National Institutes of Health StrokeNet During the Time of COVID-19 and Beyond

Joseph P. Broderick, University of Cincinnati
Jordan J. Elm, Medical University of South Carolina
L. Scott Janis, National Institute of Neurological Disorders and Stroke
Wenle Zhao, Medical University of South Carolina
Claudia S. Moy, National Institute of Neurological Disorders and Stroke
Catherine R. Dillon, Medical University of South Carolina
Marc I. Chimowitz, Medical University of South Carolina
Ralph L. Sacco, University of Miami
Steven C. Cramer, University of California Los Angeles
Steven Wolf, Emory University

Only first 10 authors above; see publication for full author list.

Journal Title: Stroke
Volume: Volume 51, Number 8
Publisher: Lippincott Williams & Wilkins | 2020-08-01, Pages 2580-2586
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1161/STROKEAHA.120.030417
Permanent URL: https://pid.emory.edu/ark:/25593/vnzmj

Final published version: http://dx.doi.org/10.1161/STROKEAHA.120.030417

Copyright information:

© 2020 American Heart Association, Inc.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

Accessed December 4, 2022 11:19 PM EST
The National Institute of Neurological Disorders and Stroke (NINDS) established the National Institutes of Health (NIH) StrokeNet in the fall of 2013 to facilitate the rapid initiation and efficient implementation of small and large multisite exploratory and confirmatory clinical trials of stroke prevention, treatment, and recovery, as well as validation studies of biomarkers or outcome measures. NIH StrokeNet sprang from an earlier NINDS-funded clinical trial network called Specialized Programs of Translational Research in Acute Stroke that focused only on phase II clinical trials and biomarker studies of acute stroke. Since the publication of the NIH StrokeNet User Guide in 2016 that detailed the organizational structure, as well as the development and implementation of trials within the network,1 NIH StrokeNet has grown substantially in the number of participating clinical sites, the number of ongoing trials, and scientific and educational impact. We provide a summary of the first 7 years of the network, the completed and ongoing trials, the recent impact of coronavirus disease 2019 (COVID-19) on the network, and a blueprint for reinstitution of clinical trial enrollment following the COVID-19 pandemic. Detailed information regarding the NIH StrokeNet, its ongoing trials, and educational webinars can be found at the website https://www.nihstrokenet.org/.

Key Words: biomarkers ▪ data management ▪ therapeutics ▪ United States

Correspondence to: Joseph P. Broderick, MD, Department of Neurology and Rehabilitation Medicine, University of Cincinnati Gardner Neuroscience Institute, 260 Stetson St, Suite 2300, PO Box 670525, Cincinnati, OH. Email: joseph.broderick@uc.edu

For Sources of Funding and Disclosures, see page XXX.

© 2020 American Heart Association, Inc.

Stroke is available at www.ahajournals.org/journal/str
Nonstandard Abbreviations and Acronyms

Abbreviation	Description
ARCADIA	Atrial Cardiopathy and Antithrombotic Drugs in Prevention After Cryptogenic Stroke
ARCADIA-CSI	Atrial Cardiopathy and Antithrombotic Drugs in Prevention After Cryptogenic Stroke—Cognition and Silent Infarcts
ASPIRE	Anticoagulation for Stroke Prevention and Recovery After Intracerebral Hemorrhage
COVID-19	Coronavirus disease 2019
DEFUSE 3	Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke 3
FASTEST	FVIIa for Acute Hemorrhagic Stroke Administered at Earliest Time
I-ACQUIRE	Infant ACQUIRE
MOST	Multi-Arm Optimization of Stroke Thrombolysis
NETT	Neurology Emergencies Treatment Trial
NIH	National Institutes of Health
NINDS	National Institute of Neurological Disorders and Stroke
NT-proBNP	N-terminal pro-B-type natriuretic peptide
SATURN	Statins Use in Intracerebral Patient
Sleep SMART	Sleep for Stroke Management and Recovery Trial
TRANSPORT2	Transcranial Direct Current Stimulation for Post-Stroke Motor Recovery A Phase II Study

Since the process began, 109 unique concept proposals have been submitted of which 37 were submitted to NIH for formal review by NIH Study Section (3 are currently pending review). Of these, NINDS has funded 10.

The NINDS designed the NIH StrokeNet to support phase II and phase III stroke trials. During the first years of the network, NIH StrokeNet focused on developing infrastructure and new proposals and assisting in the completion of trials already funded by NINDS. These previously funded trials included the following trials completed with NIH StrokeNet assistance: the NETT (Neurology Emergencies Treatment Trial) Network supported POINT (Platelet-Oriented Inhibition in New TIA and Minor Ischemic Stroke)\(^2\) and SHINE trials (Stroke Hyperglycemia Insulin Network Effort)\(^3\), the NeuroNEXT (Network for Excellence in Neuroscience Clinical Trials) supported RHAPSODY trial (Safety Evaluation of 3K3A-APC in Ischemic Stroke)\(^4\) and the MISTIE 3 (Minimally Invasive Surgery Plus r-tPA for ICH Evacuation)\(^5\) and i-DEF trials (Intracerebral Hemorrhage Deferoxamine)\(^6\). Additionally, the NIH StrokeNet continues to assist ongoing studies funded before initiation of the network: CREST 2 (Carotid Revascularization Endarterectomy vs Stenting)\(^7\) and CREST H.\(^8\) The first 3 trials implemented fully by StrokeNet were DEFUSE 3 (Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke 3),\(^9\) Telerehab,\(^10\) and ARCADIA (Atrial Cardiopathy and Antithrombotic Drugs in Prevention After Cryptogenic Stroke).\(^11\) For DEFUSE 3 and ARCADIA, the design, funding, and implementation occurred entirely within StrokeNet. Telerehab was originally designed outside the network framework and approved for funding as a single-center study and then adapted and implemented into StrokeNet after the funding decision.

The first of these multicenter trials fully designed within the network, DEFUSE 3 (Table 1),\(^9\) was funded in September 2015. This phase 3 randomized trial compared thrombectomy and standard medical therapy versus standard medical therapy alone in patients 6 to 16 hours after they were last known to be well and who had remaining ischemic brain tissue that was potentially salvageable. DEFUSE 3 stopped early in the summer of 2017 for overwhelming efficacy. In 2019, the trial received a Distinguished Clinical Research Achievement Award. This award was presented to the top 2 studies among all nominated clinical trials in the United States in 2018, “that show creativity, innovation, or a novel approach which demonstrated an immediate impact on the health and well-being of patients.”

The second trial, the Telerehabilitation trial, was the first multicenter trial of telerehabilitation versus standard in-person physical therapy.\(^10\) The trial demonstrated that 6 weeks of intensive therapy substantially improved function and that telerehabilitation was not inferior to traditional in-clinic rehabilitation for improving motor status (Fugl-Meyer arm motor scale). The trial design was prescient given the social distancing required during the ongoing COVID-19 pandemic and likely represents the digital future of ambulatory physical therapy for certain groups of patients.

The ongoing third trial, ARCADIA, tests the hypothesis that apixaban is superior to aspirin for the prevention of recurrent stroke in participants with cryptogenic ischemic stroke and atrial cardiopathy, as defined by 1 of 3 cardiac markers: P-wave terminal force \(>5000\) \(\mu\)V\(\times\)ms in ECG lead V\(_1\), serum NT-proBNP (N-terminal pro-B-type natriuretic peptide)\(>250\) pg/mL, and left atrial diameter \(\geq 3\) cm/m\(^2\) on echocardiogram (Table 1).\(^11\)

Since 2018, when NINDS renewed funding of the network for 5 additional years, the number of funded trials and active clinical trial sites in the network increased markedly (Table 1). At the time of the COVID pandemic, 6 trials were recruiting: MOST (Multi-Arm Optimization of Stroke Thrombolysis), Sleep SMART (Sleep for Stroke Management and Recovery Trial), I-ACQUIRE (Infant
Table 1. Current Status of StrokeNet Trials (Enrollment Suspended for All Trials Because of COVID-19 on March 24)

NIH StrokeNet Trials	Primary Study Question	Notice of Award	Date of First Enrollment	Planned Sites	Target Number of Randomized Participants	Randomized Participants
ARCADIA* phase III	Is apixaban superior to aspirin for the prevention of recurrent stroke in participants with cryptogenic ischemic stroke and atrial cardiopathy?	May 2017	March 12, 2018	120 (now 180)	1100	441
MOST phase III	Does epifibatide, argatroban, or placebo added to IV tPA, started within 3 h of onset, improve outcome in ischemic stroke subjects at 90 d?	June 2018	October 15, 2019	110	1200	33
Sleep SMART* phase III	Does treatment of OSA with positive airway pressure starting shortly after acute ischemic stroke or high-risk TIA (1) reduce recurrent stroke, acute coronary syndrome, and all-cause mortality during 6 mo after the event and (2) improve stroke outcomes at 3 mo in patients who experienced an ischemic stroke?	August 2018	May 31, 2019	110 (now 140)	3062	253
TRANSPORT2 phase II	Do 3 dose regimens of noninvasive brain stimulation (including sham stimulation) plus modified constraint-induced movement therapy lead to a differential change in motor impairment in the upper extremity after a 10-session intervention?	August 2018	September 9, 2019	12 (now 15)	129	12
I-ACQUIRE phase III	In 8- to 36-mo-old children with perinatal arterial stroke, does intensive pediatric rehabilitation at either 3 h/d (moderate dose) or 6 h/d (high dose) for 5 d/wk for 4 wk improve outcome at 7 d after treatment and at 6 mo, as compared with usual and customary treatment?	February 2019	October 10, 2019	12	240	22
ARCADIA-CSI* phase III ancillary	Do patients in the ARCADIA trial on apixaban experience less cognitive decline and fewer silent infarcts than those on aspirin therapy?	July 2019	November 14, 2019	100	500	52
ASPIRE phase III	Is apixaban superior to aspirin for prevention of the composite outcome of any stroke (hemorrhagic or ischemic) or death from any cause in patients with recent ICH and atrial fibrillation?	July 2019	May 26, 2020	125	700	1
SATURN phase III pragmatic	Whether continuation vs discontinuation of statin drugs after spontaneous lobar ICH is the best strategy, and whether the decision to continue/discontinue statins should be influenced by an individual’s APOE genotype?	September 2019	NA	140	1456	0
FASTEST* phase III	Does treatment with rFVIIa within 2 hours of onset in appropriately selected patients with spontaneous ICH improve outcome, as measured by the ordinal distribution of the mRS at 180 d, as compared with placebo?	February 2020	NA	115	860	0

Completed trials

| DEFUSE 3* phase III | Is thrombectomy plus standard medical therapy superior to standard medical therapy alone in improving outcome at 90 d, in patients 6 to 16 h after they were last known to be well and who have remaining ischemic brain tissue that was potentially salvageable? | September 2015 | May 6, 2016 | 45 | 476 | 182 |
| Telerehab phase II | Whether a 6-wk course of intensive home-based telehealth therapy targeting arm movements after stroke would provide rehabilitation benefits that are comparable with those derived from dose-matched traditional in-clinic rehabilitation therapy? | September 2015 | May 6, 2016 | 45 | 476 | 182 |

APOE indicates apolipoprotein-E; ARCADIA, Atrial Cardiopathy and Antithrombotic Drugs in Prevention After Cryptogenic Stroke; ARCADIA-CSI, Atrial Cardiopathy and Antithrombotic Drugs in Prevention After Intracerebral Hemorrhage; COVID-19, coronavirus disease 2019; DEFUSE, Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke 3; FASTEST, FVIIa for Acute Hemorrhagic Stroke Administered at Earliest Time; I-ACQUIRE, Infant ACQUIRE; ICH, intracerebral hemorrhage; IV tPA, intravenous tissue-type plasminogen activator; MOST, Multi-Arm Optimization of Stroke Thrombolysis; mRS, modified Rankin Scale; NA, not applicable; NIH, National Institutes of Health; OSA, obstructive sleep apnea; rFVIIa, recombinant factor VIIa; SATURN, Statins Use in Intracerebral Patient; Sleep SMART, Sleep for Stroke Management and Recovery Trial; TIA, transient ischemic attack; and TRANSPORT2, Transcranial Direct Current Stimulation for Post-Stroke Motor Recovery A Phase II Study. *Industry partnership.
Stroke Administered at Earliest Time) was funded on February 28, 2020, with enrollment planned to start in the early fall.

EDUCATIONAL CORE
Since the beginning of StrokeNet, the educational mission of the network has been a priority. StrokeNet includes yearly-designated StrokeNet clinical research fellowships at each regional center across the United States, and our Educational Core leadership coordinates this education program and mentoring process across the network. The activities and outcomes of educational core have been detailed in an article published recently in *Stroke.*

IMAGING CORE
Since the beginning of StrokeNet, the imaging core has been providing support to the clinical trial design in terms of imaging protocols and homogenization of imaging across sites. In addition, StrokeNet offers a common mechanism for central collection of images for all clinical trials. Combined with the use of common data elements in the coding of these images, the central collection of images allows for increased standardization of imaging across trials and for pooled analyses in the future. Such efficiencies are highly desirable considering the high cost of imaging in clinical trials.

IMPACT OF COVID-19 ON NIH STROKENET
COVID-19 represents a once-in-a-lifetime event that profoundly affects all clinical research now and going forward.

Guidance to Trial Sites	Table 2. Initial Guidance From StrokeNet Leadership to Trial PIs Regarding COVID-19	
Monitoring and following all CDC and local recommendations regarding good hygiene, avoidance of major gatherings (social distancing), travel, etc		
Adherence to local institution recommendations regarding research in the COVID-19 environment, including screening or enrollment into research trials. Some institutions had already suspended screening and enrollment, whereas others had not		
Maintenance of patient follow-up for those participants already enrolled in trials and use of telemedicine and telephone interactions whenever possible to obtain study data. Per FDA guidance, these changes could happen even if the protocol had not yet been amended		
Amendment of all trial protocols to allow for remote patient visits for outcomes, study medications, etc, for situations like COVID-19 and communication of the amendment to the CIRB		
Use of an unblinded assessor as needed for those studies that require blinded outcome assessors if designated person was not available		
Completion of outcome assessments outside of the prescribed windows as needed (because of illness)		
For studies requiring study medication, mailing of study medication, even if not detailed in protocol		
For trials requiring physical or hands-on therapy and in-clinic or at-home visits, suspension of therapy when a patient or therapist is COVID-19 positive or is possibly infected and restarting therapy only when the participant is no longer contagious		
Crafting of plans by trial PIs regarding COVID-19 issues unique to their trial		
Suspension of any in-person StrokeNet meetings until the situation has changed to minimal risk		
Communication of COVID-19 infection in a study patient or study investigator to the trial PIs as allowed by HIPAA		

CDC indicates Center for Disease Control; CIRB, central institutional review board; COVID-19, coronavirus disease 2019; FDA, Food and Drug Administration; HIPAA, Health Insurance Portability and Accountability Act; and PIs, principal investigators.
suspended in StrokeNet trials on March 24 while maintaining follow-up of participants, to the extent possible, within ongoing trials. While the primary goal of suspension of enrollment was safety of relevant parties during the peak of the pandemic, StrokeNet leadership and the trial principal investigators used this time to redesign processes and protocols within the trials that would enable safely restarting enrollment in the trials as quickly as possible, while recognizing the local conditions and requirements at a given site. Within a month of suspension of enrollment, 2 trials had submitted a plan to the central institutional review board for reopening enrollment, and a template letter for restarting trials was provided to all trial principal investigators to assist them in crafting a trial-specific plan and request to central institutional review board to restart enrollment (http://nihstrokenet.org/documents).

Table 3 describes some of the specific impacts of COVID-19 and the proposed solutions by the network to address these issues. Solutions include increased and innovative use of telemedicine and digital technologies, flexible approaches for interactions of the study teams with participants or perform prescribed therapies

COVID-19 Impact on Trials	Planned and Implemented Solutions
Protocols required in-person screening and enrollment	Investigator-participant interactions by telemedicine; multiple methods of remote consent including eConsent, as well as a centralized eConsent process and platform for entire trial and not just at individual sites (REDCap database).
Protocols required in-person visits for distribution of study medication (eg, ARCADIA, ASPIRE)	Direct shipping of study medication to patient homes with revised timeline and assurance of patient’s receipt of study medication.
Protocols required in-person outcome assessments (eg, MOST, I-ACQUIRE, and TRANSPORT2)	Outcomes by telemedicine and recorded video. Audio recording if video not possible. Therapy trials that require in-person assessment must adopt precautions that mirror recommendations for COVID-19 patient care.
Central cognitive assessment for ARCADIA-CSI trial had to be onsite at institution	Technology amended to allow cognitive assessment from test administrators’ homes.
Centralized laboratory for trial closed for non-COVID research activities (eg, ARCADIA, SATURN)	Discussions with laboratories to consider restart receipt of laboratory samples (rate-limiting step for trials to reopen).
Therapy trials that require close-contact multisession rehabilitation therapy or the use of tools and devices in combination with the rehabilitation therapy on a daily basis (eg, TRANSPORT2 and I-ACQUIRE)	Plan for use of daily COVID-19 screening questionnaire to assess risk of exposure and infection and PPE (eg, masks and gloves) for both staff (eg, therapists/trainers) and study subjects that mirror clinical recommendations. Disinfect/clean the rehabilitation and assessment tools and machines/devices (such as tDCS/TMS/MRI) after each visit.
Inability for children (ages 8 mos to 3 y) to see faces of therapists wearing facemasks during therapy (I-ACQUIRE)	Transparent masks designed for the hearing-impaired purchased for trial to allow visualization of facial expressions to help with communication and therapy.
Inability to do typical in-person focus groups or to survey large groups of community members in person as required by exception from informed consent or EFIC (FASTEST)	Centralized online survey tool using REDCap for all participating sites in the United States that can be used for several sites within same community. Online focus groups—regionally and nationally. Discussion with Advarra the CIRB for FASTEST regarding implementation.
Sleep.SMART—Concern for aerosolization of viral particles by CPAP	Provision of clinical guidance to participants regarding mitigation of risk to household members, circumstances under which CPAP use may merit review with local physician.
Less study activity at trial sites with suspension of enrollment	Maintenance of screening for potential participants even though patients cannot be approached for enrollment. Focus on completing outstanding queries and study start-up. Educational efforts by the network to improve coordinator knowledge base. Update certification and training if expiring soon. With restarting trials, creating flexibility so that project coordinators may reenter physical clinical space in accordance with local practice but for minimal time periods and with maximum physical distancing.
Lack of monies to support research coordinators or therapists at trial sites since they cannot enroll new participants or perform prescribed therapies	Encouragement of coordinators to assist on other available funded research activities and to document all unfunded activities for potential financial assistance in future. I-ACQUIRE addressed this issue, in part, by providing additional ongoing training and interactive Webinar sessions and paying for therapists’ time to do this. Institutional responses varied greatly with some coordinators furloughed, some redeployed to clinical duties when qualified, some required to take paid time off, and some having salaries cut. These latter issues have slowed ongoing processes such as study start-up activities during shutdown and will slow restart enrollment initially at some sites.
Suspension and delay of site monitoring visits	Simplified visits, conducted online and by virtual communication.
Suspension of in-person, hands-on study staff training near Atlanta on technical aspects of Sleep SMART protocol	It is not clear that virtual demonstration can substitute, but we plan video conferencing alternatives.

ARCADIA indicates Atrial Cardiopathy and Antithrombotic Drugs in Prevention After Cryptogenic Stroke; ARCADIA-CSI, Atrial Cardiopathy and Antithrombotic Drugs in Prevention After Cryptogenic Stroke—Cognition and Silent Infarcts; ASPIRE, Anticoagulation for Stroke Prevention and Recovery After Intracerebral Hemorrhage; CIRB, central institutional review board; COVID-19, coronavirus disease 2019; CPAP, continuous positive airway pressure; EFIC, exception from informed consent; FASTEST, FVila for Acute Hemorrhagic Stroke Administered at Earliest Time; I-ACQUIRE, Infant ACQUIRE; MOST, Multi-Arm Optimization of Stroke Thrombolysis; MRI, magnetic resonance imaging; PPE, personal protective equipment; REDCap, Research Electronic Data Capture; SATURN, Statins Use in Intracerebral Patient; Sleep SMART, Sleep for Stroke Management and Recovery Trial; IDCS, transcranial direct current stimulation; TMS, transmagnetic stimulation; and TRANSPORT2, Transcranial Direct Current Stimulation for Post-Stroke Motor Recovery A Phase II Study.
COVID-19 represents a unique and rare external event that requires the full attention of our clinical and research infrastructure. The interaction of COVID-19 and stroke is proving to be a very active area of research that NIH StrokeNet is poised to help address, as we begin to collect data to quantify the impact of COVID-19 across our trials. Most importantly, the COVID-19 pandemic, like any critical external event, provides NIH StrokeNet and clinical researchers everywhere the opportunity to rethink how we can do research better.

ARTICLE INFORMATION

Affiliations
Departments of Neurology and Rehabilitation Medicine (J.B.F., P.K., J.F., O.M.A.) and Emergency Medicine (J.B.F., P.K., J.F., O.M.A.), University of Cincinnati Neurosciences Institute, University of Cincinnati Academic Health Center, OH. Departments of Neurology (M.I.C.) and Public Health Sciences (J.J.E., W.Z., C.R.D., J.S.G., L.P.S.), Medical University of South Carolina, Charleston. National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (L.S.J., C.S.M., C.B.W.). Department of Neurology, Vagelos College of Physicians and Surgeons (R.S.M., M.S.V.E.) and Department of Epidemiology, Malman School of Public Health (M.S.V.E.), Columbia University, New York, NY. Department of Neurology, Miller School of Medicine, University of Miami, FL (R.L.S.). UCLA Department of Neurology, California Rehabilitation Institute, Los Angeles (S.C.C., J.L.S.). Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA (S.L.W.). Department of Neurology, University of Virginia, Charlottesville (K.C.). Department of Neurology, Michigan Medicine, Ann Arbor (D.B., R.D.). Department of Neurology, School of Medicine (W.T.L., D.L.T.) and Department of Epidemiology, School of Public Health (W.T.L.), University of Washington, Seattle. Department of Neurology, Stroke Program, McGovern Medical School at The University of Texas Health Science Center at Houston (A.D.B.). Memorial Hermann Hospital-Texas Medical Center (J.C.G.). Department of Neurology, Duke University Medical Center, Durham, NC (W.F.). Brain Repair and NeuroRenoRestoration Center, Baystate Medical Center, University of Massachusetts Medical School and Institute of Applied Life Sciences–UMass Medical Center Springfield-Amherst (G.S.). Departments of Neurology and Neurological Sciences (G.W.A., M.G.L.) and Radiology (M.W.) Stanford University School of Medicine, CA. Department of Neurology, University of Alabama at Birmingham (R.M.L.). Departments of Psychiatry and Behavioral Medicine (S.L.R.), Psychology (S.L.R.), Biostatistics (S.L.R.), and Human Development (S.L.R.), Frank Biomedical Research Institute, Virginia Tech, Roanoke. Departments of Pediatrics (W.D.L.) and Neurology (W.D.L.), Ohio State University and Nationwide Children’s Hospital, Columbus. Department of Neurology, Yale School of Medicine and Yale New Haven Hospital, CT (K.N.S.). Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA (M.A.S.). Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL (A.M.N.).

Sources of Funding
National Institutes of Health (NIH) awards: National Coordinating Center: U01NS086872; National Data Management and Statistical Center: U01NS087748; DEFUSE 3 trial: U01NS092076; Tele-rehab trial: U01NS091951; ARCADIA trial (Atrial Cardiopathy and Antithrombotic Drugs in Prevention After Cryptogenic Stroke): U01NS096859; Sleep SMART trial (Sleep for Stroke Management and Recovery Trial): U01NS099043; MOST trial (Multi-Arm Optimization of Stroke Thrombolysis): U01NS010699; I-ACQUIRE (Infant ACQUIRE) trial: U01NS106655; TRANSPORT2 trial (Transcranial Direct Current Stimulation for Post-Stroke Motor Recovery A Phase II Study): U01NS102353; ARCADIA-CS1 trial (ARCADIA-Cognition and Silent Infarcts): U01NS110728; ASPIRE trial (Anticoagulation for Stroke Prevention and Recovery After Intracerebral Hemorrhage): U01NS106513; SATURN trial (Statin Use in Intracerebral Hemorrhage):U01NS101299; FASTEST trial (FVila for Acute Hemorrhagic Stroke Administered at Earliest Time): U01NS110772.

Disclosures
Dr Broderick is the principal investigator (PI) of the National Institutes of Health (NIH)–funded FASTEST trial (FVila for Acute Hemorrhagic Stroke Administered at Earliest Time) that receives in-kind study medication from Novo Nordisk and monies to Department of Neurology and Rehabilitation Medicine from Genentech for his role on Steering Committee of TIMELESS trial (Tenecteplase in Stroke Patients Be-
REFERENCES

1. Broderick JP, Paleksh YY, Janis LS. National Institutes of Health StrokeNet Investigators. The National Institutes of Health StrokeNet: a user’s guide. Stroke. 2016;47:301–302. doi: 10.1161/STROKEAHA.115.011743

2. Johnston SC, Easton JD, Farrant M, Barsan W, Conwit RA, Elm JJ, Kim AS, Lindblad AS, Palesch YY. Clinical Research Collaboration, Neurological Emergencies Treatment Trials Network, and the POINT Investigators. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med. 2018;379:216–225. doi: 10.1056/NEJMoa1800410

3. Johnstn KC, Bruno A, Pauls G, Hall CE, Barrett KM, Barsan W, Fansler A, Van de Bruiinhorst K, Janis S, Durkalski-Mauldin VL. Neurological Emergencies Treatment Trials Network and the SHINE Trial Investigators. Intensive vs standard treatment of hyperglycemia and functional outcome in patients with acute ischemic stroke: the SHINE randomized clinical trial. JAMA. 2019;322:326–335. doi: 10.1001/jama.2019.9346

4. Lyden P, Pyor KE, Coffey CS, Cudkowicz M, Conwit R, Jadav A, Sawyer RN, Claassen J, Adeoye O, Song S, et al; NeuroNEXT Clinical Trials Network NN104 Investigators. Final results of the RHAPSODY trial: a multi-center, phase 2 trial using a continual reassessment method to determine the safety and tolerability of 3K3A-APC, a recombinant variant of human activated protein C, in combination with tissue plasminogen activator, mechanical thrombectomy or both in moderate to severe acute ischemic stroke. Ann Neurol. 2019;85:125–136. doi: 10.1002/ana.25383

5. Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane K, McBee N, Mayo SW, Bistrian-Hall AJ, Gandhi D, Mould WA, et al; MISTE III Investigator. Efficacy and safety of minimally invasive surgery with thrombolyis in intracerebral haemorrhage evacuation (MISTE III): a randomised, controlled, open-label controlled trial. Lancet. 2020;393:1021–1029. doi: 10.1016/s0140-6736(19)30195-3

6. Selim M, Foster LD, Moy CS, Xi G, Hill MD, Morgenstern LB, Greenberg SM, James ML, Singh V, Clark VM, et al; r-DEF investigators. Deferoxamine mesylate in patients with intracerebral haemorrhage (r-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 2019;18:428–438. doi: 10.1016/s1474-4422(19)30069-9

7. Howard VJ, Meschia JF, Lai BK, Turan TN, Roubin GS, Brown RDJR, Voeks JH, Barrett KM, Demchuk AM, Huston J III, et al; CREST-2 Study Investigators. Carotid revascularization and medical management for asymptomatic carotid stenosis: protocol of the CREST-2 clinical trials. Int J Stroke. 2017;12:770–778. doi: 10.1177/1747493017706238

8. Marshall RS, Lazar RM, Liebeskind DS, Connolly ES, Howard VJ, Lai BK, Huston J III, Meschia JF; Brott TG. Carotid revascularization and medical management for asymptomatic carotid stenosis - hemodynamics (CREST-H) study design and rationale. Int J Stroke. 2018;13:985–991. doi: 10.1177/1747493018790088

9. Alers GW, Marks MP, Kemp S, Christensen S, Tsai PJ, Ortega-Gutierrez S, McTaggart RA, Torrey MT, Kin-Tensei M, Leslie-Maxwell T, et al; DEFUSE 3 Investigators. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378:708–718. doi: 10.1056/NEJMoa1713973

10. Cramer SC, Dodskan L, Le V, See J, Augsburger R, McKenzie A, Zhou RJ, Chiu NL, Heckhausen J, Cassidy JM, et al; National Institutes of Health StrokeNet Telerehab Investigators. Efficacy of home-based telerehabilitation vs in-clinic therapy for adults after stroke: a randomised controlled trial. JAMA Neurol. 2019;76:1079–1087. doi: 10.1001/jamaneurol.2019.1604

11. Kamel H, Longstreth WT Jr, Tirschwell DL, Kromol RA, Broderick JP, Palesch YY, Meiner C, Dillon C, Ewing I, Spiller JA, et al; The AlRial cardiopathy and anti-thrombotic drugs in prevention after cryptogenic stroke randomized trial: rationale and methods. Int J Stroke. 2019;14:207–214. doi: 10.1177/1747493018799981

12. Vahidy FS, Sozener CB, Meeks JR, Chhatbar PV, Ramos-Estebanez C, Ayodele M, Richards JR, Sharma W, Willbrand SM, Prabhakaran S, et al. National Institutes of Health StrokeNet training core. Stroke. 2020;51:347–352. doi: 10.1161/STROKEAHA.119.029946