Title
Obesity and kidney disease: hidden consequences of the epidemic.

Permalink
https://escholarship.org/uc/item/1k81k0w4

Journal
Clinical nephrology, 87 (2017)(4)

ISSN
0301-0430

Authors
Kovesdy, Csaba P
Furth, Susan L
Zoccali, Carmine

Publication Date
2017-04-01

DOI
10.5414/cn109111

License
CC BY 4.0

Peer reviewed
Introduction

In 2014, over 600 million adults worldwide, 18 years and older, were obese. Obesity is a potent risk factor for the development of kidney disease. It increases the risk of developing major risk factors for chronic kidney disease (CKD), like diabetes and hypertension, and it has a direct impact on the development of CKD and end-stage renal disease (ESRD). In individuals affected by obesity, a (likely) compensatory mechanism of hyperfiltration occurs to meet the heightened metabolic demands of the increased body weight. The increase in intraglomerular pressure can damage the kidney structure and raise the risk of developing CKD in the long-term.

The good news is that obesity, as well as the related CKD, are largely preventable. Education and awareness of the risks of obesity and a healthy lifestyle, including proper nutrition and exercise, can dramatically help in preventing obesity and kidney disease. This article reviews the association of obesity with kidney disease on the occasion of the 2017 World Kidney Day.

Epidemiology of obesity in adults and children

Over the last 3 decades, the prevalence of overweight and obese adults (BMI ≥ 25 kg/m²) worldwide has increased substantially [1]. In the US, the age-adjusted prevalence of obesity in 2013 – 2014 was 35% among men and 40.4% among women [2]. The problem of obesity also affects children. In the US in 2011 – 2014, the prevalence of obesity was 17% and extreme obesity 5.8% among youth 2 – 19 years of age. The rise in obesity prevalence is also a worldwide concern [3, 4], as it is projected to grow by 40% across the globe in the next decade. Low- and middle-income countries are now showing evidence of transitioning from normal weight to overweight and obesity as parts of Europe and the United States did decades ago [5]. This increasing prevalence of obesity has implications for cardiovascular disease (CVD) and also for CKD. A high body mass index (BMI) is one of the strongest risk factors for new-onset CKD [6, 7].

Definitions of obesity are most often based on BMI (i.e., weight (kilograms) divided by the square of his or her height (meters)). A BMI between 18.5 and 25 kg/m² is considered by the World Health Organization (WHO) to be normal weight, a BMI between 25 and 30 kg/m² as overweight, and a BMI of > 30 kg/m² as obese. Although BMI is easy to calculate, it is a poor estimate of fat mass distribution, as muscular individuals or those with more subcutaneous fat may have a BMI as high as individuals with larger intra-abdominal (visceral) fat. The latter type of high BMI is associated with substantially higher risk of metabolic and cardiovascular disease. Alternative parameters to more accurately capture visceral fat include waist circumference (WC) and a waist hip ratio (WHR) of > 102 cm and 0.9, respectively, for men and > 88 cm and > 0.8, respectively, for women. WHR has been shown to be superior to BMI for the correct classification of obesity in CKD.

Association of obesity with CKD and other renal complications

Numerous population based studies have shown an association between measures of
Study	Patients	Exposure	Outcomes	Results	Comments
Prevention of Renal and Vascular End-Stage Disease (PREVEND) Study	7,676 Dutch individuals without diabetes	Elevated BMI (overweight and obese*), and central fat distribution (waist-hip ratio)	-Presence of urine albumin 30 – 300 mg/24h, -Elevated and diminished GFR	-Obese + central fat: higher risk of albuminuria, -Obese ± central fat: higher risk of elevated GFR, -Central fat ± obesity associated with diminished filtration	Cross sectional analysis
Multinational study of hypertensive outpatients [20]	20,828 patients from 26 countries	BMI and waist circumference	Prevalence of albuminuria by dip stick	Higher waist circumference associated with albuminuria independent of BMI	Cross sectional analysis
Framingham Multi-Detector Computed Tomography (MDCT) cohort [22]	3,099 individuals	Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT)	Prevalence of UACR > 25 mg/g in women and > 17 mg/g in men	VAT associated with albuminuria in men, but not in women	Cross sectional analysis
CARDIA (Coronary Artery Risk Development in Young Adults) study [11]	2,354 community-dwelling individuals with normal kidney function aged 28 – 40 years	-Obesity (BMI > 30 kg/m²) -Diet and lifestyle-related factors	Incident microalbuminuria	Obesity (OR 1.9) and unhealthy diet (OR 2.0) associated with incident albuminuria	Low number of events
Hypertension Detection and Follow-Up Program [10]	5,897 hypertensive adults	Overweight and obese BMI* vs. normal BMI	Incident CKD (1+ or greater proteinuria on urinalysis and/or an eGFR < 60 mL/min/1.73 m²)	Both overweight (OR 1.21) and obesity (OR 1.40) associated with incident CKD	Results unchanged after excluding diabetics
Framingham Offspring Study [9]	2,676 individuals free of CKD stage 3	High vs. normal BMI*	-Incident CKD stage 3 -Incident proteinuria	-Higher BMI not associated with CKD3 after adjustments, -Higher BMI associated with increased odds of incident proteinuria	Predominantly white, limited geography
Physicians’ Health Study [13]	11,104 initially healthy men in US	-BMI quintiles -Increase in BMI over time (vs. stable BMI)	Incident eGFR < 60 mL/min/1.73 m²	-Higher baseline BMI and increase in BMI over time both associated with higher risk of incident CKD	Exclusively men
Nation-wide US Veterans Administration cohort [14]	3,376,187 US veterans with baseline eGFR ≥ 60 mL/min/1.73 m²	BMI categories from < 20 to > 50 kg/m²	Rapid decline in kidney function (negative eGFR slope of > 5 mL/min/1.73 m²)	BMI > 30 kg/m² associated with rapid loss of kidney function	Associations more accentuated in older individuals
Nation-wide population-based study from Sweden [12]	926 Swedes with moderate/advanced CKD compared to 998 controls	BMI ≥ 25 vs. < 25 kg/m²	CKD vs. no CKD	Higher BMI associated with 3x higher risk of CKD	-Risk strongest in diabetics, but also significantly higher in non-diabetics -Cross sectional analysis
Nation-wide population-based study in Israel [17]	1,194,704 adolescent males and females examined for military service	Elevated BMI (overweight and obesity) vs. normal BMI*	Incident ESRD	Overweight (HR 3.0) and obesity (HR 6.89) associated with higher risk of ESRD	Associations strongest for diabetic ESRD, but also significantly higher for non-diabetic ESRD
The Nord-Trøndelag Health Study (HUNT-1) [15]	74,986 Norwegian adults	BMI categories*	Incidence of ESRD or renal death	BMI > 30 kg/m² associated with worse outcomes	Associations not present in individuals with BL < 120/80 mmHg
Obesity and kidney disease

Higher BMI is associated with increased risk of ESRD in men, but not in women. Average BMI lower in Japan compared to Western countries.

Study	Patients	Exposure	Outcomes	Results	Comments
Community-based screening in Okinawa, Japan [16]	100,753 individuals > 20 years old	BMI quartiles	Incidence of ESRD	Higher BMI associated with increased risk of ESRD in men, but not in women	Average BMI lower in Japan compared to Western countries
Nation-wide US Veterans Administration cohort [19]	453,946 US veterans with baseline eGFR < 60 mL/min per 1.73 m2	BMI categories from < 20 to > 50 kg/m2	-Incidence of ESRD -Doubling of serum creatinine -Slopes of eGFR	Moderate and severe obesity associated with worse renal outcomes	Associations present but weaker in patients with more advanced CKD
Kaiser Permanente Northern California [18]	320,252 adults with and without baseline CKD	Elevated waist circumference or BMI	Incidence of ESRD	Linearly higher risk of ESRD with higher BMI categories	Associations remained present after adjustment for DM, hypertension and baseline CKD
REGARDS (Reasons for Geographic and Racial Differences in Stroke) Study [21]	30,239 individuals	Overweight, class I, II and extreme obesity; vs. normal BMI*	Incidence of ESRD	BMI above normal not associated with ESRD after adjustment for waist circumference -Higher waist circumference associated with ESRD	Association of waist circumference with ESRD became on-significant after adjustment for comorbidities and baseline eGFR and proteinuria

*Normal weight: BMI 18.5 – 24.9 kg/m2; overweight: BMI 25.0 – 29.9 kg/m2; class I obesity: BMI 30.0 – 34.9 kg/m2; class II obesity: BMI 35.0 – 39.9 kg/m2; class III obesity: BMI ≥ 40 kg/m2. BMI = body mass index; CKD = chronic kidney disease; DM = diabetes mellitus; eGFR = estimated glomerular filtration rate; ESRD = end-stage renal disease; HR = hazard ratio; OR = odds ratio; UACR = urine albumin-creatinine ratio.
to excess weight [28]. Another large analysis examining the global burden of obesity on malignancies estimated that 17% and 26% of all kidney cancers in men and women, respectively, were attributable to excess weight [29]. The association between obesity and kidney cancers was consistent in both men and women, and across populations from different parts of the world in a meta-analysis that included data from 221 studies (of which 17 examined kidney cancers) [30]. Among the cancers examined in this meta-analysis, kidney cancers had the third highest risk associated with obesity (relative risk per 5 kg/m² higher BMI: 1.24, 95% CI 1.20 – 1.28, p < 0.0001) [30].

Mechanisms of action underlying the renal effects of obesity

Obesity results in complex metabolic abnormalities which have wide-ranging effects on diseases affecting the kidneys. The exact mechanisms whereby obesity may worsen or cause CKD remain unclear. The fact that most obese individuals never develop CKD, and the distinction of up to as many as 25% of obese individuals as “metabolically healthy” suggests that increased weight alone is not sufficient to induce kidney damage [31]. Some of the deleterious renal consequences of obesity may be mediated by downstream comorbid conditions such as diabetes mellitus or hypertension, but there are also effects of adiposity which could impact the kidneys directly, induced by the endocrine activity of the adipose tissue via production of (among others) adiponectin [32], leptin [33], and resistin [34] (Figure 1). These include the development of inflammation [35], oxidative stress [36], abnormal lipid metabolism [37], activation of the renin-angiotensin-aldosterone system [38], and increased production of insulin and insulin resistance [39, 40].

These various effects result in specific pathologic changes in the kidneys [41] which could underlie the higher risk of CKD seen in observational studies. These include ectopic lipid accumulation [42] and increased deposition of renal sinus fat [43, 44], the development of glomerular hypertension and increased glomerular permeability caused by hyperfiltration-related glomerular filtration barrier injury [45], and ultimately the development of glomerulomegaly [46], and focal or segmental glomerulosclerosis [41].
Obesity and kidney disease

The incidence of the so-called obesity-related glomerulopathy (ORG) has increased 10-fold between 1986 and 2000 [41]. Importantly, ORG often presents along with pathophysiologic processes related to other conditions or advanced age, conspiring to result in more accentuated kidney damage in patients with high blood pressure [47] or in the elderly [14, 39].

Obesity is associated with a number of risk factors contributing to the higher incidence and prevalence of nephrolithiasis. Higher body weight is associated with lower urine pH [48] and increased urinary oxalate [49], uric acid, sodium, and phosphate excretion [50]. Diets richer in protein and sodium may lead to a more acidic urine and decrease in urinary citrate, also contributing to kidney stone risk. The insulin resistance characteristic of obesity may also predispose to nephrolithiasis [51] through its impact on tubular Na-H exchanger [52] and ammoniagenesis [53], and the promotion of an acidic milieu [54]. Complicating the picture is the fact that some weight loss therapies result in a worsening, rather than an improvement in the risk for kidney stone formation; e.g., gastric surgery can lead to a substantial increase in enteral oxalate absorption and enhanced risk of nephrolithiasis [55].

The mechanisms behind the increased risk of kidney cancers observed in obese individuals are less well characterized. Insulin resistance, and the consequent chronic hyperinsulinemia and increased production of insulin-like growth factor I and numerous complex secondary humoral effects may exert stimulating effects on the growth of various types of tumor cells [56]. More recently, the endocrine functions of adipose tissue [57], its effects on immunity [58], and the generation of an inflammatory milieu with complex effects on cancers [59, 60] have emerged as additional explanations.

Obesity in patients with advanced kidney disease: The need for a nuanced approach

Considering the above evidence about the overwhelmingly deleterious effects of obesity on various disease processes, it is seemingly counterintuitive that obesity has been consistently associated with lower mortality rates in patients with advanced CKD [19, 61] and ESRD [62, 63]. Similar “paradoxical” associations have also been described in other populations, such as in patients with congestive heart failure [64], chronic obstructive pulmonary disease [65], rheumatoid arthritis [66], and even in old individuals [67]. It is possible that the seemingly protective effect of a high BMI is the result of the imperfect correlation between BMI as a measure of obesity, as it does not differentiate the effects of adiposity from those of higher non-adipose tissue. Indeed, studies that separated the effects of a higher waist circumference from those of higher BMI showed a reversal of the inverse association with mortality [23, 24]. Higher muscle mass has also been shown to explain at least some of the positive effects attributed to elevated BMI [63, 68]. However, there is also evidence to suggest that higher adiposity, especially subcutaneous (non-visceral) fat, may also be associated with better outcomes in ESRD patients [62]. Such benefits may indeed be present in patients who have very low short term life expectancy, such as most ESRD patients [69]. Indeed, some studies that examined the association of BMI with time-dependent survival in ESRD have shown a marked contrast between protective short term effects vs. deleterious longer term effects of higher BMI [70]. There are several putative short term benefits that higher body mass could portend, especially to sicker individuals. These include a benefit from the better nutritional status typically seen in obese individuals, and which provides better protein and energy reserves in the face of acute illness, and a higher muscle mass with enhanced antioxidant capacity [63] and lower circulating actin and higher plasma gelsolin levels [71], which are associated with better outcomes. Other hypothetically beneficial characteristics of obesity include a more stable hemodynamic status with mitigation of stress responses and heightened sympathetic and renin-angiotensin activity [72]; increased production of adiponectines [73] and soluble tumor necrosis factor-α receptors [74] by adipose tissue neutralizing the adverse effects of tumor necrosis factor-α; enhanced binding of circulating endotoxins [75] by the characteristically higher chole-
Potential interventions for management of obesity

Obesity engenders kidney injury via direct mechanisms through deranged synthesis of various adipose tissue cytokines with nephrotoxic potential, as well as indirectly by triggering diabetes and hypertension, i.e., two conditions that rank among the strongest risk factors for CKD. Perhaps due to the survival advantage of obesity in CKD, the prevalence of end stage kidney disease is on the rise both in the USA [77] and in Europe [78]. Strategies for controlling the obesity related CKD epidemic at population level and for countering the evolution of CKD toward kidney failure in obese patients represent the most tantalizing task that today’s health planners, health managers and nephrologists face.

Countering CKD at population level

Calls for public health interventions in the community to prevent and treat CKD at an early stage have been made by major renal associations, including the International Society of Nephrology (ISN), International Federation of the Kidney Foundation (IFKF), the European renal association (ERA-EDTA) and various national societies. In the USA, Healthy People 2020, a program that sets 10-year health targets for health promotion and prevention goals, focuses both on CKD and obesity. Surveys to detect obese patients, particularly those with a high risk of CKD (e.g., hypertensive and/or diabetic obese people) and those receiving suboptimal care to inform these patients of the potential risk for CKD they are exposed to, is the first step towards developing public health interventions. Acquiring evidence that current interventions to reduce CKD risk in the obese are efficacious and deployable, is an urgent priority to set goals and means for risk modification. Appropriate documentation of existing knowledge distilling the risk and the benefits of primary and secondary prevention interventions in obese people, and new trials in this population to fill knowledge gaps (see below) are needed. Finally, surveillance programs that monitor progress on the detection of at-risk individuals and the effectiveness of prevention programs being deployed [79] constitute the third, fundamental element for establishing efficacious CKD prevention plans at population level.

A successful surveillance system for CKD has already been implemented in some places such as the United Kingdom (UK) [80]. A campaign to disseminate and apply K-DOQI CKD guidelines in primary care within the UK National Health Service was launched. This progressively increased the adoption of K-DOQI guidelines and, also thanks to specific incentives for UK general physicians to detect CKD, led to an impressive improvement in the detection and care of CKD, i.e., better control of hypertension and increased use of angiotensin-converting enzyme and angiotensin receptor blockers [80]. This system may serve as a platform to improve the prevention of obesity-related CKD. Campaigns aiming at reducing the obesity burden are now at center stage worldwide and are strongly recommended by the WHO and it is expected that these campaigns will reduce the incidence of obesity-related complications, including CKD. However obesity-related goals in obese CKD patients remain vaguely formulated, largely because of the paucity of high-level evidence intervention studies to modify obesity in CKD patients [81].

Prevention of CKD progression in obese people with CKD

Observational studies in metabolically healthy obese subjects show that the obese phenotype unassociated with metabolic abnormalities per se predicts a higher risk for incident CKD [82] suggesting that obesity per se may engender renal dysfunction and kidney damage even without diabetes or hypertension (vide supra). In overweight or obese diabetic patients, a lifestyle intervention including caloric restriction and increased physical activity compared with a standard follow up based on education and support to sustain diabetes treatment reduced the risk for incident CKD by 30%, although
it did not affect the incidence of cardiovascular events [83]. Such a protective effect was partly due to reductions in body weight, HbA1c, and systolic BP. No safety concerns regarding kidney-related adverse events were seen [83]. In a recent meta-analysis collating experimental studies in obese CKD patients, interventions aimed at reducing body weight showed coherent reductions in blood pressure, glomerular hyper-filtration, and proteinuria [81]. A thorough post-hoc analysis of the REIN study showed that the nephron-protective effect of ACE inhibition in proteinuric CKD patients was maximal in obese CKD patients, but minimal in CKD patients with normal or low BMI [84]. Of note, bariatric surgical intervention have been suggested for selected CKD and ESRD patients including dialysis patients who are waitlisted for kidney transplantation [85, 86, 87].

Globally, these experimental findings provide a proof of concept for the usefulness of weight reduction and ACE inhibition interventions in the treatment of CKD in the obese. Studies showing a survival benefit of increased BMI in CKD patients, however, remain to be explained [88]. These findings limit our ability to make strong recommendations about the usefulness and the safety of weight reduction among individuals with more advanced stages of CKD. Lifestyle recommendations to reduce body weight in obese people at risk for CKD and in those with early CKD appear justified, particularly recommendations for the control of diabetes and hypertension. As the independent effect of obesity control on the incidence and progression of CKD is difficult to disentangle from the effects of hypertension and type 2 diabetes, recommendation of weight loss in the minority of metabolically healthy, non-hypertensive obese patients remains unwarranted. These considerations suggest that a therapeutic approach to overweight and obesity in patients with advanced CKD or other significant comorbid conditions has to be pursued carefully, with proper considerations of the expected benefits and potential complications of weight loss over the life span of the individual patient.

Conclusions

The worldwide epidemic of obesity affects the Earth’s population in many ways. Diseases of the kidneys, including CKD, nephrolithiasis and kidney cancers are among the more insidious effects of obesity, but which nonetheless have wide ranging deleterious consequences, ultimately leading to significant excess morbidity and mortality and excess costs to individuals and the entire society. Population-wide interventions to control obesity could have beneficial effects in preventing the development, or delaying the progression of CKD. It is incumbent upon the entire healthcare community to devise long-ranging strategies towards improving the understanding of the links between obesity and kidney diseases, and to determine optimal strategies to stem the tide. The 2017 World Kidney Day is an important opportunity to increase education and awareness to that end.

Csaba P. Kovesdy
Susan Furth
Carmine Zoccali
on behalf of the World Kidney Day Steering Committee*

*Members of the World Kidney Day Steering Committee are: Philip Kam Tao Li, Guillermo Garcia-Garcia, Mohammed Benghanem-Gharbi, Rik Bollaert, Sophie Dupuis, Timur Erk, Kamyar Kalantar-Zadeh, Csaba Kovesdy, Charlotte Osafo, Miguel C. Riella, Elena Zakhareva

References

[1] Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Brauer M, Burnett R, Casey D, Coates MM, Cohen A, Delwiche K, Extep K, Frostad JJ, Astha KC, Kus HH, Moradi-Lakeh M, Ng M, Slepak EL, Thomas BA, Wagner J, et al; GBD 2013 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990 – 2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 386: 2287-2323. CrossRef PubMed

[2] Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in Obesity Among Adults in the United States, 2005 to 2014. JAMA. 2016; 315: 2284-2291. CrossRef PubMed

[3] Cattaneo A, Monasta L, Stamatakis E, Lioret S, Castethon K, Frenken F, Manios Y, Moschonis G, Savva S, Zaborski S, Rito AI, Nanu M, Vigneroná
Olaya B, Moneta MV, Piz O, Bitfoi A, Caria MG, Eke C, Goelitz D, Keyes KM, Kuipers R, Lesinskiene S, Mihova Z, Otten R, Fermanian C, Haro JM, Kovess V. Country-level and individual correlates of overweight and obesity among primary school children: a cross-sectional study in seven European countries. BMC Public Health. 2015; 15: 475. CrossRef PubMed

Subramanian SV, Perkins JM, Ozaltin E, Davey Smith G. Weight of nations: a socioeconomic analysis of women in low- to middle-income countries. Am J Clin Nutr. 2011; 93: 413-421. CrossRef PubMed

Tsuimoto T, Sairenchi T, Iso H, Irie F, Yamagishi K, Watanabe H, Tonaka K, Muto T, Ota H. The dose-response relationship between body mass index and the risk of incident stage ≥3 chronic kidney disease in a general Japanese population: the Ibaraki prefectural health study (IPHS). J Epidemiol. 2014; 24: 444-451. CrossRef PubMed

Elsayed EF, Sarnak MJ, Tighiouart H, Griffith JL, Kurth T, Slemian DN, Levey AS, Weiner DE. Waist-to-hip ratio, body mass index, and subsequent kidney disease and death. Am J Kidney Dis. 2008; 52: 29-38. CrossRef PubMed

Pinto-Sietsma SJ, Navis G, Janssen WM, de Zeeuw D, Gans RO, de Jong PE. PREVEND Study Group. A central body fat distribution is related to renal function impairment, even in lean subjects. Am J Kidney Dis. 2003; 41: 733-741. CrossRef PubMed

Foster MC, Hwang SJ, Larson MG, Lichtman JM, Parikh NI, Vasan RS, Levey D, Fox CS. Overweight, obesity, and the development of stage 3 CKD: the Framingham Heart Study. Am J Kidney Dis. 2008; 52: 39-48. CrossRef PubMed

Kramer H, Luke A, Bidani A, Cao G, Cooper R, McGee D. Obesity and prevalent and incident CKD: the Hypertension Detection and Follow-Up Program. Am J Kidney Dis. 2005; 46: 587-594. CrossRef PubMed

Chang A, Van Horn L, Jacobs DR Jr, Liu K, Mintner P, Newsome B, Shoham DA, Durazo-Arvizu R, Bibbins-Domingo K, Reis J, Kramer H. Lifestyle-related factors, obesity, and incident microalbuminuria: the CARDIA (coronary artery risk development in young adults) study. Am J Kidney Dis. 2013; 62: 267-275. CrossRef PubMed

Ejerblad E, Forèd CM, Lindblad P, Fryzek J, McLaughlin JK, Nyrén O. Obesity and risk for chronic renal failure. J Am Soc Nephrol. 2006; 17: 1695-1702. CrossRef PubMed

Gelber RP, Kurth T, Kausz AT, Manson JE, Buring JE, Levey AS, Gaziano JM. Association between body mass index and CKD in apparently healthy men. Am J Kidney Dis. 2005; 46: 871-880. CrossRef PubMed

Lu JL, Mokhtar MZ, Naseer A, Mikkelsen MK, Kalantar-Zadeh K, Kovesdy CP. Association of age and BMI with kidney function and mortality: a cohort study. Lancet Diabetes Endocrinol. 2015; 3: 704-714. CrossRef PubMed

Munkhaugen J, Lydersen S, Widerne TE, Hallan S. Prehypertension, obesity, and risk of kidney disease: 20-year follow-up of the HUNT I study in Norway. Am J Kidney Dis. 2009; 54: 638-646. CrossRef PubMed

Iseki K, Ikemiy Y, Kinjo K, Inoue T, Iseki C, Takishita S. Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int. 2004; 65: 1870-1876. CrossRef PubMed

Vivante A, Golan E, Tzur D, Leiba A, Tirosh A, Skorecki K, Calderon-Margalit R. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med. 2012; 172: 1644-1650. CrossRef PubMed

Hsu CY, McCullough CE, Irribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Am Intern Med. 2006; 144: 21-28. CrossRef PubMed

Lu JL, Kalantar-Zadeh K, Ma JZ, Quares LD, Kovesdy CP. Association of body mass index with outcomes in patients with CKD. J Am Soc Nephrol. 2014; 25: 2088-2096. CrossRef PubMed

Thoenes M, Reil JC, Khan BV, Bramlage P, Volpe M, Köch W, Böhm M. Abdominal obesity is associated with microalbuminuria and an elevated cardiovascular risk profile in patients with hypertension. Vasc Health Risk Manag. 2009; 5: 577-585. PubMed

Kramer H, Gutierrez OM, Judd SE, Muntner P, Warnock DG, Tanner RM, Panwar B, Shoham DA, McClellan W. Waist circumference, body mass index, and ESRD in the REGARDS (reasons for geographic and racial differences in stroke) study. Am J Kidney Dis. 2016; 67: 62-69. CrossRef PubMed

Foster MC, Hwang SJ, Massaro JM, Hoffmann U, DeBoer IH, Robins SJ, Vasan RS, Fox CS. Association of subcutaneous and visceral adiposity with albuminuria: the Framingham Heart Study. Obesity (Silver Spring). 2011; 19: 1284-1299. PubMed

Postorino M, Marino C, Tripepi G, Zoccali C. CREDIT (Calabria Registry of Dialysis and Transplantation) Working Group. Abdominal obesity and all-cause and cardiovascular mortality in end-stage renal disease. J Am Coll Cardiol. 2009; 53: 1265-1272. CrossRef PubMed

Kovesdy CP, Cziva ME, Rudas A, Ujvásszi A, Ross-Ivall G, Novak M, Kalantar-Zadeh K, Mohar-MZ, Mucsi I. Body mass index, waist circumference and mortality in kidney transplant recipients. Am J Transplant. 2010; 10: 2644-2651. CrossRef PubMed

Scales CD Jr, Smith AC, Hanley JM, Saigal CS. Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur Urol. 2012; 62: 160-165. CrossRef PubMed

Curhan GC, Willett WC, Rimm EB, Speizer FE, Stampfer MJ. Body size and risk of kidney stones. J Am Soc Nephrol. 1998; 9: 1645-1652. PubMed

Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005; 293: 455-462. CrossRef PubMed

Bhaskaran K, Douglas J, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. Body-mass index and risk of 22 specific cancers: a population-based study of 5·24 million UK adults. Lancet. 2014; 384: 755-765. CrossRef PubMed

Arnold M, Pandeya N, Byrnes G, Renchon AG, Stevens GA, Ezzati M, Ferlay J, Miranda JJ, Romieu I, Dikshit R, Forman D, Soerjomataram I. Global burden of cancer attributable to high body-mass index in 2012: a population-based study. Lancet Oncol. 2015; 16: 36-46. CrossRef PubMed

Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of
Obesity and kidney disease

171

cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008; 371: 569-578. CrossRef PubMed

[31] Blüher M. The distinction of metabolically ‘healthy’ from ‘unhealthy’ obese individuals. Curr Opin Lipidol. 2010; 21: 38-43. CrossRef PubMed

[32] Sharma K. The link between obesity and albuminuria: adiponectin and podocyte dysfunction. Kidney Int. 2009; 76: 145-148. CrossRef PubMed

[33] Wolf G, Ziyaeddin FN. Leptin and renal fibrosis. Contrib Nephrol. 2006; 151: 175-183. CrossRef PubMed

[34] Ellington AA, Malik AR, Klee GG, Turner ST, Rule AD, Mosley TH Jr, Kullo IJ. Association of plasma resistin with glomerular filtration rate and albuminuria in hypertensive adults. Hypertension. 2007; 50: 708-714. CrossRef PubMed

[35] Bastard JP, Mauchi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006; 17: 4-12. PubMed

[36] Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004; 114: 1752-1761. CrossRef PubMed

[37] Ruan XZ, Värgheze Z, Moorhead JF. An update on the lipid nephrotoxicity hypothesis. Nat Rev Nephrol. 2009; 5: 713-721. CrossRef PubMed

[38] Räster C, Wolf G. The role of the renin-angiotensin-aldosterone system in obesity-related renal diseases. Semin Nephrol. 2013; 33: 44-53. CrossRef PubMed

[39] Oenholm LH, de Vries AP, Gansevoort RT, de Jong PE, Gans RO, Bakker SJ. Fasting insulin modifies the relation between age and renal function. Nephrol Dial Transplant. 2007; 22: 1587-1592. CrossRef PubMed

[40] Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988; 37: 1595-1607. CrossRef PubMed

[41] Kambham N, Markowitz GS, Valeri AM, Liu J, D’Agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001; 59: 1498-1509. CrossRef PubMed

[42] de Vries AP, Ruggenenti P, Ruan XZ, Praga M, Cruzado JM, Bajema IM, D’Agati VD, Lamb HJ, Pongrac Barlovic D, Hojs R, Abbate M, Rodriguez R, Mogensen CE, Porrini E; ERA-EDTA Working Group Diabesity. Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol. 2014; 2: 417-426. CrossRef PubMed

[43] Foster MC, Hvsgaj SI, Porter SA, Massaro JM, Hoffmann U, Fox CS. Fatty kidney, hypertension, and chronic kidney disease: the Framingham Heart Study. Hypertension. 2011; 58: 784-790. CrossRef PubMed

[44] Henegar JR, Bigler SA, Henegar LK, Thyagi SC, Hall JE. Functional and structural changes in the kidney in the early stages of obesity. J Am Soc Nephrol. 2001; 12: 1211-1217. PubMed

[45] Knight SF, Quigley JE, Yuan J, Roy SS, Elmarakby A, Imig JD. Endothelial dysfunction and the development of renal injury in spontaneously hypertensive rats fed a high-fat diet. Hypertension. 2008; 51: 352-359. CrossRef PubMed

[46] Tsunobu N, Utsunomiya Y, Kanazaki G, Koike K, Ikegami M, Kawamura T, Hosoya T. Low glomerular density with glomerulomegaly in obesity-related glomerulopathy. Clin J Am Soc Nephrol. 2012; 7: 735-741. CrossRef PubMed

[47] Ribstein J, du Cailar G, Mimran A. Combined renal effects of overweight and hypertension. Hypertension. 1995; 26: 610-615. CrossRef PubMed

[48] Maalouf NM, Sakhawee K, Parks JH, Cooke FL, Adams-Huet B, Pak CY. Association of urinary pH with body weight in nephrolithiasis. Kidney Int. 2004; 65: 1422-1425. CrossRef PubMed

[49] Lemann J Jr, Pleuss JA, Worcester EM, Hornick L, Schrab D, Hoffmann RG. Urinary oxalate excretion increases with body size and decreases with increasing dietary calcium intake among healthy adults. Kidney Int. 1996; 49: 200-208. CrossRef PubMed

[50] Siener R, Glatz S, Nicolay C, Hesse A. The role of overweight and obesity in calcium oxalate stone formation. Obes Res. 2004; 12: 106-113. CrossRef PubMed

[51] Taylor EN, Stampler MJ, Curhan GC. Diabetes mellitus and the risk of nephrolithiasis. Kidney Int. 2005; 68: 1230-1235. CrossRef PubMed

[52] Klüs C, Hu MC, Nief V, Reyes L, Faster D, Moe OW. Ambühl PM. Insulin activates Na(+)H(+) exchanger 3: biphasic response and glucocorticoid dependence. Am J Physiol Renal Physiol. 2002; 283: F532-F539. CrossRef PubMed

[53] Chobanian MC, Hammerman MR. Insulin stimulates ammoniagenesis in canine renal proximal tubular segments. Am J Physiol. 1987; 253: F1171-F1177. PubMed

[54] Daudon M, Lacour B, Jungers P. Influence of body size on urinary stone composition in men and women. Urol Res. 2006; 34: 193-199. CrossRef PubMed

[55] Sinha MK, Collazo-Clavell ML, Rule A, Milliner DS, Nelson W, Sarr MG, Kumar R, Lieske JC. Hyperoxaluric nephrolithiasis is a complication of Roux-en-Y gastric bypass surgery. Kidney Int. 2007; 72: 100-107. CrossRef PubMed

[56] Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004; 4: 579-591. CrossRef PubMed

[57] Dalmagro M, Diakopoulos KN, Mantonos CS. The role of adiponectin in cancer: a review of current evidence. Endocr Rev. 2012; 33: 547-594. CrossRef PubMed

[58] Lamas O, Marti A, Martinez JA. Obesity and immunocompetence. Eur J Clin Nutr. 2002; 56 (Suppl 3): S42-S45. CrossRef PubMed

[59] Lim C, Savar R. The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev. 2014; 25: 257-271. CrossRef PubMed

[60] Gritsenkov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140: 883-899. CrossRef PubMed

[61] Kovesdy CP, Anderson JE, Kalantar-Zadeh K. Paradoxical association between body mass index and mortality in men with CKD not yet on dialysis. Am J Kidney Dis. 2007; 49: 581-591. CrossRef PubMed

[62] Kalantar-Zadeh K, Kowae N, Wu DY, Shantouf RS, Fouque D, Anker SD, Block G, Koppel JD. Associations of body fat and its changes over time with quality of life and prospective mortality in hemodialysis patients. Am J Clin Nutr. 2006; 83: 202-210. PubMed

[63] Beddhu S, Levey AS, Ramkumar N, Samore M. Effects of body size and body composition on survival in hemodialysis patients. J Am Soc Nephrol. 2003; 14: 2366-2372. CrossRef PubMed
[64] Curtis JP, Selter JG, Wang Y, Rathore SS, Jovin IS, Judhabaie F, Kosiborod M, Portmay EL, Sokol SI, Bader F, Kramholz HM. The obesity paradox: body mass index and outcomes in patients with heart failure. Arch Intern Med. 2005; 165: 55-61. CrossRef PubMed

[65] Wilson DO, Rogers RM, Wright EC, Anthonisen NR; The National Institutes of Health Intermittent Positive-Pressure Breathing Trial. Body weight in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1989; 139: 1435-1438. CrossRef PubMed 2009.

[66] Escalante A, Haas RW, del Rincón J. Paradoxical effect of body mass index on survival in rheumatoid arthritis: role of comorbidity and systemic inflammation. Arch Intern Med. 2005; 165: 1624-1629. CrossRef PubMed

[67] Kalantar-Zadeh K, Kilpatrick RD, Kwawue N, Wu DY. Reverse epidemiology: a spurious hypothesis or a hardcore reality? Blood Purif. 2005; 23: 57-63. CrossRef PubMed

[68] Noori N, Kopple JD, Kovesdy CP, Feroze UC, Sim JJ, Murali SB, Luna A, Gomez M, Luna C, Bross N, Nissenson AR, Kalantar-Zadeh K. Mid-arm muscle circumference and quality of life and survival in maintenance hemodialysis patients. Clin J Am Soc Nephrol. 2010; 5: 2258-2268. CrossRef PubMed

[69] Dekker FW, de Mutsert R, van Dijk PC, Zoccali C, Jager KJ. Survival analysis: time-dependent effects and time-varying risk factors. Kidney Int. 2008; 74: 994-997. CrossRef PubMed

[70] Snyder JJ, Foley RN, Gilbertson DT, Vonesh EF, Collins AJ. Body size and outcomes on peritoneal dialysis in the United States. Kidney Int. 2003; 64: 1838-1844. CrossRef PubMed

[71] Lee PS, Sampath K, Karmamachi SA, Tamez H, Bhan I, Isakov A, Gutierrez OM, Wolf M, Chang Y, Stossel TP, Thadhani R. Plasma gelsolin and circulating actin correlate with hemodialysis mortality. J Am Soc Nephrol. 2009; 20: 1140-1148. CrossRef PubMed

[72] Horwich TB, Fonarow GC, Hamilton MA, MacLellan WR, Woo MA, Tillisch JH. The relationship between obesity and mortality in patients with heart failure. J Am Coll Cardiol. 2001; 38: 789-795. CrossRef PubMed

[73] Stenvinkel P, Marchlewksa A, Pecoits-Filho R, Heimbürger O, Zhang Z, Hoff C, Holmes C, Axellson J, Arvidsson S, Schalling M, Barany P, Lindholm B, Nordfors L. Adiponectin in renal disease: relationship to phenotype and genetic variation in the gene encoding adiponectin. Kidney Int. 2004; 65: 274-281. CrossRef PubMed

[74] Mohamed-Ali V, Goodrick S, Balmor K, Holly JM, Yudkin JS, Coppack SW. Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo. Am J Physiol. 1999; 277: E971-E975. PubMed

[75] Rauchhaus M, Coats AJ, Anker SD. The endotoxin-in-lipoprotein hypothesis. Lancet. 2000; 356: 930-933. CrossRef PubMed

[76] Jandacek RJ, Anderson N, Liu M, Zheng S, Yang Q, Tao P. Effects of yo-yo diet, caloric restriction, and olestra on tissue distribution of hexachlorobenzene. Am J Physiol Gastrointest Liver Physiol. 2005; 288: G292-G299. CrossRef PubMed

[77] Kramer HJ, Saranathan A, Luke A, Durazo-Arvizu RA, Guichan C, Hou S, Cooper R. Increasing body mass index and obesity in the incident ESRD population. J Am Soc Nephrol. 2006; 17: 1453-1459. CrossRef PubMed

[78] Postorino M, Mancini E, D’Arrigo G, Marino C, Vilasi A, Tripepi G, Gallus S, Lugo A, Santoro A, Zoccali C; Calabrian and Emilian Dialysis and Transplantation Registry’ Workgroups. Body mass index trend in haemodialysis patients: the shift of nutritional disorders in two Italian regions. Nephrol Dial Transplant. 2016; 31: 1699-1705. CrossRef PubMed

[79] World Health Organization. 2008 – 2013 Action Plan for the Global Strategy for the Prevention and Control of Noncommunicable Diseases. 2009.

[80] O’Donoghue DJ, Stevens PE. A decade after the KDOQI CKD/guidelines: a perspective from the United Kingdom. Am J Kidney Dis. 2012; 60: 740-742. CrossRef PubMed

[81] Boilignano D, Zoccali C. Effects of weight loss on renal function in obese CKD patients: a systematic review. Nephrol Dial Transplant. 2013; 28 (Suppl 4): iv82-iv98. CrossRef PubMed

[82] Chang Y, Ryu S, Choi Y, Zhang Y, Cho J, Kwon MJ, Hyun YY, Lee KB, Kim H, Jung HS, Yun KE, Ahn J, Rampal S, Zhao D, Suh BS, Chung EC, Shin H, Pastor-Barriuso R, Guallar E. Metabolically healthy obesity and development of chronic kidney disease: a cohort study. Ann Intern Med. 2016; 164: 305-312. CrossRef PubMed

[83] Wing RR, Bolin P, Brancati FL, Bray GA, Clark JM, Cody M, Crow RS, Curtis JM, Egan CM, Espeland MA, Evans M, Foresy JP, Ghazarian S, Gregg EW, Harrison B, Hazada HP, Hill JO, Horton ES, Hubbard VS, Jakicic JM, et al; Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med. 2013; 369: 145-154. CrossRef PubMed

[84] Mallamaci F, Ruggenenti P, Perna A, Leonardis D, Tripepi R, Tripepi G, Remuzzi G, Zoccali C; REIN Study Group. ACE inhibition is renoprotective among obese patients with proteinuria. J Am Soc Nephrol. 2011; 22: 1122-1128. CrossRef PubMed

[85] Friedman AN, Wolfe B. Is Bariatric surgery an effective treatment for type II diabetic kidney disease? Clin J Am Soc Nephrol. 2016; 11: 528-535. CrossRef PubMed

[86] Chang AR, Chen Y, Still C, Wood GC, Kirchner HL, Lewis M, Kramer H, Hartle JE, Carey D, Appel LJ, Grams ME. Bariatric surgery is associated with improvement in kidney outcomes. Kidney Int. 2016; 90: 164-171. CrossRef PubMed

[87] Jamal MH, Corvelles R, Daigle CR, Rogula T, Kroh M, Schauer PR, Brehm Ver SA. Safety and effectiveness of bariatric surgery in dialysis patients and kidney transplantation candidates. Surg Obes Relat Dis. 2015; 11: 419-423. CrossRef PubMed

[88] Ahmadi SF, Zalmatkesh G, Ahmadi E, Streja E, Rhee CM, Gillen DL, De Nicola L, Minutolo R, Ricardo AC, Kovesdy CP, Kalantar-Zadeh K. Association of body mass index with clinical outcomes in non-dialysis-dependent chronic kidney disease: A systematic review and meta-analysis. Cardiorenal Med. 2015; 6: 37-49. CrossRef PubMed