Strong-field magnetohydrodynamics for neutron stars

Shreya Vardhan, 1,* Sašo Grozdanov, 2,3, † Samuel Leutheusser, 4, † and Hong Liu 5, §

1 Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305
2 Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, EH8 9YL, Scotland,
3 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
4 Princeton Gravity Initiative, Princeton University, Princeton NJ 08544, USA
5 Center for Theoretical Physics, MIT, Cambridge, MA 02139, USA

We present a formulation of magnetohydrodynamics which can be used to describe the evolution of strong magnetic fields in neutron star interiors. Our approach is based on viewing magnetohydrodynamics as a theory with a one-form global symmetry and developing an effective field theory for the hydrodynamic modes associated with this symmetry. In the regime where the local velocity and temperature variations can be neglected, we derive the most general constitutive relation consistent with symmetry constraints for the electric field in the presence of a strong magnetic field. This constitutive relation not only reproduces the phenomena of Ohmic decay, ambipolar diffusion, and Hall drift derived in a phenomenological model by Goldreich and Reisenegger, but also reveals new terms in the evolution of the magnetic field which cannot easily be seen from such microscopic models. This formulation gives predictions for novel diffusion behaviors of small perturbations around a constant background magnetic field, and for the two-point correlation functions among various components of the electric and magnetic fields.

Introduction.— Hydrodynamics provides a universal description of an interacting many-body system in the large distance and long time limit by capturing the effective dynamics of conserved quantities. For an electrically conducting fluid with a magnetic field, it is necessary to incorporate electromagnetism in describing the motion of the fluid, leading to magnetohydrodynamics (MHD). MHD plays an important role in many disciplines including plasma physics, astrophysics, and cosmology. In this paper, we provide a new formulation of MHD at strong magnetic fields for neutron stars, which exhibit some of the strongest (up to 10^{11} Tesla) and most dramatically variable magnetic fields in the universe (see Refs. [1–3]). We also discuss some immediate implications of the new theory for magnetic diffusion.

The dynamical variables of MHD for a neutral fluid include the local velocity $v(x)$, local temperature $T(x)$, and magnetic field $B(x)$. Here bold-face letters denote spatial vectors. The equations of motion consist of the conservation of the energy-momentum tensor $\partial_\mu T^{\mu \nu} = 0$ [4], and two of the Maxwell equations,

$$\nabla \cdot B = 0, \quad \partial_\mu B = -\nabla \times E. \quad (1)$$

The components of $T^{\mu \nu}$ and E are expressed in terms of the hydrodynamical variables via constitutive relations. In the standard formulation of MHD, such relations are written on phenomenological grounds and become ambiguous in the presence of a strong magnetic field.

In applications to a neutron star, a frequently-used approximation to illustrate some of the main physical effects is to take $v(x) = 0$ [5] and $T(x) = \text{const}$. In [6], a phenomenological model for neutron stars was used to derive an expression for E in terms of B as well as fast-evolving microscopic variables such as the densities of electrons and protons. The results of [6] have been used to formulate MHD equations in a variety of contexts, both in neutron star physics [1–3, 7–18] and in astrophysics more generally [19–21]. Despite these successes, the inadequate knowledge of particle interactions inside neutron stars makes it difficult to assess the accuracy of such formulations or to improve upon them systematically using phenomenological approaches.

In this paper, we provide a new formulation of strong-field MHD based on effective field theory, which makes it possible to derive the most general constitutive relations consistent with the symmetries of the system, regardless of the details of microscopic interactions (such as whether weak interactions are included or not). For illustration of the formalism, we will use the static neutron approximation, and neglect possible neutron superfluidity and proton superconductivity [22, 23]. Our theory is valid in the regime where all other physical quantities relax much faster than B. Our main result is a constitutive relation for E in terms of B given in (6), which together with (1) gives a closed equation for the evolution of B. In this paper, we outline the derivation of this result and its consequences. A detailed exposition of the effective field theory is provided in [24].

Our formulation combines two significant recent developments. The first ingredient is a new formulation of hydrodynamics as the low energy effective field theory (EFT) of a general many-body system [25, 26] (see [27] for a review and also [28–30]). In addition to providing a systematic framework for treating hydrodynamical fluctuations, the new EFT approach also has a number of advantages at the level of equations of motion compared with the traditional approach. It provides a systematic derivation of the constitutive relations without the need of imposing any phenomenological constraints by hand, and introduces an alternative set of dynamical variables that are often more convenient than traditional
ones. The second ingredient is the important observation of [31] that MHD can be formulated as an effective field theory for a system with a higher-form global symmetry [32]. See [33–40] for various developments. This makes it possible to formulate MHD based on symmetries alone.

MHD for neutron stars.—The basic idea behind the formulation of MHD in [31] is that the MHD equations (1) can be written as the conservation equations for a two-form current \(J^{\mu\nu} = -J^{\nu\mu} \):

\[
\partial_\mu J^{\mu\nu} = 0, \quad J^{0i} = B^i, \quad J^{ij} = -\epsilon^{ijk}E^k,
\]

i.e., \(J^{\mu\nu} = \tilde{F}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma} \). Accordingly, equations (1) can be interpreted as resulting from an underlying one-form symmetry. This realization is not simply a renaming of equations (1), but provides a powerful symmetry principle for formulating MHD. In particular, the choice of dynamical variables and the structure of the constitutive relation are dictated by this symmetry principle.

An effective action for a dissipative hydrodynamic system can be formulated in terms of the closed-time-path (CTP) or Schwinger-Keldysh formalism (for a review of these methods, see [27]). A key ingredient of the formulation of [25, 26] is the fact that the dynamical hydrodynamic variables are the Stueckelberg fields associated with the global symmetries responsible for the conservation laws. For the one-form symmetry relevant for MHD, this is a vector field \(A_\mu \), which is a collective effective field describing the long-distance and long-time behavior (not the microscopic electromagnetic potential for \(E \) and \(B \) fields of the system).

The hydrodynamic effective action \(S_{\text{EFT}} \) for MHD is then the most general action written in terms of the combination \(G_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \) that is invariant under various symmetries. Here, for later convenience, we have also turned on an external source \(b_{\mu\nu} \) for the two-form current \(J^{\mu\nu} \). The symmetries to be imposed can be separated into those universal for all hydrodynamic systems [25, 26] and those specific to the system under study. A neutron star can be regarded as a neutral plasma consisting of electrons, protons, and neutrons. In this system, the energy is high enough that electrons can be treated as relativistic, but not high enough for the existence of positrons. Thus, the charge conjugation \(C \) is badly broken. Weak interactions also break parity \(P \).

See Section I of the Supplementary Material (SM) for the explicit form of the action. Here, we give the final form of the constitutive relations for \(J^{\mu\nu} \) at the lowest dissipative order:

\[
J^{0i} = aG_{0i} + m\delta_{ij}\epsilon_{klm}G_{0m}H_{jkl}, \quad (3)
\]

\[
J^{ij} = -2\beta_0(d\delta_{ij}\delta_{kl} + \epsilon_{ijm}\epsilon_{kl0}\partial_0 G_{0l})\partial_0 G_{kl} + m\epsilon_{ij0}\partial_0 G_{0k} + 2p\delta_{ij0}\epsilon_{kl0}\partial_0 G_{0l}H_{kl}, \quad (4)
\]

where \(H_{\mu\nu\lambda} = \partial_\mu b_{\nu\lambda} + \partial_\nu b_{\mu\lambda} + \partial_\lambda b_{\mu\nu} \) and \([ij] = \frac{1}{2}(ij - ji)\). All coefficients \(a, d, m, p \) should be understood as functions of \(G_{0i}^2 \), and they satisfy the constraints

\[
a \geq 0, \quad d \geq 0, \quad d + 2\tilde{d}G_{0i}^2 \geq 0. \quad (5)
\]

We can write (3)–(4) in a more conventional form by solving for \(G_{0i} \) in terms of \(J^{0i} = B^i \). Then on setting \(b_{\mu\nu} = 0 \) [41], (4) can be written as the constitutive relation for the electric field:

\[
E = \etaj + c_a(j \times B) \times B + c_Hj \times B \quad (6)
\]

\[-c_H(\nabla \ln a(B^2))^2 \times B - c_\eta \nabla \ln a(B^2) \times B + \nabla f,\]

where \(j = \nabla \times B \), and we have introduced a function \(f \) of \(B^2 \) such that \(m = f' \). The coefficients are

\[
\eta = c_\eta + c_aB^2, \quad c_a = \frac{2\beta_0 d}{a}, \quad c_H = \frac{4\beta_0 \tilde{d}}{a^2}, \quad c_H = \frac{-p}{a^2}. \quad (7)
\]

where \(\beta_0 = 1/T \) is the constant inverse temperature. Now all coefficients should be understood as functions of \(B^2 \). We will see below that \(a(B^2) \) can be interpreted as a one-form susceptibility in the linear response theory around a constant background magnetic field \(B \), and must therefore be non-negative. Note that \(\nabla \ln a(B^2) = \frac{\partial}{a} \nabla B^2 \), and, hence, is proportional to the gradient of the magnetic energy density. Coefficients \(c_\eta \) and \(c_a \) will be interpreted as magnetic “diffusivities.” From (5), we must have

\[
\eta \geq 0, \quad c_a \geq 0. \quad (8)
\]

Note that (6) can also be written in terms of the three independent coefficients \(c_\eta, c_a \) and \(c_H \) as

\[
E = c_\eta j_B + c_a(B \cdot j)B + c_H j_B \times B + \nabla f, \quad (9)
\]

\[j_B = j - \nabla \ln a(B^2) \times B. \quad (10)
\]

The first line of (6) includes each of the explicitly \(B \)-dependent terms derived in equation (13) of [6], that lead to behaviors in the magnetic field evolution known as Ohmic decay, ambipolar diffusion, and Hall drift respectively. We would, however, like to emphasize two significant ways in which this equation provides a generalization of the formalism of [6]. Firstly, the terms in the second line of (6) are not explicitly present in [6]. The physical origin of these terms has been clarified in [42] and their implications will be further elaborated in [43]. More explicitly, \(a(B^2) \) can be identified as the magnetic permeability of the system. Thus the second line of (6) captures implications of \(H = \frac{B}{a(B^2)} \) being different from \(B \) [44]. Note that these terms only depend on the gradient of the magnetic permeability.

Another way in which the above constitutive relation generalizes the one from [6] is that the coefficients \(\eta, c_a \), and \(c_H \) are all functions of \(B \) in (6). Note also that the value of \(c_a \), which is negative in [6], can in principle have either sign here. If negative, its absolute value is bounded by \(|c_a||B^2 < c_\eta \) due to (8).
Here we see the major advantages of our formulation. The constitutive relation of E in terms of B is rather complicated, and there appears to be no general principle to write it down directly. But in terms of the new dynamical variables A_μ (or equivalently $G_{\alpha\beta}$), the fields E and B are given in a parametric form in (3)–(4), which can be written down systematically and straightforwardly based on symmetries and derivative expansions. We believe the parametric form (3)–(4) is likely also more convenient for nonlinear numerical simulations.

Magnetic diffusion with a strong background magnetic field.—To develop intuition for the physics encoded in (3)–(4) (or equivalently, (6)), we consider the behavior of small perturbations around a constant B along the z direction with magnitude B_0. Such a constant magnetic field configuration can be conveniently thought of as being due to a constant background ‘chemical potential’ $b_{0z} = \mu$ with $B_0 = a(\mu^2)\mu$. For small perturbations around such a configuration, we can write

$$G_{\mu\nu} = 2\mu\delta_{[\mu}\delta_{\nu]} + f_{\mu\nu}, \quad f_{\mu\nu} = b_{\mu\nu} + \partial_\mu A_\nu - \partial_\nu A_\mu,$$

where we have also introduced an infinitesimal external source $b_{\mu\nu}$ and we will work to linear order in both $b_{\mu\nu}$ and $f_{\mu\nu}$. Expanding (3)–(4) in small $f_{\mu\nu}$ we then find

$$J^{0z} = B_0 + \chi_\perp f_{0z} + 2m\mu H_{xyz}, \quad J^{0a} = \chi_\perp f_{0a},$$

$$J^{za} = -(\sigma^\perp_{\perp\perp} \delta_{ab} + \sigma^\perp_{\perp\parallel} \epsilon_{ab})(H_{0zb} + \partial_z f_{0b}) + [\sigma^\perp_{\parallel\perp} \delta_{ab} + (\sigma^\parallel_{\parallel\parallel} - 2m\mu)\epsilon_{ab}] \partial_b f_{0z},$$

$$J^{xy} = -\sigma^\parallel (H_{0xy} + K_{xy}) - 2m\mu \partial_x f_{0z},$$

where subscripts a, b index x, y, z directions, and

$$\chi_\parallel = a + \tilde{a} \mu^2, \quad \chi_\perp = a, \quad \tilde{a} = 2a'(\mu^2),$$

$$\sigma^\parallel_{\parallel} = c_\parallel \chi_\parallel, \quad \sigma^\parallel_{\parallel\perp} = B_0 c_\parallel \chi_\perp, \quad \sigma^\parallel = \eta \chi_\perp,$$

where all coefficients should be evaluated at $B^2 = B_0^2$ through μ. As discussed in Section I of SM, systems with charge conjugation symmetry have $p = 0$, and hence $\sigma^\perp_{\parallel\perp} = 0$. We stress that \tilde{a} arises from the B-dependence of the coefficient a, and hence cannot be seen naively from the formulation of [6], where all coefficients appear to be B-independent.

The functions χ_\perp and χ_\parallel can be interpreted as “one-form susceptibilities”, defined by the Kubo formulas

$$\chi_\parallel = \lim_{\omega \to 0} \lim_{k \to 0} G^R(B_x, B_0), \quad \chi_\perp = \lim_{\omega \to 0} \lim_{k \to 0} G^R(B_x, B_0),$$

where $G^R(B_x, B_0)$ denotes the retarded correlation functions of B_x and B_0, and similarly for other components (see Section II of SM for details). From thermodynamic stability we should have $\chi_\parallel \geq 0, \chi_\perp \geq 0$. In the linear response theory derived from [6], we have $\chi_\parallel = \chi_\perp$ since $\tilde{a} = 0$, but more generally, these susceptibilities should be different. In Figure 1, we show their ratio in a holographic MHD model [34] (see also [45]).

The σ’s can be interpreted as magnetic “viscosities”, defined by the Kubo formulas

$$\sigma^\parallel = \lim_{\omega \to 0} \lim_{k \to 0} \frac{1}{i\omega} G^R(E_x, E_z),$$

$$\sigma^\parallel_{\parallel\perp} = \lim_{\omega \to 0} \lim_{k \to 0} \frac{1}{i\omega} G^R(E_x, E_y),$$

where $\sigma^\parallel_{\parallel\perp}$ can be understood as a “Hall” magnetic viscosity. We stress the differences in the order of limits between (18) and (19)–(21). Comparing (8) and (16),

$$\sigma^\parallel \geq 0, \quad \sigma^\parallel_{\parallel\perp} \geq 0,$$

but $\sigma^\parallel_{\parallel\perp}$ can have either sign. Note that $\sigma^\parallel - \sigma^\parallel_{\parallel\perp} \propto c_\parallel$, and thus the effect of the ambipolar term at this order is to generate anisotropy in the magnetic viscosities.

The equations of motion following from (12)–(14) are a set of coupled diffusion equations, which give the following dispersion relations (see Section II of SM for details):

$$\omega = -i\frac{\sigma^\parallel_{\parallel\perp}}{\chi_\parallel} k_z^2 - \frac{i}{2} \left(\frac{\sigma^\parallel}{\chi_\parallel} + \frac{\sigma^\parallel_{\parallel\perp}}{\chi_\parallel} \right) k_z^2,$$

$$\pm \frac{i}{2} \sqrt{\left(\frac{\sigma^\parallel}{\chi_\parallel} - \frac{\sigma^\parallel_{\parallel\perp}}{\chi_\parallel} \right)^2 k_z^4 - 4 \left(\frac{\sigma^\parallel}{\chi_\parallel} \right)^2 k_z^2 \left(k_z^2 + \frac{\chi_\parallel}{\chi_\parallel} k_z^2 \right) k_z^2},$$

where $k_z^2 = k_x^2 + k_y^2$. The special case of (23) with $\chi_\parallel = \chi_\perp$ was derived from the formulation of [6] in [46], but the general case is a new prediction from our formalism. Note also the special cases

$$k_{z0} = 0: \quad \omega = -i\frac{\sigma^\parallel_{\parallel\perp}}{\chi_\parallel} k_z^2,$$

$$k_{z0} = 0: \quad \omega = -i\frac{\sigma^\parallel_{\parallel\perp}}{\chi_\parallel} k_z^2 \text{ or } \omega = -i\frac{\sigma^\parallel_{\parallel\perp}}{\chi_\parallel} k_z^2.$$
The above dispersion relations lead to interesting patterns in the diffusion of magnetic field lines. First consider $\sigma_{\perp} = 0$ (note that this approximation is valid in certain regions of the neutron star such as the core [8]), in which case (23) becomes

$$\omega = -i\frac{\chi_{\perp}}{\chi_{\parallel}}(\sigma_{\parallel} k_{\perp}^2 + \sigma_{\perp} k_{\parallel}^2) \quad \text{or} \quad \omega = -i\sigma_{\parallel} \left(\frac{k_{\perp}^2}{\chi_{\perp}} + \frac{k_{\parallel}^2}{\chi_{\parallel}}\right).$$

Both modes diffuse anisotropically between z and some direction in the $x-y$ plane. When either $\sigma_{\parallel} = \sigma_{\parallel}$ (i.e., $c_{\parallel} = 0$) or $\chi_{\parallel} = \chi_{\parallel}$, one of the modes becomes isotropic. See Fig. 2 for an example of the qualitatively different evolutions with $\chi_{\perp} = \chi_{\parallel}$, corresponding to the formalism of [6], and the generic case of $\chi_{\perp} \neq \chi_{\parallel}$ [47].

A simple example illustrating the consequences of the full dispersion relation (23) is given in Fig. 3, where the initial \mathbf{B} points in the y direction and is concentrated around the y axis. The B_y component diffuses anisotropically, and in addition B_x and B_z components are also generated and subsequently diffuse. Similar patterns were previously observed in nonlinear simulations of neutron stars in [46] and of magnetized filamentary clouds in [48]. We see here that these effects may be understood as simple consequences of the dispersion relations (23). Note that if we had set $\sigma_{\perp} = 0$ for the initial condition in Fig. 3, we would still see anisotropic diffusion of B_y, but the B_x and B_z components would remain zero for all times.

Equation (23) has the form $\omega = -iD(\theta)k^2$, where $k^2 = k_{\perp}^2 + k_{\parallel}^2$ and θ is the angle between the background \mathbf{B} and \mathbf{k}. In general, for $\sigma_{\perp} \neq 0$, $D(\theta)$ is complex, with its real part being the “diffusion constant” and the imaginary part describing oscillatory propagation. Such propagating behavior was considered in [6] as a mechanism for the transport of magnetic energy from the inner to the outer crust in neutron stars. $D(\theta)$ at $\theta = 0$ and $\theta = \frac{\pi}{2}$ can be read from (24)–(25), while for general θ, it is plotted in Fig. 4. There is a critical value θ_c beyond which $\text{Im}D(\theta)$ for both modes vanishes, and the real parts become different. We also notice that as $\chi_{\parallel} - \chi_{\perp}$ is increased (with other parameters fixed), θ_c decreases.

The effective action formulation allows us to understand the precise way in which the sources $b_{\mu\nu}$ are coupled to the magnetohydrodynamic variables, and hence enables us to obtain the retarded two-point functions among components of \mathbf{E} and \mathbf{B}. The full expressions for generic \mathbf{k} are complicated, and are presented in SM, Section II. As examples, we show the special cases of all nonzero correlation functions with $k_{\parallel} \neq 0$ and $k_{\parallel} = k_{\parallel} = 0$ in the Appendix.

Discussion.—We have developed a new formulation for MHD applicable to neutron stars, in the presence of strong magnetic fields and in the regime where flow velocities and temperature variations can be neglected. This theory leads to the most general constitutive relation for the electric field in terms of the magnetic field for this setup, which in particular reproduces the phenomena
of Ohmic decay, ambipolar diffusion, and Hall drift derived in previous formulations such as [6]. Moreover, the constitutive relation includes new terms which capture implications of a nontrivial magnetic permeability. As a simple application of our formulation, we examined the behavior of small perturbations on top of a strong constant magnetic field, and uncovered novel magnetic diffusion patterns. We also found the two-point correlation functions among electric field components.

It will be of great interest to apply our formalism to more realistic problems concerning neutron stars and other astrophysical systems with strong magnetic fields, using full nonlinear evolution based on (6). In particular, it would be interesting to see if the new terms in the second line of (6) lead to qualitatively new phenomena which were not accessible with earlier simulations such as those in [7–9]. The MHD formulation here can be generalized to include flow velocities, going beyond the static neutron approximation, as well as temperature variations. It would also be interesting to include the effects of superfluidity or superconductivity, extending the discussion of [22, 23].

Acknowledgments.—We would like to thank Deepo Chakrabarty, Michael Landry, Nick Poovuttikul and in particular Andreas Reisenegger for very helpful discussions. S.G. was supported by the STFC Ernest Rutherford Fellowship ST/T003888X/1. This work is also supported by the research programme P1-0402 and the project N1-0245 of Slovenian Research Agency (ARIS), and by the Office of High Energy Physics of U.S. Department of Energy under grant Contract Number DE-SC0012567 and DE-SC0020360 (MIT contract # 578218). S.L. acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Appendix on correlation functions.—In this appendix, we write the correlation functions involving the B and E fields for the special case of \(\omega \neq 0 \), \(k_z \neq 0 \), and \(k_x = k_y = 0 \). The complete set of all correlation functions is derived and shown in SM. The nonzero correlation functions among the B components are given by

\[
G^R(B_x, B_x) = \frac{k_x^2 \chi_{\perp}(k_x^2 \xi^2 - i\sigma^0_\perp \chi_{\perp} \omega)}{k_x^2 \xi^2 - 2i k_x^2 \sigma^0_\perp \chi_{\perp} \omega - \chi_{\perp}^2 \omega^2},
\]

and among the E field components are

\[
G^R(E_x, E_x) = -\frac{4k_x^2 m^2 \mu^2}{\chi_{\parallel}} + i\sigma^0_\parallel \omega,
\]

\[
G^R(E_x, E_y) = \frac{\omega^2}{k_x^2} G^R(B_x, B_y),
\]

\[
G^R(E_x, E_y) = \frac{\omega^2}{k_x^2} G^R(B_x, B_y).
\]

(19)–(21) arise by taking \(k_z \to 0 \) in the above expressions, while the definition of \(\chi_{\perp} \) in (18) can be seen by taking \(\omega \to 0 \) with \(k_z \) finite. Note that while from (6), the coefficient \(m \) plays no role in the equation of motion of the magnetic field at leading order in derivatives, it does appear at leading order in the correlation functions among electric field components, as in (31).

SUPPLEMENTARY MATERIAL

Appendix A: Details of the effective CTP action for MHD

In this Appendix, we outline the steps leading to Eqs. (3)–(5) in the Letter. See [24] for technical details, other generalizations, and a more extensive discussion.
The hydrodynamical variables for MHD in the static neutron approximation are given by two vector fields $A_{1 \mu}, A_{2 \mu}$, as on a closed time path all quantities come in two copies. The one-form symmetry implies that the action S_{EFT} can only depend on the dynamical variables $A_{s \mu}$ (s labels the copies) through the combinations

$$G_{s \mu \nu} \equiv b_{s \mu \nu} + \partial_\mu A_{s \nu} - \partial_\nu A_{s \mu}, \quad s = 1, 2,$$

where $b_{s \mu \nu}$ denotes the external source for the two-form current $J^{s \nu}$. By definition, $G_{s \mu \nu}$ and thus S_{EFT} are invariant under the transformation $A_{s \mu} \rightarrow A_{s \mu} + \partial_\mu \alpha_s$, for arbitrary functions α_s. We can use the freedom to set $A_{s 0} = 0$. $S_{EFT}[G_{1 \mu \nu}, G_{2 \mu \nu}]$ is then the most general action invariant under a number of symmetries.

To describe the symmetries to be imposed, it is convenient to introduce the Keldysh basis of symmetric (“r”) and antisymmetric (“d”) combinations of all fields: $\varphi_r \equiv (\varphi_1 + \varphi_2)/2$ and $\varphi_d \equiv \varphi_1 - \varphi_2$. The symmetries that the MHD action S_{EFT} should satisfy include [25, 26]:

$$\text{Diagonal shift} : \ A_{r i}(t, \mathbf{x}) \rightarrow A_{r i}(t, \mathbf{x}) + \lambda_i(\mathbf{x}),$$

and the following constraints from unitarity:

$$S_{EFT}[G_{r \mu \nu}, G_{a \mu \nu} = 0] = 0,$$

$$S_{EFT}[G_{r \mu \nu}, G_{a \mu \nu}] = - S_{EFT}[G_{r \mu \nu}, -G_{a \mu \nu}],$$

$$\text{Im} S_{EFT} \geq 0.$$

We assume that the underlying microscopic system has an anti-unitary discrete symmetry Θ involving time-reversal T. The macroscopic implications of Θ and the fact that the system is in local equilibrium are realized by a \mathbb{Z}_2 dynamical KMS symmetry

$$G_{a \mu \nu}(x) \rightarrow \Theta G_{a \mu \nu}(x) - i\beta_0 \partial_\mu \Theta G_{r \mu \nu}(x),$$

$$G_{r \mu \nu}(x) \rightarrow \Theta G_{r \mu \nu}(x).$$

(39)

Here β_0 is the inverse temperature. Finally, we need to impose on S_{EFT} any other discrete symmetry respected by the underlying system. Depending on what discrete symmetries are present, we obtain different classes of actions, which are fully classified in [24].

As discussed in the main text, in neutron stars, the charge conjugation symmetry C is badly broken, while parity P may be broken due to weak interactions. At the derivative order of the EFT that we work with, parity breaking does not yield any difference in either the dispersion relations or the two-point functions (see [24] for details). Below, we will first write down the theory with parity conservation and then comment on the parity violating case. The microscopic system respects time reversal T. With P conserved, we can take Θ to be either T or PT, which give equivalent actions. The identification in Eq. (2) in the Letter determines how each discrete symmetry acts on $J^{\mu \nu}$, and since the source $b_{s \mu \nu}$ should transform in the same way as $J^{s \nu}$, we conclude that

$$\mathcal{P} : \ (G_{0i}, G_{ij}) \rightarrow (G_{0i}, -G_{ij}),$$

$$\mathcal{T} : \ (G_{0i}, G_{ij}) \rightarrow (-G_{0i}, G_{ij}),$$

$$\mathcal{C} : \ (G_{0i}, G_{ij}) \rightarrow (-G_{0i}, -G_{ij}).$$

(40)

(41)

(42)

Our proposal of MHD for neutron stars is then given by the most general action invariant under (35)–(39) with $\Theta = T$ and with invariance under \mathcal{P}. With $S_{EFT} = \int d^4x \mathcal{L}_{EFT}$, we write

$$\mathcal{L}_{EFT} = \mathcal{L}_0 + \mathcal{L}_{\mathcal{P}, \mathcal{T}},$$

(43)

where \mathcal{L}_0 contains terms invariant under all the $\mathcal{C}, \mathcal{P}, \mathcal{T}$ symmetries, while $\mathcal{L}_{\mathcal{P}, \mathcal{T}}$ includes those violating \mathcal{C}. To first derivative order, \mathcal{L}_0 has the form

$$\mathcal{L}_0 = a G_{ro} G_{a0i} + i(c \delta_{ij} + \tilde{c} G_{r0i} G_{roj}) G_{ai0} \tilde{G}_{a0j} + i(d \delta_{ij} \delta_{jl} + \tilde{d} \epsilon_{ijk} \epsilon_{ln} G_{r0m} G_{r0n}) G_{aij} \tilde{G}_{akl},$$

(44)

where $\tilde{G}_{a \mu \nu} = G_{a \mu \nu} + i\beta_0 \partial_\mu G_{r \mu \nu}$, and $\mathcal{L}_{\mathcal{P}, \mathcal{T}}$ is written as

$$\mathcal{L}_{\mathcal{P}, \mathcal{T}} = \epsilon_{ijk} G_{r0k} (h \partial_\mu G_{r0j} G_{a0i} + p \partial_\mu G_{r0j} G_{a0l}) + \epsilon_{ijk} \left(\frac{f}{6} H_{aijk} + f' G_{r0k} H_{ rij} G_{a0l} \right),$$

(45)
where \(H_{\mu \nu \lambda} = \partial_\mu b_{\nu \lambda} + \partial_\nu b_{\mu \lambda} + \partial_\lambda b_{\mu \nu} \). Various coefficients \(a, c, d, \tilde{c}, h, p, f \) are functions of \(g \equiv G^2_{r0i} \). Note that invariance under (35) implies that \(G_{rij} \) must enter \(S_{EFT} \) through \(\partial_0 G_{rij} \) or \(H_{rijkl} \), and note that

\[
\partial_0 G_{rij} = H_{r0ij} + \partial_i G_{r0j} - \partial_j G_{r0i}.
\]

We will see that the system is dominated by diffusion at leading order, which means that when doing derivative counting we should assign weight 2 to \(\partial_0 \), weight 1 to \(\partial_i \), and weight 0 to \(G_{r0i} \). Under this assignment, \(G_{rij}, G_{ab0}, G_{a1j} \) have respective weights \(-1, 2, 1\). The terms proportional to \(c, \tilde{c}, h \) then have weights 3 and are higher order than the other terms which have weights 2. We will suppress them below. When parity is broken, additional first derivative terms exist, but they all have higher weights.

Equations of motion following from \(S_{EFT} \) are

\[
\partial_\mu J^\mu_\nu = 0, \quad \partial_\nu J^\mu_\nu = 0,
\]

\[
J^\mu_\nu = \frac{\delta S_{EFT}}{\delta b_{\mu\nu}}, \quad J^\mu_\nu = \frac{\delta S_{EFT}}{\delta b_{r\mu\nu}}.
\]

With \(b_{\mu\nu} = 0 \), the second equation of (47) can be solved by setting \(G_{a\mu\nu} = 0 \), in which case \(J^\mu_\nu \) are identically zero. With \(G_{\mu\nu} \equiv G_{r\mu\nu} \) and \(J^\mu_\nu \equiv J^\mu_\nu \), the equations of motion then reduce to Eq. (2) in the Letter with \(J^\mu_\nu \) (to weight 1) given by (3)–(4). Note that \(m \) appearing in (3)–(4) is equal to \(f' \). The first lines of (3)–(4) come from \(L_0 \) while the second lines come from \(L_{P,T} \). Equations (3)–(4) along with (2) give our new formulation of MHD equations for neutron stars to first derivative order. Lastly, equation (38) requires that

\[
c \geq 0, \quad c + \tilde{c} G^2_{r0i} \geq 0, \quad d \geq 0, \quad d + 2\tilde{c} G^2_{r0i} \geq 0.
\]

Appendix B: Derivation of dispersion relations and linear response theory

Here we study the linear responses of the system (in the presence of a constant magnetic field) to an infinitesimal external source. From the responses of various components of electric and magnetic fields we can extract physical interpretations for various parameters introduced in Eqs. (15)–(17) in the Letter.

Recall that

\[
J^\mu_\nu = \tilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}
\]

and let \(a_\mu \) be the vector potential for \(F_{\mu\nu} \). We then have

\[
\frac{1}{2} \int d^4 x J^{\mu\nu} b_{\mu\nu} = \int d^4 x j^\mu a_\mu,
\]

\[
j^\mu = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} \partial_\nu b_{\rho\sigma} = \frac{1}{6} \epsilon^{\mu\nu\rho\sigma} H_{\nu\rho\sigma}.
\]

\(j^\mu \) thus corresponds to an external current for \(a_\mu \), and

\[
j^0 = H_{123}, \quad j^i = -\frac{1}{2} \epsilon^{ijk} H_{0jk}.
\]

Given the expansions (12)–(14), the linearized equations of motion (2) can be written as can be written as

\[
\tilde{K} = -\frac{\chi}{\chi_\perp} K - \frac{2m_\mu}{\chi_\perp} \partial_z z H_{xyz},
\]

\[
\chi_\parallel \partial_0 f_{0z} + \sigma_1^1 (\partial_1 K - \partial_1^2 f_{0z}) + \sigma_2^2 \partial_2 K_{xy} = -\sigma_1^1 \partial_a H_{0za} - \sigma_2^2 \epsilon_{ab} \partial_z H_{0zb} - 2m_\mu \partial_b H_{xyz},
\]

\[
\chi_\perp \partial_0 f_{0a} + \sigma_1^1 \epsilon_{ab} \partial_b K_{xy} - \sigma_1^1 (\partial_2 f_{0a} - \partial_a K) - \sigma_2^2 \epsilon_{ab} (\partial_2 f_{0b} - \partial_b K) = -\sigma_1^1 \epsilon_{ab} \partial_b H_{0xy} + \sigma_1^1 \partial_z H_{0za} + \sigma_2^2 \epsilon_{ab} \partial_z H_{0zb},
\]

where we have introduced

\[
K \equiv \partial_z f_{0z}, \quad \tilde{K} \equiv \partial_a f_{0a},
\]
which can be further written as

\[(\partial_0 + D) \begin{pmatrix} K \\ K_{xy} \end{pmatrix} = \begin{pmatrix} s \\ s_{xy} \end{pmatrix}, \quad D = \begin{pmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{pmatrix},\]

where

\[D_{11} = -\sigma_1^+ \left[\frac{1}{\chi_\perp} \partial_2^2 + \frac{1}{\chi_\parallel} \partial_0^2 \right] = \sigma_1^+ \left[\frac{1}{\chi_\perp} k_2^2 + \frac{1}{\chi_\parallel} k_0^2 \right], \]

\[D_{12} = \frac{\sigma_0^+}{\chi_\parallel} \partial_2^2 = -\frac{\sigma_2^+}{\chi_\parallel} k_2^2, \]

\[D_{21} = -\frac{\sigma_1^+ \chi_\perp}{\chi_\parallel} \left(\frac{\partial_0^2}{\chi_\perp} + \frac{\partial_2^2}{\chi_\parallel} \right) = \frac{\sigma_1^+ \chi_\perp}{\chi_\parallel} \left(\frac{k_2^2}{\chi_\perp} + \frac{k_0^2}{\chi_\parallel} \right), \]

\[D_{22} = -\frac{1}{\chi_\perp} \left[\sigma_1^+ \partial_2^2 + \sigma_\parallel^+ \partial_0^2 \right] = \frac{1}{\chi_\perp} \left[\sigma_1^+ k_2^2 + \sigma_\parallel k_0^2 \right], \]

and

\[s = -\frac{\sigma_1^+}{\chi_\parallel} \partial_2 \partial_a H_{0za} - \frac{\sigma_\parallel^+}{\chi_\parallel} \epsilon_{ab} \partial_a \partial_2 H_{0zb} - \frac{2m\mu}{\chi_\parallel} (\partial_0 \partial_2 H_{xyz} - \frac{\sigma_1^+}{\chi_\parallel} \partial_0^2 H_{xyz}), \]

\[s_{xy} = \frac{\sigma_\parallel^+}{\chi_\perp} \partial_2^2 H_{0xy} + \frac{\sigma_1^+}{\chi_\perp} \epsilon_{ab} \partial_a \partial_2 H_{0xb} - \frac{\sigma_0^+}{\chi_\perp} \partial_2 \partial_0 H_{0za} + \frac{2m\mu \sigma_0^+}{\chi_\perp} \partial_0^2 H_{xyz}. \]

In momentum space, we then have

\[\begin{pmatrix} K \\ K_{xy} \end{pmatrix} = \frac{1}{-i\omega + D} \begin{pmatrix} s \\ s_{xy} \end{pmatrix}, \]

where \(\Lambda = \det(-i\omega + D).\) It will also be useful to introduce in some of the expressions below the quantity

\[\Gamma = \chi_\parallel^2 \Lambda. \]

Let us first set the external sources to zero, so that all \(H_{0\mu\nu}\) and hence \(s, s_{xy}\) are zero. We must then have \(\det \Lambda = 0\), which leads to the dispersion relations (23) in the Letter.

In general, the \(s, s_{xy}\) are non-zero, and we can solve for \(f_{0i}\) in terms of these sources by noting that

\[f_{0z} = -\frac{i}{k_\parallel} K, \]

\[f_{0a} = \frac{i}{k_\parallel^2} (k_a \chi_\parallel^2 K + \epsilon_{ab} k_b K_{xy}) - \frac{2m\mu}{\chi_\perp k_\perp^2} k_x k_z H_{xyz}, \]

which gives

\[f_{0z} = -\frac{i}{k_\parallel \Lambda} ((-i\omega + D_{22}) s - D_{12} s_{xy}), \]

\[f_{0a} = \frac{i}{k_\parallel \Lambda} \left[k_a \chi_\parallel ((-i\omega + D_{22}) s - D_{12} s_{xy}) + \epsilon_{ab} k_b ((-D_{21} s + (-i\omega + D_{11}) s_{xy}) \right] - \frac{2m\mu}{\chi_\perp k_\perp} k_x k_z H_{xyz}. \]

These expressions can be substituted back into Eqs. (12)–(14) in the Letter to find expressions for \(J^{\mu\nu}\) in terms of the external sources \(b_{\mu\nu}\), which in turn can be used to find the retarded correlation functions

\[G^R(J^{\mu\nu}, J^{\lambda\rho}; t_2 - t_1, x_2 - x_1) \equiv i\theta(t_2 - t_1) \langle [J^{\mu\nu}(t_2, x_2), J^{\lambda\rho}(t_1, x_1)] \rangle = \frac{\delta J^{\mu\nu}(t_2)}{\delta b_{\lambda\rho}(t_1)}. \]

(See for instance [25] for details on why the last two expressions above are equal.) From the invariance of the above expression under \(PT\) symmetry, the retarded functions should satisfy

\[G^R(J^{\mu\nu}, J^{\lambda\rho}) = G^R(J^{\lambda\rho}, J^{\mu\nu})_{\mu \rightarrow -\mu}. \]
From $J^\mu\nu$ being Hermitian, we have
\[
G^R(J^\mu\nu, J^{\lambda\rho}; k^\sigma)^* = G^R(J^{\mu\nu}, J^{\lambda\rho}; -k^\sigma) = \pm G^R(J^{\mu\nu}, J^{\lambda\rho}; -\omega, k),
\]
where in the last expression we have also used parity symmetry. Further constraints on the correlation functions are given by Ward identities
\[
k_\mu G(J^{\mu\nu}, J^{\lambda\rho}; k^\sigma) = 0,
\]
and, moreover, there is a rotational symmetry in the $x - y$ plane.

The expressions for the retarded correlation functions with general k_i, ω, and μ are complicated, so let us first consider some special limits, which in particular will justify the interpretations of various coefficients given in Eqs. (18) and (19)–(21) in the Letter.

Case 1: $\mu = 0$

In this case, the system becomes rotationally symmetric and we have $\sigma^z = \sigma^\parallel = \sigma$, $\chi^\perp = \chi^\parallel = \chi$, and
\[
\Gamma = \chi (\sigma k^2 - i\chi \omega)^2.
\]
The correlation functions are given by
\[
G(B_i, B_j) = \frac{(k^2\delta_{ij} - k_ik_j)\sigma \chi}{k^2\sigma - i\chi \omega}, \quad G(B_i, E_j) = -\epsilon_{ijm}k_m\sigma \chi \omega, \quad G(E_i, E_j) = \frac{\sigma \omega (ik_i k_j \sigma + \delta_{ij} \chi \omega)}{k^2\sigma - i\chi \omega} = i\sigma \omega \delta_{ij} + i\sigma^2 \omega \frac{k_i k_j - k^2 \delta_{ij}}{k^2\sigma - i\chi \omega}.
\]
Any correlation functions that are not written explicitly can be derived using the symmetries listed around (72)–(74). Note further that the expression for $G(B_i, B_j)$ can be determined from rotational symmetry and $\nabla \cdot B = 0$. Similarly with $G(B_i, E_j)$ and $G(E_i, E_j)$.

By rotational symmetry we can align momentum to be along the z direction and the above expressions can be written more explicitly as
\[
G^R(B_z, B_i) = 0, \quad G^R(B_a, B_b) = \frac{\sigma \chi k^2 \delta_{ab}}{k^2\sigma - i\chi \omega}, \quad G^R(E_z, E_z) = i\sigma \omega, \quad G^R(E_z, E_a) = 0, \quad G^R(E_a, E_b) = i\sigma \omega \delta_{ab} - i\sigma^2 \omega \frac{k^2 \delta_{ab}}{k^2\sigma - i\chi \omega} = i\sigma \omega \delta_{ab} - i\sigma \omega \frac{k^2 \delta_{ab}}{k^2\sigma - i\chi \omega}.
\]
We can then interpret σ as a magnetic “viscosity” as defined by the Kubo formula
\[
\sigma = \lim_{\omega \to 0} \lim_{k_z \to 0} \frac{1}{i\omega} G^R(E_z, E_z)
\]
and χ as the one-form susceptibility defined by
\[
\chi = \lim_{k_z \to 0} \lim_{\omega \to 0} G^R(B_z, B_z).
\]
We note that the order of limits are important in (80)–(81).

Case 2: $\mu \neq 0$ and momentum along the z direction

In this case we have
\[
\Gamma = k^4 \xi^2 - 2ik^2 \sigma^z \chi^\perp \omega - \chi^2 \omega^2 = (k^2 \sigma^z)^2 + (k^2 \sigma^1 - i\chi^\perp \omega)^2,
\]
where
\[
\xi = \sqrt{\sigma^z^2 + \sigma^1^2}.
\]
The correlation functions of the magnetic fields are

$$G^R(B_z, B_a) = 0, \quad G^R(B_x, B_x) = \frac{k_z^2 \chi_{\perp}(k_z^2 \xi^2 - i \sigma_1^0 \chi_{\perp} \omega)}{k_z^2 \xi^2 - 2ik_z^2 \sigma_1^0 \chi_{\perp} \omega - \chi_{\perp}^2 \omega^2}, \quad (84)$$

$$G^R(B_x, B_y) = \frac{-i k_z^2 \chi_{\perp} \sigma_2^0 \chi_{\perp} \omega}{k_z^2 \xi^2 - 2ik_z^2 \sigma_1^0 \chi_{\perp} \omega - \chi_{\perp}^2 \omega^2} \quad (85)$$

The mixed correlation functions among electric and magnetic fields are

$$G^R(B_z, E_a) = G^R(B_x, E_z) = 0, \quad G^R(B_x, E_x) = \frac{\omega}{k_z} G^R(B_x, B_y), \quad G^R(B_x, E_y) = -\frac{\omega}{k_z} G^R(B_x, B_z). \quad (86)$$

The correlation functions among electric field components are

$$G^R(E_z, E_z) = -\frac{4k_z^2 m^2 \mu^2}{\chi_{\parallel}} + i \sigma_{\parallel} \omega, \quad G^R(E_z, E_a) = 0, \quad (87)$$

$$G^R(E_x, E_x) = \frac{\omega^2}{k_z^2} G^R(B_x, B_x), \quad G^R(E_x, E_y) = \frac{\omega^2}{k_z^2} G^R(B_x, B_y). \quad (88)$$

Now taking $k_z \to 0$ the only non-vanishing pieces are

$$G^R(E_z, E_z) = i \sigma_{\parallel} \omega, \quad G^R(E_x, E_z) = i \sigma_1^0 \omega, \quad G^R(E_x, E_y) = i \sigma_2^0 \omega. \quad (89)$$

This leads to Eqs. (19)–(21) in the Letter, and we now interpret $\sigma_{\parallel}, \sigma_1^0$ and σ_2^0 respectively as the longitudinal, transverse and Hall magnetic viscosities.

With $\omega \to 0$ (and k_z finite) we have

$$G^R(B_x, B_x) = \chi_{\perp}, \quad G^R(E_z, E_z) = -\frac{4k_z^2 m^2 \mu^2}{\chi_{\parallel}}. \quad (90)$$

This gives the second equation in (18), and we thus should interpret χ_{\perp} as transverse one-form susceptibility.

Case 3: $\mu \neq 0$ and momentum along transverse direction

For the spatial momentum along k_{\perp} we have

$$\Gamma = \chi_{\perp}(\sigma_1^0 k_{\perp}^2 - i \chi_{\perp} \omega)(\sigma_{\parallel}^0 k_{\perp}^2 - i \chi_{\parallel} \omega). \quad (91)$$

The correlation functions among magnetic field components are

$$G^R(B_z, B_z) = \frac{\chi_{\parallel} \sigma_1^0 k_{\perp}^2}{k_{\parallel}^2 \sigma_1^0 - i \chi_{\parallel} \omega}, \quad G^R(B_x, B_x) = \sigma_{\parallel} \chi_{\perp} \frac{k_y^2}{k_z^2 \sigma_{\parallel}^0 - i \chi_{\perp} \omega}, \quad (92)$$

$$G^R(B_z, B_x) = 0, \quad G^R(B_x, B_y) = -\chi_{\perp} \sigma_{\parallel}^0 \frac{k_x k_y}{k_z^2 \sigma_{\parallel}^0 - i \chi_{\perp} \omega}. \quad (93)$$

The mixed correlation functions among electric and magnetic fields are

$$G^R(B_z, E_x) = -\frac{2im\mu k_x \sigma_1^0 k_{\perp}^2}{\sigma_1^0 k_{\perp}^2 - i \chi_{\perp} \omega} + \chi_{\parallel} \omega(-k_y \sigma_1^0 - k_z \sigma_2^0), \quad (94)$$

$$G^R(B_z, E_z) = G^R(B_x, E_z) = G^R(B_x, E_y) = 0, \quad G^R(B_x, E_x) = \frac{\omega}{k_y} G^R(B_x, B_z). \quad (95)$$

The correlation functions among electric field components are

$$G^R(E_z, E_z) = \frac{\sigma_{\parallel} \chi_{\perp} \omega^2}{\sigma_{\parallel} k_{\perp}^2 - i \chi_{\perp} \omega} = \frac{\omega^2}{k_y^2} G^R(B_x, B_x), \quad G^R(E_z, E_x) = 0, \quad (96)$$

$$G^R(E_x, E_x) = i \omega \frac{k_x^2 \sigma_1^0^2 + (2m\mu - \sigma_2^0)^2 - i \omega \sigma_1^0 \chi_{\parallel}}{\sigma_1^0 k_{\perp}^2 - i \chi_{\parallel} \omega}, \quad (97)$$

$$G^R(E_x, E_y) = i \omega \frac{2m\mu \sigma_1^0 k_{\perp}^2 + k_x k_y (\sigma_1^0 k_{\perp}^2 + (2m\mu - \sigma_2^0)^2 - i \omega \sigma_2^0 \chi_{\parallel})}{\sigma_1^0 k_{\perp}^2 - i \omega \chi_{\parallel}}. \quad (98)$$
We can use rotational symmetry to take $k_\perp = k_y$. We then find that

$$ G^R(B_z, E_x) = -\frac{\chi_{\parallel}\sigma_1^z\omega k_y}{\sigma_1^z k_y^2 - i\chi_\parallel \omega}, \quad G^R(B_z, E_y) = k_y \frac{-2i\mu_0\sigma_1^z k_y^2 - \chi_\parallel\sigma_2^z \omega}{\sigma_1^z k_y^2 - i\chi_\parallel \omega}, $$

(99)

$$ G^R(E_y, E_y) = i\sigma_1^z \omega + \frac{k_y^2(2\mu_0 - \sigma_2^z)^2}{\sigma_1^z k_y^2 - i\chi_\parallel \omega}, \quad G^R(E_x, E_x) = \frac{\omega^2 \sigma_1^z \chi_\parallel}{\sigma_1^z k_y^2 - i\chi_\parallel \omega}, $$

(100)

$$ G^R(E_x, E_y) = i\sigma_1^z \omega + i\sigma_1^z k_y^2 \omega - 2\mu_0 + \frac{\sigma_2^z}{\sigma_1^z k_y^2 - i\omega \chi_\parallel}. $$

(101)

A curious thing is that even in the direction parallel to $k_\perp = k_y$, $G^R(E_y, E_y)$ still has a diffusion pole.

With $k_\perp \to 0$, we again find (89). For $\omega \to 0$, we have

$$ G^R(B_z, E_x) = -2i\mu_0 k_x, \quad G^R(B_z, B_z) = \chi_\parallel, $$

(102)

which gives the first equation in (18), and implies that we should interpret χ_\parallel as the longitudinal one-form susceptibility.

Case 4: $\mu \neq 0$ and general momentum

For the correlation functions among the magnetic field components in the case of general k and ω, it is useful to define the quantity

$$ A = k_x^2 \chi^2 + \sigma_1^z \sigma^\parallel k_y^2, $$

(103)

Note that we can write

$$ \Gamma = \chi_\parallel k_y^2 (A - i\sigma_1^z \chi_\parallel \omega) + \chi_\perp k_y^2 (A - i\sigma_1^z \chi_\perp \omega) - i\chi_\perp \sigma_1^z \omega (\chi_\parallel k_y^2 + \chi_\perp k_\perp^2) - \chi_\perp \chi_\parallel \omega^2 $$

$$ = (\chi_\parallel k_y^2 + \chi_\perp k_\perp^2) (A - i\sigma_1^z \chi_\parallel \omega) - i\chi_\parallel \chi_\perp \omega (\sigma_1^z k_y^2 + \sigma^\parallel k_y^2) - \chi_\perp \chi_\parallel \omega^2. $$

(104)

We introduce the following combinations of the B_a and E_a

$$ B_1 = \frac{B_a k_a}{k_\perp}, \quad B_2 = \frac{\epsilon_{ab} B_a k_b}{k_\perp}, \quad E_1 = \frac{E_a k_a}{k_\perp}, \quad E_2 = \frac{\epsilon_{ab} E_a k_b}{k_\perp}. $$

(105)

The retarded correlation functions among magnetic field components are then given by

$$ G^R(B^z, B^z) = \frac{\chi_{\parallel}\chi_\perp}{\Gamma} k_y^2 (A - i\sigma_1^z \chi_\parallel \omega), $$

(106)

$$ G^R(B^z, B_1) = -\frac{\chi_{\parallel}\chi_\perp}{\Gamma} k_y k_\perp (A - i\sigma_1^z \chi_\perp \omega), $$

(107)

$$ G^R(B^z, B_2) = -i\frac{\chi_{\parallel}\chi_\perp}{\Gamma} k_y k_\perp \omega, $$

(108)

$$ G^R(B_1, B_1) = \frac{\chi_{\parallel}\chi_\perp}{\Gamma} k_y^2 (A - i\sigma_1^z \chi_\parallel \omega), $$

(109)

$$ G^R(B_1, B_2) = i\frac{\chi_{\parallel}\chi_\perp}{\Gamma} \sigma_1^z \omega k_y^2, $$

(110)

$$ G^R(B_2, B_2) = \frac{\chi_{\parallel}}{\Gamma} \left[\chi_\perp k_y^2 (A - i\chi_\parallel \sigma^\parallel \omega) + \chi_\parallel k_y^2 (A - i\chi_\perp \sigma_1^z \omega) \right]. $$

(111)

Among the electric field components we have:

$$ G^R(E^z, E^z) = i\omega \sigma^\parallel - \frac{4m^2 e^2}{\chi_{\parallel}} k_y^2 + \frac{4m^2 e^2}{\chi_{\parallel}} k_\perp^2 k_y^2 (A - i\sigma_1^z \chi_\perp \omega) $$

$$ - i\frac{\omega k_y^2}{\Gamma} \chi_\parallel \left[(2\sigma_1^z \sigma^\parallel \chi_\parallel + 4me^2 \sigma_2^z \chi_\perp) + \sigma^\parallel \chi_\perp (\sigma_1^z k_y^2 - i\chi_\parallel \omega) \right], $$

(112)
\[G^R(E^z, E_1) = \frac{k_1 k_2 \omega}{\Gamma} \left[k_2^2 \left(i \omega \left(\xi^2 \chi || + 8m^2 \mu^2 \sigma^1 \chi \perp \right) - 4m^2 \mu^2 A \right) \right. \\
+ \left. \omega \chi \perp \left(ik_1^2 \left(\sigma^{1^2} + (2m\mu - \sigma^2_2)^2 \sigma^\parallel + \omega \sigma^1 \sigma^\parallel \chi || + 2m\mu \omega \chi \perp (2m\mu - \sigma^2_2) \right) \right) \right], \] (113)

\[G^R(E^z, E_2) = \frac{k_1 k_2 \omega \chi \perp}{\Gamma} \left[- (\sigma^1_2 \sigma^\parallel \chi || + 2m\mu \sigma^1 \chi \perp) \omega - 2im\mu A \right], \] (114)

\[G^R(E_1, E_1) = i \omega \sigma^1_1 - i \frac{k_1^2 k_2^2 \omega}{\Gamma} \left[- (\sigma^1_2 \sigma^\parallel \chi || + \sigma^1_1 \chi \perp (\xi^2 - 8m^2 \mu^2) \right] - \frac{4m^2 \mu^2 k_1^2 k_2^2 A}{\Gamma} \frac{\omega}{\Gamma} \left[ik_1^2 \sigma^1 \xi^2 \chi || + k_2^2 \omega \left(\sigma^1 - \sigma^2_2 \right) \chi || \chi \perp - ik_1^2 \chi \perp (2m\mu - \sigma^2_2)^2 \left(k_1^2 \sigma^\parallel - i \omega \chi \perp \right) \right], \] (115)

\[G^R(E_1, E_2) = - i \omega \sigma^1_2 - \frac{i \omega}{\Gamma} \left[- k_1^2 \sigma^1_2 \xi^2 \chi || + k_1^2 \sigma^1_2 \chi \perp (2m\mu - \sigma^2_2) \right] \left(k_2^2 \sigma^\parallel - i \omega \chi \perp \right) \]
\+ \left. \frac{k_2^2}{\left(2i \omega \sigma^1_2 \sigma^\parallel \chi || + k_1^2 \left(- \sigma^1_2 \sigma^2 \sigma^\parallel \chi || + (2m\mu - \sigma^2_2) \xi^2 \chi \perp \right) \right) \right], \] (116)

\[G^R(E_2, E_2) = i \omega \sigma^1_1 - \frac{i \omega}{\Gamma} \left[k_1^2 \sigma^1_1 \xi^2 \chi || + k_1^2 \sigma^1_2 \chi \perp \left(k_2^2 \sigma^\parallel - i \omega \chi \perp \right) \right] \]
\+ \left. \frac{k_2^2}{\left(- i \omega \left(\sigma^1_1 - \sigma^2_2 \right) \chi || \chi \perp + k_1^2 \sigma^1_1 \left(\sigma^1_2 \sigma^\parallel \chi || + \xi^2 \chi \perp \right) \right) \right]. \] (117)

The mixed retarded correlation functions between the electric and magnetic field components are

\[G^R(B^z, E^z) = \frac{k_1 k_2 \chi \perp}{\Gamma} \left[- \omega \sigma^1_2 \sigma^\parallel \chi || - 2im\mu \left(A - i \sigma^1_1 \chi \perp \omega \right) \right], \] (118)

\[G^R(B^z, E_1) = - \frac{ik_1 \chi \perp}{\Gamma} \left[ik_1^2 \left(- (\sigma^1_2 \sigma^\parallel \chi || + 2m\mu \sigma^1 \chi \perp) \omega - 2m\mu k_2^2 \xi^2 \right) + 2m\mu k_1^2 \sigma^1 \sigma^\parallel - \omega^2 \sigma^2_2 \chi \perp \chi \perp \right], \] (119)

\[G^R(B^z, E_2) = \frac{\omega \chi \perp}{\Gamma} \left[k_2^2 \sigma^1 \xi^2 \chi || + k_1^2 \sigma^1 \xi^2 \chi \perp \left(k_2^2 \sigma^\parallel - i \omega \chi \perp \right) \right] \]
\+ \left. \frac{k_2^2}{\left(- i \omega \left(\sigma^1_1 - \sigma^2_2 \right) \chi || \chi \perp + k_1^2 \sigma^1_1 \left(\sigma^1_2 \sigma^\parallel \chi || + \xi^2 \chi \perp \right) \right) \right]. \] (120)

\[G^R(B_1, E_1) = \frac{ik_1 \chi \perp}{\Gamma} \left[ik_1^2 \left(- (\sigma^1_2 \sigma^\parallel \chi || + 2m\mu \sigma^1 \chi \perp) \omega - 2m\mu i k_2^2 \xi^2 \right) + 2m\mu k_1^2 \sigma^1 \sigma^\parallel - \omega^2 \sigma^2_2 \chi \perp \chi \perp \right], \] (121)

\[G^R(B_1, E_2) = \frac{k_1 \omega \chi \perp}{\Gamma} \left[2im\mu \left(k_2^2 \sigma^1 \sigma^\parallel + k_2^2 \xi^2 - i \sigma^1 \chi \perp \omega \right) + \sigma^2_2 \sigma^\parallel \omega \right], \] (122)

\[G^R(B_2, E_1) = \frac{ik_2 \chi \perp}{\Gamma} \left[ik_2^2 \left(- (\sigma^1_2 \sigma^\parallel \chi || + 2m\mu \sigma^1 \chi \perp) \omega - 2m\mu i k_1^2 \xi^2 \right) + 2m\mu k_1^2 \sigma^1 \sigma^\parallel - \omega^2 \sigma^2_2 \chi \perp \chi \perp \right], \] (123)

\[G^R(B_2, E_2) = \frac{k_1 \omega \chi \perp}{\Gamma} \left[\sigma^\parallel \chi \perp \left(k_2^2 \sigma^1 \sigma^\parallel + k_2^2 \xi^2 \right) + k_1^2 \sigma^1 \sigma^\parallel \chi || + 2m\mu \sigma^1 \chi \perp \right], \] (124)

\[G^R(B_2, E_1) = \frac{k_2 \omega \chi \perp}{\Gamma} \left[k_2^2 \chi \perp \left(\xi^2 - 2m\mu \sigma^2_2 \right) + k_2^2 \xi^2 \chi || - i \omega \sigma^1 \chi || \chi \perp \right], \] (125)

\[G^R(B_2, E_2) = - \frac{ik_2 \omega \sigma^1_2 \chi \perp}{\Gamma}. \] (126)
namics,” Phys. Rev. D95, 096003 (2017), arXiv:1610.07392 [hep-th].

[32] Davide Gaiotto, Anton Kapustin, Nathan Seiberg, and Brian Willett, “Generalized Global Symmetries,” JHEP 02, 172 (2015), arXiv:1412.5148 [hep-th].

[33] Juan Hernandez and Pavel Kovtun, “Relativistic magnetohydrodynamics,” JHEP 05, 001 (2017), arXiv:1703.08757 [hep-th].

[34] Sašo Grozdanov and Napat Poovuttikul, “Generalised global symmetries in holography: magnetohydrodynamic waves in a strongly interacting plasma,” JHEP 04, 141 (2019), arXiv:1707.04182 [hep-th].

[35] Paolo Glorioso and Dam Thanh Son, “Effective field theory of magnetohydrodynamics from generalized global symmetries,” (2018), arXiv:1811.04879 [hep-th].

[36] Jay Armas and Akash Jain, “One-form superfluids & magnetohydrodynamics,” JHEP 01, 041 (2020), arXiv:1811.04913 [hep-th].

[37] Samuel E. Gralla and Nabil Iqbal, “Effective Field Theory of Force-Free Electrodynamics,” Phys. Rev. D 99, 105004 (2019), arXiv:1811.07438 [hep-th].

[38] Bartosz Benenowski and Napat Poovuttikul, “Classification of magnetohydrodynamic transport at strong magnetic field,” (2019), arXiv:1911.05554 [hep-th].

[39] Michael J. Landry, “Higher-form and (non-)Stückelberg symmetries in non-equilibrium systems,” (2021), arXiv:2101.02210 [hep-th].

[40] Jay Armas and Filippo Camilloni, “A stable and causal model of magnetohydrodynamics,” (2022), arXiv:2201.06847 [hep-th].

[41] Note that $\partial_0 G_{ij} = H_{0ij} + \partial_i G_{0j} - \partial_j G_{0i}$.

[42] Michael J. Landry and Hong Liu, “A systematic formulation of chiral anomalous magnetohydrodynamics,” (2022), arXiv:2212.09757 [hep-ph].

[43] Michael J. Landry and Hong Liu, “to appear,” to appear.

[44] In this equation, H refers to the external magnetic field, which does not appear explicitly in our formalism, and in particular should not be confused with the higher form field H_{ijk}.

[45] Diego M. Hofman and Nabil Iqbal, “Generalized global symmetries and holography,” SciPost Phys. 4, 005 (2018), arXiv:1707.08577 [hep-th].

[46] Daniele Viganò, David Martínez-Gómez, José A. Pons, Carlos Palenzuela, Federico Carrasco, Borja Míñano, Antoni Arbona, Carlos Bona, and Joan Massó, “A Simflowny-based high-performance 3D code for the generalized induction equation,” Computer Physics Communications 237, 168–183 (2019), arXiv:1811.08198 [astro-ph.IM].

[47] Note that we need an initial configuration which involves both k_z and k_\perp to probe this difference.

[48] C. A. Burge, S. Van Loo, S. A. E. G. Falle, and T. W. Hartquist, “Ambipolar diffusion regulated collapse of filaments threaded by perpendicular magnetic fields,” Astronomy and Astrophysics 596, A28 (2016), arXiv:1609.06879 [astro-ph.GA].

[49] D. D. Ofengeim and M. E. Gusakov, “Fast magnetic field evolution in neutron stars: The key role of magnetically induced fluid motions in the core,” Phys. Rev. D 98, 043007 (2018), arXiv:1805.03956 [astro-ph.HE].

[50] F. Castillo, A. Reisenegger, and J. A. Valdivia, “Two-fluid simulations of the magnetic field evolution in neutron star cores in the weak-coupling regime,” Monthly Notices of the Royal Astronomical Society 498, 3000–3012 (2020), arXiv:2006.13186 [astro-ph.HE].