SYNTHESIS AND ANTIOXIDANT ACTIVITY OF 2-SUBSTITUTED-5-NITRO BENZIMIDAZOLE DERIVATIVES

SABRINA RAHMAN ARCHIE1, BIPLAB KUMAR DAS2, MD. SHAHADAT HOSSAIN2, UTTOM KUMAR1, ABU SHARA SHAMSUR ROUF2*

1Department of Pharmaceutical Technology, 2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
Email: rouf321@yahoo.com

Received: 31 Aug 2016 Revised and Accepted: 05 Nov 2016

ABSTRACT

Objective: This study was conducted to synthesise some 2-substituted-5-nitro benzimidazole derivatives to evaluate their antioxidant activity.

Methods: The titled compounds were synthesised by sodium metabisulphite mediated reaction of 4-nitro-1, 2-phenylenediamine with a number of para-substituted benzaldehydes. The antioxidant activity was evaluated by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging method.

Results: All the compounds exhibited good antioxidant activity having IC50 values in the range of 3.17 to 7.59 µg/ml while that of standard butylated hydroxytoluene (BHT) was 18.42 µg/ml.

Conclusion: Among the synthesised compounds, compounds 3a-c have been found to possess the most prominent antioxidant activity which might be attributed due to the presence of chloro, bromo and fluoro substituents in the molecule. The compounds may act as the future lead(s) for the development of potential antioxidant compounds.

Keywords: Benzimidazole, Synthesis, Antioxidant, DPPH

Benzimidazole derivatives comprise a promising classes of heterocyclic compounds that exhibit a range of biological activities such as antimicrobial [1, 2], antiprotozoal [3], anthelmintic [4], antiproliferative [5], anti-HIV [6], anticonvulsant [7], anti-inflammatory [8], antineoplastic [9] and anti-tumor [10] activity. A recent report shows that two groups of substituted benzimidazoles, namely 5, 6-dinitro and 2-trifluoromethyl derivatives are the prominent candidates for antimicrobial drugs [11, 12]. Besides 2-mercaptobenzimidazole compounds have been reported to have significant antimicrobial properties [13]. Therefore benzimidazole has drawn considerable interest as an important scaffold in drug discovery [14]. However, many of the activities of benzimidazole derivatives have not been extensively investigated like antioxidant activity. But the compounds having antioxidant and free radical scavenging properties are considered to be used for the prevention or treatment of human diseases like neurodegenerative disorders, atherosclerosis, rheumatoid arthritis and carcinogenesis, because oxygen-derived free radicals such as superoxide (O2·−), nitric oxide (NO·), hydroxyl (OH·) and peroxy (ROO·−) play an important role in causing these diseases [15]. N-substituted benzimidazole derivatives and 2-aryl substituted benzimidazole and benzothiazole derivatives have recently been reported to show significant antioxidant activity [16, 17].

The major reagents for synthesis were purchased from Sigma-Aldrich Chemical Corporation and were used after being purified by standard procedures. The other chemicals used were of reagent/analytical grade. Melting points were determined by open capillary method with the help of WRS-1B (Germany) digital melting point apparatus and are uncorrected. All the reactions were monitored by TLC on silica gel thin layer plates. UV data were taken using Shimadzu UV-166V spectrophotometer. IR spectra were recorded by using the KBr disk on Shimadzu IR-470 spectrophotometer. 1H NMR spectra were recorded on a Bruker 400 Ultra Shield instrument using deutero-DMSO (d-DMSO) as solvent and tetramethylsilane (TMS) as internal reference standard. All chemical shift (δ) values are expressed in ppm. The purities of the compounds were checked by thin layer chromatography (TLC) on silica gel-G plates.

Numerous methods are available for the synthesis of benzimidazole derivatives [14, 16, 17]. A simple method was applied for the synthesis of our target compounds. To a solution of 4-nitro-1, 2-phenylenediamine 1 (1.0 equivalent) and the corresponding aldehydes 2a-d (1.0 equivalent) in absolute ethanol (10 ml), sodium metabisulphite (4.0 equivalent) was added and the resulting mixture was stirred at 80-85 °C for 4 h. After completion of the reaction observed by TLC, the reaction mixture was cooled to room temperature. Ethyl acetate (about 100 ml) was added, and the solid obtained was filtered off.

The crude product was attempted to recrystallize using dichloromethane-methanol, but it was failed. Then the crude product was purified by suspending in a mixture of hexane-ethyl acetate (1:1 ratio) several times, and the solid was collected by filtration and dried in the desiccator. The compounds were obtained in moderate to good yields (48-72%) which were characterized by various physicochemical parameters (TLC, melting point, solubility) and also by spectroscopic methods (UV, IR and NMR) for their structure elucidation. The purity of the synthesised compounds was confirmed by TLC and column chromatography.
and was calculated using the formula:

\[
\text{Percent Inhibition} = (1 - \frac{A_{\text{sample}}}{A_{\text{blank}}}) \times 100
\]

Where: \(A_{\text{blank}} \) = Absorbance of control (containing all reagents except the test material).

\(A_{\text{sample}} \) = Absorbance of test or standard.

The percent inhibition was plotted against the sample of the standard concentration to obtain the amount of antioxidants necessary to decrease the initial concentration of DPPH to 50% (IC50). IC50 values were calculated from the calibration curve. IC50 value is defined as the concentration of test compound required to achieve half-maximal inhibition, and lower IC50 value indicates greater antioxidant activity.

The results of antioxidant activity of the compounds 3a-d are shown in table 1. The activity was assessed by measuring its electron donating ability to DPPH which was indicated by changes in absorbance of the solution of different concentrations at 517 nm. The DPPH radical scavenging activity of the compounds increased with an increase in concentration. The result of the radical scavenging was expressed in terms of half-inhibition concentration (IC50) which denotes the concentration required to scavenge 50% of DPPH radicals.

Table 1: It shows the results of free radical scavenging activity of 5-nitro-2-substituted benzimidazoles 3a-d and BHT

Product	Yield (%)
3a	48.93
3b	71.18
3c	54.88
3d	61.96

After characterization, the synthesised compounds was evaluated in vitro for their antioxidant potential by free radical scavenging activity using DPPH (2, 2-diphenyl-1-picryl hydroxyl) reduction method [18, 19]. Four mg of DPPH was dissolved in 4 ml of methanol and from this stock solution, solutions of different concentrations i.e. 0.997 µg/ml, 1.953 µg/ml, 3.906 µg/ml, 7.813 µg/ml, 15.625 µg/ml, 31.25 µg/ml, 62.5 µg/ml, 125 µg/ml, 250 µg/ml, and 500 µg/ml were prepared by serial dilution. The absorbance was recorded for these dilutions at 517 nm.

After that, 2 mg of BHT was dissolved in methanol to get a mother solution having a concentration 1000 µg/ml. The test samples were prepared from this stock solution by serial dilution with methanol to attain the concentrations similar to DPPH. 2.0 ml methanolic solution of the test compounds was mixed with 3.0 ml of DPPH solution (20 µg/ml). The mixture was then shaken vigorously and allowed to stand at room temperature in dark place for 30 minutes and the absorbance was measured at 517 nm against methanol as blank by UV-Spectrophotometer. Finally, BHT was used as positive control and the whole experiment was done in triplicate [20].

The free radical scavenging was expressed as the percentage inhibition and was calculated using the formula:

\[
\text{Percent Inhibition} = (1 - \frac{A_{\text{sample}}}{A_{\text{blank}}}) \times 100
\]

*The percent inhibition values have been calculated by plotting the mean absorbance values against different concentrations mentioned. The regression coefficient (R²) values for the compounds 3a-d are 0.8388, 0.9651, 0.9785, and 0.9768 respectively and of standard BHT is 0.9585.

A plethora of reports are available which reflect the diverse range of biological activities of benzimidazoles derivatives [1-10]. Of particular interest, we have chosen 5-nitro-2-substituted benzimidazoles derivatives as our target compounds because of the recent observations of biological activities of these derivatives especially antimicrobial activities [1]. But antioxidant activities of these types of derivatives have not been studied much. From the results of our study, all the compounds are found to be more active than the standard. A possible explanation for this result is that the biological activity of compounds may depend on the basic skeleton of the molecule as well as on the nature of substituents. But the compound 3c seemed to be the most active of all which is assumed to be due to the presence of fluorine atom in the molecule as the presence of fluorine atom in benzimidazole compounds, in general, confers significant biological activity [21, 22]. The results obtained were statistically evaluated by regression analysis and the values indicate that the compounds possess significant antioxidant activity.

It can be concluded that all the synthesised benzimidazoles derivatives exhibited significant antioxidant activity. But the activity of 2-(4-fluoro-phenyl)-5-nitro-1H-benzimidazole (3c) was more promising than others. The study related to the synthesis of newer antioxidant benzimidazoles derivatives is on progress. Although several synthetic antioxidant agents are available like BHT, there is still a scarcity of safe and effective antioxidant. Therefore the successful implementation of the synthesis could help to produce molecules which might be potential leads for the development of drug molecules having antioxidant activity.

ACKNOWLEDGEMENT

We gratefully acknowledge the financial contribution of Higher Education Quality Enhancement Project (HEQEP), Window 2, Round 3, CP 3245, University Grants Commission of Bangladesh.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.
REFERENCES

1. Jain P, Jain V, Jain AK, Singour PK. Synthesis, antimicrobial activity and chemotherapeutic potential of some novel benzimidazole derivatives. Int J Drug Des Discovery 2011;2:633-6.

2. Ozkay Y, Tunali Y, Karaca H, Isikdag I. Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazone moiety. Eur J Med Chem 2010;45:293-8.

3. Katiyar SK, Gordon VR, McLaughlin GL, Edllond TD. Antiprotozoal activities of benzimidazoles and correlations with Betα-tubulin sequence. Antimicrob Agents Chemother 1994;38:2086-90.

4. Sreena K, Ratheesh R, Ranchana N, Poornima M, Shyni C. Synthesis and anthelmintic activity of benzimidazole derivatives. Hygeia 2009;1:21-2.

5. Garutti L, Roberti M, Malagoli M, Rossi T, Castelli. Synthesis and antiproliferative activity of some benzimidazole 4,7-dione derivatives. Bioorg Med Chem Lett 2000;10:2193-5.

6. Rao A, Chimirri A, Clercq ED, Monforte AM, Monforte P, Pannecouque C. Synthesis and anti-HIV activity of 1-(2,6-difluorophenyl)-1H,3H-benzimidazole structurally-related 1,2-substituted benzimidazoles. Farmaco 2002;57:819-23.

7. Shingalapur RV, Hosamani KM, Keri RS, Hugar MH. Derivatives of benzimidazole pharmacophore: synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur J Med Chem 2010;45:1753-9.

8. Thakurdesai PA, Wadodkar SG, Chopade CT. Synthesis and anti-inflammatory activity of some benzimidazole-2-carboxylic acids. Pharmacologyonline 2007;1:1314-29.

9. Abdel-monem A. Benzimidazole condensed ring systems: new synthesis and antineoplastic activity of 3,4-dihydro and 1,2,3,4-tetrahydro-benzimidazole derivatives containing oxycyclic pyridine as a gastric H-K+ATPase inhibitors. Bull Korean Chem Soc 2001;22:1217-23.

10. Cho SY, Kang SK, Kim SS, Cheon HG, Choi JK, Yum EK. Synthesis and SAR of benzimidazole derivatives containing oxycyclic pyridine as a gastric H-K+ATPase inhibitors. Bull Korean Chem Soc 2001;22:1217-23.

11. Stefanska JZ, Grelweksa R, Starosciak BJ, Kazimierczuk Z. Antimicrobial activity of substituted azoles and their nucleosides. Pharmazie 1999;54:879-84.

12. Maske PP, Lokapure SG, Nimbalkar D, Disouza J. Synthesis and antiprotozoal activity of nitro and halogeno substituted novel mercapto benzimidazole derivatives. Der Pharm Chem 2012;4:1283-7.

13. Gurrara S, Babu YR, Rao GV, Madhahilata B. Symmetrical coupling of 2-mercaptobenzimidazole derivatives and their antimicrobial activity. Int J Pharm Pharm Sci 2011;3:217-20.

14. Jaya Prithi P, Karthikeyan E, Lohita M, Gautam Teza P, Subhash M, Shaheena P, et al. Benzimidazole: an important scaffold in drug discovery. Asian J Pharm Technol 2015;5:38-52.

15. Rice-Evans C, Diplock AT. Techniques in free radical research. 1st ed. Amsterdam: Elsevier; 1991. p. 291.

16. Kus C, Kikeglj GA, Eke BC, Iscan M. Synthesis and antioxidant properties of some novel benzimidazole derivatives on lipid peroxidation in the rat liver. Arch Pharmacal Res 2001;24:56-63.

17. Lakhar R, Perumal P, Kolhe N, Bhaskar VH, Daroi P. Synthesis and antioxidant activity novel 2-aryl substituted benzothiazole derivatives. Int J Curr Pharm Res 2015;7:34-7.

18. Brand-Williams W, Cuvelier ME, Berset C. Use of free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 1995;28:25-30.

19. Padmanabhan P, Jangle SN. Evaluation of DPPH radical scavenging activity and reducing power of four selected medicinal plants and their combinations. Int J Pharm Sci Drug Res 2012;4:143-6.

20. Patel RM, Patel NJ. In vitro antioxidant activity of coumarin compounds by DPPH, superoxide and nitric oxide free radical scavenging methods. Journal of advanced pharmacy education and research, 2011; 1: 52-68.

21. Mariappan G, Hazarika R, Alam F, Karki R, Patangia U, Nath S. Synthesis and biological evaluation of 2-substituted benzimidazole derivatives. Arabian J Chem 2015;8:715-9.

22. Relha S, Chandrasekhara S, Bht P, Vineeth Reddy. Int J Pharm Life Sci 2013;4:2794-9.

How to cite this article
Sabrina Rahman Archie, Biplab Kumar Das, MD Shahadat Hossain, Uttom Kumar, Abu Shara Shamsur Rouf. Synthesis and antioxidant activity of 2-substituted-5-nitro benzimidazole derivatives. Int J Pharm Pharm Sci 2017;9(1):308-310.