Some generalizations and unifications of $C_K(X)$, $C_\psi(X)$ and $C_\infty(X)$

A. Taherifar
Department of Mathematics, Yasouj University, Yasouj, Iran
ataherifar@mail.yu.ac.ir

Dedicated to Professor Azarpanah

Abstract. Let \mathcal{P} be an open filter base for a filter \mathcal{F} on X. We denote by $C^P(X)$ ($C_\infty^P(X)$) the set of all functions $f \in C(X)$ where $Z(f) = \{x : |f(x)| < 1\}$ contains an element of \mathcal{P}. First, we observe that every proper subrings in the sense of Acharyya and Ghosh (Topology Proc. 2010) has such form and vice versa. Afterwards, we generalize some well known theorems about $C_K(X), C_\psi(X)$ and $C_\infty(X)$ for $C^P(X)$ and $C_\infty^P(X)$. We observe that $C_\infty^P(X)$ may not be an ideal of $C(X)$. It is shown that $C_\infty^P(X)$ is an ideal of $C(X)$ and for each $F \in \mathcal{F}$, $X \setminus F$ is bounded if and only if the set of non-cluster points of the filter \mathcal{F} is bounded. By this result, we investigate topological spaces for which $C_\infty^P(X)$ is an ideal of $C(X)$ whenever $\mathcal{P} = \{A \subseteq X : A$ is open and $X \setminus A$ is bounded $\}$ (resp., $\mathcal{P} = \{A \subseteq X : X \setminus A$ is finite $\}$). Moreover, we prove that $C^P(X)$ is an essential (resp., free) ideal if and only if the set $\{V : V$ is open and $X \setminus V \in \mathcal{F}\}$ is a π-base for X (resp., \mathcal{F} has no cluster point). Finally, the filter \mathcal{F} for which $C_\infty^P(X)$ is a regular ring (resp., z-ideal) is characterized.

Keywords: local space, bounded subset, z-ideal, regular ring, essential ideal, \mathcal{F}-CG_δ subset.

2010 Mathematical Subject Classification: 54C40.

1 Introduction

In this paper, X assumed to be a completely regular Hausdorff space. $C(X)$($C^*(X)$) stands for the ring of all real valued (bounded) continuous functions on X. A subcollection \mathcal{B} of a filter \mathcal{F} is a filter base for \mathcal{F} if and only if each element of
Our aim of this paper is to reveal some important properties of a special kind of generalized form of $C_K(X)$ and $C_{∞}(X)$, which is denoted by $C^P(X)$ and $C_{∞P}(X)$. In section 2, some examples of these subrings are given and we prove that for any open filter base P, there is an ideal P' of closed sets such that $C^P(X) = C_{P'}(X)$ and $C_{∞P}(X) = C_{∞P'}(X)$ and vice versa whenever $C_{∞P}(X)$ is a proper subring of $C(X)$ (see [1]). It is shown that $C^P(X)$ is a free ideal if and only if F has no cluster point. Consequently, we observe that X is a local space (i.e., there is an open filter base P for a filter F which F has no cluster point) if and only if there is an open filter base P such that $C^P(X)$ is a free ideal. In this section, we show that $C^P(X)$ (resp., $C_{∞P}(X)$) is a zero ideal if and only if any element of P (F) is dense in X. A subset A of X is called an F-$CGδ$, if $A = \bigcap_{i=1}^{∞} A_i$, where each A_i is an open subset, $X \setminus A_i$ and A_{i+1} are completely separated and each $A_i \in F$. We prove that that $C^P(X) = C_{∞P}(X)$ if and only if every closed F-$CGδ$ is an element of F. We give an example of an open filter base P for a filter F such that $C_{∞P}(X)$ is not an ideal of $C(X)$. It is also shown that $C_{∞P}(X)$ is an ideal of $C(X)$ and for any $F \in F$, $X \setminus F$ is bounded if and only if the set of non-cluster points of the filter F is bounded which is a generalization of Theorem 1.3 in [6]. Consequently, if X is a pseudocompact space, then for any open filter base P, $C_{∞P}(X)$ is an ideal of $C(X)$.

Section 3 is devoted to the essentiality of $C^P(X)$ and ideals in $C_{∞P}(X)$. In [5], it was proved that an ideal I of $C(X)$ is an essential ideal if and only if $\bigcap Z[I]$ does not contain an open subset (i.e., $\text{int} \bigcap Z[I] = \emptyset$). Azarpah in [4], proved that $C_{K}(X)$ is an essential ideal if and only if X is an almost locally compact (i.e., every non-empty open set of X contains a non-empty open set with compact closure). We generalize these results for $C^P(X)$ and
2 $C_\mathcal{P}^\mathcal{P}(X)$ and $C_{\infty,\mathcal{P}}(X)$

Let \mathcal{P} be an open filter base for a filter \mathcal{F} on topological space X, we denote by $C_\mathcal{P}^\mathcal{P}(X)$ the set of all functions f in $C(X)$ for which $Z(f)$ contains an element of \mathcal{P}. Also $C_{\infty,\mathcal{P}}(X)$ denotes the family of all functions $f \in C(X)$ for which the set $\{x : |f(x)| < \frac{1}{n}\}$ contains an element of \mathcal{P}, for each $n \in \mathbb{N}$.

Recall that, for a subset A of X, $O_A = \{f : A \subseteq \text{int}Z(f)\}$.

Lemma 2.1. The following statements hold.

1. $C_\mathcal{P}^\mathcal{P}(X)$ is a z-ideal of $C(X)$ contained in $C_{\infty,\mathcal{P}}(X)$.
2. $C_\mathcal{P}^\mathcal{P}(X) = \sum_{A \in \mathcal{P}} O_A = \bigcup_{A \in \mathcal{P}} O_A$
3. $C_{\infty,\mathcal{P}}(X)$ is a proper subring of $C(X)$.

Proof. (1) By definition of $C_\mathcal{P}^\mathcal{P}(X)$ and since \mathcal{P} is a base filter, it is easy to see that $C_\mathcal{P}^\mathcal{P}(X)$ is a z-ideal and contained in $C_{\infty,\mathcal{P}}(X)$.

(2) Let $f \in C_\mathcal{P}^\mathcal{P}(X)$. Then there exists $A \in \mathcal{P}$ such that $A \subseteq Z(f)$. Hence $A \subseteq \text{int}Z(f)$, i.e., $f \in O_A \subseteq \sum_{A \in \mathcal{P}} O_A$. If $f \in \sum_{A \in \mathcal{P}} O_A$, then there are $1 \leq i \leq n$ and $f_i \in O_{A_i}$ such that $f = f_1 + \ldots + f_n$, thus $\bigcap_{i=1}^n A_i \subseteq \bigcap_{i=1}^n \text{int}Z(f_i) \subseteq Z(f)$. But $\bigcap_{i=1}^n A_i$ contains an element of \mathcal{P}, so $f \in C_\mathcal{P}^\mathcal{P}(X)$. The proof of the second equality is obvious.

(3) First, we observe that $C_{\infty,\mathcal{P}}(X)$ is a proper subset of $C(X)$. For, if $C_{\infty,\mathcal{P}}(X) = C(X)$, then $\emptyset \in \mathcal{P}$, which is a contradiction. On the other hand, we have

\[
\{x : |f(x) - g(x)| < \frac{1}{n}\} \supseteq \{x : |f(x)| < \frac{1}{2n}\} \cap \{x : |g(x)| < \frac{1}{2n}\} \text{ and } \{x : |f(x)g(x)| < \frac{1}{n}\} \supseteq \{x : |f(x)| < \frac{1}{\sqrt{n}}\} \cap \{x : |g(x)| < \frac{1}{\sqrt{n}}\}.
\]
Some generalizations and unifications of $C_K(X)$, $C_\psi(X)$ and $C_\infty(X)$

Therefore, $C_{\infty,\mathcal{P}}(X)$ is a proper subring of $C(X)$.

Recall that a family \mathcal{P} of closed subsets of X is called an ideal of closed sets in X, if it satisfies in the following conditions.

1. If $A, B \in \mathcal{P}$, then $A \cup B \in \mathcal{P}$.
2. If $A \in \mathcal{P}$ and $B \subseteq A$ with B closed in X, then $B \in \mathcal{P}$.

In [1], Acharyya and Ghosh for ideal \mathcal{P} of closed subsets of X defined $C_\mathcal{P}(X)$ and $C_{\infty,\mathcal{P}}(X)$ as follows:

$$C_\mathcal{P}(X) = \{ f \in C(X) : d(X \setminus Z(f)) \in \mathcal{P} \} ;$$

$$C_{\infty,\mathcal{P}}(X) = \{ f \in C(X) : \{ x : |f(x)| \geq \frac{1}{n} \} \in \mathcal{P}, \text{ for each, } n \in \mathbb{N} \}.$$

In the next result we give a new presentation of these subrings. We note that for ideal \mathcal{P} of closed sets, $C_{\infty,\mathcal{P}}(X)$ may be $C(X)$ but by Proposition 2.1 $C_{\infty,\mathcal{P}}(X)$ for each open filter \mathcal{P} is a proper subring.

Proposition 2.2. The following statements hold.

1. For every open filter base \mathcal{P}, there exists an ideal \mathcal{P}' of closed sets such that $C_\mathcal{P}(X) = C_{\mathcal{P}'}(X)$ and $C_{\infty,\mathcal{P}}(X) = C_{\infty,\mathcal{P}'}(X)$.

2. If $C_{\infty,\mathcal{P}}(X)$ is a proper subring of $C(X)$, then there is an open filter base \mathcal{Q} such that $C_\mathcal{P}(X) = C_{\mathcal{Q}}(X)$ and $C_{\infty,\mathcal{P}}(X) = C_{\infty,\mathcal{Q}}(X)$.

Proof. (1) Let \mathcal{P} be an open filter base. Consider \mathcal{P}' as follows:

$$\mathcal{P}' = \{ A : A \text{ is closed and } A \subseteq X \setminus B \text{ for some } B \in \mathcal{P} \}.$$

Then, it is easy to see that \mathcal{P}' is an ideal of closed sets in X, $C_\mathcal{P}(X) = C_{\mathcal{P}'}(X)$ and $C_{\infty,\mathcal{P}}(X) = C_{\infty,\mathcal{P}'}(X)$.

(2) Assume that $C_{\infty,\mathcal{P}}(X)$ is a proper subring of $C(X)$ and $\mathcal{Q} = \{ A \subseteq X : X \setminus A \in \mathcal{P} \}$. Then we can see that \mathcal{Q} is an open filter, $C_\mathcal{P}(X) = C_{\mathcal{Q}}(X)$ and $C_{\infty,\mathcal{P}}(X) = C_{\infty,\mathcal{Q}}(X)$. □

Example 2.3. Let X be a non-compact Hausdorff space and $\mathcal{P} = \{ A \subseteq X : X \setminus A \text{ is compact} \}$. Then \mathcal{P} is an open filter base, $C_\mathcal{P}(X) = C_K(X)$ and $C_{\infty,\mathcal{P}}(X) = C_\infty(X)$.

Example 2.4. Let $\mathcal{P} = \{ A : A \text{ is open and } X \setminus A \text{ is Lindelöf} \}$ and X be a non-Lindelöf space. Then \mathcal{P} is an open filter and we have

$$C_{\infty,\mathcal{P}}(X) = \{ f : X \setminus Z(f) \text{ is a Lindelöf subset of } X \} \text{ and}$$

$$C_\mathcal{P}(X) = \{ f : X \setminus Z(f) \text{ is a Lindelöf subset of } X \}.$$
To see this, let \(f \in C_\infty \mathcal{P}(X) \). Then for each \(n \in \mathbb{N} \), \(\{ x : |f(x)| \geq \frac{1}{n} \} \subseteq X \setminus A \) for some \(A \in \mathcal{P} \), so it is a Lindelöf subset of \(X \). On the other hand we have \(X \setminus Z(f) = \bigcup_{n=1}^{\infty} \{ x : |f(x)| \geq \frac{1}{n} \} \), hence \(X \setminus Z(f) \) is a Lindelöf subset of \(X \), by Theorem 3.8.5 in [10]. If \(X \setminus Z(f) \) be a Lindelöf subset of \(X \), then \(\{ x : |f(x)| \geq \frac{1}{n} \} \) is a Lindelöf subset of \(X \) so \(\{ x : |f(x)| < \frac{1}{n} \} \) contains an element of \(\mathcal{P} \), i.e., \(f \in C_\infty \mathcal{P}(X) \). Similarly we may prove that \(C_\infty \mathcal{P}(X) = \{ f : X \setminus Z(f) \) is a Lindelöf subset of \(X \}. \)

In the sequel, we assume that \(\mathcal{P} \) is an open filter base for a filter \(\mathcal{F} \).

Proposition 2.5. If the complement of any element of \(\mathcal{P} \) is Lindelöf, then \(C_\infty \mathcal{P}(X) \subseteq \bigcap_{p \in \nu X \setminus X} M^p \). Where by \(\nu X \) we mean the real compactification of \(X \) (see [11]).

Proof. Let \(f \in C_\infty \mathcal{P}(X) \) and \(p \in \nu X \setminus X \) (i.e., \(M^p \) is a free real maximal ideal). Then for any \(x \in X \setminus Z(f) \) there exist \(f_x \in M^p \) such that \(x \in X \setminus Z(f_x) \). Hence \(X \setminus Z(f) \subseteq \bigcup_{x \in X} X \setminus Z(f_x) \). Now, by Example 2.4 and hypothesis, \(X \setminus Z(f) \) is Lindelöf, so there is a countable subset \(S \) of \(X \) such that \(X \setminus Z(f) \subseteq \bigcup_{x \in S} X \setminus Z(f_x) \) and each \(f_x \in M^p \). On the other hand, there exists \(h \in C(X) \) such that \(Z(h) = \bigcap_{x \in S} Z(f_x) \). Therefore \(h \in M^p \) and \(Z(h) \subseteq Z(f) \). But \(M^p \) is a z-ideal, so \(f \in M^p \), i.e., \(C_\infty \mathcal{P}(X) \subseteq \bigcap_{p \in \nu X \setminus X} M^p \). □

Recall that, a subset \(A \) of \(X \) is called bounded (relative pseudocompact) subset, if for every function \(f \in C(X) \), \(f(A) \) is a bounded subset of \(\mathbb{R} \), see [14].

Example 2.6. \(\mathcal{P} = \{ A : A \) is open and \(X \setminus A \) is pseudocompact \} \) and \(X \) be a non-pseudocompact space. Then \(\mathcal{P} \) is an open filter base and

\[C_\mathcal{P}(X) = C_\psi(X) = \{ f : X \setminus Z(f) \) is pseudocompact \}, \]

\[C_\infty \mathcal{P}(X) = \{ f : \{ x : |f(x)| \geq \frac{1}{n} \} \) is pseudocompact \} \].

For, suppose that \(f \in C_\mathcal{P}(X) \), then \(Z(f) \supseteq A \) for some \(A \in \mathcal{P} \). Hence \(X \setminus Z(f) \subseteq X \setminus A \). This implies that \(X \setminus Z(f) \) is a bounded subset. Now by [14] Theorem 2.1, \(X \setminus Z(f) \) is pseudocompact, i.e., \(f \in C_\psi(X) \). If \(f \in C_\psi(X) \), then \(X \setminus Z(f) \) is an element of \(\mathcal{P} \) and \(Z(f) \supseteq X \setminus Z(f) \), i.e., \(f \in C_\mathcal{P}(X) \). For more details about \(C_\psi(X) \), the reader referred to [14]. Similarly we may prove the second equality.

Remark 2.7. Let \(\mathcal{P} = \{ A : X \setminus A \) is finite \} \) and \(X \) is an infinite space. Then \(C_\mathcal{P}(X) = C_F(X) \), and \(C_\infty \mathcal{P}(X) = \{ f : \{ x : |f(x)| \geq \frac{1}{n} \} \) is finite for each \(n \in \mathbb{N} \}. \) In this case, \(C_\infty \mathcal{P}(X) = C_F(X) \) if and only if the set of isolated points of \(X \) is finite. To see this, let \(\{ x_1, x_2, ..., x_n, ... \} \) be a subset of isolated points in \(X \). Define \(f_n(x) = \begin{cases} \frac{1}{n} & x = x_n \\ 0 & x \neq x_n \end{cases} \) and \(f(x) = \sum_{n=0}^{\infty} f_n(x) \). Then
there exists $F \in C_{\infty}(X)$ and $f \notin C_{\infty}(X)$. On the other hand, for points $x \in X \setminus Z(f)$, then there exists a compact subset $K \subseteq X$ such that $x \in \text{int}(K)$, but $x \notin K \in \mathcal{P}$, hence $x \notin X \setminus \overline{K}$, i.e., $\text{int}(K) \cap (X \setminus K) \neq \emptyset$, this is a contradiction, thus $\bigcap_{A \in \mathcal{P}} \overline{A} = \emptyset$.

Example 2.10. [11, 4. M] Let X be an uncountable space in which all points are isolated points except for a distinguished point s. A neighborhood of s is any set containing s which complement is countable. Then X is a local space. To see this, let $Y = \{x_1, x_2, \ldots\}$ be a countable subset of X, where $s \notin Y$. Put $A_n = \{x_n, x_{n+1}, \ldots\}$ and $\mathcal{P} = \{A_n : n \in \mathbb{N}\}$. Then \mathcal{P} is an open filter base on X. Now, for any $n \in \mathbb{N}$, the set $X \setminus A_n$ is a neighborhood of s, so $s \notin \bigcap_{A \in \mathcal{P}} \overline{A_n}$, thus $\bigcap_{A \in \mathcal{P}} \overline{A} = \emptyset$.

In the following we see an example of a topological space which is not a local space.

Example 2.11. [11, 4. N] For each $n \in \mathbb{N}$, let $A_n = \{n, n+1, \ldots\}$ and $E = \{A_n : n \in \mathbb{N}\}$ which points in \mathbb{N} are isolated point and a neighborhood of σ is of the form $U \cup \{\sigma\}$ which $U \in \mathcal{E}$. Note that any set contains σ is closed. Now if there is an open base \mathcal{P} for some filter \mathcal{F} on X such that \mathcal{F} has no cluster point, then there exists $F \in \mathcal{F}$ such that $\sigma \notin \overline{F}$, but σ has a neighborhood say $U \cup \{\sigma\}$ such that $U \in \mathcal{E}$ and $U \cup \{\sigma\} \subseteq X \setminus \overline{F}$. Since \mathcal{E} is a base for \mathcal{E}, then there exists $n \in \mathbb{N}$ and $A_n \in E$ such that $A_n \cup \{\sigma\} = \{n, n+1, \ldots\} \cup \{\sigma\} \subseteq U \cup \{\sigma\} \subseteq X \setminus \overline{F}$. On the other hand, for points $x = 1, 2, \ldots, n-1$ there exists $F_1, F_2, \ldots, F_{n-1}$ in \mathcal{F}, such that $i \in X \setminus F_i$ for $1 \leq i \leq n$, so $X \subseteq (X \setminus \overline{F}) \cup \bigcup_{i=1}^{n-1} (X \setminus F_i)$, therefore $\emptyset \in \mathcal{F}$. This a contradiction, i.e., X is not a local space.

We have already observe that $C^{\mathcal{F}}(X)$ is a z-ideal in $C(X)$. In the following proposition we find a condition over which $C^{\mathcal{F}}(X)$ is a free ideal.

Proposition 2.12. Let \mathcal{P} be an open filter base for a filter \mathcal{F}. Then $C^{\mathcal{F}}(X)$ is a free ideal if and only if \mathcal{F} has no cluster point (i.e., $\bigcap_{A \in \mathcal{P}} \overline{A} = \emptyset$).
Some generalizations and unifications of $C_K(X), C_\varphi(X)$ and $C_\infty(X)$

Proof. Let $\bigcap_{F \in \mathcal{F}} \overline{F} \neq \emptyset$. Then there exists $x \in \bigcap_{F \in \mathcal{F}} \overline{F}$. By hypothesis, there is $f \in C^p(X)$ such that $x \notin X \setminus Z(f)$. On the other hand there is $A \in \mathcal{F}$ such that $(X \setminus Z(f)) \cap A \neq \emptyset$. But $x \notin A$ implies that $(X \setminus Z(f)) \cap A = \emptyset$. Thus this is a contradiction. Conversely, let $x \in X$. We have $\bigcap_{F \in \mathcal{F}} F = \emptyset$, so there exists $F \in \mathcal{F}$ such that $x \notin F$. By completely regularity of X, there exists $f \in C(X)$ such that $f(x) = 1$ and $f(F) = 0$. Hence $f \in C^p(X)$ and $x \notin Z(f)$, i.e., $C^p(X)$ is a free ideal.

It is easy to see that X is a locally compact non-compact space if and only if $\mathcal{P} = \{A \subset X : X \setminus A$ is compact$\}$ is an open filter base for some filter \mathcal{F} with no cluster point. So, by the above proposition we have the following corollaries.

Corollary 2.13. $C_K(X)$ is a free ideal if and only if X is a locally compact non-compact space.

Corollary 2.14. A space X is a local space if and only if $C_P(X)$ is a free ideal for some open filter base \mathcal{P} on X.

Proof. By Proposition 2.12 the verification is immediate.

Proposition 2.15. Let \mathcal{P} be an open filter base. The following statements are equivalent.

1. Every element of \mathcal{P} is dense in X.
2. $C_\infty(\mathcal{P})(X) = (0)$.
3. $C^p(X) = (0)$.

Proof. (1)\Rightarrow(2) Let for every $A \in \mathcal{P}$, $\overline{A} = X$ and $f \in C_\infty(\mathcal{P})(X)$. Then the set $\{x : |f| \leq \frac{1}{n+1}\}$ is X, so for any $n > 1$ we have $\{x : |f| < \frac{1}{n-1}\} \supseteq \{x : |f| \leq \frac{1}{n}\} = X$, i.e., $f = 0$.

(2)\Rightarrow(3) This is evident.

(3)\Rightarrow(1) Suppose that $C^p(X) = 0$ and $A \in \mathcal{P}$. If $\overline{A} \neq X$, then there exists $x \in X \setminus \overline{A}$, hence we define $f \in C(X)$ such that $f(x) = 1$ and $f(\overline{A}) = 0$, i.e., $f \in C^p(X) = 0$, which implies that $f = 0$, this is a contradiction.

Corollary 2.16. Let $X = \mathbb{Q}$ with usual topology and $\mathcal{P} = \{A \subset \mathbb{Q} : \mathbb{Q} \setminus A$ is compact$\}$. Then $C_\infty(\mathcal{P})(X) = C_\infty(X) = (0)$.

Proof. Every element of \mathcal{P} is dense in X, so by Proposition 2.13 $C_\infty(\mathcal{P})(X) = C_\infty(X) = (0)$.

Definition 2.17. Let \mathcal{F} be a filter on X. A subset A of X is an \mathcal{F}-CG_δ if $A = \bigcap_{i=1}^{\infty} A_i$, where each $A_i \in \mathcal{F}$ and is open and for each i, $X \setminus A_i$ and $\overline{A_{i+1}}$ are completely separated (see [11]).
Example 2.18. Let \(F = \{ F \subseteq X : X \setminus F \text{ is compact} \} \) and \(X \) is a non-compact Hausdorff space. Then for every open locally compact \(\sigma \)-compact subspace \(A \), \(X \setminus A \) is an \(FCG_\delta \). Since, by [10, p. 250], \(A = \bigcup_{i=1}^{\infty} A_i \) where \(A_i \subseteq int A_{i+1} \) and each \(A_i \) is compact so \(X \setminus A \) is an \(FCG_\delta \) set.

In the following lemma, we give a characterization of a closed \(FCG_\delta \) subset.

Lemma 2.19. Let \(A \) be a closed subset of space \(X \). Then \(A \) is an \(FCG_\delta \) set if and only if \(A = Z(f) \) for some \(f \in C_\infty P(X) \).

Proof. Let \(A \) be an \(FCG_\delta \). Then \(A = \bigcap_{n=1}^{\infty} A_n \), where each \(A_n \) is an element of \(F \), \(X \setminus A_n \) and \(A_{n+1} \) are completely separated. Now, for each \(n \in \mathbb{N} \), there exists \(f_n \in C(X) \) such that \(f_n(\overline{A_{n+1}}) = 0 \), \(f_n(X \setminus A_n) = 1 \), then \(f = \sum \frac{1}{n} f_n \) is an element of \(C(X) \). By Weierstrass M-test, \(A = Z(f) \). We claim that \(f \in C_\infty P(X) \). Let \(x_0 \in A_{n+1} \). Then \(f_1(x_0) = f_2(x_0) = ... f_n(x_0) = 0 \) and so \(f(x_0) \leq \frac{1}{2n+1} + \frac{1}{2n} + ... \leq \frac{1}{2^n} < \frac{1}{n} \). Therefore \(x_0 \in \{ x : |f(x)| < \frac{1}{n} \} \), and hence \(A_{n+1} \subseteq \{ x : |f(x)| < \frac{1}{n} \} \), i.e., \(f \in C_\infty P(X) \). Conversely, suppose that \(A = Z(f) \) for some \(f \in C_\infty P(X) \). Then \(A = \bigcap_{n=1}^{\infty} A_n \), where \(A_n = \{ x : |f(x)| < \frac{1}{n} \} \in F \) for each \(n \in \mathbb{N} \), \(X \setminus A_n \) and \(A_{n+1} \) are disjoint zero-sets, and hence completely separated, i.e., \(A \) is an \(FCG_\delta \).

Proposition 2.20. \(C_\infty P(X) = C^P(X) \) if and only if every closed \(FCG_\delta \) is an element of \(F \).

Proof. Suppose that condition holds. We know that \(C^P(X) \) is a subset of \(C_\infty P(X) \). It is enough to prove that \(C_\infty P(X) \subseteq C^P(X) \). Let \(f \in C_\infty P(X) \), then by Lemma 2.12 \(Z(f) \) is a closed \(FCG_\delta \). Hence \(Z(f) \) contains an element of \(P \), i.e., \(f \in C^P(X) \). Conversely, suppose that \(C_\infty P(X) = C^P(X) \) and \(A \) is a closed \(FCG_\delta \). By lemma 2.12 \(A = Z(f) \) for some \(f \in C_\infty P(X) \), now \(f \in C^P(X) \) implies that \(A = Z(f) \) contains an element of \(P \), i.e., \(A \in F \).

In the above proposition we have seen that if every closed \(FCG_\delta \) is an element of \(F \), then \(C_\infty P(X) \) is an ideal of \(C(X) \). But in general, \(C_\infty P(X) \) may not be an ideal of \(C(X) \) as we will see in the sequel.

Example 2.21. Let \(P = \{ \mathbb{R} \setminus \{ \frac{k}{n} : n \in \mathbb{N} \} \} \). Then it is easy to see that \(P \) is an open filter base on \(\mathbb{R} \). Now, we show that \(C_\infty P(\mathbb{R}) \subseteq C_\infty (\mathbb{R}) \) is not an ideal of \(C(\mathbb{R}) \). For see this, Consider

\[
f(x) = \begin{cases}
0 & x \leq 0 \\
1 & 1 \leq x
\end{cases} \quad \text{and} \quad g(x) = \begin{cases}
0 & x \leq 0 \\
x^2 & 1 \leq x
\end{cases}.
\]

Then \(f \in C_\infty P(\mathbb{R}) \), \(g \in C(\mathbb{R}) \) and we have
is not bounded, then there exist

\(A \) such that for each \(n \in \mathbb{N} \), \(h(x_n) \geq n \). \(A \) is open so any \(\{x_n\} \) is an isolated point, therefore we can define \(f_n(x) = \begin{cases} \frac{1}{n} & x = n \\ 0 & x \neq n \end{cases} \)

and \(f(x) = \sum_{n=0}^{\infty} f_n(x) \) such that \(f_n \in C(X) \) and so \(f \in C(X) \). We have \(\{x : |f| < \frac{1}{n}\} = \{x_{n+1}, x_{n+2}, \ldots\} \). Now any \(x_n \in X \setminus F_n \) for some \(F_n \in \mathcal{F} \). This implies that \(X \setminus \{x_1, \ldots, x_n\} \) contains an element of \(\mathcal{F} \) hence contains an element of \(\mathcal{P} \), i.e., \(f \in C_{\infty}(X) \). But we have \(\{x : |f| < \frac{1}{n}\} = X \setminus \{x_1, x_2, \ldots\} \), if there is \(P \in \mathcal{P} \) such that \(X \setminus \{x_1, x_2, \ldots\} \supseteq P \), then \(\{x_1, x_2, \ldots\} \subseteq X \setminus F_n \), which contradicts by hypothesis, so \(f \notin C_{\infty}(X) \), i.e., \(C_{\infty}(X) \) is not an ideal of \(C(X) \), this is a contradiction.

(2)\(\Rightarrow\)(3). It is easily seen that the complement of every closed \(\mathcal{F}-CG_\delta \) is a subset of non-cluster points of the filter \(\mathcal{F} \) so is bounded.
Corollary 2.24. If X is a pseudocompact space, then for any open filter base \mathcal{P}, $C_{\infty}\mathcal{P}(X)$ is an ideal of $C(X)$.

Proof. If X is a completely regular pseudocompact Hausdorff space and \mathcal{P} be an open filter base for filter \mathcal{F}, then any subset of X is bounded so the set of non-cluster point of \mathcal{F} is bounded, thus by Theorem 2.23 $C_{\infty}\mathcal{P}(X)$ is an ideal of $C(X)$. □

Corollary 2.25. Let X be a local space. Then for any open filter base \mathcal{P}, $C_{\infty}\mathcal{P}(X)$ is an ideal of $C(X)$ and for any $A \in \mathcal{P}$, $X \setminus \overline{A}$ is bounded if and only if X is a pseudocompact non-compact space.

Proof. If X is pseudocompact, then by Corollary 2.24, for any open filter base \mathcal{P}, $C_{\infty}\mathcal{P}(X)$ is an ideal of $C(X)$ and for any $A \in \mathcal{P}$, $X \setminus \overline{A}$ is bounded. Now let X be a local space, then there exist an open filter base \mathcal{P} for some filter \mathcal{F} on X such that \mathcal{F} has no cluster point so X is the set of non-cluster point of filter \mathcal{F}. Hence by Theorem 2.23 X is bounded, i.e., X is pseudocompact. □

Corollary 2.26. Let X be a non-pseudocompact space and $\mathcal{P} = \{A: A$ is open and $X \setminus A$ is bounded $\}$. Then $C_{\infty}\mathcal{P}(X)$ is an ideal of $C(X)$ if and only if any union of the interior of closed bounded subsets is a bounded subset.

Proof. If any union of the interior of closed bounded subsets is a bounded subset, then the set of non-cluster points of open filter \mathcal{P} is bounded so by Theorem 2.24 $C_{\infty}\mathcal{P}(X)$ is an ideal of $C(X)$. Conversely, If $A = \bigcup_{\alpha \in S} \text{int} A_\alpha$ where for each $\alpha \in S$, A_α is a closed bounded set, then we have $X \setminus A_\alpha \in \mathcal{P}$ and $\text{int} A_\alpha = X \setminus (X \setminus A_\alpha)$, so A is contained in the set of non-cluster points of open filter \mathcal{P}, i.e., A is bounded. □
Corollary 2.27. Let X be an an infinite space and $\mathcal{P} = \{A \subseteq X : X \setminus A$ is finite $\}$. Then $C_{\infty}\mathcal{P}(X)$ is an ideal of $C(X)$ if and only if the set of isolated points of X is bounded.

Proof. Let $A \in \mathcal{P}$. We have $X \setminus \overline{A}$ is an open finite subset, thus the set of non-cluster points of \mathcal{P} is contained in the set of isolated points of X, so is bounded, hence by Theorem 2.23 $C_{\infty}\mathcal{P}(X)$ is an ideal of $C(X)$. Conversely, let A be the set of isolated points of X. Then $A = \bigcup_{x \in A} \{x\}$, each $\{x\}$ is a clopen subset, $X \setminus \{x\} \in \mathcal{P}$ and $\{x\} = \text{int}\{x\} = X \setminus (X \setminus \{x\})$, so A is contained in the set of non-cluster points of open filter \mathcal{P}, i.e., A is bounded. \qed

Example 2.28. (a). If $\mathcal{P} = \{A \subseteq \mathbb{R} : \mathbb{R} \setminus A$ is bounded $\}$. Then $C_{\infty}\mathcal{P}(\mathbb{R})$ is not an ideal of $C(\mathbb{R})$. Because $\bigcup_{n=1}^\infty (0, n)$ is not bounded.

(b). If $\mathcal{P} = \{A \subseteq \mathbb{R} : \mathbb{R} \setminus A$ is finite $\}$. Then by Corollary 2.27 $C_{\infty}\mathcal{P}(\mathbb{R})$ is an ideal of $C(\mathbb{R})$.

Remark 2.29. Any closed bounded in a normal space is a pseudocompact and any pseudocompact Lindelöf space is compact, so if X is a realcompact normal space and \mathcal{P} equal be the set of all subsets whose complements are bounded subsets of X, then $C_{\infty}\mathcal{P}(X) = C_\infty(X)$, for example in \mathbb{R} if \mathcal{P} equal be the set of all subsets of \mathbb{R}, whose complements are bounded, then $C_{\infty}\mathcal{P}(\mathbb{R}) = C_\infty(\mathbb{R})$. In particularly, if X is a Lindelöf space and \mathcal{P} equal be the set of all subsets of X, whose complements are bounded, then $C_{\infty}\mathcal{P}(X) = C_\infty(X)$.

3 $C^\mathcal{P}(X)$ as an essential ideal.

Topological spaces X for which $C_\infty(X)$ (resp., $C_K(X)$) is an essential ideal was characterized by Azarpanah, in [4]. In this section we characterize topological spaces X for which $C^\mathcal{P}(X)$ is an essential ideal.

Proposition 3.1. An ideal E in $C_{\infty}\mathcal{P}(X)$ is an essential ideal if and only if $\bigcap Z[E]$ does not contain a subset V where $X \setminus V$ $\in \mathcal{F}$ and $\text{int}\, V \neq \emptyset$.

Proof. Let $X \setminus V = F \in \mathcal{F}$, $\bigcup_{f \in E} \text{coz}(f) \subseteq F$ and $\text{int}\, V \neq \emptyset$, i.e., $\overline{F} \neq X$. Then there exist $x \in X$ such that $x \notin \overline{F}$, it follows that there is $f \in C(X)$ such that $f(x) = 1$, $f(F) = 0$, i.e., $f \in C_{\infty}\mathcal{P}(X)$. Now for any $g \in E$ we have $X \setminus Z(f) \subseteq X \setminus F \subseteq Z(g)$, i.e., $fg = 0$ so $(f) \cap E = 0$, which contradicts the essentiality of E. Conversely, let $0 \neq f \in C_{\infty}\mathcal{P}(X)$. Then there is $a \in X$ such that $|f(a)| > \frac{1}{n}$ for some $n \in \mathbb{N}$, hence $a \in X \setminus \{x : |f| \leq \frac{1}{n}\}$, i.e., $\{x : |f| \leq \frac{1}{n}\} \neq X$. We know that $\{x : |f| < \frac{1}{n}\} \in \mathcal{F}$. By hypothesis, $X \setminus \{x : |f| < \frac{1}{n}\} \notin \bigcap Z[E]$. Therefore, there exists $b \in X \setminus \{x : |f| \leq \frac{1}{n}\}$ and $g \in E$ such that $g(b) \neq 0$, i.e, $fg \neq 0$ thus E is an essential ideal in $C_{\infty}\mathcal{P}(X)$.

\qed
Recall that a collection \(\mathcal{B} \) of open sets in a topological space \(X \) is called a \(\pi \)-base if every open set of \(X \) contains a member of \(\mathcal{B} \). The reader is referred to \([8], [9], [10], [12], \) and \([15]\). The next result is a generalization of Theorem 3.2 in \([\text{3}]\).

Theorem 3.2. \(C^P(X) \) is an essential ideal if and only if \(\{ V : V \) is open and \(X \setminus V \in \mathcal{F} \} \) is a \(\pi \)-base for \(X \).

Proof. Let \(U \) be a proper open set in \(X \). By regularity of \(X \), there exist a non-empty open set \(V \) such that \(V \subseteq \text{cl}V \subseteq U \). Now find \(f \in C(X) \) where \(f(cV) = \{1\}, f(x) = 0 \) for some \(x \notin U \). If \(X \setminus V \in \mathcal{F} \), there is noting to proved. Suppose \(X \setminus V \notin \mathcal{F} \). If \(V \subseteq Z(h) \) for every \(h \in C^P(X) \), then \(V \subseteq \bigcap Z(C^P(X)) \), which implies that \(C^P(X) \) is not an essential ideal, by \([\text{3}]\). Theorem 3.1. Therefor there is some \(h \in C^P(X) \) such that \(V \setminus (X \setminus Z(h)) \neq \emptyset \), i.e., there is some \(x_0 \in V \) for which \(h(x_0) \neq 0 \). Clearly \(fh \in C^P(X) \). So \(W = X \setminus Z(fh) \) is contained in \(X \setminus F \) for some \(F \in \mathcal{F} \). If \(W' = W \cap V \), then \(W' \) is a non-empty open set in \(U \) and \(X \setminus W' \in \mathcal{F} \).

Conversely, We will prove that for every non-unit \(g \in C(X) \), \(C^P(X) \cap (g) \neq 0 \). Since \(X \setminus Z(g) \) is an open set, then there is an open set \(U \) where \(U \subseteq \text{cl}U \subseteq X \setminus Z(g) \), and there is an open set \(V \subseteq U \) such that \(X \setminus V \in \mathcal{F} \). Then \(V \subseteq U \subseteq X \setminus Z(g) \). Define \(f \in C(X) \) such that \(f(X \setminus V) = 0, f(x) = 1 \) for some \(x \in V \). Since \(X \setminus V \subseteq Z(f) \) so \(f \in C^P(X) \). On the other hand \(Z(g) \subseteq X \setminus V \subseteq Z(f) \) so \(fg \neq 0 \) and \(fg \in C_P(X) \cap (g) \). \(\square \)

4 \(C_{\infty P}(X) \) as a \(z \)-ideal and a regular ring.

We know that \(C_{\infty P}(X) \) is a subring of \(C(X) \), in this section, we see that \(C_{\infty P}(X) \) is a \(z \)-ideal if and only if every cozero-set containing a \(\mathcal{F} \)-\(CG_\delta \) is an element of \(\mathcal{F} \). Also we prove that, \(C_{\infty P}(X) \) is a regular ring (i.e., for each \(f \in C_{\infty P}(X) \) there exists \(g \in C_{\infty P}(X) \) such that \(f = f^2g \) if and only if every closed \(\mathcal{F} \)-\(CG_\delta \) is an open subset and belong to \(\mathcal{F} \).

Proposition 4.1. The subring \(C_{\infty P}(X) \) is a \(z \)-ideal of \(C(X) \) and if and only if every cozero-set containing a closed \(\mathcal{F} \)-\(CG_\delta \) is an element of \(\mathcal{F} \).

Proof. First, we prove that \(Z(f) \subseteq Z(g) \) and \(f \in C_{\infty P}(X) \), implies that \(g \in C_{\infty P}(X) \). To see this, we know that \(Z(f) \subseteq Z(g) \subseteq \{ x : |g(x)| < \frac{1}{n} \} \), for all \(n \in \mathbb{N} \). But \(\{ x : |g(x)| < \frac{1}{n} \} \) is a cozero-set and \(Z(f) \) is a closed \(\mathcal{F} \)-\(CG_\delta \). So, by hypothesis, \(\{ x : |g(x)| < \frac{1}{n} \} \) is an element of \(\mathcal{F} \), i.e., \(g \in C_{\infty P}(X) \). Now, suppose that \(f \in C_{\infty P}(X) \) and \(g \in C(X) \). Then \(Z(f) \subseteq Z(fg) \), shows that \(fg \in C_{\infty P}(X) \). Thus \(C_{\infty P}(X) \) is a \(z \)-ideal of \(C(X) \). Conversely, Suppose that \(X \setminus Z(f) \) is a cozero-set contains a closed \(\mathcal{F} \)-\(CG_\delta \) subset \(A \). By Lemma \([2, 19]\) there exist \(g \in C_{\infty P}(X) \), such that \(A = Z(g) \), so \(Z(g) \subseteq X \setminus Z(f) \). Now we...
define \(h = \frac{g^2}{f^2 + g^2} \). Then \(h \in C(X) \) and \(Z(g) \subseteq Z(h) \), therefore \(h \in C_{\mathcal{P}}(X) \).

On the other hand, for each \(n \in \mathbb{N} \), \(\{ x : |h(x)| < \frac{1}{n} \} \subseteq X \setminus Z(f) \), hence \(X \setminus Z(f) \in \mathcal{F} \). This completes the proof. \(\Box \)

Theorem 4.2. \(C_{\mathcal{P}}(X) \) is a regular ring if and only if every closed \(\mathcal{F}-\mathcal{CG}_\delta \) is an open subset and belongs to \(\mathcal{F} \).

Proof. First, we prove that every closed \(\mathcal{F}-\mathcal{CG}_\delta \) is an open subset. By Lemma 2.19 every closed \(\mathcal{F}-\mathcal{CG}_\delta \) is of the form \(Z(f) \) for some \(f \in C_{\mathcal{P}}(X) \). But \(Z(f) = Z(f \land n) \), for each \(n \in \mathbb{N} \) and \(\{ x : |f \land n| < \frac{1}{m} \} = \{ x : |f| < \frac{1}{m} \} \). So we can let \(f \) be bounded. Regularity of \(C_{\mathcal{P}}(X) \) implies that, there exists \(g \in C_{\mathcal{P}}(X) \) such that \(f = f^2 g \). Then \(X \setminus Z(1 - f g) \subseteq \text{int}Z(f) \).

If \(x \in X \setminus Z(f) \), then \(x \in Z(1 - f g) \), which contradict \(x \in Z(f) \), i.e., \(Z(f) \) is an open subset. On the other hand for every \(x \in X \setminus Z(f) \), \(g(x) = \frac{1}{f(x)} \) and hence \(g(x) \geq \frac{1}{n} \), where \(n \) is an upper bounded for \(|f| \). Therefore \(X \setminus Z(f) \subseteq \{ x : |g| \geq \frac{1}{n} \} \), i.e., \(Z(f) \supseteq \{ x : |g| < \frac{1}{n} \} \). But \(\{ x : |g| < \frac{1}{n} \} \) contains an element of \(\mathcal{P} \) so \(Z(f) \in \mathcal{F} \). Conversely, Suppose \(f \in C_{\mathcal{P}}(X) \). \(Z(f) \) is a closed \(\mathcal{F}-\mathcal{CG}_\delta \) so by hypothesis, is an open subset which belong to \(\mathcal{F} \). We define \(g(x) = 0 \) for \(x \in Z(f) \) and \(g(x) = \frac{1}{f(x)} \) for \(x \in X \setminus Z(f) \). Then \(g \in C(X) \), \(f = f^2 g \) and \(\{ x : |g| < \frac{1}{n} \} \supseteq Z(f) \), i.e., \(g \in C_{\mathcal{P}}(X) \). \(\Box \)

Corollary 4.3. (a) Let \(\mathcal{P} = \{ A : A \) is open and \(X \setminus A \) is Lindelöf \} \) and \(X \) is a non-Lindelöf space. Then \(\mathcal{P} \) is an open filter and \(C_{\mathcal{P}}(X) \) is a regular ring if and only if every closed \(\mathcal{P}-\mathcal{CG}_\delta \) is an open subset.

(b) \(C_{\infty}(X) \) is a regular ring if and only if every open locally compact \(\sigma \)-compact subset is compact.

Proof. (a) It is easily seen that \(\mathcal{P} \) is an open filter. If \(C_{\mathcal{P}}(X) \) is a regular ring, then by Theorem 4.2 every closed \(\mathcal{P}-\mathcal{CG}_\delta \) is an open subset. Now let \(A \) be a closed \(\mathcal{P}-\mathcal{CG}_\delta \) which is an open subset. Then by Lemma 2.19, \(A = Z(f) \) for some \(f \in C_{\mathcal{P}}(X) \). But \(X \setminus A = X \setminus Z(f) = \bigcup_{n=1}^{\infty} \{ x : |f(x)| \geq \frac{1}{n} \} \), hence by [10] Theorem 3.8.5, \(X \setminus A \) is a Lindelöf subset of \(X \), i.e., \(A \in \mathcal{P} \). By Theorem 4.2, \(C_{\mathcal{P}}(X) \) is a regular ring.

(b) If \(A \) is an open locally compact \(\sigma \)-compact subset, then \(X \setminus A \) is a closed \(\mathcal{P}-\mathcal{CG}_\delta \), where \(\mathcal{P} = \{ A \subseteq X : X \setminus A \) is compact \} and \(C_{\infty}(X) = C_{\mathcal{P}}(X) \), so by Theorem 4.2 we are done. \(\Box \)

ACKNOWLEDGEMENTS

The author would like to thank Prof. Momtahen for his encouragement and discussion on this paper.
Some generalizations and unifications of $C_K(X)$, $C_\psi(X)$ and $C_\infty(X)$

References

[1] S. K. Acharyya and S. K. Ghosh, *Functions in $C(X)$ with support lying on a class of subsets of X*, Topology proceeding, 35(2010), 127–148.

[2] A. R. Aliabad, F. Azarpanah, M. Namdari, *Rings of continuous functions vanishing at infinity*, Comment. Math. Univ. Carolinae 45,3 (2004)519–533.

[3] A. R. Aliabad, F. Azarpanah and A. Taherifar, *Relative z-ideals in commutative rings*, comm. Algebra. 441(2013)325–341.

[4] F. Azarpanah, *Intersection of essential ideals in $C(X)$*, Proc. Amer. Math. Soc., 125(1997), 2149–2154.

[5] F. Azarpanah, *Essential ideals in $C(X)$*, Period. Math. Hungar., 31(1995), 105–112.

[6] F. Azarpanah, and T. Soundarajan, *When the family of functions vanishing at infinity is an ideal of $C(X)$*, Rocky Mountain, journal of mathematics, 31(4), 2001, 1133–1140.

[7] F. Azarpanah, and A. Taherifar. *Relative z-ideals in $C(X)$*. Topology and its applications. 156(2009)1711–1717.

[8] A. Bella, A. W. Hager, J. Martinez, S. Woodward, H. Zhou, *Speaker spaces and their absolutes, I*. Top. Appl. 72(1996), 259–271.

[9] A. Bella, J. Martinez, S. Woodward, *Algebra and spaces of dense constanccies*, Czechoslovak Math. J. 51(2001), 449–461.

[10] R. Engelking, *General Topology*, PWN-Polish Sci. Publ (1977).

[11] L. Gilman, and M. jerison, *Ring of Continuous Function*, Springer-verlag (1976).

[12] M. L. Knox, and W. Wm. McGovern, *Rigid extensions of l-groups of continuous functions*, Czechoslovak Math. J. 58(2008), 993–1014.

[13] C. W. Kohls, *Ideals in rings of continuous functions*, Fund. Math. 45(1957), 28–50.

[14] M. Mandelker, *Supports of continuous functions*, Trans. Amer. Math. Soc. 156(1971), 73–83.

[15] W. Wm. McGovern, *Clean semiprime f-rings with bounded inversion*, Comm. Algebra. 31(2003), 3295–3304.