How Jupiters Save or Destroy Inner Neptunes around Evolved Stars

María Paula Ronco1,2, Matthias R. Schreiber2,3, Cristian A. Giuppone4, Dimitri Veras5,6, Jorge Cuadra2,7, and Octavio M. Güilera1,2,8
1 Instituto de Astrofísica—Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul—Santiago, 8970117, Chile; mronco@astro.puc.cl
2 Millennium Nucleus for Planet Formation, NPF, Chile; matthias.schreiber@uv.cl
3 Instituto de Física y Astronomía, Universidad de Valparaíso, Valparaíso, Chile
4 Universidad Nacional de Córdoba, Observatorio Astronómico—IATE, Laprida 854, 5000 Córdoba, Argentina
5 Centre for Planets and Habitability, University of Warwick, Coventry CV4 7AL, UK
6 Departamento de Física, University of Warwick, Coventry CV4 7AL, UK
7 Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Avenida Padre Hurtado 750, Viña del Mar, Chile
8 Instituto de Astrofísica de La Plata, CONICET-UNLP, La Plata, Argentina

Received 2020 May 29; revised 2020 June 26; accepted 2020 July 6; published 2020 July 23

Abstract

In about 6 Gyr our Sun will evolve into a red giant and finally end its life as a white dwarf. This stellar metamorphosis will occur to virtually all known host stars of exoplanetary systems and is therefore crucial for their final fate. It is clear that the innermost planets will be engulfed and evaporated during the giant phase and that planets located farther out will survive. However, the destiny of planets in-between, at ∼1 and 10 au, has not yet been investigated with a multiplanet tidal treatment. We here combine for the first time multiplanet interactions, stellar evolution, and tidal effects in an N-body code to study the evolution of a Neptune–Jupiter planetary system. We report that the fate of the Neptune-mass planet, located closer to the star than the Jupiter-mass planet, can be very different from the fate of a single Neptune. The simultaneous effects of gravitational interactions, mass loss, and tides can drive the planetary system toward mean motion resonances. Crossing these resonances affects particularly the eccentricity of the Neptune and thereby also its fate, which can be engulfment, collision with the Jupiter-mass planet, ejection from the system, or survival at a larger separation.

Unified Astronomy Thesaurus concepts: Exoplanet dynamics (490); Exoplanet evolution (491); Evolved stars (481); Tides (1702)

1. Introduction

More than 4000 exoplanets have been confirmed so far and the discovered planetary systems, the vast majority around Sun-like main-sequence stars, reveal a great variety in terms of the number of planets, their masses, and orbital separations. These planetary systems are often referred to as the final outcome of planet formation, and are typically compared to the predictions of population synthesis analysis (Ronco et al. 2017; Mordasini 2018) and/or N-body simulations (e.g., Pfyffer et al. 2015; Ronco & de Elía 2018).

However, the evolution of stars does not end on the main sequence and therefore neither does the evolution of the planetary systems around them. More than 100 gas giant planets have been discovered around red giant stars (e.g., Jones et al. 2016) and convincing evidence for the existence of planetary debris and planets around white dwarfs has been provided in the last decades. About one-third of all white dwarfs show atmospheric metal absorption lines that must result from the recent accretion of solid material (Koester et al. 2014). Roughly 5% of these white dwarfs show a detectable infrared excess indicative of the presence of a circumstellar debris disk (Barber et al. 2012), and about the same fraction of the latter show a detectable gaseous disk component (Manser et al. 2020). As first suggested by Jura (2003), metal-polluted white dwarfs and the disks around them are the result of the tidal disruption of rocky planetary material (Veras et al. 2014; Malamud & Perets 2020). In the spectacular case of the transiting and disintegrating planetesimal around WD 1145+017 we can witness this process in real time (Vanderburg et al. 2015; Gänsicke et al. 2016). Additional recent discoveries related to the final fate of planetary systems include a planetesimal that might resemble the core of a disrupted Earth-like planet orbiting a white dwarf in a close orbit (Manser et al. 2019) and a close-in Neptune-like planet that is evaporated by EUV irradiation from the white dwarf (Gänsicke et al. 2019) and was possibly tidally disrupted during its orbital decay (Veras & Fuller 2020). For hot white dwarfs, Schreiber et al. (2019) showed that the observed metal pollution (Barstow et al. 2014) can be explained if a large fraction (∼50%) of white dwarfs host planets at separations <3 au. This prediction is in line with the results of microlensing planet surveys that predict a large number of planets, mostly Neptunes, beyond the snow line (Suzuki et al. 2016).

Understanding the formation of planetary debris and the existence of planets around white dwarfs requires modeling the evolution of planetary systems beyond the main sequence (e.g., Veras & Gänsicke 2015). When the host star evolves into a giant star, each planet in a surrounding planetary system is subject to orbital changes. These changes are dominated by stellar tides and stellar mass loss, particularly for planets inside ∼10 au, although other mechanisms can have additional minor effects on the planetary orbits (see Veras 2016 and references therein). Stellar mass loss tends to expand the orbit of the planets due to a decrease of the gravitational potential and simultaneous conservation of angular momentum but leaves the eccentricities nearly unchanged. Stellar tides, in contrast, tend to decrease both the semimajor axis and eccentricities of planetary orbits.

9 http://exoplanet.eu/; Schneider et al. (2011).
10 https://www.lsw.uni-heidelberg.de/users/seffert/giantplanets/giantplanets.php
Several studies have determined the conditions under which single planets can survive the evolution of their host star into a white dwarf. However, the number of discovered planetary systems with more than just one planet is continuously increasing (e.g., Shallue & Vanderburg 2018) and it seems plausible to assume that such systems might be the rule rather than the exception. It is then crucial to simulate the evolution of multiple planets affected by mass loss and stellar tides taking into account their mutual gravitational interactions. This has not been done yet.

We here close this gap by analyzing the dynamical evolution of hypothetical planetary systems consisting of an inner Neptune- and an outer Jupiter-mass planet when their central star evolves through the Red Giant Branch (RGB) taking into account stellar mass loss, stellar tides, and the mutual gravitational interactions between the two planets. We find that under certain conditions the fate of the Neptune-mass planet is indeed significantly affected by the presence of the outer Jupiter-mass planet. Most interestingly, a Neptune-mass planet that would survive without a companion can be pushed into the giant star and a Neptune-mass planet that would not survive alone can be saved by the outer Jupiter.

2. Physical Model

In order to calculate the rate of change of the semimajor axis of a planet affected by the stellar mass loss and stellar tides we adopt the formalism by Zahn (1977), which was also used by Villaver & Livio (2009) and Villaver et al. (2014). According to these authors, the change in orbital separation can be written as

$$\frac{\dot{a}}{a} = -\left(\frac{M_\star}{M_\star + M_p}\right) - \left(\frac{\dot{a}}{a}\right)_i,$$

(1)

where M_\star is the total mass of the star, M_p is the mass of the planet, a is the semimajor axis of the planet’s orbit, and $(\dot{a}/a)_i$ denotes the change of the semimajor axis caused by stellar tides given by:

$$\left(\frac{\dot{a}}{a}\right)_i = -\frac{1}{9\tau_{\text{conv}}} M_\star^{\text{env}} R_\star^{\text{env}} (R_\star - R_\star^{\text{env}})^8 \frac{R_\star}{a} \left(\frac{\eta_\star}{\eta_{\text{env}}} \right) \left(\frac{M_p}{M_\star}\right) \left(\frac{R_\star}{a}\right)^8 \times \left[2p_2 + e^2 \left(\frac{7}{8}p_1 - 10p_2 + \frac{441}{8}p_3\right) \right].$$

(2)

Here M_\star^{env} is the envelope mass and R_\star is the radius of the star. We follow Rasio et al. (1996) to compute τ_{conv}, the eddy turnover timescale within the stellar envelope, which is written as:

$$\tau_{\text{conv}} = \left[\frac{M_\star^{\text{env}} R_\star^{\text{env}} (R_\star - R_\star^{\text{env}})^8}{3L_\star} \right]^{1/3},$$

(3)

where R_\star^{env} is the radius at the base of the convective envelope and L_\star is the luminosity of the star. The frequency components of the tidal force, i.e., p_1, p_2, and p_3 are, as in Mustill & Villaver (2012), given by:

$$p_i \approx \frac{9}{2} \min \left[1, \left(\frac{4\pi^2 a^3}{i^2 G(M_\star + M_p) \tau_{\text{conv}}}\right)^{1/3} \right], \quad i = 1, 2, 3.$$

(4)

In a similar way, the eccentricity rate of change for the planet generated by tidal forces can be written as

$$\left(\frac{\dot{e}}{e}\right)_i = -\frac{1}{36\tau_{\text{conv}}} M_\star^{\text{env}} M_p \left(1 + \frac{M_p}{M_\star}\right) \left(\frac{R_\star}{a}\right)^8 \times \left[\frac{5}{4}p_1 - 2p_2 + \frac{147}{4}p_3 \right].$$

(5)

Other mechanisms such as possible changes in the planet’s mass due to evaporation of its surface by EUV radiation or due to the accretion of a fraction of the ejected stellar material (Villaver & Livio 2009; Villaver et al. 2014), drag forces that occur when the planet passes through the gas expelled from the host star, and planetary tides, have been taken into account previously. However, these additional forces and the corresponding changes in the planet mass and orbital parameters are negligible compared to the effects of stellar mass loss and stellar tides (Villaver & Livio 2009; Veras et al. 2015; Rao et al. 2018). We therefore only consider the latter.

3. Numerical Methods

In what follows we describe the numerical tools we used to calculate the evolution and fate of a Neptune-mass planet affected by the stellar mass loss, stellar tides, and mutual gravitational interactions with a Jupiter-mass planet during the RGB.

3.1. The Stellar Evolution Code

We use the stellar evolution code SSE developed by Hurley et al. (2000), which produces a single evolutionary track from a set of zero-age-main-sequence values such as the mass of the star M_\star, the metallicity Z, and the Reimers parameter η, which controls the mass-loss rate (Reimers 1975). As we are only interested in the main effect of combining tidal forces, mass loss, and gravitational interactions we fixed the stellar evolution parameters to $M_\star = 1M_\odot$, $Z = 0.02$, and $\eta = 0.5$. The resulting evolutionary track provides information about the main parameters of the host star such as M_\star, R_\star, M_\star^{env}, R_\star^{env}, and L_\star, as a function of time from the zero age main sequence until the star becomes a white dwarf. Here we only discuss planetary system dynamics before and just beyond the tip of the RGB, during which the maximum radius achieved by the star is $\sim 186.34R_\odot$, equivalent to ~ 0.86 au, and the total stellar mass loss accumulates to $\sim 0.24M_\odot$. Analyses that include the AGB and WD phases will be presented in future papers.

3.2. Evolution of a Single Planet

We calculated the evolution of a single planet using a Runge–Kutta–Fehlberg (RKF) algorithm to integrate Equation (1) coupled with Equation (5) while taking into account the previously determined stellar evolution track. This numerical tool allows us to rapidly compute the fate of a single planet after the RGB for a range of initial orbital and planetary parameters. As an example, Figure 1 shows the time evolution of the semimajor axis of a Jupiter- (top) and of a Neptune-mass planet (bottom), located at different initial positions in circular and coplanar orbits.

We integrated the time evolution for initial separations between 1.5 au and 3.5 au for the Jupiter-mass planet (top panel) and 1 au and 2.7 au for the Neptune-mass planet (bottom)
The Astrophysical Journal Letters, 898:L23 (7pp), 2020 July

Paula Ronco et al.

Section 3.2. For details about the computation of the mass loss we refer the reader to Veras et al. (2013).

We implemented stellar tides in this version of MERCURY following the formalism described in Section 2 as an external force so that planetary evolution is affected not only by gravitational interactions between planets and with the central star, but also by dissipative effects. The description of the implementation of the stellar tides and its validation with the RKF integrations can be found in the Appendix.

4. Results and Discussion

We analyze the evolution of a two-planet system formed by an inner Neptune- and an outer Jupiter-mass planet. For simplicity, both planets are initially in circular and coplanar orbits. We calculated a grid with initial locations ranging from 2 to 3 au with a step size in separation of 0.1 au for the Jupiter and from 1.5 to 2.1 au with a step size of 0.05 au for the Neptune. This grid covers all combinations of fates obtained with the RKF integrations for single planets (engulfment–engulfment, engulfment–survival, survival–engulfment, and survival–survival). For some of these semimajor axis pairs simulations are not performed because they violate the classical ~3.5\(R_{\text{Hil}}\) stability criteria (Gladman 1993), where \(R_{\text{Hil}}\) is the mutual Hill radius (see also Giuppone et al. 2013). For the rest of the angular orbital parameters we adopt random values between 0° and 360°. We integrate each configuration with both planets together for ~750 Myr starting at the base of the giant branch which according to \(SSE\) is reached by a star with one solar mass at an age of ~11.6 Gyr. We used an accuracy parameter of \(1 \times 10^{-13}\) (Veras et al. 2013) and saved the results every 1000 yr. Collisions are treated as inelastic mergers, and close encounters are defined and recorded within 3 Hill radii.

Figure 2 illustrates the fate of both planets calculated with our \(N\)-body code as a function of initial separations. Especially for separations close to the 2:1 and 3:2 mean motion resonances (MMRs; white dashed lines) the fate of the inner Neptune-mass planet is dramatically affected by the presence of the outer Jupiter. We find four cases in which both planets fall to the central star despite the fact that the Neptune-mass planet would have survived the RGB on its own (see the red–red squares at \((a_1,a_2)=(2.5,1.95),(2.6,1.85),(2.6,1.90), \text{and } (2.6,1.95)\) au). In two simulations the Neptune-mass planet collides with the Jupiter-mass planet (yellow squares in Figure 2) before the latter is engulfed by the central star. These collisions occurred in cases where both planets alone would not have survived. We also find two cases where the Neptune-mass planet, which if it was on its own would have survived the RGB evolution of its host star, is ejected from the system due to close encounters with the outer Jupiter (small gray squares in Figure 2). In one of these cases the Jupiter-mass planet survives while in the other one it is engulfed by the giant star.

The perhaps two most intriguing scenarios are, however, the following. On one hand, we find “savior cases” in which the Neptune-mass planet alone would not survive the RGB but is saved by its Jupiter-mass companion (two cases, small blue square above big red square for red numbers on the \(y\)-axis in Figure 2). On the other hand, we also find “destroyer cases” where the Neptune-mass planet alone would not have been engulfed by the giant star but is killed by the outer Jupiter (six cases, small red square above big blue square for blue numbers in Figure 2). The Jupiter-mass planets with an initial semimajor axis above 2.7 au survive while single Neptune-mass planets survive for initial separations exceeding 1.9 au.

Although our model is simpler than previously performed simulations, our result for the survival of a Jupiter-mass planet with initial semimajor axis larger than 2.6 au is in agreement with more detailed numerical calculations. Using a different expression for the convective timescale, a different evolutionary track for the central star, and considering drag forces (which we ignored), Villaver & Livio (2009) found that a single Jupiter-mass planet around an evolving solar-mass star is engulfed for initial separations \(a < 3\) au. According to Nordhaus & Spiegel (2013, their figure 3), who in addition to the most important forces considered changes in the primary spin, a Jupiter-mass planet around a solar-mass star would survive for initial separations exceeding ~2.5–3 au.

3.3. N-Body Integrator

To model the dynamics of a planetary system affected by stellar evolution we use the modified version of the MERCURY integration package (Chambers 1999) developed by Veras et al. (2013), which uses the Bulirsch Stoer (BS) integrator. This code interpolates the \(SSE\) code (Hurley et al. 2000) stellar mass output at each MERCURY timestep and at each BS substep, which produces the same single evolutionary track for a solar-type star as the one used with the RKF integrator described in Figure 1. Evolution of the semimajor axis for a Jupiter- (top) and a Neptune-mass planet (bottom) assuming initial separations of 1.5–3.5 au and 1–2.7 au, respectively with a step size of 0.1 au. Both planets are assumed to be in circular and coplanar orbits. The red filled area represents the radius of the host star for ~0.013 Gyr of its evolution toward the end of the RGB. The red solid lines show evolutionary tracks that result in an engulfment while the blue ones show those that lead to survival of the planets. The black solid line represents the limit between engulfment and survival (at 2.7 au for the Jupiter-mass planet and at 1.9 au for the Neptune-mass planet) while the dashed line provides the limit above which tides are not strong enough to generate orbital decay at any time.
on the y-axis in Figure 2). It is important to highlight that all these particular cases occur near the 3:2 and 2:1 MMR, which cross the grid of the chosen semimajor axis. This does not imply that these cases are unlikely outliers. In contrast, Nature seems to have a preference for locating two consecutive planets close to the 3:2 and 2:1 MMR (e.g., Fabrycky et al. 2012; Trifonov et al. 2014). That such a configuration can be destabilized during the RGB causing one of the planets to be ejected has previously been predicted by Voyatzis et al. (2013) who, however, did not take into account stellar tides. Finally, we emphasize that due to the stochasticity of the passage through the separatrix of the resonances, the results presented here can have different endings if the initial conditions are slightly changed, if a different timestep is considered, or even if a different computer is used (Voyatzis et al. 2013; Folonier et al. 2014).

4.1. Destroyer and Savior Scenarios

The “destroyer” and “savior” cases are fascinating scenarios that deserve a more detailed look. To that end we show the evolution of the separation and eccentricity for both cases as well as dynamical maps in Figure 3. To construct the dynamical maps we set the Jupiters at their initial semimajor axes (3 and 2.2 au) and their eccentricity at its mean value attained in the first 100 Myr of the N-body integrations (∼5 × 10−6). The (aJ, eJ) plane was then divided in a 100 × 100 grid of initial conditions for the Neptune-mass planet. The semimajor axis ranged from 1.7 to 2.1 au (left panel, “destroyer” case) and 1.55 to 1.75 au (right, “savior”) and the eccentricity from 0 to 0.2. All these configurations were then integrated for 10,000 yr with the Neptunes represented by mass-less particles and without considering stellar tides and stellar evolution.

In the “destroyer” case (panels (a), (c), and (e) of Figure 3) the surviving Jupiter causes the death of the Neptune-mass planet that would have survived the evolution of their host star on the RGB if it was alone (the simulation with a green circle in Figure 2). Throughout the integration the planets do not experience close encounters. The evolution corresponds to a divergent migration as the period ratio increases. At first, the Neptune’s eccentricity only slightly grows as their period ratio increases but instantly jumps to ∼0.15 as soon as the planets cross the 2:1 resonance (see panels (a) and (c) of Figure 3). This increase in eccentricity causes the perihelion distance of the Neptune to significantly shrink. Stellar tides become more important at these smaller distances which further reduces the separation until the planet finally falls into the envelope of the giant star.

In the “savior” case the opposite occurs, i.e., the Neptune-mass planet survives although it would not if it was alone (simulation with an orange circle in Figure 2). In this scenario, shown in detail in panels (b), (d), and (f) of Figure 3, the Jupiter-mass planet is initially set on a highway to hell and will indeed fall into the giant star, but not without saving its Neptune-mass companion.

Despite their period ratio being initially far from the nominal value of the 3:2 MMR (i.e., PJ/PN ∼ 1.5), the initial planet locations are within this resonance. As a consequence, both planets evolve due to stellar tides following the apsidal corotation families, the bluish region in panel (e) where Δs ∼ 0, (see also Giuppone et al. 2013; Ramos et al. 2015). The migration in this case is convergent as the period ratio decreases. When the planets cross the 8.5 MMR, the Neptune’s eccentricity is slightly enhanced but then remains constant for the next ∼50,000 yr. Then, both planets continue evolving toward shorter separations (and period ratios) as stellar tides dominate over the effects of stellar mass loss until they get trapped in the 3:2 MMR. This trapping increases the Neptune’s eccentricity to ∼0.15, which leads to close encounters between both planets. Just ∼0.8 Myrs before the star reaches the tip of the RGB a planetary scattering event occurs during which the Neptune is kicked to an orbit with a ∼ 3.20 au and e ∼ 0.40. As the star is still losing mass and as at the increased orbital distance stellar tides are very inefficient, the Neptune’s orbit expands further until the tip of the RGB reaching final orbital parameters of a ∼ 3.31 au and e ∼ 0.37.

4.2. Neptune RGB Survivors

Inspecting the final orbital parameters of the surviving Neptune-mass planets from all the simulations shown in Figure 2, we identify two different populations as illustrated in Figure 4. Surviving Neptunes with semimajor axes greater than 3 au and eccentricities larger than ∼0.25 result from planetary scattering events like the one described in the right panels of Figure 3, while those with lower eccentricities and semimajor axes result from gravitational interactions and resonance crossings that enhanced their eccentricities but not enough to push them toward the star, as in the case of Figure 3 (left panels).

Our findings therefore show that a significant fraction of planetary systems around white dwarfs might be shaped by gravitational interactions, in particular resonances, occurring.
during the evolution of their host stars. Eccentric orbits of planets around white dwarfs generated this way might play a significant role in scattering planetesimals or asteroids (Frewen & Hansen 2014; Smallwood et al. 2018; Antoniadou & Veras 2019) and maybe even smaller planets closer to the white dwarf. It could therefore be that the evolutionary scenarios discovered in this Letter represent an important ingredient for understanding metal-polluted white dwarfs as well as the properties of planetary systems around white dwarfs.

However, so far we have only considered two-planet systems while packed planetary systems with more planets might be a frequent outcome of planet formation (Gillon et al. 2017). In fact, the most recent measurements indicate that on average planetary systems consist of more than three planets (Zhu et al. 2018; Zink et al. 2019). In addition, our simulations only covered the first giant branch while the progenitors of all currently known white dwarfs must have evolved as well through the AGB which would likely affect some of the systems considered here (Mustill & Villaver 2012). Finally, we only considered planets around a 1\(M_\odot\) star while most of the observed metal-polluted white dwarfs have more massive progenitors (Koester et al. 2014) which suffer most of the radius expansion and mass loss during AGB. We plan to overcome these limitations in future papers.

![Figure 3](image-url)
5. Conclusions

For the first time we combined stellar tides and multiplanet dynamics in an N-body code to study the evolution of a Neptune–Jupiter planetary system during the giant branch phases. We find that the fate of the Neptune-mass planet, located inside the Jupiter’s orbit, can be significantly affected by the presence of the Jupiter-mass planet during and after the evolution of the host star on the RGB. When both planets are near an MMR, the eccentricity of the Neptune-mass planet is excited, which affects its fate: planets that would survive alone can be engulfed by the giant star and planets that would fall into the giant star if they were on their own can survive due to planet–planet scattering events. We also observe an increased eccentricity of Neptune-mass planets that survive the RGB evolution of their host star. While additional simulations covering different stellar and planetary masses and including AGB evolution are required, our results clearly show that gravitational interactions play an important role for the fate of planets that are initially located at a few astronomical units from the star. In particular, resonances between planetary orbits occurring during the stars’ giant phases might be crucial to understand the architecture of planetary systems around white dwarfs.

We thank the anonymous referee for suggesting improvements to the manuscript. M.P.R. thanks Marcelo M. Miller Bertolami for useful discussions on stellar evolution aspects. M.P.R. and M.R.S. acknowledge support from FONDECYT (grants 3190336 and 1181404). M.P.R., M.R.S., J.C. and O.M.G. are supported by the Iniciativa Científica Milenio (ICM) via the Núcleo Milenio de Formación Planetaria. M.P.R. also thanks CONICYT project Basal AFB-170002. O.M.G. is partially supported by PICT 2016-0053 from ANPCyT, Argentina, and thanks IA-PUC for an invited research stay. D.V. gratefully acknowledges the support of the STFC via an Ernest Rutherford Fellowship (grant ST/P003850/1). C.G. acknowledges Mulatona Cluster from CCAD-UNC, which is part of SNCAD-MinCyT, Argentina.

Appendix

Implementation of Stellar Tides

Different types of external forces affecting the evolution of a planet, like tides, interactions with a planetesimal disk, or disk torques, can be modeled by a Stokes non-conservative force as:

$$\frac{d^2r}{dt^2} = -C(v - \alpha v_c)$$ \hspace{1cm} (A1)

(Beaugé et al. 2006). Here \(r \) is the position vector referring to the star, \(v \) is its velocity vector and \(v_c \) is the circular velocity vector at the same point. \(C \) and \(\alpha \) are external coefficients. At first order in eccentricity and for a single planet, the effects of the previous force in the semimajor axis and eccentricity of the body can be described following Beaugé & Ferraz-Mello (1993):

$$a(t) = a_0 \exp(-At), \quad e(t) = e_0 \exp(-Et),$$ \hspace{1cm} (A2)

where \(a_0 \) and \(e_0 \) are the conditions at the beginning of the integration and where \(|A| \) and \(|E| \) represent the inverse of the e-folding times for \(a \) and \(e \), which can be computed as:

$$A = 2C(1 - \alpha), \quad E = C\alpha.$$ \hspace{1cm} (A3)

To the first order, we can assume the right-hand sides of Equations (2) and (5) as constant. Then, their solutions are formally given by Equation (A2), and \(A = \left(\frac{\dot{a}}{a}\right)_t \) and \(E = \left(\frac{\dot{e}}{e}\right)_t \) can be used to deduce the coefficients \(C \) and \(\alpha \) as:

$$C = \frac{1}{2}A + E, \quad \alpha = \frac{E}{C}.$$ \hspace{1cm} (A4)

Following this formalism the accelerations from tides were incorporated in our N-body code.

In order to test this implementation in MERCURY we evolved a single planet system until the central solar-mass star passed through the tip of the RGB and compared the resulting orbital evolution with the RKF integrations. We use the same evolutionary track as in Section 3.2. The bottom panel of Figure 5 shows results for a set of simulations developed for a Jupiter-mass planet with different initial separations between 2.3 au and 3.1 au. It is clear that both kinds of integrations almost perfectly match. The eccentricity of these Jupiter-mass planets...
was initially set to be 0.1 in order to also test the changes in this orbital parameter. The top panel of Figure 5 also shows a nearly perfect match in the evolution of the eccentricities.

ORCID iDs

María Paula Ronco https://orcid.org/0000-0003-1385-0373
Matthias R. Schreiber https://orcid.org/0000-0003-3903-8009
Cristian A. Giuppone https://orcid.org/0000-0002-7460-3264
Dimitri Veras https://orcid.org/0000-0001-8014-6162
Jorge Cuadra https://orcid.org/0000-0003-1965-3346
Octavio M. Guilera https://orcid.org/0000-0001-8577-9532

References

Antoniadou, K. I., & Veras, D. 2019, A&A, 629, A126
Barber, S. D., Patterson, A. J., Kilic, M., et al. 2012, ApJ, 760, 26
Barstow, M. A., Barstow, J. K., Casewell, S. L., Holberg, J. B., & Hubeny, I. 2014, MNRAS, 440, 1607
Beauge, C., & Ferraz-Mello, S. 1993, Icar, 103, 301
Beaugé, C., Michilchenko, T. A., & Ferraz-Mello, S. 2006, MNRAS, 365, 1160
Chambers, J. E. 1999, MNRAS, 304, 793
Fabrycky, D. C., Ford, E. B., Steffen, J. H., et al. 2012, ApJ, 750, 114
Folonier, H. A., Roig, F., & Beaugé, C. 2014, CeMDA, 119, 1
Frewen, S. F. N., & Hansen, B. M. S. 2014, MNRAS, 439, 2442
Gänsicke, B. T., Aungwerojwit, A., Marsh, T. R., et al., 2016, ApJL, 818, L7
Gänsicke, B. T., Schreiber, M. R., Toloza, O., et al. 2019, Natur, 576, 61
Gillon, M., Triaud, A. H. M. J., Demory, B.-O., et al. 2017, Natur, 542, 456
Giuppone, C. A., Morais, M. H. M., & Correia, A. C. M. 2013, MNRAS, 436, 3547
Gladman, B. 1993, Icar, 106, 247
Hurley, J. R., Pols, O. R., & Tout, C. A. 2000, MNRAS, 315, 543
Jones, M. I., Jenkins, J. S., Brahms, R., et al. 2016, A&A, 590, A38
Jura, M. 2003, ApJL, 584, L91
Koester, D., Gänsicke, B. T., & Farihi, J. 2014, A&A, 566, A34
Malamud, U., & Perets, H. B. 2020, MNRAS, 492, 5561
Manser, C. J., Gänsicke, B. T., Eggl, S., et al. 2019, Sci, 364, 66
Manser, C. J., Gänsicke, B. T., Gentile Fusillo, N. P., et al. 2020, MNRAS, 493, 2127
Mordasini, C. 2018, Handbook of Exoplanets (Cham: Springer), 143
Mustill, A. J., & Villaver, E. 2012, Apl, 761, 121
Nordhaus, J., & Spiegel, D. S. 2013, MNRAS, 432, 500
Pfyffer, S., Alibert, Y., Benz, W., & Swoboda, D. 2015, A&A, 579, A37
Ramos, X. S., Correa-Otto, J. A., & Beaugé, C. 2015, CeMDA, 123, 453
Rao, S., Meynet, G., Eggenberger, P., et al. 2018, A&A, 618, A18
Rasio, F. A., Tout, C. A., Lubow, S. H., & Livio, M. 1996, ApJ, 470, 1187
Reimers, D. 1975, MRSRL, 8, 369
Ronco, M. P., & de Elía, G. C. 2018, MNRAS, 479, 5362
Ronco, M. P., Guilera, O. M., & de Elía, G. C. 2017, MNRAS, 471, 2753
Schneider, J., Dedieu, C., de Sideran, P., Savalle, R., & Zolotukhin, I. 2011, A&A, 532, A79
Schreiber, M. R., Gänsicke, B. T., Toloza, O., Hernandez, M.-S., & Lagos, F. 2019, AplL, 887, L4
Shallue, C. J., & Vanderburg, A. 2018, AJ, 155, 94
Smallwood, J. L., Martin, R. G., Livio, M., & Lubow, S. H. 2018, MNRAS, 480, 57
Suzuki, D., Bennett, D. P., Sumi, T., et al. 2016, ApJ, 833, 145
Trifonov, T., Reffert, S., Tan, X., Lee, M. H., & Quirrenbach, A. 2014, A&A, 568, A64
Vanderburg, A., Johnson, J. A., Rappaport, S., et al. 2015, Natur, 526, 546
Veras, D. 2016, RSOS, 3, 150571
Veras, D., Eggl, S., & Gänsicke, B. T. 2015, MNRAS, 451, 2814
Veras, D., & Fuller, J. 2020, MNRAS, 492, 6059
Veras, D., & Gänsicke, B. T. 2015, MNRAS, 447, 1049
Veras, D., Leinhardt, Z. M., Bonso, A., & Gänsicke, B. T. 2014, MNRAS, 445, 2244
Veras, D., Mustill, A. J., Bonso, A., & Wyatt, M. C. 2013, MNRAS, 431, 1686
Villaver, E., & Livio, M. 2009, ApJL, 705, L81
Villaver, E., Livio, M., Mustill, A. J., & Siess, L. 2014, ApJ, 794, 3
Voyatzis, G., Hadjidemetriou, J. D., Veras, D., & Varvoglis, H. 2013, MNRAS, 430, 3383
Zahn, J. P. 1977, A&A, 500, 121
Zhu, W., Petrovich, C., Wu, Y., Dong, S., & Xie, J. 2018, ApJ, 860, 101
Zink, J. K., Christiansen, J. L., & Hansen, B. M. S. 2019, MNRAS, 483, 4479