Tunable reverse rectification of layed Janus MSeS (M = Hf, Zr) and SnS2 heterojunctions

Jinghua Pan · Sicheng Jing · Wen Chen · Wei Li · Yu Wang · Baoan Bian · Bin Liao · Guoliang Wang

Received: 1 May 2022 / Accepted: 17 August 2022 / Published online: 2 September 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Two-dimensional (2D) Janus transition metal dichalcogenides (JTMDs) exhibit suitable band gaps and strong visible light absorption, which are extensively applied to the field of optoelectronic devices. Here, we investigate the electronic properties of 2D JTMDs MSeS (M = Hf, Zr) and SnS2 van der Waals heterojunction through density functional theory. The calculated electronic properties reveal that ZrSeS/SnS2 heterojunction has a type-I band alignment, while HfSeS/SnS2 heterojunction has a type-II band alignment. We build the diodes based on the MSeS (M = Hf, Zr)/SnS2 heterojunctions and study the electronic transport. The currents of the devices exhibit asymmetry, and the negative turn-on voltages suggest that constructed devices are backward diodes. Moreover, it is found that the gate voltage can modulate the rectifying ratio, and the rectifying performance of ZrSeS/SnS2 is better than that of HfSeS/SnS2.

Keywords 2D JTMDs materials · Van der Waals heterojunction · Gate voltage · Backward diode · Reverse rectification

1 Introduction
The successful separation of atomic layers of single-layer graphite materials (graphene) [1] has attracted intensive research in the field of two-dimensional (2D) materials. Therefore, many researchers began to study new two-dimensional semiconductor materials, such as carbon nitride [2, 3], boron nitride [4, 5], black phosphorus [6–8], transition metal dichalcogenides materials (TMDs) [9–11] and the III–V compounds [12, 13]. Moreover, through vertically stacking different 2D materials together to form van der Waals (vdW) heterojunctions [14], it is possible to integrate the properties of a single layer while creating properties that are superior to those of single-layer material. The rich physical properties and ultra-thin thickness of 2D materials are conducive to high-density integration of devices in the vertical direction, and are easier to control than three-dimensional bulk materials, enabling further reduction in device size. Therefore, 2D heterojunctions have been recently investigated for different device applications such as transistors [15, 16], photodetectors [17, 18], photovoltaics [19, 20], and excitonic solar cells (XSCs) [21, 22].

The most ubiquitous and fundamental p-n diodes are essential building blocks of electronics and optoelectronic devices. After the advent of atomically thin van der Waals 2D materials, numerous heterostructure-based diodes have been fabricated. In fact, several high-performance diodes have been demonstrated. And TMDs have been widely used in 2D vdW heterojunction diodes. For example, vdW heterojunction photodiodes composed of BP and PdSe2 exhibit ultra-high-tunable rectification and photoresponsivity [23]. Recently, a MoTe2/ReS2 heterojunction diode has been reported, and the feasibility of constructing a photodetector has been examined [24]. The gate-tunable WSe2/SnSe2 backward diode has an impressive rectification ratio [25], etc. Nevertheless, there has not been much research on new material Janus TMDs (JTMDs) heterojunction diodes.

TMDs are considered to be very promising channel materials due to their thin atomic thickness, absence of dangling bonds, and good gate control capability [26]. However, in recent years, the novel Janus TMDs with asymmetric structure has attracted extensive attention due to their unique properties for important applications in energy conversion
technology, quantum science, and spintronics, becoming an interesting class of 2D semiconductors [27]. Due to the layered structure and narrow atomic layer thickness of 2D Janus TMDs, the 2D Janus TMDs have good tunability of electrical and optical properties and excellent mechanical flexibility. Moreover, the difference in electronegativity of sulfur-group elements, ML Janus TMDs possess an intrinsic built-in electric field, which can induce the separation of carriers [28]. Therefore, the material system has applications in microelectronics, optoelectronics, and energy devices. And there are relatively many researches on MoSeS or WSeS [29, 30], so this paper selects MSeS (M = Hf, Zr) for research. Through the chemical decomposition method, a new material called Janus TMDs (JTMDs) was synthesized experimentally [31, 32], in which a layer of sulfur in MoS2 was completely replaced by selenium. Similar JTMDs have been proven to exhibit suitable band gaps and strong light absorption from the ultraviolet to the visible light regions [33]. The experimental synthesis of MoSeS opened up a new direction for the study of layered materials. In this work, several other layered Janus transition metals dichalcogenides, HfSeS and ZrSeS are studied [34, 35]. HfSeS and ZrSeS monolayers have an indirect band gap and an ideal band gap for absorbing sunlight, which makes them suitable for electronic and optoelectronic devices. Currently, tin-based transition metal dichalcogenides (SnS2) have attracted extensive research interest due to their environmental friendliness, low cost, excellent chemical stability, semiconducting properties, high carrier mobility, and tunable electronic properties [36]. In this work, study the electronic properties and transport of MSeS (M = Hf, Zr)/SnS2 van der Waals (vdW) heterojunctions using first-principles calculations. The calculations show that the designed heterojunctions are backward diodes with an extremely high reverse rectification ratio. Moreover, we find that the gate voltage can effectively modulate the rectifying performance of the heterojunctions.

2 Model and computational details

The primitive cells of the monolayer (ML) Janus TMDs structures MSeS (M = Hf, Zr) and SnS2 are hexagonal. The rectangle unit cells of ML structures are constructed to minimize the lattice mismatch in Fig. 1a. The lattice constants for HfSSe, ZrSSe and SnS2 are b = 6.43 Å, 6.49 Å, 6.42 Å, c = 3.71 Å, 3.75 Å, 3.72 Å, respectively. The heterojunctions consisted of a 1 × 1 rectangle cell of Janus MSeS (M = Hf, Zr) and SnS2 in Fig. 1b. We construct HfSeS/SnS2 and ZrSeS/SnS2 heterojunctions, whose lattice mismatch rates are 1.36% and 2%, respectively.

All structural relaxation and calculations in this work are carried out by using the density functional theory (DFT) and non-equilibrium Green’s function method (NEGF) in the QuantumATK [37]. We use the generalized gradient approximation (GGA) [38, 39] of Perdew–Burke–Ernzerhof (PBE) [40] to describe the exchange–correlation potential. The vdW interaction is corrected with the Grimme DFT-D3 functional. The density mesh cut-off is set to 105 Hartree and the electron temperature 300 K. The k points used in the optimization of the structure and the calculations of the electronic transport properties were: 1 × 15 × 15, 5 × 1 × 150, respectively. The heterojunctions are relaxed until the forces of all atoms are less than 0.05 eV/Å. In order to avoid the interaction between adjacent layers, enough vacuum (25 Å) is added in the out-of-plane directions.

3 Results and discussion

We calculate the band structures of the pristine HfSeS, ZrSeS and SnS2 monolayers through DFT. The calculated band gaps of the monolayer HfSeS, ZrSeS and SnS2 are 0.80 eV, 0.76 eV and 1.56 eV, respectively, which agree with

![Fig. 1](image-url)
Fig. 1 a Rectangular unit cell of Hf/ZrSeS and SnS2, b The MSeS (M = Hf, Zr)/SnS2 heterojunction
the previous reports [41–43]. The binding energies \(E_b \) of the heterojunctions are calculated by

\[
E_b = \frac{E_{\text{MSSe/SnS}_2} - E_{\text{MSSe}} - E_{\text{SnS}_2}}{N}
\]

where \(E_{\text{MSSe/SnS}_2} \), \(E_{\text{MSSe}} \) and \(E_{\text{SnS}_2} \) are the energies of the heterojunctions and isolated monolayers, respectively, and \(N \) is the total number of atoms in the heterojunctions. The calculated binding energies of the HfSeS/SnS\(_2\) and ZrSeS/SnS\(_2\) heterojunctions are \(-0.224\) eV/atoms and \(-0.206\) eV/atoms, respectively. The negative binding energies indicate that both heterojunctions are energetically feasible.

The calculated binding energies of the HfSeS/SnS\(_2\) and ZrSeS/SnS\(_2\) heterojunctions are \(-0.224\) eV/atoms and \(-0.206\) eV/atoms, respectively. The negative binding energies indicate that both heterojunctions are energetically feasible.

Then, we calculate the corresponding projected density of states (PDOS) of MSeS (\(M = \text{Hf, Zr} \))/SnS\(_2\) heterojunctions, as shown in Fig. 3. One can see that the VBM of the HfSeS/SnS\(_2\) heterojunction is mainly dominated by the Se-p orbital of HfSeS, and the CBM is mainly dominated by Sn-s and S-p orbitals of SnS\(_2\). It indicates the characteristic of a well-defined type-II semiconductor. However, the VBM and CBM of the ZrSeS/SnS\(_2\) heterojunction are both determined by ZrSeS, indicating a type-I band alignment. This result agrees with the projected energy bands in Fig. 2.

The device model is shown in Fig. 4a, the MSeS (\(M = \text{Hf, Zr} \)) region electrode is p doping, the SnS\(_2\) region electrode...
is n doping, and the doping concentration is 5×10^{18}. We study the dependence of the current I_{ds} on the voltage V_{ds} (I_{ds}–V_{ds} curve) of the devices based on MSeS ($M = Hf, Zr$)/SnS$_2$ in Fig. 4. It can be seen that the I_{ds}–V_{ds} of devices displays asymmetry. The current is almost zero in the bias voltage -0.5–1 V, while I_{ds}–V_{ds} exhibits the linear scale at the bias voltage of -1–-0.5 V. The negative turn-on voltages suggest that constructed devices are backward diodes. In addition, the current of ZrSeS/SnS$_2$ is larger than HfSeS/SnS$_2$ at the negative bias. Thus, the rectifying performance of device ZrSeS/SnS$_2$ is better than HfSeS/SnS$_2$. The negative turn-on voltage is the same when the bias interval is 0.1 V. But due to the different band gaps of the HfSeS/SnS$_2$ and ZrSeS/SnS$_2$ heterojunctions, the negative turn-on voltages of the two devices may be different. Therefore, we recalculate the I_{ds}–V_{ds} curve in the negative turn-on voltage range by reducing the point interval from 0.1 to 0.05 V, as shown in the inset of Fig. 4b. The results show that the ZrSeS/SnS$_2$ device with a small band gap firstly reaches the negative turn-on voltage, which is about -0.45 V. And the negative turn-on voltage of the HfSeS/SnS$_2$ device is about -0.5 V. And since the heterojunction band gaps are very small, the difference of negative turn-on voltage is not very obvious.

The tunneling processes of the backward diode are illustrated through the band alignment in Fig. 5. Owing to the p doping of MSeS ($M = Hf, Zr$) and the n doping of SnS$_2$, the band edge of MSeS ($M = Hf, Zr$) shifts upward and the band edge of SnS$_2$ shifts down, as a result, an accumulation junction is formed. Under the unbiased case, the Fermi level is close to the band edge as shown in Fig. 5a. When a small negative bias is applied, electrons flow from the VBM of MSeS ($M = Hf, Zr$) to the CBM of SnS$_2$ via the band-to-band tunneling (BTBT) as shown in Fig. 5b. As the negative bias voltage increases in Fig. 5c, the energy band of MSeS rises further, while that of SnS$_2$ falls, resulting in a larger tunneling window and ultimately a larger reverse current. Under the positive bias in Fig. 5d, the tunneling window will vanish owing to the decline of the energy band of MSeS ($M = Hf, Zr$) and the rise of SnS$_2$. At the same time, the band bending also limits the carrier migration. Therefore, at the positive bias, the forward current is very small.

We calculate the transmission spectra to study the electronic transport of the devices in Fig. 6. It is known that the current depends on the integral area of the transmission spectra within the bias window. It is clear that the integral areas of both devices at -0.8 V are larger than those at 0.8 V. This causes the large currents of the devices.
at −0.8 V. Moreover, compared with HfSeS/SnS2, the large integral area of ZrSeS/SnS2 at −0.8 V results in a larger current, as shown in Fig. 6b.

We further analyze the electronic transport by calculating the transmission eigenstates at ±0.8 V in Fig. 7. One can see that the devices HfSeS/SnS2 and ZrSeS/SnS2 exhibit the localization at 0.8 V, compared with the devices at −0.8 V. Thus, the currents of devices at 0.8 V are larger than those at −0.8 V, accounting for the reverse rectification. Furthermore, it is notable that there are more transmission eigenstates for ZrSeS/SnS2 at −0.8 V than HfSeS/SnS2 at −0.8 V. Consequently, the current of ZrSeS/SnS2 at the negative bias is larger than HfSeS/SnS2 as shown in Fig. 4b.

The $I_{d_{s}}-V_{d_{s}}$ characteristics of the devices at different gate voltages are shown in Fig. 8. It is clearly found that the gate voltage can effectively modulate the currents of both devices at the negative bias. But the currents hardly change at the positive bias. Thus, the gate voltage does not change the characteristics of reverse rectification of both devices. Moreover, the negative gate voltage causes a significant variation of current compared with the positive gate voltage; thus, negative gate voltage can improve rectifying performance.

The reverse rectifying ratio ($R(V) = |I(-V)_{d_{s}}|/|I(V)_{d_{s}}|$) is plotted as a function of gate voltage and $|V_{d_{s}}|$ in Fig. 9. It can be seen that the gate voltage can modulate the rectifying ratio. The device ZrSeS/SnS2 has better rectifying performance than the device HfSeS/SnS2. Notably, the rectifying ratios at negative gate voltage are larger than at positive gate voltage for both devices, which is consistent with the characteristics of the $I_{d_{s}}-V_{d_{s}}$. The rectifying ratio of the device can reach an order of magnitude of 10^7. The reverse rectification ratio of our device is several order magnitudes higher than conventional backward diodes based on bulk materials and vdW heterojunctions backward diodes based on other 2D materials as shown in Fig. 9c. Thus, the gate voltage can modulate the rectifying performance of the device.

At -0.8 V. Moreover, compared with HfSeS/SnS2, the large integral area of ZrSeS/SnS2 at -0.8 V results in a larger current, as shown in Fig. 6b.

We further analyze the electronic transport by calculating the transmission eigenstates at ± 0.8 V in Fig. 7. One can see that the devices HfSeS/SnS2 and ZrSeS/SnS2 exhibit the localization at 0.8 V, compared with the devices at -0.8 V. Thus, the currents of devices at 0.8 V are larger than those at -0.8 V, accounting for the reverse rectification. Furthermore, it is notable that there are more transmission eigenstates for ZrSeS/SnS2 at -0.8 V than HfSeS/SnS2 at -0.8 V. Consequently, the current of ZrSeS/SnS2 at the negative bias is larger than HfSeS/SnS2 as shown in Fig. 4b.

The $I_{d_{s}}-V_{d_{s}}$ characteristics of the devices at different gate voltages are shown in Fig. 8. It is clearly found that the gate voltage can effectively modulate the currents of both devices at the negative bias. But the currents hardly change at the positive bias. Thus, the gate voltage does not change the characteristics of reverse rectification of both devices. Moreover, the negative gate voltage causes a significant variation of current compared with the positive gate voltage; thus, negative gate voltage can improve rectifying performance.

The reverse rectifying ratio ($R(V) = |I(-V)_{d_{s}}|/|I(V)_{d_{s}}|$) is plotted as a function of gate voltage and $|V_{d_{s}}|$ in Fig. 9. It can be seen that the gate voltage can modulate the rectifying ratio. The device ZrSeS/SnS2 has better rectifying performance than the device HfSeS/SnS2. Notably, the rectifying ratios at negative gate voltage are larger than at positive gate voltage for both devices, which is consistent with the characteristics of the $I_{d_{s}}-V_{d_{s}}$. The rectifying ratio of the device can reach an order of magnitude of 10^7. The reverse rectification ratio of our device is several order magnitudes higher than conventional backward diodes based on bulk materials and vdW heterojunctions backward diodes based on other 2D materials as shown in Fig. 9c. Thus, the gate voltage can modulate the rectifying performance of the device.
Further illustrating the effect of gate voltage on electronic transport, we plot the transmission eigenstates for the present devices at the bias of -0.8 V at the gate voltage of ± 0.5 V in Fig. 10. Both devices exhibit more eigenstates at -0.5 V than at 0.5 V. The reduction in the eigenstates leads to the reduced current at positive gate voltage, as shown in Fig. 8. In addition, the device ZrSeS/SnS$_2$ has more eigenstates than HfSeS/SnS$_2$ at the gate voltage of -0.5 V, consequently the current of ZrSeS/SnS$_2$ is larger than HfSeS/SnS$_2$. As a result, the negative gate voltage induces better electron transmission than the positive gate voltage, which induces larger rectifying ratios at the negative gate voltage.

4 Conclusions

In summary, we have studied the electronic properties and transport of the MSeS ($M =$ Hf, Zr)/SnS$_2$ heterojunctions by first-principles calculations. The ZrSeS/SnS$_2$ heterojunction shows the type-I band alignment, while HfSeS/SnS$_2$ displays the type-II band alignment. The I_{ds}–V_{ds} curves of the MSeS ($M =$ Hf, Zr)/SnS$_2$ heterojunctions display the rectifying behaviors. The larger currents of both devices at negative gate voltage than at positive gate voltage indicate that the constructed heterojunction
devices are backward diodes. The rectifying performance of ZrSeS/SnS$_2$ is better than that of HfSeS/SnS$_2$. Furthermore, the negative gate voltage can significantly change the currents of the devices, especially for ZrSeS/SnS$_2$, and improve the rectifying performance of the device. The rectifying ratio can reach up to 10^7. The results will provide

Fig. 9 a and b reverse rectifying ratio of the two devices as a function of bias and gate voltage. c Comparison of rectification ratio of different backward diodes made of conventional bulk materials Si [44], GaAs [45], GaN [46], and 2D heterojunctions WSe$_2$/MoS$_2$[47], AsP/InSe [48], WSe$_2$/SnSe$_2$[25], BP/MoS$_2$[49], SnS$_2$/SiO$_2$[50]

Fig. 10 Transmission eigenstates for the devices at the gate voltage of ± 0.5 V
a guide for the high-performance rectifying device in the further.

Acknowledgements This work is supported by National Natural Science Foundation Joint Fund Key Project under Grant No. U1865206, National Science and Technology Major Project under Grant No. 2017- VII-0012-0107, Guangdong Province Key Area R&D Program under Grant No. 2019B09090002.

Funding The authors have not disclosed any funding.

Data availability Enquiries about data availability should be directed to the authors.

Declarations

Competing interests The authors have not disclosed any competing interests.

References

1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.-E., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)
2. Cao, S., Low, J., Yu, J., Jaroniec, M.: Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015)
3. Zhang, J., Chen, Y., Wang, X.: Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ. Sci. 8, 3092–3108 (2015)
4. Bao, J., Zhu, L., Han, S., Jin, Y., Zhao, G., Zhu, Y., Guo, X., Hou, J., Yin, H.: Hexagonal boron nitride/blue phosphorene heterostructure as a promising anode material for Li-ion batteries. J. Phys. Chem. C 122, 23329–23335 (2018)
5. Gorbachev, R.V., Riaz, I., Nair, R.R., Jalil, R., Britnell, L., Bello, B.D., Hill, E.W., Novoselov, K.S., Watanabe, K., Taniguchi, T.: Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011)
6. Le, P., Mirabbaszadeh, K., Davoudinia, M., Yarmohammadi, M., Charged impurity-tuning of midgap states in biased Bernal bilayer black phosphorus: an anisotropic electronic phase transition. Phys. Chem. Chem. Phys. 20, 25044–25051 (2018)
7. Xiao, Y., Jiang, B., Yang, K., Zhang, T., Fu, L.: Controllable synthesis of two dimensional heterostructures and their application. Chin. Sci. Bull. 62, 2262–2278 (2017)
8. Huang, L., Huo, N., Li, Y., Chen, H., Yang, J., Wei, Z., Li, J., Li, S.-S.: Electric-field tunable band offsets in black phosphorus and MoS2 van der Waals heterostructure. J. Phys. Chem. Lett. 6, 2483–2488 (2015)
9. Fu, Q., Han, J., Wang, X., Xu, P., Yao, T., Zhong, J., Zhong, W., Liu, S., Gao, T., Zhang, Z.: 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Adv. Mater. 33, 1907818 (2021)
10. Zhang, Y., Yao, Y., Sendeku, M.G., Yin, L., Zhan, X., Wang, F., Wang, Z., He, J.: Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 31, 1901694 (2019)
11. Zhang, X., Teng, S.Y., Loy, A.C.M., How, B.S., Leong, W.D., Tao, X.: Transition metal dichalcogenides for the application of pollution reduction: a review. Nanomaterials 10, 1012 (2020)
12. Feix, F., Flissikowski, T., Chêze, C., Calarco, R., Grath, H.T., Brandt, O.: Individual electron and hole localization in submonolayer InN quantum sheets embedded in GaN. Appl. Phys. Lett. 109, 042104 (2016)
13. Singh, A.K., Zhuang, H.L., Henrig, R.G.: Ab initio synthesis of single-layer III-V materials. Phys. Rev. B 89, 245431 (2014)
14. Geim, A.K., Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419–425 (2013)
15. Zhao, H., Yang, G., Liu, Y., Yang, X., Gu, Y., Wei, C., Xie, Z., Zhang, Q., Bian, B., Zhang, X.: Quantum transport of Sub-10 nm monolayer WSe2N4 transistors. ACS Appl. Electron. Mater. 3, 5086–5094 (2021)
16. Li, Q., Fang, S., Liu, S., Xu, L., Xu, L., Yang, C., Yang, J., Shi, B., Ma, J., Yang, J., Qute, R., Lu, J.: Performance limit of ultrathin GaAs transistors. ACS Appl. Mater. Interfaces 14, 23597–23609 (2022)
17. Um, D.-S., Lee, Y., Lim, S., Park, S., Lee, H., Ko, H.: High-performance MoS2/CuO nanosheet-on-one-dimensional heterojunction photodetectors. ACS Appl. Mater. Interfaces. 8, 33955–33962 (2016)
18. Duan, J., Chava, P., Ghorbani-Asl, M., Lu, Y., Erb, D., Hu, L., Echresh, A., Rebohle, L., Erbe, A., Krasheninnikov, A.V.: Self-driven broadband photodetectors based on MoSe2/FePS3 van der Waals n–p Type-II heterostructures. ACS Appl. Mater. Interfaces. 14, 11927–11936 (2022)
19. Varghese, A., Saha, D., Thakar, K., Jindal, V., Ghosh, S., Medhekar, N.V., Ghosh, S., Lodha, S.: Near-direct bandgap WSe2/ReS2 type-II pn heterojunction for enhanced ultrafast photodetection and high-performance photovoltaics. Nano Lett. 20, 1707–1717 (2020)
20. Pospischil, A., Furchi, M.M., Mueller, T.: Solar-energy conversion and light emission in an atomic monolayer p–n diode. Nat. Nanotechnol. 9, 257–261 (2014)
21. Guo, Y., Min, J., Cai, X., Zhang, L., Liu, C., Jia, Y.: Two-dimensional type-II BP/MoS2IP24 vdW heterostructures for high-performance solar cells. J. Phys. Chem. C 126, 4677–4683 (2022)
22. Linghu, J., Yang, T., Luo, Y., Yang, M., Zhou, J., Shen, L., Feng, Y.P.: High-throughput computational screening of vertical 2D van der Waals heterostructures for high-efficiency excitonic solar cells. ACS Appl. Mater. Interfaces. 10, 32142–32150 (2018)
23. Afzal, A.M., Dastgeer, G., Iqbal, M.Z., Gautam, P., Faisal, M.M.: High-performance p-BInP/PdSe2 near-infrared photodiodes with a fast and gate-tunable responsivity. ACS Appl. Mater. Interfaces. 12, 19625–19634 (2020)
24. Luo, M., Chen, X., Wu, P., Wang, H., Chen, Y., Chen, F., Zhang, L., Chen, X.: Gate-tunable ReS2/MoTe2 heterojunction with high-performance photodetection. Opt. Quant. Electron. 51, 1–10 (2019)
25. Murali, K., Dandu, M., Das, S., Majumdar, K.: Gate-tunable WS2/SnSe2 backward diode with ultrahigh-reverse rectification ratio. ACS Appl. Mater. Interfaces. 10, 5657–5664 (2018)
26. Fiori, G., Bonaccurso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabough, A., Banerjee, S.K., Colombo, L.: Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014)
27. Yagmurcukardes, M., Qin, Y., Ozcan, S., Sayyad, M., Peeters, F.M., Tongay, S., Sahin, H.: Quantum properties and applications of 2D Janus crystals and their superlattices. Appl. Phys. Rev. 7, 011311 (2020)
28. Palsgaard, M., Gunst, T., Markussen, T., Thygesen, K.S., Brantbye, M.: Stacked Janus device concepts: abrupt pn-junctions and cross-plane channels. Nano Lett. 18, 7275–7281 (2018)
29. Ding, Y., Yang, G., Gu, Y., Yu, Y., Zhang, X., Tang, X., Lu, N., Wang, Y., Dai, Z., Zhao, H.: First-principles predictions of Janus
MoSe and WSSe for FET applications. J. Phys. Chem. C 124, 21197–21206 (2020)
30. Chaney, G., Ibrahim, A., Ersan, F., Çakir, D., Ataca, C.: Comprehensive study of lithium adsorption and diffusion on Janus Mo/WXY (X, Y = S, Se, Te) using first-principles and machine learning approaches. ACS Appl. Mater. Interfaces, 13, 36388–36406 (2021)
31. Zhang, J., Jia, S., Kholmanov, I., Dong, L., Er, D., Chen, W., Guo, H., Jin, Z., Shenoy, V.B., Shi, L.: Janus monolayer transition-metal dichalcogenides. ACS Nano 11, 8192–8198 (2017)
32. Lu, A.-Y., Zhu, H., Xiao, J., Choo, C.-P., Han, Y., Chiu, M.-H., Cheng, C.-C., Yang, C.-W., Wei, K.-H., Yang, Y.: Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017)
33. Xia, C., Xiong, W., Du, J., Wang, T., Peng, Y., Li, J.: Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Phys. Rev. B 98, 165424 (2018)
34. Zhao, X., Wang, M., Pei, M., Xia, C., Wang, T., Yang, Y., Dai, X., Wei, S.: Electronic properties and controllable Schottky barrier of Janus HfSSe and graphene van der waals heterostructure. Solid State Commun. 344, 114686 (2022)
35. Nguyen, C.V., Vi, V.T., Phuong, L.T., Hoi, B.D., Hoa, L.T., Hieu, N.N., Phuc, H.V., Khand, P.D.: Electronic structure and band alignment of Blue Phosphorene/Janus ZrSSe heterostructure: a first principles study. Physica E 124, 114369 (2020)
36. Wen, S., Pan, H., Zheng, Y.: Electronic properties of tin dichalcogenide monolayers and effects of hydrogenation and tension. J. Mater. Chem. C 3, 3714–3721 (2015)
37. Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorf, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomaykov, P.A., Vej-Hansen, U.G.: QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 32, 015901 (2019)
38. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)
39. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006)
40. Perdew, J., Burke, K., Ernzerhof, M.: Perdew, burke, and ernzerhof reply. Phys. Rev. Lett. 80, 891 (1998)
41. Barhoumi, M., Lazaro, S., Bouzidi, S., Said, M.: A DFT study of Janus structure of S and Se in HfSSe layered as a promising candidate for electronic devices. J. Mol. Graph. Model. 96, 107511 (2020)
42. Vu, T.V., Tong, H.D., Tran, D.P., Binh, N.T., Nguyen, C.V., Phuc, H.V., Do, H.M., Hieu, N.N.: Electronic and optical properties of Janus ZrSSe by density functional theory. RSC Adv. 9, 41058–41065 (2019)
43. Liu, J., Hua, E.: High photocatalytic activity of heptazine-based g-C3N4/SnS2 heterojunction and its origin: insights from hybrid DFT. J. Phys. Chem. C 121, 25827–25835 (2017)
44. Solomon, P.M., Jopling, J., Frank, D.J., D’Emic, C., Dokumaci, O., Ronsheim, P., Haensch, W.: Universal tunneling behavior in technologically relevant P/N junction diodes. J. Appl. Phys. 95, 5800–5812 (2004)
45. Pawlik, D., Romanczyk, B., Thomas, P., Rommel, S., Edirisingiri, M., Contreras-Guerrero, R., Droopad, R., Loh, W., Wong, M., Majumdar, K.: Benchmarking and improving III-V Esaki diode performance with a record 2.2 MA/cm² peak current density to enhance TFET drive current. In: 2012 International Electron Devices Meeting, IEEE, pp. 27.21.21–27.21.23 (2012)
46. Okumura, H., Martin, D., Malinverni, M., Grandjean, N.: Backward diodes using heavily Mg-doped GaN growth by ammonia molecular-beam epitaxy. Appl. Phys. Lett. 108, 072102 (2016)
47. Roy, T., Tosun, M., Cao, X., Fang, H., Lien, D.-H., Zhao, P., Chen, Y.-Z., Chueh, Y.-L., Guo, J., Javey, A.: Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015)
48. Wu, F., Xia, H., Sun, H., Zhang, J., Gong, F., Wang, Z., Chen, L., Wang, P., Long, M., Wu, X.: AsP/InSe van der Waals tunneling heterojunctions with ultrahigh reverse rectification ratio and high photosensitivity. Adv. Funct. Mater. 29, 1900314 (2019)
49. Liu, X., Qu, D., Li, H.-M., Moon, I., Ahmed, F., Kim, C., Lee, M., Choi, Y., Cho, J.H., Hone, J.C.: Modulation of quantum tunneling via a vertical two-dimensional black phosphorus and molybdenum disulfide p–n junction. ACS Nano 11, 9143–9150 (2017)
50. Hosseini, S.A., Esfandiar, A., Iraji Zad, A., Hosseini-Shokouh, S.H., Mahdavi, S.M.: High-photosresponsive backward diode by two-dimensional SnS2/Silicon heterostructure. ACS Photon. 6, 728–734 (2019)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.