Enriching hippocampal memory function in older adults through real-world exploration

Branden S. Kolarik¹, Shauna M. Stark¹, Samantha M. Rutledge¹, Craig E.L. Stark¹²

¹Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697

²To whom correspondence should be addressed at: 1424 Biological Sciences III, University of California, Irvine, Irvine CA, 92697-3800, Tel (949) 824-4230, Fax (949) 824-2447, Email: cestark@uci.edu

Keywords: Environmental enrichment, aging, spatial exploration, pattern separation

Acknowledgements: This research was supported by a grant from the Dana Foundation. In addition, we would like to acknowledge additional salary support from NIA R21AG056145 and NIA R01AG034613. No conflicts of interest exist for any of the authors.
Abstract

Age-related structural and functional changes in the hippocampus can have a severe impact on hippocampally-dependent memory performance. Here we test the hypothesis that a real-world spatial exploration intervention will improve hippocampally-dependent memory performance in healthy older adults. We found that following our intervention, participants’ lure discrimination index (LDI) was significantly higher than it was at baseline, while traditional recognition scores remained relatively unchanged. These results point to the viability of a spatial exploration intervention for improving hippocampally-dependent memory in older adults.
1.1 Introduction

Environmental enrichment provides animals with an environment, which allows for physical exercise and exploration. Exposure to an enriched environment can promote neurogenesis, synaptogenesis and improve performance on hippocampal-dependent memory tasks (Kempermann, Kuhn, & Gage, 1997; van Praag, Kempermann, & Gage, 1999; Clemenson et al., 2015). One important component of environmental enrichment appears to be the amount spatial exploration of the environment. Animals that spend more time exploring their environment show increased neurogenesis in the dentate gyrus of the hippocampus (Freund et al., 2013). In humans, extensive spatial exploration training has been linked to increased hippocampal volume in both real (Maguire et al., 2000) and virtual environments (Lövdén et al., 2012). Normal healthy aging can also bring about structural and functional changes in the hippocampus (Raz et al., 2005; O'Shea, Cohen, Porges, Nissim, & Woods, 2016) and can have a profound impact on hippocampal-dependent memory performance (Yassa, Mattfeld, Stark, & Stark, 2011). In animals, however, due the plastic nature of the hippocampus, these changes can be partially alleviated through environmental enrichment (Bennett, Mbrae, Levy, & Frick, 2006; Kempermann, Kuhn, & Gage, 1998). Given our understanding of age-related structural and behavioral changes, as well as the impact of environmental enrichment on the hippocampus, how can we promote memory improvement in humans with environmental enrichment?

One possible method for promoting memory improvement in humans is the use of video games as a form of environmental enrichment. Video games, particularly 3D video games that allow for spatial exploration of a virtual environment, are a way for humans to interact with a novel, enriched environment and learn the spatial layout of landmarks and goal locations.
Previous work from our lab, using video games as a behavioral intervention, showed that playing games for 30 minutes per day for two weeks improves hippocampal-based mnemonic pattern separation (Clemenson, Henningfield, & Stark, 2019; Clemenson & Stark, 2015). Importantly, this effect was present specifically for those who played a rich 3D rather than a simple 2D video game (Clemenson & Stark, 2015) and correlated with their amount of spatial exploration (Clemenson et al., 2019). These results suggest that the spatial exploration of a virtual environment can promote changes in hippocampally-dependent memory tasks, similar to what has been seen previously in rodents.

In the current study, we set out to investigate if a real-world spatial exploration task, similar to that used in the video game intervention, can also have an impact on hippocampal-based memory function. We developed a scavenger hunt task that participants performed over the course of a four-week behavioral intervention. We assessed hippocampal memory function with the Mnemonic Similarity Task (MST) (Kirwan & Stark, 2007; Stark, Yassa, Lacy, & Stark, 2013) before and after our intervention as well as at a four-week follow-up test. We focused on the MST’s lure discrimination index (LDI), which tests object recognition memory using highly similar lure items in an effort to tax the hippocampal function known as pattern separation (Rolls, 2016; Yassa & Stark, 2011). The MST LDI has been shown to be highly sensitive to hippocampal function (Kirwan & Stark, 2007; Stark et al., 2013), to age-related memory decline (Holden, Toner, Pirogovsky, Kirwan, & Gilbert, 2013; Stark & Stark, 2017; Stark, Stevenson, Wu, Rutledge, & Stark, 2015; Stark et al., 2013; Toner, Pirogovsky, Kirwan, & Gilbert, 2009) and to hippocampal connectivity (Bennett, Huffman, & Stark, 2015; Bennett & Stark, 2015; Yassa et al., 2011; Yassa, Muftuler, & Stark, 2010) and function. Since environmental enrichment and spatial exploration have been shown to specifically affect the hippocampus in

rodent models, we hypothesized that our real-world exploration intervention should have the
most effect on hippocampal-dependent memory (MST LDI) and little effect on traditional
recognition memory.

Here, we show that mnemonic discrimination (MST LDI) significantly improved
following our intervention and that scores remained higher than pre-test baseline performance,
even four weeks after stopping the intervention, while recognition scores were relatively
unaffected. This observed change in memory ability was not related to pre-test baseline scores,
the rate of learning in our behavioral intervention, or the amount of physical activity completed
during the intervention, indicating that the changes can likely be attributed to the spatial
exploration and learning that occurred during the task.

2 Method

2.1 Participants

Twenty-six adults between the ages of 65-79 were recruited from the community around UC
Irvine and screened for cognitive impairments prior to inclusion in the study. One participant
dropped out before completing the study, so our final sample included 25 adults (mean age =
69.8, 20 Female). All participants were compensated for their participation in the study and
provided informed consent in accordance with the University of California, Irvine Internal
Review Board.

2.2 Experimental Procedure

2.2.1 Neuropsychological Tests
Participants were given a battery of standardized neuropsychological tests to ensure their cognitive abilities were within normal range for their age: Mini Mental State Exam (Crum, Anthony, Bassett, & Folstein, 1993), Geriatric Depression Scale (Yesavage et al., 1982), Rey Auditory Verbal Learning Test (Rey, 1941), Rey-Osterrieth Complex Figure (Osterrieth, 1944), Trails A and B (Tombaugh, 2004), Letter Number Sequencing (Wechsler, 1997), Digit Span (Wechsler, 1997), and Stroop Task (Stroop, 1935) (Table 1).

2.2.2 Mnemonic Similarity Task

As part of the behavioral measures, participants completed the Mnemonic Similarity Task (Stark et al., 2013) (Figure 1A) at three separate time points (pre-intervention, post-intervention, and follow-up). During the incidental encoding phase, 128 everyday items were presented on the screen, one at a time, for a total of 2.5 seconds each (0.5 s ISI). Participants made judgments of whether each item was an “indoor” or “outdoor” item by tapping the appropriate response button on a touchscreen laptop. Immediately following encoding, participants performed a recognition memory task for 192 items (64 repeated items, 64 lure items, and 64 foil items) presented for 2.5 seconds each (0.5 s ISI). Of the 192 items, 64 were repeats from the encoding phase (targets), 64 were similar, but not identical, to an image seen during encoding (lures), and 64 were new (foils). Trial types were presented randomly. Participants again made a response on a touchscreen laptop to judge whether an item was “Old”, “Similar”, or “New”. A lure discrimination index (LDI) was calculated as the difference between the rate of “Similar” responses given to lure items minus the rate of “Similar” responses given to foils. A traditional recognition memory measure was calculated as the difference between the rate of “Old” responses to repeats minus “Old” responses to foils. Participants completed the MST
immediately before and after the intervention and again approximately 4 weeks after completing the intervention (average number of days post-intervention 31 ± 6). Thus, we evaluated changes pre- and post-intervention and also whether any observed changes in performance were still present 4 weeks after the completion of the exploration intervention.

2.2.3 Real-World Exploration Task

Participants completed a scavenger hunt task in four small community parks (average of 3.3 ± 0.41 acres) in either Laguna Hills, CA or Irvine, CA. Participants were provided with a cell phone loaded with the scavenger hunt task application. The task required participants to complete scavenger hunts in four different parks, one park per week, 5 days per park (20 sessions total). There were 16 landmarks in each park (benches, statues, signs, etc.) and each day 8 of these landmarks were randomly selected (Figure 1B). Cues to landmarks were presented one at a time (zoomed in pictures of a component of the landmark so-as to hide any large contextual cues), and participants were instructed to find and walk to the landmark (Figure 1C). The app logged GPS coordinates once every second so that we could reconstruct the paths that were taken to each landmark. All participants were trained by the experimenter in how to use the phone and the app on the first day of the intervention. Participants completed the 20 sessions on their own schedule but were only allowed to do one session per day. The app included a hint function where, if participants were lost, they could tap a button and a bar appeared at the bottom of the screen which filled in from left to right indicating how close or far away they were from the landmark (Figure 1C bottom). They were told to use this if they had already adequately searched for and yet could not find the landmark for that trial.
3 Results

3.1 Excess Path

Statistics were performed using a combination of JASP, Prism 8 and Python 3. To estimate the amount and rate of learning that occurred over the time in the park, we calculated normalized excess path and heading error for each trial. Trials in which the GPS signal was lost, the app crashed, or there was clear user error (e.g., accidentally closing the app before trial completed) were removed (average 11 trials per participant). We then calculated the normalized excess path for each trial by (total path length – ideal path length)/ideal path length. The normalization allows us to compare the excess path of trials where the start of the trial was near the target to those where the target was far away from the start point. We averaged these excess path values across days and parks to control for variability in path due to the random selection of landmarks on each day. We entered average excess path over each of the 5 days into a repeated-measures one-way ANOVA and found a significant main effect of day ($F_{(4,96)} = 11.60, p = .0000001$) (Figure 2A). A planned contrast revealed a significant decrease in excess path from Day 1 to Day 5 ($t_{(24)} = 4.896, p = .000027, d = .979$). These results indicate that participants had learned the locations of the landmarks and that the routes taken to the landmarks became more efficient over time.

3.2 Heading Error

To estimate of how well participants knew which direction to go immediately upon seeing the landmark for that trial, we computed errors in heading angle as the angular difference between the vectors from the start of the trial to the target and from the start of the trial to their position 10 seconds after the trial began. To determine if the distribution of errors were different from day
1 to day 5, we entered the distributions into a two-sample Kolmogorov-Smirnov test. We found that the distribution of heading error was significantly different on day 5 than it was on day 1 ($D = .1075, p = .000171$) (Figure 2B). Additionally, we modeled both day 1 and day 5 heading errors as mixture models of a von Mises distribution (circular version of a Gaussian distribution to model angular error in memory for the location) and a uniform distribution (to model random guesses). We computed the spread parameter (k) of the von Mises (akin to $1/\sigma$ of angular error) for both day 1 and day 5 heading errors which estimates how tightly the distribution is clustered around the mean. We compared the fits of two models, one which constrained the k parameters to be equal ($k_{\text{day1}} = k_{\text{day5}}$) and one where the k parameters were allowed to differ between the two models ($k_{\text{day1}} \neq k_{\text{day5}}$). We found that the model in which the k parameters were allowed to differ significantly increased the quality of fit ($k_{\text{day1}} = 1.98, k_{\text{day5}} = 5.95$, difference in AIC = 10.45).

These results again highlight the fact that participants learned the locations of the landmarks and by day 5 were heading in the right direction within the first 10 seconds of the trial.

3.3 Number of Hints

We logged the number of hints participants requested each day. For one participant, the number of hints per day was not accurately recorded, so they were removed from the analysis. We entered the number of hints requested across each of the five days in the park into a repeated-measures one-way ANOVA and found a significant main effect of day ($F_{(4,369)} = 8.60, p = .0019$). Importantly, post-hoc comparisons revealed a significant decrease in the number of hints from day 1 to day 5 ($t_{(24)} = 3.619, p = .003, d = .619$), again indicating that participants had learned the landmark locations and required fewer hints to find them by day 5. Overall, the
results from the park show that participants had learned the locations of the landmarks in each park and the spatial relationship between them.

3.4 Mnemonic Similarity Task

Participants completed the MST both before and after the real-world exploration intervention, as well as at a follow-up appointment approximately four weeks after ending the intervention, with different sets of items used each time. We predicted that lure discrimination (LDI) would improve following the intervention, while recognition memory scores would not change owing to the differential degree of hippocampal involvement in the two measures. Four participants who performed significantly below chance on the MST’s recognition memory component were removed from the analysis. To test our hypotheses, we ran separate mixed model ANOVAs for recognition and LDI scores with Phase as a within-subjects factor (Pre-, Post, and Follow-Up) and Age as a between-subjects factor. For recognition, we observed no significant effect of Phase ($F_{(2,16)} = .988, p = .394$), no effect of Age ($F_{(12,8)} = 1.309, p = .360$), and no Age x Phase interaction ($F_{(24,16)} = .666, p = .821$) (Figure 3B). For LDI, we did find a significant main effect of Phase ($F_{(2,16)} = 12.345, p = .00057$) (Figure 3B). Bonferroni-corrected comparisons revealed a significant difference in LDI from pre-test to post-test ($t_{(20)} = 5.238, p_{bonf} = .00002, d = 1.143$) as well as a significant difference pre-test to follow-up ($t_{(20)} = 3.980, p_{bonf} = .001, d = .868$). There was no significant main effect of Age ($F_{(12,8)} = 1.489, p = .292$) or an Age x Phase interaction ($F_{(24,16)} = 1.781, p = .118$) (Figure 3C). These results indicate that, as we predicted, no change was observed in recognition memory, while LDI improved in our participants following the intervention and remained significantly higher than baseline approximately four weeks after finishing the intervention. The LDI improvement was also observed independent of age,
indicating that, within the restricted range of this older sample, being younger does not confer a greater benefit from this training.

3.5 MST and Park Performance

We next wanted to determine how performance in the parks was related to change in LDI. First, for each participant we computed the slope of their excess path over the five days in the park as a metric for how quickly they learned the landmark locations. We then correlated the slope with their change in LDI (post-pre). We found no significant relationship between excess path slope and LDI change ($r_{(20)} = .210, p = .4517$), indicating that improvement in lure discrimination was possible across many levels of exploration performance. We also failed to find a significant relationship between the average distance walked per day and change in LDI ($r_{(20)} = -.116, p = .624$), suggesting that our observed improvement in lure discrimination cannot be explained by the amount of physical activity. Finally, we wanted to test whether those who were performing better pre-intervention had the greatest benefit from the intervention by correlating pre-intervention LDI with LDI change (post-pre). We, again, found no relationship between change in LDI score and pre-intervention baseline ($r_{(20)} = .1863, p = .3725$). Collectively, these results highlight that benefits can be seen from our intervention regardless of performance level at baseline, how quickly one learns the target locations, or the amount of physical activity engaged in during the intervention. These are important aspects to consider when determining the efficacy of interventions for the larger population.

4 Discussion
We tested whether a real-world exploration intervention could improve hippocampal-based memory performance in healthy older adults. Participants completed 20 sessions of a scavenger hunt in local parks over 4 weeks. Memory performance was measured with the Mnemonic Similarity Task before and after the intervention, as well as at a four-week follow-up. Excess path measures decreased over time in the parks, as did initial heading error and the number of hints requested, indicating that participants were learning the locations of the landmarks in the park and were able to take more direct paths to them. Participants showed significant improvement in mnemonic discrimination (the MST’s pattern separation based LDI metric) but no significant change in recognition, supporting our hypotheses. Additionally, the boost in LDI was still seen at a four-week follow-up test. These results are in line with previous work showing improved pattern separation based memory in rodents (Creer, Romberg, Saksida, van Praag, & Bussey, 2010) as well as young adults (Clemenson et al., 2019; Clemenson & Stark, 2015) following environmental enrichment. The magnitude of LDI change in the current study (ΔLDI ≈ 0.1, d ≈ 0.8) is also in line with previous studies showing LDI change as a result of a behavioral intervention using video games as a proxy for environmental enrichment in both younger (Clemenson et al, 2019; Clemenson & Stark, 2015) and older adults (Clemenson, Stark, Rutledge, & Stark, under review). Additionally, these results support the role of spatial exploration as a viable component of enrichment for promoting changes in hippocampal dependent memory. Future studies should include a broader assay of cognition including tests of attention and executive function to assess performance changes in domains that are not necessarily hippocampally-dependent.

Investigating the role of environmental enrichment in humans is difficult since we already exist in an enriched environment. However, in rodents, one effective component of
enrichment seems to be the active exploration of the environment (Freund et al., 2013), something we incorporated here and in our prior work in humans using video games (Clemenson et al., 2019; Clemenson & Stark, 2015). An important difference between the previous work using video games and the current study is that our participants were physically moving in and exploring the environment. Physical exercise has been linked to changes in hippocampal volume and improvements in memory performance in humans (Erickson et al., 2011), so it is important to address the role of exercise in a real-world exploration task compared to video game interventions. We saw similar improvements in memory ability as we previously found with a video game intervention, yet we saw no correlation between memory improvement and the average distance walked per day. We cannot conclude that the physical activity inherent in our intervention had no impact. We did, however, find that improvements in memory could be seen independent of the amount of exercise.

Another important finding from the current study is that the observed improvement in memory ability was not dependent on how well one learned the spatial locations during the exploration intervention. This observation is critical for designing interventions for the larger population, since there will be natural variability in how well participants can perform an exploration task. If the intervention only benefits those who are able to learn quickly or start at a higher level of baseline performance, then the intervention is not as useful for the general population. We should note, however, that it is almost certain that participants were incidentally encoding many aspects of the parks as part of their experience during the intervention. We do not know whether variance in how much was learned in these aspects would correlate with the observed improvements in memory ability. We also note that memory improvement was observed across all ages in our sample. The age range of our sample is limited, and it is possible
that if including a larger age range, we may observe a relationship between participant age and
the memory improvement. Given the current results however, it appears that our intervention can
have equal benefit for older adults at any age.

Finally, though our intervention required a specific application to complete the scavenger
hunt, our methods can be adapted to daily life quite easily. Often, older adults have highly
routine schedules and habits that maybe require less spatial learning than would younger adults,
who have more flexible and less routine day-to-day experiences. In so far as these results and our
prior work support the general notion that enrichment improves hippocampal based memory
performance, they suggest alternate avenues for inducing this enrichment. For example, learning
the locations of the landmarks in the park and how to navigate between them could translate into
taking new routes to the grocery store or a friend’s house. Learning new spatial relationships in
this way could mimic the cognitive engagement required for this intervention and on a long-term
basis could have significant benefits for hippocampal-dependent memory.

Conclusion

We have shown that participating in a four-week real-world exploration intervention boosted
performance on mnemonic pattern separation in older adults. These results show a remarkably
similar pattern and magnitude of change on MST recognition and LDI scores as seen in our
previous work that used video games to provide the spatial exploration and enrichment in
younger participants (Clemenson et al., 2019; Clemenson & Stark, 2015) and in older
participants (Clemenson et al., under review). Importantly, our intervention can be easily
implemented into a daily schedule and potentially alleviate some of the age-related decline in
hippocampal-dependent memory.
References

Bennett, I. J., Huffman, D. J., & Stark, C. E. L. (2015). Limbic Tract Integrity Contributes to Pattern Separation Performance Across the Lifespan. *Cerebral Cortex (New York, N.Y.): 1991*, 25(9), 2988–2999. https://doi.org/10.1093/cercor/bhu093

Bennett, I. J., & Stark, C. E. L. (2015). Mnemonic Discrimination Relates to Perforant Path Integrity: An Ultra-High Resolution Diffusion Tensor Imaging Study. *Neurobiology of Learning and Memory*, 129, 107–112. https://doi.org/10.1016/j.nlm.2015.06.014

Bennett, J., Mcrae, P., Levy, L., & Frick, K. (2006). Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. *Neurobiology of Learning and Memory*, 85(2), 139–152. https://doi.org/10.1016/j.nlm.2005.09.003

Clemenson, G. D., Henningfield, C. M., & Stark, C. (2019). Improving hippocampal memory through the experience of a rich Minecraft environment. *Frontiers in Behavioral Neuroscience*, 13. https://doi.org/10.3389/fnbeh.2019.00057

Clemenson, G. D., Lee, S. W., Deng, W., Barrera, V. R., Iwamoto, K. S., Fanselow, M. S., & Gage, F. H. (2015). Enrichment rescues contextual discrimination deficit associated with immediate shock. *Hippocampus*, 25(3), 385–392. https://doi.org/10.1002/hipo.22380
Clemenson, G. D., & Stark, C. E. L. (2015). Virtual Environmental Enrichment through Video Games Improves Hippocampal-Associated Memory. *The Journal of Neuroscience, 35*(49), 16116–16125. https://doi.org/10.1523/JNEUROSCI.2580-15.2015

Clemenson, G. D., Stark, S. M., Rutledge, S., & Stark, C. E. L. (under review). Enhancing hippocampal-based memory in older adults through video games.

Creer, D. J., Romberg, C., Saksida, L. M., van Praag, H., & Bussey, T. J. (2010). Running enhances spatial pattern separation in mice. *Proc Natl Acad Sci U S A, 107*, 2367–2372. https://doi.org/10.1073/pnas.0911725107

Crum, R. M., Anthony, J. C., Bassett, S. S., & Folstein, M. F. (1993). Population-based norms for the Mini-Mental State Examination by age and educational level. *JAMA, 269*(18), 2386–2391.

Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., … Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. *Proceedings of the National Academy of Sciences, 108*(7), 3017–3022. https://doi.org/10.1073/pnas.1015950108

Freund, J., Brandmaier, A. M., Lewejohann, L., Kirste, I., Kritzler, M., Krüger, A., … Kempermann, G. (2013). Emergence of individuality in genetically identical mice. *Science (New York, N.Y.), 340*(6133), 756–759. https://doi.org/10.1126/science.1235294

Holden, H. M., Toner, C. K., Pirogovsky, E., Kirwan, C. B., & Gilbert, P. (2013). Visual object pattern separation varies in nondemented older adults. *Learning & Memory, 20*, 358–362.

Kempermann, G., Kuhn, H. G., & Gage, F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. *Nature, 386*, 493–495.
Kempermann, G., Kuhn, H. G., & Gage, F. H. (1998). Experience-induced neurogenesis in the senescent dentate gyrus. *J Neurosci, 18*, 3206–3212.

Kirwan, C. B., & Stark, C. E. L. (2007). Overcoming interference: An fMRI investigation of pattern separation in the medial temporal lobe. *Learning and Memory, 14*, 625–633.

Lövdén, M., Schaefer, S., Noack, H., Bodammer, N. C., Kühn, S., Heinze, H.-J., … Lindenberger, U. (2012). Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. *Neurobiology of Aging, 33*(3), 620.e9-620.e22. https://doi.org/10.1016/j.neurobiolaging.2011.02.013

Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S. J., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. *Proceedings of the National Academy of Sciences, 97*(8), 4398–4403. https://doi.org/10.1073/pnas.070039597

O’Shea, A., Cohen, R. A., Porges, E. C., Nissim, N. R., & Woods, A. J. (2016). Cognitive Aging and the Hippocampus in Older Adults. *Frontiers in Aging Neuroscience, 8*. https://doi.org/10.3389/fnagi.2016.00298

Osterrieth, P. A. (1944). Le test de copie d’une figure complexe. *Arch Psych, 30*, 206–356.

Raz, N., Lindenberger, U., Rodrigue, K. M., Kennedy, K. M., Head, D., Williamson, A., … Acker, J. D. (2005). Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. *Cerebral Cortex (New York, N.Y.: 1991), 15*(11), 1676–1689.

Rey, A. (1941). L’examen psychologique dans les cas d’encéphalopathie traumatique.(Les problems.). *Archives de Psychologie.*
Rolls, E. T. (2016). Pattern separation, completion, and categorisation in the hippocampus and neocortex. Neurobiology of Learning and Memory, 129, 4–28. https://doi.org/10.1016/j.nlm.2015.07.008

Stark, S. M., & Stark, C. E. L. (2017). Age-related deficits in the mnemonic similarity task for objects and scenes. Behavioural Brain Research, 333, 109–117. https://doi.org/10.1016/j.bbr.2017.06.049

Stark, S. M., Stevenson, R., Wu, C., Rutledge, S., & Stark, C. E. L. (2015). Stability of age-related deficits in the mnemonic similarity task across task variations. Behavioral Neuroscience, 129(3), 257–268. https://doi.org/10.1037/bne0000055

Stark, S. M., Yassa, M. A., Lacy, J. W., & Stark, C. E. (2013). A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment. Neuropsychologia, 51, 2442–2449. https://doi.org/10.1016/j.neuropsychologia.2012.12.014

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. https://doi.org/10.1037/h0054651

Tombaugh, T. N. (2004). Trail Making Test A and B: normative data stratified by age and education. Archives of Clinical Neuropsychology: The Official Journal of the National Academy of Neuropsychologists, 19(2), 203–214. https://doi.org/10.1016/S0887-6177(03)0039-8

Toner, C. K., Pirogovsky, E., Kirwan, C. B., & Gilbert, P. E. (2009). Visual object pattern separation deficits in nondemented older adults. Learning & Memory (Cold Spring Harbor, N.Y.), 16(5), 338–342.
van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. *Nat Neurosci*, 2, 266–270. https://doi.org/10.1038/6368

Wechsler, D. (1997). *Wechsler Adult Intelligence Scale (WAIS-III): Administration and scoring manual*. San Antonio, TX: The Psychological Corporation.

Yassa, M. A., Mattfeld, A. T., Stark, S. M., & Stark, C. E. L. (2011). Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. *Proceedings of the National Academy of Sciences*, 108(21), 8873–8878.

Yassa, M. A., Muftuler, L. T., & Stark, C. E. L. (2010). Ultrahigh-resolution microstructural diffusion tensor imaging reveals perforant path degradation in aged humans in vivo. *Proceedings of the National Academy of Sciences of the USA*, 107(28), 12687–12691.

Yassa, M. A., & Stark, C. E. (2011). Pattern separation in the hippocampus. *Trends Neurosci*, 34, 515–525. https://doi.org/10.1016/j.tins.2011.06.006

Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., & Leirer, V. O. (1982). Development and validation of a geriatric depression screening scale: a preliminary report. *Journal of Psychiatric Research*, 17(1), 37–49.
Test	Mean (SD)
Age	69.9 (4.1)
Education	14.8 (2.6)
MMSE	28.7 (1.0)
GDS	1 (1.71)
RAVLT Total	49.0 (9.3)
RAVLT Immediate	10.6 (3.1)
RAVLT Delay	10.8 (3.4)
Rey-O Figure	35.0 (1.4)
Rey-O Delayed	18.6 (5.1)
Trail A	31.0 (9.8)
Trail B	76.1 (25.2)
Digit Span Forward	10.6 (2.4)
Digit Span Backward	7.6 (1.8)
Digit Span Total	18.2 (3.8)
LN Sequence	11.4 (2.4)
Stroop W T Score	44.5 (11.4)
Stroop C T Score	46.5 (10.6)
Stroop CW T Score	48.6 (8.3)
Stroop Inter T Scores	44.6 (6.7)

Table 1. Neuropsychological test score means (sd). MMSE = Mini Mental State Exam, GDS = Geriatric Depression Scale, RAVLT = Rey Auditory Verbal Learning Test, LN Seq = Letter Number Sequencing
Figure 1
Behavioral task paradigms. A. Schematic of the Mnemonic Similarity Task. B. One of the parks used for the exploration task with three example landmarks and their locations within the park. C. Screenshots from the real-world exploration app.
Figure 2
Behavioral data from the real-world exploration task. A. Average normalized excess path (±SEM) across all five days. B. Heading angle errors for day 1 and day five across the four parks. *** $p < .001$
Figure 3
Schematic of behavioral testing timeline. A. Timeline used for behavioral testing. MST was administered at pre-test, post-test, and follow-up. B. Average recognition and LDI scores (±SEM) across the three testing sessions. C. Scatter plot of pre-test and post-test MST LDI scores by age. *** p < .001
