On the Hecke eigenvalues of Maass forms

Wenzhi Luo, Fan Zhou

American Journal of Mathematics, Volume 141, Number 2, April 2019, pp. 485-501 (Article)

Published by Johns Hopkins University Press
DOI: https://doi.org/10.1353/ajm.2019.0011

For additional information about this article
https://muse.jhu.edu/article/718879/summary
ON THE HECKE EIGENVALUES OF MAASS FORMS

By WENZHI LUO and FAN ZHOU

Abstract. Let \(\phi \) denote a primitive Hecke-Maass cusp form for \(\Gamma_0(N) \) with the Laplacian eigenvalue \(\lambda_\phi = \frac{1}{4} + t_\phi^2 \). In this work we show that there exists a prime \(p \) such that \(p \nmid N, |\alpha_p| = |\beta_p| = 1 \), and \(p \ll (N(1 + |t_\phi|))^c \), where \(\{\alpha_p, \beta_p\} \) is the Satake parameter of \(\phi \) at \(p \), and \(c \) is an absolute constant with \(0 < c < 1 \). In fact, \(c \) can be taken as \(8/11 + \epsilon \) (or even 0.27331 by a more elaborate numerical calculation). In addition, we prove that the natural density of such primes \(p \) \((p \nmid N \text{ and } |\alpha_p| = |\beta_p| = 1) \) is at least \(34/35 \).

1. Introduction. The celebrated Ramanujan-Petersson conjecture for an elliptic cuspidal Hecke eigenform \(f \) of weight \(k \geq 2 \) and level \(N \) asserts that for any prime \(p \nmid N \),

\[
|\lambda_f(p)| \leq 2p^{k-\frac{3}{2}},
\]

where \(\lambda_f(p) \) denotes the \(p \)-th Hecke eigenvalue of \(f \). This conjecture has been solved affirmatively by Deligne in [De1, De2] as a consequence of his proof of the Weil conjectures.

Now let \(\phi \) denote a primitive Hecke-Maass cusp form for \(\Gamma_0(N) \) and Dirichlet character \(\chi_\phi \) of conductor \(N \) with the Laplacian eigenvalue \(\lambda_\phi = \frac{1}{4} + t_\phi^2 \). Denote the \(n \)-th Hecke eigenvalue of \(\phi \) by \(\lambda_\phi(n) \) for \(n \in \mathbb{N} \). The generalized Ramanujan-Petersson conjecture predicts that for \(p \nmid N \),

\[
|\lambda_\phi(p)| \leq 2,
\]

which is equivalent to (see the Lemma 2.1 below) \(|\alpha_p| = |\beta_p| = 1 \), where \(\{\alpha_p, \beta_p\} \) is the Satake parameter of \(\phi \) at \(p \), i.e., the local component of \(\phi \) at \(p \) is tempered. This is an outstanding unsolved problem in number theory, which would follow from the Langlands functoriality conjectures. Currently the record of individual bounds towards this conjecture is due to Kim-Sarnak [KS]

\[
|\lambda_\phi(p)| \leq p^{\frac{2}{3}} + p^{-\frac{1}{3}}.
\]

We refer the readers to the recent survey paper by Blomer and Brumley [BB].
The goal of this paper is to prove the following theorem in which we show that the least (unramified) prime at which the local component of ϕ is tempered is bounded by $(N(1 + |t\phi|))^c$ for an explicit constant $c > 0$.

Theorem 1.1. Let ϕ be a Hecke-Maass cusp form for $\Gamma_0(N)$ as above, with $\lambda_\phi(n)$ its Hecke eigenvalue and $(\frac{1}{4} + t_\phi^2)$ its Laplace eigenvalue. Then for any $\epsilon > 0$, there exists a prime $p \nmid N$ such that $|\lambda_\phi(p)| \leq 2$ and $p \ll \epsilon (N(1 + |t\phi|))^{8/11 + \epsilon}$, where the implied constant depends only on ϵ.

Our approach is based upon the following simple yet crucial observation that if the local component of ϕ at an unramified prime p is not tempered, then (see Lemma 2.1) $\lambda_\phi(p^{2i})\chi_\phi(p^i) > 2i + 1$ for all $i \geq 1$, where χ_ϕ is the Dirichlet character of ϕ. Thus the following adjoint (square) L-function associated to ϕ comes into play (see [GJ]),

$$L^{(N)}(s, \text{Ad}(\phi)) = \zeta^{(N)}(2s) \sum_{\substack{n \equiv 1 \\ (n,N) = 1}} \chi_\phi(n)\lambda_\phi(n^2) n^{-s},$$

where $\zeta^{(N)}(s)$ stands for the partial zeta function of $\zeta(s)$ with local factors at $p|N$ removed. Then we relate our goal of bounding the least unramified prime at which the local component is tempered to the sieving idea in the work [IKS] of Iwaniec, Kohnen and Sengupta, which studies the sign changes of Hecke eigenvalues of holomorphic modular forms based on Deligne’s solution of the Ramanujan-Petersson conjecture. In the appendix, we improve the constant $8/11$ to 0.27331 by using a refined method, which incorporates numerical computation and some recent development in the theory of multiplicative functions.

Ramakrishnan in [Ram] proved that for a Maass cusp form ϕ as above, the Ramanujan-Petersson conjecture is true for (unramified) primes with the lower Dirichlet density (or analytic density) at least $9/10$. This lower Dirichlet density is later improved to $34/35$ by Kim and Shahidi in [KSh2] via the symmetric cube and fourth lifts of $\text{GL}_2(AQ)$ of Shahidi and Kim in [KSh1] and [Kim]. In Section 3, we refine the density results of [KSh2] (and [Ram]) from the Dirichlet density to the natural density. Our key ingredients is the nonvanishing theorem of Rankin-Selberg L-functions on $\Re(s) = 1$ in the paper [Sha] of Shahidi.

Theorem 1.2. Let ϕ be a Hecke-Maass cusp form for $\Gamma_0(N)$ as above, with $\lambda_\phi(n)$ its Hecke eigenvalue. We have

$$\liminf_{X \to \infty} \frac{\#\{p \text{ prime} \mid p \nmid N, p \leq X, |\lambda_\phi(p)| \leq 2\}}{\#\{p \text{ prime} \mid p \leq X\}} \geq \frac{34}{35}.$$

Acknowledgments. The authors would like to thank the anonymous referee for a thorough reading of the paper and very helpful comments and suggestions.
2. Effective Bound on the Least Tempered Component. Let ϕ be a primitive Hecke-Maass cusp form for $\Gamma_0(N) \subset \text{SL}_2(\mathbb{Z})$ with Dirichlet character $\chi_\phi : (\mathbb{Z}/N\mathbb{Z})^* \rightarrow \mathbb{C}$. It has Laplacian eigenvalue $\lambda_\phi = \frac{1}{4} + t_\phi^2$ with the parameter t_ϕ lying in $\mathbb{R} \cup [-7i/64, 7i/64]$ by the Kim-Sarnak bound of [KS] at the archimedean place. We assume that ϕ is not of dihedral type, otherwise the full Ramanujan conjecture is known. Let $\{\alpha_p, \beta_p\}$ denote the Satake parameter at $p \nmid N$. The standard L-function of ϕ is given by

$$L(N)(s, \phi) = \sum_{n=1}^{\infty} \lambda_\phi(n) \frac{n^{s}}{(n, N)=1} \zeta(N)(2s) \prod_{p|N} \left(1 - \frac{\alpha_p}{p^s}\right) \left(1 - \frac{\beta_p}{p^s}\right)^{-1},$$

with $\alpha_p \beta_p = \chi_\phi(p)$, where $\lambda_\phi(n)$’s are normalized Hecke eigenvalues with $\lambda_\phi(1) = 1$ and $T_n\phi = \lambda_\phi(n)\phi$ for $(n, N) = 1$.

Our main tool is the adjoint L-function of ϕ mentioned in the Introduction

$$L(N)(s, \text{Ad}(\phi)) = \zeta(N)(2s) \sum_{n=1}^{\infty} \lambda_\phi(n^2) \frac{\chi_\phi(n)}{n^s} = \sum_{n=1}^{\infty} \frac{A_\phi(n)}{n^s},$$

where we have

$$A_\phi(n) = \sum_{k^2|n} \lambda_\phi(n^2/k^4) \chi_\phi(n/k^2)$$

for $(n, N) = 1$. We denote

$$Q := N^2(1 + |t_\phi|)^2,$$

which bounds the analytic conductor defined in [IS] for $\text{Ad}(\phi)$.

The following lemma will be used in the proofs of the later sections, and a part of it is also an ingredient in [Ram]. It gives a criterion for the Ramanujan-Petersson conjecture by using the Fourier coefficients at even prime powers.

Lemma 2.1. Let $\{\alpha_p, \beta_p\}$ denote the Satake parameter at $p \nmid N$ of a primitive Hecke-Maass cusp form ϕ for $\Gamma_0(N)$ with Dirichlet character χ_ϕ. Then the Satake parameter at p for $L(s, \text{Ad}(\phi))$ is given by $\{\alpha_p/\beta_p, 1, \beta_p/\alpha_p\}$. For any prime $p \nmid N$, we have

$$|\lambda_\phi(p)|^2 = \lambda_\phi^2(p) \chi_\phi(p) = \lambda_\phi(p^2) \chi_\phi(p) + 1.$$

In particular $\lambda_\phi(p^2) \chi_\phi(p)$ is real and $\lambda_\phi(p^2) \chi_\phi(p) \geq -1$. If the local component at p is not tempered, i.e., $|\alpha_p| \neq 1$, $|\beta_p| \neq 1$, then we have $|\lambda_\phi(p)| > 2$ and α_p/β_p
is real and \(> 0 \) and for \(n \geq 1 \)
\[
\lambda_\phi(p^{2n})\overline{\chi_\phi(p^n)} = \sum_{i=-n}^{n} \left(\frac{\alpha_p}{\beta_p} \right)^i > d(p^{2n}) = 2n + 1,
\]
where \(d \) is the divisor function.

Proof. The first assertion follows from the definition of \(L(s, \text{Ad}(\phi)) \) and the fact that the Satake parameter at \(p \) for the contragredient form \(\overline{\phi} \) is \(\{ \alpha_p^{-1}, \beta_p^{-1} \} \). For \(p \nmid N \), we have
\[
\lambda_\phi(p) = \chi_\phi(p)\overline{\lambda_\phi(p)}.
\]

By Hecke relation, we have \(\lambda_\phi(p^2) = \lambda_\phi(p)^2 - \chi_\phi(p) \). Then we have \(\lambda_\phi(p^2)\overline{\chi_\phi(p)} = \lambda_\phi(p)\overline{\lambda_\phi(p)} - 1 \) and obviously \(\lambda_\phi(p^2)\overline{\chi_\phi(p)} \) is real and \(\geq -1 \).

For \(p \nmid N \), we have
\[
\alpha_p + \beta_p = \lambda_\phi(p) \quad \text{and} \quad \alpha_p\beta_p = \chi_\phi(p).
\]

Then we get
\[
\frac{\alpha_p}{\beta_p} + \frac{\beta_p}{\alpha_p} = |\lambda_\phi(p)|^2 - 2 \geq -2 \quad \text{and} \quad \frac{\alpha_p}{\beta_p} \cdot \frac{\beta_p}{\alpha_p} = 1.
\]

The pair \(\{ \alpha_p/\beta_p, \beta_p/\alpha_p \} \) are the roots of the quadratic equation
\[
X^2 - (|\lambda_\phi(p)|^2 - 2) X + 1 = 0.
\]

If the local component of \(\phi \) at \(p \nmid N \) is not tempered, i.e., \(|\alpha_p/\beta_p| \neq 1 \), this implies that \(\{ \alpha_p/\beta_p, \beta_p/\alpha_p \} \) are two real positive distinct roots. Because their product is 1, one of them is \(> 1 \) and the other is \(< 1 \). Also, we have \(|\lambda_\phi(p)| > 2 \). From
\[
\lambda_\phi(p^n) = \frac{\alpha_p^{n+1} - \beta_p^{n+1}}{\alpha_p - \beta_p} \quad \text{and} \quad \alpha_p\beta_p = \chi_\phi(p),
\]
we get the last assertion. \(\square \)

Proof of Theorem 1.1. Assume the local component of \(\phi \) at \(p \) is not tempered for all primes \(p \leq y \) and \(p \nmid N \). Then by the Lemma 2.1 we have \(A_\phi(d) > 3 \) for \(1 < d \leq y \) and \((d, N) = 1 \). Take \(x = yz \) and \(z = y^\delta \) with \(0 < \delta < 1/2 \). Consider the sum
\[
S(x) = \sum_{\substack{d < x, \\ (d, N) = 1}} A_\phi(d) \log \frac{x}{d} = S^+(x) + S^-(x),
\]
where \(S^+(x) \) and \(S^-(x) \) denote the partial sums over the positive and negative coefficients \(A_\phi(d) \) respectively.
We have $A_\phi(d) < 0$ in $S^-(x)$, if and only if d uniquely splits into the product of two numbers m and p with $A_\phi(m) > 0$, $A_\phi(p) < 0$, $y < p < x$, because $x = y^{1+\delta}$ with $0 < \delta < 1/2$. Moreover we have $m < x/p < z$. From $A_\phi(p) \geq -1$ in Lemma 2.1, we deduce that

\[
S^-(x) = \sum_{pm<x, p>y, \quad (pm,N)=1, \quad A_\phi(p)<0} A_\phi(pm) \log \left(\frac{x}{pm} \right)
\]

\[
\geq - \sum_{m<z, \quad (m,N)=1} A_\phi(m) \sum_{p<x/m} \log \left(\frac{x}{pm} \right)
\]

\[
\geq - \left(\sum_{m<z, \quad (m,N)=1} \frac{A_\phi(m)}{m} \right) \frac{x}{\log y} \left(1 + O \left(\frac{1}{\log y} \right) \right),
\]

in view of the asymptotics

\[
\pi(x) \log x - \sum_{p \leq x} \log p = \frac{x}{\log x} + O \left(\frac{x}{\log^2 x} \right),
\]

where $\pi(x)$ is defined to be the number of primes less than x. The last equality is a version of the prime number theorem (see page 61 and 138 of [Pra]).

Next we bound $S^+(x)$. By positivity, we have

\[
S^+(x) \geq \sum_{m<z, \quad (m,N)=1} A_\phi(m) \sum_{\substack{1<l<y/m, \quad p|l \Rightarrow z<p \leq y, \quad (l,N)=1}} A_\phi(l) \log \left(\frac{x}{lm} \right)
\]

\[
\geq 3 \sum_{m<z, \quad (m,N)=1} A_\phi(m) \left(\Phi'(x/m,y,z) + O \left(\frac{y}{m \log N} \right) \right),
\]

where we denote

\[
\Phi'(X,Y,Z) = \sum_{\substack{1<l<X \quad p|l \Rightarrow Z<p \leq Y}} \log \left(\frac{X}{l} \right).
\]
The error term in (3) comes from
\[
\sum_{1<l<x/m, \atop p
mid l \Rightarrow z<p \leq y, \atop q \mid l} \log \left(\frac{x}{lm} \right) \leq \frac{x}{qm} \log y \leq \frac{y}{m} \log y
\]
for a prime $q \mid N$ with $q > z$. There are at most $O\left(\frac{\log N}{\log y} \right)$ such q.

Lemma 2.2. If Z is large, $Z < Y$ and $Y < X \leq YZ$, then we have
\[
\Phi'(X,Y,Z) > \frac{X}{2 \log Z} - \frac{X}{\log Y} + O \left(\frac{Z \log Y}{\log Z} + \frac{X}{\log^2 Z} \right).
\]

Proof. Define
\[
\Phi(X,Y,Z) = \sum_{1<l<X \atop p \mid l \Rightarrow Z<p \leq Y} 1 \quad \text{and} \quad \Phi(X,Z) = \sum_{1<l<X \atop p \mid l \Rightarrow Z<p} 1.
\]

Then we have
\[
\Phi'(X,Y,Z) = \int_{Y}^{X} \Phi(t,Y,Z) \frac{dt}{t} + \int_{Z}^{Y} \Phi(t,Z) \frac{dt}{t}.
\]

For $Y < t \leq YZ$, it is easy to see that
\[
\Phi(t,Y,Z) = \Phi(t,Z) - \Phi(t,Y).
\]

Recall the asymptotic formula of $\Phi(X,Z)$, $X \geq Z \geq 2$ (see Theorem 3, pp. 400, [Ten])
\[
\Phi(X,Z) = \omega \left(\frac{\log X}{\log Z} \right) \frac{X}{\log Z} - \frac{Z}{\log Z} + O \left(\frac{X}{\log^2 Z} \right), \tag{4}
\]
where $\omega(u)$ is the Buchstab function, that is the continuous solution to the difference-differential equation
\[
u \omega(u) = 1 \quad (1 \leq u \leq 2),
\]
\[
(u \omega(u))' = \omega(u-1) \quad (u > 2).
\]
Moreover the range of the Buchstab function is $1/2 \leq \omega(u) \leq 1$ [Ten, (22), p. 400]. We infer that

$$\Phi'(X, Y, Z) = \int_{Z}^{X} \Phi(t, Z) \frac{dt}{t} - \int_{Y}^{X} \Phi(t, Y) \frac{dt}{t} \geq \int_{Z}^{X} \left(\frac{1}{2} \frac{t}{\log Z} - \frac{Z}{\log Z} \right) \frac{dt}{t} - \int_{Y}^{X} \left(\frac{t}{\log Y} - \frac{Y}{\log Y} \right) \frac{dt}{t} + O \left(\frac{X}{\log^2 Z} \right)
$$

$$\geq \frac{X}{2 \log Z} - \frac{X}{\log Y} + O \left(\frac{Z \log Y}{\log Z} + \frac{X}{\log^2 Z} \right).$$

This completes the proof of Lemma 2.2.

By Lemma 2.2, we have

$$\Phi'(x/m, y, z) > \left(\frac{1}{2\delta} - 1 + O \left(\frac{1}{\log y} \right) \right) \frac{x}{m \log y},$$

and

$$S^+(x) > \left(\frac{3}{2\delta} - 3 + O \left(\frac{1}{\log y} + \frac{\log y \log N}{z} \right) \right) \left(\sum_{\substack{m < z, \ \ (m, N) = 1 \ \ \ \ m \to \phi}} \frac{A_\phi(m)}{m} \right) \frac{x}{\log y}$$

from (3). Consequently, after combining with the lower bound of $S^-(x)$ in (2), we deduce that

$$S(x) > \left(\frac{3}{2\delta} - 4 + O \left(\frac{1}{\log y} + \frac{\log y \log N}{z} \right) \right) \left(\sum_{\substack{m < z, \ \ (m, N) = 1 \ \ \ m \to \phi}} \frac{A_\phi(m)}{m} \right) \frac{x}{\log y}.$$

Therefore we have

$$S(x) \gg \frac{x}{\log x}$$

on choosing $\delta = 3/8 - \epsilon$ for $0 < \epsilon < 1/8$, provided $y \gg N^{1/100}$.

If ϕ is of dihedral type, the Ramanujan conjecture is true for ϕ. Hence we can assume that ϕ is not of dihedral type and the adjoint representation $\text{Ad}(\phi)$ is a cuspidal automorphic representation of $\text{GL}_3(A_Q)$. Its L-function $L(s, \text{Ad}(\phi))$ is
holomorphic on the whole complex plane. Now for \(\sigma > 1\), we have

\[
S(x) = \sum_{d \leq x, (d,N)=1} A_\phi(d) \log \left(\frac{x}{d} \right)
\]

(6)

\[
= \frac{1}{2\pi i} \int_{(\sigma)} L^{(N)}(s, \text{Ad}(\phi)) \frac{x^s}{s^2} ds
\]

\[
= \frac{1}{2\pi i} \int_{(1/2)} L^{(N)}(s, \text{Ad}(\phi)) \frac{x^s}{s^2} ds.
\]

The Phragmén-Lindelöf principle gives \(L(s, \text{Ad}(\phi))\) the convexity bound on the critical line (see (5.21) of [IK] on pp. 101). But since the ramified places in \(L(s, \text{Ad}(\phi))\) are well controlled (see Proposition 3.3 of [MS]), we have the same convexity bound

\[
L^{(N)}\left(\frac{1}{2} + it, \text{Ad}(\phi)\right) \ll Q^{1/4+\eta} (1 + |t|)^{3/4+\eta}
\]

for \(\eta > 0\). By applying the convexity bound for \(L^{(N)}(s, \text{Ad}(\phi))\) on the critical line, we obtain

(7)

\[
S(x) \ll \eta Q^{1/4+\eta} x^{1/2}.
\]

Comparing (5), (7) and \(x = y^{1+\delta}\), we obtain

\[
y \ll \epsilon \left(N (1 + |t_\phi|) \right)^{8/11+\epsilon},
\]

for any \(\epsilon > 0\). This completes the proof of Theorem 1.1.

\[
\Box
\]

3. **Natural density of tempered components.** Let \(\phi\) be a primitive Hecke-Maass cusp form for \(\Gamma_0(N)\) with Dirichlet character \(\chi_\phi \mod N\), with \(\lambda_\phi(n)\) its Hecke eigenvalue, following the same notations of the previous section. We assume that \(\phi\) is not of dihedral, tetrahedral, or octahedral type, since otherwise the Ramanujan-Petersson conjecture is obviously true. Therefore, the adjoint, symmetric cube and symmetric fourth power lifts of \(\phi\) are automorphic and cuspidal by [GJ, KSh1, Kim, KSh2] (see Theorem 3.3.7 of [KSh2], and Theorem B of [KSh1]).

In this section, we improve the density results of the tempered local components in [Ram, KSh2] from Dirichlet density to natural density. Our result appears to be new.

Let \(\{\alpha_p, \beta_p\}\) be the Satake parameter associated with \(\phi\) at an unramified prime \(p \nmid N\). The adjoint lift \(\text{Ad}(\phi)\) of Gelbart and Jacquet (see [GJ]), with its \(L\)-function
defined by

\[
L^{(N)}(s, \text{Ad}(\phi)) = \sum_{\substack{n=1 \\ (n,N)=1}}^{\infty} \frac{A_{\phi}(n)}{n^s} = \prod_{p|N} \left(\left(1 - \frac{\alpha_p/\beta_p}{p^s} \right) \left(1 - \frac{1}{p^s} \right) \left(1 - \frac{\beta_p/\alpha_p}{p^s} \right) \right)^{-1}, \quad \Re(s) > 1,
\]

is a cuspidal automorphic representation of $\text{GL}_3(\mathbb{A}_\mathbb{Q})$, with $\{\alpha_p/\beta_p, 1, \beta_p/\alpha_p\}$ its Satake parameter at $p \nmid N$. The symmetric cube lift $\text{Sym}^3 \phi$ and the twisted symmetric fourth power lift $\text{Sym}^4 \phi \times \chi_\phi^2$ are cuspidal automorphic representations of $\text{GL}_4(\mathbb{A}_\mathbb{Q})$ and $\text{GL}_5(\mathbb{A}_\mathbb{Q})$ respectively (see [KSh1, Kim, KSh2]). The Satake parameter of $\text{Sym}^3 \phi$ is given by $\{\alpha_3^3, \alpha_2^2, \beta_p, \alpha_p^2 \beta_p, \beta_3^3\}$, while that of $\text{Sym}^4 \phi \times \chi_\phi^2$ is given by $\{\alpha_2^2/\beta_p^2, \alpha_p/\beta_p, 1, \beta_p/\alpha_p, \beta_2^2/\alpha_2^2\}$ at $p \nmid N$. Let

\[
L^{(N)}(s, \text{Sym}^3 \phi) = \sum_{\substack{n=1 \\ (n,N)=1}}^{\infty} \frac{A_{\phi}^{[3]}(n)}{n^s} = \prod_{p|N} \left(\left(1 - \frac{\alpha_3^3}{p^s} \right) \left(1 - \frac{\alpha_2^2 \beta_p}{p^s} \right) \left(1 - \frac{\alpha_p^2 \beta_p}{p^s} \right) \left(1 - \frac{\beta_3^3}{p^s} \right) \right)^{-1}, \quad \Re(s) > 1,
\]

and

\[
L^{(N)}(s, \text{Sym}^4 \phi \times \chi_\phi^2) = \sum_{n=1}^{\infty} \frac{A_{\phi}^{[4]}(n)}{n^s} = \prod_{p|N} \left(\left(1 - \frac{\alpha_p^2/\beta_p^2}{p^s} \right) \left(1 - \frac{\alpha_p/\beta_p}{p^s} \right) \left(1 - \frac{1}{p^s} \right) \right) \times \left(1 - \frac{\beta_p/\alpha_p}{p^s} \right) \left(1 - \frac{\beta_p^2/\alpha_p^2}{p^s} \right)^{-1}, \quad \Re(s) > 1,
\]

be their L-functions. The L-functions $L^{(N)}(s, \text{Ad}(\phi))$, $L^{(N)}(s, \text{Sym}^3 \phi)$ and $L^{(N)}(s, \text{Sym}^4 \phi \times \chi_\phi^2)$ are holomorphic on the whole complex plane.

Let $\pi(X)$ be the number of primes no greater than X. By the classical prime number theorem, we have $\pi(X) \sim X/\log X$ as $X \to \infty$.

LEMMA 3.1. For a Hecke-Maass cusp form ϕ of level N on $GL_2(\mathbb{A}_\mathbb{Q})$ that is not of dihedral, tetrahedral or octahedral type, we have the Prime Number Theorem for $Ad(\phi)$ and $\text{Sym}^4 \phi \times \overline{\chi}_\phi^2$

$$\sum_{p \nmid N, p \leq X} A_\phi(p) = o(\pi(X)) \quad \text{and} \quad \sum_{p \nmid N, p \leq X} A^4_\phi(p) = o(\pi(X)),$$

as $X \to \infty$.

Proof. Because $Ad(\phi)$ and $\text{Sym}^4 \phi \times \overline{\chi}_\phi^2$ are automorphic and cuspidal, their L-functions $L^{(N)}(s, Ad(\phi))$ and $L^{(N)}(s, \text{Sym}^4 \phi \times \overline{\chi}_\phi^2)$ have a standard zero-free region. The Prime Number Theorem for L-functions follows from the standard zero-free region. (see Theorem 5.13 of [IK]). □

We have $A_\phi(p) = \lambda_\phi(p^2)\overline{\chi}_\phi(p) \in \mathbb{R}$ for $p \nmid N$ by Lemma 2.1. We also have $A^4_\phi(p) = \lambda_\phi(p^4)\overline{\chi}_\phi(p^2) \in \mathbb{R}$ because of Lemma 2.1 and the Hecke relation $A_\phi(p^2) = A^4_\phi(p) + A_\phi(p) + 1$.

Because $\text{Sym}^3 \phi$ and $\text{Sym}^4 \phi \times \overline{\chi}_\phi^2$ are cuspidal automorphic representations, we further look at their Rankin-Selberg L-functions. Unlike $L^{(N)}(s, Ad(\phi))$ and $L^{(N)}(s, \text{Sym}^4 \phi \times \overline{\chi}_\phi^2)$, we don’t have a standard zero-free region for the Rankin-Selberg L-functions. However, in this particular case, nonvanishing results are available from Shahidi’s earlier work [Sha].

LEMMA 3.2. For a Hecke-Maass cusp form ϕ of level N on $GL_2(\mathbb{A}_\mathbb{Q})$ that is not of dihedral, tetrahedral or octahedral type with the Satake parameter $\{\alpha_p, \beta_p\}$ at an unramified prime $p \nmid N$, we have

$$\sum_{p^k \leq X, p \nmid N} \log(p) \left| \alpha_p^{3k} + \alpha_p^{2k}\beta_p^k + \alpha_p^k\beta_p^{2k} + \beta_p^{3k} \right|^2 \sim X$$

and

$$\sum_{p^k \leq X, p \nmid N} \log(p) \left| \alpha_p^{2k}/\beta_p^k + \alpha_p^k/\beta_p^k + 1 + \beta_p^k/\alpha_p^k + \beta_p^{2k}/\alpha_p^{2k} \right|^2 \sim X$$

as $X \to \infty$.

Proof. Shahidi proved in Theorem 5.2 of [Sha] that the Rankin-Selberg convolution L-functions are non-zero on the line $\Re(s) = 1$. Thus, $-\mathcal{L}'/\mathcal{L}(s)$, where $\mathcal{L}(s) = L(s, \Pi \times \overline{\Pi})$, and $\Pi = \text{Sym}^3 \phi$ or $\text{Sym}^4 \phi \times \overline{\chi}_\phi^2$, is regular on $\Re(s) = 1$ except a pole at $s = 1$. Moreover they are Dirichlet series with non-negative coefficients. By the Tauberian theorem of Wiener and Ikehara [MV, Corollary 8.8] we obtain the Prime Number Theorem for such $\mathcal{L}(s)$. □
Recall that
\[A \beta \]
the proof. □

Thus we have
\[\text{By Lemma 3.1 and Remark 3.3, we have} \]
\[\limsup_{X \to \infty} \frac{\sum_{p \leq X, p \mid N} |A^{[3]}_\phi(p)|^2}{\pi(X)} \leq 1 \]
and
\[\limsup_{X \to \infty} \frac{\sum_{p \leq X, p \mid N} A^{[4]}_\phi(p)^2}{\pi(X)} \leq 1, \]
because \(A^{[3]}_\phi(p) = \alpha_p^3 + \alpha_p^2 \beta_p + \alpha_p \beta_p^2 + \beta_p^3 \) and \(A^{[4]}_\phi(p) = \alpha_p^2 / \beta_p^2 + \alpha_p / \beta_p + 1 + \beta_p / \alpha_p + \beta_p^2 / \alpha_p^2 \) with \(A^{[4]}_\phi(p) \in \mathbb{R} \).

Proof of Theorem 1.2. For \(p \nmid N \), define \(U(p) := (1 + 3A_\phi(p) + 5A^{[4]}_\phi(p))^2 \).
Recall that \(A_\phi(p), A^{[4]}_\phi(p) \in \mathbb{R} \) for \(p \nmid N \). We have \(U(p) \geq 0 \) and if the local component at \(p \) is not tempered, we have by Lemma 2.1
\[U(p) > 35^2. \]
Because of \(\{ \alpha_p, \beta_p \} = \{ \alpha_p^{-1}, \beta_p^{-1} \} \), we have the Hecke relations
\[A_\phi(p)A^{[4]}_\phi(p) = |A^{[3]}_\phi(p)|^2 - 1 \quad \text{and} \quad A_\phi(p)^2 = A^{[4]}_\phi(p) + A_\phi(p) + 1. \]
Thus we have
\[U(p) = 1 + 9A_\phi(p)^2 + 25A^{[4]}_\phi(p)^2 + 6A_\phi(p) + 10A^{[4]}_\phi(p) + 30A_\phi(p)A^{[4]}_\phi(p) \]
\[= -20 + 15A_\phi(p) + 19A^{[4]}_\phi(p) + 30|A^{[3]}_\phi(p)|^2 + 25A^{[4]}_\phi(p)^2. \]
By Lemma 3.1 and Remark 3.3, we have
\[\limsup_{X \to \infty} \frac{\sum_{p \leq X, p \mid N} U(p)}{\pi(X)} \leq 35. \]
We have from Lemma 2.1
\[\frac{\sum_{p \leq X, p \mid N} U(p)}{\pi(X)} \geq 35^2 \left(\frac{\pi(X) - \# \{ \text{prime} \mid p \nmid N, p \leq X, |\lambda_\phi(p)| \leq 2 \} \} }{\pi(X)} \]
and then
\[\frac{\# \{ \text{prime} \mid p \nmid N, p \leq X, |\lambda_\phi(p)| \leq 2 \} }{\pi(X)} \geq 1 - \frac{\sum_{p \leq X, p \mid N} U(p)}{35^2 \pi(X)}. \]
Hence by (8) we get \(\liminf_{X \to \infty} \frac{\# \{ \text{prime} \mid p \nmid N, p \leq X, |\lambda_\phi(p)| \leq 2 \} }{\pi(X)} \geq 34/35 \) and complete the proof. □
Remark 3.4. The construction of $U(p)$ originates from [KSh2] and [Ram], which can be proved to be optimal by the Cauchy-Schwarz inequality. The difference between [KSh2] and this article is that [KSh2] considered only nonvanishing of the aforementioned L-functions at $s = 1$, whereas we have nonvanishing results of standard automorphic L-functions (zero-free region) and the Rankin-Selberg L-functions on $\Re(s) = 1$ from [Sha]. It is not yet proved that the general Rankin-Selberg L-functions have a standard zero-free region.

The constant $34/35$ could be improved if there was progress toward the functoriality of symmetric powers on $GL_2(\mathbb{A}_\mathbb{Q})$. If the symmetric i-th powers of $GL_2(\mathbb{A}_\mathbb{Q})$ for $i = 2, 3, \ldots, 2n$ are proved to be automorphic and cuspidal, we may replace the constant $34/35$ with $(1 - 3/(n+1)(4n^2 + 8n + 3))$.

Appendix: Refinement of Section 2. Technology in the theory of multiplicative functions as developed from [GS, KLSW, LLW, Mat], combined with numerical computation, would improve the exponent further. We consider a sum over squarefree numbers for $x > 1$

$$S^\phi(x) = \sum_{n \leq x}^{\sharp} A_\phi(n) \log \left(\frac{x}{n} \right),$$

where the summation \sum^{\sharp} is taken over squarefree numbers. This is similar to but different from $S(x)$. A lower bound for (9) is a solution to some differential-difference equation. One can find its numerical solution with a computer and a computational software program, and improve the exponent in Theorem 1.1 to 0.27331.

Let us assume that the local component of ϕ at p is not tempered for all $p \leq y$ and $p \nmid N$. Thus we have $A_\phi(p) > 3$ for all $p \leq y$ and $p \nmid N$ by Lemma 2.1.

Lemma A.1. We have the bound

$$S^\phi(x) \ll_\epsilon x^{3/4} Q^{1/8 + \epsilon}$$

for $\epsilon > 0$.

Proof. Define a Dirichlet series

$$G(s) = \prod_{p|N} \left(1 - \frac{A_\phi(p)}{p^s} + \frac{A_\phi(p)}{p^{2s}} - \frac{1}{p^{3s}} \right) \left(1 + \frac{A_\phi(p)}{p^s} \right).$$

The analytic function $G(s)$ is absolutely convergent in $\{ \Re(s) > 1/2 + \epsilon \}$, and uniformly bounded by Q^ϵ with any $\epsilon > 0$, in view of the Rankin-Selberg convolution of $Ad(\phi) \times Ad(\phi)$. The bound Q^ϵ is a consequence of [Bru, Corollary 2] and more
generally [Li, Theorem 2]. Now

\[
L^{(N)}(s, \text{Ad}(\phi))G(s) = \sum_{n=1}^{\infty} \frac{A_\phi(n)}{n^s}
\]

is absolutely convergent in \(\{\Re(s) > 1\}\). For \(c > 1\), we have

\[
S^\phi(x) = \frac{1}{2\pi i} \int_{(c)} L^{(N)}(s, \text{Ad}(\phi))G(s) \frac{x^s}{s^2} ds
\]

\[= \frac{1}{2\pi i} \int_{(3/4)} L^{(N)}(s, \text{Ad}(\phi))G(s) \frac{x^s}{s^2} ds.
\]

By using the convexity bound

\[
L^{(N)}(\frac{3}{4} + it, \text{Ad}(\phi)) \ll (Q(1 + |t|)^3)^{1/8+\epsilon},
\]

we obtain \(S^\phi(x) \ll x^{3/4}Q^{1/8+\epsilon}\).

\[\square\]

Define a multiplicative function supported on squarefree numbers with

\[
h(p) = \begin{cases} 3, & p \leq y, \\ -1, & p > y. \end{cases}
\]

It extends to all squarefree numbers. For convenience, we define \(h(n) = 0\) if \(n\) is not squarefree. Define the sum

\[S^\phi(x) = \sum_{n \leq x} A_\phi(n).
\]

Lemma A.2. If \(\sum_{n \leq t} h(n) \geq 0\) for all \(t \leq x\), we have \(S^\phi(x) \geq \sum_{n \leq x} h(n)\).

Proof. The proof follows from (2.4) of [KLSW]. Let us define a multiplicative function \(g\) supported on squarefree numbers defined by the Dirichlet convolution

\[A_\phi = h * g, \quad \text{or} \quad A_\phi(n) = \sum_{d | n} h(d)g \left(\frac{n}{d}\right)
\]
for \((n, N) = 1\). By Lemma 2.1, we have \(g(p) = A_\phi(p) - h(p) \geq 0\) for \(p \nmid N\) and \(g(1) = 1\). Then we have

\[
S^b(x) = \sum_{n \leq x} \sum_{d|n, (n, N) = 1} h(d)g\left(\frac{n}{d}\right)
\]

\[
= \sum_{d \leq x} g(d) \sum_{b \leq x/d, (b, N) = 1} h(b)
\]

\[
\geq \sum_{n \leq x} h(n)
\]

since both \(g(d)\) and \(\sum h(b)\) are non-negative.

Lemma A.3. If \(\sum_{n \leq t} h(n) \geq 0\) for all \(t \leq x\), we have \(S^b(x) \geq \sum_{n \leq x} h(n) \log \left(\frac{x}{n}\right)\).

Proof. It follows from the formula \(S^b(x) = \int_1^x S^b(t) \frac{dt}{t}\) and Lemma A.2.

The following lemma evaluates the mean of the multiplicative function \(h(n)\) over a long range \(1 \leq n \leq x\) where \(x\) equals \(y^u\) for some \(u > 1\). The special case of this lemma appears in [KLSW, LLW] and a more elaborate version is available in [Mat]. Its idea originates from [GS].

Lemma A.4. Let \(U \geq 1\) and let \(h(n)\) be as above. We have

\[
\sum_{n \leq y^u} h(n) = c(N)(\sigma(u) + o_U(1))(\log y)^2 y^u
\]

uniformly for \(u \in [1/U, U]\), where \(\lim_{y \to \infty} o_U(1) = 0\) and

\[
c(N) = \frac{1}{2} \left(\frac{\phi(N)}{N}\right)^3 \prod_{p|N} \left(1 - \frac{1}{p}\right)^3 \left(1 + \frac{3}{p}\right) \gg (\log \log N)^{-3}.
\]

The constant \(\sigma(u)\) is the continuous function of \(u \in (0, \infty)\) uniquely determined by the differential-difference equation

\[
\sigma(u) = u^2, \quad 0 < u \leq 1,
\]

\[
(u^{-2}\sigma(u))' = -\frac{4\sigma(u-1)}{u^3}, \quad u > 1.
\]

Proof. In Lemma 6 of [Mat], take \(K = 1, x_0 = 0, x_1 = 1, \chi_0 = 3, \chi_1 = -1, q = N\). The function \(\sigma(u)\) can be computed from Lemma 8 of [Mat].
Lemma A.5. Let $U > 1$ be such that $\sigma(u) > 0$ for $1 < u \leq U$. We have for $y \gg_U 1$,

$$\sum_{n \leq y^U \atop (n,N)=1} h(n) \log \left(\frac{y^U}{n} \right) \gg_U c(N)y^U.$$

Proof. Define $H(x) = \sum_{n \leq x \atop (n,N)=1} h(n)$. We have

$$\sum_{n \leq y^U \atop (n,N)=1} h(n) \log \left(\frac{y^U}{n} \right) = \int_1^{y^U} H(t) \frac{dt}{t} = \int_0^U H(y^u) \log y \, du$$

$$\geq \int_{1/U}^U H(y^u) \log y \, du.$$

By Lemma A.4, we have for $1/U \leq u \leq U$ uniformly

$$H(y^u) = c(N)(\sigma(u) + o_U(1))(\log y)^2 y^u.$$

For $y \gg_U 1$, we hence have

$$\int_{1/U}^U H(y^u) \log y \, du \gg_U c(N)y^U$$

and this completes the proof. \qed

Let U be the same as defined in Lemma A.5. We have $c(N) \gg Q^{-\epsilon}$ for $\epsilon > 0$. Comparing Lemma A.1, Lemma A.3 and Lemma A.5, we infer that

$$y^U Q^{-\epsilon} \ll_U \sum_{n \leq y^U \atop (n,N)=1} h(n) \log \left(\frac{y^U}{n} \right) \ll S^b(y^U) \ll (y^U)^{3/4} Q^{1/8+\epsilon}$$

and this in turn gives

$$y \ll_U Q^{\frac{1}{12}+\epsilon} = (N(1+|t_{\phi}|))^{1/12+2\epsilon}.$$

By numerical computation of Mathematica, we find the smallest zero of $\sigma(u)$ is approximately 3.65887. Then taking U to be microscopically less than 3.65887 we get:

Theorem A.6. Let ϕ be a Hecke-Maass cusp form for $\Gamma_0(N)$, with $\lambda_\phi(n)$ its Hecke eigenvalue and $(\frac{1}{4}+t_{\phi}^2)$ its Laplace eigenvalue. There exists a prime $p \nmid N$ such that $|\lambda_{\phi}(p)| \leq 2$ and $p \ll (N(1+|t_{\phi}|))^{0.27331}$.

Remark A.7. To estimate the smallest zero of $\sigma(u)$ without numerical computation, we have from Lemma A.4

$$\sigma(u) = 7u^2 - 8u + 2 - 4u^2 \log u$$

for $1 \leq u \leq 2$. It is not hard to prove that $\sigma(u)$ is monotone for $1 \leq u \leq 2$ and this leads us to conclude $\sigma(u)$ is positive for $1 \leq u \leq 2$. Without numerical computation, we can have $1/2$ as the exponent in Theorem A.6.

For $2 \leq u \leq 3$, we have

$$\sigma(u) = 16u^2 Li_2(1-u) + (4\pi^2 u^2)/3 + 35u^2 - 24u^2 \log(u-1)$$

$$+ 16u^2 \log(u-1) \log(u) - 4u^2 \log(u) - 80u$$

$$+ 32u \log(u-1) - 8\log(u-1) + 34,$$

where Li_2 is the dilogarithm function (see [Zag]).
ON THE HECKE EIGENVALUES OF MAASS FORMS

[Kim] H. H. Kim, Functoriality for the exterior square of GL_4 and the symmetric fourth of GL_2, *J. Amer. Math. Soc.* **16** (2003), no. 1, 139–183.

[KS] H. H. Kim and P. Sarnak, Refined estimates towards the Ramanujan and Selberg conjectures, appendix to H. H. Kim, Functoriality for the exterior square of GL_4 and the symmetric fourth of GL_2, *J. Amer. Math. Soc.* **16** (2003), no. 1, 175–181.

[KSh2] H. H. Kim and F. Shahidi, Cuspidality of symmetric powers with applications, *Duke Math. J.* **112** (2002), no. 1, 177–197.

[KSh1] ———, Functorial products for $\text{GL}_2 \times \text{GL}_3$ and the symmetric cube for GL_2, *Ann. of Math. (2)* **155** (2002), no. 3, 837–893, With an appendix by Colin J. Bushnell and Guy Henniart.

[KLSW] E. Kowalski, Y.-K. Lau, K. Soundararajan, and J. Wu, On modular signs, *Math. Proc. Cambridge Philos. Soc.* **149** (2010), no. 3, 389–411.

[LLW] Y.-K. Lau, J.-Y. Liu, and J. Wu, The first negative coefficients of symmetric square L-functions, *Ramanujan J.* **27** (2012), no. 3, 419–441.

[Li] X. Li, Upper bounds on L-functions at the edge of the critical strip, *Int. Math. Res. Not. IMRN* **2010** (2010), no. 4, 727–755.

[Mat] K. Matomäki, On signs of Fourier coefficients of cusp forms, *Math. Proc. Cambridge Philos. Soc.* **152** (2012), no. 2, 207–222.

[MV] H. L. Montgomery and R. C. Vaughan, *Multiplicative Number Theory. I. Classical Theory*, Cambridge Stud. Adv. Math., vol. 97, Cambridge University Press, Cambridge, 2007.

[MS] W. Müller and B. Speh, Absolute convergence of the spectral side of the Arthur trace formula for GL_n, With an appendix by E. M. Lapid, *Geom. Funct. Anal.* **14** (2004), no. 1, 58–93.

[Pra] K. Prachar, *Primzahlverteilung*, Springer-Verlag, Berlin, 1957.

[Ram] D. Ramakrishnan, On the coefficients of cusp forms, *Math. Res. Lett.* **4** (1997), no. 2-3, 295–307.

[Sha] F. Shahidi, On certain L-functions, *Amer. J. Math.* **103** (1981), no. 2, 297–355.

[Ten] G. Tenenbaum, *Introduction to Analytic and Probabilistic Number Theory*, Cambridge Stud. Adv. Math., vol. 46, Cambridge University Press, Cambridge, 1995.

[Zag] D. Zagier, The dilogarithm function, *Frontiers in Number Theory, Physics, and Geometry. II*, Springer-Verlag, Berlin, 2007, pp. 3–65.