Heterozygous Urinary Abnormality–Causing Variants of COL4A3 and COL4A4 Affect Severity of Autosomal Recessive Alport Syndrome

Tomoko Horinouchi,1 Tomohiko Yamamura,1 China Nagano,1 Nana Sakakibara,1 Shinya Ishiko,1 Yuya Aoto,1 Rini Rossanti,1 Koichi Nakanishi,2 Yuko Shima,3 Naoya Morisada,1 Kazumoto Iijima,1 and Kandai Nozu1

Abstract
Background Autosomal recessive Alport syndrome (ARAS) is an inherited renal disorder caused by homozygous and compound heterozygous mutations in COL4A3 or COL4A4, but the prognostic predictors for this disorder are not yet fully understood. Recently, the magnitude of the clinical spectrum of the COL4A3 and COL4A4 heterozygous state has attracted attention. This spectrum includes asymptomatic carriers of ARAS, benign familial hematuria, thin basement membrane disease, and autosomal dominant Alport syndrome.

Methods We retrospectively analyzed 49 patients with ARAS from 41 families with a median age of 19 years to examine the clinical features and prognostic factors of ARAS, including the associated genotypes.

Results The median age of patients with ARAS at ESKD onset was 27 years. There was no significant association between the presence or absence of hearing loss or truncating mutations and renal prognosis. However, there was a statistically significant correlation between renal prognosis and heterozygous variants that cause urinary abnormalities. Where the urinary abnormality–causing variant was absent or present in only one allele, the median age of ESKD onset was 45 years, whereas the same variant present on both alleles was associated with an age of onset of 15 years (P<0.001).

Conclusions This study was the first to demonstrate the clinical importance in ARAS of focusing on variants in COL4A3 or COL4A4 that cause urinary abnormalities in both the homozygous or heterozygous state. Although heterozygous mutation carriers of COL4A3 and COL4A4 comprise a broad clinical spectrum, clinical information regarding each variant is important for predicting ARAS prognosis.

Introduction
Alport syndrome is an inherited renal disorder accompanied by hearing loss and eye lesions. Autosomal recessive Alport syndrome (ARAS), in particular, is caused by either homozygous or compound heterozygous mutations in COL4A3 (NM: 000091) or COL4A4 (NM: 000092), and the proportion of patients with ARAS among the total number of patients with Alport syndrome is estimated to be as low as 15%. The prognostic predictors of ARAS have not yet been sufficiently clarified, whereas the phenotype-genotype correlation in male X-linked Alport syndrome is relatively established; missense mutations exhibit milder phenotypes compared with truncating mutations (1–7). Storey et al. (2) reported that patients with ARAS carrying truncating mutations on at least one allele tend to show early onset of ESKD compared with patients without truncating mutations. Savige et al. (8) reported that renal failure tended to occur at a younger age in patients with two truncating variants compared with no truncating variants. In a systematic review, Lee et al. (9) reported that the median age at onset of ESKD in patients without missense mutations was earlier compared with patients with at least one missense mutation. However, we previously analyzed 30 patients with ARAS and found no association between the presence of truncating mutations and the age at onset of ESKD (10). Patients with ARAS have been reported to develop ESKD on average in their early 20s, although some patients preserve their renal function until middle age (2,8,9,11,12). The development of genetic testing methods such as next generation sequencing (NGS) in recent years has increased opportunities for genetic diagnosis and thereby, increased the number of patients diagnosed with ARAS at earlier stages with mild symptoms. Therefore, to better manage this syndrome, it is necessary to elucidate the prognostic predictors of ARAS.

1Department of Pediatrics, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo, Kobe, Hyogo, Japan
2Department of Child Health and Welfare (Pediatrics), Graduate School of Medicine, University of the Ryukyus, Uehara, Nishihara-cho, Tyutou, Okinawa, Japan
3Department of Pediatrics, Wakayama Medical University, Kimiidera, Wakayama, Wakayama Prefecture, Japan

Correspondence: Tomoko Horinouchi, Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo, Kobe, Hyogo 6500017, Japan. Email: tohori@med.kobe-u.ac.jp
Recently, the magnitude of the clinical spectrum of the
COL4A3 and COL4A4 heterozygous state has attracted
attention; some patients with heterozygous states are asymptom-
tomatic (carriers of ARAS), some may have benign familial
hematuria or thin basement membrane disease, and yet others have autosomal dominant Alport syndrome and develop ESKD (13–15). Moreover, it is known that COL4A3, COL4A4, and COL4A5 mutations can also affect the severity of concomitant kidney diseases caused by mutations in other podocyte-related genes such as NPHS2 and MYH9 (16–18). In this study, we focused on variants in COL4A3 and COL4A4 in patients with ARAS and their parents and determined whether these variants are associated with urina-
ry abnormalities in the heterozygous state. Although heterozygous mutation carriers of COL4A3 and COL4A4 have a broad clinical spectrum, clinical information regarding
these variants is potentially important in predicting the prognosis of patients with ARAS.

Materials and Methods
Ethical Considerations
All procedures involving human participants in this
study were performed in accordance with the ethical stan-
dards of the Institutional Review Board of Kobe University
School of Medicine and with the 1964 Helsinki Declaration
and its later amendments or comparable ethical standards.
Informed consent was obtained from patients and/or their
parents.

Participants and Inclusion Criteria
Patients suspected of having Alport syndrome on the
basis of their clinical symptoms, pathology finding, and/or
family history were referred to Kobe University for
genetic analysis between January 2006 and August 2019.
After diagnosis, most patients were then followed in various
local hospitals throughout Japan, but no further data were
collected for the purpose of our study. For this study, we
included all patients who were genetically defined as hav-
ing ARAS, comprising a total of 49 patients from 41 families
with compound heterozygous or homozygous mutations in
COL4A3 or COL4A4. Among these, our group previously
reported 30 patients from 24 families (10). We added newly
diagnosed patients to the previously cohort and also ana-
alyzed data from other individuals possessing the heterozy-
gous mutations of interest, such as the patients’ parents or
patients reported in the literature. Only subjects who were
found to have homozygous or compound heterozygous
variants in either COL4A3 or COL4A4 were diagnosed with
ARAS. The median age of the patients was 19 years. The
men-to-women ratio was 20:29; 32 patients had COL4A3
variants, and 17 patients had COL4A4 variants.

Clinical Information
All clinical information was collected with an information
sheet that was sent with the blood samples for genetic
analysis. We collected information regarding age, sex,
height, body weight, serum Cr, urinary protein-creatinine
ratio, history of dialysis or kidney transplantation (if applic-
able), the existence of hearing loss or eye lesions, and the
results of kidney biopsy (if applicable). With regard to
family history, we requested information on the presence or absence of renal disease, dialysis, hearing loss, eye
lesions, and the age at which ESKD developed. We defined
the age at ESKD onset as the time that dialysis was in-
troduced or kidney transplantation was performed. The
eGFR (milliliters per minute per 1.73 m2) was calculated
on the basis of serum creatinine using the equation reported by Uemura et al. (19) for patients aged 2–18 years and by
Matsuo et al. (20) for patients aged 19 years and older.

Genetic Analyses
All patients were referred to our hospital for genetic
testing between January 2006 and August 2019, and those
confirmed to have ARAS were included in this study. Ge-
nomic DNA was isolated from patient peripheral blood
leukocytes with the QuickGene-Mini80 system (Kurabo In-
dustries, Tokyo, Japan) according to the manufacturer’s
instructions. Genetic testing was conducted either with
Sanger sequencing of COL4A3 and COL4A4 genes (before
NGS was available in our laboratory, January 2006 to No-
vember 2015) or with NGS using a targeted sequencing
panel containing causative genes of inherited kidney disease
(November 2015 to August of 2019). NGS analyses were
conducted as described previously (21). Where heterozy-
gous mutations were not identified by direct sequencing,
mRNA or multiplex ligation–dependent probe amplifica-
tion was performed for confirmation.

Variant Evaluation
Variants were evaluated to determine whether they could
cause urinary abnormalities or were likely asymptomatic in
the heterozygous state. This was performed by obtaining
clinical information from the patients’ parents who were
heterozygous variant carriers. Urinary abnormalities were
considered to be present when at least hematuria was noted.
To mitigate the fact that not all of the patients’ parents had
undergone urinalysis or where there was a lack in uniform-
ity in the urinalysis procedure, we used variant informa-
tion from the HGMD variant database (https://portal.bio-
base-international.com/hgmd/pro/start.php) to determine
which variants could cause urinary abnormalities (autosom-
al dominant Alport syndrome, benign familial hematuria,
or thin basement membrane) in the heterozygous state.

Statistical Analyses
All calculations were performed using standard statistical
software (JMP version 11 for Windows; SAS Institute, Cary,
NC). The occurrence of events (age at ESKD onset) was
analyzed with the Kaplan–Meier method. To calculate the
P value, we used the log-rank test. For the comparison of
eGFR, we used analysis of covariance after adjusting for age.
We considered an association to be significant when the
P value was 0.05.

Results
Clinical Features
A total of 49 patients from 41 families were included in
this study. The clinical and genetic information of the
patients is shown in Table 1 and Supplemental Table 1.
The median age of the patients when genetically diagnosed
Table 1. Patients’ clinical and allele information

Patient Identification	Sex	Age, yr	ESKD Age (Creatinine-eGFR)	Urine Protein-Creatinine Ratio	Hearing Loss	Ocular Lesion	α5 Staining (Glomerular Basement Disease)	Gene	Truncating Allele	Urinary Findings Allele
108	Men	16	(107.0)	1.2	–	–	Positive	COL4A3	2	1
115	Women	19	(57.8)	0.12	+	–	Negative	COL4A3	2	0
155	Men	36	19	ESKD	+	–	Negative	COL4A3	2	0
155–1	Women	33	21	ESKD	+	–	Negative	COL4A3	2	0
143	Women	2	(122.1)	0.57	–	–	Negative	COL4A3	1	1
165	Men	6	(167.8)	0.30	–	–	Negative	COL4A3	1	2
166	Women	18	18	ESKD	0.80	–	Negative	COL4A3	1	1
169	Men	19	(107.8)	6.3	+	–	Negative	COL4A3	1	1
170	Women	7	(119.5)	0.35	+	–	Negative	COL4A3	1	0
415	Women	17	(107.7)	0.35	+	–	Negative	COL4A3	1	0
525	Women	11	(129.8)	0.35	+	–	Negative	COL4A3	1	1
570	Men	45	(53.8)	2.2	–	–	Positive	COL4A3	1	1
570–1	Men	47	31	ESKD	–	–	Negative	COL4A3	1	1
412	Women	19	(80.7)	1.7	–	–	Negative	COL4A3	N/A	1
114	Women	17	(64.1)	0.24	–	–	Positive	COL4A3	0	1
125	Women	22	(138.1)	0.46	–	Retinal regeneration	Negative	COL4A3	0	1
125–1	Men	21	(8.9)	2.4	–	–	Negative	COL4A3	0	1
125–2	Men	11	(126.2)	0.14	–	–	Negative	COL4A3	0	1
130	Women	16	15	ESKD	–	Perimacular fleck	Negative	COL4A3	0	2
130–1	Women	18	11	ESKD	–	–	Negative	COL4A3	0	2
137	Men	20	13	ESKD	–	–	Negative	COL4A3	0	1
137–1	Women	27	26	ESKD	–	–	Negative	COL4A3	0	1
167	Women	21	(159.7)	2.1	+	–	Negative	COL4A3	0	1
168	Men	19	19	ESKD	–	–	Negative	COL4A3	0	2
171	Men	16	9	ESKD	+	–	Negative	COL4A3	0	2
171–1	Women	11	11	ESKD	–	–	Negative	COL4A3	0	2
173	Men	25	25	ESKD	–	–	Negative	COL4A3	0	1
179	Women	45	45	ESKD	–	–	Positive	COL4A3	0	1
473	Women	8	(73.9)	1.8	–	–	Negative	COL4A3	0	2
595	Women	19	18	ESKD	–	–	Negative	COL4A3	0	2
309	Women	2	(126.7)	0.78	–	–	Negative	COL4A4	2	2
471	Women	41	(29.5)	2.9	+	–	Positive	COL4A4	2	0
156	Women	7	(136.6)	0.43	–	–	Negative	COL4A4	1	0
172	Men	16	14	ESKD	–	–	Positive	COL4A4	1	2
174	Men	2	(100.8)	0.53	–	–	Negative	COL4A4	1	1
218	Men	12	(65.8)	0.17	–	Hyperopia	Negative	COL4A4	1	2
85	Women	23	(98.4)	1.6	–	–	Negative	COL4A4	0	2
145	Women	26	(106.1)	0.42	–	–	Positive	COL4A4	0	0
204	Men	11	(102.7)	1.1	–	–	Negative	COL4A4	0	1
257	Women	18	(107.4)	0.75	–	–	Negative	COL4A4	0	1
920	Women	47	(45.5)	1.9	–	–	Positive	COL4A4	0	1
468	Women	4	(153.9)	0.22	–	–	Negative	COL4A4	0	1
with ARAS was 19 (16–21) years. COL4A3 variants were detected in 32 patients from 25 families, and COL4A4 variants were detected in 17 patients from 16 families. Among these patients, 16 progressed to ESKD (14 patients had a COL4A3 mutation, and two patients had a COL4A4 mutation), and the median age for developing ESKD was 27 years (Figure 1). At the time of genetic testing, 18 patients had been diagnosed with hearing loss, 28 had not been diagnosed with hearing loss, and three had no information. The renal survival curves for patients with and without hearing loss at the time of genetic testing are shown in Figure 1. There was no statistically significant difference between these two groups. Only four patients had ocular lesions indicated at the time of genetic testing.

Table 1. (Continued)

Patient Identification	Sex	Age, yr	ESKD Age, yr	Urinary Protein:Creatinine Ratio	Truncating Allele	Ocular Lesion	Hearing Loss	Urinary Findings Allele
476	Women	21	(125.0)	0.37	COL4A4/44	Positive	0	2
601	Men	22	(82.1)	4.1	COL4A4/44	Positive	0	02
678	Women	37	(102.9)	8.1	COL4A4/44	N/A	1	02
738	Women	33	N/A	N/A	COL4A4/44	N/A	1	02

Gene	Truncating Allele	Ocular Lesion	Hearing Loss
COL4A3	COL4A4	Positive	0
COL4A4	COL4A4	Positive	0

- No indication at the time of genetic testing. +, it was pointed out at the time of genetic testing. The number of alleles with truncating mutation.

Figure 1. Probability of developing ESKD was not associated with hearing loss. The solid line indicates all patients (n=49). The median age at ESKD onset was 27 years. The dashed line indicates patients with hearing loss at the time of genetic diagnosis (n=18). Their median age at ESKD onset was 27 years. The dashed-dotted line indicates patients without hearing loss at the time of genetic diagnosis (n=28). This group had not reached the median age of ESKD onset even at 40 years. NS, not significant.

- No indication at the time of genetic testing. +, it was pointed out at the time of genetic testing. The number of alleles with truncating mutation.

Figure 2. Probability of developing ESKD was not associated with truncating mutations. The solid line indicates patients with two alleles containing a truncating mutation (n=5), the dashed line indicates those with one such allele (n=13), and the dashed-dotted line indicates those with no such alleles (n=28). The median ages at ESKD onset of these three groups were 21, 31, and 26 years, respectively. NS, not significant.
In this study, in contrast to XLAS, there was no association between the presence of truncating mutations and the renal prognosis of the patients with ARAS, which is consistent with the report by Oka et al. (10) but contradictory to the results reported by Storey et al. (2), Savige et al. (8), and Lee et al. (9). A common feature among these previous reports is a bias toward identified variants that may be due to a “founder effect.” Because of this bias and the small number of patients included in these reports, it is likely that the characteristics of the individual variants affected the results. Although our report only included a small number of Japanese patients due to the rarity of the disease, it did not include hot spots in the Japanese population, and therefore, we believe that there was no extreme bias; however, patients with a family history may lead to an early genetic diagnosis, which may have introduced some bias. Moreover, as an unavoidable limitation of any genotype-phenotype investigation, this study does not provide evidence of whether the heterozygous mutations of interest caused the phenotype or were simply associated with it. Additionally, the relationship as “variants that may be associated urinary abnormalities in the heterozygous state.” Nine patients possessed no alleles with mutations that could cause urinary abnormalities in the heterozygous state, whereas 26 patients possessed one such allele, and 14 patients possessed two such alleles (Table 3). The renal survival curves of these three groups are shown in Figure 3A. The median age at ESKD onset for the three groups was as follows: one allele, 31 years; two alleles, 15 years; and overall, 27 years. In the group with no alleles of interest, seven of nine patients had not developed ESKD at the time of genetic diagnosis, which may reflect a better prognosis; however, we could not compare the different prognoses statistically. Thus, we next divided all of the patients into two groups instead: a zero-allele and one-allele group (n=35) versus the two-allele group (n=14). The median ages of ESKD onset for these two groups were 45 and 15 years, respectively (Figure 3B). Age at onset of ESKD differed significantly between these two groups (P<0.001). The decrease of the eGFR tended to be faster (P=0.08) in the two-allele group (n=14) compared with the combined zero-allele and one-allele group (n=34).

Discussion
This is our second report of a patient series of patients with ARAS; concurrently, it is the study performed that pays attention to the clinical information of individuals with heterozygous mutations.

Urinary Abnormalities Associated with Heterozygous Variants
Participants were classified according to the number of COL4A3 and COL4A4 alleles that they had that may be associated with urinary abnormalities in the heterozygous state. As indicated in previous reports, even in cases where the patients’ parents have not been found to have an abnormal urinalysis result, the heterozygous patient may have urinary abnormalities (10,22,23). Such variants were classified as “variants that may be associated urinary abnormalities in the heterozygous state.” Nine patients possessed no alleles with mutations that could cause urinary abnormalities in the heterozygous state, whereas 26 patients possessed one such allele, and 14 patients possessed two such alleles (Table 3). The renal survival curves of these three groups are shown in Figure 3A. The median age at ESKD onset for the three groups was as follows: one allele, 31 years; two alleles, 15 years; and overall, 27 years. In the group with no alleles of interest, seven of nine patients had not developed ESKD at the time of genetic diagnosis, which may reflect a better prognosis; however, we could not compare the different prognoses statistically. Thus, we next divided all of the patients into two groups instead: a zero-allele and one-allele group (n=35) versus the two-allele group (n=14). The median ages of ESKD onset for these two groups were 45 and 15 years, respectively (Figure 3B). Age at onset of ESKD differed significantly between these two groups (P<0.001). The decrease of the eGFR tended to be faster (P=0.08) in the two-allele group (n=14) compared with the combined zero-allele and one-allele group (n=34).

Discussion
This is our second report of a patient series of patients with ARAS; concurrently, it is the study performed that pays attention to the clinical information of individuals with heterozygous mutations.

In this study, in contrast to XLAS, there was no association between the presence of truncating mutations and the renal prognosis of the patients with ARAS, which is consistent with the report by Oka et al. (10) but contradictory to the results reported by Storey et al. (2), Savige et al. (8), and Lee et al. (9). A common feature among these previous reports is a bias toward identified variants that may be due to a “founder effect.” Because of this bias and the small number of patients included in these reports, it is likely that the characteristics of the individual variants affected the results. Although our report only included a small number of Japanese patients due to the rarity of the disease, it did not include hot spots in the Japanese population, and therefore, we believe that there was no extreme bias; however, patients with a family history may lead to an early genetic diagnosis, which may have introduced some bias. Moreover, as an unavoidable limitation of any genotype-phenotype investigation, this study does not provide evidence of whether the heterozygous mutations of interest caused the phenotype or were simply associated with it. Additionally, the relationship

Table 2. Distribution of patients on the basis of the number of alleles containing truncating mutations

No. of Alleles with Truncating Mutation	Patients with ESKD (Median ESKD Age, yr)	Patients without ESKD
0	10 (26)	18
1	3 (31)	10
2	2 (21)	3
Total	15 (31)	31

Table 2. Distribution of patients on the basis of the number of alleles containing truncating mutations

No. of Alleles That Can Cause Urinary Findings with Heterozygous Mutation	Patients with ESKD (Median ESKD Age, yr)	Patients without ESKD
0	2 (N/A)	7
1	7 (31)	19
2	7 (15)	7
Total	16 (27)	33

N/A, not available.
Figure 3. Probability of developing ESKD was associated with heterozygous urinary abnormality-causing mutations. (A) Probability of patients with autosomal recessive Alport syndrome developing ESKD on the basis of the number of alleles containing heterozygous mutations associated with urinary abnormalities. The solid line indicates patients with two such alleles (n=14), the dashed-dotted line indicates those with one such allele (n=26), and the dashed line indicates those with no such alleles (n=9). The median ages at ESKD onset of these three groups were 15, 31 years, and undetermined, respectively. The group with no alleles had not reached the median age of ESKD onset even at 40 years. NS, nNot significant nor significant. (B) Combined probability of patients with autosomal recessive Alport syndrome developing ESKD on the basis of the number of alleles containing heterozygous mutations associated with urinary abnormalities. The solid line indicates patients with two such alleles (n=14), and the dashed-dotted line indicates those with one or no such allele (n=35). The median ages at ESKD onset were 15 and 45 years, respectively (P<0.001).

It may become clear if protein prediction modeling can be carried out, instead of simply distinguishing from truncating and nontruncating.

Here, we compiled the first report on ARAS containing clinical information regarding heterozygous variant carriers such as patients’ parents or by including data extracted from a database of previously reported variants. Our study showed that patients with ARAS have more severe phenotypes when they carry certain heterozygous variants associated with urinary abnormalities, and it indicates the necessity of trio analysis combined with parent urinalysis for early diagnosis and improved patient management. It is evident that further cases of ARAS with genetic diagnosis and the clinical information regarding the presence of heterozygous variants are needed to confirm the prediction of the prognosis of ARAS.

It has been reported that heterozygous mutations in the COL4A3 and COL4A4 genes act as disease modifiers (18). Recently, common variants of UMOD, the causative gene of autosomal dominant nodular interstitial kidney disease, was found to be a susceptibility gene for CKD, hypertension, and renal calculi in the general population (24,25). In the same way, considering the broad spectrum of COL4A3 and COL4A4, these two genes may be disease susceptibility genes for certain renal diseases.

In conclusion, this study showed the clinical importance of noting the urinary findings of heterozygous mutation carriers, such as the parents of patients with ARAS. Notably, our results indicate that patients with ARAS tend to have a poorer prognosis when they carry more mutations associated with urinary abnormalities, even where these are present in the heterozygous state.

Disclosures
K. Iijima and K. Nozu have filed a patent application on the development of antisense nucleotides for exon skipping therapy in Alport syndrome. K. Nozu has received lecture fees from Novartis Pharmaceuticals and corporation and consulting fees from Kyowa Kirin Co., Ltd. All remaining authors have nothing to disclose.

Funding
This study was supported by Ministry of Education, Culture, Sports, Science and Technology of Japan Grants-in-Aid for Scientific Research 18K15712 (to T. Horinouchi), 26293203 (to K. Iijima), 17H04189 (to K. Iijima), and 19K08726 (to K. Nozu) and Japan Agency for Medical Research and Development grants 19ek0109231s0103 (to K. Iijima) and JP19ek0109231h0003 (to K. Nozu).

Acknowledgments
We thank Dr. Natasha Beeton-Kempen from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript. Dr. Kazumoto Iijima reports personal fees from Boehringer Ingelheim; Chugai Pharmaceutical Co., Ltd.; Integrated Development Associates Co., Ltd.; JCR Pharmaceuticals Co. Ltd.; Kyowa Kirin Co. Ltd.; Ono Pharmaceutical Co., Ltd.; Takeda Pharmaceutical Company; and Zenyaku Kogyo Co., Ltd. and grants from Air Water Medical Inc.; Astellas Pharma Inc.; Daiichi Sankyo, Co., Ltd.; Eisai Co., Ltd.; Mochida Pharmaceutical Co., Ltd.; Otsuka Pharmaceutical Co., Ltd.; Shionogi & Co., Ltd.; and Zenyaku Kogyo Co., Ltd., all outside the submitted work.

Author Contributions
T. Horinouchi, K. Iijima, K. Nakanishi, and K. Nozu conceptualized the study; Y. Aoto, T. Horinouchi, K. Iijima, S. Ishiko, C. Nagaro, K. Nozu, R. Rossanti, N. Sakakibara, and T. Yamamura were responsible for data curation; T. Horinouchi, C. Nagaro, K. Nakanishi, K. Nozu, N. Sakakibara, and Y. Shima were responsible for investigation; T. Horinouchi, K. Iijima, K. Nakanishi, K. Nozu, Y. Shima, and T. Yamamura were responsible for methodology; K. Iijima, N. Morisada, K. Nakanishi, K. Nozu, Y. Shima, and T. Yamamura were responsible for validation; T. Horinouchi wrote the original draft; K. Iijima and K. Nozu were responsible for funding acquisition; K. Iijima and K. Nozu provided supervision; K. Nozu was responsible for project administration; K. Nozu was responsible for resources; and T. Horinouchi reviewed and edited the manuscript.
Supplemental Material

This article contains the following supplemental material online at http://kidney360.asnjournals.org/lookup/suppl/doi:10.34067/KID.0000372019/-/DCSupplemental.

Supplemental Table 1. Patient clinical and genetic information.

References

1. Kashtan CE: Alport syndrome and thin glomerular basement membrane disease. J Am Soc Nephrol 9: 1736–1750, 1998
2. Storey H, Savige J, Sivakumar V, Absb S, Flinter FA: COL4A3/ COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome. J Am Soc Nephrol 24: 1945–1954, 2013
3. Gross O, Netzer KO, Lambrecht R, Seibold S, Weber M: Meta- analysis of genotype-phenotype correlation in X-linked Alport syndrome: Impact on clinical counselling. Nephrol Dial Transplant 17: 1218–1227, 2002
4. Jais JP, Knebelmann B, Giatras I, De Marchi M, Rizzoni G, Couvret M, Storey H, Savige J, Sivakumar V, Abbs S, Flinter FA: COL4A3/COL4A4 mutations and features in individuals with autosomal recessive Alport syndrome. J Am Soc Nephrol 21: 876–883, 2010
5. Hashimura Y, Nozu K, Kaito H, Nakanishi K, Fu XJ, Ohtsubo H, Shono A, Fujinaga S, Oka M, Igarashi T, Miyazono A, Shimabukuro W, Kitabayashi C, Imafuku A, Tamagaki K, Kamei K, Okamoto K, Fujinaga S, Oka M, Igarashi T, Miyazono A, Shono A, Sawanobori E, Fujimaru R, Nakanishi K, Shima Y, Matsu M, Ye MJ, Nozu Y, Morisada N, Kaito H, Iijima K: Detection of splicing abnormalities and genotype-phenotype correlation in X-linked Alport syndrome. J Am Soc Nephrol 29: 2244–2254, 2018
6. Hashimura Y, Nozu K, Kaito H, Nakanishi K, Fu XJ, Ohtsubo H, Hashimoto F, Oka M, Ninchoji T, Ichihara S, Morisada N, Matsunoshita N, Kamiyoshi N, Yoshikawa N, Iijima K: Milder clinical aspects of X-linked Alport syndrome in men positive for the collagen IV α5 chain. Kidney Int 85: 1208–1213, 2014
7. Savidge J, Storey H, Il Cheong H, Gyun Kang H, Park E, Hilbert P, Persikov A, Torres-Fernandez C, Aris E, Torra R, Hertz JM, Tho- masen M, Shagam L, Wang D, Wang Y, Flinter F, Nagel M: X-linked and autosomal recessive Alport syndrome: Pathogenic variant features and further genotype-phenotype correlations. PLoS One 11: e0161802, 2016
8. Lee JM, Nozu K, Choi DE, Kang HG, Ha IS, Cheong HJ: Features of autosomal recessive Alport syndrome: A systematic review. J Clin Med 8: 178, 2019
9. Oka M, Nozu K, Kaito H, Fu XJ, Nakanishi K, Hashimura Y, Morisada N, Tan Y, Matsuo K, Moshikawa H, Vorechovsky I, Iijima K: Natural history of genetically proven autosomal recessive Alport syndrome. Pediatr Nephrol 29: 1535–1544, 2014
10. Heidet L, Arrondel C, Forestier L, Cohen-Solal L, Mollet G, Gutierrez B, Stavrou C, Gubler MC, Antignac C: Structure of the human type IV collagen gene COL4A3 and mutations in autosomal Alport syndrome. J Am Soc Nephrol 12: 97–106, 2001
11. Wang Y, Sivakumar V, Mohammad M, Colville D, Storey H, Flinter F, Dagher H, Savidge J: Clinical and genetic features in autosomal recessive and X-linked Alport syndrome. Pediatr Nephrol 29: 391–396, 2014
12. Nozu K, Nakanishi K, Abe Y, Udagawa T, Okada S, Okamoto T, Kaito H, Kanemoto K, Kobayashi A, Tanaka E, Tanaka K, Hama T, Fujimur M, Misawa S, Yamamura T, Yamamura N, Horinouchi T, Minamikawa S, Nagata M, Iijima K: A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol 23: 158–168, 2019
13. Savidge J, Gregory M, Gross O, Kashtan C, Ding J, Flinter F: Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy. J Am Soc Nephrol 24: 364–375, 2013
14. Savidge J: Should we diagnose autosomal dominant Alport syndrome when there is a pathogenic heterozygous COL4A3 or COL4A4 variant? Kidney Int Rep 3: 1239–1241, 2018
15. Strasser K, Hoelefe J, Bergmann C, Bürsch AK, Bürcher R, Hoye PF, Weber S: COL4A5-associated X-linked Alport syndrome in a female patient with early inner ear deafness due to a mutation in MYH9. Nephrol Dial Transplant 27: 4236–4240, 2012
16. Tonna S, Wang YY, Wilson D, Rigby L, Tabone T, Cotton R, Savidge J: The R229Q mutation in NPHS2 may predispose to proteinuria in thin-basement-membrane nephropathy. Pediatr Nephrol 23: 2201–2207, 2008
17. Zhang Y, Ding J, Zhang H, Yao Y, Xiao H, Wang S, Wang F: Effect of heterozygous pathogenic COL4A3 or COL4A4 variants on patients with X-linked Alport syndrome. Mol Genet Genomic Med 7: e647, 2019
18. Uemura O, Nagai T, Ishikura K, Ito S, Hataya H, Gotoh Y, Fujita N, Akio K, Kaneko T, Honda M: Creatinine-based equation to estimate the glomerular filtration rate in Japanese children and adolescents with chronic kidney disease. Clin Exp Nephrol 18: 626–633, 2014
19. Matsu S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hisida A; Collaborators: Developing the Japanese equation for estimated GFR: Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis 53: 982–992, 2009
20. Yamamura T, Nozu K, Fu XJ, Nozu Y, Ye MJ, Shono A, Yamamouchi S, Minamikawa S, Morisada N, Nakanishi K, Shim Y, Yoshikawa N, Ninchoji T, Morikoa I, Kaito H, Iijima K: Natural history and genotype-phenotype correlation in female X-linked Alport syndrome. Kidney Int Rep 2: 850–855, 2017
21. Kamiyoshi N, Nozu K, Fu XJ, Morisada N, Nozu Y, Ye MJ, Imafuku A, Miura K, Yamamura T, Minamikawa S, Shono A, Ninchoji T, Morikoa I, Nakanishi K, Yoshikawa N, Kaito H, Iijima K: Genetic, clinical, and pathologic backgrounds of patients with autosomal dominant Alport syndrome. Clin J Am Soc Nephrol 11: 1441–1449, 2016
22. Longo I, Porcedda P, Mari F, Giachino D, Meloni I, Deplano C, Brusc A, Bosio M, Massella L, Lavoratti G, Roccatello D, Frasch G, Mazzucco G, Muda AO, Conti M, Fasciolo F, Arrondel C, Heidet L, Renieri A, De Marchi M: COL4A3/COL4A4 mutations: From familial hematuria to autosomal-dominant or recessive Alport syndrome. Kidney Int 61: 1947–1956, 2002
23. Devuyst O, Olinger E, Rampoldi L: Uromodulin: From physiology to rare and complex kidney disorders. Nat Rev Nephrol 13: 525–544, 2017
24. Baek JI, Choi SJ, Park SH, Choi JY, Kim CD, Kim YL, Kim UK: Identification of novel variants in the COL4A4 gene in Korean patients with thin basement membrane nephropathy. Indian J Med Res 129: 525–533, 2009

Received: October 21, 2019 Accepted: July 15, 2020
Heterozygous urinary abnormality-causing variants of \textit{COL4A3} and \textit{COL4A4} affect severity of autosomal recessive Alport syndrome

Tomoko Horinouchi M.D., Ph.D.1, Tomohiko Yamamura M.D., Ph.D.1, China Nagano M.D.1, Nana Sakakibara M.D.1, Shinya Ishiko M.D.1, Yuya Aoto M.D.1, Rini Rossanti M.D.1, Koichi Nakanishi M.D., Ph.D.2, Yuko Shima M.D., Ph.D.3, Naoya Morisada M.D., Ph.D.1, Kazumoto Iijima M.D., Ph.D.1, Kandai Nozu M.D., Ph.D.1
Patient ID	Gender	Age	ESRD age (Cr-eGFR)	Hearing loss	Ocular lesion	Gene	Nucleotide change	Amino acid change	Urinary/Pathological findings or diagnosis in carriers	Nucleotide change	Amino acid change	Urinary/Historical findings in carriers		
94	female	17	(64.1)	-	-	COL4A3	c.4793T>G	p.Leu1598Arg	ID 143’s M: OB	c.145-2A>G				
108	male	16	(107.0)	-	-	COL4A3	c.4028-27A>G	Exon46(126bp)skipping	ID 108’s F: OB	c.2698_2714del	p.Ile900Profs*34			
114	male	20	(34.0)	+	-	COL4A3	c.3266G>A	p.Gly1089Asp	-	c.3266G>A	p.Gly1089Asp			
115	female	19	(57.8)	+	-	COL4A3	c.1844dup	p.Pro616Thrfs*30	-	c.3687del	p.Gly1231Valfs*33			
125	female	22	(138.1)	- Retinal regeneration	COL4A3	c.2330G>A	p.Gly777Asp	ID 130’s M: Pro/OB	c.4354A>T	p.Ser1452Cys				
125-1	male	21	(8.9)	-	-	COL4A3	c.2330G>A	p.Gly777Asp	ID 130’s M: Pro/OB	c.4354A>T	p.Ser1452Cys			
125-2	male	11	(126.2)	-	-	COL4A3	c.2330G>A	p.Gly777Asp	ID 130’s M: Pro/OB	c.4354A>T	p.Ser1452Cys			
130	female	16	15	- Perimacular fleck	COL4A3	c.2330G>A	p.Gly777Asp	ID 130’s M: Pro/OB	c.4793T>G	p.Leu1598Arg	ID 143’s M:OB			
130-1	female	18	11			COL4A3	c.2330G>A	p.Gly777Asp	ID 130’s M: Pro/OB	c.4793T>G	p.Leu1598Arg	ID 143’s M:OB		
137	male	20	13	+		COL4A3	c.4928G>A	p.Arg1643Lys	-	c.40_63del	p.Leu14_Leu21del	Longo et al. (ADAS)		
137-1	female	27	26	-		COL4A3	c.4928G>A	p.Arg1643Lys	-	c.40_63del	p.Leu14_Leu21del	Longo et al. (ADAS)		
ID	Gender	Age	Height	Diagnosis	COL4A3 Mutation 1	ID 143’s M	COL4A3 Mutation 2	ID 143’s M	Other Observations					
-----	--------	------	--------	-----------------	---------------------	--------------	-------------------	--------------	-------------------					
143	female	2	122.1		COL4A3 c.4793T>G	p.Leu1598Arg	c.2125G>T	p.Gly709Term	-					
155	male	36	19	+	COL4A3 c.4463-523C>G	Cryptic exon(139bp)	-	c.4463-523C>G	Cryptic exon(139bp)	-				
155-1	female	33	21	+	COL4A3 c.4463-523C>G	Cryptic exon(139bp)	-	c.4463-523C>G	Cryptic exon(139bp)	-				
165	male	6	167.8	-	COL4A3 c.689G>A	p.Gly230Asp	ID 165’s M or F: OB	c.1576-20_1576-6del	Exon25(183bp)skipping	ID 165’s M or F: OB				
166	female	18	18	-	COL4A3 c.1855G>A	p.Gly619Arg	ID 166’s M: OB ID 473’s M: OB	c.1060G>T	p.Gly354Term	-				
167	female	21	158.7	+	COL4A3 c.4708T>C	p.Cys1570Arg	-	c.40_63del	p.Leu14_Leu21del	Longo et al. (ADAS)				
168	male	19	19	-	COL4A3 c.1918G>A	p.Gly640Arg	ID 168’s M: OB, ID 168’s F: OB•TBM	c.1918G>A	p.Gly640Arg	ID 168’s M: OB, ID 168’s F: OB•TBM				
169	male	19	107.84	+	COL4A3 c.4793T>G	p.Leu1598Arg	ID 143’s M: OB	c.3752-511_3955+576del (131+73bp)	-	-				
170	female	7	119.52	-	COL4A3 c.1354G>A	p.Gly452Arg	ID 170’s F: OB	c.3821dup	p.His1275Profs*34	-				
171	male	16	9	+	COL4A3 c.40_63del	p.Leu14_Leu21del	Longo et al. (ADAS)	c.40_63del	p.Leu14_Leu21del	Longo et al. (ADAS)				
171-1	female	11	11	+	COL4A3 c.40_63del	p.Leu14_Leu21del	Longo et al. (ADAS)	c.40_63del	p.Leu14_Leu21del	Longo et al. (ADAS)				
173	male	25	25	+	COL4A3 c.3464G>A	p.Gly1155Asp	-	c.4793T>G	p.Leu1598Arg	ID 143’s M: OB				
179	female	45	45	+	COL4A3 c.2863G>A	p.Gly955Arg	-	c.4793T>G	p.Leu1598Arg	ID 143’s M: OB				
245	male	41	91.54	+	COL4A3 c.933+1G>A	Exon16(45bp)skipping	-	c.3650_3657del	p.Pro1217Hisfs*89	-				
---	---	---	---	---	---	---	---	---	---	---	---	---		
412	male	19	(80.70)	-	-	COL4A3	c.1576G>T	p.Gly526Cys	ID 412’s M: OB	c.3883-1G>C	N/A	-		
415	female	17	(107.70)	+	-	COL4A3	c.4708T>C	p.Gly1507Arg	-	c.4441C>T	p.Arg1481Term	-		
473	female	8	(73.93)	-	-	COL4A3	c.1855G>A	p.Gly619Arg	ID 166’s M: OB ID 473’s M: OB	c.4793T>G	p.Leu1598Arg	ID 143’s M: OB		
525	female	11	(129.84)	+	-	COL4A3	c.1994G>A	p.Gly665Asp	ID 525’s M: OB	c.1216C>T	p.Arg406Term	-		
570	male	45	(53.79)	-	-	COL4A3	c.3427G>A	p.Gly1143Arg	ID 570’s M: OB (Any)	c.4085del	p.Pro1362Hisfs*23	ID 570’s M: OB (Any)		
570-1	male	47	31	-	-	COL4A3	c.3427G>A	p.Gly1143Arg	ID 570’s M: OB (Any)	c.4085del	p.Pro1362Hisfs*23	ID 570’s M: OB (Any)		
595	female	19	18	-	-	COL4A3	c.953G>A	p.Gly318Asp	ID 595’s F: OB/Pro CKD	c.4793T>G	p.Leu1598Arg	ID 143’s M: OB		
85	female	23	(98.35)	-	-	COL4A4	c.2510G>C	p.Gly837Ala	Kamiyoshi et al. (ADAS)	c.3151G>C	p.Gly1051Arg	ID 85’s F: OB		
145	female	26	(106.13)	-	-	COL4A4	c.3307G>A	p.Gly1103Arg	-	c.3307G>A	p.Gly1103Arg	-		
156	female	7	(136.64)	-	-	COL4A4	c.2608G>C	p.Gly870Arg	-	c.3687dup	p.Gly1230Argfs*23	-		
172	male	16	14	+	-	COL4A4	c.2084G>A	p.Gly695Asp	ID 172’s M: OB	c.3612_3621del	p.Ile1205*	ID 172’s F: OB·TBM		
174	male	2	(100.81)	-	-	COL4A4	c.1733G>T	p.Gly578Val	-	c.4241_4254del	p.Asp1414Glyfs*14	ID 174’s M: OB		
204	male	11	(102.74)	-	-	COL4A4	c.2084G>A	p.Gly695Asp	ID 172’s M: OB	c.4469G>C	p.Gly1490Ala	-		
218	male	12	(65.77)	-	hyperopia	COL4A4	c.2878G>A	p.Gly960Arg	ID 218’s F: OB	c.559-491_1460-808del insPolyT Exon8-Exon25 del	ID 218’s M: OB			
257	female	18	(107.44)	-	-	COL4A4	c.3160G>C	p.Gly1054Arg	ID 257’s F: OB	c.3307G>A	p.Gly1103Arg	-		
270	female	47	(45.49)	-	-	COL4A4	c.203G>A	p.Gly68Glu	-	c.2437G>C	p.Gly813Arg	ID 270’s F: OB		
309	female	2	(126.66)	-	-	COL4A4	c.2566C>T	p.Gln856Term	ID 309’s F: OB/Pro	c.3687del	p.Gly1230Valfs*58	ID 309’s M: OB		
ID	Sex	Age	BMI	Gender	COL4A4 Mutation	p.Gly527Val	p.Gly1054Cys	c.3160G>T	p.Gly837Ala	c.4817G>A	p.Gly1606Glu	p.Gly1103Arg	Kamiyoshi et al. (ADAS)	Baek et al.
------	------	-----	-----	--------	-----------------	-------------	--------------	-----------	------------	---------	--------------	-------------	-----------------------	----------
468	female	4	(153.85)	-	COL4A4 c.1580G>T	p.Gly527Val	-	c.3160G>T	p.Gly1054Cys	ID 468’s F:OB				
471	female	41	(29.53)	+	COL4A4 c.4953G>A	p.Trp1651Tern	-	c.2930del	p.Pro977Leufs*61	-				
476	female	21	(124.99)	-	COL4A4 c.2510G>C	p.Gly837Ala	Kamiyoshi et al. (ADAS)	c.4817G>A	p.Gly1606Glu	Baek et al.				
601	female	22	(82.08)	-	COL4A4 c.3262G>C	p.Gly1088Arg	ID 601’s F: OB	c.3307G>A	p.Gly1103Arg	-				
738	male	37	N/A	+	COL4A4 c.2617G>A	p.Gly873Arg	ID 738’s M: OB · 60yr ESRD	c.594+5G>A	N/A	-				
738-1	female	33	27	+	COL4A4 c.2617G>A	p.Gly873Arg	ID 738’s M: OB · 60yr ESRD	c.594+5G>A	N/A	-				
741	female	7	(132.27)	-	COL4A4 c.1795G>C	p.Gly599Arg	ID 741’s M: OB · 60yr ESRD	c.1795G>C	p.Gly599Arg	ID 741’s M: OB · 60yr ESRD	ID 741’s F: OB			

ESRD: End-stage renal disease
CKD: Chronic kidney disease
OB: Occult blood
Pro: Proteinuria
TBM: Thin basement membrane
ADAS: Autosomal dominant Alport syndrome
M: Mother
F: Father
Kamiyoshi et al.: This mutation was reported by Kamiyoshi et al. (1)
Longo et al.: This mutation was reported by Longo et al. (2)
Baek et al.: This mutation was reported by Baek et al. (3)
1. Kamiyoshi N, Nozu K, Fu XJ, Morisada N, Nozu Y, Ye MJ, Imafuku A, Miura K, Yamamura T, Minamikawa S, Shono A, Ninchoji T, Morioka I, Nakanishi K, Yoshikawa N, Kaito H, Iijima K: Genetic, Clinical, and Pathologic Backgrounds of Patients with Autosomal Dominant Alport Syndrome. *Clinical journal of the American Society of Nephrology: CJASN, 11: 1441-1449, 2016*

2. Longo I, Porcedda P, Mari F, Giachino D, Meloni I, Deplano C, Brusco A, Bosio M, Massella L, Lavoratti G, Roccatello D, Frasca G, Mazzucco G, Muda AO, Conti M, Fasciolo F, Arrondel C, Heidet L, Renieri A, De Marchi M: COL4A3/COL4A4 mutations: from familial hematuria to autosomal-dominant or recessive Alport syndrome. *Kidney international, 61: 1947-1956, 2002*

3. Baek JI, Choi SJ, Park SH, Choi JY, Kim CD, Kim YL, Kim UK: Identification of novel variants in the COL4A4 gene in Korean patients with thin basement membrane nephropathy. *The Indian journal of medical research, 129: 525-533, 2009*