Several studies report high effectiveness of COVID-19 vaccines against SARS-CoV-2 infection and severe disease, however an important knowledge gap is the vaccine effectiveness against transmission (VET). We present estimates of the VET to household and other close contacts in the Netherlands, from February to May 2021, using contact monitoring data. The secondary attack rate among household contacts was lower for fully vaccinated than unvaccinated index cases (11% vs 31%), with an adjusted VET of 71% (95% confidence interval: 63–77).

An important question when making prognoses of the pandemic in the near future and of the need on non-pharmaceutical control measures is to what extent the vaccines reduce the likelihood of transmission from infected vaccinees. Based on routine contact monitoring data, we here estimate the vaccine effectiveness against transmission (VET) and the vaccine effectiveness against infection (VE) among household and other close contacts of confirmed cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the Netherlands, between 1 February and 27 May 2021. The Alpha variant (Phylogenetic Assignment of Named Global Outbreak (Pango) lineage designation B.1.1.7) was the dominant variant in the area at that time.

Source and contact tracing
In the Netherlands, people are encouraged to undergo SARS-CoV-2 testing free of charge when experiencing symptoms or after contact with a confirmed case [1]. Infections confirmed by PCR, loop mediated isothermal amplification (LAMP) or antigen test are notified to the regional Municipal Health Services (MHS), who perform source and contact tracing and contact monitoring [2]. During our study period, household members and other close contacts of confirmed cases needed to quarantine for 10 days post exposure. All close contacts of a confirmed case were encouraged to get tested as soon as possible after exposure. In addition, a test was recommended on the 5th day after last exposure. If negative, contacts could end quarantine. We obtained a pseudonymised minimal contact monitoring dataset from all MHS. Additional data on index cases and contacts who tested positive, including the vaccine received and date of symptom onset, was extracted from the national infectious disease notification registry. Of note, a contact becomes an index case when testing positive, so our study could include some persons both as contact and as index case.

Vaccination status
The time since vaccination of the index case was based on the number of days between vaccination and a date used for statistics (DUFS), which was either the reported date of symptom onset or, if that was unknown, the date of positive test result minus 2 days. For vaccinated contacts, time since vaccination was calculated as the number of days between vaccination and the date of first exposure of the contact to the index case within the infectious period of the index, which is defined during source and contact tracing as 2 days before symptom onset or 2 days before test. Partly vaccinated
was defined as having received the first dose of a two-dose coronavirus disease (COVID-19) vaccine, with a time since vaccination of at least 14 days. Fully vaccinated was defined as having completed a two-dose schedule with a time since vaccination of at least 7 days, or the one-dose Janssen (Ad26.COV2-S (recombinant), Janssen-Cilag International NV, Beerse, Belgium) schedule with a time since vaccination of at least 14 days. We included only index cases aged 18 years or older because children were not eligible for vaccination at the time. Contacts aged 0–17 years were included in the VET analyses, but not in the VE analyses. In order to exclude co-primary cases, the household contacts of an index were excluded if the most likely setting of infection of the index was ‘at home’ according to the source tracing interview (excluding 44,676 contacts (15%)). Further, only SARS-CoV-2-positive contacts with a DUFS within 1 to 14 days after the DUFS of the index case were included in the analyses, to reduce misclassification of indexes and secondary cases.

Table 1
Characteristics of COVID-19 index cases (18 years and older), by vaccination status of the index and characteristics of contacts, and by vaccination status of the contact, the Netherlands, 1 February–27 May 2021 (n = 113,582 index cases, n = 253,168 contacts)

Vaccination status index	Unvaccinated	Partially vaccinated	Fully vaccinated	Unvaccinated	Partially vaccinated	Fully vaccinated							
n	%	n	%	n	%	n	%	n	%	n	%		
Total	110,872	2,088	622	243,360	4,411	5,397							
Number of contacts by type													
Household	139,802	56	2,032	50	706	55	138,095	57	1,917	43	2,528	47	
Other close contacts	108,041	44	2,004	50	583	45	105,265	43	2,494	57	2,869	53	
Sex													
Female	56,554	51	1,325	63	472	76	121,183	50	2,689	61	4,139	77	
Male	54,318	49	763	37	150	24	120,473	50	1,684	38	1,216	23	
Unknown/other	0	0	0	0	0	0	0	1,704	1	38	1	42	1
Age (years)													
0–11	0	0	0	0	0	0	42,119	17	0	0	0	0	
12–17	0	0	0	0	0	0	19,770	8	0	0	0	0	
18–29	31,736	29	209	10	122	20	57,264	24	437	10	961	18	
30–49	42,142	38	347	17	179	29	54,591	22	562	13	1,102	20	
50–74	34,383	31	1,155	55	194	31	58,688	24	2,688	61	2,280	42	
≥ 75	2,611	2	377	18	127	20	4,321	2	724	16	1,054	20	
Unknown	0	0	0	0	0	0	6,607	3	0	0	0	0	
Vaccine received													
Vaxzevria	NA	1,144	55	35	6	NA	2,127	48	407	8			
Comirnaty	NA	890	43	530	85	NA	1,235	28	3,312	61			
Janssen	NA	0	0	21	3	NA	0	0	83	2			
Spikevax	NA	54	3	36	6	NA	86	2	247	5			
Unknown	NA	0	0	0	0	NA	963	22	1,348	25			
Household composition													
Couple with children	12,782	15	117	8	61	14	34,603	25	126	7	286	11	
Couple without children	33,096	40	809	58	181	43	32,264	23	908	47	914	36	
Households with > two adults	21,459	26	272	19	112	27	55,408	40	648	34	1,062	42	
Other	16,056	19	197	14	68	16	15,820	11	235	12	266	11	
Month of notification date of the index case													
Feb	29,953	27	196	9	43	7	62,213	26	182	4	374	7	
Mar	38,573	35	435	21	163	23	88,116	36	738	17	1,571	29	
Apr	20,648	19	448	21	151	24	45,977	19	919	21	1,252	23	
May	21,698	20	1,009	48	285	46	47,054	19	2,572	58	2,000	41	

COVID-19: coronavirus disease; NA: not applicable.

* Column percentage.

Household composition	Couple with children	Couple without children	Households with > two adults	Other			
n	%	n	%	n	%	n	%
12,782	15	33,096	40	21,459	26	16,056	19
117	8	809	58	272	19	197	14

Month of notification date of the index case	Feb	Mar	Apr	May			
n	%	n	%	n	%	n	%
29,953	27	38,573	35	20,648	19	21,698	20
196	9	435	21	448	21	1,009	48

Index cases and contacts
The final dataset contained 253,168 contacts of 113,582 index cases (5,394 persons in our study were both contact and index case). Of the index cases, 622 (0.5%) were fully vaccinated and 2,088 (1.8%) were partly vaccinated. Of the contacts, 5,397 (2.1%) were fully vaccinated and 4,411 were partly vaccinated (1.7%). Characteristics of indexes and contacts are shown in Table 1. We calculated the VET via the secondary attack rate (SAR) among close contacts of confirmed index cases: 1 − (SAR_vaccinated_index / SAR_unvaccinated_index) × 100% [3]. The VE among contacts was calculated as: 1 − (AR_vaccinated_contacts / AR_unvaccinated_contacts)
Crude attack rate of SARS-CoV-2 among contacts, by vaccination status of the index (left to right) and vaccination status of the contact (top to bottom), the Netherlands, 1 February–27 May 2021 (n = 113,582 index cases, n = 253,168 contacts)

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.

The n subtotals in the panels indicate the number of unvaccinated/partly vaccinated/fully vaccinated household and other close contacts of unvaccinated/partly vaccinated/fully vaccinated index cases. For example, n=604 in the upper left panel denotes that fully vaccinated index cases had 604 unvaccinated household contacts.
Table 2
Secondary attack rate of SARS-CoV-2 by vaccination status of the index case (≥ 18 years) and vaccine effectiveness against transmission\(^a\), crude and adjusted for age group of the index case\(^b\) and contact\(^c\) and for vaccination status\(^d\) of contacts and month of notification date of the index case, the Netherlands, 1 February−27 May 2021 (n = 113,582 index cases, n = 253,168 contacts)

Analysis	Unvaccinated index - SAR	Partly vaccinated index - SAR	Fully vaccinated index - SAR														
	Positive	Total	%														
Household contacts																	
	43,069	139,802	31	587	2,032	29	9	(−1 to 17)	21	12 to 28	79	706	11	72	65 to 78	71	63 to 77
Household contacts - unvaccinated only	42,382	135,974	31	432	1,517	28	12	(11 to 21)	23	14 to 32	68	604	11	73	64 to 79	73	65 to 79
Other close contacts	11,395	108,041	11	193	2,004	10	11	(−4 to 23)	22	9 to 33	50	583	9	22	(−5 to 43)	22	(−5 to 43)
Other close contacts - unvaccinated only	11,115	103,123	11	171	1,680	10	7	(−9 to 21)	22	8 to 34	44	462	10	14	(−18 to 37)	24	(−5 to 45)
Household contacts - Vaxzevria	43,069	139,802	31	364	1,306	28	13	(1 to 23)	15	4 to 26	5	39	NP	67	61 to 87	58	(−12 to 84)
Household contacts - Comirnaty	43,069	139,802	31	211	663	32	−4	(−22 to 12)	26	12 to 37	70	596	12	71	62 to 77	70	(61 to 77)
Household contacts - Spikevax	43,069	139,802	31	12	63	NP	46	(−3 to 71)	51	8 to 74	2	40	NP	88	51 to 97	88	(50 to 97)
Household contacts - Janssen	43,069	139,802	31	NA	NA	NA	2	31 NP	85	37 to 96	77	(6 to 94)					

CI: confidence interval; GEE: generalised estimating equations; NA: not applicable; NP: not presented; SAR: secondary attack rate; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; VET: vaccine effectiveness against transmission.

\(^a\) VET estimated by GEE with exchangeable correlation structure.

\(^b\) Age groups index cases: 18−29, 30−49, 50−74, ≥75 years.

\(^c\) Age groups contacts: 0−17, 18−59, ≥60 years.

\(^d\) Vaccination status of contacts: unvaccinated, partly or fully vaccinated.

Partly vaccinated was defined as having received the first dose of a two-dose schedule at least 14 days before onset of symptoms. Fully vaccinated was defined as having completed a two-dose schedule at least 7 days or the one-dose Janssen schedule at least 14 days before symptom onset. Only percentages based on denominators above 100 are presented, please note the VET estimates based on smaller numbers are less precise.
Analysis	Unvaccinated contacts - AR	Partly vaccinated contacts - AR	Partly vaccinated contacts - crude VE (95% CI)	Partly vaccinated contacts - adjusted VE (95% CI)	Fully vaccinated contacts - AR	Fully vaccinated contacts - crude VE (95% CI)	Fully vaccinated contacts - adjusted VE (95% CI)			
Household contacts	32,086	91,528	35 % 573	1,917	30 % 21 (13 to 28) enumeration	23 (14 to 30)	280	2,528	11 % 76 (73 to 79) enumeration	75 (72 to 78)
Household contacts - only unvaccinated index	31,694	90,066	35 % 432	1,508	29 % 25 (17 to 33) enumeration	26 (17 to 34)	255	2,320	11 % 77 (74 to 79) enumeration	76 (73 to 79)
Other close contacts	9,883	81,336	12 % 231	2,494	9 % 24 (13 to 34) enumeration	28 (17 to 37)	77	2,869	3 % 79 (74 to 83) enumeration	79 (74 to 83)
Other close contacts - only unvaccinated index	9,699	81,666	12 % 210	2,257	9 % 24 (12 to 34) enumeration	27 (15 to 37)	70	2,661	3 % 79 (74 to 84) enumeration	80 (74 to 84)
Household contacts - Vaxzevria	32,086	91,528	35 % 356	1,052	34 % 5 (−8 to 16) enumeration	2 (−11 to 14)	11	186	6 % 88 (78 to 93) enumeration	87 (77 to 93)
Household contacts - Comirnaty	32,086	91,528	35 % 194	467	42 % −30 (−56 to −8) enumeration	−18 (−43 to 2)	242	1,605	15 % 67 (62 to 71) enumeration	65 (60 to 70)
Household contacts - Spikevax	32,086	91,528	35 % 11	48 NP	42 % 45 (−5 to 71) enumeration	33 (−27 to 64)	4	121	3 % 93 (83 to 97) enumeration	91 (79 to 97)
Household contacts - Janssen	32,086	91,528	35 % 11	48 NP	42 % 45 (−5 to 71) enumeration	33 (−27 to 64)	4	121	3 % 93 (83 to 97) enumeration	91 (79 to 97)

AR: attack rate; CI: confidence interval; GEE: generalised estimating equations; NA: not applicable; NP: not presented; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; VE: vaccine effectiveness.

*VE estimated by GEE with exchangeable correlation structure.
*Age groups index cases: 18–29, 30–49, 50–74, ≥75 years.
*Age groups contacts: 0–17, 18–59, ≥60 years.
*Vaccination status of contacts: unvaccinated, partly or fully vaccinated.

Only contacts 18 years and older were included. Partly vaccinated was defined as having received the first dose of a two-dose schedule at least 14 days before onset of symptoms. Fully vaccinated was defined as having completed a two-dose schedule at least 7 days or the one-dose Janssen schedule at least 14 days before symptom onset. Only percentages based on denominators above 100 are presented, please note the VE estimates based on smaller numbers are less precise.
binomial generalised linear model. For parameter fit-
ing we used the generalised estimating equations
approach with exchangeable correlation structure to
account for clustering of contacts belonging to the
same index case [4].

Vaccine effectiveness against transmission
The Figure shows the crude attack rates among
contacts, in relation to the vaccination status of both
index and contact. The SAR was 31% among household
contacts of unvaccinated index cases and 11% among
household contacts of fully vaccinated index cases
(Table 2). Adjusting for age of the index and contact,
vaccination status of the contact and month of noti-
fication date of the index case, the VET to household
contacts after full vaccination was 71% (95% confi-
dence interval (CI): 63 to 77). The VET to other close
contacts was much lower (22%; 95% CI: −5 to 43),
probably because of the larger risk of the contact being
infected through another source (i.e. misclassifica-
tion of the index case). Stratified by vaccine received
by the index case, VET values were estimated at 58%
for Vaxzevria (ChAdOx1-S; AstraZeneca, Cambridge,
United Kingdom), 70% for Comirnaty (BNT162b2; BioNtech/Pfizer, Mainz, Germany/New York, United
States (US)), 88% for Spikevax (mRNA-1273, Moderna,
Cambridge, US) and 77% for the Janssen vaccine.
For all vaccines with a two-dose schedule, the adjusted
VET (aVET) after one dose was considerably lower than
after two doses: 15% for Vaxzevria, 26% for Comirnaty
and 51% for Spikevax (Table 2).

Vaccine effectiveness among contacts
The adjusted VE (aVE) for fully vaccinated household
contacts of confirmed cases was estimated at 75%
(95% CI: 72 to 78) and for fully vaccinated other close
contacts at 79% (95% CI: 74 to 83) (Table 3). Stratified
by the vaccine received by the contact, aVE was 87%
for Vaxzevria, 65% for Comirnaty, 91% for Spikevax
and 12% for Janssen’s vaccine. Note that the estimate
for the Janssen vaccine was based on only 44 vacci-
nated contacts, with a median time since vaccination
of 21 days. The proportion of vaccinated contacts with
unknown vaccine manufacturer was large (Table 1),
which reduces the power of the analyses stratified by
vaccine.

Discussion
We estimated a VET of 71% among household contacts
of fully vaccinated index cases. Harris et al. found a
VET of 40–50% for unvaccinated households contacts
[5]. That study mostly included partly vaccinated index
cases. A study among household contacts of health-
care workers by Shah et al. found a 30% (after the first
dose) and 64% (after the second dose) reduction in the
risk of confirmed SARS-CoV-2 infection among house-
hold members of vaccinated healthcare workers, how-
ever these healthcare workers were not confirmed as
index cases [6].

Martínez-Baz et al. recently estimated VE among
20,961 close contacts of confirmed cases in Spain [7].
In that study, the VE for two doses of Comirnaty was
65% (95% CI: 56 to 73) against infection, which is in
agreement with our finding of 65% VE for this vaccine.
These estimates are lower than VE from other observa-
tional post-marketing studies. Possibly, the VE against
infection is lower when there is high and prolonged
exposure to SARS-CoV-2, which is likely for household
contacts of confirmed cases [8]. Of note, Martínez-Baz
et al. showed an aVE for Comirnaty of 94% (95% CI: 60
to 99) against hospitalisation among close contacts of
confirmed cases.

As our study used data not primarily collected for
research purposes, it has some important limitations.
Our data do not contain information on negative tests
among contacts, therefore we do not know if contacts
did not get infected or did not seek testing. However,
it is likely that close contacts were tested regardless
of vaccination status, as the quarantine period for
close contacts at the time was reduced from 10 to 5
days when tested negative on day 5 after exposure. For
contacts who tested positive, data on vaccination sta-
tus were more complete because missing data could
be supplemented from the notifications. We explored
whether this differential completeness influenced our
results by excluding all index cases with any house-
hold contact with unknown vaccination status or date
of vaccination, and the results were the same (data not
shown).

Although we tried to minimise misclassification of
indexes and contacts by excluding index cases infected
at home and contacts with symptom onset before or
at the same time as the index, it is plausible that in
some instances, the transmission route was reversed
or transmission occurred through another source (espe-
cially for non-household contacts). If some contacts
of vaccinated index cases were infected through other
sources, our VET is an underestimation. In addition,
we do not have reliable data on the symptoms of the
included index cases. Because our analysis on house-
hold contacts was restricted to notified index cases
not infected at home, probably most of these index
cases sought testing because they had symptoms.
Symptomatic cases may have been misclassified as
index cases in a household, where in reality an asympto-
matic household member was the source of transmis-
sion to the supposed index case and a third household
member. If vaccinees are more likely to be asymptom-
atic, this source of misclassification may result in an
overestimation of the VET.

As the Alpha variant of SARS-CoV-2 dominated
during the study period, an important question is to what
extent these VET and VE estimates hold in the con-
text of the Delta variant (Pango lineage designation
B.1.617.2) which is now dominant in the Netherlands.
Also, further research is needed to determine whether
the observed differences between the different
Conclusion

Our study showed that the COVID-19 vaccines not only protect the vaccinee against SARS-CoV-2 infection, but also offer protection to transmission to close contacts after completing the full schedule. This finding underscores the importance of full vaccination of close contacts of vulnerable persons.

Members of the RIVM COVID-19 surveillance and epidemiology team:

Agnetha Hofhuis, Anne Teirlinck, Alies van Lier, Bronke Boudewijns, Carolien Verstraten, Guido Willekens, Irene Veldhuijzen, Jan Polman, Jan van de Kassteele, Jeroen Alblas, Janneke van Heereveld, Janneke Heijne, Kirsten Bulsink, Lieke Wielde, Liselotte van Asten, Liz Jenniskens, Loes Soetens, Maarten Mulder, Maarten Schipper, Marit de Lange, Naomi Smorenburg, Nienke Neppelenbroek, Patrick van den Berg, Priscilla de Oliveira Bressane Lima, Rolina van Gaalen, Sara Wijburg, Senna van Iersel, Siméon de Bruijn, Stijn Andeweg, Sjoerd Wierenga, Susan Lanooij, Sylvia Keijser, Tara Smit, Ton Klinkenberg, Van der Heijden, Jacco Wallinga, Janneke van Heereveld, Janneke Heijne, Kirsten Bulsink, Wouter de Groot, Stijn Andeweg, Susan Hahné, Susan van den Hof, Hester de Melker, Mirjam Knol. Manuscript draft: Brechje de Gier. All authors critically revised the manuscript and approved the final manuscript.

Acknowledgements

The authors would like to thank all source and contact tracing personnel at the 25 Municipal Health Services (GGDen) who have been invaluable for control and surveillance of the COVID-19 epidemic in the Netherlands, and who collected these important data. Funding: This work was funded by the Ministry of Health, Welfare and Sports.

Conflict of interest

None declared.

Authors’ contributions

Study design: Brechje de Gier, Stijn Andeweg, Jan van de Kassteele, Mirjam Knol. Data collection, management and quality control: Rosa Joosten, Ronald ter Schegget, Stijn Andeweg, Naomi Smorenburg, the RIVM COVID-19 surveillance and epidemiology team. Data analysis: Brechje de Gier, Stijn Andeweg. Interpretation of the data: Brechje de Gier, Stijn Andeweg, Susan Hahné, Susan van den Hof, Hester de Melker, Mirjam Knol. Manuscript draft: Brechje de Gier. All authors critically revised the manuscript and approved the final manuscript.

References

1. de Gier B, de Oliveira Bressane Lima P, van Gaalen RD, de Boer PT, Alblas J, Ruijten M, et al. Occupation- and age-associated risk of SARS-CoV-2 test positivity, the Netherlands, June to October 2020. Euro Surveill. 2020;25(50):2021084. https://doi.org/10.2807/1560-7917.ES.2020.25.50.2021084 PMID: 33334396

2. Center for Infectious Disease Control. Protocol bron- en contactonderzoek COVID-19 [Protocol source and contact tracing], Bilthoven: Rijksinstituut voor Volksgezondheid en Milieu; 8 July 2021. Available from: https://cic.rivm.nl/COVID-19-bco

3. Snijders BEP, van Lier A, van de Kassteele J, Fanoy EB, Ruijs WLM, Hulshoff, et al. Mumps vaccine effectiveness in primary schools and households, the Netherlands, 2008. Vaccine. 2012;30(9):2999-3002. https://doi.org/10.1016/j.vaccine.2012.02.035 PMID: 22381073

4. Halloran ME, Préziosi M-P, Chu H. Estimating vaccine efficacy from secondary attack rates, J Am Stat Assoc. 2003;98(461):38-46. https://doi.org/10.1198/016214503388619076

5. Harris RJ, Hall JA, Zaidi A, Andrews NJ, Dunbar JK, Dabrera G. Impact of vaccination on household transmission of SARS-CoV-2 in England. London: Knowledge Hub; 2021. Available from: https://khub.net/documents/355939561/390853656/Impact-of-vaccination-on-household-transmission-of-SARS-CoV-2-in-England.pdf?Expires=1655357214&OAccessKeyId=18555157214&Signature=xQ7ANfQqF%j4Xx4e5KqKz3%j7W7Gw

6. Shah AS, Gribben C, Bishop J, Hanlon P, Caldwell D, Wood R, et al. Effect of vaccination on transmission of COVID-19: an observational study in healthcare workers and their households. medRxiv. 2021:2021.03.11.21253275.

7. Martínez-Baz I, Miqueleiz A, Casado I, Navascués A, Trebajo-Sanmartín C, Burgui C, et al. Effectiveness of COVID-19 vaccines in preventing SARS-CoV-2 infection and hospitalisation, Navarre, Spain, January to April 2021. Euro Surveill. 2021;26(21):2100438. https://doi.org/10.2807/1560-7917.ES.2021.26.21.2100438 PMID: 34047271

8. Halloran ME, Haber M, Longini IM Jr, Struchiner CJ. Direct and indirect effects in vaccine efficacy and effectiveness. Am J Epidemiol. 1991;133(4):323-31. https://doi.org/10.1093/oxfordjournals.aje.a115884

License, supplementary material and copyright

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0) Licence. You may share and adapt the material, but must give appropriate credit to the source, provide a link to the licence and indicate if changes were made.

Any supplementary material referenced in the article can be found in the online version.

This article is copyright of the authors or their affiliated institutions, 2021.