Lawrence Berkeley National Laboratory
Recent Work

Title
Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2(T), a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes.

Permalink
https://escholarship.org/uc/item/96433035

Journal
Standards in genomic sciences, 11(1)

ISSN
1944-3277

Authors
Melton, Emily Denise
Sorokin, Dimitry Y
Overmars, Lex
et al.

Publication Date
2016

DOI
10.1186/s40793-016-0184-4

Peer reviewed
Complete genome sequence of *Desulfurivibrio alkaliphilus* strain AHT2\(^T\), a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes

Emily Denise Melton\(^1\), Dmitry Y. Sorokin\(^2,3\), Lex Overmars\(^1\), Olga Chertkov\(^4\), Alicia Clum\(^5\), Manoj Pillay\(^6\), Natalia Ivanova\(^5\), Nicole Shapiro\(^5\), Nikos C. Kyrpides\(^5,7\), Tanja Woyke\(^5\), Alla L. Lapidus\(^8\) and Gerard Muyzer\(^1\)*

Abstract

Desulfurivibrio alkaliphilus strain AHT2\(^T\) is a strictly anaerobic sulfidogenic haloalkaliphile isolated from a composite sediment sample of eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Egyptian Libyan Desert. *D. alkaliphilus* AHT2\(^T\) is Gram-negative and belongs to the family *Desulfobulbaceae* within the *Deltaproteobacteria*. Here we report its genome sequence, which contains a 3.10 Mbp chromosome. *D. alkaliphilus* AHT2\(^T\) is adapted to survive under highly alkaline and moderately saline conditions and therefore, is relevant to the biotechnology industry and life under extreme conditions. For these reasons, *D. alkaliphilus* AHT2\(^T\) was sequenced by the DOE Joint Genome Institute as part of the Community Science Program.

Keywords: Deltaproteobacteria, Soda lake, Sediment, Sulfur cycle, Sulfur disproportionation

Abbreviations: *acsA*, Carbon monoxide dehydrogenase; *acsB*, Acetyl-CoA synthase; *acsC*, Corrinoid iron-sulfur protein large subunit; *Formate DH*, Formate dehydrogenase; *fhs*, Formyl-H\(_4\)folate synthase; *folD*, Formyl-H\(_4\)folate cyclohydrolase/methylene-H\(_4\)folate dehydrogenase; *mthracsD*, Methylene-H\(_4\)folate reductase/corrinoid iron-sulfur protein small subunit fusion; *pulE*, Type II secretory pathway ATPase PulE; THF, Tetrahydrofolate; WL, Wood Ljungdahl

Introduction

Soda lakes are extreme environments with high salinity and highly alkaline pH values. They are formed in arid regions where high rates of evaporation lead to the accumulation of sodium carbonate salts, which are dominant in these distinctive lakes. Soda lakes support an active microbial sulfur cycle, enhanced by the stability of intermediate sulfur species such as thiosulfate and polysulfides and much lower toxicity of sulfide at these elevated pH conditions. Correspondingly, a wide variety of anaerobic haloalkaliphiles active in the reductive sulfur cycle have been isolated from these lakes [1]. Insights into sulfur redox processes will contribute to understanding how haloalkaliphilic organisms survive and thrive under dual extreme conditions. Some metabolic processes within the reductive sulfur cycle are more favorable under alkaline pH conditions than under circumneutral conditions, such as the disproportionation of elemental sulfur [2]. These sulfur redox processes are not only relevant in natural haloalkaline environments, some wastewater and gas desulfurization treatment plants are often operated at high salt concentrations and pH values where haloalkaliphiles play a role in the remediation of the affected areas. Thus, the haloalkaliphile *Desulfurivibrio alkaliphilus* strain AHT2\(^T\) was sequenced for its relevance to sulfur cycling and the environmental biotechnology sector by the DOE-JGI Community Science Program.

Correspondence: g.muijzer@uva.nl

\(^1\)Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands

Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Organism information
Classification and features

D. alkaliphilus AHT2\(^T\) is the type strain of the *Desulfurivibrio alkaliphilus* species and was isolated from a mixed sediment sample from eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Libyan Desert (Egypt) [3]. The cells are Gram-negative, non-motile, curved rods that do not form spores (Fig. 1). *D. alkaliphilus* AHT2\(^T\) tolerates sodium carbonate concentrations ranging from 0.2 - 2.5 M total Na\(^+\) and grows within a pH range of 8.5 - 10.3 (optimum at pH 9.5) [3]. Phylogenetic analysis showed that the strain belongs to the family *Desulfobulbaceae* within the *Delta-proteobacteria* and is most closely related to a, so far undescribed, haloalkaliphilic chemoautotrophic sulfur-disproportionator within the same genus: *Desulfurivibrio* sp. strain AMeS2 [2]. Strains AMeS2 and AHT2\(^T\) are, so far, the only known representatives of the *Desulfurivibrio* genus (Fig. 2). The closest sequenced relative to this novel genus, is another soda lake isolate delta proteobacterium sp. MLMS-1, which has been enriched as an arsenate-dependent sulfide oxidizer [4]. *D. alkaliphilus* AHT2\(^T\) is able to reduce thiosulfate and elemental sulfur [3] and plays a role in the reductive sulfur cycle in soda lake environments [1]. *D. alkaliphilus* AHT2\(^T\) is also capable of chemolithoautotrophic growth through the disproportionation of elemental sulfur under alkaline pH conditions without iron(III) oxides [2], which are normally required by neutrophilic sulfur disproportionators. More classifications and features are listed in Table 1.

Genome sequencing information

Genome project history

D. alkaliphilus AHT2\(^T\) was sequenced by the DOE Joint Genome Institute [5] based on its relevance to the biotechnology industry. It is part of the Community Science Program (CSP_788492) entitled ‘Haloalkaliphilic sulfate-, thiosulfate- and sulfur-reducing bacteria’. The project is registered in the Genomes Online Database (Ga0028523) [6] and the complete genome sequence is deposited in GenBank (GCA_000092205). Sequencing and assembly were performed at the DOE Joint Genome Institute using state of the art sequencing technology [7]. A summary of the project information is shown in Table 2.

Growth conditions and genomic DNA preparation

D. alkaliphilus AHT2\(^T\) was grown anaerobically at 30 °C in Na-carbonate buffered mineral medium containing 0.6 M total Na\(^+\) with a pH of 10. 4 mM NH\(_4\)Cl, 1 mM MgCl\(_2\) x 6H\(_2\)O, 1 ml L\(^{-1}\) trace element solution [8], 2 mM Na-acetate as C-source and ~5 g/L powdered sulfur (electron acceptor) were added after sterilization. 2 L culture was grown in a 10 L bottle mounted on a magnetic stirrer with an 0.5 bar H\(_2\) (electron donor) overpressure head-space. The cells from 1 L culture were harvested by centrifugation at 13,000 g for 30 min, washed with 1 M NaCl and stored at ~80 °C. The DNA was extracted and purified from frozen pellets by the phenol-chloroform method after pre-treatment with SDS-proteinase K according to Murmur [9]. The purity and molecular weight of the DNA was checked by UV spectroscopy and gel electrophoresis, respectively.

Genome sequencing and assembly

The total size of the *D. alkaliphilus* AHT2\(^T\) genome sequence assembly was 3.1 Mbp. The draft genome of *D. alkaliphilus* AHT2\(^T\) was generated at the DOE Joint Genome Institute using a combination of Illumina [10] and 454 DNA sequencing technologies [11]. An Illumina GAii shotgun library was constructed, which generated 3,998,684 reads and a 454 Titanium standard library, which generated 517,041 reads totalling 123.6 Mb of 454 data. The initial draft assembly contained 57 contigs in 1 scaffold. The 454 Titanium data were assembled with Newbler, version 2.0.00.20-PostRelease-11-05-2008-gcc-3.4.6. The Newbler consensus sequences were computationally shredded into 2 kb overlapping fake reads (shreds). Illumina sequencing data was assembled with VELVET, version 1.0.13 [12], and the consensus sequences were computationally shredded into 1.5 kb overlapping fake reads (shreds). We integrated the 454 Newbler consensus shreds and the illumina VELVET consensus shreds using parallel Phrap, version SPS - 4.24 (High Performance Software, LLC). The software Consed [13] was used in

Fig. 1 Morphology of *D. alkaliphilus* AHT2\(^T\). a A phase contrast micrograph of the *D. alkaliphilus* AHT2\(^T\) cells. b A scanning electron microscope image of the *D. alkaliphilus* AHT2\(^T\) cells.
the finishing process as described previously [14]. The final assembly is based on 123.6 Mb of 454 draft data which provides an average 39.9x coverage of the genome and 303.9 Mb of Illumina draft data providing an average 98x coverage of the genome.

Genome annotation
The complete genome sequence was annotated using the JGI Prokaryotic Automatic Annotation Pipeline [15] with additional manual review using the Integrated Microbial Genomes - Expert Review platform [16]. Genes were predicted using Prodigal [17], followed by a round of manual curation using the JGI GenePRIMP pipeline [18]. Ribosomal RNAs were detected using models built from SILVA [19] and tRNAs were predicted with tRNAscanSE [20]. The predicted coding sequences were translated and used to search the National Center for Biotechnology Information non-redundant database, UniProt, TIGRfam, Pfam, KEGG, COG and InterPro databases. Further annotation was performed using the Integrated Microbial Genomes platform. The final annotated genome is available from the Integrated Microbial Genome system [21].

Genome properties
The genome is 3,097,763 bp long with GC content of 60.29 % (Table 3). 2732 genes were found, of which 2676 are annotated as protein-coding genes and 56 are RNA genes (47 tRNA genes). A total of 75 % of the protein-coding genes have been assigned a function prediction and 62.26 % have been assigned to a COG (Table 3). The number of genes assigned to each functional COG category is listed in Table 4.

Extended insights from the genome sequence
Carbon fixation
In order to grow chemolithoautotrophically, D. alkaliphilus AHT2T assimilates inorganic carbon from the environment. The genome of D. alkaliphilus AHT2T contains the key genes necessary for the WL pathway, a mode of carbon fixation from CO₂, which can run in the reductive and oxidative direction [22]. In the reductive direction, carbon is fixed from inorganic CO₂ to cell material. The WL pathway functions in this direction in many representatives of sulfate-reducing bacteria within the Deltaproteobacteria. Some organisms may couple the reverse, or oxidative, direction to sulfate reduction. The WL gene clusters have previously been defined for delta proteobacterium sp. MLMS-1 from Mono Lake [23], the closest sequenced relative of D. alkaliphilus AHT2T (Fig. 2). Here we identified the WL genes necessary for carbon fixation by comparing the corresponding delta proteobacterium sp. MLMS-1 gene clusters to those present in D. alkaliphilus AHT2T using the JGI IMG database (Fig. 3). The first step in the reductive pathway is the reduction of CO₂ to formate, by formate dehydrogenase (DaAHT2_0823 and an accessory protein DaAHT2_0820). This is followed by formyl-THF synthetase (DaAHT2_0837) and a methylene-THF dehydrogenase/cyclohydrolase (DaAHT2_0828) and a
Table 1 Classification and general features of *D. alkaliphilus* AHT2

MIGS ID	Property	Term	Evidence code
	Classification	Domain: Bacteria	TAS [39]
		Phylum: Proteobacteria	TAS [40, 41]
		Class: Deltaproteobacteria	TAS [42, 43]
		Order: Desulfobacterales	TAS [44]
		Family: Desulfobulbaceae	TAS [45]
		Genus: Desulfurivibrio	TAS [3, 46]
		Species: Desulfurivibrio alkaliphilus	TAS [3, 46]
		Type strain: AHT2	TAS [3]
	Gram stain	negative	
	Cell shape	rod-shaped	
	Motility	non-motile	
	Sporulation	nonsporulating	
	Temperature range	mesophile	
	Optimum temperature	35	
	pH range; Optimum	8.5–10.3; 9.5	TAS [3]
	Carbon source	acetate, HCO\textsubscript{3}−	TAS [3]
GS-6	Habitat	hypersaline alkaline lake sediments	
MIGS-6.3	Salinity	moderately salt-tolerant	
MIGS-22	Oxygen requirement	anaerobe	
MIGS-15	Biotic relationship	free living	
MIGS-14	Pathogenicity	none	
MIGS-4	Geographic location	Wadi al Natrun, Libyan Desert (Egypt)	
MIGS-5	Sample collection	September 2000	
MIGS-4.1	Latitude – Longitude	30° 24′ N	
MIGS-4.2		30° 18′ E	
MIGS-4.3	Depth	0–10 cm	TAS [3]
MIGS-4.4	Altitude	−20 m	

Table 2 Project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Finished
MIGS-28	Libraries used	Solexa, 454
MIGS-29	Sequencing platforms	454, Illumina
MIGS-31.2	Fold coverage	39.9 x 454, 98 x Illumina
MIGS-30	Assemblers	Newbler, Velvet, phrap
MIGS-32	Gene calling method	Prodigal [17]
	Locus Tag	DaAHT2
Genbank ID		CP001940
Genbank Date of Release		01.28.2014
GOLD ID		Gp0003395
BIOPROJECT		PRJNA33629
MIGS-13	Project relevance	biotechnological

Table 3 Nucleotide content and gene count levels of the genome

Attribute	Value	% of total
Genome size (bp)	3,097,763	100.00
DNA coding (bp)	2,806,423	90.60
DNA G + C (bp)	1,867,527	60.29
DNA scaffolds	1	100.00
Total genes	2,732	100.00
Protein coding genes	2,676	97.95
RNA genes	56	2.05
Pseudo genes	56	2.05
Genes in internal clusters	103	3.77
Genes with function prediction	2,049	75
Genes assigned to COGs	1,701	62.26
Genes with Pfam domains	2,280	83.46
Genes with signal peptides	175	6.41
Genes with transmembrane helices	672	24.60
CRISPR repeats	2	
methylene-THF reductase (DaAHT2_0827). The \acs\ gene cluster is necessary for the carbonyl branch of the reaction [22], which starts with the reduction of \(\text{CO}_2\) to carbon monoxide by a carbon monoxide dehydrogenase (DaAHT2_0826). In the last step, the products of the carbonyl and methyl branch are combined to form the product acetyl-CoA, by a CO dehydrogenase/acetyl-CoA synthase complex (DaAHT2_0825 and DaAHT2_0824). The end product of the WL cycle is typically acetate, however, the genes needed to convert acetyl-CoA to the end product acetate are absent in the \(D.\ alkaliphilus\) AHT2\(^T\) genome, resulting in acetyl CoA being the carbon end product which can be incorporated into biomass.

Table 4 Number of genes associated with general COG functional categories

Code	Value	% of total	Description
J	180	9.50	Translation, ribosomal structure and biogenesis
A	NA		RNA processing and modification
K	72	3.80	Transcription
L	84	4.43	Replication, recombination and repair
B	2	0.11	Chromatin structure and dynamics
D	26	1.37	Cell cycle control, cell division, chromosome partitioning
V	44	2.32	Defense mechanisms
T	134	7.07	Signal transduction mechanisms
M	149	7.86	Cell wall/membrane biogenesis
N	82	4.33	Cell motility
U	50	2.64	Intracellular trafficking and secretion
O	93	4.91	Posttranslational modification, protein turnover, chaperones
C	139	7.34	Energy production and conversion
G	67	3.54	Carbohydrate transport and metabolism
E	129	6.81	Amino acid transport and metabolism
F	53	2.80	Nucleotide transport and metabolism
H	132	6.97	Coenzyme transport and metabolism
I	52	2.74	Lipid transport and metabolism
P	130	6.86	Inorganic ion transport and metabolism
Q	20	1.06	Secondary metabolites biosynthesis, transport and catabolism
R	134	7.07	General function prediction only
S	70	3.69	Function unknown
-	1031	37.74	Not in COGs

Fig. 3 \(D.\ alkaliphilus\) AHT2\(^T\) Wood-Ljungdahl pathway genes, including the \acs\ gene cluster, based on delta proteobacterium sp. MLMS-1 [23]. The gene locus tags are depicted beneath the illustrated gene representations.
A thiosulfate (phs) / sulfur (psr) reductase gene cluster

Desulfurivibrio alkaliphilus AHT2

molybdenum oxidoreductase	molybdenum oxidoreductase
DaAHT2_0420	DaAHT2_0420
0419	0418
nrfD	
Rhodanese domain	

% identity to corresponding subunit in D. alkaliphilus DaAHT2_0420 - 0418

29.90 %

Salmonella enterica (S. typhi)

phsA	phsB	phsC
STY2271	2270	2269

% identity to corresponding subunit in D. alkaliphilus DaAHT2_0420 - 0418

29.79 % 42.70 % N.A.

Wolinella succinogenes DSM 1740

psrA	psrB	psrC
Ga0076602_11110	11111	11112

% identity to corresponding subunit in D. alkaliphilus DaAHT2_0420 - 0418

31.75 % 42.78 % 29.03 %

B phylogenetic tree of psrA gene (WS0116 / Ga0076602_11110) orthologs

Fig. 4 (See legend on next page.)
Sulfur cycle

Culture studies have provided evidence that *D. alkaliphilus AHT2^T* is able to reduce a number of different sulfur redox species to conserve energy [4]. The *dsr* cluster catalyzes sulfite reduction to sulfide [24, 25], which is also present in the *D. alkaliphilus* cluster catalyzing sulfite reduction to sulfide [24, 25], and is also present in the *D. alkaliphilus* cluster catalyzing sulfite reduction to sulfide [24, 25], and also has genes which may be involved in the oxidative branch of sulfate disproportionation: a sulfate adenylyltransferase *sat* (DaAHT2_0293) and two adenylylsulfate reductase subunits *aprAB* (alpha: DaAHT2_1471 and beta: DaAHT2_1472). In the haloalkaline environment from which *D. alkaliphilus AHT2^T* was isolated, intermediate redox species of sulfur such as polysulfides and thiosulfate are abundantly present. The genes for the reduction of elemental sulfur (polysulfides) and thiosulfate (psrA/phsA) are annotated together as a single KEGG ortholog, namely K08352 [26]. However, the *psr* and *phs* genes have been identified individually in different organisms and are responsible for different reactions.

The molybdenum-containing polysulfide reductase gene *psrA* (WS0116 / Ga0076602_11110) was first identified in the sulfur/polysulfide-reducing epsilonproteobacterium *Wolinella succinogenes* [27, 28]. The thiosulfate reductase operon *phs* (STY2271-STY2269) was first identified in the enteric bacterium *Salmonella typhimurium* [29, 30]. The genome of *D. alkaliphilus AHT2^T* contains two molybdopterin oxidoreductases (DaAHT2_0547 and DaAHT2_0420) [Fig. 4a]. In order to determine whether the *D. alkaliphilus AHT2^T* gene cluster is a *psr* or a *phs* operon, we used eggNOG 4.5 [31] to find 446 orthologs of *psrA* (WS0116 / Ga0076602_11110) in 233 species, from which a phylogenetic neighbor-joining tree was constructed and trimmed (Fig. 4b). The molybdopterin oxidoreductase sequences of *D. alkaliphilus AHT2^T* (DaAHT2_0420 and DaAHT2_0547) did not cluster within the *psr* or *phs* branch (Fig. 4b). Nevertheless, they are part of the same orthologous group as the *W. succinogenes* *psrA* (ENO4107QY8) with which they share 24,80 % (DaAHT2_0547) and 31,75 % (DaAHT2_0420) identity. The *S. typhimurium phsA* is clustered in the same orthologous group and is 27,34 identical to DaAHT2_0547 and 29,79 % identical to DaAHT2_0420 (Fig. 4a). Only one of the *D. alkaliphilus AHT2^T* *psrA*/*phsA* genes is located within an operon of three subunits (Fig. 4a). This means that the *D. alkaliphilus AHT2^T* gene with the locus tag DaAHT2_0420 is most probably the active *psrA*/*phsA*. Laboratory culture evidence points towards the *D. alkaliphilus AHT2^T* *DaAHT2_0420* – *DaAHT2_0418* operon being functional as a sulfur reductase, as it is unable to grow on thiosulfate in absence of H₂ as electron donor [3]. In addition, the operon is directly adjacent to a sulfur transferase rhodanese domain (DaAHT2_0417), which has been suggested to be essential for the binding, stabilizing and transferring sulfur to the *psrA* subunit [32]. However, more research is needed to define this gene operon as either a *psr* or a *phs* gene cluster.

Adaptations to the haloalkaline environment

There are several adaptations that haloalkaliphiles can use to survive in the haloalkaline environment: bioenergetic adaptations, structural membrane adaptations and the use of osmoprotectants to retain osmotic balance [1]. The
genome of *D. alkaliphilus* AHT2\(^2\) contains a voltage gated sodium channel gene *ncBA* (DaAHT2_0077) and the electrogenic sodium/proton antiporter *mrpBCDEFG* operon (DaAHT2_2362 to DaAHT2_2357). The *nqr* operon encodes a sodium pumping NADH:quinone oxidoreductase (alternative to H\(^+\)-pumping conventional NADH:quinone oxidoreductases) that shuttles electrons from NADH to ubiquinone \([33, 34]\). The *D. alkaliphilus* AHT2\(^2\) genome contains the first account of the *nqr* operon in anaerobic haloalkaliphiles \([35, 36]\). The locus tags of the *nqr* gene cluster *nqrA-nqrF* in *D. alkaliphilus* AHT2\(^2\) are DaAHT2_0042 – DaAHT2_0047, and we also found this cluster in *D. alkaliphilus* AHT2\(^2\)’s closest sequenced relative delta proteobacterium sp. MLMS-1 (mldDRAFT_0493-0498) (Fig. 5). The *D. alkaliphilus* AHT2\(^2\) genome does not contain genes for the synthesis of ectoine or betaine, which function as common osmo- protectants in haloalkaliphiles, but it does have a choline/betaine transporter (DaAHT2_1056).

Conclusions

In this manuscript we give a short description of the *D. alkaliphilus* AHT2\(^2\) genome, which was isolated from hypersaline soda lake sediments in the Libyan Desert in Egypt. Its ability to perform inorganic sulfur disproportionation reactions in laboratory cultures indicates that the necessary gene pathways are present in the genome of this organism. The metabolic pathways of disproportionation are so far poorly understood; therefore, further investigation of the *D. alkaliphilus* AHT2\(^2\) genome may lead to insights which genes are essential to this metabolism. In addition, a more in depth genome sequence analysis might provide more insights into autotrophic carbon metabolism in haloalkaline environments.

Acknowledgements

Emily Denise Melton, Lex Overmars and Gerard Muyzer are supported by ERC Advanced Grant PARASOL (No. 322551); Dimitry Y. Sorokin was supported by the Gravitation SIAM grant 24002002 and the RFBR grant 16-04-00035. Alla L. Melton is supported by the RSF grant 14-50-00069. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, was supported under Contract No. DE-AC02-05CH11231.

Authors’ contributions

EDM drafted and wrote the manuscript. DYS, LO, GM, NCJ and ALL contributed to the written manuscript. DYS, LO and GM stimulated critical discussions. DS cultured *D. alkaliphilus* and extracted the DNA. The sequencing and annotation of the genome were performed at the JGI by OC, AC, MP, NI, NS, NCJ, TW and all. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Author details

1. **Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.**
2. **Institute of Microbiology, Research Centre of Biotechnology, RAS, Moscow, Russia.**
3. **Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.**
4. **Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos NM 87545, USA.**
5. **Joint Genome Institute, Walnut Creek, CA, USA.**
6. **Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.**
7. **Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.**
8. **Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.**

Received

16 May 2016 Accepted: 25 August 2016

Published online

08 September 2016

References

1. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles. 2014;18:791–809.
2. Poser A, Lohmayer R, Vogt C, Knoeller K, Planer-Friedrich B, Sorokin D, et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles. 2013;17:1003–12.
3. Sorokin DY, Tourova TP, Müssmann M, Muyzer G. Dethiobacter alkaliphilus gen. nov. sp. nov., and Desulfurivibrio alkaliphilus gen. nov. sp. nov.: two novel representatives of reductive sulfur cycle from soda lakes. Extremophiles. 2008;12:431–9.
4. Hoefl SE, Kulp TR, Stolz JF, Hollibaugh JT, Oremillard RS. Dissimilatorial arsenate reduction with sulfide as electron donor: experiments with Mono Lake water and isolation of strain MLMS-1, a chemoautotrophic arsenate respirer. Appl Environ Microbiol. 2004;70:2471–7.
5. Joint Genome Institute [jgi.doe.gov].
6. Reddy TBK, Thomas AD, Stamatis D, Bertsch JS, Ibsand M, Jansson J, Mallajosyula J, Pagani I, Lobos EA, Kyprides NC. The Genomes OnLine Database (GOLD) v5.0: a metadata management system based on a four level (meta)genome project classification. Nucl Acids Res. 2014;43:1099–106.
7. Mavromatis K, Land ML, Brettin TS, Quest DJ, Copeland A, Clum A, Goodwin L, Woyke T, Lapidus A, Klenk HP, Cottingham RW, Kyprides NC. The fast changing landscape of sequencing technologies and their impact on microbial assemblies and annotations. PLoS One. 2012;7:e48837.
8. Pfennig N, Lippert KD. Über das Vitamin B12-Bedürfnis phototropher Schwebelfäkalier. Arch Mikrobiol. 1966;55:245–56.
9. Marmur J. A procedure for isolation of DNA from microorganisms. J Mol Biol. 1953;1:208–14.
10. Bennett S, Solexa Ltd. Pharmacogenomics. 2005;4:433–8.
11. Margulies M, Egholm M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:326–7.
12. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.
13. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res. 1998;8:195–202.
14. Sims D, Brettin T, Detter JC, Han C, Lapidus A, Copeland A, Clum A, Goodwin L, Woyke T, Lapidus A, Klenk HP, Cottingham RW, Kyprides NC. The fast changing landscape of sequencing technologies and their impact on microbial assemblies and annotations. PLoS One. 2012;7:e48837.
15. Pfennig N, Lippert KD. Über das Vitamin B12-Bedürfnis phototropher Schwebelfäkalier. Arch Mikrobiol. 1966;55:245–56.
16. Marmur J. A procedure for isolation of DNA from microorganisms. J Mol Biol. 1953;1:208–14.
17. Bennett S, Solexa Ltd. Pharmacogenomics. 2005;4:433–8.
18. Margulies M, Egholm M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:326–7.
19. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.
20. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res. 1998;8:195–202.
21. Sims D, Brettin T, Detter JC, Han C, Lapidus A, Copeland A, Clum A, Goodwin L, Woyke T, Lapidus A, Klenk HP, Cottingham RW, Kyprides NC. The fast changing landscape of sequencing technologies and their impact on microbial assemblies and annotations. PLoS One. 2012;7:e48837.
22. Pfennig N, Lippert KD. Über das Vitamin B12-Bedürfnis phototropher Schwebelfäkalier. Arch Mikrobiol. 1966;55:245–56.
23. Marmur J. A procedure for isolation of DNA from microorganisms. J Mol Biol. 1953;1:208–14.
28. Baar C, Eppinger M, Raddatz G, Simon J, Lanz C, Klimmek O, et al. Complete genome sequence of the mesophilic dinitrogen Fixing Alkaliphilic gamma-Proteobacterium, Desulfovibrio alginolyticus ATCC 27774. J Bacteriol. 2005;187:4148–64.

29. Heinzinger NK, Fujimoto SY, Clark MA, Moreno MS, Barrett EL. Phylum XIV. Proteobacteria. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, vol. Volume 2, Part C. 2nd ed. New York: Springer; 2005. p. 988.

30. Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature. 2001;413:848–52.

31. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. EggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucl Acids Res. 2016;44:D286–93.

32. Sorokin DY, Kublanov IV, Gavrilov SN, Rojo D, Roman P, Golyshin PN, et al. Elemental sulfur and acetate can support life of a novel strictly anaerobic haloarchaeon. ISME J. 2016;10:240–52.

33. Hayashi M, Nakayama Y, Unemoto T. Recent progress in the Na+-translocating NADH-quinone reductase from the marine sulfate reducer, Desulfovibrio gigas. Biochim Biophys Acta. 2008;1784:1873–86.

34. Kuever J, Rainey FA, Widdel F. Family II. Desulfobulbaceae fam. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, vol. Volume 2, Part C. 2nd ed. New York: Springer; 2005. p. 994.

35. Pereira IAC, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol. 2011;2:269.

36. Rabur R, Venceslau SS, Wülfling L, Voordouw G, Wall JD, Pereira IAC. A post-genomic view of the ecophysiology, catabolism and biotechnological relevance of sulphate-reducing prokaryotes. Adv Microb Physiol. 2015;66:55–321.

37. Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucl Acids Res. 2004;32(4):1363–71.

38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9.

39. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87:4576–9.

40. Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, vol. Volume 2, Part B. 2nd ed. New York: Springer; 2005. p. 1.

41. Validation of publication of new names and new combinations previously effectively published outside the IJSEM. Int J Syst Evol Microbiol. 2005;55:233–2338.

42. Kuever J, Rainey FA, Widdel F. Order III. Desulfobacterales ord. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, vol. Volume 2, Part C. 2nd ed. New York: Springer; 2005. p. 922.

43. Validation List No. 107. List of new names and new combinations previously effectively published, but not validly published. Int J Syst Evol Microbiol. 2006;56:608–61.

44. Kuever J, Rainey FA, Widdel F. Order II. Desulfobulbaceae ord. nov. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT, editors. Bergey’s Manual of Systematic Bacteriology, vol. Volume 2, Part C. 2nd ed. New York: Springer; 2005. p. 959.