Emerging evidence shows that epigenetic signatures in blood cells are influenced by genetic variants, are altered by environmental exposures, and are linked to diseases susceptibilities.1–4 Accordingly, searching for epigenetic signatures associated with exposures and diseases is a promising approach to a better understanding of the molecular etiology of common diseases, which are attributable to both genetic and environmental factors.5, 6 From this perspective, locus-specific DNA methylation (DNAm) signatures in blood cells have been intensively associated with various exposures, intermediate phenotypes, and diseases, including tobacco smoking,7, 8 arsenic exposure,9 blood pressure,4 body mass index (BMI),10–12 immunoglobulin E,13 type 2 diabetes,14–16 rheumatoid arthritis,2 lung cancer17 and schizophrenia,18 through epigenome-wide association studies (EWASs).

Prospective studies revealed that DNAm signatures of pre-disease subjects are distinguishable from those of healthy subjects and therefore, are useful for identifying persons at high risk.11, 14, 17 In addition, we and others have proven DNAm to have desirable biomarker features, i.e., high measurement accuracy,19 high chemical stability during sample transportation,22 and high biological stability against frequent immunological stimuli.23 Hence, locus-specific DNAm signatures are becoming a new fascinating tool for biomarker discovery.1, 3, 24 Currently, in the discovery step of almost all EWASs, the Illumina HumanMethylation275 or HumanMethylation450 (HM450)19, 26 microarray is used to profile DNAm levels of 27 thousand or 480 thousand CpG sites, respectively.7–18 As the human reference genome (hg19) harbors 26.8 million autosomal CpGs, only ~2% of DNA methylation sites improves the efficacy of epigenetic association studies

Epigenome-wide association studies, which searches for blood-based DNA methylation signatures associated with environmental exposures and/or disease susceptibilities, is a promising approach to a better understanding of the molecular etiology of common diseases. To carry out large-scale epigenome-wide association studies while avoiding false negative detection, an efficient strategy to determine target CpG sites for microarray-based or sequencing-based DNA methylation profiling is essentially needed. Here, we propose and validate a hypothesis that a strategy focusing on CpG sites with high DNA methylation level variability may attain an improved efficacy. Through whole-genome bisulfite sequencing of purified blood cells collected from > 100 apparently healthy subjects, we identified ~2.0 million inter-individually variable CpG sites as potential targets. The efficacy of our strategy was estimated to be 3.7-fold higher than that of the most frequently used strategy. Our catalogue of inter-individually variable CpG sites will accelerate the discovery of clinically relevant DNA methylation biomarkers in future epigenome-wide association studies.
or less of human autosomal CpG sites are probed by these microarrays. Recently, the MethylationEPIC microarray\(^{20}\) (Illumina) has become available, which allows measuring the DNA methylation levels of 850 thousand CpGs (~3%). For higher CpG coverage, sequencing-based profiling methods are available. In reduced representation bisulfite sequencing (RRBS),\(^{27}\) genomic DNA is digested with the methylation-insensitive restriction enzyme Msp\(_1\) followed by fragment size selection, adaptor ligation, bisulfite treatment, and massively parallel sequencing. Typically, ~10% of the CpGs in the human genome are interrogated by RRBS.\(^{28}\) Methyl-capture sequencing systems, such as SureSelect Human Methyl-Seq\(^{29}\) (Agilent Technologies) and SeqCap Epi CpGiant\(^{30}\) (Roche NimbleGen), use oligonucleotide probes designed to hybridise target regions of interest. The SureSelect panel covers ~3.7 million CpG sites (~13%)\(^{28}\) while CpGiant measures ~5.5 million CpGs (~20%).\(^{28}\) With ~90% coverage of human CpGs, whole-genome bisulfite sequencing (WGBS) provides the highest coverage among the currently available DNA methylation profiling technologies.\(^{31,33}\)

However, because of its high cost, it is presently infeasible to apply WGBS to large-scale EWASs, which require DNA methylation profiling of hundreds or thousands of subjects.\(^{7,8,10–12,14–16}\) Therefore, microarrays and targeted bisulfite sequencing are currently practicable for large-scale EWASs and thus, effective strategies to select target regions are essentially needed to improve the efficacy of epigenetic association studies.

Microarray and methyl-capture sequencing probes have been designed for multiple purposes, including studies on cancer tissues,\(^{35}\) studies on the cell-type specificity of epigenetic signatures,\(^{36}\) and blood-based EWASs.\(^{7–18}\) All probe designs target CpG island (CGI) and promoter regions\(^{19,26}\) as these regions are involved in epigenetic regulation of gene expression.\(^{37,38}\) RRBS is also likely to measure CpGs in CGIs and promoters because the Msp\(_1\) cleavage site (CCGG) is over-represented in those regions.\(^{27}\) As previous studies have shown that DNA methylation levels in CGI shores vary among tumour tissue types,\(^{39}\) CGI shores have been included as probe-set targets. Furthermore, functional DNA elements, such as dDNase I-hypersensitive sites (DHSS), transcription factor binding sites (TFBS), and active histone modifications, have been genome widely mapped.\(^{37,40}\) Accordingly, CpG sites located at those functional DNA elements have been included in probe sets for DNA methylation profiling.\(^{19,26}\) It is noteworthy that evidence that target CpG sites was derived mainly from studies on the cell-type specificity of epigenetic signatures and studies on cancer tissues rather than from studies on inter-individual differences in epigenetic signatures of blood cells. Thus, the multipurpose designs of the probe sets for DNA methylation profiling may not be optimal for blood-based EWASs. Indeed, previous epigenetic association studies have revealed that DNA methylation levels measured with microarrays are invariant for most CpG sites in the study populations.\(^{31,42}\) As invariant DNA methylation signatures cannot be associated with exposures, intermediate phenotypes, or diseases, current designs of probe sets are inefficient for blood-based EWASs.

We considered that a strategy focusing on inter-individually variable CpG sites may improve the efficacy of epigenetic association studies. Hence, we hypothesised that common DNA methylation variations (CDMV) are more likely to be associated with environmental exposures or biomedical traits than rare DNA methylation variations. To test this hypothesis, which we referred to as ‘CDMV hypothesis’, we genome widely identified inter-individually variable CpG sites and evaluated the efficacy of a strategy to select target CpG sites based on the CDMV hypothesis (referred to as ‘CDMV strategy’). Through large-scale sequencing, comprehensive DNA methylation profiling, and statistical data analyses, we showed the validity of the CDMV hypothesis and provided proof-of-concept of the improved efficacy of the CDMV strategy.

RESULTS

Study design

We aimed to genome-wide identify inter-individually variable CpG sites, validate the CDMV hypothesis, and evaluate the efficacy of the CDMV strategy. To these ends, we designed our study in terms of study population, target blood cells, DNA methylation profiling method and statistical analyses, as follows.

Study population

To minimise potential selection bias, we used a population-based design, enrolling apparently healthy adults from residents of the Iwate prefecture, Japan.

Target blood cells

DNA methylation variations include differences between distinct cell types, inter-individual variations within a cell type, and cell-to-cell variations within a cell type and individual (Fig. 1a). Because we aimed to identify inter-individually variable CpG sites, we focused on inter-individual DNA methylation variations within a cell type. Therefore, we analysed purified blood cells rather than whole blood or peripheral blood mononuclear cells (PBMCs). Concretely, we selected classical CD14\(^++\)/CD16\(^−\) monocytes and CD4\(^+\) T cells. Human monocytes consist of three subsets, which can be distinguished by surface expression of CD14 and CD16.\(^{43}\) Classical monocytes, the major subset constituting 5–10% of leucocytes,\(^{43}\) are a homogeneous and therefore desirable population for analysing inter-individual DNA methylation variation within a cell type. In addition, monocytes play a key role in the innate immune system including pathogen surveillance, phagocytosis, and antigen presentation.\(^{44}\) Monocyte-specific DNA methylation signatures have been associated with type 1 diabetes\(^{32}\) and smoking exposure.\(^{46}\) CD4\(^+\) T cells make up a large fraction of lymphocytes (27–58%)\(^{47}\) and play a central role in the adaptive immune system, namely in

![Fig. 1 DNA methylation variations in purified blood cells.](image-url)
antigen recognition, activation of other immune cells, and immune response regulation.48 Contrary to classical monocytes, they are composed of several subsets, including naive CD4\(^+\) T (Th0), T helper 1, T helper 2 (Th2) and regulatory T cells.49 Accordingly, inter-individual DNAm variation observed in CD4\(^+\) T cells includes subset-specific DNAm variation. Regardless of the heterogeneity, we included CD4\(^+\) T cells in our study because they were used in a number of EWASs that reported locus-specific DNAm signatures in these cells associated with BMI,12 waist circumstance,12 and blood lipid level.50

DNAm profiling method. To genome-widely identify inter-individually variable CpG sites, we carried out WGBS for comprehensive DNAm profiling. In addition to WGBS, we used whole-genome sequencing (WGS) and RNA sequencing (RNA-Seq) for the profiling of genomic variants and gene expressions, respectively.

Statistical analyses. We estimated the DNAm variability for each CpG site by means of the reference interval, which is here defined as the difference between the 95th and 5th percentiles of the DNAm levels across individuals (Fig. 1b). To test the CDMV hypothesis and evaluate the efficacy of the CDMV strategy, we defined the biomarker likelihood for a group of CpG sites as the number of CpGs in the group that were associated with any environmental exposures and/or biomedical traits in previous EWASs divided by the number of total CpGs in the group. To test the CDMV hypothesis, we compared the biomarker likelihood between narrow and broad reference interval groups. To evaluate the efficacy of the CDMV strategy, we selected CpG sites exhibiting broad reference intervals and estimated the degree of improvement in efficacy by comparing the biomarker likelihood for CpGs selected by the CDMV strategy with that for CpGs targeted by existing probe sets.

Comprehensive DNAm profiling by WGBS

In total, 109 apparently healthy subjects between the ages of 34 and 74 years from residents of the Iwate prefecture, Japan, were enrolled (Table 1; Supplementary Table 1). Classical CD14\(^++\)/CD16\(^-\) monocytes and CD4\(^+\) T cells were isolated by fluorescence-activated cell sorting (FACS) with high purities (Supplementary Table 1). We subjected 102 samples to WGBS-based profiling of monocytes and CD4\(^+\) T cells. Both cell types were obtained from the same individual in 95 instances. The mean age of the subjects donating monocytes was 58.5 years and that of CD4\(^+\) T donors was 58.0 years. The number of males among monocyte and CD4\(^+\) T donors was 48 (47.1%) and 49 (48.0%), respectively.

In total, 159.1 billion reads and 19.9 tera base pairs of sequences were generated by WGBS (Table 1; Supplementary Tables 3 and 4). The average raw read depth was 31.1 for monocytes and 31.0 for CD4\(^+\) T cells, satisfying read depth recommendations for WGBS analysis.51 Bioinformatic processing and quality-control filtering resulted in DNAm profiles consisting of 23.9 million autosomal CpGs for monocytes and 24.0 million autosomal CpGs for CD4\(^+\) T cells. We only included CpGs that occurred in the human reference sequence. To minimise the effects of genetic variants on reference interval estimates, for each CpG site in the reference, when genetic variants altered the CpG sequence for part of the subjects, the DNAm level for the subjects was considered a missing value. The DNAm profiles comprehensively covered ~90% of autosomal CpGs in the human genome. Summary statistics for WGS and RNA-Seq data are presented in Supplementary Tables 5 and 6. WGS data were available for 105 out of the 109 participants.

Based on the DNAm profiles of ~24 million CpGs, the average DNAm level was 80.4% for monocytes and 79.0% for CD4\(^+\) T cells. Principal component (PC) analysis using the DNAm profiles of the ~24 million CpGs showed that monocytes and CD4\(^+\) T cells were evidently segregated by PC1 (Fig. 2). Compared to CD4\(^+\) T cells, monocytes were densely clustered, both in PC1 and PC2. The wider distribution of CD4\(^+\) T cells was attributable to the variation in the composition of T cell subsets (Fig. 2). These results suggested that DNAm variation between the two cell types and that attributable to T cell subsets was larger than inter-individual DNAm variation within a cell type, consistent with a previous study.52 This finding highlighted the importance of using purified blood cells for distinguishing inter-individual DNAm variation from cell type-specific DNAm differences.

Validity of the CDMV hypothesis: inter-individually variable CpG sites tended to have been associated in previous EWASs of ~24 million CpGs, the average DNAm level was 80.4% for monocytes and 79.0% for CD4\(^+\) T cells. Principal component (PC) analysis using the DNAm profiles of the ~24 million CpGs showed that monocytes and CD4\(^+\) T cells were evidently segregated by PC1 (Fig. 2). Compared to CD4\(^+\) T cells, monocytes were densely clustered, both in PC1 and PC2. The wider distribution of CD4\(^+\) T cells was attributable to the variation in the composition of T cell subsets (Fig. 2). These results suggested that DNAm variation between the two cell types and that attributable to T cell subsets was larger than inter-individual DNAm variation within a cell type, consistent with a previous study.52 This finding highlighted the importance of using purified blood cells for distinguishing inter-individual DNAm variation from cell type-specific DNAm differences.

Table 1. Statistics for WGBS-based DNAm profiles

	Monocytes (N = 102)	CD4\(^+\) T cells (N = 102)
Subjects		
Males, N (%)	48 (47.1)	49 (48.0)
Age, Year\(^a\)	58.5 ± 11.0	58.0 ± 11.4
Sequencing statistics		
Number of raw reads\(^a\)	780,709,034 ± 45,934,514	779,212,752 ± 40,833,955
Number of raw bases\(^a\)	97,588,629,235 ± 5,741,814,291	97,401,593,968 ± 5,104,244,342
Raw depth\(^a\)	31.1 ± 1.8	31.0 ± 1.6
Number of reads after quality-control filtering\(^a\)	624,432,868 ± 38,766,158	667,934,331 ± 33,002,407
Number of bases after quality-control filtering\(^a\)	47,245,324,384 ± 3,327,997,912	52,472,000,722 ± 2,376,329,508
Depth after quality-control filtering\(^a\)	15.1 ± 1.1	16.7 ± 0.8
CpG statistics		
Number of autosomal CpGs in the human genome	26,752,702	26,752,702
Number of autosomal CpGs covered by at least 1 read	24,932,694 ± 163,384	24,439,224 ± 121,488
Percentage of autosomal CpGs covered by at least 1 read	93.2 ± 0.6	93.2 ± 0.5
Number of autosomal CpGs after depth filtering	23,404,723 ± 362,243	23,584,230 ± 238,187
Percentage of autosomal CpGs after depth filtering	87.5 ± 1.4	88.2 ± 0.9
Number of autosomal CpGs with a call rate of ≥ 50%	23,941,843	24,037,541
Percentage of autosomal CpGs with a call rate of ≥ 50%	89.5	89.9

\(^a\) Average ± standard deviation

WGBS whole-genome bisulfit sequencing
reference intervals were unimodal, peaking at ~11% for both monocytes and CD4+ T cells (Fig. 3a, c).

To validate the CDMV hypothesis, we systematically surveyed published EWASs that used the HM450 microarray in the discovery step and validated candidate CpG sites in independent samples. In total, 269 CpG sites were reported from 11 EWASs on tobacco smoking,7-12 obesity,10-12 type 2 diabetes,14-15 lipid levels,16-18 and schizophrenia18 (Supplementary Tables 7 and 8). Almost all (99.3%) previously reported CpG sites had been identified from whole blood samples and others had been derived from purified CD4+ T cells. A majority (83.6%) of CpG sites had been associated in case-control studies and others had been identified in population-based studies. Almost all (99.3%) CpG sites had been discovered in EWASs of Caucasians or African Americans and others had been derived from EWASs of Indian Asians.

In monocytes, compared to the background reference interval distributions for the CpG sites probed by HM450, the CpG sites associated in previous EWASs clearly exhibited larger reference intervals (Fig. 3a). The median reference interval for the background CpG sites was 11.1%, whereas the median reference interval for the associated CpG sites was 26.5%. The biomarker likelihood increased with broadening of the reference interval of the CpG site (Fig. 3b). Compared to the average likelihood, the CpGs in the narrowest reference interval decile had a 9.1-fold lower likelihood. The CpGs in the broadest reference interval decile had a 2.8-fold higher likelihood. The odds ratio (OR) exceeded 2.0 in the 2 broadest deciles.

In CD4+ T cells too, the CpG sites having broad reference intervals tended to have been associated in previous EWASs (Fig. 3c). The OR for the narrowest decile was 0.15 and that for the broadest decile was 1.7. Compared to monocytes, the OR for the broadest decile in CD4+ T cells was relatively small. As the distribution of the reference intervals for associated CpG sites was narrower in CD4+ T cells (median, 21.0%) than in monocytes (median, 26.5%) (Fig. 3c, d), the difference in OR between the two cell types may arise from cell-specificity of epigenetic signals associated with environmental exposures or biomedical traits. In addition, the background distribution of reference intervals in CD4+ T cells (median, 12.5%) was slightly broader than that in monocytes (median, 11.1%). Variations in T cell-subset composition may have inflated the background reference interval levels. Thus, the difference in cell homogeneity between the two cell types may contribute to the difference in OR for the broadest decile.

These results clearly demonstrated the validity of the CDMV hypothesis. Invariable CpG sites were unlikely to have been associated in previous EWASs, whereas inter-individually variable CpG sites tended to have been previously associated.

Regional analyses of DNAm variability surrounding established DNAm biomarkers

To observe reference intervals surrounding established DNAm biomarkers, we focused on 2 loci harbouring well-established DNAm biomarkers for tobacco smoking: cg055759217.8 within the aryl-hydrocarbon receptor repressor (AHRR) gene and cg036361837.8 within the thrombin receptor-like 3 (F2RL3) gene. These two biomarkers are evidently demethylated in current smokers when compared with never smokers.7,8 A prospective study reported that they were associated with lung cancer risk even after adjustment for smoking status,17 implying that epigenetic regulation at these sites may mediate the causal relationship between tobacco smoking and lung cancer. In our DNAm profiles, the associations between the DNAm biomarkers and smoking status were cell-type specific. The associations were significant in monocytes but not in CD4+ T cells (Supplementary Table 9). Accordingly, we focused on monocytes for subsequent analyses.

In the AHRR locus, the cg05575921 biomarker was located in a CGI shore (Fig. 4a). Two lineage-commitment transcription factors (TFs), PU.1 and PAX5, were found to bind to the CGI. In the binding site, all CpG sites were nearly perfectly demethylated in both current and never smokers, and the reference intervals for the CpG sites were narrow (<20%). The cg05575921 biomarker was located at an intermediately methylated region flanking the TFBS. The biomarker and its surrounding CpG sites exhibited broad reference intervals (>30%) and were associated with both the AHRR expression level and smoking status (Fig. 4a; Supplementary Table 9). Genetic variants in this locus were neither associated with the cg05575921 DNAm level nor with smoking status (Supplementary Table 10).

In the F2RL3 locus, the cg03636183 biomarker was also located in a CGI shore and was flanked by PU.1 and PAX5 binding sites (Fig. 4b). The cg03636183 biomarker and its surrounding CpG sites were intermediately methylated and exhibited broad reference intervals (>30%). DNAm levels at cg03636183 and its surrounding CpG sites were associated with smoking status (Fig. 4b; Supplementary Table 9). Consistent with a previous study,17 they were not associated with the F2RL3 expression level, as this gene is not expressed in blood cells (Supplementary Table 9). Genetic variants in this locus were not associated with the cg03636183 DNAm level or smoking status (Supplementary Table 11).

The fact that the reference intervals surrounding two established DNAm biomarkers were broad (>30%) confirmed the CDMV hypothesis. In addition, these findings suggested that intermediately methylated regions tend to exhibit broad reference intervals and that the presence of regulatory features, such as CGI shores and TFBS flanking regions, relates to the broadness of reference intervals.

DNAm levels of intermediately methylated CpG sites show inter-individual variability

To test whether intermediately methylated regions indeed associate with broad reference intervals, we stratified the CpG sites by their median DNAm level. Median DNAm levels of ≤20% and ≥80% were categorized as hypomethylation and hypermethylation, respectively, while levels of 20–80% were considered intermediate methylation. Then, the relationship between DNAm status and reference intervals was investigated based on our comprehensive DNAm profiles covering ~24 million CpG sites.
In monocytes, 80.1% of CpG sites were hypermethylated, 11.3% were hypomethylated, and 8.6% were intermediately methylated (Fig. 5a). Large proportions of hypermethylated and hypomethylated CpG sites exhibited narrow reference intervals. The median reference interval for hypomethylated CpGs was 7.1% and that for hypermethylated CpGs was 14.3% (Fig. 5b). Conversely, intermediately methylated CpG sites showed broader reference intervals, with a median of 42.0%. By defining commonly variable CpG sites as those with reference intervals ≥30%, 15.4% of CpG sites were commonly variable in monocytes (Fig. 5c). A majority (88.8%) of intermediately methylated CpG sites were commonly variable, whereas only 7.0% of hypomethylated and 8.7% of hypermethylated CpG sites were commonly variable (Fig. 5d). Compared to hypomethylated sites, intermediately methylated CpG sites showed a 105.0-fold larger fraction of commonly variable CpG sites (Fig. 5e).

In CD4+ T cells, similar results were obtained (Fig. 5f–j). Reference intervals for intermediately methylated CpG sites (median, 42.0%) were much broader than those for hypomethylated (7.7%) and hypermethylated (15.0%) CpG sites. Intermediately methylated CpG sites had 119.9 times larger probability to be commonly variable than hypomethylated CpG sites.

These results strongly suggested that intermediately methylated CpG sites exhibit broad reference intervals. No remarkable differences in this regard were observed between the two cell types.

DNAm signatures at regulatory elements do not show inter-individual variability

We investigated the relationship between genomic regulatory annotations and the broadness of reference intervals. Genomic annotations for promoters, exons and introns were retrieved from the Human GENCODE Gene Set (release 19).54 Annotations for CGI and repetitive regions were obtained from the UCSC genome browser.55 Genomic intervals for binding sites of 161 TFs, DHSs and 3 types of histone marks—histone H3 acetyl Lys27 (H3K27ac), H3 trimethyl Lys4 (H3K4me3) and H3 monomethyl Lys4 (H3K4me1)—were downloaded from the UCSC ENCODE website.37, 55

In monocytes, regulatory elements, such as promoters (median reference interval, 10.5%), CGIs (6.4%), CGI shores (12.8%), TFBSs (12.5%), DHSs (13.0%), histone marks for active enhancers (H3K27ac; 6.9%), and histone marks for active promoters (H3K4me3; 6.2%), exhibited narrower reference intervals than the background reference interval distribution of ~24 million CpGs (14.8%) (Fig. 6a–e). Distributions of reference intervals for introns (13.9%), TFBS-flanking regions (14.5%) and repetitive regions (14.8%) were similar to the background distribution.
(Fig. 6a, c, e). Histone marks for (active and inactive) enhancers (H3K4me1: 15.6%) showed similar or slightly broader reference intervals (Fig. 6e). In CD4+ T cells, similar tendencies were observed (Fig. 6g–k).

These results revealed that DNAm levels at regulatory elements were inter-individually invariable. The generally low DNAm levels in regulatory elements (Supplementary Fig. 1) might explain the restricted DNAm variability. The notably narrow levels of reference
sequences. We compared the biomarker likelihoods for because we intended to measure the DNAm levels of those target sites, no set was significant for each of case-control and population-ethnicity studies. For both study types, none of the existing sets showed a significantly improved efficacy compared to the HM450-derived set. Significantly improved efficacies of the two CDMV sets were observed for both study designs (Fig. 7b, c). The CDMV-Mono set achieved 4.5-fold (95% CI: 2.6–7.6; \(P = 1.4 \times 10^{-7} \)) and 3.7-fold (95% CI: 2.9–4.8; \(P = 1.5 \times 10^{-7} \)) improved efficacy for population-based and case-control EWASs, respectively. The efficacy of the CDMV–CD4T set for population-based EWASs (\(OR = 3.3 \times 10^{-7} \); \(P = 3.7 \times 10^{-7} \)) was higher than that for case-control EWASs (\(OR = 1.9 \times 10^{-5} \); \(P = 9.9 \times 10^{-5} \)).

The existing sets of target CpG sites were enriched for regulatory elements, including promoters, CGIs, CGI shores, DHSs, TFBSs and H3K27ac and H3K4me3 marks (Fig. 8). As these regulatory elements tend to exhibit narrow reference intervals in our datasets (Fig. 6), we expected reference intervals for the Cpg sites included in the existing sets to be narrow. Indeed, DNAm variability of the Cpg sites targeted by the existing methods tended to be small as compared to that of the background distribution of −24 million CpG sites (Fig. 9).

These results clearly provided proof-of-concept of the improved efficacy of the CDMV strategy. Especially, CDMV-Mono achieved substantial (3.7-fold) improvement. Significantly improved efficacy was shown for case-control EWASs as well as population-based EWASs, while the efficacy for population-based EWASs was higher than that for case-control EWASs. Existing sets of targeted CpG sites were designed for multiple purposes; we showed that the CDMV strategy was more efficient than multipurpose designs for blood-based EWASs.

DISCUSSION

In this study, we tested the working hypothesis that the efficacy of epigenetic association studies may be improved by targeting inter-individually variable CpG sites. To this end, we genome-wide identified commonly variable CpG sites by analyzing purified monocytes and CD4 T cells collected from a Japanese population of apparently healthy subjects. To estimate the efficacy of the CDMV strategy, we collected CpG sites reported by previous EWASs. Almost all previously reported CpG sites were identified from whole blood samples. Accordingly, our results implied that our catalogues of commonly variable CpG sites would improve the efficacy of future EWASs analyzing whole blood samples. In addition, our results demonstrated that application of the CDMV strategy would improve the efficacy of both population-based and case-control studies. Furthermore, almost all previously reported CpG sites were identified from EWASs of Caucasians or African Americans. Therefore, the improved efficacy of our catalogues would not be restricted to EWASs of Japanese but can be extrapolated to EWASs of other ethnicities.

Our findings implicate that commonly variable CpG sites are likely to be associated with environmental exposures and/or disease susceptibilities. By taking into account the signal-to-noise ratio, CpG sites exhibiting high variability in a control group require relatively large mean differences between case and control groups to satisfy a certain \(P \)-value criterion as compared...
Fig. 5 Intermediately methylated CpG sites exhibit large DNAm variability. **a** Distribution of median DNAm levels in monocytes. **b** Distributions of reference intervals in monocytes for hypomethylated (red), hypermethylated (blue), and intermediately methylated (green) CpG sites. **c** CpG-density plot in monocytes. The x-axis represents reference intervals, and the y-axis indicates median DNAm levels. Density is indicated with a colour gradient, ranging from low (blue) to high (red). **d** Proportions of commonly variable CpG sites in monocytes. **e** OR in monocytes. The OR was estimated by comparing the proportion of commonly variable CpG sites in hypomethylated, hypermethylated and intermediately methylated CpG sites. The proportion of commonly variable CpG sites in hypomethylated CpG sites is used as the reference. The 95% reference intervals are represented as black lines. **f** Density plot of median DNAm level in CD4+ T cells. **g** Distribution of reference intervals in CD4+ T cells. **h** CpG-density plot in CD4+ T cells. **i** Proportions of commonly variable CpG sites in CD4+ T cells. **j** OR in CD4+ T cells. Hyper hypermethylated CpG sites, Hypo hypomethylated, CpG sites Inter intermediately methylated CpG sites, M million.
to CpG sites having low variability. Indeed, among 168 CpG sites associated with schizophrenia, 58 sites with broad reference intervals (≥30%) exhibited greater mean differences between case and control groups than other sites with narrow reference intervals (<30%) (Supplementary Fig. 3; \(P < 0.01, \) Wilcoxon rank-sum test). Meanwhile, consideration of the signal-to-noise ratio raises the possibility that CpG sites that exhibit too large a variability might not be efficient targets for future EWASs. However, the efficacy was not changed by filtering out CpG sites with reference intervals of >70% from the CDMV-Mono and CDMV-CD4T catalogues (Supplementary Fig. 4). The number of CpG sites having reference intervals of >70% was only moderate (0.18 million CpGs [8.7%] in CDMV-Mono and 0.20 million CpGs [6.7%] in CDMV-CD4T), and therefore, the filtering of those CpG sites might have had little impact on the efficacy estimates.

Our catalogues of target CpG sites included 2.0 million sites in the CDMV-Mono set and 3.0 million in the CDMV-CD4T set. These numbers of CpG sites are 2 to 3 times larger than those implemented in DNAm microarrays.19, 20, 26 Thus, to implement our catalogues in microarrays, a further reduction of target CpG sites will be needed. However, these numbers are comparable to those targeted by methyl-capture sequencing.29, 30 Accordingly, implementation of the CDMV-Mono and CDMV-CD4T target CpG sites is technically possible by customizing probe sequences for methyl-capture sequencing.

We found a tight statistical link between intermediately methylated status and large inter-individual DNAm variability. The inter-individual DNAm variability was evaluated using the reference interval, which was defined in this paper as the difference between the 95th and 5th percentiles of the DNAm levels across individuals (Fig. 1b). Meanwhile, the classification of the DNAm status (i.e., hypomethylated, hypermethylated, and intermediately methylated) was determined according to the median DNAm level across our population. By definition, an intermediately methylated status does not necessarily imply a large reference interval; if all persons have the same intermediate DNAm level (i.e., 20–80%) at a CpG site, then the CpG site is classified as intermediately methylated, while the reference interval is calculated as 0%. Similarly, hypomethylated or hypermethylated status does not necessarily imply a narrow reference interval; if a CpG site is perfectly unmethylated in >50% of subjects and perfectly methylated in >5% of persons, then the CpG site is classified as unmethylated, while the reference interval is calculated as 100%. Accordingly, the link between the intermediately methylated status and large inter-individual DNAm variability can be biologically interpreted and is not just a statistical artifact.

Intermediate DNAm levels implied large cell-to-cell DNAm variability within an individual and a cell type.56 Accordingly, our results indicated that inter-individual DNAm variability is tightly
linked to cell-to-cell DNA methylation variability. Further, we found that interindividual DNA methylation variability at regulatory elements was strongly constrained. The constraints may act on both inter-individual and cell-to-cell DNA methylation variability. Consequently, genomic regions where the constraints are relaxed may show large interindividual as well as cell-to-cell DNA methylation variability. Our results suggested that the molecular mechanisms behind the constraints may include histone modifications and TF binding events.

Previous epigenetics studies have revealed that processes that generate cell-to-cell DNA methylation variations include an imperfect DNA methylation transmission from mother to daughter cells, locus-specific recruitment of de novo methyltransferases (DNMT3A and DNMT3B), and demethylation by ten eleven translocation enzymes. In a recent model, locus-specific DNAm levels are regulated by multifactorial kinetics, which are affected by transmission fidelity, replication rates, de novo methyltransferase activity, and demethylase activity. Our results indicate that the multifactorial kinetics would be inter-individually variable at genomic regions with balanced kinetics and thus, with intermediate DNA methylation levels. The kinetic balance may be shifted by in utero, childhood and adult exposures and may be associated with intermediate phenotypes and diseases.

Although studies on cell-type differences have identified outstanding switches of DNA methylation patterns (i.e., from hypomethylated to hypermethylated during cell differentiation), previous blood-based EWASs identified moderate shifts of DNA methylation levels between cases and controls. Even in EWASs analysing purified blood cells, inter-individual differences in DNA methylation levels were less dramatic than cell type-specific differences. The above-mentioned balanced kinetics model may explain these observations. The kinetics may be dynamically changed during cell-type differentiations involving lineage-commitment TFs and subsequent epigenetic regulation. In contrast, within a cell type, the balanced kinetics may be slightly modified in response to various environmental stimuli, which differ from person to person, while maintaining cell identity.

Several limitations to this study should be mentioned. Firstly, we estimated the efficacy of the CDMV strategy based on the results of previous HM450-based EWASs. This may introduce biases into the efficacy estimation. Secondly, almost all the previously reported DNA methylation markers were discovered from whole blood samples. Therefore, although we showed the improved efficacy of our CDMV-Mono and CDMV-CD4T catalogues for future EWASs using whole blood, we cannot state which set of commonly variable DNA methylation sites is more effective for future EWASs using purified blood cells. Based on our data, two out of four DNA methylation markers previously discovered using CD4+ T cells exhibited broader reference intervals in CD4+ T cells than in monocytes, while the other two had narrower reference intervals in CD4+ T cells than in monocytes (Supplementary Fig. 5). In future, larger numbers of DNA methylation markers will be discovered using purified cells, which would allow answering the above question. Thirdly, we analysed monocytes and CD4+ T cells but not other blood cells, including CD8+ T cells, natural killer cells, B cells, and neutrophils. Fourthly, we identified commonly variable DNA methylation sites based on a Japanese population. Since the environment can influence DNA methylation profiles, the geographically restricted design might cause an unintended bias in catalogues of commonly variable DNA methylation sites. Accordingly, the efficacy of the CDMV strategy may be further improved by incorporating DNA methylation markers of multiple ethnicities and of various cell types in future studies.

In conclusion, we demonstrated that the efficacy of the CDMV strategy, which should allow answering the above question. Thirdly, we analysed monocytes and CD4+ T cells but not other blood cells, including CD8+ T cells, natural killer cells, B cells, and neutrophils. Fourthly, we identified commonly variable DNA methylation sites based on a Japanese population. Since the environment can influence DNA methylation profiles, the geographically restricted design might cause an unintended bias in catalogues of commonly variable DNA methylation sites. Accordingly, the efficacy of the CDMV strategy may be further improved by incorporating DNA methylation markers of multiple ethnicities and of various cell types in future studies.

In conclusion, we demonstrated that the efficacy of the CDMV strategy, which should allow answering the above question. Thirdly, we analysed monocytes and CD4+ T cells but not other blood cells, including CD8+ T cells, natural killer cells, B cells, and neutrophils. Fourthly, we identified commonly variable DNA methylation sites based on a Japanese population. Since the environment can influence DNA methylation profiles, the geographically restricted design might cause an unintended bias in catalogues of commonly variable DNA methylation sites. Accordingly, the efficacy of the CDMV strategy may be further improved by incorporating DNA methylation markers of multiple ethnicities and of various cell types in future studies.

METHODS

Subjects

Apparently healthy subjects were enrolled from residents of the Iwate prefecture, Japan, who participated in the Tohoku Medical Megabank...
Community-Based Cohort Study (TMM CommCohort Study), which is being conducted by the Iwate Medical University Iwate Tohoku Medical Megabank Organisation (IMM) and the Tohoku University ToMMo. Details of the study design and recruitment method were reported previously. Of the participants in the TMM CommCohort Study, individuals visiting the Yahaba Center in the Iwate prefecture from April 2014 to June 2015 were enrolled in the present study. All participants gave written informed consent to participate in this study, which was approved by the Ethics Committee of Iwate Medical University (Approval ID: HG H25-19).

Fig. 8 Contents of regulatory elements in previous and proposed designs of target CpG sites. Enrichment for regulatory elements in each set of target CpG sites is shown. The ORs was estimated by comparing the proportions of CpG sites that overlapped with regulatory annotations in each set. The background proportion was calculated from all CpGs in the human reference genome (hg19). CGI CpG island, CpGiant SeqCap Epi CpGiant, DHS DNase I-hypersensitive site, H3K27ac histone H3 acetyl Lys27, H3K4me1 histone H3 monomethyl Lys4, H3K4me3 histone H3 trimethyl Lys4, HumanMethylation450, Rep replication, RRBS reduced-representation bisulfite sequencing, SureSelect SureSelect Human Methyl-Seq, TFBS transcription factor binding site.

Fig. 9 DNAm variability for target CpG sites. a Distributions of reference intervals in monocytes. b Distributions of reference intervals in CD4+ T cells. CpGiant SeqCap Epi CpGiant, HumanMethylation450, Rep replication, RRBS reduced-representation bisulfite sequencing, SureSelect SureSelect Human Methyl-Seq.
Blood collection, FACS and DNA/RNA extraction
Peripheral blood was collected in BD Vacutainer CPT tubes containing sodium heparin (8 ml: Becton Dickinson and Company, Franklin Lakes, NJ, USA). Within 2 h after blood collection, PBMCs were collected by centrifugation (Sorvall Legend XFR; Thermo Fisher Scientific, Waltham, MA, USA) at 1,700 × g for 20 min at room temperature. The PBMCs were washed in 30 ml phosphate-buffered saline (PBS) containing 2 mM EDTA and then centrifuged at 250 × g for 10 min at room temperature to remove any contaminating platelets and plasma.

The PBMCs were incubated with CD14-FITC (catalogue #: 2228020), CD16-PE (catalogue #: 2110040), CD3-PE-Cy7 (catalogue #: 2102100) and CD4-APC (catalogue #: 2323070) antibodies (5 µl antibody/500 µl of cell suspension) (Sony Biotechnology Inc., Tokyo, Japan) for 20 min at 4°C. After washing with 5 ml of PBS, CD14+/−/CD16+ and monocytes and CD3+/CD4+ T cells were immediately sorted using an SH800 Cell Sorter (Sony Biotechnology) from the monocyte-containing or lymphocyte-containing gate determined from light-scatter density plots (Supplementary Fig. 6). The purity of all FACS-sorted populations was analysed by flow cytometry using the SH800 Cell Sorter.

Genomic DNA and RNA were extracted from the sorted cells using the AllPrep DNA/RNA Micro Kit (Qiagen, Venlo, The Netherlands), according to the manufacturer’s instructions.

DNAm profiling by WGBS
We carried out bisulfite conversion with the EZ DNA Methylation-Gold Kit (Zymo Research Corporation, Irvine, CA, USA) using 50 or 75 ng of genomic DNA, followed by sequencing library preparation using the TruSeq DNA Methylation-Kit (Illumina Inc., San Diego, CA, USA). Fragment sizes were determined by electrophoresis on an Agilent 2200 TapeStation with D1000 ScreenTape (Agilent Technologies) and the concentration of each library was assessed by quantitative PCR with the Kapa Library Quantification Kit (Kapa Biosystems, Woburn, MA, USA) on a StepOnePlus instrument (Life Technologies, Carlsbad, CA, USA). The libraries were pooled at equimolar concentrations and loaded into flow cells with the HiSeq PE Cluster Kit v4 cBot (Illumina). The libraries were sequenced on an Illumina HiSeq 2500 instrument with the HiSeq SBS Kit v4 (single-end 125-bp reads).

For each library, adaptor sequences were removed from raw reads using Trim Galore v0.4.0 (http://bioinformatics.babraham.ac.uk/projects/trim_galore/), and reads <20bp were excluded from further analyses. Then, the read sequences were mapped onto human reference genome GRCh37/ds using NovoAlign v3.02.08 (http://www.novocraft.com/) after setting the maximum alignment score acceptable for the best alignment (‘-y’ option) to 240, the strategy for reporting repeats (‘-r’ option) to ‘Random’, the homopolymer and optional dinucleotide filter score (‘-h’ option) to 120, and the bisulfite alignment mode to align reads in the forward direction using a C-to-T converted index and in the reverse complement direction using a G-to-A converted index (‘-b’ option). Only read pairs mapped in proper directions and within appropriate distances were retained. Duplicated amplicons were removed using SAMtools v0.1.19. The resultant bam files were merged into a single bam file for each subject.

From the merged bam files, overlaps between paired-end reads were clipped using the BamUtil package, v1.0.13 (http://genome.sph.umich.edu/wiki/BamUtil). The number of converted and unconverted cytosines in mapped reads was counted for each CpG in the human genome using NovoMethyl v3.02.08 (http://www.novocraft.com/). In this process, CGs harbouring genetic variants in either dinucleotide were excluded. The DNAm levels were calculated for all CpGs by dividing the number of unconverted cytosines in the mapped reads by the total number of converted and unconverted cytosines in the mapped reads.

CpGs with low (≤6x) and extremely high (>300x) read depths were filtered out. Only CpGs that were retained in ≥50% of the subjects were included in WGBS-based DNAm profiles for monocytes and CD4+ T cells.

Gene-expression profiling by RNA-Seq
We converted 150 ng of total RNA to cDNA using Superscript II reverse transcriptase (Thermo Fisher Scientific, Waltham, MA, USA). Then, sequencing libraries were prepared using the TruSeq RNA Sample Preparation Kit v2 (Illumina). Library quality was assessed as previously described.65 For cluster generation with the HiSeq SR Cluster Kit v4 cBot (Illumina), six libraries were mixed in equimolar concentrations and were loaded into flow cells. Sequencing was performed in the HiSeq 2500 system (Illumina) with the HiSeq SBS Kit v4 (single-end 125-bp reads).

Read sequences were mapped onto the GRCh37 human reference genome using TopHat v2.0.13 and a guide from the Human GENCODE Gene Set (release 19).64 We removed reads mapped to transfer RNA and ribosomal RNA regions. Multi-mapped reads and reads with mapping qualities ≤20 were excluded. Converted and unconverted cytosines in the mapped reads were calculated and normalised across subjects using the cuffquant and cuffnorm programs in the Cufflinks package v2.2.1.67

Genotyping by WGS
WGS was performed as previously described.68 Briefly, genomic DNA samples from buffy coats were fragmented using a Covaris sonicator (LE220) and subjected to library preparation with the TruSeq DNA PCR-Free HT Sample Prep Kit (Illumina). The libraries were quantified using the quantitative MiSeq method.69 A HiSeq 2500 system was used to generate 162-bp, paired-end reads in Rapid Run Mode with the TruSeq Rapid PE Cluster Kit and the TruSeq Rapid SBS Kit (Illumina).

Genotype data sets were constructed with the same filtering instructions used in the 1KPJN Japanese population reference panel, including single-nucleotide variant (SNV) filtering according to read coverage, software-derived biases, departures from Hardy–Weinberg equilibrium, and complexities of genomic regions around variants.64 For 71 samples with Japonica SNP array genotyping data,64 the minimum and maximum thresholds of read depth for SNV filtering were determined so as to maximise the genotype concordance between the WGS and SNP array data.64 For the remaining 34 samples, the minimum and maximum depth thresholds were set at 9 and 56, respectively.

Systematic surveys for previous EWASs
We systematically searched PubMed on May 23, 2016 for EWASs that used HM450 in the discovery step and validated candidate CpG sites in independent samples, using the terms ('epigenome wide association') and ('HumanMethylation450' and 'association'). EWASs, with sample sizes smaller than 100 in the discovery step were excluded. All relevant articles were reviewed by three scientists who jointly determined for each article whether or not it satisfied our inclusion criteria.

Statistical power for the efficacy estimation using Fisher’s exact test
We defined the biomarker likelihood for a group of CpG sites as the number of CpGs in the group that were associated with any environmental exposure and/or biomedical trait in previous EWASs divided by the number of total CpGs in the group. We estimated the efficacy of the CDMV-Mono and CDMV-CD4T catalogues by comparing the biomarker likelihoods for the two catalogues with that for the HM450 probe set using Fisher’s exact test.

The total number of autosomal CpG sites probed by the HM450 microarray was 473,814. Of these, 269 sites have been reported in previous studies. Assuming the effect size of efficacy improvement (in terms of OR) to be 2.0, 10% of the HM450 probes to be targeted, and significance level to be 0.05, statistical power was estimated as 98.6%.

Genomic annotations for regulatory elements
Genomic coordinates for transcription start sites (TSSs), exons and introns were derived according to the Human GENCODE Gene Set (release 19).54 Promoter regions were determined as the regions 2kb upstream to 500bp downstream of the TSSs. Annotations for CGIs were obtained from the UCSC genome browser.63 CGIs shores were defined as 2-kb upstream and downstream regions flanking the CGIs. Repetitive regions defined by the RepeatMasker software were retrieved from the UCSC genome browser. DHS and TFBS regions were downloaded from the UCSC ENCODE website.55 For the three types of histone modifications (H3K27ac, H3K4me1 and H3K4me3) were retrieved from the UCSC genome browser. Annotations for these modifications used in this study were identified based on chromatin immuno-precipitation with massively parallel sequencing of the GM12878 lymphoblastoid cell line produced from the blood of a female donor with northern and western European ancestry by Epstein–Barr virus transformation) and K562 (an immortalised cell line produced from a female patient with chronic myelogenous leukaemia) cell lines.
Analysis of the potential association between DNAm level and smoking status

Smoking status (current, former or never smoker) was determined based on a self-reported questionnaire.63 Associations between DNAm level and smoking status were analysed with a linear-regression model with adjustments for age and sex. In this association analysis, former smokers were excluded and DNAm level differences between current and never smokers were tested. The equation for the association analysis was $M_{ij} = \beta_{i0} + \beta_{i1} S_j + \beta_{i2} A_g i + \beta_{i3} S_e x_j$, where M_{ij} represents DNAm level for a CpG site i and an individual j, S_j is smoking status for an individual j ($S_j = 0$, never smoker; and $S_j = 1$, current smoker), $A_g i$ is chronological age for an individual j, $S_e x_j$ is sex for an individual j. β_{i0} is intercept for a CpG i, β_{i1} is a coefficient for smoking status variable (expected difference between current and never smokers), β_{i2} is a coefficient for age variable, and β_{i3} is a coefficient for sex variable. DNAm level and age were regarded as continuous variables, and smoking status and sex were set as discrete variables.

Target CpG sites in existing designs

Target CpG sites for HM450, EPIC, SureSelect and CpGiant were downloaded from the manufacturers’ websites (http://supportillumina.com/downloads.html; http://sequencing.roche.com/products/nimblegen-seqcap-target-enrichment.html) and https://earray.chem.agilent.com/suredesign/, respectively. Target CpG sites for RRBS were defined according to two replicates of RRBS experiments for the GM12878 cell line. The mapping results of RRBS experiments were retrieved from the UCSC genome browser.

ACCESSION CODES

Sequence data, DNAm profiles, gene-expression profiles, and genotypes are available upon request. The authors participated in the Ethical Committee of Iwate Medical University, the Ethical Committee of Tohoku University, and the Materials and Information Distribution Review Committee of TMM Project. Part of the data is available as open data from the National Bioscience Database Center website (http://humanbdb.biosciencedbc.jp/en) under Accession ID hum0056 and from our website (http://imethyl.iwate-megabank.org/).

ACKNOWLEDGEMENTS

The authors would like to thank the members of the IMM and the Tohoku Medical Megabank Organisation of Tohoku University (ToMMo) for their encouragement and support. We also acknowledge Dr. Masahiro Nakamura and Dr. Akira Watanabe of Kyoto University, as well as Fuyuki Miya of RIKEN for their useful discussions. We are grateful to the Tohoku Medical Megabank Project participants. This work was supported by the Tohoku Medical Megabank Project (Special Account for Reconstruction from the Great East Japan Earthquake) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the Japan Agency for Medical Research and Development (AMED).

AUTHOR CONTRIBUTIONS

T.H., J.H. and A.S. initiated the project and designed the experiments. R.F. performed cell isolations. Y.S., H.O., K.Omo, F.K. and J.Y. performed WGBS and RNA-Seq analyses. F.K. and M. N. performed WGS analysis. H.O. was in charge of WGBS and RNA-Seq management. J.Y. was in charge of genome-sequencing management. T.H., R.F., Y.S., H.O., M.N. and A.S. performed the bioinformatics analysis. T.H. performed statistical analysis and oversaw the bioinformatics analysis. K.K. ensured access from IMM to the ToMMo supercomputer and managed the bioinformatics analysis on the supercomputer system. N.F. and A.S. were in charge of project management between IMM and ToMMo. M.Y., K.T., M.Satoh, R.E., M.Sasaki, K.Sakata, S.K., K.Ogasawara, J.H., K. Sobue and A.S. supervised the work. T.H., R.F., Y.S., H.O., F.K., M.N. and A.S. wrote the manuscript. All authors participated in discussions and interpretation of the data and results.

COMPETING INTERESTS

The authors declare no competing interests.

REFERENCES

1. Rakyan, V. K., Down, T. A., Balding, D. J. & Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 12, 529–541 (2011).
2. Liu, Y. et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat. Biotechnol. 31, 142–147 (2013).
3. Mill, J. & Heijmans, B. T. From promises to practical strategies in epigenetic epidemiology. Nat. Rev. Genet. 14, 585–594 (2013).
4. Kato, N. et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat. Genet. 47, 1282–1293 (2015).
5. Willett, W. C. Balancing life-style and genomics research for disease prevention. Science 296, 695–698 (2002).
6. Maher, B. Personal genomes: The case of the missing heritability. Nature 456, 18–21 (2008).
7. Zeilingler, S. et al. Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 8, e63812 (2013).
8. Tsaprouni, L. G. et al. Cigarette smoking reduces DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation. Epigenetics 9, 1382–1396 (2014).
9. Argos, M. et al. Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh. Environ. Health Perspect. 123, 64–71 (2015).
10. Dick, K. J. et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet 383, 1990–1998 (2014).
11. Demenath, E. W. et al. Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum. Mol. Genet. 24, 4464–4479 (2015).
12. Aslibekyan, S. et al. Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring) 23, 1493–1501 (2015).
13. Liang, L. et al. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature 520, 670–674 (2015).
14. Chambers, J. C. et al. Epigenome-wide association of DNA methylation markers in peripheral blood from Indian Asians and Europeans with incident type 2 diabetes: a nested case-control study. Lancet. Diab. Endocrinol 3, 526–534 (2015).
15. Florath, I. et al. Type 2 diabetes and leucocyte DNA methylation: an epigenome-wide association study in over 1,500 older adults. Diabetologia 59, 130–138 (2016).
16. Soriano-Tárrega, C. et al. Epigenome-wide association study identifies TNXP gene associated with type 2 diabetes mellitus and sustained hyperglycemia. Hum. Mol. Genet. 25, 609–619 (2016).
17. Fasanelli, F. et al. Hypomethylation of smoking-related genes is associated with future lung cancer in four prospective cohorts. Nat. Commun. 6, 10192 (2015).
18. Monto, D. C. et al. Association of DNA methylation differences with schizophrenia in an epigenome-wide association study. JAMA Psychiatry 73, 506–514 (2016).
19. Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295 (2011).
20. Moran, S., Arribas, C. & Esteller, M. Validation of a DNA methylation microarray for multiple genomic loci but the effect is partially reversible upon cessation. PLoS One 11, e0147519 (2016).
21. Furukawa, R. et al. Intraintestinal dynamics of transcriptome and genome-wide stability of DNA methylation. Sci. Rep. 6, 26424 (2016).
22. Andersen, A. M., Dogan, M. V., Beach, S. R. & Philibert, R. A. Current and future prospects for epigenetic biomarkers of substance use disorders. Genes (Basel); 6, 991–1022 (2015).
23. Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium assay. Epigenomics 1, 177–200 (2009).
24. Dedeurwaerder, S. et al. Evaluation of the Infinium Methylation 450K technology. Epigenomics 3, 771–784 (2011).
25. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).
26. Walker, D. L. et al. DNA methylation profiling: comparison of genome-wide sequencing methods and the Infinium Human Methylation 450 Bead Chip. Epigenetics 7, 1287–1302 (2015).
27. Wang, J. et al. High-resolution profiling of human exon methylation by liquid hybridisation capture-based bisulfite sequencing. BMC Genomics 12, 597 (2011).
28. Li, Q. et al. Post-conversion targeted capture of modified cytosines in mammalian and plant genomes. Nucleic Acids Res 43, e81 (2015).

Identification of inter-individuially variable CpG sites

T Hachiya et al.
31. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenetic differences. *Nature* **462**, 315–322 (2009).
32. Laurent, L. et al. Dynamic changes in the human methylome during differentiation. *Genome Res.* **20**, 320–331 (2010).
33. Wang, Q. et al. Tagmentation-based whole-genome bisulfite sequencing. *Nat. Protoc.* **8**, 2022–2032 (2013).
34. Micheli, K. B. et al. Recommendations for the design and analysis of epigenome-wide association studies. *Nat. Methods* **10**, 949–955 (2013).
35. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. *Nature* **490**, 61–70 (2012).
36. Nazor, K. L. et al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. *Cell Stem Cell* **10**, 620–634 (2012).
37. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. *Nature* **489**, 57–74 (2012).
38. Natoli, G. Maintaining cell identity through global control of genomic organisation. *Immunity* **33**, 12–24 (2010).
39. Inzary, R. A. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. *Nat. Genet.* **41**, 178–186 (2009).
40. Thurman, R. E. The accessible chromatin landscape of the human genome. *Nature* **489**, 75–82 (2012).
41. Grundberg, E. et al. Global analysis of DNA methylation variation in adipose tissue. *Genome Res.* **20**, 320–331 (2010).
42. van Dongen, J. et al. Epigenetic variation in monozygotic twins: a genome-wide coverage recommendations for methylation analysis by whole-genome bisul.
43. Pfeiffer, L. et al. DNA methylation of lipid-related genes affects blood lipid levels. *Circ. Cardiovasc. Genet.* **7**, 343–342 (2015).
44. Serbina, N. V., Jia, T., Hohl, T. M. & Pamer, E. G. Monocyte-mediated defense against microbial pathogens. *Nat. Rev. Immunol.* **16**, 511–525 (2016).
45. Reynolds, L. M. et al. DNA Methylation of the aryl hydrocarbon repressor association with cigarette smoking and subclinical atherosclerosis. *Circ. Cardiovasc. Genet.* **8**, 707–716 (2015).
46. Lawrie, D. et al. Local reference ranges for full blood count and CD4 lymphocyte count testing. *S. Afr. Med. J.* **99**, 243–248 (2009).
47. Zhu, J. & Paul, W. E. CD4 T cells: fates, functions, and faults. *Blood* **112**, 1557–1569 (2008).
48. Caza, T. & Landas, S. Functional and phenotypic plasticity of CD4+ T cell subsets. *Biomed. Res. Int.* **2015**, 251957 (2015).
49. Irvin, M. R. et al. Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study. *Circulation* **130**, 565–572 (2014).
50. Ziller, M. J., Hansen, K. D., Meissner, A. & Ayre, M. J. Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. *Nat. Methods* **12**, 230–232 (2015).
51. Reinus, L. E. et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. *PLoS One* **7**, e11361 (2012).
52. Pfeiffer, L. et al. DNA methylation of lipid-related genes affects blood lipid levels. *Circ. Cardiovasc. Genet.* **8**, 334–342 (2015).
53. Harrow, J. et al. GENCODE: producing a reference annotation for ENCODE. *Genome Biol.* **7**, 1–9 (2006).
54. Karolchik, D. et al. The UCSC Genome Browser database: 2014 update. *Nucleic Acids Res.* **42**, D764–D770 (2014).
55. Elliott, G. et al. Intermediate DNA methylation is a conserved signature of genome regulation. *Nat. Commun.* **6**, 3636 (2015).
56. Zhao, L. et al. The dynamics of DNA methylation fidelity during mouse embryonic stem cell self-renewal and differentiation. *Gen. Res.* **24**, 1296–1307 (2014).
57. Jones, P. A. & Liang, G. Rethinking how DNA methylation patterns are maintained. *Nat. Rev. Genet.* **10**, 805–811 (2009).
58. Pastor, W. A., Aravind, L. & Rao, A. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. *Nat. Rev. Mol. Cell Biol.* **14**, 341–356 (2013).
59. Jeltsch, A. & Jurkowska, R. Z. New concepts in DNA methylation. *Trends Biochem. Sci.* **39**, 310–318 (2014).
60. Kulis, M. et al. Whole-genome fingerprinting of the DNA methylome during human B cell differentiation. *Nat. Genet.* **47**, 746–756 (2015).
61. Kawai, Y. et al. Japonica array: improved genotype imputation by designing a SNP array with RNA-seq. *Bioinformatics* **25**, 2078–2079 (2009).
62. Ohmomo, H. et al. Reduction of systematic bias in transcriptome data from human peripheral blood mononuclear cells for transportation and biobanking. *PLoS One* **9**, e104283 (2014).
63. Trapnell, C. et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat. Biotechnol.* **28**, 511–515 (2010).
64. Katsuoka, F. et al. Rare variant discovery by deep whole-genome sequencing of 1,070 Japanese individuals. *Nat. Commun.* **6**, 8018 (2015).
65. Katsouka, F. et al. An efficient quantitation method of next-generation sequencing libraries by using MiSeq sequencer. *Anal. Biochem.* **466**, 27–29 (2014).
66. Kawai, Y. et al. Japonica array: improved genotype imputation by designing a population-specific SNP array with 1070 Japanese individuals. *J. Hum. Genet.* **60**, 581–587 (2015).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017

Supplementary Information accompanies the paper on the *npj Genomic Medicine* website (doi:10.1038/s41525-017-0016-5).