Physical activity barriers questionnaire

Maryam Selk-Ghaffari1 / Bahar Hassanmirzaei1,2 / Amin Nakhostin-Ansari1 / Behnaz Mahdaviani1 / Mohammad Saeid Khouji1 / Reyhaneh Aghajani1 / Maede Gholami-Mehrabadi1 / Afifeh Khosravi1,4 / Ramin Kordi1,5

1. Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
2. Iran Football Medical Assessment and Rehabilitation Center, IFMARC, Tehran, Iran
3. School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
4. School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Iran
5. Department of Sports and Exercise Medicine, Tehran University of Medical Sciences, Tehran, Iran

INTRODUCTION

Physical activity (PA) is defined as any body movement produced by skeletal muscle contraction which mandates energy consumption1. Sufficient PA reduces the risk of premature mortality and development of numerous chronic diseases, including cerebrovascular disease, cardiovascular disease, hypertension, diabetes, obesity, and mental diseases2. It was estimated that in 2017, 1.2 million deaths were attributed to physical inactivity, worldwide3. Having adequate PA is one of the predominant indicators of public health, and noticeable health benefits are obtained by minor changes in PA level2. Globally, 1 in 4 adults have insufficient PA level according to the world health organization’s recommendations4. This causes or triggers medical conditions and non-communicable diseases related to insufficient PA in 1.4 billion individuals4. In Iran, the insufficient PA level has increased from 23.1% in 2001 to 55.4% in 2016, based on STEPwise Approach to NCD Risk Factor Surveillance (STEPS) surveys, and there is a need for urgent action5.

The socio-ecological model suggests that intrapersonal, interpersonal, and environmental domains determine individuals’ PA levels6,7. Determining PA barriers and developing action plans to eliminate them might be an acceptable strategy to improve the level of PA8,9. Socioeconomic characteristics, including income, level of education, and occupation have been suggested as determinants of health behaviors10.

Different studies have been conducted to determine the motivators and PA barriers in various populations11-14. In a study on Australian adults, Hoare et al. found that lack of time, preference for doing other things, and lack of enjoyment of active behavior are the main PA barriers among inactive people15. In another study, Baert et al. found intrapersonal factors as the most important PA barriers among older adults16. However, there is no comprehensive and integrative questionnaire focusing on PA barriers, and there is a need for such a questionnaire. Determining the PA barriers might be a roadmap for policymakers, stakeholders, and researchers to develop interventions and future planning to improve PA levels8,9. Addi-
tionally, such a questionnaire facilitates the comparison of populations and tracking changes over time, and it can be used for research purposes. Therefore, this study aimed to conceptualize and develop a questionnaire to determine PA barriers.

METHODS

The study was conducted between February 2021 and July 2021. All participants were provided with comprehensive details regarding the study’s objective and asked to sign an informed consent form. This study was conducted in accordance with the Declaration of Helsinki, and the Tehran University of Medical Sciences ethics committee approved the study protocol (ethics code: IR.TUMS.NI.REC.1399.019).

The study was performed in two stages. First, the initial version of the questionnaire was developed. Second, the reliability and validity of the questionnaire were evaluated, and it was finalized.

Development of the questionnaire

Literature review

The scope of the questionnaire’s content, including PA barriers, was established by reviewing previous studies. A clear description of PA barriers was established, existing questionnaires were assessed, and the main PA barriers based on the current literature were established. Main domains of PA barriers and existing cognitive and transtheoretical features, including socioeconomic, cultural, individual, and environmental barriers, were established.

In-depth interviews

Twenty individuals, aged between 18 to 65 years were interviewed by a PA expert, individually. PA was defined as any movement of the individual’s body produced by skeletal muscles, leading to energy consumption. PA could be engaged in various domains, including work-related, housekeeping, travel, recreational activities, and sports in daily living. A principal PA expert conducted all interviews. Participants were encouraged to discuss the PA barriers in their daily lives. The duration of each interview session was between 30 to 60 minutes. All sessions were audio-recorded and accurately transcribed. The main domains for PA barriers were applied during the sessions to guide the interview, and further details were obtained and recorded following each session. The results of the interviews were analyzed and included in the questionnaire. The principal concepts were obtained from the interviews, and personal information was omitted. All statements were indexed, and the questionnaire was reorganized according to indexes. Statements from the interviews were added with a clear, simple, and intelligible structure.

Expert panel

An expert panel was developed, consisting of seven members with at least 5 years of experience in the PA re-

search, executive, or governance domain. The expert panel members were specialists in sports medicine, physical education, and psychology. The questionnaire’s content was assessed and screened by the expert panel in detail. The content validity index (CVI) was applied to evaluate the validity. The expert panel assessed each statement and scored the items based on the relevance of each statement to the purpose of the project (1 = not relevant, 2 = major revision is required to induce relevance, 3 = minor revision is required to induce relevance, 4 = highly relevant). CVI for each statement was established based on experts’ opinions, and statements were revised or omitted if they did not reach the minimum score required.

Validity and reliability

A pilot study was conducted on 204 individuals aged 18 to 65 years with the ability to engage in PA and the desire to participate in the study. We designed an online form containing the questionnaire and questions regarding the eligibility of participants. We used convenience and snowball sampling methods to recruit the individuals. Face validity was established via interviewing 20 individuals, and the misunderstanding index was established for each statement. The acceptable misunderstanding index for any statement was < 20% and if the item did not meet the cut-off, it was omitted. Test-retest reliability was assessed considering 56 individuals with a 2-week interval. Internal consistency was established by calculating Cronbach’s alpha.

Statistical analysis

If the CVI based on the expert panel’s opinion was a minimal 0.83, it was considered acceptable. For face validity, a misunderstanding index of < 20% was accepted. We calculated numbers and percentages to evaluate the frequency of answers to each item. We used Cohen’s kappa to assess the agreement between participants’ responses to each item in the first and second rounds of the study. We considered kappa ≤ 0.2 as a poor agreement, 0.2 < kappa ≤ 0.4 as a fair agreement, 0.4 < kappa ≤ 0.6 as a moderate agreement, 0.6 < kappa ≤ 0.8 as a good agreement, and 0.8 < kappa as a very good agreement. We excluded items if there was a poor agreement between participants’ answers in the first and second rounds of the study. Subsequently, Cronbach’s alpha was calculated to evaluate the questionnaire’s internal consistency, and we considered Cronbach’s alpha values between 0.6 to 0.8 as an acceptable internal consistency and Cronbach’s alpha of 0.8 or higher as a very good internal consistency. We also performed exploratory factor analysis (EFA) to determine the construct validity. We established the extracted factors by inspecting the Scree plot, and those with an eigenvalue of higher than one, were considered as prominent factors.

Data availability

The data that support the findings of this study are available upon reasonable request.
RESULTS

In total, 204 individuals participated in the study, of which, 56 participants completed the questionnaire in the second round. Figure 1 shows the study flow diagram. Based on the CVI, four items were excluded from the questionnaire. The CVI of the remaining items were above 0.85, which were within the acceptable range. Additionally, we excluded six items due to poor agreements between participants’ answers in the first and second rounds of the study (kappa<0.2). Face validity was acceptable, and the misunderstanding index was < 20% in all the remaining items. The questionnaire’s internal consistency was calculated with the remaining items, and Cronbach’s alpha of 0.568 was established. Therefore, we excluded another item that led to an increase in the questionnaire’s internal consistency. The percentage of participants’ positive responses to the items of the final questionnaire and the agreement between participants’ answers to each item are shown in Table 1.

We performed EFA to determine the factor structure of the questionnaire. There were nine factors with an eigenvalue > 1. However, only one of these factors could explain > 10% of the variance (Figure 2). Furthermore, the Scree plot curve indicated that only one factor could be extracted.

Table 1. Participants’ responses to each item of the final version of the questionnaire in the first and second rounds of the study and their agreement on each item.

Item	Answer	First round (N=204)	Second round (N=56)	Kappa
Initial item. In general, do you want to spend more time on exercising and engaging in physical activities than you do now (compared to the current situation)?	Yes	189 (92.6%)	53 (94.6%)	0.486
1. Suitable facilities or places for engaging in physical activity, exercise, and sports that I am interested in, are unavailable.	Yes	55 (27%)	11 (19.6%)	0.231
2. The physical activities or sports that I am interested in are expensive.	Yes	24 (11.8%)	8 (14.3%)	0.769
3. Addressing other issues (job-related, family, etc.) is a priority rather than exercise and physical activity.	Yes	99 (48.5%)	36 (64.3%)	0.479
4. I prefer to spend my time on other recreational activities, including music, movies, theater, computer games, travel, food, study, spending time with friends, etc.	Yes	40 (19.6%)	16 (28.6%)	0.41
5. I am very tired and do not have enough energy to do physical activity and exercise.	Yes	64 (31.4%)	27 (13.2%)	0.425
6. I can hardly motivate myself to do exercise and physical activity.	Yes	48 (23.5%)	21 (37.5%)	0.49
7. My hair, clothes, and shoes get damaged during physical activity and exercise.	Yes	7 (3.4%)	2 (3.6%)	0.481
8. I am not physically fit enough to do physical activity and exercise.	Yes	24 (11.8%)	13 (23.2%)	0.463
9. I was injured during exercise and physical activity, and I do not want to get injured again.	Yes	7 (3.4%)	1 (1.8%)	0.659
10. I have an injury (not induced by exercise), and I cannot do physical activity and exercise.	Yes	7 (3.4%)	1 (1.8%)	0.382
11. I am disabled and unable to do physical activity and exercise.	Yes	1 (0.5%)	1 (1.8%)	1
12. I have a medical condition, and I cannot do exercise and physical activity due to my health problem.	Yes	4 (2%)	3 (5.4%)	0.791
13. I do not feel safe while doing physical activity and exercise.	Yes	6 (2.9%)	3 (5.4%)	0.296
14. I do not have enough self-confidence for physical activity and exercise.	Yes	15 (7.4%)	7 (12.5%)	0.256
15. People around me forbid or prevent me from doing sports and physical activity.	Yes	6 (2.9%)	1 (1.8%)	0.659
16. I do not have anyone to do sports and physical activity with, who would accompany me.	Yes	49 (24%)	20 (35.7%)	0.3
17. I do not like other people to see me exercising.	Yes	10 (4.9%)	3 (5.4%)	0.732
18. Doing physical activity and exercise is boring.	Yes	6 (2.9%)	1 (1.8%)	0.382
19. The air and environment are hot, polluted, and unsuitable.	Yes	36 (17.0%)	10 (17.9%)	0.507
20. There is no suitable exercise counselor or physical activity specialist in the gym to advise, help, and consult individuals.	Yes	19 (9.3%)	6 (10.7%)	0.496
Barrier items in the original 43-item EBBS were limited to environment, time, physical exertion, and family discouragement factors. Koehn et al. have omitted some factors based on confirmatory factor analysis (CFA)25. The remaining barrier items in the modified EBBS have been categorized as time and environmental factors.

In a 2015 study, Joseph et al. categorized PA barriers among women as interpersonal, intrapersonal, or environmental determinants27. The main content of the current questionnaire was developed following literature review. Lack of time and motivation and safety concerns were consistently cited as PA barriers28. Four socioeconomic, cultural, personal, and environmental barrier domains have been addressed in this newly designed instrument. In a 2013 review by Benjamin et al., it was found that personal, social, cultural, policy, and environmental factors were the main barriers to exercise among Arabic adults29. Similarly, a systematic review conducted by Allen et al. revealed that PA barriers fall into categories of personal, interpersonal, environmental, and policy factors 30.

Within the domain of environmental factors, the framework suggested by Pikora et al. was considered. The proposed environmental domains comprised multiple subdomains. Accessibility to exercise facilities, structural features, and safety and aesthetic qualities were reviewed as important subdomains in this regard21.

Using self-administered rather than interview-based questionnaires can minimize costs32. In this study, an adequate sample size and proper statistical analysis were used, which are believed to be the strong points of this survey. Conducting a systematic literature review for item development in the first phase is assumed to be the other key strength of the study.

The limitation of this tool is that it is developed for the healthy adult population. Thus, the generalization of its use to other populations may be unwarranted. Future studies should aim to evaluate the psychometric features of this instrument among other populations to generalize its application.

In conclusion, this study revealed that the newly designed survey is valid, accurate, and reliable. The use of this comprehensive tool by policymakers would help them properly identify the perceived barriers and thus perform better PA interventions as promotional health programs.

REFERENCES

1. Westerterp KR. Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects. Front Physiol. 2013;4:90.
2. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ. 2006;174:801-9.
3. Mohebi F, Mohajer B, Yoosefi M, Sheidaei A, Zokaei H, Damerchi Lu B, Mehregan A, Shahbal N, Rezaee K, Khezrian M, Nematiolah Dehmoosa A. Physical activity profile of the Iranian population: STEPS survey, 2016. BMC Public Health. 2019;19:1266.
4. Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in
insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1 9 million participants. The Lancet Glob Health. 2018;6:1077-86.

5. Kamalian A, Khosravi Shadmehr F, Yoosefi M, Mohajer B, Mohebi F, Naderimamagh S, Rezaei N, Ghaseemi E, Rouhiard Khaililabad M, Hassanmizrai B, Selk Ghaffari M. A national and sub-national metaregression of the trend of insufficient physical activity among Iranian adults between 2001 and 2016. Sci Rep. 2021; 11:21441.

6. Glanz K, Rimer BK, Viswanath K. Health behavior and health education: theory, research, and practice. John Wiley & Sons. 2008.

7. Glanz K, Rimer BK, Viswanath K. Health behavior and health education: theory, research, and practice: fifth edition. John Wiley & Sons. 2015.

8. Khosravi A, Hassanmizraei B, Selk-Ghaffari M, Rafiei M, Mansournia MA, Kordi R. Why physical inactivity level has increased in the Iranian population during the past decade? A Delphi technique. Asian Journal of Sports Medicine. 2020; 11:103678.

9. Pratt M, Perez LG, Goenka S, Brownson RC, Bauman A, Sammiento OL, Hillall PC. Can population levels of physical activity be increased? Global evidence and experience. Prog Cardiovasc Dis. 2015;57:356-67.

10. Martins J, Marques A, Sarmento H, Carneiro da Costa F. Adolescents' perspectives on the barriers and facilitators of physical activity: a systematic review of qualitative studies. Health Educ Res. 2015;30:742-55.

11. Memari AH, Selk-Ghaffari M, Khosravi A, Kordi R. Action plan to increase physical activity during COVID-19 pandemic. Sultan Qaboos Univ Med J. 2021;21:514-6.

12. Khelshadi R, Ghahrehsanam S, Hosseini M, Mirmoghaddamea P, Mansouri S, Poursafa P. Barriers to physical activity in a population-based sample of children and adolescents in Isfahan, Iran. Int J Prev Med. 2010;1:131-7.

13. Hoare E, Stavreski B, Jennings GL, Kingwell BA. Exploring motivation and barriers to physical activity among active and inactive Australian adults. Sports. 2017;5:47.

14. Baert V, Gorus E, Mets T, Geerts C, Bautmans I. Motivators and barriers for physical activity in the oldest old: a systematic review. Ageing Res Rev. 2011;10:464-74.

15. Yusoff MSB. ABC of content validation and content validity index calculation. Resource. 2019;11:49-54.

16. Mould R. Introductory medical statistics 3rd ed. The Institute of Physics, London. 1998.

17. Daud KA, Khidir NZ, Ismail AR, Abdullah FA. Validity and reliability of instrument to measure social media skills among small and medium entrepreneurs at Pengkalan Datu River. International Journal of Development and Sustainability. 2018;7:1026-37.

18. Dube MC, Valois P, Prud’Homme D, Weinsagle SJ, Lavoie C. Physical activity barriers in diabetes: development and validation of a new scale. Diabetes Res Clin Pract. 2006;72: 20-7.

19. Godin G, Valois p, Deshmants R. A typology of stages of adherence to exercise behavior: a cluster analysis. J Appl Soc Psychol. 2001;31:1979-94.

20. Sechrist KR, Walker SN, Pender NJ. Development and psychometric evaluation of the exercise benefits/barriers scale. Res Nurs Health. 1987;10:357-65.

21. Coste N, Guigueu-Auclet C, Gerbaud L, Pereira B, Berland P, Gay C, Coudeyre E. Perceived barriers to and facilitators of physical activity in people with knee osteoarthritis: development of the evalu-