Minimal Supersymmetric Standard Model
within CompHEP software package

A.S.Belyaev a,b, A.V.Gladyshev c A.V.Semenov d

a Instituto de Física Teórica, Universidade Estadual Paulista,
Rua Pamplona 145, 01405-900 - São Paulo, S.P., Brasil

b Skobeltsin Institute for Nuclear Physics, Moscow State University,
119 899, Moscow, Russian Federation

c Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
141 980 Dubna, Moscow Region, Russian Federation

d Laboratory of Particle Physics, Joint Institute for Nuclear Research,
141 980 Dubna, Moscow Region, Russian Federation

Abstract

The Minimal Supersymmetric Standard Model is presented as a model for the CompHEP
software package as a set of files containing the complete Lagrangian of the MSSM, particle
contents and parameters. All resources of CompHEP with a user-friendly interface are now
available for the phenomenological study of the MSSM. Various special features of the model
are discussed.

Submitted to Comp. Phys. Commun.

1 e-mail: belyaev@monet.npi.msu.su
2 e-mail: gladysh@thsun1.jinr.ru
3 e-mail: semenov@theory.npi.msu.su
1 Introduction

Supersymmetry (SUSY) is one of the most promising theoretical ideas pretending to solve some problems of the Standard Model (SM) and Grand Unified Theories (GUT). The simplest supersymmetric extension of the SM is the Minimal Supersymmetric Standard Model (MSSM). The phenomenological study of the MSSM in relation to colliders of TeV energies is an important task for understanding the SUSY discovery potential of existing and forthcoming accelerators.

One of the important points for the phenomenological study of different models of particle physics is the possibility for automatic calculations. There are several software packages (GRACE [1], DILL [2], XLOOPS [3], PHYSICA [4], SHELL2 [5], TLAMM [6], HECAS [7], etc.) which allow users to perform analytic and numerical calculations of high energy physics processes. Among them is the CompHEP software package [8] which was developed by High Energy Physics Group of Skobeltsin Institute for Nuclear Physics of Moscow State University. It allows to pass automatically from the Lagrangian of a model to event distribution and performs complete tree level calculations in the framework of any fed model. One of the main advantages of CompHEP is that it allows to perform the calculations within any user defined model. In comparison with the previous packages we present the complete version of the MSSM as a CompHEP model. Some technical details of implementing the MSSM into the package are discussed as well.

Files containing the MSSM Lagrangian, particles and parameters are available from the following WWW sites:

http://theory.npi.msu.su/~comphep/comphep-susy.Z
or
http://thsun1.jinr.ru/~comphep/comphep-susy.Z

2 MSSM in the CompHEP package: Lagrangian, particles and parameters

The general structure of the CompHEP software package as well as its main features is described in Ref. [8], and we will not repeat it here. We just note that in order to specify a model for performing calculations within CompHEP, one has to create the following set of files (this can be done also within the CompHEP package itself by choosing the menu item NEW MODEL):

lgrngN.mdl the table containing the Feynman rules of the model
prtclsN.mdl the table with the particles of the model
varsN.mdl the table of the model parameters
funcN.mdl the table with parameter dependences, which allows to have only independent parameters for the final calculation

Here N is an integer number, the number of the model.

We skip here the description of constructing the supersymmetric extension of the SM, since a number of excellent reviews are available, see e.g. [9, 10]. The Yukawa interactions are determined by the superpotential which in the case of the MSSM reads

$$W = \epsilon_{ij} \left(h^{1L}_i L^c_i H^1 E^c_j + h^{1D}_i Q^1_i H^1 H^2_j + h^{1U}_i Q^1_i H^2 H^2_j + \mu H^1_j H^2_j \right).$$

Here h^{IJ} are the Yukawa coupling constants, L and Q are the $SU(2)$ doublet lepton and quark superfields, E^c, U^c and D^c are the $SU(2)$ singlet charge-conjugated superfields of leptons and up-
and down-type quarks, $H_{1,2}$ are the $SU(2)$ doublet Higgs superfields, i, j are the $SU(2)$ indices and I, J are generation indices.

We follow the Feynman rules of the MSSM according to the Ref. [11]. Besides we have generated the Feynman rules by ourselves using the general form of the Lagrangian [11] for double check. It has been done by means of the LanHEP program [12].

The MSSM particle spectrum is the following:

- **Standard Model particles:**
 - photon γ, W^\pm and Z bosons and gluon g
 - quarks u, d, s, c, b, t
 - leptons $e, \nu_e, \mu, \nu_\mu, \tau, \nu_\tau$

- **Higgs bosons** H_1 and H_2 (the physical states are two neutral CP-even Higgses h and H, neutral CP-odd Higgs A and a pair of charged Higgs bosons H^{\pm})

- **Superpartners**
 - superpartners of the gauge bosons (gaugino) and Higgs bosons (higgsino) whose mass eigenstates are two charginos $\tilde{\chi}^+_1, \tilde{\chi}^+_2$ and four neutralinos $\tilde{\chi}^0_1, \tilde{\chi}^0_2, \tilde{\chi}^0_3, \tilde{\chi}^0_4$
 - superpartners of the matter fields (squarks and sleptons); the physical eigenstates are mixtures of the superpartners of the left-handed and right-handed quarks and leptons.

The part of file `prtclsN.mdl` is presented in Table 1 in the CompHEP notations. It contains all the particles mentioned above. The rest part of `prtclsN.mdl` contains auxiliary fields and is discussed later.

The meaning of the table contents is the following:

Full name	full particle name for the particular model;
P,AP	particle and anti-particle notations;
2*spin	doubled spin of a particle;
mass	mass of a particle;
width	width of a particle;
color	transformation properties of a particle under the $SU(3)_{colour}$ gauge group: 8 – octet, 3 – triplet and 1 – singlet;
aux	some specific properties of a particle.

The detailed explanation can be found in Ref. [8]

The MSSM contains, in general, many parameters:

- **$SU(3)$, $SU(2)$ and $U(1)$ gauge couplings;**

- **Yukawa couplings** h_L, h_U, h_D (they are, in general, 3-dimensional matrices in the generation space);

- **gaugino masses** M_1, M_2, M_3;

- **trilinear soft supersymmetry breaking parameters** A_L, A_U, A_D (they are, in general, 3-dimensional matrices in the generation space);
• Higgs mixing parameter μ and the corresponding bilinear soft supersymmetry breaking parameter B (the last can be re-expressed through the ratio of vacuum expectation values of the Higgs fields $\tan \beta = v_2/v_1$);

• a number of rotating matrices Z_{ij} of squark, slepton, Higgs, chargino and neutralino sectors, as well as the CKM mixing matrix.

However, after the appropriate simplifying assumptions (unification of the gauge coupling constants, universality of the soft supersymmetry breaking parameters at the GUT scale, the diagonal form of the Yukawa matrices, etc.) are made, only few independent parameters are left. Below we discuss our assumptions and model parameters.

• matrices of Yukawa couplings and corresponding trilinear soft supersymmetry breaking parameters A are diagonal

• superpartners of the left-handed and right-handed fermions of two light generations do not mix; mixing takes place only for the third generation sfermions. This turns to be rather accurate approximation, since the off-diagonal entries of the sfermion mass-squared-matrices are of the form $m_f(A_f - \mu \tan \beta)$. This assumption also fixes the form of the rotating matrices Z_{ij} in squark and slepton sectors, for which we have also neglected the intergenerational mixing

• we accept also some theoretical motivations, namely, the gauge coupling constant unification and the universality of the soft supersymmetry breaking parameters at the GUT scale, which is natural in, e.g. supergravity inspired models. This, however, affects only on numerical values of sparticle and Higgs masses and mixings which are presented below as an example. The last assumption can be relaxed and even rejected if one is interested in studying models beyond MSSM or effects of non-universal SUSY breaking terms, etc.

Under the above mentioned assumptions, in addition to the SM parameters one has the following set of parameters all taken at the Grand Unification scale (the corresponding model is often referred to as Minimal Supergravity):

• m_0 – the common mass of scalar particles

• $m_{1/2}$ – the common mass of fermions

• μ_0 – the initial value of the Higgs mixing parameter

• A_0 – the initial value of trilinear soft supersymmetry breaking parameters

The soft supersymmetry breaking part of the Lagrangian then takes the form:

$$-L_{SB} = m_0^2 \sum_i |\varphi_i|^2 + \left(m_{1/2} \sum_\alpha \lambda_\alpha \lambda_\alpha + A_0 (h_L \tilde{L} \tilde{H}_1 \tilde{E}^c + h_D Q \tilde{H}_1 \tilde{D}^c + h_U Q \tilde{H}_2 \tilde{U}^c) + B \mu \tilde{H}_1 \tilde{H}_2 + h.c. \right),$$

φ_i are the scalar particles, λ_α are gauginos, the tilde denotes the scalar component of the corresponding superfield, $SU(2)$ contraction being understood.

And the last parameter is

• $\tan \beta$ (the value of this parameter determines two different scenarios, the so called high and low $\tan \beta$ scenarios [13])
The numerical values of the parameters can be chosen in different ways. However, if one wants to perform a self-consistent analysis one has to be careful since many restrictions have to be satisfied simultaneously. We follow here the strategy of the global fit analysis \cite{13} in the framework of which one can predict values of parameters satisfying some common conditions and present experimental data.

We use the following values of the input MSSM parameters obtained from the global fit analysis for high $\tan\beta$ scenario (as an example) at the GUT scale:

m_0	$m_{1/2}$	μ	$\tan\beta$	Y_t	Y_b	Y_τ	M_{GUT}	$1/\alpha_{\text{GUT}}$	A_0
800	88	-270	41.2	0.0014	0.0011	0.0011	$2.5 \cdot 10^{16}$	24.3	0

where $Y_t = h_t^2/16\pi^2$.

To calculate the numerical values of the soft SUSY breaking parameters and masses of superparticles we run one-loop renormalization group equations from the unification point down to the scale of the Z-boson mass. After that the values of the elements of rotating matrices Z_{ij} can be also calculated.

The input parameters of the MSSM in the CompHEP notations are presented in Table 2 (the file `varsN.mdl`).

It should be stressed that widths of the particles have been calculated by means of CompHEP itself for this particular set of particle masses. One should keep the right widths of the particles for the calculation of different processes (especially, resonant ones) and recalculate widths for any new set of parameters.

The table of the MSSM Lagrangian (the file `lgrngN.mdl`) exactly corresponds to the order of the Feynman rules in Ref. \cite{13}, but the section 14. All four-scalar vertices from section 14 and gluon-gluon-squark-squark vertices from section 15 are converted into three-particle vertices and given in the end of the table.

The four-scalar vertices originate from the scalar potential which is the sum of the F- and D-term parts:

$$V = \frac{1}{2}(D_G^a D_G^a + D_W^a D_W^a + D_B^a D_B^a) + F_i^* F_i,$$

where

$$D_G^a = g_s(\tilde{Q}'^* \lambda^a \tilde{Q}' + \tilde{D}'^* \lambda^a \tilde{D}' + \tilde{U}'^* \lambda^a \tilde{U}')$$
$$D_W^a = \frac{g}{2}(\tilde{Q}'^* \tau^a \tilde{Q}' + \tilde{L}'^* \tau^a \tilde{L}' + H_1^* \tau^a H_1 + H_2^* \tau^a H_2)$$
$$D_B^a = g'(\frac{1}{6} \tilde{Q}'^* \tilde{Q}' + \frac{1}{3} \tilde{D}'^* \tilde{D}' - \frac{2}{3} \tilde{U}'^* \tilde{U}' + \frac{1}{2} \tilde{L}'^* \tilde{L}' + \tilde{E}'^* \tilde{E}' - \frac{1}{2} H_1^* H_1 + \frac{1}{2} H_2^* H_2)$$
$$F_{H_1^* F_{H_1}} = \mu^2 H_1^* H_1 + h_{1t}^2 \tilde{L}^* \tilde{L} \tilde{E}'^* \tilde{E}' + h_{D}^2 h_{D}^2 \tilde{Q}'^* \tilde{Q}' \tilde{D}'^* \tilde{D}' + \left[h_{1t}^2 H_1^* \tilde{L}^* \tilde{E}' + h_{1t}^2 H_1^* \tilde{Q}'^* \tilde{Q}' \tilde{D}'^* \tilde{D}' + h_{1t}^2 H_1^* \tilde{L}^* C^{JK} \tilde{Q}'^* \tilde{E}' \tilde{D}'^* \tilde{D}' + H.c. \right]$$
$$F_{H_2^* F_{H_2}} = \mu^2 H_1^* H_1 + h_{1t}^2 \tilde{Q}'^* \tilde{Q}' \tilde{D}'^* \tilde{D}' + \left[h_{1t}^2 H_1^* \tilde{Q}'^* \tilde{Q}' \tilde{D}'^* \tilde{D}' + H.c. \right]$$

$$F_{L^* F_{L}} = \left(h_{L}^2 \right)^2 H_1^* H_1 \tilde{E}'^* \tilde{E}'$$
\[
F_{E E}^* F_E = \left(h_{t L}^I \right)^2 \epsilon_{ij} \epsilon_{kl} H_{1k}^I H_{1k} \bar{L}_j^I \bar{L}_l^I \\
F_{Q Q}^* F_Q = \left(h_{t D}^I \right)^2 H_1^I H_1 \bar{D}_j^I \bar{D}_l + \left(h_{t U}^I \right)^2 H_2^I H_2 \bar{U}_l^I \bar{U}_l + \left[h_{t U}^I h_{t D}^I H_1^I H_2^I C^{IJ} \bar{U}^I \bar{D}^J + H.c. \right] \\
F_{U U}^* F_U = \left(m_{a t}^I \right)^2 \epsilon_{ij} \epsilon_{kl} H_{2a}^I H_{2k} \bar{Q}_j^I \bar{Q}_l^I \\
F_{D D}^* F_D = \left(m_{b t}^I \right)^2 \epsilon_{ij} \epsilon_{kl} H_{1k}^I H_{1k} \bar{Q}_j^I \bar{Q}_l^I \\
\]

\(\lambda^a(a = 1, \ldots, 8) \) and \(\tau^a(a = 1, 2, 3) \) are Gell-Mann and Pauli matrices, \(C^{IJ} \) is the Cabbibo-Kobayashi-Maskawa mixing matrix, \(Q_1^I = Q_1^I, Q_2^I = C^{IJ} Q_2^I \) and \(Q_1^I = C^{IJ} Q_1^I, Q_2^I = Q_2^I \).

In order to reduce the enormous number of four-scalar vertices due to flavour permutations we split each vertex to a pair of three-particle ones and introduce a number of auxiliary fields. The other reason of doing this is that 4-colour vertices cannot be implemented directly into CompHEP due to conventions about the colour structure. The way we introduced such vertices is clearly seen from the structure of \(F \)-terms which can be written as follows:

\[
F_{H_1 H_1}^* F_{H_1} = |h_{D}^{IJ} \bar{Q}_j^I \bar{D}_j + h_{L}^{IJ} \bar{E}_j^I + \mu \bar{H}_2|^2 \\
F_{H_2 H_2}^* F_{H_2} = |h_{D}^{IJ} \bar{Q}_j^I \bar{U}_j + \mu \bar{H}_1|^2 \\
F_{L L}^* F_{L} = |h_{L}^{IJ} \bar{H}_j^I \bar{E}_j|^2 \\
F_{E E}^* F_{E} = |h_{L}^{IJ} \epsilon_{ij} \bar{H}_j^I \bar{L}_j|^2 \\
F_{Q Q}^* F_{Q} = |C^{IJ} h_{D}^{JK} \bar{D}_j^K \bar{H}_1 + h_{L}^{IJ} \bar{U}_j^I \bar{H}_2|^2 \\
F_{U U}^* F_{U} = |h_{U}^{IJ} \epsilon_{ij} \bar{H}_j^I \bar{Q}_j|^2 \\
F_{D D}^* F_{D} = |h_{D}^{IJ} \epsilon_{ij} \bar{H}_j^I \bar{Q}_j|^2 \\
\]

For example, the four-scalar vertices coming from terms \(F_{H_1 H_1}^* F_{H_1} \) and \(F_{H_2 H_2}^* F_{H_2} \) can be introduced through two doublets of the auxiliary fields \((\xi_1, \xi_2) \) with a constant propagator \(1/M_\xi^2 \). To cancel the dependence of the results on the mass of the auxiliary fields we multiply each vertex containing the latter by the factor \(M_\xi \), however, it is necessary for CompHEP to define it and assign a numerical value for it (we put \(M_\xi = 1 \)).

These auxiliary fields are defined in the CompHEP particle table (the file \(\text{prtclsN.mdl} \)). The part of the file with the definition of new auxiliary fields is presented in Table 3.

Some part of the CompHEP table of the MSSM Lagrangian with auxiliary fields is presented in Table 4 as an example (the vertices containing sparticles of the first and second generation, and conjugated vertices are skipped).
3 Test of the model and conclusions

In the paper we have presented the Minimal Supersymmetric Standard Model as a model implemented into the CompHEP package. The model has been already used for the study of the chargino pair production at LEP [14]. Chargino sector has been tested by comparison of the analytical results obtained by means of CompHEP with those presented in [15, 16]. In Ref. [15] the chargino pair production at high energy $\gamma\gamma$ colliders has been studied ($\gamma\gamma \rightarrow \tilde{\chi}_j^- \tilde{\chi}_j^+$ process). The paper [16] is devoted to the study of chargino and sneutrino production in electron-photon collisions ($e^-\gamma \rightarrow \tilde{\chi}_j^- \tilde{\nu}_e$ process). CompHEP results are in agreement with the results obtained in these papers. The charged Higgs sector has been also tested. We have an agreement with the results of Ref. [17] where the study of the charged Higgs pair production in e^+e^- collisions has been performed.

People from High Energy Physics community are welcome to study the MSSM within the CompHEP software package. Any remarks or suggestions are appreciated.

Acknowledgments

We would like to thank S.Ambrosanio, E.Boos, V.Ilyin, D.Kazakov, D.P.Roy for valuable discussions and their help in implementing the MSSM into the CompHEP package. Especially must we express our gratitude to A.Pukhov who provided us the new improved version of the CompHEP package which is more effective for calculations in the framework of complicated models and MSSM in particular.

The financial support of the Russian Foundation for Basic Research (grants # 96-02-17379-a, # 96-02-19773-a) and ICFPM in 1996 is acknowledged. The work of A.V.S. was also supported by the grants ISSEP a97-966 and INTAS 93-1180-ext.
Full name	P	aP	2*spin	mass	width	color	aux
photon	A	A	2	0	0	1	G
Z boson	Z	Z	2	MZ	wZ	1	G
gluon	G	G	2	0	0	8	G
W boson	W+	W-	2	MW	wW	1	G
neutrino n1	n1	N1	1	0	0	1	L
mu-neutrino n2	n2	N2	1	0	0	1	L
muon	e2	E2	1	Mm	0	1	
tau-neutrino n3	n3	N3	1	0	0	1	L
tau-lepton e3	E3	1		Mt	0	1	
u-quark	u	U	1	0	0	3	
d-quark	d	D	1	0	0	3	
c-quark	c	C	1	Mc	0	3	
s-quark	s	S	1	Ms	0	3	
t-quark	t	T	1	Mtop	wtop	3	
b-quark	b	B	1	Mb	0	3	
Light Higgs	h	h	0	Mh	wh	1	
Heavy higgs	H	H	0	MHH	wHh	1	
3rd Higgs	H3	H3	0	MH3	wH3	1	
Charged Higgs	H+	H-	0	MHc	wHc	1	
chargino 1	"1+	"1-	1	MC1	wC1	1	
chargino 2	"2+	"2-	1	MC2	wC2	1	
neutralino 1	"o1	"o1	1	MNE1	wNE1	1	
neutralino 2	"o2	"o2	1	MNE2	wNE2	1	
neutralino 3	"o3	"o3	1	MNE3	wNE3	1	
neutralino 4	"o4	"o4	1	MNE4	wNE4	1	
gluino	g	g	1	MSG	wSG	8	
1st selectron	"e1	"E1	0	MSe1	wSe1	1	
2nd selectron	"e4	"E4	0	MSe2	wSe2	1	
1st smuon	"e2	"E2	0	MSmu1	wSmu1	1	
2nd smuon	"e5	"E5	0	MSmu2	wSmu2	1	
1st stau	"e3	"E3	0	MStau1	wStau1	1	
2nd stau	"e6	"E6	0	MStau2	wStau2	1	
e-sneutrino	"n1	"N1	0	MSne	wSne	1	
m-sneutrino	"n2	"N2	0	MSnmu	wSnmu	1	
t-sneutrino	"n3	"N3	0	MSntau	wSntau	1	
u-squark 1	"u1	"U1	0	MSu1	wSu1	3	
u-squark 2	"u2	"U2	0	MSu2	wSu2	3	
d-squark 1	"d1	"D1	0	MSD1	wSd1	3	
d-squark 2	"d2	"D2	0	MSd2	wSd2	3	
c-squark 1	"c1	"C1	0	MSc1	wSc1	3	
c-squark 2	"c2	"C2	0	MSc2	wSc2	3	
s-squark 1	"s1	"S1	0	MSs1	wSs1	3	
s-squark 2	"s2	"S2	0	MSs2	wSs2	3	
t-squark 1	"t1	"T1	0	MStop1	wStop1	3	
t-squark 2	"t2	"T2	0	MStop2	wStop2	3	
b-squark 1	"b1	"B1	0	MSbot1	wSbot1	3	
b-squark 2	"b2	"B2	0	MSbot2	wSbot2	3	

Table 1: MSSM particles table in the CompHEP notations.
Name	Value	Comment	Name	Value	Comment	Name	Value	Comment
EE	0.31333		TB	41.2		tan β		
GG	1.117		hx	-220		μ		
SW	0.474	sinθ_W	ls1	0		A_L^1		
s12	0.221		ls2	0		A_L^2		
s23	0.04		ls3	4.62		A_t		
s13	0.0035		us1	0		A_U^1		
MZ	91.187		us2	0		A_U^2		
Zn11	0.152		us3	106		A_D^1		
Zn12	0.060		ds1	0		A_D^2		
Zn13	-0.953		ds2	0		MStop^1		
Zn14	-0.255		ds3	3.32		MStop^2		
Zn21	0.681		wZ	2.502		MStop^3		
Zn22	-0.172		wW	2.094		MStop^4		
Zn23	0.274		Mm	0.1057		MSn1		
Zn24	-0.657		Mt	1.777		MSn2		
Zn31	-0.992		Mm	1.3		MSn3		
Zn32	-0.983		Ms	0.2		MSntau		
Zn33	-0.107		Mtop	175		MSntau		
Zn34	0.117		wtop	1.442		MSntau		
Zn41	0.710		Mm	4.3		MS1		
Zn42	0.025		Mh	110		MS2		
Zn43	-0.072		wh	0.088		MSd1		
Zn44	0.700		MHH	273		MSd2		
Zm11	0.918		wHh	18.6		MSd2		
Zm12	0.397		MH3	273		MSc1		
Zm21	-0.397		MH3	18.8		MSc1		
Zm22	0.918		MHc	285		MSc2		
Zp11	0.994		MhC	9.73		MSc2		
Zp12	0.106		MC1	65		MSc2		
Zp21	-0.106		wC1	0.00003		MSc2		
Zp22	0.994		MC2	254		MSc2		
Zd33	-0.978		wC2	7.26		MSc2		
Zd36	-0.206		MNE1	35		MNE1		
Zd63	-0.206		wNE1	0		MNE1		
Zd66	0.978		MNE2	65		MNE2		
Zu33	0.158		wNE2	0		MNE2		
Zu36	-0.987		MNE3	240		MNE3		
Zu63	0.987		wNE3	1.91		MNE3		
Zu66	0.158		MNE4	248		MNE4		
Z133	-0.733		wNE4	11.5		MNE4		
Z136	-0.680		MSG	236		MSG		
Z163	-0.680		wSG	0.000258		wSG		
Z166	0.733		MSe1	804		MSe1		

Table 2: The input parameters of the MSSM in the CompHEP notations.
imprt	GGU1U1	~00	~01	2	Maux	0	3	*
imprt	GGU2U2	~02	~03	2	Maux	0	3	*
imprt	GGD1D1	~04	~05	2	Maux	0	3	*
imprt	GGD2D2	~06	~07	2	Maux	0	3	*
imprt	GGC1C1	~08	~09	2	Maux	0	3	*
imprt	GGC2C2	~0A	~0B	2	Maux	0	3	*
imprt	GGS1S1	~0C	~0D	2	Maux	0	3	*
imprt	GGS2S2	~0E	~0F	2	Maux	0	3	*
imprt	GGT1T1	~0G	~0H	2	Maux	0	3	*
imprt	GGT2T2	~0I	~0J	2	Maux	0	3	*
imprt	GGB1B1	~0K	~0L	2	Maux	0	3	*
imprt	GGB2B2	~0M	~0N	2	Maux	0	3	*
imprt	DD-SU3	~0O	~0P	0	Maux	0	8	*
imprt	SU2-1	~0Q	~0P	0	Maux	0	1	*
imprt	SU2-2	~0Q	~0Q	0	Maux	0	1	*
imprt	SU2-3	~0R	~0R	0	Maux	0	1	*
imprt	U1	~0S	~0S	0	Maux	0	1	*
imprt	xi11	~0T	~0U	0	Maux	0	1	*
imprt	xi12	~0V	~0V	0	Maux	0	1	*
imprt	xi21	~0X	~0Y	0	Maux	0	1	*
imprt	xi22	~0Z	~0a	0	Maux	0	1	*

Table 3: The part of the CompHEP table of particles with the definition of new auxiliary fields.
Table 4: The part of the CompHEP table of the MSSM Lagrangian with auxiliary fields

P1	P2	P3	P4	Factor	Lorentz part
G	~ON	~b2		Sq rt 2*GG*Maux	m1.m2
G	~OM	~B2		Sq rt 2*GG*Maux	m1.m2
G	~OL	~b1		Sq rt 2*GG*Maux	m1.m2
G	~OK	~B1		Sq rt 2*GG*Maux	m1.m2
G	~OJ	~t2		Sq rt 2*GG*Maux	m1.m2
G	~OI	~T2		Sq rt 2*GG*Maux	m1.m2
G	~OH	~t1		Sq rt 2*GG*Maux	m1.m2
G	~OG	~T1		Sq rt 2*GG*Maux	m1.m2
~0O	~B1	~b1	i*2*GG/2*Maux	1	
~0O	~T1	~t1	i*2*GG/2*Maux	1	
~0R	~E6	~e6	-i*2*EE/(4*SW)*Maux	ZL36**2	
~0O	~E6	~n3	-2*EE/(4*SW)*Maux	ZL36	
~0P	~E6	~n3	i*2*EE/(4*SW)*Maux	ZL361	
~0R	~N3	~n3	i*2*EE/(4*SW)*Maux	1	
~0R	~T1	~t1	i*2*EE/(4*SW)*Maux	ZU33**2	
~0Q	~C1	~b1	2*EE/(4*SW)*Maux	Vcb*ZD33*ZU22	
~0P	~C1	~b1	i*2*EE/(4*SW)*Maux	Vcb*ZD33*ZU22	
~0S	~E6	~e6	i*2*EE/(4*SW)*Maux	2*ZL66**2-ZL36**2	
~0S	~N3	~n3	-i*2*EE/(4*SW)*Maux	1	
~0S	~B2	~b2	i*2*EE/(12*CW)*Maux	2*ZD66**2+ZD36**2	
~0S	~T2	~t2	-i*2*EE/(12*CW)*Maux	4*ZU66**2-ZU36**2	
~0W	~E6	~e6	-Maux	ZL36*ZL66*13	
~0U	~E3	~n3	-Maux	ZL63*13	
~0W	~B1	~b1	-Maux	ZD33*ZD63*d3	
~0U	~B1	~t1	-Maux	Vtb*ZD63*ZU33*d3	
~0V	~E6	~e6	Maux	ZL36*ZL66*13	
~0T	~N3	~e3	Maux	ZL63*13	
~0V	~B2	~b2	Maux	ZD36*ZD66*d3	
~0T	~T2	~b2	Maux	Vtb*ZD66*ZU36*d3	
~0a	~T1	~b1	-Maux	Vtb*ZD33*ZU63*u3	
~0Y	~T2	~t2	-Maux	ZU36*ZU66*u3	
~0Z	~B2	~t2	Maux	Vtb*ZD36*ZU66*u3	
~0X	~T2	~t2	Maux	ZU36*ZU66*u3	
References

[1] T.Kaneko, H.Tanaka, Tokyo U. ICRR-238-91-7;
Minami-Tateya Collaboration (T.Ishikawa et al.), KEK-92-19;
Minami-Tateya Collaboration (M.Jimbo et al.), TMCP-95-1, hep-ph/9503363;
Minami-Tateya Collaboration (M.Jimbo et al.), TMCP-95-3, hep-ph/9503365.

[2] V.Lucic, Comp. Phys. Commun. 92 (1995) 90, hep-ph/9412298.

[3] L.Brucher, Nucl. Instrum. Meth. A389 (1997) 327, hep-ph/9611378.

[4] J.Beringer, Bern U. BUTP-92-07, In: La Londe-les-Maures 1992, Proceedings, New computing
techniques in physics research II, p.703.

[5] J.Fleischer, O.V.Tarasov, Comp. Phys. Commun. 71 (1992) 193.

[6] L.V.Avdeev, J.Fleischer, M.Yu.Kalmykov, M.N.Tentyukov, Nucl. Instrum. Meth. A389 (1997) 343, hep-ph/9610467;
L.V.Avdeev, J.Fleischer, M.Yu.Kalmykov, M.N.Tentyukov, hep-ph/9710222, accepted for publication in Comp. Phys. Comm.

[7] V.N.Larin, F.F.Tikhonin, Serpukhov, IFVE-90-75 (in Russian).

[8] E.E.Boos, M.N.Dubinin, V.A.Ilyin, A.E.Pukhov, V.I.Savrin, SNUTP-94-116, INP-MSU-94-36/358, hep-ph/9503280;
P.A.Baikov et al., Proc. of X Workshop on HEP and QFT (QFTHEP-95), ed. by B.Levtchenko,
V.Savrin, p.101, hep-ph/9701412.

[9] H.P.Nilles, Phys. Rep. 110 (1984) 1.

[10] H.E.Haber, G.L.Kane, Phys. Rep. 117 (1985) 75.

[11] J.Rosiek, Phys. Rev. D41 (1990) 3464;
J.Rosiek, Karlsruhe U. KA-TP-8-1995, hep-ph/9511250.

[12] A.V.Semenov, Moscow State U. INP-MSU-96-24-431, hep-ph/9608488.

[13] W. de Boer, R.Ehret, D.I.Kazakov, Z. Phys. C67 (1995) 647, hep-ph/9405342;
W. de Boer et al., Z. Phys. C71 (1996) 415, hep-ph/9603350.

[14] A.S.Belyaev, A.V.Gladyshev, JINR-E2-97-76, hep-ph/9703251.

[15] M.Koike, T.Nonaka, T.Kon, Phys. Lett. B357 (1995) 232, hep-ph/9504309.

[16] S.Hesselbach, H.Fraas, Phys. Rev. D55 (1997) 1343, hep-ph/9604439.

[17] A.Arhib, M.C.Peyranere, G.Moultaka, Phys. Lett. B341 (1995) 313, hep-ph/9406357.