The effect of demographic variables on mathematics teachers’
TPACK: Indonesian context

M Mailizar¹,², M Hidayat³ and W Artika¹,²,³

¹ Mathematics Education Department, Universitas Syiah Kuala, Banda Aceh, Indonesia
² Biology Education Department, Universitas Syiah Kuala, Banda Aceh, Indonesia
³ STEM Research Center, Universitas Syiah Kuala, Banda Aceh, Indonesia

*E-mail: mailizar@unsyiah.edu

Abstract. In Indonesia, teachers are required to integrate digital technology in the secondary school mathematics classroom. Therefore, it is necessary to examine mathematics teachers’ technological, pedagogical and content knowledge (TPACK) according to their demographic background. The purpose of this study was to examine Indonesian mathematics teachers TPACK and investigate if TPACK levels are significantly different in terms of gender, teaching experience, the level of schools and teacher level of education. We conducted a quantitative study with a cross-sectional survey design. Data were collected from 210 mathematics teachers and analyzed by ANOVA. This study suggests that there were significant differences in teachers’ level of TPACK according to their gender and the level of education. However, it was found that there was no significant difference in teacher level of TPACK according to their teaching experience and the level of schools. To a large extent, this study suggested that teacher demographic background determine their TPACK.

1. Introduction

Mishra and Koehler [1] proposed technological pedagogical and content knowledge that emphasizes the importance of interaction of three knowledge, namely, technological knowledge (TK), pedagogical knowledge (PK) and content knowledge (CK) when teachers integrate technology in the classroom. Furthermore, [2] argues that TPACK is the knowledge and skills required to effectively integrate digital technology in lessons.

TPACK was developed based on Shulman’s [3] pedagogical content knowledge (PCK) framework. Therefore, TPACK is referred to “technological knowledge contextually situated within pedagogical knowledge and content knowledge” [2]. The framework suggests that teaching with technology will be effective when teachers are able to integrate technology content knowledge and pedagogical knowledge. Figure 1 is the TPACK framework that shows three basic components of TPACK and the results of their interaction.
According to Schmidt, Baran [2], “TPACK is knowledge of using various technologies to teach and represent the content”. The interaction technological knowledge, pedagogical knowledge and content knowledge will enable teachers to rethink lessons and transform their instruction into better representation by integrating technology [4]. Therefore, teachers who have sufficient TPAK view digital technology as the tool as one which constructs students’ knowledge.

The TPACK framework has been used in many studies, both quantitative [5-7] and qualitative studies [8, 9]. Regarding mathematics education, the TPACK framework has been employed to examine the mathematics teachers’ knowledge in the use of technology in the classroom [7, 10-12]. In term of mathematics teachers’ TPACK, a qualitative study conducted by Kartal and Çinar [13], showing that teachers perceived technology as a visualization tool. However, when they noticed the important digital tools such as dynamic mathematic software, they realized that the tool makes learning easier and can help teachers to avoid rote learning. This realization indicates that the teachers have developed their TPACK.

According to [14], teachers’ TPACK are influenced by many factors. Previous studies have revealed that teachers’ TPACK are influenced by Gender, age, and school levels [4, 11, 15]. In term of Gender, for instance, Erdogan and Sahin [11] found that male teachers’ TPACK higher than female teachers. In term of teaching experience, previous studies suggested varying results. For example, Jang and Tsai [4] found that less experienced teachers’ TPACK components were higher than less experienced teaches. Furthermore, regarding age, Luik, Taimalu [15] suggested that senior teachers had relatively low TPACK. In addition, research on TPACK suggested that there were significant differences in TPACK in terms of the level of school.

The purpose of this is to investigate if secondary school mathematics teachers’ TPACK levels in terms of Gender, the level of schools, teaching experience and the level of education. Regarding the purpose of the study, we proposed this research question: What are the effects of Gender, the level of the school, teaching experience and the level of education on mathematics teachers’ TPACK?
2. Methods
To achieve the aim of this study, we used a quantitative method with a cross-sectional survey [16]. We used an online survey for data collection. The survey was hosted on a Google form. Participants of this study were secondary mathematics teachers in Indonesia. We randomly distributed questioner to several virtual groups of mathematics teachers in the country. There were 210 participants who responded to the questioner. Participants’ demographic information is provided in Table 1.

Table 1. Participants’ demographic background information.

Demographic Background	Frequency
Gender	
Male	97
Female	113
School-level	
Senior High School	75
Junior High School	135
Teacher’s level of education	
Undergraduate Degree	161
Post-graduate Degree	49
Teaching experience (Year)	
0-5	74
6-10	54
11-15	43
16-20	26
Above 20	13

We adapted the research instrument from previous studies related to TPACK [2, 17, 18]. We examined a face and construct validity of the instrument through discussion with experts and teachers. For face validity, seven teachers were involved in discussing the instrument. For content validity, we discussed the instrument with two experts in educational technology. After we conducted face and content validity, we used Google form and administered the questioner through an online survey. We sent the link of the questioner to several virtual groups such as WhatsApp, Telegram and Facebook groups of mathematics teachers. Finally, 210 teachers completed the questioner. Regarding data analysis, we conducted an inferential statistical analysis. We employed ANOVA tests to examine the significant difference of TPACK level according to teacher demographic background, namely Gender, school level, education level and teaching experience.

3. Results
We present results of this study according to teacher demographic background assessed in this study, namely, Gender, school level, level of education and teaching experience.

3.1. Gender
Results of descriptive analysis and ANOVA analysis on difference of teachers’ TPACK are presented in Table 2 and Table 3, respectively. Overall, the results show that there is no significant difference in teachers’ TPACK across the construct. Only two components of the TPACK that do not significantly differ, namely content knowledge and pedagogical knowledge. Therefore, we conclude that Gender plays a significant role in teachers’ TPACK in which male teachers’ TPACK is higher than female teachers’ TPACK.
Table 2. Mean of Teachers' TPACK according to Gender.

TPACK Construct	Gender	TK	CK	PK	PCK	TPK	TCK	TPACK
Male	4.1581	4.3737	4.2866	4.1804	4.2268	4.2433	4.1856	
Female	3.9838	4.3075	4.1593	4.1062	4.0389	3.9611	3.9086	

Table 3. Results of ANOVA on teachers' TPACK according to their Gender.

TPACK Constructs	Sum of Squares	df	Mean Square	F	Sig
TK	1.586	1	1.586	6.529	.011
CK	.229	1	.229	1.170	.281
PK	.846	1	.846	4.205	.042
PCK	.288	1	.288	1.320	.252
TPK	1.842	1	1.842	7.070	.008
TCK	4.158	1	4.158	16.254	.000
TPACK	4.005	1	4.005	12.153	.001

3.2. School Level

In term of school level, in this study, we examine the level of teachers’ TPACK based on their school level, namely the senior high school level and the junior high school level. Table 4 shows the mean score of teachers’ TPACK scores according to school levels, while table 5 reveals the results of ANOVA tests on teachers’ TPACK according to the level of schools where they teach. Overall, the results show that there are no significant differences in teachers’ TPACK according to the school level. Therefore, we conclude that school levels do play a significant role in teachers’ level of TPACK.

Table 4. Mean of Teachers' TPACK according to school levels.

School Level	TPACK Constructs	TK	CK	PK	PCK	TPK	TCK	TPACK
Senior High School		3.9956	4.2933	4.1653	4.0967	4.0773	4.0080	3.9956
Junior High School		4.1025	4.3630	4.2474	4.1648	4.1526	4.1378	4.0593

Table 5. Results of ANOVA on teachers' TPACK according to school level.

TPACK Constructs	Sum of Squares	df	Mean Square	F	Sig
TK	.551	1	.551	2.224	.137
CK	.234	1	.234	1.196	.275
PK	.325	1	.325	1.595	.208
PCK	.224	1	.224	1.026	.312
TPK	.273	1	.273	1.019	.314
TCK	.812	1	.812	2.987	.085
TPACK	.196	1	.196	.562	.454
3.3. Education Level
Regarding teachers' education level, we examined teachers' TPACK according to their level of education, namely an undergraduate degree and a post-graduate degree. Table 6 and Table 7 show that there are significant differences in teachers' TPACK across all constructs. It shows that teachers with a post-graduate degree have a higher level of TPACK than those with an undergraduate degree.

TPACK Construct	Teachers' education level	TK	CK	PK	PCK	TPK	TCK	TPACK
	Undergraduate Degree	4.0062	4.2950	4.1677	4.0947	4.0758	4.0199	3.9731
	Post Graduate Degree	4.2551	4.4796	4.3837	4.2908	4.2898	4.3265	4.2449

Table 7. Results of ANOVA on teachers' TPACK according to teachers' education level.

TPAK Constructs	Sum of Squares	df	Mean Square	F	Sig
TK	2.327	1	2.327	9.724	.002
CK	1.280	1	1.280	6.723	.010
PK	1.752	1	1.752	8.903	.003
PCK	1.445	1	1.445	6.804	.010
TPK	1.721	1	1.721	6.589	.011
TCK	3.533	1	3.533	13.650	.000
TPACK	2.776	1	2.776	8.273	.004

3.4. Teaching Experience
Teachers’ TPACK was also examined according to teachers’ years of teaching experience. We classified teachers’ teaching experience into five categories, namely, 0-5 years, 6-10 years, 11-15 years, 16-20 years, and above 20 years. Table 8 and Table 9 show that there were no statistically significant differences in teachers’ TPACK according to their teaching experience.

TPAK Constructs	Teachers' experience (Year)	TK	CK	PK	PCK	TPK	TCK	TPACK
	0-5	4.1149	4.3514	4.2135	4.1622	4.1622	4.1108	4.0495
	6-10	4.1173	4.3611	4.2519	4.0972	4.1185	4.1407	4.0463
	11-15	3.9535	4.2384	4.1256	4.0698	4.0093	3.9256	3.9884
	16-20	4.0577	4.2788	4.1923	4.0962	4.1154	4.1231	3.9679
	Above 20	3.9359	4.6154	4.4615	4.5192	4.3538	4.2615	4.2179
Table 9. Results of ANOVA on teachers’ TPACK according to teaching experience.

TPACK Constructs	Sum of Squares	df	Mean Square	F	Sig
TK	1.084	4	.271	1.089	.363
CK	1.560	4	.390	2.034	.091
PK	1.219	4	.305	1.506	.202
PCK	2.267	4	.567	2.681	.033
TPK	1.363	4	.341	1.278	.280
TCK	1.744	4	.436	1.607	.174
TPACK	.668	4	.167	.476	.753

4. Discussion
This study aimed to examine mathematics teachers’ TPACK according to their demographic background, namely, Gender, school level, educational level and teaching experience. We conducted a survey and collected data form 210 secondary school mathematics teachers. The findings showed that teachers’ TPACK are statistically significant difference according to gender and teachers’ level of education while school level and teaching experience do not play an important role in teachers’ TPACK. The findings suggest several important points need to discuss.

First, this study supports findings of previous studies that reveal teachers’ TPACK are influenced by gender [11, 15, 19]. Furthermore, the finding of this study is in line with other studies [11, 20], revealing that teacher perceived TPACK significantly higher than female teachers. This finding indicates that researcher and practitioners need to take Gender into account when they propose a training program to develop teacher knowledge in the integration of technology in the classroom. Female teachers require more training programs than male teachers.

Second, in term of school level, this study suggests that there was not a significant difference in TPACK of senior secondary school teachers and junior secondary school teacher. This finding is in line with [21] who revealed that there was no significant difference in teachers’ TPACK according to the level of schools. However, this finding is different from [11] that showed that there were significant differences in TPACK of primary and secondary mathematics teachers. This might happen due to our study investigate in-service teachers’ TPACK while the other study explored pre-service teachers’ TPACK.

Third, this study confirms that teachers’ level of education plays an important role in their TPACK. Teacher with a higher level of education has significantly higher TPACK than teachers with a lower level of education. This is in agreement with the common view that the education level plays an important role in teachers quality [22]. Furthermore, in the context of Indonesia, the finding of this study supports [7], indicating teachers with a post-graduate degree have a higher level of TPACK than teachers with an undergraduate degree.

Fourth, this study suggests that there was no significant difference in teachers’ TPACK according to their teaching experience. This study challenges previous studies that suggest teaching experience play an important role in teachers’ TPACK [23, 24]. In addition, improving teacher knowledge of ICT integration such as TPACK is necessary in order to enhance the integration of technology in mathematics classroom [25].
5. Conclusion
In this study, we examined secondary mathematics teachers’ TPACK according to their demographic background, namely, Gender, school level, education level and teaching experience. To some extent, demographic variables play a significant role in teachers’ TPACK. This study suggests that mathematics teachers’ TPACK is significantly differentiated according to Gender and the level of education where male teachers’ TPACK is significantly higher than female teacher and TPACK of teachers with a post-graduate is significantly higher than teachers with an undergraduate degree. On the other hand, teaching experience and the level of schools do not play an important role in mathematics teachers’ TPACK. This study indicates that researcher and practitioner need to take demographic variables into account when they design and develop a training program to enhance teachers’ TPACK in order to obtain a better achievement of the program.

Acknowledgements
This research project was financially supported by a research grant from Universitas Syiah Kuala (Project No.168/UN11.2.1/PT.01.03/PNBP/2020). The authors also wish to thank all participants of this study.

References
[1] Mishra P and Koehler M J 2006 Technological pedagogical content knowledge: A framework for teacher knowledge Teach. Coll. Rec. 108 pp 1017-54
[2] Schmidt D, Baran E, Thompson A, Koehler M J, Shin T and Mishra P 2009 Technological Pedagogical Content Knowledge (TPACK): The development and validation of an assessment instrument for pre-service teachers The 2009 Annual Meeting of the American Educational Research Association 13th-17th April (San Diego, California)
[3] Shulman L S 1986 Those who understand: Knowledge growth in teaching Educ. Res. 15 4-14
[4] Jang S-J and Tsai M-F 2013 Exploring the TPACK of Taiwanese secondary school science teachers using a new contextualized TPACK model Australas. J. Educ. Technol. 29
[5] Pamuk S, Ergun M, Cakir R, Yilmaz H B and Ayas C 2015 Exploring relationships among TPACK components and development of the TPACK instrument Educ. Inf. Technol. 20 241-63
[6] Chai C, Koh J H L and Tsai C C 2013 A Review of Technological Pedagogical Content Knowledge Educ. Technol. Soc. 16 31-51
[7] Mailizar M and Fan L 2020 Indonesian teachers’ knowledge of ICT and the use of ICT in secondary mathematics teaching EURASIA J. Math. Sci. Technol. Educ. 16
[8] Demir S and Bozkurt A 2011 Primary Mathematics Teachers Views about Their Competencies Concerning the Integration of Technology Elem. Educ. Online 10
[9] McGrath J, Karabas G and Willis J 2011 From TPACK concept to TPACK practice: An analysis of the suitability and usefulness of the concept as a guide in the real world of teacher development Int. J. Technol. Teach. Learn. 7
[10] Niess M L, Ronau R N, Shafer K G, Driskell S O, Harper S R, Johnston C, Harper S R, Johnston C, Browning C, Özgün-Koca S A and Kersaint G 2009 Mathematics teacher TPACK standards and development model Contemp. issues Technol. Teach. Educ. 9 4-24
[11] Erdogan A and Sahin I 2010 Relationship between math teacher candidates’ technological pedagogical and content knowledge (TPACK) and achievement levels Procedia-Social Behav. Sci. 2 2707-11
[12] Kafyulilo A and Fisser P 2019 Developing TPACK in Science and Mathematics Teacher Education in Tanzania: A Proof of Concept Study Collaborative Curriculum Design for Sustainable Innovation and Teacher Learning p 139
[13] Kartal B and Çinar C 2018 Examining Pre-Service Mathematics Teachers' Beliefs of TPACK during a Method Course and Field Experience Malaysian Online J. Educ. Technol. 6 11-37

[14] Chai C S, Koh J H L and Tsai C C 2011 Exploring the factor structure of the constructs of technological, pedagogical, content knowledge (TPACK) Asia-Pacific Educ. Res. 20 595-603

[15] Luik P, Taimalu M and Suviste R 2018 Perceptions of technological, pedagogical and content knowledge (TPACK) among pre-service teachers in Estonia Educ. Inf. Technol. 23 741-55

[16] Fraenkel J R and Wallen N E 2009 How to design and evaluate research in education (Boston: MacGraw-Hill)

[17] Landry G A 2010 Creating and validating an instrument to measure middle school mathematics teachers' technological pedagogical content knowledge (TPACK) (Knoxville: University of Tennessee)

[18] Mailizar and Fan L 2020 Indonesian teachers’ knowledge of ICT and the use of ICT in secondary mathematics teaching EURASIA J. Math. Sci. Technol. Educ. 16 1-13

[19] Jang S J and Tsai M F 2012 Reasons for using or not using interactive whiteboards: Perspectives of Taiwanese elementary mathematics and science teachers Australas J. Educ. Technol. 28 1451-65

[20] Bulut A 2012 Investigating perceptions of preservice mathematics teachers on their technological pedagogical content knowledge (TPACK) regarding geometry (Unpublished masters’ thesis) Middle East Technical University, Ankara

[21] Kagizmali T B, Tatar En and Zengin Y 2013 Investigation of Preservice Teachers' Perceptions on Using Technology in Teaching Mathematics J. Kirsehir Educ. Fac. 14

[22] Zhang D 2008 The effect of teacher education level, teaching experience, and teaching behaviours on students science achievement (Logan, Utah: Utah State University)

[23] Lee M H and Tsai C C 2010 Exploring teachers' perceived self efficacy and technological pedagogical content knowledge with respect to educational use of the World Wide Web Instr. Sci. 38 1-21

[24] Koh J H L, Chai C S and Tsai C C 2014 Demographic factors, TPACK constructs, and teachers' perceptions of constructivist-oriented TPACK J. Educ. Technol. Soc. 17 185-96

[25] Mailizar M and Fan L 2020 Examining Indonesian secondary school mathematics teachers’ instructional practice in the integration of technology Universal Journal of Educational Research 8 10 4692-4699