (40,9–55,1)	0,97	29 (31,2–54,9)	0,35	24 (28,6–53,9)			
Pouco frequentemente	304 (52,2)	102 (45,0–59,0)		39 (45,1–68,8)		35 (46,0–71,3)			
Atividade física									
Ativo	26 (4,5)	12 (3,5–10,5)	0,17	02 (0,7–11,3)	0,51	02 (0,8–13,0)			
Pouco ativo	557 (95,5)	184 (89,4–96,5)		66 (88,6–99,3)		57 (86,7–99,2)			
Uso de cigarro									
Não	533 (91,4)	177 (85,2–93,7)	0,49	65 (86,8–98,6)	0,19	56 (84,9–98,4)			
Sim	50 (8,6)	19 (6,2–14,7)		03 (1,4–13,1)		03 (1,6–15,0)			
Uso de álcool em excesso									
Não	459 (78,7)	162 (76,6–87,4)	0,10	50 (61,5–82,8)	0,28	45 (63,4–85,6)			
Sim	124 (21,3)	34 (12,6–23,3)		18 (17,1–38,5)		14 (14,4–36,6)			
Tempo de tela									
<4 horas/dia	211 (36,2)	70 (29,2–42,7)	0,86	30 (32,6–56,3)	0,15	27 (33,2–58,8)			
≥4 horas/dia	372 (63,8)	126 (57,3–70,7)		38 (43,6–67,4)		32 (41,1–66,8)			

n: tamanho amostral; IC95%: intervalo de confiança de 95%; *p<0,05; bteste do qui-quadrado de Pearson para a diferença entre excesso de peso, obesidade abdominal e excesso de peso e obesidade abdominal com as covariáveis.
Na análise ajustada entre EP e demais variáveis independentes, os adolescentes do sexo masculino e aqueles da faixa etária de 11 a 14 anos tiveram, respectivamente, 1,58 (IC95% 1,08–2,29) e 6,07 (IC95% 4,05–9,11) mais chance de apresentarem EP. O modelo final das associações testadas foi formado pelas variáveis sexo e faixa etária, que apresentaram capacidade de explicação de 12,8% (pseudo $R^2=0,1278$) na variação do EP (Tabela 2).

Os adolescentes que tinham mães com maior escolaridade (nove anos ou mais) apresentaram 75% de chances a mais (IC95% 1,01–3,00) de terem OA. O modelo final para a variável dependente OA foi formado pelas variáveis sexo, escolaridade materna, uso de álcool, uso de cigarro e comportamento sedentário baseado em tempo de tela, que apresentaram capacidade de explicação de aproximadamente 3,0% (pseudo $R^2=0,0297$) na variação da OA (Tabela 2).

Tabela 2 Razões de chances e intervalos de confiança de 95% na associação entre excesso de peso, obesidade abdominal e as variáveis independentes em adolescentes escolares de Criciúma, Santa Catarina, Brasil, 2016.

Variáveis	Excesso de peso	Obesidade abdominal		
	Análise bruta	Análise ajustadab	Análise bruta	Análise ajustadab
	RC (IC95%)	RC (IC95%)	RC (IC95%)	RC (IC95%)
Sexo				
Feminino	1	(1,08–2,17)	1	(1,08–2,29)
Masculino	1,53	1,58a	0,66	0,41–1,18
Faixa etária (anos)	1	(4,03–9,02)	1	(4,05–9,11)
15 a 17	6,03	6,07a	0,99	0,75–2,27
11 a 14				
Escolaridade materna	1	(0,46–0,93)	1	(0,85–1,24)
≤8 anos	0,66	0,85	1,77a	1,01–3,00
9 anos ou mais				
Dieta balanceada	1	(0,70–1,40)	1	(0,77–1,64)
Frequentemente	0,99	1,12	1,48	0,73–2,06
Pouco frequentemente				
Atividade física	1	(0,26–1,27)	1	(0,25–1,42)
Ativo	0,57	0,59	1,62	0,30–5,91
Pouco ativo				
Uso de cigarro	1	(0,68–2,24)	1	(0,47–1,83)
Não	1,23	0,93	0,45	0,82–2,74
Sim				
Uso de álcool em excesso	1	(0,44–1,07)	1	(0,71–1,95)
Não	0,69	1,18	1,38	0,82–2,74
Sim				
Tempo de tela	1	(0,72–1,47)	1	(0,59–1,30)
<4 horas/dia	1,03	0,87	0,68	0,40–1,15
≥4 horas/dia				

RC: razão de chance; IC95%: intervalo de confiança de 95%; ap<0,05, ajustado por todas as covariáveis; banálise pelas demais covariáveis, em que foram mantidas as que tiveram p<0,20. Para a associação entre excesso de peso e as demais covariáveis, o modelo final formado pelas variáveis sexo e faixa etária apresentou valor de pseudo $R^2=0,1292$, AIC=674,48 e BIC=691,95. Em comparação aos modelos saturado (pseudo $R^2=0,1344$, AIC=680,52 e BIC=719,84) e nulo (pseudo $R^2=0, AIC=767,40$ e BIC=771,77), o modelo final teve valor de 0,55 e <0,001, respectivamente, pelo teste de razão de verossimilhança. Para a associação entre obesidade abdominal e as demais covariáveis, o modelo final formado pelas variáveis sexo, escolaridade materna, uso de álcool, uso de cigarro e comportamento sedentário baseado em tempo de tela apresentou valor de pseudo $R^2=0,0297$, AIC=418,77 e BIC=444,95. Em comparação aos modelos saturado (pseudo $R^2=0,0350$, AIC=422,52 e BIC=461,79) e nulo (pseudo $R^2=0$, AIC=421,21 e BIC=425,57), o modelo final teve valor de 0,55 e 0,03, respectivamente, pelo teste de razão de verossimilhança.
Os adolescentes da faixa etária de 11 a 14 anos tiveram 84% de chances a mais (IC95% 1,01–3,34) de apresentarem, concomitantemente, EP e OA. O modelo final das associações testadas foi formado pelas variáveis faixa etária, escolaridade materna, uso de álcool, uso de cigarro e comportamento sedentário baseado em tempo de tela, que teve capacidade explicativa de 2,7% (pseudo R²=0,0277) na variação simultânea do EP e da OA. Esse modelo (final) apresentou valores próximos aos do modelo saturado e melhor que os do modelo nulo, indicando que as variáveis inseridas estavam ajustadas em relação ao desfecho e entre si (Tabela 3).

DISCUSSÃO

Os resultados verificados no presente estudo em relação à elevada prevalência de adolescentes com EP (33,6%) estão de acordo com os achados identificados pela Pesquisa Nacional de Saúde do Escolar (PeNSE), em que a prevalência estimada de adolescentes brasileiros com EP no ano de 2015 foi de 31,5%. Embora a etiologia da obesidade seja multifatorial, estando envolvidos na sua gênese tanto aspectos ambientais como genéticos, mudanças no padrão de alimentação e de atividade física são reconhecidamente os determinantes que mais contribuem para o aumento do EP. Dessa forma, é possível que as elevadas

Variáveis	Análise bruta	Análise ajustada \(^a\)
	RC (IC95%)	RC (IC95%)
	p	p
Sexo		
Feminino	1	(0,51–1,51)
Masculino	0,88	(0,53–1,60)
Faixa etária (anos)		
15 a 17	1	(0,83–2,52)
11 a 14	1,45	(1,01–3,34)
Escolaridade materna		
≤8 anos	1	(0,85–2,62)
9 anos ou mais	1,49	(0,92–2,89)
Dieta balanceada		
Frente	1	(0,80–2,40)
Pouco frequente	1,39	(0,79–2,40)
Atividade física		
Ativo	1	(0,31–5,95)
Pouco ativo	1,37	(0,27–5,28)
Uso de cigarro		
Não	1	(0,16–1,80)
Sim	0,54	(0,12–1,49)
Uso de álcool em excesso		
Não	1	(0,61–2,20)
Sim	1,16	(0,79–3,20)
Tempo de tela		
<4 horas/dia	1	(0,37–1,10)
≥4 horas/dia	0,64	(0,34–1,03)

RC: razão de chance; IC95%: intervalo de confiança de 95%; \(^{a}\)p<0,05, ajustado por todas as covariáveis; \(^{b}\)análise pelas demais covariáveis, em que foram retiradas as que tiveram p≤0,20. O modelo final formado pelas variáveis faixa etária, escolaridade materna, uso de álcool, uso de cigarro e comportamento sedentário baseado em tempo de tela apresentou valor de pseudo R²=0,0277, AIC=383,33 e BIC=409,53. Em comparação aos modelos saturado (pseudo R²=0,0335, AIC=387,12 e BIC=426,41) e nulo (pseudo R²=0, AIC=383,90 e BIC=388,26), o modelo final teve valor de 0,87 e <0,001, respectivamente, pelo teste de razão de verossimilhança.
Excesso de peso em adolescentes

prevalecência de EP identificadas no presente estudo poderiam estar relacionadas ao constante processo de urbanização característico de países emergentes como o Brasil, o que tem contribuído para o aumento de barreiras para a realização de atividades físicas no espaço de trabalho.

A prevalência de OA (11,7%) identificada no presente estudo foi semelhante às prevalências verificadas em estudos realizados em outros municípios brasileiros.26-28 A comparação entre os resultados dos distintos estudos deve ser analisada com cautela, haja vista os diferentes pontos de corte utilizados para classificar OA adotados nesses estudos.26-28 A proporção de pontos de corte precisos para diagnosticar OA por meio do PC ocorre por meio da utilização de valores elevados de sensibilidade e especificidade para identificar gordura corporal na população investigada.26 No presente estudo e no estudo realizado na cidade de Curitiba, Paraná, o ponto de corte utilizado para classificar OA foi proposto a partir da utilização de percentis do PC.5 Nas investigações conduzidas nas cidades de São José, Santa Catarina,26 e Londrina, Paraná,28 utilizaram-se pontos de corte para diagnóstico de OA sugeridos por meio da absorciometria por dupla emissão de raios X.29 Embora não exista consenso em relação ao padrão de referência para classificar adolescentes com OA,15 a utilização de percentis tem sido incentivada, haja vista a capacidade para compensar diferentes graus de desenvolvimento e etnia em população jovem.15

A prevalência estimada de adolescentes que apresentavam simultaneamente EP e OA no presente estudo foi de 10,3%. Ainda que a literatura referente à possível relação entre presença simultânea de EP e OA em adolescentes seja escassa,1 agravos em saúde, como doenças cardíometabólicas, dislipidemia, diminuição da tolerância à glicose, diminuição da sensibilidade à insulina e mortalidade precoce, estiveram diretamente associados a ambas as condições.30 Além disso, é possível que a agregação de fatores de risco em um mesmo indivíduo esteja mais fortemente associada a condições de saúde adversas quando comparados à presença individual de cada condição, o que reforça a relevância do achado do presente estudo.3,4 Dessa forma, a proposta de ações objetivando a prevenção do surgimento desses agravos, por exemplo, a realização de programas de educação em saúde dentro do ambiente escolar, em que a problemática referente à obesidade seja abordada para os adolescentes, pais e responsáveis, faz-se necessária, tendo em vista a multicausalidade dessa condição.

Os resultados do presente estudo identificaram que os meninos tinham 58% de chances a mais de terem EP em comparação às meninas. Esses dados estão de acordo com o resultado descrito na literatura nacional.4 Hipotetiza-se que meninas são mais insatisfeitas com o peso corporal e que sofrem menor pressão social para manter um padrão de magreza.31 Além disso, durante a adolescência, as meninas tendem a desenvolver maior preocupação em serem vistas como atraentes por seus pares, o que poderia contribuir para a manutenção do peso corporal.31 Ademais das justificativas supracitadas, a puberdade tem sido considerada período crucial para o desenvolvimento do EP.52 No presente estudo, aproximadamente um a cada quatro escolares do sexo masculino avaliados pertencia à faixa etária de 11 a 14 anos (dados não apresentados em tabela), sendo possível que uma parcela desses escolares de menor faixa etária estivesse em fases maturacionais precoces, o que está diretamente relacionado ao maior acúmulo de gordura corporal e, consequentemente, ao EP.35 Os adolescentes cujas mães tinham maior nível de escolaridade (nove anos ou mais) apresentaram maiores chances terem OA, resultados similares aos identificados na literatura.33,34 Embora a maior instrução materna esteja diretamente associada a aspectos qualitativos em relação à ingesta alimentar dos filhos, é possível que a preocupação das mães com o estado nutricional dos filhos esteja mais relacionada à quantidade e não à qualidade dos alimentos consumidos, o que poderia implicar em OA.34 Ademais, com o aumento do grau de instrução e da participação das mães no mercado de trabalho, estas dispõem de menos tempo para o cuidado familiar, facilitando a influência publicitária e de terceiros na imposição de hábitos alimentares inadecuados e, consequentemente, na OA dos filhos.34

No presente estudo, adolescentes de 11 a 14 anos, quando comparados aos de 15 a 17 anos, apresentaram maiores chances para EP e presença simultânea de EP e OA. Possível justificativa poderia estar relacionada ao fato de que, no presente estudo, maiores prevalências de adolescentes inativos fisicamente (n=280; 53,5%) e que despendiam maior período em comportamento sedentário baseado em tempo de tela (n=205; 55,1%) foram verificadas na faixa etária de 11 a 14 anos, quando comparada à de 15 a 17 anos (dados não apresentados em tabelas/figuras). Tais condições (inatividade física e comportamento sedentário baseado em tempo de tela) estão diretamente relacionadas ao menor dispêndio energético, o que pode contribuir para o EP e a presença simultânea de EP e OA.

A ausência da avaliação da maturação sexual, aspecto diretamente relacionado ao EP e à OA em adolescentes, é uma limitação do presente estudo. O delineamento transversal, o que impede o estabelecimento de causalidade e temporalidade entre os indicadores da composição corporal e as demais variáveis, também é considerado uma limitação, assim como a investigação de informações por meio de questionário autoadministrado, o que pode implicar em viés de resposta por parte...
dos avaliados. Ademais, embora a seleção dos escolares avaliados no presente estudo tenha ocorrido por meio de amostragem por conglomerados, a densidade de turmas não levou em consideração o turno de estudo, o que reflete em ausência de representatividade de estudantes dos turnos investigados (diurno ou noturno), considerada outra limitação da pesquisa.

Contudo, a identificação de subgrupos de adolescentes mais propícios a desenvolver fatores de risco adversos à saúde é ponto forte da pesquisa.

Pode-se concluir que aproximadamente um a cada três adolescentes tinha EP. Do total de avaliados, 11,7% apresentaram OA e 10,3% tinham, simultaneamente, EP e OA. Adolescentes do sexo masculino e de menor faixa etária (11 a 14 anos) tiveram maiores chances de terem EP. Os adolescentes cujas mães estudaram nove anos ou mais apresentaram maiores chances de terem OA. Além disso, menor faixa etária (11 a 14 anos) esteve associada a maiores chances para a presença simultânea de EP e OA.

Financiamento
O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) — Brasil, Código de Financiamento 001.

Confito de interesses
Os autores declararam não haver conflito de interesses.

REFERÊNCIAS

1. World Health Organization. Obesity and overweight.Geneva: WHO; 2013.
2. Bloch KV, Klein C, Szklo M, Kuschnir M, Abreu G, Barufaldi L, et al. ERICA: prevalências de hipertensão arterial e obesidade em adolescentes brasileiros. Rev Saude Publica. 2016;50 (Supl 1):1-9s. https://doi.org/10.1590/501518-8787.2016050006685
3. Rizzo AC, Goldberg TB, Silva CC, Kurokawa CS, Nunes HR, Corrente JE. Metabolic syndrome risk factors in overweight, obese, and extremely obese Brazilian adolescents. Nutr J. 2013;12:19. https://doi.org/10.1186/1475-2891-12-19
4. Santos MG, Pegoraro M, Sandrini F, Macuco EC. Risk factors for the development of atherosclerosis in childhood and adolescence. Arq Bras Cardiol. 2008;90:301-8. http://dx.doi.org/10.1590/S0066-782X2008000400012
5. Bozza R, Campos W, Bacil ED, Barbosa Filho VC, Hardt JM, Silva PM. Sociodemographic and behavioral factors associated with body adiposity in adolescents. Rev Paul Pediatr. 2014;32:241-6. https://doi.org/10.1590/0103-0502201432315
6. Carneiro CS, Peixoto MR, Mendonça KL, Póvoa Ti, Nascente FM, Jardim TS, et al. Overweight and associated factors in adolescents from a brazilian capital. Rev Bras Epidemiol. 2017;20:260-73. http://dx.doi.org/10.1590/1980-5497201700020007
7. Romanzini M, Pelegrini A, Petroski EL. Prevalence of abdominal obesity and associated factors in adolescents. Rev Paul Pediatr. 2011;29:546-52. http://dx.doi.org/10.1590/1980-5497201700020007
8. Souza MC, Tibúrcio JD, Bicalho JM, Rennó HM, Dutra JS, Campos LG, et al. Factors associated with obesity and overweight in school-aged children. Texto Contexto - Enferm. 2014;23:712-9. http://dx.doi.org/10.1590/0104-07072014001740013
9. Enes CC, Slater B. Obesidade na adolescência e seus principais fatores determinantes. Rev Bras Epidemiol. 2010;13:163-71. http://dx.doi.org/10.1590/S1415-790X2010000100015
10. Programa das Nações Unidas para o Desenvolvimento [homepage on the Internet]. Humam Development Index 2013. [cited 2018 Jul 4] Available from: www.pnud.org.br/IDH/Atlas2013.aspx?indiceAccordion=1&li=li_Atlas2013
11. Oliveira G, Silva DA, Maggi RM, Petroski EL, Farias JM. Sociodemographic factors and physical fitness associated with low levels of physical activity in adolescents in Southern Brazil. Rev Educ Fis. 2012;23:635-45. http://dx.doi.org/10.4025/reveducfis.v23i4.17510
12. Silva D, Teixeira DM, Oliveira G, Petroski E, Farias JM. Aerobic fitness in adolescents in southern Brazil: Association with sociodemographic aspects, lifestyle and nutritional status. Rev Andal Med Deporte. 2016;9:17-22. https://doi.org/10.1016/j.ramde.2014.11.002
13. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660-7. https://doi.org/10.2471/blt.07.043497
14. Alberti KG, Zimmet P, Shaw J. Metabolic syndrome - a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23:469-80. https://doi.org/10.1111/j.1464-5491.2006.01858.x
15. Zimmet P, Alberti KG, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents – an IDF consensus report. Pediatri Diabetes. 2007;8:299-306. https://doi.org/10.1111/j.1399-5448.2007.00271.x
16. Rodriguez Añez CR, Reis RS, Petroski EL. Brazilian version of a lifestyle questionnaire: translation and validation for young adults. Arq Bras Cardiol. 2008;91:92-8. https://doi.org/10.1590/S0066-782X2008001400006
17. Guedes DP, Lopes CC. Validation of the Brazilian version of the 2007 Youth Risk Behavior Survey. Rev Saude Publica. 2010;44:840-50. http://dx.doi.org/10.1590/S0034-8910201000050009

18. World Health Organization. Global recommendations on physical activity for health. Geneva: WHO; 2010.

19. Australian Government. National Health, Medical Research Council. Australian guidelines to reduce health risks from drinking alcohol. Working to build a healthy Australia. Australia: NHMRC; 2009.

20. Silva DA, Gunnell KE, Tremblay MS. Factor structure of responses to the portuguese version of questions about screen time–based sedentary behavior among adolescents. J Phys Act Health. 2018;15:263-8. https://doi.org/10.1123/jpah.2016-0382

21. Wijndaele K, Brage S, Besson H, Khaw KT, Sharp SJ, Luben R, et al. Television viewing time independently predicts all-cause and cardiovascular mortality: the EPIC Norfolk study. Int J Epidemiol. 2011;40:150-9. https://doi.org/10.1093/ije/dyq105

22. Holt D, Scott AJ, Evings PD. Chi-squared tests with survey data. J Royal Statist Soc. 1980;143:303-20.

23. Brazil - Ministério do Planejamento, Desenvolvimento e Gestão. Instituto Brasileiro de Geografia e Estatística – IBGE. Pesquisa Nacional de Saúde do Escolar. Rio de Janeiro: IBGE; 2015.

24. Enes CC, Slater B. Obesity in adolescence and its main determinants. Rev Bras Epidemiol. 2010;13:163-71. https://doi.org/10.1590/s1415-790x2010000100015

25. Corseuil MW, Schneider JUC, Silva DA, Costa FF, Silva KS, Borges LJ, et al. Perception of environmental obstacles to commuting physical activity in Brazilian elderly. Prev Med. 2011;53:289-92. https://doi.org/10.1016/j.ypmed.2011.07.016

26. Martins PC, Lima TR, Silva DA. Association between different contexts of physical activity and abdominal obesity and excess weight in adolescents. Motriz: Rev Ed Fis. 2017;23:1-8. http://dx.doi.org/10.1590/S1980-65742017000100104

27. Nascimento-Ferreira MV, De Moraes AC, Carvalho HB, Moreno LA, Gomes Carneiro AL, dos Reis VM, et al. Prevalence of cardiovascular risk factors, the association with socioeconomic variables in adolescents from low-income region. Nutr Hosp. 2014;31:217-24. https://doi.org/10.3305/nh.2015.31.1.7511

28. Tebar WR, Vanderlei LC, Scarabotollo CC, Zanuto EF, Saraiva BT, Tebar FC, et al. Abdominal obesity: prevalence, sociodemographic and lifestyle-associated factors in adolescents. J Hum Growth Dev. 2017;27:56-63. https://doi.org/10.7322/jhgd.127653

29. Taylor RW, Jones IE, Williams SM, Goulding A. Evaluation of waist circumference, waist-to-hip ratio, and the conicity index as screening tools for high trunk fat mass, as measured by dual-energy X-ray absorptiometry, in children aged 3–19 y. Am J Clin Nutr. 2000;72:490-5. https://doi.org/10.1093/ajcn/72.2.490

30. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014;384:766-81. https://doi.org/10.1016/S0140-6736(14)60460-8

31. Fortes LS, Conti MA, Almeida SS, Ferreira ME. Body dissatisfaction in adolescents: a longitudinal study. Rev Psiquiatr Clin. 2013;40:167-71. http://dx.doi.org/10.1590/0101-60832013000500001

32. Oliveira CS, Veiga GV. Nutritional status and pubertal stage of adolescents from one public school and one private school from Rio de Janeiro, Brazil. Rev Nutr. 2005;18:183-91. http://dx.doi.org/10.1590/S1415-52152005000500002

33. Castro JA, Nunes HE, Silva DA. Prevalence of abdominal obesity in adolescents: association between sociodemographic factors and lifestyle. Rev Paul Pediadr. 2016;34:343-51. http://dx.doi.org/10.1016/j.rppede.2016.01.007

34. Martin MA, Frisco ML, Nau C, Burnett K. Social stratification and adolescent overweight in the United States: how income and educational resources matter across families and schools. Soc Sci Med. 2012;74:597-606. http://dx.doi.org/10.1016/j.socscimed.2011.11.006