This is a repository copy of The generalized Weyl Poisson algebras and their Poisson simplicity criterion.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/145799/

Version: Published Version

Article:
Bavula, V.V. (2020) The generalized Weyl Poisson algebras and their Poisson simplicity criterion. Letters in Mathematical Physics, 110. pp. 105-119. ISSN 0377-9017

https://doi.org/10.1007/s11005-019-01214-7

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
The generalized Weyl Poisson algebras and their Poisson simplicity criterion

V. V. Bavula

Received: 2 February 2019 / Revised: 12 July 2019 / Accepted: 4 September 2019 / Published online: 27 September 2019
© The Author(s) 2019

Abstract
A new large class of Poisson algebras, the class of generalized Weyl Poisson algebras, is introduced. It can be seen as Poisson algebra analogue of generalized Weyl algebras or as giving a Poisson structure to (certain) generalized Weyl algebras. A Poisson simplicity criterion is given for generalized Weyl Poisson algebras, and an explicit description of the Poisson centre is obtained. Many examples are considered (e.g. the classical polynomial Poisson algebra in 2n variables is a generalized Weyl Poisson algebra).

Keywords A generalized Weyl Poisson algebra · A Poisson algebra · The Poisson centre · A Poisson prime ideal · The Poisson simplicity

Mathematics Subject Classification 17B63 · 17B65 · 17B20

Contents
1 Introduction ... 105
2 The generalized Weyl Poisson algebras .. 108
3 Poisson simplicity criterion for generalized Weyl Poisson algebras .. 115
References .. 119

1 Introduction
In this paper, K is a field, algebra means a K-algebra (if it is not stated otherwise) and $K^* = K \setminus \{0\}$.

Generalized Weyl algebras, [1–3]. Let D be a ring, $\sigma = (\sigma_1, ..., \sigma_n)$ be an n-tuple of commuting automorphisms of D, $a = (a_1, ..., a_n)$ be an n-tuple of elements of
the centre $Z(D)$ of D such that $\sigma_i(a_j) = a_j$ for all $i \neq j$. The generalized Weyl algebra $A = D[X, Y; \sigma, a]$ (briefly GWA) of rank n is a ring generated by D and $2n$ indeterminates $X_1, \ldots, X_n, Y_1, \ldots, Y_n$ subject to the defining relations:

$$Y_i X_i = a_i, \quad X_i Y_i = \sigma_i(a_i), \quad X_i d = \sigma_i(d) X_i, \quad Y_i d = \sigma_i^{-1}(d) Y_i \quad (d \in D),$$

$$[X_i, X_j] = [Y_i, Y_j] = [Y_i, X_j] = 0, \quad \text{for all } i \neq j,$$

where $[x, y] = xy - yx$. We say that a and σ are the sets of defining elements and automorphisms of the GWA A, respectively.

The n'th Weyl algebra $A_n = A_n(K)$ over a field (a ring) K is an associative K-algebra generated by $2n$ elements $X_1, \ldots, X_n, Y_1, \ldots, Y_n$, subject to the relations:

$$[Y_i, X_i] = \delta_{ij} \quad \text{and} \quad [X_i, X_j] = [Y_i, Y_j] = 0 \quad \text{for all } i, j,$$

where δ_{ij} is the Kronecker delta function. The Weyl algebra A_n is a generalized Weyl algebra $A = D[X, Y; \sigma; a]$ of rank n where $D = K[H_1, \ldots, H_n]$ is a polynomial ring in n variables with coefficients in K, $\sigma = (\sigma_1, \ldots, \sigma_n)$ where $\sigma_i(H_j) = H_j - \delta_{ij}$ and $a = (H_1, \ldots, H_n)$. The map

$$A_n \rightarrow A, \quad X_i \mapsto X_i, \quad Y_i \mapsto Y_i, \quad i = 1, \ldots, n,$$

is an algebra isomorphism (notice that $Y_i X_i \mapsto H_i$).

It is an experimental fact that many quantum algebras of small Gelfand-Kirillov dimension are GWAs (e.g. $U(sl_2)$, $U_q(sl_2)$, the quantum Weyl algebra, the quantum plane, the Heisenberg algebra and its quantum analogues, the quantum sphere and many others).

The GWA-construction turns out to be a useful one. Using it for large classes of algebras (including the mentioned ones above), all the simple modules were classified, explicit formulae were found for the global and Krull dimensions, their elements were classified in the sense of Dixmier [5], etc.

The generalized Weyl Poisson algebra $D[X, Y; a, \partial]$. Our aim is to introduce a Poisson algebra analogue of generalized Weyl algebras. An associative commutative algebra A is called a Poisson algebra if it is a Lie algebra $(A, \{\cdot, \cdot\})$ such that $\{a, xy\} = \{a, x\}y + x\{a, y\}$ for all elements $a, x, y \in D$. Let A be a Poisson algebra with Poisson bracket $\{\cdot, \cdot\}$, $PZ(A) := \{a \in A | \{a, x\} = 0 \text{ for all } x \in A\}$ be its Poisson centre and $\text{PDer}_K(A)$ be the set of derivations of the Poisson algebra A (see Sect. 2 for details).

Definition Let D be a Poisson algebra, $\partial = (\partial_1, \ldots, \partial_n) \in \text{PDer}_K(D)^n$ an n-tuple of commuting derivations of the Poisson algebra D, $a = (a_1, \ldots, a_n) \in PZ(D)^n$ be such that $\partial_i(a_j) = 0$ for all $i \neq j$. The generalized Weyl algebra

$$A = D[X, Y; (\text{id}_D, \ldots, \text{id}_D), a]$$

$$= D[X_1, \ldots, X_n, Y_1, \ldots, Y_n]/(X_1 Y_1 - a_1, \ldots, X_n Y_n - a_n)$$

admits a Poisson structure which is an extension of the Poisson structure on D and is given by the rule: For all $i, j = 1, \ldots, n$ and $d \in D$,

\square Springer
The Poisson algebra is denoted by $A = D[X, Y; a, \partial]$ and is called the **generalized Weyl Poisson algebra** of rank n (or GWPA, for short) where $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$.

Existence of generalized Weyl Poisson algebras is proven in Sect. 2 (Lemma 2.1). The key idea of the proof is to introduce another class of Poisson algebras, elements of which are denoted by $D[X, Y; \partial, \alpha]$ (see Sect. 2), for which existence problem has an easy solution and then to show that each GWPA is a factor algebra of some $D[X, Y; \partial, \alpha]$. The Poisson algebras $D[X, Y; \partial, \alpha]$ turn out to be also GWPA (Proposition 2.2).

Poisson simplicity criterion for generalized Weyl Poisson algebras. A Poisson algebra is a **simple** Poisson algebra if the ideals 0 and A of the associative algebra A are the only ideals I such that $\{A, I\} \subseteq I$. The ideal I is called a **Poisson ideal** of the Poisson algebra A. An ideal I of the ring D is called ∂-invariant, where $\partial = (\partial_1, \ldots, \partial_n) \in \text{PDer}_K(D)^n$, if $\partial_i(I) \subseteq I$ for all $i = 1, \ldots, n$. The set $D^\partial := \{d \in D | \partial_1(d) = 0, \ldots, \partial_n(d) = 0\}$ is called the **ring of ∂-constants of** D.

In Sect. 3, a proof is given of the following Poisson simplicity criterion for generalized Weyl Poisson algebras; see Proposition 3.1 for the notation.

Theorem 1.1 Let $A = D[X, Y; a, \partial]$ be a GWPA of rank n. Then, the Poisson algebra A is a simple Poisson algebra iff

1. the Poisson algebra D has no proper ∂-invariant Poisson ideals,
2. for all $i = 1, \ldots, n$, $Da_i + D\partial_i(a_i) = D$, and
3. the algebra $\text{PZ}(A)$ is a field, i.e. $\text{char}(K) = 0$, $\text{PZ}(D)^\partial$ is a field and $D_\alpha = 0$ for all $\alpha \in \mathbb{Z}^n \setminus \{0\}$ (see the proposition below).

As a first step in the proof of Theorem 1.1, the following field criterion for the Poisson centre $\text{PZ}(A)$ of a GWPA $A = D[X, Y; a, \partial]$ of rank n is proven (in Sect. 3).

Proposition 1.2 Let $A = D[X, Y; a, \partial]$ be a GWPA of rank n. Then, $\text{PZ}(A)$ is a field iff $\text{char}(K) = 0$, $\text{PZ}(D)^\partial$ is a field and $D_\alpha = 0$ for all $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n \setminus \{0\}$ where $D_\alpha = \{\lambda \in D^\partial | \text{pad}_\lambda := \{\lambda, \cdot\} = \lambda \sum_{i=1}^n \alpha_i \partial_i, \ \lambda \alpha_i \partial_i(a_i) = 0 \text{ for } i = 1, \ldots, n\}$.

An explicit description of the Poisson centre is obtained (Proposition 3.1). Many examples are considered. We show that many classical Poisson algebras are GWPA.

At the end of Sect. 2, we show that GWPA appear as associated graded Poisson algebras of certain GWAs (Proposition 2.3). This is a sort of quantization procedure.

At the end of Sect. 3, examples of simple GWPA (as Poisson algebras) are considered (Corollary 3.5). This family of simple Poisson algebras includes, as a particular case, the **classical Poisson polynomial algebras** $P_{2n} = K[X_1, \ldots, X_n, Y_1, \ldots, Y_n]$ ($\{Y_i, X_j\} = \delta_{ij}$ and $\{X_i, X_j\} = \{X_i, Y_j\} = \{Y_i, Y_j\} = 0$ for all $i \neq j$).
2 The generalized Weyl Poisson algebras

In this section, two new classes of Poisson algebras are introduced and their existence is proved. One of them is the class of generalized Weyl Poisson algebras (GWPAs). Examples are considered. At the end of the section, it is shown that some GWPAs are obtained from GWAs by a sort of quantization procedure (Proposition 2.3).

Poisson algebras. A commutative associative algebra D is called a Poisson algebra if it is a Lie algebra $(D, \{\cdot, \cdot\})$ such that $\{a, xy\} = \{a, x\}y + x\{a, y\}$ for all elements $a, x, y \in D$.

For a K-algebra D, let $\text{Der}_K(D)$ be the set of its K-derivations. If, in addition, $(D, \{\cdot, \cdot\})$ is a Poisson algebra, then

$$\text{PDer}_K(D) := \{\delta \in \text{Der}_K(D) \mid \delta(\{a, b\}) = \delta(a) b + a \delta(b) \text{ for all } a, b \in D\}$$

is the set of derivations of the Poisson algebra D. The vector space $\text{Der}_K(D)$ is a Lie algebra, where $[\delta, \partial] := \delta \partial - \partial \delta$, and $\text{PDer}_K(D)$ is a Lie subalgebra of $\text{Der}_K(D)$. The set of inner derivations

$$\text{IDer}_K(D) := \{\text{ad}_a \mid a \in D\} \text{ (where } \text{ad}_a(b) := [a, b] := ab - ba)$$

is an ideal of the Lie algebra $\text{Der}_K(D)$ (since $[\delta, \text{ad}_a] = \text{ad}_{\delta(a)}$ for all $\delta \in \text{Der}_K(D)$ and $a \in D$). Similarly, the set of inner derivations of the Poisson algebra D

$$\text{PIDer}_K(D) := \{\text{pad}_a \mid a \in D\} \text{ (where } \text{pad}_a(b) := \{a, b\})$$

is an ideal of the Lie algebra $\text{PDer}_K(D)$ (since $[\delta, \text{pad}_a] = \text{pad}_{\delta(a)}$ for all $\delta \in \text{PDer}_K(D)$ and $a \in D$). By the very definition, the Poisson algebra D is a Lie algebra with respect to the bracket $\{\cdot, \cdot\}$. The map $\text{D} \to \text{PIDer}_K(D), a \mapsto \text{pad}_a$, is an epimorphism of Lie algebras with kernel

$$\text{PZ}(D) := \{a \in \text{D} \mid \{a, D\} = 0\}$$

which is called the centre of the Poisson algebra (or the Poisson centre of D). So, the Poisson structure of the algebra D induces the ‘multiplicative structure’ on the Lie algebra $\text{PIDer}_K(D)$, i.e. $\text{pad}_{ab}(\cdot) = \text{pad}_a(\cdot) b + a \text{pad}_b(\cdot)$.

Notice that the centre $Z(D) := \{z \in \text{D} \mid zd = dz \text{ for all } d \in \text{D}\}$ of any associative algebra D is invariant under the action of $\text{Der}_K(D)$: Let $z \in Z(D), d \in \text{D}$ and $\partial \in \text{Der}_K(D)$; then, applying the derivation ∂ to the equality $zd = dz$, we obtain the equality $\partial(z)d = d\partial(z)$, i.e. $\partial(z) \in Z(D)$. Similarly, the Poisson centre $\text{PZ}(D)$ is invariant under the action of $\text{PDer}_K(D)$: Let $z \in \text{PZ}(D), d \in \text{D}$ and $\partial \in \text{PDer}_K(D)$; then, applying the derivation ∂ to the equality $\{z, d\} = 0$, we obtain the equality $\{\partial(z), d\} = 0$, i.e. $\partial(z) \in \text{PZ}(D)$.

Let D be a Poisson algebra, $\partial = (\partial_1, \ldots, \partial_n) \in \text{PDer}_K(D)^n$ be an n-tuple of commuting derivations of the Poisson algebra D and $X = (X_1, \ldots, X_n)$ be an n-tuple of commuting variables. The polynomial algebra $D[X] = D[X_1, \ldots, X_n]$ with coefficients from D admits a Poisson structure which is an extension of the Poisson structure on D given by the rule
The Poisson algebra $D[X]$ is denoted by $D[X; \partial]$ and is called the Poisson Ore extension of D of rank n.

Let G be a monoid. Suppose that the associative algebra $D = \bigoplus_{g \in G} D_g$ is a G-graded algebra $(D_g D_h \subseteq D_{gh}$ for all $g, h \in G)$. If, in addition, D is a Poisson algebra and $(D_g, D_h) \subseteq D_{gh}$ for all $g, h \in G$, then we say that the Poisson algebra D is a G-graded Poisson algebra.

The Poisson algebra $D[X, Y; \partial, \alpha]$. Now, we introduce a class of Poisson algebras which is used in the proof of existence of GWPAs (Lemma 2.1).

Definition Let D be a Poisson algebra, $\partial = (\partial_1, \ldots, \partial_n) \in \text{PDer}_K(D)^n$ be an n-tuple of commuting derivations of the Poisson algebra D and $\alpha = (\alpha_1, \ldots, \alpha_n) \in \text{PZ}(D)^n$. Then, the polynomial algebra $D[X, Y] = D[X_1, \ldots, X_n, Y_1, \ldots, Y_n]$ with coefficients in D admits a Poisson structure which is an extension of the Poisson structure on D given by the rule: For all $i, j = 1, \ldots, n$ and $d \in D$,

$$\{Y_i, d\} = \partial_i(d)Y_i, \{X_i, d\} = -\partial_i(d)X_i \quad \text{and} \quad \{Y_i, X_i\} = \alpha_i, \quad (4)$$

$$\{X_i, X_j\} = \{X_i, Y_j\} = \{Y_i, Y_j\} = 0 \quad \text{for all} \quad i \neq j. \quad (5)$$

The Poisson algebra $D[X, Y]$ is denoted by $\mathcal{A} = D[X, Y; \partial, \alpha]$ where $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$.

Let us show that the Poisson structure on the polynomial algebra $D[X, Y]$ is well defined. Let $n = 1$. The Poisson algebra $D[X_1, Y_1; \partial_1, \alpha_1]$ is an extension of the Poisson Ore extension $D[X_1; -\partial_1]$ by adding a commuting variable Y_1 where the Poisson structure on the algebra $D[X_1][Y_1]$ is given by the rule

$$\{Y_1, d\} = \partial_1(d)Y_1 \quad \text{and} \quad \{Y_1, X_1\} = \alpha_1.$$

The Poisson structure on the algebra $D[X_1][Y_1]$ is well defined as $\{Y_1, \cdot \}$ respects the relation $\{X_1, d\} = -\partial_1(d)X_1$ for all $d \in D$:

$$\{Y_1, \{X_1, d\}\} = \{\alpha_1, d\} + \{X_1, \partial_1(d)Y_1\} = 0 - \partial_1^2(d)X_1Y_1 - \partial_1(d)\alpha_1$$

$$= -\{Y_1, \partial_1(d)X_1\}.$$

For $n \geq 1$, the Poisson algebra

$$D[X, Y; \partial, \alpha] = D[X_1, Y_1; \partial_1, \alpha_1] \cdots [X_n, Y_n; \partial_n, \alpha_n]. \quad (6)$$

is an iteration of this construction n times.

Consistency of the defining relations of generalized Weyl Poisson algebra follows from the next lemma.

Lemma 2.1 We keep the assumptions of the Definition of GWP A $A = D[X, Y; a, \partial]$. Let $A = D[X, Y; \partial, \partial(a)]$ where $\partial(a) = (\partial(a_1), \ldots, \partial(a_n))$. Then, $X_1Y_1 = \ldots$
is an isomorphism. Similarly, let \(A = D[X, Y; a, \partial] \) be a GWPA of rank \(n \) and \(I \) be a subset of the set \(\{1, \ldots, n\} \). Let \(s_I \) be a bijection of the set \(X \cup Y = \{X_1, \ldots, X_1, Y_1, \ldots, Y_n\} \) which is given by the rule

\[
s_I(X_i) = \begin{cases}
Y_i & \text{if } i \in I, \\
X_i & \text{if } i \notin I.
\end{cases}
\]

and

\[
s_I(Y_i) = \begin{cases}
X_i & \text{if } i \in I, \\
Y_i & \text{if } i \notin I.
\end{cases}
\]

Let \(\text{sign}(I)\partial := (\varepsilon_1\partial_1, \ldots, \varepsilon_n\partial_n) \) where \(\varepsilon_i = \begin{cases}
-1 & \text{if } i \in I, \\
1 & \text{if } i \notin I.
\end{cases} \)

Then, the \(D \)-homomorphism of Poisson algebras

\[
\otimes Springer
\]
\[s_I : A \rightarrow D[s_I(X), s_I(Y); a, \text{sign}(I)\partial], \]
\[X_i \mapsto s_I(X_i), \ Y_i \mapsto s_I(Y_i), \]
\[d \mapsto d \ (d \in D), \]
(9)
is an isomorphism.

Recall that \(\delta_{ij} \) is the Kronecker delta function. The next proposition shows that the Poisson algebras \(D[X, Y; \partial, \alpha] \) are GWPAs.

Proposition 2.2 The Poisson algebra \(A = D[X, Y; \partial, \alpha] \) is a GWPA of rank \(n \)

\[D[H_1, \ldots, H_n][X, Y; H, \partial] \]

where \(D[H_1, \ldots, H_n] \) is a Poisson polynomial algebra over \(D \) such that \(\{H_i, D\} = 0 \) and \(\{H_i, H_j\} = 0 \) for all \(i, j \), \(H = (H_1, \ldots, H_n) \) and \(\partial_i(H_j) = \delta_{ij}\alpha_jH_j \) for all \(i, j \).

Proof Consider the following elements of the polynomial algebra \(\mathcal{P} \)

\[\partial_i \]
\[\partial \]
\[H \]
\[\alpha \]
\[D \]
\[X \]
\[Y \]
\[a \]
\[s \]
\[n \]
\[k \]
\[\delta \]
\[\pi \]
\[\lambda \]
\[\mu \]
\[\nu \]
\[\omega \]
\[\theta \]
\[\vartheta \]
\[\xi \]
\[\chi \]
\[\psi \]
\[\phi \]
\[\sigma \]
\[\tau \]
\[\upsilon \]
\[\zeta \]
\[\varepsilon \]
\[\delta \]
\[\gamma \]
\[\omega \]
\[\epsilon \]
\[\zeta \]
\[\eta \]
\[\theta \]
\[\kappa \]
\[\lambda \]
\[\mu \]
\[\nu \]
\[\xi \]
\[\chi \]
\[\psi \]
\[\phi \]
\[\sigma \]
\[\tau \]
\[\upsilon \]
\[\omega \]
\[\epsilon \]
\[\zeta \]
\[\eta \]
\[\theta \]
\[\kappa \]
\[\lambda \]
\[\mu \]
\[\nu \]
\[\xi \]
\[\chi \]
\[\psi \]
\[\phi \]
\[\sigma \]
\[\tau \]
\[\upsilon \]
\[\omega \]
\[\epsilon \]
\[\zeta \]
\[\eta \]
\[\theta \]
\[\kappa \]
\[\lambda \]
\[\mu \]
\[\nu \]
\[\xi \]
\[\chi \]
\[\psi \]
\[\phi \]
\[\sigma \]
\[\tau \]
\[\upsilon \]
\[\omega \]
\[\epsilon \]
\[\zeta \]
\[\eta \]
\[\theta \]
\[\kappa \]
\[\lambda \]
\[\mu \]
\[\nu \]
\[\xi \]
\[\chi \]
\[\psi \]
\[\phi \]
\[\sigma \]
\[\tau \]
\[\upsilon \]
\[\omega \]
\[\epsilon \]
\[\zeta \]
\[\eta \]
\[\theta \]
\[\kappa \]
\[\lambda \]
\[\mu \]
\[\nu \]
\[\xi \]
\[\chi \]
\[\psi \]
\[\phi \]
\[\sigma \]
\[\tau \]
\[\upsilon \]
\[\omega \]
\[\epsilon \]
\[\zeta \]
\[\eta \]
\[\theta \]
\[\kappa \]
\[\lambda \]
\[\mu \]
\[\nu \]
\[\xi \]
\[\chi \]
\[\psi \]
\[\phi \]
\[\sigma \]
\[\tau \]
\[\upsilon \]
\[\omega \]
\[\epsilon \]
\[\zeta \]
\[\eta \]
\[\theta \]
\[\kappa \]
\[\lambda \]
\[\mu \]
\[\nu \]
\[\xi \]
\[\chi \]
\[\psi \]
\[\phi \]
\[\sigma \]
\[\tau \]
\[\upsilon \]
\[\omega \]
\[\epsilon \]
\[\zeta \]
\[\eta \]
\[\theta \]
\[\kappa \]
\[\lambda \]
\[\mu \]
\[\nu \]
\[\xi \]
\[\chi \]
\[\psi \]
\[\phi \]
\[\sigma \]
\[\tau \]
\[\upsilon \]
\[\omega \]
\[\epsilon \]
\[\zeta \]
\[\eta \]
\[\theta \]
\[\kappa \]
\[\lambda \]
\[\mu \]
\[\nu \]
\[\xi \]
\[\chi \]
\[\psi \]
\[\phi \]
\[\sigma \]
\[\tau \]
\[\upsilon \]
\[\omega \]
\[\epsilon \]
\[\zeta \]
\[\eta \]
\[\theta \]
\[\kappa \]
\[\lambda \]
\[\mu \]
\[\nu \]
\[\xi \]
\[\chi \]
\[\psi \]
\[\phi \]
\[\sigma \]
\[\tau \]
\[\upsilon \]
\[\omega \]
\[\epsilon \]
\[\zeta \]
\[\eta \]
\[\theta \]
\[\kappa \]
\[\lambda \]
\[\mu \]
\[\nu \]
\[\xi \]
\[\chi \]
\[\psi \]2. The classical Poisson polynomial algebra \(P_{2n} = K[X_1, \ldots, X_n, Y_1, \ldots, Y_n] \) (\(\{Y_i, X_j\} = \delta_{ij} \) and \(\{X_i, X_j\} = \{Y_i, Y_j\} = 0 \) for all \(i \neq j \)) is a GWPA

\[P_{2n} = K[H_1, \ldots, H_n][X, Y; a, \partial] \]
(10)

where \(K[H_1, \ldots, H_n] \) is a Poisson polynomial algebra with trivial Poisson bracket, \(a = (H_1, \ldots, H_n), \partial = (\partial_1, \ldots, \partial_n) \) and \(\partial_i = \frac{\partial}{\partial H_i} \) (via the isomorphism of Poisson algebras \(P_{2n} \)).

3. \(A = D[X, Y; a, \partial] \) where \(D = K[H_1, \ldots, H_n] \) is a Poisson polynomial algebra with trivial Poisson bracket, \(a = (a_1, \ldots, a_n) \in K[H_1] \times \cdots \times K[H_n], \)

\(\square \) Springer
\[\partial = (\partial_1, \ldots, \partial_n) \text{ where } \partial_i = b_i \partial_{H_i} \text{ (where } \partial_{H_i} = \frac{\partial}{\partial H_i}) \text{ and } b_i \in K[H_i]. \text{ In particular, } \\
D[X, Y; (H_1, \ldots, H_n), (\partial_{H_1}, \ldots, \partial_{H_n})] = P_{2n} \text{ is the classical Poisson polynomial algebra.} \]

Let \(S \) be a multiplicative set of \(D \). Then, \(S^{-1} A \cong (S^{-1} D)[X, Y; a, \partial] \) is a GWA. In particular, for \(S = \{H^a \mid a \in \mathbb{Z}^n\} \), we have \(K[H_1^\pm 1, \ldots, H_n^\pm 1][X, Y; a, \partial] \). In the case \(n = 1 \), the Poisson algebra

\[
K[H_1^\pm 1][X, Y; a_1, -H_1 \frac{d}{dH_1}]
\]

where \(a_1 \in K[H_1^\pm 1] \) is, in fact, isomorphic to a Poisson algebra in the paper of Cho and Oh [4] which is obtained as a quantization of a certain GWA with respect to the quantum parameter \(q \). In [4, Theorem 3.7], a Poisson simplicity criterion is given for this Poisson algebra.

4. Let \(D = K[C, H] \) be a Poisson polynomial algebra with trivial Poisson bracket, \(a \in D \) and \(\partial \) is a derivation of the algebra \(D \). The GWA \(A = D[X, Y; a, \partial] \) of rank 1 is a generalization of some Poisson algebras that are associated with \(U(\mathfrak{sl}_2) \), see the next example.

5. Let \(U = U(\mathfrak{sl}_2) \) be the universal enveloping algebra of the Lie algebra

\[
\mathfrak{sl}_2 = K \langle X, Y, H \mid [H, X] = X, \ [H, Y] = -Y, \ [X, Y] = 2H \rangle
\]

over a field \(K \) of characteristic zero. The associated graded algebra \(\text{gr}(U) \) with respect to the filtration \(\mathcal{F} = \{\mathcal{F}_i\}_{i \in \mathbb{N}} \) that is determined by the total degree of the elements \(X, Y \) and \(H \) is a Poisson polynomial algebra \(K[X, Y, H] \) where

\(\{H, X\} = X, \ \{X, Y\} = -Y \text{ and } \{X, Y\} = 2H. \)

The element \(C = XY + H^2 \) belongs to the Poisson centre of the Poisson polynomial algebra \(\text{gr}(U) \). The Poisson algebra

\[\text{gr}(U) = K[C, H][X, Y; a = C - H^2, \partial_H] \] \hspace{1cm} (11)\]

is a GWA of rank 1 where \(\partial_H := \frac{\partial}{\partial H}. \)

6. Let \(U \) be the universal enveloping algebra of the Heisenberg Lie algebra

\[
\mathcal{H}_n = K \langle X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z \mid [X_i, Y_j] = \delta_{ij} Z, \ [X_i, X_j] = [Y_i, Y_j] = 0 \text{ for all } i, j; \ Z \text{ is a Poisson central element}. \]

The associated graded algebra \(\text{gr}(U) \) with respect to the filtration by the total degree of the canonical generators is a Poisson polynomial algebra \(K[X_1, \ldots, X_n, Y_1, \ldots, Y_n, Z] \) where, for all \(i, j, \)

\(\{X_i, Y_j\} = \delta_{ij} Z, \ \{X_i, X_j\} = \{Y_i, Y_j\} = 0 \)

and the element \(Z \) belongs to the Poisson centre of \(\text{gr}(U) \). Then, the polynomial algebra
\[\text{gr}(U) = D[X, Y; a, \partial] \]

is a GWPA of rank \(n \) where \(D = K[H_1, \ldots, H_n, Z] \) is a Poisson polynomial algebra with trivial Poisson bracket, \(X = (X_1, \ldots, X_n), Y = (Y_1, \ldots, Y_n), a = (a_1 = H_1, \ldots, a_n = H_n), \partial = (Z \partial H_1, \ldots, Z \partial H_n) \) and \(\partial H_i := \frac{\partial}{\partial H_i} \).

Let \(A_s = D_s[X(s), Y(s); a(s), \partial(s)] \) be GWPA's of rank \(n_s \) where \(s = 1, \ldots, m \). The tensor product of algebras

\[A = \bigotimes_{s=1}^m A_s = \left(\bigotimes_{s=1}^m D_s \right)[X, Y; a, \partial] \]

is a GWPA of rank \(n_1 + \cdots + n_m \) where \(X = (X(1), \ldots, X(m)), Y = (Y(1), \ldots, Y(m)), a = (a(1), \ldots, a(m)) \) and \(\partial = (\partial(1), \ldots, \partial(m)) \). The Poisson structure on \(A \) is a tensor product of Poisson structures on \(A_s \), i.e. for all elements \(u = \bigotimes_{s=1}^m u_s, v = \bigotimes_{s=1}^m v_s \in A \) (where \(u_s, v_s \in A_s \)),

\[\{u, v\} = \sum_{s=1}^m u_1 v_1 \otimes \cdots \otimes \{u_s, v_s\} \otimes \cdots \otimes u_m v_m. \]

Example The classical Poisson polynomial algebra \(P_{2n} \) [see (10)] is the tensor product \(P_2^\otimes n \) of \(n \) copies of the classical Poisson polynomial algebra \(P_2 \).

An algebraic torus action on a GWPA Let \(A = D[X, Y; a, \partial] \) be a GWPA of rank \(n \) and \(\text{Aut}_{\text{Pois}}(A) \) be the group of automorphisms of the Poisson algebra \(A \). Elements of \(\text{Aut}_{\text{Pois}}(A) \) are called Poisson automorphisms of \(A \). For each element \(\lambda = (\lambda_1, \ldots, \lambda_n) \in K^{*n} \), the \(K \)-algebra homomorphism

\[t_\lambda : A \rightarrow A, \ X_i \mapsto \lambda_i X_i, \ Y_i \mapsto \lambda_i^{-1} Y_i, \ d \mapsto d \quad (d \in D), \]

is an automorphism of the Poisson algebra \(A \). The subgroup \(\mathbb{T}^n = \{ t_\lambda | \lambda \in K^{*n} \} \) of \(\text{Aut}_{\text{Pois}}(A) \) is an algebraic torus \(\mathbb{T}^n \cong K^{*n}, t_\lambda \mapsto \lambda \). For all \(\alpha \in \mathbb{Z}^n \) and \(u_\alpha \in A_\alpha = D u_\alpha, t_\lambda(u_\alpha) = \lambda^\alpha \cdot u_\alpha \) where \(\lambda^\alpha = \prod_{i=1}^n \lambda_i^{\alpha_i}. \)

The subgroup

\[\text{Aut}_{\text{Pois}}(D)^{\partial, a} := \{ \sigma \in \text{Aut}_{\text{Pois}}(D) | \sigma \partial_i = \partial_i \sigma \text{ and } \sigma(a_i) = a_i \text{ for } i = 1, \ldots, n \} \]

of \(\text{Aut}_{\text{Pois}}(D) \) can be seen as a subgroup of \(\text{Aut}_{\text{Pois}}(A) \) where each automorphism \(\sigma \in \text{Aut}_{\text{Pois}}(D)^{\partial, a} \) trivially acts at \(X \) and \(Y \), i.e. \(\sigma(X_i) = X_i \) and \(\sigma(Y_i) = Y_i \). Clearly,

\[\mathbb{T}^n \times \text{Aut}_{\text{Pois}}(D)^{\partial, a} \subseteq \text{Aut}_{\text{Pois}}(A). \]

Associated graded algebra of a GWA is a GWPA. Let \(A = D[X, Y; \sigma, a] \) be a GWA of rank \(n \) such that \(D = \bigcup_{i \in \mathbb{N}} D_i \) is a filtered algebra \((D_i D_j \subseteq D_{i+j} \text{ for all } i, j \in \mathbb{N}; D_{-1} = 0) \),

\[[d_i, d_j] \in D_{i+j-\nu} \text{ for all } d_i \in D_i \text{ and } d_j \in D_j \text{ where } \nu \text{ is a positive integer;} \]
\(\sigma_i(D_j) = D_j\) and \((\sigma_i - 1)(D_j) \subseteq D_{j-v}\) for all \(i = 1, \ldots, n\) and \(j \in \mathbb{N}\). Suppose that \(a_i \in D_{d_i} \setminus D_{d_i-1}\) for some \(d_i \geq 1\). The algebra \(A\) admits a filtration \(\{A_s\}_{s \in \frac{1}{2}\mathbb{N}}\) where

\[
A_s = \sum_{i+d \cdot \alpha \leq s} D_i v_{\alpha}, \quad d = (d_1, \ldots, d_n), \quad \alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n \quad \text{and} \quad d \cdot \alpha = \frac{1}{2} \sum_{i=1}^n d_i |\alpha_i|.
\]

The associated graded algebra

\[
gr(A) = \text{gr}(D)[X, Y; \text{id}, \ldots, \text{id}, \overline{a}]
\]

is a commutative GWA where \(\overline{a}_i = a_i + D_{d_i-1} \in D_{d_i}/D_{d_i-1}\). For all elements \(u_s \in A_s\) and \(u_t \in A_t\),

\[
[u_s, u_t] \in A_{s+t-v}.
\]

(15)

Let \(\overline{u}_s = u_s + A_{s-1} \in A_s/A_{s-1}\) and \(\overline{u}_t = u_t + A_{t-1} \in A_t/A_{t-1}\). The bracket

\[
\{u_s, u_t\} := [u_s, u_t] := [u_s, u_t] + A_{s+t-v-1} \in A_{s+t-v}/A_{s+t-v-1}
\]
determines the Poisson structure on \(\text{gr}(A)\). For each \(i = 1, \ldots, n\), the map

\[
\partial_i := \sigma_i^{-1} : \text{gr}(D) \to \text{gr}(D), \quad \text{gr}(D)_j \ni \partial_j \mapsto (\sigma_i - 1)(b_j) + D_{j-v-1} \in \text{gr}(D)_{j-v}.
\]
is a \(K\)-derivation of the commutative algebra \(\text{gr}(D)\). The derivations \(\partial_1, \ldots, \partial_n\) commute since the automorphisms \(\sigma_1, \ldots, \sigma_n\) commute. Notice that

\[
[X_i, b_j] = (\sigma_i - 1)(b_j)X_i \quad \text{and} \quad [Y_i, b_j] = (\sigma_i^{-1} - 1)(b_j)Y_i.
\]

Hence, \(\{X_i, \overline{b}_j\} = \partial_i(b_j)X_i\) and \(\{Y_i, \overline{b}_j\} = -\partial_i(b_j)Y_i\) since

\[
(\sigma_i^{-1} - 1)(b_j) = -(\sigma_i - 1)\sigma_i^{-1}(b_j) \equiv -\partial_i(\overline{b}_j) \mod D_{j-v-1}.
\]

Therefore, the Poisson algebra \(\text{gr}(A)\) is a GWPA \(\text{gr}(D)[X, Y; \overline{a}, -\partial]\) where \(\overline{a} = (\overline{a}_1, \ldots, \overline{a}_n)\) and \(-\partial = (-\partial_1, \ldots, -\partial_n)\). So, we proved that the following proposition holds.

Proposition 2.3 Let \(A = D[X, Y; \sigma, a]\) be a GWAP of rank \(n\) such that \(D = \bigcup_{i \in \mathbb{N}} D_i\) is a filtered algebra; \(|d_i, d_j| \in D_{i+j-v}\) for all \(d_i \in D_i\) and \(d_j \in D_j\) where \(v\) is a positive integer; \(\sigma_i(D_j) = D_j\) and \((\sigma_i - 1)(D_j) \subseteq D_{j-v}\) for all \(i = 1, \ldots, n\) and \(j \in \mathbb{N}\). Suppose that \(a_i \in D_{d_i} \setminus D_{d_i-1}\) for some \(d_i \geq 1\). Let \(\{A_s\}_{s \in \frac{1}{2}\mathbb{N}}\) be the filtration as above. The associated graded algebra \(\text{gr}(A)\) is a GWPA \(\text{gr}(D)[X, Y; \overline{a}, -\partial]\) where \(\overline{a}\) and \(-\partial\) are defined above.
The generalized Weyl Poisson...

Example 1. The \(n \)’th Weyl algebra \(A_n \) is a GWA \(K[H_1, \ldots, H_n][X, Y; \sigma, a] \) where \(\sigma_j(H_i) = H_j - \delta_{ij} \) and \(a_i = H_i \) for \(i, j = 1, \ldots, n \). The polynomial algebra \(D = K[H_1, \ldots, H_n] \) admits a natural filtration \(\{D_i\}_{i \in \mathbb{N}} \) by the total degree of the variables \(H_1, \ldots, H_n \). The automorphisms \(\sigma_1, \ldots, \sigma_n \) satisfy the conditions of Proposition 2.3 with \(\nu = 1 \), \(d_1 = \cdots = d_n = 1 \) and \(\partial_1 = -\frac{\partial}{\partial H_1}, \ldots, \partial_n = -\frac{\partial}{\partial H_n} \). Notice that \(\text{gr}(D) = D \). By Proposition 2.3, the algebra

\[
\text{gr}(A_n) \simeq D[X, Y]/(X_1Y_1 - H_1, \ldots, X_nY_n - H_n) \simeq K[X, Y] = P_{2n}
\]

is a GWPA \(D[X, Y; (H_1, \ldots, H_n), (\frac{\partial}{\partial H_1}, \ldots, \frac{\partial}{\partial H_n})] \) which is the classical Poisson algebra \(P_{2n} \) with the canonical Poisson bracket \(\{Y_i, X_j\} = \delta_{ij}, \{X_i, X_j\} = \{Y_i, Y_j\} = 0 \) for all \(i, j \) such that \(i \neq j \).

2. The universal enveloping algebra \(U = U(\mathfrak{sl}_2) \) is the GWA \(A = K[C, H][X, Y; \sigma, a] \) of rank 1 where \(\sigma(H) = H - 1, \sigma(C) = C \) and \(a = C - H(H + 1) \) (the element \(C \) is the Casimir element, \(C = XY + H(H + 1) \)). The filtration \(\mathcal{F} = \{\mathcal{F}_i\}_{i \in \mathbb{N}} \) on \(U \) that was considered above (which is based on the total degree of the canonical generators \(X, Y \) and \(H \)) induces a filtration \(\{D_i := D \cap \mathcal{F}_i\}_{i \in \mathbb{N}} \) on the polynomial algebra \(D = K[C, H] \). Clearly,

\[
D_i = \bigoplus_{2s + t \leq i} KC^sH^t \quad \text{for all} \quad i \in \mathbb{N}.
\]

The automorphism \(\sigma \) and the filtration \(\{D_i\}_{i \in \mathbb{N}} \) satisfy the conditions of Proposition 2.3 where \(d_1 = 2 \) and \(\nu = -1 \). The associated graded Poisson algebra \(\text{gr}(A) \simeq K[C, H][X, Y; C - H^2, \partial_H] \) is canonically isomorphic to the associated graded Poisson algebra \(\text{gr}(U) \) as \(\mathbb{N} \)-graded Poisson algebra (since \(\text{gr}(A)_{\frac{1}{2} + i} = 0 \) for all \(i \in \mathbb{N} \)), see (11).

The filtration \(\{D'_i := \bigoplus_{j \leq i} K[C]H^j\}_{i \in \mathbb{N}} \) also satisfies the conditions of Proposition 2.3 where \(d_1 = 2 \) and \(\nu = -1 \) but the associated graded algebra \(\text{gr}'(A) \) is a GWPA \(K[C, H][X, Y; -H^2, \partial_H] \). The associated graded Poisson algebras \(\text{gr}(A) \) and \(\text{gr}'(A) \) are not isomorphic since the algebra \(\text{gr}(A) \) is smooth but the algebra \(\text{gr}'(A) \simeq K[C] \otimes K[X, Y](XY - H^2) \) is singular as the points \(\{(C, H, X, Y) = (\lambda, 0, 0, 0) \mid \lambda \in K \} \) are singular. So, the Poisson algebras \(\text{gr}(A) \) and \(\text{gr}'(A) \) are also not isomorphic.

3 Poisson simplicity criterion for generalized Weyl Poisson algebras

In this section, for generalized Weyl Poisson algebras, a proof of the Poisson simplicity criterion (Theorem 1.1) is given, an explicit description of their Poisson centre is obtained (Proposition 3.1) and a proof of the criterion for the Poisson centre being a field (Proposition 1.2) is given.

Let \(A \) be a Poisson algebra. An ideal \(I \) of the associative algebra \(A \) is called a Poisson ideal if \(\{A, I\} \subseteq I \). A Poisson ideal is also called an ideal of the Poisson algebra. Suppose that \(D \) be a set of derivations of the associative algebra \(A \). Then, the
set $A^D := \{ a \in A \mid \partial(a) = 0 \text{ for all } \partial \in D \}$ is a subalgebra of A which is called the algebra of D-constants (or the algebra of constants for D). An ideal J of the algebra A is called a D-invariant ideal if $\partial(J) \subseteq J$ for all $\partial \in D$.

The Poisson centre of a GWPA. Let $A = D[X, Y; a, \partial]$ be a GWPA of rank n. For all elements λ, $d \in D$, $\alpha \in \mathbb{Z}^n$ and $i = 1, \ldots, n$

$$\{d, \lambda v_\alpha\} = (-\text{pad}_\lambda + \lambda \sum_{i=1}^{n} \alpha_i \partial_i)(d)v_\alpha,$$

(16)

$$\{v_{\pm 1}(i), \lambda v_\alpha\} = \begin{cases} \mp \partial_i(\lambda)v_\alpha \pm e_i & \text{if } \alpha_i = 0 \text{ or } \text{sign}(\alpha_i) = \pm, \\
(\pm \partial_i(\lambda)\alpha_i + \lambda \alpha_i \partial_i(\alpha_i))v_\alpha \pm e_i & \text{if } \text{sign}(\alpha_i) = \mp.
\end{cases}$$

(17)

The next proposition describes the Poisson centre of a GWPA.

Proposition 3.1 Let $A = D[X, Y; a, \partial]$ be a GWPA of rank n. Then, $\text{PZ}(A) = \mathop{\oplus}_{\alpha \in \mathbb{Z}^n} \text{PZ}(A)_{\alpha}$ is a \mathbb{Z}^n-graded (associative) algebra where $\text{PZ}(A)_{\alpha} = D_\alpha v_\alpha$, $D_0 = \text{PZ}(D^\partial)$ and, for all $\alpha \neq 0$, $D_\alpha = \{ \lambda \in D^\partial \mid \text{pad}_\lambda = \lambda \sum_{i=1}^{n} \alpha_i \partial_i, \lambda \alpha_i \partial_i(\alpha_i) = 0 \text{ for } i = 1, \ldots, n \}$.

Proof The GWPA $A = \mathop{\oplus}_{\alpha \in \mathbb{Z}^n} A_\alpha$ is a \mathbb{Z}^n-graded Poisson algebra, hence so is its Poisson centre, i.e. $\text{PZ}(A) = \mathop{\oplus}_{\alpha \in \mathbb{Z}^n} \text{PZ}(A)_{\alpha}$ where $\text{PZ}(A)_{\alpha} = \text{PZ}(A) \cap A_\alpha$. Since $A_\alpha = D_\alpha v_\alpha$ for all $\alpha \in \mathbb{Z}^n$, statement 2 follows from (16) and (17).

The next corollary shows that, in general, the Poisson centre of a GWPA A is small.

Corollary 3.2 Let $A = D[X, Y; a, \partial]$ be a GWPA of rank n. Suppose that $\text{char}(K) = 0$ and the elements $\partial_1(a_1), \ldots, \partial_n(a_n)$ are nonzero divisors in the algebra D (e.g. D is a domain and $\partial_1(a_1) \neq 0, \ldots, \partial_n(a_n) \neq 0$). Then, $\text{PZ}(A) = \text{PZ}(D^\partial)$.

For an element $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n$, the set $\text{supp}(\alpha) := \{ i \mid \alpha_i \neq 0 \}$ is called the support of α.

Corollary 3.3 Let $A = D[X, Y; a, \partial]$ be a GWPA of rank n. Suppose that $\text{char}(K) = 0$. Then, for all elements $\alpha \in \mathbb{Z}^n \setminus \{0\}$, $D_\alpha \subseteq D^\partial, \text{pad}(\partial(\alpha)) \cap \text{ann}_D(\partial_i(a_i) \mid i \in \text{supp}(\alpha))$, i.e.

1. $\{D_\alpha, a_i\} = 0$ for $i = 1, \ldots, n$, and
2. $D_\alpha \partial_i(a_i) = 0$ for all i such that $a_i \neq 0$.

Proof By Proposition 3.1.(3), $D_\alpha \partial_i(a_i) = 0$ for all $i \in \text{supp}(\alpha)$ (since $\text{char}(K) = 0$). Then, for all $\lambda \in D_\alpha$ and $i = 1, \ldots, n$, $\{\lambda, a_i\} = \text{pad}_\lambda(a_i) = \sum_{i=1}^{n} \lambda \alpha_i \partial_i(a_i) = 0$, i.e. $\{D_\alpha, a_i\} = 0$ for $i = 1, \ldots, n$. □
The generalized Weyl Poisson...

Proof of Proposition 1.2 \((\Rightarrow)\) Suppose that \(p = \text{char}(K) \neq 0\). Then, by Proposition 3.1, the element \(1 + X^p\) of \(PZ(A)\) is not invertible. Therefore, we must have \(p = 0\). The algebras \(A\) and \(PZ(A)\) are \(\mathbb{Z}^n\)-graded algebras and \(PZ(A)_0 = PZ(D)^\partial\). Therefore, \(PZ(D)^\partial\) must be a field.

Suppose that \(D_\alpha \neq 0\) for some \(\alpha \neq 0\). Then, \(\alpha_i \neq 0\) for some \(i\). Fix a nonzero element of \(PZ(A)_\alpha = D_\alpha v_\alpha\), say \(\lambda v_\alpha\) where \(\lambda \in D_\alpha\). Since \(\lambda v_\alpha\) is a unit, \((\lambda v_\alpha)^{-1} = \mu v_{-\alpha}\) (since the algebra \(A\) is a \(\mathbb{Z}^n\)-graded algebra), and so

\[
1 = \lambda v_\alpha \cdot \mu v_{-\alpha} = \lambda \mu a^{[\alpha]} \quad \text{and} \quad 1 = \mu v_{-\alpha} \cdot \lambda v_\alpha = \mu \lambda a^{[\alpha]}
\]

where \(a^{[\alpha]} := \prod_{i=1}^n a_i^{[\alpha_i]} \in PZ(A)\). Hence, \(a^{[\alpha]}\) is a unit in \(PZ(A)\); hence, the elements \(\lambda\) and \(\mu\) are units in \(D\). Clearly, \(v := 1 + \lambda v_\alpha \in PZ(A)\). The algebra \(A\) is a \(\mathbb{Z}^n\)-graded algebra. In particular, it is a \(\mathbb{Z}e_i\)-graded algebra (since \(\mathbb{Z}e_i \subseteq \mathbb{Z}^n\)). Let \(l_i\) be the length with respect to the \(\mathbb{Z}e_i\)-grading (which is a \(\mathbb{Z}\)-grading). Then, for all nonzero elements \(u \in A\),

\[
l_i(uv) = l_i(u) + l_i(v) \geq l_i(v) = |\alpha_i| > 0,
\]

since the elements 1 and \(\lambda\) are units. This implies that the element \(u\) is not a unit. Therefore, \(D_\alpha = 0\) for all \(\alpha \in \mathbb{Z}^n \setminus \{0\}\), by Proposition 3.1.(3).

\((\Leftarrow)\) By Proposition 3.1, \(PZ(A) = PZ(D)^\partial\) is a field. \(\square\)

An ideal \(I\) of an algebra \(A\) is called a proper ideal if \(I \neq 0, A\).

Proof of Theorem 1.1 \((\Rightarrow)\) Suppose that \(\alpha\) is a proper \(\partial\)-invariant Poisson ideal of the Poisson algebra \(D\), then \(\alpha A = \bigoplus_{\alpha \in \mathbb{Z}^n} \alpha v_\alpha\) is a proper ideal of the Poisson algebra \(A\). So, the first condition holds.

Suppose that \(b := Da_i + D\partial_i(a_i) \neq D\) for some \(i\). Then,

\[
I = \bigoplus_{\alpha \in \mathbb{Z}^n, \alpha_i \neq 0} Dv_\alpha \bigoplus_{\alpha \in \mathbb{Z}^n, \alpha_i = 0} bv_\alpha
\]

is a proper ideal of the Poisson algebra \(A\). So, the second condition holds.

The third condition obviously holds. (If a nonzero element \(z\) of \(PZ(A)\) is also a nonunit, then \(zA\) is a proper Poisson ideal of \(A\)).

\((\Leftarrow)\) Suppose that conditions 1 and 2 hold. Then, the implication follows from the Claim.

Claim. Suppose that conditions 1 and 2 hold. Then, every nonzero Poisson ideal of \(A\) intersects nontrivially \(PZ(A)\).

Let \(I\) be a nonzero Poisson ideal \(A\). We have to show that \(I \cap PZ(A) \neq 0\). Let \(u = \sum_{\alpha \in \mathbb{Z}^n} u_\alpha\) be a nonzero element of \(I\) where \(u_\alpha \in A_\alpha\). The set \(\text{supp}(u) = \{\alpha \in \mathbb{Z}^n | u_\alpha \neq 0\}\) is called the support of \(u\). Recall that, for \(\alpha \in \mathbb{Z}^n\), \(|\alpha| = \alpha_1 + \cdots + \alpha_n\).

The additive group \(\mathbb{Z}^n\) admits the degree-by-lexicographic ordering \(\leq\) where \(\alpha < \beta\) iff either \(|\alpha| < |\beta|\) or \(|\alpha| = |\beta|\) and there exists an element \(i \in \{1, \ldots, n\}\) such that \(\alpha_j = \beta_j\) for all \(j < i\) and \(\alpha_i < \beta_i\). Clearly, the inequalities \(\alpha \leq \beta\) and \(\beta \leq \alpha\) are equivalent to the equality \(\alpha = \beta\). The partially ordered set \((\mathbb{Z}^n, \leq)\) is a linearly

\(\square\) Springer
ordered set (for all distinct elements $\alpha, \beta \in \mathbb{Z}^n$ either $\alpha > \beta$ or $\alpha < \beta$) and $\alpha < \beta$ implies that $\alpha + \gamma < \beta + \gamma$ for all $\gamma \in \mathbb{Z}^n$. Every nonzero element $b = \sum_{\alpha \in \mathbb{Z}^n} b_\alpha$ of A (where $b_\alpha \in A_\alpha$) can be written as

$$b = b_\alpha + \cdots$$

where α is the maximal element of $\text{supp}(b)$ and the three dots denote smaller terms (i.e. the sum $\sum_{\beta < \alpha} b_\beta$). The term $b_\alpha = \lambda_\alpha v_\alpha$ is called the leading term of b, denoted $\text{lt}(b)$, and the element $\lambda_\alpha \in D$ is called the leading coefficient of b, denoted $\text{lc}(b)$. Since the algebra A is a \mathbb{Z}^n-graded Poisson algebra, for all nonzero elements $b, c \in A$,

$$\text{lt}(bc) = \text{lt}(b)\text{lt}(c) \quad (18)$$

provided $\text{lc}(b)\text{lc}(c) \neq 0$, and

$$\text{lt}([b, c]) = \{\text{lt}(b), \text{lt}(c)\} \quad (19)$$

provided $\{\text{lt}(b), \text{lt}(c)\} \neq 0$.

Up to isomorphism in (8) (i.e. interchanging some X_i and Y_i, if necessary), we can assume that the ideal I contains a nonzero element $u = \lambda_\alpha X^\alpha + \cdots$ where $\alpha_1 \geq 0, \ldots, \alpha_n \geq 0$. Then, the set of leading coefficients

$$a = \{\lambda_\alpha \mid u = \lambda_\alpha X^\alpha + \cdots \in I, \ \text{all } \alpha_i \geq 0\}$$

of elements of I is a ∂-invariant ideal of the ring D since

$$d_1ud_2 = d_1\lambda_\alpha d_2X^\alpha + \cdots \quad \text{if } d_1\lambda_\alpha d_2 \neq 0 \ (d_1, d_2 \in D),$$

$$ux^\beta = \lambda_\alpha x^{\alpha + \beta} + \cdots,$$

$$\{u, X_i\} = \partial_i(\lambda_\alpha)x^{\alpha + e_i} + \cdots \quad \text{if } \partial_i(\lambda_\alpha) \neq 0.$$
0 = \{X_i, u\} = \sum_{\alpha < 0} \{X_i, u_\alpha\}, \text{ i.e. } \{X_i, u_\alpha\} = 0,

0 = \{Y_i, u\} = \sum_{\alpha < 0} \{Y_i, u_\alpha\}, \text{ i.e. } \{Y_i, u_\alpha\} = 0,

i.e. all \(u_\alpha \in \text{PZ}(A)\), and so \(0 \neq u \in \text{PZ}(A)\), as required. \(\square\)

Corollary 3.4 Let \(A = D[X, Y; a, \partial]\) be a GWPA of rank \(n\). Suppose that the conditions 1 and 2 of Theorem 1.1 hold. Then, every nonzero Poisson ideal of \(A\) intersects \(\text{PZ}(A)\) nontrivially.

Proof The corollary is precisely the Claim in the proof of Theorem 1.1. \(\square\)

Corollary 3.5 Let \(D = K[H_1, \ldots, H_n]\) be a Poisson polynomial algebra with trivial Poisson bracket, \(a = (a_1, \ldots, a_n)\) where \(a_i \in K[H_i]\) and \(\partial = (b_1 \partial H_1, \ldots, b_n \partial H_n)\) where \(b_i \in K[H_i]\). Then, the GWPA \(A = D[X, Y; a, \partial]\) of rank \(n\) is a simple Poisson algebra iff \(\text{char}(K) = 0\), \(b_1, \ldots, b_n \in K^* := K \setminus \{0\}\) and \(K[H_i]a_i + K[H_i] \frac{\partial a_i}{\partial H_i} = K[H_i]\) for \(i = 1, \ldots, n\).

Proof The corollary follows from Theorem 1.1. In more detail, condition 2 of Theorem 1.1 is equivalent to the conditions \(K[H_i]a_i + K[H_i] \frac{\partial a_i}{\partial H_i} = K[H_i]\) for \(i = 1, \ldots, n\) (since \(a_i \in K[H_i]\)). Condition 1 of Theorem 1.1 is equivalent to the condition \(\text{char}(K) = 0\) and \(b_1, \ldots, b_n \in K^* := K \setminus \{0\}\) (since \(b_i D\) is a \(\partial\)-invariant ideal of \(D\)). If conditions 1 and 2 hold, then condition 3 of Theorem 1.1 holds automatically since \(D\partial = K = \text{PZ}(D)\) (then \(D\alpha = 0\) for all \(\alpha \in \mathbb{Z}^n \setminus \{0\}\)). \(\square\)

By Corollary 3.5, the classical Poisson polynomial algebra

\[P_{2n} \simeq K[H_1, \ldots, H_n][X, Y; (H_1, \ldots, H_n), (\partial H_1, \ldots, \partial H_n)]\]

is a simple Poisson algebra.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bavula, V.V.: Finite-dimensionality of \(\text{Ext}^n\) and \(\text{Tor}_n\) of simple modules over a class of algebras. Funct. Anal. Appl. 25(3), 229–230 (1991)
2. Bavula, V.V.: The simple \(D[X, Y; \sigma, a]\)-modules. Ukrainian Math. J. 44(12), 1500–1511 (1992)
3. Bavula, V.V.: Generalized Weyl algebras and their representations. St. Petersburg Math. J. 4(1), 71–92 (1993)
4. Cho, E.-H., Sei-Qwon, O.: Semiclassical limits of ore extensions and a Poisson generalized Weyl algebra. Lett. Math. Phys. 106, 997–1009 (2016)
5. Dixmier, J.: Sur les algèbres de Weyl. Bull. Soc. Math. France 96, 209–242 (1968)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.