Purification and Characterization of AsES Protein
A SUBTILISIN SECRETED BY ACREMONIUM STRICTUM IS A NOVEL PLANT DEFENSE ELICITOR*

Received for publication, October 21, 2012, and in revised form, March 24, 2013. Published, JBC Papers in Press, March 25, 2013, DOI 10.1074/jbc.M112.429423

Nadia R. Chalfoun1, Carlos F. Grellet-Bouronville1, Martín G. Martínez-Zamora1, Araceli Díaz-Perales2, Atilio P. Castagnaro3 and Juan C. Díaz-Ricci3,4

From the 1Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, and Instituto de Química Biológica “Dr. Bernabé Blo”), Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, T4000ILJ San Miguel de Tucumán, Argentina, the 3Sección Biotecnología, Estación Experimental Agroindustrial Obispo Colombres, T4101XAC Las Talitas, Tucumán, Argentina, and the 4Unidad de Química y Bioquímica, Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Background: Culture filtrates from Acremonium spp. induce resistance against pathogens in strawberry.

Results: A 34-kDa extracellular protein from Acremonium strictum exhibiting strawberry defense inducing and in vitro subtilisin-like proteolytic activities was characterized, and its encoding cDNA was cloned.

Conclusion: Fungal subtilisin AsES is a novel defense elicitor.

Significance: Characterization of elicitor molecules is crucial for understanding the plant-pathogen interaction and improving the plant defense response.

In this work, the purification and characterization of an extracellular elicitor protein, designated AsES, produced by an avirulent isolate of the strawberry pathogen Acremonium strictum, are reported. The defense eliciting activity present in culture filtrates was recovered and purified by ultrafiltration (cutoff, 30 kDa), anionic exchange (Q-Sepharose, pH 7.5), and hydrophobic interaction (phenyl-Sepharose) chromatographies. Two-dimensional SDS-PAGE of the purified active fraction revealed a single spot of 34 kDa and pI 8.8. HPLC (C2/C18) and MS/MS analysis confirmed purification to homogeneity. Foliar spray with AsES provided a total systemic protection against anthracnose disease in strawberry, accompanied by the expression of defense-related genes (i.e. PR1 and Chi2-1). Accumulation of reactive oxygen species (e.g. H2O2 and O2−) and callose was also observed in Arabidopsis. By using degenerate primers designed from the partial amino acid sequences and rapid amplification of cDNA ends, the complete AsES-coding cDNA of 1167 nucleotides was obtained. The deduced amino acid sequence showed significant identity with fungal serine proteinases of the subtilisin family, indicating that AsES is synthesized as a larger precursor containing a 15-residue secretory signal peptide and a 90-residue peptidase inhibitor 19 domain in addition to the 283-residue mature protein. AsES exhibited proteolytic activity in vitro, and its resistance eliciting activity was eliminated when inhibited with PMSF, suggesting that its proteolytic activity is required to induce the defense response. This is, to our knowledge, the first report of a fungal subtilisin that shows eliciting activity in plants. This finding could contribute to develop disease biocontrol strategies in plants by activating its innate immunity.

Anthracnose caused by fungal species of the genus Colletotrichum represents one of the major fungal diseases in strawberry (Fragaria × ananassa Duch.) crops (1). Anthracnose can affect all plant tissues, e.g. fruits, flowers, leaves, runners, roots, and crowns, and the typical symptoms are described as irregular and black leaf spot, flower blight, and fruit and crown rot, bringing about serious losses in plant and fruit productions (2).

We have previously reported a typical incompatible interaction between an avirulent isolate of Colletotrichum fragariae and strawberry plants of the cultivar (cv.) Pájaro (Fragaria × ananassa), and when strawberry plants were inoculated with this isolate prior to the challenge with a virulent strain (M11) of Colletotrichum acutatum, the former avirulent pathogen prevented the development of disease symptoms (3). Further studies indicated that the anthracnose resistance was accompanied by the activation of plant defense mechanisms, including the production of reactive oxygen species (ROS)5 (i.e. H2O2 and O2−), accumulation of salicylic acid, and transcriptional induction of pathogen-responsive genes encoding for pathogenesis-

* This work was supported in part by Consejo de Investigaciones de la Universidad Nacional de Tucumán Grant 26/D423 and Agencia Nacional de Promoción Científica y Técnologica Grant BID PICT-2008-2105.
†‡ The abbreviations used are: ROS, reactive oxygen species; CF, culture filtrate; DAMP, damage-associated molecular patterns; dpi, day post-inoculation; dpt, day post-treatment; DSR, disease severity rating; hpt, hour post-treatment; IEF, isoelectrofocusing; IR, induced resistance; PAMP, pathogen-associated molecular patterns; pNA, p-nitroanilide; PR, pathogenesis-related; PS, phenyl-Sepharose; RACE, rapid amplification of cDNA ends; RH, relative humidity; Suc-AAPF-pNA, succinyl-Ala-Ala-Pro-Phe-pNA; NBT, nitro blue tetrazolium; RP, reverse phase; PAS, periodic acid-Schiff.

5 The abbreviations used are: ROS, reactive oxygen species; CF, culture filtrate; DAMP, damage-associated molecular patterns; dpi, day post-inoculation; dpt, day post-treatment; DSR, disease severity rating; hpt, hour post-treatment; IEF, isoelectrofocusing; IR, induced resistance; PAMP, pathogen-associated molecular patterns; pNA, p-nitroanilide; PR, pathogenesis-related; PS, phenyl-Sepharose; RACE, rapid amplification of cDNA ends; RH, relative humidity; Suc-AAPF-pNA, succinyl-Ala-Ala-Pro-Phe-pNA; NBT, nitro blue tetrazolium; RP, reverse phase; PAS, periodic acid-Schiff.
Fungal Subtilisin Induces the Plant Defense Response

related (PR) proteins (4, 5). Recently, we have also shown that strawberry plants pretreated with culture filtrates derived from that avirulent isolate also acquired the resistance to the M11 isolate, confirming that this protection effect was due to a defense response induced by one or more proteinaceous elicitors contained in these extracts (6).

Plants have an innate immunity system to defend themselves against pathogens (7). The term elicitor is commonly applied to agents stimulating any type of defense response in intact plants or cultured plant cells, resulting in enhanced resistance to the invading pathogen (8). Elicitors of a diverse chemical nature have been characterized, including (poly)peptides, glycoproteins, lipids, glycolipids, and oligosaccharides, which can be derived from a variety of different phytopathogenic microbes (9, 10) or host plants (11).

The activation of plant defense in incompatible plant-microbial interactions results from recognition by the plant of either cell surface components or molecules constitutively secreted by the pathogen or factors that are produced in the plant/pathogen interface upon contact with the host plant (10). With the primary immune system, plants can recognize pathogen-associated molecular patterns (PAMPs) of potential pathogens that activate a basal defense response (12). PAMPs, previously called “general elicitors,” are highly conserved molecular structures unique to microbes that play an essential role in the microbial lifestyle (13). Several PAMP-like proteins have been identified in plant pathogens, including flagellin and “harpins” from bacteria, xylanase from fungi, invertase from yeast, Pep13 and elicins from oomycetes, and also NEP-like proteins that are widely distributed in diverse species (10). Furthermore, many phytopathogenic fungi secrete a mixture of hydrolytic enzymes (e.g. cellulases, xylanases, pectate lyases, proteases, polygalacturonases, and cutinases) to degrade and traverse the outer structural barriers of plant tissues. The products generated by the hydrolysis of plant components may function as “endogenous elicitors” and are called damage-associated molecular patterns (DAMPs) (13, 14). The classic examples of DAMPs are plant cell wall fragments released by microbial xylanases, pectate lyases, and endopolygalacturonases and cutin monomers generated by cutinases (13).

Filamentous microorganisms, such as fungi and oomycetes, secrete an arsenal of effector proteins that enable parasitic infection frequently by suppressing PAMP-triggered immune responses (8, 12, 15, 16). However, these molecules can serve as elicitor signals for the plant to reinforce its defense when are specifically perceived by host cognate resistance proteins and are known as avirulence proteins or “specific elicitors” (8, 16, 17). This dual activity of elicitor effectors has been broadly reported in plant-microbial pathosystems (15). The role in virulence has been shown for a few fungal effectors, including Avr2 and Avr4 of leaf-mold fungus Cladosporium fulvum, which inhibit tomato cysteine proteases (Rcr3, Pip1, aleurain, and TD165) and protect chitin in fungal cell walls against plant chitinases, respectively (17).

Recent findings illustrate a diversity of effector structures and activities, as well as validate the view that effector genes are the target of the evolutionary forces that drive the antagonistic interplay between pathogen and host (18). Biochemical, genetic, and bioinformatic strategies have been applied to the identification of elicitors from fungi. However, intrinsic function of most fungal elicitors remains elusive (17). Of the vast numbers of effector proteins that have been identified, only a few have been biochemically characterized (12). GP42 is an abundant 42-kDa cell wall glycoprotein isolated from Phytophthora sojae with Ca$^{2+}$-dependent transglutaminase activity that functions as PAMP, which triggers transcriptional activation of defense genes, accumulation of phytoalexins in parsley, and cell death in potato (19). Phytophthora elicits encode structurally related small (<150 amino acids) extracellular proteins, which can induce a local necrosis called the hypersensitive response and a systemic acquired resistance in tobacco (8). It was demonstrated that class I elicins (INF1) can bind sterols, such as ergosterol, and function as sterol-carrier proteins. In addition, phospholipase activity was assigned to elicitin-like proteins from Phytophthora capsici, suggesting a general lipid binding/processing role for the various members of the elicitin family (20). PcF is a secreted 52-amino acid peptide of Phytophthora cactorum that produces necrosis in tomato and strawberry. PcF was proposed to function as a toxin because it triggers responses that are similar to disease symptoms in host plants (21). Likewise, a dual function was found for CBEL (cellulose binding, elicitor, and lectin-like), a 34-kDa cell wall protein that was first isolated from Phytophthora parasitica var. nicotianae. It was reported that CBEL can elicit necrosis and defense gene expression in tobacco plants and, on the other side, is required for the attachment to cellulosic substrates such as plant surfaces (22). Therefore, deciphering the biochemical activity of elicitors to understand how pathogens successfully colonize and grow in their host plants has become a driving paradigm in the field of fungal pathology.

Because a similar protection effect against C. acutatum (M11), as described previously by Chalfoun et al. (6), was observed when strawberry plants were treated with culture filtrates of an avirulent isolate of the strawberry pathogen Acremonium strictum (SS71), we were interested to identify and biochemically characterize the defense elicitor secreted by the SS71 isolate that was also able to induce a systemic resistance against anthracnose in strawberry. The relationship between the intrinsic biochemical function of the elicitor and its ability to elicit a defense response is discussed.

EXPERIMENTAL PROCEDURES

Plant Material

Strawberry plants (Fragaria × ananassa Duch.) of the cv. Pájarito used in experiments were kindly provided by the strawberry BGA (Strawberry Active Germplasm Bank at National University of Tucumán). Healthy plantlets were obtained from in vitro cultures in MS medium (Sigma), rooted in pots with sterilized substrate (humus and perlite, 2:1), and maintained at 28 °C, 70% relative humidity (RH), with a light cycle of 16 h (white fluorescent, 350 μmol photons m$^{-2}$ s$^{-1}$).

Arabidopsis thaliana ecotype Col-0 seeds were obtained from the Arabidopsis Biological Resource Center (Columbus, OH) and germinated on MS medium plates supplemented with 1% sucrose and 0.8% agar. Seedlings at the two-leaf stage were
then transplanted to soil and grown in a growth chamber (Sanyo) with 70% RH, under a regime of 16 h of light (white fluorescent, 200 μmol photons m⁻² s⁻¹) at 23 °C (23). Plants of 4–5 weeks old were used for the experiments.

Fungal Cultures

Three local fungal isolates characterized in our laboratory were used in this paper as follows: M11 of *C. acutatum* (3–6); B1 of *Botrytis cinerea* (5), and SS71 of *A. strictum*. M11 and B1 isolates are preserved in the culture collection available in the Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán), and the SS71 isolate was deposited in the International Microorganism Bank DSMZ (Germany) under accession number DSM 24396. Fungal isolates were propagated on potato dextrose agar as indicated previously (6) and maintained on potato dextrose agar slants at 4 °C. To obtain elicitor, the SS71 isolate was cultivated in potato dextrose broth at 28 °C under continuous white fluorescent light (200 μmol photons m⁻² s⁻¹) without agitation for 21 days.

Elicitor Protein Purification

Elicitor protein was purified from 4 liters of 21-day-old SS71 *A. strictum* culture grown in potato dextrose broth. Mycelia and spores were removed from the harvested medium by centrifugation at 10,000 × g for 30 min at 4 °C, followed by filtration through diatomaceous earth (Sigma) and membranes of 0.22 μm diameter (Millipore). This axenic supernatant is referred to as the nondiluted culture filtrate (CF 1×). The extract was concentrated 10-fold under vacuum and filtrated under gas nitrogen pressure through a molecular sieve (30-kDa cutoff, Amicon). The retentate over the membrane was recovered by washing the membrane surface with 20 mM Tris-HCl cutoff, Amicon). The retentate over the membrane was collected and concentrated 10-fold under vacuum and filtrated under gas nitrogen pressure through a molecular sieve (30-kDa cutoff, Amicon). The retentate over the membrane was recovered by washing the membrane surface with 20 mM Tris-HCl buffer, pH 7.5, and was subjected to two steps of chromatographic separation by anionic exchange and hydrophobic interaction.

Q-Sepharose Fast Flow Chromatography—The fraction adjusted to pH 7.5 was loaded onto a Q-Sepharose fast flow column (Q-FF 1 ml, Amersham Biosciences) previously equilibrated with 20 mM Tris-HCl, pH 7.5 (buffer A). After washing the column with buffer A, the elution was carried out with a discontinuous increasing gradient of NaCl with buffer A containing 1 M NaCl (buffer B). A 1 ml/min flow rate was maintained. The gradient conditions were as follows: 0% buffer B for 5 min; 0–24% B in 3 min; 24% B for 8 min, 24–38% B in 2 min, 38% B for 10 min, 38–100% B in 6 min, and then held at 100% B for 10 min. Eluted fractions were combined in four Q-FPLC pools, dialyzed (12-kDa cutoff, Sigma) against bidistilled water during 24 h at 4 °C, concentrated under vacuum (SpeedVac, Savant), and assayed on strawberry plants as described below. The Q-FPLC pool that showed eliciting activity was used to dissolve (NH₄)₂SO₄ obtained with buffers A and B (50 mM Tris-HCl pH 7.5, 1 mM EDTA). The gradient conditions were as follows: 0% buffer B for 10 min; 0–22% B in 5 min; 22% B for 5 min; 22–30% B in 4 min; 30% B for 7 min; 30–40% B in 3 min; 40% B for 7 min; 40–50% B in 3 min; 50% B for 7 min; 50–70% B in 5 min; 70% B for 5 min; 70–80% B in 4 min; 80% B for 5 min; 80–90% B in 4 min; 90% B for 5 min; 90–100% B in 4 min and then held at 100% B for 10 min. Eluted fractions were combined in 10 PS-FPLC pools, desalted, concentrated as described above, and assayed on strawberry plants as described below.

Bioassays for Eliciting Activity

Elicitor activity of either crude fraction (CF) or purified fractions was routinely assayed on strawberry plants by analyzing the accumulation of ROS (i.e. H₂O₂ and O₂⁻) in foliar tissue and by evaluating the systemic resistance against the M11 isolate (see below).

For biological experiments, protein concentration of CF and the pooled fractions from the purification steps were adjusted to 2.5 μg of protein ml⁻¹ with sterile bidistilled water. In all cases, CF from M11, buffers, and bovine serum albumin (BSA; 10 μg ml⁻¹) were used as negative controls, and the axenic CF from SS71 as positive control.

Oxidative Burst—Accumulation of hydrogen peroxide was detected by a peroxidase-dependent *in situ* histochemical staining procedure using 3,3’-diaminobenzidine according to Thordal-Christensen *et al.* (24) and superoxide ion using a superoxide-dependent reduction of nitro blue tetrazolium (NBT) according to Doke (25). Analyses were performed on plant leaves sprayed with each of the purified fractions (2.5 μg of protein ml⁻¹) of CF SS71, 4 h after leaf aspersion, as described previously (6).

Induced Resistance (IR) against Anthracnose Disease—To evaluate the resistance inducing activity of the different fractions, plants of the cv. *Pájaro* received a double treatment (6). Briefly, only the youngest completely expanded leaf of each plant (isolated from the rest of the plant) was sprayed with each of the fractions purified from CF (or CFs from SS71 or M11 as controls), and then after 7 days, the whole plant was inoculated with a conidial suspension (1.5 × 10⁶ conidia/ml) of the virulent isolate M11 of *C. acutatum*. Immediately after the second treatment, plants were placed in the infection chamber at 100% RH, 28 °C, in the dark for 48 h and then returned to the growth chamber at 70% RH, 28 °C, under white fluorescent light (350 μmol photons m⁻² s⁻¹) with a light cycle of 16 h per day, where they remained for 50 days.

Susceptibility to anthracnose disease was measured by assessing Disease Severity Ratings (DSR), according to a scale described on petioles by Delp and Milholland (26). The DSR was evaluated at 21 days post-inoculation (dpi). Experimental design and statistic analysis were achieved as described previously (6). Experimental data were analyzed with the program Statistix (Analytical Software, 1996) for Windows. The LSD test was used to determine the arithmetic mean of the DSR values (significance level, 0.05) of each IR experiment, and the analysis of variance test was used to evaluate the data dispersion with respect to the mean values.
Analysis of Proteins (SDS-PAGE and 2D-DE)

In each step of purification, the total protein content was quantified according to Bradford (27) using BSA as the standard. Protein profiles were routinely analyzed by SDS-PAGE according to Laemmli (28). Previously, protein samples were desalted through Sephadex G-25 superfine semi-dry matrix (Sigma). Aliquots containing 10 µg of desalted protein were heated to 100 °C for 5 min in a denaturing mixture (28) and loaded onto a 12% (w/v) polyacrylamide gel. Gels were run at 20 mA per gel constant current for 90 min.

To study the purity of the sample, the biologically active fraction obtained by PS-FPLC was submitted to two-dimensional PAGE. Briefly, 30 µg of desalted protein were vacuum-dried and solubilized in 7 M urea, 2 M thiourea, 4% CHAPS, 30 mM DTT, and 0.5% biolytes (Bio-Rad). Insoluble material was removed by centrifugation (15 min at 15,000 × g), and the supernatant was applied onto IPG strips (7 cm, 3–10 linear pH ovalbumin (1, 5, and 10 g) from chicken egg white (ovalbumin; Sigma) of 45 kDa wasing to Segrest and Jackson (31) with minor modifications. Alb ungels and revealed by periodic acid-Schiff (PAS) staining accord ing to Schevchenko (32) with minor variations. In parallel, 10 µg of lyophilized protein (corresponding to desalted PS-FPLC pool) was resuspended in bidistilled water and chromatographed on an HPLC µRPC C2/C18 column (GE Healthcare) using a ÄKTA purifier 10 system (GE Healthcare). The column was previously equilibrated in bidistilled water with 0.1% (v/v) trifluoroacetic acid and eluted with a linear gradient of acetonitrile with 0.1% (v/v) trifluoroacetic acid at 0.7 ml/min flow rate. Peaks were detected at λ = 285 nm. In parallel, 10 µg of lyophilized intact protein was resuspended in 50% acetonitrile with 0.1% (v/v) trifluoroacetic acid and analyzed on a Biflex III MALDI-TOF mass spectrometer with delayed extraction (Brucker-Franzen Analytik, Bremen, Germany) using standard methods. The instrument performed acquisition of a full-scan mass spectrum ranging from 500 to 100,000 Da.

Nano-LC and Ion Trap MS/MS Analysis of Tryptic Peptides

Protein spots were excised from the gel and then digested with porcine trypsin (Promega) using in-gel digestion according to Schevchenko et al. (32) with minor variations. In parallel, 100 µg of pure elicitor protein (corresponding to desalted PS-FPLC pool) was proteolytically digested under highly denaturing conditions as described by Link et al. (33). Both tryptic digests were vacuum-dried and used for MS analysis.

MS analysis was performed by fingerprinting of the tryptic digests, using standard methods on a Biflex III spectrometer (Bruker-Franzen Analytik, Bremen, Germany) in a positive ion reflector mode. Selected tryptic peptides were on-line injected onto a C-18 reverse phase (RP) nano-column (Discovery® BIO Wide pore, Supelco) and analyzed in a continuous acetonitrile gradient consisting of 0–50% B in 45 min, 50–90% B in 1 min (A = bidistilled water; B = 95% acetonitrile, 0.5% acetic acid). A flow rate of ~300 nL/min was used to elute peptides from the RP nano-column to a PicoTip™ emitter nano-spray needle (New Objective, Woburn, MA) for real-time ionization and peptide fragmentation on an Esquire HCT IT (Bruker-Daltonics) mass spectrometer. A 3-Da window (precursor m/z ± 1.5), MS/MS fragmentation amplitude of 0.90 V, and a dynamic exclusion time of 0.30 min were used for peptide fragmentation. Nano-LC was automatically performed on an advanced nano-gradient generator (Ultimate nano-HPLC, LC Packings, Amsterdam, The Netherlands) coupled to an autosampler (Famos, LC Pack ings). The software Hystar 2.3 was used to control the whole analytical process. MS/MS spectra were batch-processed by using DataAnalysis 5.1 SR1 and BioTools 2.0 software packages and searched against the MSDB protein database using MASCOT software (Matrix Science) or sequenced de novo followed by MS BLAST alignment at EMBL with default settings.

Fungal RNA Preparation

Fresh SS71 A. strictum mycelium (1.2 g wet weight) was harvested from the liquid culture and pestle-homogenized in liquid nitrogen. Subsequently, total RNA was obtained and purified according to Landolino et al. (35). RNA quantification was performed by spectrophotometry at 230, 260, and 280 nm. Reverse transcription reactions were carried out with 5 µg
Fungal Subtilisin Induces the Plant Defense Response

of DNase-treated total RNA, using SuperScript II RT (Invitrogen) following the recommendations of the manufacturer.

Degenerate PCR

The degenerate PCR primers used were designed from the less conserved regions of amino acid sequences de novo of trypptic peptides and N-terminal region of the elicitor protein, according to the following criteria: (a) frequency of codons usage in the 27 cDNA and 19 genes for Acremium spp. reported so far, by using the program General Codon Usage Analysis, and (b) codons encoding identical amino acids to that sequenced in five homologous proteins in different fungal species identified by using BLASTP algorithm (36). The combinations of degenerate oligonucleotide primers N1, N2, IF, IR, C1, and C2, used in three consecutive PCRs, are represented in Fig. 3. PCRs were carried out in 25-μl total volume containing 50 mM KCl, 20 mM Tris-HCl, pH 8.4, 1.5 mM MgCl2, 0.2 μM of each primer, 0.2 μM of each dNTP, and 0.75 units of TaqDNA polymerase (Invitrogen). 200 ng of cDNA were used as template for the initial PCR, and 1:125 dilution from the latter PCR product was used for the first nested PCR. The amplified band exhibiting the expected size was excised from the agarose gel, purified, and used as template for both second nested PCRs (Fig. 3). PCR amplifications were performed in a PTC-100 thermal cycler (MJ Research). Cycling conditions included an initial denaturing step of 10 min at 94 °C, followed by 40 cycles of 45 s at 94 °C (melting), 30 s at 55 °C (annealing), 1.5 min at 72 °C (extension), and a final extension step of 10 min at 72 °C.

Cloning and Sequencing

After electrophoretic separation of each nested PCR product, sharp bands of the expected size were excised from the gel and purified using the GFX™ PCR DNA and gel band purification kit (GE Healthcare). The purified cDNA obtained for each band was cloned using the plasmid pCR®4.1 of the TopoTA cloning kit (Invitrogen) following the manufacturer’s recommendations and transformed into Escherichia coli DH5-α strain. Recombinant plasmids were extracted from 10 recombinant bacterial colonies using Wizard plus SV Miniprep DNA purification system (Promega) and digested with EcoRI to verify the presence of the expected insert. Sequences of PCR products were determined using an ABI PRISM™ 377 DNA sequencer (Applied Biosystems) (37).

RACE Experiments

To isolate the full-length elicitor-coding cDNA, RNA ligase-mediated rapid amplification reactions of cDNA ends (RACE) were performed with the GeneRacer kit (Invitrogen) as recommended by the manufacturer, using total RNA purified from 150 mg of SS71 mycelium with the RNeasy minikit (Qiagen). cDNA synthesis was performed by SuperScript III RT (Invitrogen) from 4 μg of 5’-modified mRNA in the presence of GeneRacer oligo(dT) primer, for 3’-end extension.

Based on nucleotide multiple sequence alignment with homologous proteins, less conserved regions were identified in the partial sequence of elicitor cDNA, and a new set of specific primers were designed following GeneRacer kit instructions. The primers S-5, SN-5, S-3, and SN-3 were then used for 5’ or 3’ cDNA ends cloning through nested PCRs as depicted in Fig. 3, by using High Fidelity Platinum TaqDNA polymerase (Invitrogen). The anchor primers, R-5, RN-5, R-3, and RN-3, were part of the kit (Fig. 3).

For 5’-RACE, the single strand cDNA (1:5 dilution) was used as the template for PCR in the presence of the S-5 (0.2 μM) and R-5 (0.6 μM) primers. A nested PCR was carried out by diluting an aliquot of the previous PCR product (1:10 dilution) in a second PCR mixture containing the SN-5 and RN-5 nested primers to concentration 0.2 μM. Similarly, for 3’-RACE, the single strand cDNA was utilized as the template in the subsequent PCR and one nested PCR in the presence of the S-3 and R-3 primers and SN-3 and RN-3 nested primers, respectively (Fig. 3). First amplifications were performed using “touchdown” conditions (38) as follows: 2 min at 94 °C; 5 cycles (30 s at 94 °C; 30 s at 72 °C; 4 min at 68 °C); 5 cycles (30 s at 94 °C; 30 s at 70 °C; 4 min at 68 °C); 25 cycles (30 s at 94 °C; 30 s at 66 °C; 4 min at 68 °C), and 10 min at 68 °C. Nested PCR conditions were as follows: 5 min at 95 °C; 30 cycles (30 s at 95 °C; 30 s at 69 °C; 2 min at 68 °C) and 10 min at 68 °C. The cDNA fragments of both 3’- and 5’-end extensions obtained from RACE experiments were purified from the agarose gel and ligated by a standard cloning procedure, as described above. After transformation of the E. coli DH5-α strain, 10 recombinant plasmid clones were purified and subjected to automated dyeode chain termination sequencing as described above.

Sequence Edition and Analysis

Cloned sequences were trimmed of vector sequence contamination using VecScreen at NCBI (www.ncbi.nlm.nih.gov). Assemblage of cDNA sequences and translation to the predicted amino acid sequence were performed using the DNA-MAN software (version 6.0). Identity of the fungal elicitor obtained was studied by comparisons of deduced amino acid and nucleotide sequences with sequences included in the GenBank™ NR database by using BLASTX and BLASTP algorithms (36).

Determinations of conserved structural motifs and domains in sequence were carried out with CDSearch at NCBI (39), SMART 5 (40), and Pfam (at Sanger Institute) (41). Multiple sequence alignments were performed with Clustal X (42) and edited with BOXSHADE. The SignalP server (43) was used to predict the presence and localization of signal peptide cleavage sites. Potential O- and N-glycosylation sites were identified by using NetNGlyc 1.0 and NetOGlyc 3.1, respectively. Molecular mass and pl were calculated by using PeptideMass program at the ExPASy server.

Proteolytic Activity Determinations and Protease Inhibitor Assays

Proteolytic activity was measured in fractions that exhibited eliciting activity obtained in each purification step using the chromogenic peptides N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (Suc-AAPF-pNA; Sigma) or Nα-benzoyl-dl-Arg-p-nitroanilide hydrochloride (Sigma), as specific substrates. Substrate hydrolysis was measured by adding 10 μl of each indicated substrate (5 mM) (final concentration of 0.1 mM) to an appropriate amount of protein sample dissolved in 20 mM Tris-
HCl, pH 7.5, for a final volume of 500 µl. Reaction mixtures were incubated at 37 °C for 30 min, and the hydrolysis of the chromogenic substrates was monitored per min at 405 nm (44). All activity assays were performed in triplicate. Subtilisin Carlsberg (subtilopeptidase A) of Bacillus licheniformis (Fluka) was used as a reference of protease activity. The proteolytic activity of pure elicitor protein was calculated as the concentration of pNA liberated per min, where pNA concentration was determined spectrophotometrically to 405 nm using a molar ε_{405 nm} of 9.62 mm⁻¹ cm⁻¹, at 37 °C and pH 7.5. Autoproteolysis rate of substrate Suc-AAPF-pNA was evaluated and subtracted to each measured value.

For protease inhibitor studies, pure elicitor protein was preincubated with different protease inhibitors for 1 min at 37 °C, at the concentrations indicated for a final volume of 500 µl. Inhibition assays were performed against the substrate Suc-AAPF-pNA as described above.

Protease Inhibitor Treatment of Elicitor Protein

Pure elicitor protein (50 µg) resuspended in 1 ml of 20 mM Tris-HCl, pH 7.5, was treated with PMSF (to final concentration of 1 mM) and each dNTPs 0.4 mM from H9262 proteinase K from Fluka. For each measured value.

Fungal Subtilisin Induces the Plant Defense Response

Expression Analysis of Defense-related Genes

Total RNA from strawberry leaves was obtained, according to the protocol published by Landolino et al. (35), with some modifications. One gram of fresh young leaves was sampled from elicitor-treated plants at different time points, from 0 to 72 h post-treatment (hpt). Amount and quality of obtained total RNA were monitored, and reverse transcription reactions were performed as described above. Semi-quantitative RT-PCR method was used to evaluate the expression of plant defense response-associated genes (4). Expressions of FaPR1 (pathogenesis related-protein 1) and FaChi2-1 (class II chitinase) genes were studied using nucleotide sequences previously reported in GenBank™ (AB462752 and AF147091, respectively). The gene GAPDH1 (AF421492) was used as control (housekeeping) to adjust the amount of cDNA in each treatment and to attain the same exponential phase PCR signal strength. A volume of 25 µl of reaction mix containing Green GoTaq Reaction Buffer 1X, pH 8.5 (Promega), 1.5 units of GoTaq DNA polymerase (Promega), 1.5 mM MgCl₂, 400 µM of each dNTPs 0.4 µM of each primer, was mixed with 5 µl of cDNA (properly diluted to adjust the amount according to housekeeping gene) in each PCR. Specific primers used were as follows: GAPDH1 (forward), 5’-CTACAGCAACACAGAAAACAC-GAG-3’; and GAPDH1 (reverse), 5’-AACTAAGTGCAATTCCAGCC-3’. FaPR1 (forward), 5’-TGCTATATTCCACATTCGCG-3’; and FaPR1 (reverse), 5’-GTTAGAGTTGAATTTATGAGG-3’. FaChi2-1 (forward), 5’-GTCGACTGTGCAACTCTCAA-3’; and FaChi2-1 (reverse), 5’-GGACTTGCTATTTTTCACAGTCT-3’. The PCR program used was as follows: 7 min at 94 °C (initial step); cycles (see below) of 45 s at 94 °C, 1 min at different annealing temperature (see below), 1.5 min at 72 °C; and a final extension step of 10 min at 72 °C. The number of cycles used for each gene was adjusted to obtain the specific band amplified at the exponential phase of PCR. Annealing temperatures for GAPDH1, FaPR1, and FaChi2-1 genes were 52, 57, and 55 °C, respectively. Amplified bands were visualized in ethidium bromide-stained (10 µg ml⁻¹) agarose gel (2%) and photographed under UV light (340 nm) with a digital camera. Bands observed were digitalized and quantified using Total Lab Quant software (Nonlinear Dynamics Ltd., Newcastle, UK). Relative expression of studied genes was calculated as the change in the band intensity in treated leaves with respect to control leaves. To ensure the absence of genomic DNA in each cDNA sample, GAPDH1 primer sequences were designed to enclose an intronic region.

IR Assay against Gray Mold Disease

To evaluate the protection against B. cinerea, plants of the cv. Pájaro were sprayed with the elicitor protein purified from CF (or water as negative control), and then after 7 days were inoculated with the virulent isolate B1 of B. cinerea as described previously (5). Immediately after inoculation, plants were placed in the infection chamber at 100% RH, 20 °C under continuous white fluorescent light (50 µmol photons m⁻² s⁻¹) for 48 h, and then returned to the growth chamber under conditions indicated above, where they remained for 50 days. Susceptibility to gray mold disease was evaluated at 10 dpi by measuring necrotic lesion extension on leaves, according to a DSR scale described by Vellice et al. (45). Experimental design and statistical analysis were achieved as described above (6).

Tests of Eliciting Activity in Arabidopsis

Defense responses were evaluated through histochemical staining techniques in leaves of A. thaliana plants sprayed with the pure elicitor protein (2.5 µg ml⁻¹) or distilled water as control. Leaves were collected at different times post-treatment: from 0 to 12 hpt for burst oxidative and every 3 days up to 12 days post-treatment (dpt) for callose deposition. Evaluation was performed on 20 leaf tissues obtained from five plants that were equally treated.

Hydrogen peroxide was detected using the 2’,7’-dichlorofluorescein diacetate (Invitrogen) probe according to Bozsó et al. (46) modified in our laboratory (4), and superoxide anion by NBT staining (25), as described previously (6). To detect callose deposition, leaves were treated and stained with 0.01% aniline blue (Sigma) according to Yun et al. (47). Samples were examined with an Olympus System Microscope model BX51 equipped with U-LH100HG reflected fluorescence system, setting blue excitation filter (U-MWB2). Images were captured by Olympus Video/Photo Adapter (Olympus, Hamburg, Germany), and callose depositions were quantified with Image Pro Plus software (Media Cybernetics).

RESULTS

Purification of the Elicitor Protein—Previous experiments let us to conclude that 0.4 µg of protein (referred to total protein content from CF of SS71 isolate) was the minimum amount needed for a responsive concentration, but after 50 days of incubation, 50 µg of protein (referred to total protein content from CF of SS71 isolate) was the necessary amount to get a strong callose deposition in elicitor-treated leaves.
required to attain a complete suppression of anthracnose (DSR = 1) at 21 dpi. During the purification of the elicitor protein from CF, the whole eliciting activity was recovered in the flow-through fraction of the Q-FPLC step (data not shown). The profile of the PS-FPLC chromatographic separation corresponding to the last purification step is illustrated in Fig. 1A, and the defense eliciting activity was evaluated in all fractions by analyzing the ROS accumulation and in parallel the resistance against M11 isolate in strawberry plants of the cv. Pájaro (Fig. 1B and C).

As shown in Fig. 1B, pools 7 and 9 of PS-FPLC induced a strong accumulation of hydrogen peroxide and superoxide anion in strawberry foliar tissue within 4 h after leaf aspersion; however, pool 7 is the unique fraction that yielded the maximum protection activity against M11 (Fig. 1C), similar to that observed with CF 1× from SS71 used as defense-eliciting control. Plants pretreated with pool 7 exhibited no symptom of anthracnose (DSR = 1) at 21 dpi in contrast to control untreated plants (DSR = 5) (Fig. 1C).

Two-dimensional PAGE analysis of the pool 7 obtained by PS-FPLC exhibited a single protein spot that migrated as a 34-kDa protein with pI of 8.8 (Fig. 2A), indicating that the elicitor protein was purified to homogeneity. Furthermore, the single and sharp chromatographic peak observed in the analytical RP-HPLC profile (Fig. 2B) and a single signal obtained from MS analysis of the pool 7 (data not shown) revealed the absence of protein contaminants that could co-purify with the elicitor in the pool 7 of PS-FPLC. However, the absolute purity was evidenced by MS/MS analysis from trypsin-digested pool 7, whereby peptides (masses and sequences) coming from a single
Fungal Subtilisin Induces the Plant Defense Response

shows the phenotypic aspect of strawberry plants challenged with M11 that were pretreated by spraying only one leaf with the elicitor or with water. Results show that the pure elicitor at a concentration of 2.5 μg of protein/ml was sufficient to induce a complete and systemic protection against the M11 virulent isolate. Strawberry plants pretreated with the elicitor looked healthy and vigorous at 21 dpi (Fig. 2C, E), whereas plants pretreated with water manifested a severe disease symptoms and death before 21 dpi (Fig. 2C, W).

Peptide Analyses—N-terminal sequence of elicitor protein, corresponding to the first 10 amino acids, was directly determined as AYTTQASAPW by automated Edman degradation, demonstrating that the N terminus is unblocked. Two internal tryptic peptides of elicitor, p25 and p20, were also sequenced de novo and yielded the following amino acid sequences: p25, VLS-DGS-GST-SGI-HAGIN-YV-VS-DSR, and p20, IVAIATTGVIT-GIPS-GTP-NR. The fact that the N-terminal amino acid is an alanine instead of a methionine suggests that the elicitor protein is synthesized as a larger precursor. To investigate the upstream N-terminal and the downstream C-terminal sequences, cDNA cloning and sequencing were carried out.

cDNA Cloning—The knowledge of the elicitor partial amino acid sequences allowed us to design degenerate oligonucleotide primers to identify the elicitor-coding cDNA. After each second nested PCR, single cDNA fragments of 350 or 480 bp were isolated, whose sequences corresponded to two halves of cDNA that encodes elicitor (Fig. 3, A and B).

To complete the elicitor-coding cDNA sequence, RACE experiments were undertaken, and bands corresponding to fragments of the 3'- and 5'-ends were cloned and sequenced (Fig. 3, C and D). A single 5'-RACE sequence of 680 bp and two 3'-RACE sequences of 780 and 650 bp were obtained. Both 3'-RACE clone sequences proved to be identical; however, the larger sequence showed an additional ~130-bp sequence at its 3'-end, presumably arising from a different polyadenylation site on the mRNA. All three RACE clones overlapped with the corresponding cDNA of the original fragment isolated by PCR with degenerate primers, confirming their authenticity. cDNA sequence analysis showed an ORF comprising 1167 bp that would encode the elicitor protein of 388 amino acid residues. Fig. 4 shows the full-length cDNA sequence and the deduced amino acid sequence of elicitor protein. The N terminus and internal peptides of the elicitor previously sequenced de novo matched exactly the deduced amino acid sequence of the cDNA (Fig. 4). Further analysis showed that the polypeptide contained high percentages of alanine (12.1%), glycine (11.9%) and serine (11.1%), and low percentages of tryptophan (0.5%) and methionine (0.8%).

Homology Comparison—Data bank (Swiss-Prot, EMBL, and GenBankTM/EBI) surveys using the BLAST program yielded significant similarity score with precursors of extracellular serine proteases that belong to the subfamily of proteinase K-like subtilisins (S8A) and are produced by several fungal species that are members of ascomycetes and deuteromycetes. The highest values of similarity in alignments with elicitor sequence corresponded to a proteinase T-like subtilisin from the saprophyte Trichoderma reesei (EGR46243.1) exhibiting 65% of identical amino acids in an alignment that covered 95% of the sequence.

protein were identified after subtracting those derived from trypsin autolysis (data not shown). The resistance inducing activity of the pure elicitor protein was tested again. Fig. 2C
Fungal Subtilisin Induces the Plant Defense Response

![Diagram](attachment:image.png)

FIGURE 3. Scheme of the isolation strategy used to obtain the elicitor-coding cDNA. Top, cDNA encoding for the elicitor protein, which has been obtained by overlapping the nucleotide fragments A–D, identified after nested PCR with degenerate primers and RACE experiments (see details under “Experimental Procedures”). A 350-bp fragment isolated from expression library by nested PCR with the combinations N1/C2, N2/C1, and N2/IR of degenerate primers. B, 480-bp fragment isolated from expression library by nested PCR with the combinations N1/C2, N2/C1, and IF/C1 of degenerate primers. C, 5′-RACE fragment of 680 bp amplified with the S-5- and SN-5-specific nested primers. D, 3′-RACE fragment of 780 bp amplified with the S-3- and SN-3-specific nested primers. The oligonucleotide primers utilized were as follows: N1, 5′-GCTTGTCTCCTACCAAGGCAGCAA-3′; N2, 5′-CAGCCWBSGCBCBGTGG-3′; IF, 5′-ATAYTGCGYAYATAYAAYTAYG-3′; IR, 5′-CRTAGTRATRCRCCRATRAT-3′; C1, 5′-ATVACRCCGTVGTVGCRAT-3′; C2, 5′-GTVGGVTRCCVWSVGR-3′; S-5, 5′-GATGTGTGTCTGAT-CAAGGACTTGG-3′; SN-5, 5′-TGCTTGTAGAGAACAAGCCTGAA-3′; S-3, 5′-AGCTTGTCTCCTACCAAGGCAGCAA-3′; SN-3, 5′-GCCAAGTCTCTTCGACCA-CAAC-3′. R-5 and RN-5 and R-3 and RN-3 primers were the nested anchor primer for ends 5′ or 3′, respectively, supplied by the 3′/5′ GeneRacer kit (Invitrogen).

(E value, 2e-170) and also subtilisin-like serine proteinases from the nematophagous fungi, *Paecilomyces lilacinus* (AC032256.1) and *Hirsutella rhossiliensis* (ABD96101.1) presenting amino acid identities of 64 and 62% that covered 100% (E value, 6e-170) and 98% (E value, 2e-162) of the sequence, respectively.

However, the elicitor protein showed relatively low similarity (less than 45%) with the completely sequenced proteinases from *Acremonium* spp., whose sequences have been inferred from homology as follows: 44.8% of identity with an alkaline proteinase precursor of 42.1 kDa (BAA00765.1) and 39.2% with a subtilisin-like serine proteinase of 58.37 kDa (BAF62454.1) (48). Sequence analyses revealed, however, that the elicitor protein was more similar (53.7% identity) to a cephalexin C acetylhydrolase of *Acremonium chrysogenum* (CAB87194.1), an unspecific esterase of 38.22 kDa related to serine proteinases that remove the acetyl group of cephalosporin C, although it lacks proteolytic activity (49). These data indicated that the elicitor protein is a new member of subtilisin-related alkaline protease, and it was named AsES, in reference to the producer organism *A. strictum* and it was named AsES, in reference to the producer organism.

The AsES-coding cDNA was submitted to GenBankTM and registered under accession number JX684014.

Sequence Analysis of the Elicitor Protein—The SignalP program at the ExPASy database server predicted with high probability a cleavage site between residues 15 and 16 of the full-length pre-protein sequence, indicating the existence of a signal peptide of 15 amino acids (Met1-Gly15). Informatic analysis performed with CD-search (NCBI) and InterPro (EMBL-EBI) programs (Fig. 4) suggested the presence of two domains highly conserved in precursors of subtilisin-like serine proteinases, a peptidase inhibitor I9 domain (Asp38-Ala105; E value, 2.44 e-11) that is a subtilisin propeptide, and a peptidase S8 domain (Trp115-Trh365; E value, 8.43 e-76) corresponding to the catalytic domain shared by all members of the subtilisin S8A subfamily that include the proteinase K-like subtilisins. AsES was composed of 388 amino acid residues, which contained a signal peptide (15 amino acids), a propeptide (90 amino acids), and a mature peptide (283 amino acids). The sequenced amino acids of N-terminal region are located at positions 106–116 of the polypeptide (Fig. 4); accordingly, we have considered the Ala106 residue as the beginning site of the mature protein.

In the sequence of the mature elicitor protein, the four Cys residues comprising the two disulfide bonds (Cys36–Cys125 and Cys180–Cys252) found in homologous subtilisins were detected, and two putative Ca2+–binding sites have been predicted (Fig. 4). The amino acids Asp41/His71/Ser226 of the catalytic triad and other amino acids of the active site (i.e., Leu135, Gly136, Asn163, and Ser223) are preserved in the S8 domain of AsES (Fig. 4), as in homologous subtilisins. The latter led us to speculate that AsES may also exhibit proteolytic activity.

The PeptideMass program predicted a preprotein precursor with a calculated molecular mass of 39,721 Da and a calculated pI value of 7.67 and a mature protein of 28,187 Da and pI of 7.88. These last values disagree with those obtained from the mobility in two-dimensional PAGE of purified protein (34,000 Da; pI = 8.8; Fig. 2A). One potential N-glycosylation site (Asn132) and six O-glycosylation sites (Thr263, Thr286, Thr290, Thr291, Thr324, and Ser387) were predicted with low probability within the mature elicitor protein, although PAS staining on SDS-PAGE of purified AsES showed that this protein lacks glycoside residues (data not shown) in accordance with the subtilisin-like proteinases reported.

Proteolytic Activity and Inhibitors—Results obtained show that the purified AsES can cleave the chromogenic tetrapeptide Suc-AAPF-pNa, which can be specifically hydrolyzed by subtilisins and some chymotrypsins (Fig. 5). Analysis of the proteolytic activity shows that the elicitor protein was 300-fold less effective than the control Carlsberg subtilisin in cleaving Suc-AAPF-pN; the specific activity of AsES at 24 h was 108 μmol min⁻¹ mg protein⁻¹ as compared with the Carlsberg subtilisin that reached 32,812 μmol min⁻¹ mg protein⁻¹. Results also show that whereas the activity of the Carlsberg subtilisin declined 38.5 and 70.9% with respect to the initial value when preincubated in the cold for 24 or 48 h, respectively, AsES

(Continued)
exhibited 15.4% reduction of its proteolytic activity during the first 24 h, but then remained constant until 48 h (Fig. 5). These outcomes indicate that the autoproteolysis exhibited by AsES is much lower that the Carlsberg subtilisin, and therefore the elicitor subtilisin is more stable than the latter. Also, when the elicitor protein was incubated with the substrate N9251-benzoyl-DL-Arg-p-nitroanilide hydrochloride, which can be cleaved only by chymotrypsin, it was not hydrolyzed (data not shown), demonstrating that AsES possess subtilisin-like proteolytic activity on Suc-AAPF-pNA.

The effects of serine, cysteine, aspartyl, and metalloproteases inhibitors on the proteolytic activity of AsES and control Carlsberg subtilisin are summarized in Table 1. With regard to serine proteases inhibitors, the Suc-AAPF-pNa hydrolyzing activity of elicitor and control proteases were both completely inhibited by PMSF as expected for all subtilisins. The elicitor proteolytic activity of 20.7% on Suc-AAPF-pNA was completely inhibited by E-64.

FIGURE 4. Elicitor-coding full-length cDNA sequence, deduced protein sequence, and predicted structural domains. Nucleotides and amino acid residues are numbered from the first ATG codon of the transcript and the first methionine of the protein, respectively. The termination codon TAA is marked with asterisk. Putative site of signal peptide cleavage and the start of the mature protein are indicated by arrows, separating the signal peptide (15 amino acids, Met1–Gly15) predicted with the SignalP program, a pro-peptide (90 amino acids, Ala16–Ala105), and the mature protein (283 amino acids, Ala106–Gly388). The 373 amino acids of the pro-protein and the 283 amino acids of the mature protein are indicated. The dark shaded letters indicate the peptidase inhibitor I domain (Asp38–Ala105; E value, 2.44 e-11) and light-gray shaded letters cover the peptidase S8 domain or subtilase clan (Trp115–Thr365; E value, 8.43 e-76), both identified by CD-search. De novo determined peptide sequences are underlined in the mature deduced protein. Catalytic triad (Asp41, His71, and Ser226), amino acids of the active site (Leu135, Gly136, Asn163, and Ser223), and amino acids of calcium-binding putative sites I (Pro177, Val179, and Asp202) and II (Ala13, Ser16, and Thr17) are indicated with *.

Untranslated regions (5' and 3') are indicated with gray letters in italics.
Fungal Subtilisin Induces the Plant Defense Response

activity was also significantly reduced by aprotinin (37% residual activity) and to a lesser degree by leupeptin (54% residual activity) and ovomucoid trypsin inhibitor (65% residual activity), similar to that observed with control subtilisin, whose activity was decreased to 40–68% by action of this three inhibitors.

Therefore, p-aminobenzamidine moderately suppressed the protease activity of Carlsberg subtilisin (62% residual activity), whereas on the contrary brought about a strong inhibition on the elicitor protease, reaching a 26% residual activity. On the other hand, N-p-tosyl-L-phenylalanine chloromethyl ketone, a specific inhibitor of chymotrypsin-like serine proteases, did not affect any of the tested proteases as expected, confirming that AsES is a subtilisin. The inhibition degrees exerted by cysteine, aspartyl, and metalloproteases inhibitors on elicitor and control enzymes are almost identical. Slight effects were observed on AsES when cysteine and aspartyl proteases inhibitors were used, yielding identical inhibition percentages (e.g. iodoacetic acid and pepstatin A) or even lower (e.g. N-ethylmaleimide) than the control protease (Table 1). Metalloproteases inhibitors exhibited a variable effect, being 1,10-phenanthroline more effective than EDTA to decrease the proteolytic activity of both enzymes, although AsES showed lower sensitivity than the subtilisin used as reference (Table 1).

Because AsES also exhibited proteolytic activity in vitro, we incorporated this measurement using the Suc-AAPF-pNA as substrate, at each purification step of the elicitor subtilisin. Thereby, the previously described purification protocol of AsES let us to reach a yield of 113% with about 27-fold purification from 4 liters of A. strictum SS71 culture (data not shown). The latter represents a recovery of 0.21 mg of pure elicitor protein per liter of culture.

Effect of PMSF on the Resistance Eliciting Activity of AsES—With the aim to test whether the protection effect exerted by AsES against anthracnose on strawberry plants requires its proteolytic activity, PMSF-treated AsES (AsES + PMSF) was used to spray plants before being inoculated with the M11 isolate. As shown in Fig. 6, plants pretreated with AsES + PMSF reached DSR = 5, similar to those pretreated with diluted PMSF solution used as negative control, indicating that the eliciting activity was completely eliminated by inhibiting the proteolytic activity. This biological result further demonstrates that the AsES subtilisin is the one that possess elicitor activity and indirectly confirms the absolute purity of the protein preparation (pool 7 of PS-FPLC). It worthwhile to mention that PMSF is an irreversible inhibitor of serine proteases, so that AsES remained inhibited after removal of PMSF from the reaction medium.

To test whether others subtilisin-like proteinases (such as T. album proteinase K and Carlsberg subtilisin) can also induce protection against anthracnose, strawberry plants were pretreated with such enzymes under the same conditions as AsES (2.5 μg ml⁻¹), and results indicate that none of the subtilisins tested, except AsES, has resistance eliciting activity (DSR = 5; Fig. 6).

TABLE 1

Inhibitor	Specificity	Final concentration	Residual activitya (%)
None	All serine proteases and papain	1 mM	100⁺
PMSF	All serine proteases except thrombin or factor Xa	0.1 mg ml⁻¹	0.1 + 1.1
Aprot	Serin proteases such as trypsin, thrombin, and plasmin	1 mM	40.1 ± 7.2
NH₂-Benz	Trypsin and partially chymotrypsin	0.1 μg ml⁻¹	62.3 ± 1.3
OvTI	Chymotrypsin-like serine proteases (not trypsin)	1 mM	68.6 ± 0.9
Leup	Serine proteases (trypsin, chymase, and plasmin) and cysteine proteases (calpain, cathepsin B, H, and L and papain)	0.1 mM	100.0 ± 0.0
NEM	Cysteine proteases	1 mM	40.7 ± 6.2
IAA	Cysteine proteases	1 μM	53.7 ± 1.5
Pepst	Only aspartic proteases such as renin, chymosin, pepsin, cathepsin D, and protease B	10 mM	76.1 ± 6.0
EDTA &	Metalloproteases	10 mM	79.5 ± 3.9
1,10-Phen &	Metalloproteases	10 mM	83.3 ± 3.0

a Residual activity is expressed as the percentage of the 100% activity under the same assay conditions. Values are the means (± S.D.) of three independent replicates.

b 100% of activity corresponds to 13.1 μmol min⁻¹ ml⁻¹ for the Carlsberg subtilisin and 15.9 μmol min⁻¹ ml⁻¹ for the AsES and was evaluated after 30 min of incubation at 37 °C in absence of inhibitors.

c Broad spectrum inhibitor is indicated.

FIGURE 5. Proteolytic activity of AsES and the Carlsberg subtilisin at different times. The activity was evaluated with the chromogenic peptide Suc-AAPF-pNA. Each protease sample was incubated with the substrate at 37 °C and pH 7.5 for 30 min after a preincubation of the protease solution in the cold (4 °C) for 0, 24, and 48 h. The chromogenic reaction product (pNA) was measured at 405 nm. Specific activities of elicitor protease at 0, 24, and 48 h correspond to 128, 108, and 107 μmol min⁻¹ mg protein⁻¹, respectively, whereas those of control protease at the same times correspond to 53, 33, and 15 mmol min⁻¹ mg protein⁻¹, respectively. Each value is the mean (± S.D.) of three independent replicates.

14108 JOURNAL OF BIOLOGICAL CHEMISTRY

VOLUME 288 • NUMBER 20 • MAY 17, 2013
Elicitation of Strawberry Defense Genes by AsES—To investigate whether the protection effect exerted by AsES is accompanied by the expression of genes associated with defense response activation, FaPR1 and FaChi2-1 genes were analyzed in strawberry plants treated with AsES. As shown in Fig. 7, FaPR1 expression was clearly induced at 48 hpt with AsES compared with control plants, whereas expression of a class II chitinase (FaChi2-1) showed a down-regulation at 24 hpt, followed by an evident up-regulation at 48 and 72 hpt compared with control.

Protection Effect against Gray Mold Induced by AsES in Strawberry Plants—Plants pretreated with AsES exhibited higher resistance to B1 isolate of B. cinerea (AsES+B1) as compared with water-pretreated control plants (W+B1) that showed severe symptoms of necrosis (Fig. 8). Plants that were only sprayed with AsES evidenced no symptoms (Fig. 8).

Induction of Defense Responses in A. thaliana by AsES—Results reveal that AsES-treated plants evidenced a strong and transient accumulation of O$_2^*$ and H$_2$O$_2$ at early times exhibiting a maximum production of both ROS at 4 hpt (Fig. 9, A and B, respectively), whereas on the contrary, ROS are not produced at detectable levels in control plants sprayed with water (Fig. 9, A and B). Also, callose was clearly visualized from 3 dpt in plants sprayed with AsES reaching a maximum accumulation at 9 dpt (Fig. 9C), which was 22-fold higher than achieved by the control plants (Fig. 9D).

DISCUSSION

In this paper, we report a novel elicitor protein named AsES that was obtained and purified from A. strictum cultures. It was
characterized as a subtilisin-like serine protease that belongs to the proteinase K-like family (50), and it shows extensive similarity to the widely known *T. album* proteinase K (51). AsES is synthesized as a 388-residue preprotein precursor, which undergoes proteolytic removal in two steps. A first event consists of the cleavage of the signal peptide that tags the protein to the extracellular medium, and the second event consists of the removal of the propeptide (inhibitor peptidase I9 domain). Subtilisin propeptides are known to function as intramolecular chaperones, assisting in the folding of the mature peptidase (52), but they have also been shown to act as “temporary inhibitors” of the enzyme function because they are gradually removed by autoproteolytic cleavage activating the enzyme (53). The mature and active protein therefore consists of a 283-amino acid polypeptide of 34 kDa comprising only the catalytic peptidase S8 domain, which in addition to the plant defense eliciting activity retains the protease activity. Because the purified AsES lacks glycoside residues, other post-translational modifications occurring in the protein may cause its aberrant mobility on SDS-PAGE and would explain the discrepancy between the experimental molecular mass and that predicted (28.187 kDa). A recombinant subtilisin from *Pyrococcus furiosus* has also been described to display aberrant mobility on SDS-gel due to high Glu/Asp content (54).

AsES has four Cys residues that probably form two disulfide bonds, which would contribute to the protein stability similarly to proteinase K (51). Although two putative Ca2+ -binding sites have been detected in the mature elicitor protein, the lack of inhibition exerted by EDTA and the inhibitory effect exerted by 1,10-phenanthroline on its protease activity suggest that AsES may require the association with Fe2+.

Additionally, among the proteins homologous to AsES include the nonpathogenic subtilisins secreted by endophytic and saprophytic fungi and the pathogenic subtilisins produced by fungal pathogens of plants, nematodes, and insects, whose amino acid sequence identity varies between 55–65% (data not shown). Particularly, subtilisin-like proteases are considered to be important virulence factors in the infection process of entomopathogenic, nematophagous, and mycoparasitic fungi (55, 56), but little is known however about those produced by plant pathogenic fungi. *Magna- porthe poae*, a fungal pathogen of Kentucky bluegrass, expressed a subtilisin-like proteinase (Mp1) in infected roots, and its expression level correlated with the higher severity of disease symptoms (57). Also, Olivieri et al. (58) reported an extracellular subtilisin-like serine protease produced by the phytopathogenic fungus *Fusarium solani* f. sp. *eumartii* that is able to degrade potato PR proteins as well as

FIGURE 9. Defense responses induced by AsES in Arabidopsis leaves. Oxidative burst and callose deposition were analyzed in foliar tissues of plants sprayed with AsES or water (W, negative control). A, accumulation of superoxide radical (O2·−) was visualized as blue precipitates by NBT staining. Photograph shows an example of the 20 leaflets analyzed coming from five plants. B, hydrogen peroxide (H2O2) and C, callose accumulation were stained with 2′,7′-dichlorofluorescein diacetate or aniline blue, respectively. H2O2 was observed under fluorescence microscopy as green spots and callose as white dots (indicated by arrows). Each micrograph represents an example of the 20 tissue sectors analyzed coming from five plants taken at 4 hpt or 9 dpt for the accumulation of H2O2 or callose, respectively. *Scale bars* in B correspond to 10 μm and in C to 20 μm. D, average numbers of callose deposits per field of view (0.45 mm²). *Error bar* represents ± S.D. values from four leaves of each plant and five independent experiments. Differences between the response to AsES and control plants were significant as assessed by Student’s *t* test at *p* < 0.001.
Fungal Subtilisin Induces the Plant Defense Response

specific polypeptides of intercellular washing fluids and cell wall proteins from potato tubers.

AsES also shows similarity (although at lower degree) with the other serine proteases identified in *Acremonium* spp. (48, 49). A serine alkaline endoproteinase with a bound carbohydrate (At1) was purified from leaf sheath tissue of grass *Poa* species infected with the pathogen *Acremonium tyrhimum*, suggesting that its expression may be involved in the symbiotic interaction between the plant and the fungus (59). Liu et al. (48) reported the only two subtilisin-like serine proteases from *Acremonium* spp. that were biochemically characterized, namely AS-E1 of 34.4 kDa and AS-E2 of 32 kDa, but only their N-terminal regions were sequenced. These authors have also reported that both enzymes were able to proteolytically activate prothrombin to meizothrombin(desF)1-like molecules and inhibit plasma clotting, possibly due to the extensive degradation of fibrinogen (48). An important conclusion we can arrive at is that although these proteases are homologous to AsES, none of them exhibits biological activity in plants or are involved in mechanisms of virulence or defense in other organisms.

Because preliminary experiments showed that the active fraction was susceptible to heat and protease digestion (data not shown) suggesting that the elicitor molecule was a protein, two-dimensional gels yielded a single protein, and the MS/MS analysis did not display any strange peptide sequence or other spurious MS peaks, we concluded that the AsES protein was pure. Sensitivity of elicitor activity to PMSF demonstrated that the AsES subtilisin is the one that exhibits such activity; however, the expression of AsES in a heterologous system would provide a direct link between the cloned cDNA and elicitor activity of its cDNA product.

Because the first barrier that invading fungi have to overcome is the plant cell wall, fungal endohydrolytic enzymes have been suggested to act as elicitors of the PAMP-type (10). The latter could also occur with the AsES as it is able to induce a defense response in different plant species. Our results clearly show that AsES can trigger a strong defense reaction in strawberry, which is characterized primarily by a transient oxidative burst, then by a strong transcriptional induction of *PR-1* (FaPRT1) and class II chitinase (FaChI2-1), and finally manifested by an enhanced resistance against fungal pathogens of hemibiotrophic (i.e. *C. acutatum*) and necrotrophic (i.e. *B. cinerea*) lifestyle. The fact that the protection effect mediated by AsES was not restricted to pathogens of the genus *Colletotrichum*, let us further conclude that AsES is able to induce a broad-based resistance against pathogens (5).

Synthesis of proteins directly associated with defense response in plants, as PR proteins, is essential to protect them against pathogen infection (10). Hence, the induction of PR genes such as *PR-1, PR-2* (including β1,3-glucanases), *PR-3* (including class II chitinases), among others, is clear evidence of defense mechanism activation (60). Furthermore, it is well documented that the increase of the expression of *PR-1* is strongly associated with systemic acquired resistance activation in pathogen-challenged or elicitor-treated plants, whereas induction of glucanase and chitinase genes is closely related to systemic defense activation against a broad pathogen spectrum (60, 61). Particularly, the induction of many PR genes has been reported in strawberry plants challenged by pathogens (62).

Further studies revealed that AsES can also confer protection to different strawberry cultivars against different virulent isolates of *C. acutatum* (data not shown). We may also speculate that the production of ROS (i.e. *H₂O₂* and *O²⁻*) and the cell wall reinforcement due to callose deposition observed in *Arabidopsis* plants would also confer resistance to pathogens as suggested elsewhere (7, 10, 12).

Our results suggested that the protease activity of AsES is essential for its elicitor function in strawberry plants. However, elicitor activity of another hydrolytic enzyme as the *Trichoderma viride* endoxylanase, a PAMP that elicits hypersensitive response, ethylene, and phytoalexin production in tobacco and tomato, was found to be independent of enzyme activity (63). Moreover, in few cases elicitor activity was found to be determined by small fragments of the intact elicitor molecule of PAMP, suggesting recognition of “epitope”-like structures by receptors at the plant cell surface (64). Examples of the latter are an 8-amino acid glycopeptide fragment derived from yeast invertase (gp 8c) (65) and an internal peptide of 13 amino acids (Pep-13) derived from 42-kDa cell wall glycoprotein of *P. sojae* that exhibits Ca²⁺-dependent transglutaminase activity (19, 66).

Defense inducing activity was detected in some proteases derived from both bacterial and fungal pathogens (12). In phytopathogenic bacteria of the genera *Pseudomonas, Xanthomonas, Ralstonia*, and *Yersinia*, four families of cysteine proteases (i.e. XopD, YopJ, YopT, and AvrRpt2), including many “effector” proteins, have been identified (67). In fungi, however, a single group of proteases with defense eliciting activity was identified. Cultivar-specific Avr-Pita genes have been cloned and characterized from *Magnaporthe oryzae* (formerly known as *Magnaporthe grisea*) that is the causal agent of blast rice. *Avr-Pita* gene encodes a secreted 223-amino acid preproteins with homology to fungal zinc-dependent neutral metalloproteases that is further processed into an active 176-amino acid mature protein (68). Point mutations in the putative protease catalytic residues of Avr-Pita176 resulted in gain of virulence on rice cultivars carrying the cognate resistance gene *Pi-ta*, although a direct biochemical evidence for protease activity of Avr-Pita is still missing (64, 69). Furthermore, mutations in the putative catalytic residues of AvrBsT, a bacterial avirulence effector that displays structural similarity to the YopJ family of cysteine proteases, also abolished avirulence activity (70). We therefore hypothesized that AsES may function by releasing an active elicitor from a plant precursor molecule rather than being itself an elicitor. The latter has been described for the gene *avdB* from *Pseudomonas syringae* pv. *tomato*, whose product is responsible for the synthesis of syringolide elicitors (71). Furthermore, some peptides that are considered elicitors, such as systemin, HypSys (hydroxyproline-containing glycopeptides), and RALF (rapid alkalination inducing factor), would apparently come from protein precursors constitutively present in plant cell wall or cytoplasm and would be activated by microbial proteases or by intracellular proteases upon cell injury, acting as elicitors of the DAMP-type (72).
Fungal Subtilisin Induces the Plant Defense Response

Because the elicitor activity was only found in AsES from SS71 A. strictum and not was found in a homologous subtilisin as proteinase K, we conclude that the proteolytic activity is necessary but not sufficient to induce defense, and we suggest that AsES might induce defense by means of proteolysis of one or multiple host proteins that are specific targets of this protease.

Although the results presented in this paper confirm that the proteolytic activity exhibited by the AsES elicitor is required for the induction of the defense response in plants, further experiments using recombinant AsES protein, site-directed mutants, or synthetic (PAMP-like) peptides derived from AsES are necessary to elucidate its action mechanism and the resistance-causing signal perception process.

In conclusion, we have purified and characterized AsES, a novel extracellular elicitor protein produced by the pathogenic fungi A. strictum, which exhibits defense inducing activity on its strawberry host Fragaria × ananassa and other nonhost species A. thaliana, and in vitro subtilisin-like proteolytic activity. AsES can be considered a new member of the fungal protein effectors. Despite the variety of examples showing that fungal proteases are involved in plant defenses, no subtilisin-like protease from a phytopathogen has been reported so far. This discovery is relevant in the plant-pathogen interaction knowledge and may contribute to envisioning possible strategies for controlling diseases in the field.

REFERENCES

1. Smith, B. J., and Black, L. L. (1990) Morphological, cultural, and pathogenic variation among Colletotrichum species isolated from strawberry. Plant Dis. 74, 69–76
2. Freeman, S., and Katan, T. (1997) Identification of Colletotrichum species responsible for anthracnose and root necrosis of strawberry in Israel. Phytopathology 87, 516–521
3. Salazar, S. M., Castagnaro, A. P., Arias, M. E., Chalfoun, N. R., Tonello, U., and Díaz-Ricci, J. C. (2007) Induction of a defense response in strawberry mediated by an avirulent strain of Colletotrichum. Eur. J. Plant Pathol. 117, 109–122
4. Grellet-Bournonville, C. F., Martínez-Zamora, M. G., Castagnaro, A. P., and Díaz-Ricci, J. C. (2012) Temporal accumulation of salicylic acid activates the defense response against Colletotrichum in strawberry. Plant Physiol. Biochem. 54, 10–16
5. Salazar, S. M., Grellet, C. F., Chalfoun, N. R., Castagnaro, A. P., and Díaz-Ricci, J. C. (2013) Avirulent strain of Colletotrichum induces a systemic resistance in strawberry. Eur. J. Plant Pathol. 135, 877–888
6. Chalfoun, N. R., Castagnaro, A. P., and Díaz Ricci, J. C. (2011) Induced resistance activated by a culture filtrate derived from an avirulent pathogen as a mechanism of biological control of anthracnose in strawberry. Biol. Control 58, 319–329
7. Jones, J. D., and Dangl, J. L. (2006) The plant immune system. Nature 444, 323–329
8. Kamoun, S. (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 44, 41–60
9. Bonas, U., and Lahaye T. (2002) Plant disease resistance triggered by pathogen-derived molecules: refined models of specific recognition. Curr. Opin. Microbiol. 5, 44–50
10. Nürnberger, T., Brunner, F., Kemerling, B., and Piater, L. (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198, 249–266
11. Mamaní, A., Filippone, M. P., Grellet, C., Welin, B., Castagnaro, A. P., and Díaz Ricci, J. C. (2012) Pathogen-induced accumulation of an ellagitannin elicits plant defense response. Mol. Plant-Microbe Interact. 25, 1430–1439
12. Chiholes, S. T., Coaker, G., Day, B., and Staskawicz, B. J. (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803–814
13. Boller, T., and Felix, G. (2009) A renaissance of effectors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379–406
14. Lotze, M. T., Zeh, H. J., Rubartelli, A., Sparvero, L. J., Amoscato, A. A., Washburn, N. R., Devera, M. E., Liang, X., Tör, M., and Billiar, T. (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. ImmunoL Rev. 220, 60–81
15. van’t Slot, K. A., and Knogge, W. (2002) A dual role for microbial pathogen-derived effector proteins in plant disease and resistance. Crit. Rev. Plant Sci. 21, 229–271
16. de Wit, P. J., Mehrabi, R., van den Burg, H. A., and Stergiopoulos, I. (2009) Fungal effecter proteins: past, present and future. Mol. Plant Pathol. 10, 735–747
17. Stergiopoulos, I., and de Wit, P. J. (2009) Fungal effector proteins. Annu. Rev. Phytopathol. 47, 233–253
18. Kamoun, S. (2007) Groovy times: filamentous pathogen effectors revealed. Curr. Opin. Plant Biol. 10, 358–365
19. Sacks, W., Nürnberger, T., Hahlbrock, K., and Scheel, D. (1995) Molecular characterization of nucleotide sequences encoding the extracellular glycoprotein elicitor from Phytophthora megasperma. Mol. Gen. Genet. 246, 45–55
20. Mike, V., Milat, M. L., Ponchet, M., Panabière, F., Ricci, P., and Blein, J. P. (1998) Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins. Biochem. Biophys. Res. Commun. 245, 133–139
21. Orsmond, G., Lorenzi, M., Raffaelli, N., Dalla Rizza, M., Mezzetti, B., and Ruggieri, S. (2001) Phytophobic protein PcF, purification, characterization, and cDNA sequencing of a novel hydroxyproline-containing factor secreted by the strawberry pathogen Phytophthora cactorum. J. Biol. Chem. 276, 21578–21584
22. Mateos, F. V., Rickauer, M., and Esquerré-Tugayé, M. T. (1997) Cloning and characterization of a cDNA encoding an elicitor of Phytophthora parasitica var. nicotianae that shows cellulose-binding and lectin-like activities. Mol. Plant-Microbe Interact. 10, 1045–1053
23. Pennickx, I. A., Thomma, B. P., Buchala, A., Métraux, J. P., and Broekaert, W. F. (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defense gene in Arabidopsis. Plant Cell 10, 2103–2113
24. Thordal-Christensen, H., Zhang, Z., Wei, Y., and Collinge, D. B. (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11, 1187–1194
25. Doke, N. (1983) Generation of superoxide anion by potato tuber proteoplasts during the hypersensitive response to hypal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol. Plant Pathol. 23, 359–367
26. Delp, B. R., and Milholland, R. D. (1980) Evaluating strawberry plants for resistance to Colletotrichum fragariae. Plant Dis. 64, 1071–1073
27. Bradford, M. (1976) A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254
28. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685
29. Görn, A., Postel, W., Weser, I., Günther, S., Straher, J. R., Hanash, S. M., and Sommer, L. (1987) Elimination of point streaking on silver stained two-dimensional gels by addition of iodoacetamide to the equilibration buffer. Electrophoresis 8, 122–124
30. Jorge, I., Navarro, R. M., Lenz, C., Ariza, D., Porras, C., and Jorrín, I. (2005) The Holm Oak leaf proteome. Analytical and biological variability in the protein expression level assessed by 2-DE and protein identification by MS/MS de novo sequencing and sequence similarity searching. Proteomics 5, 222–234
31. Segrest, J. P., and Jackson, R. L. (1972) Molecular weight determination of glycoproteins by polyacrylamide gel electrophoresis in sodium dodecyl sulphate. Methods Enzymol. 28, 54–63
32. Shevchenko, A., Wilk, M., Vorm, O., and Mann, M. (1996) Mass spectro-
metric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858
33. Link, A. J., Eng, J., Schiltz, D. M., Carmack, E., Mize, G. J., Morris, D. R., Garvik, B. M., and Yates, J. R. 3rd (1999) Direct analysis of protein complexes using mass spectrometry. Nat. Biotechnol. 17, 676–682
34. Matsudaira, P. (1987) Sequence from picomole quantities of proteins electrophroblotted onto PVDF. J. Biol. Chem. 262, 10035–10038
35. Iandolo, A. B., Goes da Silva, F., Lim, H., Choi, H., Williams, L. E., and Cook, D. R. (2004) High-quality RNA, cDNA, and derived EST libraries from grapevine (Vitis vinifera L.). Plant Mol. Biol. Rep. 22, 269–278
36. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410
37. Sanger, F., Nicklen, S., and Coulson, A. R. (1977) DNA sequencing with chain terminator inhibitors. Proc. Natl. Acad. Sci. USA. 74, 5463–5467
38. Don, R. H., Cox, P. T., Wainwright, B. J., Baker, K., and Mattick, J. S. (1991) Touchdown PCR to circumvent spurious priming during gene amplification. Nucleic Acids Res. 19, 4008
39. Marchler-Bauer, A., and Bryant, S. H. (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, 327–331
40. Letunic, I., Copley, R. R., Pins, B., Pinkert, S., Schultz, J., and Bork, P. (2006) SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. 34, 257–260
41. Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L., Studholme, D. I., Yeats, C., and Eddy, S. R. (2004) The Pfam protein families database. Nucleic Acids Res. 32, 138–141
42. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882
43. Emanuelsson, O., Brunak, S., von Heijne, G., and Nielsen, H. (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2, 953–971
44. Moallaie, H., Zaini, F., Larcher, G., Beucher, B., and Bouchara, J. P. (2006) Partial purification and characterization of a 37-kDa extracellular proteinase from Trichophyton vanbreughihi. Mycopathologia 161, 369–375
45. Velizce, G. R., Díaz Ricoi, J. C., Hernández, L., and Castagnaro, A. P. (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res. 15, 57–68
46. Booszó, Z., Ott, P. G., Szatmari, A., Czelleng, A., Varga, G., Besenyei, E., Sárdi, É., Bányai, É., and Klement, Z. (2005) Early detection of bacterium-induced basal resistance in tobacco leaves with diaminoobenzidine and dichlorofluorescein diacetate. J. Phytopathol. 153, 596–607
47. Yun, M. H., Torres, P. S., El Oirdi, M., Rigano, L. A., Gonzalez-Lamothe, A., Makimura, K., and Hasumi, K. (2007) Activation of prothrombin by two subtilisin-like serine proteases from Yarrowia lipolytica. FEBS Lett. 580, 210–214
48. Takagi, H., Koga, M., Katsurada, S., Yabuta, Y., Shinde, U., Inouye, M., and Nakamori S. (2001) Functional analysis of the propeptides of subtilisin E and aqauylsin I as intramolecular chaperones. FEBS Lett. 508, 210–214
49. Fabre, E., Nicaud, J. M., Lopez, M. C., and Gaillardin, C. (1991) Role of the proregion in the production and secretion of the Yarrowia lipolytica alkaline extracellular protease. J. Biol. Chem. 266, 3782–3790
50. Ikrar, N., Naz, S., Rajoka, M. I., Sadaf, S., and Akhtar, M. W. (2009) Enhanced production of subtilisin of Pyrococcus furiosus expressed in Escherichia coli using autoinducing medium. Afr. J. Biotechnol. 8, 5867–5872
51. Wang, B., Liu, X., Wu, W., Liu, X., and Li, S. (2009) Purification, characterization, and gene cloning of an alkaline serine protease from a highly virulent strain of the nematode-endparasitic fungus Hirsutella rhossiliensis. Microbiol. Res. 164, 665–673
52. Yang, J., Zhao, X., Liang, L., Xia, Z., Lei, L., Niu, X., Zou, C., and Zhang, K. Q. (2011) Overexpression of a cuticle-degrading protease Ver112 increases the nematidal activity of Paeilocyemis laticus. Appl. Microbiol. Biotechnol. 89, 1895–1903
53. Sreedhar, L., Kobayashi, D. Y., Bunting, T. E., Hillman, B. I., and Belanger, F. C. (1999) Fungal protease expression in the interaction of the plant pathogen Magnaporthe grisea with its host. Gene 235, 121–129
54. Olivieri, F., Watanabe, T., Prokairy, N., Covarrubias, A. A., and Casalóngue, C. A. (2002) Characterization of an extracellular serine protease of Fusarium oxysporum and its action on pathogenesis related proteins. Eur. J. Plant Pathol. 108, 63–72
55. Lindstrom, J. T., and Belanger, F. C. (1994) Purification and characterization of an endophytic fungal protease that is abundantly expressed in the infected host grass. Plant Physiol. 106, 7–16
56. van Loon, L. C., Ren, M., and Pieterse, C. M. (2006) Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135–162
57. Pieterse, C. M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S. C. (2009) Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5, 308–316
58. Amil-Ruiz, F., Blanco-Portales, R., Muñoz-Blanco, J., and Caballero, J. L. (2011) The strawberry plant defense mechanism: a molecular review. Plant Cell Physiol. 52, 1873–1903
59. Sharon, A., Fuchs, Y., and Anderson, J. D. (1993) The elicitation of ethylene biosynthesis by a Trichoderma xylanase is not related to the cell wall degradation activity of the enzyme. Plant Physiol. 102, 1325–1329
60. de Wit, P. J. (1997) Pathogen avirulence and plant resistance: a key role for recognition. Trends Plant Sci. 2, 452–458
61. Basse, C. W., Fath, A., and Bolier, T. (1993) High affinity binding of a glycopeptide elicitor to tomato cells and mesosomal membranes and displacement by specific glycan suppressors. J. Biol. Chem. 268, 14724–14731
62. Brunner, F., Rosahl, S., Lee, J., Rudd, J. J., Geier, C., Kauppinen, S., Rasmussen, G., Scheel, D., and Nürnberg, T. (2002) Pep-13, a plant defense inducing pathogen-associated pattern of Phytophthora transglutaminases. EMBO J. 21, 6681–6688
63. Mudgett, M. B. (2005) New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu. Rev. Plant Biol. 56, 509–531
64. Valent, B., and Chumley, F. G. (1994) in Rice Blast Diseases (Zeigler, R. S., Leong, S., and Teng, P. S., eds) pp. 111–134, International Rice Research Institute, Los Banos and Commonwealth Agricultural Bureaux, University Press, Cambridge, UK
65. Orbach, M. J., Ferrall, L., Gold, S., Lorang, J., Dahlbeck, D., and Staskawicz, B., and Dixon, J. E. (2000) Disruption of signal-transduction by small-molecule hormones in plant immunity. Annu. Rev. Phytopathol. 38, 452–458
66. Orth, K., Xu, Z., Mudgett, M. B., Bao, Z. Q., Palmer, L. E., Bliska, J. B., Mangel, W. F., Staskawicz, B., and Dixon, J. E. (2000) Suppression of signaling by Xeroxin effectors YopJ, a ubiquitin-like protein. Science 290, 1594–1597
67. Keen, N. T., Tamaki, S., Kobayashi, D. Y., Gerhold, D., Stayton, M., Shen, H., Gold, S., Lorang, J., Thordal-Christensen, H., Dahlbeck, D., and Staskawicz, B. (1990) Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction. Mol. Plant-Microbe Interact. 3, 112–121
68. Yamaguchi, Y., and Huffaker, A. (2011) Endogenous peptide elicitors in higher plants. Curr. Opin. Plant Biol. 14, 351–357