Estimation of time spent on studies of toxic elements in food in an accredited laboratory testing center

T Ross, S E Denisenko, A V Lebedev, L A Kozlovskikh and A V Shpakov
K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation

E-mail: h-s-g-77@ya.ru

Abstract. Reducing the time spent on preparing a sample for analysis by 19.5 times, as well as cost items for raw materials and basic materials by 2.6 times, is a weighty argument in favor of introducing the PLP-01M microwave laboratory system. When the estimated price for a unit of research is established, the competitiveness in the market for the services provided significantly increases, the setting of the market price allows increasing revenue by 1.2 times, which will amount to 883 thousand rubles. additional income. Upgrading the equipment used from Kvant-AFA to Kvant-2AT with the simultaneous implementation of the PLP-01M microwave laboratory system will not only improve the used measuring instrument, but also the entire sample preparation system as a whole. The optimal choice of measuring instruments for updating the laboratory base is carried out based on the volume of analyzed samples, the productivity of existing and considered for implementation instruments, the cost of equipment and the solvency of the TLC, as well as the possibility of implementing a new method in the laboratory.

1. Introduction

Improving the quality of services provided by updating the laboratory base is considered as one of the most important ways to increase competitiveness, achieve competitive advantages, which, in turn, contributes to increasing the economic efficiency of the testing laboratory center (hereinafter referred to as the TLC).

Ensuring food safety remains an urgent and priority task [1-6]. Assessment of the quality and safety of the developed food products is a prerequisite [7-18]. In the conditions of market relations at any enterprise, including testing laboratories, the relevance of quality management is determined by its focus on ensuring such a level of quality of services that can fully satisfy all consumer needs. The lack of updating of measuring instruments, test and auxiliary equipment makes it difficult to ensure a stable quality of services. The processes of updating the laboratory base in modern conditions of the development of scientific and technological progress are objectively necessary [16-24].

2. Materials and methods

The determination of the time spent was established by standard methods, according to the Quality Manual of the TLC.

Equipment:

- atomic absorption spectrometer "Kvant-2AT" (hereinafter referred to as "Kvant-2AT");
• voltammetric analyzer "TA-4" (hereinafter referred to as "TA-4");
• analyzer "Pan-arsenic" (hereinafter referred to as "Pan-arsenic");
• photoelectric concentration colorimeter "KFK-2MP" (hereinafter referred to as "KFK-2MP");
• atomic absorption spectrometer "Kvant-AFA" (hereinafter referred to as "Kvant-AFA");
• microwave laboratory system PLP-01M (hereinafter referred to as PLP-01M);

3. Results and discussions
Calculations for price formation depending on the time spent on research for each of the above measuring instruments are summarized in tables 1-10.

Table 1. Time spent on the determination of lead and cadmium on the Kvant-2AT/Kvant-AFA spectrometer.

Job title	Position	Time standard, h
Sample collection and registration, sample identification, log entries	laboratory assistant	0.1
Taking a sample	clerk	0.2
Preparation of reagents	laboratory assistant of the highest category	0.1
Sample mineralization	laboratory assistant	0.2
Preparation of the device for operation, construction/refinement of the calibration graph	engineer	0.4
Analysis of a sample on an atomic absorption spectrometer "Kvant-2AT"	engineer	0.11
Carrying out internal laboratory control, making calculations, registering results	engineer	0.3
Preparing dishes	laboratory assistant	0.3
Paperwork	head of TLC	0.3

Table 2. Determination of lead and cadmium on the "Kvant-2AT" / "Kvant-AFA" spectrometer.

Cost item	Amount, rub.
Basic and additional wages	64.80
Material costs	9.72
Overheads	125.72
TOTAL cost	200.24
Profitability	50.06
TOTAL including VAT	315.38
Price in the price list	315.00

The price for carrying out one study of food products and food raw materials as determined by the atomic absorption spectrometer "Kvant-2AT" / "Kvant-AFA" for both lead and cadmium is 315 rubles.

Table 3. Time spent on the determination of lead and cadmium on the analyzer "TA-4".

Job title	Position	Time standard, h
Acceptance and registration of samples, specimen identification, log entries	laboratory assistant	0.1
Taking a sample	clerk	0.2
	laboratory assistant of the highest category	0.1
Table 4. Determination of lead and cadmium on the analyzer "TA-4".

Cost item	Amount, rub.
Basic and additional wages	71.88
Material costs	10.78
Overheads	139.44
TOTAL cost	222.09
Profitability	55.52
TOTAL including VAT	349.80
Price in the price list	350.00

The price for one study of food products and food raw materials, as determined by the voltammetric analyzer "TA-4", for both lead and cadmium is 350 rubles.

Table 5. Time spent on the determination of arsenic on the analyzer "Pan-arsenic".

Job title	Position	Time standard, h
Acceptance and registration of samples,	laboratory assistant	0.1
specimen identification, log entries	clerk	0.2
Taking a sample	laboratory assistant of the	0.1
highest category	highest category	
Preparation of reagents	engineer	0.45
Sample mineralization	laboratory assistant of the	1.25
highest category	highest category	
Preparation of the device and electrodes for	engineer	1.0
work, construction of a calibration graph	highest category	
Analysis of a sample on a voltammetric	engine	0.5
analyzer "TA-4"	highest category	
Carrying out internal laboratory control,	engine	0.3
making calculations, registering results	highest category	
Preparing dishes	laboratory assistant	0.3
Paperwork	head of TLC	0.3

Table 6. Determination of arsenic on the analyzer "Pan-arsenic".

Cost item	Amount, rub.
Basic and additional wages	71.99
Material costs	10.80
Overheads	139.66
TOTAL cost	222.45
Profitability	55.61
TOTAL including VAT	350.36
Price in the price list	350.00
The price for one study of food products and food raw materials for the determination of arsenic on the Pan-arsenic analyzer is 350 rubles.

Table 7. Time spent on determining arsenic on the KFK-2MP colorimeter.

Job title	Position	Time standard, h
Acceptance and registration of samples,	laboratory assistant clerk	0.1
specimen identification, log entries		0.2
Taking a sample	laboratory assistant of the highest category	0.1
Preparation of reagents	engineer	0.3
Sample mineralization	laboratory assistant of the highest category	2.2
Preparation of the device and electrodes for work, construction of a calibration graph	engineer	1.1
Analysis of a sample on a voltammetric analyzer "TA-4"	engineer	0.3
Carrying out internal laboratory control, making calculations, registering results	engineer	0.2
Preparing dishes	laboratory assistant	0.3
Paperwork	head of TLC	0.3

Table 8. Determination of arsenic on the KFK-2MP colorimeter.

Cost item	Amount, rub.
Basic and additional wages	80.16
Material costs	12.02
Overheads	155.50
TOTAL cost	247.68
Profitability	61.92
TOTAL including VAT	390.09
Price in the price list	390.00

The price for one study of food products and food raw materials to determine arsenic on a photoelectric concentration colorimeter "KFK-2MP" is 390 rubles.

Table 9. Time spent on the determination of lead and cadmium at Kvант-2AT/Kvant-AFA, taking into account the use of the PLP-01M system.

Job title	Position	Time standard, h
Acceptance and registration of samples,	laboratory assistant clerk	0.1
specimen identification, log entries		0.2
Taking a sample	laboratory assistant of the highest category	0.1
Preparation of reagents	engineer	0.2
Sample mineralization	laboratory assistant of the highest category	1.2
Preparation of the device and electrodes for work, construction of a calibration graph	engineer	0.4
Analysis of a sample on a voltammetric analyzer "TA-4"	engineer	0.11
Carrying out internal laboratory control, making calculations, registering results	engineer	0.3
Preparing dishes	laboratory assistant	0.3
Paperwork	head of TLC	0.3
Table 10. Determination of lead and cadmium on the Kvant-2AT/Kvant-AFA spectrometer taking into account the use of the PLP-01M system.

Cost item	Amount, rub.
Basic and additional wages	52.61
Material costs	7.89
Overheads	102.06
TOTAL cost	162.65
Profitability	40.46
TOTAL including VAT	256.04
Price in the price list	260.00

The price for one study of food products and food raw materials, as determined by the atomic absorption spectrometer Kvant-2AT/Kvant-AFA, taking into account the use of the PLP-01M microwave laboratory system of both lead and cadmium is 260 rubles.

The introduction of a microwave laboratory system will reduce the cost of 1 study by 55 rubles.

4. Conclusion
Reducing the time spent on preparing a sample for analysis by 19.5 times, as well as cost items for raw materials and basic materials by 2.6 times, is a weighty argument in favor of introducing the PLP-01M microwave laboratory system.

The use of the PLP-01M microwave laboratory system will make it possible to implement one of two options for the pricing policy of the laboratory management: when the estimated price per unit of research is established, the competitiveness in the market for the services provided significantly increases; additional income.

Upgrading the equipment used from Kvant-AFA to Kvant-2AT with the simultaneous introduction of the PLP-01M microwave laboratory system will not only improve the used measuring instrument, but also the entire sample preparation system as a whole.

The optimal choice of measuring instruments for updating the laboratory base is carried out based on the volume of analyzed samples, the productivity of existing and considered for implementation instruments, the cost of equipment and the solvency of the TLC, as well as the possibility of implementing a new method in the laboratory.

Acknowledgements
The authors express special gratitude for help in preparation to the engineer A M Chuprakova. The authors acknowledge the tremendous help received from scholars whose scientific articles are cited and included in the bibliography of this manuscript.

References
[1] Maksimuk N N, Rebezov M B and Guber N B 2018 Experience in auditing in the food safety management system Economics of Agriculture of Russia doi:10.32651/2070-0288-2018-9-15-21
[2] Kuramshina N, Rebezov M, Kuramshin E, Krasnogorskaya N, Tretyak L, Somova Yu, Dolmatova I, Zaitseva T, Grigoryeva I and Bakirova L 2018 Heavy Metals Contamination of Soil in Urban Areas of Southern Ural Region of Russia International Journal of Engineering and Technology (UAE) 7(4.42) 14-8 DOI: 10.14419/ijet.v7i4.2.25536
[3] Kuramshina N, Rebezov M, Kuramshin E, Tretyak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okuskhanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia International Journal of Pharmaceutical Research 11(1) 1301-5 DOI: 10.21668/health риск/2019.2.04.engl
[4] Akhmetova S, Suleimenova M and Rebezov M 2019 Mechanism of an improvement of business processes management system for food production: case of meat products enterprise *Entrepreneurship and sustainability issues* 7(2) 1015-35 Doi 10.9770/jesi.2019.7.2(16)

[5] Imran M et al. 2020 Lycopene as a Natural Antioxidant Used to Prevent Human Health Disorders *Antioxidants* 9(8) 706 doi:10.3390/antiox9080706

[6] Ahsan S et al. 2020 Safety assessment of milk and indigenous milk products from different areas of Faisalabad *J Microbiol Biotech Food Sci* 9(6) 1197-203 DOI: 10.15414/jmbfs.2020.9.6.1197-1203

[7] Temerbayeva M et al. 2018 Development of Yoghurt from Combination of Goat and Cow Milk *Annual Research & Review in Biology* 23(6) 1-7 DOI: 10.9734/arrb/2018/38800

[8] Temerbayeva M et al. 2018 Technology of Sour Milk Product For Elderly Nutrition Research *Journal of Pharmaceutical, Biological and Chemical Sciences* 9(1) 291-5

[9] Serikova А, Smolnikova F, Rebezov M, Okuskhanova E, Temerbayeva M, Gorelik O, Karlap S, Baitukenova Sh, Baitukenova S and Tumbasova Y 2018 Development Of Technology Of Fermented Milk Drink With Immune Stimulating Properties *Research Journal of Pharmaceutical, Biological and Chemical Sciences* 9(4) 495-500 WOS:000438848100062

[10] Smolnikova F, Rebezov M, Shaydullin R, Knysh I, Yudina O, Nikolaeva N, Sorokin A, Zubtsova Yu and Kozlov V 2020 Vegetable stabilizers used in the production of fermented milk drinks and yogurts *International Journal of Psychosocial Rehabilitation* 24(6) 7663-7 DOI: 10.37200/IJPR/V24I6/PR260775

[11] Kassymov S, Rebezov M, Ikonnikova A, Fedin I, Rodionov I, Rukhadze S and Bokuchava O 2020 Using of pumpkin and carrot powder in production of meat cutlets: effect on chemical and sensory properties *International Journal of Psychosocial Rehabilitation* 24(4) 1663-70 DOI: 10.37200/IJPR/V24I4/PR201274

[12] Gavrilova N, Chernopolskaya N, Rebezov M, Moisejkina D, Dolmatova I, Mironova I, Peschererov G, Gorelik O and Derkho M 2019 Advanced Biotechnology of Specialized Fermented Milk Products *International Journal of Recent Technology and Engineering* 8(2) 2718-22 DOI: 10.35940/ijrte.B3158.078219

[13] Rozhnoe E, Kazarskikh A, Shkolnikova M, Tretyak L, Voytsekhovskiy V, Maksimiuk N, Khayrullin M, Rebezov M and Yessimbekov Zh 2019 Investigation of the conditions for the formation of 5-Hydroxymethylfurfurol in the production of honey wines and sea-buckthorn wine drinks *Research Journal of Pharmacy and Technology* 12(7) 3501-6 DOI: 10.5958/0974-360X.2019.00595.X

[14] Chernopolskaya N, Gavrilova N, Rebezov M, Harlap S, Nigmatyanov A, Peschererov G, Bychkova T, Vlasova K and Karapetyan I 2019 Biotechnology of specialized fermented product for elderly nutrition *International Journal of Pharmaceutical Research* 11(1) 545-50 DOI: 10.35940/ijrte.B3158.078219

[15] Nesterenko A, Kenijz N, Rebezov M, Omarov R and Shlykov S 2020 Production technology for smoked sausages using protein-fat emulsion *International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies* 11(12) 11A12A 1-8 http://DOI.ORG/10.14456/TIJEMAST.2020.226

[16] Rebezov M et al. 2020 Improvement of Laboratory Services When using Sample Preparation in Microwave System *International Journal of Current Research and Review* 12(16) 29-33 doi:10.31782/IJCCR.2020.12167

[17] Rebezov M, Belokamenskaya A, Zinina O, Naumova N, Maksymiuk N, Soloveva A and Solntseva A 2012 Quality control of food research for lead content *Izvestiya vuzov prikladnaya khimiya i biotekhnologiya* 1 157 WOS:000442743100030

[18] Chuprakova A M and Rebezov M B 2016 Analysis of the results of the samples of milk and dairy products, as well as bakery and confectionery products on the content of toxic elements *Bulletin of the South Ural State University Series Food and Biotechnology* 4(1) doi.org/10.14529/FOOD160106
[19] Zykova I, Maksimuk N, Rebezov M, Kuznetsova E, Derkho M, Sereda T, Kazhibayeva G, Somova Yu and Zaitseva T 2019 Interaction between heavy metals and microorganisms during wastewater treatment by activated sludge Journal of Engineering and Applied Sciences 14(11) 2139-45

[20] Assenova B, Okuskhanova E, Rebezov M, Korzhikenova N, Yessimbekov Zh and Dragoev S 2016 Trace and toxic elements in meat of maral (red deer) grazing in Kazakhstan Research Journal of Pharmaceutical Biological and Chemical Sciences 7(1) 1425-33

[21] Duysssembaev S, Serikova A, Okuskhanova E, Ibragimov N, Bekturova N, Ikimbayeva N, Rebezov Y, Gorelik O and Baybalinova M 2017 Determination of Cs-137 Concentration in Some Environmental Samples around the Semipalatinsk Nuclear Test Site in the Republic of Kazakhstan Annual Research & Review in Biology 15(4) 1-8 DOI: 10.9734/ARRB/2017/35239

[22] Konushkin S V et al. 2020 Study of the physicochemical and biological properties of the new promising Ti–20Nb–13Ta–5Zr alloy for biomedical applications Materials Chemistry and Physics 30 July 2020 123557 doi:10.1016/j.matchemphys.2020.123557

[23] Osintseva D et al. 2017 Ozonation and microwave treatments as new pest management methods for grain crop cleaning and Disinfection Annual Research & Review in Biology 20(5) 1-6 DOI: 10.9734/ARRB/2017/37741