Endostatin gene therapy for liver cancer by a recombinant adenovirus delivery

Li Li, Jia-Ling Huang, Qi-Cai Liu, Pei-Hong Wu, Ran-Yi Liu, Yi-Xin Zeng, Wen-Lin Huang

AIM: To investigate the expression of adenovirus-mediated human endostatin (Ad/hEndo) gene transfer and its effect on the growth of hepatocellular carcinoma (HCC) BEL-7402 xenografted tumors.

METHODS: Immunohistochemistry analysis with an anti-endostatin antibody was performed to detect endostatin protein expression in HCC BEL-7402 cells infected with Ad/hEndo. MTT assay was used to investigate the effects of Ad/hEndo on proliferation of human umbilical vein endothelial cells (HUVEC). Intra-tumoral injections of 1×10³ pfu Ad/hEndo was given to treat BEL-7402 xenografted tumors in nude mice once weekly for 6 wk. Mice received injections of Ad/LacZ and DMEM were regarded as control groups. After intra-tumoral administration with Ad/hEndo, the endostatin mRNA expression in tumor tissue was analyzed by Northern blotting, and plasma endostatin levels were determined using enzyme-linked immunosorbent assay (ELISA).

RESULTS: High level expression of endostatin gene was detected in the infected HCC BEL-7402 cells. Ad/hEndo significantly inhibited HUVEC cell proliferation by 57.2% at a multiplicity of infection (MOI) of 20. After 6-week treatment with Ad/hEndo, the growth of treated tumors was inhibited by 46.50% compared to the Ad/LacZ control group (t=2.729, P<0.05) and by 48.56% compared to the DMEM control group (t=2.485, P<0.05). The ratio of mean tumor volume in treated animals to mean tumor volume in the control animals (T:C ratio) was less than 50% after 24 d of treatment. Endostatin mRNA in tumor tissue was clearly demonstrated as a band of approximately 1.2 kb, which was the expected size of intact and functional endostatin. Plasma endostatin levels peaked at 87.52±8.34 ng/mL at d 3 after Ad/hEndo injection, which was significantly higher than the basal level (12.23±2.54 ng/mL). By d 7, plasma levels dropped to nearly half the peak level (40.34±4.80 ng/mL).

CONCLUSION: Adenovirus-mediated human endostatin gene can successfully express endogenous endostatin in vitro and in vivo, and significantly inhibit the growth of BEL-7402 xenografted liver tumors in nude mice.

INTRODUCTION

Increasing evidence suggests that solid tumors and their metastasis are angiogenesis dependent[1]. Angiogenesis, the formation of new microvessels generated by vascular endothelial cells, provides essential nutrition for rapid growth of malignant cells. Without angiogenesis, neoplasm might remain in dormancy[2]. Anti-angiogenesis therapies, which block the blood supply of a growing tumor by inhibiting proliferation of endothelial cells, provide a new strategy for treatment of solid tumors[3]. Vascular endothelial cells, the target of anti-angiogenic treatment are genetically stable. So it is unlikely that anti-angiogenic agents would induce the drug resistance[4].

Transcatheter arterial embolization (TAE) has been widely practiced in the treatment of unresectable hepatocellular carcinoma (HCC)[5]. However, the obstruction of hepatic artery induces extensive ischemic necrosis or hypoxia which are strongly correlated with increased expression of angiogenic factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF)[6]. The proliferative activity of vascular endothelial cells and tumour cells was increased in residual tumor following arterial embolization[7]. Combination of antiangiogenesis and TAE therapy could inhibit increased proliferation of vascular endothelial cells and capillary vessel formation induced by arterial embolization, and improve the therapeutic effect[8].

Endostatin, a carboxyl-terminal proteolytic fragment of collagen XVIII, was regarded as one of the most potent inhibitors of tumor angiogenesis[9]. Several studies have shown that recombinant endostatin protein generated from Escherichia coli and Pichia pastoris yeast significantly inhibited growth and metastasis of xenografted tumor in different tumor models with no drug resistance and side effects[9,10]. However, its widespread application has been hampered by difficulties in the large-scale production of high bioactive protein[11,12].

In this study, we constructed a replication-defective recombinant adenoviral vector harboring a human endostatin gene (Ad/hEndo), and demonstrated efficient expression of endostatin gene in vivo and its antitumoral effect on BEL-7402 xenografted liver tumors in nude mice.

MATERIALS AND METHODS

Materials

Cells and adenoviruses BEL-7402 cells (Hepatocellular...
cancer (HCC) and human umbilical vein endothelial cells (HUVEC) were maintained in RPMI 1640 supplemented with 100 mL/L fetal bovine serum (FBS). The culture medium contained 100 U/mL of penicillin and 100 µg/mL of streptomycin (GIBCO BRL, Gathersburg, MD).

Recombinant adeno virus vectors carrying the human endostatin gene (Ad/hEnd) and LacZ gene (Ad/LacZ) were generated as described previously [12,13]. All virus particles were amplified in 293 cells and purified by cesium chloride gradient centrifugation. Viruses were titered using a standard plaque-forming unit (pfu) assay.

Animals Four to 6-week-old male BALB/c nude mice (with body weight of 19 to 23 g) were purchased from Animal Experiment Center (Medial College, Sun Yat-sen University) and maintained in a specific pathogen-free (SPF) environment (certificate: 26-999029).

Methods

Immunohistochemistry for expression of endostatin protein in vivo

BEL-7402 cells were infected with Ad/hEndo at a multiplicity of infection (MOI) of 10. At 2 h postinfection, the medium was replaced with Dulbecco’s minimal essential medium (DMEM) containing 100 mL/L FBS. After 72 h incubation, cells were collected and stained on slides. The slides were washed, fixed and blocked for 20 min in Tris-buffered saline (TBS) containing 10 mL/L goat serum, then incubated in a 1:1000 dilution of biotinylated goat anti-rabbit secondary antibody (Dako Corp., Carpinteria, CA) diluted 1:200 in PBS was added, and slides were incubated for an additional 30 min. Slides were then washed 3 times with PBS and stained with streptavidin-biotinylated horseradish peroxidase complex.

HUVEC cells proliferation assay

Human umbilical vein endothelial cells (HUVEC) were seeded in a 96-well plate at a density of 1x10^4/well and allowed to adhere overnight. Cells were then infected for 2 h with Ad/hEndo at MOIs of 0.05, 0.5, 1.0, 5, 10 and 20, and with Ad/LacZ at an MOI of 20. After 72 h incubation, cells were collected and plated on slides. The slides were washed, fixed and blocked for 20 min in Tris-buffered saline (TBS) containing 10 mL/L goat serum, then incubated with rabbit anti-human endostatin polyclonal antibody (Chemicon International, Temecula, CA). Following washing 3 times, slides were washed 3 times with PBS and stained with streptavidin-biotinylated horseradish peroxidase complex.

RESULTS

High level transgene expression in BEL-7402 cells infected with Ad/hEndo

Three days after transfection with Ad/hEndo at a MOI of 10, BEL-7402 cells were probed with rabbit anti-human endostatin antibody. Immunohistochemistry with an anti-endostatin antibody clearly demonstrated that endostatin protein was expressed in the transduced BEL-7402 cells. Extensive positive staining was observed in the cytoplasm of transduced cells (Figure 1). This indicated that human endostatin gene mediated by recombinant adenovirus was highly expressed in BEL-7402 cells and provided evidence for the feasibility of local gene therapy for HCC BEL-7402 xenografted tumors.

Inhibition of proliferation of HUVEC cells by Ad/hEndo

In order to investigate the effects of this secreted endostatin on proliferation of HUVEC cells, cell proliferation assays were performed by MTT assay. Ad/hEndo inhibited HUVEC cell proliferation by 7.61%, 12.61%, 24.8%, 29.86%, 38.78% and 57.2% at MOIs of 0.05, 0.5, 1.0, 5, 10 and 20, respectively. The
Ad/LacZ control group showed inhibition of cellular proliferation by 7.25% at a MOI of 20 (Figure 2). These results indicated that the endostatin protein secreted by the transduced cells was highly bioactive and inhibited the proliferation of vascular endothelial cells in vitro in a dose-dependent manner, while the viral vector alone did not.

Figure 2 Effect of Ad/hEndo on the proliferation of HUVEC cells.

Inhibition of the growth of BEL-7402 xenograft tumors by Ad/hEndo
In order to observe the effect of Ad/hEndo on the growth of tumors, we established a BEL-7402 xenograft tumor model in BALB/c nude mice. After 6 wk of treatment, the growth of treated tumors was inhibited by 46.50% compared to the Ad/LacZ control group (t = 2.729, P < 0.05) and by 48.56% compared to the DMEM control group (t = 2.485, P < 0.05). The ratio of mean tumor volume in treated animals to that of the control animals (T:C ratio) was <50% after 24 d of treatment (Figure 3). These results showed that Ad/hEndo significantly inhibited the growth of BEL-7402 xenografted tumors.

![Graph showing inhibition rate of proliferation (%)](image)

Figure 3 Effect of Ad/hEndo on growth of BEL-7402 xenografted liver tumors.

Northern blotting of endostatin mRNA in vivo
Northern blotting was performed to test whether the in vivo expressed endostatin mRNA was of full-length. After hybridization, the membrane was stained with NBT/BCIP, and endostatin mRNA was clearly demonstrated as a band of approximately 1.2 kb (Figure 4), which was the expected size of intact and functional endostatin. The highest level of endostatin mRNA in vivo was detected 1 d after intra-tumoral administration of Ad/hEndo. On d 4 and 8, endostatin mRNA levels significantly decreased. Therefore, Northern blotting showed that adenovirus-mediated human endostatin gene transfer resulted in expression of intact endostatin mRNA in vivo.

Plasma levels of endostatin protein
ELISA was used to measure the plasma endostatin levels. Plasma endostatin levels peaked at 87.52±8.34 ng/mL on d 3 after Ad/hEndo injection, which was significantly higher than the basal level (12.23±2.54 ng/mL). By d 7, plasma levels dropped to half the peak level (40.34±4.80 ng/mL) (Figure 5). These results showed that intra-tumoral delivery of the endostatin gene resulted in high plasma endostatin concentrations.

![Graph showing endostatin concentration in plasma (ng/mL)](image)

Figure 5 Detection of endostatin concentration in plasma by ELISA.

Pathological changes of main organs
All animals were survived and appeared to be physically normal. There were no histological changes in main organs of DMEM control animals. However, histological examination in several mice of the Ad/hEndo (3/8) and Ad/LacZ (3/8) groups revealed slight to modest hepatocyte fatty degeneration, cloudy swelling and occasional necrosis companied with infiltration of lymphocyte and inflammatory cells. One mouse in Ad/hEndo group (1/8) and 1 in Ad/LacZ (1/8) group demonstrated slight cloudy swelling in some proximal renal tubule cells and distal renal tubule cells. No histological changes were found in spleen, lung, heart and brain of both these groups. There was no significant difference in histological changes between Ad/hEndo group and Ad/LacZ group. These results suggested that it was the recombinant adenoviruses, not endostatin protein that caused the liver and kidney toxicity.

![Image showing pathological changes of liver](image)

Figure 6 Pathological changes of liver 1 wk after 6 wk of treatment with Ad/hEndo (H&E, original magnification: x200).

DISCUSSION
Animal experiments on angiogenesis have frequently been conducted on tumors recently implanted in mice. However, in
the human situation, tumors are often established for months or years and may possess mature vasculature that is less sensitive to anti-angiogenic therapy[1,2]. Indeed, antiangiogenesis therapies, which inhibit the growth and metastasis of neoplasms by blocking the formation of new blood vessels from existing vessels, appear to require long-term administration of the angiogenic inhibitor to ensure tumor growth suppression[3]. Endostatin protein derived from yeast (Pichia pastoris) had been introduced into clinical trials as a possible antiangiogenic tumor fighting drug[15]. The clinical studies showed that the mean half-life of recombinant human endostatin was only 10.7±4.1 h in the human body, suggesting that this protein-based therapy was likely to require repeated daily or long-term administration of high-quality protein for optimal therapeutic benefits[16].

It is hoped that these difficulties of protein-based therapy may be overcome by direct expression of therapeutic gene in the body[17]. Endostatin gene therapy is a promising strategy for anti-angiogenic therapy, for a single transduction of endostatin gene could achieve a relatively long-term and high-quality protein expression in vivo[17,18]. Adenoviral vectors are commonly used as carriers for gene transfer due to their high efficiency and high capacity[19,20]. We cloned the human endostatin gene into an adenoviral shuttle plasmid and generated an adenoviral expressing system which resulted in highly efficient expression of endostatin gene and demonstrated high level of bioactivity by significantly inhibiting the proliferation of endothelial cells. In our studies, endostatin gene therapy using a recombinant adenovirus delivery significantly inhibited the growth of BEL-7402 xenografted liver tumors. Since d 24 of treatment with intra-tumoral injection with Ad/hEndo, the T:C ratio of mean tumor volume was less than 50%. After 6 courses of treatment, the growth of xenografted tumors treated with Ad/hEndo was markedly inhibited as compared with the control group.

Adenovirus can infect dividing and nondividing cells and obtain high efficiency of transgene expression[21,22]. These properties of adenoviral vector provide the possibility of local treatment, such as intra-tumoral injection and transcatheater arterial infusion of recombinant adenovirus[23]. In this study, we investigated the possibility of tumor-targeted endostatin gene therapy for liver cancer. First, we demonstrated high level transgene expression in BEL-7402 cells infected with Ad/hEndo. Then, intra-tumoral endostatin mRNA expression was clearly detected by Northern blotting on d 1 after injection with Ad/hEndo. Northern blotting indicated that the endostatin mRNA expressed inside tumor tissue was intact, thus the resultant endostatin protein could be biologically active in vivo. These positive results had provided solid evidence for local endostatin gene therapy for liver cancer.

The tumor-targeted gene therapy produced endostatin protein mostly inside the tumors[23,24], however, some of the protein entered the circulation, resulting in the peak of plasma endostatin concentration of 87.5±4.3 ng/mL by d 3 post-administration. Although this plasma level was considerably lower than those reached by intravenous delivery of recombinant adenoviral vector for endostatin gene therapy[19,20], it had been shown that circulating endostatin levels of 35-40 ng/mL was sufficient to exert an antiangiogenic effect in vivo[21,24], suggesting that our delivery system was able to induce therapeutically relevant circulating endostatin levels.

The transient expression is a key problem for any therapeutic use[23,25], while the reason for the transient in vivo transgene expression is unclear[26,27]. Repetition of administration with therapeutic gene in vivo using a transgene vector was recommended to achieve better therapeutic effect[23,28,29]. However, multiple injections of immunogenic transgene vector will get an immune response to the vector which not only make expression even worse, but also cause systemic toxicity[30,31]. Indeed, we observed slight liver and renal damage in mice after 6 courses of endostatin gene therapy using a recombinant adenovirus delivery. Histological examination in several mice administrated with adenoviral vector revealed slight to modest hepatocyte and renal tubule cell degeneration and some degree of inflammatory reaction. It was the recombinant adenovirus, not endostatin protein that caused the liver and kidney toxicity[27,32]. Our results suggested that cautions should be taken for clinical repeated administration within a short time of the recombinant adenoviral vector carrying endostatin gene.

In conclusion, a recombinant adenoviral vector carrying human endostatin gene can be successfully constructed, with highly efficient expression of endostatin gene both in vitro and in vivo, thereby significantly inhibiting the growth of BEL-7402 xenografted liver tumors in nude mice.

REFERENCES

1. Folkman J. What is the evidence that tumors are angiogenesis-dependent? / Natl Cancer Inst 1990; 82: 4-6
2. Folkman J. Seminars in medicine of the beth israel hospital, boston. Clinical applications of research on angiogenesis. N Engl J Med 1995; 333: 1757-1763
3. Bergers G, Javaherian K, Lo KM, Folkman J, Hanahan D. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 1999; 284: 896-902
4. Boorem T, Folkman J, Broder T, O’Reilly MS. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997; 390: 404-407
5. Qian J, Feng GS, Vogt T. Combined interventional therapies of hepatocellular carcinoma. World J Gastroenterol 2003; 9: 1885-1891
6. Liu X, Feng GS, Zheng CS, Zhuo CK, Liu X. Influence of transarterial chemoembolization on angiogenesis and expression of vascular endothelial growth factor and basic fibroblast growth factor in rat with Walker-256 transplanted hepatoma: An experimental study. World J Gastroenterol 2003; 9: 2445-2449
7. Kim YB, Park YN, Park C. Increased proliferation activities of vascular endothelial cells and tumour cells in residual hepatocellular carcinoma following transarterial arterial embolization. Histopathology 2001; 38: 160-165
8. O’Reilly MS, Folkman J, Kallinich T, Krangel M, Brown N, Tompkins RG, Hanahan D. Tumor endothelial cells maintain their angiogenic phenotype during continued culture in vitro: evidence against a shared pool of precursor cells. Cell 1983; 33: 277-285
9. Dhanabal M, Ramchandran R, Volk R, Stillman IE, Lombardo M, Iruela-Arispe ML, Simons M, Sukhatme VP. Endostatin: yeast production, mutants, and antitumor effect in renal cell carcinoma. Cancer Res 1999; 59: 189-197
10. Huang W, Wong MK, Zhao Q, Zhu Z, Wang KZ, Huang N, Ye C, Gorelick E, Li M. Soluble recombinant endostatin purified from Escherichia coli: antiangiogenic activity and antitumor effect. Cancer Res 2001; 61: 478-481
11. Chen QR, Kumar D, Stass SA, Mixson AJ. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 1999; 59: 3308-3312
12. Ding I, Sun JZ, Fenton B, Liu WM, Kimseley P, Okuneiiff P, Min W. Intratumoral administration of endostatin plasmid inhibits vascular growth and perfusion in MCA-4 murine mammary carcinomas. Cancer Res 2001; 61: 526-531
13. Huang W, Flint SJ. The tripartite leader sequence of subgroup C adenovirus major late mRNAs can increase the efficiency of mRNA export. J Virol 1998; 72: 225-235
14. Huang W, Flint SJ. Unusual properties of adenovirus E2E transcription by RNA polymerase III. J Virol 2003; 77: 4015-4024
15. Mundenke C, Thomas WP, Wilding G, Lee FT, Kelz F, Chappell R, Nieder R, Sebree LA, Friedl A. mRNA and protein expression of a transgene expressing human endostatin in a transgenic mouse model. J Virol 2003; 77: 4015-4024
16. Herbst RS, Hess KR, Tran HT, Tseng JE, Mullan NA, Charnsangavej C, Madden T, Davis DW, McConkey DJ, O’Reilly MS, Ellis LM, Pluda J, Hong WK, Abbruzzese JL. Phase I study of recombinant human endostatin in patients
with advanced solid tumors. J Clin Oncol 2002; 20: 3792-3803

17 Folkman J. Antiangiogenic gene therapy. Proc Natl Acad Sci U S A 1998; 95: 9064-9066

18 Szary J, Szala S. Intra-tumoral administration of naked plasmid DNA encoding mouse endostatin inhibits renal carcinoma growth. Int J Cancer 2001; 91: 835-839

19 Sauter BV, Martinet O, Zhang WJ, Mandeli J, Woo SL. Adenovirus-mediated gene transfer of endostatin in vivo results in high level of transgene expression and inhibition of tumor growth and metastases. Proc Natl Acad Sci U S A 2000; 97: 4802-4807

20 Feldman AL, Restifo NP, Alexander HR, Bartlett DL, Hwu P, Seth P, Libutti SK. Antiangiogenic gene therapy of cancer utilizing a recombinant adenovirus to elevate systemic endostatin levels in mice. Cancer Res 2000; 60: 1503-1506

21 St George JA. Gene therapy progress and prospects: adenoviral vectors. Gene Ther 2003; 10: 1135-1141

22 Chen CT, Lin J, Li Q, Phipps SS, Jakubczak JL, Stewart DA, Skripchenko Y, Forry-Schaudies S, Wood J, Schnell C, Hallenbeck PL. Antiangiogenic gene therapy for cancer via systemic administration of adenoviral vectors expressing secretable endostatin. Hum Gene Ther 2000; 11: 1983-1996

23 Kianmanesh A, Hackett NR, Lee JM, Kikuchi T, Korst RJ, Crystal RG. Intratumoral administration of low doses of an adenovirus vector encoding tumor necrosis factor alpha together with naive dendritic cells elicits significant suppression of tumor growth without toxicity. Hum Gene Ther 2001; 12: 2035-2049

24 Shi W, Teschendorf C, Muzycka N, Siemann DW. Adeno-associated virus-mediated gene transfer of endostatin inhibits angiogenesis and tumor growth in vivo. Cancer Gene Ther 2002; 9: 513-521

25 Reid T, Warren R, Kirn D. Intravascular adenoviral agents in cancer patients: lessons from clinical trials. Cancer Gene Ther 2002; 9: 979-986

26 Molinier-Frenkel V, Le Boulaire C, Le Gal FA, Gahery-Segard H, Tursz T, Guillette JG, Farace F. Longitudinal follow-up of cellular and humoral immunity induced by recombinant adenovirus-mediated gene therapy in cancer patients. Hum Gene Ther 2000; 11: 1911-1920

27 Wen XY, Bai Y, Stewart AK. Adenovirus-mediated human endostatin gene delivery demonstrates strain-specific antitumor activity and acute dose-dependent toxicity in mice. Hum Gene Ther 2001; 12: 347-358

28 Liu Q, Muruve DA. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 2003; 10: 935-940

29 Geutskens SB, van der Eb MM, Plomp AC, Jonges LE, Cramer SJ, Ensink NG, Kuppen PJ, Hoeven RC. Recombinant adenoviral vectors have adjuvant activity and stimulate T cell responses against tumor cells. Gene Ther 2000; 7: 1410-1416

30 Chen P, Kovesdi I, Bruder JT. Effective repeat administration with adenovirus vectors to the muscle. Gene Ther 2000; 7: 587-595

31 Pagliaro LC, Keyhani A, Williams D, Woods D, Liu B, Perrotte P, Slaton JW, Merritt JA, Grossman HB, Dinney CP. Repeated intravesical instillations of an adenoviral vector in patients with locally advanced bladder cancer: a phase I study of p53 gene therapy. J Clin Oncol 2003; 21: 2247-2253

32 Reid T, Galanis E, Abbruzzese J, Sze D, Weir LM, Andrews J, Randlev B, Heise C, Uprichard M, Hatfield M, Rome L, Rubin J. Kirn D. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res 2002; 62: 6070-6079

Edited by Kumar M Proofread by Chen WW and Xu FM