Reproduction in Octocorallia: Synchronous spawning and asynchronous oogenesis in the pennatulid *Veretillum cynomorium*

VANESSA M. LOPES, MIGUEL BAPTISTA, MARTA S. PIMENTEL, TIAGO REPOLHO, LUIS NARCISO & RUI ROSA*

Laboratório Marítimo da Guia, Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal

Abstract

Veretillum cynomorium is an abundant colonial octocoral that exclusively inhabits soft sediment and sandy substrata of the Eastern Atlantic Ocean, but its reproductive biology is completely unknown. Here we show, for the first time, that this sea pen is gonochoristic at colony level, and seems to reproduce sexually through the broadcast spawning of gametes. The duration of the present study (12 months) in the Sado Estuary, Portugal, allowed us to identify one brief synchronous spawning event. Mean oocyte size–frequency distributions indicated that large orange oocytes (> 650 μm), and part of the intermediate-sized ones were released in July. The formation of new small (colorless) oocytes occurred in the post-spawning period, between August and October. However, individual oocyte size–frequency distributions of the colonies showed that there was no synchrony in late and early oogenesis. Fecundity ranged between 1 and 40 oocytes per polyp, with an annual average of 9 oocytes per polyp. The occurrence of sex ratios biased towards the dominance of female colonies is reported and discussed.

Key words: Octocorals, reproduction, synchronous spawning, asynchronous oogenesis, sea pen, *Veretillum cynomorium*

Introduction

The timing and means of reproduction have a key role on the life history of a species, since it dictates the dynamics, ecology and evolution of the populations (Stearns 1992). The main characteristics of reproduction in Octocorallia remain poorly understood, especially the order Pennatulacea.

Octocorals are a diverse group in terms of biogeography and morphology, but most of the current biological knowledge lies in studies conducted in tropical zones. Most tropical octocorals exhibit short and seasonal spawning, usually synchronous among colonies, and have external fertilization (Benayahu & Loya 1984; Alino & Coll 1989; Benayahu et al. 1990; Benayahu 1997; Slattery et al. 1999). On the other hand, temperate octocorals usually have continuous gametogenesis and a tendency to show spawning asynchrony between colonies, and to brood their eggs inside or outside the colony (Hartnoll 1975; Farrant 1986; Cordes et al. 2001; McFadden et al. 2001).

Pennatulid octocorals, also known as sea pens, are the anthozoans with greatest complexity and polymorphism among families, genera and species (Brusca & Brusca 1990) and are important members of the sessile megafauna of soft bottom habitats (Eckelbarger et al. 1998). They connect the superficial productivity with that of the benthos by means of suspension feeding (Coma et al. 1994) by the unrolling of their polyp tentacles and thus capture plankton passing by.

Pennatulaceans are gonochoristic and reproduce sexually through broadcasting of their gametes into the water column. This reproductive pattern has been observed in *Ptilosarcus guerneyi* (Chia & Crawford 1973), *Kophobelemnon stelliferum* (Rice et al. 1992), *Pennatula aculeata* (Eckelbarger et al. 1998), *Virgularia juncea* (Soong 2005), *Pteroeides* sp. (Duncan 1998) and *Renilla koellikeri* (Tremblay et al. 2004).

*Correspondence: Rui Rosa, Laboratório Marítimo da Guia, Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal. E-mail: rrosa@fc.ul.pt

Published in collaboration with the University of Bergen and the Institute of Marine Research, Norway, and the Marine Biological Laboratory, University of Copenhagen, Denmark
Veretillum cynomorium (Pallas, 1766) belongs to the family Veretillidae and this anthozoan, commonly known as the finger-shaped sea pen, is an octocoral that exclusively inhabits soft sediment bottoms and sand plains. The geographical distribution of this octocoral ranges from the Bay of Biscay, to the Atlantic shores of Africa, including the Mediterranean Sea (López-González et al. 2001). Williams (1990) reported that the bathymetric distribution of this species seems to be mainly between 13 and 91 m. Yet, in western Portuguese waters it can be found immersed in its burrow, for some hours during the low tide.

Veretillum cynomorium does not have the feather-like appearance of most members of this order. Instead, it has a rachis that bears one single polyp, the oozoid (Cornelius et al. 1995) that extends to the length of the colony. The rachis is populated with smaller feeding polyps, the autozooids, that occur in all directions from the tip of the oozoid to its base. At the base of the colony there is a peduncle that anchors the colony in the substratum; thus, sea pens can stand erect in the water column. The various parts of the colony often behave as if they were actually one individual and engage in slow, rhythmic movements of contraction and expansion in a peristaltic fashion (Ceccatty & Buisson 1965).

Although V. cynomorium is one of the most conspicuous species in the soft sediments of some subtidal and intertidal zones of NW Europe, the reproductive biology of this octocoral is completely unknown. Thus, the aim of present study was to investigate the major reproductive features of this sea pen, namely to: (i) determine, for the first time, the spawning period (period and synchrony), (ii) characterize the oogenic cycle (e.g. temporal variation in oocyte sizes), (iii) quantify colonies’ fecundity, and (iv) scrutinize the eventual relationship between the spawning period and local environmental conditions. Concomitantly, the present findings were compared with those of other pennatulaceans.

Materials and methods

Study site and specimens collection

Veretillum cynomorium colonies were collected in Caldeira de Tróia (Figure 1), a shallow water habitat near the mouth of the Sado estuary. These octocoral colonies were collected bimonthly from April 2010...
to February 2011 at low tide in the intertidal zone. To ensure that we would have, at least, 10 female colonies per sampling occasion (sample size used in other pennatulid studies, e.g. Edwards & Moore 2008, 2009), a total of 35 colonies were randomly collected. There were unexpected differences in the sex ratio throughout the study period. From the 35 colonies collected, 15 female specimens were collected in April 2010, 30 in June, 31 in August, 22 in October, 17 in December and 17 in February 2011 (Table I). All these female colonies were preserved and analysed.

Colony preservation

The colonies collected were brought to Guia’s Marine Laboratory where they were measured. A 1-cm thick section was cut in the exact centre of the oozoid and preserved in a 4% formalin buffered with seawater solution for further analysis. The midsection of the colonies was chosen because this zone has usually intermediate fecundity in opposition to the highly fecund apex and the somewhat less fecund basal zone (Edwards & Moore 2009).

Fecundity (oocyte counting)

A total of 100 polyps were counted per colony midsection, for posterior calculation of the number of oocytes per polyp. These fecundity estimates were calculated to provide a comparable measure of fecundity between colonies, since these sea pens have highly flexible tissues, altering their volume constantly. The oocytes were removed from the midsection and counted using a Heerbrugg M5A stereomicroscope.

Oocyte size–frequency distribution

After counting all the oocytes in the midsection, a subsample of 200 oocytes was used to measure the maximal oocyte diameter per colony. Concomitantly, oocytes were categorized in three groups based on their size: group I – small size (between 50 and 349 μm), group II – intermediate size (between 350 and 649 μm) and group III – large size (> 650 μm). These oocytes were observed under a 40 × Olympus BH-2 microscope with a micrometer eyepiece (Zeiss P 10x/18) with each division measuring 25.45 μm.

Environmental conditions

To establish a relationship between the reproductive season and abiotic conditions in Caldeira de Troia, temperature, turbidity (here as proxy of food availability for these suspension feeders) and salinity data were compiled, between September 2007 and September 2010 (during high tide), from the Annual Reports of Troia Monitoring Program in IMAR (2008–2011), which are elaborated by other members of Guia’s Marine Laboratory. As a result, the data were not obtained with a regular basis throughout the years, i.e. many monthly gaps, especially during the studied period. Consequently, we pooled the data from four seasonal periods (spring, summer, autumn and winter).

Statistical analysis

No analysis on the relationship between colony size and oocyte size was carried out due to the highly variable length of the \textit{Veretillum cynomorium} colonies. To determine the seasonality of reproduction, mean oocyte size–frequency of the colonies was calculated and to test for differences between consecutive pairs of size–frequency distribution, the non-parametric Kolmogorov–Smirnov 2-sample goodness-of-fit test was carried out using Statistica software version 10.0 (StatSoft, Inc., Tulsa, USA). A chi-squared test was used to indicate if that there was a significant deviation from 1 : 1 sex ratio. Fecundity and environmental data were analysed using one-way ANOVA. Previously, normality and homogeneity of variances were verified by Kolmogorov–Smirnov and Bartlett tests, respectively. When data did not meet the assumptions of ANOVA, the non-parametric ANOVA equivalent (Kruskal–Wallis test) was performed. Having demonstrated a significant difference within the groups between the ANOVA and Kruskal–Wallis test \((P < 0.05)\), the Tukey test or the Dunn test were applied, respectively, to find out where those differences lay (Zar 1996).

Results

Spawning period

The mean oocyte size–frequency distributions of the \textit{Veretillum cynomorium} colonies sampled (bimonthly)
throughout the year is shown in Figure 2. The months of April and June showed the presence of all size groups, but the majority of the oocytes had an intermediate size (group II, Table II). Yet, in June, the distribution was more skewed to the right, with oocytes attaining maximum sizes (up to 967 μm diameter) (Figure 2). The large size group (> 650 μm) disappeared in August (Figure 2) only arising (vestigially) in December (Table II). The comparison of consecutive pairs of size–frequency distribution suggests seasonality of reproduction, with the spawning period in July, as all oocytes of the group III and part of the group II seem to be released in the water column during that month. As a result, significant differences between the consecutive size–frequency distributions of June and August were observed (KS test, p < 0.001). During the post-spawning period of August and October, oocytes were primarily of small size (mode located between 100 and 150 μm), which became the intermediate size in December and February. In the latter month, the mode was located around 500 μm. No significant differences between the consecutive size–frequency distributions of April and June (p = 0.159), August and October (p = 0.256) and December and February (p = 0.198) were observed. The smaller oocytes were almost colorless, arranged along the mesenterial filaments attached to their follicles. As the oocytes increased in size, their position inside the polyp remained unaltered, but they changed colour. They became more opaque and their colour shifted from faded yellow to bright orange. Most orange oocytes occurred in June.

Synchrony of oogenesis

The individual oocyte size–frequency distributions of the colonies sampled in June showed that there is no synchrony in late oogenesis. They showed different shapes (e.g. flattened, right-skewed and normal distributions) and half the colonies (highlighted in red rectangles in online supplementary material S1) had the large (bright orange) oocytes. Similar findings were observed in August during early oogenesis (online supplementary material S2). Again, only half of the colonies showed the presence of a great number of smaller (almost colourless) oocytes, responsible for the occurrence of the distribution peak between 100 and 150 μm (Figure 2) during that summer month.

Table II. Mean oocyte frequency, according to oocyte size, of female _Veretillum cynomorium_ colonies between April 2010 and February 2011.

Oocyte size groups	I	II	III
April	0.35 (0.11)	0.56 (0.15)	0.10 (0.09)
June	0.38 (0.26)	0.53 (0.29)	0.09 (0.16)
August	0.72 (0.27)	0.28 (0.27)	–
October	0.76 (0.26)	0.24 (0.25)	0.00 (0.00)
December	0.33 (0.29)	0.67 (0.28)	0.01 (0.02)
February	0.18 (0.19)	0.78 (0.18)	0.04 (0.05)

* *, absent.
Fecundity

The temporal variations in fecundity estimates (i.e. number of oocytes per polyp) of *Veretillum cynomorium* are presented in Figure 3. Although no significant seasonal differences were observed ($p > 0.05$), fecundity was greatest (maximum of 40 oocytes per polyp) in June, the month that also showed the larger oocytes. The average fecundity was 9 oocytes per polyp throughout the year.

Sex ratio

The lack of external sexual dimorphism in sea pens forced us to randomly collect 35 colonies, to ensure at least 10 female colonies per sampling period. Unexpectedly, there was a striking variation in the proportion of males throughout the year (Table I). In June and August, only five and four males, respectively, were collected. The sex ratio was only around $1:1$ in December and February. Overall, the chi-squared test indicated that there was a significant deviation from $1:1$ ($\chi^2 = 41.77$, $p < 0.001$, Table I).

Environmental conditions

The water temperature in Caldeira de Troia varied between 15 and 19°C throughout the year (Kruskal–Wallis, $H = 10.93$, $p \leq 0.05$; Table III). Yet, the only significant seasonal differences were observed between the summer and winter periods. Turbidity (NTU) was 59.4 ± 10.2 between 15 and 19.

Variable	Spring	Summer	Autumn	Winter
SST ($^\circ$C)	15.5ab (14.6–16.5)	19.3b (17.4–20.5)	17.4b (16.2–20.5)	15.5b (14.7–15.6)
Turbidity (NTU)	59.4a (10.2–151.0)	4.0b (0.6–6.9)	4.5b (1.0–6.9)	3.1b (1.2–3.5)
Salinity	35.1 (33.4–35.7)	35.8 (35.1–36.1)	35.9 (34.1–36.1)	35.8 (34.7–36.4)

Table III. Seasonal changes of temperature ($^\circ$C), turbidity (NTU, as a proxy of food availability) and salinity in Caldeira de Troia. Values represent medians with (min–max). Different letters represent significant differences (Kruskal–Wallis, $p < 0.05$).

Discussion

Although there are, approximately, 200 species of pennatulaceans described to date (Williams & van der Land 2001), the few studies conducted so far suggest that this group of octocorals are gonochoric at colony level, and reproduce sexually through the broadcast spawning of gametes (Table IV). Yet, it is worth noting that there are other modes of sexual reproduction in octocorals besides broadcast spawning. Members of the alcyonaceans and gorgonians also display internal fertilization (and the release of fully formed planulae), and surface brooding of the planulae (Table IV).

There is also evidence that these octocorals may have continuous (non-seasonal) or seasonal spawning, usually in the summer months (Table IV). *Veretillum cynomorium* presents the latter case, since the mean oocyte size–frequency distributions indicated that all oocytes of the group III (and part of the group II) were released in July, when water temperature was at its peak in Caldeira de Troia. This assumption (note: spawning was not witnessed) was mainly supported by the total lack of the large oocytes ($>650\ \mu$m) in August. During the post-spawning period (August–October), the production of new smaller (colourless) oocytes occurred. Thus, the duration of the present study allowed us to identify one brief spawning event. Although some sea pens may spawn in winter, and others in summer, there is no evidence of other spawning periodicity in these octocorals (Table V).

Some studies even suggest quite prolonged oogenic cycles (>12 months) in pennatulaceans. For example, Edwards & Moore (2008, 2009) found the maintenance of a large standing pool of smaller oocytes throughout the year in *Pennatula phosphorea* and *Funiculina quadrangularis*, respectively, which suggests an almost continuous initial oocyte generation. We did not find such a feature in the early
Table IV. Review of the reproductive biology in Pennatulacea: geographical area, sexes and reproductive strategy.

Order	Family	Species	Region	Sexes	Reproductive pattern	Reference
Pennatulacea	Funicularinidae	*Funiculina quadrangularis* (Pallas, 1766)	Northeast Atlantic	Gonochoristic	BS	Edwards & Moore 2009
	Kophobelemnidae	*Kophobelemnon stelliferum* (Müller, 1776)	Porcupine Seabight	Gonochoristic	–	Rice et al. 1992
	Pennatulidae	*Pennatula aculeata* Danielssen, 1860	Northeast Atlantic	Gonochoristic	BS	Eckelbarger et al. 1998
	Pennatulidae	*Pennatula phosphorea* Linnaeus, 1758	North Pacific	Gonochoristic	BS	Edwards & Moore 2008
	Pennatulidae	*Ptilosarcus guyneri* (Gray, 1860)	Northeast Atlantic	Gonochoristic	BS	Chia & Crawford 1973
	Umbellulidae	*Umbellula lindahli* Kölliker, 1875	Northeast Atlantic	Gonochoristic	BS	Tyler et al. 1995
	Veretillidae	*Veretillum cynomorium* (Pallas, 1766)	Northeast Atlantic	Gonochoristic	BS	Present study
	Virgulariidae	*Virgularia juncea* (Pallas, 1766)	Taiwan	Gonochoristic	BS	Soong 2005

SB, surface brooder; BS, broadcast spawning; IF, internal fertilization.

Table V. Review of the reproductive biology in Pennatulacea: spawning period, synchronicity and maximum oocyte size.

Order	Family	Species	Spawning period	Synchronicity of oogenesis	Maximum oocyte size	Reference
Pennatulacea	Funicularinidae	*Funiculina quadrangularis* (Pallas, 1766)	January	Asynchronous	900 µm	Edwards & Moore 2009
	Kophobelemnidae	*Kophobelemnon stelliferum* (Müller, 1776)	No seasonality	Asynchronous	800 µm	Rice et al. 1992
	Pennatulidae	*Pennatula aculeata* Danielssen, 1860	–	Asynchronous	880 µm	Eckelbarger et al. 1998
	Pennatulidae	*Pennatula phosphorea* Linnaeus, 1758	July–August	Synchronous	600 µm	Edwards & Moore 2008
	Pennatulidae	*Ptilosarcus guyneri* (Gray, 1860)	March	–	600 µm	Chia & Crawford 1973
	Umbellulidae	*Umbellula lindahli* Kölliker, 1875	–	–	800 µm	Tyler et al. 1995
	Veretillidae	*Veretillum cynomorium* (Pallas, 1766)	July	Asynchronous	967 µm	Present study
	Virgulariidae	*Virgularia juncea* (Pallas, 1766)	July–September	–	300 µm	Soong 2005
No significant temporal differences in the fecundity of *V. cynomorium* were observed, with an annual average of 9 oocytes per polyp and a maximum of 40 oocytes per polyp in June. The lower fecundity was observed in post-spawning period of August (5.8 oocytes per polyp), i.e. after the release of the late-vitellogenic oocytes. Similar fecundity trends were observed in alcyonaceans (e.g. *Capnella gaboensis*, Farrant 1985) and other pennatulaceans (e.g. *Funiculina quadrangularis*, Edwards & Moore 2009). Decreased fecundity prior to spawning has been attributed to the nutritive resorption of smaller oocytes by the larger ones (Farrant 1986; Santangelo et al. 2003), but this occurrence was not observed during the oocyte maturation of *V. cynomorium*. Yet, specific considerations need to be taken into account for the fecundity of these colonial organisms, because of their modular organization (Ramirez Llodra 2002). Modular organisms usually have indeterminate growth and are morphologically very plastic. Hence, their size and shape may vary throughout life and may change due to varying environmental conditions. Thus, size and modular organization varies among colonies and within colonies over time, greatly affecting fecundity estimates (Ramirez Llodra 2002).

There was a striking variation in the proportion of males throughout the year. *Veretillum cynomorium* colonies only exhibited a sex ratio close to 1:1 in the winter and early spring periods. The absence of a consistent pattern may be possibly due to poor count statistics/sampling artefact. These temporal variations have not been previously reported in sea pens and also do not constitute the normal optimal resource allocation in populations with random mating. Although the occurrence of sex ratios biased towards the dominance of females have been reported in other marine invertebrate groups, and attributed to differential mortality, migration or habitat selection (Lee & McAlice 1979; Xiao & Greewood 1993; Kierboe 2006), further research is required to ascertain these findings in *V. cynomorium*.

Acknowledgements

The Portuguese Foundation for Science and Technology (FCT) supported this study through a Senior Research Position (Ciência 2007) to R.R.

References

Alino PM, Coll JC. 1989. Observations on the synchronized mass spawning and postsettlement activity of octocorals on the Great Barrier Reef, Australia: Biological aspects. Bulletin of Marine Science 45:697–707.

Benayahu Y. 1997. Developmental episodes in reef soft corals: Ecological and cellular determinants. Proceedings of the 8th International Coral Reef Symposium 2:1213–18.

Benayahu Y, Loya Y. 1984. Life history studies on the Red Sea octocoral *Xenia macrospiculata* (Gohar 1940). I. Annual dynamics on gonadal development. Biological Bulletin 166:32–43.

Benayahu Y, Weil D, Kleinmann M. 1990. Radiation of broadcasting and brooding patterns in coral reef alcyonaceans. Advances in Invertebrate Reproduction 5:323–28.

Brazeau DA, Lasker HR. 1992. Reproductive success in the Caribbean octocoral *Briareum asbestinum*. Marine Biology 114:157–63.

Brusca RC, Brusca GJ. 1990. Invertebrates. Sunderland, MA: Sinauer. 922 pages.

Ceccatty MP, Buisson B. 1965. Reciprocal behavior of the rachis and peduncle in colonies of *Veretillum cynomorium* Pall. American Zoologist 5:531–35.

Chia FS, Crawford BJ. 1973. Some observations on gametogenesis, larval development and substratum selection of the sea pen *Ptilosarcus guineensis*. Marine Biology 23:73–82.

Coma R, Ribes M, Zabala M, Gili J-M. 1995. Reproduction and cycle of gonadal development in the Mediterranean gorgonian *Paramuricea clavata*. Marine Ecology Progress Series 117:173–83.

Cordes EE, Nybakken JW, VanDykhuizen G. 2001. Reproduction and growth of *Anthomastus ritteri* (Octocoralia: Alcyonacea) from Monterey Bay, California, USA. Marine Biology 138:491–501.

Cornelius PFS, Manuel RL, Ryland JS. 1995. Hydroids, sea anemones, jellyfish, and comb jellies (Phyla Cnidaria and Ctenophora). In: Hayward PJ, Ryland JS, editors., Handbook of the Marine Fauna of North-West Europe. Oxford: Oxford University Press, p 62–135.

Duncan J. 1998. Biology of the Sea Pen *Pterocides* sp. in Fiordland, New Zealand. MSc dissertation, University of Otago. 176 pages.

Eckelbarger KJ, Tyler PA, Langston RW. 1998. Gonadal morphology and gametogenesis in the sea pen *Pennatula aculeata* (Anthozoa: Pennatulacea) from the Gulf of Maine. Marine Biology 132:677–90.

Eckelbarger KJ, Watling L. 1995. Role of phylogenetic constraints in determining reproductive patterns in deep-sea invertebrates. Invertebrate Biology 114:256–69.

Edwards DCB, Moore CG. 2008. Reproduction in the sea pen *Pennatula phosphorea* (Anthozoa: Pennatulacea) from the west coast of Scotland. Marine Biology 155:303–14.

Edwards DCB, Moore CG. 2009. Reproduction in the sea pen *Funiculina quadrangularis* (Anthozoa: Pennatulacea) from the west coast of Scotland. Estuarine, Coastal and Shelf Science 82:161–68.

Farrant PA. 1985. Reproduction in the temperate Australian soft coral *Capnella gaboensis*. In Proceedings of the 5th International Coral Reef Congress, ed. Gabrie C, Salvat B, Antenne-Museum-EPHE, Moorea. Vol. 4, p 319–24.

Farrant PA. 1986. Gonad development and the planulae of the temperate Australian soft coral *Capnella gaboensis*. Marine Biology 92:381–92.

Hartnoll RG. 1975. The annual cycle of *Alcyonium digitatum*. Estuarine, Coast and Shelf Science 3:71–75.

IMAR. 2008–2011. Relatório do Programa de Monitorização Ambiental do projecto da Marina e novo Cais dos ‘ferries’ do Troiaresort. Lisboa, Portugal: Instituto do Mar (IMAR). 303 pages.

Kierboe T. 2006. Sex, sex-ratios, and the dynamics of pelagic copepod populations Oecologia 148:40–50.
Lee WY, McAlice BJ. 1979. Seasonal succession and breeding cycles of three species of Acartia (Copepoda: Calanoida) in a Maine estuary. Estuaries 2:228–35.

López-González PJ, Gili J-M, Williams GC. 2001. New records of Pennatulacea (Anthozoa: Octocorallia) from the African Atlantic coast, with description of a new species and a zoogeographic analysis. Scientia Marina 65:59–74.

McFadden CS, Donahue R, Hadland BK, Weston R. 2001. A molecular phylogenetic analysis of reproductive trait evolution in the soft coral genus Alcyonium. Evolution 55:54–67.

Orejas C, López-González PJ, Gili JM, Teixidó N, Gutt J, Arntz WE. 2002. Distribution and reproductive ecology of the Antarctic octocoral Aningapanalom antarcticum in the Weddell Sea. Marine Ecology Progress Series 231:101–14.

Ramírez Llodra E. 2002. FECUNDITY and life-history strategies in marine invertebrates. Advances in Marine Biology 43:87–170.

Rice AL, Tyler PA, Paterson GJL. 1992. The pennatulid Kophobelemnon stelliferum (Cnidaria: Octocorallia) in the Porcupine Seabight (North-East Atlantic Ocean). Journal of Marine Biological Association of the United Kingdom 72:417–34.

Santangelo G, Carletti E, Maggi E, Bramanti L. 2003. Reproduction and population sexual structure of the overexploited Mediterranean red coral Corallium rubrum Marine Ecology Progress Series 248:99–108.

Slattery M, Hines GA, Starmer J, Paul VJ. 1999. Chemical signals in gametogenesis, spawning, and larval settlement and defense of the soft coral Stunularia polydactyla. Coral Reefs 18:75–84.

Soong K. 2005. Reproduction and colony integration of the sea pen Virgularia juncea. Marine Biology 146:1103–09.

Stearns SC. 1992. The Evolution of Life Histories. Oxford: Oxford University Press. 249 pages.

Tremblay M-E, Henry J, Antcll M. 2004. Spawning and gamete follicle rupture in the cnidian Renilla koellikeri: Effects of putative neurohormones. General and Comparative Endocrinology 137:9–18.

Tyler PA, Bronsdon SK, Young CM, Rice AL. 1995. Ecology and gametogenic biology of the genus Umbellula (Pennatulacea) in the North Atlantic Ocean. Internationale Revue der Gesamten Hydrobiologie 80:187–99.

Williams GC, van der Land J. 2001. Octocorallia – Pennatulacea. In: Costello MJ, Emblow C, editors., European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels 50:105–06.

Xiao Y, Greenwood G. 1993. The biology of acetes (Crustacea, Sergestidae). Oceanography and Marine Biology 31:259–444.

Zar JH. 1996. Biostatistical Analysis, 3rd edn. Englewood Cliffs, NJ: Prentice Hall. 662 pages.

Editorial responsibility: Ole S. Tendal