The Efficacy and Safety of Mirabegron for the Treatment of Neurogenic Lower Urinary Tract Dysfunction: A Systematic Review and Meta-analysis

Dongxu Zhang†, Fengze Sun†, Huibao Yao1, Xingjun Bao1, Di Wang1, Yuanshan Cui1,2* and Jitao Wu1*

1Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China, 2Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Background and Objective: Over the past few years, mirabegron has been increasingly used as a therapeutic option for neurogenic lower urinary tract dysfunction. Here, we carried out a meta-analysis to investigate the efficacy and safety of mirabegron for the treatment of neurogenic lower urinary tract dysfunction.

Methods: We used a range of databases to retrieve randomized controlled trials (RCTs) relating to mirabegron in patients with neurogenic lower urinary tract dysfunction: PubMed, Embase, and Cochrane Library; our strategy conformed to the PICOS (populations, interventions, comparators, outcomes, and study designs) strategy.

Results: Our analyses involved four RCTs involving 245 patients. We found that mirabegron treatment resulted in a significant improvement in bladder compliance [mean difference (MD) = 19.53, 95% confidence interval (CI): 14.19 to 24.87, P < 0.00001], urinary incontinence episodes (MD = −0.78, 95% CI: −0.89 to −0.67, P < 0.00001) and Incontinence Quality of Life (I-QOL) (MD = 8.02, 95% CI: 3.20 to 12.84, P = 0.001). Significant differences were detected in terms of Patient Perception of Bladder Condition (PPBC) (MD = −0.54, 95% CI: −1.46 to 0.39, P = 0.26) and urinary urgency episodes (MD = −0.72, 95% CI: −3.1 to 1.66, P = 0.55). With regard to safety, there were no significant differences between mirabegron and control groups in terms of the incidence of drug-related adverse events [odds ratio (OR): 0.83, 95% CI: 0.43 to 1.59, P = 0.57], arrhythmias (OR: 1.27, 95% CI: 0.37 to 4.38, P = 0.70), hypertension (OR: 0.70, 95% CI: 0.13 to 3.82, P = 0.68), or post-voiding residual volume (MD: 1.62, 95% CI: −9.00 to 12.24, P = 0.77).

Conclusion: Mirabegron is an efficacious and safe treatment for patients with neurogenic lower urinary tract dysfunction.

Keywords: meta-analysis, mirabegron, neurogenic lower urinary tract dysfunction, RCT, randomized controlled trial, systematic review
INTRODUCTION

Patients suffering from spinal cord injury (SCI) and neurological disorders (e.g., multiple sclerosis (MS) and Parkinson’s disease) often present with neurogenic lower urinary tract dysfunction (NLUTD) (Stöhrer et al., 2009; Harris and Lemack, 2016). The typical clinical symptoms of NLUTD usually manifest as dysuria, urgency, urinary incontinence, and impaired bladder emptying. Patients with severe NLUTD can develop renal failure and complicated urinary tract infections and may even die. At present, anticholinergic (antimuscarinic) drugs are recommended as the first-line treatment for NLUTD. Although some studies have reported that anticholinergic (antisuccarinic) medications can effectively improve urodynamic parameters in patients with NLUTD (Madhuvrata et al., 2012; Sugiyama et al., 2017), these medicines are associated with side effects (e.g., dry mouth and constipation) that limit their use in the long term (Averbeck and Madersbacher, 2011; Manack et al., 2011; Wagg et al., 2012). Therefore, there is a clear need to develop novel, effective, and safe therapeutic modalities for NLUTD.

Mirabegron, a β3-adrenoceptor agonist, is commonly applied to treat idiopathic overactive bladder in the clinic and works by stimulating β3-adrenergic receptors to induce detrusor relaxation (Kashyap and Tyagi, 2013). Compared with anticholinergic (antisuccarinic) drugs, mirabegron has similar levels of efficacy but with superior safety (Maman et al., 2014; Chapple et al., 2017). More recently, mirabegron has been gradually applied for the treatment of NLUTD. However, few evidence-based studies have been conducted on the feasibility of using mirabegron as a treatment for NLUTD. In view of their superior safety profile, mirabegron is expected to become a new option for the treatment of NLUTD.

In this systematic review and meta-analysis, we assessed the efficacy and safety of mirabegron for the treatment of NLUTD to provide a feasible reference for clinical medication. Our study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist.

METHODS

Search Strategy

Three of the authors identified randomized controlled trials (RCTs) relating to the impact of mirabegron in the treatment of NLUTD from the PubMed, Embase, and Cochrane Library databases, in accordance with the PICOS (populations, interventions, comparators, outcomes, and study designs) strategy; the search strategy is summarized in Table 1. Our database searches included the following search terms: NLUTD, SCI, neurological disorders (MS and Parkinson’s disease), mirabegron, and RCTs. Our analysis was registered with PROSPERO (Reference: CRD42021256235). References from the included articles were also reviewed by the three authors to identify additional relevant articles.

Inclusion Criteria

To be included in our study, the RCTs needed to satisfy the following criteria: 1) the study analyzed the effect of mirabegron on NLUTD, 2) full-text content was available, and 3) the study provided complete and precise data (including the sample size of participants and the results of each indicator). There were stricter inclusion and exclusion criteria for RCTs, compared with other prospective and retrospective studies.

Quality Assessment

The quality of the selected RCTs was assessed by applying the Jadad scale (Alejandro, 1998). In addition, the assessment method included patient allocation, the concealment of allocation, blinding methodology, and the number of patients who were lost to follow-up. In accordance with the guidelines published in the Cochrane Handbook for Systematic Reviews of Interventions V.5.1.0 (DerSimonian and Laird, 1986), we classified the quality of each study as follows: 1) the study achieved all quality criteria with a low-risk of bias, 2) the study achieved most quality criteria with a moderate risk of bias, and 3) the study achieved few quality criteria with a high risk of bias. All authors achieved good levels of agreement when applying this classification.

Table 1 | Search strategy according to populations, interventions, comparators, outcomes, and study designs (PICOS).

Inclusion Criteria	Population	Intervention	Comparator	Outcomes	Study design
Patients with neurogenic lower urinary tract dysfunction	Mirabegron	Placebo	Patient Perception of Bladder Condition (PPBC)	Randomized controlled trials	
Cystometric capacity			Bladder compliance, volume at first		
24-h pad weight test			Bladder overactivity		
Complications, systolic pressure, diastolic pressure, heart rate			MusiQoL score		
Dairy number of urinations			Overactive bladder symptom score	Letters, comments, reviews, qualitative studies	
Dairy fluid intake			Treatment satisfaction questionnaires (TSQ)		
MusiQoL score					
Overactive bladder symptom score					
Treatment satisfaction questionnaires (TSQ)					

Exclusion Criteria

- Patients with non-neurogenic lower urinary tract dysfunction.
- Anticholinergics in the treatment of the neurogenic lower urinary tract dysfunction in patients.
- Individuals with indwelling catheters/epicystostomy.
- Patients with urologic surgery within the past year.

Not performed

Not performed

Dairy number of urinations

Dairy fluid intake

MusiQoL score

Overactive bladder symptom score

Treatment satisfaction questionnaires (TSQ)
Data Extraction
We extracted a range of valuable information from each of the RCTs: 1) the name of the first author; 2) the study type; 3) the sample size of each group; 4) the treatment modality; 5) the dosage and time of treatment; and 6) the study outcome, including bladder compliance, Incontinence-Quality of Life (I-QOL), urinary incontinence episodes, urinary urgency episodes, Patient Perception of Bladder Condition (PPBC), the incidence of drug-related adverse events, arrhythmias, hypertension, and post-voiding residual volume.

Statistical and Meta-Analysis
We performed statistical analysis using Review Manager software (RevMan, version 5.3.0, Cochrane Collaboration) (Higgins and Green, 2008). Differences in bladder compliance; the mean score for the I-QOL and PPBC; and the incidence of drug-related adverse events, arrhythmias, hypertension, and post-voiding residual volume were used to investigate the efficacy of mirabegron for the treatment of NLUTD. Continuous data were evaluated by mean difference (MD) and dichotomous data are expressed by odds ratios (ORs) with 95% confidence intervals (CIs) (DerSimonian and Laird, 2015). When the p value was greater than 0.05, the study was regarded as being homogenous. A fixed-effects model was applied to homogenous studies. In contrast, a random-effects model was applicable to heterogeneous studies. We used the I² statistic to test for inconsistency. A p value <0.05 was considered to indicate statistical significance.

RESULTS
Characteristics of Eligible Studies
After applying the inclusion/exclusion criteria, a total of 286 articles were identified from the databases. First, we screened the titles and abstracts; this led to the removal of 249 articles. When considering the remaining 19 articles, we excluded 14 articles because useful data were missing. One article was eliminated due to duplication. Finally, our analyses involved four high-quality RCTs (Zachariou et al., 2017; Krhut et al., 2018; Welk et al., 2018; Cho et al., 2021). Figure 1 shows a flowchart that presents the selection process. Study features and patient characteristics are given in Table 2.
The Quality of Eligible Studies

The included studies were all RCTs; three of these were randomized, double-blind, and placebo-controlled trials (Krhut et al., 2018; Welk et al., 2018; Cho et al., 2021). The quality grade of three of the included RCTs (Krhut et al., 2018; Welk et al., 2018; Cho et al., 2021) was rated as A; one RCT (Zachariou et al., 2017) was rated as B. One study failed to complete follow-up (Cho et al., 2021), and four patients were lost to follow up. Further details relating to study quality are given in Table 3.

Table 2: Study and patient characteristics.

Study	Country	Design	Therapy in experimental group	Therapy in control group	Simple size	Method	Time of therapy (weeks)	Dosage (mg)	Inclusion population
Krhut et al. (2018)	Czech	RCT	Mirabegron	Placebo	32	34	Oral	6	50
Welk et al. (2018)	Canada	RCT	Mirabegron	Placebo	16	16	Oral	10	50
Cho et al. (2021)	South Korea	RCT	Mirabegron	Placebo	58	59	Oral	12	50
Zachariou et al. (2017)	Greece	RCT	Mirabegron + desmopressin	Desmopressin	15	15	Oral	12	50

RCT, randomized controlled trials; NDO, neurogenic detrusor overactivity; SCI, spinal cord injury; MS, multiple sclerosis; OAB, overactive bladder.

Table 3: Quality assessment of individual study.

Study	Allocation sequence generation	Allocation concealment	Blinding	Loss to follow-up	Calculation of sample size	Statistical analysis	Level of quality	ITT analysis
Krhut et al. (2018)	A	A	A	0	Yes	ANCOVA	A	No
Blayne Welk et al. (2018)	A	A	A	0	Yes	ANCOVA	A	Yes
Cho et al. (2021)	A	A	A	4	Yes	ANCOVA	A	Yes
Zachariou et al. (2017)	A	A	B	0	Yes	ANCOVA	B	No

* A, all quality criteria met (adequate): low risk of bias; B, most quality criteria met (adequate); moderate risk of bias; ITT, intention-to-treat; ANCOVA, analysis of covariance.
Efficacy
Patient Perception of Bladder Condition
Three RCTs analyzed the differences in PPBC across the 352 patients (the mirabegron group consisted of 106 patients, whereas the placebo group consisted of 109 patients) (Figure 2A). Because of $p < 0.05$, we performed a random-effects model; this showed a MD of -0.54 (95% CI: 1.46 to 0.39, $I^2 = 94\%$). Our analysis indicated that the effect of mirabegron on PPBC was similar to that of the placebo.

Bladder Compliance
Two RCTs reported differences in the bladder compliance of 98 patients (48 in the mirabegron group and 50 in the placebo group) (Figure 2B). A random-effects model showed that patients experienced significantly improved bladder compliance following treatment with mirabegron (MD = 19.53; 95% CI: 14.19 to 24.87, $p \leq 0.00001$).

Urinary Incontinence Episodes
Two RCTs reported differences in the urinary incontinence episodes of 147 patients (73 in the mirabegron group and 73 in the control group) (Figure 2C). A fixed-effects model indicated that mirabegron significantly improved urinary incontinence episodes in patients with NLUTD (MD = -0.78, 95% CI: -0.89 to -0.67, $p < 0.00001$).

Incontinence Quality of Life
Two RCTs reported differences in the bladder compliance of 98 patients (48 in the mirabegron group and 50 in the placebo
Pooled results from a fixed-effects model showed that a statistically significant improvement was recorded in the mirabegron group in terms of the I-QOL scores (MD = 8.02, 95% CI: 3.20 to 12.84, \(p = 0.001 \)) (Figure 2D).

Urinary Urgency Episodes

Two RCTs reported differences in the urinary urgency episodes of 147 patients (73 in the mirabegron group and 74 in the control group). Pooled results from a random-effects model suggested that the mirabegron group did not differ significantly from that of the control group with regard to improving urinary urgency episodes (MD = −0.72, 95% CI: −3.1 to 1.66, \(p = 0.55 \)) (Figure 2E).

Safety

Adverse Events

Because of \(p > 0.05 \), we performed a fixed-effects model to compare the occurrence of drug-related adverse events between the two groups from three RCTs (Figure 3A). The model indicated that the OR was 0.83, the 95% CI was 0.43 to 1.59, the \(I^2 \) was 0%, and the Chi-squared value was 1.45 (\(p = 0.57 \)), thus indicating that there was no significant difference between the two groups with regard to the occurrence of drug-related adverse events.

Heart Rate

Because of \(p > 0.05 \), we performed a fixed-effects model to analyze the incidence of abnormal heart rate between the two groups from three RCTs (106 patients received mirabegron, whereas 109 patients received placebo treatment) (Figure 3B). The model indicated that the OR was 1.27, the 95% CI was 0.37 to 4.38, the \(I^2 \) was 0%, and the Chi-squared value was 1.00 (\(p = 0.70 \)), thus indicating that the mirabegron and placebo groups were similar in terms of the incidence of abnormal heart rate.

Blood Pressure

Two RCTs, including 149 patients (74 in the mirabegron group and 75 in the placebo group), evaluated the risk of abnormal blood pressure (Figure 3C). We utilized a fixed-effects model to...
analyze these data as $p > 0.05$. The model indicated that the OR was 0.70, the 95% CI was 0.13 to 3.82, the I^2 was 0%, and the Chi-squared value was 0.32 ($p = 0.68$), thus indicating that there were no significant differences between the two groups with regard to abnormal blood pressure.

Post-Voiding Residual Volume

Two RCTs, including 149 patients (74 received mirabegron treatment and 75 received placebo treatment), analyzed post-voiding residual volume (Figure 3D). We used a fixed-effects model to analyze these data, as $p > 0.05$. There was no significant difference between the two groups with regard to post-voiding residual volume (MD = −1.62; 95% CI: −9.00 to 12.24, $p = 0.77$).

DISCUSSION

Previous epidemiological surveys have shown that the prevalence of SCI in Europe was 0.298%, whereas that of MS was 0.11% (Kingwell et al., 2013; Lee et al., 2014). Developing countries have shown that the prevalence of SCI in Europe was 0.298%, whereas that of MS was 0.11%.

Post-Voiding Residual Volume

Two RCTs, including 149 patients (74 received mirabegron treatment and 75 received placebo treatment), analyzed post-voiding residual volume (Figure 3D). We used a fixed-effects model to analyze these data, as $p > 0.05$. There was no significant difference between the two groups with regard to post-voiding residual volume (MD = −1.62; 95% CI: −9.00 to 12.24, $p = 0.77$).

DISCUSSION

Previous epidemiological surveys have shown that the prevalence of SCI in Europe was 0.298%, whereas that of MS was 0.11% (Kingwell et al., 2013; Lee et al., 2014). Developing countries have shown that the prevalence of SCI in Europe was 0.298%, whereas that of MS was 0.11%.

DISCUSSION

Previous epidemiological surveys have shown that the prevalence of SCI in Europe was 0.298%, whereas that of MS was 0.11% (Kingwell et al., 2013; Lee et al., 2014). Developing countries have shown that the prevalence of SCI in Europe was 0.298%, whereas that of MS was 0.11%.

DISCUSSION

Previous epidemiological surveys have shown that the prevalence of SCI in Europe was 0.298%, whereas that of MS was 0.11% (Kingwell et al., 2013; Lee et al., 2014). Developing countries have shown that the prevalence of SCI in Europe was 0.298%, whereas that of MS was 0.11%.
improve the symptoms of NLUTD and has a superior clinical safety profile when compared with a placebo. These findings provide the basis for the continued use of mirabegron as an effective therapeutic strategy for the NLUTD.

Our meta-analysis has several strengths. First, the studies that we analyzed were all RCT; this means that the risk of bias was low. Second, to the best of our knowledge, very few previous reports have attempted to investigate the efficacy and safety of mirabegron for the treatment of NLUTD. Our study provides a strong support for the clinical use of mirabegron in NLUTD. However, there are also some limitations that need to be considered. First, the number of studies included in this analysis was inadequate and could have resulted in publication bias. To address this, our future research will focus on the most recent RCTs. Second, this study was not able to evaluate the long-term effects of mirabegron. As a result, our findings need to be confirmed by performing more high-quality RCTs.

CONCLUSION

Our study indicated that mirabegron was effective in relieving NLUTD symptoms and exhibited a favorable safety profile.

REFERENCES

Alejandro, R. J. (1998). Randomised Controlled Trials. London: BMJ Publishing Group.
Averbeck, M. A., and Madersbacher, H. (2011). Constipation and LUTS - How Do They Affect Each Other? Int. Braz. J. Urol. 37 (1), 16-28. doi:10.1590/s1677-55382011000100003
Beaulé, J. B., Guilletteau, V., Cappellini, M., Westfall, T. D., Rischmann, P., Palea, S., et al. (2015). Comparison of the Effects of β3-adrenoceptor Agonism on Urinary Bladder Function in Conscious, Anesthetized, and Spinal Cord Injured Rats. Neurourol Urodyn 34 (6), 578-585. doi:10.1002/nau.22629
Besiroglu, H., Otunctemur, A., and Ozbek, E. (2015). The Relationship between Metabolic Syndrome, its Components, and Erectile Dysfunction: a Systematic Review and a Meta-Analysis of Observational Studies. J. Sex. Med. 12 (6), 1309-1318. doi:10.1111/jsm.12885
Bylund, D. B., Eikenberg, D. C., Hieble, J. P., Langer, S. Z., Lefkowitz, R. J., Minneman, K. P., et al. (1994). International Union of Pharmacology Nomenclature of Adrenoceptors. Pharmacol. Rev. 46 (2), 121-136.
Chapple, C. R., Cardozo, L., Nitti, V. W., Siddiqui, E., and Michel, M. C. (2014). Mirabegron in Overactive Bladder: A Review of Efficacy, Safety, and Tolerability. Neurourol Urodyn 33 (1), 17-30. doi:10.1002/nau.22505
Chapple, C. R., Nazir, J., Hakimi, Z., Bowditch, S., Patoye, F., Guelders, F., et al. (2017). Persistence and Adherence with Mirabegron Versus Antimuscarinic Agents in Patients with Overactive Bladder: A Retrospective Observational Study in UK Clinical Practice. Eur. Urol. 72 (3), 389-399. doi:10.1016/j.eururo.2017.01.037
Chen, S. F., and Kuo, H. C. (2019). Therapeutic Efficacy of Low-Dose (25 mg) Mirabegron Therapy for Patients with Mild to Moderate Overactive Bladder Symptoms Due to central Nervous System Diseases. Low Urin Tract Symptoms 11 (2), OS3-OS8. doi:10.1111/uits.12215
Cho, S. Y., Jeong, S. J., Lee, S. J., Kim, J., Lee, S. H., Choo, M. S., et al. (2021). Mirabegron for Treatment of Overactive Bladder Symptoms in Patients with Parkinson’s Disease: A Double-Blind, Randomized Placebo-Controlled Trial (Parkinson’s Disease Overactive Bladder Mirabegron, PaDoMi Study). Neurourol Urodyn 40 (1), 286-294. doi:10.1002/nau.24552
Coyne, K. S., Matza, L. S., Kopp, Z., and Abrams, P. (2006). The Validation of the Patient Perception of Bladder Condition (PPBC): A Single-Item Global Measure for Patients with Overactive Bladder. Eur. Urol. 49 (6), 1079-1086. doi:10.1016/j.eururo.2006.01.007

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

JW and YC designed the research, interpreted the data, and revised the paper. DZ, FS, HY, XB, and DW performed the data extraction and carried out the meta-analysis. DZ drafted the paper. All of the authors approved the submitted and final versions.

FUNDING

This work was supported by grants from the National Nature Science Foundation of China (nos. 81,870,525 and 81,572,835) and Taishan Scholars Program of Shandong Province (no. tsqn201909199).

Zhang et al. Mirabegron Improve NLUTD

DerSimonian, R., and Laird, N. (1986). Meta-Analysis in Clinical Trials. Control. Clin. T Rls 7, 177–188. doi:10.1016/0197-2456(86)90046-2
DerSimonian, R., and Laird, N. (2015). Meta-Analysis in Clinical Trials Revisited. Contemp. Clin. Trials 45, 139–145. doi:10.1016/jUCT.2015.09.002
Groen, J., Pannek, J., Castro Diaz, D., Del Popolo, G., Gross, T., Hamid, R., et al. (2016). Summary of European Association of Urology (EAU) Guidelines on Neuro-Urology. Eur. Urol. 69 (2), 324-333. doi:10.1016/jeuro.2015.07.071
Harris, C. J., and Lemack, G. E. (2016). Neurourologic Dysfunction: Evaluation, Surveillance and Therapy. Curr. Opin. Urol. 26 (4), 290-294. doi:10.1097/ MOC.000000000000290
J. P. Higgins and S. Green (Editors) (2008). Cochrane Handbook for Systematic Reviews of Interventions. Chichester, United Kingdom: The Cochrane Collaboration. Version 5.3.0. Available at: www.cochrane-handbook.org. doi:10.1002/9780470712184.ch2
Karakus, S., Musicki, B., and Burnett, A. L. (2021). Mirabegron Improves Erectile Function in Men with Overactive Bladder and Erectile Dysfunction: A 12-week Pilot Study. Int. J. Impot. Res. 32 (3). doi:10.1080/1443-021-00455-2
Kashyap, M., and Tjagi, P. (2013). The Pharmacokinetic Evaluation of Mirabegron as an Overactive Bladder Therapy Option. Expert Opin. Drug Metab. Toxicol. 9 (5), 617-627. doi:10.1517/17425555.2013.786700
Kingwell, E., Marriott, J., Jetté, N., Pringsheim, T., Makhani, N., Morrow, S. A., et al. (2013). Incidence and Prevalence of Multiple Sclerosis in Europe: A Systematic Review. BMC Neurol. 13 (1), 128. doi:10.1186/1471-2377-13-128
Korstanje, C., Suzuki, M., Yuno, K., Sato, S., Ukai, M., Schneidkraut, M. J., et al. (2017). Translational Science Approach for Assessment of Cardiovascular Effects and Proarrhythmogenic Potential of the Beta-3 Adrenergic Agonist Mirabegron. J. Pharmacol. Toxicol. Methods 87, 74-81. doi:10.1016/j.vascn.2017.04.008
Krhut, J., Borovička, V., Bilková, K., Šykora, R., Míka, D., Mokriš, J., et al. (2018). Efficacy and Safety of Mirabegron for the Treatment of Neurogenic Detrusor Overactivity-Prospective, Randomized, Double-Blind, Placebo-Controlled Study. Neurourol Urodyn 37 (7), 2226-2233. doi:10.1002/nau.23566
Lee, B. B., Cripps, R. A., Fitzharris, M., and Wing, P. C. (2014). The Global Map for Traumatic Spinal Cord Injury Epidemiology: Update 2011, Global Incidence Rate. Spinal Cord 52 (2), 110-116. doi:10.1088/sc.2012.158
Madhuvarita, P., Singh, M., Hasafa, Z., and Abdel-Fattah, M. (2012). Anticholinergic Drugs for Adult Neurogenic Detrusor Overactivity: A Systematic Review and Meta-Analysis. Eur. Urol. 62 (5), 816-830. doi:10.1016/j.eururo.2012.02.036
Mirabegron Improve NLUTD

Maman, K., Aballea, S., Nazir, J., Desroziers, K., Neine, M. E., Siddiqui, E., et al. (2014). Comparative Efficacy and Safety of Medical Treatments for the Management of Overactive Bladder: A Systematic Literature Review and Mixed Treatment Comparison. *Eur. Urol.* 65 (4), 755-765. doi:10.1016/j.euro.2013.11.010

Manack, A., Motzko, S. P., Haag-Molkenteller, C., Dmochowski, R. R., Goehring, E. L., Nguyen-Khoo, B. A., et al. (2011). Epidemiology and Healthcare Utilization of Neurogenic Bladder Patients in a US Claims Database. *Neurourol Urodyn* 30 (3), 395-401. doi:10.1002/nau.21003

Matsumoto, R., Otsuka, A., Suzuki, T., Shinbo, H., Mizuno, T., Kurita, Y., et al. (2013). Expression and Functional Role of β3-Adrenoceptors in the Human Ureter. *Int. J. Urol.* 20 (10), 1364-1370. doi:10.1111/iju.12093

Mullen, G. R., and Kaplan, S. A. (2021). Efﬁcacy and Safety of Mirabegron in Men with Overactive Bladder Symptoms and Benign Prostatic Hyperplasia. *Curr. Urol. Rep.* 22 (1), 5. doi:10.1007/s11934-020-01017-7

Nicholas, R. S., Friede, T., Hollis, S., and Young, C. A. (2015). Withdrawn: Anticholinergics for Urinary Symptoms in Multiple Sclerosis. *Cochrane Database Syst. Rev.* 6, CD004193. doi:10.1002/14651858.CD004193.pub3

Patrick, D. L., Martin, M. L., Bushnell, D. M., Yalcin, I., Wagner, T. H., and Siddiqui, N. Y., Wu, J. M., and Amundsen, C. L. (2010). Efficacy and Safety of Mirabegron: A Randomized-Controlled Trial of the Urodynamic Efﬁcacy of Mirabegron for Patients with Neurogenic Lower Urinary Tract Dysfunction. *Neurourol Urodyn* 37 (8), 2810-2817. doi:10.1002/nau.23774

Wollner, J., and Pannek, J. (2016). Initial Experience with the Treatment of Neurogenic Detrusor Overactivity with a New β-3 Agonist (Mirabegron) in Patients with Spinal Cord Injury. *Spinal Cord 54* (1), 78-82. doi:10.1038/sc.2015.195

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or ﬁnancial relationships that could be construed as a potential conﬂict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their afﬁliated organizations or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Zhang, Sun, Yao, Bao, Wang, Cai and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practices. No use, distribution or reproduction is permitted which does not comply with these terms.