Effects of restrictive cafeteria feeding and treadmill exercise on body composition, metabolic profile, locomotor activity, exploratory behaviour and HPA axis in obese rats.

Adam Alvarez-Monell¹,4, Alex Subias-Gusils²,4, Roger Mariné-Casadó⁶, Xavier Belda³,4, Humberto Gagliano³,4, Oscar J Pozo⁵, Noemí Boqué⁶, Antoni Caimari⁶, Antonio Armario³,4, Montserrat Solanas¹,4,*, and Rosa M Escorihuela³,4,*

¹Medical Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.

²Unitat de Psicologia Mèdica, Departament de Psiquiatria i Medicina legal, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.

³Animal Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.

⁴Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.

⁵Gastroesophageal Carcinogenesis Group, IMIM (Hospital del Mar Medical Research Institute), Carrer Doctor Aiguader 88, 08003, Barcelona, Spain.

⁶Eurecat, Centre tecnològic de Catalunya, Biotechnology Area and Technological Unit of Nutrition and Health, 43204 Reus, Spain

*Montserrat.Solanas@uab.cat

*Rosamaria.Escorihuela@uab.cat
Supplementary Table S1. Cafeteria (CAF) diet composition for the first period of the experiment.

Ingredient	Week 1	Week 4	Week 8
Muffin	3.25 g	7 g	7 g
Bacon	3 g	6 g	8 g
Carrot	2.5 g	6 g	8 g
Biscuits with pâté	3.5 g	5 g	5 g
Biscuits with cheese	3.5 g	5 g	5 g
Jellied sugared milk	25 g	40 g	45 g
Chow	15 g	15 g	25 g
g of diet provided	56 g	84 g	103 g
Kcal provided	131	197	246
Supplementary Table S2. Detailed treadmill training protocol for the progressive intensity increase from session 1 (week 1) until session 12 (week 2)

Minute	S.1	S.2	S.3	S.4	S.5 – S.7	S.8 – S.12	S.13 onwards
0	0 m/min	0 m/min	4 m/min	4 m/min	5 m/min	5 m/min	6 m/min
1	0 m/min	0 m/min	5 m/min	5 m/min	6 m/min	6 m/min	7 m/min
2	0 m/min	0 m/min	6 m/min	6 m/min	7 m/min	7 m/min	8 m/min
3	0 m/min	0 m/min	7 m/min	7 m/min	8 m/min	8 m/min	9 m/min
4	0 m/min	0 m/min	8 m/min	8 m/min	9 m/min	9 m/min	10 m/min
5	0 m/min	0 m/min	9 m/min	9 m/min	10 m/min	10 m/min	11 m/min
6	0 m/min	5 m/min	9 m/min	9 m/min	10 m/min	10 m/min	11 m/min
7	0 m/min	6 m/min	9 m/min	10 m/min	11 m/min	11 m/min	12 m/min
8	0 m/min	7 m/min	9 m/min	10 m/min	11 m/min	11 m/min	12 m/min
9 to 14	0 m/min	8 m/min	9 m/min	10 m/min	11 m/min	11 m/min	12 m/min
15	4 m/min	8 m/min	9 m/min	10 m/min	11 m/min	11 m/min	12 m/min
16	5 m/min	8 m/min	9 m/min	10 m/min	11 m/min	11 m/min	12 m/min
17	6 m/min	8 m/min	9 m/min	10 m/min	11 m/min	11 m/min	12 m/min
18	7 m/min	8 m/min	9 m/min	10 m/min	11 m/min	11 m/min	12 m/min
19 to 24	8 m/min	8 m/min	9 m/min	10 m/min	11 m/min	11 m/min	12 m/min
25 to 29	8 m/min	8 m/min	9 m/min	10 m/min	11 m/min	11 m/min	12 m/min
30 ot 35	8 m/min	8 m/min	7 m/min	8 m/min	8 m/min	8 m/min	8 m/min
Total distance (feet)	400 ft	660 ft	860 ft	920 ft	1000 ft	1100 ft	1250 ft
Total distance (meters)	122 m	201 m	262 m	280 m	305 m	335 m	381 m
Supplementary Table S3. Statistical results for the ANOVA analysis of tissue weight

	STD-CAF			CAF-CAF								
	DIET	EXE	DIET*EXE	DIET	EXE	DIET*EXE						
	F (1,34)	p	F (1,34)	p	F (1,32)	p	F (1,32)	p				
Inguinal WAT (g)	65,156	<0,001	0,000	0,994	1,030	0,317	4,711	0,038	0,814	0,374	3,464	0,072
Retroperitoneal WAT (g)	141,496	<0,001	3,527	0,069	0,252	0,619	9,314	0,005	1,099	0,302	0,023	0,881
Mesenteric WAT (g)	51,068	<0,001	2,133	0,153	0,000	0,996	6,710	0,014	0,649	0,427	0,721	0,402
Epididymal WAT (g)	135,051	<0,001	0,277	0,602	1,252	0,271	5,239	0,029	0,003	0,955	0,364	0,550
Visceral WAT (g)	137,092	<0,001	2,585	0,117	0,315	0,578	9,707	0,004	0,702	0,408	0,027	0,870
Total WAT (g)	102,576	<0,001	0,566	0,457	0,722	0,401	7,956	0,008	0,906	0,348	1,099	0,302
Soleus muscle (g)	0,100	0,754	1,304	0,261	0,659	0,423	0,737	0,397	1,695	0,202	0,580	0,452
Gastrocnemius muscle (g)	0,759	0,390	0,423	0,520	0,204	0,654	5,014	0,032	0,768	0,387	0,009	0,923
Adrenal gland (mg)	0,064	0,802	0,201	0,657	0,011	0,918	0,229	0,636	0,009	0,924	0,515	0,478
Thymus (mg)	3,806	0,059	0,563	0,458	0,103	0,751	0,805	0,376	1,472	0,234	0,665	0,421
Inguinal WAT (g/100g)	55,137	<0,001	0,022	0,883	1,424	0,241	2,714	0,109	1,027	0,319	4,012	0,054
Retroperitoneal WAT	136,984	<0,001	6,169	0,018	0,622	0,436	6,697	0,014	1,193	0,283	0,135	0,716
(g/100g)												
Mesenteric WAT (g/100g)	32,888	<0,001	3,546	0,068	0,013	0,912	5,231	0,029	0,783	0,383	2,398	0,131
Epididymal WAT (g/100g)	118,349	<0,001	1,162	0,289	3,326	0,077	1,793	0,190	0,096	0,758	0,223	0,640
Visceral WAT (g/100g)	142,560	<0,001	5,479	0,025	0,837	0,367	7,541	0,010	0,758	0,391	0,289	0,595
Total WAT (g/100g)	100,955	<0,001	1,323	0,258	1,348	0,254	5,776	0,022	1,198	0,282	1,224	0,277
Soleus muscle (g/100g)	11,586	0,002	1,251	0,271	0,823	0,371	0,011	0,916	1,519	0,227	1,514	0,228
Gastrocnemius muscle	31,851	<0,001	0,100	0,753	0,186	0,669	0,254	0,618	0,091	0,765	0,256	0,616
(g/100g)												
Adrenal gland (mg/100g)	4,652	0,038	0,240	0,627	0,001	0,977	0,109	0,743	0,010	0,922	0,207	0,652
thymus (mg/100g)	0,105	0,748	0,579	0,452	0,188	0,668	0,047	0,829	1,032	0,317	0,620	0,476
Supplementary Table S4. Statistical results for the ANOVA analysis of metabolic serum parameters

Parameter	STD-CAF	CAF-CAFR										
	DIET	EXE	DIET*EXE	DIET	EXE	DIET*EXE						
F (1,32)	p	F(1,32)	p	F (1,32)	p	F(1,32)	p					
Glucose (mg/L)	11,900	0.002	0.618	0.438	1,230	0.276	1,570	0.219	2,940	0.096	0.019	0.892
Triacylglycerides (mg/L)	13,250	0.001	0.001	0.973	0.618	0.437	1,211	0.279	0,513	0.479	0.000	0.993
Cholesterol (mg/L)	4,402	0.044	5,044	0.032	0,759	0.390	5,920	0.021	3,034	0.091	0.005	0.945
LDL-Cholesterol (mg/L)	6,242	0.018	0.240	0.628	0,035	0.852	0,625	0.435	0.035	0.852	0.485	0.491
HDL-cholesterol (mg/L)	22,162	0.000	6,141	0.019	0.062	0.805	2,455	0.127	4,710	0.038	0.287	0.596
NEFAs (mM)	0.835	0.368	0.922	0.344	0.135	0.715	0.019	0.890	0.022	0.882	0.313	0.580
insulin (µg/L)	25,705	0.000	0.003	0.959	1.155	0.291	2,225	0.146	0.163	0.689	0.289	0.594
HOMA-IR	33,689	0.000	0.094	0.762	0.336	0.566	2,292	0.140	0.036	0.851	0.157	0.695
Leptin (ng/mL)	77,574	0.000	0.856	0.362	9.803	0.004	4,195	0.049	1.578	0.218	4,280	0.047
Adiponectin (µg/mL)	13,053	0.001	0.052	0.821	3.071	0.089	0.294	0.591	0.053	0.819	1.437	0.239
Leptin/adiponectin ratio	68,517	0.000	0.164	0.688	8.048	0.008	1,551	0.222	1,134	0.295	1,165	0.288
Supplementary Figure S5. Exercise decreased activity in the enclosed arms without affecting the open arms.

The first analysis of the EPM variables to evaluate the effects of CAF feeding and exercise upon total entries (Fig. 8.A), total distance travelled (Fig. 8.B) and time spent in the centre of the maze (Fig. 8.C) revealed CAF feeding to decrease the time spent in the centre of the maze \([F(1,37)=5.978, p=0.020] \) (Fig. 8C). No other effects/interactions on these variables were found. The second analysis for comparing these variables between CAF and CAFR diet and exercise also revealed no effects/interactions.

We then proceeded to analyse the number of entries (Fig. 8.A), the distance travelled (Fig. 8.B) and the time spent into the open and enclosed arms (Fig. 8.C). The first analysis showed no effects/interactions on any of those variables. The second analysis reported an effect of exercise decreasing the number of entries and the distance travelled in the enclosed arms \(\text{entries: } F(1,36)=4.551, p=0.041; \text{ distance travelled: } F(1,36)=4.691, p=0.038 \), but not affecting the time spent in the enclosed arms. No other significant effects of the diet not ‘diet*exercise’ was found. These results taken together point to no major differences on anxiety-like behaviour as measured in the EPM between diet and exercise conditions.

Fig. S5. Anxiety-like behaviour in the Elevated Plus Maze test. A) Number of entries. B) Distance travelled (m). C) Time spent (seconds). * \(p<0.05 \) vs STD; # \(p<0.05 \) vs corresponding non-exercised group.
Supplementary Table S6. Statistical results for the ANOVA analysis comparing STD and CAFR diets

Biometric parameters	Diet	Exercise		
AC (cm)	1,37	25 <0.001	1,37	0,000 ns
Tissues				
Inguinal WAT (g)	1,37	50,625 <0.001	1,37	5,811 0,021
Retroperitoneal WAT (g)	1,37	89,701 <0.001	1,37	3,696 0,063
Mesenteric WAT (g)	1,37	28,484 <0.001	1,37	0,612 ns
Epididymal WAT (g)	1,37	157,945 <0.001	1,37	2,636 ns
Abdominal WAT (g)	1,37	94,63 <0.001	1,37	2,727 ns
Total WAT (g)	1,37	84,802 <0.001	1,37	5,199 0,029
Gastrocnemius (g)	1,37	3,922 0,056	1,37	0,413 ns
Retroperitoneal WAT (g/100g)	1,37	74,148 <0.001	1,37	4,15 0,049
Mesenteric WAT (g/100g)	1,37	17,273 <0.001	1,37	0,596 ns
Abdominal WAT (g/100g)	1,37	81,176 <0.001	1,37	3,122 0,086
Total WAT (g/100g)	1,37	70,085 <0.001	1,37	5,876 0,021
Gastrocnemius (g/100g)	1,37	59,578 <0.001	1,37	0,037 ns
Serum parameters				
Leptin (ng/mL)	1,37	20,727 <0.001	1,37	0,274 ns
Cholesterol (mg/L)	1,37	18,654 <0.001	1,37	5,515 0,025