Perovskite solar cells (PSCs) are one of the most promising photovoltaic technologies. Amongst several challenges, developing and optimizing efficient electron transport layers that can be up-scaled still remains a massive task. Admittance measurements on metal–oxide–semiconductor (MOS) devices allow to better understand the optoelectronic properties of the interface between perovskite and the charge carrier transport layer. This work discloses a new pathway for a fundamental characterization of the oxide/semiconductor interface in PSCs. Inverted MOS structures, that is, glass/fluorine-doped tin oxide/tin oxide (SnO2)/perovskite are fabricated and characterized allowing to perform a comparative study on the optoelectronic characteristics of the interface between the perovskite and sputtered SnO2. Admittance measurements allow to assess the interface fixed oxide charges (Q_f) and interface traps density (D_{it}), which are extremely relevant parameters that define interface properties of extraction layers. It is concluded that a 30 nm thick SnO2 layer without annealing presents an additional recombination mechanism compared to the other studied layers, and a 20 nm thick SnO2 layer without annealing presents the highest positive Q_f values. Thus, an effective method is shown for the characterization of the charge carrier transport layer/perovskite interface using the analysis performed on perovskite-based inverted MOS devices.
planar PSC usually presents a stratified structure in the following order from the glass substrate to the metal electrode: i) a transparent conductive electrode (fluorine-doped tin oxide (FTO) or indium tin oxide (ITO)); ii) an electron carrier selective contact also called an electron transport layer (ETL); iii) a perovskite light absorption layer; iv) a hole carrier selective contact also called a hole transport layer (HTL); and v) a metal electrode, as schematically shown in Figure 1.

Metal oxides (MOs) are used as electron transport compact layers in planar devices, ensuring selective electron extraction and hole-blocking function. Amongst the numerous MOs explored as ETLs, titanium dioxide (TiO$_2$) and tin oxide (SnO$_2$) are frequently used. The SnO$_2$ intrinsic properties enable an effective electron extraction and transport, namely: i) deep conduction (\approx4.2 to 5 eV) and valence (\approx8 to 9 eV) bands; ii) in thin film it demonstrates an electron mobility value of \approx10$^{-3}$ cm2 V$^{-1}$ s$^{-1}$; iii) optical transparency higher than 90% for wide bandgap of 3.3 to 4 eV; iv) excellent photo-, temporal, and chemical stability; v) good band alignment with the perovskite layer; and vii) low temperature preparation (<200 °C).

For planar PSCs, SnO$_2$ is considered the most promising alternative to overcome the shortfalls of TiO$_2$ ETLs, namely its insufficient electron mobility, poor stability under UV illumination, and difficulties in depositing the layer in large areas using laboratory techniques. A recent work on planar PSCs based on SnO$_2$ ETLs allowed for a PCE value up to 23%. Methods such as spin coating or spray pyrolysis are the most used techniques to deposit SnO$_2$ ETLs with atomic layer deposition, chemical bath deposition and electrodeposition also being explored. However, many of these methods involve high-temperature annealing steps from 100 up to 550 °C, which are unsuitable for large-scale application. Consequently, sputtering, which is a well-established industrial deposition technique, has been recently applied in SnO$_2$-based planar PSCs. Several works are underway to better understand the impact of sputtered-deposited SnO$_2$ on the SnO$_2$/perovskite interface. It was observed a relation between the oxygen vacancy content of the sputter-deposited SnO$_2$ film and the substrate temperature, which lead F. Ali et al. to improve the energy band alignment between the ETL and the perovskite layer. M. Kam et al. studied PSCs with SnO$_2$ deposited at room temperature sputtering achieving higher photovoltaic performance and stability than PSCs with solution-processed SnO$_2$. A low sputtering power density for SnO$_2$ ETL deposition was found to decrease the SnO$_2$ surface roughness, which improved the contact interface between the perovskite layer and the ETL, leading to a reduced carrier recombination and enhanced charge transfer property of the PSC. The room-temperature sputtered SnO$_2$ comprises nanometer-sized crystals embedded in an amorphous matrix. Thus, it is usual to perform a post-annealing procedure to further improve its crystallinity and L. Qiu et al. reported that the SnO$_2$ starts to change from amorphous to crystalline at 300 °C. In addition, a post-annealing procedure is usually performed in non-sputtered SnO$_2$ ETLs used for PSCs. Thus, sputtered-deposited SnO$_2$ ETLs for PSCs with and without annealing were compared in the literature. However, there is not yet an agreement for the performance of an annealing step after the SnO$_2$ sputter deposition, since there are works where the post-annealing treatment is performed and others where it is not. Another parameter still under study on the literature is the SnO$_2$ ETL thickness, since depending on the deposition procedure for the SnO$_2$ layer, the SnO$_2$ optimal thickness will differ. Fundamental works are lacking on the perovskite technology to study the optoelectronic effects induced by SnO$_2$ ETLs with various thickness and annealing conditions on the SnO$_2$/perovskite interface, which leads to a disagreement on literature regarding the ideal SnO$_2$ thickness and the use of post-annealing treatment. Furthermore, there is the need to further develop new ETL/HTL materials to be used in lead-free perovskite devices. Thus, interface characterization is a key element to understand the correlations between PSC performance and the used ETL/HTL.

In this work, electrical measurements on metal–oxide–semiconductor (MOS) devices were performed to study the ETL/perovskite interface. These measurements are essential to characterize an oxide/semiconductor interface as all physical effects that are part of a certain device leave their footprint in the device overall electronic response. Thus, in order to be able to isolate, even partially, a specific interface, the use of a simpler structure, such as a MOS where one of the perovskite/carrier selective layer interface from the PSC is replaced by a perovskite/metal one, becomes crucial. In fact, compared to solar cells, the MOS structure simplifies the analysis and interpretation of results, and, thus, are widely used in other technologies, such as Cu(In,Ga)Se$_2$ (CIGS), GaAs, Silicon, and CdTe, just to name a few examples. Therefore, MOS devices have the potential to study the interface of the perovskite with a charge transport layer (ETL or HTL). Moreover, if the MOS device replicates the fabrication of the aforementioned interface.

Figure 1. Typical n-i-p (regular) planar PSC. Not at scale.
from the solar cell, the conclusions on the optoelectronic properties of the interface can be easily transferred to the solar cells as well. To study the ETL/perovskite interface of a typical n-i-p PSC architecture, where the ETL is placed in between the FTO and the perovskite, an inverted MOS structure can be used, where the ETL is also placed in between the FTO and the perovskite layer. Hence, it is possible to transfer the knowledge of the ETL/perovskite interface from the MOS measurements analysis directly to typical n-i-p PSC architectures. Such study is of utmost importance, since the charge extraction by an ETL may be compromised by recombination losses originated in traps present at the ETL/perovskite interface. One of the parameters estimated by the analysis of electrical measurements on MOS devices, is the density of interface traps (D_{it}) which is crucial for the ETL/perovskite interface characterization. Moreover, another parameter estimated by electrical measurements on MOS devices is the interface fixed oxide charges (Q_f). For a better understanding of the behavior of an ETL, the estimation of the Q_f values is relevant, since according to the literature using selective contacts, the Q_f polarity values should be opposite compared to the charge carriers that are being extracted. Since an ETL extracts electrons, positive fixed charges would be preferred. Thus, the estimation of the D_{it} and Q_f values are important to better characterize the ETL/perovskite interface under study. Moreover, the use of electrical measurements on MOS devices could be further extended for the study of perovskite/HTL interfaces as well. Perovskite MOS structures were not used to extract such parameters in the literature, but, instead, were used to study the hysteresis induced by ion movement; to use the MOS structure as a light-emitting diodes (PeLEDs) and to use ETL-free PSCs just to name a few examples. In this work, electrical measurements will be performed on inverted MOS devices, as a proof of concept that allows to extract important interface parameters. Moreover, we selected SnO$_2$ thicknesses already studied in the literature, enabling a direct comparison with their PSCs performances, which will allow for a validation of our results.

2. Results

2.1. Inverted MOS Structure

The properties of the ETL (SnO$_2$)/perovskite interface were studied using an inverted MOS structure replicating a typical n-i-p PSC architecture. Given the structural differences between the conventional MOS architecture (Figure 2a) and the inverted MOS structure (Figure 2b), some considerations were made to accurately take advantage from the inverted one.

- The first consideration is related to the definition of the contact area. In conventional MOS devices, the metal area definition is performed on top of the oxide (yellow metal of Figure 2a), while in the inverted structure, the only possibility to define the contact area is to assume the area on top of the semiconductor (yellow metal of Figure 2b). If the area is defined correctly, then, the measured capacitance values should increase proportionally to the contact area. Therefore, to validate if the inverted architecture can still use the gold top contact for area definition, capacitance values measured on inverted MOS devices with different contact areas will be compared.

- The second consideration is related with the device bias, that is, in the conventional MOS structure, by applying a positive bias on the yellow metal contact (Figure 2a), the MOS structure will be positively biased. However, in the inverted architecture (Figure 2b), by applying the same positive bias, the MOS device will be inversely biased, since the bias applied to the FTO metal (blue) of the MOS device is effectively negative.

- The third consideration refers to the expected band alignment for the inverted MOS device of this work. The band diagram of an ideal MOS device with an n-type semiconductor is shown in Figure 3a. When a positive bias is applied, an accumulation of majority carriers (electrons) in the interface is expected to occur, as depicted in Figure 3b, corresponding to the accumulation regime for an n-type semiconductor. On the other hand, for negative bias, the opposite effect is expected, that is, a higher number of holes is present at the interface (Figure 3c), which corresponds to the inversion regime of the MOS device for an n-type semiconductor. The estimated band diagram of our devices will be further shown, to correlate with the expected band diagrams shown in Figure 3.

To better understand the band diagram of our working device (third consideration), UV photoelectron spectroscopy (UPS) and reflection electron energy loss spectroscopy (REELS) measurements were carried out on a sample with a 30 nm thick SnO$_2$ deposited by sputtering on FTO (before and after annealing). Note that the sample stack was only FTO/SnO$_2$. The SnO$_2$ E_g value, the SnO$_2$ work function value (ϕ_{SnO_2}) and the difference between the SnO$_2$ valence band and the fermi
level \((E_v - E_f)\) were estimated as shown in Figure S1, Supporting Information. Such values allow for an estimation of the maximum valence band and the electron affinity values of the SnO\(_2\) layer. Moreover, the perovskite bandgap and work function values were extracted from the literature, considering a work that studied a perovskite with identical composition used in this work.\([60]\) Figure 4a shows the estimated band diagram of the MOS device, using the aforementioned values without the SnO\(_2\) annealing treatment, and in Figure 4b for the MOS device with annealed SnO\(_2\). Based on the band diagrams of Figure 4a,b, the SnO\(_2\)/perovskite interface should not have accumulation of electrons after applying positive bias since the conduction band’s lowest energy of the SnO\(_2\) layer is lower than the perovskite one, contrarily to an ideal MOS device, as shown in Figure 3b. The inversion regime of the MOS device should not be affected, since the valence bands’ alignment between the perovskite and SnO\(_2\) is in accordance with the ideal MOS device (Figure 3c). Such band alignment was expected, since

Figure 3. Inverted MOS structure principle with the corresponding band diagram: a) ideal MOS device with \(n\)-type semiconductor; b) same as a) with positive bias applied; and c) same as a) with negative bias applied. \(\phi_s\) is the semiconductor work function, \(\phi_m\) is the metal work function, \(E_g\) is the semiconductor bandgap, \(d\) is the oxide thickness, \(E_c\) is the conduction band minimum, \(E_v\) is the valence band maximum, \(E_f\) is the fermi level and \(E_i\) is the intrinsic level. Adapted with permission.\([34]\) Copyright 2006, John Wiley & Sons.

Figure 4. Band diagram of the devices studied in this work: a) SnO\(_2\) without annealing; and b) SnO\(_2\) with annealing.
the interface under study is projected to work as a selective contact for electrons in PSCs, that is, with the ability to extract electrons, and, at the same time, to block holes, which is exactly accomplished by the shown band diagram. MOS devices were already developed with the main objective to accomplish a low resistive selective/ohmic contact.[61–64] Thus, several works reported MOS devices with similar band diagrams as shown in Figure 4.[62–68] Nonetheless, the analysis of electrical measurements performed on MOS structures with the mentioned band diagram should be carried out with care, since it is expected an increased leakage current, considering that electrons do not have a barrier between the oxide and the semiconductor.[67,69,70]

Regarding the parameters commonly estimated from the C–V curves,[34] A. G. Scheuermann et al. mentioned that the oxide capacitance value (henceforth named C_{ox}) may be affected by the possible leakage current, whereas the flat-band voltage (V_{FB}) should not be affected.[70] Nevertheless, the use of the parameter values further estimated in this work for comparison with other studies should be done with caution, as the MOS devices studied in this work have a non-ideal band diagram. Thus, the parameters values that will further be estimated should be used mostly for comparative discussion within this work.

The main objective of this section is to show that some considerations must be addressed when using the inverted MOS devices fabricated in this work. It was possible to depict the working principle and we will show ahead a possible pathway to analyze the SnO$_2$/perovskite interface by using inverted MOS devices, composed by FTO/SnO$_2$/FA$_{0.83}$Cs$_{0.17}$PbI$_{1.8}$Br$_{1.2}$, as a proof of concept.

2.2. C–V and C–f Measurements

In this section, we will investigate if typical MOS C–V curves[34,35,59] that present a clear distinction between the accumulation, depletion, and inversion regimes can be obtained with the inverted MOS device FTO/SnO$_2$/FA$_{0.83}$Cs$_{0.17}$PbI$_{1.8}$Br$_{1.2}$. Moreover, we will study the possible Q_p and D_p values present in the SnO$_2$/perovskite interface. Four MOS devices were fabricated with two SnO$_2$ thickness values (20 and 30 nm) with and without annealing. Table 1 summarizes the preparation conditions of the devices studied in this work, with the corresponding names that will be used henceforth.

Device	SnO$_2$ thickness [nm]	Annealing [300 °C]	Top contact diameter [mm]
20NoAnneal	20	No	0.5, 1, and 2
20Anneal	20	Yes	0.5, 1, and 2
30NoAnneal	30	No	0.5, 1, and 2
30Anneal	30	Yes	0.5, 1, and 2

To study the contact area definition (first consideration), three curves of the 20NoAnneal device are shown in Figure 5 for three contact diameters: 0.5, 1, and 2 mm. A clear capacitance increase proportional to contact area is observed for the MOS devices. Thus, the effective impact of the contact area on the capacitance values is confirmed, validating that the area is defined in such inverted structure. Furthermore, for all devices, a typical MOS C–V behavior was observed[34,35]—not shown—with a distinct accumulation, depletion, and inversion regimes that correspond to the maximum, intermediate, and minimum measured capacitance values, respectively. Since the measured C–V plots show a typical behavior of MOS devices, we have confidence that our inverted FTO/SnO$_2$/Perovskite MOS device is working as intended, and, thus, we will proceed with the analysis of the inverted MOS structures.

The C–V plots of this work, as shown in Figure 5, have the higher step at positive bias (marked with an orange circle in Figure 5), corresponding to the accumulation regime, where the capacitance value of the oxide layer is typically estimated.[34] Then, with decreasing bias, the capacitance value decreases (depletion region), until it reaches a minimum capacitance that might correspond to the inversion region.[34] However, a middle step was identified in the C–V plot, marked with a black circle in Figure 5, which is not a common feature in typical MOS devices.[34,35] Although representative MOS devices are shown in Figure 5, the same behavior was observed independently of the SnO$_2$ thickness, annealing, or contact area. Thus, three possible hypotheses for the appearance of a middle step in the C–V plots of our devices will be presented:

- The first hypothesis considers that the middle step appearance is related with the presence of interface traps (hypothesis 1), which was already reported in the literature.[71–74] Several studies used the conductance (G_p) or G_p/ω as a function of bias to correlate the middle step appearance with interface traps.[72,74–77] In fact, the appearance of a peak in the measured G_p or G_p/ω versus bias or frequency curve is an indication of loss mechanisms due to interface trap capture and/or emission of carriers.[15,59] Therefore, in order to further investigate if our devices suffer from the same effect, the capacitance measurements for three contact diameters: 0.5, 1, and 2 mm will be carried out, since it is expected an increased leakage current, considering that electrons do not have a barrier between the oxide and the semiconductor.[67,69,70] The analysis of electrical measurements performed on MOS structures with the mentioned band diagram should be carried out with care, since it is expected an increased leakage current, considering that electrons do not have a barrier between the oxide and the semiconductor.[67,69,70]

![Figure 5. Representative MOS C–V curves of 20NoAnneal device with 0.5, 1, and 2 mm diameter contacts. All MOS devices in this work had similar C–V behaviors. The black circle represents the middle step and the orange circle represents the higher step. Note that the capacitance values of the three plots have an order of magnitude difference between them.](image-url)
curve was coupled with the G_p/ω as a function of the bias curve, as shown in Figure 6, where G_p/ω is given by:

$$\left(\frac{G_p}{\omega} \right) = \frac{\omega C_m C_m^i}{G_m^2 + \omega^2 (C_m - C_n)}$$

(1)

where C_{in} is the oxide capacitance taken in the accumulation regime (positive bias) of the $C-V$ curve, C_m is the measured capacitance, G_m is the measured conductance, and $\omega = 2\pi f$ is the angular frequency. The middle capacitance step appears in the same region as the G_p/ω peak, shown in Figure 6a for the 20NoAnneal device, which was also observed for all devices. Such observation is a possible indication that the middle step is caused by interface traps. Nonetheless, for the 30NoAnneal device, a second peak appears at higher voltage values (Figure 6b). Assuming that a peak in the G_p/ω is directly related with traps, the appearance of a second peak is a possible indication that the 30NoAnneal device has an additional recombination mechanism, compared to the other studied devices.

- The second hypothesis for the appearance of two steps in the $C-V$ curve is related with ion movement (hypothesis 2). T. Pang et al. reported the possible movement of iodine ions through grain boundaries in the perovskite showing that such ions are negatively charged and can accumulate at the MOS interface. Therefore, assuming the possibility that the negative ions can accumulate at the interface due to a positive bias, it may be expected that the higher step at positive bias is caused by ions accumulation, and that the capacitance middle step is related with the oxide layer.
- The third hypothesis for the double step appearance is the possible electrons depletion behavior of the SnO$_2$ layer (hypothesis 3), which was already observed for TiO$_2$ in a conventional MOS structure. According to J. Lontchi et al., the possible partial or full depletion of TiO$_2$ may significantly influence the measured capacitance values.

Lastly, due to the measurements and techniques used in this work, it is not possible to accurately assess which of the three
aforementioned hypotheses is the one that better explains the appearance of the middle step in the C–V curves. However, this does not impact the qualitative discussion of the next results. Further studies are needed, as these three hypothesis raise relevant questions for PSCs performance.

From C–V and C–f measurements, both the Dit and the Qf values can be studied. Exemplificative procedures will be shown to estimate both parameters to the four fabricated devices.

The conductance method was used for the Dit values estimation, using the following equation:

$$D_i = \frac{2.5}{A \times q} \left(\frac{G_p}{\omega} \right)_{\text{max}}$$

where $\left(\frac{G_p}{\omega} \right)_{\text{max}}$ is the maximum value of the $\frac{G_p}{\omega}$ plot using Equation (1) in function of the frequency, A is the area of the top contact and q is the electron charge. As previously mentioned, a peak in the measured $\frac{G_p}{\omega}$ curve is an indication of loss mechanisms due to interface traps. To plot $\frac{G_p}{\omega}$ from Equation (1), the Cin value needs to be estimated either from the higher or middle step from the C–V curves. Considering that the Cin values are in the same order of magnitude for both steps (Figure 5), it is not expected a significant change in the $\frac{G_p}{\omega}$ plot. Moreover, conventionally, the Cin value from the accumulation regime (higher step) in typical MOS devices is estimated from the higher step was used for the $\frac{G_p}{\omega}$ plots. Figure 7a shows a $\frac{G_p}{\omega}$ versus frequency plot for the device 20NoAnneal, Figure 7b for the 20Anneal device, Figure 7c for the 30NoAnneal device and Figure 7d for the 30Anneal device. Considering the asymmetry of the plots and assuming that multiple contributions (associated with recombination mechanisms) may be present, multi-peak fitting using Gauss functions was performed for all devices’ plots. The fitting of the $\frac{G_p}{\omega}$ plot was already described in the literature, which allowed to distinguish between different types of traps. Thus, from Figure 7a,b,d, it becomes clear that there are two contributions for the $\frac{G_p}{\omega}$ response in the case of 20NoAnneal, 20Anneal and 30Anneal devices, respectively, meaning that two main recombination mechanisms are present. The 30NoAnneal device presents a different behavior, as shown in Figure 7c, since there are three contributions to the $\frac{G_p}{\omega}$ response. The red and green fitted peaks (B and C, respectively) match the same peaks observed for the other devices, and a new one appears at low frequency values (peak A). For the 30NoAnneal device, the $\frac{G_p}{\omega}$ versus frequency behavior agrees with the $\frac{G_p}{\omega}$ versus bias behavior, since in both frequency and bias, the 30NoAnneal device appears to have an additional recombination mechanism compared to the other studied devices.

The estimated Dit values for all MOS structures, using Equation (2), are presented in Figure 8.
device with a 20 nm SnO2 layer slightly decrease after the annealing step. Nonetheless, 30NoAnneal and 30Anneal devices present similar \(D_i \) values compared to the 20Anneal device within the standard deviation values. Such result was unexpected, since the 30NoAnneal device may have an additional recombination mechanism compared to the other devices, according to the \(G_p/\omega \) curves in function of both bias and frequency. This remark agrees with previous reports that point out the limitations of using the conductance method to estimate the \(D_i \), values.\[^{[60]}\] When the \(D_i \) value is larger than 4\(C_{in}/q \),\[^{[80]}\] which is the case of our devices, an underestimation of the \(D_i \) values may happen.\[^{[82]}\] In Figure 8, with the exception of the slightly \(D_i \) value decrease from 20NoAnneal to 20Anneal device, all devices present similar \(D_i \) values, indicating a possible saturation of the traps density, which can be a preliminary evidence that a significant loss of sensitivity may have occurred while using the conductance method, as described elsewhere.\[^{[81,82]}\]

The \(Q_f \) values are estimated by:\[^{[38,59,83,84]}\]

\[
Q_f = \frac{C_{in} (\phi_{MS} - V_{fb})}{A \times q}
\]

(3)

where \(\phi_{MS} \) is the metal-semiconductor work function difference and \(V_{fb} \) is the flat-band voltage. The \(\phi_{MS} \) value is estimated from the difference between the metal work function value of FTO (4.6 eV according to W. Zhu et al.\[^{[85]}\]) and the semiconductor work function value of \(FA_{0.8}Cs_{0.2}PbI_{1.8}Br_{1.2} \) (4.38 eV extrapolated from the values reported elsewhere\[^{[60]}\]), corresponding to a \(\phi_{MS} \) value of ≈0.22 eV. The \(V_{fb} \) precise calculation for the devices in this work is difficult without a clear understanding of the cause for both steps in the \(C-V \) curves. However, considering both the higher and middle steps, it was possible to estimate the \(V_{fb} \) values, as shown in Figure S2, Supporting Information, for the device 20NoAnneal, as an example.

Considering that \(C_{in} \), \(A \), and \(q \) have positive values, the \(Q_f \) values’ polarity is only dependent on the \(\phi_{MS} - V_{fb} \) (Equation (3)). Thus, the choice of the step for the \(V_{fb} \) estimation will influence the \(Q_f \) values, as shown in Figure S2, Supporting Information. As an example, considering \(\phi_{MS} \) equal to 0.22 eV, if \(V_{fb} \) is higher than 0.22 eV, then \(Q_f \) assumes negative values; on the other hand, if \(V_{fb} \) is lower than 0.22 eV, then \(Q_f \) will be positive.

Considering the higher step for the \(Q_f \) estimation, the observed trends for the \(Q_f \) values are shown in Figure 9a. The \(V_{fb} \) values estimated from the higher step of the \(C-V \) curve are close to the \(\phi_{MS} \) value for all devices, which means that the \(Q_f \) values are close to zero. Moreover, slight variations in the \(V_{fb} \) values close to \(\phi_{MS} \) can result in a \(Q_f \) value polarity switch, which could be a plausible explanation to the polarity switch observed between 20NoAnneal and 30NoAnneal devices.

The observed trends for the estimation of \(Q_f \) values based on the middle step are shown in Figure 9b. Regarding devices with a 20 nm thick SnO2 layer, a higher density of interface fixed oxide charges is observed without annealing. On the other hand, regarding devices with a 30 nm thick SnO2 layer, the same \(Q_f \) values were obtained with and without annealing. Nevertheless, as previously mentioned, it is important to point out that the use of the \(Q_f \) absolute values of this work for comparison with other studies should be done with caution, since it is not clear which step should be used for the \(V_{fb} \) and \(C_{in} \) estimation. Thus, these values should only be used for comparative discussion within this work.

3. Discussion

Perovskite-based inverted MOS structures were successfully fabricated and its \(C-V \) curves presented a distinct accumulation, depletion, and inversion regimes, reinforcing that the devices are working as intended. In this work, the \((G_p/\omega) \) versus bias and frequency plots were studied in order to better comprehend the possible recombination mechanisms present in the SnO2/perovskite interface. It was found that the 30NoAnneal device presented a distinctive behavior both for \((G_p/\omega) \) versus bias and frequency compared to the other three studied devices. The \((G_p/\omega) \) versus bias plot of the 30NoAnneal device presented two peaks instead of one for the other devices, and the \((G_p/\omega) \) versus frequency plot of the 30NoAnneal device presented three recombination mechanisms compared to the two recombination mechanisms present in the other devices. Such result evidences that either a 20 nm SnO2 layer or a 30 nm SnO2 layer with annealing would be preferred to be used as ETL in PSCs. To further understand which one should be used, the \(Q_f \) values were also taken into account. On one hand, analyzing the \(Q_f \) values in the case of the higher \(C-V \) step, the \(Q_f \) values polarity switch between the 20NoAnneal and 30NoAnneal devices could be explained by the \(\phi_{MS} \) and \(V_{fb} \) values proximity. Nonetheless,

![Figure 9. \(Q_f \) values for all devices studied in this work: a) estimated using \(C_{in} \) and \(V_{fb} \) values from the higher step; and b) estimated using \(C_{in} \) and \(V_{fb} \) values from the middle step. The bar height represents the average value and the “error bars” represent the standard deviation values.](image-url)
the 20NoAnneal device presents the highest positive Q_f values. On the other hand, considering the middle step for the Q_f estimation, the 20NoAnneal device presents, again, the highest positive Q_f values, whereas the 20Anneal, 30NoAnneal, and 30Anneal have similar Q_f values. One possible hypothesis that explains such Q_f results is to assume that the deposition time has the same effect as the annealing step, that is, the annealing step reduces the Q_f values of the 20 nm device, which could have the same effect as the deposition time, and, thus, the 30NoAnneal device has the same Q_f value as the 20Anneal device. Since the 30NoAnneal device has its Q_f values already decreased due to longer deposition time, the annealing step did not have any effect, and, thus, the 30Anneal device has a similar Q_f value as 30NoAnneal and 20Anneal devices. The 20 nm thick SnO$_2$ layer without annealing has the highest positive Q_f values of this work (considering either the middle or higher steps for its estimation), as desired for an ETL. Such result is in agreement with the previous G_p/ω versus bias and frequency analyses, which also supports the use of 20 nm thick SnO$_2$ layers, and with the input from the Q_f values estimation, it is evidenced that an annealing treatment is not needed. Considering the devices without SnO$_2$ annealing (20NoAnneal and 30NoAnneal), the cause for differences between them remain unclear, as both devices underwent similar fabrication procedures. However, the differences between them may be related with the different sputtering deposition times, since it has been reported in the literature that a prolonged exposure to the sputtering plasma may affect the surface properties of the SnO$_2$ layer.\[26]\] Moreover, the observation of different PSCs performances due to the sputtering deposition of different SnO$_2$ thicknesses was already observed\[21–23,26\] with a decrease of open-circuit voltage (V_{oc}) values with increasing SnO$_2$ thickness values. Moreover, several works reported solar cells’ results where the 20 nm thick SnO$_2$ layer without annealing was found to achieve higher PSCs’ performances compared to other studied thicknesses and with annealing.\[22–24,26\] Thus, such reports are in accordance with our work, since the additional recombination mechanism at the interface SnO$_2$/perovskite observed in the 30NoAnneal device compared to the 20NoAnneal device in addition to the high positive Q_f values of the 20NoAnneal device, are a clear indication that the 20 nm thick SnO$_2$ layer without annealing treatment should be used as ETL for FA$_{0.83}$Cs$_{0.17}$PbI$_{1.8}$Br$_{1.2}$ PSCs. In order to further evaluate the density of SnO$_2$/perovskite interface traps, D_{it} values for all devices were estimated. However, the conductance method used in this work for the D_{it} estimation revealed a possible loss of sensitivity to accurately extract the D_{it} values, which is an indication that metal contacts with a larger diameter should be used to further increase capacitance values and move away from the condition that the D_{it} values are higher than $4C_{inf}/q$. Despite of the impossibility to precisely extract the D_{it} values, the presented analysis shows that all devices have D_{it} values possibly larger than $10^{13} \text{eV}^{-1} \text{cm}^{-2}$ indicating that the SnO$_2$/perovskite is highly recombinative independently of SnO$_2$ thickness or annealing step. Thus, the SnO$_2$/perovskite interface still has room for further improvement in order to reach significantly lower D_{it} values, which would reduce interface recombination losses.

4. Conclusions

We successfully fabricated functional inverted MOS devices based on metal/SnO$_2$/perovskite. The high sensitivity of MOS devices for the characterization of the ETL/perovskite interface was clearly evidenced by the detection of differences between the 20 and 30 nm thick SnO$_2$ layers. According to the (G_p/ω) versus frequency measurements, the 30NoAnneal device presented three dominant recombination mechanisms, while the three remaining devices have two dominant recombination mechanisms. All devices present high values of interface traps above $10^{13} \text{eV}^{-1} \text{cm}^{-2}$ and possibly even higher due to the limitations of the conduction method. Therefore, in terms of chemical passivation it is evidenced that the SnO$_2$/perovskite interface still has room for further improvement to reduce interface recombination losses. The device with the 20 nm thick SnO$_2$ layer without annealing displayed the highest positive Q_f values amongst the studied devices, which is a desired result for ETLS, as positive Q_f charges are needed over negative Q_f charges. Considering that the fabricated inverted MOS devices have the same structure as a typical n-i-p PSC architecture, the obtained results suggest the 20 nm thick SnO$_2$ layer without annealing is more suitable to be used as ETL for FA$_{0.83}$Cs$_{0.17}$PbI$_{1.8}$Br$_{1.2}$ PSCs compared to the 30 nm thick SnO$_2$ layer. It is noted that different perovskite layers or ETLS may induce differences in the interface under study, and, thus, MOS devices should be fabricated for each desired perovskite and/or ETL interface to extract the respective Q_f and D_{it} values. In order to extract the maximum information from the perovskite interfaces, future perovskite-based MOS devices should take into account the following: i) to acquire more robust D_{it} values it would be needed to fabricate devices with a top contact with a diameter of 3 mm or higher, in order to increase the capacitance values, moving away from the condition that D_{it} is larger than $4C_{inf}/q$; ii) it should be conducted forward and reverse bias C–V measurements in order to study a hysteresis effect due to the possible presence of ions in the perovskite; and iii) (G_p/ω) versus frequency measurements should be conducted at different bias and temperatures, in order to further study the recombination mechanisms present in each device.

In short, this work presents a novel strategy and indications to characterize PSCs based on MOS devices, aiming to extract more information on the perovskite/(ETL or HTL) interface. The use of MOS devices for optoelectronic studies is of utmost importance, enabling the further development of already existing ETL/HTL materials for PSCs. Additionally, this work shows that the use of MOS devices is essential for developing new ETL/HTL materials, allowing for a better understanding of their optoelectronic properties, which remains critical for the successful integration of PSCs in the energy market.

5. Experimental Section

Materials and Perovskite Precursor Solution: The perovskite layer was prepared with Cesium iodide (CsI, 99.9%), lead (II) bromide (PbBr$_2$, 98%), lead (II) iodide (PbI$_2$, 99%), and hydrobromic acid (HBr, 48 wt%), all from Sigma-Aldrich, and hydriodic acid (HI, 57 wt%) from Alfa Aesar. The chemicals were used without further purification. The perovskite precursor solution (0.95 m) with nominal composition of FA$_{0.83}$Cs$_{0.17}$PbI$_{1.8}$Br$_{1.2}$, supported by the use of MOS devices is essential for developing new ETL/HTL materials, allowing for a better understanding of their optoelectronic properties, which remains critical for the successful integration of PSCs in the energy market.
was prepared by dissolving FAI (272 mg), Csl (83.4 mg), PbI2 (350 mg), and PbBr2 (418 mg) in N,N-dimethylformamide (2 mL). HI (109.4 µL) and HBr (54.6 µL) and the solution was stirred for 48 h at room temperature, according with the experimental procedure described elsewhere.\[86]\n
MOS Fabrication: For the MOS structures fabrication, radio frequency sputtering (room temperature, SnO2 target with a diameter of 2” (~5 cm), bias voltage of 228 V, chamber pressure of 6.9 × 10⁻¹³ mbar at 60 W with a deposition rate of 1.30 nm min⁻¹ on a Kenosistec multitarget UHV sputtering system) was used to deposit a compact SnO2 layer with a thickness of 20 and 30 nm. The SnO2 layer was deposited onto FTO (Pilkington, TEC8), previously cleaned following a stepwise procedure with detergent, deionized water, acetone, and isopropanol. The SnO2 films were annealed following a multistep temperature ramp, up to 300 °C (room temperature, 10 °C-min⁻¹; 100 °C, 10 min, 10 °C-min⁻¹; 200 °C, 10 min, 10 °C-min⁻¹; 300 °C, 30 min). Prior to the perovskite deposition, the FTO/SnO2 substrate was exposed to UV light for 15 min aiming to improve the surface wettability and the SnO2 thickness was confirmed by contact profilometer. Subsequently, the perovskite precursor solutions were filtered with 0.20 µm PTFE filters and spin-coated at 2000 rpm for 45 s on a FTO/SnO2 substrate preheated at 70 °C. The films were dried on a hot plate at 70 °C for 5 min, and then annealed in a conventional oven in air following a multistep temperature ramp up to 185 °C (room temperature, 10 °C-min⁻¹; 100 °C, 10 min, 10 °C-min⁻¹; 185 °C, 30 min). The resulting MOS stack consisted of FTO/SnO2/Peroxide. Gold electrodes with three different diameters were then deposited by sputter-coating under vacuum through a hard mask. The final MOS structure is schematized in Figure S3, Supporting Information.

For the capacitance–voltage–frequency (C–V–f or C–V) and capacitance–conductance–frequency (C–G–f or C–f) measurements, a precision LCR meter Keysight E4980A was used. The C–f measurements were performed in dark with a DC voltage bias range from 0.5 to ~1.5 V, with a frequency of 10 kHz and a root mean square AC voltage signal (V
\text{rms}) of 25 mV. The C–G–f measurements were performed in the dark from 20 Hz to 1 MHz, with a bias of 0 V and a \text{V}_{\text{rms}} value of 25 mV. The LCR equipment considers a circuit consisting of a capacitance (C₀) in parallel with a conductance (G₀), which are the output parameters of the LCR measurements, as described elsewhere.\[87]\n
UPS and REELS measurements were performed in the ESCALAB 250Xi from Thermo Scientific, using a helium discharge lamp (He I = 21.2 eV) and 1 keV electron energy. UPS was used to obtain the SnO2 work function (φ_{SnO2}). REELS analysis allowed to obtain the SnO2 electronic information.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
Fundaçao para a Ciência e a Tecnologia (FCT) and Fundo Social Europeu (FSE) are acknowledged through the projects IF/00133/2018, PD/BD/142780/2018, SFRH/BD/146776/2019, DFA/BD/4564/2020, UIDB/04370/2020, UIDB/04564/2020, UIDP/04564/2020 and SuPerSolar PTDC/NAN-OPT/28430/2017. This research is also supported by NovaCell—Development of novel Ultrathin Solar Cell Architectures for low-light, low-cost, and flexible opto-electronic devices project (028075) co-funded by FCT and the ERDF through COMPETE2020. This research is supported by InoSolarCells—Development of innovative nanostructured dielectric materials for interface passivation in thin film solar cells project (029696) co-funded by FCT and the ERDF through COMPETE2020. The authors acknowledge the financial support of the project Baterias 2030, with the reference POCI-01-04-30-0001-07, co-funded by Operational Programme for Competitiveness and Internationalisation (COMPETE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The authors would like to thank Pilkington for supplying free samples of FTO-TEC8.

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that supports the findings of this study are available in the supplementary material of this article.

Keywords
metal–oxide–semiconductors, perovskite and charge carrier transport layer interface, SnO2/perovskite interface traps

Received: June 16, 2021
Revised: July 29, 2021
Published online: September 27, 2021
[78] J. Lontchi, H. Doghmen, A. Krumpmann, R. Snyders, D. Flandre, Appl. Phys. Express 2021, 14, 051008.
[79] K. M. Brunson, D. Sands, C. B. Thomas, H. S. Reehal, J. Appl. Phys. 1987, 62, 185.
[80] R. Engel-Herbert, Y. Hwang, S. Stemmer, J. Appl. Phys. 2010, 108, 124101.
[81] M. Capriotti, P. Lagger, C. Fleury, M. Oposich, O. Bethge, C. Ostermaier, G. Strasser, D. Pogany, J. Appl. Phys. 2015, 117, 024506.
[82] K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, G. Groeseneken, IEEE Trans. Electron Devices 2008, 55, 547.
[83] G. Birant, J. Mafalda, R. Scaffidi, J. de Wild, D. G. Buldu, T. Kohl, G. Brammertz, M. Meuris, J. Poortmans, B. Vermang, EPJ Photovoltaics 2020, 17, 10.
[84] E. J. Faber, L. C. P. M. de Smet, W. Olthuis, H. Zuilhof, E. J. R. Sudhölter, P. Bergveld, A. van den Berg, ChemPhysChem 2005, 6, 2153.
[85] W. Zhu, Z. Zhang, W. Chai, Q. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, C. Zhang, Y. Hao, ChemSusChem 2019, 12, 2318.
[86] M. J. Brites, M. A. Barreiros, V. Corregidor, L. C. Alves, J. V. Pinto, M. J. Mendes, E. Fortunato, R. Martins, J. Mascarenhas, ACS Appl. Energy Mater. 2019, 2, 1844.
[87] J. M. V. Cunha, C. Rocha, C. Vinhais, P. A. Fernandes, P. M. P. Salome, IEEE J. Photovoltaics 2019, 9, 1442.