Retrospective Study

Neutrophil-to-lymphocyte ratio predicts acute kidney injury occurrence after gastrointestinal and hepatobiliary surgery

Jian-Bin Bi, Jia Zhang, Yi-Fan Ren, Zhao-Qing Du, Zheng Wu, Yi Lv, Rong-Qian Wu

ORCID number: Jian-Bin Bi 0000-0002-9281-1999; Jia Zhang 0000-0001-7306-3350; Yi-Fan Ren 0000-0003-0907-2900; Zhao-Qing Du 0000-0003-0781-1079; Zheng Wu 0000-0002-7102-9543; Yi Lv 0000-0002-7104-2414; Rong-Qian Wu 0000-0003-0993-4531.

Author contributions: Bi JB and Wu RQ were involved in the design of the research; Wu Z and Lv Y provided guidance on clinical issues; Bi JB, Zhang J, Ren YF and Du ZQ collected the data; Bi JB analyzed the data; Bi JB wrote the manuscript; Wu RQ supervised the whole research; all authors have read and agreed with the final manuscript.

Supported by the National Natural Science Foundation of China, No. 81770491.

Institutional review board statement: This study was reviewed and approved by the Ethics Committee of the Xi’an Jiaotong University (Permit number: XJTU1AF2015LSL-057).

Informed consent statement: The need for patients’ informed written consent was waived due to the retrospective nature of the study.

Conflict-of-interest statement: All the Authors have no conflict of interest.

Abstract

BACKGROUND

Postoperative acute kidney injury (AKI) is a complex pathological process involved intrarenal and systemic inflammation caused by renal hypoperfusion, nephrotoxic drugs and urinary obstruction. Neutrophil-to-lymphocyte ratio (NLR) is a marker of inflammation reflecting the progress of many diseases. However, whether NLR at admission can predict the occurrence of AKI after surgery in the intensive care unit (ICU) remains unknown.

AIM

To clarify the relationship between NLR and the occurrence of AKI in patients with gastrointestinal and hepatobiliary surgery in the ICU.

METHODS

A retrospective analysis of 282 patients receiving surgical ICU care after gastrointestinal and hepatobiliary surgery in our hospital from December 2014 to December 2018 was performed.

RESULTS

Postoperative AKI occurred in 84 patients (29.79%) in this cohort. NLR by the multivariate analysis was an independent risk factor for occurrence of postoperative AKI in patients with gastrointestinal and hepatobiliary surgery in
interest related to the manuscript.

Data sharing statement: The data used to support the findings of this study are available from the corresponding author upon request.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Received: December 30, 2019
Peer-review started: December 30, 2019
First decision: April 12, 2020
Revised: May 10, 2020
Accepted: May 15, 2020
Article in press: May 15, 2020
Published online: July 27, 2020

P-Reviewer: Tajiri K, Tchilikidi KY
S-Editor: Wang J
L-Editor: Med-EMa JY
E-Editor: Wang LL

Bi JB et al. NLR predicts postoperative acute kidney injury

INTRODUCTION

Acute kidney injury (AKI) is one of the most common complications after gastrointestinal and hepatobiliary surgery. Numerous studies have reported high incidences of postoperative AKI, ranging from 22% to 66% in intensive care unit (ICU)

The neutrophil-to-lymphocyte ratio (NLR) is a marker of inflammation that can be calculated directly from a patient’s complete blood count. Extensive studies have shown that NLR can predict the outcome of cardiac surgery, sepsis, and cancer

A recent study showed that sepsis patients with NLR > 17.11 were more likely to develop AKI

We hypothesize that NLR is an independent risk factor for AKI after surgery, and patients with high NLR are more likely to develop postoperative AKI. The main purpose of this article was to clarify the relationship between NLR and the occurrence
NLR predicts postoperative acute kidney injury

MATERIALS AND METHODS

Patients and data sources
This study retrospectively analyzed the electronic medical records of 282 patients after gastrointestinal and hepatobiliary surgery in the ICU of the First Affiliated Hospital of Xi’an Jiaotong University from December 2014 to December 2018. The inclusion criteria were: Patients admitted to the ICU after gastrointestinal or hepatobiliary surgery; aged over 18 years; hospitalized in the ICU for at least 24 hours. The exclusion criteria were: Patients admitted with known acute or chronic kidney disease; patients with liver transplantation; patients without complete clinical data. This study complied with the provisions of Declaration of Helsinki\[14\]. The protocol was approved by the Ethics Committee of the First Affiliated Hospital of Xi’an Jiaotong University.

Definition of clinical outcome
The clinical outcomes in this study included occurrence of AKI and severe AKI, length of ICU stay, ICU re-admission, ICU mortality and 28-day overall mortality. The definition of AKI complied with Kidney Disease: Improving Global Outcomes criteria\[15\] as follows: The serum creatinine level increased by ≥ 0.3 mg/dL (≥ 26 mmol/L) within 48 h, or serum creatinine levels increased by 1.5 times of the baseline within 7 d after surgery, or urine volume was less than 0.5mL/kg per h and lasted more than 6 h. The staging of AKI is defined as follows: Stage 1, serum creatinine level increased by ≥ 0.3 mg/dL (≥ 26 mmol/L) within 48 h, or serum creatinine levels increased by 1.5-1.9 times of the baseline within 7 d after surgery; Stage 2, serum creatinine serum creatinine levels increased by 2.0-2.9 times of the baseline within 7 d after surgery; Stage 3, serum creatinine level increased by ≥ 4.0 mg/dL (≥ 354 mmol/L) within 48 h, or serum creatinine levels increased by more than 3.0 times of the baseline within 7 d after surgery, or patients require renal replacement therapy. Severe AKI is defined as AKI of stage 2 and 3.

Statistical analysis
The distribution of the continuous variables was checked for normality using the Kolmogorov-Smirnov test. Normally distributed variables were expressed as mean ± SD, and differences between the two groups were analyzed by the t test. Nonnormally distributed variables were expressed as medians (interquartile range) and differences between the two groups were analyzed by the Mann-Whitney. Categorical variables were expressed as absolute numbers and percent frequencies and differences between the two groups were analyzed by the Mann-Whitney. Univariate and multivariate analyses were performed using logistic regression models. Variables with $P < 0.05$ in the univariate analysis were incorporated into the multivariate analysis. The receiver operating characteristic (ROC) curve was used to determine the optimal cut-off value (with the highest sum of specificity plus sensitivity). PASW 18.0 software (SPSS Inc., Chicago, Illinois, United States) was used for statistical analysis. A two-tailed $P < 0.05$ was considered statistically significant.

RESULTS

Risk factors for postoperative AKI in patients with gastrointestinal and hepatobiliary surgery in ICU
A total of 84 patients (29.79%) developed postoperative AKI in this cohort. To identify risk factors for AKI in patients with gastrointestinal and hepatobiliary surgery in ICU, univariate and multivariate analyses were performed (Table 1). The results of univariate analysis exhibited that the following factors were significantly associated with occurrence of AKI in patients with gastrointestinal and hepatobiliary surgery in ICU, including sex (HR: 1.761, 95%CI: 1.008-3.075, $P = 0.047$), drinking (HR: 0.547, 95%CI: 0.306-0.977, $P = 0.042$), coexisting condition of ischemic heart disease (HR: 0.387, 95%CI: 0.166-0.901, $P = 0.028$), sequential organ failure assessment score (SOFA score) at ICU admission (HR: 1.092, 95%CI: 1.030-1.157, $P = 0.003$), acute physiology and chronic health evaluation (APACHE II) at ICU admission (HR: 1.038, 95%CI:
Table 1 Risk factors of acute kidney injury occurrence by univariate and multivariate analyses

Parameters	Univariate analysis	Multivariate analysis
	HR (95% CI)	HR (95% CI)
	P value	P value
Age (< 65 yr/≥ 65 yr)	1.010 (0.996-1.024)	
	0.146	
Sex (male/female)	1.761 (1.008-3.075)	0.684 (0.325-1.438)
	0.047	0.316
Smoking (yes/no)	0.599 (0.351-1.021)	
	0.060	
Drinking (yes/no)	0.547 (0.306-0.977)	0.916 (0.401-2.097)
	0.042	0.836
MAP (mmHg)	1.001 (0.988-1.104)	
	0.923	
Hypertension (yes/no)	1.218 (0.668-2.223)	
	0.519	
Diabetes mellitus (yes/no)	0.828 (0.393-1.744)	0.619
	0.060	0.316
Cirrhosis (yes/no)	0.563 (0.239-1.324)	
	0.188	
Ischemic heart disease (yes/no)	0.387 (0.166-0.901)	1.111 (0.383-3.212)
	0.028	0.845
Stroke (yes/no)	2.500 (0.834-7.493)	
	0.102	
Malignant diseases (yes/no)	0.949 (0.514-1.751)	
	0.867	
SOFA score at ICU admission	1.092 (1.030-1.157)	1.010 (0.937-1.088)
	0.003	0.801
APACHE II at ICU admission	1.038 (1.005-1.073)	1.006 (0.954-1.060)
	0.023	0.836
PLT (10^9/L)	0.999 (0.997-1.002)	
	0.487	
WBC (10^9/L)	1.026 (0.999-1.055)	
	0.062	
TB	1.001 (0.999-1.003)	
	0.216	
Creatinine	1.005 (1.003-1.007)	1.000 (0.998-1.002)
	< 0.001	0.989
K	1.676 (1.190-2.362)	0.918 (0.594-1.416)
	0.003	0.698
Na	1.012 (0.979-1.046)	
	0.473	
INR	1.269 (0.980-1.641)	
	0.070	
PaO2/FiO2	0.994 (0.883-1.119)	
	0.920	
Arterial lactate	0.936 (0.876-1.000)	
	0.051	
Procalcitonin	1.003 (0.996-1.011)	
	0.348	
Blood transfusion (yes/no)	0.896 (0.555-1.452)	
	0.660	
NLR	1.052 (1.026-1.078)	1.290 (1.212-1.373)
	< 0.001	< 0.001

1High neutrophil to lymphocyte ratio (NLR) group (n = 167), Low NLR group (n = 89).
2High NLR group (n = 154), Low NLR group (n = 79). HR: Hazard ratio; MAP: Mean arterial pressure; SOFA score: Sequential organ failure assessment score; APACHE II: Acute physiology and chronic health evaluation; PLT: Platelet count; WBC: White blood cell count; TB: Total bilirubin; INR: International normalized ratio; PaO2/FiO2: Oxygen partial pressure/oxygen concentration; NLR: Neutrophil to lymphocyte ratio.

1.005-1.073, P = 0.023), serum creatinine (HR: 1.005, 95%CI: 1.003-1.007, P < 0.001), serum K concentration (HR: 1.676, 95%CI: 1.190-2.362, P = 0.003) and NLR (HR: 1.052, 95%CI: 1.026-1.078, P < 0.001). Further multivariate analysis revealed that NLR (HR: 1.290, 95%CI: 1.212-1.373, P < 0.001) was an independent risk factor for occurrence of postoperative AKI in patients with gastrointestinal and hepatobiliary surgery in ICU.

ROC curve analysis

ROC curves analysis with occurrence of AKI was used to determine the optimal cut-off value of NLR. The value of NLR at the maximum value of the Youden index is taken as the optimal cut-off point. As shown in Figure 1, the optimal cut-off value of NLR was 8.380 [sensitivity of 82.14% and specificity of 43.43%, area under the curve = 0.634, 95%CI: 0.563-0.705, P = 0.0004]. The patients were divided into a high-NLR group (n = 181) and a low-NLR group (n = 101) by the optimal cut-off value of NLR (8.380).

Patient demographics and clinical features of the high and low NLR groups

As shown in Table 2, the average age of 282 patients in ICU was 60.48 ± 17.74 years. In
Table 2 Patient demographics and clinical features of the high and low NLR groups

Variables	Overall (n = 282)	High-NLR group (n = 181)	Low-NLR group (n = 101)	P value
Age (yr)	60.48 ± 17.74	62.62 ± 17.44	58.42 ± 18.17	0.146
Sex (male/female)	180/102	114/67	66/35	0.695
Operative site				0.330
Gastrointestinal surgery, n (%)	214 (75.89)	134 (74.03)	80 (79.21)	
Hepatobiliary surgery, n (%)	68 (24.11)	47 (25.97)	21 (20.79)	
Characteristics of surgery				0.398
Emergency surgery	55 (19.5)	38 (21.0)	17 (16.8)	
Non-emergency surgery	227 (80.5)	143 (79.0)	84 (83.2)	
Lab values at ICU admission				
PLT (10⁹/L)	144.17 ± 112.61	146.84 ± 114.94	139.40 ± 108.70	0.596
WBC (10⁹/L)	12.67 ± 9.34	14.85 ± 10.25	8.77 ± 5.65	< 0.001
ALT (U/L)	169.28 ± 356.37	194.10 ± 413.23	126.53 ± 259.71	0.140
AST (U/L)	258.83 ± 683.02	310.81 ± 822.44	169.28 ± 308.64	0.098
TB (μmol/L)	87.42 ± 132.18	90.95 ± 126.59	81.14 ± 142.01	0.554
Albumin (g/L)	28.63 ± 6.42	28.14 ±5.90	29.49 ± 7.20	0.091
Creatinine (μmol/L)	131.44 ± 135.27	138.84 ± 122.81	118.20 ± 154.87	0.225
K (mmol/L)	3.95 ± 0.76	4.03 ± 0.77	3.82 ± 0.73	0.034
Na (mmol/L)	137.55 ± 7.72	137.68 ± 7.54	137.32 ± 8.05	0.708
Neutrophil (10⁹/L)	10.68 ± 7.57	13.10 ± 7.91	6.34 ± 4.32	< 0.001
Lymphocyte (10⁹/L)	1.04 ± 1.04	0.78 ± 0.50	1.49 ± 1.50	< 0.001
PaO₂/FiO₂	3.43 ± 4.13	3.30 ± 1.75	3.14 ± 2.63	0.576
Arterial lactate (mmol/L)¹				
Procalcitonin (ng/mL)²	15.85 ± 35.73	17.11 ± 39.68	13.37 ± 26.29	0.453
SOFA score at ICU admission	7.74 ± 5.01	7.63 ± 4.11	7.93 ± 6.34	0.806
APACHE II at ICU admission	16.04 ± 7.78	15.95 ± 7.49	16.19 ± 8.31	0.630
Coexisting conditions				
Smoking (yes/no)	91/191	60/121	31/70	0.672
Drinking (yes/no)	65/217	43/138	22/79	0.706
Hypertension (yes/no)	71/211	44/137	27/74	0.653
Diabetes mellitus (yes/no)	36/246	27/154	9/92	0.147
Ischemic heart disease (yes/no)	24/258	16/165	8/93	0.791
Stroke (yes/no)	26/256	15/166	11/90	0.469
Malignant diseases (yes/no)	62/220	43/138	19/82	0.336
ICU care				
Ventilation (yes/no)	169/113	103/78	66/35	0.166
Dialysis (yes/no)	72/210	54/127	18/83	0.027
Steroids (yes/no)	81/201	52/129	29/72	0.998
CPR (yes/no)	58/224	35/146	23/78	0.494
Vasopressor (yes/no)	131/151	84/97	47/54	0.984
Transfusion	173/109	112/69	61/40	0.806
High neutrophil to lymphocyte ratio (NLR) group: NLR ≥ 8.380, Low NLR group: NLR < 8.380.

1High NLR group (n = 167), Low NLR group (n = 89).
2High NLR group (n = 154), Low NLR group (n = 79). WBC: White blood cell count; PLT: Platelet count; ALT: Alanine aminotransferase; AST: Alanine aminotransferase; PaO2/FiO2: Oxygen partial pressure/oxygen concentration; APACHE II: Acute physiology and chronic health evaluation; SOFA score: Sequential organ failure assessment score; CPR: Cardio-pulmonary resuscitation; NLR: Neutrophil-to-lymphocyte ratio.

Figure 1 Receiver operating characteristic analysis for optimal cutoff values of neutrophil-to-lymphocyte ratio. Area under the receiver operating characteristic curve: 0.6338. The optimal cutoff value of neutrophil-to-lymphocyte ratio was 8.38. NLR: Neutrophil-to-lymphocyte ratio; ROC: Receiver operating characteristic.

The cohort, 24.11% of patients underwent hepatobiliary surgery. The age, sex, operative site and characteristics of surgery showed no significant differences between the high-NLR and low-NLR groups. Laboratory examination at ICU admission revealed that the high-NLR group exhibited higher white blood cell count (14.85 ± 10.25 vs 8.77 ± 5.65, P < 0.001) and neutrophil count (13.10 ± 7.91 vs 6.34 ± 4.32, P < 0.001), and lower lymphocyte count (0.78 ± 0.50 vs 1.49 ± 1.50, P < 0.001) and arterial lactate (2.91 ± 3.29 vs 4.40 ± 5.23, P = 0.006) than the low-NLR group. No significant differences were found in SOFA and APACHE II scores at ICU admission between the two groups. The most common coexisting conditions at ICU admission were smoking, hypertension and drinking. There were no differences in smoking, hypertension, drinking, diabetes mellitus, ischemic heart disease, stroke, and malignant diseases between the high and low-NLR patients. There was no significant difference in terms of ICU care, including ventilation, steroids, cardio-pulmonary resuscitation, vasopressor and transfusion, except that high-NLR patients used more dialysis.

NLR levels in AKI and non-AKI patients
To further clarify the relationship between postoperative AKI occurrence and NLR, we analyzed the NLR levels in the AKI patients and non-AKI patients. The results showed that AKI patients had higher NLR value compared with the non-AKI patients (18.210 ± 14.179 vs 12.121 ± 8.499, P < 0.001) (Figure 2A). Additionally, NLR increased with the severity of AKI (stage 1: 17.356 ± 15.686, stage 2: 19.697 ± 5.080, stage 3: 20.113±13.937) and was significantly higher in all three stages than that in the non-AKI group (Figure 2B).

Clinical outcomes of patients with high and low NLR levels
Clinical outcomes of patients in the high and low NLR groups are shown in Table 3. A total of 84 patients (29.79%) and 28 patients (9.92%) were complicated with AKI and severe AKI, respectively. The incidence of AKI and severe AKI in the high-NLR group was significantly higher than those in the low-NLR group (AKI: 38.12% vs 14.85%, P < 0.001; severe AKI: 14.36% vs 1.98%, P = 0.001). The difference in the occurrence of sepsis between two groups showed a strong tendency of statistical significance (17.68% vs 10.89%, P = 0.083). Additionally, length of ICU stays, ICU re-admission, ICU mortality and 28-d overall mortality exhibited no significant differences between the high-NLR and low-NLR groups.
Table 3 Clinical outcomes of the high and low NLR groups

Variables	Overall (n = 282)	High-NLR group (n = 181)	Low-NLR group (n = 101)	P value
Renal				
AKI, n (%)	84 (29.79)	69 (38.12)	15 (14.85)	< 0.001
Severe AKI	28 (9.92)	26 (14.36)	2 (1.98)	0.001
Sepsis, n (%)	45 (15.96)	32 (17.68)	11 (10.89)	0.083
Length of ICU stay (d)	11.36 ± 13.37	11.36 ± 12.58	11.38 ± 14.74	0.990
ICU re-admission, n (%)	40 (14.18)	24 (13.25)	16 (15.84)	0.551
ICU mortality, n (%)	41 (14.54)	24 (13.25)	17 (16.83)	0.415
28-d overall mortality (%)	80 (28.4)	55 (30.4)	25 (24.8)	0.314

High neutrophil to lymphocyte ratio (NLR) group: NLR ≥ 8.380, Low NLR group: NLR < 8.380; Severe AKI: AKI of stage 2 and stage 3.

128-d overall mortality included ICU mortality and 28-d mortality after leaving ICU. AKI: Acute kidney injury; ICU: Intensive care unit.

DISCUSSION

In this study, the multivariate analysis showed NLR at admission was an independent risk factor for occurrence of postoperative AKI in patients with gastrointestinal and hepatobiliary surgery in ICU. Patients with NLR ≥ 8.380 exhibited significantly higher incidences of postoperative AKI and severe AKI. NLR at admission could be a predictor of AKI occurrence in patients with gastrointestinal and hepatobiliary surgery and should be included in the routine assessment of AKI occurrence.

AKI is one of the most common critical illnesses with high morbidity and poor prognosis. The causes of AKI are extremely complicated, including renal hypoperfusion such as hypovolemia and reduced cardiac output, nephrotoxicity drugs and urinary obstruction[16]. Different causes eventually lead to hypoxia, inflammation, oxidative stress and innate immune system activation and cell death[17]. AKI is a common complication after abdominal surgery. The mortality of patients with postoperative AKI after abdominal surgery increased by 3.5 times[18]. A large number of previous studies have shown that preoperative renal insufficiency is the most important risk factor for AKI after abdominal surgery, and other risk factors include preoperative dehydration, intra-abdominal hypertension, blood transfusion, and use of nephrotoxic drug[19]. Our study found a 29.79% incidence of postoperative AKI in patients with gastrointestinal and hepatobiliary surgery in ICU. Univariate analysis exhibited that sex, coexisting condition of ischemic heart disease, SOFA score at ICU admission, APACHE II at ICU admission, serum creatinine, serum K concentration...
and NLR were significantly associated with occurrence of postoperative AKI. However, multivariate analysis revealed that only NLR was the independent risk factor for occurrence of postoperative AKI in surgical ICU.

Intrarenal and systemic response plays a key role in postoperative AKI. A large number of inflammatory factors and inflammatory cells promote oxidative stress and apoptosis, eventually leading to renal insufficiency. Many anti-inflammatory drugs have significant effects on AKI and have entered clinical trials. Early detection of AKI has great influence on the prognosis of postoperative patients. Examination of indicators of renal insufficiency, such as creatinine and urea nitrogen, is the most accurate test, but changes often occur at a later stage. Some new tests are either too expensive or too difficult to implement, making them difficult for clinical use. NLR is a marker of inflammation reflecting the progress of inflammation-related disease. Extensive studies have shown that NLR can predict the outcome of cardiac surgery, sepsis, and cancer. Our study showed that NLR at admission was an independent risk factor for occurrence of postoperative AKI and patients with NLR ≥ 8.380 exhibited significantly higher incidences of postoperative AKI and severe AKI. NLR, characterized by easy accessibility, objectivity, and noninvasiveness, could be a better predictor of AKI occurrence in patients with gastrointestinal and hepatobiliary surgery.

Sepsis is life threatening organ dysfunction caused by the host's harmful response to infection. Patients with AKI significantly increased sepsis mortality. Studies have shown that sepsis is associated with 50% of AKI, and up to 60% of sepsis patients develop organ dysfunction including AKI. Mechanism of sepsis-induced AKI is that deleterious inflammatory cascade of sepsis causes kidney damage. Several studies have shown that NLR is a predictor of AKI occurrence in patients with sepsis. They showed that NLR ≥ 9.11 in sepsis had a high risk of AKI occurrence. In this study, the difference in the occurrence of sepsis between high-NLR group and low-NLR group showed a strong tendency of statistical significance (17.68% vs 10.89%, P = 0.083). The high tendency of sepsis in the NLR ≥ 8.380 group may be one of the important reasons for NLR as an independent risk factor for AKI in patients with gastrointestinal and hepatobiliary surgery in ICU.

High levels of arterial lactate reflect tissue microcirculatory insufficiency. Numerous studies have considered lactic acid levels as a risk factor in critically ill patients. However, in this study, the multivariate analysis showed that arterial lactate at admission was not an independent risk factor for occurrence of postoperative AKI in patients with gastrointestinal and hepatobiliary surgery in ICU. Intraoperative tissue ischemia and postoperative coagulation and sepsis may lead to changes in lactate levels. In addition, severe inflammatory response in the tissue can lead to elevated lactate acid levels. Our study showed that patients with NLR ≥ 8.380 had high arterial lactate levels (2.91 ± 3.29 mmol/L vs 4.40 ± 5.23 mmol/L, P = 0.006). Increased lactic acid levels may be due to postoperative inflammatory under such conditions.

This study has several limitations. First, this is a single-center retrospective cohort study. The results might be influenced by selection bias, recall bias and some residual confounding. A further multiple-center data was needed to clarify the relationship between NLR and the occurrence of AKI in patients with gastrointestinal and hepatobiliary surgery in ICU. Second, this study retrospectively analyzed the electronic medical records of 282 patients after gastrointestinal and hepatobiliary surgery in the surgical ICU. The conclusion is only based on a small number of patients. A further large sample sized study is needed in the future. Additionally, this research mainly clarified the phenomenon that NLR at admission is a predictor of AKI occurrence, and the specific mechanism needs further study.

In conclusion, NLR at admission was an independent risk factor and could be a predictor for occurrence of postoperative AKI in patients with gastrointestinal and hepatobiliary surgery in ICU. NLR should be included in the routine assessment of AKI occurrence.

ARTICLE HIGHLIGHTS

Research background

Postoperative acute kidney injury (AKI) is one of the most common complications after gastrointestinal and hepatobiliary surgery. Neutrophil-to-lymphocyte ratio (NLR) is a marker of inflammation that can be calculated directly from a patient's complete blood count. Extensive studies have shown that NLR can predict the outcome of cardiac surgery, sepsis, and cancer.
Research motivation
The risk factors and early diagnosis of postoperative AKI have always been urgent problems in clinic.

Research objectives
To clarify the relationship between NLR and the occurrence of AKI in patients with gastrointestinal and hepatobiliary surgery in the intensive care unit (ICU).

Research methods
This study retrospectively analyzed the electronic medical records of 282 patients after gastrointestinal and hepatobiliary surgery in ICU to clarify the relationship between NLR at admission and the postoperative AKI occurrence.

Research results
Postoperative AKI occurred in 29.79% of patients receiving ICU care. NLR value at admission was higher in AKI patients compared with the non-AKI patients and increased with the severity of AKI. Patients with NLR ≥ 8.380 exhibited significantly higher incidences of postoperative AKI and severe AKI than patients with NLR < 8.380. The multivariate analysis showed that NLR at admission was an independent risk factor for occurrence of postoperative AKI in patients with gastrointestinal and hepatobiliary surgery in ICU.

Research conclusions
NLR at admission is a predictor of AKI occurrence in patients with gastrointestinal and hepatobiliary surgery in ICU.

Research perspectives
NLR should be included in the routine assessment of AKI occurrence.

ACKNOWLEDGEMENTS
We are indebted to all individuals who participated in or helped with this research project.

REFERENCES
1 Thakar CV, Christianson A, Freyberg R, Almenoff P, Render ML. Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Administration study. Crit Care Med 2009; 37: 2552-2558 [PMID: 19602973 DOI: 10.1097/CCM.0b013e3181a5906f]
2 Srissawat N, Sileau FE, Murugan R, Bellomod R, Calzavacca P, Cartin-Ceba R, Cruz D, Finn J, Hoste EE, Kashani K, Ronco C, Webb S, Kellum JA; Acute Kidney Injury-6 Study Group. Variation in risk and mortality of acute kidney injury in critically ill patients: a multicenter study. Am J Nephrol 2015; 41: 81-88 [PMID: 25677982 DOI: 10.1159/000371748]
3 Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet 2012; 380: 756-766 [PMID: 22617274 DOI: 10.1016/S0140-6736(11)61454-2]
4 Wang Y, Li Q, Ma T, Liu X, Wang B, Wu Z, Dang S, Lv Y, Wu R. Transfusion of Older Red Blood Cells Increases the Risk of Acute Kidney Injury After Orthotopic Liver Transplantation: A Propensity Score Analysis. Anesth Analg 2018; 127: 202-209 [PMID: 28863026 DOI: 10.1213/ANE.0000000000002437]
5 Trongtrakul K, Sawawiboon C, Wang AY, Chitsomkasem A, Limphunudom P, Kurathong S, Prommool S, Trakarnvanich T, Srissawat N. Acute kidney injury in critically ill surgical patients: Epidemiology, risk factors and outcomes. Nephrology (Carlton) 2019; 24: 39-46 [PMID: 29124867 DOI: 10.1111/nep.13192]
6 Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 2012; 81: 442-448 [PMID: 22113528 DOI: 10.1038/ki.2011.379]
7 Chawla LS, Kimmel PL. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int 2012; 82: 516-524 [PMID: 22673882 DOI: 10.1038/ki.2012.208]
8 Jiang L, Zhu Y, Luo X, Wen Y, Du B, Wang M, Zhao Z, Yin Y, Zhu B, Xi X, Beijing Acute Kidney Injury Trial (BAKIT) workgroup. Epidemiology of acute kidney injury in intensive care units in Beijing: the multi-center BAKIT study. BMC Nephrol 2019; 20: 468 [PMID: 31842787 DOI: 10.1186/s12882-019-1660-z]
9 Odutayo A, Wong CX, Farkouh M, Altman DG, Hopewell S, Emdin CA, Hunn BH. AKI and Long-Term Risk for Cardiovascular Events and Mortality. J Am Soc Nephrol 2017; 28: 377-387 [PMID: 27297949 DOI: 10.1681/ASN.2016010105]
10 Bu X, Zhang L, Chen P, Wu X. Relation of neutrophil-to-lymphocyte ratio to acute kidney injury in patients with sepsis and septic shock: A retrospective study. Int Immunopharmacol 2019; 70: 372-377 [PMID: 30852292 DOI: 10.1016/j.intimp.2019.02.043]
11 Bartlett EK, Flynn JR, Panageas KS, Ferraro RA, Sta Cruz JM, Postow MA, Coit DG, Ariyan CE. High
neutrophil-to-lymphocyte ratio (NLR) is associated with treatment failure and death in patients who have melanoma treated with PD-1 inhibitor monotherapy. Cancer 2020; 126: 76-85 [PMID: 31584709 DOI: 10.1002/cncr.32356]

12 Green J, Bin Mahmoud SU, Mori M, Yousef S, Mangi AA, Geirsson A. Stability across time of the neutrophil-lymphocyte and lymphocyte-neutrophil ratios and associations with outcomes in cardiac surgery patients. J Cardiothorac Surg 2019; 14: 164 [PMID: 31511078 DOI: 10.1186/s13019-019-0988-6]

13 Du Z, Dong B, Bi J, Bai R, Zhang J, Wu Z, Lv Y, Zhang X, Wu R. Predictive value of the preoperative neutrophil-to-lymphocyte ratio for the development of hepatocellular carcinoma in HBV-associated cirrhotic patients after splenectomy. PLoS One 2018; 13: e0195536 [PMID: 29621282 DOI: 10.1371/journal.pone.0195536]

14 World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 2013; 310: 2191-2194 [PMID: 24141714 DOI: 10.1001/jama.2013.281053]

15 Okusa MD, Davenport A. Reading between the (guide)lines--the KDIGO practice guideline on acute kidney injury in the individual patient. Kidney Int 2014; 85: 39-48 [PMID: 24067436 DOI: 10.1038/ki.2013.378]

16 Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet 2019; 394: 1949-1964 [PMID: 31777389 DOI: 10.1016/S0140-6736(19)32563-2]

17 Hulthström M, Becирович-Агич M, Јонссон S. Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol Genomics 2018; 50: 127-141 [PMID: 29341864 DOI: 10.1152/physiolgenom.00037.2017]

18 Kim M, Brady JE, Li G. Variations in the risk of acute kidney injury across intraabdominal surgery procedures. Ann Surg 2014; 119: 1121-1132 [PMID: 25191972 DOI: 10.1213/ANE.0000000000000425]

19 An Y, Shen K, Ye Y. Risk factors for and the prevention of acute kidney injury after abdominal surgery. Surg Today 2018; 48: 573-583 [PMID: 29652006 DOI: 10.1007/s00595-017-1596-5]

20 Rabb H, Griffin MD, McKay DB, Swaminathan S, Pickkers P, Rosner MH, Kellum JA; Ronco C. Acute Dialysis Quality Initiative Consensus XIII Work Group. Inflammation in AKI: Current Understanding, Key Questions, and Knowledge Gaps. J Am Soc Nephrol 2016; 27: 371-379 [PMID: 26561643 DOI: 10.1681/ASN.2015030261]

21 Gameiro J, Fonseca JA, Neves M, Jorge S, Lopes JA. Acute kidney injury in major abdominal surgery: incidence, risk factors, pathogenesis and outcomes. Ann Intensive Care 2018; 8: 2 [PMID: 29427134 DOI: 10.1186/s13613-018-0369-7]

22 Bouchard J, Acharya A, Cerda J, Maccariello ER, Madarasu RC, Tolwani AJ, Liang X, Fu P, Liu ZH, Melha RL. A Prospective International Multicenter Study of AKI in the Intensive Care Unit. Kidney Int 2015; 87: 1324-1331 [PMID: 26195505 DOI: 10.2215/CJN.04360514]

23 Poston JT, Koyner JL. Sepsis associated acute kidney injury. BMJ 2019; 364: k4891 [PMID: 30626586 DOI: 10.1136/bmj.k4891]

24 Ni J, Wang H, Li Y, Shu Y, Liu Y. Neutrophil to lymphocyte ratio (NLR) as a prognostic marker for in-hospital mortality of patients with sepsis: A secondary analysis based on a single-center, retrospective, cohort study. Medicine (Baltimore) 2019; 98: e18029 [PMID: 31725679 DOI: 10.1097/MD.0000000000018029]

25 Lokhandwala S, Andersen LW, Nair S, Patel P, Cocchi MN, Donnino MW. Absolute lactate value vs relative reduction as a predictor of mortality in severe sepsis and septic shock. J Crit Care 2017; 37: 179-184 [PMID: 27771598 DOI: 10.1016/j.jcrc.2016.09.023]

26 Bou Chebl R, El Khuri C, Shami A, Rajha E, Faris N, Bachir R, Abou Dagher G. Serum lactate is an independent predictor of hospital mortality in critically ill patients in the emergency department: a retrospective study. Scand J Trauma Resusc Emerg Med 2017; 25: 69 [PMID: 28705203 DOI: 10.1186/s13049-017-0415-x]

27 O’Connor E, Fraser JF. The interpretation of perioperative lactate abnormalities in patients undergoing cardiac surgery. Anesth Analg 2012; 114: 598-603 [PMID: 22813486 DOI: 10.1213/ane.0b013e3182741f8e]

28 Pucino V, Bombardieri M, Pitalis C, Mauro C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur J Immunol 2017; 47: 14-21 [PMID: 27883186 DOI: 10.1002/eji.201646477]
