Strong Insertion of a Contra-Continuous Function between Two Comparable Contra-Precontinuous (Contra-Semi–Continuous) Functions

MAJID MIRMIRAN*
Department of Mathematics, University of Isfahan, Iran.

*Corresponding Author: MAJID MIRMIRAN, Department of Mathematics, University of Isfahan, Iran.

Abstract: Necessary and sufficient conditions in terms of lower cut sets are given for the strong insertion of a contra-continuous function between two comparable real-valued functions on such topological spaces that kernel of sets are open.

1. INTRODUCTION

The concept of a preopen set in a topological space was introduced by H.H. Corson and E. Michael in 1964 [4]. A subset A of a topological space (X, τ) is called preopen or locally dense or nearly open if $A \subseteq \text{Int}(\text{Cl}(A))$. A set A is called preclosed if its complement is preopen or equivalently if $\text{Cl}(\text{Int}(A)) \subseteq A$.

The term preopen, was used for the first time by A.S. Mashhour, M.E. Abd El Monsef and S.N. El-Deeb [20], while the concept of a locally dense, set was introduced by H.H. Corson and E. Michael [4].

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [17]. A subset A of a topological space (X, τ) is called semiopen [10] if $A \subseteq \text{Cl}(\text{Int}(A))$. A set A is called semiclosed if its complement is semi-open or equivalently if $\text{Int}(\text{Cl}(A)) \subseteq A$.

A generalized class of closed sets was considered by Maki in [19]. He investigated the sets that can be represented as union of closed sets and called them V–sets. Complements of V–sets, i.e., sets that are intersection of open sets are called A–sets [19].

Recall that a real-valued function f defined on a topological space X is called A–continuous [25] if the preimage of every open subset of R belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A–continuity. However, for unknown concepts the reader may refer to [5, 11]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [6] introduced a new class of mappings called contracontinuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 12, 13, 24].

Hence, a real-valued function f defined on a topological space X is called contra-continuous (resp. contra-semi–continuous, contra-precontinuous) if the preimage of every open subset of R is closed (resp. semi–closed, preclosed) in X[6].

Results of Kat’etov [14, 15] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient conditions for the insertion of a contra-continuous function between two comparable realvalued functions on such topological spaces that A–sets or kernel of sets are open [19].

If g and f are real-valued functions defined on a space X, we write $g \leq f$ in case $g(x) \leq f(x)$ for all x in X.

The following definitions are modifications of conditions considered in [16].

A property P defined relative to a real-valued function on a topological space is a cc–property provided that any constant function has property P and provided that the sum of a function with property P and...
any contraccontinuous function also has property \(P \). If \(P_1 \) and \(P_2 \) are \(cc \)-properties, the following terminology is used:(i) A space \(X \) has the weak \(cc \)-insertion property for \((P_1, P_2)\) if and only if for any functions \(g \) and \(f \) on \(X \) such that \(g \leq f, g \) has property \(P_1 \) and \(f \) has property \(P_2 \), then there exists a contraccontinuous function \(h \) such that \(g \leq h \leq f.\)(ii) A space \(X \) has the strong \(cc \)-insertion property for \((P_1, P_2)\) if and only if for any functions \(g \) and \(f \) on \(X \) such that \(g \leq f, g \) has property \(P_1 \) and \(f \) has property \(P_2 \), then there exists a contrac-continuous function \(h \) such that \(g \leq h \leq f \) and if \(g(x) < f(x) \) for any \(x \) in \(X \), then \(g(x) < h(x) < f(x) \).

In this paper, for a topological space whose \(\Lambda \)-sets or kernel of sets are open, is given a sufficient condition for the weak \(cc \)-insertion property.

Also for a space with the weak \(cc \)-insertion property, we give necessary and sufficient conditions for the space to have the strong \(cc \)-insertion property. Several insertion theorems are obtained as corollaries of these results.

2. THE MAIN RESULT

Before giving a sufficient condition for insertability of a contra-continuous function, the necessary definitions and terminology are stated.

The abbreviations \(cc \), \(cpc \) and \(csc \) are used for contra-continuous, contraprecontinuous and contra-semi-continuous, respectively.

Definition 2.1. Let \(A \) be a subset of a topological space \((X, \tau)\). We define the subsets \(A^\wedge \) and \(A^V \) as follows:

\[A^\wedge = \cap \{ O : O \supseteq A, O \in (X, \tau) \} \quad \text{and} \quad A^V = \cup \{ F : F \subseteq A, F \in (X, \tau) \}. \]

In [7, 18, 23], \(A^\wedge \) is called the *kernel* of \(A \).

The family of all preopen, preclosed, *semi*–open and *semi*–closed will be denoted by \(pO(X, \tau), pC(X, \tau), sO(X, \tau) \) and \(sC(X, \tau) \), respectively.

We define the subsets \(p(A^\wedge), p(A^V), s(A^\wedge) \) and \(s(A^V) \) as follows: \(p(A^\wedge) = \cap \{ O : O \supseteq A, O \in pO(X, \tau) \}, \)

\[p(A^V) = \cup \{ F : F \subseteq A, F \in pC(X, \tau) \}, \quad s(A^\wedge) = \cap \{ O : O \supseteq A, O \in sO(X, \tau) \} \quad \text{and} \quad s(A^V) = \cup \{ F : F \subseteq A, F \in \}

\[sC(X, \tau) \}. \]

\(p(A^\wedge) \) (resp. \(s(A^\wedge) \)) is called the *prekernel* (resp. *semi*–kernel) of \(A \).

The following first two definitions are modifications of conditions considered in [14, 15].

Definition 2.2. If \(\rho \) is a binary relation in a set \(S \) then \(\rho^- \) is defined as follows: \(x \rho^- y \) if and only if \(y \rho \) \(v \) implies \(x \rho v \) and \(u \rho x \) implies \(u \rho y \) for any \(u \) and \(v \) in \(S \).

Definition 2.3. A binary relation \(\rho \) in the power set \(P(X) \) of a topological space \(X \) is called a *strong binary relation* in \(P(X) \) in case \(\rho \) satisfies each of the following conditions:

- If \(A, B \in P(X) \), for any \(i \in \{1,...,r\} \) and for any \(j \in \{1,...,n\} \), then there exists a set \(C \in P(X) \) such that \(A \rho C \) and \(C \rho B \) for any \(i \in \{1,...,r\} \) and any \(j \in \{1,...,n\} \).
- If \(A \subseteq B \), then \(A \rho^- B \).
- If \(A \rho B \), then \(A^\wedge \subseteq B \) and \(A \subseteq B^V \).

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If \(f \) is a real-valued function defined on a space \(X \) and if \(\{ x \in X : f(x) < \ell \} \subseteq A(f, \ell) \subseteq \{ x \in X : f(x) \leq \ell \} \) for a real number \(\ell \), then \(A(f, \ell) \) is called a *lower indefinite cut set* in the domain of \(f \) at the level \(\ell \).

We now give the following main result:

Theorem 2.1. Let \(g \) and \(f \) be real-valued functions on the topological space \(X \), in which kernel sets are open, with \(g \leq f \). If there exists a strong binary relation \(\rho \) on the power set of \(X \) and if there exist lower indefinite cut sets \(A(f, t_i) \) and \(A(g, t_j) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_i < t_j \) then \(A(f, t_i) \rho A(g, t_j) \), then there exists a contra-continuous function \(h \) defined on \(X \) such that \(g \leq h \leq f \). **Proof.** Theorem 2.1. of [22].

Theorem 2.2. Let \(P_1 \) and \(P_2 \) be \(cc \)-property and \(X \) be a space that satisfies the weak \(cc \)-insertion property for \((P_1, P_2)\). Also assume that \(g \) and \(f \) are functions on \(X \) such that \(g \leq f, g \) has property \(P_1 \) and \(f \) has property \(P_2 \). The space \(X \) has the strong \(cc \)-insertion property for \((P_1, P_2)\) if and only if there exist
lower cut sets \(A(f - g, 2^{-n}) \) and there exists a sequence \(\{ H_n \} \) of subsets of \(X \) such that (i) for each \(n \), \(H_n \) and \(A(f - g, 2^{-n}) \) are completely separated by contra-continuous functions, and (ii) \(\{ x \in X : (f - g)(x) > 0 \} = \bigcup_{n=1}^{\infty} H_n \).

Proof. Theorem 3.1, of [21].

Theorem 2.3. Let \(P_1 \) and \(P_2 \) be cc—properties and assume that the space \(X \) satisfied the weak cc—insertion property for \((P_1, P_2)\). The space \(X \) satisfies the strong cc—insertion property for \((P_1, P_2)\) if and only if \(X \) satisfies the strong cc—insertion property for \((P_1, cc)\) and for \((cc, P_2)\). **Proof.** Theorem 3.2, of [21].

3. Applications

Before stating the consequences of Theorems 2.1, 2.2, and 2.3 we suppose that \(X \) is a topological space whose kernel sets are open.

Corollary 3.1. If for each pair of disjoint preopen (resp. semi—open) sets \(G_1, G_2 \) of \(X \), there exist closed sets \(F_1 \) and \(F_2 \) of \(X \) such that \(G_1 \subseteq F_1 \), \(G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \) then \(X \) has the weak cc—insertion property for \((cpc, cpc)\) (resp. \((csc, csc)\)).

Proof. Corollary 3.1, of [22].

Corollary 3.2. If for each pair of disjoint preopen (resp. semi—open) sets \(G_1, G_2 \), there exist closed sets \(F_1 \) and \(F_2 \) such that \(G_1 \subseteq F_1 \), \(G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \) then every contra-precontinuous (resp. contra-semi—continuous) function is contra-continuous.

Proof. Corollary 3.2, of [22].

Corollary 3.3. If for each pair of disjoint preopen (resp. semi—open) sets \(G_1, G_2 \) of \(X \), there exist closed sets \(F_1 \) and \(F_2 \) of \(X \) such that \(G_1 \subseteq F_1 \), \(G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \) then \(X \) has the cc—insertion property for \((cpc, cpc)\) (resp. \((csc, csc)\)).

Proof. Corollary 3.3, of [22].

Corollary 3.4. If for each pair of disjoint subsets \(G_1, G_2 \) of \(X \), such that \(G_1 \) is preopen and \(G_2 \) is semi—open, there exist closed subsets \(F_1 \) and \(F_2 \) of \(X \) such that \(G_1 \subseteq F_1 \), \(G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \) then \(X \) have the weak cc—insertion property for \((cpc, csc)\) and \((csc, cpc)\).

Proof. Corollary 3.4, of [22].

Before stating consequences of Theorem 2.2, 2.3 we state and prove the necessary lemmas.

Lemma 3.1. The following conditions on the space \(X \) are equivalent:

- For each pair of disjoint subsets \(G_1, G_2 \) of \(X \), such that \(G_1 \) is preopen and \(G_2 \) is semi—open, there exist closed subsets \(F_1, F_2 \) of \(X \) such that \(G_1 \subseteq F_1 \), \(G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \).

- If \(G \) is a semi—open (resp. preopen) subset of \(X \) which is contained in a preclosed (resp. semi—closed) subset \(F \) of \(X \), then there exists a closed subset \(H \) of \(X \) such that \(G \subseteq H \subseteq H^c \subseteq F \).

Proof. Lemma 3.1, of [22].

Lemma 3.2. Suppose that \(X \) is a topological space. If each pair of disjoint subsets \(G_1, G_2 \) of \(X \), where \(G_1 \) is preopen and \(G_2 \) is semi—open, can be separated by closed subsets of \(X \) then there exists a contra-continuous function \(h : X \rightarrow [0, 1] \) such that \(h(G_2) = \{0\} \) and \(h(G_1) = \{1\} \). **Proof.** Lemma 3.2, of [22].

Lemma 3.3. Suppose that \(X \) is a topological space. If each pair of disjoint subsets \(G_1, G_2 \) of \(X \), where \(G_1 \) is preopen and \(G_2 \) is semi—open, can separate by closed subsets of \(X \), and \(G_1 \) (resp. \(G_2 \)) is a closed subsets of \(X \) then there exists a contra-continuous function \(h : X \rightarrow [0, 1] \) such that \(h^{-1}(0) = G_1 \) (resp. \(h^{-1}(0) = G_2 \)) and \(h(G_2) = \{1\} \) (resp. \(h(G_1) = \{1\} \)).
Strong Insertion of a Contra-Continuous Function between Two Comparable Contra-Precontinuous (Contra-Semi–Continuous) Functions

Proof. Suppose that G_1 (resp. G_2) is a closed subset of X. By Lemma 3.2, there exists a contra-continuous function $h : X \to [0,1]$ such that, $h(G_1) = \{0\}$ (resp. $h(G_2) = \{1\}$) and $h(X \setminus G_1) = \{1\}$ (resp. $h(X \setminus G_2) = \{0\}$). Hence, $h^{-1}(0) = G_1$ (resp. $h^{-1}(0) = G_2$) and since $G_2 \subseteq X \setminus G_1$ (resp. $G_1 \subseteq X \setminus G_2$), therefore $h(G_2) = \{1\}$ (resp. $h(G_1) = \{0\}$).

Lemma 3.4. Suppose that X is a topological space such that every two disjoint semi–open and preopen subsets of X can be separated by closed subsets of X. The following conditions are equivalent:

- For every two disjoint subsets G_1 and G_2 of X, where G_1 is preopen and G_2 is semi–open, there exists a contra-continuous function $h : X \to [0,1]$ such that, $h^{-1}(0) = G_1$ (resp. $h^{-1}(0) = G_2$) and $h^{-1}(1) = G_2$ (resp. $h^{-1}(1) = G_1$).
- Every preopen (resp. semi–open) subset of X is a closed subsets of X.
- Every preclosed (resp. semi–closed) subset of X is an open subsets of X.

Proof. (i) ⇒ (ii) Suppose that G is a preopen (resp. semi–open) subset of X. Since \emptyset is a semi–open (resp. preopen) subset of X, by (i) there exists a contra-continuous function $h : X \to [0,1]$ such that, $h^{-1}(0) = G$. Set $F_n = \{x \in X : h(x) < \frac{1}{n}\}$. Then for every $n \in \mathbb{N}$, F_n is a closed subset of X and \(\bigcap_{n=1}^{\infty} F_n = \{x \in X : h(x) = 0\} = G \).

(ii) ⇒ (i) Suppose that G_1 and G_2 are two disjoint subsets of X, where G_1 is preopen and G_2 is semi–open. By Lemma 3.3, there exists a contra-continuous function $f : X \to [0,1]$ such that, $f^{-1}(1) = G_1$ and $f(G_2) = \{1\}$. Set $G = \{x \in X : f(x) < \frac{1}{2}\}$, $F = \{x \in X : f(x) = \frac{1}{2}\}$, and $H = \{x \in X : f(x) > \frac{1}{2}\}$. Then $G \cup F$ and $H \cup F$ are two open subsets of X and $(G \cup F) \cap (H \cup F) = \emptyset$. By Lemma 3.3, there exists a contra-continuous function $g : X \to [\frac{1}{2},1]$ such that, $g^{-1}(1) = G_2$ and $g(G \cup F) = \{\frac{1}{2}\}$. Define h by $h(x) = f(x)$ for $x \in G \cup F$, and $h(x) = g(x)$ for $x \in H \cup F$. Then h is welldefined and a contra-continuous function, since $(G \cup F) \cap (H \cup F) = \emptyset$ and for every $x \in F$ we have $f(x) = g(x) = \frac{1}{2}$. Furthermore, $(G \cup F) \cup (H \cup F) = X$, hence h defined on X and maps to $[0,1]$. Also, we have $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$.

(ii) ⇔ (iii) By De Morgan law and noting that the complement of every open subset of X is a closed subset of X and complement of every closed subset of X is an open subset of X, the equivalence is hold.

Corollary 3.5. If for every two disjoint subsets G_1 and G_2 of X, where G_1 is preopen (resp. semi–open) and G_2 is semi–open (resp. preopen), there exists a contra-continuous function $h : X \to [0,1]$ such that, $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$ then X has the strong cc–insertion property for (cpc,cc) (resp. (csc,csc)).

Proof. Since for every two disjoint subsets G_1 and G_2 of X, where G_1 is preopen (resp. semi–open) and G_2 is semi–open (resp. preopen), there exists a contra-continuous function $h : X \to [0,1]$ such that, $h^{-1}(0) = G_1$ and $h^{-1}(1) = G_2$, define $F_1 = \{x \in X : h(x) < \frac{1}{2}\}$ and $F_2 = \{x \in X : h(x) > \frac{1}{2}\}$.

Then F_1 and F_2 are two disjoint closed subsets of X that contain G_1 and G_2, respectively. Hence by Corollary 3.4, X has the weak cc–insertion property for (cpc,cc) and (csc,csc). Now, assume that g and f are functions on X such that $g \leq f$ is cpc (resp. csc) and f is cc. Since $f - g$ is cpc (resp. csc), therefore the lower cut set $A(f-g,2^n) = \{x \in X : (f-g)(x) \leq 2^n\}$ is a preopen (resp. semi–open) subset of X. Now setting $H_n = \{x \in X : (f-g)(x) > 2^n\}$ for every $n \in \mathbb{N}$, then by Lemma 3.4, H_n is an open subset of X and we have $\{x \in X : (f-g)(x) > 0\} = \bigcup_{n=1}^{\infty} H_n$ and for every $n \in \mathbb{N}$, H_n and $A(f-g,2^n)$ are disjoint subsets of X. By Lemma 3.2, H_n and $A(f-g,2^n)$ can be completely separated by contra-continuous functions. Hence by Theorem 2.2, X has the strong cc–insertion property for (cpc,cc) (resp. (csc,cc)).

By an analogous argument, we can prove that X has the strong cc–insertion property for (cc,csc) (resp. (cc,cpc)). Hence, by Theorem 2.3, X has the strong cc–insertion property for (cpc,csc) (resp. (csc,cpc)).

ACKNOWLEDGEMENT

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).
Strong Insertion of a Contra-Continuous Function between Two Comparable Contra-Precontinuous (Contra-Semi-Continuous) Functions

REFERENCES

[1] A. Al-Omari and M.S. Md Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, European J. Pure. Appl. Math., 2(2)(2009), 213-230.
[2] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly, 78(1971), 1007-1010.
[3] M. Caldas and S. Jafari, Some properties of contra-β-continuous functions, Mem. Fac. Sci. Kochi. Univ., 22(2001), 19-28.
[4] H.H. Corson and E. Michael, Metrizability of certain countable unions, Illinois J. Math., 8(1964), 351-360.
[5] J. Dontchev, The characterization of some peculiar topological space via α− and β−sets, Acta Math. Hungar., 69(1-2)(1995), 67-71.
[6] J. Dontchev, Contra-continuous functions and strongly S-closed space, Intrnat. J. Math. Math. Sci., 19(2)(1996), 303-310.
[7] J. Dontchev, and H. Maki, On sg-closed sets and semi−β−closed sets, Questions Answers Gen. Topology, 15(2)(1997), 259-266.
[8] E. Ekici, On contra-continuity, Annales Univ. Sci. Bodapest, 47(2004), 127-137.
[9] E. Ekici, New forms of contra-continuity, Carpathian J. Math., 24(1)(2008), 37-45.
[10] A.I. El-Maghrabi, Some properties of contra-continuous mappings, Int. J. General Topol., 3(1-2)(2010), 55-64.
[11] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar., 56(3-4)(1990), 299-301.
[12] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, Iranian Int. J. Sci., 2(2001), 153-167.
[13] S. Jafari and T. Noiri, On contra-precontinuous functions, Bull. Malaysian Math. Sc. Soc., 25(2002), 115-128.
[14] M. Kat’etov, On real-valued functions in topological spaces, Fund. Math., 38(1951), 85-91.
[15] M. Kat’etov, Correction to, “On real-valued functions in topological spaces”, Fund. Math., 40(1953), 203-205.
[16] E. Lane, Insertion of a continuous function, Pacific J. Math., 66(1976), 181-190.
[17] N. Levine, Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly, 70(1963), 36-41.
[18] S. N. Maheshwari and R. Prasad, On RO−spaces, Portugal. Math., 34(1975), 213-217.
[19] H. Maki, Generalized A−sets and the associated closure operator, The special issue in commemoration of Prof. Kazuada IKEDA’s Retirement, (1986), 139-146.
[20] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and weak pre-continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
[21] M. Mirmiran, Insertion of a function belonging to a certain subclass of R³, Bull. Iran. Math. Soc., 28(2)(2002), 19-27.
[22] M. Mirmiran, Insertion of a contra-continuous function between two comparable contra-precontinuous (contra-semicontinuous) functions, International Journal of Scientific and Innovative Mathematical Research, 7(10)(2019), 34-40.
[23] M. Mrsevic, On pairwise R and pairwise R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-145.
[24] A.A. Nasef, Some properties of contra-continuous functions, Chaos Solitons Fractals, 24(2005), 471-477.
[25] M. Przemski, A decomposition of continuity and α−continuity, Acta Math. Hungar., 61(1-2)(1993), 93-98.

Citation: MAJID MIRMIRAN (2019). Strong Insertion of a Contra-Continuous Function between Two Comparable Contra-Precontinuous (Contra-Semi-Continuous) Functions. International Journal of Scientific and Innovative Mathematical Research (IJSIMR), 7(11), pp. 15-19. http://dx.doi.org/10.20431/2347-3142.0711003

Copyright: © 2019 Authors, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.