Fluorescence assay for simultaneous quantification of CFTR ion-channel function and plasma membrane proximity

Stella Prins¹, Emily Langron¹, Cato Hastings², Emily J. Hill¹, Andra C. Stefan³, Lewis D. Griffin² and Paola Vergani¹*

¹ Department of Neuroscience, Physiology and Pharmacology
² CoMPEX
³ Natural Sciences

University College London
Gower Street
WC1E 6BT London UK

The first two authors contributed equally to this project.
*Correspondence to: p.vergani@ucl.ac.uk

Running title: Simultaneously measuring CFTR biogenesis and function

Keywords: gating, anion transport, conductance, cystic fibrosis, fluorescence, microscopic imaging, intracellular trafficking, protein stability, molecular pharmacology, VX-770.
Abstract

The cystic fibrosis transmembrane conductance regulator, CFTR, is a plasma membrane anion channel which plays a key role in controlling transepithelial fluid movement. Excessive activation results in intestinal fluid loss during secretory diarrhoeas, while CFTR mutations underlie cystic fibrosis (CF). Anion permeability depends both on how well CFTR channels work (permeation/gating) and on how many are present at the membrane. Recently, treatments with two drug classes targeting CFTR – one boosting ion-channel function (potentiators), the other increasing plasma membrane density (correctors) – have provided significant health benefits to CF patients.

Here we present an image-based fluorescence assay that can rapidly and simultaneously estimate both CFTR ion-channel function and the protein’s proximity to the membrane. We monitor F508del-CFTR, the most common CF-causing variant, and confirm rescue by low temperature, CFTR-targeting drugs and second-site revertant mutation R1070W. In addition, we characterize a panel of 62 CF-causing mutations. Our measurements correlate well with published data (electrophysiology and biochemistry), further confirming validity of the assay.

Finally, we profile effects of acute treatment with approved potentiator drug VX-770 on the rare-mutation panel. Mapping the potentiation profile on CFTR structures raises mechanistic hypotheses on drug action, suggesting that VX-770 might allow an open-channel conformation with an alternative arrangement of domain interfaces.

The assay is a valuable tool for investigation of CFTR molecular mechanisms, allowing accurate inferences on gating/permeation. In addition, by providing a two-dimensional characterization of the CFTR protein, it could better inform development of single-drug and precision therapies addressing the root cause of CF disease.

Introduction

Anion flow mediated by the cystic fibrosis transmembrane conductance regulator (CFTR), an apical epithelial channel [1], controls volume and composition of the luminal fluid compartment in several organs. CFTR function is thus crucial for physiological processes such as airway mucociliary clearance, secretion of pancreatic juices and maintenance of optimal fluid content in the intestinal lumen [2].

Enterotoxin-induced secretory diarrhoeas are a major global cause of malnutrition, impaired development and death of children [3]. Excessive CFTR-mediated anion conductance (G_{CFTR}) in the apical membrane of enterocytes causes intestinal loss of large volumes of fluid, leading to dehydration [4]. At the other extreme, cystic fibrosis (CF) a common life-limiting genetic disease [5], is caused by mutations which reduce G_{CFTR} throughout the body, severely impacting on life expectation and quality [6,7].

G_{CFTR} is the product of 3 factors: the number of channels in the relevant membrane (N), channel open probability (P_O), and single-channel conductance (γ):

$$G_{CFTR} = N \cdot P_O \cdot \gamma.$$

Mutations and bacterial toxins can affect gating and permeation of the mature channel (affecting P_O and γ, respectively). But biogenesis of polytopic CFTR is complex [8,9], and many mutations (and chemical compounds [10]) also impair folding, trafficking and plasma membrane stability, resulting in a smaller number of channels at the membrane (N).

Drugs targeting CFTR are emerging: CFTR inhibitors, which could provide emergency treatment for diarrhoeas [11,12], and CFTR modulators, capable of restoring CFTR activity to defective mutant channels for CF treatment. Modulators belong to two classes: “potentiators” increase P_O, while “correctors” increase plasma membrane density. The potentiator ivacaftor (VX-770, Vertex Pharmaceuticals [13]) dramatically improves lung function of patients carrying G551D [14] or other mutations impairing channel function. Treatment with corrector VX-809 [15], in combination with VX-770, slightly but significantly improves the health of patients carrying two copies of the very common F508del-CFTR variant [16]. New triple combination therapies, combining two different correctors with VX-770 further broadened the reach of modulator treatment, with recent demonstration of clinical benefits for patients carrying at least one copy of
F508del-CFTR (covering ~ 90 % of the CF population currently in the cftr2 database, cftr2.org) [17,18].

Despite these major clinical success stories, little is known on how modulators work. An atomic-resolution structure of a VX-770-bound CFTR [19], reveals the superficial binding of the drug molecule at the interface between transmembrane domain and lipid bilayer. But the binding of the drug is not seen to cause any significant conformational change, (compare PDB ID 6O2P, VX-770 bound [19] vs. PDB ID 6MSM, drug-free [20]), and the permeation pathway remains closed [19,20]. How does VX-770 binding increase P_{0} of WT-CFTR and many mutant CFTR versions?

To investigate questions such as these and test mechanistic hypotheses, an assay that allows rapid functional screening of changes caused by mutations or compound modification would be useful. But currently available (relatively high throughput) assays report on either CFTR surface expression (e.g. [21,22]) or CFTR-mediated cellular conductance [23]. Apart from low-throughput single-channel patch-clamp recording, assays that measure CFTR function cannot simultaneously measure how many channels are contributing to such function. They cannot discriminate whether a measured conductance arises from a small number of channels with high (P_{0} \cdot γ) or a larger number of channels with less favourable gating/permeation characteristics.

Here we present a “high-content” assay based on dual-colour live imaging of HEK293 cells, that extracts information on both key characteristics of CFTR: by co-expressing soluble mCherry with the halide sensitive YFP [24] linked to CFTR [25], our new assay gives simultaneous estimates of both CFTR function, and CFTR membrane proximity. Experimental manipulations - incubation at low temperature [26-28], treatment with VX-809 [29,30] with and without VX-770 [31,32], and addition of revertant mutation R1070W [30,33,34] - result in the expected changes in measured F508del-CFTR channel function and membrane proximity. In addition, we present a screening platform suitable for describing the molecular characteristics of 62 missense CFTR variants carried by CF patients, and we profile the effects of VX-770 on this panel. Measurements we obtain correlate well with published datasets, validating our assay as a new tool to investigate questions on CFTR molecular mechanisms and pharmacology.

Results

The assay

Ion channel function

Expression of a cytosolic halide sensitive YFP with increased affinity for iodide and a low affinity for chloride, YFP(H148Q/I152L) [24,35], allowed the first high throughput CFTR screening projects, assessing CFTR activity by measuring the rate of YFP fluorescence quenching caused by iodide/chloride exchange across the plasma membrane [36-39]. To obtain quantitative information about ion channel function, we fused this YFP to the intracellular N-terminal of CFTR [25,40]. We constructed the pRES2-mCherry-YFPCFTR plasmid that directs co-expression of YFP(H148Q/I152L)-CFTR (hereafter designated YFP-WT-CFTR or simply WT-CFTR) and a soluble, cytosolic, red fluorescent protein, mCherry [41], with both coding sequences transcribed on a single bicistronic mRNA. HEK293 cells are transiently transfected, and images are automatically acquired (before and after iodide addition) and analysed. The time course of YFP quenching in response to extracellular iodide addition informs on anion conductance. Thanks to the common mRNA, mCherry expression serves as an internal standard for the normalisation of YFP-CFTR expression, reducing variability due to unequal transfection efficiency.

Membrane proximity

mCherry expression also allows image segmentation and accurate localization of the cell membrane by marking the border of cells. The “membrane-proximal zone” is defined as comprising a ~1 µm wide band, on the inside of a cell’s boundary (Figure 1A). To obtain a robust relative estimate of the number of channels (N) giving rise to the cellular conductance (G_{CFTR}), we estimate overall “CFTR membrane proximity” in each cell calculating the metric ρ. This is obtained by dividing the average YFP-CFTR fluorescence intensity within the membrane-proximal zone ($F_{\text{YFP membrane}}$), by the average mCherry fluorescence over the entire cell ($F_{\text{mCherry cell}}$). The ρ metric can be
thought of as the product of the $F_{\text{YFP membrane}}/F_{\text{YFP cell}}$ metric, the proportion of YFP-CFTR within the membrane-proximal zone, multiplied by the metabolic stability of YFP-CFTR with respect to mCherry ($F_{\text{YFP cell}}/F_{\text{mCherry cell}}$). Thus, changes in ρ metric will reflect not only changes in efficiency of CFTR maturation and trafficking, but also changes in the overall rates of biosynthesis vs. degradation of the protein.

The distribution of ρ measurements, easily obtained for hundreds of cells in individual images, is skewed, but approaches a log-normal distribution. Values were log transformed (Figure 1B) before performing statistical analysis.

The ρ metric is related to a commonly used measure of CFTR biogenesis, the proportion of protein acquiring complex glycosylation (i.e. that has undergone Golgi processing), estimated using protein blotting. For a set of CF-causing missense mutations (see rare-mutation panel, below), we found a good correlation ($r^2 = 0.67$) of our ρ measurements with published datasets [42-44] (Figure 1C, see also Supporting Information Figure S1). Note that methodologies and materials used were very different: fluorescence measurements in transiently expressing HEK293 cells vs. Western blots from stably expressing Fischer Rat Thyroid, (FRT) cell lines.

For both methodologies, CFTR proteins located in post-Golgi, sub-membrane compartments cannot be discriminated from those at the plasma membrane, directly contributing to G_{CFTR}. Nevertheless, both measurements, by detecting defects in processing and metabolic stability, provide useful rough estimates of relative plasma membrane numbers.

Rescue of F508del-CFTR membrane proximity

As a first validation of our assay, we assessed changes in F508del-CFTR membrane proximity by comparing distributions of $\log_{10}\rho$ (logarithmic transformation of the ρ metric) following treatments/mutations known to partially rescue the F508del processing defect (Figure 2).

F508del-CFTR membrane proximity rescue by VX-809 incubation

At 37 °C, incubation with corrector drug VX-809 for 24 hours caused a very small, but significant, increase in $\log_{10}\rho$ of F508del-CFTR, (Figure 2A left, see also Supporting Table S2). At 28 °C, the magnitude of the increase was greater (Figure 2A right).

F508del-CFTR membrane proximity rescue by R1070W second-site revertant mutation

Introducing the mutation R1070W, known to partially revert the F508del-CFTR defective phenotype [34], significantly increased F508del-CFTR membrane proximity at 37 °C (Figure 2B left, Supporting Table S2), as well as at 28 °C (Figure 2B right, Supporting Table S2). Again, the magnitude of the effect was larger at 28 °C.

F508del-CFTR membrane proximity decrease due to chronic VX-770 incubation

Chronic incubation with VX-770 has been shown to have a negative impact on VX-809 correction of F508del-CFTR biogenesis [31,32]. When comparing cells expressing F508del-CFTR incubated for 24 hours with VX-809 alone, with those incubated with both corrector VX-809 and potentiator VX-770, at 37 °C, there was a small but significant decrease in $\log_{10}\rho$ (Figure 2C left, Supporting Table S2). At 28 °C the decrease was again more pronounced than at 37 °C (Figure 2C right).

F508del-CFTR membrane proximity rescue by temperature correction

Temperature could only be varied between plates, preventing the use of within-plate differences in $\log_{10}\rho$ to directly compare membrane proximity of F508del-CFTR incubated at different temperatures. We therefore compared the magnitude of the within-plate difference between F508del-CFTR and WT-CFTR for plates incubated at 28 °C and at 37 °C. The $\log_{10}\rho$ values of F508del-CFTR were significantly closer to those of WT-CFTR at 28 °C than at 37 °C, (Figure 2D, Supporting Table S2).

Rescue of F508del-CFTR ion channel function

Functional rescue of F508del-CFTR was also measured. In these experiments, CFTR was activated following addition of extracellular I- (monitoring of non-stationary CFTR activity, see Experimental Procedures). Activation occurred either by addition of only 10 µM forskolin, increasing intracellular cAMP, and thus CFTR phosphorylation, or by addition of a combination of 10 µM forskolin and 10 µM VX-770 (the latter...
defined as an acute (a) treatment, as opposed to the 24-hour chronic (c) incubation with VX-770 described above. YFP fluorescence (normalized using the fluorescence reading before I’ addition) was followed over time (F_{YFP}/F_{YFP}max, Figure 3). The maximal rate of I’ entry (Δ[I’]_{in}/Δt) was used to summarize CFTR channel function. For each different CFTR genotype, incubation and activation condition tested, the Δ[I’]_{in}/Δt obtained from quenching time curve analysis was normalized (using the corresponding mean F_{mCherry} within the cell selection) to take into account differences in transfection efficiency (d[I’]_{/dt}norm, Figure 3E, Supporting Tables S3 and S4). No significant difference in this metric was detected among the different genotypes/conditions when DMSO (vehicle) was added instead of activators.

WT-CFTR
Measurements from HEK293 cells expressing WT-CFTR were taken for comparison purposes. As expected, the maximal rate of I’ entry was significantly higher after activation with forskolin, compared to control (DMSO), at both 37 °C and 28 °C (Figure 3A; Figure 3E WT). However, conditions were optimised for measuring low CFTR activity, and neither the presence of 10 μM VX-770 in addition to forskolin during activation, nor incubation at 37 °C vs. 28 °C increased quenching rate sufficiently to achieve statistical significance after multiple comparison correction (Figure 3A; Figure 3E, WT, Supporting Table S4).

F508del-CFTR functional rescue following temperature correction
Following incubation at 28 °C for 24 hours, activation with forskolin alone failed to increase the maximal rate of I’ entry in untreated cells expressing F508del-CFTR (Figure 3B top; Figure 3E F508del bars 1 and 4, Supporting Table S3), reflecting the severe gating defect, which persists even after temperature correction. Acute potentiation by VX-770 was required to detect function of the channels reaching the cell surface due to temperature correction (Figure 3B, bottom; Figure 3E F508del bars 5 vs. 2, Supporting Table S3).

F508del-CFTR functional rescue following VX-809 correction
At both temperatures, acute potentiation revealed the activity of F508del-CFTR channels that had reached the cell surface due to 24-hour incubation with VX-809. At 28 °C the maximal rate of I’ entry was significantly greater than at 37 °C (Figure 3C; Figure 3E, F508del bar 6 vs. 3, Supporting Table S4).

F508del-CFTR functional rescue by the R1070W mutation
Forskolin activation alone was enough to reveal F508del/R1070W-CFTR channel activity (Figure 3D, Supporting Table S3). The maximal rate of I’ entry was significantly higher at 28 °C than at 37°C (Figure 3D; Figure 3E F508del/R1070W, Supporting Table S4).

The rare-mutation panel
More than 300 CF-causing mutations have been characterized (The Clinical and Functional TRanslation of CFTR (CFTR2); available at http://cftr2.org). CF-causing missense CFTR mutations [42-44] were individually introduced in the pIRES2-mCherry-YFP-CFTR plasmid, creating a panel of 62 plasmids (including WT-CFTR as reference).

Following expression of the panel in HEK293 cells, and incubation with no pharmacological correction, distributions for the ρ metric, and plate log₁₀ρ means were obtained (Supporting Table S5, Supporting Figure S6). The data is summarized in Figure 4A, which profiles membrane proximity for each CFTR mutant variant in the panel.

As mentioned above, correlation between our measured ρ and the proportion of CFTR protein acquiring complex glycosylation in FRT cells is very good (r² = 0.74 [43], r² = 0.53 [42,44], and r² = 0.67 using average values for mutants measured by both groups [42-44], Figure 1C and Supporting Figure S1).

Time course of YFP fluorescence quenching was also acquired and analysed (Quantification of CFTR activity at steady-state, see Experimental Procedures). In these experiments, steady-state CFTR cellular conductance (G_{CFTR}) was estimated from the F_{YFP}/F_{YFP}max time curve, then normalized using the within cell F_{mCherry} to yield G_{CFTR,norm}. For each genotype, quenching was monitored with no
activation (DMSO) or following baseline pre-activation with 10 µM forskolin (Figure 4B-C; Supporting Table S7). Again, results correlate well with published data ($r^2 = 0.68$ [43], $r^2 = 0.61$ [42,44], $r^2 = 0.60$ [42-44], Supporting Figure S1). Conductance was also measured following pre-activation with 10 µM forskolin + 10 µM VX-770 (a) (Figure 4B, D; Supporting Table S8). In these conditions, genotypes with high conductance (including WT-CFTR) have faster YFP quenching than can be reliably measured in our system. However, the assay can accurately monitor VX-770 potentiation when CFTR activity is low, as is the case for most mutants.

Relationship between CFTR ion channel function and membrane proximity

By considering changes in ion channel function in the context of any change measured in ρ, our assay allows accurate inferences on the gating and permeation properties of the CFTR channel molecules present at the cell surface.

Even when virtually no channels are present in the plasma membrane (as happens, for instance, for cells expressing F508del-CFTR grown at 37°C) the value of ρ does not fall to zero. This is likely due to some inaccuracy in automated cell boundary delineation and to the widefield microscope optics, resulting in stray light from out-of-focus planes reaching the photomultiplier. To empirically investigate the relationship between G_{CFTR} and ρ, cells expressing F508del-CFTR (temperature corrected and acutely potentiated with VX-770 to maximize small signals) were treated with increasing concentrations of corrector VX-809, progressively improving both biogenesis/membrane stability and conductance (Figure 5A-B). Measured $G_{\text{CFTR,norm}}$ values as a function of ρ values show a roughly linear relationship (Figure 5B, dotted green line). The line can be extended to cross the ρ axis, extrapolating to an intercept at $\rho = 0.23$. In addition, in as much as ρ values are proportional to the number of channels at the membrane (N), the steepness of this line is an estimate of the product ($P_o \gamma$). An extension of the line towards higher membrane proximity values shows the $G_{\text{CFTR,norm}}$ values expected with a higher number of channels reaching the membrane, but retaining gating/permeation characteristics of F508del-CFTR, acutely potentiated by VX-770. It can be seen that, in these conditions, F508del-CFTR is characterised by P_o levels similar to those of WT-CFTR (the latter without potentiation, Figure 5B, large dark blue empty circle, not far above dotted green line), consistent with patch-clamp measurements (note that γ is unaffected by the F508del mutation) [45,46].

Data on maximum rate of I entry can also be plotted against the corresponding ρ values, measured for the different F508del-CFTR rescue strategies (Figure 5C). A linear interpolation between data points for uncorrected F508del-CFTR at 37°C (representing cells with virtually no CFTR molecules at the membrane) and WT-CFTR activated by 10 µM forskolin at 37°C describes the ion channel function we would expect from cells with increasing CFTR membrane proximity, assuming gating and permeation characteristics of baseline-activated WT-CFTR (Figure 5C, blue dotted line). This allows us to infer how the rescued F508del-CFTR channels reaching the membrane compare to control channels in terms of permeation/gating.

Introducing the R1070W revertant mutation in the F508del-CFTR background is shown to be particularly effective in improving gating (note that permeation and single-channel conductance, are unaffected by both F508del and R1070W mutations [34,47]). R1070W revertant rescue and temperature correction similarly increase membrane proximity. However, temperature-corrected F508del-CFTR channels at the membrane have very low ion channel function (unless acutely potentiated with VX-770). In contrast, F508del/R1070W channels at the membrane have gating and permeation properties equal – or even superior – to WT-CFTR (Figure 5C, cf. uncorrected F508del-CFTR blue star symbol vs. F508del/R1070W-CFTR red square symbol both compared to blue dotted line). Both results are consistent with patch-clamp records indicating a F508del/R1070W-CFTR P_o comparable to that of WT-CFTR [48], but a much lower P_o for temperature-corrected F508del-CFTR [45,46,48].

Figure 6 plots G_{CFTR} as a function of ρ for the rare-mutation panel, giving an immediate representation of how severe a defect each mutation causes in biogenesis (distance from WT-CFTR on the x-axis) and/or in gating and permeation.
properties (vertical displacement from blue dotted line, which assumes ion-channel properties of baseline-activated WT-CFTR). For instance, D579G-CFTR (orange open diamond at coordinates (0.35,41.5)) falls close to the WT-CFTR line, suggesting that the product $P_{o\gamma}$ is not greatly affected by this mutation, and that the low short-circuit currents measured in FRT cells [42,43] are largely caused by the reduced membrane density. For G1244E (orange (0.85,7.2)) and S549N (blue (0.83,11)), likely altering the structure of CFTR’s canonical ATP binding site 2 (in P-loop and signature sequence loop, respectively), measured ion channel function is much lower than would be expected given the high observed membrane proximity. Here low short-circuit currents [43] are likely due to gating defects. Most mutations give reduced membrane proximity and a conductance that falls below the WT interpolation line, suggesting processing defects as well as some degree of impairment in gating/permeation for the CFTR molecules that do reach the membrane. We further illustrate the effect of acute treatment with VX-770 for mutations resulting in the strongest potentiation (fold-potentiation >20, Figure 5D). For many of these data points for potentiated conductance fall above the interpolation line, suggesting that the product ($P_{o\gamma}$) is higher than measured for WT-CFTR in baseline-activated conditions.

Discussion

The results presented in this paper introduce and validate a new fluorescence assay for monitoring the CFTR protein. To monitor ion-channel function it exploits a previously described YFP-CFTR fusion [25,40]. The N-terminal fusion of a fluorescent protein has been shown to cause only very minor alterations to CFTR’s biogenesis and function [25,40,49-52]. In addition, the new assay provides a simultaneous estimate of CFTR biogenesis, quantified in terms of membrane proximity.

Validation of the assay

Validation of membrane proximity measurements

Although heterogeneity among ρ values for individual cells is large, resulting in broad distributions (Figure 2), much of the variability is related to between-plate variation, such that paired comparisons between measurements obtained in the same plate (right panels in Figure 2) can pick up small changes in membrane proximity, increasing assay sensitivity.

For instance, we measure small changes in F508del-CFTR membrane proximity due to incubation with corrector VX-809 at 37 ºC. While one published paper reports large effects of this corrector, resulting in rescue of up to 15% of WT-CFTR function [15], much more limited effects are measured by other groups (a 3-4 fold increase in plasma membrane density or function, starting from a value of approximately 1% of WT [30,53]). Our assay detects a change in membrane proximity of a similar magnitude to the latter reports (cf. [30,53] vs. Figure 2A left). These limited *in vitro* effects are more in agreement with the inability of VX-809 monotherapy to improve lung function for F508del homozygous patients [54].

The effect we measure for the R1070W mutation at 37 ºC is similarly small, but also significant (Figure 2B left). Again, our result confirms observations published by others: the rescue of membrane-exposed F508del-CFTR due to the R1070W mutation is limited (from 2% to 7% of WT-CFTR), becoming more obvious only when combined with other rescue manoeuvres such as additional revertant mutations or correctors [30].

We could also confirm previous reports demonstrating increased membrane proximity of F508del-CFTR due to low temperature incubation [26-28] (Figure 2D) and enhanced effects of VX-809 treatment when combined with incubation at low temperature [29] (Figure 2A right). We further demonstrate that low temperature incubation also enhances R1070W rescue. The synergy between effects of low-temperature and the R1070W mutation, and of low temperature and VX-809 incubation, suggests that, while VX-809 and the R1070W mutation are acting via a common mechanism stabilizing the NBD1/TMD interface (between nucleotide binding domain 1 and transmembrane domain) [30], a different pathway, possibly involving proteostasis components [28], likely underlies rescue by low-temperature incubation.

In agreement with other studies [31,32,55], we observed a small but significant shift in log$_{10}$ ρ following chronic incubation with VX-770, consistent with the potentiator destabilizing F508del-CFTR at the membrane (Figure 2C left).
Furthermore, we find that the negative effect of VX-770 on biogenesis appears more pronounced when cells are incubated at 28°C (Figure 2C). It is possible that binding of VX-770 prevents interaction with chaperone(s) which help F508del-CFTR fold and exit the ER in cells grown at low temperature [28]. However, the concentration of VX-770 we used (10 μM) is relatively high [56]. Despite the fact that in our incubation medium, as in plasma, a large proportion of the drug will be bound to proteins present in the added serum [57], VX-770 will likely accumulate in the hydrophobic membranes [56,57]. Hence it is also possible that some of the F508del-CFTR destabilization we observe might be linked to formation of precipitates within cellular membranes [56], which would be more pronounced at the lower temperature.

The HEK293 expression system

We implemented our assay in the HEK293 heterologous expression system, characterized by robustness, ease of culture and of genetic manipulation. While HEK293 cells do not form monolayers suitable for functional measurements of transepithelial currents, they are widely used in the study of both CFTR function and biogenesis [58-63]. Our measurements of temperature-, VX-809-, and R1070W-dependent rescue of F508del-CFTR membrane proximity (Figure 2), confirm results obtained using other systems including human bronchial epithelia [30,53]. In addition, our membrane proximity measurements for the rare-mutation panel (Figure 4A) correlate well (Figure 1C, Supporting Figure S1) with immunoblot measurements obtained with FRT cell lines stably expressing CFTR variants [42,43], a system known to have in vivo predictive value for CF [43,53]. Our study thus validates the use of HEK293 cells as a tool for the molecular characterization of the CFTR protein, including its biogenesis.

However, while acute potentiator action is largely independent of the cell system used for testing (e.g. VX-770 is effective in a range of expression systems, from X. laevis oocytes [56], to primary human bronchial epithelia [64]), there is evidence that CFTR correction involves biosynthetic pathway and quality control components that are cell-type specific [65]. Immortalized overexpressing cell-lines, even those derived from human bronchial epithelia, do not always predict drug activity in primary cultures for corrector compounds [22]. Thus, especially when addressing questions focusing on biogenesis with potential translational impact, studies using our assay will need to be complemented and confirmed by research using material better recapitulating in vivo cellular processing. This has been the approach followed for the currently approved correctors VX-809 and VX-661, modifications of hits first identified using an overexpressing mouse fibroblast cell-line [66].

Accurate measurements of low CFTR ion channel function

In addition to membrane proximity, our assay quantifies channel function. Here we confirm previously published data, showing how two different protocols - one measuring the maximal rate of I entry \((\Delta I / \Delta t) \) during CFTR activation [25], and the other estimating CFTR conductance by fitting quenching time course after steady-state activation is reached [40] – provide results which are consistent with those obtained with other techniques (e.g. Ussing chamber short-circuit current measurements, high-throughput electrophysiology). Thus both \(G_{\text{CFTR}} \) (Figure 4B-D, Supporting Figure S1) [42-44] and \((\Delta I / \Delta t) \) (Figures 3 and 5B) [23] can accurately estimate CFTR ion channel function. In this study the assay conditions were not optimized to measure high CFTR activities and some measurements hit the upper limit of its dynamic range (e.g. for WT-CFTR, Figs. 3 and 4, Supporting Table S4). If needed, conditions can be altered to avoid assay saturation (e.g. by using lower concentrations of forskolin or \([\Gamma]_{\text{ion}} \)).

Accurate quantification of low conductance values is advantageous in characterizing drug response by CFTR mutants which have particularly low residual activity. For instance, our assay detects strong VX-770 potentiation for R347P-, N1303K- and H1085R-CFTR (Figure 4D and 5D), genotypes giving no significant potentiation over baseline in a Vertex Pharmaceuticals study to profile VX-770 sensitivity [42]. Our results on N1303K are consistent with patch-clamp and other short-circuit current measurements demonstrating effective potentiation of N1303K-CFTR by VX-770 [67-69]. Despite short-circuit current in FRT cells being increased only to less than the 5% of WT-CFTR
threshold [42], caution is required in classifying such mutants as “unresponsive” to VX-770, as they might benefit from therapies combining VX-770 with other modulators [68,69]. Equally promising for possible studies on synergistic modulator effects are L927P- and H1045D-CFTR channels, which, because of very low baseline levels give potentiated short-circuit currents only slightly above the 5% of WT-CFTR threshold [42], but are also powerfully potentiated (Figure 4D and 5D).

Considerations on VX-770 mechanism of action

Our empirical profiling of the VX-770 response in the rare-mutation panel can generate hypotheses on mechanism of action. Focusing on the mutations resulting in the highest VX-770 efficacy (fold-potentiation >20, Figure 5D, Figure 7) we note they can be broadly classified in two groups.

Five of these mutations are part of the ball-and-socket joints [70] linking TMDs to NBDs, or located at the NBD1/NBD2 interface. They all introduce charged side chains which would strongly destabilize an NBD-dimerized open state conformation: the introduced charges would be interacting unfavourably with other close charges (α-carbon distances < 10 Å, in PDB ID 6MSM structure of phosphorylated, ATP-bound human CFTR carrying the open-state stabilizing E1371Q mutation [20] – see Supporting Table S10). A destabilization of the ABC-canonical, NBD-dimerized, open channel conformation [71] is thus likely the cause of the low conductance measured after baseline activation in these mutants. Consistent with this interpretation, N1303K-CFTR channels appear to have almost completely lost the coupling between NBDs and TMDs that normally controls gating, and the rare openings observed are not linked to ATPase cycles at the NBDs [69]. However, for all these mutant channels, conductance is greatly increased by VX-770. Thus the VX-770-bound open state must have an alternative arrangement of domains, one that does not present the tight NBD1/NBD2 and NBD/TMD interfaces seen in canonical outward facing ABC structures [72].

The remaining two highly VX-770-sensitive mutations we identify, R347P and L927P, are close to the narrowest portion of the permeation pathway, thought to constitute the CFTR gate [73,74], and positioned adjacent to transmembrane VX-770 binding site [19] (Figure 5D, Figure 7). Both mutations replace native sidechains with prolines, which impose an unusual geometry on the peptide bond and restrict backbone flexibility [75]. R347, in TM6, is important for maintaining a stable conducting pathway [76,77], while L927 is in the unwound segment of TM8 [78,79], underlying CFTR’s unique channel function [79]. The very low conductance measured after baseline activation in these mutants, underscores the importance of backbone flexibility at both these sites for normal channel opening and/or to maintain an open permeation pathway [20]. We do not currently have a structural model of the fully open CFTR permeation pathway [20,80]. Homology modelling and molecular dynamics have been used to predict a possible fully open conformation [81], confirming that plasticity in TM8 and TM6 are likely involved in regular, ATP-gated channel opening. The large fold-increase in activity seen in the presence of the drug implies that VX-770 binding must allow mutant channels to bypass this requirement. Bound VX-770 might provide local molecular contacts that allow helical rearrangement and opening, via an alternative pathway or to an alternative open conformation.

Thus our results indicate that the VX-770-bound open channel conformation is distinct from the open conformation adopted during normal ATP-driven channel gating. A comparison with the action of G907, an antagonist of the MsbA bacterial ABC exporter (like CFTR, belonging to the Type IV ABC systems [72]) is relevant. High resolution structures reveal that G907 binds at a transmembrane site close to the VX-770 binding site on CFTR. Despite the transmembrane binding site, it causes an allosteric displacement of an NBD, releasing it from the conserved network of interactions generally stabilizing the NBD/TMD ball-and-socket joint [82]. G907 increases anion conductance in cells expressing YFP-CFTR, consistent with its binding favouring an open channel conformation [12]. However, the uncoupled NBD seen in the G907-MsbA complex suggests this open channel conformation might not have canonical, dimerized NBDs. Hydrogen/deuterium exchange studies also suggest that NBD1 uncoupling might be associated with VX-770 binding [83]. Further experiments are needed to test this hypothesis.
Implications for pharmacological research

The main advantage of our assay consists in providing simultaneous measurements of ion channel function and biogenesis. Being able to monitor how compounds or mutations affect both number of channels at the membrane and conductance can allow deconvolution of effects on processing from those influencing gating and permeation of the channel. Describing each CF-causing mutation with two coordinates (ρ and G_{CFTR}) is a more informative way of characterizing mutations (e.g. Figure 6) and how they respond to drugs (e.g. Figure 5D), than using either functional or surface-exposure measures alone. The higher information content of measurements will accelerate discovery in projects investigating molecular mechanisms. For instance, using mutagenesis to scan secondary structure elements or to target residues in putative drug-binding sites, hypotheses can be generated or tested rapidly, and results will pinpoint areas worthy of further investigation by more labour-intensive techniques (e.g. patch-clamp/molecular dynamics).

In addition to providing a valuable tool for basic science investigation, our assay could also have a translational impact. While other functional assays, in more native systems (e.g. short-circuit current measurements on primary human bronchial epithelia, forskolin induced swelling of intestinal organoids [84]), will remain fundamental for pre-clinical testing of CFTR-targeting drugs, our assay can usefully complement these.

First, the assay could be useful for development of better precision medicines for CF treatment. Each of the CFTR variants associated with CF could idiosyncratically affect folding, trafficking, stability, gating dynamics and/or permeation - as well as how these properties respond to modulator drugs. A number of modulators are currently approved or in the development pipeline, and therapies combining multiple correctors and potentiators appear to be most effective, at least for patients carrying the F508del mutation [17,18,85]. However, potentiators can negatively interfere with corrector action, and drug-drug interactions are genotype specific [31,32,55]. Because each mutation, other than F508del, is extremely rare, pre-clinical studies using our assay could provide a first molecular characterization of how individual CFTR variants respond to modulator drugs, and drug combinations, in controlled, simplified conditions. Such data can be very valuable to inform drug development, trial design, and therapy choice, especially for genotypes found only extremely rarely in the population [86].

Second, the assay could help develop very effective dual-activity modulator drugs for CF treatment. Both gating/permeation and processing defects likely stem from impaired folding, at least for the common F508del-CFTR variant [87]. However, practical implementation of distinct potentiator and corrector screens might have so far biased the drug development process by selecting compounds for improvement only in one dimension [88]. Screening using our integrated assay, by maintaining the requirement for simultaneous reduction of both defects, will maximise the chances of identifying ligands capable of redressing the primary folding defect. By shifting therapy closer to the root cause of disease, such a drug would likely reduce the need for prevention/treatment of comorbidities and exacerbations, as well as decrease the likelihood of long-term safety and tolerability problems.

Finally, CFTR plays an important role controlling fluid movement across several epithelia [2,89], and it has been implicated in a number of pathologies, including secretory diarrhoeas [90], COPD [91,92], polycystic kidney disease [93] and others [94,95]. It is likely that, given the complexity of CFTR folding [8,87], many CFTR-targeting compounds will alter its cellular processing (e.g. [10]), suggesting that the assay could also be usefully deployed as part of the development of novel CFTR-targeting compounds for treatment of other diseases, beyond CF.

Experimental Procedures

Construction of the pIRES2-mCherry-YFPCFTR plasmid

The pIRES2-mCherry-YFPCFTR plasmid was obtained with two sequential subcloning steps. First, a 1.727 kb region of pcDNA3.1-YFP-CFTR [25], containing the YFP-coding sequence, was subcloned into pIRES-eGFP-CFTR, a gift from David Gadsby (Rockefeller University), using the NheI and BpiI restriction sites. Subsequently a 0.737 kb region from plasmid pIRES2-YFP-CFTR (Addgene), containing the mCherry-coding segment and part of the IRES, was subcloned into...
the pIRE5-eGFP-YFP-CFTR plasmid using the NolI and BmgBI/BtrI restriction sites. This resulted in the pIRE5-mCherry-YFP-CFTR plasmid, with the IRES2 positioned between the two open reading frames for YFP-CFTR and mCherry.

To generate the rare-mutation panel, point mutations were introduced in the pIRE5-mCherry-YFP-CFTR plasmid using site-directed mutagenesis (Quickchange protocol, Stratagene).

HEK293 cell culture, transfection and incubation

HEK293 cells were maintained in Dulbecco's modified Eagle's medium (DMEM), supplemented with 2 mM L-glutamine, 100 U/ml penicillin and streptomycin, and 10% fetal bovine serum (all Life Technologies). Cells were seeded in poly-D-lysine-coated, black-walled 96-well plates (Costar, Fisher Scientific), and transiently transfected with the pIRE5-mCherry-YFP-CFTR plasmid using Lipofectamine 2000 (Life Technologies), following manufacturer instructions. After transfection, cell plates were returned to the 37 °C incubator for 24 hours. Prior to imaging, plates were incubated for another 24 hours, at 37 °C or 28 °C, in 100 μl DMEM including DMSO (vehicle), 10 μM VX-809, or 10 μM VX-770 plus 10 μM VX-809 (Selleck Chemicals), as indicated. The assay is currently run using 96-well plates but small changes could make it compatible to a 384 well plate format.

Image acquisition

Before imaging, cells were washed twice with 100 μl standard buffer (140 mM NaCl, 4.7 mM KCl, 1.2 mM MgCl2, 5 mM HEPES, 2.5 mM CaCl2,1mM glucose, pH 7.4). The ImageXpress Micro XLS (Molecular Devices), an automated inverted wide-field fluorescence microscope with a temperature-controlled chamber (set to 37 °C or 28 °C, as indicated), was used for image acquisition. Protocols for automated fluid additions, enabled by a robotic arm, were created using MetaXpress software (Molecular Devices). For imaging of YFP-CFTR, a 472 ± 30 nm excitation filter, and a 520 ± 35 nm emission filter were used. Excitation/emission filters at 531 ± 20 nm and 592 ± 20 nm were used for imaging of mCherry. Before image acquisition on each channel, the system allows an adjustment of the laser intensity and exposure time to maximize the signal while not exceeding the linear range.

For localization of CFTR, a 60× objective was used to take 9 16-bit images per well of both fluorophores. To evaluate CFTR function, a 20× objective was used. Two 16-bit images of mCherry were taken, one at the start and one the end of the protocol. In addition, 16-bit images of the YFP fluorescence, were taken at an acquisition frequency of 0.5 Hz. For the monitoring of non-stationary CFTR activity ((A), see below), after 20 s, 50 μl of 300 mM 1 buffer (300 mM NaI, 4.7 mM KCl, 1.2 mM MgCl2, 5 mM HEPES, 2.5 mM CaCl2,1mM glucose, pH 7.4) was added to the standard buffer, so that the final concentration of I− in the extracellular medium was 100 mM. Another 40 s later, a further 50 μl of a 100 mM 1 buffer containing 40 μM forskolin (100 mM NaI, 4.7 mM KCl, 1.2 mM MgCl2, 5 mM HEPES, 2.5 mM CaCl2,1mM glucose, 40 μM forskolin, pH 7.4) was added, so that the final concentration of forskolin in the extracellular medium was 10 μM, while concentration of other components remained unaltered. For the quantification of CFTR activity at steady-state ((B), below), after 20 s of imaging, CFTR was activated, in the absence of extracellular 1−, by addition of 50 μl standard buffer containing activating compounds (forskolin or forskolin + VX-770 both to reach final concentrations of 10 μM). After a further 230 s, by which time CFTR is assumed to be gating at steady state [40], extracellular 1− was raised to 100 mM (final concentration) by adding 50 μl of 1 buffer (as standard buffer with 140 mM NaCl replaced with 400 mM NaI). Images were taken for another 40 s. Activating compounds were also included in the second addition so as not to alter final extracellular concentrations.

Image analysis

Image analysis was automated using MATLAB mathematical computing software (MathWorks). Separate analysis protocols were implemented to estimate CFTR membrane proximity and ion channel function.

CFTR membrane proximity

First, mCherry images were binarized, and basic morphological operations (opening, closing, area opening, and dilation) were carried out to reduce noise. A distance transform with locally imposed minima was used to segment images by means of a watershed transformation, and define
cell boundaries. Cells were removed from analysis if they had an area of under 108 \(\mu m^2 \) or over 5400 \(\mu m^2 \), if they had a major axis length of less than 32.4 \(\mu m \), if the area over perimeter was less than 25 or over 300, and if they were touching the edge of the image. A 1.08 \(\mu m \) band, 10 or 5 pixels wide (depending on the resolution of the image), within the border of each cell was defined as the membrane-proximal zone.

Background was selected by inverting the binarized and morphologically opened mCherry image, after which it was morphologically closed using a large structuring element, to prevent cells from being selected as background. Average background intensity was then subtracted from each pixel, and the YFP and mCherry fluorescence intensity of each cell was normalized to the median YFP and mCherry fluorescence intensities of cells expressing WT-CFTR on the same plate. If the average normalized fluorescence intensity fell below 0 (due to low transfection efficiency and high background noise), cells were removed from analysis.

In order to estimate CFTR membrane proximity for each cell (defined as \(\rho \), see Results), the average normalized YFP fluorescence intensity within the membrane-proximal zone was divided by the average normalized mCherry fluorescence over the entire cell:

\[
\rho = \frac{F_{\text{YFP membrane}}}{F_{\text{mCherry cell}}}
\]

CFTR ion channel function

For assessment of CFTR function, two different protocols were used. For both, cells were selected based on the mCherry fluorescence images that were taken at the beginning and at the end of the protocol. The images were binarized using an adaptive threshold, after which they were dilated and combined to account for possible minor movement of cells during the time course.

(A) Monitoring of non-stationary CFTR activity

The within-cell YFP fluorescence at the time point before addition of \(I^- \) (\(F_{\text{YFPmax}} \)) was used to normalize within-cell YFP fluorescence intensity. The concentration of \(I^- \) inside the cells \(([I^-]_n) \) can be estimated with the following equation [25], in which the binding affinity for \(I^- (K_i) \) to YFP(H148Q/I152L) is set to 1.9 mM [24] and the normalized fluorescence intensity over time \((F(t) = F_{\text{YFP}}/F_{\text{YFPmax}}) \) is determined experimentally.

\[
[I^-]_n = K_i \frac{1 - F(t)}{F(t)}
\]

Data is collected every 2 seconds, so the change \([I^-]_n \) observed at each time point can be estimated and used to calculate the rate of \(I^- \) entry (in mM/s):

\[
\frac{\Delta [I^-]_n}{\Delta t} = \frac{[I^-]_n(t) - [I^-]_n(t-1)}{2 \text{s}}
\]

The maximal observed rate of \(I^- \) entry is used as a measure of cellular anion conductance. To determine whether there was increased CFTR-mediated anion conductance, the maximal rate of \(I^- \) entry after addition of forskolin (which activates CFTR due to increased phosphorylation by cAMP-dependent protein kinase), was compared to the maximal rate of \(I^- \) entry after addition of DMSO (vehicle, negative control).

(B) Quantification of CFTR activity at steady-state

CFTR activation (by addition of 10 \(\mu M \) forskolin with or without 10 \(\mu M \) VX-770, as indicated) was first allowed to reach steady state in the absence of \(I^- \), then quenching of YFP (again expressed as \(F_{\text{YFP}}/F_{\text{YFPmax}} \)) in the 40 s following extracellular \(I^- \) addition was measured. A simple mathematical model was used to fit observed fluorescence quenching, and estimate CFTR conductance as described [40]. Briefly, the model includes four free parameters: CFTR conductance at steady-state \((G_{\text{CFTR}}) \), membrane potential at steady-state, immediately prior to \(I^- \) addition \((V_M) \), and conductance \((G_{\text{trans}}) \) and time constant \((\tau_{\text{trans}}) \) of a transient, endogenous non-CFTR anion conductance. The values of the four parameters were estimated by minimizing the sum of squared residuals obtained by comparing the time course of the observed \(F_{\text{YFP}}/F_{\text{YFPmax}} \) to the proportion of anion-free YFP chromophore predicted by the model (also normalized to the time point before \(I^- \) addition). However, when the quenching time course was too fast and did not provide enough information to uniquely identify all four parameters, the value of the latter two parameters \((G_{\text{trans}} \text{ and } \tau_{\text{trans}}) \) was constrained to the average values obtained with negative controls, and only \(G_{\text{CFTR}} \) and \(V_M \) were left free to vary [40]. Experimental data are well described by the model, suggesting that YFP chromophore molecules, whether fused to CFTR inserted in intracellular
vesicles or in the plasma membrane, behave as a single population.

For both protocol (A) and (B) the value obtained from analysis of the observed $F_{YFP}/F_{YFP_{max}}$ time curves (G_{CFTR} and $(\Delta I/\Delta t)$ respectively) was corrected to account for variations in transfection efficiency. Thus, the metric reporting ion channel function was normalised for each condition/genotype by dividing by the mean $F_{mCherry}$ within the cell selection (which, in turn, was normalized to $F_{mCherry}$ measured for WT in the same plate).

Statistical analysis

To determine whether the observed differences in ρ, $(\Delta I/\Delta t)$ or G_{CFTR} resulting from experimental manipulation and/or mutations were statistically significant, we performed either independent or paired t-tests (pairing different genotypes/conditions measured in the same multi-well plate). When required, either a Bonferroni or a Benjamini-Hochberg correction was applied to adjust for multiple comparisons. Data in graphs represent mean ± SEM, and the significance level was pre-specified as $\alpha = 0.05$. Statistical analysis was carried out using MATLAB (MathWorks), SigmaPlot (Systat Software), SPSS (IBM), or Excel (Microsoft).

Data availability statement

Most data is presented in the main-article Figures. In addition, the Supporting Information includes: a comparison between our results for the rare-mutation panel and published data (Figure S1); information on the statistical analyses performed (Tables S2-S5, S7, S8); paired t-tests plots and distributions of log$_{10}$ values for each mutant in the rare-mutation panel (Figure S6).

Analysis code and example images to run it on are provided for readers. All the necessary instructions and files can be found at: https://github.com/stellaprins/CFTRimg

All remaining data is contained within the manuscript.
Non-standard Abbreviations

- **ABC**: ATP-binding cassette
- **CF**: Cystic Fibrosis
- **CFTR**: Cystic Fibrosis Transmembrane Conductance Regulator
- **Δ[I]_in/Δt**: maximal rate of I\(^{-}\) influx
- **d[I]/dt_norm**: maximal rate of I\(^{-}\) influx normalised by using within cell \(F_{\text{mCherry}}\)
- **FRT**: Fischer Rat Thyroid
- **\(F_{\text{mCherry cell}}\)**: average normalized mCherry fluorescence intensity over the entire cell
- **\(F_{\text{YFP cell}}\)**: average normalized YFP fluorescence intensity over the entire cell
- **\(F_{\text{YFP membrane}}\)**: average normalized YFP fluorescence intensity within the membrane-proximal zone
- **\(G_{\text{CFTR}}\)**: CFTR conductance
- **\(G_{\text{CFTR, norm}}\)**: CFTR conductance normalised by using within cell \(F_{\text{mCherry}}\)
- **\(G_{\text{trans}}\)**: transient anion conductance
- **IRES**: internal ribosome entry site
- **NBD**: nucleotide binding domain
- **\(P_{O}\)**: open probability
- **\(\rho\)**: CFTR membrane proximity, as defined in this paper
- **SSR**: sum of squared residuals
- **\(\tau_{\text{trans}}\)**: time constant of the transient anion conductance
- **TM**: transmembrane helix
- **TMD**: transmembrane domain
- **\(V_{M}\)**: membrane potential, after steady state activation of CFTR
- **WT**: wild type
- **YFP**: yellow fluorescent protein
Acknowledgements
We thank Dr William Andrews, Central Molecular Laboratory, UCL for help with molecular biology. We are also grateful to Sam Ranasinghe and staff at the UCL Confocal Imaging Facility, Division of Biosciences, for their help with the temperamental equipment.

Funding and additional information
EL was supported by grant 15UCL04, funded by the Sparks charity and Cystic Fibrosis Trust. SP was supported by grant SRC005 funded by the Cystic Fibrosis Trust. CH was supported by EPSRC grant EP/F500351/1, and ACS was awarded a British Pharmacological Society Vacation Studentship.

Conflicts of interest
The authors declare that they have no conflicts of interest with the contents of this article.
References

1. Csanády, L., Vergani, P., and Gadsby, D. C. (2019) STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev. 99, 707-738
2. Frizzell, R. A., and Hanrahan, J. W. (2012) Physiology of Epithelial Chloride and Fluid Secretion. Cold Spring Harbor Perspectives in Medicine 2, a009563
3. Organization, W. H. (2017) Diarroheal Disease.
4. Thiagarajah, J. R., and Verkman, A. S. (2013) Chloride channel-targeted therapy for secretory diarrheas. Current Opinion in Pharmacology 13, 888-894
5. Elborn, J. S. (2016) Cystic fibrosis. The Lancet 388, 2519-2531
6. Rommens, J. M., Iannuzzi, M. C., Kerem, B.-s., Drumm, M. L., Melmer, G., Dean, M.et al., . . . Collins, F. S. (1989) Identification of the Cystic Fibrosis Gene: Chromosome Walking and Jumping. Science 245, 1059-1065
7. Riordan, J. R., Rommens, J. M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z.et al., . . . Chou, J. L. (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066-1073
8. Farinha, C. M., and Canato, S. (2017) From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking. cell Mol Life Sci 74, 39-55
9. Kim, S. J., and Skach, W. R. (2012) Mechanisms of CFTR folding at the endoplasmic reticulum. Front Pharmacol. 3, 201
10. Clunes, L. A., Davies, C. M., Coakley, R. D., Aleksandrov, A. A., Henderson, A. G., Zeman, K. Let al., . . . Tarran, R. (2012) Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. FASEB J 26, 533-545
11. Cil, O., Phuan, P.-W., Gillespie, A. M., Lee, S., Tradrantip, L., Yin, J.et al., . . . Verkman, A. S. (2017) Benzopyrimido-pyrralo-oxazine-dione CFTR inhibitor (R)-BPO-27 for antisecretory therapy of diarrheas caused by bacterial enterotoxins. The FASEB Journal 31, 751-760
12. De Jonge, H., Ardelean, M., Bijvelds, M., and Vergani, P. (2020) CFTR inhibitors to tackle secretory diarrhoeas: molecular and cellular mechanisms. FEBS Lett, submitted
13. Van Goor, F., Hadida, S., Grootenhuis, P. D. J., Burton, B., Cao, D., Neuberger, T.et al., . . . Negulescu, P. (2009) Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci USA 106, 18825-18830
14. Ramsey, B. W., Davies, J., McElvaney, N. G., Tullis, E., Bell, S. C., Drevinek, P.et al., . . . Elborn, J. S. (2011) A CFTR Potentiator in Patients with Cystic Fibrosis and the G551D Mutation. N. Engl. J. Med. 365, 1663-1672
15. Van Goor, F., Hadida, S., Grootenhuis, P. D. J., Burton, B., Stack, J. H., Straley, K. S.et al., . . . Negulescu, P. A. (2011) Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci USA 108, 18843-18848
16. Wainwright, C. E., Elborn, J. S., Ramsey, B. W., Marigowda, G., Huang, X., Cipolli, M.et al., . . . Boyle, M. P. (2015) Lumacaftor–Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N. Engl. J. Med. 373, 220-231
17. Middleton, P. G., Mall, M. A., Drevinek, P., Lands, L. C., McKone, E. F., Polineni, D.et al., . . . Jain, R. (2019) Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N Engl J Med 381, 1809-1819
18. Heijerman, H. G. M., McKone, E. F., Downey, D. G., Van Braeckel, E., Rowe, S. M., Tullis, E.et al., . . . Majoor, C. (2019) Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomised, phase 3 trial. The Lancet 394, 1940-1948
19. Liu, F., Zhang, Z., Levit, A., Levring, J., Trouhar, K. K., Shoichet, B. K., and Chen, J. (2019) Structural identification of a hotspot on CFTR for potentiation. Science 364, 1184-1188
20. Zhang, Z., Liu, F., and Chen, J. (2018) Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc Natl Acad Sci USA 115, 12757-12762
21. Botelho, H. M., Uliyakina, I., Awatade, N. T., Proenca, M. C., Tischer, C., Sirianant, L.et al., . . .
Amaral, M. D. (2015) Protein Traffic Disorders: an Effective High-Throughput Fluorescence Microscopy Pipeline for Drug Discovery. Sci. Rep. 5
22. Phuan, P.-W., Veit, G., Tan, J., Roldan, A., Finkbeiner, W. E., L. Lukacs, G., and Verkman, A. S.
(2014) Synergy-Based Small-Molecule Screen Using a Human Lung Epithelial Cell Line Yields
ΔF508-CFTR Correctors That Augment VX-809 Maximal Efficacy. Mol Pharmacol 86, 42-51
23. Billet, A., Froux, L., Hanrahan, J. W., and Becq, F. (2017) Development of Automated Patch Clamp
Technique to Investigate CFTR Chloride Channel Function. Front Pharmacol 8
24. Galietta, L., Haggie, P., and Verkman, A. (2014) Synergy-Based Small-Molecule Screen Using a Human Lung Epithelial Cell Line Yields
ΔF508-CFTR Correctors That Augment VX-809 Maximal Efficacy. Mol Pharmacol 86, 42-51
25. Langron, E., Simone, M. I., Delalande, C. M. S., Reymond, J.-L., Selwood, D. L., and Vergani, P.
(2017) Improved fluorescence assays to measure the defects associated with F508del-CFTR allow
identification of new active compounds. Br J Pharmacol 174, 525-539
26. Denning, G. M., Anderson, M. P., Amara, J. F., Marshall, J., Smith, A. E., and Welsh, M. J. (1992)
Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 358, 761-764
27. Rennolds, J., Boyaka, P. N., Bellis, S. L., and Cormet-Boyaka, E. (2008) Low temperature induces
the delivery of mature and immature CFTR to the plasma membrane. Biochem Biophys Res Commun. 366, 1025-1029
28. Wang, X., Koulov, A. V., Kellner, W. A., Riordan, J. R., and Balch, W. E. (2008) Chemical and
Biological Folding Contribute to Temperature-Sensitive ΔF508 CFTR Trafficking. Traffic 9, 1878-1893
29. He, L., Kota, P., Aleksandrov, A. A., Cui, L., Jensen, T., Dokholyan, N. V., and Riordan, J. R.
(2013) Correctors of deltaF508 CFTR restore global conformational maturation without thermally
stabilizing the mutant protein. FASEB J 27, 536-545
30. Okiyoneda, T., Veit, G., Dekkers, J. F., Bagdany, M., Soya, N., Xu, H.et al., . . . Lukacs, G. L.
(2013) Mechanism-based corrector combination restores deltaF508-CFTR folding and function.
Nat Chem Biol 9, 444-454
31. Cholon, D. M., Quinney, N. L., Fulcher, M. L., Esther, C. R., Das, J., Dokholyan, N. V.et al., . . .
Gentzsch, M. (2014) Potentiator ivacaftor abrogates pharmacological correction of deltaF508 CFTR in cystic fibrosis. Sci Transl Med 6, 246ra296
32. Veit, G., Avramescu, R. G., Perdomo, D., Phuan, P.-W., Bagdany, M., Apaja, P. M.et al., . . .
Lukacs, G. L. (2014) Some gating potentiators, including VX-770, diminish F508del-CFTR
functional expression. Sci Transl Med 6, 246ra297
33. Farinha, C. M., King-Underwood, J., Sousa, M., Correia, Ana R., Henriques, Barbara J., Roxo-
Rosa, M.et al., . . . Amaral, Margarida D. (2013) Revertants, Low Temperature, and Correctors
Reveal the Mechanism of F508del-CFTR Rescue by VX-809 and Suggest Multiple Agents for Full
Correction. Chem Biol. 20, 943-955
34. Thibodeau, P. H., Richardson, J. M., Wang, W., Millen, L., Watson, J., Mendoza, J. L.et al., . . .
Thomas, P. J. (2010) The Cystic Fibrosis-causing Mutation deltaF508 Affects Multiple Steps in
Cystic Fibrosis Transmembrane Conductance Regulator Biogenesis. J Biol Chem 285, 35825-
35835
35. Galietta, L., Jayaraman, S., and Verkman, A. (2001) Cell-based assay for high-throughput
quantitative screening of CFTR chloride transport agonists. Am J Physiol Cell Physiol. 281, C1734-
C1742
36. Pedemonte, N., Sonawane, N. D., Taddei, A., Hu, J., Zegarra-Moran, O., Suen, Y. F.et al., . . .
Verkman, A. S. (2005) Phenylglycine and Sulfonamide Correctors of Defective [Delta]F508 and
G551D Cystic Fibrosis Transmembrane Conductance Regulator Chloride-Channel Gating. Mol
Pharmacol 67, 1797-1807
37. Pedemonte, N., Lukacs, G. L., Du, K., Caci, E., Zegarra-Moran, O., Galietta, L. J. V., and Verkman, A. S. (2005) Small-molecule correctors of defective [Delta]F508-CFTR cellular processing identified by high-throughput screening. *J. Clin. Invest.* **115**, 2564-2571
38. Yang, H., Shelat, A. A., Guy, R. K., Gopinath, V. S., Ma, T., Du, K.et al., . . . Verkman, A. S. (2003) Nanomolar Affinity Small Molecule Correctors of Defective [Delta]F508-CFTR Chloride Channel Gating. *J. Biol. Chem.* **278**, 35079-35085
39. Ma, T., Vetivel, L., Yang, H., Pedemonte, N., Zegarra-Moran, O., Galietta, L. J. V., and Verkman, A. S. (2002) High-affinity Activators of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Chloride Conductance Identified by High-throughput Screening. *J. Biol. Chem.* **277**, 37235-37241
40. Langron, E., Prins, S., and Vergani, P. (2018) Potentiation of the cystic fibrosis transmembrane conductance regulator by VX-770 involves stabilization of the pre-hydrolytic, O1 state. *Br J Pharmacol* **175**, 3990-4002
41. Shaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., and Tsien, R. Y. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. *Nat Biotechnol.* **22**, 1567
42. Van Goor, F., Yu, H., Burton, B., and Hoffman, B. J. (2014) Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. *J Cyst Fibros* **13**, 29-36
43. Sosnay, P. R., Siklosi, K. R., Van Goor, F., Kaniecki, K., Yu, H., Sharma, N.et al., . . . Cutting, G. R. (2013) Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. *Nat Genet* **45**, 1160-1167
44. Yu, H., Burton, B., Huang, C.-J., Worley, J., Cao, D., Johnson Jr, J. P.et al., . . . Van Goor, F. (2012) Ivacaftor potentiating of multiple CFTR channels with gating mutations. *J Cyst Fibros* **11**, 237-245
45. Wang, Y., Cai, Z., Gosling, M., and Sheppard, D. N. (2018) Potentiation of the cystic fibrosis transmembrane conductance regulator Cl− channel by ivacaftor is temperature independent. *Am J Physiol Lung Cell Mol Physiol* **315**, L846-L857
46. Kopeikin, Z., Yuksek, Z., Yang, H. Y., and Bompadre, S. G. (2014) Combined effects of VX-770 and VX-809 on several functional abnormalities of F508del-CFTR channels. *Journal of Cystic Fibrosis* **13**, 508-514
47. Dalemans, W., Barbruy, P., Champigny, G., Jallat, S., Jallat, S., Dott, K.et al., . . . Lazdunski, M. (1991) Altered chloride ion channel kinetics associated with the [Delta]F508 cystic fibrosis mutation. *Nature* **354**, 526-528
48. Liu, J., Bihler, H., Farinha, C. M., Atwater, N. T., Romão, A. M., Mercadante, D.et al., . . . Sheppard, D. N. (2018) Partial rescue of F508del-cystic fibrosis transmembrane conductance regulator channel gating with modest improvement of protein processing, but not stability, by a dual-acting small molecule. *Br J Pharmacol* **175**, 1017-1038
49. Vais, H., Gao, G.-P., Yang, M., Tran, P., Louboutin, J.-P., Somanathan, S.et al., . . . Reenstra, W. W. (2004) Novel adenoviral vectors coding for GFP-tagged wtCFTR and ΔF508-CFTR: characterization of expression and electrophysiological properties in A549 cells. *Pflügers Archiv* **449**, 278-287
50. Moyer, B. D., Lofting, J., Schwiebert, E. M., Lofting-Cueni, D., Halpin, P. A., Karlson, K. H.et al., . . . Stanton, B. A. (1998) Membrane Trafficking of the Cystic Fibrosis Gene Product, Cystic Fibrosis Transmembrane Conductance Regulator, Tagged with Green Fluorescent Protein in Madin-Darby Canine Kidney Cells. *J. Biol. Chem.* **273**, 21759-21768
51. Granio, O., Norez, C., Ashbourne Excoffon, K. J. D., Karp, P. H., Lusky, M., Becq, F.et al., . . . Hong, S.-S. (2007) Cellular Localization and Activity of Ad-Delivered GFP-CFTR in Airway Epithelial and Tracheal Cells. *Am J Respir Cell Mol Biol* **37**, 631-639
52. Ban, H., Inoue, M., Griesenbach, U., Munkonge, F., Chan, M., Iida, A.et al., . . . Hasegawa, M. (2007) Expression and maturation of Sendai virus vector-derived CFTR protein: functional and biochemical evidence using a GFP-CFTR fusion protein. *Gene Ther* **14**, 1688-1694
53. Han, S. T., Rab, A., Pellicore, M. J., Davis, E. F., McCague, A. F., Evans, T. A.et al., . . . Cutting, G. R. (2018) Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators. JCI Insight 3
54. Clancy, J. P., Rowe, S. M., Accurso, F. J., Aitken, M. L., Amin, R. S., Ashlock, M. A.et al., . . . Konstan, M. W. (2012) Results of a phase Ia study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax 67, 12-18
55. Meng, X., Wang, Y., Wang, X., Wrennall, J. A., Rimington, T. L., Li, H.et al., . . . Sheppard, D. N. (2017) Two Small Molecules Restore Stability to a Subpopulation of the Cystic Fibrosis Transmembrane Conductance Regulator with the Predominant Disease-causing Mutation. J Biol Chem 292, 3706-3719
56. Csanády, L., and Töröcsik, B. (2019) Cystic fibrosis drug ivacaftor stimulates CFTR channels at picomolar concentrations. eLife 8, e46450
57. Matthes, E., Goepp, J., Carlile, G. W., Luo, Y., Dejgaard, K., Billet, A.et al., . . . Hanrahan, J. W. (2016) Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VX-770 (ivacaftor). British Journal of Pharmacology 173, 459-470
58. van Willigen, M., Vonk, A. M., Yeoh, H. Y., Kruisselbrink, E., Kleizen, B., van der Ent, C. Ke.t al., . . . van der Sluijs, P. (2019) Folding–function relationship of the most common cystic fibrosis-causing CFTR conductance mutants. Life Sci Alliance 2, e201800172
60. Ehrhardt, A., Chung, W. J., Pyle, L. C., Wang, W., Nowotarski, K., Mulvihill, C. M.et al., . . . Sorscher, E. J. (2016) Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop. J Biol Chem 291, 1854-1865
61. Hildebrandt, E., Ding, H., Mulky, A., Dai, Q., Aleksandrov, A., Bajrami, B.et al., . . . Kappes, J. (2015) A Stable Human-Cell System Overexpressing Cystic Fibrosis Transmembrane Conductance Regulator Recombinant Protein at the Cell Surface. Mol Biotechnol 57, 391-405
62. Domingue, J. C., Ao, M., Sarathy, J., George, A., Alrefai, W. A., Nelson, D. J., and Rao, M. C. (2014) HEK-293 cells expressing the cystic fibrosis transmembrane conductance regulator (CFTR): a model for studying regulation of Cl− transport. Physiological Reports 2, e12158
63. Lazrak, A., Fu, L., Bali, V., Bartoszewski, R., Rab, A., Havasi, V.et al., . . . Bebok, Z. (2013) The silent codon change I507<--ATT contributes to the severity of the deltaF508 CFTR channel dysfunction. FASEB J 27, 4630-4645
64. Raju, S. V., Lin, V. Y., Liu, L., McNicholas, C. M., Karki, S., Sloane, P. A.et al., . . . Rowe, S. M. (2017) The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke. Am J Respir Cell Mol Biol. 56, 99-108
65. Pedemonte, N., Tomati, V., Sondo, E., and Galietta, L. J. V. (2010) Influence of cell background on pharmacological rescue of mutant CFTR. Am J Physiol Cell Physiol. 298, C866-C874
66. Van Goor, F., Straley, K. S., Cao, D., Gonzalez, J., Hadida, S., Hazlewood, A.et al., . . . Negulescu, P. (2006) Rescue of [Delta]F508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol 290, L1117-1130
67. Cui, G., Stauffer, B. B., Imhoff, B. R., Rab, A., Hong, J. S., Sorscher, E. J., and McCarty, N. A. (2019) VX-770-mediated potentiation of numerous human CFTR disease mutants is influenced by phosphorylation level. Sci Rep 9, 13460
68. Phuan, P.-W., Son, J.-H., Tan, J.-A., Li, C., Musante, I., Zlock, L.et al., . . . Verkman, A. S. (2018) Combination potentiator (‘co-potentiator’) therapy for CF caused by CFTR mutants, including N1303K, that are poorly responsive to single potentiators. Journal of Cystic Fibrosis
69. DeStefano, S., Gees, M., and Hwang, T.-C. (2018) Physiological and pharmacological characterization of the N1303K mutant CFTR. Journal of Cystic Fibrosis
70. Zhang, Z., and Chen, J. (2016) Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator. Cell 167, 1586-1597.e1589
71. Vergani, P., Lockless, S. W., Nairn, A. C., and Gadsby, D. C. (2005) CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Nature 433, 876-880
72. Thomas, C., and Tampé, R. (2020) Structural and Mechanistic Principles of ABC Transporters. Annual Review of Biochemistry 89, 605-636
73. El Hiani, Y., and Linsdell, P. (2010) Changes in Accessibility of Cytoplasmic Substances to the Pore Associated with Activation of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. J Biol Chem 285, 32126-32140
74. Gao, X., and Hwang, T.-C. (2015) Localizing a gate in CFTR. Proc Natl Acad Sci USA 112, 2461-2466
75. Cui, G., Freeman, C. S., Knotts, T., Prince, C. Z., Kuang, C., and McCarty, N. A. (2013) Two Salt Bridges Differentially Contribute to the Maintenance of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channel Function. J Biol Chem 288, 1751-1754
76. Liu, F., Zhang, Z., Csanády, L., Gadsby, D. C., and Chen, J. (2017) Molecular Structure of the Human CFTR Ion Channel. Cell 169, 85-95.e88
77. Byrnes, L. J., Xu, Y., Qiu, X., Hall, J. D., and West, G. M. (2018) Sites associated with Kalydeco binding on human Cystic Fibrosis Transmembrane Conductance Regulator revealed by Hydrogen/Deuterium Exchange. Scientific Reports 8, 4664
78. Dekkers, J. F., Berkers, G., Kruisselbrink, E., Vonk, A., de Jonge, H. R., Janssens, H. M.et al., . . . Beekman, J. M. (2016) Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Science Translational Medicine 8, 344ra384-344ra384
79. Holguin, F. (2018) Triple CFTR Modulator Therapy for Cystic Fibrosis. N. Engl. J. Med. 379, 1671-1672
80. Ratner, M. (2017) FDA deems in vitro data on mutations sufficient to expand cystic fibrosis drug label. Nature Biotechnology 35, 606
81. Lukacs, G. L., and Verkman, A. S. (2012) CFTR: folding, misfolding and correcting the [delta]F508 conformational defect. Trends Mol Med. 18, 81-91
82. Rowe, S. M., and Verkman, A. S. (2013) Cystic Fibrosis Transmembrane Regulator Correctors and Potentiators. Cold Spring Harb Perspect Med 3, a009761
83. Saint-Crieg, V., and Gray, M. A. (2017) Role of CFTR in epithelial physiology. Cellular and Molecular Life Sciences 74, 93-115
84. Thiagarajah, J. R., Donowitz, M., and Verkman, A. S. (2015) Secretory diarrhoea: mechanisms and emerging therapies. Nat Rev Gastroenterol Hepatol 12, 446-457
91. Solomon, G. M., Fu, L., Rowe, S. M., and Collawn, J. F. (2017) The therapeutic potential of CFTR modulators for COPD and other airway diseases. *Current Opinion in Pharmacology* **34**, 132-139

92. Zhao, R., Liang, X., Zhao, M., Liu, S.-L., Huang, Y., Idell, S.et al., . . . Ji, H.-L. (2014) Correlation of Apical Fluid-Regulating Channel Proteins with Lung Function in Human COPD Lungs. *PLOS ONE* **9**, e109725

93. Li, H., Yang, W., Mendes, F., Amaral, M. D., and Sheppard, D. N. (2012) Impact of the cystic fibrosis mutation F508del-CFTR on renal cyst formation and growth. *Am J Physiol Renal Physiol.* **303**, F1176-F1186

94. Zhang, J., Wang, Y., Jiang, X., and Chan, H. C. (2018) Cystic fibrosis transmembrane conductance regulator—emerging regulator of cancer. *Cellular and Molecular Life Sciences* **75**, 1737-1756

95. Solymosi, E. A., Kaestle-Gembardt, S. M., Vadász, I., Wang, L., Neye, N., Chupin, C. J. A.et al., . . . Kuebler, W. M. (2013) Chloride transport-driven alveolar fluid secretion is a major contributor to cardiogenic lung edema. *Proc Natl Acad Sci USA* **110**, E2308-E2316

96. Lin, S.-C., Karoly, E. D., and Taatjes, D. J. (2013) The human ΔNp53 isoform triggers metabolic and gene expression changes that activate mTOR and alter mitochondrial function. *Aging Cell* **12**, 863-872
Figures and Figure legends

Figure 1
Quantifying CFTR membrane proximity (A) Image analysis of individual representative HEK293 cells transfected with pIRES2-mCherry-YFP-WT-CFTR (left), and pIRES2-mCherry-YFP-F508del-CFTR (right). Upper panels: boundary delimiting cell (white) from non-cell (black) is obtained from mCherry image (centre). CFTR cellular localization is obtained from YFP image (right). Scale bar: 5 μm. Lower panels: average mCherry fluorescence intensity (F_{mCherry}, red dashed line, AU: arbitrary units), and average YFP fluorescence intensity (F_{YFP}, solid yellow line), as a function of the distance from cell border. Membrane proximity, ρ, is defined as

$$
\rho = \frac{F_{\text{YFP membrane}}}{F_{\text{mCherry cell}}}
$$

where $F_{\text{YFP membrane}}$ is the average fluorescence intensity within the ‘membrane proximal zone’, set between 0 and 5 pixels from the cell border (vertical dotted lines). For the representative cells shown WT: $\rho = 1.60$; F508del: $\rho = 0.25$. (B) Probability distribution of $\log_{10} \rho$ for cells expressing YFP-WT-CFTR (light grey), and YFP-F508del-CFTR (dark grey), incubated at 37 °C. (C) Correlation between the ρ metric and published data on complex glycosylation. The latter were obtained from quantifying the ratio (C-band / (C-band + B-band) in Western blots, from FRT cell lines stably expressing missense mutation CFTR variants. Vertical green lines relate our rare-mutations panel with data from [42,44] ($r^2=0.53$); horizontal blue lines with [43] ($r^2=0.74$); cyan plus signs with averaged values from the latter two datasets ($r^2=0.67$). Solid and dotted cyan lines are regression line and 95% confidence intervals, respectively, for the average dataset.
Figure 2
Quantifying rescue of F508del-CFTR membrane proximity. Effects of chronic treatment with 10 µM VX-809 (A), R1070W rescue (B), and chronic treatment with 10 µM VX-809 ± 10 µM VX-770 (C), on \(\log_{10} \rho \) at 37 °C (left, red) and 28 °C (right, blue). Conditions of final incubation were maintained during image acquisition. The probability distributions in the panels on the left, contain \(\log_{10} \rho \) measurements from thousands of cells, pooled from all experiments. For statistical analysis, mean \(\log_{10} \rho \) values determined in independent experiments (individual 96-well plates), and paired per plate, were used (displayed in panels on the right, line connecting measurements from the same plate, * P < 0.05; ** P < 0.01; *** P < 0.001, adjusted P-values after Bonferroni correction) (D) Before imaging, plates were incubated at 37 °C or 28 °C for 24 hours. For each plate, the difference between mean \(\log_{10} \rho \) for WT-CFTR and F508del-CFTR was calculated (WT(\(\log_{10} \rho \)) - F508del(\(\log_{10} \rho \)), grey dots). Red (37 °C) and blue (28 °C) lines show mean ± SEM, calculated from 21(37 °C) and 25(28 °C) within-plate difference estimates.
Figure 3
Rescue of F508del-CFTR ion channel function. (A-D) Quenching of YFP fluorescence in HEK293 cells expressing WT-CFTR (A), expressing F508del-CFTR chronically (24 h) treated with vehicle only, DMSO (B), or with VX-809 (C), or expressing R1070W/F508del-CFTR (DMSO only chronic treatment) (D). F_{YFP}/F_{YFPmax}: observed YFP fluorescence, normalized using fluorescence at the time point before I^{-} addition. For more information on statistical analysis see Supporting Tables S3 and S4. Prior to imaging plates were incubated for 24 hours, at 37 °C (red) or 28 °C (blue). This final incubation temperature was maintained throughout image acquisition. At time point 0 s I^{-} was added to the extracellular medium. At 40 s (dotted line) forskolin and, where indicated, VX-770 (acute, a) was added, both to a final concentration of 10 µM. (E) The maximal rate of I^{-} entry (normalized by using the $F_{mCherry}$ within cell, $d[I^{-}]/dt_{norm}$) is used to summarize CFTR function for genotypes and conditions shown in (A-D).
Figure 4
Rare CF-mutation profiling. (A) Mean ρ (n ≥ 9) of all mutations in the panel. Blue and red dotted lines indicate mean ρ for WT- and F508del-CFTR, respectively. For ρ distributions, mean ρ and n values for each mutant see Supporting Figure S6 and Supporting Table S4. (B) Observed YFP fluorescence quenching time course (y axis, measured in relative fluorescence units, RFU, is $F_{\text{YFP}}/F_{\text{YFPmax}}$: observed YFP fluorescence, normalized using fluorescence at the time point before Iγ addition) after activation with DMSO (grey diamonds), or 10 µM forskolin (empty coloured diamonds), or 10 µM forskolin + 10 µM VX-770 (a) (filled coloured diamonds) for selected mutations. Solid lines show predicted change in proportion of anion-free YFP. For estimated parameters G_{CFTR}, V_m, G_{trans} and τ_{trans} see Supporting Table S9. WT-CFTR quenching in 10 µM forskolin (dark blue empty circles, observed, and dotted line, fit) shown for comparison. (C) CFTR conductance of rare-mutation panel after activation with 10 µM forskolin (coloured bars) or vehicle control (DMSO, grey bars). $n \geq 3$. G_{CFTR} obtained from fitting of quenching time-course for each mutant (as shown in B) was normalized using the mean within cell mCherry fluorescence for that mutant, measured with respect to the corresponding metric obtained for WT-CFTR on the same plate. For statistical analysis see Supporting Table S7. (D) Potentiation of rare-mutation panel by VX-770. Grey bars show values following activation with 10 µM forskolin alone, coloured bars with further addition of 10 µM VX-770 (a). For statistical analysis see Supporting Table S8.
Figure 5
Inferring permeation/gating characteristics. (A) Dose-response plot of increase in conductance (left axis, coloured symbols, black fit line) and membrane proximity (right axis, grey-filled symbols, grey fit line) following incubation of F508del-CFTR with increasing concentrations of VX-809. Lines represent fits to the Hill equation (4 parameters, n_H constrained to 1, see [25]). Only two measurements were taken at each concentration, but the EC_{50} values we obtain (114 nM ± 66 nM and 316 nM ± 238 nM, for G_{CFTR} and \rho, respectively) are not dissimilar from published values [15,22]. (B) Relationship between normalized CFTR conductance and membrane proximity in cells expressing F508del-CFTR with no correction (blue stars) or incubated with increasing concentrations of VX-809 (1 nM to 10 \mu M, colour-coded as in panel A), all after activation with 10 \mu M forskolin and 10 \mu M VX-770 (a). F508del-CFTR incubation and measurements were at 28 °C. Green dotted line shows linear regression using only F508del-CFTR data points on graph (slope = 281.7, constant = -63.7, resulting in an x-axis intercept at \rho = 0.23). Mean value for WT-CFTR activated with 10 \mu M forskolin alone, large dark blue empty circle, is shown for reference (from (D), see also Figure 6). (C) Relationship between maximal rate of I influx and \rho in HEK293 cells expressing WT-CFTR, F508del-CFTR, and F508del/R1070W-CFTR, at 37 °C (red symbols) and 28 °C (blue symbols). Empty symbols indicate CFTR activation with 10 \mu M forskolin alone; solid symbols indicate further acute potentiation with 10 \mu M VX-770. Dotted line: linear interpolation between data obtained at 37 °C for uncorrected F508del-CFTR (used as an empirical measure of minimal membrane proximity) and WT-CFTR, both without acute VX-770 potentiation; slope = 0.284, constant = -0.071, resulting in an x-axis intercept at \rho = 0.25. (D) Mutants with largest fold potentiation by VX-770 (ratio between conductance obtained in 10 \mu M forskolin + 10 \mu M VX-770 (a) over that in 10 \mu M forskolin alone > 20). Empty diamonds indicate baseline activation with 10 \mu M forskolin alone, solid diamonds indicate activation following acute potentiation with 10 \mu M forskolin + 10 \mu M VX-770 (a).
Figure 6
Relationship between baseline $G_{\text{CFTR_norm}}$ (10 μM forskolin) and ρ for rare-mutation panel. Colours as in Figure 4. WT-CFTR is highlighted as a large, dark blue, empty circle. The dark blue dotted line (slope = 314.1, constant= -72.3) shows linear interpolation between WT data point and x-axis intercept set at ρ =0.23, as obtained in Figure 5B. Inset shows expanded axes view of area indicated by black rectangular outline ($0 < G_{\text{CFTR_norm}} < 2.5$ nS; $0.22 < \rho < 0.46$).
Figure 7
Mapping VX-770 sensitivity on cryo-EM structures. (A) Cartoon representation (cross-eye stereo) of phosphorylated, ATP-bound human CFTR (6MSM [20]), with atoms of missense mutations included in the panel highlighted as spheres. Colours indicate degree of fold-potentiation by VX-770. TMD1-NBD1 in light grey; TMD2-NBD2 in dark grey. Fine horizontal lines show approximate position of membrane boundary. (B) Only missense mutation sites with most efficacious VX-770 potentiation are shown. Magenta sticks show position of bound VX-770 in 6O2P structure [19]. In cartoon representation, 6O2P and 6MSM are virtually identical (RMSD 0.14 Å, [19]) Mutation-site residues are colour-coded as in Fig. 4 (moving from cytosol to extracellular): G1349, light green; N1303, dark blue; H1054, orange; G178, forest; H1085, light green; R347, forest right; L927 forest left.
Fluorescence assay for simultaneous quantification of CFTR ion-channel function and plasma membrane proximity

Supporting Information

Stella Prins¹, Emily Langron¹, Cato Hastings², Emily J. Hill¹, Andra C. Stefan³, Lewis D. Griffin² and Paola Vergani¹*
¹ Department of Neuroscience, Physiology and Pharmacology
² CoMPLEX
³ Natural Sciences

University College London
Gower Street
WC1E 6BT London UK
Supporting Figure S1

Rare mutation panel characterization – comparison between results obtained in this study and published datasets. Comparison between ion channel function vs. short-circuit Ussing Chamber measurements (A, C, E, G) and membrane density vs. immunoblot studies (B, D, F, H). (A-D) Measurements obtained in this study are compared to those reported in Yu et al. J Cyst Fibros. 11: 237-45 (2012) and Van Goor et al. J Cyst Fibros. 13, 29-36 (2014). (E-H). Comparisons between this study vs. Sosnay et al. Nat Genet. 45, 1160-1167 (2013). Note that different sets of genotypes were included in the different studies, and individual genotypes are not shown in the same colour in Figures 4, S1 (A-D) and S1 (E-H). For display purposes, the two conductance and the ρ axes are shown with logarithmic scaling. With these transformations, squared correlation coefficients obtained by simple linear regression (r^2) are: 0.61 (A), 0.53 (B), 0.58 (E) and 0.74 (F). Using untransformed measurements, the corresponding r^2 values are: 0.61 (A), 0.49 (B), 0.68 (E) and 0.66 (F).
Supporting Table S2 Paired Sample t-tests comparing the log\(_{10}\rho\) of F508del-CFTR or F508del/R1070W-CFTR after different chronic incubation conditions. An independent t-test was performed to assess the significance of the difference in log\(_{10}\rho\) of WT-CFTR and F508del-CFTR at 37 °C and 28 °C. P-values were Bonferroni adjusted to account for multiple comparisons.

	Mean (SD)	SD for mean difference	df	T value	Adjusted P value
37°C					
F508del	-0.59 (0.05)		6	-4.64	0.01
F508del + VX-809	-0.55 (0.06)		6	-4.78	2.01E-03
F508del	-0.58 (0.07)		7	-5.78	2.01E-03
F508del/R1070W	-0.53 (0.08)		5	-4.22	0.02
F508del + VX-809	-0.59 (0.07)	0.02	5	4.22	0.02
F508del + VX-809 + VX-770 (c)	-0.63 (0.06)	0.02	5	4.22	0.02
28°C					
F508del	-0.51 (0.09)		6	-12.23	6.00E-05
F508del + VX-809	-0.31 (0.07)	0.04	6	-12.23	6.00E-05
F508del	-0.54 (0.07)		6	-4.73	0.01
F508del/R1070W	-0.40 (0.10)		6	-4.73	0.01
F508del + VX-809	-0.34 (0.08)	0.13	6	-4.73	0.01
F508del + VX-809 + VX-770 (c)	-0.50 (0.09)	0.20	10	4.06	4.54E-03

temperature correction

	Mean (SD)	df	T value	Adjusted P value
37°C (WT - F508del)	0.54 (0.08)	44	5.59	4.05E-06
28°C (WT - F508del)	0.41 (0.08)			
Supporting Table S3 Independent t-tests comparing the maximal rate of Γ entry after addition of 10µM forskolin vs. after DMSO (control). Cells were transfected with WT-CFTR, F508del-CFTR, or F508del/R1070W-CFTR and incubated at either 37 °C or 28 °C, with or without 10 µM VX-809, 24 hours before imaging. In some conditions the potentiator VX-770 (10 µM) was added acutely together with forskolin.

	VX-809	VX-770 (a)	Mean	SD	df	T value	P value
WT							
F508del							
F508del/R1070W							
Supporting Table S4 Independent t-tests comparing the maximal rate of Iᵋ entry after addition of 10 µM forskolin in varying conditions. P-values were Bonferroni adjusted to account for multiple comparisons.

Condition	Mean	SD	df	T value	P value	adjusted P value
WT 37°C	0.180	0.059	10	0.88	0.40	0.80
WT + VX-770 (a) 37°C	0.214	0.056	10	0.88	0.40	0.80
WT 28°C	0.137	0.023	8	2.71	0.03	0.05
WT + VX-770 (a) 28°C	0.207	0.058	8	2.71	0.03	0.05
WT 37°C	0.180	0.059	13	1.70	0.11	0.22
WT 28°C	0.137	0.023	13	1.70	0.11	0.22
WT + VX-770 (a) 37°C	0.214	0.056	5	0.17	0.87	1.00
WT + VX-770 (a) 28°C	0.207	0.058	5	0.17	0.87	1.00
F508del + VX-770 (a) 37°C	0.014	0.007	6	3.52	0.01	0.02
F508del + VX-770 (a) + VX809 37°C	0.034	0.008	6	3.52	0.01	0.02
F508del + VX-770 (a) 28°C	0.059	0.042	7	2.34	0.05	0.10
F508del + VX-770 (a) + VX809 28°C	0.124	0.039	7	2.34	0.05	0.10
F508del 37°C	0.009	0.005	9	-3.70	2.69E-03	0.01
F508del/R1070W 37°C	0.044	0.026	13	-3.70	2.69E-03	0.01
F508del/R1070W 37°C	0.044	0.026	9	-2.62	0.03	0.06
F508del/R1070W 28°C	0.090	0.032	9	-2.62	0.03	0.06
Supporting Table S5 Summary of statistical data for membrane density profiling of rare mutation panel.

Mutation	Mean ρ	SEM	n
A455E	0.327	0.027	12
A46D	0.363	0.022	12
A559T	0.371	0.047	12
A561E	0.328	0.018	13
D110E	0.827	0.044	12
D110H	0.649	0.034	11
D1152H	0.688	0.022	12
D1270N	0.782	0.043	11
D579G	0.363	0.024	12
E193K	0.65	0.021	13
E56K	0.338	0.016	11
E92K	0.254	0.014	12
F1052V	0.761	0.031	10
F1074L	0.423	0.021	11
F508del	0.315	0.02	14
G1244E	0.857	0.037	11
G1349D	0.747	0.029	12
G178R	0.69	0.017	12
G551D	1.042	0.034	12
G551S	1.167	0.033	12
G85E	0.281	0.012	12
G970R	0.815	0.045	11
H1054D	0.308	0.01	10
H1085R	0.307	0.017	9
I336K	0.398	0.015	10
I507del	0.305	0.021	11
K1060T	0.632	0.025	11
L1065P	0.296	0.01	12
L1077P	0.294	0.014	12
L206W	0.309	0.024	12
L467P	0.333	0.014	13
L927P	0.406	0.022	11
M1101K	0.294	0.015	11
N1303K	0.588	0.02	11
P67L	0.319	0.015	11
R1066C	0.306	0.012	11
R1066H	0.29	0.013	11
R1066M	0.402	0.038	12
R1070Q	0.899	0.041	12
R1070W	0.438	0.019	10
R117C	0.626	0.035	12
R117H	0.662	0.018	12
R1283M	0.543	0.027	11
R334W	0.985	0.041	12
R347H	1.058	0.035	12
R347P	0.377	0.013	13
R352Q	1.046	0.033	13
R560S	0.307	0.02	12
R560T	0.332	0.019	13
R74W	0.522	0.022	12
S1251N	0.859	0.033	11
S1255P	0.804	0.029	12
S341P	0.487	0.021	11
S492F	0.316	0.013	12
S549N	0.835	0.021	11
S549R	0.432	0.029	11
S945L	0.358	0.018	10
S977F	0.749	0.038	11
T338I	0.681	0.024	13
V520F	0.336	0.02	12
Y569D	0.298	0.015	13
WT	0.809	0.019	23
Supporting Figure S6

Probability density distributions for $\log_{10} \rho$ values for each CFTR mutant in the panel (orange), compared to WT-CFTR (blue). Plots on left illustrate measurements obtained for WT and mutant from individual plates, paired for statistical analysis. Asterisks indicate a significant difference ($P < 0.05$) in mean $\log_{10} \rho$ between WT and mutant, following paired t-tests and correction for multiple comparisons using Benjamini-Hochberg procedure.
Supporting Table S7

Data for CFTR conductance ($G_{\text{CFTR_norm}}$, nS) profiling of rare mutation panel, in vehicle control conditions with no CFTR activation (DMSO), and after baseline activation with 10 µM forskolin (fsk). For each genotype, normality (Shapiro-Wilk) and equal variance preliminary tests were performed. Statistical significance of difference between control and baseline CFTR activity was assessed with a one-tailed t-test, assuming equal or unequal (marked with *) variance, depending on result of preliminary test. For R1066H and R1070W, the normality test of input groups failed and significance of within genotype difference between groups was quantified with a non-parametric Mann-Whitney Rank Sum Test.

Mutation	DMSO	SEM	n	fsk	SEM	n	P value (t test)	P value (Rank Sum test)
A455E	0.14	0.10	3	0.88	0.33	3	0.0490	
A46D	0.36	0.19	3	2.14	1.16	3	0.1035	
A559T	0.22	0.11	3	0.50	0.27	3	0.1890	
A561E	0.14	0.07	3	0.39	0.30	3	0.2340	
D110E	0.93	0.58	3	109.63	8.65	3	0.0001	
D110H	0.42	0.34	3	93.95	6.55	3	0.0001	
D1152H	1.13	0.49	3	77.59	3.07	3	8.14E-06	
D1270N	1.55	0.32	3	185.46	19.12	3	0.0003	
D579G	0.09	0.09	3	43.30	14.86	3	0.0220	
E193K	0.62	0.26	3	42.22	9.76	3	0.0254*	
E56K	0.25	0.25	3	18.26	16.01	3	0.1620	
E92K	0.14	0.14	3	0.32	0.24	3	0.2880	
F1052V	1.82	0.63	3	171.92	10.39	3	4.11E-05	
F1074L	0.98	0.44	3	69.19	6.21	3	0.0041*	
F508del	0.13	0.13	3	0.80	0.46	3	0.1150	
G1244E	0.43	0.33	3	7.20	6.21	3	0.1690	
G1349D	0.09	0.09	3	6.49	0.70	3	0.0004	
G178R	0.81	0.41	3	10.73	6.06	3	0.0890	
G551D	0.44	0.26	3	2.18	1.12	3	0.1349*	
G551S	0.42	0.21	3	14.73	3.82	3	0.0100	
G85E	0.63	0.63	3	0.32	0.16	3	0.3270	
G970R	0.44	0.24	3	17.45	7.30	3	0.0405	
H1054D	0.26	0.26	3	1.89	0.17	3	0.0030	
H1085R	0.26	0.24	3	1.08	0.37	3	0.0685	
I336K	0.95	0.22	3	43.76	12.94	3	0.0150	
I507del	0.20	0.20	3	0.85	0.29	3	0.0680	
K1060T	2.24	1.44	3	89.88	4.34	3	2.18E-05	
----	----	----	----	----	----	----		
L1065P	0.15	0.15	3	0.37	0.19	3	0.2100	
L1077P	0.30	0.30	3	0.17	0.11	3	0.3475	
L206W	0.48	0.22	4	12.35	9.55	3	0.0990	
L467P	0.04	0.04	3	0.58	0.39	3	0.1200	
L927P	0.04	0.04	3	1.26	0.56	3	0.0799*	
M1101K	0.12	0.06	3	2.41	0.46	3	0.0040	
N1303K	0.16	0.12	3	0.45	0.13	3	0.0905	
P67L	0.13	0.12	3	2.23	1.37	3	0.1010	
R1066C	0.03	0.02	3	0.60	0.25	3	0.0435	
R1066H	0.85	0.37	3	7.92	5.38	4	0.057	
R1066M	0.05	0.05	3	0.67	0.32	3	0.0650	
R1070Q	3.39	0.76	4	197.94	9.85	4	0.0001*	
R1070W	0.54	0.30	4	40.38	5.56	4	0.029	
R117C	0.27	0.13	3	40.97	11.27	3	0.0115	
R117H	0.75	0.36	3	46.27	12.73	3	0.0351*	
R1283M	0.35	0.09	3	19.96	5.88	3	0.0145	
R334W	0.82	0.69	3	28.00	9.49	3	0.0230	
R347H	0.31	0.20	3	40.22	6.14	3	0.0015	
R347P	0.18	0.10	3	1.11	0.57	3	0.0915	
R352Q	0.30	0.12	3	25.83	5.88	3	0.0060	
R560S	0.04	0.04	3	0.31	0.21	3	0.1395	
R560T	0.24	0.21	3	0.70	0.43	3	0.1950	
R74W	1.13	0.39	3	178.21	16.56	3	0.0002	
S1251N	0.65	0.20	3	41.08	7.06	3	0.0025	
S1255P	0.21	0.19	3	22.07	6.06	3	0.0115	
S341P	0.28	0.28	3	8.80	4.85	3	0.0770	
S492F	0.30	0.23	3	0.69	0.48	3	0.2465	
S549N	0.25	0.12	3	11.00	8.37	3	0.1340	
S549R	0.25	0.25	3	4.35	4.09	3	0.1870	
S945L	0.00	0.00	3	17.70	9.55	3	0.1024*	
S977F	0.45	0.10	3	121.72	15.37	3	0.0005	
T338I	0.25	0.15	4	27.53	7.35	4	0.0050	
V520F	0.06	0.06	3	1.19	0.86	3	0.1290	
Y569D	0.10	0.09	3	1.00	0.40	3	0.0460	
WT	2.53	0.54	7	180.31	15.97	6	0.0001*	
Supporting Table S8

Comparison of CFTR conductance ($G_{\text{CFTR_norm}}$, nS) after baseline activation with 10 μM forskolin (fsk) vs. potentiated activation with 10 μM forskolin + 10 μM VX-770 (a) (fsk + VX-770). Statistical significance of difference was assessed as described for table S6. In this dataset, normality test failed for G85E, R1066C, R1066H and S549R.

Mutation	fsk	SEM	n	fsk+ VX-770	SEM	n	P value (t test)	P value (Rank Sum test)
A455E	0.88	0.33	3	5.46	0.59	3	0.0005	
A46D	2.14	1.16	3	19.02	1.34	3	0.0002	
A559T	0.50	0.27	3	0.74	0.15	3	0.1215	
A561E	0.39	0.30	3	0.31	0.11	4	0.2018	
D110E	109.63	8.65	3	214.38	3.61	3	0.0001	
D110H	93.95	6.55	3	205.40	6.63	3	0.0001	
D1152H	77.59	3.07	3	213.55	13.93	3	0.0002	
D1270N	185.46	19.12	3	207.96	13.18	3	0.0970	
D579G	43.30	14.86	3	140.17	25.68	3	0.0078	
E193K	42.22	9.76	3	243.15	15.27	3	0.001*	
E56K	18.26	16.01	3	38.96	8.62	3	0.0795	
E92K	0.32	0.24	3	0.79	0.28	3	0.0675	
F1052V	171.92	10.39	3	213.18	4.42	3	0.0055	
F1074L	69.19	6.21	3	152.94	5.98	3	0.0001	
F508del	0.80	0.46	3	4.29	0.80	3	0.0035	
G1244E	7.20	6.21	3	50.71	15.47	3	0.0148	
G1349D	6.49	0.70	3	202.73	5.63	3	1.03E-06	
G178R	10.73	6.06	3	232.07	25.17	3	0.0003	
G551D	2.18	1.12	3	35.13	7.56	3	0.0033	
G551S	14.73	3.82	3	207.71	35.87	3	0.0015	
G85E	0.32	0.16	3	0.31	0.16	3	0.0858	
G970R	17.45	7.30	3	183.91	7.78	3	1.63E-05	
H1054D	1.89	0.17	3	40.92	6.29	3	0.0008	
H1085R	1.08	0.37	3	28.72	5.22	3	0.0015	
I336K	43.76	12.94	3	139.96	20.78	3	0.0043	
I507del	0.85	0.29	3	0.36	0.36	3	0.0015	
K1060T	89.88	4.34	3	197.15	7.63	3	3.55E-05	
L1065P	0.37	0.19	3	2.07	0.79	3	0.0260	
L1077P	0.17	0.11	3	0.27	0.21	3	0.1715	
-----	-----	-----	-----	-----	-----			
L206W	12.35	9.55	3	42.40	5.37	4	0.0080	
L467P	0.58	0.39	3	0.23	0.05	3	0.1055	
L927P	1.26	0.56	3	101.26	7.07	3	3.66E-05	
M1101K	2.41	0.46	3	8.26	3.20	3	0.0539*	
N1303K	0.45	0.13	3	14.93	2.59	3	0.0076*	
P67L	2.23	1.37	3	20.65	5.93	3	0.0098	
R1066C	0.60	0.25	3	1.21	0.30	3	3.12E-05	
R1066H	7.92	5.38	4	33.71	5.59	3	0.057	
R1066M	0.67	0.32	3	1.31	0.21	3	0.0415	
R1070Q	197.94	9.85	4	214.84	7.52	3	0.0011	
R1070W	40.38	5.56	4	160.94	14.03	3	0.0001	
R117C	40.97	11.27	3	202.45	7.36	3	0.0001	
R117H	46.27	12.73	3	203.39	4.16	3	0.0001	
R1283M	19.96	5.88	3	86.07	10.10	3	0.0013	
R334W	28.00	9.49	3	157.23	13.48	3	0.0003	
R347H	40.22	6.14	3	219.57	7.75	3	1.08E-05	
R347P	1.11	0.57	3	23.03	8.52	3	0.0155	
R352Q	25.83	5.88	3	222.40	5.71	3	3.28E-06	
R560S	0.31	0.21	3	0.45	0.05	3	0.1400	
R560T	0.70	0.43	3	0.01	0.01	3	0.0627*	
R74W	178.21	16.56	3	193.08	1.97	3	0.1058	
S1251N	41.08	7.06	3	164.18	38.96	3	0.0090	
S1255P	22.07	6.06	3	221.11	9.61	3	1.37E-05	
S341P	8.80	4.85	3	42.08	13.12	3	0.0190	
S492F	0.69	0.48	3	9.38	7.39	3	0.0765	
S549N	11.00	8.37	3	193.79	10.57	3	3.51E-05	
S549R	4.35	4.09	3	51.69	4.75	3	0.1	
S945L	17.70	9.55	3	125.69	8.66	3	0.0003	
S977F	121.72	15.37	3	204.79	10.83	3	0.0030	
T338I	27.53	7.35	4	84.76	6.72	3	0.0008	
V520F	1.19	0.86	3	0.48	0.29	3	0.1190	
Y569D	1.00	0.40	3	0.20	0.11	3	0.0310	
WT	180.31	15.97	6	218.00	33.27	4	0.0715	
Supporting Table S9

Estimated values for fit parameters in traces for Figure 4B.

Mutation	condition	G_{CFTR} (nS)	V_M (mV)	G_{trans} (nS)	τ_{trans} (s)
WT	fsk	152.88	-59.42	14.8	5
S492F	DMSO	0.73	-79.89	14.8	5
	fsk	1.603	-69.19	14.8	5
	fsk+VX-770	24.07	-85.18	14.8	5
H1085R	DMSO	0.35	-42.37	14.8	5
	fsk	1.28	-51.01	19.1	3.94
	fsk+VX-770	35.02	-76.3	14.8	5
H1054D	DMSO	0.000125	-58.76	14.8	5
	fsk	2.29	-50.85	14.8	5
	fsk+VX-770	30.17	-70.69	14.8	5
L927P	DMSO	0.0000259	-85.1	14.8	5
	fsk	1.47	-41.2	14.8	5
	fsk+VX-770	103.2	-60.49	14.8	5
R1283M	DMSO	0.57	-75.0	17.4	4
	fsk	25.86	-75.3	14.8	5
	fsk+VX-770	70.65	-50.4	14.8	5
Supporting Table S10

Distances measured between α-carbons of highly VX-770 sensitive mutation sites and charged residues in the vicinity as measured in the PDB ID 6MSM structure.

Mutation	location	interacting charge	location	distance(Å)
G178R	TM3, ICL1	K254, E257, R258	TM4, ICL2	9.876, 6.657, 7.913
H1045D	ICL4	E543	NBD1, X-loop	8.875
H1085R	TM11	R1048	TM10	6.277
N1303K	NBD2	R1358	NBD2	7.843
G1349D	NBD2	γ-phosphate	ATP, site 1	6.173