Data Article

Data showing phenotypic profile of uropathogenic *Escherichia coli* isolates from sepsis patients

Vivek Verma a, D. Nagarjuna a, Gajanand Mittal b, Parveen Kumar 2, Rakesh Singh Dhanda c, Rajni Gaind b, Manisha Yadav a, *n*

a Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi 110007, India
b Department of Microbiology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, Delhi 110029, India
c Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India

Article info

Article history:
Received 12 February 2016
Received in revised form 28 February 2016
Accepted 10 March 2016
Available online 17 March 2016

Keywords:
Escherichia coli
Phenotypes
Sepsis

Abstract

Bacterial virulence factors (VFs) influence the site and severity of urinary tract infections (UTI) and further leading to sepsis infection. Phenotypic characterisation of VFs specific to sepsis *Escherichia coli* strains has not been characterized in Indian population till date. In this data article, we have described important VFs of *uropathogenic E. coli* (UPEC) that is P fim, Type-1 fimbriae, cell surface hydrophobicity, mannose resistant haemagglutination/mannose sensitive haemagglutination (MRHA/MSHA) expression and α-haemolysin production. The data includes a profile of the five VFs investigated in *E. coli* isolates from sepsis patients (*N*=78) and control group (*N*=50) from non-sepsis subjects. We found that P fim phenotype was expressed in 25.3% of *E. coli* isolates from sepsis patients, whereas Type-1 fimbriae was detected in 30.5%. Cell surface hydrophobicity phenotype was present in 30.5%, α-haemolysin in 26.3% and MRHA/MSHA in 22.1% of sepsis *E. coli* isolates. None of the control *E. coli* isolates showed presence of these phenotypes. The combined phenotypic profile of all the five VFs was significantly higher in sepsis patients as compared to the control group.

* Corresponding author. Dr. B.R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi 110007, India.
Tel.: +91 11 27666272. Current address: Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
E-mail addresses: manisha.dhanda@gmail.com, manisha.yadav@regionh.dk (M. Yadav).

http://dx.doi.org/10.1016/j.dib.2016.03.047
2352-3409/© 2016 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Data

The phenotypic profiling of important virulence factors (VFs) have shown that P fim phenotype was expressed in 25.26% of *E. coli* isolates of the sepsis patients, whereas Type-1 fimbriae was expressed in 30.52% of *E. coli* isolates by haemagglutination (Fig. 1A). The expression of P fim and Type 1 fimbriae was significantly higher in sepsis *E. coli* isolates as compared to control group (*p* < 0.01). Cell surface hydrophobicity phenotype was present in 30.52% of *E. coli* isolates whereas 26.31% were expressing α-haemolysin and MRHA/MSHA phenotype was shown by 22.1% of *E. coli* sepsis isolates (Fig. 1A). Similarly, the cell surface hydrophobicity, haemolysin and mannose resistant phenotypes were significantly higher among sepsis *E. coli* isolates as compared to the control group (*p* < 0.01). Further combined expression profile of five phenotype virulence factors was significantly higher in sepsis *E. coli* isolates as compared to control group (*p* < 0.001) (Fig. 1B).

2. Experimental design, materials, and methods

2.1. Collection and culturing of clinical *E. coli* isolates

E. coli strains (*N* = 128; Sepsis = 78; Control = 50) were obtained from the stock library of Department of Microbiology, Vardhman Mahavir Medical College and Safdarjung hospital, New Delhi, India.
The *E. coli* strains were collected from confirmed sepsis patients who visited the hospital while control group consists of the faecal *E. coli* isolates from non-sepsis controls. The bacteria were grown on tryptic soy agar (TSA) agar plates at 37 °C overnight and further stored at 4 °C for the phenotypic characterisation.

2.2. Haemagglutination assay: P-fimbrial/Type 1 fimbrial phenotype

The phenotype of P-fimbrial was defined by P blood group dependent haemagglutination [1,2]. P-fimbrial expression was defined by agglutination of P1 (receptor positive) but not p (receptor negative) erythrocytes. Type 1 fimbrial was detected by haemagglutination of human and guinea pig erythrocytes after in vitro passage in Luria broth. Agglutination was performed in the presence and absence of α-methyl-D-mannoside. Strains causing mannose-sensitive agglutination were defined as Type 1 fimbriated [3].

2.3. MRHA/MSHA assay

Haemagglutination was performed in round-bottomed microtitration plates. One drop (100 µl) of bacterial suspension was mixed with one drop of erythrocytes (human A⁺ve, 3% v/v in 1× PBS) and one drop of PBS, with or without D-mannose (3% w/v). The plate was left to rotate (15 rpm) for 5 min.
at 25 °C followed by rotation for 5 min at 4 °C. Haemagglutination was considered to be mannose-resistant (MRHA) when it occurred in the presence of mannose and mannose-sensitive (MSHA) when it was inhibited by mannose [4].

2.4. Cell-surface hydrophobicity

The cell-surface hydrophobicity was calculated by the salt aggregation test (SAT) with suspensions (5 × 10⁸ cfu/ml) in 0.2 M phosphate buffer, pH 6.8, of bacteria grown on TSA medium. In brief, suspensions were mixed with ammonium sulphate solutions at final molar (M) concentrations of 2.0, 1.4, 1.0, 0.4, 0.1, 0.06 and 0.02. Strains were considered to be hydrophobic when they aggregated in ammonium sulphate at concentrations ≤ 1.4 M [5].

2.5. α-Haemolysin production

Sheep blood agar plates were used for determination of α-haemolysin production that contained 1% sheep blood (v/v). About 7–8 wells of 8 mm diameter were made on blood agar plate and 50 μl of bacterial lysate was poured into wells and incubated overnight. Zone of inhibition was recorded. Strains with a clear halo after overnight culture at 37 °C were defined as haemolytic [6].

3. Statistical analysis

The chi-square test was used for statistical comparison between the two groups. P values ≤ 0.05 were considered as statistically significant.

Acknowledgements

This work was supported by the Dean Research Grant, University of Delhi, India to MY [Dean(R)/R&D/2014/6820].

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.03.047.

References

[1] I.M. Johanson, K. Plos, B.I. Marklund, C. Svanborg, Pap, papG and prsG DNA sequences in Escherichia coli from the fecal flora and the urinary tract, Microb. Pathog. 15 (1993) 121–129.
[2] B.S. Norinder, B. Köves, M. Yadav, A. Brauner, C. Svanborg, Do Escherichia coli strains causing acute cystitis have a distinct virulence repertoire? Microb. Pathog. 52 (12) (2012) 10–16.
[3] G. Bergsten, B. Wullt, M.A. Schembri, I. Leijonhufvud, C. Svanborg, Do type 1 fimbriae promote inflammation in the human urinary tract? Cell. Microbiol. 9 (2007) 1766–1781.
[4] R. Raksha, H. Srinivasa, R.S. Macaden, Occurrence and characterisation of uropathogenic Escherichia coli in urinary tract infections, Indian J. Med. Microbiol. 21 (2) (2003) 102.
[5] P.S. Grover, R. Bareja, V.K. Narang, S. Chand, Incidence of fimbriated strains amongst haemolytic Escherichia coli, Int. Organ. Sci. Res. – J. Dent. Med. Sci. 4 (3) (2013).
[6] Ruiz Joaquim, Karine Simon, Juan P. Horcajada, Maria Velasco, Margarita Barranco, Gloria Roig, Antonio Moreno Martinez, Jose A. Martinez, Teresa Jimenez de Anta, Josep Mensa, Jordi Vila, Differences in virulence factors among clinical isolates of Escherichia coli causing cystitis and pyelonephritis in women and prostatitis in men, J. Clin. Microbiol. 40 (2002) 4445–4449.