Antigen-specific Treg cells in immunological tolerance: implications for allergic diseases

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Abdel-Gadir, Azza, Amir H. Massoud, and Talal A. Chatila. 2018. "Antigen-specific Treg cells in immunological tolerance: implications for allergic diseases.” F1000Research 7 (1): 38. doi:10.12688/f1000research.12650.1. http://dx.doi.org/10.12688/f1000research.12650.1.

Published Version
doi:10.12688/f1000research.12650.1

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:34868722

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Antigen-specific Treg cells in immunological tolerance: implications for allergic diseases [version 1; referees: 3 approved]

Azza Abdel-Gadir1,2, Amir H. Massoud1,2, Talal A. Chatila1,2

1Division of Immunology, Boston Children’s Hospital, Boston, USA
2Department of Pediatrics, Harvard Medical School, Boston, USA

Abstract

Allergic diseases are chronic inflammatory disorders in which there is failure to mount effective tolerogenic immune responses to inciting allergens. The alarming rise in the prevalence of allergic diseases in recent decades has spurred investigations to elucidate the mechanisms of breakdown in tolerance in these disorders and means of restoring it. Tolerance to allergens is critically dependent on the generation of allergen-specific regulatory T (Treg) cells, which mediate a state of sustained non-responsiveness to the offending allergen. In this review, we summarize recent advances in our understanding of mechanisms governing the generation and function of allergen-specific Treg cells and their subversion in allergic diseases. We will also outline approaches to harness allergen-specific Treg cell responses to restore tolerance in these disorders.
Corresponding author: Talal A. Chatila (talal.chatila@childrens.harvard.edu)

Author roles: Abdel-Gadir A: Writing – Original Draft Preparation, Writing – Review & Editing; Massoud AH: Data Curation; Chatila TA: Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

How to cite this article: Abdel-Gadir A, Massoud AH and Chatila TA. Antigen-specific Treg cells in immunological tolerance: implications for allergic diseases [version 1; referees: 3 approved] F1000Research 2018, 7(F1000 Faculty Rev):38 (doi: 10.12688/f1000research.12650.1)

Copyright: © 2018 Abdel-Gadir A et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: This work was supported by National Institutes of Health grants (5R01AI065617 and R01AI126915) to TAC. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

First published: 10 Jan 2018, 7(F1000 Faculty Rev):38 (doi: 10.12688/f1000research.12650.1)
Introduction
Regulatory T (Treg) cells play a key role in the maintenance of immunological self-tolerance and in restraining deleterious immune responses to both self and foreign antigens. Treg cell–mediated tolerance is an active process that requires antigen specificity and this dependence on antigen recognition by Treg cells for their regulatory function can be harnessed to provide promising approaches for immunotherapy of diseases such as allergy and autoimmunity.

Sakaguchi et al. originally described a population of CD4+ T cells expressing the cell surface marker CD25—interleukin-2 receptor alpha chain—that maintained peripheral immunological tolerance in mice. The deficiency of these cells engenders autoimmunity. The discovery of a key role for the transcription factor Forkhead Box P3 (FOXP3) in controlling the differentiation and functions of CD4+CD25+ Treg cells provided an essential molecular framework for elucidating their physiological functions. It is now appreciated that Treg cells have a broader function than previously thought. In addition to maintaining tolerance to self-tissues, Treg cells are implicated in sustaining tolerance to fetal and transplanted tissues and in promoting tissue repair. Furthermore, Treg cells promote tolerance to components of the ‘extended self’, encompassing the commensal microbiota and innocuous agents such as nutrients and other environmental exposures. Although additional Foxp3+ Treg cell populations have been described, this review is focused on CD4+CD25+Foxp3+ Treg cells, the most well-characterized subset of Treg cells whose deficiency in both humans and mouse models precipitates lethal autoimmunity and inflammatory disorders.

What are the niches that promote antigen-specific regulatory T cells formation?
There are two major subtypes of CD4+Foxp3+ Treg cells. The first encompasses thymic or natural Treg (nTreg) cells, which originate as a separate cell lineage during T-cell development in the thymus (Figure 1). The second type includes peripheral or induced Treg (iTreg) cells that differentiate from conventional T (Tconv) cells in specialized extra-thymic niches. nTreg cells are biased toward immune recognition of self-antigens, whereas iTreg cells are biased toward recognizing non-self-antigens, reflecting their derivation from Tconv cells. The two subtypes are complementary in their actions in promoting peripheral tolerance.

Figure 1. Generation of natural regulatory T (nTreg) and induced Treg (iTreg) cells. Schematic representation of nTreg and iTreg cell developmental pathways. Naturally occurring Treg cells develop upon intermediate-avidity interaction between developing thymocytes and self-antigen-presenting medullary epithelial cells. High-level expression of Neuropilin (Nrp-1) and Helios is maintained on nTreg cells after their migration from the thymus. Naïve conventional T cells that have undergone positive and negative selection in the thymus and have low avidity for self-antigens may develop into iTreg cells upon encountering antigens presented by tolerance-inducing antigen-presenting cells in specialized niches in the periphery. These cells express low levels of Helios or Nrp-1. Both nTreg and peripheral Treg cells are able to suppress CD4+ effector helper T 2 (TH2) cell responses. High-avidity T-cell receptor interaction in the thymus results in cytolytic T cells (negative selection). DP, double positive; IRF4, interferon gamma regulatory factor 4.
nTreg cells emerge late in the double-positive stage of thymocyte development25, and the majority of nTreg cells segregate into CD4 single-positive mature thymocytes21. The maturation of nTreg cells from thymocytes requires T-cell receptor (TCR)-dependent signals delivered upon its engagement by major histocompatibility complex (MHC) II molecules on specialized antigen-presenting cells26, most notably medullary thymic epithelial cells27,28. Whereas high-avidity TCR/MHC interactions induce negative selection29,30 and low-avidity interactions favor thymocyte maturation and egress as conventional naïve T cells, intermediate-avidity interactions favor FOXP3 expression and the differentiation of thymocytes into nTreg cells (Figure 1)31–33. The TCR repertoire expressed by nTreg cells is broad and distinct from Tconv cells. It is enriched in self-reactive TCRs that otherwise would have been eliminated in Tconv cells34,35.

iTreg cells are generated in specialized niches particularly at the environmental interfaces, including the gut and lung20,36. These niches are endowed with specialized antigen-presenting cells—including CD103+CD11c+ dendritic cells in the gut and alveolar and interstitial macrophages in the lung—that polarize antigen-responsive T cells into iTreg cells under the influence of transforming growth factor beta 1 (TGF-\textbeta1) and retinoic acid produced by the antigen-presenting cells (Figure 2)37–41. In the intestine, iTreg cells develop primarily in response to the gut microbiota and food antigens, enabling tolerance to both sets of foreign antigens42–44. In germ-free (GF) mice, colonic Treg cells generated in the periphery (iTreg cells) are greatly reduced in numbers, reflecting the critical role of colonic bacteria in promoting colonic Treg cell development45. In contrast, GF mice appear to have normal numbers of iTreg cells in the small intestine46. Kim \textit{et al.} reported that under normal physiological conditions, proteins from a typical diet lead to iTreg cell generation in the small intestine but not in the colon41. They found that phenotypically and functionally distinct iTreg cells in the lamina propria of the small intestine develop after weaning to suppress strong immunological reactions in response to dietary antigens in solid food. These iTreg cells are important for the maintenance of

\begin{figure}[h!]
\centering
\includegraphics[width=\textwidth]{mucosal_tolerance}
\caption{Mucosal tolerance in the gut and its breakdown in food allergy. (Left) Under homeostatic conditions, CX3CR1+ macrophages sample components of the gut lumen and transfer luminal antigens to IRF8+ CD103+ dendritic cells (DCs), which in turn promote the formation of antigen-specific induced regulatory T (iTreg) cells. iTreg cells expressing retinoid-related orphan receptor gamma t (RoR-\gamma t) may regulate tolerance to dietary antigens by a range of mechanisms, including the suppression of mast cell activation. iTreg cells may also prevent the conversion of naïve CD4+ T cells to antigen-specific helper T 2 (TH2) cells. (Right) Under food allergic conditions, CD11b+CD103+ DCs encounter allergens that are made more accessible by a permeable epithelial barrier. Allergen-presenting DCs drive the differentiation of naïve T cells into allergen-specific TH2 cells expressing the interleukin-4 receptor (IL-4R). iTreg cells also acquire a TH2 cell-like phenotype characterized by increased GATA3 and IRF4 expression and the release of IL-4 and IL-13. These ‘pathogenic’ Treg cells are unable to suppress mast cell activation through engagement of the OX40-OX40 ligand pathway. Binding of IgE to the high-affinity receptor for IgE (FceRI) leads to uninhibited mast cell degranulation and IL-4 production. IRF8, interferon gamma regulatory factor 8; SCFA, short-chain fatty acid; TGF\beta, transforming growth factor beta.}
\end{figure}
immune tolerance at mucosal surfaces. Compared with nTreg cells, they express lower levels of the markers Neuropilin-1 and Helios and higher levels of the retinoid-related orphan receptor gamma t (RoR-γT)51.

The lung is another important site for the induction of antigen-specific Treg cells50,57,58. Although alveolar macrophages are defective in their capacity to activate T effector (Teff) cells, they are particularly adept at driving the differentiation of naïve allergen-specific T cells into iTreg cells in a TGF-β1- and retinoic-dependent manner57,58. Similar to that of the gut, the microbiota of the lung has been implicated in promoting airway tolerance to allergens early in life by enabling the production of allergen-specific induced Treg cells59. High frequencies of Treg cells targeting innocuous environmental aero-antigens (such as house dust mite or plant pollen) have been reported in human adult peripheral blood mononuclear cells but are absent in cord blood, suggesting that Treg cell expansion is specific to antigen encounter in the periphery59. Aero-antigen-targeted responses were also found to be less pronounced in Tconv cells as Treg cells outnumbered effector memory T (TM) cells and expressed chemokine receptors essential for lung homing60.

Feedback mechanisms from the peripheral niches in the form of local tissue factors have been shown to regulate the function of Treg cells. In the skin, the pro-inflammatory cytokine thymic stromal lymphopoietin (TSLP) produced by keratinocytes acts to activate Treg cells to contain skin inflammation locally and prevent its systemic spread61. Deletion of TSLP receptor (TSLPR) signaling specifically on Treg cells prevented the upregulation of genes, including Icos and Cila4, that mediate their regulatory effects and consequently restricted the capacity of Treg cells to inhibit skin effector T cells and prevent the progression of local skin inflammation systemically.

Treg cell memory

One of the key features of adaptive immunity is the ability to respond effectively and more rapidly to antigens that have been encountered previously. A subset of clonally expanded Teff cells differentiate into long-lived TM cells that are particularly adept at mounting recall responses upon re-exposure to antigens/pathogens62. TM cells are endowed with long-term epigenetic, transcriptional, and metabolic changes that enable their long-term survival and rapid response to recall challenges63. The concept of Treg cell memory has been controversial as a long-lasting increase in suppressive function that persists after the resolution of the primary antigenic exposure could severely suppress recall Teff cell responses and lead to persisting immuno-suppression64–67. Van der Veeken et al. recently found that the suppressive function of antigen-specific Treg cells is a transient quality68. They reported that inflammation-induced Treg cells reversed activation-specific transcriptional changes and reduced suppressive function with time. These changes were associated with stable chromatin modifications that facilitate reactivation and long-lasting preference for non-lymphoid tissue localization. Rested Treg cells exhibited a gene expression signature similar to that of conventional TM cells that was not affected by secondary activation69.

In contrast to the above results, other studies on Treg cell responses have supported the concept of Treg cell memory. Rosenblum et al. investigated Treg cell responses in the skin by generating transgenic mice that expressed a model antigen in keratinocytes70. The model antigen was regulated in the skin but only constitutively expressed in the thymus and the expression could be silenced to assess antigen-specific TM cells without prolonged exposure to antigen. This system revealed that the thymic constitutive expression allowed the expansion of a large subset of antigen-specific Treg cells that spread to secondary lymphoid organs. The induction of antigen in the skin induced potent proliferation of antigen-specific Treg cells and increased expression of CTLA-4 before migrating to the skin to ameliorate antigen-specific effector T-cell inflammation. After antigen expression was switched off, a subset of Treg cells expressing CTLA-4 persisted and upon antigen re-exposure inflammation was attenuated much more rapidly compared with the primary response71. Treg cell depletion between primary and secondary exposure saw no protection from inflammation. Overall, these results are relevant to therapeutic applications aimed at boosting tolerance responses, such as immunotherapy for allergic diseases (see below).

What is the role of antigen-specific Treg cells in allergic diseases?

Allergic responses arise in the context of failure to develop tolerance toward specific allergens. These conditions are marked by the production of allergen-specific IgE and the development of CD4+ TH2 skewed cell responses (Figure 2)60. Conditions that impact the differentiation of allergen-specific Treg cells can give rise to allergic disorders66. For example, human subjects with loss-of-function mutations in FOXP3, whose Treg cells fail to appropriately differentiate into effective suppressors, develop an X-linked disorder of immune dysregulation and autoimmunity64–66. A similar phenotype is recapitated in mice with mutations in Foxp364–65. Human subjects with FOXP3 deficiency suffer from associated severe allergic inflammation and develop food allergy (FA) due to loss of oral tolerance. In mice, manipulations that deplete or inhibit allergen-specific Treg cells also result in the loss of tolerance and the development of allergic responses to said allergen64. In human subjects, Treg cells of children with FA fail to suppress responses to the causative food allergens, whereas those of children who outgrow FA develop allergen-specific suppressive capacity66.

Derangement of antigen-specific Treg cell responses in allergic diseases

Oral tolerance is specifically associated with the development of iTreg cells from naïve CD4+ T cells that are activated in the presence of TGF-β1 and CD103+ classic dendritic cells in the gut that express interferon gamma regulatory factor 8 (IRF8) (Figure 2)15,69. At steady state, macrophages expressing the CX3C chemokine receptor 1 (CX3CR1) sample luminal antigens, including food and microbiota components, by projecting dendrites through the epithelial barrier into the gut lumen70–72. CX3CR1+ macrophages transfer the luminal soluble antigen to CD103+ dendritic cells, which in turn induce oral tolerance to said antigens by promoting the generation of antigen-specific iTreg cells (Figure 2)7. iTreg
cells regulate TH2 immune responses at mucosal surfaces, are less stable, and exhibit more plasticity than thymic-derived nTreg cells\(^{23,25}\). Noval Rivas et al. showed that, in a mouse model of FA marked by IgE-mediated anaphylaxis, the generation of antigen-specific Treg cells was inhibited by increased IL-4 receptor (IL-4R)-STAT6 signaling\(^8\). The mice in question, Il4ra\(^{F706}\) mice, carry a gain-of-function mutation in the IL-4Rα chain\(^7\). They mount exaggerated TH2 responses and are particularly susceptible to oral sensitization and anaphylaxis\(^7\). The antigen-specific Treg cells that did develop underwent TH2 cell reprogramming marked by increased expression of IL-4, IL-13, IRF-4, and GATA-3 when compared with those from wild-type (WT) mice, a phenomenon also observed in human subjects with FA (Figure 2). The impaired induction of food allergen-specific iTreg cells paralleled the excessive IL-4R signaling and could be reversed by the deletion of Stat6.

GATA-3 plays a key role in Treg cell homeostasis, acting to prevent polarization to TH17 cells\(^8,\)\(^{18}\). Under physiological conditions, TH1 reprogramming is restrained and is lost in the presence of increased STAT6 signaling, thereby contributing to the pathogenic reprogramming of Treg cells into TH2-like cells\(^8\). Treg lineage-specific deletion of H4 and IL13 genes abrogates the induction of FA, thus confirming that IL-4 production by TH2 cell-like reprogrammed Treg cells directly contributes to allergic disease\(^8\). The \textit{in vitro} suppression of mast cell activation by antigen-specific Treg cells was abrogated in the presence of IL-4 but reversed with the deletion of Stat6 in Treg cells. This is supported by previous reports that the suppression of mast cell activation and IL-4 production restores tolerance and promotes the induction of Treg cells\(^8\). Although the programming of iTreg cells into TH2 cell-like cells is pathogenic in FA, it may serve physiological purposes under other circumstances. For example, intense IL-4/IL-4R signaling in the context of helminth infections has been reported to drive the development of TH2 cell-like ex-Treg cells, which contribute to immunity to nematodes\(^8\).

The above concepts of iTreg cell suppression and pathogenic reprogramming into Teff-like cells, developed in the context of FA, have been extended to encompass the pathogenesis of other allergic diseases such as asthma. The frequencies of suppressive allergen-specific Treg cells trend higher in healthy controls as compared with asthmatics\(^8\). Importantly, there is evidence of pathogenic reprogramming of Treg cells toward effector phenotypes that contribute to asthma severity\(^8\). Infection with respiratory syncytial virus induced a TH2 cell-like effector program in Treg cells and impaired their suppressive function\(^8\). Also, TH2 cell-like reprogramming of iTreg cells due to enhanced STAT6 activation via the IL-4Rα in Il4ra\(^{F706}\) mice is associated with intense TH2 cell-skewed allergic airway inflammation. Other Treg cell pathways have also been implicated in the regulation of the TH2 cell response in allergic airway inflammation. Deletion of the beta subunit of casein kinase 2 (CK2) resulted in the proliferation of a Treg cell subpopulation characterized by the expression of the inhibitory receptor ILT3 (also known as gp49B). This Treg cell population was unable to control the maturation of dendritic cells expressing both the transcription factor IRF4 and the programmed cell death ligand 2 (PD-L2), which drove the development of lung TH2 responses\(^8\).

More recently, we described a novel mechanism involving a common asthma-promoting human IL-4Rα chain variant, by which allergen-specific iTreg cell differentiation is subverted to promote mixed TH2/TH17 cell inflammation, associated with severe, steroid-resistant asthma\(^8\). When expressed in mice, this variant, which contains a glutamine-to-arginine (Q-to-R) substitution at position 576 of the IL-4Rα, promotes exaggerated airway hyper-responsiveness and severe mixed TH2/TH17 inflammation when the mice are sensitized with allergens and subsequently challenged. The R substitution does not impact IL-4R signaling via STAT6. Rather, IL-4 signaling via IL-4Ra-R576 activates IL-6 production by inducing the \textit{de novo} recruitment of the adaptor growth factor receptor-bound protein 2 (GRB2) to the IL-4Rα\(^{8}\) (Figure 3). GRB2 activates downstream MAP kinase cascades, including extracellular signal-regulated kinases to induce IL6 gene expression by activating the transcription factors nuclear factor-kappa B (NF-κB) and C/EBP-β and p38 MAP kinase, which activates IL-13 production. Newly formed antigen-specific iTreg cells are subsequently destabilized by the confluence of IL-6 and TGF-β1 signaling, resulting in the degeneration of iTreg cells into TH17 cells that lack suppressive function. This derangement results in the over-production of both TH2 and TH17 cell responses, promoting severe airway hyper-responsiveness and inflammation. Exaggerated allergic inflammation in Il4ra\(^{R576}\) mice was reversed when Treg cells differentiating into TH17 cells were inhibited by treatment with an anti-IL-6 antibody or Treg cell-specific deletion of genes that regulate TH17 cell differentiation, including Rorc (encoding the TH17 master transcription factor RoR-γt) and Il6ra, encoding the IL-6Rα chain\(^8\).

Downstream abnormalities in allergen-specific Treg cells involving immunomodulatory cytokines, including IL-10 and TGF-β, may also contribute to the pathogenesis of allergic diseases. Rubtsov et al. deleted IL-10 in Treg cells and showed increased severity of allergic airway inflammation suggesting that IL-10 production by Treg cells is critical for the induction of immune tolerance\(^8\). TGF-β production by Treg cells also contributes to the regulation of the immune response\(^8\). The role of altered Treg cell production of IL-10 and TGF-β in the pathogenesis of allergic diseases and the underlying mechanisms for such alterations remain to be fully elucidated.

Antigenic specificity of allergen-specific Treg cells

The possession by nTreg cells of a distinct TCR repertoire, confirmed by several studies\(^23,34,90\), suggests that they may recognize a distinct set of peptide antigens as compared with Tconv cells\(^7\). Furthermore, nTreg and iTreg cells exhibit distinct TCR repertoires, which may broaden the scope of antigens recognized collectively by the two Treg cell populations underlying their synergistic function in maintaining peripheral tolerance\(^22,23\). More recently, evidence was presented that TCR of iTreg cells may recognize peptide-MHC class II complexes with a reversed polarity as compared with the TCR of Tconv cells, again suggesting the potential for altered recognition of a distinct set of peptide antigens as compared with TCR of Tconv cells\(^7\). The allergen specificity of Treg cells in humans has recently been mapped by simultaneously quantifying and characterizing allergen-reactive enriched T cells. Using this approach, Bacher et al. identified a population of peripherally expanded,
stable Treg cells specific to innocuous aero-antigens in all allergic subjects. This subset of Treg cells served to maintain active tolerance as there was no corresponding clonally expanded high avidity-selected Tconv cell response in healthy controls. Whereas the authors did not address the suppressive influence of these antigen-specific Treg cells on TH2 induction in humans, previous mouse studies support this function.

Allergen-specific Treg cells and the microbiome

Substantial increases in the prevalence of allergic/atopic disease have been attributed to environmental factors coupled with genetic susceptibility. The hygiene hypothesis states that recent increases in the prevalence of allergic diseases are caused by reduced microbial exposure early in age due to the use of antibiotics and improved hygiene (more sterility). Microbial colonization of neonates is initiated at birth, and the microbiotic composition of vaginally delivered infants is similar to that of the mother’s vagina.

However, infants born by caesarean section obtain their microbiota from maternal skin and have been shown to have higher incidences of asthma and allergy. The direct role of the microbiota in the development of allergen-specific responses is evident in GF mice that cannot be tolerized to oral antigens. We recently demonstrated that the development of FA is correlated with dysbiosis in a mouse model of allergic dysregulation. Food allergic Il4ra mice exhibited reduced abundance in members of the Firmicutes phylum and an increase in Proteobacteria phylum as compared with WT mice. The transfer of allergen-specific Treg cells blocked the development of allergic responses in mice while also preventing the food allergic dysbiosis observed in control mice.

Although the mechanisms by which the microbiota direct the differentiation and function of allergen-specific Treg cells remain to be fully elucidated, progress has been made in identifying...
potential pathways involved. Commensal bacteria induce the expression in iTreg cells of the transcription factor RoR-γt. Ohnmacht et al. proposed that RoR-γt iTreg cells may regulate allergic diseases by restraining TH2 cell-mediated responses in the gut by a CTLA-4-dependent mechanism. Other studies have implicated short-chain fatty acids, including acetate, propionate, and butyrate, produced by commensals such as Clostridial species in stabilizing Treg cells in the gut. Other microbiotic products could also be directly influencing iTreg cell differentiation and function in the gut. Bacteroides fragilis is a commensal bacteria that has been found to promote the upregulation of Foxp3+ Treg cells using its product, polysaccharide A (PSA), to signal through Toll-like receptor 2 in T cells. B. fragilis lacking PSA was unable to maintain tolerance induction and upregulated TH17 cell differentiation. Failure of MyD88-dependent signaling in Treg cells severely restricted the evolution of antigen-specific Treg cell responses in the gut, consistent with the action of microbiotic products through innate immune signaling mechanisms in Treg cells promoting their expansion and function. The loss of these and other mechanisms through dysbiosis may compromise the development of Treg cells in FA and other gut dysbiotic disorders.

Resetting pro-inflammatory antigen-specific Treg cells to promote tolerance in human subjects

The plasticity of Treg cells becomes a critically relevant issue when contemplating interventions aiming to employ Treg cells in cellular therapies or to promote Treg cell function in chronic inflammatory and autoimmune disorders. Because of the instability of Foxp3 expression in Treg cells, especially iTreg cells, under intense inflammatory conditions, these cells may acquire Teff cell phenotypes and express TH cytokines relevant to the ongoing immune response. In extremis, they may lose their Foxp3 expression to become pathogenic Teff cell-like ex-Treg cells. In that regard, therapies that neutralize key inflammatory cytokines have been shown to promote Treg cell stability and function under inflammatory conditions. For example, in experimental models of chronic inflammatory disorders, including arthritis and asthma, treatment with anti-IL-6 or anti-tumor necrosis factor (anti-TNF) monoclonal antibodies appears to enhance Treg cell stability and function. Genetic manipulations of iTreg cells aimed to improve their stability when employed in cellular therapies may prove useful in enabling effective use of these therapies in inflammatory disorders. Conversely, therapies that are currently used in other indications to block Treg cell function such as anti-CTLA-4 and anti-PD-1 antibodies in cancer may predispose patients to allergic diseases by inhibiting and destabilizing Treg cells, especially iTreg cells.

The induction of antigen-specific Treg cells is particularly relevant to allergen-specific immunotherapy, which aims to reduce the allergic symptoms and maintain a long-term tolerance to allergen exposure. It typically consists of gradual introduction of escalating doses of the offending allergen, leading to a state of allergen desensitization and ultimately, when successful, to a state of long-term tolerance that persists upon discontinuation of immunotherapy. A case in point is oral immunotherapy (OIT) for FA, which has the potential to modify disease outcome and, in some cases, provide a long-term cure. OIT may impact the responses of allergen-specific T cells by (a) reversing the TH2 phenotype of Teff cells or inducing their deletion or both and (b) upregulating the effectiveness of allergen-specific Treg cells. Foxp3 Treg cells and induced type 1 Treg cells have both been implicated in clinical effectiveness of OIT. For example, a role for peanut-specific Treg cells has been demonstrated in peanut-allergic patients successfully treated with OIT. Syed et al. reported an increase in antigen-specific Treg cells in patients who reacted well to treatment compared with those who failed to tolerate. These Treg cells were characterized with increased suppressive behavior and epigenetic modifications within the Foxp3 locus. Similarly, we observed an initial decline in Treg cells when first treated with OIT supplemented with anti-IgE therapy that were recovered over time as the patients were desensitized (Abdel-Gadir et al., manuscript submitted). Recovered Treg cells had increased suppressive function and reduced production of IL-4. Blockade of IL-4R signaling appeared to rescue the suppressive function of peanut-specific Treg cells isolated from untreated patients (Abdel-Gadir and Chatila, manuscript submitted). These findings suggest a possible role for IL-4R signaling blockade as an adjunct therapy in promoting long-term tolerance in OIT.

Notwithstanding these encouraging results, OIT has had varying success in conferring long-term tolerance—defined as tolerance to the ‘offending’ food for up to six months after cessation of daily OIT—in patients with FA. Moran et al. and Sicherer et al. both report that long-term tolerance is achieved in only 13 to 28% of OIT-treated patients. The reasons for these limited long-term successes remain obscure but may have to do with the persistence of a pro-TH2 inflammatory environment in the gut that promotes the reemergence of disease upon cessation of therapy. Adjunct efforts that attempt to limit TH2 inflammation either by neutralizing effector TH2 molecules or by employing immunomodulatory bacterial therapies that promote Treg cell stability in the face of inflammation may be effective in increasing the rates of long-term tolerance acquisition in this disorder.

Patch-based immunotherapy has recently been employed as an alternative approach to OIT in inducing allergen-specific oral tolerance in FA. Tordesillas et al. used a non-oral desensitization route involving epicutaneous antigen delivery and showed that mice thus treated were protected from FA-related anaphylaxis. A population of gut-homing (tissue-specific) Treg cells that lacked Foxp3 protein but expressed latency-associated peptide was found to be selectively expanded, and these Treg cells did not suppress IgE production but inhibited mast cell activation. This report showed that skin-gut immune interaction is important for the induction of long-term oral tolerance in FA.

Future directions

It is now clear that antigen-specific Treg cells play a key role in mediating peripheral tolerance to specific allergens in healthy individuals, but there are many questions left unanswered. First, the molecular mechanisms underlying the generation of pathogenic TH2 cell-skewed Treg cells in the periphery remain to be fully deciphered. Elucidating such mechanisms would enable therapeutic interventions that ‘reset’ the TH2 cell-like reprogramming...
of allergen-specific Treg cells to promote their tolerogenic functions. Such a reset may be further extended to cellular therapies in which allergen-specific Treg cells are expanded from the peripheral blood, modified away from the TH2 cell-like reprogramming and subsequently transferred back to patients. More broadly, the environmental factors associated with changes in lifestyle over the last decade may foster the loss of tolerance to allergens and need to be more specifically mapped. Particularly relevant is the role of altered microbial exposure early in life shaping the Treg cell response and how dysbiosis may impact allergic responses would be highly informative in this regard. Thus, translating these advances to more effective manipulations of the allergen-specific Treg cell responses may offer novel therapeutic approaches in allergic disorders.

Competing interests
The authors declare that they have no competing interests.

Grant information
This work was supported by National Institutes of Health grants (5R01AI065617 and R01AI26915) to TAC.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

1. Sakaguchi S, Yamaguchi T, Nomura T, et al.: Regulatory T cells and immune tolerance. Cell. 2008; 133(5): 775–87. Published Abstract | Publisher Full Text
2. Harrison OJ, Powrie FM: Regulatory T cells and immune tolerance in the intestine. Cold Spring Harb Perspect Biol. 2012; 4(7): pii: a018341. Published Abstract | Publisher Full Text | Free Full Text
3. Legoux FP, Lim JB, Cauley AW, et al.: CD4-T Cell Tolerance to Tissue-Restricted Self Antigens is Mediated by Antigen-Specific Regulatory T Cells Rather Than Deletion. Immunity. 2015; 43(5): 896–908. Published Abstract | Publisher Full Text | Free Full Text
4. Sakaguchi S, Sakaguchi N, Asano M, et al.: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995; 155(3): 1151-64. Published Abstract | F1000 Recommendation
5. Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299(5609): 1077–61. Published Abstract | Publisher Full Text | Free Full Text
6. Samstein RM, Josefowicz SZ, Arvey A, et al.: Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell. 2012; 150(1): 29–39. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
7. Burzon D, Kuszewski W, Kolodin D, et al.: A special population of regulatory T cells potentiates muscle repair. Cell. 2013; 156(6): 1262-9. Published Abstract | Publisher Full Text | Free Full Text
8. Arpaia N, Green JA, Moltedo B, et al.: A Distinct Function of Regulatory T Cells in Tissue Protection. Cell. 2015; 162(5): 1075-89. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
9. Di Ianni M, Falletti F, Carotti A, et al.: Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011; 117(14): 3921-8. Published Abstract | Publisher Full Text | F1000 Recommendation
10. Russo-Germain EV, Renganaraj S, Hsieh C: Antigen-specific regulatory T-cell responses to intestinal microbiota. Mucosal Immunol. 2017; 10(6): 1375–86. Published Abstract | Publisher Full Text | Free Full Text
11. Kim KS, Hong SW, Han D, et al.: Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science. 2016; 351(6275): 858–63. Published Abstract | Publisher Full Text | Free Full Text
12. Sakaguchi S: Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005; 6(4): 345–52. Published Abstract | Publisher Full Text
13. Pellegrini L, Jenks JA, Bignon P, et al.: Regulatory T cells and their roles in immune dysregulation and allergy. Immunol Rev. 2014; 258(2-3): 308–68. Published Abstract | Publisher Full Text | Free Full Text
14. Curotto de Lafaille MA, Lafaille JJ: Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity. 2009; 30(5): 626–35. PubMed Abstract | Publisher Full Text
15. Sakaguchi S, Miyara M, Costantino CM, et al.: FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 2010; 10(7): 490–500. PubMed Abstract | Publisher Full Text | Free Full Text
16. Chen W, Jin W, Hardeneg N, et al.: Conversion of peripheral CD4+CD25+ naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003; 198(12): 1875–86. PubMed Abstract | Publisher Full Text | Free Full Text
17. Huehn J, Hamann A: Homing to suppress: address codes for Treg migration. Trends Immunol. 2005; 26(12): 632–6. PubMed Abstract | Publisher Full Text
18. Bilate AM, Lafaille JJ: Induced CD4-Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol. 2012; 30: 733–58. PubMed Abstract | Publisher Full Text
19. Mucida D, KuchrooV, Inaiza A, et al.: Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest. 2005; 116(7): 1923–33. PubMed Abstract | Publisher Full Text | Free Full Text
20. Josefowicz SZ, Nie CE, Kim HY, et al.: Extrathymically generated regulatory T cell control mucosal T cell inflammation. Nature. 2012; 482(7385): 393–9. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
21. Hsieh CS, Lee HM, Lio CW: Selection of regulatory T cells in the thymus. Nat Rev Immunol. 2012; 12(3): 157–67. PubMed Abstract | Publisher Full Text
22. Haribhai D, Lin W, Edwards B, et al.: A central role for induced regulatory T cells in tolerance induction in experimental colitis. J Immunol. 2009; 182(6): 3461–8. PubMed Abstract | Publisher Full Text | Free Full Text
23. Mayne CG, Williams CB: Induced and natural regulatory T cells in the development of inflammatory bowel disease. Inflamm Bowel Dis. 2013; 19(8): 1772–88. PubMed Abstract | Publisher Full Text | Free Full Text
24. Liston A, Nutsch KM, Farr AG, et al.: Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc Natl Acad Sci U S A. 2008; 106(33): 11503–8. PubMed Abstract | Publisher Full Text | Free Full Text
25. Wirsberger G, Mair F, Klein L: Regulatory T cell differentiation of thymocytes does not require a dedicated antigen-presenting cell but is under T cell-intrinsic developmental control. Proc Natl Acad Sci U S A. 2009; 106(25): 10278–83. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
26. Akoyama T, Mazda S, Yaman eS, et al.: Dependence of self-tolerance on TRAP6-directed development of thymic stromal. Science. 2005; 308(5719): 248–51. PubMed Abstract | Publisher Full Text
27. Cowan JE, Jenkinson WE, Anderson G: Thymus medulla fosters generation of
natural Treg cells, invariant γε T cells, and invariant NKT cells: what we learn from intrathymic migration. Eur J Immunol. 2015; 45(3): 452–60. Published Abstract | Publisher Full Text | Free Full Text

29. Bains I, van Santen HM, Seddon B, et al.: Models of self-peptide sampling by developing T cells identify candidate mechanisms of thymic selection. PLoS Comput Biol. 2013; 9(7): e1003102. Published Abstract | Publisher Full Text | Free Full Text

30. Margulies DH: TCR avidity: it’s not how strong you make it, it’s how you make it strong. Nat Immunol. 2005; 6(8): 669–70. Published Abstract | Publisher Full Text

31. van Santen H, Benoist C, Mathis D: Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J Exp Med. 2004; 200(10): 1221–30. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

32. Huppa JB, Geimer M, Sumen C, et al.: Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat Immunol. 2003; 4(8): 749–55. Published Abstract | Publisher Full Text | F1000 Recommendation

33. Alegre ML, Frauwirth KA. Thompson CB: T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol. 2001; 1(3): 220–8. Published Abstract | Publisher Full Text

34. Reillard LM, Williams JB, Reillard GN, et al.: The TCR repertoires of regulatory and conventional T cells specific for the same foreign antigen are distinct. J Immunol. 2012; 189(7): 3566–74. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

35. Nishio J, Baba M, Atarashi K, et al.: Requirement of full TCR repertoire for regulatory T cells to maintain intestinal homeostasis. Proc Natl Acad Sci U S A. 2012; 11(4): 12770–5. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

36. Hedis U, Wahn B, Schuz O, et al.: Intestinal tolerance requires gut homing and expansion of FOXP3+ regulatory T cells in the lamina propria. Immunity. 2011; 34(2): 237–46. Published Abstract | Publisher Full Text

37. Gorosh P, Doherty TA, Duan W, et al.: Lumbar content tissue macrophages generate FOXP3+ regulatory T cells and promote airway tolerance. J Exp Med. 2013; 210(4): 775–88. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

38. Coleman MM, Ruane D, Moran B, et al.: Alveolar macrophages contribute to respiratory tolerance by inducing Foxp3 expression in naive T cells. Am J Respir Cell Mol Biol. 2013; 48(6): 773–80. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

39. Benson MA, Pino-Lagos K, Rosemblatt M, et al.: All-trans retinoic acid mediates regulatory T cell development and airway tolerance. J Exp Med. 2007; 204(8): 1765–74. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

40. Coombes JL, Siddiqui KR, Arancibia-Cárdenas CV, et al.: A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med. 2007; 204(8): 1757–64. Published Abstract | Publisher Full Text | Free Full Text

41. Esterházy D, Loschko J, London M, et al.: Classical dendritic cells are required for dietary antigen-mediated induction of peripheral Treg cells and tolerance. Nat Immunol. 2016; 17(5): 545–55. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

42. Chishakova DA, Babayev YY, Kozorov E, et al.: Intestinal mucosal tolerance and impact of gut microbiota to mucosal tolerance. Front Microbiol. 2015; 6: 781. Published Abstract | Publisher Full Text

43. Latroop SK, Bloom SM, Rao SM, et al.: Peripheral education of the immune system by colonic commensal microbiota. Nature. 2011; 478(7368): 250–4. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

44. Chai JN, Peng Y, Rengarajan S, et al.: Helicobacter species are potent drivers of colonic T cell responses in homeostasis and inflammation. Sci Immunol. 2017; 2(13): pii: eaat5006. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

45. Weiss JM, Bilate AM, Gobert M, et al.: Neutrophil 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3-T reg cells. J Exp Med. 2012; 209(10): 1723–42. S1. Published Abstract | Publisher Full Text | Free Full Text

46. Tanoue T, Atarashi K, Honda K: Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol. 2016; 16(5): 295–309. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

47. Jain W, Crof M: Control of regulatory T cells and airway tolerance by lung macrophages and dendritic cells. Ann Am Thorac Soc. 2014; 11 Suppl 5: S306–13. Published Abstract | Publisher Full Text | Free Full Text

48. Jaffar Z, Ferroni ME, Girtman TA, et al.: Antigen-specific Treg regulate Th17-mediated lung neutrophilic inflammation, B-cell recruitment and polymeric IgA and IgM levels in the Airways. Eur J Immunol. 2009; 39(12): 3307–14. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

49. Gollwitzer ES, Saglani S, Trompetta A, et al.: Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014; 20(6): 642–7. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

50. Bacher P, Heinrich F, Stendbo U, et al.: Regulatory T Cell Specificity Directs Tolerance versus Allergy against Aeroantigens in Humans. Cell. 2016; 167(4): 1087–1078.e16. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

51. Kashinagi M, Hojo J, Lai JF, et al.: Direct control of regulatory T cells by keratinocytes. Nat Immunol. 2017; 18(3): 334–33. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

52. Jameson SC, Masopost D: Diversity in T cell memory: an embarrassment of riches. Immunology. 2009; 31(3): 859–71. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

53. Rosenblum MD, Way SS, Abbas AK: Regulatory T cell memory. Nat Rev Immunol. 2016; 16(2): 90–101. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

54. Waikm LM, Bevan MJ: From the thymus to longevity in the periphery. Curr Opin Immunol. 2010; 22(3): 274–8. Published Abstract | Publisher Full Text | Free Full Text

55. Rowe JH, Erteli JM, Xin L, et al.: Pregnancy Imprints Regulatory Memory that Sustains Energy Balance and Longevity. PLoS Biol. 2017; 15(4): e2001776. Published Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

56. Gollwitzer ES, Schiller JN, Peng Y, et al.: Microbe sampling by mucosal...
114. Thiolat A, Semerano L, Pers YM, et al.: Interleukin-6 receptor blockade enhances CD39+ regulatory T cell development in rheumatoid arthritis and in experimental arthritis. Arthritis Rheumatol. 2014; 66(2): 273–83. PubMed Abstract | Publisher Full Text

115. Nadkarni S, Mauri C, Ehrenstein MR: Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta. J Exp Med. 2007; 204(1): 33–9. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

116. Baumeister SH, Freeman GJ, Dranoff G, et al.: Coinhibitory Pathways in Immunotherapy for Cancer. Annu Rev Immunol. 2016; 34: 539–73. PubMed Abstract | Publisher Full Text

117. Burks AW, Laubach S, Jones SM: Oral tolerance, food allergy, and immunotherapy: implications for future treatment. J Allergy Clin Immunol. 2008; 121(6): 1344–50. PubMed Abstract | Publisher Full Text

118. Bedoret D, Singh AK, Shaw V, et al.: Changes in antigen-specific T-cell number and function during oral desensitization in cow’s milk allergy enabled withomalizumab. Mucosal Immunol. 2012; 5(3): 267–76. PubMed Abstract | Publisher Full Text | Free Full Text

119. Zeng H, Zhang R, Jin B, et al.: Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance. Cell Mol Immunol. 2015; 12(5): 568–71. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation

120. Syed A, Garcia MA, Lyu SC, et al.: Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol. 2014; 133(2): 500–10. PubMed Abstract | Publisher Full Text | Free Full Text

121. Moran TP, Vickery BP, Burks AW: Oral and sublingual immunotherapy for food allergy: current progress and future directions. Curr Opin Immunol. 2013; 25(6): 781–7. PubMed Abstract | Publisher Full Text | Free Full Text

122. Sicherer SH: Epidemiology of food allergy. J Allergy Clin Immunol. 2011; 127(3): 594–602. PubMed Abstract | Publisher Full Text

123. Begin P, Chinthrajah RS, Nadeau KC: Oral immunotherapy for the treatment of food allergy. Hum Vaccin Immunother. 2014; 10(8): 2295–302. PubMed Abstract | Publisher Full Text | Free Full Text

124. Tordesillas L, Mondoulet L, Blazquez AB, et al.: Epicutaneous immunotherapy induces gastrointestinal LAP+ regulatory T cells and prevents food-induced anaphylaxis. J Allergy Clin Immunol. 2017; 139(1): 189–201.e4. PubMed Abstract | Publisher Full Text | Free Full Text | F1000 Recommendation
Open Peer Review

Current Referee Status: ✔ ✔ ✔

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1
1 Jagadeesh Bayry Immunopathologie et Immunointervention Thérapeutique, Centre de Recherche des Cordeliers, Paris, France
 Competing Interests: No competing interests were disclosed.
1 Megan K Levings Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, Canada
 Competing Interests: No competing interests were disclosed.
1 Tobias Bopp Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com