ON KUMMER EXTENSIONS WITH ONE PLACE AT INFINITY

ERIK A. R. MENDOZA

Abstract. Let K be the algebraic closure of \mathbb{F}_q. We provide an explicit description of the Weierstrass semigroup $H(Q_\infty)$ at the only place at infinity Q_∞ of the curve X defined by the Kummer extension with equation $y^m = f(x)$, where $f(x) \in K[x]$ is a polynomial satisfying $\gcd(m, \deg f) = 1$. As a consequence, we determine the Frobenius number and the multiplicity of $H(Q_\infty)$ in some cases, and we discuss sufficient conditions for the Weierstrass semigroup $H(Q_\infty)$ to be symmetric. Finally, we characterize certain maximal Castle curves of type (X, Q_∞).

1. Introduction

Let K be the algebraic closure of the finite field \mathbb{F}_q with q elements. Consider X a nonsingular, projective, absolutely irreducible algebraic curve over K with genus $g(X)$ and denote by $K(X)$ its function field. For a function $z \in K(X)$, we let $(z)_\infty$, $(z)_0$ and $(z)_0$ stand for the principal, pole and zero divisor of the function z in $K(X)$ respectively.

Given a place Q in the set of places $\mathcal{P}_{K(X)}$ of the function field $K(X)$, the Weierstrass semigroup associated to the place Q is given by

$$H(Q) := \{s \in \mathbb{N}_0 : (z)_\infty = sQ \text{ for some } z \in K(X)\},$$

the complementary set $G(Q) := \mathbb{N} \setminus H(Q)$ is called the gap set at Q, and the Weierstrass Gap Theorem [15, Theorem 1.6.8] states that if $g(X) > 0$, then there exist exactly $g(X)$ gaps at Q.

$$G(Q) = \{1 = i_1 < i_2 < \cdots < i_{g(X)} \leq 2g(X) - 1\}.$$

The smallest nonzero element of $H(Q)$ is called the multiplicity of $H(Q)$ and is denoted by $m_{H(Q)}$, the largest element of $G(Q)$ is called the Frobenius number and is denoted by $F_{H(Q)}$, and we say that the Weierstrass semigroup $H(Q)$ is symmetric if $F_{H(Q)} = 2g(X) - 1$.

The knowledge of the inner structure of the Weierstrass semigroup $H(Q)$ at one place in the function field $K(X)$ has various applications in the area of algebraic curves over finite fields. Among the most interesting ones we have the construction of algebraic geometry codes with good parameters, see [10]; the determination of the automorphism group of an algebraic curve, see [8]; to decide if a place is Weierstrass, see [1], and obtain upper bounds for the number of rational places (places of degree one) of a curve, such as the

Keywords: Kummer extensions, Weierstrass semigroup.

Mathematics Subject Classification (2010): 14H55, 11R58.

The research of Erik A. R. Mendoza was partially supported by FAPERJ/RJ-Brazil (Grant 201.650/2021).
Lewittes bound [7] which establishes that the number $\#\mathcal{X}(\mathbb{F}_q)$ of \mathbb{F}_q-rational places of a curve \mathcal{X} defined over \mathbb{F}_q is upper bounded by

$$\#\mathcal{X}(\mathbb{F}_q) \leq qm_{H(Q)} + 1,$$

where Q is an \mathbb{F}_q-rational place of \mathcal{X}. The best-known upper bound for the number of \mathbb{F}_q-rational places is the Hasse-Weil bound

$$\#\mathcal{X}(\mathbb{F}_q) \leq q + 1 + 2g(\mathcal{X})\sqrt{q},$$

and a curve is called \mathbb{F}_q-maximal if equality holds in the Hasse-Weil bound.

A pointed algebraic curve (\mathcal{X}, Q) over \mathbb{F}_q, where Q is an \mathbb{F}_q-rational place of \mathcal{X}, is called a Castle curve if the semigroup $H(Q)$ is symmetric and equality holds in (1). Castle curves were introduced in [12] and have been studied due to their interesting properties related to the construction of algebraic geometry codes with good parameters and its duals, see [11, 12].

Abdón, Borges, and Quoos [1] provided an arithmetical criterion to determine if a positive integer is an element of the gap set of $H(Q)$, where Q is a totally ramified place in a Kummer extension defined by the equation $y^m = f(x)$, $f(x) \in K[x]$. As a consequence, they explicitly described the semigroup $H(Q)$ when $f(x)$ is a separable polynomial. This description was generalized by Castellanos, Masuda, and Quoos [3], where they study the Kummer extension defined by $y^m = f(x)^{\lambda}$, where $\lambda \in \mathbb{N}$ and $f(x) \in K[x]$ is a separable polynomial satisfying $\gcd(m, \lambda \deg f) = 1$.

For a general Kummer extension with one place at infinity

$$\mathcal{X} : \ y^m = \prod_{i=1}^{r}(x - \alpha_i)^{\lambda_i}, \ \lambda_i \in \mathbb{N}, \ \text{and} \ 1 \leq \lambda_i < m,$$

where $m \geq 2$ and $r \geq 2$ are integers such that $\gcd(m, q) = 1$, $\alpha_1, \ldots, \alpha_r \in K$ are pairwise distinct elements, $\lambda_0 := \sum_{i=1}^{r}\lambda_i$, and $\gcd(m, \lambda_0) = 1$, the Weierstrass semigroup $H(\mathcal{X})$ at the only place at infinity Q_{∞} of \mathcal{X} was explicitly described in the following particular cases:

i) For $\lambda_1 = \lambda_2 = \cdots = \lambda_r$, see [3, Theorem 3.2].

ii) For any λ_1 and $\lambda_2 = \lambda_3 = \cdots = \lambda_r = 1$, see [16, Remark 2.8].

This article aims to explicitly describe the Weierstrass semigroup $H(\mathcal{X})$ in the general case, that is, we determine the Weierstrass semigroup at the only place at infinity of the curve \mathcal{X} given in (2). Moreover, we provide a system of generators for the semigroup $H(\mathcal{X})$ and, as a consequence, we obtain interesting results including the following theorems:

Theorem A (see Theorem [1.4]). Let $F_{H(\mathcal{X})}$ be the Frobenius number of the semigroup $H(\mathcal{X})$. Then

$$F_{H(\mathcal{X})} = m(r-1) - \lambda_0 \ \text{and} \ H(\mathcal{X}) \text{ is symmetric} \iff \lambda_j \mid m \text{ for each } j = 1, \ldots, r.$$

Theorem B (see Theorem [1.7]). Suppose that $\gcd(m, \lambda_j) = 1$ for each $j = 1, \ldots, r$. Then the following statements are equivalent:
ON KUMMER EXTENSIONS WITH ONE PLACE AT INFINITY

i) \(H(Q_\infty) = \langle m, r \rangle. \)

ii) \(\lambda_1 = \lambda_2 = \cdots = \lambda_r. \)

If in addition \(r < m \) then all these statements are equivalent to the following one:

iii) \(H(Q_\infty) \) is symmetric.

Theorem C (see Theorem 5.3). Suppose that \(\mathcal{X} \) is defined over \(\mathbb{F}_{q^2} \), \(\gcd(m, \lambda_j) = 1 \) for \(j = 1, \ldots, r \) and \(r < m \). Then

\((\mathcal{X}, Q_\infty) \) is \(\mathbb{F}_{q^2} \)-maximal Castle curve \(\iff \mathcal{X} \) is \(\mathbb{F}_{q^2} \)-maximal, \(\lambda_1 = \cdots = \lambda_r \), and \(m = q+1 \).

This paper is organized as follows. In Section 2 we introduce the preliminaries and notation that will be used throughout this paper. In Section 3 we present the main result of this paper which gives the explicit description of the semigroup \(H(Q_\infty) \) (see Theorem 3.2). In Section 4 we provide an explicit description of the gap set \(G(Q_\infty) \) (see Proposition 4.1), we study the Frobenius number and the multiplicity of the semigroup \(H(Q_\infty) \) establishing a relationship between them (see Proposition 4.6), and provide sufficient conditions for the semigroup \(H(Q_\infty) \) to be symmetric (see Theorems 4.4 and 4.7). In Section 5, we characterize certain \(\mathbb{F}_{q^2} \)-maximal Castle curves of type \((\mathcal{X}, Q_\infty) \) (see Theorem 5.3).

2. Preliminaries and notation

Throughout this article, we let \(q \) be the power of a prime \(p \), \(\mathbb{F}_q \) the finite field with \(q \) elements, and \(K \) the algebraic closure of \(\mathbb{F}_q \). For \(a \) and \(b \) integers, we denote by \((a, b) \) the greatest common divisor of \(a \) and \(b \), and by \(b \mod a \) the smallest non-negative integer congruent with \(b \) modulo \(a \). For \(c \in \mathbb{R} \), we denote by \(\lfloor c \rfloor \), \(\lceil c \rceil \) and \(\{ c \} \) the floor, ceiling and fractional part functions of \(c \) respectively. Moreover, to differentiate standard sets from multisets (that is, sets that can contain repeated occurrences of elements), we use the usual symbol ‘\{\}' for standard sets and the symbol ‘\{ {} \}' for multisets. For a multiset \(M \), the set of distinct elements of \(M \) is called the support of \(M \) and is denoted by \(M^* \), the number of occurrences of an element \(x \in M^* \) in the multiset \(M \) is called the multiplicity of \(x \) and is denoted by \(m_M(x) \), and the cardinality of the multiset \(M \) is defined as the sum of the multiplicities of all elements of \(M^* \). We say that two multisets \(M_1 \) and \(M_2 \) are equal if \(M_1^* = M_2^* \) and \(m_{M_1}(x) = m_{M_2}(x) \) for each \(x \) in the support.

2.1. Numerical semigroups. A numerical semigroup is a subset \(H \) of \(\mathbb{N}_0 \) such that \(H \) is closed under addition, \(H \) contains the zero, and the complement \(\mathbb{N}_0 \setminus H \) is finite. The elements of \(G := \mathbb{N}_0 \setminus H \) are called the gaps of the numerical semigroup \(H \) and \(g_H := \#G \) is its genus. The largest gap is called the Frobenius number of \(H \) and is denoted by \(F_H \). The smallest nonzero element of \(H \) is called the multiplicity of the semigroup and is denoted by \(m_H \). The numerical semigroup \(H \) is called symmetric if \(F_H = 2g_H - 1 \). Moreover, we say that the set \(\{a_1, \ldots, a_d\} \subset H \) is a system of generators of the numerical semigroup \(H \) if

\[H = \langle a_1, \ldots, a_d \rangle := \{t_1a_1 + \cdots + t_da_d : t_1, \ldots, t_d \in \mathbb{N}_0\}. \]
We say that a system of generators of H is a minimal system of generators if none of its proper subsets generates the numerical semigroup H. The cardinality of a minimal system of generators is called the embedding dimension of H and will be denoted by e_H.

Let n be a nonzero element of the numerical semigroup H. The Apéry set of n in H is defined by

$$\text{Ap}(H, n) := \{ s \in H : s - n \notin H \}.$$

It is known that the cardinality of $\text{Ap}(H, n)$ is n. Moreover, several important results are associated with the Apéry set.

Proposition 2.1. [14, Proposition 2.12] Let H be a numerical semigroup and $S \subseteq H$ be a subset that consists of n elements that form a complete set of representatives for the congruence classes of \mathbb{Z} modulo $n \in H$. Then

$$S = \text{Ap}(H, n) \text{ if and only if } g_H = \sum_{a \in S} \left\lfloor \frac{a}{n} \right\rfloor.$$

Proposition 2.2. [14, Proposition 4.10] Let H be a numerical semigroup and n be a nonzero element of H. Let $\text{Ap}(H, n) = \{ a_0 < a_1 < \cdots < a_{n-1} \}$ be the Apéry set of n in H. Then H is symmetric if and only if

$$a_i + a_{n-1-i} = a_{n-1}$$

for each $i = 0, \ldots, n-1$.

On the other hand, the following result characterizes the elements of a numerical semigroup generated by two elements and will be useful in this paper.

Proposition 2.3. [13, Lemma 1] Let $x \in \mathbb{Z}$ and let $n_1, n_2 \geq 2$ be positive integers such that $(n_1, n_2) = 1$. Then $x \notin \langle n_1, n_2 \rangle$ if and only if $x = n_1n_2 - an_1 - bn_2$ for some $a, b \in \mathbb{N}$.

2.2. Function Fields

Let \mathcal{X} be a nonsingular, projective, absolutely irreducible algebraic curve over K with genus $g(\mathcal{X})$ and $K(\mathcal{X})$ be the function field of \mathcal{X}. For each place $Q \in \mathcal{P}_{K(\mathcal{X})}$, the Weierstrass semigroup $H(Q)$ has the structure of a numerical semigroup. Moreover, it is a well-known fact that for all but finitely many places $Q \in \mathcal{P}_{K(\mathcal{X})}$, the gap set is always the same. This set is called the gap sequence of \mathcal{X}. The places for which the gap set is not equal to the gap sequence of \mathcal{X} are called Weierstrass places.

Several upper bounds for the number of rational places of algebraic curves are available in the literature. The Hasse-Weil bound states that for a curve \mathcal{X} defined over \mathbb{F}_q,

$$\#\mathcal{X}(\mathbb{F}_q) \leq q + 1 + 2g(\mathcal{X})\sqrt{q}.$$

The curve \mathcal{X} is called \mathbb{F}_q-maximal if equality holds in the Hasse-Weil bound. Among other upper bounds for the number of rational places, we have the Lewittes bound [7].

Theorem 2.4 (Lewittes bound). Let \mathcal{X} be a curve over \mathbb{F}_q and let Q be a rational place of \mathcal{X}. Then

$$\#\mathcal{X}(\mathbb{F}_q) \leq qm_{H(Q)} + 1.$$

For more on numerical semigroups and function fields, we refer to the books [14] and [15] respectively.
3. The semigroup $H(Q_{\infty})$

Consider the algebraic curve

$$\mathcal{X}: \quad y^m = \prod_{i=1}^{r} (x - \alpha_i)^{\lambda_i}, \quad \lambda_i \in \mathbb{N}, \quad \text{and} \quad 1 \leq \lambda_i < m,$$

where $m \geq 2$ and $r \geq 2$ are positive integers such that $p \nmid m$, $\alpha_1, \ldots, \alpha_r \in K$ are pairwise distinct elements, $\lambda_0 := \sum_{i=1}^{r} \lambda_i$, and $(m, \lambda_0) = 1$. By \cite[Proposition 3.7.3]{15}, this curve has genus

$$g(\mathcal{X}) = \frac{(m - 1)(r - 1) + r - \sum_{i=1}^{r} (m, \lambda_i)}{2}. \quad (3)$$

In this section, as one of our main results, we provide an explicit description of the Weierstrass semigroup $H(\mathcal{X})$ at the only place at infinity Q_{∞} of \mathcal{X}. We start by recalling the property described in \cite[p. 94]{15}, which states that, for m and λ positive integers,

$$\sum_{i=1}^{\lambda-1} \left\lfloor \frac{im}{\lambda} \right\rfloor = \frac{(m - 1)(\lambda - 1) + (m, \lambda) - 1}{2}. \quad (4)$$

To prove the main result of this section, we need the following technical lemma.

Lemma 3.1. Let $r, m, \lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_r$ be positive integers such that $\lambda_0 = \sum_{i=1}^{r} \lambda_i$ and $r < \lambda_0$. For $k \in \{r, \ldots, \lambda_0 - 1\}$, we define

$$\eta_k := \max \left\{ \rho_{s_1, \ldots, s_r} : \sum_{i=1}^{r} s_i = k, \ 1 \leq s_i \leq \lambda_i \right\}, \quad \text{where} \ \rho_{s_1, \ldots, s_r} := \min_{1 \leq i \leq r} \left[\frac{s_i m}{\lambda_i} \right].$$

Then the sequence $\eta_r \leq \eta_{r+1} \leq \cdots \leq \eta_{\lambda_0-1}$ is characterized by the following equality of multisets

$$\left\{ \eta_k : r \leq k \leq \lambda_0 - 1 \right\} = \left\{ \left\lfloor \frac{s_i m}{\lambda_i} \right\rfloor : 1 \leq s_i < \lambda_i, \ 1 \leq i \leq r \right\}. \quad (5)$$

In particular, we have

$$\sum_{k=r}^{\lambda_0-1} \eta_k = \frac{(m - 1)(\lambda_0 - r) - r + \sum_{i=1}^{r} (m, \lambda_i)}{2}.$$

Proof. First of all, note that, from the definition of η_k, we have that $\eta_k < m$ for each k. Furthermore, if $\eta_k = \rho_{u_1, \ldots, u_r} = \left\lfloor \frac{u_i m}{\lambda_j} \right\rfloor$ for some j, where $\sum_{i=1}^{r} u_i = k$ and $r \leq k \leq \lambda_0 - 2$, then $u_j < \lambda_j$ and

$$\eta_k = \rho_{u_1, \ldots, u_r} \leq \rho_{u_1, \ldots, u_j, u_{j+1}, \ldots, u_r} \leq \eta_{k+1}.$$

This proves that $\eta_r \leq \eta_{r+1} \leq \cdots \leq \eta_{\lambda_0-1} < m$ is a non-decreasing sequence. Let $S_1 := \left\{ \eta_k : r \leq k \leq \lambda_0 - 1 \right\}$ and $S_2 := \left\{ \left\lfloor \frac{s_i m}{\lambda_i} \right\rfloor : 1 \leq s_i < \lambda_i, \ 1 \leq i \leq r \right\}$. Now we are going to prove that $S_1 = S_2$. From the definition of η_k, we have that $S_1^* \subseteq S_2^*$. Furthermore, since the multisets S_1 and S_2 have the same cardinality, to prove that $S_1 = S_2$ it is sufficient to show that $m_{S_1}(\eta_k) \leq m_{S_2}(\eta_k)$ for each k; that is, if
Thus, we conclude that $k_t i$ since $\sum j \exists \text{Suppose that } \eta n m 6 ERIK A. R. MENDOZA$

Next, we prove that $\Gamma(a \text{contradiction. Therefore } t k r, . . . , u r) is an \text{tuple such that } \eta k = \left\lceil \frac{s_j \lambda_i}{\lambda_j} \right\rceil$. Now, for each $i \in \{1, \ldots, r\}$ we define the set

$$
\Gamma_i := \left\{ s \in \mathbb{N} : \eta_k \leq \left\lfloor \frac{sm \lambda_i}{\lambda_j} \right\rfloor \text{ and } 1 \leq s \leq \lambda_i \right\}.
$$

Next, we prove that $\Gamma_i \neq \emptyset$ for each i. Since $s_{j_1} < \lambda_{j_1}$, for $i \neq j_1$ we have that

$$
\eta_k = \left\lceil \frac{s_j \lambda_i}{\lambda_j} \right\rceil + 1 \leq \lambda_i \quad \text{and} \quad \eta_k = \left\lceil \left(\frac{s_j \lambda_i}{\lambda_j} + 1 \right) \frac{m}{\lambda_i} \right\rceil.
$$

which implies that $\left\lfloor \frac{s_j \lambda_i}{\lambda_j} \right\rfloor + 1 \in \Gamma_i$ for $i \neq j_1$ and $s_{j_1} \in \Gamma_{j_1}$. Let t_i be the smallest element of Γ_i. From definition of the set Γ_{j_1}, we have that $t_{j_1} \leq s_{j_1}$. If $t_{j_1} < s_{j_1}$ then

$$
1 < \frac{m}{\lambda_j} \leq \frac{t_{j_1} m}{\lambda_j} + \left\lceil \frac{(s_{j_1} - 1) m}{\lambda_j} \right\rceil - \left\lceil \frac{s_{j_1} m}{\lambda_j} \right\rceil \leq \left\lfloor \frac{t_{j_1} m}{\lambda_j} \right\rfloor - \left\lfloor \frac{s_{j_1} m}{\lambda_j} \right\rfloor,
$$

a contradiction, therefore $t_{j_1} = s_{j_1}$. Also, from definition of the sets Γ_i, we have that

$$
\left\lfloor \frac{(t_i - 1) m}{\lambda_i} \right\rfloor < \eta_k = \rho_{u_1, \ldots, u_r} \text{ for } i = 1, \ldots, r.
$$

Note that $k = \sum_{i=1}^r t_i$. In fact, let $k' := \sum_{i=1}^r t_i$. By definition of η_k, we have that $\eta_k = \rho_{u_1, \ldots, u_r} \leq \eta_{k'}$, and from (6), we deduce that $k \leq k'$. On the other hand, suppose that (u_1, \ldots, u_r) is an r-tuple such that $\eta_k = \rho_{u_1, \ldots, u_r}$, $\sum_{i=1}^r u_i = k$, and $1 \leq u_i \leq \lambda_i$. If there exists $j \in \{1, \ldots, r\}$ such that $u_j < t_j$, then

$$
\eta_k = \rho_{u_1, \ldots, u_r} = \min_{1 \leq i \leq r} \left\lceil u_i \frac{m}{\lambda_i} \right\rceil \leq \left\lceil u_j \frac{m}{\lambda_j} \right\rceil \leq \left\lfloor \frac{(t_j - 1) m}{\lambda_j} \right\rfloor < \eta_k,
$$

a contradiction. Therefore $t_i \leq u_i$ for each $i = 1, \ldots, r$, and this implies that $k' \leq k$. Thus, we conclude that $k = k' = \sum_{i=1}^r t_i$.

Now, we show that there exist distinct elements $j_2, \ldots, j_n \in \{1, \ldots, r\} \setminus \{j_1\}$ such that

$$
\eta_k = \left\lfloor \frac{t_{j_2} m}{\lambda_{j_2}} \right\rfloor = \ldots = \left\lfloor \frac{t_{j_n} m}{\lambda_{j_n}} \right\rfloor.
$$

Suppose that $\eta_k < \left\lceil \frac{t_j m}{\lambda_j} \right\rceil$ for each $j \in \{1, \ldots, r\} \setminus \{j_1\}$, then $\eta_k < \rho_{u_1, \ldots, u_{j_1+1}, \ldots, u_r} \leq \eta_{k+1}$ since $\sum_{i=1}^r t_i = k$. This is a contradiction to (6). Therefore there exists $j_2 \in \{1, \ldots, r\} \setminus \{j_1\}$ such that

$$
\eta_k = \left\lfloor \frac{t_{j_2} m}{\lambda_{j_2}} \right\rfloor = \ldots = \left\lfloor \frac{t_{j_n} m}{\lambda_{j_n}} \right\rfloor.
$$
\{j_1\} satisfying
\[\eta_k = \left\lfloor \frac{t_{j_1}m}{\lambda_{j_1}} \right\rfloor = \left\lfloor \frac{t_{j_2}m}{\lambda_{j_2}} \right\rfloor \quad \text{and} \quad t_{j_2} < \lambda_{j_2}, \]
where the strict inequality \(t_{j_2} < \lambda_{j_2} \) follows from the fact that \(\eta_k < m \). If \(\eta_k < \left\lfloor \frac{t_{j_1}m}{\lambda_{j_1}} \right\rfloor \) for each \(j \in \{1, \ldots, r\} \setminus \{j_1, j_2\} \), then \(\eta_k < pt_{j_1+1,...,t_{j_2+1,...,r}} \leq \eta_{k+2} \), again a contradiction to (6). Therefore there exists \(j_3 \in \{1, \ldots, r\} \setminus \{j_1, j_2\} \) such that
\[\eta_k = \left\lfloor \frac{t_{j_1}m}{\lambda_{j_1}} \right\rfloor = \left\lfloor \frac{t_{j_2}m}{\lambda_{j_2}} \right\rfloor = \left\lfloor \frac{t_{j_3}m}{\lambda_{j_3}} \right\rfloor \quad \text{and} \quad t_{j_3} < \lambda_{j_3}. \]
By continuing this process, we obtain distinct elements \(j_1, j_2, \ldots, j_n \) such that
\[\eta_k = \left\lfloor \frac{t_{j_1}m}{\lambda_{j_1}} \right\rfloor = \cdots = \left\lfloor \frac{t_{j_n}m}{\lambda_{j_n}} \right\rfloor \quad \text{and} \quad t_{j_i} < \lambda_{j_i} \quad \text{for each} \quad i = 1, \ldots, n. \]
Finally, from (4), we conclude that
\[\sum_{k=r}^{\lambda_0-1} \eta_k = \sum_{i=1}^{r} \sum_{s=1}^{\lambda_i-1} \left\lfloor \frac{sm}{\lambda_i} \right\rfloor = \sum_{i=1}^{r} \frac{(m-1)(\lambda_i-1) - 1 + (m, \lambda_i)}{2} \]
\[= \frac{(m-1)(\lambda_0 - r) - r + \sum_{i=1}^{r}(m, \lambda_i)}{2}. \]

\textbf{Theorem 3.2.} Let \(m \geq 2 \) and \(r \geq 2 \) be integers such that \(p \nmid m \). Let \(\mathcal{X} \) be the algebraic curve defined by the affine equation
\[\mathcal{X} : \quad y^m = \prod_{i=1}^{r} (x - \alpha_i)^{\lambda_i}, \quad \lambda_i \in \mathbb{N}, \quad \text{and} \quad 1 \leq \lambda_i < m, \]
where \(\alpha_1, \ldots, \alpha_r \) are pairwise distinct elements of \(K \). Define \(\lambda_0 := \sum_{i=1}^{r} \lambda_i \) and suppose that \((m, \lambda_0) = 1 \). Then the Weierstrass semigroup at the only place at infinity \(Q_\infty \in \mathcal{P}_K(\mathcal{X}) \) is given by the disjoint union
\[H(Q_\infty) = \langle m, \lambda_0 \rangle \cup \bigcup_{k=r}^{\lambda_0-1} B_k, \]
where \(B_k = \{mk - k'\lambda_0 : k' = 1, \ldots, \eta_k\} \) and \(\eta_k \) are defined as in Lemma [3, 7]. In particular,
\[H(Q_\infty) = \langle m, \lambda_0, mk - \lambda_0\eta_k : k = r, \ldots, \lambda_0 - 1 \rangle. \]

\textbf{Proof.} Clearly the result holds if \(r = \lambda_0 \), therefore we can assume that \(r < \lambda_0 \). We start by computing some principal divisors in \(K(\mathcal{X}) \). Let \(P_{\alpha_i} \in \mathcal{P}_K(\mathcal{X}) \) be the place corresponding
to \(\alpha_i \in K \). For \(k \in \{r, \ldots, \lambda_0 - 1\} \), let \(s_1, \ldots, s_r \) be positive integers such that \(1 \leq s_i \leq \lambda_i \) and \(\sum_{i=1}^{r} s_i = k \). Then

\[
(x - \alpha_i)_{K(x)} = \frac{m}{(m, \lambda_i)} \sum_{Q \mid P_{x_i}} Q - mQ_\infty, \quad (y)_{K(x)} = \sum_{i=1}^{r} \frac{\lambda_i}{(m, \lambda_i)} \sum_{Q \mid P_{x_i}} Q - \lambda_0 Q_\infty,
\]

and

\[
\left(\prod_{i=1}^{r} (x - \alpha_i)^{s_i} \right)_{K(x)} = \sum_{i=1}^{r} \frac{s_i m - \lambda_i \rho_{s_1, \ldots, s_r}}{(m, \lambda_i)} \sum_{Q \mid P_{x_i}} Q - (mk - \lambda_0 \rho_{s_1, \ldots, s_r}) Q_\infty.
\]

By the definition of \(\eta_k \), we have that \(0 < mk - \lambda_0 \eta_k \in H(Q_\infty) \) for \(r \leq k < \lambda_0 \) and therefore

\[
(9) \quad \langle m, \lambda_0 \rangle \cup \bigcup_{k=r}^{\lambda_0-1} B_k \subseteq H(Q_\infty).
\]

Now, we prove that the union given in (9) is disjoint. For \(k \in \{r, \ldots, \lambda_0 - 1\} \) and \(k' \in \{1, \ldots, \eta_k\} \), an element of \(B_k \) can be written as

\[
mk - k' \lambda_0 = m\lambda_0 - (\lambda_0 - k)m - k'\lambda_0.
\]

Therefore, from Proposition 2.3, \(B_k \cap \langle m, \lambda_0 \rangle = \emptyset \). On the other hand, we have that \(B_{k_1} \cap B_{k_2} = \emptyset \) for \(k_1 \neq k_2 \). In fact, if \(mk_1 - \lambda_0 k_1' = mk_2 - \lambda_0 k_2' \) for \(r \leq k_1, k_2 < \lambda_0 \), \(1 \leq k_1' \leq \eta_{k_1} \), and \(1 \leq k_2' \leq \eta_{k_2} \), then \(m(k_1 - k_2) = \lambda_0(k_1' - k_2') \). Since \((m, \lambda_0) = 1 \) and \(2 - \lambda_0 \leq k_1 - k_2 \leq \lambda_0 - 2 \), we conclude that \(k_1 = k_2 \).

Finally, we prove that equality holds in (9). Since

\[
g(\mathcal{X}) = \frac{(m - 1)(r - 1) + r - \sum_{i=1}^{r} (m, \lambda_i)}{2} \quad \text{and} \quad g_{\langle m, \lambda_0 \rangle} = \frac{(m - 1)(\lambda_0 - 1)}{2},
\]

from Lemma 3.1 we obtain that

\[
\# \left(\bigcup_{k=r}^{\lambda_0-1} B_k \right) = \sum_{k=r}^{\lambda_0-1} \eta_k = \frac{(m - 1)(\lambda_0 - r) - r + \sum_{i=1}^{r} (m, \lambda_i)}{2} = \# (H(Q_\infty) \setminus \langle m, \lambda_0 \rangle)
\]

and the result follows. \(\square \)

In general, we have that a minimal system of generators of a numerical semigroup \(H \) has cardinality at most the multiplicity of the semigroup, that is, \(e_H \leq m_H \), see [14, Proposition 2.10]. Since \(m \in H(Q_\infty) \), \(e_{H(Q_\infty)} \leq m_H(Q_\infty) \leq m \). However, in general, it is difficult to obtain a minimal system of generators to \(H(Q_\infty) \) from the system of generators given in (8).

For example, for the curve \(y^5 = x(x - 1)^2 \) defined over \(F_q \) with \(5 \nmid q \), the system of generators for the semigroup \(H(Q_\infty) \) provided by Theorem 3.2 is given by \(H(Q_\infty) = \langle 3, 4, 5 \rangle \) and therefore is a minimal system of generators. However, this does not happen in general. In fact, if \(\eta_k = \eta_{k+1} \) for some \(k \), then we can remove the element \(mk(k+1) - \lambda_0 \eta_{k+1} \) of the system of generators given in (8) since \(mk(k+1) - \lambda_0 \eta_{k+1} = mk - \lambda_0 \eta_k + m \). More
generally, define $\lambda := \max_{1 \leq i \leq r} \lambda_i$. If $\lambda = 1$ then $H(Q_\infty) = \langle m, \lambda_0 \rangle$ and $e_{H(Q_\infty)} = 2$. If $\lambda > 1$, then for $i \in \{\lfloor m/\lambda \rfloor, \ldots, m - \lfloor m/\lambda \rfloor\}$ define $k_i := 0$ if there is no $k \in \{r, \ldots, \lambda_0 - 1\}$ such that $\eta_k = i$, and $k_i := \min\{k : r \leq k < \lambda_0, \eta_k = i\}$ otherwise. Thus, for each i such that $k_i \neq 0$ and k such that $\eta_k = i$, we can write $mk - \lambda_0 \eta_k = mk_i - \lambda_0 \eta_k i + m(k - k_i)$. Therefore, by removing the element $mk - \lambda_0 \eta_k$ from the system of generators given in (8) we obtain that

$$H(Q_\infty) = \langle m, \lambda_0, mk_i - \lambda_0 \eta_k i : i = \lfloor m/\lambda \rfloor, \ldots, m - \lfloor m/\lambda \rfloor \rangle$$

and $e_{H(Q_\infty)} \leq m - \lceil m/\lambda \rceil - \lfloor m/\lambda \rfloor + 3 \leq m$.

Example 3.3 (Plane model of the GGS curve). The GGS curve is the first generalization of the GK curve, which is the first example of a maximal curve not covered by the Hermitian curve, see [3]. The GGS curve is an $F_{q^{2n}}$-maximal curve for $n \geq 3$ an odd integer, and it is described by the following plane model:

$$y^{q^{n+1}} = (x^q + x)h(x)^{q+1}, \text{ where } h(x) = \sum_{i=0}^q (-1)^{i+1}x^{i(q-1)}.$$

This curve only has one place at infinity Q_∞. In order to calculate the Weierstrass semigroup $H(Q_\infty)$, note that $h(x)$ is a separable polynomial of degree $q(q-1)$. Using our standard notation as in Theorem 3.2, we have that $m = q^n + 1$, $r = q^2$, $\lambda_0 = q^3$, $\lambda_1 = \cdots = \lambda_q = 1$, and $\lambda_{q+1} = \cdots = \lambda_{q^2} = q + 1$. From the characterization of the multiset $S = \{\eta_k : r \leq k \leq \lambda_0 - 1\}$ given in Lemma 3.7, we have that

$$S^* = \left\{\frac{(\beta+1)(q^n+1)}{q+1} : 0 \leq \beta \leq q - 1\right\}.$$

Furthermore, since $\lambda_1 = \cdots = \lambda_q = 1$ and $\lambda_{q+1} = \cdots = \lambda_{q^2} = q + 1$, we have $m_S(a) = q^2 - q$ for each $a \in S^*$. Thus, since $\eta_r \leq \eta_{r+1} \leq \cdots \leq \eta_{\lambda_0 - 1}$ is a non-decreasing sequence, we obtain that

$$\eta_r = \eta_{r+1} = \cdots = \eta_{r+q^2-q-1} = \frac{q^n+1}{q+1} \frac{q+1}{2q^n+1} \frac{1}{q+1} \cdots$$

$$\eta_{r+q^2-q} = \eta_{r+q^2-q+1} = \cdots = \eta_{r+2(q^2-q)-1} = \frac{(\beta+1)(q^n+1)}{q+1} \frac{1}{q+1} \cdots$$

$$\eta_{r+(q-1)(q^2-q)} = \eta_{r+(q-1)(q^2-q)+1} = \cdots = \eta_{r+(q-1)(q^2-q)-1} = \frac{q^n+1}{q+1}.$$

Therefore,

$$\eta_{r+(\beta(q^2-q)+i)} = \frac{(\beta+1)(q^n+1)}{q+1} \quad \text{for } 0 \leq \beta \leq q - 1 \text{ and } 0 \leq i \leq q^2 - q - 1.$$

Moreover, since

$$m(r + \beta(q^2 - q)) - \lambda_0 \eta_{r+\beta(q^2-q)} = (q - \beta) \frac{q(q^n+1)}{q+1} \quad \text{for } 0 \leq \beta \leq q - 1,$$
it follows from Theorem 3.2 that
\[H(Q_\infty) = \left\langle q^n + 1, q^3, \frac{q(q^n + 1)}{q + 1} \right\rangle. \]

As expected, this description of \(H(Q_\infty) \) matches the result given in [6, Corollary 3.5].

Let \(n \geq 3 \) be an odd integer, \(m \) be a divisor of \(q^n + 1 \), and \(d \) be a divisor of \(q + 1 \) such that \((m, d(q-1)) = 1\). In [9, Theorem 3.1], the authors study the \(\mathbb{F}_{q^{2n}} \)-maximal curve defined by the affine equation
\[Y_{d,m} : y^m = x^d(x^d - 1)\left(\frac{x^{d(q-1)} - 1}{x^{d(q-1)} - 1}\right)^{q+1}. \]

This curve is a subcover of the second generalization of the \(GK \) curve given by Beelen and Montanucci [2] and has only one place at infinity \(Q_\infty \). In the following result, using Theorem 3.2, we compute the Weierstrass semigroup \(H(Q_\infty) \).

Proposition 3.4. Let \(n \geq 3 \) be an odd integer, \(m \) be a divisor of \(q^n + 1 \), and \(d \) be a divisor of \(q + 1 \) such that \((m, d(q-1)) = 1\). Consider the curve
\[Y_{d,m} : y^m = x^d(x^d - 1)\left(\frac{x^{d(q-1)} - 1}{x^{d(q-1)} - 1}\right)^{q+1}. \]

Then the Weierstrass semigroup at the only place at infinity \(Q_\infty \) is given by
\[H(Q_\infty) = \left\langle m, \lambda_0, mk_\beta - \lambda_0 \left\lfloor \frac{(\beta + 1)m}{q + 1} \right\rfloor : \beta = 0, \ldots, q - 1 \right\rangle, \]
where \(\lambda_0 = dq(q-1) \) and \(k_\beta = d(q-1)(\beta + 1) + 1 + \left\lfloor \frac{\beta d}{q+1} \right\rfloor - \beta d. \)

Proof. Using our standard notation, we have that \(r = d(q-1) + 1, \lambda_0 = dq(q-1), \lambda_1 = d, \lambda_2 = \cdots = \lambda_{d+1} = 1, \) and \(\lambda_{d+2} = \cdots = \lambda_{d(q-1)+1} = q + 1. \) From the characterization of \(S = \{ \eta_k : r \leq k \leq \lambda_0 - 1 \} \) given in Lemma 3.1, we obtain that
\[S^* = \left\{ \left\lfloor \frac{(\beta + 1)m}{q + 1} \right\rfloor : 0 \leq \beta \leq q - 1 \right\}. \]

Now, define \(\delta_\beta := \left\lfloor \frac{(\beta + 1)d}{q+1} \right\rfloor - \left\lfloor \frac{(\beta + 1)d}{q+1} \right\rfloor \) for \(1 \leq \beta \leq q - 1. \) Since \(\lambda_1 = d, \lambda_2 = \cdots = \lambda_{d+1} = 1, \) and \(\lambda_{d+2} = \cdots = \lambda_{d(q-1)+1} = q + 1, \) we have
\[m_S \left(\left\lfloor \frac{(\beta + 1)m}{q + 1} \right\rfloor \right) = \begin{cases} d(q - 2), & \text{if } \delta_\beta = 1, \\ d(q - 2) + 1, & \text{if } \delta_\beta = 0. \end{cases} \]

or, equivalently,
\[(10) \quad m_S \left(\left\lfloor \frac{(\beta + 1)m}{q + 1} \right\rfloor \right) = d(q - 2) + 1 - \delta_\beta. \]
In order to calculate the semigroup $H_{3.2}$, we conclude that
\[\eta_r = \eta_{r+1} = \cdots = \eta_{r+d(q-2)-\delta_0} = \left\lfloor \frac{m}{q+1} \right\rfloor, \]
\[\eta_{r+d(q-2)+1-\delta_0} = \eta_{r+d(q-2)+2-\delta_0} = \cdots = \eta_{r+2(d(q-2)+1)-1-\delta_0-\delta_1} = \left\lfloor \frac{(\beta+1)m}{q+1} \right\rfloor, \]
and
\[\eta_{k_{\beta,0}} = \eta_{k_{\beta,1}} = \cdots = \eta_{k_{\beta,d(q-2)-\delta_\beta}} = \left\lfloor \frac{q m}{q+1} \right\rfloor. \]

Therefore $\eta_{k_{\beta,i}} = \left\lfloor \frac{(\beta+1)m}{q+1} \right\rfloor$ for $0 \leq \beta \leq q - 1$ and $0 \leq i \leq d(q-2) - \delta_\beta$. From Theorem \ref{thm:1} we conclude that
\[H(Q_\infty) = \left\langle m, \lambda_0, mk_{\beta,0} - \lambda_0 \left\lfloor \frac{(\beta+1)m}{q+1} \right\rfloor : \beta = 0, \ldots, q - 1 \right\rangle. \]

Now the proposition follows from the fact that $\beta - \sum_{j=0}^{\beta-1} \delta_j = \left\lfloor \frac{\beta d}{q+1} \right\rfloor$ for $0 \leq \beta \leq q - 1$. \hfill \Box

4. The Frobenius Number $F_{H(Q_\infty)}$ and the Multiplicity $m_{H(Q_\infty)}$

With the explicit description of the Weierstrass semigroup $H(Q_\infty)$ given in Theorem \ref{thm:1}, in this section we study the Frobenius number $F_{H(Q_\infty)}$, the multiplicity $m_{H(Q_\infty)}$, and the relationship between them.

Henceforth, to simplify the notation, we define
\begin{equation}
\eta_s :=\begin{cases} 0, & \text{if } 0 \leq s < r, \\ m - 1, & \text{if } \lambda_0 \leq s, \end{cases} \quad \text{and} \quad \epsilon_k := mk - \lambda_0(\eta_k + 1) \text{ for } k \in \mathbb{N}_0. \tag{11}
\end{equation}

Thus, from Theorem \ref{thm:1} we obtain that
\begin{equation}
H(Q_\infty) = \langle \epsilon_k + \lambda_0 : k = 1, r, \ldots, \lambda_0 \rangle. \tag{12}
\end{equation}

We start by noticing that not all the elements $\epsilon_{r-1}, \ldots, \epsilon_{\lambda_0-1}$ defined in (11) are necessarily positive, however the following result states that the largest of them is equal to the Frobenius number $F_{H(Q_\infty)}$. Moreover, we explicitly describe the gap set $G(Q_\infty)$.

Proposition 4.1. Using the same notation as in Theorem \ref{thm:1}, we have that
\[F_{H(Q_\infty)} = \max\{\epsilon_{r-1}, \ldots, \epsilon_{\lambda_0-1}\} \]
and
\[G(Q_\infty) = \left\{ ma - b\lambda_0 : 1 \leq a \leq \lambda_0 - 1, \eta_a + 1 \leq b \leq \left\lfloor \frac{am}{\lambda_0} \right\rfloor \right\}. \]
Proof. From Theorem 3.2, we have that
\[G(Q_\infty) = \mathbb{N} \setminus \left(m, \lambda_0 \right) \cup \bigcup_{k=r}^{\lambda_0-1} B_k = (\mathbb{N} \setminus \left(m, \lambda_0 \right)) \setminus \bigcup_{k=r}^{\lambda_0-1} B_k, \]
where \(B_k = \{ m\lambda_0 - (\lambda_0 - k)m - k'\lambda_0 : k' = 1, \ldots, \eta_k \} \). Moreover, from Proposition 2.3 we know that the elements of \(\mathbb{N} \setminus \langle m, \lambda_0 \rangle \) are of the form \(m\lambda_0 - am - b\lambda_0 \), where \(a \) and \(b \) are positive integers. Therefore,
\[G(Q_\infty) = \{ m\lambda_0 - am - b\lambda_0 : (a, b) \in \Delta \} \cap \mathbb{N}, \]
where \(\Delta = \{(a, b) \in \mathbb{N}^2 : \eta_{\lambda_0-a} + 1 \leq b \} \), and
\[F_{H(Q_\infty)} = \max_{(a, b) \in \Delta} \{ m\lambda_0 - am - b\lambda_0 \}. \]
By the definition of the set \(\Delta \), \(\max_{(a, b) \in \Delta} \{ m\lambda_0 - am - b\lambda_0 \} \) is attained at a point in \(\Delta \) of the form \((k, \eta_{\lambda_0-k} + 1)\) for some \(k \in \{1, \ldots, \lambda_0 - r + 1\} \), see Figure 1. Thus, \(F_{H(Q_\infty)} = \max\{e_{r-1}, \ldots, e_{\lambda_0-1}\} \). Moreover,
\[G(Q_\infty) = \{ m\lambda_0 - am - b\lambda_0 : (a, b) \in \Delta \} \cap \mathbb{N} \]
\[= \{ m(\lambda_0 - a) - b\lambda_0 : 1 \leq a \leq \lambda_0 - 1, \eta_{\lambda_0-a} + 1 \leq b \} \cap \mathbb{N} \]
\[= \left\{ ma - b\lambda_0 : 1 \leq a \leq \lambda_0 - 1, \eta_a + 1 \leq b \leq \left\lfloor \frac{am}{\lambda_0} \right\rfloor \right\}. \]
\[\square \]

\textbf{Figure 1. Description of the set} \(\Delta \)
Now, we provide sufficient conditions to determine whether the semigroup $H(Q_{\infty})$ is symmetric. For this, we need a remark and a lemma.

Remark 4.2. Due to the characterization of the sequence $\eta_r \leq \eta_{r+1} \leq \cdots \leq \eta_{\lambda_0 - 1}$ given in Lemma 3.1, we can see that, for $s \in \mathbb{N}_0$, $\eta_s + \eta_{r+\lambda_0-1-s} = m$ or $\eta_s + \eta_{r+\lambda_0-1-s} = m - 1$. In fact, if $0 \leq s \leq r - 1$ or $\lambda_0 \leq s$ the assertion is clear. Let $k \in \{r, \ldots, \lambda_0 - 1\}$ and $n \in \mathbb{N}$ be such that

\[\eta_k < \eta_k = \eta_{k+1} = \cdots = \eta_{k+n-1} < \eta_{k+n}. \]

From Lemma 3.1, there exist exactly n distinct elements $j_1, \ldots, j_n \in \{1, \ldots, r\}$ and positive integers s_{j_1}, \ldots, s_{j_n} such that $1 \leq s_{j_i} < \lambda_{j_i}$ and

\[\eta_k = \left\lfloor \frac{s_{j_1}m}{\lambda_{j_1}} \right\rfloor = \left\lfloor \frac{s_{j_2}m}{\lambda_{j_2}} \right\rfloor = \cdots = \left\lfloor \frac{s_{j_n}m}{\lambda_{j_n}} \right\rfloor. \]

Without loss of generality, we can assume that

\[\left\lfloor \frac{s_{j_1}m}{\lambda_{j_1}} \right\rfloor \leq \left\lfloor \frac{s_{j_2}m}{\lambda_{j_2}} \right\rfloor \leq \cdots \leq \left\lfloor \frac{s_{j_n}m}{\lambda_{j_n}} \right\rfloor \]

and therefore

\[\frac{(\lambda_{j_n} - s_{j_n})m}{\lambda_{j_n}} \leq \frac{(\lambda_{j_{n-1}} - s_{j_{n-1}})m}{\lambda_{j_{n-1}}} \leq \cdots \leq \frac{(\lambda_{j_1} - s_{j_1})m}{\lambda_{j_1}}. \]

This leads to

\[\eta_{r+\lambda_0-1-(k+i)} = \frac{(\lambda_{j_{i+1}} - s_{j_{i+1}})m}{\lambda_{j_{i+1}}} \text{ for } i = 0, \ldots, n-1 \]

and, consequently,

\[\eta_{k+i} + \eta_{r+\lambda_0-1-(k+i)} = \left\lfloor \frac{s_{j_{i+1}}m}{\lambda_{j_{i+1}}} \right\rfloor + \left\lfloor \frac{(\lambda_{j_{i+1}} - s_{j_{i+1}})m}{\lambda_{j_{i+1}}} \right\rfloor = m - \left(\left\lfloor \frac{s_{j_{i+1}}m}{\lambda_{j_{i+1}}} \right\rfloor - \left\lfloor \frac{s_{j_{i+1}}m}{\lambda_{j_{i+1}}} \right\rfloor \right) \]

for $i = 0, \ldots, n-1$. In particular, if $(m, \lambda_j) = 1$ for each j, we obtain that $\eta_s + \eta_{r+\lambda_0-1-s} = m - 1$ for $s \in \mathbb{N}_0$, and if λ_j divides m for each j, we obtain that $\eta_s + \eta_{r+\lambda_0-1-s} = m$ for $s = r, \ldots, \lambda_0 - 1$.

Lemma 4.3. For $k \in \mathbb{N}_0$, the following statements hold:

\begin{enumerate}
 \item[i)] If $\eta_k + \eta_{r+\lambda_0-1-k} = m$, then $\epsilon_k + \epsilon_{r+\lambda_0-1-k} = \epsilon_{r-1} - \lambda_0$ and $\epsilon_{r-1} > \epsilon_k$.
 \item[ii)] If $\eta_k + \eta_{r+\lambda_0-1-k} = m - 1$, then $\epsilon_k + \epsilon_{r+\lambda_0-1-k} = \epsilon_{r-1}$, and $\epsilon_{r-1} > \epsilon_k$ if and only if $0 < \epsilon_{r+\lambda_0-1-k}$.
 \item[iii)] $\epsilon_k < 0$ if and only if $\eta_k = \left\lfloor \frac{km}{\lambda_0} \right\rfloor$.
\end{enumerate}

Proof. i) It is enough to note that

\[\epsilon_{r+\lambda_0-1-k} = m(r + \lambda_0 - 1 - k) - \lambda_0(\eta_{r+\lambda_0-1-k} + 1) = m(r + \lambda_0 - 1 - k) - \lambda_0 (m - \eta_k + 1) = m(r - 1) - \lambda_0 - mk + \lambda_0 \eta_k = \epsilon_{r-1} - \epsilon_k - \lambda_0. \]
Therefore, \(\epsilon_{r-1} - \epsilon_k = \epsilon_{r + \lambda_0 - 1 - k} + \lambda_0 > 0. \)

\(ii) \) Similar to item \(i) \).

\(iii) \) Since \(mk = \lambda_0 \eta_k + (mk - \lambda_0 \eta_k) \) and \(0 \leq mk - \lambda_0 \eta_k \), we conclude that \(\eta_k = \lfloor km/\lambda_0 \rfloor \) if and only if \(mk - \lambda_0 \eta_k < \lambda_0. \)

Theorem 4.4. With the same notation as in Theorem 3.2,

\[F_{H(Q_\infty)} = \epsilon_{r-1} \] and \(H(Q_\infty) \) is symmetric \(\iff \) \(\lambda_j \mid m \) for each \(j = 1, \ldots, r. \)

Proof. Suppose that \(H(Q_\infty) \) is symmetric and \(F_{H(Q_\infty)} = \epsilon_{r-1}. \) From \(\ref{thm:assumption} \) we obtain that

\[F_{H(Q_\infty)} = m(r - 1) - \lambda_0 = m(r - 1) - \sum_{j=1}^{r} (m, \lambda_j). \]

This implies that \(\lambda_j \) divides \(m \) for each \(j = 1, \ldots, r. \)

Conversely, assume that \(\lambda_j \) divides \(m \) for each \(j = 1, \ldots, r. \) From Remark 4.2 we have that \(\eta_k + \eta_{r + \lambda_0 - 1 - k} = m \) for \(k = r, \ldots, \lambda_0 - 1 \), and from item \(i) \) of Lemma 4.3 \(\epsilon_{r-1} > \epsilon_k \) for \(k = r, \ldots, \lambda_0 - 1. \) Therefore, from Proposition 4.1 \(F_{H(Q_\infty)} = \max\{\epsilon_{r-1}, \ldots, \epsilon_{\lambda_0-1}\} = \epsilon_{r-1} \) and

\[2g(\mathcal{X}) - 1 = m(r - 1) - \sum_{i=j}^{r} (m, \lambda_j) = m(r - 1) - \lambda_0 = \epsilon_{r-1} = F_{H(Q_\infty)}. \]

Example 4.5. From Example 3.3, we know that the Weierstrass semigroup at the only place at infinity of the GGS curve is given by \(H(Q_\infty) = \langle q^n + 1, q^3, q(q^n + 1)/(q + 1) \rangle. \) Therefore, we can determine if \(H(Q_\infty) \) is symmetric and we can calculate the Frobenius number \(F_{H(Q_\infty)} \). However, due to Theorem 4.4, it is possible to know this without computing the semigroup \(H(Q_\infty) \) explicitly. In fact, since \(q + 1 \) divides \(q^n + 1, \) \(H(Q_\infty) \) is symmetric and

\[F_{H(Q_\infty)} = (q^n + 1)(q^2 - 1) - q^3 = q^{n+2} - q^n - q^3 + q^2 - 1. \]

Next, we improve Proposition 4.1 to compute the Frobenius number \(F_{H(Q_\infty)} \) and establish a relationship between \(F_{H(Q_\infty)} \) and the multiplicity \(m_{H(Q_\infty)}. \)

Proposition 4.6. Using the same notation as in Theorem 3.2, the following statements hold:

\(i) \) \(F_{H(Q_\infty)} = \epsilon_{r-1} \) if and only if \(\eta_s < \lfloor sm/\lambda_0 \rfloor \) for each \(s \in \{r, \ldots, \lambda_0 - 1\} \) such that \(\eta_s + \eta_{r + \lambda_0 - 1 - s} = m - 1. \)

\(ii) \) \(F_{H(Q_\infty)} = \max_{r-1 \leq k < \lambda_0} \left\{ \epsilon_k : \eta_k = \left\lfloor \frac{(k+1-r)m}{\lambda_0} \right\rfloor \right\}. \)

\(iii) \) If \((m, \lambda_j) = 1 \) for each \(j = 1, \ldots, r, \) then \(m_{H(Q_\infty)} = \min\{m, m(r - 1) - F_{H(Q_\infty)}\}. \)

\(iv) \) If \(\lambda_j \) divides \(m \) for each \(j = 1, \ldots, r, \) then \(m_{H(Q_\infty)} = \min\{m, \lambda_0, \epsilon_{r-1} - \max_{r-1 \leq k < \lambda_0} \epsilon_k\}. \)

Proof. \(i) \) It follows from Lemma 4.3 and the fact that \(\eta_s < \lfloor sm/\lambda_0 \rfloor \) for all \(s \in \mathbb{N}_0. \)
ii) It is enough to note that, from Lemma 4.3, we can rewrite the Frobenius number $F_{H(\mathbb{Q}_\infty)}$ as

$$F_{H(\mathbb{Q}_\infty)} = \max_{r \leq k < \lambda_0} \left\{ \epsilon_{r-1}, \epsilon_k : \epsilon_{r+\lambda_0-1-k} < 0, \eta_k + \eta_{r+\lambda_0-1-k} = m - 1 \right\}$$

$$= \max_{r \leq k < \lambda_0} \left\{ \epsilon_{r-1}, \epsilon_k : \frac{(r + \lambda_0 - 1 - k)m}{\lambda_0}, \eta_k + \eta_{r+\lambda_0-1-k} = m - 1 \right\}$$

$$= \max_{r \leq k < \lambda_0} \left\{ \epsilon_{r-1}, \epsilon_k : \eta_k = \left\lfloor \frac{(k + 1 - r)m}{\lambda_0} \right\rfloor \right\}$$

$$= \max_{r \leq k < \lambda_0} \left\{ \epsilon_k : \eta_k = \left\lfloor \frac{(k + 1 - r)m}{\lambda_0} \right\rfloor \right\}.$$

iii) From (12) and Lemma 4.3, we obtain that

$$m_{H(\mathbb{Q}_\infty)} = \min \left\{ m, \lambda_0 + \min_{r \leq k < \lambda_0} \epsilon_k \right\}$$

$$= \min \left\{ m, \lambda_0 + \min_{r \leq k < \lambda_0} \{ \epsilon_{r-1} - \epsilon_{r+\lambda_0-1-k} \} \right\}$$

$$= \min \left\{ m, \lambda_0 + \epsilon_{r-1} - \max_{r \leq k < \lambda_0} \epsilon_{r+\lambda_0-1-k} \right\}$$

$$= \min \left\{ m, \lambda_0 + \epsilon_{r-1} - \max_{r \leq k < \lambda_0} \epsilon_k \right\}$$

$$= \min \left\{ m, m(r - 1) - F_{H(\mathbb{Q}_\infty)} \right\}.$$

iv) Similar to the proof of item iii). □

Next, we observe that for the curve \mathcal{X} defined in (7), the elements of the set $\{ \epsilon_k + \lambda_0 : k = 0, \ldots, \lambda_0 - 1 \} \subseteq H(\mathbb{Q}_\infty)$ form a complete set of representatives for the congruence classes of \mathbb{Z} modulo λ_0 and

$$\sum_{k=0}^{\lambda_0-1} \left\lfloor \frac{\epsilon_k + \lambda_0}{\lambda_0} \right\rfloor = g(\mathcal{X}).$$

Therefore, from Proposition 2.1, the Apéry set of λ_0 in the Weierstrass semigroup $H(\mathbb{Q}_\infty)$ is given by

$$\text{Ap}(H(\mathbb{Q}_\infty), \lambda_0) = \{ \epsilon_k + \lambda_0 : k = 0, \ldots, \lambda_0 - 1 \}.$$

We use this description of the Apéry set $\text{Ap}(H(\mathbb{Q}_\infty), \lambda_0)$ to characterize the symmetric Weierstrass semigroups $H(\mathbb{Q}_\infty)$ when $(m, \lambda_j) = 1$ for each $j = 1, \ldots, r$.

Theorem 4.7. Suppose that $(m, \lambda_j) = 1$ for $j = 1, \ldots, r$. Then the followings statements are equivalent:

i) $H(\mathbb{Q}_\infty) = \langle m, r \rangle$.

ii) $\lambda_1 = \lambda_2 = \cdots = \lambda_r$.

If in addition $r < m$, then all these statements are equivalent to the following:

iii) $H(\mathbb{Q}_\infty)$ is symmetric.
Proof. Clearly the result holds if \(r = \lambda_0 \). Suppose that \(r < \lambda_0 \).

\(i \Rightarrow ii \): We start by proving that \(r \) divides \(\lambda_0 \). In fact, since \(\lambda_0, mr - \lambda_0 \in H(Q_\infty) = \langle m, r \rangle \), there exist \(\alpha, \alpha', \tau, \tau' \in \mathbb{N}_0 \), where \(\tau, \tau' \leq m - 1 \) and \(\tau \neq 0 \), such that \(\lambda_0 = \alpha m + \tau r \) and \(mr - \lambda_0 = \alpha' m + \tau' r \). Therefore \(m(r - \alpha - \alpha') = r(\tau + \tau') \). Since \(H(Q_\infty) = \langle m, r \rangle \), \((m, r) = 1 \) and therefore \(m \) divides \(\tau + \tau' \), where \(1 \leq \tau + \tau' \leq 2m - 2 \). This implies that \(\tau + \tau' = m \) and \(\alpha = -\alpha' \). It follows that \(\alpha = \alpha' = 0 \) and \(\lambda_0 = \tau r \).

Now, let \(\lambda := \max_{1 \leq i \leq r} \lambda_i \) and note that \(\tau r = \lambda_0 = \sum_{i=1}^{r} \lambda_i \leq \lambda r \), therefore \(\tau \leq \lambda \). In the following, we prove that \(\tau = \lambda \), which implies that \(\lambda_1 = \lambda_2 = \cdots = \lambda_r \).

For \(\beta \in \{1, \ldots, \tau - 1\} \) and \(i \in \{0, \ldots, r - 1\} \) we have that
\[
\epsilon_{\beta r + i} + \lambda_0 = mr - (r - i)m - (\tau \epsilon_{r \beta + i} - m \beta)r \in H(Q_\infty) = \langle m, r \rangle.
\]

Therefore, from Proposition \(\text{2.3} \) it follows that
\[
\eta_{\beta r + i} \leq \left\lfloor \frac{\beta m}{\tau} \right\rfloor \quad \text{for } 1 \leq \beta \leq \tau - 1 \text{ and } 0 \leq i \leq r - 1.
\]

For \(\beta = 1 \) in \(\text{(13)} \) we obtain that
\[
\left\lfloor \frac{m}{\lambda} \right\rfloor = \eta_r \leq \eta_{r + i} \leq \left\lfloor \frac{m}{\tau} \right\rfloor \quad \text{for } 0 \leq i \leq r - 1,
\]
and for \(\beta = \tau - 1 \) and \(i = r - 1 \) in \(\text{(13)} \),
\[
m - \left\lfloor \frac{m}{\lambda} \right\rfloor = \left\lfloor \frac{(\lambda - 1)m}{\lambda} \right\rfloor = \eta_{\lambda_0 - 1} = \eta_{r(\tau - 1) + r - 1} \leq \left\lfloor \frac{(\tau - 1)m}{\tau} \right\rfloor = m - \left\lfloor \frac{m}{\tau} \right\rfloor.
\]

Since \((m, \lambda) = (m, \tau) = 1 \), then \(\left\lfloor \frac{m}{\lambda} \right\rfloor = \left\lfloor \frac{m}{\tau} \right\rfloor \) and therefore \(\eta_{r + i} = \left\lfloor \frac{m}{\tau} \right\rfloor \) for \(0 \leq i \leq r - 1 \). Thus, from the characterization of the sequence \(\eta_r \leq \eta_{r + 1} \leq \cdots \leq \eta_{\lambda_0 - 1} \) given in \(\text{(5)} \), we have that
\[
\eta_r = \left\lfloor \frac{m}{\lambda_1} \right\rfloor = \left\lfloor \frac{m}{\lambda_2} \right\rfloor = \cdots = \left\lfloor \frac{m}{\lambda_r} \right\rfloor = \eta_{2r - 1}
\]
and therefore \(\eta_{2r} = \left\lfloor \frac{2m}{\lambda} \right\rfloor \). Moreover, from Remark \(\text{1.2} \), \(\eta_{\lambda_0 - 1 - i} = m - 1 - \eta_{r + i} = \left\lfloor \frac{(\lambda - 1)m}{\lambda} \right\rfloor \) for \(0 \leq i \leq r - 1 \) and hence \(\eta_{\lambda_0 - 1} = \left\lfloor \frac{(\lambda - 2)m}{\lambda} \right\rfloor \).

For \(\beta = 2 \) in \(\text{(13)} \) we have that
\[
\left\lfloor \frac{2m}{\lambda} \right\rfloor = \eta_{2r} \leq \eta_{2r + i} \leq \left\lfloor \frac{2m}{\tau} \right\rfloor \quad \text{for } 0 \leq i \leq r - 1,
\]
and for \(\beta = \tau - 2 \) and \(i = r - 1 \) in \(\text{(13)} \),
\[
m - \left\lfloor \frac{2m}{\lambda} \right\rfloor = \left\lfloor \frac{(\lambda - 2)m}{\lambda} \right\rfloor = \eta_{\lambda_0 - 1} = \eta_{r(\tau - 2) + r - 1} \leq \left\lfloor \frac{(\tau - 2)m}{\tau} \right\rfloor = m - \left\lfloor \frac{2m}{\tau} \right\rfloor.
\]

Similarly to the previous case, we deduce that \(\left\lfloor \frac{2m}{\lambda} \right\rfloor = \left\lfloor \frac{2m}{\tau} \right\rfloor \), \(\eta_{2r + i} = \left\lfloor \frac{2m}{\lambda} \right\rfloor \) and \(\eta_{\lambda_0 - r - 1 - i} = \left\lfloor \frac{(\lambda - 2)m}{\lambda} \right\rfloor \) for \(0 \leq i \leq r - 1 \). This implies that \(\eta_{3r} = \left\lfloor \frac{3m}{\lambda} \right\rfloor \) and \(\eta_{\lambda_0 - 2r - 1} = \left\lfloor \frac{(\lambda - 3)m}{\lambda} \right\rfloor \).

By continuing this process, we obtain that
\[
\eta_{r + i} = \left\lfloor \frac{\beta m}{\lambda} \right\rfloor \quad \text{for } 1 \leq \beta \leq \tau - 1 \text{ and } 0 \leq i \leq r - 1.
\]
In particular, for \(\beta = r - 1 \) and \(i = r - 1 \) we have that
\[
\frac{(r-1)m}{\lambda} = \eta_{r(r-1)+r-1} = \eta_{r^2} = \eta_{\lambda r - 1} = \left[\frac{(\lambda - 1)m}{\lambda} \right].
\]
This implies that \(\tau = \lambda \).

ii) \(\Rightarrow \) i): Suppose that \(\lambda_1 = \lambda_2 = \cdots = \lambda_r \). Then \(\lambda_0 = r\lambda_r \) and \(\eta_{\lambda r + i} = \left[\frac{\beta m}{\lambda_r} \right] \) for \(1 \leq \beta \leq \lambda_r - 1 \) and \(0 \leq i \leq r - 1 \). On the other hand, from Theorem \(3.2 \), we know that
\[
H(Q_\infty) = \left\langle m, r\lambda_r, r \left(\beta m - \lambda_r \left[\frac{\beta m}{\lambda_r} \right] \right) : \beta = 1, \ldots, \lambda_r - 1 \right\rangle.
\]
Since \((m, \lambda_r) = 1 \), there exists \(\beta' \in \{1, \ldots, \lambda_r - 1\} \) such that \(\left\{ \frac{\beta m}{\lambda_r} \right\} = \frac{1}{\lambda_r} \) and therefore \(H(Q_\infty) = \langle m, r \rangle \).

Now, suppose that \(r < m \).

i) \(\Rightarrow \) iii): It is clear.

iii) \(\Rightarrow \) i): We are going to prove that \((m, r) = 1 \). We start by noting two important facts. First, note that

\[
(\epsilon_k + \lambda_0) \equiv 0 \mod m \quad \text{if and only if} \quad 0 \leq k \leq r - 1.
\]

Second, since \(r < m \) and \((m, \lambda_j) = 1 \) for each \(j \), then \(H(Q_\infty) \) is symmetric if and only if \(m_{H(Q_\infty)} = r \). In fact, for this case we have that \(g(X) = (m - 1)(r - 1)/2 \). Furthermore, from item iii) of Proposition \(4.6 \), \(m_{H(Q_\infty)} = \min\{m, m(r - 1) - F_{H(Q_\infty)}\} \). If \(H(Q_\infty) \) is symmetric, then \(F_{H(Q_\infty)} = 2g(X) - 1 = m(r - 1) - r \) and
\[
m_{H(Q_\infty)} = \min\{m, m(r - 1) - F_{H(Q_\infty)}\} = \min\{m, r\} = r.
\]
Conversely, if \(m_{H(Q_\infty)} = r \) then \(m(r - 1) - F_{H(Q_\infty)} = r \) and therefore \(F_{H(Q_\infty)} = 2g(X) - 1 \). This implies that \(H(Q_\infty) \) is symmetric.

Let \(\sigma \) be the permutation of the set \(\{0, \ldots, \lambda_0 - 1\} \) such that
\[
\text{Ap}(H(Q_\infty), \lambda_0) = \{0 = \epsilon_{\sigma(0)} + \lambda_0 < \epsilon_{\sigma(1)} + \lambda_0 < \cdots < \epsilon_{\sigma(\lambda_0 - 1)} + \lambda_0\}.
\]
Since \((m, \lambda_j) = 1 \) for \(j = 1, \ldots, r \) and \(H(Q_\infty) \) is symmetric, then \(F_{H(Q_\infty)} = \epsilon_{\sigma(\lambda_0 - 1)} = m(r - 1) - r \). Thus, from Proposition \(2.2 \) we have that
\[
\epsilon_{\sigma(i)} + \epsilon_{\sigma(\lambda_0 - 1 - i)} = m(r - 1) - \lambda_0 - r \quad \text{for} \quad i = 0, \ldots, \lambda_0 - 1.
\]
On the other hand, from Proposition \(4.3 \) we know that
\[
\epsilon_{\sigma(i)} + \epsilon_{\sigma(\lambda_0 - 1 - i)} = m(r - 1) - \lambda_0 \quad \text{for} \quad i = 0, \ldots, \lambda_0 - 1.
\]
Let \(\lambda > 0 \) and \(0 \leq r' < r \) be integers such that \(\lambda_0 = \lambda r + r' \), and \(i_1 \in \{0, \ldots, \lambda_0 - 1\} \) be such that \(\sigma(\lambda_0 - 1 - i_1) = r - 1 \). Then, from (15),
\[
\epsilon_{\sigma(i_1)} = m(r - 1) - \lambda_0 - r - \epsilon_{\sigma(\lambda_0 - 1 - i_1)} = m(r - 1) - \lambda_0 - r - \epsilon_{r - 1} = -r.
\]
If \((\epsilon_{\sigma(i_1)} + \lambda_0) \equiv 0 \mod m \), then \(m \) divides \(\lambda_0 - r \) and therefore \(\lambda_0 = ms + r \) for some integer \(s \). Since \((m, \lambda_0) = 1 \), we conclude that \(1 = (m, \lambda_0) = (m, ms + r) = (m, r) \).
Otherwise, from (14), \(\sigma(i_1) \geq r \) and therefore there exists \(i_2 \in \{0, \ldots, \lambda_0 - 1\} \) such that
\[\sigma(\lambda_0 - 1 - i_2) = r + \lambda_0 - 1 - \sigma(i_1). \]
From (15) and (16), we have that
\[\varepsilon_{\sigma(i_2)} = m(r - 1) - \lambda_0 - r - \varepsilon_{\sigma(\lambda_0 - 1 - i_2)} = m(r - 1) - \lambda_0 - r - \varepsilon_{r + \lambda_0 - 1 - \sigma(i_1)} = \varepsilon_{\sigma(i_1)} - r = -2r. \]
If \((\varepsilon_{\sigma(i_2)} + \lambda_0) \equiv 0 \mod m \), then \(m \) divides \(\lambda_0 - 2r \) and therefore \((m, r) = 1 \). Otherwise, \(\sigma(i_2) \geq r \) and therefore there exists \(i_3 \in \{0, \ldots, \lambda_0 - 1\} \) such that
\[\sigma(\lambda_0 - 1 - i_3) = r + \lambda_0 - 1 - \sigma(i_2) \text{ and} \]
\[\varepsilon_{\sigma(i_3)} = m(r - 1) - \lambda_0 - r - \varepsilon_{\sigma(\lambda_0 - 1 - i_3)} = m(r - 1) - \lambda_0 - r - \varepsilon_{r + \lambda_0 - 1 - \sigma(i_2)} = \varepsilon_{\sigma(i_2)} - r = -3r. \]
By continuing this process, we have that \((m, r) = 1 \) or we obtain a sequence \(i_1, \ldots, i_\lambda \) such that
\[\sigma(i_j) \geq r \quad \text{and} \quad \varepsilon_{\sigma(i_j)} = -jr \quad \text{for} \quad 1 \leq j \leq \lambda. \]
If the latter happens, then \(0 < \varepsilon_{\sigma(i_\lambda)} + \lambda_0 = \lambda_0 - \lambda r = r' < r \), a contradiction because \(m_{H(Q_\infty)} = r \). Therefore, \((m, r) = 1 \). Finally, since \((m, r) \subseteq H(Q_\infty) \) and \(g(\mathcal{X}) = (m - 1)(r - 1)/2 \), we conclude that \(H(Q_\infty) = (m, r) \).

5. MAXIMAL CASTLE CURVES

In this section, as an application of the results obtained, we characterize certain classes of \(\mathbb{F}_{q^2}\)-maximal Castle curves of type \((\mathcal{X}, Q_\infty)\) (that is, \(\mathbb{F}_{q^2}\)-maximal curves \(\mathcal{X} \) such that \#\(\mathcal{X}(\mathbb{F}_{q^2}) = q^2 m_{H(Q_\infty)} + 1 \) and \(H(Q_\infty) \) is symmetric), where \(\mathcal{X} \) is the curve defined by the equation \(y^m = f(x) \), \(f(x) \in \mathbb{F}_{q^2}[x] \) and \((m, \deg f) = 1 \), and \(Q_\infty \) is the only place at infinity of the curve \(\mathcal{X} \). Some examples of \(\mathbb{F}_{q^2}\)-maximal Castle curves of this type are presented below:

- The Hermitian curve
 \[y^{q+1} = x^q + x. \]
- The curve over \(\mathbb{F}_{q^2} \) defined by the affine equation
 \[y^{q+1} = a^{-1}(x^{q/p} + x^{q/p^2} + \cdots + x^p + x), \]
 where \(p = \text{Char}(\mathbb{F}_q) \) and \(a \in \mathbb{F}_{q^2} \) is such that \(a^q + a = 0 \) and \(a \neq 0 \).

Note that, in all cases, the places corresponding to the roots of the polynomial \(f(x) \) are totally ramified in the extension \(\mathbb{F}_{q^2}(x, y)/\mathbb{F}_{q^2}(x) \), the multiplicities of the roots of \(f(x) \) are equal and \(m = q + 1 \). We will show that, under certain conditions, all \(\mathbb{F}_{q^2}\)-maximal Castle curves of type \((\mathcal{X}, Q_\infty)\) have these characteristics.

Lemma 5.1. Let \(\mathcal{X} \) be the algebraic curve given in Theorem 3.2 and let \(Q_\infty \) be its only place at infinity. Suppose that \(\mathcal{X} \) is defined over \(\mathbb{F}_{q^2} \), \((m, \lambda_i) = 1 \) for \(i = 1, \ldots, r \), \((\mathcal{X}, Q_\infty)\) is a Castle curve, and \(r < m \). Then

\(\mathcal{X} \) is \(\mathbb{F}_{q^2}\)-maximal if and only if \(m = q + 1 \).

Proof. From the assumptions, we obtain that \(g(\mathcal{X}) = (m - 1)(r - 1)/2 \). Since \((\mathcal{X}, Q_\infty)\) is a Castle curve, \(H(Q_\infty) \) is symmetric and therefore
\[F_{H(Q_\infty)} = 2g(\mathcal{X}) - 1 = mr - m - r. \]
Moreover, from iii of Proposition 4.6 $m_{H(Q_{\infty})} = \min\{m, r\} = r$. Therefore, X is \mathbb{F}_{q^2}-maximal if and only if
\[
\#X(\mathbb{F}_{q^2}) = q^2r + 1 = q^2 + 1 + q(m - 1)(r - 1).
\]
Thus, the result follows. \hfill \Box

Lemma 5.2. Let X be the algebraic curve given in Theorem 3.2 and let Q_{∞} be its only place at infinity. Suppose that X is defined over \mathbb{F}_{q^2}, $m = q + 1$, $r < q + 1$, $(q + 1, \lambda_i) = 1$ for $i = 1, \ldots, r$, and X is \mathbb{F}_{q^2}-maximal. The following statements are equivalent:

i) $H(Q_{\infty})$ is symmetric.

ii) $\#X(\mathbb{F}_{q^2}) = q^2m_{H(Q_{\infty})} + 1$.

iii) $\lambda_1 = \cdots = \lambda_r$.

Proof. Note that from the hypotheses we have that $g(X) = q(r - 1)/2$ and therefore
\[
\#X(\mathbb{F}_{q^2}) = q^2 + 1 + 2g(X)q = q^2r + 1.
\]

i) \leftrightarrow ii) : It is enough to note that
\[
H(Q_{\infty}) \text{ is symmetric} \iff F_{H(Q_{\infty})} = qr - q - 1
\]
\[
\iff m_{H(Q_{\infty})} = r \quad \text{ (from Proposition 4.6)}
\]
\[
\iff \#X(\mathbb{F}_{q^2}) = q^2m_{H(Q_{\infty})} + 1.
\]

i) \leftrightarrow iii) : This follows directly from Theorem 4.7. \hfill \Box

We summarize these results in the following theorem.

Theorem 5.3. Let X be the algebraic curve defined in Theorem 3.2 and let Q_{∞} be its only place at infinity. Suppose that X is defined over \mathbb{F}_{q^2}, $(m, \lambda_i) = 1$ for $i = 1, \ldots, r$, and $r < m$. Then the following statements are equivalent:

i) (X, Q_{∞}) is a \mathbb{F}_{q^2}-maximal Castle curve.

ii) (X, Q_{∞}) is a Castle curve and $m = q + 1$.

iii) X is \mathbb{F}_{q^2}-maximal, $H(Q_{\infty})$ is symmetric, and $m = q + 1$.

iv) X is \mathbb{F}_{q^2}-maximal, $\#X(\mathbb{F}_{q^2}) = q^2m_{H(Q_{\infty})} + 1$, and $m = q + 1$.

v) X is \mathbb{F}_{q^2}-maximal, $\lambda_1 = \cdots = \lambda_r$, and $m = q + 1$.

Finally, we note that for the case when λ_i divides m for each $i = 1, \ldots, r$, the Weierstrass semigroup $H(Q_{\infty})$ is symmetric, see Theorem 4.3. Therefore, by assuming that X is \mathbb{F}_{q^2}-maximal, we conclude that

(X, Q_{∞}) is \mathbb{F}_{q^2}-maximal Castle curve if and only if $\#X(\mathbb{F}_{q^2}) = q^2m_{H(Q_{\infty})} + 1$.

6. **Acknowledgment**

I would like to thank Professors Luciane Quoos and Rohit Gupta, as well as the anonymous referees for their valuable comments and suggestions that improved the presentation of this paper.
References

[1] M. Abdón, H. Borges, and L. Quoos. Weierstrass points on Kummer extensions. *Adv. Geom.*, 19(3):323–333, 2019.

[2] P. Beelen and M. Montanucci. A new family of maximal curves. *J. Lond. Math. Soc. (2)*, 98(3):573–592, 2018.

[3] A. S. Castellanos, A. M. Masuda, and L. Quoos. One- and two-point codes over Kummer extensions. *IEEE Trans. Inform. Theory*, 62(9):4867–4872, 2016.

[4] A. Garcia, C. Güneri, and H. Stichtenoth. A generalization of the Giulietti-Korchmáros maximal curve. *Adv. Geom.*, 10(3):427–434, 2010.

[5] R. L. Graham, D. E. Knuth, and O. Patashnik. *Concrete mathematics*. Addison-Wesley Publishing Company, Reading, MA, second edition, 1994. A foundation for computer science.

[6] C. Güneri, M. Özdemir, and H. Stichtenoth. The automorphism group of the generalized Giulietti-Korchmáros function field. *Adv. Geom.*, 13(2):369–380, 2013.

[7] J. Lewittes. Places of degree one in function fields over finite fields. *J. Pure Appl. Algebra*, 69(2):177–183, 1990.

[8] L. Ma, C. Xing, and S. L. Yeo. On automorphism groups of cyclotomic function fields over finite fields. *J. Number Theory*, 169:406–419, 2016.

[9] E. A. R. Mendoza and L. Quoos. Explicit equations for maximal curves as subcovers of the BM curve. *Finite Fields Appl.*, 77:Paper No. 101945, 22, 2022.

[10] M. Montanucci and V. Pallozzi Lavorante. AG codes from the second generalization of the GK maximal curve. *Adv. Geom.*, 13(2):369–380, 2013.

[11] C. Munuera, A. Sepúlveda, and F. Torres. Algebraic geometry codes from castle curves. In Á. Barbero, editor, *Coding Theory and Applications*, pages 117–127, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[12] C. Munuera, A. Sepúlveda, and F. Torres. Castle curves and codes. *Adv. Math. Commun.*, 3(4):399–408, 2009.

[13] J. C. Rosales. Fundamental gaps of numerical semigroups generated by two elements. *Linear Algebra Appl.*, 405:200–208, 2005.

[14] J. C. Rosales and P. A. García-Sánchez. *Numerical semigroups*, volume 20 of *Developments in Mathematics*. Springer, New York, 2009.

[15] H. Stichtenoth. *Algebraic function fields and codes*, volume 254 of *Graduate Texts in Mathematics*. Springer-Verlag, Berlin, second edition, 2009.

[16] S. Tafazolian and F. Torres. On the curve $Y^n = X^r(X^{m}+1)$ over finite fields. *Adv. Geom.*, 19(2):263–268, 2019.

Instituto de Matemática, Universidade Federal do Rio de Janeiro, Cidade Universitária, CEP 21941-909, Rio de Janeiro, Brazil

Email address: erik@im.ufrj.br