Abstract

In this paper, we investigate methods for interference location in satellite communication system using satellite multi-beam antenna with subspace based schemes. A novel MUSIC based approach is proposed for estimating the direction of arrival of the interfering sources. The proposed method provides super resolution and asymptotic maximum likelihood estimates of the direction of arrivals even at low SNR values. Simulations were performed using typical satellite multi-beam antenna configurations and results show that the proposed scheme can effectively estimates the direction of arrival in the azimuth and elevation spectra. Compared to the support vector regression method, the proposed approach offer improved estimation accuracy at low SNR values.

References

- Jesus Arnau, Bertrand Devillers, Carlos Mosquera, and Ana Perez-Neira. Performance study of multiuser interference mitigation schemes for hybrid broadband multibeam satellite architectures. EURASIP Journal on Wireless Communications and Networking, 2012(1):132, 2012.
- Hu Bai and Lu Hongtao. Satellite interference locating method based on support vector regression. International Journal of
- M. H. Chan. Application of a dual satellite geolocation system on locating sweeping interference. 6(9):952 – 958, 2012.
- Steven M. Kay. Fundamentals of statistical signal processing: estimation theory. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.
- R. Schmidt. Multiple emitter location and signal parameter estimation. Antennas and Propagation, IEEE Transactions on, 34(3):276–280, Mar 1986.
- Xinhai Tong, Huali Wang, and Zhongmin Gan. Satellite interference location based on rbf neural network method. In 5th International conference on Signal processing (WCCC-ICSP), 2000.
- W. Smith William and G. Steffes Paul. Time delay techniques for satellite interference location system. IEEE Transactions on Aerospace and Electronic Systems, AES-25(2):224–230, Mar. 1989.
- et. al Y., Matsumoto. Interference location system using multibeam satellite antenna. Electronics and Communications in Japan, 80(11):22–33, 1997.

Index Terms

Computer Science

Applied Sciences

Keywords

Satellite interference location MUSIC direction estimation subspace methods geostationary orbit