Connecting radio variability to the characteristics of gamma-ray blazars

J. L. Richards, T. Hovatta, W. Max-Moerbeck, V. Pavlidou, T. J. Pearson, and A. C. S. Readhead

1 INTRODUCTION

Active galactic nuclei (AGN) are among the most energetic objects in the universe. In an AGN, a variety of energetic phenomena are driven by a supermassive black hole (SMBH), fuelled by accretion from its host galaxy. Many AGN produce relativistic jets: collimated structures visible at parsec through kiloparsec scales. Relativistic beaming effects in the jets enhance the intrinsically anisotropic appearance of the AGN, adding considerable complication to their identification and to the interpretation of observations. Statistical studies involving large samples are thus essential to the study of AGN, and careful attention must be paid to selection effects (e.g., Lister & Marscher 1997).

When the jet axis of an AGN is aligned very closely to our line of sight, Doppler-enhanced jet emission dominates other emission processes and the source is classified as a blazar. Blazars emit brightly across the entire electromagnetic spectrum, with a spectral energy distribution (SED) characterized by two broad peaks. The lower peak, spanning the radio through the optical, ultraviolet, or soft X-ray bands, is widely believed to be due to synchrotron emission from relativistic electrons. The upper peak, which often extends to GeV and sometimes TeV gamma-ray energies, is of less certain origin. It is most commonly ascribed to inverse Compton scattering of low-energy seed photons by the synchrotron-emitting electrons in the jet, but other models remain viable (e.g., Böttcher 2007, 2012; Dimitrakoudis et al. 2012). The source of the low-energy seed photons is uncertain. Certainly some of the synchrotron radiation from within the jet is reprocessed and emitted at higher energies, and models in which this process is predominant are known as synchrotron self-Compton (SSC) models. The alternative is a source of seed photons external to the jet, such as from the broad-line region, and models in which this is important are known as external Compton (EC) models.

Blazars are customarily divided into two optical subclasses, the flat-spectrum radio quasars (FSRQs) and the BL Lac objects (BL Lacs). Blazars with strong optical broad lines are classified as FSRQs, while those with no lines or weak lines are classified as BL Lacs. Although the BL Lac and FSRQ classes do seem to rep-
resent at least two distinct populations, there is evidence that this classification scheme does not accurately reflect intrinsic physical differences between sources. For example, the homogeneity of the BL Lac class has been questioned (e.g., Marchà et al. 1996; Antón & Browne 2005) and several nominal BL Lacs have been observed to meet the FSRQ definition in some epochs (Shaw et al. 2012). It remains unclear how best to define physically meaningful classes. Several alternative classifications have been proposed in recent years (e.g., Landt et al. 2004; Ghisellini et al. 2011; Meyer et al. 2011; Abdo et al. 2010c; Giommi et al. 2012).

A promising and currently popular method is to classify blazars based on the frequency of the synchrotron peak in the SED (Padovani & Giommi 1995; Abdo et al. 2010c). Blazars are divided into low-, intermediate-, and high-synchrotron peaked (LSP, ISP, and HSP) sources, defined by synchrotron peaks $\nu_{pk}$ below $10^{14}$ Hz, between $10^{14}$ and $10^{15}$ Hz, and above $10^{15}$ Hz, respectively. FSRQs are almost exclusively found to be LSP objects, while BL Lac objects are found in all three spectral classes. HSP BL Lac objects show clearly distinct gamma-ray and radio properties from FSRQs (e.g., Abdo et al. 2010b,c; Ackermann et al. 2011; Lister et al. 2011; Linford et al. 2012). HSP BL Lac displays higher ratios of gamma-ray to radio luminosity, lower radio core brightness temperatures, and appear to have lower jet Doppler factors (Lister et al. 2011). There is also evidence that LSP BL Lacs remain a distinct class from FSRQs, though they appear to be sometimes misidentified (Lister et al. 2011; Linford et al. 2012).

A connection between the radio and gamma-ray emission in blazars has long been suspected, and has received renewed attention during the era of the Fermi Large Area Telescope (LAT) (e.g. Jorstad et al. 2001a; Kovalev et al. 2009; Ghirlanda et al. 2010; Mahony et al. 2010; Ackermann et al. 2011). It is straightforward to demonstrate a statistically significant correlation between observed gamma-ray and radio luminosities or flux densities, as was done during the era of the EGRET instrument (e.g., Stecker et al. 1993; Padovani et al. 1993). However, because of distance effects, Malmquist bias, and the strong variability exhibited in blazars, such an apparent correlation may or may not correspond to an interesting intrinsic correlation (e.g., Müke et al. 1997). Recent studies using LAT data and concurrent or nearly concurrent radio data provide strong evidence for an intrinsic correlation (Kovalev et al. 2009; Ackermann et al. 2011). The data concurrency reduces these findings using an additional two years of radio data, for a total of four years. Our monitoring sample during this extended period now also contains a complete gamma-ray-selected sample, the First LAT AGN Catalogue (1LAC; Abdo et al. 2010b), which allows us to compare the gamma-ray-selected FSRQ and BL Lac populations.

## 2 THE MONITORING PROGRAMME

Since late 2007, we have operated a fast-cadence 15 GHz radio blazar monitoring programme using the 40 m telescope at the Owens Valley Radio Observatory (OVRO). Full details of the observing programme are given in Richards et al. (2011) and Richards (2012). Total intensity flux density measurements are performed using a combined Dicke-switching and beam-switching ‘double switching’ procedure to remove receiver gain fluctuation, atmospheric, and ground pick-up effects. Each flux density is measured in about 70 s, including 32 s of on-source integration time. With a total system temperature of about 55 K at zenith, including receiver, atmosphere, and cosmic microwave background noise temperature contributions, this yields a typical measurement uncertainty of about 3 mJy, which is measured from the scatter of the samples in each observation. Accurate pointing is achieved by regularly peaking up on a relatively bright programme source. Residual pointing errors and other sources contribute an additional 2 per cent uncertainty, added in quadrature with the measured error for each measurement. The flux density scale is determined from regular observations of 3C 286 assuming the Baars et al. (1977) value of 3.44 Jy at 15.0 GHz, giving a 5 per cent overall scale accuracy.

The monitoring sample began with the 1158 sources north of $-20^\circ$ declination from the Candidate Gamma-Ray Blazar Survey (CGRaBS, Healey et al. 2008). The CGRaBS sources were systematically selected to resemble AGN (mostly blazars) associated with EGRET gamma-ray detections based on their radio spectral index, radio flux density, and X-ray flux. In addition to the CGRaBS sample, we have added the radio sources associated with Fermi-LAT gamma-ray detections to our programme. The sources included in the 1LAC catalogue compose a gamma-ray-selected sample. About 44 per cent of the sources in the 1LAC sample are in the CGRaBS sample (263 of 599 at all declinations, 199 of 454 above $-20^\circ$). These have been monitored since the inception of the programme. Some non-CGRaBS sources were added after appearing in the LAT Bright AGN Sample (LBAS) based on the 3-month Fermi-LAT results (Abdo et al. 2009). Any remaining 1LAC sources in our declination range not already being monitored were added to the programme in March 2010.

In late 2011, we added sources in the Second LAT AGN Catalogue (2LAC; Ackermann et al. 2011) to our observing programme. Although many were already in our programme, the observation period described here does not include sufficient data to obtain robust results for some sources in the complete 2LAC sample. We therefore use 1LAC as our gamma-ray selected sample in the studies that follow. We do, however, use the 2LAC sample to identify the subset of CGRaBS sources that are gamma-ray loud.

The CGRaBS and Fermi samples differ substantially in the ratio of the FSRQs to BL Lacs. The CGRaBS sample is dominated by FSRQs (70 per cent FSRQs vs. 11 per cent BL Lacs), similar to the ratio found by EGRET (Hartman et al. 1999; Dermer 2007). Fermi-selected blazar samples are more evenly split, both for 1LAC (40 per cent FSRQs vs. 49 per cent BL Lacs) and 2LAC (45 per cent FSRQs vs 46 per cent BL Lacs). This difference results from a selection effect caused by the different spectral
sensitivities of the EGRET and LAT instruments, particularly to photons above about 1 GeV (Abdo et al. 2010a,c).

To compare the radio variability of gamma-ray-loud HSP, ISP, and LSP objects, we use our 1LAC sample and adopt the spectral classifications from the 1LAC catalogue (Abdo et al. 2010b). Our 454-source 1LAC sample comprises 99 HSP (22 per cent), 57 ISP (13 per cent), and 181 LSP (40 per cent) sources, with 117 sources (26 per cent) unclassified. Of these, the BL Lacs are predominantly HSP (98 sources, 44 per cent) with sizable fractions of ISP (53 sources, 24 per cent) and LSP (37 sources, 17 per cent), and 35 sources (16 per cent) unclassified. The FSRQs are almost exclusively LSP (134 sources, 73 per cent), with no HSP, one ISP, and 49 sources (27 per cent) unclassified.

For most objects we have adopted the redshift and optical classifications from the CGRaBS, 1LAC, or 2LAC catalogues (Healey et al. 2008; Abdo et al. 2010b; Ackermann et al. 2011). Where these disagreed, we adopted the 2LAC classification. In a few cases, we have adopted updated redshifts or optical classifications based on an optical blazar spectroscopy campaign (Shaw et al. 2012, 2013). Our numerical values for $v_{pk}$ are those used for classification in the 2LAC catalogue (B. Lott personal comm.; Ackermann et al. 2011). Source names and associated properties are listed in Table 1.

3 RESULTS

In this paper, we report results based on the four years of data collected between 2008 January 1 and 2011 December 31, inclusive. The light curve data used in these analyses are listed in Table 2; up-to-date data are available from the programme website. The data reduction pipeline has undergone several revisions to improve computational performance, better reject unreliable measurements, and fix several programming errors. This has resulted in slight differences between the 2008–2009 data in this paper and that published in Richards et al. (2011). None of these differences affect any of our conclusions.

3.1 Variability Amplitude Trend

We begin by comparing the variability amplitudes found for each source from the four-year data set with those reported for the two-year data set. To characterize the variability amplitude, we use the intrinsic modulation index, $\sigma / \langle S \rangle$, computed as described in Richards et al. (2011). The intrinsic modulation index is a maximum-likelihood estimate of the standard deviation of the source flux density divided by its mean, $\sigma / \langle S \rangle$. The uncertainty is also estimated, accounting for measurement errors and varying numbers of measurements per source. As before, we assume a Gaussian distribution of true flux density samples from each source. Although there are several examples where this distribution is a poor fit to the data, our results are not sensitive to this particular choice. For each source, this method produces an intrinsic modulation index $\sigma / \langle S \rangle$ and its uncertainty, reflecting the propagation of observational uncertainties into $\sigma / \langle S \rangle$. We also compute a maximum-likelihood mean flux density, $S_0$, and its uncertainty for each source. Sources for which more than 10 per cent of the measured flux densities were non-detections at $2\sigma$, for which the mean flux density was negative, or for which the ratio of the mean flux density to its error was less than two were deemed too faint for variability analysis and excluded. These criteria excluded 7 of the 1158 CGRaBS sources and 76 of the 454 1LAC sources in our samples. Mean fluxes and intrinsic modulation indices are listed in Table 1.

Intuitively, we expect that additional data will tend to increase the variability amplitude on average. Many sources are observed to switch between periods of relatively steady quiescence and periods of active variability. The addition of a period of steady flux to a source with a history of strong variability will reduce its intrinsic modulation index only slightly because the amplitude of variability is dominated by the largest excursions. On the other hand, a source that has only been observed in a weakly variable state will see a large increase in its intrinsic modulation index if it begins to vary strongly. With additional observations, we expect some sources with weak or no apparent variability in the first two years will “turn on” and exhibit significant increases in variability.

The data confirm our expectations. Between the two-year and four-year data, the change in the intrinsic modulation index for each source is an increase of 0.044 (mean) or 0.029 (median). In Fig. 1 we plot the four-year $\sigma / \langle S \rangle$ values against the two-year $\sigma / \langle S \rangle$ values for the 1134 CGRaBS sources with measured $\sigma / \langle S \rangle$ in both data sets. The black points represent the 598 of 1134 sources that exhibited more than a $3\sigma$ change. Our calibration sources are consistent with no change, except for 3C 274 (which went from $0.009 \pm 0.001$ to $0.017 \pm 0.001$) and 3C 286 (which went from $0.006 \pm 0.001$ to $0.011 \pm 0.001$). The former is known to vary slowly, so this may result in part from real variation. For both sources, the intrinsic modulation indices in both data sets are below our cutoff for inclusion in population comparisons (0.02). For one source, J1154+1225, we found a single very large outlier in the two-year light curve that resulted in an erroneously high intrinsic modulation index in Richards et al. (2011). When we reanalyse the light curve with

---

1 These percentages do not sum to exactly 100 per cent due to rounding.
2 http://www.astro.caltech.edu/ovroblazars
Table 1. Source properties and results.

| CGRaBS Name | 1FGL Name | 2FGL Name | Opt. Class | SED Class | z | $\pi$ | $S_0$ (Jy) | Faint? |
|-------------|-----------|-----------|------------|-----------|---|------|-----------|--------|
| ...         | J0000.9-0745 | J0000.9-0748 | BLL | ISP | ... | 0.037 ± 0.004 | 0.169 ± 0.001 |    |
| J0001-1551  | ...       | ...       | FSRQ | ...   | 2.044 | 0.146 ± 0.007 | 0.236 ± 0.002 |    |
| J0001+1914  | ...       | ...       | FSRQ | ...   | 3.100 | 0.138 ± 0.007 | 0.260 ± 0.002 |    |
| J0003+2129  | ...       | ...       | ...  | ...   | 0.450 | 0.113 ± 0.007 | 0.081 ± 0.001 |    |
| J0004-1148  | ...       | ...       | BLL  | ...   | 2.522 ± 0.013 | 0.618 ± 0.010 |    |
| J0004+2019  | ...       | ...       | BLL  | 0.677 | 0.677 | 0.152 ± 0.007 | 0.355 ± 0.003 |    |
| J0004+4615  | ...       | ...       | FSRQ | ...   | 1.810 | 0.097 ± 0.016 | 0.174 ± 0.004 |    |
| J0005-1648  | ...       | ...       | ...  | ...   | 0.606 ± 0.005 | 0.160 ± 0.001 |    |

Names of sources in the CGRaBS and 1LAC samples are specified in the first and second columns, respectively. CGRaBS sources with a corresponding entry in the '2FGL Name' column are considered gamma-ray loud. Sources that were dropped from variability analysis by our faintness criteria are indicated with an 'F' in the 'Faint?' column. (This is a table stub. The full table is available online in electronic form.)

Table 2. 15 GHz light curve data.

| CGRaBS Name | 1FGL Name | MJD (days) | Flux Density (Jy) |
|-------------|-----------|------------|------------------|
| ...         | J0000.9-0745 | 55310.785035 | 0.166 ± 0.006 |
| ...         | 55320.769120 | 0.154 ± 0.008 |
| ...         | 55324.757593 | 0.158 ± 0.004 |
| ...         | 55331.738160 | 0.161 ± 0.006 |
| ...         | 55337.715532 | 0.173 ± 0.007 |
| ...         | 55340.706921 | 0.175 ± 0.006 |
| ...         | 55349.623113 | 0.165 ± 0.005 |
| ...         | 55352.608426 | 0.164 ± 0.005 |
| ...         | 55355.600590 | 0.164 ± 0.008 |
| ...         | 55361.581215 | 0.168 ± 0.011 |

This is a table stub. The full table is available online in electronic form.

Figure 2. Grey points show modulation index data computed with the addition of an extreme outlier data point plotted against the modulation index for the same source calculated from the actual data. The dashed line shows the ideal $y = x$ line. The solid line shows the effect of adding 0.066 in quadrature with the measured modulation index.

3.2 Outlier Contamination

Although our automated data quality filters reject most unreliable observations, our flux density light curves still contain some outlier data points. These are mostly attributable to poor observing conditions or pointing offset measurement failures, and do not represent actual astronomical source variations. These outliers will artificially increase the intrinsic modulation index we compute for an affected source, so we must account for their effect. We cannot simply delete these points from the light curves on the basis that the flux density value differs from neighboring measurements: blazars are strongly variable objects, and such deletion would bias our results toward our preconception of ‘reasonable’ variability. To avoid such biases, we instead quantify how the presence of outliers affects our calculated intrinsic modulation indices.

The most common extreme outliers are near-zero flux density...
values reported for normally bright sources. These are probably due to mis-pointing. High outliers do occur occasionally, though less frequently because they are more effectively removed by our data quality filters. To measure the effect of outliers, we computed the intrinsic modulation indices for each source with the addition of a single ‘false outlier’ flux density value that was twice the average error above zero. High outliers are rarely more than twice the true flux density of a source, so their impact on the intrinsic modulation index is similar to that of the near-zero outliers. We performed this test using modulation indices computed from the first 3.5 years of data for each source. The result is approximately described by a quadrature increase of the intrinsic modulation index by 0.066, as shown in Fig. 2.

We estimate that about 8 per cent of our sources are affected by such outliers (Richards 2012). Because of this low incidence, sources affected by multiple outliers are rare (≤1 per cent). The impact of a second outlier is smaller than that of the first because the intrinsic modulation index is dominated by the largest excursion from the mean. In Richards (2012), addition of a second simulated outlier was found to increase the intrinsic modulation by a mean of only 0.001. We therefore use the effect of a single outlier to estimate the impact on our modulation index results. The incidence of outlier data points should not be correlated with physical properties of the sources, so the net effect of outliers is to increase the average variability of a population, slightly reducing our sensitivity to differences between subpopulations.

3.3 Trends with SED Peak Frequency

When the intrinsic modulation index is plotted against $\nu_{pk}$ in Fig. 3, the result appears familiar. Its form strongly resembles equivalent plots of radio core brightness temperatures and fractional polarizations (Lister et al. 2011), gamma-ray variability indices (Ackermann et al. 2011), and optical intrinsic modulation indices (Hovatta et al. 2013). Fig. 3 differs from these in that there is a rather abrupt decrease in the apparent upper envelope above $10^{15}\text{ Hz}$, where the others show a smoother transition in the ISP region (for the gamma-ray variability indices and optical modulation indices) or a step decrease at a slightly lower $\nu_{pk}$ value (nearer to $10^{14.5}\text{ Hz}$ for the radio core brightness temperatures and fractional polarizations). We note that removal of only a few high-$\overline{m}$, high-$\nu_{pk}$ ISP sources would eliminate the abrupt decrease in our plot, so this could be the result of incorrect $\nu_{pk}$ values. Using the two-sample Kolmogorov–Smirnov test to compare the $\overline{m}$ values for the three classes, we find that neither the LSP nor the ISP sample is consistent with the null hypothesis of being drawn from the same distribution as the HSP sample ($p \approx 7 \times 10^{-4}$ and $p \approx 0.002$). For the LSP and ISP samples, we cannot reject the null hypothesis ($p \approx 0.6$). As shown in Fig. 4, sources with lower $\nu_{pk}$ values tend to have higher mean flux densities. This relationship matches that found for parsec-scale 15 GHz flux densities by Lister et al. (2011). Because HSP sources are found at lower flux densities, we measure a value for $\overline{m}$ for proportionally fewer of these sources. We have not accounted for upper limits in this analysis, but doing so would likely increase the difference between the HSPs and the other classes.

In Fig. 5, we plot the isotropic radio luminosity computed as

$$L_R = \frac{4\pi D_L^2 \Delta \nu S_0}{1 + z},$$

where $D_L$ is the luminosity distance (assuming a flat $\Lambda$CDM cosmology with $\Omega_{\Lambda} = 0.726$ and $H_0 = 70.5\text{ km s}^{-1}\text{ Mpc}^{-1}$), $\Delta \nu = 3\text{ GHz}$ is the bandwidth, $S_0$ is the maximum-likelihood mean flux density, and $z$ is the redshift. Both $\nu_{pk}$ and $L_R$ are strongly correlated with redshift (for the entire sample, we find Kendall’s $\tau = -0.44$ and $\tau = 0.70$, respectively, both with $p < 10^{-16}$). To account for this mutual correlation, we compute the partial correlation coefficient for $L_R$ versus $\nu_{pk}$ while controlling for $z$. We find a highly significant correlation for BL Lacs ($\tau = -0.48$ with $p < 10^{-7}$) and no significant correlation for FSRQs ($\tau = -0.10$ with $p < 0.10$). Partial correlations using flux densities instead of isotropic luminosities give the same results. Although the luminosity correlation is not formally significant for FSRQs, we note that they do coincide with the low-$\nu_{pk}$ end of the BL Lac trend. A correlation among FSRQs may simply be difficult to detect because of the narrow range of $\nu_{pk}$ values found in these sources.

4 POPULATION COMPARISONS

To compare the variability amplitude between source populations in our sample, we apply a likelihood maximization method that requires we specify a parent distribution for the modulation indices. An exponential distribution, $f(m) = m_0^{-1} \exp(-m/m_0)$, is a qualitatively reasonable fit to the observed distribution of modulation indices in our sample (Richards et al. 2011). This distribution is a monoparametric distribution characterized by its mean, $m_0$. Because of this, numerical integrations are required in only one dimension, making it convenient for our likelihood analyses.

As in Richards et al. (2011), we estimate $m_0$ for a population via likelihood maximization using an analysis that avoids bias by excluding regions of the ($S_0, \overline{m}$) parameter space where we do not adequately measure $\overline{m}$. For a source $i$, the likelihood of observing a modulation index $\overline{m}_i$ with a Gaussian uncertainty $\sigma_i$ drawn from $3$ Kendall’s tau correlation and partial correlation coefficients were computed in R using method="kendall" with the native cor.test() function and the pcor.test() function from the {PPCOR} package (R Core Team 2013; Kim 2012).
then we must correct this calculation to reflect this. This gives

\[ \ell \left( \bar{m} \right) = \frac{1}{2m_0} \exp \left[ \frac{\bar{m}}{m_0} \left( 1 - \frac{\sigma^2}{2m_0 \bar{m}} \right) \right] \times \left\{ 1 + \text{erf} \left[ \frac{\bar{m}}{\sigma \sqrt{2}} \left( 1 - \frac{\sigma^2}{m_0 \bar{m}} \right) \right] \right\} \],

(2)

If we have excluded data where \( \bar{m}_i < \bar{m}_L \) for some lower limit \( \bar{m}_L \), then we must correct this calculation to reflect this. This gives

\[ \ell_{\text{cuts}}[\bar{m}_i, \bar{m}_U] = \frac{H(\bar{m}_i - \bar{m}_L)\ell[\bar{m}_i]}{\bar{m}_i \ell[\bar{m}_i] |\Delta m|}, \]

(3)

where \( H \) is the Heaviside step function. In the population studies described here, we consider only sources for which we found a mean 15 GHz flux density \( S_0 > 60 \) mJy and for which \( \bar{m} > 0.06 \) (if \( S_0 < 400 \) mJy) or \( \bar{m} > 0.02 \) (if \( S_0 \geq 400 \) mJy). This corresponds to two separate cuts, one at \( \bar{m}_L = 0.06 \) and the other at \( \bar{m}_U = 0.02 \). With \( S_0 = 400 \) mJy as a threshold, we divide the sources into two groups, with \( N_L \) and \( N_U \) members. Of the 1151 CGRaBS sources bright enough for variability analysis, we drop 9 sources because \( S_0 < 60 \) mJy, 95 because \( \bar{m} < \bar{m}_L \), and 4 because \( \bar{m} < \bar{m}_U \). Of the 378 1LAC sources bright enough for variability analysis, we drop 36 because \( S_0 < 60 \) mJy, 18 because \( \bar{m} < \bar{m}_L \), and 2 because \( \bar{m} < \bar{m}_U \). We treat the groups as separate experiments and the total likelihood to observe \( m_0 \) is simply the product of the individual likelihoods,

\[ \mathcal{L}(m_0) = \prod_{i=1}^{N_L} \ell_{\text{cuts}}[\bar{m}_i, \bar{m}_L] \prod_{i=1}^{N_U} \ell_{\text{cuts}}[\bar{m}_i, \bar{m}_U]. \]

(4)

Results are tabulated in Table 3 for the CGRaBS sample and Table 4 for the 1LAC sample. For each subpopulation, the reported value is the most likely value in the distribution. The upper and lower uncertainties correspond to the equal-likelihood points between which the integrated area under the distribution contains 68.26 per cent of the total. The likelihood distribution of the difference in the mean intrinsic modulation index between two subpopulations, \( \Delta m_0 \), is given by the cross-correlation of the individual likelihood distributions. The results of these comparisons are listed in Table 5.

4.1 Gamma-ray Loudness

Using our population comparison method, we now investigate whether the connection between gamma-ray emission and radio variability we reported in Richards et al. (2011) persists in our longer data set. We define a CGRaBS source to be gamma-ray loud
if it has a ‘clean’ association with a LAT gamma-ray source in the 2LAC catalogue. The likelihood distributions for the gamma-ray-loud and quiet subpopulations are shown in Fig. 6. To evaluate the significance of the separation between the distributions, we compute the likelihood distribution for the difference between the true population means, also shown in Fig. 6. The two distributions are not consistent with each other at the 6σ confidence level. Thus, the difference in radio variability amplitude, with a most likely difference of 0.015 ± 0.017, a difference significant at the 6σ level. This is consistent with the results previously reported for the two-year data set (Richards et al. 2011).

4.2 Optical Classification

We next examine radio variability amplitude as a function of optical classification, comparing the BL Lac and FSRQ subpopulations. In Fig. 7, we show the likelihood distributions for $m_0$ for sources in the CGRaBS sample. The CGRaBS BL Lacs are found to be more variable at a significance of about 4σ, with a most likely difference of 0.050 ± 0.017. This is consistent with the results previously reported for the two-year data set (Ackermann et al. 2011).

The situation is quite different for the 1LAC sample. Likelihood distributions for $m_0$ for the BL Lac and FSRQ subpopulations of the 1LAC sample are shown in Fig. 8. We find only weak evidence for a difference in $m_0$ between the BL Lac and FSRQ subpopulations (most likely difference 0.031 ± 0.020, corresponding to < 2σ significance). Although the difference is not statistically significant, we note that the mean modulation index for BL Lacs is formally lower than that for FSRQs, while for the CGRaBS sample we find the variability among FSRQs to be significantly higher.

As a further test, we compare the variability amplitudes of the CGRaBS and 1LAC samples in Fig. 9 (for BL Lacs) and Fig. 10 (for FSRQs). Note that the individual likelihood distributions shown in Figs. 9 and 10 are the same as those in Figs. 7 and 8, but are plotted in different pairs. We find no evidence that the BL Lacs in the 1LAC and CGRaBS samples differ in variability amplitude, with a most likely difference of 0.013 ± 0.021. In contrast, 1LAC FSRQs are more variable than the CGRaBS FSRQs with a most-likely difference of 0.068 ± 0.014, a difference significant at the 6σ level. Thus, the difference in radio variability between gamma-ray-loud and gamma-ray-quiet CGRaBS blazars

Table 5. Population variability comparison results.

| Parent Pop. | Subpop. A            | Subpop. B            | $\Delta m_0$ | Signif. |
|-------------|-----------------------|-----------------------|--------------|---------|
| CGRaBS      | gamma-ray loud        | gamma-ray quiet       | 0.075±0.013  | 6σ      |
| CGRaBS      | BL Lac                | FSRQ                  | 0.050±0.017  | 4σ      |
| 1LAC        | BL Lac                | FSRQ                  | -0.031±0.020 | <2σ     |
| BL Lac      | CGRaBS                | 1LAC                  | 0.013±0.021  | <1σ     |
| FSRQ        | CGRaBS                | 1LAC                  | -0.068±0.014 | 6σ      |
| 1LAC        | HSP                   | ISP                   | -0.136±0.027 | 5σ      |
| 1LAC        | HSP                   | LSP                   | -0.139±0.017 | 5σ      |
| 1LAC        | ISP                   | LSP                   | -0.003±0.033 | <1σ     |
| 1LAC        | HSP BL Lac            | ISP BL Lac            | -0.139±0.028 | 4σ      |
| 1LAC        | HSP BL Lac            | LSP BL Lac            | -0.116±0.029 | 4σ      |
| 1LAC        | ISP BL Lac            | LSP BL Lac            | 0.022±0.044  | <1σ     |
| CGRaBS      | FSRQ ($z \geq 1$)     | FSRQ ($z < 1$)        | -0.018±0.009 | <2σ     |

The $\Delta m_0$ column tabulates the most likely value of $m_{0,A} - m_{0,B}$. A source is included in the gamma-ray loud subpopulation if it has a clean association in the 2LAC catalogue (Ackermann et al. 2011).
reflects a large variability difference between FSRQs in the mostly radio-selected CGRaBS sample and the gamma-ray-selected sample. BL Lacs in either sample exhibit similar radio variability.

4.3 Spectral Classification

Comparing the HSP, ISP, and LSP populations in the 1LAC sample, we find that the HSP population is less variable than either of the others, while the LSP and ISP populations are not distinguishable. The likelihood distributions are plotted in Fig. 11. The most likely difference between HSP and LSP populations is 0.139 ± 0.017 and between the HSP and ISP populations is 0.136 ± 0.027, both significant at about the 5σ level. Between the ISP and LSP populations, the difference is only 0.002 ± 0.029.

In Fig. 12, the modulation index likelihood distributions are plotted for the HSP, ISP, and LSP BL Lacs in the 1LAC sample. After excluding the FSRQs, we find essentially the same result as before. The values for the three bins change by less than 1σ, although because the FSRQs are predominantly LSP, the uncertainty for the LSP bin increases substantially due to the reduced number of sources. The HSP population, which is entirely BL Lacs, is less variable than either the ISP or LSP populations at the 4σ level. The ISP and LSP BL Lac populations differ by less than 1σ.

From our 1LAC sample, we measured intrinsic modulation indices for 258 sources that also have \( V_{pk} \) values in the 2LAC catalogue (Ackermann et al. 2011). These are plotted in Fig. 3. BL Lacs and FSRQs clearly occupy different regions of this plot, with FSRQs confined to the left edge but reaching high levels of variability, while BL Lacs are plentiful across the full range of \( V_{pk} \) values with only low intrinsic modulation indices at high \( V_{pk} \) values. We note that the sources with the three highest intrinsic modulation indices, J0238+1636, J0654+4514, and J0050−0929, are all highly compact radio sources on parsec scales, which likely

Figure 7. Likelihood distributions for \( m_0 \) for CGRaBS BL Lacs (solid line) and FSRQs (dashed line). The most likely values for the mean modulation index for each distribution and for the difference between the two are listed in Tables 3 and 5. The two distributions are not consistent with having the same mean modulation index with about 4σ significance.

Figure 8. Likelihood distributions for \( m_0 \) for 1LAC BL Lacs (solid line) and FSRQs (dashed line). The most likely values for the mean modulation index for each distribution and for the difference between the two are listed in Tables 4 and 5. The two distributions are consistent with having the same mean modulation index at the 2σ level.

Figure 9. Likelihood distributions for \( m_0 \) for BL Lacs in CGRaBS (solid line) and 1LAC (dashed line). The most likely values for the mean modulation index for each distribution and for the difference between the two are listed in Tables 3–5. The two distributions are consistent with having the same mean modulation index at the 1σ level.
Figure 10. Likelihood distributions for $m_0$ for FSRQs in CGRaBS (solid line) and 1LAC (dashed line). The most likely values for the mean modulation index for each distribution and for the difference between the two are listed in Tables 3–5. The two distributions are not consistent with having the same mean modulation index with about 6σ significance.

Figure 11. Likelihood distributions for $m_0$ for 1LAC HSP sources (solid line), ISP sources (dashed line), and LSP sources (dot-dashed line). The most likely values for the mean modulation index for each distribution and for the differences between the pairs are listed in Tables 4 and 5. The ISP and LSP distributions are consistent with having the same mean modulation index at the 1σ level. The HSP distribution is not consistent with either of the others with about 5σ significance.

Figure 12. Likelihood distributions for $m_0$ for 1LAC BL Lac sources classified as HSP (solid line), ISP (dashed line), and LSP (dot-dashed line). The most likely values for the mean modulation index for each distribution and for the differences between the pairs are listed in Tables 4 and 5. The ISP and LSP distributions are consistent with having the same mean modulation index at the 1σ level. The HSP distribution is not consistent with either of the others with about 4σ significance.

indicates that these sources are viewed very nearly along their jet axes (Lister et al. 2009b, 2011, 2013).

4.4 Redshift Trend

Based on the two-year results, we found evidence that the intrinsic modulation indices for CGRaBS FSRQs in our sample decreased with increasing redshift (Richards et al. 2011). In Fig. 13, we plot with black circles the mean four-year intrinsic modulation indices among bright ($S_0 > 400$ mJy) CGRaBS FSRQs as a function of redshift. Although the trend suggested by the two-year data, shown here with grey diamonds, remains visible, the scatter of the data within each bin has increased, particularly at higher redshifts. None the less, the correlation is significant (Kendall's $\tau = -0.15$ with $p < 5 \times 10^{-5}$). This is not due, e.g., to mutual correlation with flux density. We do find a significant correlation between redshift and $S_0$ ($\tau = -0.15$, $p < 5 \times 10^{-3}$) but no correlation between $S_0$ and intrinsic modulation index ($\tau = 0.04$, $p < 0.48$). In Fig. 14 we plot the likelihood distributions for CGRaBS FSRQs at high ($z \geq 1$) and low ($z < 1$) redshift, including those fainter than 400 mJy. Although we continue to find a larger most-likely value of $m_0$ for FSRQs at lower redshift (most likely difference $0.018 \pm 0.009$), the significance of the separation is less than 2σ and has fallen slightly compared to the two-year result.

As discussed in Richards et al. (2011), there are several competing effects that will contribute to such a trend. Due to cosmological time dilation, equal-length observations will correspond to different source-frame time intervals according to $\Delta t_{\text{source}} = (1 + z)^{-1} \Delta t_{\text{obs}}$. Because, as we showed in section 3.1, the intrinsic modulation index increases with the observation length, this will tend to decrease $m_0$ with increasing redshift. This effect explains at least part of our observed redshift trend. Richards (2012) used a subset of the OVRO data set to investigate this ef-
The overall increase in intrinsic modulation indices between the two- and four-year data sets, illustrated in Fig. 1, suggests that we have not yet achieved this. This will tend to increase the intrinsic modulation index with redshift, in opposition to our detected trend.

Other effects, such as Doppler and Malmquist biases will also contribute to the redshift trend (Lister & Marscher 1997). Determining whether an intrinsic component to this apparent evolution is present will require Monte Carlo simulation to assess the net contributions of the various biases.

### 5 DISCUSSION

We have presented and examined the results of four years of twice-weekly 15 GHz radio monitoring of more than 1400 blazars, including systematically radio- and gamma-ray-selected samples. Using the intrinsic modulation index to quantify the variability amplitude for each source, we find that on average, gamma-ray-loud CGRaBS sources are significantly more radio variable than gamma-ray-quiet CGRaBS sources, confirming our previous result (Richards et al. 2011). This reflects a significant difference in variability between FSRQs in the radio-selected CGRaBS and gamma-ray-selected 1LAC samples. This indicates that among FSRQs, there is clearly a connection between gamma-ray emission and radio variability. The 1LAC sample contains primarily strongly radio-variable FSRQs. The CGRaBS sample also contains many FSRQs that are both gamma-ray-loud and strongly radio-variable, but it also contains a substantial gamma-ray-quiet, weakly radio-variable FSRQ population. BL Lac objects show similar radio variability in both the gamma-ray- and radio-selected samples.

Within the 1LAC sample, the radio variability amplitude is connected to the frequency of the synchrotron SED peak, νpk. HSP blazars, with νpk > 10^15 Hz, show significantly less radio variability than do either ISP or LSP blazars. This result persists when FSRQs are excluded and only BL Lac objects are considered. In fact, the variability of both the ISP and LSP BL Lacs is the same as that of FSRQs to the 1σ level. This agrees with and quantifies a previous report that HSP BL Lac objects tend to have moderately low modulation indices in the OVRO 15 GHz data, while many LSP and ISP sources vary at higher levels (Lister et al. 2011). We do not find evidence for a difference in radio variability amplitude between the ISP and LSP blazars, and among BL Lacs find a slightly lower level of variability among LSPs, although the uncertainties are relatively large and the difference is less than 1σ.

Hovatta et al. (2013) examined blazar optical variability and found a monotonic increase from HSP to ISP to LSP sources. A continuous trend in gamma-ray variability index versus νpk was also found by Ackermann et al. (2011). The ability to detect such a trend in these bands benefits from the substantially stronger variability there than at 15 GHz. In gamma-rays in particular, sources...
are typically undetected when quiescent, whereas the presence of extended radio emission provides a steady background that dilutes the fractional variability measured by the intrinsic modulation index. We find that the steady flux density background increases at lower $v_{\text{ak}}$ values. If there is an upper limit to the component of the flux densities that is variable on the week-to-year time-scales we probe with this programme, this would lead to a saturation effect: as the steady flux density increases, the intrinsic modulation index corresponding to the maximum variable flux density will decrease. A limit on the variable flux density is likely because we expect limits on intrinsic brightness temperatures (Readhead 1994; Kellermann & Pauliny-Toth 1969).

These results suggest that, among FSRQs, there is a connection between detectable gamma-ray emission and radio variability. No evidence for such a connection is found for BL Lacs. This finding is similar to the results of several other recent radio blazar studies. Compared to their gamma-ray-quiet counterparts, LAT-detected gamma-ray-loud FSRQs have been found to exhibit faster parsec-scale jet speeds (Lister et al. 2009a) and larger core brightness temperatures, incidence of polarization, and parsec-scale opening angles (Linford et al. 2011; Linford et al. 2012). In most cases, no significant difference has been found between gamma-ray-loud and gamma-ray-quiet BL Lac populations. Linford et al. (2011) did report gamma-ray-loud BL Lacs to have longer jet lengths and Linford et al. (2012) found them to have a slightly higher incidence of core polarization.

The presence of this connection in FSRQs and its apparent absence in BL Lacs may result from different sources of inverse Compton seed photons in these classes. High-energy photons produced by the EC process are beamed more strongly compared to photons produced by either the synchrotron or SSC processes (Dermer 1995), so for a single Lorentz-factor jet, gamma rays produced via EC will be emitted into a smaller solid angle than SSC gamma rays. Several studies have found evidence that BL Lac sources are typically dominated by the SSC process while FSRQs chiefly emit via the EC process (e.g., Abdo et al. 2010c; Lister et al. 2011), and it seems that more powerful jets like those found in FSRQs are more likely to exhibit EC (Meyer et al. 2012). There do, however, seem to be exceptions to this rule (e.g., Böttcher 2012). Still, if this connection is generally correct, then the gamma-ray-loud subset of FSRQs would consist of those whose line of sight falls within the narrow gamma-ray emission cone, which would be the higher-Doppler factor sources. Higher Doppler factors are associated with increased radio variability (e.g., Lahteenmäki & Valtaoja 1999; Jorstad et al. 2001b; Hovatta et al. 2009), so this would lead to gamma-ray-loud FSRQs being more radio variable than the overall average, as we find. In BL Lacs, on the other hand, SSC gamma-ray emission would be subject to the same beaming factor as the radio emission, so this selection bias toward higher Doppler factors will be weaker or absent. The population of BL Lacs that exhibit substantial gamma-ray emission would primarily be determined by factors other than beaming effects, as suggested by Lister et al. (2009a).

We caution, however, that we may be over-interpreting our BL Lac result: a selection effect may bias our variability average for this class. The CGRABS and 1LAC BL Lac samples differ strongly in the proportion of HSP sources in each. Although we do not have uniform SED classifications for the CGRABS sample, of the 60 that do have classifications only 11 are HSP. For 1LAC, 85 of the 168 with classifications are HSP. Since HSP BL Lacs are much less variable than either ISP or LSP BL Lacs, it is surprising that we find overall similar intrinsic modulation indices for the CGRABS and 1LAC BL Lac samples. This happens because HSP sources are fainter and less variable in radio, and so are more likely to be dropped by our cuts in $S_0$ and $m$. As a result, HSP BL Lacs are under-represented in the determination of the mean intrinsic modulation index for the 1LAC sample, leading to an overestimate of $m_0$.

Finally, the observed trend of decreasing variability amplitude with increasing redshift among CGRABS FSRQs appears still to be present in our longer data sets, albeit with reduced significance when we compare the mean intrinsic modulation indices of high and low redshift objects. The correlation between $m$ and $z$ for bright FSRQs is highly significant ($p < 5 \times 10^{-5}$), however. There are several effects and biases that will contribute to such a trend, so determining whether a cosmological evolution component is present will likely require simulations.

ACKNOWLEDGEMENTS

JLR would like to thank Matthew L. Lister for several helpful discussions. The OVRO 40 m monitoring programme is supported by part by NSF grants AST-0808050 and AST-1109911 and NASA grants NNX08AW31G and NNX11AO43G. TH was supported by the Jenny and Antti Wihuri foundation. VP acknowledges support from the ‘RoboPol’ project, which is implemented under the ‘Aristeia’ Action of the ‘Operational Programme Education and Lifelong Learning’ and is co-funded by the European Social Fund (ESF) and Greek National Resources; and from the European Commission Seventh Framework Programme (FP7) through grants PCIG10-GA-2011-304001 ‘JetPop’ and PIRSES-GA-2012-31578 ‘EuroCal.’ The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

Abdo, A. A., et al. 2009, ApJ, 700, 597
—. 2010a, ApJS, 188, 405
—. 2010b, ApJ, 715, 429
—. 2010c, ApJ, 716, 30
Ackermann, M., et al. 2011, ApJ, 741, 30
Ackermann, M., et al. 2011, ApJ, 743, 171
Antón, S., & Browne, I. W. A. 2005, MNRAS, 356, 225
Baars, J. W. M., Genzel, R., Pauliny-Toth, I. I. K., & Wittel, A. 1977, A&A, 61, 99
Böttcher, M. 2007, Ap&SS, 309, 95
Böttcher, M. 2012, in 2012 Fermi & Jansky Proceedings (eConf C111110), [astro-ph/1205.0539]
Dermer, C. D. 1995, ApJ, 446, L63
Dermer, C. D. 2007, ApJ, 659, 958
Dimitrakoudis, S., Mastichiadis, A., Protheroe, R. J., & Reimer, A. 2012, A&A, 546, A120
Ghisellini, G., Ghisellini, G., Tavecchio, F., & Foschini, L. 2010, MNRAS, 407, 791
Ghisellini, G., Tavecchio, F., Foschini, L., & Ghirlanda, G. 2011, MNRAS, 414, 2674
Giommi, P., Padovani, P., Polenta, G., Turriziani, S., D’Elia, V., & Pironmonte, S. 2012, MNRAS, 420, 2899

© 0000 RAS, MNRAS 000, 000–000
