Investigating the effects of limestone and rice husk ash on the mechanical and durability properties of concrete

A Abdulridha
1 Department of Civil Engineering, College of Engineering, University of Warith AL-Anbiya’a, Kerbala, Iraq.
Email: ali.abd@g.uowa.edu.iq

Abstract. Urbanisation and industrial development have led to an increasing need for a new building which in turn increase the demand for raw construction materials such as coarse aggregate. Therefore, researchers focus shifted towards implementing various materials to minimises the consumption of the earth resources. This research examines the implementation of crushed limestone as a coarse aggregate instead of traditional coarse aggregate in Iraq. Besides, rice husk ash was also used in this research project to improve the mechanical and durability properties of the developed concrete using crushed limestone. Two concrete mixtures were developed in this research. The first mixture uses the crushed limestone as aggregated without rice husk ash while the second mixture employs the crushed limestone with rice husk ash. Several tests were conducted to assess the mechanical and durability properties of the developed concrete that are slump and air contents, absorption compressive strength and flexural strength. The outcome highlighted that the concrete developed using crushed limestone has lower mechanical and durability properties compared to normal aggregate (gravel). However, the usage of the rice husk ash improved the properties of the developed concrete using crushed limestone.

Keywords: Limestone, rice husk ash, aggregate, concrete.

1. Introduction
Industrial development and urbanisation have increased the demand for new development and structures. One of the most commonly used structural materials is concrete due to its durability and strength [1, 2]. Concrete is considered an essential element from various types of structures. One of the basic elements of concrete is the aggregate which plays an essential role in the compressive strength of the concrete. The aggregate occupies the largest size of the concrete and the concrete performance is large influenced by the type of aggregate used in it [3]. Yet, this industry of concrete is considered by many researchers as a considerable source of pollution around the world. Concrete produces various types of gases that affect human health and the environment [4-6] such as greenhouse gases which causes global warming. Global warming causes a significant shortage is of freshwater and pollution [7, 8]. Additio nally, concrete production generates huge quantities of polluted water with various types of pollutants disposed of in water bodies[9-12]. These pollutants include suspended solids, organic compounds [13-17]. Accordingly, concrete factory wastewater needs advanced and effective technologies to remove the pollutants from factory effluences like
filtration [18-24], coagulation [25-29], chemical treatment [24, 30-36], and also mix methods [37-43]. In addition to environmental pollution, the large use of concrete in development has led to the extensive use of natural aggregates which led to the depletion of earth resources of natural aggregate. Based on the above effects of concrete usage, researchers have been investigating the use of other eco-friendly materials that replace the constituents of concrete to minimise the effects of concrete. Limestone is considered as one of the commonly used material to replace natural aggregates in concrete production [44-46]. The limestone mostly contains calcium carbonate, magnesium carbonate and siliceous materials in its composition [47, 48]. Using limestone as aggregates in concrete significantly minimises the environmental effects of concrete. Besides, the production of limestone is cheaper than the natural aggregates and needs less effort and energy. Besides, the production of limestone aggregate produces significantly lower quantities of pollutants such as carbon dioxide. Additionally, limestone aggregate usage in concrete produces more stable concrete and reduces the quantity of concrete waste and enhance the durability and strength of the concrete. This extends the life span of the concrete and reduces the concrete waste [49-52]. The shortage in natural aggregate has led to a significant increase in limestone usage as aggregate in concrete production around the world [53]. The coarse aggregate largely affects the concrete properties owing to the effects of gradation of the aggregate and the connection between the aggregate and other materials in the concrete [54]. The parameters of the coarse aggregate like size distribution have a significant influence on the strength of produced concrete structures. Researchers showed that the limestone meets the requirements of aggregates and could be adopted to produce concrete mixes. Therefore, the crushed limestone provides a useful alternative to the concrete aggregates that are gravel and even the sand in concrete mixtures. Researchers [55] examined the usage of the dust of the limestone in concrete. The usage of the dust of the limestone in terms of various properties like compressive strength, absorption, permeability, and others. It was found that fine aggregate can be substituted by limestone dust. In addition to aggregate replacement, researchers examined the use of other cementitious materials like silica fume, ground blast furnace slag, fly ash as cement replacement to develop eco-friendly cementitious materials to replace cement in concrete production [45, 56]. The effects of the cementitious materials depend on the dosage of the replacement materials and characteristics. For instance, Abdulredha, Muhsin, Al-Janabi, Alajmi, Gkantou, Amoako-Attah, Al-Jumeily, Mustafina and AlKhayyat [45] used silica fume as cement replacement in concrete production. They showed that the silica fume could be used as cement replacement in concrete development. Shubbar, Jafer, Abdulredha, Al-Khafaji, Nasr, Al Masoodi and Sadique [46] used ground blast furnace slag in concrete production and highlighted that the ground blast furnace slag is a useful replacement for the cement in mortars production. Generally, researchers reported that the use of cementitious materials as cement replacement generates concrete with a very good characteristic that is comparable to the concrete produced by ordinary cement [57]. This could significantly reduce the negative impact of cement and reduces the depletion of the earth resources. Based on the above the current research examines the use of crushed limestone and coarse aggregates replacement in concrete production. The use of crushed limestone as coarse aggregate replacement is based on several reasons that are wide availability of the crushed limestone, low production price of the crushed limestone, and low impact of the environmental impact of crushed limestone concrete comparing to ordinary concrete [44-46]. Besides, rice husk ash usage as cement replacement in concrete production was also investigated in concrete incorporating crushed limestone as coarse aggregate.

2. Methodology
2.1. Materials

To reach the goal of this research, several materials were used including ordinary Portland cement, natural coarse aggregates, crushed limestone and rice husk ash. The ordinary Portland cement meets the Iraqi standard No.5:1984 of the Iraqi Organization of Standards for Portland Cement. The cement specific gravity is 3.14. The initial setting times of the cement is 120 minutes while its final meeting time is 250 minutes. Sand is the second component used in cement production which has a specific gravity of 2.62. The particle size distribution of the sand ranged from 200μm to 4.75mm. the size gradation of the sand agrees with the limits recognised by ASTM C33M-18.

In addition, gravel and crushed limestone were used in this research as coarse aggregates. The crushed limestone was obtained from the Al-Noura factory located about 8 km south of the city of Kerbala, Iraq. The physical and chemical characteristics of the gravel and the limestone are presented in tables 1 and 2, respectively. The largest particle size for limestone particles is 25 mm. The standard ASTM C127-12 was adopted to test the characteristics of the gravel and the limestone.

Table 1: Gravel and limestone physical characteristics.

Aggregate type	Bulk Density (g/cm3)	Specific Gravity	Porosity (%)	Moisture Content (%)
Gravel	1.60	2.70	1.40	0.05
Limestone	1.20	2.55	5.0	0.28

Table 2: Gravel and limestone physical-chemical characteristics.

	CaO	Al$_2$O$_3$	MgO	SiO$_2$HP	Fe$_2$O$_3$
Limestone	53.72	0.168	1.018	0.814	0.126
Gravel	1.72	6.16	0.06	84.81	1.66

The characteristics of the rice husk ash are presented in table 3. The standard ASTM C618-15 was used to confirm the chemical and physical characteristic of the rice husk ash. From the table, it can be seen the specific gravities of rice husk ash is 2.18.

Table 3: Physical and chemical analysis of the rice husk ash.

Oxide composition	Magnitude
SiO$_2$ %	86.50 %
Al$_2$O$_3$ %	0.15 %
Fe$_2$O$_3$ %	0.31 %
SO$_3$ %	0.14 %
Na$_2$O %	1.40 %
Strength activity Index	130
Flow table test	100
Specific gravity	2.18

2.2. Testing standards

Several tests were conducted to show the performance of the concrete that contains limestone and rice husk ash. The standard followed to show the characteristic of the concrete include the slump test (ASTM C143), flexural strength test (ASTM C 78-02), compressive strength test (ASTM C39) and absorption test (BS 1881:122-1983).

2.3. Mixtures
Various percentages of the limestone were used to study its effects on the properties of the developed concrete. The limestone replacement ranged from 20% to 80% by weight of the coarse aggregate of the developed concrete. The concrete created from natural gravel was used as a control sample for comparison. The reference mixture was designed based on the guidelines of ACI-211.1-91. This is one to make the developed concrete comply with the requirements of workability and compressive strength. The reference mixture contains only natural sand, ordinary Portland cement and gravel. In the first group of developed concrete, the coarse aggregate of gravel is replaced with the crashed limestone with various percentages ranged from 20% to 80%. The mixtures contain crashed limestone were denoted by L followed by the percentage of the coarse limestone used. For example, when 20% of the gravel is replaced with limestone, the mixture is denoted with L20. Four mixtures were developed containing 20%, 40%, 60% and 80% limestone as coarse aggregate denoted by L20, L40, L60 and L80. Additionally, 15% of the cement was replaced with rice husk ash to show the effects of the added cementitious material on the development of the concrete containing limestone as coarse aggregate. The mixtures contain rice husk ash were denoted with the letter R to highlight the addition of the cementitious material. Based on the above, two groups of mixtures were developed as follow:

- Group one contains various percentages of the limestone only.
- Group two contains various percentages of the limestone in addition to only 20% of the rice husk ash.

The proportion of the mixtures are presented in table 4.

Group	mixtures	Cement	Rice husk ash	Sand	Gravel	Crushed limestone	Water
Group 1	L0	450	0	675	1025	--	216
	L20	450	0	675	820	205	225
	L40	450	0	675	615	410	235
	L60	450	0	675	410	615	245
	L80	450	0	675	205	820	250
Group 2	L0R	382.5	67.5	675	1025	--	207
	L20R	382.5	67.5	675	820	205	216
	L40R	382.5	67.5	675	615	410	221
	L60R	382.5	67.5	675	410	615	234
	L80R	382.5	67.5	675	205	820	243

3. Results

Several tests were conducted to show the development of the concrete using two replacement materials that are limestone and rice husk ash. Table 5 presents the results of the tests for concrete cubes that uses limestone as aggregates replacement. It is worth mention that the results reported in this table represent the average of three samples. From the table, it can be noticed that the compressive strength of the concrete decrease with an increase in the percentage the limestone replacement. It can be seen that the 7 days compressive strength decreased from 22 MPa to only 14 MPa when the fraction of the limestone increased from 0% to 80% of the coarse aggregate. similarly, the development of the compressive strength after 28 days is comparable to the development of the compressive strength after 7 days. The increases in the quantity of the limestone reduce the compressive strength significantly.

Flexural strength tests result also confirmed that the developed concrete using limestone is weaker compared to normal concrete the employs gravel in its materials. The flexural strength after 28 days
of curing decreased from 5.97 MPa to 4.32 MPa when the percentage of the limestone fraction increased from 0% to 80% substitutes. The absorption is also increased with the increase in the percentage of the limestone fraction in the concrete.

Table 5: Tests results for the new concrete mixtures without rising husk ash.

Mixtures	Compressive strength (MPa)	Flexural strength (MPa)	Absorption (%)	Slump (mm)			
	7 days	28 days	7 days	28 days			
Group 1							
L0	22.71	32.21	4.61	5.97	6.15	4.49	100
L20	18.45	28.40	3.86	5.80	8.46	5.82	92
L40	15.20	24.01	3.79	5.21	9.79	6.88	87
L60	15.10	21.85	3.43	4.87	10.07	7.61	85
L80	14.00	18.97	3.07	4.32	10.41	8.51	77

Table 6 presents the results of the tests for concrete cubes that uses limestone as aggregates replacement and rice husk ash as cement replacement. Similarly, the compressive strength increases from 32.21 MPa (28 days without rice husk ash and limestone) to 34.92 MPa (28 days with only 15% rice husk ash). However, the compressive strength of the concrete decrease with an increase in the percentage of the limestone replacement. The 7 days compressive strength decreased from 23.75 MPa to only 14.71 MPa when the fraction of the limestone increased from 0% to 80% of the coarse aggregate. The presence of the rice husk ash increases the compressive strength but the limestone still largely reduces the compressive strength. The flexural strength tests result also is not different from the compressive strength. They developed the concrete using rice husk ash with higher flexural strength. However, the flexural strength is weaker compared to normal concrete the employs gravel in its materials. The flexural strength after 28 days of curing decreased from 7.01 MPa to 5.32 MPa when the percentage of the limestone fraction increased from 0% to 80% substitutes. The absorption is also increased with the increase in the percentage of the limestone fraction in the concrete. However, 15 per cent of the rice husk ash decreased the adsorption percentage by about 8%.

Table 6: Tests results for the new concrete mixtures with rising husk ash.

Mixtures	Compressive strength (MPa)	Flexural strength (MPa)	Absorption (%)	Slump (mm)			
	7 days	28 days	7 days	28 days			
Group 2							
L0R	23.75	34.92	5.14	7.01	6.10	4.12	94
L20R	19.97	30.11	4.86	6.82	7.34	5.56	90
L40R	17.45	25.83	4.34	6.11	8.18	6.23	85
L60R	17.13	24.44	3.91	5.75	8.84	6.75	79
L80R	14.71	22.76	4.12	5.32	9.64	6.91	74

4. Conclusions
This research is conducted with the aim of investigating the effect of implementing crushed limestone as a coarse aggregate replacement and rice husk ash as cementitious materials. Several tests were conducted to understand the effects of the aforementioned materials on the mechanicals and durability characteristics. These tests include slump test, flexural strength test, compressive strength test and absorption test. The outcome showed that 15% replacement of the rice husk ash with cement increased the compressive strength, flexural strength by about 8% and 15%, respectively. The addition of about 80% of the limestone reduced the compressive strength by about 28%.

References
[1] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust Journal of Building Engineering 32 1-17
[2] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent Advances in Cement Research 32 1-38
[3] Shubbar A A, Al-Shaer A, AlKizwini R S, Hashim K, Hawesah H A and Sadique M 2019 Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar. In: First International Conference on Civil and Environmental Engineering Technologies (ICCEET), (University of Kufa, Iraq pp 31-8
[4] Shubbar A A, Jafer H, Dulaimi A, Hashim K, Atherton W and Sadique M 2018 The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash: An experimental and statistical approach Construction and Building Materials 187 1051-60
[5] Hashim K S, Shaw A, Al Khaddar R, Ortoneda Pedrola M and Phipps D 2017 Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach Journal of Environmental Management 197 80-8
[6] Hashim K S, Idowu I A, Jasim N, Al Khaddar R, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W and Abdulredha M 2018 Removal of phosphate from River water using a new baffle plates electrochemical reactor MethodsX 5 1413-8
[7] Abdulredha M, Abdulridha A, Shubbar A, Alkhaddar R, Kot P and Jordan D 2020 Estimating municipal solid waste generation from service processes during the Ashura religious event. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012075
[8] Aayef A N, Al Masoodi W T M, Kamel R J, Abdulredha M, Almansoori N A, Kot P and Muradov M 2021 An experimental study for adapting electrocoagulation as a technique for fluoride removal from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012012
[9] Alyafei A, AlKizwini R S, Hashim K S, Yeboah D, Gkantou M, Al Khaddar R, Al-Faluji D and Zubaidi S L 2020 Treatment of effluents of construction industry using a combined filtration-electrocoagulation method. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012032
[10] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Hashim K 2017 Treatment of Residential Complexes’ Wastewater using Environmentally Friendly Technology Procedia Engineering 196 792-9
[11] Alattabi A W, Harris C B, Alkhaddar R M, Hashim K S, Ortoneda-Pedrola M and Phipps D 2017 Improving sludge settleability by introducing an innovative, two-stage settling sequencing batch reactor Journal of Water Process Engineering 20 207-16
[12] Abdulredha M, Al Khaddar R and Jordan D 2017 Hoteliers’ attitude towards solid waste source separation through mega festivals: A pilot study in Karbala. In: International Conference for Doctoral Research: BUID

[13] Alenezi A K, Hasan H A, Hashim K S, Amoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020 Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing p 012031

[14] Alhendal M, Nasir M J, Hashim K S, Amoako-Attah J, Al-Faluji D, Muradov M, Kot P and Abdulhadi B 2020 Cost-effective hybrid filter for remediation of water from fluoride. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing p 012038

[15] Al-Marri S, AlQuzweeni S S, Hashim K S, AlKhaddar R, Kot P, AlKizwini R S, Zubaidi S L and Al-Khafaji Z S 2020 Ultrasonic-Electrocoagulation method for nitrate removal from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing p 012073

[16] Grmasha R A, Al-sareji O J, Salman J M, Hashim K S and Jasim I A 2020 Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust Within Three Land-Uses of Babylon Governorate, Iraq: Distribution, Sources, and Health Risk Assessment Journal of King Saud University - Engineering Sciences 33

[17] Abdulredha M, Al Khaddar R, Jordan D, Al-Attabi A and Alzeyadi A 2017 Public participation in solid waste management during mega festivals: A pilot study. In: WCST World Congress on Sustainable Technologies Proceedings 2017: Infonomics Society) pp 38-41

[18] Hashim K S, Al-Saati N H, Hussein A H and Al-Saati Z N 2018 An investigation into the level of heavy metals leaching from canal-dreged sediment: a case study metals leaching from dredged sediment. In: First International Conference on Materials Engineering & Science, (Istanbul Aydin University (IAU), Turkey pp 12-22

[19] Abdulla G, Kareem M M, Hashim K S, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020 Removal of iron from wastewater using a hybrid filter. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing p 012035

[20] Hashim K S, Khaddar R A, Jasim N, Shaw A, Phipps D, Kota P, Pedrola M O, Alattabi A W, Abdulredha M and Alawsh R 2019 Electrocoagulation as a green technology for phosphate removal from River water Separation and Purification Technology 210 135-44

[21] Hashim K S, AlKhaddar R, Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljefery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources Engineering and Management (Berline: Springer)

[22] Al-Jumeily D, Hashim K, Alkaddar R, Al-Tufaily M and Lunn J 2019 Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future). In: 11th International Conference on Developments in eSystems Engineering (DesE), (Cambridge, UK pp 214-9

[23] Hashim K S, Ewadh H M, Muhsin A A, Zubaidi S L, Kot P, Muradov M, Aljefery M and Al-Khaddar R 2020 Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies Water Science and Technology 83 1-17

[24] Abdulredha M, al-Khaddar R, Kot P, Jordan D and Abdulridha A 2018 Benchmarking of the Current Solid Waste Management System in Karbala, Iraq, Using Wasteaware Benchmark Indicators. In: World Environmental and Water Resources Congress 2018: Groundwater, Sustainability, and Hydro-Climate/Climate Change: American Society of Civil Engineers Reston, VA) pp 40-8
[25] Abdulraheem F S, Al-Khafaji Z S, Hashim K S, Muradov M, Kot P and Shubbar A A 2020 Natural filtration unit for removal of heavy metals from water. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing p 012034

[26] Alenazi M, Hashim K S, Hassan A A, Muradov M, Kot P and Abdulhadi B 2020 Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing p 012064

[27] Al-Saati N H, Hussein T K, Abbas M H, Hashim K, Al-Saati Z N, Kot P, Sadique M, Aljeferi M H and Carnacina I 2019 Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study *Desalination and Water Treatment* 150 406-12

[28] Omran I I, Al-Saati N H, Hashim K S, Al-Saati Z N, Patryk K, Khaddar R A, Al-Jumeily D, Shaw A, Ruddock F and Aljeferi M 2019 Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel *Desalination and Water Treatment* 168 165-74

[29] Abdulredha M, Al Khaddar R, Jordan D, Kot P, Abdulridha A and Hashim K J W M 2018 Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression 77 388-400

[30] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020 Electrochemical removal of brilliant green dye from wastewater. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing p 012036

[31] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Makiabadi M, Naghdali Z, Hashim K S and Ghanbari R 2020 Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes *Separation Science and Technology* 55 3184-94

[32] Hashim K, Kot P, Zubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljeferi M 2020 Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater *Journal of Water Process Engineering* 33 101079-86

[33] Mohammed A-H, Hussein A H, Yeboah D, Al Khaddar R, Abdulhadi B, Shubbar A A and Hashim K S 2020 Electrochemical removal of nitrate from wastewater. In: *IOP Conference Series: Materials Science and Engineering*: IOP Publishing p 012037

[34] Abdulhadi B A, Kot P, Hashim K S, Shaw A and Khaddar R A 2019 Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process. In: *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)*, (University of Kufa, Iraq pp 12-22

[35] Hashim K S, Al-Saati N H, Alquezweeni S S, Zubaidi S L, Kot P, Kraidi L, Hussein A H, Alkhaddar R, Shaw A and Alwash R 2019 Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters. In: *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)*, (University of Kufa, Iraq pp 25-32

[36] Hashim K S, Hussein A H, Zubaidi S L, Kot P, Kraidi L, Alkhaddar R, Shaw A and Alwash R 2019 Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. In: *2nd International Scientific Conference*, (Al-Qadisiyah University, Iraq pp 12-22

[37] Hashim K S, Ali S S M, AlRifaie J K, Kot P, Shaw A, Al Khaddar R, Idowu I and Gkantou M 2020 Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor *Chemosphere* 247 125868-75
[38] Hassan Alnaimi I J I, Abduljaleel Al-Janabi, Khalid Hashim, Michaela Gkantou, Salah L. Zubaidi, Patryk Kot, Magomed Muradov 2020 Ultrasonic-electrochemical treatment for effluents of concrete plants Ultrasonic-electrochemical treatment for effluents of concrete plants. In: IOP Conference Series Materials Science and Engineering (University of Kufa, Najaf, Iraq pp 1-9

[39] Zanki A K, Mohammad F H, Hashim K S, Muradov M, Kot P, Kareem M M and Abdulhadi B 2020 Removal of organic matter from water using ultrasonic-assisted electrocoagulation method. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012033

[40] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021 Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study Science of The Total Environment 756 1-16

[41] Hashim K S, Shaw A, AlKhaddar R, Kot P and Al-Shamma’a3 A 2021 Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment Journal of Cleaner Production 280

[42] Idowu I A, Atherton W, Hashim K, Kot P, Alkhaddar R, Alo B I and Shaw A 2019 An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences Waste Management 87 761-71

[43] Abdulredha M, Kadhim N, Hussein A, Almutairi M, Alkhaddar R, Yeboah D and Hashim K 2021 Zeolite as a natural adsorbent for nitrogenous compounds being removed from water. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012082

[44] Abdulredha M, Kot P, Al Khaddar R, Jordan D, Abdulridha A J E, Development and Sustainability 2020 Investigating municipal solid waste management system performance during the Arba’een event in the city of Kerbala, Iraq 22 1431-54

[45] Abdulredha M, Muhsin A A, Al-Janabi A, Alajmi B N, Gkantou M, Amoako-Attah J, Al-Jumeily D, Mustafina J and Alkhayyat A 2021 Using SF and CKD as cement replacement materials for producing cement mortar. In: IOP Conference Series: Materials Science and Engineering: IOP Publishing) p 012007

[46] Shubbar A A, Jafer H, Abdulredha M, Al-Khafaji Z S, Nasr M S, Al Masoodi Z and Sadique M J J o B E 2020 Properties of cement mortar incorporated high volume fraction of GGBFS and CKD from 1 day to 550 days 30 101327

[47] O Amin M, AM Khidir M and M Taher A 2014 Manufacturing of Bricks from Soil and Crushed Limestone by Compression-E J AL-Rafdain Engineering Journal 22 24-32

[48] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Masoodi Z A, Sadique M and Hashim K 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations Data in Brief 31 105961-72

[49] Shubbar A A, Sadique M, Nasr M S, Al-Khafaji Z S and Hashim K S 2020 The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash Karbala International Journal of Modern Science 6 1-23

[50] Shubbar A A, Sadique M, Shanbara H K and Hashim K 2020 The Development of a New Low Carbon Binder for Construction as an Alternative to Cement. In Advances in Sustainable Construction Materials and Geotechnical Engineering (Berlin: Springer)

[51] Abdulredha M, Rafid A, Jordan D and Hashim K 2017 The development of a waste management system in Kerbala during major pilgrimage events: determination of solid waste composition Procedia Engineering 196 779-84
[52] Abdulredha M, Al Khaddar R, Jordan D, Kot P, Abdulridha A and Hashim K 2018 Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression Waste Management 77 388-400

[53] Aquino C, Inoue M, Miura H, Mizuta M and Okamoto T 2010 The effects of limestone aggregate on concrete properties J Construction Building Materials 24 2363-8

[54] Kamali-Bernard S, Keinde D and Bernard F 2014 Effect of aggregate type on the concrete matrix/aggregates interface and its influence on the overall mechanical behavior. A numerical study. In: Key engineering materials: Trans Tech Publ) pp 14-7

[55] Kürklü G, Görhan G J C and Materials B 2019 Investigation of usability of quarry dust waste in fly ash-based geopolymer adhesive mortar production J Construction Building Materials 217 498-506

[56] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Al Masoodi Z, Sadique M and Hashim K J D i B 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations

[57] Wang D, Ju Y, Shen H and Xu L 2019 Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber J Construction Building Materials 197 464-73