Reliability assessment of reinforced concrete structures during commissioning

V A Pshenichkina, V S Babalich, K N Sukhina and M E Dubovsky*
Volgograd State Technical University, 2, Degtyarev str., Volgograd, 400006, Russia

E-mail: chedrm@file.ru

Abstract. The article presents the studies’ results on the safety characteristics of the most damaged load-bearing structures in a monolithic reinforced concrete building. Reliability assessment was carried out at the stage of putting the building into operation. The analysis of the numerical reliability characteristics is carried out taking into account design and actually implemented strength parameters of the considered structures.

Introduction
The construction of monolithic reinforced concrete buildings and structures today remains one of the most popular in the construction field. The use of reinforced concrete structures is very wide: from the construction of residential and office buildings to the structures of increased risk to the environment. Due to the long operational period of such buildings, the issue of reliable design and operational forecasts ensuring reliability throughout the entire life cycle of the building remains relevant. [1, 2, 3, 4]

To obtain an adequate estimate of the wear rate of structures and to make a correct forecast on the terms of the structures’ further trouble-free operation, it is extremely important to know the reliability level implemented during its construction \(\beta(T=0) \). The initial individual resource cannot be identified with the assigned resource (theoretical reliability), which is provided by the limiting states method [5-9].

Main part
Due to the current economic situation with a large number of unfinished and non-preserved buildings, the problem of assessing the initial resource is especially relevant [10, 11].

Let us consider an example of a monolithic reinforced concrete frame building that has been left unfinished for more than five years. Due to a sufficiently long break in construction and the absence of conservation measures, the erected load-bearing structures received a number of damages: the protective layer destruction, corrosion processes of the reinforcement, accumulation of atmospheric precipitation, and concrete destruction.

Reliability assessment was performed for the most damaged structures - monolithic reinforced concrete floors. Due to the precipitation accumulation on the surfaces of the structures under consideration, a characteristic damage is the concrete protective layer destruction, which led to a decrease in the monolithic ceilings’ thickness. The damage depth varies from 5 to 20 mm. On the instrumental examination basis, the insignificant differences in the strength characteristics of concrete...
from the design and varied in the range of B22.5–B25 were also found. Figure 1 schematically shows the areas with damage to the plate surface.

Figure 1. Layout of destructive damage to a monolithic slab
The solution of the problem considered consists of two stages: the first was the evaluated structures’ stress-strain state and the second was the performed probabilistic calculation. Moreover, the analysis was carried out both according to the presented design data, and taking into account the technical condition and actual strength characteristics obtained during the survey [12-14].

To assess the bearing capacity of the building’s main load-bearing structures, a static calculation using the LIRA SAPR software package was performed. To assess the influence degree of the detected damage, the calculation was first carried out according to the design decisions, then taking into account the survey data.

The calculation results are shown in Table 1 and are presented graphically in Figure 3.

Table 1. The values of the static calculation main characteristics

Internal design efforts	Values for design data	Values in the calculation taking into account the technical condition of the

Figure 2. Destruction of the floor slab’s protective layer

Figure 3. Monolithic stress mosaic tile Mx(kNm)
The second stage was a safety calculation. Based on the damage nature analysis for the structure under consideration, the function of ultimate bending moment with two random variables was adopted as the main criterion:

\[M_{\text{max}} = M(\bar{h}; \bar{R}_b), \]

where \(\bar{h} \) is the monolithic slab section height;
\(\bar{R}_b \) is the design resistance of concrete to axial compression.

The statistical characteristics of the strength parameter were determined by design (theoretical) and actual values, respectively.

The results are summarized in Table 2.

The load effect statistical characteristics values - the moment in the section from the action of external loads \(\bar{f} \) - with the coefficient of variation adopted according to the known standard value of the load \(f_f = 0.18 \), are presented in Table 2.

Table 2. The values of the floor slab’s statistical characteristics

Safety features	Theoretical values	Actual Values
\(m_R, [kN] \)	94.641	90.395
\(\sigma_R, [kN] \)	3.867	3.684
\(f_R \)	0.135	0.09
\(m_f, [kN] \)	45.974	45.974
\(\sigma_f, [kN] \)	8.275	8.275
\(f_f \)	0.18	0.18
\(\beta \)	3.22	2.86

In the tables, the following notations are used:
- \(m_R, m_f, \sigma_R, \sigma_f \) – are the mathematical expectations and standards of bearing capacity and load effect, respectively;
- \(f_R \) – is the bearing capacity variation coefficient;
- \(f_f \) – is the load variation coefficient;
- \(\beta \) – is the reliability coefficient according to A.R. Rzhanitsyn [15]:

\[\beta = \frac{\bar{R} - \bar{f}}{\sqrt{\sigma^2_M + \sigma^2_P}}, \]

Summary
According to the study, the safety characteristic (reliability index) \(\beta \) incorporated at the design stage is 3.22. Taking into account the strength characteristics actually revealed during the technical examination, the reliability index \(\beta \) is equal to 2.86, which is slightly reduced in comparison with the adopted index in Table B2 Eurocode 0 \(\beta=3.8 \). However, it should be noted that the numerical simulation of the stress-strain state of floor slabs, taking into account the revealed damage, indicates the presence of reserves of strength parameters.

References

[1] Raizer V D 2004 Theory of Reliability in Structural Design Journal of Applied Mechanics Reviews, USA.
[2] Raizer V D 2009 Reliability of Structures. Analysis and Applications (Backbone Publishing Company, New York, USA).
[3] Ditlevsen O, Madsen H O 2007 Structural reliability methods (Department of Mechanical Engineering Technical University of Denmark).
[4] Pshenichkina V A, Babalich V S, Sukhina K N, Sukhin K A 2017 Estimation of the residual life of load-bearing reinforced concrete structures of operated industrial buildings.
[5] Sukhina K N, Pshenichkina V A 2015 A probabilistic analysis of the resource cover structures of an industrial building taking into account the random nature of the snow load Engineering Herald of the Don. Information on ivdon.ru/ru/magazine/archive/n4y2015/3397
[6] Tusnina O A, Pavlov S A 2020 Assessment of resistance to progressive collapse of the frame of the converter shop Bulletin of civil engineers.
[7] Popov V M, Plyusnin M G 2015 The influence of the variability of the characteristics of concrete and reinforcement on the bearing capacity of flexible concrete elements Bulletin of civil engineers.
[8] Riser V D 2010 Theory of reliability of structures. Scientific edition (Publishing house ASV, M.).
[9] Bandurin M A 2012 Problems of assessing the residual life of long-running water supply facilities Engineering Herald of the Don. Information on ivdon.ru/ru/magazine/archive/n3y2012/891.
[10] Lyzhnenko K Yu, Kubasov A Yu, Mayilyan D R 2017 On the issue of restoring the experimental reliability of reinforced concrete structures. Engineering Herald of the Don. Information on ivdon.ru/ru/magazine/archive/n4y2017/4422.
[11] Kalashnikov S Yu, Pshenichkina V A, Boyalskaya A A 2009 To the question of risk analysis of building structures, buildings and structures under extreme impacts of a natural or technogenic nature Engineering Problems of Building Materials Science, Geotechnical and Road Construction. II scientific and technical Conf. 39-43.
[12] Ostreykovsky V A 2003 Theory of Reliability (Higher School Publishing House, M.) pp.127-132.
[13] Pshenichkina V A, Gordeev S S, Ivanov M A 2009 The main provisions of the risk analysis method when monitoring the technical condition of buildings and structures In the collection: Low-rise construction as part of the National project “Affordable and Comfortable Housing for Russian Citizens: Technologies and Materials, Problems and Development Prospects in the Volgograd Region”. ISPC 238-241.
[14] Tamrazyan A G 2004 Analysis of the risk of collapse of buildings and structures from critical defects and various technological impacts (MGSU, Moscow).
[15] Rzhanitsyn A R 1978 The theory of calculating building structures for reliability (Stroyizdat, Moscow).