INTRODUCTION

Plants and plant-derived medicinal products have been used to help humankind to continue its healthiness from the dawn of medicine. Over the past century, the phytochemicals in plants play an important role in pharmaceutical discovery. The importance of the active ingredients of plants in medicine has inspired and denoted scientific interest in the biological activities of these substances [1].

Under the classification of flowering plants, the family Annonaceae also called as custard apple family [2] has many traditional values, mainly composed of trees, shrubs and rarely lianas [3]. The word genus *Annona* is derived from a Latin word “anon” which means “yearly produce” that specifies the production of fruits to the plants of this family. Under the family *Annonaceae*, encompassing 2300-2500 species and around 130 genera are currently classified [4]. The family *Annonaceae* mostly found in tropical regions and few species found in temperate regions also. Around 900 species are Neotropical, 450 species are Afrotropical and some species are Indo-Malaysian.

In the family *Annonaceae* [5]: *Annona, Annonidium, Rolliania, Uvaria, Melodorum, Asimina, and Stelchocarpus* are most commonly available and widely distributed genera. In India, the genus *Annona* is frequently available. Hence, the present review was outlined on some species of Annona from the available literature and depending on the accessible properties.

Under the classification of flowering plants, the family *Annonaceae* also called as custard apple family [2] has many traditional values, mainly composed of trees, shrubs and rarely lianas [3]. The word genus *Annona* is derived from a Latin word “anon” which means “yearly produce” that specifies the production of fruits to the plants of this family. Under the family *Annonaceae*, encompassing 2300-2500 species and around 130 genera are currently classified [4]. The family *Annonaceae* mostly found in tropical regions and few species found in temperate regions also. Around 900 species are Neotropical, 450 species are Afrotropical and some species are Indo-Malaysian.

In the family *Annonaceae* [5]: *Annona, Annonidium, Rolliania, Uvaria, Melodorum, Asimina, and Stelchocarpus* are most commonly available and widely distributed genera. In India, the genus *Annona* is frequently available. Hence, the present review was outlined on some species of *Annona* from the available literature and depending on the accessible properties.

VERNACULAR NAMES

A. muricata L.

A. *muricata* also known as graviola, guyabano, or soursop in English; asguanabana in Spanish; huaba in Guatemala; zopote de viejas in Mexico; cabeza de negro in Venezuela; catoche in Argentina; jaca do para in the Netherlands; lakshmanapal or jangi or mullaramaphala in India [6].

A. cherimola L.

A. *cherimola* also known as cherimoya, custard-apple, and cherimoya in English; anaponoshte, cherimolia, cherimoyer, cherimolla, and cherimoya in Spanish; anone, cherimolier, and cherimol in French; cherimoya, cherimol, cherimoyalbaum, and cherimoya in German; grabiola, graveola, and gravlox in Portuguese; cherimoa and cherimoya in Japanese; cherimolia, Mexico Pox or poox in Italian; hanuman phal and mangtiphil in Hindi; hanuman phalamu in Telugu [6].

A. squamosa L.

A. *squamosa* also known as custard apple, sugar apple, and sweet aperes in English; sharifa in Hindi; sitaphal in Telugu; corossolier, cailleux, and pommeircannelle in French [8].

A. senegalensis L.

A. *senegalensis* also known as wild custard apple and wild soursop in English; wildesukerappel in Africa; gishta and gishta gaba in Arabic; pomme cannelle du senegal, anone in French; mchekwa, mkonokono, mtomoko-mwitu, mutopetope, mwiwu, mtomoko in Swahili; sinkuongo and jumbukungo in Mandinka.

ECOLOGY

A. muricata L.

A. *muricata* found mainly in the humid tropical and subtropical lowlands and common on the coastal areas and slopes. It is commonly seen in the roadsides and also found in pastures and cultivated mainly for the fruit. The species cultivated mainly in home gardens and also

AMUDHA P, VANITHA VARADHARAJ*

Department of Biochemistry, School of Life Sciences, Vels University, Pallavaram, Chennai, Tamil Nadu, India.

Email: vanitha.sls@velsuniv.ac.in

Received: 21 February 2017, Revised and Accepted: 17 April 2017

© 2017 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2017.v10i7.18073

ABSTRACT

Herbal plants and phytogenic products have used for the treatment of various diseases from ancient times in the folklore medicine worldwide. Crude extracts from plants now play an important and valuable source for natural products that are used in the advancement of medicines against various diseases, for the improvement of pharmaceutical preparations and for novel bioscience research. One such plant genus is *Annona*, such as *Annona muricata, Annona cherimola, Annona reticulata, Annona squamosa, and Annona senegalensis* are some species widely cultivating in India and tropical regions of Asia for their edible fruits and medicinal values. These plants have been used for centuries as traditional folk medicine for the treatments of various diseases. The plants are considered to be a good source of vitamins, minerals, plant proteins, fibers, etc., as well as the plant is supposed to have many biological activities. This review describes the morphology and ecology of the plant, its ethnomedicinal uses, pharmacological activities, and phytoconstituents.

Keywords: *Annona muricata, Annona cherimola, Annona reticulata, Annona squamosa, Annona senegalensis*, Phytochemicals and pharmacological properties.
found in rural gardens on volcanic and raised limestone islands. They are poor in withstanding frost. *A. muricata* found throughout the West Indies except in the Bahamas and also occurs from Mexico to Brazil. It is common in the West but infrequent on the southern Florida. It is found in Puerto Rico, mostly on the slopes of Cordillera. *A. muricata* is native to tropical areas in South and North America and also found in the tropical and subtropical countries such as India, Malaysia, and Nigeria [9].

A. cherimola L.

A. cherimola is mainly found in the highlands from sea-level up to approximately 1400 m altitude. In Colombia and Ecuador, it occurs naturally at elevations between 1400 and 2000 m where the temperature ranges lie between 17 and 20°C [6].

A. reticulata L.

It is cultivated throughout India up to an altitude of 900 m. It is found growing abundantly and widely in the hilly areas, wastelands, and found in several districts of Andhra Pradesh, Punjab, Rajasthan, Uttar Pradesh, Madhya Pradesh, Bihar, West Bengal, Assam, Gujarat, Maharashtra, Karnataka, Kerala, and Tamil Nadu. It is a native plant of South America and West Indies [10].

A. squamosa L.

It is widely cultivated in India and found in Thailand and originates from the West Indies and South America. *A. squamosa* is primitive to tropical South America and the West Indies and originated in lowland Central America where it is home-grown, and from there it was distributed to Mexico and throughout tropical America.

A. senegalensis L.

It is widely found in semi-arid to sub-humid all over the parts of Africa. The species occurs along riverbanks, fallow land, and swamp forests and at the coast. Commonly grows as a single plant among the savannah woodlands [11].

BOTANICAL DESCRIPTION

A. muricata L.

A. muricata is an evergreen tropical tree and bushy grows up to 9 m in height. Found in tropical America and Caribbean region of West Indies. Leaves found to be leathery with displeasing odor, broadly elliptic to obovate, 5.8-19.0 cm × 3.7-81 cm, and sometimes lightly unequal. Flowering starts during the 3rd year and flowers leaf-opposed on the old wood, greenish yellow, usually three, fleshy, triangular, saccate at the base. Fig. 1 shows the fruit of *A. muricata* and the fruit skin is found to be leathery and covered with curved, soft, pliable spines with white colored pulp inside divided into many segments. Seeds found to be black, oval with smooth finishing surface [7].

A. cherimola L.

A. cherimola is erect but low branched and partially shrubby and it grows up to 5-9 m. Due to the mitriform petiole concealing the bud, leaves are deciduous to semi-deciduous. Leaves are alternate, two-ranked, contains hairy petioles; ovate to elliptic, short blunt narrow at the apex; somewhat hairy on the top surface, smooth on the lower surface [12]. Flowers are pleasant, solitary or in group of two or three, on short hairy stalks, have three outer greenish, fleshy, oblong petal-like tepals, and three smaller inner tepals. Fruits are syncarp, formed by pistils and receptacle, conical or slightly heart-shaped, 10-20 cm long and up to 10 cm in width, weighing on average 150-500 g. Skin looks smooth having finger print-like markings and covered with conical or rounded protuberances. Fig. 2 shows the fruit of *A. cherimola* and the fruit is easily broken, exposing snow-white, juicy flesh with pleasing aroma and tasteful, sub acid and contain many hard, brown or black beanlike seeds with 1.25-2.0 cm long.

A. reticulata L.

A. reticulata are small deciduous or semi-deciduous tree grows up to 10 m height. The bark looks rough, thin and dark brown, 1.4-4.0 mm thick, and if dried it becomes double quilled. Leaves are found to be oblong, lanceolate, reticulate, pellicid punctate, with bad odor, when young it looks glabrous above and glaucous and pubescent beneath, lateral nerves having 8-11 pairs, petiole grows up to 2 cm long. Flowers found to be bisexual, drooping, greenish white, fleshy, solitary, leaf found to be opposite or 2-4 on short extra axillary branchlets. Fig. 3 shows the fruits of *A. reticulata* and the fruit found to be globose, 5-10 cm in diameter and when ripe it looks yellowish-green color. Berries looks heart-shaped syncarpium with pentagonal areoles, seeds found to be smooth and black in color. The tree has deep penetrating root system with abundant root fibers [7].

A. squamosa L.

A. squamosa trees are semi evergreen well branched shrub grows up to a height of 7 m. The bark found to be thin, gray, and woody and having extensively branched tap root system. Leaves found to be simple, alternate, oblong lanceolate or elliptic, and pelillucd-dotted, peculiarly scented, and 5.0-15.0 cm × 1.9-3.8 cm in size. Flowers found to be green in color; fleshy, drooping, extra axillary, more on the leafy shoot than on the older wood. Fig. 4 shows the fruit of *A. squamosa*, and the fruits has many carps with lozenge shaped on a central torus and fused into an irregular globose or heart-shaped tubercled, yellowish green in color and syncarpium with thick scaly skin. The pulp is sweet and pleasing odor and looks light yellow in color. The seeds found to be oblong and deep brownish black in color and covered with whitish pulp.

A. senegalensis L.

A. senegalensis is a wild shrub grows up to 7 m, but this plant is not resilient in nature. It is cultivated for its leaves, fruits, flower, bark, and

Table 1: Taxonomic classification of *Annona* species

Common name	Species	Family	Order	Binomial name
Soursop	Annona muricata	Annonaceae	Magnoliophyta	Magnoliales
Sugar apple	Annona cherimola	Annonaceae	Magnoliophyta	Magnoliales
Custard apple	Annona reticulata	Annonaceae	Magnoliophyta	Magnoliales
Wild soursop	Annona squamosa	Annonaceae	Magnoliophyta	Magnoliales

Fig. 1: Fruit of *Annona muricata*

Fig. 2: Fruit of *Annona cherimola*

Fig. 3: Fruit of *Annona reticulata*

Fig. 4: Fruit of *Annona squamosa*

69
Amudha and Vanitha

Asian J Pharm Clin Res, Vol 10, Issue 7, 2017, 68-75

stem for medicinal purpose. Leaves are alternate, simple, oblong to ovoid in shape, 6-185 × 25-120 mm in size. The stem looks gray in color when young and smooth to coarsely in older trees. The undeveloped branches have yellow hairs and lost during development. The flowers grows up to 35 mm in diameter, on stalk grows up to 30 mm long and directly above the leaf axils. Fig. 5 shows the fruit of *A. senegalensis* and the fruit is formed from several fused and ovate carpels about 45 mm in diameter. At early stage, it looks dark green and yellow when ripe and finally to orange during the later stage of life. It has a curved inner whorl around the stamens and ovary and with several stamens.

ETHNOMEDICINAL USES

A. muricata L.

A. muricata is extensively used as traditional medicines against many human diseases, especially cancer and parasitic infections. The fruit is a good source of natural medicine for arthritic pain, neuralgia, arthritis, diarrhea, dysentery, fever, malaria, parasites, rheumatism, skin rashes, and worms. It is given to elevate mother’s milk after childbirth. Leaves are used to cure cystitis, diabetes, headaches, and insomnia. Leaf’s decoction is used to treat antirheumatic and neuralgic effects and cooked leaves are used to treat abscesses and rheumatism [13]. Seeds should be crushed can used to treat anthelmintic activities against worms and parasites both internally and externally. *A. muricata* is used for astringent, insecticide and pesticide and also used to cure coughs, pain and skin diseases in tropical Africa. Fruits and flower are used to cure catarrh and the root-bark and leaves are used to treat antiphlogistic and anthelmintic activities in India [14]. Leaves of *A. muricata* mixed with *A. squamosa* and *Hibiscus rosa-sinensis* are applied on the head to protect against fainting in Malaysia. *A. muricata* leaves are used as an ethnomedicine for tumors and cancer in South America tropical Africa and Nigeria. Leaves, barks, and roots are used to treat the anti-inflammatory, hypoglycemic, sedative, smooth muscle relaxant, hypotensive, and antispasmodic effects.

A. cherimola L.

A. cherimola is a dessert fruit that can be eaten fresh. Due to its enzymatic characteristics, *A. cherimola* fruits cannot be used for thermal processes and its processing should utilize refrigerating or freezing, with addition of antioxidants to avoid enzymatic oxidation and subsequent coloring [15]. *A. cherimola* seeds are used as an insecticide to kill lice and to cure parasitic skin problems. *A. cherimola* seeds has an important alkaloid, acetogenins [16], which has antiparasitic and cytotoxic activities. The annonaceous acetogenins are a new group of powerful phytochemical agents, and more than 300 of these compounds have been found which has antimicrobial, antitumor, cardiotonic, and insecticidal properties. The fruit contains low cholesterol and sodium. It is rich in dietary fiber, vitamin B6, vitamin C and potassium. Fruit is used traditionally for antimicrobial and insecticidal activities and to cure stomach-ache and pancreatic ulcers. Dried flowers are used as flavoring for snuff in Jamaica. Immature fruit is used for cooked vegetable and bark is used as a decoction for diarrhea. For toothache, root can be chewed and decoction from root can be used to treat fevers. Decoction from leaves can be used to treat worms and leaves are used to tan leather.

A. reticulata L.

Decoction from bark can be used for the treatment of dysentery and diarrhea. *A. reticulata* leaves can be used to prepare tea for relieving
colic. Leaves should be warmed and applied over the abdomen to get relief from indigestion in babies and children in Philippines. Leaves should be crushed can be used as poultice for abscesses and to cure ulcers. Fruits possess anthelmintic properties. Root bark is used to cure toothache and is placed around the gums to get relief from toothache and decoction from roots can be used to cure fever. Decoction from leaves can be used in treating malaria and syphilis. The roots can be used for epilepsy. *A. reticulata* has been used as an anti-inflammatory agent, antianxiety, antistress, antimutagenic, and spasmyloytic agent. Leaf and stem extract possess inotopie, positive for chronotropic and spasmyloytic properties [6].

A. squamosa L.

A. squamosa has lots of medicinal values. Unripe fruit can be used as an astringent and root can be used for droncic purgative and seeds can be used to treat antifertility activity. Leaves can be used as a vermicide, for treating tumors and applied to abscesses, insect bites and skin problems. For toothache, root and bark scrapings can be used. Seeds should be powdered can be used to kill head-lice and fleas and proper care should be taken to avoid the powder to come in contact with eyes since it causes severe pain. Fruits, seeds, and leaves possess vermicial and insecticidal properties. Pulp can be used as a flavoring agent in ice creams. Between 50% and 80% of the fruit are edible. Since *A. squamosa* has the biochemical substances such as alkaloids, glycosides, resins, volatile oils, gums and Tannins and ascorbic acid the plant possess excellent medicinal properties [17]. *A. squamosa* contains more of vitamin C (35-42 mg/100 g) than in grapefruit. The nutrient value of thiamine, potassium, and dietary fiber is also found to be higher.

A. senegalensis L.

A. senegalensis has an excellent source for traditional medicine applications. Leaves can be used for treating yellow fever, tuberculosis, and small pox and stem bark can be used for snakebite and hernia treatment [18]. Root can be used for difficulty in swallowing, gastritis, snake bites, male sexual impotence, erectile dysfunction, tuberculosis, and as an antidiote and root bark can be used for infectious diseases [19]. Juice can be collected from the tree can be used for the treatment of chicken pox [20]. Many parts of the plant can be used as antibiotics for venous bites and management of diabetes [21]. *A. senegalensis* has been used for treatment of malaria in Guinea [22], and bark can be used to cure open sores in Switzerland [23]. *A. senegalensis* a long with *Agaratum conyzoides* can be used for diarrhea and with *Nauclea latifolia* used for dysentery practiced in the Benue state in North Central Nigeria [24]. Fresh leaves can be used in poultry houses and left until they dry and the process can be repeated once or twice a week for controlling parasites including fleas and lice in Nigeria and Tanzania [25]. *A. senegalensis* can also been used as a food and food additives. Leaves can be used as vegetables and edible pulp of the fruit has a pleasant taste and the flowers can be used as spices for various foods.

PHYTOCHEMISTRY

A. muricata L.

A. muricata contains carbohydrates, phenols, flavonoids, alkaloids, coumarins, glycosides, phytosterols, quinones, steroids, proteins, saponins, and terpenoids. *A. muricata* contains flavonoids, saponins, tannins, alkaloids, triterpenoids, reducing sugar, and cardiac glycosides in the ethanolic leaf extract [26]. A new acetogenins called cohobins A and B and sabadelin which involves in the biosynthesis of mono-epoxide, kaur-16-ene and caryophyllene oxide were isolated. From fruit oil spathulenol, bornyl acetate, benzene and n-triacontanol. Oil extracted from leaves contain germacrene D, b-elemene, sabinene, aand b-pinene, bicyclogermacrene, T-cadinol, b-pinene, stigmasterol, a-pinene, β-sitosterol, rutin, thymol 4-(2-nitromenthone, methylsalicylate, methyl anthranilate, n-octacosanol, higemamine, limonine, methylheptenone, p-(hydroxybenzyl)-6,7-(2-benzyltetrahydroisoquinoline, car-3-ene, camphene, carvone, coryeline, and anonaine. From the leaves anonaine, borneol, camphor, and root were glaucine, norcorydine, aporphine, isocorydine, and spasmolytic properties [6].

A. cherimola L.

A. cherimola has various phytochemicals including alkaloids, flavonoids, glycosides, saponins, tannins, carbohydrates, proteins, compounds, phytosterols, and amino acids. *A. cherimola* possesses potent antioxidant activity [28]. Stem and seeds possess various chemical constituents including annonachener A, B, cherianone, arin-A, N-acis-caffeoyletyramine, dihydro-feruloyltyramine, N-transferuloyl methoxytyramine, and N-cisferuloyl methylxoytyramine [29]. Seeds have been found to contain cyclooctapepted, cherrilocycleptide A, and cherilocycleptide B [30].

A. reticulata L.

Ethyl acetate, butanol and methanol extract showed the presence of phytochemical components such as alkaloids, tannins, terpenoids, and coumarins [31]. From the leaves contains an alkaloid, tetrahydrodiosquinoline which possesses cardiotonic activity and from the bark, a bioactive acetogenin has been isolated. *A. reticulata* contains aporphine, alkaloids, terpine derivatives, glycoside and a novel diazepine, squamolone [32]. Ethyl acetate extracts of seeds contains 7-Lactone acetogenin, cis-trans-isomurisoline, along with six known cytotoxic acetogenins, amnoreticin, amnoreticin-9-one, cis-trans-bullatacinone, bullatacin, cis-trans-murisolinonone, and squamolin [33] and amnoreticin, bullatacin, squamosine, rolliniastatin [34], reticulactin, rolliniastatin-2, molivizarin [35], 14-hydroxy-25-deoxyrollinacin [36]. In *A. reticulata*, by the method of bioactivity-directed fractionation, Bullatacin and a novel bioactive monoteretherhydrofuran acetogenin, reticulactin, and kaurane diterpenes have been isolated from the bark [37]. From the methanol extracts of seeds, two cyclopeptides, the cyclooctapeptide cycloreticulin C, cyclo(Pro-Pro-Pro-Pro-Pro-Pro-Val), and the cyclohexapeptide glabrin A, cyclo(Pro-Gly-Leu-Val-Ile-Val-Tyr) have been isolated and sequence and three-dimensional structure of cycloreticulin A and B, new cyclooctapeptides were also identified [33,34].

A. squamosa L.

A. squamosa possesses glycosides, alkaloids, flavonoids, steroids, phenols, tannins, and saponins in the ethanolic seed extract. Various phytochemical constituents are isolated from leaves, stem and root were glucine, norcorydine, aporphine, isocorydine, corydine, and annalone. From the leaves annonaine, borneol, camphor, benzyltetrahydroxyquinoline, car-3-ene, camphene, camvone, β-caryophyllene, farnesol, 16-hetriacontane, geraniol, hexacosanol, higemamine, limonine, methylheptenone, p-(hydroxybenzyl)-6,7-(2-hydroxy-4-hydroxido isoquinoline, eugenol, linakolacetate, isocorydine, menthol, methyisalicylate, methyl anthranilate, octacosanol, β-pinene, stigmasteryl, a-pinene, β-sitosterol, rutin, thymol 4-(2-nitroethyl-1)-1-6-((6-β-D-xylopyranosyl-1-β-D-glucopyranosyl-ox) oxy) benzene n-diacontanol 1.01extracted from leaves containing germacrene D, b-elemene, sabine, aand b-pine, bicyclogermacrene, T-cadinol, and T-murolisol are isolated. From fruit oil spathulenol, bornyl acetate, germacrene, borneol, and verbene were isolated. From stem bark, a new acetogenin squamone were isolated which possess bullatacin, bullatacinone, liriodenine and -kaur-16-en-19-oic acid. From the bark 1Hcyloprop (ε) azulene, bisabolene, germacrene D, bisabolene epoxide, kaur-16-one and caryophyllene oxide were isolated. From the branches liriodene, oumpimadine, annonaine and sachanopic acid
were isolated. Chloroform extract of the plant possesses Annotenoin. Annonacin A, annonasterin, saponins like stigna-5,24 (28)-di-en-3β-ol-α-L-rhamnoside, squamostatin A, annoninin I, VI, VII, XIV and XVI. Nearly 30 acetogenins were isolated like squamocins B to N, coumarinolignans, annotenoiny and squamocin, annonastatin, squamocinetc from the seeds. From the roots alkaloids such as liriodiene, oxoanabine and β-caryophyllene, e-a-humulene, e-α-pinene, e-γ-junene were isolated [38]. Alkaloids, fixed oils, tannins, carbohydrates, and phenols also present in A. squamosa [39].

A. senegalensis L.

A. senegalensis contains the phytochemicals constituents such as sterols and triterpenes, anhydroxy in, glucides, coumarins, flavonoids, and alkaloids. From the water and ethanol extract of leaves and roots contains flavonoid, tannins, carotid, glycoside, saponins, alkaloids, steroid, and volatile oils, and negative for saponin, glycoside and antiruquino. The ethanol extract of leaves and root has higher phytochemical activity than compared to the aqueous extract [40]. A. senegalensis found to contain minerals such as Ca, K, Mg, Zn, Fe, Cu, Mn, Pb, and Cr as well as ascorbic acid and amino acids, important source of nutrients [41,42]. Stem bark contains 1, benzenediol, butylated hydroxytoluene, phenol, 2, 6 bis (1. 1-dimethyl-1-thiethyl, methyl carbamate, n-hexadecanoic acid, 13-hexadecanoylcyclohexane-1, 2-one, oleic acid, tetracoseno, 9- octylhexadecanate, bencicosen, 12-mehtyl-E, E-2, 13-octadecenadiol-2, 3, 13-octadecanediol, pentadecane, tretatraciclon, and squalene from the GC/MS study [43]. From the root bark, Okoye and coworkers [44] identified diterpenoid, kaur-16-en-19-0ic acid or kaurenic acid as phytochemical constituents responsible for the antibacterial effects. A. senegalensis possess wax, alkaloids [45] proteins, amino acids, antraquinones [46], sterols, glycosides, flavonoids, terpenoids [47] and terpenes [48].

PHARMACOLOGICAL STUDIES

A. muricata L.

Several studies suggest that flavonoids and phenols are present in A. muricata are free radical scavengers that prevent oxidative cell damage and have strong anticancer activities [49,50]. Due to the presence of redox property and presence of conjugated ring structures and carboxylic group which inhibits lipid peroxidation [51]. The traditional uses such as anticancerous, antiinflammatory, antibacterial, antifungal, antimalarial, antmitogenic, emetic, anticonvulsant, sedative, insecticidal, and urine stimulant. It also has antiviral (against Herpes simplex), cardiotoxic, digestive stimulant, nervines, febrifuge, vermifuge, pediculicide, and analgesic properties. The extracts of this plant screen for antiparasitic, astringent, antihemorrhage, antidepressant and cytotoxic activities. Aqueous extracts of leaves and seeds show high content of proteins, phenols, non-enzymatic components such as vitamin-C and vitamin-E, enzymatic components such as superoxide dismutase and catalase was having high antioxidant power. Aqueous extracts of A. muricata exhibit an antibacterial effect. Methanolic extracts of A. muricata shows potent anticarabolic activity by reducing serum total cholesterol, low-density lipoprotein (LDL) and very LDL and a significant increase in high-density lipoprotein and antiatherogenic index [52]. A. muricata leaf ethanol extract has hypoglycemic and hypolipidemic effects [53]. Tannins are useful in preventing cancer as well as treatment of inflamed or ulcerated tissues. Saponins can react with cholesterol-rich membranes of cancer cells; thereby inhibit their growth and viability [54].

A. cherimola L.

Many pharmacological activities and medicinal applications of A. cherimola are widely known. Various extracts like ethanolic, methanolic, and dimethyl formamide of A. cherimola fruits possess concentration dependent free radical scavenging activity. The antioxidant activity of leaf extract in streptozotocin (STZ) induced hyperglycemia in rats. The leaf extract is responsible for stimulates the insulin release and observed restoration of blood glucose level. The antihyperglycemic activity of the methanolic extract of leaves was comparable with glibenclamide, a standard hypoglycemic drug. The methanolic extract of leaves possesses considerable hypoglycemic activity in normal rats. The leaf extract shows antimicrobial activity against Escherichia coli. Volatile compound (cherimolacyclopeptide E) of this plant was studied for its antimicrobial activity. From the methanolic extracts of the leaves, a pure compound is isolated which exhibits antiviral activity against herpes simplex virus Type 2 viruses. The cytotoxic compounds such as annonolin and annoncherimolin were isolated from the seeds, collected in Peru. Annonomol was selectively cytotoxic against the human prostate tumor cell line (PC-3), when compared with adriamycin. Annoncherimolin possesses cytotoxic potencies when compared with adriamycin in the breast (MCF-7) and colon (HT-29) cancer cell lines. The effect of ethanol extracts from leaf was studied on bovine kidney cells (Madin-Darby bovine kidney (MDBK)) and human larynx epidermoid carcinoma cells (Hep-2). The ethanol extract from leaves possesses significant antitumor activity in vitro against MDBK and Hep-2 cells. Bencean extract of leaves produces antioxidant actions in mice. Methanolic extracted seeds were examined for antiparasitic activity against Entamoeba histolytica, Nippostrongylus brasiliensis, Molinema dassetae, and Artemia salina. The acetogenins isolated from the leaves which inhibit the larvae of M. dassetae [55].

A. reticulata L.

A. reticulata leaf extract shows high activities in quenching 1,1-diphenyl-2-picrylhydrazil and superoxide radicals in plant [56]. Annonaceous acetogenins are a group of phytoconstituent isolated from plants, have potent antineoplastic agents. Actogenins are efficient cytotoxic inhibitors of the mitochondrial nicotinamide adenine dinucleotide: Ubiquinone oxidoreductase (complex I of the respiratory chain). Seeds of A. reticulata contains squamocin which has cytotoxic constituent for mostly all the cancer cell lines tested [57,58]. In ethanol extracts, in vitro inhibition toward the vero cell line proliferation was found to be lower when compared with cancer cell lines [59]. A. reticulata leaves show in vitro cytotoxic and human recombinant carapase inhibitor effect [60]. Hence, A. reticulata has potent chemopreventive agent in cancer therapy. The aqueous leaf extract has anthermantic activity [61]. Leaves of A. reticulata can be used in the treatment of inflammatory diseases, and potent new anti-inflammatory agents [62]. Leaves of A. reticulata possess potent glucose lowering effect. The glucose lowering activity is more of corrective in nature than disruptive [63]. By using roots, tea is prepared and used as a treatment for fevers and the bark is used as a powerful astrigent for antidysenteric and vermifuge [52].

A. squamosa L.

Terpenoids, flavonoids, alkaloids, and tannins possess more antioxidant activities that can be used in the treatment of many diseases, including cancer and possess potent antitumor properties [64]. A. squamosa Linn. is used as an antioxidant, antibacterials, hepatoprotective, cytotoxic activity, gene toxicity, antitumor activity, antlice agent. A. squamosa leaves found to lower considerable fasting plasma glucose level in STZ, nicotinamide induced Type 2 diabetic rats in the aqueous extract [65]. A. squamosa contains flavonoids which are responsible for antibacterial activity against bacterial strains [66]. A. squamosa leaf analysed for blood glucose, hemoglobin, glycosylated hemoglobin, plasma insulin, antioxidant enzymes and lipid peroxidation in liver and kidney to STZ-induced diabetic rats. A. squamosa regulates the blood glucose level, increases the plasma insulin, lipid metabolism, and prevents diabetic problems from lipid peroxidation and antioxidant systems in experimental diabetic rats [61]. A. squamosa seeds possess antitumor activity in vivo against AD-5 tumor in the aqueous extracts [67]. A. squamosa extracts have the property of induction of apoptosis for certain types of cancerous cells [68]. A. squamosa bark extracts have antitumorogenic effect by modulating the status of lipid peroxidation and antioxidants in 7,12-dimethylbenz[a]anthracene painted hamsters [69]. A. squamosa has hepatoprotective activity and could be an effective remedial for chemical-induced hepatic damage [70]. Annona species are potent antimosquito agents [71]. The pure compound annonastatin-1 isolated from chloroform extract of the seeds of A. squamosa Linn. was tested for its pesticidal activity [72]. In mouse
Table 2: Pharmacological activities of Annona species - Annona muricata, Annona cherimola, Annona reticulate, Annona squamosa, and Annona senegalensis

Name of the plant	Pharmacological Activities
Annona muricata	Cytotoxicity and anti-hemolytic activity, antihyperglycemic activity, diabetes and B-cell integrity, hepatoprotective activity, anti-inflammatory activity, anticancer, antithrombosis, antiviral, antifungal, and anti-bacterial activity.
Annona cherimola	Antioxidant activity, anti-inflammatory activity, antitumor activity, antioxidant, and anti-inflammatory activity.
Annona reticulate	Antioxidant activity, anti-inflammatory activity, antitumor activity, antioxidant, and anti-inflammatory activity.
Annona squamosa	Cytotoxicity activity, insecticidal activity, antifungal activity, and antiallergic activity.
Annona senegalensis	Antimicrobial activity, anti-inflammatory activity, antimarial activity, in vivo antitrypanosomal activity, anti-snake venom activity, anticoagulant activity, antinociceptive activity, and antihypertensive activity.

CONCLUSION

The family Annonaceae has several pharmacological activities such as antimicrobial, anti-inflammatory, antioxidant, antitumor, and anti-inflammatory activities. Annona muricata, Annona cherimola, Annona reticulate, and Annona squamosa are examples of species with such activities.

REFERENCES

1. Moghadamoussi S, Fadaneinab M, Nikzad S, Mohan G, Ali H, Kadir H. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins and biological activities. Int J Mol Sci 2015;16:15625-58.
2. Natural Resources Conservation Service (NRCS). Plants Profile Annona squamosa. L. United States: Department of Agriculture; 2008. p. 4-7.
3. Germplasm Resources Information Network (GRIN). Taxonomy for Plants. USDA, ARS, National Genetic Resources Program; 1997. p. 7-11.
4. Wunderlin R, Hansen B. Synonyms of Annona squamosa. Atlas Florida Plants 2008;4(2):24-7.
5. Kumar AS, Venkataramanamma V, Saibabu VN. Phytochemical and phytotherapeutic properties of Annona squamosa, Annona reticulata and Annona muricata: A review. Asian J Plant Sci Res 2015;5(8):28-33.
6. Orwa C, Mutua A, Kindi J, Jamnadass R, Anthony S. Agroforestry Database: A Tree Reference and Selection Guide version 4.0. 2009 Available from: http://www.worldagroforestry.org/sites/treedbs/treedatabases.asp.
7. Adewole SO, Caxton-Martins EA. Morphological changes and phytochemical analysis of leaves of Annona muricata. African Journal of Biotechnology. 2002. p. 386-93.
8. Sobiya DR, Jannet JV, Aiyavu C, Panneerselvam K. The hepatoprotective effect of alcoholic extract of Annona squamosa leaves on experimental liver injury in Swiss albino mice. Int J Integr Biol 2009;5(3):182-6.
9. CSIR. The Wealth of India. Raw Materials. Vol. I. A revised edition. New Delhi: Publications and Information Directorate Council of Scientific and Industrial Research; 1985.
10. Chetty KM, Sivaji K, Tulasi Rao K. Flowering Plants of Chittoor district, Andhra Pradesh, India. Vol. 169. Tirupati: Students offset Printers; 2008. p. 201.
11. Palgrave KC. Trees of Southern Africa. Cape Town: Struik Publishers; 2002.
12. Adewole, S, Ojewole J. Protective effects of Annona muricata Linn. (Annonaceae) leaf aqueous extract on serum lipid profiles and oxidative stress in hepatocytes of streptozotocin-treated diabetic rats. Afr J Tradit Complement Altern Med 2009;6:30-41.
13. Wu FE, Gu ZM, Zeng L, Zhao GK, Zhang Y, McLaughlin JL, et al. Two new cytotoxic monoterpenoidrifuranos Annonaceous acetogenins, amomarinus A and B, from the leaves of Annona muricata. J Nat Prod 1995;58(6):830-6.
14. Sahapra S, Gonzalez MC, Hoqueemiller R, Zafra-Polo MC, Cortes D. Annonasenegalensis and angalane: Two cytotoxic monoterpinedrafuranosgenetin from Annona senegalensis and Annona cherimola. Phytochemistry 1996;42(1):103-7.
15. Amoo IA, Emenike AE, Akpambang VO. Compositional evaluation of Annona cherimola (Custard apple) fruit. Trends Appl Sci Res 2008;2:216-20.
16. Himesh S, Akand S, Sarvesh S. Quantification of ascorbic acid in leaves of Annona squamosa. Int J Pharm Pharm Sci 2011;4(3):144-7.
17. Bambaata S, Aliyu B. A survey of major ethno medicinal plants of Kano North, Nigeria, their knowledge and uses by traditional healers. Bayero J Pure Appl Sci 2011;4(2):28-34.
18. Ofakwu R, Ayooba A, Akwuobu C. Medicinal plants used in the management of tuberculosis in humans and animals by Idoma tribe of North Central Nigeria. Niger Vet J 2008;29(2):25-30.
of chicken pox: A case study of Giwa local government, Kaduna state.

21. Afuoh B, Opara U, Adu B, Ibiam J. An experimental study on the effect of Annona squamosa L. leaves on experimental diabetic rat model. Asian J Pharmac Clin Res 2017;10(7):68-75.

22. Suresh K, Mamoharan S, Panjamurthy K, Kavitak K. Chemopreventive and chemotherapeutic effects of Annona muricata L. leaf ethanolic extract. Int J Pharm Pharm Sci 2017;9(3):45-52.

23. Pourmorad F, Hosseininelir SJ, Vafeiandeh AR, Anjum A, Moghaddam M, Ghaieri N. Hepatoprotective herbs- A review. Int J Res Pharm Sci 2012;3(1):1-6.

24. Suresh HM, Shivakumar B, Shivakumar SI. Inhibitory potential of the fruit of Annona muricata L. leaves on experimental diabetes. Phytomed 2011;2:439-47.

25. Shirwaikar A, Rajendran K, Kumar CD, Bodla R. Antidiabetic activity of aqueous leaf extract of Annona reticulata Linn. Int J Life Sci Biotechnol Pharm Res 2016;7(2):21-3.

26. Madhuri S, Pandey G. Some anticancer medicinal plants of foreign species. In: Lost Crops of Africa: Vol. III. Washington DC: National Academic Press; 1988. p. 135-72.

27. In: Amudha and Vanitha Pers. Plante Med Phytother 1984;18:36-45.

28. T. K. Amudha and V. Vanitha. Characterization of amino acids in the leaf morphs of Annona muricata L. leaves. J Sci Food Agric 1956;7:203.

29. Ekundayo O, Oguntoye B. Composition of the essential oils of Annona senegalensis Var. Senegalensis. Plant Med 1986;52:202-4.

30. Adesosan EO, Durum AO. Anti-infective and antibiotic principles of Annona senegalensis. Phytochemistry 1976;15:1311-2.

31. Pourmorad F, Hosseininelir SJ, Shahabimajd N. Antioxidant activity, phenol and flavonoid content of some selected Iranian medicinal plants. Afr J Biotechnol 2006;5:1142-5.

32. Okechukwu PC, Okwesili FC, Parker EI, Abubakar B, Emmanuel CO, Christian EO. Phytochemical and acute toxicity studies of Moringa oleifera ethanol leaf extract. Int J Life Sci Biotechnol Pharm Res 2012;2(2):66-71.

33. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. The relative activities of plant-derived phenolic flavonoids. Free Radical Res 1995;22:375-83.

34. Jyothi BA, Venkatesh K, Chakrapani P, Rani AR. Phytochemical and pharmacological potential of Annona cherimoloides A review. Int J Phytomed 2011;3:430-47.

35. Suvit E, Nuiwatkul W, Wijayant D, Novianty DR. Hypoglycemic and hypolipidemic effects of Annona muricata L. leaf ethanol extract. Int J Pharm Sci 2017;9(3):170-4.

36. Roa R, Babu M, Rao MR. Saponins as anti-carcinogens. J Nutr Food Sci 2005;125:717-24.

37. Okahle S, Akpan E, Fatokun OT, Eseibo KV, Eseivo B, Kunkele OF. Annona senegalensis Persoon (Annonaceae): A review of its ethnopharmacological uses, biological activities and phytochemicals. J Pharm Phyc Chem 2016;5(2):211-9.

38. Baskar R, Rajeswari V, Kumar TS. In vitro antioxidant studies in leaves of Annona species. Indian J Exp Biol 2007;45(5):480-5.

39. Yuan SS, Chang HL, Chen HW, Yeh YT, Kao YH, Lin KH, et al. Annonacin, a mono-tetrahydrofururan acetogenin, arrests cancer cells at the G1 phase and causes cytotoxicity in a Bax- and caspase-3-related pathway. Life Sci 2003;72(25):2853-61.

40. Madhuri S, Pandey G. Some anticancer medicinal plants of foreign origin. Curr Sci 2009;96:779-83.

41. Shirwaikar A, Rajendran K, Kumar CD, Bodla R. Antidiabetic activity of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore Med J 2006;47(8):670-5.

42. Chang TD, Kuo PC, Huang CJ, Hung NH, Huang BS, Yang ML. Chemical constituents from the Leaves of Annona squamosa L. and their inhibitory effects on no production. Molecules 2013;18:4477-86.

43. Rout SP, Kar DM, Mohapatra SB, Swain SS, Chatterjee S. In vitro anti-cancer activity of Annona muricata Linn. on human tumour cell lines: Role of reactive oxygen species generation of free radicals and induction of apoptosis. Indian J Biochem Biophys 2004;41:167-72.

44. Shrestha HM, Shivakumar B, Shivakumar SI. Inhibitory potential of the ethanol extract of Annona squamosa Linn against melanoma tumor. Int J Nan Pharm 2011;2:168-72.

45. Mondal S, Mondal N, Mazumder U. In vitro cytotoxic and human recombinant caspase inhibitory effect of Annona reticulata leaves. Indian J Pharm Sci 2007;69:253-4.

46. Kaleem M, Asif M, Ahmed QU, Bano B. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats. J Ethnopharmacol 2004;91(1):171-5.

47. Padhi LP, Panda SK, Satapathy SN, Dutta SK. In vitro evaluation of antibacterial potential of Annona squamosa Linn. and Annona reticulata L. from Simlipal biosphere reserve, Orissa, India. J Agric Technol 2011;7(1):133-6.

48. Pardhasaradhi BV, Reddy M, Murukan AR, Kumar AI, Khar A. Antitumour activity of Annona squamosa seed extracts is through the generation of free radicals and induction of apoptosis. Indian J Biochem Biophys 2004;41:167-72.

49. Ashok K, Pardhasaradhi BV, Madhumita R, Murukan AR, Leela AK. Differential cytoxic effects of Annona squamosa seed extracts on human tumour cell lines: Role of reactive oxygen species and glutathione. J Biosci 2005;30(2):237-44.

50. Suresh K, Mamoharan S, Panjamurthy K, Kavitak K. Chemopreventive and anti-lipidperoxidative efficiency of Annona squamosa bark extract. Pak J Biol Sci 2006;9(4):2600-5.

51. Mohamed TS, Madhusudana CC, Ramkant S, Rajan VS, Makhesh K, Gauthaman K. Hepatoprotective herbs- A review. Int J Res Pharm Sci 2010;1(1):1-5.

52. Joseph MJ, Esther J, Joseph ON. Mosquito larvicidal and cytototoxic activities of 3 Annona species and isolation of active principles. J Med
72. Ekramul H, Motiur R, Ekramul MI, Parvin MS. Pesticidal activity of pure compound annotemoyin-1 isolated from chloroform extract of the plant *Annona squamosa* Linn. Against *Tribolium castaneum* (Herbst). Pak J Biol Sci 2003;6(12):1088-91.

73. Panda S, Kar A. *Annona squamosa* seed extract in the regulation of hyperthyroidism and lipid-peroxidation in mice: Possible involvement of quercetin. Phytomedicine 2007;14(12):799-805.

74. Ahir A, Satti GM, Khalid SA. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on *Maytenus senegalensis* (Lam.) Exell J Ethnopharmacol 1999;64(3):227-33.

75. Mishar A, Dogra JV, Singh JN, Jha OP. Post-coital antifertility activity of *Annona squamosa* and *Ipomoea fistulosa*. Planta Med 1979;35(3):283-5.

76. Souza MC, Bevilaqa CM, Morais SM, Cicero TC. Anthelmintic acetogenin from *Annona squamosa* L. seeds. Annu Brazil Acad Sci 2008;80(2):271-7.