OPEN–CONSTRUCTIBLE FUNCTIONS
(CORRECTED VERSION, JANUARY 2014)

ALEXEY OSTROVSKY

Abstract. Let f be a continuous function between subspaces X, Y of the Cantor set C. We prove that:
if f is one-to-one and maps open sets into resolvable, then f is a piecewise homeomorphism and
if f maps discrete subsets into resolvable, then f is piecewise open.

1. Introduction

The present paper continues the series of publications about decomposibility of Borel functions [6], [8] - see also [2], [3] where functions of such type are the main subject.
A subset E of a topological space X is resolvable if for each nonempty closed in X subset F we have

$$\text{cl}_X(F \cap E) \cap \text{cl}_X(F \setminus E) \neq F$$

Recall that a function f is open if it maps open sets into open ones. More generally, a function f is said to be open–resolvable (resolvable in [1]) if f maps open sets into resolvable ones.

A function $f : X \to Y$ for which $X \subset C$ admits a countable, closed and disjoint cover C, such that for each $C \in C$ the restriction $f|C$ is open, is called piecewise open.

Theorem 1. Let f be a continuous, one-to-one and open–resolvable function between $X, Y \subset C$. Then f is piecewise open and hence is piecewise homeomorphism.

Note, that using standard sets H, we obtain the proof for open-resolvable functions simpler than for open-constructible.

Analogously, using H-sets we can easy extend the proof for closed-constructible functions in [6] to the case of closed-resolvable.

Standard set H will be used in the proof of the following theorem:

Theorem 2. If a continuous function $f : X \to Y$ between $X, Y \subset C$ maps discrete subsets in X onto resolvable, then f is piecewise open.
1.1. Standard set H.

The set H was introduced by W. Hurewicz [4] and has a lot of applications. H (called standard in [7],[5]) is a countable set without isolated points:

$$H = \{p, \ldots, p_{i_1 \ldots i_k} : k \in \mathbb{N}^+; i_1, \ldots, i_k \in \mathbb{N}^+\}$$

such that

$$p_{i_1} \to p, \text{ as } i_1 \to \infty$$

$$p_{i_1 \ldots i_k, i_{k+1}} \to p_{i_1 \ldots i_k}, \text{ as } i_{k+1} \to \infty$$

Obviously, H is homeomorphic to the space of rational \mathbb{Q}.

Using the metric in $X \supset H$ we can suppose additionally that there are decreasing bases $U_i(p)$, and $U_i(p_{i_1 \ldots i_k})$ at points p and $p_{i_1 \ldots i_k}$ satisfying conditions a), b) and c) below:

a) $U_i^{i_k}(p_{i_1 \ldots i_k}) \supset U_1(p_{i_1 \ldots i_{k+1}}), i_k \in \mathbb{N}^+$

b) for $i_k' \neq i_k''$ we have $U_1(p_{i_1 \ldots i_k'}) \cap U_1(p_{i_1 \ldots i_k''}) = \emptyset$.

c) $\text{diam}(U_i^{i_k}(p_{i_1 \ldots i_k})) < 1/(i_1 + \ldots + i_k)$

2. Construction of $Z \subset X$ for which $f|Z$ is nowhere open

Given a function $f : X \to Y$, we shall construct in the next Lemma 1 a subset $Z \subset X$ on which the restriction $f|Z$ is nowhere open on Z; i.e. for every clopen in X subset U the restriction $f|(U \cap Z)$ is not open.

Lemma 1. Let $f : X \to Y$ be a continuous function from a subspace X of the Cantor set \mathcal{C} onto a metrizable space Y. Then there is a closed subset $Z \subset X$ such that the restriction $f|Z$ is nowhere open on Z and the restriction $f|(X \setminus Z)$ is piecewise open.

Proof of Lemma 1. Let us begin by proving the first part of the assertion from lemma stating that for some Z the restriction $f|Z$ is nowhere open on Z. Indeed, if for some nonempty clopen set $V \subset X$ the restriction $f|V$ is open, then we could construct the closed set

$$X_1 = X \setminus V$$

and the corresponding restriction

$$f|X_1 : X_1 \to f(X_1).$$

Repeating this process, we could also construct a chain of closed sets ($X_\gamma = \bigcap_{\beta < \gamma} X_\beta$ for a limit γ)

$$X \supset X_1 \supset \ldots \supset X_\gamma \supset \ldots$$

which, as we know, stabilizes at some $\gamma_0 < \omega_1$. Therefore, there exists a subspace Z for which holds true

$$Z = X_{\gamma_0} = X_{\gamma_0 + 1} = \ldots$$

and the restriction $f|Z$ is nowhere open on Z.
pairwise disjunct clopen neighborhoods constructed.

obviously, satisfied.

Take the points and clopen sets

Proof of Theorems 1 and 2.

2.1. Proof of Theorems 1 and 2.

On the step 1 take a point \(x \in Z \) and a base of clopen in \(X \) neighborhoods \(U^k(x) \subset X \) with diametr less than \(1/k \).

Since \(f \) is nowhere open on \(Z \), there are

\[
U^l(x_k) \subset Z \cap (U^k(x) \setminus (U^{k+1}(x)))
\]

such that \(x_k \to x \), \(f(x_k) = p_k \to p = f(x) \) and

\[
f^{-1}(p_{k,l}) \cap U^1(x_k) = \emptyset
\]

Take \(x_{k,l} \in U(x_{k,l}) \subset \cap (U^l(x_k) \setminus (U^{l+1}(x_k))).

For the basic induction step \(m \) we suppose that the points \(p = f(x), ..., p_{i_1,...,i_k} = f(x_{i_1,...,i_k}) \) satisfying the conditions a), b),c) of definition the set \(H \) are constructed.

Analogously pick in some clopen sets \(U^1(x_{i_1,..,i_k}) \) the points \(x_k \to x \) with pairwise disjunct clopen neighborhoods \(U^1(x_k) \) such that for some sequence \(p_{k,l} \to p_k = f(x_k) \) we have

\[
f^{-1}(p_{k,l}) \cap U^1(x_k) = \emptyset
\]

Take the points

\(x_{k,l} \in f^{-1}(p_{k,l}) \setminus U^1(x_k) \)

and clopen sets

\(U^1(x_{k,l}) \subset X \setminus U^1(x_k). \)

Since \(f \) is continuous we can suppose that \(U^1(x_{k,l}) \) are disjunct with all \(U^1(x_k) \).

Since \(f \) is nowhere open on \(Z \cap U^1(x_{k,l}) \) we can repeat the construction for \(U^1(x_{k,l}) \) etc. Analogously we obtain

\[
p_{i_1,...,i_m,k,l} \to p_{i_1,...,i_m,k} \text{ as } l \to \infty
\]

\[
x_{i_1,...,i_m,k,l} \in f^{-1}(p_{i_1,...,i_m,k,l}) \setminus U^1(x_{i_1,...,i_m,k}).
\]

\[
U^1(x_{i_1,...,i_m,k}) \cap f^{-1}(p_{i_1,...,i_m,k,l}) = \emptyset, l \in N^+
\]

We can suppose that \(U^1(p_{i_1,...,i_m,k}) \) are clopen and there is a clopen neighborhood \(U^1(x_{i_1,...,i_m,k,l}) \) of point \(x_{i_1,...,i_m,k,l} \) disjunct with all \(U^1(x_{i_1,...,i_m,k}). \)

Denote

\[
D = \{ x_{i_1,...,i_2,k+1} : k \in N^+; i_1, ..., i_{2k+1} \in N^+ \}
\]

By our construction \(D \) is discrete and \(f(D) \) is dense and codense in

\[
H = \{ p_{i_1,...,i_k} : k \in N^+; i_1, ..., i_k \in N^+ \}
\]

that proves Theorem 2.
To prove Theorem 1 we note, that in case of one-to-one functions the open set $O(D) = \{U^1(x_{i_1}), \ldots, U^1(x_{i_1}, \ldots, x_{i_{2k+1}}) : k \in N^+, i_1, \ldots, i_{2k+1} \in N^+\}$ has the same image as D.

\[\square\]

Question 1. Are the continuous open–Δ^0_2 functions (even for Polish or analytic spaces $X \subset C$) piecewise or countably open?

References

[1] Gao, S., Kieftenbeld,V.: Resolvable Maps Preserve Complete Metrizability, Proc. Am. Math. Soc. 138 (2010), 2245–2252.

[2] Ghoussoub, N., Maurey, B.: G_δ–Embeddings in Hilbert Space, Journal of Functional Analysis 61 (1985), 72–97.

[3] Holicky, P.: Preservation of completeness by some continuous maps, Topology Appl. 157 (2010), 1926-1930.

[4] Hurewicz W.: *Relativ perfekte Teile von Punktmengen und Mengen (A)*, Fund. Math. 12 (1928), 78–109.

[5] Ostrovskii, A. V.: Product $F_{\alpha\beta}$-spaces and A-sets, Moscow University Mathematics Bulletin, 30, (1975) 95–99.

[6] Ostrovsky, A.: Closed–constructible functions are piecewise closed, Topology Appl. 160 (2013), 1675-1680.

[7] Ostrovskii, A.V.: On non separable τ-analytic sets and their mappings, Soviet Math. Dokl. 17(1972) 99–102.

[8] Ostrovsky, A.: Preservation of the Borel class under open-LC functions, Fund. Math., 213:2 (2011), 191–195.

E-mail address: alexei.ostrovski@gmx.de

Follow me on ResearchGate