SHARP RIESZ-FEJÉR INEQUALITY FOR HARMONIC HARDY SPACES

PETAR MELENTIJEVIĆ AND VLADIMIR BOŽIN

Abstract. We prove sharp version of Riesz-Fejér inequality for functions in harmonic Hardy space $h^p(D)$ on the unit disk D, for $p > 1$, thus extending the result from [9] and resolving the posed conjecture.

1. Introduction

Let D denote the unit disk in the complex plane. For holomorphic or harmonic function f with $M_p(r, f)$ we denote the integral means:

$$M_p(r, f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right)^{\frac{1}{p}}, \quad 0 < p < \infty$$

The space of all holomorphic functions for which $M_p(r, f)$ is bounded for $0 < r < 1$ is the Hardy space $H^p(D)$, while the analogous space of harmonic functions is the harmonic Hardy space $h^p(D)$. Theory of Hardy spaces is a very well developed; for further background about these spaces, we refer reader, for instance, to the books [10] and [13].

One of the interesting results in this theory is the following inequality of Riesz and Fejér from [3]:

$$\int_{-1}^{1} |f(r)|^p dr \leq \frac{1}{2} \int_0^{2\pi} |f(e^{i\theta})|^p d\theta,$$

that holds for a function $f \in H^p(D)$ for every $0 < p < \infty$, where the values $f(e^{i\theta})$ denote the radial limits of the function f.

This inequality was generalized in several directions. Let us mention Beckenbach’s results: the same inequality holds where in place of $|f|^p$ we have a positive logarithmically subharmonic function. Some of generalizations can be found in [1], [2] and [7].

A recent significant result is an analog of this inequality for harmonic Hardy spaces, proved by Kayumov et al. Namely, they proved the next version of Riesz-Fejér inequality:

$$\int_{-1}^{1} |f(re^{is})|^p dr \leq K_p \int_0^{2\pi} |f(e^{i\theta})|^p d\theta,$$

2010 Mathematics Subject Classification. Primary 31A05, Secondary 30H10.

Key words and phrases. Riesz-Fejér inequality, Schur test, harmonic functions, sharp estimates.

The first author is partially supported by MPNTR grant 174017, Serbia, the second author is partially supported by MPNTR grant 174032.
for all $s \in [0,2\pi]$ with $K_p = \frac{1}{2 \cos \frac{p \pi}{2}}$ for $1 < p < 2$ and $K_p = 1$ for $p \geq 2$.

The inequality is sharp for $p \in (1,2]$ and the authors made a conjecture that the inequality holds with $K_p = \frac{1}{2 \cos \frac{p \pi}{2}}$ for all $1 < p < \infty$. They also proved $K_p \geq \frac{1}{2 \cos \frac{p \pi}{2}}$ for these p, so the inequality with this K_p would be the optimal one. The inequality for $1 < p < 2$ depends on an inequality of Kalaj, proved in [8] and Lozinski’s inequality from [11]. The proof of the first of these inequalities uses the plurisubharmonic method invented in [5]; recent update on this method can be found in [12]. The proof of Riesz-Fejér inequality for $p > 2$ uses a result of Frazer from [4].

The purpose of this paper is to prove the sharp version of Riesz-Fejér inequality for harmonic Hardy spaces for every $1 < p < \infty$ using Schur test for Poisson extension operator. Namely, we get the following theorem:

Theorem 1.1. For all $1 < p < \infty$ and $f \in h^p(\mathbb{D})$, we have:

$$\int_{-1}^{1} |f(re^{i\alpha})|^p |dr| \leq \frac{1}{2 \cos \frac{s \pi}{2}} \int_{0}^{2\pi} |f(e^{i\theta})|^p |d\theta|,$$

with $s \in [0, 2\pi]$.

Because of the rotational invariance of norm of functions in $h^p(\mathbb{D})$, we can consider only the case of $s = 0$, without any loss of generality.

2. Proof of the main theorem

We will prove Theorem 1.1 using the following version of Schur test as can be found in [6]:

Lemma 2.1. Let X and Y be measure spaces equipped with nonnegative, σ–finite measures and let T be an operator from $L^p(Y)$ to $L^p(X)$ that can be expressed as

$$Tf(x) = \int_Y K(x,y)f(y)dy$$

for some nonnegative function $K(x,y)$. The adjoint operator T^* is now given by

$$T^*f(y) = \int_X K(x,y)f(x)dx.$$

If we can find a measurable h finite almost everywhere, such that:

$$T^*((Th)^{p-1}) \leq C_p h^{p-1}, \quad a.e. \ on \ Y$$

then for all $f \in L^p(Y)$, we have:

$$\int_X |T(f)|^p |dx| \leq C_p \int_Y |f|^p |dy|.$$

We apply the Schur test in the following setting. For spaces X and Y we set $X = [-1,1]$ with Lebesgue measure and $Y = \mathbb{T} = \partial \mathbb{D}$ with normalised arclength measure. Starting from a harmonic $f \in h^p(\mathbb{D})$, we first get the appropriate $f^*(e^{i\theta}) \in L^p(\mathbb{T})$, defined by its radial limits. Now, by acting with the operator T of Poisson harmonic extension, we get:

$$Tf^*(r) = \int_0^{2\pi} \frac{1 - r^2}{1 - 2r \cos \theta + r^2} f^*(e^{i\theta}) d\theta \frac{d\theta}{2\pi},$$
which is equal to \(f(r) \), because of harmonicity of \(f \). Hence, we easily see that the optimal constant in Riesz-Fejér inequality is equal to the \(p \)-th power of the operator norm of such \(T \). Since we consider \(T \) with normalised measure we have to find an \(h \) such that the constant \(C_p \) is equal to \(\frac{n}{\cos^{p} \theta} \). Also, \(T \) has positive kernel

\[
K(r,\theta) = \frac{1-r^{2}}{1-2r \cos \theta + r^{2}},
\]

and therefore, it follows that

\[
T^{*} f(e^{i\theta}) = \int_{-1}^{1} \frac{1-r^{2}}{1-2r \cos \theta + r^{2}} f(r) dr.
\]

We will work with \(h(z) = \Re(1-z^{2})^{-\frac{1}{p}} \). It is easy to find its values on the unit circle so that

\[
\Re(1-e^{2i\theta})^{-\frac{1}{p}} = \Re(2 \sin \theta e^{i(\theta - \frac{p}{2})})^{-\frac{1}{p}} = 2^{-\frac{1}{p}} \sin \theta \cos \left(\frac{\pi}{2p} - \frac{\theta}{p} \right),
\]

for \(0 \leq \theta \leq \pi \),

\[
\Re(1-e^{2i\theta})^{-\frac{1}{p}} = \Re(2 \sin \theta e^{i(\theta - \frac{p}{2})})^{-\frac{1}{p}} = 2^{-\frac{1}{p}} |\sin \theta|^{-\frac{1}{p}} \cos \left(\frac{\pi}{2p} - \frac{\theta - \pi}{p} \right),
\]

for \(\pi \leq \theta \leq 2\pi \), while on the real line we have

\[
\Re(1-z^{2})^{-\frac{1}{p}} = (1-r^{2})^{-\frac{1}{p}}.
\]

From the fact that

\[
T h(r) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{1-r^{2}}{1-2r \cos \theta + r^{2}} \Re(1-e^{2i\theta})^{-\frac{1}{p}} d\theta = (1-r^{2})^{-\frac{1}{p}},
\]

for \(-1 < r < 1 \), we find that

\[
T^{*}((Th)^{p-1}) = \int_{-1}^{1} \frac{1-r^{2}}{1-2r \cos \theta + r^{2}} (1-r^{2})^{-\frac{p-1}{p}} dr
\]

\[
= \int_{-1}^{1} \frac{(1-r^{2})^{\frac{1}{p}}}{1-2r \cos \theta + r^{2}} dr.
\]

Since \(\int_{-1}^{1} \frac{(1-r^{2})^{\frac{1}{p}}}{1-2r \cos \theta + r^{2}} dr = \int_{-1}^{1} \frac{(1-r^{2})^{\frac{1}{p}}}{1+2r \cos \theta + r^{2}} dr \), and substituting \(r \) with \(-r\) in the last integral, we easily see that it is enough to prove

\[
\int_{-1}^{1} \frac{(1-r^{2})^{\frac{1}{p}}}{1-2r \cos \theta + r^{2}} dr \leq \frac{\pi}{\cos^{p} \frac{2\theta + 1}{p}} 2^{-\frac{p-1}{p}} \sin \left(\frac{\pi}{2p} - \frac{\theta}{p} \right),
\]

for \(0 < \theta < \pi \), i.e. \(T^{*}((Th)^{p-1}) \leq C_{p}h^{p-1} \) almost everywhere on \(0 < \theta < \pi \) and consequently on the whole domain.

Introducing a change of variables \(\frac{1-r^{2}}{1+r^{2}} = y \cot \frac{\theta}{2} \) in the integral, we have

\[
\int_{-1}^{1} \frac{(1-r^{2})^{\frac{1}{p}}}{1-2r \cos \theta + r^{2}} dr = \int_{0}^{\infty} \frac{1}{1-2 \cos \theta} \frac{[1-\left(y \cot \frac{\theta}{2} \right)^{-1}]^{\frac{1}{p}}}{y \cot \frac{\theta}{2} + 1 + \left(y \cot \frac{\theta}{2} \right)^{2}} dy
\]

\[
= \int_{0}^{\infty} \frac{2 \cot \frac{\theta}{2} y^{\frac{\theta}{2} - 1}}{1 - 2 \cos \theta \cot \frac{\theta}{2} y^{\frac{\theta}{2} + 1} + (y \cot \frac{\theta}{2})^{2}} dy
\]
which is positive, since the integrand is positive for all \(x \in [0, \pi] \). Differentiating twice with respect to \(\theta \), we get:

\[
F''(\theta) = \frac{1}{2p} \int_0^{\frac{\pi}{2}} \Phi(x, \theta) dx,
\]

which is positive, since the integrand

\[
\Phi(x, \theta) = \frac{\sin^{\frac{1}{p}} x \cos^{\frac{1}{p}} x}{\left((\sin(x + \frac{\theta}{2}))^{\frac{2}{2+p}} \right)^{\frac{1}{p}}} \left[(1 + \frac{2}{p}) \cos^2 \left(x + \frac{\theta}{2} \right) + \sin^2 \left(x + \frac{\theta}{2} \right) \right]
\]

is positive for all \(x \in [0, \frac{\pi}{2}] \) and \(\theta \in [0, \pi] \). Thus, \(F(\theta) \) is convex on \([0, \pi] \).
By (2.1) and change of variable $x = \frac{\pi}{2} - t$, we get:

$$F(0) = \int_0^{\frac{\pi}{2}} \sin^{-\frac{1}{p}} x \cos^{\frac{1}{p}} x \, dx = \int_0^{\frac{\pi}{2}} \sin^{\frac{1}{p}} t \cos^{-\frac{1}{p}} t \, dt = F(\pi).$$

Also, from the formula for Beta function we have: $F(0) = \frac{1}{2} B\left(\frac{1}{2} - \frac{1}{2p}, \frac{1}{2} + \frac{1}{2p}\right) = \frac{1}{2 \cos \frac{\pi}{2p}}$. □

Using Lemma 2.2, we easily finish the proof of the main inequality. Since $F(\theta)$ is convex, it attains its maximum at the end of the interval $[0, \pi]$, and by the same lemma its values at 0 and π are both equal to $\frac{1}{2 \cos \frac{\pi}{2p}}$, hence $F(\theta) \leq \frac{1}{2 \cos \frac{\pi}{2p}}$.

Acknowledgements. We wish to express our gratitude to the anonymous referee for his/her helpful comments that have improved the quality of the paper.

References

[1] Beckenbach, E.F., *On a theorem of Fejér and Riesz*, J. London Math. Soc. 13, 82–86 (1938)

[2] Calderón, A.P., *On Theorems of M. Riesz and Zygmund*, Proc. Amer. Math. Soc. 1(4), 533–535 (1950)

[3] Fejér L., Riesz F. *Über einige funktionentheoretische Ungleichungen*, Math. Z. 11(1921), 305-314.

[4] Frazer, H., *On the moduli of regular functions*, Proc. London Math. Soc. 36, 532–546 (1934)

[5] Hollenbeck B., Verbitsky I. E. *Best constants for the Riesz projection*, J. Funct. Anal. 175 (2000), no. 2, 370â€“392. DOI 10.1006/jfan.2000.3616. MR1780482

[6] Howard, R., Schep, A.R. *Norms of positive operators on L^p spaces*, Proc. Amer. Math. Soc. 109(1)(1990), 135-146.

[7] Huber, A., *On an inequality of Fejér and Riesz*, Ann. Math. 63(3), 572–587 (1956)

[8] Kalaj D., *On Riesz type inequalities for harmonic mappings on the unit disk*, Trans. Amer. Math. Soc., 372(6), 4031-4051 (2019)

[9] Kayumov, I.R., Ponnusamy, S. and Sairam Kaliraj, A., *Riesz-Fejér Inequalities for Harmonic Functions*, Potential Anal 52, 105-113(2020)

[10] Koosis, P., *Introduction to H^p Spaces*, 2nd ed. Cambridge Tracts in Math, vol. 115. Cambridge University Press, Cambridge (1998)

[11] Lozinski, S., *On subharmonic functions and their application to the theory of surfaces*, Izv. Akad. Nauk SSSR Ser. Mat. 8(4), 175â€“194 (1944)

[12] Marković M., Melentijević P., *On the Hollyenbeck-Verbitsky conjecture and M. Riesz theorem for various function spaces*, preprint.

[13] Pavlović M. *Function Classes on the Unit Disk. An Introduction*, De Gruyter Studies in Mathematics 52(2013), ISBN:978-3-11-028190-3

Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia,

E-mail address: petarmel@matf.bg.ac.rs

Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia,

E-mail address: bozinv@turing.mi.sanu.ac.rs