Resistance to pentamidine is mediated by AdeAB, regulated by AdeRS, and influenced by growth conditions in *Acinetobacter baumannii* ATCC 17978

Felise G. Adams¹, Uwe H. Stroeher¹, Karl A. Hassan²*, Shashikanth Marri³, Melissa H. Brown¹*

¹ College of Science and Engineering, Flinders University, Adelaide, SA, Australia, ² Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia, ³ College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia

* Current address: School of Environmental and Life Science, University of Newcastle, Callaghan, NSW, Australia
* melissa.brown@flinders.edu.au

Abstract

In recent years, effective treatment of infections caused by *Acinetobacter baumannii* has become challenging due to the ability of the bacterium to acquire or up-regulate antimicrobial resistance determinants. Two component signal transduction systems are known to regulate expression of virulence factors including multidrug efflux pumps. Here, we investigated the role of the AdeRS two component signal transduction system in regulating the AdeAB efflux system, determined whether AdeA and/or AdeB can individually confer antimicrobial resistance, and explored the interplay between pentamidine resistance and growth conditions in *A. baumannii* ATCC 17978. Results identified that deletion of adeRS affected resistance towards chlorhexidine and 4’,6-diamidino-2-phenylindole dihydrochloride, two previously defined AdeABC substrates, and also identified an 8-fold decrease in resistance to pentamidine. Examination of ΔadeA, ΔadeB and ΔadeAB cells augmented results seen for ΔadeRS and identified a set of dicationic AdeAB substrates. RNA-sequencing of ΔadeRS revealed transcription of 290 genes were ≥2-fold altered compared to the wildtype. Pentamidine shock significantly increased adeA expression in the wildtype, but decreased it in ΔadeRS, implying that AdeRS activates adeAB transcription in ATCC 17978. Investigation under multiple growth conditions, including the use of Biolog phenotypic microarrays, revealed resistance to pentamidine in ATCC 17978 and mutants could be altered by bioavailability of iron or utilization of different carbon sources. In conclusion, the results of this study provide evidence that AdeAB in ATCC 17978 can confer intrinsic resistance to a subset of dicationic compounds and in particular, resistance to pentamidine can be significantly altered depending on the growth conditions.
Introduction

Acinetobacter baumannii causes a range of disease states including hospital-acquired pneumonia, blood stream, urinary, wound and bone infections, and is responsible for epidemic outbreaks of infection worldwide [1]. Such infections are often very difficult to treat due to the multidrug resistant (MDR) character of isolates displayed by this organism [2, 3]. In addition to the impressive propensity of the organism to acquire genetic elements carrying resistance determinants [2, 4, 5], up-regulation resulting in overproduction of resistance nodulation cell-division (RND) drug efflux systems through integration of insertion sequence elements or mutations in regulatory genes, has also been deemed a major contributor to the MDR phenotype [6–9]. The best studied RND efflux systems in \textit{A. baumannii} include AdeABC [10], AdeFGH [11] and AdeIJK [12]. Of particular interest is the AdeABC system which affords resistance to diverse antibiotics, biocides and dyes [10, 13–15], and has gained attention due to its high incidence of over-expression across many MDR \textit{A. baumannii} clinical isolates, primarily from incorporation of point mutations in the genes encoding its positive regulator, AdeRS [6, 8, 13, 16]. Typically RND pumps consist of three proteins that form a complex; the absence of any of these components renders the entire complex non-functional [17]. Interestingly, deletion of \textit{adeC} in the \textit{A. baumannii} strain BM4454 did not affect resistance towards two substrates of the pump suggesting that AdeAB can utilize an alternative outer membrane protein (OMP) to efflux antimicrobial compounds [13].

The genetic arrangement of the AdeABC system places \textit{adeABC} in an operon that is divergently transcribed to the regulatory \textit{adeRS} two component signal transduction system (TCSTS). Expression of \textit{adeABC} occurs by binding of AdeR to a ten base-pair direct repeat motif found within the intercistronic region separating these operons [18, 19]. Many clinical \textit{A. baumannii} isolates harbor different genetic arrangements of the \textit{adeRS} and \textit{adeABC} operons [20], and whether regulation via AdeRS is conserved in these strains is not completely understood.

With an increase in infections caused by MDR isolates across many bacterial species, including \textit{A. baumannii}, understanding mechanisms of resistance and how resistance to and evasion of treatments has evolved over time has become a key research topic. Furthermore, determining the impact of expression of resistance determinants within the host environment and its effect on the efficacy of therapeutic treatments has gained attention. For example, when \textit{Pseudomonas aeruginosa} is grown using L-glutamate as the sole carbon source, resistance to the related compounds polymyxin B and colistin increased 25- and 9-fold, respectively [21]. Other studies have shown that the bioavailability of cations such as iron can have a drastic effect towards the resistance of a number of antimicrobials across a range of pathogenic bacterial species [22]. Despite \textit{A. baumannii} being recognized as a major human pathogen, these types of studies are limited for this organism.

This study aimed to determine the regulatory role of the AdeRS TCSTS in \textit{A. baumannii} ATCC 17978, a clinical isolate which only encodes the \textit{adeAB} subunits and identify whether AdeA and or AdeB alone can confer antimicrobial resistance in the ATCC 17978 background. Phenotypic characterization of a constructed panel of deletion strains identified that alterations to the \textit{adeRS} and \textit{adeAB} operons of ATCC 17978 reduced resistance to a subset of dicationic compounds, including pentamidine. As a recent study highlighted the effectiveness of pentamidine in combination therapy to treat infections caused by Gram-negative pathogens [23], we sought to further examine alternative mechanisms of pentamidine resistance in \textit{A. baumannii}. The type of carbon source and availability of iron were identified as affecting pentamidine resistance, thereby revealing interconnectedness between metabolic and resistance strategies within this formidable pathogen.
Materials and methods

Bacterial strains, plasmids and growth conditions

A. baumannii ATCC 17978 [24] was obtained from the ATCC and is designated as wildtype (WT). Bacterial strains, plasmids and primers used in this study are summarized in S1 and S2 Tables, respectively. Bacterial strains were cultured using Luria-Bertani (LB) broth or LB agar plates, under aerobic conditions at 37˚C, unless otherwise stated. Antibiotic concentrations used for selection were; ampicillin 100 mg/L, erythromycin (ERY) 25 mg/L, tetracycline 12 mg/L and gentamicin (GEN) 12.5 mg/L. All antimicrobial agents were purchased from Sigma with the exception of ampicillin which was purchased from AMRESCO.

M9 minimal medium agar plates were generated using a stock solution of 5 × M9 salts (200 mM Na₂HPO₄·7H₂O, 110 mM KH₂PO₄, 43 mM NaCl and 93 mM NH₄Cl) and subsequently diluted 1:5 and supplemented with 2 mM MgSO₄, 0.1 mM CaCl₂ and 0.4% (w/v) of various carbon sources on the day of use. M9 minimal medium was supplemented with 0.4% (w/v) of glucose, or succinic, fumaric, citric, α-ketoglutaric, pyruvic, glutamic or oxaloacetic acids. All carbon compounds were purchased from Sigma with the exception of citric and pyruvic acids which were purchased from Chem-Supply (Gillman, Australia). For solid media, J3 grade agar (Gelita, Australia) was used at a final concentration of 1%.

Iron-chelated and iron-rich conditions were achieved by the addition of dipyridyl (DIP) or FeSO₄·7H₂O (Scharlau) at final concentrations of 100 and 200 μM or 2.5 and 5 mM in Mueller-Hinton (MH) agar, respectively.

Antimicrobial susceptibility testing

The resistance profiles of WT and derivative strains were determined via broth microdilution methods [25] which were performed in duplicate with a minimum of three biological replicates using bacteria cultured in MH broth. Growth was monitored at 600 nm (OD₆₀₀) using a FLUOstar Omega spectrometer (BMG Labtech, Germany) after overnight incubation at 37˚C.

For disk diffusion assays, strains were grown to mid-log phase in MH broth, diluted to OD₆₀₀ = 0.1 in fresh MH broth and 100 μL plated onto MH agar plates on which antimicrobial loaded filter disks were overlaid. Alternatively, when assessing zones of clearing using M9 minimal medium agar, strains were washed three times in phosphate buffered saline (PBS) and diluted to OD₆₀₀ = 0.1 in fresh PBS. Tested antimicrobials were pentamidine isethionate, chlorhexidine dihydrochloride and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) at the final concentrations of 125, 2.5 and 1.6 μg, respectively. After overnight incubation, callipers were used to measure the diffusion distances which were determined as half of the inhibition zone diameter, less the length of the disk. At least three independent experiments in duplicate were undertaken. Statistical significance was determined using the Student’s *t*-test (two-tailed, unpaired) and *P* values <0.0005 were considered significant.

For plate dilution assays, strains were grown to mid-log phase in MH broth, washed three times in PBS and diluted to OD₆₀₀ = 0.1 in fresh PBS. Serial dilutions (10-fold) were prepared of which 5 μl was spotted onto M9 minimal or MH agar containing various concentrations of pentamidine (32, 64, 128, 256 and 512 mg/L) and growth assessed after overnight incubation at 37˚C. To test the effect of growth of different carbon sources, M9 minimal media was supplemented with 0.4% (w/v) of succinic, fumaric, citric, α-ketoglutaric or oxaloacetic acids.

Construction of *A. baumannii* ATCC 17978 deletion strains and genetic complementation

Two methods were adopted to generate specific gene deletions in *A. baumannii* ATCC 17978. The first method used to generate ΔadeRS utilized a sacB-based strategy [26], where genetic
sequence flanking the region of interest and the ERY resistance cassette from pVA891 [27] were PCR amplified, purified and subsequently cloned into a modified pBluescript SK’ II vector that had the BamHI site removed by end-filling, generating pBl_adeRS. Confirmed clones were re-cloned into XbaI-digested pEX18Tc [28]. The resulting pEX18Tc_adeRS vector was introduced into ATCC 17978 cells via electroporation, as previously described [29]. Transformants were selected on LB agar supplemented with ERY. Counter-selection was undertaken on M9 minimal agar containing ERY and 5% sucrose. The second method used to generate ΔadeA, ΔadeB and ΔadeAB strains utilized the RecET recombinase system with modifications [30]. Briefly, 400–600 bp of sequence flanking the gene(s) were used as templates in a nested overlap extension PCR with the ERY resistance cassette from pVA891 [27]. Approximately, 3.5–5 μg of the purified linear PCR product was electroporated into ATCC 17978 cells harboring the vector pAT04 and recovered as previously described [30]. Recombinants were selected on LB agar supplemented with ERY. All mutants generated in this study were confirmed by PCR amplification and Sanger sequencing. Primers utilized to generate mutant strains are listed in S2 Table.

For genetic complementation of mutant strains, WT copies of adeRS and adeAB were cloned into pWH1266 [31] where transcription was driven by the tetracycline promoter. Resulting plasmids denoted pWH::adeRS and pWH::adeAB, respectively were confirmed by Sanger sequencing. The GEN resistance cassette from pUCGM [32] was PCR amplified and cloned into BamHI digested pWH::adeAB generating pWHgent::adeAB thus abrogating transcription from the pWH1266 tetracycline promoter. Plasmids were introduced into appropriate A. baumannii cells as previously described [33]. Primers used to generate complementation vectors are listed in S2 Table.

Cell treatments and RNA isolation

RNA was isolated from WT and ΔadeRS cells and HiSeq RNA transcriptome analysis performed following methodologies as outlined previously [34].

For pentamidine stress assays, WT and ΔadeRS strains were grown overnight in MH broth, sub-cultured 1:100 in fresh medium and grown to OD_600 = 0.6; they were subsequently split into two 10 mL cultures. One 10 mL sample was treated with 7.8 mg/L of pentamidine (0.5 × MIC for ΔadeRS), whilst the other remained untreated. Cultures were grown for an additional 30 min before total RNA was extracted as outlined previously [34].

Bioinformatic analysis

Bioinformatic analysis of RNA-seq data was undertaken as described previously [34], with the modification that obtained reads were mapped to the recently re-sequenced A. baumannii ATCC 17978 genome (GenBank: CP012004). RNA-seq data have been deposited in the gene expression omnibus database, accession number GSE102711 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102711).

Quantitative Real-Time PCR

Pentamidine stress and RNA-seq validation experiments were achieved using a two-step qRT-PCR method. RNA samples were first purified as previously described [34], subsequently DNaseI treated (Promega) and then converted to cDNA using an iScript™ cDNA synthesis kit (Biorad), following the manufacturer’s instructions. The cDNA generated was used as a template for qRT-PCR using the SYBR® Green JumpStart™ Taq readymix™ (Sigma) in a 20 μl final volume. Either a Rotor-Gene Q (Qiagen, Australia) or RG-3000 (Corbett Life Science, Australia) instrument was used for quantification of cDNA using the following protocol; 1
min at 95˚C, followed by 40 cycles of 10 sec at 95˚C, 15 sec at 57˚C and 20 sec at 72˚C. Melt curve analyses were undertaken to ensure only the desired amplicon was generated. Primers used (S2 Table) for amplification of cDNA transcripts were designed using NetPrimer (www.premiersoft.com). Transcriptional levels for RNA-seq validation experiments were corrected to GAPDH levels prior to normalization to the ATCC 17978 WT. For pentamidine stress experiments, transcriptional levels of adeA were corrected to 16S rDNA levels prior to being normalized to their respective untreated A. baumannii cultures. Transcriptional variations were calculated using the $2^{-\Delta\Delta CT}$ method [35]. Results for pentamidine stress experiments display the mean Log2 fold change (± SEM) of three biological replicates each undertaken in triplicate. Statistical analyses were performed by Student’s t-test, two-tailed, unpaired; ** = $P < 0.01$ and *** = $P < 0.001$.

Phenotypic microarray analysis

A. baumannii ΔadeRS cells were cultured on LB agar overnight at 37˚C. A suspension of cells was made from a single colony in Biolog IF-0 inoculation fluid (Biolog, Inc.) to 85% transmittance and was subsequently diluted 1:200 in Biolog IF-0 containing dye A (Biolog, Inc.) and 0, 8, 16, 32 or 64 mg/L pentamidine. One hundred μL of each dilution was added to each well of the Biolog PM01 and PM02A MicroPlates and placed in an OmniLog automatic plate reader (Biolog, Inc.) for 72 h at 37˚C. Color formation from the redox active dye (Biolog dye A) was monitored every 15 min. Data obtained from respiration of ΔadeRS under different pentamidine conditions were individually overlaid against the untreated control using the OmniLog File Management/Kinetic Analysis software v1.20.02, and analyzed using OmniLog Parametric Analysis software v1.20.02 (Biolog, Inc.).

Results

Generation of ΔadeRS and complemented strains

The adeRS operon of A. baumannii ATCC 17978 was disrupted through the introduction of an ERY resistance cassette to produce a ΔadeRS strain. Complementation of ΔadeRS was achieved via reintroduction of a WT copy of adeRS on the pWH1266 shuttle vector, generating ΔadeRS pWH::adeRS and comparisons were made to cells carrying the empty vector control (ΔadeRS pWH1266). To ensure deletion of adeRS did not affect viability, growth was monitored by OD_{600} readings in MH broth over an 8 h period; results identified no significant perturbations in the growth rate in laboratory media compared to WT cells (data not shown).

Transcriptomic profiling of ΔadeRS

Transcriptome profiling by RNA-sequencing (RNA-seq) of RNA isolated from ΔadeRS compared to that from WT ATCC 17978 identified 290 differentially expressed (≥ 2-fold) genes; 210 up-regulated and 80 down-regulated (Fig 1 and S3 Table). RNA-seq results were confirmed by quantitative Real-Time PCR (qRT-PCR) for nine genes that displayed different levels of expression in ΔadeRS compared to WT; a good correlation between methods was observed (S1 Fig).

Expression of a number of efflux proteins was affected by inactivation of adeRS. For example, the craA major facilitator superfamily transporter (ACX60_01760) shown to confer resistance to chloramphenicol and recently chlorhexidine efflux [36] was the highest up-regulated gene (7.1-fold; Fig 1) and adeA (ACX60_09125), adeB (ACX60_09130) and aceI (ACX60_07275)
which encode the AdeAB and the AceI efflux pumps, were up-regulated by 2.5-, 1.43-, and 2-fold, respectively, following deletion of \textit{adeRS}.

Expression of multiple genes involved in virulence were down-regulated in the \textit{ΔadeRS} strain, including the type 1 pilus operon \textit{csuA/BABCDE} (ACX60_06480–06505) (3.2- to 2-fold) and the siderophore-mediated iron-acquisition systems acinetobactin (ACX60_05590–05680) and siderophore 1 (ACX60_09665–09720) clusters (7.7- to 1.1-fold and 5.4- to 0.3-fold, respectively). In contrast, the ferric uptake regulator gene (\textit{fur}) (ACX60_13910) was up-regulated 2.4-fold. Despite these alterations in expression levels of iron siderophore clusters and their regulator, no significant growth defects were identified when \textit{ΔadeRS} was grown in the presence of 200 μM of DIP (data not shown).

Deletion of \textit{adeRS} in ATCC 17978 reduced susceptibility to a limited number of antimicrobial agents

To assess if changes in expression of the \textit{adeAB} and \textit{craA} drug efflux genes identified in the transcriptome of the \textit{ΔadeRS} derivative translated to an alteration in resistance profile, antibiogram analyses were undertaken. Resistance to a number of antibiotics including those that are known substrates of the CraA and AdeABC pumps were assessed. Surprisingly, despite \textit{craA} being the highest up-regulated gene, no change in resistance to the primary substrate of CraA, chloramphenicol [36], was seen (data not shown). Previous studies examining the level of antimicrobial resistance conferred by AdeABC indicate that only when deletions are generated in strains which overexpress AdeABC is there a significant impact on the antibiogram [10, 13, 15, ...]
16, 37], implying that AdeABC confers only minimal to no intrinsic resistance. This was supported in our analysis as the MIC for tetracycline, tigecycline, GEN, kanamycin, nalidixic acid, ampicillin, streptomycin and amikacin, all previously identified AdeABC substrates, remained unchanged, whilst resistance to norfloxacin and ciprofloxacin increased 2-fold (data not shown) and chlorhexidine decreased 2-fold for the ΔadεRS mutant compared to WT (Table 1).

A variety of additional compounds were tested, primarily focusing on substrates of other multidrug efflux pumps and/or clinically relevant compounds, these included; colistin, polymyxin B, rifampicin, triclosan, novobiocin, benzalkonium, methyl viologen, pentamidine, DAPI and dequalinium. Of these, significant differences in the MICs of ΔadεRS versus WT were observed only for the diamidine compounds, pentamidine and DAPI, where an 8- and 4-fold reduction in resistance was identified, respectively (Table 1). Thus, taken together the ΔadεRS strain showed reduced resistance to the bisbiguanide chlorhexidine, and the diamidines pentamidine and DAPI which display structural similarities [38] (S2 Fig). Resistance to these substrates was partially or fully restored by complementation using ΔadεRS pWH::adεRS (Table 1).

Both AdeA and AdeB are required for intrinsic antimicrobial resistance in ATCC 17978

Since the 10-bp direct repeat where AdeR has been demonstrated to bind in other A. baumannii strains [18, 19] is also present in the ATCC 17978 adeA-adeR intercistronic region (data not shown), we hypothesized that the decreased resistance towards the subgroup of dicationic

Table 1. Antibiotic susceptibility of A. baumannii ATCC 17978, deletion mutants and complemented strains.

Strain	MIC (mg/L)ab		
	PENT	DAPI	CHX
WT	125	4	8
ΔadeA	15.6	1	4
ΔadeB	15.6	1	4
ΔadeAB	15.6	1	4
ΔadeRS	15.6	1	4
ΔadeRS pWH::adeRS	125	1	4
ΔadeRS pWH1266	15.6	0.5	4/2
ΔadeRS pWH::adeAB	31.3	4	4
ΔadeRS pWHgent::adeAB	15.6	1	4
ΔadeRS pWHgent	7.8	0.5	4
ΔadeA pWHgent::adeAB	62.5	2	8/4
ΔadeA pWHgent	7.8	0.5	4
ΔadeB pWHgent::adeAB	62.5	4	4
ΔadeB pWHgent	7.8	1	2
ΔadeAB pWHgent::adeAB	62.5	4	4
ΔadeAB pWHgent	7.8	1	2

aPENT, pentamidine; DAPI, 4’6-diamidino-2-phenylindole; CHX, chlorhexidine.
bValues highlighted in bold indicate MIC values altered two-fold or greater compared to WT ATCC 17978.

Antimicrobials that did not significantly differ from WT susceptibility levels included gentamicin, kanamycin, norfloxacin, ciprofloxacin, ampicillin, colistin, polymyxin B, dequalinium, tigecycline, triclosan and methyl viologen.

Antimicrobials tested that did not significantly differ from WT susceptibility levels included rifampicin, benzylkonion, streptomycin, amikacin and novobiocin as well as antimicrobials listed above in ‘c’ with the exception of ciprofloxacin and norfloxacin.
compounds seen in ΔadeRS resulted from changes in adeAB expression. To test this, deletion strains targeting adeAB, as well as individual adeA and adeB mutations were generated in ATCC 17978.

Using ΔadeAB, MIC analyses verified that deletion of the pump resulted in negligible changes in resistance to a subset of the antimicrobials tested for ΔadeRS (data not shown). However, an identical resistance pattern for the dicationic compounds as that afforded by ΔadeRS was observed (Table 1). Complementation of the inactivated genes partially restored resistance to all compounds, validating that AdeAB plays a direct role in resistance to these dicatonic compounds (Table 1).

AdeRS is critical for increased expression of adeAB following pentamidine exposure

From MIC analysis of the ATCC 17978 derivatives, it was proposed that the presence of the AdeRS TCSTS increased adeAB expression consequently providing resistance to pentamidine, chlorhexidine and DAPI (Table 1). To confirm this, the level of adeA transcription was assessed by qRT-PCR of RNA isolated from WT and ΔadeRS strains after addition of a sub-inhibitory concentration of pentamidine. Transcription of the adeAB operon was significantly up-regulated in WT and down-regulated in ΔadeRS following pentamidine stress (Fig 2). Additionally, qRT-PCR was used to determine if adeS expression levels altered after pentamidine stress in WT cells. It was found that adeS expression increased less than <2-fold compared to untreated WT cells (data not shown). To phenotypically support the transcriptional evidence that adeRS initiates transcription of the ATCC 17978 adeAB operon, additional antibiograms were determined. Using the shuttle vector pWH1266, two clones were constructed; pWH::adeAB and pWHgent::adeAB, where the GEN resistance cartridge cloned in the latter vector inhibited transcription of adeAB from the tet-racycline promoter naturally present in pWH1266. MIC analyses determined that the carriage of pWHgent::adeAB in ΔadeRS did not differ from results obtained for ΔadeRS. Conversely, ΔadeRS cells with pWH::adeAB displayed a 4- and 8-fold increase in pentamidine and DAPI resistance, respectively (Table 1). Collectively, these results suggest that expression of adeAB and subsequent resistance to the dicatonic compounds in ATCC 17978 can only occur when AdeRS is present.

Carbon source utilization alters resistance to pentamidine

Pentamidine, a drug known to be effective in the treatment of fungal and protozoan infections has gained recent attention in a bacterial context. Pentamidine has shown synergy with Gram-positive antibiotics, potentiating their activity towards Gram-negative bacteria [23]. As such, pentamidine has been proposed to be utilized as an adjunct therapy for MDR bacteria, including A. baumannii [23]. To identify additional pentamidine resistance mechanisms employed by A. baumannii, growth in different media was assessed. Disk diffusion assays identified that in A. baumannii, resistance to pentamidine was affected by the carbon source provided in M9 minimal medium (S4 Table), whilst for chlorhexidine and DAPI this pattern was not conserved indicating a pentamidine-specific response (data not shown). To determine the MIC levels for pentamidine, plate dilution experiments were undertaken for WT, ΔadeRS and ΔadeAB strains provided with varied carbon sources (Fig 3). Growth of ΔadeRS and ΔadeAB cells on MH agar were significantly perturbed at 32 mg/L of pentamidine. This MIC drastically differs when succinic acid was utilized as the sole carbon source, as growth was maintained up to 512 mg/L of pentamidine for all strains tested (Fig 3). Fumaric, α-ketoglutaric and oxaloacetic acids also increased pentamidine resistance by 8-fold for ΔadeRS and ΔadeAB strains when compared to the MIC obtained for MH agar. Growth of ΔadeRS and ΔadeAB mutants was inhibited at a higher dilution factor in the presence of oxaloacetic acid compared to fumaric.
and α-ketoglutaric acids whilst growth using citrate as the sole carbon source negatively affected resistance to WT cells, decreasing resistance 2-fold.

Biolog phenotypic arrays were undertaken to identify additional synergistic or antagonistic relationships between carbon sources and pentamidine resistance. Respiration of ΔadeRS cells for a total of 190 carbon compounds was assessed at various pentamidine concentrations (S3 Fig). From this, an additional ten compounds were identified that increased resistance to pentamidine in ΔadeRS at 64 mg/L (Fig 4). Despite minimal changes in pentamidine resistance in the presence of citric acid for ΔadeRS (Fig 3), this compound negatively affected respiration at lower pentamidine concentrations (S3 Fig). Surprisingly, succinic, α-ketoglutaric and fumaric acids failed to restore respiration at 64 mg/L of pentamidine for ΔadeRS (S3 Fig). By extending the incubation period for another 72 h, respiration in the presence of succinic or fumaric acids was restored to levels similar to the untreated control (data not shown). This may indicate that succinic and fumaric acids significantly lag in their ability to recover the cells from pentamidine in the IF-0 medium (Biolog Inc.) whilst α-ketoglutaric acid recovery is dependent on growth medium.

Bioavailability of iron correlates with pentamidine resistance

Iron has been shown to influence pentamidine resistance in protozoan species [39], thus we assessed if its plays a similar role in *A. baumannii*. The addition of ferrous sulphate to the growth
Pentamidine resistance mechanisms in *A. baumannii*

	UT	P32	P64	P128	P256	P512
WT	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)	![Image](image4.png)	![Image](image5.png)	![Image](image6.png)
ΔRS	![Image](image7.png)	![Image](image8.png)	![Image](image9.png)	![Image](image10.png)	![Image](image11.png)	![Image](image12.png)
ΔAB	![Image](image13.png)	![Image](image14.png)	![Image](image15.png)	![Image](image16.png)	![Image](image17.png)	![Image](image18.png)

MHA

- **M9 + α-Ketoglutaric acid**
- **M9 + Citric acid**

M9 + Succinic acid

- **M9 + Oxaloacetic acid**
- **M9 + Fumaric acid**

ND
medium significantly reduced the zone of clearing from pentamidine in a dose-dependent manner up to a final concentration of 5 mM for WT and mutant strains (Table 2 and S4 Fig). Furthermore, chelation of iron using DIP resulted in WT cells becoming more susceptible to pentamidine compared to the untreated control (Table 2). This modified pentamidine susceptibility is iron specific as inclusion of other cations in the growth medium (zinc, copper, manganese, cobalt, nickel) did not significantly affect the zones of clearing (data not shown). Using inductively-coupled plasma mass spectrometry the internal iron concentration in WT and ΔadeRS cells was determined in the absence/presence of a sub-inhibitory concentration of pentamidine. Internal iron concentrations remained essentially unchanged in both strains under the different conditions tested (data not shown), indicating that iron/pentamidine interactions may occur outside of the cell and the observed response was not due to a reduced capacity to store iron.

Discussion

The adeRS and adeABC operons of A. baumannii have gained considerable attention due to their role in regulating and conferring multidrug resistance, respectively [8, 13, 16, 40]. Multiple genetic arrangements of the adeABC operon in A. baumannii clinical isolates exist, where...
Table 2. Zones of clearing for *A. baumannii* ATCC 17978 and deletion mutants grown on Mueller-Hinton agar with the addition or chelation of iron after pentamidine exposure.

Strain	Zone of clearing (mm)ab				
	WT	ΔadeRS	ΔadeAB	ΔadeA	ΔadeB
Medium					
MHA control	1.4 ± 0.3	6.9 ± 0.3	6.9 ± 0.3	6.9 ± 0.4	7.2 ± 0.4
+ 2.5 mM FeSO₄	0.8 ± 0.1	5.4 ± 0.2	5.6 ± 0.3	5.4 ± 0.1	5.6 ± 0.1
+ 5 mM FeSO₄	0.7 ± 0.2	2.5 ± 0.8	2.8 ± 0.3	3.2 ± 0.3	2.9 ± 0.6
+ 7.5 mM FeSO₄	NG	NG	NG	NG	NG
+ 100 μM DIP	1.7 ± 0.1	6.7 ± 0.2	6.9 ± 0.1	6.2 ± 0.2	6.6 ± 0.2
+ 200 μM DIP	5 ± 0.3***	6.7 ± 0.4	6.6 ± 0.4	6.1 ± 0.1	6.4 ± 0.1

*Averaged values are displayed ± SD. Statistical analyses were performed by Student’s *t*-test, two-tailed, unpaired

* = *P* < 0.0005 and

*** = *P* < 0.000001.

Values given in bold indicate a significant difference between a strain grown under iron-rich or iron-limited conditions versus its respective MHA control.

MHA, Mueller-Hinton agar; FeSO₄, ferrous sulphate; DIP, 2',2' dipyridyl; NG, no growth due to iron toxicity.

35% of 116 diverse isolates lack the *adeC* OMP component [20]. This is also the case for the clinical isolate *A. baumannii* ATCC 17978, which was chosen for further analysis in this study. It is not uncommon for RND pumps to recruit an alternative OMP to form a functional complex [41–43]. This may also be the situation for AdeAB in *A. baumannii* ATCC 17978, since in an *Escherichia coli* background, adeAB can be co-expressed with adeK, an OMP belonging to the *A. baumannii* AdeIJK RND complex to confer resistance [44]. However, whether AdeB can work alone or function with alternative membrane fusion proteins such as *adel* or *adeF* is not known. As the resistance profile of ΔadeA was indistinguishable from the ΔadeAB and ΔadeB strains, it provides confirmatory evidence that both *adeA* and *adeB* are required for efficient efflux to only a subset of dicationic compounds in ATCC 17978. Further assessments will be required to verify if this phenotype is maintained across other *A. baumannii* isolates and extends to other structurally-similar compounds.

It has been found previously, that the introduction of shuttle vectors expressing WT copies of genes in trans do not restore resistance profiles back to WT levels as also seen in this study [45–48]. Using qRT-PCR, *adeS* was expressed at low levels in WT cells even after pentamidine shock (data not shown). Complementation studies with *adeRS* thus could be influenced by copy number effects, which may perturb the native expression levels of these proteins within the cell. Additionally, the differing modes of action of the dicationic compounds may have influenced the MIC results, as fold-shifts in resistance were observed even when the empty pWH1266 vector was being expressed (Table 1).

The transcriptomic analysis of ATCC 17978 ΔadeRS revealed changes in gene expression were not limited to *adeAB* but included many genes, some of which have been shown to be important in *A. baumannii* pathogenesis [49, 50] and virulence in vivo [51]. Although this had been seen before in an *adeRS* mutant generated in the MDR *A. baumannii* isolate AYE [16], here the transcriptional changes were to a largely different subset of genes. Previously, deletion of *adeRS* in AYE resulted in decreased expression of *adeABC* by 128-, 91-, and 28-fold, respectively [16]. This decreased gene expression was expected as AYE naturally contains a point mutation in AdeS (producing an Ala 94 to Val substitution in AdeS) resulting in constitutive expression of *adeABC* and contributing to its MDR phenotype [2, 16]. Richmond et al., (2016) [16] proposed that the high similarities in phenotypic changes between their *adeRS* and *adeB* AYE deletion derivatives were largely due to downstream effects caused by reduced expression...
of adeABC. We cannot rule out the possibility that some of the changes in gene expression in our study have resulted from the slight increase seen in expression of adeAB, most likely caused by polar effects exerted by the ERY resistance cassette. However, our transcriptome data indicated adeAB were expressed at low levels and thus represent basal levels of expression; results consistent with ATCC 17978 being labelled as a ‘drug susceptible’ isolate [24].

Currently, the environmental signal(s) that interact with the periplasmic sensing domain of AdeS are not known. Antimicrobial compounds can directly stimulate autophosphorylation of specific TCSTS which in turn directly regulate the expression of genes providing resistance to that compound [52, 53]. It is unlikely that pentamidine is the environmental stimulus that is sensed by AdeS, as a number of conditions, including chlorhexidine shock, can also up-regulate adeAB expression in ATCC 17978 [54–57]. Instead, AdeS may respond to stimuli such as solutes that are excreted and accumulate in the periplasm when cells are subjected to various stressors including AdeAB substrates.

This study revealed unique interactions between pentamidine and a number of carbon sources which significantly alter the resistance profile to pentamidine for A. baumannii ATCC 17978 and derivatives. Biolog phenotypic arrays identified a number of succinic acid derivatives that also allowed respiration in the presence of a lethal concentration of pentamidine (Fig 4). Interestingly, when ΔadeRS utilized malonic acid as the sole carbon source, a potent inhibitor of the succinate dehydrogenase complex, cells were also able to respire at increased pentamidine concentrations (Fig 4). In Gram-negative bacteria, the mechanism of action for pentamidine is thought to primarily occur via binding to the lipid-A component of the outer membrane and not through inhibition of an intracellular target [23, 58]. Therefore, it seems unlikely that pentamidine interferes with enzymatic functions like that of succinate dehydrogenase, and instead the compounds which showed an increase in pentamidine resistance may contribute to either chelation of the compound or provide protective mechanisms that reduce binding to the lipid-A target. Interestingly, a 1956 study [59] identified that in the presence of α-ketoglutaric or glutamic acid, resistance to a lethal concentration of pentamidine could be achieved in E. coli, leading to the proposition that pentamidine interferes with the transaminase reaction in glutamic acid production. However, our study shows that glutamic acid does not affect pentamidine resistance (S4 Table), inferring that a different mechanism might be responsible for the increase in pentamidine resistance in A. baumannii.

Iron is an essential metal serving as a co-factor in numerous proteins involved in redox chemistry and electron transport. It is generally a limited resource for pathogenic bacteria such as A. baumannii where it is important for virulence and disease progression [6, 50]. Our studies showed that altering iron levels also had a marked effect on resistance to pentamidine. This is in agreement with the observation that citric and gluconic acids can act as iron-chelating agents [60, 61] and respiration activity in the presence of these compounds at the pentamidine concentrations tested were significantly altered (S3 Fig). Many clinically relevant antimicrobials have shown to be affected by the presence of iron, including compounds belonging to tetracycline, aminoglycoside and quinolone classes [22]. Activity of these compounds can be altered by numerous factors, including the formation of stable complexes which can affect drug efficacy or have unfavourable effects on patient health. Understanding the metabolic flux in A. baumannii and other MDR bacteria has the potential to lead to more effective therapeutic interventions thus reducing infection rates, knowledge critical to slow the progress towards our re-entry into a pre-antibiotic era.

Conclusions

Overall, this is the first study which has demonstrated that the AdeAB system in A. baumannii ATCC 17978 provides intrinsic resistance to a subset of dicationic compounds, and efflux of
these compounds via AdeAB is directly regulated by the AdeRS TCSTS. RNA-seq identified that deletion of adeRS produced significant changes in the transcriptome. These results support the notion that strain specific variations are apparent [16]. We have provided evidence that in ATCC 17978, AdeRS is directly responsible for the activation of adeAB gene expression, as ΔadeRS failed to increase expression upon subjection to one of the pumps newly identified intrinsic substrates, pentamidine. It will be of interest to assess whether these dicaticonic compounds also extend as substrates towards AdeAB(C) pumps present in other A. baumannii isolates and if expression levels of adeAB(C) upon exposure to these substrates and other potential stressors also occur. This information may help to identify the stimulus that activates the AdeRS TCSTS. We have also demonstrated for the first time that for pentamidine to exert its antibacterial effect in A. baumannii, a dependence on the availability of iron is required, and that growth in the presence of selected carbon sources has a profound effect on its resistance.

Supporting information

S1 Fig. Validation of RNA-sequencing results. The transcriptomic results obtained by RNA-sequencing were validated by qRT-PCR analysis. The level of nine genes that displayed differential expression or remained essentially unchanged between ΔadeRS and WT ATCC 17978 were chosen for comparison. Expression levels for qRT-PCR experiments were corrected to those obtained for GAPDH (ACX60_05065) prior to normalisation against WT ATCC 17978 transcriptional levels. Grey and black bars represent values obtained from RNA-seq and qRT-PCR results, respectively. Differential expression between ΔadeRS and WT ATCC 17978 are given in Log$_2$-values.

S2 Fig. Structures of dicationic antimicrobial compounds to which ΔadeRS, ΔadeA, ΔadeB and ΔadeAB deletion mutant derivatives showed a decrease in resistance when compared to WT ATCC 17978. Compounds include (a) pentamidine, (b) DAPI and (c) chlorhexidine. For pentamidine and chlorhexidine, the cationic nitrogenous groups are separated by a long carbon chain, forming symmetrical compounds, whereas, DAPI lacks this long linker and is asymmetric.

S3 Fig. Comparative analysis of kinetic response curves obtained from Biolog PM plates for ΔadeRS cells untreated and subjected to increasing concentrations of pentamidine. Respiration of ATCC 17978 ΔadeRS cells in the presence of pentamidine (8, 16, 32, or 64 mg/L) against untreated control cells are shown for (a) Biolog PM01 plates and (b) Biolog PM02A plates. Respiration activity for both plates were monitored in IF-0 (Biolog, Inc.) liquid medium for 72 h at 37°C. The curve in each well represents the colour intensity of a redox-active dye (y axis) over time (x axis: 72 h). Respiration of ΔadeRS cells are shown in red (control), green (under different concentrations of pentamidine), and yellow (depicts the regions of respiratory overlap). Black numbered squares represent carbon sources which decreased resistance to pentamidine (1, D-gluconic acid; 2, citric acid).

S4 Fig. Pentamidine resistance is affected by the concentration of iron within the growth medium. Resistance to pentamidine was assessed by disc diffusion assays in Mueller-Hinton agar (MHA) for ATCC 17978 and ΔadeRS, ΔadeA, ΔadeB and ΔadeAB deletion derivatives. Zones of clearing were compared to iron rich conditions from the addition of ferrous sulphate (FeSO$_4$) at the final concentrations of 2.5 and 5 mM and iron-chelated conditions obtained by the addition of 2’,2’-dipyridyl (DIP) at the final concentrations of 100 and 200 μM.
in MHA. Images displayed are a representative of the typical results obtained.

(TIF)

S1 Table. Strains and plasmids used in the study.

(DOCX)

S2 Table. Primers used in this study.

(DOCX)

S3 Table. Genes significantly up- and down-regulated (≥ 2-fold) in ΔadeRS compared against the parent ATCC 17978 (CP012004) by RNA-seq methodologies.

(DOCX)

S4 Table. Zones of clearing obtained from growth on M9 minimal medium with the addition of different carbon sources after exposure to pentamidine.

(DOCX)

Acknowledgments
We would like to thank Professor Bryan Davies from the Department of Molecular Biosciences at the University of Texas for providing the plasmid pAT04.

Author Contributions
Conceptualization: Felise G. Adams, Uwe H. Stroeher, Melissa H. Brown.

Data curation: Felise G. Adams, Uwe H. Stroeher, Karl A. Hassan, Shashikanth Marri, Melissa H. Brown.

Formal analysis: Felise G. Adams, Shashikanth Marri.

Funding acquisition: Uwe H. Stroeher, Melissa H. Brown.

Investigation: Felise G. Adams, Shashikanth Marri.

Methodology: Felise G. Adams, Karl A. Hassan.

Supervision: Uwe H. Stroeher, Melissa H. Brown.

Writing – original draft: Felise G. Adams, Uwe H. Stroeher, Karl A. Hassan, Melissa H. Brown.

Writing – review & editing: Felise G. Adams, Karl A. Hassan, Melissa H. Brown.

References
1. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008; 21(3):538–82. https://doi.org/10.1128/CMR.00058-07 PMID: 18625687

2. Fournier PE, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2006; 2(1):e7. https://doi.org/10.1371/journal.pgen.0020007 PMID: 16415984

3. Adams MD, Chan ER, Molyneaux ND, Bonomo RA. Genomewide analysis of divergence of antibiotic resistance determinants in closely related isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2010; 54(9):3569–77. https://doi.org/10.1128/AAC.00057-10 PMID: 20530228

4. Blackwell GA, Hamidian M, Hall RM. IncM plasmid R1215 is the source of chromosomally located regions containing multiple antibiotic resistance genes in the globally disseminated Acinetobacter baumannii GC1 and GC2 clones. mSphere. 2016; 1(3):e00117–16. https://doi.org/10.1128/mSphere.00117-16 PMID: 27303751
5. Hamidian M, Kenyon JJ, Holt KE, Pickard D, Hall RM. A conjugative plasmid carrying the carbapenem resistance gene blaOXA-23 in AbaR4 in an extensively resistant GC1 Acinetobacter baumannii isolate. J Antimicrob Chemother. 2014; 69(10):2625–8. https://doi.org/10.1093/jac/dku188 PMID: 24907141

6. Wright MS, Jacobs MR, Bonomo RA, Adams MD. Transcriptome remodeling of Acinetobacter baumannii during infection and treatment. MBio. 2017; 8(2):e02193–16. https://doi.org/10.1128/mBio.02193-16 PMID: 28270585

7. Saranathan R, Pagal S, Sawant AR, Tomar A, Madhangi M, Sah S, et al. Disruption of TetR type regulator adeNby mobile genetic element confers elevated virulence in Acinetobacter baumannii. Virulence. 2017:1–19.

8. Yoon EJ, Courvalin P, Grillot-Courvalin C. RND-type efflux pumps in multidrug-resistant clinical isolates of Acinetobacter baumannii: major role for AdeABC overexpression and AdeRS mutations. Antimicrob Agents Chemother. 2013; 57(7):2989–95. https://doi.org/10.1128/AAC.02556-12 PMID: 23587960

9. Coyne S, Courvalin P, Perichon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother. 2011; 55(3):947–53. https://doi.org/10.1128/AAC.01388-10 PMID: 21173183

10. Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother. 2001; 45(12):3375–80. https://doi.org/10.1128/AAC.45.12.3375-3380.2001 PMID: 11709311

11. Coyne S, Rosenfeld N, Lambert T, Courvalin P, Perichon B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2010; 54(10):4389–93. https://doi.org/10.1128/AAC.00155-10 PMID: 20696879

12. Damier-Piolle L, Magnet S, Bremont S, Lambert T, Courvalin P. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother. 2008; 52(2):557–62. https://doi.org/10.1128/AAC.00732-07 PMID: 18086852

13. Marchand I, Damier-Piolle L, Courvalin P, Lambert T. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother. 2004; 48(9):3298–304. https://doi.org/10.1128/AAC.48.9.3298-3304.2004 PMID: 15328088

14. Peleg AY, Adams J, Paterson DL. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother. 2007; 51(6):2065–9. https://doi.org/10.1128/AAC.01198-06 PMID: 17420217

15. Rajamohan G, Srinivasan VB, Gebreyes WA. Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides. J Antimicrob Chemother. 2010; 65(2):228–32. https://doi.org/10.1093/jac/dkp427 PMID: 20008046

16. Richmond GE, Evans LP, Anderson MJ, Wand ME, Bonney LC, Ivens A, et al. The Acinetobacter baumannii two-component system AdeRS regulates genes required for multidrug efflux, biofilm formation, and virulence in a strain-specific manner. MBio. 2016; 7(2):e00430–16. https://doi.org/10.1128/mBio.00430-16 PMID: 27094331

17. Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta. 2009; 1794(5):769–81. https://doi.org/10.1016/j.bbabap.2008.10.004 PMID: 19026770

18. Chang TY, Huang BJ, Sun JR, Perng CL, Chan MC, Yu CP, et al. AdeR protein regulates adeABC expression by binding to a direct-repeat motif in the intercistronic spacer. Microbiol Res. 2016; 183:60–7. https://doi.org/10.1016/j.micres.2015.11.010 PMID: 26860519

19. Wen YO, Z., Yu Y, Zhou X, Pei YD, B., Higgins P, Zheng F. Mechanistic insight into how multidrug resistant Acinetobacter baumannii response regulator AdeR recognizes an intercistronic region. Nucleic Acids Res. 2017; 45(16):9773–87. https://doi.org/10.1093/nar/gkx624 PMID: 28934482

20. Nemec A, Maxinerova M, van der Reijden TJ, van den Broek PJ, Dijkshoorn L. Relationship between the AdeABC efflux system gene content, netilmicin susceptibility and multidrug resistance in a genetically diverse collection of Acinetobacter baumannii strains. J Antimicrob Chemother. 2007; 60(3):483–9. https://doi.org/10.1093/jac/dkm231 PMID: 17595288

21. Conrad RS, Wulf RG, Clay DL. Effects of carbon sources on antibiotic resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1979; 15(1):59–66. PMID: 106771

22. Ezraty B, Barras F. The ‘liaisons dangereuses’ between iron and antibiotics. FEMS Microbiol Rev. 2016; 40(3):418–35. https://doi.org/10.1093/femsre/fuw004 PMID: 26945776

23. Stokes JM, MacNair CR, Ilyas B, French S, Cote JP, Bouwman C, et al. Pentamidine sensitizes Gram-negative pathogens to antibiotics and overcomes acquired colistin resistance. Nat Microbiol. 2017; 2:17028. https://doi.org/10.1038/nmicrobiol.2017.28 PMID: 28263303

24. Smith MG, Gionoulis TA, Pukatzki S, Mekalanos JJ, Ornston LN, Gerstein M, et al. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 2007; 21(5):601–14. https://doi.org/10.1101/gad.1510307 PMID: 17344419
25. Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008; 3(2):163–75. https://doi.org/10.1038/nprot.2007.521 PMID: 18274517

26. Kaniga K, Delor I, Cornelis GR. A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene. 1991; 109 (1):137–41. PMID: 1756974

27. Macrina FL, Evans RP, Tobian JA, Hartley DL, Clewell DB, Jones KR. Novel shuttle plasmid vehicles for Escherichia-Streptococcus transgeneric cloning. Gene. 1983; 25(1):145–50. PMID: 6319229

28. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene. 1998; 212(1):77–86. PMID: 9661666

29. Dorsey CW, Tomaras AP, Actis LA. Genetic and phenotypic analysis of...

30. Tucker AT, Nowicki EM, Boll JM, Knauf GA, Burdis NC, Trent MS, et al. Defining gene-phenotype relationships in Acinetobacter baumannii. MBio. 2014; 5 (4):e01313–14. https://doi.org/10.1128/mBio.01313-14 PMID: 25096877

31. Hunger M, Schmucker R, Kishan V, Hillen W. Analysis and nucleotide sequence of an origin of DNA replication in Acinetobacter calcoaceticus and its use for Escherichia coli shuttle plasmids. Gene. 1990; 87(1):45–51. PMID: 2158359

32. Schweizer HD. Small broad-host-range gentamicin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques. 1993; 15(5):831–4. PMID: 8267974

33. Eijkelkamp BA, Stroeher UH, Hassan KA, Elbourne LD, Paulsen IT, Brown MH. H-NS plays a role in expression of Acinetobacter baumannii virulence features. Infect Immun. 2013; 81(7):2574–83. https://doi.org/10.1128/IAI.00065-13 PMID: 23649094

34. Giles SK, Stroeher UH, Eijkelkamp BA, Brown MH. Identification of genes essential for pellicle formation in Acinetobacter baumannii. BMC Microbiol. 2015; 15:116. https://doi.org/10.1186/s12866-015-0440-6 PMID: 26047954

35. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001; 25(4):402–8. https://doi.org/10.1006/meth.2001.1262 PMID: 11846609

36. Li L, Hassan KA, Brown MH, Paulsen IT. Rapid multiplexed phenotypic screening identifies drug resistance functions for three novel efflux pumps in Acinetobacter baumannii. J Antimicrob Chemother. 2016; 71(5):1223–32. https://doi.org/10.1093/jac/dkv460 PMID: 26832750

37. Yoon EJ, Chabane YN, Goussard S, Courvalin P, De E, et al. Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. MBio. 2015; 6(2):e00309–15. https://doi.org/10.1128/mBio.00309-15 PMID: 25805730

38. Brown MH, Skurray RA. Staphylococcal multidrug efflux protein QacA. J Mol Microbiol Biotechnol. 2001; 3(2):163–70. PMID: 11321569

39. Wong IL, Chow LM. The role of Leishmania enrietti multidrug resistance protein 1 (LeMDR1) in mediating drug resistance is iron-dependent. Mol Biochem Parasitol. 2006; 150(2):278–87. https://doi.org/10.1016/j.molbiopara.2006.08.014 PMID: 17018238

40. Nowak J, Schneiders T, Seifert H, Higgins PG. The Asp20-to-Asn substitution in the response regulator AdeR leads to enhanced efflux activity of AdeB in Acinetobacter baumannii. Antimicrob Agents Chemother. 2016; 60(2):1085–90. https://doi.org/10.1128/AAC.02413-15 PMID: 26643347

41. Chuanchuen R, Narasaki CT, Schweizer HP. The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol. 2002; 184(18):5036–44. https://doi.org/10.1128/JB.184.18.5036-5044.2002 PMID: 12193619

42. Mine T, Morita Y, Kataoka A, Mizushima T, Tsuchiya T. Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999; 43 (2):415–7. PMID: 9925549

43. Fralick JA. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J Bacteriol. 1996; 178(19):5803–5. PMID: 8824631

44. Sugawara E, Nikaido H. Properties of AdeABC and AdeJK efflux systems of Acinetobacter baumannii compared with those of AcrAB-ToIC system of Escherichia coli. Antimicrob Agents Chemother. 2014; 58:7250–7. https://doi.org/10.1128/AAC.03728-14 PMID: 25246403

45. Li X, Quan J, Yang Y, Ji J, Liu L, Fu Y, et al. Abpr, a new gene, confers reduced susceptibility to tetracycline, glyclcline, chloramphenicol and fosfomycin classes in Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis. 2016; 35(8):1371–5. https://doi.org/10.1007/s10096-016-2674-0 PMID: 27220329
46. Liou ML, Soo PC, Ling SR, Kuo HY, Tang CY, Chang KC. The sensor kinase BfmS mediates virulence in *Acinetobacter baumannii*. J Microbiol Immunol Infect. 2014; 47(4):275–81. https://doi.org/10.1016/j.jmii.2012.12.004 PMID: 23453128

47. Saroj SD, Clemen KM, Bonomo RA, Rather PN. Novel mechanism for fluoroquinolone resistance in *Acinetobacter baumannii*. Antimicrob Agents Chemother. 2012; 56(9):4955–7. https://doi.org/10.1128/AAC.00739-12 PMID: 22733072

48. Wang J, Zhou Z, He F, Ruan Z, Jiang Y, Hua X, et al. The role of the type VI secretion system vgrG gene in the virulence and antimicrobial resistance of *Acinetobacter baumannii* ATCC 19606. PLoS One. 2018; 13(2):e0192288. https://doi.org/10.1371/journal.pone.0192288 PMID: 29393128

49. Tomaras AP, Dorsey CW, Edelmann RE, Actis LA. Attachment to and biofilm formation on abiotic surfaces by *Acinetobacter baumannii*: involvement of a novel chaperoneusher pilus assembly system. Microbiology. 2003; 149(Pt 12):3473–84. https://doi.org/10.1099/mic.0.26541-0 PMID: 14663080

50. Gaddy JA, Arivett BA, McConnell MJ, Lopez-Rojas R, Pachon J, Actis LA. Role of acinetobactin-mediated iron acquisition functions in the interaction of *Acinetobacter baumannii* strain ATCC 19606T with human lung epithelial cells, *Galleria mellonella* caterpillars, and mice. Infect Immun. 2012; 80(3):1015–24. https://doi.org/10.1128/IAI.00739-12 PMID: 22232188

51. Murray GL, Tsyganov K, Kostoulia X, Bulach DM, Powell D, Creek DJ, et al. Global gene expression profile of *Acinetobacter baumannii* during bacteremia. J Infect Dis. 2017; 215(suppl_1):S52–7. https://doi.org/10.1093/infdis/jiw529 PMID: 28375520

52. Koteva K, Hong HJ, Wang XD, Nazi I, Hughes D, Naldrett MJ, et al. A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat Chem Biol. 2010; 6(5):327–9. https://doi.org/10.1038/nchembio.350 PMID: 20383152

53. Li L, Wang Q, Zhang H, Yang M, Khan MI, Zhou X. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics. Proc Natl Acad Sci USA. 2016; 113(6):1648–53. https://doi.org/10.1073/pnas.1520300113 PMID: 26831117

54. Hassan KA, Jackson SM, Penesyan A, Patching SG, Tetu SG, Eijkelkamp BA, et al. Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proc Natl Acad Sci USA. 2013; 110(50):20254–9. https://doi.org/10.1073/pnas.1317052110 PMID: 24277845

55. Eijkelkamp BA, Hassan KA, Paulsen IT, Brown MH. Investigation of the human pathogen *Acinetobacter baumannii* under iron limiting conditions. BMC Genomics. 2011; 12:126. https://doi.org/10.1186/1471-2164-12-126 PMID: 21342532

56. Li MF, Lin YY, Lan CY. The role of the two-component system BaeSR in disposing chemicals through regulating transporter systems in *Acinetobacter baumannii*. PLoS One. 2015; 10(7):e0132843. https://doi.org/10.1371/journal.pone.0132843 PMID: 26161744

57. Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog. 2010; 6(4):e1000834. https://doi.org/10.1371/journal.ppat.1000834 PMID: 20368969

58. David SA, Bechtel B, Annaiah C, Mathan VI, Balaram P. Interaction of cationic amphiphilic drugs with lipid A: implications for development of endotoxin antagonists. Biochim Biophys Acta. 1994; 1212 (2):167–75. PMID: 8180242

59. Amos H, Vollmayer E. Effect of pentamidine on the growth of *Escherichia coli*. J Bacteriol. 1957; 73 (2):172–7. PMID: 13416166

60. Hamm RE, Shull CM Jr., Grant DM. Citrate complexes with iron(II) and iron(III). J Am Chem Soc 1953; 76:2111–4.

61. Pecsok RL, Sandera J. The gluconate complexes. II. The ferric-gluconate system. J Am Chem Soc. 1955; 77(6):1489–94.