Vehicle Routing Problem (VRP) addresses a problem which identifies routes scheduled for vehicles moving from a distribution center to serve specific customers and returns to the distribution center. Notwithstanding, cost associated with transportation of business have drawn much attention in the past few years owing to the recent rise in fuel prices, therefore this paper study’s the problem of routing in cold chain logistics distribution with the goal of minimizing the total transportation cost. In this paper a single objective model is formulated and then solved by the Particle Swarm Optimization algorithm. A computational experiment is carried by the proposed model to obtain optimal distance and imputed in to the cost function to obtain the optimal cost. We found that an increase in population size and the number of iterations gives better minimization results.

References
1. Ali B., J. P. (2014). A new inventory model for cold items that considers costs and emissions. Int. J. Production Economics, 155.
2. Ali B., J. P. (2014). A new inventory model for cold items that considers cost and emissions. International Journal Production Economics, 114-125.
3. Anita Tandan, R. R. (2013). A Survey on Particle Swarm Optimization Methods for Image Segmentation. Computer Science and Engineering, 1-6.
4. Chen, A. Y. (2006). Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem. Journal of Zhejiang University Science A, 607-614.
5. Chen, Y. K. (2011). A HYBRID PSO ALGORITHM FOR THE CVRP PROBLEM. In Proceedings of the International Conference on Evolutionary Computation Theory and Applications (pp. 539-543). Taipei, Taiwan: SCITEPRESS.
6. Cordeau, J. F. (2007). Handbook in Operations Research and Management Science.
7. Dongqing Ma, W. W. (2014). Logistics distribution vehicle scheduling based on improved particle swarm optimization. Computer Engineering and Applications, 50(11): 246-270.
8. E., A. S. (2016). Cold supply chain design with environmental considerations: A simulation-optimization approach. European Journal of Operational Research, 251.
9. Kang Li1, J. Z. (2016). A new discrete particle swarm optimization for location inventory routing problem in cold logistics. Revista de la Facultad de Ingeniería U.C.V., 89-99.
10. Kennedy, J. a. (1995). Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks, (pp. 1942-1948).
11. Kumar, K. D. (2016). Multi-objective modeling of production and pollution routing problem with time window: A self-learning particle swarm optimization approach. Computers and Industrial Engineering, 29-40.
12. Shahrzad Amini, H. J.-M. (2010). A PSO APPROACH FOR SOLVING VRPTW WITH REAL CASE STUDY. IJRRAS, 1-10.
13. Songyi Wang, F. T. (2017). Optimization of Vehicle Routing Problem with Time windows for Cold Chain Logistics Based on Carbon Tax. Sustainability, 1-24.
14. Sun, A. K. (2018). Bilayer Local Search Enhanced Particle Swarm Optimization for the Capacitated Vehicle Routing Problem. Algorithms, 11(3), 1-22.
15. Xiao, J. M. (2005). Particle swarm optimization algorithm for vehicle routing problem. Computer Integrated Manufacturing Systems, 577-581.
16. Xu, J. a. (2007). Hybrid particle swarm optimization for vehicle routing problem with multiple objectives. Computer Integrated Manufacturing Systems-Beijing, Vol. 13, No. 3, pp. 573.
17. Y, M. (2015). An Improved Particle Swarm Optimization Algorithm for the capacitated location routing problem and for the location routing problem with stochastic demands. Applied Soft Computing, 680-701.
18. Zhang, L. P. (2006). A hybrid particle swarm optimization algorithm for vehicle routing problem with time windows. Journal of Shanghai Jiaotong University, 1890.
19. Zhang, Y. W. (2010). Modified Particle Swarm Optimization algorithm for vehicle routing problem with time. Computer Engineering and Applications, 46(15): 230-234.

Index Terms

Computer Science

Algorithms
Keywords

Particle Swarm Algorithm, Vehicle Routing Problem, Capacitated Vehicle Routing Problem