ON TREE-PARTITION-WIDTH

DAVID R. WOOD

Abstract. A tree-partition of a graph G is a proper partition of its vertex set into ‘bags’, such that identifying the vertices in each bag produces a forest. The tree-partition-width of G is the minimum number of vertices in a bag in a tree-partition of G. An anonymous referee of the paper by Ding and Oporowski [J. Graph Theory, 1995] proved that every graph with tree-width $k \geq 3$ and maximum degree $\Delta \geq 1$ has tree-partition-width at most $24k\Delta$. We prove that this bound is within a constant factor of optimal. In particular, for all $k \geq 3$ and for all sufficiently large Δ, we construct a graph with tree-width k, maximum degree Δ, and tree-partition-width at least $(\frac{1}{8} - \epsilon)k\Delta$. Moreover, we slightly improve the upper bound to $5(\frac{k}{2} + 1)(\frac{7}{2}\Delta - 1)$ without the restriction that $k \geq 3$.

1. Introduction

A graph H is a partition of a graph G if:

- each vertex of H is a set of vertices of G (called a bag),
- every vertex of G is in exactly one bag of H, and
- distinct bags A and B are adjacent in H if and only if some edge of G has one endpoint in A and the other endpoint in B.

The width of a partition is the maximum number of vertices in a bag. Informally speaking, the graph H is obtained from a proper partition of $V(G)$ by identifying the vertices in each part, deleting loops, and replacing parallel edges by a single edge.

If a forest T is a partition of a graph G, then T is a tree-partition of G. The tree-partition-width of G, denoted by $\text{tpw}(G)$, is the minimum width of a tree-partition of G. Tree-partitions were independently introduced by Seese [23] and Halin [19], and have since been widely investigated [6, 7, 12, 13, 17, 24]. Applications of tree-partitions include graph drawing [9, 14, 15, 23], graph colouring [2], partitioning graphs into subgraphs with only small components [1], monadic second-order logic [20], and network emulations [3, 4, 8, 18]. Planar-partitions and other more general structures have also recently been studied [11, 25].
What bounds can be proved on the tree-partition-width of a graph? Let $\text{tw}(G)$ denote the tree-width of a graph G. Seese \footnote{A graph is chordal if every induced cycle is a triangle. The tree-width of a graph G can be defined to be the minimum integer k such that G is a subgraph of a chordal graph with no clique on $k + 2$ vertices. This parameter is particularly important in algorithmic and structural graph theory; see \cite{3, 21} for surveys.} \footnote{3} proved the lower bound,

$$2 \ \text{tpw}(G) \geq \text{tw}(G) + 1.$$

In general, tree-partition-width is not bounded from above by any function solely of tree-width. For example, wheel graphs have bounded tree-width and unbounded tree-partition-width \footnote{A graph is chordal if every induced cycle is a triangle. The tree-width of a graph G can be defined to be the minimum integer k such that G is a subgraph of a chordal graph with no clique on $k + 2$ vertices. This parameter is particularly important in algorithmic and structural graph theory; see \cite{3, 21} for surveys.} \footnote{3}. However, tree-partition-width is bounded for graphs of bounded tree-width and bounded degree \footnote{A graph is chordal if every induced cycle is a triangle. The tree-width of a graph G can be defined to be the minimum integer k such that G is a subgraph of a chordal graph with no clique on $k + 2$ vertices. This parameter is particularly important in algorithmic and structural graph theory; see \cite{3, 21} for surveys.} \footnote{3}. The best known upper bound is due to an anonymous referee of the paper by Ding and Oporowski \footnote{A graph is chordal if every induced cycle is a triangle. The tree-width of a graph G can be defined to be the minimum integer k such that G is a subgraph of a chordal graph with no clique on $k + 2$ vertices. This parameter is particularly important in algorithmic and structural graph theory; see \cite{3, 21} for surveys.} \footnote{3}, who proved that

$$\text{tpw}(G) \leq 24 \text{tw}(G) \Delta(G)$$

whenever $\text{tw}(G) \geq 3$ and $\Delta(G) \geq 1$. Using a similar proof, we make the following improvement to this bound without the restriction that $\text{tw}(G) \geq 3$.

Theorem 1. Every graph G with tree-width $\text{tw}(G) \geq 1$ and maximum degree $\Delta(G) \geq 1$ has tree-partition-width

$$\text{tpw}(G) < \frac{5}{2}(\text{tw}(G) + 1)\left(\frac{7}{2} \Delta(G) - 1\right).$$

Theorem 1 is proved in Section 2. Note that Theorem 1 can be improved in the case of chordal graphs. In particular, a simple extension of a result by Dujmović et al. \footnote{A graph is chordal if every induced cycle is a triangle. The tree-width of a graph G can be defined to be the minimum integer k such that G is a subgraph of a chordal graph with no clique on $k + 2$ vertices. This parameter is particularly important in algorithmic and structural graph theory; see \cite{3, 21} for surveys.} \footnote{3} implies that

$$\text{tpw}(G) \leq \text{tw}(G)\left(\Delta(G) - 1\right)$$

for every chordal graph G with $\Delta(G) \geq 2$; see \footnote{A graph is chordal if every induced cycle is a triangle. The tree-width of a graph G can be defined to be the minimum integer k such that G is a subgraph of a chordal graph with no clique on $k + 2$ vertices. This parameter is particularly important in algorithmic and structural graph theory; see \cite{3, 21} for surveys.} \footnote{3} for a simple proof. Nevertheless, the following theorem proves that $O(\text{tw}(G)\Delta(G))$ is the best possible upper bound, even for chordal graphs.

Theorem 2. For every $\epsilon > 0$ and integer $k \geq 3$, for every sufficiently large integer $\Delta \geq \Delta(k, \epsilon)$, for infinitely many values of N, there is a chordal graph G with N vertices, tree-width $\text{tw}(G) \leq k$, maximum degree $\Delta(G) \leq \Delta$, and tree-partition-width

$$\text{tpw}(G) \geq \left(\frac{1}{8} - \epsilon\right)\text{tw}(G)\Delta(G).$$

Theorem 2 is proved in Section 3. Note that Theorem 2 is for $k \geq 3$. For $k = 1$, every tree is a tree-partition of itself with width 1. For $k = 2$, we prove that the upper bound $O(\Delta(G))$ is again best possible; see Section 4.

2. Upper Bound

In this section we prove Theorem 1. The proof relies on the following separator lemma by Robertson and Seymour \footnote{A graph is chordal if every induced cycle is a triangle. The tree-width of a graph G can be defined to be the minimum integer k such that G is a subgraph of a chordal graph with no clique on $k + 2$ vertices. This parameter is particularly important in algorithmic and structural graph theory; see \cite{3, 21} for surveys.} \footnote{3}.

Lemma 1 \footnote{A graph is chordal if every induced cycle is a triangle. The tree-width of a graph G can be defined to be the minimum integer k such that G is a subgraph of a chordal graph with no clique on $k + 2$ vertices. This parameter is particularly important in algorithmic and structural graph theory; see \cite{3, 21} for surveys.}. For every graph G with tree-width at most k, for every set $S \subseteq V(G)$, there are edge-disjoint subgraphs G_1 and G_2 of G such that $G_1 \cup G_2 = G$, $|V(G_1) \cap V(G_2)| \leq k + 1$, and $|S - V(G_i)| \leq \frac{2}{3}|S - (V(G_1) \cap V(G_2))|$ for each $i \in \{1, 2\}$.
Theorem 1 is a corollary of the following stronger result.

Lemma 2. Let $\alpha := 1 + 1/\sqrt{2}$ and $\gamma := 1 + \sqrt{2}$. Let G be a graph with tree-width at most $k \geq 1$ and maximum degree at most $\Delta \geq 1$. Then G has tree-partition-width

$$\text{tpw}(G) \leq \gamma(k+1)(3\gamma\Delta - 1).$$

Moreover, for each set $S \subseteq V(G)$ such that

$$(\gamma + 1)(k+1) \leq |S| \leq 3(\gamma + 1)(k+1)\Delta,$$

there is a tree-partition of G with width at most

$$\gamma(k+1)(3\gamma\Delta - 1),$$

such that S is contained in a single bag containing at most $\alpha|S| - \gamma(k+1)$ vertices.

Proof. We proceed by induction on $|V(G)|$.

Case 1. $|V(G)| < (\gamma + 1)(k+1)$: Then no set S is specified, and the tree-partition in which all the vertices are in a single bag satisfies the lemma. Now assume that $|V(G)| \geq (\gamma + 1)(k+1)$, and without loss of generality, S is specified.

Case 2. $|V(G) - S| < (\gamma + 1)(k+1)$: Then the tree-partition in which S is one bag and $V(G) - S$ is another bag satisfies the lemma. Now assume that $|V(G) - S| \geq (\gamma + 1)(k+1)$.

Case 3. $|S| \leq 3(\gamma + 1)(k+1)$: Let N be the set of vertices in G that are adjacent to some vertex in S but are not in S. Then $|N| \leq \Delta|S| \leq 3(\gamma + 1)(k+1)\Delta$. If $|N| < (\gamma + 1)(k+1)$ then add arbitrary vertices from $V(G) - (S \cup N)$ to N until $|N| \geq (\gamma + 1)(k+1)$. This is possible since $|V(G) - S| \geq (\gamma + 1)(k+1)$.

By induction, there is a tree-partition of $G - S$ with width at most $\gamma(k+1)(3\gamma\Delta - 1)$, such that N is contained in a single bag. Create a new bag only containing S. Since all the neighbours of S are in a single bag, we obtain a tree-partition of G. (S corresponds to a leaf in the pattern.) Since $|S| \geq (\gamma + 1)(k+1)$, it follows that $|S| \leq \alpha|S| - \gamma(k+1)$ as desired. Now $|S| \leq 3(\gamma + 1)(k+1) < \gamma(k+1)(3\gamma\Delta - 1)$. Since the other bags do not change we have the desired tree-partition of G.

Case 4. $|S| \geq 3(\gamma + 1)(k+1)$: By Lemma 1 there are edge-disjoint subgraphs G_1 and G_2 of G such that $G_1 \cup G_2 = G$, $|V(G_1) \cap V(G_2)| \leq k+1$, and $|S - V(G_i)| \leq \frac{2}{3}|S - (V(G_1) \cap V(G_2))|$ for each $i \in \{1,2\}$. Let $Y := V(G_1) \cap V(G_2)$. Let $a := |S \cap Y|$ and $b := |Y - S|$. Thus $a + b \leq k+1$. Let $p_i := |(S \cap V(G_i)) - Y|$. Then $p_1 \leq 2p_2$ and $p_2 \leq 2p_1$. Let $S_i := (S \cap V(G_i)) \cup Y$. Note that $|S_i| = p_i + a + b$.

Now $p_1 + p_2 + a = |S| \geq 3(\gamma + 1)(k+1)$. Thus $3p_i + a \geq 3(\gamma + 1)(k+1)$ and $3p_i + 3a + 3b \geq 3(\gamma + 1)(k+1)$. That is, $|S_i| \geq (\gamma + 1)(k+1)$ for each $i \in \{1,2\}$.

Now $p_1 + p_2 + a \leq 3(\gamma + 1)(k+1)\Delta$. Thus $\frac{3}{2}p_i + a \leq 3(\gamma + 1)(k+1)\Delta$ and $p_i \leq 2(\gamma + 1)(k+1)\Delta$. Thus $p_i + a + b \leq 2(\gamma + 1)(k+1)\Delta + (k+1)$. Hence $|S_i| = p_i + a + b < 3(\gamma + 1)(k+1)\Delta$.

Thus we can apply induction to the set S_i in the graph G_i for each $i \in \{1,2\}$. We obtain a tree-partition of G_1 with width at most $\gamma(k+1)(3\gamma\Delta - 1)$, such that S_i is contained in a single bag T_i containing at most $\alpha|S_i| - \gamma(k+1)$ vertices.

Construct a partition of G by uniting T_1 and T_2. Each vertex of G is in exactly one bag since $V(G_1) \cap V(G_2) = Y \subseteq S_i \subseteq T_i$. Since G_1 and G_2 are edge-disjoint, the pattern of
Figure 1. Illustration of Case 4.

this partition of G is obtained by identifying one vertex of the pattern of the tree-partition of G_1 with one vertex of the pattern of the tree-partition of G_2. Since the patterns of the tree-partitions of G_1 and G_2 are forests, the pattern of the partition of G is a forest, and we have a tree-partition of G.

Moreover, S is contained in a single bag $T_1 \cup T_2$ and

$$|T_1 \cup T_2| = |T_1| + |T_2| - |Y|$$

$$\leq \alpha |S_1| - \gamma (k + 1) + \alpha |S_2| - \gamma (k + 1) - (a + b)$$

$$= \alpha (p_1 + a + b) - \gamma (k + 1) + \alpha (p_2 + a + b) - \gamma (k + 1) - (a + b)$$

$$= \alpha (p_1 + p_2 + a) - 2\gamma (k + 1) + (\alpha - 1)a + (2\alpha - 1)b$$

$$\leq \alpha |S| - 2\gamma (k + 1) + (2\alpha - 1)(a + b)$$

$$\leq \alpha |S| - 2\gamma (k + 1) + (2\alpha - 1)(k + 1)$$

$$= \alpha |S| - \gamma (k + 1).$$

Thus $|T_1 \cup T_2| \leq \alpha \cdot 3(\gamma + 1)(k + 1)\Delta - \gamma (k + 1) = \gamma (k + 1)(3\gamma \Delta - 1)$. Since the other bags do not change we have the desired tree-partition of G. □

3. General Lower Bound

The remainder of the paper studies lower bounds on the tree-partition-width. The graphs employed are chordal. We first show that tree-partitions of chordal graphs can be assumed to have certain useful properties.

Lemma 3. Every chordal graph G has a tree-partition T with width $\text{tpw}(G)$, such that for every independent set S of simplicial\(^4\) vertices of G, and for every bag B of T, either $B = \{v\}$ for some vertex $v \in S$, or the induced subgraph $G[B - S]$ is connected.

\(^4\)A vertex is simplicial if its neighbourhood is a clique.
Proof. Let T_0 be a tree-partition of a chordal graph G with width $\text{tpw}(G)$. Let T be the partition of G obtained from T_0 by replacing each bag B of T_0 by bags corresponding to the connected components of $G[B]$. Then T has width at most $\text{tpw}(G)$.

To prove that T is a forest, suppose on the contrary that T contains an induced cycle C. Since each bag in C induces a connected subgraph of G, G contains an induced cycle D with at least one vertex from each bag in C. Since G is chordal, D is a triangle. Thus C is a triangle, implying that the vertices in D were in distinct bags in T_0 (since the bags of T that replaced each bag of T_0 form an independent set). Hence the bags of T_0 that contain D induce a triangle in T_0, which is the desired contradiction since T_0 is a forest. Hence T is a forest.

Let S be an independent set of simplicial vertices of G. Consider a bag B of T. By construction, $G[B]$ is connected. First suppose that $B \subseteq S$. Since S is an independent set and $G[B]$ is connected, $B = \{v\}$ for some vertex $v \in S$.

Now assume that $B - S \neq \emptyset$. Suppose on the contrary that $G[B - S]$ is disconnected. Thus $B \cap S$ is a cut-set in $G[B]$. Let v and w be vertices in distinct components of $G[B - S]$ such that the distance between v and w in $G[B]$ is minimised. (This is well-defined since $G[B]$ is connected.) Since S is an independent set, every shortest path between v and w in $G[B]$ has only two edges. That is, v and w have a common neighbour x in $B \cap S$. Since x is simplicial, v and w are adjacent. This contradiction proves that $G[B - S]$ is connected. \square

The next lemma is the key component of the proof of Theorem 2. For integers $a < b$, let $[a, b] := \{a, a + 1, \ldots, b\}$ and $[b] := [1, b]$.

Lemma 4. For all integers $k \geq 2$ and $\Delta \geq 3k + 1$, for infinitely many values of N there is a chordal graph G with N vertices, tree-width $\text{tw}(G) = 2k - 1$, maximum degree $\Delta(G) \leq \Delta$, and tree-partition-width $\text{tpw}(G) > \frac{1}{2}k(\Delta - 3k)$.

Proof. Let n be an integer with $n > \max\{\frac{1}{2}k(\Delta - 3k), 2\}$. Let H be the graph with vertex set $\{(x, y) : x \in [n], y \in [k]\}$, where distinct vertices (x_1, y_1) and (x_2, y_2) are adjacent if and only if $|x_1 - x_2| \leq 1$. The set of vertices $\{(x, y) : y \in [k]\}$ is the x-column. The set of vertices $\{(x, y) : x \in [n]\}$ is the y-row. Observe that each column induces a k-vertex clique, and each row induces an n-vertex path.

Let C be an induced cycle in H. If (x, y) is a vertex in C with x minimum then the two neighbours of (x, y) in C are adjacent. Thus C is a triangle. Hence H is chordal. Observe that each pair of consecutive columns form a maximum clique of $2k$ vertices in H. Thus H has tree-width $2k - 1$. Also note that H has maximum degree $3k - 1$.

An edge of H between vertices (x, y) and $(x + 1, y)$ is horizontal. As illustrated in Figure 2 construct a graph G from H as follows. For each horizontal edge vw of H, add $\left\lceil \frac{1}{2}(\Delta - 3k) \right\rceil$ new vertices, each adjacent to v and w. Since H is chordal and each new vertex is simplicial, G is chordal. The addition of degree-2 vertices to H does not increase the maximum clique size (since $k \geq 2$). Thus G has clique number $2k$ and tree-width $2k - 1$. Since each vertex of H is incident to at most two horizontal edges, G has maximum degree $3k - 1 + 2\left\lceil \frac{1}{2}(\Delta - 3k) \right\rceil \leq \Delta$.

Observe that $V(G) - V(H)$ is an independent set of simplicial vertices in G. By Lemma 3 G has a tree-partition T with width $\text{tpw}(G)$, such that for every bag B of T, either $B = \{v\}$
Figure 2. The graph G with $k = 4$, $\Delta = 15$, and $n = 9$.

for some vertex v of $G - H$, or the induced subgraph $H[B]$ is connected. Since G is connected, T is a (connected) tree. Let U be the tree-partition of H induced by T. That is, to obtain U from T delete the vertices of $G - H$ from each bag, and delete empty bags. Since H is connected, U is a (connected) tree. By Lemma 3, each bag of U induces a connected subgraph of H.

Suppose that U only has two bags B and C. Then one of B and C contains at least $\frac{1}{2}nk$ vertices. Since $k \geq 2$, we have $\text{tpw}(G) \geq \frac{1}{2}nk > \frac{1}{4}k(\Delta - 3k)$, as desired. Now assume that U has at least three bags.

Consider a bag B of U. Let $\ell(B)$ be the minimum integer such that some vertex in B is in the $\ell(B)$-column, and let $r(B)$ be the maximum integer such that some vertex in B is in the $r(B)$-column. Since $H[B]$ is connected, there is a path in B from the $\ell(B)$-column to the $r(B)$-column. By the definition of H, for each $x \in [\ell(B), r(B)]$, the x-column contains a vertex in B. Let $I(B)$ be the closed real interval from $\ell(B) - \frac{1}{2}$ to $r(B) + \frac{1}{2}$. Observe that two bags B and C of U are adjacent if and only if $I(B) \cap I(C) \neq \emptyset$. Thus $\{I(B) : B \text{ is a bag of } U\}$ is an interval representation of the tree U. Every tree that is an interval graph is a caterpillar; see [16] for example. Thus U is a caterpillar.

Let \preceq be the relation on the set of non-leaf bags of U defined by $A \preceq B$ if and only if $\ell(A) \leq \ell(B)$ and $r(A) \leq r(B)$. We claim that \preceq is a total order. It is immediate that \preceq is reflexive and transitive. To prove that \preceq is antisymmetric, suppose on the contrary that $A \preceq B$ and $B \preceq A$ for distinct non-leaf bags A and B. Thus $\ell(A) = \ell(B)$ and $r(A) = r(B)$.

5A caterpillar is a tree such that deleting the leaves gives a path.
Since U has at least three bags, there is a third bag C that contains a vertex in the $(\ell(A) - 1)$-column or in the $(r(A) + 1)$-column. Thus $\{A, B, C\}$ induce a triangle in U, which is the desired contradiction. Hence \leq is antisymmetric. To prove that \leq is total, suppose on the contrary that $A \not\leq B$ and $B \not\leq A$ for distinct non-leaf bags A and B. Now $A \not\leq B$ implies that $\ell(A) > \ell(B)$ or $r(A) > r(B)$. Without loss of generality, $\ell(A) > \ell(B)$. Thus $B \not\leq A$ implies that $r(B) > r(A)$. Hence the interval $[\ell(A), r(A)]$ is strictly within the interval $[\ell(B), r(B)]$ at both ends. For each $x \in [\ell(A), r(A)]$, every vertex in the x-column is in $A \cup B$, as otherwise U would contain a triangle (since each column is a clique in H). Moreover, every vertex in the $(\ell(A) - 1)$-column or in the $(r(A) + 1)$-column is in B, as otherwise U would contain a triangle (since the union of consecutive columns is a clique in H). Thus every neighbour of every vertex in A is in B. That is, A is a leaf in U. This contradiction proves that \leq is a total order on the set of non-leaf bags of U.

Suppose that U has a 4-vertex path (A, B, C, D) as a subgraph.

Thus B and C are non-leaf bags. Without loss of generality, $B \prec C$. If every column contains vertices in both B and C, then B and C and any other bag would induce a triangle in U (since each column induces a clique in H). Thus some column contains a vertex in B but no vertex in C, and some column contains a vertex in C but no vertex in B. Let p be the maximum integer such that some vertex in B is in the p-column, but no vertex in C is in the p-column. Let q be the minimum integer such that some vertex in C is in the q-column, but no vertex in B is in the q-column. Now $p < q$ since $B \prec C$.

We claim that the $(p + 1)$-column contains a vertex in C. If not, then the $(p + 1)$-column contains no vertex in B by the definition of p. Thus $r(B) = p$ since $H[B]$ is connected. Since B is adjacent to C in U, $\ell(C) \leq r(B) + 1 = p + 1$. In particular, the $(p + 1)$-column contains a vertex in C. Since $H[C]$ is connected, for $x \in [p + 1, q]$, each x-column contains a vertex in C. In fact, $\ell(C) = p + 1$ since the p-column contains no vertex in C. By symmetry, for $x \in [p, q - 1]$, each x-column contains a vertex in B, and $r(C) = q - 1$.

The union of the p-column and the $(p + 1)$-column only contains vertices in $B \cup C$, as otherwise U would contain a triangle (since the union of two consecutive columns is a clique in H). By the definition of p, no vertex in the p-column is in C. Thus every vertex in the p-column is in B. By symmetry, every vertex in the q-column is in C. Now for each $y \in [k]$, the vertices $(p, y), (p + 1, y), \ldots, (q, y)$ are all in $B \cup C$, the first vertex (p, y) is in B, and the last vertex (q, y) is in C. Thus $(x, y) \in B$ and $(x + 1, y) \in C$ for some $x \in [p, q - 1]$. That is, in every row of H there is a horizontal edge with one endpoint in B and the other in C.

Thus there are at least k horizontal edges with one endpoint in B and the other in C (now considered to be bags of T). For each such horizontal edge vw, each vertex of $G - H$ adjacent to v and w is in $B \cup C$, as otherwise T would contain a triangle. There are $\left\lfloor \frac{1}{2}(\Delta - 3k) \right\rfloor$ such vertices of $G - H$ for each of the k horizontal edges between B and C. Thus $|B \cup C| \geq \frac{1}{2}k(\Delta - 3k)$. Thus one of B and C has at least $\frac{1}{2}k(\Delta - 3k)$ vertices. Hence $tpw(G) \geq \frac{1}{4}k(\Delta - 3k)$ as desired.

Now assume that U has no 4-vertex path as a subgraph.

A tree is a star if and only if it has no 4-vertex path as a subgraph. Hence U is a star. Let R be the root bag of U. If R contains a vertex in every column then $|R| \geq n$, implying
\[\text{tpw}(G) \geq n \geq 1/4k(\Delta - 3k), \] as desired. Now assume that for some \(x \in [n] \), the \(x \)-column of \(H \) contains no vertex in \(R \). Let \(B \) be a bag containing some vertex in the \(x \)-column. The \(x \)-column induces a clique in \(H \), the only bag in \(U \) that is adjacent to \(B \) is \(R \), and \(R \) contains no vertex in the \(x \)-column. Thus every vertex in the \(x \)-column is in \(B \). Since \(R \) is the only bag in \(U \) adjacent to \(B \), there are at least \(k \) horizontal edges with one endpoint in \(B \) and the other endpoint in \(R \). As in the case when \(U \) contained a 4-vertex path, we conclude that \(\text{tpw}(G) \geq 1/4k(\Delta - 3k) \) as desired. \(\square \)

Proof of Theorem 2. Let \(\ell := \lceil k/2 \rceil \). Thus \(\ell \geq 2 \). By Lemma 4, for each integer \(\Delta \geq \Delta(k, \epsilon) := \max\{3\ell + 1, \frac{3\epsilon}{k}\} \), there are infinitely many values of \(N \) for which there is a chordal graph \(G \) with \(N \) vertices, tree-width \(\text{tw}(G) = 2\ell - 1 \leq k \), maximum degree \(\Delta(G) \leq \Delta \), and tree-partition-width \(\text{tpw}(G) > \frac{1}{4}\ell(\Delta - 3\ell) \), which is at least \((\frac{1}{8} - \epsilon)k\Delta \) since \(\Delta \geq \frac{3\epsilon}{k} \). \(\square \)

A domino tree decomposition is a tree decomposition in which each vertex appears in at most two bags. The domino tree-width of a graph \(G \), denoted by \(\text{dtw}(G) \), is the minimum width of a domino tree decomposition of \(G \). Domino tree-width behaves like tree-partition-width in the sense that \(\text{dtw}(G) \geq \text{tw}(G) \), and \(\text{dtw}(G) \) is bounded for graphs of bounded tree-width and bounded degree \([7] \). The best upper bound is

\[\text{dtw}(G) \leq (9\text{tw}(G) + 7) \Delta(G) (\Delta(G) + 1) - 1, \]

which is due to Bodlaender \([6]\), who also constructed a graph \(G \) with

\[\text{dtw}(G) \geq \frac{1}{12} \text{tw}(G) \Delta(G) - 2. \]

Tree-partition-width and domino tree-width are related in that every graph \(G \) satisfies

\[\text{dtw}(G) \geq \text{tpw}(G) - 1, \]

as observed by Bodlaender and Engelfriet \([7]\). Thus Theorem 2 provides examples of graphs \(G \) with

\[\text{dtw}(G) \geq \left(\frac{1}{8} - \epsilon\right) \text{tw}(G) \Delta(G). \]

This represents a small constant-factor improvement over the above lower bound by Bodlaender \([6]\).

4. Lower Bound for Tree-width 2

We now prove a lower bound on the tree-partition-width of graphs with tree-width 2.

Theorem 3. For all odd \(\Delta \geq 11 \) there is a chordal graph \(G \) with tree-width 2, maximum degree \(\Delta \), and tree-partition-width \(\text{tpw}(G) \geq \frac{2}{3}(\Delta - 1) \).

Proof. As illustrated in Figure 3, let \(G \) be the graph with

\[V(G) := \{r\} \cup \{v_i : i \in [\Delta]\} \cup \{w_{i,\ell} : i \in [\Delta - 1], \ell \in \left[\frac{1}{2} (\Delta - 3)\right]\} \]

and

\[E(G) := \{rv_i : i \in [\Delta]\} \cup \{v_iv_{i+1} : i \in [\Delta - 1]\} \cup \{v_iw_{i,\ell}, v_{i+1}w_{i,\ell} : i \in [\Delta - 1], \ell \in \left[\frac{1}{2} (\Delta - 3)\right]\}. \]

\(\text{tpw}(G) \geq n \geq 1/4k(\Delta - 3k), \) as desired. Now assume that for some \(x \in [n] \), the \(x \)-column of \(H \) contains no vertex in \(R \). Let \(B \) be a bag containing some vertex in the \(x \)-column. The \(x \)-column induces a clique in \(H \), the only bag in \(U \) that is adjacent to \(B \) is \(R \), and \(R \) contains no vertex in the \(x \)-column. Thus every vertex in the \(x \)-column is in \(B \). Since \(R \) is the only bag in \(U \) adjacent to \(B \), there are at least \(k \) horizontal edges with one endpoint in \(B \) and the other endpoint in \(R \). As in the case when \(U \) contained a 4-vertex path, we conclude that \(\text{tpw}(G) \geq 1/4k(\Delta - 3k) \) as desired. \(\square \)

A domino tree decomposition is a tree decomposition in which each vertex appears in at most two bags. The domino tree-width of a graph \(G \), denoted by \(\text{dtw}(G) \), is the minimum width of a domino tree decomposition of \(G \). Domino tree-width behaves like tree-partition-width in the sense that \(\text{dtw}(G) \geq \text{tw}(G) \), and \(\text{dtw}(G) \) is bounded for graphs of bounded tree-width and bounded degree \([7]\). The best upper bound is

\[\text{dtw}(G) \leq (9\text{tw}(G) + 7) \Delta(G) (\Delta(G) + 1) - 1, \]

which is due to Bodlaender \([6]\), who also constructed a graph \(G \) with

\[\text{dtw}(G) \geq \frac{1}{12} \text{tw}(G) \Delta(G) - 2. \]

Tree-partition-width and domino tree-width are related in that every graph \(G \) satisfies

\[\text{dtw}(G) \geq \text{tpw}(G) - 1, \]

as observed by Bodlaender and Engelfriet \([7]\). Thus Theorem 2 provides examples of graphs \(G \) with

\[\text{dtw}(G) \geq \left(\frac{1}{8} - \epsilon\right) \text{tw}(G) \Delta(G). \]

This represents a small constant-factor improvement over the above lower bound by Bodlaender \([6]\).

4. Lower Bound for Tree-width 2

We now prove a lower bound on the tree-partition-width of graphs with tree-width 2.

Theorem 3. For all odd \(\Delta \geq 11 \) there is a chordal graph \(G \) with tree-width 2, maximum degree \(\Delta \), and tree-partition-width \(\text{tpw}(G) \geq \frac{2}{3}(\Delta - 1) \).

Proof. As illustrated in Figure 3, let \(G \) be the graph with

\[V(G) := \{r\} \cup \{v_i : i \in [\Delta]\} \cup \{w_{i,\ell} : i \in [\Delta - 1], \ell \in \left[\frac{1}{2} (\Delta - 3)\right]\} \]

and

\[E(G) := \{rv_i : i \in [\Delta]\} \cup \{v_iv_{i+1} : i \in [\Delta - 1]\} \cup \{v_iw_{i,\ell}, v_{i+1}w_{i,\ell} : i \in [\Delta - 1], \ell \in \left[\frac{1}{2} (\Delta - 3)\right]\}. \]
Observe that G has maximum degree Δ. Clearly every induced cycle of G is a triangle. Thus G is chordal. Observe that G has no 4-vertex clique. Thus G has tree-width 2.

![Figure 3. Illustration for Theorem 3 with $\Delta = 13$.](image)

Let T be the tree-partition of G from Lemma 3. Then T has width $\text{tpw}(G)$, and every bag induces a connected subgraph of G. Let R be the bag containing r. Let B_1, \ldots, B_d be the bags, not including R, that contain some vertex v_i. Thus R is adjacent to each B_j (since r is adjacent to each v_i). Since $\{w_{i,\ell} : i \in [\Delta - 1], \ell \in [\frac{1}{2}(\Delta - 3)]\}$ is an independent set of simplicial vertices, by Lemma 3 for each $j \in [d]$, the vertices $\{v_1, v_2, \ldots, v_\Delta\} \cap B_j$ induce a (connected) subpath of G.

First suppose that $d = 0$. Then the $\Delta + 1$ vertices $\{r, v_1, \ldots, v_\Delta\}$ are contained in one bag R. Thus $\text{tpw}(G) \geq \Delta + 1 \geq \frac{2}{3}(\Delta - 1)$.

Now suppose that $d = 1$. Thus $\{r, v_1, \ldots, v_\Delta\} \subseteq R \cup B_1$. In addition, at least one edge v_iv_{i+1} has one endpoint in R and the other endpoint in B_1. Thus $w_{i,\ell} \in R \cup B_1$ for each $\ell \in [\frac{1}{2}(\Delta - 3)]$. Hence $1 + \Delta + \frac{1}{2}(\Delta - 3)$ vertices are contained in two bags. Thus one bag contains at least $\frac{1}{3}(3\Delta - 1)$ vertices, and $\text{tpw}(G) \geq \frac{1}{4}(3\Delta - 1) \geq \frac{2}{3}(\Delta - 1)$.

Finally suppose that $d \geq 2$. Since $\{v_1, v_2, \ldots, v_\Delta\} \cap B_j$ induce a subpath in each bag B_j, we can assume that $\{v_1, v_2, \ldots, v_\Delta\} \cap B_j = \{v_i : i \in [f(j), g(j)]\}$, where

$$1 \leq f(1) \leq g(1) < f(2) \leq g(2) < \cdots < f(d) \leq g(d) \leq \Delta.$$

Distinct B_j bags are not adjacent (since T is a tree). Thus $v_{f(j)-1} \in R$ for each $j \in [2, d]$. Similarly, $v_{g(j)+1} \in R$ for each $j \in [d - 1]$. Thus $w_{f(j)-1,\ell} \in R \cup B_j$ for each $j \in [2, d]$ and $\ell \in [\frac{1}{2}(\Delta - 3)]$. Similarly, $w_{g(j),\ell} \in R \cup B_j$ for each $j \in [d - 1]$ and $\ell \in [\frac{1}{2}(\Delta - 3)]$.

Hence the bags R, B_1, \ldots, B_d contain at least

$$1 + \Delta + 2(d - 1) \cdot \frac{1}{2}(\Delta - 3)$$

vertices. Therefore one of these bags has at least

$$(1 + \Delta + (d - 1)(\Delta - 3))/(d + 1)$$

vertices, which is at least $\frac{2}{3}(\Delta - 1)$. Hence $\text{tpw}(G) \geq \frac{2}{3}(\Delta - 1)$. \qed

References

[1] Noga Alon, Guoli Ding, Bogdan Oporowski, and Dirk Vertigan. Partitioning into graphs with only small components. *J. Combin. Theory Ser. B*, 87(2):231–243, 2003.

[2] János Barát and David R. Wood. Notes on nonrepetitive graph colouring, 2005.

arxiv.org/math/0509608
Figure 4. Illustration for Theorem 3 with $\Delta = 19$ and $d = 4$.

[3] Hans L. Bodlaender. The complexity of finding uniform emulations on fixed graphs. Inform. Process. Lett., 29(3):137–141, 1988.

[4] Hans L. Bodlaender. The complexity of finding uniform emulations on paths and ring networks. Inform. and Comput., 86(1):87–106, 1990.

[5] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci., 209(1-2):1–45, 1998.

[6] Hans L. Bodlaender. A note on domino treewidth. Discrete Math. Theor. Comput. Sci., 3(4):141–150, 1999.

[7] Hans L. Bodlaender and Joost Engelfriet. Domino treewidth. J. Algorithms, 24(1):94–123, 1997.

[8] Hans L. Bodlaender and Jan van Leeuwen. Simulation of large networks on smaller networks. Inform. and Control, 71(3):143–180, 1986.

[9] Emilio Di Giacomo, Giuseppe Liotta, and Henk Meijer. Computing straight-line 3D grid drawings of graphs in linear volume. Comput. Geom., 32(1):26–58, 2005.

[10] Reinhard Diestel. Graph theory, vol. 173 of Graduate Texts in Mathematics. Springer, 2nd edn., 2000. ISBN 0-387-95014-1.

[11] Reinhard Diestel and Daniela Kühn. Graph minor hierarchies. Discrete Appl. Math., 145(2):167–182, 2005.

[12] Guoli Ding and Bogdan Oporowski. Some results on tree decomposition of graphs. J. Graph Theory, 20(4):481–499, 1995.

[13] Guoli Ding and Bogdan Oporowski. On tree-partitions of graphs. Discrete Math., 149(1–3):45–58, 1996.

[14] Vida Dujmović, Pat Morin, and David R. Wood. Layout of graphs with bounded tree-width. SIAM J. Comput., 34(3):553–579, 2005.

[15] Vida Dujmović, Matthew Suderman, and David R. Wood. Graph drawings with few slopes. Comput. Geom., 38:181–193, 2007.

[16] Jürgen Eckhoff. Extremal interval graphs. J. Graph Theory, 17(1):117–127, 1993.

[17] Anders Edenbrandt. Quotient tree partitioning of undirected graphs. BIT, 26(2):148–155, 1986.
[18] John P. Fishburn and Raphael A. Finkel. Quotient networks. IEEE Trans. Comput., C-31(4):288–295, 1982.

[19] Rudolf Halin. Tree-partitions of infinite graphs. Discrete Math., 97:203–217, 1991.

[20] Dietrich Kuske and Markus Lohrey. Logical aspects of Cayley-graphs: the group case. Ann. Pure Appl. Logic, 131(1–3):263–286, 2005.

[21] Bruce A. Reed. Algorithmic aspects of tree width. In Bruce A. Reed and Cláudia L. Sales, eds., Recent Advances in Algorithms and Combinatorics, pp. 85–107. Springer, 2003.

[22] Neil Robertson and Paul D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms, 7(3):309–322, 1986.

[23] Detlef Seese. Tree-partite graphs and the complexity of algorithms. In Lothar Budach, ed., Proc. International Conf. on Fundamentals of Computation Theory, vol. 199 of Lecture Notes in Comput. Sci., pp. 412–421. Springer, 1985.

[24] David R. Wood. Vertex partitions of chordal graphs. J. Graph Theory, 53(2):167–172, 2006.

[25] David R. Wood and Jan Arne Telle. Planar decompositions and the crossing number of graphs with an excluded minor. New York J. Math., 13:117–146, 2007.

Departament de Matemàtica Aplicada II
Universitat Politècnica de Catalunya
Barcelona, Spain
E-mail address: david.wood@upc.es