Silica gel functionalized with imidazolium group via click chemistry – new stationary phase for ion chromatography

D.A. Chuprynina, I.A. Lupanova, V.V. Konshin*, Dzh.N. Konshina

Kuban State University, Department of Chemistry and High Technologies, 350040 Stavropol’skaya st., 149, Krasnodar, Russia
* Corresponding author: jfox@list.ru

This article belongs to the regular issue.

Abstract

This manuscript describes the preparation of a simple effective ion-exchange material based on silica gel, on the surface of which methylimidazolium bromide is fixed using a click reaction. The resulting material was used as a stationary phase for the separation and determination of Cl\(^-\), NO\(_2^-\), NO\(_3^-\), I\(^-\), and SO\(_4^{2-}\) using ion exchange chromatography. The separation efficiency and retention factors for the selected anions were studied in the pH range 3.5–6.5. The proposed material was used for the determination of Cl\(^-\), SO\(_4^{2-}\) in water and can be suggested for successful use in real water samples.

Keywords

click reaction
ion exchange
modified silica

1. Introduction

The development of new anion-exchange phases with improved efficiency and selectivity is one of the topical problems of modern ion chromatography [1]. The selectivity of an anion exchanger is largely governed by the nature and structure of functional layer and the method of its attachment to the matrix surface. The efficiency of an anion exchanger depends on the type of material, as well as on the morphology and the packing mode of particles. Organic polymers can be considered as the most convenient and common matrices for the design of anion exchangers. Nevertheless, such materials as zirconia, alumina, and, especially, silica gel are quite often used for the preparation of organomineral materials, stationary phases in chromatography and adsorbents for solid-phase extraction. The disadvantage of silica materials is their limited stability at lower and higher pH values, especially in alkaline solutions. Silica-based anion exchangers are often used in the pH range 2.0–9.5. However, compared to organic polymers, silica-based ion exchangers have the advantages of higher chromatographic efficiency and greater mechanical stability. In addition, such materials are preferable for operation in the nonsuppressive version of ion chromatography with conductometric detection, since in this case it is necessary to use dilute eluents, which is possible with materials of low exchange capacity.

Silica gel-based sorbents are synthesized using a conventional approach, which consists in the surface modification with different functional groups. Functionalization through covalent attachment of a modifier to the matrix surface has a number of advantages. First, the required amount of sorption and ion-exchange centers is governed by the structure and amount of a modifier. Second, variation in the structure of a modifier can influence the capacity, efficiency, and separation selectivity of an ion. Third, there are cross linking agents which enable extending the working pH range to 9.2 without affecting the efficiency over the entire life cycle of a column [2].

Such surface-grafted anion exchangers have the advantage of a small thickness of the ion-exchange layer that favors an increase in the rate of mass transfer upon ion exchange and thereby makes it possible to separate ions with high performance and high selectivity [3].

Various classes of organic compounds are used as the surface modifiers of stationary phase matrices [4]. In recent years, there is a growing interest in the use of ionic liquids that enable a wide variation in the nature of a cationic moiety, which influences the properties of obtained materials [5–7].

Among ionic liquids, imidazolium salts gained widespread acceptance as modifiers. Examples of their use as efficient extractants capable of forming ion-associative complexes with simple and complex anions have been described. Such complexes are readily produced and quite stable and variation of functional groups in the cationic moiety of ionic liquids offer manifold possibilities to apply salts in different version of sample preparation:
2. Experimental

2.1. Reagents and instrumentation

The sorbent was prepared using silica gel “Sorbfil” with a particle size of 8–12 μm with imidazolium salt covalently immobilized by click reaction and to study whether they can be used as a stationary phase for ion-exchange chromatography.

2.2. Column packing

316 Stainless steel HPLC columns (150×2 mm) (Phenomenex) were used. The chromatographic column was packed by the suspension method under a pressure of 13 MPa. A test portion of the modified silica gel was added to a C₆H₅OH–CHCl₃ solution (1:1, v/v). The column was packed and the sorbent was compacted on exposure to ultrasound. After packing, the column was conditioned by passing iso-propanol in a volume equal to the 20-fold volume of the packed column, next – bidistilled water, and then – a working mobile phase until the background signal has become constant.

2.3. Synthesis of imidazolium-modified silica gel

Acetonitrile (70 mL), 3-azidopropyl silica gel (5 g), 1-methyl-3-prop-2-yn-1-yl-1H-imidazolium (1 g), CuI (0.095 g), and N,N,N’N’-tetramethylethlenediamine (750 μL) were placed in a pressure flask with fluoroplastic screw cap and magnetic bar in the argon atmosphere. The resulting suspension was kept with vigorous stirring at 70 °C for 4 h. Silica gel was separated on a Schott filter, washed with acetone, water, 2 M hydrochloric acid, and again acetone and dried at 55 °C for 12 h under a residual pressure of 5 mm Hg.

A portion of the resulting modified silica gel was further treated with a solution of hexamethyldisilazane in toluene for 8 h at 80 °C.

2.4. Determination of the total exchange capacity of the modified silica gel

The maximum exchange capacity of the material was determined by titrimetry. The modified silica gel (0.5 g) was agitated with 0.1 M nitric acid (20 mL) for 1 h [18]. Silica gel was filtered off and the amount of chloride ion released after the ion exchange reaction with 0.1 M HNO₃ was determined by titrimetry in an aliquot portion of the filtrate. To the aliquot portion of filtrate (5 mL), 0.05 M AgNO₃ (5 mL) was added and the excess of unreacted AgNO₃ was titrated with 0.05 M KSCN using a saturated solution of Fe(NH₃)(SO₄)₂·6H₂O as an indicator. Titration was terminated after a sorrel color of the solution appeared due to the formation of iron rhodanate complex. The calculated total exchange capacity was 0.26±0.02 mmol/g. The capacity of the silanized material remained unchanged.

3. Results and discussion

The test object was an organomineral material based on silica gel with covalently attached imidazolium group obtained by the azide-alkyne cycloaddition click reaction (Scheme 1).

In ¹³C NMR spectrum for the modified silica gel with imidazolium salt two groups of spectral signals are seen. One group contains two signals at δ 124.4 and 137.4 corresponding to the carbon nuclei in nitrogen-containing ring. Another group consists of spectral signals at δ 52, 44.6, 36.8, 24.1, and 17, which corresponds to the carbon atoms of aliphatic –CH₂– fragments. The signal at δ 9.7 corresponds to the –CH₃ group.

Fig. 1 shows the IR spectra for the starting silica gel with covalently attached azide group and the imidazolium-bearing material obtained according to Scheme 1.
Scheme 1 Synthesis of the modified silica gel

Both spectra display a broad intense band at about 1300–1290 cm⁻¹ corresponding to stretching vibrations of the siloxane (Si–O–Si) bond in silica. The intense absorption band at 1627 cm⁻¹ is due to bending vibrations of water absorbed on the silica gel surface. The broad intense band at 3200–3500 cm⁻¹ corresponds to the stretching vibrations of O–H adsorbed on the water surface and silanol groups. The intense absorption band at 2106 cm⁻¹ corresponds to stretching vibrations of the azido group grafted to the silica gel surface. In the spectrum of the silica gel sample obtained after the click reaction, the stretching vibration band of the azide group disappears, which suggests a successful click reaction on the silica gel surface.

The obtained batch of silica gel with a covalently immobilized group was divided into two portions. One portion was treated with a silanization reagent, hexamethyldisilazane (Scheme 2), in order to inactivate residual silanol groups, which are additional sorption centers.

The second portion of the material was used without additional treatment.

The heat stability is one of the key characteristics of sorption materials, since it governs the temperature range of their possible application (Table 1).

Similar temperature regions of weight loss and the presence of exothermic effect at about 350 °C can be distinguished for both samples of the modified silica gel.

Table 1 Thermal analysis data of silica gel samples

	Sil-im (h)	Sil-im	Sil-im	Sil-im
Temperature range, °C	Weight loss, %	Temperature range, °C	Weight loss, %	
30–154	4.7	30–185	2.8	
154–85	6.1	165–325	4.4	
285–566	10.7	325–460	3.6	
566–950	0.2	460–900	4.1	

Fig. 1 IR spectra of the modified silica gel samples
Scheme 2 Synthesis of the modified silica gel

According to the literature data [19], the first section on the TG curve in a range from 80 to 170 °C is due to the evaporation of water adsorbed on the silica gel surface. Further decrease in the sample weight in a range from 170 to 900 °C corresponds to destruction of the functional organic layer. The total weight loss of modified silica gel samples at 950 °C was about 16.0–21.7%.

Chromatographic conditions of the modified silica gels were studied in a single-column version of ion chromatography with non-suppressed conductivity detection. In such cases, for determination of anions on stationary phases possessing relatively low capacity values, diluted eluents based on aromatic acids, such as benzoic and phthalic acids, are preferred. The choice of the nature and composition of a buffer solution was caused by the fact that solutions based on phthalic acid possess high buffer capacity in the pH range recommended for stationary phases based on silica [20, 21].

A mixture of Cl\(^-\), NO\(_2\)^-, NO\(_3\)^-, I\(^-\), and SO\(_4\)^2- anions was chosen as the model. The working parameters for chromatographic separation were chosen as follows: the eluent was HOOCC\(_6\)H\(_4\)COOK with C = 2.5 mM and pH = 4 [22].

The comparison of the efficiency of separation of the standard anion mixture by the studied materials under identical conditions demonstrates a considerable decrease in the plate numbers per meter (N/m) for Sil-im(h) (Table 2).

Anion	Sil-im	Sil-im (h)		
Cl\(^-\)	3126	5.0	2720	11.8
NO\(_2\)^-	10093	5.9	4045	14.2
NO\(_3\)^-	8686	6.5	3546	17.8
I\(^-\)	6273	8.7	2808	29.6

The addition of NaOH to the stationary phase results in an increase in the efficiency and higher rapidity of separation of some anions due to an increase in the eluting power of the mobile phase. Upon pH change from 4 to 6, the concentration of hydrogen phthalate, an average-strength eluting ion, increases and, upon pH above 6, divalent phthalate with high eluting ability becomes the main anionic form of the eluent. In addition, at pH close to 7, the residual silanol groups on the surface of the anion exchanger, which can enter into ion exchange interactions, undergo almost complete ionization resulting in an increase in the separation efficiency (Fig. 2).

The most efficient separation was observed at pH = 6.5; one can note a multiple decrease in the retention, which leads to a possibility of determining anions in lower amounts. No change in the elution order was observed, which indirectly suggests a predominant ion-exchange mechanism of anion separation on the proposed stationary phase.
The linearity of the method was tested using a series of inorganic anions standard solutions. Each point of the calibration plot was the average of three peak height measurements, because the baseline resolution of some anions couldn’t be achieved without further dilution of the mobile phase and significant decrease of efficiency, which could cause a problem in the analysis of the samples with complex matrices. An example of a typical chromatogram is shown in the Fig. 3. The coefficient for calibration curves, the linear range and detection limits (defined as a signal three times the height of the noise level) as well as the quantification limits are presented in Table 3.

The comparison of the quantitative characteristics by the example of univalent inorganic anions demonstrates narrowing of the working concentration range on going from Sil-im to Sil-im(h) and, as a consequence, an increase in the limit of detection of an analyte.

![Chromatogram obtained with the Sil-im stationary phase using anion-exchange conditions. Test mixture: 1) F–; 2) CH₃COO–; 3) NO₂–; 4) Cl–; 5) NO₃–+Br–; 6) NO₂–; 7) I–; 8) SCN–; 9) SO₄²–. Chromatographic conditions: mobile phase: 2.5 mmol/L HOOCCH₂COOK with pH = 4, flow-rate: 0.3 ml/min, injection volume: 20 μl and detection: non-suppressed conductivity.](image)

Table 3 Sensitivity factors and linear ranges of calibration curves for the studied anions

Anion	Sil-im(h)	Sil-im						
	Linear range, mg/L	a*	R²	LOD**, mg/L	Linear range, mg/L	a*	R²	LOD**, mg/L
Cl⁻	40–160	6227	0.9886	5.6	25–400	3494	0.9985	1.9
NO₂⁻	20–160	2210	0.9983	4.9	25–400	2914	0.9990	1.6
NO₃⁻	40–160	3859	0.9978	12.1	25–200	484	0.9982	3.8
I⁻	40–160	6325	0.9984	11.0	25–300	685	0.9925	11.2

*a – coefficient for calibration curves (y = ax + b)

**LOD limits of detection = S:3.3, S – standard deviation of ten independent measurements of a blank sample.

Table 4 Errors in the determination of the studied anions using the studied anion exchangers (n = 3, P = 0.95)

Anion	Sil-im(h)	Sil-im				
	Added, mg/L	Found, mg/L	Δ, %	Added, mg/L	Found, mg/L	Δ, %
Cl⁻	77.3±9.9	78.3±10.2	-2.1	94.5±14.1	94.0±14.1	-6.0
NO₂⁻	80	80.8±10.4	1.0	97.5±14.3	106.2±16.2	6.2
NO₃⁻	81.5±10.6	81.5±10.6	1.9	106.2±16.2	106.2±16.2	6.2

Table 5 Assessment of the anion content in the real sample using different chromatographic systems (n = 5, P = 0.95)

Anion	Stationary phase	C, mg/L	C_{aimet}, mg/L	S, %	C, mg/L	C_{aimet}, mg/L	S, %
Cl⁻	Sil-im	2227±38	2200–7700	1.93	7321±425	5500–9000	0.17
SO₄²⁻	Seporus A-UNI (HC-1)	2845±345	7691±880	4.13	7691±880	7691±880	3.87
4. Conclusions

In this work, the possibility of modifying the silica gel surface with an imidazolium salt using a click reaction was shown. The resulting ion exchange material was used as a stationary phase in the ion exchange chromatography method to separate Cl⁻, NO₃⁻, NO₂⁻, I⁻, and SO₄²⁻. The study showed that the proposed material allows the determination of the selected anions with an error of 3.5–6.0%. Moreover, the developed material showed good stability and repeatability of the results of the determination and separation of anions during the operation.

Acknowledgements

This publication was financially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FZEN-2020-0022).

Conflicts of Interests

The authors declare that they have no competing interests.

References

1. Zatirakhva AV, Smolenkov AD, Shpigun OA. Preparation and chromatographic performance of polymer-based anion exchangers for ion chromatography. Anal Chim Acta. 2016;904;33–50. doi:10.1016/j.aca.2016.03.016
2. Alpert AA, Regnier FE. Preparation of a porous microparticulate anion-exchange chromatography support for proteins. J Chromatogr. 1979;185:375–392. doi:10.1016/S0021-9673(00)85615-0
3. Collinson MM. Recent trends in analytical applications of organically modified silicate materials. Trends Anal Chem. 2002;21(1):31–39. doi:10.1016/S0165-9936(01)0135-X
4. Jal PK, Patel S, Mishra BK. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta. 2004;62:1005-1028. doi:10.1016/j.talanta.2003.10.028
5. Wang Y, Tian M, Bi W, Row KH. Application of ionic liquids in high performance reversed-phase chromatography. Int J Mol Sci. 2009;10:2591–2610. doi:10.3390/ijms10062591
6. Pino V, Afonso AM. Surface-bonded ionic liquid stationary phases in high-performance liquid chromatography – a review. Anal Chim Acta. 2012;714:20–37. doi:10.1016/j.aca.2011.11.045
7. Vidal L, Riekola MI, Canals A. Ionic liquid-modified materials for solid-phase extraction and separation: a review. Anal Chim Acta. 2012;715:19–41. doi:10.1016/j.aca.2011.11.050
8. Shamsi SA, Danielson ND. Utility of ionic liquids in analytical separations. J Sep Science. 2007;30:1729–1750. doi:10.1002/jssc.200700136
9. Bi W, Row KH. Comparison of different silica-based imidazolium stationary phases for LC in separation of alkaloids. Chromatographia. 2010;71:25–30. doi:10.3109/101083709033804
10. Bi W, Zhou J, Row KH. Separation of xylose and glucose on different silica-confined ionic liquid stationary phases. Anal Chim Acta. 2010;677(2):162–168. doi:10.1016/j.aca.2010.08.004
11. Liu SJ, Zhou F, Xiao H, Zhao L, Liu X, Jiang SX. Surface-confined ionic liquid – A new stationary phase for the separation of ephedrines in high-performance liquid chromatography. Chin Chem Lett. 2004;15(9):1060–1062.
12. Qiu H, Jiang Q, Wei Z, Wang X, Liu X, Jiang S. Preparation and evaluation of a silica-based 1-alkyl-3-((propyl-3-sulfonate) imidazolium zwitterionic stationary phase for high-performance liquid chromatography. J Chromatogr A. 2007;1163(1–2):63–69. doi:10.1016/j.chroma.2007.06.001
13. Qiu H, Jiang S, Liu X. N-Methylimidazolium anion-exchange stationary phase for high-performance liquid chromatography. J Chromatogr A. 2006;1103(2):265–270. doi:10.1016/j.chroma.2005.11.029
14. Qiu H, Jiang S, Liu X, Zhao L. Novel imidazolium stationary phase for high-performance liquid chromatography. J Chromatogr A. 2006;1116(1–2):46–50. doi:10.1016/j.chroma.2006.03.016
15. Qiu H, Wang L, Liu X, Jiang S. Preparation and characterization of silica confined ionic liquids as chromatographic stationary phases through surface radical chain-transfer reaction. Analyst. 2009;134:460–465. doi:10.1039/b809125k
16. Liu K, Tolley HD, Lawson JS, Lee ML. Highly crosslinked polymeric monoliths with various C6 functional groups for reversed-phase capillary liquid chromatography of small molecules. J Chromatogr A. 2013;1321:80–87. doi:10.1016/j.chroma.2013.10.071
17. Lin H, Ou J, Zhang Z, Dong J, Zou H. Ring-opening polymerization reaction of polyhedral oligomeric silsesquioxanes (POSSs) for preparation of well-controlled 3D skeletal hybrid monoliths. Chem Commun. 2013;49(3):231–233. doi:10.1039/c2cc36881a
18. Iamamoto MS, Gushikem Y. Adsorption of metal ions from aqueous and ethanol solutions by silica gel functionalized with pyridinium ions. J Colloid Interface Sci. 1989;129(1):162–165. doi:10.1016/0021-9797(89)90426-8
19. Protsak IS, Kuzema PO, Tertykh VA, Bolbukh YM, Kozakevich RB. Thermogravimetric analysis of silicas chemically modified with products of deoligomerization of polydimethylsiloxane. J Therm Anal Calorim. 2015;121:547–557. doi:10.1007/s10973-015-4623-8
20. Sun M, Feng J, Wang X, Duan H, Li L, Luo C. Dicationic imidazolium liquid modified silica as a novel reversed-phase/anion-exchange mixed-mode stationary phase for high-performance liquid chromatography. J Sep Sci. 2014;37(16):2153–2159. doi:10.1002/jss.201400176
21. Haddad PR, Jackson PE. Ion Chromatography: Principles and Applications, Elsevier: Amsterdam; 1990. 775 p.
22. Konshin VV, Chuprynya DA, Lupanova IA, Konshina DzNh. Silica gel with covalently immobilized imidazolium salt as a new stationary phase for ion chromatography. AIP Conf Proc. 2020;2280(1):050028. doi:10.1063/5.0018424