SIMPLICIAL COMPLEXES ASSOCIATED TO CERTAIN SUBSETS OF NATURAL NUMBERS AND ITS APPLICATIONS TO MULTIPLICATIVE FUNCTIONS

JAN SNELLMAN

1. INTRODUCTION

We call a set of positive integers closed under taking unitary divisors an unitary ideal. It can be regarded as a simplicial complex. Moreover, a multiplicative arithmetical function on such a set corresponds to a function on the simplicial complex with the property that the value on a face is the product of the values at the vertices of that face. We use this observation to solve the following problems:

A. Let \(r \) be a positive integer and \(c \) a real number. What is the maximum value that \(\sum_{s \in S} g(s) \) can obtain when \(S \) is a unitary ideal containing precisely \(r \) prime powers, and \(g \) is the multiplicative function determined by \(g(s) = c \) when \(s \in S \) is a prime power?

B. Suppose that \(g \) is a multiplicative function which is \(\geq 1 \), and that we want to find the maximum of \(g(i) \) when \(1 \leq i \leq n \). At how many integers do we need to evaluate \(g \)?

C. If \(S \) is a finite unitary ideal, and \(g \) is multiplicative and \(\geq 1 \), then the maximum of \(g \) on \(S \) occurs at a facet, and any facet is optimal for some \(g \). If \(W_1, \ldots, W_\ell \) is an enumeration of the facets in some order, is there always a \(g \) as above so that \(g(W_1) \leq g(W_2) \leq \cdots \leq g(W_\ell) \)?

2. UNITARY IDEALS AND SIMPLICIAL COMPLEXES

Let \(\mathbb{N} \) denote the non-negative integers and \(\mathbb{N}^+ \) the positive integers, with subsets \(\mathbb{P} \) the prime numbers and \(\mathbb{P}^\mathbb{P} \) the set of prime powers. Recall that an unitary divisor (or a block factor) of \(n \in \mathbb{N}^+ \) is a divisor \(d \) such that \(\gcd(d, n/d) = 1 \). In this case, we write \(d \mid\mid n \) or \(n = d \oplus n/d \). If \(\gcd(a, b) > 1 \) we put \(a \oplus b = 0 \).

Definition 2.1. A subset \(S \subset \mathbb{N}^+ \) is a unitary ideal if

\[
s \in S, \quad d \in \mathbb{N}^+, \quad d \mid\mid s \quad \Rightarrow \quad d \in S
\]

Definition 2.2. For any unitary ideal \(S \subset \mathbb{N}^+ \) with \(X = X(S) = \mathbb{P}^\mathbb{P} \cap S \), we define the simplicial complex \(\Delta(S) \) on \(X(S) \) by

\[
\Delta(S) \ni \sigma = \{a_1, \ldots, a_r\} \quad \iff \quad a_1a_2\cdots a_r \in S \quad \text{and} \quad \forall 1 \leq i < j \leq r : \gcd(a_i, a_j) = 1
\]

Clearly, \(\Delta(S) \) is finite iff \(X(S) \) is finite iff \(S \) is finite. Furthermore:

1991 Mathematics Subject Classification. 05E25; 11A25.

Key words and phrases. Multiplicative arithmetical functions, simplicial complexes, linear extensions.
Lemma 2.3. Any finite simplicial complex can be realized as $\Delta(S)$ for some S.

Proof. Take as many prime numbers as there are vertices in the simplicial complex, so that the vertex v_i corresponds to the prime number p_i. For any $\sigma = \{v_{a_1}, \ldots, v_{a_r}\}$ in the simplicial complex we let $p_{a_1}p_{a_2}\cdots p_{a_r} \in S$. □

Note 2.4. In what follows, we will sometimes regard elements in S as faces in $\Delta(S)$, without explicitly pointing this out. We trust that the reader will not be confused by this.

Recall that an arithmetical function is a function $g : \mathbb{N}^+ \to \mathbb{C}$, and that an arithmetical function is multiplicative iff

$$g(ab) = g(a)g(b)$$

whenever $\gcd(a, b) = 1$. Hence, a multiplicative function is determined by its values on \mathbb{P}^+, and we have

Lemma 2.5. Let S be a unitary ideal, and g a multiplicative function. By abuse of notation, put $g(\sigma) = g(a_1a_2\cdots a_r)$ if $\sigma = \{a_1, \ldots, a_r\} \in \Delta(S)$. Then $g(\sigma) = g(a_1)g(a_2)\cdots g(a_r)$, so the value of g at a simplex is the product of the values of g at the vertices of said simplex.

We'll be interested in three problems:

1. Calculating the sum $\sum_{s \in S} g(s)$,
2. Maximizing g on S,
3. Finding the total orders on S induced by g.

3. Summing g on S

We henceforth assume that S is finite, with $S \cap \mathbb{P}^+$ containing r elements, and that g is a multiplicative function. Put $G(S) = \sum_{s \in S} g(s)$.

Let us start with the simplest cases. If S consists entirely of prime powers then $\Delta(S)$ consists of r isolated points, on which g can take any values. The other extreme is that $s, t \in S$, $\gcd(s, t) = 1$ implies that $st \in S$, and that all prime powers in S are in fact primes. Then S consists of all square-free products of these r primes, so $\Delta(S)$ is an $(r - 1)$-dimensional simplex. In this case, it is easy to see that $G(S) = \prod_{j=1}^r (1 + g(p_j))$, where p_1, \ldots, p_r are the primes in S.

More generally, if $\Delta(S)$ have ℓ faces W_1, \ldots, W_ℓ, with $2^\ell < |\Delta(S)|$, then the following formula might be useful. Put

$$\tilde{g}({a_1, \ldots, a_v}) = \prod_{j=1}^v (1 + g(a_i)) = \sum_{\sigma \in \{a_1, \ldots, a_v\}} g(\sigma).$$

The principle of Inclusion-Exclusion gives

$$G(S) = \sum_{i=1}^\ell \tilde{g}(W_i) - \sum_{1 \leq i < j \leq \ell} \tilde{g}(W_i \cap W_j) + \sum_{1 \leq i < j < k \leq \ell} \tilde{g}(W_i \cap W_j \cap W_k) - \ldots$$

If S is arbitrary, but g special in that it takes the same value on all prime powers, then $G(S)$ is also easily calculable.
Lemma 3.1. If there exists a c such that $g(s) = c$ for all $s \in S \cap \mathbb{P}$, then
\[G(S) = (1, c, c^2, \ldots, c^r) \cdot (1, f_0, f_1, \ldots, f_{r-1}), \] (5)
where $(f_0, f_1, \ldots, f_{r-1})$ is the f-vector of $\Delta(S)$, i.e. f_i counts the number of i-dimensional (i.e. having $i + 1$ vertices) faces of $\Delta(S)$.

Proof. A $(v - 1)$-dimensional simplex of $\Delta(S)$ contributes c^v to $G(S)$; there are f_{v-1} such simplexes, so the total contribution is $c^v f_{v-1}$. Letting v range from 0 to r and summing yields the result. \qed

Theorem 3.2. Let $\Psi(r, c)$ denote the maximum that $G(S)$ can obtain when $|S \cap \mathbb{P}| = r$ and $g(s) = c \in \mathbb{R}$ for all $s \in S \cap \mathbb{P}$. Then, if r is odd,
\[\Psi(r, c) = \begin{cases} 1 + \sum_{i=1}^{r} c^i \binom{r}{i} & \text{if } c > 0 \\ 1 + \sum_{i=1}^{2} c^i \binom{r}{i} & \text{if } \frac{1}{n-3} < c < 0 \\ 1 + \sum_{i=1}^{4} c^i \binom{r}{i} & \text{if } \frac{1}{n-5} < c < \frac{1}{n-3} \\ 1 + \sum_{i=1}^{6} c^i \binom{r}{i} & \text{if } \frac{2}{n-7} < c < \frac{1}{n-5} \\ \vdots & \vdots \\ 1 + \sum_{i=1}^{r-1} c^i \binom{r}{i} & \text{if } c < \frac{-(n-1)}{2} \end{cases} \] (6)
and if r is even
\[\Psi(r, c) = \begin{cases} 1 + \sum_{i=1}^{r} c^i \binom{r}{i} & \text{if } c > 0 \\ 1 + \sum_{i=1}^{2} c^i \binom{r}{i} & \text{if } \frac{1}{n-3} < c < 0 \\ 1 + \sum_{i=1}^{4} c^i \binom{r}{i} & \text{if } \frac{1}{n-5} < c < \frac{1}{n-3} \\ 1 + \sum_{i=1}^{6} c^i \binom{r}{i} & \text{if } \frac{2}{n-7} < c < \frac{1}{n-5} \\ \vdots & \vdots \\ 1 + \sum_{i=1}^{r-2} c^i \binom{r}{i} & \text{if } c < \frac{-(n-2)}{3} \\ 1 + \sum_{i=1}^{r} c^i \binom{r}{i} & \text{if } c < -n \end{cases} \] (7)

Proof. Put $c = (c, c^2, \ldots, c^r), f = (f_0, f_1, \ldots, f_{r-1})$. It follows from Lemma (2.3) that we must maximize $f \cdot c$ over all possible f-vectors f of simplicial complexes on r vertices. Since $f \cdot c$ is a linear function, it will suffice to evaluate $f \cdot c$ on a set of vertices that span the convex hull of f-vectors of simplicial complexes on r vertices. Kozlov \[\] showed that the set
\[\left\{ \tilde{F}_1, \ldots, \tilde{F}_r \right\}, \quad \tilde{F}_i = \left(\binom{r}{1}, \binom{r}{2}, \ldots, \binom{r}{i}, 0, \ldots, 0 \right) \] (8)
is minimal with the property that its convex hull contains all f-vectors of simplicial complexes on r vertices. Hence, it is enough to decide which of the r numbers
\[K_1 = \tilde{F}_1 \cdot c = cn \]
\[K_2 = \tilde{F}_2 \cdot c = cn + c^2 \binom{n}{2} \]
\[\vdots \]
\[K_r = \tilde{F}_r \cdot c = \sum_{i=1}^{r} c^i \binom{n}{i} \] (9)
is the greatest.

Clearly, if \(c > 0 \), then \(K_r \) is the greatest. If \(c < 0 \) and \(r \) is odd then we always have the inequalities shown in Figure 1.

\[
K_{2i+2} - K_{2i} = c^{2i+1} \left(\frac{r}{2i+1} \right) + c^{2i+2} \left(\frac{r}{2i+2} \right) = c^{2i+1} \left(\frac{r}{2i+1} \right) + c \left(\frac{r}{2i+2} \right)
\]

which is > 0 iff
\[
c < -\left(\frac{r}{2i+1} \right) = -\frac{2i+2}{r-2i-1}
\]

Since
\[
-\left(\frac{r}{3} \right) > -\left(\frac{r}{4} \right) > \cdots > -\left(\frac{r}{r-1} \right)
\]

the result for the odd case follows. The even case is proved similarly; here the inequalities for \(c < 0 \) are as in Figure 2. \(\square \)

4. Maximizing \(g \) on \(S \)

As we noted at the start of the previous section, if \(S \) consists of all square-free products of a finite set \(\{p_1, \ldots, p_r\} \) of primes, then \(\Delta(S) \) is an \((r-1)\)-simplex. Hence, if \(g \) is real-valued and \(g(s) \geq 1 \) (we call such a \(g \) multiplicative and log-positive), then the maximum of \(g \) on \(S \) is \(g(p_1p_2\cdots p_r) \). More generally:

Lemma 4.1. Suppose that \(g \) is multiplicative and log-positive. Let \(W_1, \ldots, W_\ell \) be the facets (i.e. a simplexes maximal w.r.t inclusion) of \(\Delta(S) \). Then the maximum value \(g(\sigma) \) for \(\sigma \in \Delta(S) \) is obtained on some facet \(W_i \).

Conversely, there exists a multiplicative and log-positive \(h \) so that \(h(W_1) \) is maximal.
Proof. If $\sigma \subset \tau$ then $g(\sigma) \leq g(\tau)$, so the maximum is attained on a facet.

For the converse, define h on $X(S)$ by

$$h(p) = \begin{cases} 1 & \text{if } p \notin W_1 \\
2 & \text{if } p \in W_1 \end{cases}$$ \hspace{1cm} (13)$$

We extend h to a multiplicative function on $\Delta(S)$. It is then clear that $h(W_1) = 2^{|W_1|}$ whereas $h(W_i) = 2^{|W_1 \cap W_i|} < 2^{|W_1|}$ for $i > 1$; the last inequality follows since W_1, W_i are facets and hence maximal w.r.t. inclusion. If we want a multiplicative h which is strictly > 1 on non-empty simplexes, we can define $h(p) = 1 + \varepsilon$ for $p \notin W_1$, where ε is some small positive number. \hfill \Box

We let $[n] = \{1, 2, \ldots, n\}$. Then $[n]$ is a unitary ideal, so we have

Corollary 4.2. If g is multiplicative and log-positive function then the maximum $g(s)$ with $1 \leq s \leq n$ is obtained on a facet of $\Delta([n])$.

As an example, if $n = 30$ then the $\Delta([30])$ looks like Figure 3, so the facets are

$$12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30.$$ \hspace{1cm} (14)

Thus about 57% of the simplicies in $\Delta([30])$ are facets. In general, we have the following:

Theorem 4.3 (Snellman). Let p_i denote the i'th prime number. For large n, the number of facets in $\Delta([n])$ is approximatively γn, where

$$\gamma = 1 - \frac{1}{2} + \sum_{i=1}^{\infty} \frac{1}{p_i} - \frac{1}{p_{i+1}} \prod_{j=1}^{i} p_j \approx 0.607714359516618$$ \hspace{1cm} (14)$$

Proof. See [5]. \hfill \Box

So, if we are to maximize (on $[n]$) a large number of different g_i's which are multiplicative and log-positive, it makes sense to precompute the facets of $\Delta([n])$, and their factorizations. If q_1, \ldots, q_r are the prime powers $\leq n$, ...
and \(w_1, \ldots, w_\ell \) are the facets of \(\Delta([n]) \), let \(A = (a_{ij}) \) be the \(\ell \times r \) integer matrix defined by
\[
\forall 1 \leq i \leq \ell : \quad w_i = \prod_{j=1}^{r} q_j^{a_{ij}} \quad (15)
\]
Then, if \(g \) is a log-positive multiplicative function,
\[
\forall 1 \leq i \leq \ell : \quad g(w_i) = \prod_{j=1}^{r} g(q_j)^{a_{ij}} \quad (16)
\]
This means that in order to find the maximum for \(g \) we need to perform \(r \) evaluations to find the \(g(q_i) \)'s, then calculate \(\ell \approx \gamma n \) numbers, each of which is the product of at most \(r \) terms, and then find the maximum of those numbers.

5. Total orderings on \(S \) induced by \(g \)
As previously noted, if \(g \) is log-positive and \(\sigma \subset \tau \), then \(g(\sigma) \leq g(\tau) \). Moreover, if \(g \) is strictly log-positive, so that \(g(\sigma) > 1 \) for \(\sigma \neq \emptyset \), then
\[
\sigma \subsetneq \tau \quad \implies \quad g(\sigma) < g(\tau) \quad (17)
\]
Assume that \(g \) has this property, that \(S \) is a unitary ideal, and that furthermore \(g \) is injective when restricted to \(S \). Then \(S \), and hence \(\Delta(S) \), is totally ordered by
\[
x > y \iff g(x) > g(y) \quad (18)
\]
It is clear, by (17), that such a total order on \(\Delta(S) \) is a linear extension of the partial order given by inclusion of subsets. However, not all such linear extensions may occur.

Definition 5.1. Let \(r \) be a positive integer, and let \(V = \{v_1, \ldots, v_r\} \) be a linearly ordered set with \(r \) elements. Following MacLagan [2] we call a total order \(\succ \) on \(2^V \) a boolean termorder if
\[
\emptyset \prec \sigma \quad \text{if} \quad \emptyset \neq \sigma \subset V \quad (19)
\]
\[
\sigma \cup \gamma \prec \tau \cup \gamma \quad \text{if} \quad \sigma \prec \tau \quad \text{and} \quad \gamma \cap (\sigma \cup \tau) = \emptyset \quad (20)
\]
We say that \(\prec \) is sorted if
\[
v_1 \prec v_2 \prec \cdots \prec v_r \quad (21)
\]
Furthermore, \(\prec \) is coherent if there exist \(r \) positive integers \(w_1, \ldots, w_r \) such that
\[
\alpha \prec \beta \iff \sum_{v_i \in \alpha} w_i < \sum_{v_j \in \beta} w_j. \quad (22)
\]

Lemma 5.2. Suppose that \(S \) is a finite unitary ideal, and let \(r \) be the number of prime powers in \(S \). Label these prime powers \(v_1, \ldots, v_r \). Consider the set \(M \) of all multiplicative \(g \) that are strictly log-positive, injective when restricted to \(S \), and let \(M^* \) denote the subset of those \(g \) that in addition fulfills
\[
g(v_1) < g(v_2) < \cdots < g(v_r). \quad (23)
\]
Let \(Y \) be the partial order on \(2^{\{ v_1, \ldots, v_r \}} \) which is generated by the following relations:
\[
\{ v_i, \ldots, v_k \} \prec \{ v_i, \ldots, v_j \} \text{ if } k \notin \{ i, \ldots, j \},
\]
\[
\{ v_i, \ldots, v_j, v_k \} \prec \{ v_i, \ldots, v_j, v_{j+1}, \ldots, v_k \}
\text{ if } i_j + 1 \in [r] \setminus \{ v_i, \ldots, v_j, \ldots, v_k \} \tag{25}
\]

Let \(T \subseteq S \), and let \(Y_T \) be the induced subposet on \(T \subseteq \Delta(S) \subseteq 2^{\{ v_1, \ldots, v_r \}} \).
Then
(i) Any total order on \(T \) induced by a \(g \in \mathcal{M} \) (by a \(g \in \mathcal{M}^s \)) is the restriction of a (sorted) coherent boolean termorder.
(ii) Conversely, the restriction to \(T \) of a (sorted) coherent boolean termorder on \(2^{\{ v_1, \ldots, v_r \}} \) is induced by some \(g \in \mathcal{M} \) (\(g \in \mathcal{M}^s \)).
(iii) Any total order on \(T \) induced by a \(g \in \mathcal{M}^s \) is a linear extensions of \(Y_T \).

Proof. We can W.L.O.G. assume that \(T = 2^{\{ v_1, \ldots, v_r \}} \). If \(\prec \) is induced by \(g \in \mathcal{M} \) then
\[
\alpha \prec \beta \iff \prod_{v_i \in \alpha} g(v_i) < \prod_{v_j \in \beta} g(v_j) \iff \sum_{v_i \in \alpha} \log g(v_i) < \sum_{v_j \in \beta} \log g(v_j).
\]

We can replace the \(\log g(v_i)'s \) by positive rational numbers that closely approximate them, and then, by multiplying out by a common denominator, by positive integers. Thus \(\prec \) is a coherent boolean termorder. It is clear that if \(g \in \mathcal{M}^s \) then \(\prec \) is sorted.

If on the other hand \(\prec \) is a coherent boolean term order on \(2^{\{ v_1, \ldots, v_r \}} \), then there are positive integers \(w_1, \ldots, w_r \) such that
\[
\alpha \prec \beta \iff \sum_{v_i \in \alpha} w_i < \sum_{v_j \in \beta} w_j \iff \prod_{v_i \in \alpha} \exp(w_i) < \prod_{v_j \in \beta} \exp(w_j).
\]

If we define \(g(v_i) = w_j \) and extend this multiplicatively, then \(g \) induces \(\prec \).
If \(\prec \) is sorted, clearly \(w_1 > w_2 > \cdots > w_r \), so \(g \in \mathcal{M}^s \).

If \(g \) is strictly log-positive and fulfills (23) then clearly
\[
g(\{ v_i, \ldots, v_k \}) < g(\{ v_i, \ldots, v_k \}) \tag{26}
\]
for \(k \notin \{ i, \ldots, j \} \), and likewise
\[
g(\{ v_i, \ldots, v_j, v_k \}) < g(\{ v_i, \ldots, v_{j+1}, \ldots, v_k \}) \tag{27}
\]
for \(i_j + 1 \in [r] \setminus \{ v_i, \ldots, v_j, \ldots, v_k \} \). Thus any total order induced by a \(g \in \mathcal{M} \) is a linear extension of \(Y \). \(\square \)

The symmetric group \(S_r \) acts transitively on \(\mathcal{M} \), and \(\{ \pi(\mathcal{M}^s) | \pi \in S_r \} \) is a partition of \(\mathcal{M} \) into \(\frac{r!}{|S_r|} = r! \) blocks. Hence

Corollary 5.3. Let \(t(T) \) denote the number of total orders on \(T \subseteq \Delta(S) \) that are induced by multiplicative functions \(g \in \mathcal{M}^s \), and let \(\ell(Y_T) \) denote the number of linear extensions of \(Y_T \). Then
\[
t(T) \leq r! \ell(Y_T) \tag{28}
\]
In the following example, we show that although any facet of $\Delta(S)$ is maximal w.r.t. some total order induced by a log-positive multiplicative g (Lemma 4.1), there are only certain orderings among those facets that are possible.

Example 5.4. Let us consider the poset Y with $r = 4$, and in particular the induced poset on the 2-subsets, which looks like Figure 5(b).

Figure 4. The poset Y

We see that this poset has exactly 2 linear extensions, corresponding to the two different ways of ordering the antichain \{23, 14\}. Thus, if

$$g(v_1) < g(v_2) < g(v_3) < g(v_4)$$

then there are two possible orderings for

$$\{g(v_1v_2), g(v_1v_3), g(v_1v_4), g(v_2v_3), g(v_2v_4), g(v_3v_4)\}.$$

If we remove the restriction (29), then there are $2 \times 4! = 48$ different orderings, out of the $\binom{4}{2}! = 720$ a priori possibilities. For instance,

$$g(v_1v_2) > g(v_2v_4) > g(v_1v_3) > g(v_2v_3) > g(v_1v_4) > g(v_3v_4)$$

is impossible, since $g(v_2v_4) > g(v_1v_4) \implies g(v_2) > g(v_1)$ but $g(v_1v_3) > g(v_2v_3) \implies g(v_1) > g(v_2)$. Hence, there is no multiplicative arithmetic function g such that

$$g(6) > g(21) > g(10) > g(15) > g(14) > g(35).$$
The whole poset Y on 4 letters looks like Figure 5(a). It consists of 16 elements and has, as the reader may easily verify, 78 linear extensions.

References

[1] D. N. Kozlov. Convex Hulls of f- and β-Vectors. Discrete and Computational Geometry, 18(4):421–431, 1997.
[2] Diane Maclagan. Boolean term orders and the root system B_n. Order, 15(3):279–295, 1998/99, math.CO/9809134.
[3] R. Sivaramakrishnan. Classical theory of arithmetic functions, volume 126 of Pure and applied mathematics. Marcel Dekker, 1989.
[4] Jan Snellman. The ring of arithmetical functions with unitary convolution: General truncations. Research Reports in Mathematics 6/2002, Department of Mathematics, Stockholm University, may 2002, math.RA/0205242.
[5] Jan Snellman. The ring of arithmetical functions with unitary convolution: The $[n]$-truncation, 2002, math.RA/0208183.

Department of Mathematics, Stockholm University, SE-10691 Stockholm, Sweden
E-mail address: jans@matematik.su.se