Design of LGAD Sensor with Low Energy Carbon Implantation and Irradiation Test

Kewei Wua,b,c,1, Xuewei Jiaa,b,c,1, Tao Yanga,b,c, Mengzhao Lia,b,c, Wei Wanga,c, Mei Zhaoa,c,*, Zhijun Lianga,c,*, Jo\~ao Guimar\~aes da Costaa, Yunyun Fana,c, Han Cuia,b,c, Alissa Howardd, Gregor Krambergerd, Xin Shia,c, Yuekun Henga,b,c, Yuhang Tana,b,c, Bo Liua,c, Yuan Fenga,b,c, Shuqi Lia,b,c, Mengran Lia,b,c, Chengjun Yua,b,c, Xuan Yanga,c, Mingjie Zhaia,b,c, Gaobo Xue, Gangping Yanb,e, Qionghua Zhaib,e, Mingzheng Dinge, Jun Luoe, Huaxiang Yine, Junfeng Lie

aInstitute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Shijingshan, Beijing 100049, China
bUniversity of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan, Beijing 100049, China
cState Key Laboratory of Particle Detection and Electronics, 19B Yuquan Road, Shijingshan, Beijing 100049, China
dJo\~zef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
eInstitute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Chaoyang, Beijing 100029, China

Abstract

The low gain avalanche detectors (LGADs) are thin sensors with fast charge collection which in combination with internal gain deliver an outstanding time resolution of about 30 ps. High collision rates and consequent large particle rates crossing the detectors at the upgraded Large Hadron Collider (LHC) in 2028 will lead to radiation damage and deteriorated performance of the LGADs. The main consequence of radiation damage is loss of gain layer doping (acceptor removal) which requires an increase of bias voltage to

*Corresponding Author

\textit{Email addresses:} zhaomei@ihep.ac.cn (Mei Zhao), liangzj@ihep.ac.cn (Zhijun Liang)
compensate for the loss of charge collection efficiency and consequently time resolution. The Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS) has developed a process based on the Institute of Microelectronics (IME), CAS capability to enrich the gain layer with carbon to reduce the acceptor removal effect by radiation. After 1 MeV neutron equivalent fluence of 2.5×10^{15} n_{eq}/cm^2, which is the maximum fluence to which sensors will be exposed at ATLAS High Granularity Timing Detector (HGTD), the IHEP-IME second version (IHEP-IMEv2) 50 μm LGAD sensors already deliver adequate charge collection >4 fC and time resolution <50 ps at voltages <400 V. The operation voltages of these 50 μm devices are well below those at which single event burnout may occur.

Keywords: Low Gain Avalanche Detectors (LGAD), Carbon implantation, Silicon detector, Radiation hardness, Acceptor removal

1. **Introduction**

In order to exploit full physics potential of the Large Hadron Collider (LHC), the LHC will be upgraded to achieve larger luminosity (High Luminosity-LHC) in 2028. The instantaneous luminosity will reach levels exceeding the present ones by at least a factor of five.\[1\] The low gain avalanche detector (LGAD) sensors are thin (≈ 50 μm) silicon sensors (structure n$^{++}$/p$^+$/p$^-$/p$^{++}$) with outstanding time resolutions (≈ 30 ps) and moderate gains (<100). With robust performance in the irradiation environment, the LGAD sensors will be feasible to work on HL-LHC. The Centro Nacional de Microelectrónica (CNM) Barcelona started the first developments and measurements of LGAD sensors, which has been followed by many others \[3\] \[4\] \[5\] \[6\] \[7\].
The key property of the LGAD sensor is a gain layer (at n^{++/p} + junction) carefully tuned to give sufficient gain at moderate voltages at which the active thickness of the LGAD can be depleted and achieve high drift velocities. Radiation affects mainly the active doping concentration of boron atoms in the gain layer through the so-called acceptor removal mechanism [8] which in turn deteriorates the time resolutions of the LGAD. The rate at which this process occurs depends on several factors, mainly the initial concentration of boron atoms and added impurities to the gain layer. The active acceptors are deactivated exponentially with fluence (Equation (1)), where “c” is called the acceptor removal constant. The \(N_{\text{boron}} \) is the amount of the active boron atoms in the gain layer. The \(\phi_{eq} \) is the equivalent fluence of 1 MeV neutrons.

\[
N_{\text{boron}}(\phi_{eq}) = N_{\text{boron}}(0)e^{-c\phi_{eq}}
\]

(1)

The usage of carbon implantation to slow down the acceptor removal effect in LGAD sensors was first proposed in [9] and realized by the Fondazione Bruno Kessler (FBK) [7]. The implanted carbon competes with acceptors to form ion-carbon complexes versus ion-acceptor complexes. In the past years, several studies indicated carbon could be the main component to reduce the removal constant “c” [10]. This strategy was also followed by the IHEP-IMEv2 sensor design.

The LGAD sensors with carbon implantation have disadvantages such as the boron deactivation by carbon and leakage current increase [11]. The IHEP-IMEv2 LGAD sensor with low energy carbon implantation has a stable gain layer in which the active boron concentration does not decrease with increasing carbon dose. Meanwhile, the IHEP-IMEv2 carbon enriched LGAD
sensor has the smallest acceptor removal constant among the IHEP-IMEv1 [12], FBK UFSD3 [10] and HPK3.2 [13] LGAD sensors as shown in Table 1. This is reflected in the smallest excess voltage required to compensate for the gain loss due to radiation.

The total radiation goals of the ATLAS High Granularity Timing Detector (HGTD) [14] and the CMS minimum ionizing particles (MIP) Timing Detector (MTD) Endcap Timing Layer (ETL) [15] are $2.5 \times 10^{15} \text{ n}_{eq}/\text{cm}^2$ and $1.5 \times 10^{15} \text{ n}_{eq}/\text{cm}^2$ (1-MeV-neutron equivalent fluence) respectively, <2 MGy total ionizing dose (TID) for both. This paper shows the efforts of the Institute of High Energy Physics (IHEP) on solving irradiation issues by implanting carbon into LGAD with low energy (shallow carbon). A careful investigation of processing parameters led to LGAD sensors that fulfill the radiation hardness requirements for application at HL-LHC. The sensors

Table 1: Acceptor removal constants of different LGAD sensors.

Producer	Type	Acceptor removal constant / 10^{16} cm^2
IHEP	IHEP-IMEv2 W7-II	1.27
IHEP	IHEP-IMEv1 W1-IV	3.12
FBK	UFSD3_B LD+C_A Epi(W4)	1.45
FBK	UFSD3_B LD+C_B(W7)	2.48
FBK	UFSD2_B LD (W1)	4.66
HPK	HPK3.2	3.15
HPK	HPK3.1	5.20
characteristics before and after irradiation are presented.

2. LGAD Design Fabrication

IHEP has developed two versions of LGAD sensors based on the Institute of Microelectronics (IME) process capability and irradiated those sensors at Jozef Stefan Institute (JSI) research reactor with neutrons to evaluate the sensor performance after irradiation. The first version of LGAD sensors that IHEP developed with IME (IHEP-IMEv1) was focusing on the n++ layer and the p+ gain layer fabrication process optimization \[16, 17\]. A preliminary exploration of the shallow carbon in LGAD was also included in the IHEP-IMEv1 \[12, 18\]. The LGAD sensors with carbon implantation have shown better performance than non-carbon LGAD sensors with the same n++ layer and the p+ gain layer after irradiation to 2.5×10^{15} n\textsubscript{eq}/cm2. The second version of LGAD sensors that IHEP developed with IME (IHEP-IMEv2) was focusing on the carbon implantation and annealing process optimization to improve the radiation hardness. Both IHEP-IMEv1 and IHEP-IMEv2 LGAD sensors were fabricated with an n++/p+/p−/p++ structure on silicon wafers with a 50-µm thick high resistivity epitaxial layer as shown in Figure 1. This device is reversed biased, with the high voltage applied on the p++ layer anode. Electrons drift to the p+ gain layer, where a high-field multiplies them, and then drift to the n++ cathode at ground potential. A photo of a single pad device is shown in Figure 2.

In both IHEP-IMEv1 and IHEP-IMEv2 sensor production, the wafers were split into four quadrants. The devices for each reticle include single pads 2×2, 5×5, 15×15 (full size) LGAD and PIN sensors, as shown in Figure
Figure 1: Sketch of the LGAD structure with the active area shown. Height and width are not to scale. The sensor total area is 1200 \(\mu \text{m} \times 1200 \mu \text{m} \). The thickness of the p\(^{-}\) epitaxial layer (p\(^{-}\) substrate) is 50 \(\mu \text{m} \). The carbon atoms were implanted at n\(^{++}\) layer and diffused to p\(^{+}\) gain layer.

Figure 2: Picture of an IHEP-IMEv2 single pad LGAD sensor under a microscope. The active range of 1200 \(\mu \text{m} \) has been labeled with the red line. The metal contact pads were shown in blue.
3. The PIN sensors are identical to LGADs but without p+ gain layer.

![Figure 3: The IHEP-IMEv2 4 × 4 cm2 size layout mask. The 15 × 15, 5 × 5, 2 × 2, and single pads were allocated and aligned in this mask.](image)

Apart from the carbon process, the IHEP-IMEv2 carbon-enriched LGAD sensors inherited the boron and phosphorus process from the IHEP-IMEv1 W7-IV recipe \cite{16, 17}. The IHEP-IMEv2 has an independent carbon process that implants and diffuses carbon into the active area before the p+ layer and n++ layer process. This minimizes the carbon influence on changing the boron and phosphorus doping profile. The radiation hardness of the LGAD sensors was optimized using the different carbon processes shown in Table \ref{table2}. The relative carbon doses are expressed with an arbitrary unit (a.u.). Three wafers have carbon implantation. Wafer 4 has four different carbon doses in four quadrants that went through a fast thermal process, while wafer 7 and wafer 8 have eight different carbon doses in eight quadrants that went through a long-time thermal process.
Table 2: Key Parameters on IHEP-IMEv2 LGAD Sensors. The relative carbon doses are expressed with an arbitrary unit (a.u.).

Wafer	Quadrant	Carbon Dose	Carbon Thermal Process
4	I	0.2 a.u.	fast
4	II	1 a.u.	fast
4	III	5 a.u.	fast
4	IV	10 a.u.	fast
7	I	0.2 a.u.	long-time
7	II	0.5 a.u.	long-time
7	III	1 a.u.	long-time
7	IV	3 a.u.	long-time
8	I	6 a.u.	long-time
8	II	8 a.u.	long-time
8	III	10 a.u.	long-time
8	IV	20 a.u.	long-time
3. Non-irradiated Sensor Characterization

3.1. Doping Profile by SIMS

IHEP has calibrated the process simulation parameters \[17, 18\] according to the Secondary Ion Mass Spectrometry (SIMS) test results based on the stability of the IME process. The boron and phosphorus doping profiles in the IHEP-IMEv2 sensors, as measured by SIMS, are both highly consistent with those of the IHEP-IMEv1 non-carbon sensors. (Figure 4).

Figure 4: IHEP-IMEv1 and IHEP-IMEv2 doping profiles extracted by SIMS measurements. The IHEP-IMEv2 process, inherited from IHEP-IMEv1, has shown good reproducibility. The minimum detection concentration of boron and phosphorus is 10^{14} cm$^{-3}$ and 10^{15} cm$^{-3}$.

3.2. I-V and Leakage Current

Current-Voltage (I-V) tests were performed to find the breakdown voltage and leakage current levels. The different carbon doses (0.2 - 20 a.u.) and
different thermal processes (fast and long-time) affect the I-V profile. Non-irradiated carbonated sensor I-V curves from IHEP-IMEv2 sensors are shown in Figure 5. The leakage current measured, at room temperature with bias voltage of -80 V ($\gg V_{fd}$ of the device), versus carbon dose, is shown in Figure 6. The leakage current significantly grows from 10^{-9} A to 10^{-6} A with increasing carbon dose. Clearly pointing to the formation of carbon-related defects giving rise to higher energy levels in the band-gap and consequently an increase in generation current.

3.3. Capacitance-Voltage and Gain Layer Depletion Voltage

Capacitance-Voltage (C-V) tests were performed to find the gain layer depletion voltage (V_{gd}) and full depletion voltage (V_{fd}). The different carbon doses (0.2 - 20 a.u.) and different thermal processes (fast and long-time)
Figure 6: The leakage current (I_{leak}) of the LGAD sensors with different carbon dose (0.2 - 20 a.u.) and different thermal processes (fast and long-time) at 80 V. The long-time annealing process increased the leakage current level more than the fast annealing process at carbon doses larger than 1 a.u. The I_{leak} of the non-carbon sensor at 80 V is 0.68 nA.

affect the C-V. Non-irradiated carbonated sensor C-V curves are shown in Figure 7. The V_{gl} voltages for all investigated samples are shown in Figure 8. Unlike observation made for the carbonated FBK sensors [11], the V_{gl} was found to increase with carbon concentration.

The exact phenomena responsible for this behavior needs further investigation. One relevant observation is that IHEP-IMEv2 sensors have shallow carbon implantation, while FBK sensors have a deeper implantation. Hence, a possible explanation is that, due to carbon deactivation of effective dopant, IHEP-IMEv2 sensors have decreased active donors in n++ layer, while in FBK sensors it happens in the p+ gain layer. In the case of the IHEP-IMEv2, the reduction of active donors in the n++ layer shifts the starting point of the space charge area to a shallower region, increases the total depletion depth,
Figure 7: Left: C-V measurements of the LGAD sensors with different carbon dose (0.2 - 20 a.u.) and different thermal processes (fast and long-time) in the bias voltage range from 0 V to -30 V. Right: Amplified view of the C-V measurement around V_{gl}. The V_{gl} increases as carbon implantation increases.

and hence increases the V_{gl}.

4. Sensor Performance after Irradiation

4.1. Neutron Irradiation and Beta Test Setup

Both IHEP-IMEv2 and IHEP-IMEv1 LGAD sensors [12] were irradiated with neutrons at JSI nuclear research reactor in Ljubljana [19, 20]. Three different irradiation fluences were used: 0.8×10^{15}, 1.5×10^{15}, and 2.5×10^{15} n_{eq}/cm^2. The irradiated LGAD sensors were annealed at 60 °C for 80 min before testing their performance with electrons from a Sr-90 source (beta source test). The beta source tests of IHEP-IMEv2 LGAD sensors are performed in a climate chamber at -30 °C with a Sr-90 radiation source. The LGAD sensors were wire bonded to readout boards, designed by the University of California Santa Cruz (UCSC), using wide bandwidth transimpedance SiGe amplifiers. [21]. Figure 8 shows the beta telescope experimental setup.
Figure 8: The V_{gl} of the LGAD sensors, for both fast and long-time thermal processes, increases as the carbon dose increases from 0.2 to 20 a.u. The range of V_{gl} values spans about $\Delta V_{gl} \approx 1.5$ V.

The lower sensor is used as the trigger for electrons signal in the beta telescope test. The signal pulses from both sensors are recorded by a digital oscilloscope with 2 GHz bandwidth and 40 GS/s sampling rate for offline analysis [12].

4.2. Acceptor Removal Constant

The acceptor removal constants (Equation (2)) which are reflected in the gain-loss are extracted from C-V measurements and calculated by V_{gl} voltages after different radiation fluences. Figure 10 (left) shows the C-V changes after different irradiation fluences. The V_{gl} decrease after ever higher fluence irradiation is a consequence of the loss of effective boron doping in the gain layer. Figure 10 (right) shows that the IHEP-IMEv2 LGAD sensors with 0.5 a.u.carbon implantation and long-time carbon annealing recipe (W7-II) are the most radiation robust. These sensors have an acceptor removal constant
of $1.27 \times 10^{16} \text{ cm}^2$, around 3-5 times lower than the ones typically measured for boron only devices \cite{5, 20, 12, 10, 13}.

\begin{equation}
 V_{gl}(\phi_{eq}) = V_{gl}(0)e^{-c\cdot\phi_{eq}}
\end{equation}

The acceptor removal and loss of gain is the most serious consequence of the radiation damage at HL-LHC. It can be compensated to some extent by increasing the bias voltage, but recent studies \cite{22, 23} showed that the maximum bias voltage that sensors can withstand reliably in the beam is limited to about 550 V for 50 μm thick devices, due to Single Event Burnout (SEB). The charge collection efficiency of the W7-II samples and their timing performance are shown in Figure \ref{fig:11}. It is clear that the required bias for successful operation (>4 fC, <50 ps) increases with the irradiation fluence. However, for W7-II sensors after $2.5 \times 10^{15} \text{n}_{eq}/\text{cm}^2$, the required performance can be reached at a bias voltage <400 V, lower than any other LGAD device studied thus far. Apart from the obvious benefit of avoiding operation close
4.3. Carbon Thermal Process

In IHEP-IMEv2 production, the W4-I and W7-I (0.2 a.u.), W4-II, and W7-III (1 a.u.) wafer quadrants are good control groups to investigate the thermal process influence on the diffusion and activation of carbon. Figure 12 and Figure 13 show the I-V, collected charge, and time resolution of those two control groups. After $2.5 \times 10^{15} \text{ cm}^{-2}$ irradiation fluence, the long-time carbon annealing process (wafer 7) yields sensors with the same charge collection and time resolution as the fast annealing process (wafer 4) but at a lower bias voltage. This is the result of a larger thermal load delivered to the carbon, diffusing more of it into the gain layer. The same conclusion can

Figure 10: Left: C-V measurements of the IHEP-IMEv2 LGAD sensor with 0.5 a.u. carbon dose and long-time carbon annealing recipe (W7-II) before and after 0.8×10^{15}, 1.5×10^{15}, $2.5 \times 10^{15} \text{ cm}^{-2}$ radiation fluences. The V_{gl} decreases with radiation fluence increasing. Right: acceptor removal constants of IHEP-IMEv2 LGAD sensors with different carbon doses and two different thermal processes.

to SEB voltage, reduced operation bias leads to smaller power dissipation.
Figure 11: Collected charges (left) and time resolutions (right) of IHEP-IMEv2 W7-II LGAD sensors before radiation and after 0.8×10^{15}, 1.5×10^{15}, and 2.5×10^{15} n$_{eq}$/cm2 irradiation fluence. The bias voltage needed for maintaining the same charge and time resolution becomes higher. The bias voltage for 4 fC charge collection increases from <80 V, before irradiation, to 350 V, after 2.5×10^{15} n$_{eq}$/cm2 irradiation.

also be verified by Figure 10 (right) which shows the wafer 7 has a smaller acceptor removal constant with the same carbon dose as of wafer 4.

4.4. Carbon Implantation Dose

It is obvious that long-time carbon annealing, used in wafer 7, is a better process for 50 keV carbon implantation. Figure 14 shows the collected charge and time resolution of sensors with different carbon doses (0.2, 0.5, 1, and 3 a.u.), after irradiation fluence of 2.5×10^{15} n$_{eq}$/cm2. Sensors with 0.5 a.u. carbon dose (W7-II) have the best performance after irradiation. They achieve the same charge collection and time resolution as the other carbon dose sensors but at lower bias voltages. These sensors also have excellent performance before irradiation as shown in Figure 11.
Figure 12: I-V measurements of IHEP-IMEv2 W4-I (0.2 a.u. fast annealing), W7-I (0.2 a.u. long-time annealing), W4-II (1 a.u. fast annealing) W7-III (1 a.u. long-time annealing) LGAD sensor after $2.5 \times 10^{15} \text{n}_{eq}/\text{cm}^2$ irradiation fluence. Leakage current increased from 10^{-9} A to 10^{-7} A.
Figure 13: Most probable collected charge (left) and time resolution (right) of IHEP-IMEv2 sensors before irradiation and after 2.5×10^{15} n$_{eq}$/cm2 irradiation fluence, for different thermal processes. Sensors with the same carbon dose (0.2 a.u.in black, 1 a.u.in blue) have similar behavior before irradiation, regardless of the thermal process. The long-time carbon annealing LGAD sensors (W7-I, W7-III) show better charge and time resolution after 2.5×10^{15} n$_{eq}$/cm2 irradiation fluence.
5. Summary

The IHEP-IMEv2 carbon enriched LGAD sensors show excellent robustness to radiation. In particular, measurements of leakage current level, V_{gl}, acceptor removal constant, collected charge, and time resolution before and after irradiation demonstrate that LGAD sensors (W7-II) produced with 0.5 a.u. carbon dose and long-time carbon annealing have excellent performance and superior irradiation resilience. These sensors have the smallest acceptor removal constant (1.27×10^{-16} cm2)\footnote{The lowest bias voltage (400 V) for 50 ps time resolution, and the lowest bias voltage (350 V) for 4 fC charge collection after irradiation fluence of 2.5×10^{15} n$_{eq}$/cm2 when compared to past HPK, FBK, CNM, NDL, and USTC LGAD sensors\cite{24}. These sensors already satisfy the requirements for operation in the radiation harsh environments.} the lowest bias voltage (400 V) for 50 ps time resolution, and the lowest bias voltage (350 V) for 4 fC charge collection after irradiation fluence of 2.5×10^{15} n$_{eq}$/cm2 when compared to past HPK, FBK, CNM, NDL, and USTC LGAD sensors\cite{24}. These sensors already satisfy the requirements for operation in the radiation harsh environments.
environment of the HL-LHC.

Acknowledgment

This work was supported by the National Natural Science Foundation of China, No.12175252 and No.12188102; the Scientific Instrument Developing Project of the Chinese Academy of Sciences, Grant No.ZDKYYQ20200007; the State Key Laboratory of Particle Detection and Electronics, China, project SKLPDE-ZZ-202001 and project SKLPDE-ZZ-201911; and project ARRS J1-1699 of Slovenian Research Agency.

References

[1] G. Apollinari, et al., *High-Luminosity Large Hadron Collider (HL-LHC): Preliminary Design Report*, CERN Yellow Reports: Monographs, CERN, Geneva, 2015. doi:10.5170/CERN-2015-005 URL http://cds.cern.ch/record/2116337

[2] G. Pellegrini, et al., *Technology developments and first measurements of low gain avalanche detectors (lgad) for high energy physics applications*, Nucl. Instrum. Meth. A 765 (2014) 12–16, hSTD-9 2013 - Proceedings of the 9th International ”Hiroshima” Symposium on Development and Application of Semiconductor Tracking Detectors. doi:https://doi.org/10.1016/j.nima.2014.06.008 URL https://www.sciencedirect.com/science/article/pii/S0168900214007128
[3] H.-W. Sadrozinski, et al., Sensors for ultra-fast silicon detectors, Nucl. Instrum. Meth. A 765 (2014) 7–11, hSTD-9 2013 - Proceedings of the 9th International "Hiroshima" Symposium on Development and Application of Semiconductor Tracking Detectors. doi:https://doi.org/10.1016/j.nima.2014.05.006. URL https://www.sciencedirect.com/science/article/pii/S0168900214005051.

[4] G. Giacomini, et al., Development of a technology for the fabrication of low-gain avalanche diodes at bnl, Nucl. Instrum. Meth. A 934 (2019) 52–57. doi:https://doi.org/10.1016/j.nima.2019.04.073. URL https://www.sciencedirect.com/science/article/pii/S0168900219305479.

[5] S. Wada, et al., Evaluation of characteristics of hamamatsu low-gain avalanche detectors, Nucl. Instrum. Meth. A 924 (2019) 380–386, 11th International Hiroshima Symposium on Development and Application of Semiconductor Tracking Detectors. doi:https://doi.org/10.1016/j.nima.2018.09.143. URL https://www.sciencedirect.com/science/article/pii/S0168900218312993.

[6] M. Carulla, et al., 50µm thin low gain avalanche detectors (lgad) for timing applications, Nucl. Instrum. Meth. A 924 (2019) 373–379, 11th International Hiroshima Symposium on Development and Application of Semiconductor Tracking Detectors. doi:https://doi.org/10.1016/j.nima.2018.08.041.
[7] M. Ferrero, et al., Radiation resistant Igad design. Nucl. Instrum. Meth. A 919 (2019) 16–26. doi:https://doi.org/10.1016/j.nima.2018.11.121.

[8] M. Moll, Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties. Dr., Universität Hamburg, ph.D. Thesis (Advisor: G. Lindstrom); Universität Hamburg, Diss., 1999 (1999).

[9] G. Kramberger, Initial acceptor removal in p-type silicon (June 2015).

[10] R. Arcidiacono, et al., State-of-the-art and evolution of ufsd sensors design at fbk. Nucl. Instrum. Meth. A 978 (2020) 164375. doi:https://doi.org/10.1016/j.nima.2020.164375.

[11] V. Sola, et al., First fbk production of 50 µm ultra-fast silicon detectors. Nucl. Instrum. Meth. A 924 (2019) 360–368, 11th International Hiroshima Symposium on Develop-
ment and Application of Semiconductor Tracking Detectors. doi:https://doi.org/10.1016/j.nima.2018.07.060. URL https://www.sciencedirect.com/science/article/pii/S0168900218308969

[12] M. Li, et al., Effects of shallow carbon and deep n++ layer on the radiation hardness of ihep-ime lgad sensors (2021). arXiv:arXiv:2110.12632.

[13] Y. Jin, et al., Experimental study of acceptor removal in ufsd. Nucl. Instrum. Meth. A 983 (2020) 164611. doi:https://doi.org/10.1016/j.nima.2020.164611. URL https://www.sciencedirect.com/science/article/pii/S0168900220310081

[14] the ATLAS Collaboration, et al., Technical design report: A high-granularity timing detector for the atlas phase-ii upgrade, Tech. rep., CERN, Geneva (Jun 2020). URL https://cds.cern.ch/record/2719855

[15] the CMS Collaboration, A mip timing detector for the cms phase-2 upgrade, Tech. rep., CERN, Geneva (Mar 2019). URL https://cds.cern.ch/record/2667167

[16] K. Wu, et al., Design of low gain avalanche detectors (lgad) with 400 kev ion implantation energy for multiplication layer fabrication. Nucl. Instrum. Meth. A 984 (2020) 164558. doi:https://doi.org/10.1016/j.nima.2020.164558
[17] T. Yang, et al., Tcad simulation and radiation damage modeling for low gain avalanche detector (2021). \texttt{arXiv:arXiv:2106.15421}.

[18] M. Zhao, et al., Low gain avalanche detectors with good time resolution developed by ihep and ime for atlas hgtld project (2021). \texttt{arXiv:arXiv:2109.11209}.

[19] L. Snoj, et al., Computational analysis of irradiation facilities at the jsi triga reactor. Applied Radiation and Isotopes 70 (3) (2012) 483–488. doi:https://doi.org/10.1016/j.apradiso.2011.11.042.

[20] R. Padilla, et al., Effect of deep gain layer and carbon infusion on LGAD radiation hardness. Journal of Instrumentation 15 (10) (2020) P10003–P10003. doi:10.1088/1748-0221/15/10/p10003.

[21] N. Cartiglia, et al., Beam test results of a 16 ps timing system based on ultra-fast silicon detectors. Nucl. Instrum. Meth. A 850 (2017) 83–88. doi:https://doi.org/10.1016/j.nima.2017.01.021.

[22] G. Lastovicka-Medin, Mortality study on irradiated hpk- p2 w36 lgads and pins (i part): Tct-spa (June 2021).
[23] R. Heller, *Studies of lgad mortality using the fermilab test beam* (June 2021).

URL: https://indico.cern.ch/event/1029124/contributions/4411279/attachments/2269650/3854323/ELI_Mortality_study_June2021_SPA_GordanaMedin_n.pdf

[24] J. B. G. D. Costa, et al., *A high-granularity timing detector for the atlas phase-ii upgrade* (December 2021).

URL: https://ep-news.web.cern.ch/content/high-granularity-timing-detector-atlas-phase-ii-upgrade