Author’s Reply to Srinivas: “A Single Dose-Escalation Study to Evaluate the Safety and Pharmacokinetics of Orally Administered Des-Aspartate Angiotensin I in Healthy Subjects”

Meng-Kwoon Sim¹ · Kok-Onn Lee²

We thank Dr. Srinivas for his comments [1]. Our explanation is as follows.

1 Blood Sampling

Section 2.6 of the article by Lee et al. [2] describes the rationale for the sampling time points, viz:

“Serial venous blood samplings (10 ml) for pharmacokinetic analyses were carried out on all subjects at 0, 0.25, 0.5, 1, 2, 3, 4, 5, 6 and 12 h post study drug administration. We anticipated that the range of sampling time points would cover the duration of early blood pressure response to intravenous administration of DAA-I observed in human subjects [19], and the detection of chromatographic [14C]-DAA-I-like peak at 4 h after [14C]-DAA-I was orally administered to rats during the preclinical toxicology studies.”

In the human study reported by Kono et al. [3], the increase in blood pressure to an intravenous infusion of des-aspartate-angiotensin I (DAA-I) was caused by angiotensin III, the immediate metabolite of DAA-I. The increase occurred within 2 min of the intravenous administration, indicating that DAA-I was rapidly degraded in the systemic circulation. When [14C-Val³]-DAA-I was incubated in a plasma sample, the degradation to angiotensin III, angiotensin IV and smaller fragments was a seamless process that lasted less than 3 min (unpublished data from a preclinical toxicology study). The oral bioavailability of DAA-I has been estimated to be 0.06 [4]. This low bioavailability together with its rapid degradation in the blood would indicate that orally administered DAA-I, like many endogenously produced compounds, does not have a canonical blood profile. Blood samplings at intervals of 2–3 min in the first 30 min post-DAA-I oral administration, as suggested by Dr. Srinivas, would approximate a continuous sampling, which is logistically difficult to execute and psychologically unfavourable to the volunteers. It also assumes that the peak plasma would be within the first 30 min post-DAA-I administration, which is not supported by preclinical data.

2 Incorporation of Angiotensin Receptor Blockers and Angiotensin Converting Enzyme Inhibitors

DAA-I (per se) has no effect on blood pressure [3]. We have also shown that orally administered DAA-I (up to a dose of 23.6 mg/kg) had no effect on the blood pressure in the rat (unpublished data from a preclinical toxicology study). Therefore, blood pressure, as suggested by Dr. Srinivas, would not be a suitable surrogate marker.

¹ Department of Pharmacology, Yong Loo Lin School of Medicine, Block MD 3 Level 4 #04-01, 16 Medical Drive, Singapore 117600, Singapore
² Department of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore 119228, Singapore
Angiotensin receptor blockers block the angiotensin AT1 receptor and losartan has been shown to block the action of DAA-I [5, 6]. Hence, incorporation of an angiotensin receptor blocker or an angiotensin converting enzyme inhibitor in a proof-of-concept study, as suggested by Dr. Srinivas, would be incoherent. A definitive proof-of-concept study for DAA-I would be a phase IIa clinical trial on 24 patients with type 2 diabetes mellitus to establish its efficacy (effective glycaemic control). However, a phase IIa trial would have to be supported by safety data from a prior multi-dose phase I trial.

3 Surrogate Biomarker

The measurement of prostaglandin E2 and or prostaglandin I2 as surrogate biomarker/s of DAA-I is our preferred choice in tracking the biological action and bioavailability of DAA-I in a multi-dose phase I trial. Prostaglandin E2 and prostaglandin I2 have been associated with glycemic improvement of type 2 diabetes and its associated complications [7–9]. These two prostaglandins are therefore relevant surrogate biomarkers in our anticipated multi-dose phase I trial.

4 Angiotensin Peptide Drug

Angiotensin-(1–7) [10, 11] and TRV027 [12] are two other angiotensin peptides currently being developed as potential drugs. Like DAA-I, these two angiotensin peptides are biased agonists and exhibit specific therapeutic actions. However, unlike DAA-I they are not orally active and have to be given parenterally. The reason is because, unlike DAA-I, angiotensin-(1–7) and TRV027 are not effective at doses that are below the Km of peptidases. With this unique property, DAA-I is an investigator’s dream drug. Doses above therapeutic levels that cause secondary biological actions or toxicities are rapidly brought down to physiological levels. Rapid internalisation of the bound DAA-I/angiotensin AT1 receptor complex is reminiscent of drug-targeting therapy, especially when upregulation of the angiotensin AT1 receptors is known to occur in DAA-I-responsive diseases [13, 14]. The lack of a canonical plasma profile is only a problem to naive institutional regulators, and DAA-I is pharmacologically a safe drug to develop.

Compliance with Ethical Standards

Funding No funding was received in the preparation of this article.

Conflict of interest Meng-Kwoon Sim and Kok-Omn Lee have no conflicts of interest to declare.

References

1. Srinivas N. Comment on: “A single dose-escalation study to evaluate the safety and pharmacokinetics of orally administered des-aspartate angiotensin I in healthy subjects”. Drugs R D. doi:10.1007/s40268-016-0155-7.
2. Lee KO, Khoo CM, Chowbay B, et al. A single dose-escalation study to evaluate the safety and pharmacokinetics of orally administered des-aspartate angiotensin I in healthy subjects. Drugs R D. 2016;16:317–26.
3. Kono T, Ikeda F, Oseko F, et al. Biological activity of des-aspl1-angiotensin I in man. J Clin Endocrinol Metab. 1980;50:40–5.
4. Sim MK. Des-asparate-angiotensin I, a novel angiotensin AT1 receptor drug. Eur J Pharmacol. 2015;760:36–41.
5. Sim MK, Min L. Effects of des-Asp-angiotensin I on experimentally-induced cardiac hypertrophy in rats. Int J Cardiol. 1998;63:223–7.
6. Wong WC, Sim MK, Lee KO. Des-asparate-angiotensin-I and angiotensin IV improve glucose tolerance and insulin signaling in diet-induced hyperglycaemic mice. Biochem Pharmacol. 2011;82:1198–208.
7. Axelrod L, Schulman GI, Blackshear PJ, et al. Plasma level of 13,14-dihydro-15-keto-PGE2 in patients with diabetic ketoacidosis and in normal fasting subjects. Diabetes. 1986;35:1004–10.
8. Paolisso G, DiMaro G, D’Amore A, et al. Low-dose illoprost infusion improves insulin action in aged healthy subjects and NIDDM patients. Diabetes Care. 1995;18:200–5.
9. Takahashi HK, Zhu J, Mori S, et al. Prostaglandin E2 inhibits advanced glycation end product-induced adhesion molecule expression on monocytes, cytokine production, and lymphocyte proliferation during human mixed lymphocyte reaction. J Pharmacol Exp Ther. 2010;334:964–72.
10. van Twist DJ, Houben AJ, de Haan MW, et al. Angiotensin-(1-7)-induced renal vasodilation in hypertensive humans is attenuated by low sodium intake and angiotensin II co-infusion. Hypertension. 2013;62:789–93.
11. Galandrin S, Denis C, Boularan C, et al. Cardioprotective angiotensin-(1-7) peptide acts as a natural-biased ligand at the angiotensin II type 1 receptor. Hypertension. 2016. doi:10.1161/HypertensionAHA.116.08118. [Epub ahead of print].
12. Soergel DG, Subach RA, Cowan GL, et al. First clinical experience with TRV027: pharmacokinetics and pharmacodynamics in healthy volunteers. J Clin Pharmacol. 2013;53:8929.
13. Xu Z-G, Lanting L, Vaziri ND, et al. Upregulation of angiotensin II type I receptor, inflammation mediators, and enzymes of arachidonate metabolism in obese Zucker rat kidney: reversal by angiotensin II type 1 receptor blockade. Circulation. 2005;111:1962–9.
14. Bhatt SR, Lokhandwala MF, Banday AA. Vascular oxidative stress upregulates angiotensin II type 1 receptors via mechanisms involving nuclear factor kappa B. Clin Exp Hypertens. 2014;36:367–73.

Open Access This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.