Coverings of small categories and nerves

Kazunori Noguchi

Abstract

We prove a certain proposition which states a relationship between coverings of small categories and nerves. As its application, we prove that for a covering \(P : E \to B \) of finite categories, the zeta function of \(E \) is the zeta function of \(B \) to the number of sheet of \(P \). Moreover, we prove the formula \(\chi(E) = \chi(F)\chi(B) \) for Euler characteristic of categories and coverings.

1 Introduction

A covering space is very useful and interesting tools in geometry. For instance, it is used for calculations of fundamental groups and it has an analogy of Galois theory [Hat02]. The notion of coverings is also defined for small categories. Many people have studied about it, for example [BH99], [CM] and [Tan]. In this paper, we show the following proposition.

Proposition 1.1. Let \(P : E \to B \) be a covering of small categories and let \(b \) be an object of \(B \). For any \(n \geq 0 \), \(N_n(E) \) is bijective to \(\prod_{x \in P^{-1}(b)} N_n(B) \) where

\[
N_n(E) = \{ (x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \ldots \xrightarrow{f_n} x_n) \ \text{in} \ E \}
\]

and \(N_n(B) \) is also defined in the same way.

As its application, we prove that for a covering \(P : E \to B \) of finite categories, the zeta function of \(E \) is the zeta function of \(B \) to the number of sheet of \(P \). Moreover, we prove the formula \(\chi(E) = \chi(F)\chi(B) \) for Euler characteristic of categories and coverings.

First, we give a historical background of the zeta function of a finite category and coverings of finite categories. In [NogA], the zeta function of a finite category \(I \) was defined by

\[
\zeta_I(z) = \exp \left(\sum_{n=1}^{\infty} \frac{\#N_n(I)}{n} z^n \right)
\]

Key words and phrases. a covering of small categories, the zeta function of a finite category, Euler characteristic of categories.

2010 Mathematics Subject Classification: 18G30, 55R05, 55U10.
and it was shown that the zeta function of a connected finite groupoid is a rational function and for a covering of finite groupoids $P : E \to B$, the inverse zeta function of B divides the inverse zeta function of E (Proposition 2.3 and Proposition 2.7 of [NogA]).

In this paper, we generalize Proposition 2.7 of [NogA] as follows.

Main Theorem. Suppose $P : E \to B$ is a covering of finite categories and let b be an object of B. Then, the zeta function of E is the zeta function of B to the number of sheet of P, that is,

$$\zeta_E(z) = (\zeta_B(z))^\#P^{-1}(b).$$

Note that the number $\#P^{-1}(b)$ does not depend on the choice of b (Proposition 2.1). It is an analogue of Corollary 1 of §2 of [ST96].

Next, we recall Euler characteristic of categories.

The Euler characteristic of a finite category χ_L was defined by Leinster [Lei08]. After this paper, various definitions of Euler characteristics for categories were defined, series Euler characteristic χ_{Σ} by Berger-Leinster [BL08], L^2-Euler characteristic $\chi^{(2)}$ by Fiore-Lück-Sauer [FLS11], extended L^2-Euler characteristic $\chi_{\Sigma}^{(2)}$ [Nog] and Euler characteristic of \mathbb{N}-filtered acyclic categories χ_{fil} [Nog11] by the author. For a finite acyclic category, four Euler characteristics $\chi_L, \chi_{\Sigma}, \chi^{(2)}$ and χ_{fil} coincide (see, for example, Introduction of [Nog]). A small category is acyclic if every endomorphism and every isomorphism is an identity morphism. For a finite groupoid G, three Euler characteristic χ_L, χ_{Σ} and $\chi^{(2)}$ coincide and the value is

$$\sum_{x \in \text{Ob}(G)/\sim} \frac{1}{\#\text{Aut}(x)}$$

where this sum runs over all isomorphism classes of objects of G (Example 2.7 of [Lei08], Theorem 3.2 of [BL08] and Example 5.12 of [FLS11]).

A topological fibration $F \hookrightarrow E \to B$ under certain suitable hypothesis satisfies the equation

$$\chi(E) = \chi(F)\chi(B).$$

An analogue of this formula for Euler characteristic of categories and category fibrations was considered in [Lei08] and [FLS11]. In [Lei08], such formula was found for the Grothendieck construction (Proposition 2.8 of [Lei08]). In [FLS11], such formula for coverings of connected finite groupoids and isofibrations of connected finite groupoids were found (Theorem 5.30 and Theorem 5.37 of [FLS11]).

In this paper, we consider such formula for χ_{Σ} and χ_{fil} and coverings.

Main Theorem.

1. Let $P : E \to B$ be a covering of finite categories and let b be an object of B. Then, E has series Euler characteristic if and only if B has series Euler characteristic. In this case, we have

$$\chi_{\Sigma}(E) = \chi_{\Sigma}(P^{-1}(b))\chi_{\Sigma}(B).$$

2. Suppose (A, μ_A) and (B, μ_B) are \mathbb{N}-filtered acyclic categories and b is an object of B and $P : A \to B$ be a covering whose fiber is finite satisfying
the equation $\mu_A(x) = \mu_B(P(x))$ for any object x of A. Then, (A, μ_A) has Euler characteristic $\chi_{fil}(A, \mu_A)$ if and only if B has Euler characteristic $\chi_{fil}(B, \mu_B)$. In this case, we have

$$\chi_{fil}(A, \mu_A) = \chi_{fil}(P^{-1}(b), \mu)\chi_{fil}(B, \mu_B)$$

for any \mathbb{N}-filtration μ of $P^{-1}(b)$.

This paper is organized as follows.

In section 2 we investigate relationships between coverings of small categories and nerves.

In section 3 we prove our main theorem.

In section 4 we give some examples of coverings of small categories.

2 Coverings and Nerves

In this section, we investigate relationships between coverings of small categories and nerves.

Here, let us recall a covering of small categories [BH99].

Let C be a small category. Then, C is connected if there exists a zig-zag sequence of morphisms in C

$$x \xrightarrow{f_1} x_1 \xrightarrow{f_2} x_2 \xrightarrow{f_3} \cdots \xrightarrow{f_n} y$$

for any objects x and y of C. We do not have to care about the direction of the last morphism f_n since we can insert an identity morphism to the sequence. For an object x of C, let $S(x)$ is the set of morphisms of C whose source is x $S(x) = \{f : x \to * \in \text{Mor}(C)\}$

and $T(x)$ is the set of morphisms of C whose target is x $T(x) = \{g : * \to x \in \text{Mor}(C)\}$.

Suppose E and B are small categories and B is connected. Then, a functor $P : E \to B$ is a covering if the following two restrictions of P

$$P : S(x) \longrightarrow S(P(x))$$

$$P : T(x) \longrightarrow T(P(x))$$

are bijections for any object x of E. This condition is an analogue of the condition of an unramified covering of graphs (see [ST96]). For an object b of B, the inverse image $P^{-1}(b)$ of the restriction of P with respect to objects $P^{-1}(b) = \{x \in \text{Ob}(E) \mid P(x) = b\}$

is called the fiber of b. The cardinality of $P^{-1}(b)$ is called the number of sheet of P and it does not depend on the choice of b since the base category B is connected (see Proposition 2.1). In particular, a covering of groupoids was studied in [May99]. Applying the classifying space functor B to a covering $P : E \to B$, we have the covering space BP in the topological sense (see [Tan]) and examples are given in Section 4.

The following proposition is briefly introduced in [BH99] with no proof, but this proposition is very important in this paper. So we give a proof of it to make sure.
Proposition 2.1. Let $P : E \to B$ be a covering of small categories. Then, for any objects b and b' of B, $P^{-1}(b)$ is bijective to $P^{-1}(b')$.

Proof. It suffices to show that $P^{-1}(b)$ is bijective to $P^{-1}(b')$ if there exists a morphism $f : b \to b'$. Indeed, if it is proven, then we have for any objects b and b', we have a zig-zag sequence

$$b \longrightarrow b_1 \longrightarrow b_2 \longrightarrow \ldots \longrightarrow b'$$

so that we obtain

$$P^{-1}(b) \cong P^{-1}(b_1) \cong \ldots \cong P^{-1}(b').$$

Suppose there exists a morphism $f : b \to b'$. For any x of $P^{-1}(b)$, we have the bijection $P : S(x) \to S(b)$. Since f belongs to $S(b)$, there exists a unique morphism $f_x : x \to y_x$ of $S(x)$ such that $P(f_x) = f$. Define a map $F_f : P^{-1}(b) \to P^{-1}(b')$ by $F_f(x) = y_x$. Then, F_f is a bijection. We first show it is injective. If $x \neq x'$, then $y_x \neq y_{x'}$. Indeed, then if we assume $y_x = y_{x'}$

$$x \xleftarrow{f_x} \leftarrow \ x' \xrightarrow{f_{x'}}$$

f_x and $f_{x'}$ belong to $T(y_x)$ and they are different morphisms, but the map $P : T(y_x) \to T(b')$ is bijective and $P(f_x) = P(f_{x'}) = f$. This contradiction implies $y_x \neq y_{x'}$. Next, we show F_f is a surjection. For any y of $P^{-1}(b')$, there exists a unique morphism $g : x \to y$ such that $P(g) = f$ since the map $P : T(y) \to T(b')$ is bijective. Then, $P(x) = b$, so x belongs to $P^{-1}(b)$. Hence, $F_f(1) = y$.

The following lemma is clear, but this formulation will make the proof of Proposition 2.1 easier to understand.

Lemma 2.2. Suppose $f : X \to Y$ is a bijection and $X = \coprod_{\lambda \in A} A_\lambda$ and $Y = \coprod_{\lambda \in B} B_\lambda$ and for each restriction $f|_{A_\lambda}$, its image belongs to B_λ. Then, each restriction $f|_{A_\lambda}$ is a bijection.

Let C be a small category and x be an object of C. Then, let $N_n(C)_x$ be the set of chains of morphisms in C of length n whose target is x

$$N_n(C)_x = \{ (x_0 \overset{f_1}{\longrightarrow} x_1 \overset{f_2}{\longrightarrow} \ldots \overset{f_n}{\longrightarrow} x_n) \mid x_i = x \}.$$

Proposition 2.3. Let $P : E \to B$ be a covering of small categories. Then, for any object b of B and any x of $P^{-1}(b)$ and $n \geq 0$, $N_n(E)_x$ is bijective to $N_n(B)_b$.
Proof. We prove this proposition by induction on n. If $n = 0$, we have

$$N_0(E)_x = \{1_x\} \cong \{1_b\} = N_0(B)_b.$$

Suppose it is true for n. Then we have

$$N_{n+1}(E)_x = \prod_{y \in \text{Ob}(E)} N_n(E)_y \times \text{Hom}_E(y, x)$$

$$\cong \prod_{b_i \in \text{Ob}(B)} \prod_{y_i \in \text{P}^{-1}(b_i)} N_n(B)_{b_i} \times \text{Hom}_E(y_i, x)$$

$$\cong \prod_{b_i \in \text{Ob}(B)} N_n(B)_{b_i} \times \left(\prod_{y_i \in \text{P}^{-1}(b_i)} \text{Hom}_E(y_i, x) \right). \tag{1}$$

We have the following diagram

$$T(x) = \prod_{b_i \in \text{Ob}(B)} \left(\prod_{y_i \in \text{P}^{-1}(b_i)} \text{Hom}_E(y_i, x) \right) \quad \xrightarrow{P} \quad \prod_{y_i \in \text{P}^{-1}(b_i)} \text{Hom}_E(y_i, x)$$

$$T(b) = \prod_{b_i \in \text{Ob}(B)} \text{Hom}_B(b_i, b) \quad \xleftarrow{P} \quad \text{Hom}_B(b_i, b)$$

Lemma 2.2 implies

$$P : \prod_{y_i \in \text{P}^{-1}(b_i)} \text{Hom}_E(y_i, x) \rightarrow \text{Hom}_B(b_i, b)$$

is a bijection since for each $f : y_i \rightarrow x$, $P(f) : b_i \rightarrow b$ belongs to $\text{Hom}_B(b_i, b)$. Hence, the equation (1) is

$$\prod_{b_i \in \text{Ob}(B)} N_n(B)_{b_i} \times \text{Hom}_B(b_i, b) \cong \prod_{b_i \in \text{Ob}(B)} N_n(B)_{b_i} \times \text{Hom}_B(b_i, b)$$

$$= N_{n+1}(B)_b.$$

\[\Box\]

Proposition 2.4. Let $P : E \rightarrow B$ be a covering of small categories and let b be an object of B. For any $n \geq 0$, $N_n(E)$ is bijective to $\prod_{x \in \text{P}^{-1}(b)} N_n(B)$.

Proof. When $n = 0$, Proposition 2.1 implies

$$N_0(E) = \prod_{b \in \text{Ob}(B)} \text{P}^{-1}(b)$$

$$\cong \text{P}^{-1}(b) \times N_0(B)$$

$$\cong \prod_{x \in \text{P}^{-1}(b)} N_0(B).$$
For $n \geq 1$, Proposition 2.3 implies

$$N_n(E) = \prod_{x \in \text{Ob}(E)} N_{n-1}(E) x \times S(x)$$

$$\cong \prod_{b \in \text{Ob}(B)} \prod_{x \in P^{-1}(b)} N_{n-1}(B) b \times S(b)$$

Since the number of sheet of P does not depend on the choice of b (Proposition 2.1), we have

$$\cong \prod_{x \in P^{-1}(b)} N_{n-1}(B) b \times S(b)$$

(2)

The two propositions above hold when nerves are non-degenerate, it means that we do not use identity morphisms. Let C be a small category and let x and y be objects of C. We define the following symbols by

$$S(x) = S(x) \setminus \{1_x\}, T(x) = T(x) \setminus \{1_x\}$$

$$\text{Hom}_C(x, y) = \begin{cases} \text{Hom}_C(x, y) \setminus \{1_x\} & \text{if } x = y \\ \text{Hom}_C(x, y) & \text{if } x \neq y \end{cases}$$

$$\overline{N}_n(C) = \{ (x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \ldots \xrightarrow{f_n} x_n) \text{ in } C \mid f_i \neq 1 \}$$

$$\overline{N}_n(C)_x = \{ (x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \ldots \xrightarrow{f_n} x_n) \text{ in } C \mid f_i \neq 1, x_n = x \}.$$

Note that $\overline{N}_0(C) = \overline{N}_0(C)$.

Proposition 2.5. Let $P : E \to B$ be a covering of small categories. Then, for any object b of B and any x of $P^{-1}(b)$ and $n \geq 0$, $N_n(E)_x$ is bijective to $\overline{N}_n(B)_b$.

Proof. If we replace the symbols in the proof of Proposition 2.3 by the symbols with bars above, we can use the same proof. \qed

Proposition 2.6. Let $P : E \to B$ be a covering of small categories and b be an object of B. For any $n \geq 0$, $N_n(E)$ is bijective to $\prod_{x \in P^{-1}(b)} \overline{N}_n(B)$.

3 Applications

In this section, we prove our main theorem.

The following is an analogue of Corollary 1 of §2 of [ST96].

Theorem 3.1. Let $P : E \to B$ be a covering of finite categories and let b be an object of B. Then, we have

$$\zeta_E(z) = (\zeta_B(z))^{#P^{-1}(b)}.$$
Proof. The definition of the zeta function of a finite category and Proposition 2.4 directly imply this fact, that is,

\[\zeta_E(z) = \exp \left(\sum_{n=1}^{\infty} \frac{\#N_n(E)}{n} z^n \right) \]
\[= \exp \left(\sum_{n=1}^{\infty} \frac{\#P^{-1}(b)\#N_n(B)}{n} z^n \right) \]
\[= (\zeta_B(z))^{\#P^{-1}(b)}. \]

Let \(I \) be a finite category. Then, \(I \) has series Euler characteristic [BL08] if and only if the rational function

\[f_I(t) = \frac{\text{sum(adj}(E - (A_I - E)t))}{\det(E - (A_I - E)t)} \]

can be substituted \(-1\) to \(t \) where \(A_I \) is an \(n \times n \)-matrix, called adjacency matrix, whose \((i, j)\)-entry is the number of morphisms from \(x_i \) to \(x_j \) when

\[\text{Ob}(I) = \{x_1, x_2, \ldots, x_n\}. \]

If \(I \) has series Euler characteristic, then the series Euler characteristic \(\chi_{\Sigma}(I) \) of \(I \) is defined by \(f_I(-1) \). This rational function is the rational expression of the power series \(\sum_{n=0}^{\infty} \#N_n(I)t^n \) (Theorem 2.2 of [BL08]).

A discrete category consists of only objects and identity morphisms. For a covering \(P : E \to B \), its fiber is a discrete category when we regard it as a category.

Theorem 3.2. Let \(P : E \to B \) be a covering of finite categories and let \(b \) be an object of \(B \). Then, \(E \) has series Euler characteristic if and only if \(B \) has series Euler characteristic. In this case, we have

\[\chi_{\Sigma}(E) = \chi_{\Sigma}(P^{-1}(b))\chi_{\Sigma}(B). \]

Proof. We give two types of proofs.

The first one is a proof by Proposition 2.6, Proposition 2.6, and Theorem 2.2 of [BL08] imply

\[\sum_{n=0}^{\infty} \#N_n(E)t^n = \#P^{-1}(b) \sum_{n=0}^{\infty} \#N_n(B)t^n \]
\[= \#P^{-1}(b) \frac{\text{sum(adj}(E - (A_B - E)t))}{\det(E - (A_B - E)t)}. \]

So \(E \) has series Euler characteristic if and only if \(-1\) can be substituted to

\[\frac{\text{sum(adj}(E - (A_B - E)t))}{\det(E - (A_B - E)t)} \]

if and only if \(-1\) can be substituted to

\[\frac{\text{sum(adj}(E - (A_B - E)t))}{\det(E - (A_B - E)t)} \]
if and only if B has series Euler characteristic. Hence, we prove the first claims. If E has series Euler characteristic, then we have

$$\chi_{\Sigma}(E) = \#P^{-1}(b)\chi_{\Sigma}(B) = \chi_{\Sigma}(P^{-1}(b)\chi_{\Sigma}(B)).$$

The second proof is a proof by the zeta function of a finite category. Suppose

$$\zeta_B(z) = \prod_{k=1}^{n} \frac{1}{(1 - a_k z)^{b_k,0}} \exp \left(\sum_{k=1}^{n} \sum_{j=1}^{e_k-1} \frac{b_{k,j} z^j}{j(1 - a_k z)^j} \right)$$

for some complex numbers a_k and $b_{k,j}$ and natural numbers n and e_k and a polynomial $Q(z)$ with \mathbb{Z}-coefficients whose constant term is 0 (Theorem 3.1 of [NogC]). Then, the uniqueness of the analytic continuation and Theorem 3.3 imply

$$\zeta_E(z) = \prod_{k=1}^{n} \frac{1}{(1 - a_k z)^{\#P^{-1}(b)b_k,0}} \exp \left(\sum_{k=1}^{n} \sum_{j=1}^{e_k-1} \frac{b_{k,j} z^j}{j(1 - a_k z)^j} \right).$$

We have $Q(z) = 0$ if and only if $\#P^{-1}(b)Q(z) = 0$, so that by Lemma 3.3 the first claim is proven. If B has series Euler characteristic, then we have

$$\zeta_B(z) = \prod_{k=1}^{n} \frac{1}{(1 - a_k z)^{\#P^{-1}(b)b_k,0}} \exp \left(\sum_{k=1}^{n} \sum_{j=1}^{e_k-1} \frac{b_{k,j} z^j}{j(1 - a_k z)^j} \right).$$

Theorem 3.3 of [NogC] implies

$$\chi_{\Sigma}(E) = \sum_{k=1}^{n} \sum_{j=0}^{e_k-1} (-1)^j \#P^{-1}(b)b_{k,j} a_k^{j+1}$$

$$= \#P^{-1}(b) \sum_{k=1}^{n} \sum_{j=0}^{e_k-1} (-1)^j b_{k,j} a_k^{j+1}$$

$$= \chi_{\Sigma}(P^{-1}(b)\chi_{\Sigma}(B)).$$

Lemma 3.3. Suppose I is a finite category and the zeta function of I is

$$\zeta_I(z) = \prod_{k=1}^{n} \frac{1}{(1 - a_k z)^{b_k,0}} \exp \left(Q(z) + \sum_{k=1}^{n} \sum_{j=1}^{e_k-1} \frac{b_{k,j} z^j}{j(1 - a_k z)^j} \right)$$

for some complex numbers a_k and $b_{k,j}$ and natural numbers n and e_k and a polynomial $Q(z)$ with \mathbb{Z}-coefficients whose constant term is 0. Then, I has series Euler characteristic if and only if $Q(z) = 0$.

8
Proof. Theorem 3.1 of [NogA] implies the zeta function of I is of the form of (4).

If I has series Euler characteristic, Theorem 3.3 of [NogC] implies $Q(z) = 0$. Conversely, let $Q(z) = 0$. Here, let us recall what $Q(z)$ is (Theorem 3.1 of [NogC]). Indeed, $Q(z) = \int q(z)dz$ and $q(z)$ is a polynomial with coefficients in \mathbb{Z}, moreover

$$\text{sum}(\text{adj}(E - A_I z)A_I) = q(z)|E - A_I z| + r(z)$$

where

$$\text{deg}(r(z)) < \text{deg}|E - A_I z|.$$

We have $\int q(z)dz = 0$ implies $q(z) = 0$. Hence,

$$\text{sum}(\text{adj}(E - A_I z)A_I) = r(z).$$

Lemma 2.3 of [NogC] implies I has series Euler characteristic.

We recall the Euler characteristic of an \mathbb{N}-filtered acyclic category [Nog11].

Definition 3.4. A small category A is acyclic if every endomorphism and every isomorphism is an identity morphism.

Remark 3.5. This is the same as a skeletal scwol [BH99].

Define an order on the set $\text{Ob}(A)$ of objects of A by $x \leq y$ if there exists a morphism $x \to y$. Then, $\text{Ob}(A)$ is a poset.

Definition 3.6. Let A be an acyclic category. A functor $\mu : A \to \mathbb{N}$ satisfying $\mu(x) < \mu(y)$ for $x < y$ in $\text{Ob}(A)$ is called an \mathbb{N}-filtration of A. A pair (A, μ) is called an \mathbb{N}-filtered acyclic category.

Definition 3.7. Let (A, μ) be an \mathbb{N}-filtered acyclic category. Then, define $\chi_{fil}(A, \mu)$ as follows.

For natural numbers i and n, let

$$\overline{N}_n(A)_i = \{ f \in N_n(A) \mid \mu(t(f)) = i \}$$

where $t(f) = x_n$ if

$$f = (x_0 \xrightarrow{f_1} x_1 \xrightarrow{f_2} \ldots x_n \xrightarrow{f_n}) .$$

Suppose each $\overline{N}_n(A)_i$ is finite. Define the formal power series $f_{\chi}(A, \mu)(t)$ over \mathbb{Z} by

$$f_{\chi}(A, \mu)(t) = \sum_{i=0}^{\infty} (-1)^i \left(\sum_{n=0}^{i} (-1)^n \# \overline{N}_n(A)_i \right) t^i .$$

Then, define

$$\chi_{fil}(A, \mu) = f_{\chi}(A, \mu)|_{t=-1}$$

if $f_{\chi}(A, \mu)(t)$ is rational and has a non-vanishing denominator at $t = -1$.

9
Theorem 3.8. Suppose \((A, \mu_A)\) and \((B, \mu_B)\) are \(\mathbb{N}\)-filtered acyclic categories and \(b\) is an object of \(B\) and \(P : A \to B\) be a covering whose fiber is finite satisfying the equation \(\mu_A(x) = \mu_B(P(x))\) for any object \(x\) of \(A\). Then, \((A, \mu_A)\) has Euler characteristic \(\overline{\chi}(A, \mu_A)\) if and only if \(B\) has Euler characteristic \(\overline{\chi}(B, \mu_B)\). In this case, we have

\[
\overline{\chi}(A, \mu_A) = \chi(B, \mu_B)
\]

for any \(\mathbb{N}\)-filtration \(\mu\) of \(P^{-1}(b)\).

Proof. For any object \(b\) of \(B\) and \(x\) of \(P^{-1}(b)\), we have

\[
\mu^{-1}_A(i) = \prod_{b \in \mu^{-1}_B(i)} P^{-1}(b)
\]

for any \(i \geq 0\). Indeed, for any \(x\) of \(\mu^{-1}_A(i)\), \(\mu_B(P(x)) = \mu_A(x) = i\). Hence, \(P(x)\) belongs to \(\mu^{-1}_B(i)\). Moreover, \(x\) belongs to \(P^{-1}(P(x))\), so that \(x\) belongs to \(\prod_{b \in \mu^{-1}_B(i)} P^{-1}(b)\). Conversely, for any \(b\) of \(\mu^{-1}_B(i)\) and \(y\) of \(P^{-1}(b)\), \(y\) belongs to \(\mu^{-1}_A(i)\) since

\[
\mu_A(y) = \mu_B(P(y)) = \mu_B(b) = i.
\]

Hence, \(y\) belongs to \(\mu^{-1}_A(i)\). Proposition 25 implies

\[
\overline{N}_n(A)_i = \prod_{b \in \mu^{-1}_B(i)} \overline{N}_n(A)_x
\]

\[
= \prod_{b \in \mu^{-1}_B(i)} \overline{N}_n(A)_x
\]

\[
\cong \prod_{b \in \mu^{-1}_B(i)} \prod_{x \in P^{-1}(b)} \overline{N}_n(A)_x
\]

\[
\cong \prod_{b \in \mu^{-1}_B(i)} P^{-1}(b) \times \overline{N}_n(B)_b
\]

\[
\cong P^{-1}(b) \times \prod_{b \in \mu^{-1}_B(i)} \overline{N}_n(B)_b
\]

\[
= P^{-1}(b) \times \overline{N}_n(B)_i.
\]

Hence, we have

\[
f_X(A, \mu_A)(t) = \sum_{i=0}^{\infty} (-1)^i \left(\sum_{n=0}^{i} (-1)^n \overline{N}_n(A)_i \right) t^i
\]

\[
= \sum_{i=0}^{\infty} (-1)^i \left(\sum_{n=0}^{i} (-1)^n \overline{N}_n(B)_i \right) t^i
\]

\[
= \#P^{-1}(b) f_X(B, \mu_B)(t).
\]

Hence, there exists \(\overline{\chi}(A, \mu_A)\) if and only if the power series \(f_X(A, \mu_A)(t)\) is rational and \(-1\) can be substituted to the rational function if and only if the power series \(f_X(B, \mu_B)(t)\) is rational and \(-1\) can be substituted to the rational
function if and only if there exists \(\chi_{\text{fil}}(B, \mu_B) \). So the first claim is proven. If there exists \(\chi_{\text{fil}}(A, \mu_A) \), then we have

\[
\chi_{\text{fil}}(A, \mu_A) = \#P^{-1}(b)\chi_{\text{fil}}(B, \mu_B) = \chi_{\text{fil}}(P^{-1}(b), \mu)\chi_{\text{fil}}(B, \mu_B).
\]

It is clear that for any \(\mathbb{N} \)-filtration \(\mu \), \(\chi_{\text{fil}}(P^{-1}(b), \mu) = \#P^{-1}(b) \). We can give a filtration to \(P^{-1}(b) \), for example, define \(\mu : P^{-1}(b) \to \mathbb{N} \) by \(\mu(x) = 0 \) for any \(x \) of \(P^{-1}(b) \).

\[\square \]

4 Examples

In this section, we give three examples of coverings of small categories.

Example 4.1. Let

\[
\Gamma = \begin{array}{c}
\text{x} \\
\downarrow \\
\text{y}
\end{array} \quad \begin{array}{c}
\text{f} \\
\downarrow \\
\text{f}^{-1}
\end{array}
\]

and \(B = \mathbb{Z}_2 = \{1, -1\} \). A group can be regarded as a category whose object is just one object \(* \) and morphisms are elements of \(G \) and composition is the operation of \(G \). Define \(P : \Gamma \to B \) by \(P(f) = P(f^{-1}) = -1 \). Then, \(P \) is a covering and this covering was studied in Example 5.33 of [FLSI11]. Since \(\Gamma \) and \(B \) are finite groupoids, Proposition 2.3 of [NogA] implies

\[
\zeta_{\Gamma}(z) = \frac{1}{(1 - 2z)^2}, \quad \zeta_{B}(z) = \frac{1}{1 - 2z}.
\]

The number of sheet of \(P \) is 2. We have \(\zeta_{\Gamma}(z) = \zeta_{B}(z)^2 \).

Applying the classifying space functor \(B \) to \(P \), we obtain the famous covering \(p_\infty : S^\infty \to \mathbb{R}P^\infty \)

\[
\begin{array}{c}
B\Gamma \\
\downarrow \\
BP
\end{array} \quad \begin{array}{c}
S^\infty \\
\downarrow \\
\mathbb{R}P^\infty
\end{array}
\]

For a finite groupoid \(G \), three Euler characteristic \(\chi_L \), \(\chi_\Sigma \) and \(\chi^{(2)} \) coincide and the value is

\[
\sum_{x \in \text{Ob}(G)/\approx} \frac{1}{\#\text{Aut}(x)}
\]

where this sum runs over all the isomorphism classes of objects of \(G \) (Example 2.7 of [Lei08], Theorem 3.2 of [BL08] and Example 5.12 of [FLSI11]). Hence, we have

\[
\chi_\Sigma(\Gamma) = 1, \quad \chi_\Sigma(B) = \frac{1}{2}, \quad \chi_\Sigma(P^{-1}(*) = 2
\]

and

\[
\chi_\Sigma(\Gamma) = \chi_\Sigma(P^{-1}(*))\chi_\Sigma(B).
\]
Example 4.2. Let

\[A = y_1 y_2 y_3 \ldots y_n \]

and

\[B = a \xrightarrow{h_1} b . \]

Define a functor \(P : A \to B \) by \(P(x_i) = a, P(y_i) = b, P(f_i) = h_1 \) and \(P(g_i) = h_2 \) for any \(i \). Then, \(P \) is a covering. By Proposition 2.9 of \([\text{NogA}]\), we have

\[\zeta_A(z) = \frac{1}{(1-z)^2} \exp \left(\frac{2nz}{1-z} \right), \quad \zeta_B(z) = \frac{1}{(1-z)^2} \exp \left(\frac{2z}{1-z} \right) . \]

The number of sheet of \(P \) is \(n \). We have \(\zeta_A(z) = \zeta_B(z)^n \).

Applying the classifying space functor \(B \) to \(P \), we obtain the famous covering \(p^n : \mathbb{S}^1 \to \mathbb{S}^1 \) where

\[\mathbb{S}^1 = \{ z \in \mathbb{C} \mid |z| = 1 \} \]

and \(p^n \) is the \(n \)-th power mapping. The map \(p^n \) is a covering (see \([\text{Hat02}]\), for example)

\[
\begin{array}{c}
BA \xrightarrow{\cong} \mathbb{S}^1 \\
\downarrow BP \\
BB \xrightarrow{\cong} \mathbb{S}^1.
\end{array}
\]

The two categories \(A \) and \(B \) are finite acyclic categories. For a finite acyclic category, four Euler characteristics \(\chi_L, \chi_\Sigma, \chi^{(2)} \) and \(\chi_{fil} \) coincide (see, for example, Introduction of \([\text{Nog}]\)). Furthermore, they coincide the Euler characteristic for cell complexes of the classifying space of an acyclic category (Proposition 2.11 of \([\text{Lei08}]\)). We have

\[\chi_\Sigma(A) = 0, \chi_\Sigma(B) = 0, \chi_\Sigma(P^{-1}(a)) = 2 \]

and

\[\chi_\Sigma(A) = \chi_\Sigma(P^{-1}(a))\chi_\Sigma(B) . \]

We introduce an example of a covering of infinite categories.

Example 4.3. Suppose

\[A = x_0 \xrightarrow{x_1} x_1 \xrightarrow{x_2} x_2 \ldots \]

and

\[B = b_0 \xrightarrow{b_1} b_1 \xrightarrow{b_2} b_2 \ldots \]
Where A is a poset, that is, A acyclic and each hom-set has at most exactly one morphism and for $n < m$ and b_n and b_m, define

$$\Hom_B(b_n, b_m) = \{\phi^0_{n,m}, \phi^1_{n,m}\}$$

and a composition of B is defined by $\phi^k_{m,t} \circ \phi^l_{n,m} = \phi^k_{n,t}$ where $k \equiv i + j \mod 2$ for $n < m < t$. Define $P : A \to B$ by $P(x_i) = P(y_i) = b_i$ and $P((x_n, x_m)) = P((y_n, y_m)) = \phi^0_{n,m}$ and $P((y_n, x_m)) = \phi^1_{n,m}$ for $n < m$. Then, P is a covering. The indexes of objects of A and B give \mathbb{N}-filtrations μ_A and μ_B to A and B, respectively. We have

$$f_X(A, \mu_A)(t) = \sum_{i=0}^{\infty} \left(\sum_{n=0}^{i} (-1)^{n+1} \binom{i}{n} \right) t^i$$

$$= 2 \sum_{i=0}^{\infty} t^i$$

$$= \frac{2}{1-t},$$

so that $\chi_{\text{fil}}(A, \mu_A) = 1$. We have

$$f_X(B, \mu_B)(t) = \sum_{i=0}^{\infty} \left(\sum_{n=0}^{i} (-1)^{n} 2^n \binom{i}{n} \right) t^i$$

$$= \sum_{i=0}^{\infty} t^i$$

$$= \frac{1}{1-t},$$

so that $\chi_{\text{fil}}(B, \mu_B) = \frac{1}{2}$. In fact, the categories A and B are the barycentric subdivision of Γ of Example 4.1 and \mathbb{Z}_2 (see [Nog11] and [Nog]). Hence, Theorem 4.9 of [Nog11] and Example 4.1 imply their Euler characteristic $\chi_{\text{fil}}(A, \mu_A)$ and $\chi_{\text{fil}}(B, \mu_B)$. We obtain

$$\chi_{\text{fil}}(A, \mu_A) = \chi_{\text{fil}}(P^{-1}(b_0), \mu) \chi_{\text{fil}}(B, \mu_B)$$

for any \mathbb{N}-filtration μ of $P^{-1}(b)$.

References

[BH99] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319, Springer-Verlag, Berlin, 1999.

[BL08] C. Berger and T. Leinster. The Euler characteristic of a category as the sum of a divergent series, Homology, Homotopy Appl., 10(1):41-51, 2008.

[CM] C. Cibils and J. MacQuarrie. Gradings, smash products and Galois coverings of a small category. arXiv:1203.5905v1
[FLS11] T. M. Fiore, W. Lück and R. Sauer. Finiteness obstructions and Euler characteristics of categories, *Adv. Math.*, Vol. 226, Number 3, (2011), 2371–2469.

[Hat02] A. Hatcher. *Algebraic topology*. Cambridge University Press, Cambridge, 2002.

[Lei08] T. Leinster. The Euler characteristic of a category, *Doc. Math.*, 13:21-49, 2008, [arXiv:math.CT/0610260](http://arxiv.org/abs/math.CT/0610260)

[May99] J. P. May. *A concise course in algebraic topology*. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1999.

[Nog11] K. Noguchi. The Euler characteristic of acyclic categories. *Kyushu Journal of Math.*, vol. 65 No.1 (2011), 85-99.

[Nog] K. Noguchi. Euler characteristics of categories and barycentric subdivision. *Münster Journal of Math.*, to appear.

[NogA] K. Noguchi. The zeta function of a finite category. [arXiv:1203.6133](http://arxiv.org/abs/1203.6133)

[NogB] K. Noguchi. The zeta function of a finite category which has Möbius inversion. [arXiv:1205.4380v2](http://arxiv.org/abs/1205.4380v2)

[NogC] K. Noguchi. The zeta function of a finite category and the series Euler characteristic. [arXiv:1207.6759](http://arxiv.org/abs/1207.6759)

[ST96] H.M. Stark and A.A. Terras. Zeta functions of finite graphs and coverings. *Adv. in Math.* 121 (1996), 124-165.

[Tan] K. Tanaka. A model structure on the category of small categories for coverings. *Math. Journal of Okayama Univ.*, to appear.