Matrix integral solutions to the discrete KP hierarchy and its Pfaffianized version

Stéphane Lafortune1 and Chun-Xia Li1,2

1Department of Mathematics, College of Charleston, Charleston, SC 29401, USA
2School of Mathematical Sciences, Capital Normal University, Beijing 100048, People’s Republic of China

E-mail: trisha_li2001@163.com (Chun-Xia Li)

Received 23 January 2016, revised 3 August 2016
Accepted for publication 2 September 2016
Published 4 November 2016

Abstract
Matrix integrals used in random matrix theory for the study of eigenvalues of Hermitian ensembles have been shown to provide \(\tau \)-functions for several hierarchies of integrable equations. In this article, we extend this relation by showing that such integrals can also provide \(\tau \)-functions for the discrete KP hierarchy and a coupled version of the same hierarchy obtained through the process of Pfaffianization. To do so, we consider the first equation of the discrete KP hierarchy, the Hirota–Miwa equation. We write the Wronskian determinant solutions to the Hirota–Miwa equation and consider a particular form of matrix integrals, which we show is an example of those Wronskian solutions. The argument is then generalized to the whole hierarchy. A similar strategy is used for the Pfaffianized version of the hierarchy except that in that case, the solutions are written in terms of Pfaffians rather than determinants.

Keywords: matrix integrals, Hirota–Miwa equation, Wronskian determinant solutions, Pfaffianized Hirota–Miwa system, Pfaffian solutions

1. Introduction

In random matrix theory, thanks to a trick introduced by Mehta [1, 2], the matrix integrals used to compute the probability that the eigenvalues of the matrices in an Hermitian ensemble belong to a certain interval can be written as integrals over the eigenvalues. These integrals take the form

\[
\int \cdots \int \prod_{1 \leq j < k \leq N} |x_j - x_k|^2 \exp \left(\sum_{j=1}^{N} f(x_j) \right) \, dx_1 \, dx_2 \ldots \, dx_N,
\]

(1.1)
where $\beta = 1, 2, \text{ or } 4$ correspond, respectively, to the orthogonal, unitary, and symplectic ensembles and $\exp(f(x))$ is a weight function. Note that the terminology orthogonal, unitary, and symplectic for the different values of β refers to the symmetry groups of the underlying measures [2, 3].

Integrals of the form (1.1) have been studied in the context of integrable systems and matrix models in string theory [4–15]. In this context, a dependence on the variables $t_i, \ i = 1, 2, 3, \ldots$ is introduced in the following way

$$Z_N^{(\beta)}(t) = \frac{1}{N!} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{1 \leq j < k \leq N} |x_j - x_k|^\beta \exp \left(c \sum_{j=1}^{N} \eta(x_j, t) \right) \times dx_1 \, dx_2 \ldots dx_N,$$

where the parameter c is chosen such that $c = 1$ for $\beta = 1, 2$ and $c = 2$ for $\beta = 4$. In the case $\beta = 2$, the integral (1.2) gives the partition function for the Hermitian one-matrix model [4–7] and it was independently shown to provide a τ-function for the Toda equation [4] and the KP [8, 9] hierarchies. In the cases $\beta = 1, 4$ the integrals (1.2) provide τ-functions for the coupled KP hierarchy [12, 16] and the Pfaff lattice hierarchy [14, 17]. While related through their bilinear forms, the KP and Pfaff hierarchies were discovered in different ways as the Pfaff lattice was first derived in [14, 17] through Lie algebraic techniques, while the coupled KP equation was obtained using the procedure now known as Pfaffianization applied to the KP equation [16]. The procedure of Pfaffianization allows to generalize soliton equations with solutions represented by determinants to their coupled systems with solutions represented by Pfaffians.

This connection of (1.1) with integrable systems was deepened by the authors of [18] who introduced dependence on the continuous variables t_i, t_2, and s and the discrete variables n_1 and n_2 in the following way

$$Z_N^{(\beta)}(t_1, t_2, n_1) = \frac{1}{N!} \int_{-1}^{\infty} \cdots \int_{-1}^{\infty} \prod_{i=1}^{N} (1 + x_i)^{cn_1} \prod_{1 \leq j < k \leq N} |x_j - x_k|^\beta \times \exp \left(\sum_{i=1}^{N} c\eta(x_i, t_1) \right) dx_1 \cdots dx_N,$$

$$Z_N^{(\beta)}(t_1, s, n_1) = \frac{1}{N!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \prod_{i=1}^{N} x_i^{cn_1} \prod_{1 \leq j < k \leq N} |x_j - x_k|^\beta \times \exp \left(\sum_{i=1}^{N} c\eta(x_i, t_1) \right) dx_1 \cdots dx_N,$$

$$Z_N^{(\beta)}(t_1, n_2) = \frac{1}{N!} \int_{0}^{\infty} \cdots \int_{0}^{\infty} \prod_{i=1}^{N} x_i^{cn_2} (1 + x_i)^{cn_2} \prod_{1 \leq j < k \leq N} |x_j - x_k|^\beta \times \exp \left(\sum_{i=1}^{N} c\eta(x_i, t_1) \right) dx_1 \cdots dx_N,$$

where $\eta(x, t) = x_1 + x_2 + f(x), \ \tilde{\eta}(x, t_1, s) = x_1 - x^{-1} + \tilde{f}(x), \ \eta(x, t_1, s) = x_1 + \tilde{f}(x),$ and where the parameter c is chosen such that $c = 1$ for $\beta = 1, 2$ and $c = 2$ for $\beta = 4$. The authors of [18] show that the matrix integrals in (1.3) with $\beta = 2$ satisfy the bilinear versions of the differential-difference KP equation, the two-dimensional Toda lattice, and the
semi-discrete Toda lattice, respectively. Furthermore, in the cases $\beta = 1$ and $\beta = 4$, the integrals in (1.3) are shown to satisfy the Pfaffianized versions of those equations.

The most direct way that integrals of the form (1.2) solve bilinear equations is to use the identities below, which were introduced in [19, 20]:

$$\frac{1}{N!} \int \cdots \int \det \phi_j(x_j) \psi_i(x_i) \frac{dx_1 \cdots dx_N}{dx_1 \cdots dx_N}$$

$$= \det \left[\phi_i(x) \psi_j(x) \frac{dx}{dx} \right]_{i=1, \ldots, N}, \quad (1.4)$$

$$\frac{1}{N!} \int \cdots \int \det \phi_j(x_j) \psi_i(x_i) \frac{dx_1 \cdots dx_N}{dx_1 \cdots dx_N}$$

$$= \det \left[\phi_i(x) \psi_j(x) \frac{dx}{dx} \right]_{i=1, \ldots, N}, \quad (1.5)$$

$$\frac{1}{N!} \int \cdots \int \det \phi_j(x_j) \psi_i(x_i) \frac{dx_1 \cdots dx_N}{dx_1 \cdots dx_N}$$

$$= \det \left[\phi_i(x) \psi_j(x) \frac{dx}{dx} \right]_{i=1, \ldots, N}, \quad (1.6)$$

For the case $\beta = 2$, the integrals in (1.2) and (1.3) are written as determinants using (1.4), while in the case $\beta = 1$, 4, they are written as Pfaffians using (1.5) and (1.6). As pointed out by Kakei in [12], once written in that form, the integrals in (1.2) in the cases $\beta = 1, 2$ can be interpreted as the continuum limits of N-soliton solutions. It can also be verified that the same observation applies to the integrals (1.3) studied in [18]. It is interesting to note that Tracy and Widom [3] used the identities (1.4)–(1.6), to obtain Fredholm determinant expressions for expressions involved in the study of the spacings between consecutive eigenvalues.

In this article, we will extend the relation between integrals of the form (1.1) and integrable systems by obtaining matrix integral solutions to the discrete KP hierarchy and its Pfaffianized version. This will be done by introducing a dependence of (1.1) on discrete variables and on an auxiliary continuous variable. We will be using the identities (1.4)–(1.6) in order to interpret our integrals as determinants and Pfaffians to prove our results. Once more, the case $\beta = 2$ will give rise to solutions to the initial equations (in our case the discrete KP hierarchy), while the cases $\beta = 1, 4$ will give rise to solutions of the Pfaffianized versions.

Specifically, our strategy will be to consider the following integrals

$$Z^{(\beta)}(n_1, n_2, n_3, s) = \frac{1}{N!} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{i=1}^{N} \left(1 - a_1 x_i^{-c_1/s} \right) \left(1 - a_2 x_i^{-c_2/s} \right)$$

$$\times \left(1 - a_3 x_i^{-c_3/s} \right) \prod_{1 \leq i < j \leq N} |x_i - x_j|^b \exp \left[c \sum_{i=1}^{N} \eta(x_i, s) \right] \frac{dx_1 \cdots dx_N}{dx_1 \cdots dx_N}, \quad (1.7)$$

where $n_i, i = 1, 2, 3$ are discrete variables, s is a continuous variable, the lattice parameters satisfy $0 < a_1, a_2 \leq a_3, \eta(x, s) = x s + \eta_0(x), c = 1$ for $\beta = 1, 2$ and $c = 2$ for $\beta = 4$. The integrals (1.7) will provide solutions to the Hirota–Miwa and its Pfaffianized version. Those integrals will then be generalized (see (2.9)) to obtained τ-functions for the whole discrete KP hierarchy and its Pfaffianized version.

The rest of this paper is organized as follows. In section 2, we present the Wronskian determinant solutions to the Hirota–Miwa equation and prove that the matrix integral (1.7)
with $\beta = 2$ is a particular example of such a solution. We then generalize the argument to the whole discrete KP hierarchy. In section 3, we show that the integrals (1.7) with $\beta = 1$ and $\beta = 4$ give solutions to the Pfaffianized version of the Hirota–Miwa equation. Matrix integral solutions for the whole Pfaffianized version of the discrete KP hierarchy are also obtained. Conclusions are given in section 4.

2. Matrix integral solutions to the discrete KP hierarchy

2.1. The Hirota–Miwa equation and its determinant solutions

The Hirota–Miwa equation is the first bilinear equation of the discrete KP hierarchy. It is given by

$$\begin{align*}
&\alpha_1(a_2 - a_1)\tau(n_1 + a_1, n_2, n_3)\tau(n_1, n_2 + a_2, n_3 + a_3) \\
&\quad + a_2(a_3 - a_1)\tau(n_1, n_2 + a_2, n_3)\tau(n_1 + a_1, n_2, n_3 + a_3) \\
&\quad + a_3(a_1 - a_2)\tau(n_1, n_2, n_3 + a_3)\tau(n_1 + a_1, n_2 + a_2, n_3) = 0,
\end{align*}$$

(2.1)

where α_i, a_1, a_2, a_3 are lattice parameters and τ is a function of the discrete variables n_1, n_2 and n_3.

In [23], the following Casorati determinant solution was obtained

$$\tau(n_1, n_2, n_3) = \begin{vmatrix}
\phi_1(n_1, n_2, n_3, 0) & \phi_1(n_1, n_2, n_3, 1) & \cdots & \phi_1(n_1, n_2, n_3, N - 1) \\
\phi_2(n_1, n_2, n_3, 0) & \phi_2(n_1, n_2, n_3, 1) & \cdots & \phi_2(n_1, n_2, n_3, N - 1) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_N(n_1, n_2, n_3, 0) & \phi_N(n_1, n_2, n_3, 1) & \cdots & \phi_N(n_1, n_2, n_3, N - 1)
\end{vmatrix},$$

where $\phi_i, i = 1, \ldots, N$ satisfy the dispersion relations

$$\Delta_{n_3}\phi_i(n_1, n_2, n_3, s) = \frac{\phi_i(n_1, n_2, n_3, s) - \phi_i(n_1, n_2, n_3, s + 1)}{a_j} = \phi_i(n_1, n_2, n_3, s + 1), j = 1, 2, 3. \quad (2.2)$$

Here s is an auxiliary discrete variable.

For our purpose of obtaining matrix integral solutions, it will be more convenient to work with a Wronskian determinant solution. To find such a solution, we interpret s as a continuous variable and write a determinant of a matrix whose columns are derivatives in the variable s.

More precisely, the expression for the Wronskian solution has the form

$$\tau(n_1, n_2, n_3) = \begin{vmatrix}
\phi_1^{(0)}(n_1, n_2, n_3, s) & \phi_1^{(1)}(n_1, n_2, n_3, s) & \cdots & \phi_1^{(N-1)}(n_1, n_2, n_3, s) \\
\phi_2^{(0)}(n_1, n_2, n_3, s) & \phi_2^{(1)}(n_1, n_2, n_3, s) & \cdots & \phi_2^{(N-1)}(n_1, n_2, n_3, s) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_N^{(0)}(n_1, n_2, n_3, s) & \phi_N^{(1)}(n_1, n_2, n_3, s) & \cdots & \phi_N^{(N-1)}(n_1, n_2, n_3, s)
\end{vmatrix}, \quad (2.3)$$

where $\phi_i^{(k)}(n_1, n_2, n_3, s) = \frac{\partial^k\phi_i(n_1, n_2, n_3, s)}{\partial s^k}$ and ϕ_i for $i = 1, \ldots, N$ satisfy the dispersion relations

$$\Delta_{n_3}\phi_i(n_1, n_2, n_3, s) = \frac{\phi_i(n_1, n_2, n_3, s) - \phi_i(n_1, n_2, n_3, s)}{a_j} = \phi_i^{(1)}(n_1, n_2, n_3, s), j = 1, 2, 3. \quad (2.4)$$

For completeness, we present the proof that the expression given in (2.3) solves the Hirota–Miwa equation. Here we adopt the compact notation introduced by Freeman and Nimmo [24, 25]. We denote the expression given in (2.3) as
\[\tau(n_1, n_2, n_3) = [0, 1, \ldots, N - 1], \]

where each index \(j \) for \(j = 0, \ldots, N - 1 \) stands symbolically for a column vector given by

\[
\begin{pmatrix}
\phi_1^{(j)}(n_1, n_2, n_3, s) \\
\phi_2^{(j)}(n_1, n_2, n_3, s) \\
\vdots \\
\phi_N^{(j)}(n_1, n_2, n_3, s)
\end{pmatrix}.
\]

Based on the dispersion relations (2.4), we have

\[
\tau(n_1 + a_i) = [0, 1, \ldots, N - 2, N - 1_{n_1+a_i}],
\]

\[
a_i \tau(n_1 + a_i) = [0, 1, \ldots, N - 2, N - 2_{n_1+a_i}],
\]

\[
\tau(n_1 + a_i, n_j + a_j) = \frac{1}{a_j - a_i}[0, 1, \ldots, N - 3, N - 2_{n_1+a_i}, N - 2_{n_1+a_i}],
\]

(2.5)

where the notation \(\hat{n}_{n_1+a_i} \) is the column vector obtained by replacing \(n_1 \) with \(n_1 + a_i \) in the column vector corresponding to the index \(j \). By substituting the above-mentioned expressions into (2.1), the Hirota–Miwa equation is reduced to nothing but the Plücker relation [26–28]

\[
[0, 1, \ldots, N - 3, N - 2, N - 2_{n_1+a_i}]|0, 1, \ldots, N - 3, N - 2_{n_1+a_i}, N - 2_{n_1+a_i}|
\]

\[
- [0, 1, \ldots, N - 3, N - 2, N - 2_{n_1+a_i}]|0, 1, \ldots, N - 3, N - 2_{n_1+a_i}, N - 2_{n_1+a_i}|
\]

\[
+ [0, 1, \ldots, N - 3, N - 2, N - 2_{n_1+a_i}]|0, 1, \ldots, N - 3, N - 2_{n_1+a_i}, N - 2_{n_1+a_i}|
\]

\[= 0. \]

The \(N \)-soliton solution for equation (2.1) obtained in [23] can be written as a Wronskian solution of the form (2.3) with

\[
\phi_i(n_1, n_2, n_3, s) = \alpha_i \prod_{\nu=1}^{3} (1 - p_\nu a_i)^{-n_{i\nu}/a_i} \exp(p_\nu s) + \beta_i \prod_{\nu=1}^{3} (1 - q_\nu a_i)^{-n_{i\nu}/a_i} \exp(q_\nu s),
\]

(2.6)

where \(p_\nu, q_\nu, \alpha_i, \beta_i \) are arbitrary constants, which correspond to the wave numbers and phase parameters of the \(i \)th soliton, respectively.

2.2. Matrix integral solutions of the Hirota–Miwa equation

Consider the case of \(\beta = 2 \) for the integral \(Z_{n_1, n_2, n_3}^{(\beta)}(n_1, n_2, n_3, s) \) given by (1.7), which we denote as \(Z_{n_1, n_2, n_3}^{(\beta=2)}(n_1, n_2, n_3, s) \). In what follows, we show that \(Z_{n_1, n_2, n_3}^{(\beta=2)}(n_1, n_2, n_3, s) \) solves the Hirota–Miwa equation (2.1) by showing that it is a particular case of the Wronskian solution (2.3).

Using the Vandermonde determinant

\[
\prod_{1 \leq j < k \leq N} (x_j - x_k) = \det [x_j^{k-1}]_{j,k=1 \ldots N},
\]

we can express the integrand of \(Z^{(\beta=2)}(n_1, n_2, n_3, s) \) as a product of two determinants

\[
\det [x_j^{k-1}]_{j,k=1 \ldots N} \cdot \det [x_j^{k-1} (1 - a_1 x_k)^{-m/a_1} (1 - a_2 x_k)^{-m/a_2} \times (1 - a_3 x_k)^{-m/a_3} \exp(\eta(x_k, s))]_{j,k=1 \ldots N}.
\]
Then, using the identity (1.4), the matrix integral $Z_N^{(\beta=2)}(n_1, n_2, n_3, s)$ can be written as
\[
Z_N^{(\beta=2)}(n_1, n_2, n_3, s) = \det \left[\int_{-\infty}^{\infty} x^{i+j/2}(1 - a_1x)^{-n_i/a_i} (1 - a_2x)^{-n_j/a_j} \times (1 - a_3x)^{-n_k/a_k} \exp(x\eta_0(x))dx \right]_{i,j \leq n_2
\begin{bmatrix}
g_1^{(0)}(n_1, n_2, n_3, s) & g_1^{(1)}(n_1, n_2, n_3, s) & \cdots & g_1^{(N-1)}(n_1, n_2, n_3, s) \\
g_2^{(0)}(n_1, n_2, n_3, s) & g_2^{(1)}(n_1, n_2, n_3, s) & \cdots & g_2^{(N-1)}(n_1, n_2, n_3, s) \\
\vdots & \vdots & \ddots & \vdots \\
g_N^{(0)}(n_1, n_2, n_3, s) & g_N^{(1)}(n_1, n_2, n_3, s) & \cdots & g_N^{(N-1)}(n_1, n_2, n_3, s)
\end{bmatrix},
\]
with
\[
g_i(n_1, n_2, n_3, s) = \int_{-\infty}^{\infty} x^{i-1}(1 - a_1x)^{-n_i/a_i} (1 - a_2x)^{-n_j/a_j} \times (1 - a_3x)^{-n_k/a_k} \exp(x\eta_0(x))dx,
\]
\[
g_i^{(j)}(n_1, n_2, n_3, s) = \frac{\partial g_i}{\partial x^j}(n_1, n_2, n_3, s).
\]

It is then a simple exercise to prove that the g_i satisfy the dispersion relation (2.4). The integral $Z_N^{(\beta=2)}(n_1, n_2, n_3, s)$ thus is a Wronskian solution to the Hirota–Miwa equation (2.1). Moreover, this solution can be seen as a continuum limit of the N-soliton solutions given by the Wronskian solution (2.3) with ϕ_i as in (2.6). Note that a similar interpretation applies to the whole discrete KP hierarchy treated below.

2.3. Matrix integral solution of the discrete KP hierarchy

The Hirota–Miwa equation is the first member of the discrete KP hierarchy [23, 29, 30]. The Casorati determinant solutions of this hierarchy is presented in [23]. Just like we did in section 2.1, we can rewrite it as a Wronskian solution, which takes the form

\[
\tau(n) = \begin{bmatrix}
\phi_1^{(0)}(n, s) & \phi_1^{(1)}(n, s) & \cdots & \phi_1^{(N-1)}(n, s) \\
\phi_2^{(0)}(n, s) & \phi_2^{(1)}(n, s) & \cdots & \phi_2^{(N-1)}(n, s) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_N^{(0)}(n, s) & \phi_N^{(1)}(n, s) & \cdots & \phi_N^{(N-1)}(n, s)
\end{bmatrix},
\]

where $n = (n_1, n_2, \ldots, n_m)$, $\phi_i^{(k)}(n, s) = \frac{\partial^k \phi_i}{\partial s^k}(n, s)$ and ϕ_i for $i = 1, \ldots, N$ satisfy the dispersion relations

\[
\Delta_{ij} \phi_i(n, s) = \frac{\phi_i(n_j) - \phi_i(n_j - a_j)}{a_j} = \phi_i^{(1)}(n, s), \ j = 1, 2, 3, \ldots, m,
\]

where $m \geq 3$. The case $m = 3$ corresponds to the Hirota–Miwa equation treated in section 2.2. We now generalize the integral (1.7) so that it now depends on the discrete variables $n = (n_1, n_2, \ldots, n_m)$ in the following way.
where we assume that \(a_m \geq a_j \) for \(j = 1, 2, ..., m \). The argument used in section 2.2 is then easily generalized to show that the integral above in the case \(\beta = 2 \) (with \(c = 1 \)) provides a solution of the form (2.8) for the discrete KP hierarchy.

3. Matrix integral solutions to the Pfaffianized version of the discrete KP hierarchy

In this section, we first recall some facts about Pfaffians and then present Pfaffian solutions and matrix integral solutions to the Pfaffianized Hirota–Miwa equation and the Pfaffianized version of the discrete KP hierarchy.

As is known \([26–28, 32]\), a Pfaffian \((1, 2, ..., 2N)\) is defined recursively by

\[
(1, 2, ..., 2N) = \sum_{j=2}^{2N} (-1)^j (1, j)(2, 3, ..., \hat{j}, ..., 2N),
\]

where \((i, j) = -(j, i)\) and \(\hat{j}\) means that the index \(j\) is omitted. For any given \(2N \times 2N\) antisymmetric matrix \(A_{2N} = [a_{ij}]_{1 \leq i, j \leq 2N}\), the Pfaffian associated with \(A_{2N}\) is defined as

\[
\text{Pf}[A_{2N}] \triangleq (1, 2, ..., 2N)
\]

with \((i, j) = -(j, i) = a_{ij}\). On the other hand, for any given Pfaffian \((1, 2, ..., 2N)\), we can construct an antisymmetric matrix

\[
A_{2N} = \begin{bmatrix}
0 & (1, 2) & (1, 3) & \cdots & (1, 2N - 1) & (1, 2N) \\
-(1, 2) & 0 & (2, 3) & \cdots & (2, 2N - 1) & (2, 2N) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-(1, 2N - 1) & -(2, 2N - 1) & -(3, 2N - 1) & \cdots & 0 & -(2N - 1, 2N) \\
-(1, 2N) & -(2, 2N) & -(3, 2N) & \cdots & -(2N - 1, 2N) & 0
\end{bmatrix}
\]

whose Pfaffian is \(\text{Pf}[A_{2N}] = (1, 2, ..., 2N)\) by the definition (3.2).

3.1. Pfaffianized version of the Hirota–Miwa

The Pfaffianized version of the Hirota–Miwa equation was obtained in [31] using the procedure of Pfaffianization proposed by Hirota and Ohta [16]. It takes the form of the following system of three coupled equations

\[
Z_{N}^{(j)}(n, s) = \frac{1}{N!} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \prod_{k=1}^{N} (1 - a_{kj}x_k)^{-cnj/\delta} \prod_{1 \leq i < j < N} |x_i - x_j|^{\beta} \exp \left[\sum_{i=1}^{N} c_{ij}(x_i, s) \right] dx_1 \cdots dx_N.
\]
\[a_1 a_2 a_3 \{ a_1 (a_2 - a_3) \tau (n_1 - a_1, n_2, n_3) \tau (n_1, n_2 - a_2, n_3 - a_3) + a_2 (a_3 - a_1) \tau (n_1, n_2 - a_2, n_3) \tau (n_1 - a_1, n_2, n_3 - a_3) + a_3 (a_1 - a_2) \tau (n_1, n_2, n_3 - a_3) \tau (n_1 - a_1, n_2 - a_2, n_3) \} \]

\[+ (a_1 - a_2)(a_2 - a_3)(a_3 - a_1) \sigma (n_1, n_2, n_3) \rho (n_1 - a_1, n_2 - a_2, n_3 - a_3) = 0, \]

\[a_1 a_2 a_3 \{ a_1 (a_2 - a_3) \sigma (n_1 - a_1, n_2, n_3) \tau (n_1, n_2 - a_2, n_3 - a_3) + a_2 (a_3 - a_1) \sigma (n_1, n_2, n_3 - a_3) \tau (n_1 - a_1, n_2 - a_2, n_3) + a_3 (a_1 - a_2) \sigma (n_1, n_2, n_3) \tau (n_1 - a_1, n_2 - a_2, n_3 - a_3) \} \]

\[+ (a_1 - a_2)(a_2 - a_3)(a_3 - a_1) \tau (n_1, n_2, n_3) \rho (n_1 - a_1, n_2 - a_2, n_3 - a_3) = 0. \quad (3.3) \]

The system above has the Pfaffian solutions

\[
\tau = \tau (n_1, n_2, n_3) = (1, 2, \cdots, N), \ N \ even,
\]

\[
\sigma = \sigma (n_1, n_2, n_3) = (1, 2, \cdots, N + 1, N + 2),
\]

\[
\rho = \rho (n_1, n_2, n_3) = (1, 2, \cdots, N - 2), \quad (3.4)
\]

where the Pfaffian entries \((i, j)\) in the above-mentioned three Pfaffians are functions of the discrete variables \(n_1, n_2\) and \(n_3\) which satisfy the following dispersion relations

\[(i, j)_{n_1-n_0} = (i, j) - q_k(i + 1, j) - a_k(i, j + 1) + a_k^2(i + 1, j + 1), \ k = 1, 2, 3. \quad (3.5)\]

In (3.5), the notation \((i, j)_{n_1-n_0}\) represents the operation on \((i, j)\) which the discrete variable \(n_0\) in \((i, j)\) by \(n_1 - n_0\). The terms on the right-hand side of (3.5) are various Pfaffian entries. Based on the definition of a Pfaffian (3.1), once we know the dispersion relations (3.5) that the Pfaffian entries \((i, j)\) satisfy for \(i, j = 1, 2, \cdots, N + 2\), it is enough to prove that \(\tau, \sigma\) and \(\rho\) given by (3.4) are Pfaffian solutions to the Pfaffianized version of the Hirota–Miwa equation (3.3). As for the antisymmetric matrices associated to the three Pfaffians in (3.4), they are related but not the same. More precisely, if we assume that \(A_{N-2}, A_N\) and \(A_{N+2}\) are three antisymmetric matrices of orders \(N - 2, N\) and \(N + 2\), respectively, such that \(\rho = \text{Pf}[A_{N-2}], \tau = \text{Pf}[A_N]\) and \(\sigma = \text{Pf}[A_{N+2}],\) then both \(A_{N-2}\) and \(A_N\) are submatrices of \(A_{N+2}\).

We would like to point out that an example of the Pfaffian entry \((i, j)\) which satisfies (3.5) is

\[
(i, j) = \sum_{k=1}^{N} (p_k^{i-1} q_k^{j-1} - q_k^{i-1} p_k^{j-1}) \times \prod_{\rho=1}^{3} [(1 - a_\rho p_k)(1 - a_\rho q_k)^{-\alpha_\rho/\alpha} \exp[\eta(p_k, s) + \eta(q_k, s)], \quad (3.6)
\]

where \(p_k\) and \(q_k\) are arbitrary constants. Under this choice, the Pfaffian solution \(\tau = (1, 2, \cdots, N)\) gives the \((N/2)\)-soliton solutions to the Pfaffianized version of the Hirota–Miwa equation.

Remark. By referring to [16, 26, 27], we know that the coupled KP equation has Wronskian Pfaffian solutions \(\tau = (0, 1, \cdots, 2N - 1), \ \sigma = (0, 1, \cdots, 2N - 3)\) and \(\tilde{\sigma} = (0, 1, \cdots, 2N + 1)\) with \((l, m)\) satisfying the dispersion relation...
where \(x_1 = x, \ x_2 = y, \ x_3 = t \). One such an example is \((l, m) = (l + n, m) + (l, m + n)\) where \(l_1 = x, \ x_2 = y, \ x_3 = t \). Further on, if we choose \(\Phi_k = \exp[p_k x + p_k^2 y + p_k^3 t] \) and \(\Psi_k = \exp[q_k x + q_k^2 y + q_k^3 t] \), then \((l, m) = \sum_{k=1}^{N} l_k m_k - \sum_{k=1}^{m-1} q_k - \sum_{k=1}^{m-1} p_k \exp[p_k x + (p_k^2 + q_k^2) y + (p_k^3 + q_k^3) t]\) coincides with the expression \(a_{lm} \) given in [12] and can be used to generate multi-soliton solutions to the coupled KP equation given in [34]. Along this line, we can derive multi-soliton solutions to the coupled Hirota–Miwa system with the Pfaf unknowns given by (3.6) in the same way.

Matrix integral solutions (I). Consider the case \(\beta = 1 \). By virtue of the identity (1.5), the matrix integral (1.7) turns into

\[
Z_{N}^{(\beta=1)}(n_1, n_2, n_3, s) = \frac{1}{N!} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \det \left[x_j^{l-1} (1 - a_1 x_j)^{-n_j/a_2} (1 - a_2 x_j)^{-n_j/a_3} \right] \times (1 - a_3 x_j)^{-n_j/a_3} \exp(\eta(x_j, s)) d x_j = 1, \ldots, N \]

\[
= \text{Pf} \left[\int_{x < y} (x^{l-1} y^{j-1} - y^{l-1} x^{j-1}) \left[(1 - a_1 x) (1 - a_1 y) \right]^{-n_j/a_1} \right. \\
\left. \times (1 - a_2 x) (1 - a_2 y) \right]^{-n_j/a_2} \left[(1 - a_3 x) (1 - a_3 y) \right]^{-n_j/a_3} \exp^{\eta(x,y) + \eta(y,x)} d x d y. \]

(3.7)

It is easy to check that the Pfaffian entry (3.7) satisfies the dispersion relation (3.5). Therefore, the matrix integrals \(T = Z_{N}^{(\beta=1)}(n_1, n_2, n_3, s) \), \(\sigma = Z_{N+2}^{(\beta=1)}(n_1, n_2, n_3, s) \) together with \(\rho = Z_{N+2}^{(\beta=1)}(n_1, n_2, n_3, s) \) provide solutions to the coupled Hirota–Miwa system (3.3). Moreover, the Pfaffian solutions obtained with (3.7) can be interpreted as a continuum of the multisoliton Pfaffian solutions defined by (3.6).

Matrix integral solutions (II). With regard to the twofold Vandermonde determinant, the following identity was presented in [3]

\[
\prod_{1 \leq j < k \leq N} (x_j - x_k)^4 = \det \left[x_k^j \right]_{j=1, \ldots, 2N, k=1, \ldots, N}. \]

(3.8)

Consider the case \(\beta = 4 \). By resorting to the identities (1.6) and (3.8), the matrix integral (1.7) becomes
\[
Z_N^{(\beta=4)}(n_1, n_2, n_3, s) = \frac{1}{N!} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \det \left[x_j^i (1 - a_{ij} x_j)^{-n_i/a_i} (1 - a_{2j} x_j)^{-n_2/a_2} (1 - a_{3j} x_j)^{-n_3/a_3} \exp(\eta(x_j, s)) \right] dx_1 \cdots dx_N
\]

\[
(i - 1)x_j^i (1 - a_{ij} x_j)^{-n_i/a_i} (1 - a_{2j} x_j)^{-n_2/a_2} (1 - a_{3j} x_j)^{-n_3/a_3} \exp(\eta(x_j, s)) dx_i \cdots dx_N
\]

\[
= \text{Pf} \left[\int_{-\infty}^{\infty} (j - i)x_j^i x_j^{-j-3} (1 - a_{ij} x) - 2n_i/a_i (1 - a_{2j} x)^{-2n_2/a_2} \right]
\]

\[
\times (1 - a_{3j})^{-2n_3/a_3} \exp(2\eta(x, s)) dx_j \bigg|_{j=1, \ldots, 2N}
\]

whose Pfaffian entry \((i, j)\) entry is given by

\[
(i, j) = \int_{-\infty}^{\infty} (j - i)x_j^i x_j^{-j-3} (1 - a_{ij} x) - 2n_i/a_i (1 - a_{2j} x)^{-2n_2/a_2}
\]

\[
\times (1 - a_{3j})^{-2n_3/a_3} \exp(2\eta(x, s)) dx_j. \quad (3.9)
\]

Similarly, one can prove that the Pfaffian entry \((3.9)\) satisfies the dispersion relation \((3.5)\) as well. Thus, the matrix integrals \(\tau = Z_N^{[\beta=1]}(n_1, n_2, n_3, s), \sigma = Z_N^{[\beta=1]}(n_1, n_2, n_3, s)\) as well as \(\rho = Z_N^{[\beta=1]}(n_1, n_2, n_3, s)\) give solutions to the coupled Hirota–Miwa system \((3.3)\).

3.2. Pfaffianized version of the discrete KP hierarchy

The Pfaffianized version of the whole discrete KP hierarchy and its Pfaffian solutions were derived in [33]. The Pfaffian solutions take the form

\[
\tau = \tau(n) = (1, 2, \ldots, N), N \text{ even},
\]

\[
\sigma = \sigma(n) = (1, 2, \ldots, N, N + 1, N + 2),
\]

\[
\rho = \rho(n) = (1, 2, \ldots, N - 2), \quad (3.10)
\]

where \(n = (n_1, n_2, \ldots, n_m)\) and where the Pfaffian entry \((i, j)\) satisfies

\[
(i, j)_{n_i - a_i} = (i, j) - a_k (i + 1, j) - a_k (i, j + 1) + a_k^2 (i + 1, j + 1), \quad k = 1, 2, \ldots, m.
\]

If we now consider the general integral \((2.9)\), the argument used in section 3.1 is then easily generalized to show that the integral above in the cases \(\beta = 1\) (with \(c = 1\)) and \(\beta = 4\) (with \(c = 2\)) provide a solution of the form \((3.10)\) for the Pfaffianized discrete KP hierarchy.

4. Conclusion

We have considered matrix integrals used in certain probability computations for Hermitian ensembles. Such matrices have been shown before to be useful in the context of integrable systems, string theory, and random matrix theory by providing partition functions and solutions to integrable equations. More precisely, by inserting an appropriate dependence on various variables in the integrals \((1.1)\), one can obtain \(\tau\)-functions for a number of integrable equations, together with their Pfaffianized versions \([12, 14, 16–18]\). In all the examples studied in the literature, the case \(\beta = 2\) relates to a given integrable equation, while the cases \(\beta = 1, 4\) relates to the Pfaffianized version of the same equation. Furthermore, the solutions obtained in this way can often be interpreted as a continuous limit of multi-soliton solutions.

In this article, we have shown that integrals of the form \((1.1)\) can provide \(\tau\)-functions for the discrete KP hierarchy and its Pfaffianized version by introducing an appropriate dependence on the discrete variables. More precisely, we have considered the integrals \((1.7)\) and \((2.9)\) and showed that in the case \(\beta = 2\), they provide solutions to the discrete KP
hierarchy (starting with the Hirota–Miwa equation (2.1)), while the cases $\beta = 1, 4$ provide solutions for the Pfaffianized version of the discrete KP hierarchy (starting with the Pfaffianized Hirota–Miwa equation given in (3.3)).

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11271266 and 11371323), Natural Science Foundation of Beijing Municipality (Grant No. 1162003) and the China Scholarship Council. The authors would like to thank Professor Xing-Biao Hu, Alex Kasman, and Virgil Pierce for valuable discussions. Dr Li would also like to thank for the hospitality of the Department of Mathematics during her visit to the College of Charleston.

References

[1] Mehta M L 1981 A method of integration over matrix variables Commun. Math. Phys. 79 327–40
[2] Mehta M L 2004 Random Matrices 3rd edn (Amsterdam, New York: Elsevier, Academic)
[3] Tracy C A and Widom H 1998 Correlation functions, cluster functions, and spacing distributions for random matrices J. Stat. Phys. 92 809–35
[4] Gerasimov A, Marshakov A, Mironov A, Morozov A and Orlov A 1991 Matrix models of two-dimensional gravity and Toda theory Nucl. Phys. B 357 565–618
[5] Makeenko Y, Marshakov A, Mironov A and Morozov A 1991 Continuum versus discrete Virasoro in one-matrix models Nucl. Phys. B 356 574–618
[6] Marshakov A, Mironov A and Morozov A 1991 Generalized matrix models as conformal field theories. Discrete case Phys. Lett. B 265 99–107
[7] Morozov A 1994 Integrability and matrix models Phys. Usp. 37 1–55
[8] Adler M T, Shiota T and Moerbeke P V 1995 Random matrices, vertex operators and the Virasoro algebra Phys. Lett. A 208 67–78
[9] Mulase M 1994 Algebraic theory of the KP equations Perspectives in Mathematical Physics (Conference Proceedings and Lecture Notes in Mathematical Physics vol 3) (Cambridge, MA: Internat. Press) pp 151–217
[10] Adler M and van Moerbeke P 2002 Matrix integrals, Toda symmetries, Virasoro constraints, and orthogonal polynomials Duke Math. J. 80 863–911
[11] Mulase M 1994 Matrix integrals and integrable systems Topology, Geometry and Field Theory (River Edge, NJ: World Scientific) pp 111–27
[12] Kakei S 1999 Orthogonal and symplectic matrix integrals and coupled KP hierarchy J. Phys. Soc. Japan 68 2875–7
[13] Adler M and van Moerbeke P 2001 Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum Ann. Math. 153 149–89
[14] Adler M, Shiota T and van Moerbeke P 2001 Pfaff τ-function Math. Ann. 322 423–76
[15] Adler M and van Moerbeke P 2002 Toda versus Pfaff lattice and related polynomials Duke Math. J. 112 1–58
[16] Hirota R and Ohta Y 1991 Hierarchies of coupled soliton equations: I J. Phys. Soc. Japan 60 798–809
[17] Adler M, Horozov E and van Moerbeke P 1999 The Pfaff lattice and skew-orthogonal polynomials Int. Math. Res. Not. 11 569–88
[18] Hu X B, Zhao J X and Li C X 2006 Matrix integrals and several integrable differential-difference systems J. Phys. Soc. Japan 75 054003
[19] Andréief C 1883 Note sur une relation les intégrales définies des produits des fonctions Mémoire de la Société Scientifique de Bordeaux 2 1–4
[20] de Bruijn N G 1955 On some multiple integrals involving determinants J. Indian Math. Soc. 19 133–51
[21] Hirota R 1981 A coupled KdV equation is one case of the four-reduction of the KP hierarchy J. Phys. Soc. Japan 50 3785–91
[22] Miwa T 1982 On Hirota’s difference equations Proc. Japan Acad. A 58 9–12
[23] Ohta Y, Hirota R and Tsujimoto S 1993 Casorati and discrete Gram type determinant representations of solutions to the discrete KP hierarchy J. Phys. Soc. Japan 62 1872–86
[24] Freeman N C and Nimmo J J C 1983 Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique Phys. Lett. A 95 1–3
[25] Nimmo J J C and Freeman N C 1983 A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian Phys. Lett. A 95 4–6
[26] Hirota R 1980 Direct methods in soliton theory Solitons ed R K Bullough and P J Caudrey (Berlin: Springer)
[27] Hirota R 1992 Direct Methods in Soliton Theory (in Japanese) (Tokyo: Iwanami Shoten)
[28] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[29] Date E, Jimbo M and Miwa T 1982 Method for generating discrete soliton equations: II J. Phys. Soc. Japan 51 4125–31
[30] Kakei S, Nimmo J J C and Willox R 2009 Yang–Baxter maps and the discrete KP hierarchy Glasgow Math. J. 51A 107–19
[31] Gilson C R, Nimmo J J C and Tsujimoto S 2001 Pfaffianization of the discrete KP equation J. Phys. A: Math. Gen. 34 10569–75
[32] Caianiello E R 1973 Combinatorics and Renormalization in Quantum Field Theory (New York: Benjamin)
[33] Ohta Y 2004 Special solutions of discrete integrable systems Discrete Integrable Systems (Lecture Notes in Physics vol 644) ed B Grammaticos et al (Berlin: Springer) pp 57–83
[34] Isojima S, Willox R and Satsuma J 2002 On various solutions of the coupled KP equation J. Phys. A: Math. Gen. 35 6893–909