A new species (*Begonia giganticaulis*) of Begoniaceae from southern Xizang (Tibet) of China

Dai-Ke Tian\(^{1,2}\), Wen-Guang Wang\(^3\), Li-Na Dong\(^4\), Yan Xiao\(^{1,2}\), Min-Min Zheng\(^{1,2,5}\), Bin-Jie Ge\(^{1,2}\)

\(^1\) Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, 3888 Chenhua Road, Songjiang, Shanghai 201602, China
\(^2\) Shanghai Key Laboratory for Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, 3888 Chenhua Road, Songjiang, Shanghai 201602, China
\(^3\) Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
\(^4\) Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China
\(^5\) University of Chinese Academy of Sciences, Beijing 10049, China

Corresponding author: Dai-Ke Tian (dktian@cemps.ac.cn)

Abstract

Begonia giganticaulis, a huge new species in *Begonia* sect. *Platycentrum* of Begoniaceae from southern Xizang (Tibet) of China, is described. Morphologically, it is mostly similar to *B. longifolia* and *B. acetosella*, but clearly differs from the former mainly by its dioecious and taller plants, sparse hairs on abaxial veins, longer inflorescence, unique shape of fruits, and differs from the latter mainly by its late and longer flowering time, 6-tepals of female flower and 3-loculed ovary. The phylogenetic analyses also support the separation of the new species from other taxa. Based on the current data, its conservation status is assigned to Endangered (B2a) according to the IUCN Red List Categories and Criteria.

Keywords

Conservation status, molecular evidence, morphology, southern Tibet, taxonomy

* The authors contributed equally.

Copyright Dai-Ke Tian et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Zangnan (southern Tibet) of China is located to the south of the Himalayas, including most parts of Cona, Lhünzê, Mêdog and Zayü counties, and some smaller parts of Nang and Mainling counties (Liu 2019). This region is very warm and rainy because of the southwest monsoon carrying heavy water and heat from the Indian Ocean. Owing to high average annual precipitation and high-proportion of forest coverage (Hao et al. 2010), the plant diversity is very high in Zangnan. However, this area still remains under-explored and needs more study in the future.

After a series of plant surveys recently, the authors have a better understanding of the diversity of Begonia in Tibet, particularly in its southern part (namely Zangnan) including Mêdog county. Up until now, 39 species and 4 varieties had been found in Tibet (Gu et al. 2007; Camfield and Hughes 2018; Tian et al. 2020) (Table 1). In addition, Begonia limprichtii Irmsch. (Irmscher 1922) was newly reported by Borah et al. (2021a) in southern Tibet, but this record is likely based on a wrong identification and further study is needed. Of these, 31 species and 3 varieties are distributed in Mêdog. Recently, after several field surveys in Mêdog, we found several new species and at least three natural hybrids. Here we described Begonia giganticaulis D.K.Tian & W.G.Wang sp. nov. from Mêdog, a new species of huge plant size, which is morphologically similar to both B. longifolia Blume (Blume 1827) and B. acetosella Craib (Craib 1912). The morphological differences of the three species are compared, and the new species is also supported by molecular evidence.

Material and methods

Morphological analysis

The field surveys were conducted on habitat, distribution, population size, morphology and specimen collection of the new species. Diagnosis of the morphological difference between the new species and its similar species was based on literature review, examination of herbarium specimens, and observation of both wild and cultivated plants.

Phylogenetic analysis

The treatment on sections of Begonia follows Shui et al. (2019). To ascertain the relationship of the new species within sect. Platycentrum (Klotzsch) A.DC. (de Candolle 1859), two female and three male individuals were sampled, and three individuals of B. longifolia, two individuals of B. acetosella, and three individuals of B. acetosella var. hirtifolia Irmsch. (Irmscher 1939) were sampled and sequenced. 13 taxa within sect. Platycentrum were selected based on Moonlight et al. (2018) to ascertain the phylogenetic relationship of the new species. Begonia cavaleriei H.Lév. (Léveille 1909) from sect. Coelocentrum Irmsch. (Irmscher 1939) was used as outgroup. All
Table 1. A checklist of *Begonia* species in Tibet.

Species	Reference	County
Begonia aborensis Dunn	Dunn 1920	Médog
Begonia acetotella Craib	Craib 1912	Médog
Begonia annulata K.Koch	Koch 1857	Médog
Begonia asperifolia Irmsch.	Irmscher 1927	Bomê, Zayû, Lhûn-zê, Médog
Begonia burkiiii Dunn	Dunn 1920	Médog
Begonia cathcartii Hook.f. & Thomson	Hooker 1855	Zayû
Begonia dinica Buch.-Ham. ex D.Don	Don 1825	Dinggyé
Begonia disformis (Irmsch.)	Leong et al. 2015	Médog
Begonia flagellaris Hara	Hara 1973	Gyîrong, Nyalam
Begonia flaviiflora var. flaviiflora Hara	Hara 1970	Médog
Begonia flaviiflora var. gamblei (Irmscher) Golding & Karegeannes	Golding and Karegeannes 1984	Médog
Begonia giganticaulis D.K.Tian & W.G. Wang sp. nov.	In this study	Médog
Begonia grandis Dryand.	Dryander 1791	Zayû
Begonia griffithiana (A.DC.) Warb.	Warburg 1894	Médog
Begonia bandelii Irmsch.	Irmscher 1921	Médog
*Begonia batacru Buch.-Ham. ex D.Don	Don 1825	Médog, Cona
Begonia iridescent Dunn	Dunn 1920	Médog, Zayû
Begonia josephi A.DC.	de Candolle 1859	Cona, Dinggyé, Lhûn-zê, Médog, Yadong
Begonia kerkarmonyingensis Taram, D.Borah & M.Hughes	Taram et al. 2021	Médog
Begonia labordei H.Lév.	Léveillé 1904	Zayû
Begonia limprichtii Irmsch.	Borah et al. 2021a	Médog
Begonia longifolia Blume	Blume 1827	Médog
Begonia medogensis J.W.Li, Y.H.Tan & X.H.Jin	Li et al. 2018	Médog
Begonia megapetala A.DC.	de Candolle 1859	Zayû
Begonia nepalensis (A.DC.) Warb.	Warburg 1894	Cona
Begonia ovatifolia A.DC.	de Candolle 1859	Médog
Begonia oyuniae M.Taram & N.Krishna	Taram et al. 2020	Médog
Begonia plumata var. plumata D.Don	Don 1825	Médog
Begonia palimata var. houingiana (Champion ex Bentham) Golding & Karegeannes	Golding and Karegeannes 1984	Médog
Begonia palimata var. khiziana (Irmsch.) Golding & Kareg	Golding and Karegeannes 1984	Médog
Begonia picta Sm.	Smith 1805	Gyîrong, Médog, Nyalam
Begonia pseudoheydeyi Y.M.Shui & W.H.Chen	Chen et al. 2019	Médog
Begonia rex Putz.	Putzev 1857	Médog
Begonia roxburghii (Miq.) A.DC.	de Candolle 1864	Médog
Begonia scintillans Dunn	Dunn 1920	Médog
Begonia shilendrae Rekha Morris & P.D.McMillan	Morris and McMillan 2012	Cona
Begonia sikkimensis var. sikkimensis A.DC.	de Candolle 1859	Médog
Begonia sikkimensis var. kamengensis* Rekha Morris, P.D.McMillan & Golding ex Golding	Golding 2009	Cona
Begonia sikkimensis D.Borah, Taram & Wahlsteen	Borah et al. 2021b	Médog
Begonia sikkimensis var. kamengensis* Rekha Morris, P.D.McMillan & Golding ex Golding	Golding 2009	Cona
Begonia shilendrae Clarke	Clarke 1879	Médog
Begonia tesaricarpa C.B.Clarke	Clarke 1879	Médog
Begonia thomsonii A.DC.	de Candolle 1859	Médog
Begonia xanthina Hook.f.	Hooker 1852	Médog
Begonia zhongyangiana W.G.Wang et S.Z.Zhang	Wang et al. 2019	Médog

The voucher specimens were deposited in the herbarium of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences (HITBC). For DNA sequencing, the total genomic DNA was extracted from silica-dried leaves by a modified CTAB
Table 2. Sampled taxa and GenBank accession numbers of *Begonia giganticaulis* and the related taxa used for phylogenetic analysis.

Taxa	Collector, Voucher (Herbarium)	Origin	ITS	rpL16	ndhA	References
B. acetosella Craib	Wang, W.G., WWG004 (HITBC)	Mengla, Yunnan, China	MW690105	MW658199	MW658212	In this study
B. acetosella Craib	Wang, W.G., WWG005 (HITBC)	Mengla, Yunnan, China	MW690106	MW658200	MW658213	In this study
B. acetosella var. hirtifolia	Wang, W.G., WWG0261 (HITBC)	Ruili, Yunnan, China	MW690107	MW658204	—	In this study
B. acetosella var. hirtifolia	Wang, W.G., WWG0262 (HITBC)	Ruili, Yunnan, China	MW690108	MW658202	MW658214	In this study
B. acetosella var. hirtifolia	Wang, W.G., WWG0300 (HITBC)	Ruili, Yunnan, China	—	MW658203	MW658215	In this study
B. apiota Blume	—	—	—	—		Chiang (unpublished); Thomas et al. (2011)
B. balansana Gagnep.	—	—	—	—		Forrest and Holling-sworth (2003); Chung et al. (2014); Moonlight et al. (2018)
B. cathayana Hems.	—	—	—	—		Yang et al. (unpublished); Chung et al. (2014); Zhao (unpublished)
B. cavaleriei H.Lév.	—	—	—	—		Chung et al. (2014); Tong et al. (2019)
B. decora Stapf	—	—	—	—		Forrest and Holling-sworth (unpublished); Chung et al. (2014)
B. giganticaulis D.K.Tian & W.G.Wang	—	—	—	—		Forrest and Holling-sworth (unpublished); Chung et al. (2014); Moonlight et al. (2018)
B. handelii Irmsch.	Wang, W.G., WWG001 (HITBC)	Mengla, Yunnan, China	MW690102	MW658196	MW658209	In this study
B. hatacara Buch.-Ham. ex D.Don	—	—	—	—		Forrest and Holling-sworth (unpublished); Chung et al. (2014)
B. longifolia Blume	Wang, W.G., WWG001 (HITBC)	Mengla, Yunnan, China	MW690102	MW658196	MW658209	In this study
B. longifolia Blume	Wang, W.G., WWG002 (HITBC)	Mengla, Yunnan, China	MW690103	MW658197	MW658210	In this study
New species, *Begonia*

The chloroplast DNA *rpL16* intron, *ndhA* intron and the nuclear ribosomal DNA internal transcribed spacer (nrITS) region were used to infer the phylogenetic relationship of the new species. The *rpL16* intron were amplified by the primer *rpL16*-F and *rpL16*-R and sequenced by the primer *ndhA* intron the primer *ndhAX*1 and *ndhAX*2 (Thomas et al. 2011) were used. The nrITS region was amplified and sequenced by the primer 51NT and 26S1Rev (Clement et al. 2004). The sampled sequences were downloaded from NCBI and accession numbers were listed in Table 2.

Sequences of each DNA region were aligned by MUSCLE online (https://www.ebi.ac.uk/Tools/msa/muscle/, Madeira et al. 2019) and adjusted manually when necessary. Indels were treated as gap. For testing the congruence within *rpL16* intron, *ndhA* intron and nrITS, the analysis of the incongruence length difference (ILD) was performed with 100 replicates under default heuristic search using PAUP v.4.0a (Swofford 2002) and the phylogenetic trees were constructed based on each dataset. The p value was 0.40 and no conflict among each phylogenetic trees, indicating the congruence among these datasets (Farris et al. 1994).

The parsimony analysis was conducted using PAUP v.4.0 b10 (Swofford 2002). The Maximum Parsimony (MP) analysis was run using a heuristic search with 1, 000 replicates and tree-bisection-reconnection (TBR) with no reconnection limit. Bootstrap was used to assess the node support by 1000 replicates using TBR branch swapping. The Bayesian analysis was conducted using MrBayes v.3.1.2 (Ronquist and Huelsenbeck 2003) with 1, 000, 000 generations under the Markov chain Monte Carlo (MCMC) chains. The average standard deviation of split frequencies was 0.004210 after 1, 000, 000 generations. The consensus tree was constructed after burn-in 25% of the trees. The Posterior Probability (PP) was used to assess the branch supports.

Taxa	Collector, Voucher (Herbarium)	Origin	ITS	*rpL16*	*ndhA*	References
B. longifolia	Wang, W.G., WWG003 (HITBC)	Mengla, Yunnan, China	MW659019	MW658219	MW658211	In this study
B. nepalensis	—	—	AY753726	—	MH207257	Tebbitt et al. (2006); Moonlight et al. (2018)
(A.DC.) Warb.						
B. obovoides	—	—	—	—	—	Thomas et al. (2011)
Craib						
B. pavoidea	—	—	—	—	—	Thomas et al. (2011)
Ridl.						
B. pedatifida	—	—	—	—	—	Tong et al. (2019)
H.Lév.						
B. roxburghii	—	—	—	—	—	Forrest and Hollingsworth (2003); Thomas et al. (2011)
A.DC.						
B. versicolor	—	—	—	—	—	Forrest and Hollingsworth (unpublished); Chung et al. (2014); Thomas et al. (2011)
Irmsch.						
Results

Taxonomic treatment

Begonia giganticaulis D.K.Tian & W.G.Wang, sp. nov.
urn:lsid:ipni.org:names:77234844-1
Figs 1–4

Type. China. Xizang (Tibet) Autonomous Region: Mêdog county (墨脱县), Beibeng town (背崩乡), Baimu Xiri river (白母西日河), forest slope of river valley or water’s edge along stream, 29°21’9”N, 95°11’21”E, elev. 1320 m, 10 September 2020, Dai-Ke Tian, Fang Wen, Qing-Gong Mao, & Zhu Lu, TDK4773-A (holotype CSH! Barcode number: 0180561, ♀)

Diagnosis. The new species is mostly similar to *B. longifolia* and *B. acetosella*, but clearly differs from the former mainly by its dioecious (vs. monoecious), taller (to 4 m vs. less than 2 m) plants, longer (vs. shorter) inflorescence, and unique shape of fruits, and differs from the latter mainly by its taller (to 4 m vs. less than 2 m) plants, late and longer (Jun. to Oct. vs. Mar. to Apr.) flowering time, longer (6–20 mm vs. 5–12 mm) pedicel, 6 (vs. 4) tepals of pistillate flower and 3 (vs. 4)-loculed ovary (Table 3, Fig. 3).

Description. Herb perennial, evergreen, to 4 m tall, dioecious. Rhizome short, stout, nearly unbranched, reddish brown, to 12 cm thick. Stem erect, reddish brown or green, glabrous, internodes to 5 cm thick, with many longitudinally fusiform whitish spots, cross section of stem often reddish brown, nodes notably enlarged, to 7 cm thick, with unequally oval to round whitish spots, many shrubby branches on the upper part of main stem. Stipule long-triangular, light green or pinkish green, 9–25 × 2–8 mm, glabrous, margin entire, dorsal ridge pinkish, apex acuminate with arista 4–6 mm long. Petioles green, pink to red, glabrous, 7–22 cm long, 1–3 mm thick. Leaf blade ovate-lanceolate to lanceolate, 4–19 × 0.8–8 cm, adaxial green, muriculate to nearly glabrous, adaxial veins slightly concave; abaxial greyish green, veins usually red, convex, main veins sparsely and obliquely strigose; base obliquely cordate, margin shallowly and remotely denticate, apex long caudate; Inflorescence dichasial cyme, axillary, short, 3–5 cm long, unbranched to branched once, rachis glabrous, green, pinkish green to red, base usually red-brown, 7–15 mm long, 1–1.5 mm thick, 3–11 male flowers or 1–5 female per inflorescence. Bract often caducous, pinkish green, long triangular, glabrous, ca. 6 × 3 mm, apex acuminate; bracteoles smaller. Staminate flower: pedicel glabrous, white, whitish or pinkish green, 10–14 mm long, ca.1 mm thick; corolla 18–24 mm in diameter; tepals 4, subequal, glabrous, outer 2, obovate, 9–14 × 6–9 mm, apex obtuse, adaxially white and middle-upper part abaxially pink, or pure white for some individuals, longitudinal veins unapparent; inner 2, pure white, obovate to obovate-lanceolate, 8–13 × 5–7 mm, apex obtuse; androecium nearly actinomorphic, ca. 5 mm long, 6–7 mm in diam; stamens 48–60, filaments free, 1–2 mm long; anther yellow, 2–3 mm long, apex obtuse or nearly so. Pistillate flower: pedicel white or green-white,
New species, *Begonia*

Figure 1. Habitat and large-sized plant of *Begonia giganticaulis* D.K. Tian & W.G. Wang, sp. nov. **A** habitat showing plants (arrows indicate) growing along stream bank **B** flowering plant growing along slope of valley **C** one of the tallest individuals with Dr. Dai-Ke Tian. (Photos **A** by Dai-Ke Tian **B** by Shi-Wei Guo **C** by Qing-Gong Mao).
Figure 2. Morphology of *Begonia giganticaulis* D.K. Tian & W.G. Wang, sp. nov. **A** one of the single tallest plants cut into four sections **B** main stem base **C** stems showing colour of nodal cross-sections **D** main stem with much expanded node and whitish-green lines or spots **E** expanded node on terminal branch **F, G** male plant branches showing inflorescences and different colours **H** female branches **I** adaxially (left) nearly glabrous and abaxially sparse hairs on veins (right, arrows indicate) on blade surfaces **J** stipules showing shape and colour. (Photo **F** by Wen-Guang Wang; others by Dai-Ke Tian).
Figure 3. Flower and fruit morphology of *B. giganticaulis* compared with its close species *B. longifolia* and *B. acetosella*. **A–H** *Begonia giganticaulis* **A** staminate flowers with pinkish outer tepals **B** staminate flowers with white tepals **C, D** pistillate flower **E** ovary sections showing different colour **F** fruits on branch **G, H** dorsal and front views of fruits **I–K** *B. longifolia* **I** flowering and fruiting branch **J** fruits showing short horns **K** ovary dissection **L–O** *B. acetosella* **L** staminate flower **M** pistillate flower **N, O** fruits with short horns or wings. (Photos **C** by Shi-Wei Guo **E** (left) **L, M & O** by Wen-Guang Wang; others by Dai-Ke Tian).
Figure 4. Illustration of Begonia giganticaulis D.K. Tian & W.G. Wang, sp. nov. (Drawn by Mr. Zhi-Min Li) A male flowering branches B female flowering branches C main stem line spots, much expanded node and internode base D expanded node and internode base on small upper branches E leaf blade F leaf (abaxial), showing sparse hairs on veins G stipule H staminate flowers I, J pistillate flower K side view of androecium L stamens M ovary and stigmas N fruit O dissection of ovary showing placentae.
New species, *Begonia*

6–12 mm long, 0.8–1 mm thick; corolla 20–25 mm, tepals 6, rarely 4, glabrous, outer 3 (rarely 2), obovate or long obovate, thick and rigid, 12–18 × 7–10 mm, adaxial surface nearly white, distinctly concave, abaxially pink on middle-upper part, inner 3 (rarely 2), obovate-lanceolate to oblanceolate or long elliptical, slightly narrower than outer tepals, 10–19 × 6–8 mm, white, glabrous, apex obtuse; styles + stigmas 5 mm long, 7–8 mm wide; styles 3, free; stigmas yellow, nearly U-shaped, each side spirally twisted 1.5 circles; ovary pink or green, with white convex spots; placentation axile, 3-loculed, each placenta 2-branched. **Peduncle** green to pinkish green, glabrous, 8–12 mm long, ca. 1 mm thick. **Fruit** red, pink or green, glabrous, triangular-gyroscopic, 8–11 × 1–12 mm wide, concave between two placentas, wingless to occasionally short ridged, apex with beak 3–4 mm long. Flowering Jun.–Oct., fruiting Jul.–Dec.

Additional specimen examined. **China. Xizang:** Mêdog County (墨脱县), Beibeng Town (背崩乡), Baimu Xiri River (白母西日河), forest slope of river valley or water’s edge along stream, 29°21’9”N, 95°11’21”E, elev. 1320 m, 10 September 2020, Dai-Ke Tian, Fang Wen, Qing-Gong Mao, & Zhu Lu TDK4773-B (paratype CSH!), △; 29°20’0”N, 95°10’49”E, elev. 1110 m, 10 September 2020, Dai-Ke Tian, Fang Wen, Qing-Gong Mao, & Zhu Lu TDK4765-A, TDK4765-B, (paratype CSH!); 29°18’32”N, 95°10’38”E, elev. 980 m, 10 September 2020, Dai-Ke Tian, Fang Wen, Qing-Gong Mao, & Zhu Lu TDK4777 (paratype CSH!); near Ani Bridge (阿尼桥), 29°16’42”N, 95°10’49”E, elev. 810 m, 3 July 2020, Wen-Guang Wang, You-Yun Li, Xing-Da Ma, & Jian-Yong Shen, WWG 2014 (paratype, HITBC!), WWG 2015 (paratype HITBC!); elev. 1100 m, 16 September 1974, anonymous 2608 (paratype PE!); elev. 800–1400 m, 30 June 1980, Wei-Lie Chen 10809 (paratype PE!); near No. 2 Bridge, 29°16’42”N, 95°10’49”E, elev. 810 m, 1 October 2017, Dai-Ke Tian, Yan Xiao, Xin Zhong, Li-Zhi Tian & Zhu Lu TDK3429 (paratype CSH!); Beibeng to Hanni (汗密), elev. 840 m, 7 August 2010, South Tibet Expedition Team (藏南队), Xiao-Hua Jin, Shu-Dong Zhang, Zhong-Yang Li, Bao-Cheng Wu, Xian-Yun Mu, Jing Li & Wei-Tao

Table 3. Morphological comparison of *Begonia giganticaulis*, *B. longifolia* and *B. acetosella*.
Character
Plant sexuality
Height (m)
Petiole length (cm)
Leaf blade surface
Inflorescence peduncle length (mm)
Flower number
Tepal number of pistillate flower
Tepal colour
Ovary
Pedicel length (mm)
Male flower
Female flower
Fruit horn or wing
Flowering time
Distribution and habitat. Currently known from at least two localities in Mêdog, southern Xizang (Tibet), China (Fig. 5). It grows on the slopes under forest along streams, elevation 450–1400 m.

Conservation status. *Begonia giganticaulis* is currently found in at least two localities in Mêdog of Tibet. Additional populations might be discovered when more surveys are conducted in China-India border region. However, based on current data, it should be categorised as Endangered: B2a (IUCN 2019) due to < 500 km² area of occupancy with severely fragmented habitat consisting of < 5 known populations totally under 1000 individuals by estimation.

Jin, STET2304 (paratype PE!); Hanmi to Maniweng (马尼翁), elev. 800–1000 m, 6 August 1974, Qingzang Team 74-4114 (paratype PE!); elev. 1200 m, 24 June 1983, Bo-Sheng Li & Shu-Zhi Chen 05229 (paratype PE!); Maniweng to Ani Bridge, elev. 700–1000 m, 3 August 1972, Tibet Expedition Team, Institute of Biology 1631 (paratype HNWP!).
New species, Begonia

Etymology. The specific epithet refers to the huge (very tall and thick stem) plant size of the new species, which is the tallest begonia in Asia.

Molecular systematic relationship

We obtained 12 nrITS, 13 rpL16 intron, and 13 ndhA intron of the new species and related Begonia taxa. In order to reconstruct the phylogenetic relationship of the new species, 13 taxa within sect. Platycerium were included and B. cavaleriei from sect. Coelocentrum was selected as outgroup. In total, the matrix was composed of 26 accesses and contained the 962 bp rpL16 intron, the 1109 bp ndhA intron and the 672 bp nrITS sequence. Of the total 2743 characters, 132 were parsimony informative.

Based on MP analysis, the new species was clustered with B. acetosella and B. acetosella var. hirtifolia (Fig. 6A), while it was clustered with B. longifolia under BI analysis (Fig. 6B). Both MP and BI analyses showed that all five individuals of the new species were clustered together and separated from other taxa (Fig. 6A, BS: 100%; Fig. 6B, PP:1.00).

Notes. – The earliest specimen of Begonia giganticaulis was collected in 1972 between Maliweng and Ani Bridge, Mêdog, Tibet, China. This species is similar to B. acetosella in appearance when its flowers are unavailable for observation, therefore, it was misidentified (24 June 1983, Bo-Sheng Li & Shu-Zhi Chen 05229, PE! was wrongly identified as B. acetosella by C.Z. Gu in March 2004). Also, due to its high similarity to B. longifolia particularly in morphology of flowers and fruits, B. giganticaulis was
wrongly labelled as *B. longifolia* by Morris (2010) who found this species in southern Mêdog county.

Acknowledgements

The study was supported by the funds from National Natural Science Foundation of China (31570199, 31860048), the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0502), and Shanghai Administration Bureau of Landscape and City Appearance (F122416, G202401). The authors thank Dr. Qing-Gong Mao, Dr. Fang Wen, Mr. Li-Zhi Tian, Mr. Zhu Lu, Mr. Jian-Yong Shen, Mr. Xing-Da Ma and Mr. You-Yun Li, for supporting field survey, and Shi-Wei Guo for providing partial photos for use. The specimens from the Institute of Botany, Chinese Academy of Sciences were reviewed through Chinese Virtual Herbarium.

Reference

Blume CL (1827) Begoniaceae. R 7. In: Blume CL (Ed.) Enumeratio plantarum Javae. Vol. 1. van Leeuwen, Leiden.

Borah D, Taram M, Wahlsteen E (2021a) *Begonia limprichtii* Irmsch. (Begoniaceae) – a new record for India. Biodiversity Research and Conservation 61(2): 29–33. https://doi.org/10.2478/biorc-2021-0002

Borah D, Taram M, Wahlsteen E (2021b) A new *Begonia* species from Arunachal Pradesh, and some notes on *Begonia scintillans*. Taiwania 66(4): 450–454.

Camfield B, Hughes M (2018) A revision and one new species of *Begonia* L. (Begoniaceae, Cucurbitales) in Northeast India. European Journal of Taxonomy 396(396): 1–116. https://doi.org/10.5852/ejt.2018.396

Chen WH, Guo SW, Radbouchoom S, Dong WK, Wang ZX, Xi HH, Shui YM (2019) A new berry-fruited species of *Begonia* (Begoniaceae) from Xizang (Tibet). Phytotaxa 407(1): 29–35. https://doi.org/10.11646/phytotaxa.407.1.5

Chung KF, Leong WC, Rubite RR, Repin R, Kiew R, Liu Y, Peng CI (2014) Phylogenetic analyses of *Begonia* sect. *Coelocentrum* and allied limestone species of China shed light on the evolution of Sino-Vietnamese karst flora. Botanical Studies (Taipei, Taiwan) 55(1): e1. https://doi.org/10.1186/1999-3110-55-1

Clarke CB (1879) Begoniaceae. In: Hooker JD (Ed.) Flora of British India 2: 635–636. https://biodiversitylibrary.org/page/37371521 [accessed 08.09.2021]

Clement WL, Tebbitt MC, Forrest LL, Blair JE, Brouillet L, Eriksson T, Swensen SM (2004) Phylogenetic position and biogeography of *Hillebrandia sandwicensis* (Begoniaceae): A rare Hawaiian relict. American Journal of Botany 91(6): 905–917. https://doi.org/10.3732/ajb.91.6.905

Craig WG (1912) Contributions to the Flora of Siam. Bulletin of Miscellaneous Information 15: 153–154. https://doi.org/10.5962/bhl.title.21865
New species, *Begonia*

de Candolle ALPP (1859) Mémoire sur la famille des Bégoniacées. Annales des Sciences Naturelles, Botanique, sér 4, 11: 93–149.

de Candolle ALPP (1864) Begoniaceae. In: de Candolle ALPP (Ed.) Prodromus systematis naturalis regni vegetabilis. Vol. 15(1): 266–408.

Don D (1825) Prodromus Florae Nepalensis. J. Gale Press, London, 256 pp. https://doi.org/10.5962/bhl.title.86 [accessed accessed 08.09.2021]

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.

Dryander JC (1791) On the genus of *Begonia*. Transactions of the Linnean Society of London, Botany 1: 163–164. https://doi.org/10.1111/j.1096-3642.1791.tb00396.x

Dunn ST (1920) Decades Kewensis: Plantarum Novarum in Herbario Horti Regii Conservatorum. Decas XCVI. Bulletin of Miscellaneous Information, Kew 1920(3): 108–111. http://biodiversitylibrary.org/page/11269649 [accessed March 2021] https://doi.org/10.2307/4120224

Farris JM, Kallersjo M, Kluge AG, Bult C (1994) Testing significance of congruence. Cladistics 10(3): 315–319. https://doi.org/10.1111/j.1096-0031.1994.tb00181.x

Forrest LL, Hollingsworth PM (2003) A recircumscription of *Begonia* based on nuclear ribosomal sequences. Plant Systematics and Evolution 241(3–4): 193–211. https://doi.org/10.1007/s00606-002-0033-y

Golding J (2009) Designation of the type for *Begonia sikkimensis* A.DC. var. kamengensis Rekha Morris, P.D. McMillan & Golding. The Begonian 76: e33.

Golding J, Karegeannes C (1984) *Begonia* nomenclature Notes, 7. Phytologia 54(7): 493–499. http://www.biodiversitylibrary.org/page/12978493#page/513/mode/1up [accessed March 2021]

Gu CZ, Peng CI, Turland NJ (2007) Begoniaceae. In: Wu CY, Raven PH (Eds) Flora of China (Vol. 13). (Clusiaceae through Araliaceae). Science Press & Missouri Botanical Garden, Beijing & St. Louis, Missouri. http://flora.huh.harvard.edu/china/mss/volume13/Begoniaceae.pdf

Hao XG, Liao XY, Hu XG, Xu HQ, Wu PF, Liu GY (2010) An important South Tibet place name pasighat should be marked on map of China. Journal of Geodesy and Geodynamics 30 Supp (I): 0164–0164.

Hara H (1970) New or noteworthy flowering plants from eastern Himalaya. Shokubutsu Kenkyu Zasshi 45(3): 91–95.

Hara H (1973) New or noteworthy flowering plants from eastern Himalaya. Shokubutsu Kenkyu Zasshi 48(12): 358–359.

Hooker JD (1852) *Begonia xanthina*. Curtis’s Botanical Magazine 78: tab. e4683. http://biodiversitylibrary.org/page/467300 [accessed March 2021]

Hooker JD (1855) Illustrations of Himalayan plants: chiefly selected from drawings made for the late J.F. Cathcart, Esq.re of the Bengal Civil Service / the descriptions and analyses by J.D. Hooker; the plates executed by W.H. Fitch. Reeve, London. https://doi.org/10.5962/bhl.title.355

Irmscher E (1921) Plantae novae sinenses, diagnosibus brevibus descriptae a Dr. Henry Handel-Mazzetti. Anzeiger der Akademie der Wissenschaften in Wien. Mathematische-naturwissenschaftliche Klasse 58: 24–27. http://biodiversitylibrary.org/page/27808647
Irmscher E (1922) *Begoniaceae*. In: Pax F (Ed.) Aufzählung der von Dr. Limpricht in Ostasien gesammelten Pflanzen. Repertorium Specierum Novarum Regni Vegetabilis. Beihefte 12: 440–441.

Irmscher E (1927) Beiträge zur kenntnis der ostasiatischen Begonien. Mitteilungen aus dem Institut für allgemeine Botanik in Hamburg 6(3): 343–360.

Irmscher E (1939) Die Begoniaceen Chinas und ihre Bedeutung für die Frage der Formbildung in polymorphen Sippen. Mitteilungen aus dem Institut für Allgemeine Botanik in Hamburg 10: 431–557.

IUCN (2019) Guidelines for using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Subcommittee. http://www.iucnredlist.org/documents/RedListGuidelines.pdf

Koch K (1857) Drei neue Schiefblatter oder Begonien. Berliner Allgemeine Gartenzeitung 25(10): e76.

Leong WC, Deng T, Sun H, Peng CI, Chung KF (2015) *Begonia difformis* comb. & stat. nov. (Sect. *Platycentrum*, Begoniaceae), a new species segregated from *B. palmata* D. Don. Phytotaxa 227(1): 83–91. https://doi.org/10.11646/phytotaxa.227.1.9

Léveillé H (1904) Bouquet de Fleurs de Chine. Bulletin de la Société d’Agriculture, Sciences et Arts de la Sarthe 39: 316–326. http://gallica.bnf.fr/ark:/12148/bpt6k453972s/f315.image

Léveillé H (1909) Decades Plantarum Novarum XVI., In: Fedde F (Ed.) Repertorium Specierum Novarum Regni Vegetabilis, V.7, Berlin, 20–21. https://doi.org/10.1002/fedr.19090070108 [accessed March 2021]

Li JW, Tan YH, Wang XL, Wang XW, Jin XH (2018) *Begonia medogensis*, a new species of Begoniaceae from western China and northern Myanmar. PhytoKeys 103: 13–18. https://doi.org/10.3897/phytokeys.103.25392

Liu DQ (2019) Study of the geographical names of historical maps in southern Tibet. Science of Surveying and Mapping 44(6): 291–295.

Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research 47(W1): W636–W641. https://doi.org/10.1093/nar/gkz268

Moonlight PM, Ardi WH, Padilla LA, Chung KF, Fuller D, Girmansyah D, Hollands R, Jaramonoz A, Kiew R, Leong WC, Liu Y, Madhardika A, Marasinghe LD, O’Connor M, Peng CI, Perez AJ, Phutthai T, Pullan M, Rajbhandary S, Reynel C, Rubite RR, Sang J, Scherberich D, Shui YM, Tebbitt MC, Thomas DC, Wilson HP, Zaini NH, Hughes M (2018) Dividing and conquering the fastest-growing genus: Towards a natural sectional classification of the mega-diverse genus *Begonia* (Begoniaceae). Taxon 67(2): 267–323. https://doi.org/10.12705/672.3

Morris R (2010) *Begonia acetosella* Craib and *Begonia longifolia* Blume giants among Indian Begonias. The Begonian 77: 6–9.

Morris R, McMillan PD (2012) *Begonia shilendrii* R.Morris & P.D.McMillan: A new species from.

Putzey JAAH (1857) *Begonia rex*. In: Van Houtte L (Ed.) Flores des Serres et des Jardins de l’Europe 12: 141–146. http://biodiversitylibrary.org/page/27803796 [accessed March 2021]
New species, *Begonia*

Ronquist E, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Shui YM, Chen WH, Peng H, Huang SH, Liu ZW (2019) Taxonomy of Begonias. Yunnan Publishing Group Corporation Yunnan Science & Technology Press, Kunming.

Smith JE (1805) Exotic botany. R. Taylor and Co, London.

Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Version 4.0b10. Sinauer Associates, Sunderland, MA.

Taram M, Borah D, Krishna N, Pradeep AK, Amrutha A, Hughes M (2020) *Begonia oyuniae* (*Begonia* sect. *Monophyllum*, Begoniaceae), a remarkable new species from Northeast India. Gardens’ Bulletin (Singapore) 72(1): 109–115. https://doi.org/10.26492/gbs72(1).2020-10

Taram M, Borah D, Hughes M (2021) *Begonia kekarmonyingensis* (Begoniaceae), a new species from Arunachal Pradesh, Northeast India. Phytotaxa 494(3): 268–272. https://doi.org/10.11646/phytotaxa.494.3.2

Tebbitt MC, Lowe-Forrest L, Santoriello A, Clement WL, Swensen SM (2006) Phylogenetic relationships of Asian *Begonia*, with an emphasis on Sections *Platycentrum*, *Sphenanthera* and *Leprosae*. Systematic Botany 31(2): 327–336. https://doi.org/10.1600/036364406777585784

Thomas DC, Hughes M, Phutthai T, Rajbhandary S, Rubite R, Ardi WH, Richardson JE (2011) A non-coding plastid DNA phylogeny of Asian *Begonia* (Begoniaceae): Evidence for morphological homoplasy and sectional polyphyly. Molecular Phylogenetics and Evolution 2011(3): 428–444. https://doi.org/10.1016/j.ympev.2011.05.006

Tian DK, Xiao Y, Li YC, Yan KJ (2020) Several new records, synonyms, and hybrid-origin of Chinese begonias. PhytoKeys 153(7): 13–35. https://doi.org/10.3897/phytokeys.153.50805

Tong Y, Tian DK, Shu JP, Xiao Y, Wang BM, Fu NF (2019) *Begonia yizhouensis*, a new species in *Begonia* sect. *Coelocentrum* (Begoniaceae) from Guangxi, China. Phytotaxa 407(1): 059–070. https://doi.org/10.11646/phytotaxa.407.1.9

Wang WG, Lang XA, Yang LL, Wu H, Zhang SZ (2019) *Begonia zhongyangiana*, a new species of *Begonia* (Begoniaceae) from western China. Phytotaxa 407(1): 51–58. https://doi.org/10.11646/phytotaxa.407.1.8

Warburg O (1894) Begoniaceae. In: Engler A, Prantl KAE (Eds) Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten, insbesondere den Nutzpflanzen, unter Mitwirkung zahlreicher hervorragender Fachgelehrten Teil 3: Abteilung 6 und 6a. Engelmann, Leipzig, 121–150. https://doi.org/10.5962/bhl.title.4635