Whole Genome Sequencing of Hulunbuir Short-Tailed Sheep for Identifying Candidate Genes Related to the Short-Tail Phenotype

Dafu Zhi,* Lai Da,† Moning Liu,* Chen Cheng,* Yukun Zhang,‡ Xin Wang,* Xiunan Li,* Zhipeng Tian,* Yanyan Yang,† Tingyi He,† Xin Long,‡ Wei Wei,* and Guifang Cao*,†

*College of Veterinary Medicine and †College of Life Sciences, Inner Mongolia Agricultural University, Huhhot 010018, People’s Republic of China and ‡Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot 010018, People’s Republic of China

ABSTRACT The Hulunbuir short-tailed sheep (Ovis aries) is a breed native to China, in which the short-tail phenotype is the result of artificial and natural selection favoring a specific set of genetic mutations. Here, we analyzed the genetic differences between short-tail and normal-tail phenotypes at the genomic level. Selection signals were identified in genome-wide sequences. From 16 sheep, we identified 72,101,346 single nucleotide polymorphisms. Selection signals were detected based on the fixation index and heterozygosity. Seven genomic regions under putative selection were identified, and these regions contained nine genes. Among these genes, T was the strongest candidate as T is related to vertebral development. In T, a nonsynonymous mutation at c.G334T resulted in p.G112W substitution. We inferred that the c.G334T mutation in T leads to functional changes in Brachyury—encoded by this gene—resulting in the short-tail phenotype. Our findings provide a valuable insight into the development of the short-tail phenotype in sheep and other short-tailed animals.

Sheep were among the earliest domesticated herbivores. Sheep domestication dates back to the end of the Mesolithic period, ~11,000 yr ago (Chessa et al. 2009). Domestication and artificial selection have led to marked changes in sheep behavior, appearance, and other important traits (Megenls et al. 2008). Most mammal tails are used for balance, communication, and attack. However, in sheep, tails store energy. The fat-tail phenotype is a trait necessary for survival in harsh environments (Pourlis 2011). It is exhibited by Hulunbuir short-tailed sheep, which have been bred for the past century by local herdsmen of the Hulunbuir grassland—a world-renowned highland pasture in arid and semi-arid regions of North China characterized by a short frost-free period, long and cold winter, and dry season constituting a considerable part of the year (Yang et al. 2012). The tails of Hulunbuir short-tailed sheep (Figure 1A) are of variable length, and are generally classified into two categories: extremely short, a tail exposing the anus (Figure 1C); and moderately short, a tail covering the anus (Figure 1D).

Several candidate genes—including HES7 (Bessho et al. 2001), PAX1 (Wilms et al. 1998), T (Smith 1999), and WNT3A (Greco et al. 1996)—related to vertebral development in laboratory mice are reported to be related to the short-tail phenotype; however, the determinant genes related to the short-tail phenotype in sheep remain to be identified.

Recently, many genomic regions under putative selection—which may be related to domestication, adaptation, and other important traits—have been reported in chickens, cats, dogs, and pigs (Rubin et al. 2010; Axelsson et al. 2013; Moon et al. 2015; Xiao et al. 2016). However, detection of selection signals within a single species or population cannot determine whether the genomic region is under putative selection or related to genetic drift. Genomic regions under putative selection are identified using the fixation index (Fst), which is based on significant differences in allele frequencies between two populations. However, Fst does not identify the population wherein selection occurs; hence, it cannot be used to determine the direction of selection. Therefore, in the present study, we analyzed heterozygosity (H0) to identify the specific genomic regions under putative selection. Axelsson et al.

KEYWORDS Hulunbuir short-tailed sheep short-tail phenotype whole genome sequencing selective sweep 7/Brachyury gene Genome Report
(2013) combined Fst and H_{p} to locate the genomic regions under putative selection, and the corresponding genes during dog domestication. Here, we applied the methodology of Axelsson et al. (2013) to locate the genomic regions related to the short-tail phenotype in Hulunbuir short-tailed sheep.

To verify the role of the determinant genes and identify novel genes regulating the short-tail phenotype, we selected sheep with extremely short tails from a population of Hulunbuir short-tailed sheep. To confirm the mutation site, 120 short-tailed sheep and 110 Barag sheep were randomly selected for whole genome sequencing; 13.1 Gb of high-quality data were generated, achieving an average fivefold genome coverage for each individual. The clean data were aligned to the sheep reference genome.

MATERIALS AND METHODS

Ethics statement

All animal care and experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals, and were approved by the Institutional Animal Care and Use Committee of Inner Mongolia Agricultural University.

Samples

Hulunbuir short-tailed sheep and Barag sheep were selected from the Autonomous County of Evenki in the Inner Mongolia Autonomous Region, China. Barag sheep (Figure 1B), which resemble Hulunbuir short-tailed sheep but have a normal tail morphology (Figure 1E), served as controls. We randomly selected 100 short-tailed sheep and 100 Barag sheep for tail-length measurement. Caudal vertebrae were collected from 10 short-tailed sheep and 10 Barag sheep. Blood samples were collected from the following sheep—eight unrelated 2-yr-old short-tailed sheep (four males and four females) with extremely short tails, and eight unrelated 2-yr-old Barag sheep (four males and four females) with normal tails were selected for whole genome sequencing; 120 short-tailed sheep and 110 Barag sheep were randomly selected to confirm the mutation site; ~2 ml of blood was collected in EDTA-containing vacutainers and stored in liquid nitrogen (−196°C). Genomic DNA was extracted from the whole blood samples using the DNeasy Blood and Tissue Kit (Qiagen, Duesseldorf, Germany).

X-ray analysis and specimen preparation

X-ray images of the caudal vertebrae were captured from the front using the ClearVet DR16 Imaging System. Deposits and muscle were carefully peeled off from the caudal vertebrae. The caudal vertebrae were fixed in ethanol for 5 d, and cleared by immersing in 0.5% NaOH for 2 d. To remove fat, oil, and adipose tissue, the caudal vertebrae were immersed in petrol for 3 d. Data were recorded and saved according to the order of X-ray images.

Sequencing and SNP calling

A sequencing library with an average insert size of 350 bp was constructed for each sample. Sequencing was performed on the Illumina Hiseqation 2000 sequencer at Novogene Corporation to generate 150-bp paired-end reads; ~13.1 Gb of high-quality data were generated, achieving an average fivefold genome coverage for each individual. The clean data were aligned to the sheep reference genome.

Figure 1 Tail phenotypes of sheep. (A) Hulunbuir short-tailed sheep; (B) Barag sheep; (C) extremely short in Hulunbuir short-tailed sheep; (D) moderately short in Hulunbuir short-tailed sheep; (E) normal tail in Barag sheep.
(Oar_v3.1 http://asia.ensembl.org/Ovis_aries/Info/Index) using Burrows-Wheeler Aligner 0.6.1 with parameters set as “mem -k 32 -M” (Li and Durbin 2010); duplications were eliminated from the alignments using SAMtools with parameters set as “rmdup.” Single nucleotide polymorphism (SNPs) were detected using SAMtools with parameters set as “mpileup-m -F 0.002 -d 1000” and annotated using ANNOVAR (Li et al. 2009; Wang et al. 2010). SNPs with low-quality scores (GQ < 20) and inter-SNP distance of <5 bp were filtered.

Selective sweep analysis
A sliding-window approach (100-kb windows sliding in 10-kb steps) was employed for quantifying H_p in the short-tailed sheep and F_{st} between the short-tailed and Barag sheep (Li et al. 2014). H_p was calculated using the formula $H_p = 2\sum n_{Maj} \sum n_{Min}/(\sum n_{Maj} + \sum n_{Min})^2$, where $\sum n_{Maj}$ and $\sum n_{Min}$ are the sum of n_{Maj} and n_{Min}, respectively. We transformed the H_p values into Z-scores using the formula $ZH_p = (H_p - \mu H_p)/\sigma H_p$, where μH_p is the overall average heterozygosity and σH_p is the SD for all windows within the group. Genetic differentiation between the short-tailed and Barag sheep was measured using fixation index (F_{st}) with the formula $F_{st} = 1 - p_1 q_1 + p_2 q_2/2p_1 q_1$, where p_1, p_2 and q_1, q_2 represent the frequencies of alleles A and a in populations of Hulunbuir short-tailed sheep and Barag sheep, respectively, and p_1 and q_1 represent the frequencies of alleles A and a, respectively, in the whole population (Clark and Hartl 2007). F_{st} values were Z-transformed using the formula for ZH_p. The H_p and F_{st} data were calculated based on the R language package (http://www.r-project.org/). The selected regions were defined as genetic regions in overlapping windows with extremely low ZH_p values ($ZH_p < -5$) and extremely high ZF_{st} values ($ZF_{st} > 4.5$).

T sequencing
The primer pairs for the amplification of T exons were designed based on the sheep genome assembly (Oar_v3.1). The primer sequences are provided in Supplemental Material, Table S1. Sanger sequences of PCR duplicates were detected by Invitrogen Corporation, Shanghai, China.

Data availability
The Illumina sequence reads were deposited in the NCBI Sequence Read Archive under the accession number SRP106953. The authors state that...
all data necessary for confirming the conclusions presented in the article are represented fully within the article.

RESULTS

Measurements

The average tail lengths of the Barag and Hulunbuir short-tailed sheep were 26.32 and 16.01 cm, respectively. The average lengths of the caudal vertebrae in the Barag and Hulunbuir short-tailed sheep were 21.12 and 13.86 cm, respectively. Deformed caudal vertebrae were observed in seven Hulunbuir short-tailed sheep (Figure 2).

Genome resequencing

Eight sheep with extremely short tails were selected from the short-tailed sheep, and eight Barag sheep with normal tails were selected. We performed genome sequencing for the 16 sheep and obtained 232.23 Gb of paired-end DNA reads. Of this, 231.07 Gb (99.50%) consisted of high-quality paired-end reads (Q20 $\geq 94.33\%$ and Q30 $\geq 88.47\%$) that could be aligned to the sheep reference genome (Oar_v3.1) (Table S2). For individual sheep, the alignment rate was 98.13–98.75%. For the reference genome (excluding N’s), the average coverage depth was 4.59–5.27×. The reads with 1× coverage depth (covered by at least one base) accounted for $\geq 94.19\%$ (Table S3). The read alignments were normal, and the reads were eligible for variation detection and other analyses.

SNP and selective sweep

In the 16 sheep, we identified 72,101,346 SNPs, of which 492,307 SNPs were localized to coding regions, and responsible for 205,408 nonsynonymous nucleotide substitutions (202,338 missense, 2905 stop-gains, and
165 stop-losses) (Table S4). According to the SNP densities in the genome and reference genome assembly, the number of SNPs in the sliding window was 20, beginning from 100 kb; this trend persisted. Additionally, the regions containing 20 SNPs were stable. Therefore, the width of the sliding window was selected as 100 kb. Alignments were performed between the two populations, using a 50%-overlapping interval as the step length. For each window, Fst was calculated and Z-transformed into a ZFst value that obeyed standard normal distribution (Figure 3A). The larger the ZFst value, the greater the genetic differentiation between the populations. Hp was evaluated for the short-tailed sheep population with the same sliding-window parameters, and it was Z-transformed to standard normal distribution for the population (Figure 3A). Based on the Z value, we observed considerable genetic differentiation in many genomic regions between the populations, including those unrelated to tail morphology. To determine whether certain genetically different genomic regions were related to tail morphology, we overlapped the small interval of ZHp and large interval of ZFst. We set ZFst = 4.5 as the threshold for identifying the genomic regions under putative selection and selected windows with ZFst values greater than this threshold (Figure 3B). Moreover, we set ZHp = 2.5 as the threshold and selected windows with ZHp values less than this threshold (Figure 3C). The overlapping regions were identified and combined into seven candidate genomic regions (20–160 kb).

Chr	Interval	Location	ZFst	ZHp	Candidate Gene	Annotation	Gene Location
1	69800001–69950000	4.9462	−5.4862	FNBPL1	Formin-binding protein 1-like	69805549–69915406	
1	69800001–69950000	4.7863	−5.9525	BCAR3	Breast cancer anti-estrogen resistance 3	69930328–70015474	
2	37440001–37580000	4.9422	−5.0057	LCORL	Ligand-dependent nuclear receptor corepressor-like	37365236–37452332	
2	37477001–37890000	8.4551	−5.1642	T	T, Brachyury homolog	87796143–87805552	
6	16940001–17060000	4.7804	−6.5384	SLC35F2	Solute carrier family 35, member F2	16854039–16994650	
15	16940001–17060000	4.6566	−5.9519	RAB39A	RAB39A, member RAS oncogene family	166995339–17027728	
15	17090001–17100000	4.7602	−6.0915	CUL5	Cullin 5	17088942–17210813	
X	77440001–77470000	4.8223	−5.1215	IRAK1	Interleukin-1 receptor-associated kinase 1	77447119–77450460	
X	77440001–77470000	4.8801	−5.0186	MECP2	Methyl-CpG-binding protein 2	77461651–77467940	

Table 1 Overlapping genes identified using ZHp and ZFst

Figure 4 Alignment of amino acid sequences of Brachyury among animals. Brachyury is a protein encoded by T. Amino acid residues where p.G112W and p.V419I were located are indicated in blue. Identical amino acids, conserved substitutions, and semiconserved substitutions are indicated in red, yellow, and white respectively. Dots represent gaps in the alignment.
G-to-A transition in exon nine (c.G1255A), which corresponded to glycine-to-tryptophan substitution at amino acid residue 112 (p.G112W) and valine-to-isoleucine substitution at amino acid residue 419 (p.V419I), respectively (Figure 4).

Validation using Sanger sequencing

The identified nonsynonymous nucleotide substitutions in T were verified using Sanger sequencing with a large sample size in 120 short-tailed and 110 Barag sheep. Variation data were deposited in GenBank under the accession number MF996360. We detected the heterozygous form of c.G334T in the short-tailed sheep, but not in the Barag sheep. However, we detected c.G1255A in both populations (Table 2). We inferred that the c.G334T mutation in T is the primary cause of the short-tail phenotype. However, this does not exclude the possibility that other genes control the short-tail phenotype.

DISCUSSION

Hulunbuir short-tailed sheep are fat-tailed sheep, with large quantities of adipose deposited in their tail regions. Most previous research studies on sheep tails have focused on adipose deposition (Moradi et al. 2012; Wang et al. 2014; Yuan et al. 2017). Liu et al. (2015) suggested that tail length in short-tailed sheep is related to adipose deposition. However, we believe that tail length is related to the length of the caudal vertebrae. This prediction was supported by our observation of deformed vertebrae in the tails of seven Hulunbuir short-tailed sheep. The specific molecular mechanism functioning in the short-tail phenotype remains to be elucidated; however, we believe that the mutated T gene plays an important role in regulating this phenotype. Of the nine investigated genes, BCAR3 (Agthoven et al. 1998), FNBP11 (Huett et al. 2009), IRAK1 (Li et al. 2015), CUL5 (Byrd et al. 1997), and RAB39A (Seto et al. 2013) are related to the immune system; MECPP2 (Tao et al. 2009) and SLC35F2 (Sonuga-Barke 2013) are related to neurodevelopment; and LCORL (Singer-Hasler et al. 2012) is related to skeletal frame size. Only the T gene is related to development of the spine, and this gene seems to be associated with a short-tail phenotype in mice (Bedington et al. 1992).

We identified seven candidate genomic regions that included T. This gene was further verified using Sanger sequencing. T encodes a transcription factor named Brachyury, which is the key regulator of mesoderm formation during early development. The Brachyury protein is an important functional transcription factor, in which ~180 amino acid residues located near the N-terminus display DNA-binding activity; this is the T domain. This region can specifically bind to a 5-bp functional domain in DNA (TCACA) (Kispert and Herrmann 1993; Palena et al. 2007; Fernando et al. 2010). Brachyury is specifically expressed in the notochord of the mesoderm during gastrulation, and it regulates growth and development of the embryonic notochord. However, Brachyury is not expressed during mid-to-late pregnancy (Sangol et al. 2011).

As early as 1927, Dobrovolskaïa-Zavadskaïa described the phenotype of a Brachyury mutation in mice (Kavka and Green 1997). Mice heterozygous for the Brachyury mutation had short and slightly curved tails. Homozygous or compound heterozygous mice died in utero after ~10 d of the embryonic period because of failure to form the dorsal cord and allantois (Showell et al. 2004). The short-tail phenotype in mice was first discovered in 1927, but it was not until 1990 that the T gene was cloned (Herrmann et al. 1990). Pennimpede et al. (2012) characterized an inducible miRNA-based on an in vivo knockout mouse model of T, which exhibited skeletal defects.

We identified two loci of nonsynonymous mutations in T using genome sequencing in short-tailed sheep, and we localized the c.G334T mutation in the T domain of the Brachury gene. Specific regions in the T domain are highly sensitive to structural changes caused by mutations, and these mutations may result in conformational changes in the protein. By combining X-ray diffraction and analysis of the DNA-binding domain in Xenopus, Muller observed high similarity between amino acids in this region and those in contact with DNA (Müller and Herrmann 1997). In the present study, we inferred that the p.G112W mutation affects the binding ability of the T domain to DNA.

We did not detect the c.T334T mutation in the short-tailed sheep population, consistent with the theory that homoyzogotes or compound heterozygotes result in embryonic lethality (Buckingham et al. 2013). The c.G334G mutation was detected in individuals with normal tails. Wu et al. (2010) observed that, when mice with moderately long tails were mated with short-tailed mice, the offspring showed short-tail and normal-tail phenotypes; however, the genotypes of the offspring were not analyzed. This may explain the phenomenon of the c.G334G mutation in individuals with normal tails in the short-tailed sheep population. Herdsmen continue to breed this group and eliminate individuals with nonideal tail types and other individuals exhibiting poor phenotypes; we propose that this explains the nonconformity of genotypic frequencies with genetic theory.

In conclusion, the results of our present study suggest that the c.G334T mutation in T directly results in the short-tail phenotype in sheep. The candidate genes identified in our study provide the basis for understanding the molecular mechanism of the short-tail phenotype in sheep and other short-tailed animals.

ACKNOWLEDGMENTS

We thank Wang Yu of the Bureau of Animal Husbandry of Evenki for sample collection. This work was supported by the Technology Innovation Project of the Inner Mongolia Agricultural University (NDPTD 2010-6) and the Key Program of the Department of Science and Technology, Inner Mongolia Autonomous Region (201602057).

LITERATURE CITED

Agthoven, T. V., T. L. A. V. Agthoven, A. Dekker, P. J. V. D. Spek, L. Vrede et al., 1998 Identification of BCAR 3 by a random search for genes involved in antitestosterone resistance of human breast cancer cells. EMBO J. 17: 2799–2808.

Axelsson, E., A. Ratnakumar, M. L. Arendt, K. Maqbool, M. T. Webster et al., 2013 The genomic signature of dog domestication reveals adaptation to a starch-rich diet. Nature 495: 360.

Bedington, R. S., P. Rashbass, and V. Wilson, 1992 Brachury—a gene affecting mouse gastrulation and early organogenesis. Dev. Suppl. 114: 157.

Bessho, Y., R. Sakata, S. Komatsu, K. Shiota, S. Yamada et al., 2001 Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev. 15: 2642.

Buckingham, K. J., M. J. McMILLin, M. M. Brussil, K. M. Shively, K. M. Magnaye et al., 2013 Multiple mutant T alleles cause haploinsufficiency of Brachyury and short tails in Manx cats. Mamm. Genome 24: 400–408.

Byrd, P. T., C. M. McConville, A. D. Smith, P. R. Cooper, and A. M. Taylor, 1997 Identification and analysis of expression of human VACM-1, a cullin gene family member located on chromosome 11q22–23. Genome Res. 7: 71–75.

Chessa, B., F. Pereira, F. Arnaud, A. Amorim, F. Goyache et al., 2009 Revealing the history of sheep domestication using retrovirus integrations. Science 324: 532–536.
Fernando, R. L., M. Litzinger, P. Trono, D. H. Hamilton, J. Schlon et al., 2010 The T-box transcription factor Brachury promotes epithelial-mesenchymal transition in human tumor cells. J. Clin. Invest. 120: 533–544.

Greco, T. L., S. Takada, M. M. Newhouse, J. A. McMahon, A. P. McMahon et al., 1996 Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev. 10: 313.

Hartl, D. L., and A. G. Clark, 2007 Principles of Population Genetics, Ed. 4. Sinauer Associates, Sunderland, MA.

Herrmann, B. G., S. Labeit, A. Poutsi, T. R. King, and H. Lehrach, 1990 Cloning of the T gene required in mesoderm formation in the mouse. Nature 343: 617.

Huet, A., A. Ng, Z. Cao, P. Kubaala, M. Komatsu et al., 2009 A Novel hybrid yeast-human network analysis reveals an essential role for FNBP1L in antibacterial autophagy. J. Immunol. 182: 4917.

James, P. J., R. W. Ponzoni, D. R. Gare, and K. S. Cockrum, 1991 Inheritance of short tailedness in South Australian Merinos. Proceedings of the Australian Association of Animal Breeding and Genetics, Vol. 9, pp. 404–407.

Kavka, A. L., and J. B. A. Green, 1997 Tales of tails: Brachury and the evolution of taillessness in sheep breeds for identifying of candidate regions associated with fat deposition. Acta Vet. Zootech. Sin. 46: 1721–1732.

Kispert, A., and B. G. Herrmann, 1993 The Brachyury gene encodes a novel DNA binding protein. EMBO J. 12: 4898–4909.

Li, C., S. Huang, S. Mo, N. Zhang, L. Zhou et al., 2015 Susceptibility of autoimmune diseases in three polymorphisms of infection-associated gene IRAK1. J. Infect. Dev. Ctries. 9: 614–623.

Li, H., and R. Durbin, 2010 Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589–595.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., 2009 The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.

Li, M., S. Tian, C. K. L. Yeung, X. Meng, Q. Tang et al., 2014 Whole-genome sequencing of Berkshire (European native pig) provides insights into its origin and domestication. Sci. Rep. 4: 6478.

Liu, Z., H. Wang, R. Liu, W. U. Mingming, S. Zhang et al., 2015 Genome-wide detection of selection signatures of direct tail types in sheep populations. Acta Vet. Zootech. Sin. 46: 1721–1732.

Mogens, H. L., R. P. Crooijmans, C. M. San, X. Hui, N. Li et al., 2008 Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genet. Sel. Evol. 40: 103–128.

Moon, S., T. H. Kim, K. T. Lee, W. Kwak, T. Lee et al., 2015 A genome-wide scan for signatures of directional selection in domesticated pigs. BMC Genomics 16: 1–12.

Moradi, M. H., A. Nejati-Javaremi, M. Moradi-Shahrbabak, K. G. Doods, and J. C. McEwan, 2012 Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet. 13: 1–15.

Müller, C. W., and B. G. Herrmann, 1997 Crystallographic structure of T domain-DNA complex of the Brachury transcription factor. Nature 389: 884–888.

Pallena, C., D. E. Polev, K. Y. Tsang, R. I. Fernando, M. Litzinger et al., 2007 The human T-box mesodermal transcription factor Brachury is a candidate target for T-cell-mediated cancer immunotherapy. Clin. Cancer Res. 13: 2471–2478.

Pennimpede, T., J. Prosko, A. König, J. A. Vidigal, M. Morkel et al., 2012 In vivo knockdown of Brachury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Dev. Biol. 372: 55–67.

Pourlis, A., 2011 A review of morphological characteristics relating to the production and reproduction of fat-tailed sheep breeds. Trop. Anim. Health Prod. 43: 1267.

Rubin, C. J., M. C. Zody, J. Eriksson, J. R. Meadows, E. Sherwood et al., 2010 Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464: 587.

Sangoi, A. R., J. Karamchandani, B. Lane, J. P. Higgins, R. V. Rouse et al., 2011 Specificity of brachury in the distinction of chordoma from clear cell renal cell carcinoma and germ cell tumors: a study of 305 cases. Mod. Pathol. 24: 425–429.

Seto, S., K. Sugaya, K. Tsujimura, T. Nagata, T. Horii et al., 2013 Rab39a interacts with phosphatidylinositol 3-kinase and negatively regulates autophagy induced by lipopolysaccharide stimulation in macrophages. PLoS One 8: e63324.

Showell, C., O. Binder, and F. L. Conlon, 2004 T-box genes in early embryogenesis. Dev. Dyn. 229: 201.

Signer-Hasler, H., C. Flury, B. Haase, D. Burger, H. Simianer et al., 2012 A genome-wide association study reveals loci influencing height and other conformation traits in horses. PLoS One 7: e37282.

Smith, J., 1999 T-box genes: what they do and how they do it. Trends Genet. 15: 154–158.

Sonuga-Barke, E. J. S., 2013 Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381: 1371–1379.

Tao, J., K. Hu, Q. Chang, H. Wu, N. E. Sherman et al., 2009 Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc. Natl. Acad. Sci. USA 106: 4882–4887.

Wang, K., M. Li, and H. Hakonarson, 2010 ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38: e164.

Wang, X., G. Zhou, X. Xu, R. Geng, J. Zhou et al., 2014 Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep. Gene 549: 252–257.

Wilm, B., E. Dahl, H. Peters, R. Balling, and K. Imai, 1998 Targeted disruption of Pax1 defines its null phenotype and proves haploinsufficiency. Proc. Natl. Acad. Sci. USA 95: 8692–8697.

Wu, B., Y. Shao, B. Chen, C. Liu, Z. Xue et al., 2010 Identification of a novel mouse brachury (T) allele causing a short tail mutation in mice. Cell Biochem. Biophys. 58: 129–135.

Xiao, S., X. Xin, X. S. Hu, Z. Yan, Y. C. Liu et al., 2016 Whole genome sequencing identifies a missense mutation in HES7 associated with short tails in Asian domestic cats. Sci. Rep. 6: 31583.

Yang, Q., Z. Qin, W. Li, and B. Xu, 2012 Temporal and spatial variations of vegetation cover in Hulun Buir grassland of inner Mongolia, China. Arid Land Res. Manage. 26: 328–343.

Yuan, Z., E. Liu, Z. Liu, J. W. Kijas, C. Zhu et al., 2017 Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim. Genet. 48: 55–66.

Communicating editor: D. J. de Koning