A cross-cultural comparison of folk plant uses among Albanians, Bosniaks, Gorani and Turks living in south Kosovo

Behxhet Mustafa¹, Avni Hajdari¹*, Andrea Pieroni², Bledar Pulaj¹, Xhemajli Koro¹ and Cassandra L Quave³,⁴

Abstract

Background: Kosovo represents a unique hotspot of biological and cultural diversity in Europe, which allows for interesting cross-cultural ethnobotanical studies. The aims of this study were twofold: 1) to document the state of traditional knowledge related to local (esp. wild) plant uses for food, medicine, and handicrafts in south Kosovo; and 2) to examine how communities of different ethnic groups in the region (Albanians, Bosniaks/Gorani, and Turks) relate to and value wild botanical taxa in their ecosystem.

Methods: Field research was conducted in 10 villages belonging to the Prizren municipality and 4 villages belonging to the Dragash municipality, located in the Sharr Mountains in the southern part of Kosovo. Snowball sampling techniques were used to recruit 139 elderly informants (61 Albanians, 32 Bosniaks/Gorani and 46 Turks), for participation in semi-structured interviews regarding the use of the local flora for medicinal, food, and handicraft purposes.

Results: Overall, we recorded the local uses of 114 species were used for medicinal purposes, 29 for food (wild food plants), and 20 in handicraft activities. The most important species used for medicinal purposes were Achillea millefolium L., Sambucus nigra L., Urtica dioica L., Tilia platyphyllos Scop. Hypericum perforatum L., Chamomilla recutita (L.) Rauschert, Thymus serpyllum L. and Vaccinium myrtillus L. Chamomilla recutita was the most highly valued of these species across the populations surveyed. Out of 114 taxa used for medicinal purposes, only 44 species are also included in the European Pharmacopoeia. The predominantly quoted botanical families were Rosaceae, Asteraceae, and Lamiaceae. Comparison of the data recorded among the Albanian, Bosniak/Gorani, and Turkish communities indicated a less herbophilic attitude of the Albanian populations, while most quoted taxa were quoted by all three communities, thus suggesting a hybrid character of the Kosovar plant knowledge.

Conclusion: Cross-cultural ethnobiological studies are crucial in the Balkans not only for proposing ways of using plant natural resources, which could be exploited in sustainable local development projects (e.g. focusing on eco-tourism and small-scale trade of medicinal herbs, food niche and handicrafts products), but also for fostering collaboration and reconciliation among diverse ethnic and religious communities.

Keywords: Ethnobotany, Sharr Mountains, Folk medicine, Kosovo, Medicinal plants, Wild food plants

* Correspondence: avni.hajdari@uni-pr.edu

1 Institute of Biological and Environmental Research, University of Prishtina

"Hasan Prishtina", Mother Teresa, 1000 Prishtine, Kosovo

Full list of author information is available at the end of the article

© 2015 Mustafa et al; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Introduction

Over the last decade, the Western Balkans have become the arena of a remarkable number of ethnobiological field studies, which have focused on territories of Bosnia and Herzegovina [1-7], Serbia [8-12], Montenegro [13], Albania [14-19], Macedonia [20-24], and Kosovo [25,26]. Moreover, a few of these studies addressed cross-cultural comparisons in an attempt to try to understand cultural concepts underpinning perceptions and uses of specific plants, especially among Albanian vs. Slavic populations [10,15,21]. Much of this focus on Balkan ethnobotany is linked to the long and ongoing history of gathering and trading local wild medicinal plants from this territory into Western European markets. It is also supported by the growing appreciation of ethnobotanical bio-cultural heritage as a starting point for fostering a peaceful and sustainable development in the area.

As part of our ongoing long-term project of documenting the ethnobotanical knowledge of diverse multicultural and religious areas in the Balkans, here we focused our attention on the Prizren and Dragash municipalities (South Kosovo), where traditionally diverse ethnic groups (Albanians, Turks, Bosniaks, Serbians, Gorani, Roma/Gypsies, Egyptians and Ashkali) have lived in close contact for many centuries. Previous ethnobotanical and ethnolinguistic studies conducted in Kosovo have demonstrated that medicinal plants still play a crucial role in the sphere of human health, especially in isolated rural areas [25-27]. Oftentimes, these mountainous communities have limited access to Western biomedical facilities, and they rely heavily on traditional ecological knowledge (TEK) to meet their dietary and medical needs. It is for this reason that we project that investigation of Kosovo’s diverse ethnobotanical heritage will have a tremendous impact on rural development projects aimed at improving the holistic and long-term well-being of the local populations via sustainable use of local natural resources and integration of emic concepts of health and dietary care into development plans.

The aims of this study were twofold: 1) to document the state of traditional knowledge related to local (esp. wild) plant uses for food, medicine, and handicrafts in southwest Kosovo; and 2) to examine how communities of different ethnic groups in the region (Albanians, Bosniaks/Gorani, and Turks) relate to and value wild botanical taxa in their ecosystem.

Methods

The study area

In this study, we investigated traditional ecological knowledge (TEK) concerning the use of local plants in villages situated in the territory of Prizren, which lies in the southwestern part of the Sharr Mountains (in Albanian known as Malet e Sharrit; in Serbo-Croatian as Šar Planina). The Sharr Mountains lie in the Republic of Macedonia and Kosovo and have a total area of 1,600 km^2. The Republic of Macedonia is home to 51% (827 km^2) of this mountain range, while the Republic of Kosovo is home to the rest (780 km^2) [28]. The Sharr Mountains provide an interesting site of plant life richness and diversity, with an estimated 2,000 vascular plant species. Indeed, a special characteristic of the Sharr Mountains is the presence of endemic, relict, and rare species and plant communities [29]. The most representative vegetation includes black alder communities (Alnetum glutinosae), which is widespread along the streams and rivers, oriental hornbeam forest (Carpinetum orientalis scardica), hop hornbeam mixed with oriental hornbeam forest (Ostryo-Carpinion orientalis), thermophilous oak forests (Quercetum frainetto-cerris scardicum, and Quercetum pubescens, Quercetum montanum, Quercetum trojanae dukagjini), beech forests (Fagetum montanum), and pine forests (Pinetum heldreichii, Pinetum peucis, Pinetum mughi typicum) [30].

In recognition of the rich levels of biodiversity in this region, in 1986 the Kosovo Assembly (former Autonomous Province of Kosovo within the Socialist Federal Republic of Yugoslavia) declared that a part of the Sharr Mountains would be a National Park with the size of around 30,000 hectares. In 2012, the borders of the National Park were expanded and at the same time the massif of Koritnik was included, increasing the park’s territory by around 23,469 hectares. Now recognized as the Sharr National Park (Figure 1), it occupies 53,469 hectares, and includes the territories of five municipalities: Kaçanik, Shtërpçe, Suharekë, Prizren and Dragash [31].

Over the past two millennia, this region has been continuously occupied and was part of three great empires (Roman, Byzantine and Ottoman). In the intervals between the decline of one emperor and empowerment of another, Kosovo was occupied mainly by Bulgarians and Serbs. According to Schmitt [32], when the Romans
arrived in the Kosovar territory, they were faced with various Illyrian tribes. In late antiquity, the Dardanians became mainly Christian (Catholic); Byzantine and Slavic invasions led to the Catholicism of a significant proportion of indigenous Albanian population, despite a great resistance to the acceptance of Orthodox religion. The later Ottoman occupation spanning about five centuries resulted in conversion to Islam as the dominant religion. Because of this complex history, today the territory surrounding Prizren is occupied by diverse ethnic groups (Albanians, Serbs, Turks, Bosniaks, Gorani and Romani) and diverse religions (Muslim (Albanians, Turks, Bosniaks and Gorani), Catholic (Albanians) and Orthodox (Serbians)).

The intercultural mixing of various communities in the same area has resulted in a dynamic form of TEK, with the impact of one traditional culture on another illustrated in both the uses and names of useful plants found in the local flora.

Before World War II, healthcare in this region was almost entirely based on traditional medicine, and these traditions continued after the war as well. Healthcare was commonly attended to within the family, and all physical and mental illnesses were treated with traditional medicines and rituals. These folk-medical traditions continue even now, especially in the more mountainous and isolated areas. Local people have withstood the extreme conditions of this region for centuries – including very harsh winters. Until very recent decades, limitations in infrastructure and communication forced local residents to be self-sufficient in the provision of their food and healthcare. As a result, their primary pharmacopoeia consisted of local medicinal plants.

Today, the residents southwest Kosovo are ethnic Albanians (who speak Gheg varieties of the Albanian language), Serbians (Serbian language), Turks (Turkish language), Bosniaks (Bosnian language), Gorani (Slavic language, Gora dialect or "Našinski" which is similar to Bosnian language) and Roma (Romani language). Considering the population census conducted in 2011, there were 177,781 inhabitants in the Prizren municipality (145,718 Albanians, 9,091 Turks, 16,896 Bosniaks, 2,899 Roma, 1,350 Ashkali, 168 Egyptians, 655 Gorani and 386 others) and 33,997 in the Dragash municipality (20,287 Albanians, 7 Serbians, 202 Turks, 4,100 Bosniaks, 3 Roma, 4 Ashkali, 3 Egyptians, 8,957 Gorani, and 283 others) [33]. Population numbers and the ethnic structure of these municipalities have fluctuated over time due to the natural growth and the migration of the population. Most recently, local populations have been negatively affected by migration due to displacement and the harsh economic conditions caused by the last Kosovo War (1998–1999). The most common directions of migrations in Kosovo are from rural areas to urban areas and migration abroad. Migration patterns contribute to the rapid decline of traditional knowledge of plant species used as medicine, food and handicrafts; it has also contributed to a decline the vertical transmission of oral traditional knowledge from one generation to another. Small-scale farming and pastoral activities still represent the main economic income sources for the families in the study area. This is supplemented by remittances sent by relatives living in Germany or Switzerland, where the migrations of SW Kosovo were historically directed.

The field study

Ethnobotanical field research was conducted in 14 villages belonging to the municipalities of Prizren (10 communities) and Dragash (4), located in Sharr Mountains, which are situated in the southern part of Kosovo (Figure 2). Field studies were conducted over a series of trips in 2012 and 2014. Snowball sampling methods were used to recruit informants and we particularly focused on local people who regularly use plants for medicinal purposes. Prior informed consent was obtained prior to conducting interviews and all researchers adhered to the ethical guidelines of the International Society of Ethnobiology [34].

TEK was recorded using semi-structured interviews. In particular, informal conversations were conducted around the issue of local plants traditionally used for food (wild food plants), medicine, and handicrafts. We sought in particular the following information: respondent name, age, gender, and community of residence; local botanical names of useful plants; plant part(s) used; preparation/administration details; local folk uses of plants. In total, data were collected from 139 informants: 61 Albanians (43 male, 18 female), 32 Bosniaks/Gorani (Bosniaks: 11 male, 7 female; Gorani: 10 male, 4 female) and 46 Turks (28 male, 18 female). With regards to the data analysis, data collected from the Bosniak and Gorani informants were merged as both are culturally similar and share the same religion and language. Gorani communities have been claimed by Bosniaks, Serbs, and Bulgarians and recently by Macedonians, but in Kosovo they are recognized as a distinct minority group.

The respondents were older than 50 years (with a few exceptions), mainly engaged in agricultural activities and typically inherited their ethnobotanical knowledge from their direct ancestors (parents, grandparents) via oral traditions. During the interviews, fresh plants were collected to create voucher specimens for the herbarium and whenever possible, informants were followed into the field to show us the quoted species. Most plant species were collected while flowering. Taxonomic identification was undertaken using relevant standard botanical literature of the area [35–38]. Plant nomenclature largely follows the Flora Europaea [39], while plant family assignments follow the current Angiosperm Phylogeny...
Group III guidelines [40]. Voucher specimens of the wild taxa were deposited at the Department of Biology (Herbarium code Pz/2013), University of Prishtina.

Data analysis

Overlap analysis for cited taxa

Taxa with use-citations based on general category of use (medicinal, food or handicraft) were compared across three groups (Albanian, Turks and Bosniaks/Gorani). Data are represented in the form of a Venn Diagram (Figure 3) to illustrate overlaps in use of taxa.

Use-value for individual species

The use-value citation \((\text{UV}_c)\) index was calculated for each species for each ethnic group [41]. Here, we modified this method to calculate UV values in three different categories of use: medicinal, food, and handicraft. This index is useful for examination of relative importance of each species for a general category of use based on the number of use-citations. Briefly, it was calculated as follows:

\[
\text{UV}_c = \frac{\sum N_{uc}}{N}
\]

Where \(N_{uc}\) is the number of use citation reports concerning a given species in a use category (e.g. medicinal, food, handicraft), divided by the total number of informants (\(N\)) in a specific group (e.g. Albanian, Turkish, or Bosniak & Gorani). In a recent paper by Quave and Pieroni [42], UV values were plotted on a two-dimensional matrix framework to assess relative values for individual species between two ethnic groups. Here, we expand upon this concept and apply it to a three-dimensional matrix for comparison of plant use-values for individual species between three ethnic groups that share access to the same environmental and botanical resources.

Three-dimensional (3-D) use-value matrix design and analysis

We propose a new approach for the comparative analysis of how use-values differ in three ethnic groups, and across different general categories of use. The UV\(_c\) data for each category of use (medicinal, food, handicraft)
were normalized to allow for comparison on a scale of 0–1. This was achieved by identifying the maximum UVc value for each category of use (UVmax). The UVc for each species (and ethnic group) was then divided by the UVmax to create the adjusted UV value (UVadj) and plotted onto a 3-D scatterplot using MATLAB® software. Eight 3-D overlay quadrants were created to assist in classifying the UVadj clusters (Figure 4A). They were defined as follows in relationship to the three ethnic groups being compared (Group 1: Bosniak/Gorani; Group 2: Turkish; Group 3: Albanian):

- Quadrant I: Taxa with UVadj ≤ 0.05 for all three groups, indicating consensus in low use-value across groups.
- Quadrant II: Group 1 UVadj > 0.05; Group 2 UVadj ≤ 0.05; Group 3 UVadj ≤ 0.05, indicating consensus on lower use-value among Group 2 and 3, but higher use-value for Group 1.
- Quadrant III: Group 1 UVadj ≤ 0.05; Group 2 UVadj > 0.05; Group 3 UVadj ≤ 0.05, indicating consensus on lower use-value among Group 1 and 3, but higher use-value for Group 2.
- Quadrant IV: Group 1 UVadj > 0.05; Group 2 UVadj > 0.05; Group 3 UVadj ≤ 0.05, indicating consensus on higher use-value among Group 1 and 2, but lower use-value for Group 3.
- Quadrant V: Group 1 UVadj ≤ 0.05; Group 2 UVadj ≤ 0.05; Group 3 UVadj > 0.05, indicating consensus on lower use-value among Group 1 and 2, but higher use-value for Group 3.
- Quadrant VI: Group 1 UVadj > 0.05; Group 2 UVadj ≤ 0.05; Group 3 UVadj > 0.05, indicating consensus on higher use-value among Group 1 and 3, but lower use-value for Group 2.
- Quadrant VII: Group 1 UVadj ≤ 0.05; Group 2 UVadj > 0.05; Group 3 UVadj > 0.05, indicating consensus on higher use-value among Group 2 and 3, but lower use-value for Group 1.
- Quadrant VIII: Taxa with UVadj > 0.05 for all three groups, indicating consensus in high use-value across groups.

Quadrant assignments are also reported in Tables 1, 2, and 3.

Results and discussion
In total, TEK on the local uses of 124 taxa (belonging to 51 families) was recorded; of these, 114 species were used for medicinal purposes, 29 wild species for food, and 20 for handicrafts. Some of the cited species were used for multiple purposes. The total number of use citation (Nuc) for each species is reported by ethnic group and category of use: medicinal (Table 1), food (Table 2), and handicraft (Table 3) applications.

Medicinal plants
TEK on the recorded local uses of 114 medicinal plant taxa, representing 49 taxonomic families, are reported in Table 1. Of these species, Achillea millefolium L., Sambucus nigra L., Urtica dioica L., Tilia platyphyllos Scop., Hypericum perforatum L., Matricaria chamomilla
L., *Thymus serpyllum* L., and *Vaccinium myrtillus* L. were cited by more than 30% of the informants. Of the 114 cited for medicinal purposes, 44 are also included in the official Pharmacopoeia of Europe (European Pharmacopoeia. 6 ed.). The predominantly quoted botanical families were Rosaceae (13%), Asteraceae (11%), and Lamiaceae (10%). These same three “top” families were found to also be predominant among the wild medicinal taxa used in the folk medicine of the Albanian Alps (Kosovo), Alps in Montenegro, Albania, and in the Gollak region of Kosovo [13,17-19,25,26].

The total number species quoted by each ethnic group were roughly equivalent: 67, 66, and 71 for the Albanians, Turks and Bosniaks, respectively. Figure 3A illustrates the overlap in citation of medicinal plant among the three populations, with 10 species used only by Albanians, 18 by Turks and 21 only by Bosniaks/Gorani. Furthermore, common uses were shared between certain groups: 15 only between Albanians and Turks, 8 only between Bosniaks/Gorani and Turks and 17 only between Albanian and Bosniaks/Gorani. A total of 25 species were cited for medicinal use by all three study populations.

The most frequently cited medicinal uses referred to gastrointestinal (17.8%), respiratory (15.1%) ailments, heart disease (13.6%), illnesses affecting the urogenital system (12.4%) and the skin (10.5%). These categories were the most frequently quoted in the ethnobotanical studies conducted in Gollak (Kosovo) [26], while the gastrointestinal and respiratory troubles were also the most frequently quoted in the ethnobotanical studies conducted in the Albanian Alps (Kosovar, Montenegrin and Albanian sides) [13,17-19,25].

Our 3-D analysis of the data revealed that of the cited species, *Chamomila recutita* had the highest use-value across groups, and was assigned to Quadrant VI, demonstrating high value among Albanians and Bosniaks/Gorani, with moderately high (UV$_{adj}$ = 0.46) use-value among the Turkish population studied as well. While most taxa fell into Quadrant I, representing low to moderate level use-values among all three populations, two
Botanical taxon, family and voucher	Status	Folk name(s)†	Part(s) used	Administration	Treated disease(s) or folk medical uses(s)	Alb N_ab	Bo/Go N_ad	Tur N_cq	UV_{Alb}	UV_{Bo/Go}	UV_{Tur}	Q^3
Abies alba Mill. (Pinaceae) 14/Pz/2013	W	BredhiALB	Wood	Resin, mixed with fat	Anti-fungal	2	0	0	0.033	0	0	1
Agrimonia eupatoria L. (Rosaceae) 08/Pz/2013	W	PetrovacBOG, Kezelli japrakTUR	Aerial parts	Infusion	Anti-allergic, Earache, Anti-inflammatory, Anti-diarrheal	0	3	1	0	0.219	0.065	1
Agropyron repens (L.) Beauv. (Poaceae) 07/Pz/2013	W	Bari i magantALB, PriovinaALB, PriovinaBOG	Aerial parts	Infusion	Anti-hemorrhoidal, Respiratory system disorders, Urinary tract disorders	2	0	0	0.049	0.125	0.065	1
Alchemilla vulgaris L. (Rosaceae) 05/Pz/2013	E	AlhemlaALB	Aerial parts	Infusion	Improve fertility in women	2	0	0	0.033	0	0	1
Achillea millefolium L. (Asteraceae) 03/Pz/2013	W	BarepezmatiALB, Hajdutka travaBOG, Hajdut otiTUR	Aerial parts	Infusion	Anti-cholesterolemic, Anti-coagulant, Appetizing, Anti-microbial, Anti-emetic, Carminative and spasmolytic, Anti-diabetic, Antacid, Menstrual pains, Influenza, Stomachache	0	4	0	0.557	2.656	0.652	1
Allium cepa L. (Amaryllidaceae) 11/Pz/2013	C	KepaALB, Cerveni lukBOG, KepiTUR	Bulbs	Eaten raw, Topically in wound	Anti-cholesterolemic, Anti-bacterial	3	7	1	0.656	1.125	0.5	1
Allium porrum L. (Amaryllidaceae) 09/Pz/2013	C	PurriALB, PrazillukBOG	Leaves	Eaten	Thyroid disorders	2	4	0	0.033	0.125	0	1
Allium sativum L. (Amaryllidaceae) 10/Pz/2013	C	HudraALB, Beli llukBOG, SarimsakTUR	Bulbs	Eaten	Anti-hypertensive, Anti-fungal, Anti-ageing, Urinary tract infections, Anti-hypertensive, Bronchitis, Anti-tussive, Skeletal system enhancement, Immunostimulant	16	24	11	1.361	3.188	1.63	1

† Folktalk and drug use practices are captured primarily in the study area, with some variation noted in other regions. The data collection was conducted using a semi-structured interview format, ensuring the accuracy of the folkloric and medical knowledge transmitted. The administration methods include oral, topical, and mixed with honey. The treated diseases or folk medical uses are recorded for each plant, providing a comprehensive understanding of their medicinal value in the area.
Medicinal Plant	Local Names	Part Used	Preparation	Use(s)	Cautions	Comment		
Althaea officinalis L. (Malvaceae)	Mullaga_{ALB}	Flowers	Infusion	Anti-anemic, Respiratory system disorders, Skin regeneration	0 2 1	8 17 13	0 1 4	0.197 0.563 0.196 1
	Beli slez_{TUR}			Anti-tussive/expectorant	12 18 9	0.049 0 0		
	Gul hatem_{TUR}							
Aloe vera (L.) Burm.f. (Xanthorrhoeaceae)	Aloo_{ALB}	Leaves	Eaten fresh with honey	Anti-tumor	3 0 0	0.033 0 0		
	Beli slez_{TUR}							
Amanita caesarea (Scop.) Pers. (Amanitaceae)	Kerpurdha_{ALB}	Fruiting body	Topically applied	Skin infections	2 0 0	0.344 1 0		
	Rrush arushe_{BOG}							
Apium graveolens L. (Apiaceae)	Kerêviz_{TUR}	Aerial parts	Infusion	To treat sterility	0 0 2	0 0 0.109		
				Anti-diabetic, Appetizing	0 0 3			
				Improve hormonal balance in women	0 2 0			
				Skin infections	12 16 0			
				Urinary tract infections and pains	9 16 0			
Arctostaphyllos uva-ursi L. (Ericaceae)	Çaj uvin_{ALB}	Leaves	Infusion	Anti-anemic, Anti-malarial	2 3 0	0.377 1.25 0		
	Medvegje ushi_{BOG}			Anti-diabetic	0 0 3			
				Appetizing	4 5 0			
				Urinary tract infections	12 16 0			
Artemisia absinthium L. (Asteraceae)	Fshiga_{ALB}	Leaves	Infusion	Anti-asthmatic, Anti-diabetic	2 3 0	0.033 0.087		
	Pelini_{ALB}							
	Divli pelin_{BOG}							
Avena sativa L. (Poaceae)	Thekna_{ALB}	Aerial parts	Infusion	Skeletal system enhancement	2 0 4	0.033 0.087		
	Jullaf_{TUR}							
Betula alba L. (Betulaceae)	Meshtекna_{ALB}	Roots	Infusion	Diuretic, Edema, Urinary disorders	0 1 0	0.164 0.563 0.217		
	Plesh_{TUR}							
	Brezë_{BOG}							
	Hush agaggi_{TUR}							
Brassica rapa L. (Brassicaceae)	Rrep_{ALB}	Taproot	Infusion	Alopecia	8 11 6			
	Shalgar_{TUR}							
Calendula officinalis L. (Asteraceae)	Lule dukat_{ALB}	Aerial parts	Extracted with different oils	Anticoagulant	2 5 0	0.033 0.156		
	Neven_{BOG}							
Capsella bursa-pastoris (L.) Medik.	Mé do s’mé don_{ALB}	Aerial parts	Infusion					
	Tarqushak_{BOG}							

Mustafa et al. Journal of Ethnobiology and Ethnomedicine (2015) 11:39
Table 1 Medicinal plant used in the study area (Continued)

Family	Number	Region	Plant Name	Part Used	Infusion	Effect(s)	VIF			
(Brassicaceae) 28/ Pz/2013	Hoqunequ BOG	W/C	Castanea sativa Mill. (Fagaceae) 19/Pz/2013	Flowers	Infusion	Anti-anemic, Bronchitis, Anti-tussive	0.131	0	0	1
				Cortex		Anti-tussive	0	0	0	
						Anti-tussive	1	0	0	
(Brassicaceae) 28/ Pz/2013	Hoqunequ BOG	W	Centaurium erythraea Rafn (Gentianaceae) 29/Pz/2013	Aerial parts	Infusion	Anticoagulant, Anti-pyretic, Anti-malarial	0.426	1.063	0.391	
						Anti-anemic, Anti-anemic, Anti-anemic, Anti-anemic	13	18	9	
						Anti-anemic, Anti-anemic, Anti-anemic, Anti-anemic	9	12	6	
						Anti-anemic, Anti-anemic, Anti-anemic, Anti-anemic	2	1	0	
						Anti-anemic, Anti-anemic, Anti-anemic, Anti-anemic	0	0	0	
						Anti-anemic, Anti-anemic, Anti-anemic, Anti-anemic	0	0	0	
						Anti-anemic, Anti-anemic, Anti-anemic, Anti-anemic	2	0	2	
(Asteraceae) 20/ Pz/2013	Kicica BOG	W	Centaurea cyanus L. (Asteraceae) 20/ Pz/2013	Flower	Infusion	Respiratory disorders	0.049	0.031	0	
						Anti-tussive, Anti-tussive, Anti-tussive, Anti-tussive	14	26	22	
						Anti-tussive, Anti-tussive, Anti-tussive, Anti-tussive	31	35	12	
						Anti-tussive, Anti-tussive, Anti-tussive, Anti-tussive	11	9	9	
						Anti-tussive, Anti-tussive, Anti-tussive, Anti-tussive	9	3	4	
						Anti-tussive, Anti-tussive, Anti-tussive, Anti-tussive	1	0	7	
						Anti-tussive, Anti-tussive, Anti-tussive, Anti-tussive	2	0	0	
						Anti-tussive, Anti-tussive, Anti-tussive, Anti-tussive	20	23	6	
						Anti-tussive, Anti-tussive, Anti-tussive, Anti-tussive	3	4	0	
(Papaveraceae) 30/ Pz/2013	Kena çiqegi TUR	W	Chelidonium majus L. (Papaveraceae) 30/ Pz/2013	Latex	Topically used	Skin infections, warts	0.18	0	0.152	I
						Anti-tussive, Anti-tussive, Anti-tussive, Anti-tussive	11	0	7	
(Asteraceae) 21/ Pz/2013	Mavi çiček TUR	W	Cichorium intybus L. (Asteraceae) 21/ Pz/2013	Aerial parts	Infusion	Hepatic disorders	0.033	0	0.087	I
						Anti-tussive, Bronchitis	0	6	3	
						Anti-tussive, Bronchitis	31	35	12	
						Anti-tussive, Bronchitis	11	9	9	
						Anti-tussive, Bronchitis	9	3	4	
						Anti-tussive, Bronchitis	1	0	7	
						Anti-tussive, Bronchitis	2	0	0	
						Anti-tussive, Bronchitis	20	23	6	
						Anti-tussive, Bronchitis	3	4	0	
(Rutaceae) 31/ Pz/2013	Limun TUR	C	Citrus limon (L.) Osbeck (Rutaceae) 31/ Pz/2013	Fruits	Infusion	Lemon juice mixed with sugar	0.188	0.065	I	
						Anti-tussive, Bronchitis	0	6	3	
						Anti-tussive, Bronchitis	31	35	12	
						Anti-tussive, Bronchitis	11	9	9	
						Anti-tussive, Bronchitis	9	3	4	
						Anti-tussive, Bronchitis	1	0	7	
						Anti-tussive, Bronchitis	2	0	0	
						Anti-tussive, Bronchitis	20	23	6	
						Anti-tussive, Bronchitis	3	4	0	
(Cornaceae) 23/ Pz/2013	Drenilje BOG	W	Cornus mas L. (Cornaceae) 23/ Pz/2013	Fruits	Infusion	Anti-anemic, Anti-anemic, Anti-anemic, Anti-anemic	0.148	0.656	0.304	I
						Anti-anemic, Anti-anemic, Anti-anemic, Anti-anemic	5	3	6	
						Anti-anemic, Anti-anemic, Anti-anemic, Anti-anemic	0	4	2	
						Anti-anemic, Anti-anemic, Anti-anemic, Anti-anemic	1	1	1	
Table 1 Medicinal plant used in the study area (Continued)

Plant Name	Author	Plant Part	Method	Use	Anti-emetic in early stage of pregnancy (for morning sickness), 2	5	2
Corylus avellana L. (Betulaceae) 24/Pz/2013	W Lejth^{ALB}	Leaves	Infusion	Anti-tussive, 0	2	1	
				Antacid, 0	3	0	
	W Ruğ^{TUR}			Hepatic disorders, 0	1	0	
Cotinus coggygria Scop. (Anacardiaceae) 64/Pz/2013	W Boyacı sumak^{TUR}			Stomach disorders, 0	0	2	
				Kidney disorders, 0	0	1	
				Anti-diarrheal, 0	0	4	
Crataegus monogyna Jacq. (Rosaceae) 18/Pz/2013 05/Pz/11	W Murriz^{ALB}	Fruits	Infusion	Improve liver function, 0	3	0	
	W Gllog^{BOG}			Improve blood circulation, 27	21	18	
	W Adi aliç^{TUR}			Anti-hypertensive, 22	20	12	
		Leaves and flowers	Infusion	Anti-diabetic, 12	20	12	
Cucumis sativus L. (Cucurbitaceae) 26/Pz/2013	C Kastravec^{ALB}	Fruits and seeds	Eaten fresh	Anti-cholesterol, 13	4	9	
	C Kastravac^{BOG}			Kidney disorders, 4	3	0	
				Improve blood circulation, 3	7	0	
				Improve skin vitality, 1	1	0	
				Eye disorders, 0	1	0	
				Infection of digestive system, 4	0	0	
Cucumis melo L. (Cucurbitaceae) 25/Pz/2013	C Pjepni^{ALB}	Fruits	Eaten fresh	Anti-parasitic, 0	2	0	
				0.063	0	1	
Cydonia oblonga Mill. (Rosaceae)	C Ftu^{ALB}	Leaves	Infusion	Anti-diarrheal, 7	4	0	
	W Dunia^{BOG}			0.115	0.125	0	
Dryopteris filix-mas (L.) Schott (Dryopteridaceae)	W Papra^{BOG}	Leaves	Infusion	Anti-parasitic, 0	2	0	
				0.063	0	1	
Equisetum arvense L. (Equisetaceae) 07/Pz/11	W Konksi rep^{BOG}	Aerial parts	Infusion	Hepatic disorders, 0	2	0	
				Kidney infections and pain, 0	7	0	
Euphorbia amygdaloides L. (Euphorbiaceae)	W Mali mleq^{BOG}	Latex	Topically used	Warts, 0	3	0	
				0.094	0	1	
Foeniculum vulgare Mill. (Apiaceae) 32/Pz/2013	W Köpé^{ALB}	Fruits	Infusion	Eye disorders, 0	2	0	
	W Rezene^{BOG}			0.197	0.375	0.130	
	W Anason^{TUR}			Galactogogue, 0	1	1	
Fragaria vesca L. (Rosaceae)	W Dredhza^{ALB}	Fruits	Infusion	Digestive disorders, 2	0	3	
	W Diva jagoda^{BOG}			Spasmolytic, 12	9	5	
	W Shatere^{TUR}	Aerial parts	Infusion	Diuretic, 0	2	3	
				0.188	0.087	1	
Fumaria officinalis L. (Papaveraceae) 33/Pz/2013	W Shatere^{TUR}	Aerial parts	Infusion	Relaxant, 0	2	1	

须法等 Journal of Ethnobiology and Ethnomedicine (2015) 11:39 Page 10 of 26
Plant Name	Species	Part	Infusion	Use	Dose
Galium verum L.	(Rubiaceae) 35/ Pz/2013	Aerial parts	Infusion	Anti-hypertensive	0 3 0
Gentiana lutea L.	(Gentianaceae) 34/ Pz/2013	Roots	Infusion	Kidney disorders, Skin regeneration	0 0 2 0 0 0.130
Geranium sanguineum L.	(Geraniaceae)	Aerial parts	Infusion	Digestive disorders, Flavor additive for alcoholic beverage	5 12 0 0.180 0.375 0 1
Helianthus annuus L.	(Asteraceae)	Seeds	Extracted with animal fat	Respiratory disorders, laryngitis	0 3 0 0 0.094 0 1
Hordeum vulgare Jess.	(Poaceae)	Aerial parts	Infusion	Kidney disorders, Skin regeneration	0 0 2 0 0 0.130
Humulus lupulus L.	(Cannabaceae)	Aerial parts	Infusion	Anti-anemic, Wound healing, Anticoagulant, Neurorelaxant, Antacid	0 4 0 0.475 1.844 0 1
Inula sp. (Asteraceae)		Roots	Infusion	Anti-tussive, Bile simulation, Diuretic	0 0 2 0 0 0.130
Juglans regia L.	(Juglandaceae)	Fruits	Eaten	Anti-parasitic, Thyroid disorders	0 0 3
Juniperus communis L.	(Cupressaceae)	Wood	Extracted with oil, topically used in skin	Anti-fungal, Skin depigmentation	0 0 1 0.065
Lactuca sativa L.	(Asteraceae)	Aerial parts	Infusion	Anti-rheumatic	5 3 0
Leonurus cardiaca L.	(Lamiaceae)	Aerial parts	Infusion	Cardiotonic	0 0 3 0 0 0.065

Note: Dose values are in grams per person.
Medicinal Plant Used in the Study Area	Species/Genus	Genera	Application	Potency	Source	Uses
Lycoperdon sp. (Agaricaceae) 60/Pz/2013	W	Puškai ALB, Mantaria BOG	Powder	Topically applied	Improve blood circulation, Memory enhancement	0 0 2
					Wound healing, Hemostatic	4 1 0 0.066 0.031 0 1
						8 4 0
Lycopodium clavatum L. (Lycopodiaceae)	W	Bari qibrit ALB, BOG	Aerial parts	Topically applied to skin	Anti-microbial	2 0 0 0.033 0 0 1
Malva sylvestris L. (Malvaceae) 44/Pz/2013	W	Mullaga ALB, BOG, Mali slez BOG, Ebe gumec TLIR	Aerial parts	Extracted with fat (melhem)	Wound healing, Anti-acne	3 5 2 0.262 0.250 0.283 1
Melantia					Anti-tussive, Bronchitis, Antimicrobial	2 1 3 4 0 4 1
Mespilus germanica L. (Rosaceae) 47/Pz/2013	C	Mushmolla ALB	Aerial parts	Infusion	Anti-diarrheal, Anti-diabetic, Ear disorders	4 0 0 0.115 0 0 1
Melissa officinalis L. (Lamiaceae) 42/Pz/2013	W	Bari i bletæ ALB, BOG, Matoqina BOG, Molshvatrava BOG	Aerial parts	Infusion	Neurorelaxant, Headache, Anti-hypertensive, Appetizing	3 8 5 0.475 0.406 0.413 1
Mentha longifolia (L.) Huds. (Lamiaceae) 45/Pz/2013	C	Çaj nana ALB, Nana BOG	Aerial parts	Infusion	Stomach disorders, Carminative, Influenza, Respiratory disorders	0 3 0 0.311 0.75 0 1
					Respiratory system infections,	3 4 0 2 6 0 8 9 0
Mentha pulegium L. (Lamiaceae) 46/Pz/2013	W	Divla menta BOG	Aerial parts	Infusion	Neurorelaxant, Improve blood circulation, Respiratory system infections, Anti-tussive, Expectorant	0 3 0 0.625 0 1
						0 7 0 0 9 0 2 1 0
Momordica charantia L. (Cucurbitaceae) 50/Pz/2013	C	Kudret nare TLIR, Sari kadak TLIR	Fruits	Mixed with oil – internal use	Wound healing, Anti-diabetic, Anti-cancer	0 0 7 0 0 0.435 1
					Vulnerary for burn wounds	0 0 0 0 0 4 0 8 0
Plant Name	Culture Code	Geographical Location	Part Used	Method of Preparation	Disease/Condition	Activity
----------------------------------	--------------	-----------------------	--------------------	-----------------------	------------------------------------	-----------------
Morus alba L. (Moraceae) 49/Pz/2013	C	Mani i bardhe ALB	Leaves Infusion	Anti-diabetic	0 0 4 0 0 0.087 I	
Morus nigra L. (Moraceae) 48/Pz/2013	C	Mani i z ALB	Fruits Eaten fresh	Infections of upper part of respiratory system	3 0 5 0.148 0 0.196 I	
Ocimum basilicum L. (Lamiaceae) 51/Pz/2013	C	Bosiljak BOG	Aerial parts Infusion	Anti-pyretic, Diuretic	6 0 4 0 0 0.219 0 0.196 I	
Olea europaea L. (Oleaceae) 15/Pz/11	C	Ullin ALB	Fruits Eaten fresh	Tuberculosis, Spasmolytic	0 1 0 0.131 0.219 0.283 I	
Origanum vulgare L. (Lamiaceae) 52/Pz/2013	W	Čaj mali ALB	Aerial parts Infusion	Anti-tussive, Influenza, Respiratory system infections	6 4 2 0.279 0.750 0.304 I	
Pinus nigra J.F. Arnold. (Pinaceae)	W/C	Pisha ALB, Kara qam TUR	Resin Extracted with oil	Skin infections	3 0 6 0.049 0 0.130 I	
Plantago major L. (Plantaginaceae) 54/Pz/2013	W	Dejz ALB	Leaves Infusion	Wound healing	0 6 0 0.313 0 0.1	
Polygonum aviculare L. (Polygonaceae)	W	Barthek ALB	Aerial parts Infusion	Urinary system disorders, Anti-coagulant	2 0 4 0.082 0 0.109 I	

Table 1 Medicinal plant used in the study area (Continued)
Plant Name	Country/Region	Type	Parts Used	Uses	Health Problems
Populus alba L.		W	Aerial	Topically uses	Wound healing
					Urinary tract disorders
			Infusion		Headache,
					Anti-tussive,
					Respiratory system disorders,
Primula veris L.	W		Flowers	Infusion	Improve blood circulation
(Primulaceae) 56/Pz/2013					Anti-tussive,
					Expectorant,
					Bronchitis
			Infusion		Digestive tract disorders
Prunus avium L.	C		Fruits	Decoction	Scabies
(Rosaceae)					Hepatic disorders,
					Anti-hemorrhoidal,
					Anti-parasitic,
					Constipation
Prunus domestica L.	C		Resin	Topically used	Wound healing
(Rosaceae) 55/Pz/2013					Urinary tract disorders
			Infusion		Headache,
					Anti-tussive,
					Respiratory system disorders,
			Infusion		Improve blood circulation
					Anti-tussive,
					Expectorant,
					Bronchitis
			Infusion		Digestive tract disorders
Prunus spinosa L.	W		Flowers	Infusion	Constipation
(Rosaceae)					Anti-diabetic,
					Hepatic disorders,
					Anti-malarial
					Anti-allergic
			Infusion		Heart disorders
Pyrus communis L.	W		Fruits	Infusion	Digestive system infections,
(Rosaceae) 58/Pz/2013					Bronchitis,
					Anti-anemiac,
					Anti-rheumatic,
			Infusion		Anti-malarial
					Anti-allergic
			Infusion		Heart disorders
Table 1 Medicinal plant used in the study area (Continued)

Plant	Tribe	Flowers/Cortex/Roots/Fruits	Parts	Infusion	Uses	Number of Use	P value	I value
Robinia pseudoacacia L.	W	Flowers		Infusion	Skin infections	3	0.049	0.043
(Fabaceae) 68/Pz/2013								
Rosa canina L.	W	Fruits		Infusion	Improve immunity, Hepatic disorders, Anti-anaemic, Influenza, Digestive tract disorders.	3	0.328	0.594
(Rosaceae) 67/Pz/2013								
Rubia tinctorum L.	W	Aerial parts		Infusion	Kidney disorders, Skeletal disorders, “Saroxva” (cutaneous tuberculosis)	0	0.281	
(Rubiaceae)								
Rubus fruticosus L.	W	Aerial parts		Infusion	Anti-anemic, Improve blood circulation, Anti-hypertensive, Wound healing, Anti-diabetic, Antimycotic	0	1.031	
(Rosaceae) 65/Pz/2013								
Rubus idaeus L.	W	Leaves		Infusion	Improve blood circulation, Anti-hypertensive, Anti-diarrheal, Anti-tussive, Anti-parasitic, Anti-pyretic, Oral cavity infections	0	1.188	
(Rosaceae) 66/Pz/2013								
Salix alba L.	W	Flowers		Extracted with olive oil	To treated skin wounds caused by insects and snakes	0	0.313	
(Salicaceae) 70/Pz/2013								

Mustafa et al. Journal of Ethnobiology and Ethnomedicine (2015) 11:39
Table 1 Medicinal plant used in the study area (Continued)

Plant Name	Country	Medicinal Part	Method of Use	Uses	Frequency	Percentage	p-Value	I2
Salvia officinalis L.	C	Aerial parts	Infusion, then added honey	Analgesic, Tonsillitis, other infections of respiratory system, Anti-diabetic, Antiperspirant	0 2 0	0.344	0.344	0 I
Sambucus nigra L. (Adoxaceae)	W	Flowers	Infusion	Bronchitis, Anti-tussive, Expectorant, Antiperspirant, Anti-halitosis, Influenza, Anti-asthmatic, Stomach disorders, Urinary tract disorders	14 7 15	0.787	1.250	0.891 I
Satureja montana L. (Lamiaceae)	W	Aerial parts	Infusion	Spasmolytic, Anti-diabetic, Anti-parasitic, Respiratory tract infections, Anti-tussive, Expectorant	0 5 0	0.563	0.563	0 I
Scrophularia nodosa L.	W	Aerial parts	Topically applied	"Saraxha" (cutaneous tuberculosis), Tuberculosis	0 3 2	0.094	0.043	0 I
Sempervivum tectorum L. (Crassulaceae)	W	Roots	Extracted with fat	Wound healing	6 3 0	0.279	0.531	0 I
Symphytum officinale L. (Boraginaceae)	W	Roots	Extracted with fat	Wound healing	0 4 2	0.188	0.109	0 I
Tanacetum vulgare L. (Asteraceae)	W	Seeds	Infusion	Anti-parasitic (intestinal parasites), Anti-rheumatic	0 0 3	0 0 3	0.304	0 I

Notes:
- C = Ciudad, W = Wildlife, TUR = TUR, ALB = ALB, Pz = Pz
- 0 = No, 1 = Yes
- I2: Percentage of variation among studies due to heterogeneity rather than chance.
| Medicinal plant used in the study area (Continued) | Scientific Name | Part Used | Part Used | Method | Use(s) | Yield | Dilution | p-value | |
|---|---|---|---|---|---|---|---|---|---|
| *Taraxacum officinale* F.H. Wigg. (Asteraceae) | 84/ Pz/2013 | Flowers | Aerial parts | Infusion | Anti-hemorrhoidal, Eczema | 0.295 | 0.304 | 1 |
| *Teucrium chamaedrys* L. (Lamiaceae) | 79/ Pz/2013 | Aerial parts | Infusion | Appetizing, Stomachache, Anti- diarrheal, Anti- hemorrhoidal | 0 2 0 | 0 0.250 | 0 I |
| *Teucrium polium* L. (Lamiaceae) | 78/ Pz/2013 | Aerial parts | Infusion | Anti-hemorrhoidal, Digestive tract disorders, Urinary tract disorders, Anti-anemic, Appetizing, Stomachache, Anti- diarrheal, Anti- hemorrhoidal | 0 4 0 | 0 0 | 0 |
| *Thymus serpyllum* L. (Lamiaceae) | 76/ Pz/2013 | Aerial parts | Infusion | Anti-hemorrhoidal, Digestive tract disorders, Stomachache, Anti- hemorrhoidal | 0 1 0 | 0 1 0 | 0 |
| *Thymus vulgaris* L. (Lamiaceae) | 77/ Pz/2013 | Aerial parts | Infusion | Anti-tussive, Anti-cholesterolemic | 0 3 0 | 0 0.281 | 0 I |
| *Typha latifolia* L. (Typhaceae) | 82/ Pz/2013 | Fruits | Infusion | Respiratory system inflammations | 0 0 3 | 0 0 | 0.065 | 1 |
| *Tilia platyphyllos* Scop. (Malvaceae) | 80/ Pz/2013 | Flowers | Infusion | Respiratory system inflammations, Anti-anemic, Stomach infections, Headache, Anti-tussive | 8 13 8 | 0.689 | 1.469 | 0.804 | 1 |
| *Tilia platyphyllos* Scop. (Malvaceae) | 80/ Pz/2013 | Flowers | Infusion | Respiratory system inflammations, Anti-anemic, Stomach infections, Headache, Anti-tussive, Expectorant | 8 13 8 | 0.689 | 1.469 | 0.804 | 1 |
| Plant Name | Country | Part Used | Preparation Method | Uses | Code | Effects | Significances |
|----------------------------|---------|--------------------|--------------------|--|------|---------|---------------|
| *Trifolium arvense* L. | W/C | Leaves and Flowers | Aerial part | Respiratory system inflammations | 17 | 19 | 11 |
| *Triticum vulgare* L. | W | Flour | Mixed with hot water | Skin inflammation and ulcers | 0 | 0 | 4 |
| *Tussilago farfara* L. | W | Aerial parts | Infusion | Expectorant, Anti-tussive | 0 | 7 | 0 |
| *Urtica dioica* L. | W | Aerial parts | Infusion | Anti-hemorrhoidal, Anti-anemic, Influenza, Anti-cancer, Eczemas, Bronchitis, Headache, Anti-rheumatic, Anti-bacterial, Alopecia, Anti-dandruff, Digestive disorders, Urinary disorders | 3 | 1 | 5 |
| *Vaccinium myrtillus* L. | W | Fruits | Juice of fresh fruits | Digestive tract infections, Anti-anemic, Eye inflammations, Hepatitis, Digestive disorders, Urinary disorders | 6 | 9 | 5 |
| *Vaccinium vitis-idaea* L. | W | Leaves | Infusion | Urinary inflammations, Anti-anemic | 0 | 14 | 0 |
| | | Fruits | Infusion | Urinary tract infections | 0 | 21 | 0 |
| | | Fruits and leaves | Infusion | Lithontriptic, Anti-anemic | 0 | 11 | 0 |
additional species stood out from the majority and fell into Quadrant II: *Allium sativum* and *Urtica dioica*. Both of these taxa demonstrated high use-value scores among Bosniaks/Gorani, with moderate use-values among Albanians and Turks.

Upon cross-cultural comparative analysis of our findings with those reported in the medico-ethnobotanical literature available on the Southern Balkans [1-4,6,8-10,12,13,15,17,19-21,25-27], we identified the following novel uses of several plants, which could merit further phytochemical and bioactivity analyses:

- the topical application of the fruiting body of *Amanita caesarea* in the treatment of skin infections;
- the drinking of an infusion of the aerial parts of *Apium graveolens* to treat sterility;
- the drinking of an infusion of the aerial parts of *Avena sativa* (Figure 5) for its skeletal system enhancement effect;
- the consumption of *Brassica rapa* taproot to treat eye disorders and stimulate the immune system;
- the drinking of an infusion of aerial parts of *Geranium sanguineum* to treat respiratory disorders;

Note: The list continues with specific uses for various plants, such as the topical application of *Veratrum album* for skin infections and the drinking of *Verbascum sp.* infusions for bronchitis.

Table 1: Medicinal plant used in the study area (Continued)

Plant Name (Family)	Use(s)	Albanian Use-Value	Bosniak/Gorani Use-Value	Turkish Use-Value	
Fruits and leaves					
Veratrum album L. (Melanthiaceae) W	Shtara^{ALB}	Aerial parts	Infusion	Anti-hypertensive.	3 5 0 0.049 0.156 0 1
	Cemenika^{BOG}				
	Divizma^{BOG}				
	Diviza^{TUR}				
	Sig kuşuru^{TUR}				
Verbascum sp. (Scrophulariaceae) 89/Pz/2013 W	Divizma^{BOG}	Aerial parts	Infusion and Mixed with fat "mehlem"	Anti-tussive,	0 2 1 0 0.250 0.087 1
				Bronchitis,	0 5 2
				Digestive tract disorders	0 1 1
Veronica officinalis L. (Plantaginaceae) 88/Pz/2013 W	Paskalya otu^{TUR}	Leaves	Infusion	Anticoagulant,	0 0 3 0 0.196 1
	Yavshar otu^{TUR}			Respiratory system inflammations,	00 0 2
				Wound healing	0 4
				Increase immunity,	4 1 0 0.311 0.438 0.435 1
Vitis vinifera L. (Vitaceae) 90/Pz/2013 C	Rrush^{ALB}	Leaves	Infusion	Anti-anemic,	3 4 2
	Grozhgje^{BOG}			Hepatic disorders,	1 2 3
	Siyah üzüm^{TUR}			Urinary system inflammations,	6 2 1
		Fruits	Eaten fresh	Anti-anemic,	1 1 10
		Juice of fruits (semi fermented)	Internal used	Anti-cholesterolemic	2 3 1
Zea mays L. (Poaceae) 92/Pz/2013 C	Mısr^{ALB}	Female flower	Infusion	Urinary tract inflammations,	2 0 3 0.115 0 0.152 1
	Kollomoq^{ALB}			Edema,	1 0 1
	Kollomoq^{TUR}			Stomach disorders,	2 0 0
		Ripe seeds	Infusion	Anti-parasitic	1 0 0

^{ALB} Folk names recorded among Albanians; ^{BOG} Folk name(s) recorded among Bosniaks/Gorani; ^{TUR} Folk name(s) recorded among Turks
^{UV_{Alb}}: Use-value for one species by the Albanian group;
^{UV_{Bo/Go}}: Use-value for one species by the Bosniaks and Gorani;
^{UV_{Tur}}: Use-value for one species by the Turkish group. This index measures the relative importance of each species based on its reported use by informants from each cultural group under study.

^{Quadrant assignments are based on adjusted use-values (UV_{adj}), which were calculated by dividing the use-value (UV) of each group by the maximum use-value (UV_{max}) for medicinal citations (UV_{adj} not shown).}
Table 2 Wild plant or mushroom species used as local food in the study area

Botanical taxon, family and voucher specimen code	Folk name(s)	Part(s) used	Preparation	Folk uses(s)	Alb N_b	Bo/Go N_b	Tur N_b	UV_{Alb}	UV_{Bo/Go}	UV_{Tur}	Q²
Amanita caesarea (Scop.) Pers. (Amanitaceae)	Kërpurdha^{ALB}	Aerial parts	Fresh or conserved	Food used in small quantities, Food additive	3	0	0	0.08	0	0	1
Castanea sativa Mill. (Fagaceae) 19/Pz/2013	Gështaja^{ALB}	Fruits	Fresh, beaked	Food	2	0	0	2			
Cichorium intybus L. (Asteraceae) 21/Pz/2013	Cikorja^{SKQ}, Mavi çiçek^{TUR}, Satali bitki^{TUR}	Aerial parts	Dried and ground	Coffee substitute, prepared as Turkish coffee	2	0	3	0.033	0	0.065	1
Cornus mas L. (Cornaceae) 23/Pz/2013	Thana^{ALB}, Dimina^{TUR}	Fruits	Eaten fresh	Food	5	6	0	0.082	0.563	0	1
			Mixed and boiled with sugar for short period	Beverage	0	6	0				
			Mixed and boiled with sugar for longer period	Jam	0	6	0				
Corylus avellana L. (Betulaceae) 24/Pz/2013	Lejth^{ALB}	Fruits	Fresh or dried	Food, Sweetener	9	15	5	0.148	0.469	0.109	1
Foeniculum vulgare Mill. (Apiaceae) 32/Pz/2013	Koper^{ALB}, Rezene^{BOG}	Leaves, seeds	Dried	Food additive for flavoring	0	0	2	0	0	0.043	1
Fragaria vesca L. (Rosaceae)	Dreza^{ALB}	Fruits	Eaten fresh	Food	15	19	7	0.295	1.406	0.196	II
			Mixed and boiled with sugar for short period	Beverage	0	15	0	2			
			Mixed and boiled with sugar for longer period	Jam	3	11	2				
Helianthus tuberosus L. (Asteraceae)	Orashka^{ALB}	Tuber	Eaten fresh	Food	3	0	0	0.033	0.25	0	1
Malus sylvestris Mill. (Rosaceae)		Fruits	Boiled with sugar	Jams	0	3	0	0.033	0.25	0	1
			Sliced and dried (ahaf), boiled in water prior to eating	Wintertime food	2	5	0				
Matricaria chamomilla L. (Asteraceae) 43/Pz/2013	Lule qeni^{ALB}, Kamomil^{ALB}, Papatja^{TUR}, Sarı çiçek^{TUR}, Kamilica^{BOG}, Babune^{BOG}	Aerial parts	Dried	Tea	0	5	3	0	0.156	0.065	1
Mentha longifolia (L.) Huds. (Lamiaceae) 45/Pz/2013	Çaj nana^{ALB}, Nana^{BOG}	Aerial parts	Infusion	Tea	0	0	3	0	0	0.065	1
Morus alba L. (Moraceae) 49/Pz/2013	Mani i bardhe^{ALB}	Fruits	Fresh	Food	6	5	0	0.098	0.156	0	1
Morus nigra L. (Moraceae) 48/Pz/2013	Mani i z^{ALB}, Dut^{TUR}	Fruits	Eaten fresh	Food	8	9	4	0.131	0.406	0.109	1
			Beverage	0	2	1					
Species and Genus	Species Name	Country	Part Used	Preparation Method	Product	Fisher's exact test p-value (2x2 contingency table)					
---	--------------	---------	-----------	--------------------	-------------	---					
Orchis morio L. (Orchidaceae)				Mixed and boiled	Food						
				with sugar							
				for short period							
				Jam							
Origanum vulgare L. (Lamiaceae)				Mixed and boiled	Food						
				with sugar							
				for longer period							
				Hot beverage							
				mixed with milk							
				“salep”							
Prunus spinosa L. (Rosaceae)				Mixed and boiled	Food						
				with sugar							
				for short period							
				Beverage							
Rosa canina L. (Rosaceae)				Mixed and boiled	Food						
				with sugar							
				for short period							
				Beverage							
Rosa damascena Mill. (Rosaceae)				Mixed and boiled	Food						
				with sugar							
				for short period							
				Beverage							
Rubus fruticosus L. (Rosaceae)				Mixed and boiled	Food						
				with sugar							
				for short period							
				Beverage							
Rubus idaeus L. (Rosaceae)				Mixed and boiled	Food						
				with sugar							
				for short period							
				Beverage							
Sambucus nigra L. (Adoxaceae)				Mixed and boiled	Food						
				with sugar							
				for short period							
				Beverage							
Thymus serpyllum L. (Lamiaceae)				Mixed and boiled	Food						
				with sugar							
				for short period							
				Beverage							
Thymus vulgaris L. (Lamiaceae)				Mixed and boiled	Food						
				with sugar							
				for short period							
				Beverage							
Tilia platyphyllos Scop. (Malvaceae)				Mixed and boiled	Food						
				with sugar							
				for short period							
				Beverage							
Urtica dioica L. (Urticaceae)				Mixed and boiled	Food						
				with sugar							
				for short period							
				Beverage							
Vaccinium myrtillus L. (Ericaceae)				Mixed and boiled	Food						
				with sugar							
				for short period							
				Beverage							
the topical application of *Hordeum sativum* flour, mixed with oil, for wound healing;
- the drinking of an infusion of the aerial parts of *Juncus effusus* (Figure 6) to treat urinary tract disorders;
- the drinking of an infusion of the aerial parts of *Leonurus cardiaca* as cardiotonic, to improve blood circulation and memory enhancement; and
- the drinking of an infusion of aerial parts of *Trifolium arvense* as an anti-rheumatic.

Food plants

The food uses of 29 wild species, representing 16 families, were recorded (Table 2). Of these, 3 were quoted only by Albanians, 2 only by Turks and 2 only by Bosniaks/Gorani. Figure 3B illustrates the high level of overlap of cited plant species for food uses, with 12 species being cited by all three populations. Regarding common overlaps in species uses, 1 was shared in common only between Albanians and Turks, 4 only between Bosniaks/Gorani and Turks and 5 only between Albanian and Bosniaks/Gorani. Regarding the preparation of traditional foods, some of these, such as *salep* (beverage from *Orchis* spp. tubers) and *shurup* (syrup from *Rosa damascena* flowers), were prepared quite frequently in the past, but nowadays have nearly disappeared. The most frequently cited food uses of local plants referred to foods that are eaten fresh or processed (33.3%), beverages (22.2%), teas (17.8%), jams (17.8%) and food additives (8.9%). Our 3-D analysis of adjusted use values revealed that all taxa with the exception of one are placed in Quadrant I, indicating a common low to moderate level of use-value shared among populations. Wild strawberries (*Fragaria vesca*), on the other hand, fell in Quadrant II, and is highly valued by Bosniaks/Gorani for its use as a food, beverage ingredient and jam ingredient. Its use as a beverage by the Bosniak/Gorani, prepared by boiling with sugar, was not cited by either Albanians or Turks in this study.

Handicraft plants

The handicraft uses of 20 species, representing 18 families, were recorded (Table 3). Of these, 5 were quoted only by Albanians, 3 by Turks and 2 by Bosniaks/Gorani. Figure 3C illustrates a moderate level of overlap of the handicraft uses of plant species, with only 4 being cited by all 3 populations. Regarding common overlaps in species uses, 3 were shared in common only between Albanians and Turks, 1 only between Bosniaks/Gorani and Turks and 2 only between Albanian and Bosniaks/Gorani. The most frequently cited form of handicraft uses of local flora included dyes (38.1%), musical instruments (28.6%), carpentry (19.0%) and liquid containers (14.3%).

As might be expected with lower levels of overlap between taxa cited for use for this purpose, we also observed greater distinction in the spread of taxa in our 3-D comparative analysis of adjusted use-values. Of note, *Corylus avellana*, which is a key resource for basket weaving in this region, fell into Quadrant VI, indicating its high use-value among Albanians and Bosniaks/Gorani. It had no cited use among Turks. *Lagenaria sicerraria*, whose fruits are used as a container for carrying water, had a top use-value among Bosniaks/Gorani, with moderate scores among Albanians and Turks (Quadrant II). *Pinus nigra*, used for home and furniture construction, likewise has a high use-value score among

Table 2 Wild plant or mushroom species used as local food in the study area (Continued)

Species	Mixed and boiled with sugar for short period	Leaves	Fresh ore conserved	Samma ingredient: leaves are rolled around a filling usually based on minced meat and rice.	Folk Names.	UV_{max}	UV_{sys}	UV_{bac}	UV_{ide}
Vitis vinifera L. (Vitaceae) 90/Pz/2013						0.217 I	0.217 I	0.217 I	0.217 I
Rushı^{SHQ} Grozhgje^{CGG}									
Zea mays L. (Poaceae) 92/Pz/2013									
Mıstri^{ALB} Kollomoq^{ALB}						0.188 1	0.174 1	0.174 1	0.174 1
Kollomoq TUR									

Folk Names. ^{ALB} folk name(s) recorded among Albanians; ^{SHQ} folk name(s) recorded among Bosniaks/Gorani; ^{CGG} folk name(s) recorded among Turks.

^{Alb} ^{Nac}: Number of use citations provided by Albanian informants; ^{Bo/Go} ^{Nac}: Number of use citations provided by Bosnian and Gorani informants; ^{Tur} ^{Nac}: Number of use citations provided by Turkish informants.

^{UV}_{max}: Use-value for one species by the Albanian group; ^{UV}_{bac}: Use-value for one species by the Bosniaks and Gorani; ^{UV}_{ide}: Use-value for one species by the Turkish group. This index measures the relative importance of each species based on its reported use by informants from each cultural group under study.

^Q: Quadrant assignments are based on adjusted use-values (^{UV}_{sys}), which were calculated by dividing the use-value (^{UV}_{sys}) of each group by the maximum use-value (^{UV}_{max}) for food citations (^{UV}_{max} not shown).
Botanical taxon, family and voucher specimen code	Status	Folk name(s) *	Part(s) used	Use Category	Specific Use(s)	Alb N_{dep}	Bo/ Go N_{dep}	Tur N_{dep}	UV_{Alb}	UV_{Bo/ Go}	UV_{Tur}	Q*
Abies alba Mill. (Pinaceae) 14/Pz/2013	W	Bredeh{*ALB}	Wood	Carpentry	Used for home construction and different home furniture	5	4	2	0.082	0.125	0.043	I
Acer campestre L. (Sapindaceae)	W	Panja{*ALB}	Wood	Carpentry	Used for constructing musical instruments (“çifteli”, violin etc.)	2	0	0	0.033	0	0	I
Alnus glutinosa L. (Betulaceae)	W	Veni{*ALB}	Twigs	Dye	Brown color used for textile coloring	2	1	1	0.033	0.031	0.022	I
Beta vulgaris L. (Amaranthaceae)	C	Reepa{*ALB}	Taproot	Dye	Red color, used for textile coloring	2	0	0	0.033	0	0	I
Centaurea cyanus L. (Asteraceae)	W	Kokoçeli{*ALB}	Flowers	Dye	Blue color, used for textile coloring	0	5	0	0.156	0	0	I
Corylus avellana L. (Betulaceae) 24/Pz/2013	W	Lejth{*ALB}	Stems	Handicraft	Used to construct baskets, usually large ones for carrying animal food	10	5	0	0.164	0.156	0	VI
Cotinus coggyria Scop. (Anacardiaceae) 64/Pz/2013	W	Dru boje{*RJTUR}	Fruits	Dye	Yellow color, used for leather, wool and other textile coloring	2	0	3	0.033	0	0.065	I
Juglans regia L. (Juglandaceae) 40/Pz/2013	C	Ara{*ALB}	Wood	Carpentry	Used for furniture preservation, this is characterized by a high aesthetic value.	3	2	2	0.082	0.063	0.043	I
Juniperus communis L. (Cupressaceae) 39/Pz/2013	W	Geçilija{*ALB}	Wood	Musical instrument	Used for construction of “lahuta”, a single-stringed musical instrument used in traditionally music.	2	0	0	0.033	0	0	I
Lagenaria siceraria (Molina) Standl. (Cucurbitaceae)	C	Pocerka{*ALB}	Dried fruits	Liquid container	Fruits opened and used as a water container	6	8	4	0.098	0.25	0.087	II
Morus alba L. (Moraceae) 49/Pz/2013	C	Mani i bardha{*ALB}	Wood	Liquid container	Used to construct casks for storing alcohol, which gives it a characteristic light yellow color	4	0	1	0.066	0	0.022	I
Morus nigra L. (Moraceae) 48/Pz/2013	C	Mani i zëli{*TUR}	Wood	Liquid container	Used to construct casks for storing alcohol, which gives it a characteristic light yellow color	4	0	1	0.066	0	0.022	I
Pinus nigra J.F. Arnold. (Pinaceae)	W/C	Pisha{*ALB}	Wood	Carpentry	Used for home construction and construction of different furniture.	0	6	1	0.188	0.022	0	II
Polygonum aviculare L. (Polygonaceae)	W	Madimak{*TUR}	Aerial parts	Dye	Blue color, used for wool coloring	0	0	3	0	0	0.065	I
Pyrus communis L. (Rosaceae) 58/Pz/2013	W	Dardha{*ALB}	Wood	Musical instrument	Used for construction of “Zurla”, an oboe-like woodwind instrument.	2	0	0	0.033	0	0	I
Rhamnus frangula (Rhamnaceae)	E	Dru pinja barutit{*ALB}	Wood	Weaponry	Used as a gunpowder ingredient	0	0	1	0	0	0.022	I
Rubia tinctorum L. (Rubiaceae)	W	Boj kuqe{*BOG}	Roots and fruits	Dye	Red color, used for textile coloring	0	4	0	0.125	0	0	I
W	Rakita{*ALB}	Twigs	Handicraft			5	2	0	0.082	0.063	0	I
Bosniaks/Gorani, but a very low use-value among Turks, and no citations for Albanians.

Cross-cultural comparison

Both the distinct and overlapping patterns of TEK reported by the 3 ethnic groups are illustrated in Figure 3. Although the number of informants was slightly uneven among the three populations, a general tendency can be observed nevertheless, also because “saturation” plateaus in which no new plant uses quoted by new interviewees were commonly reached after approximately 15–20 interviews. While we could not observe any remarkable differences among the wild plants used in the food and handicraft domains by the three populations, a difference is notable in the medicinal domain. When it comes to medicinal TEK, Albanians appear less herbophilic than both Slavs and Turks. This finding confirms what has already been pointed out by other field studies conducted in other Western Balkans areas and involving both Slavs and Ghegh Albanians [10,15]. This phenomenon may be best explained by the fact that the traditional economy of Ghegh Albanians was for many centuries based upon a pure pastoralist/transhumant economy, whereas they have rarely traded herbs. For the Slavs, however, the gathering of herbs from the wild has persisted as their well-known main occupation within a mixed system of small-scale agriculture and pastoralism. This is especially the case among Islamicized Slavs living in the mountainous areas of SE Europe.

Conclusion

For the first time in European ethnobotany, this study presents data comparing the medicinal, food, and handicraft plant use practices of three different ethnic populations living in the same area. We have introduced a new analytical method (3-D adjusted use-value plots) for comparison of taxa across different populations living in the same environment, with access to the same taxa and other environmental resources. While we have documented the presence of some small distinct sets of TEK in these populations, this is overwhelmingly coupled by a substantial overlap in the use of local taxa, suggesting...
a hybrid character to the Kosovar TEK in this region, especially with regards to TEK in the food and handicraft domains. Such cross-cultural studies could be important for proposing culturally-sensitive ways of using plant natural resources in future sustainable economic development initiatives. Indeed, the success of any future development efforts involving natural resources must take into account local perceptions and attitudes concerning plants, which can vary greatly in some cases, among different ethnic groups living in the same territory. Examples of such initiatives could include a focus on eco-tourism and the small-scale trade of foods, aromatic plants, medicinal herbs, and handicraft products. Findings from studies such as this one should be implemented in projects aimed at fostering collaboration and reconciliation among the diverse ethnic and religious communities living in Kosovo.

Competing interest
The authors declare that they have no competing interest.

Authors’ contributions
BM and AH conceived and designed the study, XK, BP, AH performed the interviews, and CQ, AP and AH analyzed the data. AH and BM wrote the paper; AP and CQ provided revisions. All authors read and approved the final manuscript.

Acknowledgments
We would like to extend our heartfelt thanks to the communities and people who agreed to participate in this study; moreover, we thank the US Embassy in Kosovo, for financial support of the field research (grant no. S-K(420-14GR-096). Thanks to Matthew Dorian for assistance with MATLAB® programming.

Author details
1. Institute of Biological and Environmental Research, University of Prishtina “Hasan Prishtina”, Mother Teresa, 1000 Prishtine, Kosovo. 2. University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, I-20600 Polenzo, Italy.
3. Center for the Study of Human Health, Emory University, 550 Asbury Circle, Candler Library 107E, Atlanta, GA 30322, USA. 4. Department of Dermatology, Emory University School of Medicine, 1518 Clifton Rd NE, CNR Bldg. 5000, Atlanta, GA 30322, USA.

Received: 20 January 2015 Accepted: 22 April 2015

Published online: 12 May 2015

References
1. Šarić-Kundalić B, Dobeč C, Klätte-Asselmeyer V, Saukel J. Ethnobotanical survey of traditionally used plants in human therapy of east, north, and north-east Bosnia and Herzegovina. J Ethnopharmacol. 2011;133(3):1051–76.
2. Šarić-Kundalić B, Dobeč C, Klätte-Asselmeyer V, Saukel J. Ethnobotanical study on medicinal use of wild and cultivated plants in middle, south and west Bosnia and Herzegovina. J Ethnopharmacol. 2010;131(1):33–55.
3. Šarić-Kundalić B, Fritz E, Dobeč C, Saukel J. Traditional medicine in the pristine valley of Prokloko lake on Vranica Mountain, Bosnia and Herzegovina. Sci Pharm. 2010;78(2):275–90.
4. Redžić S. Wild medicinal plants and their usage in traditional human therapy (Southern Bosnia and Herzegovina, V. Balkan). J Med Plant Res. 2010;4(11):1003–27.
5. Redžić S. Wild Mushrooms and Lichens used as Human Food for Survival in War Conditions; Podrinje – Zepe Region (Bosnia and Herzegovina, V. Balkan). Res. Hum Ecol. 2010;17(2):175–87.
6. Redžić S. The ecological aspect of ethnobotany and ethnopharmacology of population in Bosnia and Herzegovina. Collegium Antropol. 2007;31(3):869–90.
7. Redžić S. Wild edible plants and their traditional use in the human nutrition in Bosnia and Herzegovina. Ecol Food Nutr. 2006;45(3):189–232.
8. Zlatković BK, Bogosavljević SS, Radivojević AR, Pavlović MA. Traditional use of the native medicinal plant resource of Mt. Rtanj (Eastern Serbia): Ethnobotanical evaluation and comparison. J Ethnopharmacol. 2014;153(1):704–13.
9. Šalvín K, Ždunic G, Menković N, Zivković J, Ćujčić N, Terecsenko M, et al. Ethnobotanical study on traditional use of medicinal plants in South-Western Serbia, Zlatibor district. J Ethnopharmacol. 2013;146(3):803–10.
10. Peroni A, Giusti ME, Quave CL. Cross-Cultural ethnobotany in the Western Balkans: Medical Ethnobotany and Ethnobotanology Among Albanians and Serbs in the Peiter Plateau, Sandžak, South-Western Serbia. Hum Ecol. 2011;39(3):333–49.
11. Torničević J, Bjedov I, Obratov-Petković S, Dobozić L-M. Exploring the folk-botanical knowledge of the last remaining wolves, and lynx. Hum Ecol. 2010;38(3):389–409.
12. Jarić S, Popović Z, Maćukanović-Jocić M, Djurdjević L, Mijatović M, Karadžić B, et al. An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). J Ethnopharmacol. 2007;111(1):165–70.
13. Menković N, Šalvín K, Ždunic G, Stević D, Milosavljević S, et al. Ethnobotanical study on traditional uses of wild medicinal plants in Prokletije Mountains (Montenegro). J Ethnopharmacol. 2011;133(1):97–107.
14. Peroni A, Nedelcheva A, Hajdari A, Mustafa B, Scaillet B, Cianfaglione K, et al. Local knowledge on plants and domestic remedies in the mountain villages of Feshkia (Eastern Albania). J Med Sci. 2014;11(1):189–94.
15. Peroni AC K, Nedelcheva A, Hajdari A, Mustafa B, Quave CL. Resilience at the border: traditional botanical knowledge among Macedonians and Albanians living in Golloborbo, Eastern Albania. J Ethnobiol Ethenmed. 2014;31:10.
16. Quave CL, Peroni A. Fermented foods for food security and food sovereignty in the Balkans: A case study of the Gorani people of Northeastern Albania. J Ethnobiol. 2014;34(1):28–43.
17. Peroni A, Rehexp B, Nedelcheva A, Hajdari A, Krasniqi F, Hoxha E, Ademi H, Quave CL, et al. Medical plant knowledge among Albanians, Macedonians and Gorani in the Sharr Mountains (Republic of Macedonia). Genet Resour Crop Ev. 2013;60(4):2055–80.
18. Lescureux N, Linnell JDC, Mustafa S, Melovski D, Stojanov A, Ivanov G, et al. Fear of the unknown: Local knowledge and perceptions of the Eurasian lynx (Lynx lynx) in Western Macedonia. ORYX. 2011;45(4):600–7.
19. Lescureux N, Linnell JDC, Mustafa S, Melovski D, Stojanov A, Ivanov G, et al. Fear of the unknown: Local knowledge and perceptions of the Eurasian lynx (Lynx lynx) in Western Macedonia. ORYX. 2011;45(4):600–7.
20. Pieroni AC K, Nedelcheva A, Hajdari A, Mustafa B, Quave CL. Medical ethnobotany and comparison. J Ethnopharmacol. 2014;31:10.
21. Peroni A, Rehexp B, Nedelcheva A, Mustafa B, Hajdari A, Kolosova V, et al. One century later: the folk botanical knowledge of the last remaining Albanians of the upper Reka Valley, Mount Korab, Western Macedonia. J Ethnobiol Ethenmed. 2013;32(2).
22. Rehexp B, Mustafa B, Hajdari A, Ruzhdii-Rehexpi, J Quave CL, Peroni A. Traditional medicinal plant knowledge among Albanians, Macedonians and Gorani in the Sharr Mountains (Republic of Macedonia). Genet Resour Crop Ev. 2013;60(4):2055–80.
23. Lescureux N, Linnell JDC, Mustafa S, Melovski D, Stojanov A, Ivanov G, et al. Fear of the unknown: Local knowledge and perceptions of the Eurasian lynx (Lynx lynx) in Western Macedonia. ORYX. 2011;45(4):600–7.
30. Rexhepi F. Vegetacioni i Kosovës. Prishtina: FSHMN, Universiteti i Prishtinë; 1994.
31. Mustafa B, Hajdari A, Veselaj Z, Beadini B, Ibrahimî H, Mustafa N, et al. Extension of the National Park “Sharri” boundaries, significant action for preservation of natural values. Natura Montenegrina. 2013;12(1):607–16.
32. Schmitt O. Kosovo: kurze Geschichte einer zentralbalkanischen Landschaft. Vienna: Böhlau; 2008.
33. Kosovo Agency of Statistics: http://ask.rks-gov.net/publikimet/cat_view/8-popullsia
34. The International Society of Ethnobiology Code of Ethics. 2006.http://ethnobiology.net/code-of-ethics/. Accessed 18 January 2015.
35. Paparisto K, Vangjeli J, Ruci B, Mullaj A, Qosja X. Flora e Shqipërisë. Vol. 1–4; Tirana: ASHASH, Instituti i Kërkimeve Biologjike; 1988–2000.
36. Jordanov D: Flora NR Bulgaria I-VII; Sofia: BANU; 1963–1979.
37. Pajaziti Q. Përcaktuesi i bimëve Pteridofite dhe Spermatofite. Prishtina: Universiteti i Prishtinës; 2004.
38. Demiri M. Flora ekskursioniste e Shqipërisë. Tirana: Libri Shkollor; 1981.
39. Tutin T, Heywood V, Burges N, Valentine D, Walters S, Webb D. Flora Europaea. Cambridge, UK: University Press; 1964.
40. Stevens P. Angiosperm Phylogeny Website. Version 12. 2012. http://www.mobot.org/MOBOT/research/APweb/. Accessed 18 January 2015.
41. Albuquerque UP, Medeiros PM, Almeida AL, Monteiro JM, Lins Neto EMF, Melo JG, et al. Medicinal plants of the caatinga (semi-arid) vegetation of NE Brazil: a quantitative approach. J Ethnopharmacol. 2007;114:325–54.
42. Quave CL, Pieroni A: A reservoir of ethnobotanical knowledge informs resilient food security and health strategies in the Balkans. Nature Plants. 2015. DOI: 10.1038/NPLANTS.2014.21.