Annotating protein-coding genes can be challenging, especially when searching for the best hits against multiple functional databases. This is partly because of “bad words” appearing as top hits, such as hypothetical or uncharacterized proteins. To help alleviate some of these issues, we designed a bioinformatics tool called NoBadWordsCombiner, which efficiently merges the hits from various databases, strengthening gene definitions by minimizing functional descriptions containing “bad words.” Unlike other available tools, NoBadWordsCombiner is user friendly, but it does require users to have some general bioinformatics skills, including a basic understanding of the BLAST package and dash shell in Linux/Unix environments.
Protocol for using NoBadWordsCombiner to merge and minimize “bad words” from BLAST hits against multiple eukaryotic gene annotation databases

Xi Zhang,1,2,5,* Yining Hu,3 and David Roy Smith4,6,*

1Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
2Institute for Comparative Genomics, Dalhousie University, Halifax, NS B3H 4R2, Canada
3Department of Computer Science, Western University, London, ON N6A 5B7, Canada
4Department of Biology, Western University, London, ON N6A 5B7, Canada
5Technical contact
6Lead contact

*Correspondence: xzha25@uwo.ca (X.Z.), dsmit242@uwo.ca (D.R.S.)
https://doi.org/10.1016/j.xpro.2021.100888

SUMMARY
Annotating protein-coding genes can be challenging, especially when searching for the best hits against multiple functional databases. This is partly because of “bad words” appearing as top hits, such as hypothetical or uncharacterized proteins. To help alleviate some of these issues, we designed a bioinformatics tool called NoBadWordsCombiner, which efficiently merges the hits from various databases, strengthening gene definitions by minimizing functional descriptions containing “bad words.” Unlike other available tools, NoBadWordsCombiner is user friendly, but it does require users to have some general bioinformatics skills, including a basic understanding of the BLAST package and dash shell in Linux/Unix environments. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2021a).

BEFORE YOU BEGIN
Next-generation sequencing (NGS) technologies can generate huge amounts of molecular sequence data (Yandell and Ence, 2012). Functional annotations of protein-coding genes from NGS data can be easily acquired via database searches, including NCBI-NR (Pruitt et al., 2005), UniProtKB/Swiss-Prot (Boutet et al., 2007), and TrEMBL (Boeckmann et al., 2003). But the results of these searches often include ‘bad words’, such as best hits to hypothetical proteins or uncharacterized proteins, which can confuse the interpretation of gene annotation results. Indeed, it was reported that 20–30% of the annotations from assembled chlamydomonadalean nuclear genomes are represented by hypothetical proteins, including those from the Chlamydomonas reinhardtii genome (Zhang et al., 2021a). For various other recently sequenced genomes, the percentage of hypothetical proteins can be even higher (Galperin, 2001). It can be time-consuming to manually curate the functional hits from Basic Local Alignment Search Tool (BLAST) searches. This can be especially true if trying to minimize hits containing ‘bad words’ (e.g., hypothetical proteins) when the redundant hits have meaningful functional annotations (i.e., without ‘bad words’).

Currently, there are very few user-friendly bioinformatics tools for merging and minimizing ‘bad words’ during functional gene annotation, and those that are available typically involve custom programming scripts with a steep learning curve (De Wit et al., 2012). Here, we present NoBadWordsCombiner, an open-source, user-friendly bioinformatics web tool for efficiently merging and minimizing ‘bad words’ scanned from various functional annotation databases. This tool can plug into...
external databases, such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) and InterProScan (Quevillon et al., 2005), to strengthen the definition of gene annotations. NoBadWordsCombiner does not require users to have some basic familiarity with bioinformatics. They must be comfortable with the BLAST package (Altschul et al., 1997), the dash shell in Linux/Unix environments, and inputting files from third-party tools, such as InterProScan (Quevillon et al., 2005) and KEGG (BlastKOALA and GhostKOALA) (Kanehisa et al., 2016).

Recently, we sequenced, assembled, and annotated the nuclear genome of the Antarctic green alga *Chlamydomonas* sp. UWO241 (Zhang et al., 2021a), hereafter referred to as UWO241. During our analysis of this genome, we designed and applied the NoBadWordsCombiner tool during the functional annotation stage, which greatly minimized descriptions containing ‘bad words’. The protocol presented here describes how to use NoBadWordsCombiner for merging and minimizing ‘bad words’ from eukaryotic gene annotation databases. The model psychrophilic green alga UWO241 is used as a case-study for this goal.

Overview

NoBadWordsCombiner merges the functional gene annotation BLAST hits from NCBI nr, UniProtKB/Swiss-Prot, and TrEMBL database searches. Specifically, it removes redundancy from descriptions containing hits to hypothetical or uncharacterized proteins (not including instances when all hits are hypothetical/uncharacterized). Then, the definition of the combined hits is strengthened via protein functional domains and pathway information based on data from the InterPro and KEGG databases. Finally, the overview of the gene annotations with the minimized ‘bad words’ is summarized in a mega table.

Downloading the software and prerequisites

NoBadWordsCombiner can be operated on the web (http://hsdfinder.com/combiner/) or the local environment (Linux and Python 3) after downloading the software package from GitHub (https://github.com/zx0223winner/NoBadWordsCombiner). To run locally, pre-installed Python (preferably Python 3) and Linux (e.g., Ubuntu 20.04 LTS) environments are required. The BLAST and InterProScan software packages as well as the online KEGG pathways tools BlastKOALA and GhostKOALA (Kanehisa et al., 2016) can be accessed via the links in the key resources table.

Note: A minimum specification requirement is a computer with 2 cores, 4 GB of RAM, and 256 GB storage, which should allow the ‘bad words’ to be merged and minimized within a few minutes.

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Deposited data		
Chlamydomonas sp. UWO241 (renamed *Chlamydomonas priscuii*)	Zhang et al., 2021a	Genbank: GCA_016618255
Software and algorithms		
BLAST v2.2.26	Altschul et al., 1997	ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
UniProtKB/Swiss-Prot	Boutet et al., 2007	https://www.uniprot.org/uniprot/?query=reviewed:yes
UniProtKB/TrEMBL	Boeckmann et al., 2003	https://www.uniprot.org/uniprot/?query=reviewed:no
NCBI-NR	Pruitt et al., 2005	https://www.ncbi.nlm.nih.gov/refseq/
InterProScan v4.7	Quevillon et al., 2005	http://www.ebi.ac.uk/interpro/download/
BlastKOALA or GhostKOALA	Kanehisa and Goto, 2000; Kanehisa et al., 2016	https://www.kegg.jp
NoBadWordsCombiner	This article	http://hsdfinder.com/combiner

(Continued on next page)
MATERIALS AND EQUIPMENT

The software implementation was written in Python 3 using the following custom scripts and platforms:

- NoBadWordsCombiner.py, which enables the 'bad words' to be merged and minimized from BLAST hits against multiple eukaryotic gene annotation databases and protein signature databases (e.g., Pfam);
- Django (3.1.5), a Python-based web platform, which maintains the web server; and
- pandas (1.2.2), the software library used for manipulating the data.

Blastxml_to_tabular.py (Cock et al., 2015) is a custom Python script that can convert a BLAST XML file to the desired tabular output. The NCBI-NR and UniProtKB/TrEMBL databases, including the gene annotations, are computationally analyzed, whereas the UniProtKB/Swiss-Prot database is manually curated and, thus, contains fewer annotations of hypothetical proteins. A full list of the utilized packages and database, including links, can be found in the key resources table. The full NoBadWordsCombiner source code can be found in the GitHub repository. A useful hands-on tutorial (Online_NoBadWordsCombiner Tutorial.pdf) can also be accessed under the tutorial directory of GitHub.

The test input data consist of BLAST and protein signature results from InterProScan (Quevillon et al., 2005).

Note: Five mandatory tab-delimited tables are needed to run the tool. The first and second input documents of the NCBI-NR and SwissProt database BLAST results have 14 columns (Tables 1 and 2). These two tables are parsed from the local BLAST results via a custom Python script (Blastxml_to_tabular.py). The third and fourth input files were designed as a 1-column gene name list file and a 2-column KEGG annotation file, respectively (Tables 3 and 4). The fifth input document of the InterProScan results has 13 columns (Table 5). The KO accession with each gene model identifier was retrieved from the KEGG database (Kanehisa and Goto, 2000). In the following step-by-step protocol, we use the deduced protein sequences from the UWO241 genome annotation (Zhang et al., 2021a) to show how to generate these tables.

STEP-BY-STEP METHOD DETAILS

Preparation of the NCBI-NR and UniProtKB/Swiss-Prot protein BLAST-search result files

- **Timing:** ~2 days (depending on the amount of the data, computing power, and Internet speed.)

Upload protein BLAST-search result files from your genome of interest in tab-separated values (tsv) format as the input files (Tables 1 and 2) of NoBadWordsCombiner. This protocol will go over how to acquire local BLAST-search results via an example FASTA file. The example file as well as the hands-on tutorial (Online_NoBadWordsCombiner Tutorial.pdf) can be acquired from GitHub under the tutorial directory (Figure 1A).

Note: You can ignore this step and proceed with your own protein data set if you know how to acquire the appropriate BLASTP search results.
Table 1. Input file example of NCBI nr database BLAST result

Query Acc	Query Length	HitDescription	HitName	Hit Length	Hit Bits	HSP_rank	%ID	eValue	Query Start	Query End	Hit_start	Hit_end	HSP_length				
g1.t1	817	hypothetical protein	CEUSTIGMA_g3421.t1 (Chlamydomonas eustigma)	gi	1238995578	dbj	GAX75978.1	1443	260.766	1	54.6235659	1.41E-75	10	774	11	268	258
g2.t1	399	ankyrin, partial	[Aneromyces robustus]	gi	1183350135	gb	ORX78377.1	235	65.4698	1	40.2298851	3.61E-10	19	279	18	96	87
g3.t1	3567	hypothetical protein	CEUSTIGMA_g3419.t1 (Chlamydomonas eustigma)	gi	1238995576	dbj	GAX75976.1	1103	172.17	1	38.4615385	1.15E-39	805	1674	330	597	299
g4.t1	963	hypothetical protein	CEUSTIGMA_g3418.t1 (Chlamydomonas eustigma)	gi	1238995575	dbj	GAX75975.1	623	301.457	1	89.5067128	1.17E-97	469	954	172	333	162
g6.t1	291	hypothetical protein	CHLRE_10g421079v5 (Chlamydomonas reinhardtii)	gi	1335042461	gb	PNW77074.1	103	82.8037	1	58.3333333	1.66E-18	103	282	34	93	60
g7.t1	7908	hypothetical protein	CEUSTIGMA_g3945.t1 (Chlamydomonas eustigma)	gi	1238994727	dbj	GAX6500.1	2934	156.377	1	32.675714	7.48E-34	6334	7761	2313	2860	560
g9.t1	471	hypothetical protein	CEUSTIGMA_g3416.t1 (Chlamydomonas eustigma)	gi	1238995573	dbj	GAX75973.1	139	164.466	1	62.1212121	3.00E-49	76	468	11	139	132
g10.t1	1827	hypothetical protein	GPECTOR_108g190 (Gonium pectorale)	gi	1004134917	gb	KX242999.1	463	331.257	1	78.8288288	1.18E-103	580	1245	48	269	222

Table 2. Input file example of SwissProt database BLAST result

Query Acc	Query Length	HitDescription	HitName	Hit Length	Hit Bits	HSP_rank	%ID	eValue	Query Start	Query End	Hit_start	Hit_end	HSP_length			
g2.t1	399	2-5A-dependent ribonuclease	OS=Mus musculus OX=10900 GN=Hnasel PE=1 SV=2	sp	Q05921	GNA MOUSE	735	48.1358	1	48.1358	1.35E-06	25	267	125	206	86
g3.t1	3567	DNA mismatch repair protein	MSH6 OS=Arabidopsis thaliana OX=3702 GN=MSH6 PE=1 SV=2	sp	P00716	MSH6 ARATH	1324	53.5286	1	53.5286	1.16E-05	379	543	121	175	55
g4.t1	963	Eukaryotic peptide chain release factor GTP-binding subunit	ERF3A OS=Homo sapiens OX=9606 GN=GSPT1 PE=1 SV=1	sp	P15170	ERF3A HUMAN	499	234.958	1	72.2972973	2.94E-72	511	954	69	216	148
g9.t1	471	Thylakoid-associated protein	str0729 OS=Synechocystis sp. (strain PCC 6803 / Kazusa) OX=1111708 GN=str0729 PE=4 SV=1	sp	P72673	Y729 SYN3	101	74.7506	1	74.7506	1.35E-06	187	468	11	99	95
g10.t1	1827	Threonylcarbamoyl-AMP synthase	OS=Synechocystis sp. (strain PCC 6803 / Kazusa) OX=1111708 GN=str0729 PE=4 SV=1	sp	P094530	SUAS SCHPO	408	217.238	1	50.8264463	3.67E-63	580	1242	58	299	242
g15.t1	270	Protein transport protein Sec61 subunit beta	OS=Chlamydomonas reinhardtii OX=3055 GN=SEC61B PE=1 SV=1	sp	A686P9	SC61B CHLRE	89	65.4698	1	53.7037037	2.15E-14	106	261	36	89	54
g16.t1	897	Probable poly 4-hydroxylase	OS=Arabidopsis thaliana OX=3702 GN=P4H4 PE=2 SV=1	sp	Q08LAN3	P4H4 ARATH	298	157.147	1	157.147	9.49E-45	1	708	69	289	241
g17.t1	1104	GATA transcription factor 3	OS=Arabidopsis thaliana OX=3702 GN=GATA3 PE=2 SV=2	sp	Q08LAM6	GATA3 ARATH	269	62.003	1	56.97561	1.17E-09	79	201	171	211	41
1. Download the BLAST package and FASTA file. A BLAST-search result example file is found in the ZIP file in the GitHub “tutorial” directory under the name NoBadWordsCombiner_file_examples.zip

Table 3. Input file example of gene name list

Gene name	KO accession
g1.t1	
g2.t1	
g3.t1	
g4.t1	
g5.t1	
g6.t1	
g7.t1	
...	...

Table 4. Input file example of KO accession with each gene model identifier retrieved from the KEGG database

Gene identifier	KO accession
g59.t1	K10849
g60.t2	K17087
g61.t2	N/A
g62.t1	N/A
g63.t1	N/A
g64.t1	N/A
g65.t1	K15172
g66.t1	K02519
...	...

Table 5. Input file example of InterProScan database result

Protein accession	Unique code	Sequence length	Protein	Signature	Signature accession	Signature description	Start location	Stop location	E-value	Status	Date	InterPro accession	InterPro description
g5250.t1	246997202ceeb0ebd5e2a2f454be9a2	262	SUPER FAMILY	SSF82153	N/A	129	260	9.42E-10	T	31-03-2019	IPR036378	FAS1 domain superfamily	
g5250.t1	246997202ceeb0ebd5e2a2f454be9a2	262	ProSite Profiles	PS50213	N/A	111	257	9.579	T	31-03-2019	IPR000782	FAS1 domain	
g5250.t1	246997202ceeb0ebd5e2a2f454be9a2	262	Pfam	PF02469	Fasciclin domain	123	259	5.80E-09	T	31-03-2019	IPR000782	FAS1 domain	
g5250.t1	246997202ceeb0ebd5e2a2f454be9a2	262	ProSite Patterns	PS00183	Ubiquitin-conjugating enzymes active site.	69	84	-	T	31-03-2019	IPR023313	Ubiquitin-conjugating enzyme, active site	
g5250.t1	246997202ceeb0ebd5e2a2f454be9a2	262	SMART	SM00212	N/A	2	148	1.10E-36	T	31-03-2019	N/A	N/A	
g5250.t1	246997202ceeb0ebd5e2a2f454be9a2	262	PANTHER	PTHR44511	N/A	2	119	1.50E-59	T	31-03-2019	N/A	N/A	
g5250.t1	246997202ceeb0ebd5e2a2f454be9a2	262	SMART	SM00554	N/A	145	260	7.20E-07	T	31-03-2019	IPR000782	FAS1 domain	
g15700.t1	e9641f2405b85b4c4a885029514ac0	799	Mobi DBLite	mobidb-lite	consensus disorder prediction	347	361	-	T	31-03-2019	N/A	N/A	

...
Figure 1. The NoBadWordsCombiner home page
(A) The GitHub web interface of this tool.
(B) Uploading the necessary input files.
(C) The interface of running the tool.
(D) The output example of the tool.
(Figure 1A). Also, the ‘blastdbv5-user-guide.pdf’ document in the GitHub ‘tutorial’ directory contains complementary vignettes to help guide users.

a. Download the BLAST Package via https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/ LATEST/. Please select the appropriate version based on your computer operating system (Windows, MacOS, or Linux)

b. Unzip the ‘NoBadWordsCombiner_file_examples.zip’ file; the file named ‘Chlamydomonas_s_UWO241_protein.fasta’ is the example FASTA file.

2. Set up the manually curated UniProtKB/Swiss-Prot database and computationally calculated NCBI-NR database.

a. The ‘uniprot_sprot.fasta.gz’ file can be downloaded directly from https://www.uniprot.org/downloads. When downloading, choose Reviewed (Swiss-Prot) in FASTA format under the parent directory. The NCBI-NR BLAST v5 databases can be accessed via https://ftp.ncbi.nlm.nih.gov/blast/db. Some necessary files (e.g., nr.00.tar.gz, nr.00.tar.gz.md5, and nr.01.tar.gz) can be automatically downloaded via a custom Perl script at step 2c.

b. The ‘makeblastdb’ command will construct a protein database by taking in the FASTA file with the parameter (-in), setting up the database type (e.g., protein) with the parameter (-dbtype prot), and titling the name of database (e.g., uniprot_prot_database) with parameters (-title database_name). The ‘-out’ option will yield the database output name (e.g., uniprot_db).

```bash
# Display the first ten rows of the FASTA file.
> head Chlamydomonas_s_UWO241_protein.fasta
>g1.t1
MAATVENVVERVKSFSSVVRGKSKGKDQATLQVQETIELATYCDFFEEVVPV
CLKFLOVLAAPQSTSTLIRLEGGAK
IFPSIRNPMVGDAS1LALCCKMVKCASGSAPMQHNLVKEKLPTPLLSSCSA
HAGEFAVPGPLLLEVVALARYSKGAT
ALSNANLVHACKELVLGMQHWSAFQVMVLKLIKSVMKHEIGCLAALKAGEVRL
LLGVARLVSRMDQRLKKRASKTLN
VLSQKSLHPLEMNWPHTHTHHTHTHTHTHT
>g2.t1
MMLAYRFPGTTLMYATVKGHADAMRLLLKHPSADTAAMMLTDIRGCTALMFA
AQQGVNA1RMLLDHSPASDAVAARIAV
KSTVGISALTSAAGFAPQGQPTLSSRASPARKTPLFLLLRVAEPQLCDTQ
>g3.t1
MVPTDGARHGNTATSLPAUGAASHAKTVQQLVVGPPSCFPYGPEIVORSLS
LFSKSAKTWRAGPVVSAPCAAATGE
```

Note: if your FASTA data are represented by nucleotides, you can change the database type with the parameter (-dbtype nucl)

```bash
>./makeblastdb -in uniprot_sprot.fasta -dbtype prot -title uniprot_prot_database -out uniprot_db
```
c. To download the NCBI-NR v5 databases, use the Perl script ‘update_blastdb.pl’, which is in the downloaded BLAST+ package (https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/).

This command will download the NCBI-NR database (https://ftp.ncbi.nlm.nih.gov/blast/db/v5) with the name ‘nr’ without using the makeblastdb command to redo it. It could take minutes to hours for processing, depending on the speed of the Internet.

i. Users can first check all available databases via the command below.

```
> perl update_blastdb.pl -blastdb_version 5 -showall
# This will give the results like this:
# Connected to NCBI; downloading BLASTDBv5
# human_genome
# landmark
# ...
```

ii. Users can then run the command below to download the nr database, which includes 55 volumes of data (>100 Gb). Alternatively, users can manually download these 110 files (i.e., nr.00.tar.gz, nr.00.tar.gz.md5, etc.) from the link: https://ftp.ncbi.nlm.nih.gov/blast/db/v5.

```
> perl update_blastdb.pl -blastdb_version 5
nr -decompress
# This will bring the results like this:
# Connected to NCBI; downloading BLASTDBv5
# Downloading nr (55 volumes)...
# Downloading nr.00.tar.gz...
# Downloading nr.00.tar.gz.md5
#...
```

d. Use the BLASTP search option to blast the amino acid sequences against the uniport_db and nr_v5 databases. The BLASTP command can do the protein similarity search by searching the query file (Chlamydomonas_UWO241_protein.fasta) against the protein database created from the former step with default parameters, such as ‘-evalue’ (indicating the significance of the BLAST hits), ‘-outfmt’ (meaning the format of the BLAST result), and ‘-out’ (telling the file name of the output file; e.g., BLASTP_UWO241_uniprot.xml).

```
./blastp -query Chlamydomonas_UWO241_protein.fasta -db
uniport_db -out BLASTP_UWO241_uniprot.xml -evalue 1e-5 -
outfmt 5
```

e. The BLAST XML file (-outfmt 5) can include useful information compared to the BLAST Tabular file (-outfmt 6), such as the aligned sequence, the sequence of the hit, and the description of
hits in the database. However, the XML format is not human-readable. Users will need to employ a commonly used parser (Blastxml_to_tabular.py) (Cock et al., 2015), which is a custom python script, to convert a BLAST XML file to a desired tabular output (tab-delimited file).

i. Users can first download the script Blastxml_to_tabular.py via the link from the key resources table. Then run the command below.

```bash
> python blastxml_to_tabular.py -c qseqid,qlen,salltitles,sseqid,slen,bitscore,qframe,
pident,eval, qstart, qend, sstart, send, length
BLASTP_UWO241_uniprot.xml >
BLASTP_UWO241_uniprot.tsv
```

ii. The parameters behind the option ‘-c’ in the Blastxml_to_tabular.py script will yield desired columns in the output tab-delimited file. For example, ‘qseqid’ refers to query sequence ID and ‘qlen’ refers to query length. These desired parameters will create a 14-column table (e.g., Tables 1 and 2).

f. To speed up the NCBI BLAST search, users can specify one or more (comma-delimited) taxids, or a file containing multiple taxids on the command-line. For example, to search against the Chlamydomonas reinhardtii (Taxonomy ID: 147) and Chlamydomonas eustigma (Taxonomy ID: 57939) nuclear genomes, use the command shown below. Also, we recommend that users browse the ‘blastdbv5-user-guide.pdf’ document in the GitHub ‘tutorial’ directory to familiarize themselves with the creation of either taxids or taxidlist.

```bash
>./blastp -query Chlamydomonas_UWO241_protein.fasta -db nr -taxids 147,57939 -out BLASTP_UWO241_NCBI-NR.xml -
evalue 1e-5 -outfmt 5
# Multiple taxonomy IDs are delimited by ','. 
# Similar to Step 2e, the BLASTP_UWO241_NCBI-NR.xml file will be converted to BLASTP_UWO241_NCBI-NR.tsv via the command below.

> python blastxml_to_tabular.py -c qseqid,qlen,salltitles,sseqid,slen,bitscore,qframe,pident,eval,qstart,qend,sstart,send,length
BLASTP_UWO241_NCBI-NR.xml > BLASTP_UWO241_NCBI-NR.tsv
# The option ‘-c’ refers to the desired output columns which can be set in comma-delimited format (e.g., qseqid,qlen,salltitles)
```

CRITICAL: Make sure to use the BLASTP option, which allows for greater sensitivity. The BLAST output parameter must be in format 5. Users can adjust the parameter of
the E-value, but we recommend that it be no greater than 1e-5 (to ensure accurate predictions). Troubleshooting 1.

3. This will give two BLAST result files formed by 14-column spreadsheets, including key information, such as query name and percentage identity.

4. The 14-column explanation of parsed BLAST search result files (Tables 1 and 2).
 a. QueryAcc (e.g., g2.t1)
 b. Query_Length (e.g., 399)
 c. HitDescription (e.g., ankyrin, partial [Anaeromyces robustus])
 d. HitName (e.g., gi|1183350135|gb|ORX78377.1)
 e. HitLength (e.g., 235)
 f. HitBits (e.g., 65.4698)
 g. HSP_rank (e.g., 1)
 h. %ID (e.g., 40.2298851)
 i. eValue (e.g., 3.61E-10)
 j. Query_Start (e.g., 19)
 k. Query_end (e.g., 279)
 l. Hit_start (e.g., 18)
 m. Hit_end (e.g., 96)
 n. HSP_length (e.g., 87)

5. If users want to upload different BLAST files or mistakenly submitted an incorrect file, they can reload the browser page or simply overlap with another file. Troubleshooting 2

Preparing the gene name list and a gene list with KO annotations from the KEGG database

© Timing: ~3 h (depending on the queuing time of GhostKOALA)

Users can retrieve the third and fourth files from the genome FASTA file and the KEGG database, which include the correlation of the KO accession with each gene model identifier (Figure 1B). The gene name file is the baseline to merge all the different functional annotations.

6. Users can acquire the gene name list file by the following command lines. We use the FASTA file from the UWO241 genome as an example (Table 3).
 a. Users can first test the function of grep via the command below:

   ```bash
   > grep ''>'' Chlamydomonas_UWO241_protein.fasta | wc
   # This should turn out the results as follows:
   # 16325 16325 168617
   ```

 b. Users can then carry out the following step to acquire a gene name file.

   ```bash
   > grep ''>'' Chlamydomonas_UWO241_protein.fasta | sed 's/>//g' > UWO241-gene_name_list.txt
   
   As for a gene list with KO annotation, users have the option to use the GhostKOALA (genome size ≥ 300MB) or BlastKOALA analysis tool of KEGG to acquire the KO annotation file of the
genome (https://www.kegg.jp/ghostkoala/). Below, we provide the necessary steps for using the tools:

7. **BlastKOALA** accepts a smaller dataset and is suitable for annotating high-quality genomes.
   a. Upload the query amino acid sequences in FASTA format.
   b. Enter the taxonomy group of your genome.
   c. Enter the KEGG GENES database file to be searched.
   d. Enter your email address. An email will be sent to you for confirmation of your input data.
      Click the link in the email to initiate your job; you will receive another email once it is finished.

8. **GhostKOALA** accepts larger datasets (e.g., 300 Mb) and is suitable for annotating metagenomes.
   a. Upload the query amino acid sequences in FASTA format.
   b. Enter the KEGG GENES database file to be searched.
   c. Enter your email address. Same as above (7d).

9. From the email link of KEGG, users can download the gene list with the associated KO annotations. The format of the output file is referred to in Table 4. Explanation of the 2-column input file for KO accession (Table 4):
   a. Gene identifier (e.g., g59.t1)
   b. KO accession (e.g., K10849)

10. Use the GhostKOALA or BlastKOALA analysis tool of KEGG to acquire the KO annotation file of your genome (https://www.kegg.jp/ghostkoala/). We provide an example of a KO annotation file under the GitHub directory of the tutorial with the name NoBadWordsCombiner_file_examples.zip. **Troubleshooting 3**

### Preparing the InterProScan search result file

**Timing:** ~3 h

Upload an InterProScan search result file of your genome in tab-delimited format as the fifth input file (Table 5). Users must individually download and install InterProScan to acquire the input file for the NoBadWordsCombiner tool. The latest InterProScan documentation can be found via the link https://interproscan-docs.readthedocs.io/en/latest/index.html. Here, we provide the necessary steps for using InterProScan:

11. **Installation requirements:**
    a. InterProScan is developed to run on Linux and no versions are planned for Windows or Apple (MAC OS X) operating systems.
    b. Software requirements: 64-bit Linux; Perl 5; Python 3; Java JDK/JRE version 11.
    c. Obtaining the core InterProScan software (Direct link: ftp://ftp.ebi.ac.uk/pub/software/unix/iprscan/5/5.51-85.0/interproscan-5.51-85.0-64-bit.tar.gz).

**Note:** this is a large file (around 8 Gb).

12. **Running InterProScan:**
    a. Once the InterProScan package is uncompressed, it can be run directly from the command line.

```
If run this script with no arguments, the usage
instructions will be presented.
>./interproscan.sh
```
b. Run the shell script below:

```bash
#!/usr/bin/env bash

interproscan.sh is the command taking in the input
file with parameter (-i) and setting up the format of
output file (e.g., tsv format). `-dp' is to ensure all
the database matches proceeded in local environment.

>./interproscan.sh -i Chlamydomonas_UWO241_protein.fasta -f tsv -dp
```

13. Output files:
   a. InterProScan should run without any warning, and it will create a tsv output file (i.e., Chlamydomonas_UWO241_protein.fasta.tsv) containing several member database matches, including Pfam. For your convenience, an example of an InterProScan search result is found in the ZIP file under the GitHub directory of tutorial with the name NoBadWordsCombiner_file_examples.zip. Troubleshooting 4

14. The 13-column explanation of InterProScan search result file (Table 5):
   a. Protein accession (e.g., g5250.t1)
   b. Sequence unique code (e.g., f246997202ceeb0ebf5ea2f4be9a2)
   c. Sequence length (e.g., 262)
   d. Protein signature (e.g., Pfam)
   e. Signature accession (e.g., PF02469)
   f. Signature description (e.g., Fasciclin domain)
   g. Start location (e.g., 123)
   h. Stop location (e.g., 259)
   i. E-value (or score) (e.g., 5.80E-09)
   j. Status - is the status of the match (T: true)
   k. Date - is the date of the run (e.g., 31-03-2019)
   l. InterPro annotations - accession (e.g., IPR000782)
   m. InterPro annotations - description (e.g., FAS1 domain)

**Note:** Before clicking the submission button, users can select one of nine protein signatures (i.e., Pfam, CDD, Hamap, PRINTS, ProDom, ProSitePattern, ProSiteProfiles, SFLD, or TIGR-FAM). We set the Pfam domain parameter as the default in order to collect larger database entries and because it has been widely used in many sequence analysis and genome annotation projects. Users can select other protein signatures, such as CDD, which can utilize 3D structures to decipher sequence structure and functional relationships. The descriptions of the various protein signatures are shown below:

1. Pfam: A large collection of protein families, each represented by multiple sequence alignments and hidden Markov models (HMMs).
2. CDD: Prediction of Conserved Domains Database.
3. Hamap is a system for the classification and annotation of protein sequences.
4. PRINTS: A fingerprint is a group of conserved motifs used to characterize a protein family.
5. ProDom is a comprehensive set of protein domain families automatically generated from the UniProt Knowledge Database.
6. ProSitePatterns and ProSiteProfiles: PROSITE consists of documentation entries describing protein domains, families, and functional sites as well as associated patterns and profiles to identify them.
vii. SFLDs are protein families based on Hidden Markov Models or HMMs.
viii. TIGRFAMs are protein families based on Hidden Markov Models or HMMs.

Output file of the NoBadWordsCombiner tool

15. Tap the submit button and a pending image will jump out (Figure 1C). It usually takes less than three minutes to run with a 200 Mb genome-sized file (Figure 1D). Troubleshooting 5

16. The output of 23-column tab-delimited mega table (Table 6)
a. ID (e.g., 2)
b. Gene or QueryAcc (e.g., g2.t1)
c. Length or Query_Length (e.g., 817)
d. NoBadName_Hit_Des or HitDescription (e.g., 2-5A-dependent ribonuclease OS=Mus musculus OX=10090 GN=Rnasel PE=1 SV=2)
e. NoBadName_Hit_Name or HitName (e.g., sp|Q05921|RN5A_MOUSE)
f. NoBadName_%ID or %ID (e.g., 34.8837209)
g. NoBadName_eValue or eValue (e.g., 4.14E-06)
h. NCBI_Hit_Des or HitDescription (e.g., ankyrin, partial [Anaeromyces robustus])
i. NCBI_Hit_Name or HitName (e.g., gi|1183350135|gb|ORX78377.1])
j. NCBI_%ID or %ID (e.g., 40.2298851)
k. NCBI_eValue or eValue (e.g., 3.61E-10)
l. Swiss_Hit_Des or HitDescription (e.g., 2-5A-dependent ribonuclease OS=Mus musculus OX=10090 GN=Rnasel PE=1 SV=2)
m. Swiss_Hit_Name or HitName (e.g., sp|Q05921|RN5A_MOUSE)
n. Swiss_%ID or %ID (e.g., 34.8837209)
o. Swiss_eValue or eValue (e.g., 4.14E-06)
p. KEGG_KO (e.g., K03267)
q. KEGG_Des (e.g., ERF3, GSPT; peptide chain release factor subunit 3)
r. Protein signatures (e.g., Pfam)
s. Pfam_No (e.g., PF12796)
t. Pfam_Des (e.g., Ankyrin repeats (3 copies))
u. Pfam_evalue (e.g., 1.80E-11)
v. Interpro_No (e.g., IPR020683)
w. Interpro_domain (e.g., Ankyrin repeat-containing domain)

17. The reason we created two columns for the header (e.g., NoBadName_Hit_Des or HitDescription) is to reduce ambiguity. A uniform header is needed when merging different databases. We also included the percentage identity and E-value for each type of BLAST search result, which can be easily compared. If two BLAST database hit descriptions are both without ‘bad words’, the one with lower E-value will be chosen.

EXPECTED OUTCOMES

NoBadWordsCombiner is a free and straightforward online bioinformatics software tool for merging and minimizing hypothetical or uncharacterized proteins from various eukaryotic functional annotation databases. It provides a mega table combined with protein annotation database entries, such as InterPro, Pfam, and KEGG KO. To compare the data in the mega table, users can have an overview of the gene’s annotation patterns, including information on pathways, gene family domain, and gene family.

The aim of this tool is to assist with high-quality gene model annotations of eukaryotic nuclear genomes. We provided a real example of this tool in action: the file contains the gene models and their functional descriptions for the UWO241 genome (Zhang et al., 2021a), which greatly
ID/Gene Name	NoBad Name	Gene Length	Hit Name	Hit Description	Hit eValue	%ID	NCBI	NCBI_Swiss	Swiss_Swiss	Swiss_Swiss	Swiss_Swiss	Pfam	Pfam	Inter	Inter	Inter	
0.1	Query	817	hit	hypothetical protein CEUSTI0001659	1.41E-05	54.26	35659	75	hypothetical protein CEUSTI0001659	1.41E-05	54.26	35659	N/A	N/A	N/A	N/A	N/A
0.2	2.5A	399	hit	2.5A-dependent ribonuclease OS=Mus musculus OX=10090 GN=RnaseL PE=1 SV=2	4.14E-06	100	37209	95	ankyrin, partial [Aeromonas robston]	4.14E-06	100	37209	N/A	N/A	N/A	N/A	N/A
0.3	3567	DNA	hit	DNA mismatch repair protein MSH6 OS=Arabidopsis thaliana OX=3702 GN=MSH6 PE=1 SV=2	1.61E-05	41.81	81818	05	hypothetical protein CEUSTI0001659	1.61E-05	41.81	81818	N/A	N/A	N/A	N/A	N/A
0.4	Eukaryotic	963	hit	Eukaryotic peptide chain release factor GTP-binding subunit ERF3A OS=Homo sapiens OX=9606 GN=GSPT1 PE=1 SV=1	2.94E-02	72.29	72973	72	hypothetical protein CEUSTI0001659	2.94E-02	72.29	72973	N/A	N/A	N/A	N/A	N/A
0.5	291	hypothetical protein CHLRE_10g421079v5	hit	hypothetical protein CHLRE_10g421079v5	1.66E-03	58.33	33333	18	hypothetical protein CHLRE_10g421079v5	1.66E-03	58.33	33333	N/A	N/A	N/A	N/A	N/A

(Continued on next page)
ID Gene Length Hit Des	NoBad Name Hit Name	NCBI_Hit Name	NCBI_Swiss Name	Swiss_Swiss Name	Pfam Pfam Name	Pfam Pfam Name	Pfam Pfam Name	Inter Inter pro_domain	
6 g7. 9708 t1	hypothetical protein CEUSTiG MA_g3945.t176500.1 [Chlamydomonas eustigma]	gi	123894727	dbj	GAX	32.67	7.48E-5	N/A	
7 g9. 471 t1	Thylakoid-associated protein slr0729 OS=Synecho cystis sp. (strain PCC 6803 / Kazusa) OX=1111708 GN=slr0729 PE=4 SV=1	sp	P72673	Y729_ SYNY3	29.47	1.49E-06	3.97E-22	6.50E-06	3.00E-49

...
aided downstream analyses of this genome, such as detecting highly similar duplicated genes (HSDs) as well as horizontally transferred genes and gene family expansions (Zhang et al., 2021b).

LIMITATIONS
NoBadWordsCombiner is limited to presenting gene annotations in a mega table without any plots or statistical interpretations, such as the total number of ‘bad words’, the frequency of genes containing ‘bad words’, or what types of genes have ‘bad words’. E-values are only used to measure the better BLAST results when both hits contain no ‘bad words’. If the genome is misassembled, using E-values alone might infer false positives. In the future, we hope to incorporate the threshold of aligned length, percentage of pairwise identity, and number of domains into the algorithm. For example, only when a certain criterion is satisfied (e.g., pairwise aligned length $\geq$ 50 amino acids, percentage identity $\geq$ 30%, and at least one domain), will the E-value be used to judge a better BLAST functional hit.

The web tool is reliant on third-party tools to generate the input files, such as InterProScan (Quevillon et al., 2005) and the KEGG tools Ghost KOALA or BlastKOALA (Kanehisa et al., 2016). Users need to be familiar with the basic BLAST package and dash shell in Linux/Unix environments. Notably, there is a steep learning curve for users without any bioinformatics or programming experience. It is our hope to further develop the tool, removing some of the middle steps. For now, we have provided the build-in reference files for each input file as well as example data to facilitate the usability of the tool.

In the future, NoBadWordsCombiner will be further improved, including continuous updating by considering more functional eukaryotic databases. It will also be expanded so it can work on other types of genomic data, such as prokaryotic and organelle genomes.

TROUBLESHOOTING

Problem 1
Why does BLASTP need to be chosen as an option? What E-value shall I choose? (Step 2)

Potential solution
Make sure to use the BLASTP option because amino acid sequences are generally more highly conserved than their corresponding nucleotide sequences. We recommend the E-value to be no larger than 1e-5 to ensure accurate prediction.

Problem 2
Can I resubmit the input files? (Step 5)

Potential solution
Yes. Simply re-fresh (reload) the browser page.

Problem 3
Why is the KEGG KO annotation file needed and what does it look like? (Step 10)

Potential solution
The example file has been provided with the name ‘Input_4_NoBadWords_ko’ from GitHub. The file documents the correlation of KO accession with each gene model identifier, which can be used to strengthen the gene functional category.

Problem 4
Is it difficult to run InterProScan? (Step 13)
Potential solution
No. It is straightforward to run the tool. A real example of a InterProScan result has been provided at GitHub in the NoBadWordsCombiner_file_examples.zip file named ‘Input_5_NoBadWords_Pfam’. It is a tab-delimited file including the protein signatures, such as Pfam domain and InterPro annotations.

Problem 5
How does the tool proceed if the BLAST hits inferring hypothetical or uncharacterized proteins come from multiple databases? (step 17)

Potential solution
If BLAST database hit descriptions from multiple databases all contain ‘bad words’, the one with the lowest e-value will be chosen.

RESOURCE AVAILABILITY
Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact David Roy Smith (dsmit242@uwo.ca) and technical contact Xi Zhang (xzh25@uwo.ca)

Materials availability
This study did not generate new unique reagents.

Data and code availability
The eukaryotic genomic datasets supporting the conclusions of this article are available from NCBI (https://www.ncbi.nlm.nih.gov). The NoBadWordsCombiner source code has been deposited at https://github.com/zx0223winner/NoBadWordsCombiner. The web server of NoBadWordsCombiner is freely available under http://hsdfinder.com/combiner.

ACKNOWLEDGMENTS
The authors gratefully acknowledge funding Discovery Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC). We appreciate the constructive suggestions from all the anonymous reviewers.

AUTHOR CONTRIBUTIONS
The study was conceptualized by X.Z. and D.R.S. The data were analyzed by X.Z., and Y.H. implemented the NoBadWordsCombiner website. X.Z. and D.R.S. drafted the manuscript, and all authors commented to produce the manuscript for peer review.

DECLARATION OF INTERESTS
The authors declare no competing interests.

REFERENCES
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

Boekmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, C., and Phan, I. (2003). The Swiss-Prot protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370.

Boutet, E., Lieberherr, D., Tognolli, M., Schneider, M., and Bairoch, A. (2007). UniProtKB/Swiss-Prot: the manually annotated section of the UniProt KnowledgeBase. In Plant Bioinformatics. Methods in Molecular Biology, 406, D. Edwards, ed (Humana Press). https://doi.org/10.1007/978-1-59745-535-0_4.

Cock, P.J., Chilton, J.M., Grüning, B., Johnson, J.E., and Soranzo, N. (2015). NCBI BLAST+ integrated into Galaxy. Gigascience 4, 39.

De Wit, P., Pespeni, M.H., Ladner, J.T., Barshis, D.J., Seneca, F., Jaris, H., Therkuilen, N.O., Morikawa, M., and Palumbi, S.R. (2012). The simple fool’s guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol. Ecol. Resour. 12, 1058–1067.

Galperin, M.Y. (2001). Conserved ‘hypothetical’ proteins: new hints and new puzzles. Comp. Funct. Genomics 2, 14–18.
Kanehisa, M., and Goto, S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30.

Kanehisa, M., Sato, Y., and Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731.

Pruitt, K.D., Tatusova, T., and Maglott, D.R. (2005). NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 33, D501–D504.

Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., and Lopez, R. (2005). InterProScan: protein domains identifier. Nucleic Acids Res. 33, 116–120.

Yandell, M., and Ence, D. (2012). A beginner’s guide to eukaryotic genome annotation. Nat. Rev. Genet. 13, 329–342.

Zhang, X., Cvetkovska, M., Morgan-Kiss, R., Hüner, N.P., and Smith, D.R. (2021a). Draft genome sequence of the Antarctic green alga Chlamydomonas sp. UWO241. iScience 24, 102084.

Zhang, X., Hu, Y., and Smith, D.R. (2021b). Protocol for HSDFinder: Identifying, annotating, categorizing, and visualizing duplicated genes in eukaryotic genomes. STAR Protoc. 2, 100619.