Simultaneous Determination of Fexofenadine Hydrochloride and Montelukast Sodium Using New Pencil Graphite Electrode in Their Pure, Synthetic Mixtures, and Combined Dosage Form

Dania Nashed (✉ Dania.nashed92@gmail.com)
University of Aleppo Faculty of Pharmacy https://orcid.org/0000-0003-0029-8153

Imad Noureldin
University of Aleppo- faculty of pharmacy

Amir Alhaj Sakur
University of Aleppo- faculty of pharmacy

Research article

Keywords: Graphite sensors, potentiometric, fexofenadine hydrochloride, montelukast sodium, molybdate ammonium, cobalt nitrate

DOI: https://doi.org/10.21203/rs.3.rs-50184/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

This paper introduces a new electrochemical approach for the concomitant determination of fexofenadine hydrochloride and montelukast sodium by constructing three new graphite electrodes coated with a polymeric membrane. The first electrode was constructed using ammonium molybdate reagent as an ion pair with fexofenadine cation for the determination of fexofenadine drug, the second electrode was constructed using cobalt nitrate as an ion pair with montelukast anion for the determination of montelukast drug, the third electrode was prepared by incorporating the two previously mentioned ion pairs in the same graphite sensor, which make this sensor sensitive to each fexofenadine and montelukast drug. The coating material was a polymeric film comprises of Poly Vinyl Chloride (PVC), Di-butyl phthalate as a plasticizer (DBP), ion pairs of drugs with previously mentioned reagents. The electrodes showed a Nernstian response with a mean calibration graph slopes of [58.97, 28.43, (59.048 , 28.643)] mv.decade\(^{-1}\) for the three pencil electrodes respectively. The electrodes work effectively over pH range (2-4.5) for fexofenadine hydrochloride and (5-9.5) for montelukast sodium. The influence of the proposed interfering species was negligible. The effectiveness of the electrodes continued in a period of time (45-69) days. The suggested sensors demonstrated useful analytical features for the determination of both drugs in bulk powder, in laboratory prepared mixtures and their combined dosage form. We have validated the method in accordance with ICH protocol.

1. Introduction

Fexofenadine hydrochloride (FEX.HCl) figure (1, a), is a selective antagonist for histamine H1- receptor, it is an effective metabolite of terfenadine. Its chemical name is (RS)2-[4-[1-Hydroxy-4-[4-(hydroxy-diphenylmethyl)-piperidyl]butyl]phenyl]-2-methylpropanoic acid(1), fexofenadine described as a second or third-generation antihistamine, on 25 February 2000 FDA approved the utilization of fexofenadine for the handling of periodical allergic rhinitis and chronic urticaria. It restrains the exacerbation of coryza and urticaria and reduces the stringency of the signs associated with those conditions such as sneezing, runny nose, irritating eyes(2). Montelukast Sodium (MON.Na) figure(1,b), is chemically 1-[(R)-m-[(E)-2-(7-chloro-2-quinolyl) vinyl]-[o-(1-hydroxy-1-methyl ethyl) phenethyl] benzyl]thio]-methyl)cyclopropaneacetate(3), (MON.Na) is an antagonist of cysteinyl leukotriene receptor, on 20/2/1998 FDA approved the utilization of MON for chronic handling of asthma, preventing airway edema, smooth muscle contraction and enhanced secretion of thick, viscous mucus(4). Literature showed several analytical methods for the estimation of each drug individually, Fexofenadine HCl was estimated individually by some analytical methods such as HPLC (5–7)– HPTLC(8)- spectrophotometric (9–12) - fluorimetry(13) – capillary electrophoresis(14) – potentiometry(15). Similarly, montelukast sodium (MON.Na) was determined using some analytical techniques such as HPLC(16–18), UV spectrophotometric (19)(16), capillary electrophoresis(20), Potentiometric (21, 22), and voltammetric (23). The combination remedy of fexofenadine with montelukast sodium supply enhancing effect thereby reducing the symptoms efficaciously(24), the determination of these drugs as combined dosage forms was limited by a few methods like HPLC (25–27), HPTLC (28) and derivative spectrophotometric
There was no previous electrochemical method for the determination of fexofenadine HCl combined with montelukast Na. The novelty in this presented work that we have created a new, accurate, sensitive, time and cost-saving potentiometric method for determination of fexofenadine HCl and montelukast sodium simultaneously using pencil graphite electrodes depending on the difference in the active pH range for each sensor. Pencil graphite electrodes consider a developed form of ion-selective electrodes. The advantages of these electrodes are the small size where we can use them in biological systems, their first response time, long lifetime compared to those traditional ion-selective electrodes, in addition to the advantages have known for the ion-selective electrodes such as being simple, accurate, economic, and saving time where there is no need for previous procedures to the sample. We have successfully applied this method for the determination of the combined dosage form without previous separation and that was our scientific challenge.

Figure 1: Chemical structure of (a) fexofenadine hydrochloride (b) Montelukast sodium

fexofenadine act as a cation in that it makes up an ion pair with Molybdate anion, but montelukast act as anion and makes up ion pair with the cationic reagent cobalt nitrate, therefore we can determine each drug separately without interference of the other drug potential. The determination of fexofenadine hydrochloride and montelukast sodium in this presented work relies upon the construction of a pencil graphite electrode coated with a polymer film, which consists of polymer, plasticizer and ion pair of previous mention drugs and reagents. The ion pairs consider the active part in the electrode, the role of polymer is to provide a mechanical support to other components of membrane film, which covered the graphite rod, and the plasticizer gives an appropriate pliancy of the coating film. Among various types of ion-selective electrodes, pencil graphite electrode shows good adsorption, conductivity, high sensitivity, small background current, and simple preparation. These electrodes carry on as interface. Thus, the membrane potential in the cell sees as the electric potential difference between the two interfaces in accordance with Nernstian equation

\[E = E_0 + 2.303 = \frac{RT}{ZF} \log [\text{FEX}] \]

2.1 Apparatus

Potentiometric measurements carrying out using Radiometer analytical – ion check 10 pH/mv meter (CEDEX- France), all pH measurements were carried out utilizing Crison pH meter model Glp21/EU (Spain), ultrasonic bath model Power Sonic 405(Korea). All weights were taken by Sartorius balance model 2474 (Germany) its accuracy ± 0.1 mg.

2.2 materials and chemicals
High pure fexofenadine hydrochloride and Montelukast sodium was obtained by Sigma Aldrich, analytical grade ammonium molybdate, cobalt nitrate (BDH chemicals, England), high molecular weight PVC (SABC. KSA), tetrahydrofuran solvent (MERCK 99.5%), di- butyl phthalate (MERCK 99%).

2.3 Standard drug solutions

2.3.1 FEX stock standard solution (10^{-2} mol L$^{-1}$)

The FEX stock solution was prepared by dissolving accurate weight in bi-distilled water, and then the volume was made up to the mark into a 50-mL volumetric flask.

2.3.2 MON stock solution (10^{-2} mol L$^{-1}$)

The MON stock solution was prepared by dissolving accurate weight in bi-distilled water, and then the volume was made up to the mark into a 50-mL volumetric flask.

2.3.3 working solutions

A series of working solutions their concentrations varying ($1 \times 10^{-7} - 1 \times 10^{-3}$ mol L$^{-1}$) were prepared by serial dilutions from the stock solutions using bi-distilled water.

2.4 procedure

2.4.1 preparation of FEX.Mol ion pair

The ion pair of fexofenadine cation with molybdate anion was prepared by mixing 1 mmol of fexofenadine hydrochloride with 1 mmol of molybdate ammonium, an off-white precipitate was formed, then the precipitate was filtered and washed several times by bi-distilled water. The conductivity of the filtrate was checked to be ≤ 2 µs/cm which confirmed the disposal of all obstructive ions.

2.4.2 preparation of MON.Co ion pair

The ion pair of Montelukast anion with cobalt cation was prepared by mixing of 1 mmol of Montelukast sodium with 2 mmol of cobalt nitrate, a pink precipitate was formed, then the precipitate was filtered and washed several times by bi-distilled water. The conductivity of the filtrate checked to be ≤ 2 µs/cm which confirmed the disposal of all obstructive ions.

2.4.3 Fabrication of FEX pencil graphite coated electrode

The coating solution was prepared by mixing 0.45 g PVC with 0.9 g DBP, then 0.15 g of ion Pair (FEX.Mol) was added, all the components were dissolved in a small volume of THF. In this previous solution, a graphite rod was immersed several times to get a homogeneous layer of the coating material on the graphite rod. The coated graphite electrode was activated before beginning to measure the potential, by dipping it in 10^{-3} mol/l FEX solution for 24 hrs.

2.4.4 Fabrication of MON pencil graphite coated electrode
The coated solution was prepared by mixing 0.6 g PVC with 1.2 g DBP, then 0.2 g of ion Pair (MON.Co) was added, all the components were dissolved in a small volume of THF. In this previous solution, a graphite rod was immersed several times to get a homogeneous layer of the coating material on the graphite rod. The coated graphite electrode was activated before beginning to measure the potential, by dipping it in 10^{-3} mol/l MON solution for 24 hrs.

2.4.5 fabrication of FEX&MON pencil graphite electrode (the combined electrode)

The preparation of this electrode was done by mixing 0.2 g of IP1 + 0.2 g of IP2 with 0.7 g PVC and 0.9 g DBP, all the components were dissolved in a small volume of THF. In this previous solution, a graphite rod was immersed several times to get a homogeneous layer of the coating material on the graphite rod. The coated graphite electrode was activated before beginning to measure the potential, by dipping it in $(10^{-3}$ mol.L$^{-1}$) FEX and MON solutions separately for 24 hrs. in each solution.

2.4.6 Direct potentiometric determination of fexofenadine hydrochloride

A standard series of fexofenadine hydrochloride $(10^{-7}-10^{-2})$ mol.l$^{-1}$ was prepared accurately and all the potentiometric measurements carried out using (1 and 3) graphite coated electrodes in junction with Ag/AgCl reference electrode. The potential produced by the proposed electrodes was recorded for each concentration to get the regression equations, which used to determine this drug.

2.4.7 Direct potentiometric determination of Montelukast sodium

A standard series of Montelukast sodium $(10^{-7}-10^{-2})$ mol.l$^{-1}$ was prepared accurately and all the potentiometric measurements carried out using the (2 and 3) graphite coated electrodes in junction with Ag/AgCl reference electrode. The potential produced by the proposed electrodes was recorded for each concentration to get the regression equations, which used to determine this drug.

2.4.8 Effect of pH

The effect of pH on the potential response of the two sensors was studied over the pH ranges of $(2–6)$ for fexofenadine and $(3–11)$ for montelukast. This was obtained by adding diluted aliquots of $(0.1$ mol L$^{-1}$) hydrochloric acid or sodium hydroxide solutions to the $(1.00 \times 10^{-3}$ and $1.00 \times 10^{-4})$ mol L$^{-1}$ drug solutions. The potential obtained at each pH value was recorded.

2.4.9 selectivity of the electrodes

The sensitivity of the constructed sensors was studied in the presence of some obstructive ions and excipients, which may exist with the drug material. The selectivity was studied using the matched potential method. In this method, the selectivity coefficient is characterized as the activity ratio of the essential and the interfering ion that exhibits the equal potential change(38).
\[K = \left(\alpha_A' - \alpha_A \right) / \alpha_B \]

Where; \(K \) is the selectivity coefficient, \(\alpha_A' \) is the activity of the primary ion, \(\alpha_A \) is the fixed activity of the primary ion, \(\alpha_B \) is the activity of interfering ion.

2.4.10 Determination of FEX and MON in Laboratory Prepared Mixtures

Different ratio mixtures of FEX and MON solutions were prepared, for that, different volumes of the stocks solutions for both drugs were mixed to get a specific concentration of each drug which must be within the linearity range. Each drug was determined using its proposed sensor in the presence of the other drug, depends on the effective pH range for each electrode.

1. **2.4.11 Preparation of Test Solutions**

1. a. The determination of FEX.HCl in its pharmaceutical dosage form

For the determination of FEX.HCl in its pharmaceutical dosage form as a single drug. 20 tablets of Fexofenadine drug were finely powdered; exact weight proportionate to one tablet was taken, dissolved with bi-distilled water, and sonicate the solution in the ultrasonic bath for 5 minutes. Then the solution was filtered, an appropriate volume was taken from the filtrate and diluted with bi-distilled water in a 25 ml volumetric flask to get \(10^{-4} \) mol.l\(^{-1} \) of drug solution.

b. The determination of MON.Na in its pharmaceutical dosage form

For the determination of MON.Na in its pharmaceutical dosage form as a single drug, 20 tablets of Azmalir drug were finely powdered; exact weight proportionate to one tablet was taken, dissolved with bi-distilled water, and sonicate the solution in the ultrasonic bath for 15 minutes. Then the solution was filtered, an appropriate volume was taken from the filtrate and diluted with bi-distilled water in a 25 ml volumetric flask to get \(10^{-4} \) mol.l\(^{-1} \) of drug solution.

c. The determination of FEX& MON as a combination form

According to the common combination ratio of FEX&MON formulation, the binary mixture was prepared in ratio 12:1. precisely weighed (120 mg) FEX and (10 mg) MON then, common excipients that are used in the tablet formulation were added, the mixture was transferred to a 50 ml volumetric flask and diluted to the mark by bi-distilled water. For 20 minutes the solution was sonicated and filtered. From the filtrate, 10 ml was taken and diluted to 25 ml in volumetric flask by bi-distilled water to get the sample solution.

3. Results And Discussion

3.1. Calibration of the Electrodes
The constructed electrodes were dunked into a standard series solution of each drug; their concentration ranging \((10^{-7} - 10^{-1})\) mol.l\(^{-1}\), the potential of each solution was recorded, then a calibration graphs were plotted between the potential and the minus logarithm of drug concentration as shown in figure (2) and (3). The validations rules were applied according to ICH recommendations and the results are shown in table (1). The sensors showed to be active for 69 days for FEX.Mol, and 45 days for MON.Co sensor, during these days the slope of the regression equation was measured and found to be almost stable, but after this duration the slope was decreased obviously.

parameter	FEX.Mol	MON.Co	The Combined sensor
Slope ± SD (mV.decade\(^{-1}\))	-59.227 ± 0.05	28.43 ± 0.09	-59.048 ± 0.7
			28.643 ± 0.22
Intercept (mV)	435.11	-45.628	439.19
Correlation coefficient	0.9991	0.9998	0.9999
Response time (seconds)	20	27	29
			32
pH range	(2-4.5)	(5-9.5)	(2-4.5)
			(5-9.5)
Linearity range (mol.l\(^{-1}\))	\((10^{-2}-10^{-5})\)	\((10^{-2}-10^{-5})\)	\((10^{-2}-10^{-5})\)
Life time (days)	69	45	45
Recovery a %	99.84 ± 0.51	100.92 ± 0.21	99.76 ± 0.50
			100.55 ± 0.71
Repeatability b	1.59	1.18	1.70
			1.63
Reproducibility c	1.73	0.29	1.91
			1.99
Lod\(^d\) (µM)	0.014	0.021	0.025
			0.019
Loq (µM)	0.043	0.063	0.076
			0.059

1. a. Average of three determinations.
2. b. Repeatability: the intraday precision (\(n = 3 \times 3\)), average of three concentrations \((5*10^{-5}, 5*10^{-4}\) and \(5*10^{-3}\) mol.l\(^{-1}\)) were repeated three times within the day.
3. c. Intermediate precision: the interday precision (\(n = 3 \times 3\)), average of three concentrations \((5*10^{-5}, 5*10^{-4}\) and \(5*10^{-3}\) mol.l\(^{-1}\)) were repeated three times on two consecutive days.
3.2 Effect of pH

The effect of pH on the measured potential was studied. For that, different fexofenadine solutions their pH values range (2–6) were prepared, the potential was measured for each solution using FEX.Mol graphite sensor, we found that the potential stay stable between pH range (2.5–4.5), at pH value more than 4.5 a noticed decrease in potential was found. For MON.Co sensor, different Montelukast solutions their pH values range (3–11) were prepared, and the potential was measured for each solution using MON.Co sensor, the effective pH range was found to be (5-9.5), at pH values less than 5, Montelukast drug participated, and more than 9.5 there was a decrease in the measured potential. It was found that there is no requirement for using any buffer, as buffers may involve some obtrusive substances, and because of the wide range of pH for both sensors (I and II). The obtained results are shown in figures (4) and (5).

| Figure 4: Effect of pH on potentiometric response for FEX.Mol sensor | Figure 5: Effect of pH on potentiometric response for MON.co sensor |

3.3 selectivity of the constructed electrodes

The potential response of the proposed sensors in the presence of several related substances was studied, and the potentiometric selectivity coefficients were calculated to estimate the selectivity of the electrodes towards the primary drug ion (FEX) in case of sensor I and (MON) in case of sensor II, in the presence of the other drug ion and some obstructive ions which may exist in the drug solution. As shown in table (2), the constructed electrodes exhibit a good selectivity in the presence of the other drug which confirms the ability of determination of each drug in the combination dosage forms.
Table 2
Selectivity coefficients of the coated graphite constructed sensors

Interfering B	Sensor 1 (FEX.mol)	Sensor 2 (MON. co)	The combined sensor	
	K$_{FEX,B}$	K$_{MON,B}$	K$_{FEX,B}$	K$_{MON,B}$
CaCl$_2$	4.88*10$^{-3}$	3.2*10$^{-2}$	4.93*10$^{-3}$	3.4*10$^{-2}$
KCl	1.32*10$^{-3}$	4.6*10$^{-3}$	1.67*10$^{-3}$	4.6*10$^{-3}$
NH$_4$Cl	6.07*10$^{-3}$	2.1*10$^{-2}$	6.78*10$^{-3}$	2.3*10$^{-2}$
NaCl	1.34*10$^{-3}$	3*10$^{-3}$	1.53*10$^{-3}$	3.5*10$^{-3}$
dextrose	7.4*10$^{-3}$	6.1*10$^{-3}$	7.66*10$^{-3}$	6.4*10$^{-3}$
Mg stearate	2.4*10$^{-3}$	8.7*10$^{-3}$	2.67*10$^{-3}$	8.9*10$^{-3}$
Avicel	6.5*10$^{-3}$	5.5*10$^{-3}$	6.72*10$^{-3}$	5.6*10$^{-3}$
FEX	3.8*10$^{-3}$	4.2*10$^{-3}$
MON	5.5*10$^{-2}$	5.61*10$^{-2}$

3.4. **Potentiometric determination of laboratory prepared mixtures containing different ratios of FEX and MON**

The potential of the laboratory prepared mixtures containing different ratios of FEX and MON was measured, and the results showed that the proposed sensors FEX.Mol and the combined sensor can be effectively used for selective determination of FEX in the presence of MON, and the proposed sensor MON.Co and the combined sensor can be successfully used for selective determination of MON in the existence of FEX without a need for any previous separation, just we need to adjust the pH of each solution within the effective pH range for each electrode. The results are summarized in Table (3).
Table 3
Potentiometric determination of laboratory prepared mixtures containing various ratios of FEX and MON

Ratio	Recovery %			
	FEX	MON	FEX	MON
	Sensor 1	Sensor 3	Sensor 2	Sensor 3
1	98.40	98.22	99.31	98.89
5	97.27	97.13	99.97	99.20
10	100.92	100.52	101.62	101.12
12	101.16	100.99	98.40	98.14
1	97.72	97.56	97.58	97.33
Mean ± SD	99.09 ± 1.82	98.88 ± 1.76	99 ± 1.84	98.94 ± 1.42

3.5. Potentiometric determination of the sample solution

The prepared sensors in conjunction with the double junction Ag/AgCl reference electrode were soaked separately in the sample solution after the adjusting of pH value of the sample solution within the effective pH range of each electrode. The resulting potential was recorded, the corresponding concentration was calculated from the regression equations for each sensor. We have successfully determined each of fexofenadine and Montelukast drugs in their combination form without any need for any previous separation. The excipients which were added, found to be don’t influence on the potential response, that approves the ability of the developed method for the determination of fexofenadine and montelukast in their binary dosage form. The results realized were compared with the results obtained by reference UV spectroscopic methods[9][39], the statistical tests show that there is no significant difference in the results was found by applying the two methods as shown in the table (4)
Table 4
Determination of FEX and MON in pharmaceutical preparations using the proposed method and reference methods.

Commercial Name	Composition	Amount found, mg^a	R%±SD	t-value^b	F-value^c
Sensor 1					
FEX.Mol					
Fexofenadine	Fexofenadine 120 mg	119.37	99.47 ± 1.16	1.06	3.53
Azmalir	Montelukast 10 mg	---	---	---	---
Combination form					
Fexofenadine	Fexofenadine 120 mg	119.27	99.39 ± 0.87	1.96	3.39
Montelukast 10 mg	---	---	---	---	
Sensor 2					
MON.Co					
Fexofenadine	Fexofenadine 120 mg	---	---	---	---
Azmalir	Montelukast 10 mg	10.05	100.5 ± 1.74	4.07	1.66
Combination form					
Fexofenadine	Fexofenadine 120 mg	---	---	---	---
Montelukast 10 mg	9.97	99.71 ± 1.61	2.82	3.20	
Sensor 3					
FEX.MOl + MON.Co					
Fexofenadine	Fexofenadine 120 mg	119.53	100.39 ± 0.78	2.26	3.46
Azmalir	Montelukast 10 mg	10.12	98.80 ± 1.20	2.77	1.77
Combination form					
Fexofenadine	Fexofenadine 120 mg	120.83	100.69 ± 0.69	2.13	2.95
Montelukast 10 mg	9.89	98.88 ± 1.34	2.22	3.30	

^a: average of 3 replicates

^b: t critical 4.302 (0.05)

^c: f critical 19 (0.05), n = 3

4. Conclusion
This research was the first electrochemical method for the simultaneous determination of fexofenadine hydrochloride and montelukast sodium. The results showed that the constructed method was accurate, precise and sensitive for the determination of each drug as pure form, laboratory prepared mixtures, and pharmaceutical formulation without any separation steps. Based on the results, it can be concluded that the coated graphite electrodes offered a simple, rapid, eco-friendly, high sensitivity and selectivity alternative method for the simultaneous determination of drugs, so we suggest using this type of electrode in drug analysis.

Abbreviations

FEX
fexofenadine hydrochloride
MON
montelukast sodium
Mol
ammonium molybdate
Co
cobalt nitrate
ICH
The International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use
PVC
poly vinyl chloride
DBP
di-butyl phthalate
THF
tetrahydrofuran

Declarations

Ethic approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and materials

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.
Competing interests

The authors declare that they have no competing interests

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Authors’ contributions

A.A. Sakur: conceived and designed the experiments.

1. Nashed: performed the experiments and wrote the paper.
2. Noureldin: analyzed and interpreted the data.

All authors read and approved the final manuscript

Acknowledgements

Not applicable.

References

1. The United States Pharmacopoeia. In: USP 29-NF. United States Pharmacopoeial Convention INC; 2008. p. 1208.
2. K.Simpson, B.Jarvis. Fexofenadine: a review of its use in the management of seasonal allergic rhinitis and chronic idiopathic urticaria. Drugs. 2000;59(2):301–21.
3. The United States Pharmacopoeia. In: USP38-NF33 ed. United States Pharmacopoeial Convention INC; 2015. p. 4444.
4. sweetman SC. MARTINDALE: the complete drug reference. In: 37th ed. PHARMACEUTICAL PRESS; 2011. p. 1240.
5. Nimje HM, Nimje ST, Oswal RJ, Bhamre ST. Stability indicating RP-HPLC method for estimation of fexofenadine hydrochloride in pharmaceutical formulation. E-Journal Chem. 2012;9(3):1257–65.
6. Ibrahim F, Sharaf El- Din MK, Eid MI, Wahba MEK. Validated stability indicating liquid chromatographic determination of ebastine in pharmaceuticals after pre column derivatization: Application to tablets and content uniformity testing. Chem Cent J. 2011;5(1):2377–80.
7. Rele R V. Determination of Fexofenadine Hydrochloride in Pharmaceutical Dosage Form By Reverse Phase High Performance Liquid Chromatography Method. Der Pharma Chem. 2016;8(6):224–8.
8. Solairaj P, Bhat AR, Kini SG, Raghavan G, Venkatraman R. HPTLC method for the estimation of fexofenadine HCL in tablet dosage form. Indian Drugs. 2005 Jul;42:424–7.
9. Breier AR, Steppe M, Schapoval EES. Validation of UV Spectrophotometric Method for Fexofenadine Hydrochloride in Pharmaceutical Formulations and Comparison with HPLC. Anal Lett [Internet]. 2007 Oct 1;40(12):2329–37. Available from: https://doi.org/10.1080/00032710701576023

10. Polawar P, Shivhare U, Bhusari K, Mathur V. Development and Validation of Spectrophotometric Method of Analysis for Fexofenadine HCl. Res J Pharm Tech. 2007 Nov;1(4):539–40.

11. Narayana B, Veena K. A new method for the spectrophotometric determination of fexofenadine hydrochloride. 2010;17(September):386–90.

12. Ashour S, Khateeb M. New Kinetic Spectrophotometric Method for Determination of Fexofenadine Hydrochloride in Pharmaceutical Formulations. Fenniri H, editor. Int J Spectrosc [Internet]. 2014;308087. Available from: https://doi.org/10.1155/2014/308087

13. Alothman Z, Bukhari N, Wabaidur S, Abdullah A, Haider S. Spectrofluorimetric determination of fexofenadine hydrochloride in pharmaceutical preparation using silver nanoparticles. Arab J Chem. 2010 Jun;3(4):251–5.

14. Mikuš P, Valášková I, Havránek E. Determination of fexofenadine in tablets by capillary electrophoresis in free solution and in solution with cyclodextrins as analyte carriers. Drug Dev Ind Pharm. 2005;31(8):795–801.

15. ABBAS MN, ABDEL FATTAH AA, ZAHRAN E. A Novel Membrane Sensor for Histamine H1-Receptor Antagonist “Fexofenadine.” Anal Sci. 2005;20(8):1137–42.

16. Muralidharan S, Jia Qi L, Ting Yi L, Kaur N, Parasuraman S, Kumar J, et al. Newly Developed and Validated Method of Montelukast Sodium Estimation in Tablet Dosage Form by Ultraviolet Spectroscopy and Reverse Phase - High Performance Liquid Chromatography. Pharmacol Toxicol Biomed Reports. 2016;2(2):27–30.

17. Shakya AK, Arafat TA, Hakooz NM, Abuawwad AN, Al-Hroub H, Melhim M. High-performance liquid chromatographic determination of montelukast sodium in human plasma: Application to bioequivalence study. Acta Chromatogr. 2014;26(3):457–72.

18. Chauhan B, Rani S, Nivsarkar M, Padh H. A new liquid-liquid extraction method for determination of montelukast in small volume human plasma samples using HPLC with fluorescence detector. Indian J Pharm Sci. 2009;68(4):517.

19. Patel NK, Chouhan P, Paswan SK, Prakash K. Development and validation of a UV spectrophotometric method for simultaneous estimation of combination of Montelukast sodium in presence of Levocetirizine Dihydrochloride. Paswan [Internet]. 2014;6(3):313–21. Available from: http://www.scholarsresearchlibrary.com/articles/development-and-validation-of-a-uv-spectrophotometric-method-for-simultaneous-estimation-of-combination-of-montelukast-s.pdf

20. Shakalisava Y, Regan F. Determination of montelukast sodium by capillary electrophoresis. J Sep Sci. 2008 Apr;31(6–7):1137–43.

21. Soudi AT, Hussein OG, Elzanfaly ES, Zaaza HE, Abdelkawy M. Potentiometric Method to Determine Montelukast Sodium in its Tablets with In-line Monitoring of its Dissolution Behaviour. Anal Bioanal Electrochem. 2020;12(4):502–16.
22. Aslan N, Erden. Development and validation of a potentiometric titration method for the
determination of montelukast sodium in a pharmaceutical preparation and its protonation constant.
Bulg Chem Commun. 2014;46(3):497–502.
23. Alsarra I, Al-Omar M, Gadkariem EA, Belal F. Voltammetric determination of montelukast sodium in
dosage forms and human plasma. Farmaco. 2005;60(6–7):563–7.
24. Mahatme MS, Dakhale GN, Tadke K, Hiware SK, Dudhgaonkar SD, Wankhede S. Comparison of
efficacy, safety, and cost-effectiveness of montelukast-levocetirizine and montelukast-fexofenadine
in patients of allergic rhinitis: A randomized, double-blind clinical trial. Indian J Pharmaco[Internet].
2016;48(6):649–53. Available from: https://pubmed.ncbi.nlm.nih.gov/28066101
25. Naaz A, Vani R. Simultaneous Estimation of Montelukast and Levocetirizine in Its Bulk and Liquid
Dosage Form By Rp-Hplc. 2015;5(10).
26. Pankhaniya M, Patel P, Shah JS. Stability-indicating HPLC Method for Simultaneous Determination
of Montelukast and Fexofenadine Hydrochloride. Indian J Pharm Sci [Internet]. 2013 May;75(3):284–
90. Available from: https://pubmed.ncbi.nlm.nih.gov/24082344
27. Performance H, Chromatography L, Sodium M. DEVELOPMENT OF VALIDATED HPLC METHOD FOR
SIMULTANEOUS ESTIMATION OF FEXOFENADINE. 2012;3(12):4876–81.
28. Tandulwadkar SS, More SJ, Rathore AS, Nikam AR, Sathiyanarayanan L, Mahadik KR. Method
Development and Validation for the Simultaneous Determination of Fexofenadine Hydrochloride and
Montelukast Sodium in Drug Formulation Using Normal Phase High-Performance Thin-Layer
Chromatography. ISRN Anal Chem. 2012;1–7.
29. Sowjania G, Sastri T. UV Spectrophotometric Method Development and Validation for Simultaneous
Determination of Fexofenadine Hydrochloride and Montelukast Sodium in Tablets. World J Pharm
Pharm Sci. 2018 Jul 11;6(10):780–9.
30. Patle D, Nagar S. UV-visible Spectrophotometric Estimation of Montelukast and Fexofenadine by
Simultaneous Equation Method in Bulk & Combined Tablet dosage form. Curr Trends Biotechnol
Pharm. 2017 Oct;11:382.
31. R.W.Cattarall, Henry F. coated-wire ion- selective electrode. Anal Chem. 1971;43(13):1905–6.
32. Sakur AA, Nashed D, Haroun M, Nouredin I. Determination of prasugrel hydrochloride in bulk and
pharmaceutical formulation using new ion selective electrodes. Res J Pharm Technol. 2018;11(2):631–6.
33. Haroun M, Nashed D, Sakur AA. New electrochemical methods for the determination of Prasugrel
using drug selective membranes. Int J Acad Sci Res. 2017;5(3):30–6.
34. Mansour O, Nashed D, Sakur AA. Determination of Clopidogrel bisulphate Using Drug Selective
Membranes Determination of Clopidogrelbisulphate using Drug Selective Membranes. Res J Pharm
Technol. 2018;11(5):2017–21.
35. Dabbeet H, Sakur A, Nouredin I. Novel Drug Selective Sensors for Simultaneous Potentiometric
Determination of both Ciprofloxacin and Metronidazole in Pure form and Pharmaceutical
Formulations. Res J Pharm Technol. 2019 Aug 27;12:3377–84.
36. Sakur AA, Bassmajei S, Dabbeet HA. Novel Moxifloxacin Ion Selective Electrodes for Potentiometric Determination of Moxifloxacin in Pure Form and Pharmaceutical Formulations. Int J Acad Sci Res. 2015;3(4):66–75.

37. Shahrokhian S, Amini M, Kolagar S, Tangestaninejad S. Coated-Graphite Electrode Based on Poly(vinyl chloride)− Aluminum Phthalocyanine Membrane for Determination of Salicylate. Microchem J - Microchem J. 1999 Oct 1;63:302–10.

38. Umezawa Y, Umezawa K, Sato H. Ion-Selective Electrodes: Recommended Kri. Pure Appl Chem. 1995;67(3):507–18.

39. Babu K, Srinivasa P. Validated UV Spectroscopic Method for Estimation of Montelukast Sodium from Bulk and Tablet Formulations. Int J Adv Pharmacy, Biol Chem Res. 2012;1(4):450–3.

Figures

![Chemical structure](image)

Figure 1

Chemical structure of (a) fexofenadine hydrochloride (b) Montelukast sodium.
Figure 2

Potentiometric profile of FEX.Mol sensor.
Figure 3

Potentiometric profile of MON.Co sensor.
Figure 4

Effect of pH on potentiometric response for FEX.Mol sensor.
Figure 5

Effect of pH on potentiometric response for MON.co sensor.