Research developments in adaptive intelligent vibration control of smart civil structures

Muhammad Usman Saeed¹, Zuoyu Sun¹ and Said Elias²

Abstract
Control algorithms are the most critical aspects in the successful control of civil structures subjected to earthquake and wind forces. In recent years, adaptive intelligent control algorithms are emerging as an acceptable substitute method to conventional model-based control algorithms. These algorithms mainly work on the principles of artificial intelligence (AI) and soft computing (SC) methods that make them highly efficient in controlling highly nonlinear, time-varying, and time-delayed complex civil structures. The current research probes to control algorithms, that this article set forth an inclusive state-of-the-art review of adaptive intelligent control (AIC) algorithms for vibration control of smart civil structures. First, a general introduction to adaptive intelligent control is presented along with its advantages over conventional control algorithms. Second, their classification concerning artificial intelligence and soft computing methods is provided that mainly consists of artificial neural network-based controller, brain emotional learning-based intelligent controller, replicator dynamics-based controller, multi-agent system-based controller, support vector machine-based controller, fuzzy logic control, adaptive neuro-fuzzy inference system-based controller, adaptive filters-base controller, and meta-heuristic algorithms-based hybrid controllers. Third, a brief review of these algorithms with their developments on the theory and applications is provided. Fourth, we demonstrate a summarized overview of the cited literature with a brief trend analysis is presented. Finally, this study presents an overview of these innovative AIC methods that can demonstrate future directions. The contribution of this article is the anticipation of detailed and in-depth discussion into the perspective of AI and SC-based AIC method advances that enabled practical applications in attenuating vibration response of smart civil structures. Moreover, the review demonstrates the computing advantages of AIC over conventional controllers that are important in creating the next generation of smart civil structures.

Keywords
Smart civil structures, vibration control, adaptive intelligent control, control algorithms, active/semi-active control, artificial intelligence, soft computing, buildings, bridges

Introduction
Previously civil structures were designed by conventional codes along with Passive Vibration Control (PVC) system, that is unable to adjust structural characteristics (i.e., mass, stiffness, or damping) dynamically under the environmental loads (i.e., earthquakes and strong winds).¹⁻⁷ However, with the developing trend of high-rise buildings and long-span bridges, the need for smart structures ascends that can adapt towards their changing environment and keep up their serviceability progressively. Through the escalation of Active Vibration Control (AVC) and Semi-active Vibration Control (SVC) systems since 1980,⁸⁻⁹ the concept of smart structures is acknowledged¹⁰ as an intelligent machine that can change and adapt to its environment dynamically working on a few components: sensors, actuators, signal processors, and power sources.¹¹⁻¹²

¹School of Civil Engineering, Guangzhou University, Guangzhou, China
²Earthquake Engineering Research Centre, University of Iceland, Reykjavik, Iceland

Corresponding author:
Zuoyu Sun, School of Civil engineering, Guangzhou University, Higher Education Mega Center, Guangzhou Guangdong, China, 510006.
Email: sunzuoyu@gzhu.edu.cn

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
The Vibration Control Systems (VCS) are classified into passive, active, semi-active, and hybrid control systems. The PVC system is activated by structural motion requiring no external force or energy to perform the control although this PVC system is not a smart control system but is incorporated with other smart AVC/SVC systems to formulate Hybrid Vibration Control (HVC) systems. The AVC and SVC are smart controllable systems that work with actuators to alter the stiffness and damping progressively and generate control forces based on pre-decided control algorithms, where the AVC system mainly works on electro-hydraulic or electro-mechanical actuator systems self-possessed with servo-actuator moving mass to generate control forces, which requires such tremendous external power. In comparison, the SVC systems spend less power than the AVC. Also, fit for consolidating both reliability quality related with passive devices and adaptability related with active devices frequently viewed as controllable passive devices. Furthermore, HVC systems imply the consolidated utilization of AVC/SVC with PVC systems. The summary of control devices utilized by these control systems is presented in Table 1.

Prior academic research indicates that the VCS for smart structures has two main groups: First group deals with the development of physical control devices actualizing existing control strategies. However, the second group deals with developing new or improving existing control algorithms for existing control devices. This study addresses the second part considering that effective use of these control systems requires an exact and suitable control algorithm for computing actuators control forces. To the best of the author's knowledge, the prime foundation of VCS is the control algorithm. Additionally, these control algorithms help in the advancement of control schemes that are cost-effective, predictable, adaptive, and robust, prompting increasingly reliable, safer, lighter, and more vigorous structures. For the development of control algorithms and simulating structural behavior, the numerical model of the system is developed. These model-based control schemes should initially acquire a precise mathematical model for an existing system and design the controller afterward. The performance of these schemes is strongly dependent on well-known structural parameters, which is also known as parametric control. These MBC schemes have established linear and nonlinear control algorithms. The Linear MBC Algorithms includes Proportional-Integral-Derivative (PID), optimal (i.e., LQR and LQG) and robust (i.e., H_2 and H_∞) controllers. These linear fixed controllers lack adaptivity towards parametric uncertainties, unmodeled dynamics uncertainties and external disturbances make them completely ineffective in controlling nonlinear civil structures. To overcome adaptivity issues, nonlinear adaptive control is recommended for controlling civil structures. These controllers have shown high adaptivity under highly uncertain and unknown conditions by automatically adjusting their parameters in real-time. These classic adaptive MBC algorithms incorporate Backstepping Control, Sliding Mode Control (SMC), LQR-based adaptive control, Model Reference Adaptive Control, model predictive adaptive control, adaptive pole placement, time delay control, etc. Some of these controllers have demonstrated the required performance in the control of nonlinear systems. Regardless, their effectiveness has decreased significantly in the control of nonlinear systems with uncertainties, and, in most of the scenarios, they were the key root cause for instability of the closed-loop system. Likewise, these controllers have fixed adjusting parameters, making

Passive	Active	Semi-active	Hybrid	
Energy dissipaters	Isolators	Active Tuned Mass Damper (ATMD)	Magnetorheological (MR) damper	Hybrid Mass Damper (HMD)
Tuned Mass Damper (TMD)	Elastomeric bearing	Active Tendon Control System (ATCS)	Electrorheological (ER) Damper	Hybrid Base Isolator (HBI)
Tuned Liquid Damper (TLD)	Lead-plug bearing	Active support system		
Metallic damper	High damping rubber bearings	Multi Tuned Mass Damper (MTMD)	Semi-active Tuned Mass Damper (SATMD)	
Friction damper	Friction pendulum bearing	Electro-hydraulic Dampers (EHD)	Piezoelectric Friction Damper (PFD)	
Viscoelastic damper				
Viscous fluid damper				

Table 1. Physical control devices.
them unalterable, innately less safe, and less robust controllers with uncertain stability and convergence brought about by unmodeled dynamics.38,39 As civil structures are highly complicated multi-degree-of-freedom systems, it is dreadfully challenging to find a precise numerical model representing their actual behavior.40,41 Additionally, these linear and nonlinear MBC schemes often require high computational exertion toward identifying and modeling systems instead of designing controllers.27,42 Accordingly, to mitigate the mentioned shortcomings and make control schemes less reliant on the numerical system’s model, the researchers integrate adaptive control with intelligent systems (control).43

The above-discussed integration is performed in two ways. The first one by combining a model-based adaptive control with intelligent (i.e., purely data-driven) systems is incorporated in direct or indirect learning schemes:44,45 directly by learning the uncertain part by acting as controller block and indirectly by tuning the parameters of the MBC controller referred as a dual or modular design for adaptive control.45,46 Second one by incorporating intelligent systems to obtain the knowledge of the system dynamics using the input–output data set through direct interaction with the system without using a parametric plant model during the controller design process,38,44,47 represented as non-model based/non-parametric control.21,28,48 These intelligent systems generally belong to Artificial Intelligence (AI) and Soft Computing (SC) techniques, such as Artificial Neural Networks (ANNs), Fuzzy Logic (FL), Support Vector Machine (SVM), Adaptive Neuro-Fuzzy Inference System (ANFIS) etc.38,44 This combination of adaptive with intelligent systems, one may view ‘Adaptive Intelligent Control (AIC),’49–52 in some literatures also named as “intelligent adaptive control”49 or intelligent and adaptive control.41 These control methods have been more considered in recent years because of their special capabilities like handling nonlinear complex systems, high adaptivity, and robustness to errors and uncertainties with extra effectiveness in controlling civil structures than MBC control methods.21

Recently, several studies have been published in the perspective of structural vibration control, typically concentrating on particular characteristics of the common topic. Soto and Adeli29 discussed the overall advancement in control algorithms from classic towards adaptive/intelligent control for smart civil structures and machines with a brief overview on adaptive/intelligent control strategy. Amezquita-Sanchez et al.12 focused on the common vibration control strategies applied to civil structures. Venanzi28 offered a study on adaptive control of civil structures starting by classifying them into model-based and non-model–based methods and constrained systems, with a brief introduction of non-model–based AIC strategy. According to our best knowledge previously, several surveys are available on vibration control strategies utilized for civil structures. However, unfortunately, they mainly focused on traditional (MBC) techniques, and none of them provided comprehensive details on recent AIC methods, such as ANNs, ANFIS, and RD. So far, these intelligent methods have undergone noteworthy advancements and escaladed use in structural vibration control during the last few years.

Therefore, to fill this research gap, this study presents a state-of-the-art review paper on a broader prospect of research efforts on the use of such emerging AIC methods in the vibration control of smart civil structures. The contributions of this review paper are: (1) to study and summarize AIC methods concerning their applications in vibration control of smart civil structures, mainly since 2017 and (2) to identify emerging trends and future directions for employing AIC in structural vibration control. By doing so, this article will supplement recently published articles and achieve the objectives like, (1) presenting the theoretical foundation or possibly will play a significant role in the advancement of AI and SC-based AIC methods in civil structural vibration control; (2) would signify the levels and hotspots of recent research in AIC; and (3) would assist continual research efforts. The structure of the study is organized as follows. The Adaptive Intelligent Control section briefly introduces AIC methods with their possible advantages in vibration control, and the acronyms used in the article are presented in Table 2. The Classification of AIC Methods section presents the classification of AIC methods regarding AI and SC methods. The Methods of AIC for Smart Civil Structures section discusses the theoretical introduction of each AIC method with its applications in smart civil structures. The Summary and Trend Analysis of Reviewed Articles section presents the summary with trend analysis of the studies reviewed for AIC methods, and finally, the conclusions are drawn, and future directions are presented.

Adaptive intelligent control

Adaptive Intelligent Control (AIC) can be characterized as a control strategy where the control parameters are attuned automatically through the feedback in the direction of the measured response to accomplish close to ideal performance as indicated by some specific criteria. This feedback guarantees that the system knows about the present situation and takes the necessary precautions to eliminate any imbalances that may emerge.43 These control schemes are a true amalgamation of adaptive and intelligent control systems, as depicted in Figure 1. Adaptive Intelligent Control is recognized in the generic framework through two hierarchical steps.
Table 2. Acronyms.

Acronyms	Expansion
AIC	Adaptive Intelligent Control
AVC	Active Vibration Control
ANNs	Artificial Neural Network
ANFIS	Adaptive Neuro-Fuzzy Inference System
AFs	Adaptive Filters
AS	Agent System
ATCS	Active Tendon Control System
ATMD	Active Tuned Mass Damper
BELBIC	Brain Emotional Learning Based Intelligent Controller
COC	Clipped Optimal Control
CS	Cuckoo Search
CI	Computational Intelligence
EAs	Evolutionary Algorithms
EGT	Evolutionary Game Theory
ESS	Evolutionary Stable State
EHD	Electro-Hydraulic Dampers
FLC	Fuzzy Logic Control
FIR	Finite Impulse Response
FIS	Fuzzy Inference System
FFNNs	Feed Forward Neural Networks
FBNNs	Feedback Neural Networks
GT	Game Theory
GA	Genetic Algorithm
HVC	Hybrid Vibration Control
IIR	Infinite Impulse Response
LQR	Linear Quadratic Regulator
LQG	Linear Quadratic Gaussian
MR	Magnetorheological
MRE	Magnetorheological elastomer
MBC	Model-Based Control
ML	Machine Learning
MAS	Multi-agent System
MFs	Membership Functions
MRE	Magnetorheological Elastomer
MTMD	Multi-tuned Mass Damper
MOO	Multi-Objective Optimization
MOCS	Multi-Objective Cuckoo search
NSGA	Non-Sorting Genetic Algorithm-II
PVC	Passive Vibration Control
PID	Proportional Integral Derivative
PFD	Piezoelectric Friction Damper
PSO	Particle Swarm Optimization
RD	Replicator Dynamics
RL	Reinforcement Learning
SC	Soft Computing
SVC	Semi-Active Vibration Control
SVM	Support Vector Machine
SMC	Sliding Mode Control
SAS	Single Agent System
SI	Swarm Intelligence
SL	Supervised Learning

(continued)
Step 1. Selecting a hierarchically organized system (related to the system’s environment) and formulating the hierarchical evaluation functions (identifying its control states) and

Step 2. Learning an arrangement of the utmost suitable hierarchical values of control parameters (evaluation function is assigned with the minimum values).

In other words, step 1 sets up “intelligent self controllable (thinking) algorithms” mimicking human intelligence for different actions (concepts) and step 2 considers these “intelligent self-controllable (thinking) algorithms” in learning the utmost suitable state of the system. These “intelligently self-controllable (thinking) algorithms” are generally dependent on specific principles from AI and other SC techniques, specifically ANNs, Fuzzy logic, GA, etc. The goal of AI is to develop machines that can think and learn by mimicking human cognitive functions. The subsequent “intelligent controller” is just a heuristically developed nonlinear, possibly adaptive system that is consequently manageable to control complex dynamic systems. The notion of intelligent control was first anticipated by Fu (1971) followed by Gupta and Saridis in 1977. An intelligent controller can be understood as an adaptive or self-organizing system that learns by interacting with the environment using nominal prior information, and can accomplish control objectives and can optimize the performance over complex, noisy, nonlinear situations on account of their inherent nonlinearity, adaptivity, and robustness. The expression “adaptive” indicates those controllers having real-time adaptable/adjustable parameters of plant model/controller. The sensors are employing to collect plant observations (i.e., changes among the system’s output y and its reference output y_r), from counteracting for parameter changes, other disturbances, and unknown factors of the plant (see Figure 2).

Combination of adaptive and intelligent control schemes is accepted in the literature as AIC. These control strategies have some significant advantages over other fixed linear or nonlinear MBC systems reported in the literature which are presented below.

Table 2. (continued)

Acronyms	Expansion
SOO	Single Objective Optimization
SAC	Simple Adaptive Control
TMD	Tuned Mass Damper
VCS	Vibration Control System

Figure 1. Adaptive intelligent control.
Advantages of AIC methods

1. Adaptive Intelligent Control methods can be trained to imitate a human psyche without thorough numerical equations utilized in conventional controllers.\(^2\)
2. These methods can adequately manage unmodeled dynamics and nonlinearities by including reasoning and inference systems to learn from incomplete, ambiguous, and subjective data based on experience and knowledge.\(^57\)
3. These methods sustain high capabilities of adaptability, robustness, modeling unmodeled dynamics, fault tolerance, solving complex systems, generalized capability, automaticity, training capabilities, learning and prediction under higher levels of system’s uncertainties, unpredicted or unaware conditions, and can effectively deal with large scale data.\(^21,43,50,58-60\)
4. These techniques can easily handle the non-linear, highly hysteretic behavior of control devices, where the MBC algorithms fail.\(^2\)
5. These methods adequately able to minimize high amplitudes and accelerations of structures cause by external excitations that in the long run increase structure’s load-carrying capacity, decrease fatigue, and reduction in energy consumption.\(^12,50,61\)

Classification of AIC methods

The AIC methods can be classified into Machine Learning (ML), Evolutionary Game theory (EGT), Reasoning system, and Adaptive Filters (AFs) based control, methods as displayed in Figure 3. The control algorithms of each classification are briefly discussed below, and detailed explanations and applications for the vibration control of smart civil structures are given in the next section. The ML is a sub-branch of AI that permits the computers to learn from the data itself to get trained based on experience and make predictions.\(^62,63\) It can be classified into three types that are supervised, unsupervised, and reinforced learning.

1. Supervised Learning (SL): The data is labeled with the right qualities/names (provided by the explicit teacher), empowering the algorithm to learns by minimalizing the error between its required and actual output. Artificial Neural Networks (ANNs) controllers and Support Vector Machines (SVMs) controllers utilize SL.\(^64\)
2. Unsupervised Learning: Unlike SL, it does not contain any explicit teacher. The task of the algorithm is to look for patterns or meanings in unlabeled data.\(^63\)
3. Reinforcement Learning (RL): Learning is performed with a critic without providing any information about the data (signal) class or explicit objectives. These RL algorithms are compelled to learn ideal objectives through trial and error.\(^63,65\) Multi-Agent System (MAS) based controllers and Brain Emotional Learning-Based Intelligent Controller (BELBIC) employ RL.

Furthermore, other AIC methods that incorporate Soft Computing (SC) or Computational Intelligence (CI) methods are, in fact, a subset of AI.\(^66\) The SC/CI is described by the computer’s capacity to learn an explicit task from a provided sample data or observations from the experiments.\(^63\) These methods include EGT which is an application of Game Theory (GT) in biological evolution, and Replicator Dynamics (RD) controllers belong to EGT. Other reasoning methods are purely based
on AI and SC methods that emulate human decision-making. These methods include Fuzzy Logic Control (FLC) and Adaptive Neuro-Fuzzy Inference System (ANFIS). The following AIC method is AFs which belong to a digital signal processing system and majorly exploits AI and SC methods. Moreover, meta-heuristic algorithms belong to AI and are used for optimizing the AIC parameters. These methods include; Evolutionary Algorithms (EA) (e.g., Genetic Algorithms (GA)) and Swarm Intelligence (SI) algorithms (e.g., Particle swarm optimization (PSO) and Cuckoo Search (CS) algorithms).

Methods of AIC for smart civil structures

ANN-based controller

An Artificial Neural Network is a computational data-driven methodology of ML that endeavors to simulate the learning and memory abilities of the human central neurological system collectively with its neurons, axons, dendrites, and synapses. The ANNs mimic the human brain in two distinctive ways: first, acquiring the information through the learning procedure, and the second one by storing the information in the interneuron’s connection strengths (synaptic weights).

The ANNs were first introduced by McCulloch in the mid-40s of the last century. The initial research studies in utilizing ANNs in control of structures were carried out simultaneously by Ghaboussi and Joghataie (1995) and Chen et al. (1995). Since then, ANNs have been integrated with VCS for highly nonlinear modern structures. Thus, the ANNs have been represented as a kind of dreamlike substitute to the conventional structural vibration control methods because of their high parallel scattered computational features of training, learning, adaptability, flexibility, noise immunity, nonlinear mapping capabilities, generalization ability, and robustness.

Likewise, ANN has demonstrated extraordinary capacity in capturing the unknown or complex nonlinear relationships between independent and dependent variables and has shown higher adaptability towards the changes in the input to output data sets in solving nonlinear complex control problems.

This paradigm of ANNs was begun with a model of perceptron, which is an algorithm of supervised learning in ML. The perceptron is the simplest primary model of ANNs as presented in Figure 4, having several nodes denote input, which is connected via synapses to various nodes. These synapses have weights accompanying them, and the summer function generates the value of each output node derived by multiplying each input node by the weight of the relevant synapse and...
adding bias if present, then these values are plugged into a threshold unit (activation function; such as sigmoid or relu) to generate inclusive output. It was perceived decades ago that this setup is unsuccessful in learning even simple functions. So extra hidden layers were introduced. In this setup, the input layer feeds into one or more hidden layers before being fed to the output layer, empowering more complex behavior substantially. In particular, ANNs with one or more hidden layers are termed Multilayer Perceptron (MLP), as displayed in Figure 5. Multilayer Perceptron is the most popular ANNs method. Generally, conventional ANNs consist of three layers: input layer, hidden layer, and output layer.

The ANNs are additionally categorized regarding to their network topology, for example, Feed Forward Neural Networks (FFNNs) and Feed-Back Neural Networks (FBNNs)/Recurrent Neural Networks (RNNs) or related to their learning algorithms. For instance, supervised learning, unsupervised learning, and reinforced learning are displayed in Figure 6, detail presented in the following sections with their utilization in ANNs (neuro) controller architectures.

FFNNs and basic controller architectures. In FFNNs, Information flows forward that starts from the input node. All information flows to the output node through the hidden node, while the input layer does not participate in the processing of information. Examples of FFNNs are MLP, radial basis function network, and Learning Vector Quantization Networks. These networks utilized supervised learning methods that incorporate gradient-based methods, such as back-propagation, and are termed static networks because their mapping between the inputs and outputs is a static function. The three basic FFNNs modeling architectures for controller include; forward modeling, inverse plant modeling and, operator modeling. Their details can be found in the work of Housner et al. and Brown et al.

FBNNs and basic controller architectures. The FBNN are dynamic mappings between inputs and outputs because the network’s output is fed back to the input layer or the intermediate layer. In this way, inputs are transferred in both forward and backward directions by forming a loop in the network architecture. The network’s output reflects the current and previous entries; these networks include the hope field network and Kohonen self-organizing maps. In FBNNs unsupervised learning methods; include Hebbian learning and competitive learning. An example of the FBNN controller architecture is a specialized inverse plant modeling in which ANN is integrated into a closed-loop; its details can be found in the work of Housner et al. and Brown et al.

ANNs based controllers. The ANNs based controllers can easily identify the structural system properties while avoiding the instability for the structures having higher uncertainties. The ANNs based controller’s parameters are attuned online based on certain error criteria. Most of these adaptive ANNs controllers are indirect adaptive schemes because, at first, it builds an ANNs model of the unknown plant, which is then further utilized to predict the behavior and control the response. Some of the famous ANNs based controllers included; Model reference neural controller, direct learning, and indirect learning Controller.

1. Model reference neuro-controller: In these controllers, the feedback is carried out by the conglomerate controller/plant emulator ANNs through the back-propagation algorithm. Two errors (model and reference) are generated as displayed in Figure 7 and described in equations (1) and (2)

 \[
 \text{Model error} = y_{\text{plant}} - y_{\text{model}} \quad (1)
 \]

 \[
 \text{Reference Error} = y_{\text{reference}} - y_{\text{plant}} = y_{\text{reference}} - y_{\text{model}} \quad (2)
 \]
Figure 5. Multilayer perceptron.

Figure 6. Classification of ANNs.

Figure 7. Model reference neuro-controller.
1. As the convergence approaches, both errors converge to zero, and the approximation of reference error becomes accurate. Thus, the extended ANN has two functions: adaptively estimate the next state of the plant in a given state, and compute the control signal required by the plant to minimize the reference error\(^64\) (see Figure 7).

2. Direct learning neuro-controller: These controllers are generally based on a combination of an MBC with a data-driven learning algorithm (neural networks). This scheme is commonly termed the modular design of adaptive controllers.\(^{44}\) A fixed linear MBC is used to train the neural network, as shown in Figure 8. In essence, the neural network is to learn the inverse model of the plant, using the plant output, the set point, and the linear controller signal as the input and the control signal as the output. With the change of the system’s operating point, the nonlinear model of the required control surface is established online by neural network. Finally, these control signals generated by the neural network are added to the controller’s control signals that enhanced its performance.\(^{14}\)

3. Model predictive neuro-controller: These controllers are also named indirect learning control schemes. In these controllers, the neural network-based plant model is used to predict the future behavior of a given plant, and the error is used to fine-tune the neural network controller’s parameters as presented in Figure 9.\(^{14,75}\)

ANNs Applications. Blachowski and Pnevmatiko\(^{20}\) presented a study utilizing ANNs controller for attenuating the seismic vibration, and their proposed controller was tested on two types of building structures: single storey and other is 12-storey building structure. ANNs based controller effectively reduced the structure’s response as compared to the conventional LQR controller. Lara et al.\(^{27}\) presented FBNNs named Nonlinear Auto-Regressive models with eXogenous Inputs (NARX)-NNs and FLC based control of 2-storey building structures equipped with MR damper; both of these controllers have produced significant results in achieving the control objective. However, the NARX-NNs-based controller performed better than the FLC controller. Rababah et al.\(^{24}\) proposed a back-propagating ANNs based AVC algorithm for a seismically excited highway bridge structure equipped with hydraulic actuators. The controller performance is compared with the conventional LQR and \(H_2\) MBC algorithms, but their proposed ANNs controller efficiently reduced the seismic responses with higher robustness and adequate stability than these MBC controllers.

![Figure 8. Direct learning neuro-controller.](image)

Figure 8. Direct learning neuro-controller.

![Figure 9. Model predictive neuro-controller.](image)

Figure 9. Model predictive neuro-controller.
HE et al.76 proposed a back-propagating ANNs based controller for a seismically excited highway bridge structure utilizing MR damper. Further, they utilized GA to optimize the proposed controller’s parameters and reduce the controller’s energy consumption. They compared the performance of the proposed controller with the Lyapunov and unoptimized BP-ANNs based controllers and concluded the higher performance of GA-back-propagating ANNs controller in terms of reducing peak responses with higher stability and consuming minimum energy. Rathi et al.77 proposed an ANNs based control Algorithm for the seismically excited 2-storey building structure equipped with Active Tendon Control System (ATCS). In their proposed scheme, the stability of the error dynamics model is assured by the Lyapunov stability analysis. They concluded that the anticipated controller has more robust stability and performance characteristics. Chang and Sung13 proposed an ANNs based controller for attenuating the seismic vibrations of a 3-storey building structure provided with an Active tuned Mass damper (ATMD) system. Their Proposed ANNs controller exploited structural model energy as an objective function for tuning the network and was named as modal-energy-based neuro-controller, the proposed controller had shown higher efficiency in achieving the control objectives, especially in reducing the model energy and structural responses compared to MLP-based controller.

Chen1 proposed an FFNNs based controller utilizing GA for optimizing its parameters (e.g., to search for initial weight and bias) and modified the Newton method for enhancing its training performance. This controller was validated on single-storey shear building structure equipped with ATMD for system identification and vibration suppression. The experimental results had shown higher efficiency of the proposed controller in tracking control and vibration suppression. Next, Bigdeli et al.72 presented ANNs based controllers utilizing Wavelets. Their proposed controller is applied to an ATMD equipped 3-storey building subjected to earthquake loads. The proposed controller had shown high performance in reducing the structural response and model energy due to higher and efficient ANNs training and calculation process. Finally, Gu et al.78 developed Radial Basis Function Neural Network-Based Fuzzy Logic Control (RBF-NFLC) for the model of seismically excited 3-storey base-isolated shear frame building utilizing magnetorheological elastomer isolator. Furthermore, they utilized GA for MOO named as Non-Dominated Sorting Genetic Algorithm II (NSGA II) with dynamic crowding distance (DCD) concept for finding the best parameters (e.g., Fuzzy rules and MFs) with higher fitness values. Their comparative analysis showed the high performance of the proposed RBF-NFLC algorithm in reducing the overall structural response compared to traditional Bang–Bang control algorithms and other passive and fixed structure scenarios from SMC responses.

Brain emotional learning-based intelligent controller

Brain Emotional Learning Based Intelligent Controller (BELBIC) developed by Lucas et al.45 is a cognitively based variant of reinforcement learning with a critic (evaluative control). The BELBIC implements the computational network model developed in79 which mimics the parts of the mammalian brain and identifies to produce emotions, that is, the amygdala orbitofrontal cortex, thalamus, and sensory input cortex, as presented in Figure 10. The BELBIC is divided into two parts: the amygdala and the orbitofrontal cortex. The amygdala receives inputs from the thalamus and sensory cortex, while the

![Figure 10. Schematic structure of brain emotional learning based intelligent controller.45](image-url)
orbitofrontal cortex receives inputs from the cortex and amygdala. The BELBIC scheme also receives Emotional Signals (ES) as inputs in its amygdala and orbitofrontal cortex regions and integrates the output from these two parts to express the overall output of the scheme.80

Brain Emotional Learning Based Intelligent Controller model application within a distinctive feedback control block diagram can be seen in Figure 11. The model implicitly uses critic, learning algorithms, and action selection mechanisms used in the functional implementation of emotion-based or usually reinforce learning-based controllers all at once.45

These controllers use critic to continuously evaluate the outcomes of specified control actions based on overall objectives or performance indicators in any given state, and generate analog reinforcement ES (cues) to guide learning in the controller block. This cognitive form of reinforcement signal has been expressed as an emotional cue/signal, for it is the function of emotions like stress, concern, fear, satisfaction, and happiness to assess the environmental conditions for objectives and utilities and to deliver cues regulating action selection mechanisms.45 This controller has two significant inputs: Sensory Input (SI) and Emotional Signal (ES), and the flexibility in defining SI and ES makes BELBIC an effective controller over other MBC schemes.81 Moreover, it is significantly an incredible scheme for the real-time control of civil structures because of the low computational complexity, appropriate learning, abrupt training capabilities,80 robustness towards parametric changes, and handling uncertainties.45

BELBIC Applications. Braz César et al.82 developed a BELBIC combined with PSO algorithms for the seismic vibration control of single storey building subjected to seismic loading and the actuating mechanism is incorporated through MR damper. Their proposed PSO optimized controller has shown higher performance in achieving control objectives. Braz César et al.83 presented a BELBIC combined with PSO algorithms for the seismic vibration control of a 3-storey building structure equipped with MR damper. The simulation results presented the high efficiency of proposed schemes in regards to reducing the overall structural response.

SVM-based controller

The SVM is an ML frame that uses the linear function hypothesis space in the high-dimensional feature space and is trained by the learning algorithm of optimization theory, which applies the learning bias obtained from the statistical learning theory.84 single storey Machine was presented by Boser, Guyon, and Vapnik85 at the Computational Learning Theory (COLT) conference in 1992. A few years later, Cortes and Vapnik86 introduced the soft margin classifier and further extended it to the regression case.87

The SVM not only solves the classification and pattern recognition problems but can also solve the regression fit problem88 by generating input–output mapping functions from a set of labeled training data. These functions can be regression functions or classification functions. For example, the input data class can be mapping functions, linear functions, and nonlinear kernel functions. For classification, usually, the input data is converted into high-dimensional feature space. In this way, the input data become more divisible than the same input space. The maximum-margin hyperplane is then applied to find the separating hyperplane, and the given data is optimally classified into two categories (i.e., positive and negative) as presented in Figure 1289,90

The optimal separating hyperplane is determined through solving an optimization problem, defined as

Figure 11. Feedback control block diagram of brain emotional learning controller.
Minimize to \(\frac{1}{2} ||w||^2 \)

Subjected to \(y_i (w^T \cdot x_i + b) \geq 1, \quad i = 1, 2, \ldots, N, \)

\(y_i \in \{1, -1\}, x_i \in \mathbb{R}^n \)

where \(w, y_i, \) and \(x_i \) are a \(m \)-dimensional vector, class label and given data, respectively. \(N \) is the number of samples, and \(b \) is a scalar called bias. \(^90,91\)

Support Vector Machine has the advantage of high precision because of its decent convergence and generalization abilities, and it can generate precise predictions for various complex tasks. \(^84\) In addition, it has the excellent ability to be used as a universal approximator of any multivariate function for achieving any ideal level of precision. Therefore, SVM is of particular interest in modeling nonlinear systems, plants/processes that are unknown or partially known with highly nonlinear behavior. \(^92\) All these advantages make SVM paramount for being applied for the vibration control of nonlinear complex civil structures.

SVM applications. Li et al. \(^93\) proposed an SVM-based semi-active control of three-storey shear-type frame structure under seismic waves. Their proposed SVM model is constructed and trained to mimic the functioning of the LQR controller and mentioned as a structure SVM system model. Similarly, this SVM model includes both the observers (sensors) and controllers of the control system. The comparative results validated the sound performance of the SVM-based controller in reducing structural responses.

MAS-based controller

Holland \(^94\) was the first to present a concept about the agent as an artificial organism, evolving in the inhabitants of its breed, tending to learn and adapt to its environment to survive in it, and defeat the competitors. \(^95\) Thus, the agent is considered as a computer system (hardware/software). It is positioned within an environment that observes with the help of sensors and can freely act upon any changes in the environment adaptively or intelligently to achieve its designed goals (see Figure 13). \(^96-99\)

An agent observes state \(S_t \) of the environment at time \(t \), chooses to take action \(A_t \), after that, the environment changeover to state \(S_{t+1} \) and the agent receives reward \(R_t + 1 \). Those actions that produce a positive effect will have a higher possibility of being executed again. To this effect, the agent receives a reward signal that shows the quality of the actions taken. Multi-Agent Systems chiefly learn through trial and error to find a strategy, characterized as a mapping from states to actions, that

![Figure 12. Graphical illustration of support vector machine.](image-url)
maximizes its long-term expected reward. It means that, in the case of supervised learning, the environment or an agent providing feedback acts as a “teacher or critic” and acts as a “passive or observer” in the case of unsupervised learning.

Base on learning, the MAS is further distinguished into two primary classifications: centralized (isolated) and decentralized (interactive) learning. The centralized learning process is consolidated by a single-agent independent of other agents to achieve the overall system’s objectives. Conversely, the decentralized learning process includes multiple independent agents in the same learning process to accomplish their local objectives. These decentralized MAS learning systems approach work on dividing the problem into multiple sub-problems and then solving these problems by assigning each sub-part to each agent; this idea is also known as divide-and-conquer. Multi-Agent Systems can be characterized as a system in which self-sufficient interrelating artificial intelligent agents cohabiting in an environment, constantly cooperating toward seeking specific independently held conceivably conflicting objectives. No agent has the surety to be fully informed about the other agents’ objectives nor has it the surety to be fully informed about the overall state of the environment.

While focusing on the agent’s collaboration, it perceives insight from other social structures in the animal kingdom that contain an assortment of individuals with their characters. It additionally draws strongly on Game Theory (GT). The collaboration of multiple self-directed agents offers to ascend to extremely dynamic and non-deterministic conditions, causing the complexity in applications; therefore, it is aptly necessary for the system’s success that the agents can learn their optimal behavior to adapt to new situations or circumstances. Therefore, learning is essential, and it turned into the most significant challenge to increase qualitative perceptions into the subsequent system dynamics. To overcome this challenge and formally study the multi-agent learning dynamics in strategic interactions, Evolutionary Game Theory (EGT) has been successfully employed. Borgers and Sarin were the first to mathematically associate agents learning with EGT, portrayed by how agents lack complete information, and both these fields are involved with dynamic environments with an extreme level of uncertainty. The concepts of evolution in EGT prove appropriate to define the learning process in MAS instead of being realized in biological evolution meaning. This learning process of the agents is controlled by RD that helps them perform dynamically in the face of competition or real-world conditions. These potentials bring in the concept of an agent appropriate for developing a unique framework for control systems for solving computationally complex structural vibration control problems under resource constraints. Some of these examples are presented in the coming section.

MAS Applications. Multi-Agent Systems control systems have shown great success in recent years. Soto and Adeli presented innovative Multiagent Replicator Controllers (MARC) for sustainable vibration control of smart structures grounded on three ideas: Agent System (AS), RD, and energy minimization. They presented two techniques: Centralized Single-Agent Replicator Controller, in which single-agent is interpreted as a centralized replicator controller (CRC) to make the control decision in real-time for the entire structure, and the second one is the decentralized MARC, in which the whole structure is divided into a set of substructures, and forces on the interfaces between the substructures are treated as external disturbances on each substructure. That enabled every substructure with their controller modeled as an agent; thus, complete structure control is governed by MARC. They applied these control schemes to 3-storey steel frame building, and
20-storey steel benchmark structure subjected to seismic excitations and produced efficient results compared to conventional control algorithms. Subsequently, Soto and Adeli106 presented decentralized MARC optimized with a modified neural dynamics optimization model to control 20-storey steel building. This optimization helped find the Pareto optimal values for the MARC algorithm parameters, eventually helping achieve maximum structural performance with minimum energy consumption. Also, their proposed hybrid scheme bested the traditional LQR control algorithm.

RD-based controller

John von Neumann and Oskar Morgenstern107 studied human behavior and strategic decisions using mathematical theory and brought forth Game Theory,39 which was continued by Nash108 by presenting the concept of Nash Equilibrium (NE). The NE is considered the focal idea of GT. The concept of the NE was further refined by Maynard Smith.109 He presented the main idea of an Evolutionary Stable Strategy (ESS).110 By this introduction, the utilization of GT in biological evolution is initiated and termed as EGT, which was achieved by reinterpreting the concept of payoff (utilities) in economics interpretation into the expressions of fitness, that is, evolutionary terminologies of reproductive success of the engaged individuals.111 In EGT environment, the essentials of conventional GT are valid; however, no individual expressly makes decisions. Since the whole group of players is engaged in a game setting and properties that change their behaviors are examined. Each player in EGT selects a strategy from a particular set of strategies to win the game. As a result of this analysis, the individual (player) that has the highest capability of surviving is identified and named as ESS.112 To study ESS, the idea of “Replicator Dynamics (RD)” was proposed by Taylor and Jonker. The RD depicts how the population shares associated with different strategies evolves considering their collective influence on their fitness.113 This substantial attribute permits the RD to acquire the principle of selection by providing a linkage between the biological concept of ESS109 with the economics concept of NE.108

The RD is a simple model of evolution and prestige-biased learning in EGT.114 This model presumes replicators (types) in large numbers. Every replicator has a payoff (fitness) value allocated to its interaction with other replicators and its fitness in that population. Then the comparison of the payoff of each replicator is performed for an expected payoff (fitness) value. This comparison helps determine the better or worse performance of each replicator compared to the expected payoff value. The fundamental concept in the RD model is that those replicators having higher performance value related to the population’s average fitness value will receive a higher share in that population whereas, those replicators having lower value (performance) related to the average fitness value will receive a lower share in that population.115 In simple words, those individuals with high performance will have more offspring, and therefore their occurrence in that population increases.

The following formula represents the Replicator Equation

\[
\dot{z}_i = z_i \left((Wz)_i - z^T Wz \right)
\]

(4)

where \((Wz)_i\) denotes the expected fitness for a replicator and \(z^T Wz\) denotes the average fitness in the population state \(z\).

The applications of RD for the vibration control of smart civil structures have been recently increased; some of them are presented in the following section.

RD Applications. Soto and Adeli96 presented a unique combination of the RD method with Agent System (AS) that created two new control methods: A Single-Agent Centralized Replicator Controller and a decentralized Multi Agent Replicator Controller (MARC) to control a 3-storey steel frame building and 20-storey steel buildings subjected to seismic excitations. Their proposed controllers effectively minimized the energy consumption and provided decent robustness and adaptively, which is confirmed by comparing with other conventional centralized and decentralized LQR control algorithms. Furthermore, Soto and Adeli106 further investigated these control schemes in finding the Pareto optimal values of these RD-based controller’s parameters. This Multi-Objective Optimization (MOO) was carried out by a modified neural dynamics model of Adeli and Park.116 That is applied to a 20-storey building structure subjected to seismic excitations. Their results have shown great performance in reducing responses compared with the conventional centralized and decentralized LQR control algorithms.

Another study incorporating RD controller and modified neural dynamic model utilized as MOO to obtain pareto optimal RD controller parameters were presented by Soto and Adeli117 and applied an 8-storey irregular steel frame building. This hybrid control algorithm produced satisfactory results in reducing the structural response compared with LQR and other traditional control methods. The application of RD controller is not limited to building structures but also presented for the control of base-isolated highway bridge structure by Soto and Adeli15 in their recent study. The structure is
equipped with both a base isolation passive system and a semi-active MR Damping system. This developed scheme is compared with LQG and Lyapunov controller and concluded the higher performance of RD controller.

Fuzzy logic control

Fuzzy Computing is a kind of SC technique grounded on the description of “degrees of truth” instead of the usual Boolean logic of computers, in broader terms also acknowledged as “Fuzzy Logic” (FL). The fuzzy theory was introduced by Zadeh in his seminal article and extended by presenting the concepts of fuzzy algorithms, fuzzy decision-making, and fuzzy ordering, respectively. The analysis of complex systems and decision processes, which formulated the basis for fuzzy control, was proposed by Zadeh by introducing the concept of linguistic variables to use fuzzy IF–THEN rules to detail human knowledge and reasoning capabilities. Mamdani and Assilian established the essential system of FLC, and the pioneer FLC for a full-scale industrial process was proposed by Holmblad and Stergaard. Brown et al. utilized right off the FLC in structural engineering in 1983. Faravelli and Yao introduced the guiding principle for applying FLC for AVC in civil structures. Further, Aldawod et al. developed an FLC for AVC systems in the wind-excited tall structure. Since then, the FLC schemes are adapted for the VCS, and it is the most popular as compared to other traditional fixed model-based techniques because of their robustness towards states of uncertainty, nonlinearity, and complexity because of its intrinsic capabilities of treating linguistic variables (like low or high) and making uncertain reasoning to formulate the relationship between system variables. Besides, it can also develop adaptability for control problems by adjusting its rules or membership functions and extra ability to utilize learning techniques without a precise mathematical model. Decisively, all these characteristics make FLC capable of coping with the structural nonlinearities, uncertainties caused by large displacements, or material nonlinearity and damage. In short, it can easily handle the hysteresis behavior of the structure under external loads.

General presentation of feedback-FLC for nonlinear civil structures can be seen in Figure 14.

General architecture of an FLC as described in Figure 14 involves several steps as follows:

1. **Fuzzifier** (the controller input variables, measured from the structure, are fuzzified into linguistic terms); this is the first step of this system in which the mathematical/crisp information is converted into fuzzy sets. The degree of membership is allocated to each fuzzy input value between 0 and 1, and relationships are established, which are utilized for fuzzy operators and or arguments aggregate rules. Each fuzzy set can utilize various Membership Functions (MFs), for example, triangular, trapezoidal, and Gaussian.

2. **Rule base** (containing fuzzy); is the second part consisting of the fundamental parameters of the system, which are related to the magnitude, and size of the fuzzy system. Fuzzy rules are made based on “if-then” paraphrases, and each rule consists of antecedent and consequent propositions. The decision Matrix comprises these fuzzy rules.

3. **Inference system or engine** (generate fuzzy output for each rule); the third part defines the communication parameters related to the topology of the fuzzy system, which incorporate the introduction, result, and weight of the fuzzy rules. After the values are fuzzified, the inference engine decides the output by applying fuzzy operations to map fuzzy inputs to outputs. The inference engine can make decisions either utilizing Mamdani or Takagi-Sugeno-Kang (TSK) engines.

Figure 14. Typical feedback-fuzzy logic control for civil structure.
4. Defuzzifier (providing the crisp control signal); finally, the fourth part transforms the output values generated in fuzzy logic language into the crisp/mathematical value.

FLC applications. Zabihi-Samani et al.131 applied an FLC control algorithm combined with three other algorithms naming; discrete wavelet transform, modified Bouc-Wen model, and geometrical nonlinearity algorithm. They named this hybrid scheme a cuckoo-search wavelet-based fuzzy logic controller (AC-SWBFLC). Moreover, they incorporated CS to optimize the placement and the number of MR dampers and sensors and find optimal control forces. Finally, they applied their proposed controller on 3-storey, 4-storey, and 8-storey building numerical models incorporating MR damper under seismic excitations and concluded their control strategy performed efficiently compared to the passive-off, passive-on, conventional LQR, and FLC controllers. Zamani et al.132 proposed two control strategies named multi-objective modified clipped optimal (MOMCO) which is a combination of COC with LQR and multi-objective CS algorithms, and adaptive fractional order fuzzy PID (AFOFPID) controller, which is a combination of multi-objective CS and LQR algorithm. They tested their efficiency on base-isolated building equipped with a magnetorheological damper, concluded that the AFOFID controller performs better in reducing the deformation of isolation system and superstructure accelerations under seismic excitations. Azizi et al.130 investigated the efficiency of FLC when combined with Multiverse optimization (MVO) for the control of 20-storey building under seismic loadings, concluding its higher efficiency than the MBC LQG controller. Furthermore, they compared this FLC-MVO controller with other optimization algorithms: dragonfly algorithm, imperialist competitive algorithm, GA, grey wolf optimizer, and PSO. They have concluded that the MVO is more effective in reducing the building responses than other Meta-heuristic Algorithms.

Mehrkian et al.2 proposed a conceptual Multi-Objective Fuzzy-Genetic Control for vibration control of base-isolated 8-storey irregular building subjected to seismic excitations. This controller combines FLC optimized with Multiobjective GA method of Non-dominated Sorting Genetic Algorithm-II (NSGA-II). They compared the results with previously applied controllers, including COC, FLC, and GA optimized FLC controllers. Their proposed controller surpassed the previously proposed controller by effectively reducing base displacements and transmissions of vibration to the superstructure. Bathaei et al.128 presented type-1 and type-2 FLC for vibration control of an 11-DOF building model semi-active TMD with MR damper. Their results demonstrated the higher performance of these controllers where the FLC type-2 controller presented better results than the type-1 controller. Faraji134 proposed an FLC for vibration mitigation of single-storey building utilizing MR damper and concluded FLC performs better results. Djedoui et al.135 presented an FLC for the vibration attenuation of 6-storey base-isolated building structure equipped with Semi-Active Tuned Mass Damper (SATM) and concluded the reduction in structural response towards seismic excitations. Zhao et al.136 presented a self-tuning FLC for seismic protection and control of a 5-storey base-isolated building equipped with piezo-electric friction damper. They concluded that their proposed strategy improves the superstructure’s response and efficiently lessens the isolation system’s deformations. Bathaei et al.137 presented type-1 and type-2 FLC for vibration control of steel bridge structure equipped with MR damper and determined that type-2 FLC more proficiently reduced the maximum displacement, base shear, and moment of the bridge comparison to the type-1 FLC. Zahrai et al.132 presented two control schemes, passive MTMD, and active MTMD systems incorporated in cable-stayed bridge subjected to seismic excitations. In the AVC system, they included FLC for generating the optimal control forces of ATMD. They also incorporated GA for optimizing the parameters of ATMD. The results presented in their study significantly achieved control objectives by utilizing active MTMD systems as compared to the passive MTMD system.

Baghaei et al.129 incorporated FLC for designing a chattering-free sliding mode controller, which was employed to lower the seismic responses of an 8-storey building equipped with an ATCS. Their results validated the performance of the FLC+SMC method compared to the conventional SMC to remove chattering with high accuracy, even as lessening the dynamic responses. Kim and Kang138 utilized FLC capabilities to generate control forces of MR damper developed for enriching the control performance of a semi-active outrigger damping system in building structures under seismic excitations. Furthermore, they incorporated the multi-objective GA NSGA-II for optimization of the parameters of the FLC controller. Their presented results of GA optimized FLC enhanced efficiency of outrigger damping Simple Adaptive Controller(SAC) system in reducing displacement and acceleration responses of the tall buildings. Pham et al.139 presented FLC in combination with the GA in reducing the response of ATMD equipped building subjected to earthquake excitation, where GA is designed to optimize the parameters of ATMD. Their study concluded that the FLC-GA combined control strategy outperformed the conventional control strategies and enhanced the structural response toward external loads. Hosseini et al.39 incorporated FIS for online tuning the parameters of SAC implied for seismically excited 20-storey steel building equipped with MR damper. Their study showed higher performance of the FIS-tuned SAC method with high performance in achieving the control objective over the Simple SAC methods.
Ramezanila et al.140 presented a comparative study of type-1 and 2 FLC schemes for seismic vibration attenuation of 11-storey building equipped with SATM system. They also incorporated GA to optimized fuzzy output MFs. For comparison, they utilized two other velocity-based and displacement-based on-off ground-hook controllers. Their proposed FLC-GA controllers outperformed these traditional controllers, where the FLC type-2 had shown excellent performance compared to the type-1 controller. Xu et al.141 proposed an FLC optimized with NSGA-II, as a multi-objective genetic algorithm (MOGA), exploited to perform the HVC on the wind and seismically excited 33-storey based isolated building equipped with Triple Friction Pendulum Bearing (TFPB) and MR damper. For comparative analysis, they utilized the human-designed FLC scheme proposed in the study of Ref.142. According to their proposed conclusions, their proposed control scheme can effectively attenuate both the seismic and wind-induced responses and achieve the optimal level of standards of vibration comfort.

Adaptive neuro-fuzzy inference system-based controller

Fuzzy logic can simply transform the qualitative characteristics of human decision-making into a system of accurate quantitative analysis. On the contrary, these systems lack a learning process that can behave as a guiding system during the transformation of human decision-making into the rule-based Fuzzy Inference System (FIS). This deficiency causes high computational time for adjusting its membership functions (MFs). Contrasting ANNs has a higher ability in the learning process and can automatically adjust the MFs and reduce error rates in determining the fuzzy rules.143 This combination of NNs learning and FIS adaption capabilities overcome their deficiencies with collective benefits.21

One of these hybrid frameworks, the most famous, is ANFIS which was proposed by Jang (1993).143 Adaptive Neuro-Fuzzy Inference System implements TSK-FIS whose MFs parameters are automatically tuned by NNs.25,144 In the ANFIS framework, the FFNNs utilizing back-propagation supervised learning is usually applied for generating FIS parameters.145 Where FIS brings in logical reasoning through imprecise statements. These statements are formulated based on expert’s knowledge interpreted as fuzzy rules sets. These rule sets are a collection of “if-then” statements and MFs that relate the input and the output data.25,144 The network structure of ANFIS is composed of two parts, the premise part and the consequence part.143 The steepest descent method is used to adjust the premise parameters, and the least square estimation is used to adjust the consequent parameters.146 The basic structure of ANFIS consists of five layers, as seen in Figure 15.

In this Figure 15, An ANFIS structure with two inputs and one output is given, consisting of four MFs and four rules. The layer structure of ANFIS is described below.

1. Layer 1 (fuzzification layer): This layer utilizes MFs to find fuzzy clusters from input values. The parameters that determine these MF forms are called premise parameters. The output of this layer is its membership value. In simple words, this layer simply computes the accurate value for the parameter of the MFs.

![Figure 15. Basic adaptive neuro-fuzzy inference system structure.](Image)
2. Layer 2 (rule layer): This rule layer determines the values of firing strengths for the rules by utilizing the values of membership calculated in the previous layer. The nodes in this layer execute fuzzy AND operations. The output of every node is produced by multiplying all inbound signals with that node.
3. Layer 3 (normalization layer): This layer calculates the normalization values for the firing strength of each rule.
4. Layer 4 (defuzzification layer): This layer calculates the weighted values of rules inside each node. These are so-called consequent parameters. The total numbers for each rule of consequent parameters are more than the total number of inputs. In other words, this layer gives the result rules of the FIS.
5. Layer 5 (summation layer): This layer expresses that the actual output of ANFIS is obtained through the summation of the overall output obtained for each rule from the previous layer.

ANFIS applications. Bozorgvar and Zahrai\(^{21}\) presented an ANFIS-GA controller in an SVC system equipped with MR damper and applied it to the 3-storey building under seismic excitation. The GA is utilized to optimize both the premise and consequent parameters of fuzzy functions in ANFIS. Their study concludes that the ANFIS-GA performed better than neural network predictive control (NNPC), LQG, and COC controllers. Soares et al.\(^{25}\) developed two semi-active control schemes: an ANFIS controller and SAC. They have tested these adaptive control schemes on a cable-stayed bridge equipped with MR damper subjected to seismic excitations. Their study concluded with the satisfactory performance of the proposed schemes in attenuating the seismic responses. Bozorgvar and Zahrai\(^{58,10}\) presented two controllers, where the first controller is based on ANFIS optimized with GA and the second one is based on Fuzzy cooperative co-evolution (Fuzzy CoCo) optimized with GA. These controllers were implemented on a 9-storey building equipped with MR damper under earthquake loading. The effectiveness of these ANFIS-GA and CoCo-GA controllers were compared to other controllers named wavelet NNs, FLG-GA, LQG, and COC algorithms. The proposed controllers performed better results in reducing the overall structural response. Al-Fahdawi et al.\(^{147}\) presented a comparative study of two adaptive control methods for mitigating the seismic responses of two coupled (3- and 5-storey shear-type) buildings with MR dampers. These two adaptive controllers are ANFIS and the SAC, and they performed the numerical analysis considering two cases of damaged (change in design parameters) and undamaged (no change in design parameters) structures. Their findings illustrated that both these adaptive controllers efficiently reduced the seismic responses of coupled buildings. Al-Fahdawi and Barroso\(^{148}\) have recently presented a study for the seismic vibration attenuation of two three-dimensional coupled buildings (6-storey and 8-storey) connected by the frame elements equipped with MR dampers. Their study has proposed two control algorithms ANFIS and SAC for the generation of control forces for MR dampers. The behavior of structural control systems is studied for both symmetrical and asymmetrical coupled buildings under 11 pairs of main earthquakes. A comparison is made between ANFIS and SAC controllers, and the results show that both proposed controllers can effectively alleviate the seismic response of the structure and enhanced their performance under seismic activities.

AFs based controller

Adaptive Filters (AFs) are digital signal processing systems characterized as a device that maps its input signal to another output signal allowing the extraction of the required information included in the input signal.\(^{149}\) This extraction is conceivable through learning from the sequence of signal samples using an online learning algorithm that updates a defined transfer function corresponding to the error signal to get the desired output.\(^{29,150}\) AFs play a significant role in helping dynamic systems adapt in the presence of system uncertainties and nonlinearities that cannot be known in advance.\(^{151}\) AFs can be incorporated with the control algorithm for modeling, estimation, detection, error and noise reduction, and System Identification (SI). Furthermore, AFs can assist in developing a numerical model of physical systems or help in dealing with ill-defined numerical models by analyzing the actual data.\(^{26,149}\)

The AFs operation majorly depends on the recursive (adaptive/learning) algorithm.\(^{152}\) AFs generally consists of two different parts: a filter, which is designed for performing the desired processing function for estimating the uncertain parameters and noise statistics during the filtering process, and an adaptive algorithm for tuning the filter gain based on variations in parameters or noise statistics.\(^{153}\) That is presented in Figure 16.

The AFs have two inputs: one is the primary input, and the other one is the reference/desired signal. The filter analyzes them for calculating error, and then this error is minimized iteratively based on some objective function.\(^{150}\) The algorithm begins from initially prescribed conditions, representing absolute ignorance regarding the environment; then, it proceeds with a step-by-step manner to adjust the filter’s free parameters. In this way, the filter becomes more familiar with its environment after each step. The parameter adjustment process follows some error-correction learning and minimizes error signals in statistical terminology.\(^{151,154}\) An adaptive filter is a nonlinear filter because its characteristics mainly depend on the input signal and do not satisfy the homogeneity and additivity conditions. Alternatively, if we freeze the filter’s
parameters at any given time instant, in this sense, most of AFs behave linearly. The reason for that, AFs can be classified in terms of linear and nonlinear AFs. An AF is characterized as linear as long as parameters are held fixed, and the input–output map follows the principle of superposition. Otherwise, it is characterized as nonlinear. Moreover, the impulse response of AFs determines its memory. On these bases of filter’s memory, AFs can be further classified as linear or nonlinear-Finite Impulse Response (FIR) filters, or nonlinear-Infinite Impulse Response (IIR) filters as depicted in Figure 17. A linear FIR-AFs or transversal-AFs have finite memory, including a tapped-delay-line filter (i.e., a discrete-time filter with finite-duration impulse response) operating as guided by the Least Mean Square (LMS) algorithm. The LMS algorithm is “stochastic,” providing an approximation to wiener filtering formulated according to the steepest descent method. Whereas the linear IIR-AFs have infinite memory that fades out with time, an example includes an adaptive scheme utilizing the Recursive Least Squares (RLS) algorithm, a special case of Kalman filtering theory. RLS algorithm is “exact,” affording a recursive solution to the linear filtering problem formulated according to the method of least squares. These filters utilization nonlinear computational elements, enabling them to utilize the complete information content of the input data. Examples of nonlinear AFs include Volterra filters, kernel, and ANNs based AFs.

Furthermore, AFs algorithms incorporates different learning methods as supervised and unsupervised learning algorithms and others named online, block, and batch algorithms.

1. Supervised learning AFs algorithms: In this type, the filter learns according to the external reference signal that performs the task of an explicit supervisor or teacher, as shown in Figure 18. Moreover, computation of the parametric variation is a function of the input and reference signals (or of the error).

2. Unsupervised learning AFs algorithms: In this learning type, no external reference is utilized, and learning is organized as a kind of self-driven, generally termed as unsupervised or blind learning as presented in Figure 19. Furthermore, in this type, the calculations of parametric variation are a function of input–output data without depending on the reference signal.

AFs applications. Kim and Adeli combined adaptive Filtered-x Least Mean Square (FxLMS) control algorithm with LQR and LQG for vibration control of building structures utilizing ATMDs. The result showed that their proposed hybrid control algorithm outperformed the individually applied LQR/LQG and FxLMS algorithm because of its low vulnerability to modeling errors, and higher stability, and higher effectiveness.

Meta-heuristic algorithms-based hybrid AIC controllers

The structural control problem comprises of various objectives that need to be optimized; thus, different optimization methods from meta-heuristic algorithms are incorporated, helping with tuning controller parameters. The expression “optimization” concerns examining the problems requiring minimization or maximization of a function resulting in finding the best solution from all feasible solutions. Moreover, it is generally employed to those problems that need to attain a certain level of optimality concerning single or multiple objectives. The reasonable solution for attaining the optimal value of a single objective function that assembles all different objectives into one objective that why is named single objective optimization (SO). The optimization applied for more than one objective is named the multi-objective optimization (MOO) problem. These problems have a set of Pareto optimal solutions and include numerous conflicting objectives. In structural control frameworks, these optimization problems are typically expressed in minimization.
heuristics are generally easy to implement and successfully bypass areas of local minima. Specifically, they are intended to handle complex and nonlinear problems wherein deterministic and heuristic optimization methods fail to produce the required results.130

In the current study, the meta-heuristic optimization methods frequently opted by the adaptive intelligent control methods are discussed and include Evolutionary Algorithms (EAs) and Swarm Intelligence (SI) algorithms.

1. Evolutionary Algorithms: These algorithms are a family of non-gradient population-based, parallel search optimization algorithms, established on the philosophies of natural selection and population genetics and generally utilize four main steps, including reproduction, mutation, recombination, and selection for their working. In a broader perspective, any iterative, population-based method that applied selection and random variation to generate new solutions can be considered EAs. Moreover, the utilization of a population-based structure permits EAs to solve SOO problems and MOO problems by generating several elements of the Pareto optimal set in a single run.161,162 The most popular GA belongs to this category.
2. Swarm Intelligence Algorithms: These algorithms are a class of nature inspired population-based meta-heuristic algorithms. The notion of SI perceives inspiration from the collaboration and synchronized behavior of participants in a society (e.g., insects, such as ants, termites, bees, wasps, and other animals) that carry out several inherent social activities to complete complex tasks.163,164 SI methods, including Particle Swarm Optimization (PSO) and Cuckoo Search (CS) algorithms, are discussed.

Genetic algorithms. Genetic Algorithms (GA) are a renowned metaheuristic population-based Evolutionary Algorithms (EA) developed by John Holland94,165 that simulates Darwin’s theory of evolution166 based on the “survival of the fittest” principle.167 Fundamentally, “the genetic algorithm is a highly parallel mathematical algorithm that transforms a solution set, each with an associated fitness value, into a new population using operations patterned after the Darwinian principle of reproduction and survival of the fittest and after naturally occurring genetic operations.”168

In GAs, the potential solution to a particular problem is encoded on a finite-length string of alphabets (genes) of specific cardinality described as chromosomes. For the development of good solutions and carrying out natural selection, a clear distinction between good and bad solutions is needed in the form of a measure. This measure/fitness can be an objective function (a mathematical model) or a subjective function (based on human choice). This fitness measure also directs the algorithm to determine the relative fitness of potential solutions that will eventually evolve to good (optimal) solutions. After defining the measure (objective function), the standard GA optimization process begins by initializing an arbitrary design population (encoded in a chromosomal manner) across the search space. Next, the basic GA operations of selection, crossover, and mutation are performed on this population to produce a new population. The measure (objective function) value of each string is a potential survival indicator, called fitness or the standard used to select individuals (chromosomes). The higher the fitness value, the higher the chance of mating and reproduction of that string. After several generations, the original parental population is replaced by the population of the offspring produced by selection, crossover, and mutation, and the solution ultimately evolves to good (optimal) solutions.169 The pseudo-code best describing GA is presented in Algorithm 1.

GA applications. Bozorgvar and Zahrari21 presented a study in which GA optimized both the premise and consequent parameters of fuzzy functions (MFs and result functions) simultaneously in ANFIS controller. Their study concludes that the ANFIS-GA performed better than other controllers, particularly individual ANFIS controllers. Bozorgvar and Zahrari58 utilized GA to optimize the parameters of ANFIS and Fuzzy cooperative co-evolution (Fuzzy CoCo) controller. These controllers were implemented on a 9-storey building equipped with MR damper under earthquake loading. The effectiveness of these GA optimized controllers was found better than other controllers. Mehrkian et al.2 utilized MOGA method of NSGA-II for tuning the parameters of FLC, which was applied for vibration control of base-isolated 8-storey irregular building subjected to seismic excitations. Their GA optimized controller surpassed the previously proposed controller by effectively reducing base displacements and transmissions of vibration to the superstructure. Kim and Kang138,139 incorporated the Multi-Objective GA (NSGA-II) to optimize the FLC controller’s parameters. This optimization enabled FLC to effectively generate optimal control forces of MR damper developed for enriching the control performance of a semi-active outrigger damping system in building structures under seismic excitations. Chen7 utilized GA to optimize the parameters of FFNNs based controller, such as searching for initial weight and bias. This controller was validated on single-storey shear building structure equipped with AMD for system identification and vibration suppression. The experimental results had shown higher efficiency of the proposed controller in tracking control and vibration suppression.

Gu et al.78 utilized NSGA-II with Dynamic Crowding Distance (DCD) concept for optimizing fuzzy control rules along with most fitting parameters for the MFs, in RBF-NFLC for seismically excited 3-storey base-isolated shear frame building. NSGA-II enhanced the performance of the proposed controller over other conventional control schemes. Ramezanila et al.140 incorporated GA for optimizing the parameters of type-1 and 2 FLC schemes for seismic vibration attenuation of 11-storey building equipped with SATM system. Their GA optimized controller schemes have shown higher results than other velocity-based and displacement-based on-off ground-hook controllers. Xu, Guo et al.141 utilized NSGA-II, as a MOGA, for the purposed FLC scheme in finding the optimal fuzzy MFs for both wind and seismic response control. They utilized this hybrid scheme to perform the HVC on the wind and seismically excited 33-storey based isolated building equipped with Triple Friction Pendulum Bearing (TFPB) and MR damper. Resultantly, this optimization enhanced and enabled the FLC to effectively reducing both the seismic and wind-induced responses of the structure.

Particle swarm optimization. Particle Swarm Optimization (PSO) is a SI-based algorithm developed by Kennedy and Eberhart.170 The PSO mimic the swarming behavior of bird’s flock/school of fish.
The PSO theory is generally based on the movement of organisms, for example, in a bird flock or a school of fish. When they travel to a specific destination, every individual (particle) delivers significant consideration to a specific direction to fly. Afterward, the whole flock of individuals communicates with one another to find the individual with the best direction and speed (velocity). Then, they begin to research all possible flying directions relating to their new location. This selection process keeps going until the flock reaches its destination. Then, each particle recalls its previously better-visited solution and chooses the most suitable global solution in each generation. The pseudo-code best depicting the process of PSO can be seen in Algorithm 2.

PSO applications. Braz César et al. incorporated PSO for tuning the parameters of a BELBIC utilized for the seismic vibration control of 3-storey building structure equipped with MR damper. The simulation results present the high efficiency of proposed schemes in reducing the overall structural response. Notably, the PSO tuning enhanced the controller’s efficiency by almost 20%, far better than the traditional empirically tune controller. Braz César et al. developed PSO optimized BELBIC for the single-storey building structure subjected to seismic loading, and the actuating mechanism is supported by MR damper. In addition, their proposed PSO optimized controller has shown higher performance in achieving control objectives.

CS algorithm. Cuckoo search was introduced by Yang and Deb in 2009. It is another SI-based algorithm based on the brood parasitism of some cuckoo species. Also, CS is enriched through engaging Lévy flights. The CS algorithm follows three basic principles for its implementation as presented as follows:

1. Each cuckoo lays one egg at a time and leaves it in an arbitrarily selected nest of its host bird,
2. The eggs and nests are coded as solutions, and the best solution (best nests with high-quality eggs) will pass on to the next generations,
Algorithm 2: pseudo-code for particle Swarm Optimization

\begin{algorithm}
\caption{Particle Swarm Optimization}
\begin{algorithmic}[1]
\State \textbf{Input:} Problem_size, Population_size
\State \textbf{Output:} P_g-best
\State Population $\leftarrow \theta$;
\State P_g-best $\leftarrow \theta$;
\For{$i = 1$ to Population_size}
\State $P_{velocity} \leftarrow \text{Random_Velocity}(\cdot)$;
\State $P_{position} \leftarrow \text{Random_Position}(\text{Population_size})$;
\State P_g-best $\leftarrow P_{position}$;
\If{$\text{Cost}(P_{p\text{-best}}) \leq \text{Cost}(P_g$-best)}
\State P_g-best $\leftarrow P_{p\text{-best}}$;
\EndIf
\EndFor
\While{	ext{Stopcondition}()}
\For{each P \in Population}
\State $P_{velocity} \leftarrow \text{Update_Velocity}(P_{velocity}, P_g$-best$)$,
\State $P_{p\text{-best}}$;
\State $P_{position} \leftarrow \text{Update_Position}(P_{position}, P_{velocity})$;
\If{$\text{Cost}(P_{p\text{-best}}) \leq \text{Cost}(P_g$-best)}
\State P_g-best $\leftarrow P_{p\text{-best}}$;
\EndIf
\EndFor
\EndWhile
\State return P_g-best;
\end{algorithmic}
\end{algorithm}

Algorithm 3: Cuckoo search via Lévy flights algorithm

\begin{algorithm}
\caption{Cuckoo search via Lévy flights algorithm}
\begin{algorithmic}[1]
\textbf{Begin}
\State Objective function $f(x), x = (x_1, x_2, \ldots, x_d)^T$
\State Generate initial population of n host nest $x_i (i = 1, 2, \ldots, n)$
\While{$(t < \text{Max_Generation})$ or (stop criterion)}
\State Get a cuckoo randomly by Lévy flight
\State Evaluate its quality fitness F_i
\State Choose a nest among n (say j) randomly
\If{$(F_i > F_j)$}
\State replace j by the new solution;
\EndIf
\State A fraction (P_a) of worse nests are abandoned and new ones are built;
\State Keep the best solutions (or nests with quality solutions);
\State Rank the solutions and find the current best
\EndWhile
\State Post process results and visualization
\textbf{End}
\end{algorithmic}
\end{algorithm}
Table 3. Summary of articles employing AIC for smart building and bridge structures.

Year-Reference	Control System	Control Algorithm/Controller	Controller combination	Excitations	Comparison	Structure	Actuation Mechanism/Devices
201820	AVC	ANNs		Seismic excitation	•LQR	Single-storey building	•Viscous damper
						12-storey steel building	•EHD
201727	SVC	•Controller 1 - ANNs		Seismic excitation		Highway bridge	EHD
		•Controller 2 - FLC					
201924	AVC	ANNs		Seismic excitation	•H₂	Highway bridge	MR damper
					•LQR		
201876	SVC	ANNs	•GA	Seismic excitation	•Lyapunov controller	Highway bridge	MR damper
					•Non-optimized ANNs		
201872	AVC	ANNs		Seismic excitation	•MLP-based controller	2-storey building	ATCS
201913	AVC	ANNs	•GA	Seismic excitation	•Single-storey shear building	AMD	
					•Modified Newton Method		
20191	AVC	ANNs	•Wavelet function	Seismic excitation	•Bang–Bang control from SMC	3-storey shear building	MRE
201772	AVC	ANNs	•FLC	Seismic excitation	•Lyapunov controller	3-storey shear building	MRE
			•NSGA-II		•Idealized BPM		
201978	SVC	ANNs	•PSO	Seismic excitation	•Idealized BPM	3-storey shear building	MRE
201882	SVC	BELBIC	•PSO	Seismic excitation	•Idealized BPM	3-storey building	MR damper
201193	SVC	SVM	•LQR	Seismic excitation	•Idealized BPM	3-storey shear building	MR damper
201796	AVC	•Controller 1 - RD	•Controller 1 - SAS	Seismic excitation	•LQR	3-storey building	Idealized
		•Controller 2 - RD	•Controller 2 - MAS			20-storey steel building	
						20-storey shear building	
2017106	AVC	•RD	•SAS	Seismic excitation	•LQR	20-storey shear building	Idealized
			•Neuro dynamics optimization model				
2018117	HVC	•RD	•Neuro dynamics optimization model	Seismic excitation	•LQR	8-storey base-isolated irregular steel building	Idealized
201815	HVC	•RD		Seismic excitation	•LQR	Base Isolated highway bridge	MR damper
2019131	SVC	•FLC	•CS	Seismic excitation	•Classical FLC	3-storey shear building	MR damper
			•Discrete Wavelet Transform (DWT)		•LQR	4-storey shear building	
						8-storey shear building	

(continued)
Table 3. (continued)

Year-Reference	Control System	Control Algorithm/Controller	Controller combination	Excitations	Comparison	Structure	Actuation Mechanism/Devices
2018133	SVC	Controller 1 - FLC	Controller 2 - MOCS-PID	Seismic excitation	Each other	Base-isolated building	MR damper
		Controller 2 - Modified-COC	Controller 2 - MOCS-LQR				
2019130	AVC	FLC	Multiverse optimizer	Seismic excitation	LQG	20-storey building	Idealized
		(MVO)					
20192	HVC	FLC	NSGA-II	Seismic excitation	COC	8-storey base-isolated building	MR dampers
					FLC scheme developed by 177	FLC + GA scheme by 178	
2018128	SVC	Controller 1 - FLC Type-1	Controller 2 - FLC Type-2	Seismic excitation	Each other	11-storey building	SATMD
2018134	SVC	FLC		Seismic excitation		Single-storey building	MR damper
2018135	HVC	FLC		Harmonic excitation		6-storey base-isolated building	SATMD
2017136	HVC	FLC		Seismic excitation		5-storey base isolated building	PFD
2017137	HVC	Controller 1 - FLC Type-1	Controller 2 - FLC Type-2	Seismic excitation	Each other	Steel bridge	MR damper
2018139	SVC	FLC	SAC	Seismic excitation	SAC	20-storey steel building	MR damper
2019132	AVC	FLC	GA	Seismic excitation		Cable-stayed bridge	MTMD
2019129	AVC	FLC	SMC	Seismic excitation		8-storey shearbuilding	ATCS
2017138	SVC	FLC	NSGA-II	Seismic excitation		High-rise building	MR damper
2017139	AVC	FLC	GA	Seismic excitation		11-storey building	ATMD
2019140	SVC	Controller 1 FLC type-1	Controller 2 - GA	Seismic excitation	Ground-hook controller	11-storey building	SATMD
			Controller 2 - GA				
2020141	HVC	FLC	NSGA-II	Wind and seismic excitation	FLC+GA	33-storey base-isolated building	MR damper
201921	SVC	ANFIS	GA	Seismic excitation		33-storey building	MR damper

(continued)
3. The number of available host nests is fixed, and when the cuckoo laid their eggs in those host nests, these eggs have a probability of being discovered by the host bird. Therefore, each host bird can either eliminate that egg or abandon his nest to build a new nest.

Furthermore, the Lévy flights help generate new solutions to explore the search space more efficiently than simple random walks. The Lévy flight carries out in finite mean and variance. Hence, it can explore the search space more effectively than a standard Gaussian process. Likewise, CS offers widespread moves to a global search; in this manner, new moves can cover progressively wide-ranging regions. The pseudo-code best exemplified CS algorithm is presented in Algorithm 3.

CS applications. For FLC based controllers, Zabihi-Samani et al. introduced a cuckoo search wavelet-based fuzzy logic controller (ACSWBFLC) in which CS is incorporated to optimize the placement and the number of MR dampers and sensors and calculated the optimal control forces for each time interval. Also, a multiobjective CS algorithm was incorporated by Zamani et al. with their two proposed control strategies named multi-objective modified clipped optimal (MOMCO) and AFOFPID controller. Their algorithm is mainly used for tuning the input–output MFs, inference rules, scaling factors, the order of the integral and derivative operator in a FOFPID controller, and finding the optimal weighting matrices of the MOMCO controller. In addition, they have concluded that the adaptive fractional order fuzzy PID controller performs better in reducing the deformation of isolation system and superstructure accelerations under seismic excitations.

Summary and trend analysis of reviewed articles

Summary of cited literature

This section presents the summary table of cited literature categorized in 8 columns as presented in Table 3.
Trend analysis

Overall analysis. The graphical information of the complete works included in the current study is presented in Figure 20 where Figure 20(a) presents the overall application percentage of each AIC method incorporated. This study shows that FLC and ANNs based AIC methods have quite a higher number of cited studies. On the other hand, the MR damper and ATMD are the most preferred by the research community, as depicted in Figure 20(b) additionally, most of the studies included in this study found to be applied on the smart building structures, and their applications on bridge structures are comparatively less as presented in Figure 20(d), and most of these studies adopted SVC systems as compared to AVC and HVC systems as depicted in Figure 20(e). For the comparison of these AIC methods, most of the included studies mainly exploited MBC algorithms. Among these algorithms, the LQG, LQR, and COC methods are mainly utilized, as presented in

Figure 20. Trend analysis of entire compiled literature.
Figure 20(c), and among those studies that incorporated meta-heuristic algorithms for optimizing the AIC parameters, GA is mostly utilized algorithm.

Analysis of individual AIC algorithms. The individual analysis of cited AIC methods is presented in Figure 21. The individual AIC methods incorporated in the different vibration control systems can be seen in Figure 21(a), in which the ANNs based controllers are primarily utilized in AVC system, BELBIC in SVC, FLC in SVC, ANFIS in SVC, RD both in SVC and HVC, MAS in AVC, AFs in AVC, and finally the SVM is incorporated in SVC control systems. Moreover, each AIC methods cited in this study is also presented concerning their incorporated control devices in Figure 21(b), in which the ANNs based controllers were largely utilized for calculating the control forces of hydraulic and ATMD control devices, BELBIC and FLC for MR dampers, ANFIS both for MR and SATMDs, and finally, the RD and MAS controllers usually calculated active control forces through the idealized control device. This term idealized represents unspecified or assumed to be ideal (i.e., the dynamics of the actuators are neglected) control devices.\(^\text{179,180}\)

Conclusion

The work presented in this article is the first of its kind that emphasized control algorithms than control devices. Furthermore, an intense emphasis on the highlighted significance of AIC algorithms over conventional fixed linear or nonlinear MBC algorithms is contributed. Also, a brief introduction to the AI and CI methods and their relation with these emerging control algorithms is provided. The research in this field is still growing with emerging strategies applied on different old and new control devices. The priority is given to the current developments in AIC Algorithms, which show its significant improvements and increasing trend in the vibration control of smart civil structures under both the earthquake and wind excitations. These developments mainly encompass ANNs, BELBIC, SVM, MAS, RD, Fuzzy Logic, ANFIS, AFs based AIC control algorithms. Some of them were applied individually, and some were offered as hybrid control algorithms, with other control algorithms or with meta-heuristic optimization algorithms. These hybrid meta-heuristic algorithms majorly incorporated GA, PSO, and CS algorithms.
A appreciable number of studies have been found on AIC algorithms and cited with their basic theory and applications in controlling smart civil structures. These AIC algorithms are an emerging alternative to the traditional MBC algorithms and in this study justified through brief trend analysis of cited literature. That illustrates the effectiveness of AIC over the frequently utilized LQG, LQR, and COC controllers. Among these AIC controllers, FLC and ANNs were the most preferred among the research community, with quite a compelling number of applications on ANFIS and RD controllers being found, whereas AFs and SVM had contributed the minimum knowledge. Furthermore, most of the studies developed for AIC vibration control strategies were found on building structures, while the bridge structures have comparatively less. Moreover, these studies showed an extraordinary application of these techniques for generating control forces of MR damping devices, frequently included in semiactive vibration control systems. Likewise, most of the studies were established for the seismic vibration attenuation of smart structures. Lastly, this article aimed to provide a remarkable compilation of significant research in AIC algorithms designed for smart civil structures. Also, this article will impart indepth knowledge among the researchers to initiating research in the area of AIC of smart civil structures.

Future directions

Despite the amount of work representing AIC, this field still requires a period to be fully mature in producing highly intelligent, adaptive, and sustainable control systems for smart civil structures. Therefore, to assist in developing next-generation smart civil structures, this study presents the following directions.

1. Artificial Neural Networks based controller can be updated utilizing different types of ANNs controller architectures or network topologies like Radial bases ANNs, Hope-field Network, Learning quantization networks, and Kohonen self-organizing maps. Furthermore, the possibility of applying different deep learning ANNs algorithms like Convolutional neural networks, long-short term memory networks, stacked autoencoders, deep Boltzmann machine, and deep belief networks may be included for enhancing AIC methods performance.

2. The emerging intelligent techniques, like deep learning, along with data mining techniques, may be incorporated into the control for complex structures. For example, deep neural networks can be applied to process massive amounts of unsupervised data in complex scenarios, neural networks can help reduce the data dimensionality, and the optimization of ANNs training may be employed to enhance the learning and adaptation performance of AIC controllers.

3. A large portion of the investigations was validated by simulations or for small-scale structural systems, and the experimental examinations did to date have been seriously limited in size and scope. Further experimental verification must be considered; more laboratory tests need to be performed utilizing larger multi-degree-of-freedom structural models with several adaptive intelligent control algorithms. These tests should be trailed by full-scale testing either in the lab or in the field.

4. The structural control is regularly acknowledged by a centralized control framework with a higher likelihood of being malfunctioned during extreme events, eventually bringing the absolute collapse of the control system. Although the decentralized framework is a decent answer for this issue, the applicability of adaptive intelligent control must be investigated to develop smart decentralized, secure control frameworks.

5. The optimal placement of the control devices is not considered in most of the studies reviewed. Therefore, an inclusive investigation of adaptive intelligent vibration control with optimized location of sensors and actuators inside the structure might be incorporated for existing and new studies to ensure better energy dissipation with highly adaptive and effective control.

6. The utilization of agents and a decentralized approach enhances the robustness of the entire VCS. So, the development of different MAS based AIC essentially be included for the vibration control of civil structures. The utilization of MAS is developing progressively, the present MAS techniques learn from operator interactions, and efforts must be given towards diverse learning of MAS that do not require any interaction or feedback from the user.

7. Time delay in the control schemes is not considered in a large portion of the cited studies, which is critical in the stability of the closedloop system. Furthermore, actuator saturation has never been discussed, which is increasingly significant during practical implementations. Therefore, these aspects must be considered in scheming AIC methods.

8. From the literature review, it is clear that it is unquestionably required to combine different AIC techniques in framing hybrid controllers to overcome their inherent inadequacies. Likewise, most of the individually utilized AIC
techniques cannot have all the necessary qualities for control and optimization. Therefore, these AIC methods can be a counterpart of developing an improved, highly intelligent, and adaptive optimized control system. In most cases, hybrid techniques, for example, ANNs-GA, FLC-GA, RD-MAS, or ANN-FLC, have provided better results. So, for the sustainable AIC algorithms design having improved execution with minimized energy utilization that can be acknowledged by other SOO and MOO algorithms like simulated annealing (SA), Differential Evolution, tabu search, Ant Colony Optimization, fire fly algorithm, Gravitational Search Algorithm, Gray Wolf Optimization, and other evolutionary algorithms.

9. It is difficult to conclude which of these methods is appropriate for a specific problem. Still, requiring future studies that may fill in as a manual for selection of AIC for various applications, for example, studies comparing AIC algorithms for test problems and afterward suggesting a most appropriate method for that particular problem, additionally to give test functions for the evaluation of the characteristics of different optimization algorithms.

10. The applications of nonlinear AFs mainly based on multilayer neural networks and recurrent neural networks can be further studied for developing new AIC schemes for vibration control of smart structures.

11. The support vector machine application can be further studied, and their possible combinations can also be formulated with other intelligent or with model-based linear and nonlinear controllers for vibration control of civil structures.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This study has been supported by the Guangzhou University.

ORCID iD
Said Elias https://orcid.org/0000-0002-8231-9765

References
1. Chen C-J. An integrating genetic algorithm and modified newton method for tracking control and vibration suppression. Artif Intell Rev 2019; 53: 1–23.
2. Mehrkian B, Bahar A and Chaibakhsh A. Semi active conceptual fuzzy control of magnetorheological dampers in an irregular base-isolated benchmark building optimized by multi-objective genetic algorithm. Struct Control Health Monit 2019; 26(3): e2302.
3. Elias S, Rupakhety R and Olafsson S. Analysis of a benchmark building installed with tuned mass dampers under wind and earthquake loads. Shock and Vibration 2019; 2019.
4. Love JS, Morava B and Smith AW. Monitoring of a tall building equipped with an efficient multiple-tuned sloshing damper system. Pract Periodical Struct Des Construction 2020; 25(3): 05020003.
5. Taha AE. Vibration control of a tall benchmark building under wind and earthquake excitation. Pract Periodical Struct Des Construction 2021; 26(2): 04021005.
6. Harris JL and Michel JL. Approximate fundamental period for seismic design of steel buildings assigned to high risk categories. Pract Periodical Struct Des Construction 2019; 24(4): 04019023.
7. Ebadi Jamkhan M, Homaioon Ebrahimi A and Shokri Amiri M. Seismic performance of steel-braced frames with an all-steel buckling restrained brace. Pract Periodical Struct Des Construction 2018; 23(3): 04018016.
8. Ghaedi K, Ibrahim Z, Adeli H, et al. Invited review: recent developments in vibration control of building and bridge structures. J Vibroeng 2017; 19(5): 3564–3580.
9. Stanikzai M. H., Elias S., Matsagar V A, et al. Seismic response control of base-isolated buildings using tuned mass damper. Aust J Struct Eng 2020; 21(1): 310–321.
10. Preumont A. Vibration control of active structures: an introduction. Cham, Switzerland: Springer, 2018, vol. 246.
11. Adeli H and Jiang X. Intelligent Infrastructure: Neural Networks, Wavelets, and Chaos Theory for Intelligent Transportation Systems and Smart Structures. Boca Raton, FL: CRC Press, 2008.
12. Amezquita-Sanchez JP, Dominguez-Gonzalez A, Sedaghati R, et al. Vibration control on smart civil structures: a review. Mech Adv Mater Structures 2014; 21(1): 23–38.
13. Chang S and Sung D. Modal-energy-based neuro-controller for seismic response reduction of a nonlinear building structure. *Appl Sci* 2019; 9(20): 4443.
14. Housner GW, Bergman LA, Caughey TK, et al. Structural control: past, present, and future. *J Eng Mech* 1997; 123(9): 897–971.
15. Gutierrez Soto M and Adeli H. Semi-active vibration control of smart isolated highway bridge structures using replicator dynamics. *Eng Structures* 2019; 186: 536–552.
16. Al-Fahdawi OAS, Barroso LR and Soares RW. Semi-active adaptive control for enhancing the seismic performance of nonlinear coupled buildings with smooth hysteretic behavior. *Eng Structures* 2019; 191: 536–548.
17. Xu Z-D, Guo Y-Q, Zhu J-T, et al. Intelligent Vibration Control in Civil Engineering Structures. UK: Academic Press, 2016.
18. Thenozhi S and Yu W. Advances in modeling and vibration control of building structures. *Annu Rev Control* 2013; 37(2): 346–364.
19. Elias S and Matsagar V. Research developments in vibration control of structures using passive tuned mass dampers. *Annu Rev Control* 2017; 44: 129–156.
20. Blachowski B and Pnevmatikos N. Neural network based vibration control of seismically excited civil structures. *Peri-odica Polytechnica Civil Eng* 2018; 62(3): 620–628.
21. Bozorgvar M and Zahrai SM. Semi-active seismic control of buildings using MR damper and adaptive neural-fuzzy intelligent controller optimized with genetic algorithm. *J Vibration Control* 2019; 25(2): 273–285.
22. Kim H-S and Kang J-W. Semi-active fuzzy control of a wind-excited tall building using multi-objective genetic algorithm. *Eng Structures* 2012; 41: 242–257.
23. Wang Q, Wang J, Huang X, et al. Semiactive nonsmooth control for building structure with deep learning. *Complexity* 2017; 2017(7): 1–8.
24. Rababah AY, Bani-Hani KA and Baraham WS. Adaptive neural network controller for nonlinear highway bridge benchmark. *Jordan J Civil Eng* 2019; 13(2):308–324.
25. Soares RW, Barroso LR and Al-Fahdawi OAS. Response attenuation of cable-stayed bridge subjected to central us earthquakes using neuro-fuzzy and simple adaptive control. *Structures* 2020; 203: 109874.
26. Gaur S, Elias S, Höbbel T, et al. Tuned mass dampers in wind response control of wind turbine with soil-structure interaction. *Soil Dyn Earthquake Eng* 2020; 132: 106071.
27. Lara L., Brito J, Brito J, et al. Structural control strategies based on magnetorheological dampers managed using artificial neural networks and fuzzy logic. *Revista UIS Ingenierías* 2017; 16(2): 227–242.
28. Venanzi I. A review on adaptive methods for structural control. *Open Civil Eng J* 2016; 10(1):653–667.
29. Gutierrez Soto M and Adeli H. Recent advances in control algorithms for smart structures and machines. *Expert Syst* 2017; 34(2): e12205.
30. Fallah AY and Taghikhany T. Robust semi-active control for uncertain structures and smart dampers. *Smart Mater structures* 2014; 23(9): 095040.
31. Soltanpour MR, Khooban MH and Khalghani MR. An optimal and intelligent control strategy for a class of nonlinear systems: adaptive fuzzy sliding mode. *J Vibration Control* 2016; 22(1): 159–175.
32. Aström KJ and Wittenmark B. *Adaptive Control*. New York, Dover Publications, 2008.
33. Landau ID, Lozano R, M’Saad M, et al. “Introduction to adaptive control,” in *Adaptive Control*. London: Springer, 2011, pp. 1–33.
34. Cruze D, Gladston H, Farsangi EN, et al. Seismic performance evaluation of a recently developed magnetorheological damper: experimental investigation. *Pract Periodical Struct Des Construction* 2021; 26(1): 04020061.
35. Al-Fahdawi OAS, Barroso LR and Soares RW. Simple adaptive control method for mitigating the seismic responses of coupled adjacent buildings considering parameter variations. *Eng Structures* 2019; 186: 369–381.
36. Slotine JJE and Li W. *Applied nonlinear control*. Englewood Cliffs, NJ: Prentice-Hall, 1991, pp. vol. 199, 1.
37. Khalil HK and Grizzle JW. *Nonlinear Systems*. Saddle River, NJ: Prentice hall Upper, 2002, vol. 3.
38. Hou Z-S and Wang Z. From model-based control to data-driven control: Survey, classification and perspective. *Inf Sci* 2013; 235: 3–35.
39. Hosseini A and Taghikhany T. Online self-tuning mechanism for direct adaptive control of tall building. *Int J Adaptive Control Signal Process* 2018; 32(3): 424–446.
40. Rao ARM and Sivasubramanian K. Multi-objective optimal design of fuzzy logic controller using a self configurable swarm intelligence algorithm. *Comput structures* 2008; 86(23–24): 2141–2154.
41. Sapinski B and Filis J. Analysis of parametric models of mr linear damper. *J Theor Appl Mech* 2003; 41(2): 215–240.
42. Boada MAJSL, Calvo JA, Boada BL, et al. A new non-parametric model based on neural network for a mr damper *Eng Syst Des Anal* 2008; 48364: 597–602.
43. Zile M. Intelligent and adaptive control. In: *Microgrid Architectures, Control and Protection Methods*. Springer, 2020, pp. 423–446.
44. Benosman M. Model-based vs data-driven adaptive control: an overview. *Int J Adaptive Control Signal Process* 2018; 32(5): 753–776.
45. Lucas C, Shahmirzadi D and Sheikholeslami N. Introducing belbic: brain emotional learning based intelligent controller. *Intell Automation & Soft Comput* 2004; 10(1): 11–21.

46. Benosman M. *Learning-based Adaptive Control: An Extremum Seeking Approach–Theory and Applications*. Oxford, UK: Butterworth-Heinemann, 2016.

47. Spall JC and Cristion JA. Model-free control of nonlinear stochastic systems with discrete-time measurements. *IEEE Trans automatic Control* 1998; 43(9): 1198–1210.

48. Morlacchi M, Resta F, Ripamonti F, et al. An adaptive non-model-based control strategy for smart structures vibration suppression. In: *Active and Passive Smart Structures and Integrated Systems*. International Society for Optics and Photonics, 2013, pp. 8682J.

49. Jain LC and De Silva CW. *Intelligent Adaptive Control: Industrial Applications*, vol. 6. CRC Press, 1998.

50. Mo H and Farid G. Nonlinear and adaptive intelligent control techniques for quadrotor uav - a survey. *Asian J Control* 2019; 21(2): 989–1008.

51. Mahmoud MS, Alyazidi NM and Abouheaf MI. Adaptive intelligent techniques for microgrid control systems: a survey. *Int J Electr Power Energ Syst* 2017; 90: 292–305.

52. Wang H, Sun W and Liu PX. Adaptive intelligent control of nonaffine nonlinear time-delay systems with dynamic uncertainties. *IEEE Trans Syst Man, Cybernetics: Syst* 2016; 47(7): 1474–1485.

53. Yamazaki Y, Kang G and Ochiai M. Adaptive-intelligent control by neural-net systems. *Int J Intell Syst* 1998; 13(6): 503–518.

54. Lake BM, Ullman TD, Tenenbaum JB, et al. Building machines that learn and think like people. *Behav Brain Sci* 2017; 40: e253.

55. Fu K. Learning control systems and intelligent control systems: An intersection of artificial intelligence and automatic control. *IEEE Trans Automatic Control* 1971; 16(1): 70–72.

56. Astrom KJ and Wittenmark B. A survey of adaptive control applications. In: Proceedings of 1995 34th IEEE conference on decision and control, New Orleans, LA, 1995, pp. 649–654. IEEE.

57. de Silva CW. *Intelligent Control: Fuzzy Logic Applications*. CRC Press, 2018.

58. Bozorgvarg M and Zahrai SM. Semi-active seismic control of a 9-storey benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution. *Smart Structures Syst* 2019; 23(1): 1–14.

59. Zhang B-L, Han Q-L and Zhang X-M. Recent advances in vibration control of offshore platforms. *Nonlinear Dyn* 2017; 89(2): 755–771.

60. Antsaklis PJ. *Intelligent Control*. New York: Wiley Encyclopedia of Electrical and Electronics Engineering, 2001.

61. Khargonekar PP and Dahleh MA. Advancing systems and control research in the era of ml and ai. *Annu Rev Control* 2018; 45: 1–4.

62. Tairidis GK and Stavroulakis GE. Fuzzy and neuro-fuzzy control for smart structures In: *Computational Intelligence and Optimization Methods for Control Engineering*. Springer, 2019, pp. 75–103.

63. Salehi H and Burgueño R. Emerging artificial intelligence methods in structural engineering. *Eng structures* 2018; 171: 170–189.

64. Bakshi NA. Model reference adaptive control of quadrotor uavs: A neural network perspective. In: *Adaptive Robust Control Systems*. Intechopen, 2018, 135.

65. Sutton RS and Barto AG. *Reinforcement Learning: An Introduction*. CA, USA: MIT press, 2018.

66. Bezdik JC. (1994). What is computational intelligence? (No. CONF-9410335-) USDOE Pittsburgh Energy Technology Center, PA (United States); Oregon State Univ., Corvallis, OR (United States). Dept. of Computer Science; Naval Research Lab., Washington, DC (United States); Electric Power Research Inst., Palo Alto, CA (United States); Bureau of Mines, Washington, DC (United States).

67. Haykin S. *Neural Networks: A Comprehensive Foundation*. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1994.

68. McCulloch WS and Pitts W. A logical calculus of the ideas immanent in nervous activity. *Bull Math Biophys* 1943; 5(4): 115–133.

69. Falcone R, Lima C and Martinelli E. Soft computing techniques in structural and earthquake engineering: a literature review. *Eng Structures* 2020; 207: 110269.

70. Ghaboussi J and Joghataie A. Active control of structures using neural networks. *J Eng Mech* 1995; 121(4): 555–567.

71. Chen HM, Tsai KH, Qi GZ, et al. Neural network for structure control. *J Comput Civil Eng* 1995; 9(2): 168–176.

72. Bigdeli Y and Kim D. Development of energy based Neuro-Wavelet algorithm to suppress structural vibration. *Struct Eng Mech* 2017; 62(2): 237–246.

73. Ahmed R, El Sayed M, Gadsden SA, et al. Artificial neural network training utilizing the smooth variable structure filter estimation strategy. *Neural Comput Appl* 2016; 27(3): 537–548.

74. Brown M and Harris CJ. *Neurofuzzy Adaptive Modelling and Control*. New York: Prentice-Hall, 1994.

75. K-Karamodin A and H-Kazemi H. Semi-active control of structures using neuro-predictive algorithm for mr dampers. *Struct Control Health Monit* 2010; 17(3): 237–253.

76. He M, Zheng Z-P, He B, et al. Optimising intelligent control of a highway bridge with magnetorheological dampers. *Proc Inst Civil Eng - Structures Buildings* 2020; 173(3): 210–216.
77. Rathi N, Singh HP and Kumar S. Modeling of a neural network based controller for vibration suppression of a building structure. *AIP Conference Proc* 1975; 1975: 030018.
78. Gu X, Yu Y, Li Y, et al. Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control. *Mech Syst Signal Process* 2019; 119: 380–398.
79. Morish J and Balkenius C. A computational model of emotional learning in the amygdala. *From Anim animats* 2000; 6: 115–124.
80. Beheshti Z and Hashim SZM. A review of emotional learning and its utilization in control engineering. *Int J Adv Soft Comput Appl* 2010; 2(2): 191–208.
81. Jafari M, Shahri AM and Elyas SH. Optimal tuning of brain emotional learning based intelligent controller using clonal selection algorithm. In: *ICKE* 2013: 30–34.
82. Braz César M, Paulo Coelho J and Gonçalves J. Evolutionary-based hel controller applied to a magneto-rheological structural system. In: *Actuators*. Multidisciplinary Digital Publishing Institute, 2018, p. vol. 7, 29.
83. Braz César M, Coelho JP and Gonçalves J. Semi-active vibration control of a non-collocated civil structure using evolutionary-based helbic. In: *Actuators*. Multi-disciplinary Digital Publishing Institute, 2019, p. vol. 8, 43.
84. Cristianini N and Shawe-Taylor J. *An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods*. Cambridge, UK: Cambridge University Press, 2000.
85. Boser B, Guyon I and Vapnik V. A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on computational learning theory, Pittsburgh, PA, 1992. PennsylvaniaAcm.
86. Cortes C and Vapnik V. Support-vector networks. *Machine Learning* 1995; 20(3): 273–297.
87. Vapnik V. *The Nature of Statistical Learning Theory*. New York: Springer-Verlag science & business media, 2013.
88. Zhou X, Zhang X and Wang B. “Online Support Vector Machine: A Survey”. In: *Harmony Search Algorithm*. Springer, 2016, pp. 269–278.
89. Gordan M, Ismail Z, Ibrahim Z, et al. Data mining technology for structural control systems: concept, development, and comparison. In: *Damped Harmonic Oscillator*. IntechOpen, 2019.
90. Wang L. *Support vector machines: theory and applications*, vol. 177. Berlin Heidelberg: Springer Science & Business Media, 2005.
91. Gordan M, Razak HA, Ismail Z, et al. Recent developments in damage identification of structures using data mining. *Latin Am J Sol Structures* 2017; 14(13): 2373–2401.
92. Kecman V. Support vector machines - an introduction. In: *Support Vector Machines: Theory and Applications*. Springer, 2005, pp. 1–47.
93. Li C and Liu Q. Support vector machine based semi-active control of structures: a new control strategy. *The Struct Des Tall Spec Buildings* 2011; 20(6): 711–720.
94. Holland JH. *Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence*. UK: MIT press, 1992.
95. Ponomarev S and Voronkov A. *Multi-agent Systems and Decentralized Artificial Superintelligence*, 2017.
96. Soto MG and Adeli H. Multi-agent replicator controller for sustainable vibration control of smart structures. *J Vibro Eng* 2017; 19(6): 4300–4322.
97. Franklin S and Graesser A. Is it an agent, or just a program?: a taxonomy for autonomous agents. In: *International Workshop on Agent Theories, Architectures, and Languages*. Springer, 1996, pp. 21–35.
98. Weiss G. *Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence*. Cambridge, MA and London, England: MIT press, 1999.
99. Bloembergen D, Tuyls K, Hennes D and Kaisers M. Evolutionary dynamics of multi-agent learning: a survey. *J Artif Intelligence Res* 2015; 53: 659–697.
100. Ferber J and Weiss G. *Multi-agent systems: an introduction to distributed artificial intelligence*. Reading, England: Addison-Wesley, 1999, vol. 1.
101. Tuyls K and Nowé A. Evolutionary game theory and multi-agent reinforcement learning. *Knowledge Eng Rev* 2005; 20(1): 63–90.
102. Hopgood AA. *Intelligent Systems for Engineers and Scientists*. Boca Raton, FL: CRC Press, 2012.
103. Börgers T and Sarin R. Learning through reinforcement and replicator dynamics. *J Econ Theor* 1997; 77(1): 1–14.
104. Björnerstedt J and Weibull JW. “Nash equilibrium and evolution by imitation,”. IUI Working Paper Tech Rep 1994.
105. Tuyls K and Parsons S. What evolutionary game theory tells us about multiagent learning. *Artif Intelligence* 2007; 171(7): 406–416.
106. Gutierrez Soto M and Adeli H. Many-objective control optimization of high-rise building structures using replicator dynamics and neural dynamics model. *Struct Multidisciplinary Optimization* 2017; 56(6): 1521–1537.
107. Von Neumann J and Morgenstern O. *Theory of Games and Economic Behavior*. Princeton University Press, 1947.
108. Nash JF. Equilibrium points in n-person games. *Proc Natl Acad Sci* 1950; 36(1): 48–49.
109. Smith JM. *Evolution and the Theory of Games*. Cambridge, UK: Cambridge University Press, 1982.
140. Ramezani1a M, Bathaei A and Zahrai SM. Comparing fuzzy type-1 and-2 in semi-active control with TMD considering uncertainties. *Smart Struct Systems* 2019; 23(2): 155–171.
141. Xu Y, Guo T, Yan P, et al. Effect of semiactive control on wind and seismic responses of high-rise building supported on triple friction pendulums. *J Perform Construct Facil* 2020; 34(3): 04020035.
142. Kim H-S and Roshke PN. Design of fuzzy logic controller for smart base isolation system using genetic algorithm. *Eng Struct* 2006; 28(1): 84–96.
143. Jang J-SR. ANFIS: adaptive-network-based fuzzy inference system. *IEEE Transactions Systems, Man, and Cybernetics* 1993; 23(3): 665–685.
144. Sugeno M. *Industrial Applications of Fuzzy Control*. New York: Elsevier Science Inc., 1985.
145. Jang JSR, Sun CT and Mizutani E. Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence. *IEEE Trans Automatic Control* 1997; 42(10): 1482–1484.
146. Haykin S. *Adaptive Filter Theory*. USA: Prentice Hall, 1996.
147. Al-Fahdawi OA, Barroso LR and Soares RW. Adaptive neuro-fuzzy and simple adaptive control methods for alleviating the seismic responses of coupled buildings with semiactive devices: comparative study. *Soft Comput Civil Eng* 2019; 3(3): 1–20.
148. Al-Fahdawi OAS and Barroso LR. Adaptive neuro-fuzzy and simple adaptive control methods for full three-dimensional coupled buildings subjected to bi-directional seismic excitations. *Eng Structures* 2021; 232: 111798.
149. Diniz PS. *Adaptive Filtering*. USA: Springer, 1997.
150. Afshari HH, Gadsden SA and Habibi S. Gaussian filters for parameter and state estimation: a general review of theory and recent trends. *Signal Process* 2017; 135: 218–238.
151. Tan L and Jiang J. *Digital Signal Processing: Fundamentals and Applications*. UK: Academic Press, 2018.
152. Uncini A. *Fundamentals of Adaptive Signal Processing*. Switzerland: Springer International Publishing, 2015.
153. Seng KP, Man Z and Wu HR. Lyapunov-theory-based radial basis function networks for adaptive filtering. *IEEE Trans on Circuits Syst Fundam Theor Appl* 2002; 49(8): 1215–1220.
154. Haykin S. Recurrent neural networks for adaptive filtering. In: *Control and Dynamic Systems*, 68. Elsevier, 1995, pp. 89–119.
155. Anand V, Shah S and Kumar S. Intelligent adaptive filtering for noise cancellation. *Int J Adv Res Electr Electronics Instrumentation Eng* 2013; 2(5): 2029–2039.
156. Haykin SS. *Adaptive Filter Theory*. India: Pearson Education India, 2005.
157. Kim H and Adeli H. Hybrid feedback-least mean square algorithm for structural control. *J Struct Eng* 2004; 130(1): 120–127.
158. Li C, Chang K, Cao L, et al. Performance of a nonlinear hybrid base isolation system under the ground motions. *Soil Dyn Earthquake Eng* 2021; 143: 106589.
159. Hemeida AM, Hassan SA, Mohamed A-AA, et al. Nature-inspired algorithms for feed-forward neural network classifiers: a survey of one decade of research. *Ain Shams Eng J* 2020; 11(3): 659-675.
160. Bekdaş G, Nigdeli SM, Kayabekir AE, et al. Optimization in civil engineering and metaheuristic algorithms: a review of state-of-the-art developments. In: *Computational Intelligence, Optimization and Inverse Problems with Applications in Engineering*, Springer, 2019, pp. 111–137.
161. Fleming PJ and Purshouse RC. Evolutionary algorithms in control systems engineering: a survey. In: *Evolutionary algorithms in control systems engineering: a survey*, 10, 2002, pp. 1223–1241.
162. Chiong R, Weise T and Michalewicz Z. Variants of evo-lutionary algorithms for real-world applications. Berlin Heidelberg: Springer-Verlag, 2012.
163. Blum C and Li X. “Swarm Intelligence in Optimization,” in *Swarm Intelligence*. Berlin Heidelberg: Springer-Verlag, 2008, pp. 43–85.
164. Vasant P. *Handbook of Research on Modern Optimization Algorithms and Applications in Engineering And Economics*. Hershey, PA: IGI Global, 2016.
165. Holland JH. *Adaptation in natural and artificial systems*. Annarbor, MI: University of Michigan Press, 1975, vol. 1.
166. Darwin C. *The Origin of Species by Means of Natural Selection*. London, UK: Murray, 1859.
167. Mendel G. “Versuche über pflanzenhybriden. verhandlungen des naturforschenden vereines in bränn, bd. iv für das Jahr 1865,” *Abhandlungen*, 1866, pp. 3–47.
168. Koza JR and Koza JR. *Genetic programming: on the programming of computers by means of natural selection*. MIT press, 1992, vol. 1.
169. Burke EK, Burke EK, Kendall G, et al. *Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques*. USA: Springer, 2014.
170. Kennedy J and Eberhart R. Particle swarm optimization. *Proceedings of ICNN’95-International Conference on Neural Networks* 1995; 4: 1942–1948.
171. Aldwaik M and Adeli H. Advances in optimization of highrise building structures. *Struct Multidisciplinary Optimization* 2014; 50: 899–919.

172. Yang X-S and Deb S. “Cuckoo search via lévy flights,”. In: 2009 World congress on nature & biologically inspired computing (NaBIC), Coimbatore, India, 9–11 December 2009, pp. 210–214. IEEE.

173. Pavlyukevich I. Lévy flights, non-local search and simulated annealing. *J Comput Phys* 2007; 226(2): 1830–1844.

174. Rajabioun R. Cuckoo optimization algorithm. *Appl soft Comput* 2011; 11(8): 5508–5518.

175. Yang X-S and Deb S. Cuckoo search: recent advances and applications. *Neural Comput Appl* 2014; 24(1): 169–174.

176. Authors. Multiobjective cuckoo search for design optimization. *Comput Operations Res* 2013; 40(6): 1616–1624.

177. Jung H-J, Choi K-M, Spencer BF Jr, et al. “Application of some semi-active control algorithms to a smart base-isolated building employing mr dampers”. *Struct Control Health Monit* 2006; 13(2–3): 693–704.

178. Kim H-S and Roschke PN. Ga-fuzzy control of smart base isolated benchmark building using supervisory control technique. *Adv Eng Softw* 2007; 38(7): 453–465.

179. Ohtori Y, Christenson RE, Spencer BF Jr, et al. Benchmark control problems for seismically excited nonlinear buildings. *J Eng Mech* 2004; 130(4): 366–385.

180. Narasimhan S, Nagarajaiah S, Johnson EA, et al. “Smart base-isolated benchmark building. Part I: problem definition”. Structural Control and Health Monitoring. *The Official Journal of the International Association for Structural Control and Monitoring and of the European Association for the Control of Structures* 2006; 13(2–3): 573–588.

181. Hunt KJ, Sbarbaro D, Zbikowski R, et al. Neural networks for control systems-A survey. *Automatica* 1992; 28(6): 1083–1112.

182. Wilaumowski B. Neural network architectures and learning algorithms. *IEEE Ind Electronics Mag* 2009; 3(4): 56–63.

183. Nelson MM and Illingworth WT. *A Practical Guide to Neural Nets*, 1991.

184. Jung H-J, Choi K-M, Spencer BF Jr, et al. “Application of some semi-active control algorithms to a smart base-isolated building employing mr dampers”. *Struct Control Health Monit* 2006; 13(2–3): 693–704.

185. Kim H-S and Roschke PN. Ga-fuzzy control of smart base isolated benchmark building using supervisory control technique. *Adv Eng Softw* 2007; 38(7): 453–465.

186. Kirkpatrick S, Gelatt CD and Vecchi MP. Optimization by simulated annealing.

187. Yang X-S and Deb S. Neural Networks and Deep Learning.

188. Minar MR and Naher J. Recent Advances in Deep Learning: An Overview

189. Arulkumaran K, Deisenroth MP, Brundage M, et al. Deep reinforcement learning: a brief survey. *IEEE Signal Process. Mag* 2017; 34(6): 26–38.

190. Aggarwal CC. *Neural Networks and Deep Learning*, 10. Springer, 2018, pp. vol. 10, 978–973.

191. Zeng-Guang Hou Z-G, Long Cheng L and Min Tan M. Decentralized robust adaptive control for the multiagent system consensus problem using neural networks. *IEEE Trans Syst Man, Cybernetics, B* 2009; 39(3): 636–647.

192. Busoniu L, Babuska R, De Schutter B, et al. A comprehensive survey of multiagent reinforcement learning. *IEEE Trans Syst Man, Cybernetics, C* 2008; 38(2): 156–172.

193. Busoniu L, Babuska R and De Schutter B. Multi-agent reinforcement learning: an overview. In *Innovations in Multiagent Systems and Applications-1*. Springer, 2010, pp. 183–221.

194. Kirkpatrick S, Gelatt CD and Vecchi MP. Optimization by simulated annealing. *Science* 1983; 220(4598): 671–680.

195. Price KV. Differential evolution. In *Handbook of Optimization*. Springer, 2013, pp. 187–214.

196. Glover F. and Laguna M. Tabu search. In *Handbook of Combinatorial Optimization*. Springer, 1998, pp. 2093–2229.

197. Dorigo M, Colomn A and Maniezzo V. Distributed Optimization by Ant Colonies. In: Proceedings of the European conference on artificial life, ECAL’91, Paris, 1991, pp. 134–142.

198. Yang X-S. Firefly algorithms for multimodal optimization. In *International Symposium on Stochastic Algorithms*. Springer, 2009, pp. 169–178.

199. Rashedi E, Nezamabadi-Pour H and Saryazdi S. Gsa: a gravitational search algorithm. *Information Sciences* 2009; 179(13): 2232–2248.

200. Mirjalili S, Mirjalili SM and Lewis A. Grey wolf optimizer. *Adv Eng Softw* 2014; 69: 46–61.

201. Dracopoulos DC. *Evolutionary Learning Algorithms for Neural Adaptive Control*. London: Springer, 2013.

202. Widrow B, Plett G, Ferreira E, et al. Adaptive inverse control based on nonlinear adaptive filtering. In: IFAC Proceedings Volumes AARTC’98, Cancun, Mexico, 1998, 31(4) pp. 211–216. Citeseer.

203. Nerrand O, Roussel-Ragot P, Personnaz L, et al. Neural networks and nonlinear adaptive filtering: unifying concepts and new algorithms. *Neural Comput* 1993; 5(2): 165–199.

204. Deb AK, Jayadeva M and Chandra MS. SVM-based tree-type neural networks as a critic in adaptive critic designs for control. *IEEE Trans Neural Networks* 2007; 18(4): 1016–1030.
205. Yuan X-F and Wang Y-N. On fuzzy support vector machine controller. *Control Decis* 2005; 20(5): 537.
206. Cheng Q-M and Wang Y-H. The fuzzy support vector network controller based on least square algorithms and its application. *Zhongguo Dianji Gongcheng Xuebao (Proceedings Chin Soc Electr Engineering)* 2007; 27(8): 76–80.