ON THE LOCAL ISOMORPHISM PROPERTY FOR FAMILIES OF K3 SURFACES

TIM KIRSCHNER

1. Introduction

Let \(f: X \rightarrow S \) and \(f': X' \rightarrow S \) be two families of compact complex manifolds over a reduced complex space \(S \). Following Meersseman [3, p. 496] we say that these families are pointwise isomorphic when for all points \(s \in S \) the fibers \(X_s = f^{-1}(s) \) and \(X'_s = f'^{-1}(s) \) of the families are biholomorphic. When \(U \) is an open complex subspace of \(S \), we write \(f_U: X_U \rightarrow U \) for the induced holomorphic map where \(X_U \subseteq X \) denotes the inverse image of \(U \subseteq S \) under \(f \); we adopt the analogous notation for \(f' \). Given a point \(o \in S \) we say that the family \(f' \) is locally isomorphic at \(o \) when there exist an open complex subspace \(T \subseteq S \) and a biholomorphism \(g: X_T \rightarrow X'_T \) such that \(o \in T \) and \(f_T = f'_T \circ g \). We say that the family \(f \) has the local isomorphism property at \(o \) when all families that are pointwise isomorphic to \(f \) are locally isomorphic at \(o \) to \(f \).

In 1977, assuming \(S \) nonsingular, Wehler states [4, p. 77] that it is unclear whether \(f \) has the local isomorphism property at all points of \(S \) if the function
\[
s \mapsto h^0(X_s; \Theta_{X_s}) := \dim \mathbb{C}H^0(X_s; \Theta_{X_s}) = \dim \text{Aut}(X_s)
\]
is constant on \(S \). Meersseman [3, Theorem 3] asserts that Wehler’s question becomes a valid criterion. We contend that the opposite is true.

Theorem 1. There exist two families of K3 surfaces over a complex manifold \(S \) together with a point \(o \in S \) such that the families are pointwise isomorphic but not locally isomorphic at \(o \).

Recall [1, §1.3.3] that when for all \(s \in S \) the fiber \(X_s \) of \(f \) is a K3 surface, the assignment of eq. (1) defines the identically zero function.

Acknowledgements. I would like to thank Martin Schwald for numerous valuable discussions on the subject. Moreover, I would like to thank Jun-Muk Hwang for his hospitality at the Korea Institute for Advanced Study.

2. Construction of the families

We start with a K3 surface \(F \) and a \((-2)\)-class \(d \) on \(F \); that is, \(d \in H^{1,1}(F) \subseteq H^2(F; \mathbb{C}) \) is an integral cohomology class with \(\langle d, d \rangle = -2 \). The angle brackets denote the topological intersection form on \(H^2(F; \mathbb{C}) \), which is given by the cup product and the evaluation at the homology class that determines the orientation of \(F \). Explicitly \(F \) could be the Fermat quartic in \(\mathbb{P}^3 \) and \(d \) the class of a projective line that is contained in \(F \).

Observe that the group \(H^2(F; \Theta_F) \) is trivial [1, §6.2.3]. Hence by the theorem of Kodaira, Nirenberg, and Spencer [2, p. 452] there exist a family of compact complex

\[\text{Date: October 29, 2018.} \]
\[\text{This work has been supported by the SFB/Transregio 45 of the DFG and by the Korea Institute for Advanced Study.} \]
manifolds \(f : X \to S \) over a complex manifold \(S \) and a point \(o \in S \) such that the Kodaira--Spencer map
\[
\rho_o : T_o S \to H^1(X_o ; \Theta_{X_o})
\]
is an isomorphism and \(F \cong X_o \). In fact the quoted theorem yields more—namely, that \(S \) is, setting \(m := h^1(F ; \Theta_F) \), an open ball in \(\mathbb{C}^m \) and that topologically \(f \) is nothing but the Cartesian projection \(\operatorname{pr}_1 : S \times F \to S \). In particular for all \(s \in S \) the identity map on \(F \) induces a vector space isomorphism
\[
\mu_s : H^2(X_s ; \mathbb{C}) \to H^2(X_o ; \mathbb{C}) =: V
\]
which restricts to an isomorphism between the integral cohomology groups. Therefore
\[
\mu_s[H^2,0(X_s)] = s, \quad \forall s \in S.
\]
By virtue of the canonical identification \(F \cong \{o\} \times F = X_o \) we regard \(d \) as an element of \(V \) and consider the reflection map
\[
\phi : V \to V, \quad \phi(v) = v + (v, d).
\]
The map \(\phi \) is an involutary linear isometry of \(V \) with respect to the intersection form. Hence we obtain an involutary biholomorphism \(h : Q \to Q \) satisfying \(h(s) = \phi[s] \) for all \(s \in Q \). Since
\[
o = \mu_o[H^2,0(X_o)] = H^2,0(X_o) \perp H^{1,1}(X_o) \ni d,
\]
we see that \(o \) is a fixed point of \(h \). Thus \(h^{-1}(S) \subseteq Q \) is an open subspace with \(o \in h^{-1}(S) \). Replacing \(S \) by \(S \cap h^{-1}(S) \), we may assume that the map \(h \) restricts to a biholomorphism \(i := h|_S : S \to S \). We define
\[
f' := i \circ f : X' := X \to S.
\]
It is evident that \(f' \) is then, just like \(f \), a family of K3 surfaces over the complex manifold \(S \).

3. Verification of the isomorphism properties

In the first place, we show that \(f \) and \(f' \) are pointwise isomorphic. For that matter let \(t \in S \) be an arbitrary point. The definition of \(f' \) implies that \(X'_t = X_{i^{-1}(t)} \).

Setting
\[
\psi := \mu^{-1}_t \circ \phi \circ \mu_{i^{-1}(t)} : H^2(X_{i^{-1}(t)} ; \mathbb{C}) \to H^2(X_t ; \mathbb{C})
\]
and applying eq. (2) we see that
\[
\psi[H^2,0(X_{i^{-1}(t)})] = (\mu^{-1}_t \circ \phi)[i^{-1}(t)] = \mu^{-1}_t[i] = H^2,0(X_t).
\]
In addition, \(\phi \) and whence \(\psi \) is an isometry with respect to the intersection forms and restricts to an isomorphism between the integral cohomology groups. Therefore \(X_t \) and \(X'_t \) are biholomorphic by virtue of the (weak form of the) global Torelli theorem for K3 surfaces [1, Theorem 7.5.3].

In the second place, we show that \(f' \) is not locally isomorphic at \(o \) to \(f \).
Lemma 1. Let \(\alpha: V \to V \) be a linear automorphism and \(U \subseteq Q \) be a nonempty open subset such that \(\alpha[t] = t \) for all \(t \in U \). Then \(\alpha = \lambda \text{id}_V \) for a nonzero complex number \(\lambda \).

Proof. We will use that the rank of the intersection form on \(V \) is \(\geq 3 \) so that \(Q \) is an irreducible quadric in \(\mathbb{P}(V) \). Indeed, of course, we know that \(n := \dim_{\mathbb{C}} V = 22 \) and that the intersection form is nondegenerate [1, §1.3.3].

Assume that \(W \subseteq V \) is a linear subspace and \(U \subseteq \mathbb{P}(W) \). Then, as \(Q \) is irreducible and \(U \subseteq Q \) is nonempty and open, the identity theorem for holomorphic functions entails that \(Q \subseteq \mathbb{P}(W) \). Since a quadric of rank \(\geq 2 \) is not contained in a linear hyperplane, we conclude that \(W = V \). This means that the affine cone over \(U \) spans the vector space \(V \). Hence there exists a basis \((v_l, \ldots, v_n)\) of \(V \) such that \(\mathbb{C}v_k \subseteq U \) for all \(k \in \{1, \ldots, n\} \). For every \(l \in \{1, \ldots, n\} \) define

\[
W_l := \text{span}(\{v_k \mid k \neq l\}) \subseteq V.
\]

Then \(U \setminus \mathbb{P}(W_l) \) is nonempty and open in \(Q \). Repeating this argument inductively, we conclude that \(U \setminus \bigcup_{l=1}^{n} \mathbb{P}(W_l) \) is nonempty and open in \(Q \). In particular there exists a vector \(v = \mu_1 v_1 + \cdots + \mu_n v_n \) in \(V \) such that \(\mathbb{C}v \subseteq U \) and \(\mu_l \neq 0 \) for all \(l \).

Since \(\alpha[t] = t \) for all \(t \in U \), there exist nonzero complex numbers \(\lambda_1, \ldots, \lambda_n \) and \(\lambda \) such that \(\alpha(v_k) = \lambda_k v_k \) for all \(k \) and \(\alpha(v) = \lambda v \). Therefore

\[
(\mu_1 \lambda_1)v_1 + \cdots + (\mu_n \lambda_n)v_n = \mu_1 \alpha(v_1) + \cdots + \mu_n \alpha(v_n)
= \alpha(v)
= \lambda v
= (\lambda_1 \mu_1)v_1 + \cdots + (\lambda_\mu_n)v_n.
\]

Comparing coefficients we see that \(\mu_k \lambda_k = \lambda \mu_k \), whence \(\lambda_k = \lambda \), for all \(k \). This proves that \(\alpha = \lambda \text{id}_V \). \(\square \)

Now assume \(f' \) is locally isomorphic at \(o \) to \(f \). By Section 2 we dispose of an open subspace \(T \subseteq S \) and a biholomorphism \(g: X_T \to X'_{T'} \) such that \(o \in T \) and \(f_T = f'_T \circ g \). Fix a point \(t \in T \). Then \(g \) induces a biholomorphism \(g_t: X_t \to X'_{t'} \). Observing that \(X'_{X_t} = X_{t'}(T) \), we obtain a commutative diagram of linear maps:

\[
\begin{array}{ccc}
H^2(X_{t'}(T); \mathbb{C}) & \xrightarrow{g^*} & H^2(X_T; \mathbb{C}) \\
\text{rest.} & & \text{rest.}
\end{array}
\]

\[
\begin{array}{ccc}
H^2(X_{t'}(t); \mathbb{C}) & \xrightarrow{g_t^*} & H^2(X_t; \mathbb{C})
\end{array}
\]

Without loss of generality we may assume that \(T \) is biholomorphic to a ball in \(\mathbb{C}^m \). This makes the vertical arrows in the diagram isomorphisms. Employing the commutativity of the diagram twice, once for \(t \) and once for \(t = o \), we deduce that

\[
g_o^* \circ \mu_{t^{-1}(t)} = \mu_t \circ g_t^*.
\]

Invoking eq. (2), we furthermore deduce that

\[
(g_o^* \circ \phi^{-1})[t] = g_o^*[\phi^{-1}(t)]
= (g_o^* \circ \mu_{t^{-1}(t)})[H^2(0)(X_{t^-1(t))}]
= (\mu_t \circ g_t^*)[H^2(0)(X_{t^{-1}(t))}]
= \mu_t[H^2(0)(X_t)] = t.
\]

Hence Lemma 1 implies that \(g_o^* \circ \phi^{-1} = \lambda \text{id}_V \) for a complex number \(\lambda \neq 0 \). Seeing that \(g_o^* \circ \phi^{-1} \) restricts to an automorphism of \(H^2(X_o; \mathbb{Z}) \), we infer that \(\lambda \) is either 1 or \(-1\). Both alternatives lead to a contradiction.
Consider the real cone
\[C := \{ v \in H^{1,1}(X_0) \mid \pi = v, \langle v, v \rangle > 0 \} \subseteq H^{1,1}(X_0) \]
and notice that both \(g_\pi \) and \(\phi \) map \(C \) homeomorphically onto itself. Notice moreover that \(C \) has precisely two connected components; one of these components, say \(C_+ \), contains all Kähler classes of \(X_0 \) while the other component is just \(-C_+\) \cite{1}, §8.5.1. Since \(g_\pi \) takes Kähler classes to Kähler classes, \(g_\pi \) preserves the connected components of \(C \). For all \(w \in C \) we see that the line segment joining \(w \) and \(\phi(w) \) is contained in \(C \). Thus \(\phi \) preserves the connected components of \(C \), too, while \(-\phi\) swaps the components. So if \(g_\pi = -\phi \), we obtain a contradiction. If on the other hand \(g_\pi = \phi \), then \(g_\pi(d) = -d \). As mentioned at the outset of section 2, we can assume that \(d \) is the class of a smooth rational curve on \(X_0 \). Then, however, for every Kähler class \(c \) on \(X_0 \),
\[0 < \langle c, d \rangle = \langle g_\pi(c), g_\pi(d) \rangle = -\langle g_\pi(c), d \rangle < 0, \]
which completes our proof of \(\text{Theorem 1} \).

4. Closing remarks

In our discussions with Schwald we have realized that an alternative, yet effectively related, proof strategy for \(\text{Theorem 1} \) uses the existence of the flop of a \((-2)\)-curve in a complex threefold. Using this idea we can construct pointwise but not everywhere locally isomorphic families of K3 surfaces over a 1-dimensional complex manifold \(S \), whereas the complex manifold \(S \) in section 2 is of dimension 20. We refrain from going into the details.

As regards Meersseman’s work it seems worthwhile to investigate whether and to what extend a weakened form of his result \cite{3}, Theorem 3 remains true—for instance, assuming that eq. (1) defines a constant map, does the family of compact complex manifolds \(f \) have the local isomorphism property at the (very) general point of \(S \)?

References

[1] D. Huybrechts. Lectures on K3 surfaces. Vol. 158. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2016, pp. xi+485. doi:10.1017/CBO9781139165941.

[2] K. Kodaira, L. Nirenberg, and D. C. Spencer. “On the existence of deformations of complex analytic structures.” In: Ann. of Math. (2) 68 (1958), pp. 450–459. doi:10.2307/1970256.

[3] L. Meersseman. “Foliated structure of the Kuranishi space and isomorphisms of deformation families of compact complex manifolds.” In: Ann. Sci. Éc. Norm. Supér. (4) 44.3 (2011), pp. 495–525.

[4] J. Wehler. “Isomorphie von Familien kompakter komplexer Mannigfaltigkeiten.” German. In: Math. Ann. 231 (1977), pp. 77–90. doi:10.1007/BF01360031.