Nanoparticle-Based Antimicrobials: Surface Functionality is Critical [version 1; peer review: 2 approved]

Akash Gupta, Ryan F. Landis, Vincent M. Rotello
Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA

First published: 16 Mar 2016, 5(F1000 Faculty Rev):364
https://doi.org/10.12688/f1000research.7595.1
Latest published: 16 Mar 2016, 5(F1000 Faculty Rev):364
https://doi.org/10.12688/f1000research.7595.1

Abstract
Bacterial infections cause 300 million cases of severe illness each year worldwide. Rapidly accelerating drug resistance further exacerbates this threat to human health. While dispersed (planktonic) bacteria represent a therapeutic challenge, bacterial biofilms present major hurdles for both diagnosis and treatment. Nanoparticles have emerged recently as tools for fighting drug-resistant planktonic bacteria and biofilms. In this review, we present the use of nanoparticles as active antimicrobial agents and drug delivery vehicles for antibacterial therapeutics. We further focus on how surface functionality of nanomaterials can be used to target both planktonic bacteria and biofilms.

Keywords
Antimicrobials, nanoparticles, bacteria, biofilms, antibacterial

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. Marco Siccardi, University of Liverpool, Liverpool, UK
2. Charles Flexner, Johns Hopkins University, Baltimore, USA

Any comments on the article can be found at the end of the article.
Introduction
Bacterial infections cause 300 million cases of severe illness every year with 16 million, including 2 million children, killed. Infections caused by multi-drug-resistant (MDR) bacteria greatly increase the threat generated by bacterial infections. In addition to acute illness, bacterial infections can result in chronic disease states, where bacterial colonization develops into a biofilm, a complex three-dimensional bacterial community. The complexity of the biofilm matrix makes biofilm-associated diseases more clinically challenging than planktonic bacteria in both diagnosis and treatment. Finally, there has been a significant decrease in the number of approved antibiotics recently, contributing to the urgency of developing alternative antimicrobial agents.

Nanoparticles (NPs) are emerging as weapons in our antimicrobial arsenal owing to their unique nanoscale physical and chemical properties. For example, NP size is commensurate with biomolecular and bacterial cellular systems, providing a platform where nanomaterial-bacteria interactions can be fine-tuned through appropriate surface functionalization. Moreover, the high surface area to volume ratio of nanomaterials enables high loading of therapeutics, with promising synergy arising from multivalent interactions. NPs provide a way to address the common mechanisms of antibiotic resistance, such as permeability regulation, multi-drug efflux pumps, antibiotic degradation, and target site binding affinity mutations. NPs also provide alternative pathways to combat biofilm/MDR infections and significantly lower bacteria resistance over time. NPs utilize multiple mechanisms to kill bacteria, making it difficult for them to adapt existing strategies for developing resistance. Following this strategy, several NP-based systems have been developed to improve antimicrobial efficacy. In this review, we will focus on recent studies that use engineered NPs as active therapeutic agents or as delivery vehicles to transport drugs to the site of infection.

Nanoparticle interactions with bacteria and biofilms
Engineering the interactions of nanomaterials with bacteria/biofilm matrices plays a crucial role in designing NP-based antimicrobial systems. The surface properties of NPs are highly versatile and can be easily modulated through ligand engineering to generate particles with new and emergent properties. These NPs can be utilized for not only therapeutic applications but also fundamental studies on bacterial behavior. In early studies of NP-microbe interactions, Rotello and co-workers showed that cationic gold NPs (AuNPs) possessed toxicity against bacteria. Subsequently, they demonstrated that hydrophobic, cationic AuNPs developed spatiotemporal aggregate patterns on the bacterial surface. The aggregate patterns depended upon the nature of the bacteria as well as the size of the NPs. In this work, 6 nm AuNPs were found to have low toxicity, whereas 2 nm AuNPs rapidly lysed Bacillus subtilis but not Escherichia coli. In a similar study, Feng and co-workers further corroborated the fact that NP and bacterial surface chemistry impact NP-bacteria interactions and toxicity. They reported that the NPs with maximal cationic charge associated most significantly with the bacterial surfaces, inducing the greatest membrane damage and toxicity. These studies provide valuable insight into designing therapeutic constructs for planktonic bacteria treatment.

Bacteria can self-colonize to form biofilms. Biofilm infections are difficult to treat because the extracellular matrix produced by bacteria creates a microenvironment within the host. This allows bacteria to evade immune responses and dramatically increase resistance to traditional antibiotic treatments. The complex architecture, dynamics, and composition of extracellular polymeric substances (EPS) in the matrix are profoundly responsible for the low penetration of therapeutic agents. Diffusion of therapeutics inside the biofilm can be affected by several genetic and physiological heterogeneities such as the hydrophobicity of bacterial cell walls.

Figure 1. Nanoparticles as scaffolds and building blocks for antimicrobial agents.
Hence, fundamentally understanding the interactions between NPs and complex biofilm matrices is crucial in designing materials for biofilm treatment.

The penetration and deposition of NPs within the biofilms are key components for the design of biofilm therapeutics. Peulen and Wilkinson reported that the penetration ability of NPs decreased inversely to their size due to small pore sizes within biofilms. Furthermore, NP deposition inside the biofilms is largely dependent upon the electrostatic interaction as well as the homogeneity of the charges across the biofilm surface. In a related study, Rotello and co-workers provided further insight on the penetration ability of the NPs inside the biofilms. They demonstrated that the neutral and anionic quantum dots (QDs) did not show any penetration inside the biofilms, while cationic QDs were widely distributed throughout the biofilm. Furthermore, cationic QDs with hydrophobic terminal groups were found inside the bacterial cells, whereas their hydrophilic counterparts remained in the EPS matrix of the biofilm (Figure 2).

Nanoparticles as active antimicrobial agents

NPs provide multiple attributes that facilitate the development of unique antimicrobial strategies. NPs can interact with and penetrate bacterial cells with unique bacteriostatic and bactericidal mechanisms. For example, possessing slightly larger diameters than drug efflux pumps, NPs can potentially reduce efflux-mediated extrusion. Exploiting these characteristic properties, several NP-based systems have been employed for antimicrobial applications. Xu and co-workers demonstrated enhanced *in vitro* antibacterial activities of vancomycin-capped AuNPs (Au-Van) against vancomycin-resistant *Enterococci* and *E. coli* strains. Similarly, Feldheim and co-workers demonstrated that antimicrobial activity of NPs functionalized with non-antibiotic molecules depended upon their composition on the surface. These studies indicate that modulating NP surfaces exhibits great potential for antimicrobial therapy. However, further studies on how NP surface functionality modulates antimicrobial activity can provide valuable information for future NP-based antimicrobial agents.

In a recent study, the Rotello group reported a strategy to combat MDR bacteria by engineering the ligands on NP surfaces. Cationic and hydrophobic functionalized AuNPs effectively suppressed the growth of 11 clinical MDR isolates at low concentrations. The minimum inhibitory concentrations (MICs) observed for these systems with most bacteria strains was 16 nM. Moreover, bacteria strains did not develop resistance against NPs, even after 20 passages.

Figure 2. Surface design controls penetration ability of nanoparticles. **a)** Quantum dots used in study. **b)** Micrographs of microtomed slices of the biofilm showing no penetration by anionic and neutral particles and efficient infiltration by cationic quantum dots.
at sub-MIC concentrations, which is far beyond that of traditional antibiotics. Overall, this study provides an excellent starting platform to design antibacterial therapeutics in future studies.

The antibacterial activity of silver has been well established. High surface area and concomitant increase in dissolution rate are key to its use in silver-based antimicrobials, where free Ag$^+$ ions are the active agents. However, they face certain shortcomings, such as high toxicity to mammalian cells and limited penetration in biofilm matrices. Recent studies have focused on countering these issues by using inherent NP properties and surface functionalization as their toolkit. For example, Mahmoudi and co-workers developed silver ring-coated superparamagnetic iron oxide NPs (SPIONS) with ligand gaps that demonstrated high antimicrobial activity and remarkable compatibility with healthy cells. Additionally, these NPs exhibited enhanced activity against biofilm infections due to deeper penetration under an external magnetic field.

Graphene NPs, AuNPs, and carbon nanotubes possess photothermal properties that can be utilized to design therapeutic agents. These nanomaterials absorb light (700–1100 nm) and release heat. Ling and co-workers designed graphene-based photothermal NPs that captured and killed Staphylococcus aureus and E. coli bacteria upon near-infrared (NIR) laser irradiation. In this approach, graphene oxide was reduced and functionalized with magnetic NPs (MRGO). These NPs were functionalized with glutaraldehyde (GA) to induce excellent crosslinking properties with Gram-positive and Gram-negative bacteria. Rapid and effective killing of 99% of both bacterial species was achieved upon NIR irradiation.

Nanoparticles as drug delivery vehicles for antibacterial therapy

Bacterial infections are able to evade antibiotic treatment through reduced bactericidal concentration or reduced antimicrobial activity of therapeutic agents at the site of infection. Localized delivery of the drugs/antimicrobials can increase their therapeutic efficacy. Therefore, NPs can serve as promising drug delivery vehicles owing to their tunable surface functionality, biocompatibility, and high drug loading capacity.

Strain	Species	MIC (nM)	# of resistant drugs
CD-496	E. coli	16	2
CD-3	E. coli	16	3
CD-19	E. coli	16	4
CD-549	E. coli	16	17
CD-866	E. cloacae complex	16	2
CD-1412	E. cloacae complex	8	4
CD-1545	E. cloacae complex	16	7
CD-1006	P. aeruginosa	16	1
CD-23	P. aeruginosa	32	13
CD-1578	S. aureus	64	4
CD-489	S. aureus-MRSA	32	10

Figure 3. Functionalized gold nanoparticles as antimicrobial agents.

- **a)** Nanoparticles studied, featuring 2 nm gold cores.
- **b)** Toxicity of nanoparticles to a laboratory *Escherichia coli* strain.
- **c)** Minimum inhibitory concentrations of nanoparticle 3 against multi-drug-resistant bacteria.
nitric oxide release33. Similarly, silica NPs have been fabricated as scaffolds for silver NP (AgNP) release54. Using NPs for controlled antimicrobial release can markedly improve their biocompatibility with mammalian cells and mitigate their hazardous environmental impact55–57. In one such study, biodegradable lignin-core NPs (EbNPs) infused with silver ions were proposed as greener alternatives to AgNPs. EbNPs were coated with cationic polyelectrolytes and loaded with Ag+ ions. These NPs exhibited broad-spectrum biocidal action against Gram-positive and Gram-negative bacteria at lower Ag+ ion concentrations than conventional AgNPs58.

Therapeutic selectivity is critical when designing effective drug delivery vehicles. Triggered release of antimicrobials from these nanocarriers can be an alternative strategy to diminish their undesirable side effects59,60. In one particular study, Langer and co-workers designed PLGA-PLH-PEG NPs as a carrier to deliver vancomycin to bacterial cells, exploiting their localized acidity. PLGA-PLH-PEG NPs demonstrated high binding affinity to bacterial cells at pH 6.0 as compared to 7.4. Vancomycin-encapsulated NPs exhibited a 1.3-fold increase in the MIC against \textit{S. aureus} as compared to 2.0-fold and 2.3-fold for free and PLGA-PEG-encapsulated vancomycin, respectively61. In a similar study, pH-responsive NPs were used to deliver hydrophobic drugs to biofilm moieties. Polymeric NPs used in this study consisted of a cationic outer shell to bind with the EPS matrix and a pH-responsive hydrophobic inner shell to release encapsulated farnesol molecules on demand. These scaffolds resulted in a 2-fold increase in efficacy in the treatment of biofilms as compared to the drug alone62.

Apart from acidic microenvironments, NPs can be designed to trigger antibiotic release upon exposure to bacterial toxins. For example, Zhang and co-workers designed AuNP-stabilized phospholipid liposomes (AuChi-liposomes) that respond to bacterial toxins. Chitosan-functionalized AuNPs were adsorbed on the liposomal surfaces to provide stability and prevent undesirable antibiotic leakage. In the presence of \textalpha- toxin-secreting \textit{S. aureus} bacteria, AuChi-liposomes released vancomycin that effectively inhibited their growth63.

Cationic NPs exhibit excellent penetration ability in biofilms64. Moreover, they can self-assemble at the oil-water interfaces to generate nanocapsules65. Combining these two characteristic features, Rotello and co-workers generated a highly effective therapeutic system for the treatment of bacterial biofilm infections. Peppermint oil and cinnamaldehyde were chosen as the therapeutic oil template, owing to their inherent antimicrobial nature, in combination with amine-functionalized cationic silica NPs that stabilized the oil-water interface to generate nanocapsules (CP-caps) (Figure 5). These capsules were further stabilized by the formation of hydrophobic Schiff bases upon reacting with cinnamaldehyde. The cationic NPs enabled the capsules to readily penetrate the biofilms and release the antimicrobial oils to eradicate the biofilm infections. Moreover, the therapeutic selectivity of CP-caps was...
tested on a biofilm-fibroblast cell co-culture model. These studies showed effective biofilm infection eradication with simultaneous growth enhancement of fibroblast cells.

High therapeutic selectivity makes these capsules useful antimicrobial agents for topical administration. Use of these nanomaterials systemically, however, requires an understanding of NP pharmacokinetics (PK) and biodistribution (BD). The PK and BD properties of NPs depend on several factors such as their size, shape, and surface functionalization. Apart from their physicochemical characteristics, the administration route of NPs likewise determines their systemic or local effect. For example, intravenous injection is used for targeting the liver and spleen, whereas mucocoidal NPs are used for oral and nasal drug delivery. Similarly, uptake and elimination of NPs in cells/tissues are dependent upon their physicochemical properties. For example, cationic NPs have higher uptake and slower rate of exocytosis in cells as compared to their anionic counterparts. Hence, evaluating the PK behavior of the current antimicrobial systems is important for their translation into the clinic.

Conclusion
NPs provide a versatile platform in designing materials for antimicrobial therapy. Tunable surface functionality and multivalency makes them promising candidates to target planktonic bacteria. Moreover, excellent biofilm penetration enhances their activity towards a range of biofilm-based infections. NP-based antimicrobial agents can be readily used for ex vivo applications such as sterilizers for surfaces and devices. The most accessible target in the near future includes the topical applications of NP-based systems for wound healing. However, further studies at the fundamental, biological, and pharmacological level are required to enable systemic administration of these antimicrobials. In conclusion, NPs have offered promising avenues to design effective next-generation therapeutics against bacterial threats.

Abbreviations
AgNP, silver nanoparticle; AuChi-liposomes, AuNP stabilized phospholipid liposomes; AuNPs, gold nanoparticles; Au-Van, vancomycin-capped AuNPs; CP-caps, cinnamaldehyde dissolved in peppermint oil capsules; EbNPs, lignin-core nanoparticles; EPS, extracellular polymeric substances; GA, glutaraldehyde; MDR, multi-drug resistance; MIC, minimum inhibitory concentration; MRGO, mildly reduced graphene oxide functionalized with magnetic nanoparticles; NIR, near-infrared; NPs, nanoparticles; PK, pharmacokinetics; PLGA-PLH-PEG, poly(D,L-lactic-co-glycolic acid)-b-(poly(L-histidine)-b-poly-(ethylene glycol); QDs, quantum dots; SPIONS, superparamagnetic iron oxide nanoparticles.

Competing interests
The authors declare that they have no competing interests.

Grant information
This research was funded by the National Institutes of Health (GM077173) and the National Science Foundation (CHE- 1307021).

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Prüss A, Kay D, Frewell L, et al.: Estimating the burden of disease from water, sanitation, and hygiene at a global level. Environ Health Perspect. 2002; 110(5): 537–42. [PubMed Abstract] [Publisher Full Text]

2. Costerton JW, Cheng KJ, Geesey GG, et al.: Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1997; 41: 435–64. [PubMed Abstract] [Publisher Full Text]

3. Costerton JW, Stewart PS, Greenberg EP: Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284(5418): 1318–22. [PubMed Abstract] [Publisher Full Text]

4. Spellberg B, Powers JH, Brass EP, et al.: Trends in antimicrobial drug development: implications for the future. Clin Infect Dis. 2004; 38(9): 1279–86. [PubMed Abstract] [Publisher Full Text]

5. De M, Ghosh PS, Rotello VM: Applications of Nanoparticles in Biology. Adv Mater. 2008; 20(22): 4225–41. [Publisher Full Text]

6. Davis ME, Chen ZG, Shin DM: Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008; 7(9): 771–82. [PubMed Abstract] [Publisher Full Text]

7. Jiang Z, Le ND, Gupta A, et al.: Cell surface-based sensing with metallic nanoparticles. Chem Soc Rev. 2015; 44(13): 4264–74. [PubMed Abstract] [Publisher Full Text] [Publisher Full Text] [Publisher Full Text]

8. Daniel MC, Astra D: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev. 2004; 104(1): 283–346. [PubMed Abstract] [Publisher Full Text]

9. Falagas ME, Kasiakou SK: Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis. 2005; 40(9): 1333–41. [PubMed Abstract] [Publisher Full Text]

10. Cui L, Iwamoto A, Lian JQ, et al.: Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2006; 50(2): 428–38. [PubMed Abstract] [Publisher Full Text] [Free Full Text]

11. Li XZ, Nikaido H: Efflux-mediated drug resistance in bacteria. Drugs. 2004; 64(2): 159–204. [PubMed Abstract] [Publisher Full Text]

12. Livermore DM: beta-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995; 8(4): 557–84. [PubMed Abstract] [Free Full Text]

13. Davies J, Wright GD: Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol. 1997; 5(6): 234–40. [PubMed Abstract] [Publisher Full Text]

14. Counsilin P: Vancomycin resistance in gram-positive cocci. Clin Infect Dis. 2006; 42(Suppl 1): S25–34. [PubMed Abstract] [Publisher Full Text]

15. Hajipour MJ, Fromm KM, Ashkarran AA, et al.: Antibacterial properties of nanoparticles. Trends Biotechnol. 2012; 30(10): 499–511. [PubMed Abstract] [Publisher Full Text]

16. Miller KP, Wang L, Benicewicz BC, et al.: Inorganic nanoparticles engineered to attack bacteria. Chem Soc Rev. 2015; 44(21): 7787–807. [PubMed Abstract] [Publisher Full Text]

17. Huh AJ, Kwon YJ: “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011; 156(2): 128–45. [PubMed Abstract] [Publisher Full Text]

18. Chopra I: The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother. 2007; 59(4): 587–90. [PubMed Abstract] [Publisher Full Text]

19. Jones N, Ray B, Ranjit KT, et al.: Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008; 279(1): 71–6. [PubMed Abstract] [Publisher Full Text]
BRL 3A rat liver cells, Toxicol In Vitro. 2005; 19(7): 975–93.

F1000 Recommendation

44. Fabrega J, Renshaw JC, Lead JR: Interactions of silver nanoparticles with Pseudomonas putida biofilms, Environ Sci Technol. 2009; 43(23): 9004–9.

F1000 Recommendation

45. Mahmoudi M, Serponovan V: Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibiotic resistance threat, ACS Nano. 2012; 6(3): 2656–64.

F1000 Recommendation

46. Shepherd SP, Tabakman SM, Yee L, et al.: Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphite shell nanocrystals, ACS Nano. 2011; 5(2): 1505–12.

F1000 Recommendation

47. Zharov VP, Mercer KE, Galitovskaya EN, et al.: Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles, Biophys J. 2006; 90(2): 619–27.

F1000 Recommendation

48. Wu MC, Deokar AR, Liao JH, et al.: Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano. 2013; 7(2): 1281–90.

F1000 Recommendation

49. Levy SB, Marshall B: Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004; 10(12 Suppl): S122–9.

F1000 Recommendation

50. Kohnsani MA, DePristo MA, Collins JJ: Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell. 2010; 37(3): 311–20.

F1000 Recommendation

51. Hetrick EM, Shin JH, Paul HS, et al.: Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials. 2009; 30(14): 2782–9.

F1000 Recommendation

52. Kresse CT, Leonowicz ME, Roth WJ, et al.: Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992; 359: 710–2.

F1000 Recommendation

53. Hengst M, Stryer L, et al.: Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials. 2009; 30(14): 2782–9.

F1000 Recommendation

54. Tian Y, Qi J, Zhang W, et al.: Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles. ACS Appl Mater Interfaces. 2014; 6(15): 12038–45.

F1000 Recommendation

55. Ahamed M, Alsalhi MS, Siddiqui MK: Silver nanoparticle applications and human health, Cln Clin Acta. 2010; 411(23–24): 1841–8.

F1000 Recommendation

56. Fabrega J, Luoma SN, Tyler CR, et al.: Silver nanoparticles: behaviour and effects in the aquatic environment, Environ Int. 2011; 37(2): 517–31.

F1000 Recommendation

57. Anastas P, Eghball N: Green chemistry: principles and practice. Chem Soc Rev. 2010; 39(1): 201–12.

F1000 Recommendation

58. Richter AP, Brown JS, Bhatti B, et al.: An environmentally benign antibacterial nanoparticle based on a silver-2D silicone core. Nanotechnology. 2015; 10(8): 1217–23.

F1000 Recommendation

59. Meers P, Neville M, Malinin V, et al.: Biofilm penetration, triggered release and in vivo activity of inhalen liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother. 2008; 61(4): 859–68.

F1000 Recommendation

60. Kim CS, Duncan B, Crenan B, et al.: Triggered Nanoparticles as Therapeutics. Nano Today. 2013; 8(4): 439–47.

F1000 Recommendation

61. Radovic-Morenco AF, Lu TK, Pussava VA, et al.: Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano. 2012; 6(5): 4279–87.

F1000 Recommendation

62. Horev B, Klein MI, Hwang G, et al.: Photostable nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS Nano. 2015; 9(3): 2390–404.

F1000 Recommendation

63. Pompallieranguin KGZ, Zhang L, Olson S, et al.: Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc. 2011; 133(11): 4329–9.

F1000 Recommendation

64. Giri K, Koptes LR, Duncan B, et al.: Targeting bacterial biofilms via surface engineering of gold nanoparticles. RSC Adv. 2015; 5(128): 10551–9.

F1000 Recommendation

65. Duncan B, Lands RF, Jern H: Hybrid organic-inorganic colloidal composite ‘sponges’ via internal crosslinking. Small. 2015; 11(11): 1302–9.

F1000 Recommendation
66. Duncan B, Li X, Landis RF, et al.: Nanoparticle-Stabilized Capsules for the Treatment of Bacterial Biofilms. ACS Nano. 2015; 9(8): 7775–82. PubMed Abstract | Publisher Full Text

67. Li SD, Huang L: Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008; 5(4): 496–504. PubMed Abstract | Publisher Full Text

68. Arvizo RR, Miranda OR, Moyano DF, et al.: Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS One. 2011; 6(9): e24374. PubMed Abstract | Publisher Full Text | Free Full Text

69. Cheng CJ, Tietjen GT, Saucier-Sawyer JK, et al.: A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov. 2015; 14(4): 239–47. PubMed Abstract | Publisher Full Text | Free Full Text

70. Longmire M, Choyke PL, Kobayashi H: Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 2008; 3(5): 703–17. PubMed Abstract | Publisher Full Text | Free Full Text

71. Kim CS, Le ND, Xing Y, et al.: The role of surface functionality in nanoparticle exocytosis. Adv Healthc Mater. 2014; 3(8): 1200–2. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: 🔄 🔄

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. Charles Flexner
 Johns Hopkins University, Baltimore, MD, USA
 Competing Interests: No competing interests were disclosed.
2. Marco Siccardi
 University of Liverpool, Liverpool, UK
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com