Mutators as drivers of adaptation in *Streptococcus* and a risk factor for host jumps and vaccine escape

Running Title: Mutators as drivers of pathogen evolution

Oleksandra Silayeva, Jan Engelstaedter, and Andrew C Barnes

The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia

Key words: mutators; DNA repair; pathogen evolution; immune escape; vaccination; *Streptococcus*; aquaculture; host jumps, zoonoses

Correspondence:

a.barnes@uq.edu.au
Abstract

Heritable hypermutable strains deficient in DNA repair genes (mutators) facilitate microbial adaptation as they may rapidly generate beneficial mutations. Mutators deficient in mismatch (MMR) and oxidised guanine (OG) repair are abundant in clinical samples and show increased adaptive potential in experimental infection models but their role in pathoadaptation is poorly understood. Here we investigate the role of mutators in epidemiology and evolution of the broad host pathogen, *Streptococcus iniae*, employing 80 strains isolated globally over 40 years. We determine phylogenetic relationship among *S. iniae* using 10,267 non-recombinant core genome single nucleotide polymorphisms (SNPs), estimate their mutation rate by fluctuation analysis, and detect variation in major MMR (*mutS, mutL, dnaN, recD2, rnhC*) and OG (*mutY, mutM, mutX*) genes. *S. iniae* mutation rate phenotype and genotype are strongly associated with phylogenetic diversification and variation in major streptococcal virulence determinants (capsular polysaccharide, hemolysin, cell chain length, resistance to oxidation, and biofilm formation). Furthermore, profound changes in virulence determinants observed in mammalian isolates (atypical host) and vaccine-escape isolates found in bone (atypical tissue) of vaccinated barramundi are linked to multiple MMR and OG variants and unique mutation rates. This implies that adaptation to new host taxa, new host tissue, and to immunity of a vaccinated host is promoted by mutator strains. Our findings support the importance of mutation rate dynamics in evolution of pathogenic bacteria, in particular adaptation to a drastically different immunological setting that occurs during host jump and vaccine escape events.

Importance

Host immune response is a powerful selective pressure that drives diversification of pathogenic microorganisms and, ultimately, evolution of new strains. Major adaptive events in pathogen evolution, such as transmission to a new host species or infection of vaccinated hosts, require adaptation to a drastically different immune landscape. Such adaptation may be favoured by hypermutable strains (or mutators) that are defective in normal DNA repair and consequently capable of generating multiple potentially beneficial and compensatory mutations. This permits rapid adjustment of virulence and antigenicity in a new immunological setting. Here we show that mutators, through mutations in DNA repair genes and corresponding shifts in mutation rate, are associated with major diversification events and virulence evolution in the broad host-range pathogen *Streptococcus iniae*. We show that mutators underpin infection of vaccinated hosts, transmission to new host species and the evolution of new strains.
Introduction

Mutation rates in microbial populations are a trade-off between maintenance of genetic integrity and evolvability (1, 2). High fidelity of DNA repair is advantageous in adapted populations since most mutations lead to deviation from the evolved phenotype (2, 3). Conversely, lower fidelity of DNA repair can be advantageous under stress since increased mutation supply promotes diversity and may accelerate adaptation (2, 4). Bacteria can efficiently fluctuate between high and low mutation regimes: While extremely low mutation rates are maintained in favourable conditions (5), elevation of mutation rates known as stress-induced mutagenesis (SIM) occurs in adapting populations (6, 7). One aspect of SIM is temporary hypermutability associated with changes in expression of multiple genes including error-prone DNA polymerases, recombination-preventing enzymes and enzymes involved in movement of mobile elements (8). For example transient hypermutability during RecA-mediated general stress response, SOS, is associated with up-regulation of error-prone polymerases that can by-pass DNA lesions during replication (8). However, increased fitness during SOS response stems from immediate growth advantage rather than from long-term evolution of stress resistance (9-11). Another aspect of SIM is the evolution of heritable mutator phenotypes, also referred to as constitutive, permanent, or true mutators, that contain mutator alleles and replicate over multiple generations with a high amount of error (6, 7). Heritably hypermutable strains, which periodically arise within a population via mutations in DNA repair genes (12, 13), are selected under stress indirectly via ‘hitchhiking’ of mutator alleles with stress-resistance mutations (14, 15), or by undefined pleiotropic effects conferred by inactivation of DNA repair (16, 17). There is much stronger theoretical and experimental evidence demonstrating that heritable mutators facilitate adaptive evolution (17). However, even heritable mutators are transient phenomena in natural populations as non-mutator variants are selected within already adapted mutator clones (18, 19). Restoration of mutation rate can occur via copy-number variation leading to full reversion of the mutator allele (20), disruption of the linkage between mutator alleles and beneficial mutations via recombination (21), anti-mutator compensatory mutations (4, 19), or prophage excision when its integration confers increase in mutation rate (22).

Bacterial mutators are abundant among clinical isolates, especially in chronic cases (23, 24). Multiple studies have attributed this to antibiotic selection (25-27), since mutators are a well-established risk factor for antimicrobial resistance (28, 29). However, the association between frequency of mutators in diagnostic samples and antibiotic treatments is weak (30, 31), and isogenic knockout mutator strains have increased ability to colonize mice in challenge models devoid of antibiotic exposure (32-34). Thus, the prevalence of mutators in clinical isolates most likely results from the selective process during
adaptation to the host (30, 35-37), where immunity acts as the ultimate selective pressure shaping the diversity of pathogenic strains (38).

The ‘immunological niche’ concept states that, due to the diversity and complexity of immune responses, every individual host represents a unique habitat that requires adaptation (39). As a pathogen needs to adapt to every new host, the host population represents an extremely heterogeneous environment where adaptive processes are ongoing and persistence of mutator alleles may be favoured (40). Moreover, as a small number of infection units may enter a host, pathogen adaptation is intrinsically associated with population bottlenecks during which the rate at which beneficial variants arise might be crucial (41, 42). This supports the contention that bacterial evolution is more likely to occur via multiple mutations rather than a single beneficial variant (43).

The fitness of a pathogenic strain in the host hinges on the complex, dynamic trait of virulence, determined by a multitude of virulence factors and host responses (44). Optimal virulence is a trade-off between acuteness and persistence with higher virulence facilitating extraction of resources and transmission, but too much damage can kill the host and stop transmission altogether (45). Additionally, virulence factors are often antigens so reduced virulence may facilitate immune evasion (46). Consequently, both loss and gain of virulence can be advantageous and indicate adaptive shifts towards acute or chronic pathogenesis respectively (47, 48). Exacerbation and attenuation of virulence are repeatedly observed in both knockout and naturally occurring mutators (36, 49-53), thus mutator strains/alleles may help pathogenic bacteria to evolve towards optimal virulence.

Most bacterial mutators are deficient in genes from mismatch (MMR) and oxidised guanine (OG) DNA repair systems (23). MMR and OG genes are conserved across all domains of life (54), and single nucleotide polymorphisms in their sequence may drastically alter mutation rate (55, 56). Nonetheless, these genes are variable in major bacterial pathogens, implicating mutation rate dynamics in the evolution of virulence (57, 58). MMR is coupled to replication and removes mispaired nucleotides as well as short insertion/deletion loops, and prevents recombination between divergent sequences (59, 60). The MMR pathway in Escherichia coli is well-defined, in which MutS dimer protein interacts with the replication processivity clamp DnaN (b-clamp), binds to the mismatch, recruits MutL, and the MutS:MutL complex then activates the MutH endonuclease (54). MutH cuts the unmethylated nascent strand at hemimethylated d(GATC) sites. MutL loads the UvrD helicase that unwinds the nicked DNA containing the error, which is followed by excision by one of the single-strand nucleases (54). This MMR organization, however, appears to be limited to E. coli and closely related Gammaproteobacteria (54, 61). In most bacteria and eukaryotes, MutH is absent and MutL has a conserved endonuclease site. dam methylase (acting at GATC sites) is absent and the strand discrimination signal is unknown (54, 61).
Bacillus subtilis, a model species for gram-positive bacteria, nicks created by ribonuclease *rnhC* during removal of misincorporated ribonucleosides direct MutL endonuclease towards the newly synthethised strand, and recD2 acts as a MMR helicase instead of uvrD (61). The OG system repairs oxidative DNA damage throughout the cell cycle (62, 63). Among all DNA bases, guanine is most sensitive to reactive oxygen species and its oxidised form, 8-oxo-dG or OG, is highly mutagenic as it preferentially pairs with adenine which, if not corrected, leads to G:C to A:T transversion on a second round of replication (62, 63). OG system organization is conserved in most bacteria and eukaryotes and generally MutT homologs (eg. MutX in *S. pneumoniae*) remove 8-oxo-dG from the nucleotide pool, MutM homologs excise 8-oxo-dG incorporated into DNA, and MutY homologs remove adenine from OG:A mispairings (62, 63).

We investigate the role of mutators and mutation rate dynamics in the epidemiology and evolution of the broad host-range pathogen *Streptococcus iniae*. *S. iniae* is a highly adaptable species, evidenced by its global distribution, ability to cross divergent host taxa boundaries and repeated re-infection of previously immunised hosts during disease outbreaks (64, 65). Moreover, Streptococcal pathogens in general are difficult candidates for immunisation in humans and animals due to high strain diversity evidently driven by immunisation, yet there is little information on the role of mutators in this evolutionary process (66, 67). We determine variation in mutation rate and identify mutations in MMR (*mutS, mutL, dnaN, recD2, rnhC*) and OG (*mutY, mutM, mutX*) genes among 80 diverse strains of *S. iniae*. We discover that both mutation rates and mutations in MMR and OG genes correlate with phylogenetic diversification but are highly conserved within phylogenetic clades. To determine whether variation in mutation rate phenotype and MMR/OG genotype is linked to adaptation to the host immunity, we identify variation in major phenotypic traits that determine virulence in streptococci (capsular polysaccharide, hemolysin, length of cell chains) and bacteria in general (resistance to reactive oxygen species (ROS), and biofilm formation). The expression of these traits among *S. iniae* isolates is highly consistent with phylogenetic affiliation and strongly associated with variation in MMR and OG genes and mutation rate phenotype. This supports the contention that strain diversification driven by adaptation to the host achieved via adjustment of virulence is facilitated by the mutator strains. Furthermore, we find that most changes in virulence determinants and MMR and OG genes occur in strains producing infection in unusual immunological landscapes such as mammals and bone tissue of immunised fish, indicating that mutators may facilitate the reinfection of immunised animals and transmission between divergent host species.
Results and Discussion

We investigated the link between mutation rate genotype and phenotype, and phylogenetic diversification among *Streptococcus iniae* strains isolated globally between 1976 and 2016 from different host taxa. Maximum likelihood phylogenetic analysis of 80 *S. iniae* isolates (Table 1) based on non-recombinant core genome SNPs derived from whole genome data resolved six major clades (A-F), one lineage with two strains (clade G), and three lineages with a single strain (Figs. 1, 2). Clades C-E show a degree of geographic endemism while clades A, B, and F contain strains from diverse geographic regions. Principally, variation in MMR and GO genes occurs only between the lineages, and they are highly conserved within clades (Fig. 2, Table 2). In fact, sequences of the major MMR and GO genes are conserved even within phylogenetic groups not readily definable by geographic origin, time, or host species, and may be useful for Multilocus Sequence Typing (MLST) (68). Although even synonymous SNPs in any gene locus can affect mRNA and have pronounced phenotypic consequences (69), most SNPs in MMR and GO genes were identified in protein functional domains, and most amino acid substitutions were predicted to have a deleterious effect on protein function (Table 2). Furthermore, the number of MMR and GO variants correlates significantly with mutation rate ($p = 0.0056$) and with the number of atypical phenotypic traits contributing to virulence ($p = 0.0331$), as predicted by a Phylogenetic Generalised Least Squares (PGLS) regression model that accounts for autocorrelation occurring between closely related strains (70). In turn, mutation rate variation is highly consistent with phylogenetic affiliation: According to multiple pair-wise strain comparisons by Maximum Likelihood Ratio test (71), with probabilities corrected for multiple comparison using False Discovery Rate (72), mutation rate difference is insignificant within but significant between major phylogenetic lineages (Suppl. Table 1).

Although mutation rate variation between divergent strains is significant, the magnitude of the differences is modest (around 5-fold) (Figure 1, 2, Suppl. Table 2). This may be inherent to streptococci, since only one order of magnitude or lower differences in mutation rate distinguish mutator from non-mutator phenotypes in other streptococcal species (around 10^{-7} and 10^{-8} mutation rates respectively) (23, 73). This is in contrast to other common pathogens where 2-3 orders of magnitude differences are observed (23). On the other hand, small differences in mutation rate are consistent with transience of mutators in natural populations and restoration of low mutation rate after adaptation is gained. Evolutionary theory predicts that heritably hypermutable phenotypes are costly due to inevitable accumulation of deleterious changes thus an adapted mutator clone would evolve back towards a lower mutation rate (17, 18, 74). This may occur via compensatory, ‘anti-mutator’ mutations in DNA repair genes (4, 19), or via recombination (21). Our data favour the former mechanism for several reasons. Firstly, we used a maximum likelihood inference method to exclude areas of recombination...
from our phylogenetic analyses (75), and the MMR and OG gene regions were not identified as recombinant regions in this analysis. Secondly, we created a pangenome for the 80 strains in our analysis and mapped on putative phage and prophage signatures (76), and insertion sequence elements (77). None of the MMR or OG genes, which are all present within the core genome of S. iniae, occurred in proximity to phage or ISE (Suppl. Fig. 1). Nevertheless, in laboratory E. coli populations, recombination seems to be the dominant process by which alterations in MMR and OG genotype occur, as determined by incongruence between phylogenetic trees constructed from the variant MMR/OG gene sequences and those inferred from genome-wide data (21). We were unable to apply similar analysis to our data set as the low number of substitutions in S. iniae MMR and OG genes (one or two non-synonymous mutations per gene compared with 1-53% non-synonymous base substitutions in the E. coli population (21)) provided insufficient support for robust phylogeny when used in isolation. The present strains originate from complex natural ecosystems where recombination (and mutation) may be more constrained by multifactorial selection pressures in contrast to a monoculture experiment. Moreover, recombination rates in richly capsulated streptococci are lower than in those with reduced capsule (78). Indeed, recombination rates within the core genome across the S. iniae strains in our analysis were extremely low with mean \(\mu_{m} \) 0.032 and only 5 from the 83 strains containing recombination blocks within the core genome where all of the MMR and OG genes analysed are located (Suppl. Table 5). Whilst we cannot rule out switch in MMR and OG type by recombination, accrual of SNPs via random mutation is a more parsimonious explanation here.

To investigate whether variation in mutation rate phenotype and MMR/OG genotype is associated with adaptation to the host, we identified variation in key virulence traits in streptococci (capsular polysaccharide, hemolysin, length of cell chains) and bacteria in general (resistance to ROS, and biofilm formation). Employing Phylogenetic Generalised Least Squares regression model accounting for autocorrelation due to phylogeny, we observe significant correlation \((p = 0.0331, \text{PGLS}) \) of the number of MMR and OG variants with number of atypical phenotypes for traits contributing to virulence. This suggests that fluctuations in mutation rate are linked to shifts in virulence, potentially facilitating major adaptive events that lead to strain diversification (Fig. 2, Table 3). Moreover, infections in atypical hosts (mammals) and tissue (bone) within apparently immune vaccinated hosts correlates strongly with number of atypical virulence-associated phenotypes \((p < 0.0001) \) and the number of variants MMR and OG variants \((p = 0.002) \). This implies that mutator strains facilitate multiple genetic changes leading to profound shifts in virulence and antigenicity during adaptation to a drastically different immunological setting.

Of the clades identified among S. iniae, clade A is apparently a dominant circulating clade primarily infecting Perciform fish that has persisted globally for almost two decades (clade A contains strains
isolated from USA, Honduras, and Australia between 1999 to 2016). Mutation rates in all isolates (n=35) among this ancestral lineage fall within a $1.5 - 2 \times 10^{-8}$ range (Figs. 1, 2; Clade A), which is similar to the base mutation rate estimated for other non-mutator gram positive bacteria (23, 73). All differences in mutation rates within this clade are insignificant except three pairwise comparisons that verge on p <0.05 (Suppl. Table 1). MMR and OG genes in these strains are identical, and only minor deviations from wildtype traits contributing to virulence were observed (absence of capsule production and longer cell chains in QMA0158, 216) (Figs. 1-3, Table 1). All other lineages (with the exceptions of clade C1 and strains QMA0445-46 discussed below) have significantly different mutation rates to clade A, contain unique and often multiple SNPs in mut genes, and show peculiar phenotypic variants related to virulence (Figs. 1-3, Tables 1,2, Suppl. Table 1). Although phylogenetic relatedness between lineages is fully resolved (Fig. 2), they originate almost simultaneously and nested lineages evolve independently sharing little phylogenetic history (Figs. 1,2). Lack of correlation between branch length and sampling date derived by root-to-tip regression analysis with time is evidence of non-neutral evolution amongst this collection of S. iniae isolates ($R^2=0.0936$, Correlation coefficient 0.306, best-fit root; Suppl. Fig. 2, (79)). Deviation from a neutral model is supported by highly skewed branching, with some branches comprising single isolates whilst others comprise many epidemiologically unrelated isolates (Figure 1, 2). This is suggestive of frequent strong selection, presumably imposed by heterogeneity of the immune landscape encountered during transfer between host individuals, and resembles genealogical tree topology derived from viral evolution over similar timespans (80, 81) although we acknowledge tree topology may also be affected by sampling bias.

Clade B contains QMA0084, a strain isolated from a black flying fox, Pteropus alecto, in Western Australia (WA) and two strains isolated from ornamental fish (clown loach, Chromobotia macracanthus) in USA. These isolates share a valine to isoleucine substitution in MutL predicted as neutral (PROVEAN score -0.271), a synonymous SNP in recD2, and a 56 bp deletion affecting the predicted promoter of mutY (Table 2). The latter mutation encompasses the -35 box, two binding sites of the RpoD17 general transcription factor, and the 1st bp of the -10 box, and was predicted to abolish the original promoter (Suppl. Fig. 3). However, mutY might still be transcribed at some level since two other potential promoters were identified in a nearby sequence (Suppl. Fig. 3). It appears that altered mutY expression is also affected by the rest of the genetic background as isolates exhibit significant differences (Suppl. Table 1) in mutation rate phenotype, 7×10^{-8} in QMA0084 and 4×10^{-8} in clown loach strains (Figs. 1-2). Phenotypically, clade B has shifted towards decreased haemolytic activity (Fig. 3, B2).

Clade C shares a common ancestor with clade B and is comprised of strains obtained from barramundi farmed in WA, Northern Territory (NT) and north QLD fish farms (nested subclades C1 and C2 respectively). While a core mutation rate of $1.5-2 \times 10^{-8}$ is observed in subclade C1, a significantly higher
mutation rate of 7×10^{-8} has been maintained in subclade C2 from north QLD for almost two decades (1995 to 2012) (Figs. 1,2 Suppl. Table 1). We speculate that the latter is attributable to rapid fluctuation in water salinity, oxygen and temperature accompanying periodic heavy rainfall in tropical north QLD, creating an unstable environment where adaptive processes are ongoing and high mutation rate is advantageous. Minor variation in virulence-related phenotypes (absence of capsule production and longer cell chains in QMA0074, 77) (Fig. 2, Table 1), are supportive that mutation rate evolution in this lineage might be driven by outside-the-host factors. The significant difference in mutation rate between nested clades C1 and C2 may result from variation in dnaN. In *Bacillus subtilis*, 90% of mismatch repair is dependent on targeting MutS to nascent DNA via the β sliding clamp (DnaN) zone (82, 83). Inactivation of dnaN1 in *B. anthracis* results in a mutator phenotype with a mutation rate equivalent to a mutS mismatch repair-defective strain (84). The tyrosine to isoleucine substitution in one of the critical residues of the loader binding interface of the β-clamp, predicted as deleterious (PROVEAN score -2.216), is present in all isolates of from clade C (Table 2), which may explain the high mutation rate in clade C2 strains (Fig. 2, Table 2). In contrast, only subclade C1 harbours T1135C nucleotide substitution in the dnaN that changes stop codon TAA into CAA coding for glutamine predicted as neutral (PROVEAN score -0.005), with the next stop codon TAG found immediately downstream. Putatively, T1135C and/or change of the dnaN stop codon (B5) may act as compensatory to the T326I substitution, reducing the mutation rate to a value not significantly different from the core rate found in clade A (Fig. 1, 2) via protein elongation or by affecting translation via stop codon usage bias (85). In addition, a synonymous variant in recD2 that is only present in subclade C2 may affect protein expression thereby contributing to the difference in mutation rate between C1 and C2 subclades.

Clade D consists of isolates from trout (*Oncorhynchus mykiss*) (strains obtained from Réunion and Israel). These strains have an estimated mutation rate of 5×10^{-8}, contain a glutamate to aspartate substitution in mutM predicted to be deleterious to protein function, a synonymous SNP in RecD2, and exhibit impeded haemolytic activity (Fig 1,2, Table 2). Also, isolates from Israel form thicker and more dense biofilm structures (Fig. 3, D2).

Isolates from humans and fish are found in clade E where multiple virulence trait phenotypes are observed (Figs. 2-3, Table 1). This clade contains two nested subclades that share a SNP in mutS, but have other unique SNPs (Fig. 2, Table 2) and exhibit mutation rates that are significantly different in most pairwise comparisons (Suppl. Table 1). Subclade E1 contains USA isolates from humans (QMA0133-35, 37-38) and hybrid striped bass (QMA0447-48), which have a substitution in the Shine-Dalgarno sequence of recD2 and a mutation rate of 6.5×10^{-8} (Fig 1, Table 2). Fish strains and three human strains (QMA0135, 37-38) form shorter cell chains and are less sensitive to H_2O_2. Two human strains QMA0133-34 produce thicker and more dense biofilm structures (Fig. 3, D2). QMA0133 is non-
encapsulated (Fig 3, A2), and QMA0134 appears to differentially express the capsular polysaccharide in
culture (Fig 3, A3). The close phylogenetic relationship presented here implicates a likely transfer from
farmed hybrid bass to humans (86), a host jump that may have been facilitated by the mutator
phenotype. Subclade E2 contains two human strains from Canada (QMA0130-31) and a tilapia strain
from USA (QMA0466). These strains have unique methionine to isoleucine substitution at the N-
terminus of MutX, and a mutation rate of 4.5×10^{-8} (Fig 1, Table 2). Both human strains are non-
encapsulated (Fig. 2). The tilapia strain expresses the capsule but forms short cell chains in common
with most strains from the subclade (Fig 2, Fig 3, C3). The close phylogenetic relationship again strongly
implicates transfer from tilapia farmed in USA to human patients in Canada via import into the Toronto
fish market (87) and again, the mutator state may underlie this host jump.

Clade F is not readily definable by location, time of isolation, or host species and comprises QMA0139
from unidentified fish in Canada, QMA0190 isolated from snakehead murrel in Thailand (both of which
appear on long branches), and a nested terminal clade comprised of barramundi isolates farmed in
Recirculating Aquaculture Systems (RAS) in New South Wales and South Australia (Fig. 2). The latter are
mutators and were sampled from barramundi bone lesions during a disease outbreak in vaccinated fish
where infection manifested itself as a slowly progressing osteomyelitis instead of typical acute
septicaemia and meningitis, implicating mutators in adaptation to new tissue in response to host
immunity (64, 65). Since they are distant to strains used in autogenous vaccines in clade A (QMA0155-
57, 160, QMA0250-52), the atypical outbreak might be classified as a case of vaccine-induced serotype
replacement (VISR) – spread of co-existing pathogenic strain/s after elimination of the dominant
strain/s in the vaccine (88). In contrast to natural populations where the investigation of VISR is
confounded by ecological and sampling biases, and randomised vaccine trials that lack power to detect
the population-wide effect of mass vaccination (88), barramundi RAS represent a relatively controlled
environment where vaccination against *S. iniae* fails occasionally but recurrently (65). RAS are self-
contained with minimal water exchange and high standards of water treatment (89). This ensures that
gen flow and, consequently, the probability of new serotype introduction after vaccination is reduced
to a minimum. A comparatively uniform immunized host population is exposed to dominant strains
against which it was vaccinated along with potentially co-existing lineages in the RAS. In the atypical
outbreaks in RAS in Australia, vaccine-induced immunity was partially effective in the infected fish,
evident by absence of proliferation of the new strain in typical niduses (blood, brain, and pronephros)
and cross-reactivity of vaccine-induced antibodies against bone isolates (65). This is in contrast with the
classical model of serotype replacement where a vaccine is ineffective against the replacing co-existing
strain. However, VISR can occur even if the vaccine is equally efficient against all circulating strains via
other trade-off mechanisms (88). Apparently, evasion of immune clearance and adaptation to osseous
tissue was permitted by shift towards attenuated virulence indicated by multiple phenotypic changes in bone isolates, including absence of capsule, impeded hemolytic activity, increased cell-chain length, and denser biofilms (Fig. 3). All of these changes have previously been associated with chronic infection and increased potential for colonization (90-96). Multiple SNPs in repair genes (Fig. 2, Table 2) and the unique mutation rate (Figs. 1-2, Table 1) in bone isolates suggest that shift in virulence allowing persistence in the bone tissue might have occurred via mutator phenotype. Serine to arginine substitution in MutL and tyrosine to isoleucine substitution in MutY occur in the ancestor of QMA0139, QMA0190, and bone strains. Both substitutions are predicted to have a deleterious effect on protein function (PROVEAN scores -2.050 and -2.544 respectively), but their effect on mutation rate is combined with unique SNPs found in each branch: QMA0139 has a SNP in the binding site for the DnaA transcription factor within the dnaN promoter, and a mutation rate of 4.5 x 10^{-8}, QMA0190 has synonymous SNP in mutL and a mutation rate of 6.5 x 10^{-8}, and bone strains have glutamine to glycine substitution in MutS predicted as neutral (PROVEAN score -0.635), a synonymous SNP in mutL, and a mutation rate of 3-4 x 10^{-8}. Considering that the mutation rate of QMA0190 is significantly higher compared to rates expressed by QMA0139 and bone isolates (Suppl. Table 1), it is likely that variants unique to the latter strains compensate for deleterious variants shared by the isolates (4).

Clade G contains two strains from tilapia isolated in USA (QMA0445-46). Notably, despite being phylogenetically distant from clade A, these strains have the same MMR and OG genotype and have retained the core mutation rate and the wildtype virulence phenotype (Fig. 2, Table 1), with the exception of capsule absence.

Three isolates of S. iniae were identified as independent phylogenetic lineages, with unique mutation rate genotypes and phenotypes, and virulence traits (Figs. 1-2, Tables 1-2). The first long branch with a single isolate contains a strain from snakehead murrel strain (Channa striata) from Thailand. This isolate is non-encapsulated and weakly haemolytic and has a mutation rate of 4.5 x 10^{-8}, potentially attributable to a deleterious aspartate to asparagine substitution in rnhC and SNP in the binding site of the fnr transcription factor within the dnaN promoter. A second long branch with a single strain contains the oldest among the analysed strains, QMA0140 isolated in 1976 from dolphin (Inia geoffrensis) (97). This strain exhibits a mutation rate of 1 x 10^{-8}, which is unique among the strains and significantly lower than the core mutation rate, perhaps linked to increased translation of recD2 helicase resulting from a SNP in the ribosome binding site (Fig 2, Table 2). The longest branch on the tree contains a second dolphin strain, QMA0141, isolated two years later in 1978 (98). This isolate is highly divergent from the rest of strains with around 20 kB of non-recombinant SNPs in pair-wise comparisons with other strains, accounting for around 1% genomic difference. In contrast to QMA140, it mutates at a rate of 1x 10^{-7}, the highest mutation rate phenotype determined among the isolates and
significantly different to the rest of the values. Multiple SNPs are observed in all MMR and OG genes: 3 in *dnaN* and *mutX*, 4 in *mutM*, 9 in *mutL* and *rnhC*, 15 in *recD2*, 9 in *mutL* and *rnhC*, and 68 in *mutS*. Both dolphin isolates are non-encapsulated, show increased ability to withstand oxidative stress, and form denser and thicker biofilms (Fig 2, 3).

The conservation of *S. iniae* mutation rate and MMR/OG genotype within phylogenetic clades and variation between the lineages support the importance of mutation rate dynamics in pathogen evolution. Mechanisms that underlie the flux of mutator alleles and phenotypes include random mutations (4), tandem repeat copy-number variation (20, 58), non-homologous recombination (21), and prophage integration/excision (22). In *S. iniae*, mutation rate dynamics appear to be primarily driven by random mutations and compensatory evolution. Tandem-repeat copy-number variants were not identified in *S. iniae* MMR or OG genes, supporting the contention that occurrence of mutator phenotypes and their full reversion via this mutational type is limited to *E. coli* and closely related species (20, 58). Indeed, the presence of tandem repeats has only been detected in *mutL* in *Proteobacteria* (20, 58), and it is well recognized that *mutL* is structurally and functionally different in gram-positive bacteria and eukaryotes (54, 61). With the exception of the large deletion affecting the *mutY* promoter in clade B, all identified mutations are single nucleotide substitutions. These MMR and OG SNPs most likely result from random mutations which can be sufficient to induce profound changes in mutation rate (55, 56). Since, in most cases, SNPs occur in multiple genes (Fig. 2) it is likely that compensatory evolution of mutation rate prevails in *S. iniae* where some variants increase and some decrease the background mutation rate (4). The association of MMR/OG variation with changes in virulence traits (Fig. 2) supports the contention that emergence and decline of mutator strains may facilitate adaptive processes in *S. iniae* populations driven by host immune response. Furthermore, the most profound changes in virulence-associated traits and MMR and OG variants are observed in atypical hosts (mammals) and atypical tissue (bone) within apparently immune vaccinated fish hosts (Fig. 2), which has major epidemiological implications. First, mutators may promote multiple adaptive changes required for pathogen transition among divergent host taxa known as ‘host jumps’, such as *Osteichthyes* and *Mammalia* discussed in the present study (99). Second, mutators might present a risk factor to immune escape after vaccination and serotype replacement. Moreover, as evidenced by *S. iniae* colonization of bone tissue of vaccinated barramundi described previously (65), vaccine escape leading to serotype replacement might occur without major disruption of immune recognition when multiple changes attenuating virulence and antigenicity allow persistence in a tissue with lower immune surveillance.

We cannot eliminate the possibility that variation in mutation rate and MMR/OG genotype in *S. iniae* is neutral and simply coincides with phylogenetic diversification and variation in traits determining
Presence of dysfunctional MMR and OG genes within the evolutionary history of bacterial strains may leave signatures within the genome in the form of mutational bias. For example, in all but the most AT-rich bacteria there is a predisposition for GC-AT transitions over time ([100]), but in a long term evolutionary experiment in *E. coli*, defective OG repair resulted in strong bias towards AT to CG transversions while AT to GC transitions were dominant in MMR defective mutators ([101]). We quantified the mutational spectra by clade across the natural *S. iniae* isolates in this study (Fig. 4). Two clades of non-mutator strains (A and C1) had highly similar SNP type distribution (Fig. 4). Of the mutator clades, only clade D had mutations constrained to a single MMR/OG, a SNP in *mutM* in the OG repair system (Fig. 2), resulting in an amino acid substitution in the DNA glycolyase domain with PROVEAN score of -2.990 (deleterious) (Table 2). Here we found the highest frequency of AT to CG transversions, consistent with findings in *E. coli* experimental mutators defective in OG repair, albeit at much lower frequency in our natural *S. iniae* mutator isolates ([101]). Two mutator clades (B and E2) had higher frequency of AT to GC transitions than the non-mutator clades, and indeed other mutator clades (Fig 4). Clade B contains mutations in both *mutL* (V-I substitution, PROVEAN -0.27, Table 2) and *recD2* (synonymous) in the MMR system. Clade B strains also contain a conserved mutation in the promoter of *mutY* in the OG repair system (Table 2). We acknowledge the weakness of these signals compared to those reported in *E. coli* ([101]). However, we include only natural mutator isolates in which changes occur in multiple genes in both MMR and OG systems. Moreover, *S. iniae* genomes are already AT-rich (mean 36.55% GC compared to *E. coli* ~50%) which may constrain transition and transversion mutations that further bias the nucleotide content. Consequently, complete conservation of MMR and OG genes linked with consistent mutation rates within *S. iniae* lineages (Fig. 2) and the fact that most SNPs occur in functionally relevant coding and regulatory regions and/or change amino acid sequence (Table 2), supports that the occurrence of mutator strains is likely to precede and facilitate shifts in virulence. This may in turn lead to the major diversification events and epidemiologically relevant incidents such as vaccine escape outbreaks and host jumps in these bacterial lineages.

Our results support the contention that high mutation rates promote transition to a new immunological setting requiring multiple mutations and phenotypic changes, such as adaptation to a novel host, new host tissue, or a host with vaccine-induced adaptive immune response. Extension to other species such as *Streptococcus pneumoniae* may be particularly interesting as serotype evolution following vaccination programmes is well documented, but the role of mutators in this process is unknown ([66, 67, 102]). Future studies should determine how generalisable the role of mutators is in the epidemiology of bacterial pathogens, evolution of virulence and antigenicity, and emergence of new pathogenic strains.

Materials and methods

Strains and growth conditions
Eighty isolates of *S. iniae* collected in Australia, USA, Canada, Israel, Honduras, and Thailand between 1976 and 2016 from eight fish species (*Lates calcarifer, Scorum barcoo, Epalzeorhynchos frenatum, Epalzeorhynchos bicolor, Oreochromis sp., Channa striata, Chromobotia macracanthus, Oncorhynchus mykiss*) and three mammalian species (*Homo sapiens, Inia geoffrensis, Pteropus alecto*) were analysed (Table 1). Strains were received from culture collections, veterinarians, or directly from fish farms (Suppl. Table 3) and stored as master seed stocks without further subculture at -80°C in Todd-Hewitt Broth (THB, Oxoid) + 20% glycerol. Frozen stocks were recovered on Columbia agar supplemented with 5% defibrinated sheep blood (Oxoid), and cultured at 28°C on Todd-Hewitt agar (THA) or in THB with agitation 200 rpm unless otherwise specified.

Estimation of mutation rate phenotype by fluctuation analysis

A fluctuation analysis assay for spontaneous occurrence of rifampicin resistance was optimized according to Rosche and Foster (103). A single broth culture was initiated from five separate colonies, recovered on Columbia blood agar from stock, and grown overnight to late-exponential phase in THB. Cultures were adjusted to OD₆₀₀ = 1 (10⁸ CFU/mL), diluted 1:100, and distributed in 200 µl aliquots into 8 wells of a sterile U-bottom 96-well plate (Greiner). Prior to dilution, 100 µl of each OD₆₀₀-adjusted culture was spread onto THA containing 0.5 µg/mL rifampicin to confirm absence of resistant mutants. Although comparatively large initial inocula (1-2 x 10⁵ CFU per culture, confirmed by Miles and Misra CFU count (104) of OD-adjusted cultures) were used, this minimised variance in final CFU number (Nₚ) determined in preliminary experiments. Invariability in Nₚ allowed statistical comparison of mutation rates by the Maximum Likelihood Ratio test (71). To infer the Nₚ in final cultures and monitor their growth by optical density, replicate plates containing two cultures per strain were prepared and incubated in a BMG FLUOstar OPTIMA microplate reader. When these representative cultures entered early stationary phase, CFU counts were performed by Miles and Misra method (104) and invariably estimated as 1-2 x 10⁸ CFU in each well. Immediately after, entire 200 µL cultures (above) were plated on THA containing 0.5 µg/mL rifampicin for selection of mutants, dried under laminar flow, and incubated until rifampicin resistant colonies appeared. The assay was repeated four times for each strain in blocks of eight cultures using 20 isolates haphazardly chosen from different phylogenetic lineages in each measurement. In some cases, e.g. a single strain representing an independent phylogenetic lineage or with significantly differences in mutation rates detected in closely related strains, assays were repeated 1-2 more times to increase statistical power. The rifampicin-resistant mutant counts were pooled into single data sets representing 32 to 48 cultures per strain (Suppl. Table 2).

DNA extraction, preparation and sequencing
Genomic DNA was extracted from cells collected from 10 mL late-exponential phase culture in Todd-Hewitt broth with the DNeasy Blood & Tissue kit (Qiagen) using a modified protocol with an additional lysis step as described previously (105). Sequencing was performed on the Illumina HiSeq2000 platform from Nextera XT pair-end libraries at Australian Genome Research Facility, Melbourne. A reference genome from strain QMA0248 was constructed using both long reads derived from a single Smrt Cell using the PacBio RS II system with P4C2 chemistry and short reads from Illumina HiSeq2000 derived from Nextera XT paired-end libraries as reported elsewhere (NCBI accession no: GCA_002220115.1). All sequence data are deposited at NCBI under Bioproject number PRJNA417543, SRA accession SRP145425. Sample numbers, accession numbers and extended metadata are provided in Suppl. Table 3. Assembly statistics are provided in Suppl. Table 4.

Alignment, recombination detection and phylogenetic analysis

Phylogeny was constructed based on core genome SNPs from de novo genome assemblies filtered to remove recombination breakpoints. Paired-end reads from Illumina were trimmed with Nesoni clip tool version 0.132 (http://www.vicbioinformatics.com/software.nesoni.shtml), with minimum read length 50, and the first 15 bp of each read removed as quality deterioration in this region was observed when assessed with FASTQC version 0.11.5. Assembly was performed using the SPAdes assembler version 3.7.1 (106), with minimum read coverage cutoff set to 10. Quality of assemblies was assessed with QUAST 3.2 (107). Contigs were ordered by alignment to QMA248 reference genome (CP022392.1) with Mauve Contig Mover 2.4.0 (108). Genome annotation was performed using Prokka 1.11 (109). Rapid alignment of core genomes was carried out using parsnp in the Harvest Tools suite version 1.2 (110), and the resulting alignment provided as an input to Gubbins 1.4.7 (75) for detection and exclusion of variants produced by recombination. Phylogenies were then inferred from post-filtered core genome polymorphic sites by maximum likelihood using RAxML 8.2.8 (111) with the general time reversible nucleotide substitution model GTRGAMMA and bootstrap support from 1000 iterations. Effect of ascertainment bias associated with using only polymorphic sites on branch length during ML inference was corrected using Felsenstein’s correction implemented in RAxML 8 (112). The resulting phylogenetic tree was visualized using Dendroscope v 3.5.7 (113) with bootstrap node support value cut-off 75. For the phylogram figure, tip labels were hidden for clarity and the edge containing QMA0141 was re-scaled as dotted line representing 100-fold decrease in length (Fig. 1). A cladogram based on the inferred phylogeny, showing all tip labels and bootstrap support for each node, was annotated with metadata using Evolview V2 (Fig. 2) (114). To determine whether there was a strong temporal signal in the phylogenetic data, a root-to-tip regression of branch length against time since isolation was performed in TempEst (79), using genetic distances corrected for ascertainment bias in an unrooted
tree estimated by maximum likelihood from the alignment of non-recombinant core-genome SNPs in RAxML 8.2.8.

SNP analysis, variation in DNA repair genes and their regulatory regions

SNP analysis was performed by read-mapping with Geneious version 9.1 (115), using default settings unless otherwise specified. Paired-end reads from each genome were trimmed, merged into a single file with expected distances between the reads set to 250 bp, and mapped to the curated reference genome of strain QMA0248. Mapped reads were used to detect SNPs with minimum coverage set to 10 and frequency to 0.9. A consensus “pseudogenome” was generated for every strain based on the reference sequence incorporating any detected variants (116). Multiple alignment of these pseudogenomes was carried out with Geneious aligning tool. SNP types and position per strain were exported as a table and SNPs of each type occurring only in each clade but not in any other clade were counted and plotted using a custom script in R. Sequences of MMR genes (dnan, mutS, mutL, recD2, rnhC) and OG genes (mutY, mutM, mutX) annotated in the QMA0248 reference genome were identified in each strain genome sequence. Promoter regions of repair genes were determined with BPROM (117), protein functional domains by SMART genomic (118), and effect of amino acid substitutions on protein function by PROVEAN Protein with a sensitivity cut-off of 1.3 (119). To detect large variants, alignment of these regions extracted from de novo genome assemblies was carried out, and a 56 bp deletion detected in mutY promoter of clade B was confirmed by PCR with CAGAAGGAAGAAACAGAC_F/ACCTCTATTGTAGCAAAG_R primers.

Detecting possible association between variation in DNA repair genes and mobilome

A pangenome for the 80 S. iniae isolates was constructed with GView server (120) using the QMA0248 reference genbank (.gbk) file as seed by sequentially adding 79 genome assemblies by clade in the order derived from the cladogram (Fig. 2). Phage positions in the resulting pangenome were then determined by BLAST using Phaster (76) while IS positions were identified using ISFinder (77) with a BLAST e-value cutoff of 1×10^{-30}. Positions of MMR and OG genes in the pangenome were determined via manual search of the .gbk file. An image was created in BRIG (121) using the pangenome as reference then aligning the 80 genome assemblies by BLAST with an e-value cutoff of 1×10^{-30}. The resulting image was annotated in BRIG from a spreadsheet derived from the positions determined above, and coloured according to clade (Suppl. Fig. 1).

Phenotypic variation related to virulence and antigenicity

A multitude of intracellular and secreted enzymes contribute to virulence in the *Streptococcus* genus (90, 122). Considering the large number of strains, we limited analysis to major, easily observable, and
distinct phenotypes strongly associated with virulence in streptococci (capsule, hemolysis, cell chains) and bacteria in general (oxidation resistance, biofilms). All assays were performed at least in triplicate per strain.

Buoyant density assay for presence of polysaccharide capsule

Presence/absence of polysaccharide capsule was estimated by Percoll buoyant density assay. Isotonic stock Percoll (ISP) was prepared by mixing nine parts of Percoll with one part of 1.5 M NaCl. Then, 6 parts of ISP was diluted with 4 parts of 0.15 M NaCl to make final 50% Percoll solution, which was distributed by 3 mL into flow cytometry tubes. THB cultures (10 mL) grown to late-exponential phase were adjusted at OD$_{600}$ 10^8 CFU/mL, centrifuged at 3220 x g for 5 min, resuspended in 0.5 mL of 0.15 M NaCl, and layered onto the Percoll. Tubes were centrifuged at 4 °C in a swinging bucket rotor at 4000 x g for 3 h with low acceleration and no brake. In this assay, encapsulated cells form a clear compact band in the Percoll gradient (Fig. 3, A1), non-encapsulated cells form a pellet in the bottom of the tube (Figure 3, A2) and, occasionally, strains show differential expression of capsular polysaccharide evidenced by band and a pellet (Fig. 3, A3).

Haemolytic activity assay on sheep blood agar

Rapid high-throughput detection of impaired haemolytic activity was achieved by blood-agar clearance zone assay. Briefly, 5 mm wells were made in Columbia agar supplemented with 5% defibrinated sheep blood (Oxoid, Australia). Bacterial cultures grown to late-exponential phase (~10^8 CFU) were diluted 1:1000 and 50 µL of diluted cultures were pipetted into punctures in the agar (initial inoculum ~$5x10^4$ CFU in each puncture). A 3 mm wide clearance zone was generally produced by bacterial lysis of sheep erythrocytes during 24 h incubation (Fig. 3, B1). Where haemolysis was absent or fragmentary, impeded haemolytic activity was recorded (Fig. 3, B2).

Chain formation microscopy

To assess chain formation, *S. iniae* cultures in THB were grown stationary in 96-well plates at 28 °C for 24 h, mixed and 5 µL wet mounts prepared on a glass microscope slide. Slides were observed by bright field microscopy under 40x objective with an Olympus BX40 microscope and captured using an Olympus DP28 digital camera using CellSens software (Olympus Optical Co, Japan). Specimens were observed for at least 3 min and 2-20 cell chains were generally observed (Fig. 3, C1). Where over 20 cells in a chain were repeatedly detected (Fig. 3, C2) increased chain formation was recorded, and when more than 10 cells in a chain were not detected by similar observation and the culture was mainly composed of detached cells (Fig. 3, C3) impeded chain formation was recorded. For the figure, 50 µL of
cultures were dried onto slides at RT, fixed with methanol, Gram stained, and images captured under 100x objective.

Oxidation resistance assay

Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) (123) of hydrogen peroxide were measured to assess oxidative stress resistance among *S. iniae* strains. THB cultures grown to late exponential phase were adjusted to $\text{OD}_{600} = 1 \times 10^8 \text{CFU/mL}$, diluted 1000-fold, and distributed by 100 μL (~104 CFU) into wells of a U-bottom 96-well plate (Greiner). THB (100 μL) with 2-fold excess concentration of hydrogen peroxide was added to the wells and serially diluted twofold, resulting in a range from 0 to 10 mM final peroxide concentrations. Plates were incubated stationarily for 24h and examined for presence of observable growth to determine the MIC. Viable cell counts of cultures without visible growth were performed to determine MBC. MIC of hydrogen peroxide was estimated as 3 mM for all strains, and MBC as 4 mM for the majority of strains. MBC elevated to 5 mM in dolphin and human isolates from USA was classified deviation from a wildtype phenotype.

Biofilm formation and visualisation assay

S. iniae biofilms were grown for 4 days in 8-well Lab-Tek® II Chamber Slide™ Systems. To prepare an initial inoculum of 5 x 105 CFU, THB cultures grown to late exponential phase were adjusted to $\text{OD}_{600} = 1 \times 10^8 \text{CFU/mL}$, diluted 100-fold, and 0.5 mL of diluted cultures were placed into Chamber slide wells. After 24 h incubation, THB was removed and replaced with fresh THB every 10-14 h for 3 days. For visualisation, biofilms were washed in PBS, stained for 15 min with 1 μM fluorescent BacLight Red bacterial stain, washed in PBS, fixed for 30 min with 10% formalin, and washed twice PBS. Z-stacks were collected by ZEISS LSM 710 Inverted Laser Scanning Confocal Microscope at 20x objective and visualised using ZEN2012. Quantification of biofilms was performed using COMSTAT (124). Structures of biomass larger than 3.5 and average thickness over 5 were classified as increased biofilm forming activity (Fig. 3).

Identifying wildtype virulence-related phenotypes

We consider prevalent phenotypes as a wildtype, namely: presence of polysaccharide capsule (71.25 % of strains; Figure 3, A1) and haemolytic activity (85% of strains; Figure 3, B1), up to 20 cells in a chain (77.5 % of strains; Figure 3, A1), 3 mM MIC and 4 mM MBC of hydrogen peroxide (91.25 % of strains), and 8 -12 μm thick biofilms covering up to 30% of representative image (86.25 % of strains, Fig. 4A). Other phenotypes are regarded as deviant and discussed.

Statistical analysis
Analysis of co-variance between number of MMR and OG variants, mutation rates, number of atypical phenotype associated with virulence, and atypical places of isolation were tested with a Phylogenetic Generalised Least Squares model that accounts for relatedness among strains under Pagel's λ of 0.6 implemented in R (70). Estimation of mutation rates was carried out using the Ma-Sandri-Sarkar Maximum Likelihood Estimation (MSS-MLE) method as implemented in FALCOR fluctuation analysis calculator (125). Differences in mutation rates were compared by Likelihood Ratio Test (LRT) using the rSalvador R package (71, 126). LRT estimates the overlap between confidence intervals calculated for two fluctuation experiment data sets and allows to compare fluctuation assay data with different number of cultures and resolve very small differences in mutation rate (71, 126). The Compare.LD function was applied pair-wise to all strains, and obtained p values were corrected for multiple comparisons by controlling the False Discovery Rate (72) using p.adjust in R. Adjusted p values less than 0.05 were considered to indicate significant difference in mutation rates.

Acknowledgements

This work was supported by The Australian Research Council Discovery Project Grant DP120102755 awarded to ACB. We thank the University of Queensland School of Biological Sciences for funding a tuition fee waiver for OS. For provision of strains into our collection over 15 years we thank: Judy Forbes-Faulkner, Oonoomba Veterinary Laboratory, QLD, Australia; Lynn Shewmaker, CDC, Atlanta, USA; Christian Michel, INRA, France; Suresh Benedict, Berrimah Veterinary Laboratories, NT, Australia; Nicky Buller, WA Fisheries, WA, Australia; Mark White, Tréidlia Biovet Pty (formerly Allied Biotechnology), NSW, Australia; Matt Landos, Future Fisheries Veterinary Services, NSW, Australia; Spencer Russell, Novartis Animal Health, Canada; Ruben Arturo Lopez Crespo, Regal Springs Tilapia, Honduras. We thank Dr Simone Blomberg for advice on statistical analyses and Mr Nazar Rudenko for assistance with writing software pipelines and for use of his Unix server.
1. Ferenci T. 2015. Trade-off Mechanisms Shaping the Diversity of Bacteria. Trends Microbiol doi:10.1016/j.tim.2015.11.009.
2. Stich M, Manrubia SC, Lazaro E. 2010. Variable Mutation Rates as an Adaptive Strategy in Replicator Populations. Plos One 5.
3. Sniegowski P, Raynes Y. 2013. Mutation Rates: How Low Can You Go? Current Biology 23:R147-R149.
4. Wielgoss S, Barrick JE, Tenaillo O, Wiser MJ, Dittmar WJ, Cruveiller S, Chan-Woon-Ming B, Medigue C, Lenski RE, Schneider D. 2013. Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc Natl Acad Sci U S A 110:222-7.
5. Wielgoss S, Barrick JE, Tenaillo O, Cruveiller S, Chan-Woon-Ming B, Medigue C, Lenski RE, Schneider D. 2011. Mutation Rate Inferred From Synonymous Substitutions in a Long-Term Evolution Experiment With Escherichia coli. G3 (Bethesda) 1:183-186.
6. Galhardo RS, Hastings PJ, Rosenberg SM. 2007. Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42:399-435.
7. Sundin GW, Weigand MR. 2007. The microbiology of mutability. Fems Microbiology Letters 277:11-20.
8. Foster PL. 2007. Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol 42:373-97.
9. Wrande M, Roth JR, Hughes D. 2008. Accumulation of mutants in "aging" bacterial colonies is due to growth under selection, not stress-induced mutagenesis. Proc Natl Acad Sci U S A 105:11863-8.
10. Torres-Barcelo C, Kojadinovic M, Moxon R, MacLean RC. 2015. The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic. Proc Biol Sci 282:20150885.
11. Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260-71.
12. Boe L, Danielsen M, Knudsen S, Petersen JB, Maymann J, Jensen PR. 2000. The frequency of mutators in populations of Escherichia coli. Mutat Res 448:47-55.
13. Miller JH. 1996. Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu Rev Microbiol 50:625-43.
14. Mao EF, Lane I, Lee J, Miller JH. 1997. Proliferation of mutators in A cell population. J Bacteriol 179:417-22.
15. Taddei F, Radman M, MaynardSmith J, Toupane B, Gouyon PH, Godelle B. 1997. Role of mutator alleles in adaptive evolution. Nature 387:700-702.
16. Torres-Barcelo C, Cabot G, Oliver A, Buckling A, Maclean RC. 2013. A trade-off between oxidative stress resistance and DNA repair plays a role in the evolution of elevated mutation rates in bacteria. Proc Biol Sci 280:20130007.
17. Raynes Y, Sniegowski PD. 2014. Experimental evolution and the dynamics of genomic mutation rate modifiers. Heredity (Edinb) 113:375-80.
18. de Visser JA. 2002. The fate of microbial mutators. Microbiology 148:1247-52.
19. Turrientes MC, Baquer F, Levin BR, Martinez JL, Ripoll A, Gonzalez-Alba JM, Tobes R, Manrique M, Baquero MR, Rodriguez-Dominguez MJ, Canton R, Galan JC. 2013. Normal mutation rate variants arise in a Mutator (Mut S) Escherichia coli population. PLoS One 8:e72963.
20. Shaver AC, Sniegowski PD. 2003. Spontaneously arising mutL mutators in evolving Escherichia coli populations are the result of changes in repeat length. J Bacteriol 185:6076-82.
21. Denamur E, Lecointre G, Darlu P, Tenaillon O, Acquaviva C, Sayada C, Sunjevaric I, Rothstein R, Elion J, Taddei F, Radman M, Matic I. 2000. Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103:711-21.

22. Scott J, Thompson-Mayberry P, Lahmamsi S, King CJ, McShan WM. 2008. Phage-associated mutator phenotype in group A streptococcus. J Bacteriol 190:6290-301.

23. Hall LM, Henderson-Begg SK. 2006. Hypermutable bacteria isolated from humans—a critical analysis. Microbiology 152:2505-14.

24. Oliver A. 2010. Mutators in cystic fibrosis chronic lung infection: Prevalence, mechanisms, and consequences for antimicrobial therapy. Int J Med Microbiol 300:563-72.

25. Matsushima A, Takakura S, Fujihara N, Saito T, Ito I, Inummi Y, Ichiyama S. 2010. High prevalence of mutators among Enterobacter cloacae nosocomial isolates and their association with antimicrobial resistance and repetitive detection. Clin Microbiol Infect 16:1488-93.

26. Wang S, Wang Y, Shen J, Wu Y, Wu C. 2013. Polymorphic mutation frequencies in clinical isolates of Staphylococcus aureus: the role of weak mutators in the development of fluoroquinolone resistance. FEMS Microbiol Lett 341:13-7.

27. Negri MC, Morosini MI, Baquero MR, del Campo R, Blazquez J, Baquero F. 2002. Very low cefotaxime concentrations select for hypermutable Streptococcus pneumoniae populations. Antimicrobial Agents and Chemotherapy 46:528-530.

28. Chopra I, O'Neill AJ, Miller K. 2003. The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist Updat 6:137-45.

29. Blazquez J. 2003. Hypermutation as a factor contributing to the acquisition of antimicrobial resistance. Clinical Infectious Diseases 37:1201-1209.

30. Mena A, Smith EE, Burns JL, Speert DP, Moskowitz SM, Perez JL, Oliver A. 2008. Genetic Adaptation of Pseudomonas aeruginosa to the Airways of Cystic Fibrosis Patients Is Catalyzed by Hypermutation. Journal of Bacteriology 190:7910-7917.

31. Gutierrez O, Juan C, Perez JL, Oliver A. 2004. Lack of association between hypermutation and antibiotic resistance development in Pseudomonas aeruginosa isolates from intensive care unit patients. Antimicrobial Agents and Chemotherapy 48:3573-3575.

32. Giraud A, Matic I, Tenaillon O, Clara A, Radman M, Fons M, Taddei F. 2001. Costs and benefits of high mutation rates: Adaptive evolution of bacteria in the mouse gut. Science 291:2606-2608.

33. Nilsson AI, Kugelberg E, Berg OG, Andersson DI. 2004. Experimental adaptation of Salmonella typhimurium to mice. Genetics 168:1119-30.

34. Healey KR, Zhao Y, Perez WB, Lockhart SR, Sobel JD, Farmakiotis D, Kontoyiannis DP, Sanglard D, Taj-Aldeen SI, Alexander BD, Jimenez-Ortigosa C, Shor E, Perlin DS. 2016. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multidrug resistance. Nat Commun 7:11128.

35. Labat F, Pradillon O, Garry L, Peuchmar D, Fantin B, Denamur E. 2005. Mutator phenotype confers advantage in Escherichia coli chronic urinary tract infection pathogenesis. FEMS Immunol Med Microbiol 44:317-21.

36. Mena A, Moya B, de Francisco T, Perez JL, Oliver A. 2007. Inactivation of the mismatch repair system in Pseudomonas aeruginosa attenuates virulence but favors persistence of oropharyngeal colonization in cystic fibrosis mice. J Bacteriol 189:3665-8.

37. Oliver A, Mena A. 2010. Bacterial hypermutation in cystic fibrosis, not only for antibiotic resistance. Clinical Microbiology and Infection 16:798-808.

38. Aquino T, Nunes A. 2016. Host immunity and pathogen diversity: A computational study. Virulence 7:121-8.

39. Cobey S. 2014. Pathogen evolution and the immunological niche. Ann N Y Acad Sci 1320:1-15.
40. Lukacisinova M, Novak S, Paixao T. 2017. Stress-induced mutagenesis: Stress diversity facilitates the persistence of mutator genes. PLoS Comput Biol 13:e1005609.

41. Abel S, Abel zur Wiesch P, Davis BM, Waldor MK. 2015. Analysis of Bottlenecks in Experimental Models of infection. PLoS Pathog 11:e1004823.

42. Metzgar D, Wills C. 2000. Evidence for the adaptive evolution of mutation rates. Cell 101:581-4.

43. Fogle CA, Nagle JL, Desai MM. 2008. Clonal interference, multiple mutations and adaptation in large asexual populations. Genetics 180:2163-73.

44. Methot PO, Alizon S. 2014. What is a pathogen? Toward a process view of host-parasite interactions. Virulence 5:775-85.

45. Mackinnon MJ, Read AF. 2004. Virulence in malaria: an evolutionary viewpoint. Philos Trans R Soc Lond B Biol Sci 359:965-86.

46. Deitsch KW, Moxon ER, Wellem TE. 1997. Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol Mol Biol Rev 61:281-93.

47. Shrestha S, Bjornstad ON, King AA. 2014. Evolution of acuteness in pathogen metapopulations: conflicts between "classical" and invasion-persistence trade-offs. Theor Ecol 7:299-311.

48. Maurelli AT. 2007. Black holes, antivirulence genes, and gene inactivation in the evolution of bacterial pathogens. FEMS Microbiology Letters 267:1-8.

49. Merino D, Reglier-Poupet H, Berche P, Charbit A, European Listeria Genome C. 2002. A hypermutator phenotype attenuates the virulence of Listeria monocytogenes in a mouse model. Mol Microbiol 44:877-87.

50. Gonzalez K, Faustoferri RC, Quivey RG, Jr. 2012. Role of DNA base excision repair in the mutability and virulence of Streptococcus mutans. Mol Microbiol 85:361-77.

51. Picard B, Duriez P, Gouriou S, Matic I, Denamur E, Taddei H. 2001. Mutator natural Escherichia coli isolates have an unusual virulence phenotype. Infection and Immunity 69:9-14.

52. Smania AM, Segura I, Pezza RJ, Becerra C, Albesa I, Argarana CE. 2004. Emergence of phenotypic variants upon mismatch repair disruption in Pseudomonas aeruginosa. Microbiology-Sgm 150:1327-1338.

53. Canfield GS, Schwingel JM, Foley MH, Vore KL, Boonanantanasarn K, Gill Al, Sutton MD, Gill SR. 2013. Evolution in fast forward: a potential role for mutators in accelerating Staphylococcus aureus pathoadaptation. J Bacteriol 195:615-28.

54. Fukui K. 2010. DNA mismatch repair in eukaryotes and bacteria. J Nucleic Acids 2010.

55. Dai L, Muraoka WT, Wu ZW, Sahin O, Zhang QJ. 2015. A single nucleotide change in mutY increases the emergence of antibiotic-resistant Campylobacter jejuni mutants. Journal of Antimicrobial Chemotherapy 70:2739-2748.

56. Rajanna C, Ouellette G, Rashid M, Zemla A, Karavis M, Zhou C, Revazishvili T, Redmond B, McNew I, Bukanidze I, Imnadze P, Rivers B, Skowronska EW, O'Connell KP, Sulakvelidze A, Gibbons HS. 2013. A strain of Yersinia pestis with a mutator phenotype from the Republic of Georgia. FEMS Microbiol Lett 343:113-20.

57. Ambur OH, Davidsen T, Frye SA, Balasingham SV, Lagesen K, Rognes T, Tonjum T. 2009. Genome dynamics in major bacterial pathogens. Fems Microbiology Reviews 33:453-470.

58. Chen F, Liu WQ, Eisenstark A, Johnston RN, Liu GR, Liu SL. 2010. Multiple genetic switches spontaneously modulating bacterial mutability. BMC Evol Biol 10:277.

59. Li GM. 2008. Mechanisms and functions of DNA mismatch repair. Cell Research 18:85-98.

60. Tham KC, Hermans N, Winterwerp HHK, Cox MM, Wyman C, Kanar R, Lebbink JHG. 2013. Mismatch Repair Inhibits Homeologous Recombination via Coordinated Directional Unwinding of Trapped DNA Structures. Molecular Cell 51:326-337.

61. Lenhart JS, Pillon MC, Guarne A, Biteit JS, Simmons LA. 2016. Mismatch repair in Gram-positive bacteria. Res Microbiol 167:4-12.
62. David SS, O’Shea VL, Kundu S. 2007. Base-excision repair of oxidative DNA damage. Nature 447:941-950.

63. Lu AL, Li X, Gu Y, Wright PM, Chang DY. 2001. Repair of oxidative DNA damage: mechanisms and functions. Cell Biochem Biophys 35:141-70.

64. Agnew W, Barnes AC. 2007. Streptococcus iniae: an aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet Microbiol 122:1-15.

65. Millard CM, Baiano JC, Chan C, Yuen B, Aviles F, Landos M, Chong RS, Benedict S, Barnes AC. 2012. Evolution of the capsular operon of Streptococcus iniae in response to vaccination. Appl Environ Microbiol 78:8219-26.

66. Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM, Parkhill J, Bentley SD, Hanage WP, Lipsitch M. 2013. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat Genet 45:656-63.

67. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, von Gottberg A, Song JH, Ko KS, Pichon B, Parry CM, Lamberts M, Shahinas D, Pillai DR, Mitchell TJ, Dougan G, Tomasz A, Klugman KP, Parkhill J, Hanage WP, Bentley SD. 2011. Rapid Pneumococcal Evolution in Response to Clinical Interventions. Science 331:430-434.

68. Maiden MCJ, van Rensburg MJJ, Bray JE, Earle SG, Ford SA, Jolley KA, McCarthy ND. 2013. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat Rev Micro 11:728-736.

69. Shabalina SA, Spiridonov NA, Kashina A. 2013. Sounds of silence: synonymous nucleotides as a key to biological regulation and complexity. Nucleic Acids Res 41:2073-94.

70. Symonds MRE, Blomberg SP. 2014. A Primer on Phylogenetic Generalised Least Squares, p 105-130. In Garamszegi LZ (ed), Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice doi:10.1007/978-3-662-43550-7_5. Springer Berlin Heidelberg, Berlin, Heidelberg.

71. Zheng Q. 2015. Methods for comparing mutation rates using fluctuation assay data. Mutat Res 777:20-2.

72. Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological 57:289-300.

73. Gould CV, Sniegoski PD, Shchepetov M, Metlay JP, Weiser JN. 2007. Identifying mutator phenotypes among fluoroquinolone-resistant strains of Streptococcus pneumoniae using fluctuation analysis. Antimicrob Agents Chemother 51:3225-9.

74. Sprouffske K, Aguilar-Rodriguez J, Sniegoski P, Wagner A. 2018. High mutation rates limit evolutionary adaptation in Escherichia coli. PLoS Genet 14:e1007324.

75. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 43:e15.

76. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang YJ, Wishart DS. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Research 44:W16-W21.

77. Siguer P, Perrochon J, Lestrade L, Mahillon J, Chandler M. 2006. 1Sfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Research 34:D32-D36.

78. Chaguza C, Andam CP, Harris SR, Cornick JE, Yang M, Bricio-Moreno L, Kamng’ona AW, Parkhill J, French N, Heyderman RS, Kadioglu A, Everett DB, Bentley SD, Hanage WP. 2016. Recombination in Streptococcus pneumoniae Lineages Increases with Carriage Duration and Size of the Polysaccharide Capsule. mBio 7:e01053-16.

79. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. 2016. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evolution 2.

80. Bedford T, Cobey S, Pascual M. 2011. Strength and tempo of selection revealed in viral gene genealogies. BMC Evol Biol 11:220.
81. Neher RA, Hallatschek O. 2013. Genealogies of rapidly adapting populations. Proceedings of the National Academy of Sciences of the United States of America 110:437-442.

82. Dupes NM, Walsh BW, Klocko AD, Lenhart JS, Peterson HL, Gessert DA, Pavlick CE, Simmons LA. 2010. Mutations in the Bacillus subtilis beta clamp that separate its roles in DNA replication from mismatch repair. J Bacteriol 192:3452-63.

83. Lenhart JS, Sharma A, Hingorani MM, Simmons LA. 2013. DnaN clamp zones provide a platform for spatiotemporal coupling of mismatch detection to DNA replication. Mol Microbiol 87:553-68.

84. Yang H, Miller JH. 2008. Deletion of dnaN1 generates a mutator phenotype in Bacillus anthracis. DNA Repair (Amst) 7:507-14.

85. Korkmaz G, Holm M, Wiens T, Sanyal S. 2014. Comprehensive analysis of stop codon usage in bacteria and its correlation with release factor abundance. J Biol Chem 289:30334-42.

86. Facklam R, Elliott J, Shewmaker L, Reingold A. 2005. Identification and characterization of sporadic isolates of Streptococcus iniae isolated from humans. Journal of Clinical Microbiology 43:933-937.

87. Weinstein MR, Litt M, Kertesz DA, Wyper P, Rose D, Coulter M, McGeer A, Facklam R, Ostach C, Willey BM, Borczyk A, Low DE. 1997. Invasive infections due to a fish pathogen, Streptococcus iniae. New England Journal of Medicine 337:589-594.

88. Weinberger DM, Malley R, Lipsitch M. 2011. Serotype replacement in disease after pneumococcal vaccination. Lancet 378:1962-73.

89. Losordo T, DeLong D, Guerdat T. 2009. Advances in technology and practice for land-based aquaculture systems: tank-based recirculating systems for finfish production. New Technologies in Aquaculture doi:10.1533/9781845696474.6.945:945-983.

90. Kadioglu A, Weiser JN, Paton JC, Andrew PW. 2008. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 6:288-301.

91. Locke JB, Colvin KM, Datta AK, Patel SK, Naidu NN, Neely MN, Nizet V, Buchanan JT. 2007. Streptococcus iniae capsule impairs phagocytic clearance and contributes to virulence in fish. J Bacteriol 189:1279-87.

92. Locke JB, Colvin KM, Varki N, Vicknair MR, Nizet V, Buchanan JT. 2007. Streptococcus iniae beta-hemolysin streptolysin S is a virulence factor in fish infection. Diseases of Aquatic Organisms 76:17-26.

93. Geno KA, Gilbert GL, Song JW, Skovsted IC, Klugman KP, Jones C, Konradsen HB, Nahm MH. 2015. Pneumococcal Capsules and Their Types: Past, Present, and Future. Clin Microbiol Rev 28:871-99.

94. Rodriguez JL, Dalia AB, Weiser JN. 2012. Increased chain length promotes pneumococcal adherence and colonization. Infect Immun 80:3454-9.

95. Andisi VF, Hinojosa CA, de Jong A, Kuipers OP, Orihuela CJ, Bijlsma JJ. 2012. Pneumococcal gene complex involved in resistance to extracellular oxidative stress. Infect Immun 80:1037-49.

96. Bjarnsholt T. 2013. The role of bacterial biofilms in chronic infections. APMIS Suppl doi:10.1111/apm.12099:1-51.

97. Pier GB, Madin SH. 1976. Streptococcus iniae sp nov, a beta-hemolytic Streptococcus isolated from an amazon freshwater dolphin, Inia geoffrensis. International Journal of Systematic Bacteriology 26:545-553.

98. Pier GB, Madin SH, Alnakeeb S. 1978. Isolation and characterisation of a 2nd isolate of Streptococcus iniae. International Journal of Systematic Bacteriology 28:311-314.

99. Baumler A, Fang FC. 2013. Host specificity of bacterial pathogens. Cold Spring Harb Perspect Med 3:a010041.

100. Hildebrand F, Meyer A, Eyre-Walker A. 2010. Evidence of selection upon genomic GC-content in bacteria. PLoS Genet 6:e1001107.
101. Couce A, Caudwell LV, Feinauer C, Hindre T, Feugeas JP, Weigt M, Lenski RE, Schneider D, Tenaillon O. 2017. Mutator genomes decay, despite sustained fitness gains, in a long-term experiment with bacteria. Proc Natl Acad Sci U S A 114:e9026-e9035.

102. Croucher NJ, Kagedan L, Thompson CM, Parkhill J, Bentley SD, Finkelstein JA, Lipsitch M, Hanage WP. 2015. Selective and genetic constraints on pneumococcal serotype switching. PLoS Genet 11:e1005095.

103. Rosche WA, Foster PL. 2000. Determining mutation rates in bacterial populations. Methods 20:4-17.

104. Hedges AJ. 2002. Estimating the precision of serial dilutions and viable bacterial counts. Int J Food Microbiol 76:207-14.

105. Kawasaki M, Delamare-Deboutteville J, Bowater RO, Walker MJ, Beatson S, Ben Zakour NL, Barnes AC. 2018. Microevolution of aquatic Streptococcus agalactiae ST-261 from Australia indicates dissemination via imported tilapia and ongoing adaptation to marine hosts or environment. Appl Environ Microbiol doi:10.1128/AEM.00859-18.

106. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455-77.

107. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072-5.

108. Risman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT. 2009. Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 25:2071-3.

109. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068-9.

110. Treangen TJ, Ondov BD, Koren S, Phillippy AM. 2014. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biology 15:524.

111. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-3.

112. Leache AD, Banbury BL, Felsenstein J, de Oca AN, Stamatakis A. 2015. Short Tree, Long Tree, Right Tree, Wrong Tree: New Acquisition Bias Corrections for Inferring SNP Phylogenies. Systematic Biology 64:1032-47.

113. Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R. 2007. Dendroscope: An interactive viewer for large phylogenetic trees. BMC Bioinformatics 8:460.

114. He Z, Zhang H, Gao S, Lercher MJ, Chen WH, Hu S. 2016. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res 44:W236-41.

115. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647-1649.

116. Ben Zakour NL, Alsheikh-Hussain AS, Ashcroft MM, Khanh Nhu NT, Roberts LW, Stanton-Cook M, Schembri MA, Beatson SA. 2016. Sequential Acquisition of Virulence and Fluoroquinolone Resistance Has Shaped the Evolution of Escherichia coli ST131. MBio 7:e00347-16.

117. Umarov RK, Solovyev VV. 2017. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PloS One 12.

118. Letunic I, Bork P. 2018. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res 46:D493-D496.

119. Choi Y, Chan AP. 2015. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31:2745-7.
120. Petkau A, Stuart-Edwards M, Stothard P, Van Domselaar G. 2010. Interactive microbial genome visualization with GView. Bioinformatics 26:3125-6.

121. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12:402.

122. Rajagopal L. 2009. Understanding the regulation of Group B Streptococcal virulence factors. Future Microbiol 4:201-21.

123. Andrews JM. 2001. Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48 Suppl 1:S5-16.

124. Verotta D, Haagensen J, Spormann AM, Yang K. 2017. Mathematical Modeling of Biofilm Structures Using COMSTAT Data. Comput Math Methods Med 2017:7246286.

125. Hall BM, Ma CX, Liang P, Singh KK. 2009. Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. Bioinformatics 25:1564-5.

126. Zheng Q. 2017. rSalvador: An R Package for the Fluctuation Experiment. G3 (Bethesda) 7:3849-3856.
Supporting Information Legends

Supplementary Figure 1. *Streptococcus iniae* pan-genome derived from 80 strains, coloured by clade (clade A-G innermost - outer) showing positions of MMR and OG genes relative to putative phage/prophage and insertion sequence elements. Phage positions were predicted using Pha ster and are indicated as arcs in the outermost ring (green, complete phage; blue, incomplete phage; red, uncertain). ISE were located with ISfinder and are indicated directionally in the outermost ring as black arrows.

Supplementary Figure 2. Root-to-tip regression analysis (TempEst, (79) of branch lengths from best-fit-rooted tree against time (year of isolation). The tree was derived from alignment of non-recombinant core-genome SNPs corrected for ascertainment bias in RAxML.

Supplementary Figure 3: Alignment of the sequences found upstream from mutY gene in QMA0084 (representative of clade B) and QMA0248 (representative of all other analysed *S. iniae* strains) and predicted changes in transcription pattern produced by 56 bp deletion upstream of mutY gene identified in clade B strains.

Supplementary Table 1. 80-by-80 matrix of *p* values resulting from pair-wise comparisons of fluctuation analysis data by Maximum Ratio Test corrected for multiple comparisons by controlling for the False Discovery Rate (Microsoft Excel spreadsheet available as download).

Supplementary Table 2. Results of fluctuation analysis (Microsoft Excel spreadsheet available as download).

Supplementary Table 3. Extended metadata for 80 *Streptococcus iniae* isolates sequenced in the present study

Supplementary Table 4. Assembly statistics and quality data for 80 de novo genome assemblies prepared in this study.

Supplementary Table 5. Recombination analysis (Gubbins) statistics for 83 *S. iniae* strains, ordered by Clade.

Figures and tables

Figure 1: Unrooted summary phylogram of *Streptococcus iniae* strains based on alignment of core genome SNPs filtered to remove recombination. Genetic distances were inferred by maximum likelihood in RAxML and node support is indicated as percentage of 1000 bootstrap replicates. Geographic origin, time range (year) of isolation, and mutation rate were added manually post hoc. All nodes with bootstrap support below 75% were collapsed. The phylogram is drawn with scale
proportionate to genetic distance except the dashed branch supporting QMA0141, which is depicted at 10% scale. The inset shows the phylogram structure with QMA0141 branch drawn to the same scale.

Figure 2: Cladogram of *Streptococcus iniae* strains derived from the same dataset as Figure 1. Clade, host species, variants in MMR and OG DNA repair genes, mutation rate phenotype, and phenotypic variants associated with virulence were annotated with Evolview. Mutation rate (µ) phenotypes, determined by fluctuation analysis, are depicted as box blots representing upper and lower 95% confidence limits, with the interface representing mean values. Node support is indicated as percentage of 1000 bootstrap replicates.

Figure 3: Phenotypic variants associated with virulence among *Streptococcus iniae* strains. A) Buoyant density assay for capsule (CPS) presence, A1: CPS+, A2: CPS-, A3: CPS+/- B) Haemolysis of sheep red blood cells by agar diffusion B1: +, B2: - C) Streptococcal chain length C1: normal, C2: Long, C3: short D) Biofilm formation in chamber slides determined by confocal microscopy, D1: normal, D2: denser, D3: thicker.

Figure 4: Proportions of single nucleotide polymorphism type across the core genomes of *Streptococcus iniae* clades. Numbers to the right of the plot indicate the total numbers of SNPs that are unique to each clade.
Table 1. *Streptococcus iniae* strains used in this study. Includes origin details (host species, time, site of isolation), phylogenetic affiliation, virulence-associated phenotypes, and mutation rate. Atypical places of isolation (hosts, tissues) and deviant phenotypes are in bold.

Strain	Clade	Host	Year	Location	Capsule	Hemolysis	Chains	Oxidation resistance	Biofilm formation	Mutation rate (10^{-7})
QMA0071	A	*Lates calcarifer*	2000	QLD	wildcard	wildtype	wildtype	wildtype	wildtype	0.2041
QMA0074	C2	*Lates calcarifer*	1998	QLD	absent	wildtype	long	wildtype	wildtype	0.6579
QMA0077	C2	*Lates calcarifer*	1995	QLD	absent	wildtype	long	wildtype	wildtype	0.7067
QMA0078	A	*Lates calcarifer*	2001	QLD	wildcard	wildtype	wildtype	wildtype	wildtype	0.2153
QMA0080	C1	*Lates calcarifer*	2004	WA	wildcard	wildtype	wildtype	wildtype	wildtype	0.1966
QMA0082	C1	*Lates calcarifer*	2004	WA	wildcard	wildtype	wildtype	wildtype	wildtype	0.1761
QMA0083	A	*Lates calcarifer*	2004	WA	wildcard	wildtype	wildtype	wildtype	wildtype	0.1894
QMA0084	B	*Pteropus alecto*	2001	WA	wildcard	weak	wildtype	wildtype	wildtype	0.7293
QMA0087	A	*Lates calcarifer*	2004	WA	wildcard	wildcard	wildtype	wildtype	wildtype	0.1925
QMA0130	E2	*Homo sapiens*	1995	Canada	absent	wildcard	wildtype	wildtype	wildtype	0.468
QMA0131	E2	*Homo sapiens*	1995	Canada	absent	wildcard	wildtype	wildtype	wildtype	0.4488
QMA0133	E1	*Homo sapiens*	2001	USA	absent	wildcard	wildtype	wildtype	increased	0.5539
QMA0134	E1	*Homo sapiens*	2001	USA	differential	wildcard	wildtype	wildtype	increased	0.5457
QMA0135	E1	*Homo sapiens*	2002	USA	wildcard	wildtype	short	increased	wildtype	0.631
QMA0137	E1	*Homo sapiens*	2004	USA	wildcard	wildtype	short	increased	wildtype	0.5495
QMA0138	E1	*Homo sapiens*	2004	USA	wildcard	wildtype	short	increased	wildtype	0.5989
QMA0139	F	*Fish sp.*	1996	Canada	absent	wildcard	wildtype	wildtype	wildtype	0.4311
QMA0140	-	*Inia geoffrensis*	1976	USA	absent	wildcard	wildtype	wildtype	increased	0.0901
QMA0141	-	*Inia geoffrensis*	1978	USA	absent	wildcard	wildtype	wildtype	increased	1.0884
QMA0142	C1	*Lates calcarifer*	2005	NT	wildcard	wildcard	wildtype	wildtype	wildtype	0.2044
QMA0150	C1	*Lates calcarifer*	2005	NT	wildcard	wildcard	wildtype	wildtype	wildtype	0.1952
QMA0155	A	*Lates calcarifer*	2005	NSW RAS	wildcard	wildcard	wildtype	wildtype	wildtype	0.1493
QMA0156	A	*Lates calcarifer*	2005	NSW RAS	wildcard	wildcard	wildtype	wildtype	wildtype	0.1666
QMA0157	A	*Lates calcarifer*	2005	NSW RAS	wildcard	wildcard	wildtype	wildtype	wildtype	0.1545
QMA0158	A	*Lates calcarifer*	2006	SA RAS	absent	wildcard	long	wildtype	wildtype	0.1678
QMA0159	A	*Lates calcarifer*	2006	SA RAS	wildcard	wildcard	wildtype	wildtype	wildtype	0.2054
QMA0160	A	*Lates calcarifer*	1999	SA RAS	wildcard	wildcard	wildtype	wildtype	wildtype	0.1481
QMA0161	A	*Lates calcarifer*	2000	SA RAS	wildcard	wildcard	wildtype	wildtype	wildtype	0.1742
QMA0162	A	*Lates calcarifer*	2000	SA RAS	wildcard	wildcard	wildtype	wildtype	wildtype	0.1718
QMA0163	A	*Lates calcarifer*	2000	SA RAS	wildcard	wildcard	wildtype	wildtype	wildtype	0.1523
QMA0164	C2	*Lates calcarifer*	2006	QLD	wildcard	wildcard	wildtype	wildtype	wildtype	0.7302
QMA0165	C2	*Lates calcarifer*	2006	QLD	wildcard	wildcard	wildtype	wildtype	wildtype	0.6606
QMA0177	C1	*Lates calcarifer*	2006	NT	wildcard	wildcard	wildtype	wildtype	wildtype	0.1718
QMA0180	C1	*Lates calcarifer*	2006	NT	wildcard	wildcard	wildtype	wildtype	wildtype	0.2011
QMA0186	D	*Onchorhyncus mykiss*	2000	Israel	wildcard	weak	wildtype	wildtype	increased	0.5135
QMA0187	-	*Onchorhyncus mykiss*	1983	Thailand	absent	weak	wildtype	wildtype	0.4635	
QMA0188	D	*Onchorhyncus mykiss*	1998	Israel	wildcard	weak	wildtype	wildtype	increased	0.5042
QMA0189	D	*Onchorhyncus mykiss*	1996	Reunion	wildcard	weak	wildtype	wildtype	wildtype	0.4907
QMA0090	F	Channa striata	1988	Thailand	absent	wildtype	wildtype	wildtype	wildtype	0.6413
QMA0091	C1	Lates calcarifer	2005	NT	wildtype	wildtype	wildtype	wildtype	wildtype	0.1883
QMA0097	C1	Lates calcarifer	2006	NT	wildtype	wildtype	wildtype	wildtype	wildtype	0.1486
QMA0126	A	Lates calcarifer	2007	QLD	absent	wildtype	long	wildtype	wildtype	0.1949
QMA0128	C2	Lates calcarifer	2007	QLD	wildtype	wildtype	wildtype	wildtype	wildtype	0.7093
QMA0129	A	Lates calcarifer	2006	NSW RAS	wildtype	wildtype	wildtype	wildtype	wildtype	0.2066
QMA0121	A	Lates calcarifer	2007	NSW RAS	wildtype	wildtype	wildtype	wildtype	wildtype	0.1814
QMA0122	A	Lates calcarifer	2006	SA RAS	wildtype	wildtype	wildtype	wildtype	wildtype	0.1829
QMA0123	F	Lates calcarifer, bone	2009	NSW RAS	absent	weak	long	wildtype	increased	0.362
QMA0124	F	Lates calcarifer, bone	2009	NSW RAS	absent	weak	long	wildtype	increased	0.354
QMA0126	F	Lates calcarifer, bone	2009	NSW RAS	absent	weak	long	wildtype	increased	0.3406
QMA0124	A	Lates calcarifer	2008	SA RAS	wildtype	wildtype	wildtype	wildtype	wildtype	0.2101
QMA0125	A	Lates calcarifer	2008	SA RAS	wildtype	wildtype	wildtype	wildtype	wildtype	0.1988
QMA0126	A	Lates calcarifer	2009	SA RAS	wildtype	wildtype	wildtype	wildtype	wildtype	0.2149
QMA0124	A	Lates calcarifer	2009	SA RAS	wildtype	wildtype	wildtype	wildtype	wildtype	0.2059
QMA0128	A	Lates calcarifer	2009	SA RAS	wildtype	wildtype	wildtype	wildtype	wildtype	0.1893
QMA0129	F	Lates calcarifer, bone	2009	SA RAS	differential	weak	long	wildtype	increased	0.3817
QMA0125	A	Lates calcarifer	2007	NSW RAS	wildtype	wildtype	wildtype	wildtype	wildtype	0.195
QMA0121	A	Lates calcarifer	2008	NSW RAS	wildtype	wildtype	wildtype	wildtype	wildtype	0.1927
QMA0122	A	Lates calcarifer	2008	NSW RAS	wildtype	wildtype	wildtype	wildtype	wildtype	0.2006
QMA0123	F	Lates calcarifer, bone	2009	NSW RAS	absent	wildtype	long	wildtype	increased	0.3555
QMA0124	F	Lates calcarifer, bone	2009	NSW RAS	absent	wildtype	long	wildtype	increased	0.3712
QMA0128	A	Lates calcarifer	2008	QLD	wildtype	wildtype	wildtype	wildtype	wildtype	0.1876
QMA0371	A	Scortum hiraze	2011	QLD	wildtype	wildtype	wildtype	wildtype	wildtype	0.1889
QMA0373	C2	Lates calcarifer	2012	QLD	wildtype	wildtype	wildtype	wildtype	wildtype	0.6908
QMA0374	C2	Lates calcarifer	2012	QLD	wildtype	wildtype	wildtype	wildtype	wildtype	0.729
QMA0445	G	Oreochromis sp.	1998	USA	absent	wildtype	wildtype	wildtype	wildtype	0.2149
QMA0446	G	Oreochromis sp.	1998	USA	absent	wildtype	wildtype	wildtype	wildtype	0.1687
QMA0447	E1	Hybrid striped bass	1996	USA	wildtype	wildtype	short	increased	wildtype	0.5902
QMA0448	E1	Hybrid striped bass	1998	USA	wildtype	wildtype	short	increased	wildtype	0.5529
QMA0457	A	Oreochromis sp.	2005	USA	wildtype	wildtype	wildtype	wildtype	wildtype	0.1882
QMA0458	A	Eoplectrothynnus bicolor	2004	USA	wildtype	wildtype	wildtype	wildtype	wildtype	0.1778
QMA0462	B	Chromobota macrocanthus	2005	USA	wildtype	weak	wildtype	wildtype	wildtype	0.4242
QMA0463	B	Chromobota macrocanthus	2005	USA	wildtype	weak	wildtype	wildtype	wildtype	0.414
QMA0466	E2	Oreochromis sp.	-	USA	wildtype	wildtype	short	wildtype	wildtype	0.4602
QMA0467	A	Eoplectrothynnus frenatum	2004	USA	wildtype	wildtype	wildtype	wildtype	wildtype	0.1695
QMA0468	A	Oreochromis sp.	2005	USA	wildtype	wildtype	wildtype	wildtype	wildtype	0.1689
QMA0490	A	Oreochromis sp.	2015	Honduras	wildtype	wildtype	wildtype	wildtype	wildtype	0.1812
QMA0491	A	Oreochromis sp.	2015	Honduras	Wildtype	Wildtype	Wildtype	Wildtype	Wildtype	0.2
QMA0492	A	Oreochromis sp.	2015	Honduras	Wildtype	Wildtype	Wildtype	Wildtype	Wildtype	0.1849
QMA0493	A	Oreochromis sp.	2016	Honduras	Wildtype	Wildtype	Wildtype	Wildtype	Wildtype	0.1987
Table 2: Variants in MMR and OG genes found among *S. iniae* isolates. CDS – protein coding sequence, BS – predicted binding sites of transcription factors, PROVEAN score – predicted effect of amino acid substitutions on the protein function; scores lower that -2 are considered to indicate a deleterious effect.

Gene	Clade	Strains	Location	Mutation type	Nucleotide change	Amino acid change	Protein functional domain	PROVEAN score	
mutS	F from bone	CDS	SNP	T935C	G556T	Q -> K	Pfam MutS II	-0.635	
mutT	all	CDS	SNP	C1117T	C237A	-	DNA mis_repair	n/a	
mutL	F from bone	CDS	SNP	T955G	T394C	S -> R	DNA mis_repair	-2.050	
mutY	all	CDS	SNP	G778A	C977T	C -> T	Pfam: MutL A	-0.271	
dnaN	F QMA0139	CDS	SNP	T1135C	C1626T	A -> G	MutL C	n/a	
dnaN	G QMA0187	CDS	SNP	T1135C	C1626T	A -> G	MutL C	n/a	
dnaN	C2 all strains	CDS	SNP	T1135C	C1626T	A -> G	MutL C	n/a	
dnaN	C1 all strains	CDS	SNP	T1135C	C1626T	A -> G	MutL C	n/a	
mhC	-	QMA0187	CDS	SNP	T1135C	C1626T	A -> G	MutL C	n/a
recD2	-	QMA0140	RBS	SNP	T1135C	C1626T	A -> G	MutL C	n/a
recD2	E1 all strains	RBS	SNP	T1135C	C1626T	A -> G	MutL C	n/a	
recD2	B all strains	CDS	SNP	T1135C	C1626T	A -> G	MutL C	n/a	
recD2	C2 all strains	CDS	SNP	T1135C	C1626T	A -> G	MutL C	n/a	
mutX	B all strains	CDS	SNP	T1135C	C1626T	A -> G	MutL C	n/a	
mutX	F all strains	CDS	SNP	T1135C	C1626T	A -> G	MutL C	n/a	
mutX	D all strains	CDS	SNP	T1135C	C1626T	A -> G	MutL C	n/a	
mutX	E2 all strains	CDS	SNP	T1135C	C1626T	A -> G	MutL C	n/a	

32
