Multiplex PCR serogrouping of *Listeria monocytogenes* isolated in Japan

Yukako SHIMOJIMA1)*, Miki IDA1), Yukari NISHINO1), Rie ISHITSUKA1), Sumiyo KURODA1), Akihiko HIRAI1), Kenji SADAMASU1), Akiko NAKAMA1) and Akemi KAI1)

1)Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3–24–1 Hyakunin-cho, Shinjuku-ku, Tokyo 169–0073, Japan

(Received 11 August 2015/Accepted 21 October 2015/Published online in J-STAGE 3 November 2015)

ABSTRACT. PCR serogrouping methods were used to examine strains of *L. monocytogenes* isolated in Japan. Among 187 strains, 99.5% were classified into 4 PCR serogroups corresponding to conventional serotypes. Only one isolate had a new PCR profile, which may be a variant of serogroup IVb.

KEY WORDS: *Listeria monocytogenes*, PCR serogrouping, serotyping

NOTE

Correspondence to: Yukako_Shimojima@member.metro.tokyo.jp
Address for correspondence: Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3–24–1 Hyakunin-cho, Shinjuku-ku, Tokyo 169–0073, Japan.

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

©2016 The Japanese Society of Veterinary Science
Y. SHIMOJIMA ET AL.

mate 400 bp) instead of orf2110 (597 bp, Fig. 1). The sequence of the fragment was examined, because the unexpected fragment was also amplified by simplex-PCR assay with the orf2110 primers (Fig. 1). The sequence was identical to the 597-nt fragment of orf2110, except for a 201-nt deletion at position 205–405 (Gene bank accession no. AB890369).

Table 1. Source and origin of food samples used in this study

Source	Beef	Pork	Poultry	Meat products	Fish and Fish products	Natural cheese	Others	Total
Japan	15	6	23	1	24	6(2)	7	75
Brazil			26					26
Australia	6	1	1					8
U.S.A.	6		1					7
Thailand			4					4
Canada	1	1						2
China			1					2
Philippines	2							2
Chile			1					2
Mexico	2							2
Spain								1
Hungary								1
France								1
Unknown	5	8	7	1		4(1)		26

Total: 159

a) Vegetables (4 samples) and Raw milk (2 samples), b) Venison.

Table 2. Correlation of PCR serogroup and conventional serotype

PCR serogroup	Number of strains	Serotype						
	1/2a	3a	1/2b	3b	1/2c	4ab	4b or 4e	4d
IIA	52	45(2)	7					
IIB	27	25	2					
IIC	36				36(1)			
IVB	63	1	57	5				
IVB-v1	8					8(1)		
IVB with Δorf2110	1							

Total: 187

a) Containing 1 isolate, IIC profile arranged by flaA positive. b) Containing 1 isolate, IIA profile arranged by flaA negative. c) 7 isolates: Chicken from Brazil between 1998 and 2007, 1 isolate: Beef from Australia in 2012. d) Isolate from domestic beef in 2010.

Fig. 1. A: PCR patterns of multiplex PCR assay. Lane M; 100 bp ladder (100–1,000, 1,500 bp), lanes 1-5; PCR serogroup IIA, IIB, IIC, IVB, IVB-v1 strains, respectively, lane 6; the strain which had a new PCR profile, IVB with Δorf2110. B: Simplex-PCR assay with orf2110 primers. Lane M; 100 bp ladder, lane 1; the strain which had a new PCR profile, IVB with Δorf2110, lane 2; PCR serogroup IVB strain.
By PFGE analysis, this strain was compared with 5 other serotype 4d, PCR serogroup IVb strains of the present study, as well with the reference strain kindly provided by Dr. J. C. Feeley (CDC, Atlanta, GA, U.S.A.). The PFGE pattern of this strain was indistinguishable from 2 other strains (Fig. 2). The MLST of the strain was assigned to ST1 (data not shown), which had been reported previously in serotype 4b strains [7, 8, 11]. Both serotype 4d and 4b strains belong to PCR serogroup IVb and evolutionary lineage I [9], suggesting this atypical strain may be a variant of PCR serogroup IVb. It is not known whether this atypical strain has spread throughout Japan or was just isolated incidentally.

In conclusion, 99.5% of the 187 \textit{L. monocytogenes} strains isolated in Japan were classified into 4 serogroups by PCR serogrouping methods corresponding to the conventional serotypes. Only 1 isolate showed a new PCR profile: IVb with Δorf2110, a possible variant of serogroup IVb.

REFERENCES

1. Borucki, M. K. and Call, D. R. 2003. \textit{Listeria monocytogenes} serotype identification by PCR. \textit{J. Clin. Microbiol.} \textbf{41}: 5537–5540. [Medline] [CrossRef]

2. Doumith, M., Buchrieser, C., Glaser, P., Jacquet, C. and Martin, P. 2004. Differentiation of the major \textit{Listeria monocytogenes} serovars by multiplex PCR. \textit{J. Clin. Microbiol.} \textbf{42}: 3819–3822. [Medline] [CrossRef]

3. Graves, L. M. and Swaminathan, B. 2001. PulseNet standardized protocol for subtyping \textit{Listeria monocytogenes} by macrorestriction and pulsed-field gel electrophoresis. \textit{Int. J. Food Microbiol.} \textbf{65}: 55–62. [Medline] [CrossRef]

4. Halpin, J. L., Garrett, N. M., Ribot, E. M., Graves, L. M. and Cooper, K. L. 2010. Re-evaluation, optimization, and multilaboratory validation of the PulseNet-standardized pulsed-field gel electrophoresis protocol for \textit{Listeria monocytogenes}. \textit{Foodborne Pathog. Dis.} \textbf{7}: 293–298. [Medline] [CrossRef]

5. Kérouanton, A., Marault, M., Petit, L., Grout, J., Dao, T. T. and Brisabois, A. 2010. Evaluation of a multiplex PCR assay as an alternative method for \textit{Listeria monocytogenes} serotyping. \textit{J. Microbiol. Methods} \textbf{80}: 134–137. [Medline] [CrossRef]

6. Leclercq, A., Chenal-Francisque, V., Dieye, H., Cantinelli, T., Drali, R., Brisse, S. and Lecuit, M. 2011. Characterization of the novel \textit{Listeria monocytogenes} PCR serogrouping profile IVb-v1. \textit{Int. J. Food Microbiol.} \textbf{147}: 74–77. [Medline] [CrossRef]

7. Martin, B., Perich, A., Gómez, D., Yangüela, J., Rodríguez, A., Garriga, M. and Aymerich, T. 2014. Diversity and distribution of \textit{Listeria monocytogenes} in meat processing plants. \textit{Food Microbiol.} \textbf{44}: 119–127. [Medline] [CrossRef]

8. Parisi, A., Latorre, L., Normanno, G., Miccolupo, A., Fracalvieri, R., Lorusso, V. and Santagada, G. 2010. Amplified Fragment Length Polymorphism and Multi-Locus Sequence Typing for high-resolution genotyping of \textit{Listeria monocytogenes} from foods and the environment. \textit{Food Microbiol.} \textbf{27}: 101–108. [Medline] [CrossRef]

9. Ragon, M., Wirth, T., Hollandt, F., Lavenir, R., Lecuit, M., Le, M. A. and Brisse, S. 2008. A new perspective on \textit{Listeria monocytogenes} evolution. \textit{PLoS Pathog.} \textbf{4}: e1000146. [Medline] [CrossRef]

10. Seeliger, H. P. and Höhne, K. 1979. Serotyping of \textit{Listeria monocytogenes} and related species. pp. 31–49. \textit{In}: Methods in Microbiology, 13 (Bergan, T. and Norris, J. R. eds.), Academic Press, New York.

11. Wang, Y., Zhao, A., Zhu, R., Lan, R., Jin, D., Cui, Z., Wang, Y., Li, Z., Wang, Y., Xu, J. and Ye, C. 2012. Genetic diversity and molecular typing of \textit{Listeria monocytogenes} in China. \textit{BMC Microbiol.} \textbf{12}: 119. [Medline] [CrossRef]