hTERT Represents an Innovative Bio-marker in Cholangiocarcinoma Detection

Ning Wang
the PLA Rocket Force Characteristic Medical Center

Yanni Li
the PLA Rocket Force Characteristic Medical Center

Yanfang Zheng
the PLA Rocket Force Characteristic Medical Center

Huoming Chen
the PLA Rocket Force Characteristic Medical Center

Xiaolong Wen
University of Science and Technology Beijing

Zhaoxia Li (✉ wrtrefg@126.com)
the PLA Rocket Force Characteristic Medical Center https://orcid.org/0000-0002-0672-788X

Primary research

Keywords: hTERT, Cholangiocarcinoma, Diagnosis, ROC

DOI: https://doi.org/10.21203/rs.3.rs-55344/v1

License: ☺ ☀ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The study was aimed to examine the diagnostic value of serum human telomerase reverse transcriptiptase (*hTERT*) in patients with cholangiocarcinoma (CCA).

Methods: Serum *hTERT* in CCA patients and healthy controls was detected by quantitative real-time PCR (qRT-PCR) and compared by student’s t-test. Relationships of serum *hTERT* and clinical parameters were explained by Chi-square test. The receiver operating characteristics (ROC) analysis was conducted to identify the diagnostic value of serum *hTERT* in CCA.

Results: Serum *hTERT* was up-regulated in CCA patients compared with healthy controls (*P*<0.05). Furthermore, serum *hTERT* was closely related with differentiation (*P*=0.005), distant metastasis (*P*=0.015) and TNM stage (*P*=0.009). The AUC value of ROC curve was 0.901, demonstrating that serum *hTERT* could discriminate between CCA and healthy individuals, with the cutoff point of 1.88. Besides, the diagnostic specificity and sensitivity of serum *hTERT* in CCA were 89.7% and 76.0%, respectively.

Conclusions: *hTERT* may be a promising biomarker for diagnosis of CCA.

Background

Cholangiocarcinoma (CCA) is a rare malignancy in the intrahepatic or extrahepatic biliary tree, originating from the epithelial cells of bile ducts [1, 2]. According to the anatomical and clinical criteria, CCA is classified into three subtypes: intrahepatic CCA, extrahepatic CCA and hilar CCA [3, 4]. Surgical resection strategy remains the only potential curative treatment for CCA patients [5, 6]. However, the major CCA cases are usually diagnosed with disseminated or advanced stage that miss the optimal time for operation, leading to poor outcomes [7]. Although the symptoms of advanced CCA include biliary strictures, abdominal pain, jaundice and fever, even anorexia, vomiting and nausea, the cancer is asymptomatic at early stage, increasing the difficulty for early diagnosis [8, 9]. So far, several biomarkers are identified for CCA screening, such as CEA, CA19-9, ALP, MUC5AC, and CA-S121. However, their clinical value is limited by low diagnosis accuracy [10]. Therefore, it is urgently needed to explore novel biomarker for CCA diagnosis.

Telomerase, a type of ribonucleoprotein, locates at the ends to the chromosomes and consists of two subunits: telomerase RNA template (hTR) and human telomerase reverse transcriptiptase (*hTERT*) [11]. Telomerase plays a pivotal role in cell division via catalyzing the synthesis of telomeric repeat DNA [12, 13]. *hTERT*, a catalytic subunit of telomerase, can regulate the activity of telomerase [14, 15]. *hTERT* is undetectable in normal physiological conditions, however, its over-expression has been observed in various human cancers, including gastric cancer [12], hepatocellular carcinoma [15], and colorectal cancer [16]. Furthermore, its up-regulation shows significant association with aggressive potential of cancer cells, suggesting is promoting function in tumor development and progression [17]. For example, Liang et al. reported that patients with endometrial cancer showed significantly higher blood *hTERT* level than the healthy individuals, moreover, its expression pattern was positively associated with tumor stage,
revealing its predictive function for tumor initiation [18]. The elevated expression of hTERT was also reported in CCA, however, its diagnostic value for the disease remained unidentified [19].

In the present study, we attempted to detect the serum level of hTERT in patients with CCA and estimate its diagnostic value for this disease.

Methods

Patients and specimens

A total of 107 CCA patients at the PLA Rocket Force Characteristic Medical Center were enrolled in this study. All the recruited patients were pathologically diagnosed by two physicians. None of them had received chemo- or radio- therapy 3 weeks before investigation. The clinical information of patients, such as age, gender, differentiation and TNM stage, was listed in Table 1. In addition, 75 healthy donors in the same hospital were recruited as healthy controls. Serum samples were isolated from peripheral blood of both CCA patients and healthy controls via centrifugation. This study was approved by the Ethics Committee of the PLA Rocket Force Characteristic Medical Center, and all patients had provided the informed contents in advance.

Quantitative real-time polymerase chain reaction PCR (qRT-PCR)

Total RNA was isolated from serum samples using Trizol RNA extraction kit (Invitrogen) according to the manufacturer's instructions. Then total RNA was used to synthesize the first strand of cDNA using the iScript cDNA synthesis Kit (Bio-Rad, USA). The relative mRNA level of hTERT was evaluated by qRT-PCR. The reaction was conducted by SYBR Premix Ex Taq™ (TaKaRa, Japan) in Applied Biosystems 7900 Fast Real-Time PCR system (Applied Biosystems, Foster City, California, USA) under optimal conditions. GAPDH was used as an internal standard. The primer sequences were as follows: hTERT forward: 5’-CGGAAGAGTGTCTGGAGCAA-3’, reverse: 5’-GGATGAAGCGGAGTCTGGA-3’; GAPDH forward: 5’-GTCAACGGATTTGGTGCTGTATT-3’, reverse: 5’-AGTCTTCTGGGTGGCAGTGAT-3’. The relative expression value of hTERT mRNA was calculated by $2^{-\Delta\Delta Ct}$ method.

Statistical analysis

All data were analyzed in SPSS18.0 software (SPSS, Inc., Chicago, IL, USA). Student’s t-test was used to compare the expression difference of serum hTERT between groups. The association of hTERT expression and clinical parameters was validated by χ^2 test. Receiver operating characteristics (ROC) curve was plotted to assess the diagnostic value of serum hTERT in CCA. The results were considered to be significant when P value was less than 0.05.

Results

Up-regulation of serum hTERT mRNA in CCA patients
Serum hTERT mRNA levels were determined in 107 CCA patients and 75 healthy controls using qRT-PCR. The expression of serum hTERT mRNA in CCA patients was significantly higher than that in healthy controls was ($P<0.001$) (Figure 1).

Association between hTERT expression and clinical parameters

The patients were divided into two groups according to the median level of serum hTERT mRNA: high expression group and low expression group. Chi-square test demonstrated that the expression profile of hTERT showed close link with differentiation ($P=0.005$), distant metastasis ($P=0.015$) and TNM stage ($P=0.009$) (Table 1). However, no obvious correlation was detected between serum hTERT expression and age, CA19-9 level, or gender ($P>0.05$ for all).

Diagnostic performance of serum hTERT in CCA

The diagnostic accuracy of serum hTERT in CCA was determined by ROC analysis. As shown in Figure 2, the AUC value of the curve was 0.901, suggesting that serum hTERT could discriminate between CCA patients and healthy individuals. The diagnostic sensitivity and specificity of serum hTERT in CCA were 89.7% and 76.0%, respectively, with the optimal cutoff value of 1.88.

Table 1. Relationship of hTERT expression and clinical characteristics
Clinical characteristics

Case NO.	Expression	χ^2	P value
	High (n=53)	Low (n=54)	
Age (years)	3.549	0.060	
<60	63	36	27
≥60	44	17	27
Gender	2.697	0.101	
Male	48	28	20
Female	59	25	34
CA19-9 (U/mL)	1.149	0.284	
<69	50	22	28
≥69	57	31	26
Differentiation	7.941	0.005	
Well, moderate	61	23	38
Poor	46	30	16
Distant metastasis	5.923	0.015	
Present	58	35	23
Absent	49	18	31
TNM stage	6.805	0.009	
I,II	56	21	35
III,IV	51	32	19

Discussion

CCA is a fatal disease of bile duct epithelial cells, with dismal prognosis [20]. Due to the delay in early diagnosis, the majority of CCA patients are diagnosed with metastatic disease, leading to limited therapeutic effects and poor outcomes [21]. Thus, identification of novel biomarkers for early diagnosis of CCA may be a promising way to improve the prognosis of CCA patients. Like other kinds of tumors, the pathogenesis of CCA is a complex process, with the involvement of various molecules. In the previous studies, many molecular biomarkers were identified for CCA. In the study of Khoontawad et al., EXT1 was proved to be overexpressed in CCA and showed close correlation with CCA genesis, suggesting its potential as a biomarker for the disease [22]. Tang et al. revealed that up-regulation of EXH2 predicted aggressive clinical characteristics and poor prognosis for patients with CCA, suggesting its prognostic significance for the disease [23]. Boonjaraspinyo et al. reported that the expression of PDGGA was
positively correlated with aggressive progression of CCA that might be a candidate biomarker for diagnosis and treatment strategies of the disease [24]. To explore the molecular biomarkers for CCA early detection and prognosis evaluation may be an effective approach to improve the outcomes of the patients. In the current study, we investigated the prognostic significance of serum $hTERT$ for CCA.

The molecular abnormalities in tumorigenesis are mainly involved in independent growth, unlimited replication, aging avoidance, block of growth inhibitory signal and escape of apoptosis. Telomeres play an important role in maintaining chromosome stability and cell activity in different animal cells. In normal cells, telomeres are usually presented with procedural shortening, resulting in the apoptosis and senescence of cells. However, in the immortalized and tumor cells, the telomere lengths are maintained by the activated telomerase, resulting the infinite proliferation and canceration [25]. $hTERT$, a subunit of telomerase, plays a crucial role in telomerase activity mainly [26, 27]. Overexpression of $hTERT$ has been found in a large number of cancers, as well as cholangiocarcinoma [19, 28]. Furthermore, its expression patterns showed close association with development and progression of cancer. Based on this, we deduced that $hTERT$ might hold the potential to serve as a biomarker for CCA.

In the present study, we investigated the expression of serum $hTERT$ mRNA in CCA patients and healthy controls using qRT-PCR. The results showed that serum $hTERT$ was increased in CCA patients compared with healthy controls. Furthermore, the elevated expression of $hTERT$ was positively associated with poor tumor differentiation, positive distant metastasis and advanced TNM stages. All the data revealed that $hTERT$ played a carcinogenic role in development and progression of CCA. The conclusion was consistent with the previous study [19]. It was reported that $hTERT$ might regulate tumor metastasis via miR-29a-ITGB1 pathway [29]. A related research also reported that $hTERT$ promoted cancer invasion and metastasis through cooperating with c-Myc to upregulate the expression of heparanase [12]. However, the specific oncogenic mechanisms for $hTERT$ in CCA remained unidentified. Further researches were still needed.

In addition, ROC analysis was established to assess the diagnostic performance of serum $hTERT$ in CCA. The result demonstrated that serum $hTERT$ could discriminate between CCA patients and healthy individuals with high diagnostic sensitivity and specificity. Additional to CCA, the predictive function of $hTERT$ was also determined in other malignancies. In gastric cancer, the expression profile of $hTERT$ showed close link with clinical factors and disease-free survival of the patients that might be a potential prognostic biomarker for the cancer [30]. The plasma $hTERT$ mRNA level was significantly different between healthy individuals and prostate cancer cases, and ROC analysis demonstrated that $hTERT$ was an useful non-invasive diagnostic biomarker for the disease [31]. Taken together, $hTERT$ might be a potential molecular biomarker for human cancer that might be widely used for early detection, targeted treatment, and prognosis evaluation in tumor.

Conclusion
In conclusion, serum hTERT expression is significantly increased in CCA patients, and positively related with aggressive clinical characteristics. Serum hTERT may be a potential biomarker for CCA diagnosis.

Abbreviations

- human telomerase reverse transcriptase (hTERT)
- cholangiocarcinoma (CCA)
- quantitative real-time PCR (qRT-PCR)
- receiver operating characteristics (ROC)

Declarations

Ethics approval and consent to participate

This study was supported by the Ethics Committee of the PLA Rocket Force Characteristic Medical Center and also has been carried out in accordance with the World Medical Association Declaration of Helsinki.

The subjects had been informed the objective. Certainly, written consents were signed by every subject in this study.

Consent for publication

We obtaining permission from participants to publish their data.

Availability of data and materials The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests The authors declare that they have no competing interests.

Funding Not applicable.

Authors’ contributions N.W. design of the work; Y.L. the acquisition, analysis, Y.Z. interpretation of data; H.C. the creation of new software used in the work; X.W., Z.L. have drafted the work or substantively revised it. All authors read and approved the final manuscript.

Acknowledgements Not applicable.

References

1. Pattanapairoj S, Silsirivanit A, Muisuk K, Seubwai W, Cha'on U, Vaeteewoottacharn K, Sawanyawisuth K, Chetchotsak D, Wongkham S: **Improve discrimination power of serum markers for diagnosis of**
cholangiocarcinoma using data mining-based approach. *Clinical biochemistry* 2015, 48(10-11):668-673.

2. Plengsuriyakarn T, Karbwang J, Na-Bangchang K: Anticancer activity using positron emission tomography-computed tomography and pharmacokinetics of beta-eudesmol in human cholangiocarcinoma xenografted nude mouse model. *Clinical and experimental pharmacology & physiology* 2015, 42(3):293-304.

3. Annunziata S, Caldarella C, Pizzuto DA, Galiandro F, Sadeghi R, Giovanella L, Treglia G: Diagnostic accuracy of fluorine-18-fluorodeoxyglucose positron emission tomography in the evaluation of the primary tumor in patients with cholangiocarcinoma: a meta-analysis. *BioMed research international* 2014, 2014:247693.

4. Li JS, Han TJ, Jing N, Li L, Zhang XH, Ma FZ, Liu JY: Obesity and the risk of cholangiocarcinoma: a meta-analysis. *Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine* 2014, 35(7):6831-6838.

5. Nishikawa T, Tsuyuguchi T, Sakai Y, Sugiyama H, Kishimoto T, Ohtsuka M, Miyazaki M, Yokosuka O: Preoperative assessment of longitudinal extension of cholangiocarcinoma with peroral video-cholangioscopy: a prospective study. *Digestive endoscopy: official journal of the Japan Gastroenterological Endoscopy Society* 2014, 26(3):450-457.

6. Razumilava N, Gores GJ: Cholangiocarcinoma. *Lancet* 2014, 383(9935):2168-2179.

7. Zhang YA, Shen XZ, Zhu JM, Liu TT: Extensive Metastatic Cholangiocarcinoma Associated With IgG4-Related Sclerosing Cholangitis Misdiagnosed as Isolated IgG4-Related Sclerosing Cholangitis: A Case Report and Literature Review. *Medicine* 2015, 94(45):e2052.

8. Takahashi H, Ojima H, Shimizu H, Furuse J, Furukawa H, Shibata T: Axitinib (AG-013736), an oral specific VEGFR TKI, shows potential therapeutic utility against cholangiocarcinoma. *Japanese journal of clinical oncology* 2014, 44(6):570-578.

9. Thongsom S, Chaocharoen W, Silsirivanit A, Wongkham S, Sripa B, Choe H, Suginta W, Talabnin C: YKL-40/chitinase-3-like protein 1 is associated with poor prognosis and promotes cell growth and migration of cholangiocarcinoma. *Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine* 2016, 37(7):9451-9463.

10. Wongkham S, Silsirivanit A: State of serum markers for detection of cholangiocarcinoma. *Asian Pacific journal of cancer prevention: APJCP* 2012, 13 Suppl:17-27.

11. Liu H, Liu Q, Ge Y, Zhao Q, Zheng X, Zhao Y: hTERT promotes cell adhesion and migration independent of telomerase activity. *Scientific reports* 2016, 6:22886.

12. Tang B, Xie R, Qin Y, Xiao YF, Yong X, Zheng L, Dong H, Yang SM: Human telomerase reverse transcriptase (hTERT) promotes gastric cancer invasion through cooperating with c-Myc to upregulate heparanase expression. *Oncotarget* 2016, 7(10):11364-11379.

13. Long C, Wang J, Guo W, Wang H, Wang C, Liu Y, Sun X: Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells. *Biochemical and biophysical research communications* 2016, 469(1):87-93.
14. Zhou XU, Lu J, Zhu H: **Correlation between the expression of hTERT gene and the clinicopathological characteristics of hepatocellular carcinoma.** *Oncology letters* 2016, **11**(1):111-115.

15. Zhang J, Wei MH, Lu R, Du GF, Zhou G: **Declined hTERT expression of peripheral blood CD4(+) T cells in oral lichen planus correlated with clinical parameter.** *Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology* 2016, **45**(7):516-522.

16. Qin Y, Tang B, Hu CJ, Xiao YF, Xie R, Yong X, Wu YY, Dong H, Yang SM: **An hTERT/ZEB1 complex directly regulates E-cadherin to promote epithelial-to-mesenchymal transition (EMT) in colorectal cancer.** *Oncotarget* 2016, **7**(1):351-361.

17. Shan S, Ma A, Hu Y, Jia Q, Wang Y, Peng J: **Development of sintering-resistant CaO-based sorbent derived from eggshells and bauxite tailings for cyclic CO2 capture.** *Environ Pollut* 2016, **208**(Pt B):546-552.

18. Liang J, Yin G, Chen M, Wu A: **Detection of hTERT mRNA in peripheral blood and its implication for diagnosis of early stage postoperative endometrial cancer micrometastasis.** *Panminerva medica* 2016, **58**(3):206-210.

19. Leelawat K, Leelawat S, Ratanachu-Ek T, Trubwongchareon S, Wannaprasert J, Tripongkaruna S, Chantawibul S, Tepaksorn P: **Circulating hTERT mRNA as a tumor marker in cholangiocarcinoma patients.** *World journal of gastroenterology : WJG* 2006, **12**(26):4195-4198.

20. Shuang ZY, Wu WC, Xu J, Lin G, Liu YC, Lao XM, Zheng L, Li S: **Transforming growth factor-beta1-induced epithelial-mesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma.** *Cancer letters* 2014, **354**(2):320-328.

21. Zhao R, Chang Y, Liu Z, Liu Y, Guo S, Yu J, Wang J: **Effect of vascular endothelial growth factor-C expression on lymph node metastasis in human cholangiocarcinoma.** *Oncology letters* 2015, **10**(2):1011-1015.

22. Khoontawad J, Hongsrichan N, Chamgramol Y, Pinlaor P, Wongkham C, Yongvanit P, Païrojkul C, Khuntikeo N, Roytrakul S, Boonmars T *et al.*: **Increase of exostosin 1 in plasma as a potential biomarker for opisthorchiasis-associated cholangiocarcinoma.** *Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine* 2014, **35**(2):1029-1039.

23. Tang B, Du J, Li Y, Tang F, Wang Z, He S: **EZH2 elevates the proliferation of human cholangiocarcinoma cells through the downregulation of RUNX3.** *Med Oncol* 2014, **31**(11):271.

24. Boonjaraspinyo S, Wu Z, Boonmars T, Kaewkes S, Loilome W, Sithithaworn P, Nagano I, Takahashi Y, Yongvanit P, Bhudhisawasdi V: **Overexpression of PDGFA and its receptor during carcinogenesis of Opisthorchis viverrini-associated cholangiocarcinoma.** *Parasitology international* 2012, **61**(1):145-150.

25. Zhang D, Xiao YF, Zhang JW, Xie R, Hu CJ, Tang B, Wang SM, Wu YY, Hao NB, Yang SM: **miR-1182 attenuates gastric cancer proliferation and metastasis by targeting the open reading frame of hTERT.** *Cancer letters* 2015, **360**(2):151-159.
26. Zhou X, Zhu H, Lu J: **PTEN and hTERT gene expression and the correlation with human hepatocellular carcinoma.** *Pathology, research and practice* 2015, **211**(4):316-319.

27. Khosravi-Maharlooei M, Jaberipour M, Hosseini Tashnizi A, Attar A, Amirmoezi F, Habibagahi M: **Expression Pattern of Alternative Splicing Variants of Human Telomerase Reverse Transcriptase (hTERT) in Cancer Cell Lines Was not Associated with the Origin of the Cells.** *International journal of molecular and cellular medicine* 2015, **4**(2):109-119.

28. Rao Y, Xiong W, Liu H, Jia C, Zhang H, Cui Z, Zhang Y, Cui J: **Inhibition of telomerase activity by dominant-negative hTERT retards the growth of breast cancer cells.** *Breast Cancer* 2016, **23**(2):216-223.

29. He B, Xiao YF, Tang B, Wu YY, Hu CJ, Xie R, Yang X, Yu ST, Dong H, Zhao XY *et al.*: **hTERT mediates gastric cancer metastasis partially through the indirect targeting of ITGB1 by microRNA-29a.** *Scientific reports* 2016, **6**:21955.

30. Lee YK, Chung HH, Kim JW, Song YS, Park NH: **Expression of phosphorylated Akt and hTERT is associated with prognosis of epithelial ovarian carcinoma.** *International journal of clinical and experimental pathology* 2015, **8**(11):14971-14976.

31. March-Villalba JA, Martinez-Jabaloyas JM, Herrero MJ, Santamaria J, Alino SF, Dasi F: **Cell-free circulating plasma hTERT mRNA is a useful marker for prostate cancer diagnosis and is associated with poor prognosis tumor characteristics.** *PloS one* 2012, **7**(8):e43470.

Figures
Figure 1

Relative expression value of serum hTERT mRNA in CCA patients and healthy individuals. The level of serum hTERT mRNA in CCA showed significantly higher than that in healthy controls (***: indicated P<0.001).
Figure 2

ROC analysis for diagnostic value of serum hTERT in CCA. From the curve, we found that serum hTERT could act as a diagnostic marker in CCA with the AUC value of 0.901, combining with the sensitivity of 89.7% and the specificity of 76.0%. The cut-off value of serum hTERT for CCA diagnosis was 1.875.